Host-Gut Microbiota Crosstalk in Intestinal Adaptation

Justine Marchix,1 Gillian Goddard,2 and Michael A. Helmrath1,2

1 Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio; 2 Department of General Surgery, University of Cincinnati, Cincinnati, Ohio

SUMMARY
Intestinal adaptation is a multifactorial compensatory process that occurs in the remaining bowel of intestinal failure patients after small-bowel loss or damage. This review provides an overview of the current knowledge on host-microbiota interactions and their potential ability to modulate the intestinal adaptive response.

Short-bowel syndrome represents the most common cause of intestinal failure and occurs when the remaining intestine cannot support fluid and nutrient needs to sustain adequate physiology and development without the use of supplemental parenteral nutrition. After intestinal loss or damage, the remnant bowel undergoes multifactorial compensatory processes, termed adaptation, which are largely driven by intraluminal nutrient exposure. Previous studies have provided insight into the biological processes and mediators after resection, however, there still remains a gap in the knowledge of more comprehensive mechanisms that drive the adaptive responses in these patients. Recent data support the microbiota as a key mediator of gut homeostasis and a potential driver of metabolism and immunomodulation after intestinal loss. In this review, we summarize the emerging ideas related to host-microbiota interactions in the intestinal adaptation processes. (Cell Mol Gastroenterol Hepatol 2018;6:149–162; https://doi.org/10.1016/j.jcmgh.2018.01.024)

Keywords: Enteric Flora; Immune System; Intestinal Failure; Adaptive Responses; Microbial Metabolites.

Intestinal failure (IF) describes a state of reduced absorptive function in which the intestine cannot support fluid, electrolyte, or micronutrient needs that are required to sustain adequate physiology and growth without the use of intravenous supplemental parenteral nutrition (PN) and/or fluids.1,2 Because of continued reliance on PN, IF has a high incidence of morbidity and mortality, and is associated with complications including gastric hypersecretion, dysbiosis, D-lactic acidosis, catheter-related bloodstream infections, and intestinal failure–associated liver disease.1,3 Although there are multiple etiologies resulting in IF, short-bowel syndrome (SBS) is the most common cause in both pediatric (50%) and adult (75%) populations.4 SBS is the result of extensive surgical resection resulting from disease entities such as necrotizing enterocolitis (NEC), gastroschisis, Hirschsprung’s disease, volvulus, intestinal atresia, Crohn’s disease, pseudo-obstruction, or microvillus inclusion.1,2

The multidisciplinary management of SBS has been well reviewed and focuses on gaining independence from PN.1 However, one major gap in clinical management is the strategies used to avoid attenuated functional ability of the remaining bowel with management decisions that we can control: diet, probiotics, antisecretion medications, and/or oral antibiotics. One example of this concept is the use of broad-spectrum antibiotics for the management of sepsis and the associated decrease in functional absorptive capacity of the bowel owing to presumable changes of the enteric flora. How do other long-term therapies that alter the microbiota affect the functional nutritional profile of patients? To address this, the first goal is to understand the mechanisms that alter the normal existing flora and contribute to the development of dysbiosis in patients with IF. The effect of the microbiota and the metabolism of luminal nutrients on the adaptive response are areas of active research and are the focus of this review.

Intestinal Adaptation Features
Intestinal adaptation is a spontaneous physiological compensatory process that occurs after intestinal resection to restore the digestive and absorptive capacity of the intestine. Traditionally, animal models relied on morphometric changes of the remnant bowel to measure the adaptive response. Because access to human adaptive bowel sample is not always feasible, secondary measurements such as plasma citrulline levels or absorption of inert sugars have been developed to evaluate intestinal adaptation.

Different surgical animal models have been designed to better understand the premise of SBS and intestinal adaptation to find new therapies. Three common types of resection performed in SBS patients have been studied in animals: small-bowel resection (jejunoileal anastomosis), ileal pouch-anal anastomosis (IPAA), and ileostomy.

Abbreviations used in this paper: CONV, conventional; ENS, enteric nervous system; GF, germ-free; GI, gastrointestinal; GLP-2, glucagon-like peptide 2; IBD, inflammatory bowel disease; ICR, ileoceleal resection; IF, intestinal failure; IL interleukin; NEC, necrotizing enterocolitis; PN, parenteral nutrition; SBR, small bowel resection; SCFA, short-chain fatty acid; SFB, segmented filamentous bacteria; SBS, short-bowel syndrome; TGR5, Takeda-G-protein-receptor 5.
Ileocecal resection (jejunocolic anastomosis), and extensive small-bowel and colon resection that results in a high-output jejunostomy. In human beings, small-bowel resection (SBR) is associated with rapid adaptation and has the best clinical outcome. These factors have led to the SBR model being the most represented in SBS animal models. However, jejunocolic anastomosis and jejunostomy are the most common surgeries resulting in clinical IF, usually as a consequence of NEC disease–related or distal small bowel lesions. The ileocolic resection (ICR) model represents a model of jejunocolic anastomosis that has been investigated in rodents as well as in pigs. The jejunostomy is the least common surgical model in animal studies, however, these patients are the most challenging to manage clinically because of the massive loss of tissue and its associated functions. The discrepancy between animal models of SBS and what is encountered clinically should be recognized when discussing long-term intestinal adaptation in SBS and IF patients.

In experimental models, the remnant bowel undergoes macroscopic and microscopic structural changes within 48 hours after resection. Macroscopically, the small bowel dilates and elongates. Microscopically, the adaptive response is characterized by stem cell expansion and an increased crypt cell proliferation resulting in taller villi and deeper crypts. An increase in enteroocyte apoptosis also is observed after resection, and is suggested to be a response to counterbalance enhanced proliferation and maintain homeostasis. Taken together, the bowel is adapting by increasing its available surface area to accommodate for the surgical loss thereof. After intestinal resection, an early expansion of secretory cell lineages, including Goblet and Paneth cells, occurs while the number of absorptive enteroctyes increases at a later time point. Early hemodynamic alterations also may contribute to local angiogenesis as well as increased tissue oxygen utilization. Collectively, these changes support mucosal growth, lead to an increase in macroscopic and microscopic structural changes within 48 hours after resection, and is suggested to be a response to counterbalance enhanced proliferation and maintain homeostasis. An increase in enterocyte apoptosis also is observed after resection, and is suggested to be a response to counterbalance enhanced proliferation and maintain homeostasis.

The impact of surgery on the host-microbiota balance acts at multiple levels. Factors such as the physiological stress of surgery, fasting, and antibiotic treatment all participate in the disruption of microbiota. The surgical procedure itself also induces changes in the microbiome, likely resulting from exposing the bowel lumen to oxygen and temporarily interrupting local blood flow. Depending on the length and location of the bowel resected, the loss of intestine also may induce long-term changes such as a lower fecal pH, faster transit time, and altered pancreaticobiliary secretions. These changes modify the gut environment and can trigger the prevalence of certain gram-positive bacterial communities such as the facultative anaerobe Lactobacillus. Along the GI tract, the microbiota is composed mainly of Firmicutes and Bacteroidetes phyla. Experimental models have shown that intestinal resection reduces the diversity of the microbiota present in the remnant bowel and the colon. After surgery, rodent and porcine models show a drastic decrease of Bacteroidetes phylum with an associated predominance of gram-positive Firmicutes bacteria in both the small bowel and colon. By using pyrosequencing and quantitative polymerase chain reaction, Devine et al showed an established dominance of Firmicutes, mainly Clostridia, in the murine ICR model, whereas Lactobacillus dominated the Firmicutes phylum in the SBR model. In contrast, another model of SBR failed to show any significant difference in the colonic bacterial diversity but rather identified an adverse local effect in the luminal content of the remnant ileum after resection. Metagenomics studies in SBS patients are rare and mainly based on noninvasive fecal sample analysis, which may not reflect the actual small-bowel physiology. Joly et al were the pioneers in the study of both fecal and mucosa-associated microbiota in patients with SBS. Among 11 patients with a jejunoileocolic anastomosis, both fecal and colonic biopsy samples were found to have a high prevalence of Lactobacillus with an associated depletion of Clostridia and Bacteroidetes. By using temperature gradient gel
Limitations	Human studies	Animal studies	
	Structural adaptation	Functional adaptation	
	Structural adaptation	Functional adaptation	
GH\(^a\)	No change\(^44\)	Absorptive capacity improved (weaned off PN)\(^45\)–\(^48\), Multiple studies used glutamine + GH\(^44\)\(^,\)\(^48\), Effects disappeared after GH was stopped\(^44\)\(^,\)\(^47\),\(^48\)	Increased structural adaptation\(^57\), Synergistic effect with glutamine\(^49\)
	Increased absorptive capacity\(^12\)	Increased absorptive capacity\(^44\)	
EGF	No studies	Absorptive capacity improved\(^50\), Increased tolerance to EN\(^50\), No changes in intestinal permeability\(^50\)	Increased structural adaptation\(^51\)–\(^53\), Timing of administration is crucial\(^52\), Enterocyte EGF receptor is not needed for normal intestinal adaptation after resection\(^54\)\(^,\)\(^55\), Synergistic effect with GLP-2\(^56\)
	Jejunal permeability decreased with combined EGF and GLP-2\(^52\), No change in fat absorption or weight gain\(^56\)		
GLP-2	Structural adaptation of small intestine\(^30\)–\(^32\), Decreased effect if patient had intact colon\(^11\)	Absorptive capacity improved (weaned off PN)\(^28\)\(^,\)\(^31\)–\(^33\), GLP-2 levels correlate with residual small bowel length and nutrient absorption\(^30\)–\(^33\), Synergistic effect with GLP-1\(^33\)	Increased structural adaptation\(^13\)–\(^61\), Timing of administration is crucial\(^52\), Synergistic effect with enteral nutrition and EGF\(^56\)–\(^58\),\(^63\), Effects are region-specific (jejunum > ileum)\(^58\)\(^,\)\(^61\)
	Decreased intestinal permeability\(^57\)\(^,\)\(^61\), Increased absorptive capacity\(^13\), No difference in total fat absorption, messenger RNA expression of nutrient transporters\(^58\), Effects are region-specific (jejunum > ileum)\(^58\)\(^,\)\(^61\)		
IGF-1	Decreased plasma levels in SBS patients\(^64\), No other studies	Increased structural adaptation\(^65\)–\(^67\), May stimulate muscular lengthening\(^96\), Enterocyte receptor is not needed for adaptation\(^95\)	Increased absorptive capacity (weaned off PN)\(^12\), Increased digestive enzymes\(^58\)
	No studies	No studies	
IGF-2	No studies	May signal mesenchyme to induce villus growth\(^95\), IGF-2 is not needed for adaptation\(^95\)	No studies
TGF-\(\alpha\)	No studies	Increased structural adaptation\(^70\)–\(^72\), Increases enterocyte proliferation\(^72\), TGF-\(\alpha\) not needed for adaptation\(^70\)	No studies
Leptin	No change in plasma levels in SBS patients\(^64\), No other studies	Increased structural adaptation\(^73\)–\(^74\), Increased enterocyte turnover\(^74\)	Enhanced carbohydrate absorption\(^76\), Altered absorptive enzymes in leptin-deficient obese mice after resection\(^76\)

No standard definitions for structural or functional intestinal adaptation

Intestinal adaptation does not necessarily equal a meaningful clinical outcome
electrophoresis and quantitative polymerase chain reaction, the investigators established a high predominance of *L. mucosae* in both luminal content and mucosal biopsy of SBS patients compared with controls. Engstrand et al.\(^8^2\) showed similar microbiota alterations from fecal samples of children with SBS compared with their healthy siblings. Children with SBS on PN had reduced microbial diversity owing to the prevalence of *Enterobacteriaceae* compared with both PN-weaned SBS children and their healthy sibling. Another recent study also showed an increase in the relative facultative anaerobic *Proteobacteria* in children with IF who had prolonged PN and intestinal failure–associated liver disease.\(^8^3\) These results point out the impact of prolonged PN on intestinal dysbiosis in pediatric SBS patients.

Dysbiosis also corresponds with a decrease in metabolic diversity, which may promote pathogenic infections or induce adverse metabolic effects for the host.\(^8^0\) For instance, because of their ability to produce lactate and deconjugate bile acids, the abnormal dominance of *Lactobacillus* species observed in SBS patients can reduce vitamin absorption or cause D-lactic acidosis.\(^8^4,8^5\) A recent report using a systems biology approach also showed that dysbiosis was correlated with an altered metabolome in a pig model of SBS-associated liver disease.\(^8^6\) Alteration of the intestinal microbiota also can lead to insufficient breakdown of dietary components such as lipids and complex polysaccharides. This can result in a decrease in the production of short-chain fatty acids (SCFAs), malabsorption, reduced energy availability, and dysmotility.\(^8^7,8^8\)

To date, it remains difficult to identify if dysbiosis is causative or a consequence of intestinal loss. It is important to consider that surgical intervention may not be the only factor altering the microbiota. Dysbiosis may also be due to an accumulative effect of a pre-existing disease state, as suggested in patients with inflammatory bowel disease (IBD), obesity, or cancer.\(^8^9,9^0\) For instance, 1 recent report that examined the ileal mucosal microbiota of patients with Crohn’s disease at the time of ICR found that dysbiosis was already present. They noted a high prevalence of facultative anaerobic and aerobic bacteria including *Streptococcus* and *Sphingomonas*.\(^9^1\) Six months after surgery, ileocolonic biopsy specimens from these patients showed an increase in anaerobic bacteria such as *Clostridia* compared with their initial biopsy specimens. The investigators also identified 2 operational taxonomic units related to butyrate-producing bacteria that were predictive of Crohn’s remission along with 2 other operational taxonomic units, *Eubacterium rangiferina* and *Proteus mirabilis*, which were predictors of Crohn’s recurrence after ICR.\(^7^1\)

Our current methodologies for studying the microbiome in both animal and human models are not without limitations. For instance, surgeries in animal studies are performed mainly on healthy animals, negating the effects of pre-existing conditions that are commonly found in patients. Most human data compare patient microbiota with healthy controls, although characterizing the microbiota of each patient before and after surgery would be more informative to identify predictive bacterial species and their associated surgical outcomes. In addition, the

Limitations	Human studies	Animal studies	Animal resection models differ from typical anatomy found in patients clinically
Low number of patients (small studies)	Variable resection models	Human studies	Functional adaptation
Paucity of human clinical studies	Paucity of human clinical studies	Animal studies	Structural adaptation
Paucity of human clinical studies	Paucity of human clinical studies	Animal studies	Structural adaptation
Paucity of human clinical studies	Paucity of human clinical studies	Animal studies	Structural adaptation
Paucity of human clinical studies	Paucity of human clinical studies	Animal studies	Structural adaptation

EGF, epidermal growth factor; en, enteral nutrition; FDA, Food and Drug Administration; GH, growth hormone; IGF, insulin growth factor; TGF-\(\alpha\), transforming growth factor-\(\alpha\).
majority of studies in the literature mainly focus on microbiome changes in luminal or fecal samples, but little is known about the changes occurring to adherent bacteria after intestinal resection. However, mucosal-associated bacteria appear important because Shogan et al.\(^\text{92}\) showed that the microbiota profile at the anastomosis is affected differently than the luminal contents after colectomy in rats. The investigators found an increase of *Enterococcus* and *Escherichia/Shigella* bacteria at the mucosal level, which may affect anastomotic healing.\(^\text{92}\)

Impact of Gut Microbiota on Intestinal Adaptation Processes

By using different approaches, animal experiments support a role of microbiota in promoting intestinal adaptation. Several studies have reported that germ-free (GF) animals have a different baseline intestinal structure owing to the absence of microbial exposure. GF animals show smaller crypts, a lower proliferative index, but taller villi compared with conventional (CONV) animals.\(^\text{93–95}\) Introducing microbes into GF mice stimulates an increase in proliferative index and crypt depth.\(^\text{95}\) In a murine model of IBD, Speck et al.\(^\text{93}\) showed that microbiota-induced inflammation was associated with significantly deeper crypts, taller villi, and an increased enterocyte proliferation index in CONV interleukin (IL)10 null mice compared with GF IL10 null mice after ICR. Ileocecal resection of GF mice also supports the importance of microbiota in inducing crypt fission, an indirect marker of intestinal stem cell expansion, as well as in regulating genes that are related to bile acid metabolism.\(^\text{93,96}\) Probiotics or mono-inoculation of bacteria such as *Lactobacillus* species or *Escherichia coli* has shown the specific role of each commensal colonizing organism on the regulation of enterocyte turnover rate.\(^\text{94,97,98}\) However, SBR on GF rats failed to show a link between luminal bacteria and the induction of enterocyte life cycle; potentially indicating a regional effect of bowel life on the regulation of microbiota-induced effects.\(^\text{95}\) Antibiotic treatment also commonly is used in animal models to deplete intestinal microbiota. However, the conclusions on intestinal adaptation still are controversial because the effects from antibiotic-induced depletion models do not always mimic GF models.\(^\text{95}\)

Although studies in human beings that focus on dysbiosis in SBS patients are emerging, detailed data on the role of microbiota on intestinal adaptation and metabolism require further investigation. The clinical use of probiotics to help promote intestinal adaptation in patients with SBS is emerging, but evidence of their benefit remains limited.\(^\text{99}\) A reduction of pathogenic overgrowth and improved growth and nutrition status in SBS patients have been shown with probiotic and symbiotic treatment.\(^\text{100}\) However, other case reports and clinical studies found no consistent positive or adverse effects of probiotics such as *Lactobacillus rhamnosus* GG.\(^\text{101}\) Further clinical studies that include the variability of probiotic treatment (ie, strain and live vs inactive) are needed to determine the safety and efficacy of probiotics in SBS patients.

A recent report showed that microbiota is a complex “reservoir of metabolic signals involved in postresection adaptation” in adult patients with jejunoileal anastomosis.\(^\text{102}\) In this study, Gillard et al.\(^\text{102}\) categorized SBS patients into lactate accumulator or non-lactate accumulator groups according to the lactate content observed in feces. Accumulation of lactate was associated with an altered prevalence of lactate-producing bacteria including *Lactobacillus*, along with a reduced community of lactate-consuming bacteria such as *Clostridium leptum*.\(^\text{92}\) This study showed that gut remodeling after surgery alters microbiota metabolism. In turn, this dysbiosis can induce metabolic changes contributing to clinical outcomes such as D-lactic acidosis (or D-encephalopathy; 1 patient of 9) in lactate accumulator patients.\(^\text{102}\) The investigators also showed that the transfer of fecal material from the patient with D-lactic acidosis into GF rats did not induce a D-encephalopathy. However, the partial conservation of SBS microbiota induced higher levels of gut hormones including GLP-1 and ghrelin, also known to be induced in SBS patients.\(^\text{102}\)

Microbiota and Host Immune System Cross-Talk During Intestinal Adaptation

The intestine represents the largest lymphoid organ of the body where gut-associated lymphoid tissues, including Peyer’s patches and lymphoid follicles, interact with different cell types under a specialized regionalization.\(^\text{103}\) The intestine is a primary site of interaction between the host immune system and microorganisms. The importance of intestinal commensal bacteria on immune system development and maturation has been reviewed previously.\(^\text{104,105}\) Early studies on GF animals have identified developmental defects of their intestinal immune system as well as impaired activation. In addition to decreased IgA secretion, GF animals show a reduced number of intraepithelial lymphocytes.\(^\text{106,107}\) Microbial colonization of GF animals results in an increase of immunoglobulin levels as well as re-organization of gut-associated lymphoid tissues and cell populations, indicating an intimate connection between gut homeostasis and intestinal bacteria.\(^\text{108}\) Studies of intestinal resection of GF and CONV mice showed that bacteria-induced inflammation augments adaptation of the small intestine. A recent study using a model of SBS zebrafish also showed an up-regulation of genes involved in innate and adaptive immunity after resection.\(^\text{109}\) These studies suggest that the synergistic effects between the immune system and microbiota can contribute to enhance intestinal adaptation.\(^\text{93}\) In addition, rodent studies have shown that massive SBR results in a reduction of the lymphocyte subpopulation including CD4+ and CD8+ T cells, as well as B cells in blood, mesenteric lymph nodes, and spleen.\(^\text{110,111}\) The decrease in systemic immunity also was associated with increased levels of the proinflammatory cytokine IL6 in the plasma at day 5 after surgery.\(^\text{110}\)

The paucity of published data on the immune system status in SBS-associated microbial dysbiosis context represents a significant gap in the management of clinical outcomes. In adult SBS patients, an impairment of T-cell
proliferation correlated with the duration of home PN has been observed. A recent report evaluating the immunologic status of 10 adult SBS patients on PN compared with 9 controls showed a higher frequency of regulatory T cell population as well as CD4+ and CD8+ T cells producing interferon-γ in the peripheral blood. SBS patients also showed higher levels of IL6 in their plasma. However, the analysis was conducted on patients in different phases of disease because the time from bowel resection varied widely, and still receiving PN likely contributed to these impaired immunity observations. Additional studies are required to better understand the interactions between microbiota and the immune system after resection and their roles in intestinal adaptation.

Impact of Microbiota on Shaping the Enteric Nervous System During Intestinal Adaptation

Motility disorders within the context of SBS and IF often are related to poor gastric emptying and a shortened intestinal transit time secondary to loss of intestinal length and impaired peristalsis. The enteric nervous system (ENS) is a complex autonomous network of neurons and glial cells organized as plexuses (myenteric and submucosal) distributed along the GI tract. It regulates the intestinal secretory and motor functions of the gut. Studies using mice deficient for Ret, a transmembrane tyrosine kinase receptor that is essential for ENS development, showed reduced intestinal contractility and altered enteric neurotransmitter release. However, only limited data have been published confirming the precise impact of intestinal resection on the ENS and its associated functions. A recent report showed that rats who underwent SBR showed an increased proportion of myenteric nitrergic neurons that correlated with a thicker muscularis propria and higher crypt cell proliferation in myenteric nitrergic neurons that correlated with a thicker muscularis propria and higher crypt cell proliferation in the periphery of the blood. SBS patients also showed higher levels of IL6 in their plasma. However, the analysis was conducted on patients in different phases of disease because the time from bowel resection varied widely, and still receiving PN likely contributed to these impaired immunity observations. Additional studies are required to better understand the interactions between microbiota and the immune system after resection and their roles in intestinal adaptation.

Modulation of Host Intestinal Adaptation by Microbiota and Microbial-Derived Metabolites

Microbiota plays a key role in the modulation of host nutrient/energy salvage, the development of the GI epithelium, the development and activation of the mucosal and systemic immune system, as well as the modulation of ENS. Commensal bacteria have the ability to sense and modulate their local and systemic environment through direct and indirect pathways (Figure 1). For example, gram-positive segmented filamentous bacteria (SFB) are known to adhere closely to the intestinal epithelium and coordinate postnatal maturation of gut immune functions. By using GF mice, studies have shown that the colonization of SFB induced the production of antimicrobial peptides and serum amyloid A in the terminal ileum, where serum amyloid A then acts on dendritic cells to restore T-helper 17 cell differentiation. Another commensal bacteria, Akkermansia muciniphila, has been shown to be involved in wound healing by stimulating enterocyte proliferation and migration. Although the mechanisms are not completely defined, several studies have highlighted epithelial Toll-like receptor and bacterial glycans as key mediators. Therefore, identifying the mucosa-attached bacteria may help to understand some of the host-microbiota interactions that are involved in the intestinal adaptation process.

It is estimated that more than 50% of fecal and urinary metabolites are derived from the gut microbiome. Among the microbial metabolites participating in the intestinal adaptation, SCFAs remain the most studied and have been shown to modulate energy salvage, intestinal barrier functions, and the immune response. In the colon, multiple commensal bacteria are able to produce SCFAs including acetate, propionate, and butyrate by anaerobic fermentation of nondigestible dietary fibers and resistant carbohydrates. In a SBS animal model, the supplementation with SCFA or dietary pectin fiber improved adaptation of both small intestine and colon after resection. Intravenous or intracecal supplementation with SCFAs also has been shown to recover total parenteral nutrition-induced mucosal atrophy and enhance structural markers of intestinal adaptation. Specifically, butyrate appears to be the main SCFA responsible for the increased structural and functional changes seen in early intestinal adaptation processes, likely by modulating gene expression and transport activities. Although the effect of dietary fibers or SCFAs on intestinal adaptation appears promising in animal studies, it has not been clearly defined in human beings.

In animal IBD models, SCFAs also have been suggested to display a variety of anti-inflammatory properties. Butyrate serves as a specific endogenous agonist for GPR109A, expressed in colonic epithelium and immune cells. Activation of GPR109A as well as inhibition of histone deacetylase by butyrate leads to a decrease of proinflammatory cytokine expression in colonic macrophages and dendritic cells.

A link between microbiota and gut motility has emerged because GF mice show impaired ENS organization along
with defects in gut motility. Recently, the transplantation of dysbiotic fecal microbiota from patients with constipation into an antibiotic-depleted mouse model was found to induce slower peristalsis and abnormal defecation in the mice. This alteration of the GI transit time was associated with an increase in serotonin-receptor expression.

Among the different microbial products, SCFAs have been specifically shown to modulate gut motility through the production of serotonin by epithelial enterochromaffin cells. The supplementation with dietary starch has shown that SCFAs augments the proportion of cholinergic neurons in the colon, likely through histone deacetylase inhibition, which results in increased colonic transit time. Although the differential effects of SCFAs on intestinal adaptation have been described, their impacts on immune responses and gut motility in SBS patients remain poorly understood.

Other microbial-derived metabolites have been described for their roles in the regulation of intestinal homeostasis and immunomodulation including the de novo-produced adenosine triphosphate and vitamins. Specific commensal bacteria such as *Lactobacillus* are able...
to metabolize tryptophan, a dietary amino acid, into an indole-3-aldehyde, which then binds to the aryl hydrocarbon receptor. Activation of aryl hydrocarbon receptor induces the secretion of IL22 by innate lymphoid cells, which affects both mucosal healing and antimicrobial peptide repertoire.146 Microbial molecules also can be produced from host-derived metabolites. Gut commensal bacteria, including Clostridia species, have the capacity to convert primary bile acids into secondary bile acids. These secondary bile acids then can bind to the G-protein–coupled receptor Takeda-G-protein-receptor 5 (TGR5) and regulate epithelial cell integrity and immune responses.147 The role of TGR5-mediated bile acid alterations on colonic motility has been shown using TGR5-deficient mice, which showed delayed GI transit time and constipation.146 Although some IF patients experience bile acid malabsorption, intestinal failure–associated liver disease, and/or alteration of transit time after resection, changes in the bile acid–gut microbiota cross-talk during intestinal adaptation have not been fully explored. However, the gut–liver axis could represent a potential target for therapeutic interventions.

New technology and approaches are emerging to better understand the alteration of microbiota and the subsequent changes in microbial metabolism in a health/disease context. High-throughput 16S ribosomal RNA sequencing has allowed profiling of complex microbial communities for a wide spectrum of intestinal diseases. The recent shotgun DNA approach represents a promising method in determining microbial composition and metabolism by allowing for the possibility to discover new pathways and targets. Metabolic approaches using mass spectrometry and nuclear magnetic resonance spectrometry are useful technologies to unravel specific microbial metabolites or novel clinical biomarkers. There is a need to understand not only the alterations in microbiota composition but also the functional impairments of the microbiome. Therefore, experimental and clinical research integrating both metagenomic and metabolomics will be essential to better understand the complex metabolic interactions in SBS patients after intestinal resection and potentially identify novel biomarkers or therapies.

Conclusions
Intestinal adaptation involves a combination of morphologic and microbiological processes that compensate for the loss of absorptive tissue. The morphologic and functional changes occurring at the epithelial layer after resection as well as the mediators involved have been well described. However, the underlying mechanisms involved in intestinal adaptation are still not clearly defined. The emergence of high-throughput technology has allowed identification of microbial imbalance after intestinal resection in SBS patients, suggesting a key role of this forgotten organ in intestinal adaptation. Intestinal resection affects the microbial ecosystem, which in turn modulates GI homeostasis and function. Further studies investigating the importance of molecular interactions between microbiota, the intestinal barrier, the immune system, and the ENS are needed to identify pathways or biomarkers that enhance the adaptive response of IF patients. Integrative studies using systems biology approaches will provide the opportunities to better understand the morphologic and functional changes occurring after intestinal resection and potentially lead to the development of personalized nutritional and pharmacologic therapies.

References
1. Dehmer JJ, Fuller MK, Helmrath MA. Management of pediatric intestinal failure. Adv Pediatr 2011;58:181–194.
2. Pironi L, Arends J, Baxter J, Bozzetti F, Pelaez RB, Cuerda C, Forbes A, Gabe S, Gillanders L, Holst M, Jeppesen PB, Joly F, Kelly D, Klek S, Irtun O, Olde Damink SW, Panisic M, Rasmussen HH, Staun M, Szczepanek K, Van Gossum A, Wanten G, Schneider SM, Shaffer J, Home Artificial N, Chronic Intestinal F, Acute Intestinal Failure Special Interest Groups of E. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin Nutr 2015;34:171–180.
3. Cole CR, Frem JC, Schmotzer B, Gewirtz AT, Meddings JB, Gold BD, Ziegler TR. The rate of bloodstream infection is high in infants with short bowel syndrome: relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J Pediatr 2010;156:941–947, 947 e1.
4. Wales PW, Christison-Lagay ER. Short bowel syndrome: epidemiology and etiology. Semin Pediatr Surg 2010;19:3–9.
5. Sangild PT, Ney DM, Sigalet DL, Vegge A, Burrin D. Animal models of gastrointestinal and liver diseases. Animal models of infant short bowel syndrome: translational relevance and challenges. Am J Physiol Gastrointest Liver Physiol 2014;307:G1147–G1168.
6. Helmrath MA, Erwin CR, Shin CE, Warner BW. Enterocyte apoptosis is increased following small bowel resection. J Gastrointest Surg 1998;2:44–49.
7. Dowling RH, Booth CC. Structural and functional changes following small intestinal resection in the rat. Clin Sci 1967;32:139–149.
8. Turner JM, Wales PW, Nation PN, Wizzard P, Pendlebury C, Sergi C, Ball RO, Pencharz PB. Novel neonatal piglet models of surgical short bowel syndrome with intestinal failure. J Pediatr Gastroenterol Nutr 2011;52:9–16.
9. Schall KA, Holoya DA, Grant CN, Levin DE, Torres ER, Maxwell A, Pollack HA, Moats RA, Frey MR, Darenzergshi A, Al Alam D, Lien C, Grikscheit TC. Adult zebrafish intestine resection: a novel model of short bowel syndrome, adaptation, and intestinal stem cell regeneration. Am J Physiol Gastrointest Liver Physiol 2015;309:G135–G145.
10. Sigalet DL, Martin GR. Mechanisms underlying intestinal adaptation after massive intestinal resection in the rat. J Pediatr Surg 1998;33:889–892.
11. Dekaney CM, Fong JJ, Rigby RJ, Lund PK, Henning SJ, Helmrath MA. Expansion of intestinal stem cells associated with long-term adaptation following ileocolic resection in mice. Am J Physiol Gastrointest Liver Physiol 2007;293:G1013–G1022.
12. Gillingham MB, Dahly EM, Carey HV, Clark MD, Kritsch KR, Ney DM. Differential jejunal and colonic adaptation due to resection and IGF-I in parenterally fed rats. Am J Physiol Gastrointest Liver Physiol 2000; 278:G700–G709.

13. Vegge A, Thymann T, Lund P, Stoll B, Bering SB, Hartmann B, Jelsing J, Qvist N, Burris DG, Jeppesen PB, Holst JJ, Sangild PT. Glucagon-like peptide-2 induces rapid digestive adaptation following intestinal resection in preterm neonates. Am J Physiol Gastrointest Liver Physiol 2013;305:G277–G285.

14. Aunsholt L, Thymann T, Qvist N, Sigalet D, Husby S, Sangild PT. Prematurity reduces functional adaptation to intestinal resection in piglets. JPEN J Parenter Enteral Nutr 2015;39:668–676.

15. Helmrather MA, Fong JJ, Dekaney CM, Henning SJ. Rapid expansion of intestinal secretory lineages following a massive small bowel resection in mice. Am J Physiol Gastrointest Liver Physiol 2007;292:G215–G222.

16. Martin CA, Perrone EE, Longshore SW, Toste P, Bitter K, Nair R, Guo J, Erwin CR, Warner BW. Intestinal resection induces angiogenesis within adapting intestinal villi. J Pediatr Surg 2009;44:1077–1083.

17. Rowland KJ, Yao J, Wang L, Erwin CR, Maslov Kl, Wang LV, Warner BW. Immediate alterations in intestinal oxygen saturation and blood flow after massive small bowel resection as measured by photoacoustic microscopy. J Pediatr Surg 2012;47:1143–1149.

18. Tappenden KA. Intestinal adaptation following resection. JPEN J Parenter Enteral Nutr 2014;38:235–315.

19. Weale AR, Edwards AG, Bailey M, Lear PA. Intestinal adaptation after massive intestinal resection. Postgrad Med J 2005;81:178–184.

20. Thompson JS, Langnas AN, Pinch LW, Kaufman S, Quigley EM, Vanderhoof JA. Surgical approach to short-bowel syndrome. Experience in a population of 160 patients. Ann Surg 1995;222:600–607.

21. McCuffie LA, Buecher BT, Erwin CR, Wakeman D, White FV, Warner BW. Intestinal adaptation after small bowel resection in human infants. J Pediatr Surg 2011;46:1045–1051.

22. Doldi SB. Intestinal adaptation following jejuno-ileal bypass. Clin Nutr 1991;10:138–145.

23. Joly F, Mayeur C, Bruneau A, Noordine ML, Meylheuc T, Langella P, Messing B, Due PH, Cherbuy C, Thomas M. Drastic changes in fecal and mucosa-associated microbiota in adult patients with short bowel syndrome. Biochimie 2010;92:753–761.

24. O’Keefe SJ, Raymond MW, Bennet WM, Oswald B, Nelson DK, Shorter RG. Long-acting somatostatin analogue therapy and protein metabolism in patients with jejunostomies. Gastroenterology 1994; 107:379–388.

25. Ziegler TR, Fernandez-Estivariz C, Gu LH, Bazargan N, Umeakunne K, Wallace TM, Díaz EE, Rosado KE, Pascal RR, Galloway JR, Wilcox JN, Leader LM. Distribution of the H+ /peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 2002;75:922–930.

26. Scott RB, Kirk D, MacNaughton WK, Meddings JB. GLP-2 augments the adaptive response to massive intestinal resection in rat. Am J Physiol 1998; 275:G911–G921.

27. Jeppesen PB. Teduglutide, a novel glucagon-like peptide 2 analog, in the treatment of patients with short bowel syndrome. Therap Adv Gastroenterol 2012;5:159–171.

28. Jeppesen PB, Gilroy R, Pertkiewicz M, Allard JP, Messing B, O’Keefe SJ. Randomised placebo-controlled trial of teduglutide in reducing parenteral nutrition and/or intravenous fluid requirements in patients with short bowel syndrome. Gut 2011;60:902–914.

29. Seidner DL, Schwartz LK, Winkler MF, Jeejeebhoy K, Boullata JI, Tappenden KA. Increased intestinal absorption in the era of teduglutide and its impact on management strategies in patients with short bowel syndrome-associated intestinal failure. JPEN J Parenter Enteral Nutr 2013;37:201–211.

30. Jeppesen PB, Hartmann B, Thulesen J, Graff J, Lohmann J, Hansen BS, Tofeng F, Poulsen SS, Madsen JL, Holst JJ, Mortensen PB. Glucagon-like peptide 2 improves nutrient absorption and nutritional status in short-bowel patients with no colon. Gastroenterology 2001;120:806–815.

31. Jeppesen PB, Sanguinetti EL, Buchman A, Howard L, Scolapio JS, Ziegler TR, Gregory J, Tappenden KA, Holst J, Mortensen PB. Teduglutide (ALX-0600), a dipeptidyl peptidase IV resistant glucagon-like peptide 2 analogue, improves intestinal function in short bowel syndrome patients. Gut 2005;54:1224–1231.

32. Jeppesen PB, Pertkiewicz M, Messing B, Iyer K, Seidner DL, O’Keefe SJ, Forbes A, Heine H, Joelsson B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012;143:1473–1481 e3.

33. Madsen KB, Askov-Hansen C, Naimi RM, Brandt CF, Hartmann B, Holst JJ, Mortensen PB, Jeppesen PB. Acute effects of continuous infusions of glucagon-like peptide (GLP)-1, GLP-2 and the combination (GLP-1+GLP-2) on intestinal absorption in short bowel syndrome (SBS) patients. A placebo-controlled study. Regul Pept 2013;184:30–39.

34. Sigalet DL, Martin G, Meddings J, Hartman B, Holst JJ. GLP-2 levels in infants with intestinal dysfunction. Pediatr Res 2004;56:371–376.

35. Tappenden KA, Edelman J, Joelsson B. Teduglutide enhances structural adaptation of the small intestinal mucosa in patients with short bowel syndrome. J Clin Gastroenterol 2013;47:602–607.

36. Schwartz LK, O’Keefe SJ, Fujioka K, Gabe SM, Lamprecht G, Pape UF, Li B, Youssef NN, Jeppesen PB. Long-term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin Transl Gastroenterol 2016;7:e142.

37. Watson CL, Mahe MM, Munera J, Howell JC, Sundaram N, Poling HM, Schweitzer JI, Vallance JE, Mayhew CN, Sun Y, Grabowski G, Finkbeiner SR, Spence JR, Shroyer NF, Wells JM, Helmrather MA. An in vivo model of human small intestine using pluripotent stem cells. Nat Med 2014;20:1310–1314.
38. Juno RJ, Williams JL, Knott AW, Erwin CR, O’Brien DP, Warner BW. A serum factor after intestinal resection stimulates epidermal growth factor receptor signaling and proliferation in intestinal epithelial cells. Surgery 2002;132:377–383.

39. Tappenden KA. Pathophysiology of short bowel syndrome: considerations of resected and residual anatomy. JPEN J Parenter Enteral Nutr 2014;38:14S–22S.

40. Goulet O, Baglin-Gobet S, Talbotec C, Fourcade L, Colomb V, Sauvat F, Jais JP, Michel JL, Jan D, Ricour C. Outcome and long-term growth after extensive small bowel resection in the neonatal period: a survey of 87 children. Eur J Pediatr Surg 2010;19:35–43.

41. Nordgaard I, Hansen BS, Mortensen PB. Colon as a digestive organ in patients with short bowel. Lancet 1994;343:373–376.

42. McMellen ME, Wakeman D, Longshore SW, McDuffie LA, Warner BW. Growth factors: possible roles for clinical management of the short bowel syndrome. Semin Pediatr Surg 2010;19:35–43.

43. Warner BW. The pathogenesis of resection-associated intestinal adaptation. Cell Mol Gastroenterol Hepatol 2016;2:429–438.

44. Scolapio JS, Camilleri M, Fleming CR, Oenning LV, Burton DD, Sebo TJ, Batts KP, Kelly DG. Effect of growth hormone, glutamine, and diet on adaptation in short-bowel syndrome: a randomized, controlled study. Gastroenterology 1997;113:1074–1081.

45. Nucci AM, Finegold DN, Yaworski JA, Kowalski L, Barksdale EM Jr. Results of growth trophic therapy in children with short bowel syndrome. J Pediatr Surg 2004;39:335–339.

46. Goulet O, Dabbas-Tyan M, Talbotec C, Kapel N, Rosilio M, Souberbielle JC, Corrion O, Ricour C, Colomb V. Effect of recombinant human growth hormone on intestinal absorption and body composition in children with short bowel syndrome. JPEN J Parenter Enteral Nutr 2010;34:513–520.

47. Guo M, Lu C, Li Y. Early intestinal rehabilitation therapy ameliorates intestinal adaptation in children with short bowel syndrome: the long-term outcome. Am Surg 2016;82:1215–1220.

48. Byrne TA, Wilmore DW, Iyer K, Dibaise J, Clancy C, Robinson MK, Chang P, Gertner JM, Lautz D. Growth hormone, glutamine, and an optimal diet reduces parenteral nutrition in patients with short bowel syndrome. Ann Surg 2005;242:E55–61.

49. Xu Y, Wu ZH, Xie JX, Jin DY, Zhuo HC. Effects of growth hormone (rhGH) and glutamine supplemented parenteral nutrition on intestinal adaptation in short bowel rats. Clin Nutr 2001;20:159–166.

50. Sigalet DL, Martin GR, Butzner JD, Buret A, Meddings JB. A pilot study of the use of epidermal growth factor in pediatric short bowel syndrome. J Pediatr Surg 2005;40:763–768.

51. Erwin CR, Helmuth MA, Shin CE, Falcone RA, Stern LE, Warner BW. Intestinal overexpression of EGF in transgenic mice enhances adaptation after small bowel resection. Am J Physiol 1999;277:G533–G540.

52. Shin CE, Helmuth MA, Falcone RA Jr, Fox JW, Duane KR, Erwin CR, Warner BW. Epidermal growth factor augments adaptation following small bowel resection: optimal dosage, route, and timing of administration. J Surg Res 1998;77:11–16.

53. Chaet MS, Arya G, Ziegler MM, Warner BW. Epidermal growth factor enhances intestinal adaptation after massive small bowel resection. J Pediatr Surg 1994;29:1035–1038.

54. Rowland KJ, McMellen ME, Wakeman D, Wandu WS, Erwin CR, Warner BW. Enterocyte expression of epidermal growth factor receptor is not required for intestinal adaptation in response to massive small bowel resection. J Pediatr Surg 2012;47:1748–1753.

55. Sun RC, Choi PM, Guo J, Erwin CR, Warner BW. Insulin-like growth factor 2 and its enterocyte receptor are not required for adaptation in response to massive small bowel resection. J Pediatr Surg 2014;49:966–970.

56. Lim DW, Levesque CL, Vine DF, Muto M, Koepke JR, Nation PN, Wizzard PR, Li J, Bigam DL, Brubaker PL, Turner JM, Wales PW. Synergy of glucagon-like peptide-2 and epidermal growth factor coadministration on intestinal adaptation in neonatal piglets with short bowel syndrome. Am J Physiol Gastrointest Liver Physiol 2017;312:G390–G404.

57. Martin GR, Wallace LE, Sigalet DL. Glucagon-like peptide-2 induces intestinal adaptation in parenterally fed rats with short bowel syndrome. Am J Physiol 2004;286:G964–G972.

58. Lim DW. Differential effects on intestinal adaptation following exogenous glucagon-like peptide 2 therapy with and without enteral nutrition in neonatal short bowel syndrome. JPEN J Parenter Enteral Nutr 2016;40:156–170.

59. Drucker DJ, Erlich P, Asa SL, Brubaker PL. Induction of intestinal epithelial proliferation by glucagon-like peptide 2. Proc Natl Acad Sci U S A 1996;93:7911–7916.

60. Tsai CH, Hill M, Asa SL, Brubaker PL, Drucker DJ. Intestinal growth-promoting properties of glucagon-like 2 in mice. Am J Physiol 1997;273:E77–E84.

61. Sigalet DL, Bawazir O, Martin GR, Wallace LE, Zaharko G, Miller A, Zoubaidi A. Glucagon-like peptide-2 induces a specific pattern of adaptation in remnant jejunum. Dig Dis Sci 2006;51:1557–1566.

62. Garrison AP, Dekaney CM, von Allmen DC, Lund PK, Henning SJ, Helmuth MA. Early but not late administration of glucagon-like peptide-2 following ileo-cecal resection augments putative intestinal stem cell expansion. Am J Physiol Gastrointest Liver Physiol 2009;296:G443–G450.

63. Naberhuis JK, Deutsch AS, Tappenden KA. Teduglutide-stimulated intestinal adaptation is complemented and synergistically enhanced by partial enteral nutrition in a neonatal piglet model of short bowel syndrome. JPEN J Parenter Enteral Nutr 2017;41:853–865.
64. Knott AW, Juno RJ, Jarboe MD, Pro

65. Lund PK. Molecular basis of intestinal adaptation: the role of the insulin-like growth factor system. Ann N Y Acad Sci 1998;859:18–36.

66. Knott AW, Juno RJ, Jarboe MD, Pro, Smith EP, Fagin JA, Warner BW. Smooth muscle overexpression of IGF-I induces a novel adaptive response to small bowel resection. Am J Physiol Gastrointest Liver Physiol 2004;287:G562–G570.

67. Dahly EM, Guo Z, Ney DM. IGF-I augments resection-induced mucosal hyperplasia by altering enterocyte kinetics. Am J Physiol Regul Integr Comp Physiol 2003; 285:R800–R808.

68. Vanderhoof JA, McCusker RH, Clark R, Mohammadpour H, Blackwood DJ, Harty RF, Park JH. Truncated and native insulin like growth factor I enhance mucosal adaptation after jejunooileal resection. Gastroenterology 1992;102:1949–1956.

69. Choi P, Guo J, Erwin CR, Warner BW. IGF-2 mediates intestinal mucosal hyperplasia in retinoblastoma protein (Rb)-deficient mice. J Pediatr Surg 2013;48:1340–1347.

70. Falcone RA Jr, Stern LE, Kemp CJ, Erwin CR, Warner BW. Intestinal adaptation occurs independent of transforming growth factor-alpha. J Pediatr Surg 1999; 35:365–370.

71. Sukhotnik I, Yakirevich E, Coran AG, Siplovich L, Krausz M, Hirsh M, Sabo E, Shiloni E. Effect of transforming growth factor-α on intestinal adaptation in a rat model of short bowel syndrome. J Surg Res 2002; 108:235–242.

72. Sukhotnik I, Mogilner JG, Shaoul R, Karry R, Lieber M, Suss-Toby E, Ure BM, Coran AG. Responsiveness of intestinal epithelial cell turnover to TGF-αalpha after bowel resection in a rat is correlated with EGF receptor expression along the villus-crypt axis. Pediatr Surg Int 2008;24:21–28.

73. Sukhotnik I, Vadasz Z, Coran AG, Lurel M, Shiloni E, Hatoum OA, Mogilner JG. Effect of leptin on intestinal re-growth following massive small bowel resection in rat. Pediatr Surg Int 2006;22:9–15.

74. Sukhotnik I, Coran AG, Mogilner JG, Shamian B, Karry R, Lieber M, Shaoul R. Leptin affects intestinal epithelial cell turnover in correlation with leptin receptor expression along the villus-crypt axis after massive small bowel resection in a rat. Pediatr Res 2006;60:649–653.

75. Pearson PY, O’Connor DM, Schwartz MZ. Novel effect of leptin on small intestine adaptation. J Surg Res 2001; 97:192–195.

76. Kiely JM, Noh JH, Svatke CL, Pitt HA, Swartz-Basile DA. Altered small intestinal absorptive enzyme activities in leptin-deficient obese mice: influence of bowel resection. J Pediatr Surg 2006;41:1243–1249.

77. Guyton K, Alverdy JC. The gut microbiota and gastrointestinal surgery. Nat Rev Gastroenterol Hepatol 2017; 14:43–54.
92. Shogan BD, Smith DP, Christley S, Gilbert JA, Zaborina O, Alverdy JC. Intestinal anastomotic injury alters spatially defined microbiome composition and function. Microbiome 2014;2:35.

93. Speck KE, Garrison AP, Rigby RJ, von Allmen DC, Lund PK, Helmrath MA. Inflammation enhances resection-induced intestinal adaptive growth in IL-10 null mice. J Surg Res 2011;168:62–69.

94. Willing BP, Van Kessel AG. Enterocyte proliferation and apoptosis in the caudal small intestine is influenced by the composition of colonizing commensal bacteria in the neonatal gnotobiotic pig. J Anim Sci 2011;91:145–153.

95. Juno RJ, Knott AW, Jarboe MD, Profitt SA, Erwin CR, Warner BW. Characterization of small bowel resection and intestinal adaptation in germ-free rats. Surgery 2003;134:582–590.

96. Dekaney CM, von Allmen DC, Garrison AP, Rigby RJ, Lund PK, Henning SJ, Helmrath MA. Bacterial-dependent regulation of Fournier’s syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing of a zebrafish SBS model. BMC Genomics 2017;18:23.

97. Banasz M, Norin E, Holma R, Midvdett V. Increased enterocyte production in gnotobiotic rats mono-associated with Lactobacillus rhamnosus GG. Appl Environ Microbiol 2002;68:3031–3034.

98. Ichikawa H, Kuroiwa T, Inagaki A, Shineha R, Nishihira T, Banasa M, Norin E, Holma R, Midtvedt T. Increased intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–326.

99. Ichikawa H, Kuroiwa T, Inagaki A, Shineha R, Nishihira T, Banasa M, Norin E, Holma R, Midtvedt T. Increased intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–326.

100. Schall KA, Thornton ME, Isani M, Holloyda KA, Hou X, Lien CL, Grubbs BH, Grikscheit TC. Short bowel syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing of a zebrafish SBS model. BMC Genomics 2017;18:23.

101. Reddy VS, Patole SK, Rao S. Role of probiotics in short bowel syndrome in infants and children—a systematic review. Nutrients 2013;5:679–699.

102. Kanamori Y, Sugiyama M, Hashizume K, Yuki N, Morotomi M, Tanaka R. Experience of long-term symbiotic therapy in seven short bowel patients with refractory enterocolitis. J Pediatr Surg 2004;39:1456–1460.

103. Sentongo TA, Cohran V, Korff S, Sullivan C, Iyer K, Zheng X. Intestinal permeability and effects of Lactobacillus rhamnosus therapy in children with short bowel syndrome. J Pediatr Gastroenterol Nutr 2008;46:41–47.

104. Gillard L, Mayeur C, Robert V, Pingenot I, Le Beyec J, Bado A, Lepage P, Thomas M, Joly F. Microbiota is involved in post-resection adaptation in humans with short bowel syndrome. Front Physiol 2017;8:224.

105. Mowat AM, Agace WW. Regional specialization within the intestinal immune system. Nat Rev Immunol 2014;14:667–685.

106. Round JL, Mazmanian SK. The gut microbiome shapes intestinal immune responses during health and disease. Nat Rev Immunol 2009;9:313–323.

107. Suzuki H, Jeong KI, Itoh K, Doi K. Regional variations in the distributions of small intestinal intraepithelial lymphocytes in germ-free and specific pathogen-free mice. Exp Mol Pathol 2002;72:230–235.

108. Tlaskalova-Hogenova H, Sterzl J, Stepakova R, Dlabac V, Veticka V, Rossmann P, Mandel L, Rejnek J. Development of immunological capacity under germfree and conventional conditions. Ann N Y Acad Sci 1983;409:96–113.

109. Schall KA, Thornton ME, Isani M, Holloyda KA, Hou X, Lien CL, Grubbs BH, Grikscheit TC. Short bowel syndrome results in increased gene expression associated with proliferation, inflammation, bile acid synthesis and immune system activation: RNA sequencing of a zebrafish SBS model. BMC Genomics 2017;18:23.

110. Murakami M, Sato N, Sato N, Nakamura T, Masunaga H. Changes in lymphocyte phenotypes and cytokine production by surgical stress in a rat small intestinal resection model. J Clin Biochem Nutr 2007;40:216–220.

111. Barrena MJ, Ezazuiire I, Aldazabal P, Cuadrado E, Bachiller P, Wang W, Tovar JA. Lymphocyte subpopulations after extensive small bowel resection in the rat. J Pediatr Surg 1995;30:1447–1449.

112. Hise ME, Compher C, Harlan L, Kohlmeier JE, Benedict SH, Gajewski B, Brown JC. Inflammatory mediators and immune function are altered in home parenteral nutrition patients. Nutrition 2006;22:97–103.

113. Turato WM, Sales-Campos H, Braga CB, Cunha SF, Silvah JH, da Silva JS, Marchini JS, de Barros Cardoso CR. The impact of intestinal resection on the immune function of short bowel syndrome patients. Hum Immunol 2016;77:1202–1208.

114. Schmidt T, Pfeiffer A, Hackelsberger N, Widmer R, Meisel C, Kaess H. Effect of intestinal resection on human small bowel motility. Gut 1996;38:859–863.

115. Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO. GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 2003;130:2187–2198.

116. Hitch MC, Leinicke JA, Wakeham D, Guo J, Erwin CR, Rowland KJ, Merrick EC, Heuckeroth RO, Warner BW. Ret heterozygous mice have enhanced intestinal adaptation after massive small bowel resection. Am J Physiol Gastrointest Liver Physiol 2012;302:G1143–G1150.

117. Lai SW, de Heuvel E, Wallace LE, Hartmann B, Holst JJ, Brindle ME, Chelikani PK, Sigala DL. Effects of exogenous glucagon-like peptide-2 and distal bowel resection on intestinal and systemic adaptive responses in rats. PLoS One 2017;12:e0181453.

118. Anitha M, Vijay-Kumar M, Sitaraman SV, Gewirtz AT, Srinivasan S. Gut microbial products regulate murine gastrointestinal motility via Toll-like receptor 4 signaling. Gastroenterology 2012;143:1006–1016 e4.
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Alam A, Leoni G, Quiros M, Wu H, Desai C, Nishio H, Sukhotnik I, Haj B, Pollak Y, Dorfman T, Bejar J, Matter I, Comstock LE, Kasper DL. Bacterial glycans: key mediators of gastrointestinal motility. Cell 2014;158:300–313.

Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677–689.

Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;391:485–498.

Alam A, Leoni G, Quiros M, Wu H, Desai C, Nishio H, Jones RM, Nusrat A, Neish AS. The microenvironment of injured murine gut elicits a local pro-restitutive microbiota. Nat Microbiol 2016;1:15021.

Sukhotnik I, Haj B, Pollak Y, Dorfman T, Bejar J, Matter I. Effect of bowel resection on TLR signaling during intestinal adaptation in a rat model. Surg Endosc 2016;30:4416–4424.

Bry L, Falk PG, Midvtedt T, Gordon JI. A model of host-microbial interactions in an open mammalian ecosystem. Science 1996;273:1380–1383.

Comstock LE, Kasper DL. Bacterial glycans: key mediators of diverse host immune responses. Cell 2006;126:847–850.

Zheng X, Xie G, Zhao A, Yao C, Chiu NH, Zhou Z, Bao Y, Jia W, Nicholson JK, Jia W. The footprints of gut microbial-mammalian co-metabolism. J Proteome Res 2011;10:5512–5522.

Koruda MJ, Rolanelli RH, Settle RG, Saul SH, Rombeau JL. Harry M. Vars award. The effect of a pectin-supplemented elemental diet on intestinal adaptation to massive small bowel resection. JPEN J Parenter Enteral Nutr 1986;10:343–350.

Koruda MJ, Rolanelli RH, Settle RG, Zimmaro DM, Rombeau JL. Effect of parenteral nutrition supplemented with short-chain fatty acids on adaptation to massive small bowel resection. Gastroenterology 1988;95:715–720.

Tappenden KA, Drozdowski LA, Thomson AB, McBurney MI. Short-chain fatty acid-supplemented total parenteral nutrition alters intestinal structure, glucose transporter 2 (GLUT2) mRNA and protein, and proglucagon mRNA abundance in normal rats. Am J Clin Nutr 1998;68:118–125.

Tappenden KA. Emerging therapies for intestinal failure. Arch Surg 2010;145:528–532.

Bartholome AL, Albin DM, Baker DH, Holst JJ, Tappenden KA. Supplementation of total parenteral nutrition with butyrate acutely increases structural aspects of intestinal adaptation after an 80% jejunooileal resection in neonatal piglets. JPEN J Parenter Enteral Nutr 2004;28:210–223.

Gosselin KB, Duggan C. Enteral nutrition in the management of pediatric intestinal failure. J Pediatr 2014;165:1085–1090.

Atia A, Girard-Pipau F, Hebuterne X, Spies WG, Guardiola A, Ahn CW, Fryer J, Xue F, Rammohan M, Sumagye M, Englyst K, Buchman AL. Macronutrient absorption characteristics in humans with short bowel syndrome and jejunoocolonic anastomosis: starch is the most important carbohydrate substrate, although pectin supplementation may modestly enhance short chain fatty acid production and fluid absorption. JPEN J Parenter Enteral Nutr 2011;35:229–240.

Vieira EL, Leonel AJ, Sad AP, Beltrao NR, Costa TF, Ferreira TM, Gomes-Santos AC, Faria AM, Peluzio MC, Cara DC, Alvarez-Leite JI. Oral administration of sodium butyrate attenuates inflammation and mucosal lesion in experimental acute ulcerative colitis. J Nutr Biochem 2012;23:430–436.

Butzner JD, Parmar R, Bell CJ, Dalal V. Butyrate enema therapy stimulates mucosal repair in experimental colitis in the rat. Gut 1996;38:568–573.

Singh N, Gurav A, Sivaprakasam S, Brady E, Padia R, Shi H, Thangaraju M, Prasad PD, Manicassamy S, Munn DH, Lee JR, Offermans M, Ganapathy V. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014;40:128–139.

Chang PV, Hao L, Offermans M, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014;111:2247–2252.

Cao H, Liu X, An Y, Zhou G, Liu Y, Xu M, Dong W, Wang S, Yan F, Jiang K, Wang B. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep 2017;7:10322.

Reigstad CS, Salmonson CE, Rainey JF 3rd, Szwerszakowski JH, Linden DR, Sonnenburg JL, Farrugia G, Kashyap PC. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J 2015;29:1395–1403.

Yano JM, Yu K, Donaldson GP, Shastri GG, Ann P, Ma L, Nagler CR, Ismagilov RF, Mazmanian SK, Hsiao EY. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 2015;161:264–276.
143. Soret R, Chevalier J, De Coppet P, Poupon G, Derkinderen P, Segain JP, Neunlist M. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology 2010; 138:1772–1782.

144. Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M, Yagita H, Ishii N, Evans R, Honda K, Takeda K. ATP drives lamina propria TH17 cell differentiation. Nature 2008; 455:808–812.

145. Beulens JW, Booth SL, van den Heuvel EG, Stoecklin E, Baka A, Vermeer C. The role of menaquinones (vitamin K2) in human health. Br J Nutr 2013; 110:1357–1368.

146. Cella M, Colonna M. Aryl hydrocarbon receptor: Linking environment to immunity. Semin Immunol 2015; 27:310–314.

147. Pols TW, Noriega LG, Nomura M, Auwerx J, Schoonjans K. The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation. J Hepatol 2011; 54:1263–1272.

148. Alemi F, Poole DP, Chiu J, Schoonjans K, Cattaruzza F, Grider JR, Bunnett NW, Corvera CU. The receptor TGR5 mediates the prokinetic actions of intestinal bile acids and is required for normal defecation in mice. Gastroenterology 2013; 144:145–154.

Received November 15, 2017. Accepted January 31, 2018.

Correspondence
Address correspondence to: Michael A. Helmrath, MD, Division of Pediatric General and Thoracic Surgery, Cincinnati Children’s Hospital, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3026. e-mail: Michael.Helmrath@cchmc.org; fax: (513) 636-7657.

Author contributions
Justine Marchix, Gillian Goddard, and Michael A. Helmrath conceived and wrote the manuscript.

Conflicts of interest
The authors disclose no conflicts.

Funding
This work was supported by an Academic and Research Committee grant from Cincinnati Children’s Hospital Medical Center.