Eosinophil and Anticoagulation in COVID-19 Patients

Selma Ari
Bursa Postgraduate Hospital, Department of Cardiology

Veysi Can
Bursa Postgraduate Hospital, Department of Cardiology

Ömer Furkan Demir
Bursa Postgraduate Hospital, Department of Cardiology

Hasan Ari (hasanari03@yahoo.com)
Bursa Postgraduate Hospital, Department of Cardiology

Fahriye Vatansever Ağca
Bursa Postgraduate Hospital, Department of Cardiology

Mehmet Melek
Bursa Postgraduate Hospital, Department of Cardiology

Sencer Çamcı
Bursa Postgraduate Hospital, Department of Cardiology

Özlem Şengören Dikiş
Bursa Postgraduate Hospital, Department of Pulmonary Diseases

Kağan Huysal
Bursa Postgraduate Hospital, Department of Biochemistry

Tamer Türk
Bursa Postgraduate Hospital, Department of Cardiovascular Surgery

Research Article

Keywords: COVID-19, Eosinophils, Heparin, Anticoagulants, Thrombosis.

DOI: https://doi.org/10.21203/rs.3.rs-64186/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Introduction: Despite prophylactic anticoagulant treatments, thrombotic complications may develop in patients with Coronavirus disease 2019 (COVID-19). This study aimed to evaluate anti-Factor Xa levels to determine the anticoagulant activity of low molecular weight heparin (LMWH) in COVID-19 patients.

Materials and methods: We prospectively evaluated 80 COVID-19 patients, diagnosed using polymerase-chain-reaction test, who were admitted to our clinic and administered LMWH; enoxaparin was applied according to the weight, D-dimer levels, and clinical condition of patients. Anti-Factor Xa levels in blood, drawn 4h after the 3rd dose of LMWH, were measured and a level of <0.2IU/ml was considered subprophylactic. Patients were followed up clinically and anti-Factor Xa levels were re-examined before discharge.

Results: Groups 1 and 2 included 13 and 63 patients with subprophylactic (0.18±0.06) and prophylactic (0.43±0.23) anti-Factor Xa levels, respectively. The proportion of eosinophils in patients was significantly higher in group 1 than in group 2 (2.96±2.55 vs 0.90±1.28; p=0.001). At the time of discharge the eosinophilic proportion of patients was significantly higher (3.06±1.49 vs 2.07±1.92; p=0.001) but the activated partial thromboplastin time was significantly lower (22.34±1.38 vs 24.38±3.58; p=0.01) in group 1 than in group 2. Of 14 patients with eosinophil content >4%, 6 were in group 1 (6/13) 46.2% while 8 were in group 2 (8/63) 11.9%; (p=0.009), and all had a D-dimer level <1µg/mL (p=0.03). ROC analysis for the presence of anticoagulation at subprophylactic level revealed an area under curve of 0.79 (95% CI:0.64-0.93); p=0.001).

Conclusions: In COVID-19 patients, eosinophil levels could be considered for determining effective prophylactic anticoagulant administration. (NCT04507282)

Introduction

Severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which has been considered a pandemic by the World Health Organization (WHO) [1,2]. Several reports have shown that, similar to other viral pneumonia, the incidence rate of venous thromboembolism (VTE) in COVID-19 patients, particularly those in intensive care, is high [3-6]. The cause of the hypercoagulation in COVID-19 patients has not been fully understood. Several studies have indicated an increase in some hematologic parameters that may lead to endothelial damage, immobilisation related stasis, and hypercoagulability [7-10].

Eosinophils normally make up only a small fraction of circulating leukocytes (1-3%), but their levels can vary in different disease states [11]. Eosinophil levels are clinically important because they are potent proinflammatory cells containing cytotoxic proteins and various enzymes (peroxidases, cationic proteins, and neurotoxins) that can influence the effectiveness of heparin.
The International Society on Thrombosis and Hemostasis (ISTH), American Society of Hematology (ASH), and American College of Cardiology (ACC) recommend heparin prophylaxis in patients with COVID-19. However, the dose that can be used has not been clarified. Previous studies have shown that heparin prophylaxis reduces thromboembolic events in COVID-19 patients [12]. However, the efficacy of heparin prophylaxis in COVID-19 patients, as determined by laboratory data, and the factors affecting this efficacy are not known. This study aimed to analyze the effectiveness of using LMWH in COVID-19 patients and identify the factors affecting this efficacy using laboratory data.

Methods

Study patients

After receiving approval from the Ministry of Health and the local ethics committee, we included 80 patients who were found to be COVID-19 positive by polymerase chain reaction (PCR) test in our clinic between May 15, 2020 and June 15, 2020; their written consents were obtained. The patients were followed up clinically by transferring them to the service reserved for COVID-19 positive patients.

Inclusion criteria: Patients older than 18 years, who were diagnosed with COVID-19 and were administered LMWH, and agreed to participate in the study were included.

Exclusion criteria: Patients with previous coagulopathy, continuous indication of anticoagulant therapy (atrial fibrillation (AF), valve disease), glomerular filtration rate (GFR) <30 mL/min or undergoing dialysis, or with known liver dysfunction were excluded from the study.

Diagnosis

COVID-19 was diagnosed according to the WHO interim guidelines and confirmed in our laboratory by SARS-CoV-2 RNA detection with reverse-transcriptase polymerase-chain-reaction (RT-PCR) using nasal and pharyngeal swab samples [13].

Patients with a systolic blood pressure (SBP) of ≥ 140 mmHg and/or a diastolic blood pressure (DBP) of ≥ 90 mmHg, and those using antihypertensive drugs were considered hypertensive. Patients using oral antidiabetics or insulin, or exhibiting fasting blood glucose ≥ 126 mg/dl in two measurements were considered diabetic. Body mass indices (BMI) were calculated according to the following formula:

$$\text{BMI} = \frac{\text{body weight (kg)}}{\text{square of the height (m2)}}$$

GFR was calculated using the Cockcroft-Gault formula:
$$\text{GFR} = \left[\frac{(140 - \text{age}) \times \text{patient weight (kg)}}{72 \times \text{serum creatinine value}}\right] \times 0.85 \text{ for women}$$ [14].

Study procedures

Demographic characteristics of the hospitalized patients with COVID-19 were recorded and computerized tomography (CT) of thorax were evaluated. Blood samples were collected to evaluate the hematological,
inflammatory, and biochemical parameters of the patients (Figure 1). Electrocardiograms (ECG) were recorded and O_2 saturation was determined.

Treatment of patients with enoxaparin was arranged based on the results of laboratory tests, thorax CT, and clinical evaluation. Enoxaparin dosage of 0.5 mg/kg (2x1) was administered to patients with increased inflammation parameters and D-dimer levels, as well as pneumonic infiltration in thorax. Enoxaparin dosage of 40 mg (1x1) was administered to the other patients. Other treatments were determined based on the recommendations of infectious disease specialists.

We determined the levels of anti-Factor Xa in the blood collected from COVID-19 patients 4 h after the 3rd LMWH dose. An anti-Factor Xa level of <0.2 IU/mL was defined as subprophylactic [15,16].

Patients with decreased O_2 saturation and progressing disease state were taken to the intensive care unit. Control anti-Factor Xa levels in the blood collected 4 h after administering the last LMWH dose before discharge were measured (Figure 1).

Laboratory evaluation

Hematological parameters were examined with Mindray BC 6800 whole blood device (Mindray, China). The BC-6800 hematology analyzer used sheath flow impedance, laser scatter, and SF Cube analysis technology. The SF Cube analysis technology is three-dimensional using information from laser light scatter at two angles and fluorescent signals for cell differentiation and counting. In addition, the accuracy of cell numbers was confirmed by peripheral smear from blood samples taken from patients. Biochemical parameters were examined with Cobas C702 (Roche Diagnostics, Mannheim, Germany) device. CRP was examined with BN II nephelometer System (Siemens Healthcare Diagnostics Inc., USA). D-dimer:fibrinogen ratio was examined by the Sysmex CS-5100 device.

The levels of anti-factor Xa were measured from the obtained plasma samples using the Berichrom Heparin kit in a Sysmex cs 5100 device in the biochemistry laboratory. The Berichrom Heparin kit is a chromogenic test (Berichrom heparin, Siemens Healthineers, Marburg, Germany). INR (International Normalised Ratio), PT (Prothrombin Time), and aPTT (activated Partial Thromboplastin Time) were measured as coagulation parameters. Venous blood samples in coagulation tubes were centrifuged at 5000 rpm for 10 min, and the INR, PT, and aPTT levels were measured in the biochemistry laboratory using a Sysmex cs 5100 device, Dade Actin FS, activated PTT reagent, and thromborel S reagent.

Follow-up

The patients whose general condition was stable, had reduced complaints, and had a decrease in inflammatory parameters were discharged. Patients with D-dimer values above 0.5 µg/mL during discharge were administered a single dose of enoxaparin (40 mg, 1x1) for 30 days. Patients with lung involvement during hospitalization were given moxifloksain (400 mg, 1x1) or amoxicillin (1000 mg, 2x1)
for 1 week at discharge. After discharge, these patients were examined at home by filiation teams for 14 days.

Statistical analysis

The data were analyzed using the SPSS 23.0 statistics package (SPSS Inc, Chicago, IL, USA). Continuous variables have been reported as mean ± standard deviation, and categorical variables have been reported as percentages. In comparing the averages between groups, Student’s t test was used for variables with a normal distribution, and the Mann-Whitney U test was used for variables without a normal distribution. Categorical variables were compared with the chi-squared test or Fisher's exact test. The sensitivity and specificity of eosinophil to predict subprophylactic levels of anti-factor Xa were analyzed by receiver operating characteristic (ROC) analysis. P values <0.05 were considered significant.

Results

A total of 13 patients with anti-factor Xa levels < 0.2 IU/mL (subprophylactic anticoagulation) were defined as group 1, and 63 patients with anti-factor Xa levels > 0.2 IU/mL (prophylactic anticoagulation) were defined as group 2. When the demographic and laboratory characteristics of the patients in groups 1 and 2 were evaluated, no significant difference was found except for the eosinophil counts and levels of anti-factor Xa (Table 1).

Laboratory analysis of the blood collected before the discharge of patients revealed that eosinophil counts in group 1 were higher than in group 2, whereas aPTT and anti-Factor Xa levels were lower in group 1 than in group 2 (Table 2).

The D-dimer values of 64 patients were <1 µg/mL, whereas those of 16 patients were >1 µg/mL. Patients with D-dimer values <1 µg/mL and those with >1 µg/mL were found to have similar levels of anti-Factor Xa (baseline: <0.1 µgr/mL, 0.39 ± 0.23 vs >0.1 µgr/mL, 0.40 ± 0.22, p = 0.87; control: <0.1 µgr/mL, 0.45 ± 0.25 vs >0.1 µgr/mL, 0.62 ± 0.30, p = 0.07). However, all 14 patients with eosinophil counts >4% were in the group with D-dimer levels <1 µg/mL (p = 0.03). Eosinophil content and numerical values were also significantly higher in the group with D-dimer level <1 µg/mL (82.97 ± 105.88 vs 15.65 ± 15.35; 1.47 ± 1.84 vs 0.30 ± 0.31, respectively; p = 0.01).

The AUC value in the ROC analysis for baseline eosinophil counts to show subprophylactic anti-factor Xa level was 0.79 (Range: 0.64-0.93; p = 0.001) (Figure 2).

Thoracic CTs of the patients were evaluated, identifying 51 patients with infection signs and 29 with no signs of infection in their thorax CT. When patients with and without thoracic CT findings were compared, age, gender, medication, eosinophil percentage >4%, sediments, crp, fibrinogen, ferritin, AST, ALT, LDH, albumin, HDL, and calcium values were found to be significantly different between the groups (Table 3). Patients with positive CT findings mainly consisted of older male patients. Acute phase reactants of CT
positive patients were found to be higher; however, D-dimer and anti-Factor Xa levels were similar in both groups (Table 3).

During follow-up, 1 patient was died and 2 patients needed intensive care unit follow-up. The average hospitalization period of the patients was 7.55 ± 3.95 days. There was no complication in the patients followed by the filiation teams for 14 days at home and the general condition of the patients did not deteriorate.

Discussion

In this study, we found that increased eosinophil count associated with the level of subprophylactic anticoagulation. Eosinophil counts evaluated for adjusting anticoagulation dose were also found to be increased in patients with low D-dimer levels. Patients with lung conditions were found to have increased inflammatory parameters and percentage of eosinophils.

COVID-19 infection has been shown to be associated with increased coagulopathy [12,17,18]. In these patients, the D-dimer and fibrinogen levels were increased but aPTT level was decreased [19]. Local thrombotic events and thromboembolic complications may develop due to endothelial damage and increased coagulable condition due to COVID-19. Anticoagulant therapy reduces mortality and morbidity in COVID-19 patients [17,18]. Various suggestions have been made about the application of anticoagulant treatment strategy. Various laboratory parameters (D-dimer) and clinical conditions of patients are effective in determining these recommendations [20].

Previous studies examined the anti-factor Xa levels after LMWH administration for VTE prophylaxis and values below 0.2 IU/mL have been shown to be subprophylactic doses [15,16]. However, the efficacy and dose of LMWH administered in COVID-19 patients is not clear. It is apparent that levels below the anti-factor Xa values determined in previous studies may increase the risk of VTE in COVID-19 patients, which can cause hypercoagulability. Considering this, subprophylactic anticoagulation in patients was determined in our study by taking the limit value of 0.2 IU/mL. Subprophylactic anticoagulation value was determined in 16.25% patients of the studied patients.

In the patient group with subprophylactic anticoagulation, eosinophil levels were found to be increased. Other demographic and laboratory parameters of patients with prophylactic and subprophylactic levels of anticoagulation were similar.

Eosinophils have pro-inflammatory, pleotropic, and immune regulatory properties. Eosinophils are mainly found in blood, although they are also found in the gastrointestinal tract and lungs. Lung pathology caused by eosinophils has been observed in RSV and SARS-CoV-1 viral infections [21]. Eosinophils may also contribute to the lung pathology in COVID-19 patients. In hypereosinophilic cases, the degranulation of major basic protein from eosinophils and eosinophil peroxidase causes platelet aggregation and thrombus formation [22]. Eosinophils can cause *in situ* thrombus formation in the lungs and veins. Patients with thoracic CT lesions had high eosinophilic inflammatory parameters. Eosinophils secrete
their own chemoattractant molecules (eotaxin and platelet-activating factor) that allow more eosinophils to enter the inflammatory area, increasing inflammation and lung damage.

Enzymes released from eosinophils (peroxidases, cationic proteins, and neurotoxins) may decrease the anticoagulant activity of heparin [23,24]. In our study, it was found that patients with high eosinophil levels had lower anticoagulant activity. Although D-dimer and fibrinogen levels were similar, patients with low anticoagulant activity only had high eosinophil levels, indicating that subprophylactic anticoagulation levels are related to eosinophils. Eosinophil counts had a good AUC (0.79) in predicting the presence of subprophylactic anticoagulation.

Our patient population was small and many of the patients were followed up for a short period of time (average: 7.5 days). Only 3 patients needed intensive care and one patient was died Therefore, the clinical outcomes of subprophylactic anticoagulation could not be evaluated. Studies involving large-scale, intensive care patients may provide information on the clinical outcomes that eosinophil counts can produce due to their subprophylactic anticoagulation property.

The patients who had thoracic CT lesions, more advanced disease, and were older males exhibited higher inflammatory parameters. This has been shown in previous studies [25].

Limitations

The small number of patients is the main limitation of our study, although the results of this study can be a guide for the optimization of anticoagulant therapy to decrease mortality and morbidity in COVID-19 patients. This study serves as a guide for future large-scale studies with larger patient groups. Our study groups were not included patients with morbid obese and renal failure, therefore we need further studies with these patient groups. Besides most of our patients were followed up inpatient clinic, future studies analyzing patients in intensive care units are required.

Conclusion

Increased eosinophil counts in COVID-19 patients were found to be associated with reduced anticoagulant effect of heparin. Hence, eosinophil levels should be taken into consideration while determining the prophylactic anticoagulation strategy in patients with COVID-19.

Declarations

Acknowledgements

We thank Harun AĞCA, Associate Professor (Uludağ University Faculty of Medicine, Department of Microbiology), for his valuable assistance for the evaluation of peripheral smear from blood samples taken from the patients.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors have no relevant conflict of interest to disclose.

Author contribution:

Study design: Selma ARI, Hasan ARI, Fahriye Vatansever Ağca, Mehmet MELEK

Data collection: Veysi CAN, Ömer Furkan DEMIR, Özlem ŞENGÖREN DİKİŞ, Kağan HUYSAL

Biochemical analysis: Kağan HUYSAL,

Statistical analysis: Hasan ARI, Sencer ÇAMCI, Tamer TÜRK

Writing: Selma ARI, Sencer ÇAMCI, Fahriye Vatansever Ağca, Hasan ARI, Mehmet MELEK

References

1. Huang C, Wang Y, Li X et al (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The lancet;395:497-506.
2. Wu Y-C, Chen C-S, Chan Y-J (2020) The outbreak of COVID-19: An overview. Journal of the Chinese Medical Association; 83:217.
3. Giannis D, Ziogas IA, Gianni P (2020) Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. Journal of Clinical Virology:104362.
4. Obi AT, Tignanelli CJ, Jacobs BN et al (2019) Empirical systemic anticoagulation is associated with decreased venous thromboembolism in critically ill influenza A H1N1 acute respiratory distress syndrome patients. Journal of Vascular Surgery: Venous and Lymphatic Disorders;7:317-324.
5. Cui S, Chen S, Li X, Liu S, Wang F (2020) Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis;18:1421-1424.
6. Helms J, Tacquard C, Severac F et al (2020) High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive care medicine ;1-10.
7. Teuwen L-A, Geldhof V, Pasut A, Carmeliet P (2020) COVID-19: the vasculature unleashed. Nature Reviews Immunology; 20:389-391.
8. Panigada M, Bottino N, Tagliabue P et al (2020) Hypercoagulability of COVID-19 patients in intensive care unit. A report of thromboelastography findings and other parameters of hemostasis. Journal of Thrombosis and Haemostasis;18:1738-1742.
9. Ranucci M, Ballotta A, Di Dedda U et al (2020) The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. Journal of Thrombosis and Haemostasis;18:1747.
10. Maier CL, Truong AD, Auld SC, Polly DM, Tanksley C-L, Duncan A (2020) COVID-19-associated hyperviscosity: a link between inflammation and thrombophilia? The Lancet.

11. Rothenberg ME (1998) Eosinophilia. New England Journal of Medicine; 338:1592-1600.

12. Barnes GD, Burnett A, Allen A et al (2020) Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. Journal of Thrombosis and Thrombolysis; 50:72-81.

13. Aziz S, Arabi YM, Alhazzani W et al (2020) Managing ICU surge during the COVID-19 crisis: rapid guidelines. Intensive Care Medicine.

14. Cockcroft DW, Gault H (1976) Prediction of creatinine clearance from serum creatinine. Nephron ;16:31-41.

15. Wei MY, Ward SM (2015) The anti-factor Xa range for low molecular weight heparin thromboprophylaxis. Hematology Reports;7:80-83.

16. Karcutskie CA, Dharmaraja A, Patel J et al (2018) Association of anti–factor Xa–guided dosing of enoxaparin with venous thromboembolism after trauma. JAMA surgery;153:144-149.

17. Tang N, Li D, Wang X, Sun Z (2020) Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of thrombosis and haemostasis;18:844-847.

18. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z (2020) Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. Journal of thrombosis and haemostasis;18:1094-1099.

19. Driggin E, Madhavan MV, Bikdeli B et al (2020) Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. Journal of the American College of Cardiology ;75:2352-2371.

20. Spyropoulos AC, Levy JH, Ageno W et al (2020) Scientific and Standardization Committee Communication: Clinical Guidance on the Diagnosis, Prevention and Treatment of Venous Thromboembolism in Hospitalized Patients with COVID-19. Journal of Thrombosis and Haemostasis .

21. Lindsley AW, Schwartz JT, Rothenberg ME (2020) Eosinophil responses during COVID-19 infections and coronavirus vaccination. Journal of Allergy and Clinical Immunology ;146:1-7.

22. Marx C, Novotny J, Salbeck D et al (2019) Eosinophil-platelet interactions promote atherosclerosis and stabilize thrombosis with eosinophil extracellular traps. Blood, The Journal of the American Society of Hematology ;134:1859-1872.

23. Fredens K, Dahl R, Venge P (1991) In vitro studies of the interaction between heparin and eosinophil cationic protein. Allergy ;46:27-29.

24. Jane Liesveld(2020) Eosinophil Production and Function. Merc Manual Professional version, Jun .

25. Guan W, Ni Z, Hu Y et al (2019) China Medical Treatment Expert Group for Covid-19. Clinical characteristics of coronavirus disease :1708-1720.
Tables

Table 1: Baseline demographic and laboratory parameters of the groups
Variable	Group 1 (13 patients)	Group 2 (67 patients)	P Value
	Anti-Factor Xa < 0.2 IU/ml	Anti-Factor Xa > 0.2 IU/ml	
Age (year)	43.77±16.77	45.15±15.93	0.77
Gender, n (%)			
Male	7 (53.8)	33 (49.3)	0.76
Female	6 (46.2)	34 (50.7)	
BMI (kg/m²)	27.96±4.25	26.26±4.40	0.20
GFR (ml/min)	104.55±26.94	103.13±20.36	0.84
Hypertension, n (%)	4 (30.8)	8 (11.9)	0.09
Diabetes Mellitus, n (%)	2 (15.4)	7 (10.4)	0.60
Coronary Artery Disease, n(%)	1 (7.7)	-	0.16
Medication; n(%)			
Chloroquine	13 (100)	67 (100)	1
Azitromisin	10 (76.9)	53 (79.1)	0.86
Osetlemivir	4 (30.8)	6 (9.0)	0.06
Favipiravir	3 (23.1)	15 (22.4)	0.95
LMWH, n(%)			
Single dose	11 (84.6)	49 (73.1)	0.38
Double dose	2 (15.4)	18 (26.9)	
CT finding, n(%)			
Positive	8 (61.5)	43 (64.2)	0.85
Negative	5 (38.5)	24 (35.8)	
SpO2	97.38±1.80	96.96±2.10	0.49
QT interval (msec)	385.92±13.00	390.17±31.41	0.64
WBC x 10³/ml	5.91±1.31	5.54±1.89	0.51
Neutrophil	3.57±1.27	3.51±1.71	0.91
Lymphocyte	1.76±0.60	1.54±0.66	0.25
Eosinophil %	2.96±2.55	0.90±1.28	0.001
Eosinophil (%)			
>4 (%)	6 (46.2)	8 (11.9)	0.009
<4 (%)	7 (53.8)	59 (88.1)	
Eosinophil count	168.42±147.25	50.32±73.42	0.001
RBC x 10⁶/ml	4.91±0.37	5.15±4.27	0.84
Haemoglobin (gr/dl)	13.86±1.93	13.30±2.30	0.42
Platelet x 10³/ml	232.00±62.21	197.57±57.87	0.06
Sedimentation (%)	30.00±22.86	32.46±23.28	0.72
CRP (mg/L)	12.18±16.66	25.12±31.04	0.08
Procalcitonin (µg/L)	0.11±0.08	0.13±0.19	0.60
Fibrinogen (mg/dl)	367.08±134.97	410.00±117.34	0.24
Iron (µg/dl)	55.92±39.59	44.82±23.48	0.76
TIBC (µg/dl)	264.54±97.22	281.62±75.30	0.47
Ferritin (ng/ml)	166.85±130.83	220.06±212.54	0.38
Transferrin saturation (%)	19.10±14.49	15.06±9.45	0.75
D-dimer (µg/ml)	0.57±0.38	1.21±3.35	0.50
Glucose (mg/dl)	112.77±42.29	106.82±37.29	0.60
BUN (mg/dl)	12.62±6.50	12.83±4.95	0.89
	Control 1	Control 2	p-value
-------------------------	-----------	-----------	---------
Creatinine (mg/dl)	0.83±0.39	0.78±0.20	0.49
AST (U/L)	26.00±9.53	29.69±17.61	0.46
ALT (U/L)	25.00±15.43	26.18±18.59	0.83
LDH (U/L)	258.31±110.76	252.37±89.03	0.83
Sodium (mmol/L)	139.77±3.03	137.15±15.74	0.55
Potassium (mEq/L)	4.14±0.49	4.07±0.40	0.58
Calcium (mg/dl)	8.76±0.49	8.46±0.52	0.11
Magnesium (mg/dl)	1.91±0.19	2.03±0.21	0.07
LDH (U/L)	140.77±95.69	145.67±184.75	0.92
CK (U/L)	1.17±0.79	1.11±0.61	0.78
CK-MB (ng/ml)	23.12±60.26	5.33±5.48	0.06
BNP (pg/ml)	60.67±63.28	91.43±129.54	0.40
LDL (mg/dl)	74.38±20.56	81.55±24.98	0.33
HDL (mg/dl)	37.46±13.01	37.71±11.39	0.94
Triglyceride (mg/dl)	6.72±0.45	6.92±0.47	0.15
Total protein (g/L)	3.96±0.44	3.97±0.33	0.87
Albumin (g/L)	11.55±0.91	11.82±1.92	0.62
aPTT (sec)	23.25±3.24	25.62±8.45	0.32
INR	0.95±0.06	0.96±0.19	0.89
Baseline Anti-Factor Xa level (IU/ml)	0.18±0.06	0.43±0.23	<0.001

ALT: Alanine aminotransferase; aPTT: Activated partial thromboplastin time; AST: Aspartate aminotransferase; BMI: Body mass index; BNP: Brain natriuretic peptide; BUN: Blood urea nitrogen; CAD: Coronary artery disease; CK: Creatine kinase; CK-MB: Creatine kinase-myocardial band; CRP: C-reactive protein; CT: Computerized tomography; DM: Diabetes mellitus; GFR: Glomerular filtration rate; HDL: High density lipoprotein; HT: Hypertension; INR: International normalized ratio; LDH: Lactate dehydrogenase; LDL: Low density lipoprotein; LMWH: Low molecular weight heparin; PT: Prothrombin time; RBC: Right blood cell; SpO2: Oxygen saturation; TG: Triglyceride; TIBC: Total iron binding capacity; TnI: Troponin I; WBC: White blood cell.

Table 2: Control laboratory parameters of the groups
Variable	Group 1 (13 patients)	Group 2 (67 patients)	P Value
WBC x 10^3/ml	6.25±0.82	5.55±1.95	0.08
Neutrophil	3.81±1.14	3.26±1.58	0.08
Lymphocyte	1.81±0.69	1.79±0.78	0.52
Eosinophil %	3.06±1.49	2.07±1.92	0.001
Eosinophil count	182.49±95.81	112.18±102.54	0.009
RBC x 10^9/ml	4.71±0.42	4.41±0.54	0.07
Haemoglobin (gr/dl)	13.26±2.26	12.58±1.95	0.24
Platelet x 10^3/ml	264.42±117.14	226.94±89.08	0.25
Sedimentation (%)	21.83±18.86	35.18±26.05	0.07
CRP (mg/L)	8.54±11.47	19.45±35.44	0.19
Procalcitonin (pg/L)	0.10±0.07	0.10±0.13	0.96
Fibrinogen (mg/dl)	377.33±145.03	416.98±148.71	0.31
Iron (µg/dl)	56.58±25.26	53.08±24.71	0.56
TIBC (µg/dl)	266.75±86.51	260.76±80.39	0.96
Ferritin (ng/ml)	141.41±92.12	294.28±341.87	0.08
Transferrin saturation (%)	19.41±10.43	19.92±9.93	0.92
D-dimer (µgr/ml)	0.72±0.77	0.78±1.08	0.91
Glucose (mg/dl)	109.83±30.53	108.80±39.84	0.59
BUN (mg/dl)	13.67±7.17	11.55±4.55	0.43
Creatinine (mg/dl)	0.76±0.25	0.73±0.35	0.46
AST (U/L)	25.17±10.56	32.13±24.11	0.45
ALT (U/L)	27.75±14.43	36.53±27.69	0.54
LDH (U/L)	246.58±136.74	264.14±207.81	0.52
Sodium (mmol/L)	138.83±4.58	140.58±5.15	0.52
Potassium (mEq/L)	4.32±0.49	4.25±0.53	0.83
Calcium (mg/dl)	8.88±0.41	8.54±0.51	0.29
Magnesium (mg/dl)	1.96±0.16	2.01±0.24	0.55
CK (U/L)	81.08±54.18	85.36±130.24	0.57
CK-MB (ng/ml)	1.05±0.87	1.07±1.24	0.71
Tn I (pg/ml)	6.18±4.01	9.03±30.53	0.06
BNP (pg/ml)	65.80±94.88	174.88±196.54	0.44
LDL (mg/dl)	74.58±21.89	78.30±24.70	0.71
HDL (mg/dl)	38.83±13.05	34.52±8.87	0.16
Triglyceride (mg/dl)	129.75±79.52	164.34±102.70	0.15
Total protein (g/L)	6.72±0.51	6.84±0.51	0.51
Albumin (g/L)	3.97±0.57	3.80±0.52	0.31
PT	11.72±0.59	11.93±1.28	0.65
aPTT (sec)	22.34±1.38	24.38±3.58	0.01
INR	0.96±0.05	0.98±0.11	0.46
Control Anti-Factor Xa level (IU/ml)	0.16±0.04	0.53±0.26	<0.001

ALT: Alanin aminotransferase; aPTT: Activated partial thromboplastin time; AST: Aspartate aminotransferase; BNP: Brain natriuretic peptide; BUN: Blood urea nitrogen; CK: Creatine kinase; CK-MB: Creatine kinase-myocardial band CRP: C-reactive protein; INR: International normalized ratio; LDH: Lactate dehydrogenase; LDL: Low density lipoprotein; PT: Protrombin time; RBC: Right blood cell; TG: Triglyceride TIBC: Total iron binding capacity; TnI: Troponin I; WBC: White blood cell.
Table 3: Demographic and laboratory parameters of CT positive and negative patients
Variable	CT positive patients	CT negative patients	P Value
	(51 patients)	(29 patients)	
Age (year)	50.67±15.80	34.83±10.41	<0.001
Gender, n (%)			
Male	30 (58.8)	10 (34.5)	0.03
Female	21 (37.5)	19 (65.5)	
BMI (kg/m²)	26.85±4.35	25.99±4.48	0.45
Hypertension, n (%)	10 (19.6)	2 (6.9)	0.12
Diabetes Mellitus, n(%)	7 (13.7)	2 (6.9)	0.35
Coronary Artery Disease, n(%)	1 (2)	-	0.44
Medication; n(%)			
Chloroquine	51 (100)	29 (100)	1
Azitromisin	45 (88.2)	18 (62.1)	0.006
Osetlemivir	9 (17.6)	1 (3.4)	0.06
Favipiravir	17 (33.3)	1 (3.4)	0.002
LMWH, n(%)			
Single dose	37 (72.5)	23 (79.3)	0.50
Double dose	14 (27.5)	6 (20.7)	
SpO2	96.57±2.37	97.83±0.88	0.01
QT interval (msec)	390.02±30.61	388.66±27.44	0.76
WBC x 10⁹/ml	5.46±1.77	5.86±1.87	0.39
Neutrophil	3.46±1.63	3.63±1.68	0.80
Lymphocyte	1.53±0.70	1.66±0.54	0.16
Eosinophil %	1.32±2.01	1.08±1.03	0.30
Eosinophil (%)			
>4 (%)	13 (25.5)	1 (3.4)	0.01
<4 (%)	38 (74.5)	28 (96.6)	
Eosinophil count	71.80±14.11	65.48±64.37	0.24
RBC x 10⁹/ml	4.69±0.48	5.85±6.42	0.66
Haemoglobin (gr/dl)	13.42±2.21	13.35±2.34	0.76
Platelet x 10⁹/ml	198.24±64.67	211.83±49.25	0.20
Sedimentation (%)	37.67±23.78	22.39±18.50	0.003
CRP (mg/L)	31.14±32.26	8.73±16.31	<0.001
Procalcitonin (µgr/L)	0.15±0.21	0.09±0.08	0.28
Fibrinogen (mg/dl)	433.98±126.64	348.59±86.75	0.002
Iron (µg/dl)	44.16±25.34	51.18±29.18	0.18
TIBC (µg/dl)	269.33±75.03	296.07±84.04	0.06
Ferritin (ng/ml)	282.25±212.23	86.85±96.30	<0.001
Transferrin saturation (%)	15.34±9.65	16.42±11.90	0.96
D-dimer (µgr/ml)	0.98±1.97	1.33±4.44	0.62
Glucose (mg/dl)	114.47±38.29	96.03±34.86	0.001
BUN (mg/dl)	14.26±5.48	10.23±3.37	0.001
Creatinine (mg/dl)	0.83±0.27	0.71±0.16	0.03
AST (U/L)	33.67±18.55	21.03±7.43	<0.001
ALT (U/L)	30.82±20.45	17.48±7.32	<0.001
LDH (U/L)	271.94±100.17	220.62±65.56	0.01
Parameter	Baseline Value	Control Value	p-value
-------------------------------	--------------------	-------------------	---------
Sodium (mmol/L)	138.51±4.46	135.93±23.46	0.28
Potassium (mEq/L)	4.10±0.40	4.05±0.45	0.73
Calcium (mg/dl)	8.40±0.49	8.71±0.52	0.02
Magnesium (mg/dl)	2.04±0.23	1.96±0.15	0.08
CK (U/L)	171.39±208.25	98.24±58.41	0.13
CK-MB (ng/ml)	1.12±0.63	1.14±0.66	0.92
Tn I (pg/ml)	10.18±30.97	4.77±4.27	0.06
BNP (pg/ml)	102.86±136.50	56.74±81.90	0.06
LDL (mg/dl)	80.62±26.71	79.81±19.57	0.85
HDL (mg/dl)	34.33±9.07	43.96±13.28	0.004
Triglyceride (mg/dl)	137.25±68.08	115.44±64.17	0.06
Total protein (g/L)	6.84±0.50	6.97±0.40	0.38
Albumin (g/L)	3.89±0.34	4.11±0.33	0.01
PT	11.89±2.16	11.57±0.81	0.54
aPTT (sec)	25.27±9.46	25.17±3.91	0.26
INR	0.97±0.22	0.94±0.07	0.20
Baseline Anti-Factor Xa level (IU/ml)	0.39±0.21	0.40±0.27	0.94
Control Anti-Factor Xa level (IU/ml)	0.47±0.25	0.50±0.30	0.82

ALT: Alanin aminotransferase; aPTT: Activated partial thromboplastin time; AST: Aspartate aminotransferase; BMI: Body mass index; BNP: Brain natriuretic peptide; BUN: Blood urea nitrogen; CAD: Coronary artery disease; CK: Creatine kinase; CK-MB: Creatine kinase-myocardial band; CRP: C-reactive protein; DM: Diabetes mellitus; HDL: High density lipoprotein; HT: Hypertension; INR: International normalized ratio; LDH: Lactate dehidrogenase; LDL: Low density lipoprotein; LMWH: Low molecular weight heparin; PT: Protrombin time; RBC: Right blood cell; SpO2: Oxygen saturation; TG: Triglyceride; TIBC: Total iron binding capacity; TnI: Troponin I; WBC: White blood cell.

Figures
Patients hospitalized with the diagnosis of COVID-19

Baseline laboratory parameters (D-Dimer, Fibrinogen, CRP, WBC, Neutrophil, Lymphocyte, Platelet, Creatinine, GFR) thorax CT and Clinical evaluation

LMWH dose and other treatment determined

Anti-Factor Xa levels were determined, 4 hours after the 3rd LMWH dose

Patients were followed up in the clinic

Before discharge laboratory parameters (D-Dimer, Fibrinogen, CRP, WBC, Neutrophil, Lymphocyte, Platelet, Creatinine) and clinical evaluation

Control anti-Factor Xa levels were measured 4 hours after the last LMWH dose before discharge

After discharge, these patients were checked at home by filiation teams for 14 days

Figure 1

Diagram of study design
Figure 2

ROC analysis for baseline eosinophil counts to show subprophylactic anti-factor Xa level