Natural convection in a fluid saturating an anisotropic porous medium in LTNE: effect of depth-dependent viscosity. (English)
Capone, Florinda; Gianfrani, Jacopo A.
Acta Mech. 233, No. 11, 4535-4548 (2022)

Summary: Thermal convection in a fluid saturating an anisotropic porous medium in local thermal nonequilibrium (LTNE) is investigated, with specific attention to the effect of variable viscosity on the onset of convection. Many fluids show a remarkable dependence of viscosity on temperature that cannot be neglected. For this reason, we take into account a fluid whose viscosity decreases exponentially with depth, according to Straughan (Acta Mech. 61:59-72, 1986), Torrance and Turcotte (J. Fluid Mech. 47(1):113-125, 1971). The novelty of this paper is to highlight how variable viscosity coupled with the LTNE assumption affects the onset of convection. A numerical procedure shows the destabilising effect of depth-dependent viscosity. Moreover, it comes out that the LTNE hypothesis makes the influence of viscosity more intense. Linear instability analysis of the conduction solution is carried out by means of the Chebyshev-tau method coupled to the QZ algorithm, which provides the critical Rayleigh number for the onset of convection in a straightforward way. The energy method is employed in order to study the nonlinear stability. The optimal result of coincidence between the linear instability threshold and the global nonlinear stability threshold is obtained. The influence of anisotropic permeability and conductivity, weighted conductivity ratio, and interaction coefficient on the onset of convection is highlighted.

MSC:
76Exx Hydrodynamic stability
76Sxx Flows in porous media; filtration; seepage
80Axx Thermodynamics and heat transfer

Full Text: DOI

References:
[1] Straughan, B., Stability criteria for convection with large viscosity variations, Acta Mech., 61, 59-72 (1986) · Zbl 0592.76062
[2] Torrance, KE; Turcotte, DL, Thermal convection with large viscosity variations, J. Fluid Mech., 47, 1, 113-125 (1971)
[3] Nield, DA; Bejan, A., Convection in Porous Media (2013), New York: Springer, New York · Zbl 1268.76001
[4] Richardson, L.; Straughan, B., A nonlinear energy stability analysis of convection with temperature dependent viscosity, Acta Mech., 97, 41-49 (1990) · Zbl 0761.76024
[5] Kassoy, DR; Zebib, A., Variable viscosity effects on the onset of convection in porous media, Phys. Fluids, 18, 1649 (1975) · Zbl 0319.76067
[6] Booker, JR, Thermal convection with strongly temperature-dependent viscosity, J. Fluid Mech., 76, 4, 741-754 (1976)
[7] Tuckley, PJ, Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles, J. Geophys Res., 101, 3311-3333 (1996)
[8] Shivakumara, IS; Mamatha, AL; Ravisha, M., Effects of variable viscosity and density maximum on the onset of Darcy-Bénard convection using a thermal nonequilibrium model, J. Porous Media, 13, 7, 613-622 (2010)
[9] Straus, J.M.; Schubert, G.; Thermal convection of water in a porous medium: effects of temperature- and pressure-dependent thermodynamic and transport properties, J. Geophys. Res. 82(2) (1977)
[10] Straughan, B., The Energy Method, Stability and Nonlinear Convection (2004), New York: Springer, New York · Zbl 1032.76001
[11] Joseph, DD, Variable viscosity effects on the flow and stability of flow in channels and pipes, Phys. Fluids, 7, 1761 (1964)
[12] Palm, E.; Ellingsen, T.; Gjevik, B., On the occurrence of cellular motion in Bénard convection, J. Fluid Mech., 30, 4, 651-661 (1967) · Zbl 0204.28501
[13] Rajagopal, KR; Saccomandi, G.; Vergori, L., Stability analysis of the Rayleigh-Bénard convection for a fluid with temperature and pressure dependent viscosity, Z. Angew. Math. Phys., 60, 739-755 (2009) · Zbl 1169.76023
[14] Straughan, B., Sharp global nonlinear stability for temperature-dependent viscosity convection, Proc. R. Soc. Lond. A, 458, 1773-1782 (2002) · Zbl 1056.76035
[15] Diaz, JJ; Straughan, B., Global stability for convection when the viscosity has a maximum, Continuum Mech. Thermodyn., 16, 4, 347-352 (2004) · Zbl 1056.76028

http://zbMATH.org/zbMATH.php?authoridentifier=KMSR2G2W8kQm1028
http://zbMATH.org/zbbib?zbmathid=07612093
[16] Capone, F.; Gentile, M., Nonlinear stability analysis of convection for fluids with exponentially temperature-dependent viscosity, Acta Mech., 107, 53-64 (1994) · Zbl 0846.76033
[17] Capone, F.; Gentile, M., Nonlinear stability analysis of the Bénard problem for fluids with a convex nonincreasing temperature depending viscosity, Continuum Mech. Thermodyn., 7, 297-309 (1995) · Zbl 0830.76034
[18] Thangam, S.; Chen, CF, Stability analysis on the convection of a variable viscosity fluid in a infinite vertical slot, Phys. Fluids, 29, 1367 (1986) · Zbl 0592.76050
[19] Payne, LE; Straughan, B., Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium, Stud. Appl. Math., 105, 59-81 (2000) · Zbl 1136.35318
[20] Richardson, L.; Straughan, B., Convection with temperature dependent viscosity in a porous medium: nonlinear stability and the Brinkman effect, Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, 3, 223-230 (1993) · Zbl 0801.76035
[21] Ingham, DB; Pop, I., Transport Phenomena in Porous Media (2005), Amsterdam: Elsevier, Amsterdam, Heidelberg Academy of Sciences and Humanities
[22] Straughan, B., Convection with Local Thermal Non-equilibrium and Microfluidic Effects (2015), Heidelberg: Springer, Heidelberg · Zbl 1325.76005
[23] Banu, N.; Rees, DAS, Onset of Darcy-Bénard convection using a thermal non-equilibrium model, Int. J. Heat Mass Transf., 45, 2221-2228 (2002) · Zbl 1027.76015
[24] Straughan, B., Global nonlinear stability in porous convection with a thermal nonequilibrium model, Proc. R. Soc. A, 462, 409-418 (2006) · Zbl 1144.76026
[25] Malashetty, MS; Swamy, M., Effect of rotation on the onset of thermal convection in a sparsely packed porous layer using a thermal non-equilibrium model, Int. J. Heat Mass Transf., 53, 3088-3101 (2010) · Zbl 1194.80070
[26] Capone, F.; Gentile, M., Sharp stability results in LTNE rotating anisotropic porous layer, Int. J. Therm. Sci., 134, 661-664 (2018)
[27] Dayananda, RN; Shivakumara, IS, Impact of thermal non-equilibrium on weak nonlinear rotating porous convection, Transp. Porous Media, 130, 819-845 (2019)
[28] Capone, F.; Gentile, M.; Gianfrani, JA, Optimal stability thresholds in rotating fully anisotropic porous medium with LTNE, Transp. Porous Media, 139, 185-201 (2021)
[29] Capone, F., Gianfrani, J.A.: Thermal convection for a Darcy-Brinkman rotating anisotropic porous layer in local thermal non-equilibrium. Ricerche di Matematica (2021)
[30] Mahajan, A.; Parashar, H., Linear and weakly nonlinear stability analysis on a rotating anisotropic ferrofluid layer, Phys. Fluids, 32, 024,101 (2020)
[31] Patil, PM; Rees, DAS, Linear instability of a horizontal thermal boundary layer formed by throughflow in a porous medium: the effect of local thermal nonequilibrium, Transp. Porous Media, 99, 207-227 (2013)
[32] Freitas, R.; Brandão, PV; Alves, LD; Celli, M.; Barletta, A., The effect of local thermal non-equilibrium on the onset of thermal instability for a metallic foam, Phys. Fluids, 34, 034,105 (2022)
[33] Celli, M.; Barletta, A.; Rees, DAS, Local thermal non-equilibrium analysis of the instability in a vertical porous slab with permeable sidewalls, Transp. Porous Media, 119, 539-553 (2017)
[34] Ouazarzi, MN; Hirata, SC; Barletta, A.; Celli, M., Finite amplitude convection and heat transfer in inclined porous layer using a thermal non-equilibrium model, Int. J. Heat Mass Transf., 113, 399-410 (2017)
[35] Barletta, A.; Rees, DAS, Local thermal non-equilibrium analysis of the thermoconvective instability in an inclined porous layer, Int. J. Heat Mass Transf., 83, 327-336 (2015)
[36] Capone, F.; Gianfrani, JA, Onset of convection in LTNE Darcy-Brinkman anisotropic porous layer: Cattaneo effect in the solid, Int. J. Non-Linear Mech., 139, 103,889 (2022)
[37] Straughan, B., Exchange of stability in Cattaneo-LTNE porous convection, Int. J. Heat Mass Transf., 89, 792-798 (2015)
[38] Straughan, B., Porous convection with local thermal non-equilibrium temperatures and with Cattaneo effects in the solid, Proc. R. Soc. A, 469, 2013,187 (2013) · Zbl 1371.76143
[39] Hema, M.; Shivakumara, IS, Impact of Cattaneo law of heat conduction on an anisotropic Darcy-Bénard convection with a local thermal nonequilibrium model, Thermal Sci. Eng. Progress, 19, 100,620 (2020)
[40] Dongarra, JJ; Straughan, B.; Walker, DW, Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamics stability problems, Appl. Numer. Math., 22, 399-434 (1996) · Zbl 0867.76025
[41] Straughan, B.; Walker, DW, Two very accurate and efficient methods for computing eigenvalues and eigenfunctions in porous convection problems, J. Comput. Phys., 127, 128-141 (1996) · Zbl 0858.76064
[42] Bourne, D., Hydrodynamic stability, the Chebyshev tau method and spurious eigenvalues, Continuum Mech. Thermodyn., 15, 571-579 (2003) · Zbl 0637.76074
[43] Capone, F.; Gentile, M.; Hill, AA, Penetrative convection in a fluid layer with throughflow, Ricerche Mat., 57, 251-260 (2008) · Zbl 1322.76018
[44] Govender, S.; Vadasz, P., The effect of mechanical and thermal anisotropy on the stability of gravity driven convection in rotating porous media in the presence of thermal nonequilibrium, Transp. Porous Media, 69, 45-66 (2007)
[45] Rees, D.A.S., Pop, I.: Local thermal nonequilibrium in porous medium convection. Transport Phenomena in Porous Media III (ed. Ingham, Pop) pp. 147-173 (2005)
[46] Malashetty, MS; Shivakumara, IS; Kulkarni, S., The onset of convection in an anisotropic porous layer using a thermal
non-equilibrium model, Transp. Porous Media, 60, 199-215 (2005)

[47] Barletta, A.; Celli, M., Effects of anisotropy on the transition to absolute instability in a porous medium heated from below, Phys. Fluids, 34, 024,105 (2022)

[48] Hewitt, D.R.: Vigorous convection in porous media. Proc. R. Soc. A 476 (2020)

[49] https://wiki.anton-paar.com/it-it/olio-motore/

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.