Zespół Brugadów
Brugada syndrome

Artur Krzemiński i Władysław Pluta
Oddział Kardiologii Wojewódzkiego Centrum Medycznego w Opolu

Abstract
We describe 40 year-old patient with syncope and Brugada syndrome. After risk stratification the patient has undergone ICD implantation. We have completed genetic testing on the patient and his family. (Folia Cardiol. 2006; 13: 258–261)

Brugada syndrome, risk stratification, genetic testing

Wstęp
W 1992 r. Pedro i Josep Brugada po raz pierwszy opisali zespół charakteryzujący się obecnością uniesienia odcinka ST w odprowadzeniach prawokomorowych elektrokardiogramu oraz zwiększonym ryzykiem naglej śmierci sercowej wiązanym z polimorficznym częstoskurczem komorowym lub migotaniem komór u pacjentów bez strukturalnej choroby serca [1]. Ponieważ tę chorobę zidentyfikowano niedawno, dokładne ustalenie częstości jej występowania i rozprzestrzenienia na świecie jest trudne. Na podstawie dostępnych publikacji zacho- rowalność określa się w granicach 5–66 przypadków na 10 000 osób. Szacuje się, że choroba ta powoduje 4–12% przypadków naglej śmierci sercowej i ponad 50% nagłych zgonów wśród osób ze strukturalnie prawidłowym sercem. Na obszarach Azji Południowo-Wschodniej zespół Brugadów występuje endemicznie, częściej u mężczyzn niż u kobiet (w stosunku 8:1), z pojawianiem się incydentów arytmicznych w średnim wieku [2]. Jest schorzeniem uwarunkowanym genetycznie, które dziedziczy się w sposób autosomalny dominujący, ale występują również sporadyczne przypadki związane z mutacją de novo. Chociaż jedynie w 25% przypadków wykazano związek z mutacjami w zakresie genu SCN5A kodującego podjednostkę alfa kanału sodowego, to stosując metody statystyczne udowodniono, że prawdopodobieństwo, iż mutacje zlokalizowane w tym genie nie odpowiadają za charakterystyczne nieprawidłowości w elektrokardiogramie jest mniejsze niż 1:1 000 000 [3]. Zidentyfikowano ponad 80 różnych mutacji w obrębie SCN5A, z czego 1/3 dokładnie zbadano metodami biofizycznymi. Nie wyklucza się, że inne geny, dotychczas niezidentyfikowane, mogą odpowiadać za tę chorobę. Muta- cje SCN5A, będące podstawą zespołu Brugadów, powodują funkcjonalne zmniejszenie dostępności kanału sodowego oraz przyspieszony bieg niesynchronizowany odkomórkowy prąd potasowy (Ito) w miocytach warstwy podnasierdziowej prawej komory. W warunkach normalnych przeciwstawia mu sobie kanał sodowy. Utrata czynności lub zaburzenia bramkowania podjednostki SCN5A powodują dominację prądu potasowego Ito, znaczące skrócenie czasu trwania...
potencjału czynnościowego z wyraźną niejednorodnością przestrzenną, najmocniej zaznaczoną w warstwie nasierdziowej prawej komory [5]. Transmuralna dyspersja repolarizacji między warstwą podnasierdziową a podwsierdziową usposabia do lokalnej reekscytacji określonej jako reentry 2 fazy potencjału. Jest to czynnik wyzwalający częstokurcz oraz trzepotanie i migotanie komór, które występują przede wszystkim w czasie wzmożonego napięcia układu parasympatycznego (podczas snu) [6]. Leki, które silnie blokują kanał sodowy (INa), ale nie prąd potasowy (Ito) — ajmalina, flekainid i prokainamid — nasilają typowe zmiany w elektrokardiogramie u pacjentów z zespołem Brugadów bądź przyczyniają się do ich ujawnienia i mają duże znaczenie w procesie diagnostycznym, pełniąc funkcję „testów prowokacyjnych”, natomiast leki hamujące obydwa prądy INa i Ito — chinidyna i dizopiramid — zmniejszają ich nasilenie [4, 7].

Mimo badań prowadzonych przez wiele ośrodków na świecie nadal jest wiele niewiadomych i wątpliwości dotyczących podłoża genetycznego, mechanizmów arytmii, rozpoznawania choroby oraz odpowiedniej stratyfikacji ryzyka lekarzy w podejrzewaniu tej dość częstej choroby.

Opis przypadku

Pacjenta A.B. w wieku 40 lat, czynnego zawodowo kierowcę, przyjęto na Oddział Kardiologii Wojewódzkiego Centrum Medycznego w Opolu w celu diagnostyki zgłaszanych dolegliwości w postaci kołatań serca i powtarzających się zasłabień. Od 1990 r. nastąpiły 4 incydenty całkowitej utraty przytomności — po raz ostatni w 1999 r. W ciągu ostatnich 2–3 lat napady kołatań serca z towarzyszącym osłabieniem i zawrotami głowy występowały średnio 1–2 razy w miesiącu.

W wykonanym w tym czasie ambulatoryjnie elektrokardiogramie zarejestrowano monomorficzny częstokurcz z szerokimi zespołami RS. Ponadto pacjent nie zgłaszał żadnych dolegliwości; w przeszłości nie miał innych problemów ze zdrowiem. W wywiadzie zwrócono uwagę na wystąpienie 2 nagłych zgonów przed 50. rz. w rodzinie ze strony matki (siostra matki i babka chorego). Elektrokardiogram wykonany przy przyjęciu przedstawiono na rycinie 1. Na podstawie obecności charakterystycznych zmian w zapisie EKG i obrazu klinicznego z utratami przytomności rozpoznano zespół Brugadów. Za pośrednictwem internetu skonsultowano się z ośrodkiem Dr Ramona Brugady (New York Heart Center), który zaproponował wykonanie badań genetycznych u pacjenta i u krewnych I stopnia w kierowanej przez siebie placówce (Molecular Genetics Department Masonic Medical Research Laboratory). Po uzyskaniu zgody personalnej próbki krwi pacjenta oraz 6 członków rodziny (bez objawów, z prawidłowym elektrokardiogramem) wysłano do Stanów Zjednoczonych. Chorego przekazano do I Katedry i Kliniki Kardiologii Górnośląskiego

Rycina 1. Elektrokardiogram przyjęciu do szpitala

Figure 1. Electrocardiogram from admission room
Centrum Medycznego Śląskiej Akademii Medycznej w Katowicach. W trakcie hospitalizacji wykonano inwazyjne badanie elektrofizjologiczne, w którym wykluczono obecność drogi dodatkowej, a programowaną stymulacją komór wywołano migotanie. Pacjentowi implantowano 1-jamowy kardiowerter-defibrylator (ICD, implantable cardioverter-defibrillator).

W wyniku przeprowadzonego badania genetycznego u chorego stwierdzono mutację w obrębie eksonu 27 genu SCN5A prowadzącą do zamiany glutaminy na lizynę w pozycji 1574 produktu białkowego genu. W analizie zastosowano technikę polimerazowej reakcji łańcuchowej i sekwencjonowania. Identyczną mutację stwierdzono u 17-letniego syna pacjenta.

Dyskusja

Zgodnie z najnowszymi zaleceniami ekspertów [2] zespół Brugadów należy uwzględniać w przypadkach:
- występowania uniesienia odcinków ST typu 1 (wypukłego — coved) w więcej niż 1 odprowadzeniu przedsercowym prawostronnym V1–V3 podczas stosowania blokerów kanałów sodowych lub bez tej terapii oraz 1 z następujących kryteriów wskazujących na prawdopodobieństwo istnienia tego zespołu:
 - udokumentowane migotanie komór;
 - samoograniczający się wielokształtny częstoskurcz komorowy;
 - nagły zgon w wywiadach rodzinnych (< 45. rż.);
 - elektrokardiogramy z wypukłym uniesieniem ST u członków rodziny;
 - odpowiedź na elektrofizjologiczną stymulację;
 - omdlenia;
 - ciężkie bezdechy nocne;
- występowania uniesienia odcinków ST typu 2 (siodlowatego — saddle-back) w odprowadzeniach V1–V3 w warunkach podstawowych z konwersją do typu 1 po podaniu blokera kanałów sodowych — pilsikainidu [10]. Na podstawie aktualnego doświadczenia trudno zatem jednoznacznie zidentyfikować wśród pacjentów bez objawów podgrupę wysokiego ryzyka nagłej śmierci sercowej. Powszechnie uważa się, że pacjenci z typowym obrazem zmian w EKG, którzy przeżyli incydent naglego zatrzymania krążenia, cechują się duzym ryzykiem nawrotu groźnych arytmii. U tych osób wszczepienie ICD jest obligatoryjne. Podobnie należy traktować pacjentów z grupy najwyższego ryzyka (omdlenia, spontanicznych zmian w EKG i wywołane utrwalone arytmie w programowanej stymulacji komorowej), u których ryzyko naglego zgonu sercowego wynosi 27,2% rocznie. Chorzy ze spontanicznymi zmianami w EKG bez wywiadu w kierunku omdleń czy złośliwych arytmii cechują się logiczną konwersję typu 3 do 2 uznaje się za niejednoznaczną.

Autorzy zwracają uwagę, że proponowane kryteria oparte naaniu dostępnych danych i że są to wyniki wstępne, które wymagają potwierdzenia w badaniach molekularnych i anatomskopatologicznych oraz w prospektywnych badaniach klinicznych [2].

Stratyfikacja ryzyka u pacjentów z zespołem Brugadów jest dużym wyzwaniem. W doniesieniu Brugady [8] częstość nawrotów zaburzeń rytmu w grupie 334 chorych w czasie 4 lat wynosiła 62% u osób po zatrzymaniu krążenia a 19% u pacjentów po utracie przytomności. Jednym czynnikiem pozwalającym przewidzieć nawrót arytmii w obu grupach była możliwość wywołania częstoskurczu komorowego podczas badania elektrofizjologicznego. Podczas około 2-letniej obserwacji pierwszy incydent zaburzeń rytmu wystąpił u 8% pacjentów bez wcześniejszych objawów. Nie wykazano mniejszego zagrożenia wystąpieniem groźnych arytmii u osób z wyjściowo prawidłowym zapisem EKG, u których charakterystyczne cechy pojawiały się po zastosowaniu blokerów kanałów sodowych [8]. Z kolei Priori i wsp. wykazali, że współwystępowanie spontanicznych uniesień odcinków ST w odprowadzeniach V1–V3 z omdleniami w wywiadach wyróżnia osoby obciążone ryzykiem naglego zatrzymania czynności serca; nie wykazano związku między możliwością wywoływania programowanej stymulacją elektryczną migotania komór a jego spontanicznym wystąpieniem [9]. Inni badacze wskazują na dużą czułość i specyficzność późnych potencjałów komorowych w uśrednionym zapisie EKG w ocenie ryzyka wystąpienia groźnych dla życia arytmii, a także istotnego (> 0,15 mV) zwiększenia uniesienia odcinka ST w odprowadzeniu V2 po podaniu blokera kanałów sodowych — pilsikainidu [10].
również istotnym ryzykiem (8% w obserwacji 2-letniej); także u nich trzeba rozważyć wszczepienie kardiowertera-defibrylatory. Obserwacją należy objąć pacjentów najmniejszego ryzyka (0,5% rocznie), u których nie stwierdzano epizodów omdełen, a zmiany w EKG pojawiają tylko w próbach prowokacyjnych i nie wywołuje się u nich arytmii w programowanej stymulacji komorowej [7, 8, 11–13].

Opisany pacjent należał do grupy najwyższego ryzyka nagłego zgonu według klasyfikacji zawartej w piśmiennictwie [11, 14], w związku z czym implantowano kardiowerter-defibrylator. Przeszukując medyczną bazę internetową dotyczącą zespołu Brugadów, stwierdzono możliwość przeprowadzenia badań genetycznych w ramach fundacji Brugady. Zgodnie z aktualną wiedzą znajomość specyficznych mutacji nie może dostarczać wskazówek w formułowaniu rozpoznania lub ustalaniu rokowania. Niemniej jednak zaleca się badania genetyczne w celu potwierdzenia rozpoznania klinicznego, wczesnego wykrycia potencjalnie zagrożonych krewnych i po upaści bodań nad zrozumieniem zależności genotyp–fenotyp [14]. Wyimuthną korzyścią współpracy z dr. Brugadą — oprócz poznania opinii wybitnego eksperta i uzyskania klinicznych wskazówek — było wykrycie mutacji u kolejnego nosiciela w rodzinie chorego i obrębie go uważną obserwację.

Podziękowania
Autorzy szczególnie dziękują dr. Ramonowi Brugadzie za bardzo życzliwe podejście i wszelką okazaną pomoc.