INTENSIFICATION OF WASTEWATER PURIFICATION OF MUNICIPAL SOLID WASTE LANDFILLS

The object of research is leachate from municipal solid waste (MSW) landfills. The aim of research is a theoretical feasibility study on the application of the proposed purification technology, in particular, an activated sludge system for bringing the quality of filtrate to regulatory requirements. The aim of research is a theoretical feasibility study on the application of the proposed purification technology.

1. Introduction

Purification of the filtrate is a complex task, both from a technological and from an economic point of view. The one-step scheme for purifying the filtrate does not allow achieving a high efficiency of purification of the filtrate [1–3]. The main factor ensuring the required quality of the filtrate at the exit is the multistage process of reagent purification to facilitate and complete the process of coagulation at the exit.

Purification of the filtrate is a complex task, both from a technological and from an economic point of view. The one-step scheme for purifying the filtrate does not allow achieving a high efficiency of purification of the filtrate [1–3]. The main factor ensuring the required quality of the filtrate at the exit is the multistage process of reagent purification to facilitate and complete the process of coagulation at the exit.

2. Methods of research

The quality of the filtrate is directly related to the operation stage of the landfill («young filtrate»—the stage of acetogenesis, «old filtrate»—the stage of methanogenesis). Thus, the stage of biochemical decomposition of waste determines the qualitative and quantitative characteristics of wastewater.

As a rule, the purification of wastewater requires a multistage combination of various physicochemical and biological methods, significant capital and operating costs.

Laboratory studies were performed using optical and physico-chemical methods. Studies on the effectiveness of the use of the selected technology for purification of wastewaters of MSW landfills were carried out both in laboratory conditions and at the pilot plant.

Regularities of wastewater purification using an activated reagent solution were studied on model water and...
wastewater generated at the MSW landfill, characteristic of the stage of stable methanogenesis.

The qualitative characteristics of wastewater are given in Table 1. The experiment was performed in parallel for the conditions of conventional coagulation and for wastewater purified with an activated solution of aluminum sulfate coagulant.

To activate the reagent solutions, a magnetic activator is used, which provides for simultaneous and sequential activation of the solution by the magnetic field and saturation with an anodically dissolved iron [9, 10].

The activation mechanism is explained by the imposition of a magnetic field on the solutions, resulting in a change in their structure and the formation of ionic associates, which are the nuclei of a new phase and act as additional coagulation centers.

The stabilization of ionic associates occurs with anodic dissolved iron. This is used, which provides for simultaneous and sequential activation of the solution by the magnetic field and saturation with an anodically dissolved iron [9, 10].

Pilot industrial tests were performed at the MSW landfill in Zaporizhzhia (Ukraine). As a result of research, it is found that the use of an activated solution of aluminum sulphate can improve the quality of the filtrate, reduce the dose of reagents, reduce the size of the reagent economy.

To assess the effectiveness of the implementation of wastewater purification technology using an activated solution of aluminum sulfate at the purification stage, the following is determined:

– cleaning efficiency;
– economic effect of the introduction of the developed technology.

According to the proposed technology, wastewater enters the collection to ensure uniform and uninterrupted supply. The reagent activator is installed on the bypass line and is used according to the research regulations. In the mixer, the coagulant solution (activated or normal – according to the regulations) is mixed with wastewater, then the filtrate is sent to the primary clarifier, a bath with immersion biodisks and a secondary clarifier section. After the secondary settling tank, disinfection with bactericidal irradiation is organized. As an aftertreatment filter with quartz sand is used.

3. Research results and discussion

After completing the experiments, the following samples were taken to analyze the effectiveness of the proposed technology:

– source filtrate – indicators: suspended matter content, chromaticity, COD, BOD$_{5\text{full}}$;
– purified filtrate – indicators: suspended matter content, chromaticity, COD, BOD$_{5\text{full}}$.

The main criterion for the effectiveness of the application of the activation of the coagulant solution is the residual content of suspended substances, the indicators of the efficiency of biological purification – BOD$_{5\text{ana}}$ and COD. Comparative effectiveness of conventional and activated solution of coagulant aluminum sulphate is given in Table 2. The economic efficiency of the introduction of an activated solution of aluminum sulfate is also determined, according to the results of pilot tests of a pilot plant (Table 3).

Table 1
Qualitative characteristic of wastewaters of the MSW landfill (Zaporizhzhia, Ukraine)

Indicator	Winter	Spring	Autumn
Dry residue, mg/dm3	18052.7	22880.5	21514.3
BOD$_5$, mgO$_2$/dm3	167.8	166	186.5
COD, mg/dm3	1215.5	995	1000
Chromaticity, deg.	166	158	170
Suspended substances, mg/dm3	273	208.7	280.4
pH	7.3	7.5	7.6
Nitrogen, mg/dm3	260	83.2	61
Nitrites, mg/dm3	118.2	102.8	106.4
Sulfates, mg/dm3	2109.2	2216.5	1490.3

Note: BOD$_5$ – biological oxygen demand (for 5 days); COD – chemical oxygen demand.

Table 2
The effectiveness of conventional and activated coagulant solution of aluminum sulfate

Series of experiments	Date	Indicators of the initial wastewater	Activation options	Indicators of purified wastewater	Improving the performance of purified wastewater, %												
		Suspended substances, mg/dm3	Chromaticity, deg	COD, mgO$_2$/dm3	Magnetic field strength, kA/m	Dose of aluminum sulphate coagulant, mg/dm3	Suspended substances, mg/dm3	Chromaticity, deg	COD, mgO$_2$/dm3	BOD$_{5\text{ana}}$, mgO$_2$/dm3							
I (conventional coagulant solution)	2.09.17–15.09.17	255.4–267.5	150–165	904.7–1006.5	172.3–184.5	325	12.5	210	13.5	36	28.9	9.3	0.35	–	–	–	
II (activated coagulant solution)	16.09.17–29.09.17	265.4–271.5	152–164	1010.2–1025.6	164.8–181.5	325	12.5	210	7.7	19	19.8	6.3	0.15	43.0	47.2	31.5	32.3
III (ordinary coagulant solution)	30.09.17–13.10.17	242.6–269.3	157–172	1010.4–1021.5	166.2–174.5	325	12.5	210	13.4	34	26.4	9.1	0.25	–	–	–	
IV (activated coagulant solution)	14.10.17–27.10.17	239.2–254.1	180–175	1029.3–1051.6	147.8–161.5	325	12.5	210	7.8	20	18.2	6	0.17	41.8	41.2	31.1	34.1
The cleaning scheme according to the basic variant includes: a reagent farm, a mixer, a primary and secondary settling tank, subsurface disk filters, a bactericidal lamp and a frame-fill-in filter. The cost of the manufacture and installation of the reagent activator is equal to the cost of construction and reconstruction of the reagent economy in the base case.

According to the Table 3 and calculations (basic option), to clean 300 m³/day of wastewater, 0.08 m³ of 10% normal and 0.06 m³ of activated aluminum sulfate coagulant solution is necessary (taking into account a 25% reduction in dose). Considering the required volume, the activator capacity is 0.01 m³/h with reagent activator duration of 6 hours per day.

It is expected that the annual economic effect from the introduction of an activated solution of aluminum sulfate coagulant will be about 2 thousand USD (compared to the base case).

The use of membrane technologies (disk-tube membranes) at the main stage can be justified by the possibility of their repeated use in the «filtration – regeneration – filtration» cycles. However, operating costs (costs of maintenance and electricity) amount to about 35 thousand USD, including the annual replacement of modules, which is absolutely inexpedient for economic reasons.

4. Conclusions

It is shown that the intensification of wastewater purification processes of landfills using activated aluminum sulphate solution can be explained by the violation of the dynamic equilibrium of the water-dispersed system. This contributes to the formation of ionic associates, the nuclei of a new phase, which play the role of additional coagulation centers. An analysis of the conducted studies allows to conclude that the use of an activated coagulant solution can reduce the calculated dose by 25–30%, without reducing the effectiveness of wastewater purification. In the process of cleaning, hardening of the flakes of the precipitate formed and an increase in the degree of its precipitation are also observed. It should also be noted that the proposed technology is more effective at acetogenesis, it is necessary to adjust the activation parameters of the solution, increasing the magnetic field strength and the dose of anodic dissolved iron.

The results of this research will be useful in the development of technical documentation for the operation of solid waste landfills, as well as interesting to researchers in studying the difficulties in purifying specific concentrated wastewater.

References

1. Ochistka drenazhnyh vod svalok tverdyh bytovyh othodov / Goshcharuk V. V., Balakina M. N., Kucheruk D. D., Skubchenko V. F. / // Himija ta tekhnologiya vody. 2006. Vol. 28, Issue 5. P. 462–471.
2. Stepanuk A. P. Problema zneshidkodzhennia filtratu ta shliakhyy yiy vyrishennia // Santarina ochytyka mist ta komunaliyny avto- transport. 2002. Issue 4. P. 40–43.
3. Bolyard S. C., Reinhardt D. R. Application of landfill treatment methods for stabilization of municipal solid waste // Waste Management. 2016. Vol. 55. P. 22–30. doi: http://doi.org/10.1016/j.wasman.2016.01.024
4. Reinhardt D. R. Active municipal solid waste landfill operation: A biochemical reactor // Waste Management. 1993. Vol. 13, Issue 5–7. P. 533. doi: http://doi.org/10.1016/0956-053x(93)90124-f
5. Resursosberegaussichie tehnologii ochistki stichnyh vod: monogram / Dushkin S. S., Kovalenko A. N., Degtiar M. V., Shevchenko T. A. Kharkiv: HNAGH, 2011. 168 p.
6. Kompleksnyi podhod k resheniu problemy ochistki stichnyh vod poligonov tverdyh bytovyh othodov / Varnavskaia I. V., Stalinskii D. V., Epstein S. I., Muzykina Z. S. / // Vodochistka. 2012. Issue 4. P. 7–14.
7. Stalinskii D. V., Latkov N. V., Varnavskaia I. V. Issledovaniia po optimizatsii parametrov reagentnoi ochistki stichnych vod poligonov tverdyh bytovyh othodov ot organicheskikh zagriaz- nenii // Visnik NUVGPU Tekhnichni nauki. 2012 Issue 2 (58). P. 25–34.
8. Denitrification of Mature Landfill Leachate with High Nitrite in Simulated Landfill Columns Packed with Solid Digestate from Organic Fraction of Municipal Solid Waste / Peng W., Pivato A., Cerminara G., Garbo F., Raga R. // Waste and Biomass Valorization. 2018. P. 1–11. doi: http://doi.org/10.1007/s12649-018-0422-7
9. Sposob ochyschnienia stichnych vod polihoniv tverdykh pobu- tovykh valokhodov: Pat. No. 451900 UA. MPK51 (2009) CO2F 1/48 / Solodovnyk M. V., Dushkin S. S., Tkachov V. O., Dushkin S. S., Korinko I. V.; u 200905845; declareted: 09.06.2009; published: 26.10.2009. Bul. No. 20.
10. Deitl M. V. Intensyfikatsiya protosiy ochyschnienia vyso- kokonsestrovanykh stichnych vod // Visnyk Natsionalnoho universytetu vodochnogo hospodarstva ta pryrolokoryvatuvannya. 2015. Issue 1 (69). P. 111–116.
11. Solodovnyk M. V. Granichnye uslovii primeneniia metodov ochistikii drenazhnikh vod poligonov tverdyh bytovyh othodov // Gigromieloritatsia ta gidrotekhnichne budvinistvo. 2009. Issue 34. P. 309–314.

Degtyar Maria, PhD, Associate Professor, Department of Water Supply, Water Disposal and Water Purification, O. M. Beke- tov National University of Urban Economy in Kharkiv, Ukraine, e-mail: Mashunka229982@gmail.com, ORCID: http://orcid.org/ 0000-0001-7836-1680