Sensitivity Analysis of Carbonate Looping Process Using Twin Fluidized Bed Model

Xuan Yang1, Yishu Qiao1, Xiangyang Han1, Bingcheng Liu12*, Kinjal J. Shah3, Pen-Chi Chiang4

1 Qingdao University of Science and Technology, Qingdao 266061, China
2 Institute of Climate & Energy Sustainable Development, Qingdao 266061, China
3 College of Urban Construction, Nanjing Tech University, Nanjing 211816, China
4 Carbon Cycle Research Center, National Taiwan University, Taipei 10672, Taiwan

ABSTRACT

CO2 as the major greenhouse gas plays an important role in environmental problems. Therefore, it is reasonable to find an effective technology for mitigating large CO2 emissions. Carbonating looping is an efficient post-combustion CO2 capture technology using limestone sorbent, which is more energy-saving than traditional technologies. In our research, a carbonate looping process model had been developed using ASPEN PLUS software. In detail, the sensitivity analysis of main parameters were adopted. The simulation results indicated that the CO2 capture rate of the whole process can achieve above 90% and CO2 concentration in the decarbonated flue gas was less than 4% under the carbonation temperature, the calcination temperature, the F0/FCO2 and the gas-solid separation were 630°C, 900°C, 0.04, 1.0, separately. This work gave an potential example for the retrofitting current coal-fired power plant combined with carbonate looping process.

Keywords: CO2 capture; Carbonate looping; Process model; Twin Fluidized bed; Sensitivity analysis.

INTRODUCTION

In recent years, scientists and researchers have put much more concern on the climate change issues, which surely confirm that global warming is mainly caused by greenhouse gas emission (GHG) (Safdarnejad et al., 2016; Cheng et al., 2019; Huang et al., 2019). GHG is mainly emitted from fossil fuel burning which is considered as the main source of global warming. Among all the GHG, CO2 is the principal gas which related to many large power plants (Symonds et al., 2017; Tritippayanon et al., 2019; Safarian et al., 2020). Therefore, it is necessary to develop effective technologies for reducing large CO2 emissions (Li et al., 2013; Jiang et al., 2019). CO2 capture and storage (CCS) is a promising technology to control GHG discharge, which has been widely used in these decades (Zhang et al., 2019; Liu et al., 2020).

There are several methods for CO2 capture from power plants: (i) oxy-fuel combustion (Atsonios et al., 2015); (ii) pre-combustion (Solares et al., 2020); (iii) post-combustion (Alam et al., 2020). The post-combustion method is widely used method for CO2 capture in power stations at present. The flue gas passes through CO2 removal equipment to mitigate CO2 emission (Liang et al., 2015; Martinez et al., 2018).

There have been many methods in the literature about post-combustion CO2 captures, such as absorption (Porter et al., 2015), adsorption (Shah and Imae, 2016), cryogenic (Yuan et al., 2014), chemical looping (Leion et al., 2008) and membrane (Zhao et al., 2018; Yang et al., 2019). However, these processes have some bottlenecks including enormous energy losses of 8–14% which increase fuel consumption and environmental concern regarding solvent regeneration (Lasheras et al., 2011; Oh et al., 2016; Liu et al., 2019a, b).

In addition, some researchers have proposed that the chemical looping combustion consumes less energy to separate CO2 from flue gas, but this method still need full-scale experimental development (Abad et al., 2007; Leion et al., 2008). The carbonate looping (CL) is one of the promising methods for post-combustion CO2 capture, which uses calcium oxide (CaO) as absorption sorbents to reduce CO2 emission (Diego et al., 2017). The main equipment of this process is two interconnected fluidized beds. The principal of the carbonate looping process is shown in Fig. 1.

In Fig. 1, the flue gas which comes from an upstream power plant firstly enters the carbonator. In the carbonator, most of the CO2 react with CaO and convert to CaCO3. The exothermic carbonation reaction happens at 650°C and a pressure of 1 bar which can achieve a better conversion rate of CaO (Strohle et al., 2014). The CaCO3 then transfers to
the second fluidized bed (calciner), where the CO$_2$ is released from CaCO$_3$ at about 950°C, forming high purity CO$_2$ product and ready to compress for storage. The regenerated CaO from calcination reaction is then sent to the carbonator for another cycle. The calcination reaction is endothermic, therefore the extra heat is supplied by the combustion of fuel and pure oxygen. In the whole process, high temperature will cause deactivation of sorbent and the over-time cycle will also lead to solid losses. Therefore, make-up flow should be introduced into the system to keep the mass balance in the system (Jia et al., 2007; Zhang et al., 2016; Alonso et al., 2018). Compared with other post-combustion CO$_2$ capture technologies, CL has extremely lower energy penalties and the sorbent is widely distributed in nature and easy to obtain (Romano, 2009; Pan et al., 2017). In addition, CL using indirectly heated method will be further improving CO$_2$ capture efficiency (Hoeftberger et al., 2016; Reitz et al., 2016).

The feasibility of the CL process has been evaluated by many researchers through large-scale test rigs and simulations. In 2009, Symonds et al. (2009) testified that humid environment can increase carbonation conversion. In 2010, Alonso et al. (2010) designed and built a 30 MW$_{th}$ test facility in Spain, and conducted a series of experiments about CO$_2$ capture performance. The results showed that CO$_2$ capture efficiency can be achieved above 70% as the reactors had enough solid inventory. A 10kW$_{th}$ dual fluidized bed (DFB) was erected in the University of Stuttgart (Germany) by Charitos et al. (2010). Some parameters, such as carbonate temperature, calcium looping ratio, and carbonation reaction time, etc., were investigated through this experiment. The experiments demonstrated that the increased carbonate temperature and calcium looping ratio can significantly boost CO$_2$ capture efficiency, meanwhile, the CO$_2$ capture efficiency of the whole system can reach above 90%. On the other hand, Lasheras et al. (2011) developed a process model using a 1D fluidized bed model through ASPEN PLUS and Strohle et al. (2014) established a 1 MW$_{th}$ test rig to validate the simulation. These two works showed that make-up flow had a great influence on the CO$_2$ absorption rate and the experiment had a great agreement with simulation. In 2019, Hilz et al. (2019) established a 20 MW$_{th}$ CL demonstration power plant, which showed good prospects for both economical and technical applications.

Present work focused on CO$_2$ capture using carbonate looping based on earlier reported work by Shimizu et al. (1999). The flue gas came from 350 MW$_{th}$ net electrical power, which had a high temperature and flow rate. The whole process was introduced and set up into ASPEN PLUS software for numerical simulation of CO$_2$ capture performance. The carbonation and calcination temperature, make-up flow, gas-solid separation efficiency, and SO$_2$ concentration in the flue gas were analyzed and optimal parameters were obtained. The work will provide important data for the application of carbonate looping.

METHODOLOGY

Model Description

In the present research, a carbonate looping process model was established using ASPEN PLUS software and the process flow diagram was demonstrated as shown in Fig. 2. A coal-fired power plant that has 350 MW$_{th}$ net electrical power and 36% net efficiency was used as an upstream plant in this study. The sulfur dioxide gas was removed when the flue gas passed through the carbonate looping process. The main parameters of flue gas were shown in Table 1.

The flue gas initially entered the carbonator and the two chemical reactions occurred in carbonator:

\[
\text{CaO} + \text{CO}_2 \rightarrow \text{CaCO}_3 \quad (R1)
\]

\[
\text{CaO} + \text{SO}_2 + (1/2)\text{O}_2 \rightarrow \text{CaCO}_3 \quad (R2)
\]

The CO$_2$ absorption reaction (R1) happened in the first fluidized bed (CARBONATE) and the SO$_2$ absorption reaction rate (R2) was set as 100%. The solid stream and the
Fig. 2. A process model of carbonate looping in ASPEN PLUS.

Table 1. The properties of the flue gas.

Main parameters	Value
Mass flow (kg s\(^{-1}\))	446
Temperature (°C)	120
Pressure (kPa)	101.325
Component of flue gas	
CO\(_2\) Mass fraction (wt%)	19.4
N\(_2\)	15.53
SO\(_2\)	0.1
O\(_2\)	2.478
N\(_2\) O\(_2\)	62.64

Simulation Assumptions

The simulation of the carbonate looping process was based on ASPEN PLUS and the main equipment parameters were shown in Table 2. To simplify the calculation, the following assumptions were adopted: (1) The reaction time did not affect the whole process; (2) There was no pressure loss in the whole process; (3) The combustion of coal was complete; (4) The by-product (ash and CaSO\(_4\)) was completely extracted from the process.

Table 2. Main equipment parameters.

Main equipment	Items	Value
Carbonator	Temperature (°C)	650
Calcinator	Temperature (°C)	900
	Make-up flow (kmol h\(^{-1}\))	355
	Coal flow (t h\(^{-1}\))	120
Cyclone	Separation efficiency (%)	100
Process Evaluation

To evaluate the performance of the whole carbonate looping process, two main indexes were introduced into this work: CO₂ capture in the carbonator, and CO₂ capture in the whole process. The calculation of these two indexes was summarized as follows:

\[X_{\text{carb}} = 1 - \frac{\text{CO}_2, \text{flue gas}}{\text{CO}_2, \text{flue out}} \]

(1)

The CO₂ capture rate in the carbonator, \(X_{\text{carb}}\), was defined as the relationship between CO₂ concentration in the decarbonate flue gas, \(\text{CO}_2, \text{flue out}\), and the CO₂ concentration in the flue gas, \(\text{CO}_2, \text{flue gas}\).

\[X_{\text{CO}_2} = \frac{\text{CO}_2, \text{captured}}{\text{CO}_2, \text{flue gas} + \text{CO}_2, \text{make up} + \text{CO}_2, \text{coal}} \]

(2)

The CO₂ adsorption efficiency in the whole process, \(X_{\text{CO}_2}\), was explained as the relationship between captured CO₂ and produced CO₂. The produced CO₂ mainly contained two parts: the make-up flow, \(\text{CO}_2, \text{make up}\), and the combustion of the coal, \(\text{CO}_2, \text{coal}\).

RESULTS AND DISCUSSION

Effect of Carbonation Temperature

Carbonation temperature had an effect on the CO₂ capture rate which had been presented in Fig. 3. The basic simulation conditions were shown in Tables 1 and 2. In Fig. 3, with increasing carbonation temperature from 600 to 650°C, the CO₂ capture rate in carbonator increased steadily first and then dropped sharply to 82%. For CO₂ concentrations in the decarbonated flue gas, when carbonation temperature increased, it decreased firstly and then increased rapidly. This trend showed that high carbonation temperature can boost the conversion rate of the absorption reaction (R1), which was a benefit for CO₂ capture. When the carbonation temperature was 630°C, the CO₂ capture rate in the carbonator reached the highest value which was 90% and CO₂ concentration in the decarbonated flue gas was 2.5% which was the lowest point. However, the higher carbonation temperature was not good for the CO₂ capture. When the temperature was above 630°C, the over-high temperature had a bad effect on both the CO₂ capture rate and CO₂ concentrations in the flue gas. That was because CaO absorption was an exothermic reaction and higher temperature was detrimental to the adsorption reaction.

The effect of carbonation temperature on CO₂ capture of the whole process and CaCO₃ circulating flow rate were shown in Fig. 4 and obtained parameters were represented in Tables 1 and 2. It can be seen from Fig. 4 that the CO₂ capture rate of the whole process and CaCO₃ circulating flow rate had the same trend when the carbonation temperature was increased from 600 to 650°C. The increasing carbonation temperature had two contrary effects. On the one hand, when the temperature increased from 600 to 630°C, more CO₂ was captured and more limestones were generated and circulated in the whole process, therefore, both CO₂ capture rate and CaCO₃ circulating flow grew. On the other hand, over-high temperature hindered the absorption reaction rate. That was why both two lines dropped sharply when the temperature increased from 630 to 650°C. From the obtained results, it was concluded that the carbonation temperature significantly affected the performance of the process. Meanwhile, when the carbonation temperature was 630°C, the CO₂ capture rate and CaCO₃ circulating flow rate had the highest value. So, we chose 630°C as the optimal carbonation temperature for further considerations.

![Fig. 3. CO₂ capture rate in carbonator and CO₂ concentrations in the decarbonated flue gas along with the changes of carbonation temperature.](image-url)
Effect of Calcination Temperature

When the calcination temperature changed from 850 to 1250°C, the carbonation temperature and coal mass flow were set as 630°C and 120 t h⁻¹, respectively. The variation of CO₂ capture rate in the carbonator and the whole process, CO₂ concentrations in the decarbonated flue gas, and CaCO₃ circulating flow along with the calcination temperature were calculated and analyzed.

Fig. 5 showed that the CO₂ capture rate in the carbonator decreased firstly and then increased with the calcination temperature rose, on the contrary, CO₂ concentrations in the decarbonated flue gas rose firstly and then dropped down. The reason for the trend was that the rising temperature caused the deactivation of sorbent which called sintering effect. Sintering can weaken CO₂ capture capacity and reduce cycle times of the sorbent. When the calcination temperature was 1175°C, the CO₂ capture rate in the carbonator was only 80% and CO₂ flue gas reached the highest point of 4.5%. That was unacceptable for the system. However, as the calcination temperature varied from 1150 to 1250°C, more CaSO₄ decomposed into CaO and make-up introduced into the whole process. Thus, the more CO₂ was capture in the carbonator, which increased the CO₂ capture rate in the carbonator and decreased the CO₂ concentration in the flue gas.

The effect of calcination temperature on the CO₂ capture rate in the whole process and CaCO₃ circulating flow was shown in Fig. 6. As the calcination temperature increased, the CO₂ capture rate in the whole process and CaCO₃ circulating flow showed the same pattern (See Fig. 5). Sintering can change and deactivate the micro-granular of the sorbent, which caused a rapid decline of the CO₂ capture rate. On the other hand, when the temperature was higher than 1175°C, the CaSO₄ decomposition and make-up flow lines moved upward by indicating a sharp increment of the CO₂ capture rate.

The relationship between the energy consumption and the calcination temperature was shown in Fig. 7. The energy consumption increased steadily with the calcination temperature increased. This behavior was observed because a higher calcination temperature needed more coal combustion to provide extra heat, and it increased the system load and caused much more energy consumption.

From the above-obtained results (Figs. 5, 6 and 7), it can be concluded that when the calcination was 900°C, the CO₂ capture rate in carbonator and the whole process, CaCO₃ circulating flow and energy consumption were found to be 89%, 91%, and 74.9 MW, respectively, which were the best in the process. Therefore, 900°C was chosen as the optimal calcination temperature.

Effect of Make-up Flow

Make-up flow (F₀) was related to CO₂ concentration in the flue gas (F₀CO₂), therefore F₀/F₀CO₂ had been chosen to be a variable in further study. The carbonator and calcination temperature, coal consumption was set at 630°C, 900°C, and 120 t h⁻¹, respectively. The effect of F₀/F₀CO₂ on CO₂ capture in the carbonator and CO₂ concentration in the decarbonated flue gas were calculated and analyzed.

It can be seen from Fig. 8 that, with the increase of make-up flow, CO₂ capture in the carbonator had a significant increase and CO₂ concentrations in the decarbonated flue gas decreased, which indicated that more make-up flow was good for the system. On the other side, a certain level of make-up flow increase was not adequate for CO₂ capture conditions. When the F₀/F₀CO₂ was above 0.04, the trend of CO₂ capture rate in the carbonator and CO₂ concentrations in the decarbonated flue gas was stabilized gradually due to the oversaturation of CaO in the system. The trend showed that the appropriate amount of CaCO₃ supplement was necessary, and it can update the deactivated sorbent.

Fig. 9 reflects the effect of make-up flow on the CO₂ capture rate in the whole process and CaCO₃ circulating flow rate, which indicated the same increase pattern when the make-up flow increased. When F₀/F₀CO₂ was lower than 0.04,
the CO₂ capture rate of the whole process increased rapidly. This was observed because of the initial CaCO₃ produced by carbonation was fewer than the initial circulation flow rate and when the CaCO₃ stream and the make-up flow mixed, the circulating flow rate surged.

In combination with Figs. 8 and 9, when the optimal F₀/F₂CO₂ was 0.04, the CO₂ capture rate in the carbonator and whole process, CO₂ concentration in the decarbonated flue gas and CaCO₃ circulating flow rate reached the best value, which were 86.4%, 91.6%, 3.1%, and 642.9 t h⁻¹, respectively.

Effect of Gas-solid Separation Efficiency

When the gas-solid separation efficiency varied from 0.95 to 1.0, the carbonation temperature, calcination temperature, and F₀/F₂CO₂ were set at 630°C, 900°C, and 0.04, respectively. The change of CO₂ capture in the carbonator and CO₂ concentrations in the decarbonated flue gas were calculated and analyzed.

From Figs. 10 and 11, it can be seen that the CO₂ concentrations in the decarbonated flue gas and CaCO₃ circulating flow rate were linear with gas-solid separation efficiency, which indicated that gas-solid separation efficiency had a great impact on the system stability. The CO₂ concentrations in the decarbonated flue gas linearly decreased with the gas-solid separation efficiency increased, however, CO₂ capture rate in the carbonator and the whole process and
Fig. 7. Energy consumption of the calcination as a function of calcination temperature.

Fig. 8. CO₂ capture rate in the carbonator and CO₂ concentrations in the decarbonated flue gas along with the changes of make-up flow.

CaCO₃ circulating flow rate showed the opposite trend. When the gas-solid separation efficiency was in the range of 0.95 to 1, the CO₂ capture rate in the carbonator increased from 87% to 89%, the CO₂ concentrations in the decarbonated flue gas decreased from 3.1% to 2.59%, and the CaCO₃ circulating flow also increased accordingly. Therefore, the gas-solid separation efficiency directly affected the system performance. It is observed that the higher gas-solid separation efficiency can achieve more favorable CO₂ adsorption rate. Herein, the design of the cyclone should try to ensure a high gas-solid separation efficiency. When the gas-solid separation efficiency was too low, the loss of effective CaO sorbents increased, and the concentration of the sorbent gradually decreased after circulation, which caused CO₂ cannot be captured. In the present work, we chose 1.0 as gas-solid separation efficiency.

Effect of SO₂ Concentration in the Flue Gas
When the SO₂ concentrations in the flue gas varied from 0.1% to 1.0%, the carbonation temperature, calcination temperature, F₀/FₐCO₂, and gas-solid separation efficiency was set at 630°C, 900°C, 0.04 and 1.0, separately. The change of CO₂ capture rate in the carbonator and CO₂ concentrations in the decarbonated flue gas were calculated and analyzed.

It can be seen from the Fig. 12 that the SO₂ concentrations in the flue gas had a great effect on the CO₂ capture rate in
Fig. 9. CO₂ capture rate in the whole process and CaCO₃ circulating flow rate along with the changes of make-up flow. The carbonator. When the SO₂ concentrations in the flue gas increased from 0.1% to 1%, the CO₂ capture rate in the carbonator decreased from 88.3% to 63.7%, which dropped by 21.6%. This trend also showed in the carbonator and CaO not only reacted with CO₂, but with SO₂, and meanwhile, the density of CaSO₄ was larger than CaCO₃, which was not good for CO₂ diffusion process and greatly reduced the CO₂ capture rate in the carbonator. Therefore, the CO₂ concentrations in the decarbonated flue gas increased.

Fig. 10. CO₂ capture rate in the carbonator and CO₂ concentrations in the decarbonated flue gas along with the changes of gas-solid separation efficiency. Combining Figs. 12 and 13, when the SO₂ was introduced into the system, the CaO sorbent reacted with SO₂ firstly and then with CO₂, which formed the stable CaSO₄ solid and reduced circulating flow rate in the whole system. Therefore, the SO₂ concentration in the flue gas had a huge influence on CO₂ capture performance and to ensure the CO₂ capture rate, the SO₂ was mostly removed from the flue gas before came into the process and SO₂ concentration in the flue gas was set as 0.1 in the work.

Under the condition that the carbonation temperature was 630°C, the calcination temperature was 900°C, the F₀/F₂CO₂
was 0.04, the gas-solid separation was 1.0 and the SO$_2$ concentration in the flue gas was 0.1, the simulation was carried out, see Table 3. The results could satisfy for the CO$_2$ capture rate of over 90% and CO$_2$ concentration in the decarbonated flue gas was less than 4.0%. By contrast, Lasheras et al. (2011) obtained CO$_2$ capture rate of 80% in a 1052 MW$_{el}$ coal-fired power plant. The carbonate looping used in this study can achieve above 90% CO$_2$ capture rate. Thus, the results of this work was reasonable.

CONCLUSIONS

In order to remove and capture CO$_2$ from flue gas, the carbonate looping process was more suitable for operating conditions with large flow flue gas. In the work, the proposed carbonate looping process was established with ASPEN PLUS to obtain optimal parameters of the carbonate looping process. The process adopts a reversible reaction CaO + CO$_2$ \leftrightarrow CaCO$_3$ into account and formed a circulation that would obtain higher CO$_2$ product gas and continually recycle the sorbent. Also, due to particle attrition and sintering of CaO, the make-up flow should be introduced into the system. Meanwhile, the sensitivity analysis of several parameters was conducted and the optimal parameters were selected and listed in Table 3. The main results of this work were as follows:
Fig. 13. CO₂ capture rate in the whole process and CaCO₃ circulating flow rate along with the changes of SO₂ concentrations in the flue gas.

Table 3. Summary of carbonate looping process.

Results parameters	Numerical value
Carbonation temperature (℃)	630
Calcination temperature (℃)	900
F₀/FₐCO₂	0.04
Gas-solid separation efficiency	1.0
SO₂ concentration in the flue gas	0.1

1. The proper temperature increase of carbonate and calcination would be beneficial to the reaction, which can increase the CO₂ capture rate. However, the over-high temperature can cause deactivation of sorbents and decrease of the solid circulating flow;
2. The increase of make-up flow increased the solid circulating flow and the activated CaO sorbent which significantly promoted CO₂ capture rate. when the F₀/FₐCO₂ was 0.04, the CO₂ capture rate in the whole system was 91.6% and reached the highest value;
3. The gas-solid efficiency and SO₂ concentrations in the flue gas both had huge influence on the CO₂ capture rate. When the gas-solid efficiency decreased from 1.0 to 0.95, the CO₂ capture rate dropped by 2%. Meanwhile, as the SO₂ concentrations in the flue gas increased from 0.1% to 1.0%, the CO₂ capture rate decreased by 21.6%;
4. When the carbonation temperature was 630℃, the calcination temperature was 900℃, the F₀/FₐCO₂ was 0.04, the gas-solid separation was 1.0 and the SO₂ concentration in the flue gas was 0.1, the target of the CO₂ capture of > 90% and CO₂ concentrations in the decarbonated flue gas < 4.0% could be achieved.

The simulation results were applicable to the current situation of most stations which provide a good example for the utilization of CO₂ capture in power plants. However, there were also some important parameters, such as pressure drop, solid fraction, superficial velocity of carbonator, and so on, which we did not discuss in the work. These parameters also play an indispensable role in system performance, which will be a challenge for us in the future.

ACKNOWLEDGMENTS

This work was supported by the Department of Science & Technology of Shandong Province (No. ZR2018LB025).

REFERENCES

Abad, A., Adánez, J., García-Labiano, F., de Diego, L. F., Gayán, P. and Celaya, J. (2007). Mapping of the range of operational conditions for Cu-, Fe-, and Ni-based oxygen carriers in chemical-looping combustion. Chem. Eng. Sci. 62: 533–549. https://doi.org/10.1016/j.ces.2006.09.019
Alam, S., Kumar, J.P., Rani, K.Y. and Sumana, C. (2020). Comparative assessment of performances of different oxygen carriers in a chemical looping combustion coupled intensified reforming process through simulation study. J. Cleaner Prod. 262: 121–146. https://doi.org/10.1016/j.jclepro.2020.121146
Alonso, M., Rodriguez, N., Gonzalez, B., Grasa, G., Murillo, R. and Abanades, J.C. (2010). Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development. Int. J. Greenhouse Gas Control. 4: 167–173. https://doi.org/10.1016/j.ijggc.2009.10.004
Alonso, M., Arias, B., Fernandez, J.R., Bughin, O. and Abanades, C. (2018). Measuring attrition properties of calcium looping materials in a 30kW pilot plant. Powder Technol. 336: 273–281. https://doi.org/10.1016/j.powtec.2018.06.011
Atsonios, K., Zeneli, M., Nikolopoulos, N., Grammelis, P. and Kakaras, E. (2015). Calcium looping process
Aerosol and Air Quality Research, 20: 2889–2900, 2020

simulation based on an advanced thermodynamic model combined with CFD analysis. Fuel 153: 370–381. https://doi.org/10.1016/j.fuel.2015.03.014

Charitos, A., Hawthorne, C., Bidwe, A.R., Sivalingam, S., Schuster, A., Spliethoff, H. and Scheffknecht, G. (2010). Parametric investigation of the calcium looping process for CO₂ capture in a 10 kWth dual fluidized bed. Int. J. Greenhouse Gas Control. 4: 776–784. https://doi.org/10.1016/j.ijggc.2010.04.009

Cheng, L., Ji, D., He, J., Li, L., Du, L., Cui, Y., Zhang, H., Zhou, L., Li, Z., Zhou, Y., Miao, S., Gong, Z. and Wang, Y. (2019). Characteristics of air pollutants and greenhouse gases at a regional background station in southwestern China. Aerosol Air Qual. Res. 19: 1007–1023. https://doi.org/10.4209/aqr.2018.11.0397

Diego, M.E., Arias, B. and Abanades, J.C. (2017). Evolution of the CO₂ carrying capacity of CaO particles in a large calcium looping pilot plant. Int. J. Greenhouse Gas Control. 62: 69–75. https://doi.org/10.1016/j.ijggc.2017.04.005

Hilz, J., Haaf, M., Helbig, M., Lindqvist, N., Strohle, J. and Epple, B. (2019). Scale-up of the carbonate looping process to a 20 MWth pilot plant based on long-term pilot tests. Int. J. Greenhouse Gas Control. 88: 332–341. https://doi.org/10.1016/j.ijggc.2019.04.026

Hoeflberger, D. and Karl, J. (2016). The indirectly heated carbonate looping process for CO₂ capture - A concept with heat pipe heat exchanger. J. Energy Resour. Technol. 138: 042211. https://doi.org/10.1115/1.4033302

Huang, Y., Su, W., Wang, R. and Zhao, T. (2019). Removal of typical industrial gaseous pollutants: From carbon, zeolite, and metal-organic frameworks to molecularly imprinted adsorbents. Aerosol Air Qual. Res. 19: 2130–2150. https://doi.org/10.4209/aqr.2019.04.0215

Jia, L., Hughes, R., Lu, D., Anthony, E. and Lau, I. (2007). Attrition of calcining limestones in circulating fluidized-bed systems. Ind. Eng. Chem. Res. 46: 5199–5209. https://doi.org/10.1021/ie0612121

Jiang, Q., Wang, F. and Sun, Y. (2019). Analysis of chemical composition, source and processing characteristics of submicron aerosol during the summer in Beijing, China. Aerosol Air Qual. Res. 19: 1450–1462. https://doi.org/10.4209/aqr.2018.12.0480

Lasheras, A., Strohle, J., Galloy, A. and Epple, B. (2011). Carbonate looping process simulation using 1D fluidized bed model for the carbonator. Int. J. Greenhouse Gas Control. 5: 686–693. https://doi.org/10.1016/j.ijggc.2011.01.005

Leion, H., Mattisson, T. and Lyngfelt, A. (2008). Solid fuels in chemical-looping combustion. Int. J. Greenhouse Gas Control. 2: 180–193. https://doi.org/10.1016/S1750-5836(07)00117-X

Li, L., Zhao, N., Wei, W. and Sun, Y.H. (2013). A review of research progress on CO₂ capture, storage, and utilization in Chinese Academy of Sciences. Fuel 108: 112–130. https://doi.org/10.1016/j.fuel.2011.08.022

Liang, Z. (Henry), Rongwong, W., Liu, H., Fu, K., Gao, H., Cao, F., Zhang, R., Sema, T., Henni, A., Sumon, K., Nath, D., Gelowitz, D., Srisang, W., Saiwan, C., Benamor, A., Al-Marri, M., Shi, H., Supap, T., Chan, C., ... Tontiwachwuthikul, P. (2015). Recent progress and new development in post-combustion carbon-capture technology with amine based solvents. Int. J. Greenhouse Gas Control. 40: 26–54. https://doi.org/10.1016/j.ijggc.2015.06.017

Liu, B., Yang, X., Wang, T., Zhang, M. and Chiang, P.C. (2019a). CO₂ separation by using a three-stage membrane process. Aerosol Air Qual. Res. 19: 2917–2928. https://doi.org/10.4209/aqr.2019.10.0519

Liu, B., Zhang, M., Yang, X. and Ting, W. (2019b). Simulation and energy analysis of CO₂ capture from CO₂-EOR extraction gas using cryogenic fractionation. J. Taiwan Inst. Chem. Eng. 103: 67–649. https://doi.org/10.1016/j.tice.2019.07.008

Liu, B., Yang, X., Chiang, P.C. and Ting, W. (2020). Energy consumption analysis of cryogenic-membrane hybrid process for CO₂ capture from CO₂-EOR extraction gas. Aerosol Air Qual. Res. 20: 820–832. https://doi.org/10.4209/aqr.2020.02.0047

Martinez, I., Arias, B., Grasa, G.S. and Abanades, J.C. (2018). CO₂ capture in existing power plants using second generation Ca-looping systems firing biomass in the calciner. J. Cleaner Prod. 187: 638–649. https://doi.org/10.1016/j.jclepro.2018.03.189

Oh, S.Y., Binns, M., Cho, H. and Kim, J.K. (2016). Energy minimization of MEA-based CO₂ capture process. Appl. Energy 169: 353–362. https://doi.org/10.1016/j.apenergy.2016.02.046

Pan, S.Y., Shah, K.J., Chen, Y.H., Wang, M.H. and Chiang, P.C. (2017). Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy. ACS Sustainable Chem. Eng. 5: 6429–6437. https://doi.org/10.1021/acssuschemeng.7b00291

Porter, R.T.J., Fairweather, M., Pourkashanian, M. and Woolley, R.M. (2015). The range and level of impurities in CO₂ streams from different carbon capture sources. Int. J. Greenhouse Gas Control. 36: 161–174. https://doi.org/10.1016/j.ijggc.2015.02.016

Reitz, M., Junk, M., Strohle, J. and Epple, B. (2016). Design and operation of a 300kWth indirectly heated carbonate looping pilot plant. Int. J. Greenhouse Gas Control. 54: 272–281. https://doi.org/10.1016/j.ijggc.2016.09.016

Romano, M. (2009). Coal-fired power plant with calcium oxide carbonation for postcombustion CO₂ capture. Energy Procedia 1: 1099–1106. https://doi.org/10.1016/j.egypro.2009.01.145

Safarian, S., Unnthorsson, R. and Richter, C. (2020). Effect of coronavirus disease 2019 on CO₂ emission in the world. Aerosol Air Qual. Res. 20: 1197–2035. https://doi.org/10.4209/aqr.2020.04.0151

Safdarnejad, S.M., Hedengren, J.D. and Baxter, L.L. (2016). Parametric investigation of the calcium looping process to a 20 MWth pilot plant based on long-term pilot tests. Int. J. Greenhouse Gas Control. 62: 69–75. https://doi.org/10.1016/j.ijggc.2017.04.005
loaded in organoclay. **Chem. Eng. J.** 283: 1366–1373. https://doi.org/10.1016/j.cej.2015.08.113

Shimizu, T., Hiramta, T., Hosoda, H., Kitano, K., Inagaki, M. and Tejima, K. (1999). A twin fluid-bed reactor for removal of CO₂ from combustion processes. **Chem. Eng. Res. Des.** 77: 62–68. https://doi.org/10.1205/026387699525882

Solares, R.A.A. and Wood, J. (2020). A parametric study of process design and cycle configurations for pre-combustion PSA applied to NGCC power plants. **Chem. Eng. Res. Des.** 160: 141–153. https://doi.org/10.1016/j.cherd.2020.04.039

Strohle, J., Junk, M., Kremer, J., Galloy, A. and Eppe, B. (2014). Carbonate looping experiments in a 1MWth pilot and model validation. **Fuel** 127: 13–22. https://doi.org/10.1016/j.fuel.2013.12.043

Symonds, R.T., Lu, D.Y., Hughes, R.W., Anthony, E.J. and Macchi, A. (2009). CO₂ Capture from simulated syngas via cyclic carbonation/calcination for a naturally occurring limestone: Pilot-plant testing. **Ind. Eng. Chem. Res.** 48: 8431–8440. https://doi.org/10.1021/ie900645x

Symonds, R.T., Lu, D.Y., Macchi, A., Hughes, R.W. and Anthony, E.J. (2017). The effect of HCl and steam on cyclic CO₂ capture performance in calcium looping systems. **Chem. Eng. Sci.** 2017. https://doi.org/10.1016/j.ces.2017.08.019

Trityppayanon, R., Piemjaiswang, R., Piumsomboon, P. and Chalermsinsuwan, B. (2019) Computational fluid dynamics of sulfur dioxide and carbon dioxide capture using mixed feeding of calcium carbonate/calcium oxide in an industrial scale circulating fluidized bed boiler. **Appl. Energy** 250: 493–502. https://doi.org/10.1016/j.apenergy.2019.05.069

Yang, X., Li, Z., Liu, Y., Xing, Y., Wei, J., Yang, B., Zhang, C., Yang, R.T. and Tsai, C.J. (2019). Research progress of gaseous polycyclic aromatic hydrocarbons purification by adsorption. **Aerosol Air Qual. Res.** 19: 911–924. https://doi.org/10.4209/aqr.2018.11.0398

Yuan, L.C., Pfotenhauer, J.M. and Qiu, L.M. (2014). A preliminary investigation of cryogenic CO₂ capture utilizing a reverse Brayton Cycle. AIP Conference Proceedings (Vol. 1573, No. 1, pp. 1107–1114). American Institute of Physics.

Zhang, L.Y., Shen, Q., Wang, M.Q., Sun, N., Wei, W., Lei, Y. and Wang, Y.J. (2019). Driving factors and predictions of CO₂ emission in China’s coal chemical industry. **J. Cleaner Prod.** 210: 1131–1140. https://doi.org/10.1016/j.jclepro.2018.10.352

Zhang, W., Li, Y., Duan, L., Ma, X., Wang, Z. and Liu, C. (2016). Attrition behavior of calcium-based waste during CO₂ capture cycles using calcium looping in a fluidized bed reactor. **Chem. Eng. Res. Des.** 109: 806–815. https://doi.org/10.1016/j.cherd.2016.04.003

Zhao, X., Ji, G., Liu, W., He, X., Anthony, E.J. and Zhao, M. (2018). Mesoporous MgO promoted with NaNO₃/NaNO₂ for rapid and high-capacity CO₂ capture at moderate temperatures. **Chem. Eng. J.** 332: 216–226. https://doi.org/10.1016/j.cej.2017.09.068

Received for review, July 24, 2020

Revised, September 14, 2020

Accepted, September 15, 2020