The molecular dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase a drug target for African sleeping sickness

Friedman, A. J., Durrant, J. D., Pierce, L. C. T., McCorvie, T. J., Timson, D. J., & McCammon, J. A. (2012). The molecular dynamics of Trypanosoma brucei UDP-galactose 4'-epimerase a drug target for African sleeping sickness. Chemical Biology & Drug Design, 80(2), 173-81. DOI: 10.1111/j.1747-0285.2012.01392.x

Published in:
Chemical Biology & Drug Design

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2012 John Wiley & Sons. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.
Figure S1. Thermal scanning fluorimetry of *HsGalE*. 5 μM *HsGalE* in 10 mM HEPES-NaOH, pH 8.8, 1% (v/v) DMSO, 5× Sypro orange showed a clear melting curve resulting in a T_m of 51.5±0.3 °C.
Table S1. *Tb*GalE Agonists

NSC ID	Structure	% inhib. @ 100 mM
91395	![Structure](image1)	-167
61610	![Structure](image2)	-169
7524	![Structure](image3)	-191
91396	![Structure](image4)	-194
Specific methods can be found in Durrant et al. (2010) *J Med Chem* 53, 5025-5032.
Table S2. Percentage activity of 20 nM HsGalE in the presence of different DTP compounds

DTP Compound	% Activity
No compound	100 ± 17
91395	102 ± 32
61610	89 ± 27
7524	112 ± 3
91396	124 ± 30
260594a	30 ± 190
146771a	104 ± 57
202386a	41 ± 59

The reactions contained 100 μM DTP compound, 100 μM UDP-Galactose, 10 mM NAD+, 1.2 μM HsUGDH, 10 mM HEPES-NaOH, pH 8.8, 1% (v/v) DMSO. Data are reported as the mean ± SD determined from three separate experiments. No compound resulted in a statistically significant (Student’s t-test) change in activity.

*Compounds 260594, 146771 and 202386 gave large errors due the formation of a coloured precipitate, which prevented accurate determination of activity.
Table S3. Melting temperatures of HsGalE in the presence of different DTP compounds

DTP Compound	Tm (°C)	∆Tm (K)
No compound	51.5 ± 0.3	N/A
91395	51.3 ± 0.3	-0.2 ± 0.6
61610	51.4 ± 0.1	-0.1 ± 0.4
7524	51.3 ± 0.4	-0.2 ± 0.7
91396	51.3 ± 0.3	-0.2 ± 0.6
260594a	N/D	N/D
146771a	N/D	N/D
202386a	N/D	N/D

The reactions contained 5 μM HsGalE, 100 μM DTP compound, 10 mM HEPES, pH 8.8, 1% (v/v) DMSO, 5× Sypro orange. The change of melting temperature, ∆Tm, due to ligand binding was calculated according to:

\[
\Delta T_m = (T_m \text{ of protein without compound}) - (T_m \text{ of protein with compound})
\]

Data are reported as mean ± SD determined from three experiments. If a compound bound to the enzyme, it would be expected to stabilize the protein’s structure resulting in an increase in Tm. However, none of the compounds tested here resulted in a statistically significant (Student’s t-test) change in Tm.

a Compounds 260594, 146771 and 202386 formed a colored precipitate, preventing determination of the melting temperature.