Performance analysis of power beacon-assisted D2D communication networks in the presence of eavesdropper and co-channel interference

Bui Yu Minh¹, and Van-Duc Phan²
¹Faculty of Mechanical, Electrical, Electronic and Automotive Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
²Faculty of Automobile Technology, Van Lang University, Ho Chi Minh City, Vietnam

ABSTRACT

Radiofrequency (RF) signals can provide both information and energy, which have excellent advantages (small dimensions, low cost, and independence concerning time and location in urban areas), can be considered as electrical sources for cooperative network devices. Performance analysis of power beacon-assisted D2D Communication Networks in the Presence of Eavesdropper and Co-channel Interference is presented is investigated. The outage probability and the intercept probability of the proposed system are analyzed and derived. The impact of the main system parameters on the system performance is investigated. The monte carlo simulation is used for verifying the correctness of the analytical section in this paper.

Keywords:
Energy harvesting
Half-duplex
Monte carlo simulation
Non-zero secrecy probability
Relaying network

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

Radiofrequency (RF) signals can provide both information and energy, which have excellent advantages (small dimensions, low cost, and independence concerning time and location in urban areas), can be considered as electrical sources for cooperative network devices [1]-[10]. In recent years, harvesting energy from radio frequency (RF) signals has drawn significant research interest as a promising solution to solve the energy problem. This energy collection method, referred to as RF energy harvesting, has clear advantages over other energy harvesting techniques due to its predictable, controllable, and stable nature. The research in RF energy harvesting mainly falls into two broad categories: Simultaneous wireless information and power transfer (SWIPT) and wireless powered communication network (WPCN) [10]-[18].

The main contributions of this paper are:
– Performance analysis of power beacon-assisted D2D communication networks in the presence of eavesdropper and co-channel interference is presented is investigated.
– The outage probability and the intercept probability of the proposed system are analyzed and derived.
– The impact of the main system parameters on the system performance is investigated.
– The monte carlo simulation is used for verifying the correctness of the analytical section.
2. SYSTEM MODEL

In this research, the proposed system model with the energy harvesting (EH) and information processing (IT) is illustrated as shown in [19]-[25]. The proposed system model is drawn in Figure 1 and the time switching protocol is presented in Figure 2.

![System model](image1.png)

Figure 1. System model

![Time switching protocol](image2.png)

Figure 2. The EH and IT phases

2.1. Energy harvesting phase

In this phase, the source S and R will receive the power from the power beacon. Hence, the average transmit power at S and R can be formulated by, respectively:

\[
P_S = \frac{E_S}{(1-\alpha)(T/2)} = \frac{2\eta \alpha TP_B |h_{SR}|^2}{(1-\alpha)T} = \mu P_B |h_{SR}|^2 \quad (1)
\]

\[
P_R = \frac{E_S}{(1-\alpha)(T/2)} = \frac{2\eta \alpha TP_R |h_{RS}|^2}{(1-\alpha)T} = \mu P_B |h_{RS}|^2 \quad (2)
\]

where \(P_B \) is the transmit power at the power beacon B, \(\mu = \frac{2\eta \alpha}{1-\alpha} \) and \(0 < \eta \leq 1 \): energy conversion efficiency.

2.2. Information transmission phase

In the second time slot, the S transmits its signal to R, the corresponding received signal at the R can be expressed as,

\[
y_R = h_{SR}x_S + n_R \quad (3)
\]
where x_s is the transmitted signal at the source S and satisfied $\mathbb{E}\{|x_s|^2\} = P_s$, wherein $\mathbb{E}\{\cdot\}$ is expectation operator and n_0 is the additive white Gaussian noise (AWGN) with variance N_0.

In the third phase, the received signal at the destination D can be given by:

$$ y_D = h_{rd}x_R + \sum_{n=1}^{M} x_n h_{n,d} + n_0 $$

(4)

where x_R is the transmitted signal at the relay R and must be satisfied $\mathbb{E}\{|x_R|^2\} = P_R$, n_D is the AWGN with variance N_0, $h_{n,d}$ is the channel gain between n^{th} interference source and destination.

To simplicity, we assume that all the interference sources have the same transmit power P_I, it means that $\mathbb{E}\{|x_n|^2\} = P_I$.

Next, the received signal at the Eavesdropper can be obtained by:

$$ y_E = h_{re}x_R + h_{se}x_s + \sum_{n=1}^{M} x_n h_{n,e} + n_E $$

(5)

where $h_{n,e}$ is the channel gain between n^{th} interference source and eavesdropper and n_E is also the AWGN with variance N_0.

From (3) and (4), the obtained signal-to-noise ratio (SNR) to successfully detect the data at R and D can be claimed as, respectively.

$$ \gamma_R = \frac{|h_{rs}|^2 P_s}{N_0} $$

$$ \gamma_D = \frac{|h_{rd}|^2 P_R}{P_I \sum_{n=1}^{M} |h_{n,d}|^2 + N_0} $$

(6)

By substituting (1) and (2) into (6), the (6) can be reformulated as

$$ \gamma_R = \frac{\Psi |h_{rs}|^2 |h_{bs}|^2 + \Psi Y}{\Delta \sum_{n=1}^{M} |h_{n,d}|^2 + 1} = \frac{\Psi X}{\Delta Z + 1} $$

(7)

where $\Psi = \frac{P_s}{N_0}$, $\Delta = \frac{P_I}{N_0}$, $X = |h_{bs}|^2 |h_{rs}|^2$, $Y = |h_{bs}|^2 |h_{sd}|^2$ and $Z = \sum_{n=1}^{M} |h_{n,d}|^2$

Similar to above, the obtained SNR at E can be given by

$$ \gamma_E = \frac{\Psi |h_{re}|^2 |h_{se}|^2 + \Psi Y |h_{se}|^2 |h_{rs}|^2 + \Psi |h_{se}|^2 + \Psi |h_{se}|^2}{\Delta \sum_{n=1}^{M} |h_{n,e}|^2 + 1} = \frac{\Psi (T + U)}{\Delta Q + 1} $$

(8)

where $T = |h_{re}|^2 |h_{se}|^2$, $U = |h_{se}|^2 |h_{sd}|^2$ and $Q = \sum_{n=1}^{M} |h_{n,e}|^2$

Remark 1:
In [2], the probability density function (PDF) of the random variable (RV) Z and Q can be obtained as, respectively.

\[f_Z(t) = \frac{(\lambda_{ID})^M}{(M-1)!} t^{M-1} \exp(-\lambda_{ID} t), \]

\[f_Q(t) = \frac{(\lambda_{IE})^M}{(M-1)!} t^{M-1} \exp(-\lambda_{IE} t) \]

(9)

Where \(\lambda_{ID} \) and \(\lambda_{IE} \) are the mean of RV Z and Q, respectively.

3. SYSTEM PERFORMANCE ANALYSIS

3.1. Outage probability (OP)

The OP of the system can be computed as,

\[OP = \Pr \left(\min \left(Y_R, Y_D \right) < Y_{th} \right) = \Pr \left[\min \left(\frac{\mu P_X \Delta Z + 1}{\Delta Z + 1} \right) < Y_{th} \right] \]

\[= 1 - \Pr \left(\frac{\mu P_X \Delta Z + 1}{\Delta Z + 1} \geq Y_{th} \right) \]

(10)

where \(Y_{th} = 2^{R_R} - 1 \) is the threshold of the system, and \(R \) is target rate.

From (10), \(P_1 \) can be calculated by:

\[P_1 = 1 - \Pr \left(\frac{\mu P_X}{} < Y_{th} \right) = 1 - \Pr \left(h_{SR}^2 \left| h_{BS}^2 \right| < \frac{Z_{th}}{\mu P} \right) \]

\[= 1 - \int_0^\infty f_{\mu P X} \left(\frac{Y_{th}}{\mu P X} \right) \times f_{\mu P X} \left(x \right) dx \]

\[= 1 - \int_0^\infty \lambda_{SR} \left(1 - \exp \left(-\frac{\lambda_{SR} Y_{th}}{\mu P X} \right) \right) \times \exp \left(-\lambda_{SR} x \right) dx \]

\[= \int_0^\infty \lambda_{BS} \exp \left(-\frac{\lambda_{SR} Y_{th}}{\mu P X} - \lambda_{BS} x \right) dx \]

(11)

where \(\lambda_{SR} \) and \(\lambda_{BS} \) are the mean of RV \(\left| h_{SR} \right|^2 \) and \(\left| h_{BS} \right|^2 \).

Here, the equation (11) can be rewritten as,

\[P_1 = 2 \sqrt{\frac{\lambda_{SR} \lambda_{BS} \mu \Delta Z}{\mu P}} \times K_1 \left(2 \sqrt{\frac{\lambda_{SR} \lambda_{BS} \mu \Delta Z}{\mu P}} \right) \]

(12)

where \(K_1(\bullet) \) is the modified Bessel function of the second kind and \(v^{th} \) order.

Next, \(P_2 \) can be derived by:

\[P_2 = 1 - \Pr \left(\frac{\bar{Y}}{\Delta Z + 1} < Y_{th} \right) = 1 - \int_0^\infty F_\bar{Y} \left(\frac{Y_{th}}{\Delta Z + 1} \right) \times f_\bar{Y}(t) dt \]

(13)

where \(\bar{Y} = \mu P Y \).

We apply the result from (12) and then substitute (9) into (13), \(P_2 \) can be obtained as,

\[P_2 = 2 \left(\frac{\lambda_{ID}}{M-1} \right)^M \int_0^{\Delta Z + 1} \exp \left(-\lambda_{ID} t \right) \times \sqrt{\frac{\lambda_{RD} \lambda_{BS} \gamma_{th} \Delta Z + 1}{\mu P}} \times K_1 \left(2 \sqrt{\frac{\lambda_{RD} \lambda_{BS} \gamma_{th} \Delta Z + 1}{\mu P}} \right) dt \]

(14)
Finally, substituting (12) and (14) into (10), the OP in the final form as,

\[
OP = 1 - \frac{\lambda_{ie}^M}{(M-1)!} \sqrt{\frac{\lambda_{se}^2 \beta_{se}^2}{\mu P}} \times K_i \left(2 \sqrt{\frac{\lambda_{se}^2 \beta_{se}^2}{\mu P}} \right) \times \exp(-\lambda_{ie} t) \times \sqrt{\frac{\lambda_{se}^2 \beta_{se}^2 (\Delta t + 1)}{\mu P}} \times K_i \left(2 \sqrt{\frac{\lambda_{se}^2 \beta_{se}^2 (\Delta t + 1)}{\mu P}} \right) dt
\]

\[\text{(15)}\]

3.2. Intercept probability (IP)

The IP can be defined as,

\[
IP = \text{Pr}(\gamma_x < \gamma_e) = 1 - \text{Pr}(\gamma_x > \gamma_e) = 1 - \int_{0}^{\infty} F_y \left(\frac{\mu P (T + U)}{\Delta Q + 1} < \gamma_e \right) = 1 - \int_{0}^{\infty} F_x (\gamma_e (\Delta x + 1)) \times f_y (x) dx
\]

where \(\Sigma = \mu P (T + U) \)

The CDF of \(\Sigma \) can be found as,

\[
F_y (y) = \text{Pr}(\Sigma < y) = \text{Pr}(\mu P (T + U) < y) = \int_{0}^{\infty} F_y (y) - t \times f_y (t) dt
\]

By using the result from (12) and formula \(\frac{d}{dx} \left(x' K_0 (x) \right) = -x' K_{-1} (x) \), the PDF of \(T \) can be computed by:

\[
f_y (t) = 2 \lambda_{se} \beta_{se} \times K_0 \left(2 \sqrt{\lambda_{se} \beta_{se} t} \right)
\]

where \(\lambda_{se} \) and \(\beta_{se} \) are the mean of RV \(|h_{se}|^2 \) and \(|h_{rs}|^2 \), respectively.

And \(F_y \left(\frac{y}{\mu P} - t \right) = \left[1 - 2 \sqrt{\lambda_{se} \beta_{se} \left(\frac{y}{\mu P} - t \right)} \times K_0 \left(2 \sqrt{\lambda_{se} \beta_{se} \left(\frac{y}{\mu P} - t \right)} \right) \right] \)

where \(\lambda_{se} \) and \(\beta_{se} \) are the mean of RV \(|h_{se}|^2 \) and \(|h_{rs}|^2 \), respectively.

Substituting (18), (19) into (17), and then into (16), the IP can be claimed by:

\[
IP = 1 - \frac{\lambda_{ie}^M}{(M-1)!} \int_{0}^{\infty} \left[1 - 2 \sqrt{\lambda_{se} \beta_{se} \left(\frac{y}{\mu P} - t \right)} \times K_0 \left(2 \sqrt{\lambda_{se} \beta_{se} \left(\frac{y}{\mu P} - t \right)} \right) \right] \times \exp(-\lambda_{ie} x) \times K_0 \left(2 \sqrt{\lambda_{se} \beta_{se} t} \right) dt
\]

\[\text{(20)}\]

4. NUMERICAL RESULTS AND DISCUSSION

Figure 4 draws the impact of \(\psi \) on the system OP with the main system parameters as \(\eta=0.8, \alpha=0.5, \) and \(\Delta=1 \) dB, respectively. The Figure shows that the OP falls in the rising direction of \(\psi \). Furthermore, the IP
is considered as the function of ψ, as shown in Figure 4. As shown in Figure 4, IP increases when ψ rises. From Figures 3 and 4, we can see that the analytical and the simulation curves are the same as the analytical section.

![Figure 3. OP versus ψ](image1)

![Figure 4. IP versus ψ](image2)

Moreover, the system OP and IP versus α are considered in Figures 5 and 6, respectively. In these Figures, we set $\eta=0.8$, $\beta=0.5$, and $\psi=2$ dB. From Figures 5 and 6, we can state that the system OP has a massive increase and IP decreases with rising α, respectively. In addition, the simulation and analytical values are the same.

![Figure 5. OP versus α](image3)

![Figure 6. IP versus α.](image4)

Finally, the system OP and IP versus M are considered in Figures 7 and 8, respectively. In these Figures, we set $\eta=0.8$, $\beta=0.5$, and $\psi=2$ dB. From Figures 7 and 8, we can see that the system OP has a massive increase and IP decreases with rising M, respectively. And the simulation overlaps the analytical values.
5. CONCLUSION

Performance analysis of power beacon-assisted D2D communication networks in the presence of eavesdropper and co-channel interference is presented. The outage probability and the intercept probability of the proposed system are analyzed and derived. The impact of the main system parameters on the system performance is investigated. The Monte Carlo simulation is used for verifying the correctness of the analytical section.

REFERENCES

[1] Bi, S., Ho, C.K., and Zhang, R., “Wireless powered communication: Opportunities and challenges,” *IEEE Commun. Mag.*, vol. 53, no. 4, pp. 117-125, 2015, doi: 10.1109/mcom.2015.7081084.

[2] Niyato, D., Kim, D.I., Maso, M., and Han, Z., “Wireless Powered Communication Networks: Research Directions and Technological Approaches,” *IEEE Wirel. Commun.*, pp. 2-11, 2017, doi: 10.1109/mwc.2017.1600116.

[3] Yu, H., Lee, H., and Jeon, H., “What is 5G? Emerging 5G Mobile Services and Network Requirements,” *Sustainability*, vol. 9, no. 10, p. 1848, 2017, doi: 10.3390/su9101848.

[4] Zhou, X., Zhang, R., and Ho, C.K., “Wireless Information and Power Transfer: Architecture Design and Rate-Energy Tradeoff,” *IEEE Trans. Commun.*, vol. 61, no. 11, pp. 4754-4767, 2013, doi: 10.1109/tcom.2013.13.120855.

[5] Nguyen, Tan N., Tran M., Ha D.H., Trang T. T., and Voznak M., “Multi-source in DF Cooperative Networks with the PSR Protocol Based Full-duplex Energy Harvesting over a Rayleigh Fading Channel: Performance Analysis,” *Proceedings of the Estonian Academy of Sciences*, vol. 68, 2019, p. 264, doi: 10.3176/proc.2019.3.03.

[6] Nguyen, Tan N., Minh Tran, Thanh-Long Nguyen, Duy-Hung Ha, and Miroslav Voznak, “Performance Analysis of a User Selection Protocol in Cooperative Networks with Power Splitting Protocol-Based Energy Harvesting Over Nakagami-m-Rayleigh Channels,” *Electronics* vol. 8, p. 448, 2019, doi: 10.3390/electronics8040448.

[7] Nguyen, Tan N., Quang Minh, T., Tran, P., and Vozháč, M., “Energy Harvesting over Rician Fading Channel: A Performance Analysis for Half-Duplex Bidirectional Sensor Networks under Hardware Impairments,” *Sensors*, vol. 18, no. 6, p. 1781, 2018, doi: 10.3390/s18061781.

[8] Nguyen, Tan N et al., “Performance Enhancement for Energy Harvesting Based Two-way Relay Protocols in Wireless Ad-hoc Networks with Partial and Full Relay Selection Methods,” *Ad Hoc Networks*, vol. 84, p. 178-187, 2019, doi: 10.1016/j.adhoc.2018.10.005.

[9] Tin, Dinh Nguyen, and Ha, Trang, "power beacon assisted Energy Harvesting Wireless Physical Layer Cooperative Relaying Networks: Performance Analysis," *Symmetry*, 2020, doi: 10.3390/sym12010106.

[10] Gopala P. K., Lai L., and El Gamal H., “On the Secrecy Capacity of Fading Channels,” in *IEEE Transactions on Information Theory*, vol. 54, no. 10, pp. 4687-4698, 2008, doi: 10.1109/TIT.2008.928990.

[11] Sun, Li, and Qingshe Du, “A Review of Physical Layer Security Techniques for Internet of Things: Challenges and Solutions,” *Entropy*, vol. 20, no. 10, p. 730, 2018, doi: 10.3390/e20100730.

[12] Kuhestani, Ali, Abbas Mohammadi, and Mohammadali Mohammadi, “Joint Relay Selection and Power Allocation in Large-Scale MIMO Systems with Untrusted Relays and Passive Eavesdroppers,” *IEEE Transactions on Information Forensics and Security*, vol. 13, no. 2, pp. 341-355, 2017, doi: 10.1109/tifs.2017.2750102.

[13] Hu, Lin et al., “Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things,” *IEEE Internet of Things Journal*, vol. 5, no. 1, pp. 219-28, 2018, doi: 10.1109/jiot.2017.2778185.
Performance analysis of power beacon-assisted D2D communication networks in the... (Bui Vu Minh)