The Keratinocyte-specific Epstein-Barr Virus ED-L2 Promoter Is Regulated by Phorbol 12-Myristate 13-Acetate through Two cis-Regulatory Elements Containing E-box and Krüppel-like Factor Motifs*

Timothy D. Jenkins‡, Hiroshi Nakagawa‡, and Anil K. Rustgi§§¶

From the ‡Gastrointestinal Unit, §Hematology-Oncology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114

We previously employed 782 base pairs of the Epstein-Barr virus ED-L2 early lytic cycle promoter in a transgenic mouse model to target cyclin D1 to the stratified squamous epithelium of the tongue and esophagus. This promoter is located 5′ to the transcriptional start site of a short open reading frame BNLF-2A and is immediately 3′ to the BNLF-1 (LMP-1 oncogene) open reading frame. We studied transcriptional regulation of the ED-L2 promoter by phorbol 12-myristate 13-acetate (PMA) as a means of understanding the tissue specificity of this promoter. The transcriptional activity of the ED-L2 promoter was stimulated 40-fold by PMA and could be blocked with the compound H7 through antagonism of protein kinase C. 5′ deletion analysis of the 782-base pair promoter demonstrated that the sequences necessary for PMA-stimulated trans-activation were located in two separate cis-regulatory regions of the promoter: −187 to −164 and −144 to −114 base pairs from the transcription start site of BNLF-2A. Importantly, mutation of critical base pairs in each region was sufficient to abolish PMA-stimulated trans-activation in the native ED-L2 promoter. Region −187 to −164 contains a CACCTG (E-box) motif, and region −144 to −114 contains a CACACCC motif. Both of these motifs are necessary for trans-activation by PMA. These regions do not, however, demonstrate enhancer characteristics when tested in a heterologous minimal promoter system. Variations of the CACACCC motif are found in other keratinocyte-specific promoters, as well as in the DNA binding motifs of the Krüppel-like family of transcription factors. Electrophoretic mobility shift assays with specific competitors and factor-specific antibody supershift assays demonstrated that one complex binding the −187 to −164 region containing the CACCTG nucleotides has characteristics of the helix-loop-helix protein upstream stimulatory factor, whereas a factor binding the CACACCC motif may be a member of the Krüppel-like family. These experiments show how ubiquitous and tissue-specific transcription factors induced by PMA regulate the ED-L2 promoter in squamous epithelial cells.

The Epstein-Barr virus (EBV)1 initially infects oropharyngeal esophageal epithelial cells, and a lytic state ensues (1). Oral hairy leukoplakia (2), nasopharyngeal carcinoma (2, 3), and esophageal squamous cell carcinoma (4) are among the epithelial neoplasms associated with EBV. One of the EBV-encoded gene products, latent membrane protein-1 (LMP-1), has been shown to have oncogetic properties mediated through induction of cellular proliferation, inhibition of terminal differentiation, and inhibition of apoptosis (5–12). It is likely that other EBV genes and gene products are important, if not necessary, in transformation of epithelial cells.

The EBV ED-L2 promoter (also referred to as the EDL2 promoter, BNLF-2 promoter, BNLF-2A promoter, and BNLF-2 5′-regulatory sequence) is an early lytic cycle promoter and is defined as containing the TATA-box found in an EcoRI-BamHI fragment of the EBV genome, 30 base pairs 5′ to a putative transcription start site for two short open reading frames (13, 14). These reading frames are designated BNLF-2A and -2B and encode 60 and 100 amino acids, respectively. The non-coding sequence containing the TATA element, designated the ED-L2 promoter, is located 3′ to another open reading frame (BNLF-1) that encodes LMP-1. When a fragment of the EBV genome containing coding and flanking sequences for BNLF-1 and 2 was expressed under control of the BNLF-1 and ED-L2 promoters, 0.6-kilobase transcripts were expressed in tissues possessing a stratified squamous epithelium (tongue and esophagus), whereas the BNLF-1 transcript was expressed ubiquitously (15).

As a means of understanding oncogenesis in the stratified squamous epithelium of the aero-upper digestive tract, we previously generated transgenic mice utilizing the ED-L2 promoter (16). The transgene consisted of 782 base pairs of the ED-L2 promoter fused to the cyclin D1 oncogene. Mice harboring the transgene had high level cyclin D1 expression in the tongue, esophagus, and stomach. Transgene expression was localized specifically to the basal and suprabasal layers of

1 The abbreviations used are: EBV, Epstein-Barr virus; LMP-1, latent membrane protein-1; PMA, phorbol 12-myristate 13-acetate; PCR, polymerase chain reaction; PKC, protein kinase C; db-, dibutyryl; EMSAs, electrophoretic mobility shift assay(s); bp, base pair(s); KSF, keratinocyte-specific factor; RSV, Rous sarcoma virus; USF, upstream stimulatory factor.

* This work was supported by the American Digestive Health Foundation/American Gastroenterological Association Fiterman and Funderburg Awards (to A. K. R.), American Cancer Society Faculty Research Award JFRA-949 (to A. K. R.), National Institutes of Health Grant DK40561 (to A. K. R.), NIDDK Grant 5T32DK07191 D22 from the National Institutes of Health (to T. D. J.), a Glaxo Wellcome Foundation/American Gastroenterological Association Fiterman and American Cancer Society Faculty Research Award JFRA-649 (to A. K. R.), National Institutes of Health (to T. D. J.), and Department of Energy DE-FG-2-91-ER61228 Award (to H. N. and A. K. R.). Oligonucleotides were synthesized through the CSIBD Molecular Biology Core National Institutes of Health Grant DK48551. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed: Gastrointestinal Unit, Jackson 904, Massachusetts General Hospital, 50 Blossom St., Boston, MA 02114. Tel.: 617-724-3740; Fax: 617-726-3673; E-mail: rustg@helix.mgh.harvard.edu.

This paper is available on line at http://www.jbc.org
the stratified squamous epithelia. These in vivo observations compelled us to postulate that the ED-L2 promoter is uniquely active in stratified squamous epithelial cells through cell type-specific interactions between cis-acting regulatory elements in the promoter and cellular trans-acting nuclear factors. In this context, we previously identified a CACCC-box like cis-regulatory element in the ED-L2 promoter between nucleotides −218 and −187 that interacts with several nuclear transcription factors, one of which is keratinocyte-specific (17). This factor has been designated as keratinocyte-specific factor and likely transcriptionally regulates other viral and eukaryotic promoters active in keratinocytes.

We further hypothesized that extracellular factors that govern the regulation of the ED-L2 promoter might be similar to those that govern other differentiation-critical promoters in keratinocytes. The most extensively studied keratinocyte system is the skin, and a key regulatory agent is phorbol ester. It has profound effects on the regulation of gene expression in keratinocytes, including expression of c-myc (18), c-fos (19), actin (20), vimentin (20), transforming growth factor-α (21), collagenase (22), stromelysin (23), and metallothionein (22). Phorbol ester mediates these effects through the protein kinase C (PKC) family, phospholipid-dependent enzymes which initiate a cascade of phosphorylation events resulting in many varied biological responses (24). Phorbol ester markedly changes keratinocyte differentiation and proliferation. Evidence supports the necessity of PKC activation for keratinocyte differentiation (25, 26). Ca²⁺-induced expression of genes for late differentiation markers such as transglutaminase, loricrin, and profilaggrin is dependent upon PKC activation; conversely, Ca²⁺-induced expression of the early markers keratins 1 and 10 is suppressed by PKC activation (27). The importance of PKC in keratinocyte differentiation is substantiated by the fact that PKC activators such as phorbol ester and synthetic diacylglycerols inhibit keratins 1 and 10 expression in vitro (28, 29).

Study of the mechanisms by which phorbol ester produces its effects in keratinocytes has identified the transcription factor AP1 as central to its role (30). AP1 consensus binding motifs are found in the keratin promoters and are important determinants of the keratinocyte state of differentiation (31). For example, in the involucrin promoter, which is expressed specifically in the suprabasal layer, two of five AP1 sites in the 2500-base pair promoter are critical for tissue specificity (32). The effects are in turn mediated by transcription factors Fra-1, JunB, and JunD (32). Another critical keratinocyte differentiation gene, collagenase, has a phorbol ester-inducible enhancer in its promoter sequence (33, 34).

We postulated that phorbol ester regulates ED-L2 promoter activity for several reasons. First, because this promoter is specifically active in cells of keratinocyte origin, its regulation may be similar to the regulation of other keratinocyte genes, especially those involved in differentiation. Second, because the ED-L2 promoter shares motifs in common with other keratinocyte promoters under the influence of phorbol ester, it may also be governed by the same regulatory mechanisms. Third, a 0.6-kilobase transcript likely corresponding to BNLF-2A is induced in EBV-infected B lymphocytes upon phorbol ester treatment and was associated with latently infected lymphocytes entering the lytic cycle (14). Finally, because both the LMP-1 and ED-L2 promoters are early lytic promoters and in close physical proximity in the EBV genome, and since LMP-1 impairs differentiation, it is possible that the ED-L2 promoter may play a role in differentiation as well.

In this study, we demonstrate that phorbol ester activates the ED-L2 promoter. A series of deletion construct experiments have led to the identification of two cis-regulatory elements in the ED-L2 promoter responsible for phorbol ester-induced transcriptional activity. These elements contain an E-box motif and a CACACCC motif, the latter recently shown to be important for binding of the Krüppel-like family of transcription factors, one of which is specifically expressed in epithelial cells of the squamous aero-upper digestive tract (35, 36). Electromobility shift assays demonstrate that specific factors, induced by treatment with PMA, bind these sequences. These experiments demonstrate how transcription factors regulated by phorbol ester through the protein kinase C pathway modulate an EBV promoter which is uniquely active in human stratified squamous epithelial cells.

EXPERIMENTAL PROCEDURES

Isolation of the ED-L2 782-Base Pair Promoter Sequence—A 782-base pair sequence between nucleotide positions 168,268 and 167,487 of the B95-8 Epstein-Barr virus genome contains the ED-L2 promoter (13). The 782-base pair fragment was isolated by the polymerase chain reaction (PCR) as described previously (17). PCR amplification conditions consisted of denaturation at 94 °C for 1 min, annealing at 55 °C for 1 min, and extension at 72 °C for 1 min for 20 cycles. Identity of the ED-L2 PCR product was verified by DNA sequencing with the dyeoxy mediated chain termination method using the Sequenase version 2.0 DNA sequencing kit (U. S. Biochemical Corp.).

Construction of the ED-L2 Promoter Reporter Genes, Deletion Constructs, Minimal Promoter, and Mutant ED-L2 Promoter Reporter Genes—After PCR amplification and confirmatory DNA sequencing, the reaction product was digested with BamHI and XhoI, agarose gel-purified, and ligated into the luciferase reporter gene promoterless vector, pXP2 (37), to generate the ED-L2-782 plasmid containing 782 bp of the ED-L2 promoter. A subsequent series of ED-L2 promoter 5’ deletion constructs (ED-L2-610, ED-L2-287, ED-L2-218, ED-L2-187, ED-L2-164, ED-L2-144, and ED-L2-114) was made in a similar fashion using ED-L2-782 as a template for PCR with sense primers designed at the different positions of the promoter and an antisense primer from +24 of the coding region of the luciferase reporter gene, as described previously (17). The ED-L2-435 plasmid was generated by digestion of ED-L2-782 with BamHI and SmaI, deleting 347 bp of the promoter sequence, followed by ligation.

Minimal promoter DNA constructs containing wild-type or mutant nucleotides spanning promoter regions −188 to −159 and −144 to −115 were generated by ligation of kinase double-stranded synthetic oligonucleotides (Aₜₜ and Hₜₜ from Table I) into the BamHI site of the heterologous thymidine kinase promoter vector, pTS1, with the luciferase reporter gene. Mutant promoter deletion constructs of regions −144 to 0 and −187 to 0 were made as follows. The ED-L2-782 plasmid was digested with BamHI and Nhel restriction enzymes (unique Nhel site at position −114 of ED-L2 promoter), followed by subsequent directional ligation with a double-stranded oligonucleotide corresponding to the remaining promoter sequence. Mutations within the full-length sequence positionally correspond to block mutations shown in Table I for Aₜₜ and Aₜₜ and Hₜₜ and Hₜₜ. All plasmid DNA constructions were checked initially by restriction digestion for correct length and then verified by DNA sequencing with the dyeoxy mediated chain termination method using the Sequenase version 2.0 DNA sequencing kit (U. S. Biochemical Corp.). Plasmids were purified by a modified alkaline lysis method (Primm Labs).

Tissue Culture Cell Lines and Transient Transfection Studies—The human esophageal squamous carcinoma cell line TE-11, pancreatic cancer cell line Panc-1 (ATCC Rockville, MD), cervical cancer cell line HeLa (ATCC), and lung cancer cell line LX-1 (ATCC) were cultured in RPMI 1640 medium (Gibco) supplemented with 0.4 munits/ml penicillin, and 100 μg/ml streptomycin (Sigma). A human B cell line, BJAB, was grown in RPMI 1640 medium (Sigma) with 10% serum and antibiotics. Human skin (SCC-13) and tongue (SCC-25) squamous cell carcinoma cell lines were grown in a 1:1 mixture of Ham’s F12 medium and Dulbecco’s modified Eagle’s medium (Sigma), supplemented with 0.4 μg/ml hydrocortisone (Sigma), 10% serum, and antibiotics.

Transient transfection of the plasmid and minimal DNA constructions in cultured cells was carried out using the calcium phosphate precipitation technique (5 Prime → 3 Prime, Inc.). For transient transfections, TE-11 cells were plated at a density of 1 × 10⁶ cells per 35-mm well and transfected 24 h later with 2 μg of the luciferase reporter gene.
plasmid and 2 μg of pXGH5, a plasmid containing the mouse metallo-thionein-I promoter fused to the human growth hormone gene (Nichols Institute). The transfectant mixture consisted of a 250-μl solution of 125 mM CaCl2, 25 mM Hepes, pH 7.6, 67.5 mM NaHPO4, 5 mM KCl, 140 mM NaCl, and 6 mM glucose. After a 12-h incubation, cells were washed twice with phosphate-buffered saline, washed twice with phosphate-buffered saline, lysed in 200 μl of 1× cell culture lysis reagent (Promega), and 40 μl of the lysate was mixed with 100 μl of luciferase assay reagent consisting of 20 mM Tricine, 1.07 mM MgCl2, 2.67 mM MgSO4, 0.1 mM EDTA, 33.3 mM dithiothreitol, 270 μM coenzyme A, 530 μM ATP, and 470 μM luciferin.

Lysis was performed using luciferin, ATP, and coenzyme A (Promega), with a Monolight Luminometer (Analytical Luminescence Laboratory). Cells were harvested 36 h post-transfection, washed twice with phosphate-buffered saline, lysed in 200 μl of 1× cell culture lysis reagent (Promega), and 40 μl of the lysate was mixed with 100 μl of luciferase assay reagent consisting of 20 mM Tricine, 1.07 mM MgCl2, 2.67 mM MgSO4, 0.1 mM EDTA, 33.3 mM dithiothreitol, 270 μM coenzyme A, 530 μM ATP, and 470 μM luciferin.

Incubations were performed in triplicate, and results were calculated as the mean ± S.E. values for luciferase activity. Values were then expressed as fold increase or decrease compared with the control for each set of experiments. Activities were expressed as the mean of at least three independent transfection experiments. Expression of human growth hormone from the plasmid vector pXGH5, containing the human growth hormone gene under the control of the metallothionein-I promoter, was used as an internal control for a subset of the transfections to ensure consistency of transfection conditions. Empty pX2, RSV luciferase, and the pTF1 luciferase construct (37), in which the luciferase gene is driven by the enhancerless herpes simplex thymidine kinase promoter, served as additional controls.

Electrophoretic Mobility Shift Assays (EMSAs)—Nuclear extracts from the different cell lines were prepared as described previously, except that the extracts were supplemented with a mixture of 0.5 μg/ml protease inhibitors aprotinin, chymostatin, and pepstatin (Boehringer Mannheim). The protein concentration was determined by a colorimet-ric method (Bio-Rad protein assay). α-32P-Labeled oligonucleotide DNA probes were constructed as follows. 5 pmol of a double-stranded oligonucleotide (shown in Table I), synthesized by the phosphoramidite method, was annealed with 33 μM dGTP, 33 μM dATP, 33 μM dCTP, 33 μM dTTP, 0.33 μCi [α-32P]dCTP (NEB Life Science Products) and 1 unit of DNA polymerase I Klenow fragment (Amersham Corp.), and then polyacrylamide gel-purified.

EMSAs were carried out by incubating 5 μg of nuclear extract with 5 fmol of the α-32P-labeled oligonucleotide DNA probe (20,000 cpm) in a 20-μl binding reaction containing 10 mM Tris-HCl, 7.5 mM MgCl2, 7.5 mM dithiothreitol, 1 mM EDTA, 10% glycerol, and 1.0 μg of poly(dA-dT) (Pharmacia Biotech Inc.). After incubation at room temperature for 15 min, the samples were loaded onto a 6% polyacrylamide, 0.25% Tris borate gel and electrophoresed at 10 V/cm for 3 h. The gels were dried and exposed to x-ray film (Kodak X-AR) at −80 °C.

Competitor Oligonucleotides and Antibodies Used in EMSAs and Immune Supershift Reactions—For competition experiments, the nuclear extract was preincubated with 100-fold excess of unlabeled double-stranded oligonucleotides (Table I) prior to the addition of the α-32P-labeled oligonucleotide DNA probe. All oligonucleotides were sym-thesized by the phosphoramidite procedure (Applied Biosystems) and purified by gel electrophoresis. Immune supershift assays were performed using a polyclonal anti-Sp1 antibody (Santa Cruz) and a monocl-onal anti-AP2 antibody (gift of T. Williams), a monoclonal anti-USF antibody, and a polyclonal anti-Egr antibody (gift of V. Sukhatme). The antibody was incubated with the nuclear extract at room tempera-ture for 15 min prior to the addition of the α-32P-labeled oligonucleotide DNA probe. Other conditions for the EMSAs are as described above.

Ultraviolet Light-induced Cross-linking—The A, Aβ, H, and H+ single-stranded oligonucleotides corresponding to wild-type and mutant sequences of the ED-L2 promoter (Table I) were labeled by annealing corresponding 7-mer oligonucleotides to the DNA denatured in a 312 nm UV transilluminator (UVP, Inc.) for 30 min on ice at a distance of 3 cm. Samples were then mixed with 2 × sodium dodecyl sulfate-polyacrylamide gel electrophoresis sample buffer and boiled for 5 min, and electrophoresis was carried out on 10% SDS-polyacrylamide gel electrophoresis. Gels were then dried and exposed to x-ray film (Kodak X-AR) at −80 °C.

RESULTS

The Epstein-Barr Virus ED-L2 Promoter Is Responsive to Phorbol Ester in Human Eosophageal Cancer Cell Line TE-11—To study the effect of different extracellular agents on ED-L2 promoter transcriptional activity, a luciferase reporter construct containing 782 base pairs of the ED-L2 promoter was used in a series of transient transfections of a cell line previously shown to exhibit high levels of promoter transcriptional activity, TE-11 (17). Additionally, we previously demonstrated that the ED-L2 promoter is active in a number of different cell lines of keratinocyte lineage, in the presence of medium with 10% serum (17). TE-11 cells were transiently transfected with 2.0 μg of ED-L2-782 reporter gene construct followed by administra-tion of PMA in varying concentrations in 0.1% serum for 24 h. A dose-response analysis showed that transcriptional activation induced by PMA could be initially detected at 10−9 M, whereas maximal stimulation of the promoter occurred at 10−7 M (Fig. 1A). Stimulation decreased at higher concentrations, from a 40-fold maximal increase in promoter activity at 10−7 M to a 10-fold increase at 10−4 M. To demonstrate the transfectability of TE-11 cells, the RSV promoter-luciferase reporter gene construct was found to yield an 8-fold increase in luciferase activity. Time course studies of the maximally effective dose of PMA demonstrated that an effect was first detectable at 2 h (6-fold stimulation) with maximal stimulation occurring at 12–24 h (Fig. 2B). All subsequent transfection experiments ex-amining the effects of PMA were carried out with PMA treatment for 24 h at 10−7 M. No PMA stimulation was observed with a heterologous enhancerless herpes simplex thymidine kinase promoter-luciferase reporter gene (pTF1-luciferase) or a promoter-less luciferase reporter gene, pXP2 (data not shown).

To examine further the relationship of the protein kinase C (PKC) pathway and ED-L2 promoter activity in TE-11 cells, down-regulation of PKC was achieved through prolonged treatment with PMA. In addition, antagonism of PKC was accom-plished with the PKC inhibitor H7, a serine/threonine protein kinase inhibitor that inhibits all isoforms of protein kinase C. Transiently transfected cells were stimulated with the maximally effective PMA concentration (10−7 M) with or without H7 pretreatment for 1 h, as well as PMA (10−5 M) treatment for 24 h in the absence of H7. H7 pretreatment decreased the PMA response by 70% (Fig. 1C). Prolonged PMA pretreatment for 24 h followed by PMA treatment also abrogated the PMA response to a similar degree. To assess for nonspecific toxic effects of H7, cells were transfected and treated with H7 alone, in the absence of PMA. These conditions minimally affected basal ED-L2 promoter activity.

The Epstein-Barr Virus ED-L2 Promoter Is Not Primarily Regulated through Alternative Pathways—The effects of extra-cellular agents aside from PMA were also studied to establish the specificity of the PMA effect. Transfection of cells followed by administration of fat-soluble derivatives of cyclic adenosine monophosphate (db-cAMP) resulted in an approximately 35% decrease in basal promoter activity, tested at a concentration of 10−4 M (Fig. 2A). Other db-cAMP concentrations (10−3 M to 10−6 M) had a less pronounced effect (data not shown). Treatment of cells with varying concentrations of the phosphatase inhibitor cyclosporin A (10−5 M to 10−8 M, data shown for 10−6 M) led to no appreciable change in ED-L2 promoter activity (Fig. 2A). Forskolin, an activator of protein kinase A, increased the ED-L2 activity 1.7-fold at a concentration of 10−5 M and 10−6 M (data shown for 10−5 M) (Fig. 2A). Relative to the increase in promoter activity found with PMA stimulation,
these results show that other extracellular agents that modulate non-PKC pathways have a minimal effect on the ED-L2 promoter.

The ED-L2 promoter activity in the presence of 10% serum without PMA was compared with the effect of PMA in 0.1% serum. We previously reported that the ED-L2 promoter is highly active keratinocytes in the presence of 10% serum (17). Nucleotides 218 to 187 were shown to be responsible for the majority of this activity. TE-11 cells were transfected with the ED-L2-782 reporter construct, followed by 24 h treatment with PMA or 10% serum. Serum resulted in a 30-fold increase in promoter activity compared with the 40-fold stimulation found with the maximally effective PMA concentration (Fig. 2B), thereby indicating that PMA's effect is specific and not augmented by factors in the serum.

Deletion Analysis of the ED-L2 Promoter Sequences Demonstrates That Two cis-Regulatory Regions Are Necessary for the Response to Phorbol Ester—To identify the cis-regulatory elements mediating the transcriptional response of the ED-L2 promoter to PMA, deletion analysis of the promoter was performed. A series of 5’ deletion constructs was made from the original ED-L2-782 plasmid, using PCR amplification and restriction enzyme digestion. Constructs containing 782, 610, 435, 287, 218, 187, 164, 144, and 114 of flanking DNA sequence 5’ to the putative transcription start site of the BNLF-2A open reading frame were used in a series of transient transfections with and without PMA treatment (Fig. 3A). Transfection studies showed that two regions of the ED-L2 promoter were necessary for the PMA-induced transcriptional activity. A 10-fold decrease in promoter activity was observed when the 218 to 114 sequence was deleted. This region, designated as A, contains an E-box motif (CACGCG), common to many promoters. An additional 15-fold decrease in promoter activity was seen when the 218 to 114 sequence was deleted. This region, designated as H, contains a CACACCC motif to which transcription factors active in keratinocytes, among other factors, bind in electrophoretic mobility shift assays (17, 36). Deletion of the −218 to −187 region, however, had no effect on the
PMA-induced response. The 782-bp ED-L2 promoter under maximal PMA stimulation conditions had a nearly 200-fold greater activity than a construct containing only the first 114 base pairs of the ED-L2 promoter.

The E-box and CACACCC Motifs Are Critical for PMA Responsiveness of the ED-L2 Promoter—Mutational analysis of the deletion constructs in the pX2P luciferase reporter system was carried out to determine the functional consequences of these motifs in the ED-L2 promoter. Double-stranded oligonucleotides containing mutation of different nucleotides within regions A and H were ligated into the ED-L2-114 construct, resulting in mutagenic oligonucleotides (144MT1 and 144MT2) which abolish the CACACCC motif and mutant construct 187(MT1) eliminates the E-box motif; C, minimal (pT81) ED-L2 promoter constructs containing region A (−187 to −164) or region H (−144 to −114) PMA treated and untreated, compared with wild-type deletion ED-L2 constructs treated with PMA.

Fig. 3. Two cis-regulatory elements of the ED-L2 promoter are critical for PMA stimulation. TE-11 cells transiently transfected with the 782-bp EBV ED-L2 promoter, or deletion constructs as shown, were incubated with PMA for 24 h followed by harvesting for the luciferase assay. Control transfections of the ED-L2-114 construct in the presence of PMA (Control-114) are shown in A–C. Luciferase activity is expressed as fold increase relative to PMA-treated ED-L2-114 construct (mean ± S.E. values) calculated from three independent transfections. A, 5′ deletions of the ED-L2 promoter; B, mutant deletion ED-L2 constructs of regions A and H, compared with wild-type deletion ED-L2 constructs treated with PMA. Mutant construct 144(MT2) abolishes the CACACCC motif and mutant construct 187(MT1) eliminates the E-box motif; C, minimal (pT81) ED-L2 promoter constructs containing region A (−187 to −164) or region H (−144 to −114) PMA treated and untreated, compared with wild-type deletion ED-L2 constructs treated with PMA.

Distinct Nuclear Transcription Factors from the TE-11 Cell Line Bind the −144 to −114 and −187 to −164 Sequences and Are Induced by Phorbol Ester—To characterize the nuclear factors that bind regions A and H within the ED-L2 promoter and that mediate the PMA-induced response, electrophoretic mobility shift assays (EMSAs) were performed using nuclear extracts of PMA-treated and untreated TE-11 cells. These assays used as probes α-32P-labeled, double-stranded oligonucleotides representing the sequences of regions A and H of the ED-L2 promoter (Table I). Two sets of EMSA probes were used. The first span the full-length of regions A and H and are designated A144, H159, HMT1, HMT2, AMT1, and AMT2. The second set contains minimal-length DNA probes were also synthesized to test the DNA binding activity of the putative motifs contained within regions A and H. These short-length DNA probes are designated A, H, AMT, and HMT, also shown in Table I.

DNA probes A and H containing the E-box and CACACCC motifs bind several complexes that are induced by PMA (Fig. 4). Two complexes of similar mobility bind probe A (1 and 2) and three complexes (3, 4, and 5) bind probe H. Complexes 1–3...
and 5 are significantly induced by PMA, and complex 4 is also present to a lesser degree in unstimulated nuclear extracts. To investigate the possibility that these complexes also bind other motifs different from the motifs of interest, the full-length probes were tested in EMSAs. When the EMSA pattern from probes A and H was compared with that from probes AMT and AMT1, a similar EMSA pattern occurred (Figs. 5 and 6, upper panel). Mutation of the CACACCC sequence within region A (probe AMT) eliminated complexes 1 and 2, whereas mutation of the E-box motif within region H (probe HMT) eliminated complexes 3 and 4 and partially eliminated complex 5 (Fig. 5, middle panel). A different competitor (AMT1) with mutation in the E-box did not compete away complexes 1 and 2 (Fig. 5, middle panel). A different competitor (AMT2) with mutation in the E-box did not compete away complexes 1 and 2 (Fig. 5, middle panel).

A series of competitor oligonucleotide experiments in EMSAs further strengthened the importance of these motifs within regions A and H. The double-stranded DNA probes corresponding to regions A and H of ED-L2 were labeled with [α-32P]dCTP and used in EMSAs. Crude nuclear extracts were prepared from PMA-treated (10−7 M for 24 h) and untreated TE-11 cells. Numbered arrows indicate complexes induced by PMA treatment and refer to in subsequent EMSAs. Nonspecific induced bands below complexes 1−5 are not numbered in this and subsequent figures. Free, unbound radiolabeled probe (not shown) runs below all complexes in each lane in this and all subsequent figures.

and 5 are significantly induced by PMA, and complex 4 is also present to a lesser degree in unstimulated nuclear extracts. To investigate the possibility that these complexes also bind other motifs different from the motifs of interest, the full-length probes were tested in EMSAs. When the EMSA pattern from probes A and H was compared with that from probes AMT and AMT1, a similar EMSA pattern occurred (Figs. 5 and 6, upper panel). Mutation of the CACACCC sequence within region A (probe AMT) eliminated complexes 1 and 2, whereas mutation of the E-box motif within region H (probe HMT) eliminated complexes 3 and 4 and partially eliminated complex 5 (Fig. 5, middle panel). A different competitor (AMT1) with mutation in the E-box did not compete away complexes 1 and 2 (Fig. 5, middle panel). A different competitor (AMT2) with mutation in the E-box did not compete away complexes 1 and 2 (Fig. 5, middle panel).

A series of competitor oligonucleotide experiments in EMSAs further strengthened the importance of these motifs within regions A and H. The double-stranded DNA probes corresponding to regions A and H of ED-L2 were labeled with [α-32P]dCTP and used in EMSAs. Crude nuclear extracts were prepared from PMA-treated (10−7 M for 24 h) and untreated TE-11 cells. Numbered arrows indicate complexes induced by PMA treatment and refer to in subsequent EMSAs. Nonspecific induced bands below complexes 1−5 are not numbered in this and subsequent figures. Free, unbound radiolabeled probe (not shown) runs below all complexes in each lane in this and all subsequent figures.
Double-stranded DNA probes corresponding to region H (see Table I for sequences of probes H, H$_{35}$, and H$_{MT}$) were labeled with [α-32P]dCTP and used in the EMSAs. In the upper panel, the DNA binding patterns of the nuclear transcription factors with the three different radioactively labeled DNA probes are compared. This reveals that the binding patterns to short-length DNA probe H and full-length DNA probe H$_{35}$ are similar for complexes 4 and 5 and that mutation of the CACACCC motif in probe H$_{35}$ markedly attenuates complexes 3–5. The middle panel demonstrates competition assays using radioactively labeled DNA probe H$_{35}$. 100-fold excess unlabeled competitor double-stranded oligonucleotides are incubated with radioactively labeled H$_{35}$. Complexes 4 and 5 are markedly attenuated by competitors H$_{35}$ and H$_{MT1}$ but not by H$_{MT2}$. Complex 3 is markedly attenuated by competitor H$_{MT1}$ but not by H$_{MT2}$. The lower panel demonstrates competition assays with radioactively labeled DNA probe H which contains the CACACCC motif. 100-fold excess unlabeled competitor H but not H$_{35}$ eliminates complexes 3 and 4 and attenuates complex 5.

Immune supershift assays indicate that complex 1 is USF. The double-stranded radioactively labeled DNA probe A was used in the EMSA along with antibodies to the transcription factors indicated. Antibodies were incubated with the EMSA reaction components prior to addition of the radioactively labeled DNA probe A. Arrows indicate complexes 1 and 2 binding DNA probe A. No effect on complex pattern is seen with antibodies to Sp1, Egr, or AP2. Complex 1 is eliminated when antibody to USF is used.

To estimate the approximate molecular masses of complexes 1–5, ultraviolet light-induced cross-linking experiments were performed as described above (38). This technique takes advantage of the specificity of binding of the complexes to wild-type sequence, while not binding to the mutant sequence. EMSA reactions are performed in an identical fashion with 32P-labeled wild-type and mutant probes, followed by UV-induced cross-linking and separation by SDS-polyacrylamide gel electrophoresis. This technique demonstrates the molecular masses in aggregate of all DNA-binding proteins comprising complexes 1–5. In this fashion, approximate molecular mass comparisons can be made between complexes 1 and 5 in the EMSA and known transcription factors. Probe A cross-links to specific proteins of molecular masses 75, 60, 43, and 25 kDa (Fig. 9). Of note, the USF proteins include members of molecular mass 43–44 kDa which binds the E-box motif (consensus CACGTG) (39). Additional EMSAs performed utilizing EGTA to identify factors which require Zn$^{2+}$ for DNA binding showed that the binding activity of complex 3 but not complex 1 was attenuated relative to other complexes (data not shown). These data suggest that complex 3 may require zinc for binding the DNA sequences in the EMSA reaction, whereas complex 1 is zinc-independent.
FIG. 9. UV light-induced cross-linking experiment with radioactively labeled probes corresponding to regions A and H within the ED-L2 promoter. DNA probes A, A_{MT}, H, and H_{MT} were labeled with [\alpha^{32}P]dCTP as described under "Experimental Procedures." EMSA reactions were the same except for the following modifications: DNA probes were Klenow filled-in by annealing corresponding 7-mers, 5-bromodeoxyuridine was substituted for dTTP, and reactions were for 30 min at 4 °C to inhibit protein degradation. Samples were exposed to a medium wave (312 nm) UV transilluminator for 30 min on ice at a distance of 3 cm and separated with 10% SDS-polyacrylamide gel electrophoresis. Arrows indicate the major protein complexes unique to the wild-type DNA probes A and H but not seen with the corresponding mutant DNA probes A_{MT} and H_{MT}. Molecular mass size markers are expressed in kilodaltons.

TABLE II

Proposed members of the Kuppel-like family of TFIIIA subclass of zinc finger transcription factors

Nuclear transcription factor	cDNA size	Estimated mass	DNA-binding motif
BTEB2	0.66	26.3	GGGGCGGGG
EKLF	1.07	38.0	CACACCC
EZF/GKLF	1.45	58.0	CACACCC
LKLF	1.06	37.7	CACACCC

This study demonstrates that the EBV ED-L2 promoter can be transcriptionally regulated by the phorbol ester PMA. We have previously shown that this promoter is selectively active in tissues with stratified squamous epithelia, namely the tongue, esophagus, and stomach (16). This, in large measure, is attributable to a cis-regulatory element spanning −218 and −187 of the ED-L2 promoter, and is mediated primarily through the binding of a novel transcriptional factor, designated keratinocyte-specific factor, to a CACACCT motif (17).

In the present study, a human esophageal cancer cell line in which the ED-L2 promoter has a high level of activity was used in a series of transient transfections to establish which cis-regulatory elements are important for regulation by phorbol ester. In this system, PMA stimulation of TE-11 cells led to 40-fold activation of the ED-L2 promoter, constituting greater activation than in the presence of 10% serum alone. The PMA response of the ED-L2 promoter could be blocked with pretreatment of TE-11 cells with PMA, as well as prolonged treatment of TE-11 cells with PMA for 24 h. In contrast, other pathways such as those involving PKA and CAMP appear less important than the PKC pathway in regulation of this promoter.

Deletion analysis of the ED-L2 promoter to determine which cis-regulatory elements are necessary for the PMA responsiveness revealed that two regions are of critical importance, namely −144 to −114 and −187 to −164. Promoter region −114 to 0 has minimal activity in the presence of PMA when placed upstream of a luciferase reporter gene. Addition of nucleotides −144 to −114 yields a 15-fold increase in luciferase activity, whereas further addition of the sequence between −164 and −144 yields no additional luciferase activity. Inclusion of the sequence between −187 and −164 gives an additional 10-fold increase in promoter activity compared with the −144 to 0 construct. The −187 to 0 construct is nearly 200-fold more active than the −114 to 0 construct.

Unlike the −218 to −187 element, which can function as an enhancer element in the pT81 heterologous promoter system (17), neither the −144 to −114 nor the −187 to −164 elements have enhancer characteristics. Thus, there are likely multiple PMA-induced nuclear transcription factors responsible for the ED-L2 promoter activity as further substantiated by mutational analysis of the native ED-L2 promoter and employed in transient transfection studies. This degree of complexity is similar to that found with other PMA-responsive elements. For example, the PMA-responsive element of the histidine decarboxylase promoter has enhancer characteristics, although the full promoter activity cannot be reconstituted in a heterologous promoter system with the minimal sequence required for the PMA response (40). In addition, there is no consensus 12-O-tetradecanoylphorbol-13-acetate response element (TGACTCA) in either the ED-L2 or HDC promoter regions necessary for the PMA response (40).

Functional mutational analysis of the ED-L2 promoter revealed motifs that, while not sufficient for full promoter activity, are clearly necessary for promoter activity. In a series of mutations within the native promoter sequence, mutation of the CACACCC motif within the −144 to −114 sequence at position −132 decreased promoter activity to that observed with the ED-L2-114 construct. Mutation of another region between −144 to −114 had no such effect. The −187 to −164 region appears more complicated. Mutation of the E-box motif in the region −187 to −164 at position −181 decreased promoter activity to that seen with the ED-L2-144 and ED-L2-164 constructs. However, mutation of a region adjoining the E-box also had an attenuating effect on promoter activity, although only by 20%. This region contains a motif (TGACACA) with similarity to the AP1 motif TGACTCA. It is conceivable there is cross-regulation between the E-box binding factors and the factors that bind this putative AP1 motif. In aggregate, these data are consistent with several different factors induced by PMA that subsequently bind the ED-L2 promoter in these two cis-regulatory regions, leading to its transcriptional activation.

The phorbol ester PMA, a known activator of protein kinase C, exerts its biological effect in squamous epithelial cells or keratinocytes by activating many diverse genes, including the proto-oncogenes c-fos, c-myc, and c-sis (21). Transcription factors known to be important for this response include AP1 (41) and Sp1 (42). Electromobility shift assays used in the current study are one means of gaining insight into the identity of...
transcription factors induced by PMA. The region between –187 and –164 binds several nuclear proteins, two of which appear to bind specifically. The complex of slower mobility (complex 1) has characteristics of USF, a helix-loop-helix transcription factor, based on the immune supershift reactions. Elimination of the E-box motif CACCTG in EMSA experiments also eliminates this complex. The estimated molecular masses of complexes 1 and 2 include several proteins, one of which migrates with an apparent mobility of 43 kDa, the approximate molecular mass of USF1 (43 kDa) and USF2 (44 kDa) (43). DNA motifs recognized by the USFs include the CACGTTG motif, a member of the canonical CANNTG recognition sequence of this family of helix-loop-helix transcription factors (43). As might be expected with the ubiquitous CANNTG motif, a similar pattern of binding appeared in EMSAs with nuclear extracts from different cell lines of non-keratinocyte lineage. Interestingly, the USF family of proteins was recently shown to have anti-proliferative properties, in that they inhibited transformation of fibroblasts by Ras and c-Myc (44).

The region between –144 and –114 also binds several complexes. Elimination of the CACACC motif eliminates or attenuates complexes 3–5. The molecular masses of proteins binding this region include proteins clustering in the 35–40 kDa region (45–47). Supershift assays did not provide additional clues as to the identity of complexes 3–5. In examining the different cell lines, complex 3 was uniquely present in PMA-treated TE-11 cells and not in other cell lines tested, whereas complexes 4 and 5 were ubiquitous. Several previously described transcription factors would be candidates for binding to this motif in the ED-L2 promoter. The recently described Krüppel-like family of class TFIIIA transcription factors binds this region of the ED-L2 promoter position –132, namely CACACC (45). The CACACC-box was originally identified as a cis-acting regulatory element in β-globin promoters that interacts with erythroid Krüppel-like factor (EKLF) which functions as a transactivator in a cell type-specific fashion (46–49). This family now includes several members in addition to EKLF (BTEB2 (50), GKL/EZF (35, 36), and LKLF (45)) and have molecular masses ranging from 26 to 58 kDa (Table I). These transcription factors are relatively tissue-restricted: LKLF, for example, is found in lung epithelium. Recent studies of GKL/EZF report expression in the suprabasal layer of esophageal squamous epithelium, precisely where the ED-L2 promoter is active (35). It is possible that this factor, or some related zinc finger transcription factor, contributes to the PMA responsiveness of the ED-L2 promoter. In addition, the GT1-box (CACACC) binding factors, related to the family of Sp1 genes (51–54), and the human papillomavirus type-specific transcription factors which may include the USFs, Krüppel-like factors, and keratinocyte-specific factor (17), as well as AP1, AP2, Sp1, Oct-6 (57), HOXC9 (58), basonulin (59, 60) and ESE-1 (62). We speculate that these factors may act to regulate the switch from proliferation to early differentiation in keratinocytes.

REFERENCES
1. Kieff, E. (1996) in *Virology* (Fields, B. N., ed) pp. 2343–2396, Lippincott-Raven Press, New York
2. Cohen, J. I. (1993) *Ann. Intern. Med.* 118, 45–58
3. Pathmanathan, R., Prasad, U., Sadler, R., Flynn, K., and Raab-Traub, N. (1995) *N. Engl. J. Med.* 333, 693–698
4. Jenkins, T. D., Nakagawa, H., and Rustgi, A. K. (1996) *Oncogene* 13, 1809–1813
5. Baichwal, V. R., and Sugden, B. (1989) *Oncogene* 4, 67–74
6. Baichwal, V. R., and Sugden, B. (1988) *Oncogene* 2, 461–467
7. Arvanitakis, L., Yaseen, N., and Sharma, S. (1995) *J. Immunol.* 155, 1047–1056
8. Okan, I., Wang, Y., Chen, F., Hu, L. F., Imreh, S., Klein, G., and Wiman, K. G. (1995) *Oncogene* 11, 1027–1031
9. Wang, S., Rowe, M., and Lundgren, E. (1996) *Cancer Res.* 56, 4610–4613
10. Wang, D., Liebowitz, D., and Kieff, E. (1995) *Cell* 44, 831–840
11. Dawson, C. W., Rickinson, A. B., and Young, L. S. (1990) *Nature* 344, 777–780
12. Fahraeus, R., Rymo, L., Rhim, J. S., and Klein, G. (1990) *Nature* 354, 447–449
13. Negishi, M., Bankier, A. T., Kieff, E., Derynck, R., Gibson, T. J., Haftult, G., Hudson, S. G., Satchell, S. C., Seguin, C., Tuffnell, P. S., and Barrog, B. G. (1984) *Nature* 310, 207–211
14. Farrell, P. J., Bankier, A., Deininger, P., and Barrog, B. G. (1983) *EMBO J.* 2, 1351–1358
15. Wilson, J. B., Weinberg, W., Johnson, R., Yupsa, S., and Levine, A. J. (1990) *Cell* 61, 1315–1327
16. Nakagawa, H., Wang, T. C., Zukerberg, L., Odze, R., Togaya, K., May, G. W. H., Wilson, J., and Rustgi, A. K. (1997) *Oncogene* 15, 1185–1190
17. Nakagawa, H., Inomoto, T., and Rustgi, A. K. (1997) *J. Biol. Chem.* 272, 16088–16099
18. Greenberg, M. E., and Ziff, E. B. (1984) *Nature* 311, 433–438
19. Kelly, K., Cochran, B. H., Stiles, C. D., and Leder, P. (1983) *Cell* 35, 603–610
20. Siebert, P. D., and Fukuda, M. (1985) *J. Biol. Chem.* 260, 3868–3874
21. Pitarke, M. R., Lindquist, P. H., Abraham, R. T., Graves-Deal, R., Derryck, R., and Coffey, R. J., Jr. (1989) *J. Biol. Chem.* 264, 5164–5171
22. Angel, P., Potting, A., Mallick, U., Rahmsof, H. J., Schorpp, M., and Herrlich, P. (1990) *Mol. Cell. Biol.* 6, 1760–1766
23. Whitman, S. E. (1996) *Biochim. Biophys. Acta* 1292, 5957–5965
24. Sliskov, H. (1997) *Cancer Genet. Cytogenet.* 94, 1–9
25. Stanwell, C., Denning, M. F., Rutbog, S. E., Cheng, C., Yuspa, S. H., and Dlugosz, A. A. (1996) *J. Invest. Dermatol.* 106, 482–489
26. Stanwell, C., Dlugosz, A. A., and Yuspa, S. H. (1996) *Carcinogenesis* 17, 1259–1265
27. Denning, M. F., Dlugosz, A. A., Williams, E. K., Szallasi, Z., Blumberg, P. M., and Yuspa, S. H. (1995) *Cell Growth Diff.* 6, 149–157
28. Henninger, H., Michael, P. C., Steinert, P., Holbrook, K., and Yuspa, S. H. (1990) *Cell* 69, 245–254
29. Snook, G. T., Boonstra, J., Poneer, M., and de Laat, S. W. (1987) *Exp. Cell Res.* 174, 146–157
30. Rutberg, S. E., Saex, E., Glick, A., Dlugosz, A., Spiegelman, B. M., and Yuspa, S. H. (1990) *Oncogene* 13, 167–176
31. Casalestes, J., Navarro, J. M., Blessing, M., and Jorcano J. L. (1994) *J. Biol. Chem.* 269, 23894–23903
32. Wang, S., Rowe, M., and Lundgren, E. (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93, 1090–1096
33. Wu, R.-L., Chen, T.-T., and Sun, T.-T. (1994) *J. Biol. Chem.* 269, 28450–28459
34. Lin, Q., Luo, X., and Sawadogo, M. (1994) *J. Biol. Chem.* 269, 23903–23903
35. Lu X., and Sawadogo, M. (1996) *Proc. Natl. Acad. Sci. U. S. A.* 93, 1318–1313
36. Anderson, K. P., Kern, C. B., Crable, S. C., and Lingrel, J. B. (1995) *Mol. Cell. Biol.* 15, 5967–5965
37. Biek, J. (1996) *DNA Cell Biol.* 15, 347–352
EBV ED-L2 Promoter and Phorbol Ester

47. Bieker, J. J., and Southwood, C. M. (1995) Mol. Cell. Biol. 15, 852–860
48. Myers, R. M., Tilley, K., and Maniatis, T. (1986) Science 232, 613–618
49. Cowie, A., and Myers, R. M. (1988) Mol. Cell. Biol. 8, 3122–3128
50. Sogawa, K., Imataka, H., Yamasaki, Y., Kusume, H., Abe, H., and Fujii-Kuriyama, Y. (1993) Nucleic Acids Res. 21, 1527–1532
51. Hagen, G., Muller, S., Beato, M., and Suske, G. (1992) Nucleic Acids Res. 20, 5519–5525
52. Kadonaga, J. T., Carner, K. R., Masiarz, F. R., and Tjian, R. (1987) Cell 51, 1079–1090
53. Kingsley, C., and Winoto, A. (1982) Mol. Cell. Biol. 12, 4251–4261
54. Xiao, J. H., Davidson, I., Macchi, M., Rosales, R., Vigneron, M., Staub, A., and Champon, P. (1987) Genes Dev. 1, 794–807
55. Stenlund, A., and Botchan, M. R. (1990) Genes Dev. 4, 123–136
56. Byrne, C., Tainsky, M., and Fuchs, E. (1993) Development 94, 2369–2383
57. Faus, I., Hsu, H. J., and Fuchs, E. (1994) Mol. Cell. Biol. 14, 3263–3275
58. Rieger, E., Bijl, J. J., van Oostveen, J. W., Soyer, H. P., Oudejans, C. B., and Jiwa, N. M. (1994) J. Invest. Dermatol. 103, 341–346
59. Tseng, H., and Green, H. (1994) J. Cell Biol. 126, 495–506
60. Tseng, H., and Green, H. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 10311–10315
61. Merchant, J. L., Iyer, G. R., Taylor, B. R., Kitchen, J. R., Mortensen, E. R., Wang, Z., Flintoft, R. J., Michel, J. B., and Bassel-Duby, R. (1996) Mol. Cell. Biol. 16, 6644–6653
62. Oettgen, P., Alani, R. M., Barcinski, M. A., Brown, L., Akbarali, Y., Boltax, J., Kunsh, C., Munger, K., and Libermann, T. A. (1997) Mol. Cell. Biol. 17, 4419–4433