Complex analysis/Analytic geometry

Lelong numbers, complex singularity exponents, and Siu’s semicontinuity theorem

Nombres de Lelong, exposants de singularités complexes et théorème de semi-continuité de Siu

Qi’an Guan a, Xiangyu Zhou b

a School of Mathematical Sciences, and Beijing International Center for Mathematical Research, Peking University, Beijing 100871, China
b Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing 100190, China

A R T I C L E I N F O

Article history:
Received 14 October 2015
Accepted after revision 10 March 2017
Available online 22 March 2017

Presented by Jean-Pierre Demailly

A B S T R A C T

In this note, we describe a relation between Lelong numbers and complex singularity exponents. As an application, we obtain a new proof of Siu’s semicontinuity theorem for Lelong numbers.

© 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \(\varphi \) be a plurisubharmonic function near the origin \(o \in \mathbb{C}^n \). The Lelong number is classically defined as

Definition 1.1. \(\nu(\varphi, o) := \sup \{ c \geq 0 : \varphi \leq c \log |z| + O(1) \} \).

In [22], Siu established the semicontinuity theorem for Lelong numbers, namely, that the upper level sets of Lelong numbers of any closed positive current are analytic sets. A few years later, Kiselman [17] (see also [18]) generalized Siu’s semicontinuity theorem to directional Lelong numbers. In [3], Demailly introduced generalized Lelong numbers and ex-
tended the above result of Kiselman in this context. Later, Demailly (see [6]) gave a simple and completely new proof of Siu’s theorem by using the Ohsawa–Takegoshi L^2 extension theorem.

In this note, relying on our previous works [12–16], we present a new proof of Siu’s theorem by establishing a relation between Lelong numbers and complex singularity exponents.

Let us first recall the definition of complex singularity exponents (also called log canonical thresholds by algebraic geometers, see [21,19] et al.); for this, it is convenient to use the concept of multiplier ideal sheaf

$$\mathcal{I}(\psi)_{z_0} := \left\{ f \in \mathcal{O}(\mathbb{C}^n, z_0) \mid \exists V \text{ open }\ni z_0, \int_V |f(z)|^2 e^{-2\psi(z)} d\lambda(z) < +\infty \right\},$$

introduced by Nadel [20] (see [4,6,23,25] et al.).

Definition 1.2. The complex singularity exponent of ψ at z_0 is defined to be

$$c_{z_0}(\psi) := \sup\{c \geq 0 : \mathcal{I}(c\psi)_{z_0} = \mathcal{O}(\mathbb{C}^n, z_0)\}.$$

Our main result can be stated as follows:

Theorem 1.3. Let ψ be a plurisubharmonic function on an open set $D \subset \mathbb{C}^n$. Then for any $k \in \mathbb{N}, k \geq 1$, there exists a plurisubharmonic function ϕ_k defined on a neighborhood of $D \times \{0\} \subset \mathbb{C}^n \times \mathbb{C}^k$ with coordinates (z, w), such that

1. $\phi_k(z, 0) = \psi(z)$,
2. $\nu(\phi_k, (z, 0)) = \nu(\psi, z),$
3. $\frac{k}{n+k} \leq c_{z,0}(\phi_k) \leq \frac{n+k}{\nu(\psi, z)}$

for any $z \in D$, where o is the origin in \mathbb{C}^k. One can take for instance

4. $\phi_k(z, w) = \sup_{\xi \in B(z, w)} \psi(\xi)$.

The reader will observe that the second inequality in (3) can be directly deduced by Skoda’s well-known estimate (see [24]) $c_z(\psi) \leq \frac{n}{\nu(\psi, z)}$ applied to ϕ_k at (z, o), and combined with (2).

Remark 1.4. It is clear that property (3) in Theorem 1.3 is equivalent to

$$\frac{k}{n+k} \nu^{-1}(\psi, z) \leq c_{z,0}(\phi_k) \leq \nu^{-1}(\psi, z),$$

which implies

$$\left\{ \nu(\psi, z) \geq \frac{k}{n+k} c \right\} \supseteq \left\{ c_{z,0}(\phi_k) \leq \frac{1}{c} \right\} \supseteq \left\{ \nu(\psi, z) \geq c \right\}.$$

Since $\lim_{k \to +\infty} \frac{k}{n+k} = 1$, we obtain

$$\left\{ z | \nu(\psi, z) \geq c \right\} \supseteq \bigcap_k \left\{ z | c_{z,0}(\phi_k) \leq \frac{1}{c} \right\}.$$

It is however well known that the sublevel sets $\{z | c_z(\psi) \leq a\}$ of complex singularity exponents of any plurisubharmonic function ψ are analytic. This follows, e.g., from Berndtsson’s solution [1] of the openness conjecture (the conjecture was posed by Demailly and Kollár [7]; for a proof of the two-dimensional case, see [10,9,8]). In fact, this had been known since a long time as a consequence of the Hörmander–Bombieri theorem [11,2]. We conclude that the set $\{z | c_{z,0}(\phi_k) \leq \frac{1}{c} \}$ is analytic for any $k \in \mathbb{N}$ and $c > 0$, whence Siu’s semicontinuity theorem for Lelong numbers [22]:

Corollary 1.5. (See [22]) $\{z | \nu(\psi, z) \geq c > 0\}$ is an analytic set.

We refer to [6] and [5] for alternative proofs by Demailly. We would like to thank the referee for pointing out the Hörmander–Bombieri theorem.
2. Preparation

2.1. Restriction formula for complex singularity exponents and Lelong numbers

Let \(\varphi \) be a plurisubharmonic function on a neighborhood of the origin \(o \in \mathbb{C}^n \). In [7], the following restriction formula ("important monotonicity result") about complex singularity exponents is obtained by using the Ohsawa–Takegoshi \(L^2 \) extension theorem.

Proposition 2.1. (See [7].) For any regular complex submanifold \((H, o) \subset (\mathbb{C}^n, o) \), the inequality
\[
\nu(\varphi|_H) \leq c_0(\varphi)
\]
holds whenever \(\varphi|_H \neq -\infty \).

We recall the following (much easier to prove) restriction property of Lelong numbers.

Lemma 2.2. (See [6].) For any regular complex submanifold \((H, o) \subset (\mathbb{C}^n, o) \), the inequality
\[
\nu(\varphi|_H, o) \geq \nu(\varphi, o)
\]
holds whenever \(\varphi|_H \neq -\infty \).

2.2. Lelong number and complex singularity exponent for \(U(n) \) invariant plurisubharmonic functions on \(\mathbb{C}^n \)

We recall the following characterization of \(U(n) \) invariant plurisubharmonic function (see, e.g., Lemma III.7.10 in [6]).

Lemma 2.3. Let \(\varphi \) be a plurisubharmonic function on a ball \(B(0, r) \subset \mathbb{C}^n \) which is \(U(n) \) invariant. Then \(\varphi(z) = \chi(\log |z|) \), where \(\chi : \mathbb{R} \to \mathbb{R} \) is a convex increasing function.

The following remark is a direct consequence of Lemma 2.3.

Remark 2.4. Let \(\varphi \) be a plurisubharmonic function on a ball \(B(0, r) \subset \mathbb{B}^n \) that is \(U(n) \) invariant. Then \(c_0(\varphi) = \frac{n}{\nu(\varphi, o)} \).

Proof. By Definition 1.1, it is clear that
\[
\nu(\varphi, o) = \lim_{t \to -\infty} \frac{\chi(t)}{t},
\]
i.e. for any \(\epsilon > 0 \), there exists \(\delta > 0 \) such that for any \(|z| < \delta \),
\[
(\nu(\varphi, o) + \epsilon) \log |z| \leq \varphi(z) \leq (\nu(\varphi, o) - \epsilon) \log |z|,
\]
and the present remark is deduced by looking at the integrability of \(e^{-c\varphi} \).

2.3. A holomorphic change of variables for Lelong numbers

Take a surjective linear map \(\ell : \mathbb{C}^k \to \mathbb{C}^n \) \((k \geq n)\), and define a holomorphic map \(p_k \) from \(\mathbb{C}^n \times \mathbb{C}^k \) such that
\[
p_k(z, w) = z + \ell(w).
\]
Let \(\varphi \) be a plurisubharmonic function on \(D \subset \mathbb{C}^n \). Then the pull-back function \(p_k^* \varphi = \varphi \circ p_k \) is well defined on the open set \(p_k^{-1}(D) \subset \mathbb{C}^n \times \mathbb{C}^k \).

Lemma 2.5. For any \(z_0 \in D \), the pull-back function \(p_k^* \varphi \) satisfies by construction the following properties:

1. \(p_k^* \varphi(z_0, 0) = \varphi(z_0) \);
2. \(\nu(p_k^* \varphi, (z_0, 0)) = \nu(\varphi, z_0) = \nu(p_k^* \varphi|_{z=z_0}, (z_0, 0)) \),

where the notation \(\nu(p_k^* \varphi|_{z=z_0}, (z_0, 0)) \) indicates that the Lelong number is computed along the submanifold \(\{z = z_0\} = \{z_0\} \times \mathbb{C}^k \).
Proof. (1) is obvious by definition of p_k. In order to prove (2), it suffices to consider the case $z_0 = (0, \ldots, 0) \in D$. It is clear that $p^*_k \log |z| = \log |z + \ell(w)| \leq \log(|z| + |w|) + O(1)$. Therefore, for any $c > 0$ satisfying $\varphi(z) \leq c \log |z| + O(1)$ when $z \to 0$, we have

$$p^*_k \varphi(z, w) \leq c \log(|z| + |w|) + O(1),$$

which implies $v(p^*_k \varphi, (z_0, o)) \geq v(\varphi, z_0)$. Conversely, if $H \subset \mathbb{C}^k$ is taken to be a linear subspace on which $\ell : H \to \mathbb{C}^n$ is bijective, Lemma 2.2 yields the sequence of inequalities

$$v(p^*_k \varphi, (z_0, o)) \leq v(p^*_k \varphi|_{(z_0) \times \mathbb{C}^k}, (z_0, 0)) \leq v(p^*_k \varphi|_{(z_0) \times H}, (z_0, 0)) = v(\varphi, z_0).$$

The last equality comes from the invariance of Lelong numbers by linear changes of variable, which is obvious from Definition 1.1. This implies (2), and the lemma is proved. \(\square \)

2.4. An invariance property of Lelong numbers

Let φ be a plurisubharmonic function on a product domain $\Omega \subset \mathbb{C}^n \times \mathbb{C}^k$ containing the origin, and let (z, w) denote the coordinates. One can define

$$\tilde{\varphi}(z, w) := \sup_{g \in U(k)} \varphi(z, gw)$$

on a $U(k)$ invariant neighborhood of $\{w = 0\} \subset \mathbb{C}^k$. It is a plurisubharmonic function. By Definition 1.1, we immediately get

Lemma 2.6. The equalities

$$v(\tilde{\varphi}, (z_0, o)) = v(\varphi, (z_0, o)) \quad \text{and} \quad v(\tilde{\varphi}|_{z = z_0}, (z_0, o)) = v(\varphi|_{z = z_0}, (z_0, o))$$

hold for any $(z_0, o) \in (\Omega \cap \{w = o\})$.

3. Proof of Theorem 1.3

Let φ be a plurisubharmonic function on an open set $D \subset \subset \mathbb{C}^n$. With the same notation as above, let us consider the plurisubharmonic function

$$\varphi_k(z, w) := \sup_{g \in U(k)} p^*_k \varphi(z, gw),$$

which is defined on a neighborhood of $D \times \{o\}$ in $\mathbb{C}^n \times \mathbb{C}^k$. By Lemmas 2.6 and 2.5 (2), second equality, we have

$$v(\varphi_k|_{z = z_0}, (z_0, o)) = v(p^*_k \varphi|_{z = z_0}, (z_0, o)) = v(\varphi, z_0).$$

However, by Remark 2.4, since $w \mapsto \varphi_k(z_0, w)$ is $U(k)$-invariant, it follows that

$$v(\varphi_k|_{z = z_0}, (z_0, o)) = \frac{k}{c(z_0, o) \varphi_k(z = z_0)}. \quad (3.1)$$

From Proposition 2.1 and equalities (3.2), (3.1) respectively, one gets

$$c(z_0, o) \varphi_k(z_0, o) \geq c(z_0, o) \varphi_k(z = z_0) = \frac{k}{v(\varphi_k|_{z = z_0}, (z_0, o))} = \frac{k}{v(\varphi, z_0)}. \quad (3.2)$$

This completes the proof of Theorem 1.3.

Remark 3.1. By taking $\ell : \mathbb{C}^k \to \mathbb{C}^n$ to be the projection onto the first n coordinates, one simply gets

$$\varphi_k(z, w) = \sup_{\ell \in B(\ell, |w|)} \varphi(\ell), \quad w \in \mathbb{C}^k. \quad (3.3)$$

In fact with such a choice of φ, Theorem 1.3 even holds for any $k \geq 1$, as one can easily see.
References

[1] B. Berndtsson, The openness conjecture for plurisubharmonic functions, arXiv:1305.5781.
[2] E. Bombieri, Algebraic values of meromorphic maps, Invent. Math. 10 (1970) 267–287, Addendum: Invent. Math. 11 (1970) 163–166.
[3] J.-P. Demailly, Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité (Generalized Lelong numbers, integrality and analyticity theorems), Acta Math. 159 (3–4) (1987) 153–169 (in French).
[4] J.-P. Demailly, Multiplier ideal sheaves and analytic methods in algebraic geometry, in: School on Vanishing Theorems and Effective Results in Algebraic Geometry, Trieste, Italy, 2000, in: ICTP Lect. Notes, vol. 6, Abdus Salam Int. Cent. Theoret. Phys., Trieste, Italy, 2001, pp. 1–148.
[5] J.-P. Demailly, Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010.
[6] J.-P. Demailly, Complex analytic and differential geometry, electronically accessible at: http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
[7] J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds, Ann. Sci. Éc. Norm. Supér. (4) 34 (4) (2001) 525–556.
[8] C. Favre, J. Jonsson, The Valuative Tree, Lecture Notes in Mathematics, vol. 1853, Springer-Verlag, Berlin, ISBN 3-540-22984-1, 2004, xiv+234 pp.
[9] C. Favre, M. Jonsson, Valutative analysis of planar plurisubharmonic functions, Invent. Math. 162 (2) (2005) 271–311.
[10] C. Favre, M. Jonsson, Valuations and multiplier ideals, J. Amer. Math. Soc. 18 (3) (2005) 655–684.
[11] L. Hörmander, An Introduction to Complex Analysis in Several Variables, ASR edition, Elsevier Science Publishers, New York, 1966, 3rd revised edition, North-Holland Math. Library, vol. 7, North Holland, Amsterdam, 1990.
[12] Q.A. Guan, X.Y. Zhou, Optimal constant in an L^2 extension problem and a proof of a conjecture of Ohsawa, Sci. China Math. 58 (1) (2015) 35–59, http://dx.doi.org/10.1007/s11425-014-4946-4.
[13] Q.A. Guan, X.Y. Zhou, A solution of an L^2 extension problem with optimal estimate and applications, Ann. of Math. (2) 181 (3) (2015) 1139–1208.
[14] Q.A. Guan, X.Y. Zhou, A proof of Demailly's strong openness conjecture, Ann. of Math. (2) 182 (2) (2015) 605–616.
[15] Q.A. Guan, X.Y. Zhou, Effectiveness of Demailly's strong openness conjecture and related problems, Invent. Math. 202 (2) (2015) 635–676.
[16] Q.A. Guan, X.Y. Zhou, Characterization of multiplier ideal sheaves with weights of Lelong number one, Adv. Math. 285 (2015) 1688–1705.
[17] C.O. Kiselman, Un nombre de Lelong raffiné, in: Séminaire d'analyse complexe et géométrie 1985–1987, Faculté des sciences de Tunis & Faculté des sciences et techniques de Monastir, Tunisie, pp. 61–70.
[18] C.O. Kiselman, Plurisubharmonic functions and potential theory in several complex variables, in: Dev. Math. 1950–2000, Birkhäuser, Basel, Switzerland, 2000, pp. 655–714.
[19] J. Kollár, et al., Flips and abundance for algebraic threefolds, Astérisque 211 (1992).
[20] A. Nadel, Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Ann. of Math. (2) 132 (3) (1990) 549–596.
[21] V. Shokurov, 3-fold log flips, Izv. Russ. Acad. Nauk Ser. Mat. 56 (1992) 105–203.
[22] Y.T. Siu, Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math. 27 (1974) 53–156.
[23] Y.T. Siu, Multiplier ideal sheaves in complex and algebraic geometry, Sci. China Ser. A 48 (Suppl.) (2005) 1–31.
[24] H. Skoda, Sous-ensembles analytiques d'ordre fini ou infini dans C^n, Bull. Soc. Math. France 100 (1972) 353–408.
[25] G. Tian, On Kähler–Einstein metrics on certain Kähler manifolds with C^1(M) > 0, Invent. Math. 89 (2) (1987) 225–246.