Cell-selective labeling using amino acid precursors for proteomic studies of multicellular environments

Nicholas P Gauthier1,2, Boumediene Soufi3, William E Walkowicz2,4, Virginia A Pedicord5, Konstantinos J Mavrakis6, Boris Macek3, David Y Gin4,7, Chris Sander1 & Martin L Miller1

We report a technique to selectively and continuously label the proteomes of individual cell types in coculture, named cell type–specific labeling using amino acid precursors (CTAP). Through transgenic expression of exogenous amino acid biosynthesis enzymes, vertebrate cells overcome their dependence on supplemented essential amino acids and can be selectively labeled through metabolic incorporation of amino acids produced from heavy isotope–labeled precursors. When testing CTAP in several human and mouse cell lines, we could differentially label the proteomes of distinct cell populations in coculture and determine the relative expression of proteins by quantitative mass spectrometry. In addition, using CTAP we identified the cell of origin of extracellular proteins secreted from cells in coculture. We believe that this method, which allows linking of proteins to their cell source, will be useful in studies of cell-cell communication and potentially for discovery of biomarkers.

The development and maintenance of multicellular environments is dependent on extensive cell-cell communication, and dysregulation of cellular interactions has a role in many diseases, including cancer1–3. Although widely used for investigating intercellular signal transduction, antibody-based assays are relatively low throughput, vary in specificity and require preselection of protein readout. Although some of these limitations could be overcome using quantitative mass spectrometry–based proteomics4–6, studies of cell-cell communication by mass spectrometry are hindered by an inability to distinguish between proteins from distinct cell types in multicell culture.

Recently several efforts have been made to differentiate the proteomes of individual cell populations in coculture. In one approach, each distinct cell type is labeled in isolation (for example, using heavy stable isotope–labeled l-lysine and/or l-arginine), and the fully labeled cells are subsequently mixed. Peptides identified with liquid chromatography–tandem mass spectrometry (LC-MS/MS) can then be assigned a source cell type on the basis of the status of the isotopic label. Two recent reports demonstrate the feasibility of such an approach for identifying early ephrin signaling responses7 and determining proteins transferred between cell types8. Unfortunately, these labels become rapidly diluted as cells grow and divide in coculture, making this experimental setup primarily useful for investigating very early signaling events. In a different approach, differences in protein sequence between species are used to determine cell of origin in cross-species cocultures and xenografts9,10. Although this approach can be used to distinguish between proteins from different cell types, the major drawbacks are that only a subset of peptides can be differentiated, and the findings from mixed-species models may not be physiologically relevant. Yet another approach relies on tRNA synthetases that specifically recognize and incorporate noncanonical amino acids into proteins11–13. This method provides for both proteomic incorporation that is specific to transgenic cells as well as the ability to perform affinity enrichment on chemical moieties (for example, azides). However, structural differences between noncanonical and canonical amino acids might cause unpredictable functional alterations in mature proteins14. Given the caveats of each of these methods, there remains a need for a technique that enables continuous cell-specific labeling with canonical amino acids.

We report a method, CTAP, for cell-selective proteomic labeling that overcomes the limitations mentioned above. This method exploits the inability of vertebrate cells to synthesize certain amino acids required for growth and homeostasis. These ‘essential’ amino acids are produced in some plants, bacteria and lower eukaryotes, and must be supplemented in the medium of cultured vertebrate cells or obtained in the diet of animals15. We reasoned that transgenic expression of enzymes that synthesize essential amino acids would allow vertebrate cells to overcome auxotrophy by producing their own amino acids from supplemented precursors. These precursors can be isotopically labeled, allowing cell of origin of proteins to be determined by label status identified with MS/MS. We tested the validity and feasibility of CTAP using l-lysine, an essential amino acid commonly used in quantitative proteomic methods such as stable-isotope labeling by amino acids in cell culture (SILAC)5,16. Using CTAP, we could continuously

1Computational Biology Center, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 2Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 3Proteome Center Tübingen, University of Tübingen, Tübingen, Germany. 4Molecular Pharmacology and Chemistry Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 5Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 6Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA. 7Deceased. Correspondence should be addressed to N.P.G. (ctap@cbio.mskcc.org), C.S. (ctap@cbio.mskcc.org) or M.L.M. (ctap@cbio.mskcc.org).

Received 10 July 2012; accepted 8 May 2013; published online 30 June 2013; DOI:10.1038/nmeth.2529
and differentially label the proteome of cells in coculture, determine relative protein expression between the cell populations and identify the cell of origin of secreted factors.

RESULTS

Engineering mammalian cells to grow on l-lysine precursors

Several enzymes have been found in bacteria, fungi and plants that catalyze reactions leading to the production of l-lysine from precursor compounds. We hypothesized that by engineering vertebrate cells to produce their own supply of l-lysine from labeled precursors, we could achieve differential proteomic labeling of specific cell types in coculture (Fig. 1). We began by identifying precursor-enzyme pairs in which the precursor was readily available and the enzyme had no described orthologs in vertebrate orthologs in vertebrate cells to produce their own supply of l-lysine from labeled precursor compounds. We hypothesized that by engineering vertebrate cells to produce their own supply of l-lysine from labeled precursors, we could achieve differential proteomic labeling of specific cell types in coculture (Fig. 1). We began by identifying precursor-enzyme pairs in which the precursor was readily available and the enzyme had no described orthologs in vertebrate genomes (Supplementary Fig. 1). In a different context, one of the candidate precursor-enzyme pairs had been used to rescue l-lysine auxotrophy, we examined growth rates in SILAC media supplemented with l-lysine, various precursors or in l-lysine-free conditions. With the exception of N2-acetyl-l-lysine, the tested precursors alone had little or no effect on growth in wild-type cells (Supplementary Fig. 2).

We next investigated whether transgenic expression of enzymes involved in biosynthesis of l-lysine would allow cells to acquire the ability to grow on precursors. We stably expressed genes encoding the enzymes lysine racemase (lyr) from Proteus mirabilis (optimized for expression and intracellular localization; Supplementary Note 1) and diaminopimelate decarboxylase (DDC) from Arabidopsis thaliana in several cell lines (Supplementary Table 1). DDC-expressing mouse 3T3 and HEK293T cells, along with lyr-expressing human MDA-MB-231 cells, exhibited growth rates in media supplemented with the precursors, diaminopimelic acid (DAP) and d-lysine, respectively, comparable to those in medium containing l-lysine (Fig. 2a,b and Supplementary Fig. 3). We observed similar results for several additional human and mouse cell lines, although two
Figure 3 | Limited gene expression changes observed when growing cells in precursor versus l-lysine. (a) Gene expression profiles using the Illumina microarray platform on mRNA collected 72 h after DDC-expressing 3T3 cells were plated in SILAC medium supplemented with DAP, l-lysine or neither (starved). Expression differences of DAP versus l-lysine (left) and starved versus l-lysine (right) are plotted as a function of significance (moderated t-statistics adjusted for multiple testing by the Benjamini and Hochberg method). Highlighted genes (green) are more than twofold differentially regulated at the level of FDR < 0.05. (b) As in a, except MDA-MB-231 cells expressing lyr were plated on l-lysine, l-lysine or in starved conditions. All experiments were performed in triplicate.

of the DDC-expressing lines never reached growth rates comparable to those in the presence of l-lysine (Supplementary Table 2). The enzyme-precursor pairs were specific, as we observed no growth with mismatched enzyme-precursor pairs or in empty-vector controls (Fig. 2a,b). Furthermore, growth in standard conditions with l-lysine and the addition of either DAP or d-lysine resulted in little or no growth perturbation (Supplementary Fig. 4). These monoculture results show that transgenic enzyme expression with supplementation of specific precursors is responsible for the growth rescue observed in l-lysine-free conditions.

Proteomic incorporation of precursor-based l-lysine

To investigate whether l-lysine is directly produced by enzymatic turnover of the supplemented precursors, we applied the SILAC principle of exchanging the label of amino acids from one form to another (for example, light l-lysine to heavy l-lysine). At the beginning of the experiments, we labeled DDC-expressing 3T3 cells with heavy [13C6,15N2]l-lysine (H) and labeled lyr-expressing MDA-MB-231 cells with light l-lysine (L). Then we grew these cells in monoculture for ten or more days (two or three passages) in l-lysine-free media that contained light isotope-labeled DAP (L), heavy-labeled [2H8]d-lysine (H) or both precursors. We digested protein from cell lysates with trypsin and/or LysC, submitted the products to high-resolution LC-MS/MS and determined the H/L ratio for each peptide using the MaxQuant software package19. We used these H/L ratios to determine the labeling incorporation levels, which we found to be similar to orthogonal enrichment calculations (Supplementary Table 3) and robust to a range of parameter changes, such as peptide score and length (Supplementary Table 4).

In the presence of light isotope-labeled DAP alone, peptides identified in DDC-expressing 3T3 cells switched from being predominantly labeled with heavy l-lysine (94% H, median peptide) to being labeled with light l-lysine (97% L) (Fig. 2c; all peptide and protein lists with associated H/L ratios are provided in Supplementary Data). Similarly, the peptides identified in lyr-expressing MDA-MB-231 cells changed from 98% L to 93% H in the presence of heavy isotope-labeled d-lysine (Fig. 2d). This level of labeling can be reached after one passage (approximately four doublings, Supplementary Fig. 5) and can be considered near complete as it is similar to that in the initial samples and what is typically reported in SILAC experiments20,21. To test the amount of unspecified labeling (cross-contamination), we grew cultures in the presence of both precursors. Supplementing the DDC precursor DAP (L) had little effect on the label switch in lyr-expressing MDA-MB-231 cells, but the presence of d-lysine (H) marginally increased the amount of heavy label in DDC-expressing 3T3 cells (Fig. 2c,d). This difference in the 3T3 cells was possibly due to contamination of heavy l-lysine in heavy d-lysine (currently only ≥95% enantiomeric purity in reagent from C/D/N Isotopes) and is expected to be lower with greater purity. Taken together, these data indicate that lyr- and DDC-expressing cells can specifically incorporate l-lysine synthesized directly from these enzymes’ respective precursors.

Limited perturbation to cells growing on precursors

We next investigated whether cells behave similarly when grown on precursors compared to l-lysine. We cultured cells for 3 d in media containing l-lysine, precursor or neither (starved, positive control for perturbed state) and profiled mRNA expression using microarrays (Fig. 3 and Supplementary Fig. 6). Relative to the basal l-lysine condition, expression of no genes changed substantially when we grew enzyme-expressing cells in the presence of precursor, but expression of hundreds of genes changed in starvation conditions (false discovery rate (FDR) <0.05 and expression ratio >2; Fig. 3). Furthermore, we performed several assays to probe the effects of precursor-based growth, including gene-set enrichment analysis (Supplementary Tables 5 and 6), measurement of amino acid starvation factors (Supplementary Fig. 7), determination of protein abundance by LC-MS/MS (Supplementary Fig. 8) as well as growth and molecular response to drug perturbation (Supplementary Figs. 9 and 10). Although we observed minor differences, overall these data demonstrate that growing cells with the precursors specific to the expressed enzyme had little to no effect compared to growth on l-lysine.

Continuous and differential proteome labeling in coculture

To assess the specificity of labeling in coculture with each cell population using a distinct enzyme-precursor pair, we took advantage of species-specific sequence differences to compare label status between the enzyme-expressing mouse 3T3 and human MDA-MB-231 cell lines. Initially, we grew the 3T3 cells in heavy l-lysine (H) and the MDA-MB-231 cells in light l-lysine (L). At the start of the experiment, we collected a sample from each cell line and combined the cell pellets 1:1 to verify the ability to differentiate label status based on species-specific peptide classification. As expected, we confirmed labels of mouse-specific and
human-specific peptides to be primarily heavy and light, respectively (Fig. 4a, Supplementary Fig. 11 and Supplementary Data). With the expectation that each cell type would exchange label, we combined the prelabeled cells in coculture in medium containing 10 mM light DAP (L) and 1 mM heavy d-lysine (H). After 10 d (two passages), the two cell types switched labels (Fig. 4a and Supplementary Fig. 12). As expected, the mouse 3T3 peptides became predominantly labeled with light lysine (80% or −2.0 log₂ H/L) and the human MDA-MB-231 peptides became predominantly labeled with heavy lysine (76% or 1.7 log₂ H/L). This labeling efficiency is lower than in the mixed monoculture control and could either be due to physiological sharing of l-lysine between cell populations or limitations of the CTAP method. Although we optimized CTAP to remove shared l-lysine from the medium with daily changes of the medium and modified the l-lysine sequence to decrease enzyme secretion (for example, removal of signal peptide and addition of intracellular targeting sequence, Supplementary Fig. 13), we expect that future development will increase enrichment of cell type–specific label even further. Despite the fact that the absolute H/L ratios of the species-specific peptides differed between the mixed monoculture control and the CTAP-labeled coculture, the human and mouse-specific peptides were clearly separable in both experiments. These distinct H/L ratios in species-specific sequences therefore demonstrate the ability to differentially label the proteome across cell types in coculture.

We next investigated whether the CTAP method could be used to differentiate the proteome of a same-species coculture system. We plated DDC-expressing GFP⁺ HEK293T cells together with lyr-expressing monomeric (m)Cherry⁺ MDA-MB-231 cells. After 5 d (one passage, approximately four cell doublings) of growth in light isotope–labeled DAP (L) and heavy isotope–labeled d-lysine (H), we sorted a coculture sample for mCherry⁺ and GFP⁺ cells by fluorescence-activated cell sorting (FACS; Supplementary Fig. 14) and separately subjected each of the sorted populations to LC-MS/MS. Analysis of protein from the GFP⁺ and mCherry⁺ cells of this human-human coculture revealed labeling efficiency similar to that seen in the human-mouse coculture, with each cell population exhibiting distinct H/L ratios (Fig. 4b and Supplementary Data).

We collected another sample directly from the unsorted human-human coculture and identified 1,366 proteins with LC-MS/MS (Supplementary Data). Focusing on the transgenic proteins exclusive to each cell population (DDC and GFP in HEK293T and lyr in MDA-MB-231 cells) we observed the expected H/L ratios corresponding to those determined by FACS (Fig. 4c). This concordance confirms differential labeling in human-human coculture lysates. When analyzing all identified proteins in this unsorted sample, the H/L ratios exhibited a near-normal distribution with the transgenes lying in the tails of the distribution. Although these tails contain relatively few members, they likely represent cell type–specific proteins (Fig. 4c and Supplementary Fig. 15). This result is consistent with a recent report that found most proteins are ubiquitously expressed across different cell types but with different relative abundances. In summary, these results demonstrate the capability of CTAP to label the proteome in a cell-specific manner and show that label status (H/L ratio) is directly related to the relative protein abundance level between the two cell types.

Linking secreted proteins to their cell of origin

To test the potential of using the CTAP method to discriminate the cell of origin of secreted factors, we collected supernatant from the same human and mouse coculture setup as in the previous experiments. We grew the cells for 16 h in serum-free medium to avoid overloading the sample with serum proteins,
and then collected the supernatant. We concentrated the secreted proteins by ultracentrifugation, precipitated them with methanol and chloroform, and analyzed them by LC-MS/MS. Nearly all species-specific peptides could be distinguished by label alone (Fig. 5a, Supplementary Fig. 16 and Supplementary Data). These results demonstrate the capability of the method to determine the cell of origin for secreted proteins in coculture.

Applying a similar approach to analyze secreted factors in a same-species coculture, we collected supernatant from the same cocultured DDC-expressing HEK293T and lyr-expressing MDA-MB-231 cells as used previously and subjected it to LC-MS/MS. The H/L ratios of 403 identified proteins spanned a similar range as those detected in cells (Figs. 4c, 5b and Supplementary Data). Having shown that the H/L ratios are distinct for species-specific proteins in the human and mouse coculture secretome, the proteins in the tails of this human-human distribution likely are cell type-specific. Reasoning that a protein secreted primarily by one cell type would also be relatively more abundant in cells, we investigated whether CTAP-labeled extracellular protein ratios correlated with SILAC-labeled protein ratios obtained from mixed monoculture lysates. For the subset of proteins that were common to both samples, we observed good agreement between the H/L ratios from the combined intracellular monocolonies and secreted coculture samples \((R^2 = 0.57, \text{Fig. 5b and Supplementary Fig. 17})\). The positive correlation between these conditions indicates that the secreted proteins with the lowest and highest H/L ratios are likely cell type-specific as they are most abundant in the HEK293T and MDA-MB-231 cells, respectively (Supplementary Data). Almost half of the putative MDA-MB-231 cell secreted proteins were not identified intracellularly (47%), highlighting the need for secretome profiling. Taken together with the species-verified secretome analysis, these results establish that the CTAP method can be applied to determine the cell of origin for secreted factors in coculture.

DISCUSSION

To our knowledge, CTAP is the only method in which the proteome of specific cell populations can be labeled continuously and differentially by canonical amino acids in a complex mixture of cells. Although the results of this initial study demonstrate the feasibility and functionality of CTAP, there are several avenues for development of this method.

We have preliminary data showing that CTAP can be applied to label a specific cell type of interest in a mixed cell culture system using only one enzyme-precursor pair (Supplementary Fig. 18; note that titrating down the amount of \(l\)-lysine in the medium was required). A one-enzyme approach may facilitate the linking of proteins to a distinct cell population in experimental systems where a two-enzyme approach is either not desirable or not feasible. In addition to using DDC and lyr, we have also tested and found specific but suboptimal growth rescue with the enzyme CBZcleaver and substrate \(Z\)-lysine, supporting the general principle of this method (Supplementary Fig. 19 and Supplementary Note 2). Future method development will explore the use of single-enzyme labeling in complex cultures as well as focus on the identification of additional enzyme-precursor pairs.

The coculture labeling efficiency was lower than expected from mixed monoculture controls (approximately 80% versus 97%, Fig. 4). Incomplete labeling in coculture can arise from both technical problems and true biological interactions between the two cell populations. During method development, we identified extracellular lyr activity as a potential source of label dilution. Even though we implemented several experimental optimizations (Supplementary Fig. 13), extracellular lyr activity likely still has a role in coculture label contamination, and our future efforts will focus on complete suppression of this activity. Other optimization steps will involve improving enzyme efficacy, increasing precursor uptake\(^{17,18}\) (Supplementary Discussion) and increasing purity of heavy \(d\)-lysine (currently only \(\geq 95\%\) enantiomeric pure as supplied by C/D/N Isotopes). Despite technical improvements, biological exchange of \(l\)-lysine between cells in coculture may prevent cell type-specific labeling from reaching isotopic enrichment as complete as that in SILAC. Nevertheless, the distinct H/L ratios we observed in each cell population readily enable clear identification of cell type-specific factors and relative quantitation of protein expression between the populations.

Several criteria must be met for cells to qualify for the use of CTAP to study cell-cell communication. Similar to SILAC, cells
must be t-lysine auxotrophic and able to grow in dialyzed serum or serum-free media. Currently, the method relies on precursors of t-lysine only, hampering the use of t-arginine containing peptides for protein quantitation of tryptic digests. Additionally, CTAP requires stable expression of exogenous enzymes and growth on amino acid precursors, and investigators should verify that the context-specific phenotype of their cells is unperturbed when using this method. Although the H/L ratios of the transgenic proteins themselves can be used to determine the level of labeling in each cell population, it is advisable that the incorporation efficiency be verified by LC-MS/MS analysis of samples subjected to FACS. These levels can be used as cutoffs for assigning the cell of origin to individual proteins. Unequal cell number may influence labeling efficiency in coculture due to sharing of t-lysine from residual extracellular t-lysine activity or physiological amino acid exchange. This potential issue can be addressed by using different seeding densities of each cell population and daily changes of the culture medium. Despite incomplete labeling, normalizing the H/L ratios (for example, using Z scores) can enable relative comparison of protein changes between conditions in a cell type–specific manner.

Upon overcoming some of the remaining technical challenges, such as competition with endogenous t-lysine, precursor delivery and enzyme expression, another possible application for CTAP may be identification of disease biomarkers in vivo. Current approaches for biomarker identification are limited by their inability to classify whether a potential marker originates from the diseased tissue itself or from the normal tissue. Using the described technique we can potentially circumvent these limitations, as proteins from specific cell types of interest can, in principle, be labeled continuously in vivo. Any labeled protein identified in the serum or proximal fluids will have originated from the cell type of interest. As CTAP allows for unbiased and high-throughput LC-MS/MS to differentiate peptides derived from distinct cells in complex cellular environments, we anticipate that CTAP will be an important tool for gaining insight into intercellular signaling in a range of fundamental biological processes.

METHODS

Methods and any associated references are available in the online version of the paper.

Accession codes. GenBank: KC962560, KC962561, KC962562 and KC962563 (oligonucleotide sequences for inserts). Gene Expression Omnibus: GSE43894 and GSE43895 (Illumina microarray experiments).

Note: Supplementary information is available in the online version of the paper.

ACKNOWLEDGMENTS

We acknowledge E. Larsson, Y. Gruber, D.S. Marks, A. Arvey, J. Joyce and A. Koff for helpful discussions, H. Erdjument-Bromage for pilot MS/MS investigation, A.N. Miller, J. Cross and X. Jing for technical help, and E. Larsson, J. Gauthier, J. Joyce and A.M. Miller for helpful comments on the manuscript. This work was funded in part by US National Cancer Institute grant U54 CA148967.

AUTHOR CONTRIBUTIONS

N.P.G. and M.L.M. designed and performed experiments and analyzed data. W.E.W. generated reagents. B.S., K.J.M. and V.A.P. contributed to experiments. N.P.G. and M.L.M. wrote the manuscript. B.S., W.E.W., B.M., K.J.M., V.A.P., D.Y.G. and C.S. contributed to discussions and editing of the manuscript. N.P.G. conceived the hypothesis. N.P.G., C.S. and M.L.M. developed the concept and managed the project.

COMPETING FINANCIAL INTERESTS

The authors declare competing financial interests: details are available in the online version of the paper.

Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Joyce, J.A. & Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer 9, 239–252 (2009).
2. Mcmillin, D.W. et al. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat. Med. 16, 483–489 (2010).
3. Olumi, A.F. et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostate epithelium. Cancer Res. 59, 5002–5011 (1999).
4. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).
5. Ng, S.-E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell Proteomics 1, 376–386 (2002).
6. Ross, P.L. et al. Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell Proteomics 3, 1154–1169 (2004).
7. Jørgensen, C. et al. Cell-specific information processing in segregating populations of Eph receptor ephrin-expressing cells. Science 326, 1502–1509 (2009).
8. Rechavi, D. et al. Trans-SILAC: sorting out the non-cell-autonomous proteome. Nat. Methods 7, 923–927 (2010).
9. Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteomics 11, M111.014647 (2012).
10. van den Bemd, G.-J.C.M. et al. Mass spectrometric identification of human prostate cancer-derived proteins in serum of xenograft-bearing mice. Mol. Cell Proteomics 5, 1830–1839 (2006).
11. Ngo, J.T. et al. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5, 715–717 (2009).
12. Truong, F., Yoo, T.H., Lampo, T.J. & Tirrell, D.A. Two-strain, cell-selective protein labeling in mixed bacterial cultures. J. Am. Chem. Soc. 134, 8551–8556 (2012).
13. Ngo, J.T., Schuman, E.M. & Tirrell, D.A. Mutant methionyl-tRNA synthetase from bacteria enables site-selective N-terminal labeling of proteins expressed in mammalian cells. Proc. Natl. Acad. Sci. USA 110, 4992–4997 (2013).
14. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).
15. Xu, H., Andi, B., Qian, J., West, A.H. & Cook, P.F. The alpha-aminoadipate pathway for lysine biosynthesis in fungi. Cell Biochem. Biophys. 46, 43–64 (2006).
16. Ng, S.-E. & Mann, M. A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat. Protoc. 1, 2650–2660 (2006).
17. Saqib, K.M., Hay, S.M. & Rees, W.D. The expression of Escherichia coli diaminopimelate decarboxylase in mouse ST3 cells. Biochim. Biophys. Acta 1219, 398–404 (1994).
18. Jouanneau, J., Stragier, P., Bouvier, J., Patte, J.C. & Yaniv, M. Expression in mammalian cells of the diaminopimelic acid decarboxylase of Escherichia coli permits cell growth in lysine-free medium. Eur. J. Biochem. 146, 173–178 (1985).
19. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
20. Sury, M.D., Chen, J.-X. & Selbach, M. The SILAC fly allows for accurate protein quantification in vivo. Mol. Cell Proteomics 9, 2173–2183 (2010).
21. Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V. & Neubert, T.A. Stable isotopic labeling by amino acids in cultured primary neurons: application to brain-derived neurotrophic factor–dependent phosphoryrosine–associated signaling. Mol. Cell Proteomics 7, 1067–1076 (2008).
22. Geiger, T., Wehner, A., Schaab, C., Cox, J. & Mann, M. Comparative proteomic analysis of eleven common cell lines reveals ubiquitous but varying expression of most proteins. Mol Cell Proteomics 11, M111.014050 (2012).
ONLINE METHODS

Oligonucleotide acquisition. The l-lysine–producing enzymes used in this study were DDC, lyr and CBZcleaver. Sequence encoding DDC was directly amplified by PCR from Arabidopsis thaliana cDNA (TAIR identifier AT3G14390; primer sequences are available in Supplementary Tables 7 and 8). The lyr and CBZcleaver constructs were synthesized by GeneArt, encoding the amino acid sequences specified previously23,24, and nucleotide sequences were optimized for expression in mouse. All sequences are available in Supplementary Note 1. Sequences were verified for all plasmids by the Sanger method of sequencing.

Vector cloning, viral production and cell-line creation. Two murine stem cell virus (MSCV)-based retroviral vector backbones, one expressing GFP (pMIG) and the other mCherry (pMIC), were used to infect mouse cells. To create the insert for pMIG, the PCR product of DDC sequence was cloned into the EcoRI site of the vector. CBZcleaver sequence was directly cloned from the GeneArt-supplied vector pMA-RQ into pMIC using EcoRI and XhoI restriction sites. Viral supernatants for pMIG and pMIC were produced by transfecting Phoenix cells with each plasmid, and the supernatant was used to infect 3T3 cells 48 h after transfection of the packaging line.

Cellular growth assays. Cell lines were grown in Dulbecco’s modified Eagle’s medium (DMEM) without l-lysine and l-arginine (SILAC DMEM, Thermo Fisher Scientific) supplemented with 10% dialyzed FBS (Sigma, F0392), antibiotics and l-glutamine. For monoculture growth assays, 1 mM l-arginine was added to the medium, and 4,000 or 5,000 cells were seeded in 200 µl medium per well in 96-well plates with various concentrations of l-lysine, 2,6-diaminopimelic acid (DAP, Sigma, 33240), d-lysine HCL (Sigma, L5876), Nα-Cbz-l-lysine (Z-lysine, Bachem, C-2200) or Nα-acetyl-l-lysine (N2A, Sigma, A2010). Although the substrate of DDC is only the meso form of DAP, in this work the DAP used contains D, L and meso forms. Cell viability was measured using the metabolic activity–based Resazurin (Sigma) reagent or the impedance-based xCELLigence system (Roche). For Resazurin experiments, 25 µl of the resuspended sample was used as described by the manufacturer. The remaining 180 µl was mixed with an equal volume of 2% paraformaldehyde and the percentage of GFP+ and mCherry+ cells in each sample was analyzed by flow cytometry. At least two replicates were performed for each condition. For Tali assays, cells were trypsinized and resuspended in medium; 25 µl of coculture cell suspension was used to determine the percentage of GFP+ and RFP+ cells in biological triplicates.

Stable-isotope labeling and cell passaging. For exchange-of-label experiments (all monocultures, all human and mouse cocultures and experiments in Supplementary Fig. 19), cells were first metabolically labeled by growth for at least 10 cellular doublings (ten or more days) in l-arginine and 10% dialyzed FBS-containing SILAC DMEM supplemented with 798 µM light isotope–labeled l-lysine (L), medium isotope–labeled [3H2]l-lysine (M, +4 daltons) or heavy isotope–labeled [13C6,15N2]l-lysine (H, +8 daltons; Cambridge Isotopes). Cells were then seeded in monoculture or coculture with 10 mM light DAP (L, Sigma), 1 mM or 4 mM heavy isotope–labeled [3H2]d-lysine (H, +8 daltons; C/D/N Isotopes; 3,3,4,4,5,6,6-d8), 2.5 mM heavy isotope–labeled [13C6,15N2]Z-lysine (H, +8 daltons; Supplementary Fig. 19) or both DAP (L) and d-lysine (H). For experiments that maintained the label (all human-human cocultures), cells were initially grown for at least ten cellular doublings (ten or more days) in their respective precursors: DDC-expressing cells in DAP (L) and lyr-expressing cells in d-lysine (H). Populations were then combined in 10 mM DAP (L) and 1 mM d-lysine (H) and grown together for 5 d (approximately four cellular doublings) in coculture. Cocultures were seeded at ratios in which an equal number of cells were expected at the end of the experiment. All cell lines were passaged 1:10–1:15 at 95% confluency.

mRNA microarray expression profiling. Cells were seeded at equal densities into l-arginine and 10% dialyzed FBS-containing SILAC medium supplemented with 798 µM l-lysine, 798 µM l-lysine (M), 4 mM d-lysine HCL or 10 mM DAP. After 72 h, cells were washed, trypsinized, pelleted and frozen at −80 °C. RNA was extracted using the RNeasy mini kit (Qiagen), labeled and hybridized to Illumina Mouseref-8 or Human HT-12 microarrays. After median centering, the probe intensities for each array, moderated t-statistics and false discovery rate calculations for multiple hypothesis correction were performed using the eBayes method provided in LIMMA28,29.

Drug perturbation assays. Cells were seeded in 96-well plates (2,000 cells/well) and grown to 40% confluence in SILAC medium...
containing 0.798 mM l-lysine or 10 mM DAP DMEM with 10% dialyzed FBS. Cells were then inhibited with eight different drug concentrations (twofold dilution) in eight replicates. Drugs used were Stattic (STAT3 inhibitor), PI3K-IV (PI3K inhibitor), AKT-VIII (AKT inhibitor) and SL327 (MEK inhibitor). After 48-h drug treatment, cell viability was measured by Resazurin (Sigma) as described by the manufacturer. Cell viability relative to untreated cells was calculated to obtain dose-response curves.

Western blotting. Frozen cell pellets were thawed and lysed for 20 min with NP40 lysis buffer, which contained 1% Nonident P-40, 1 mM sodium orthovanadate and Complete protease inhibitors (Roche Diagnostics) in PBS. Protein concentrations were determined by the Bradford assay (BioRad) and adjusted to 1–1.5 mg/ml. Protein was then denatured in 2% SDS for 5 min at 95 °C. Approximately 20 µg of each sample was then separated by SDS-PAGE, transferred to PVDF membrane and immunoblotted using primary and secondary antibodies. Primary antibodies were obtained from Cell Signaling Technology (anti-GAPDH, #2118; anti-AKT-pS473, #4060; anti-ERK1/2-pT202/pY204, #9101; anti-p70S6K-T389, #9234S) or Abcam (anti-ATF4, #ab23760) and all experiments were carried out at a dilution of 1:1,000. The secondary HRP-conjugated anti-rabbit antibody was obtained from Cell Signaling Technology (#7074) and was used at a dilution of 1:4,000. Chemoluminescence visualization was performed on Kodak or HyBlotCL films and films were scanned by a micro-TEK scanner at 600 d.p.i. in grayscale. To test for protein loading, membranes were stripped and reprobed with anti-GAPDH (Cell Signaling Technology, #2118) at a dilution of 1:1,000.

Gene set enrichment analysis. Data from Illumina Mouseref-8 or Human HT-12 microarray experiments were analyzed with the Gene set enrichment analysis (GSEA) software package version 2.07 (ref. 30). The KEGG pathway (v2.5) was selected as gene sets database and the experimental treatment conditions (l-lysine versus precursor or l-lysine versus starved) were used as phenotype vector. Default input parameters were applied. Default significance levels were used to report perturbed KEGG pathway ontologies (nominal P < 0.01 and FDR < 0.25).

Mass spectrometry sample preparation. To collect cell lysate, cells were trypsinized, resuspended in SILAC DMEM and washed three times in ice-cold PBS, and cell pellets were frozen at −80 °C. For FACS samples, cocultures of GFP+ and mCherry+ cells were trypsinized, washed and resuspended in PBS with 20% medium (2% FBS) to a concentration of ~2 × 107 cells/ml. Cells were then sorted into single GFP+ and mCherry+ populations on a MoFlo cell sorter (Dako) and washed twice with ice-cold PBS, and cell pellets were stored at −80 °C for further analysis. A small aliquot of each sorted population was immediately reanalyzed to determine purity. For cultured medium samples, cells were washed three times with PBS and supplied with serum-free SILAC DMEM 16 h before supernatant sample collection. Medium was collected, filtered with a 0.22 µm filter, and proteins were concentrated to ~1 mg/ml using a 3 kDa Amicon Ultra Centrifuge filter (Millipore) as described by the manufacturer.

Protein extraction and digestion. Cell pellets were resuspended with denaturation buffer (6 M urea and 2 M thiourea in 10 mM Tris), 1 µl of benzonase was added, followed by incubation for 10 min at room temperature. Cellular debris was removed by centrifugation at 4,000g for 30 min. For the supernatant samples, the secreted proteins were precipitated by chloroform-methanol extraction. Protein concentration was assessed by the Bradford assay (Bio-Rad). Crude protein extracts were subjected to either in-gel or in-solution digestion. For the in-gel digestion, protein extracts were cleaned on a 10 cm, 4–12% gradient SDS-PAGE gel (Novex). The resulting lane was cut from the gel and subjected to in-gel digestion with trypsin and/or LysC as described previously31. Upon gel extraction, peptides were cleaned using Stage-tips and analyzed by nano-LC-MS/MS. For in-solution digestion, proteins from the crude extract were reduced with 1 mM dithiothreitol (DTT), alkylated with 5 mM iodoacetamide, digested with endoproteinase LysC (Wako) for 3 h and then digested with LysC or trypsin overnight32. The resulting peptide mixture was cleaned using Stage-tips33 and subjected to nano-LC-MS/MS without prior peptide separation.

LC-MS/MS analysis. All samples were analyzed by online nano-flow LC-MS/MS as previously described34 with a few modifications. Briefly, nano-LC-MS/MS experiments were performed on an EASY-nLC system (Proxeon Biosystems) connected to an LTQ-Orbitrap XL or LTQ-Orbitrap Elite (Thermo Scientific) through a nanoelectrospray ion source. Peptides were auto-sampled directly onto the 15-cm-long 75-mm-inner-diameter analytical column packed with reversed-phase C18 Reprosil AQUA-Pur 3 mm particles at a flow rate of 500 nl/min. The flow rate was decreased to 250 nl/min after loading, and the peptides were separated with a segmented linear gradient of acetonitrile from 5–50% in 0.5% acetic acid for either 100 min, 150 min or 240 min. Eluted peptides from the column were directly electrosprayed into the mass spectrometer. For the LTQ-Orbitrap XL analyses, the instrument was operated in positive ion mode, with the following acquisition cycle: a full scan recorded in the orbitrap analyzer at resolution R of 60,000 full width at half maximum (FWHM) was followed by MS/MS collision-induced dissociation (CID) of the top ten most intense peptide ions in the LTQ analyzer. The total acquisition time was either 150 min or 240 min. For LTQ-Orbitrap Elite data acquisition, the instrument was operated in the positive-ion mode, with the following acquisition cycle: a full scan recorded in the orbitrap analyzer at resolution R of 120,000 FWHM was followed by MS/MS (CID rapid scan rate) of the 20 most intense peptide ions in the LTQ analyzer. The total acquisition time was either 100 min or 240 min depending on the method of sample preparation. Monoenzyme coculture samples were measured on the LTQ-Orbitrap XL with slight modifications: a full scan recorded in the orbitrap analyzer at resolution R of 60,000 FWHM was followed by MS/MS (CID) of the top five most intense peptide ions, with a total acquisition time of 95 min.

Processing of mass spectrometry data. The MaxQuant software package with the Andromeda search engine was used to identify and quantify proteins in cellular lysates and media19,35. MaxQuant version 1.2.2.5 was used to analyze all samples expect for comparing protein intensities across differentially labeled samples (Supplementary Fig. 8), where version 1.3.0.5 was required to select multiple groups with different labels. Mouse and human IPI protein databases (both version 3.84,
lists with associated H/L ratios and intensities are provided in **Supplementary Data**.

Storage of primary data. Raw LC-MS/MS data are available on the CTAP website (http://www.ctap.ms/). Oligonucleotide sequences for inserts are available in **Supplementary Note 1**.

23. Kuan, Y.-C. et al. Biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC10725. *Process Biochem.* **46**, 1914–1920 (2011).
24. Nanduri, V., Goldberg, S., Johnston, R. & Patel, R. Cloning and expression of a novel enantioselective N-carbobenzyloxy-cleaving enzyme. *Enzyme Microb. Technol.* **34**, 304–312 (2004).
25. Mavrakis, K.J. et al. Tumorigenic activity and therapeutic inhibition of Rheb GTPase. *Genes Dev.* **22**, 2178–2188 (2008).
26. Swift, S., Lorens, J., Achacoso, P. & Nolan, G.P. Rapid production of retroviruses for efficient gene delivery to mammalian cells using 293T cell-based systems. *Curr. Protoc. Immunol.* **10**, 10.17C (2001).
27. Szyczuk, A.L. et al. Correction of multi-gene deficiency in vivo using a single ‘self-cleaving’ 2A peptide-based retroviral vector. *Nat. Biotechnol.* **22**, 589–594 (2004).
28. Smyth, G. Limma: linear models for microarray data. in *Bioinformatics and Computational Biology Solutions Using R and Bioconductor* (eds. Gentleman, R., Carey, V., Dudoit, S., Irizarry, R. & Huber, W.) 397–420 (Springer, New York, 2005).
29. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J. R. Stat. Soc. B* **57**, 289–300 (1995).
30. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. *Proc. Natl. Acad. Sci. USA* **102**, 5869–5874 (2005).
31. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V. & Mann, M. In-gel digestion for mass spectrometric characterization of proteins and proteomes. *Nat. Protoc.* **1**, 2856–2860 (2006).
32. Macek, B. et al. Phosphorylation of the human full-length protein kinase Clota. *J. Proteome Res.* **7**, 2928–2935 (2008).
33. Ishihama, Y., Rappsilber, J. & Mann, M. Modular stop and go extraction tips with stacked disks for parallel and multidimensional Peptide fractionation in proteomics. *J. Proteome Res.* **5**, 988–994 (2006).
34. Olsen, J.V. et al. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. *Cell* **127**, 635–648 (2006).
35. Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. *J. Proteome Res.* **10**, 1794–1805 (2011).