Fast and quantitative 2D and 3D orientation mapping using Raman microscopy

Oleksii Ilchenko1*, Yuriy Pilgun2, Andrii Kutsyk2, Florian Bachmann3, Roman Slipets1, Matteo Todeschini4, Peter Ouma Okeyo1,5, Henning Friis Poulsen6 & Anja Boisen1

Non-destructive orientation mapping is an important characterization tool in materials science and geoscience for understanding and/or improving material properties based on their grain structure. Confocal Raman microscopy is a powerful non-destructive technique for chemical mapping of organic and inorganic materials. Here we demonstrate orientation mapping by means of Polarized Raman Microscopy (PRM). While the concept that PRM is sensitive to orientation changes is known, to our knowledge, an actual quantitative orientation mapping has never been presented before. Using a concept of ambiguity-free orientation determination analysis, we present fast and quantitative single-acquisition Raman-based orientation mapping by simultaneous registration of multiple Raman scattering spectra obtained at different polarizations. We demonstrate applications of this approach for two- and three-dimensional orientation mapping of a multigrain semiconductor, a pharmaceutical tablet formulation and a polycrystalline sapphire sample. This technique can potentially move traditional X-ray and electron diffraction type experiments into conventional optical laboratories.

1Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark. 2Faculty of Radio Physics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Kyiv, Ukraine. 3Xnovo Technology ApS, Koge, Denmark. 4Technical University of Denmark, National Center for Micro- and Nanofabrication, Kgs. Lyngby, Denmark. 5Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark. 6Department of Physics, Technical University of Denmark, Kgs. Lyngby, Denmark. *email: olil@dtu.dk
Many materials are polycrystalline, meaning that they are composed of a large number of grains (crystallites) of different crystallographic orientations. A full three-dimensional (3D) orientation mapping of the grains (with information about the position, size, morphology, and orientation of each grain, as well as the topological connectivity between the grains) is crucial to relate structure to properties.

Electron backscattering diffraction (EBSD) is a widespread technique for such orientation mapping, but as a surface-based method, it can only be extended to 3D by serial sectioning. Moreover, it has challenges in the analysis of semiconductors and dielectric materials. Transmission electron microscopy can provide 3D orientation maps with 1 nm resolution, but only in thin foils. On the other hand, imaging based on X-ray diffraction using synchrotrons can provide 3D maps of thousands of grains in mm-sized samples with a resolution of 2 µm—in scanning or microscopy mode even down to 100 nm—but this is an expensive and infrastructure-demanding technique. Recently developed mapping of grain orientations in 3D by laboratory X-rays (LabDCT) is a good alternative to the synchrotron measurements; however, its spatial resolution is limited to 10–15 µm.

Polarized Raman microscopy (PRM) has the potential to be developed into a relatively cheap orientation mapping technique, with a diffraction-limited spatial resolution of around 200 nm. In PRM, if the symmetry of the crystal is known, Raman tensors for crystal modes \(j \) can be obtained and Raman intensities \(I(\theta) \) versus sample rotation angle \(\theta \) can be simulated. Correlation between theoretical and experimental angular intensity dependencies \(I_{\text{th}}(\theta) \) and \(I_{\text{exp}}(\theta) \) can, therefore, be used for the determination of the local crystallographic orientation (see Supplementary Note 1). The first studies regarding polarized Raman spectroscopy began in 1964 when Loudon presented a Raman tensor analysis theory under the form of Raman scattering analysis theory was also developed and applied for crystallographic orientation analysis of inorganic and organic single crystals, as well as inorganic crystals present in biological systems like calcite crystals in teregtte exocuticles. Raman tensor analysis theory was also developed and applied for the study of complex biomolecular crystals, including nucleobases in the nucleic acid of DNA, nucleosides, antihuman immunodeficiency virus agents, amino acids and peptides. PRM has also been used for partially oriented biological systems like bone osseous tissues and collagen fibrils in human osteonal lamellae. During the last few years, the method has been applied to the study of crystallographic orientations, defects, doping effects, and Van der Waals interactions in 2D materials like graphene, MoTe,

Results

Theoretical investigation of orientation ambiguity and error.

To assess the orientation determination ambiguity and error we have performed simulations on Si. Si has cubic symmetry (\(\Gamma \) crystal class) and is well investigated by PRM (Supplementary Note 2). We simulated a test dataset of Raman intensity variation versus wafer rotation angle \(\psi \) for three types of Si wafers with surface oriented along (100) (Supplementary Fig. 2), (110) (Supplementary Fig. 3), and (111) (Supplementary Fig. 4) planes. The orientation determination results were obtained by fitting Euler angles to simulated data and were represented in a crystallographic color code using MTEX toolbox for Matlab, see Supplementary Fig. 5. The color corresponds to orientation of the wafer normal direction relative to crystallographic axes of Si. Misorientation angle, which corresponds to undetermined rotation of the sample, is depicted in Supplementary Fig. 5 as vertical bars on the right side of each subplot.

Orientation fitting was done using varying numbers of polarized channels (2–12 channels), see Supplementary Note 3, Supplementary Fig. 5. An analysis of the simulation results reveals, that basic orientation determination becomes possible for four or more channels. However, for some specific orientations, intensity data remains ambiguous and rotation angle \(\psi \) is not recovered. This is clearly seen for the (111) wafer in misorientation plots in Supplementary Fig. 5, where the misorientation angle varies from zero to the largest possible for cubic symmetry.
62.8°. Nevertheless, even for such ambiguous data, some orientation data is still recovered, and it is possible to clearly distinguish wafers (100), (110), (111) even for four measurement channels. Full wafer orientation determination is only possible for nine or more channels.

Simulation results shown in Supplementary Note 4 and Supplementary Fig. 5 revealed that some orientations, like those appearing in the surface plane (111) of Si, are prone to introduce ambiguity in measurement data. Although simulation helped to define minimal number of polarization channels required to determine orientation, it still has limited scope, because only (100), (110), and (111) cases were considered.

To assess the quality of the orientation determination in the general case, additional analysis using exhaustive search of indistinguishable solutions over a range of all possible Euler angles was performed (described in details in Supplementary Note 4). That search revealed, that all measurement schemes with only on-axis channels applied to samples with cubic symmetry exhibit an ambiguity where two different orientations produce exactly the same intensity measurements. These two orientations have Euler angle ψ which differs by 180°. Adding off-axis measurement channels removes this $\psi + 180°$ ambiguity.

Ambiguity simulation results for a multi-grain sample with different numbers of measurement channels are summarized in Table 1. The column "Orientation error" shows the percentage of the area where the local orientation is correctly determined. The maximum orientation error registered in the successfully fitted zones is shown in the column "Misorientation" in Table 1.
same quantities versus total number of channels are plotted in Supplementary Fig. 6.

According to these simulations, the ambiguity can be successfully resolved when off-axis channels are added to the measurement setup. Still, adding only two off-axis channels is not sufficient to resolve ambiguity completely. Full resolution becomes possible when adding three off-axis channels to six on-axis channels, resulting in total nine measurement channels. Further addition of up to in total 12 channels does not noticeably increase the accuracy of the fit. Thus, in our experimental setup we decided to use nine channels.

The chosen geometry with nine polarized channels is illustrated in Fig. 1c. Three polarized laser beams e_i with orientations of polarization state 0°, 45°, and 90° interact with a multigrain material with scattering properties dependent on local crystallographic orientation and described by the Raman tensor with rotation matrices Φ and Φ^T. The scattered Raman signal e_s (with corresponding rotation matrix M) from the three incident lasers is divided into nine backscattering channels (six on-axis and three off-axis) after propagation through three analyzers with orientations 0° and 90° for on-axis Raman scattering detection and 90° for off-axis Raman scattering detection. The information obtained from the nine Raman channels is used for determining the crystallographic orientation of a selected local volume. 2D or 3D orientation mapping is obtained by scanning the sample in x, y, z with respect to the incident beams.

Experimental setup. Based on theoretical investigation of quantitative orientation mapping by Raman microscopy, we have developed and demonstrated a method, Single-Acquisition Raman Orientation Mapping (SAROM), for the study of crystalline samples. Our self-made Raman setup provides two orders of magnitude faster Raman polarization measurements compared with existing techniques and the ambiguity issue is overcome. The SAROM system is capable of simultaneously illuminating the sample with multiple laser beams at different orientations of the laser polarization state and detecting Raman scattering beams at multiple on-axis/off-axis scattering directions without using any moving parts (Fig. 2a, Supplementary Fig. 7). As shown in Table 1, chosen configuration with nine channels provides theoretically estimated accuracy of the orientation measurements by SAROM of $<1^\circ$.

SAROM consists of a Laser Beam Delivery System (LBDS), which directs three laser beams with different orientations of polarization state on the sample focal plane (Fig. 2a), and an aberration-corrected Raman Beam Delivery System (RBDS) (Supplementary Figs. 8–12) with Wollaston Analyzer Unit (WAU), capable of splitting the Raman beam into on-axis and off-axis scattering geometries collected with different analyzer orientations (Fig. 2b–e, Supplementary Fig. 13). In a 2D mapping configuration, the sample is illuminated with a single laser source. Three laser beams with different orientations of polarization state are spatially separated on the sample and on the spectroscopic

Fig. 2 SAROM system design. a Optical setup of SAROM in 2D and 3D mapping configurations designed in Zemax Optics Studio 17. b images of polarized beams on the spectroscopic slit focal plan, c on-axis and off-axis Raman scattering beam path through Wollaston Analyzer Unit (WAU), d sample illumination by laser beams and Raman signal collection geometry in on-axis (0°) and off-axis (45°) scattering pathways, e microscopy images of the laser spots on the sample in 2D- and 3D-SAROM configurations, f images of resulting Raman signals from carbamazepine drug obtained on a spectroscopic CCD in the 2D and 3D-SAROM configurations.
CCD focal planes (Fig. 2b–e). In a 3D mapping configuration, the sample is illuminated with three laser sources. Three laser beams with different orientations of polarization state overlap on the sample, however, they become separated on spectroscopic CCD focal plane (Fig. 1f) due to slightly different excitation wavelengths (see “Methods” section for details).

Artifact correction in polarized Raman measurements is a challenge. In order to reach an assessable error in SAROM, corrections are needed for: wavelength dependent intensity attenuation53, Raman intensity scaling and normalization54, Linear Phase (LP) and Linear Amplitude (LA) anisotropy of each optical element54, and depth-dependent birefringence11. Since each channel has its own correction parameters, an experimentally based calibration becomes practically impossible. Therefore, we build a model, which predicts the values of the listed parameters (Supplementary Note 5, Supplementary Fig. 21). In order to minimize this effect we corrected the EBDS map for distortions and removed grain boundaries. (Supplementary Fig. 6). Instrumental implementation implies that the error may increase up to 2°, which however still is sufficient for most applications. SAROM cannot be used on materials with high fluorescence background at the excitation wavelength of the laser source. However, the polycrystalline sapphire sample presented fluorescence at the grain boundaries, which we used as a perfect mark for grain visualization and exploited for further segmentation (Supplementary Figs. 32–34).

Raman microscopy is often used for chemical mapping of pharmaceutical and biological materials55. It has been shown that PRM can be used to visualize particles on the surface of tablet formulations57, however so far no quantitative information on the orientation of single particles has been provided. Here, we performed a content uniformity Raman measurement on a tablet containing carbamazepine dihydrate (CBZD) and polyvinylpyrrolidone (PVP). Using MCR, these components were decomposed including the fluorescence background as shown in Fig. 4a (Supplementary Fig. 22). Applying SAROM to the same area on the surface of the tablet, we obtained an orientation map of CBZD (monoclinic symmetry, C2h crystal class) (Fig. 4b, Supplementary Note 8, Supplementary Figs. 23–27, Supplementary Movie 2). These findings show the potential for SAROM to provide insight on crystal face functionality in pharmaceutical research and potentially in materials science58.

Following the SAROM workflow (Supplementary Fig. 7a), we extended the method to 3D mapping of a semitransparent polycrystalline sapphire sample having grain sizes between 5 and 40 µm (Supplementary Note 9, Supplementary Fig. 28). 3D plots of the Raman spectra versus w for different polarization configurations and correlations between theoretical and experimental responses of the E g(5) mode are shown in Supplementary Figs. 29–31, and in Supplementary Movie 3.

Nine maps of the intensity of E g(5) Raman mode, corresponding to the nine differently polarized Raman channels, are shown in Supplementary Fig. 35. Applying Supplementary Eq. 12 adapted to the trigonal symmetry of sapphire D 3d, we fitted the Euler angles at each measured point to these data (see Supplementary Note 10). The resulting 3D-SAROM volumetric orientation map is shown in Fig. 5 and in Supplementary Movie 4. 3D grain mapping is very important in ceramics technology, as properties such as fracture strength is strongly influenced by the statistical distribution of grain orientation and the grain boundary topology59.

Application examples. In the following, we demonstrate the method with a few examples. As an application in 2D, we present work on a polycrystalline Si (poly-Si) solar cell. The SAROM scanning procedure used for the poly-Si sample is shown in Supplementary Movie 1. We generated an orientation map of the poly-Si surface as shown in Fig. 3a by performing a least square fit to the Euler angles based on data from all nine polarized channels (Supplementary Note 7, Supplementary Figs. 16–18). In order to estimate the quality of the analysis technique, we compared this result with an orientation map of the same sample area using EBSD (Fig. 3b). A map of the local orientation difference: the misorientation angle (Fig. 3c) exhibited an average orientation difference of ~2.1° (Supplementary Figs. 19, 20). We argue that this error is dominated by a geometrical distortion of grains in the EBDS data (Supplementary Fig. 21). In order to minimize this effect we corrected the EBDS map for distortions and removed grain boundaries. Nevertheless, several artifact are still present on the map (Fig. 3c).

Other sources of discrepancies may be connected with orientation dependent ambiguity of SAROM (Fig. 1, Supplementary Fig. 5) and an orientation determination error of EBSD.

Similar to EBSD55, SAROM can be used for the study of extended defects like dislocations and grain boundaries, which e.g., directly correlate with the efficiency of solar cells.
The 3D-SAROM analysis has several limitations. The depth of scanning is limited by the material transparency and Raman scattering cross-section of the sample at laser/Raman scattering wavelengths: for the polycrystalline sapphire study the maximum depth is ~0.1 mm at 785 nm laser wavelength. In-depth SAROM mapping is also limited by off-axis laser refraction effects leading to Raman signal attenuation and decreased axial resolution. In order to minimize these effects we used oil immersion microscope objective for 3D measurements of polycrystalline sapphire. These limitations of in-depth scanning can be partly overcome by increasing the spectra acquisition time. Further development of SAROM may include the use of visible range lasers. In comparison with near infrared lasers, used in the present study, visible lasers will increase the Raman cross-section and the SAROM spatial resolution. However, the choice of excitation sources should also take into consideration the transparency of material at the excitation wavelength and possible resonance Raman effects which may change the Raman tensor coefficients leading to errors in orientation determination or modifications in Raman tensor analysis.

In summary, SAROM is a nondestructive quantitative orientation mapping method with a high diffraction-limited spatial resolution, similar to that of confocal Raman microscopy (Supplementary Fig. 37). It applies to all Raman active inorganic and organic crystalline material. Due to the simultaneous measurement of multiple polarized channels, we have demonstrated fast scanning capabilities: 16 min for the 2D orientation maps of polycrystalline Si (131 × 120 pixels), 46 min for the 2D orientation map of tablet formulation (134 × 134 pixels) and 176 min for the 3D orientation map of polycrystalline sapphire (57 × 56 × 18 pixels). Furthermore, since it is a confocal method, it does not require complex tomographic data reconstruction as in the case of 3D X-ray orientation microscopy. The equipment has a relatively low price compared with 3D-EBSD and high-resolution 3D X-ray microscopy. SAROM is applicable to a broad range of problems in 2D materials, polymers, drugs, and biomolecular research. It is useful in mineralogy, geology, semiconductors (solar cells, microelectronic substrates), ceramics (piezoe-, magneto-, and ferroelectrics), and superhard materials (abrasives, drilling tools, superhard transparent windows). Moreover, the functionality of SAROM can be extended by combination with e.g., confocal Raman microscopy, hyperspectral imaging, or polarized light microscopy. Further development of SAROM can be expanded into instantaneous polarized Raman mapping similar to wide-field Raman microscopy.

The developed method is therefore likely to become a simple, economically accessible, and broadly used characterization tool for 2D/3D crystallographic mapping. Moreover, it expands the range of materials that can be analyzed and could bring new insight into our understanding of the structure of matter.

Methods

Materials. Silicon wafers with surface planes (100), (110), (111) were provided by National Center of Micro- and Nanofabrication in Denmark. Polycrystalline Si solar cell was provided by the factory Pillar (Kyiv, Ukraine). Anhydrous carbamazepine was obtained from Sigma-Aldrich (CAS No.298-46-4). Povidone (polyvinylpyrrolidone, PVP, K60) was obtained from Sigma-Aldrich (CAS No. 9003-39-8). Sapphire monocrystalline plates at a-, c-, m-, and r-planes were purchased from Crystran Ltd. Polycrystalline sapphire sample with dimensions 10 × 5 × 5 mm and average grain size of 20 µm was purchased from CoorsTek GmbH.

EBSD analysis of poly-Si. The surface of the polycrystalline Si was mechanically polished prior to EBSD investigation. Silica microparticles having dimensions of 6, 3, and 1 µm were sprayed on a rotating diamond grinding disc for the polishing.
It was determined that at least three differently polarized laser orientations and three analyzer orientations are required, with mandatory presence of off-axis configuration. In total, we got nine combinations of polarization measurements which can be defined as \(z_1(y_1, y_2, y_3) \), \(z_2(y_1, y_2, y_3) \), \(z_3(y_1, y_2, y_3) \). The angles \(y_1, y_2, y_3 \) can have different values, however in the case of Si analysis with \(\alpha_z \) symmetry we used the following angles: \(y_1 = 0^\circ, y_2 = 45^\circ, y_3 = 90^\circ \), \(y_1 = 45^\circ, y_2 = 0^\circ, y_3 = 90^\circ \), \(y_1 = 90^\circ, y_2 = 0^\circ, y_3 = 90^\circ \). We chose these values as a result of optimization (see Supplementary Note 4, Table 1). Simultaneously obtained experimental data in SAROM setup are shown in Supplementary Figs. 2-4. In general, our system can work with three differently polarized laser beams for a specific crystal symmetry. If required, SAROM is capable to work with more than nine simultaneously acquired polarized channels. The actual number of channels is limited only by the optical design of the system and spectroscopic sensor dimensions.

Laser beam delivery system (LBSD)

The technical realization of the three differently polarized laser spots on the sample focal plane can be performed with two different laser beam delivery optical layouts: 2D- and 3D-SAROM configurations. LBSD in 3D-SAROM consists of three thermally stabilized diode lasers \(L_1, L_2, L_3 \) operated at slightly different wavelengths 781 nm, 783.5 nm and 784.8 nm, respectively. Wavelength of each laser can be finely adjusted by the change of diode temperature in order to get the best spectral distance between vibrational modes. The laser beams have polarization properties: \(l_1 = 0^\circ, l_2 = 45^\circ, l_3 = 90^\circ \) with respect to the x axis in laboratory coordinate system \((x, y, z)\) (Supplementary Fig. 8). The beams are collimated and centered in the optical layout and then focused at the same spatial point on the sample focal plane. Raman scattering responses from the three differently polarized laser beams are then divided on the spectroscopic CCD for analysis due to the spectral difference in the laser frequency, which is around 20 cm\(^{-1}\) (Fig. 2). 3D-SAROM is beneficial for 3D mapping and for materials with low number of phonon modes, where Raman peaks overlap does not lead to significant data analysis problems.

In 2D-SAROM, three differently polarized laser channels were formed via splitting the beam from one laser source with a wavelength of 785 nm. Three laser beams then focused at different coordinates on the sample focal plane (Supplementary Fig. 8). Similar concept was demonstrated in polarization-resolved Raman measurements in liquids [49]. Comparing with 3D-SAROM, spectral profiles in 2D-SAROM are not overlapped at spectroscopic CCD. Therefore, 2D-SAROM is beneficial for 2D mapping with complex Raman spectra, where peaks overlapping can lead to uncertainties in vibration mode responses.

On the other hand, 2D-SAROM needs separate rows on the spectroscopic CCD for the registration of Raman signals from differently polarized laser beams. In the case of 3D orientation measurements in 2D-SAROM configuration, the diffraction limited laser points become blurred and overlapped, due to reflection index-caused aberrations when the laser is focused in the depth of the material [49]. Therefore, for the 3D orientation mapping of polycrystalline sphare we decided to use 3D-SAROM configuration. In such a way, the responses from differently polarized laser spots become non-overlapped on spectroscopic CCD.

Raman beam delivery system (RBDSD)

Another big challenge in SAROM setup is connected with the design of the Raman beam delivery optical path, including Wollaston Analyzer Unit (WAU), which provides simultaneous measurements at three different analyzer orientations: \(0^\circ \) and \(90^\circ \) in on-axis registration and \(90^\circ \) in off-axis registration.

The key module of RBDSD is the WAU. It consists of quartz Wollaston prism, analyzer, and mask (Supplementary Fig. 13). Wollaston prism splits on-axis Raman scattering into two analyzer configurations \(0^\circ \) and \(90^\circ \) off-axis Raman beam pass through the analyzer. Mask works as a spatial filter for improved separation between on-axis and off-axis channels.

After the WAU, Raman beams are coupled by slit focusing lens with a self-designed and patent pending imaging spectrograph (application number PCT/ DK2019/050027) (Supplementary Fig. 9). It is a lens-based spectrograph with a transmission fused silica grating. This grating provides almost polarization-independent spectral efficiency at the level of 96%, which leads to the minimized analysis in polarized Raman measurements and high signal-to-noise spectrographs [53]. Unique feature of the spectrograph design consists in combination of low NA collimation lens with high NA focusing lens. These lenses provide magnification equal to 0.2x, which leads to the compression of the Raman beam energy down to the size when an entire Raman spectrum covers only one row on the spectroscopic array \(y_1 = 0^\circ, y_2 = 45^\circ, y_3 = 90^\circ \).

The self-designed achromatic double-gauss type lens, which consists of six spherical elements (Supplementary Fig. 10). It has a diffraction limited spot size through the entire focal plane, equal to the size of the spectroscopic CCD (30 mm), which provides excellent imaging conditions required for the multichannel SAROM configuration. The overall photograph of the SAROM setup is shown in Supplementary Fig. 11.
each polarization channel. For this purpose, we performed numerical polarization analysis using Zemax Optics Studio and obtained estimation about LP and LA (Latin anisotropy parameter) propagation through each optical element (Supplementary Fig. 14). In order to minimize LP effects produced by the dielectric mirrors and dichroic beamsplitters during beam propagation from the laser source to the detector and from the sample focal plane to the WAU, we optimized the geometry of beam propagation as shown in Supplementary Fig. 14. In this layout, the phase shift between the S and P components of the Raman-scattering vector \(\vec{e} \), produced on the first reflective surface was compensated by the next reflective surface and finally delivered to the sample with minimized artifacts. LA effects are mostly produced by the dichroic mirrors DM1, DM2 and which leads to the rotation of the range of 0°–22.5° depending on the original \(e \) orientation. This deviation was compensated by corresponding choice of polarizations during least square fitting of Euler angles.

Custom microscope objective. In order to provide efficient simultaneous off-axis and on-axis Raman scattering signal registration we designed and constructed custom Raman microscope objective (Supplementary Fig. 12). Zoomed area in Supplementary Fig. 12A illustrates the difference between collecting cones of light scattered in the Silicon and NaOH crystal. As mentioned above, the objective allows performing off-axis measurements at 45° with regard to the surface normal. However, due to high reflectivity index of Si, real collected scattering angle from depth of the sample was around 15°. We confirmed resulting internal angle by the fit of off-axis experimental data on Si wafer with plane (111) (see Supplementary Fig. 4E).

Optical path and components description in SAROM. Here we provide a detailed description of the Raman system, where all components are listed at its appearance in the optical path from the source to the detector. The names of the component correspond to those in Supplementary Fig. 8.

As an excitation source a single mode diode lasers from Thorlabs LD785-SE400 (785 nm, 400 mW) were used. The laser clean-up filters Lf1-Lf4 (Semrock, cat. no. LD01–785/10–12.5) are placed on the beam path after the laser output in order to block unwanted emission background from the laser pumping, reducing its intensity of about six orders of magnitude. In 2D-SAROM setup, the collimated beam from laser was expanded in beam expander (two NIR coated spherical lenses, \(f_1 = 20 \) mm (Edmund Optics, cat. no. 45–792) and \(f_2 = 100 \) mm (Edmund Optics, cat. no. 45–806)) up to the diameter of 10 mm. Expanded beam was divided into three beams by a set of beamsplitters BS1-B5 and polarized BS4 (Edmund Optics, cat. no. 49–005, Edmund Optics, cat. no. 49–870).

In 3D-SAROM setup, we used three diode lasers stabilized at different temperatures in order to control laser wavelength. Each laser beam propagates through separate beam expanders (lenses \(f_1 \), \(f_2 \)). Final beam diameter for three laser beams was 10 mm. All beams combined by polarized beamsplitter BS2 (Edmund Optics, cat. no. 49–870) and non-polarized beamsplitter BS4 (Edmund Optics, cat. no. 49–005).

The collimated beams from LBDS in 2D and 3D configurations reflect from mirrors M1-M6 (Thorlabs, cat. no. BB1-E03) and pass through a motorized power attenuation filter wheel (Standa, cat. no. 10MWA168) with seven optical density (OD) filters inside. SAROM can be commutated to the 2D-SAROM or 3D-SAROM geometries by switching of the motorized flipper mirror MFM (Newport Corp., cat. no. 8893-K-M, mirror from Edmund Optics, cat. no. 63–145).

Then the laser beams reflect from dichroic mirror DM1 (Semrock, cat. no. DX02-R785–25x36) and passes through the dichroic mirror DM2 responsible for the coupling with a visible microscope. Finally, laser beams are directed to the custom made objective (NA = 1.2, focal length 4.1 mm, Supplementary Fig. 12).

The microscope is equipped with a white light LED illumination unit (Thorlabs, cat. no. MNWHL4) and imaging CCD (ToupTek, cat. no. EC3MOS02300KPB). White light from the LED collimates and passes through the edge filter (Semrock, cat. no. FF01–650/SP-25), in order to block the NIR part of the LED emission spectrum. In such a way a visible real-time image can be monitored during the experiment of this study are available from the corresponding author upon reasonable request.

Received: 19 July 2019; Accepted: 8 November 2019; Published online: 05 December 2019

References

1. Adams, B. L. Orientation imaging microscopy: emerging and future applications. Ultramicroscopy 67, 11–17 (1997).
2. Zaefferer, S., Wright, S. I. & Raabe, D. Three-dimensional orientation microscopy in a focused ion beam-scanning electron microscope: a new dimension of microstructure characterization. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 39, 374–389 (2008).
3. Liu, H. H. et al. Three-dimensional orientation mapping in the transmission electron microscope. Science 332, 833–834 (2011).
4. King, A., Johnson, G., Engelberg, D., Ludwig, W. & Marrow, J. Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science 321, 382–385 (2008).
5. Poulsen, H. F. et al. Three-dimensional maps of grain boundaries and the stress state of individual grains in polycrystals and powders. J. Appl. Crystallogr. 34, 751–756 (2001).
6. Larson, B. C., Yang, W., Lee, G. E., Budai, J. D. & Tischler, J. Z. Three-dimensional X-ray structural microscopy with submicrometre resolution. Nature 415, 887–890 (2002).
7. Simons, H. et al. Dark-field X-ray microscopy for multiscale structural characterization. Nat. Commun. 6, 6098 (2015).
8. McDonald, S. A. et al. Non-destructive mapping of grain orientations in 3D by laboratory X-ray microscopy. Sci. Rep. 5, 14663 (2015).
9. Ramabadran, U. & Rougani, B. Determination of crystallographic elements of \(\beta \)-Ga2O3 and LiNbO3 crystals. Adv. Phys. 9, 1–19 (2015).
10. Mizoguchi, K. & Nakashima, S. I. Determination of crystallographic orientations in silicon films by Raman-microprobe polarization measurements. J. Appl. Phys. 65, 2583–2590 (1989).
11. Louden, R. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).
12. Kramert, C., Sturm, C., Schmidt-Grund, R. U. & Grundmann, M. Raman tensor elements of \(\beta \)-Ga2O3. Sci. Rep. 6, 1–9 (2016).
13. Sanna, S. et al. Raman scattering efficiency in LTO\(_{x}\) and LiNbO\(_{3}\) crystals. Phys. Rev. B - Condens. Matter Mater. Phys. 91, 1–9 (2015).
30. Budde, H. et al. Raman radiation patterns of graphene. *Nature Communications*, 2019; 10(5555), https://doi.org/10.1038/s41467-019-13504-8

15. Steele, J. A., Puech, P. & Lewis, R. A. Polarized Raman scattering in biological molecules. *Appl. Spectrosc.* 32, 263–299 (1997).

16. Presser, V. et al. Raman polarization studies of highly oriented organic thin films. *J. Raman Spectrosc.* 40, 2015–2022 (2009).

26. Galvis, L., Dunlop, J. W. C., Duda, G., Fratzl, P. & Masic, A. Polarized Raman scattering from single crystal urea. *Phys. Rev. B* 2151–2161 (2017).

29. Schrof, S., Varga, P., Galvis, L., Raum, K. & Masic, A. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae. *J. Struct. Biol.* 187, 266–275 (2014).
Kiefer, J. Simultaneous acquisition of the polarized and depolarized raman signal with a single detector. *Anal. Chem.* **89**, 5725–5728 (2017).

Acknowledgements

We would like to acknowledge Chaoling Xu for help with acquiring EBSD data and Erik Lauridsen for discussions related to the analysis of 3D Raman data and color code based visualization of the orientation maps. We would like to acknowledge Yury Gogotsy and Asia Sarycheva for conceptual advices regarding manuscript structure. Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN) funded by the Danish National Research Foundation (grant no. DNRF122) and the Velux Foundations (grant no. 9301), Proof of Concept grant (33009) of the Technical University of Denmark.

Author contributions

O.I. invented SAROM principles, designed and built the SAROM microscope, analyzed the data, performed the experiments and wrote the paper, Y.P. analyzed and resolved ambiguities in SAROM, developed algorithms for Raman tensor analysis and color code data visualization, A.K. developed algorithms for Raman tensor analysis and color code data visualization, F.B. identified SAROM ambiguities and supported misorientation analysis, R.S. wrote the software for the Raman microscope and supported in the experiments, M.T. performed EBSD measurements of poly Si, P.O.O. supported pharmaceutical tablet related experiments, H.F.P. and A.B. gave conceptual advice and revised the manuscript.

Competing interests

The authors declare no competing interests.