Patient delay and stage of diagnosis among breast cancer patients in Germany – a population based study

V Arndt1,2, T Stümer1,2, C Stegmaier3, H Ziegler3, G Dhom4 and H Brenner1,2

1Department of Epidemiology, University of Ulm, D-89081 Ulm, Germany; 2Department of Epidemiology, German Centre for Research on Ageing, Bergheimer Strasse 20, D-69115 Heidelberg, Germany; 3Saarland Cancer Registry, Virchowstr. 7, D-66119 Saarbrücken, Germany; 4Am Webersberg 20, D-66424 Homburg/Saar, Germany

Early diagnosis is a tenet in oncology and should enable early treatment with the expectation of improved outcome. Extent and determinants of patient delay of diagnosis in breast cancer patients and its impact on stage of disease were examined in a population based study among female breast cancer patients in Germany. Two hundred and eighty-seven women, aged 18 to 80 years with newly diagnosed invasive symptomatic breast cancer, were interviewed with respect to the diagnostic process. Patient delay was defined as time from onset of first symptoms to first consultation of a doctor. Median patient delay was 16 days among symptomatic patients. Eighteen per cent of all breast cancer patients waited longer than 3 months before consulting a physician. Long patient delay was associated with old age, history of a benign mastopathy, obesity, and indices of health behaviour such as not knowing a gynaecologist for out-patient care and non-participation in general health screening examinations. A strong association between patient delay and stage at diagnosis was observed for poorly differentiated tumours. These results suggest that at risk groups for delaying consultation can be identified and that a substantial proportion of late stage diagnoses of poorly differentiated breast cancer cases could be avoided if all patients with breast cancer symptoms would present to a doctor within 1 month.

Keywords: breast neoplasm; neoplasm staging; socio-demographic factors; health behaviour; diagnostic delay

Early diagnosis is a tenet in oncology and should enable early treatment with the expectation of improved outcome. Extent and determinants of patient delay of diagnosis in breast cancer patients and its impact on stage of disease were examined in a population based study among female breast cancer patients in Germany. Two hundred and eighty-seven women, aged 18 to 80 years with newly diagnosed invasive symptomatic breast cancer, were interviewed with respect to the diagnostic process. Patient delay was defined as time from onset of first symptoms to first consultation of a doctor. Median patient delay was 16 days among symptomatic patients. Eighteen per cent of all breast cancer patients waited longer than 3 months before consulting a physician. Long patient delay was associated with old age, history of a benign mastopathy, obesity, and indices of health behaviour such as not knowing a gynaecologist for out-patient care and non-participation in general health screening examinations. A strong association between patient delay and stage at diagnosis was observed for poorly differentiated tumours. These results suggest that at risk groups for delaying consultation can be identified and that a substantial proportion of late stage diagnoses of poorly differentiated breast cancer cases could be avoided if all patients with breast cancer symptoms would present to a doctor within 1 month.

Brazilian Journal of Cancer (2002) 86, 1034 – 1040. DOI: 10.1038/sj/bjc/6600209 www.bjcancer.com
© 2002 Cancer Research UK

Keywords: breast neoplasm; neoplasm staging; socio-demographic factors; health behaviour; diagnostic delay

Early diagnosis is a tenet in oncology and should enable early treatment with the expectation of improved outcome. Extent and determinants of patient delay of diagnosis in breast cancer patients and its impact on stage of disease were examined in a population based study among female breast cancer patients in Germany. Two hundred and eighty-seven women, aged 18 to 80 years with newly diagnosed invasive symptomatic breast cancer, were interviewed with respect to the diagnostic process. Patient delay was defined as time from onset of first symptoms to first consultation of a doctor. Median patient delay was 16 days among symptomatic patients. Eighteen per cent of all breast cancer patients waited longer than 3 months before consulting a physician. Long patient delay was associated with old age, history of a benign mastopathy, obesity, and indices of health behaviour such as not knowing a gynaecologist for out-patient care and non-participation in general health screening examinations. A strong association between patient delay and stage at diagnosis was observed for poorly differentiated tumours. These results suggest that at risk groups for delaying consultation can be identified and that a substantial proportion of late stage diagnoses of poorly differentiated breast cancer cases could be avoided if all patients with breast cancer symptoms would present to a doctor within 1 month.

Study design and study population

A population-based, statewide study on diagnostic delay and late stage diagnosis was conducted among patients with various forms of cancer in Saarland, a state with about 1 million inhabitants in Western Germany (Verlauf der diagnostischen Abklärung, VERDI). Details of the study have been reported elsewhere (Arndt et al, 2001). For the purpose of this study, all women aged 18 to 80 years who were residents of the state of Saarland with primary, symptomatic and invasive breast cancer of any histological type, diagnosed between 1 October, 1996 and 28 February, 1998, were eligible. Patients with recurrent disease at the time of the interview, who died before the interview, who were not fully informed about their breast cancer diagnosis, or with no or only little German language
skills were not considered. Treating gynaecologists, surgeons, oncologists and radio-therapists from all hospitals in Saarland and all adjacent counties identified potential study participants. After written informed consent, 458 breast cancer patients were reported to the study centre representing about 57% of all new incident cases aged 18 to 80 years during the recruitment period according to projections by the Saarland Cancer Registry. Asymptomatic women whose tumours were detected by screening (n=67) or incidentally during the diagnostic work-up of a different disease (n=26) and also symptomatic patients who did not meet all of the above mentioned inclusion criteria (n=64) were excluded for this analysis. Overall, 287 out of 301 eligible women reported to the study centre with symptomatic breast cancer could be recruited (response rate=95.3%). The study participants did not substantially differ from the source population in terms of basic sociodemographic characteristics with the exception of a slightly higher proportion of younger patients.

Data collection
Structured face-to-face interviews were administered either during the first hospitalisation due to breast cancer (63%) or, in case the patient already had been discharged, in respondents’ homes (37%). Fifty per cent of all interviews took place within 3 weeks after diagnosis and 90% within 8 weeks after diagnosis. The interviews were conducted by trained physicians and required 45 to 90 min to complete. The interviews contained detailed questions concerning disease history from first complaint to definite diagnosis, general health status, health practices, availability of health services, social network and socio-economic factors. Nature of first symptoms was categorised into lump, breast symptoms other than lump and symptoms not related to the breast. In addition, histopathological data and results from clinical examinations were abstracted from the hospital records of each study participant. Information regarding tumour stage relied on histopathological (T, N) and clinical data (M). Staging was carried out within 1 month after the first consultation of a physician in over 75% of all patients.

Measure of patient delay
Patient delay was defined as the duration of symptoms in days before the first medical consultation. In order to minimise recall bias, the study participants were asked to remember the onset of symptoms as harmless was the most important reason for patient delay. Considering symptoms as harmless was the most important reason for more than half of the patients (55.3%) to delay seeking doctors’ advice for more than 1 month (Table 2). This finding did not substantially vary when patients’ answers were stratified by duration of symptom, age or type of first symptom. Time constraints (14.6%) and considering symptoms as temporary (13.6%) were the second and third most common reasons for patient delay. Older women tended to consider their symptoms as temporary more often than middle aged or younger women (20.5% vs 11.6% vs 4.8%). Although the data rely on small numbers, this trend was statistically significant (Pr=0.02).

Reasons for delaying seeking care
Statistical methods
To test the association between socio-economic, health behaviour, as well as health related factors and patient delay, age adjusted χ²-tests using Cochran–Mantel–Haenszel–Statistics were employed. Socio-economic factors included nationality (German, other), place of residence (<10000, 10000 to <100000, ≥100000 inhabitants), living arrangements (living alone, with spouse only, with spouse and others, with others – not spouse), education (<10 years, ≥10 years), current employment status (housewife/retired, employed, unemployed), most recent occupation (white collar, blue collar, never worked), and health insurance (non private, private). Indicators of health behaviour included frequency of breast self examination (≥1/month, <1/month), history of professional breast cancer screening (ever/never during past 5 years) and general health check-up examinations (ever/never during past 5 years). Patients were also asked whether they had a gynaecologist for out-patient care prior to the onset of the current disease. A proxy measure of interest in health issues was defined as the number of sources through which the patient informed herself about health issues before the current disease became apparent. The lowest tertile was considered to represent low interest in health issues. Further covariates describing health characteristics or family history included body mass index (BMI), comorbidity (defined as being treated for cardiovascular disease, diabetes mellitus, asthma, chronic obstructive pulmonary disease, other cancers, or arthritis during the past year), history of benign mastopathy, use of hormones (contraceptives or hormone replacement therapy) during the year before diagnosis and history of breast cancer among a first degree relative.

RESULTS
Study population
The characteristics of the study population (n=287) are shown in Table 1. The mean age of all women was 57.3 years. A small minority was non-German and less than a quarter had 10 or more years of education. Tumour spread at time of diagnosis was confined to the breast in 48.4% of all women, whereas 51.6% of all patients already showed evidence of more advanced disease. Symptoms of the breast were the trigger to consult a physician in over 96% of all women. A lump in the breast was the first symptom in 2 out of 3 women (66.9%). Other symptoms of the breast such as an inverted nipple, skin oedema, peau d’orange, discharge or bleeding were reported less frequently (29.6%). The majority of all women consulted a doctor within the first month. The median patient delay was 16 days but 1 out of 6 women (17.4%) waited more than 3 months before seeking professional health care.

Determinants of long patient delay
Bivariate analysis indicated a strong association between age and patient delay (Table 3). In general, older women waited longer...
than younger women before presenting their symptoms to a physi-
cian ($P=0.01$). For example, a patient delay of more than 3 months
was over three times more often reported by women over 65 years
of age (24.7%) than among women under 50 years of age (7.1%).
Because of the important role of age, adjustment for age was
applied in all further analyses regarding determinants of patient
delay. None of the other socio-economic factors was significantly
associated with patient delay.

Among variables describing health characteristics, obesity
showed the strongest association with patient delay (Table 4).
The proportion of women waiting over 3 months was 25.7%
among women with BMI >30 kg m$^{-2}$ compared to 15.0% for
women with BMI in the range 25 to 30 kg m$^{-2}$ and 13.5% for
women with BMI <25 kg m$^{-2}$ ($P=0.02$). After controlling for
age this difference was still visible but was no longer statistically
significant ($P=0.09$).

Women who already had a gynaecologist for out-patient care
prior to the onset of symptoms or women who attended a general
health check-up during the last 5 years also sought professional
medical advice earlier than women who did not ($P<0.05$ in crude
and age standardised analyses). Patient delay tended to be slightly
less common among women who reported at least monthly breast
self examination or women who underwent professional breast
cancer screening during the past 5 years but the differences were
small and not statistically significant. There were also minor,
non-significant differences in patient delay according to tumour
characteristics such as tumour differentiation ($P=0.07$) and nature
of first symptoms ($P=0.24$). If anything, patients with more aggres-
tive tumours (GIII/GIV) tended to present faster to a doctor than
women with better differentiated tumours (GI/GII), and patient
delay was somewhat shorter among women who noticed a lump
as first symptom compared to other women.

Multivariate analysis Results of the multivariate analysis are
shown in Table 5. Older age, higher body mass index, a history
of benign mastopathy, not knowing a gynaecologist for out-patient
care, and not having a general health check-up during the past 5
years prior to the onset of breast cancer symptoms were identified
as the most predictive and independent variables in a proportional
odds model comparing patient delay >3 months vs 1 to 3 months
vs <1 month. Examining the proportional odds-assumption
revealed heterogeneity in the strength of the association between
length of delay and some of the predictors (in particular ‘body
mass index’ and ‘not knowing an out-patient gynaecologist’).

We therefore evaluated the association between all five variables
and intermediate (1 to 3 months) and long (>3 months) patient
delay in two separate logistic models. Short patient delay (<1 month)
represented the reference group in both models. All of the
above identified predictors were statistically significant determi-
nants in the model comparing patient delay >3 months vs <1 month,
whereas the observed associations between most of these
variables and intermediate patient delay (1 to 3 months) were
generally weaker when confining the analysis to patient delay of
less than 3 months. To rule out possible residual confounding by
age, we performed additional analyses with a linear and a quadratic
age term that revealed virtually unchanged effect estimates (data
not shown).

Association between patient delay and tumour stage
Late stage breast cancer was found in 51.6% of all patients (Table
6) and it tended to be more frequent among women with patient

Table 1 Description of study population

n	%	
Total	287	100.0
Socio-economic characteristics		
Age (years)		
<50	85	29.6
50–65	121	42.2
>65	81	28.2
mean, standard deviation	57.3	12.3
Nationality		
German	278	96.9
Other	9	3.1
Education		
<10 years	215	75.2
10 years and more	71	24.8
Tumour characteristics		
Stage		
Localised	139	48.4
Regional	138	48.1
Distant	10	3.5
Grading		
GI/GII	152	53.3
GI/GIV	133	46.7
Symptoms		
Lump	192	66.9
Breast other than lump	85	29.6
Other (arm, axilla, distant)	10	3.5
Patient delay		
<1 month	183	64.1
1–3 months	53	18.5
>3 months	50	17.4
median, interquartile range (days)	16	4–59

Table 2 Reported main reason for patient delay >1 month according to length of delay, age and first symptom

Patient delay	1–3 months	>3 months	Age	<50 years	50–65 years	>65 years	Symptom	Lump	Other	Total
n	Col %	n	Col %	n	Col %	n	Col %	n	Col %	
Considered symptoms as:										
Harmless	28	52.8	29	58.0	12	57.1	25	58.1	20	51.3
Temporary	7	13.2	7	14.0	1	4.8	5	11.6	8	20.5
Time constraints	7	13.2	8	16.0	4	19.1	5	11.6	6	15.4
Fear of diagnostics, surgery	5	9.4	4	8.0	2	9.5	4	9.3	3	7.7
Had to wait for an appointment	4	7.6	0	0.0	1	4.8	2	4.7	1	2.6
Other, not stated	2	3.8	2	4.0	1	4.8	2	4.7	1	2.6
Total	53	100	50	100	21	100	43	100	39	100

Percentages within each column.

British Journal of Cancer (2002) 86(7), 1034–1040 © 2002 Cancer Research UK
Patients delay and breast cancer

V Arndt et al

Table 3: Patient delay in breast cancer patients by socio-economic factors

	n	Median delay (days)	Proportions of patients with delay (row %)	P²			
			<1 month	1–3 months	>3 months	Crude	Age adjusted
Total	287	16	64.1	18.5	17.4		
Age (years)							
<50	85	12	75.3	17.7	7.1	0.01	
50–65	121	14	64.5	15.7	19.8		
>65	81	24	51.9	23.5	24.7		
Nationality							
German	278	16	64.0	18.0	18.0	0.25	
Foreign	9	19	66.7	33.3	0.0	0.30	
Size of town (number of citizens)							
<10 000	160	16	63.8	15.6	20.6		
10 000–99 999	94	17.5	63.8	21.3	14.9	0.36	
≥100 000	33	14	66.7	24.2	9.1		
Living arrangement							
Single	73	21	56.2	23.3	20.6	0.13	
With other than spouse	36	22.5	58.3	22.2	19.4	0.64	
With spouse only	101	16	64.4	13.9	21.8		
With spouse and others	76	12.5	73.7	18.4	7.9		
Education							
<10 years	215	16	62.8	18.6	18.6	0.49	
10 years and more	71	14	69.1	18.3	12.7	0.98	
Current employment status							
Housewife/retired	176	20	60.8	19.3	19.9	0.28	
Employed	93	13	72.0	17.2	10.8	0.68	
Unemployed	16	25.5	56.2	18.8	25.0		
Last occupational class							
White collar	158	15	63.9	21.5	14.6	0.41	
Blue collar	53	16	67.9	13.2	18.9	0.46	
Never worked	71	16	62.0	15.5	22.5		
Health insurance							
Non private	252	16	64.7	17.5	17.9	0.37	
Private	34	13.5	61.8	26.5	11.8	0.36	

delay >3 months (58.0%) than among women who consulted a doctor within 1 month after onset of symptoms (48.9%; P_trend=0.22). There was a remarkable difference in the association between patient delay and stage at diagnosis of breast cancer when stratified by tumour differentiation, however. Among well differentiated tumours (GI/GII), the proportion of late stage breast cancer did not change with increasing patient delay (P_trend=0.83), whereas a monotonic trend between length of patient delay and late stage diagnosis was observed among women with poorly differentiated breast tumours (P_trend=0.03).

Given a mean proportion of 48.9% of late stage diagnosis among women with short delay (<1 month), 140 (=287 × 48.9%) late stage breast cancer cases would have been expected in our study sample if all women had attended a doctor within 1 month after onset of symptoms. Given that 148 women in our sample presented with late stage disease, we estimate that late stage diagnosis might perhaps have been prevented in 8 out of 58 (13.8%) women with patient delay ≥1 month. As noted above, our data indicate that the association between patient delay and tumour stage seems to be restricted to women with poorly differentiated breast cancer tumours. The corresponding proportion of possibly preventable late stage diagnoses amounts to 8 out of 28 (28.6%) cases among women with poorly differentiated breast cancer tumours.

DISCUSSION

Breast cancer is not a medical emergency but the procrastination of onset of diagnostic work-up and treatment is likely to result in further advanced disease and its probable sequels like more invasive surgery or higher cause specific mortality.

The median patient delay in our population based study was 16 days. This is in agreement with findings from pertinent studies published during the last decade (Coates et al, 1992; Afzelius et al, 1994; Burgess et al, 1998) and is further evidence of a favourable trend towards shorter delay during the last two decades when compared with earlier studies (Cameron and Hinton, 1968; Dennis et al, 1975; Fisher et al, 1977; Elwood and Moorehead, 1980; MacArthur and Smith, 1981; Dohrmann et al, 1982; Vernon et al, 1985; Neale et al, 1986). This trend might be attributable to an increasing health awareness among women due to extensive information campaigns which address breast cancer warning signs in many developed countries.

Despite these efforts, our study indicates that 1 out of 6 women (17.4%) aged 18 to 80 years with symptomatic breast cancer is still waiting 3 months or more before first consultation of a doctor. Since older people seem to delay longer, the overall proportion might even be higher if we had included patients aged over 80 years. Downplaying the significance of breast related symptoms seems to represent a major cause for delay, whereas fear and difficulties in scheduling an appointment appear to play a minor role in this context. This finding is similar to an earlier report by Coates et al (1992), where delay was substantially caused by naive perception regarding the vital significance of breast cancer symptoms.

We observed that patients’ characteristics associated with delay comprise older age, history of benign mastopathy, obesity, not
attending health check-up examinations during past 5 years, and not knowing a gynaecologist for out-patient care.

Older women are more prone to procrastinate early detection of breast cancer resulting in more advanced disease and fewer asymptomatic cases (Holmes and Hearne, 1981; Goodwin et al., 1986; Lierman, 1988). Similar findings have been reported from various countries (Polednak, 1986; Yancik et al., 1989; Coates et al., 1992; Afzelius et al., 1994; Fowble et al., 1994; Ramirez et al., 1999). Several explanations why patient delay is more often found among older women have been suggested. Older women may attribute early breast cancer symptoms to comorbid conditions or normal ageing (Facione, 1993). There is some evidence for this explanation in our data, if we look at the high proportion among older women who considered their symptoms as temporary. However, elderly people may also be unaware of the fact that they are at higher risk compared to younger women. Fatalism, e.g. a sense that one has lived long enough, might be another reason for the higher proportion of patient delay among older breast cancer patients (Facione, 1993; Goodwin et al., 1986; Lierman, 1988).

We are not aware of any other study that has examined the history of benign mastopathy as a determinant of patient delay. One reason why those women procrastinate seeking professional care might be their experience that former episodes of similar breast tissue alterations have been considered as benign by their gynaecologists. Thus, it might be worthwhile to encourage women with known benign breast disease to present new breast symptoms quickly to a gynaecologist in order not to delay diagnosis of breast cancer.

In Germany, women may directly consult gynaecologists for out-patient care of gynaecological disorders. Only a small proportion of women will consult a family doctor with disorders of the breast. Thus, not knowing a gynaecologist for out-patient care is an obvious barrier causing delay of diagnostics. Since regular clinical breast examinations are recommended as a breast cancer screening measure and covered by all health insurance plans in Germany, every woman should know a gynaecologist for out-patient care. Reasons why some women don’t have a gynaecologist deserve further study.

Similarly, a general health check-up is offered to all members of regular health insurance plans aged 36 years and older in Germany.

Health characteristics, family history	Proportions of patients with delay (row %)	\(P^2\)
Body mass index		
<25 kg m\(^{-2}\)	13	0.02
25 – 30 kg m\(^{-2}\)	18.5	0.09
≥30 kg m\(^{-2}\)	21	
Comorbidity1		
No	14	0.18
Yes	17.5	0.22
History of benign mastopathy		
No	13.5	0.42
Yes	17	0.21
Family history of breast cancer		
No	16.5	0.65
Yes	7	0.69

Health behaviour		
Knowing a gynaecologist for out-patient care		
Yes	13.5	0.002
No	22.5	0.03
Breast self-examination		
Yes, at least monthly	16	0.33
No, rarely (<1/month)	19.2	0.31
Breast cancer screening during past 5 years		
Yes	18.1	0.09
No	17.3	0.55
General health check-up during past 5 years		
Yes	15.3	0.04
No	23.1	0.02
Interest in health issues2		
Regular	16	0.61
Low	17.5	0.58
Tumour characteristics		
Grading		
Gll/II	16	0.07
GIII/IV	20	0.13
First symptom		
Lump	17.2	0.24
Other	20.0	0.40

1Defined as being treated for cardiovascular disease, diabetes mellitus, asthma, chronic obstructive pulmonary disease, other cancers or arthritis during past year. 2Defined by the number of sources reported by the patient to inform herself about health issues before the current disease became apparent. The lowest tertile (≤3 sources) was considered to represent low interest in health issues.

Table 4 Patient delay in breast cancer patients by health characteristics, health behaviour and tumour related factors

n	Median delay (days)	<1 month	1 – 3 months	>3 months	Crude Age adjusted	
126	13	73.0	13.5	13.5	0.02	0.09
80	18.5	57.5	27.5	15.0	0.04	0.02
70	21	57.1	17.4	25.7		
113	14	69.0	13.3	17.7	0.18	0.22
174	17.5	60.9	21.8	17.2		
216	13.5	65.3	19.0	15.7	0.42	0.21
71	21	60.6	16.9	22.5		
250	16.5	63.2	19.2	17.6	0.65	0.69
37	7	70.3	13.5	16.2		

n	Median delay (days)	<1 month	1 – 3 months	>3 months	Crude Age adjusted	
202	13.5	67.8	19.8	12.4	0.002	0.03
84	22.5	55.9	14.3	29.8		
146	143	66.4	19.2	14.4	0.33	0.31
127	16	61.4	17.3	21.3		
205	14	67.3	18.1	14.6	0.09	0.55
81	23	55.6	19.7	24.7		
163	13	69.9	15.3	14.7	0.04	0.02
121	21	55.4	23.1	21.5		
197	16	66.0	17.2	16.8	0.61	0.58
90	17.5	60.0	21.1	18.9		

n	Median delay (days)	<1 month	1 – 3 months	>3 months	Crude Age adjusted	
152	20	61.2	16.5	22.4	0.07	0.13
133	14	67.7	20.3	12.0		
192	14	67.2	17.7	15.1	0.24	0.40
95	20	57.9	20.0	22.1		

Clinical Table 4 Patient delay in breast cancer patients by health characteristics, health behaviour and tumour related factors
Table 5 Determinants of long patient delay in breast cancer patients

Variable	Proportional odds-regression\(a\)	Binary logistic regression I	Binary logistic regression II			
	3 months vs 1–3 months vs < 1 month (n=273)	1–3 months vs < 1 month (n=226)	> 3 months vs < 1 month (n=223)			
	Crude OR (95 CI)	Adjusted OR\(b\) (95 CI)	Crude OR (95 CI)	Adjusted OR\(b\) (95 CI)	Crude OR (95 CI)	Adjusted OR\(b\) (95 CI)
Age						
<50 years	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)		
50–65 years	1.8 (1.0–3.4)	1.9 (1.0–3.6)	1.0 (0.5–2.2)	1.2 (0.5–2.7)		
>65 years	2.9 (1.5–5.6)	2.4 (1.1–5.1)	1.9 (0.9–4.2)	2.1 (0.8–5.4)		
BMI						
<25 kg m\(^{-2}\)	1.0 (referent)	1.0 (referent)	1.0 (referent)	1.0 (referent)		
25–30 kg m\(^{-2}\)	1.8 (1.0–3.2)	1.6 (0.9–3.0)	2.6 (1.3–5.4)	2.6 (1.2–5.8)		
>30 kg m\(^{-2}\)	2.1 (1.2–3.9)	2.0 (1.0–3.9)	1.6 (0.7–3.7)	1.8 (0.8–4.6)		
History of benign mastopathy	1.3 (0.8–2.2)	1.9 (1.0–3.4)	1.0 (0.5–2.0)	1.1 (0.5–2.4)		
No out-patient gynaecologist	1.9 (1.2–3.2)	1.5 (0.8–2.7)	0.9 (0.4–1.8)	0.6 (0.3–1.5)		
No general health check-up during past 5 years	1.8 (1.1–2.9)	2.2 (1.3–3.6)	1.9 (1.0–3.5)	2.2 (1.1–4.3)		

Abbreviations: OR=odds ratio, 95 CI=95% confidence interval. \(a\)Stepwise model selection (\(P_{\text{entry}, \text{stay}}=0.15\)), proportional odds assumption rejected. \(b\)Adjusted for all variables presented in the table; estimates virtually unchanged in models with a linear and a quadratic age term (data not shown).

Table 6 Patient delay and risk of late stage breast cancer at time of surgery by tumour differentiation

Patient delay	Late stage diagnosis\(a\)	All women (n=287)	GI/II (n=152)	GIII/IV (n=133)		
	%	OR (95 CI)	%	OR (95 CI)	%	OR (95 CI)
<1 month	48.9	1.0 (referent)	51.6	1.0 (referent)	46.7	1.0 (referent)
1–3 months	54.7	1.3 (0.7–2.3)	48.0	0.9 (0.4–2.1)	59.3	1.7 (0.7–4.0)
>3 months	58.0	1.4 (0.8–2.7)	50.0	0.9 (0.4–2.1)	75.0	3.4 (1.0–11.4)
\(P_{\text{trend}}\)	0.32	0.83	0.03			

\(a\)Late stage diagnosis=lymph node involvement or distant spread of breast cancer at time of surgery. Abbreviations: OR=odds ratio, 95 CI=95% confidence interval.

Annals of Oncology 2003 14(4) 537–544

© 2002 Cancer Research UK

British Journal of Cancer (2002) 86(7), 1034–1040

every 2 years. Utilisation of this screening examination reflects attitude towards screening programmes and is likely to be a good marker for health behaviour and general health care utilisation. Thus it is not surprising to observe that women who attend the general health check-up screening examination are more likely to present their breast symptoms in a timely manner to a physician than those who do not attend these screening examinations.

In contrast to utilisation of the general health check-up, breast cancer screening behaviour either measured as breast self examination or professional breast examination (including but not restricted to mammography) was not associated with patient delay once age was controlled for. Although women who undergo breast cancer screening tend to be more health conscious, they might feel less worried about some vague alterations of the breast if the last mammography or clinical examination had been normal. Other studies show no clear evidence of an association between lack of breast self examination and patient delay (Huguley et al, 1988; Coates et al, 1992; Burgess et al, 1998).

The detection of a breast tumour is known to be impeded among obese women assuming that increased BMI is a proxy measure for increased breast size. Although several studies reported an association between increasing body mass index and advanced stage (Ingram et al, 1989; Hunter et al, 1993; Reeves et al, 1996) it is not clear why obese women seem to wait longer to present their breast cancer symptoms to a doctor. The results from our multivariable analyses indicate that the association between body mass index and patient delay is not explained by differences in health behaviour (as measured in our study), social class or education. One explanation could be that they notice some symptoms but that these symptoms might be less impressive and distinct in women with large breasts.

Most adult onset tumours are slow growing and have been present one to several years at time of diagnosis. It is estimated that the average breast cancer has been growing for 7 years at time of diagnosis (Eckhardt, 1990). Thus a few days or weeks delay is unlikely to make any significant difference in long term outcome. However, within our study population, there was a tendency towards more advanced stage among women with patient delay longer than 1 month. The absence of a significant association between patient delay and stage or survival observed in some studies may reflect variations in growth rate (Gardner, 1978) as expressed by tumour differentiation. When we stratified by tumour grade, this association between patient’s delay and stage was stronger among poorly differentiated tumours which tend to grow faster. Our data indicate that a substantial proportion of late stage diagnoses of poorly differentiated breast cancer cases could be avoided if all patients with breast cancer symptoms would present to a doctor within 1 month. A similar finding was reported by Facione (1993) and Feldman et al (1983), who also described a stronger association between delay and survival among women with more aggressive tumours.

A major strength of our study was the careful and detailed collection of information on patient delay in personal interviews conducted by trained personnel in addition to obtaining all pertinent information from medical records. In general, recall of delay and symptoms is considered to be fairly high (Porta et al, 1996). Collecting information regarding date of onset of symptoms and date of first consultation is probably more reliable than asking
patients directly about length of delay and also more accurate than using data based on hospital records which are often obtained in a non-standardised manner. In general, hospital data also do not provide information regarding causes of delay, and the duration of symptoms obtained from hospital records is likely to comprise both patient delay and provider delay until the date of hospitalisation.

A further advantage of our study is the assessment and analysis of a wide range of individual factors that might influence patient’s behaviour. To our knowledge, this work is unique in looking simultaneously at socio-economic, health behaviour and other related factors in a population based sample of breast cancer patients.

CONCLUSIONS

These results suggest that at risk groups for delaying consultation can be identified and that a substantial proportion of late stage diagnoses of poorly differentiated breast cancer cases could be avoided if all patients with breast cancer symptoms would present to a doctor within 1 month.

ACKNOWLEDGEMENTS

The authors thank Drs Corinna Hetke, Wiebke Michaels, Annelie Becker, and Marianne Schramm for conducting the interviews and Rolf Friemond, Rainer Müller, Gabriele Berg, Daniela Österle and Dietlind Wehrhahn for technical assistance. This study was supported by the German Cancer Foundation (Deutsche Krebshilfe, Project Number 70-1816).

REFERENCES

Afzelius P, Zedeler K, Sommer H, Mouridsen HT, Blichert-Toft M (1994) Patient’s and doctor’s delay in primary breast cancer. Prognostic implications. Acta Oncol 33: 345 – 351

Arndt V, Stürmer T, Stegmaier C, Ziegler H, Dhom G, Brenner H (2001) Social and demographic factors, health behavior and late stage diagnosis of breast cancer in Germany – a population based study. J Clin Epidemiol 54: 719 – 727

Burgess CC, Ramirez AJ, Richards MA, Love SB (1998) Who and what influences delayed presentation in breast cancer? Br J Cancer 77: 1343 – 1348

Cameron A, Hinton J (1968) Delay in seeking treatment for mammary tumors. Cancer 21: 1121 – 1126

Coates AS (1999) Breast cancer: delays, dilemmas, and delusions. Lancet 353: 1112 – 1113

Coates RJ, Braunsfeld DD, Wesley M, Hankey B, Eley JW, Greenberg RS, Flanders D, Hunter CP, Edwards BK, Forman M (1992) Differences between black and white women with breast cancer in time from symptom recognition to medical consultation. J Natl Cancer Inst 84: 938 – 950

Dennis CR, Gardner B, Lim B (1975) Analysis of survival and recurrence vs. patient and doctor delay in treatment of breast cancer. Cancer 35: 714 – 720

Dohrmann PJ, Hughes ES, McDermott F, Price A (1982) Symptom duration, presentation, and survival of breast cancer in Germany – a population based study. Prognostic implications. Cancer 51: 1226 – 1229

Facione NC (1993) Delay versus help seeking for breast cancer symptoms: a critical review of the literature on patient and provider delay. Soc Sci Med 36: 1521 – 1534

Feldman JG, Saunders M, Carter AC, Gardner B (1983) The effects of patient delay and symptoms other than a lump on survival in breast cancer. Cancer 51: 1226 – 1229

Fisher ER, Redmond C, Fisher B (1977) A perspective concerning the relation of duration of symptoms to treatment failure in patients with breast cancer. Cancer 40: 3160 – 3167

Fowble BL, Schultz DJ, Overmoyer B, Solin LJ, Fox K, Jardines L, Orel S, Glick JH (1994) The influence of young age on outcome in early stage breast cancer. Int J Radiat Oncol Biol Phys 30: 23 – 33

Gardner B (1978) The relationship of delay in treatment to prognosis in human cancer. Prog Clin Cancer 7: 123 – 133

Goodwin JS, Sarnet JM, Key CR, Humble C, Kuntviri D, Hunt C (1986) Stage at diagnosis of cancer varies with age of patient. J Am Geriatr Soc 34: 20 – 26

Holmes FF, Hearne E (1981) Cancer stage-to-age relationship. Implications for cancer screening in the elderly. J Am Geriatr Soc 29: 55 – 57

Huguley CM, Brown RL, Greenberg RS, Clark WS (1988) Breast self-examination and survival from breast cancer. Cancer 62: 1389 – 1396

Husák J, Redmond CK, Chen VW, Austin DF, Greenberg RS, Correa P, Mass HB, Forman MR, Wesley MN, Blacklow RS (1993) Breast cancer: factors associated with stage at diagnosis in black and white women. Black/White Cancer Survival Study Group. J Natl Cancer Inst 85: 1129 – 1137

Ingram D, Nottage E, Siobhan NG, Sparrow L, Roberts A, Wilcox D (1989) Obesity and breast cancer – the role of the female sex hormones. Cancer 64: 1049 – 1053

Lickley HL (1997) Primary breast cancer in the elderly. Can J Surg 40: 341 – 351

Lierman LM (1988) Discovery of breast changes. Cancer Nursing 11: 352 – 361

MacArthur C, Smith A (1981) Delay in breast cancer and the nature of presenting symptoms. Lancet 1: 601 – 603

Neale AV, Tilley BC, Vernon DW (1986) Marital status, delay in seeking treatment and survival from breast cancer. Soc Sci Med 23: 305 – 312

Polidnak AP (1986) Breast cancer in black and white women in New York State. Case distribution and incidence rates by clinical stage at diagnosis. Cancer 58: 807 – 815

Porta M, Malats N, Belloc J, Gallen M, Fernandez E (1996) Do we believe what patients say about their neoplastic symptoms? An analysis of factors that influence the interviewer’s judgement. Eur J Epidemiol 12: 553 – 562

Ramirez AJ, Westcombe AM, Burgess CC, Sutton S, Littlejohns P, Richards MA (1999) Factors predicting delayed presentation of symptomatic breast cancer: a systematic review. Lancet 353: 1127 – 1131

Reeves MJ, Newcomb PA, Remington PL, Marcus PM, MacKenzie WR (1996) Body mass and breast cancer. Relationship between method of detection and stage of disease. Cancer 77: 301 – 307

Richards MA, Westcombe AM, Love SB, Littlejohns P, Ramirez AJ (1999) Influence of delay on survival in patients with breast cancer: a systematic review. Lancet 353: 1119 – 1126

Sainsbury B, Johnston C, Haward B (1999) Effect on survival of delays in referral of patients with breast-cancer symptoms: a retrospective analysis. Lancet 353: 1132 – 1135

Vernon SW, Tilley BC, Neale AV, Steinfeldt L (1985) Ethnicity, survival, and delay in seeking treatment for symptoms of breast cancer. J Natl Cancer Inst 77: 1563 – 1571

Yancik R, Ries LG, Yates JW (1989) Breast cancer in aging women. A population-based study of contrasts in stage, surgery, and survival. Cancer 63: 976 – 981