A positive solution to Hilbert’s 10th problem

Michael Pfender*

April 2014
last revised July 18, 2014

Abstract

Polynome codes and code evaluation; arithmetical theory frames; μ-recursive race for decision; decision correctness; decision termination in Zermelo-Fraenkel set theory ZFC+ with axiom of choice and consistency provability; decision correctness in theory $T = \text{PR}$ of Primitive Recursion; comparison with the negative result of Matiyasevich; positive solution for each single diophantine polynomial in p. r. non-infinite-descent theory $\pi\text{R} = \text{PR} + (\pi)$.

Contents

1 Hilbert’s 10th Problem 3

2 Polynome coding and code evaluation 4

3 Arithmetical frame theories 5

*michael.pfender@alumni.tu-berlin.de
Introduction

Within theory $\text{ZFC}^+ = \text{ZFC} + \text{Con}_{\text{ZFC}}$ of Zermelo-Fraenkel set theory with axiom of choice AC, strengthened by formula Con_{ZFC} which is to express ZFC’s internal, gödelised consistency, we solve Hilbert’s 10th problem positively: we organise decision of diophantine polynome codes—decision on overall non-nullity—as an enumerative μ-recursive race for a (first) zero (counterexample), against race for a first internal ZFC-non-nullity proof for a given such polynomial code, given as the (nested) list of coefficients. Comparison with Matiyasevich’s negative solution of Hilbert’s 10th problem gives inconsistency of theory $\text{ZFC} + \text{Con}_{\text{ZFC}}$ whence self-inconsistency $\text{ZFC} \vdash \neg \text{Con}_{\text{ZFC}}$.

In a final section we plug our positive solution of the problem into the constructive framework of p. r. non-infinite descent theory $\pi \textbf{R} = \text{PR} + (\pi)$ out of Arithmetical Foundations in the References.
This is to give a decision algorithm for each single diophantine equation (in a uniform way), as asked in the original Hilbert’s 10th problem.

1 Hilbert’s 10th Problem

We attempt a positive solution to Hilbert’s 10th problem. In its original form it reads:

10. DETERMINATION OF THE SOLVABILITY OF A DIOPHANTINE EQUATION Given a diophantine equation with any number of unknown quantities and with rational integer numerical coefficients: To devise a process according to which it can be determined by a finite number of operations whether the equation is solvable in rational integers.

[translation quoted from Matiyasevich 1993.]

Formally, this text allows for a separate decision algorithm (“process”) for each diophantine polynomial. But it is clear that a decision-family must be uniform in a suitable sense.

Correctness of our alleged \(\mu \)-recursive decision algorithm \(\nabla_{\text{ZFC}} : \text{DIO} \rightarrow 2 = \{0, 1\} \) builds, within \(\text{ZFC}^+ \), on diophantine soundness inferred by Con\(_{\text{ZFC}}\) over \(\text{ZFC} \). Termination follows from (countable) Choice. This already within \(\text{ZFC} \). Together this gives the wanted decision \(\nabla = \nabla_{\text{ZFC}} \) within \(\text{ZFC}^+ \), of all polynome codes in \(\text{DIO} \subset \mathbb{N} \).

Comparison with Matiyasevich’s negative Theorem, unsolving Hilbert’s 10th Problem, theorem in particular of (classically quantified Arithmetical Theory) \(\text{ZFC}^+ \), gives a contradiction within \(\text{ZFC}^+ \), hence self-inconsistency of \(\text{ZFC} \), and from that in particular \(\omega \)-inconsistency.

In a final section we show correctness and irrefutable termination of localised decision \(\nabla[D] \)—for each single diophantine
polynomial $D = D(\vec{x})$—within the constructive framework of p.r. finite-descent-theory $\pi R = \pi R + \text{Con}_\pi R$ out of op. cit.

2 Polynome coding and code evaluation

Diophantine polynomials $D = D(\vec{x})$ are TeX/ASCII coded into

$$D = D(\vec{x}) = \bigoplus_{m \geq 1} \mathbb{Z}[\xi_1, \ldots, \xi_m] = \bigoplus_{m \geq 1} \mathbb{Z}[\xi_1][\xi_2] \cdots [\xi_m]$$

as nested coefficient lists $\mathbb{Z}^{(*)} \subset \mathbb{N}$.

[The symbols ξ_i are the indeterminates.]

Example:

$$D = D(\xi_1, \xi_2) = (2 \cdot \xi_1^0 + 3 \cdot \xi_1^1 - 4 \cdot \xi_1^3) \cdot \xi_2^0$$
$$+ (0 \cdot \xi_1^0 + 3 \cdot \xi_1^1 - 7 \cdot \xi_1^2) \cdot \xi_2^1 + (1 - 4 \cdot \xi_1) \cdot \xi_2^2$$

is coded 1-1 as (nested) coefficient list

$$\cup D = \langle \langle 2; 3; 0; 4 \rangle; \langle 0; 3; -7 \rangle; \langle 0 \rangle; \langle 1; -4 \rangle \rangle :$$

1 \rightarrow DIO $= \text{by def} \mathbb{Z}^{(*)} \subset \mathbb{N}$:

defined element, point of DIO

PR evaluation of DIO codes:

Evaluation $ev = ev(d, \vec{x}) : DIO \times \mathbb{Z}^*$ is PR defined

$$ev(d, \langle \vec{x}; x_{m+1} \rangle) = ev(d, \langle x_1; \ldots; x_m; x_{m+1} \rangle)$$
$$= \text{def} ev(\text{horner}(d, x_{m+1}), \langle \vec{x} \rangle) :$$

$$DIO \times \mathbb{Z}^* \supset \mathbb{Z}[\vec{\xi}, \xi_{m+1}] \times \mathbb{Z}^{m+1} \xrightarrow{\cong} (\mathbb{Z}[\vec{\xi}][\xi_{m+1}] \times (\mathbb{Z}^m \times \mathbb{Z})$$
$$\cong (\mathbb{Z}[\vec{\xi}][\xi_{m+1}] \times \mathbb{Z}) \times \mathbb{Z}^m \xrightarrow{\text{horner} \times \text{id}} \mathbb{Z}[\vec{\xi}] \times \mathbb{Z}^m \xrightarrow{ev} \mathbb{Z},$$
recursively by iterative application of Horner’s schema to the hitherto trailing argument, until all of the arguments (constants or variables) are substituted into their corresponding indeterminates ξ_j.

Result then is the integer $\text{ev}(d, \vec{x})$, constant or integer variable.

For the example above, $D = D(\xi_1, \xi_2)$, with argument string $\langle x_1; x_2 \rangle := \langle 23; 64 \rangle \in \mathbb{Z}^*$, we get

$\text{ev}(d, \langle x_1; x_2 \rangle) = \text{ev}(\langle (2; 3; 0; 4); (0; 3; -7); (0); (1; -4) \rangle, \langle 23; 64 \rangle)$

$= \text{horner}((((((-4 \cdot 64 + 1) \cdot \xi_1 + 0)) \cdot \xi_1 + (-7 \cdot 64 + 3) \cdot 64) \cdot \xi_1$

$\quad + ((4 \cdot 64 + 0) \cdot 64 + 3) \cdot 64 + 2; 23))$

$= (((((-4 \cdot 64 + 1) \cdot 23 + 0)) \cdot 23 + (-7 \cdot 64 + 3) \cdot 64) \cdot 23$

$\quad + ((4 \cdot 64 + 0) \cdot 64 + 3) \cdot 64 + 2$

First step: apply Horner’s schema to coefficient list $d \in \text{DIO}$ and (trailing) Argument x_2 : indeterminate ξ_1 is coded by list nesting and is seen as a constant, as an element of intermediate ring $\mathbb{Z}[\xi_1]$:

$\mathbb{Z}[\xi_1, \xi_2] = \text{by def } \mathbb{Z}[\xi_1][\xi_2] = \text{by def } (\mathbb{Z}[\xi_1])[\xi_2]$.

Last—here second—step: evaluation of $\mathbb{Z}[\xi_1]$ polynomial in remaining indeterminate ξ_1 on remaining argument x_1, by a last application of Horner’s schema.

3 Arithmetical frame theories

We consider here as frame theories—for our decision algorithm—on one hand classically quantified arithmetical theories $T = \text{Q} + \text{AC}$ with (countable) axiom of choice, as in particular Zermelo-Fraenkel set theory $T = \text{ZFC} = \text{ZF} + \text{AC}$. Frame then is the strengthening

$T^+ = T + \text{Con}_T = \text{ZFC} + \text{Con}_{\text{ZFC}}$.
of \mathcal{T} by its own consistency-formula

$$\text{Con}_\mathcal{T} = \neg (\exists k \in \mathbb{N}) \text{Prov}_\mathcal{T}(k, \lnot \text{false})$$

$$= (\forall k) \neg \text{Prov}_\mathcal{T}(k, \lnot \text{false}) \quad \text{(Gödel)}$$

see Smorynski 1977 and op. cit.

Strengthening by this consistency formula will provide for correctness of our decision process (Hilbert).

On the other hand we take as frame the Free-Variables (categorical) theory $\mathcal{T} = \mathcal{PR} = \mathcal{PRA}$ of Primitive Recursion with predicate abstraction into subsets

$$(\chi = \chi(a) : A \to 2) \mapsto \{A : \chi\} = \{a \in A : \chi(a)\}$$

out of op. cit., $\mathcal{T} = \mathcal{S}$ in Smorynski’s notation, as well as descent theory $\pi \mathcal{R} = \pi \mathcal{R}^+ = \pi \mathcal{R} + \text{Con}_{\pi \mathcal{R}} :$ that theory is self-consistent, $\pi \mathcal{R} \vdash \text{Con}_{\pi \mathcal{R}},$ main result of op. cit.

4 A μ-recursive race for decision

We define an enumerative race—for $d \in \text{DIO}$ thought passive, fixed, and $k \in \mathbb{N}$ running—for satisfaction of

$$\varphi_0(d, k) = \lceil \text{ev}(d, ct_* k) = 0 \rceil$$

against

$$\varphi_1(d, k) = \text{Prov}_\mathcal{T}(k, \lnot (\vec{x})\text{ev}(d, \vec{x}) \neq 0 \ldots) : \text{DIO} \times \mathbb{N} \to 2 = \{0, 1\},$$

$ct_* = ct_* k : \mathbb{N} \overset{\sim}{\longrightarrow} \mathbb{Z}^*,$ Cantor-type count, $\vec{x} \in \mathbb{Z}^*$ free under code.

This race towards termination is defined as a—formally partial—μ-recursive mapping as follows within the theory \mathcal{T} of partial PR maps, i.e. of (partially defined) μ-recursive maps, cf. again op. cit.:

$$t = t(d) = \mu\{ k \mid \varphi_0(d, k) \lor \varphi_1(d, k) \} : \text{DIO} \to \mathbb{N}. \quad (*)$$
Decision candidate then is

\[
\nabla d = \begin{cases}
0 & \text{if } \varphi_0(d, t(d)) \\
1 & \text{if } \varphi_1(d, t(d))
\end{cases}
\]

\[
= \begin{cases}
0 & \text{if } \text{ev}(d, \text{ct}_*(t(d))) = 0 \\
1 & \text{if } \text{Prov}_T(t(d), \lnot \text{ev}(d, \vec{x}) \neq 0) \\
\end{cases}
\]

: \text{DIO} \overset{(\text{id}, t)}{\to} \text{DIO} \times \mathbb{N} \to 2.

Question: Is \(\nabla \) well-defined as a partial map? In which frame?

Well-definedness of the decision within \(T^+ = \text{ZFC}^+ = \text{ZFC} + \text{Con}_{\text{ZFC}} = T + \text{Con}_T \):

\(T^+ \vdash \varphi_0(d, k) \land \varphi_1(d, k') \)

(cases-overlap Assumption)

\(\implies \text{ev}(d, \text{ct}_*k) = 0 \)

\(\land \text{Prov}_T(k', \lnot (\vec{x}) \text{ev}(d, \vec{x}) \neq 0) \)

\(\implies \text{Prov}_T(j(k, k'), \lnot \text{false}) \)

\(\implies \neg \text{Con}_T \implies \text{false}, \)

\(j = j(k, k') : \mathbb{N}^2 \to \mathbb{N} \text{ suitable.} \)

Consequence:

\(T^+ \vdash \neg [\varphi_0(d, k) \land \varphi_1(d, k')] : \text{DIO} \times \mathbb{N}^2 \to 2, \)

\(\nabla = \nabla_T(d) : \text{DIO} \to \mathbb{N} \text{ is well-defined as a (formally partial) } \mu\text{-recursive map, within } T^+ = T + \text{Con}_T. \)
Well-definedness of decision within descent theory \(\pi R \):

We consider now descent theory \(\pi R \) out of op. cit. strengthening \(PR \) by axiom (\(\pi \)) of non-infinite endo driven descending complexity with complexity values in polynomial semiring \(\mathbb{N}[\omega] \), and its logical properties, in particular soundness giving \(\pi R \vdash \text{Con}_{\pi R} \).

Decision \(\nabla = \nabla_{\pi R}(d) : \text{DIO} \to 2 \) is in fact well-defined as a partial PR map, within theory \(\pi R \), since—in parallel to the above case \(T = \text{ZFC} \):

\[
\pi R \vdash \varphi_0(d, k) \land \varphi_1(d, k')
\]

(cases-overlap Assumption)

\[
\implies \text{ev}(d, \text{ct}_* k) = 0
\land
\text{Prov}_{\pi R}(k', \lnot(\overline{x}) \text{ev}(d, \overline{x}) \neq 0^\top)
\implies \text{Prov}_{\pi R}(j(k, k'), \lnot\text{false}^\top)
\implies \text{"\neg Con}_{\pi R} \text{"} \implies \text{false},
\]

\(j = j(k, k') : \mathbb{N}^2 \to \mathbb{N} \) suitable.

The latter since \(\pi R \vdash \text{Con}_{\pi R} \).
Well-definedness of DIO-decision within PR itself

Decision $\nabla = \nabla_{\text{PR}}(d) : \text{DIO} \rightarrow 2$ is well-defined as a partial PR map, within theory P Ra of partial PR maps since

$$\text{P Ra} \vdash \varphi_0(d, k) \land \varphi_1^{\text{DIO}}(d, k') \quad (\text{cases-overlap Assumption})$$

$$\iff \text{ev}(d, c t \ast k) = 0$$

$$\land \text{Prov}^{\text{DIO}}(k', \lceil (\vec{x}) \text{ ev}(d, \vec{x}) \neq 0 \rfloor)$$

$$\implies \text{Prov}^{\text{DIO}}(j(k, k'), \lceil \text{false} \rfloor)$$

$$\implies \text{false},$$

$$j = j(k, k') : \mathbb{N}^2 \rightarrow \mathbb{N} \text{ suitable.}$$

The latter by diophantine soundness of $\mathbf{T} = \text{PR}$, see Smoryński 1977, Theorem 4.1.4.

5 Decision Correctness

Decision Correctness, result-0-case:

$$\mathbf{T} \vdash [\varphi_0(d, t(d)) \implies \text{ev}(d, c t \ast t(d)) = 0]$$

$$\subseteq \text{true}_{\text{DIO}}^{(\text{id}, t)} : \text{DIO} \times \mathbb{N} \rightarrow 2 :$$

If race-for-decision ∇ terminates on DIO-code d, with result 0, then (evaluation of) d has (at least) one zero, namely

$$c t \ast t(d) \in \mathbb{N}.$$
Correctness, result-1-case:

\[T \vdash \varphi_1(d, k) \implies \text{Prov}_{\text{DIO}}(k, \lnot \text{ev}(d, \vec{x}) \neq 0) \]
\[\implies \text{ev}(d, \vec{x}) \neq 0 : (\text{DIO} \times \mathbb{N}) \times \mathbb{Z}^* \to 2, \]
\[(d \in \text{DIO}, \ k \in \mathbb{N}, \ \vec{x} \in \mathbb{Z}^* \text{ all free}), \]

or, with quantifier decoration:

\[T \vdash (\forall d \in \text{DIO})(\forall k \in \mathbb{N})(\forall \vec{x} \in \mathbb{Z}^*) \]
\[[\varphi_1^T(d, k) \implies \text{Prov}_{\text{DIO}}(k, \lnot \text{ev}(d, \vec{x}) \neq 0) \]
\[\implies \text{ev}(d, \vec{x}) \neq 0]. \]

If race-for-decision \(\nabla \) terminates on DIO-code \(d \), with result 1, then (evaluation of) \(d \) has no zeroes.

This because of Diophantine Soundness of \(T \), see Smoryński 1977, Theorem 4.1.4 again.

Correctness in result-1-case, under termination condition:

Substitution of \(t(d) \) for \(k \) in the above gives

\[T^+, \pi_R, PR \vdash [\varphi_1^{\text{DIO}}(d, t) \implies \text{ev}(d, \vec{x}) \neq 0] \subseteq \text{true}_{\text{DIO} \times \mathbb{Z}^*}, \]
\[d \in \text{DIO}, \ \vec{x} \in \mathbb{Z}^* \text{ both free}. \]

Correctness of \(\nabla(d) \) where defined, in both defined cases: in case of reaching result 0, as well as in case of reaching result 1.

[For partial maps \(f, g : A \to B, f \subseteq g \) designates inclusion of the graphs of \(f \) and \(g \).]

6 Termination

We show first
Pointwise non-derivability of non-termination:

For no diophantine point $d_0 : 1 \to \text{DIO}$ T derives non-termination of t at d_0.

Proof:

Assumption

\[
T \vdash (\vec{x}) \text{ev}(d_0, \vec{x}) \neq 0 \quad (\bullet)
\]

\[
\land (k) \neg \text{Prov}_T(k, \vec{r}(\vec{x}) \text{ev}(d_0, \vec{x}) \neq 0) ^\top
\]

\[
T \vdash \text{Prov}_T(\text{num} j, \vec{r}(\vec{x}) \text{ev}(d_0, \vec{x}) \neq 0 ^\top)
\]

\[
\land (k) \neg \text{Prov}_T(k, \vec{r}(\vec{x}) D(\vec{x}) \neq \mathbb{Z} 0 ^\top)
\]

a contradiction: appropriate j is available from (\bullet) via derivation-to-Proof-internalisation (gödelisation).

[For the time being we consider T as frame, not (yet) $T^+ = T + \text{Con}_T$.]

For $T = Q$ quantified, with (countable) axiom of choice ACC, in particular $Q = \text{PA} + \text{ACC}$ Peano Arithmetic with choice, we define the undecided part of DIO as

\[
\Psi = \Psi^Q = \{ d \in \text{DIO} : \forall k \text{ ev}(d, \text{ct}_* k) \neq 0 \\
\land \forall k \neg \text{Prov}_Q(k, \vec{r}(\vec{x}) \text{ev}(d, \vec{x}) \neq 0) ^\top \}
\]

\[
\subset \text{DIO} = \mathbb{Z}^{(\ast)} \subset \mathbb{N}.
\]

With this definition we get

\[
Q \vdash \Psi \neq \emptyset \implies \text{choice}_\Psi : 1 \to \Psi \subset \mathbb{N} \text{ total}
\]

\[
(\text{choice available by } \text{ACC} : \text{non-empty sets have defined points})
\]

\[
\implies \mu \{ d : \text{t}(d) \text{ non-terminating} \} : 1 \to \Psi \text{ total}.
\]

This means: the assumption of (formal) existence of a $d \in \text{DIO}$ for which decision race $t : \text{DIO} \to \mathbb{N}$ does not terminate, leads to a (defined) point

\[
d_0 : 1 \to \text{DIO}
\]
for which t derivably does not terminate.

But this is **excluded** by pointwise non-derivability above of non-termination, within frame Q assumed consistent.

So we have shown

$$Q, PA + ACC \vdash \Psi = \emptyset,$$

i.e.

$$Q \vdash (\forall d \in \text{DIO})[\exists k \text{ev}(d, ct_k) = 0 \lor \exists k \text{Prov}_{\text{DIO}}(k, \Gamma(\vec{x}) \text{ev}(d, \vec{x}^*) \neq 0)],$$

whence

Termination Theorem: $Q, \text{ZFC}, PA + ACC$ derive race t to terminate on all diophantine codes d, on all $d \in \text{DIO} = \mathbb{Z}^{(\ast)}$.

7 Correct termination of decision \triangledown

In particular ($Q^+ = Q + ACC$ stronger than Q):

Q^+ derives

overall termination of μ-recursive

termination race $t = t^Q(d) : \text{DIO} \rightarrow \mathbb{N}$:

$$Q^+ \vdash [(\forall d \in \text{DIO}) \ t(d) \in \mathbb{N} \text{ defined}]$$

Hence, by Decision Correctness within Q^+:

Q^+ derives

overall correct termination of μ-recursive decision

$\triangledown : \text{DIO} \rightarrow 2$, **main result** here:

$$\triangledown(d) = \begin{cases}
0 & \text{if } \text{ev}(d, t(d)) = 0 \\
[\implies d \text{ has a zero } \vec{z} \in \mathbb{Z}^*] & \\
1 & \text{if } \text{Prov}_{\text{DIO}}(t, \Gamma(\forall \vec{x}) \text{ ev}(d, \vec{x}) \neq 0^\triangledown) \\
[\implies d \text{ has no zero }] &
\end{cases} : \text{DIO} \rightarrow 2.
8 Comparison with Matiyasevich’s negative result

Main result above says in terms of the theory TM of TURING machines, by the established part of CHURCH’s thesis:

For concrete diophantine polynomials $D = D(\vec{x}) : \mathbb{Z}^m \rightarrow \mathbb{Z}$:

For quantified arithmetical choice theories $Q + \text{ACC}$ like ZFC and already $\text{PA} + \text{ACC}$,

$Q^+ = Q + \text{Con}_Q$ derives:

TURING machine TM_{∇_Q} corresponding—CHURCH—to totally defined μ-recursive decision map

$$\nabla_Q : \text{DIO} \rightarrow \{0, 1\},$$

when written coefficient list $\downarrow D \downarrow$ of a diophantine polynomial D on its (initial) TAPE, eventually reaches HALT state, leaves result 0 (as its final TAPE) iff D has a zero $\vec{z} : D(\vec{z}) = 0$, and result 1 iff D is overall non-null:

$$(\forall \vec{x} \in \mathbb{Z}^n) [D(\vec{x}) \neq 0].$$

This contradicts Matiyasevich’s THEOREM unsolving Hilbert’s 10th problem, within theory Q^+ which strengthens his framework of Peano Arithmetic $\text{PA} + \text{ACC}$ with countable axiom of choice. Whence

Conclusion:

- $\text{ZFC}^+ = \text{ZFC} + \text{Con}_\text{ZFC}$ is contradictory, so
- $\text{ZFC} \vdash \neg \text{Con}_\text{ZFC} : \text{ZFC}$ is internally inconsistent,
- same for theory $\text{PA} + \text{ACC}$:

 Peano-Arithmetic with axiom of countable choice is internally inconsistent
• **Question:** is already Peano Arithmetic PA by itself internally inconsistent? It would be if axiom ACC of countable choice were derivable within PA or independent from PA, as is axiom of choice AC from set theory. This would mean that formal existential quantification is incompatible with free-variables Primitive Recursive Arithmetic PR.

Discussion

• After his talk at Humboldt University Berlin, I have mailed to Matiyasevich the question, if his unsolving of Hilbert’s 10th problem is really constructive: it depends heavily on formal existential quantification. No reply: may be he considers this question when present paper will be brought to his attention.

• I have submitted the 200? version of present work, claiming self-inconsistency $\text{PA} \vdash \neg \text{Con}_{\text{PA}}$, to the *Journal of Symbolic Logic*. The (anonymous) referee:

 ... this is certainly false. ... Robert 'Rob' Goldblatt ed.: under these circumstances etc.

What is such editorial policy good for?

9 Hilbert 10 constructively

In this section we show that the local version $\nabla[D] : 1 \rightarrow 2$ of the μ-recursive decision algorithm $\nabla = \nabla_{\text{DIO}}(d) : \text{DIO} \rightarrow 2$ irreductably decides each (single) diophantine equation—correctly—when placed in p.r. non-infinite-descent theory $\pi \text{R} = \text{PR}+(\pi)$ of op.cit. in the References.

This will give a positive solution to Hilbert’s 10th problem in that constructive framework, at least when stated in its original form quoted in first section above.
Formally, this problem allows for solution by a separate decision algorithm ("process") for each diophantine polynomial. By localisation at a given polynomial, we extract such a decision-family from the forgoing sections, and formalise it within πR.

We index that family (externally) by the diophantine constants $\delta : 1 \rightarrow \text{DIO} \subset \mathbb{N}$, among which the diophantine polynomials

$$D = D(\vec{x}) = D(x_1, \ldots, x_m) : \mathbb{Z}^m \rightarrow \mathbb{Z}$$

are represented by their coefficient list codes $\downarrow D \uparrow : 1 \rightarrow \text{DIO}$.

Definition: For PR predicates $\varphi_0, \varphi_1 : A \times \mathbb{N} \rightarrow 2$ we define the *race winner predicate*

$$\mu_\lor[\varphi_0, \varphi_1] : A \rightarrow 2$$

between φ_0 and φ_1 slightly assymmetrically by

$$\mu_\lor[\varphi_0, \varphi_1] = \mu_\lor[\varphi_0, \varphi_1](a)$$

$$\overset{\text{def}}{=} (dc \circ (\varphi_0, \varphi_1)) \circ (A \times \mu[\varphi_0 \lor \varphi_1]) \circ \Delta_A :$$

$$A \rightarrow A \times A \rightarrow A \times \mathbb{N} \rightarrow 2 \times 2 \overset{dc}{\rightarrow} 2,$$

with

$dc = dc(u, v) : 2 \times 2 \rightarrow 2$ defined by

$$dc(u, v) = \overset{\text{def}}{=} \begin{cases} 0 & \text{if } u = 1, \\ 1 & \text{if } u = 0 \land v = 1, \\ \text{definably undefined if } u = v = 0. \end{cases}$$

This (partial) race winner predicate $\mu_\lor[\varphi_0, \varphi_1](a) : A \rightarrow 2$ is characterised—within $S = \text{PR}$ as well as in $S = \pi R$—by

$$S \vdash [\varphi_0(a, n) \land \bigwedge_{i < n} \neg \varphi_1(a, n) \implies \mu_\lor[\varphi_0, \varphi_1](a) = 0]$$

$$\land [\varphi_1(a, n) \land \bigwedge_{i \leq n} \neg \varphi_0(a, n) \implies \mu_\lor[\varphi_0, \varphi_1](a) = 1].$$

15
We allow us to write for this intuitively—in classical terms of a (partial) case-distinction:

\[
\mu_{\lor} [\varphi_0, \varphi_1](a) = \begin{cases}
0 & \text{if } \mu \varphi_0(a) < \infty \land \mu \varphi_0(a) \leq \mu \varphi_1(a), \\
1 & \text{if } \mu \varphi_1(a) < \infty \land \mu \varphi_1(a) < \mu \varphi_0(a).
\end{cases}
\]

Our decision family

\[\nabla[\delta] : 1 \rightarrow 2, \ \delta : 1 \rightarrow \text{DIO} \subset \mathbb{N}\]

now is defined in the present \(\mu\)-recursive frame as this type of race winning, of PR search for a zero (in the evaluation) of \(\delta\) against PR search for a (first) internal non-nullity proof for (the evaluation) of \(\delta\), namely by

\[
\nabla[\delta] = \text{def} \ \mu_{\lor} [\varphi_0[\delta], \varphi_1[\delta]] : 1 \rightarrow 2, \ \text{with}
\]

\[
\varphi_0[\delta](k) = \text{def} \ [\text{ev}(\delta, \text{ct}_* (k)) = 0] : \mathbb{N} \rightarrow 2,
\]

\[
\varphi_1[\delta](k) = \text{def} \ \text{Prov}_S(k, \Gamma(\vec{x}) \text{ev}(\delta, \vec{x}) \neq 0^\top).
\]

Here

\[\text{ev} = \text{ev}(d, x) : \mathbb{N} \times \mathbb{N} \supset \text{DIO} \times \mathbb{Z}^* \rightarrow \mathbb{Z}\]

is evaluation with the characteristic evaluation property

\[\text{ev} (\bot D, (x_1, \ldots, x_m)) = D(x_1, \ldots, x_m) : \mathbb{Z}^m \rightarrow \mathbb{Z},\]

realised by (iterated) Horner’s schema (each application reduces the number of remaining variables by 1), or by “brute force” evaluation of monomials.

9.1 Decision Correctness

Soundness Recall: Main result of op. cit. in the References is (logical) soundness of theory \(\pi \mathbf{R}\):

16
• For a (p. r.) predicate $\chi = \chi(a) : A \rightarrow 2$ we have

$$\pi R \vdash \text{Prov}_{\pi R}(k, \Gamma \chi^\top) \implies \chi(a) : N \times A \rightarrow 2,$$

$a \in A$ free, meaning here for all $a \in A$, and $k \in N$ free, meaning here exists $k \in N$. This entails

• **PR soundness of πR** : For a p. r. predicate $\chi = \chi(a) : A \rightarrow 2$,

$$\pi R \vdash \text{Prov}_{\pi R}(k, \Gamma \chi^\top) \implies \chi(a) : N \times A \rightarrow 2,$$

as well as in particular

• **Diophantine soundness of πR** : for a diophantine polynomial $D = D(\vec{x}) : Z^* \rightarrow 2$

$$\pi R \vdash \text{Prov}_{\pi R}(k, \Gamma (\vec{x})D(\vec{x}) \neq 0^\top) \implies D(\vec{x}) \neq 0,$$

$k \in N$, $\vec{x} \in Z^*$ free.

• Already $\text{PR}^+ = \text{PR} + \text{Con}_{\text{PR}}$ is diophantine sound. This needs an extra Proof.

We consider here frame $S = \pi R$,

$$\pi R^+ = \pi R + \text{Con}_{\pi R} = \pi R,$$

the latter by op. cit. equivalent to soundness of theory πR.

Namely from PR Soundness we get the

Local Correctness-Lemma for $\nabla[\delta]$ in πR : The partial PR-map $\nabla[\delta] : 1 \rightarrow 2$ has the following correctness properties:

$\pi R \vdash$

• δ does not fall in both of the two defined-cases stated for $\nabla[\delta]$.

• \(\nabla[\delta] = 0 \implies \text{ev}(\delta, \text{ct}_* \circ \mu \varphi_0[\delta]) = 0 \) : \(\delta \) is implied to have available a zero in its evaluation,

• \(\nabla[\delta] = 1 \implies \text{ev}(\delta, \vec{x}) \notin \mathbb{Z}, \vec{x} \) free in \(\mathbb{Z}^* \): \(\delta \) is implied to be evaluated globally non-null, in particular:

• By diophantine evaluation for \(D = D(x_1, \ldots, x_m) : \mathbb{Z}^* \to \mathbb{Z} \) diophantine:
 - \(\nabla[D] := \nabla[\downarrow D \downarrow] = 0 \implies D(\text{ct}_* (\mu \varphi_0[\downarrow D \downarrow])) = 0 : D \) is implied to have a zero, as well as
 - \(\nabla[D] = 1 \implies [D(\vec{x}) \neq 0], \) here again \(\vec{x} \) free over \(\mathbb{Z}^* : D \) is implied to be globally non-null q.e.d.

9.2 Decision Termination

The final question to treat for this—canonical—family

\[\nabla = \nabla_{\text{DIO}}[\delta] : 1 \to 2, \delta : 1 \to \text{DIO} \subset \mathbb{N} \]

of local—\(\mu \)-recursive—decision algorithms, is termination, for each \(\delta \), in particular for \(\delta = \downarrow D \downarrow, D = D(\vec{x}) \) diophantine.

Assume \(\nabla[d_0] \) *not* to terminate for a particular constant \(d_0 : 1 \to \text{DIO} \), in particular \(d_0 \) of form \(D_0 = D_0(\vec{x}) \).

Since we argue here purely syntactically—within the theory \(\hat{S} \supset S = \text{PR} + \text{(abstr)} \) of partial p.r. maps—no modelling in mind except some primitive recursive Metamathematics (these in turn g"odelised within \(S \))—we discuss the stronger assumption

\(\nabla[d_0] \) \(T \)-derivably does *not* terminate for a given diophantine constant \(d_0 : 1 \to \text{DIO}, T \) an extension of \(S \).

This **assumption** reads:

\[T \vdash (k) \psi[d_0](k) : \]
here k is free over \mathbb{N}, and the PR predicate $\psi[d_0](k) : \mathbb{N} \to 2$ is defined by

$$
\psi[d_0](k) = \psi_0[d_0](k) \land \psi_1[d_0](k) \quad \text{with} \\
\psi_0[d_0](k) = [\text{ev}(d_0, c_t(k)) \neq 0], \text{and} \\
\psi_1[d_0](k) = \neg \text{Prov}_T(k, \neg \text{ev}(d_0, \vec{x}) \neq 0^\dagger).
$$

So the assumption (“of the contrary”) reads:

$$
T \vdash [\text{ev}(d_0, c_t(k)) \neq 0] \\
\land \neg \text{Prov}_T(k, \neg (\vec{x})\text{ev}(d_0, \vec{x}) \neq 0^\dagger).
$$

Here $k \in \mathbb{N}$ is the only free variable in the accessible level, \vec{x} is free over \mathbb{Z}^*, but encapsulated within gödelisation, not visible on the object language level.

The derivably-non-termination assumption

$$
T \vdash \psi[d_0](k), \text{ } k \text{ free,}
$$

would entail in particular (first conjunct $\psi_0[d_0]$):

$$
T \vdash \text{ev}(d_0, c_t(k)) \neq 0 : \mathbb{N} \to 2.
$$

Internalising (formalising) this metamathematical statement, we (would) get by Proof-Internalisation—cf. Smoryński 1977—a constant $p_0 : 1 \to \text{Proof}_T \subset \mathbb{N}$ guilty for this last statement:

$$
T \vdash \text{Prov}_T(p_0, \neg \text{ev}(d_0, \vec{x}) \neq 0^\dagger);
$$

this would give, by definition of $\nabla[d_0]$:

$$
T \vdash \nabla[d_0] = 1,
$$

a contradiction to our assumption that d_0 be derivably not decided by ∇_{DIO}, i.e. to $T \vdash \psi[d_0]$.

Conclusion:
• $\pi R = \pi R + \text{Con}_{\pi R}$ derives the alleged decision algorithm (family) $\nabla = \nabla_{\text{DIO}}[D] : 1 \rightarrow 2$ to be correct for each diophantine polynomial (if defined).

• no diophantine polynomial $D = D(\vec{x})$ can come with a T-proof (i. p. a πR-proof) showing $\nabla [D]$ to be undefined, not to terminate, in other words:

• correct termination of the μ-recursive decision family $\nabla = \nabla_{\text{DIO}}[D]$ at each diophantine polynomial is πR-irrefutable, in the sense that otherwise—refutation—

$$\pi R \vdash \text{Prov}_{\pi R}(q, \text{"false"})$$,

$q : 1 \rightarrow \mathbb{N}$ a suitable PR point,

inconsistency of (self-consistent) theory πR would be the consequence.

Outlook

Irrefutable correct termination of uniform decision algorithm

$$\nabla_{\text{DIO}} = \nabla_{\text{DIO}}(d) : \text{DIO} \rightarrow 2, \ d \in \text{DIO free}$$

is treated within the general framework of

Arithmetical Decision to come.

References

[1] J. Barwise ed. 1977: *Handbook of Mathematical Logic*. North Holland.

[2] K. Gödel 1931: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. *Monatsh. der Mathematik und Physik* 38, 173-198.

[3] D. Hilbert 1970: Mathematische Probleme. Vortrag Paris 1900. *Gesammelte Abhandlungen*. Springer.
[4] Y. V. Matiyasevich 1993: *Hilbert’s Tenth Problem*. The MIT Press.

[5] M. Pfender 2014a: *Consistency Decision*, arXiv 2014.

[6] M. Pfender 2014b: *Arithmetical Foundations*, γ version, www3.tu-berlin.de/preprint/mathematik/Preprint-8-2014

[7] C. Smorynski 1977: The Incompleteness Theorems. Part D.1 in Barwise ed. 1977.