Spontaneous remission of acute myeloid leukemia with NF1 alteration

Terrence Bradleya,c,1, Radames Adamo Zuquelloa,1, Luis E. Aguirre (MD)a, Nicholas Mackridesb, Jennifer Chapmanb, Luisa Cimminoc,d, Amber Thomassenc, Justin Wattsb,c,⁎

a University of Miami, Department of Medicine, Miami, FL, United States
b University of Miami, Department of Pathology, Miami, FL, United States
c Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, United States
d University of Miami, Department of Biochemistry and Molecular Biology, Miami, FL, United States

A R T I C L E I N F O

Keywords:
Acute myeloid leukemia
NF1 alteration
Clonal hematopoiesis
Spontaneous remission
Leukemoid reaction

A B S T R A C T

Acute myeloid leukemia (AML) is defined by the presence of ≥ 20% myeloblasts in the blood or bone marrow. Spontaneous remission (SR) of AML is a rare event, with few cases described in the literature. SR is generally associated with recovery from an infectious or immunologic process, and more recently possibly with clonal hematopoiesis. We review the literature and assess the trends associated with SR, and report a new case of a 58-year-old man with a morphologic diagnosis of AML associated with a severe gastrointestinal (GI) tract infection. The patient had an NF1 variant that was previously unreported in AML as the only clonal abnormality. After treatment of the infection, the increased blast population subsided with no leukemia-directed therapy, and the patient has remained in a continuous, spontaneous complete remission for > 2 years.

1. Introduction

Acute myeloid leukemia (AML) is a heterogeneous disease that is fatal in most patients. Without disease-directed therapy, essentially all patients will expire within weeks to months. Spontaneous remission (SR) of AML is a poorly understood and rare event, but it does occur, with multiple cases reported from the 1940’s-present. SR is generally seen in the setting of acute infection, antibiotic use, or blood product transfusion, and an immune-mediated process has been postulated [1]. The time to relapse is generally short, with patients typically requiring standard treatment within a few months.

It is not clear if some SR cases, particularly the more durable ones, were actually a “leukemoid reaction”, a non-malignant process characterized by an exaggerated immune response (usually to infection, e.g., \textit{C. difficile colitis}) with marked leukocytosis and increased levels of pro-inflammatory cytokines and colony stimulating factors (G-CSF/GM-CSF) [2,3]. Classically, there is mature neutrophilia in the absence of blasts [4].

In this letter, we present a novel case of AML with NF1 mutation that achieved a durable SR in the setting of GI septicemia. We review the entire body of literature on SR-AML, and analyze the characteristics of SR-AML patients, including those with both brief and prolonged SRs.

2. Case presentation

A 58-year-old Hispanic man with a history of ankylosing spondylitis previously treated with methotrexate and infliximab developed fever, abdominal pain, and hematochezia during a trip to Central America. On return to the United States, blood work revealed 6% circulating blasts, hemoglobin 12.3 g/dL, white blood count (WBC) 2.2 × 10³ cells/mm³, 7% neutrophils, 45% lymphocytes, 4% monocytes, 19% eosinophils, and 2% myelocytes. Platelets were 546 × 10³/mm³. Bone marrow biopsy demonstrated 40-50% blasts, left-shifted myelopoiesis, and tri-lineage dysplasia. No Auer rods were seen. The blasts were positive for CD34, CD117, MPO, CD13, and CD33. Cytogenetics were normal. Molecular testing (11-gene AML next generation sequencing [NGS] panel) was negative. His anemia worsened and he required blood transfusions. Intravenous antibiotics were started. The patient was transferred to our hospital with ongoing bloody diarrhea and hypotension. Computed tomography (CT) imaging showed acute colitis. Upon arrival his WBC was 14 × 10³ cells/mm³ with neutrophilia and no circulating blasts, hemoglobin was 7.6 g/dL (transfusion dependent), and platelets were 1,006 × 10³/mm³. Repeat bone marrow examination showed 25% blasts with background dysplasia (Fig. 1). AML induction was postponed as he was treated for GI septicemia.
Over the next 2 weeks, the patient's symptoms resolved and his blood counts normalized. He underwent a third bone marrow biopsy ~4 weeks after the initial assessment (Fig. 2), which demonstrated a cellular bone marrow (50-70%), increased megakaryocytes, and mild dyserythropoiesis. Blasts comprised 1% of total cells. The only abnormality was an NF1 mutation (c.4430+delT;splice-region) with variant allele frequency (VAF) 17% on an expanded NGS panel. Induction chemotherapy was deferred, and he was placed on observation.

Follow-up bone marrow biopsy 6 months after achieving SR demonstrated normocellular marrow (20-40%) with erythroid predominance and maturing trilineage hematopoiesis and no evidence of acute leukemia or myeloid neoplasm. NF1 gene reassessment could not be done due to insurance barriers. He remains in continuous SR for >2 years at time of writing.

2.1. Analysis of reported cases

A PubMed search was performed using terms “acute leukemia”, “remission”, “regression”, “spontaneous”; including only articles written in English. Infant and down syndrome cases were excluded. A total of 47 articles were examined, containing 55 cases of acute leukemia with SR. Among the 56 cases studied (including our patient), 33 patients were male (59%) and 23 were female (41%). The median age was 53.5 years. AML comprised 50 cases (89%), acute lymphocytic leukemia 4 cases (7%), and cutaneous myeloid sarcoma 2 cases (4%).

The mean time to relapse was 12.4 months. The median time to relapse was 5 months (range 2 weeks-NE). Sixteen of 56 patients had SR for >12 months (not including 1 patient who received therapy after SR and remained in CR >30 months). Of these 16 patients, 10 relapsed and 6 remained in CR at time of publication. For the 6 patients without relapse, follow-up was 14 months, 18 months, 24 months (our case), 29 months, 4 years, and 10 years. Of these 6 durable CRs, all had monocytic differentiation (M4/M5) except our case (5/6 cases). Five received antibiotics for acute infection (the one that did not received a GnRH agonist for misdiagnosed prostate cancer). Three additional patients had late relapse >2 years after SR. Of note, there were patients in remission for <1 year at date of last follow-up, and their long-term outcome is unknown.

When looking at all 56 cases, almost half were monocytic subtype by FAB (M4/M5). Cytogenetics were available for 42 cases: 15 patients (36%) had a normal karyotype (NK), 5 (12%) trisomy 8, 5 (12%) t (8;21), 4 (9%) 11q23/MLL rearrangement, 2 inv(16), and 2 t(3;3)/EVI1 rearrangement. Ten patients (24%) had other abnormalities. More recently, Grunwald et al., reported an AML patient with NPM1 mutation who had SR with loss of NPM1 mutation, but persistent background mutations such as TET2. His disease relapsed abruptly ~1 year later, with recurrence of NPM1 mutation [5].

Patients were reported to have an associated infection in 76% of cases and blood product transfusion in 45%. Less common associations were G-CSF, steroids, hydroxyurea, termination of pregnancy, GnRH, tumor lysis syndrome, discontinuation of lenalidomide, and Henoch-Schönlein purpura. 9% had no identifiable association. Among 42 cases with a presenting infection, 45% had pneumonia (n=19) and 16% bacteremia (n=7). Other sources included upper respiratory, urinary, GI tract, skin, disseminated tuberculosis, and liver abscess.

3. Discussion

Our patient had histologic diagnosis of AML with >20% myeloblasts on two subsequent marrow examinations. After treatment of concurrent GI sepsis, he entered SR and has been in continuous CR for 24 months. On review of SR in the literature, it is clear the vast majority of patients relapse, with most relapses occurring early (<1 year). Patients were typically younger, de novo, and monocytic. Interestingly, most had a cytogenetic abnormality (e.g. +8, core-binding factor (CBF) fusion, and MLL- and EVI1-rearrangements; 36% had NK). Most patients with SR have an associated factor such as infection, but the causality has been opaque.
Year/First author	Age/Gender	FAB Subtype	Cytogenetics/Mutations	Associated factors or characteristic	Duration of remission
1949 – Birge	33 F	AML-M5b	Not disclosed	Eclampsia, termination of pregnancy	22 months
1979 – Lanchant	67 F	AML-M1	Not disclosed	Pneumonia	17 months
1982 – Ruutu – 35	34 M	AML-M5b	Normal	Fever	2 months
1985 – Itzhak	56 M	AML-M1	50qXY, +4, +8, +14, +t(21q,22q), -21, -22	Disseminated tuberculosis, blood transfusion, leukocyte transfusion	34 months
1986 – Jehn	34 M	AML-M4	Partial del(16)	Pneumonia, ear infection, blood transfusion	5 months
1988 – Kizaki	53 F	AML – hypoplastic	Normal	Fever, antibiotic use	5 months
1989 – Antunez de Magolo	28 F	AML-M3	Aneuploidy (with extra chromosome in group C)	Fever, antibiotic treatment, blood transfusion	3 months
1990 – Spadea	69 M	AML-M5a	Not disclosed	None	3 months
1991 – Narayanan	64 M	AML-M4	46X,Y, del(5)(q13;q31)	Blood transfusion, S. aureus bacteremia	8 months
1993 – Jimenez	72 F	AML-M0	3n hyperploded	Pneumonia, S. epidermidis bacteremia, blood transfusion, remote history of CHT for AML (ineffective)	5 months
1993 – Kang	19 M	AML-M3	Not disclosed	Purulent cellulitis	7 months
1993 – Kang	19 F	AML-M3	Not disclosed	Tuberculosis pneumonia	14 months
1994 – Paul	74 F	AML-M5	Two clones: (1)46XX, q9;11;2q21q22; (2)52XX, -1, +5, +8, +14, +19, +t(11;13) (p13;q22)	Concomitant Henoch-Schönlein syndrome.	6 months
1994 – Musto	49 F	AML-M5a	Not disclosed	Gram-negative and Candida albicans sepsis, blood transfusion	36 months
1994 – Delmer	48 M	AML-M2	45 × 0, t(8;21)	Prolonged fever of unknown origin, blood transfusion	14 months
1994 – Delmer	41 F	AML-M5	Normal	Gram-negative sepsis, blood transfusion	3 months
1996 – Mitterbauer	83 M	AML-M2	t(8;21)(q22;q22) AML1/ETO, del(7)(q22)	Pneumonia, G-CSF, blood transfusion	1 month
1996 – Mitterbauer	64 M	AML-M2	Unclear	Pneumonia, G-CSF	4 months
1997 – Takahashi	47 M	Unclear	47q, +8	Pneumonia, G-CSF	3 months
1999 – Takahashi	70 M	Unclear	Not disclosed	G-CSF, blood transfusion	17 months
2000 – Takanoko	79 F	ALL-T	Not disclosed	Pneumonia, antibiotic use	1 year
2000 – Martelli	26 F	AML-M4E	46 XX, inv(16)(p13q22), CBFB/MYH11 +	Intestinal pneumonia, antibiotics, hydroxyurea, blood transfusion	1 month (patient received CHT and relapsed 25 months later)
2001 – Tzanov	60 F	AML – M1	Normal	Acute tonsillitis, pneumonia, G-CSF, blood transfusion, high-dose methylprednisolone	10 months (then lost follow-up)
2001 – Shimohakamada	71 F	AML-M2	45 × 0, -1, +4q(31), t(8;21)(q22;q22), AML1/MTG8	Pneumonia, blood transfusion	4 months then lost follow-up
2004 – Mayald	31 M	AML-M5a	Normal	Fever, group B streptococci bacteremia, antibiotic treatment	2 months
2004 – Muller	61 M	AML-M5a	T(9;11)(q22;q23); ML1/AF9 fusion.	Fever, antibiotic treatment > 29 months	4 months
2004 – Foeza	72 F	AML-M0	48 XY, del(6)(22-pter), +13, +14	Pneumonia, spurious positive for coagulase-negative S. aureus and Candida spp. Blood transfusion, steroids	5 months
2006 – Tsavaris	64 M	AML-M4	Normal	GnRH agonist therapy	> 4 years
2006 – Al-Tawfiq	47 M	AML-M5b	Normal	Perforated bowel, Clostridium septicum bacteremia	4 months
2007 – Trof	29 M	AML-M2	45 + 0, t(8;21)	Infection, antibiotic use, blood transfusion	3 months
2007 – Trof	28 M	AML-M5b	Normal	Beta-hemolytic Streptococci bacteremia, blood transfusion	Received consolidation CHT after SR. Relapse 4 weeks after CHT.
2007 – Daccache	83 F	AML-M5b	47 X, trisomy 8	Antibiotics for possible UTI; blood transfusion	2 weeks
2007 – Hudecek	35 F	AML-M1	48 XX, del(3)(q21), +6, t(11;15)(q22;q15), +21, 11q23/MLL abnormality	Blood transfusion, prophylactic antibiotics	> 8 months
2008 – Yoruk	4 F	T-ALL	Not disclosed	Fever, possible pneumonia versus upper respiratory infection	4 weeks
2008 – Jain	66 F	AML-M4	Trisomy 8	Candida pneumonia	29 months
2008 – Jain	72 F	AML-M5b	Not available	None	5 months
2009 – Jain	46 M	AML-M5b	Not available	Liver abscess	2 months
2009 – Chen	14 M	ALL-B	Normal	Pneumonia, tumor lysis syndrome, MRSA, S. viridans and coagulase-negative Staphylococcus in pleural fluid	14 days
2009 – Marijevic	63 M	AML-M2	46X,Y, del(6)(q21)	Blood transfusion	6 months
2010 – Teng	75 M	AML-M2	Trisomy 8	Blood transfusion, pneumonia	21 weeks

(continued on next page)
Of the 16 known patients with durable SR for > 12 months, 6 (40%) have not relapsed. Of these 6, 5 had monocyctic subtype and 5 had a concomitant infection at diagnosis. Three had a NK and 2 MLL-AF9 fusion (1 did not have cytogenetics available). This raises the question: are durable SRs attributable to: (1) driver-mutated AML undergoing SR via unknown mechanism (e.g. the MLL-rearranged cases), or (2) exaggerated, blastic “leukemoid reaction” in the setting of CH. Microbial products, such as endotoxin and nucleic acids, are potent stimuli for exaggerated, blastic “leukemoid reaction” in the setting of CH. The canonical hereditary mutation is associated with neurofibromatosis Type 1, where the risk of myeloid leukemias is 200 – 500 times higher than the general population [9,10]. Somatic NFI1 mutations are found in ~5-7% of de novo AML, and are associated with poor prognosis [11–14]. Reports of high VAF and presence of the mutation in hematopoietic stem cells (HSCs) suggests that NFI1 may act as a driver or founder mutation in some AML patients and it is not a common CH gene [11,12,15]. NFI1 mutations occur throughout the gene and consist primarily of truncating frameshift mutations but also missense, nonsense, and indels with a recent hotspot mutation characterized in 27% of AML. The canonical hereditary mutation is associated with neurofibromatosis Type 1, where the risk of myeloid leukemias is 200 – 500 times higher than the general population [9,10]. Somatic NFI1 mutations are found in ~5-7% of de novo AML, and are associated with poor prognosis [11–14]. Reports of high VAF and presence of the mutation in hematopoietic stem cells (HSCs) suggests that NFI1 may act as a driver or founder mutation in some AML patients and it is not a common CH gene [11,12,15]. NFI1 mutations occur throughout the gene and consist primarily of truncating frameshift mutations but also missense, nonsense, and indels with a recent hotspot mutation characterized in 27% of AML. The NFI1 gene is a tumor suppressor and negative regulator of RAS.

We report a novel NFI1 mutation in AML and one of the first cases of AML-SR with NGS data available. Whether our patient had self-limited blast proliferation/self-renewal in the setting of CH, or de novo AML with true SR, it is important to consider both possibilities when triaging leukemic patients presenting with intercurrent infection and reactive blood counts/unexplained count recovery. In the >50 cases we analyzed, while most SRs occurred in the setting of severe physiologic stress, over half also had a recurrent cytogenetic abnormality (including 11 patients with AML-defining gene fusion), implicating an autologous mechanism than can induce remission in frank AML, although this is rarely durable, Table 1.

Table 1 (continued)

Year	First author	Age	Gender	FAB Subtype	Cytogenetics/Mutations	Duration of remission	Associated factors, or characteristic
2012	Xie	43	M	AML-M5a	Normal	40 months	pneumonia, G-CSF
2012	Müller-Schmah	61	F	AML-M5a	t(9;11), MLL-AF9	> 10 years	fever, S. aureus bacteremia, antibiotics administration > 10 years
2012	Zeng	34	F	Cutaneous myeloid	XX, normal	1 month	Blood transfusion, fever, S. aureus bacteremia, antibiotics administration > 10 years
2013	Zeng	31	M	AML-M2	46 XY, t(8;21)(q22;q22), del(9)(q22,q34)	2 months	1 month
2013	Kazmierczak	77	M	AML-M4	48 XY, +13, +21	7 months	Blood transfusion, low dose steroids
2013	Purhoit	46	M	ALL-B	Normal	2 months	Acinetobacter spp. bacteremia, infective endocarditis, possible fungal pneumonia
2017	Hoshino	49	F	AML-M5a	46,XX,t(8;16)(p11;p13), MOZ-CBP fusion	4 months	None. Received BMT 4 months after SR. 4 months, at least.
2017	Kremer	51	M	AML-M4	45 XY, t(3;3)(q21;q26), der(17)t(17;21)	2 months	Blood transfusion, leukemia cutis ~12 months (relapsed)
2017	Mozafari	53	M	AML-M4	Normal	> 18 months	Pulmonary infection > 18 months
2018	Höres	31	F	ALL	46XX, del(5)(q13;q22); ACSL6 deletion. Pregnancy, blood transfusion, GI infection	> 30 months	> 30 months (had SR but also received therapy)
2018	Grunwald	72	M	AML-M2	Normal, Mutated NPM1, RUNX1, NRAS, TET2, U2AF1, PRPF8	> 9 weeks	Blood transfusion, leukemia cutis ~12 months (relapsed)
2019	Bradley	58	M	Unclear (had MDS changes)	Normal	> 24 months	Blood transfusion, leukemia cutis ~12 months (relapsed)

References

[1] A. Rashidi, SI. Fisher, Spontaneous remission of acute myeloid leukemia, Leukemia Lymphoma 56 (6) (2015) 1727–1734, https://doi.org/10.3109/10428194.2014.975548.

[2] C. Arguelles-Grande, F. Leon, J. Matilla Fuentes, J. Dominguez, J. Montero, Steroidal management and serum cytokine profile of a case of alcoholic hepatitis with leukemoid reaction, Scand. J. Gastroenterol. 37 (2002) 1111–1113.

[3] T. Leizer, J. Cebon, J.E. Layton, J.A. Hamilton, Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor, Blood 76 (10) (1990) 1989–1996.

[4] V. Sakka, S. Tsiodras, E.J. Giamarellos-Bourboulis, H. Giamarellou, An update on the etiology and diagnostic evaluation of a leukemoid reaction, Eur. J. Internal Med. 17 (2006) 394–398.

[5] Grunwald VV, Heinrich M, Schiel X, Dufour A, Schneider S, Neuser M, Subklewe M, Fieg M, Hiddemann W, Spiekermann K, Rothenberg-Thurley M, Metzeler K (2019) Patients with spontaneous remission of high-risk MDS and AML show persistent preleukemic clonal hematopoiesis. Blood Adv. 3(18):2696-2699. doi: 10.1182/bloodadvances.2019002625.
[6] J.W. Schrader, Colony-stimulating factor, Encyclopedia Immunol. 2 (1998) 596–599.

[7] H.J. Meyerson, D.C. Farhi, N.S. Rosenthal, Transient increase in blasts mimicking acute leukemia and progressing myelodysplasia in patients receiving growth factor, Am. J. Clin. Pathol. 109 (6) (1998) 675–681.

[8] Shoushtari, A.N., Wolchock, J., Hellman, M. (2018) Principles of cancer immunotherapy. In Uptodate. Available at https://www.uptodate.com/contents/principles-of-cancer-immunotherapy. Accessed on Jul 01, 2018.

[9] Korf, B. (2018) Neurofibromatosis type 1 (NF1): Pathogenesis, clinical features, and diagnosis. UptoDate https://www.uptodate.com/contents/neurofibromatosis-type-1-nf1-pathogenesis-clinical-features-and-diagnosis. Accessed on Jul 18, 2018.

[10] L. Side, B. Taylor, M. Cayouette, E. Conner, P. Thompson, M. Luce, K. Shannon, Homozygous inactivation of the NF1 gene in the bone marrow cells from children with neurofibromatosis type 1 and malignant myeloid disorders, N. Engl. J. Med. 336 (24) (1997) 1713–1720.

[11] A.K. Eisfeld, J. Kohlschmidt, M. Krzysztof, A. Mims, C. Waler, J. Blachly, D. Nicolet, S. Orwick, S. Maharry, A. Carroll, B. Powell, J. Kolitz, E. Wang, R. Stone, A. de la Chapelle, J. Byrd, C. Bloomfield, NF1 Mutations are Recurrent in Adult Acute Myeloid Leukemia and Confer Poor Outcome, Springer Nature, 2018.

[12] B. Parkin, P. Ouillette, Y. Wang, Y. Liu, W. Wright, D. Roulston, A. Parukayasta, A. Dressel, J. Karp, P. Bockensted, A. Al-Zoubi, M. Talpaz, L. Kujawowski, Y. Liu, K. Shedden, S. Shih, C. Li, H. Erba, S.N. Malek, NF1 inactivation in adult acute myelogenous leukemia, Clin. Cancer Res. 16 (16) (2010) 4135–4147.

[13] Cancer Genome Atlas Research Network, Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia, N. Engl. J. Med. 368 (2013) 2059–2074, https://doi.org/10.1056/NEJMoa1301689 (2013).

[14] E. Boudry-Labis, C. Roche-Lestienne, O. Nibourel, N. Boissel, C. Terre, C. Perot, V. Eclache, N. Gachard, I. Tiguad, G. Plessis, W. Cucucini, S. Geoffroy, C. Villenet, M. Figeac, F. Lepretre, A. Renneville, M. Cheok, J. Soulé, H. Dombret, C. Preudhomme, Neurofibromatosis-1 gene deletions and mutations in de novo adult acute myeloid leukemia, Am. J. Hematol. 88 (2013) 306–311, https://doi.org/10.1002/ajh.23403 (2013).

[15] C. Cooms, N.K. Gillis, X. Tan, J.S. Berg, M.C. Ball, M.E. Balasis, N.D. Montgomery, K. Bolton, J.S. Parker, T.E. Mesa, S.J. Yoder, M.C. Hayward, N.M. Patel, K.L. Richards, C.M. Walko, T.C. Knepper, J.T. Soper, J. Weiss, J.E. Grilley-Olson, W.Y. Kim, S. Earp, R. Levine, E. Papaemmanuila, A. Sehir, D.N. Hayes, E. Padron, Identification of clonal hematopoiesis mutations in solid tumor patients undergoing unpaired next-generation sequencing assays, Clin. Cancer Res. (2018), https://doi.org/10.1158/1078-0432.