A microarray-based gastric carcinoma prewarning system

Da-Xiang Cui, Li Zhang, Xiao-Jun Yan, Ling-Xia Zhang, Jun-Rong Xu, Yan-Hai Guo, Gui-Qu Jin, Giovani Gomez, Ding Li, Jin-Rong Zhao, Fen-Chan Han, Ju Zhang, Jia-Le Hu, Dai-Ming Fan, Hua-Jian Gao

Abstract
AIM: To develop a microarray-based prewarning system consisting of gastric cancer chip, prewarning data and analysis software for early detection of gastric cancer and pre-cancerous lesions.

METHODS: Two high-density chips with 8 464 human cDNA sites were used to primarily identify potential genes specific for normal gastric mucosa, pre-cancerous lesion and gastric cancer. The low-density chips, composed of selected genes associated with normal gastric mucosa, precancerous lesion and gastric cancer, were fabricated and used to screen 150 specimens including 60 specimens of precancerous lesion, 60 of gastric cancer, pre-cancerous lesion from normal gastric tissues. All data were compiled into a prewarning database by CGO software. Northern blot and immunohistochemistry analysis confirmed that gene and protein of \textit{brca1} and \textit{ndr1} identified may be used to distinguish gastric cancer status and non-cancer status.

RESULTS: A total of 412 genes associated with three stages of gastric cancer development were identified. There were 216 genes displaying higher expression in gastric cancer, 85 genes displaying higher expression in pre-cancerous lesion and 88 genes displaying higher expression in normal gastric mucosa. Also 15 genes associated with metastasis of gastric cancer and 8 genes associated with risk factors were screened out for target genes of diagnosis chip of early gastric cancer. The threshold values of 412 selected genes to distinguish gastric cancer, pre-cancerous lesion from normal gastric mucosa were defined as 6.01±2.40, 4.86±1.94 and 5.42±2.17, respectively. These selected 412 genes and critical threshold values were compiled into an analysis software, which can automatically provide reports by analyzing the results of 412 genes obtained by examining gastric tissues. All data were compiled into a prewarning database for gastric cancer by CGO software. Northern blot and immunohistochemistry analysis confirmed that gene and protein of \textit{brca1} displayed lower expression in normal gastric mucosa and higher expression in gastric cancer tissues, conversely, \textit{ndr1} displayed lower expression in gastric cancer and higher expression in normal gastric mucosa.

CONCLUSION: The microarray-based prewarning system for gastric cancer was developed. This system consisted of gastric cancer-associated gene chip, prewarning data and analysis software, which has a high potential for applications in the early detection of gastric cancer. The two potential markers \textit{brca1} and \textit{ndr1} identified may be used to distinguish cancer status and non-cancer status.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: Microarray; Prewarning; Gastric cancer

INTRODUCTION
Gastric cancer has high incidence in China and in the whole world. Understanding the biological processes of cancer initiation at the gene expression level is very important for early cancer detection. Study of gene expression levels at different stages of growth, disease, cell cycle, and response to stimulation may help to answer why different stages of cancerous development occur[1]. We have been trying to establish a prewarning system of gastric cancer as a part of a larger effort to develop effective and economical diagnostic tools capable of distinguishing different stages of cancer.
development. This system consists of three important parts: a gastric cancer microarray, a prewarning data library and a data analysis software.

Screening characteristic differentially expressed genes associated with different stages of cancer development is of central significance to this study. In our previous studies\(^\text{(5,6)}\), some differentially expressed genes between gastric cancer tissues and precancerous lesions have been obtained. Genes that have been shown to correlate with gastric cancer were used as a part of the target genes in the microarray. Commercially available microarrays with 8 464 human cDNA sites have also been used for identifying specific genes associated with normal mucosa, precancerous lesions and gastric cancer.

The gene microarray technique has the advantage of simultaneously monitoring the expression of thousands of genes in one hybridization experiment. This technique has greatly facilitated the detection of differentially expressed genes and the construction of gene expression profiles. Since 1995, the DNA microarray technique has been widely employed to investigate the functions of genes, especially those genes involved in tumor generation and growth\(^\text{(7)}\). This technique has a great potential as a practical clinical tool for medical diagnosis\(^\text{(8)}\). Although many genes are known to be related to the pathological process of gastric carcinoma, so far very few prognostic biomarkers of gastric cancer have actually been used in clinical medicine. In our present study, we tried to identify specific genes involved in gastric carcinogenesis, with the objective of establishing a prewarning system for early diagnosis, therapy and prevention of gastric cancer.

MATERIALS AND METHODS

Resource of tissue specimens

Specimens used in this study were classified into three different categories: those of gastric cancer (including all types of pathologic gastric cancers such as diffuse type and intestinal type), those of paracancerous lesions (according to international classified standard including atrophic gastritis, intestinal gland metaplasia, atypical hyperplasia) and those of normal gastric mucosa (including slight superficial gastritis). A total of 150 specimens including 60 gastric cancers, 60 pre-cancerous lesions and 30 normal gastric mucosa were obtained. Genes from normal gastric mucosa tissues with Cy3-dUTP, those from gastric cancer tissues and precancerous tissues were labeled with Cy5-dUTP, those from normal gastric mucosa tissues with Cy3-dUTP. The labeled probes were mixed, fragmented and precipitated by ethanol and dissolved in 20 μL hybridization solution (5×SSC+2 g/L SDS).

Fabrication of microarrays

Microarrays consisting of 2 435 fragment sites including 412 genes were fabricated. These synthesized oligonucleotide DNAs were first dissolved in 3× SSC solution. Spot report oligo array validation system (Cat # 252170-7) was used as quality control. Spots with pure 3× SSC solution were selected as background control. The target genes were spotted on silylated slides by MicroGridII spotting robotics (BioRotics Inc.). After spotting, the slides were hydrated (2 h), dried (0.5 h, RT), UV crosslinked (65 mJ/cm), and then treated with 2 g/L SDS (10 min), H₂O₂ (10 min), and 2 g/L NaBH₄ (10 min). The slides were dried before being made ready for usage.

Extraction of total RNAs and probe preparation

Total RNA extraction was performed by using total RNA extract kit from Promega Inc. Final total RNA templates were dissolved with non-RNase and non-DNase Milli-Q H₂O. Fluorescent cRNA probes were prepared through reverse transcription and then purified, referring to the protocol of Schena et al.

Hybridization and washing

After denatured at 95 °C for 5 min, the probes were added onto slides, covered with a cover glass and incubated at 42 °C for 17 h. The slides were subsequently washed in solutions of 2× SSC+2 g/L SDS, 0.1× SSC+2 g/L SDS and 0.1× SSC, 10 min each time, and then dried at room temperature.

Detection and analysis

Microarrays were scanned by using Affymetrix® 428™ array scanner. ImageGene 3.0 software (BioDiscovery Inc.) was used to quantify, correct for background noise and normalize the signals from post-hybridization chip.

Construction of prewarning data library

The data files were incorporated into a computer database by CGO software, including patient disease history and all screened results, such as, name, file number, sex, age, address, telephone, e-mail address, marital status, blood type, body mass, disease history, imaging examination, pathological examination, serum examination, blood examination, cytogenetic report, and gene array report.

Threshold values of expression profiles

Expression gene profiles were established according to the acquired data. CAD software was used in the selection of discriminating candidate genes by their correlation with three kinds of gastric tissues, determination of the optimal set of reporter genes by using a leave-one-out validation procedure, determination of the threshold values of selected gene expression levels to distinguish normal gastric mucosa from pre-cancerous lesions and gastric cancer, and metastatic cancer and no-metastatic cancer.
Analysis software for gastric cancer prewarning data
A total of 412 genes and critical threshold values to distinguish normal gastric mucosa from pre-cancerous lesion and gastric cancer were compiled into an analysis software, which could provide analysis reports by analyzing the microarray test results.

Northern blot analysis
Five micrograms of mRNA was resolved by denaturing formaldehyde agarose gel and transferred onto hybrid membranes (Amersham). The membranes were hybridized with \(^\text{32}^\text{p}\)-labeled fragments of cDNA overnight, washed twice in 1 g/L standard saline citrate and 1 g/L SDS for 20 min and then exposed to Kodak BioMax film at -80 °C with an intensifying screen for 24 h.

Immunohistochemistry analysis
Standard avidin-biotin complex (ABC) technique was used for immunohistochemical staining of formalin-fixed, paraffin-embedded gastric cancer tissues. Specific antibody (10 mg/L) and PBS were added onto tissue slides previously blocked with rabbit serum and incubated overnight. After washing with PBS, the slides were incubated with a rabbit anti-human IgG conjugated to biotin at room temperature for 1 h, alkaline phosphatase substrate was then added for color development. The slides were counterstained with hematoxylin-eosin.

Statistical analysis
A two-way clustering analysis was performed by using Cluster software and Tree view software from http://www.microarray.org (PNAS 1998; 95:14863). Statistical analysis was performed by using the \(t\) test. All \(P\) values were based on two-sided testing, and a significant difference was defined as \(P\) less than 0.05.

RESULTS
Screened genes associated with normal gastric mucous, pre-cancerous lesion and gastric cancer
Two high-density chips were used to primarily screen differential genes associated with normal gastric mucosa, pre-cancerous lesion and gastric cancer. According to the obtained partial biochip hybridization results, 393 genes closely associated with three stages of gastric cancer development were primarily screened out (Figure 1). Fifteen genes associated with gastric cancer metastasis and 8 genes associated with risk factor genes of gastric cancer, such as cagA, vacA, Ure, EB, were selected according to the literature\(^9\). These genes were used as main target genes on the prewarning chip. The oligonucleotides associated with 412 genes were designed, synthesized and fabricated into low-density chip.

One hundred and fifty specimens screened by low-density chip
All the 150 specimens with clear pathological results were screened with the fabricated low-density microarrays. Among these, 60 were known to be cancerous, 60 precancerous and 30 normal (Figure 2). In the 60 cancer specimens, 216 genes were found to exhibit higher expression levels than those in normal gastric mucosa. Among the 216 genes, 156 also exhibited higher expression levels than those in the precancerous lesions (Table 1). In the 60 specimens of Precancerous lesions, 126 genes exhibited higher expression levels than those in the normal tissues. Among those, 85 genes also showed higher expression levels than those in the gastric cancer tissues (Table 1). Contrary to our initial expectations, selected risk factor genes such as cagA, vacA, Ure, EB did not show overexpression levels in gastric cancer tissues in comparison with the normal tissues and precancerous lesions. In fact, these genes showed lower expression levels in gastric cancer tissues than in normal tissues and precancerous lesions. This result demonstrated that the risk factor genes due to \(H\) pylori infection might be more closely associated with the progression of precancerous lesion. Eighty-eight genes in normal tissues exhibited higher expression levels than those found in gastric cancer tissues and pre-cancerous tissues (Table 1). These genes are helpful for distinguishing normal gastric mucosa from precancerous lesions. This is very important in diagnosing the precancerous lesion among common gastric diseases, such as superficial gastritis, because the treatment of precancerous lesion requires special focused methods. If left untreated, precancerous lesion might result in gastric cancer in a limited time.

Construction of prewarning database library of gastric cancer
The gene expression profiles of each specimen obtained by biochip were stored together with patient clinical data.
including follow-up treatments until death. The data files were incorporated into a computer database by CGO software, including patients’ disease history and all screened results such as name, file number, sex, age, address, telephone, e-mail address, marital status, blood type, body mass, disease history, imaging examination, pathological examination, serum examination, blood examination, cytogenetic report, gene array report. The prewarning data were added with new content. These data would be available on Gastric Cancer Information Web presided by Dr. Cui at http://www.37c.com.cn.

Critical threshold values to distinguish normal gastric mucosa from pre-cancerous lesion and gastric cancer

A total of 412 genes were selected as the main diagnostic genes, including 216 genes that displayed higher expression levels in cancer tissues than in non-cancer tissues, 85 genes with higher expression levels in precancerous lesions than in cancer tissues and 88 genes that exhibited higher expression levels in normal tissues than in gastric cancer tissues and pre-cancerous tissues. We selected 15 genes associated with metastasis of gastric cancer as metastasis biomarkers, 8 risk factor genes as reference biomarkers to predict the development of pre-cancerous lesions (Table 1). The critical threshold values to distinguish normal gastric mucosa from pre-cancerous lesion and gastric cancer were decided and were summarized in Table 2.

Table 1 Differentially expressed genes in prewarning microarray of gastric cancer

GenBank	Number	Description of gene
Highly expressed genes in gastric cancer		
1	NM_001962	Homo sapiens ephrin-A5 (EFNA5)
2	XM_017384	Homo sapiens matrix metalloproteinase 7 (MMP7)
3	NM_008610	Mus musculus matrix metalloproteinase 2 (Mmp2)
4	XM_004995	Homo sapiens matrix metalloproteinase 14 (MMP14)
5	AF003573	Bos taurus angiopoietin-1 (ang-1)
6	AF004327	Homo sapiens angiopoietin-2
7	M11730	Human tyrosine kinase-type receptor (HER2)
8	U13948	Human zinc finger/leucine zipper protein (AF10)
9	XM_049646	Homo sapiens similar to octamer-binding transcription factor 3B (OCT-3B)
10	XM_055784	Homo sapiens fibroblast growth factor 2 (basic) (FGF2)
11	XM_056035	Homo sapiens proliferating cell nuclear antigen (PCNA)
12	L24203	Homo sapiens ataxia-telangectasia group D-associated protein
13	XM_087201	Homo sapiens similar to RED protein, IK cytokine
14	X00663	Human mRNA fragment for epidermal growth factor (EGF) receptor
15	NM_002607	Homo sapiens platelet-derived growth factor alpha polypeptide (PDGFA)
16	XM_165656	Homo sapiens matrix metalloproteinase 2 (MMP2)
17	NM_005918	Homo sapiens malate dehydrogenase 2, NAD (mitochondrial) (MDH2)
18	AF503165	Homo sapiens HUS1 checkpoint homolog (HUS1) gene
19	XM_045667	Homo sapiens antigen identified by monoclonal antibody Ki-67 (MK67)
20	XM_05913	Homo sapiens frequently rearranged in advanced T-cell lymphomas (FRAT1)
21	XM_032866	Homo sapiens signal transducer and activator of transcription 5A (STAT5A)
22	NM_004103	Homo sapiens protein tyrosine kinase 2beta (PTK2B)
23	XM_008355	Homo sapiens membrane protein, palmitoylated 2 (MPP2)
24	L18920	Human MAGE-2 gene exon 2, 3, 4
25	M12174	Homo ras-related rho
26	NM_01233	Homo sapiens c-myc binding protein (MYCBP)
27	BC016514	Homo sapiens, similar to translocated promoter region (to activated MET oncogene)
28	NM_004324	Homo sapiens BCL-2 associated X protein (BAX)
29	Z26500	Cyclin A
30	D45906	LIMK-2
31	D21255	OB-cadherin
32	X54925	Type I interstitial collagenase
33	X05232	Stromelysin, matrix metalloproteinase 3
34	M26126	Human pancreatic trypsin 1 (TRP1)
35	XM_055254	Homo sapiens fibronectin 1 (FN1)
36	AF081127	Danio rerio fibronectin (fn2)
37	M15796	Human cyclin protein gene
38	HSFBEDA	Human fibronectin gene ED-A region
39	HSU6406	Human putative EPH-related PTK receptor ligand LERK-8 (Epig8)
40	AF06846	Homo sapiens scaffold attachment factor A (SAF-A)
41	HS8TRCP	Homo sapiens mRNA for beta-transducin repeat containing protein
42	AI10763	Homo sapiens skeletal muscle LIM- protein 1 (FHL1) gene
43	HUMHO2SC01	Human mRNA for home oxygenase-2
44	HNMISH16	Human mutator hMSH2 gene
45	HSHEKH1	Homo sapiens mRNA for EHK-1 receptor tyrosine kinase
46	HSKLCN30	Homo sapiens mRNA for unknown antigen
47	AF009304	Homo sapiens mRNA for SH3 binding protein
48	AF070561	Homo sapiens clone 24703 beta-tubulin
49	HUMCAMIV	Homo vascular cell adhesion molecule 1
50	HSRNASMG	Homo sapiens mRNA for Smn protein G
51	X83228	Homo sapiens mRNA for L1-cadherin
52	AF12100	Homo sapiens HSPC039 protein
53	HSU97018	Homo sapiens echinoderm microtubule-associated protein homolog HuEMAP
54	HUS41388	Human Ets transcription factor (NERF-2)
55	HSY17392	Homo sapiens mRNA for prefoldin subunit 1
56	HSU08316	Human insulin-stimulated protein kinase 1 (SPK-1)
57	HZNF232G2	Homo sapiens zinc finger protein ZNF232, exons 2 and 3
58	HUMP3ST	Homo sapiens mRNA for L1-cadherin
59	J03040	Human mRNA
60	XM_035809	Homo sapiens similar to chondroitin sulfate proteoglycan 2 (versican)
61	L40379	Homo sapiens thyroid receptor interactor (TRIP10)
62	HSU72069	Human karyopherin beta2
63	HUMPCK2	Human phosphoglycinate kinase (pgk) mRNA, exons 2 to last
64	HSU07139	Human insulin-stimulated protein kinase 1 (SPK-1)
65	XM_01472	Homo sapiens v-jun sarcoma virus 17 oncogene homolog (avian) (JUN)
66	AU100088	Human phosphoglucomutase (PGDM) gene
67	HUMLRCPZ	Human Kruppel related zinc finger protein (KLF10)
68	AF07050	Homo sapiens neuroendocrine-specific protein C homolog
69	HUMSC35A	Human splicing factor SC35
70	HUMPTPB	Homo sapiens protein tyrosine phosphatase (CIP2)
71	AF049608	Homo sapiens monocarboxylate transporter 2 (MC2T2)
72	HUMHEK	Human receptor tyrosine kinase (HER)
73	J03210	Human collagenase type IV
74	HSRA8P90	Homo sapiens mRNA for Rab8a effector p0
75	AF184924	Homo sapiens zinc finger transcription factor BTER2 gene
Accession	Description	Reference
HUMC5A2A	Human fibrillar collagen (pro2A (V) gene)	
HUMC5APA	Human GTPase-activating protein ras p21 (RASAJ)	
HUMCGLBLS	Human glutamate receptor subunit (GluH1)	
AF047715	Homo sapiens A-kinease anchoring protein (AKAP18)	
HSU40282	Homo sapiens integrin-linked kinase (LIK)	
HSATPFLM	Human mRNA for mitochondrial ATP synthase (F1-ATPase) alpha subunit	
AF152485	Homo sapiens protochelin alpha 7 short form protein (PCDH-alpha7)	
HSRP19	Human mRNA for 19 ku protein of signal recognition particle (SRP)	
U17195	Homo sapiens A-kinease anchor protein (AKAP100)	
HSU72999	Human neuronal o lactomedin-related ER localized protein	
XM_037859	Human focal adhesion kinase (FAK)	
HSU04209	Human-associated microfilibril protein	
D82878	Hemicentinotus pulherrimus mRNA for p34cdc2	
AF060515	Homo sapiens cyclin K (CPR4)	
D21262	Human mRNA for KIAA0035 gene	
NM_005641	Homo sapiens TATA box binding protein-associated factor, RNA polymerase II, 85 ku	
HSU07550	Human chaperonin 10	
X82153	Homo sapiens mRNA for calretinin 0	
HSU41766	Human metalloprotease/disintegrin/cysteine-rich protein precursor (MDC9)	
AB017019	Homo sapiens mRNA for JKTBP2	
HUMNC	Human cellular fibroenectin	
U93303	Homo sapiens thyroglobulin (TG)	
AF0504354	Homo sapiens protocollagen-3 (PRC3) gene	
HSUMC0LIX	Homo sapiens collagen alpha 3 type IX (COL9A3)	
NM_002427	Homo sapiens metalloproteinase 13 (MMP13)	
AF039747	Homo sapiens cadherin-10 (CDH10)	
AF072242	Homo sapiens methyl-CpG binding protein MDB2 (MDB2)	
HSMYCC	Human c-myc oncogene	
HSTSPM	Homo sapiens tissue specific mRNA	
HSU64517	Human Crk-associated substrate related protein Cas-L	
HSVACM1	Homo sapiens mRNA for vasopresin-activated calcium mobilizing receptor-like protein	
HUMPA1H	Homo pro-alpha-1 (V) collagen	
AF059611	Homo sapiens nucleotidase protein NRP/B (NRPB)	
HSU304845	Homo alfa (I) collagen (COL4A6)	
M87860	Human S-lac lectin L-14-II (LGALS2) gene	
AF492837	Human mRNA for osteopontin	
HSFCOXB	Homo sapiens coxsubIII mRNA for cytochrome c oxidase subunit IIib	
U01244	Human fibulin-1D	
U52153	Human invasory rectifying potassium channel Kir3,2	
S66427	RBP1=retinoblastoma binding protein 1 [human, Nalm-6 pre-B cell leukemia, mRNA, 4854 nt]	
AF117108	Homo sapiens IGF-II mRNA-binding protein	
HSU40983	Human cell surface heparin binding protein HIP	
HSU59289	Human I3-cadherin	
HSU95032	Human growth-arrest-specific protein	
HSU18018	Homo E1 enhancer binding protein (E1A-F)	
HUMCGRPB	Homo sapiens (clone HSNM29) CGRP type 1 receptor	
X59543	Human mRNA for M1 subunit of ribonucleotid reductase	
AF072810	Homo sapiens transcription factor WSTF	
AF005068	Homo sapiens breast and ovarian cancer susceptibility protein splice variant (BRCA1)	
HSU66197	Human fibroblast growth factor homologous factor 1 (FHF-1)	
HUMVTRN	Human cell adhesion protein (vitronectin) receptor	
Gene Accession	Gene Description	
---------------	------------------	
HSU08316	Human insulin-stimulated protein kinase 1 (ISPK-1)	
HUMAAE	Homo sapiens dbpB-like protein	
HSU44839	Human putative ubiquitin C-terminal hydrolase	
HUMACTIIIA	Human activin type II receptor	
HSU46857	Human RNA polymerase II boloenzyme component	
HSU72621	Human LOT1	
HUMHSPCA	Human proliferating cell nuclear antigen (PCNA) gene	
HUMPMOR	Human NAD(P)H: menadione oxidoreductase	
HSU41765	Human metalloprotease/disintegrin/cysteine-rich protein	
HUMHGLUT1	Human mRNA for glutamate transporter	
HSU66243	Human CD36 glycoprotein	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMIL8RB	Human metalloproteinase 3	
HUMCALBETB	Human voltage-dependent calcium channel beta-1 subunit	
HUMATPSAS	Human gene for ATP synthase alpha subunit (exon 1-12)	
HUMBAFAA	Human mRNA for platelet activating factor	
HSU62010	Human keratinocyte growth factor	
HUMTPARN	Human mRNA for tissue plasminogen activator	
HUMKGF	Human keratinocyte growth factor	
HUMHSPCA	Human mRNA for phosphatidylinositol 4-kinase (PI4K)	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMKGF	Human keratinocyte growth factor	
HUMCALBETB	Human voltage-dependent calcium channel beta-1 subunit	
HUMPBC	Human ADP/ATP carrier protein (ANT-2) gene	
HUMUPTP	Human plasminogen activator	
HUMCALBETB	Human voltage-dependent calcium channel beta-1 subunit	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
HUMHGLUT1	Human mRNA for glutamate transporter	
HUMHSPCA	Human mRNA for platelet activating factor	
15 U05259 Human MB-1 gene
13 X59770 Homo sapiens IL-1R2 mRNA for type II interleukin-1
12 M57732 Human hepatic nuclear factor 1 (TCF1)
11 NM_005522 Homo sapiens homeo box A1 (HOXA1)
10 U52191 Human SMCY (H-Y)
9 Z49107 Homo sapiens galectin
8 L15533 Homo sapiens pancreatitis-associated protein (PAP)
7 M10942 Human metallothionein-Ie gene (hMT-Ie)
6 M61853 Human cytochrome p4502C18 (CYP2C18)
5 L07518 Homo sapiens mucin
4 AF043909 Homo sapiens gastric mucin (MUC5AC)
3 M63154 Human intrinsic factor
2 U75272 Human gastricsin
1 X05997 Human mRNA for gastric Lipase

Highly expressed genes in normal gastric mucous

1 X05997 Human mRNA for gastric Lipase
2 U75272 Human gastricsin
3 M63154 Human intrinsic factor
4 AF043909 Homo sapiens gastric mucin (MUC5AC)
5 L07518 Homo sapiens mucin
6 M61853 Human cytochrome p4502C18 (CYP2C18)
7 M10942 Human metallothionein-Ie gene (hMT-Ie)
8 L13533 Homo sapiens pancretatitis-associated protein (PAP) gene
9 Z49107 Homo sapiens galectin
10 U52191 Human SMY1 (H-Y)
11 NM_005522 Homo sapiens homoe box A1 (HOXA1)
12 M57732 Human hepatic nuclear factor 1 (TCF1)
13 X59770 Homo sapiens IL-1R2 mRNA for type II interleukin-1 receptor
14 X76223 Homo sapiens MAL gene exon 4
15 U05259 Human MB-1 gene

Highly expressed genes in GC7901 and GES-1

16 XM_052013 Homo sapiens polymeric immunoglobulin receptor (PIQR)
17 U90065 Homo sapiens ATP sulfurylase/APS kinase 2
18 M55422 Human Krueppel-related zinc finger protein (H-plk)
19 S78825 Id1, transcription regulator helix-loop-helix protein
20 U19948 Homo sapiens protein disulfide isomerase (PDIP)
21 U43522 Human cell adhesion kinase beta (CAKbeta)
22 U12139 Human alphal (XI) collagen (COL11A1) gene, 5' region and exon 1
23 M14539 Human factor XIII subunit
24 X65614 Homo sapiens mRNA for calcium-binding protein S100P
25 AF000560 Homo sapiens TFF-1 interacting peptide 20
26 AF002224 Homo sapiens Angiogen Syndrome Gene, 6b-AP ubiquitin protein ligase 3A
27 U57096 Human janus kinase 3 (Jak3)
28 U42600 Human calcium-activated potassium channel beta subunit
29 NM_017406 cAMP responsive element binding protein-like 1
30 U4806 Homo sapiens FLT3/FLK2 ligand
31 D8436 Homo sapiens p52 and p64 isoforms of N-Shc
32 Z30425 Homo sapiens orphan nuclear hormone receptor
33 M16346 Human creatine kinase-B
34 X96294 Homo sapiens encoding mitochondrial citrate transport protein
35 HSN223H1 Homo sapiens nm23H1 gene
36 NM_014792 Homo sapiens KIAA0125 gene product (KIAA0125)
37 M34041 Human alpha-2-adrenergic receptor (alpha-2 c2) gene
38 XM_002444 Homo sapiens serine threonine kinase 39 (Skt39)
39 NM_001690 Homo sapiens ATPase, H+ transporting, lysosomal
40 L12398 Human sapiens dopamine receptor D4 (DRD4)
41 L76465 Homo sapiens NAD+ dependent 15 hydroxyprostaglandin dehydrogenase (PGDH)
42 U57094 Homo sapiens small GTP-binding protein
43 Z14978 Homo sapiens mRNA for actin-related protein
44 X53961 Human lactotransferrin
45 M2628 Homo sapiens alpha-1 Ig germline C-region membrane-coding region
46 MB8426 Homo sapiens adipsin/ complement factor D
47 X04391 Human lymphocyte glycoprotein T1/Leu-1
48 X04553 Homo sapiens sema domain, immunoglobulin domain (Ig), transmembrane domain (TM) and short cytoplasmic domain, (sema3p) 48 (SEMA4B)
49 AF071054 GCys-1, mRNA differentially expressed in cell lines GC7901 and GES-1
50 AF063015 Homo sapiens cell division protein
51 AF071056 GCys-17, mRNA differentially expressed in cell lines GC7901 and GES-1
52 AF002130 Homo sapiens mRNA for cell division protein
53 NM_001730 Homo sapiens Kruppel-like factor 5 (intestinal)
54 AB047278 Arabidopsis thaliana AtNdr1 mRNA for Ndr kinase
55 HMIGFBP1 Human insulin-like growth factor binding protein-1 (IGFBP1) gene
56 HUM20D9 Human gene for 2-oxoglutarate dehydrogenase
57 HSCDC2 Human CDC2 gene involved in cell cycle control
58 XM_061005 Homo sapiens similar to Mucin 2 precursor
59 XM_052013 Homo sapiens polymeric immunoglobulin receptor (PIQR)
60 D80419 Homo sapiens OTH18
61 HSU89870 Homo sapiens homoe box A1 (HOXA1)
62 NM_013942 Homo sapiens cell division cycle associated 7 (CDC7)
63 HSU09716 Human mannose-specific lectin (MBP)
64 HSU09716 Human mannose-specific lectin (MBP)
All 412 genes and critical threshold values to distinguish normal gastric mucosa from precancerous lesion and gastric cancer were compiled into an analysis software, which can automatically provide analysis reports by analyzing the provided microarray test results. The analysis software for examination results of prewarning system of gastric cancer locates on the website http://shasta.mpi-stuttgart.mpg.de/array/form.html. The software cannot be downloaded until it is confirmed to be very effective and complete.

Northern blot analysis of brca1 and ndr1

Two new biomarkers brca1 and ndr1 (NM_007271) were identified. Brca1 (AF208045) showed no or low-expression levels in normal gastric mucosa and high-expression level in gastric cancer. There was a statistically significant difference in expression levels between normal gastric mucous tissues and gastric cancer tissues (P<0.01, Figure 3), indicating that higher expression of brca1 was closely associated with gastric cancer stage. Further analysis indicated that higher expression of brca1 appeared to have no correlation with pathological types of gastric cancer (P>0.05, data not shown). Conversely, ndr1 (NM_007271) displayed higher expression levels in normal gastric tissues and no or lower expression in gastric cancer, and there was a statistically significant difference in expression levels between normal gastric mucous tissues and gastric cancer tissues (P<0.01), indicating that higher expression level of ndr1 was closely associated with normal stage of gastric mucosa tissues.

Immunohistochemistry analysis of brca1 and ndr1

Brca1 protein exhibited higher expression in 60 gastric cancer tissues, lower or no expression in 30 normal gastric cancer tissues, and there was no expression or lower expression in 30 normal tissues. Brca1 and ndr1 were analyzed by western blotting and immunohistochemistry, respectively. brca1 and ndr1 were over-expressed in 60 gastric cancer tissues, while the expression level was lower or no expression in 30 normal gastric tissues. (Figure 3)

Table 2 Gene expression threshold for distinguishing three kinds of gastric mucosa

Gene classification	Gastric cancer tissue (GC/N)	Precancerous lesion (PC/N)	Normal gastric mucosa (N*/GC or N*/PC)
246 genes associated with gastric cancer	6.01±2.40	1.18±0.47	<0.75
85 genes associated with precancerous lesions	1.32±0.53	4.86±1.94	2.54±0.41
88 genes associated with normal mucosa	1.31±0.54	2.50±0.75	5.42±2.17
15 genes associated with metastasis of gastric cancer	5.81±2.32 (M)	1.13±0.58	0.65±0.35
8 genes associated with risk factors	2.32±1.19 (N*)		>2.0

Specification: The above data indicate the relative expression levels between GC/N, PC/N, N/PC and N/GC mean ratio and minimum values. M: Metastasis; N*: No metastasis. GC: Gastric cancer; PC: Precancerous lesion; N: Normal mucosa. N*: Selected gene expression levels in normal gastric mucosa.
mucosa tissues. There was a statistically significant difference in expression levels between gastric cancer tissues and normal gastric mucosa tissues \((P<0.01, \text{Figure 4A})\). The result indicated that higher expression of \(brca1\) was associated with gastric cancer stage. \(Ndr1\) protein exhibited higher expression in 30 normal gastric mucosa tissues, lower or no expression in 60 gastric cancer tissues. There was a statistically significant difference in expression levels between normal gastric mucosa tissues and gastric cancer tissues \((P<0.01, \text{Figure 4B})\). The result indicated that higher expression of \(ndr1\) was closely associated with normal stage of gastric mucous tissues.

DISCUSSION

The development of normal gastric mucosa into gastric cancer is a complex process. Previous research in the pathology of gastric cancer demonstrated that normal gastric mucosa could gradually develop into pre-cancerous lesions under special conditions, eventually evolving toward gastric carcinoma. During the periods from normal gastric mucosa to gastric cancer, it has not been shown how many genes are involved at different stages of cancer development. The cDNA microarray technology could provide an efficient tool to address the difficulties in screening and quantifying expression levels of a large number of genes\(^{[7-10]}\). So far there are some reports associated with gene expression profiles of gastric cancer based on biochip\(^{[11,12]}\). However, the problem of early gastric cancer detection is still not solved satisfactorily. In the present study, we tried to establish a prewarning system of gastric cancer based on biochip and CAD technique to solve the problem of early gastric cancer detection.

Firstly, two high-density microarrays with 8 464 human cDNA sites were used to screen two pairs of gastric cancer tissues and 389 genes associated with three stages of gastric cancer development such as normal gastric mucosa, precancerous lesion and gastric cancer were obtained. The selected 389 genes were used as main diagnostic genes on the prewarning chip, 15 genes associated with metastasis of gastric cancer as diagnostic genes of metastasis stages, 8 risk factor genes as reference biomarkers to predict the development of precancerous lesions.

A total of 412 genes were selected to fabricate the low-density chip, which was used to screen 150 clinical specimens. It was found that the gene expression levels in normal, precancerous lesion and cancer tissues were significantly different as expected. CAD software and statistical methods were used to identify key genes and their critical threshold values characterizing different tissue status. Two hundred and sixteen genes displayed higher expression levels in cancer tissues than in non-cancer tissues, 85 genes exhibited higher expression levels in precancerous lesions than in cancer tissues, and 88 genes exhibited higher expression levels in normal tissues than in gastric cancer and precancerous tissues (Table 1). The critical threshold values to distinguish normal gastric mucosa from precancerous lesion and gastric cancer were identified (Table 2). With the above-mentioned standards, the 150 specimens could be clearly grouped according to their tissue status determined in pathology diagnosis. Therefore, we considered that the established standard had a great potential in the detection of early gastric cancer. Based on these selected genes and critical threshold values characterizing three stages of gastric cancer development, an analysis software was developed which could analyze the examination results of 412 genes achieved by biochip and provide automatically an analysis report. The software remained to be optimized. These expression profiles obtained from all these specimens and available clinical data had been compiled into a prewarning data library of gastric cancer by CGO software, and these detailed data would be very useful for the further research and therapy of gastric cancer.

From Table 2, it appeared reasonable to define integrate markers of GC, PC, NU consisting of many genes, instead of individual genes, to distinguish three kinds of gastric tissues status. Once gastric cancer was diagnosed, the expression levels of 15 metastasis genes could be subjected to focal studies to identify whether the cancer metastasized, and to speculate the prognosis of the cancer patients. These results could also be complemented with supporting evidence from patient’s disease history, for example, discomfort or pain in the gastric area, body mass loss in a short time, etc. If a precancerous lesion was diagnosed, the expression levels of risk factor genes might be analyzed as indicators on how fast such lesion would lead to cancer\(^{[13]}\). One may also establish and search the prewarning database library to compare similar patients to make a best treatment plan. The diagnosis and treatment information associated with...
gastric cancer can also be obtained from gastric cancer information web presided over by Dr. Cui http://www.37c.com.cn. The prewarning database of gastric cancer is available on gastric cancer information web. The analysis software of examination results of the prewarning system of gastric cancer locates on the website http://shasta.mpi-stuttgart.mpg.de/array/form.html.

Two new biomarkers have been identified of diagnostic value, braa1 (AF208045)[14] and ndr1 (NM_007271). Braa1 showed no or low-expression levels in normal gastric mucosa and high-expression level in gastric cancer, and appeared to have no correlation with pathological types of gastric cancer. Conversely, ndr1 displayed high-expression levels in normal gastric tissues and no or lower expression in gastric cancer. These results were also confirmed by Northern blot and immunohistochemistry analysis. These two biomarkers may be very useful for distinguishing benign from malignant gastric mucosa lesions.

Gastric cancer specimens from different patients were found to display some variability in gene expression profiles. The reasons could be attributed to variations in specimens, lesion types and the number of cells collected. Moreover, variations among individuals may pose a serious challenge to diagnosis accuracy. In cases of doubt, it would be advisable to analyze microarray results together with clinical symptoms of patients and pathological results. It is very difficult to devise gene expression profiles to further classify the specimens consistent with pathology types such as atrophic gastritis, intestinal gland metaplasia, atypical hyperplasia, etc.

Of course, new methods of disease classification can be defined according to gene expression profiles and DNA levels (mutation, deletion and amplification). Such methods may not be fully consistent with pathology classification, but nevertheless may be appropriate for future clinical applications. In the near future, pathological diagnosis will remain a useful and complementary diagnostic tool.

To test the generality of this standard, we collected randomly some autopsy specimens and screened them with fabricated gastric microarrays. Simultaneously, pathology diagnosis was performed on the same specimens. We found that the results achieved by the microarray were highly identical with traditional pathological results. In another paper, we have reported these results in detail[15,16].

In summary, further studies will lead to a more complete prewarning database library. The prewarning database, together with miniaturized microarray techniques, will be used to further improve the accuracy and reliability of the prewarning system for gastric cancer[10].

ACKNOWLEDGEMENTS

The authors thank Professor Deng-Cheng Li of Xi’an Jiaotong University for his CAD software.

REFERENCES

1 van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linseley PS, Bernards R, Friend SH. Gene expression profiling predicts clinical outcome of breast cancer. Nature 2002; 415: 530–536

2 Cui DX, Yan XJ, Wang F, Zhao JR, Su CZ. Studies on differentially expressed genes of gastric cancer by mRNA differential display. Shenygu Huaxue Yu Shengyu Wuli Jinzhan 2000; 27: 379–382

3 Cui DX, Yan XJ, Wang F, Su CZ. New strategy of cloning of differentially expressed genes. Shenygu Huaxue Yu Shengyu Wuli Jinzhan 2000; 27: 362–364

4 Hippo Y, Taniguchi H, Tsutsusi M, Machida N, Chong JM, Fukayama M, Kodama T, Aburatani H. Global gene expression analysis of gastric cancer by oligonucleotide microarrays. Cancer Res 2002; 62: 233–240

5 Inoue H, Matsuyama A, Mimori K, Ueo H, Mori M. Prognostic score of gastric cancer determined by cDNA microarray. Clin Cancer Res 2002; 8: 3475–3479

6 Sipponen P. Gastric cancer: pathogenesis, risks, and prevention. J Gastroenterol 2002; 37 Suppl 13: 39–44

7 Khan J, Wei JS, Ringnér M, Saal LH, Ladanyi M, Westermann F, Berthold F, Schwab M, Antonescu CR, Peterson C, Meltzer PS. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001; 7: 673–679

8 Hasegawa S, Furukawa Y, Li M, Sato S, Kato T, Watanabe T, Katagiri T, Tsunoda T, Yamaoka Y, Nakamura Y. Genome-wide analysis of gene expression in intestinal-type gastric cancers using a complementary DNA microarray representing 23 040 genes. Cancer Res 2002; 62: 7012–7017

9 Bumm K, Zheng M, Bailey C, Zhan F, Chiriva-Internati M, Eddlemon P, Terry J, Barlogie B, Shahaunessy JD. CGG utilizing and integrating gene expression microarray data in clinical research and data management. Bioinformatics 2002; 18: 327–328

10 Sugiyama T, Hige S, Asaka M. Development of an H pylori infected animal model and gastric cancer: recent progress and issues. J Gastroenterol 2002; 37: 6–9

11 Lee JH, Koh JT, Shin BA, Ahn KY, Roh JH, Kim YJ, Kim KK. Comparative study of angiostatic and anti-invasive gene expressions as prognostic factors in gastric cancer. Int J Oncol 2001; 18: 355–361

12 Sepulveda AR, Tao H, Carloni E, Sepulveda J, Graham DY, Peterson LE. Screening of gene expression profiles in gastric epithelial cells induced by Helicobacter pylori using microarray analysis. Aliment Pharmacol Ther 2002; 16 Suppl 2: 145–157

13 Petersson F, Borch K, Franzen LE. Prevalence of subtypes of intestinal metaplasia in the general population and in patients with autoimmune chronic atrophic gastritis. Scand J Gastroenterol 2002; 37: 262–266

14 Cui DX, Gao TW, Jin GQ, Sun TB, Sarai A. Cloning and characterization analysis of BRCA1. identification. Ziran Zazhi 2003; 25: 356–358

15 Cui DX, Zhang L, Zhang LX, Su CZ, Jin GQ, Xu JR, Yan XJ, Sun TB, Fan DM, Gao HJ. A microarray based prewarning system of gastric cancer. IFMBE Proc 2002; 3: 770–773

16 Cui D, Gao H. Advance and prospect of bionanomaterials. Biotechnol Prog 2003; 19: 683–692

Edited by Wang XL and Gabbe M