Algebraic Structures of m-polar Fuzzy Matrices

Ramakrishna Mankena, T.V. Pradeep Kumar, Ch. Ramprasad, J. Vijaya Kumar

Abstract: Problems from real life situations related to multiple agents \((n \geq 5) \) and Big data are efficiently solved by Computational Mathematics using N-Dimensional Polar information. This information cannot be well-represented by means of fuzzy matrices or bipolar fuzzy matrices. Therefore, m-polar fuzzy matrix theory is applied to graphs to describe the relationships among several individuals. In this paper, some operations are defined to formulate these matrices. We proved the properties of m-polar fuzzy matrices by exploiting the binary operations ring sum \((\oplus)\) and ring subtraction \((\ominus)\). In addition to this we also extended various operations such as reflexive, irreflexive, maximum and minimum for the idea of m-polar fuzzy matrices.

Keywords: m-polar fuzzy matrix, m-polar fuzzy operators, reflexive, irreflexive

I. INTRODUCTION

Converting 3D real image to 2D realistic screening motions was made possible by Computer based modeling. Literature related to Mathematical modeling problems using classical matrices is widely available however material on computation fuzzy matrices is limited. Recently fuzzy matrices are used in several applications that deal with the processing of vague non-deterministic and uncertain relational data. This triggered a demand for fuzzy based m-polar fuzzy matrix.

For example, Hashimoto [2], Kim and Roush [6] and Kolodziejczyk [7] have studied the canonical form of a transitive, generalized fuzzy matrix and strongly transitive fuzzy matrix respectively. Properties like iterations, min-max composition, and convergence power of a fuzzy matrix and power sequence of different types of fuzzy matrices were studied by Hemasinha et al. [3], Ragab and Emam [9], Thomason [11] and Zhou-Tian and Liu [17] respectively. Xin [12, 13] understood controllable fuzzy matrices. Kim et al. [5] and Ragab and Emam [10], studied the properties of determinant and adjoint of a square fuzzy matrix respectively. Pal [8] defined intuitionistic fuzzy determinant. Khan et al. [4] prefaced intuitionistic fuzzy matrices.

Contour set theory was generalized to sets of objects with vague boundaries by Zadeh [14] which spelt the origin of fuzzy set theory. Further, Zhang [15, 16] presented the idea of bipolar fuzzy sets. The idea which lies behind such illustration is associated with bipolar information (i.e., affirming information and negating information) about the given set. In addition to the growth of social networking internet and other technologies have given rise to uncertainty alongside certainty of information. It is in these cases where we have multiple attributes that are uncertain, we need fuzzy sets that can go beyond the domains of bipolar fuzzy sets and the concept of m-polar fuzzy sets has been introduced. M-polar fuzzy sets are theorized by Chen et al. [1] to include relationships among several individual elements of a set. In this set, each element has a value between 0 and 1 indicating the degree of absence or presence of a particular predicate. They extended this concept to show that cryptographic mathematical notions can be concisely obtained for m-polar fuzzy sets. This theory has applications in solving real world problems even when the number of predicates (parameters or measurements) is more than two.

M-polar fuzzy sets can be utilized to investigate agreeable amusements, weighted recreations, and multi-esteemed relations. In basic leadership issues, m-polar fuzzy sets are useful for the multi-criteria choice of articles dependent on the multi-polar data. For instance, m-polar fuzzy sets can be connected when an organization chooses to make a product; a nation chooses its pioneers, a gathering of companions who needs to watch a movie. In remote correspondence, it may be utilized well to talk about the contentions and perplexities of correspondence signals. Accordingly, m-polar fuzzy sets have applications in numerical speculations as well as in genuine issues. Bipolar fuzzy idea cross-section can be utilized to contemplate the two-sided unverifiable conduct of items yet on the off chance that the information has multi-polar data to be managed; the bipolar fuzzy idea grid can't give suitable outcomes. Hence, we require the hypothesis of m-polar fuzzy idea cross-section to deal with information and data having numerous susceptibilities.

In Neurobiology, multi-polar neurons in cerebrum assemble a lot of data from different neurons. In Information Technology, multi-polar technology can be abused to work extensive scale structures. Thinking about realistic structures, m-polar fuzzy sets can be utilized to depict the relationship among a few people. Specifically, m-polar fuzzy sets are to be helpful in an adjustment of exact issues on the off chance that it is important to make judgments with a gathering of understandings. For example, the exact estimation of media transmission security of individuals is a point which lies in \([0,1]^m\) \(m \approx 7 \times 10^9\) since different
individuals are observed on different occasions. A few applications incorporate n-valued logic, assessment, and ordering of options.

In the present work, we introduce the concept of m-polar fuzzy matrix and some binary operations on them including ring sum and ring product. Further, some properties of m-polar fuzzy matrices with respect to the new operations as well as pre-defined operations are presented. These outcomes fortify decisiveness in problematic situations.

II. PRELIMINARIES

Some basic operators on m-polar fuzzy matrices are explained and their notations are introduced below.

Definition 1: Let W be an m-polar fuzzy set on X and $l = \{l_1, l_2, \cdots, l_m\}$, $n = \{n_1, n_2, \cdots, n_m\}$ be two elements of W where l_1, l_2, \cdots, l_m and $n_1, n_2, \cdots, n_m \in [0, 1]$.

Then for any $\alpha \in [0, 1]$, we define

i) Maximum of $\{l, n\} = l \vee n = \{l_1, l_2, \cdots, l_m\} \vee \{n_1, n_2, \cdots, n_m\} = \{l_1 \vee n_1, l_2 \vee n_2, \cdots, l_m \vee n_m\}$

ii) Minimum of $\{l, n\} = l \wedge n = \{l_1, l_2, \cdots, l_m\} \wedge \{n_1, n_2, \cdots, n_m\} = \{l_1 \wedge n_1, l_2 \wedge n_2, \cdots, l_m \wedge n_m\}$

iii) Ring subtraction of $\{l, n\} = l \ominus n = \{l_1, l_2, \cdots, l_m\} \ominus \{n_1, n_2, \cdots, n_m\}

\[= \begin{cases} \{l_1, l_2, \cdots, l_m\}, & \text{if } \langle l_1, l_2, \cdots, l_m \rangle > \langle n_1, n_2, \cdots, n_m \rangle \\ \{0, 0, \cdots, 0\}, & \text{otherwise} \end{cases} \]

iv) Upper α- cut of $l = l^{(\alpha)}$

\[= \begin{cases} \{1, 1, \cdots, 1\}, & \text{if } \langle l_1, l_2, \cdots, l_m \rangle \geq \langle \alpha, \alpha, \cdots, \alpha \rangle \\ \{0, 0, \cdots, 0\}, & \text{Otherwise} \end{cases} \]

v) Lower α- cut of $l = l_{(\alpha)}$

\[= \begin{cases} \{1, 1, \cdots, 1\}, & \text{if } \langle l_1, l_2, \cdots, l_m \rangle \geq \langle \alpha, \alpha, \cdots, \alpha \rangle \\ \{0, 0, \cdots, 0\}, & \text{Otherwise} \end{cases} \]

Now, we introduce two more new operators on W, \oplus and \ominus as follows:

vi) Ring sum of $\{l, n\} = l \oplus n$

\[= \{l_1, l_2, \cdots, l_m\} \oplus \{n_1, n_2, \cdots, n_m\} = \{l_1 + n_1 - l_1 n_1, l_2 + n_2 - l_2 n_2, \cdots, l_m + n_m - l_m n_m\} \]

vii) Ring product of $\{l, n\} = l \odot n = \{l_1, l_2, \cdots, l_m\}$

\[= \{n_1, n_2, \cdots, n_m\} = \{l_1 n_1, l_2 n_2, \cdots, l_m n_m\}, \text{where the operators } \cdot, \cdot, \cdot^\prime \text{ and } +^\prime \text{ are ordinary multiplication, subtraction and addition on real numbers respectively.} \]

Immediately, we can observe that

i) $\{1, 1, \cdots, 1\} \oplus \{1, 1, \cdots, 1\} = \{1, 1, \cdots, 1\}$

ii) $\{1, 1, \cdots, 1\} \odot \{1, 1, \cdots, 1\} = \{1, 1, \cdots, 1\}$

iii) $\{0, 0, \cdots, 0\} \oplus \{1, 1, \cdots, 1\} = \{1, 1, \cdots, 1\}$

iv) $\{0, 0, \cdots, 0\} \odot \{1, 1, \cdots, 1\} = \{0, 0, \cdots, 0\}$

Definition 2: [M-polar fuzzy matrix] An m-polar fuzzy matrix $X = \left[\begin{array}{cccc} x_1, & x_2, & \cdots, & x_m \end{array}\right]$ is a matrix on fuzzy algebra. The zero matrix O_r of order $r \times r$ is the matrix where all the elements are $O_m = \{0, 0, \cdots, 0\}$ and the identity matrix I_r of order $r \times r$ is the matrix where all the diagonal elements are $I_m = \{1, 1, \cdots, 1\}$ and other entries are $O_m = \{0, 0, \cdots, 0\}$.

The set of all rectangular m-polar fuzzy matrices of order $r \times k$ is denoted by M_{rk} and that of square matrices of order $r \times r$ is denoted by M_r.

At present, we are confining to some innovative operations on m-polar fuzzy matrices.

Let $W = \left[\begin{array}{cccc} w_{11}, & w_{12}, & \cdots, & w_{1k} \end{array}\right]$ and $F = \left[\begin{array}{cccc} f_{11}, & f_{12}, & \cdots, & f_{1k} \end{array}\right]$ be two m-polar fuzzy matrices of order $r \times s$. Then

i) Ring sum of $\{W, F\} = W \oplus F = \left[\begin{array}{cccc} w_{11} + f_{11}, & w_{11} + f_{12}, & \cdots, & w_{1k} + f_{1k} \end{array}\right]$.

ii) Ring product of $\{W, F\} = W \odot F = \left[\begin{array}{cccc} w_{11} \cdot f_{11}, & w_{11} \cdot f_{12}, & \cdots, & w_{1k} \cdot f_{1k} \end{array}\right]$.

iii) Maximum of $\{W, F\} = W \vee F = \left[\begin{array}{cccc} \max(w_{11}, f_{11}), & \max(w_{12}, f_{12}), & \cdots, & \max(w_{1k}, f_{1k}) \end{array}\right]$.

iv) Minimum of $\{W, F\} = W \wedge F = \left[\begin{array}{cccc} \min(w_{11}, f_{11}), & \min(w_{12}, f_{12}), & \cdots, & \min(w_{1k}, f_{1k}) \end{array}\right]$.

v) Ring subtraction of $\{W, F\} = W \ominus F = \left[\begin{array}{cccc} w_{11} - f_{11}, & w_{11} - f_{12}, & \cdots, & w_{1k} - f_{1k} \end{array}\right]$.

vi) The transpose m-polar fuzzy matrix of $W = W^T = \left[\begin{array}{cccc} w_{11}, & w_{21}, & \cdots, & w_{k1} \end{array}\right]$.
vii) $W \leq F$ if and only if
\[w_{lk} \leq f_{lk}, \quad w_{lk} \leq f_{lk}, \quad \ldots, \quad w_{lk} \leq f_{lk} \quad \text{for all } l, k. \]
i
For any two m-polar fuzzy matrices W and F,
\[W \wedge F = \min \{W, F\}. \]
Notations 3: If W is any m-polar fuzzy matrix, then we denote $W \oplus W$ as $[2]W$ and in general we have
\[[h+1]W = [h]W \oplus W. \] Similarly, $W \otimes W = W^{[2]}$ and $W^{[h+1]} = W^{[h]} \odot W$ for all h.

Further, we define some types of m-polar fuzzy matrices.

Definition 4: Let $Q = \left[\left[q_{lk}, q_{2k}, \ldots, q_{nk}\right]\right]$ be a matrix of order n. Then we say
a. Q is reflexive if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \{1, 1, \ldots, 1\}$ for all $l = 1, 2, \ldots, n$.
b. Q is irreflexive if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \{0, 0, \ldots, 0\}$ for all $l = 1, 2, \ldots, n$.
c. Q is nearly irreflexive if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle \leq \langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle$ for all $l, k = 1, 2, \ldots, n$.
d. Q is symmetric if $Q^T = Q$.
e. Q is constant if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \langle q_{1k}, q_{2k}, \ldots, q_{nk} \rangle$ for all l, k, $i = 1, 2, \ldots, n$.
f. Q is identity if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \{1, 1, \ldots, 1\}$ and $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \{0, 0, \ldots, 0\}$ ($l \neq k$) for all l, k.
g. Q is weakly reflexive if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle \geq \langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle$ for all l, k.
h. Q is diagonal if $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle \leq \langle 0, 0, \ldots, 0 \rangle$ and $\langle q_{lk}, q_{2k}, \ldots, q_{nk} \rangle = \{0, 0, \ldots, 0\}$ ($l \neq k$) for all l, k.

Notations 5: If all the elements of a matrix are $\{0, 0, \ldots, 0\}$ then we denote it by O and all the elements of a matrix are $\{1, 1, \ldots, 1\}$ then we denote it by I. Generally, the identity matrix of order $m \times m$ is denoted by I_m.

III. THEORETICAL RESULTS ON M-POLAR FUZZY MATRICES

From now onwards, we use the notation $X = \left[x_{lk}\right], Y = \left[y_{lk}\right], Z = \left[z_{lk}\right]$ and $T = \left[t_{lk}\right]$ to denote m-polar fuzzy matrices and in which the corresponding elements are comparable to one another.

In the following properties, we have given detailed properties of the m-polar fuzzy matrices.

Property 6: Let X be an m-polar fuzzy matrix of order $r \times r$. Then
a. $I_r \oplus (X \otimes X^T)$ is reflexive and symmetric,
b. $X \ominus I_r$ is irreflexive,
c. If X is nearly irreflexive and symmetric then $(X \otimes X^T)$ is nearly irreflexive and symmetric,
d. $I_r \oplus (X \otimes X^T) = I_r \vee (X \otimes X^T)$.

Proof: a. $X \otimes X^T = \left[\left(x_{lk} + x_{lk} - x_{lk} - x_{lk}, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \ldots, x_{lk} + \ldots, \\right)\right]$ and $I_r \oplus (X \otimes X^T) = \left[\left(n_{lk} + n_{lk} - n_{lk} - n_{lk}, n_{lk} + n_{lk} - n_{lk} - n_{lk}, \ldots, n_{lk} + n_{lk} - n_{lk} - n_{lk}, \\right)\right]$, where $\langle n_{lk}, n_{lk}, \ldots, n_{lk} \rangle = \{1, 1, \ldots, 1\}$ and $\langle n_{lk}, n_{lk}, \ldots, n_{lk} \rangle = \{x_{lk} + x_{lk} - x_{lk} - x_{lk}, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \ldots, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \\}$ for $l \neq k$.

Now, $\langle n_{lk}, n_{lk}, \ldots, n_{lk} \rangle = \langle x_{lk} + x_{lk} - x_{lk} - x_{lk}, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \ldots, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \\rangle = \langle n_{lk}, n_{lk}, \ldots, n_{lk} \rangle$. That is, every diagonal element of $I_r \oplus (X \otimes X^T)$ is $\{1, 1, \ldots, 1\}$ and all non-diagonal elements are $\{x_{lk} + x_{lk} - x_{lk} - x_{lk}, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \ldots, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \\}$. Therefore, $I_r \oplus (X \otimes X^T)$ is reflexive and also symmetric.

b. The diagonal elements of $X \ominus I$, are $\{0, 0, \ldots, 0\}$ because $\langle x_{lk}, x_{lk}, \ldots, x_{nk} \rangle \leq \{1, 1, \ldots, 1\}$.

Hence, $X \ominus I$, is irreflexive.

c. Let $S = (X \otimes X^T)$, i.e., $\langle n_{lk}, n_{lk}, \ldots, n_{nk} \rangle = \langle x_{lk} + x_{lk} - x_{lk} - x_{lk}, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \ldots, x_{lk} + x_{lk} - x_{lk} - x_{lk}, \\rangle = \langle n_{lk}, n_{lk}, \ldots, n_{lk} \rangle$.

Therefore, S is symmetric. Again, $\langle n_{lk}, n_{lk}, \ldots, n_{nk} \rangle = \langle 2x_{lk} - x_{lk}^2, 2x_{lk} - x_{lk}^2, \ldots, 2x_{lk} - x_{lk}^2 \rangle$. Since X is nearly irreflexive, $\langle x_{lk}, x_{lk}, \ldots, x_{nk} \rangle \leq \langle 1 - x_{lk}, 1 - x_{lk}, \ldots, 1 - x_{nk} \rangle$.

Thereon, $\langle 1 - x_{lk}, 1 - x_{lk}, \ldots, 1 - x_{nk} \rangle \geq \langle 1 - x_{lk}, 1 - x_{lk}, \ldots, 1 - x_{nk} \rangle$.

Now, $\langle n_{lk}, n_{lk}, \ldots, n_{nk} \rangle = \langle n_{lk}, n_{lk}, \ldots, n_{nk} \rangle$.

International Journal of Recent Technology and Engineering (IJRTE)
ISSN: 2277-3878, Volume-8 Issue-3, September 2019

Retrieval Number: C4855098319 /2019@BEIESP
DOI:10.35940/ijrte.C4855.098319

Published By:
Blue Eyes Intelligence Engineering & Sciences Publication
\[
\left\{ 1 - \left(1 - x_{i_0} \right), 1 - \left(1 - x_{i_1} \right), 1 - \left(1 - x_{i_2} \right), \cdots, 1 - \left(1 - x_{i_m} \right) \right\} - \left\{ 1 - \left(1 - x_{j_0} \right), 1 - \left(1 - x_{j_1} \right), 1 - \left(1 - x_{j_2} \right), \cdots, 1 - \left(1 - x_{j_m} \right) \right\}
\]

\[
\leq \left\{ 1 - \left(1 - x_{i_0} \right), 1 - \left(1 - x_{i_1} \right), 1 - x_{i_2}, \cdots, 1 - x_{i_m} \right\} - \left\{ 1 - \left(1 - x_{j_0} \right), 1 - \left(1 - x_{j_1} \right), 1 - x_{j_2}, \cdots, 1 - x_{j_m} \right\}
\]

\[
\geq 0, 0, \cdots, 0.
\]

Therefore, \((X \oplus X^T)\) is nearly irreflexive and symmetric.

Property 7: Let \(X\) and \(Y\) be any two \(m\)-polar fuzzy matrices. Then \(X \oplus Y \succeq X \vee Y\).

Proof: Let \(\left\{ w_{i_1}, w_{i_2}, \cdots, w_{i_m} \right\}, \left\{ f_{j_1}, f_{j_2}, \cdots, f_{j_m} \right\} \) and \(\left\{ t_{i_1}, t_{i_2}, \cdots, t_{i_m} \right\}\) be the \(lk\)th element of the matrices \(X \oplus Y\), \(X \vee Y\) and \(X \odot Y\) respectively.

Now \(\left\{ w_{i_1}, w_{i_2}, \cdots, w_{i_m} \right\} = \left\{ x_{i_1} + y_{i_1}, y_{i_1}, x_{i_2} + y_{i_2}, y_{i_2}, \cdots, x_{i_m} + y_{i_m}, y_{i_m} \right\}\).
\[
\begin{align*}
\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle, & \quad \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \\
\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle, & \quad \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle \\
0, 0, \ldots, 0, & \quad \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle \leq \\
\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle.
\end{align*}
\]

\[
\begin{align*}
\langle t_{1a}, t_{2a}, \ldots, t_{ma} \rangle &= \\
&= \max \left\{ \langle x_{1a} \lor y_{1a}, x_{2a} \lor y_{2a}, \ldots, x_{ma} \lor y_{ma} \rangle, \right.
\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle, \left. \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \right. \\
&\left. \right\}
\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle
\]

\[
\begin{align*}
\langle f_{1a}, f_{2a}, \ldots, f_{ma} \rangle &= \\
&= \left\{ \left\{ \langle x_{1a} \lor y_{1a}, x_{2a} \lor y_{2a}, \ldots, x_{ma} \lor y_{ma} \rangle, \right. \left. \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \right. \\
&\left. \right\} \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \right. \\
&\left. \text{if } \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle \leq \right. \\
\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle.
\end{align*}
\]

That is, \(k \) th element \(\langle t_{1a}, t_{2a}, \ldots, t_{ma} \rangle \) of \((X \lor Y) \lor (X \otimes Y) \) is either \(\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle \) or \(\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \) according as \(\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \).

Also, the \(k \) th element of \(\langle w_{1a}, w_{2a}, \ldots, w_{ma} \rangle \) is either \(\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle \) or \(\langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \) according as \(\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \).

Therefore, \(\langle w_{1a}, w_{2a}, \ldots, w_{ma} \rangle = \langle t_{1a}, t_{2a}, \ldots, t_{ma} \rangle \) for all \(l, k \).

Hence, \((X \lor Y) \lor (X \otimes Y) = (X \lor Y) \).

\(b. \) Let \(\langle h_{1a}, h_{2a}, \ldots, h_{ma} \rangle \) be the \(k \) th element of \((X \lor Y) \lor (X \otimes Y) \). Then \(k \) th element
\[
\begin{align*}
\langle w_{1a}, w_{2a}, \ldots, w_{ma} \rangle \text{ of } X \lor Y \text{ is } \langle w_{1a}, w_{2a}, \ldots, w_{ma} \rangle =
\langle x_{1a} \lor y_{1a}, x_{2a} \lor y_{2a}, \ldots, x_{ma} \lor y_{ma} \rangle
\]

\[
\begin{align*}
&= \left\{ \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \right. \\
&\left. \right\} \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle
\]

and the \(k \) th element of \(X \otimes Y \) is
\[
\begin{align*}
\langle f_{1a}, f_{2a}, \ldots, f_{ma} \rangle &= \\
&= \left\{ \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \right. \\
&\left. \right\} \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle
\]

Therefore,
\[
\begin{align*}
\langle h_{1a}, h_{2a}, \ldots, h_{ma} \rangle &= \\
&= \left\{ \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle > \right. \\
&\left. \right\} \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle
\]

That is, the elements of \((X \lor Y) \lor (X \otimes Y) \) are either
\[
\langle 0, 0, \ldots, 0 \rangle \text{ or } \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle \). Hence,
\[
(X \lor Y) \lor (X \otimes Y) \leq Y.
\]

\(c. \) It is obvious that
\[
\langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle = (X \otimes Y) = X \lor Y \leq X \otimes Y.
\]

\(d. \) It is obvious that \(Y \leq X \lor Y \). Hence
\[
(X \lor Y) \leq Y \leq X \lor Y \leq X \otimes Y.
\]

\(\square \)

Property 9: Let \(X, Y \), and \(Z \) be any three \(m \)-polar fuzzy matrices. Then
\[
\begin{align*}
a. & \quad X \otimes (Y \lor Z) = (X \otimes Y) \lor (X \otimes Z), \\
b. & \quad X \otimes (Y \otimes Z) \geq (X \otimes Y) \otimes (X \otimes Z), \\
c. & \quad X \otimes (Y \otimes Z) \leq (X \otimes Y) \otimes (X \otimes Z), \\
d. & \quad X \otimes (Y \lor Z) \leq (X \otimes Y) \lor (X \otimes Z), \\
e. & \quad X \lor (Y \otimes Z) \leq (X \lor Y) \otimes (X \lor Z), \\
f. & \quad X \lor (Y \otimes Z) \geq (X \lor Y) \otimes (X \lor Z).
\end{align*}
\]
Proof: Let \(\{f_{1a}, f_{2a}, \ldots, f_{ma}\}, \{g_{1a}, g_{2a}, \ldots, g_{ma}\}, \{h_{1a}, h_{2a}, \ldots, h_{ma}\} \) and \(\{i_{1a}, i_{2a}, \ldots, i_{ma}\} \) be the \(lk \) th elements of \(Y \lor Z, X \oplus Y, X \oplus Z, X \oplus (Y \lor Z) \) and \((X \oplus Y) \lor (X \oplus Z) \) respectively. Then

\[
\langle f_{1a}, f_{2a}, \ldots, f_{ma} \rangle = \langle y_{1a} \lor z_{1a}, y_{2a} \lor z_{2a}, \ldots, y_{ma} \lor z_{ma} \rangle
\]
\[
\langle g_{1a}, g_{2a}, \ldots, g_{ma} \rangle = \langle x_{1a} + y_{1a} - x_{1a}, y_{1a}, x_{2a} + y_{2a} - x_{2a}, y_{2a}, \ldots, x_{ma} + y_{ma} - x_{ma}, y_{ma} \rangle
\]
\[
\langle h_{1a}, h_{2a}, \ldots, h_{ma} \rangle = \langle z_{1a} + x_{1a}, z_{1a}, z_{2a} + x_{2a}, z_{2a}, \ldots, z_{ma} + x_{ma}, z_{ma} \rangle
\]
\[
\langle i_{1a}, i_{2a}, \ldots, i_{ma} \rangle = \langle x_{1a}, x_{2a}, \ldots, x_{ma} \rangle
\]

Again, if \(y_{1a}, y_{2a}, \ldots, y_{ma} \leq z_{1a}, z_{2a}, \ldots, z_{ma} \), then

\[
x_{1a} + y_{1a} - x_{1a}, y_{1a}, x_{2a} + y_{2a} - x_{2a}, y_{2a}, \ldots, x_{ma} + y_{ma} - x_{ma}, y_{ma} \leq z_{1a} + x_{1a} - x_{1a}, z_{1a}, z_{2a} + x_{2a} - x_{2a}, z_{2a}, \ldots, z_{ma} + x_{ma} - x_{ma}, z_{ma}
\]
or
\[
\langle g_{1a}, g_{2a}, \ldots, g_{ma} \rangle \leq \langle h_{1a}, h_{2a}, \ldots, h_{ma} \rangle
\]

That is,

\[
\langle j_{1a}, j_{2a}, \ldots, j_{ma} \rangle = \langle 0, 0, \ldots, 0 \rangle.
\]

Hence, \(X \oplus (Y \lor Z) = (X \oplus Y) \lor (X \oplus Z) \).

b. Let

\[
\langle f_{1a}, f_{2a}, \ldots, f_{ma} \rangle, \langle g_{1a}, g_{2a}, \ldots, g_{ma} \rangle, \langle h_{1a}, h_{2a}, \ldots, h_{ma} \rangle, \langle i_{1a}, i_{2a}, \ldots, i_{ma} \rangle
\]

be the \(lk \) th elements of \(Y \lor Z, X \oplus Y, X \oplus Z, X \oplus (Y \lor Z) \) and \((X \oplus Y) \lor (X \oplus Z) \) respectively. Then

\[
\langle f_{1a}, f_{2a}, \ldots, f_{ma} \rangle = \langle y_{1a}, y_{2a}, \ldots, y_{ma} \rangle
\]

Therefore, \(\langle j_{1a}, j_{2a}, \ldots, j_{ma} \rangle = \langle 0, 0, \ldots, 0 \rangle \) for all \(l, k \).
\[
\begin{aligned}
&= \left\{ x_{1a} + y_{1a} - x_{a} \cdot y_{1a}, x_{2a} + y_{2a} - x_{a} \cdot y_{2a}, \ldots, \\
&\quad x_{m_a} + y_{m_a} - x_{a} \cdot y_{m_a}, \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} > \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} \leq \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
\end{aligned}
\]

\[
\begin{aligned}
&= \left\{ x_{1a} + y_{1a} - x_{a} \cdot y_{1a}, x_{2a} + y_{2a} - x_{a} \cdot y_{2a}, \ldots, \\
&\quad x_{m_a} + y_{m_a} - x_{a} \cdot y_{m_a}, \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} > \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} \leq \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
\end{aligned}
\]

\[
\begin{aligned}
&= \left\{ x_{1a} + y_{1a} - x_{a} \cdot y_{1a}, x_{2a} + y_{2a} - x_{a} \cdot y_{2a}, \ldots, \\
&\quad x_{m_a} + y_{m_a} - x_{a} \cdot y_{m_a}, \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} > \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
&\quad \text{if } \left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} \leq \\
&\quad \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}
\end{aligned}
\]

Therefore, \(\left\{ t_{1a}, t_{2a}, \ldots, t_{m_a} \right\} \) =

\[
\begin{aligned}
\left\{ s_{1a}, s_{2a}, \ldots, s_{m_a} \right\} \geq \left\{ t_{1a}, t_{2a}, \ldots, t_{m_a} \right\},
\end{aligned}
\]

Hence, \(\left\{ s_{1a}, s_{2a}, \ldots, s_{m_a} \right\} \geq \left\{ t_{1a}, t_{2a}, \ldots, t_{m_a} \right\}, \)

\[\text{wherever may be the values of } \left\{ x_{1a}, x_{2a}, \ldots, x_{m_a} \right\}, \]

\[\left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} \text{ and } \left\{ z_{1a}, z_{2a}, \ldots, z_{m_a} \right\}, \]

\[\text{for all } l, k. \]

Thus \(X \oplus (Y \otimes Z) \geq (X \oplus Y) \otimes (X \otimes Z) \). \)

c. Let \(\left\{ f_{1a}, f_{2a}, \ldots, f_{m_a} \right\}, \left\{ g_{1a}, g_{2a}, \ldots, g_{m_a} \right\}, \)

\[\left\{ h_{1a}, h_{2a}, \ldots, h_{m_a} \right\}, \left\{ i_{1a}, i_{2a}, \ldots, i_{m_a} \right\} \text{ and } \]

\(\left\{ j_{1a}, j_{2a}, \ldots, j_{m_a} \right\} \)

be the \(lk \) th elements of \(Y \otimes Z, X \circ Y, X \otimes Z, X \circ (Y \otimes Z) \)

and \((X \circ Y) \circ (X \otimes Z) \) respectively. Then

\[\left\{ f_{1a}, f_{2a}, \ldots, f_{m_a} \right\} = \left\{ y_{1a} + z_{1a} - y_{1a}, z_{1a} - y_{2a}, \ldots, y_{m_a} + z_{m_a} - y_{m_a} \right\}, \]

\[\left\{ g_{1a}, g_{2a}, \ldots, g_{m_a} \right\} = \]

\[\left\{ x_{1a}, x_{2a}, \ldots, x_{m_a} \right\}, \]

\[\left\{ y_{1a}, y_{2a}, \ldots, y_{m_a} \right\} \]

\[\left\{ h_{1a}, h_{2a}, \ldots, h_{m_a} \right\} \]

\[\left\{ i_{1a}, i_{2a}, \ldots, i_{m_a} \right\} \]

\[\left\{ j_{1a}, j_{2a}, \ldots, j_{m_a} \right\} \]

\[\left\{ s_{1a}, s_{2a}, \ldots, s_{m_a} \right\} \]
Algebraic Structures of m-polar Fuzzy Matrices

Let

\[
\left\{ x_{1a}, x_{2a}, \ldots, x_{ma} \right\}, \quad \text{if} \quad \left\{ x_{1a}, x_{2a}, \ldots, x_{ma} \right\} > 0, 0, \ldots, 0, \text{if} \quad \left\{ x_{1a}, x_{2a}, \ldots, x_{ma} \right\} \leq 0, 0, \ldots, 0
\]

then \(\left\{ i_{1a}, i_{2a}, \ldots, i_{ma} \right\} = \{0, 0, \ldots, 0 \} \) and \(\left\{ J_{1a}, J_{2a}, \ldots, J_{ma} \right\} = \{x_{1a}, x_{2a}, \ldots, x_{ma} \} \).

Therefore for all these cases \(\left\{ i_{1a}, i_{2a}, \ldots, i_{ma} \right\} \leq \left\{ J_{1a}, J_{2a}, \ldots, J_{ma} \right\} \), for whatever may be the values of \(\left\{ x_{1a}, x_{2a}, \ldots, x_{ma} \right\} \).

Similarly, we can prove the other statements \(d, e, f \). □

IV. CONCLUSIONS

It is a fact that m-polar fuzzy sets are one of the most ubiquitous models of both natural and human-made structures. m-polar fuzzy sets are beneficial to model the Biological, Physical, Computer Science and Social systems. Here, we prefaced m-polar fuzzy matrices and two operations between two m-polar fuzzy matrices. Several properties of m-polar fuzzy matrices are also obtained.

REFERENCES

1. Chen J, Li S, Ma S, Wang X. m-polar fuzzy sets: An extension of bipolar fuzzy sets. The Scientific World Journal. Vol. 2014; PP. 1-8.
2. Hashimoto H. Canonical form of a transitive matrix. Fuzzy Sets and Systems. 1983; Vol. 11: PP. 157-162.
3. Hemasinha R, Pal NR, Bezdek JC. Iterates of fuzzy circulant matrices. Fuzzy Sets and Systems. 1993; Vol. 60: PP. 199-206.
4. Khan SK, Shyamal AK, Pal M. Intuitionistic fuzzy matrices. Notes on Intuitionistic Fuzzy Sets. 2002; Vol. 8(2): PP. 51-62.
5. Kim JB, Baartmans A, Sahadin S. Determinant theory for fuzzy matrices. Fuzzy Sets and Systems. 1989; Vol. 29: PP. 349-356.
6. Kim KH, Roush FW. Generalized fuzzy matrices. Fuzzy Sets and Systems. 1980; Vol.4: PP. 293-315.
7. Kolodziejczyk W. Canonical form of a strongly transitive fuzzy matrix. Fuzzy Sets and Systems. 1987; Vol. 22: PP. 292-302.
8. Pal M. Intuitionistic fuzzy determinant. V. U. J. Physical Sciences. 2001; Vol. 7: PP. 87-93.
9. Ragab MG, Emam EG. On the min-max composition of fuzzy matrices. Fuzzy Sets and Systems. 1995; Vol. 25: PP. 83-92.
10. Ragab MZ, Emam EG. The determinant and adjoint of a square fuzzy matrix. Fuzzy Sets and Systems. 1994; Vol. 61: PP. 297-307.
11. Thomason MG. Convergence of powers of a fuzzy matrix. J. Math Anal. Appl. 1977; Vol. 57: PP. 476-480.
12. Xin LJ. Controllable fuzzy matrices. Fuzzy Sets and Systems. 1992; Vol. 45: PP. 313-319.
13. Xin LJ. Convergence of powers of controllable fuzzy matrices. Fuzzy Sets and Systems. 1994; Vol. 62: PP. 83-88.
14. Zadeh LA. Fuzzy sets. Information and Control.1965; Vol. 8: PP. 338-353.
15. Zhang WR. Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multi agent decision analysis. Proceedings of IEEE Conf.1994; PP. 308-309.
16. Zhang WR. Bipolar fuzzy sets. Proceedings of FUZZY-IEEE Conf.1998; PP. 835-840.
17. Zhou-Tian, De-Fu Liu. On the power sequence of a fuzzy matrix convergent power sequence. J. Appli. Math. & Computing (old: KICAM). 1997; Vol. 4: PP. 147-166.