Scalar potential in $F(R)$ supergravity*

Sergei V Ketov

Department of Physics, Tokyo Metropolitan University, Minami-ohsawa 1–1, Hachioji-shi, Tokyo 192-0397, Japan
E-mail: ketov@phys.metro-u.ac.jp

Received 6 March 2009, in final form 21 April 2009
Published 8 June 2009
Online at stacks.iop.org/CQG/26/135006

Abstract
We derive a scalar potential in the recently proposed $N = 1$ supersymmetric generalization of $f(R)$ gravity in four spacetime dimensions. Any such higher-derivative supergravity is classically equivalent to the standard $N = 1$ supergravity coupled to a chiral (matter) superfield, via a Legendre–Weyl transform in superspace. The Kähler potential, the superpotential and the scalar potential of that theory are all governed by a single holomorphic function. We also find the conditions for the vanishing cosmological constant and spontaneous supersymmetry breaking, without fine tuning, which define a no-scale $F(R)$ supergravity. The $F(R)$ supergravities are suitable for physical applications in the inflationary cosmology based on supergravity and superstrings.

PACS numbers: 04.65.+e, 12.60.Jv, 98.80.Hw

1. Introduction

Superstring theory naturally includes gauge field theories and gravity, it offers a consistent perturbation theory for quantum gravity, and it has promise of unifying the Standard Model of elementary particles with gravity. An experimental test of string theory may be possible by future precision data from cosmological observations. However, it requires, in the first place, a reliable theoretical derivation of inflation from string theory [1–3].

String theory needs local supersymmetry for its consistency, whereas the most direct connection to the observational cosmology is provided by the effective $N = 1$ supergravity in four spacetime dimensions, after a flux compactification and moduli stabilization of ten-dimensional superstring theory (or M-theory in 11 dimensions) [4].

In our recent paper [5], we proposed the geometrical origin of an inflaton and quintessence, as described by a dynamically generated complex scalar field in a certain higher-derivative $N = 1$ supergravity theory. Our modified supergravity [5] can be seen as the $N = 1$ locally

* Supported in part by the Japanese Society for Promotion of Science (JSPS).
supersymmetric extension of the $f(R)$ gravity theories that attracted considerable interest in recent years due to their natural ability to describe the current universe acceleration and unify it with the early universe inflation [6].

The supersymmetric extension of the $f(R)$ gravity theories we proposed in [5] is non-trivial because, despite the apparent presence of the higher derivatives of arbitrary order in the Lagrangian, there are no ghosts, potential instabilities can be avoided, and the auxiliary freedom [7] is preserved. Perhaps, most importantly, the modified supergravity action [5] is classically equivalent to the standard $N = 1$ supergravity minimally coupled to a chiral ‘matter’ superfield whose Kähler potential and superpotential are dictated by a single holomorphic function (see sections 2 and 3).

We speculated in [5] that our $F(R)$ supergravity may be dynamically generated by some non-perturbative quantum superstring corrections, whereas the complex scalar field component of the physical chiral scalar superfield (in the equivalent scalar–tensor supergravity) may be identified with a dilaton–axion pair.

In this paper, we would like to investigate some model-independent phenomenological prospects of our proposal [5] by deriving a scalar potential in our modified supergravity. We get the conditions for the vanishing cosmological constant together with spontaneous supersymmetry breaking, without fine tuning. Those no-scale supergravities are the starting point of almost any derivation of inflation from supergravity and string theory—see, e.g., [2] and references therein.

In section 2, we give our notation and setup. In section 3, we recall (and generalize) the derivation [5] of the classical equivalence via a Legendre–Weyl transform in curved superspace, and add a discussion of the super-Kähler–Weyl invariance. In section 4, we introduce the no-scale modified supergravity. Section 5 is our conclusion.

2. Notation and setup

A concise and manifestly supersymmetric description of supergravity is given by superspace [8]. In this section, we provide a few equations for notational purposes only.

The chiral superspace density (in the supersymmetric gauge-fixed form) is

$$\mathcal{E}(x, \theta) = e(x)[1 - 2i \theta \sigma_\alpha \bar{\psi}^\alpha(x) + \theta^2 B(x)],$$

(2.1)

where $e = \sqrt{-\det g_{\mu \nu} g^{\mu \nu}}$ is a spacetime metric, $\psi^\alpha_a = e_{\mu}^a \psi^{\mu \alpha}$ is a chiral gravitino, $B = S - i \bar{P}$ is the complex scalar auxiliary field. We use the lower-case middle Greek letters $\mu, \nu, \ldots = 0, 1, 2, 3$ for curved spacetime vector indices, the lower-case early Latin letters $a, b, \ldots = 0, 1, 2, 3$ for flat (target) space vector indices, and the lower-case early Greek letters $\alpha, \beta, \ldots = 1, 2$ for chiral spinor indices.

The solution of the superspace Bianchi identities and the constraints defining the $N = 1$ Poincaré-type minimal supergravity results in only three relevant superfields, \mathcal{R}, G_a and $\mathcal{W}_{\alpha \beta \gamma}$ (as parts of the supertorsion), subject to the off-shell relations [8]:

$$G_a = G_a, \quad \mathcal{W}_{\alpha \beta \gamma} = \mathcal{W}_{\alpha \beta \gamma}, \quad \mathcal{V}_{\alpha} \mathcal{R} = \mathcal{V}_{\alpha} \mathcal{W}_{\alpha \beta \gamma} = 0$$

(2.2)

and

$$\mathcal{V}_{\alpha} G_{a \alpha} = \mathcal{V}_{\alpha} \mathcal{R}, \quad \mathcal{V}_{\alpha} \mathcal{W}_{\alpha \beta \gamma} = \frac{1}{2} \mathcal{V}_{\alpha} \mathcal{V}_{\beta} G_{a \alpha} + \frac{i}{2} \mathcal{V}_{\beta} \mathcal{V}_{\alpha} G_{a \beta},$$

(2.3)

where $(\mathcal{V}_{\alpha}, \mathcal{V}_{\alpha}, \mathcal{V}_{\alpha})$ represent the curved superspace $N = 1$ supercovariant derivatives, and bars denote the complex conjugation.

1 We use the natural units $c = \hbar = k = 1$. 2
The covariantly chiral complex scalar superfield R has the scalar curvature R as the coefficient at its θ^2 term; the real vector superfield G_{α}^{α} has the traceless Ricci tensor, $R_{\mu\nu} + R_{\nu\mu} - \frac{1}{2}g_{\mu\nu}R$, as the coefficient at its $\theta^{\alpha^\beta} \bar{\theta}$ term, whereas the covariantly chiral, complex, totally symmetric, fermionic superfield $W_{\alpha\beta\gamma}$ has the Weyl tensor $W_{\alpha\beta\gamma\delta}$ as the coefficient at its linear θ^{δ}-dependent term.

A generic supergravity Lagrangian (e.g., representing the supergravitational part of the superstring effective action) is

$$L = L(R, G, W, \ldots),$$

where the dots stand for arbitrary covariant derivatives of the supergravity superfields. We would like to concentrate on the particular sector of the theory (2.4), by ignoring the tensor superfields $W_{\alpha\beta\gamma}$ and G_{α}^{α}, and the derivatives of the scalar superfield R. Thus the effective higher-derivative supergravity action we proposed [5] is given by

$$S_F = \int d^4x \, d^2\theta \, \mathcal{E} \, F(R) + \text{h.c.},$$

with some holomorphic function, $F(R)$, presumably generated by strings. Besides manifest local $N = 1$ supersymmetry, action (2.5) also possesses the auxiliary freedom [7], since the auxiliary field B does not propagate. It distinguishes action (2.5) from other possible truncations of equation (2.4). In addition, action (2.5) gives rise to a spacetime torsion.

3. Super-Legendre–Weyl–Kähler transform

The superfield action (2.5) is classically equivalent to another action,

$$S_V = \int d^4x \, d^2\theta \, \mathcal{E} \, [Z(R) - V(Z)] + \text{h.c.},$$

where we have introduced the covariantly chiral superfield Z as a Lagrange multiplier. Varying action (3.1) with respect to Z gives back the original action (2.5) provided that

$$F(R) = RZ(R) - V(Z(R)),$$

where the function $Z(R)$ is defined by inverting the function

$$R = V'(Z).$$

Equations (3.2) and (3.3) define the superfield Legendre transform. They imply further relations:

$$F''(R) = Z'(R) \quad \text{and} \quad F''(R) = Z''(R) = \frac{1}{V''(Z(R))}.$$ (3.4)

where $V'' = d^2V/dZ^2$. The second formula (3.4) is the duality relation between the supergravitational function F and the chiral superpotential V.

A super-Weyl transform of the superfield action (3.1) can also be done entirely in superspace, i.e. with manifest local $N = 1$ supersymmetry. In terms of components, the super-Weyl transform amounts to a Weyl transform, a chiral rotation and a (superconformal) S-supersymmetry transformation [9].

The chiral density superfield \mathcal{E} is a chiral compensator of the super-Weyl transformations,

$$\mathcal{E} \rightarrow e^{i\Phi} \mathcal{E},$$

whose parameter Φ is an arbitrary covariantly chiral superfield, $\bar{\nabla}_a \Phi = 0$. Under the transformation (3.5), the covariantly chiral superfield R transforms as

$$R \rightarrow e^{-2\Phi}(R - \frac{1}{2} \bar{\nabla}^2) \, e^{\Phi}.$$ (3.6)
The super-Weyl chiral superfield parameter Φ can be traded for the chiral Lagrange multiplier Z by using a generic gauge condition:

$$Z = \mathcal{Z}(\Phi), \quad (3.7)$$

where $\mathcal{Z}(\Phi)$ is an arbitrary (holomorphic) function of Φ. Then the super-Weyl transform of action (3.1) results in the classically equivalent action:

$$S_{\Phi} = \int d^4x \, d^4\theta \, E^{-1} e^{3\Phi} \left[\mathcal{Z}(\Phi) + \bar{Z}(\bar{\Phi}) \right] + \left[- \int d^4x \, d^2\theta \, \mathcal{E} \, e^{3\Phi} \mathcal{V}(\mathcal{Z}(\Phi)) + \text{h.c.} \right], \quad (3.8)$$

where we have introduced the full supergravity supervielbein E^{-1} [8].

Equation (3.8) has the standard form of the action of a chiral matter superfield coupled to supergravity [8]:

$$S[\Phi, \bar{\Phi}] = \int d^4x \, d^4\theta \, \mathcal{E}^{-1} \Omega(\Phi, \bar{\Phi}) + \left[\int d^4x \, d^2\theta \mathcal{E} \, P(\Phi) + \text{h.c.} \right], \quad (3.9)$$

in terms of a 'Kahler' potential $\Omega(\Phi, \bar{\Phi})$ and a chiral superpotential $P(\Phi)$. In our case (3.8), we find

$$\Omega(\Phi, \bar{\Phi}) = e^{\Phi + \bar{\Phi}} [\mathcal{Z}(\Phi) + \bar{Z}(\bar{\Phi})], \quad P(\Phi) = -e^{3\Phi} \mathcal{V}(\mathcal{Z}(\Phi)). \quad (3.10)$$

The truly Kahler potential $K(\Phi, \bar{\Phi})$ is given by [8]

$$K = -3 \ln \left(\frac{-\Omega}{3} \right) \quad \text{or} \quad \Omega = -3 e^{-K/3}, \quad (3.11)$$

because of the invariance of action (3.9) under the supersymmetric Kahler–Weyl transformations:

$$K(\Phi, \bar{\Phi}) \to K(\Phi, \bar{\Phi}) + \Lambda(\Phi) + \bar{\Lambda}(\bar{\Phi}), \quad \mathcal{E} \to e^{\Lambda(\Phi)} \mathcal{E}, \quad P(\Phi) \to -e^{-\Lambda(\Phi)} P(\Phi), \quad (3.12)$$

with an arbitrary chiral superfield parameter $\Lambda(\Phi)$.

The scalar potential (in components) is given by the standard formula [10]:

$$V(\phi, \bar{\phi}) = e^{\Omega} \left| \frac{\partial P}{\partial \Phi} + \frac{\partial \Omega}{\partial \Phi} P \right|^{2} - 3 |P|^{2}, \quad (3.13)$$

where all superfields are restricted to their leading field components, $\Phi = \phi(x)$. Equation (3.13) can be simplified by making use of the Kahler–Weyl invariance (3.12) that allows us to choose the gauge

$$P = 1. \quad (3.14)$$

It is equivalent to the well-known fact that the scalar potential (3.13) is actually governed by the single (Kahler–Weyl invariant) potential [8]:

$$G(\Phi, \bar{\Phi}) = \Omega + \ln P + \ln \hat{P}. \quad (3.15)$$

In our case (3.10), we have

$$G = e^{\Phi + \bar{\Phi}} [\mathcal{Z}(\Phi) + \bar{Z}(\bar{\Phi})] + 3(\Phi + \bar{\Phi}) + \ln(-V(\mathcal{Z}(\Phi))) + \ln(-\hat{V}(\bar{Z}(\bar{\Phi}))). \quad (3.16)$$

Let us now specify our gauge (3.7) by choosing the condition

$$3\Phi + \ln(-V(\mathcal{Z}(\Phi))) = 0 \quad \text{or} \quad V(\mathcal{Z}(\Phi)) = -e^{-3\Phi}, \quad (3.17)$$

2 In [5] we used the particular gauge $\xi = \ln \mathcal{Z}$ with a number ξ. 4
that is equivalent to equation (3.14). Then the potential (3.16) gets simplified to
\[
G = \Omega = e^{\phi + \Phi} [Z(\Phi) + \bar{Z}(\Phi)].
\] (3.18)

Equations (3.2), (3.3) and (3.18) are the simple one-to-one algebraic relations between a holomorphic function \(F(\bar{\mathcal{R}}) \) in our modified supergravity action (2.5) and a holomorphic function \(Z(\Phi) \) entering the potential (3.18) and defining the scalar potential (3.13) as
\[
V = e^G \left[\left(\frac{\partial^2 G}{\partial \Phi \partial \bar{\Phi}} \right)^{-1} \frac{\partial G}{\partial \Phi} \frac{\partial G}{\partial \bar{\Phi}} - 3 \right].
\] (3.19)
in the classically equivalent scalar–tensor supergravity. The latter can be used for embedding the standard slow-roll inflation [11] into supergravity. In our setup that correspondence can be promoted further, by embedding the slow-roll inflation into the ‘purely geometrical’ higher-derivative supergravity theory (2.5), in terms of a single holomorphic function. For our purposes, below, we can restrict our attention to equations (3.18) and (3.19) in terms of a function \(Z(\Phi) \) only.

4. No-scale modified supergravity

The no-scale supergravity arises by demanding the scalar potential (3.19) to vanish. It results in the vanishing cosmological constant without fine tuning [12]. The no-scale supergravity potential \(G \) has to obey the nonlinear second-order partial differential equation,
\[
3 \frac{\partial^2 G}{\partial \Phi \partial \bar{\Phi}} = 3 \left(e^{\phi} X + e^{\phi} \bar{X} \right) \left(e^{\phi} X + e^{\phi} \bar{X} \right)^{-1} \frac{\partial G}{\partial \Phi} \frac{\partial G}{\partial \bar{\Phi}},
\] (4.1)

A gravitino mass \(m_{3/2} \) is given by the vacuum expectation value [8],
\[
m_{3/2} = \langle e^{G/2} \rangle,
\] (4.2)
so that the spontaneous supersymmetry breaking scale can be chosen at will.

The well-known exact solution to equation (4.1) is given by
\[
G = -3 \ln(\Phi + \bar{\Phi}).
\] (4.3)

In the recent literature, the no-scale solution (4.3) is usually modified by other terms, in order to achieve the universe with a positive cosmological constant—see, e.g., the KKLT mechanism [13].

To appreciate the difference between the standard no-scale supergravity solution and our modified supergravity, it is worth noting that the ansatz (4.3) is inconsistent with our potential (3.18) by any choice of the function \(Z \). Instead, in our case, demanding equation (4.1) gives rise to the first-order nonlinear partial differential equation,
\[
3(e^\phi X + e^\phi \bar{X}) = |e^\phi X + e^\phi \bar{X}|^2,
\] (4.4)
where we have introduced the notation
\[
Z(\Phi) = e^{-\phi} X(\Phi), \quad X' = \frac{dX}{d\Phi},
\] (4.5)
in order to get the differential equation in its most symmetric and concise form.

Accordingly, the gravitino mass (4.2) is given by
\[
m_{3/2} = \langle \exp \frac{1}{2}(e^\phi X + e^\phi \bar{X}) \rangle.
\] (4.6)

I am not aware of any non-trivial holomorphic exact solution to equation (4.4). Should it obey a holomorphic differential equation of the form
\[
X' = e^\phi g(X, \Phi),
\] (4.7)
with a holomorphic function \(g(X, \Phi)\), equation (4.4) gives rise to a functional equation,
\[
3 (g + \bar{g}) = |e^\Phi g + \bar{X}|^2.
\] (4.8)

When being restricted to the real variables, \(\Phi = \Phi \equiv y\) and \(X = \bar{X} \equiv x\), equation (4.4) reads
\[
6x' = e^y (x' + x)^2, \quad \text{where} \quad x' = \frac{dx}{dy}.
\] (4.9)

This equation can be integrated after a change of variables,
\[
x = e^{-y} u,
\] (4.10)
which leads to a quadratic equation with respect to \(u' = du/dy\):
\[
(u')^2 - 6u' + 6u = 0.
\] (4.11)

It follows
\[
y = \int^u \frac{d\xi}{3 \pm \sqrt{3(3 - 2\xi)}} = \mp \sqrt{1 - \frac{2}{3} u + \ln(\sqrt{3(3 - 2u)} \pm 3) + C}.
\] (4.12)

5. Discussion

Our main new result is given by equation (3.18) together with the origin of a function \(Z\) out of action (2.5). It implies the existence of new no-scale supergravities based on exact solutions to equation (4.4), with the vanishing cosmological constant and spontaneously broken supersymmetry, without fine tuning.

A generic modified supergravity potential (3.18) in terms of the holomorphic pre-potential \(X(\Phi)\) defined by equation (4.5),
\[
G = \Omega = e^\Phi X(\Phi) + e^\Phi \bar{X}(\bar{\Phi}),
\] (5.1)
has essentially the same structure as the supergravity potential of \(N = 2\) extended supergravity (coupled to \(N = 2\) vector matter) that is also governed by a holomorphic pre-potential. I do not know whether it is merely a coincidence or not.

As regards the non-vanishing (inflaton) scalar potentials from our modified supergravity, they have to satisfy the slow-roll conditions (cf [14]):
\[
\left| \frac{\partial^2 V}{\partial \phi^2} \right| \ll \left(\frac{\partial^2 K}{\partial \phi \partial \bar{\phi}} \right)^2 V^2,
\] (5.2)
and
\[
\left| \frac{\partial^2 V}{\partial \phi \partial \bar{\phi}} + \frac{\partial K}{\partial \phi} \frac{\partial V}{\partial \bar{\phi}} \right|^2 \ll \left(\frac{\partial^2 K}{\partial \phi \partial \bar{\phi}} \right)^2 V^2,
\] (5.3)
which guarantee that the potential is sufficiently flat (i.e. suitable for inflation).

Sometimes it can be achieved by demanding a shift symmetry of the Kähler potential (i.e. its flatness in one direction) and then perturbing the potential around the flat direction—see, e.g., [15]. Our Ansatz (3.18) for the supergravity potential can allow a shift symmetry, though it appears to be more restrictive.

In the context of superstring theory, the effective supergravity potential (3.18) may capture some ‘stringy’ features, such as duality and maximal curvature—see, e.g., [16].

Since we used the (old) minimal formulation of an off-shell supergravity multiplet, with a fixed superconnection, adding a minimal coupling to any (scalar- or vector-type) supermatter

3 I am grateful to A Starobinsky who pointed it out to me.
is straightforward in superspace, just by using the supercovariant derivatives, while it does not change our main results. However, adding a non-minimal coupling of matter to the scalar supercurvature would drastically change everything, so it deserves a separate investigation [17].

References

[1] Brandenberger R H 2004 Lecture Notes Phys. 646 127 (arXiv:hep-th/0306071)
[2] Kallosh R 2008 Lecture Notes Phys. 738 119 (arXiv:hep-th/0702059)
[3] Iihoshi M and Ketov S V 2008 Adv. High Energy Phys. 2008 521389 (arXiv:0707.3359 [hep-th])
[4] Douglas M R and Kachru S 2007 Rev. Mod. Phys. 79 733 (arXiv:hep-th/0610102)
[5] James Gates S Jr and Ketov S V 2009 Phys. Lett. B 674 59 (arXiv:0901.2467[hep-th])
[6] Nogiri S and Odintsov S D 2007 Int. J. Geom. Meth. Mod. Phys. 4 115 (arXiv:hep-th/0601213)
[7] Gates S J Jr 1996 Phys. Lett. B 365 132 (arXiv:hep-th/9508153)
[8] Gates S J Jr, Grisaru M T, Roček M and Siegel W 1983 Superspace or 1001 Lessons in Supersymmetry (New York: Benjamin-Cummings)
[9] Howe P S and Tucker R W 1978 Phys. Lett. B 80 138
[10] Cremmer E, Julia B, Scherk J, Ferrara S, Girardello L and van Nieuwenhuizen P 1979 Nucl. Phys. B 147 105
[11] Liddle A R and Lyth D H 2000 Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press)
[12] Cremmer E, Ferrara S, Kounnas C and Nanopoulos D V 1983 Phys. Lett. B 133 61
[13] Kachru S, Kallosh R, Linde A and Trivedi S P 2003 Phys. Rev. D 68 046005 (arXiv:hep-th/0301240)
[14] Sasaki M and Stewart E D 1995 Prog. Theor. Phys. 95 71 (arXiv:astro-ph/9507003)
[15] Gaillard M K, Murayama H and Olive K A 1995 Phys. Lett. B 355 71 (arXiv:hep-ph/9504307)
[16] Gates S J Jr and Ketov S V 2001 Class. Quantum Grav. 17 3561 (arXiv:hep-th/0104223)
[17] Ketov S V work in progress