Direct and Indirect Effects of Precipitation Change and Nutrients Addition on Desert Steppe Productivity in Inner Mongolia, Northern China

Xinxin Guo
Urat Desert-grassland Research Station

Xiaoan Zuo (xazuo@126.com)
Naiman Desertification Research Station

Ping Yue
Urat Desert-grassland Research Station

Xiangyun Li
Urat Desert-grassland Research Station

Ya Hu
Urat Desert-grassland Research Station

Research Article

Keywords: Desert steppe, Precipitation change, Nutrient addition, ANPP

DOI: https://doi.org/10.21203/rs.3.rs-244027/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background and Aims Global changes profoundly impact on structure and function of grassland ecosystem. However, it remains unclear on the mechanism of how multiple limiting resources affect plant community primary productivity (ANPP) in desert steppe.

Methods Here, we conducted an experiment to examine the effects of precipitation changes (natural and ± 50% precipitation) and nutrient addition (=N: 0 g·m⁻²·yr⁻¹; +N: N 10 g·m⁻²·yr⁻¹; +NPK: N/P/K each for 10 g·m⁻²·yr⁻¹) on species diversity, ANPP, functional traits and soil properties. We used structural equation model (SEM) to evaluate the effects of precipitation changes and nutrient addition on ANPP.

Results Increased precipitation increased species diversity and ANPP under NPK addition, NPK addition increased ANPP under increased precipitation, and the interaction of precipitation changes and nutrient addition was significant for ANPP. Drought reduced plant height and leaf dry matter content (LDMC), but increased leaf nitrogen content (LNC). ANPP was positively correlated with species richness, abundance, height and LDMC, but negatively correlated with specific leaf area (SLA) and LNC. The SEM showed increased precipitation and nutrient addition directly increased ANPP. Altered precipitation indirectly affected ANPP through its effect on abundance and SLA, while nutrient addition indirectly affected ANPP only through its effect on abundance.

Conclusion The combined limitations of precipitation and multiple nutrients deserves more attention in studying the effect of global changes on productivity in arid steppe. Our results highlight the importance of species diversity and functional traits in driving short-term responses of ANPP to environmental factors in desert steppe ecosystems.

Introduction

Under the influence of human activities, global change has an appreciable impact on terrestrial ecosystems (Chen et al. 2013; Hautier et al. 2009; Zhang et al. 2020). There are increasing evidences that extreme drought and extreme precipitation events occur frequently in arid areas of northern China (Kim et al. 2020; Luo et al. 2019; Naumann et al. 2018). Precipitation is the most important driving force of plant productivity in steppe (Lu et al. 2018b; Wilcox et al. 2016). Many studies have shown that productivity of steppe is positively correlated with precipitation (Bin et al. 2014; DeMalach et al. 2017). However, increased precipitation also causes soil erosion and organic matter loss, thus reducing productivity of steppe (Gao et al. 2013). Further study is needed to explore the impact of precipitation changes on the productivity of grassland ecosystems. In addition, human industrial and agricultural activities led to a sharp increase in atmospheric nitrogen (N) deposition (Fowler et al. 2013; Galloway et al. 2008), resulting in the accumulation of available nitrogen, which is gradually improving productivity (Dziedek et al. 2017; Epstein et al. 2002). The restriction of other elements caused by nitrogen enrichment further counteracts the positive effect of nitrogen increase on plant growth (Wang et al. 2018; Zhan et al. 2019). Phosphorus (P) is an essential element for plant energy transmission and growth (Baldarelli et al. 2021; Falkowski et
al. 2000), while potassium (K) can not only improve the uptake and utilization of nitrogen, but also enhance the resistance of plants (Deng et al. 2017; Hooper and Johnson 1999; Mao et al. 2020; Vitousek et al. 2010). Human disturbance (such as deforestation and fertilization) leads to soil erosion and acidification, which in turn leads to loss of available P and K from plants to eutrophication of rivers and lakes (Cloern 2001; Conley 1999; Rader and Richardson 1994). Previous studies have focused on the effects of P and K on aquatic and agro-ecological system (Moura et al. 2016; Obersteiner et al. 2013; Perini and Bracken 2014; Shin 2014). However, there is still a lack of research on the effects of precipitation change, different nutrient addition types and their interaction on terrestrial grassland ecosystem.

Community vegetation characteristics and function traits are the adaptation characteristic of internal physiology and external form formed by plants in response to environmental change (Butterfield and Suding 2013; Cleland and Harpole 2010; Ma et al. 2019). Species diversity reflects vegetation characteristics and biological distribution dynamics (Hooper et al. 2005). Most studies suggested that resource enhancement reduces species diversity (Harpole et al. 2016; Isbell et al. 2013; Siddique et al. 2010; Soons et al. 2017; Suding et al. 2005). Yet classical ecological theory predicts that resource-rich environments can accommodate more species. In addition, evidence is growing that nitrogen additions may alleviate ecosystem N limitation leading to increased species diversity in degraded, resource-poor communities (Bai et al. 2010). A study of the desert steppe in North America indicated species richness varied with seasonal precipitation but was not affected by N addition (Ladwig et al. 2012). Community weighted mean values (CWM) reflects the impact of dominant species on ecosystem function (Cadotte 2017). Most scholars deemed that light acquisition traits (such as plant height and SLA) were positively correlated with precipitation and N addition (Zhan et al. 2019; Zhang et al. 2019a). Nutrient acquisition traits, such as LNC, increased with drought and N application (Lu et al. 2018a). While another study shown SLA remained constant but LDMC decreased with increasing aridity in temperate steppe (Luo et al. 2019). It is crucial to study the responses of species diversity and community functional traits to the change of precipitation and nutrients for understanding the structure and function of desert steppe.

Soil physical and chemical environment is the main source of water and nutrients needed for plant growth. The response of soil properties to precipitation changes and nutrient addition further affects the vegetation structure and function. Growing studies shown that N addition leads to soil acidification (Lu et al. 2014; Tian and Niu 2015). Whereas buffering capacity on the soil acid was detected from phosphorus and water addition (Cai et al. 2017; Mao et al. 2017; Wang et al. 2020). However, it is rarely reported how the soil system responds to precipitation change and multiple nutrient additions, as well as whether it further affects plant productivity of desert steppe.

Above-ground net primary productivity (ANPP) is the most basic and important function of grassland ecosystem (Foley 1994; Gower et al. 1999). Recent studies have suggested that plant functional traits can serve as a bridge between environmental change and ecosystem productivity (Forrestel et al. 2017; Lavorel and Grigulis 2012). For example, a meta-analysis highlighted the addition of water increased productivity by promoting the growth of forb (DeMalach et al. 2017). N addition has direct and indirect
effects on community primary productivity by influencing community specific leaf area and leaf phosphorus content (Zhan et al. 2019). Another study conducted N-induced stimulated community functional traits by increasing canopy light retention and decreasing resource utilization, sequentially actuated alpine grassland ecosystem productivity (Zhan et al. 2019). Furthermore, species richness, plant height and soil properties had significant effects on plant productivity in sandy grassland (Zuo et al. 2016). However, it still unknown whether precipitation and nutrient addition affect ANPP through regulating species diversity or community functional traits in desert steppe.

The desert steppes, a kind of transitional grassland from grassland to desert, are located in the interior of Eurasia. As an important part of temperate grassland ecosystem, it owns uniqueness in ecological geographical conditions, community structure and function (Luo et al. 2020; Zhang et al. 2019b). However, there are few studies on the interaction between water and nutrients in desert steppe. A N addition experiment in desert grassland in central New Mexico, USA found that species richness was only affected by inter-annual rainfall changes and not altered by N enrichment, while ANPP was related to the interaction between inter-annual and N addition (Ladwig et al. 2012). But in many grassland ecosystems, the addition of water and nutrients tended to reduce community heterogeneity and increase ANPP (Chalcraft et al. 2008; Isbell et al. 2013; Kimmel et al. 2020). The Urat desert grassland is located in an arid and semi-arid marginal area of northwest Inner Mongolia (Luo et al. 2020; Luo et al. 2018). Previous studies just focused on the response of the desert steppe ecosystem to precipitation change (Luo et al. 2018). Compared with grassland, the nitrogen content of plant canopy in Urat desert steppe was less sensitive to drought (Luo et al. 2019). The carbon absorption capacity of desert steppe ecosystem enhanced with the increase of precipitation (Zhang et al. 2019b). A little is known the effects of water and multiple nutrients coupling on the structure and function of plant community in the desert steppe.

In this study, we asked the following questions: (1) How do species diversity, functional traits and soil properties respond to precipitation change and nutrient addition in desert steppe? (2) Which indicators of vegetation and soil systems drive variation in ANPP?

Materials And Methods

Site description

The experimental site is located in the central part of Urat Rear Banner, Inner Mongolia, China (41°25' N, 106°58' E, 1650 m a.s.l.). This area has a continental arid climate with mean annual temperature of 5.3 °C and mean annual precipitation of 151 mm (falling mainly in July and August, accounting for about 70% of total precipitation). The vegetation in this region is mainly desert shrub and desert steppe plant community (Zhang et al. 2019b). The soil is mainly grey brown desert soil and brown calcium brown soil following Chinese soil taxonomy system ((http://www.resdc.cn).

The sampling site is placed in the comprehensive experimental field of Urat Desert Grassland Research Station of Chinese Academy of Sciences. The experimental field (350 hm²) has been enclosed since
2010, which is divided into *Stipa glareosa*, *Achnatherum splendens* and *Reaumuria soongarica* community from south to north (Du et al. 2019). The *Stipa glareosa* community is dominated by perennial species including *Stipa glareosa*, *Allium polyrhizum* and *Peganum harmala*. Additionally, several subordinate plant species includes *Allium mongolicum*, *Corispermum hyssopifolium*, *Salsola collina*, *Bassia dasyphylla*, etc.

Experimental design

This experiment was carried out based on the Global Change Network platform established in July 2017, which is a manipulative experiment that simulates elements (such as precipitation change and nitrogen deposition) of global change. This platform is mainly used to study the effects of precipitation changes and nutrient addition and their interactions on *Stipa glareosa* communities. We monitored the rainfall of the growing season through the weather station of the experimental station. The increased precipitation treatment was watered by 50% using the underground water every week from April to August. The decreased precipitation treatment was manipulated to cover 50% of the precipitation in the experimental plot by using a strip-grooved flashing board arranged at equal intervals at the top of the canopy. The board was made of high-light transmittance polycarbonate permitted nearly 90% effective light radiation (Yue et al. 2019). Furthermore, we separated each plot by a metal partition (1 m deep) covered with plastic paper to reduce the lateral interference of water. The amount of nutrient (nitrogen (N), phosphorus (P), potassium (K)) addition was consistent with that of the Global Nutrient Addition Research network (http://www.nutnet.org/), which were applied by 10 g·m⁻²·yr⁻¹ at the beginning of May each year. N fertilizer was added using resin coated urea (pure N content of 44%), P fertilizer was added using heavy calcium superphosphate (P₂O₅ content is 40%, including 17% pure P), K fertilizer was added using potassium sulfate (K₂O content is 50%, pure K content of 40%).

Using a randomized complete block design with six blocks, we conducted three level water (Cont: natural precipitation; +50%: increased precipitation by 50%; -50%: decreased precipitation by 50%) and nutrient (=N: 0 g·m⁻²·yr⁻¹; +N: N 10 g·m⁻²·yr⁻¹; +NPK: N/P/K each for 10 g·m⁻²·yr⁻¹) treatment, respectively. Namely, there were 9 treatments (-50% × =N, -50% × +N, -50% × +NPK, Cont × =N (control), Cont × +N, Cont × +NPK, + 50% × =N, + 50% × +N, + 50% × +NPK) randomly assigned in 6 × 6 m plots. Between each adjacent plot, a 2 m buffer strip was seated to avert interference with each other (Zhan et al. 2019).

Sampling and measurement

During peak biomass in early August 2019, number of species was checked in one 100 cm × 100 cm quadrat randomly selected in each plot. Besides, the height of each species was measured with a tape. After that, the aboveground net primary production (ANPP) in the quadrat was harvested by species. Then it was dried at 65°C for 48 hours to a constant weight and weighed separately (Zhao et al. 2016).

At the same time, mature leaves of comparatively dominant species, which accumulatively represented over 90% of the total plant cover in each plot, were collected for the determination of leaf function traits (Luo et al. 2019). The plant function traits was measured using the handbook advocated by cornelissen
et al. (Cornelissen et al. 2003). In short, specific leaf area (SLA) is the one-sided area of a fresh leaf divided by its oven-dry mass. Therein, leaf area was scanned by tiling the leaves on the scanner and calculated with WinRHIZO software. Leaf dry matter content (LDMC) is leaf dry weight divided by leaf saturated fresh weight. Moreover, the carbon and nitrogen content of leaves were determined by elemental analyzer (vario Macro cube, Elementar, Hanau, Germany).

After removing the ground debris, three random soil cores (0–10 cm depth) were collected within each plot using a soil auger (3 cm-diameter). Then we evenly mixed the impurity removed soil samples and divided them into two (Zuo et al. 2016). One of the soil samples was air-dried and screened with a pore diameter 2 mm, which was used for the analysis and determination of soil physical and chemical properties. Soil pH and electrical conductivity (EC) were measured in a 1:5 soil-water supernatant (Multiline F/SET-3, Germany). Soil carbon and nitrogen content were assayed by elemental analyzer (Zuo et al. 2017). Another soil sample was used to quantify gravimetric soil water content (Luo et al. 2018). The soil bulk density was obtained by drying soil samples collected with ring knife (a 100 cm³) in an oven at 105°C for 48 hours.

Statistical analysis

Based on the quantitative characteristics of the plant community recorded in August 2019, we analyzed the vegetation characteristics, functional traits, soil properties and other changes of the desert grassland community under different water and nutrient treatments. The calculation formulas of Shannon-Wiener diversity index (H) is as follows:

\[
H = - \sum_{i} N_i \ln N_i,
\]

where \(N_i\) is the relative important traits value of species i (\(N_i=((\text{relative height} + \text{relative cover} + \text{relative biomass})/3)\)) (Luo et al. 2019). While weighted-mean values of community functional traits (CWM) was calculated using the relative biomass of species as a weighting factor (Leps et al. 2011; Lu et al. 2018a). The linear correlation analysis was used to study the relationship between ANPP and species diversity, community functional traits and soil physical and chemical properties. Based on the correlations, a structural equation models (SEM) was constructed, in which precipitation change and nutrient addition were treated as exogenous variables; species diversity, community functional traits and soil properties were considered as endogenous variables; ANPP was regarded as response variable. By screening the related variables, we finally obtained a model with the lowest AIC value, Chi-square test (\(p > 0.05\)), root mean square error of approximation (RMSEA < 0.05) and goodness-of-fit index (GFI > 0.95) (Zuo et al. 2016). Then we investigated the paths of the influence of precipitation change and nutrient addition on ANPP.

All data were presented as mean ± 1 SE (n = 6). A mixed effect model was used to analyze the response of each variable to habitat change, in which water and nutrient addition were fixed factors and block was random factors. Community traits difference between water and nitrogen treatments was compared by using two-way ANOVAs, with Duncan’s test performing multiple comparisons when ANOVA tests were considered significant (\(p < 0.05\)). The functional diversity were calculated with FDiversity software.
(Casanoves et al. 2011). SPSS22 and AMOS25.0 were used to analyze data and the structural equation model, respectively. SigmaPlot12.5 software and the basic Trendline package in R were used for drawing.

Results

The species diversity was only positively correlated with precipitation, while aboveground net primary production (ANPP) was affected by positively correlated with precipitation and nutrient addition ($p < 0.05$, Table S1, Fig. 1a-d). However, species richness, relative abundance (density) and Shannon index were all enhanced by increased 50% precipitation under the treatment of NPK addition (Fig. 1a-c). Specifically, the interaction between precipitation and nutrient addition had a marginally positive effect on the Shannon index ($p = 0.077$, Table S1). The increase of precipitation improved ANPP on the whole ($p < 0.001$, Table S1, Fig. 1d), but the change of ANPP with precipitation gradient is slightly different under different nutrient treatments. Compared with natural precipitation, under ambient nutrients (= N) and NPK addition (+ NPK) conditions, decreased 50% precipitation (-50%) did not significantly reduced ANPP, but increased 50% precipitation (+50%) increased ANPP by 115% and 187%, respectively. With nitrogen addition (+ N), decreased 50% precipitation reduced ANPP by 46%, but increased 50% precipitation did not significantly enhanced ANPP. In addition, there was no conspicuous difference in the response of ANPP to nutrient addition types under natural and decreased 50% precipitation. Under the treatment of increased 50% precipitation, ANPP under NPK addition was 80.62% and 110.62% higher than that under = N and + N, respectively (Fig. 1d). Moreover, the interaction of water and nutrients had a significant effect on ANPP ($p < 0.05$, Table S1), and the coupling of increased 50% precipitation and NPK addition led ANPP to soar to the maximum at 95.8205 g·m$^{-2}$.

CWM.height and CWM.LDMC were highly responsive to precipitation change ($p < 0.001$, Fig. 2a-b). Overall, decreased 50% precipitation reduced CWM.height and CWM.LDMC. But under the treatment of NPK addition, CWM.LDMC did not changed significantly with the precipitation gradient. CWM.SLA and CWM.LT had no significant response to precipitation change and nutrient addition ($p > 0.05$, Fig. 2c-d). LCC was positively correlated with precipitation ($p < 0.05$), while LNC was negatively correlated with precipitation ($p < 0.01$) and positively correlated with nutrient addition ($p < 0.01$, Table S2, Fig. 2e-f). However, under N addition, LCC was not significantly reduced by precipitation reduction. In addition, the effect of NPK addition on LNC was not significantly different from that of ambient nutrients under the treatment of decreased 50% precipitation. Nutrient addition types regulated the influence of precipitation change on community level functional traits.

Under ambient nutrients condition (= N), the change of precipitation had no effect on soil pH, but under added fertilizers conditions, decreased 50% precipitation reduced soil pH. Besides, NPK addition significantly decreased soil pH ($p < 0.001$, Table S2, Fig. 3a). EC was very sensitive to NPK addition. Compared with = N, EC increased by 304.30% (205.10 s·cm$^{-1}$) and 276.12% (141.05 s·cm$^{-1}$) with NPK addition at decreased 50% and natural precipitation, respectively. However, the effect of N addition on EC was not observed with increased 50% precipitation (Fig. 3b). In other words, increased precipitation diluted the effect of NPK addition on EC. Nonetheless, short-term water and nutrients manipulation did
not observably change soil bulk density, carbon and nitrogen content ($p > 0.05$, Table S1, Fig. 3d-f). Soil moisture content was positively correlated with precipitation ($p < 0.01$, Table S2, Fig. 3c), and reached the lowest value (3.27%) with decreased 50% precipitation × nitrogen addition.

Species richness, density (abundance), height and LDMC were positively correlated with ANPP, but SLA and LNC were negatively correlated with ANPP ($p < 0.05$, Fig. 4). However, no significant correlation was found between soil properties and ANPP (Table S2). It is worth mentioning that the three indicators with high interpretation rate of ANPP were density ($R^2 = 0.439$, $p < 0.0001$), CWM.height ($R^2 = 0.282$, $p < 0.0001$) and CWM.SLA ($R^2 = 0.182$, $p < 0.01$) respectively. We established a structural equation model (SEM) ($\chi^2 = 0.268$, d. f. = 3, $p = 0.966$, RMSEA = 0.000, GFI = 0.998) fitted the variance best and explained 69% variances in ANPP (Fig. 5). The SEM showed that both precipitation change and nutrient addition had direct and indirect effects on ANPP. Specifically, nutrient addition indirectly affected ANPP through a weak positive effect on abundance (density). Accordingly, increased precipitation indirectly positively affects ANPP by increasing abundance and regulating SLA (Table2, Fig. 5).

Discussion

Species diversity and aboveground net primary productivity (ANPP) were more sensitive to increased precipitation under NPK addition. Richness is generally positively correlated with precipitation in temperate grasslands (White et al. 2014) (Yang et al. 2011). However, a globally distributed nutrient addition experiment indicated the addition of multiple limiting resources reduces the diversity of grassland (Harpole et al. 2016). In contrast, an increase in diversity with increased precipitation was observed only with the treatment of NPK addition in our study (Fig. 1). One possible explanation is that in the Urat desert steppe, light resources are abundant and the surface vegetation cover is low, resulting in less competition for light resources among plants. Therefore, removal of nutrient constraints results in increased precipitation providing niches for more species and also increasing density of vegetation (Lu et al. 2018b). It also verified the physiological tolerance hypothesis, which suggests that benign environments support more species (Spasojevic et al. 2014). Moreover, the relief of water stress enabled NPK addition to exert the enhancement effect on ANPP (Kuchenbuch et al. 1986; Liu et al. 2018; Yang et al. 2008). And the effect of NPK addition on ANPP was dramatically more significant than that of single N addition. The addition of P and K can remove the P limitation caused by single N application, thus allowing plants to make better use of N fertilizer (Perini and Bracken 2014; Vitousek et al. 2010).

Decreased precipitation reduced community plant height and leaf dry matter content (LDMC). Height and LDMC, as important light acquisition traits, reflect the ability of plant to acquire resources and adapt to the environment change (Wilson et al. 1999; Zhan et al. 2019). Water is the most important limiting factor in arid desert steppe, the decrease of precipitation affected the dry matter accumulation and photosynthetic capacity of plant communities (Ma et al. 2019). A research manifested that the drier grassland ecosystem was more sensitive to drought and its resistance was weaker (Knapp et al. 2015). However, SLA has no obvious response to water and nutrient addition, which was different from previous research results that N enrichment increased SLA (Zhan et al. 2019). This may be because precipitation
enhancement affects the species composition of the Stipa glareosa community, which makes the Stipa glareosa dominant position prominent. Our previous studies have shown that Stipa glareosa adopted a relatively conservative strategy to cope short-term environmental changes (Hu et al. 2020). LNC was diluted by increased precipitation, which is mutually verified with the result that drought led to increased LNC (Luo et al. 2020).

Increased precipitation reduced the effects of nutrient addition on soil pH and EC (Fig. 3). Our research displayed the addition of NPK significantly reduced soil pH and enhanced EC under natural and decreased 50% precipitation. Increased precipitation could enhance the exchange ability of soil basic cations thus diluted the influence of nutrients on pH (Cai et al. 2017). Furthermore, increased precipitation reduced the surface (0–10 cm) salinity by soil fully leaching (Akther et al. 2021). N addition mediates the effect of drought on soil water content reduction. The response of arid grassland to drought is stronger (Dziedek et al. 2016), and N addition could decrease plants’ drought resistance (Yu et al. 2019). However, the carbon and nitrogen content and bulk density of soil did not respond significantly to such short-term habitat changes. This may be attributed that the nutrient release rate of slow-acting resin coated urea is limited by the amount of fertilizer applied and the number of years of application. Alternatively, it may be because these three soil properties were relatively stable in desert grasslands with sparse vegetation in the short-term experiments. This has yet to be confirmed by long-term observations.

The above-ground net primary productivity (ANPP) is comprehensive embodiment of the structure and function of grassland ecosystem. Previous studies in temperate sandy grasslands have shown that plant height and species richness significantly affected plant biomass (Zuo et al. 2016). But CWM.height, although strongly correlated with ANPP, was not retained in the final SEM in our experiment. This difference may be due to nutrient addition and regional heterogeneity. Besides, ANPP was weakly correlated with species richness ($R^2 = 0.0758, p < 0.05$), which is similar to the experimental results of N addition in the alpine meadow of Tibet Plateau (Zhan et al. 2019). The difference with their results is that, in our SEM, precipitation, rather than nutrient addition, induced CWM.SLA to have a negative effect on ANPP. It may be due to the phenotypic plasticity of desert steppe plants (Gabriel 2006; Kreyling et al. 2019). With the increase of precipitation, plants adopt the growth strategy of rapidly acquiring and utilizing resources, low SLA of new leaves is conducive to preventing excessive water loss and improving photosynthetic capacity of leaves (Luo et al. 2019). Therefore, altered precipitation maximized ANPP by regulating the amount and biomass proportion of plants with low SLA in the community. The reason why soil properties were not selected into the SEM may be related to the short term in our experiment.

Conclusion

This study demonstrates how precipitation changes and nutrient addition affect species diversity, community-level functional traits, ANPP and their relationship in desert steppe. Our results suggest ANPP responds strongly to the interaction between increased precipitation and NPK addition. Both increased precipitation and nutrient addition not only have direct positive effects on ANPP, but also indirectly increase ANPP by increasing plant density. Community-level SLA mediates the effect of altered
precipitation on ANPP. Longer term field observations are needed to more definitively determine how changes in limiting resources induce community composition and functional traits to affect productivity in desert steppe. Our study provides a theoretical basis for predicting the response of vegetation structure and function of desert steppe to multiple global change factors. It is critical to understand the influence mechanism of precipitation and soil nutrients changes on productivity for the management of arid grassland ecosystems.

Declarations

Funding information This paper was supported by the Second Tibetan Plateau Scientific Expedition and Research program (2019QZKK0305), National Natural Science Foundation of China (42071140 and 41622103) and Youth Innovation Promotion Association CAS (1100000036).

Conflicts of Interest The authors declare no conflict of interest.

Author Contributions X.Z. and X.G. designed experiments; X.G., X.L., and Y.H. conducted the experiments and analyzed the data; X.G. wrote the manuscript; X.Z. and P.Y. revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Acknowledgement Authors thank the members of the Urat Desert-grassland Research Station and Naiman Desertification Research Station of the Chinese Academy of Sciences for their assistance in the field and laboratory. We are very grateful to Dr. Julio Di Rienzo for the support of F Diversity software. We appreciate the anonymous reviewers for their constructive comments.

References

Akther M, He J, Chu A, van Duin B (2021) Nutrient leaching behavior of green roofs: Laboratory and field investigations The Science of the total environment 754:141841-141841 doi:10.1016/j.scitotenv.2020.141841

Bai Y et al. (2010) Tradeoffs and thresholds in the effects of nitrogen addition on biodiversity and ecosystem functioning: evidence from inner Mongolia Grasslands Global Change Biology 16:358-372 doi:10.1111/j.1365-2486.2009.01950.x

Baldarelli LM, Throop HL, Collins SL, Ward D (2021) Nutrient additions have direct and indirect effects on biocrust biomass in a long-term Chihuahuan Desert grassland experiment Journal of Arid Environments 184 doi:10.1016/j.jaridenv.2020.104317

Bin Z, Jian-Jun ZHU, Hua-Min LIU, Pan Qing-Min a (2014) Effects of extreme rainfall and drought events on grassland ecosystems Chinese Journal of Plant Ecology 38:1008-1018 doi:10.3724/sp.J.1258.2014.00095
Butterfield BJ, Suding KN (2013) Single-trait functional indices outperform multi-trait indices in linking environmental gradients and ecosystem services in a complex landscape Journal of Ecology 101:9-17 doi:10.1111/1365-2745.12013

Cadotte MW (2017) Functional traits explain ecosystem function through opposing mechanisms Ecol Lett 20:989-996 doi:10.1111/ele.12796

Cai J et al. (2017) Precipitation-mediated responses of soil acid buffering capacity to long-term nitrogen addition in a semi-arid grassland Atmospheric Environment 170:312-318 doi:10.1016/j.atmosenv.2017.09.054

Casanoves F, Pla L, Di Rienzo JA, Diaz S (2011) FDiversity: a software package for the integrated analysis of functional diversity Methods in Ecology and Evolution 2:233-237 doi:10.1111/j.2041-210X.2010.00082.x

Chalcraft DR, Cox SB, Clark C, Cleland EE, Suding KN, Weiher E, Pennington D (2008) Scale-dependent responses of plant biodiversity to nitrogen enrichment Ecology 89:2165-2171 doi:10.1890/07-0971.1

Chen D, Lan Z, Bai X, Grace JB, Bai Y (2013) Evidence that acidification-induced declines in plant diversity and productivity are mediated by changes in below-ground communities and soil properties in a semi-arid steppe Journal of Ecology 101:1322-1334 doi:10.1111/1365-2745.12119

Cleland EE, Harpole WS (2010) Nitrogen enrichment and plant communities. In: Ostfeld RS, Schlesinger WH (eds) Year in Ecology and Conservation Biology 2010, vol 1195. Annals of the New York Academy of Sciences. pp 46-+. doi:10.1111/j.1749-6632.2010.05458.x

Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem Marine Ecology Progress Series 210:223-253 doi:10.3354/meps210223

Conley DJ (1999) Biogeochemical nutrient cycles and nutrient management strategies Hydrobiologia 410:87-96 doi:10.1023/a:1003784504005

Cornelissen JHC et al. (2003) A handbook of protocols for standardised and easy measurement of plant functional traits worldwide Australian Journal of Botany 51:335-380 doi:10.1071/bt02124

DeMalach N, Zaady E, Kadmon R (2017) Contrasting effects of water and nutrient additions on grassland communities: A global meta-analysis Global Ecology and Biogeography 26:983-992 doi:10.1111/geb.12603

Deng Q, Hui D, Dennis S, Reddy KC (2017) Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: A meta-analysis Global Ecology and Biogeography 26:713-728 doi:10.1111/geb.12576

Du H, Zuo X, Li S, Wang T, Xue X (2019) Wind erosion changes induced by different grazing intensities in the desert steppe, Northern China Agriculture Ecosystems & Environment 274:1-13
Dziedek C et al. (2017) Phenotypic Plasticity Explains Response Patterns of European Beech (Fagus sylvatica L.) Saplings to Nitrogen Fertilization and Drought Events Forests 8 doi:10.3390/f8030091

Dziedek C, Haerdtle W, von Oheimb G, Fichtner A (2016) Nitrogen Addition Enhances Drought Sensitivity of Young Deciduous Tree Species Frontiers in Plant Science 7 doi:10.3389/fpls.2016.01100

Epstein HE, Burke IC, Lauenroth WK (2002) Regional patterns of decomposition and primary production rates in the US Great Plains Ecology 83:320-327 doi:10.2307/2680016

Falkowski P et al. (2000) The global carbon cycle: A test of our knowledge of earth as a system Science 290:291-296 doi:10.1126/science.290.5490.291

Foley JA (1994) NET PRIMARY PRODUCTIVITY IN THE TERRESTRIAL BIOSPHERE - THE APPLICATION OF A GLOBAL-MODEL. Journal of Geophysical Research-Atmospheres 99:20773-20783 doi:10.1029/94jd01832

Forrestel EJ, Donoghue MJ, Edwards EJ, Jetz W, du Toit JCO, Smith MD (2017) Different clades and traits yield similar grassland functional responses Proceedings of the National Academy of Sciences of the United States of America 114:705-710 doi:10.1073/pnas.1612909114

Fowler D, Pyle JA, Raven JA, Sutton MA (2013) The global nitrogen cycle in the twenty-first century: introduction Philosophical Transactions of the Royal Society B-Biological Sciences 368 doi:10.1098/rstb.2013.0165

Gabriel W (2006) Selective advantage of irreversible and reversible phenotypic plasticity Archiv Fur Hydrobiologie 167:1-20 doi:10.1127/0003-9136/2006/0167-0001

Galloway JN et al. (2008) Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions Science 320:889-892 doi:10.1126/science.1136674

Gao Y, Giese M, Brueck H, Yang H, Li Z (2013) The relation of biomass production with leaf traits varied under different land-use and precipitation conditions in an Inner Mongolia steppe Ecological Research 28:1029-1043 doi:10.1007/s11284-013-1086-1

Gower ST, Kucharik CJ, Norman JM (1999) Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems Remote Sensing of Environment 70:29-51 doi:10.1016/s0034-4257(99)00056-5

Harpole WS et al. (2016) Addition of multiple limiting resources reduces grassland diversity Nature 537:93-96 doi:10.1038/nature19324
Hautier Y, Niklaus PA, Hector A (2009) Competition for Light Causes Plant Biodiversity Loss After Eutrophication Science 324:636-638 doi:10.1126/science.1169640

Hooper DU et al. (2005) Effects of biodiversity on ecosystem functioning: A consensus of current knowledge Ecol Monogr 75:3-35 doi:10.1890/04-0922

Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: Responses to geographical and temporal variation in precipitation Biogeochemistry 46:247-293 doi:10.1007/bf01007582

Hu Y, Zuo X, Yue P, Zhao S, Guo X, Li X, Medina-Roldan E (2020) Increased Precipitation Shapes Relationship between Biochemical and Functional Traits of Stipa glareosa in Grass-Dominated Rather than Shrub-Dominated Community in a Desert Steppe Plants (Basel, Switzerland) 9 doi:10.3390/plants9111463

Isbell F, Tilman D, Polasky S, Binder S, Hawthorne P (2013) Low biodiversity state persists two decades after cessation of nutrient enrichment Ecol Lett 16:454-460 doi:10.1111/ele.12066

Kim J-B, So J-M, Bae D-H (2020) Global Warming Impacts on Severe Drought Characteristics in Asia Monsoon Region Water 12 doi:10.3390/w12051360

Kimmel K, Furey GN, Hobbie SE, Isbell F, Tilman D, Reich PB (2020) Diversity-dependent soil acidification under nitrogen enrichment constrains biomass productivity Global Change Biology 26:6594-6603 doi:10.1111/gcb.15329

Knapp AK, Carroll CJW, Denton EM, La Pierre KJ, Collins SL, Smith MD (2015) Differential sensitivity to regional-scale drought in six central US grasslands Oecologia 177:949-957 doi:10.1007/s00442-015-3233-6

Kreyling J, Puechmaille SJ, Malyshev AV, Valladares F (2019) Phenotypic plasticity closely linked to climate at origin and resulting in increased mortality under warming and frost stress in a common grass Ecology and Evolution 9:1344-1352 doi:10.1002/ece3.4848

Kuchenbuch R, Claassen N, Jungk A (1986) POTASSIUM AVAILABILITY IN RELATION TO SOIL-MOISTURE .1. EFFECT OF SOIL-MOISTURE ON POTASSIUM DIFFUSION, ROOT-GROWTH AND POTASSIUM UPTAKE OF ONION PLANTS Plant Soil 95:221-231 doi:10.1007/bf02375074

Ladwig LM, Collins SL, Swann AL, Xia Y, Allen MF, Allen EB (2012) Above- and belowground responses to nitrogen addition in a Chihuahuan Desert grassland Oecologia 169:177-185 doi:10.1007/s00442-011-2173-z

Lavorel S, Grigulis K (2012) How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services Journal of Ecology 100:128-140 doi:10.1111/j.1365-2745.2011.01914.x
Leps J, de Bello F, Smilauer P, Dolezal J (2011) Community trait response to environment: disentangling species turnover vs intraspecific trait variability effects Ecography 34:856-863 doi:10.1111/j.1600-0587.2010.06904.x

Liu W, Lu X, Xu W, Shi H, Hou L, Li L, Yuan W (2018) Effects of water and nitrogen addition on ecosystem respiration across three types of steppe: The role of plant and microbial biomass Science of the Total Environment 619:103-111 doi:10.1016/j.scitotenv.2017.11.119

Lu X-T et al. (2018a) Intraspecific variation drives community-level stoichiometric responses to nitrogen and water enrichment in a temperate steppe Plant Soil 423:307-315 doi:10.1007/s11104-017-3519-z

Lu X-T, Liu Z-Y, Hu Y-Y, Zhang H-Y (2018b) Testing nitrogen and water co-limitation of primary productivity in a temperate steppe Plant Soil 432:119-127 doi:10.1007/s11104-018-3791-6

Lu X, Mao Q, Gilliam FS, Luo Y, Mo J (2014) Nitrogen deposition contributes to soil acidification in tropical ecosystems Global Change Biology 20:3790-3801 doi:10.1111/gcb.12665

Luo W et al. (2020) Chronic and intense droughts differentially influence grassland carbon-nutrient dynamics along a natural aridity gradient Plant Soil doi:10.1007/s11104-020-04571-8

Luo W et al. (2018) Differential responses of canopy nutrients to experimental drought along a natural aridity gradient Ecology 99:2230-2239 doi:10.1002/ecy.2444

Luo WT et al. (2019) Long term experimental drought alters community plant trait variation, not trait means, across three semiarid grasslands Plant Soil 442:343-353 doi:10.1007/s11104-019-04176-w

Ma Q et al. (2019) Nitrogen deposition magnifies the sensitivity of desert steppe plant communities to large changes in precipitation Journal of Ecology doi:10.1111/1365-2745.13264

Mao J, Mao Q, Zheng M, Mo J (2020) Responses of Foliar Nutrient Status and Stoichiometry to Nitrogen Addition in Different Ecosystems: A Meta-analysis Journal of Geophysical Research-Biogeosciences 125 doi:10.1029/2019jg005347

Mao Q, Lu X, Zhou K, Chen H, Zhu X, Mori T, Mo J (2017) Effects of long-term nitrogen and phosphorus additions on soil acidification in an N-rich tropical forest Geoderma 285:57-63 doi:10.1016/j.geoderma.2016.09.017

Moura WM, Soares YJB, Amaral Junior AT, Gravina GA, Barili LD, Vieira HD (2016) Biometric analysis of arabica coffee grown in low potassium nutrient solution under greenhouse conditions Genetics and Molecular Research 15 doi:10.4238/gmr.15038753

Naumann G et al. (2018) Global Changes in Drought Conditions Under Different Levels of Warming Geophysical Research Letters 45:3285-3296 doi:10.1002/2017gl076521
Obersteiner M, Penuelas J, Ciais P, van der Velde M, Janssens IA (2013) The phosphorus trilemma Nature Geoscience 6:897-898 doi:10.1038/ngeo1990

Perini V, Bracken MES (2014) Nitrogen availability limits phosphorus uptake in an intertidal macroalga Oecologia 175:667-676 doi:10.1007/s00442-014-2914-x

Rader RB, Richardson CJ (1994) RESPONSE OF MACROINVERTEBRATES AND SMALL FISH TO NUTRIENT ENRICHMENT IN THE NORTHERN EVERGLADES Wetlands 14:134-146 doi:10.1007/bf03160629

Shin R (2014) Strategies for Improving Potassium Use Efficiency in Plants Molecules and Cells 37:575-584 doi:10.14348/molcells.2014.0141

Siddique I et al. (2010) Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories Ecology 91:2121-2131 doi:10.1890/09-0636.1

Soons MB, Hefting MM, Dorland E, Lamers LPM, Versteeg C, Bobbink R (2017) Nitrogen effects on plant species richness in herbaceous communities are more widespread and stronger than those of phosphorus Biological Conservation 212:390-397 doi:10.1016/j.biocon.2016.12.006

Spasojevic MJ, Grace JB, Harrison S, Damschen EI (2014) Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients Journal of Ecology 102:447-455 doi:10.1111/1365-2745.12204

Suding KN et al. (2005) Functional- and abundance-based mechanisms explain diversity loss due to N fertilization Proceedings of the National Academy of Sciences of the United States of America 102:4387-4392 doi:10.1073/pnas.0408648102

Tian D, Niu S (2015) A global analysis of soil acidification caused by nitrogen addition Environmental Research Letters 10 doi:10.1088/1748-9326/10/2/024019

Vitousek PM, Porder S, Houlton BZ, Chadwick OA (2010) Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions Ecological Applications 20:5-15 doi:10.1890/08-0127.1

Wang H-Y, Wang Z-W, Ding R, Hou S-L, Yang G-J, Lu X-T, Han X-G (2018) The impacts of nitrogen deposition on community N:P stoichiometry do not depend on phosphorus availability in a temperate meadow steppe Environmental Pollution 242:82-89 doi:10.1016/j.envpol.2018.06.088

Wang J et al. (2020) Effects of ammonium-based nitrogen addition on soil nitrification and nitrogen gas emissions depend on fertilizer-induced changes in pH in a tea plantation soil Science of the Total Environment 747 doi:10.1016/j.scitotenv.2020.141340
White SR, Bork EW, Cahill JF, Jr. (2014) Direct and indirect drivers of plant diversity responses to climate and clipping across northern temperate grassland Ecology 95:3093-3103

Wilcox KR, Blair JM, Smith MD, Knapp AK (2016) Does ecosystem sensitivity to precipitation at the site-level conform to regional-scale predictions? Ecology 97:561-568 doi:10.1890/15-1437.1

Wilson PJ, Thompson K, Hodgson JG (1999) Specific leaf area and leaf dry matter content as alternative predictors of plant strategies New Phytologist 143:155-162 doi:10.1046/j.1469-8137.1999.00427.x

Yang H, Wu M, Liu W, Zhang Z, Zhang N, Wan S (2011) Community structure and composition in response to climate change in a temperate steppe Global Change Biology 17:452-465 doi:10.1111/j.1365-2486.2010.02253.x

Yang Y, Fang J, Ma W, Wang W (2008) Relationship between variability in aboveground net primary production and precipitation in global grasslands Geophysical Research Letters 35 doi:10.1029/2008gl035408

Yu H, Cheng D, Li B, Xu C, Zhang Z, Zhong Y, Zhong Q (2019) Short-Term Nitrogen Addition Does Not Significantly Alter the Effects of Seasonal Drought on Leaf Functional Traits in Machilus pauhoi Kanehira Seedlings Forests 10 doi:10.3390/f10020078

Yue X et al. (2019) Response of plant functional traits of Leymus chinensis to extreme drought in Inner Mongolia grasslands Plant Ecology 220:141-149 doi:10.1007/s11258-018-0887-2

Zhan D et al. (2019) Trait identity and functional diversity co-drive response of ecosystem productivity to nitrogen enrichment Journal of Ecology 107:2402-2414 doi:10.1111/1365-2745.13184

Zhang H, Gao Y, Tasisa BY, Baskin JM, Baskin CC, Lu X-T, Zhou D (2019a) Divergent responses to water and nitrogen addition of three perennial bunchgrass species from variously degraded typical steppe in Inner Mongolia Science of the Total Environment 647:1344-1350 doi:10.1016/j.scitotenv.2018.08.025

Zhang H, Shi L, Fu S (2020) Effects of nitrogen deposition and increased precipitation on soil phosphorus dynamics in a temperate forest Geoderma 380 doi:10.1016/j.geoderma.2020.114650

Zhang R et al. (2019b) Impacts of Precipitation on Ecosystem Carbon Fluxes in Desert-Grasslands in Inner Mongolia, China Journal of Geophysical Research-Atmospheres 124:1266-1276 doi:10.1029/2018jd028419

Zhao J, Luo T, Li R, Li X, Tian L (2016) Grazing effect on growing season ecosystem respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient on the central Tibetan Plateau Agricultural and Forest Meteorology 218:114-121 doi:10.1016/j.agrformet.2015.12.005

Zuo X et al. (2017) Contrasting effects of plant inter- and intraspecific variation on community trait responses to restoration of a sandy grassland ecosystem Ecology and Evolution 7:1125-1134
Zuo X et al. (2016) Plant functional diversity mediates the effects of vegetation and soil properties on community-level plant nitrogen use in the restoration of semiarid sandy grassland Ecological Indicators 64:272-280 doi:10.1016/j.ecolind.2016.01.012

Tables

Table 1 Direct, indirect and total effects on above-ground net primary productivity (ANPP) on standardized values of statistically significant SEM paths ($p < 0.05$). Direction of relationship indicated by + (positive relationship) or − (negative relationship)

Predictor	Pathway to ANPP	Effect
Precipitation	Direct	0.384
	Indirect	0.266
	Total	0.65
Nutrient	Direct	0.229
	Indirect	0.08
	Total	0.309
CWM.SLA	Direct	-0.287
	Indirect	NS
	Total	-0.287
Abundance	Direct	0.368
	Indirect	NS
	Total	0.368

NS, no significant relationships.

Figures
Response of community vegetation characteristics to precipitation change and nutrient addition. Water treatments: Cont: natural precipitation; +50%: increased precipitation by 50%; -50%: decreased precipitation by 50%. Nutrient treatments: =N: 0 g·m⁻²·yr⁻¹; +N: N 10 g·m⁻²·yr⁻¹; +NPK: N/P/K each for g·m⁻²·yr⁻¹. Lowercase letters indicate the difference between different water treatment under the treatment of same nutrient addition; Capital letters indicate the difference between different nutrient addition treatment under same water condition (n = 6, p < 0.05). The same below.
Figure 2

Response of community weighted mean of functional traits to precipitation change and nutrient addition. CWM, community weighted mean; LDMC, leaf dry matter content; LCC, leaf carbon content; LNC, leaf nitrogen content; SLA, specific leaf area; LT, leaf thickness.
Figure 3

Response of community soil properties to precipitation change and nutrient addition. Soil EC: soil electrical conductivity.
Figure 4

Simple linear regression analyses between ANPP (aboveground net primary production) and species richness, abundance (density), CWM.height, CWM.LDMC, CWM.SLA, and CWM.LNC. Regression coefficients (R²) and p values are given for simple linear model regressions of community vegetation characteristics and community weighted mean values of functional traits by ANPP. CWM, community weighted mean; LDMC, leaf dry matter content; SLA, specific leaf area; LCC, leaf carbon content. Indicators with insignificant linear relationship with ANPP are not listed, and the specific data can be seen in Table S2.
Figure 5

Structural equation model showing all interaction pathways of ANPP (aboveground net primary production) and nutrient, water, abundance (density), CWM.SLA (specific leaf area). (a) The single-headed arrows represent paths in this conceptual model. The red and blue arrows separately indicate positive and negative pathways. The arrow width is proportional to the strength of the relationship. (b) Standardized regression weights (along path) and total variance explained as a result of all predictors pointing to that variable (top right corner of rectangle). #, ** and *** indicate statistically significant paths at 0.1< p < 0.05, p < 0.01 and p < 0.001, respectively.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- SupplementaryInformation.docx