A COMPREHENSIVE REVIEW ON RAIL WHEEL CRACK INSPECTION SYSTEM

RM. Kuppan Chetty¹, A. Joshuva², S.P. Nikhit Mathew³, M. Lokeshwaran⁴, S. Mohamed Shiham⁵, C. Rajasekaran⁶

¹,²,³,⁴,⁵,⁶Centre for Automation and Robotics, School of Mechanical Sciences, Hindustan Institute of Technology and Science, Chennai-603103, India.

Email: ¹rmkuppan@gmail.com, ²joshuva1991@gmail.com, ³nikhit.mathew@gmail.com, ⁴manolokesh26@gmail.com, ⁵shihamshii@gmail.com, ⁶rajasekarancj@gmail.com

Corresponding Author: RM. Kuppan Chetty

https://doi.org/10.26782/jmcms.2020.03.00014

Abstract

The railways are one of the most used means of transport globally and especially in India which is the second largest in the world. Almost more than 140 accidents per year Indian Railways are noting down and 48% of the accidents are due to wheel misalignment of the bogies. Wheel cracks are one of the foremost reasons for the misalignment, and the failure in the wheel causes the derailment of train from the rails. Therefore, periodical inspection of the wheels is necessary to avoid such accidents and disasters. Several Non Destructive Testing (NDT) methods that are quick, reliable and cost effective are utilized for the detection of defects. In this work, a comprehensive review on the numerous NDT inspection methods used for the detection of several types of cracks that occurs on the rail wheels along with their advantages and disadvantages are discussed in detail.

Keywords: Rail Wheel; Inspection; Condition monitoring; Nondestructive Testing

I. Introduction

The unwavering expansion of railroad uses and stacking limit, the surface of the wheel will be in contiguity of the rail and owing to friction there will be a constant wear and tear, which creates the rail load, due to that, the rail surface will be inclined to exhaustion and fiendishness. In the event that this surface devilishness isn't looked out for, it could advance into transverse breaking and level parts inside. So as to keep up a crucial decent ways from fiascos, human setbacks, and mislaying of association, the preliminary nondestructive success assessment of rail facet winds up being essential. NDT is one of the most imperative quality checking procedures. Coming up next are some nondestructive testing frameworks related in rail imperfection recognizing confirmation. Despite the fact that visual affirmation is the
least eccentric and most arranged framework utilized in rail blemish exposure, it is
dull and eager, which may incite stirred up terminations.

Beginning at now, the most unavoidable testing of rail frameworks are using the
principle of ultrasound and the vortex-current testing strategies [I]. Ultrasonic testing
merges the impression of acoustic waves to see inside twists. It is vivacious,
inconceivably strong, and endeavors basic into the structure. In spite of, the
appearance of ultrasonic testing results isn't clear; these procedures frequently
necessitate treatment of the surface beneath evaluation. Recognizing the need of
serious development in rail testing methods, various researchers all around the world
has started looking for alternative methods. The weld of interior of rail head is
subjected to incredible conditions in exactness and nature, yet it is missing to isolate
the blemish remotely or close to the surface. The principle and methods which are
used to join ultrasonic wave and spin contemporary measures has been besides
reviewed. This measurement technique utilizes different sensor tests and can
recognize the rail flaws that are interior and on the surface of the rail track.
Notwithstanding, its performance on the level and kind of deformation is
unacceptable. The quick blemish exposure utilizing whirlpool current can assess the
region and level of the rail hurt. Notwithstanding, it has been badly arranged in
instinctively showing the various sorts of rail leaves The assessment portrayed in this
paper would like to co extensively see the various types of superficial flaws and
methods to assess the same. Therefore, in this study, methods attempted by various
researchers for the detection of rail wheel flaws is observed and discussed in detail in
the forth coming sections.

II. Literature Review

A Rail road car wheel detector using Hall Effect element is addressed in [I],
where Hall-Effect sensor is used to perceive cracks in rail wheels. Variation in the
magnetic flux with respect to the crack in the rail road is perceived by the sensor.
However, the detector is temperature sensitive with higher error rate since the sensor
is kept in the rail roads and susceptible to environmental conditions. A crack
detection and collision avoidance system using and IR sensor and Arm Cortex is
addressed in [II], where the cracks in the rail roads are detected using the IR sensor
and the location of the cracks are identified using GPS and the information are
transmitted using GSM module.

A Rail wheel crack detector using Acoustic Emission (AE) sensor is directed
in [III], where the AE sensors are kept in parallel to the railway tracks and the wheel
inspection was carried out when train passes by. The main disadvantage of AE
sensors are that it is susceptible to various external disturbances which makes it hard
to differentiate the actual values from the noise. In [V], the exposure of restitution
and cracks in the railhead by utilizing Eddy Current Testing is reported. Eddy current
sensors are positioned on a moving cart to detect the cracks in the railroad tracks. Use
of Electromagnetic Acoustic Transducer (EMAT) along with the Integral
Electrostatic Shield labeled for the detection of railroads is described in [V]. The
various design aspects of EMAT sensor for inspection and the use of multiple layers
of electrical insulation with electrical conductive materials are also described. In
addition, the use of EMAT probe for weld inspection and specular reflectors is also
inscribed in [VI], where one is electrically conductive and another is reflective. This
provides the idea of mounting EMAT sensor for the specific materials of interest.

“Condition Monitoring Technologies” for rolling stock is reviewed in [VI].
In this work, an endeavor has been made to summarize the later advancements in
online condition checking of the railroad hardware. It has been found that, there are
two major ways of using condition monitoring for railway inspection – one is On
Board sensing technology and other is Wayside sensing technology. Wayside
sensing technology appears to be cheaper and more feasible than the former one on
board sensing technology. In [VII], the use of Eddy Current Array sensors as one of
the NDT techniques for railroad wheel examination is developed. Four sensors were
used to detect the types of surface fissure on the wheels unceasing upto a speed of
100km/hr.

A Roll by crack inspection of rail wheels operating EMAT sensor is
addressed in [IX], where it uses the principle of wayside technology. The maximum
signal strength of EMAT sensor is determined when the EMAT sensor is kept
between 5- 8cm distance from the wheels. At a speed of 80 km/hr, the EMAT sensor
sensed the cracks upto 6mm depth. A work on Inspection of Rail Track Head
Surfaces using EMAT sensor is addressed in [X], where the EMAT sensor is used to
inspect the cracks, where the cracks are measured by the indication of Rayleigh
waves and these waves were propagated through the surface of cracked part. Various
sensors used for NDE inspection of rail road tracks is discussed in this section.
Various types of cracks those are present in the rail wheels are briefly discussed in the
next section.

III. Rail Wheel and Cracks

III.a. Shelled Tread

Shelling can be seen by bits of metal flaring of the track surface in two or
three spots dependably around the edge of the tracks. Shelling happens when little
bits of metal break out between the fine warm checks as appeared in Fig. 1. These are
for the most part connected with little slip checks or "chain sliding” Such wheels
ought to be pulled indeed from association

III.b. Shatter Rim

A wheel with a cleavage on the tread or flange is called as the shattered rim
as shown in Fig. 2. And it must be withdrawn from service. Shattered Rim is a
rejectable defect. This does not incorporate wheels with localized setting or chipping
without nearness of any erectable condition.
Rim spread occurs when the edge broadens out for a brief remove on the front confront, where an inside deformity may show. Such spreading of the edge is ordinarily went with by a smoothing of the tread, which may or may not have breaks or shelling on the tread as appeared in Fig. 3. Such wheels must be withdrawn from service.

Fig. 1: Shelled Tread

Fig. 2: Shattered Rim

III.c. Rim Spread

Rim spread occurs when the edge broadens out for a brief remove on the front confront, where an inside deformity may show. Such spreading of the edge is ordinarily went with by a smoothing of the tread, which may or may not have breaks or shelling on the tread as appeared in Fig. 3. Such wheels must be withdrawn from service.
III.d. Rim Flow

The uniform twisting over the external edge of the edge around the complete wheel is called Rim Flow as shown in figure 4 and it should not be confused with the widening of the tread. Rim flow is not a reject able defect [XI],[XII],[XIII],[XIV],[XV].

III.e. Thermal Crack

Warm splits show informed a wheel track thanks to extreme warming of the wheel rising out of significant brake official, as appear in Fig. 5. Such breaks happen on the track and by and enormous advancement over the track in a verytransversaland
spiral heading. At no matterpurpose such a split finally ends up noticeable on the external substance of the sting or track break has achieved the external edge (non-check face) of the sting, the wheel have to be compelled to be force back from administration. Within the event that a split finally ends upclear on the external rib face, the wheel have to be compelled to be force back from administration. Such wheels have to be compelled to be sent to workshop for assessment and succeeding dismissal. Wheels engaged with brake official throughout administration, have to be compelled to be inspected cautiously throughout the support to preclude the chance of rejectable heat splits. Such wheels may well be distinguished by closeness of pads (even within adequate breaking points) and high staining or blue/dark warming blemishes on the track.

III.f. Heat Checks

Warm parts are dynamically huge and should be seen from fine shallow breaks unquestionable on the track on or meddle the braking surface are called warmth checks, which are customarily denser than the warm breaks (as showed up in Figure 6). Warmth checks are caused on the track since of warming and cooling cycles experienced by the wheel amid normal braking. Such wheels require not be dismantled back but or maybe have to be intentionally seen from the projectable warm parts.

Fig. 5: Thermal cracks
III.g. Disc Crack

A crack on the disc due to material failure is called disc crack as shown in Fig. 7. Therefore, the wheels with such defects should be withdrawn from service.

III.h. Loose Axle

- While assembling wheel with axle proper interference should be maintained between wheel and axle. Due to improper selection of interference the wheel may shift outwards or it may come out completely. Loose axle is a rejectable defect.

- All wheel sets pulled back from benefit for any of the conditions specified over must be sent to the related workshops for point by point examinations and encourage transfer.
The date and station code of the maintenance depot where the wheels are changed should be stenciled on the end panels. An entry should also be made in the maintenance card of the coach. No repairs, except wheel profiling of wheel sets are permitted to be done in the maintenance depot. Table 1 and Table 2 shows the standard dimensions of wheel diameter and wheel gauge respectively.

Table 1: Wheel Diameter

DESCRIPTION	STANDARD (mm)	MINIMUM REQUIRED (mm)
ICF coach BG	915	825
LHB coach	915	845
BOXN-AL	1000	906
Union Internationale des Chemins (UIC)	1000	860
Container Flat Wagons (BLC)	840	780

Table 2: Wheel Gauge

DESCRIPTION	STANDARD (mm)	MAXIMUM (mm)	MINIMUM (mm)
Coach MG	930	932	929
ICF coach BG	1600	1602	1599
LHB coach	1600	1601	1599
Wagons	1600	1602	1599

IV. Sensing Technology for Railway Vehicle

EMAT (or) Electro Magnetic Acoustic Transducer is an ultrasonic testing framework that makes sound inside the apparent region and not inside the transducer. An EMAT authorizes ultrasound waves for a test challenge with two familiar regions. An EMAT converter includes two basic parts. One can be a magnet and the other is an electrical circle. The magnet may be an invariable magnet or an electromagnet that creates an idle or a semi static interest field. In the EMAT plan, this field is called tendency engaging field. The electric coil is routinely worked during the ultrasound emphasis with an AC electric lance in the extent of 20 kHz to 10 MHz [XV]. Dependent upon the application requirements, the standard may be a consistent wave, a spike beat, or a tone burst flag. The AC electric twist also makes an AC attracting

Copyright reserved © J. Mech. Cont. & Math. Sci.

RM. Kuppan Chetty et al
field. Exactly when the test tissue is near the EMAT, ultrasound waves inside the test tissue are made by the cooperation of the two engaging fields. The trading stream in the electrical twist makes a vortex stream outwardly of the tissue. Underwriting of the hypothesis of electromagnetic affirmation, course the vortex current is, in a way, a genuinely lean tissue layer, which is called skin profundity. This significance decreases with growing AC voltage, tissue conductivity and porosity. The Lorentz confinement vacillation is obliged by the guide of the magnet and the course of action of the electrical circle, the properties of the test tissue, the relative position between the transducer and the test region, and the excitation pennant for the transducer. A ferromagnetic tissue has a dimensional change when an outside interest field is related. This impact is called magnetostriction. The flux field of a magnet grows, or collapses depends on the course of action of ferromagnetic fabric having actuating voltage in a coil and the sum of alter is influenced by the size and heading of the field. The AC current within the electric coil actuates an AC attractive field and in this way produces magnetostriction at ultrasonic recurrence within the material. The unsettling influences caused by magnetostriction at that point engender within the fabric as an ultrasound wave.

Electromagnetic acoustic transducer (EMAT) has numerous layers of electrically protection and electrically conductive materials which contain a coil of the EMAT. The focal points of EMATs result from the reality that they require no ultrasonic couplant and they are competent of creating more wave modes than customary piezoelectric ultrasonic strategies [XVI]. The truth that no couplant is required permits EMATs to filter at exceptionally tall speeds. Moreover, the non-appearance of couplant and utilize of electromagnets permit EMATs to function at tall temperatures. EMAT can assess through coatings and are not influenced by poisons, oxidation, or harshness. Snell’s law of refraction does not apply, and the point of the sensor does not influence the heading of proliferation. This makes EMAT transducers less demanding to control and send the signals without any need of a couplant [XVII], [XIX], [XX], [XXI], [XXII], [XXIII], [XXIV], [XXV], [XXVI][XXVII], [XXIX].

EMAT is the as it were viable implies for creating shear waves with even polarization (SH waves) without tall mechanical weight or low-density couplant that hinder filtering of the portion. Dry and non-contact (up to 2.5mm lift-off contingent upon appositeness and repeatability). Perfect for computerized and torrid situations. Not influenced by facial circumstances. Competent of reviewing on seriously set surfaces. Review at temperatures of up to 1,385°F (751xºC) [XXVIII]. EMAT sensor is used thickness estimation, imperfection location, and fabric property characterization. After decades of investigate and advancement, essential metal fabricating and preparing, car, railroad, pipeline, kettle and weight vessel businesses. The Table 3.given underneath appears the preferences of EMAT over conventional piezoelectricsensor.
Table 3: Comparison between EMAT and Piezoelectric Sensors

Conditions	EMAT	Piezoelectric
Couplant	No	Yes
Non-contact	Yes	Yes
Dry contact	Yes	No
Snell’s Law	No	Yes
SH type waves	Easy	Difficult
Ceramic Material	Not suitable	Suitable
Testing at high speeds	No limitations	Upto 1.5m/s
Hot objects (1200 °C)	Yes	Upto 90 °C

V. Design Necessities For EMAT Sensors

V.i. Ultrasound

Ultrasound alludes to a recurrence higher than that of the human ear. The hearing ear of the human ear is ordinarily 16 Hz to 20 kHz within the frequency range and ultrasound within the recurrence extend 20 kHz to 100 MHz. Ultrasonic checks are more often than not performed in the recurrence range of 0.5-10 MHz. Like all sound waves, ultrasounds are mechanical vibrations. Within the vacuum, the sound does not proliferate, so to continue, the sound requires a medium of three forms of the substance: gas, fluid or strong. The sound speed within the fabric could be a material-specific steady.

V.ii. Ultrasonic Assessment Hardware (PZT and EMAT):

The hardware of both review strategies incorporates an ultrasonic gadget, different tests, and a cable to be associated between them. The tests may be e.g. ultrasonic transmitters and recipients. The typical sounder transmits the ultrasound opposite to the surface to be checked and the point at a given angle. A few controls utilize two tests, one for ultrasound and the other for accepting (TOFD)[XXIX].

V.iii. Sounders:

Gadgets of the piezoelectric and inductive ultrasonic strategy vary in their structures and modes of operation.

The PZT(PZT):

Ultrasound is produced in a piezoelectric precious stone by applying a voltage to it. The piezoelectric strategy requires a liquid between the test and the fabric to permit ultrasound within the precious stone emigrate into the fabric. The coupling liquid may be, for example, oil, gel or glue, as long because it is reasonable for the fabric to be evaluated and remains on the surface of the fabric amid the
review. The course of the ultrasound depends on how precious stone interior the test is coordinated [XXXI]

Inductive Transfer (EMAT):

The way the ultrasound is created by a magnet comprising a magnet and an RF coil is based on the control of Lorentz and the Joule wonder. The inductive strategy does not require coupling liquid, since ultrasound is produced straightforwardly on the body being evaluated. The heading of the ultrasound produced within the fabric is determined by the shape of the RF utilized. (Presentation to EMAT) In the expansion to the quality of the magnet, the electrical conductivity of the fabric being inspected affects the ultrasonic quality of the fabric [XXXII].

V.iv. Choice of Test for Review:

The generators have the bounty of factors that influence how the ultrasound voyages within the fabric and what kind of comes about you get. The taking after things to select a reasonable test:

- Geometry of the joint
- Material of the base fabric and weld
- Defects to be found
- Determination of the estimation of the found imperfection offer help or standard

V.v. Thickness Estimation:

The foremost critical sort of ultrasonic examination for this work is thickness estimation. By piezoelectric strategy, thickness estimation is performed with a typical test. Within the inductive strategy, the thickness estimation is accomplished by a pilot comprising a spiral-shaped RF coil and a magnet. When thickening, the ultrasound is coordinated to the foot of the fabric opposite to the surface. Thickness estimation is based on ultrasound. From the reflection of the footwear back to the test, the ultrasonic gadget measures the slipped by time and calculates the thickness of the fabric [I], [XXXVI], [XL], [XLI], [XLII], [XLIII], [XLIV], [XLV].

V.vi. EMAT Gear:

Control Box H is an EMAT ultrasonic gadget that can be used to associate distinctive sorts of tests. The special traveled by the ultrasound is seen as a work of the time taken from the show.

Permanent Magnet and RF Coil:

Sometime recently started the device, a suitable RF coil had to be chosen, as well as a congruous lasting magnet. The choice criteria were reasonableness for thickness estimation had to be bigger. In the case of little substance misfortunes, the quality of the attractive field must not even be as tall. Based on the small measurement, the littlest changeless magnet found in its review and its consistent RF
coil had to be chosen. The suitability for utilize is not certain in hone. Ordinarily used tests are prepared with either a built-in or detachable RF coil.

Tool to be Connected to the Generator:
The roller apparatus connected to the test is aiming for checking straight or exceptionally lean objects. The device is not flexible. This device cannot pass the test radially along the tube bend, as the RF coil would come in contact with the surface and be harmed. At the minute, internal spec does not have a device for the planning utilize. In this manner, creating your claim instrument is fundamental [XLI],[XLII],[XLIU],[XLIV].

i. Instrument Plan:
In order to set the compatibility of the accessible EMAT hardware, it was to begin with the best conceivable device. The wheeled instrument must be able to transport the external surface of the tube bend so that the RF coil does not touch the surface of the tube. The beginning focuses for the plan:

- Simplicity
- Durability
- Adjustability
- Material: The quality of the attractive field between the tube and the test is tall. The fabric must be solid, it must not have meddled with the attractive field and may need to withstand serious conditions. Aluminum and acid-resistant steel were chosen as choices [XLV],[XLVI].

- Structure: The structure must be tough and low-space. The beginning point was that the instrument would comprise of two metal plates and two hourglass-shaped rings between them. At first, the alteration extends to need to be DN40 upwards and reasonable for the radii of the distinctive bends. The test must be exceptionally close to the tube to be evaluated. The instrument is connected to the test with four screws [XLVII],[XLVIII].

- Planning: As it was at the plan arrangement, it was famous that the plan work would not be postponed until the announcing of this proposition. Instrument advancement was left at the arrange level. AutoCAD LT 2017 was utilized within the plan. The outlined device comprises of two metal plates and a back structure between them, two rings, and tire locking nuts. Alteration edge for channels of distinctive sizes can be gotten from the tires to be moved along the groove [XLIX],[L].

The basic aim of this attempt is to design a low power, area efficient half band FIR filter. This proposed method improves energy saving for any application of filter. In this report we have taken an example of simple half band low pass FIR filter. The effectiveness of the design will hold true for other types of filter also. The most relevant application of this filter is in portable remote devices like hearing aid [XLIV]. Performance analysis of the proposed design implies better delay, area and power compared to conventional design.

Copyright reserved © J. Mech. Cont.& Math. Sci.
RM. Kuppan Chetty et al
VI. Conclusion

This paper tries to find out the best way in finding out which sensor will be best for the condition monitoring for a running train wheel. Table 4 presents the different types of sensors that are used for inspection of rail wheels.

- **External Disturbances** will be high if you keep in a moving train, so removing those disturbances from the actual value needs so much processing. So **ultrasonic sensor** can’t be used.

- **Acoustic Emission Sensor** is like ultrasonic sensor, but it can only detect surface cracks and is not applicable for finding internal cracks.

- **Hall Effect Sensor** is sensitive to temperature, the moving wheel and due to the friction, heat will be generated, and this affect the sensor drastically.

- **Eddy current Sensor** is very expensive and it can’t go deeper than 2mm thickness.

- **Piezoelectric Sensor** is a consolidation of eddy current sensor and ultrasonic sensor, but it comes with a certain limitation under temperature and use of couplant makes it unsuitable.

- **EMAT Sensor** is like piezoelectric, but it doesn’t have the limitations of piezoelectric sensor and it is comparatively cheaper than eddy current sensor.

Sensors	Surface Cracks	Internal Cracks	External Disturbances	Temperature	Couplant	Expensive
Ultrasonic Sensor	✓	✓	✓		✓	
Acoustic Emission Sensor	✓		✓			
Hall Effect Sensor	✓					
Eddy Current Sensor	✓					
Piezo Electric Sensor	✓					
EMAT Sensor	✓					

Therefore, EMAT sensor finds suitable itself as a better candidate other than the commonly used sensors for Non Destructive Testing and Evaluation of rail wheel cracks.
References

I. Alemi A, Corman F, Lodewijks G. Condition monitoring approaches for the detection of railway wheel defects. In the proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. 2017 Sep;231(8):961-81.

II. Andreas K, Thomas S, Wolfgang K, Rolf B, Semjon S, Reiner D. Innovative ultrasonic inspection system for the fabrication test of railroad wheels. In the proceedings of 2016 18th International Wheelset Congress (IWC) 2016 Nov 7 (pp. 146-150). IEEE.

III. Antipov AG, Markov AA. Detectability of Rail Defects by Magnetic Flux Leakage Method. Russian Journal of Nondestructive Testing. 2019 Apr 1;55(4):277-85.

IV. Berthier Y, Descartes S, Busquet M, Niccolini E, Desrayaud C, BailletL, Bietto-DubourgMC. The roleand effects of the third body in the wheel–rail interaction. Fatigue & Fracture of Engineering Materials & Structures. 2004 May;27(5):423-36.

V. Bodziak TA, inventor; Trane US Inc, assignee. Railroad car wheel detection using hall effect element. United States patent US 4,524,932. 1985 Jun 25

VI. Bogdański S, Brown MW. Modelling the three-dimensional behavior of shallow rolling contact fatigue cracks in rails. Wear. 2002 Jul;253(1-2):17-25.

VII. Bogdanski S, Olzak M, Stupnicki J. Numerical stress analysis of railrolling contact fatigue cracks. Wear. 1996 Jan1;191(1-2):14-24.

VIII. Bollas K, Papasalouros D, Kourousis D, Anastasopoulos A. Acoustic emission inspection of rail wheels. Journal of Acoustic Emission. 2010 Jan;28:215-29.

IX. Brizuela J, Ibañez A, Fritsch C. Railway wheel tread inspection by ultrasonic techniques. in 2009 IEEE International Ultrasonics Symposium 2009 Sep 20 (pp. 1-4). IEEE.

X. Burrows SE, Fan Y, Dixon S. High temperature thickness measurements of stainless steel and low carbon steel using electromagnetic acoustictransducers. NDT & E International. 2014 Dec;168:73-7.

XI. Cavuto A, Martarelli M, Pandarese G, Revel GM, Tomasini EP. Train wheel diagnostics by laser ultrasonics. Measurement. 2016 Feb 1;80:99-107.

XII. Chaoyong P, Xiaorong G, Bo Z, Yang L, Qiuyue J. Way-side wheel crack detecting using arrayed ultrasonic probes. In2016 18th International Wheelset Congress (IWC) 2016 Nov 7 (pp. 95-99). IEEE.
XIII. Chen L, Choy YS, Wang TG, Chiang YK. Fault detection of wheel in wheel/rail system using kurtosis beamforming method. Structural Health Monitoring. 2019 Jun 14:1475921719855444.

XIV. Cong T, Han J, Hong Y, Domblesky JP, Liu X. Shattered rim and shelling of high-speed railway wheels in the very-high-cycle fatigue regime under rolling contact loading. Engineering Failure Analysis. 2019 Mar 1;97:556-67.

XV. Di Scalea FL. Air-coupled ultrasonic inspection of rails. United States patent US 9,950,715. 2018 Apr 24.

XVI. Faghih-Roohi S, Hajizadeh S, Núñez A, Babuska R, De Schutter B. Deep convolutional neural networks for detection of rail surface defects. In 2016 International joint conference on neural networks (IJCNN) 2016 Jul 24 (pp. 2584-2589). IEEE.

XVII. Falamarzi A, Moridpour S, Nazem M. A Review on Existing Sensors and Devices for Inspecting Railway Infrastructure. JurnalKejuruteraan. 2019;31(1):1-0.

XVIII. Fan C, Ai F, Liu Y, Xu Z, Wu G, Zhang W, Liu C, Yan Z, Liu D, Sun Q. Rail Crack Detection by Analyzing the Acoustic Transmission Process Based on Fiber Distributed Acoustic Sensor. In 2019 Optical Fiber Communications Conference and Exhibition (OFC) 2019 Mar 3 (pp. 1-3). IEEE.

XIX. Gao R, He Q, Feng Q. Railway Wheel Flat Detection System Based on a Parallelogram Mechanism. Sensors. 2019 Jan;19(16):3614.

XX. Ghofrani F, Pathak A, Mohammadi R, Aref A, He Q. Predicting rail defect frequency: An integrated approach using fatigue modeling and data analytics. Computer-Aided Civil and Infrastructure Engineering. 2019.

XXI. Gorgun E, Karamis MB. Ultrasonic testing to measure the stress statement of steel parts. Journal of Mechanical Science and Technology. 2019 Jul 1;33(7):3231-6.

XXII. Hanai K, Nishimura K, Itoyama M, Yoshida I, inventors; Central Japan Railroad Co, assignee. Constant monitoring system for railway vehicle. United States patent application US 16/295,336. 2019 Sep 12.

XXIII. Handa K, Kimura Y, Mishima Y. Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact andcyclic frictional heat. Wear. 2010 Jan4;268(1-2):50-8.[31]

XXIV. Hyde P, Defossez F, Ulianov C. Development and testing of an automatic remote condition monitoring system for train wheels. IET Intelligent Transport Systems. 2016 Feb 1;10(1):32-40.
XXV. Jadhav P, Kondlekar S, Kotian D, Kotian N, Hemnani P. A Reliable Network System for Railway Track Crack Detection. In International Conference on Computer Networks and Communication Technologies 2019 (pp. 947-952). Springer, Singapore.

XXVI. Kishore MB, Park JW, Song SJ, Kim HJ, Kwon SG. Characterization of defects on rail surface using eddy current technique. Journal of Mechanical Science and Technology. 2019 Sep 1;33(9):4209-15.

XXVII. Kolstad OH. Model for Detecting Flaws in Railway Rails using Machine Learning (Master's thesis, NTNU).

XXVIII. Kondo O, Shimokawa Y, inventors; Nippon Steel Corp, assignee. Method for measuring wear of railroad vehicle wheel flange. United States patent US 10,352,831. 2019 Jul 16.

XXIX. Kondu P, Darpe AK, Singh SP, Gupta K. A Review on Condition Monitoring Technologies for Railway Rolling Stock. In PHM Society European Conference 2018 Jul 3 (Vol. 4, No.1).

XXX. Lad P, Pawar M. Evolution of railway track crack detection system. In 2016 2nd IEEE International Symposium on Robotics and Manufacturing Automation (ROMA) 2016 Sep 25 (pp. 1-6). IEEE.

XXXI. Li Q, Zhong Z, Liang Z, Liang Y. Rail inspection meets big data: methods and trends. In 2015 18th International Conference on Network-Based Information Systems 2015 Sep 2 (pp. 302-308). IEEE.

XXXII. Lu P, Bridgelall R, Tolliver D, Chia L, Bhardwaj B. Intelligent Transportation Systems Approach to Railroad Infrastructure Performance Evaluation: Track Surface Abnormality Identification with Smartphone-Based App. 2019 Jul.

XXXIII. Ma J, Wang Z, Rao C, Tan Y, Liu H, inventors; BEIJING SHEENLINE GROUP CO., LTD., assignee. Flaw detection machine with parallel lifting function, adapted for detecting flaw without demounting wheels. United States patent US 9,645,053. 2017 May 9.

XXXIV. Ma L, He CG, Zhao XJ, Guo J, Zhu Y, Wang WJ, Liu QY, Jin XS. Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions. Wear. 2016 Nov 15;366:13-26.

XXXV. Mariani S, Nguyen T, Zhu X, Lanza di Scalea F. Field test performance of noncontact ultrasonic rail inspection system. Journal of Transportation Engineering, Part A: Systems. 2017 Feb 2;143(5):04017007.

XXXVI. Mazzù A, Solazzi L, Lancini M, Petrogalli C, Ghidini A, Faccolli M. An experimental procedure for surface damage assessment in railway wheel and rail steels. Wear. 2015 Nov 15;342:22-32.

XXXVII. Miettinen M. Työkalunsuunnittelu EMAT-ultraäänilaitteenluotaimelle.
XXXVIII. Montinaro N, Epasto G, Cerniglia D, Guglielmino E. Laser ultrasonics inspection for defect evaluation on train wheel. NDT & E International. 2019 Oct 1;107:102145.

XXXIX. Nowakowski T, Komorski P, Szymański GM, Tomaszewski F. Wheel-flat detection on trams using envelope analysis with Hilbert transform. Latin American Journal of Solids and Structures. 2019;16(1).

XL. Rowshandel H, Nicholson GL, Shen JL, Davis CL. Characterisation of clustered cracks using an ACFM sensor and application of an artificial neural network. NDT & E International. 2018 Sep 1;98:80-8.

XLI. Sternini S, Liang AY, di Scalea FL. Rail defect imaging by improved ultrasonic synthetic aperture focus techniques. Materials Evaluation. 2019 Jul 1;77(7):931-40.

XLII. Tsujie M, Miura M, Chen H, Terumichi Y. A study on the initiation of head check of the low rail using multibody dynamics. Wear. 2019 Oct 15;436:202989.

XLIII. Witte M, Poudel A. Review of Wayside Detection and Monitoring Technologies and Their Future for North American Railroad Applications. Materials Evaluation. 2019 Jul 1;77(7):885-96.

XLIV. Yu X, Li R, inventors; General Electric Co, assignee. Devices and methods for inspecting a wheel. United States patent US 10,352,830. 2019 Jul 16.

XLV. Zhang K, Peng J, Yang K, Gao X, Zhang Y, Peng C, Tian G. Research on eddy current pulsed thermography for rolling contact fatigue crack detection and quantification in wheel tread. In2016 18th International Wheelset Congress (IWC) 2016 Nov 7 (pp. 5-11). IEEE.

XLVI. Zhang Y, Tan Y, Peng J, Peng C, Yang K, Gao X. LU automatic ultrasonic inspection system for in-service wheelset and its application. In2016 18th International Wheelset Congress (IWC) 2016 Nov 7 (pp. 100-104). IEEE.

XLVII. Zheng S, Chai X, An X, Li L. Railway track gauge inspection method based on computer vision. In2012 IEEE International Conference on Mechatronics and Automation 2012 Aug 5 (pp. 1292-1296).IEEE.

XLVIII. Zhou L, Brunskill H, Pletz M, Daves W, Scheriau S, Lewis R. Real-Time Measurement of Dynamic Wheel-Rail Contacts Using Ultrasonic Reflectometry. Journal of Tribology. 2019 Jun 1;141(6):061401.

XLIX. Zhou L, Brunskill HP, Lewis R. Real-time non-invasive measurement and monitoring of wheel–rail contact using ultrasonic reflectometry. Structural Health Monitoring. 2019 Feb 21:1475921719829882.

L. Zou C, Sun Z, Cai D, Zhang W, Chen Q. Crack detection using serrated columnar phased array transducers. Insight-Non-Destructive Testing and Condition Monitoring. 2018 Apr 1;60(4):212-9.

Copyright reserved © J. Mech. Cont.& Math. Sci.

RM. Kuppan Chetty et al