Extracting semantic clusters from the alignment of definitions

Gerardo SIERRA
Instituto de Ingeniería, UNAM
Apdo. Postal 70-472
México 04510, D.F.
gsm@pumas.ingen.unam.mx

John McNAUGHT
Department of Language Engineering, UMIST
PO Box 88
Manchester M60 1QD, UK
John.McNaught@umist.ac.uk

Abstract
Through the alignment of definitions from two or more different sources, it is possible to retrieve pairs of words that can be used indistinguishably in the same sentence without changing the meaning of the concept. As lexicographic work exploits common defining schemes, such as genus and differentia, a concept is similarly defined by different dictionaries. The difference in words used between two lexicographic sources lets us extend the lexical knowledge base, so that clustering is available through merging two or more dictionaries into a single database and then using an appropriate alignment technique. Since alignment starts from the same entry of two dictionaries, clustering is faster than any other technique.

The algorithm introduced here is analogy-based, and starts from calculating the Levenshtein distance, which is a variation of the edit distance, and allows us to align the definitions. As a measure of similarity, the concept of longest collocation couple is introduced, which is the basis of clustering similar words. The process iterates, replacing similar pairs of words in the definitions until no new clusters are found.

Introduction
Clustering methods to identify semantically similar words are usually divided in relation-based and distribution-based approaches [Hirawaka, Xu and Haase 1996]. Relation-based clustering methods rely on the relations in a semantic network or ontology to judge the similarity between two concepts, either by measuring the shortest length that connects two concepts in the hierarchical net [Agirre and Rigau 1996], or by comparing the information content shared by the members under the same cluster [Morris and Hirst 1991, Resnik 1997]. However, even although these ontologies describe a huge number of members for a cluster, few words of a category may be interchangeable in the same context and then used as members of the same cluster. This means that not all words in a category are necessary.

Conversely, distribution-based clustering methods depend on pure statistical analysis of the lexical occurrences in running texts. A major drawback is that distribution-based methods require us to process a large amount of data in order to get more reliable results. Moreover, the use of large corpora is not always practical, due to economic, time or capabilities factors. Gao [1997] states that the problem for statistical alignment algorithms, such as those based on the facts described by Gale and Church [1991], is the low frequency of words that occur in parallel corpora. The consequences for lacking large corpora include results based on low-frequency words, which are quite unrepresentative for clustering.

From a methodological point of view, there is, in addition to the above two approaches, a little known approach called the analogy-based approach. This employs an inferential process and is used in computational linguistics and artificial intelligence as an alternative to current rule-based linguistic models.

1 Analogy-based clustering
Jones [1996] suggests corpus alignment as a feasible analogy-based approach. In order to align two sentences in the same language, Waterman [1996] uses a technique for measuring the similarity between lexical strings, named edit distance. This matches the words of
two sentences in linear order and determines their correspondence. For example, given the following two definitions for alkalimeter:

- An apparatus for determining the concentration of alkalis in solution [CED]
- An instrument for ascertaining the amount of alkali in a solution [OED2]

Alignment may identify which words in these definitions are equivalents of each other. A quick observation of the sentences lets us identify three pairs of words: (apparatus, instrument), (determining, ascertaining) and (concentration, amount).

The appeal of using definitions as corpora for alignment is founded on two reasons. Firstly, dictionaries contain all necessary information as a knowledge base for extracting keywords [Boguraev and Pustejovsky 1996]. Secondly, it is much easier to find the sentences for aligning, since definitions are distinguished by entry headword.

Taking into account Waterman’s studies, we propose an analogy-based method to identify automatically semantic clusters. The difference in words used between two or more lexicographic definitions enables us to infer paradigms by merging the dictionary definitions into a single database and then using our own alignment technique.

2 Clustering algorithm

The overall structure of the clustering algorithm is shown in figure 1, and its description is given below.

2.1 Processing definitions

Our algorithms are used in an overall system called “onomasiological search system” (OSS), whose aim is to allow the user to find terms by giving a description of a concept. Lexicographic and terminological definitions constitute the main lexical resources. Our algorithms cluster words that are used in the same context, thus operate on pairs of definitions for a same entry word, drawn from two different dictionaries. If dictionary 1 does not have an entry word that exists in dictionary 2, then this entry word is omitted from consideration. In order to balance the number of strings when an entry word in the dictionary 1 has two or more senses, the entry word in dictionary 2 is repeated as many times as necessary to equal the number of senses of dictionary 1. We thus derive two files 1 and 2 containing an equal number of strings S1 and S2, respectively. Each string consists of an entry term followed by its definition, the definition giving only one sense of the entry term. For each string S1 there is a string S2.

Our experiments focus on 314 terms for measuring instruments extracted with their definitions from CED [1994] and OED2 [1994], resulting in 387 strings from each dictionary.
The strings consist of the entry term and the definition, so that etymology, part of speech, inflected forms of the entry term, examples and other information were deleted. Subject-field labels, such as ‘astronomy’ and ‘meteorology’, were preserved, either in full or slightly abbreviated, as they are helpful to resolve which sense of a word to choose, and usually constitute a fundamental property of the concept.

It should be noted that none of the 387 strings suffered any additional transformation, apart from a few cases in order to complete a definition when it had been broken in two parts by the dictionary editor, such as when a core meaning appears just once at the beginning of several subsequent senses. Although some abbreviations (‘U.S.A.’), initials of proper names (‘C.T.R. Wilson’) and possessives (‘sun’s rays’) will come out as two or more words after deleting punctuation marks and therefore can alter the efficiency of the algorithm, they were preserved to observe their effect.

2.2 Aligning definitions

In order to compare two strings of words, we use the Levenshtein distance [Levenshtein 1966], a similar method to the edit distance. This method measures the edit transformations that change one string into another. The Levenshtein distance arranges the strings in a matrix, with the words of \(S_1 \) heading the columns and those of \(S_2 \) heading the rows. A null word is inserted at the beginning of each string \(S_1 \) and \(S_2 \), in position \(i=0, j=0 \). The matrix is filled with the costs of insertion, deletion and substitution using the following formula:

\[
D(a_i, b_j) = \min \begin{cases}
D(a_{i-1}, b_{j-1}) + D_{ins}(b_j) \\
D(a_{i-1}, b_j) + D_{del}(a_i) \\
D(a_{i-1}, b_{j-1}) + D_{sub}(a_i, b_j)
\end{cases}
\]

Where the cost of insertion, \(D_{ins}(\cdot) \), is 1, and the cost of substitution, \(D_{sub}(\cdot, \cdot) \), is 0 or 1, according to whether \(a_i \) and \(b_j \) differ or not.

Our experimental results have shown that the application of the Levenshtein distance using stem forms gives better matches than using full forms. Therefore, we shall fill the matrix with the cost for the stem forms, although the strings preserve the full forms both for the following steps and in the output table. We used the stemming algorithm of Porter [1980], which removes endings from words.

Building on the Levenshtein distance, Wagner and Fisher [1974] propose a dynamic programming method to align the elements of two strings. Their procedure to return the ordered pairs of the alignment starts with the last cell of the matrix with \(\text{cost}[i][j] = 0 \), and works back until either \(i \) or \(j \) equals 0, according to which of its neighbours a cell was derived from. If it is derived either from the previous horizontal or vertical cell (\(\text{cost}[i-1][j] \) or \(\text{cost}[i][j-1] \) respectively) then the difference in cost is just 1, otherwise it is derived from the diagonal.

2.3 Extracting triplets

The alignment gives us a list of triplets formed by \((f_f, f_f, \text{cost}[i][j])\), in decreasing order according to \(\text{cost}[i][j] \), where \(f_f \) and \(f_f \) are full forms from the strings \(S_1 \) and \(S_2 \), respectively. There are three possible pairings of words: “Equal couple” defined as the pair \((f_f, f_f, \text{cost}[i][j])\) such that \(f_f = f_f \). This couple represents a potential pair of similar words.

“Matched couple” is a pair \((f_f, f_f)\) such that \(f_f \neq f_f \) is missing. With respect to the Levenshtein distance, the equal couple means these words do not need any change to make both equal, while for the matched couple we shall replace one word with the other progressively, and for the null couple we must either insert one word into the given string or delete it from the given string.

The purpose of clustering is to match different pairs of words (matched couples), thus neither pairs of equal words (equal couples) nor pairs with a null word (null couples) are relevant.

2.4 Measuring similarity

As a measure of the similarity between a matched couple, we quantify the surrounding equal couples above and below it. This concept is similar to the “longest common subsequence” of two strings suggested by Wagner and Fisher [1974], which is defined as the common subsequence of two strings having maximal length, although in our case both strings differ by the single matched couple. By analogy, we use longest collocation couple, henceforth...
abbreviated lcc, since we refer to couples instead of a single string. Besides, the word “collocation” is more representative for a pair of words and their neighbourhood, being the core of two longest common subsequences. We define longest collocation couple as the maximal sequence of pairs of words formed by equal couples surrounding a matched couple.

Given the alignment of the strings S_1 and S_2 consisting of a list of triplets formed by $(f_f, f_f, \text{cost}[i][j])$, in decreasing order according to $\text{cost}[i][j]$, where f_f and f_f are, respectively, full forms from S_1 and S_2, the lcc is the longest consecutive sequence of triplets $(f_f, f_f, \text{cost}[i][j])$ formed by one matched couple, such that it meets 3 conditions:

- The cost difference between the first triplet and the last triplet is 1.
- There is no null couple.
- The matched couple is neither the first nor the last triplet.

By these conditions, only the matched couple becomes the core of a lcc: we constrain a matched couple to be between two or more equal couples, and eliminate the possibility that the matched couple appears at the beginning or end of a phrase.

As a result, we get a new triplet (f_f, f_f, lcc), where (f_f, f_f) is the matched couple and lcc is the length of the longest collocation couple. As an example, for the definitions of “dynameter” in table 1, there is only one matched couple, “determining-measuring”, whose lcc is 9 (the extent of the lcc is indicated by arrows).

ff	ff	cost[i][j]
telescopes	telescope	2
of	a	1
power	power	1
magnifying	magnifying	1
the	the	1
determining	measuring	1
for	for	0
instrument	instrument	0
an	An	0
dynameter	dynameter	0

Table 1 Triplets for “dynameter”

Ranking all triplets found by lcc in decreasing order, we observe that the greater the value of lcc, the greater the similarity between the words of the matched couple.

2.5 Removing function words

So far, function words and other noise words will also be clustered by our algorithms. In general, such words interfere in the identification of clusters and can give more wrong than good results. We use a stoplist to automatically identify any pair of words where a non-relevant word appears and exclude it, on the grounds that they are not very useful words for clustering. Thus, when the program comes across a matched pair of different words in a context and if that matched pair contains a word from the stoplist, then the pair is rejected. Essentially, this is the same thing as using a tagger and looking at the tags as well as the words, since one would not want to choose a noun pairing with a determiner or a relative.

By inspection, we observe that, after stoplist discrimination, the best potential clusters are found at higher values of lcc. Our experimental results show us that a length of lcc equal to 5 is a reliable threshold. Although there are also good matches for values equal to 4 and 3, the majority of these are dupicates of higher values.

2.6 Clustering

We introduce the term binding to represent a candidate cluster, i.e. two words that may be used in the same context without changing the meaning of a definition. A binding is a matched couple (f_f, f_f) formed by the full forms f_f and f_f, after stoplist discrimination, drawn from the strings S_1 and S_2, respectively, in such a way that the stem forms are equivalent, in a determined context, according to a determined threshold. The threshold associated with a binding is the length of the lcc, and we consider only bindings of matched couples where $\text{lcc} \geq 5$.

Each binding can be considered as an initial cluster. Clusters represent sets of words that are used with the same meaning in particular contexts. In a consecutive sequence of bindings, it may happen that a stem form occurs in two or more different bindings. In this case, one can cluster all bindings with a common stem form according to the transitive property.

In order to cluster bindings, we use an algorithm consisting of three loops. First, it assigns a cluster number to each binding, so those bindings with a common word have the same cluster number. Secondly, it clusters bindings with the same cluster number, but removes
duplicate stem forms in the same cluster. Thirdly, it checks if it is possible to merge new clusters with those of previous cycles. This process will typically result in a set of overlapping clusters, reflecting the natural state where concepts may belong to more than one conceptual class.

2.7 Cycling
As bindings represent pairs of words such that the stem forms can be substituted in a particular context without changing the meaning, $s_f = s_f'$ we can replace any of the full forms ff' with the full forms ff according to each binding, so that the corresponding definition preserves the same meaning. After substituting bindings, we observe that several pairs of words will now typically present a high lcc score, even those pairs of words which initially did not yield matches with any word. It is then advantageous to replace thus the bindings in the definitions and to repeat the entire process until no new clusters are found. The first cycle runs from the reading of definitions up to merging of clusters. All subsequent cycles will start by replacing retained bindings in the definitions, thus each subsequent cycle works with new data.

3 Experimental results
The current clustering algorithm was developed by analysing definitions on the following basis:

- Language dictionaries. The use of language dictionaries has been preferred because there are enough to extract data from. As they are in machine-readable form, it is possible to copy definitions, avoiding likely mistakes while typewriting.
- Corpus on 314 “measuring instruments”. This domain has the advantage that it is easy to search for the terms that correspond to it, as they usually end in “-meter”, “-scope” or “-graph”. As a consequence of applying the clustering program to the 387 strings, it is evident that the majority of clusters were related to “measure” and “instrument”.
- Alignment of two strings. We have shown that two sources of data (pairs of definition) are sufficient for clustering to yield good results.
- No manipulation of data. After identification of the term and the definitions, these were truncated to 200 characters and punctuation marks were removed. No words in definitions were replaced or moved, to “tidy up” the data, before being submitted to the main process.
- Stemming algorithm. The stemmer algorithm presents both overstemming and understemming, but nevertheless the clustering program yields good results.
- Stoplist discrimination. The stoplist has been used as a tagger, i.e. as a filter to avoid matching words with different parts of speech.
- Bindings for $lcc \geq 5$. The best clusters have been observed for bindings with $lcc \geq 5$, and the results presented are good.

Table 2 presents some cluster results after two cycles of the clustering procedure starting from the Levenshtein distance. In addition to these clusters, 14 other clusters of two or three elements were obtained.

Table 2 Cluster results for “measuring instruments”
1. apparatus instrument telescope
2. analyse ascertaining determining estimating
location measuring recording taking testing
3. amount concentration intensity percentage
proportion rate salinity strength

The procedure then stops, as no more matched words with $lcc \geq 5$ have been found for our data. The following sections analyse variations of these considerations.

3.1 Using multiple resources
General language dictionaries present the advantage of using well-established lexicographic criteria to normalise definitions. These criteria, as for example the use of analytical definitions by genus and differentia, have been nowadays implemented by terminological or specialised dictionaries, with the addition of a richer vocabulary and the identification of properties that are not always considered relevant in other resources. Unfortunately, these are more oriented to a specific domain, so that it is sometimes necessary to search in two or more resources to compile the data.

We used many online lexical resources, some of them available on the Internet. This allowed us to easily use different databases to extract