SUPPLEMENTARY DATA

Elucidation of leak-resistance DNA hybridization chain reaction with universality and extensibility

Shaofei Li1,2,4, Pan Li1, Meihong Ge1,4, Hongzhi Wang1,3, Yizhuang Cheng1,4, Gan Li5, Qiang Huang5, Huan He1, Chentai Cao1,4, Dongyue Lin1,4, Liangbao Yang1,3,*

1 Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
2 School of Life Science, Anhui University, Hefei, Anhui 230601, China
3 Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
4 Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
5 State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China

* To whom correspondence should be addressed. Email: lbyang@iim.ac.
Contents

List of Supplementary Texts:
Text S1. Molecular dynamics simulation

List of Supplementary Figures:
Figure S1. Native polyacrylamide gel electrophoresis and SERS analysis method
Figure S2. Effect of stem length on DNA assembly behavior
Figure S3. Effect of reversed stem length on DNA assembly behavior
Figure S4. Leakage of DNA hairpins based on other sequences
Figure S5. Effect of free energy on DNA assembly behavior
Figure S6. Leakage of hairpin sequences at different temperature
Figure S7. Linear fit of free energy versus length of the sequences at different temperature
Figure S8. Effects of toehold and loop on DNA assembly behavior
Figure S9. Stability analysis of enlarged loops
Figure S10. Stability analysis of other enlarged loops
Figure S11. Effects of DNA concentration and reaction condition on DNA assembly behavior
Figure S12. Effect of initiator on DNA assembly behavior
Figure S13. Isolation and characterization of exosomes
Figure S14. Specific signal amplification of miRNA

List of Supplementary Tables:
Table S1. Evolution of the hairpin based on Dirks and Pierce’s
Table S2. Evolution of the hairpin based on reversed stem
Table S3. Evolution of the other hairpin based on Dirks and Pierce’s
Table S4. Evolution of the other DNA Hairpin sequences
Table S5. Evolution of the hairpin based on changed toehold
Table S6. Modified sequences in stem region by mutation and substitution
Table S7. DNA sequences used in effect of toehold and loop length on DNA assembly behavior
Table S8. DNA sequences used in effect of initiator on HCR
Table S9. DNA Fairpin for detection of miRNA family
Supplementary Text S1. Molecular dynamics simulation

Molecular dynamics was used to simulate the states of DNA in a solvent environment. First, a 3D atomic model of DNA was built with the web server 3D-Nus. Then, in each simulation system, a water cube with a DNA model in its centre was established, and the distance from the cube edges to the model surface was kept to a minimum of 12 Å. To achieve an ionic concentration of 0.15 M, the appropriate proportion of water was replaced with Na\(^+\) and Cl\(^-\) ions, with extra Na\(^+\) ions included for charge neutralization.

All simulations were performed with the program Gromacs-5.0.7, and periodic conditions were applied. The pressure was balanced with standard atmospheric pressure by the Berendsen method, and the temperature was maintained at 300 K by velocity rescaling. The particle mesh Ewald (PME) method was used to calculate the electrostatic interactions, and the cut-off radius for both electrostatic and van der Waals interactions was set to 14 Å. All bonds involved in the system were constrained with the LINCS algorithm, and a time step of 2.0 fs was used.

The force field was selected scrupulously from a series, and eventually Parmbsc1 was selected for use in all the simulations, since it performed perfectly in the DNA atomistic simulations(1). The general form of the molecular force field is:

\[
U = U_b + U_\theta + U_\phi + U_X + U_{vdW} + U_{el}
\]

\[
= \frac{1}{2} \sum_i k_b (r_i - r_{i0})^2 + \frac{1}{2} \sum_i k_\theta (\theta_i - \theta_{i0})^2 + \frac{1}{2} \sum_i V_n (1 + \cos(n\phi - \delta))
\]

\[
+ \frac{1}{2} \sum_i k_\chi \chi^2 + \sum_i \sum_{j=i+1} 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right] + \sum_i \sum_{j=i+1} \frac{q_i q_j}{4\pi \varepsilon_0 \varepsilon_r r_{ij}}
\]

where \(r_{i0}, \theta_{i0}\) stands for standard values of bond length and angle; \(k_b, k_\theta\) stands for elastic coefficient of harmonic potential energy; \(n\) stands for the rotation period of the dihedral angle; \(\delta\) stands for the phase; \(V_n, k_\chi\) stands for the height of the barrier; \(\varepsilon_{ij}\) stands for the depth of the potential well of the interaction between atom \(i\) and \(j\); \(\sigma_{ij}\) stands for the distance between two atoms when the potential energy of van der Waals is minimum; \(q_i q_j\) stands for the charge of atom \(i\) and \(j\) respectively; and \(r_{ij}\) stands for the distance between atom \(i\) and \(j\).

The parameterization processes of the force field Parmbsc1 uses a Monte Carlo method to avoid changes in other torsional parameters. It efficiently maintains the force field by fitting the QM-MM difference or residual energy to a Fourier series in the third order(2). It can be represented as follows:

\[
E_{dih} = E_{QM} - E_{ffbsc0(\chi=0)} \quad (I)
\]

\[
E_{dih} = \sum_{torsions} \sum_{n} \frac{V_n}{2} \left[1 + \cos(n\phi - \alpha) \right] \quad (II)
\]
Supplementary Figure S1. Native polyacrylamide gel electrophoresis and SERS analysis method. (A) Native polyacrylamide gel electrophoresis with the coated gold nanoparticles. (B) Electrophoretic gel surface in the slot. (C) Nanoparticles characterized by transmission electron microscope. (D) The diagram of SERS detection.
Supplementary Figure S2. Effect of stem length on DNA assembly behavior. (A) and (B) Native polyacrylamide gel electrophoresis analysis as control. (A) The hairpin monomers were analyzed, and no leakage products were produced in the gel loading well. (B) Stem lengths of 13 to 20 bp were tested in response to initiator. Hybridization products were blocked in the gel loading well. x represents the values 13, 15 and 17–20. I represents the initiator sequence.
Supplementary Figure S3. Effect of reversed stem length on DNA assembly behavior. (A) Evolution of the hairpin design. The reversed stem length was changed. bp represents the base pairs. (B) Native polyacrylamide gel electrophoresis analysis for the monomer of DNA hairpin. (C) Native polyacrylamide gel electrophoresis analysis. Normal hybridization products were blocked in the gel loading well. x represents the values 15-20, and l-b represents the initiator sequence. (D) SERS analysis for leakage in the gel loading well. The green band indicates the marker of adenine at approximately 732 cm\(^{-1}\). Spectra a-c correspond to lanes 1-3 in Figure 2D respectively, and d-i correspond to lanes 1-6 in Figure 2E respectively.
Supplementary Figure S4. Leakage of DNA hairpins based other sequences. (A), (B), (C) and (D) Native polyacrylamide gel electrophoresis analysis for leakage. Leakage products were blocked in the gel loading well. (A) The other DNA hairpins based on Dirks and Pierce’s original design were also evolved by changing stem length and toehold base composition. H1C-13 to H1C-18 had the same toehold. HC1-18A, HC1-16A, HC1-14A and HC1-13A had the same toehold. HC1-18B, HC1-16B, HC1-14B and HC1-13A had the same toehold. That leakage occurred in the stem lengths of 13 to 14 bp but not in the longer stem, and three toeholds did not show difference in leakage. (B) The other DNA Hairpin sequences based on miRNA were analyzed. (C) and (D) The DNA Hairpin sequences based on changed toehold were designed.
Supplementary Figure S5. Effect of free energy on DNA assembly behavior. (A) Native polyacrylamide gel electrophoresis assay. Sequences were modified in the stem region by mutation and substitution, and leakage occurred in sequences with higher free energy. Leakage products were blocked in the gel loading well. (B) The free energies of modified sequences. Leakage energies were marked in red. (C) and (D) SERS analysis for leakage in the gel loading well. The green band indicates the marker of adenine at approximately 732 cm$^{-1}$. (C) Spectra a-d correspond to lanes 6-9 in Figure 3B respectively. Spectra e-h correspond to lanes 3-4 and 6-9 in Figure 3C respectively. (D) Spectra a-c correspond to lanes 3-5 in panel A respectively.
Supplementary Figure S6. Leakage of hairpin sequences at different temperature. (A), (C) and (E) Native polyacrylamide gel electrophoresis analysis for leakage products at 25 °C. (B), (D) and (F) Comparison of free energy of sequences at different temperatures. The red value is the free energy of the leakage sequence. Leakage decreased accordingly as the temperature dropped.
Supplementary Figure S7. Linear fit of free energy versus length of the sequences at different temperature. All of them showed a good linear relationship between the free energy of the secondary structure sequence and its length. (A) Sequences from H1-7 to H1-20. (B) Sequences from H2-7 to H2-20. (C) Sequences from H1-10b to H2-20b. (D) Sequences from H2-10b to H2-20b. (E) Sequences derived from HR1. (F) Sequences derived from HR2.
Supplementary Figure S8. Effects of toehold and loop on DNA assembly behavior. (A) Native polyacrylamide gel electrophoresis analysis. Four hairpin species with 8-nt exposed toehold and 8-nt loop were investigated, and no significant leakage occurred. (B) Minimum free energy structures of DNA hairpins with extended loops. Loops of three hairpin species based on H1b-17, H1-18a-17b and H1-181a-17b were enlarged by inserting bases. The enlarged loops did not form additional secondary structures.
Supplementary Figure S9. Stability analysis of enlarged loops. (A) and (B) Native polyacrylamide gel electrophoresis assay for leakage with enlarged hairpin after incubation at 37 °C. No leakage products were blocked in the gel loading well. (A) For 24 h. Hx represents the hairpins H1b-17 and H2b-17. (B) For 48 h. Hy represents the hairpins H1-18a-17b and H2-18a-17b. Hz represents the hairpins H1-181a-17b and H2-181a-17b. (D)-(J) Native polyacrylamide gel electrophoresis assay for hybridization. T-01 or T-02 was incubated with corresponding hairpin. The red triangle indicated the consuming hairpins. The yellow-green triangle indicated the formed dimmers. (C) and (G) In the ratio of 3:2 for 2 h. (D) and (H) In the ratio of 3:2 for 12 h. (E) and (I) In the ratio of 2:3 for 2 h. (F) and (J) In the ratio of 2:3 for 12 h.
Supplementary Figure S10. Stability analysis of other enlarged loops. (A)-(F) Native polyacrylamide gel electrophoresis assay for hybridization. T-18a-01 or T-181a-01 was incubated with corresponding hairpin for 48 h. The consumption and products tended to occur in the systems of hairpins with longer loops. The red triangle indicated the consuming hairpins. The yellow-green triangle indicated the formed dimmers. (A) and (D) In the ratio of 3:2. (B) and (E) In the ratio of 2:3. (C) and (F) In the ratio of 3:2. (G) and (H) Molecular dynamics simulations for E18. The molecular conformation of the loop was shown in yellow. (G) Occasionally exposed state of the loop. (H) Restored state of the loop.
Supplementary Figure S11. Effects of DNA concentration and reaction condition on DNA assembly behavior. (A)-(F) Native polyacrylamide gel electrophoresis analysis for leakage. Three hairpin species were investigated without initiators in the reaction buffer at 37 °C, and no significant change in leakage. (A), (C) and (E) For 48 h. (B), (D) and (F) For 72 h. (G) and (H)
Native polyacrylamide gel electrophoresis assay showing the effect of ions on leakage. The symbol + represents the addition of extra salt concentration based on the reaction buffer. (G) Lanes 1–4 and 6-8: assembly efficiency for H1-18a-17b, H2-18a-17b and I-18a; Lanes 5 and 9: leakage evaluation for H1-18a-17b and H2-18a-17b. (H) Lanes 1–4 and 6-8: assembly efficiency for H1-181a-17b, H2-181a-17b and I-181a; Lanes 5 and 9: leakage evaluation for H1-181a-17b and H2-181a-17b.
Supplementary Figure S12. Effect of initiator on DNA assembly behavior. (A) SERS showed the hybridization products. The green band indicated the marker of adenine at approximately 732 cm$^{-1}$. Spectra a–d correspond to lanes 5–8 in Figure 6C respectively. (B)-(E) Native polyacrylamide gel electrophoresis assay for the hybridization products. The shortened initiators with a constant toehold length were incubated in the reaction buffer at 37 °C. The values from -2 to -9 represent the number of truncated nucleotides for initiators. The listed sequences are in Supplementary Table S8. (B) The hairpins are H1C-18 and H2C-18, and the initiators are from T-18-2 to T-18-8 respectively. They correspond to lanes 1–7 respectively. (C) The hairpins are H1-18a-17b and H2-18a-17b, and the initiators are from T-18a-3 to T-18a-8 respectively. They correspond to lanes 1–6 respectively. (D) The hairpins are H1d-20 and H2d-20, and the initiators are from T-20-3 to T-20-8. They correspond to lanes 1–6 respectively. (E) The hairpins are H1E-20 and H2E-20, and the initiators are from T-E20-4 to T-E20-9. They correspond to lanes 1–6 respectively.
Supplementary Figure S13. Isolation and characterization of exosomes. (A) Size distribution of exosomes analysed by dynamic light scattering. The size was distributed around approximately 100 nm. (B) SDS polyacrylamide gel electrophoresis assay for the proteins of urinary exosomes. Lane 1: protein molecular weight standard; Lane 2: proteins of urinary exosomes. The red triangle indicates an obvious band at approximately 60 kDa, which might include the exosome-specific external CD63 protein.
Supplementary Figure S14. Specific signal amplification of miRNA. (A) Hybridization products detected by using SERS. Unmarked is negative controls, including HR1-17C, HR2-17C, RNA and bank. The marker band of adenine around 732 cm$^{-1}$ appears. (B) The detection of hsa-miR-21-5p from nine patients. Lane 10: blank. (C) Native polyacrylamide gel electrophoresis assay for detection of highly similar miRNA. Lane1-4: H1-7b and H2-7b were used as signal amplifiers; lane5-8: H1-7c and H2-7c were used as signal amplifiers; lane9-12: H1-7e and H2-7e were used as signal amplifiers; and lane13-16: H1-7i and H2-7i were used as signal amplifiers. The target could trigger the hybridization reaction only in the corresponding design system. (D) SERS showed the hybridization products. The green band indicated the marker of adenine at approximately 732 cm$^{-1}$. Spectra of H1-7b+H2-7b+7b, H1-7c+H2-7c+7c, H1-7e+H2-7e+7e, H1-7i+H2-7i+7i correspond to lane 1, 6, 11 and 16 in panel C respectively.
Supplementary Table S1. Evolution of the hairpin based on Dirks and Pierce’s design

Name	Strand sequences (5’ to 3’)	Free energy of secondary structure (-kcal mol⁻¹)	Stem GC%	
		37 °C		25 °C
I	AGTCTAGGATTCGGCGTG**GTTAA**			
H1-20	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	23.27	28.72	50.00
H1-19	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	22.19	27.34	47.37
H1-18	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	21.81	26.76	55.56
H1-17	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	20.73	25.41	58.52
H1-15	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	17.99	22.16	60.00
H1-13	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	15.93	19.58	61.54
H1-11	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	13.01	16.15	63.64
H1-10	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	11.51	14.40	60.00
H1-9	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	10.43	13.03	66.67
H1-7	TTAACCACGCGCAATCTTAGACTATCAAAGTATAGTCTAGGATTCGGCGTG	8.53	10.66	85.71
H2-20	ATAGTCTAGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	23.68	28.93	50.00
H2-19	TAGTCTAGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	22.93	27.92	47.37
H2-18	AGTCTAGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	22.22	26.97	55.56
H2-17	GTCTAGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	21.33	26.10	58.82
H2-15	CTAGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	18.69	22.78	60.00
H2-13	AGGATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	16.34	19.80	61.54
H2-11	GATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	13.61	16.85	58.33
H2-10	ATTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	11.92	14.62	60.00
H2-9	TTCGGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	10.68	13.14	66.67
H2-7	CGCGTG**GTTAA**ACGCGCAATCTTAGACTATACTTTG	9.23	11.27	85.71

The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. The red value is the free energy of the leakage sequence. I is the initiator sequence.
The stem regions of DNA hairpins based on Dirks and Pierce's original design were reversed. The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. The red value is the free energy of the leakage sequence. I-b is the initiator sequence.

Name	Strand sequences (5’ to 3’)	Free energy of secondary structure (-kcal mol⁻¹)	Stem GC%	
		37°C	25°C	
I-b	GGTTAA	23.90	29.10	50.00
H1b-20	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	22.82	27.72	52.63
H1b-19	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	21.77	26.43	55.55
H1b-18	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	19.93	24.29	52.94
H1b-17	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	18.88	23.00	56.25
H1b-16	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	16.64	20.50	53.33
H1b-15	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	14.47	17.97	50.00
H1b-14	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	10.39	13.39	41.67
H1b-10	TTAACCTCAGATCTAAGCGGCACATCAAAGTATGTCGGCTTAGGATCTGA	7.71	10.13	40.00
H2b-20	ATGTGGCGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	24.23	29.44	50.00
H2b-19	TGGCGCGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	22.99	28.03	52.63
H2b-18	TGGCGCGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	22.29	27.25	55.56
H2b-17	TGGCGCGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	20.10	24.59	52.94
H2b-16	GCGGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	19.40	23.82	56.25
H2b-15	GCGGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	17.26	21.23	53.33
H2b-14	GCGGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	14.99	18.79	50.00
H2b-12	GCGGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	11.01	14.13	41.67
H2b-10	GCGGCTTAGGATCTGAAGTTAAATCAGATCTTAAGCGGCACATACTTTG	8.37	10.83	40.00
Supplementary Table S3. Evolution of the other hairpin based on Dirks and Pierce’s

Name	Strand sequences (5' to 3')	Free energy of secondary Structure at 37 °C (-kcal mol⁻¹)	Stem GC%
H1C-18	TAACAGAAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.70	38.89
H1C-18A	TAACAGAAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.50	38.89
H1C-18B	TAACAGAAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.30	38.89
H1C-16	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.60	43.75
H1C-16A	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.70	43.75
H1C-16B	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.30	43.75
H1C-15	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	16.25	46.67
H1C-14	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.60	43.75
H1C-14A	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.50	43.75
H1C-14B	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.30	38.89
H1C-13	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.41	42.86
H1C-13A	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	13.71	46.15
H1C-13B	ACAAGAAGCCAAACCAGAAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	13.61	46.15
H2C-18	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	18.98	38.89
H2C-18A	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.20	38.89
H12-18B	GAGAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	19.22	38.89
H2C-16	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.67	43.75
H2C-16A	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.62	43.75
H2C-16B	GAGAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	17.64	43.75
H2C-15	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	16.53	46.67
H2C-14	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	14.78	42.86
H2C-14A	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	14.73	42.86
H2C-14B	GAGAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	14.75	42.86
H2C-13	TCTCTCTGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	13.78	46.15
H2C-13A	GAGAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	13.73	46.15
H2C-13B	GAGAGAGGTGTGAGCTTCTGTGTAATCGAGTAGAAGAAAGCCAAACC	13.75	46.15

The other hairpin based on Dirks and Pierce’s were designed. The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. The red value is the free energy of the leakage sequence.
Supplementary Table S4. Evolution of the other DNA Hairpin sequences

Name	Strand sequences (5’ to 3’)	Free energy of secondary structure (kcal mol⁻¹)	Stem GC%	
		37 °C	25 °C	
hsa-miR-21-5p	UAGCUUAUCAGACUGAUUGUAAG			
HR1-17C	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	17.23	21.67	41.17
HR1-17T	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	16.47	20.91	35.29
HR1-16	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	15.39	19.53	37.50
HR1-15	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	15.01	18.94	40.00
HR1-14	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	13.93	17.59	42.86
HR1-13	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	11.69	15.10	38.46
HR1-12	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	10.01	13.10	33.33
HR1-11	TCAACA TCGTCTGATAAGCTCTCAAAATG TTAGCTCTATCGACTGA	9.01	11.83	36.36
HR2-17T	TATAGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	17.73	22.26	35.29
HR2-17C	TATAGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	18.68	23.51	41.18
HR2-16	TATAGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	16.98	21.25	37.50
HR2-15	AGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	16.27	20.30	40.00
HR2-14	AGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	15.38	19.43	42.86
HR2-13	AGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	13.24	16.85	38.46
HR2-12	AGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	11.71	14.35	33.33
HR2-11	AGCTTATCGACTGATGTGATCGTCTGATAAGCTTATACCTTTG	10.70	13.55	36.36
hsa-let-7a-5p	UAGGUAGGUAGGUUUGUAGUAG			
H1-7a-16	AACTAT ACACAACCCTACCTCACA AAAAGTTGAGGTAGTTGTTG	16.60	43.75	
H1-7a-15	AACTAT ACACAACCCTACCTCACA AAAAGTTGAGGTAGTTGTTG	15.55	46.67	
H1-7a-14	AACTAT ACACAACCCTACCTCACA AAAAGTTGAGGTAGTTGTTG	14.06	42.86	
H1-7a-13	AACTAT ACACAACCCTACCTCACA AAAAGTTGAGGTAGTTGTTG	12.97	46.15	
H2-7a-16	TGAGGTAGTTGTTGTTAGTTACACA CCTAATCTACCCAAGTTTTCCT	17.19	43.75	
H2-7a-15	TGAGGTAGTTGTTGTTAGTTACACA CCTAATCTACCCAAGTTTTCCT	16.49	46.67	
H2-7a-14	AGGTAGTTGTTGTTAGTTACACA CCTAATCTACCCAAGTTTTCCT	14.80	42.86	
H2-7a-13	AGGTAGTTGTTGTTAGTTACACA CCTAATCTACCCAAGTTTTCCT	13.91	46.15	
hsa-miR-18a-5p	TATCTG CACCTGACTGACCTCACA AAAAGTTGAGGTGCACTCAGTG	16.13	46.67	
H1-18a-15	TATCTG CACCTGACTGACCTCACA AAAAGTTGAGGTGCACTCAGTG	15.13	50.00	
H1-18a-14	TATCTG CACCTGACTGACCTCACA AAAAGTTGAGGTGCACTCAGTG	14.05	53.85	
H1-18a-13	TATCTG CACCTGACTGACCTCACA AAAAGTTGAGGTGCACTCAGTG	14.05	53.85	
H1-18a-12	**FATCTG** CACTAGATGCACCAAAGTGTGCATCTAGTG	12.21	50.0	
H2-18a-15	AAGGTCATCCTAGTGCAGATACACTAGATGCACCTTTACTTTG	16.34	46.67	
H2-18a-14	AGGGTCATCCTAGTGCAGATACACTAGATGCACCTACTTTG	15.34	50.0	
H2-18a-13	GGTGCATCTAGTGCAGATACACTAGATGCACCACTTTG	14.45	53.85	
H2-18a-12	GTCATCTAGTGCAGATACACTAGATGCACACTTTG	12.61	50.0	

hsa-miR-20a-5p	UAAAGUGCUUUAUAGUCAGGUAG		
H1-20a-17	**CTACCT** GCACTATAAACACTTTCACAAGTTAAAAGTCATTTATAGTC	16.63	35.29
H1-20a-15	**CTACCT** GCACTATAAACACTTTCACAAGTTAAAAGTCATTTATAGTC	15.25	40.0
H2-20a-17	AAAGTGCTTTAGTGGCAAGTTGAAGCATAATAGCCTTTTAC	17.08	35.29
H2-20a-15	AAGTGCCTTATAGTGGCAAGTTGAAGCATAATAGCCTTTTAC	15.37	40.0

hsa-miR-29a-3p	UAGCACAACUUGAAUAUCGGIUUA		
H1-29a-16	**AACGGA** TTTCAGATGTTGCTAAAACAAGTTTTAGCACCACATCTGAAA	16.24	37.5
H1-29a-15	**AACGGA** TTTCAGATGTTGCTAAAACAAGTTTTAGCACCACATCTGAAA	15.24	40.0
H2-29a-16	TTAGCACCATCGTAAAATCCTGGTTTTTCAGTAGTGGCTAAACTTTG	15.96	37.5
H2-29a-15	TAGCACCATCGTAAAATCCTGGTTTTTCAGTAGTGGCTAAACTTTG	15.45	40.0

hsa-miR-30a-5p	UGUAACAAUCCUCGACUGGAAG		
H1-30a-16	**CTTCCG** GTCGAGGATTTTACACAAAGTTTGGCACCACACTTCGAC	16.75	43.75
H1-30a-15	**CTTCCG** GTCGAGGATTTTACACAAAGTTTGGCACCACACTTCGAC	15.70	46.67
H2-30a-16	TGTAACATCTCGAACGGAAGGTGCGAGGATTTTACAACCTTTG	18.26	43.75
H2-30a-15	GTAACATCCATCGACTGGAAGGTCGAGGATTTTACAACCTTTG	17.56	46.67

hsa-miR-95-3p	UUCAACGGGUAUUUAUUGAGCA		
H1-95-16	**TGCTCA** ATAAATACCCCGTTGAACAAAGTTTTTCAACGGGATTTAT	15.16	31.25
H2-95-16	TTCAACCGGATTATTTTAGGCAATTTATAACCCCGTTGAAACCTTTG	16.97	31.25

hsa-miR-181a-5p	AACAUUAACACGCUUCGUGGUGUAG		
H1-181a-15	**ACTCAG** CGCACAGGTTTGGAATGCAAAAGTTTCTTACACGCTTGT	17.79	53.33
H1-181a-13	**ACTCAG** CGCACAGGTTTGGAATGCAAAAGTTTCTTACACGCTTGT	15.06	53.85
H2-181a-15	CATTCAAGCTGTCGTTGAGTGCAGACGCGTGGTAAATGACTTTG	18.41	53.33
H2-181a-13	TTTCAACGCTGTCGTTGAGTGCAGACGCGTGGTAAATGACTTTG	15.23	53.85

hsa-miR-302a-3p	UAAUGUCUUUCAUGUUUUUGUGA		
H1-302a-15	**TCACCA** AAAACATGGAAGCAAAAGTATATGCTTCCACTTTT	16.01	40.0
H1-302a-14	**TCACCA** AAAACATGGAAGCAAAAGTATATGCTTCCACTTTT	14.93	42.86
The other DNA Hairpin sequences based on miRNA were designed. The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. The red value is the free energy of the leakage sequence. miRNA sequences were from the database of miRTarBase: (http://mirtarbase.mbc.nctu.edu.tw/php/index.php)

	Sequence	Free Energy	Secondary Structure
H2-302a-15	AGTCTCCATTTTGGTAAACATGGAACTTACCTGTTC	17.38	ACTTTG
H2-302a-14	GTGCTCCCATTTTGGTAAACATGGAAAGCACACTTTG	16.49	ACTTTG
Supplementary Table S5. Evolution of the hairpin based on changed toehold

Name	Strand sequences (5’ to 3’)	Free energy of secondary Structure at 37 °C (-kcal mol⁻¹)	Stem GC%
I-18a	TAAGGTGCATCTAGTGCAGATAG		
H1-18a-18b	CTATCTGCACATAGTGCACCCTTagCATACGGTAAAGGTGCATCTAGTGC	20.68	50.0
H1-18a-17b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	18.74	47.06
H1-18a-15b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	17.16	53.33
H1-18a-14b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	16.38	57.14
H1-18a-13b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	14.54	53.85
H1-18a-12b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	12.6	50.0
H1-18a-11b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	11.65	54.55
H1-18a-10b	CTATCTGCACATAGTGCACCCTAGTCAGATAGGCAGTCATCTAGTGC	9.54	50.0
H2-18a-18b	GTAAAGGTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	20.38	50.0
H2-18a-17b	GTAAAGGTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	19.19	47.06
H2-18a-15b	AGTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	17.19	53.33
H2-18a-14b	GTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	16.08	57.14
H2-18a-13b	GTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	14.24	53.85
H2-18a-12b	GTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	12.47	50.0
H2-18a-11b	GTGCACATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	11.35	54.55
H2-18a-10b	CATCTAGTGCAGATAGGCCACTAGATGCACCCTACGCTGTC	9.03	50.0

I-181 | AACATTCAAGCCGTCTCGGTTGAGT | | |
H1-181-17b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	19.73	47.06
H1-181-15b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	17.69	53.33
H1-181-14b	ACTCACCGACAGCGTACTTGGCACTTGGCACTTGGCACTTGG	15.84	50.0
H1-181-13b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	14.96	53.85
H1-181-11b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	13.06	63.64
H1-181-10b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	11.21	60.0
H1-181-9b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	10.21	66.67
H1-181-8b	ACTCACCGACAGCGTTGGAATGCGCATACAACTTAGCTTGC	9.17	75.0
H2-181-17b	AACATTCAACCGCTCCTGGTTAATGTTTCCATACAACTTAGCTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGG	20.38	47.06
H2-181-15b	CATTCACCGCTCCTGGTTAATGTTTCCATACAACTTAGCTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGG	17.93	53.33
H2-181-14b	ATTCAACCGCTCCTGGTTAATGTTTCCATACAACTTAGCTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGG	16.49	50.0
H2-181-13b	TTCAACCGCTCCTGGTTAATGTTTCCATACAACTTAGCTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGGCACTTGG	15.12	53.85
The DNA Hairpin sequences based on changed toehold were designed. The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. The red value is the free energy of the leakage sequence. I-18a is the corresponding DNA sequence of hsa-miR-18a-5p. I-181a is the corresponding DNA sequence of hsa-miR-181a-5p.

Sequence	Underlined	Blue	Red	Green
H2-181a-11b	CAACGCTGTCG	GTGAGTCGACAGCGTTGTATGG	13.30	63.64
H2-181a-10b	AACGCTGTCG	GTGAGTCGACAGCGTTGTATGG	11.86	60.0
H2-181a-9b	ACGCTGTCG	GTGAGTCGACAGCGTTGTATGG	10.86	66.67
H2-181a-8b	CGCTGTCG	GTGAGTCGACAGCGTTGTATGG	9.41	75.0
Supplementary Table S6. Modified sequences in stem region by mutation and substitution

Name	Strand sequences (5’ to 3’)	Free energy of secondary Structure at 37 °C (-kcal mol⁻¹)
H1b-17	TTAACC TCAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	19.93
M-1	TTAACC TAAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	17.94
M-2	TTAACC TCAGATCTCAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	16.95
M-3	TTAACC TCAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	16.44
M-4	TTAACC TCAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	16.44
M-5	TTAACC TAAGATCTCAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	14.96
M-6	TTAACC TCAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	14.04
M-7	TTAACC TAAGATCTAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	14.45
M-8	TTAACC TCAGATCTCAAGCCGCAACAGGTTGCGGCTTTAGGATCTGA	13.46
H1-15	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	17.99
H1-15-1	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	16.71
H1-15-2	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	16.03
H1-15-3	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	15.32
H1-15-4	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	15.38
H1-15-5	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	16.32
H1-15-6	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	16.37
H1-15-7	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	15.88
H1-15-8	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	16.38
H1-15-9	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	13.93
H1-15-10	TTAACCCACGCGCAATTCTGGCAACAGGTTGCGGCTTTAGGATCTGA	13.62
H2-15	CTAGATCTCAGGCTTTGCGGCTTTAGGATCTGA	18.69
H2-15-1	TTAGGATCTGCGCGTGCGGCTTTAGGATCTGA	16.71
H2-15-2	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	16.73
H2-15-3	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	16.02
H2-15-4	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	16.08
H2-15-5	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	17.02
H2-15-6	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	17.07
H2-15-7	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	16.58
H2-15-8	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	17.08
H2-15-9	CTATTATGCGCTTTGCGGCTTTAGGATCTGA	14.38
The changed nucleotides were marked in red. The red value is the free energy of the leakage sequence.
Supplementary Table S7. DNA sequences used in effect of toehold and loop length on DNA assembly behaviour

Name	Strand sequences (5' to 3')	Free energy of secondary Structure at 37 °C (kcal mol⁻¹)
H1b-17-8T	TTAACCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.93
H2b-17-8T	ATGTGCAGGCTTAAGGACAGTTGAAGCTAGATCCTAAGGCCGCAATTTTCAAGGCATCTAGTGA	19.63
H1-17-8T	TTAACCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.93
H2-17-8T	ATGTCTAGGATTCGGGTGGGTATAAGCCGGAATCTAGCATAACTTTTCAAGGCATCTAGTGA	19.63
H1-18a-17b-8T	TCTATACTGCACCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
H2-18a-17b-8T	TTAACCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
HR1-17C-8T	CATACAACGTACGTCTGATAAGCTACCAAGGTCTCCGACTAGCTATACGAAGCTACACCAAGGTCTCCGACTAGCTATACGA	19.63
HR2-17C-8T	GTAGCGTTAATGACACTGATGTTAGTAAGCTACTCTAGATCTGA	19.63
H1b-17	TTAACCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.93
E1	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E3	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E5	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E7	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E9	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E13	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E15	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
E18	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
T-01	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
T-02	TCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
H1-18a-17b	CTACCTGAACCTAGATGACCTCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E1	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E3	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E5	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E7	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E9	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E12	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E15	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63
18a-E18	GCAGATCTCCTAAGGCCGAATACCGTTCGAAGCTAGATCCTAAGGCCGCAAAAGTTGCGGTATTAGGATCTGA	19.63

S29
The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold. Inserting bases were highlighted in red.
Supplementary Table S8. DNA sequences used in effect of initiator on HCR

Name	Strand sequences (5' to 3')
H1b-17	**TTAACC**TCAGATCCTAAGCCGCAAAAGTTGCGGCTTAGGATCTGGA**
H2b-17	**TGCGGCTTAGGATCTGAG**GGTFAAACAGATCTAAGCCGCAACTTTG
T-1	**TGCGGCTTAGGATCTGAGGTA**
T-2	**TGCGGCTTAGGATCTGAGGTT**
T-3	**TGCGGCTTAGGATCTGAGG**
T-4	**TGCGGCTTAGGATCTGAGGG**
T-5	**GTGCCGGCTTAGGATCTGAGGTTAA**
T-6	**GCGGCTTAGGATCTGAGGTTAA**
T-7	**GCGGCTTAGGATCTGAGGTTAA**
T-8	**GCGGCTTAGGATCTGAGGTTAA**
T-9	**GCGGCTTAGGATCTGAGGTTAA**
T-10	**GCGGCTTAGGATCTGAGGTTAA**
T-11	**GCGGCTTAGGATCTGAGGTTAA**
T-12	**GCGGCTTAGGATCTGAGGTTAA**
H1C-18	**TAACAAAGAAGCCAAACGAGATTTGGGCTTTGCTTTGTTTA**CCTGAT
H2C-18	**CATCTGCGTTTGGCTTTGCTTTGTTTAATCAGGTAACAAGAAGCCAAAC**
T-18-2	**ATCAGGTAACAAGAAGCCAAA**
T-18-3	**ATCAGGTAACAAAGAAGCCAAA**
T-18-4	**ATCAGGTAACAAGAAGCCAAA**
T-18-5	**ATCAGGTAACAAGAAGCCAAA**
T-18-6	**ATCAGGTAACAAAGAAGCCAAA**
T-18-7	**ATCAGGTAACAAGAAGCCAAA**
T-18-8	**ATCAGGTAACAAGAAGCCAAA**
H1-18a-17b	**CTATCTGCACTAGATGCACCTTAGATGCTAGTGCTTTTGAAGGTA**
H2-18a-17b	**TAAGGTCATCTAAGGCGACATAGATGACACTAGCATCCTTAGGTA**
T-18a-3	**GGTGCATCTAGTGCGATAC**
T-18a-4	**GTGCATCTAGTGCGTAG**
T-18a-5	**TGCAATCGAGTGCGATAC**
T-18a-6	**GCTACTATGCAGTAG**
T-18a-7	**CATACTATGCAGTAG**
T-18a-8	**ATCTAGTGCGATAC**

S31
The underlined bases at the end constituted the exposed toehold, and the blue ones at the middle constituted the sequestered toehold.
Supplementary Table S9. DNA Fairpin for detection of miRNA family

Name	Strand sequences (5' to 3')	Free energy of secondary structure at 37 °C (-kcal mol⁻¹)
hsa-let-7d-5p	AGAGGUAGGUUUGGUUGCAUAGUU	
H1-7d-0	AACTATGCAACCTACTACCTCTCAAAGTAGAGGTAGATTGTTGC	16.00
H2-7d-0	AGAGGTAGTTAGGTTGCTAAGGTTGCAACCTACTACCTCTAACCTTCA	21.69
H1-7d	AACTAT GCAACCTACTACCTCTCAAAGTAGAGGTAGATTGTTGC	19.60
H2-7d	GTTAGGTTAGGTTGCTAAGGTTGCAACCTACTACCTTCA ACTTTG	20.01
hsa-let-7b-5p	AGAGGUAGGUUGGUUGGUUU	
H1-7b-0	ACTTTGAAACACACAACCTACTTAGGTAATAGGTTGTTGGT	17.37
H2-7b-0	ACTTTGAAACACACAACCTACTACCTCAA ACTTTG	17.24
H1-7b	AGTAGGTTAGGTGGTTGCTGCAAACCTACTACCTCTGCAACCTACTACCTCA	21.69
H2-7b	ACTTTGAACACACAACCTACTACCTCAA ACTTTG	21.42
hsa-let-7a-5p	AGAGGUAGGUUGGUUGGUUU	
H1-7a-0	AACTATACAACCTACTACCTCA ACAAAGTTGAGGTAGATTGTTG	16.60
H2-7a-0	TGAAGTATAGTGTTGAGTCAACCCACTACTACCTCA ACTTTG	16.01
H1-7a	AACTATACAACCTACTACCTCA ACTTTG	21.02
H2-7a	GAGTAGGTTAGGTGGTTGCTAAGGTTGCAACCTACTACCTTCA ACTTTG	20.78
hsa-let-7c-5p	AGAGGUAGGUUGGUUGGUUU	
H1-7c-0	ATAGTAGGTTGTAATGTTCTCAAAGTTAACATACAACCTACTACCTCA	17.30
H2-7c-0	ACTTTGAAACACACAACCTACTACCTCAA ACTTTG	17.24
H1-7c	ATAGTAGGTTGTAATGTTCTCAAAGTTAACATACAACCTACTACCTCA	21.42
H2-7c	ACTTTG CAGTTAACCCATACACCTACTACCTGTAATGTTGATGTTGTTGC	22.02
hsa-let-7e-5p	AGAGGUAGGUUGGUUGGUUU	
H1-7e-0	AACTATACAACCTCTACTACCTCA ACAAAGTTGAGGTAGGGTGGT	15.56
H2-7e-0	AACTATACAACCTCTACTACCTCA ACAAAGTTGAGGTAGGGTGGT	15.50
H1-7e	AACTATACAACCTCTACTACCTCA ACCTCA ACCTCA AACTTCA	21.69
H2-7e	GCCAACTATAACAACCTCTTACCTGTAACACCTCTACCTCA GCCACTTTG	21.42
hsa-let-5p	AGAGGUAGGUUGGUUGGUUU	
H1-7i-0	ATAGTAGGTTGTTGCTGTCAAAGTTAACATACAACCTACTACCTCA	16.70
H2-7i-0	ACTTTGAACACACAACCTACTACCTGTAATGTTGCTGTTT	16.64
H1-7i	ATAGTAGGTTGTTGCTGTCAAAGTTAACACACAACACCACTACTACCTCA	20.59
H2-7i	ACTTTG CAGTTAACACACAACCTCTTCAGGTTGAGGTGGTGGTTG	20.32

The underlined bases at the middle were the loop as the sequestered toehold and those at the end constituted the exposed toehold. Added bases were highlighted in red.
References
1. Ivani, I., Dans, P. D., Noy, A., et al. (2016) Parmbsc1: a refined force field for DNA simulations. *Nature methods*, **13**, 55-58.
2. Pérez, A., Marchán. I., Svozil, D., et al. (2007) Refinement of the AMBER force-field for nucleic acid simulations: Improving the representation of a/c conformations. *Biophysical J*, **92**, 3817-3829.