An Eastward Current Encircling Mercury

Z. Shi1,2, Z. J. Rong1,2,3, S. Fatemi4, J. A. Slavin5, L. Klinger6, C. Dong7,8, L. Wang7,8, J. Zhong1,2,3, J. M. Raines6, M. Holmström1,2, C. J. Yuan1,2,3, S. Barabash9, and Y. Wei1,2,3

1Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, 2College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China, 3Hong Observatory of Geophysics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China, 4Department of Physics at Umeå University, Umeå, Sweden, 5Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA, 6Beijing International Center for Mathematical Research, Peking University, Beijing, China, 7Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ, USA, 8Department of Astrophysical Sciences, Princeton University, Princeton, NJ, USA, 9Swedish Institute of Space Physics, Kiruna, Sweden

Abstract
Mercury has a terrestrial-like magnetosphere which is usually taken as a scaled-down-version of Earth's magnetosphere with a similar current system. We examine Mercury's magnetospheric current system based on a survey of Mercury's magnetic field measured by the Mercury Surface, Space Environment, Geochemistry, and Ranging spacecraft as well as computer simulations. We show that there is no significant Earth-like ring current flowing westward around Mercury, instead, we find, for the first time, an eastward current (EC) encircling the planet near the night side. The EC is closed with the dayside magnetopause current and could be driven by the gradient of plasma pressure as a diamagnetic current. Thus, Mercury's magnetosphere is not a scaled-down Earth magnetosphere, but a unique natural space plasma laboratory. Our findings offer fresh insights to analyze data from the BepiColombo mission, which is expected to orbit Mercury in 2025.

Plain Language Summary
Whether Mercury possesses an Earth-like ring current has long been the focus of controversy in planetary science and space science. Here, based on the statistical analysis of the magnetic field measured by Mercury Surface, Space Environment, Geochemistry, and Ranging, we show that Mercury has no significant Earth-like ring current which flows westward around the planet, but we discover for the first time that there is an eastward current encircling the planet near the night side. Our discovery is verified by computer simulations and shows well-consistency with the observation signatures found in previous studies. Our discovery updates the knowledge of the current system of Mercury's magnetosphere and demonstrates that the Mercury's magnetosphere cannot be simply seen as a scaled-down-version of Earth's magnetosphere.

1. Introduction
Early exploration of Mercury, based on data collected by Mariner 10 during its three flybys, revealed that it was the only terrestrial planet in our solar system, other than Earth, to possess a global dipolar magnetic field (Ness et al., 1974). A subsequent mission known as MErcury Surface, Space Environment, GEochemistry, and Ranging (MESSENGER), sent the first spacecraft to orbit around Mercury (Solomon et al., 2007). It confirmed the dipolar field and found it was similar to Earth's in that the magnetic field lines of Mercury are divergent near the south pole and convergent toward the north pole; Mercury's dipole moment, however, is only about 195 ± 10 nT R\textsubscript{M}3 (R\textsubscript{M} = 2,440 km is the radius of Mercury)—much weaker than Earth's (4/10000 of Earth's dipole moment)—and Mercury's dipole center is shifted northward by about 484 ± 11 km (0.2 R\textsubscript{M}) (Anderson, Johnson et al., 2011). Further, Mercury has no atmosphere but possesses a tenuous surface-bounded exosphere. As the closest planet to the Sun, Mercury encounters a much stronger impingement of solar wind, whose density and dynamic pressure are an order of magnitude higher than those at Earth. In comparison to Earth, the result is a much smaller, weaker and more dynamic magnetosphere (Dong et al., 2019; Slavin et al., 2008; Winslow et al., 2013).

It is well-known that Earth's magnetic field can be well-approximated by a dipole field within a radial distance of about six Earth radii. Energetic charged particles (ions ranging in energy from 1 to 200 keV, and electrons of <10 keV) can be trapped by this dipole field, and drift azimuthally around Earth due to the magnetic field's gradient and curvature (Northrop, 1963). This drift results in a westward ring current providing a reservoir of...
energetic particles that can damage or “kill” Earth satellites and induce field disturbances in the planet's space environment (Daglis, 2006).

It has been debated whether Mercury could have a similar ensemble of trapped charged particles that, analogous to the Earth's ring current, drift as a westward current around the planet because the weaker dipolar field of Mercury cannot trap ions in the energy range typical of Earth's ring current owing to the larger gyro–radius (Walsh et al., 2013). However, simulations and observations have demonstrated that plasma at the energy range of 1–10 keV could be quasi-trapped in Mercury's inner magnetosphere of Mercury (Herčík et al., 2016; Ho et al., 2016; Müller et al., 2012; Schriver et al., 2011; Walsh et al., 2013; Yagi et al., 2010). Nonetheless, we still lack sufficient data to know whether these quasi-trapped particles can drift around Mercury to form a significant ring current, and otherwise what associated current system would be driven in Mercury's magnetosphere.

Here, based on a statistical analysis of MESSENGER data, we report that there is no significant westward ring current around Mercury, instead, we find an EC on the near-Mercury night side.

2. Materials and Methods

2.1. Coordinate System

In the Mercury Solar Orbital (MSO) coordinate system, the origin is at the planet center, +x points sunward, +z points to the north pole, and +y completes the right-hand coordinate system. In our study, both datasets of magnetic field and locations of spacecraft in MSO have to be transformed into a modified coordinate system which is referred to as aberrated Mercury Solar Magnetospheric (aMSM) coordinates. In aMSM, the origin is at the dipole center, which is shifted northward from the planet center by 0.198 R\(_M\) (484 km). The direction of the +x-axis is antiparallel to the flow direction of the upstream solar wind, the +z-axis points to the North Pole, and the +y-axis completes the right-hand coordinate system. The plane of z = 0 in aMSM is referred to as the magnetic equatorial plane. The aberration effect brought by Mercury's orbital motion has been considered in aMSM, where the upstream solar wind flow velocity is assumed to be a typical radial speed, 400 km/s, plus the transverse velocity of Mercury's orbital motion, \(v\), which is roughly estimated by \(v = \frac{R_{MS}^2}{GM_S} \times \frac{\Omega_{Planet}}{\Omega_{Sun}}\), where \(R_{MS}\) is the distance of Mercury to the Sun, \(m_P\) is the mass of Mercury, \(M_S\) is the mass of the Sun, and \(G\) is the gravitational constant. In the frame of aMSM, it is convenient to define a spherical coordinate system, where the azimuthal coordinate or longitude \(\phi\) (0 \(\leq\ \phi \leq\ 360^\circ\)) increases azimuthally from the +x-axis toward the +y-axis, while the polar angle \(\theta\) (0 \(\leq\ \theta \leq\ 180^\circ\)) increases from the +z-axis toward the -z-axis. The latitude equals 90°–\(\theta\). In our study, the aMSM coordinates and the associated spherical coordinates are used unless otherwise stated.

2.2. Data Usage

The magnetic field vector data (where time resolution is 1 s) used in this study is taken from measurements made by the magnetometer (MAG, Anderson et al., 2007) onboard the MESSENGER spacecraft. The plasma data set, with a time resolution of 1 min, consists of proton number density, temperature, and thermal pressure (NTP, Gershman et al., 2013; Sun et al., 2016; Zurbuchen et al., 2011), derived from measurements recorded by the Fast Imaging Plasma Spectrometer (FIPS, Andrews et al., 2007) onboard MESSENGER (see Figure S1 in Supporting Information S1). The FIPS NTP data set is recovered from a series of isotropic, stationary Maxwel- lian distributions corresponding to the E/q spectra that matched the orbital observations (Gershman et al., 2013; Sun et al., 2016; Zurbuchen et al., 2011). Data points of the FIPS NTP data set were used when their quality was GOOD (i.e., their quality flag was zero). In our study, all distribution maps of datasets displayed were derived by averaging with bins of 0.1 \(\times\) 0.1 \(\times\) 0.1 R\(_M\)^3.

2.3. Calculation of Current Density

Owing to limitations of the FIPS field of view, plasma moments, such as density (\(N\)) and velocity (\(V\)), are hard to derive unless reasonable assumptions of ion spectra are made (Raines et al., 2011). Thus, it is challenging to calculate the accurate current density directly from ion moments. Given the magnetic field derived from data amassed by MESSENGER during the orbiting period (23 March 2011–30 April 2015, see Figure S2 in
Supporting Information S1), we can make important headway in characterizing the current density morphology simply by taking the curl of the statistically determined magnetic field, viz., $J = (\nabla \times B)/\mu_0$. This method of calculating average current density by taking the curl of the magnetic field has been used to study the morphology of Earth’s ring current (Le et al., 2004) and the cross-tail current in Mercury’s magnetotail (Rong et al., 2018). In our calculation, the spatial domain of the inner magnetosphere, centered at the origin of aMSM, is set as $X \times Y \times Z = 6 R_M \times 6 R_M \times 6 R_M$. The spatial domain is partitioned by bins of $0.1 \times 0.1 \times 0.1 R_M$. In each bin, the magnetic field is calculated by averaging all data points in the bin, and the position of the average bin field is set at the center of the bin. Based on $J = (\nabla \times B)/\mu_0$, the three current density components are calculated by $(J_x, J_y, J_z) = \left(\frac{\partial B_y}{\partial z} - \frac{\partial B_z}{\partial y}, \frac{\partial B_z}{\partial x} - \frac{\partial B_x}{\partial z}, \frac{\partial B_x}{\partial y} - \frac{\partial B_y}{\partial x} \right)/\mu_0$. Differences are approximately derived through central difference; forward difference and backward difference are used at boundaries. The azimuth component of the current density J_ϕ is correspondingly calculated as $J_\phi = -J_x \sin \phi + J_y \cos \phi$, where ϕ is the azimuth angle. Since the dipole field makes no contribution here, one may subtract it to calculate the current density. We found, indeed, that when the dipole field is subtracted the resulting current density map shows little change (not shown here). Note, due to the insufficient orbital coverage nearby Mercury, we did not categorize the data set according to a given criterion, for example, the polarity of the interplanetary magnetic field (IMF) B_z component.

2.4. Simulation

To simulate the interaction between the solar wind and Mercury, we use the Amitis simulation code, the first three-dimensional (in both configuration and phase space), time-dependent hybrid plasma model that runs entirely on Graphics Processing Units (GPUs, Fatemi et al., 2017, 2020; Fatemi, Poirier, et al., 2018; Fatemi & Poppe, 2018 and Fuqua Haviland et al., 2019). In this model, the ions are charged macro-particles and the electrons are a massless charge neutralizing fluid. The Lorentz force and the equation of motion are used to calculate particle trajectories in time. The electric field, E, is calculated directly from the electron momentum equation. Faraday’s law, $\frac{\partial B_z}{\partial t} = -\nabla \times E$, is used to advance the magnetic field B in time. The model has been applied successfully to studies of interactions between the solar wind plasma and the Moon (Fatemi et al., 2017; Fuqua Haviland et al., 2019; Rasca et al., 2021), Mercury (Aizawa et al., 2021; Fatemi et al., 2020), and the asteroid 16 Psyche (Fatemi & Poppe, 2018). In our simulations, Mercury is assumed to be a spherical object of radius $R_M = 2.440 \text{ km}$ with no exosphere and a surface that is a perfect plasma absorber. The planet center coincides with the origin of the coordinates, and a magnetic dipole (oriented along the z-axis) with the dipole moment of 195 nT·R_M^3 is displaced 484 km northward from the planet center. The solar wind, whose composition is assumed to be protons only, flows toward the $-x$ axis.

3. Results

3.1. The Distribution of Current Density

The calculated current density from the MAG data in the magnetic equatorial plane of Mercury shows a pattern similar to that of Earth’s magnetospheric current system (Figure 1a). One can identify the magnetopause current or Chapman–Ferraro current, J_{CP}, flowing eastward at the dayside magnetopause, and the cross-tail current, J_{CT}, flowing duskward on the night side beyond the radial distance 1.4 R_M. The Chapman–Ferraro current and cross-tail current have also been reproduced and reported in previous simulations (Glassmeier, 2000) and data analysis (Rong et al., 2018). However, in contrast to the Earth’s ring current derived by taking the curl of Earth’s statistically determined magnetic field (Le et al., 2004), we do not find a significant westward ring current around Mercury. Unexpectedly, we noticed the presence of an eastern-directed current on Mercury’s night side, with radial distance $\sim 1.2–1.4 R_M$.

3.2. Characteristics of Mercury’s Eastward Current

It is informative to analyze the global distribution map of the EC on which the streamlines of the average current density within the distance 1.2–1.4 R_M are displayed on the spherical surface (Figure 1b). It is worth noting that the EC on the night side (red streamlines with 18:00 < LT < 06:00) is distributed mainly around the magnetic equatorial plane and closes with the dayside Chapman–Ferraro current. The EC (10 ~ 40 nA m$^{-2}$) is weaker on average than the dayside Chapman–Ferraro current (>60 nA m$^{-2}$).
3.3. Simulation Results

To analyze the validity of the EC we have detected, we use Amitis, a three-dimensional global hybrid model (consisting of kinetic ions and fluid electrons, Fatemi et al., 2017) to study the interaction of Mercury with the solar wind (see Subsection 2.4). The current density, \mathbf{J}, that the simulation yields is calculated by

$$\mathbf{A} = \nabla \times \mathbf{B}/\mu_0$$

We performed our simulations under three typical solar-wind conditions: when the IMF points northward, southward, and when the dynamic pressure of the solar wind becomes higher, respectively (Figure 2 and Table 1). Consistent with data analysis (Figure 1), the morphology and strength of the observed EC can be reproduced by our simulations, no matter whether the IMF points northward or southward; as is shown in Figure 2, the simulated EC does indeed concentrate around the magnetic equatorial plane. We find that the simulated EC near midnight is closer to the surface of Mercury but moves to higher altitudes near the terminator to close with the magnetopause current (Figures 2a, 2d and 2g), this appears consistent with the typical trajectory of hot ions in the Alfvén layer of inner magnetosphere combining the sunward magnetospheric convection and westward magnetic drift (Alfvén & Fälthammar, 1963). Comparing both simulation cases, the EC appears more significant when the IMF is northward. The associated spatial distribution of plasma is crescent-shaped, and the ion density seems denser in the northward IMF (Figures 2c, 2f and 2i). The simulations also show that the EC would be stronger when the solar wind has higher dynamic pressure (Figures 2g and 2h), however, an EC is always detectable regardless of the IMF orientation (Figure 2, Figure S3 and Table S1 in Supporting Information S1).
4. Discussion

4.1. Mechanism of the Eastward Current

An eastward ring current in Earth’s magnetosphere has been reported by numerous observational studies and simulations (Shen et al., 2014; Yang et al., 2016), which could be driven by a plasma pressure peak circumscribed by the inner magnetosphere (Liemohn et al., 2013). Such plasma peak was formed by hot ions trapped on closed drift paths around Earth because of magnetic gradient-curvature drifting (Liemohn et al., 2013). Similarly, it might be reasonable to ascribe the formation of EC nearby Mercury to a plasma pressure peak encircling the planet. Because the magnetic field, \mathbf{B}, in Mercury’s magnetic equatorial plane is northward, and the plasma pressure gradient near the planet’s surface, ∇P, is radially outward-pointing to the pressure peak.
The dayside Chapman–Ferraro current (see Figure 1b), which coincides with the location of the significant EC that we have found (Figure 1a). Meanwhile, the location of the inner boundary of simulated plasma density on the night side is nearly coincident with that of EC (see Figure 2).

Second, numerous simulations have demonstrated that a plasma belt could appear on the nightside near Mercury (Müller et al., 2012; Walsh et al., 2013), and data analysis also has shown that a plasma population of energy 1–10 keV can be trapped on the night side with distance ~1.4 Rₘ (Ho et al., 2016; Schriver et al., 2011).

Third, the magnetic fields recorded by MESSENGER during its first and second flybys consistently imply the presence of a plasma belt (Figure S4 in Supporting Information S1). In the first flyby, MESSENGER recorded two magnetic field depressions, at midnight and near the terminator respectively (Figure S4b in Supporting Information S1). Note that the estimated currents of these diamagnetic decreases near the terminator were roughly 244 nA m⁻² (186 nA m⁻²) for the first (second) flyby, much larger than estimated by the curl of the average magnetic field (Figure 1). In other words, our curl-technique may underestimate the EC, because the average of the data in the bin would smooth the field spatial variation leading to the underestimate of \(\nabla \times B \).

Using the FTPS NTP data set (Figure S1 in Supporting Information S1), we have evaluated and compared the different ion drift motions contributing to the EC (Text S1 and S2 in Supporting Information S1). Our calculations demonstrate that the EC is due primarily to the diamagnetic current (Text S1, S2, and Figure S5 in Supporting Information S1) and further indicate that the main factor controlling the EC could be the plasma density gradient if the ions and electrons are at the same temperature (Text S2, and Figure S6 in Supporting Information S1).

Beyond the simulation results, following other points relevant to understanding the formation of an EC are worth noting.

4.2. Plasma Sources

In both our simulations and previous simulations (Müller et al., 2012), the only ion source considered has been the solar wind protons. However, in reality, one may not rule out the possible contribution of planetary ions to the EC. Slavin et al. (2008) have suggested that the diamagnetic decrease of the magnetic field near the dawn side could be induced by hot planetary ions. Those ions are generated by photon-ionization and enter inside the dayside magnetopause after being picked up and accelerated by the fast solar wind in the magnetosheath. On the night side, the impact ionization of the exosphere by hot electrons from the plasma sheet may create planetary ions near the surface, which may contribute to the plasma pressure peak. Note that, the ions of Na⁺ group in the magnetosphere, though of planetary origin,

(Korth et al., 2012, 2014), the locally generated diamagnetic current, \(J = (B \times \nabla P)/B^2 \), points eastward (Parker, 1957) (Figure 3). Several types of evidence support this picture.

First, the plasma pressure observed by MESSENGER (Raines et al., 2011, 2013) shows a sharp inner boundary near the dawn terminator (Figure 1c), which coincides with the location of the significant EC that we have found (Figure 1a). Meanwhile, the location of the inner boundary of simulated plasma density on the night side is nearly coincident with that of EC (see Figure 2).

Table 1

Case	IMF \(B_z \) (nT)	IMF \(B_z \) (nT)	\(P_{\text{dyn}} \) (nPa)	\(V_z \) (km/s)	\(N_p \) (#/cm³)	\(\beta \)	\(V_{cz} \) (km/s)
1	+17.55	0	6.82	−370	30	0.9	62.29
2	+17.55	0	6.82	−370	30	0.9	62.29
3	+17.55	0	17.93	−600	30	0.9	62.29

Note. IMF \(B_x \), IMF \(B_z \), and IMF \(B_y \) are the three components of the IMF along the x-axis, y-axis, and z-axis respectively; \(P_{\text{dyn}} \) is the dynamic pressure of the upstream solar wind; \(V_z \) is the flow speed of the solar wind along the x-axis; \(N_p \) is the number density of protons in the solar wind; \(\beta \) is the plasma Beta which is the ratio of plasma pressure to magnetic pressure; \(V_{cz} \) is the speed of sound in the solar wind.

Figure 3. The mechanism of eastward current and the magnetospheric current system of Mercury. (a) Diagram to illustrate the formation of the EC in the magnetic equatorial plane. The night side plasma pressure is yellow-shaded. The direction of the magnetic field (\(B \), green-circled dots) points northward. The dayside Chapman–Ferraro current (\(J_{\text{CF}} \)), magnetotail cross-tail current (\(J_{\text{CT}} \)), and night side eastward current (\(J_{\text{EC}} \)) are denoted as green, blue, and brick-red lines with arrows, respectively. (b) The zoomed-in diagram shows the generation of the EC at midnight. The directions of the plasma pressure gradient (\(\nabla P \)) near Mercury are outward, denoted as red arrows. The gyrations of protons are denoted by blue circles with arrows. (c) Diagram of the magnetospheric current system of Mercury. The current pattern consists of the magnetopause current or Chapman–Ferraro current (\(J_{\text{CF}} \)), the cross-tail current (\(J_{\text{C}} \)) in the magnetotail current sheet, and the eastward current (\(J_{\text{EC}} \)) that we have found.

Geophysical Research Letters

10.1029/2022GL098415
have been observed preferentially in the dusk-side of the magnetotail (Raines et al., 2013); thus, the ion of Na\(^{+}\) group probably does not contribute significantly to the creation of the EC on the dawn-side.

4.3. Dependence on the Polarity of IMF Bz

The simulation by Herčík et al. (2016) suggested that the major source of the plasma peak is the solar wind ions coming from the current sheet, entering the inner magnetosphere by the magnetospheric flanks. Our simulation shows that solar wind can enter the plasma sheet through both flanks (Figure S7 in Supporting Information S1), and the presence of the EC is more significant when the upstream IMF is northward (Figure 2). Thus, it seems that a northward IMF favors the entry of solar wind into Mercury's magnetosphere, which is very similar to the case of Earth where solar wind easily enters Earth's magnetosphere via both flanks when the IMF is northward, resulting in the Cold-Dense Plasma Sheet (Fujimoto et al., 1997). Note that the estimated EC for the first flyby of MESSENGER, at the time of a northward IMF, is larger than that for the second flyby, under a southward IMF condition (Figure S4 in Supporting Information S1). Several mechanisms have been presented to account for the entry of solar wind into Earth's magnetosphere under a northward IMF, such as diffusion of the solar wind across both flanks (Terasawa et al., 1997), the capture of the solar wind by Kelvin-Helmholtz instability (Hasegawa et al., 2004), and poleward-of-cusp reconnection (Song & Russell, 1992). Given the presence of an EC regardless of IMF orientation, and the preference of Kelvin-Helmholtz instability at the dusk flank of Mercury's magnetosphere (Paral & Rankin, 2013; Sundberg et al., 2012), we suggest that the diffusion of solar wind across both flanks is the main source of EC, a diffusion that becomes more significant when the IMF is northward. Additionally, since the more stretched magnetospheric field lines under a southward IMF do not favor the trapping of plasma, this could perhaps explain also the less significant EC during southward IMF. Some simulations suggested that the solar wind ions could enter through the diffusion in the cusps and move westward owing to magnetic drift and eventually hit the surface in the nightside (Mura et al., 2005; Kallio et al., 2008). It is unknown whether the solar wind ions from cusp could contribute to the formation for EC. More works are needed to address this issue.

4.4. Dawn–Dusk Asymmetry

Our statistics in Figure 1 show that the EC is stronger on the dawn side (~40 nA m\(^{-2}\) in local time 03:00–07:00) relative to that on the dusk side (~20 nA m\(^{-2}\) in local time 18:00–20:00). There are two possible explanations of this dawn-dusk asymmetry: First, it could be merely a misleading consequence of incomplete coverage by the spacecraft near the nightside surface. Because most orbits crossing the dawn (dusk) side of the EC occurred near aphelion (perihelion) (Figure S8 in Supporting Information S1), the bias of heliocentric distance may result in apparent asymmetry. Second, the asymmetry is a real pattern of the EC. Similar dawn-dusk asymmetries in plasma pressure and density have been noticed in previous simulations (Müller et al., 2012) and calculations (Yagi et al., 2010), and in observations of quasi-trapped ions (Schriver et al., 2011) and suprathermal electrons (Ho et al., 2016). The future survey of BepiColombo with wider orbital coverage in the inner magnetosphere could clarify this issue.

4.5. The Formation of Plasma Pressure Peak

The reason to generate the formation of plasma pressure peak is an open issue. The injected solar wind protons from both tail flanks, would be moved under the sunward convection and the westward magnetic-drift motion. The gyroradius loss of protons due to crossing the dayside magnetopause or impacting with Mercury's surface on the night side could contribute to the formation of the pressure peak. For example, in our simulations, the empty of EC at low altitude on the dawnside (see Figures 2a and 2b) appears consistent with some of the sunward flow (or ExB drift paths) intersecting the surface of Mercury on the nightside. The loss of solar wind protons into the planetary surface on the night side may contribute to creating the outward plasma pressure gradient that drives EC.
4.6. The Scenario of EC Generation

Based on the analysis above, we may present a scenario to elucidate the generation of the EC. Regardless of the IMF orientation, the interaction between Mercury and the solar wind allows entry of solar wind particles into Mercury’s plasma sheet via plasma diffusion through both flanks; but entry by diffusion becomes more significant when the IMF is northward. Once solar wind ions enter Mercury’s magnetosphere and are trapped by the magnetospheric field lines, the motion of ions would be regulated simultaneously by sunward magnetospheric convection and westward magnetic gradient-curvature drift motion. In this case, the entering solar wind ions would drift both sunward and westward. Owing to the gyroradius loss of entered solar wind ions, a plasma belt with the dawn-dusk asymmetry thus forms gradually in the inner magnetosphere, generating an outward gradient of plasma pressure within a downstream radial distance of 1.2–1.4 R\(_M\). The presence of this outward plasma pressure drives an EC encircling the planet on the night side and closing the Chapman–Ferraro current on the dayside.

5. Conclusion

Both data analysis and simulations in our study consistently demonstrate that there is no significant Earth-like ring current drifting westward around Mercury but reveal that there is an encircling EC on the night side. The discovery of the EC extends our knowledge of Mercury’s magnetospheric current system (Figure 3c) and shows that Mercury’s small magnetosphere should not be treated simply as a scaled-down version of Earth's magnetosphere. On the contrary, it may well be a unique natural laboratory for space plasma exploration. Our discovery of EC also offers a new source of the external field which could be important in regulating the interior dynamo processes, because it was theoretically anticipated that the field by external magnetospheric current could affect the dynamo (Glassmeier et al., 2007; Heyner et al., 2011). In addition, our study may have important implications for studying the magnetospheres of exoplanets. One good example is the TRAPPIST-1 system (Dong et al., 2017, 2018), with its seven Earth-sized exoplanets, in which, those close-in exoplanets are expected to be tidally locked to their star and thus may have weak intrinsic magnetic fields like Mercury. The upcoming data from the BepiColombo mission, with its dual spacecraft carrying state-of-art instruments, could help uncover the formation and evolution of EC more deeply (Benkhoff et al., 2021; Milillo et al., 2020).

Conflict of Interest

The authors declare no conflicts of interest relevant to this study.

Data Availability Statement

The Magnetometer data is available at https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/MESS-E_V_H_SW-MAG-3-CDR-CALIBRATED-V1.0/DATA/MSO. The NTP (proton number density, temperature, and thermal pressure) data set from the Fast Imaging Plasma Spectrometer is available at https://pds-ppi.igpp.ucla.edu/search/view/?f=yes&id=pds://PPI/mess-epps-fips-derived/data/ntp.

References

Aizawa, S., Griton, L. S., Fatemi, S., Exner, W., Deca, J., Pantellini, F., et al. (2021). Cross-comparison of global simulation models applied to Mercury’s dayside magnetosphere. Planetary and Space Science, 198, 105176. https://doi.org/10.1016/j.pss.2021.105176
Anderson, B. J., Auciúna, M. H., Lobra, D. A., Scheifele, J., Raval, A., Korth, H., & Slavin, J. A. (2007). The magnetometer instrument on MESSENGER. In The MESSENGER mission to Mercury (pp. 417–450). Springer.
Anderson, B. J., Johnson, C. L., Korth, H., Purucker, M. E., Winslow, R. M., Slavin, J. A., et al. (2011). The global magnetic field of Mercury from MESSENGER orbital observations. Science, 333(6051), 1859–1862. https://doi.org/10.1126/science.1211001
Anderson, B. J., Slavin, J. A., Korth, H., Boardens, S. A., Zurbuchen, T. H., Raines, J. M., & Solomon, S. C. (2011). The dayside magnetospheric boundary layer at Mercury. Planetary and Space Science, 59(15), 2037–2050.
Andrews, G. B., Zurbuchen, T. H., Maik, B. H., Malcom, H. Fisk, L. A., Gloeckler, G., et al. (2007). The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft. Space Science Reviews, 131(1), 523–556. https://doi.org/10.1007/s11214-007-9724-0
Benkhoff, J., Murakami, G., Baumjohann, W., Bess, S., Bunce, E., Casale, M., et al. (2021). BepiColombo-Mission overview and science goals. Space Science Reviews, 217(8), 1–56. https://doi.org/10.1007/s11214-021-00861-4
Doglas, I. A. (2006). Ring current dynamics. Space Science Reviews, 124(1), 183–202. https://doi.org/10.1007/s11214-007-9653-7_13
Dong, C., Jin, M., Lingam, M., Aarupetian, V. S., Ma, Y., & van der Holst, B. (2018). Atmospheric escape from the TRAPPIST-1 planets and implications for habitability. Proceedings of the National Academy of Sciences, 115(2), 260–265. https://doi.org/10.1073/pnas.1708010115
Slavin, J. A., Acuña, M. H., Anderson, B. J., Baker, D. N., Benna, M., Gloeckler, G., et al. (2008). Mercury's magnetosphere after MESSENGER's first flyby. *Science, 321*(5885), 85–89. https://doi.org/10.1126/science.1159040

Solomon, S. C., McNutt, R. L., Gold, R. E., & Domingue, D. L. (2007). MESSENGER mission overview. *Space Science Reviews, 131*(1), 3–39. https://doi.org/10.1007/s11214-007-9113-0

Song, P., & Russell, C. T. (1992). Model of the formation of the low-latitude boundary layer for strongly northward interplanetary magnetic field. *Journal of Geophysical Research, 97*(A2), 1411–1420. https://doi.org/10.1029/91ja023177

Sundberg, T., Boarden, S. A., Slavin, J. A., Anderson, B. J., Korth, H., Zurbuchen, T. H., et al. (2012). MESSENGER orbital observations of large-amplitude Kelvin-Helmholtz waves at Mercury's magnetopause. *Journal of Geophysical Research, 117*(A4). https://doi.org/10.1029/2011ja017268

Sun, W. J., Fu, S. Y., Slavin, J. A., Raines, J. M., Zong, Q. G., Poh, G. K., & Zurbuchen, T. H. (2016). Spatial distribution of Mercury's flux ropes and reconnection fronts: MESSENGER observations. *Journal of Geophysical Research: Space Physics, 121*(8), 7590–7607. https://doi.org/10.1002/2016ja022787

Terasawa, T., Fujimoto, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T., et al. (1997). Solar wind control of density and temperature in the near-earth plasma sheet: WIND/GEOTAIL collaboration. *Geophysical Research Letters, 24*(8), 935–938. https://doi.org/10.1029/96gl04018

Walsh, B. M., Ryou, A. S., Sibeck, D. G., & Alexeev, I. I. (2013). Energetic particle dynamics in Mercury's magnetosphere. *Journal of Geophysical Research: Space Physics, 118*(5), 1992–1999. https://doi.org/10.1002/jgra.50266

Winslow, R. M., Anderson, B. J., Johnson, C. L., Slavin, J. A., Korth, H., Purucker, M. E., et al. (2013). Mercury's magnetopause and bow shock from MESSENGER Magnetometer observations. *Journal of Geophysical Research: Space Physics, 118*(5), 2213–2227. https://doi.org/10.1002/jgra.50237

Yagi, M., Seki, K., Matsumoto, Y., Delcourt, D. C., & Leblanc, F. (2010). Formation of a sodium ring in Mercury's magnetosphere. *Journal of Geophysical Research, 115*(A10). https://doi.org/10.1029/2009ja015226

Yang, Y. Y., Shen, C., Dunlop, M., Rong, Z. J., Li, X., Angelopoulos, V., et al. (2016). Storm time current distribution in the inner equatorial magnetosphere: THEMIS observations. *Journal of Geophysical Research: Space Physics, 121*(6), 5250–5259. https://doi.org/10.1002/2015ja022145

Zhong, J., Wan, W. X., Slavin, J. A., Wei, Y., Liu, R. L., Chai, L. H., et al. (2015). Mercury's three-dimensional asymmetric magnetopause. *Journal of Geophysical Research: Space Physics, 120*(9), 7658–7671. https://doi.org/10.1002/2015ja021425

Zurbuchen, T. H., Raines, J. M., Slavin, J. A., Gershman, D. J., Gilbert, J. A., Gloeckler, G., et al. (2011). MESSENGER observations of the spatial distribution of planetary ions near Mercury. *Science, 333*(6051), 1862–1865. https://doi.org/10.1126/science.1211302

Reference From the Supporting Information

Parks, G. K. (2004). *Physics of space plasmas: An introduction*. Westview Press.