Modifying effect of metabotype on diet–diabetes associations

Anna Riedl1,2,3 · Nina Wawro1,2,3 · Christian Gieger3,4,5 · Christa Meisinger1,2,3,4 · Annette Peters3,4 · Wolfgang Rathmann3,6 · Wolfgang Koenig7,8,9 · Konstantin Strauch10,11 · Anne S. Quante10,11,12 · Barbara Thorand3,4 · Cornelia Huth3,4 · Hannelore Daniel13 · Hans Hauner14,15,16 · Jakob Linseisen1,2,15

Received: 3 September 2018 / Accepted: 5 May 2019 / Published online: 14 May 2019 © The Author(s) 2019

Abstract

Purpose Inter-individual metabolic differences may be a reason for previously inconsistent results in diet–diabetes associations. We aimed to investigate associations between dietary intake and diabetes for metabolically homogeneous subgroups (‘metabotypes’) in a large cross-sectional study.

Methods We used data of 1517 adults aged 38–87 years from the German population-based KORA FF4 study (2013/2014). Dietary intake was estimated based on the combination of a food frequency questionnaire and multiple 24-h food lists. Glucose tolerance status was classified based on an oral glucose tolerance test in participants without a previous diabetes diagnosis using American Diabetes Association criteria. Logistic regression was applied to examine the associations between dietary intake and diabetes for two distinct metabotypes, which were identified based on 16 biochemical and anthropometric parameters.

Results A low intake of fruits and a high intake of total meat, processed meat and sugar-sweetened beverages (SSB) were significantly associated with diabetes in the total study population. Stratified by metabotype, associations with diabetes remained significant for intake of total meat (OR 1.67, 95% CI 1.04–2.67) and processed meat (OR 2.23, 95% CI 1.24–4.04) in the metabotypes with rather favorable metabolic characteristics, and for intake of fruits (OR 0.83, 95% CI 0.68–0.99) and SSB (OR:1.21, 95% CI 1.09–1.35) in the more unfavorable metabotype. However, only the association between SSB intake and diabetes differed significantly by metabotype (p value for interaction = 0.01).

Conclusions Our findings suggest an influence of metabolic characteristics on diet–diabetes associations, which may help to explain inconsistent previous results. The causality of the observed associations needs to be confirmed in prospective and intervention studies.

Keywords Diabetes · Diet · enable-Cluster · Metabolic phenotype · Metabotype

Introduction

Type 2 diabetes mellitus (T2DM) with its adverse health consequences for individuals and its financial burden on healthcare systems is an important public health issue worldwide [1, 2]. In Germany, the prevalence of known T2DM was 8.5% in 2009 and 9.5% in 2015, and it is expected to rise further due to an ageing population with an increase in unhealthy lifestyle [1, 3]. It has to be assumed that the actual prevalence of T2DM is even higher due to a large number of undiagnosed individuals [4, 5].

Changes in lifestyle, for example in dietary behavior, may prevent or delay the development of T2DM [6–8]. However, previous studies investigating the impact of food on the risk of T2DM have shown inconsistent results [9, 10].

It is well established that the variability of metabolic characteristics between individuals leads to differences in the response to dietary factors [11–15]. This could be a reason why associations of food groups and nutrients with T2DM are often weak or even different between studies. The identification of metabolically homogeneous subgroups of the population, so-called metabotypes or metabolic phenotypes [16–21], has already been performed several times [16,
22, 23], and may help to better understand the inconsistency in diet-T2DM associations across studies. Furthermore, this may be relevant in diabetes prevention for the development of targeted dietary recommendations at the metabotype subgroup level, which may be more effective than general dietary advice [11, 14, 16, 24, 25].

Therefore, we aimed (1) to identify distinct metabotypes and (2) to investigate the cross-sectional associations of intake of several food groups and nutrients with T2DM stratified by metabotype subgroup in the large population-based Cooperative Health Research in the Region of Augsburg (KORA) FF4 study.

Methods

Study population

Analyses were performed on data from the population-based KORA FF4 (2013/2014) study, the second follow-up of the KORA S4 health survey conducted in the region of Augsburg in Southern Germany between 1999 and 2001 [26]. In brief, of the 4261 participants included in S4, 2279 individuals also participated in the 14-year follow-up FF4 study. Detailed information on the participation response has been given elsewhere [27]. All individuals answered self-administered questionnaires, and participated in a standardized physical examination as well as in a computer-assisted face-to-face interview conducted by trained investigators at the study center. A detailed description has been provided previously [5].

Ethical standards

All participants gave their written informed consent, and the study was approved by the Ethics Committee of the Bavarian Chamber of Physicians and conducted in accordance with the Declaration of Helsinki.

Assessment of glucose tolerance status

Prevalent diabetes was defined by either current intake of antidiabetic medication or a self-reported diagnosis, both validated with the respective treating physician. All participants without previously known diabetes took part in a standard oral glucose tolerance test (OGTT) and their glucose tolerance status was classified according to the 2003 American Diabetes Association (ADA) diagnostic criteria [28]. Further details have been outlined elsewhere [29]. An OGTT value of ≥ 7.0 mmol/L fasting or ≥ 11.1 mmol/L 2-h glucose was defined as undetected diabetes mellitus (UDM), also called screen-detected diabetes. Participants with isolated impaired fasting glucose (IFG 5.6–6.9 mmol/L fasting glucose), isolated impaired glucose tolerance (IGT 7.8–11.0 mmol/L 2-h glucose) or combined IFG/IGT were classified as prediabetic. Individuals with fasting glucose levels < 5.6 mmol/L and 2-h glucose levels < 7.8 mmol/L were classified as normal glucose tolerant (NGT).

Assessment of dietary intake

Dietary intake was assessed in 1602 KORA FF4 participants with up to three 24-h food lists [30] and a food frequency questionnaire. Combining this information, the usual dietary intake was estimated in an advanced blended two-step approach, which follows the idea of the National Cancer Institute (NCI) method and the Multiple Source Method (MSM) [31, 32] to separate the calculation of consumption amount and consumption probability. The consumption probability and the consumption amount on consumption days were estimated separately with models both including the same covariates to link the two parts. Then, the usual dietary intake of all food items was calculated for each participant by multiplying the consumption probability of a certain food item by the usual consumption amount on a consumption day. The food groups were categorized according to the European Prospective Investigation into Cancer and Nutrition (EPIC)-Soft classification system [33] and nutrients were derived using the National Nutrient Database (Bundeslebensmittelschlüssel BLS 3.02). For the analysis, we selected the 17 following food groups and nutrients in g/d associated with T2DM in the literature [9, 10, 34, 35]: fruits, vegetables, potatoes, total meat, red meat (beef and pork), poultry, processed meat, eggs, total dairy, milk, yogurt, cheese, coffee, fruit and vegetable juice, sugar-sweetened beverages (SSB), alcohol and fiber.

Assessment of covariates

The selection of covariates was based on theoretical considerations and the existing literature on diet and diabetes [9]. These included age (years), sex (reference = male), energy intake (kcal/day), waist circumference (cm), family history of diabetes [yes, no (= reference), do not know], physical activity [active in summer and in winter and active for ≥ 1 h per week in at least one season, inactive (= reference)], smoking status [never (= reference), former, current], hypertension [≥ 140/90 mmHg or antihypertensive mediation given that the participants were aware of having hypertension; yes, no (= reference)] and education [< 10 years (= reference), 10 to < 13 years, ≥ 13 years, in accordance with the German education system]. Waist circumference and blood pressure were measured at the study center under standardized conditions by trained staff. All other covariates were assessed during a standardized personalized computer-assisted interview or via a self-administered questionnaire.
Statistical analysis

We performed all statistical analyses using the statistical software package RStudio version 1.0.136 that uses R version 3.2.2 (R Development Core Team, 2010, http://www.r-project.org). p values of <0.05 were considered statistically significant.

Identification of metabotypes

The metabotypes were identified in KORA FF4 analogous to Riedl et al. [23] in KORA F4. Of the 34 originally used anthropometric and fasting biochemical blood parameters in KORA FF4, a subset of 16 parameters was also available in KORA FF4 for the definition of metabotypes. These included body mass index (BMI), and the following blood biomarkers: glucose, total cholesterol, high density lipoprotein cholesterol, total cholesterol/high density lipoprotein cholesterol ratio, low-density lipoprotein cholesterol, glycated hemoglobin, uric acid, triglycerides, leukocytes, gamma-glutamyltransferase, glutamate-pyruvate transaminase, glutamate-oxaloacetate transaminase, alkaline phosphatase, high-sensitivity C-reactive protein and insulin.

In the preprocessing step, the KORA FF4 study population (n = 2279) was reduced to 2218 participants by excluding 54 participants who did not fast for at least 8 h before blood collection and by excluding 7 participants with more than 10% missing values of all clustering variables listed above. The remaining missing values in the clustering variables were imputed using the R package “mice” (multivariate imputation by chained equations) version 2.25 [36] generating five complete data sets with ten iterations each. All biochemical and anthropometric parameters were z-standardized prior to clustering. Subsequently, the 2218 FF4 participants were divided into three clusters using the k-means cluster algorithm of the R package “miclust” (multiple imputation in cluster analysis) version 1.2.5 [37] based on all 16 biochemical and anthropometric parameters available in this study. A detailed metabolic characterization of these clusters representing metabotypes is provided in the Online Resource (Supplemental Table 1). Further details on the identification procedure of metabotypes are given elsewhere [23].

Analysis of associations between dietary intake and diabetes

Of the total 2218 FF4 participants with metabotype information, those with type 1 diabetes mellitus (n = 4), unclear glucose tolerance status (n = 67) or missing information on dietary intake (n = 628) or covariate data (n = 2) were excluded from the analyses resulting in a final sample size of 1517 participants. All food groups were rescaled for 50 g/day increments. Among the investigated nutrients, fiber was rescaled to 10 g/day and alcohol intake was classified by sex in accordance with the reference values of the German Nutrition Society (Deutsche Gesellschaft für Ernährung) as low (<5 g/day for men and < 2 g/day for women), moderate (5 to < 20 g/day for men and 2 to < 10 g/day for women) or high (≥ 20 g/day for men and ≥ 10 g/day for women) [38].

Due to the low diabetes prevalence in metabotype clusters 1 and 2 (see Table 1), these groups were combined and analyzed together in comparison to cluster 3.

To examine the cross-sectional associations between dietary intake and diabetes dichotomized in NGT/prediabetes (= reference) and UDM/prevalent T2DM, binary logistic regression was performed. For each of the dietary intake variables, two models with different sets of covariates were fitted: the basic model was adjusted for age, sex and energy intake; the fully adjusted model was additionally adjusted for waist circumference, family history of diabetes, physical activity, smoking, education, hypertension, and metabolotype. Thus, the respective models differed only in the dietary intake variable used, but included the same sample size and covariates. All analyses were performed for the total study population and stratified by metabotype subgroup.

Likelihood ratio tests were used to detect possible interaction effects between metabotypes and the respective dietary intake variables in the fully adjusted model. Significant results indicated differences in diet–diabetes associations between metabolotype subgroups. A flow chart showing the overall analysis strategy is provided in the Online Resource (Supplemental Fig. 1). As a sensitivity analysis, we fitted intermediate adjusted models removing the covariates hypertension and waist circumference from the fully adjusted models, as these are rather intermediary/mediating variables than real founders in diet–diabetes associations. In another sensitivity analysis, we restricted the study population to adults aged ≥ 60 years to investigate age-specific effects.

Results

The number of individuals at each stage of our analysis is shown in the flow chart in Supplemental Fig. 1 provided in the Online Resource, leaving a final study population of 1517 individuals for the analysis of diet–diabetes associations.

Table 1 presents the characteristics of the total study population and for each of the three metabotypes identified in KORA FF4. The total study population consists of approximately equal proportions of men and women with an age range of 38–87 years. Of 1517 participants, 777 (51.2%) had NGT, 539 (35.5%) had prediabetes, 64 (4.2%) had UDM and 137 (9.0%) had prevalent T2DM. By metabotyping, 678 participants (about 45%) were grouped into cluster 1, 539
participants (about 36%) into cluster 2, and 300 participants (about 20%) into cluster 3. The proportion of participants with UDM and prevalent T2DM was higher in cluster 3 compared to cluster 2 and cluster 1, respectively (UDM: 9.7% vs. 4.3% vs. 1.8%; prevalent T2DM: 32.7% vs. 3.3% vs. 3.1%). Cluster 3 showed the highest proportions of men, individuals with a positive family history of diabetes and hypertension. At the same time, cluster 3 showed the lowest percentages of highly educated and physically active participants as well as current smokers. Participants of cluster 3 were further characterized by the highest median age, BMI and waist circumference.

Table 2 shows the median usual dietary intake of participants in the combined clusters 1 and 2 and of participants in cluster 3, in total and according to glucose tolerance status (NGT/prediabetes and UDM/prevalent T2DM). The
Table 2 Usual dietary intake of the study population by metabotype subgroup for NGT/prediabetes and UDM/prevalent T2DM, KORA FF4 study

Food item	Total	NGT/prediabetes	UDM/prevalent T2DM
	Total N=1517	N=1316	N=201
	Cluster 1/cluster 2 N=1217	N=1143	N=74
	Cluster 3 N=300	N=173	N=127
Median (25%, 75%)	Median (25%, 75%)	Median (25%, 75%)	
Fruits (g/day)			
Cluster 1/cluster 2	145 (92, 206)	145 (91, 205)	146 (122, 215)
Cluster 3	148 (90, 214)	147 (89, 209)	149 (96, 214)
Vegetables (g/day)			
Cluster 1/cluster 2	168 (137, 210)	168 (137, 211)	165 (132, 195)
Cluster 3	149 (121, 184)	149 (122, 184)	147 (121, 185)
Potatoes (g/day)			
Cluster 1/cluster 2	55 (44, 70)	54 (44, 69)	64 (53, 84)
Cluster 3	59 (48, 78)	57 (46, 75)	63 (50, 82)
Total meat (g/day)			
Cluster 1/cluster 2	102 (81, 134)	102 (80, 133)	115 (88, 141)
Cluster 3	136 (102, 161)	140 (104, 167)	133 (102, 160)
Red meat (g/day)			
Cluster 1/cluster 2	25 (19, 33)	25 (19, 33)	28 (19, 36)
Cluster 3	30 (22, 40)	29 (23, 40)	30 (22, 40)
Poultry (g/day)			
Cluster 1/cluster 2	13 (10, 18)	13 (10, 18)	11 (11, 17)
Cluster 3	13 (11, 19)	13 (11, 19)	13 (10, 19)
Processed meat (g/day)			
Cluster 1/cluster 2	39 (28, 57)	38 (28, 56)	50 (33, 69)
Cluster 3	59 (42, 81)	58 (42, 81)	61 (45, 80)
Eggs (g/day)			
Cluster 1/cluster 2	11 (8, 17)	11 (8, 16)	12 (10, 22)
Cluster 3	13 (9, 20)	12 (8, 20)	14 (9, 20)
Total dairy (g/day)			
Cluster 1/cluster 2	186 (122, 264)	188 (125, 267)	162 (105, 212)
Cluster 3	149 (94, 224)	148 (91, 226)	150 (95, 218)
Milk (g/day)			
Cluster 1/cluster 2	77 (30, 138)	78 (30, 140)	53 (32, 115)
Cluster 3	47 (16, 100)	52 (16, 105)	44 (16, 87)
Yogurt (g/day)			
Cluster 1/cluster 2	32 (14, 70)	33 (14, 71)	24 (13, 51)
Cluster 3	23 (13, 56)	23 (13, 51)	23 (13, 56)
Cheese (g/day)			
Cluster 1/cluster 2	27 (19, 37)	27 (19, 37)	28 (20, 38)
Cluster 3	26 (19, 37)	26 (20, 37)	26 (18, 36)
Coffee (g/day)			
Cluster 1/cluster 2	435 (366, 479)	433 (366, 478)	449 (349, 501)
Cluster 3	438 (331, 483)	420 (303, 476)	456 (374, 499)
Fruit and vegetable juice (g/day)			
Cluster 1/cluster 2	45 (24, 115)	45 (24, 116)	32 (22, 86)
Cluster 3	36 (24, 125)	43 (26, 167)	30 (23, 108)
intake of total meat, red meat, processed meat, SSB and total energy was higher and the intake of vegetables, total dairy, milk, yogurt and fruit and vegetable juice was lower in cluster 3 compared to the combined clusters 1 and 2. In both metabotype subgroups, the intake of potatoes and coffee was higher and the intake of milk, fruit and vegetable juice and SSB was lower in individuals with UDM/prevalent T2DM compared to individuals with NGT/prediabetes. Participants with UDM/prevalent T2DM in clusters 1 and 2 showed a higher intake of total meat and total energy, whereas participants with UDM/prevalent T2DM in cluster 3 showed a lower intake of total meat and total energy compared to the participants with NGT/prediabetes of the respective metabotype subgroup.

In the total study population, intake of fruits and fiber as well as moderate alcohol consumption showed negative associations and intake of total meat, red meat, processed meat and SSB showed positive associations with UDM/prevalent T2DM compared to individuals with NGT/prediabetes. Participants with UDM/prevalent T2DM in clusters 1 and 2 showed a higher intake of total meat and total energy, whereas participants with UDM/prevalent T2DM in cluster 3 showed a lower intake of total meat and total energy compared to the participants with NGT/prediabetes of the respective metabotype subgroup.

In the total study population, intake of fruits and fiber as well as moderate alcohol consumption showed negative associations and intake of total meat, red meat, processed meat and SSB showed positive associations with UDM/prevalent T2DM compared to individuals with NGT/prediabetes. Participants with UDM/prevalent T2DM in clusters 1 and 2 showed a higher intake of total meat and total energy, whereas participants with UDM/prevalent T2DM in cluster 3 showed a lower intake of total meat and total energy compared to the participants with NGT/prediabetes of the respective metabotype subgroup.

The results (ORs, 95% CIs and \(p \) values for interaction) of the sensitivity analysis with intermediate adjusted models, that means without the covariates hypertension and waist circumference, are shown in Supplemental Table 4 and Supplemental Table 5 in the Online Resource. These have not changed significantly in the total study population. In the analyses stratified by metabotype, the results were also only slightly different. However, the associations of intake of total meat and processed meat with UDM/prevalent T2DM in cluster 3 reached statistical significance. Likewise, the sensitivity analysis restricted to 762 adults aged ≥ 60 years showed results similar to the analyses of the total study population (data not shown).
Table 3 Fully adjusted associations between the consumption of various food items and nutrients with UDM/Prevalent T2DM in the total study population, KORA FF4 study

Food or nutrient	Fully adjusted model	OR	95% CI
Fruits (50 g/day)	0.86	0.75–0.98	
Vegetables (50 g/day)	1.17	0.96–1.43	
Potatoes (50 g/day)	1.16	0.73–1.84	
Total meat (50 g/day)	1.50	1.09–2.08	
Red meat (50 g/day)	1.01	0.39–2.53	
Poultry (50 g/day)	1.50	0.38–5.51	
Processed meat (50 g/day)	1.83	1.22–2.77	
Eggs (50 g/day)	0.85	0.39–1.75	
Total dairy (50 g/day)	1.00	0.90–1.11	
Milk (50 g/day)	0.97	0.85–1.10	
Yogurt (50 g/day)	1.08	0.86–1.33	
Cheese (50 g/day)	1.58	0.76–3.27	
Coffee (50 g/day)	1.02	0.96–1.09	
Fruit and vegetable juice (50 g/day)	0.97	0.87–1.07	
SSB (50 g/day)	1.09	1.01–1.17	
Moderate alcohol consumptiona	1.03	0.67–1.57	
High alcohol consumptiona	0.89	0.52–1.52	
Total fiber (10 g/day)	1.11	0.62–1.93	

Logistic regression models: reference category = NGT/prediabetes. Fully adjusted models adjusted for age, sex, energy intake, waist circumference, family history of diabetes, physical activity, smoking, education, hypertension and metabotype. Significant results (p < 0.05) printed in bold.

N = 1517
CI confidence interval, KORA Cooperative Health Research in the Region of Augsburg, NGT normal glucose tolerance, OR odds ratio, SSB sugar-sweetened beverages, T2DM type 2 diabetes mellitus, UDM undetected diabetes mellitus

aCompared against low alcohol intake (<5 g/day for men, <2 g/day for women as reference category); moderate considered 5 to <20 g/day for men, 2 to <10 g/day for women; high considered ≥20 g/day for men, ≥10 g/day for women

Discussion of results regarding the existing literature on diet–diabetes associations

In general, the associations of intakes of fruits, total meat, processed meat and SSB with UDM/prevalent T2DM that we found in the total KORA FF4 study population are in line with previous meta-analyses and review articles on the respective food groups [39–48]. However, results of a number of other studies were inconsistent [9, 10], and there are studies that have shown either no or only weak associations between these food groups and diabetes [49–57]. All other selected dietary intake variables were not associated with UDM/prevalent T2DM in our study, in contrast to some of the previous studies [9, 10, 34, 35]. Our study was the first to investigate associations between diet and diabetes stratifying by metabotype, i.e., considering metabolic differences between individuals. As we identified intakes of fruits, total meat, processed meat and SSB to be significantly associated with diabetes in only one of both metabotypes, metabolic differences may partially explain conflicting results in diet–diabetes associations observed in previous studies. This holds mainly for the association between intake of SSB and diabetes, which was shown to be significantly different between both metabotype subgroups, despite previously described age-related metabolic differences [58], the results of our sensitivity analysis restricted to older participants ≥60 years remained relatively stable. Consequently, these metabotypes may be relevant for adult populations with a large age range and not only for adult populations with specific age categories.

Metabotypes for the development of targeted dietary recommendations for diabetes prevention

In the previous literature, there are numerous studies on metabotyping [16, 22, 23]. Some of these studies defined metabotypes including fasting plasma values, while a few studies classified metabotypes based on plasma parameter responsiveness to dietary interventions [17, 22, 59–62].
Fewer studies tested metabotype subgroups for a differential responsiveness to dietary intervention in a disease-specific manner [63–65]. For example, O’Sullivan et al. [63] identified a vitamin D-responsive metabotype subgroup concerning markers of the metabolic syndrome, Moazzami et al. [64] found subgroups of individuals with different insulin response after an intervention with breads, and Vázquez-Fresno [65] detected a responsive metabotype subgroup of cardiovascular risk patients to red wine polyphenols. In addition, O’Donovan et al. were the only ones developing dietary recommendations based on metabotype subgroups which was done using a decision tree approach [66, 67]. Thus to date, metabotypes have been rarely used for the development and establishment of targeted dietary recommendations for disease prevention. Further research should identify discrete differences between metabotype subgroups in the context of diet–disease relationships. By assigning individuals to metabotype subgroups, targeted dietary recommendations in disease prevention may be implemented in whole populations.

Concerning the metabotypes identified in KORA FF4, diabetes prevention may be especially relevant for cluster 3, defining an unfavorable metabotype concerning metabolic characteristics. In detail, this cluster showed the highest median concentrations of glucose and glycated hemoglobin, which are used in the diagnosis of prediabetes and prevalent T2DM [68]. Consequently, there were high numbers of individuals with prediabetes, UDM and prevalent T2DM in this cluster. However, clusters 1 and 2 defining a rather beneficial metabotype could also benefit from targeted prevention due to the high prevalence of prediabetes, which is a strong risk factor for the development of T2DM [69]. Other known risk factors for diabetes such as age, obesity, physical inactivity, family history of diabetes and hypertension were most frequent in cluster 3 [1, 68, 70]. In addition, low education as seen in cluster 3 was linked to poor health [71].

Table 4

Fully adjusted associations between the consumption of various food items and nutrients with UDM/prevalent T2DM stratified by metabotype subgroup, KORA FF4 study

Food or nutrient	Cluster 1/cluster 2 OR 95% CI	Cluster 3 OR 95% CI	p value interactionb
Fruits (50 g/day)	0.91 0.75–1.11	0.83 0.68–0.99	0.24
Vegetables (50 g/day)	1.25 0.94–1.64	1.09 0.80–1.47	0.63
Potatoes (50 g/day)	0.82 0.41–1.57	1.59 0.80–3.23	0.74
Total meat (50 g/day)	1.67 1.04–2.67	1.51 0.95–2.41	0.16
Red meat (50 g/day)	0.95 0.20–3.92	0.89 0.26–3.03	0.49
Poultry (50 g/day)	0.79 0.07–6.81	2.29 0.40–13.42	0.64
Processed meat (50 g/day)	2.23 1.24–4.04	1.79 1.00–3.26	0.11
Eggs (50 g/day)	1.82 0.65–4.73	0.38 0.12–1.14	0.02
Total dairy (50 g/day)	0.97 0.84–1.12	1.02 0.89–1.18	0.83
Milk (50 g/day)	0.93 0.76–1.10	1.00 0.83–1.21	0.70
Yogurt (50 g/day)	1.05 0.75–1.41	1.14 0.83–1.59	0.71
Cheese (50 g/day)	2.44 0.87–6.67	1.02 0.36–2.91	0.13
Coffee (50 g/day)	0.97 0.88–1.07	1.08 0.98–1.18	0.09
Fruit and vegetable juice (50 g/day)	0.98 0.83–1.13	0.97 0.84–1.12	0.53
SSB (50 g/day)	0.92 0.73–1.08	1.21 1.09–1.35	0.01
Moderate alcohol consumptiona	0.97 0.53–1.76	1.05 0.55–1.98	0.75
High alcohol consumptiona	0.84 0.39–1.78	0.81 0.37–1.77	
Total fiber (10 g/day)	1.44 0.65–3.08	0.87 0.36–2.09	0.29

Logistic regression models: reference category = NGT/prediabetes. Fully adjusted models adjusted for age, sex, energy intake, waist circumference, family history of diabetes, physical activity, smoking, education and hypertension. Significant results (p < 0.05) printed in bold

N = 1517

CI confidence interval, KORA Cooperative Health Research in the Region of Augsburg, NGT normal glucose tolerance, OR odds ratio, SSB sugar-sweetened beverages, T2DM type 2 diabetes mellitus, UDM undetected diabetes mellitus

a Compared against low alcohol intake (< 5 g/day for men, < 2 g/day for women as reference category); moderate considered 5 to < 20 g/day for men, 2 to < 10 g/day for women; high considered ≥ 20 g/day for men, ≥ 10 g/day for women

b p value of likelihood ratio test for the comparison of models with and without the interaction term of metabotype and the respective food or nutrient
The lowest percentage of current smokers and simultaneous highest percentage of ex-smokers in cluster 3 indicated smoking cessation due to the high diabetes prevalence in this cluster, as smoking is as well a strong risk factor for diabetes [1, 70]. When assessing dietary intake in our metabotype subgroups, individuals in cluster 3 showed a higher intake of total energy, total meat, red meat, processed meat and SSB than individuals in clusters 1 and 2. Simultaneously, individuals in cluster 3 consumed lower amounts of vegetables, total dairy, milk, yogurt and fruit and vegetable juice compared to individuals in clusters 1 and 2. This dietary pattern was shown to be associated with increased risk for diabetes [9, 10]. As targeted dietary advice may be more effective than general recommendations [11, 14, 16, 24, 25], the development of strategies for change in dietary behavior on the metabotype subgroup level, especially for the ‘high-risk’ cluster 3, could improve the prevention of diabetes.

Strengths and limitations

One of the strengths of the study is the fact that associations between diet and diabetes were investigated in a large population-based study, allowing us to perform stratified analyses by metabotype with sufficient sample sizes. Due to the lack of a uniform definition of the term ‘metabotype’, metabotyping was performed in KORA FF4 analogous to Riedl et al. [23] in KORA F4 to get comprehensive metabotypes based on a broad range of parameters [22]. However, only 16 of the 34 biochemical and anthropometric parameters originally used in F4, were available in FF4. Repeating the identification of metabotypes in F4 with the reduced set of 16 parameters also available in FF4 and comparing to the originally identified metabotypes in F4 based on 34 parameters, revealed a similar allocation of individuals to the clusters (1513 of 1729 individuals or 87.5% of participants). In addition, the newly defined metabotypes in FF4 based on the 16 parameters showed a good distinction of demographic and metabolic characteristics. Consequently, we assume to have identified metabotypes in KORA FF4 that are still comprehensive despite the reduced set of biochemical markers and we assume that these metabotypes were appropriate to consider metabolic differences in diet–diabetes associations.

Another strength is the availability of extensive dietary data assessed by food frequency questionnaire and up to three 24-h food lists, which enabled the investigation of a large number of food items and their association with diabetes. However, as with all dietary assessment methods, misreporting cannot be ruled out. Further strengths include the assessment of diabetes by either a physician-validated diagnosis or an OGTT, and the availability of a large number of confounders for adjustment. Limitations of the study include the fact that a large proportion of the original S4 participants (1982 of 4261 individuals) did not participate again in the second follow-up KORA FF4 study due to death, refusal and loss to follow-up, what could have biased our results. Furthermore, due to the cross-sectional study design, no causal relationships between dietary factors and diabetes could be established and longitudinal or intervention studies considering metabolic differences are needed. In addition, samples sizes, dietary intake amounts and the diabetes prevalence varied considerably between metabotype subgroups, which could have influenced our results.

Conclusions

Our cross-sectional results show differences in associations with diabetes for intake of fruits, total meat, processed meat, and especially for intake of SSB between distinct metabotype subgroups. This suggests an influence of metabolic characteristics on diet–diabetes associations, which may help to explain the inconsistent results of previous studies. Further, prospective and intervention studies are needed to further elucidate the causal relationships between diet and diabetes within specific metabolic subgroups. These results may enable the development of targeted dietary recommendations on the metabotype subgroup level in diabetes prevention.

Acknowledgements

The Cooperative Health Research in the Region of Augsburg (KORA) studies were initiated and financed by the Helmholtz Zentrum München—German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. Furthermore, KORA research was supported within the Munich Center of Health Sciences (MC-Health), Ludwig-Maximilians-Universität, as part of LMUinnovativ. The German Diabetes Center was supported by the Ministry of Culture and Science of the State of North Rhine-Westphalia and the German Federal Ministry of Health. This study was supported in part by a grant from the German Federal Ministry of Education and Research (BMBF) to the German Center for Diabetes Research (DZD). The preparation of this paper was supported by the enable Cluster and is catalogueed by the enable Steering Committee as enable 029 (http://enable-cluster.de). This work was funded by a grant of the German Ministry for Education and Research (BMBF) FK 01EA1409E.

Author contributions

AR: conceived and conducted the data analyses, interpreted the data, and wrote the manuscript; NW, CG: contributed to data analyses and interpretation, and revised the manuscript; CM, AP, WR, WK, KS, ASQ, BT, CH: were involved in the study organization, provided data, and reviewed the manuscript; HD, HH: contributed to data interpretation and revised the manuscript; JL: conceived and designed the data analyses, contributed to data analyses and interpretation, and revised the manuscript; All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.
References

1. World Health Organization (2016) Global report on diabetes. World Health Organization, Geneva
2. Wild S, Roglic G, Green A, Sicree R, King H (2004) Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 27(5):1047–1053
3. Goffrier B, Schulz M, Bätzing-Feigenbaum J (2017) Administrative Prävalenzen und Inzidenzen des Diabetes mellitus von 2009 bis 2015. Zentralinstitut für die kassenärztliche Versorgung in Deutschland (Zi). Versorgungsatlas-Bericht Nr. 17/03. Berlin. https://doi.org/10.20364/va.17.03. http://www.versorgungsatlas.de/themen/alle-analysen-nach-datum-sortiert/?tab=6&uid=79. Accessed 30 Aug 2018
4. Rathmann W, Haastert B, Icks A, Löwel H, Meisinger C, Holle R, Kronenberg F, Herder C, Rathmann W, Völzke H, Reinecke M, Koenig W, Wallaschefska H, Hauner H, Daniel H, Linseisen J (2012) Metabolic phenotyping in clinical and surgical environments. Nature 491(7424):384–392. https://doi.org/10.1038/nature11708
5. Bazzano LA, Selvendi M, Liu S (2005) Prevalence of type 2 diabetes by diet and lifestyle modification. J Am Coll Nutr 24(5):310–319
6. Thomas GN, Jiang CQ, Taheri S, Xiao ZH, Tomlinson B, Cheung BM, Lam TH, Barnett AH, Cheng KK (2010) A systematic review of lifestyle modification and glucose intolerance in the prevention of type 2 diabetes. Curr Diabetes Rev 6(6):378–387
7. Schwingshackl L, Hoffmann G, Lampousi AM, Girgis S, Colagiuri R (2010) Diet and exercise in the prevention of diabetes. J Hum Nutr Diet 23(4):344–352. https://doi.org/10.1111/j.1365-277X.2010.01061.x
8. Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L, Saris WH, Mathers JC, Food4Me Study (2017) Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int J Epidemiol 46(2):578–588
9. Beger RD, Dunn W, Schmidt MA, Gross SS, Kirwan JA, Cascante M, Brennan L, Wishart DS, Oresic M, Hankemeier T, Broadhurst DI, Lane AN, Suhr K, Kastenmüller G, Sumner SJ, Thiele I, Fiehn O, Kaddurah-Daouk R, for “Precision Medicine and Metabolonomics Task Group”-Metabolonomics Society Initiative (2016) Metabolomics enables precision medicine: “A White Paper, Community Perspective”. Metabolomics 12(10):149. https://doi.org/10.1007/s11306-016-1094-6
10. de Roos B (2013) Personalised nutrition: ready for practice? Proc Nutr Soc 72(1):48–52. https://doi.org/10.1017/S0029665112002844
11. Nicholson JK, Holmes E (2006) Global systems biology and personalized healthcare solutions. Discov Med 6(32):63–70
12. O’Donovan CB, Walsh MC, Gibney MJ, Gibney ER, Brennan L (2016) Can metabolotyping help deliver the promise of personalized nutrition? Proc Nutr Soc 75(1):106–114. https://doi.org/10.1017/S0029665115002341
13. Kerzis C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2013) Identification of differential responses to an oral glucose tolerance test in healthy adults. PLoS One 8(8):e72890. https://doi.org/10.1371/journal.pone.0072890
14. Nicholson JK, Holmes E, Kinross JM, Durzi AW, Takats Z, Lindon JC (2012) Metabolic phenotyping in clinical and surgical environments. Nature 491(7424):384–392. https://doi.org/10.1038/nature11708
15. Kaput J (2008) Nutrigenomics research for personalized nutrition and medicine. Curr Opin Biotechnol 19(2):110–120. https://doi.org/10.1016/j.copbio.2008.02.005
16. Brennan L (2008) Session 2: personalised nutrition. Metabolomic applications in nutritional research. Proc Nutr Soc 67(4):404–408. https://doi.org/10.1017/s0029665108008719
17. Brennan L (2017) Use of metabolotyping for optimal nutrition. Curr Opin Biotechnol 44:35–38. https://doi.org/10.1016/j.copbio.2016.10.008
18. Riedl A, Gieger C, Hauner H, Daniel H, Linseisen J (2017) Metabolotyping and its application in targeted nutrition: an overview. Br J Nutr 117(12):1631–1644. https://doi.org/10.1017/S0007114517001611
19. Riedl A, Wawro N, Gieger C, Meisinger C, Peters A, Roden M, Kronenberg F, Herder C, Rathmann W, Völzke H, Reinecke M, Koenig W, Wallaschefska H, Hauner H, Daniel H, Linseisen J (2018) Identification of comprehensive metabolotypes associated with cardiometabolic diseases in the population-based KORA study. Mol Nutr Food Res 62(16):e1800117. https://doi.org/10.1002/mnfr.201800117
20. Celis-Morales C, Livingstone KM, Marsa CF, Macready AL, Fallaize R, O’Donovan CB, Woolhead C, Forster H, Walsh MC, Navas-Carretero S, San-Cristobal R, Tsirigoti L, Lambriou CP, Mavrogiovanni C, Moschonis G, Kolossa S, Hallmann J, Godlewksa M, Surwillo A, Traczyk I, Drevon CA, Bouwman J, van Ommer B, Grimalki D, Parnell LD, Matthews JN, Manios Y, Daniel H, Martinez JA, Lovegrove JA, Gibney ER, Brennan L, Saris WH, Gibney M, Mathers JC, Food4Me Study (2016) Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int J Epidemiol 46(2):578–588
21. Livingstone KM, Celis-Morales C, Navas-Carretero S, San-Cristobal R, Macready AL, Fallaize R, O’Donovan CB, Woolhead C, Forster H, Walsh MC, Navas-Carretero S, San-Cristobal R, Tsiirigoti L, Lambriou CP, Mavrogiovanni C, Moschonis G, Kolossa S, Hallmann J, Godlewksa M, Surwillo A, Traczyk I, Drevon CA, Bouwman J, van Ommer B, Grimalki D, Parnell LD, Matthews JN, Manios Y, Daniel H, Martinez JA, Lovegrove JA, Gibney ER, Brennan L, Saris WH, Gibney M, Mathers JC, Food4Me Study (2017) Effect of personalized nutrition on health-related behaviour change: evidence from the Food4Me European randomized controlled trial. Int J Epidemiol 46(2):578–588
surveys: effects on response, costs, and potential bias. Epidemiology 17(6):639–643. https://doi.org/10.1097/01.ede.0000239731.86975.7f

28. American Diabetes Association (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34(Suppl 1):S62–S69. https://doi.org/10.2337/dc11-S062

29. Kowall B, Rathmann W, Stang A, Bongaerts B, Kuss O, Herder C, Roden M, Quante A, Holle R, Huth C, Peters A, Meisinger C (2017) Perceived risk of diabetes seriously underestimates actual diabetes risk: the KORA FF4 study. PLoS One 12(1):e0171152. https://doi.org/10.1371/journal.pone.0171152

30. Freese J, Feller S, Hartig U, Kleiser C, Linseisen J, Fischer B, Leitzmann MF, Six-Merker J, Michels KB, Nimptsch K, Steinbrecher A, Pischon T, Heuer T, Hoffmann I, Jacobs G, Boeing H, Nöthlings U (2014) Development and evaluation of a short 24-h food list as part of a blended dietary assessment strategy in large-scale cohort studies. Eur J Clin Nutr 68(3):324–329. https://doi.org/10.1038/ejn.2013.274

31. Tooze JA, Kipnis V, Buckman DW, Carroll RJ, Freedman LS, Guenter PM, Krebs-Smith SM, Subar AF, Dodd KW (2010) A mixed-effects model for estimating the distribution of usual intake of nutrients: the NCI method. Stat Med 29(27):2857–2868. https://doi.org/10.1002/sim.4063

32. Haubrock J, Nöthlings U, Volatier JL, Dekkers A, Ocké M, Harttig U, Illner AK, Knüppel S, Andersen LF, Boeing H, European Food Consumption Validation Consortium (2011) Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J Nutr 141(5):914–920. https://doi.org/10.3945/jn.109.120394

33. Slimani N, Deharveng G, Charrondière RU, van Kappel AL, Ocké MC, Welch A, Lagiou A, van Liere M, Agudo A, Pala V, Brandstetter B, Andres C, Stripp C, van Staveren WA, Riboli E (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed 58(3):251–266

34. Mozaffarian D (2016) Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: a comprehensive review. Circulation 133(2):187–225. https://doi.org/10.1161/CIRCPHARMA.115.018585

35. InterAct Consortium (2015) Dietary fibre and incidence of type 2 diabetes in eight European countries: theEPIC-InterAct Study and a meta-analysis of prospective studies. Diabetologia 58(7):1394–1408. https://doi.org/10.1007/s00125-015-3585-9

36. van Buuren S, Groothuis-Oudshoorn K (2011) mice: multivariate imputation by chained equations in R. J Stat Softw 45(3):1–67

37. Basagana X, Barrera-Gómez J, Benet M, Antó JM, García-Aymerich J (2013) A framework for multiple imputation in cluster analysis. Am J Epidemiol 177(7):718–725. https://doi.org/10.1093/aje/kws289

38. Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGGE), Schweizerische Gesellschaft für Ernährungsforschung (SGE), Schweizerische Vereinigung für Ernährung (SVE) (2008) Referenzenwerte für die Nährstoßzuhr 1. Auflage. Neuer Umschau Buchverlag, Neustadt an der Weinstraße

39. Li M, Fan Y, Zhang X, Hou W, Tang Z (2014) Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open 4(11):e005497. https://doi.org/10.1136/bmjopen-2014-005497

40. Wang PY, Fang JC, Gao ZH, Zhang C, Xie SY (2016) Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig 7(1):56–69. https://doi.org/10.1111/jdi.12376

41. Li S, Miao S, Huang Y, Liu Z, Tian H, Yin X, Tang W, Steffen LM, Xi B (2015) Fruit intake decreases risk of incident type 2 diabetes: an updated meta-analysis. Endocrine 48(2):454–460. https://doi.org/10.1007/s12020-014-0351-6

42. Aune D, Ursin G, Veierod MB (2009) Meat consumption and the risk of type 2 diabetes: a systematic review and meta-analysis of cohort studies. Diabetologia 52(11):2277–2287. https://doi.org/10.1007/s00125-009-1481-x

43. Micha R, Wallace SK, Mozaffarian D (2010) Red and processed meat consumption and risk of incident coronary heart disease, stroke, and diabetes mellitus: a systematic review and meta-analysis. Circulation 121(21):2271–2283. https://doi.org/10.1161/CIRCULATIONAHA.109.924977

44. Feskeván EJ, Sluik D, van Vouwenbergh GJ (2013) Meat consumption, diabetes, and its complications. Curr Diabetes Rep 13(2):298–306. https://doi.org/10.1007/s11892-013-0365-0

45. Ley SH, Hamdy O, Mohan V, Hu FB (2014) Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet 383(9933):1999–2007. https://doi.org/10.1016/S0140-6736(14)60613-9

46. Imamura F, O’Connor L, Ye Z, Hayashino Y, BhuPathi-raj NU, Forouhi NG (2015) Consumption of sugar sweetened beverages, artificially sweetened beverages, and fruit juice and incidence of type 2 diabetes: systematic review, meta-analysis, and estimation of population attributable fraction. BMJ 351:h3576. https://doi.org/10.1136/bmj.h3576

47. InterAct Consortium, Romaguera D, Norat T, Wark PA, Verhaudt AC, Schulze MB, van Vouwenbergh GJ, Drogan D, Amiano P, Molina-Montes E, Sánchez MJ, Balkau B, Barricarte A, Beulens JW, Clavel-Chapelon F, Crispim SP, Fagherazzi G, Franks PW, Grote VA, Huybrechts I, Kaaks R, Key TJ, Khaw KT, Nilsson P, Overvad K, Palli D, Panico S, Quirós JR, Rolandsson O, Sacerdote C, Sieri S, Slimani N, Spijkerman AM, Tjonneland A, Tormo MJ, Tumino R, van den Berg SW, Wermeling PR, Zamara-Ros R, Feskeván EJ, Langenberg C, Sharp SJ, Forouhi NG, Riboli E, Wareham NJ (2013) Consumption of sweet beverages and type 2 diabetes incidence in European adults: results from EPIC-InterAct. Diabetologia 56(7):1520–1530. https://doi.org/10.1007/s00125-013-2899-8

48. Malik VS, Popkin BM, Bray GA, Després JP, Willett WC, Hu FB (2010) Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care 33(11):2477–2483. https://doi.org/10.2337/dc10-1079

49. Cooper AJ, Forouhi NG, Ye Z, Buijsse B, Arriola L, Balkau B, Barricarte A, Beulens JW, Bouwman LM, Brechen MJ, Tumino R, van den Berg SW, Wermeling PR, Zamara-Ros R, Feskeván EJ, Langenberg C, Sharp SJ, Forouhi NG, Riboli E, Wareham NJ, InterAct Consortium (2012) Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr 66(10):1082–1092. https://doi.org/10.1038/ejn.2012.85

50. Hamer M, Chida Y (2007) Intake of fruit, vegetables, and anti-oxidants and risk of type 2 diabetes: systematic review and meta-analysis. J Hypertens 25(12):2361–2369. https://doi.org/10.1097/ HJH.0b013e3282efc214

51. Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341:c4229. https://doi.org/10.1136/bmj.c4229

52. Villegas R, Shu XO, Gao YT, Yang G, Cai H, Li H, Zheng W (2006) The association of meat intake and the risk of type 2 diabetes may be modified by body weight. Int J Med Sci 3(4):152–159

53. Montonen J, Järvinen R, Heliovaara M, Reunanen A, Aromaa A, Knekt P (2005) Food consumption and the incidence of type 2 diabetes: a systematic review and meta-analysis. Eur J Clin Nutr 60:1357–1369.
II diabetes mellitus. Eur J Clin Nutr 59(3):441–448. https://doi.org/10.1038/sj.ejn.1602094

54. Hodge AM, English DR, O’Dea K, Giles GG (2007) Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. Am J Epidemiol 165(6):603–610. https://doi.org/10.1093/aje/kwk061

55. Montonen J, Järvinen R, Knekt P, Heliovaara M, Reunanen A (2007) Consumption of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr 137(6):1447–1454. https://doi.org/10.1093/jn/137.6.1447

56. Paynter NP, Yeh HC, Voutilainen S, Schmidt MI, Heiss G, Folsom AR, Brancati FL, Kao WH (2006) Coffee and sweetened beverage consumption and the risk of type 2 diabetes mellitus: the atherosclerosis risk in communities study. Am J Epidemiol 164(11):1075–1084. https://doi.org/10.1093/aje/kwj323

57. Nettleton JA, Lutsey PL, Wang Y, Lima JA, Michos ED, Jacobs DR Jr (2009) Diet soda intake and risk of incident metabolic syndrome and type 2 diabetes in the Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 32(4):688–694. https://doi.org/10.2337/dc08-1799

58. Chalecki R, Murakami I, Takada J, Kondoh H, Yanagida M (2012) Variance of sweetened beverages and intakes of fructose and glucose predict type 2 diabetes occurrence. J Nutr 144(6):807–814. https://doi.org/10.3945/jn.111.138991

59. Krishnan S, Newman JW, Hembrooke TA, Keim NL (2012) Variants in metabolic responses to meal challenges differing in glycemnic index in healthy women: is it meaningful?. Nutr Metab (Lond) 9:26. https://doi.org/10.1186/1743-7075-9-26

60. Wang TT, Edwards AJ, Clevadone BA (2013) Strong and weak plasma response to dietary carotenoids identified by cluster analysis and linked to beta-carotene 15,15′-monoxygenase 1 single nucleotide polymorphisms. J Nutr Biochem 24(8):1538–1546. https://doi.org/10.1016/j.jnutbio.2013.01.001

61. Bouwman J, Vogels JT, Wopereis S, Rubingham CM, Bijlsma S, van Ommen B (2012) Visualization and identification of health space, based on personalized molecular phenotype and treatment response to relevant underlying biological processes. BMC Med Genomics 3:1. https://doi.org/10.1186/1755-8794-3-1

62. Famionacci J, Rundle M, Gibbons H, Thomas EL, Geiilinger-Kästle K, Bunzel D, Treviz JP, Kiselova-Kaneva Y, Wopereis S, Wahnhein J, Kulling SE, Hillel K, Sonntag D, Ivanova D, van Ommen B, Frost G, Brennen L, Bell J, Daniel H (2018) Plasma metabolome analysis identifies distinct human metabolomes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements. FASEB J. https://doi.org/10.1096/fj.201800330r

63. O’Sullivan A, Gibney MJ, Connor AO, Mion B, Kaluskar S, Cashman KD, Flynn A, Shanahan F, Brennen L (2011) Biochemical and metabolomic phenotyping in the identification of a vitamin D responsive metabolotype for markers of the metabolic syndrome. Mol Nutr Food Res 55(5):679–690. https://doi.org/10.1002/mnfr.201000458

64. Moazzami AA, Shrestha A, Morrison DA, Poutanen K, Mykkänen H (2014) Metabolomics reveals differences in postprandial responses to breads and fasting metabolic characteristics associated with postprandial insulin demand in postmenopausal women. J Nutr 144(6):807–814. https://doi.org/10.3945/jn.113.138991

Affiliations

Anna Riedl1,2,3 · Nina Wawro1,2,3 · Christian Gieger3,4,5 · Christa Meisinger1,2,3,4 · Annette Peters3,4 · Wolfgang Rathmann3,6 · Wolfgang Koening1,7,8 · Konstantin Strauch1,10,11 · Anne S. Quante1,10,11,12 · Barbara Thorand3,4 · Cornelia Huth3,4 · Hannelore Daniel3,4 · Hans Hauner14,15,16 · Jakob Linseisen1,2,15

1 Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
2 Chair of Epidemiology, Ludwig-Maximilians-Universität München, at UNIKA-T (Universitäres Zentrum für Gesundheitswissenschaften am Klinikum Augsburg), Neusässer Str. 47, 86156 Augsburg, Germany
3 German Center for Diabetes Research (DZD e.V.), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
4 Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
