Left atrial structure and function in heart failure with reduced (HFrEF) versus preserved ejection fraction (HFpEF): systematic review and meta-analysis

Xuanyi Jin1,2 · Jan F. Nauta2 · Chung-Lieh Hung4,6 · Wouter Ouwerkerk1,5 · Tiew-Hwa Katherine Teng1 · Adriaan A. Voors2 · Carolyn SP . Lam1,2,3 · Joost P. van Melle2

Accepted: 9 December 2021 / Published online: 26 January 2022 © The Author(s) 2022

Abstract
Left atrial (LA) structure and function in heart failure with reduced (HFrEF) versus preserved ejection fraction (HFpEF) is only established in small studies. Therefore, we conducted a systematic review of LA structure and function in order to find differences between patients with HFrEF and HFpEF. English literature on LA structure and function using echocardiography was reviewed to calculate pooled prevalence and weighted mean differences (WMD). A total of 61 studies, comprising 8806 patients with HFrEF and 9928 patients with HFpEF, were included. The pooled prevalence of atrial fibrillation (AF) was 34.4% versus 42.8% in the acute inpatient setting, and 20.1% versus 33.1% in the chronic outpatient setting when comparing between HFrEF and HFpEF. LA volume index (LAVi), LA reservoir global longitudinal strain (LAGLSR), and E/e’ was 59.7 versus 52.7 ml/m2, 9.0% versus 18.9%, and 18.5 versus 14.0 in the acute inpatient setting, and 48.3 versus 38.2 ml/m2, 12.8% versus 23.4%, and 16.9 versus 13.5 in the chronic outpatient setting when comparing HFrEF versus HFpEF, respectively. The relationship between LAVi and LAGLSR was significant in HFpEF, but not in HFrEF. Also, in those studies that directly compared patients with HFrEF versus HFpEF, those with HFrEF had worse LAGLSR [WMD = 16.3% (22.05,8.61); p < 0.001], and higher E/e’ [WMD = −0.40 (−0.56, −0.24); p < 0.05], while LAVi was comparable. When focusing on acute hospitalized patients, E/e’ was comparable between patients with HFrEF and HFpEF. Despite the higher burden of AF in HFpEF, patients with HFrEF had worse LA global function. Left atrial myopathy is not specifically related to HFpEF.

Keywords LA structure · Function · HFrEF · HFpEF

Introduction
The left atrium can be considered a transporting chamber that optimizes left ventricular (LV) filling [1]. Left atrial (LA) hypertension with subsequent pulmonary venous congestion is the hallmark of HF regardless of LV ejection fraction (LVEF) [2, 3]. More recently, the significant pathophysiological role of LA dysfunction in HF has gained increasing attention, particularly in HF with preserved EF (HFpEF) [3–5]. Over the past decades, the incidence of HFpEF has risen relative to HF with reduced ejection fraction (HFrEF), accounting now for approximately 50% of cases of HF [6, 7]. Studies have shown that atrial fibrillation (AF), diabetes, and obesity are risk factors for the development of HFpEF, whereas coronary artery disease (CAD) and myocardial infarction are more predisposed to the development of HFrEF [6, 7]. The close link between AF and HFpEF might be explained by intrinsic LA myopathy underlying both HFpEF and AF [8].

However, information regarding differences in LA structure and function between HFrEF and HFpEF, particularly LA functional information assessed by strain analysis, is scarce and not fully understood. Thus, we aimed to conduct
a systematic review of LA structure and function assessed by echocardiography in patients with HFrEF versus HFpEF.

Methods

The systemic review and meta-analysis were conducted according to the Preferred Reporting items for Systemic Reviews and Meta-Analysis (PRISMA) statement [9]. The review protocol had been registered with PROSPERO (http://www.crd.york.ac.uk/PROSPERO).

Literature search strategy

We performed a systematic search in the MEDLINE and EMBASE database from inception through February 2021. Our search was restricted to studies in the English language. Additional studies were selected by reviewing and searching references of identified articles, which were not identified by the initial search. Search terms are mainly composed of the patient domain, including “heart failure,” “heart failure with preserved ejection fraction” and “heart failure with reduced ejection fraction,” and outcome domain as LA structure and function related terms, respectively. The detailed search strategy was described in the online supplementary Table S1.

Study selection

Studies were eligible if they were performed in a clearly defined group of patients with HFrEF or HFpEF or both. The study population had to have a clinical diagnosis of HF, based on signs and symptoms such as dyspnea, fatigue at rest or during exercise, or a previous HF hospitalization. At least one measure of LA structure and function assessed by echocardiography had to be reported. For HFrEF versus HFpEF categorization, the cutoff value of LVEF assessed by echocardiography had to be 45% or 50%. Elevated natriuretic peptides were recognized, but not mandatory for study inclusion. Two authors (XY.J, K.TH.T) independently screened the titles and abstracts of retrieved citations to identify potentially relevant studies. If abstracts were ambiguous, studies were reviewed at the full-text level. Citations were included when consensus between two authors was achieved.

Data extraction

For each included study, the following data of study participants were extracted: (1) baseline characteristics [i.e., publication year, the total number of study participants, the clinical setting of HF (i.e., inpatient vs outpatient setting), age, sex, body mass index (BMI), hypertension, ischemic heart disease (IHD), atrial fibrillation (AF), diabetes, and presence of more than moderate functional mitral regurgitation (MR)], (2) echocardiographic characteristics [i.e., LVEF, LV global longitudinal strain (GLS), the ratio of mitral valve peak velocity of early and late LV filling (E/A), mitral annulus e’ velocity (e’), E/e’ ratio, LA (reservoir, booster, conduit) GLS, software used for post-offline analysis]. When longitudinal studies reported cardiovascular outcomes (mortality and hospitalization), unadjusted and adjusted hazard ratio (HR) for the association between the LA-related parameter with outcomes were obtained. Follow-up time in months, outcome measure, and variables for which was adjusted were also obtained.

Quality assessment

To perform a quality assessment of included studies, the Newcastle–Ottawa scale adapted for observational studies [10] was used scoring each study on several items (i.e., selection process, comparability, and assessment of the outcome/exposure criterion). Moreover, the quality of the clinical trials was evaluated using the revised Cochrane risk-of-bias tool (RoB 2.0) [11], covering five domains (randomization, intervention, missing data, outcome measure, and reported results) of included studies.

Statistical analysis

Continuous variables were reported as mean ± standard deviation (SD), and categorical variables as percentage. When only medians and interquartile ranges were reported in the study, we translated those into means and SDs by an established formula based on previous recommendations [12].

The summary and pooled values of corresponding LA related echocardiographic parameters in both patients with HFrEF and HFpEF were pooled by the weighted average according to the number of patients among included studies and depicted in forest plots for HFrEF and HFpEF, respectively. The prevalence of comorbidities for included studies was pooled by the weighted average according to the number of patients for HFrEF and HFpEF, respectively. Data on LA related echocardiographic parameters in both patients with HFrEF and HFpEF were pooled to derive weighted mean differences (WMDs) and 95% confidence intervals (CI). Linear regression and the mixed-effects meta-regression model were applied to investigate the relationship of LAGLSR with LAVi and LVGLS in patients with HFrEF and HFpEF, respectively. Random effects model with inverse variance weighting was performed using the Cochrane I² statistic to account for heterogeneity across the studies. All statistical analyses were performed using RStudio version 1.1456.
Results

Study characteristics and quality assessment

The search strategy and study selection are summarized in the PRISMA flowchart [9] (Fig. 1). Of 1114 studies identified, a total of 61 studies were selected for the final quantitative and qualitative analysis. The quality assessment of included studies is shown in the supplementary material online (Tables S2 and S3). Reasons for exclusions were described in the supplementary Table S4. Among 61 studies, 27 studies (including 8806 patients with HFrEF and 38 studies including 9928 patients with HFpEF) reported LA structural and functional parameters by echocardiography. Nine out of 61 studies included both patients with HFrEF (n = 1877) and HFpEF (n = 3085). Nine out of 61 studies included patients with HF from an acute inpatient setting (HFrEF, n = 2749; HFpEF, n = 3319), whereas fifty-two studies included patients with HF from a chronic stable outpatient setting (HFrEF, n = 6057; HFpEF, n = 6714). The pooled clinical and echocardiographic characteristics in patients with HFrEF versus HFpEF in the acute inpatient versus chronic outpatient setting were described separately in Table 1. Moreover, the details of clinical and echocardiographic characteristics of included studies are described in Tables 2 and 3.

As compared to patients with HFrEF, patients with HFpEF appeared to be older, women, and had more often hypertension, AF and diabetes irrespective of inpatient or outpatient clinical setting (Table 1). The prevalence of IHD was 39.8% versus 30.7% in the acute inpatient setting and 49.8% versus 33.3% in the chronic outpatient setting when comparing patients with HFrEF versus HFpEF. Patients with HFrEF were more likely to be present with functional MR (27.2%) as compared to patients with HFpEF (12.0%) in the chronic ambulant setting of the study. The pooled mean value of BMI was 25.2 versus 25.6 kg/m² in the acute inpatient setting and 27.5 versus 29.8 kg/m² in the chronic outpatient in patients with HFrEF versus HFpEF. As expected by definition, patients with HFpEF had better LV systolic function as compared to patients with HFrEF with higher pooled LVEF and pooled absolute values of LVGLS irrespective of clinical setting of the study either acute inpatient or chronic outpatient (Table 1). Patients with HFpEF appeared to have higher pooled e’ (6.6 versus 7.5 cm/s in the acute inpatient versus chronic outpatient setting) than patients with HFrEF (4.7 versus 6.5 cm/s in the acute inpatient versus chronic outpatient setting). Conversely, the HFrEF group was characterized by higher E/e’ (18.5 versus 16.9 in the acute inpatient versus chronic outpatient setting) as compared to patients with HFpEF (14.0 versus 13.5 the acute inpatient versus chronic outpatient setting).

Fig. 1 PRISMA flowchart of process for literature search and study selection. HF, heart failure; LA, left atrial, LVEF, left ventricular ejection fraction.
setting) irrespective of clinical setting of the study, indicating higher LV filling pressure in HFrEF.

LA size and pressure estimated by LAVi and E/e’

Twenty-nine studies reported LAVi in patients with HFrEF (n = 8726), and thirty-eight studies reported LAVi in patients with HFpEF (n = 9049). The pooled mean value of LAVi was 59.7 versus 48.3 ml/m² in the acute inpatient versus chronic outpatient setting for patients with HFrEF, and 52.7 versus 38.2 ml/m² in the acute inpatient versus chronic outpatient setting for patients with HFpEF. Eight out of 41 included studies reported E/e’ in both patients with HFrEF and HFpEF. In these studies, E/e’ was significantly higher in patients with HFrEF as compared to patients with HFpEF [15.9 versus 13.4 in HFrEF versus HFpEF; WMD = −0.40 (−0.56, −0.24); p < 0.05; I² = 77.6%]. However, in the acute inpatient setting, E/e’ was comparable between patients with HFrEF and HFpEF [17.7 versus 14.0 in HFrEF versus HFpEF; WMD = −0.40 (−0.56, −0.24); p = 0.15; I² = 77.6%], whereas E/e’ was significantly higher in patients with HFrEF as compared to patients with HFpEF in chronic HF setting [15.3 versus 13.3 in HFrEF versus HFpEF; WMD = −0.40 (−0.56, −0.24); p < 0.05; I² = 77.6%].

LA function estimated by LA reservoir, booster, and conduit GLS

Ten studies reported LA reservoir GLS (LAGLS_R) in patients with HFrEF (n = 3176), and seventeen studies reported LAGLS_R in patients with HFpEF (n = 4196). The pooled mean value of LAGLS_R was 9.0 versus 12.8% in the acute inpatient versus chronic outpatient setting for patients with HFrEF, and 18.9 versus 23.4% in the acute inpatient versus chronic outpatient setting for patients with HFpEF.
Table 2 Clinical characteristics of included studies

Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
Hoshida et al. [27]	Prospective multi-center observational study	CHF, inpatient setting	HFpEF ≥ 50%	105	78.5 ± 10.2	53.3%	41%	88%	24.3 ± 5.0	LA, E/e'				
Harada et al. [28]	Prospective single-center cohort study	AHF, compensatory inpatient setting	HFpEF ≥ 45%	92	73.0 ± 12.8	59%	47%	27%	72%	34%	22.3 ± 3.6	LA, E/e', e'		
Hwang et al. [29]	Prospective multi-center observational study	AHF, multi-center, inpatient setting	HFpEF ≥ 50%	1105	76.0 ± 9.6	60.6%	32.9%	32.4%	64.3%	29.3%	23.9 ± 3.7	LA, E/e', LA reservoir strain		
Shah et al. [30]	Retrospective cohort study	CHF, inpatient setting	HFpEF ≤ 40%	67	49.5 ± 11.4	34.3%	9%	64.2%	35.8%	31.8 ± 7.0	LA, E/e'			
Tanaka et al. [31]	Retrospective cohort study	CHF, outpatient setting	HFpEF ≤ 40%	69	57.5 ± 15.3	24.6%	8.7%	60.9%	36.2%	31.1 ± 7.3	LA, E/e'			
Castri- chim et al. [32]	Prospective single-center cohort study	CHF, outpatient setting	HFpEF < 40%	77	65 ± 11	12.1%	37.7%	45.5%	54.5%	40.3%	32%	LA, E/e', LA reservoir strain		
Valentim et al. [33]	Prospective single-center cohort study	CHF, outpatient setting	HFpEF < 40%	42	58.6 ± 11.1	17.1%	40%	31.4%	42.9%	28.1 ± 3.8	LA, E/e'			
Kurzawski et al. [34]	Retrospective single-center cohort	CHF, inpatient and outpatient settings	HFpEF < 25%	63	61.9 ± 10.9	4.8%	33.3%	54%	52.4%	26.2 ± 4.5	LA, E/e', LA reservoir strain			
Table 2 (continued)

Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
Park et al. [16]	Retrospective cohort study	AHF, multi-center, inpatient setting	HFpEF ≥ 50%	1191	73.4 ± 13.3	60.3%	35%	31%	62%	27.4%	23.8 ± 4.1	LAVi, E/e', LA reservoir strain, e'		
Deferm et al. [35]	Prospective single-center cohort study	ADHF (Acute decompensated HF), inpatient setting	HFpEF < 40%	2036	68.4 ± 14.1	38.3%	24.9%	36.3%	54.2%	34.4%	23.1 ± 4.3			
Shah et al. [36]	Randomized, multi-center double-blind placebo controlled trial	CHF, multi-centers (752 sites in 43 countries), inpatients and outpatient settings	HFpEF ≥ 45%	1097	74 ± 8	53%	35%	40%	94%	30%	29.9 ± 4.9	12%	LAVi, E/e', E/A, e'	
Reddy et al. [14]	Prospective single-center cohort study	CHF, single-center, outpatient setting	HFpEF ≥ 50%	238	68 ± 10	62%	17%	29%	90%	32%	32.9 ± 7.1	LAVi, LA Reservoir, conduit and contractile strain		
Modin et al. [18]	Retrospective single-center cohort study	CHF, outpatient setting	HFpEF ≤ 45%	818	66.4 ± 11.4	26.6%	15.3%	11.4%	41.2%	55.9%	26.4 ± 4.8	9%	LAVi, E/e', E/A, e'	
Table 2 (continued)

Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
Shintani et al. [37]	Retrospective single-center cross-sectional study	AHF, inpatient setting	HFpEF	≥ 50%	127	80.6 ± 8.1	50%	52%	41%	67%	23.2 ± 3.7	LAVi		
Wu et al. [38]	Prospective single-center cohort study	CHF, inpatient setting	HFpEF	≥ 50%	163	61.1 ± 15.3	61%	30.1%	60.1%	3.5%	25.9 ± 4.2	LAVi, E/e', E/A, e'		
Telles et al. [39]	Prospective single-center cohort study	CHF, inpatient setting	HFpEF	≥ 50%	49	69.4 ± 8.0	71.4%	26.5%	14%	67%	14%	30.2 ± 5.0	LAVi, E/e', LA reservoir strain, conduit, e', E/A	
Sobirin et al. [40]	A single-center, unblind, randomized, controlled clinical trial	CHF, outpatient setting	HFpEF	> 50%	30	62 ± 8	50%	73.3%						
Lundberg et al. [41]	Prospective single-center cohort study	CHF, inpatient setting	HFpEF	≥ 50%	92	73.0 ± 8.8	62%	48%	19%	69%	3%	26.6 ± 5.2	LAVi, E/e', LA reservoir strain, e', E/A	
Saikhan et al. [42]	Prospective single-center cohort study	CHF, outpatient setting	HFpEF	≥ 50%	110	63 ± 11	38.1%	excluded	48.1%	82.7%	60%	27.8 ± 5.4	LAVi, LA Reservoir, conduit and contractile strain	
Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
------------------	-------------------------	---------------	---------------------------------	-------------	------------------------	-------------	------------------	-------------------------	----------------------	----------------	-------------------------------	-------------	---	--
Burns [43]	Prospective single-center cohort study	CHF, outpatient setting	HFP EF with anemia	≥ 50%	224	65 ± 12	56%	26%	37%	79%	50%	32 ± 10	LAVi, E/e', e'	
Obokata et al. [44]	Prospective single-center cohort study	CHF, inpatient and outpatient settings	HFP EF without anemia	≥ 50%	195	63 ± 13	69%	27%	28%	75%	46%	33 ± 9	LAVi, E/e', e'	
Nagy et al. [45]	Subset of prospective, observational, multi-center study	CHF, inpatient setting	HFP EF	≥ 45%	86	72 ± 10	51%	60%	33%	79%	15%	30 ± 5	LAVi, E/e', LA reservoir strain, e, E/A ratio'	
Carluccio et al. [19]	Prospective single-center cohort study	CHF, outpatient setting	HFR EF	≤ 40%	405	65.2 ± 12.3	24%	26%	38%	26.6 ± 4.1	LAVi, E/e', LA reservoir strain, e, E/A ratio'			
Malagoli et al. [46]	Prospective single-center cohort study	CHF, outpatient setting	HFR EF	< 40%	286	67 ± 11	19%	64%					LAVi, LA reservoir strain	
Eroglu et al. [47]	Retrospective cohort study	CHF, outpatient setting	HFR EF	< 50%	59	57 ± 13	23%	84%					LAVi, E/e', E/A, e'	
Almeida et al. [48]	Retrospective case-control study	AHF, inpatient setting	HFP EF	≥ 50%	65	55%	47.7%	80%	33.8%				LAVi, E/e'	
				< 40%	65	43.1%	70.8%	44.6%						
Table 2 (continued)

Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
Liu et al. [49]	Prospective single-center study	CHF, inpatient setting	HFpEF	≥ 50%	55	61 ± 13	54.5%	43%	93%	33%	LAVi, E/e', LA reservoir strain, e', E/A			
Shah et al. [50]	Prospective multinational multi-center observational study	CHF, outpatient setting	HFpEF	≥ 40%	51	72.4 ± 9.0	63%	35%	25%	92%	16%	32.5 ± 10.7	LAVi, E/e', LA reservoir strain	
Xu et al. [51]	Retrospective, single-center cohort	CHF, inpatient setting	HFpEF	< 40%	28	38 ± 14	18%	20.6 ± 3.2	57.1%					
Saha et al. [52]	Retrospective, single-center cohort	CHF, outpatient setting	HFpEF	< 40%	49	72 ± 13	42%	8%	12%	68%	E/e', LA reservoir strain			
Abrahams et al. [53]	Prospective single-center observational study	CHF, inpatient setting	HFpEF	> 50%	114	59 ± 8	55%	64%	64%	16%	27 ± 3	LAVi, E/e'		
Modin et al. [54]	Retrospective single-center cohort	CHF, outpatient setting	HFpEF	< 45%	151	70.5 ± 9.2	21.2%	9.2%	43%	26.7 ± 5.1	LAVi, E/e'			
Batalli [55]	Prospective single-center cohort	CHF	HFpEF	NA	55	63.0 ± 6.8	Excluded	59%	41%	29 ± 4	E/e'			

| | | | | | | | | | | | | | | | | | |
Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
Sugimoto et al. [56]	Prospective single-center study	CHF, outpatient setting	HFpEF	> 50%	20	72.6 ± 10.3	60%	42%	74%	10%	28.3 ± 5.0		LAVi, E/e', LA reservoir strain, E/A	
Hage et al. [57]	Subset of prospective observational multicenter study	AHF, inpatient setting	HFpEF	< 40%	49	63.1 ± 12.9	31%	35%	63%	52%	26.7 ± 4.5		LAVi, E/e'	
Sargento et al. [58]	Prospective single-center observational study	CHF, outpatient setting	HFpEF	< 40%	203	67.8 ± 12.5	26.6%	26.1%	32%	88.7%	39.4%	27.2 ± 4.4	LAVi	
Aung et al. [59]	Prospective two center study	CHF	HFpEF	≥ 50%	38	65.2 ± 5.7	50%	13.2%	60.5%	47.4%	28.1 ± 2.0		LAVi, E/e', LA reservoir strain, contractile, e'	
Hung [60]	Prospective single-center cohort study	CHF, outpatient setting	HFpEF	≥ 50%	58	64.3 ± 12.4	53.4%	32.8%	74.1%		27.2 ± 3.7		E/e', LA reservoir strain, e', E/A	
Freed et al. [61]	Prospective single-center cohort study	CHF, outpatient setting	HFpEF	≥ 50%	308	65 ± 13	64%	26%	75%	50%	31.5 ± 8.6	14%	LAVi, LA Reservoir, conduit and contractile strain, E/e', E/A	
Unger et al. [62]	Prospective single-center cohort	CHF, outpatient setting	HFpEF with- out CKD	> 50%	154	60.9 ± 12.3	62%	22%	21%	68%	46%	31.8 ± 8.7	LAVi, E/e', LA reservoir, conduit and booster strain	

Table 2 (continued)
Author/year	Study design and setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured	
Georgievskaa-Ismail et al. [63]	Prospective single-center, cross-sectional study	HFpEF > 50%	145	69.3 ± 12.1	66%	30%	39%	83%	52%	31.5 ± 8.4	HFpEF with CKD	LAVi, E/e', LA reservoir, conduit and booster strain		
Melenovksy et al. [17]	Retrospective single-center cohort study	HFpEF ≥ 50%	101	71 ± 10	58%	42%	47%	93%	44%	34.0 ± 8.6	HFpEF > 50%	LAVi,e'		
Gracia et al. [64]	Prospective single-center cohort study	HFpEF < 50%	97	61 ± 13	20%	26%	41%	56%	46%	31.0 ± 6.9	HFpEF ≥ 50%	LAVi, E/e', E/A, e'		
Hasselberg et al. [65]	Prospective single-center Cross-sectional study	HFpEF ≥ 50%	37	58 ± 11	32.4%	14%	41%	60%	26 ± 4	Sanchis et al. [15]	HFpEF ≥ 50%	LAVi, E/e', E/A, e'		
Sanchis et al. [15]	Prospective single-center cohort	HFpEF ≥ 50%	63	76 ± 8	71.4%	39.7%	23.8%	85.7%	30 ± 5	CHF, outpatient setting	HFpEF ≥ 50%	LAVi, E/e', LA reservoir strain		
Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
-------------	--------------	---------------	---------------------------------	-------------	------------------------	-------------	-----------------	------------------------	------------------------	----------------	-------------------------------	-----------	----------------------------------	----------------------------------
Shah et al. [66]	International, multi-center, randomized, double blind placebo-controlled trial (with an echo substudy)	CHF, multi-center (270 sites in 6 countries)	HFrEF (TOPCAT-ECHO)	≥ 45%	935	69.9±9.7	49%	38%	40%	91%	60%	32.6±7.5	LAVi, E/e', LA reservoir, conduit and contractile strain, E/A, e'	
Santos et al. [67]	Echo substudy multicenter, international, randomized, double blind placebo-controlled trial	CHF, multicenters (65 centers in 13 countries)	HFrEF (PARAMOUNT trial)	≥ 45%	135	70±9	61%	23%	35%	92%	22%	29.6±5.7	LAVi, LA Reservoir, conduit and contractile strain, E/e', E/A	
Donal et al. [68]	Prospective, multicenter international observational study	AHF inpatient setting	HFrEF	<40%	32	74±12	37.5%	50%	43.8%	78.1%	43.5%	29±6	LAVi, E/e', E/A, e'	
Burke et al. [69]	Prospective single-center cohort	CHF, outpatient setting	HFrEF	≥ 50%	419	65±13	62%	26%	33%	77%	48%	33±9	14%	LAVi, E/e', e'
Motoki et al. [70]	Prospective single-center cohort	CHF, outpatient setting	HFrEF	≤ 35%	108	57±15	23%	excluded	27%	51%	45%		LAVi, E/e', LA reservoir strain, conduit and contractile strain, e'	
Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
----------------------	-----------------------	--	----------------------------------	-------------	------------------------	-------------	----------------	------------------------	------------------------	----------------	-------------------------------	-------------	--	--
Obokata et al. [71]	Prospective single-center cohort	CHF, out-patient setting	HFpEF ≥ 50%	40	77 ± 13	65%	35%	88%	22 ± 5				LA reservoir strain, E/e', e', E/A	
Carluccio et al. [72]	Prospective single-center observational study	CHF, out-patient setting	HFrEF < 45%	747	68 ± 12	22%	16%	22%	48%	26 ± 4	32%		LAVi, E/e'	
Gupta et al. [73]	Prospective on-going multi-communities cohort	CHF, out-patient setting	HFpEF ≥ 50%	85	61.6 ± 6.9	85%	42%	85%	13%	32.6 ± 5.9	0%		E/A	
Oh et al. [23]	International randomized trial	CHF, international (122 sites in 26 countries)	HFrEF ≤ 35%	31	60.9 ± 8.0	65%	68%	84%	32%	33.7 ± 9.6	10%		LAVi, E/e', E/A, e'	
Zile et al. [74]	Echo-cohort of placebo-controlled double-blind multi-center international parallel study	CHF, inpatient and out-patient settings	HFpEF (I-PRESERVE-Echo cohort) ≥ 45%	745	72 ± 7	62%	26%	25%	33%	30 ± 5	E/e', LA area, e'			
Tan et al. [75]	Prospective single-center cohort	CHF, out-patient setting	HFpEF ≥ 50%	50	72 ± 8	70%	excluded	30%	100%	18%	31 ± 5		LAVi	
Author/year	Study design	Study setting	Heart failure phenotype examined	LVEF cutoff	Number of patients (n)	Age (years)	Female sex (%)	Atrial fibrillation (%)	Diabetes mellitus (%)	Hypertension (%)	Ischemic heart disease (%)	BMI (kg/m²)	Moderate to severe mitral regurgitation	LA structure and functional parameters measured
-------------	--------------	---------------	----------------------------------	-------------	-----------------------	-------------	----------------	------------------------	-------------------	----------------	-----------------------------	-------------	---	---
Jaubert et al. [76]	Prospective single-center cohort	CHF, inpatient setting	HFrEF	≥ 45%	59	64 ± 12	37%	36%	58%	49%	27 ± 5	LAVi, E/e', e'		
Hinderliter et al. [77]	Prospective cohort	CHF, outpatient setting	HFrEF	≤ 40%	211	57 ± 12	31%	19%	44%	77%	43%	31.2 ± 7.2	LAVi	
Donal et al. [78]	Prospective multicenter cohort	CHF, outpatient setting	HFrEF	< 35%	75	59 ± 11	82.7%	-	34.7%	LAVi				
Jasiczpak et al. [79]	Prospective single-center cohort	CHF, outpatient setting	HFpEF without AF	≥ 50%	131	63.7 ± 8.0	73%	0	37%	89%	-	29.4 ± 4.1	LAVi, LA Reservoir, conduit and contractile strain, E/e', E/A	
CarluccioE [80]	Prospective single-center cohort	CHF, outpatient setting	HFpEF with AF	≥ 50%	39	67.4 ± 8.9	72%	100%	49%	97%	-	30.4 ± 4.3	-	

ADHF acute decompensated heart failure, AHF acute heart failure, CHF chronic heart failure, CKD chronic kidney disease, HFpEF heart failure with preserved ejection fraction, HFrEF heart failure with reduced ejection fraction, LA left atrial, LAVi left atrial volume index, e' mitral annular early diastolic velocity by tissue doppler, E/A the ratio between early and late mitral inflow velocity by doppler, E/e' the ratio between early mitral inflow velocity and mitral annular early diastolic velocity.
Table 3 Echocardiographic characteristics of included studies

Author/year	HF phenotype	Number of patients (n)	LAVi	LAGLSg (%)	LAGLSr (%)	LAGLSc (%)	E/e'	MV E/A	Mitral annulus e'	LVEF	LVGLS	Software for Speckle tracking analysis
Hoshida et al. [27]	HFpEF	105	47.6 ± 24.2	14.4 ± 5.7	60.9 ± 6.9							
Harada et al. [28]	HFpEF	92	54.6 ± 26.7	17.7 ± 3.7	57.8 ± 9.4	−13.9 ± 4.4	EchoPAC					
Hwang et al. [29]	HFpEF	1105	49.9(34.5-69.8)	18.6 ± 11.6	59.3 ± 6.6	−15.1 ± 5.0	TomTec					
Park et al. [16]	HFpEF	1191	63 ± 48.8	19.1 ± 11.6	59.1 ± 5.9	TomTec						
Sobrin et al. [40]	HFpEF	30	33.0 ± 8.0	18.6 ± 3.4	60.0 ± 7.0							
Shah et al. [36]	HFpEF	1097	38.9 ± 15.5	12.6 ± 5.7	58.6 ± 9.8							
Reddy et al. [14]	HFpEF	238	32 ± 15	29 ± 16	14 ± 6	−15 ± 3	Syngo					
Shintani et al. [37]	HFpEF	127	66.0 ± 27.4	14.6 ± 4.6	60.8 ± 9.0							
Wu et al. [38]	HFpEF	163	37.1 ± 8.1	16.5 ± 2.4	68.0 ± 9.0							
Telles et al. [39]	HFpEF	49	41.5 ± 15.2	12.9 ± 5.7	62.6 ± 6.1	−18.7 ± 2.3	TomTec					
Lundberg et al. [41]	HFpEF	92	43.0 ± 14.0	13.4 ± 6.6	60.7 ± 5.9	−17.3 ± 4.4	EchoPAC					
Shah et al. [50]	HFpEF-absent CMD	51	36.5 ± 11	19.8 ± 8.3	60.9 ± 6.4	−17 ± 3.5	TomTec					
Shah et al. [50]	HFpEF-present CMD	151	39.3 ± 13.4	15.0 ± 7.7	58.5 ± 8.1	−15.7 ± 3.5	TomTec					
Abohammar et al. [53]	HFpEF	114	47.0 ± 7.0	12.2 ± 2.0	61.0 ± 3.0	−13.5 ± 1.5	EchoPAC					
Saikhan et al. [42]	HFpEF	224	36.6 ± 15.8	16.1 ± 8.8	61.0 ± 7.0							
Burns et al. [43]	HFpEF-Anemia	195	31.3 ± 11.9	14.0 ± 7.3	61.0 ± 6.0							
Obokata et al. [44]	HFpEF	271	44 ± 15	16 ± 8	62.7							
Nagy et al. [45]	HFpEF	86	44 ± 16	13.3 ± 11.0	62.5 ± 7.0	−15 ± 3.6	TomTec					
Almeida et al. [48]	HFpEF	65	48.0 ± 19.4	16.0 ± 8.1	58.0 ± 5.9	−14.0 ± 3.7	EchoPAC					
Liu et al. [49]	HFpEF	55	37.5 ± 8.3	20.4 ± 7.4	59.5 ± 6.5	EchoPAC						
Batalli et al. [55]	HFpEF	55	9.4 ± 4.7	0.8 ± 0.3	59.6 ± 8.7	Philips iE33						
Sugimoto et al. [56]	HFpEF	20	52.0 ± 24.0	20.0 ± 8.0	56.0 ± 11.0	EchoPAC						
Hage et al. [57]	HFpEF	86	44.4 ± 11.6	11.0 ± 4.2	63.3 ± 7.4							
Freed et al. [61]	HFpEF	308	34 ± 13.7	18.3 ± 7.7	62.1 ± 6.3	−15.7 ± 1.8	EchoPAC					
Aung et al. [59]	HFpEF	38	43.7 ± 14.4	70.0 ± 2.5	62.9 ± 4.2							
Hung et al. [60]	HFpEF	58	28.2 ± 6.4	59.1 ± 19	61.6 ± 3.6	"-9.1 ± 6.3						
Unger et al. [62]	HFpEF-no CKD	154	32.5 ± 12.0	19.6 ± 8.9	61.5 ± 6.3	−18.2 ± 4.0	TomTec					
Author/year	HF phenotype	Number of patients (n)	LAVi	LAGLSp (%)	LAGLSq (%)	LAGLSc (%)	E/e'	MV E/A	Mitral annulus e'	LVEF	LVGLS	Software for Speckle tracking analysis
-------------	--------------	------------------------	------	------------	------------	------------	------	--------	-----------------	------	-------	-----------------------------------
Shah et al. [66]	HFrEF-CKD	145	36.5±15.4	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Melenovsky et al. [17]	HFrEF	101	41.0±12.0	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Hasselberg et al. [65]	HFrEF	37	45.0±22.0	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Gracia et al. [64]	HFrEF	28	32.6±12.0	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Sandhis et al. [15]	HFrEF	63	58.9±23.3	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Santos et al. [67]	HFrEF	135	33.4±11.5	24.6±0.6	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Donal et al. [68]	HFrEF	539	49.4±17.8	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Burk et al. [69]	HFrEF	419	34.2±14.3	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Obokata et al. [71]	HFrEF	40	22.7±6.6	12.3±5.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Gupta et al. [73]	HFrEF	85	51.0±20.0	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Zile et al. [74]	HFrEF	346	30.4±9.2	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Tan et al. [75]	HFrEF	50	30.7±12.6	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Jaffet et al. [76]	HFrEF	67	38.1±12.5	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Shah et al. [30]	HFrEF (recovered)	69	47.1±11.7	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Tanaka et al. [31]	HFrEF	205	51.0±20.0	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Castrichini et al. [32]	HFrEF	77	57.0±26.0	10.3±6.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Valentim et al. [33]	HFrEF	42	51.5±22.6	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Deferm et al. [35]	HFrEF	63	69.0±26.0	6.4±2.2	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Park et al. [16]	HFrEF	2036	58.1±28.8	11.7±8.1	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Kurzawski et al. [34]	HFrEF	63	62.1±13.3	8.9±2.0	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Modini et al. [18]	HFrEF	818	30.9±13.8	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Shimizu et al. [37]	HFrEF	617	67±24.4	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Wu et al. [38]	HFrEF	34	38.4±6.5	28.8±14.9	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Lundberg et al. [41]	HFrEF	72	57.7±18.5	7.7±4.2	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Malagoli et al. [36]	HFrEF	286	46.2±18.2	19.4±9.4	15.9±7.9	15.4±7.2	14.8±7.6	1.4±0.7	8.5±3.4	60.9±6.6	−16.8±4.1	TomTec
Table 3 (continued)

Author/year	HF phenotype	Number of patients (n)	LAVi	LAGLSR (%)	LAGLSB (%)	LAGLSC (%)	E/e'	MV E/A	Mitral annulus e'	LVEF	LVGLS	Software for Speckle tracking analysis
Carluccio et al. [19]	HFrEF	405	52.6±18.6	15.8±7.0	14.3±5.2	1.4±1.2	5.4±1.8	30.0±7.4	−8.3±2.9	EchoPAC		
Eroglu et al. [47]	HFrEF	59	42.7±22.1	17.0±6.0	1.7±1.7	5.3±1.3	33.3±10.4	−9.7±4.4	Philips QLAB			
Almeida et al. [48]	HFrEF	65	46.7±13.3	17.3±5.2	2.7±0.8	17.0±5.4	30.0±11.9	−7.7±2.2	EchoPAC			
Xu et al. [51]	HFrEF-event	28	71.0±22.0	19.3±10.7	2.1±1.2	19.0±5.6	30.0±11.1	−7.7±2.2	EchoPAC			
Xu et al. [51]	HFrEF-event-free	17	57.0±16.0	20.5±11.1	2.1±1.2	19.0±5.6	30.0±11.1	−7.7±2.2	EchoPAC			
Saha et al. [52]	HFrEF	49	11.6±11.6	15.0±10	31±8	−7±3	EchoPAC					
Modin et al. [54]	HFrEF	151	42.1±19.0	11.9±5.3	8.6±2.6	26.2±9.4	−10.1±3.6	EchoPAC				
Batalii et al. [55]	HFrEF	56	13.5±6.4	1.3±0.9	5.3±2.2	35±7.5	EchoPAC					
Sugimoto et al. [56]	HFrEF	49	55.0±29.0	15.1±10.1	24.0±13.0	1.5±1.1	31.0±8.0	EchoPAC				
Sargento et al. [58]	HFrEF	203	42.3±18.3	1.4±1.0	28.2±8.4	−8.7±3.3	EchoPAC					
Melenovsky et al. [17]	HFrEF	97	50.0±17.0	6.2±2.1	24±9.7	EchoPAC						
Sanchis et al. [15]	HFrEF	32	57.8±20.8	6.5±5.4	11.6±7.6	34.0±10.0	−9.5±4.5	EchoPAC				
Motoki et al. [30]	HFrEF	108	42.0±15.0	14.5±8.2	7.7±5.7	20.0±12.0	1.7±1.4	7.2±4.5	25.0±6.0	EchoPAC		
Carluccio et al. [72]	HFrEF	747	43.9±18.8	14.7±8.0	1.77±1.56	6.7±2.8	29.0±7.0	Syngo				
Gupta et al. [73]	HFrEF	31	41.9±15.2	17.6±9.6	1.3±1.1	6.0±3.0	28.9±8.3	EchoPAC				
Oh et al. [23]	HFrEF	2006	49±23	16.7±6.8	1.53±0.87	5.9±1.5	60±6	−15.4±3.5	EchoPAC			

HFpEF heart failure with preserved ejection fraction, **HFrEF** heart failure with reduced ejection fraction, **HF** heart failure, **CMD** coronary microvascular dysfunction, **CKD** chronic kidney dysfunction, **GLS** global longitudinal strain, **LVGLS** left ventricle global longitudinal strain, **LVEF** left ventricle ejection fraction, **LA** left atrial, **LAVi** left atrial volume index, **LAGLSR** left atrial global longitudinal strain at reservoir phase, **LAGLSB** left atrial global longitudinal strain at booster phase, **LAGLSC** left atrial global longitudinal strain at conduit phase, **e’** mitral annular early diastolic velocity by tissue Doppler, **MV E/A** the ratio between early and late mitral inflow velocity by Doppler, **E/e’** the ratio between early mitral inflow velocity and mitral annular early diastolic velocity.
versus chronic outpatient setting for HFrEF patients. Four out of 61 studies in the chronic outpatient setting reported LAGLSR in both patients with HFrEF (n = 3058) and HFrEF (n = 1877). LAGLSR was worse in patients with HFrEF as compared to patients with HFrEF [8.5% versus 23.6%; WMD = 16.3% (22.05, 8.61); p < 0.001, I² = 77.6%]. Besides, the relationship between LAVi and LAGLSR (Fig. 2) was significant in HFrEF (estimated coefficient −1.08, p = 0.009, R² = 0.525), but not in HFrEF (estimated coefficient −0.44, p = 0.06, R² = 0.447). On the other hand, the relationship between LAGLS with LVGLS was not significant in neither HFrEF (estimated coefficient 1.35, p = 0.30, R² = 0.01) nor HFrEF (estimated coefficient 2.81, p = 0.41, R² = 0.006). Two studies reported LA booster GLS (LAGLSB) in patients with HFrEF (n = 140), and ten studies reported LAGLSB in patients with HFrEF (n = 1320). The pooled mean value of LAGLSB was 7.7% versus 13.9% between patients with HFrEF and HFrEF. Five studies reported LA conduit GLS (LAGLSC) in patients with HFrEF (n = 1173) in the chronic ambulant clinical setting, and the pooled mean value LAGLSC was 15.8% in patients with HFrEF. No included studies reported LAGLSC in patients with HFrEF. Given the very limited number of studies comparing LA booster and conduit function in patients with HFrEF versus HFrEF, it is hard to determine how these two LA phasic function differ in patients with HFrEF versus HFrEF. Lastly, the details of prognostic information for each LA parameter and the adjusted covariates from included studies were summarized in supplementary online (Tables S5 and S6).

Discussion

To the best of our knowledge, this is the first systematic review and meta-analysis assessing and comparing LA structural and functional echocardiographic parameters and their clinical relevance in patients with HFrEF versus HFrEF. It
A change in LA structure and function is a complex, dynamic and heterogeneous process that may be different between phenotypes of HF. LA dysfunction and increase of LA pressure have long been considered as hallmarks of HFrEF, whereas HFrEF is generally considered as a left ventricular disease [3, 20, 21]. This might explain the discrepancy in the number of studies focusing on LA dysfunction in HFrEF versus HFrEF. However, despite a greater burden of AF in patients with HFrEF, our data found that LA function was worse in patients with HFrEF than patients with HFrEF. This might be related to the greater burden of moderate to severe functional MR in patients with HFrEF. HFrEF is more associated with an eccentric ventricular remodelling, resulting in tethering of the mitral leaflets [22, 23]. In our review, we showed that in HFrEF patients functional MR was less prevalent, but not negligible, and may be more the result of mitral annular dilation due to the high incidence of AF in this subgroup.

LA reservoir peak longitudinal strain, inherent to its nature as a strain, is dependent on its baseline length, with maximal elongation of the LA during LV systole, suggesting its high dependence on LV longitudinal strain as well [24]. Carluccio et al. showed that LA reservoir GLS was more strongly associated with LVGLS beyond LA volume and E/e’ in patients with HFrEF, supporting the significant contribution of LV systolic dysfunction to LA dysfunction in patients with HFrEF [19]. Comparatively, LA mechanical dysfunction in patients with HFrEF, particularly in the setting of AF, is usually not accompanied by substantial changes of LV systolic function, which suggests LA mechanical dysfunction to be disproportionate to LV systolic dysfunction in such patients [8]. Hence, a decrease of LV longitudinal function, as we show in patients with HFrEF, might impact LA reservoir function more in patients with HFrEF than HFrEF [17, 20], suggesting that the concept of LA myopathy is not only subject to HFrEF, but to HFrEF as well.

Despite worse LA global function in HFrEF than HFrEF, the prevalence of AF was higher in patients with HFrEF than HFrEF. AF and HFrEF share many convergent metabolic risk factors, including obesity that promote systematic inflammatory processes. Expansion of epicardial fat tissue may act as a local source of inflammation, amplifying ongoing systemic inflammatory processes [20]. LA dysfunction in HFrEF is likely associated with a series of inflammatory cascades resulting in coupled LA endocrine and regulatory dysfunctions. This is supported by data from Patel et al. who showed that LA reservoir strain was associated with biomarkers of neurohormonal activation [25]. However, the exact mechanism of how the LA mechanical, regulatory, and endocrine functions are coupled together, and particular which factor is the main driving component of LA dysfunction in both settings of HFrEF and HFrEF remains unknown.
Although the prognostic value of LA reservoir strain has been described in several studies that were included in our systematic review both in patients with HFpEF and HFrEF [16, 18, 19], future prognostic studies are warranted to investigate whether LA dysfunction in HFrEF and HFpEF are two distinct processes. A better understanding of different forms of LA dysfunction in HFrEF versus HFpEF may have important clinical implications. Given the distinct LA reservoir GLS in patients with HFrEF versus HFpEF, this measurement might serve as a potential marker to better phenotype patients with HF. For patients with HFpEF, a novel therapeutic intervention which specifically targets the LA by creating a shunt at the atrial level to offload LA pressure looks promising from preliminary data [26]. Given our finding of higher LA pressure and worse LAGLS in HFrEF, we might cautiously postulate a potential benefit of this novel device in patients with HFrEF as well.

Limitations

There are several limitations of the current systematic review. First, our review has the inherent limitation of selection and reporting bias, which was minimized by a thorough selection procedure and quality assessment. Secondly, we only focused on primary echocardiographic parameters assessing LA structures and function that have been widely recommended in guidelines. Other echocardiographic parameters such as LAEF and other LA-related parameters assessed by other imaging modalities were not included in the current review. Thirdly, we were not able to account for all differences in clinical characteristics due to a lack of individual-level data. For example, the definition (and thus the extent) of ischemic cardiomyopathy varies study by study, which hampers a thorough analysis of its (possibly) confounding role. Fourth, we were unable to report the weighted HR of comprehensive LA structural and functional parameters except for LA reservoir GLS due to the limited numbers of studies, different outcome measures, and lack of confounder adjustments. Last but not least, the details of averaging the RR interval for the strain measurement in the setting of AF were not addressed in most of the studies.

Conclusion

Although left atrial abnormalities have been proposed as a hallmark of HFpEF, we found that LA structure and function are worse in patients with HFrEF than HFpEF. Thus, the significant pathophysiological insight of intrinsic LA myopathy should be equally emphasized in both patients with HFrEF and patients with HFpEF.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10741-021-10204-8.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Triposkiadis F, Pieske B, Butler J, Parissis J, Giamouzis G, Skoularigis J, Brutsaert D, Boudoulas H (2016) Global left atrial failure in heart failure. Eur J Heart Fail 18:1307–1320. https://doi.org/10.1002/ejhf.645
2. Bosch L, Lam CSP, Gong L, Chan SP, Sim D, Yeo D, Jaufeerally F, Leong KTG, Ong HY, Ng TP, Richards AM, Arslan F, Ling LH (2017) Right ventricular dysfunction in left-sided heart failure with preserved versus reduced ejection fraction. Eur J Heart Fail 19:1664–1671. https://doi.org/10.1002/ejhf.873
3. Lam CSP, Voors AA, de Boer RA, Solomon SD, van Veldhuisen DJ (2018) Heart failure with preserved ejection fraction: from mechanisms to therapies. Eur Heart J 39:2780–2792. https://doi.org/10.1093/eurheartj/ehy301
4. Patel RB, Shah SJ (2020) Therapeutic targeting of left atrial myopathy in atrial fibrillation and heart failure with preserved ejection fraction. JAMA Cardiol 5:497–499. https://doi.org/10.1001/jamacardio.2020.0136
5. Khan MS, Memon MM, Murad MH, Vaduganathan M, Greene SJ, Hall M, Triposkiadis F, Lam CSP, Shah AM, Butler J, Shah SJ (2020) Left atrial function in heart failure with preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 22:472–485. https://doi.org/10.1002/ejhf.1643
6. Simmonds SJ, Cuijpers I, Heymans S, Jones EAV (2020) Cellular and molecular differences between HFpEF and HFrEF: a step ahead in an improved pathological understanding. Cells 9:242. https://doi.org/10.3390/cells90100242
7. Dunlay SM, Roger VL, Redfield MM (2017) Epidemiology of heart failure with preserved ejection fraction. Nat Rev Cardiol 14:591–602. https://doi.org/10.1038/nrrcardio.2017.65
8. Packer M, Lam CSP, Lund LH, Redfield MM (2020) Independence of atrial fibrillation and heart failure with a preserved ejection fraction reflects a common underlying atrial and ventricular myopathy. Circulation 141:4–6. https://doi.org/10.1161/CIRCULATIONAHA.119.042996
9. Moher D, Shamseer L, Clarke M, Gherzi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, Group P-P (2015) Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 4:1. https://doi.org/10.1186/2046-4053-4-1
35. Deferm S, Martens P, Verbrugge FH, Bertrand PB, Dauw J, Verhaert D, Dupont M, Vandervoort PM, Mullens W (2020) LA mechanics in decompensated heart failure: insights from strain echocardiography with invasive hemodynamics. JACC Cardiovascular Imaging 13:878–887. https://doi.org/10.1016/j.jcvi.2019.12.008

36. Shah AM, Cikes M, Prasad N, Li G, Getchevski S, Claggett B, Rizkala A, Lukashevich I, O'Meara E, Ryan JJ, Shah SJ, Mullens W, Zile MR, Lam CSP, McMurray JvJ, Solomon SD, Investigators P-H (2019) Echocardiographic features of patients with heart failure and preserved left ventricular ejection fraction. J Am Coll Cardiol 74:2858–2873. https://doi.org/10.1016/j.jacc.2019.09.063

37. Shintani Y, Takahama H, Hamatani Y, Nishimura K, Kanzaki H, Kusano K, Noguchi T, Toyoda K, Yasuda S, Izumi C (2019) Ischemic stroke risk during post-discharge phases of heart failure: association of left ventricular concentric geometry. Heart Vessels 35:564–575. https://doi.org/10.1007/s00380-019-01522-x

38. Wu CK, Lee JK, Hsu JC, Su MM, Wu YF, Lin TT, Lan CW, Hwang JJ, Lin LY (2020) Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur J Heart Fail 22:445–454. https://doi.org/10.1002/ejhf.1617

39. Telles F, Nanayakkara S, Evans S, Patel HC, Mariani JA, Vizi D, William J, Marwick TH, Kaye DM (2019) Impaired left atrial strain predicts abnormal exercise haemodynamics with preserved ejection fraction. Eur J Heart Fail 21:495–505. https://doi.org/10.1002/ejhf.1399

40. Sobirin MA, Herry Y, Sofia SN, Uddin I, Rifqi S, Tsutsui H, Shah SJ, Lam CSP, Svedlund S, Saraste A, Tan RS, Hage C, Chen J, Boenning S, Bethel MA, O’Connor CM, Vasan RS (2019) Effects of coenzyme Q10 supplementation on diastolic function in patients with heart failure with preserved ejection fraction. Drug Discov Ther 13:38–46. https://doi.org/10.5582/ddt.2019.01004

41. Lundberg A, Johnson J, Hage C, Bäck M, Merkely B, Venkateshvaran A, Lund LH, Nagy AI, Manouras A (2018) Left atrial strain improves estimation of filling pressures in heart failure: a simultaneous echocardiographic and invasive haemodynamic study. Clinical Res Cardiol 107:703–715. https://doi.org/10.1007/s00392-018-1399-8

42. Al Saikhan L, Hughes AD, Chung WS, Alsharqi M, Nihoyannopoulos P (2019) Left atrial function in heart failure with mid-range ejection fraction differs from that of heart failure with preserved ejection fraction: a 2D speckle-tracking echocardiographic study. Eur Heart J Cardiovasc Imaging 20:279–290. https://doi.org/10.1093/ehjci/jey171

43. Burns JA, Sanchez C, Beussink L, Daruwalla F, Freed BH, Selvaraj S, Shah SJ (2018) Lack of association between anemia and intrinsic left ventricular diastolic function or cardiac mechanics in heart failure with preserved ejection fraction. Am J Cardiol 122:1359–1365. https://doi.org/10.1016/j.amjcard.2018.06.045

44. Obokata M, Reddy YNV, Melenovsky V, Pislaru S, Borlaug BA (2019) Deterioration in right ventricular structure and function over time in patients with heart failure and preserved ejection fraction. Eur Heart J 40:689–697. https://doi.org/10.1093/eurheartj/ehy809

45. Nagy AI, Hage C, Merkely B, Donal E, Daubert JC, Linde C, Lund LH, Manouras A (2018) Left atrial rather than left ventricular impaired mechanics are associated with the pro-fibrotic ST2 marker and outcomes in heart failure with preserved ejection fraction. J Intern Med 283:380–391. https://doi.org/10.1111/joim.12723

46. Malagoli A, Rossi L, Bursi F, Zanni A, Sticcozzi C, Piepoli MF, Villani GQ (2019) Left atrial function predicts cardiovascular events in patients with chronic heart failure with reduced ejection fraction. J Am Soc Echocardiogr 32:248–256. https://doi.org/10.1016/j.echo.2018.08.012

47. Ergolü E, Kilicgedik A, Kahveci G, Bakal RB, Kırma C (2018) Left atrial distribution width and its relationship with global longitudinal strain in patients with heart failure with reduced ejection fraction: a study using two-dimensional speckle tracking echocardiography. Kardiol Pol 76:580–585. https://doi.org/10.5603/KP.a2017.0256

48. Almeida P, Rodrigues J, Lourenço P, Maciel MJ, Bettencourt P (2018) Left atrial volume index is critical for the diagnosis of heart failure with preserved ejection fraction. J Cardiovasc Med (Hagerstown) 19:304–309. https://doi.org/10.2439/JCM.0000000000000651

49. Liu S, Guan Z, Zheng X, Meng P, Wang Y, Li Y, Zhang Y, Yang J, Jia D, Ma C (2018) Impaired left atrial systolic function and inter-atrial dyssynchrony may contribute to symptoms of heart failure with preserved left ventricular ejection fraction: A comprehensive assessment by echocardiography. Int J Cardiol 257:177–181. https://doi.org/10.1016/j.ijcard.2017.12.042

50. Shah SJ, Lam CSP, Svedlund S, Saraste A, Hage C, Tan RS, Beussink-Nelson L, Jiang Fauxen U, Fermer ML, Broberg MA, Gan LM, Lund LH (2018) Prevalence and correlates of coronary microvascular dysfunction in heart failure with preserved ejection fraction: PROMIS-HFpEF. Eur Heart J 39:3439–3450. https://doi.org/10.1093/eurheartj/ehy531

51. Xu B, Kawata T, Daimon M, Kimura K, Nakao T, Lee SC, Hirokawa M, Yoshinaga A, Watanabe M, Yatomi Y, Komuro I (2018) Prognostic value of a simple echocardiographic parameter, the right ventricular systolic to diastolic duration ratio, in patients with advanced heart failure with non-ischemic dilated cardiomyopathy. Int Heart J 59:968–975. https://doi.org/10.1536/ihj.17-475

52. Saha SK, Luo XX, Gopal AS, Govind SC, Fang F, Liu M, Zhang Q, Ma C, Dong M, Kiotsekoglou A, Yu CM (2018) Incremental prognostic value of multichamber deformation imaging and renal function status to predict adverse outcome in heart failure with reduced ejection fraction. Echocardiography 35:450–458. https://doi.org/10.1111/echo.13821

53. Abbohmarr S, ElSaiedy MA, Fathalla D, Aldosarri M (2017) Baseline characteristics of patients with heart failure and preserved ejection fraction at admission with acute heart failure in Saudi Arabia. Egypt Heart J 69:21–28. https://doi.org/10.1016/j.ehj.2016.08.002

54. Modin D, Sengelov M, Jorgensen PG, Bruun NE, Olsen FJ, Dons M, Fritz Hansen T, Jensen JS, Birring-Sorensen T (2018) Global longitudinal strain corrected by RR interval is a superior predictor of all-cause mortality in patients with systolic heart failure and atrial fibrillation. ESC Heart Fail 5:311–318. https://doi.org/10.1002/ehf2.12220

55. Batali A, Ibrahim P, Bytyci I, Ashmeti A, Haliti E, Elezi S, Henein MY, Bajraktari G (2017) Different determinants of exercise capacity in HFrEF compared to HFrEF. Cardiovascular Ultrasound 15:12. https://doi.org/10.1186/s12947-017-0103-x

56. Sugimoto T, Bandera F, Generati G, Alfonsetti E, Bussadori C, Guazzi M (2017) Left atrial function dynamics during exercise in heart failure: pathophysiological implications on the right heart and exercise ventilation inefficiency. JACC Cardiovascular Imaging 10:1253–1264. https://doi.org/10.1016/j.jcmg.2016.09.021

57. Hage C, Michaelsson E, Linde C, Donal E, Daubert JC, Gan LM, Lund LH (2017) Inflammatory biomarkers predict heart failure severity and prognosis in patients with heart failure with preserved ejection fraction: a holistic proteomic approach. Circ Cardiovasc Genet 10(1). https://doi.org/10.1161/CIRCGENETICS.116.001633

58. Sartori L, Vicente Simoes A, Longo S, Lousada N, Palma Dos Reis R (2017) Left atrial function index predicts long-term survival in stable outpatients with systolic heart failure. Eur Heart J Cardiovasc Imaging 18:119–127. https://doi.org/10.1093/ehjci/jew196

59. Aung SM, Guler A, Guler Y, Huraibat A, Karabay CY, Akdemir I (2017) Left atrial strain in heart failure with preserved ejection fraction. Herz 42:194–199. https://doi.org/10.1007/s00059-016-4456-y
60. Hung CL, Yun LH, Lai YH, Sung KT, Bezerra HG, Kuo JY, Hou CJ, Chao TF, Buiwer BE, Yeh HI, Shih SC, Lin SJ, Cury RC (2016) An observational study of the association among interstitial adiposity by computed tomography measure, insulin resistance, and left atrial electromechanical disturbances in heart failure. Medicine (Baltimore) 95:e3912. https://doi.org/10.1097/MD.0000000000030912

61. Freed BH, Daruwalla V, Cheng JY, Aguilar FG, Beussink L, Choi A, Klein DA, Dixon D, Baldridge A, Rasmussen-Torvik Lj, Maganti K, Shah SJ (2016) Prognostic utility and clinical significance of cardiac mechanics in heart failure with preserved ejection fraction: importance of left atrial strain. Circ Cardiovasc Imaging 9:e003754. https://doi.org/10.1161/CIRCIMAGING.115.003754

62. Unger ED, Dubin RF, Deo R, Daruwalla V, Friedman JL, Medina C, Beussink L, Freed BH, Shah SJ (2016) Association of chronic kidney disease with abnormal cardiac mechanics and adverse outcomes in patients with heart failure and preserved ejection fraction. Eur J Heart Fail 18:103–112. https://doi.org/10.1002/ejhf.445

63. Georgievska-Ismail L, Zafirovska P, Hristovski Z (2016) Evaluation of the role of left atrial strain using two-dimensional speckle tracking echocardiography in patients with diabetes mellitus and heart failure with preserved left ventricular ejection fraction. Diab Vasc Dis Res 13:384–394. https://doi.org/10.1177/1479164116655558

64. Garcia EL, Menezes MG, Stefaní Cde M, Danzmann LC, Torres PV, Bauer F, Sportouch-Dukhan C, Drouet E, Daubert JC, Linde C, Roulaud M, Ingels A, Carre F, Alunni G, Reboldi G, Marzilli M, Ambrosio G (2013) The “Echo Heart Failure Score”: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail 15:868–876. https://doi.org/10.1009/eurjhf/hf0308

65. Gupta DK, Shah AM, Castagno D, Takeuchi M, Loehr LR, Fox ER, Butler KR, Mosley TH, Kitzman DW, Solomon SD (2013) Heart failure with preserved ejection fraction in African Americans: The ARIC (Atherosclerosis Risk In Communities) study. JACC Heart Fail 1:156–163. https://doi.org/10.1016/j.jchf.2013.01.003

66. Zile MR, Gottfried HS, Hetzel SJ, McMurray JJ, Komajda M, McKeilvé R, Baicu CF, Massie BM, Carson PE, Investigators IP (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124:2491–2501. https://doi.org/10.1161/CIRCULATIONAHA.110.110131

67. Sant AB, Kraigher-Krainer E, Gupta DK, Claggett B, Zile MR, Pieks Boors AA, Lefkowitz M, Bransford T, Shi V, Packer M, McMurray JJ, Shah AM, Solomon SD, Investigators P (2014) Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail 16:1096–1103. https://doi.org/10.1002/ejhf.147

68. Dongal E, Lundy LH, Oger E, Hage C, Persson H, Reynaud A, Enneazt PV, Bauer F, Sportouch-Dukhan C, Droet E, Daubert JC, Linde C, KaRen I (2014) Baseline characteristics of patients with heart failure and preserved ejection fraction included in the Karolinska Rennes (KaRen) study. Arch Cardiovasc Dis 107:112–121. https://doi.org/10.1016/j.acvd.2013.11.002

69. Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, Fox J, Chakrabarti S, Sauer AJ, Rich JD, Freed BH, Shah SJ (2014) Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail 7:288–299. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000854

70. Motoki H, Borowski AG, Shrestha K, Troughton RW, Martin MG, Tang WH, Klein AL (2013) Impact of left ventricular diastolic function on left atrial mechanics in systolic heart failure. Am J Cardiol 112:821–826. https://doi.org/10.1016/j.amjcard.2013.05.007

71. Obokata M, Negishi K, Kurosawa K, Arima H, Tateno R, Ui G, Tange S, Arai M, Kurabayashi M (2013) Incremental diagnostic value of la strain with leg lifts in heart failure with preserved ejection fraction. JACC Cardiovasc Imaging 6:749–758. https://doi.org/10.1016/j.jcmg.2013.04.006

72. Carluccio E, Dini FL, Biagioli P, Lauciello R, Simioniuc A, Zuchi C, Alunni G, Riccioli G, Marzilli M, Ambrosio G (2013) The “Echo Heart Failure Score”: an echocardiographic risk prediction score of mortality in systolic heart failure. Eur J Heart Fail 15:868–876. https://doi.org/10.1009/eurjhf/hf0308

73. Gupta DK, Shah AM, Castagno D, Takeuchi M, Loehr LR, Fox ER, Butler KR, Mosley TH, Kitzman DW, Solomon SD (2013) Heart failure with preserved ejection fraction in African Americans: The ARIC (Atherosclerosis Risk In Communities) study. JACC Heart Fail 1:156–163. https://doi.org/10.1016/j.jchf.2013.01.003

74. Zile MR, Gottfried HS, Hetzel SJ, McMurray JJ, Komajda M, McKeilvé R, Baicu CF, Massie BM, Carson PE, Investigators IP (2011) Prevalence and significance of alterations in cardiac structure and function in patients with heart failure and a preserved ejection fraction. Circulation 124:2491–2501. https://doi.org/10.1161/CIRCULATIONAHA.110.110131

75. Sant AB, Kraigher-Krainer E, Gupta DK, Claggett B, Zile MR, Pieks Boors AA, Lefkowitz M, Bransford T, Shi V, Packer M, McMurray JJ, Shah AM, Solomon SD, Investigators P (2014) Impaired left atrial function in heart failure with preserved ejection fraction. Eur J Heart Fail 16:1096–1103. https://doi.org/10.1002/ejhf.147

76. Dongal E, Lundy LH, Oger E, Hage C, Persson H, Reynaud A, Enneazt PV, Bauer F, Sportouch-Dukhan C, Droet E, Daubert JC, Linde C, KaRen I (2014) Baseline characteristics of patients with heart failure and preserved ejection fraction included in the Karolinska Rennes (KaRen) study. Arch Cardiovasc Dis 107:112–121. https://doi.org/10.1016/j.acvd.2013.11.002

77. Burke MA, Katz DH, Beussink L, Selvaraj S, Gupta DK, Fox J, Chakrabarti S, Sauer AJ, Rich JD, Freed BH, Shah SJ (2014) Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail 7:288–299. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000854

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.