Harmonic functions with finite p-energy on lamplighter graphs are constant.

Antoine Gournay*

Abstract

The aim of this note is to show that lamplighter graphs where the space graph is infinite and at most two-ended and the lamp graph is at most two-ended do not admit harmonic functions with gradients in ℓ^p (i.e. finite p-energy) for any $p \in [1, \infty]$ except constants (and, equivalently, that their reduced ℓ^p cohomology is trivial in degree one). This answers a question of Georgakopoulos [3] on functions with finite energy in lamplighter graphs. The proof relies on a theorem of Thomassen on spanning lines in squares of graphs.

1 Introduction

Given two graphs $H = (X, E)$ (henceforth the "space" graph) and $L = (Y, F)$ (henceforth the "lamp" graph), the lamplighter graph $G := L \wr H$ is the graph constructed as follows. Fix some root vertex $o \in Y$ and let $(\oplus_X Y)$ be the set of "finitely supported" functions from $X \to Y$ (i.e. only finitely many elements of X are not sent to $o \in Y$). Its vertices are elements of $X \times (\oplus_X Y)$. Two vertices (x, f) and (x', f') are adjacent if

- either $x \sim x'$ in H and $f = f'$,
- or $x = x'$, $f(y) = f'(y)$ for all $y \neq x$ and $f(x) \sim f'(x)$ in L.

It is easy to see that $L \wr H$ is connected exactly when both H and L are. In fact, in this note, all graphs will be assumed to be connected (this is not important) and the graphs are locally finite.

The ends of a graph are the infinite components of a group which cannot be separated by a finite set. More precisely, an end ξ is a function from finite sets to infinite connected components of their complement so that $\xi(F) \cap \xi(F') \neq \emptyset$ (for any F and F').

Given a graph G, a real-valued function f on its vertices V is said to be harmonic if it satisfies the mean value property

$$\forall v \in V, \ f(v) = \frac{1}{\deg(v)} \sum_{w \sim v} f(w).$$

*TU Dresden, Fachrichtung Mathematik, 01062 Dresden, Germany.

†Supported by the ERC-StG 277728 "GeomAnGroup".
where v is the degree (or valency) of v. The gradient of f is the function on the edges (v, w) defined by $\nabla f(v, w) = f(w) - f(v)$. The square of the ℓ^2-norm of the gradient is often referred to as the energy of the function.

The main result here is the following corollary:

Corollary 1. Assume H is infinite and has at most two ends, L has at least one edge and at most two ends and that both L and H are locally finite, then there are no non-constant harmonic functions with gradient in ℓ^p in $L \wr H$ for any $p \in]1, \infty[$.

This result is in contrast with the fact that lamplighter graphs have bounded harmonic functions as soon as H is not recurrent. Indeed, a bounded function has necessarily its gradient in ℓ^∞.

In fact, this result uses (and, when the graphs have bounded valency, is equivalent to) the vanishing of the reduced ℓ^p cohomology in degree one, see [4] for definitions. The proof of Corollary 1 is essentially a particular case of [4, Question 1.6]. This corollary answers partially questions which may be found (in different guises) in Georgakopoulos [3, Problem 3.1] and Gromov [6, §8.1.2, (A2), p.226]. Regarding [3], this answer actually more than asked: the question there concerns harmonic functions with finite energy, i.e. with gradient in ℓ^2.

As for [6], the question there concerns other types of graphs; for lamplighter graphs of Cayley graphs the answer to this question is essentially complete. Indeed, a wreath product (i.e. lamplighter group) is amenable exactly when the lamp and space groups are amenable. Since amenable groups have at most 2 ends, corollary 1 shows the reduced ℓ^p-cohomology of any amenable wreath product is trivial. Note that Martin & Valette [8, Theorem.(iv)] show this is still true when L is not amenable.

Corollary 1 extends probably to graphs with finitely many ends. To do this one would need to answer the following question. Assume G is the set of graphs obtained by taking a cycle and attaching to it finitely many (half-infinite) rays. Is the lamplighter graph $L \wr H$ with $L, H \in G$ Liouville? This seems to follow from classical consideration of Furstenberg (coupling), since both H and L are recurrent.

2 Proof

Let $D^p(G)$ be the space of functions on the vertices of the graph G with gradient in ℓ^p and $H D^p(G)$ be the subset of $D^p(G)$ consisting of functions which are furthermore harmonic. The notation $H D^p(G) \simeq \mathbb{R}$ means that the only functions in $H D^p(G)$ are constants.

For $F \subset X$ a subset of the vertices, let ∂F be the edges between F and F^c. Let $d \in \mathbb{R}_{\geq 1}$. Then, a graph $G = (X, E)$ has

\[
\text{IS}_d \text{ if there is a } \kappa > 0 \text{ such that for all finite } F \subset X, \ |F|^{(d-1)/d} \leq \kappa |\partial F|.
\]

Quasi-homogeneous graphs with a certain (uniformly bounded below) volume growth in n^d will satisfy these isoperimetric profiles, see Woess’ book [12, (4.18) Theorem]. For example, the Cayley graph of a group G satisfies IS_d for all d if and only if G is not virtually nilpotent.
Let $G_0 = L \wr H$ the lamplighter graph where L is either finite or a Cayley graph of \mathbb{Z} and H is a Cayley graph of \mathbb{Z}. For our current purpose it will suffice to note that G_0 has IS$_d$ for any $d \geq 1$, see Erschler [2]. A second important ingredient is that, using Kaimanovich [7, Theorem 3.3], G_0 is Liouville, i.e. a bounded harmonic function is constant.

The proof will be split in a few steps for convenience.

Step 1 - assume that H and L have bounded valency. Two results from [4] can then be invoked. Using [4, Theorem 1.2], if the graph under consideration has IS$_d$ for any d, then $\mathcal{H}D^p \simeq \mathbb{R}$ for any $p < \infty$ is equivalent to vanishing of the reduced ℓ^p-cohomology in degree one (for short, $\ell^pH^1 = \{0\}$) for any $q < \infty$. By [4, Corollary 4.2.1], if a graph G has a spanning subgraph which is Liouville and has IS$_d$ for all d, then $\ell^qH^1(G) = \{0\}$ for any $q < \infty$.

Note that if a spanning subgraph of G has IS$_d$, it implies that G has IS$_d$. Summing up, if a graph G admits G_0 as a subgraph then $\ell^qH^1 = \{0\}$ for any $q < \infty$ (and, equivalently $\mathcal{H}D^p(G) \simeq \mathbb{R}$ for any $p < \infty$).

It is also possible to work only up to quasi-isometry: if two graphs of bounded valency Γ and Γ' are quasi-isometric, then they have the same ℓ^p-cohomology (in all degrees, reduced or not), see Ëlek [1, §3] or Pansu [9].

Recall that the k-fuzz of a graph G, is the graph $G^{[k]}$ with the same vertices as G but now two vertices are neighbours in $G^{[k]}$ if their distance in G is $\leq k$. $G^{[2]}$ is often called the square of G.

Lastly, using either Thomassen [11] or Seward [10, Theorem 1.6], the graphs L and H in Corollary 1 are bi-Lipschitz equivalent to graphs containing a spanning line (or cycle) whenever it is finite. In fact, this bi-Lipschitz equivalence is given by taking the k-fuzz of these graphs. An interested reader could probably show that $k = 4$ is sufficient. This means that $L \wr H$ is bi-Lipschitz equivalent (and so quasi-isometric) to a graph containing G_0. This finishes the proof of Corollary 1 when H and L both have bounded valency.

Step 2 - Assume from now on that both H and L have connected spanning subgraphs of bounded valency, say H' and L' respectively. If there is a non-constant $f \in \mathcal{H}D^p(G)$ (where $G = L \wr H$). Then f is not “constant at infinity”: if B_n denotes a ball of radius n around some fixed vertex o, then $f(B_n^o)$ does not converge to a single value. Indeed, the maximum principle would then imply f is constant.

But f is also a function on the vertices of $G' = L' \wr H'$ and it is also in $\mathcal{D}^p(G')$ (because deleting edges only reduces the ℓ^p norm of the gradient). On the other hand G' contains G_0 up to quasi-isometry and hence $\ell^pH^1(G') = \{0\}$. However, by [4, Corollary 4.2.1], $\ell^pH^1(G') = \{0\}$ implies that all functions in $\mathcal{D}^p(G')$ are constant at infinity (see [4, Corollary 3.2.4]).

Step 3 - Now assume H and L are only locally finite. The result of Thomassen [11] still implies that (for some k) the k-fuzz of H and L have a spanning line. However, given a function $f \in \mathcal{D}^p(G)$, it may no longer be in $\mathcal{D}^p(G^{[k]})$ if $k > 1$ and G does not have bounded valency. To circumvent this problem, construct a graph H by adding (when necessary) the edges of the spanning line in $H^{[k]}$. Construct L' similarly.

Given $f \in \mathcal{D}^p(G)$ where $G = L \wr H$, one has that $f \in \mathcal{D}^p(G')$ with $G' = L' \wr H'$. Indeed, in passing from G to G' at most four edges are added to each vertex and the gradient along these edge is expressed as a sum of k values of the gradient of f on G. The triangle
inequality ensures that the ℓ^p-norm of ∇f (on G') is at most $(4k + 1)$ times the ℓ^p-norm of the gradient of f on G.

This last reduction yields the conclusion. Indeed, if there is an $f \in \mathcal{H}\mathcal{D}^p(G)$ which is not constant, then there is an $f \in \mathcal{D}^p(G')$ which takes different values at infinity. This is however excluded by step 2.

References

[1] G. Élek, Coarse cohomology and ℓ_p-cohomology, K-Theory, 13:1–22, 1998.

[2] A. Erschler, On isoperimetric profiles of finitely generated groups, Geom. Dedic. 100(1):157–171, 2003.

[3] A. Georgakopoulos, Lamplighter graphs do not admit harmonic functions of finite energy, Proc. Amer. Math. Soc. 138(9):3057–3061, 2010.

[4] A. Gournay, Boundary values of random walks and ℓ^p-cohomology in degree one, arXiv:1303.4091

[5] A. Gournay, Absence of harmonic functions with ℓ^p gradient in some semi-direct products, arXiv:1402.3126

[6] M. Gromov, Asymptotic invariants of groups, in Geometric group theory (Vol. 2), London Mathematical Society Lecture Note Series, Vol. 182, Cambridge University Press, 1993, viii+295.

[7] V. A. Kaimanovich, Poisson boundaries of random walks on discrete solvable groups, Probability measures on groups, X, (Oberwolfach, 1990):205–238, Plenum, New York, 1991.

[8] F. Martin and A. Valette, On the first L^p cohomology of discrete groups. Groups Geom. Dyn., 1:81–100, 2007.

[9] P. Pansu, Cohomologie ℓ^p: invariance sous quasi-isométrie. Unpublished, but available on P. Pansu’s webpage http://www.math.u-psud.fr/~pansu/liste-prepub.html, 1995 (updated in 2004).

[10] B. Seward, Burnside’s Problem, spanning trees, and tilings. arXiv:1104.1231 (v2), 2011.

[11] C. Thomassen, Hamiltonian paths in squares of infinite locally finite blocks, Annals of Discrete Mathematics 3:269–277, 1978.

[12] W. Woess, Random Walks on Infinite Graphs and Groups, Cambridge tracts in mathematics, 138. Cambridge University Press, 2000.