Supplementary Information for

Oxygen controls on magmatism in rocky exoplanets

Yanhao Lin\(^a,1\), Wim van Westrenen\(^a,b\), Ho-Kwang Mao\(^a\)

\(^a\)Center for High Pressure Science and Technology Advanced Research, Beijing 100094, People’s Republic of China
\(^b\)Department of Earth Sciences, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands

\(^1\)Corresponding author: Yanhao Lin
Email: yanhao.lin@hpstar.ac.cn

This PDF file includes:

Tables S1
Table S1. Summary of electron microscope analysis results.

Exp.	T (°C)	P	Duration (hrs)	Log/O₂	Glass	Ox	TiO₂	Al₂O₃	MgO	CaO	Na₂O	K₂O	Phase proportion (modal %)		
FefredW6	1280	24			55.94	1.59	18.01	9.69	11.99	2.74	0.11				
FefredW5	1250	24			55.70	1.70	17.93	10.43	12.07	2.06	0.05	100			
FefredW7	1230	40			56.70	1.47	17.27	10.36	11.72	2.27	0.05	100			
FefredW4	1200	36			57.50	0.15	0.47	38.96	2.92	-	0.10	8			
FefredW2	1150	36	CO-CO₂	log/O₂ = 11.5	58.26	0.81	0.43	38.03	2.89	-	8				
FefredW1	1100	36			58.58	4.89	14.36	3.74	6.22	1.67	0.57	18			
FefredW5	1150	36			59.49	5.41	5.85	22.37	18.31	-	30				
Fefree-7_3	1230	40			59.06	1.41	19.20	9.02	12.51	2.56	0.22	100			
Fefree-7_1	1200	36	CO-CO₂	log/O₂ = 17	59.52	-	2.43	37.71	4.31	-	6				
Fefree-7_2	1150	1 atm			58.65	5.50	18.01	0.62	9.66	3.54	17	58			
					58.38	2.12	12.89	27.95	3.77	-	8				
					52.81	1.48	2.89	24.14	18.67	-	20				
					51.73	0.09	30.33	0.54	13.72	3.59	43				
					65.81	3.94	15.55	5.21	7.23	2.61	0.24	29			
Fefree3	1160	36			58.58	1.45	18.19	9.53	12.07	2.77	0.10	100			
Fefree4	1140	36			58.56	1.66	15.77	10.00	11.96	2.64	0.11	100			
Fefree15	1130	36			39.50	0.04	-	60.40	-	-	1				
Fefree5	1100	36			53.11	0.44	2.71	25.10	18.65	-	8				
Fefree7	1090	36	In air (log/O₂ = -1)		57.48	1.80	16.80	10.71	10.81	2.71	0.10	73			
Fefree8	1050	36			58.58	0.42	0.71	39.12	3.99	-	7				
Fefree9	1000	36			52.75	0.19	2.86	24.20	19.01	-	15				
					52.03	0.26	30.03	0.26	13.51	3.60	35				
					52.78	0.71	16.10	7.32	9.44	3.19	43				
					57.41	0.94	1.99	37.63	3.42	-	7				
					57.13	1.67	1.95	23.79	18.24	-	22				
					57.13	1.67	2.41	27.41	0.98	13.20	3.72	44			
					64.22	4.37	14.91	6.28	7.45	2.25	0.55	27			
					57.13	0.57	0.21	38.44	3.87	-	11				
					52.15	1.51	3.72	23.00	18.72	-	23				
					51.85	0.18	10.61	0.21	13.99	3.55	50				
					67.84	0.25	0.10	62.00	2.21	1.34	0.06	15			

T, temperature; P, pressure; n, number of analyses; Duration here represents the time stable at the aim temperature;

Mineral abbreviations: Ol, olivine; Opx, orthopyroxene; Cpx, clinopyroxene; Pl, plagioclase; Ra, rutile;

Phase proportion calculated using least squares mass balance, and compositions from SEM in wt. % oxides;

Standard deviations based on multiple analyses for each phase is less than 2%; ‘-’ means the value lowers than the detection limit.