THE R_∞ PROPERTY FOR NILPOTENT QUOTIENTS OF SURFACE GROUPS.

KAREL DEKIMPE AND DACIBERG GONÇALVES

Abstract. It is well known that when G is the fundamental group of a closed surface of negative Euler characteristic, it has the R_∞ property. In this work we compute the least integer c, called the R_∞-nilpotency degree of G, such that the group $G/\gamma_{c+1}(G)$ has the R_∞ property, where $\gamma_r(G)$ is the r-th term of the lower central series of G. We show that $c = 4$ for G the fundamental group of any orientable closed surface S_g of genus $g > 1$. For the fundamental group of the non-orientable surface N_g (the connected sum of g projective planes) this number is $2g - 1$ (when $g > 2$). A similar concept is introduced using the derived series $G^{(c)}$ of a group G. Namely the R_∞-solvability degree of G, which is the least integer c such that the group $G/G^{(c)}$ has the R_∞ property. We show that the fundamental group of an orientable closed surface S_g has R_∞-solvability degree 2.

1. Introduction

Any endomorphism φ of a group G determines an equivalence relation on G by setting $x \sim y \iff \exists z \in G : x = zy\varphi(z)^{-1}$. The equivalence classes of this relation are called Reidemeister classes or twisted conjugacy classes and their number is denoted by $R(\varphi)$. This relation has appeared in the form as defined above in 1936 in the work of K. Reidemeister [10]. Independently, and in another context, namely the study of fixed points of homeomorphism of surfaces, in 1927 a similar relation, but not exactly the same, was introduced by J. Nielsen in [14] and the equivalences classes were called isogredience classes. A more modern reference which shows the connection of Reidemeister classes with fixed point theory can be found in the book of B. Jiang [10]. Also observe that in case φ is the identity automorphism, the Reidemeister classes are exactly the conjugacy classes of the group G. A group G is said to have the R_∞ property if for every automorphism $\varphi : G \to G$ the number $R(\varphi)$ is infinite. A central problem is to decide which groups have the R_∞ property. The study of this problem has been a quite active research topic in recent years. Several families of groups have been studied by many authors. To see a recent list which contains the families of groups which have been studied, with possibly a few recent exceptions, see the introduction and the references in [5]. Nevertheless we make explicit here the references for families of groups which have been studied and are closely related with the present work. For finitely generated abelian groups, it is part of the folklore that these groups do not have the R_∞ property. For non finitely generated abelian groups the result is not true, see [3] for details and further results. For nonabelian groups we would like to mention the following result, from [14] and [4]:

Theorem. If G is a non-elementary Gromov hyperbolic group, then G has the R_∞ property.

The family of the non-elementary Gromov hyperbolic group includes the family of free groups of finite rank greater than 1 and also the surface groups of a hyperbolic closed surface. For a free group of infinite rank it is shown in [2] that it does not have the R_∞ property. The family of the elementary hyperbolic groups has been studied in [9]. Also the groups G_n, the group of pure symmetric automorphisms of the free group F_n of rank $n \geq 2$, which have a presentation which resembles the ones for nilpotent groups, have the R_∞ property (see [9] and [2]).

2010 Mathematics Subject Classification. Primary: 20E36; secondary: 20F16, 20F18, 20F40, 55M20.

Key words and phrases. Reidemeister classes; R_∞ property; nilpotent groups; surfaces; central series; Lie Algebra; eigenvalue.

The first author expresses his gratitude towards the department of mathematics of the University of São Paulo for its hospitality and to FAPESP-Fundação de Amparo a Pesquisa do Estado de São Paulo, Projeto Temático Topologia Algébrica, Geométrica e Differencial 2012/24454-8 for support during his visit to IME-USP.
It turns out that in fact some quotients of F_r ($1 < r < \infty$) already have the R_∞ property. More precisely the quotients of F_r by the j-th term of either the lower central series or the derived central series eventually have the R_∞ property as j goes to infinity. To see more concrete results about nilpotent groups, free nilpotent groups and free solvable groups with the R_∞ property, see [8] and [17]. Some results from the above references were extended in [2]. More precisely from [2, Theorems 2.5 and 3.1] we obtain:

Theorem A. Let r, c be positive integers, with $r > 1$. Let $G = N_{c,r} = F_r/\langle \gamma_{c+1}(F_r) \rangle$. Then G has property R_∞ if and only if $c \geq 2r$.

Theorem B. Let $r > 1$ be an integer. The group $S_{r,1} = F_r/[F_r, F_r] = F_r/F_r^{(1)} = \mathbb{Z}^r$ does not have the R_∞ property. On the other hand the groups $S_{r,k} = F_r/F_r^{(k)}$ have property R_∞ for all $k \geq 2$.

Here $\gamma_s(G)$ denotes the s-th term of the lower central series of G and $G^{(s)}$ the s-th term of the derived series of G.

Motivated by the two above results from [2] we will define two numbers associated to a group which have the R_∞ property.

Definition 1.1. The R_∞-nilpotency degree of a group G which has the R_∞ property is the least integer c such that $G/\gamma_{c+1}(G)$ has the R_∞ property. In case this integer does not exist then we say that G has R_∞-nilpotency degree infinite.

According to this definition, it follows from Theorem A that the R_∞-nilpotency degree of the free group F_r of rank r for $r > 1$ equals $2r$.

In a similar fashion we define the R_∞-solvability degree of a group G which has the R_∞ property.

Definition 1.2. The R_∞-solvability degree of a group G which has the R_∞ property is the least integer c such that $G/G^{(c)}$ has the R_∞ property. In case this integer does not exist then we say that G has R_∞-solvability degree infinite.

It follows from Theorem B that the R_∞-solvability degree of the free group F_r of rank r for $r > 1$ equals 2.

Remark. Let G be a group which has R_∞-nilpotency degree c. Then for any $k < c$ we have that $G/\gamma_{k+1}(G)$ does not have property R_∞, while for $k \geq c$ the groups $G/\gamma_{k+1}(G)$ do have property R_∞. So the R_∞-nilpotency degree really determines the boundary of the nilpotency class at which one can detect the R_∞ property of a given group G.

An analogous remark holds for the R_∞-solvability degree.

Given a group G which has the R_∞ property, besides to be a natural question to study the R_∞-nilpotency and R_∞-solvability degree of the group G, it also provides a source of new examples of groups with the R_∞ property. The present work studies this question for the case where the group G is the fundamental group of a closed surface. So we do not consider the case where the surface is either S^2, $\mathbb{R}P^2$, $T =$ Torus since the R_∞ property does not hold for the fundamental group of these surfaces. The case where $S = K$, the Klein bottle, is easy to solve. Recall that $G = \pi_1(K) = \mathbb{Z} \times \mathbb{Z}$ and that G has property R_∞ (see Lemma 2.1 and Theorem 2.2 in [8]). Then we have $\gamma_s(G) = 2^{s-1}\mathbb{Z}$ and $G^{(s)}$ is $2\mathbb{Z}$ if $s = 1$ and the trivial subgroup if $s > 1$. It then follows that $G/G^{(1)}$ does not have the R_∞ property, but $G = G/G^{(s)}$ does have property R_∞ for $s \geq 2$, so the R_∞-solvability degree of G is 2. Also from [9] it follows that none of the quotients $G/\gamma_{s+1}(G) = \mathbb{Z}^{2s} \times \mathbb{Z}$ have the R_∞ property. So, the R_∞-nilpotency degree of G is infinite.

So, for the rest of this paper we will focus on the case where S is a closed surface of negative Euler characteristic.

The main results of the manuscript are:

Theorem 3.4. Let $g \geq 2$ and π_g be the fundamental group of the orientable surface of genus g. For any $c \geq 4$, we have that the c-step nilpotent quotient $\pi_g/\gamma_{c+1}(\pi_g)$ has property R_∞. On the
other hand, for $c = 1, 2$ and 3, this quotient does not have property R_∞. I.e. the R_∞-nilpotency degree of π_g is 4.

Theorem 4.12. Let $g \geq 2$ and let Γ_{g+1} be the fundamental group of the non-orientable surface of genus $g + 1$. Then, for any $c \geq 2g$, we have that the c-step nilpotent quotient $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ has property R_∞. On the other hand, for $c < 2g$, $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ does not have property R_∞. I.e. the R_∞-nilpotency degree of Γ_{g+1} is 2g.

Let $G = \pi_g/\pi_g^{(2)}$, i.e. the quotient of π_g by the 2—th term of the derived series of π_g.

Corollary 3.5. Let $g \geq 2$ and let $G = \pi_g/\pi_g^{(2)}$. The group $G/\gamma_{c+1}(G)$ has the R_∞ property, if and only if $c \geq 4$. Further, the R_∞-solvability degree of π_g is 2, i.e. $\pi_g/\pi_g^{(c)}$ has the R_∞ property, if and only if $c \geq 2$.

This work is divided into 3 sections besides the introduction. In section 2 we review and present some results about nilpotent groups which we are going to use. In section 3 we consider the case of orientable surfaces. In section 4 we consider the non-orientable case.

2. SOME PRELIMINARIES ON THE R_∞ PROPERTY FOR NILPOTENT GROUPS

Let A be a finitely generated abelian group with torsion subgroup T and free abelian quotient A/T. Let φ be any endomorphism of A, then φ induces an endomorphism $\bar{\varphi}$ of A/T. It is easy to see that $R(\varphi) = \infty \iff R(\bar{\varphi}) = \infty$. As A/T is free abelian, the morphism $\bar{\varphi}$ can be described as a matrix (with integer entries) and so it makes sense to talk about the eigenvalues of $\bar{\varphi}$. In general we will talk about the eigenvalues of φ by which we will mean the eigenvalues of $\bar{\varphi}$ and by the determinant of φ we will mean the determinant of $\bar{\varphi}$.

It follows that $R(\varphi) = \infty$ if and only if 1 is an eigenvalue of $\bar{\varphi}$.

More generally, we consider a finitely generated nilpotent group N and an endomorphism φ of N. This morphism induces a sequence of endomorphisms

$$
\varphi_i : \gamma_i(N)/\gamma_{i+1}(N) \to \gamma_i(N)/\gamma_{i+1}(N) : x\gamma_{i+1}(N) \mapsto \varphi(x)\gamma_{i+1}(N).
$$

As all of these groups $\gamma_i(N)/\gamma_{i+1}(N)$ are finitely generated abelian groups, we can talk about the eigenvalues of each of the φ_i. When we talk about the eigenvalues of φ we will mean the collection of all eigenvalues of all φ_i.

There is another way of determining these eigenvalues: Consider again the torsion subgroup T of N and the induced endomorphism $\bar{\varphi}$ on the torsion free nilpotent group $M = N/T$. This latter group M has a radicable hull (or rational Malcev completion) M^Q. The endomorphism $\bar{\varphi}$ uniquely extends to this radicable hull M^Q. We will denote this extension also by $\bar{\varphi}$. Corresponding to this radicable hull there is a rational Lie algebra m. Moreover any endomorphism ψ of M^Q induces a Lie algebra endomorphism ψ_* of m. The eigenvalues of φ are then exactly the eigenvalues of the linear map $\bar{\varphi}_*$. In fact, if we use $\bar{\varphi}_{*,i}$ to denote the induced map on $\gamma_i(m)/\gamma_{i+1}(m)$, then the eigenvalues of $\bar{\varphi}_i$ are exactly those of $\bar{\varphi}_{*,i}$.

We remark here that one can equally well work with the real Malcev completion and its real associated Lie algebra.

Using this terminology of eigenvalues we have (2 Lemma 2.1):

Lemma 2.1. Let N be a finitely generated nilpotent group and φ an endomorphism of N, then

$$
R(\varphi) = \infty \iff 1 \text{ is an eigenvalue of } \varphi.
$$

In the section on non orientable surface groups we will need the following result, which generalizes Lemma 2.2 of 2.

Lemma 2.2. Let G be a nilpotent group which contains a free nilpotent subgroup $N_{r,c}$ as a subgroup of finite index. Let φ be an endomorphism of G and denote by φ_i the induced endomorphisms of $\gamma_i(G)/\gamma_{i+1}(G)$. Let

$$
\lambda_1, \lambda_2, \ldots, \lambda_r \in \mathbb{C}
$$
denote the eigenvalues of φ_1 (listed as many times as their multiplicity). Then any eigenvalue μ of φ_i (with $2 \leq i \leq c$) can be written as an i-fold product

$$
\mu = \lambda_{j_1} \lambda_{j_2} \cdots \lambda_{j_i}.
$$

Moreover, any such a product in which not all of the j_i are equal does appear as an eigenvalue of φ_i.

\textbf{Proof.} By dividing out the torsion part of G, we may assume that G is torsion free. Now, as G and $N_{r,c}$ are commensurable, we have that $G^Q = N_{r,c}^Q$ and so the corresponding Lie algebra is the free nilpotent Lie algebra of class c on r generators. The proof then continues along the same lines as that of Lemma 2.2 of [2]. \hfill \Box

\textbf{Remark.} Note that when φ is an automorphism, then $\lambda_1 \lambda_2 \cdots \lambda_r = \pm 1$.

Finally, we will also need the following Lemma, which is probably well known, but we present its short proof here for the convenience of the reader.

\textbf{Lemma 2.3.} Let N be a finitely generated nilpotent group and $\varphi : N \to N$ be an endomorphism. If the induced map $N \to N/[N,N] : n \mapsto \varphi(n)[N,N]$ is surjective, then φ is an automorphism of N.

\textbf{Proof.} The condition implies that $\text{Im}(\varphi)[N,N] = N$. As N is nilpotent this implies that $\text{Im}(\varphi) = N$ and hence φ is surjective (use [11, Theorem 16.2.5]). As a finitely generated nilpotent group (like all polycyclic-by-finite groups) is Hopfian, it follows that φ has to be an automorphism of N. \hfill \Box

3. Orientable surface groups

Consider the $2g \times 2g$ matrix

$$
\Omega = \begin{pmatrix}
0 & 1 & 0 & 0 & \cdots & 0 & 0 \\
-1 & 0 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & -1 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & 0 & \cdots & -1 & 0
\end{pmatrix}.
$$

Note that $-\Omega = \Omega^{-1}$.

\textbf{Lemma 3.1.} Let S be a $2g \times 2g$-matrix with

$$
S\Omega S^T = -\Omega
$$

and let $p(x)$ denote the characteristic polynomial of S. Then, we have that

$$
p(x) = \pm x^{2g} p(-\frac{1}{x}).
$$

\textbf{Proof.} Note that $S\Omega S^T = -\Omega$ implies that $\det(S)^2 = 1$ so $\det(S) = \pm 1$. We compute

$$
p(x) = \det(S - xI) = \det(S^T - xI) = \det(\Omega S^{-1} \Omega + x\Omega \Omega) = \det(S^{-1} + xI) = \det(S^{-1}) \det(I + xS) = \pm x^{2g} \det(S - (-\frac{1}{x})I) = \pm x^{2g} p(-\frac{1}{x}).
$$

\hfill \Box
Corollary 3.2. If λ is an eigenvalue of S, then also $-\frac{1}{\lambda}$ is an eigenvalue for S.

Remark. The analogous result for symplectic matrices, i.e. those S for which $S \Omega S^T = \Omega$, is well known (and can be proved in the same way as the lemma above), says that $p(x) = x^{2g} p(\frac{1}{x})$. So the eigenvalues for a symplectic matrix come in pairs λ and $-\frac{1}{\lambda}$.

Now, let us consider the fundamental group of an orientable surface of genus g:

$$\pi_g = \langle a_1, b_1, a_2, b_2, \ldots, a_g, b_g \mid [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] = 1 \rangle.$$

We want to study nilpotent quotients of π_g and the R_∞ property for these quotients. Therefore, take an integer $c > 1$ and consider any automorphism φ of $\pi_g/\gamma_{c+1}(\pi_g)$. Then φ induces an automorphism $\bar{\varphi}$ on $\pi_g/\gamma_2(\pi_g) \cong \mathbb{Z}^{2g}$. Let S be the $2g \times 2g$-matrix with integral entries which represents $\bar{\varphi}$ with respect to the free generating set (in this order)

$$\bar{a}_1, \bar{b}_1, \bar{a}_2, \bar{b}_2, \ldots, \bar{a}_g, \bar{b}_g$$

of $\pi_g/\gamma_2(\pi_g)$. Here we used a bar to indicate the natural projection of the generators.

Lemma 3.3. With the notations introduced above, it holds that

$$S \Omega S^T = \pm \Omega.$$

Moreover, any matrix S, with integer entries satisfying this relation can be obtained as the matrix representing $\bar{\varphi}$ for some automorphism φ of $\pi_g/\gamma_{c+1}(\pi_g)$. (In fact any such S is induced by an automorphism of π_g).

Proof. This Lemma is known to hold for all automorphisms of the full group π_g (See [12 Corollary 5.15, page 355]) but here we show that it also holds for all quotients $\pi_g/\gamma_{c+1}(\pi_g)$ with $c > 1$. Of course, the second part of the statement that all such π can be achieved follows from the fact that all such matrices can be obtained as the induced map of an automorphism of π_g ([12 Theorem N.13, page 178]).

Since any automorphism of $\pi_g/\gamma_{c+1}(\pi_g)$ induces one on $\pi_g/\gamma_2(\pi_g)$ (with the same S), it is enough to consider the case $c = 2$. Let $N_{2g,2} = \frac{F_{2g}}{\gamma_3(F_{2g})}$ be the free 2-step nilpotent group on $2g$ generators, which we will still denote by $a_1, b_1, a_2, b_2, \ldots, a_g, b_g$. Let $r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] \in N_{2g,2}$ and let C be the cyclic subgroup generated by r, then $\pi_g/\gamma_2(\pi_g) = N_{2g,2}/C$.

Any automorphism φ of $\pi_g/\gamma_3(\pi_g)$ lifts to a morphism $\tilde{\varphi} : N_{2g,2} \to N_{2g,2}$. This map, in turn induces a morphism $\varphi : N_{2g,2} \to N_{2g,2}/\gamma_2(N_{2g,2})$ which is surjective. By Lemma 2.3, we can conclude that φ is an automorphism of $N_{2g,2}$. As φ is a lift of φ, we must have that $\varphi(C) \subseteq C$ and by reasoning in the same way for φ^{-1}, we must in fact have that $\varphi(C) = C$ and this implies that

$$\tilde{\varphi}(r) = r^{\pm 1}$$

or

$$\prod_{i=1}^g [\tilde{\varphi}(a_i), \tilde{\varphi}(b_i)] = (\prod_{i=1}^g [a_i, b_i])^{\pm 1}.$$

Since the group $N_{2g,2}$ is 2-step nilpotent, we have that (with $s_{p,q}$ the (p, q)-th entry of S):

$$[\tilde{\varphi}(a_i), \tilde{\varphi}(b_i)] = \prod_{j=1}^g a_j^{s_{2j-1,2i-1}} b_j^{s_{2j,2i-1}} \prod_{k=1}^g a_k^{s_{2k-1,2i-1}} b_k^{s_{2k,2i-1}}.$$

For the convenience of writing, we will now use the additive notation in $\gamma_2(N_{2g,2})$.

The condition above then reads as

$$\sum_{i=1}^g \sum_{j=1}^g \sum_{k=1}^g (s_{2j-1,2i-1}s_{2k-1,2i} + s_{2j-1,2i} - 1)s_{2k,2i}[a_j, a_k] + s_{2j-1,2i} - 1s_{2k-1,2i}[b_j, a_k] + s_{2j-1,2i} - 1s_{2k-1,2i}[b_j, b_k] +$$

(1)
\[
s_{2j,2i-1}s_{2k,2i}[b_j, b_k] = \pm \left(\sum_{i=1}^{g} [a_i, b_i] \right).
\]

Now, let us look at the condition \(S\Omega S^T = \pm \Omega\). Denote by \(C_1, C_2, \ldots, C_{2g}\) the columns of \(S\). Then
\[
S\Omega = (-C_2, C_1, -C_4, C_3, \ldots, -C_{2g}, C_{2g-1}).
\]
It follows that the \((p,q)\)-th entry of \(S\Omega S^T\) equals
\[
\sum_{i=1}^{g} (-s_{p,2i}s_{q,2i-1} + s_{p,2i-1}s_{q,2i}).
\]
Note that if \(p = q\), this entry is zero, and also the \((p,p)\)-th entry of \(\pm \Omega\) is. So, we only have to consider the case \(p \neq q\) from now onwards.
We now consider the different possibilities for \(p\) and \(q\):

- Both \(p\) and \(q\) are even. In this case the condition \(S\Omega S^T = \pm \Omega\) says that the \((p,q)\)-th entry of \(S\Omega S^T\) has to be zero. Let \(p = 2j\) and \(q = 2k\), so the \((p,q)\)-th entry is
 \[
 \sum_{i=1}^{g} (-s_{2j,2i}s_{2k,2i-1} + s_{2j,2i-1}s_{2k,2i}).
 \]
 By looking at the coefficient appearing in front of \([b_j, b_k]\) (and using the fact that \([b_k, b_j] = -[b_j, b_k]\)) in equation (1) we find that
 \[
 \sum_{i=1}^{g} s_{2j,2i-1}s_{2k,2i} - s_{2k,2i-1}s_{2j,2i} = 0
 \]
 which exactly says that the \((p,q)\)-th entry of \(S\Omega S^T\) must be zero.
- When both \(p\) and \(q\) are odd, one can do the same argument by considering the coefficient appearing in front of \([a_j, a_k]\) in equation (1).
- Now consider the case when \(p\) is odd, say \(p = 2j - 1\) and \(q\) is even, say \(q = 2k\). By looking at the coefficient of \([a_j, b_k]\) in the expression (1) we find the relation
 \[
 \sum_{i=1}^{g} s_{2j-1,2i-1}s_{2k,2i} - s_{2k,2i-1}s_{2j-1,2i} = \pm \delta_{j,k}
 \]
 (where \(\delta_{j,k}\) is the Kronecker delta).
 This is saying that \((2j - 1, 2k)\)-entry of \(S\Omega S^T\) equals \(\pm \delta_{j,k}\), which is what we needed to show.
- The situation where \(p\) is even and \(q\) is odd reduces to the previous case.
\[\square\]

Just as in our paper [2], we will make use of the associated graded Lie ring of the group we are interested in, so we consider the Lie ring
\[
L(\pi_g) = \bigoplus_{i=1}^{\infty} L_i(\pi_g) = \bigoplus_{i=1}^{\infty} \frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}
\]
where the Lie bracket is induced by the commutators in \(\pi_g\). Then, there is a canonical homomorphism of Lie rings
\[
\psi : L(F_{2g}) \to L(\pi_g)
\]
which is induced by the projection \(F_{2g} \to \pi_g\). Now, let \(r = [a_1, b_1][a_2, b_2] \cdots [a_g, b_g] + \gamma_3(F_{2g}) \in L_2(F_{2g})\) be the element in \(\gamma_2(F_{2g})/\gamma_3(F_{2g})\) corresponding to the relator defining \(\pi_g\) and let \(R\) be the ideal of \(L(F_{2g})\) which is generated by \(r\). Then the main result of [13] shows that \(R\) is the kernel of \(\psi\) and that all factor groups \(\frac{\gamma_i(\pi_g)}{\gamma_{i+1}(\pi_g)}\) are free abelian.

Consider an automorphism \(\varphi\) of \(\pi_g/\gamma_{c+1}(\pi_g)\) for \(c \geq 2\). There is no reason to expect that this automorphism can be lifted to an automorphism of \(\pi_g\). However, if \(S\) represents the induced
automorphism on the abelianization of \(\pi_g \), then we know that there does exist an automorphism \(\varphi' \) of \(\pi_g \), whose induced automorphism on the abelianization is also represented by \(S \). Let \(\varphi_1 \) be the automorphism of \(\pi_g/\gamma_{c+1}(\pi_g) \) which is induced by \(\varphi' \).

As the induced automorphisms on the quotients \(\gamma_i(\pi_g)/\gamma_{i+1}(\pi_g) \) are completely determined by the induced automorphism on \(\pi_g/\gamma_2(\pi_g) \), it follows that \(\varphi \) will have infinite Reidemeister number if and only if \(\varphi' \) has infinite Reidemeister number (by Lemma 2.1). So in our discussions below, we will always be allowed to assume that the automorphism \(\varphi \) can be lifted to \(\pi_g \).

Moreover, by [12, Theorem N.10, page 176] any automorphism of \(\pi_g \) is induced by an automorphism of \(F_{2g} \).

Theorem 3.4. Let \(g \geq 2 \). Then, for any \(c \geq 4 \), we have that the \(c \)-step nilpotent quotient \(\pi_g/\gamma_{c+1}(\pi_g) \) has property \(R_\infty \). On the other hand, for \(c = 1, 2 \) and \(3 \), this quotient does not have property \(R_\infty \). I.e. the \(R_\infty \)-nilpotency degree of \(\pi_g \) is 4.

Proof. For \(c = 1 \), we have that \(\pi_g/\gamma_2(\pi_g) \cong \mathbb{Z}^{2g} \) and this group does not have property \(R_\infty \).

From now onwards, we consider the situation with \(c > 1 \).

Let \(S_g \) be the following \(2g \times 2g \)–matrix:

\[
S_g = \begin{pmatrix}
1 & 2 & 0 & 0 & \cdots & 0 & 0 \\
1 & 1 & 0 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
0 & 0 & 1 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & 2 \\
0 & 0 & 0 & 0 & \cdots & 1 & 1 \\
\end{pmatrix}
\]

Then \(S_g \) satisfies \(S_g \Omega S_T = -\Omega \) and \(S_g \) only has eigenvalues \(\lambda = 1 + \sqrt{2} \) and \(-\frac{1}{\lambda} = 1 - \sqrt{2} \) (each one with multiplicity \(g \)).

Consider an automorphism \(\varphi \) of \(\pi_g \) for which the induced morphism \(\bar{\varphi} \) on the abelianization of \(\pi_g \) is given by \(S_g \). As already mentioned above, this automorphism is induced by an automorphism \(\bar{\varphi} \) of \(F_{2g} \).

By Lemma 2.2, we know that the eigenvalues of induced automorphisms on \(\gamma_2(F_{2g})/\gamma_3(F_{2g}) \) resp. \(\gamma_3(F_{2g})/\gamma_4(F_{2g}) \) consist of products of 2 resp. 3 eigenvalues of \(S \). It is obvious that none of these eigenvalues can be equal to 1. As the induced maps on \(\gamma_2(\pi_g)/\gamma_3(\pi_g) \) resp. \(\gamma_3(\pi_g)/\gamma_4(\pi_g) \) are themselves induced from the maps in the free case, it also follows that in this case none of the eigenvalues equals 1. Hence, when \(c \leq 3 \), \(\varphi \) induces an automorphism of \(\pi_g/\gamma_{c+1}(\pi_g) \) with finite Reidemeister number and so these groups do not have property \(R_\infty \).

Now we will prove that \(\pi_g/\gamma_5(\pi_g) \) does have property \(R_\infty \). From this it then also follows that \(\pi_g/\gamma_{c+1}(\pi_g) \) has property \(R_\infty \) for all \(c \geq 4 \).

Let \(\varphi \) be any automorphism of \(\pi_g/\gamma_5(\pi_g) \). From the discussion before this theorem, we can without loss of generality assume that \(\varphi \) is induced by an automorphism \(\bar{\varphi} \) of \(F_{2g} \). Let \(\varphi_* \) denote the graded Lie ring automorphism of \(L(F_{2g}) \) induced by \(\bar{\varphi} \) and \(\varphi \), the automorphism of \(L(\pi_g) \) induced by \(\varphi \).

Since \(\varphi \) is induced by \(\bar{\varphi} \), we have that \(\varphi_* \) is induced by \(\bar{\varphi}_* \) and

\[
\bar{\varphi}_*(r) = \pm r, \quad \text{where } r = [a_1,b_1][a_2,b_2] \cdots [a_g,b_g] + \gamma_3(F_{2g}) \in L_2(F_{2g}) \text{ as above.}
\]

We have to prove that the map induced by \(\varphi_* \) on \(L(\pi_g)/\gamma_5(L(\pi_g)) \) has at least one eigenvalue equal to 1.

Let \(S \) still denote the matrix representing the induced automorphism on \(\pi_g/[\pi_g,\pi_g] \).

We now distinguish two cases.

Case 1: \(S^T \Omega S = \Omega \). This case occurs exactly when \(\bar{\varphi}_*(r) = r \). In this situation, \(S \) has eigenvalues

\[
\lambda_1, \frac{1}{\lambda_1}, \lambda_2, \frac{1}{\lambda_2}, \ldots, \lambda_g, \frac{1}{\lambda_g}.
\]
So, the induced map on $L_2(F_{2g}) = \gamma_2(F_{2g})/\gamma_3(F_{2g})$ has eigenvalue 1 with at least multiplicity g, since the eigenvalues of this map are products of 2 eigenvalues of S and we have that $1 = \lambda_i(1/\lambda_i)$ for all i.

The projection of $L_2(F_{2g})$ onto $L_2(\pi_g) = \frac{L_2(F_{2g})}{L_2(F_{2g}) \cap \langle r \rangle} = L_2(F_{2g})/\langle r \rangle$ is given by dividing out the 1-dimensional subspace generated by r. So the induced map on $L_2(\pi_g)$ has eigenvalue 1 with multiplicity at least $g - 1 > 0$, which shows that φ has an infinite Reidemeister number in this case.

Case 2: $S^T\Omega S = -\Omega$. This case occurs exactly when $\tilde{\varphi}_*(r) = -r$.

First of all, suppose that one of the eigenvalues of S is $\pm i$. In that case both i and $-i$ appear as an eigenvalue of S and the their product $i \times -i = 1$ is an eigenvalue for the induced map on $L_2(F_{2g})$. Since $\varphi_*(r) = -r$ corresponds to eigenvalue -1, we have that the induced map on $L_2(\pi_g) = L_2(F_{2g})/\langle r \rangle$ also has an eigenvalue 1 and so we are done in this case.

Hence we can assume that $\pm i$ do not appear as eigenvalues of S and in this situation, S has eigenvalues $\lambda_1, \lambda_2, \lambda_3, \ldots, \lambda_g, \lambda_g^{-1}$. In which not all the λ_i need to be different.

We will show that the induced map on $L(\pi_g)/\gamma_5(L(\pi_g))$ has 1 as an eigenvalue. Note that $\gamma_5(L(\pi_g))$ is used to denote the 5-th term in the lower central series of the Lie ring $L(\pi_g)$. As $L(\pi_g)$ is graded and is generated by its terms in degree one, we have that $\gamma_5(L(\pi_g)) = L_5(\pi_g) \oplus L_6(\pi_g) \oplus L_7(\pi_g) \oplus \cdots$. In fact, we will show that the induced map on

$$\frac{L(\pi_g)}{\gamma_5(L(\pi_g)) + L^{(2)}(\pi_g)}$$

has 1 as an eigenvalue. Here $L^{(2)}(\pi_g)$ denotes the second derived Lie ring, so we consider a metabelian and 4-step nilpotent quotient of $L(\pi_g)$. Note that

$$\frac{L(F_{2g})}{\gamma_5(L(F_{2g})) + L^{(2)}(F_{2g})} = \frac{L(F_{2g})}{\gamma_5(L(F_{2g})) + L^{(2)}(F_{2g}) + \langle r \rangle} = \frac{L(F_{2g})/\langle r \rangle}{\gamma_5(L(F_{2g})) + L^{(2)}(F_{2g})}$$

where $\langle r \rangle$ is the natural image of the ideal R in this free metabelian and 4-step nilpotent Lie ring $L(F_{2g})/\langle r \rangle$. To avoid complicated notations, let us denote this last Lie ring by L. If we denote by \tilde{r} the image of r in L, then \tilde{r} is the ideal of L generated by \tilde{r}.

Now, we again consider the complexification of our Lie algebra $L^\mathbb{C} = L \otimes \mathbb{C}$. So $L^\mathbb{C}$ is the free metabelian and 4-step nilpotent Lie algebra over \mathbb{C}. Then $R^\mathbb{C} = \mathbb{R} \otimes \mathbb{C}$ is the ideal of $L^\mathbb{C}$ generated by \tilde{r}. Note that $L^\mathbb{C} = L^\mathbb{C}_1 \oplus L^\mathbb{C}_2 \oplus L^\mathbb{C}_3 \oplus L^\mathbb{C}_4$ is graded and also $R^\mathbb{C} = R^\mathbb{C}_1 \oplus R^\mathbb{C}_2 \oplus R^\mathbb{C}_3 \oplus R^\mathbb{C}_4$ is graded, since it is generated by an element of degree 2.

As in the prove of Lemma 2.2 we can assume that S is semi-simple.

Now, we can choose basis vectors Y_1, Y_2, \ldots, Y_{2g} in $L^\mathbb{C}_1$ which are eigenvectors for the map induced by $\tilde{\varphi}_*$ (i.e. for S). So Y_1 is eigenvector corresponding to λ_1, Y_2 to $\frac{1}{\lambda_1}$, Y_3 to λ_2, Y_4 to $\frac{1}{\lambda_2}$, ..., Y_{2g} to λ_g, Y_{2g} to $\frac{1}{\lambda_g}$.

Using these basis vectors, we can now describe $R^\mathbb{C}$.

Indeed $R^\mathbb{C}_1$ is spanned by the vectors

$$[\tilde{r}, Y_1], [\tilde{r}, Y_2], [\tilde{r}, Y_3], [\tilde{r}, Y_4], \ldots, [\tilde{r}, Y_{2g-1}], [\tilde{r}, Y_{2g}]$$

Note that these vectors are eigenvectors corresponding to the eigenvalues

$$-\lambda_1, \frac{1}{\lambda_1}, -\lambda_2, \frac{1}{\lambda_2}, \ldots, -\lambda_g, \frac{1}{\lambda_g}$$

in that order.

To find $R^\mathbb{C}_i$ we have to take the Lie bracket of any spanning vector of $R^\mathbb{C}_i$ with any generator Y_j. However, as we are working in a metabelian Lie algebra, we have that

$$\forall i, j : [[\tilde{r}, Y_i], Y_j] = [[\tilde{r}, Y_j], Y_i]$$
and hence we find that R^C_4 is spanned by all vectors of the form
$$[[r, Y_i], Y_j]$$
where $i \leq j$.

Again, all of these vectors are eigenvectors. If λ is the eigenvalue for Y_i and μ is the eigenvalue for Y_j then $-\lambda \mu$ is the eigenvalue for $[[r, Y_i], Y_j]$. In order to finish the proof, we need to show that L^C_4 contains eigenvectors with respect to eigenvalue 1 which are not contained in R^C_4. Recall (II) that L^C_4 has a basis of eigenvectors which is given by $$[[[Y_{i_1}, Y_{i_2}], Y_{i_3}], Y_{i_4}]$$
for $i_1 > i_2 \leq i_3 \leq i_4$.

Now, if $[[r, Y_i], Y_j]$ is an eigenvector for eigenvalue 1, then with the notations above, we have that $\lambda \mu = -1$. As we have already excluded the case $\lambda = \pm i$, this is only possible when $i \neq j$ (so $i < j$). To each such a vector $[[r, Y_i], Y_j]$ of eigenvalue 1, we associate the vector $$[[[Y_j, Y_i], Y_i], Y_j] \in L^C_4$$
which is also an eigenvector for the eigenvalue 1. These associated vectors span already a subspace of L^C_4 which is at least as big as the eigenspace corresponding to eigenvalue 1 inside R^C_4. Since $$[[[Y_2, Y_1], Y_3], Y_4]$$
is also an eigenvector of eigenvalue 1, which is linearly independent of the previous ones, we see that L^C_4 does contain eigenvectors with respect to eigenvalue 1 outside R^C_4. And this finishes the proof.

Corollary 3.5. Let $g \geq 2$ and $G = \pi_g/\pi_g^{(2)}$. The group $G/\gamma_{c+1}(G)$ has the R_∞ property, if and only if $c \geq 4$. Further, the R_∞-solvability degree of π_g is 2, i.e. $\pi_g/\pi_g^{(c)}$ has the R_∞ property, if and only if $c \geq 2$.

Proof. Note that $G/\gamma_{c+1}(G) = \pi_g/(\gamma_{c+1}(\pi_g)\pi_g^{(2)})$. For the first part, if $c = 1, 2, 3$ then $\pi_g^{(2)} \leq \gamma_{c+1}(\pi_g)$ and so $G/\gamma_{c+1}(G) = \pi_g/(\gamma_{c+1}(\pi_g)\pi_g^{(2)}) = \pi_g/\gamma_{c+1}(\pi_g)$. The result in this case then follows directly from the theorem above. For $c > 3$ the proof of the theorem above is in fact a proof showing that the group $G/\gamma_{c+1}(G)$ has property R_∞. If follows that $G = \pi_g/\pi_g^{(2)}$ itself also has property R_∞, which already proves one step of the “further”-part. Clearly $G/G^{(1)}$, the abelianization of G which is the same of the abelianization of π_g, does not have property R_∞.

4. Non-orientable surface groups

First we need a lemma concerning powers in nilpotent groups, which can be found in [18] Proposition 2, page 113.

Lemma 4.1. Let G be a nilpotent group of class $\leq c$. For any $s \in \mathbb{N}$ we have that every element of

$$G^{s^c} = \langle g^{s^c} | g \in G \rangle$$

is the s-th power of an element of G.

Also we will need the following two Lemmas:

Lemma 4.2. Let N be a finitely generated nilpotent group and assume H is a subgroup of N, such that $H[N, N]$ has finite index in N, then H has finite index in N.

Proof. We proceed by induction on the nilpotency class c of N. For abelian groups, the lemma is trivially satisfied. Now assume that N is of class $c > 1$ and the lemma is true for smaller nilpotency classes. The assumption of our lemma, implies that

$$\frac{H[N, N]}{\gamma_c(N)}$$
is of finite index in $\frac{N}{\gamma_c(N)}$.
This can also be read as
\[\frac{H_{\gamma c}(N)}{\gamma c(N)} \left[\frac{N}{\gamma c(N)} \right] = \text{finite index in} \ \frac{N}{\gamma c(N)}. \]
By induction, we then obtain that
\[H_{\gamma c}(N) \] is of finite index in \[N. \]
In order to prove the lemma, it now suffices to show that \[H \cap \gamma c(N) \] has finite index in \[\gamma c(N). \] As \[N \] is finitely generated, the group \[\gamma c(N) \] is also finitely generated (and abelian). Suppose now on the contrary that the index of \[\text{abelianization} \] is infinite, then there exists an element \(\gamma \) of \(\gamma c(N) \) for which \(\gamma^k \notin H \) for all \(k > 0 \).
Write \(\gamma = [n_1, m_1][n_2, m_2] \cdots [n_l, m_l] \) as a product of commutators, where each \(n_i \in N \) and each \(m_i \in \gamma c-1(N). \) Note that for all integers \(p, q \) we have that
\[[n_i, m_i]^{pq} = [n_i^p, m_i^q]. \]
Condition \(2 \) implies that there is a positive integer \(p \) such that for all \(n \in N \) we have that \(n^p \in H \gamma c(N). \) So we can write \(n_i^p = h_i z_i \) and \(m_i^p = h_i^i' z_i^i \) with \(h_i, h_i' \in H \) and \(z_i, z_i^i \in \gamma c(N). \) But then
\[\gamma^{pq} = [n_i^p, m_i^p] = [h_i z_i, h_i' z_i^i] = [h_i, h_i'][z_i, z_i^i] \in H, \]
which is a contradiction with the fact that we assumed that \(\gamma^k \notin H \) for all \(k > 0 \).

\textbf{Lemma 4.3.} Let \(N_{n,c} \) be the free \(c \)-step nilpotent group on \(n \) generators. The subgroup generated by a subset \(\{x_1, \ldots, x_n\} \subset N_{n,c} \) is also the free \(c \)-step nilpotent group on \(n \) generators if and only if the images of the elements \(x_i \) in the abelianization of \(N_{n,c} \) generate a free abelian group of rank \(n. \)

\textbf{Proof.} Only if is clear. So we let \(G \) denote the subgroup generated by the subset \(\{x_1, \ldots, x_n\} \subset N_{n,c} \) and we assume that the images of the elements \(x_i \) in \(N_{n,c}/\gamma_2(N_{n,c}) \) generate a free abelian group of rank \(n. \) This implies that the image of \(G \) in the abelianization of \(N_{n,c} \) has finite index in this abelianization. By Lemma \(12 \) it also follows that \(G \) has finite index in \(N_{n,c} \). Therefore \(G \) and \(N_{n,c} \) have the same Hirsch length. Now, let \(y_1, y_2, \ldots, y_n \) denote a set of free generators of \(N_{n,c} \) and consider the morphism \(\varphi \) mapping \(y_i \) to \(x_i \), which exists because \(N_{n,c} \) is free nilpotent of class \(c \) and \(G \) is also nilpotent of class \(\leq c \). The image of \(\varphi \) is \(G \) and the kernel of \(\varphi \) must have Hirsch length \(0 \) (since the Hirsch length of \(\text{Im}(\varphi) + \text{Hirsch length of Ker}(\varphi) \) equals to \(\text{Hirsch length of N_{n,c}} \)). As \(N_{n,c} \) is torsion free, it follows that \(\varphi \) is an isomorphism from \(N_{n,c} \) to \(G \), which finishes the proof. \(\square \)

In this section we are working with the fundamental group of a non orientable surface of genus \(g \):
\[\Gamma_g = \langle a_1, a_2, \cdots, a_g \mid a_1^2 a_2^2 \cdots a_g^2 = 1 \rangle. \]
In the sequel of this section, the number \(g - 1 \) will play a crucial role, therefore, we will most of the time work with \(\Gamma_{g+1} \). For a given \(c \) we will use \(e_i \) to denote the natural projection of \(a_i \) in the quotient \(\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1}) \).
It is not difficult to see that the abelianization of \(\Gamma_{g+1} \) is isomorphic to \(\mathbb{Z}^g \oplus \mathbb{Z}_2 \) and so contains a free abelian group on \(g \) generators as a subgroup of finite index. In the next theorem we show that something analogously holds for all nilpotent quotients.

\textbf{Theorem 4.4.} The subgroup of \(\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1}) \) generated by \(e_1, e_2, \ldots, e_g \) (the natural projections of \(a_1, a_2, \ldots, a_g \)) is a free nilpotent group of class \(c \) freely generated by the \(g \) elements \(e_1, e_2, \ldots, e_g \). Moreover, this subgroup is of finite index in \(\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1}) \).

\textbf{Proof.} Let \(N_{g,c} \) be the free \(c \)-step nilpotent group freely generated by \(b_1, b_2, \ldots, b_g \). By Lemma \(14 \) we know that \(b_1^2 b_2^2 \cdots b_g^2 = d^2 \) for some \(d \in N_{g,c}. \)
Now, let \(\varphi : \Gamma_{g+1} \to N_{g,c} \) be the morphism determined by
\[\varphi(a_1) = b_1^{e_1-1}, \varphi(a_2) = b_2^{e_2-1}, \cdots, \varphi(a_g) = b_g^{e_g-1}, \varphi(a_{g+1}) = d^{-1}. \]
As $N_{g,c}$ is c-step nilpotent this morphism factors through the c-step nilpotent quotient of Γ_{g+1} which leads to a morphism $\psi : \Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1}) \rightarrow N_{g,c}$ with

$$\psi(e_1) = b_1^{x_1}, \psi(e_2) = b_2^{x_2}, \ldots, \psi(e_g) = b_g^{x_g}, \psi(e_{g+1}) = d^{-1}.$$

Let $\mu : \langle e_1, e_2, \ldots, e_g \rangle \rightarrow N_{g,c}$ be the restriction of ψ. Then, the image of μ equals the subgroup $\langle b_1^{x_1}, b_2^{x_2}, \ldots, b_g^{x_g} \rangle$ of $N_{g,c}$ which is also free c-step nilpotent on g generators by Lemma 4.3. Therefore, there also exists a morphism $\nu : \langle b_1^{x_1}, b_2^{x_2}, \ldots, b_g^{x_g} \rangle \rightarrow \langle e_1, e_2, \ldots, e_g \rangle$ mapping $b_i^{x_i}$ to e_i. It is obvious that μ and ν are each others inverse and so μ is an isomorphism, showing that $\langle e_1, e_2, \ldots, e_g \rangle$ is free c-step nilpotent.

Since $\langle e_1, e_2, \ldots, e_g \rangle$ is a subgroup of $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ satisfying the conditions of Lemma 4.2, we find that $\langle e_1, e_2, \ldots, e_g \rangle$ is of finite index in $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$.

\[\square \]

Corollary 4.5. If $c \geq 2g$, then $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ has property R_∞.

Proof. Consider any automorphism φ of G and let $\lambda_1, \lambda_2, \ldots, \lambda_g$ denote the eigenvalues of φ.

By Lemma 2.2 we know that $(\lambda_1 \lambda_2 \cdots \lambda_g)^2 = (\pm 1)^2 = 1$ is an eigenvalue of φ_{2g} and hence, by Lemma 2.1 we can conclude that $R(\varphi) = \infty$.

The following lemma is a technical one which we will need for the construction of certain automorphisms of Γ_{g+1}.

Lemma 4.6. There exists a function $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ such that for any nilpotent group G of class $\leq c$ and any pair of elements $x, y \in G$ we have that

$$\exists z \in \langle y, \gamma_2(G) \rangle \text{ with } x^n y^{f(n,c)} = (xz)^n.$$

Proof. Fix $c, n \in \mathbb{N}$ and let $N_{2,c}$ be the free nilpotent group of class c on two generators, say a and b. It is enough to show that there exists a value $f(n,c)$ and an element $d \in \langle b, \gamma_2(N_{2,c}) \rangle$ such that $a^n b^{f(n,c)} = (ad)^n$.

The case for a general group then follows by considering the homomorphism $\psi : N_{2,c} \rightarrow G$ determined by $\psi(a) = x$ and $\psi(b) = y$ and by taking $z = \psi(d)$.

Let $a_1 = a$, $a_2 = b$, $a_3 = [a, b]^i$, a_4, ..., a_k be a Malcev basis for $N_{2,c}$.

It is known that there are polynomials $q_i(x_1, \ldots, x_{i-1}, m)$ with coefficients in \mathbb{Q} such that for any $x_1, x_2, \ldots, x_k, m \in \mathbb{Z}$ we have that

$$\left(a_1^{x_1} a_2^{x_2} \cdots a_k^{x_k}\right)^m = a_1^{mx_1 + q_2(x_1,m)} \cdots a_i^{mx_i + q_i(x_1,\ldots,x_{i-1},m)} \cdots a_k^{mx_k + q_k(x_1,\ldots,x_{k-1},m)}.$$

(In fact $q_2 = 0$). Now, for any m we consider the equation in the unknowns $z_2, z_3, z_4, \ldots, z_k$:

$$a^n b^m = (a_1 a_2^{z_2} a_3^{z_3} \cdots a_k^{z_k})^n.$$

This equation is equivalent to a set of equations:

$$\left\{\begin{array}{l}
z_2 = \frac{1}{m} m \\
0 = z_3 + \frac{1}{n} q_3(1, z_2, n) \\
0 = z_4 + \frac{1}{n} q_4(1, z_2, z_3, n) \\
\vdots \\
0 = z_k + \frac{1}{n} q_k(1, z_2, \ldots, z_{k-1}).
\end{array}\right.$$

Over \mathbb{Q} this system of equations can be solved in a recursive way and we see that there are polynomials $p_i(x)$ in one variable such that the solution of the above equation is given by $z_i = p_i(m)$. Now these polynomials do not have a constant term (because if $m = 0$, then all $z_i = 0$).

Hence, if we take m equal to the least common multiple of all denominators appearing in the polynomials p_i, then all the $z_i = p_i(m)$ will lie in \mathbb{Z}. So by taking $f(n,c) = m$ for this m, the lemma is proved, since in this case we have that

$$d = a_2^{z_2} a_3^{z_3} \cdots a_k^{z_k} \in \langle b, \gamma_2(N_{2,c}) \rangle.$$
Theorem 4.7. Let $c > 0$ and $g > 1$ be fixed. For any integer $k \in \mathbb{Z}$, there exists an automorphism φ_k of $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ with

$$\varphi_k(e_1) = e_2, \varphi_k(e_2) = e_3, \varphi_k(e_3) = e_4, \ldots, \varphi_k(e_{g-1}) = e_g$$

and $\varphi_k(e_g) = e_1e_g^m$, with $m = (kf(2,c))^c$. Here $f(2,c)$ is the function defined in Lemma 4.6.

Proof. Note that

$$e_1^{-2}(e_1e_g^m)^2 = (e_1e_g^m)^2$$

which is a product of m-th powers in \langle e_1, \ldots, e_g \rangle$. Since $m = (kf(2,c))^c$, Lemma 4.6 tells us that there is an element $\omega \in \langle e_1, \ldots, e_g \rangle$ such that

$$e_1^{-2}(e_1e_g^m)^2 = \omega^{kf(2,c)}.$$

By Lemma 4.6, we know that there is an element $\beta \in \langle e_1, \ldots, e_g, \gamma_2(G) \rangle$ with

$$(e_1^{-2}e_1^{m_1})^2\omega^{kf(2,c)} = (e_1^{-2}e_1^{m_1})^2\omega^{kf(2,c)}.$$

Let $\alpha = e_1^{-2}e_1^{m_1}$. Consider F_{g+1}, the free group on $g+1$ generators, say $a_1, a_2, \ldots, a_{g+1}$, and define a morphism $\psi_k : F_{g+1} \to \Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ which is determined by

$$\psi_k(a_1) = e_2, \psi_k(a_2) = e_3, \ldots, \psi_k(a_{g-1}) = e_g, \psi_k(a_g) = e_1e_g^m, \psi_k(a_{g+1}) = \alpha^{-1}.$$

We now compute that

$$\psi_k(a_1^2a_2^3\cdots a_{g+1}^2) = e_1^2e_2^3\cdots e_g(e_1e_g^m)^2\alpha^{-2}$$

$$= e_1^{-2}(e_1e_2^2\cdots e_g^2)^2(e_1^{-2}(e_1e_g^m)^2)^2\alpha^{-2}$$

$$= (e_1^{-2}e_1^{m_1})^2\omega^{kf(2,c)}\alpha^{-2}$$

$$= (e_1^{-2}e_1^{m_1})^2\alpha^{-2}$$

$$= 1.$$

Since ψ_k maps the defining relator for Γ_{g+1} to 1, ψ_k determines a morphism from $\Gamma_{g+1} \to \Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ and hence also a morphism $\varphi_k : \Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1}) \to \Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$.

To see that φ_k is an automorphism, it is enough, by Lemma 2.3, that the induced map to the abelianization is surjective. But this is now trivial to see, by the form of the images of the generators.

Theorem 4.8. For any $c > 0$ and any $g > 1$ there exists an automorphism φ of $\Gamma_{g+1}/\gamma_{c+1}(\Gamma_{g+1})$ such that the induced automorphism φ_1 of the abelianization of Γ_{g+1} has determinant -1, has one real eigenvalue of modulus > 1 (and multiplicity 1) and all other eigenvalues are of modulus < 1.

Before proving this theorem, we need some more technical results.

The first lemma is a trivial observation.

Lemma 4.9. For any $g > 1$, the group Γ_g admits the automorphism λ which is determined by $\lambda(a_1) = a_2$, $\lambda(a_2) = a_3$, \ldots, $\lambda(a_{g-1}) = a_g$ and $\lambda(a_g) = a_1$.

The next lemma is a technical one.

Lemma 4.10. Let A and L be $g \times g$ matrices which are given by

$$A = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 \\
0 & 0 & \cdots & 0 & m
\end{pmatrix}$$

and

$$L = \begin{pmatrix}
0 & 0 & \cdots & 0 & 0 & -1 \\
1 & 0 & \cdots & 0 & 0 & -1 \\
0 & 1 & \cdots & 0 & 0 & -1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & 0 & -1 \\
0 & 0 & \cdots & 0 & 1 & -1
\end{pmatrix}.$$
Then for \(m \) big enough, the matrix \(LA^{g-1} \) has one real eigenvalue of modulus > 1 (and multiplicity 1), while all other eigenvalues are of modulus < 1.

Proof. To multiply a matrix on the left with \(A \) is to put the bottom row on top, move rows 1 to \(g - 2 \) one row down and replace the last row by row \(g - 1 \) plus \(m \) times the last row. Hence, we easily see that

\[
A^2 = \begin{pmatrix}
0 & 0 & \cdots & 0 & 1 & m \\
0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 1 & m & m^2
\end{pmatrix}, \quad A^3 = \begin{pmatrix}
0 & 0 & \cdots & 1 & m & m^2 \\
0 & 0 & \cdots & 0 & 1 & m \\
0 & 0 & \cdots & 0 & 0 & 1 \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & m & m^2 & m^3
\end{pmatrix}, \ldots
\]

and finally

\[
A^{g-1} = \begin{pmatrix}
0 & 1 & m & m^2 & \cdots & m^{g-4} & m^{g-3} & m^{g-2} \\
0 & 0 & 1 & m & \cdots & m^{g-5} & m^{g-4} & m^{g-3} \\
0 & 0 & 0 & 1 & \cdots & m^{g-6} & m^{g-5} & m^{g-4} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & m & m^2 \\
0 & 0 & 0 & 0 & \cdots & 0 & 1 & m \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & m & m^2 & m^3 & \cdots & m^{g-3} & m^{g-2} & m^{g-1}
\end{pmatrix}.
\]

So

\[
LA^{g-1} = \begin{pmatrix}
-1 & -m & -m^2 & -m^3 & \cdots & -m^{g-2} & -m^{g-1} \\
-1 & 1 - m & m - m^2 & m^2 - m^3 & \cdots & m^{g-3} - m^{g-2} & m^{g-2} - m^{g-1} \\
-1 & -m & 1 - m^2 & m - m^3 & \cdots & m^{g-4} - m^{g-3} & m^{g-3} - m^{g-1} \\
-1 & -m & -m^2 & 1 - m^3 & \cdots & m^{g-5} - m^{g-4} & m^{g-4} - m^{g-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
-1 & -m & -m^2 & -m^3 & \cdots & m - m^{g-2} & m^{g-2} - m^{g-1} \\
-1 & -m & -m^2 & -m^3 & \cdots & 1 - m^{g-2} & m - m^{g-1} \\
-1 & -m & -m^2 & -m^3 & \cdots & -m^{g-2} & 1 - m^{g-1}
\end{pmatrix}.
\]

The eigenvalues of this matrix are the roots of the characteristic polynomial

\[p(x) = \det(xI_g - LA^{g-1}). \]

To be able to compute this characteristic polynomial, we consider the \(g \times g \) matrix

\[
K = \begin{pmatrix}
1 & -m & 0 & 0 & \cdots & 0 & 0 \\
0 & 1 & -m & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & -m & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1 & -m \\
0 & 0 & 0 & 0 & \cdots & 0 & 1
\end{pmatrix}
\]

of determinant 1. So we also have that

\[p(x) = \det((xI_g - LA^{g-1})K). \]
The effect of multiplying a $g \times g$-matrix B with K is to replace the i-th column of B ($i \geq 2$) by the i-th column minus m times the $(i-1)$-th column. As a result, we find that

$$p(x) = \det \begin{pmatrix}
1 + x & -mx & 0 & 0 & \cdots & 0 & 0 \\
1 & -1 + x & -mx & 0 & \cdots & 0 & 0 \\
1 & 0 & -1 + x & -mx & \cdots & 0 & 0 \\
1 & 0 & 0 & -1 + x & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
1 & 0 & 0 & 0 & \cdots & -1 + x & -mx \\
1 & 0 & 0 & 0 & \cdots & 0 & -1 + x
\end{pmatrix}.$$

By developing this determinant with respect to the first column we obtain:

$$p(x) = (1 + x)(x - 1)^{g-1} + \sum_{k=1}^{g-1} (mx)^k(x - 1)^{g-1-k}.$$

If we denote by a_n, the coefficient of $p(x)$ corresponding to x^n, then we see that

- $a_g = 1$,
- $a_{g-1} = mg^{-1}+ g$ some polynomial of degree $< g - 1$ in m,
- a_n is a polynomial of degree $\leq n$ in m (for all $n < g - 1$).

It follows that for m large enough, we have that

$$|a_{g-1}| > |a_{g-2}| + \cdots + |a_2| + |a_1| + 2$$

from which we can conclude that $p(x)$ has one real root outside the unit disk and all other roots lie strictly inside the unit disk. (E.g. see Lemma 2.4 in [2].)

We are now ready for:

Proof of Theorem 4.8. Let $T \cong \mathbb{Z}_2$ be the torsion subgroup of $\Gamma_{g+1}/\gamma_2(\Gamma_{g+1}) \cong \mathbb{Z}^g \oplus \mathbb{Z}_2$ and let $(\Gamma_{g+1}/\gamma_2(\Gamma_{g+1}))/T$ be the torsion free abelianization of Γ_{g+1}. It is not so difficult to see that the images of the generators a_1, a_2, \ldots, a_g form a basis of this free abelian quotient.

With respect to this basis, the matrix corresponding to the map λ from Lemma 4.9 is exactly the matrix L from Lemma 4.10. On the other hand, the map φ_k from Theorem 4.7 has the matrix A as its representation. Note that $\det(L) = \pm 1$ and $\det(A) = \pm 1$ have opposite signs (exact values depending on g being even or odd), but we always have that $\det(LA^{g-1}) = -1$. Hence by taking k (and thus also m) large enough, we have that

$$\varphi = \lambda \circ \varphi_k^{g-1}$$

is the automorphism we are looking for. □

Corollary 4.11. Let $g > 1$ and $c < 2g$, then $\Gamma_{g+1}/\gamma c+1(\Gamma_{g+1})$ does not have property R_∞.

Proof. Fix a $c < 2g$ and consider the automorphism φ from Theorem 4.8. The conditions on the eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_g$ of φ_1 (the induced map on the abelianization) imply that none of the products $\lambda_j \lambda_j \cdots \lambda_j$ with $i < 2g$ equals 1.

By Lemmas 2.1 and 2.2 this implies that $R(\varphi) < \infty$. □

From Corollaries 4.4 and 4.11 we can write the main result of this section.

Theorem 4.12. Let $g \geq 2$. Then, for any $c \geq 2g$, we have that the c-step nilpotent quotient $\Gamma_{g+1}/\gamma c+1(\Gamma_{g+1})$ has property R_∞. On the other hand, for $c < 2g$, then $\Gamma_{g+1}/\gamma c+1(\Gamma_{g+1})$ does not have property R_∞.

I.e. the R_∞-nilpotency degree of Γ_{g+1} is $2g$.
References

[1] Chen, K.-T.: Integration in Free Groups, Annals of Mathematics, Vol 54, No 1, 147–162 (1951).
[2] Dekimpe, K.; Gonçalves, D.: The R_{∞} property for free groups, free nilpotent groups and free solvable groups. Bull. Lond. Math. Soc. 46 no. 4, 737-746 (2014).
[3] Dekimpe, K.; Gonçalves, D.: The R_{∞} property for abelian groups. To appear in TMNA.
[4] Fel'shtyn, A. L.: The Reidemeister number of any automorphism of a Gromov hyperbolic group is infinite. Zapiski Nauchnych Seminarov POMI 279, 229-241 (2001).
[5] Fel'shtyn, A.; Troitsky E.: Twisted conjugacy classes in residually finite groups arXiv:math/1204.3175v2 2012. 20 pp.
[6] Gonçalves, D. L.; Kochloukova, D.: Sigma theory and twisted conjugacy classes. Pacific Jour. Math. 247, 335-352 (2010).
[7] Gonçalves, D. L.; Sankaran, P.: Twisted conjugacy in Richard Thompson’s group T. arxiv:math/1309.2875v2. 23 pp.
[8] Gonçalves D.; Wong, P.: Twisted conjugacy classes in nilpotent groups. J. Reine Angew. Math. 633, 11-27 (2009).
[9] Gonçalves, D.; Wong, P.: Twisted conjugacy for virtually cyclic groups and crystallographic groups. Combinatorial and geometric group theory. Trends Math., Birkhäuser/Springer Basel AG, Basel, 119-147 (2010).
[10] Jiang, B.: Lectures on Nielsen Fixed Point Theory, volume 14 of Contemp. Math. Providence, RI, 1983. xiii+100pp.
[11] Kargapolov, M. I. ; Merzljakov, Ju. I.: Fundamentals of the theory of groups. Graduate Texts in Mathematics, 62. Springer-Verlag, New York-Berlin, 1979. xvi+203 pp.
[12] Magnus, W.; Karrass, A.; Solitar, D.: Combinatorial group theory. Presentations of groups in terms of generators and relations. Second revised edition. Dover Publications, Inc., New York, 1976. xii+444 pp.
[13] Labute, J.: On the descending central series of groups with a single defining relation. J. Algebra 14, 16-23 (1970).
[14] Levitt, G.; Lustig, M.: Most automorphisms of a hyperbolic group have very simple dynamics. Ann. Scient. Ec. Norm. Sup. 33, 507-517 (2000).
[15] Nielsen, J.: Untersuchungen zur Topologie der geschlossenen Flächen. Acta Math. 50, 189-358 (1927); English transl. in Collected Mathematical papers, Birkhäuser, (1986).
[16] Reidemeister, K.: Automorphismen von Homotopiekettenringen. Math. Ann. 112, 586-593 (1936).
[17] Roman’kov, V.: Twisted conjugacy classes in nilpotent groups, Journal of Pure and Applied Algebra 215 (2011), 664-671.
[18] Segal, D.: Polycyclic groups. Cambridge Tracts in Mathematics, 82. Cambridge University Press, Cambridge, 2005. 304 pp.

KULeuven KULAK, E. SABBELAAN 53, 8500 KORTRIJK, BELGIUM
E-mail address: karel.dekimpe@kuleuven-kulak.be

DEPARTAMENTO DE MATEMÁTICA–IME–USP, UNIVERSIDADE DE SÃO PAULO, SÃO PAULO, BRASIL
E-mail address: dlgoncal@ime.usp.br