Boosting spatial resolution by incorporating periodic boundary conditions into single-distance hard-x-ray phase retrieval

David M Paganin, Vincent Favre-Nicolin, Alessandro Mirone, Alexander Rack, Julie Villanova, Margie P Olbinado, Vincent Fernandez, Julio C da Silva and Daniele Pelliccia

1 School of Physics and Astronomy, Monash University, Victoria 3800, Australia
2 The European Synchrotron—ESRF, CS40220, 38043 Grenoble, France
3 Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
4 The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
5 NEEL Institute CNRS/UGA, 38042 Grenoble, France
6 Instruments & Data Tools Pty Ltd, Victoria 3178, Australia

E-mail: david.paganin@monash.edu

Received 11 May 2020, revised 29 August 2020
Accepted for publication 22 September 2020
Published 13 October 2020

Abstract
A simple coherent-imaging method due to Paganin et al is widely employed for phase–amplitude reconstruction of samples using a single paraxial x-ray propagation-based phase-contrast image. The method assumes that the sample-to-detector distance is sufficiently small for the associated Fresnel number to be large compared to unity. The algorithm is particularly effective when employed in a tomographic setting, using a single propagation-based phase-contrast image for each projection. Here we develop a simple extension of the method, which improves the reconstructed contrast of very fine sample features. This provides first-principles motivation for boosting fine spatial detail associated with high Fourier frequencies, relative to the original method, and was inspired by several recent works employing empirically-obtained Fourier filters to a similar end.

Keywords: coherent optics, x-ray optics, phase retrieval, phase contrast, tomography, inline holography, x-ray imaging

(Some figures may appear in colour only in the online journal)

1. Introduction
In 2002 a simple algorithm was published for reconstructing the projected thickness of a single-material sample given a single propagation-based phase contrast image obtained in the small-defocus regime [1]. In this method, the ratio of the real part of the projected refractive index decrement and the projected linear attenuation coefficient is assumed to be both known and constant. The method assumes paraxial coherent radiation or matter waves (e.g. x-rays, visible light, electrons or neutrons), plane-wave illumination of known intensity, and an object-to-detector propagation distance that is sufficiently small for each structure in the sample to produce no more than one Fresnel-diffraction fringe [2] (more precisely, the object-to-detector distance is assumed to be small enough to make the corresponding Fresnel number [3] large compared to unity). Within its domain of validity (single-material sample and small object-to-detector propagation distance for...
paraxial radiation or matter waves), the method may be viewed as providing a computationally-simple unique closed-form deterministic solution to the twin-image problem of inline holography [4], since propagation-based phase contrast images are synonymous with inline holograms [5].

The 2002 algorithm has been widely utilised, particularly for propagation-based x-ray phase contrast imaging. Its advantages, bought at the price of the previously stated strong assumptions, include simplicity, speed, significant noise robustness even for strongly absorbing samples, and strong assumptions, include simplicity, speed, significant

Its advantages, bought at the price of the previously stated strong assumptions, include simplicity, speed, significant noise robustness even for strongly absorbing samples, and the ability to process time-dependent images frame-by-frame. Efficient computer implementations are available in the following software packages: ANKAPhase [6], X-TRACT [7], pyNX [8], PITRE [9], Octopus [10, 11], pyHST2 [12], TomoPy [13, 14], SYRMEP Tomo Project [15] and HoloTomo Toolbox [16]. While most applications to date have employed x-rays, the method was originally developed with a broader domain of applicability in mind, including but not limited to electrons, visible light and neutrons [1]. Accordingly, the method has now been applied to out-of-focus contrast images [17] obtained using electrons [18], visible light [19] and neutrons [20].

When the method of Paganin et al [1] (PM) is utilised in a tomographic context [21], its domain of utility broadens since many objects may be viewed as locally composed of a single material of interest, in three spatial dimensions, even though they cannot be described as composed of a single material in projection [22, 23]. Examples of applications of the PM in a tomographic setting include the imaging of paper [21], polymer micro-wire composites [24], high-Weber-number water jets [25], self healing thermoplastics [26], paint-primer microstructure [27], sandstone micro-structure [28], granite [29], melting snow [30], anthracite coal [31], evolving liquid foams [32], iron oxide particles in mouse brains [33, 34], rat brains [23], mouse lungs [35], rabbit lungs [23], mouse tibiae [36], crocodile teeth [37], mosquitoes [6], fly legs [21], high speed in vivo imaging of a fly’s flight motor system [38], wood [24], dynamic crack propagation in heat treated hardwood [39], rose peduncles [40], amber-fossilised spiders [41, 42], amber-fossilised centipedes [43], fossilised rodent teeth [44], fossil bones [45], ancient cockroach coprolites [46], fossilised early-animal embryos [47], fossil muscles of primitive vertebrates [48, 49] and the vertebral architecture of ancient tetrapods [50]. The preceding list is restricted to papers published prior to 2014. From 2014 onwards, several hundred papers have employed the PM for phase-contrast x-ray tomography.

The present work was inspired by several publications that incorporate unsharp masking [51] or related techniques to boost fine spatial detail in reconstructions obtained using the PM. These include the deconvolution filter in the ANKAPhase [6] version 2.1 implementation of the PM, incorporation of an unsharp mask into the pyHST2 implementation of the PM [12, 45], and utilisation of the measured phase contrast image as a physical unsharp mask [52]. These extensions of the method all suppress high spatial-frequency information by a factor less than that given by the Fourier-space Lorentzian filter that is employed in the PM. Notable also is the work of Yu et al [53], which enhances fine spatial detail by adapting the PM to a multi-image setting. The resulting improvements, most particularly in fine spatial detail obtained via tomographic reconstructions utilising the method, are clearly evident in the previously cited publications. These publications [6, 12, 49, 52, 53] provide impetus to revisit the theory underpinning the PM, thereby seeking a first-principles justification for reduced suppression of high spatial frequency information, relative to the Fourier filter in the original form of the method.

The remainder of the paper is structured as follows. Section 2 derives a generalised form of the PM (‘GPM’), showing how it reduces to the original form of the single-image phase-retrieval algorithm for low spatial frequencies in the input phase-contrast image data. Simulated x-ray data is considered in section 3, comparing the GPM to the PM. Section 4 presents two experimental demonstrations of the method. Section 5 discusses the domain of applicability for both the GPM and the PM, together with the effective high-pass filter to the PM that is implied by the GPM. Section 6 indicates some possible avenues for future work. We conclude with a brief summary in section 7.

2. Incorporation of periodic boundary conditions into the single-distance phase retrieval

For a monochromatic scalar x-ray wave-field with intensity \( I(x, y, z) \) and phase \( \varphi(x, y, z) \) that is paraxial with respect to an optical axis \( z \), the associated continuity equation is known as the transport-of-intensity equation [54] (TIE):

\[
\nabla \cdot \left[ I(x, y, z) \nabla \varphi(x, y, z) \right] = -k \frac{\partial I(x, y, z)}{\partial z}.
\]

(1)

Here, \((x, y)\) denote Cartesian coordinates in planes perpendicular to the optical axis, \( \nabla \) denotes the gradient operator in the \( xy \) plane and \( k = 2\pi/\lambda \) is the wave-number corresponding to the vacuum wavelength \( \lambda \). A validity condition for this equation is that the Fresnel number \( N_F \) [3] obey

\[
N_F \equiv \frac{W^2}{\Delta} \gg 1.
\]

(2)

Here, \( W \) is the characteristic transverse length scale for the wave-field being propagated, and \( \Delta \geq 0 \) is the distance from

\[8\] We use the term ‘Lorentzian’ to refer to functions of the form \( f(x, a) = 1/(a^2 + x^2) \), where \( a \) is a real non-zero constant and \( x \) is a real variable. Note, however, that such functions are also often referred to as Breit–Wigner distributions or Cauchy distributions.

\[9\] Later in the paper, we use the same symbol \( W \) to denote the pixel size of the position-sensitive detector that is used to register the intensity of the wave-field. In general, these length scales—i.e. the characteristic transverse length scale of the propagating field, and the pixel size of the detector that is used to measure the intensity of the field—will be different from one another.

\[7\] For a partial list of additional references that use the ANKA Phase implementation [6] of the phase-retrieval algorithm of Paganin et al [1], see e.g. http://www.alexanderrack.eu/ANKAPhase/ANKAphase_users.html.
(i) the planar exit surface \( z = 0 \) over which the unpropagated wave-field is specified, to (ii) the parallel planar surface \( z = \Delta \) over which the intensity of the propagated wave-field is registered using a pixellated position-sensitive detector. Following [1], consider a single-material object lying immediately upstream of the plane \( z = 0 \), whose \( z \)-projection of thickness is given by \( T(x,y) \)—see figure 1. The projection approximation [55] gives the usual Beer–Lambert law for the intensity \( I(x, y, z = 0) \) at the exit surface \( z = 0 \) of the object, for the case where the object is illuminated with \( z \)-directed monochromatic plane waves having uniform intensity \( I_0 \):

\[
I(x, y, z = 0) = I_0 \exp[-\mu T(x, y)].
\]  

(3)

Here, \( \mu \) is the linear attenuation coefficient of the single-material object. The projection approximation also gives an expression for the transverse phase distribution over the exit surface of the object [55]:

\[
\varphi(x, y, z = 0) = -k \delta T(x, y),
\]

(4)

where \( 1 - \delta \) is the real part of its complex refractive index

\[
n = 1 - \delta + i \beta
\]

and

\[
\mu = 2k \beta.
\]

(5)

(6)

Note that the single-material object may be generalised to the case of variable mass density \( \rho(x, y, z) \), the requirement then being that its complex refractive index have the form

\[
n(x, y, z) = 1 - A \rho(x, y, z),
\]

(7)

where \( A \) is a fixed complex constant at fixed energy, and \( \text{Re}(A) > 0 \) [56].

Assume vacuum to fill the half space \( z \geq 0 \) downstream of the object. Assume the exit-surface wave-field over the plane \( z = 0 \) to propagate through a distance \( \Delta \geq 0 \) downstream of the object, with this distance being sufficiently small for the Fresnel number to be much greater than unity. We may then make the following forward-finite-difference approximation to the longitudinal intensity derivative on the right side of equation (1), using the propagation based phase contrast image \( I(x, y, z = \Delta) \) of the single-material object in tandem with the estimate for the contact image given by equation (3):

\[
\frac{\partial I(x, y, z)}{\partial z} \bigg|_{z=0} \approx \frac{I(x, y, z = \Delta) - I_0 \exp[-\mu T(x, y)]}{\Delta}
\]

(8)

If equations (3), (4) and (8) are substituted into equation (1), re-arrangement yields the screened Poisson equation [1]:

\[
\frac{I(x, y, z = \Delta)}{I_0} = \left(1 + \frac{\delta \Delta}{\mu} \nabla^2_{\perp} \right) \exp[-\mu T(x, y)].
\]

(9)

The manner in which this has been previously solved is to notice that Fourier transformation turns this partial differential equation into an algebraic equation, via the Fourier derivative theorem. This leads immediately to the PM [1]:

\[
T(x, y) = -\log_e \left( \frac{F^{-1} \left\{ \frac{F[I(x, y, z = \Delta)]/I_0}{1 + (\delta \Delta/\mu) (k_x^2 + k_y^2)} \right\}} \right).
\]

(10)

Here \( F \) denotes Fourier transformation with respect to \( x \) and \( y \) in any convention for which \( \nabla_{\perp} \) transforms to \((ik_x, ik_y)\), \( F^{-1} \) is the corresponding inverse Fourier transformation, and \((k_x, k_y)\) are Fourier-space spatial frequencies corresponding to \((x, y)\). The Fourier-space filter, in the above expression, has the previously-mentioned Lorentzian form.

When equation (10) is directly applied to experimental propagation-based x-ray phase contrast images that are sampled over a Cartesian mesh, and the discrete Fourier transform used to approximate the (continuous) Fourier transform integral, there is an implicit assumption that the object does not contain appreciable spatial frequency information in the vicinity of the Nyquist limit [57] of the mesh. While this assumption was once typically quite reasonable in most coherent-x-ray-imaging contexts, the exquisitely detailed structures that are now routinely imaged in contemporary x-ray phase-contrast-tomography applications imply that this implicit assumption may now be becoming somewhat less broadly applicable—see e.g. Sanchez et al [45]. For such applications, and as the following argument will demonstrate, equation (10) overstrongly filters the highest spatial-frequency information that is present in the data.

With a view to extending the validity of the PM out to the Nyquist limit of the data sampled on a typical pixellated imaging-detector array, recall the following five-point approximation for the transverse Laplacian [57, 58], corresponding to a square mesh in which each pixel has a width of \( W \):

\[
W^2 \nabla^2_{\perp} h(x_m, y_n) \approx h(x_{m-1}, y_n) + h(x_{m+1}, y_n) + h(x_m, y_{n-1}) + h(x_m, y_{n+1}) - 4h(x_m, y_n).
\]

(11)

Here, \( h(x, y) \) is a twice-differentiable continuous single-valued function, sampled over a mesh in which each grid element is a square of physical width \( W \) metres by \( W \) metres. Hence the mesh locations are given by

\[
(x_m, y_n) = (Wm, Wn),
\]

(12)

where \( m \) and \( n \) are integers (mesh indices) that are restricted to the ranges \( 0 \leq m \leq N_1 - 1 \) and \( 0 \leq n \leq N_2 - 1 \), with \( N_1 \) being the number of sample points in the \( x \) direction, and \( N_2 \) being the number of sample points in the \( y \) direction. The key point, here, is that while the fundamental-calculus definition of the transverse derivative considers the mesh step-size \( W \) to tend to zero, when working with a discrete grid we are not justified in taking \( W \) to be any smaller than the pixel size of the mesh.

With the specified mesh of pixel locations \((x_m, y_n)\) in place, the function \( h(x_m, y_n) \) may be expressed in terms of its discrete Fourier transform \( H(k_{x,m}, k_{y,n}) \) [57]:
A single-material object of projected thickness \( T(x,y) \) is illuminated by normally incident \( z \)-directed monochromatic scalar plane waves of uniform intensity \( I_0 \), where \((x,y)\) are Cartesian coordinates perpendicular to the optical axis \( z \). The resulting paraxial exit-surface wave-field, over the plane \( z = 0 \), propagates in vacuum through a distance \( z = \Delta \). The associated propagation-based phase contrast image has intensity distribution \( I(x,y,z = \Delta) \), sampled using square detector pixels having a width of \( W \). This propagation-based phase contrast image will be sensitive only to both the intensity and the phase of the complex wave-field existing over the exit surface \((x,y,z = 0)\) of the sample. Single-image phase retrieval seeks to recover the projected thickness \( T(x,y) \), using the propagation-based phase contrast image as input data. If a tomographic reconstruction of the sample is performed, the phase-retrieval process can be independently repeated for a number of different angular orientations \( \xi \) of the the sample with respect to the indicated rotation axis. The recovered projected thickness, for this family of angular orientations of the sample, can then be tomographically reconstructed to give a three-dimensional map of the mass density \( \rho(x,y,z) \) of the sample.

\[
h(x_m,y_n) = \frac{1}{N_1N_2} \sum_{p=-N_1/2}^{N_1/2} \sum_{q=-N_2/2}^{N_2/2} H(k_{x,p},k_{y,q}) \times \exp\left(-\frac{2\pi i m p}{N_1}\right) \exp\left(-\frac{2\pi i n q}{N_2}\right),
\]

(13)

Equation (15) then implies that equation (9) may be solved for the projected thickness \( T(x,y) \) of the single-material sample, over the lattice of points \((x_m, y_n)\), with the following generalised form of the PM (termed the ‘GPM’ henceforth): \[
T(x_m, y_n) = -\frac{\alpha}{\mu} \log_\chi \text{IDFT}^{p=\mu m}_{q=\mu n} I(x_m, y_n, z = \Delta)/I_0 \times \frac{\text{IDFT}^{m=\mu p}_{n=\mu q}[I(x_m, y_n, z = \Delta)/I_0]}{1 - \frac{\mu \alpha}{W} \cos(\chi_{k_{x,p},k_{y,q}}) + \cos(\chi_{k_{y,q}}) - 2},
\]

\[
\alpha = \frac{\delta \Delta}{\mu},
\]

(17)

Here, \( \text{IDFT}^{m=\mu p}_{n=\mu q} \) is the discrete Fourier transform operator, which maps a function \( h(x_m, y_n) \) sampled on the real-space lattice \((x_m, y_n)\) to its discrete Fourier transform \( H(k_{x,p},k_{y,q}) \) sampled on the Fourier-space lattice \((k_{x,p},k_{y,q})\), and \( \text{IDFT}^{m=\mu p}_{n=\mu q} \) is the corresponding inverse discrete Fourier transform (see equation (13) and Ghiglia and Romero [61], who write a similar expression in the context of the Poisson equation). Note that operators such as \( \text{IDFT}^{m=\mu p}_{n=\mu q} \) and the natural logarithm are considered to act from right to left, both in equation (17) and for the remainder of the paper, so that e.g. \( \log_\chi \text{IDFT}^{m=\mu p}_{n=\mu q}(Q) \) is equivalent to \( \log_\chi[\text{IDFT}^{m=\mu p}_{n=\mu q}(Q)] \) for any \( Q \). Note, also, that the key numerical parameter in equation (17) is the dimensionless constant:

\[
\alpha = \frac{\delta \Delta}{\mu}.
\]

Before proceeding any further, for the sake of clarity we now give a verbal description corresponding to the five-step algorithm expressed in mathematical form by equation (17).
This five-step algorithm takes a single propagation-based phase-contrast image \( I(x_m, y_n, z = \Delta) \) as input, and yields an estimate for the projected thickness \( T(x_m, y_n) \) of the single-material sample that created the measured image, as output. These five steps are:

(a) Normalise the pixelated propagation-based phase-contrast image \( I(x_m, y_n, z = \Delta) \) by dividing it through by the uniform intensity \( I_0 \) of the incident plane-wave illumination. Note that, if the incident illumination is non-uniform in intensity, this step would correspond to a ‘flat field correction’ in which we divide by the position-dependent intensity of the non-uniform illumination.

(b) Take the discrete Fourier transform \( \text{DFT}^{-\Delta} \) of the normalised (flat-field corrected) image, using e.g. the fast Fourier transform [57].

(c) Divide by the low-pass Fourier-space filter given by the denominator in the second line of equation (17). Explicitly, this ‘GPM Fourier-space filter’ \( P_{\text{GPM}}(k_x, p, k_y, q) \) is:

\[
P_{\text{GPM}}(k_x, p, k_y, q) = \frac{1}{1 - \frac{\alpha}{W^2} [\cos(Wk_x, p) + \cos(Wk_y, q) - 2]}.
\]  

(19)

(d) Take the inverse discrete Fourier transform \( \text{IDFT}^{\Delta}\ ) of the resulting image.

(e) Take the natural logarithm of the resulting image, then divide by the negative of the linear attenuation coefficient \( \mu \).

The Fourier-space filter \( P_{\text{GPM}}(k_x, p, k_y, q) \) in equation (19) is not rotationally-symmetric in the discrete Fourier space of spatial-frequency coordinates \((k_x, p, k_y, q)\), but it is nevertheless useful to first plot this filter as a function of only one variable, namely the scaled transverse Fourier-space coordinate \( W k_x, p \), for the case where \( k_y, q = 0 \). Such plots of \( P_{\text{GPM}}(W k_x, p, W k_y, q = 0) \) are given in figure 2(a), for four different cases of the governing dimensionless parameter \( \alpha/W^2 \) (see equation (18)). The dimensionless form of the scaled spatial-frequency coordinate \( W k_x, p \) here varies from zero to its maximum value (Nyquist frequency) of \( \pi \). Four different values of \( \alpha/W^2 \) are considered: \( \alpha/W^2 = 0.01 \) (red), \( \alpha/W^2 = 0.1 \) (blue), \( \alpha/W^2 = 1 \) (green) and \( \alpha/W^2 = 10 \) (brown). For each value of \( \alpha/W^2 \), two curves are provided: the GPM form of the phase-retrieval filter that is given by equation (19), together with the corresponding PM form of the filter that is given by the rotationally-symmetric expression:

\[
R(k_x, p, k_y, q) = \frac{P_{\text{GPM}}(k_x, p, k_y, q)}{P_{\text{PM}}(k_x, p, k_y, q)}.
\]  

(21)

As mentioned earlier, the GPM filter is not rotationally symmetric, hence we now consider the fully two-dimensional form of the one-dimensional plots given in figure 2(a). Several two-dimensional plots of the low-pass Fourier-space GPM filter (see step (c) above, together with equation (19)) are given in figure 3, for the same set of four values for the single dimensionless parameter \( \alpha/W^2 = 0.01, 0.1, 1, 10 \) considered previously. Note the transition from (i) near-rotational-symmetry and near-Lorentzian-form close to the origin of Fourier space, to (ii) the symmetry of a square at the edges of Fourier space. The filter obeys periodic boundary conditions at the edges of the Fourier-space mesh, with each mesh value along the mesh’s edges corresponding to a Nyquist frequency [57]:

\[
W k_{x, p}^\text{max}, W k_{y, q}^\text{max} = \pm \pi.
\]  

(22)

In the low-spatial-frequency limit, we may make the second-order Taylor-series approximation:

\[
\cos(W k_x, p) \approx 1 - \frac{1}{2}(W k_x, p)^2, \quad \cos(W k_y, q) \approx 1 - \frac{1}{2}(W k_y, q)^2.
\]  

(23)

Equation (17) then reduces to the PM with its rotationally-symmetric discrete-Fourier-transform representation of equation (10) and the associated Lorentzian filter:

\[
T(x_m, y_n) \rightarrow -\frac{1}{\mu} \log_e \text{IDFT}^{\Delta}\text{IDFT}^{m-q} \frac{\text{DFT}^{m-q} [I(x_m, y_n, z = \Delta)/I_0]}{1 + \alpha (k_x^2 + k_y^2)} \left[ W k_{x, p} | W k_{y, q} | \ll 1 \right].
\]  

(24)

The Lorentzian filter, implied by the above equation, has already been written down in equation (20).
3. Computer simulations for propagation-based phase retrieval

The efficiency of the generalised phase-retrieval reconstruction method can be asserted by simulating paraxial x-ray propagation through a suitably-high-resolution object, and reconstructing it using both the PM and the GPM. To perform this, we chose a spatially random binary object (figure 4(a)) with an x-ray wavelength of 0.5 Å, \( \beta = 10^{-9}, \delta = 5 \times 10^{-7}, \) a pixel size of 10 \( \mu m, \) and a thickness for the object of 40 \( \mu m. \) A simulated unit-amplitude plane wave was transmitted through this object and propagated by a distance of \( \Delta = 0.1 m \) using a near-field propagator. In order to avoid aliasing effects due to the discrete Fourier transform used, the propagation was performed on a \( 2 \times 2 \) over-sampled object (where the binary random pattern pixels had a \( 2 \times 2 \) size), and the propagated intensity was rebinned (averaging the intensity over \( 2 \times 2 \) pixels) before being back-propagated. Thus the object-plane...
Figure 4. Simulated reconstructions using (a) a spatially random binary transmission pattern, before propagation and reconstruction using (b) the standard and (c) generalised approach (see text for details). Coordinates are given in pixels. (d) Line profile (indicated by a red line in (a)–(c)) along the original and reconstructed binary patterns. Note that, throughout both this caption and its associated figure, the term ‘original’ is a shorthand for ‘original image input into the simulation’. Both images and line profiles exhibit a higher contrast for the generalised method. (e) Line profile of the kernel obtained using a Richardson–Lucy deconvolution [62, 63] between the original array and each of the back-propagated arrays. The generalised method yields a sharper kernel.

4. Experimental results for propagation-based x-ray phase contrast tomography

Here we give two experimental demonstrations of the ideas developed in the present paper, for 3D propagation-based x-ray phase contrast imaging. Both experiments were performed at the ID19 microtomography beamline [64, 65] of the European Synchrotron (ESRF) in Grenoble, France. The two samples used for testing the algorithm were (i) a wooden toothpick and (ii) an alumina rod. Images were produced using an incident parallel beam generated by a single-harmonic U17.6 undulator, recorded over 360° sample rotation on an indirect detector positioned in the near-field condition and consisting of a thin scintillator ((i) lutetium aluminium garnet (LuAG) 25 µm thick; (ii) gadolinium gallium garnet 100 µm thick) that was lens-coupled ((i) X20 Mitutoyo; (ii) X10 Olympus) to a visible-light camera equipped with a 2560 × 2160 pixel sCMOS sensor having 6.5 µm × 6.5 µm pixel size (pco.edge 5.5, PCO, Kelheim, Germany). The principal tomographical and reconstruction parameters, used for both samples, are listed in table 1.

The dry wooden toothpick, used for the first experiment, had a nominal diameter of 2 mm. A δβ/β ratio of 1961 was used for the reconstruction, based on the chemical formula for cellulose (C₆H₁₀O₅) at the utilised energy of E = 19.6 keV. Figure 5(a) shows a reconstruction of one tomographic slice of the sample based on the PM (equation (24)). Figure 5(b) shows the corresponding GPM reconstruction.
Figure 5. Experimental results for propagation-based x-ray phase contrast tomography, applied to a dry wooden toothpick imaged at 19.6 keV energy. Reconstruction of tomographic slice using (a) PM and (b) GPM, with the pointwise difference between the reconstructions in (a) and (b) being shown in (c). The insets in (c), which are bounded by yellow, blue and red rectangles, are magnified in (d)–(f), respectively.

Table 1. Key parameters used for the two propagation-based x-ray phase-contrast tomography experiments: pixel size $W$, energy $E$, number of tomographic projections $P$, exposure time $t$ for each 2D phase-contrast image, sample-to-detector distance $\Delta$ and delta-to-beta ratio $\delta/\beta$.

| Sample      | $W$ (µm) | $E$ (keV) | $P$ | $t$ (ms) | $\Delta$ (mm) | $\delta/\beta$ |
|-------------|----------|-----------|-----|----------|----------------|----------------|
| Toothpick   | 0.32     | 19.6      | 2999 | 30       | 3              | 1961           |
| Alumina rod | 0.72     | 35        | 2499 | 35       | 30             | 1797           |

based on equation (17). These two images look nearly identical to eye, in the greyscale representations of figures 5(a) and (b), however the pointwise difference between these reconstructions, as shown in figure 5(c), reveals additional fine-level detail that is present in the GPM reconstruction (figure 5(b)) but absent in the PM reconstruction (figure 5(a)). The insets in the difference map (figure 5(c)), which are bounded by yellow, blue and red rectangles, are magnified in figures 5(d)–(f) respectively. The additional fine-level detail, which is present in the GPM reconstruction, includes the fine striations in the wood-cell wall that are marked ‘1’ in figures 5(c) and (d), the point of increased density within the wood-cell pore that is marked ‘2’ in figures 5(c) and (e), and the pair of points with increased density that are labelled ‘3’ in figures 5(c),(f).

Figure 6. Graphical illustration of equation (32), showing that the pointwise difference between two images obtained at two slightly different spatial resolutions, is proportional to the Laplacian of either image. Here, $f_1(x)$ is the image at slightly better spatial resolution (green curve) and $f_2(x)$ is the same image at slightly coarser spatial resolution (blue curve), with both images being considered as functions of one spatial variable $x$ (arbitrary units). The difference map $f_2(x) - f_1(x)$ is shown in brown, multiplied by 5 to aid visualisation.

In addition to the difference image in figure 5(c) revealing fine spatial detail that is present in the GPM reconstruction but absent from the PM reconstruction, this difference map evidently displays structure related to the Laplacian of
the images in figures 5(a) and (b). We now explain why the obtained Laplacian-type signal in the difference map (figures 5(c)–(f)) gives an explicit experimental signature that the GPM indeed gives a higher-spatial-resolution reconstruction than the PM. Very similar calculations, to those given in the remainder of this paragraph, are presented in e.g. [66,67], as well as in a number of works related to edge-detection in contexts such as image analysis and machine vision [68–72].

Let \( f(x, y) \) be a given greyscale image as a function of transverse coordinates \((x, y)\), with

\[
\hat{f}_1(k_x, k_y) = \hat{f}(k_x, k_y) \exp[-i(k_x x + k_y y)]
\]

being the said image blurred by two-dimensional convolution with a Gaussian point-spread function of standard deviation \( \sigma_1 > 0 \). Similarly,

\[
\hat{f}_2(k_x, k_y) = \hat{f}(k_x, k_y) \exp[-i(k_x x + k_y y)]
\]

is the same initial image \( f(x, y) \), blurred with a different two-dimensional Gaussian point-spread function of standard deviation \( \sigma_2 > \sigma_1 \). Here, \( \otimes \) denotes convolution over \( x \) and \( y \), with

\[
\mathcal{N}_{1,2} = \frac{1}{2\pi\sigma_{1,2}^2}
\]

being the normalisation constants for the Gaussians, which ensure that each Gaussian integrates to unity. Note that the condition \( \sigma_2 > \sigma_1 \) is consistent with the convolution kernels obtained using Richardson–Lucy deconvolution, as shown in figure 4(e), for which the GPM kernel has a standard deviation \( \sigma_1 \) that is narrower than the standard deviation \( \sigma_2 \) associated with the PM kernel. The Fourier transforms with respect to \( x \) and \( y \), of our two blurred images \( f_1(x, y) \) and \( f_2(x, y) \), are

\[
\hat{f}_{1,2}(k_x, k_y) = \hat{f}(k_x, k_y) \exp[-\frac{1}{2}(k_x^2 + k_y^2)\sigma_{1,2}^2].
\]

Above, note that (i) we have made use of the convolution theorem of Fourier analysis, (ii) a tilde denotes Fourier transformation with respect to \( x \) and \( y \), and (iii) we have used the Fourier-transform convention:

\[
\hat{f}(k_x, k_y) = \frac{1}{2\pi} \int f(x, y) \exp[-i(k_x x + k_y y)] dx dy.
\]

The exponential term in equation (28) may be approximated by a second-order Taylor series (inverted parabola)

\[
\exp[-\frac{1}{2}(k_x^2 + k_y^2)\sigma_{1,2}^2] \approx 1 - \frac{1}{2}\sigma_{1,2}^2(k_x^2 + k_y^2),
\]

since a sufficiently narrow blur-function in real space will be rather wide in Fourier space, relative to the width of the power spectrum \( |\hat{f}(k_x, k_y)|^2 \) of \( f \). If we now substitute equation (30) into equation (28), take the inverse Fourier transform of the resulting expression and then apply the Fourier derivative theorem in reverse, we see that:

\[
f_{1,2}(x, y) \approx (1 + \frac{1}{2}\sigma_{1,2}^2\nabla_x^2) f(x, y).
\]

Finally, equation (31) gives the following expression for the difference between two images of the same function \( f(x, y) \), that are obtained at slightly different spatial resolutions:

\[
f_2(x, y) - f_1(x, y) \approx \frac{1}{2}(\sigma_2^2 - \sigma_1^2)\nabla_x^2 f(x, y).
\]
Equation (32) shows that the pointwise difference, between two images that are reconstructions of the same function at different spatial resolutions, gives an image that is proportional to the Laplacian of the original image. This is consistent with the Laplacian signal in figures 5(c)–(f), but the same result may also be understood conceptually, as sketched in figure 6. This depicts an image $f(x)$ as a function of one spatial variable $x$, with arbitrary units for $x$, corresponding to a step-like edge $A$ and a ‘bump’ $C$. The green curve for $f_1(x)$ corresponds to slightly better spatial resolution, with the blue curve $f_2(x)$ representing slightly coarser spatial resolution. When the difference map $f_2(x) - f_1(x)$ is formed, we obtain the brown curve. The step-like feature $A$ gives a peak-plus-trough feature labelled $B$, which is proportional to the second derivative of the green or blue curves, and which corresponds to the black–white contrast seen at the cell-wall boundaries in figures 5(c)–(f). Similarly, the ‘bump’ $C$ leads to the feature labelled $D$ in figure 6; such contrast is seen in the dark dots labelled ‘2’ and ‘3’ in figures 5(e) and (f).

We now turn to the second experiment, which imaged a compacted alumina ($\text{Al}_2\text{O}_3$) cylinder, contained within a fused-silica quartz glass capillary having nominal wall thickness of approximately 10 $\mu$m. See table 1 for other key parameters used in this experiment, leading to the reconstructions shown in figure 7. Figure 7(a) shows one tomographically reconstructed slice of the alumina cylinder as obtained using the PM, with figure 7(b) giving the corresponding GPM reconstruction. Figure 7(c) shows the pointwise difference between the PM and GPM reconstructions. Alumina pores [73] are evident in all reconstructions, with the additional fine spatial detail that is present in (b) being rendered visible to the eye in the difference map that is shown in (c). The difference map in figure 7(c) again displays a Laplacian-type signature, consistent with the fact that figure 7(b) has a higher spatial resolution than figure 7(a) (see equation (32) and figure 6). As particular examples of the Laplacian-type signature, (i) the black–white edges labelled ‘1’ and ‘2’ in figure 7(c) correspond to feature $B$ in figure 6, and (ii) the features labelled ‘3’ and ‘4’ in figure 7(c) correspond to a contrast-reversed form of feature $D$ in figure 6, with the contrast reversal being due to the fact that the centre of such features corresponds to a local trough in sample density rather than a local peak (see feature $C$ in figure 6).

5. Discussion

As stated in the introduction, the work of the present paper was inspired by several experimental investigations [6, 12, 45, 49, 52] that phenomenologically employ unsharp masks or deconvolution to boost high-spatial-frequency information in x-ray phase contrast tomograms whose reconstructions are obtained with the assistance of the PM. This phenomenological modification to the PM often very significantly improves the level of fine-detail clarity in the reconstructions. Is there a fundamental explanation, derivable from an optical-imaging-physics perspective, that casts some light on why the phenomenological high-frequency-boost strategy is so successful? While we do not claim to give a complete answer to this still-open question, below we argue that the PM-to-GPM transition may go partway to addressing it.

Consider the ratio $R(k_x,k_y)$ of the GPM and PM Fourier-space filters, as given by equations (17) and (24). We have already written this ratio in a generic form, in equation (21), but in order to now consider it in more detail, here we write it explicitly as:

$$R(k_x,k_y) = \frac{1 + \alpha(k_x^2 + k_y^2)}{1 - \frac{\alpha}{W^2}(\cos(Wk_x) + \cos(Wk_y) - 2)}.$$

This ratio may be viewed as a form of deconvolution mask, here derived from first principles, whose application transforms the PM into the GPM. As mentioned earlier, such a deconvolution-mask viewpoint may be compared to (and was indeed inspired by) previously-published work which introduced such masks from a phenomenological perspective [6, 12, 45, 52].

The ratio in equation (33) is always greater than or equal to unity, implying that the GPM filter (equation (17)) suppresses each Fourier component of the measured phase contrast signal, by an amount that is never more than the degree of suppression based on the PM filter (equation (24)). We have already encountered this point, in the one-dimensional cross-sections that were presented in figure 2. To examine this in further detail, see figure 8 for a series of contour plots of the Fourier-filter-ratio in equation (33), for the same range of $\alpha/W^2$ values that was used in figures 2 and 3. The form of these plots—which give a GPM-to-PM filter ratio of unity at the Fourier-space origin, taking values that are progressively greater than unity the further we move away from the Fourier-space origin—gives a partial first-principles justification for the previously cited works boosting high spatial frequencies of tomographic reconstructions based on the PM. However, we must emphasise that the degree of high-spatial-frequency boost, in the previously cited works [6, 12, 45, 49, 52], is typically significantly larger than the degree of boost that can be justified using the arguments developed in the present paper.

It is for this reason that we describe our first-principles justification as ‘partial’: the GPM gives a reconstruction of fine detail that is superior to that obtained with the PM, but the GPM yields reconstructions that are inferior to those obtained by applying the previously-cited phenomenological approaches [6, 12, 45, 49, 52] to improve the PM by suitably boosting high spatial frequencies. We conjecture there to be an additional factor or factors that can be used to derive additional high-frequency boosts from first principles, but the nature of these factors remains unanswered by the present investigation.

In light of the above comments, let us make some additional remarks regarding the Fourier-filter-ratio plots in figure 8. Near the origin of Fourier space, corresponding to coarser spatial detail in the reconstruction, the plots of figure 8 have a plateau of values near unity. Again, this is consistent with the
Figure 8. Contour plot of the ratio of Fourier-space filters given by equation (33). (a) $\alpha/W^2=0.01$; (b) $\alpha/W^2=0.1$; (c) $\alpha/W^2=1$; (d) $\alpha/W^2=10$. All plots equal unity at the origin of Fourier space. Note that $\alpha/W^2 = (4\pi N_F)^{-1} \delta/\beta$.

GPM reducing to the PM at sufficiently coarse spatial resolution. The maximum value $R_{\text{max}}$ of the ratio $R(k_x, k_y)$, attained at the corners of the Fourier-space mesh, is given by

$$R_{\text{max}} = \frac{1 + 2\pi^2 \Upsilon}{1 + 8\Upsilon},$$

(34)

where

$$\Upsilon \equiv \alpha/W^2 = (4\pi N_F)^{-1} \delta/\beta.$$  

(35)

When $\Upsilon \gg 1$, we see that the maximal Fourier-space boost $R_{\text{max}}$ (of the GPM Fourier filter relative to the PM Fourier filter) is by a factor of $\pi^2/4 \approx 2.5$: see the corners of figure 8(d) together with the maximum value taken by the brown curve in figure 2(b). Conversely, when $\Upsilon \ll 1$, then $R_{\text{max}}$ tends to unity: see figure 8(a) together with the red curve in figure 2(b).

If we Taylor expand equation (33) to fourth order in spatial frequency, which will be a fair approximation for spatial frequencies that are not too large in magnitude relative to the Nyquist frequency, we obtain

$$R(k_x, k_y) \approx 1 + \frac{1}{12} \alpha W^2 (k_x^4 + k_y^4).$$

(36)

The fact, that the smallest non-constant term in this expansion is quartic in spatial-frequency coordinates, is consistent with the plateau of values close to unity, exhibited by the plots in figure 8 near the Fourier-space origin. This aligns with the idea that the usual form of the PM works well for coarser spatial detail, but needs the GPM (or some other suitable approach) for better treatment of higher-spatial-frequency detail. The above result also implies that the GPM Fourier filter is approximately equal to $R(k_x, k_y) \approx 1 + \frac{1}{12} \alpha W^2 (k_x^4 + k_y^4)$ multiplied by the PM Fourier filter, at least for sufficiently small Fourier frequencies; the corresponding real-space unsharp mask is therefore proportional to the result of applying the non-rotationally-symmetric fourth-order differential operator $\partial^4/\partial x^4 + \partial^4/\partial y^4$ to the PM image, rather than the more usual unsharp mask proportional to the result of applying the rotationally-symmetric second-order differential operator $-(\partial^2/\partial x^2 + \partial^2/\partial y^2)$ to the PM image.

It is interesting to further examine the conditions under which the GPM differs significantly from the PM. Take the ratio of Fourier filters in equation (33), and evaluate this ratio at the maximum (Nyquist) $x$ and $y$ spatial frequencies

$$k_{x_{\text{max}}} = k_{y_{\text{max}}} = \frac{\pi}{W}.$$  

(37)

This gives the condition

$$R \left( \frac{k_x}{W}, \frac{k_y}{W} \right) = R_{\text{max}} = \frac{1 + 2\pi^2 \Upsilon}{1 + 8\Upsilon} \geq 1 + \Lambda,$$

(38)

for the GPM to be significantly different in comparison to the PM. Here, $\Lambda$ is a lower bound on the maximum relative difference, between the ratio of the two filters and unity,
which is considered to be ‘significant’. Next we (i) make use of equations (6) and (16); (ii) incorporate both the definition of the Fresnel number and its associated requirement as given in equation (2). Hence we obtain the following material-dependent parameter domain for which the GPM is both (i) a significant improvement upon the PM, and (ii) still within the domain of validity for the underpinning TIE:

\[
\frac{\delta}{\beta} \left( \frac{\lambda}{\pi} - \frac{2}{\pi} \right) \geq N_p \gg 1.
\]

(39)

Thus, e.g. if we choose \( \mathcal{R} = 0.1 \), and round numerical factors to the nearest order of magnitude, the above inequalities become the material-dependent conditions:

\[
10 \frac{\delta}{\beta} \geq N_p \gg 1.
\]

(40)

Some sample numerical values may be used to illustrate the above expression: if \( \delta/\beta = 500 \), \( \lambda = 0.5 \, \mu \text{m} = 5 \times 10^{-5} \, \text{m} \) and \( W = 10 \, \mu \text{m} = 10^{-5} \, \text{m} \), then equation (40) will be satisfied if \( 0.4 \, \text{mm} \leq \Delta \ll 2 \, \text{m} \). If the pixel size is halved to \( W = 5 \, \mu \text{m} \), leaving all other parameters unchanged, we instead obtain \( 0.1 \, \text{mm} \leq \Delta \ll 50 \, \text{cm} \). If the condition in equation (39) is violated then more sophisticated methods than either the PM or the GPM will need to be employed, including but not limited to (i) holotomography [74], (ii) approaches based on the first Born and Rytov approximations [75], (iii) approaches based on the contrast-transfer-function formalism [76, 77], and (iv) the variety of approaches that are both reported upon and compared in Yu et al [78].

One further point should be made regarding unsharp masks and deconvolution. The GPM will still benefit from additional unsharp masking or deconvolution, to further boost high-frequency detail, since—among other reasons beyond the scope of the present investigation, such as truncation of the effects of Fresnel diffraction to ignore the presence of multiple Fresnel-diffraction fringes—the GPM does not explicitly take source-size-induced blurring into account. The degree of sharpening required for GPM-reconstructed images will necessarily be less pronounced than that which has been needed for PM-reconstructed images. In this context we point out that the image-blurring effect due to finite source size may be modelled by making the following replacement in equation (9) [79]:

\[
\frac{\delta}{\mu} \longrightarrow \frac{\delta}{\mu} - \frac{2S^2}{\Delta}.
\]

(41)

Here, \( S \) is the radius of the effective incoherent point-spread function at the detector plane, that is due to source-size blurring (cf [67]). The above replacement transforms equation (9) into a Fokker–Planck form [80–82] for which \( 2S^2/\Delta \) plays the role of an effective diffusion coefficient\(^{10}\). This simple algebraic replacement may be carried through all of the calculations of the present paper, thereby incorporating a partial source-size deconvolution into the analysis.

It is also interesting to observe that we can introduce a real parameter \( \tau \), which lies between zero and unity inclusive, that continuously deforms the PM algorithm in equation (24) \((\tau = 0)\), into the GPM algorithm in equation (17) \((\tau = 1)\), via:

\[
T(x_m, y_n; \tau) = -\frac{1}{\mu} \log_{24} \text{IDFT}_{q \rightarrow n} \left( \text{DFT}_{n \rightarrow q} \left[ I_j(x_m, y_n, z = \Delta)/I_0 \right] \right) \times \frac{1 + \alpha \left( k^2_{x,p} + k^2_{y,q} \right) - \frac{2\alpha \tau}{\mu^2} \Phi(k_{x,p}, k_{y,q})}{1 + \alpha \left( k^2_{x,p} + k^2_{y,q} \right) - \frac{2\alpha \tau}{\mu^2} \Phi(k_{x,p}, k_{y,q})}.
\]

(42)

where \( 0 \leq \tau \leq 1 \) and

\[
\Phi(k_{x,p}, k_{y,q}) \equiv \cos(Wk_{x,p}) + \cos(Wk_{y,q}) - 2 + \frac{1}{2}(Wk_{x,p})^2 + \frac{1}{2}(Wk_{y,q})^2.
\]

(43)

We close this discussion by returning, once again, to the theme of unsharp-mask image enhancement. As pointed out earlier, the work of the present paper was inspired by the success of applying unsharp-mask processing and related concepts, to improve the fine spatial detail apparent in PM-based reconstructions. In this context, it is perhaps fitting to ‘come full circle’ by pointing out that the difference maps, such as those shown in figures 5(c)–(f) and 7(c), may themselves be viewed as a form of unsharp mask. We have already argued and observed that such difference maps emphasise the fine spatial details that are present in the GPM reconstructions, but which are suppressed in the corresponding PM-based reconstructions. The reason that this additional fine detail is not evident in comparing the GPM to the PM reconstructions, is that this additional fine detail is of sufficiently small amplitude to be difficult to discern by eye in greyscale representations such as those shown in figures 5(b) and 7(b). This last-mentioned observation arises from the physiological limitations of the human eye, which can only discriminate on the order of 30 different greyscale levels [83]. It is also worth pointing out, in the present phase-retrieval imaging context, that it is often of utility to decompose physical models of samples—such as spatial distributions of complex refractive index—into a sum of (i) a spatially slowly-varying function that may and in general will have a large magnitude, and (ii) a spatially rapidly-varying function that has a small amplitude relative to the amplitude of the slowly-varying component. Such decompositions are used in e.g. Gureyev et al [75, 76] and Nesterets [84], together with references therein. Bearing all of the above points in mind,

\(^{10}\) See, in particular, the special case of equation (59) in the paper by Paganin and Morgan [82], in which their ‘effective diffusion coefficient’ \( D_{eq}(x, y) \) is considered to be independent of transverse coordinates \((x, y)\). The resulting Fokker–Planck equation is mathematically identical in form to the screened Poisson equation given when equation (9) of the main text is modified by the replacement that is indicated in equation (41).
let $T_{PM}(x,y)$ denote a PM-based reconstruction of a projected thickness (or density) distribution, with $T_{GPM}(x,y)$ denoting the corresponding GPM reconstruction. We then write the identity:

$$
T_{GPM}(x,y) = T_{PM}(x,y) + [T_{GPM}(x,y) - T_{PM}(x,y)].
$$

(44)

The term in square brackets, on the right-hand side of equation (44), is the ‘difference map’ plotted in figures 5(c)–(f) and 7(c). Considering this to be a form of unsharp mask that is induced by the transition from the PM to the GPM, we may follow the formulation given in e.g. Sheppard et al [51] to modify equation (44) as follows:

$$
T(x,y,s) \equiv T_{PM}(x,y) + s[T_{GPM}(x,y) - T_{PM}(x,y)].
$$

(45)

Here, $s$ is a real parameter. The case $s = 0$ corresponds to using the PM, with $s = 1$ corresponding to the GPM. When $s > 1$ we may consider $T(x,y; s > 1)$ to be an unsharp-mask image-sharpened representation of $T(x,y)$. In a similar vein, we may also consider equation (42), in which $\tau$ is now taken to be a real parameter that is greater than unity, to constitute a form of unsharp-mask image enhancement that is directly based upon the GPM.

6. Some avenues for future work

Since Beltran et al [22, 23] reported signal-to-noise ratio (SNR) boosts of up to 200 in utilising the PM in a tomographic setting, relative to absorption contrast, there has been interest in the ‘SNR boosting’ properties of the PM [85–88]. Of particular note is the result that the SNR boost has 0.3 $\delta/\beta$ as an approximate upper bound under the assumption of Poisson statistics [85, 86], with the SNR boost being even more favourable for very low sample-exposure times [87, 89]. Since dose is proportional to the square of SNR, dose reductions of 300$^2 = 90000$ or more are in principle possible with the PM [87]. This implies that tomographic analyses are possible using much less dose (or, equivalently, much lower acquisition times) than previously required for a single two-dimensional projection. This reduced dose is of importance in the context of medical imaging, while in an industrial-inspection product-quality-control context (or security screening context) it enables significant increases in throughput speed due to the associated increase in source effective-brilliance; see e.g. the recent achievement of over 200 x-ray phase-contrast tomosgrams per second [90], incorporating PM-based data processing. In light of the above comments, it would be interesting to see how the previously published analyses for SNR boost and associated dose reduction are altered by passage from the PM to the GPM. It appears likely that SNR boosts will be reduced somewhat if the GPM is used in place of the PM, in accord with the trade-off between noise and spatial resolution [91, 92].

Another interesting avenue for future work begins with the previously mentioned observation that, from version 2.1 onwards, the ANKApHase [6] implementation of the PM incorporates a deconvolution mask to boost fine spatial detail.

This deconvolution filter $R_{ANKA}(k_x, k_y)$ takes the Fourier-space form

$$
R_{ANKA}(k_x, k_y) = \frac{1 + c}{c + \exp[-\pi \sigma^2(k_x^2 + k_y^2)]},
$$

(46)

where $c$ is a dimensionless constant and $\sigma$ is a characteristic width. In light of the findings of the present paper, it would be interesting to consider replacing the ANKApHase deconvolution filter with

$$
\hat{R}_{ANKA}(k_x, k_y) = \frac{1 + c}{c + \exp[-\sigma^2(k_x^2 + k_y^2)]},
$$

(47)

since the fourth-order Taylor expansion of the deconvolution filter would then agree with the fourth-order Taylor expansion of $R(k_x, k_y)$, provided that

$$
\frac{12\sigma^4}{1 + c} = W^2 \alpha.
$$

(48)

It would also be interesting to investigate any utility that the present work may have, in the context of tomographic image segmentation [93, 94]. For example, would a tomographic segmentation—of difference maps such as those shown in figures 5(c) or 7(c)—reveal additional fine morphological detail compared to tomographic segmentation of unsharp-mask image-sharpened PM-based reconstructions? What advantage (if any) arises for image segmentations that are based on the GPM-induced unsharp-mask image-enhancement given by the $s > 1$ case of equation (45), or the $\tau > 1$ case of equation (42)? What advantage (if any) arises for image segmentations that are based on taking existing unsharp-mask image-enhancement strategies, and applying them to GPM-based rather than PM-based reconstructions? The efficacy of the various approaches to segmentation, as listed above, could be quantitatively compared via their application to segmentation-derived quantities such as porosity, surface density, Euler-number density, mean-curvature density, mean coordination number, fibre-direction distributions etc [94].

One more avenue for future research would be to replace equation (11) with a higher-order discrete approximation to the transverse Laplacian. For example, equation (25.3.30) of Abramowitz and Stegun [58] makes it clear that, while we have a Taylor-series truncation error on the order of $W^2$ in the five-point approximation in equation (11), their nine-point approximation in equation (25.3.31) [58] gives a better estimate whose truncation error is on the order of $W^4$. Use of such higher-order approximations may lead to improved forms of equation (17).

We end these indications of possible avenues for future work, by noting that both (i) the two-image TIE-based phase-retrieval method of Paganin and Nugent [95] (see also...
section 4.5.2 of Paganin [55] as well as section 4 of Zuo et al. [96]), which does not make the assumption of a single-material object, and (ii) the single-image differential-phase-contrast version of the PM [97], which does make such an assumption, would benefit from an analogous treatment of differential operators under the discrete Fourier transform, to that used in the passage from equations (24) to (17). Perhaps the former method (namely that which is based on reference [95]) may become of increasing utility in an x-ray imaging setting, given both recent advances in semi-transparent detectors, and the fact that this method does not need the single-material assumption upon which the PM relies.

7. Conclusion

A simple extension was given for the method of Paganin et al [1] (PM), for phase–amplitude reconstruction of single-material samples using a single paraxial x-ray propagation-based phase contrast image obtained under the conditions of small object-to-detector propagation distance. This improves the reconstructed contrast of very fine sample features, using an approximation that is derived from a first-principles perspective. This investigation was motivated by, and partially explains from a fundamental perspective, the success of several papers incorporating unsharp masking or related techniques to boost fine spatial detail in reconstructions obtained using the PM [6, 12, 45, 49, 52].

Acknowledgments

Financial support by the Experiment Division of the ESRF for D M P to visit in 2017 and 2018 is gratefully acknowledged. D M P acknowledges fruitful discussions with Mario Beltran, Carsten Detlefs, Timur Gureyev, Marcus Kitchen, Kieran Larkin, Thomas Leaham, Kaye Morgan, Tim Petersen, James Pollock, Manuel Sánchez del Río and Paul Taftoreau. D M P dedicates this paper to the memory of Wendy Micallef-Paganin.

ORCID iDs

David M Paganin https://orcid.org/0000-0002-7758-7140
Alexander Rack https://orcid.org/0000-0001-9486-3621

References

[1] Paganin D, Mayo S C, Gureyev T E, Miller P R and Wilkins S W 2002 Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object J. Microsc. 206 33
[2] Wilkins S W, Gureyev T E, Gao D, Pogany A and Stevenson A W 1996 Phase-contrast imaging using polychromatic hard x-rays Nature 384 335
[3] Saleh B E A and Teich M C 1991 Fundamentals of Photonics (New York: Wiley)
[4] Gabor D 1948 A new microscopic principle Nature 161 777
[5] Pogany A, Gao D and Wilkins S W 1997 Contrast and resolution in imaging with a microfocus x-ray source Rev. Sci. Instrum. 68 2774
[6] Weitkamp T, Haas D, Wegrzynk D and Rack A 2011 ANKAPHASE: software for single-distance phase retrieval from inline x-ray phase-contrast radiographs J. Synchrotron Radiat. 18 617
[7] Gureyev T E, Nesterets Y, Ternovski D, Thompson D, Wilkins S W, Stevenson A W, Sakellariou A and Taylor J A 2011 Toolbox for advanced x-ray image processing Proc. SPIE 8141 81410B
[8] Favre-Nicolin V, Coraux J, Richard M-I and Renevier H 2011 Fast computation of scattering maps of nanostructures using graphical processing units J. Appl. Cryst. 44 635
[9] Chen R-C, Derossi D, Mancini L, Menk R, Rigon L, Xiao T-Q and Longo R 2012 PITRE: software for phase-sensitive x-ray image processing and tomography reconstruction J. Synchrotron Radiat. 19 836
[10] Boone M N, Devulder W, Dierick M, Brabant L, Pauwels E and Van Hoorebeke L 2012 Comparison of two single-image phase-retrieval algorithms for in-line x-ray phase-contrast imaging J. Opt. Soc. Am. A 29 22667
[11] Dierick M, Masschaele B and Van Hoorebeke L 2004 Octopus, a fast and user-friendly tomographic reconstruction package developed in LabView® Meas. Sci. Technol. 15 1366
[12] Mirone A, Brun E, Gouillart E, Taftoreau P and Kieffer J 2014 The PyHST2 hybrid distributed code for high speed tomographic reconstruction with iterative reconstruction and a priori knowledge capabilities Nucl. Instrum. Meth. Phys. Res. B 324 41
[13] Gürsoy D, De Carlo F, Xiao X and Jacobsen C 2014 TomoPy: a framework for the analysis of synchrotron tomographic data J. Synchrotron Radiat. 21 1188
[14] Pelt D M, Gürsoy D, Palenstijn W J, Sijbers J, De Carlo F and Batenburg K J 2016 Integration of TomoPy and the ASTRA toolbox for advanced processing and reconstruction of tomographic synchrotron data J. Synchrotron Radiat. 23 842
[15] Brun F, Massimi L, Fratini M, Dreossi D, Bield F, Accardo A, Pugliese R and Cedola A 2017 SYRMEP Tomo Project: a graphical user interface for customizing CT reconstruction workflows Adv. Struct. Chem. Imaging 3 4
[16] Lohse L M, Robisch A-L, Töppperwien M, Maretzke S, Krenkel M, Hagemann J and Salditt T 2020 A phase-retrieval toolbox for x-ray holography and tomography J. Synchrotron Radiat. 27 852
[17] Cowley J M 1995 Diffraction Physics 3rd edn (Amsterdam: North-Holland)
[18] Liu A C Y, Paganin D M, Bourgeois L and Nakashima P N H 2011 Projected thickness reconstruction from a single defocused transmission electron microscope image of an amorphous object Ultramicroscopy 111 959
[19] Poola P K and John R 2017 Label-free nanoscale characterization of red blood cell structure and dynamics using single-shot transport of intensity equation J. Biomed. Opt. 22 109001
[20] Paganin D M, Sales M, Kallweit P M, Kochellmann W, Beltran M A, Poulsen H F and Schmidt S 2019 Effective brilliance amplification in neutron propagation-based phase contrast imaging arXiv:1909.11186
[21] Mayo S C, Davis T J, Gureyev T E, Miller P R, Paganin D, Pogany A, Stevenson A W and Wilkins S W 2003 X-ray phase-contrast microscopy and microtomography Opt. Express 11 2289
[22] Beltran M A, Paganin D M, Uesugi K and Kitchen M J 2010 2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance Opt. Express 18 6423
[23] Beltran M A, Paganin D M, Siu K K W, Fouras A, Hooper S B, Reser D H and Kitchen M J 2011 Interface-specific x-ray
phase retrieval tomography of complex biological organs
Phys. Med. Biol. 56 7353

[24] Mayo S, Miller P, Wilkins S W, Gao D and Gureyev T 2006 Laboratory-based x-ray micro-tomography with submicron resolution Proc. SPIE 6318 439–46

[25] Wang Y J, Im K-S, Fezzaa K, Lee W K, Wang J, Micheli P and Laub C 2006 Quantitative x-ray phase-contrast imaging of air-assisted water sprays with high Weber numbers Appl. Phys. Lett. 89 15913

[26] Mookhoek S D, Mayo S C, Hughes A E, Furman S A, Fischer H R and van der Zwaag S 2010 Applying SEM-based x-ray microtomography to observe self-healing in solvent encapsulated thermoplastic materials Adv. Eng. Mater. 12 228

[27] Yang S, Gao D C, Muster T, Tulloah A, Furman S, Mayo S and Trinch A 2010 Microstructure of a paint primer—a data-constrained modeling analysis PriCM7 vol 654 (Zurich: Trans Tech) pp 1686–9

[28] Yang Y S, Liu K Y, Mayo S, Tulloah A, Clennell M B and Xiao T Q 2013 A data-constrained modelling approach to sandstone microstructure characterisation J. Petrol. Sci. Eng. 106 105

[29] Denecke M A et al 2011 Specklation of activinides in granite subjected to traverized studies Actinide Nanoparticle Research eds Kalmykov S N and Denecke M A (Berlin: Springer) ch 16 pp 413–35

[30] Usuagi K, Hoshino M, Takeuchi A, Suzuki Y and Yagi N 2012 Development of fast and high throughput tomography using CMOS image detector at Spring-8 Proc. SPIE 8506 90–8

[31] Wang H P, Yang Y S, Wang Y D, Yang J L, Jia J and Nie Y H 2013 Data-constrained modelling of an anthracite coal physical structure with multi-spectrum synchrotron x-ray CT Fuel 106 219

[32] Mokso R et al 2013 Advantages of phase retrieval for fast x-ray tomographic microscopy J. Phys. D: Appl. Phys. 46 494004

[33] Marinescu M et al 2013 Synchrotron radiation x-ray phase micro-computed tomography as a new method to detect iron oxide nanoparticles in the brain Mol. Imaging Biol. 15 552

[34] Rositi H, Frindel C, Langer M, Wiart M, Olivier C, Peyrin F and Rousseau D 2013 Information-based analysis of x-ray in-line phase tomography with application to the detection of iron oxide nanoparticles in the brain Opt. Express 21 27185

[35] Lovric G, Barré S F, Schitiny J C, Roth-Kleiner M, Stampamoni M and Mokso R 2013 Dose optimization approach to fast x-ray microtomography of the lung alveoli J. Appl. Cryst. 46 856

[36] Stevenson A W, Mayo S C, Häussermann D, Maksimenko A, Garrett R F, Hall C J, Wilkins S W, Lewis R A and Myers D E 2010 First experiments on the Australian Synchrotron Imaging and Medical beamline, including investigations of the effective source size in respect of x-ray imaging J. Synchrotron Radiat. 17 75

[37] Enax J, Fabritius H-O, Rack A, Prymak O, Raabe D and Epple M 2013 Characterization of crocodile teeth: Correlation of composition, microstructure and hardness J. Struct. Biol. 184 155

[38] Schwy M A, Mokso R, Walker S M, Doube M, Wicklein M, Taylor G K, Stampamoni M and Krapp H G 2013 High-speed x-ray imaging on the fly Synchrotron Radiat. News 26 6

[39] Giliani M S, Fife J L, Boone M N and Wakili K G 2013 Dynamics of microcrack propagation in hardwood during heat treatment investigated by synchrotron-based x-ray tomographic microscopy Wood Sci. Technol. 47 889

[40] Matsushima U, Hilger A, Graf W, Zabler S, Manke I, Dawson M, Choinka G and Herrpich W B 2012 Calcium oxalate crystal distribution in rose peduncles: non-invasive analysis by synchrotron x-ray micro-tomography Postharvest Biol. Technol. 72 27

[41] McNeil A, Bradley R S, Withers P J and Penney D 2010 Imaging fossilised spiders in amber using lab-based phase contrast x-ray tomography Proc. SPIE 7804 440–6

[42] Penney D, Green D I, McNeil A, Bradley R S, Marusik Y M, Withers P J and Presti M R 2012 A new species of Craspedisia (Araneae: Theridiiidae) in Miocene Dominican amber, imaged using x-ray computed tomography Paleontol. J. 46 583

[43] Edgecombe G D, Vaharta V, Stock S R, Kallonen A, Xiao X, Rack A and Giribet G 2012 A scolopocryptopid centipede (Chilopoda: Scolopendromorpha) from Mexican amber: synchrotron microtomography and phylogenetic placement using a combined morphological and molecular data set J. Linn. Soc. London, Zool. 166 768

[44] Rodgers H G, Solé F, Charles C, Tafforeau P, Vianey-Liaud M and Viriot L 2012 Evolutionary and biological implications of dental mesial drift in rodents: the case of the Ctenodactylyidae (Rodentia, Mammalia) PLoS One 7 e50197

[45] Sanchez S, Ahlberg P E, Trinajstic K M, Mirona A and Tafforeau P 2012 Three-dimensional synchrotron virtual paleoïstology: a new insight into the world of fossil bone microstructures Microsc. Microanal. 18 1095

[46] Vršanský P, van de Kamp T, Azar D, Prokin A, Vidlička L and Vagovic P 2013 Cockroaches probably cleaned up after dinosaurs PLoS One 8 e80560

[47] Yin Z, Zhu M, Tafforeau P, Chen J, Liu P and Li G 2013 Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng’an Biota, South China Precambrian Res. 225 44

[48] Trinajstic K et al 2013 Fossil musculature of the most primitive jawed vertebrates Science 341 160

[49] Sanchez S et al 2013 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography PLoS One 8 e56992

[50] Pierce S E, Ahlberg P E, Hutchinson J R, Molnar J L, Sanchez S, Tafforeau P and Clack J A 2013 Vertebral architecture in the earliest stem tetrapods Nature 494 226

[51] Sheppard A P, Sok R M and Averdunk H 2004 Techniques for image enhancement and segmentation of tomographic images of porous materials Physica A 339 145

[52] Irvine S, Mokso R, Modregger P, Wang Z, Marone F and Stampamoni M 2014 Simple merging technique for improving resolution in qualitative single image phase contrast tomography Opt. Express 22 27257

[53] Yu B, Weber L, Paucarau A, Langer M, Olivier C, Cloaten P and Peyrin F 2017 Phase retrieval in 3D X-ray magnified phase nano CT: imaging bone tissue at the nanoscale 2017 IEEE 14th Int. Symp. On Biomedical Imaging (ISBI 2017) pp 56–9

[54] Teague R M 1983 Deterministic phase retrieval: a Green’s function solution J. Opt. Soc. Am. 73 1434

[55] Paganin D M 2006 Coherent X-Ray Optics (Oxford: University Press)

[56] Paganin D, Gureyev T E, Mayo S C, Stevenson A W, Nesterets Y I and Wilkins S W 2004 X-ray omni microscopy J. Microsc. 214 315

[57] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes in Fortran: The Art of Scientific Computing 2nd edn (Cambridge: Cambridge University Press)

[58] Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (Washington, DC: National Bureau of Standards)
[59] Freischlad K R and Koliopoulos C L 1986 Modal estimation of a wave front from difference measurements using the discrete Fourier transform J. Opt. Soc. Am. A 3 1852

[60] Armison M R, Larkin K G, Sheppard C J R, Smith N I and Cogswell C J 2004 Linear phase imaging using differential interference contrast microscopy J. Microsc. 214 7

[61] Ghiglia D C and Romero L A 1994 Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods J. Opt. Soc. Am. A 11 107

[62] Richardson W H 1972 Bayesian-based iterative method of image restoration J. Opt. Soc. Am. 62 55

[63] Lucy L B 1974 An iterative technique for the rectification of observed distributions Astron. J. 79 745

[64] Weitkamp T et al 2010 Status and evolution of the ESRF beamline ID19 AIP Conf. Proc. 1221 33

[65] Scheuerlein C, Rack A, Schladitz K and Huwig L 2017 Synchrotron microtomography investigation of the filament arrangement in differently processed Bi-2212 wires IEEE Trans. Appl. Supercon. 27 6400205

[66] Subbarao M, Wei T-C and Surya G 1995 Focused image recovery from two defocused images recorded with different camera settings IEEE Trans. Image Process. 4 1613

[67] Gureyev T E, Stevenson A W, Nesterets Y I and Wilkins S W 2004 Image deblurring by means of defocus Opt. Commun. 240 81

[68] Canny J 1986 A computational approach to edge detection IEEE Trans. Pattern Anal. Mach. Intell. 8 679

[69] Kimmel R and Bruckstein A M 2003 Regularized Laplacian zero crossings as optimal edge integrators Int. J. Comput. Vis. 53 225

[70] Wang X 2007 Laplacian operator-based edge detectors IEEE Trans. Pattern Anal. Mach. Intell. 29 886

[71] Misna P A and Rodriguez J J 2009 Gradient and Laplacian edge detection The Essential Guide to Image Processing ed Boykov A 2nd edn (Boston, MA: Academic) ch 19 pp 495–524

[72] Parker J R 2011 Algorithms for Image Processing and Computer Vision 2nd edn (Indianapolis, IN: Wiley)

[73] Okuma G, Watanabe S, Shinobe K, Nishiyama N, Takeuchi A, Uesugi K, Tanaka S and Waki F 2019 3D multiscale-imaging of processing-induced defects formed during sintering of hierarchical powder packings Sci. Rep. 9 11595

[74] Cloetens P, Ludwig W, Baruchel J, Van Dyck D, Van Landuyt J, Guigay J P and Schlenker M 1999 Holotomography: quantitative phase tomography with micrometer resolution using hard synchrotron radiation x-rays Appl. Phys. Lett. 75 2912

[75] Gureyev T E, Davis T J, Pogany A, Mayo S C and Wilkins S W 2004 Optical phase retrieval by use of first Born- and Rytov-type approximations Opt. Express 43 2418

[76] Gureyev T E, Pogany A, Paganin D M and Wilkins S W 2004 Linear algorithms for phase retrieval in the Fresnel region Opt. Commun. 231 53

[77] Turner L D, Dhal B B, Hayes J P, Mancuso A P, Nugent K A, Paterson D, Scholten R E, Tran C Q and Pelle A G 2004 X-ray phase imaging: demonstration of extended conditions with homogeneous objects Opt. Express 12 2960

[78] Yu B, Weber L, Pacureanu A, Langer M, Olivier C, Cloetens P and Peyrin P 2018 Evaluation of phase retrieval approaches in magnified x-ray phase nano computerized tomography applied to bone tissue Opt. Express 26 11110

[79] Beltran M A, Paganin D M and Pelliccia D 2018 Phase-and-amplitude recovery from a single phase-contrast image using partially spatially coherent x-ray radiation J. Opt. 20 055605

[80] Risken H 1989 The Fokker–Planck Equation: Methods of Solution and Applications 2nd edn (Berlin: Springer)

[81] Morgan K S and Paganin D M 2019 Applying the Fokker–Planck equation to x-ray grating-based phase and dark-field imaging Sci. Rep. 9 17465

[82] Paganin D M and Morgan K S 2019 X-ray Fokker–Planck equation for paraxial imaging Sci. Rep. 9 17537

[83] Kreit E, Mäthger L M, Hanlon R T, Dennis P B, Naik R R, Fosyrtse E and Heiknenfeld J 2013 Biological versus electronic adaptive coloration: how can one inform the other? J. R. Soc. Interface 10 20120601

[84] Nesterets Y I 2008 On the origins of decoherence and extinction contrast in phase-contrast imaging Opt. Commun. 281 533

[85] Nesterets Y I and Gureyev T E 2014 Noise propagation in synchrotron-based x-ray phase-contrast mammographic tomography J. Phys. D: Appl. Phys. 47 105042

[86] Gureyev T E et al 2014 Investigation of the imaging quality of synchrotron-based phase-contrast mammographic tomography J. Phys. D: Appl. Phys. 47 365401

[87] Kitchen M J, Buckley G A, Gureyev T E, Wallace M J, Andres-Thio N, Uesugi K, Yagi N and Hooper S B 2017 CT dose reduction factors in the thousands using x-ray phase contrast Sci. Rep. 7 15953

[88] Gureyev T E, Nesterets Y I, Kozlov A, Paganin D M and Quiney H M 2017 On the ‘unreasonable’ effectiveness of transport of intensity imaging and optical deconvolution J. Opt. Soc. Am. A 34 2251

[89] Clark L, Petersen T C, Williams T, Morgan M J, Paganin D M and Findlay S D 2019 High contrast at low dose using a single, defocussed transmission electron micrograph Micron 124 102701

[90] García-Moreno F, Kamph P H, Neu T R, Bülk F, Mokso R, Schlepütz C M, Stampanoni M and Banhart J 2019 Using X-ray tomoscopy to explore the dynamics of foaming metal Nat. Commun. 10 3762

[91] Gureyev T E, Nesterets Y I, de Hoog F, Schmalz G, Mayo S C, Mohammadi S and Tromba G 2014 Duality between noise and spatial resolution in linear systems Opt. Express 22 9087

[92] Gureyev T E, Kozlov A, Paganin D M, Nesterets Y I and Quiney H M 2020 Noise–resolution uncertainty principle in classical and quantum systems Sci. Rep. 10 7890

[93] Herman G T 2009 Fundamentals of Computerized Tomography: Image Reconstruction From Projections 2nd edn (Dordrecht: Springer)

[94] Ohser J and Schladitz K 2009 3D Images of Materials Structures: Processing and Analysis (Weinheim: Wiley)

[95] Paganin D and Nugent K A 1998 Noninterferometric phase imaging with partially coherent light Phys. Rev. Lett. 80 2586

[96] Zuo C, Chen Q and Asundi A 2014 Boundary-artifact-free phase retrieval with the transport of intensity equation: fast solution with use of discrete cosine transform Opt. Express 22 9220

[97] Paganin D, Gureyev T E, Pavlov K M, Lewis R A and Kitchen M 2004 Phase retrieval using coherent imaging systems with linear transfer functions Opt. Commun. 234 87