Research Article

Short- and Long-Term Prognosis of Intravascular Ultrasound-Versus Angiography-Guided Percutaneous Coronary Intervention: A Meta-Analysis Involving 24,783 Patients

Qun Zhang, Bailu Wang, Yu Han, Shukun Sun, Ruijuan Lv, and Shujian Wei

1Department of Emergency and Chest Pain Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
2Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
3Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
4The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
5Clinical Trial Center, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China

Correspondence should be addressed to Ruijuan Lv; ruijuanlv@126.com and Shujian Wei; weishujian@sdu.edu.cn

Received 11 May 2021; Revised 15 September 2021; Accepted 21 September 2021; Published 15 October 2021

Academic Editor: Joseph Dens

Copyright © 2021 Qun Zhang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Intravascular ultrasound (IVUS) guided percutaneous coronary intervention (PCI) has potential benefits. This meta-analysis aimed to explore whether IVUS-guided PCI had better short- and long-term prognoses than angiography-guided PCI.

Methods. We retrieved studies from PubMed, Embase, and Cochrane Library. Clinical trials including retrospective and randomized controlled trials (RCTs) that compared IVUS-guided PCI with angiography-guided PCI were included. The patients were followed up after operation at 30 days, 1 year, 2 years, and 3 years. The clinical outcomes were target lesion revascularization (TLR), target vessel revascularization (TVR), and MACEs, including stent thrombosis (ST), myocardial infarction (MI), cardiac death, and all-cause death. The study population included patients with MI, coronary bifurcation lesions, short or long lesions, and unprotected left main coronary artery stenosis (ULMCA). The quality of retrospective trials was evaluated using the Newcastle–Ottawa Scale, and the quality of randomized controlled trials was evaluated using the Jadad score. A total of 20 clinical trials met the criteria. Three trials were randomized controlled trials, while 17 were retrospective trials. Results. A total of 24,783 patients were included. In observational trials, the OR of MACEs was 0.49 (95% CI: 0.38–0.62) in 30 days, 0.65 (95% CI: 0.58–0.73) in one year, 0.51 (95% CI: 0.36–0.71) in two years, and 0.45 (95% CI: 0.31–0.65) in three years. In patients with long coronary lesions, the OR of MACEs in 1 year was 0.64 (95% CI: 0.28–1.50). In patients with left main artery disease, the OR of MACEs in 3 years was 0.42 (95% CI: 0.26–0.67). Compared with angiography-guided PCI, IVUS-guided PCI was associated with a lower incidence of MACEs during the same following period. Conclusion. Compared with angiography-guided PCI, IVUS-guided PCI has better performance in reducing the occurrence of MACEs.
1. Introduction

Coronary artery disease (CAD) due to blockage or stenosis of the coronary arteries is a major cause of morbidity and mortality worldwide [1]. Coronary revascularization, including percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG), is the most effective treatment for CAD. PCI has been frequently performed because of its convenience and reduced risk of trauma [2]. However, PCI-related complications, including in-stent restenosis and stent thrombosis, limit its advantages. Thus, improving the procedural technologies of PCI is critical to the clinical outcomes of patients with CAD [3]. The clinical application of IVUS provides more accurate details of coronary lesions by comprehensively evaluating the structure of the coronary arteries [4, 5]. Since IVUS shows the whole coronary vessel wall and lumen, it facilitates the understanding of the pathophysiological process involved in coronary atherosclerosis [6].

The clinical benefits of IVUS-guided PCI were verified by several randomized controlled trials (RCTs). However, in clinical practice, the use of IVUS technology to guide PCI remains low, which may be related to the lack of clinical evidence. This study aimed to provide more detailed clinical evidence for IVUS to optimize PCI. In this meta-analysis, the clinical outcomes of major cardiovascular adverse events (MACEs) were compared between the IVUS-guided PCI group and the angiography-guided PCI group. We investigated the short- and long-term prognoses of IVUS-guided PCI in different populations by merging their follow-up time.

2. Materials and Methods

2.1. Retrieval Strategy. The relevant literature was retrieved by searching Embase, PubMed, Cochrane Controlled Trial Registry, and other online electronic databases. The search terms were as follows: “intravascular ultrasound,” “angiography,” and “percutaneous coronary intervention.” The purpose of our study was to compare the short- and long-term prognoses of the IVUS and angiography-guided PCI in CAD patients. Retrieved trials were further screened to identify studies that meet the criteria.

2.2. Inclusion and Exclusion Criteria. The inclusion criteria were as follows: (1) patients treated with IVUS-guided PCI as the experimental group; (2) patients treated with angiography-guided PCI as the control group; (3) randomized controlled trials or retrospective studies; and (4) no limit for the relevant population, including complex coronary artery disease, and left main artery disease.

2.3. Data Extraction, Quality Assessment, and Study Outcomes. Two researchers extracted data from articles that met the criteria. They subsequently summarized the basic characteristics of these articles, which included the name of the investigator, the date the article was published, study population, follow-up time, study design, and quality assessment score. The following data were then extracted: investigator’s name, time of publication, and clinical outcomes. The primary outcomes were MACEs, including stent thrombosis, cardiac death, myocardial infarction, and all-cause death. The secondary outcomes were TLR and TVR. We analyzed the occurrence of clinical events in different follow-up times. Quality assessment was performed for studies that met the criteria. Two tools, the Jadad score and the Newcastle–Ottawa Scale (NOS), were used for quality assessment.

2.4. Statistical Analyses. All of the data were binary variables. Statistical analyses were performed using odds ratio (OR), risk ratio (RR), and 95% confidence interval (CI) to assess the risk of different surgical approaches. Heterogeneity was evaluated using the Q test and the I² test. P < 0.1 or I² > 50% corresponded to a greater heterogeneity. Data were analyzed using a random-effects model. The stability of the included studies was assessed by sensitivity analysis. Sensitivity analysis was performed by deleting one study and then repeating the meta-analysis. If I² > 50%, we performed sensitivity and subgroup analyses. The full text of the trials that caused the heterogeneity of the analysis results and the explanation on whether to delete the article in the discussion section may be read. The Egger test and the funnel plots were used to assess potential bias. All operations were performed using Review Manager 5.3 software.

3. Results

3.1. Included Studies. We searched related electronic databases, in which a total of 4,072 articles were retrieved. The full text, title, and abstract of the articles were read. Duplicate documents were deleted. In total, 29 articles were retained. The specific details of the 29 articles were discussed by all of the researchers. Among them, nine articles did not meet the inclusion criteria, seven articles were meta-analyses, and the follow-up time of the two other articles could not be classified. The flowchart of literature retrieval is shown in Figure 1.

A total of 20 clinical trials met the criteria [7–26]. Of the 20 trials, three were randomized controlled trials, while the other 17 were retrospective trials. Patients who were treated with IVUS-guided PCI belonged to the experimental group, while those who were treated with angiography-guided PCI belonged to the control group. The types of stents included drug-eluting stents and nondrug-eluting stents. The follow-up time of the six studies was 30 days; the follow-up time of 13 studies was one year; the follow-up time of five studies was 2 years; and the follow-up time of six studies was 3 years. The clinical endpoints in this trial were TLR, TVR, and MACEs, including ST, MI, cardiac death, and all-cause death. The populations of two studies involved patients with coronary bifurcation lesions; the population of one study was patients with complex lesions; the populations of two studies were patients with long coronary lesions; and the populations of six studies were patients with left main lesions. The basic characteristics of the articles that are included in the meta-analysis are summarized in Table 1.
Records the mentioned online database (n = 4710)

Records after duplicates removed (n = 4710)

Records screened (n = 4710)

Records excluded after reading the title and summary (4681)

Full-text assessed for eligibility (n = 29)

Articles excluded (n = 9) the follow-up time of 2 articles cannot be classified 7 articles were meta-analysis

Studies included in meta-analysis (n = 20)

Table 1: The characteristics of included studies.

Study	Year	No. of participants	Study design	Population	Follow-up time	Quality assessment
Hong et al. [7]	2014	206/328	Observational	(1)	3 months, 1 year, 2 years	8
Kim et al. [8]	2011	487/487	Observational	(2)	3 years	8
Chieffo et al. [9]	2013	142/142	RCT	(3)	30 days, 2 years	7
Yoon et al. [10]	2013	662/912	Observational	(4)	1 year	8
Park et al. [11]	2012	619/802	Observational	(5)	1 year	8
Claessen et al. [12]	2011	631/873	Observational	(6)	30 days, 1 year, 2 years	9
Kim et al. [14]	2011	269/274	Observational	(6)	1 year	9
de la Torre Hernandez et al. [13]	2014	505/505	Observational	(7)	3 years	8
Ahn et al. [15]	2013	49/36	Observational	(8)	2 years	7
Chen et al. [16]	2012	324/304	Observational	(9)	1 year	8
Park et al. [21]	2009	756/219	Observational	(10)	3 years	9
Kim et al. [39]	2015	201/201	RCT	(11)	1 year	7
Witzenbichler et al. [40]	2013	3349/5234	Observational	(1)	1 year	9
Yoon et al. [26]	2011	125/216	Observational	(12)	30 days, 1 year, 3 years	8
Roy et al. [22]	2008	884/884	Observational	(1)	30 days, 1 year	9
Gao et al. [17]	2014	291/291	Observational	(7)	1 year	9
Hong et al. [18]	2014	700/700	Observational	(6)	1 year	9
Kim et al. [20]	2017	122/74	Observational	(10)	30 days, 3 years	9
Tan et al. [23]	2015	40/40	RCT	(10)	2 years	6
Tian et al. [24]	2017	713/1186	Observational	(10)	30 days, 1 year, 3 years	9

RCT: randomized controlled trial; (1) patients were treated by DES; (2) patients with bifurcation lesions; (3) patients with coronary complex lesions; (4) patients with coronary short-length lesions; (5) patients were treated by PCI; (6) patients with coronary long lesions; (7) patients with coronary left main lesions; (8) patients with diffuse coronary artery disease; (9) patients with coronary bifurcation lesions; (10) patients with unprotected left main coronary artery lesions; (11) patients with chronic total occlusion; (12) patients with myocardial infarction.

3.2. Primary Outcomes. In observational trials, after a 30-day follow-up period, it was found that IVUS-guided PCI was associated with a lower incidence of ST (OR: 0.46, 95% CI: 0.23–0.96, *P* = 0.04, *I*² = 0%), MI (OR: 0.57, 95% CI: 0.41–0.81, *P* = 0.001, *I*² = 0%), cardiac death (OR: 0.37, 95% CI: 0.20–0.70, *P* = 0.002, *I*² = 0%), all-cause death (OR: 0.48, 95% CI: 0.30–0.79, *P* = 0.003, *I*² = 0%), and MACEs (OR: 0.49, 95% CI: 0.38–0.62, *P* < 0.001, *I*² = 55%) (Figure 2). After a 1-year follow-up period, the IVUS-guided PCI was associated with a lower incidence of ST (OR: 0.47, 95% CI: 0.33–0.67, *P* < 0.001, *I*² = 4%), MI (OR: 0.68, 95% CI: 0.57–0.80, *P* < 0.001, *I*² = 14%), cardiac death (OR: 0.62, 95% CI: 0.47–0.82, *P* < 0.001, *I*² = 0%), all-cause death (OR: 0.79, 95% CI: 0.63–0.98, *P* = 0.03, *I*² = 0%), and MACEs (OR: 0.65, 95% CI: 0.58–0.73, *P* < 0.001, *I*² = 48%) (Figure 3). At the 2-year follow-up, the IVUS-guided PCI was associated with a lower incidence of ST (OR: 0.28, 95% CI: 0.10–0.80, *P* = 0.02, *I*² = 0%), MI (OR: 0.57, 95% CI: 0.37–0.87, *P* = 0.010, *I*² = 72%), and MACEs (OR: 0.51, 95% CI: 0.36–0.71; *P* < 0.001, *I*² = 0%) (Figure 4). At the 3-year follow-up, the IVUS-guided PCI was associated with a lower incidence of MI (OR: 0.64, 95% CI: 0.49–0.83, *P* = 0.0009, *I*² = 5%), cardiac death (OR: 0.41, 95% CI: 0.24–0.69, *P* = 0.0009, *I*² = 55%), all-cause death (OR: 0.54, 95% CI: 0.36–0.81, *P* = 0.003, *I*² = 53%), and MACEs (OR: 0.45, 95% CI: 0.31–0.65, *P* < 0.001, *I*² = 74%) (Figure 5). In the
Study or Subgroup	IVUS-guided PCI	angiography-guided PCI	Odds Ratio	Odds Ratio		
	Events	Total Events	Weight (%)	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Claessen 2011	10	631	27	873	23.9	0.50 [0.24, 1.05]
Hong 2011	4	206	4	328	3.3	0.40 [0.04, 3.56]
Kim 2017	3	122	7	74	9.1	0.24 [0.06, 0.96]
Roy 2008	6	884	12	884	12.8	0.20 [0.09, 1.33]
Tian 2017	28	713	66	1186	51.0	0.69 [0.44, 1.09]
Youn 2011	0	125	0	216	Not estimable	
Total (95% CI)	2681	3561	100	0.57 [0.41, 0.82]		
Total events	48	116				

Heterogeneity: Chi² = 4.91, df = 4 (P = 0.19), I² = 35%
Test for overall effect: Z = 2.92 (P = 0.003)

Cardiac Death

Study or Subgroup	IVUS-guided PCI	angiography-guided PCI	Odds Ratio	Odds Ratio		
	Events	Total Events	Weight (%)	M-H, Fixed, 95% CI	M-H, Fixed, 95% CI	
Claessen 2011	11	631	34	873	14.7	0.44 [0.22, 0.87]
Hong 2011	206	13	328	5.2	0.48 [0.15, 1.49]	
Kim 2017	10	122	26	74	15.5	0.18 [0.08, 0.40]
Roy 2008	30	884	67	884	34.0	0.44 [0.29, 0.69]
Tian 2017	34	713	81	1186	30.4	0.68 [0.45, 1.03]
Youn 2011	1	124	0	216	0.2	5.26 [0.21, 130.09]
Total (95% CI)	2680	3561	100	0.49 [0.38, 0.62]		
Total events	92	221				

Heterogeneity: Chi² = 11.00, df = 5 (P = 0.05), I² = 55%
Test for overall effect: Z = 5.64 (P < 0.00001)

Figure 2: The forest plots of MACEs, TLR, and TVR in 30 days. MI: myocardial infarction; TLR: target lesion revascularization; TVR: target vessel revascularization; ST: stent thrombosis; MACEs: major adverse cardiovascular events.
Study or Subgroup	IVUS-guided PCI	angiography-guided PCI	Odds Ratio	Odds Ratio				
	Events	Total	Weight (%)	M-H, Fixed, 95% CI	Events	Total	Weight (%)	M-H, Fixed, 95% CI
MACEs								
Test for overall effect:								
Total events								
Total events	452	894			342	593		
Total (95% CI)	8073	11304			7889	11120		
TVR								
Test for overall effect:								
Total events								
Total events	72	152			195	359		
Total (95% CI)	8648	11788			8773	12004		

Heterogeneity: Chi-square test statistic was used to assess heterogeneity between studies.

- **TVR** (Total Vascular Revascularization): The risk of TVR was assessed using a random-effects model due to significant heterogeneity among studies.
- **TLR** (Target Lesion Revascularization): The risk of TLR was assessed using a fixed-effects model due to low heterogeneity among studies.
- **MACEs** (Major Adverse Cardiovascular Events): The risk of MACEs was assessed using a random-effects model due to significant heterogeneity among studies.

Figure 3: The forest plots of MACEs, TLR, and TVR in 1 year. MACEs: major adverse cardiovascular events.
Study or Subgroup	IVUS-guided PCI Events	Total Events	angio-guided PCI Events	Total Events	Weight (%)	Odds Ratio (M-H, Fixed, 95% CI)	Odds Ratio (M-H, Fixed, 95% CI)
Ahn2013	5	49	11	36	11.1	0.26 [0.08, 0.83]	
Claessen2011	24	631	70	873	54.9	0.45 [0.28, 0.73]	
Hong2014	23	206	51	328	34.0	0.68 [0.40, 1.16]	
Total (95% CI)	**886**	**1237**	**100.0**			**0.51 [0.36, 0.71]**	
Total events	**52**		**132**				
Heterogeneity: chi² = 2.72, df = 2 (P = 0.26); I² = 26%							
Test for overall effect: Z = 3.92 (P < 0.0001)

MACEs

Study or Subgroup	IVUS-guided PCI Events	Total Events	angio-guided PCI Events	Total Events	Weight (%)	Odds Ratio (M-H, Fixed, 95% CI)
Ahn2013	1	49	5	36	9.4	0.13 [0.01, 1.16]
Claessen2011	13	631	45	873	61.3	0.39 [0.21, 0.72]
Hong2014	17	206	25	328	29.3	1.09 [0.57, 2.07]
Total (95% CI)	**886**	**1237**	**100.0**			**0.57 [0.37, 0.87]**
Total events	**31**		**75**			
Heterogeneity: chi² = 7.15, df = 2 (P = 0.03); I² = 72%						
Test for overall effect: Z = 2.59 (P = 0.01)

MI

Study or Subgroup	IVUS-guided PCI Events	Total Events	angio-guided PCI Events	Total Events	Weight (%)	Odds Ratio (M-H, Fixed, 95% CI)
Ahn2013	0	49	10	36	33.7	0.03 [0.00, 0.45]
Hong2014	21	206	34	328	66.3	0.98 [0.55, 1.74]
Total (95% CI)	**255**	**364**	**100.0**			**0.66 [0.39, 1.12]**
Total events	**41**		**19**			
Heterogeneity: chi² = 6.75, df = 1 (P = 0.009); I² = 85%						
Test for overall effect: Z = 1.55 (P = 0.12)

ST

Study or Subgroup	IVUS-guided PCI Events	Total Events	angio-guided PCI Events	Total Events	Weight (%)	Odds Ratio (M-H, Fixed, 95% CI)
Ahn2013	3	49	2	36	9.7	1.11 [0.18, 7.00]
Claessen2011	8	631	17	873	63.0	0.65 [0.28, 1.51]
Hong2014	2	206	8	328	27.3	0.39 [0.08, 1.87]
Total (95% CI)	**886**	**1237**	**100.0**			**0.62 [0.32, 1.23]**
Total events	**13**		**27**			
Heterogeneity: chi² = 0.72, df = 2 (P = 0.70); I² = 0%						
Test for overall effect: Z = 1.37 (P = 0.17)

TVR

(a) **Figure 4: Continued.**
randomized controlled trials, after a 2-year follow-up period, the incidence of MACEs (RR: 0.68, 95% CI: 0.35–1.34, \(P = 0.27 \), \(I^2 = 0\% \)) was not significantly different between the IVUS-guided PCI and angiography-guided PCI (Figure 4).

In patients with long coronary lesions, after a 1-year follow-up period, the incidence of MACEs (OR: 0.64, 95% CI: 0.28–1.50, \(P = 0.31 \), \(I^2 = 0\% \)), cardiac death (OR: 0.54, 95% CI: 0.15–2.02, \(P = 0.36 \), \(I^2 = 0\% \)), MI (OR: 0.26, 95% CI: 0.03–2.32, \(P = 0.23 \), \(I^2 = 0\% \)), and ST (OR: 1.01, 95% CI: 0.20–5.00, \(P = 0.99 \), \(I^2 = 0\% \)) was not significantly different between the IVUS-guided PCI and angiography-guided PCI (Figure 6).

In patients with left main artery disease, at the 1-year follow-up, the IVUS-guided PCI was associated with a lower incidence of cardiac death (OR: 0.46, 95% CI: 0.30–0.71, \(P = 0.0004 \), \(I^2 = 58\% \)), cardiac death (OR: 0.41, 95% CI: 0.24–0.69, \(P = 0.0009 \), \(I^2 = 55\% \)), MI (OR: 0.68, 95% CI: 0.52–0.88, \(P = 0.004 \), \(I^2 = 0\% \)), and MACEs (OR: 0.42, 95% CI: 0.26–0.67, \(P = 0.0004 \), \(I^2 = 85\% \)) (Figure 8).

3.3. Secondary Outcomes

In the observational trials, after a 30-day follow-up period, the incidence of TLR (OR: 0.84, 95% CI: 0.44–1.61, \(P = 0.60 \), \(I^2 = 64\% \)) and TVR (OR: 0.85, 95% CI: 0.52–1.38, \(P = 0.50 \), \(I^2 = 19\% \)) was not different between the IVUS-guided PCI and angiography-guided PCI (Figure 2). At the 1-year follow-up, the IVUS-guided PCI was associated with a lower incidence of TLR (OR: 0.67, 95% CI: 0.56–0.80, \(P < 0.001 \), \(I^2 = 8\% \)) and TVR (OR: 0.74, 95% CI: 0.65–0.85, \(P < 0.001 \), \(I^2 = 41\% \)) (Figure 3). At the 2-year follow-up, the incidence of TLR (OR: 0.66, 95% CI: 0.39–1.12, \(P = 0.12 \), \(I^2 = 85\% \)) and TVR (OR: 0.79, 95% CI: 0.58–1.07, \(P = 0.13 \), \(I^2 = 57\% \)) was not different between the IVUS-guided PCI and angiography-guided PCI (Figure 4). At the 3-year follow-up, the incidence of TLR (OR: 0.89, 95% CI: 0.58–1.37, \(P = 0.60 \), \(I^2 = 59\% \)) and TVR (OR: 0.95, 95% CI: 0.58–1.37, \(P = 0.60 \), \(I^2 = 59\% \)) was not different between the IVUS-guided PCI and angiography-guided PCI (Figure 4).
Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	77	505	20.8	0.53 [0.39, 0.73]
Kim2010	17	122	13.2	0.17 [0.09, 0.34]
Kim2011	19	487	4.5	0.20 [0.06, 0.68]
Park2009	113	756	2.0	0.32 [0.24, 0.49]
Tian2017	60	713	20.7	0.73 [0.53, 1.00]
Yoon2011	7	125	10.0	1.58 [0.24, 1.42]
	Total (95% CI)	2708	2687	100.0
	Total events	295	426	
Heterogeneity:	Tau^2 = 0.14, chi^2 = 19.41, df = 5 (P = 0.002), I^2 = 74%			
Test for overall effect: Z = 4.28 (P < 0.0001)				

MI

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Kim2011	1	487	8.3	0.33 [0.03, 3.20]
Tian2017	10	713	73.0	0.83 [0.39, 1.78]
Yoon2011	3	125	18.7	1.30 [0.28, 5.92]
	Total (95% CI)	1325	1889	100.0
	Total events	14	27	
Heterogeneity:	Tau^2 = 0.00, chi^2 = 0.97, df = 2 (P = 0.62), I^2 = 0%			
Test for overall effect: Z = 0.54 (P = 0.59)				

ST

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	39	505	24.4	1.24 [0.76, 2.01]
Kim2010	7	122	12.9	0.24 [0.09, 0.62]
Kim2011	36	487	24.1	1.13 [0.69, 1.86]
Tian2017	22	713	23.0	0.94 [0.35, 1.59]
Yoon2011	10	125	15.6	1.02 [0.45, 2.30]
	Total (95% CI)	1952	2468	100.0
	Total events	141	135	
Heterogeneity:	Tau^2 = 0.14, chi^2 = 9.71, df = 4 (P = 0.05), I^2 = 59%			
Test for overall effect: Z = 0.52 (P = 0.60)				

TLR

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Kim2010	17	122	16.7	0.50 [0.24, 1.01]
Park2009	86	756	27.0	1.35 [0.80, 2.28]
Tian2017	43	713	36.8	1.01 [0.68, 1.49]
Yoon2011	15	125	19.5	0.88 [0.45, 1.71]
	Total (95% CI)	1716	1695	100.0
	Total events	161	137	
Heterogeneity:	Tau^2 = 0.05, chi^2 = 4.70, df = 3 (P = 0.19), I^2 = 30%			
Test for overall effect: Z = 0.31 (P = 0.75)				

TVR

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	37	505	48.7	0.54 [0.35, 0.82]
Kim2011	15	486	17.6	0.88 [0.43, 1.78]
Park2009	34	756	0.0	0.31 [0.18, 0.52]
Tian2017	21	713	31.8	0.75 [0.45, 1.27]
Yoon2011	1	125	2.0	0.21 [0.03, 0.70]
	Total (95% CI)	1830	2394	100.0
	Total events	74	136	
Heterogeneity:	Tau^2 = 0.00, chi^2 = 2.92, df = 3 (P = 0.40), I^2 = 0%			
Test for overall effect: Z = 2.97 (P = 0.003)				

All-cause death

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	17	505	34.2	0.55 [0.30, 1.01]
Kim2011	4	122	0.0	0.16 [0.05, 0.51]
Park2009	23	756	34.0	0.30 [0.16, 0.55]
Tian2017	13	713	31.7	0.67 [0.35, 1.28]
	Total (95% CI)	1974	1910	100.0
	Total events	53	83	
Heterogeneity:	Tau^2 = 0.08, chi^2 = 3.63, df = 2 (P = 0.16), I^2 = 45%			
Test for overall effect: Z = 3.01 (P = 0.003)				

Cardiac arrest death

Study or Subgroup	IVUS-guided PCI Events Total	angiography-guided PCI Events Total	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI

Figure 5: The forest plots of MACEs, TLR, and TVR in 3 years. MACEs: major adverse cardiovascular events; TVR: target vessel revascularization; TLR: target lesion revascularization.
CI: 0.67–1.34, \(P = 0.75 \), \(I^2 = 36\% \) was not significantly different between the IVUS-guided PCI and angiography-guided PCI (Figure 5). In the randomized controlled trials, at the 2-year follow-up, the incidence of TLR (RR: 0.62, 95% CI: 0.35–1.09, \(P = 0.10 \), \(I^2 = 4\% \)) was not significantly different between the IVUS-guided PCI and angiography-guided PCI (Figure 4).

In patients with left main artery disease, at the 1-year follow-up, there were no significant differences between IVUS-guided PCI and angiography-guided PCI in terms of TLR (OR: 0.56, 95% CI: 0.19–1.60, \(P = 0.28 \), \(I^2 = 76\% \)) and TVR (OR: 0.63, 95% CI: 0.18–2.21, \(P = 0.47 \), \(I^2 = 88\% \)) (Figure 7). At the 3-year follow-up, the occurrence of TLR (OR: 0.73, 95% CI: 0.34–1.56, \(P = 0.41 \), \(I^2 = 78\% \)) and TVR (OR: 0.94, 95% CI: 0.59–1.50, \(P = 0.81 \), \(I^2 = 57\% \)) was not significantly different between the IVUS-guided PCI and angiography-guided PCI (Figure 8).

3.4. Bias Analysis

We analyzed the bias of the related results. The funnel plots are shown in Figure 9. For the asymmetric funnel plots, Begg’s and Egger’s tests were performed. The results showed that there was no significant publication bias (Figure 10).

4. Discussion

A total of 20 clinical trials were included, of which three were randomized controlled and 17 were retrospective. In our analysis, compared with angiography-guided therapy, IVUS-guided therapy had a better long-term prognosis. In the short-term prognosis, IVUS-guided therapy also showed beneficial effects.

IVUS had been used for about 20 years in clinical practice. However, it has not been widely used due to the individual mode of practice, time pressure, and expenses [27]. IVUS can be used to evaluate plaque morphology, coronary artery dissection, and intramural hematoma. In addition, it has certain advantages in evaluating the anatomic severity of coronary artery disease. In the process of stent implantation, the use of IVUS reduces the occurrence of stent underexpansion. Besides, IVUS plays an important role in the evaluation of stent malapposition, tissue protrusion after stent placement, and coronary spasm [28, 29]. Although coronary angiography has always been the gold standard for coronary artery evaluation, it also has some limitations [30, 31]. For example, in patients with left main artery disease, overlap of the vessels may mask the left main artery lesion, which limits the role of angiography in...
assessing the severity of the lesion. However, for IVUS, significant stenosis can be accurately evaluated [32, 33]. The study conducted by Ye et al. reported that the positive predictive value of angiography was only 35.1% [5]. However, the application of IVUS did not reduce the incidence of TVR or TLR. This might be related to the low incidence of events and individual differences of interventional physicians [34]. This may explain why high heterogeneity happens to the result of TVR and TLR in this meta-analysis.

In this study, to eliminate the bias caused by the study design of the included studies, we analyzed the relevant MACEs of observational trials and randomized controlled trials, respectively. For RCTs, the forest plot results of MACEs showed no significant difference (Figure 4). In the IVUS guidance in RCTs, attention should be given to the occurrence of cardiac death and all-cause death in 30 days, 1 year, and 3 years, which is lower compared with that in angiography-guided PCI. Although IVUS-guided PCI has

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	42	291	66	0.58 [0.38, 0.88]	Tian2017	64	713	121	0.87 [0.63, 1.19]
Total (95% CI)	1004	1477	100.0	0.72 [0.49, 1.08]					
Total events	106	187							
Heterogeneity: Tau^2 = 0.05; chi^2 = 2.30, df = 1 (P = 0.13); I^2 = 56%									
Test for overall effect: Z = 1.58 (P = 0.12)									

MACEs

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	36	291	44	0.79 [0.49, 1.27]	Tian2017	31	713	71	0.71 [0.46, 1.10]
Total (95% CI)	1004	1477	100.0	0.75 [0.54, 1.03]					
Total events	67	115							
Heterogeneity: chi^2 = 1.01, df = 1 (P = 0.07); I^2 = 0%									
Test for overall effect: Z = 1.79 (P = 0.07)									

MI

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	1	291	7	0.14 [0.02, 1.14]	Tian2017	7	713	11	1.06 [0.41, 2.74]
Total (95% CI)	1004	1477	100.0	0.48 [0.07, 3.47]					
Total events	8	18							
Heterogeneity: Tau^2 = 1.45; chi^2 = 3.10, df = 1 (P = 0.08); I^2 = 68%									
Test for overall effect: Z = 0.73 (P = 0.47)									

ST

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	8	191	24	0.31 [0.14, 0.71]	Tian2017	15	713	27	0.92 [0.49, 1.75]
Total (95% CI)	1004	1477	100.0	0.56 [0.19, 1.60]					
Total events	23	51							
Heterogeneity: Tau^2 = 0.44; chi^2 = 4.15, df = 1 (P = 0.04); I^2 = 76%									
Test for overall effect: Z = 1.69 (P = 0.28)									

TLR

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	10	291	29	0.32 [0.15, 0.67]	Tian2017	29	713	42	1.15 [0.71, 1.87]
Total (95% CI)	1004	1477	100.0	0.63 [0.18, 2.21]					
Total events	39	71							
Heterogeneity: Tau^2 = 0.72; chi^2 = 8.12, df = 1 (P = 0.004); I^2 = 88%									
Test for overall effect: Z = 0.72 (P = 0.47)									

TVR

Study or Subgroup	IVUS-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	angiography-guided PCI	Events	Total	Odd Ratio M-H, Random, 95% CI	
Gao2014	5	291	15	0.32 [0.12, 0.90]	Tian2017	7	713	16	0.73 [0.30, 1.77]
Total (95% CI)	1004	1477	100.0	0.50 [0.26, 0.98]					
Total events	12	31							
Heterogeneity: chi^2 = 1.37, df = 1 (P = 0.24); I^2 = 27%									
Test for overall effect: Z = 0.02 (P = 0.98)									

Cardiac death

In this study, to eliminate the bias caused by the study design of the included studies, we analyzed the relevant MACEs of observational trials and randomized controlled trials, respectively. For RCTs, the forest plot results of MACEs showed no significant difference (Figure 4). In the IVUS guidance in RCTs, attention should be given to the occurrence of cardiac death and all-cause death in 30 days, 1 year, and 3 years, which is lower compared with that in angiography-guided PCI. Although IVUS-guided PCI has

![Figure 7](image-url)

Figure 7: In patients with left main artery disease, the forest plots of MACEs in 1 year. TLR: target lesion revascularization; MI: myocardial infarction; TVR: target vessel revascularization; ST: stent thrombosis; MACEs: major adverse cardiovascular events.
better performance in reducing the occurrence of mortality, we still cannot ignore the cost of IVUS-guided PCI. After spending a lot of treatment fees, who would benefit the most from IVUS guidance? This is an important issue that cannot be ignored, especially in developing countries. Therefore, it is necessary to identify those who would suffer. In this study, we performed a meta-analysis on the related MACEs in the population with long lesion disease, but the results showed

Study or Subgroup	IVUS-guided PCI	angiography-guided PCI	Odds Ratio M-H, Random, 95% CI	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	77 505	128 505	0.53 [0.39, 0.73]	
Kim2010	17 122	36 74	0.17 [0.09, 0.34]	
Park2009	113 756	74 219	0.34 [0.24, 0.49]	
Tian2017	81 713	179 1186	0.72 [0.54, 0.95]	
Total (95% CI)	2696 1984	100.0	0.42 [0.26, 0.67]	
Total events	288 417			
Heterogeneity: Tau² = 0.20; chi² = 20.62, df = 3 (P = 0.0001); I² = 85%				
Test for overall effect: Z = 3.57 (P = 0.0004)				

MACEs

Study or Subgroup	Events	Total	Weight (%)	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	23	505	33 505	23.9 0.68 [0.39, 1.18]
Kim2010	4	122	7 74	6.4 0.32 [0.09, 1.15]
Park2009	56	756	24 219	26.1 0.65 [0.39, 1.08]
Tian2017	37	713	81 1186	43.7 0.75 [0.50, 1.11]
Total (95% CI)	2696	1984	100.0	0.68 [0.52, 0.89]
Total events	120	145		
Heterogeneity: chi² = 1.56, df = 3 (P = 0.67); I² = 0%				
Test for overall effect: Z = 2.84 (P = 0.005)				

MI

Study or Subgroup	Events	Total	Weight (%)	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	39	505	32 505	37.4 1.24 [0.76, 2.01]
Kim2010	7	122	15 74	26.3 0.24 [0.09, 0.62]
Tian2017	22	713	39 1186	36.3 0.94 [0.55, 1.59]
Total (95% CI)	1340	1765	100.0	0.73 [0.34, 1.59]
Total events	68	86		
Heterogeneity: Tau² = 0.35; chi² = 9.14, df = 2 (P = 0.01); I² = 78%				
Test for overall effect: Z = 0.82 (P = 0.41)				

TLR

Study or Subgroup	Events	Total	Weight (%)	Odds Ratio M-H, Random, 95% CI
Kim2010	17	122	18 74	23.9 0.50 [0.24, 1.05]
Park2009	86	756	19 219	34.1 1.35 [0.80, 2.28]
Tian2017	43	713	71 1186	42.0 1.01 [0.68, 1.49]
Total (95% CI)	1591	1479	100.0	0.94 [0.59, 1.50]
Total events	146	108		
Heterogeneity: Tau² = 0.10; chi² = 4.66, df = 2 (P = 0.10); I² = 57%				
Test for overall effect: Z = 0.24 (P = 0.81)				

TVR

Study or Subgroup	Events	Total	Weight (%)	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	37	505	65 505	30.9 0.54 [0.35, 0.82]
Kim2010	9	122	16 74	15.6 0.29 [0.12, 0.69]
Park2009	34	756	29 219	26.8 0.31 [0.18, 0.52]
Tian2017	21	713	46 1186	26.78 0.75 [0.45, 1.27]
Total (95% CI)	2696	1984	100.0	0.46 [0.30, 0.71]
Total events	101	156		
Heterogeneity: Tau² = 0.11; chi² = 7.16, df = 3 (P = 0.07); I² = 58%				
Test for overall effect: Z = 3.57 (P = 0.0004)				

All-cause death

Study or Subgroup	Events	Total	Weight (%)	Odds Ratio M-H, Random, 95% CI
Hernandez 2014	17	505	30 505	34.2 0.55 [0.30, 1.01]
Kim2010	4	122	13 74	0.0 0.16 [0.05, 0.51]
Park2009	23	756	21 219	34.0 0.30 [0.16, 0.55]
Tian2017	13	713	32 1186	31.7 0.67 [0.35, 1.28]
Total (95% CI)	1974	1910	100.0	0.47 [0.29, 0.77]
Total events	53	83		
Heterogeneity: Tau² = 0.08; chi² = 3.63, df = 2 (P = 0.16); I² = 45%				
Test for overall effect: Z = 3.01 (P = 0.003)				

Cardiac death

IVUS-guided PCI	angiography-guided PCI
0.01	0.1
1	10
100	100

Figure 8: In patients with left main artery disease, the forest plots of MACEs, TLR, and TVR in 3 years. TLR: target lesion revascularization; TVR: target vessel revascularization; MACEs: major adverse cardiovascular events.
Figure 9: The funnel plots of MI (30 days), ST (1 year), MI (1 year), cardiac death (1 year), TLR (1 year), TVR (1 year), all-cause death (1 year), and MACEs (1 year). TLR: target lesion revascularization; TVR: target vessel revascularization; MACEs: major adverse cardiovascular events.
no significant statistical difference. Moreover, IVUS showed beneficial effects for patients with left main disease, but only 2 studies were included in this meta-analysis. This suggests that we need to include more populations for meta-analysis in the future to determine patients who would benefit most from IVUS guidance despite the cost of treatment.

At the 3-year follow-up period, the result of MACE analysis showed great heterogeneity. We then carried out a sensitivity analysis to evaluate the stability of the relevant research. After reading the full text of the article carefully and discussing it with all researchers, the reason for the large heterogeneity was related to the study design. There was great heterogeneity in the result of cardiac death. After the sensitivity analysis, the OR of cardiac death in 3 years was 0.47 (95% CI: 0.29–0.77, \(P = 0.16, I^2 = 45\% \)). After carefully reading the full text and discussing with all of the researchers, the reason for the greater heterogeneity was related to the population differences [35]. The results of all-cause death also had a greater heterogeneity. We used the same method after deleting studies that caused greater heterogeneity. The OR of all-cause death at the 3-year follow-up was 0.64 (95% CI: 0.47–0.86, \(P = 0.40, I^2 = 0\% \)). After reading the full text, we believed that the reasons for the greater heterogeneity were related to the study design and the heterogeneity of populations.

In previous meta-analyses, IVUS-guided treatment could reduce the incidence of MACEs in patients with complex lesions [36]. In this meta-analysis, IVUS-guided therapy played a better role in reducing the incidence of MACEs, TLR, and TVR [37]. The beneficial effects of IVUS were not limited to reducing the incidence of MACEs. It can also reduce clinical events such as stent thrombosis and death [38]. Moreover, IVUS-guided treatment played a beneficial role in reducing the incidence of acute myocardial infarction in patients with left main coronary artery disease [34]. However, we found that no one analyzed the long-term prognosis of IVUS-guided therapy. In this meta-analysis, we first classified the follow-up time of these studies and discussed the 30-day prognosis, 1-year prognosis, 2-year prognosis, and 3-year prognosis of IVUS-guided therapy. The results showed that IVUS-guided therapy had a better long-term prognosis. Interestingly, IVUS-guided therapy could reduce the incidence of TLR and TVR in 1 year, but there was no significant difference between the two strategies in 30 days, 2 years, and 3 years.

This meta-analysis proved that IVUS-guided PCI improved the short- and long-term prognoses of patients with PCI. Thus, we conclude that IVUS-guided therapy is superior to angiography-guided therapy in terms of reducing MACEs. However, we cannot deny the limitations of this
meta-analysis. Only three of the studies were RCTs, while 17 were retrospective trials. Moreover, the number of studies related to the patients with long coronary artery disease and left main coronary artery disease was relatively small, leading to some degree of deviation. Thus, more clinical trials are needed to prove the accuracy of our results.

5. Conclusions
Compared with angiography-guided PCI, IVUS-guided PCI improves the short- and long-term prognoses of patients with PCI. In patients with long coronary lesions or left main artery disease, IVUS-guided PCI also manifests potential benefits.

Data Availability
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Conflicts of Interest
The authors declare that there are no conflicts of interest regarding the publication of this paper.

Authors’ Contributions
Qun Zhang and Bailu Wang contributed equally to this work. Qun Zhang and Shujian Wei wrote the draft. Bailu Wang provided methodology and software. Yu Han and Shukun Sun contributed to data curation. Ruijuan Lv reviewed and edited the article.

Acknowledgments
This study was supported by the National Natural Science Foundation of China (82072141), Key R & D Program of Shandong Province (2019GSF108261), Natural Science Foundation of Shandong Province (ZR2020MH030), and Clinical Research Foundation of Shandong University (2020SDUCRCC014).

References
[1] D. L. Bhatt, “Percutaneous coronary intervention in 2018,” Journal of the American Medical Association, vol. 319, no. 20, pp. 2127-2128, 2018.
[2] D. R. Holmes Jr. and D. P. Taggart, “Revascularization in stable coronary artery disease: a combined perspective from an interventional cardiologist and a cardiac surgeon,” European Heart Journal, vol. 37, no. 24, pp. 1873-1882, 2016.
[3] J. Torrado, L. Buckley, A. Durán et al., “Restenosis, stent thrombosis, and bleeding complications: navigating between Scylla and charybdis,” Journal of the American College of Cardiology, vol. 71, no. 15, pp. 1676-1695, 2018.
[4] T. Kubo, T. Shinke, T. Okamura et al., “Optical frequency domain imaging vs. intravascular ultrasound in percutaneous coronary intervention (OPINION trial): one-year angiographic and clinical results,” European Heart Journal, vol. 38, no. 42, pp. 3139-3147, 2017.
[5] Y. Ye, M. Yang, S. Zhang, and Y. Zeng, “Percutaneous coronary intervention in left main coronary artery disease with or without intravascular ultrasound: a meta-analysis,” PLoS One, vol. 12, no. 6, Article ID e0179756, 2017.
[6] D. Dash, “Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound,” Indian Heart Journal, vol. 69, no. 3, pp. 407–410, 2017.
[7] S.-J. Hong, B.-K. Kim, D.-H. Shin et al., “Usefulness of intravascular ultrasound guidance in percutaneous coronary intervention with second-generation drug-eluting stents for chronic total occlusions (from the Multicenter Korean Chronic Total Occlusion Registry),” The American Journal of Cardiology, vol. 114, no. 4, pp. 534–540, 2014.
[8] J.-S. Kim, M.-K. Hong, Y.-G. Ko et al., “Impact of intravascular ultrasound guidance on long-term clinical outcomes in patients treated with drug-eluting stent for bifurcation lesions: data from a Korean multicenter bifurcation registry,” American Heart Journal, vol. 161, no. 1, pp. 180–187, 2011.
[9] A. Chieffo, A. Latib, C. Causin et al., “A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial,” American Heart Journal, vol. 165, no. 1, pp. 65–72, 2013.
[10] Y.-W. Yoon, S. Shin, B.-K. Kim et al., “Usefulness of intravascular ultrasound to predict outcomes in short-length lesions treated with drug-eluting stents,” The American Journal of Cardiology, vol. 112, no. 5, pp. 642–646, 2013.
[11] K. W. Park, S.-H. Kang, H.-M. Yang et al., “Impact of intravascular ultrasound guidance in routine percutaneous coronary intervention for conventional lesions: data from the EXCELLENT trial,” International Journal of Cardiology, vol. 167, no. 3, pp. 721-726, 2013.
[12] B. E. Claessen, R. Mehran, G. S. Mintz et al., “Impact of intravascular ultrasound imaging on early and late clinical outcomes following percutaneous coronary intervention with drug-eluting stents,” JACC: Cardiovascular Interventions, vol. 4, no. 9, pp. 974–981, 2011.
[13] J. M. de la Torre Hernandez, J. A. Baz Alonso, J. A. Gómez Hospital et al., “Clinical impact of intravascular ultrasound guidance in drug-eluting stent implantation for unprotected left main coronary disease: pooled analysis at the patient-level of 4 registries,” JACC: Cardiovascular Interventions, vol. 7, no. 3, pp. 244–254, 2014.
[14] J.-S. Kim, T.-S. Kang, G. S. Mintz et al., “Randomized comparison of clinical outcomes between intravascular ultrasound and angiography-guided drug-eluting stent implantation for long coronary artery stenoses,” JACC: Cardiovascular Interventions, vol. 6, no. 4, pp. 369–376, 2013.
[15] S. G. Ahn, J. Yoon, J. K. Sung et al., “Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stents implantation,” Korean Circulation Journal, vol. 43, no. 4, pp. 233–238, 2013.
[16] S.-L. Chen, F. Ye, J.-J. Zhang et al., “Intravascular ultrasound-guided systematic two-stent techniques for coronary bifurcation lesions and reduced late stent thrombosis,” Catheterization and Cardiovascular Interventions, vol. 81, no. 3, pp. 456–463, 2013.
[17] X.-F. Gao, J. Kan, Y.-J. Zhang et al., “Comparison of one-year clinical outcomes between intravascular ultrasound-guided versus angiography-guided implantation of drug-eluting stents for left main lesions: a single-center analysis of a 1,016-patient cohort,” Patient Preference and Adherence, vol. 8, pp. 1299–1309, 2014.
[18] S.-J. Hong, B.-K. Kim, D.-H. Shin et al., “Effect of intravascular ultrasound-guided vs. angiography-guided everolimus-
eluting stent implantation,” *Jama*, vol. 314, no. 20, pp. 2155–2163, 2015.

[19] B. K. Kim, D. H. Shin, M. K. Hong et al., “Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study,” *Circulation. Cardiovascular interventions*, vol. 8, no. 7, Article ID e002592, 2015.

[20] Y. H. Kim, A. -Y. Her, S.-W. Rha et al., “Three-year major clinical outcomes of angiography-guided single stenting technique in non-complex left main coronary artery diseases,” *International Heart Journal*, vol. 58, no. 5, pp. 704–713, 2017.

[21] S.-J. Park, Y.-H. Kim, D.-W. Park et al., “Impact of intravascular ultrasound guidance on long-term mortality in stenting for unprotected left main coronary artery stenosis,” *Circulation: Cardiovascular Interventions*, vol. 2, no. 3, pp. 167–177, 2009.

[22] P. Roy, D. H. Steinberg, S. J. Sushinsky et al., “The potential clinical utility of intravascular ultrasound guidance in patients undergoing percutaneous coronary intervention with drug-eluting stents,” *European Heart Journal*, vol. 29, no. 15, pp. 1851–1857, 2008.

[23] Q. Tan, Q. Wang, D. Liu, S. Zhang, Y. Zhang, and Y. Li, “Intravascular ultrasound-guided unprotected left main coronary artery stenting in the elderly,” *Saudi Medical Journal*, vol. 36, no. 5, pp. 549–553, 2015.

[24] J. Tian, C. Guan, W. Wang et al., “Intravascular ultrasound guidance improves the long-term prognosis in patients with unprotected left main coronary artery disease undergoing percutaneous coronary intervention,” *Scientific Reports*, vol. 7, no. 1, Article ID 23777, 2017.

[25] A. Maehara, G. S. Mintz, B. Witzenbichler et al., “Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents,” *Circulation. Cardiovascular interventions*, vol. 11, no. 11, Article ID e006243, 2018.

[26] Y. J. Youn, J. Yoon, J.-W. Lee et al., “Intravascular ultrasound-guided primary percutaneous coronary intervention with drug-eluting stent implantation in patients with ST-segment elevation myocardial infarction,” *Clinical Cardiology*, vol. 34, no. 11, pp. 706–713, 2011.

[27] N. R. Smilowitz, D. Mohananey, L. Razzouk, G. Weisz, and J. N. Slater, “Impact and trends of intravascular imaging in diagnostic coronary angiography and percutaneous coronary intervention in inpatients in the United States,” *Catheterization and Cardiovascular Interventions*, vol. 92, no. 6, pp. E410–E415, 2018.

[28] K. Fuji, S. G. Carlier, G. S. Mintz et al., “Stent underexpansion and residual reference segment stenosis are related to stent thrombosis after sirolimus-eluting stent implantation: an intravascular ultrasound study,” *Journal of the American College of Cardiology*, vol. 45, no. 7, pp. 995–998, 2005.

[29] S.-J. Kang, J.-M. Ahn, H. Song et al., “Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease,” *Circulation: Cardiovascular Interventions*, vol. 4, no. 6, pp. 562–569, 2011.

[30] L. M. Zir, S. W. Miller, R. E. Dinsmore, J. P. Gilbert, and J. W. Harthorne, “Interobserver variability in coronary angiography,” *Circulation*, vol. 53, no. 4, pp. 627–632, 1976.

[31] P. K. Bundhun, C. M. Yanamala, and F. Huang, “Comparing the adverse clinical outcomes associated with fraction flow reserve-guided versus angiography-guided percutaneous coronary intervention: a systematic review and meta-analysis of randomized controlled trials,” *BMC Cardiovascular Disorders*, vol. 16, no. 1, Article ID 249, 2016.

[32] M. Ragosta, “Left main coronary artery disease: importance, diagnosis, assessment, and management,” *Current Problems in Cardiology*, vol. 40, no. 3, pp. 93–126, 2015.

[33] K. Sano, G. S. Mintz, S. G. Carlier et al., “Assessing intermediate left main coronary lesions using intravascular ultrasound,” *American Heart Journal*, vol. 154, no. 5, pp. 983–988, 2007.

[34] Y. Wang, G. S. Mintz, Z. Gu et al., “Meta-analysis and systematic review of intravascular ultrasound versus angiography-guided drug eluting stent implantation in left main coronary disease in 4592 patients,” *BMC Cardiovascular Disorders*, vol. 18, no. 1, Article ID 115, 2018.

[35] S.-H. Kim, Y.-H. Kim, S.-J. Kang et al., “Long-term outcomes of intravascular ultrasound-guided stenting in coronary bifurcation lesions,” *The American Journal of Cardiology*, vol. 106, no. 5, pp. 612–618, 2010.

[36] Z. G. Fan, X. F. Gao, X. B. Li et al., “The outcomes of intravascular ultrasound-guided drug-eluting stent implantation among patients with complex coronary lesions: a comprehensive meta-analysis of 15 clinical trials and 8,084 patients,” *The Anatolian Journal of Cardiology*, vol. 17, no. 4, pp. 258–268, 2017.

[37] C. Bavishi, P. Sardar, S. Chatterjee et al., “Intravascular ultrasound-guided vs. angiography-guided drug-eluting stent implantation in complex coronary lesions: meta-analysis of randomized trials,” *American Heart Journal*, vol. 185, pp. 26–34, 2017.

[38] Y. Zhang, V. Farooq, H. M. Garcia-Garcia et al., “Comparison of intravascular ultrasound versus angiography-guided drug-eluting stent implantation: a meta-analysis of one randomised trial and ten observational studies involving 19,619 patients,” *EuroIntervention*, vol. 8, no. 7, pp. 855–865, 2012.

[39] B.-K. Kim, D.-H. Shin, M.-K. Hong et al., “Clinical impact of intravascular ultrasound–guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation,” *Circulation: Cardiovascular Interventions*, vol. 8, no. 7, 2015.

[40] B. Witzenbichler, A. Maehara, G. Weisz et al., “Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents,” *Circulation*, vol. 129, no. 4, pp. 463–470, 2014.