Invasion and Dispersal of *Biomphalaria* Species: Increased Vigilance Needed to Prevent the Introduction and Spread of Schistosomiasis

Mohamed R. Habib 1,2,3, Shan Lv 2,3,4,5,6, David Rollinson 7 and Xiao-Nong Zhou 2,3,4,5,6*

1 Medical Malacology Laboratory, Theodor Bilharz Research Institute, Giza, Egypt; 2 National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China; 3 Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China; 4 National Center for International Research on Tropical Diseases, Shanghai, China; 5 WHO Collaborating Center on Tropical Diseases, Shanghai, China; 6 School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China; 7 Department of Life Sciences, Natural History Museum, London, United Kingdom

Biological invasion is a matter of great concern from both public health and biodiversity perspectives. Some invasive snail species may trigger disease emergence by acting as intermediate hosts. The geographic distribution of *Schistosoma mansoni* depends on the presence of susceptible species of *Biomphalaria* freshwater snails that support the parasite's transformation into infective stages. *Biomphalaria* spp. have shown strong local and global dispersal capacities that may increase due to the global warming phenomenon and increases in the development of agricultural and water projects. Should intermediate hosts become established in new areas then this will create potential transmission foci. Examples of snail invasions that have had an impact on schistosomiasis transmission include the introduction of *Biomphalaria tenagophila* to Congo and *B. glabrata* to Egypt. The current spread of *B. straminea* in China is causing concern and needs to be monitored closely. An understanding of the mode of invasion and distribution of these snails as well as their experimental susceptibility to *S. mansoni* will predict the potential spread of schistosomiasis. Here we review the invasion patterns of *Biomphalaria* snails and factors that control their distribution and the impact that invasion may have on intestinal schistosomiasis transmission. In addition, we propose some possible surveillance responses for optimum control strategies and interventions. Whenever possible, swift action should be taken to contain any new occurrence of these intermediate snail hosts.

Keywords: *Biomphalaria*, invasion, *Schistosoma mansoni*, schistosomiasis, transmission

BACKGROUND

Aquatic invasion by exogenous species can cause native biodiversity loss and deleterious environmental and economic impacts (1). Biological invasions of gastropod molluscs have been strongly linked to serious problems to human health. They can cause expansion, emergence, or re-emergence of infectious diseases (2). These risks are anticipated to
intensify due to ongoing climate change and global warming which continue to create new suitable freshwater environments for snail species serving as disease carriers (3). This review will consider the invasion patterns of Biomphalaria spp. (Class: Gastropoda; Family: Planorbidae) that act as the intermediate hosts for Schistosoma mansoni, a trematode parasite causing intestinal schistosomiasis. Biomphalaria are widely distributed in sub-Saharan Africa, South America, and other subtropical regions. Several species of Biomphalaria have shown strong local or global dispersal capacities. Numerous accidental or deliberate introductions of Biomphalaria spp. have been reported in tropical areas (4). Biomphalaria dispersal is of prime interest because it is often associated with the creation of new transmission foci for schistosomiasis. *B. glabrata, B. straminea, B. tenagophila,* and *B. pfeifferi* are the most common invasive species that have been introduced into new areas outside their native habitats and acted as potential intermediate hosts for schistosomiasis transmission (5). Therefore, an extensive knowledge of the geographic distribution of susceptible species of Biomphalaria is of considerable importance for the control of schistosomiasis and its epidemiologic surveillance as well as for future delineation of potential risk areas.

GEOGRAPHIC DISTRIBUTION OF SUSCEPTIBLE SPECIES OF BIOMPHALARIA

The global distribution map of *S. mansoni* is largely defined by the occurrence of *Biomphalaria* species that are able to transmit the parasite. According to Delong et al. (6), there are 34 species of *Biomphalaria* distributed worldwide. Looking back at the long evolutionary history of *Biomphalaria* spp. it is clear that invasions into new geographical areas have been a regular feature. Molecular evidence suggests that a *B. glabrata* like taxon, South American in origin, dispersed across the Atlantic to Africa and gave rise to the African species possible quite recently in the Pliopleistocene (1.8–3.6 Myr ago). This West to East transoceanic dispersal could have occurred in the feathers of aquatic birds or on vegetation rafted across the ocean followed by successful colonization (7).

Four Neotropical species act as intermediate host for *S. mansoni* in the wild, these includes, *B. glabrata* in Antigua, Brazil, Curacao, Dominica, Guadeloupe, French Guiana, Haiti, Saint Kitts and Nevis, Martinique, Montserrat, Puerto Rico, Dominican Republic, Saint Lucia, Suriname, and Venezuela, *B. tenagophila* in Southern Brazil, Argentine, Paraguay, Uruguay, Peru, and Bolivia, *B. straminea* in North-Eastern Brazil, Venezuela, Suriname, French Guiana, Guyana, Peru, Paraguay, Argentine, Dominica, Grenada, Guadeloupe, Martinique, Dominican Republic, Trinidad, Uruguay, and Costa Rica and *B. pronca* in Venezuela (8, 9). Other species showed susceptibility to experimental infection, but have not been found naturally infected, such as *B. amazonica* found in Brazil, Bolivia, and Colombia (10), *B. hawaiensis* found in Haiti, Mexico, Puerto Rico, Cuba, and Venezuela, *B. helophila* found in Peru, Cuba, Costa Rica, Guatemala, Belize, Haiti, Mexico, Saint Thomas, El Salvador, Dominican Republic, Puerto Rico, Barbados, and Nicaragua (11), *B. peregrina* from Ecuador, Bolivia, Chile, Brazil, Paraguay, Peru, Uruguay, Argentina, and Colombia (12), and *B. sericea* from Ecuador (13). Both susceptible and refractory species may coexist in the same municipality. In São Paulo, in the Southeast Region of Brazil, *B. occidentalis, B. olioza, B. peregrina, B. schrammi, B. straminea* and *B. tenagophila* are present in water bodies of the upper basin of the Tieté River (14).

Most African species of *Biomphalaria* are known as active intermediate hosts of schistosomes in the field (15). Numerous records of natural infections of *Biomphalaria* with *S. mansoni* in many African countries are present in literature, examples include *B. alexandrina* in Egypt (16, 17), *B. camerunensis* in Cameroon (18), *B. choanomphala* in Tanzania, Kenya, and Uganda (19–21), *B. sudanica* in Tanzania and Uganda (19, 22), Kenya (23), Ethiopia (24), Burundi (25), and Sudan (26), *B. stanleyi* in Uganda and Tanzania (19, 22), and *B. pfeifferi*, the most important intermediate host for *S. mansoni* in Africa due to its ubiquitous distribution, was found infected in Burundi (25), Cameroon (27), Mali (28), Niger (29), Senegal (30), South Africa (31), Sudan (32), Zimbabwe (33), Tanzania, Uganda (19), and Benin (34). In addition to the geographic areas mentioned above for naturally infected snails, *Biomphalaria* spp. are widely distributed in many other wetland areas throughout the Americas and Africa (Figure 1 and Table 1).

ECOLOGICAL FACTORS CONTROLLING BIOMPHALARIA ABUNDANCE AND DISTRIBUTION

Many ecological or environmental factors regulate the distribution and abundance of *Biomphalaria* spp. The high fecundity of *Biomphalaria* and their ability to self-reproduce are important traits that support their successful invasion. Adult snails can produce 10,000 eggs per year. The egg-to-egg period requires approximately 11 weeks (127). With a life span of up to one year and a half, *Biomphalaria* can undergo several generations over a year (128). Following embryonic hatching from egg capsules, *Biomphalaria* undergo a series of developmental steps leading to maturation and reproduction. The snail has a great capacity to live and reproduce under different environmental conditions (129, 130). *B. glabrata* and *B. straminea*, for example, were found in 10 of 11 different types of aquatic habitats in Brazil (131).

In natural habitats, *Biomphalaria* are under the influence of several ecological factors that control the population density of snails although temperature is a key determinant. Detailed review of environmental factors conditioning the habitat of *Biomphalaria* can be found in Malek (132), Brown (15), and Rollinson (133). In summary, these ecological factors can be divided into biotic and abiotic factors.
Biotic Factors

Biotic factors such as plants and food supply have a particular influence on the local abundance and distribution of snails. Predator and competitor species such as other species of snails, fish and insects also control snail populations. Data from field studies in Africa and Brazil indicate that Tilapia fish and some Dipteran insect’s larva are predators of *Biomphalaria* in fishponds and lakes (134). In some cases, the absence of these natural predators may have a detrimental impact on schistosomiasis transmission. For example, the construction Diama Dam on Senegal River Basin obstructed the annual migration of native river prawns, *Macrobrachium vollenhoveni*, that feed on schistosomes intermediate host snails, leading to massive outbreak of schistosomiasis. Indeed, field experiments showed that reintroduction of the prawns caused a significant reduction in infected snails and human schistosomiasis prevalence (135, 136). Moreover, several pilot control studies involving competitor snails, such as *Pomacea glauca, Marisa cornuarietis, Melanoides tuberculata*, and *Helisoma duryi*, achieved varying results; characterized mostly by ecological upsets after initial snail reductions (137, 138).

Abiotic Factors

Abiotic factors, such as temperature and water chemistry, can have evident effects on *Biomphalaria* spp. over short distances within a single waterbody (15). In particular, temperature is important for snail survival and reproduction. Variation in water temperature affects distribution of snails not only from season to season but also from year to year (139). Recent studies on the effects of temperature changes on the growth, fecundity and survival of intermediate host snails of schistosomiasis and schistosomes prevalence indicated that temperature increase may alter the distribution, breeding, growth and survival of snails, and consequently may increase the...
TABLE 1 | Distribution of naturally susceptible species of *Biomphalaria*.

Species	Geographic distribution (Country level)	References
Biomphalaria glabrata	Brazil* (8, 35)	(8, 35)
	French West Indies (36, 37)	(36, 37)
	West Indian Island of St. Lucia (38)	(38)
	Venezuela (39, 40)	(39, 40)
	Lesser Antilles (40)	(40)
	Puerto Rico (41)	(41)
	Haiti (42)	(42)
	Dominican Republic (9, 43)	(9, 43)
	Surinam (9)	(9)
	French Guiana (9)	(9)
	Egypt (44–46)	(44–46)
Biomphalaria straminea	Brazil (47–49)	(47–49)
	Hong Kong (50, 51)	(50, 51)
	China (52–54)	(52–54)
	French West Indies (56)	(56)
	Uruguay (55, 56)	(55, 56)
	Venezuela* (9, 57)	(9, 57)
	Costa Rica (58)	(58)
	Argentina (59, 60)	(59, 60)
	Dominican Republic (61, 62)	(61, 62)
	Mexico (63)	(63)
	Peru (64)	(64)
	Dominica (65)	(65)
Biomphalaria tenagophila	Romania (66)	(66)
	Brazil (67–69)	(67–69)
	Uruguay (70, 71)	(70, 71)
	Paraguay (72)	(72)
	Argentina* (73, 74)	(73, 74)
	Peru (75)	(75)
	Democratic Republic of Congo (9, 76)	(9, 76)
	Bolivia (9)	(9)
Biomphalaria pfeifferi	South Africa* (15)	(15)
	Ethiopia (77–79)	(77–79)
	Nigeria (80, 81)	(80, 81)
	Sudan (82, 83)	(82, 83)
	Saudi Arabia (84)	(84)
	Ghana (85)	(85)
	Democratic Republic of Congo (86, 87)	(86, 87)
	Senegal (88, 89)	(88, 89)
	Kenya (90, 91)	(90, 91)
	Zimbabwe (92)	(92)
	Niger (93)	(93)
	Mali (94, 95)	(94, 95)
	Liberia (96, 97)	(96, 97)
	Cote-d’Ivoire (98)	(98)
	Tanzania (99)	(99)
	Benin (100)	(100)

(Continued)

TABLE 1 | Continued

Species	Geographic distribution (Country level)	References
Biomphalaria alexandrina	Egypt* (109–111)	(109–111)
	Libya (112)	(112)
	Sudan (113)	(113)
Biomphalaria sudanica	Sudan* (15)	(15)
	Tanzania (114, 115)	(114, 115)
	Kenya (91)	(91)
	Uganda (19, 116)	(19, 116)
	Ghana (117)	(117)
	Ethiopia (118)	(118)
	Burundi (25)	(25)
Biomphalaria choanomphala	Tanzania* (15)	(15)
	Uganda (119)	(119)
	Kenya (120)	(120)
Biomphalaria camerunensis	Cameroonian* (121)	(121)
	Democratic Republic of Congo (122)	(122)
	Ghana (15)	(15)
	Central African Republic (15)	(15)
	Zaire (123)	(123)
Biomphalaria prona	Tanzania* (19, 114)	(19, 114)
	Uganda (22)	(22)
	Burundi (125)	(125)
	Chad (126)	(126)
Biomphalaria stanleyi	Tanzania* (19, 114)	(19, 114)
	Uganda (22)	(22)
	Burundi (125)	(125)
	Chad (126)	(126)

*Indicates first record of the species.

spread of schistosomiasis (140–142). In Egypt, high temperatures appear to reduce snail breeding and March is the month of maximal breeding for *B. alexandrina* (143). Yousif et al. (144) found that *B. alexandrina* populations exhibited two peaks of populations density that differ in heights depending on the extent of water temperature and winter closing. The first peak is from April-May and the second is from November-December. These two peaks are permeated by two lows following the Winter Closure and during the hot summer season. Under laboratory condition, *B. alexandrina* has optimal growth and egg laying at 26–28°C (145). A similar temperature range was also found with *B. glabrata* (146). Also, a positive correlation was
observed between *B. sudanica* abundance and water temperature (22). Appleton et al. (147) observed a negative correlation between fecundity and increasing above-optimal temperatures (>27°C) during maturation period of *B. pfeifferi*. The authors concluded that the change in temperature regime is responsible for the species’ absence from pans in some areas of South-Eastern Africa due to the sensitivity of *B. pfeifferi* to high temperature. Furthermore, the distribution of *B. pfeifferi* and *B. sudanica* is limited to north and north-eastern parts of Uganda characterized by suitable temperatures (148). Temperatures higher than optimal values cause retardation in the development of gonads and albumen gland and a decrease in egg-production and viability.

Water chemistry is an important factor for snail distribution (149). For example, inorganic salts govern the osmotic properties of the aquatic environment, which in turn are linked to the sensitivity of snail eggs to salinity. Most common ions in natural water include calcium, magnesium, sodium, bicarbonate, carbonate, chlorine, and phosphate. Snails usually prefer environments rich with calcium. The presence of calcium in water is important for snails since it is essential for the construction of the shells (150). Studies on *B. pfeifferi* showed that the snail is restricted to water with a minimum calcium concentration of 5 mg/l. High ratios of magnesium/calcium and sodium/calcium indicate low bioavailability of calcium and exert a negative impact on the egg production of the snails and can reduce their densities (151). Calcium has been associated with high fecundity of *B. glabrata* (149). El-Khayat et al. (152) showed that the habitat preferred by *B. alexandrina* snails contained higher concentration of various common ions such as potassium, sodium, and calcium. Also, field studies by Kloos et al. (35) showed that the widespread distribution of *B. glabrata*, and its infection with *S. mansoni*, together with differences in the seasonal distribution of snails is correlated to high calcium levels that appear to promote large *B. glabrata* populations in wells and springs.

Other environmental conditions such as turbidity and water pollution have an influence on snail abundance. Becker et al. (153) found that turbidity and pesticide pollution, at concentrations similar to or higher than those considered safe in environmental risk assessment, are significant factors in increasing the incidence of *B. pfeifferi* and *Bulinus africanus*, the intermediate host for *Schistosoma haematobium*, the parasite responsible for urogenital schistosomiasis, and hence the likelihood of schistosomiasis transmission. Declines in snail competitors and predators, that are less tolerant to pesticides, increase the availability of food for intermediate snail hosts and decrease their mortality rate (154).

INVASION PATTERNS

Long Distance (Global) Dispersal

There are four cases of long-distance dispersal present in the literature; one case was reported for *B. straminea* (Caribbean islands, China), one for *B. glabrata* (Egypt), and two cases for *B. tenagophila* (Romania and Congo). The dispersal of both *B. glabrata* and *B. tenagophila* (Congo) was implicated in local schistosomiasis transmission (Figure 2).

Biomphalaria straminea

B. straminea, one of the intermediate hosts for *S. mansoni* in South America, expanded its geographic range to colonize almost all the Caribbean islands (155). In Asia, *B. straminea* was first identified in Hong Kong water systems in the south of China in 1974 (50), in the subsequent years, the snails showed a dispersal capacity in different water courses in southern China. The snail species was found in numerous water bodies in Shenzhen city of Guangdong province, China in 1981 (156), and in the next 2 years showed a growing distribution in Shenzhen rivers, suggesting a spread from Hong Kong rivers systems (52).

Morphological and molecular study for seven populations of *Biomphalaria* snails collected in Guangdong indicated that five populations were closely related to *B. kuhni*, another South American species refractory to schistosomes infection, the other two populations were identified as *B. straminea* and were more relative to *B. straminea* from Brazil (157). Controversially, further anatomical and molecular investigation of six *Biomphalaria* populations from Guangdong showed a close affinity between these populations and *B. straminea* from Brazil (158). Supporting the latter finding, a more recent study of *B. straminea* in Hong Kong identified two morphotypes of the species; black- and red-colored shell morphs of *B. straminea* in different regions in the new territories in Hong Kong, including places close to the mainland China border. Morphological and molecular analyses of the Hong Kong *B. straminea* showed that they are genetically indistinguishable and are similar to those obtained in mainland China and South America (159). The presence of *B. straminea* in Guangdong may be the result of multiple and different introduction routes and/or peripheral dispersal from Hong Kong populations via passive transport or container ship traffic or naturally due to connections between the water systems of the two adjacent localities (160).

The spread of *B. straminea* from Hong Kong to Guangdong confirms its ability to survive and form new colonies in mainland China and its capacity to spread along the rivers (161). *B. straminea* can adapt to drought periods and higher temperatures, an adaptability that will promote its spread to wider geographic areas in China in view of global warming and continued rise in the mean annual temperature of China (162). Further evidence is the recent invasion of the snail to Guanlan and Dasha rivers in Shenzhen city, Guangdong province, China (53). Moreover, recent maps for realized (Figure 3) and predicted spatial distributions of *B. straminea* in southern China, based on Geographical Information Systems (GIS) and species distribution modeling software (MaxEnt), showed the presence of *B. straminea* in many water habitats in Guangdong province and indicated possible suitable habitats in its surrounding provinces such as Guangxi and Fujian (163).
Habib et al. Invasion of Biomphalaria Species

Biomphalaria glabrata

B. glabrata was maintained in a laboratory setting in Egypt to conduct *Schistosoma* research from where it then allegedly escaped and was recorded from the field in the neighborhood of Cairo in 1981. Later on, in 1996 the snails were collected from water courses in Giza, Qalyoubiya and Kafr El-Sheikh governorates. Being an intermediate host of *S. mansoni*, its escape was considered a serious threat to public health in Egypt (44). In the following years, malacological surveys showed the invasion of the Nile Valley with hybrid snails resulted from mating of *B. alexandrina* and *B. glabrata*, distributed in El-Menia, El-Dakahlia, and Fayoum governorates. The hybrid snails were found naturally infected with *S. mansoni* (164). However, molecular investigations of *Biomphalaria* species collected from areas toward the north of Egypt, the Nile Delta and south of Egypt during 2002-2009 using species specific primers for *B. alexandrina* and *B. glabrata* did not identify *B. glabrata* in the collected populations (165, 166). Recent mapping of *S. mansoni* prevalence in the Nile Delta region showed high infection rates in schoolchildren (167) suggesting a recent contact with areas manifested with infected *Biomphalaria*. This merits further molecular analysis for Egyptian populations of *Biomphalaria* using mitochondrial and genomic sequences to identify species involved in *S. mansoni* transmission and to understand their role and biology of infection.

Biomphalaria tenagophila

The invasion of Neotropical snail *B. tenagophila* to Africa was reported from Kinshasa, Democratic Republic of Congo as confirmed by conchological, anatomical, and molecular studies. It was proposed that this species was introduced at the end of the 1960s (5). In Europe, *B. tenagophila* snails had been found in 2004 at Râbâganî, Romania, Eastern Europe but had been misidentified as the common European species, *Planorbarius corneus* (168). In the period between 2005 and 2007, the snail was collected from the same location and its identity was confirmed via morphological and molecular characterization that proved it as *B. tenagophila*. Molecular data obtained from

FIGURE 2 | Cases of long-distance dispersal of different *Biomphalaria* species.

Frontiers in Medicine | www.frontiersin.org 6 February 2021 | Volume 8 | Article 614797
partial mitochondrial 16S ribosomal RNA gene amplification showed 99.74% similarity to B. tenagophila originated from Brazil. B. tenagophila is not only introduced, but also established in Râbügani area in Romania. The snail’s route of introduction is unknown but it is more likely to be introduced through migrating birds or by plants used in aquariums (66).

Peripheral Dispersal

Continued modifications of humans to aquatic environments through constructions of major reservoirs and hydroelectric dams and expanding irrigation schemes, quarries, drainage ditches, and aquaculture ponds, improve and create new freshwater bodies and potential snail habitats. Biomphalaria spp. rapidly colonize and establish dense populations in such habitats, which in turn facilitate schistosome transmission leading to disease outbreak (136, 169–171). Snails can be passively dispersed by floating aquatic plants or by human activities over the same lakes and rivers. For example, the invasive floating plant Salvinia was responsible for B. pfeifferi colonization in Lake Kariba in Zambia (172). Passive dispersal of Biomphalaria can also be delivered by water currents both during flooding, where water velocity is high so it sweeps away adhering snails, and also by slower drifting because of the habit of most pulmonates to detach and rise to the surface looking for food or as a deliberately dispersive behavior. In an experiment by Dazo et al. (143) they found that Biomphalaria and Bulinus were recovered as far as 4 km downstream after 1 day following release into a vegetation-free canal flowing rapidly at 0.42 ms⁻¹. Field observations from some localities in Brazil indicate that seasonal distribution of B. glabrata is characterized by generally lower snail densities in stagnant waters during the dry season however, higher densities in streams and canals during that time appear to be determined largely by the reduction of stagnancy through the addition of rainwater in the former and the flushing out of snails by seasonally increased water velocity in the latter (35). Many records of peripheral dispersal of different Biomphalaria spp. in many countries are found in the literature.

CONSEQUENCES OF INVASIONS

Supporting Transmission of S. mansoni

The problem with invasion of Biomphalaria susceptible to schistosomiasis is that one snail can undergo self-fertilization and act as a founder of an entire colony. Because an individual snail carries only part of the total genetic variation of its original population, the colonies established by the recent dispersal of that snail or even a small group of snails are expected to show reduced genetic diversity compared with their parental population (173). For example, B. alexandrina lost allelic diversity at several polymorphic loci after colonizing the Upper Nile in Egypt coming from the Nile Delta region (173). Increased genetic diversity of Biomphalaria tends to reduce the overall parasite transmission rate, supposedly due to a dilution effect where in the presence of high genetic diversity it is more likely that some snails are naturally resistant to Schistosoma infection, whereas reduced host genetic diversity could benefit S. mansoni through an overall increase in transmission rate (174).
Following the introduction of *B. tenagophila* to Kinshasa, Congo in 1970, *S. mansoni* infected specimens were collected from the same area indicating the involvement of the snail in *S. mansoni* transmission and not a native African *Biomphalaria* (76, 175). This finding was confirmed based on a previous experience from Brazil where the first transmission site of *S. mansoni* through using *B. tenagophila* as intermediate host was discovered in the Paraiba valley, state of São Paulo. In the subsequent years, schistosomes showed a great adaptation to the new intermediate host and further spread throughout the valley (8).

B. pfeifferi has also been implicated in the increased prevalence of intestinal schistosomiasis in many countries following an extension of its distribution as exemplified by the rise of the disease in Malagasy high plateau, Madagascar after its colonization by *B. pfeifferi* (176, 177). In Egypt, *B. glabrata* was reported in long distances of water courses in Qalyoubiya, Giza, and Kafr El-Sheikh governorates (44, 46). Although no infected snails were collected, laboratory studies on the first generation obtained from field-collected specimens showed its susceptibility to a local strain of *S. mansoni* originally from Giza. The infection rate of *B. glabrata* snails was lower than that of *B. alexandrina*. Also, the incubation period was considerably shorter in *B. alexandrina* than *B. glabrata* which reflects the higher compatibility of the indigenous snails to local parasites. However, total number of cercariae produced per snail throughout the shedding period was higher in *B. glabrata* than in *B. alexandrina*. The results of experimental infection indicated that *B. glabrata* is as efficient as *B. alexandrina* in transmitting local *S. mansoni* parasites (46). The situation of *B. glabrata* became more complicated because the snail was able to hybridize with the local *B. alexandrina* snails producing a susceptible hybrid lineage. Some of the hybrid snails collected from El-Gharbia, El-Beherah, El-Menia, Kafr El-Sheikh, Dakahlia, and Alexandria governorates were found naturally infected with *S. mansoni* (45). Field and laboratory studies suggested that *B. glabrata* and hybrid snails have a higher potential in transmitting *S. mansoni*, which could lead to an increase in schistosomiasis in associated communities (178).

The invasion of Upper Egypt with *B. alexandrina* following the construction of the High Dam has led to outbreaks of *S. mansoni*, with tremendous local increase in the prevalence levels in just a few years (179). Also, as a consequence of *B. alexandrina* introduction to newly reclaimed areas, epidemiological surveys on resident and settler populations showed 49.3% and 40% prevalence of *S. mansoni* in El-Manayef and El-Morra areas, respectively in Ismailia governorate. The seasonality of *Biomphalaria* infection in the new areas showed the presence of two peaks in August and November. These results confirmed the occurrence of transmission of *S. mansoni* which indicated that reclamation of parts of the desert using the Nile water had led to spread of schistosomiasis to these areas (45).

In Northeastern Brazil, a competitive displacement of *B. glabrata* by *B. straminea* occurred after the introduction of the latter species. This displacement was considered as a biological control measure since the introduced snails were thought to be resistant to *S. mansoni* infection and have a greater fecundity (180). However, field data from some endemic areas showed that human infection increased from 35.5 to 61.9% in the locality occupied by *B. straminea*, and decreased from 40.3 to 20.8% in that occupied by *B. glabrata*. These data suggest that *B. straminea* is involved in the transmission of schistosomiasis (181).

Transmission of schistosomiasis can’t occur in the absence of a competent intermediate host snail, but once the obligate host has established, schistosomiasis transmission becomes a possibility (2). Although no schistosome larvae have been detected in *B. straminea* or *B. tenagophila* introduced to China and Europe (Romania), respectively, there is still a risk for intestinal schistosomiasis to be locally transmitted into these new geographic zones. The two species are susceptible intermediate host for *S. mansoni* and have been implicated in intestinal schistosomiasis transmission in their native habitats. Thus, global climate change and the possibility of the introduced snails to be in contact with schistosomes, could pose a public health risk. Human travel between countries for business, education or tourism made it possible to find schistosomiasis cases in non-endemic areas (182). For example, many reports of *S. mansoni* infected cases in immigrants or tourists visiting Romania and neighboring Hungary were reported (183). Also, more than 400 imported cases infected with African schistosomes (including *S. mansoni* and *S. hematobium*) were reported from numerous provinces in China between the years 1979 and 2011, owing to the sharp growth in China aided projects in Africa and labor services exported to Africa. It is estimated that over 1 million Chinese workers are now residing in Africa, increasing the risk of exposure to African schistosomiasis (160). Other possible ways of *S. mansoni* establishment include the introduction of infected snails in the same way by which uninfected ones were introduced and introduction of the parasite through Chinese or European laborers returning from endemic areas or visitors traveling for tourism or trade purposes. Once started it is possible that the life cycle could be maintained through other definitive hosts such as rodents.

Supporting Transmission of Other Helminth Pathogens

In addition to its role as intermediate host for *S. mansoni*, *Biomphalaria* spp. may also act as intermediate hosts for other parasites of mammals, birds, and fish (Table 2). Moreover, different species of *Biomphalaria* were found naturally infected with cercariae and metacercariae of a wide range of trematodes of unknown life cycle (73, 217). Recently, both *B. straminea* and *B. glabrata* were shown to act as intermediate hosts of *Austrodiplostomum compactum* (Trematoda: Diplostomidae), the causative agent for ocular diplostomiasis in several species of fish in Brazil, a disease which may have potential impacts on native fish species and damage to fish farming. The two species were found infected with strigeid cercariae of the parasite (208). *Biomphalaria* can also act as intermediate hosts for different species of the nematode *Angiostrongylus* that infect domestic animals as well as humans. For example, *Angiostrongylus*
Class	Parasite species	Biomphalaria species	Type of infection	Definitive host
Trematoda	Echinostoma caproni	B. glabrata	Experimental (184, 185)	Birds and mammals
		B. pfeifferi		
	Echinostoma paraensei	B. glabrata	Natural (186)	
		B. teragophila	Experimental (189)	
	Echinostoma trivolvis	B. glabrata	Experimental (190)	
	Echinostoma leei	B. alexandrina	Natural (191)	
		B. glabrata	Experimental (192)	
	Echinostoma revolutum	B. alexandrina	Experimental (193)	
		B. glabrata	Experimental (194)	
	Echinostoma rodiguesi	B. glabrata	Experimental (195)	
	Echinostoma kuiseyi	B. glabrata	Experimental (196)	
	Paryphostomum segregatum	B. glabrata	Experimental (197)	
	Echinostoma lindoense	B. glabrata	Experimental (197)	
	Echinostoma macrochii	B. glabrata	Experimental (198)	
	Echinostoma barbosai	B. straminea	Experimental (199)	
	Echinostoma friedi	B. straminea	Experimental (200)	
	Echinostoma togoensis	B. glabrata	Experimental (201)	
	Echinoparyphium spp.	B. glabrata	Experimental (202)	
		B. peregrina	Natural (203)	
		B. obstructa	Natural (204)	
	Zygocotyle lunata	B. peregrina	Natural (205)	
		B. teragophila	Natural (205)	
		B. straminea	Experimental (205)	
		B. orbignyi	Experimental (205)	
		B. oligoza	Experimental (205)	
	Ribeiroia spp.	B. glabrata	Natural (206)	Fish and amphibians
		B. straminea	Natural (207)	
	Austrodiplostomum compactum	B. straminea	Natural (208)	
		B. glabrata	Natural (208)	
Nematoda	Angiostrongylus vasorum	B. glabrata	Experimental (209)	Dogs and mammals
		B. teragophila	Experimental (210)	
	Angiostrongylus costaniceps	B. glabrata	Experimental (211)	
	Angiostrongylus cantonensis	B. glabrata	Experimental (212)	
		B. straminea	Experimental (213)	
		B. alexandrina	Natural (214)	
		B. glabrata	Experimental (215)	
	Angiostrongylus siamensis	B. glabrata	Experimental (216)	
vasorum, that parasitizes the right ventricle of the heart and the pulmonary artery of dogs and wild carnivores in different parts of Europe, Canada, South America, and Africa (218, 219), is able to infect *B. glabrata* and *B. tenagophila* under laboratory conditions as evidenced by emergence of cercariae that could infect the vertebrate host (209, 210). The parasite can also cause diseases of the central nervous system in humans (220). *B. glabrata* and *B. tenagophila* act as intermediate hosts for the rat lung worms *Angiostrongylus cantonensis* and *A. costaricensis* the causative agents of eosinophilic meningitis and meningoencephalitis and abdominal angiostrongylisis, respectively, in humans in many parts of the world (221). Within the snails, the parasite develops into the infective third-stage larvae and humans are infected after ingestion of infected snails (222). Infection with the rodent schistosome *S. rodhaini* were found in natural population of *B. sudanica* in some African countries such as Uganda and Burundi (15). Moreover, natural infections with 11 larvae of different trematode species were found in *B. pfeifferi* and *B. sudanica* from Tanzania (223).

CONCLUSIONS

The distribution of the snails will define the potential distribution of schistosomiasis and the likelihood of transmission. Many ecological factors regulate distribution and abundance of *Biomphalaria* spp. Hence, knowledge of the disease transmission is incomplete without available information on the ecology and biology of this intermediate host. There is a continuous need to document the changing and dynamic distribution of *Biomphalaria* due to continued environmental modifications and climatic changes.

Long distance dispersal of *Biomphalaria* is achieved through accidental and/ or deliberate introduction to new geographic areas. Dispersal of snail eggs and uninfected snails will not spread schistosomes, but dispersal of infected snails can spread the disease. Moreover, the new species may enhance disease transmission if it is more susceptible to local parasite than sympatric intermediate hosts. Thus, understanding the geographical origins of introduced snails, their modes of dispersal, and their rates of gene flow might assist efforts to understand the spread and establishment of schistosomiasis in the area of introduction. More studies are needed to identify the introduced species and understand their biology and the combination of morphological and molecular methodologies will be the best approach.

Snail distribution data can be used to develop prediction models for potential schistosomiasis risk areas and risk maps for snail distribution and abundance using species modeling software. For this purpose, geographic coordinates should be collected for utilizing in GIS and remotely sensed data (224). The obtained risk maps can be used to apply the suitable public health strategies, and to guide other fieldwork. Also, the risk map will enable better resource distribution and adequate policies for snail control. The GIS approach is particularly recommended to provide estimates of the potential spread of invasive *Biomphalaria* species using data of occurrences through time that allow a functional estimation of the spread of the invader, which could then be related to rates of ecological changes and vector activity over time.

For better and effective control initiatives for schistosomiasis, periodic malacological surveys are recommended for the detection of *Biomphalaria* in new potential habitats and identification of species and infection status of collected snails. Swift actions should be taken to record any new occurrence of these snail intermediate hosts. Community education is another important intervention to aid control. Populations who are in contact with water for agricultural or other purposes should be able to morphologically identify schistosomiasis intermediate snail hosts and understand their role in disease transmission. A surveillance system could be established to monitor the distribution of snails. This system could be used to assist regional policies in controlling snails via application of molluscicides or other control approaches (225, 226).

AUTHOR CONTRIBUTIONS

MRH, DR, and X-NZ: conceived and designed the study, and wrote and edited the review. MRH, DR, and SL: data collection and interpretation. All authors read and approved the final manuscript.

FUNDING

This work was supported by the National Key Research and Development Program of China (No. 2016YFC1200500 and 2016YFC1202000).

ACKNOWLEDGMENTS

MRH was supported by a Post-doctoral Programme from the Ministry of Science and Technology of China and National Center for International Research on Tropical Diseases (Shanghai, China).

REFERENCES

1. Poulin R, Paterson R, Townsend C, Tompkins D, Kelly D. Biological invasions and the dynamics of endemic diseases in freshwater ecosystems. *Freshw Biol.* (2011) 56:676–88. doi: 10.1111/j.1365-2427.2010.02425.x

2. Conn DB. Aquatic invasive species and emerging infectious disease threats: a One Health perspective. *Aquat Invas.* (2014) 9:383–90. doi: 10.3391/ai.2014.9.3.12

3. Dhiman RC, Pahwa S, Dhillon G, Dash AP. Climate change and threat of vector-borne diseases in India: are we prepared? *Parasitol Res.* (2010) 106:763–73. doi: 10.1007/s00436-010-1767-4
Mol Biol Evol. (2003) 18:2225–39. doi: 10.1093/molbev/msg026

Campbell G, Jones CS, Lockyer AE, Hughes S, Brown D, Noble LR, et al. Molecular evidence supports an African affinity of the Neotropical freshwater gastropod, Biomphalaria glabrata, Say 1818, an intermediate host for Schistosoma mansoni. Proc R Soc Lond Ser B Biol Sci. (2000) 267:2351–8. doi: 10.1098/rspb.2000.1291

Paraense WL. The schistosome vectors in the Americas. Mem Inst Oswaldo Cruz. (2001) 96:7–127. doi: 10.1590/S0070-07622000900002

Malek EA. Snail Hosts of Schistosomiasis and Other Snail-Transmitted Diseases in Tropical America: A Manual. Scientific Publication no. 478. Washington, DC: Pan Am Health Organ (1985).

Corrêa LR, Paraense WL. Susceptibility of Biomphalaria amazonica to infection with two strains of Schistosoma mansoni. Rev Inst Med Trop São Paulo. (1971) 13:387–90.

Richards CS. Infectivity of Schistosoma mansoni for Puerto Rican mollusks, including a new potential intermediate host. Am J Trop Med Hyg. (1963)12:26–33. doi: 10.4269/ajtmh.196 3:12.26

Paraense WL, Corrêa LR. Susceptibility of Biomphalaria peregrina from Brazil and Ecuador to two strains of Schistosoma mansoni. Rev Inst Med Trop São Paulo. (1973) 15:127–30.

Barbosa F. Survival in the field of Australorbis glabratus infected with Schistosoma mansoni. J Parasitol. (1963) 49:149. doi: 10.2377/375695

Ohlwiler FR, Rossignoli TD, Palasio RG, Tuan R. Taxonomic diversity of Biomphalaria (Planorbidae) in São Paulo state, Brazil. Biota Neotrop. (2020) 20x20200975. doi: 10.1590/1667-0611-bn-2020-0975

Brown D. Freshwater Snails of Africa and Their Medical Importance. London: Taylor and Francis (1994). doi: 10.1201/9781482951814

Lotfy WM, Hanelt B, Mkoji GM, Loker ES. Genotyping natural infections of Schistosoma mansoni in Biomphalaria alexandrina from Damietta, Egypt, with comparisons to natural snail infections from Kenya. J Parasitol. (2011) 97:156–9. doi: 10.1645/GE-2337.1

Taman A, El-Tantawy N, Besheer T, Taman I, Helal R. Schistosoma mansoni infection in a fishermen community, the Lake Manzala region-EGypt. Asian Pac J Trop Dis. (2014) 4:463–8. doi: 10.1016/S2222-1808(14)00607-7

Duke B, Moore P. The use of a molluscicide, in conjunction with chemotherapy, to control Schistosoma haematobium at the Barombi Lake foci in Cameroon. I. The attack on the snail hosts, using N-tritylmorpholine, and the effect on transmission from snail to man. Tropenmed Parasitol. (1976) 27:297–313.

Rowel C, Fred B, Betson M, Sousa-Figueiredo JC, Kabaterine NB, Stothard JR. Environmental epidemiology of intestinal schistosomiasis in Uganda: population dynamics of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert and Lake Victoria with observations on natural infections with digenetic trematodes. BioMed Res Int. (2015) 2015:717261. doi: 10.1155/2015/717261

Prentice M, Panesar T, Coles G. Transmission of Schistosoma mansoni in a large body of water. Ann Trop Med Parasit. (1970) 64:339–48. doi: 10.1080/00034839.1970.11686703

Baalawy S. Some observations on the role of Lake Victoria in the transmission of Schistosoma mansoni. East Afr Med J. (1971) 48:383–8.

Kazibwe F, Makanga B, Rubaire-Akiiki C, Ouma J, Kariuki C, Kabaterine N, et al. Ecology of Biomphalaria (Gastropoda: Planorbidae) in Lake Albert, Western Uganda: snail distributions, infection with schistosomes and temporal associations with environmental dynamics. Hydrobiologia. (2006) 568:433–44. doi: 10.1007/s10750-006-0224-y
41. Stryker GA, Koech DK, Loker ES. Growth of Biomphalaria glabrata populations in the presence of the ampullarid snails Pila ovata, Lanistes carcinus and Marisa cornuarietis. Acta Trop. (1991) 49:137–47. doi: 10.1016/0001-706X(91)90061-N
42. Raccourt CP, Sodeman WA, Rodrick GL, Boyd WP. Biomphalaria glabrata in Haiti. Trans R Soc Trop Med Hyg. (1985) 79:455-7. doi: 10.1016/0035-9203(85)90063-X
43. Gomez Perez J, Vargas M, Malek EA. Displacement of Biomphalaria glabrata by Thiara granifera under natural conditions in the Dominican Republic. Mem Inst Oswaldo Cruz. (1991) 86:341–7. doi: 10.1590/S0070-02691991000300008
44. Pflüger W. Introduction of Biomphalaria glabrata to Egypt and other African countries. Trans R Soc Trop Med Hyg. (1982) 76:567. doi: 10.1016/0035-9203(82)90167-5
45. Yousif F, Ibrahim A, Abdel KA, El Bardicy S. Invasion of the Nile Valley in Egypt by a hybrid of Biomphalaria glabrata and Biomphalaria alexandrina, snail vectors of Schistosoma mansoni. J Egypt Soc Parasitol. (1998) 28:569–82.
46. Yousif F, Haroun N, Ibrahim A, El-Bardicy S. Biomphalaria glabrata: a new threat for schistosomiasis transmission in Egypt. J Egypt Soc Parasitol. (1996) 26:191–205.
47. Caldeira RL, Vidigal TH, Simpson AJ, Carvalho OS. Genetic variability in Brazilian populations of Biomphalaria straminea complex detected by simple sequence repeat anchored polymerase chain reaction amplification. Mem Inst Oswaldo Cruz. (2001) 96:353–44. doi: 10.1590/S0070-02692001000400016
48. Barboza DM, Zhang C, Santos NC, Silva MMBL, Rollemberg CVV, de Amorim FJR, et al. Biomphalaria species distribution and its effect on human Schistosoma mansoni infection in an irrigated area used for rice cultivation in northeast Brazil. Geospat Health. (2012) 6:103–9. doi: 10.4081/gh.2012.128
49. Ferrari AD, Hofmann PR. First register of Biomphalaria straminea Dunker, 1848, in Santa Catarina state. Rev Inst Med Trop Sao Paulo. (1992) 34:33–5. doi: 10.1590/S0036-46651992000100006
50. Meier-Brook C. A snail intermediate host of Schistosoma mansoni introduced into Hong Kong. Bull World Health Organ. (1974) 51:661.
51. Yipp MW. Distribution of the schistosome vector snail, Biomphalaria straminea (Pulmonata: Planorbidae) in Hong Kong. J Moll Stud. (1990) 56:47–55. doi: 10.1093/mollus/56.1.47
52. Pan S, Chen P, Rong S, Liu J, Wang J, Chen Z, et al. Investigation on Biomphalaria straminea, an intermediate host of Schistosoma mansoni in Shenzhen City. South Chin J Prev Med. (1993) 7:70–6.
53. Gao S, Li X, Huang S, Xie X, Mei S, Ruan C, et al. Primary investigation of distribution and ecological environment of Biomphalaria straminea in Dasha and Guanlian Rivers in Shenzhen areas. Chin Trop Med. (2013) 13:333–7.
54. Yang Y, Huang SY, Pei FQ, Chen Y, Jiang QW, Deng ZH, Zhou YB. Spatial distribution and habitat suitability of Biomphalaria straminea, intermediate host of Schistosoma mansoni, in Guangdong, China. Infect Dis Poverty. (2018)7:109. doi: 10.1186/s40249-018-0492-6
55. Pointier J, Paraense WL, Corrêa LR. A potential vector of Schistosoma mansoni in Uruguay. Mem Inst Oswaldo Cruz. (1989) 84:281–8. doi: 10.1590/S0070-02691989000300001
56. Scarpino F. Lista sistemática de los Gastropoda dulciacuícola s vivientes de Dasha y Guanlian Rivers in Shenzhen areas. Mem Inst Oswaldo Cruz. (2007) 102:191–5. doi: 10.1590/S0074-02762007000500002
57. Fernández MV. Warning! Gastropoda of the Multiple-Use Reserve Martin Garcia Island, Rio de la Plata River: biodiversity and ecology. Rev Bras Biol. (2012) 72:121–30. doi: 10.1590/S1519-69842012000100014
58. Scholte RG, Carvalho OS, Malone JB, Utzinger J, Vounatsou P. Spatial distribution of Biomphalaria spp., the intermediate host snails of Schistosoma mansoni, in Brazil. Geospat Health. (2012) 6:595–101. doi: 10.4081/gh.2012.127
59. Paraense WL. Biomphalaria tenagophila guaibensis spp. n. from southern Brazil and Uruguay (Pulmonata: Planorbidae). I. Morphology. Mem Inst Oswaldo Cruz. (1984) 79:465–9. doi: 10.1590/S0070-02691984000000012
60. Borda CE, Rea MJ. Intermediate and definitive hosts of Schistosoma mansoni in Corrientes province, Argentina. Mem Inst Oswaldo Cruz. (2006) 101:233–4. doi: 10.1590/S0070-02692006009000035
61. Scholte RL, Rea MJ. Biomphalaria tenagophila potential vector of Schistosoma mansoni in the Parana River basin (Argentina and Paraguay). Mem Inst Oswaldo Cruz. (2007) 102:191–5. doi: 10.1590/S0070-02672007000500002
62. Fernández MV, Hamann MI. Biological of Kalipharynx sp. (Trematoda: Digenea) metacercariae in Biomphalaria (Gasteropoda: Planorbidae) from northeastern Argentina. Rev Biol Trop. (2013) 61:1647–56. doi: 10.15517/rbt.v61i4.12807
63. Rumi A, Gregoric DE, Nunez V, Darriagan GA. [Latin American malacology. Freshwater mollusks from Argentina]. Rev Biol Trop. (2008) 56:77–111.
64. Paraense WL, Planorbidae, lymnaeacidae and phycide of Peru (Mollusca: Basommatophora). Mem Inst Oswaldo Cruz. (2003) 98:767–71. doi: 10.1590/S0070-02672003000600010
65. Pointier JP, Defong RJ, Tchuen Tchuentke LA, Kristensen TK, Loker ES. A neotropical snail host of Schistosoma mansoni introduced into Africa and consequences for the schistosomiasis transmission Biomphalaria tenagophila in Kinshasa (Democratic Republic of Congo). Acta Trop. (2005) 93:191–9. doi: 10.1016/j.actatropica.2004.11.003
66. Alebie G, Erko B, Alemoro M, Petros B. Epidemiological study on Schistosoma mansoni infection in Sanja area, Amhara region, Ethiopia. Parasit Vector. (2017) 7:15. doi: 10.1186/s13755-017-0057-5
67. Erko B, Medhin G, Berhe N, Abebe F, Gebre-Michael T, Gunderson SG. Epidemiological studies on intestinal schistosomiasis in Wondo Genet, southern Ethiopia. Ethiop Med J. (2002) 40:29–39.
68. Mekonnen Z, Haileselassie H, Medhin G, Erko B, Berhe N. Schistosomiasis mansoni focus in Mekele City, northern Ethiopia. Ethiop Med J. (2012) 50:531–6.
69. Adenusi AA, Odabola AB. Laboratory assessment of mollusccidal activity of crude aqueous and ethanolic extracts of Dalbergia sasso plant parts against Biomphalaria pfeifferi. Travel Med Infect Dis. (2008) 6:219–27. doi: 10.1016/j.tmaid.2007.12.004
Habib et al. Invasion of Biomphalaria Species

81. Adewumi CO, Gebremedhin G, Becker W, Olurumunola FO, Dorfler G, Adewumi TA. Schistosomiasis and intestinal parasites in rural villages in southwest Nigeria: an indication for expanded programme on drug distribution and integrated control programme in Nigeria. *Trop Med Parasitol.* (1993) 44:177–80.

82. Ahmed AA, Ibrahim NA, Idris MA. Laboratory Studies on the Prevalence and Cercarial Rhythms of Trematodes from *Bulinus truncatus* and *Biomphalaria pfeifferi* Snails from Khartoum State, Sudan. *Sultan Qaboos Univ Med J.* (2006) 6:65–9.

83. Amin MA, Fenwick A, Osgerby JM, Warley AP, Wright AN. A large-scale snail control trial with trifenmorph in the Gezira irrigation scheme, Sudan. *World Health Organ.* (1976) 54:573–85.

84. Al-Shaikh AH, Dagal MA. The ecological differences between *Bulinus beccari*, the intermediate host of *Schistosoma haematobium* and *Biomphalaria pfeifferi* the intermediate host of *S. mansoni* in in Jazan Region, Saudi Arabia. *J Egypt Soc Parasitol.* (2011) 41:543–51.

85. Anmankwa JA, Bloch P, Meyer-Lassen J, Olsen A, Christensen NO. Urinary and intestinal schistosomiasis in the Tono Irrigation Scheme, Kassena/Nankana District, upper east region, Ghana. *Trop Med Parasitol.* (1994) 45:319–23.

86. Bagalwa M, Baluku B, Southgate VR, Theron A, Jourdane J, Ly A, Gryseels B. Malacologic-schistosomal study of the *Biomphalaria pfeifferi* Snails from Khartoum State, Sudan. *Parasitol.* (1998) 58:372–4.

87. Baluku B, Bagalwa M, Basabose K. [Malacologic-schistosomal study of the *Biomphalaria pfeifferi* Snails from Lwiro, Democratic Republic of Congo]. *Med Trop* (1998) 58:372–4.

88. Campbell G, Noble LR, Rollinson D, Southgate VR, Webster JP, Jones CS. Refugia of schistosomiasis in Cameroon: evolution of transmission in the mixed zone of Nkolmebang, Lekie. *Med Trop.* (2004) 64:351–4.

89. Chimbari MJ, Dhlomo E, Mwadiwa E, Mubila L. Transmission of schistosomiasis in Dogon country, Mali: identification and transmission of *B. pfeifferi* in Kassena/Nankana District, upper east region, Ghana. *Am J Trop Med Hyg.* (1993) 45:319–23.

90. Dennis E, Vorkpor P, Holzer B, Hanson A, Saladin R, Saladin K, et al. Studies on the epidemiology of schistosomiasis in Liberia: the prevalence and intensity of schistosomal infections in Bong County and the biometrics of the snail intermediate hosts. *Acta Trop.* (1983) 40:205–29.

91. De Clercq D, Rollinson D, Diarra A, Sacko M, Coulibaly G, Landoure A, et al. Schistosomiasis in the Niger River valley, Niger. *Ann Trop Med Parasitol.* (2003) 97:209–12. doi: 10.1179/000349803235001507

92. Dumont A, Wetterer A, Deru B, Haddad J, Meule B, Oliverio R, et al. *B. pfeifferi* larvae in the Sahel region of Senegal. *Bull Soc Pathol Exot* (2003) 97:193–8. doi: 10.1016/j.iumep.2003.08.003

93. Doumenge J-P, Mott KE, Cheung C. Atlas of the Global Distribution of Schistosomiasis Continued. Presses universitaires de Bordeaux (1987).

94. El-Samahy A, El-Sayed SM, El-Khoury Z, El-Shazly M, El-Koshy M, El-Mansour M. [The occurrence of some snails able to persistently produce cercariae for over a year]. *Arch Insect Biochem Physiol.* (2004) 57:287–9.

95. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

96. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *Sci. Rep.* (2016) 6:33009. doi: 10.1038/srep33009

97. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

98. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

99. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

100. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

101. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

102. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

103. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

104. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

105. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

106. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

107. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

108. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

109. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

110. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.

111. Fields AP, Krass, 1848) and schistosomiasis transmission in the Senegal River Basin. *J Parasitol.* (2014) 99:296–306.
Stensgaard A, Jorgensen A, Kabaterene NB, Malone JB, Kristensen TK. Modeling the distribution of *Schistosoma mansoni* and host snails in Uganda using satellite sensor data and geographical Information Systems. *Parasitologia*. (2005) 47:115–25.

Onori E. Preliminary Note on the Presence of *Biomphalaria Sudanica* (Martens) in Ghana and its susceptibility to a local strain of *S. mansoni*. *West Afr Med J*. (1965) 14:3–5.

Birrie H, Erko B, Tedla S. Intestinal helminthic infections in the southern Rift Valley of Ethiopia with special reference to schistosomiasis. *East Afr Med J.* (1994) 71:447–52.

Standley CJ, Goodacre SL, Wade CM, Stothard JR. The population genetic structure of Biomphalaria chaoanomphala in Lake Victoria, East Africa: implications for schistosomiasis transmission. *Parasit Vector*. (2014) 7:524. doi: 10.1186/s12971-014-0042-4

Adriko M, Standley CJ, Tinkitina B, Mwesiga G, Kristensen TK, Stothard JR, et al. Compatibility of Ugandan *Schistosoma mansoni* isolates with *Biomphalaria* snail species from Lake Albert and Lake Victoria. *Acta Trop.* (2013) 128:303–8. doi: 10.1016/j.actatropica.2013.02.014

Greer GJ, Mimpfoundi R, Malek EA, Joky A, Ngonseu E, Ratard RC. Human schistosomiasis in Cameroon. II. Distribution of the snail hosts. *Am J Trop Med Hyg*. (1990) 42:573–80. doi: 10.4269/ajtmh.1990.42.573

McCullough FS. Observations on Bilharziasis and the Potential Snail Hosts in the Republic of the Congo (Brazzaville). *Bull World Health Organ*. (1964) 30:375–88.

Frandsen F, Bennike T, Cridland C. Studies on *Schistosoma intercalatum* Fisher, 1934 and its intermediate snail host in the Kisangani area, Zaire. *Ann Soc Belg Midi Trop*. (1978) 58:21–31.

Caldeira RL, Vidigal TH, Matinella I, Simpson AJ, Carvalho OS. Identification of planorbidas from Venezuela by polymerase chain reaction amplification and restriction fragment length polymorphism of internal transcriber spacer of the RNA ribosomal gene. *Mem Inst Oswaldo Cruz*. (2000) 95:171–7. doi: 10.1590/S0074-029420000000200007

Gryseels B, Nkulikyinka L, Kabahizi E, Maregeya E. A new focus of *Schistosoma mansoni* in the highlands of Burundi. *Ann Soc Belg Midi Trop*. (1978) 67:247–57.

Brown D. A survey of the Mollusca of Lake Chad, Central Africa. Appendix A. Report on a collection of Planorbidae and Ancyldae. *Rez Zool Afr*. (1974) 88:331–43.

Pimentel D. Life history of *Australorbis glabratus*, the intermediate snail host of *Schistosoma mansoni* in Puerto Rico. *Ecology*. (1957) 38:576–80. doi: 10.2307/1943122

Ritchie LS, Berrios-Duran LA, Deweese R. Biological potentials of *Australorbis glabratus*: growth and maturation. *Am J Trop Med Hyg*. (1963) 12:264–8. doi: 10.4269/ajtmh.1963.12.264

Barbosa FS, Barbosa CS. The bioecology of snail vectors for *Schistosoma mansoni* in the Republic of the Congo (Brazzaville). *Bull World Health Organ*. (1998) 47:264–8. doi: 10.1080/00034983.1966.11686407

Becker JM, Ganatra AA, Kandie F, Mühlbauer L, Ahlheim J, Brack W, et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. *Nat Commun*. (2018) 9:837. doi: 10.1038/s41467-018-03189-w
