The ever-growing complexity of the mitochondrial fission machinery

Alessandro Pagliuso1,2,3 · Pascale Cossart1,2,3 · Fabrizia Stavru1,2,3,4

Abstract The mitochondrial network constantly changes and remodels its shape to face the cellular energy demand. In human cells, mitochondrial fusion is regulated by the large, evolutionarily conserved GTPases Mfn1 and Mfn2, which are embedded in the mitochondrial outer membrane, and by OPA1, embedded in the mitochondrial inner membrane. In contrast, the soluble dynamin-related GTPase Drp1 is recruited from the cytosol to mitochondria and is key to mitochondrial fission. A number of new players have been recently involved in Drp1-dependent mitochondrial fission, ranging from large cellular structures such as the ER and the cytoskeleton to the surprising involvement of the endocytic dynamin 2 in the terminal abscission step. Here we review the recent findings that have expanded the mechanistic model for the mitochondrial fission process in human cells and highlight open questions.

Keywords Mitochondrial dynamics · Drp1 · Cytoskeleton · Actin · Septin · Dynamin · ER · Nucleoid · mtDNA · Dyn2 · Mitochondrial fusion

Introduction

Discovered by Richard Altmann in the 1840s, mitochondria are thought to derive from the invasion of a pre-eukaryotic cell by an alphaproteobacterium of the Rickettsiales order. The monophyletic origin of mitochondria suggests that this invasion was a unique event and their advent was critical for eukaryotic evolution. This is reflected by the multitude of vital functions mitochondria are responsible for, such as energy production, the biogenesis of essential cellular components, apoptosis, or innate immune signaling. In line with this, mitochondrial dysfunction correlates with a wide variety of pathologies, in particular neurodegenerative disease and cardiac dysfunction [1].

Mitochondria are dynamic organelles

Mitochondria are particularly complex organelles, enveloped by two membranes: the outer mitochondrial membrane (OMM) and the inner mitochondrial membrane (IMM), which enclose two compartments, the intermembrane space and the matrix. The matrix harbours the mitochondrial DNA (mtDNA), a highly reduced version of the alphaproteobacterial mitochondrial ancestor’s genome. In mammalian cells, mitochondria are not isolated, bacteria-like organelles, but rather form a dynamic network. Mitochondrial dynamics and the resulting overall morphology of the network are determined by fusion and fission events and by mitochondrial movement, both of which are highly dependent on the cell type and on the functional state of mitochondria.

Mitochondria move along cytoskeletal tracks but the extent of their motility is very variable and both species and cell type dependent [2]. For example, mitochondria appear almost immotile in muscle cells, but motility is crucial for mitochondria distribution in highly polarized...
cells, such as neurons, where mitochondrial activity is required at the synapse. In this context the kinesin KIF5, along with dyneins and the mitochondrial adaptors Miro and Milton, mediate mitochondria movement along microtubules in higher eukaryotic cells [3], while mitochondria movement mainly relies on actin microfilaments in budding yeast [4].

Mitochondrial fusion and fission often occur simultaneously and in a balanced manner within a cell, and an increase in either activity leads to hyperfused or fragmented mitochondria (Fig. 1). The complex membrane system of mitochondria is a challenge for fusion and fission and requires specialized molecular machineries on the OMM or IMM. It is interesting to note that the key proteins known to date

Fig. 1 Mitochondrial fusion and fission. a Mitochondria tethering via homotypic (Mfn1–Mfn1 and Mfn2–Mfn2) and heterotypic (Mfn1–Mfn2) mitofusin interactions promotes OMM fusion, while inner membrane fusion is promoted by OPA1. b Schematic representation of mitochondrial fission. Enlargements of OMM and IMM fusion events that occur during mitochondrial fusion and fission. c Immunofluorescence showing changes in mitochondrial morphology (red) and Drp1 localization (green) in response to different perturbations. Adapted from [182, 190, 202]
to mediate mitochondrial fusion and fission are all nuclear-encoded, large GTPases, pointing to a common evolutionary origin (Fig. 2a). This may not be surprising, as despite differences in the membrane topology, both mitochondrial fission and fusion require the merging of membranes (Fig. 1a, b, inset), which is achieved through membrane remodeling proteins. Different model organisms including yeast, *Drosophila* and *C. elegans* have greatly contributed to our understanding of the molecular mechanisms that underlie mitochondrial fusion and fission. In this review, we will focus on mammalian cells, summarizing mitochondrial fusion and highlighting several recent discoveries that significantly expanded our knowledge on mitochondrial fission.

Molecular basis and physiological roles of mitochondrial fusion

During mitochondrial fusion, the outer and inner membranes of two mitochondria fuse in a regulated manner. This permits content exchange and enables cross-complementation of mitochondrial DNA molecules, preventing the accumulation of mutant DNA in a specific mitochondrion [5, 6]. Although content exchange allows the mitochondrial network to adapt to the metabolic demand in a concerted manner (reviewed in [7]), it does not always lead to a completely homogeneous mitochondrial population within a single cell, and the mitochondrial membrane potential can vary among modified amino acids have been indicated, except for ubiquitination and O-GlcNAcylation (grey), for which sites have not yet been identified. A few commonly used mutants are shown in black: K38A (dominant-negative), G350D (impaired in higher order oligomerization), A395D (natural mutation, impaired in tetramerization and higher order oligomerization). c Drp1 is recruited to the OMM via multiple transmembrane receptors. Mid51 and Mff are able to oligomerize and to interact with each other in the same fission foci. The SAMM50 protein has been shown to interact with the MITOS complex in the IMM.

![Fig. 2 Domain structure of Drp1, its modifications and receptors.](image-url)

- **a** The family of mitochondrial dynamics proteins and their bacterial ancestor, the bacterial dynamin-like protein BDLP. Abbreviations: paddle domain (PAD) and pleckstrin homology domain (PH), both responsible for lipid binding; proline-rich domain (PRD), tetratricopeptide (TPR) and coiled–coiled (CC) domains are involved in protein–protein interactions; GTPase effector domain (GED); insert B domain (Ins B); transmembrane domain (TM).
- **b** full-length human Drp1 (isoform 1, 736 aa). Numbers indicate the start of a new domain. Posttranslational modifications are colour-coded, and the
Mitochondrial fusion appears particularly important during stress and starvation conditions, where it is thought to maximize the efficiency of mitochondrial metabolism through the sharing of metabolites in the matrix (reviewed in [9]). Interestingly, although bacteria are not known to fuse, filamentous bacteria do exist (e.g. syncytial Streptomyces or septated filamentous cyanobacteria). Such filament formation can be induced by mutation in cell division proteins, or upon stress or nutritional changes, conditions potentially also encountered by the alphaproteobacterial mitochondrial ancestor.

In present-day mitochondria, mitochondrial fusion is an active process that is mediated by Mitofusin 1 and Mitofusin 2 in human cells (Mfn1 and Mfn2, Fzo1 in yeast [10, 11]). These partially redundant large GTPases are embedded in the OMM, where they promote mitochondrial fusion (Fig. 1a). Mitofusins form hetero-oligomers, promote mitochondrial tethering similar to SNARE proteins and mediate GTP-dependent fusion [12]. Recently, it has been reported that mitofusins fold both in fusion-compotent and fusion-incompetent conformations to regulate mitochondrial tethering [13]. An additional mechanism has been recently described for mitochondrial network formation, which would involve mitochondrial tubulation by kinesin KIF5B in concert with mitofusin-mediated fusion [14]. Recently, part of the Mfn1 structure has been solved and found to resemble that of bacterial dynamin-like proteins, uncovering an interesting evolutionary relationship [15, 16]. While Mfn1 has a higher GTPase activity and is ubiquitously expressed [17], Mfn2 displays tissue-specific expression [18] and has been linked to the type 2a subset of Charcot–Marie–Tooth disease, a group of hereditary peripheral neuropathies that can be caused by defects in several of the proteins regulating mitochondrial dynamics [19]. Interestingly, both mitofusins are essential for embryonic development in mice, where they play an important role in the maintenance of mitochondrial DNA (mtDNA) and oxidative phosphorylation [20, 21] and may also have additional protein-specific functions [22]. In addition, Mfn2 plays a role in ER–mitochondria tethering [23]. ER–mitochondria contact sites are crucial for interorganellar communication, including calcium signaling integration and lipid biogenesis [24, 25], and are emerging as an important player in mitochondrial fission (detailed below).

Although to a large extent coordinate, fusion of the OMM and IMM can occur sequentially, as suggested by the isolation of fusion intermediates in vitro and in vivo [26, 27]. This points to the presence of an IMM fusion machinery. A key molecule for IMM fusion is Optic Atrophy 1 (OPA1, Mgm1 in yeast), a three-membrane-pass protein that faces the intermembrane space (Fig. 1a) and is mutated in autosomal dominant optic atrophy [28, 29]. In contrast to Mitofusins, OPA1 does not need to be present on opposing membranes to mediate fusion [30]. In addition, OPA1 participates in the shaping of cristae, IMM invaginations whose remodeling plays an important role in the release of the proapoptotic mitochondrial inner membrane-associated protein cytochrome c during apoptosis [31]. OPA1 is highly regulated, both through differential splicing [32], and through proteolytic processing, which leads to long IMM-anchored OPA1 and short, soluble OPA1. The AAA-protease YME1L and the inner membrane metalloprotease OMA1 are involved in OPA1 processing [33]. Although both long and short OPA1 forms are found in OPA1 supercomplexes, long OPA1 appears to be required for fusion, while short OPA1 may play a role in IMM fission [34]. In mammals, a drop in the mitochondrial membrane potential and other stress factors block fusion and stimulate OPA1 processing by OMA1 [33]. OMA1 activation may, therefore, represent a key point of regulation, as its activation under stress conditions can result in complete conversion of long OPA1 to short OPA1, definitively preventing mitochondrial fusion until new OPA1 is synthesized. Although OPA1 regulation and function have been characterized in detail, further research is needed to uncover mechanistic details of the inner membrane fusion and fission processes, which may involve additional players.

Mitochondrial fission: division for survival?

Mitochondrial fission divides the organelle into two often not equally sized daughter mitochondria (Fig. 1b). The best-characterized mitochondrial division machinery relies on dynamin-related protein 1 (Drp1/DNML1/DLVP/Dymple, Dnm1 in yeast), which is regulated at multiple levels. Knockout studies in mice showed that deletion of Drp1 is embryonically lethal, indicating that mitochondrial fission is an essential process [35, 36]. Tissue-specific knockout approaches and in vitro studies demonstrated that mitochondrial fission deficiencies result in respiratory defects [37]. At the cellular level, mitochondrial fission is important for organelle distribution during mitosis [38] and for proper distribution of mitochondria to neuronal synapses, where localized energy production supports synaptic functions [36, 39]. Interestingly, organellar and cellular quality control mechanisms have been linked to mitochondrial dynamics. At the organellar level, mitochondrial fission has been implicated in mitophagy, the autophagic process by which defective mitochondria are selectively degraded [40, 41]. Such defective mitochondria are characterized by a loss in the inner membrane potential, and are thereby recognized by the Pink1/Parkin system. Parkin then mediates ubiquitination of several OMM-associated proteins, which are then recognized by different ubiquitin-binding mitophagy receptors, targeting the whole mitochondrion for autophagic degradation (for recent reviews see [42, 43]). Limiting mitochondrial size through fission seems to be a prerequisite for mitochondrial engulfment into autophagosomes [40, 44]. The
extent to which Drp1 is an active player in mitophagy or not is, however, still debated [40, 43, 45–49].

In addition to mitophagy, mitochondrial fission has been shown to occur during apoptosis and to promote the release of the proapoptotic protein cytochrome c from the intermembrane space [50]. However, later studies indicated that apoptosis can proceed in Drp1-depleted cells [35, 36, 51, 52] and that fission does not necessarily correlate with apoptosis. In the following, we will summarize recent findings in mitochondrial fission, with a particular focus on the role of the cytoskeleton during the fission process.

New insights into Drp1-dependent mitochondrial fission

The dynamin-related protein Drp1

Dynamins are evolutionarily conserved, versatile molecules that are regulated by oligomerization and conformational changes to mediate membrane remodeling. A key protein in mitochondrial fission is Dynamin-related protein 1, which is conserved in opisthokonts (animals and fungi) and plants [53, 54]. Drp1 was first identified by several laboratories through the homology of its GTPase domain with that of endocytic dynamins [55–60]. Similar to endocytic dynamins, Drp1 multimerizes to form spirals on the mitochondrial outer membrane and hydrolyzes GTP, which cause a conformational change, enabling spiral compaction and resulting in mitochondrial constriction [61, 62]. Alternative splicing can produce up to eight different Drp1 isoforms, with cell type-specific expression patterns [59, 63, 64]. The best-characterized is isoform 3, which lacks 31 amino acids in the insert b domain [59, 63–66]. Drp1 has an apparent molecular weight of ~80kD and is composed of four domains (Fig. 2b): a GTPase domain (containing an insert A in the neuronal isoform), a middle domain, a variable domain (also called insert B), and a GTPase effector domain (GED), whose C-terminal coiled coil mediates multimerization [67]. The mechanochemical core of the protein comprises the GTPase, middle and GED domains and is sufficient to cause liposome constriction [60]. In contrast to dynamin, Drp1 lacks the pleckstrin homology domain that mediates binding to phosphoinositide-containing membranes, such as the inner leaflet of the plasma membrane (Fig. 2a). This may account for the fact that Drp1 does not localize to clathrin-coated pits [59] and its depletion/mutation does not affect the secretory pathway [68]. However, Drp1 was recently shown to play a role in endocytic vesicle formation in hippocampal neurons, suggesting that recruitment of Drp1 to different cellular structures may be regulated through cell type-specific mechanisms [69].

Role of lipids in mitochondrial fission

For a long time thought to be only structural components of cellular membranes, lipids are now well recognized as active players in membrane remodeling. In addition to serving as recruiting or activating factors for proteins, lipids can affect membrane dynamics by lowering the energy barrier for fusion and fission, two energetically unfavorable processes. Here we briefly summarize the role of phospholipids in Drp1-mediated mitochondrial fission (see [70] for a comprehensive review on mitochondrial lipids).

The signature of mitochondrial membranes is the presence of cardiolipin (CL). CL is an atypical conical lipid and indirect evidence has implicated conical lipids in the generation of membrane curvature, which is required for both membrane fusion and fission [71]. CL is found primarily in the IMM, where it constitutes almost 20% of the total lipid content [72], but is also present in the OMM, in particular at IMM/OMM contact sites [73, 74]. Recent studies have shown that CL binds Drp1 at four lysines located in the variable domain [75]. Additionally, CL appears to recruit Drp1 to the OMM and stimulates the GTPase activity [76, 77]. This stimulation occurs only at concentrations matching those of IMM/OMM contact sites, suggesting that these specialized domains can serve as a platform for Drp1 recruitment and activation. Conversely, a recent report showed that Drp1 regulates CL clustering in liposomes, inducing a CL phase transition, which in turn triggers membrane constriction and fission [78]. An interesting recent report added a new layer of complexity to this picture, showing that mitochondrial phosphatidic acid (PA) can bind Drp1 and inhibit its GTPase activity [79]. PA is formed on the OMM by the action of mitochondrial phospholipase D (mitoPLD), a membrane-tethered enzyme, which utilizes CL as a substrate. The ability of Drp1 to interact with mitoPLD suggests that recruitment of the latter could be a way to balance Drp1 activation.

Drp1-dependent mitochondrial fission as a multistep process

Surprisingly, Drp1, the key player of mitochondrial fission not only targets mitochondria, but also the ER [59, 80, 81] and peroxisomes [82]. This raises the question as to how differential targeting of Drp1 is achieved. Several studies showed that mitochondrial fission is a multistep process, in which specific targeting of Drp1 to the OMM relies on its numerous posttranslational modifications and on its transmembrane receptors in the OMM.
Drp1 regulation by posttranslational modifications

Phosphorylation

Since mitochondria cannot be generated de novo, they have to be segregated into daughter cells during mitosis, which is achieved through extensive mitochondrial fission prior to mitosis. Mitochondrial network fragmentation coincides with phosphorylation of human Drp1 at S616 by Cdk1/cyclin B kinase, but the functional impact of this modification on Drp1 is currently unknown, as its GTPase activity does not seem affected in vitro. Interestingly, as cells exit mitosis, the mitochondrial network is restored via APC/C (anaphase-promoting complex/cyclosome)-mediated degradation of Drp1 [83]. Mitochondrial network fragmentation has been also observed upon phosphorylation of Drp1 S616 by Erk2 in cancer cells, where it appeared to play a role in tumor proliferation [84, 85]. Recently, Drp1 S616 has been found to be phosphorylated also by Cdk5 kinase in neurons, but its effect on Drp1 activity and mitochondrial network morphology is controversial [86, 87].

Drp1 S637 is phosphorylated by cyclic AMP-dependent protein kinase A (PKA) and this modification was found to inhibit the GTPase activity, most likely by preventing intra-molecular interactions between the GED and GTPase domain [88, 89]. This phosphorylation implicated Drp1 as a survival-promoting substrate of PKA, in particular during starvation, where elongation of the mitochondrial network and increased ATP production sustain metabolic needs [90]. Calcineurin was identified as the phosphatase responsible for S637 dephosphorylation [89] and was then shown to mediate calcium-induced, Drp1-dependent mitochondrial fission [91]. Calcineurin-mediated Drp1 dephosphorylation appeared to have a marginal effect on Drp1 oligomerization or its GTPase activity, while strongly regulating the recruitment of Drp1 to the OMM [91, 92]. Both phosphorylation sites are shown in Fig. 2b.

Ubiquitination

Ubiquitin is a 76-amino acid polypeptide, which is covalently attached to lysine residues of target proteins via an enzymatic reaction. Ubiquitin can either regulate protein stability by targeting modified substrates to proteasomal degradation or change their biological function by modulating functional interactions. Drp1 has been shown to be ubiquitinated by the ubiquitin ligase Parkin [93]. This modification targets Drp1 for proteasomal degradation and, therefore, Parkin depletion increased Drp1 levels and mitochondrial fragmentation. The OMM-anchored ubiquitin ligase MARCH5 (also known as MITOL) also plays a role in mitochondrial dynamics; however, it is not clear from the published reports whether MARCH5 specifically regulates fusion or fission [94–96]. Several proteins involved in mitochondrial dynamics are reported substrates of MARCH5, including Drp1, Mfn1, Mfn2 and Mid49 [97–100], possibly explaining the heterogeneity of published results concerning MARCH5 function. A recent report added another layer of complexity by showing that Drp1 is not only a substrate, but also a regulator of MARCH5 activity, along with Mif (Mitochondrial fission factor, a Drp1 receptor on the OMM, see below) [101]. New studies will shed light on the role of MARCH5 activity towards its several identified substrates.

Sumoylation

Small ubiquitin-like modifier (SUMO) is a ubiquitin-related protein, which can be covalently linked to a target protein. SUMOylation regulates protein conformation (and hence activity), localization and interaction with cellular partners [102]. The SUMO-conjugating enzyme Ubc9 and SUMO itself were identified as Drp1 interacting partners by yeast two-hybrid analysis and SUMO partially co-localized with Drp1 at fission sites [103, 104]. Later work identified MAPL (mitochondrial-anchored protein ligase) as the mitochondrial-anchored E3 SUMO ligase able to directly SUMOylate Drp1 in the variable domain [105, 106], Fig. 2b. Interestingly, four lysines are differentially spliced into three of the Drp1 isoforms, raising the possibility that SUMOylation might also account for functional differences among Drp1 isoforms [106]: SUMOylation led to increased Drp1 stabilization on the OMM and increased mitochondrial fission [104]. Drp1 SUMOylation is reversed by the SUMO protease SENP5 [107], in particular during mitosis, where Drp1 deSUMOylation correlated with increased binding and release of Drp1 to/from the OMM, thereby stimulating fission [108]. Phosphorylation and deSUMOylation thus appear to converge in activating Drp1 during mitosis.

S-nitrosylation

Nitric oxide (NO) is not only a neurotransmitter of the central nervous system: in addition to its signaling role, NO can be covalently linked to thiol groups of target proteins, such as cysteine residues, in a process called S-nitrosylation. S-nitrosylation can affect protein function, stability or subcellular location [109]. Drp1 was found to be S-nitrosylated on C644 (Fig. 2b) upon NO overproduction due to pathological conditions, such as accumulation of β-amyloid aggregates, key mediators of Alzheimer disease [110, 111]. This correlated with rapid Drp1-dependent mitochondrial fragmentation, followed by energy production failure and cell death [110]. However, these findings were subsequently questioned by Bossy et al. [112], who failed to detect a change in Drp1 oligomerization and GTPase activity upon S-nitrosylation. Additionally, OPA1 was also found to be
S-nitrosylated. Therefore, at present S-nitrosylation of Drp1 may not be uniquely responsible for NO-induced mitochondrial fission.

O-GlcNAcylation

O-GlcNAcylation refers to the reversible but covalent attachment of N-acetyl-glucosamine to serine or threonine residues of a target protein. O-GlcNAcylation of Drp1 was shown to increase Drp1 GTP-binding activity, Drp1 translocation to the OMM and mitochondrial fission in cardiomyocytes [113]. O-GlcNAcylation of Drp1 was accompanied by decreased levels of Ser637 phosphorylation; further investigations are thus required to discriminate whether the effects observed upon O-GlcNAcylation are mediated by decreased Ser637 phosphorylation or whether O-GlcNAcylation directly affects Drp1 function. Recently, decreased O-GlcNAcylation levels were shown to result in an increase in Drp1-dependent mitochondrial fission, along with a decrease in the mitochondrial membrane potential and mitochondrial content [114]. An interesting aspect is that O-GlcNAcylation directly links mitochondrial morphology with the metabolic state of the cell, as the latter regulates cellular levels of the O-GlcNAc donor UDP-GlcNAc [115].

Drp1 recruitment through receptors on the OMM: Mff, MiD49/51, and Fis1

Although being the master regulator of mitochondrial fission, more than 95% of Drp1 is cytosolic [68]. Hence, Drp1 recruitment to mitochondria is an early and key step in mitochondrial division, which is stimulated by the presence of four single-pass transmembrane Drp1 receptors that are anchored to the OMM: mitochondrial fission factor (Mff), the mitochondrial dynamics proteins 49 and 51 (MiD49 and MiD51) and Fis1.

Fis1

Fis1 was the first identified receptor for Drp1 [116, 117]. In yeast, Fis1 appeared to regulate mitochondrial morphology by recruiting the yeast Drp1 homologue Dnm1 to the OMM in concert with the partially redundant adaptor proteins Mdv1 and Caf4 [118, 119]. However, no Mdv1 and Caf4 homologs have been found in mammals, suggesting that the machineries for mitochondrial fission have diverged during evolution. In agreement with this hypothesis, to date there is mixed evidence about the role of Fis1 in mammals. Some reports have involved Fis1 in Drp1-dependent mitochondrial fission [120–122], and shown it binds Drp1 [120, 123]. These data were not reproduced in other studies [121, 124, 125]; furthermore, Fis1 knockout cells displayed very mild fission defects, raising questions about the precise role of Fis1 in Drp1 recruitment and mitochondrial fission [92, 123].

Fis1 was recently proposed to play a specific role in stress-induced mitochondrial fission [126, 127]. Indeed, induction of mitophagy caused Fis1 to form a complex with several ER proteins and Mff-recruited Drp1. Fis1 overexpression has in turn been shown to trigger mitophagy [40, 90, 128]. Fis1 deletion induces accumulation of the autophagy marker LC3 at mitochondria during stress-induced, Parkin-mediated mitophagy [127, 129] and Fis1 knockout cells show severely impaired mitophagy [128]. Thus, the role of Fis1 in mitochondrial dynamics may be restricted to specific physiological conditions such as apoptosis and mitophagy.

Mff

Mff is a 30-kDa C-tail-anchored membrane protein, which is considered a prime Drp1 receptor at both mitochondria and peroxisomes, as for both organelles its overexpression stimulates fission and Drp1 recruitment, while its ablation induces elongation [123, 130]. Unlike Fis1, Mff accumulates in discrete foci, where it recruits dimeric or higher order complexes of Drp1 [131]. Interestingly, the formation of Mff clusters is lost in Drp1 knockout cells, suggesting that Drp1 binding in turn influences Mff oligomerization [132]. Mff might promote Drp1 recruitment to facilitate severing of mitochondria specifically at ER-mitochondria contact sites, as suggested by imaging experiments and by mutagenesis data on Drp1 [133, 134]. The regulation of Drp1 by Mff is complicated by the presence of several Mff isoforms [130], which were recently shown to have a differential effect on the Drp1 isoforms [77]. Additionally, Mff also appears to increase the Drp1 GTPase activity and may thereby promote Drp1 spiral compaction and consequently the severing of mitochondria [131, 135]. Interestingly, Mff appears to be restricted to metazoans, highlighting that the overall conserved mitochondrial fission machinery can accommodate additional proteins, likely providing new ways to regulate fission.

MiD49/MiD51

Evolutionarily, mitochondrial division (MiD) proteins appeared after Mff, since they are only present in chordates, possibly reflecting a higher specialization in the mitochondrial division machinery. MiDs were unambiguously identified as Drp1 receptors through immunoprecipitation and yeast two-hybrid assays [124]. As in the case of Mff [123], the interaction between Drp1 and MiDs also appears to be transient, requiring chemical crosslinking for its detection [124]. MiDs bear an N-terminal transmembrane domain that anchors them to the OMM, and are not present on peroxisomes. The structures of the MiD49- and MiD51-soluble
domains have been recently solved, revealing a similar nucleotidyltransferase domain [136–138]. Despite this similarity, MiD49 and MiD51 differ in their nucleotide-binding capacity, as MiD49 lacks the critical residues required for nucleotide binding. Interestingly, a MiD51 mutant deficient in nucleotide binding was still capable to recruit Drp1 to mitochondria, but appeared unable to promote mitochondrial fission [139].

Cooperation or specialization?

Why does Drp1 need several receptors to localize to mitochondria? Although the receptors may play independent and partially redundant functions in Drp1 recruitment [92, 125, 132], recent work showed that Mff and MiDs colocalize with the ER at mitochondrial fission sites, suggesting functional cooperation of the receptors [139]. Given that Mff preferentially interacts with dimeric Drp1 and stimulates Drp1 GTPase activity [65, 131], while MiD51 inhibits it [125, 140], a plausible speculation might be that Mff first recruits dimeric Drp1 at mitochondria and MiDs would then promote Drp1 self-assembly, while inhibiting its GTPase activity. Finally, Mff would stimulate the GTPase activity of the assembled Drp1 oligomer to promote fission. The canonical Drp1 receptors Mff and MiD49/51 may thus cooperate under specific conditions or in specific cell types. The picture has been recently further complicated by additional OMM proteins shown to also promote Drp1 recruitment, such as SAMM50, a component of the SAM complex, which inserts beta barrels in the OMM [141]. SAMM50 has been shown to interact with Drp1 and induce Drp1-dependent mitochondrial fission through an unknown mechanism [142]. Interestingly, SAMM50 could coordinate outer and inner membrane fission, as it also interacts with VDAC, a component of OMM/IMM contact sites and with the MINOS/MITOS complex in the IMM.

Determining the site of fission along a mitochondrion

Initial constriction occurs at ER–mitochondrial contact sites

ER–mitochondria contact sites were described already in the 1960s [143] and are visible by EM, but the molecular nature of the proteinaceous tether between the two organelles is still largely obscure. In mammalian cells, Mfn2 is thought to tether the ER and mitochondria [23, 144] and ER–mitochondrial contacts were also found to contain a complex of the IP3 receptor, the chaperone Grp75 and the voltage-gated anion channel VDAC [145]. Additional proteins found at contact sites include Rab32 [146], mammalian target of rapamycin complex 2 (mTORC2, [147], PACS2 [148]), and the recently identified Syntaxin 17, an evolutionarily conserved SNARE protein, a possibly ancestral tethering molecule [149]. ER–mitochondria contact sites can span up to 20% of the mitochondrial surface [150] and were mainly thought to serve as a platform for lipid exchange and Ca\(^{2+}\) signaling [24, 25]. In a spearheading work, Friedman and colleagues showed that ER–mitochondria contact sites also play a role in mitochondrial division: 88% of the mitochondrial fission events were found to be marked by ER tubules, which wrapped around mitochondria, and appeared to promote fission by constricting mitochondria in a process termed ER-associated mitochondrial division (ERMD) [133]. Intriguingly, the ER seems to play an analogous role in the fission of endosomes [151]. ER-marked mitochondrial constrictions show a diameter comparable to that of Drp1 helices and may, therefore, physically facilitate Drp1 recruitment or be actively sensed by Drp1. The ability of dynamin and dynamin-like proteins to detect membrane deformations [152], polymerize, and induce local membrane rearrangements seems to be ancestral, as a bacterial dynamin-like protein has recently been shown to accumulate in foci of antibiotic or phage-induced membrane deformations to protect membrane integrity [153]. The ER could also induce mitochondrial fission by promoting lipid insertion at contact sites or by clustering Mff and MiD49/51 [133, 139], which is expected to promote Drp1 recruitment. In addition, proteins present at ER-induced preconstrictions may support local Drp1 activation, as shown for MiD51 [154] and Syntaxin 17, which has been recently shown to specifically bind GTP-loaded Drp1 [149].

ER-associated mitochondrial division preferentially occurs next to the nucleoid

Mitochondria are the only organelles of animal cells that harbour their own circular genome (mtDNA), which associates with proteins that pack it into a nucleoid. As for the nuclear genome, the distribution of mtDNA molecules to daughter mitochondria is a crucial event. Early studies noticed that nucleoids are often localize at the tips of mitochondria [155, 156] or next to Drp1-marked constrictions [157], suggesting a link to mitochondrial fission. Ban-Ishihara then found that mitochondrial fission occurs in the vicinity of a nucleoid in 70% of all cases, and nucleoids cluster in Drp1-deficient cells [158]. This confirmed previous work showing that mitochondrial fission prevents nucleoid clustering and mtDNA loss in cellulo, later also shown in vivo [159, 160]. Interestingly, the nucleoid position correlated with ER–mitochondria contact sites in 85% of cases, raising the unsolved question as to how the nucleoid position is sensed by the ER across the two mitochondrial membranes and vice versa. Not only do nucleoids seem to communicate their position to the ER across the IMM and OMM, but recent data showed that the number of ERMD events increases up to threefold.
in presence of replicating nucleoids [161], highlighting the importance of the functional state of the nucleoid. mtDNA replication was found to occur upstream of Drp1 recruitment and mitochondrial division, and blocking nucleoid replication had been previously shown to cause Drp1 and Mff redistribution [158]. Whether ERMD at replicating nucleoids equally distributes the newly synthesized mtDNA into daughter mitochondria appears controversial [158, 161].

The role of the cytoskeleton in Drp1-dependent fission

Actin and actin-binding proteins

The first hint that actin may be involved in mitochondrial dynamics came from an early study in which actin depolymerization by cytochalasin D was shown to slow down mitochondrial fusion in mammalian cells [162]. In a pioneering work, De Vos and colleagues subsequently showed that actin depolymerization by cytochalasin D or latrunculin A impairs CCCP-induced mitochondrial fission by preventing Drp1 recruitment to mitochondria [(163), see Table 1 for an overview of drugs commonly used to manipulate mitochondrial dynamics). Stabilization of actin filaments through Wiskott–Aldrich Syndrome protein (WASP) overexpression was shown to increase mitochondrial length in Drosophila neurons, impairing Drp1 recruitment and eventually leading to neurodegeneration [164]. In search for factors mediating the actin-dependent localization of Drp1 to mitochondria, Myosin II was identified as a crucial player, a finding that the authors confirmed in mammalian cells.

The mechanism by which actin polymerization at mitochondria would regulate Drp1 recruitment has been recently investigated in more detail. Ji et al. showed that actin polymerization by cytochalasin D or latrunculin A impairs CCCP-induced mitochondrial fission by preventing Drp1 recruitment to mitochondria [(163), see Table 1 for an overview of drugs commonly used to manipulate mitochondrial dynamics). Stabilization of actin filaments through Wiskott–Aldrich Syndrome protein (WASP) overexpression was shown to increase mitochondrial length in Drosophila neurons, impairing Drp1 recruitment and eventually leading to neurodegeneration [164]. In search for factors mediating the actin-dependent localization of Drp1 to mitochondria, Myosin II was identified as a crucial player, a finding that the authors confirmed in mammalian cells.

The mechanism by which actin polymerization at mitochondria would regulate Drp1 recruitment has been recently investigated in more detail. Ji et al. showed that actin polymerization by cytochalasin D or latrunculin A impairs CCCP-induced mitochondrial fission by preventing Drp1 recruitment to mitochondria [(163), see Table 1 for an overview of drugs commonly used to manipulate mitochondrial dynamics). Stabilization of actin filaments through Wiskott–Aldrich Syndrome protein (WASP) overexpression was shown to increase mitochondrial length in Drosophila neurons, impairing Drp1 recruitment and eventually leading to neurodegeneration [164]. In search for factors mediating the actin-dependent localization of Drp1 to mitochondria, Myosin II was identified as a crucial player, a finding that the authors confirmed in mammalian cells.

Table 1 Most commonly used treatments to manipulate mitochondrial morphology

Treatment	Effect on mitochondrial morphology	Mechanism of action	References
CCCP	Fragmentation	Protonophore	[163]
FCCP	Fragmentation	Protonophore	[91]
Oligomycin	Fragmentation	Mitochondrial complex V inhibitor	[163]
Ionomycin	Fragmentation	Mitochondrial Ca²⁺ ionophore	[135]
BAPTA-AM	Fragmentation	Ca²⁺ chelator	[133]
High extracellular K⁺	Fragmentation	Mitochondrial Ca²⁺ influx	[211]
KN93	Fragmentation	CamKII inhibitor	[211]
UO126	Fragmentation	MAPK–ERK inhibitor	[211]
Arachidonic acid	Fragmentation	Permeability transition pore inducer	[91]
mdivi-1	Hyperfusion	Inhibition of yeast Dnm1	[212, 213]
Latrunculin B	Hyperfusion	Actin depolymerization	[166]
Cycloheximide	Hyperfusion	Translation inhibitor	[214]
at ER-mitochondria contact sites despite displaying an even ER membrane staining [169]. In addition, pull-down assays revealed a direct interaction between the soluble domains of Spire1C and INF2. Importantly, inhibition of the Spire1C–INF2 interaction decreases ER–mitochondria overlaps and mitochondrial fission [170]. Spire1C overexpression induces actin polymerization on mitochondria and a significant increase in fission, while its downregulation had the opposite effect, inducing mitochondrial elongation. Further work is needed to uncover the signals that regulate the interaction between Spire1C and INF2.

How does INF2-induced actin polymerization provide the force required for mitochondrial (pre)constriction? Higgs and collaborators recently identified Myosin II as a downstream effector in INF2-dependent mitochondrial division [172]. Myosin II was found at mitochondrial fission sites in an actin- and INF2-dependent manner and its depletion or chemical inhibition decreased mitochondrial fission rates and mitochondria-associated Drp1 levels [135, 172]. These findings support a model in which the INF2-mediated polymerization of antiparallel actin bundles at the ER-mitochondria contact sites leads to recruitment of Myosin II, whose activation by an as yet unidentified signal would promote actin filament pulling, resulting in mitochondrial constriction (Fig. 3a). This process has been termed mitokinesis, in analogy to cytokinesis and to the term mitochondriokinesis introduced by Kuroiwa [173]. Of note, Myosin II has already been described to regulate membrane fission in other cellular pathways such as cytokinesis [174], phagocytosis [175] and trans-Golgi fission [176].

Recent work identified transient actin structures on the OMM that are not limited to ER–mitochondria contact sites [135] (see also Fig. 3b). Interestingly, impairment of Drp1-dependent fission was associated with an accumulation of F-actin on the OMM, suggesting that actin disassembly requires Drp1 activity. The authors identified Arp2/3-dependent actin polymerization as an additional actin polymerization mode that participates to mitochondrial fission [177]. The Arp2/3 complex [178] differs from formins and TMBPs in that it creates branched actin structures. Intriguingly, depletion of Arp2/3, coflin and cortactin impaired FCCP-induced fission, while resulting in the accumulation of Drp1 oligomers on highly elongated mitochondria. These oligomers were hypothesized to represent non-functional Drp1 fission complexes, similar to what has been observed upon MiD49/51 overexpression, which leads to mitochondrial elongation with a concomitant accumulation of actin and non-functional Drp1 on the OMM [124].

![Fig. 3](image.png)

Fig. 3 The cytoskeleton contributes to Drp1-dependent mitochondrial fission. **a** Linear actin polymerized by INF2 and Spire1C at the ER–mitochondria contact sites contributes to mitochondrial constriction with the aid of Myosin II, promoting Drp1 recruitment and mitochondrial fission. **b** Arp2/3 complex-mediated polymerization of branched actin on the OMM regulates Drp1 dynamics and mitochondrial fission. **c** Septins interact with Drp1 to regulate Drp1-mediated mitochondrial fission.
Given that the Arp2/3 complex is involved in actin polymerization at several subcellular locations [167], an interesting open question is how differential regulation is achieved. Recent data on different models showed that the composition of the Arp2/3 complex is variable; while Arp2 and Arp3 are invariant and essential core subunits, the other subunits (ArpC1–ArpC5) play a regulatory role, and their substitution or posttranslational modification appears to determine localization and activity of the complex (reviewed in [179]). Future work will elucidate the exact composition of the Arp2/3 complex acting in mitochondrial fission, and its associated molecules, including the nucleation promoting factors that activate it.

A detailed description of the F-actin dynamics on the entire mitochondrial network in cultured HeLa cells showed that a wave of transient actin polymerization forms on a subset of mitochondria, rapidly cycling through the entire mitochondrial network and locally coinciding with fission [180]. These cyclic waves of actin-induced mitochondrial fission were proposed to regulate mitochondrial morphology at the level of the whole mitochondrial network. Actin appeared to assemble preferentially on elongated mitochondria, promoting their fragmentation, then promptly disassembled to allow refusion. Drug inhibition experiments showed that this process depends on Arp2/3 and formins, confirming the involvement of both actin polymerizing factors in actin-driven mitochondrial fission. Indeed, INF2/Spire1C- and Arp2/3-mediated actin polymerization may be to some extent functionally redundant, allowing Arp2/3-mediated actin polymerization to take over in cells that express low levels of INF2, such as epithelial or immune cells [181]. This would implicate that according to the tissue, different types of actin structures (linear versus branched) can fulfill a similar function in mitochondrial division. We currently lack a clear view of the actin filament structure during mitochondrial fission, a comprehensive list of the associated components, as well as the mechanisms that stimulate it beyond uncouplers [163, 177] and increases in intracellular calcium [135, 182].

Targeted actin polymerization participates in membrane fission in a number of different processes, such as endocytosis [183] and endosome fission [184], where it might act in conjunction with the ER [151]. An intriguing parallel can also be drawn with the intracellular bacterium *Listeria monocytogenes*, which initiates actin polymerization at the bacterial surface through the surface protein ActA [185]. This bacterial-induced local actin polymerization has been shown to compensate for a fission defect caused by deletion of a bacterial murein hydrolase [186] and also to regulate the timing of the division cycle of wild-type *Listeria* inside cells [187]. Whether the mechanisms by which actin stimulates this plethora of fission processes are the same or not remains an open question.

Septins

In contrast to actin, septins have been implicated in mitochondrial fission only very recently. Septins are a family of GTP-binding proteins discovered more than 40 years ago as regulators of cytokinesis in yeast [188, 189]. In humans there are 13 septin-coding genes, with many of them being expressed in a tissue-specific pattern. Now fully accepted as components of the cytoskeleton, septins can heterooligomerize into non-polar filaments, which can then assemble into higher order structures such as rings, bundles and gauzes. At present septins have been involved in diverse cellular processes such as cytokinesis, ciliogenesis, axon guidance and endocytosis and are thought to restrict protein diffusion at membranous structures such as the cell cortex, the yeast bud neck, and the ER, as well as restricting bacterial actin-based motility [188, 189].

A recent study highlighted a new role for septins as regulators of Drp1-dependent mitochondrial fission [190] (Fig. 3c). Sept2 was found to interact directly with Drp1, and depletion of Sept2 or Sept7 increased mitochondrial length. Sept2 depletion also delayed FCCP-induced mitochondrial fission and looping. About 30% of the mitochondrial constrictions appeared to be positive for Sept2, indicating that it might transiently associate with fission sites or be involved in a subset of fission events, as it has been proposed for INF2 and Myosin II [191]. What is the functional role of the Sept2–Drp1 interaction? Imaging coupled to mitochondrial fractionation experiments revealed that Sept2 is important for efficient recruitment of Drp1 to mitochondria, as Sept2-depleted cells displayed less Drp1 on mitochondria, similar to INF2 and Myosin II depletion [166, 172] (Fig. 2c). Septins might facilitate Drp1 recruitment through multiple mechanisms: first, septins might directly promote mitochondrial pre-constriction and Drp1 retention. Second, it is tempting to speculate that septins function as a scaffold at mitochondria and promote functional interactions of Drp1 with other proteins involved in mitochondrial fission, similar to the function that septins have already been shown to fulfill in other contexts, such as cytokinesis [192]. For example, septins might promote posttranslational modifications of Drp1 that allow its retention onto mitochondria. Multiple septins have indeed been shown to interact with the SUMOylation machinery by yeast two-hybrid screening and could, therefore, act as a scaffold to promote Drp1 SUMOylation. Another way septins might promote Drp1 function is by affecting its oligomerization status on mitochondria, similar to actin [135]. In this context, Ji et al. noticed cytosolic Drp1 oligomers, which may be associated with cytoskeletal structures. In agreement with this, we observed septin-associated oligomeric Drp1 structures in the cytosol (our unpublished observation), while Strack et al. found microtubule association of a specific Drp1 isoform.
Drp1-x01 [66]. Different cytoskeletal structures may hence act as a cytosolic reservoir for delivering Drp1 oligomers to mitochondria.

Dynamin performs the terminal abscission step

In vitro studies have shown that Drp1 is able to induce liposome tubulation and branching [60], but no fission has been observed in contrast to what has been observed with the endocytic Dynamin 1, which tubulates and severs liposomes in a GTP-dependent fashion [193]. Lee et al. have recently solved this conundrum by showing that the ubiquitous endocytic Dynamin 2 (Dyn2) terminates mitochondrial abscission downstream of Drp1 [194] (Fig. 4). Dyn2 required both its GTPase activity, as well as its PH and polyproline lipid-binding domains to mediate mitochondrial fission, although the structural arrangement of these domains with respect to the OMM remains unclear. Strikingly, Dyn2 mutations have been found associated with Charcot–Marie–Tooth type 2 disease and a recent case report showed that the Dyn2 R369W mutation induced multiple mtDNA deletions [195], reinforcing the link between mitochondrial dynamics and mtDNA maintenance. Interestingly, peroxisome fission has also been shown to require a cooperation between the mitochondrial dynamin Dnm1p and the endocytic dynamin Vps1p in yeast [196]. In mammalian cells, the ER, Arp2/3, the actomyosin system and Dyn2 [184] (Fig. 4) are all implicated in both endosomal and mitochondrial fission, raising

![Diagram of mitochondrial fission](image-url)

Fig. 4 Mitochondrial fission is a multistep process. **a** The site of fission on mitochondria is first marked by an ER tubule which constricts mitochondria by wrapping around them. **b** Drp1 is recruited to the OMM with the aid of receptors, actin and septins, oligomerizes and

initiates mitochondrial constriction. **c** Dynamin is recruited through an unknown mechanism and **d** drives mitochondrial abscission upon GTP hydrolysis.
the question as to how specific targeting is achieved [151, 184, 196, 197].

From an evolutionary perspective, it is interesting to note that an implication for endocytic dynamins in mitochondrial fission has been also shown in eukaryotes as distinct as the red algae *Cyanidioschyzon merolae* and the parasite *Trypanosoma brucei* [198, 199]. Consistent with the partnership between Dyn2 and Drp1 uncovered by Lee et al., a recent study proposed that the evolutionary ancestor of endocytic dynamins and Drp1 mediated both mitochondrial and vesicle abscission [53].

In contrast to Drp1, Dyn2 seems to associate only very briefly with mitochondrial division sites and segregates asymmetrically, suggesting important differences in the assembly and disassembly kinetics of Drp1 and Dyn2 [194]. Like endocytic dynamins, Drp1 disassembly requires GTP hydrolysis [60] and in addition possibly calcium [194], but although advances have been made by structure–function studies [200, 201], relatively little is known concerning the regulation of this essential step of the fission cycle.

Drp1-independent fission

The canonical mitochondrial fission process occurs through Drp1 (Fig. 3); however, accumulating evidence suggests the presence of Drp1-independent fission mechanisms. For instance, during *L. monocytogenes* infection of epithelial cells, the mitochondrial network undergoes a dramatic fragmentation with concomitant impairment of the respiration capacity [182]. Surprisingly, Drp1 oligomers are absent from fragmented mitochondria (Fig. 1c). Analysis of this phenomenon in Drp1-depleted cells as well as in Drp1KO MEF revealed that *L. monocytogenes*-induced mitochondrial fragmentation is Drp1 independent [202]. Another example is provided by the abscission of mitochondria-derived vesicles (MDVs) [203, 204]. MDVs are induced by oxidative stress in a Parkin and Pink1-dependent manner, bud off mitochondria in a Drp1-independent manner, and then deliver their content to the lysosome to allow the selective removal of damaged proteins from the OMM [204].

Recently, mitophagy was reported to also occur in the absence of Drp1 [48]. Through live cell imaging experiments, the authors showed that upon induction of mitophagy, a mitochondrial bud emerges and is progressively isolated from the parental mitochondrion to finally detach by a still unidentified mechanism, which does not rely on Drp1. It is interesting to note that while Drp1 is required for embryonic development, it appears to be dispensable for the viability of in vitro-cultured cells [35]. This further suggests the existence of Drp1-independent mitochondrial fission mechanisms with a basal activity, which can be boosted under specific conditions such as oxidative stress, mitophagy induction or *Listeria* infection.

Open questions

Although the appearance of the mitochondrial fission machinery has been postulated to precede that of fusion in evolution [173], no conserved machinery has been identified that would mediate fission of the inner mitochondrial membrane. A bacterial-derived system which induces fission from the matrix through an FtsZ homolog was detected across multiple eukaryotic species, suggesting that it was an ancestral mode of division [54], but little is known in mammalian cells. Because mammals lack a recognizable homolog of the bacterial fission protein FtsZ [53, 54] and the appearance of the organelle-dedicated dynamin Drp1 through gene duplication was found to coincide with the loss of FtsZ [53], Drp1 is currently thought to simultaneously sever both the OMM and the IMM. In agreement with this hypothesis, activation of Drp1 results in a fragmented mitochondrial network. But matrix constrictions have been observed in the absence of functional Drp1 in mammalian cells, suggesting the presence of an inner membrane fission machinery [205] which would respond to uncouplers or other stimuli that induce fission by acting directly on mitochondria. A few candidates for IMM fission have been proposed, including the inner membrane proteins TMEM11 [206] and MTGM/Romo1 [207], intermembrane space proteins as MTP18 [208] and the short, soluble form of OPA1 [209]. While overexpression of these candidates induced mitochondrial fission, their depletion did not always yield the hyperfusion phenotype that would be intuitively expected. We anticipate that the model for mitochondrial fission will be further refined by integrating the characterization of new players with the advent of new imaging techniques that allow high-resolution imaging of mitochondria with limited photodamage [135, 210].

Acknowledgements We apologize to those colleagues whose work we could not cite due to space constraints. Work in the Cossart laboratory is funded by Institut Pasteur, Inserm (U604), ERC (Grant 670823–BacCellEpi).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159
2. Kuznetsov AV, Hermann M, Saks V, Hengster P, Margreiter R (2009) The cell-type specificity of mitochondrial dynamics. Int J Biochem Cell Biol 41:1928–1939
3. Barnhart EL (2016) Mechanics of mitochondrial motility in neurons. Curr Opin Cell Biol 38:90–99
4. Peraza-Reyes L, Crider DG, Pon LA (2010) Mitochondrial manoeuvres: latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae. BioEssays 32:1040–1049
5. Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280:26185–26192
6. Yang WY (2015) Optogenetic probing of mitochondrial damage responses. Ann N Y Acad Sci 1350:48–51
7. Wai T, Langer T (2016) Mitochondrial Dynamics and Metabolic Regulation. Trends Endocrinol Metab 27:105–117
8. Collins TJ, Berridge MJ, Lipp P, Bootman MD (2002) Mitochondria are morphologically and functionally heterogeneous within cells. EMBO J 21:1616–1627
9. Silva Ramos E, Larsson NG, Mourier A (2016) Bioenergetic roles of mitochondrial fusion. Biochem Biophys Acta 1857:1277–1283
10. Santel A, Fuller MT (2001) Control of mitochondrial morphology by a human mitofusin. J Cell Sci 114:867–874
11. Rojo M, Legros F, Chateau D, Lombes A (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115:1663–1674
12. Hoppins S, Nunnari J (2009) The molecular mechanism of mitochondrial fusion. Biochem Biophys Acta 1793:20–26
13. Franco A, Kittis RN, Fleischer JA, Gavathiotis E, Kornfeld OS, Gong G, Biris N, Benz A, Qvit N, Donnelly SK, Chen Y, Mennerick S, Hodgson L, Mochly-Rosen D, Dorn GW II (2016) Correcting mitochondrial fusion by manipulating mitofusin conformations. Nature 540:74–79
14. Wang C, Su QP, Zhu M, Peng P, Li Y, Zhou Y, Mi N, Zhu Y, Jiang D, Zhang S, Zhang Z, Sun Y, Yu L (2015) Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25:1108–1120
15. Qi Y, Yan L, Yu C, Guo X, Zhou X, Hu X, Huang X, Rao Z, Lou Z, Hu J (2016) Structures of human mitofusin 1 provide insight into mitochondrial tethering. J Cell Biol 215:621–629
16. Schrepfer E, Scorrano L (2016) Mitofusins, from Mitochondria to Metabolism. Mol Cell 61:683–694
17. Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117:6535–6546
18. Bertholet AM, Delerue T, Millet AM, Moulin MF, David C, Daloyau M, Arnauwe-Pelquin L, Davezac N, Mills V, Miquel MC, Rojo M, Belenguer P (2016) Mitochondrial fusion/fission dynamics in neurodegeneration and neuronal plasticity. Neurobiol Disease 90:3–19
19. Zuchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, Zappia M, Nelis E, Patitucci A, Senderek J, Parman Y, Yevgrafof O, Jonghe PD, Takahashi Y, Tsuji S, Pericak-Vance MA, Quattrone A, Battaglia E, Poljakov AV, Timmerman V, Schroder JM, Vance JM (2004) Mutations in the mitochondrial GTPase Drp1 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36:449–451
20. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC (2003) Mitofusins Mfn1 and Mfn2 coordinate regulatory mitochondrial fusion and are essential for embryonic development. J Cell Biol 160:189–200
21. Chen H, Vermulst M, Wang YE, Chomyn A, Prolla TA, McCaffery JM, Chan DC (2010) Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 141:280–289
22. Cipolat S, Martins de Brito O, Dal Zilio B, Scorrano L (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101:15927–15932
23. Naon D, Zaninello M, Giacometto M, Varanita T, Gregski F, Lakshminarayan S, Serafini A, Semenzato M, Herkenne S, Hernandez-Alvarez MI, Zorrano A, De Stefani D, Dorn GW 2nd, Scorrano L (2016) Critical reappraisal confirms that Mitofusin 2 is an endoplasmic reticulum-mitochondria tether. Proc Natl Acad Sci USA 113:11249–11254
24. Giacometto M, Pellegrini L (2016) The coming of age of the mitochondria-ER contact: a matter of thickness. Cell Death Differ 23:1417–1427
25. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82
26. Meeussen S, McCaffery JM, Nunnari J (2004) Mitochondrial fusion intermediates revealed in vitro. Science 305:1747–1752
27. Malka F, Guillery O, Cifuentes-Diaz C, Guillou E, Belenguer P, Lombes A, Rojo M (2005) Separate fusion of outer and inner mitochondrial membranes. EMBO Rep 6:853–859
28. Alexander C, Votrouba M, Pesch UE, Thielson DL, Mayer S, Moore A, Rodriguez M, Kellner U, Leo-Kottler B, Auburger G, Bhattacharyya SS, Wissinger B (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26:211–215
29. Delettre C, Lenaers G, Griffoin JM, Gigarel N, Lorenczo C, Belenguer P, Pelloquin L, Grossejge J, Turc-Carel C, Perret E, Astarie-Dequeker C, Lasquellec L, Arnaud B, Ducommun B, Kaplan J, Hame II (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26:207–210
30. Song Z, Ghochani M, McCaffery JM, Frey TG, Chan DC (2009) Mitofusins and OPA1 mediate sequential steps in mitochondrial membrane fusion. Mol Biol Cell 20:3525–3532
31. Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Bezzoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De strooper B, Scorrano L (2006) OPA1 controls apoptotic crisis: remodeling independently from mitochondrial fusion. Cell 126:177–189
32. Delettre C, Griffoin JM, Kaplan J, Dollfus H, Lorenczo B, Faire L, Lenaers G, Belenguer P, Hame II CP (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109:584–591
33. MacVicar T, Langer T (2016) OPA1 processing in cell death and disease—the long and short of it. J Cell Sci 129:2297–2306
34. Wai T, Garcia-Prieto J, Baker MJ, Merkworth C, Benit P, Rustin P, Ruperez FJ, Barbac P, Ibanez B, Langer T (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aa0116
35. Ishihara N, Nomura M, Jofuku A, Kato H, Suzuki SO, Masuda K, Otera H, Nakanishi Y, Nonaka I, Goto Y, Taguchi N, Morinaga H, Maeda M, Takayana R, Yokota S, Mihara K (2009) Mitochondrial fission factor Drp1 is required for embryonic and brain development and synapse formation in mice. Nat Cell Biol 11:958–966
36. Wakabayashi J, Zang Z, Wakabayashi N, Tamura Y, Fukaya M, Kessler TW, Iijima M, Sesaki H (2009) The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J Cell Biol 186:805–816
37. Kageyama Y, Zhang Z, Roda R, Fukaya M, Wakabayashi J, Wakabayashi N, Kessler TW, Reddy PH, Iijima M, Sesaki H (2012) Mitochondrial division ensures the survival of postmitotic neurons by suppressing oxidative damage. J Cell Biol 197:535–541
38. Horbay R, Bily R (2016) Mitochondrial dynamics during cell cycling. Apoptosis 21:1327–1335
39. Schwarz TL (2013) Mitochondrial trafficking in neurons. Cold Spring Harb Perspect Biol 5
The ever-growing complexity of the mitochondrial fission machinery

40. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE, Katz S, Las G, Alroy J, Wu M, Py BF, Yuan J, Deeney JT, Corkey BE, Shirihai OS (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27:433–446

41. Narendra D, Tanaka A, Suen DF, Youle RJ (2009) Parkin-induced mitophagy in the pathogenesis of Parkinson disease. Autophagy 5:706–708

42. Wei H, Liu L, Chen Q (2015) Selective removal of mitochondrial dysfunction via mitophagy: distinct pathways for different mitochondrial stresses. Biochem Biophys Acta 1853:2784–2790

43. Anding AL, Baehrecke EH (2017) Cleaning house: selective autophagy of organelles. Dev Cell 41:10–22

44. Buhlman L, Damiano M, Bertolin G, Ferrando-Miguel R, Lambros A, Brice A, Corti O (2014) Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.

45. Rambold AS, Lippincott-Schwartz J (2011) Mechanisms of mitochondria and autophagy crosstalk. Cell Cycle 10:4032–4038

46. Kageyama Y, Hoshijima M, Seo K, Bedja D, Sya-Shah P, Andradi SA, Chen W, Hoke A, Dawson VL, Dawson TM, Gabrielson K, Kass DA, Iijima M, Sasaki H (2014) Parkin-independent mitophagy requires Drp1 and maintains the integrity of mammalian heart and brain. EMBO J 33:2798–2813

47. Song M, Mihara K, Chen Y, Scorrano L, Dorn GW 2nd (2015) Mitochondrial fission and fusion factors reciprocally orchestrate mitophagic culling in mouse hearts and cultured fibroblasts. Cell Metab 21:273–285

48. Yamashita SI, Jin X, Furukawa K, Hamasaki M, Nezu A, Otera H, Saigusa T, Yoshimori T, Sakai Y, Mihara K, Kanki T (2016) Mitochondrial fission occurs concurrently with autophagosome formation but independently of Drp1 during mitophagy. J Cell Biol 215:649–665

49. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85:257–273

50. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert M, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

51. Parone PA, James DI, Da Cruz S, Mattenberger Y, Donze O, Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525

52. Estaquier J, Arnoult D (2007) Inhibiting Drp1-mediated mitochondrial fission selectively prevents the release of cytochrome c during apoptosis. Cell Death Differ 14:1086–1094

53. Purkanti R, Thattai M (2015) Ancient dynamin segments capture early stages of host-mitochondrial integration. Proc Natl Acad Sci USA 112:2800–2805

54. Leger MM, Petru M, Zarsky V, Eme L, Vlcek C, Harding T, Lang BF, Elias M, Dolezal P, Roger AJ (2015) An ancestral bacterial division system is widespread in eukaryotic mitochondria. Proc Natl Acad Sci USA 112:10239–10246

55. Shin HW, Shinotsuka C, Torii S, Murakami K, Nakayama K (1998) Identification and functional characterization of a novel human protein highly related to the yeast dynamin-like protein DLP1 tubulates membranes. J Biol Chem 273:1044–1051

56. Kamimoto T, Nagai Y, Onogi H, Muro Y, Wakabayashi T, Hagiwara M (1998) Dymple, a novel dynamin-like high molecular weight GTPase lacking a proline-rich carboxyl-terminal domain in mammalian cells. J Biol Chem 273:1044–1051

57. Smirnova E, Shurland DL, Ryazantsev SN, van der Bieken AM (1998) A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143:351–358

58. Yoon Y, Pitts KR, Dahan S, McNiven MA (1998) A novel dynamin-like protein associates with cytoplasmic vesicles and tubules of the endoplasmic reticulum in mammalian cells. J Cell Biol 140:779–793

59. Yoon Y, Pitts KR, McNiven MA (2001) Mammalian dynamin-like protein DLp1 tubulates membranes. Mol Biol Cell 12:2894–2905

60. Mears JA, Lackner LL, Fang S, Ingerman E, Nunnari J, Hinshaw JE (2011) Conformational changes in Dnm1 support a contractile mechanism for mitochondrial fission. Nat Struct Mol Biol 18:20–26

61. Francy CA, Alvarez FJ, Zhou L, Ramachandran R, Mears JA (2015) The mechanoenzymatic core of dynamin-related protein 1 comprises the minimal machinery required for membrane constriction. J Biol Chem 290:11692–11703

62. Howng SL, Sy WD, Cheng TS, Liew AS, Wang C, Tzou WS, Cho CL, Hong YR (2004) Genomic organization, alternative splicing, and promoter analysis of human dynamin-like protein gene. Biochem Biophys Res Commun 314:766–772

63. Uo T, Dvorzak J, Kinoshita C, Inman DM, Kinoshita Y, Horner PJ, Morrison RS (2009) Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons. Exp Neurol 218:274–285

64. Frohlich C, Grabiger S, Schwefel D, Faehler K, Rosenbaum E, Mears J, Rocks O, Daumke O (2013) Structural insights into oligomerization and mitochondrial remodelling of dynamin 1-like protein. EMBO J 32:1280–1292

65. Smirnova E, Griparic L, Shurland DL, van der Bieken AM (2001) Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12:2245–2256

66. Li H, Alavian KN, Lazzaro E, Mehta N, Jones A, Zhang P, Liczi-ziski P, Graham M, Uo T, Goo J, Rahner C, Duman RS, Morrison RS, Jonas EA (2013) A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat Cell Biol 15:773–785

67. Frohman MA (2015) Role of mitochondrial lipids in guiding fission and fusion. J Mol Med 93:263–269

68. Kooijman EE, Chupin V, de Kruijff B, Burger KN (2003) Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 4:162–174

69. Matsuda T, Langer T (2017) Intramitochondrial phospholipid trafficking: the role of membrane contact sites. Biochimie 179:32–41

70. Slodzian M, Slabicki M, Raczek A, Slabicki A, Boissin M, Maniello C, Epand R, Lacombe ML (2014) Mitochondrial cardiolipin/phospholipid trafficking: the role of membrane contact site complexes and lipid transfer proteins. Chem Phys Lipid 179:32–41

71. Bastillo-Zabalbeitia I, Montessuit S, Raemy E, Basanez G, Terres O, Martinou JC (2014) Specific interaction with cardiolipin triggers functional activation of dynamin-related protein 1. PLoS One 9:e102738
76. Montessuit S, Somasekharan SP, Terrones O, Lucken-Ardjomande S, Herzig S, Schwarzenbacher R, Manstein DJ, Bossy-Wetzel E, Basanez G, Meda P, Martinou JC (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889–901

77. Macdonald PJ, Stepanyants N, Mehrotra N, Mears JA, Qi X, Sesaki H, Ramachandran R (2014) A dimeric equilibrium intermediate mediates Drp1 reassembly on mitochondrial membranes for fission. Mol Biol Cell 25:1905–1915

78. Stepanyants N, Macdonald PJ, Francy CA, Mears JA, Qi X, Ramachandran R (2015) Cardiolipin’s propensity for phase transition and its reorganization by dynamin-related protein 1 form a basis for mitochondrial membrane fission. Mol Biol Cell 26:3104–3116

79. Adachi Y, Itoh K, Yamada T, Cerveny KL, Suzuki TL, Macdonald P, Frohman MA, Ramachandran R, Iijima M, Sesaki H (2016) Coincident phosphatidic acid interaction restrains Drp1 in mitochondrial division. Mol Cell 63:1034–1043

80. Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10:4403–4417

81. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM, Pouysségur J (2011) Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 22:1207–1216

82. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn K, Kageyama Y, Sesaki H, Chipuk JE, Counter CM, Kashatus DF (2015) Erk2 phosphorylation of Drp1 mediates mitochondrial division and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57:521–536

83. Horn SR, Thomenius MJ, Johnson ES, Freel CD, Wu JQ, Coloff JL, Yang CS, Tang W, An J, Iikayaev OR, Rathmell JC, Newgard CB, Kornbluth S (2011) Regulation of mitochondrial morphology by the higher order assembly and mitochondrial division. J Biol Chem 278:8597–8605

84. Horn SR, Thomenius MJ, Johnson ES, Freel CD, Wu JQ, Coloff JL, Yang CS, Tang W, An J, Iikayaev OR, Rathmell JC, Newgard CB, Kornbluth S (2011) Regulation of mitochondrial morphology by the higher order assembly and mitochondrial division. J Biol Chem 278:8597–8605

85. Blackstone C, Bernardi P, Scorrano L (2008) Dephosphorylation by calcineurin regulates translocation of Drp1 to mitochondria. EMBO Rep 10:748–754

86. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM, Pouysségur J (2011) Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 22:1207–1216

87. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM, Pouysségur J (2011) Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 22:1207–1216

88. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM, Pouysségur J (2011) Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability. Mol Biol Cell 22:1207–1216
The ever-growing complexity of the mitochondrial fission machinery
160. Ishihara T, Ban-Ishihara R, Maeda M, Matsunaga Y, Ichimura A, Kyogoku S, Aoki H, Katada S, Nakada K, Nomura M, Mizushima N, Mihara K, Ishihara N (2015) Dynamics of mitochondrial DNA nucleoids regulated by mitochondrial fission is essential for maintenance of homogeneously active mitochondria during neonatal heart development. Mol Cell Biol 35:211–223

161. Lewis SC, Uchiyama LF, Nunnari J (2016) ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells. Science 353:aaf5549

162. Mattenberger Y, James DJ, Martinou JC (2003) Fusion of mitochondria in mammalian cells is dependent on the mitochondrial inner membrane potential and independent of microtubules or actin. FEBS Lett 538:53–59

163. De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP (2005) Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 15:678–683

164. DuBoff B, Gotz J, Feany MB (2012) Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron 75:618–632

165. Hatch AL, Ji WK, Merrill RA, Strack S, Higgins HD (2016) Actin filaments as dynamic reservoirs for Drp1 recruitment. Mol Biol Cell 27:3109–3121

166. Korobova F, Ramabadran V, Higgins HD (2013) An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339:464–467

167. Skau CT, Waterman CM (2015) Specification of Architecture and Function of Actin Structures by Actin Nucleation Factors. Ann Rev Biophys 44:285–310

168. Boyer O, Nevo F, Plaisir E, Funalot B, Gribouval O, Benoit G, Huynh Cong E, Arrondel C, Tete MJ, Montjean R, Richard L, Karras A, Poutiel-Noblic B, Balafrej L, Bonnardeaux A, Canaud G, Charasse C, Dantal J, Deschenes G, Detex P, Dubourd D, Petiot P, Pouthier D, Leguern E, Guichon-Mantel A, Brouin P, Gubler MC, Saunier S, Ronco P, Valtat JM, Alonso MA, Antignac C, Mollet G (2011) INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. N Engl J Med 365:2377–2388

169. Chhabra ES, Ramabadran V, Gerber SA, Higgins HD (2009) INF2 is an endoplasmic reticulum-associated formin protein. J Cell Sci 122:1430–1440

170. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M, Higgins H, Spudich J, Lippincott-Schwartz J (2015) A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4:e08828

171. Otomo T, Tomchick DR, Otomo C, Panchal SC, Machius M, Rosen MK (2005) Structural basis of actin filament nucleation and precessive capping by a formin homology 2 domain. Nature 433:488–494

172. Korobova F, Gauvin TJ, Higgins HD (2014) A role for myosin II in mammalian mitochondrial fission. Curr Biol 24:409–414

173. Kurosawa T, Nishida K, Yoshida Y, Fujiiwara T, Mori T, Kuriosis H, Misumi O (2006) Structure, function and evolution of the mitochondrial division apparatus. Biochem Biophys Acta 1763:510–521

174. Yumura S (2001) Myosin II dynamics and cortical flow during contractile ring formation in Dictyostelium cells. J Cell Biol 154:137–146

175. Araki N, Hatae T, Furukawa A, Swanson JA (2003) Phosphoinoside-3-kinase-independent contractile activities associated with Fc gamma-receptor-mediated phagocytosis and macroinopinytosis in macrophages. J Cell Sci 116:247–257

176. Misery-LeNekei S, Chalanon G, Bardin S, Formstecher E, Goud B, Echard A (2010) Rab and actomyosin-dependent fission of transport vesicles at the Golgi complex. Nat Cell Biol 12:645–654

177. Li S, Xu S, Roelofs BA, Boyman L, Lederer WJ, Sesaki H, Karbowsky M (2015) Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission. J Cell Biol 208:109–123

178. Welch MD, Iwamatsu A, Mitchison TJ (1997) Actin polymerization is induced by Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265–269

179. Pizarro-Cerda J, Charbit A, Enninga J, Lafont F, Cossart P (2016) Manipulation of host membranes by the bacterial pathogens...
The ever-growing complexity of the mitochondrial fission machinery

197. Gormal RS, Nguyen TH, Martin S, Papadopulos A, Meunier FA, van der Bliek AM, Redelmeier TE, Damke H, Tisdale EJ, Meynert A, Inczedy-Farkas G, Pal E, Remenyi V, Bereznai B, Geller Lee JE, Westrate LM, Wu H, Page C, Voeltz GK (2016) Multi-dynamin family members collaborate to drive mitochondrial division. Nature 540:139–143

198. Nishida K, Takahara M, Miyagishima SY, Kuroiwa H, Matsuoka M, Kuroiwa T (2003) Dynamic recruitment of dynamin for final mitochondrial fission in a primitive red alga. Proc Natl Acad Sci USA 100:2146–2151

199. Chanez AL, Hehl AB, Engstler M, Schneider A (2006) Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J Cell Biol 119:2968–2974

200. Mattila JP, Shnyrova AV, Sundborger AC, Hertelano ER, Fuhrmans M, Neumann S, Muller M, Hinshaw JE, Schmid SL, Frolov VA (2015) A hemic-fission intermediate links two mechanistically distinct stages of membrane fission. Nature 524:109–113

201. Cahill TJ, Leo V, Kelly M, Stockenhuber A, Kennedy NW, Bao L, Cereghetti G, Harper AR, Czibik G, Lao C, Bellacemne M, Steeples V, Ghaffari S, Yavari A, Mayer A, Poulton J, Ferguson DJ, Scorrano L, Hettiarachchi NT, Peers C, Boyle J, Hill RB, Simmons A, Watkins H, Dear TN, Ashrafian H (2015) Resistance of dynamin-related protein 1 oligomers to disassembly impairs mitophagy. Resulting in myocardial inflammation and heart failure. J Biol Chem 290:25907–25919

202. Stavrou F, Palmer AE, Wang C, Youle RJ, Cossart P (2013) Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci USA 110:16003–16008

203. Soubanierv V, McLelland GL, Zunino R, Braschi E, Rippstein P, Fon EA, McBride HM (2012) A vesicular transport pathway shuttles cargo from mitochondria to lysosomes. Curr Biol 22:135–141

204. McLelland GL, Soubannier V, Chen CX, McBride HM, Fon EA (2014) Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33:282–295

205. Twig G, Graf SA, Wikstrom JD, Mohamed H, Haigh SE, Elorza A, Deutsch M, Zurgil N, Reynolds N, Shirihai OS (2006) Tagging and tracking individual networks within a complex mitochondrial web with photoactivatable GFP. Am J Physiol Cell Physiol 291:C176–C184

206. Rival T, Macchi M, Arnaune-Pelloquin L, Poidevin M, Maillet F, Richard F, Fatmi A, Belenguer P, Royet J (2011) Inner-membrane proteins PUM1/TMEM11 regulate mitochondrial morphogenesis independently of the DRP1/MFN fission/fusion pathways. EMBO Rep 12:223–230

207. Zhao J, Liu T, Jin SB, Tomilin N, Castro J, Shupliakov O, Lendahl U, Nister M (2009) The novel conserved mitochondrial inner-membrane protein MTG18 regulates mitochondrial morphology and cell proliferation. J Cell Sci 122:2252–2262

208. Tondera D, Czauderna F, Pauliek K, Schwarzer R, Kaufmann J, Santeil A (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118:3049–3059

209. Anand R, Wai T, Baker MJ, Kladt N, Schauss AC, Rugari E, Langer T (2014) The i-AAA protease YMEL1 and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929

210. Lo CY, Chen S, Creed SJ, Kang M, Zhao N, Tang BZ, Elgass KD (2016) Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics. Sci Rep 6:30855

211. Han XJ, Lu YF, Li SA, Kaitsuka T, Sato Y, Tomizawa K, Nairn AC, Takei K, Matsui H, Matsushita M (2008) CaM kinase I alpha-induced phosphorylation of Drp1 regulates mitochondrial morphology. J Cell Biol 182:573–585

212. Bordt EA, Clerc P, Roelofs BA, Saladino AI, Treter L, Adam-Vizi V, Cherok E, Khalil A, Yadava N, Ge SX, Francis TC, Kennedy NW, Picton LK, Kumar T, Uppuluri S, Miller AM, Itoh K, Karbowski M, Sessaki H, Hill RB, Polster BM (2017) The putative Drp1 inhibitor mdivi-1 is a reversible mitochondrial complex i inhibitor that modulates reactive oxygen species. Dev Cell 40(583–594):e6

213. Cassidy-Stone A, Chipuk JE, Ingerman E, Song C, Yoo C, Kuwana T, Kthur MJ, Shaw JT, Hinshaw JE, Green DR, Nunari
J (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204

214. Tondera D, Grandemange S, Jourdain A, Karbowski M, Mattenberger Y, Herzig S, Da Cruz S, Clerc P, Raschke I, Merkwirth C, Ehres S, Krause F, Chan DC, Alexander C, Bauer C, Youle R, Langer T, Martinou JC (2009) SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28:1589–1600