A novel nudivirus infecting the invasive demon shrimp

Dikerogammarus haemobaphes (Amphipoda)

Thomas W. Allain¹, Grant D. Stentiford²,³, David Bass²,³, Donald C. Behringer¹,⁴,⁵ & Jamie Bojko⁶,⁷*

The Nudiviridae are a family of large double-stranded DNA viruses that infects the cells of the gut in invertebrates, including insects and crustaceans. The phylogenetic range of the family has recently been enhanced via the description of viruses infecting penaeid shrimp, crangonid shrimp, homarid lobsters and portunid crabs. Here we extend this by presenting the genome of another nudivirus infecting the amphipod *Dikerogammarus haemobaphes*. The virus, which infects cells of the host hepatopancreas, has a circular genome of 119,754 bp in length, and encodes a predicted 106 open reading frames. This novel virus encodes all the conserved nudiviral genes (sharing 57 gene homologues with other crustacean-infecting nudiviruses) but appears to lack the p6.9 gene. Phylogenetic analysis revealed that this virus branches before the other crustacean-infecting nudiviruses and shares low levels of gene/protein similarity to the *Gammanudivirus* genus. Comparison of gene synteny from known crustacean-infecting nudiviruses reveals conservation between *Homarus gammarus nudivirus* and *Penaeus monodon nudivirus*; however, three genomic rearrangements in this novel amphipod virus appear to break the gene synteny between this and the ones infecting lobsters and penaeid shrimp. We explore the evolutionary history and systematics of this novel virus, suggesting that it be included in the novel *Epsilonnudivirus* genus (*Nudiviridae*).

The family *Nudiviridae* comprises a group of non-occluded, double-stranded DNA (dsDNA) viruses infecting arthropods. The family includes two recognised genera, *Alphanudivirus* and *Betanudivirus*, with two other genera, *Gammanudivirus* and *Deltanudivirus*, recently proposed to contain aquatic-host-infecting viruses.¹² *Alphanudivirus* contains two species; *Gryllus bimaculatus nudivirus* and *Oryctes rhinoceros nudivirus*, while *Betanudivirus* contains a single species, *Heliothis zea nudivirus*. In addition, several other insect-infecting nudiviruses have been morphologically and/or genomically characterized but remain to be formally recognised.⁴ In recent years, closely related viruses have been identified infecting marine crustaceans, using genomics and ultrastructural data. The most complete descriptions include *Penaeus monodon nudivirus* (PmNV) infecting the farmed penaeid shrimp *Penaeus monodon*¹ and recently, *Homarus gammarus nudivirus* (HgNV) infecting juveniles of the European lobster, *Homarus gammarus*.²

Other crustaceans are also infected with putative nudiviruses, often referred to in the published literature as “bacilliform viruses” in lieu of available genomic data. In addition to descriptions of putative nudiviruses in these decapod crustaceans, observations of nudivirus-like infections of Amphipoda have also been reported; e.g. for *Dikerogammarus villosus*, *Dikerogammarus haemobaphes*, *Gammarus roeseli*, *Pontogammarus robustoides* and *Gammarus varsoviensis*. In all cases, putative nudivirus infection is observed within cells of the hepatopancreas, causing nuclear hypertrophy but no observable host immune response to infection, in

¹School of Forest Resource and Conservation, University of Florida, Gainesville, FL 32611, USA. ²International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquatic Science (Cefas), Weymouth, Dorset DT4 8UB, UK. ³Centre for Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter EX4 4PY, UK. ⁴Fisheries and Aquatic Sciences, University of Florida, Gainesville, FL 32653, USA. ⁵Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA. ⁶School of Health and Life Science, Teesside University, Middlesbrough TS1 3BA, UK. ⁷National Horizons Centre of Excellence in Bioscience Industry, Teesside University, Darlington DL1 1HG, UK. *Email: J.Bojko@tees.ac.uk*
histological Section. Histopathologically, nudiviral infection results in nuclear hypertrophy of the hepatopancreaticocytes, caused primarily by a growing viroplasm; this is explored in full for the virus in D. haemobaphes in Bojko et al. Also in D. haemobaphes, infection prevalence of up to 77.7% has been correlated with altered behaviour in infected animals. The behavioural change was associated with increased activity, which positively correlated with viral burden, potentially indicating some benefit to viral transmission through increased movement. Many of the amphipod hosts in which putative nudiviruses have been reported are non-native or invasive species present outside of their native ranges. Infection with this viral family may therefore have potential for transboundary transmission when their hosts are present in their invasive range. Genomic data is currently lacking for all the putative nudiviruses infecting amphipods. In this study, we provide full genome characterisation of a nudivirus infecting the amphipod D. haemobaphes collected from outside of its native range. We use these data to provisionally name the virus as Dikerogammarus haemobaphes nudiavirus (DhNV) and place the virus within a newly suggested genus Epsilonnudivirus of the family Nudiviridae.

Results

Genome structure of DhNV. The circular genome of DhNV is 119,754 bp and contains 106 hypothetical ORFs, with 56 on the positive strand and 50 on the negative strand (Fig. 1). Fifty-nine of the ORFs met our comparative e-value threshold of <0.001 and were directly comparable to other members of the Nudiviridae. Up to 17% and 37% of the ORFs aligned most closely with genes from HgNV and PmNV, respectively. Two ORFs, DhNV_008 and DhNV_002, scored above 50% similarity to protein sequences on BLASTp. DhNV_008 was 52.33% similar to pf2 from HgNV (QBB28614) with *per os* infectivity as the only identified protein domain. DhNV_002 was 50% similar to a hypothetical protein from PmNV (YP_009051845) where the cytoplasmic, non-cytoplasmic, tmhelix, and transmembrane domains were identified. Among the 47 ORFs that provided no similarity to other protein sequences within the threshold, InterProScan assessment identified 20 ORFs with functional domains. A protein signature match to the inhibitor of apoptosis repeat superfAMILY in DhNV_059 may indicate the presence of a homolog of the *lap* nudivirus gene; however, BLASTp annotations did not yield any similarity results to the *lap* gene found in other nudiviruses. The remaining 19 ORFs contained proteins with zinc finger domains (DhNV_045). Tmhelix (DhNV_044), signal peptide (DhNV_084), p-loop containing nucleoside triphosphate hydrolase (DhNV_047), non-cytoplasmic domain (DhNV_025, 028, and 057), disorder predictions (DhNV_004, 059), and transmembrane domain (DhNV_060) were identified. Among the 47 ORFs that provided no similarity results to the *Iap* (DhNV_059) and place the virus within a newly suggested genus Epsilonnudivirus of the family Nudiviridae.

ToNV and DhNV revealed a high level of genomic rearrangement, where the 32 genes that showed genetic similarity (e < 0.001) with those ORFs on the DhNV genome were located across the respective genomes, showing little conserved synteny (Fig. 2a). A comparison using all three viruses identified 12 major regions of genetic novelty (Table 1). Using the protein similarity data, we determined that there were 11 crustacean-infecting nudivirus genes (DhNV_006, 024, 032, 034, 050, 062, 067, 080, 103, 104, and 106) that show conservation across the crustacean-infecting nudiviruses (Table 1) (i.e., present in PmNV, HgNV and DhNV) but appear absent from other nudiviruses that do not infect crustaceans. Using these genes in addition to the conserved baculovirus core genes across DhNV, HgNV and PmNV, 35 genes were comparable in a "gene-block" fashion relative to their genomic loci.
(Fig. 2e). This revealed three major rearrangement events. Reordering of the DhNV_032, DhNV_034, and pf-1 gene block, which is reversed in PmNV and HgNV (Fig. 2, 'X'). Reordering of the vlf-1 and p74 gene block, which is reversed in PmNV and HgNV (Fig. 2, 'Y') and a larger rearrangement of 6 genes (vlf-1, ac68, DhNV_080, DhNV_094, DhNV_092, DhNV_090, DhNV_088, DhNV_086, DhNV_084).
Figure 2. (a) Gene synteny among the Epsilonnudivirus, Gammandivirus and Deltanuvirus reveals a gene order among decapod-infecting nudiviruses, which is missing from peracarid-infecting nudiviruses. The genomes are annotated with positive strand (gold) and negative strand (silver) coding regions. In Fig. 2a, Dikerogammarus haemobaphes nudivirus gene synteny (white) is compared to Tipula oleracea nudivirus gene synteny (pink). Ribbons connecting the two genomes link up the homologous gene and its location on the viral genome. Scale ticks = 2 kb. The comparative plots were developed in Circa (www.ognomics.com/circa/). (b) Dikerogammarus haemobaphes nudivirus gene synteny (white) is compared to Penaeus monodon nudivirus gene synteny (blue). Ribbons connecting the two genomes link up the homologous gene and its location on the viral genome. Scale ticks = 2 kb. The comparative plots were developed in Circa (www.ognomics.com/circa/). (c) Dikerogammarus haemobaphes nudivirus gene synteny (white) is compared to Hommarus gammarus nudivirus gene synteny (green). Ribbons connecting the two genomes link up the homologous gene and its location on the viral genome. Scale ticks = 2 kb. The comparative plots were developed in Circa (www.ognomics.com/circa/). (d) All four virus are compared together, indicating regions of novelty in the Dikerogammarus haemobaphes nudivirus genome. The white triangles on the DhNV genome highlight the areas of novel sequence information that do not correspond to genes on the other nudivirus genomes. Scale ticks = 10 kb. The comparative plots were developed in Circa (www.ognomics.com/circa/). (e) The crustacean nudiviruses contain 24 nudivirus core genes (VLF-1, ODV-E66 and Helicase 2 are duplicated) (p6.9 is missing from Dikerogammarus haemobaphes nudivirus) (orange) and 11 other gene homologues conserved across the crustacean-infecting nudiviruses (yellow). These conserved homologues are based on similarity, synteny and functional identity. Comparison with DhNV (peracarid-infecting nudivirus) highlights three main areas of gene reorganization. ’X’ corresponds to a rearrangement of the DhNV_032, DhNV_34 and pif-1 genes, ’Y’ corresponds to a rearrangement of the vlf-1 and p74 genes and finally, ’Z’ corresponds to a rearrangement of six genes (vlf-1, ac68, DhNV_080, ac81 and both helicase 2 homologues). The Gammanudivirus members that infect decapods share the same gene synteny across these conserved motifs.
ac81, and both copies of *helicase 2*), which is reversed in PmNV and HgNV and overlaps the ‘Y’ rearrangement event (Fig. 2, ‘Z’).

Morphological and phylogenetic comparison to other Nudiviridae. A concatenated maximum likelihood phylogenetic analysis of eight nudiviruses and one baculovirus (outgroup) using 18 core nudivirus genes (see Sect. 4) supported the positioning of DhNV outside of the two crustacean-infecting nudiviruses with bootstrap values of 100% (Fig. 3). Within this grouping, DhNV is an early branching member of the Gammanudivirus genus and may constitute a different genus altogether. The Betanudivirus genus branches outside of the Gammanudivirus cluster and the Deltanudivirus member ToNV is the earliest branching member of these three genera. The Alphanudivirus group represents the most phylogenetically distinct nudivirus genus represented on our diagram (Fig. 3).

Illustrations of virus morphology provide another dimension of comparison among the *Nudiviridae* species (Fig. 3). DhNV virions consist of a double membrane surrounding an electron-dense core measuring \((n = 30, \text{mean} \pm \text{SD}) 302 \pm 13 \text{ nm in length and } 55 \pm 4 \text{ nm at its diameter}^{11}\). The rod-shaped structure is maintained across all the nudiviruses. DhNV represents one of the larger nudiviruses discovered to date, second to HzNV2, which has a length of 382 ± 30 nm.

A second concatenated maximum likelihood phylogenetic analysis of putative *iap* and *pif-2* genes supported DhNV as an earlier branch of the crustacean-infecting nudiviruses. The addition of *Macrobrachium rosenbergii nudivirus CN-SL2011* (MrNV) (NCBI:txid1217568), which only has the aforementioned genes available, branched in the Gammanudivirus genus. ToNV (*Deltanudivirus*) is the earliest branch of these genera, followed by HzNV2 (*Betanudivirus*), and the four crustacean-infecting nudiviruses. The Alphanudiviruses represent the most phylogenetically distinct lineage among nudiviruses in this tree (Fig. 4), following the same general phylogenetic theme as the details in Fig. 3.
Discussion
We provide a full genome characterisation of DhNV, a novel member of the *Nudiviridae* infecting the freshwater amphipod host, *Dikerogammarus haemobaphes*. The genome size, ORFs and morphology of this virus correspond with related viruses from crustaceans and insects. The identification of this virus is discussed relative to its genetic and protein content, its gene synteny and the gene synteny of related viruses, and finally, its phylogenetic relatedness to other *Nudiviridae*. These combined data suggest a novel genus may be appropriate: *Epsilonnudivirus*.

A novel member of the *Nudiviridae* (*Epsilonnudivirus*) from an amphipod. Using a combination of the core genes conserved across the *Nudiviridae*, we show that DhNV is most related to the *Gammanudivirus* genus; however, with a low level of protein similarity at most loci (< 50%) it seems pertinent to explore the erection of a new genus. Our concatenated phylogenetic analysis of eight nudiviruses representing four genera is concordant with previously published trees. DhNV appears to branch early from the three marine nudiviruses (Figs. 3, 4), suggesting an ancestral position to the HgNV, MrNV and PmNV.

The DhNV genome encoded all core nudivirus genes, apart from *p6.9*, a nucleotide-binding protein. These proteins function for DNA processing, RNA transcription, and per os infectivity. The *p6.9* gene, which is responsible for the encapsulation of the viral genome, is characterized by a serine-arginine repeat region that could not be identified from the DhNV genome and was not present at the predicted locus where *p6.9* lies in other *Gammanudivirus* members: between *lef-5* (DhNV_051) and *vlf-1* (DhNV_055). In addition to the core genes (*n = 24*, including three repeat homologues), most genes show similarity to other *Nudiviridae* under a conservative e-value threshold (< 0.001), providing strong evidence that this virus belongs within the *Nudiviridae* (Table 1).

The primary source of protein similarity information for DhNV ORF’s came from PmNV and HgNV, two genomically characterised viruses from the *Gammanudivirus* genus. *Gammanudivirus* members contain unique apoptosis inhibitor genes that lack a predicted RING domain and appear twice in the HgNV genome. DhNV_059

Figure 4. A concatenated phylogeny using *iap* and *pif-2* genes from 8 nudiviruses with LoobMNPV as an outgroup. Nodes are assigned bootstrap support values from 1,000 bootstrap replicates. Accession numbers include: OrNV (MN623374), GbNV (NC_009240), ToNV (NC_026242), HzNV2 (NC_004156), DhNV (MT488302), MrNV (IQ804994; IQ804993), PmNV (NC_024692), HgNV (MK439999) and LoobMNPV (NC_043520). The tree was annotated in FigTree v.1.4.3.
ORF	Strand	Left End	Right End	Protein Length	Hit/Accession	Similarity (%)	Coverage (%)	E-value	BLAST annotation	Protein Domains	Functionality
DNVN_001	+	1	3270	1048	Yp009051843.1	38.74	98	0.00E+00	DNA polymerase - DNA polymerase type-B family catalytic domain	DNA-directed RNA polymerase, family B, multifunctional domain; YpRi ribonuclease H-like domain	DNA processing
DNVN_002	-	3286	3528	80	Yp009051845.1	50	67	3.00E-11	hypothetical protein VgHv_003; similar to KN57_gp007	cytoplasmic domain; non-cytoplasmic domain; Tmhelix; Transmembrane region	
DNVN_003	-	3528	4193	221	HgNV_QBB2669.1	36.14	89	1.00E-26	Ac92-like protein	ER/ULR sulphydryl oxidase domain; cytoplasmic domain; non-cytoplasmic domain; Transmembrane	Packaging, assembly, and release
DNVN_004	-	4196	6235	679	Yp009051847.1	29.31	99	2.00E-78	Vg91; chitin binding patatin-A domain	Invertebrate chitin-binding family; baculovirus Vg91, capsid protein, filament, binding domain; non-cytoplasmic	Per os infectivity
DNVN_005	+	6492	7799	435	HgNV_QBB2661.1	37.7	96	3.00E-10	ODN-E56 (PF-5); Baculo E56; chondroitin AC/alginate lyase	non-cytoplasmic domain; cytoplasmic domain; disorder prediction; polar; Tmhelix, transmembrane	Per os infectivity
DNVN_006	+	8029	8577	182	Yp009051850.1	22.03	87	3.00E-06	hypothetical protein, similar to KN57_gp012; similar to VgHv_007	cell, disorder prediction; negative polyelectrolyte	
DNVN_007	+	8583	9794	403	Yp009051852.1	29.51	97	9.00E-45	P47	no predictions	DNA transcription
DNVN_008	-	9441	11061	406	HgNV_QBB2661.1	52.33	83	8.00E-122	Pf-2; per os infectivity factor 2	no predictions	Per os infectivity
DNVN_009	-	11067	11762	231	Yp009051855.1	26.88	62	3.00E-09	putative DT7/PMase (partial); uridina kinase, similar to HZY115	no predictions	
DNVN_010	-	11944	12615	223	-	-	-	-	-	no predictions	
DNVN_011	-	12844	14154	436	-	-	-	-	-	disorder prediction; polar	
DNVN_012	+	14410	15732	440	Yp009051858.1	34.23	90	2.00E-59	hypothetical protein VpMv_020; DNA evasion repair enzyme, KN57_gp020	PIN-like domain superfamily: 3.40.50.1010; PIN-FEN1	DNA processing
DNVN_013	+	15886	16473	195	HgNV_QBB2661.1	27.07	65	8.00E-09	hypothetical protein VgHv_014; similar to VpMv_021	no predictions	
DNVN_014	-	16477	17412	311	Yp009051860.1	27.49	84	2.00E-26	hypothetical protein KN57_gp022	no predictions	Packaging, assembly, and release
DNVN_015	+	17597	20908	1103	HgNV_QBB2661.1	38.64	93	0.00E+00	Late expression factor 8; bifunctional DNA-directed RNA polymerase subunit beta	DNA-directed RNA polymerase, subunit 2, hybrid-binding domain superfamily; RNA polymerase, beta subunit, conserved site; beta and beta-prime subunits of DNA dependent RNA polymerase	RNA transcription
DNVN_016	+	21049	22233	394	Yp009051862.1	25.47	75	2.00E-24	p51	no predictions	DNA transcription
DNVN_017	-	22278	22409	43	-	-	-	-	-	no predictions	
DNVN_018	-	22555	24585	676	Yp009051874.1	39.04	89	9.00E-134	occlusion-derived virus envelope protein E66	Chordoviridae AC/alginate lyase; 1.50.50.100 CATM, cytoplasmic domain; disorder prediction; transmembrane; Tmhelix; coil; polar; polypeptide; non-cytoplasmic domain; disorder prediction; polyampholyte; coil	Packaging, assembly, and release
DNVN_019	-	24890	25366	158	-	-	-	-	-	-	
DNVN_020	-	25333	26012	159	-	-	-	-	-	-	
DNVN_021	-	26124	26219	31	-	-	-	-	-	no predictions	
DNVN_022	-	27388	27673	101	-	-	-	-	-	coil; disorder prediction	
DNVN_023	-	27858	29510	550	Yp009051874.1	37.15	97	1.00E-120	occlusion-derived virus envelope protein E66	Chordoviridae AC/alginate lyase; 1.50.50.100 CATM	Packaging, assembly, and release
DNVN_024	-	29883	33107	1074	HgNV_QBB2663.1	24.26	27	2.00E-19	hypothetical protein VgHv_018; similar to KN57_gp057	disorder prediction; positive polypeptide, coil non-cytoplasmic domain; signal IP TM; coil; cytoplasmic domain; non-cytoplasmic domain; Tmhelix; transmembrane; signal peptide; signal peptide h-region; signal peptide c-region; signal peptide s-region	
DNVN_025	-	33291	33911	206	-	-	-	-	-	-	

(continued)
Accession	Gene	Species	Type	Description	P-value	50% EE	3S	3S	3S	3S	3S	3S	Per os infectivity	
DHNV_026	34981	35223	80	-	-	-	-	-	-	-	-	-	cytoplasmic domain;	0.00E-131
DHNV_027	37053	37406	117	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_028	37433	37735	100	-	-	-	-	-	-	-	-	-	-cytoplasmic domain;	-
DHNV_029	37970	39130	386	Suira jujuba	-	-	-	-	-	-	-	-	zinc finger, RING-	-
DHNV_030	39327	40460	377	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_031	40523	42310	595	PmNV	-	-	-	-	-	-	-	-	DNA ligase/RNA	-
DHNV_032	42336	43307	323	PmNV	-	-	-	-	-	-	-	-	DNA processing	
DHNV_033	43379	44578	399	PmNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_034	44702	45529	275	HgNV	-	-	-	-	-	-	-	-	DNA ligase/RNA	-
DHNV_035	45536	46240	234	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_036	46412	47215	267	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_037	47188	49484	758	HgNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_038	49439	49765	108	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_039	49852	51474	540	PmNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_040	51578	51877	99	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_041	52201	52738	245	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_042	53166	54284	372	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_043	54521	55633	370	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_044	55966	56925	319	-	-	-	-	-	-	-	-	-	Trm1ax	
DHNV_045	57077	57916	279	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_046	58153	58782	209	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_047	58798	59061	87	-	-	-	-	-	-	-	-	-	P-loop containing	-
DHNV_048	59144	60145	333	HgNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_049	60222	60737	171	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_050	60727	60936	69	HgNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_051	61069	61893	274	PmNV	-	-	-	-	-	-	-	-	DNase I	
DHNV_052	61952	62119	55	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_053	62358	63065	235	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_054	63071	64027	318	PmNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_055	64170	65204	284	PmNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_056	65044	66786	580	PmNV	-	-	-	-	-	-	-	-	no predictions	
DHNV_057	67123	68409	428	-	-	-	-	-	-	-	-	-	DNA ligase/RNA	-
DHNV_058	68549	68701	50	-	-	-	-	-	-	-	-	-	no predictions	
DHNV_059	68708	69325	205	-	-	-	-	-	-	-	-	-	inhibitor of apoptosis	

(continued)
DhNV_090	+	60426	70427	333	PmNV_YP_000051907.1	30.74	84	4.00E-32	38K protein	NAD+--like superfamily protein of unknown function DUF694	Packaging, assembly, and release
DhNV_081	-	70410	70763	117	-	-	-	-	no predictions	-	
DhNV_062	+	70765	71562	265	HgNV_QBB26686.1	30.8	92	1.00E-36	hypothetical protein HgNV_049, similar to KN57_gp061	no predictions	-
DhNV_063	+	71583	71930	115	PmNV_YP_000051900.1	39.34	53	2.00E-07	hypothetical protein KN57_gp062	Cytoplasmic domain; Thmint; transmembrane, non-cytoplasmic domain	-
DhNV_064	-	71956	72429	157	-	-	-	-	no predictions	-	
DhNV_065	-	72644	72991	115	-	-	-	-	cytoplasmic domain; disorder prediction; transmembrane; Thmint; negative polyacryl; non-cytoplasmic domain	-	
DhNV_066	-	73071	74423	450	PmNV_YP_000051901.1	32.04	76	3.00E-50	hypothetical protein KN57_gp085	coil	-
DhNV_067	+	74351	75928	465	PmNV_YP_000051904.1	28.4	84	4.00E-36	hypothetical protein KN57_gp086; HgNV_054	coil; disorder prediction	-
DhNV_068	-	75972	77471	499	-	-	-	-	no predictions	-	
DhNV_069	+	77585	78340	251	PmNV_YP_000051923.1	38.89	96	4.00E-36	very late expression factor 1	no predictions	Packaging, assembly, and release
DhNV_070	-	78362	79234	290	Porcellaria oryzae 70-15 XP_003125544.1	41.18	44	3.00E-04	hypothetical protein MGG_16847	Proline-rich extension signature; non-cytoplasmic domain; disorder prediction; proteolytic signal peptide; signal peptide-h-region; polar; signal peptide-c-region; signal peptide-N-region	-
DhNV_071	+	79418	81550	710	HgNV_QBB26686.1	46.9	99	0.00E+00	PT4	Baculoviruses p74; Baculoviruses p74-like terminase; non-cytoplasmic domain; cytoplasmic domain; Thmint; transmembrane disordered prediction; polyacryl; polar	Per os infectivity
DhNV_072	+	81646	83016	456	-	-	-	-	-	-	-
DhNV_073	+	83086	83835	249	PmNV_YP_000051904.1	25.68	87	7.00E-11	hypothetical protein KN57_gp070	no predictions	-
DhNV_074	+	83832	84506	327	PmNV_YP_000051907.1	29.39	79	7.00E-26	hypothetical protein KN57_gp069	no predictions	-
DhNV_075	+	84839	85549	236	PmNV_YP_000051906.1	27.23	77	3.00E-12	hypothetical protein KN57_gp068	disorder prediction; polyacryl; polar	-
DhNV_076	+	85655	87085	476	HgNV_QBB26676.1	32.35	85	7.00E-63	LOC108666550-like protein	family not named [PTHR38566]	-
DhNV_077	+	87333	88022	229	-	-	-	-	no predictions	-	
DhNV_078	+	88348	90223	291	-	-	-	-	no predictions	-	
DhNV_079	-	89242	89673	143	HgNV_QBB26683.1	40.17	81	4.00E-26	Ac68-like protein	non-cytoplasmic domain; Thmint; transmembrane; cytoplasmic domain	Per os infectivity
DhNV_080	-	89702	91621	639	PmNV_YP_000051925.1	24.91	87	1.00E-35	hypothetical protein KN57_gp087; HgNV_077	no predictions	-
DhNV_081	-	91632	92108	158	PmNV_YP_000051924.1	48.32	94	4.00E-45	Protein AC81; baculovirus; cytoplasmic domain; Thmint; transmembrane; non-cytoplasmic domain	Packaging, assembly, and release	
DhNV_082	+	92187	92621	144	HgNV_QBB26680.1	26.9	100	2.00E-07	hypothetical protein HgNV_075	no predictions	-
DhNV_083	+	92627	93763	378	-	-	-	-	no predictions	-	
DhNV_084	-	93788	94495	235	-	-	-	-	Signap-TM	-	
DhNV_085	-	94601	95626	341	-	-	-	-	no predictions	-	
DhNV_086	-	95803	98343	846	-	-	-	-	non-cytoplasmic domain; Thmint; transmembrane; cytoplasmic domain	Per os infectivity	
DhNV_087	-	98355	100577	740	PmNV_YP_000051917.1	34.25	66	6.00E-85	helicase 2	P-loop containing nucleoside triphosphate hydrolase	DNA processing
DhNV_088	+	100560	101324	224	HgNV_QBB26673.1	34.63	100	6.00E-24	hypothetical protein HgNV_068	Ribonuclease H-like superfamily; Ribonuclease H superfamily; coil	-
DhNV_089	-	101369	102316	315	-	-	-	-	no predictions	-	
DhNV_090	-	102399	104207	602	PmNV_YP_000051914.1	39.4	97	2.00E-127	helicase 2	P-loop containing nucleoside triphosphate hydrolase	DNA processing
DhNV_091	-	104337	104862	171	-	-	-	-	no predictions	-	
DhNV_092	-	104900	106433	487	HgNV_QBB26686.1	33.94	89	4.00E-76	Late expression factor 4 (LEF-4)	no predictions	RNA-transcription
DhNV_093	-	106606	106967	119	-	-	-	-	no predictions	-	
DhNV_094	-	107160	107741	193	HgNV_QBB26688.1	45.08	97	2.00E-55	Per os infectivity factor 3	Per os infectivity factor 3; non-cytoplasmic domain; Thmint; transmembrane; cytoplasmic domain	Per os infectivity

(continued)
represents a homolog of the \textit{Iap} nudivirus gene in DhNV, where an inhibitor of apoptosis repeat domain was detected but is relatively different from existing Baculovirus homologues.\cite{1} In addition to family-level gene conservation, we identified 11 "crustacean-infecting nudivirus" genes that are conserved among those that infect crustaceans. Using a gene-block approach, we identified that PmNV and HgNV share gene synteny, where the DhNV genome exhibits three reorganization events, termed 'X', 'Y' and 'Z' (Fig. 3). These rearrangements are visible only in this virus, alongside a low average protein similarity of ~50%, and may indicate that a fifth nudivirus genus could be erected to hold peracarid-infecting nudiviruses. We suggest \textit{Epsilonnudivirus}. In further work, greater genomic availability of viruses from peracarid hosts could help to better define these demarcation criteria.

Further genomic characterisation of peracarid-infecting nudiviruses may also help to identify the evolutionary history of DhNV, especially with regards to genes that show relatedness outside the \textit{Nudiviridae}. Examples include DhNV_029, which shares 35.19% similarity to the cg30-1 gene (YP_009186763) from \textit{Succa jujuba} nucloopolyhedrovirus (Table 1), a butterfly-infecting baculovirus. This is the first of two ORFs with zinc finger, RING-type domains in the DhNV genome; with DhNV_045 being the second (Table 1). These do show some relation to HgNV and PmNV, where both HgNV and PmNV contain the proteins with Zinc finger, RING-type domains: HgNV_019, 064, and 067 and KN57gp_003, 033, and 049 respectively.\cite{2,1,2} DhNV_070 also shows high similarity to a non-nudivirus organism. A hypothetical protein from \textit{Pyrularia oryzae} (Table 1), the fungal pathogen that causes rice blast disease, shows 41.18% similarity to DhNV_070. Protein domain analysis using InterProScan revealed mainly cytoplasmic and disorder protein domains from the genome of DhNV revealed several conserved and convergent traits of crustacean nudiviruses, highlighting potential genes for diagnostic development and further research into functional roles during host infection and survival within the environment. Further sequencing and characterisation of many hypothetical proteins will provide more insight into the evolutionary history and host relationship of DhNV relative to other \textit{Nudiviridae}. Through genomic analysis, phylogeny, and virion morphology it is evident that the \textit{Nudiviridae} in Crustacea are highly derived from their insect relatives and a great diversity of currently undescribed taxa likely reside in other arthropod hosts on land and in water.

\textbf{New perspectives surrounding the \textit{Nudiviridae}.} Nudivirus infections often delay development of their arthropod hosts, eventually causing death.\cite{3} However, high prevalence of nudiviruses in hosts apparently displaying few clinical signs of infection may also suggest some host benefit of retaining such sub-clinical infections.\cite{4,5,6} While the exact relationship between DhNV and host survival still requires testing, a significant association with increased activity may subsequently increase invasive capabilities of the host\cite{7}. Examining the genome of DhNV revealed several conserved and convergent traits of crustacean nudiviruses, highlighting potential genes for diagnostic development and further research into functional roles during host infection and survival within the environment. Further sequencing and characterisation of many hypothetical proteins will provide more insight into the evolutionary history and host relationship of DhNV relative to other \textit{Nudiviridae}.
Materials and methods

Collection of infected Dikerogammarus haemobaphes and next generation sequencing. Dikerogammarus haemobaphes were collected, dissected and underwent DNA extraction as explained by Bojko et al.11, who also explore virion morphology and pathology associated with the discovery of a novel nudivirus. Stored DNA from a single individual displaying the characteristic pathology of bacilliform virus infection was selected for next generation sequencing using Illumina MiSeq and Illumina HiSeq. The DNA extract underwent library preparation for Illumina MiSeq using the NEXTERA XT library preparation kit, according to manufacturer’s protocol (Illumina, UK). The library underwent quality screening using a bioanalyzer (Agilent), was quantified using a Quantifluor fluorimeter (Promega), was denatured using sodium hydroxide and diluted to 10 pM in Illumina HT1 hybridisation buffer for sequencing via an Illumina V3-600 cartridge. The same DNA extract was used to produce a library for Illumina HiSeq using the Illumina TruSeq DNA PCR-Free library preparation kit, according to manufacturer’s protocols. The library underwent quality screening using a bioanalyzer (Agilent), was quantified using a Quantifluor fluorimeter (Promega), was denatured using sodium hydroxide and diluted to 10 pM in Illumina HT1 hybridisation buffer for sequencing on an Illumina HiSeq 3,000 with a 2 x 150 cartridge.

MiSeq and HiSeq outputs were trimmed in-silico using Illuminacli v0.32 (Trimmomatic: LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36)14 and pooled into paired and unpaired sequence files. The paired sequence data from each technique were paired-end-combined using PEAR v0.9.8 (settings: overlap similarity minimum, 20 bp)15 to increase the read length of paired reads by combining the reads into single sequence reads. These reads were assembled using SPAdes v3.13.016 with default parameters and k-mer lengths 21, 33, 55, 77, 99 and 127, to produce 228,433 scaffolds with a maximum read length of 119,824 bp and minimum read length of 128 bp.

Identification and annotation of the viral genome. Scaffolds above 100,000 bp were extracted from the dataset and annotated using PROKKA v1.1117. The subsequent output was assessed for similarity to existing sequence data using NCBI, Blastp nr database. This identified a raw contiguous sequence of 119,824 bp as the genome of DhNV, which was subsequently circularized and checked for average coverage using CLC Genomics workbench v11 to result in a genome of 119,754 bp (coverage: 157.93X). PROKKA v1.1117 and GeneMarkS18 was used to annotate the viral genome (parameters: virus). A combination of these two tools resulted in 95 identical open reading frames (ORFs), 8 frames with high similarity but different gene size and three ORFs identified just by PROKKA. Combined, this provided 106 ORFs for annotation. The protein product of the 106 ORFs were compared to existing information using BLASTp via the NCBI repository (GenBank) with a cut-off e-value of < 0.001. The protein sequences were also assessed using the InterProScan tool (ebi.ac.uk/interpro/) to identify domains and predicted function. Twenty-one conserved core baculovirus/nudivirus genes were identified; however, P6.9 was not found within the genome of DhNV after analysis using BLASTp, ExPaSy19, GeneMarkS and InterProScan.

The gene synteny data for DhNV was compared to two crustacean-infecting viruses, Homarus gammarus nudivirus (HgNV) and Penaeus monodon nudivirus (PmNV) (Gammanudiviridae), and an insect-infecting virus, Tipula oleracea nudivirus (ToNV) (Deltanudiviridae), whose data were obtained from NCBI accessions: KJ184318, MK439999, NC_026242, respectively. The data were plotted using Circa (omegnomics.com/circa).

The annotated viral genome is available through NCBI accession: MT488302.

 Phylogenetic analysis of DhNV among the Nudoviridae. A concatenated phylogenetic tree was developed using 18 of the 21 identified nudivirus core proteins from DhNV and seven other nudiviruses: Drosophila innubila nudivirus (DiNV), Oryctes rhinocerotis nudivirus (OrNV), Gryllus bimaculatus nudivirus (GbNV), Heliocoverpa (syn. Heliothis) zeae nudivirus-2 (HzNV2), HgNV, PmNV, and ToNV. A baculovirus outgroup, Lononia obliqua multiple nucleopolyhedroviruses (LoobMNPV) was used to root the tree. A p47 (missing from GbNV), Helicase 2, vlf-1, and p6.9 were not included as they are not present in the genomes of all the tested nudiviruses or are duplicated in DhNV. The remaining conserved proteins, 38 k, ac81, DNA polymerase, helicase, lef-4, lef-5, lef-8, lef-9, ac92 (p33), p74 (pif-0), pif-1, pif-2, pif-3, odv-e28 (pif-4), odv-e56 (pif-5), pif-6, vp91 (pif-8) and 31 K (vp39), were aligned using Geneious v10 using MAFFT with default parameters. In HzNV2, Lef-9 was trimmed away using Geneious due to its fusion with p47.11 IQtree was used to produce the maximum likelihood phylogenetic tree, which included 13,795 positions using the VT + F + I + G4 model (according to BIC) with 1,000 bootstrap replicates. Subsequently, the tree was imported into FigTree v1.4.3 for final annotation. Transmission electron micrographs from each nudivirus were used to create illustrations of the virions with approximations of nucleocapsid size.2,11,20-25 A second concatenated tree was produced using putative iap and pif-2 genes from DhNV and seven other nudiviruses: OrNV, GbNV, HzNV2, HgNV, PmNV, ToNV, in addition to recently obtained Macrobrachium rosenbergii nudivirus CN-SL2011 (MrNV) (NCBI:txid1217568) sequences, which includes just two protein coding genes (iap and pif-2). DiNV was excluded from this tree as it lacks an identifiable iap ORF. The baculovirus, Lononia obliqua multiple nucleopolyhedrovirus (LoobMNPV) was used to root the tree. Genes were trimmed using Geneious v10 and aligned using MAFFT with default parameters. IQtree produced a phylogenetic tree using the Blossom62 + G4 model (according to BIC) with 1,000 bootstrap replicates. The tree was imported into Figtree v1.4.4 for final annotation.

Data availability

Sequence data from this study are available through NCBI as stated herein. Biological materials from the host are available from the Cefas Aquatic Registry and Repository.
Beperet, I., Simón, O., Williams, T., López-Ferber, M. & Caballero, P. The ‘11K’ gene family members sf68, sf95 and sf138 modulate...

Bojko, J.

Bateman, K. S. & Stentiford, G. D. A taxonomic review of viruses infecting crustaceans with an emphasis on wild hosts.

Bojko, J.

Bojko, J.

Bateman, K. S. & Stentiford, G. D. Cancer pagurus bacilliform virus (CpBV) infecting juvenile European edible crabs C pagurus...

Bézier, A. & et al. The genome of the nucleopolyhedrosis causing virus from Tipula oleracea (ToNV) sheds new light into the Nudivi...

Stentiford, G. D., Bateman, K. & Feist, S. W. Pathology and ultrastructure of an intranuclear bacilliform virus (IBV) infecting brown shrimp Crangon crangon (Decapoda: Crangonidae). Dis. Aquat. Organ. 58, 89–97 (2004).

Bateman, K. S. & Stentiford, G. D. Cancer pagurus bacilliform virus (CpBV) infecting juvenile European edible crabs C. pagurus from UK waters. Dis. Aquat. Organ. 79, 147–151 (2008).

Bojko, J. & Ovcharenko, M. Pathogens and other symbionts of the Amphipoda: taxonomic diversity and pathological significance. Dis. Aquat. Organs. 136, 3–36 (2019).

Bojko, J. et al. Parasites, pathogens and commensals in the “low-effect” non-native amphipod host Gammarus roeselii. Parasit. Vect. 10, 193 (2017).

Bateman, K. S. & Stentiford, G. D. A taxonomic review of viruses infecting crustaceans with an emphasis on wild hosts. J. Invertebr. Pathol. 147, 86–110 (2017).

Bojko, J. et al. Green crab Carcinus maenas symbiont profiles along a North Atlantic invasion route. Dis. Aquat. Organ. 128(2), 147–168 (2018).

Bojko, J. et al. Pathogens of Dikerogammarus haemobaphes regulate host activity and survival, but also threaten native amphipod populations in the UK. Dis. Aquat. Organ. 136, 63–78 (2019).

Bojko, J. et al. Baseline histopathological survey of a recently invading island population of ‘killer shrimp’ Dikerogammarus villosus. Dis. Aquat. Organ. 106, 241–253 (2019).

Beperet, I., Simón, O., Williams, T., López-Ferber, M. & Caballero, P. The ‘11K’ gene family members sf68, sf95 and sf138 modulate transmissibility and insecticidal properties of Spodoptera frugiperda multiple nucleopolyhedrovirus. J. Invertebr. Pathol. 127, 101–109 (2015).

Bolger, A. M., Lohse, M. & Usadel, B. Trimomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15), 2114–2120 (2014).

Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 514–620 (2013).

Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).

Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2688–2690 (2014).

Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMark S (2001) a self-training method for prediction of gene starts in microbial genomes Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).

Gasteiger, E. et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 31, 3784–3788 (2003).

Lightner, D. V., Redman, R. M. & Bell, T. A. Observations on the geographic-distribution, pathogenesis and morphology of the baculovirus from Penaeus monodon Fabricius. Aquaculture 32(3–4), 209–233 (1983).

Huger, A. M. A new virus disease of crickets (Orthoptera: Gryllidae) causing macronucleosis of fatbody. J. Invertebr. Pathol. 45, 108–111 (1985).

Raina, A. K. & Adams, J. R. Gonad-specific virus of corn earworm. Nature 374, 770–770 (1995).

Wolff, J., L. C. et al. Identification and characterization of a baculovirus from Lononia obliqua (Lepidoptera: Saturniidae). J. Invertebr. Pathol. 79, 137–145 (2002).

Huger, A. M. The Oryctes virus: Its detection, identification, and implementation in biological control of the coconut palm rhicnoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J. Invertebr. Pathol. 89, 78–84 (2005).

Unckless, R. L. A DNA Virus of Drosophila. PLoS ONE 6, e26564 (2011).

Acknowledgements
The authors acknowledge NERC funding to J.B. (Award #: 1368300); GDS and DB were funded by Cefas contract #FB002, which supported the collection of NGS data along with personal funds from DCB (University of Florida).

Author contributions
J.B., G.D.S. and D.B. designed the study. J.B. collected the animals. J.B. and T.A. conducted the bioinformatic analyses, including phylogenetics and annotation. T.A., G.D.S., D.B., D.C.B. and J.B. contributed to the text of the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
