BCR-ABL1 is a secondary event after JAK2V617F in a patient with essential thrombocythemia who develop chronic myeloid leukemia

Yanqing Zhang*, Hailiang Bi*, Ying Wang*, Long Chen, Jiaqi Pan*, Ping Xu*, Wei Wang*, Shaobin Yang*†

*Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China; †The Seventh Affiliated Hospital, Sun Yat-sen of University, Shenzhen, Guangdong, P. R. China; ‡Department of Molecular Biology Laboratory, Tianjin SINO-US-Diagnostics Co. Ltd, Tianjin, P. R. China.

Abstract

Several cases such as myeloproliferative neoplasms (MPN) with the coexistence of JAK2 and BCR-ABL have been reported. However, cases of transformation of essential thrombocythemia (ET) into chronic myeloid leukemia (CML) during the disease progression were rarely reported. Here, we report the case of a patient with JAK2 V617F-positive ET who subsequently acquired BCR-ABL1, which transformed the disease into CML after 10 years from the initial diagnosis. In this study, we dynamically monitored JAK2 V617F and BCR-ABL and observed multiple gene mutations, including IDH2, IDH1, ASXL1, KRAS, and RUNX1. It is important to be aware of this potentially clone evolution in disease progression.

Key words: BCR-ABL1; Chronic myeloid leukemia; Clonal evolution; JAK2 V617F; Postessential thrombocythemia myelofibrosis

1. **INTRODUCTION**

Myeloproliferative neoplasms (MPN) are caused by hematopoietic stem cells (HSCs) with somatic mutations in the genes involved in the tyrosine kinase signaling. The main affected genes include the BCR-ABL1 in Philadelphia chromosome-positive chronic myeloid leukemia (CML) and JAK2/MPL/CALR mutations in MPNs. Although it was thought to be mutually exclusive, a number of cases with coexistence of JAK2 V617F and BCR-ABL in patient with MPN have been reported.1–4 However, the cases of transformation of essential thrombocythemia (ET) into CML during the disease progression were rarely reported. Here, we report the case of a patient with JAK2 V617F-positive ET who subsequently acquired BCR-ABL1 that transformed into CML after 10 years from the initial diagnosis. In this study, we dynamically monitored clinical variables, hematologic data, bone marrow (BM) histomorphologic features, karyotype, JAK2 V617F, and BCR-ABL and observed multiple gene mutations by next-generation sequencing (NGS), including IDH2, IDH1, ASXL1, KRAS, RUNX1 etc. Although the case was rare, it is important to be aware of this potential clone evolution during disease progression. These features can be misinterpreted to reflect resistance to therapy or disease progression.

2. **CASE PRESENTATION**

Clinical characteristics, laboratory results, BM biopsy results, response, and prognosis of a case of a 48-year-old male patient with ET who developed CML after 10 years from the initial diagnosis in The Second Affiliated Hospital of Harbin Medical University were retrospectively collected and analyzed.

A 48-year-old male patient was diagnosed with JAK2V617F-positive ET, normal cytogenetics, and absence of BCR-ABL 10 years ago (2010). He was treated with hydroxyurea or interferon-alpha (IFN-α) until March 2017. A routine blood monitoring showed that white blood cell (WBC) was between 5 and 10 × 10⁹/L, and the platelet (PLT) was between 400 and 600 × 10⁹/L. He had a history of coronary stent implantation and irregularly followed oral administration of antiplatelet aggregation drugs and statins in 2017. In the same year (2017), the patient suffered from right lower abdominal pain and his blood routine examination revealed high WBC: 26 × 10⁹/L. Thus, he was diagnosed with acute appendicitis and took anti-inflammatory medication and appendectomy. After surgery, the abdominal pain improved, but WBC was still higher than normal. At that time, the patient did not pay attention to it. Routine blood monitoring showed that the WBC was between 15 and 30 × 10⁹/L, and the PLT was between 100 and 300 × 10⁹/L. The patient continued to take hydroxyurea treatment.

However, in October 2020, the patient had splenomegaly and hepatosplenomegaly was clinically confirmed by ultrasound (spleen length: 16.5 mm). Full blood count revealed a WBC of 41.97 × 10⁹/L, HB of 128 g/L, PLT of 307 × 10⁹/L, and an absolute neutrophil count of 30.38 × 10⁹/L. BM aspirate was mildly hypercellular with increased megakaryopoiesis and a normal megakaryocyte:erythrocyte (M:E) ratio (Fig. 1A). A BM biopsy examination showed a hypercellular...

*Address correspondence: Dr. Yanqing Zhang, Department of Hematology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Nanjiang, 150080, Harbin, Heilongjiang, P. R. China. E-mail address: yanqinzhang@vip.sina.com (Y. Zhang) and Shaobin Yang, Department of Molecular Biology Laboratory, Tianjin SINO-US-Diagnostics Co. Ltd, Tianjin, P. R. China. E-mail address: hbyangshaobin@163.com (S. Yang).

Conflicts of interest: The authors declare that they have no conflict of interest.

H.B. contributed equally.
marrow and predominant megakaryocytic proliferation, with very large and polyploid megakaryocytes arranged in tight clusters. Megakaryocytic proliferation was associated with a marked myeloid hyperplasia and the reticulin stain showed increased fibrosis (grade 3) (Fig. 1B and C). Cytogenetic analysis of the BM was abnormal (46, XY, del(13)(q13q21)[10]/46,XY[10]) when assessing twenty metaphases (Fig. 1D). In addition, we detected several mutations by next-generation sequencing (NGS). Nucleated cells (1.0 × 10⁷) were used for genomic DNA extraction after the lysis of red blood cells. NGS of genomic DNA was performed on the coding sequence (CDS) of the 175 hematological disease genes through Illumina NextSeq 550 with a mean sequencing depth of 2000 ◊. Data were analyzed using the bioinformatics pipeline in house (Data S1). The results found gene mutations, including JAK2 c.1849G>T/p.V617F (90.20%), IDH2 c.419G>A/p.R140Q (44.90%), ASXL1 c.1772dupA/p.Y519fs*1(12.10%), KRAS c.190T>G/p.Y64D (5.80%), RUNX1 c.508C>G/p.F203R.

Figure 1. Morphology and cytogenetic analysis. (A) Bone marrow (BM) morphology at post-ET MF diagnosis, Wright stained, ×100 magnification. (B and C) BM biopsy analysis at post-ET MF diagnosis, hematoxylin and eosin stained, ×40 magnification. (D) Karyotype at post-ET MF diagnosis: 46, XY, del(13)(q13q21). (E) BM morphology at CML diagnosis, Wright stained, ×100 magnification. (F) BM biopsy analysis at CML diagnosis, hematoxylin and eosin stained, ×40 magnification. (G and H) Karyotype at CML diagnosis: 46, XY, t(9;22)(q34;q11) and 46, XY, del(13)(q13q21). (I and J) Interphase fluorescence in situ hybridization (FISH) (Vysis dual color, dual-fusion translocation probe) analysis of BCR::ABL1 (ABL1 red, BCR green). Abbreviation: CML = chronic myeloid leukemia.
JAK2 V617F (PCR) Positive Positive 96.2
FISH BCR-ABL 0 0.50% 92.50%

Clinical characteristics of the patient in three phases.

Characteristics	ET phase	Post-ET MF phase	CML phase
Size of spleen (below costal margin, cm)	Normal	15	15
Hemoglobin, g/dL	132	128	92
Platelet count, x10^9/L	658	307	135
WBC count, x10^9/L	7.2	41.97	128.6
Neutrophils absolute count, x10^9/L (%)	3.8	37.35	36
Blasts (%)	0	2	5
Promyelocytes (%)	0	7	8
Myelocytes (%)	0	2	3
Metamyelocytes (%)	0	1	11
Bands (%)	0	2	10
Neutrophils (%)	75	83.1	28
Lymphocytes (%)	20	2.9	7
Monocytes (%)	4	3.1	3
Eosinophils (%)	0	1.4	3
Basophils (%)	1	2.5	9
LDH, IU/L	189	661	1233
Karyotype (ISCN)	46, XY,del(13)(q14q14)	46, XY,del(13)(q14q14)	46, XY,del(13)(q14q14)
FISH BCR-ABL	0.50%	92.50%	
JAK2 V617F (PCR)	Positive	Positive	96.2

Abbreviations: CML = chronic myeloid leukemia, ET = essential thrombocythemia, FISH = fluorescence in situ hybridization, LDH = lactate dehydrogenase, MF = myelofibrosis, WBC = white blood cell.
References, year	No. patients	Sex	Age at 1st D	Diagnosis*	Time to second Dx, years	Splenomegaly (cm)	WBC (×10^9/L)	PLT (×10^9/L)	HB (g/L)	BCR-ABL quantitation (PCR)	FISH	JAK2 (% Allele frequency)	Bone marrow reticulin	Treatment	Alive/Dead	
Soderquist et al, 2018	1	F	66	ET	3	ND	ND	ND	ND	Positive, e/3a2	ND	Positive, 24%	Moderate	Hy and Rux	A	
														Nil, Hy and Rux	A	
Kandarpa et al, 2017	2	M	63	ET	2	ND	ND	42	38	Negative, 4.40%	ND	Negative, 50%	Moderate	Das and Rux	Im A	
Kandarpa et al, 2017	3	M	70	ET	4	ND	ND	3.8	589	No detected	ND	93.3%	Moderate	Im	Im A	
														Das and Rux	A	
														Calr	A	
Kandarpa et al, 2017	4	F	59	ET	13	ND	ND	48.2	380	Negative	ND	Positive, 24%	Mild to none	Das and Rux	A	
														Anagrelide	A	
Grisouard et al, 2013	5	F	51	ET	5	ND	ND	ND	ND	Negative	ND	Negative, 24%	Moderate	Im	A	
														Nil, Hy and Rux	A	
Jallades et al, 2008	6	F	56	ET	4	ND	ND	ND	ND	Positive, b/3a2	ND	t(9;22)(q34;q11)	Moderate	Hy and Rux	A	
														Das and Rux	A	
Curtin et al, 2005	7	M	73	ET	12	16.7	1000	1000	13.5	Negative	81%	t(9;22)(q34;q11)	Positive	Aspirin	A	
												Positive, 24%	Moderate	Hy or Im	A	
Wahlin and Golovleva, 2003	8	M	41	ET	18	60.1	Normal	9180	93.5%	Positive, 24%	ND	Positive, 24%	Moderate	Hy and IFN	A	
														Peripheral SCT	A	
Soderquist et al, 2018	9	F	48	PV	5	26.1	66	13.4	e/3a2	ND	46,XX:t(9;22)(q34;q11)	24.4%			Phleb, Hy, IFN	A
														IFN and Rux	D	
														Hy	D	
														Th or Rux	D	
Kandarpa et al, 2017	11	M	76	PV	6	60.2	77	8.8	e/1a2	63%	46,XX:t(9;22)(q34;q11)	>50%			Im, Th and Rux	A
														Hy or Im	D	
														Das and Rux	A	
Zhou et al, 2015	13	F	45	PV	11	Yes	45	799	95	46,XX:t(9;22)(q34;q11)	6%			Das, Hy and Rux	A	
														Hy	A	
Wang et al, 2013	14	M	45	CML	12	45	ND	95	95	Positive, 24%	ND	Positive, 24%	Moderate	Hy and Rux	A	
														Im and Das	A	
														Phleb	A	
Pieri et al, 2011	16	M	72	PV	10	46	462	118	b/3a2	61%	46,XY:t(9;22)(q34;q11)	61%			Hy	A
														Im and Das	A	
Pingali et al, 2009	17	M	39	PV	15	8	662	342	129	Negative	ND	t(9;22)(q34;q11)	Positive	Im, Nil and Das	A	
												62%	Moderate	Im and IFN	D	
Hussein et al, 2008	18	M	48	PV	15	16.7	1000	1000	135	ND	b/3a2	81%	Positive	Im and IFN	D	

(Continued)
Table 2

(Continued)

Reference	No. of patients	Age at 1st diagnosis	Gender	Sex	Diagnosis*	Time to 2nd diagnosis	Bone marrow studies	JAK2	Bone marrow reticulin	FISH	BCR-ABL quantitation (P2R)	WBC	PLT	HB	Alive/Dead	Treatment		
Soderquist et al, 2007	22	45	PMF	M	CML	16	Yes	F	66 PMF	CML	Philadelphia	102	142	557	83	Positive	Im	+
Mirza et al, 2007	23	48	PMF	M	CML	3	Yes	F	67	CML	Philadelphia	65	625	90	-50	Positive	Im	-
Mirza et al, 2014	23	48	PMF	M	CML	1	Yes	F	67	CML	Philadelphia	65	625	90	-50	Positive	Im	-

Reference	No. of patients	Age at 1st diagnosis	Gender	Sex	Diagnosis*	Time to 2nd diagnosis	Bone marrow studies	JAK2	Bone marrow reticulin	FISH	BCR-ABL quantitation (P2R)	WBC	PLT	HB	Alive/Dead	Treatment		
Soderquist et al, 2014	23	48	PMF	M	CML	1	Yes	F	67	CML	Philadelphia	65	625	90	-50	Positive	Im	-

Abbr: No. = number of patients, PMF = Philadelphia positive CML, CML = chronic myelogenous leukemia, EA = essential myeloid neoplasms, BCR::ABL = BCR-ABL1 translocation and JAK2 V617F mutation. Other abbreviations are defined in the table.

In conclusion, we describe a rare case of a patient who was diagnosed with ET followed by a diagnosis of CML and demonstrated that a preexisting JAK2 V617F positive clone acquired BCR::ABL1 translocation. This might suggest the necessity of screening for BCR::ABL1 translocation in patients with MPN with poor treatment responses and a rapid megalosplenia.

REFERENCES

[1] Soderquist CR, Ewalt MD, Czachlewski DR, et al. Myeloproliferative neoplasms with concurrent BCR-ABL1 translocation and JAK2 V617F mutation: a multi-institutional study from the bone marrow pathology group. *Mod Pathol* 2018;31(5):690–704.

[2] Kandarpa M, Wu YM, Robinson D, Burke PW, Chinnaiyan AM, Talpaz M. Clinical characteristics and whole exome/transcriptome sequencing of coexisting chronic myeloid leukemia and myelofibrosis. *Am J Hematol* 2017;92(6):555–561.

[3] Mirza I, Frantz C, Clarke G, Voth AJ, Turner R. Transformation of polycythemia vera to chronic myelogenous leukemia. *Arch Pathol Lab Med* 2007;131(1):179–1724.

[4] Jullades L, Fayette S, Tigand L, et al. Emergence of therapy-unrelated CML on a background of BCR-ABL-negative JAK2V617F-positive chronic idiopathic myelofibrosis. *Leuk Res Rev* 2008;32(10):1608–1610.

[5] Grisuard J, Ojeda-Uribe M, Looser R, et al. Complex subclone structure that responds differentially to therapy in a patient with essential thrombocythaemia and chronic myeloid leukemia. *Blood* 2013;122(22):3694–3696.

[6] Curtin NJ, Campbell PJ, Green A, R. The Philadelphia translocation and pre-existing myeloproliferative disorders. *Br J Haematol* 2005;128(5):734–736.

[7] Wahlín A, Golovleva I. Emergence of Philadelphia positive chronic myeloid leukemia during treatment with hydroxyurea for Philadelphia negative essential thrombocytopenia. *Eur J Haematol* 2005;70(4):240–241.

This can explain the presence of 2 diseases in the same patient. In addition, the presence of these mutations indicates poor prognosis in MF and suggest short overall survival. How to explain the transformation of MPN to CML? Is it clonal evolution or therapy-related CML? Therapy-related CML has been reported in other cancers, including breast, lung, and gastric cancers, but very little is known about its clinical presentation and pathologic features. Although treatment strategies would be exactly the same as those for de novo CML, little is known about the responses and outcomes of therapy-related CML patients treated with TKIs. Iriyama et al[15] reported 11 patients with therapy-related CML treated with TKIs. The responses, prognoses, treatment responses, and outcomes were favorable as those of patients with de novo CML.[15] Although therapy-related CML have been reported to be potentially related to chemotherapy, radiotherapy, and immunosuppressive therapy, the pathogenesis of therapy-related CML is unclear. Either chemotherapy or radiotherapy could have had their immunity aggrieved or BM microenvironment injured.

Interestingly, low levels of BCR::ABL1 transcripts have been detected in some MPN at the cytogenetic level.[6,7] This and the chronology of reported transformations of PV or ET to CML suggest that the emergence of CML is likely a secondary event that results in the expansion of a clone with a greater proliferative advantage. It also appears to be consistent with the epidemiologic data that have shown that the pathogenesis of chronic phase CML is a result of 2 or more genetic events rather than a single hit.[18] However, others have suggested the mutations may arise in two independent clones. Nevertheless, both these scenarios presuppose an unstable genome that induces multiple changes in a stem cell or favors emergence of other competing clones. However, another hypothesis suggests that JAK2 V617F mutation increases genetic instability, resulting in the acquisition of a translocation or loss of heterozygosity. Alternatively, the patient may have a germline predisposition to leukemia, or a JAK2 V617F mutation that may have occurred in an HSC together with other somatic mutations that induce genetic instability.[10]

In conclusion, we describe a rare case of a patient who was diagnosed with ET followed by a diagnosis of CML and demonstrated that a preexisting JAK2 V617F positive clone acquired BCR::ABL1 translocation. This might suggest the necessity of screening for BCR::ABL1 translocation in patients with MPN with poor treatment responses and a rapid megalosplenia.
[8] Zhou A, Knoche EM, Engle EK, Fisher DA, Oh ST. Concomitant JAK2 V617F-positive polycythemia vera and BCR-ABL-positive chronic myelogenous leukemia treated with ruxolitinib and dasatinib. Blood Cancer J 2015;5:e351.

[9] Wang X, Tripodi J, Kremyanskaya M, et al. BCR-ABL1 is a secondary event after JAK2V617F in patients with polycythemia vera who develop chronic myeloid leukemia. Blood 2013;121(7):1238–1239.

[10] Pieri L, Spolverini A, Scappini B, et al. Concomitant occurrence of BCR-ABL and JAK2V617F mutation. Blood 2011;118(12):3445–3446.

[11] Yamada O, Mahfoudhi E, Plo I, et al. Emergence of a BCR-ABL translocation in a patient with the JAK2V617F mutation: evidence for secondary acquisition of BCR-ABL in the JAK2V617F clone. J Clin Oncol 2014;32(21):e76–e79.

[12] Pingali SR, Mathisson MA, Lovrich SD, Go RS. Emergence of chronic myelogenous leukemia from a background of myeloproliferative disorder: JAK2V617F as a potential risk factor for BCR-ABL translocation. Clin Lymphoma Myeloma 2009;9(5):E25–9.

[13] Hussein K, Bock O, Theophile K, et al. Chronic myeloproliferative diseases with concurrent BCR-ABL junction and JAK2V617F mutation. Leukemia 2008;22(5):1059–62.

[14] Bocchis M, Vannucchi AM, Gozetti A, et al. Insights into JAK2-V617F mutation in CML. Lancet Oncol 2007;8(10):864–6.

[15] Iriyama N, Tokuhira M, Takaku T, et al. Incidences and outcomes of therapy-related chronic myeloid leukemia in the era of tyrosine kinase inhibitors: Surveillance of the CML Cooperative Study Group. Leuk Res 2017;54:55–58.

[16] De Rocct L, Michaux L, Debuckere K, Lierman E, Vandenberghe P, Devos T. Coexisting driver mutations in MPN: clinical and molecular characteristics of a series of 11 patients. Hematology 2018;23(10):785–792.

[17] Masykura N, Habibah U, Selasih S, et al. Feasibility of qualitative testing of BCR-ABL and JAK2 V617F in suspected myeloproliferative neoplasms (MPN) using RT-PCR reversed dot blot hybridization (RT-PCR RDB). Clin Lymphoma Myeloma Leuk 2019;19(4):220–227.

[18] Goldman JM, Green AR, Holyoake T, et al. Chronic myeloproliferative diseases with and without the Ph chromosome: some unresolved issues. Leukemia 2009;23(10):1708–1715.