Extension of Lipschitz Functions Defined on Metric Subspaces of Homogeneous Type

Alexander Brudnyi*
Department of Mathematics and Statistics
University of Calgary, Calgary, Canada
e-mail: albru@math.ucalgary.ca

Yuri Brudnyi
Department of Mathematics
Technion, Haifa, Israel
e-mail: ybrudnyi@math.technion.ac.il

Abstract
If a metric subspace M^o of an arbitrary metric space M carries a doubling measure μ, then there is a simultaneous linear extension of all Lipschitz functions on M^o ranged in a Banach space to those on M. Moreover, the norm of this linear operator is controlled by logarithm of the doubling constant of μ.

1 Formulation of the Main Result
Let (M, d) be a metric space and X be a Banach space. The space $Lip(M, X)$ consists of all X-valued Lipschitz functions on M. The Lipschitz constant

$$L(f) := \sup_{m \neq m'} \left\{ \frac{||f(m) - f(m')||}{d(m, m')} : m, m' \in M \right\}$$

(1.1)

of a function f from this space is therefore finite and the function $f \mapsto L(f)$ is a Banach seminorm on $Lip(M, X)$.

Let M^o be a metric subspace of M, i.e., $M^o \subset M$ is a metric space endowed with the induced metric $d|_{M^o \times M^o}$.

Convention. We mark all objects related to the subspace M^o by the upper "o".

*Research supported in part by NSERC.
2000 Mathematics Subject Classification. Primary 26B35, Secondary 54E35, 46B15.
Key words and phrases. Metric space of homogeneous type, Lipschitz function, linear extension.
A linear operator $E : \text{Lip}(M^o, X) \to \text{Lip}(M, X)$ is called a simultaneous extension if for all $f \in \text{Lip}(M^o, X)$

$$Ef|_{M^o} = f$$

and, moreover, the norm

$$||E|| := \sup \left\{ \frac{L(Ef)}{L(f)} : f \in \text{Lip}(M^o, X) \right\}$$

is finite.

To formulate the main result we also need

Definition 1.1 A Borel measure μ on a metric space (M, d) is said to be doubling if the μ-measure of every open ball

$$B_R(m) := \{m' \in M : d(m, m') < R\}$$

is strictly positive and finite and the doubling constant

$$D(\mu) := \sup \left\{ \frac{\mu(B_{2R}(m))}{\mu(B_R(m))} : m \in M, \ R > 0 \right\}$$

(1.2)

is finite.

A metric space carrying a fixed doubling measure is called of homogeneous type.

Our main result is

Theorem 1.2 Let M^o be a metric subspace of an arbitrary metric space (M, d). Assume that (M^o, d^o) is of homogeneous type and μ^o is the corresponding doubling measure. Then there exists a simultaneous extension $E : \text{Lip}(M^o, X) \to \text{Lip}(M, X)$ satisfying

$$||E|| \leq c(\log_2 D(\mu^o) + 1)$$

(1.3)

with some numerical constant $c > 1$.

Let us discuss relations of this theorem to some known results. First, a similar result holds for an arbitrary subspace M^o provided that the ambient space M is of pointwise homogeneous type, see [BB1, Theorem 2.21] and [BB2, Theorem 1.14]. The class of metric spaces of pointwise homogeneous type contains, in particular, all metric spaces of homogeneous type, Riemannian manifolds $M_\omega \cong \mathbb{R}^n \times \mathbb{R}_+$ with the path metric defined by the Riemannian metric

$$ds^2 := \omega(x_{n+1})(dx_1^2 + \ldots + dx_{n+1}^2), \quad (x_1, \ldots, x_n, x_{n+1}) \in \mathbb{R}^n \times \mathbb{R}_+,$$

where $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous nonincreasing function (e.g., the hyperbolic spaces \mathbb{H}^n are in this class), and finite direct products of these objects.

The following problem is of a considerable interest.

Problem 1.3 Is it true that Theorem 1.2 is valid for $M^o (\subset M)$ isometric to a subspace of a metric space (\hat{M}, \hat{d}) of pointwise homogeneous type with $||E|| \leq c(\hat{M})$?
(Here \(c(\hat{M}) \) depends on some characteristics of \(\hat{M} \) only.)

It is proved in \([BB2]\) that as such \(M^o \) one can take, e.g., finite direct products of Gromov hyperbolic spaces of bounded geometry and that the answer in Problem 1.3 is positive in this case.

Second, as a consequence of Theorem 1.2 we obtain a deep extension result due to Lee and Naor, see \([LN, \text{Theorem 1.6}]\). The latter asserts that a simultaneous extension \(\hat{E} : Lip(\hat{M}^o, X) \to Lip(\hat{M}, X) \) exists whenever the subspace \((M^o, d^o)\) of \((M, d)\) has the finite doubling constant \(\delta(M^o) \) and, moreover,

\[
||E|| \leq c \log_2 \delta(M^o) \tag{1.4}
\]

with some numerical constant \(c > 1 \).

Let us recall that the doubling constant \(\delta(M) \) of a metric space \((M, d)\) is the infimum of integers \(N \) such that every closed ball of \(M \) of radius \(R \) can be covered by \(N \) closed balls of radius \(R/2 \). The space \(M \) is said to be doubling if \(\delta(M) < \infty \).

To derive the Lee-Naor theorem from our main result we first note that without loss of generality one may assume that \((M^o, d^o)\) is complete. By the Koniagin-Vol’berg theorem \([KV]\) (see also \([LS]\)) a complete doubling space \(M \) carries a doubling measure \(\mu \) such that

\[
\log_2 D(\mu) \leq c \log_2 \delta(M) \tag{1.5}
\]

where \(c \geq 1 \) is a numerical constant. Together with (1.3) this implies the Naor-Lee result.

On the other hand, it was noted in \([CW]\) that if \(M \) carries a doubling measure \(\mu \), then this space is doubling and

\[
\log_2 \delta(M) \leq c \log_2 D(\mu) \tag{1.6}
\]

with some numerical constant \(c > 1 \). Hence, Theorem 1.2 is, in turn, a consequence of (1.6) and the Lee-Naor theorem. However, the rather elaborated proof of the latter result is nonconstructive (it exploits an appropriate stochastic metric decomposition of \(M \setminus M^o \)). In contrast, our proof is constructive and is based on a simple average procedure. Therefore our proof can be also seen as a streamlining constructive method of the proof of the Lee-Naor theorem.

2. Proof of Theorem 1.2.

We begin with the following remark reducing the required result to a special case.

Let \(M \) and \(M^o \) be isometric to subspaces of a new metric space \(\hat{M} \) and its subspace \(\hat{M}^o \), respectively. Assume that there exists a simultaneous extension \(\hat{E} : Lip(\hat{M}^o, X) \to Lip(\hat{M}, X) \). Then, after identification of \(M^o \) and \(M \) with the corresponding isometric subspaces of \(\hat{M} \), the operator \(\hat{E} \) gives rise to a simultaneous extension \(E : Lip(M^o, X) \to Lip(M, X) \) satisfying

\[
||E|| \leq ||\hat{E}||. \tag{2.1}
\]
If, in addition, $||\hat{E}||$ is bounded by the right-hand side of (1.3), then the desired result immediately follows.

We choose as the above pair $\hat{M}^o \subset \hat{M}$ metric spaces denoted by M_N^0 and M_N where $N \geq 1$ is a fixed integer and defined as follows.

The underlying sets of these spaces are

$$M_N := M \times \mathbb{R}^N, \quad M_N^0 := M^o \times \mathbb{R}^N; \quad \text{(2.2)}$$

a metric d_N on M_N is given by

$$d_N((m, x), (m', x')) := d(m, m') + |x - x'|_1 \quad \text{(2.3)}$$

where $m, m' \in M$ and $x, x' \in \mathbb{R}^N$, and $|x|_1 := \sum_{i=1}^N |x_i|$ is the l_1-metric of $x \in \mathbb{R}^N$. Further, d_N^o denotes the metric on M_N^0 induced by d_N.

Finally, we define a Borel measure μ^o_N on M_N^0 as the tensor product of the measure μ^o and the Lebesgue measure λ_N on \mathbb{R}^N:

$$\mu^o_N := \mu^o \otimes \lambda_N. \quad \text{(2.4)}$$

We extend this measure to the σ-algebra consisting of subsets $S \subset M_N$ such that $S \cap M_N^0$ is a Borel subset of M_N^0. Namely, we set for these S

$$\pi_N(S) := \mu^o_N(S \cap M_N^0).$$

It is important for the subsequent part of the proof that every open ball $B_R((m, x)) \subset M_N$ belongs to this σ-algebra. In fact, its intersection with M_N^0 is a Borel subset of this space, since the function $(m', x') \mapsto d_N((m, x), (m', x'))$ is continuous on M_N^0. Hence,

$$\pi_N(B_R((m, x))) = \mu^o_N(B_R((m, x)) \cap M_N^0). \quad \text{(2.5)}$$

Auxiliary results

The measure μ^o_N is clearly doubling. Therefore its dilation function given for $l \geq 1$ by

$$D^o_N(l) := \sup \left\{ \frac{\mu^o_N(B_R^o(\hat{m}))}{\mu^o_N(B_R^o(\hat{m}))} : \hat{m} \in M_N^o \text{ and } R > 0 \right\}$$

is finite.

Hereafter we denote by \hat{m} the pair (m, x) with $m \in M$ and $x \in \mathbb{R}^N$, and by $B_R^o(\hat{m})$ the open ball in M_N^0 centered at $\hat{m} \in M_N^0$ and of radius R. The open ball $B_R(\hat{m})$ of M_N relates to that by

$$B_R^o(\hat{m}) = B_R(\hat{m}) \cap M_N^o$$

provided $\hat{m} \in M_N^o$.

In [BB1] the value $D^o_N(1 + 1/N)$ is proved to be bounded by some numerical constant for all sufficiently large N. In the argument presented below we require a similar estimate for a (modified) dilation function D_N for the extended measure π_N. This is given for $l \geq 1$ by

$$D_N(l) := \sup \left\{ \frac{\pi_N(B_R(\hat{m}))}{\pi_N(B_R(\hat{m}))} \right\}. \quad \text{(2.6)}$$
where the supremum is taken over all R satisfying
\[R > 4d(\tilde{m}, M^o_N) := 4 \inf \{ d_N(\tilde{m}, \tilde{m}') : \tilde{m}' \in M^o_N \} \quad (2.7) \]
and then over all $\tilde{m} \in M_N$.

Due to (2.5) and (2.7) the denominator in (2.6) is not zero and $D_N(l)$ is well defined.

Comparison of the above dilation functions shows that $D_N^o(l) \leq D_N(l)$. Nevertheless, the converse is also true for l close to 1.

Lemma 2.1 Assume that N and the doubling constant $D := D(\mu^o)$, see (1.2), are related by
\[N \geq [3 \log_2 D] + 5. \quad (2.8) \]
Then the following is true:
\[D_N(1 + 1/N) \leq \frac{6}{5} e^4. \]

Proof. In accordance with the definition of D_N, see (2.6), we must estimate the function
\[\frac{\overline{\mu}_N(B_{R_N}(\tilde{m}))}{\overline{\mu}_N(B_{R}(\tilde{m}))} \quad \text{where} \quad R_N := \left(1 + \frac{1}{N}\right) R. \quad (2.9) \]
Since the points \tilde{m}' of the ball $B_{R_N}(\tilde{m})$ of M_N satisfy the inequality
\[d(m, m') + |x - x'|_1 < R_N, \]
the Fubini theorem and (2.5) yield
\[\overline{\mu}_N(B_{R_N}(\tilde{m})) = \gamma_N \int_{M^o \cap B_{R_N}(m)} (R_N - d(m, m'))^N d\mu^o(m'); \quad (2.10) \]
here γ_N is the volume of the unit t^N_1-ball.

We must estimate the integral in (2.10) from above under the condition
\[d_N(\tilde{m}, M^o_N) < R/4. \quad (2.11) \]
To this end split the integral into one over $B_{3R/4}(m) \cap M^o$ and one over the remaining part $(B_{R_N}(m) \setminus B_{3R/4}(m)) \cap M^o$. Denote these integrals by I_1 and I_2. For I_2 we get
\[I_2 \leq \gamma_N (R_N - 3R/4)^N \mu^o(B_{R_N}(m) \cap M^o). \quad (2.12) \]
Further, from (2.11) we clearly have
\[d(m, M^o) < R/4. \]
Pick a point $\tilde{m} \in M^o$ so that
\[d(m, M^o) \leq d(m, \tilde{m}) < R/4. \]
Then we have the following embeddings

\[B_{R_{N/4}}(\hat{m}) \subset B_{R_{N/2}}(m) \cap M^o \subset B_{R_N}(m) \cap M^o \subset B_{5R_{N/4}}(\hat{m}). \]

Applying the doubling inequality for the measure \(\mu^o \), see (1.2), we then obtain

\[\mu^o(\partial B_{R_N}(m) \cap M^o) \leq D^3 \mu^o(\partial B_{R_{N/2}}(m) \cap M^o). \]

Moreover, due to (2.8)

\[D^3 < 2^{[\log_2 D]+1} \leq 2^{N-4}. \]

Combining the last two inequalities with (2.12) we have

\[I_2 \leq \gamma_N 2^{-N+4} \left(1 + \frac{4}{N}\right)^N \int_{\partial B_{R_N}(m) \cap M^o} (R - d(m, m'))^N d\mu^o(m'). \]

(2.13)

To estimate the integral \(I_1 \) we rewrite its integrand as follows:

\[(R_N - d(m, m'))^N = \left(1 + \frac{1}{N}\right)^N (R - d(m, m'))^N \left(1 + \frac{d(m, m')}{(N+1)(R - d(m, m'))}\right)^N. \]

Since \(m' \in B_{3/4R}(m) \), the last factor is at most \(\left(1 + \frac{3R/4}{(N+1)R/4}\right)^N = \left(1 + \frac{3}{N+1}\right)^N \).

This yields

\[I_1 \leq \gamma_N \left(1 + \frac{1}{N}\right)^N \left(1 + \frac{3}{N+1}\right)^N \int_{\partial B_{3R/4}(m) \cap M^o} (R - d(m, m'))^N d\mu^o(m') \leq \]

\[e^4 \overline{\kappa}_N(B_R(\hat{m})). \]

Hence for the part of fraction (2.9) related to \(I_1 \) we have

\[\overline{I}_1 := \frac{I_1}{\overline{\kappa}_N(B_R(\hat{m}))} \leq e^4. \]

(2.14)

To estimate the remaining part \(\overline{I}_2 := \frac{I_2}{\overline{\kappa}_N(B_R(\hat{m}))} \) we note that its denominator is greater than

\[\gamma_N \int_{M^o \cap \partial B_{R_{N/2}}(m)} (R - d(m, m'))^N d\mu^o(m'). \]

Since here \(d(m, m') \leq R_N/2 \), this, in turn, is bounded from below by

\[\gamma_N 2^{-N} \left(1 - \frac{1}{N}\right)^N \int_{\partial B_{R_N/2}(m) \cap M^o} (R - d(m, m'))^N d\mu^o(m'). \]

Combining this with (2.13) and noting that \(N \geq 5 \) we get

\[\overline{I}_2 \leq 2^{-4} \left(1 - \frac{1}{N}\right)^{-N} \left(1 + \frac{4}{N}\right)^N \leq \frac{1}{5} e^4. \]

Hence the fraction (2.9) is bounded by \(\overline{I}_1 + \overline{I}_2 \leq \frac{6}{5} e^4 \), see (2.14), and this immediately implies the required estimate of \(D_N(1 + 1/N) \). \(\square \)

In the next lemma we estimate \(\overline{\kappa}_N \)-measure of the spherical layer \(B_{R_2}(\hat{m}) - B_{R_1}(\hat{m}) \), \(R_2 \geq R_1 \), by a kind of a surface measure. For its formulation we set

\[A_N := \frac{12}{5} e^4 N. \]

(2.15)
Lemma 2.2 Assume that

\[N \geq [3 \log_2 D] + 6. \]

Then for all \(\tilde{m} \in M_N \) and \(R_1, R_2 > 0 \) satisfying

\[R_2 \geq \max\{R_1, 8d_N(\tilde{m}, M^o_N)\} \]

the following is true

\[\bar{\mu}_N(B_{R_2}(\tilde{m}) \setminus B_{R_1}(\tilde{m})) \leq A_N \frac{\bar{\mu}_N(B_{R_2}(\tilde{m}))}{R_2} (R_2 - R_1). \]

Proof. By definition \(M_N = M_{N-1} \times \mathbb{R} \) and \(\bar{\mu}_N = \bar{\mu}_{N-1} \otimes \lambda_1 \). Then by the Fubini theorem we have for \(R_1 \leq R_2 \) with \(\tilde{m} = (\tilde{m}, t) \)

\[\bar{\mu}_N(B_{R_2}(\tilde{m})) - \bar{\mu}_N(B_{R_1}(\tilde{m})) = 2 \int_{R_1}^{R_2} \bar{\mu}_{N-1}(B_s(\tilde{m})) ds \leq \frac{2R_2 \bar{\mu}_{N-1}(B_{R_2}(\tilde{m}))}{R_2} (R_2 - R_1). \]

We claim that for arbitrary \(l > 1 \) and \(R \geq 8d_N(\tilde{m}, M^o_N) : = 8d_{N-1}(\tilde{m}, M^o_{N-1}) \)

\[R \bar{\mu}_{N-1}(B_R(\tilde{m})) \leq \frac{l D_{N-1}(l)}{l - 1} \bar{\mu}_N(B_R(\tilde{m})). \quad (2.16) \]

Together with the previous inequality this will yield

\[\bar{\mu}_N(B_{R_2}(\tilde{m})) - \bar{\mu}_N(B_{R_1}(\tilde{m})) \leq \frac{2l D_{N-1}(l)}{l - 1} \frac{\bar{\mu}_N(B_{R_2}(\tilde{m}))}{R_2} (R_2 - R_1). \]

Finally choose here \(l = 1 + \frac{1}{N-1} \) and use Lemma 2.1. This will give the required inequality.

Hence, it remains to establish (2.16). By the definition of \(D_{N-1}(l) \) we have for \(l > 1 \) using the previous lemma

\[\bar{\mu}_N(B_{lR}(\tilde{m})) = 2l \int_0^R \bar{\mu}_{N-1}(B_{ls}(\tilde{m})) ds \leq 4l \int_{R/2}^R \bar{\mu}_{N-1}(B_{ls}(\tilde{m})) ds \leq 4l D_{N-1}(l) \int_{R/2}^R \bar{\mu}_{N-1}(B_s(\tilde{m})) ds \leq 2l D_{N-1}(l) \bar{\mu}_N(B_R(\tilde{m})). \]

On the other hand, replacing \([0, R]\) by \([l^{-1}R, R]\) we also have

\[\bar{\mu}_N(B_{lR}(\tilde{m})) \geq 2l \bar{\mu}_{N-1}(B_R(\tilde{m}))(R - l^{-1}R) = 2(l - 1)R \bar{\mu}_{N-1}(B_R(\tilde{m})). \]

Combining the last two inequalities we get (2.16). \qed

Extension operator

We define the required simultaneous extension \(E : Lip(M^o_N, X) \to Lip(M_N, X) \) using the standard average operator \(Ave \) defined on continuous and locally bounded functions \(g : M^o_N \to X \) by

\[Ave(g; \tilde{m}, R) := \frac{1}{\bar{\mu}_N(B_R(\tilde{m}))} \int_{B_R(\tilde{m})} g d\bar{\mu}_N. \]
To be well-defined the domain of integration $B_R(\hat{m}) \cap M_N^o$ should be of strictly positive μ_N-measure (i.e., μ_N-measure). This condition is fulfilled in the case presented now. Namely, we define the simultaneous extension E on functions $f \in Lip(M_N^o, X)$ by

$$(Ef)(\hat{m}) := \begin{cases} f(\hat{m}) & \text{if } \hat{m} \in M_N^o \\ \text{Ave}(f; m, R(\hat{m})) & \text{if } \hat{m} \notin M_N^o \end{cases}$$ \tag{2.17}$$

where we set

$$R(\hat{m}) := 8d_N(\hat{m}, M_N^o).$$

The required estimate of $\|E\|$ is presented below. To formulate the result we set

$$K_N(l) := A_N D_N(l)(4l + 1)$$ \tag{2.18}$$

where the first of two factors are defined by (2.15) and (2.6).

Proposition 2.3 The following inequality

$$\|E\| \leq 20A_N + \max \left(\frac{4l + 1}{2(l - 1)}, K_N(l) \right)$$

is true provided $l := 1 + 1/N$.

Before we begin the proof let us derive from here the desired result. Namely, choose

$$N := \lfloor 3 \log_2 D \rfloor + 6$$

and use Lemma 2.1 and (2.15) to estimate $D_N(1 + 1/N)$ and A_N. Then we get

$$\|E\| \leq C(\log_2 D + 2)$$

with some numerical constant C. This clearly gives (1.3).

Proof. We have to show that for every $\tilde{m}_1, \tilde{m}_2 \in M_N$

$$\|(Ef)(\tilde{m}_1) - (Ef)(\tilde{m}_2)\|_X \leq K\|f\|_{Lip(M_N^o, X)} d_N(\tilde{m}_1, \tilde{m}_2)$$ \tag{2.19}$$

where K is the constant in the inequality of the proposition.

It suffices to consider only two cases:

(a) $\tilde{m}_1 \in M_N^o$ and $\tilde{m}_2 \notin M_N^o$;

(b) $\tilde{m}_1, \tilde{m}_2 \notin M_N^o$.

We assume without loss of generality that

$$\|f\|_{Lip(M_N^o, X)} = 1$$ \tag{2.20}$$

and simplify the computations by introducing the following notations:

$$R_i := d_N(\hat{m}_i, M_N^o), \ B_{ij} := B_{8R_i}(%(\hat{m}_i)) \ , \ v_{ij} := \mu_N(B_{ij}) , \ 1 \leq i, j \leq 2 .$$ \tag{2.21}$$
We assume also for definiteness that
\[0 < R_1 \leq R_2. \] (2.22)

By the triangle inequality we then have
\[0 \leq R_2 - R_1 \leq d_N(\hat{m}_1, \hat{m}_2). \] (2.23)

Further, by Lemma 2.2 the quantities introduced satisfy the following inequality:
\[v_{i2} - v_{i1} \leq \frac{A_N v_{i2}}{R_2} (R_2 - R_1), \] (2.24)

Let now \(\hat{m}^* \) be such that \(d_N(\hat{m}_1, \hat{m}^*) < 2R_1 \). Set
\[\hat{f}(\hat{m}) := f(\hat{m}) - f(\hat{m}^*). \] (2.25)

From the triangle inequality we then obtain
\[\max \{ ||\hat{f}(\hat{m})||_X : \hat{m} \in B_{i2} \cap M_N^o \} \leq 10R_2 + (i - 1)d_N(\hat{m}_1, \hat{m}_2); \] (2.26)

here \(i = 1, 2 \).

We now prove (2.19) for \(\hat{m}_1 \in M_N^o \) and \(\hat{m}_2 \not\in M_N^o \). We begin with the evident inequality
\[||(E f)(\hat{m}_2) - (E f)(\hat{m}_1)||_X = \frac{1}{v_{i2}} \left| \int_{B_{i2}} \hat{f}(\hat{m}) d\mu_N \right|_X \leq \max_{B_{i2} \cap M_N^o} ||\hat{f}||_X, \]
see (2.21) and (2.25). Applying (2.26) with \(i = 2 \) we then bound this maximum by
\[10R_2 + d_N(\hat{m}_1, \hat{m}_2). \]
But \(\hat{m}_1 \in M_N^o \) and so
\[R_2 = d_N(\hat{m}_2, M_N^o) \leq d_N(\hat{m}_1, \hat{m}_2); \]
therefore (2.19) holds in this case with \(K = 11 \).

The remaining case \(\hat{m}_1, \hat{m}_2 \not\in M_N^o \) requires some additional auxiliary results. For their formulations we first write
\[(Ef)(\hat{m}_1) - (Ef)(\hat{m}_2) := D_1 + D_2 \] (2.27)

where
\[D_1 := \text{Ave}(\hat{f}; \hat{m}_1, 8R_1) - \text{Ave}(\hat{f}; \hat{m}_1, 8R_2) \]
\[D_2 := \text{Ave}(\hat{f}; \hat{m}_1, 8R_2) - \text{Ave}(\hat{f}; \hat{m}_2, 8R_2), \] (2.28)

see (2.17) and (2.25).

Lemma 2.4 We have
\[||D_i||_X \leq 20A_N d_N(\hat{m}_1, \hat{m}_2). \]
Recall that \(A_N \) is the constant defined by (2.15).
Proof. By (2.28), (2.25) and (2.21),
\[D_1 = \frac{1}{v_{11}} \int_{B_{11}} \hat{f} \overline{\mu}_N - \frac{1}{v_{12}} \int_{B_{12}} \hat{f} \overline{\mu}_N = \left(\frac{1}{v_{11}} - \frac{1}{v_{12}} \right) \int_{B_{11}} \hat{f} \overline{\mu}_N - \frac{1}{v_{12}} \int_{B_{12} \setminus B_{11}} \hat{f} \overline{\mu}_N. \]

This immediately implies that
\[\|D_1\|_X \leq 2 \cdot \frac{v_{12} - v_{11}}{v_{12}} \cdot \max_{B_{12} \cap M_N^o} \|\hat{f}\|_X. \]

Applying now (2.24) and (2.23), and then (2.26) with \(i = 1 \) we get the desired estimate. \(\square \)

To obtain a similar estimate for \(D_2 \) we will use the following two facts.

Lemma 2.5 Assume that for a given \(l > 1 \)
\[d_N(\hat{m}_1, \hat{m}_2) \leq 8(l - 1)R_2. \] (2.29)

Let for definiteness \(v_{22} \leq v_{12} \). (2.30)

Then we have
\[\overline{\mu}_N(B_{12} \Delta B_{22}) \leq A_N D_N(l) \frac{v_{12}}{4R_2} d_N(\hat{m}_1, \hat{m}_2) \] (2.31)

(*here \(\Delta \) denotes symmetric difference of sets*).

Proof. Set
\[R := 8R_2 + d_N(\hat{m}_1, \hat{m}_2). \]

Then \(B_{12} \cup B_{22} \subset B_R(\hat{m}_1) \cap B_R(\hat{m}_2) \), and
\[\overline{\mu}_N(B_{12} \Delta B_{22}) \leq (\overline{\mu}_N(B_R(\hat{m}_1)) - \overline{\mu}_N(B_{8R_2}(\hat{m}_1))) + \]
\[(\overline{\mu}_N(B_R(\hat{m}_2)) - \overline{\mu}_N(B_{8R_2}(\hat{m}_2))). \] (2.32)

Estimating the terms on the right-hand side by Lemma 2.2 we bound them by
\[A_N \frac{\overline{\mu}_N(B_R(\hat{m}_1))}{R} (R - 8R_2) + A_N \frac{\overline{\mu}_N(B_R(\hat{m}_2))}{R} (R - 8R_2). \]

Moreover, \(8R_2 \leq R \leq 8lR_2 \) and \(R - 8R_2 := d_N(\hat{m}_1, \hat{m}_2) \), see (2.29); taking into account (2.6), (2.21) and (2.30) we therefore have
\[\overline{\mu}_N(B_{12} \Delta B_{22}) \leq A_N D_N(l) \frac{v_{12}}{4R_2} d_N(\hat{m}_1, \hat{m}_2). \] (2.33)

Lemma 2.6 Under the assumptions of the previous lemma we have
\[v_{12} - v_{22} \leq A_N D_N(l) \frac{v_{12}}{4R_2} d_N(\hat{m}_1, \hat{m}_2). \] (2.33)

Proof. By (2.21) the left-hand side is bounded by \(\overline{\mu}_N(B_{12} \Delta B_{22}) \). \(\square \)

We now estimate \(D_2 \) from (2.28) beginning with
Lemma 2.7 Under the conditions of Lemma 2.5 we have

\[||D_2||_X \leq K_N(l) d_N(\hat{m}_1, \hat{m}_2) \]

where \(K_N(l) := A_N D_N(l)(4l + 1) \).

Proof. By the definition of \(D_2 \) and our notation, see (2.28), (2.25) and (2.21),

\[
||D_2||_X := \left| \left| \frac{1}{v_{12}} \int_{B_{12}} \hat{f} d\mu_N - \frac{1}{v_{22}} \int_{B_{22}} \hat{f} d\mu_N \right| \right|_X \leq \\
\frac{1}{v_{12}} \int_{B_{12}} ||\hat{f}||_X d\mu_N + \left| \left| \frac{1}{v_{12}} - \frac{1}{v_{22}} \right| \right|_X \int_{B_{22}} ||\hat{f}||_X d\mu_N := J_1 + J_2 .
\]

By (2.31), (2.29) and (2.26)

\[
J_1 \leq \frac{1}{v_{12}} \mu_N(B_{12} \cup B_{22}) \sup_{(B_{12} \cup B_{22}) \cap M_N^*} ||\hat{f}||_X \leq \\
\frac{A_N D_N(l)}{4R_2} d_N(\hat{m}_1, \hat{m}_2)(d_N(\hat{m}_1, \hat{m}_2) + 10R_2) \leq A_N D_N(l)(2l + 1/2)d_N(\hat{m}_1, \hat{m}_2).
\]

Also, (2.33), (2.26) and (2.29) yield

\[
J_2 \leq A_N D_N(l)(2l + 1/2)d_N(\hat{m}_1, \hat{m}_2) .
\]

Combining these we get the required estimate. \(\square \)

It remains to consider the case of \(\hat{m}_1, \hat{m}_2 \in M_N \) satisfying the inequality

\[
d_N(\hat{m}_1, \hat{m}_2) > 8(l - 1)R_2
\]

converse to (2.29). Now the definition (2.28) of \(D_2 \) and (2.26) imply that

\[
||D_2||_X \leq 2 \sup_{(B_{12} \cup B_{22}) \cap M_N^*} ||\hat{f}||_X \leq 2 \left(10R_2 + d_N(\hat{m}_1, \hat{m}_2) \right) \leq \frac{4l + 1}{2(l - 1)} d_N(\hat{m}_1, \hat{m}_2) .
\]

Combining this with the inequalities of Lemmas 2.4 and 2.7 and equality (2.27) we obtain the required estimate of the Lipschitz norm of the extension operator \(E \):

\[
||E|| \leq 20A_N + \max \left(\frac{4l + 1}{2(l - 1)}, K_N(l) \right)
\]

where \(K_N(l) \) is the constant in (2.18). \(\square \)

References

[BB1] A. Brudnyi and Yu. Brudnyi, Metric spaces with linear extensions preserving Lipschitz condition. Amer. J. Math (to appear).
[BB2] A. Brudnyi and Yu. Brudnyi, A universal Lipschitz extension property of Gromov hyperbolic spaces. Revista Math. Iberoamericana (to appear).

[CW] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis. Bull. Amer. Math. Soc., 83 (1977), 569-645.

[KV] S. Koniagin and A. Vol’berg, There is a homogeneous measure on any compact subset of \mathbb{R}^n. Math. USSR- Izv., 30 (1988), 629-638 (Russian).

[LN] J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partition. Invent. Math., 160 (2005), 50-95.

[LS] J. Luukkainen and E. Saksman, Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc., 126 (1998), no. 2, 531-534.