Investigating the phenotypic and genetic associations between personality traits and suicidal behavior across major mental health diagnoses

Janos L. Kalman1,2,3 · Tomoya Yoshida4 · Till F. M. Andlauer5,6 · Eva C. Schulte1,2 · Kristina Adorjan1,2 · Martin Alda7 · Raffaela Arda8 · Jean-Michel Aubry9,10 · Katharina Brosch11,12 · Monika Budde1 · Caterina Chillotti8 · Piotr M. Czerski13 · Raymond J. DePaulo14 · Andreas Forstner15,16,17 · Fernando S. Goes14 · Maria Grigoroiu-Serbanescu18 · Paul Grof19,20 · Dominik Grotegerd21 · Tim Hahn21 · Maria Heilbronner1 · Roland Hasler9 · Urs Heilbronner1 · Stefanie Heilmann-Heimbach16 · Pawel Kapelski13 · Tadafumi Kato22 · Mojtaba Oraki Kohshour1,23 · Susanne Meinert21,24 · Tina Meller11,12 · Igor Nenadić11,12 · Markus M. Nöthen16 · Tomas Novak25,26 · Nils Oepel21 · Joanna Pawlak13 · Julia-Katharina Pfarr11,12 · James B. Potash14 · Daniela Reich-Erkelenz1 · Jonathan Repple21 · Hélène Richard-Lepourieil9 · Marcella Rietschel27 · Kai G. Ringwald11,12 · Guy Rouleau28 · Sabrina Schaupp1 · Fanny Senner1,2 · Giovanni Severino29 · Alessio Squassina29 · Frederike Stein11,12 · Pavla Stopkova25,26 · Fabian Streit27 · Katharina Thiel21 · Florian Thomas-Odenthal11 · Gustavo Turecki30 · Joanna Twarowska-Hauser13 · Alexandra Winter21 · Peter P. Zandi14 · John R. Kelsoe31 · Consortium on Lithium Genetics (ConLiGen) · PsyCourse · Peter Falkai2 · Udo Dannlowski21 · Thomas G. Schulze1,14,32 · Sergi Papiol1,2,33

Received: 12 October 2021 / Accepted: 24 November 2021 / Published online: 10 February 2022 © The Author(s) 2022

Abstract

Personality traits influence risk for suicidal behavior. We examined phenotype- and genotype-level associations between the Big Five personality traits and suicidal ideation and attempt in major depressive, bipolar and schizoaffective disorder, and schizophrenia patients (N=3012) using fixed- and random-effects inverse variance-weighted meta-analyses. Suicidal ideations were more likely to be reported by patients with higher neuroticism and lower extraversion phenotypic scores, but showed no significant association with polygenic load for these personality traits. Our findings provide new insights into the association between personality and suicidal behavior across mental illnesses and suggest that the genetic component of personality traits is unlikely to have strong causal effects on suicidal behavior.

Keywords Suicidal behavior · Personality · Polygenic score · Bipolar disorder · Major depression · Schizophrenia

Introduction

Suicide is a leading cause of mortality [1], and most individuals with suicidal behavior, which includes suicidal ideation (SI), suicide attempt (SA), and completed suicide, have a diagnosed mental health disorder [2].

Suicidal behavior has a complex, heterogenous etiology. Its risk factors include genetics, personality characteristics, and adverse life events [3]. Twin and family studies showed that suicidal behavior is heritable and that 30–55% of its phenotypic variance is explained by genetic risk factors that only partially overlap with those for mental disease [4–7]. Although individual predictors explain only a fraction of the phenotypic variability, studying them is useful to enhance our understanding of disease pathophysiology and inform the development of diagnostic and preventive measures [8].

Personality characteristics, like the Big Five personality traits (neuroticism, agreeableness, conscientiousness, extraversion, openness), or TEMPS-A temperaments are...
relatively stable throughout life [9, 10]. They influence the perception of and exposure and response to life events and thus mediate susceptibility and/or resilience to environmental risk factors. For example, individuals with higher neuroticism show high emotional arousal, experience more negative emotions and are more sensitive to negative emotional stimuli and potential loss [10, 11]. In contrast, high extraversion is associated with higher levels of energy and sociability and more positive affect [12]. Hence, multiple studies have provided compelling evidence that high neuroticism and low extraversion are important risk factors for suicidal behavior [13–15]. A substantial amount of the phenotypic variance of these personality traits is explained by common genetic variants: single-nucleotide polymorphism (SNP)-based heritability estimates range from 6 to 15% for neuroticism and 5% to 18% for extraversion [11, 12, 16, 17].

The polygenic makeup of personality traits is one of the few quantifiable biological factors that likely influences suicidal behavior [11, 12, 18], so it is relevant to investigate how much phenotypic variance in suicidal behavior is explained by the polygenic load for personality traits [19]. Furthermore, it would be important to understand whether personality traits have a disease-specific or cross-diagnostic influence on suicidal behavior risk in mental illness. Therefore, we investigated (a) the association between personality traits and SI and SA across the affective-psychotic diagnosis spectrum, (b) whether associations differ between diagnostic groups, and (c) what percentage of phenotypic variation in suicidal behavior is attributable to polygenic scores (PGS) for personality traits.

**Patients and methods**

**Sample description**

Participants with DSM-IV diagnosis of major depressive disorder (MDD), bipolar disorder (BD), schizoaffective disorder (SCZA), or schizophrenia (SCZ) and available information on lifetime SI or SA (presence/absence) and genetic data were selected from nine independent datasets of European-ancestry cases (N=3012). Sample details, including the definitions of suicidal behavior, are described in the Supplementary Information, including Supplementary Table S4.

The Big Five model is the most widely accepted personality theory, and it is extensively used in research. Two samples (PsyCourse and FOR2107) included individual-level information on the Big Five personality traits, assessed with either the short version of the Big Five Inventory (PsyCourse) or the NEO Five Factor Inventory (FOR2107; Supplementary Table S6) [20, 21].

**Genetic analyses**

The cohorts were genotyped by different microarray types in accordance with local protocols. Quality control and population substructure analyses were performed with PLINK v1.9 and either R (for the PsyCourse and FOR2107 cohorts) or the RICOPILI pipeline (for the other seven cohorts), as described previously [22–24] (Supplementary Methods and Supplementary Tables S1-S2). Imputation was performed with SHAPEIT and IMPUTE2 with the 1000 Genomes Phase 3 (for the FOR2107 and PsyCourse cohorts) or the Haplotype Reference Consortium v1.0 (for the other cohorts) reference panels. For our analyses, we selected variants present in the PRS-CS 1000 Genomes Phase 3 EUR reference dataset.

PRS-CS was used to calculate PGS for personality traits with significant effects at the phenotype level by using summary statistics from genome-wide association studies as training datasets (Supplementary Table S3) [11, 12, 25].

**Statistical analyses**

In the primary phenotype-level analyses, we analyzed the association of personality traits with SI and SA within the PsyCourse and FOR2017 samples by logistic regression, with sex, age, and BD subtype as covariates. Results of these analyses were meta-analyzed using fixed- and random-effects inverse variance-weighted meta-analyses. Potential subgroup effects specific for DSM categories were investigated with diagnosis-specific meta-analyses. To investigate associations of extraversion and neuroticism PGS with SI and SA, we used the same analysis models as for the phenotype-level analyses. Genotyping batch (for the Romania1 and euoR samples) and the first eight multidimensional scaling ancestry components were used as additional covariates. The statistical power of our sample was estimated with G*Power 3.1 and the *avengeme* R package [26, 27]. The significance threshold was corrected for 14 tests by Bonferroni’s method (α = 0.05/[5 personality traits × 2 phenotypes and 2 PGS × 2 phenotypes] = 3.57 × 10⁻³).

**Results**

The frequency of SI and SA in our study was 61.16% and 31.28%, respectively.

**Personality and suicidal behavior**

Our study had 80% power (α = 0.05) to detect effects of personality traits with odds ratio (OR) ≥ 1.15 on SI and OR ≥ 1.23 on SA.
In the fixed-effects meta-analysis of the FOR2107 and PsyCourse samples, neuroticism was significantly associated with an increased likelihood of SI (OR = 1.37, 95% CI [1.23–1.54], $p = 2.11 \times 10^{-8}$), Cochran’s $Q$ $p = 0.02$, $I^2 = 57.9\%$), and extraversion, with a decreased likelihood (OR $= 0.78$, 95% CI [0.70–0.87], $p = 1.01 \times 10^{-5}$), Cochran’s $Q$ $p = 0.06$, $I^2 = 48.3\%$) (Table 1). The random-effects meta-analysis results were not substantially different (Table 1). In the secondary, diagnosis-specific meta-analyses, the effect direction was consistent across diagnostic groups, although a high level of heterogeneity (Cochran’s $Q$ $p < 0.05$) was observed in all diagnoses except MDD and partially SCZA (Supplementary Table S7). After correction for multiple testing, none of the other personality traits showed significant associations (Table 1).

None of the personality traits was significantly associated with SA, although the direction of the effects was the same as with SI (Table 1).

**PGS for personality traits and suicidal behavior**

No significant association was found between neuroticism and extraversion PGS and SI or SA (Table 1). Post-hoc power analyses indicated that none of the PGS analyses in our sample had 80% power to identify PGS effects with $p < 0.05$.

**Discussion**

To our knowledge, this study is the first attempt to dissect the phenotypic and genetic relationship between personality traits and suicidal behavior across the affective-psychotic diagnostic spectrum. We found significant phenotype-level associations of both neuroticism and extraversion—two personality traits known to influence affect processing—with SI across diagnostic groups but no evidence that these associations were driven by the polygenic load for these traits.

An association of neuroticism with increased suicidal behavior risk has already been described in population-based cohorts [14, 28, 29] and studies on individuals with personality [30] or affective disorders [31–33]; our secondary analyses confirmed these findings in patients with MDD (the largest diagnostic group in our study) and showed similar effects for BD and SCZ, suggesting that neuroticism may represent a transdiagnostic risk factor for SI [34].

Studies reported a protective effect of extraversion in the general population [15, 35] and patients with affective disorder [33, 35]. The diagnosis-specific results in our study support such a protective effect in MDD and suggest similar effects in BD.

Although our SA sample was sufficiently powered to detect effect sizes comparable to those observed for SI, we found no significant associations of neuroticism and extraversion with SA, which is a more severe phenotype than SI. This finding suggests a lesser involvement, or a lack thereof, of personality traits in SA in comparison with SI.

The present study constitutes, to our knowledge, the first attempt to ascertain the role of a polygenic load associated with personality traits on suicidal behavior in a sample exclusively composed of patients with psychiatric diagnoses. Despite the phenotype-level associations, neuroticism and extraversion PGS were not significantly associated with suicide-related phenotypes, which contrasts with a study that detected an association between neuroticism PGS and SA or self-harm in a population-based cohort of 4959 individuals [36]. However, according to our post-hoc analysis, our study lacked statistical power to replicate these findings. Furthermore, neuroticism and extraversion PGS explained only a small proportion of the phenotypic variance of the respective personality traits in our study ($R^2_{\text{neuroticism}} = 0.011$, $R^2_{\text{extraversion}} = 0.0059$).

**Limitations**

The heterogeneous definitions of personality, SI, and SA in the samples, as also implied by the heterogeneity estimates ($I^2$) of our analyses, are an important limitation. SI and SA are broad concepts with no universally accepted definitions [37]. Accordingly, their prevalence might be impacted by cohort-specific differences, as also observed in our study (Supplementary Tables S4, S6). A further potential source of heterogeneity was the use of different questionnaires to assess personality traits in the various cohorts. Notably, these issues represent a general problem in psychiatric research [38]. To assess the effect of heterogeneity on our results, we performed random- and fixed-effects meta-analyses. Another limitation is that we did not account for possible confounders by assessing environmental precipitating factors. Last, our sample had limited statistical power, which reduced the likelihood of detecting true-positive signals.

**Conclusion**

Our findings reinforce the notion that personality traits contribute to the expression of SI independently of diagnosis, and they provide preliminary evidence that personality trait PGS are unlikely to have strong causal effects on suicidal behavior. These findings need validation in larger clinical datasets.
### Table 1 Results of the (A) primary phenotype-level and (B) polygenic score analyses

(A) Analyses of the associations of the Big Five personality traits with suicidal ideation and suicide attempt

| Personality trait | Meta  | Suicidal ideation (SI) | Suicide attempt (SA) |
|-------------------|-------|-------------------------|----------------------|
|                   |       | $N$ ($SI+/SI−$) | OR | 95% CI | $p$ | Cochran’s $Q$ | $p$ | $N$ ($SA+/SA−$) | OR | 95% CI | $p$ | Cochran’s $Q$ | $p$ |
| Agreeableness     | FE    | 1786 (1294/492) | 0.86 | 0.77–0.96 | $6.99 \times 10^{-3}$ | 0.20 | 961 (324/637) | 0.98 | 0.85–1.13 | 0.74 | 0.15 |
|                   | RE    | 0.84 | 0.72–0.98 | 0.02 | 1.02 | 0.88–1.18 | 0.80 | 0.06 |
|                   |       | 0.84 | 0.72–0.98 | 0.02 | 1.02 | 0.88–1.18 | 0.80 | 0.06 |
| Conscientiousness | FE    | 0.92 | 0.82–1.02 | 0.11 | 0.94 | 0.94 | 0.94 | 0.94 |
|                   | RE    | 0.92 | 0.82–1.02 | 0.11 | 0.94 | 0.94 | 0.94 | 0.94 |
| Extraversion      | FE    | 0.78 | 0.70–0.87 | $1.01 \times 10^{-5}$ | 0.06 | 0.93 | 0.81–1.07 | 0.31 | 0.08 |
|                   | RE    | 0.76 | 0.63–0.91 | $3.77 \times 10^{-3}$ | 0.86 | 0.68–1.09 | 0.21 | 0.06 |
| Neuroticism       | FE    | 1.37 | 1.23–1.54 | $2.11 \times 10^{-8}$ | 0.02 | 1.14 | 0.99–1.32 | 0.07 | 0.06 |
|                   | RE    | 1.49 | 1.19–1.85 | $3.82 \times 10^{-4}$ | 1.22 | 0.96–1.55 | 0.11 | 0.06 |
| Openness          | FE    | 1.01 | 0.90–1.12 | 0.91 | 0.49 | 0.99 | 0.86–1.14 | 0.86 | 0.33 |
|                   | RE    | 1.01 | 0.90–1.12 | 0.91 | 0.49 | 0.99 | 0.86–1.14 | 0.86 | 0.33 |

(B) Analyses of the associations of polygenic scores for extraversion and neuroticism with suicidal ideation and suicide attempt

| Personality trait | Meta  | Suicidal ideation (SI) | Suicide attempt (SA) |
|-------------------|-------|-------------------------|----------------------|
|                   |       | $N$ ($SI+/SI−$) | OR | 95% CI | $p$ | Cochran’s $Q$ | $p$ | $N$ ($SA+/SA−$) | OR | 95% CI | $p$ | Cochran’s $Q$ | $p$ |
| Extraversion      | FE    | 3012 (1842/1170) | 1.07 | 0.98–1.17 | 0.12 | 0.70 | 2180 (682/1498) | 1.04 | 0.94–1.15 | 0.44 | 0.12 |
|                   | RE    | 1.07 | 0.98–1.17 | 0.12 | 0.70 | 2180 (682/1498) | 1.04 | 0.94–1.15 | 0.44 | 0.12 |
| Neuroticism       | FE    | 0.90 | 0.83–0.99 | 0.02 | 0.07 | 0.95 | 0.86–1.05 | 0.30 | 0.02 |
|                   | RE    | 0.89 | 0.78–1.0 | 0.07 | 0.95 | 0.86–1.05 | 0.30 | 0.02 |

In the primary phenotype-level analyses, the association of personality traits with suicidal ideation and suicide attempt was analyzed by logistic regression in the PsyCourse and FOR2017 samples. Results of these analyses were meta-analyzed by both fixed- and random-effects inverse variance-weighted meta-analyses. To investigate the associations of polygenic scores for extraversion and neuroticism (personality traits that showed significant effects at the phenotype level) with SI and SA, we used the same analysis models as for the phenotype-level analyses.

**Meta**, inverse variance-weighted meta-analysis, **FE** fixed effects, **RE** random effects, **N** total sample size, **SI+/SI−** and **SA+/SA−** the number of patients with and without suicidal ideation (SI+ and SI−, respectively) and with or without suicide attempt (SA+ and SA−, respectively). **OR** odds ratio (a higher OR indicates an association with suicidal ideation or suicide attempt, 95% CI 95% confidence interval (the 95% CIs were constrained to a minimum of 0 and a maximum of 1), **p** unadjusted $p$ value (significance threshold corrected for multiple testing by Bonferroni’s method: $\alpha = 3.57 \times 10^{-3}$; **p** values that were significant after Bonferroni correction are indicated in bold font)

**Note**: Polygenic scores were calculated with summary statistics from the latest genome-wide association studies of the respective traits as training datasets [11, 12]
**Supplementary Information** The online version contains supplementary material available at [https://doi.org/10.1007/s00406-021-01366-5](https://doi.org/10.1007/s00406-021-01366-5).

Authors of the International Consortium on Lithium Genetics: Bernhard T. Baune, Discipline of Psychiatry, University of Adelaide, Adelaide, Australia; Jan Fullerton, Mental Illness (Schofield Group), Neuroscience Research Australia, Sydney, Australia; Philip B. Mitchell, School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia; Peter R. Schofield, Mental Illness (Schofield Group), Neuroscience Research Australia, Sydney, Australia; Naomi R. Wray, The University of Queensland, Queensland Brain Institute, Brisbane, Queensland, Australia; Adam Wright, School of Psychiatry, University of New South Wales, and Black Dog Institute, Sydney, Australia; Susanne A. Bengesser, Special outpatient center for bipolar affective disorder, Medical University of Graz, Graz, Austria; Eva Reininghaus, Special outpatient center for bipolar affective disorder, Medical University of Graz, Graz, Austria; Claudio E. M. Banzato, Department of Psychiatry, University of Campinas (Unicamp), Campinas, Brazil; Clarissa Dantas, Department of Psychiatry, University of Campinas (Unicamp), Campinas, Brazil; Martin Alda, Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Cristiano Cuculeanu, Douglas Mental Health University Institute, McGill University, Montreal, Canada; Julie Garnham, Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Paul Grof, Mood Disorders Center of Ottawa, Canada; Glenda MacQueen, Department of Psychiatry, University of Calgary, Calgary, Canada; Guy Rouleau, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada; Claire Slaney, Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Gustavo Turecki, Douglas Mental Health University Institute, McGill University, Montreal, Canada; L. Trevor Young, Department of Psychiatry, University of British Columbia, Vancouver, Canada; Carlos A. López Jaramillo, Department of Psychiatry, University of Antioquia, Medellin, Medellin, Colombia; Tomás Novák, Prague Psychiatric Center and 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Pavla Stopkova, Prague Psychiatric Center and 3rd Faculty of Medicine, Charles University, Prague, Czech Republic; Frank Bellivier, INSERM UMR-S 1144 - Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal, Paris, France; Clara Brichant-Petitjean, INSERM UMR-S 1144 - Pôle de Psychiatrie, AP-HP, Groupe Hospitalier Lariboisière-F. Widal, Paris, France; Bruno Etain, Inserm U955, Psychiatrie Génétique, Créteil, France; Bruno Etain, Université Paris Est, Faculté de Médecine, Créteil, France; Jean-Pierre Kahn, Service de Psychiatrie et Psychologie Clinique, Centre Hospitalier Universitaire de Nancy, Nancy, France; Jean-Pierre Kahn, Université de Lorraine, Nancy, France; Marion Leboyer, Inserm U955, Psychiatrie Génétique, Créteil, France; Marion Leboyer, Université Paris Est, Faculté de Médecine, Créteil, France; Marion Leboyer, Fondation FondaMental, Créteil, France; Marion Leboyer, Assistance Publique-Hôpitaux de Paris, Hôpital Albert Chenevier - Henri Mondor, Pôle de Psychiatrie, Créteil, France; Mazda Adli, Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Campus Charité Mitte & Fliedner Klinik Berlin, Germany; Mazda Adli, Fliedner Klinik Berlin, Berlin.

**Fig. 1** Results of secondary phenotype-level analyses. For extraversion and neuroticism, which were significantly associated with suicidal ideation in the primary analyses, we conducted secondary analyses to investigate potential differences across the diagnostic spectrum. Results of the individual regression models can be found in Supplementary Table S7. Inverse variance-weighted meta-analysis p values that were significant after Bonferroni correction (α < 3.57 × 10⁻³) are indicated with an asterisk. Meta fixed, inverse variance-weighted fixed-effects meta-analysis; meta random, inverse variance-weighted random-effects meta-analysis; 95% CI, 95% confidence intervals (the 95% CIs were constrained to a minimum of 0 and a maximum of 1); OR, odds ratio (a higher OR indicates an association with suicidal ideation).
Conflict of interest Dr. Kato reports grants and personal fees from Japan Agency for Medical Research and Development (AMED), grants and personal fees from Ministry of Education, Culture, Sports, Science and Technology (MEXT)/Japan Society for the Promotion of Science (JSPS), personal fees from Kyowa Hakko Kirin Co., Ltd., personal fees from Eli Lilly Japan K.K., grants and personal fees from Otsuka Pharmaceutical Co., Ltd., personal fees from GlaxoSmithKline K.K., personal fees from Taisho Pharma Co., Ltd., grants and personal fees from Dainippon Sumitomo Pharma Co., Ltd., personal fees from Meiji Seika Pharma Co., Ltd., personal fees from Pfizer Japan Inc., personal fees from Mochida Pharmaceutical Co., Ltd., grants and personal fees from Shionogi & Co., Ltd., personal fees from Janssen Pharmaceutical K.K., personal fees from Janssen Asia Pacific, personal fees from YoshitomiyaKuhn, personal fees from Astellas Pharma Inc., personal fees from Nippon Boehringer Ingelheim Co., Ltd., personal fees from MSD K.K., personal fees from Kyowa Pharmaceutical Industry Co., Ltd., grants and personal fees from Takeda Pharmaceutical Co., Ltd., personal fees from Taisho Pharmaceutical Co., Ltd., personal fees from Taisho Toyama Pharmaceutical Co., Ltd., grants and personal fees from Eisai Co., Ltd., and grants and personal fees from Mitsubishi Tanabe Pharma Corporation, grants from Teijin Pharma, outside the submitted work. The other authors have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval All studies were approved by the local ethics committees.

Consent to participate All participants provided written informed consent.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Zalsman G, Hawton K, Wasserman D et al (2016) Suicide prevention strategies revisited: 10-year systematic review. Lancet Psychiatry 3:646–659. https://doi.org/10.1016/S2215-0366(16)30030-X
2. Qin P (2011) The impact of psychiatric illness on suicide: differences by diagnosis of disorders and by sex and age of subjects. J Psychiatr Res 45:1445–1452. https://doi.org/10.1016/j.jpsychires.2011.06.002
3. Mann JJ (2003) Neurobiology of suicidal behaviour. Nat Rev Neurosci 4:819–828. https://doi.org/10.1038/nrn1220
4. Voracek M, Loibl LM (2007) Genetics of suicide: a systematic review of twin studies. Wien Klin Wochenschr 119:463–475. https://doi.org/10.1007/s00508-007-0823-2
5. Brent DA, Mann JJ (2005) Family genetic studies, suicide, and suicidal behavior. Am J Med Genet Semin Med Genet 133C:13–24
6. McGuffin P, Marusic A, Farmer A (2001) What can psychiatric genetics offer suicidology? Crisis 22:61–65
7. Mullins N, Bigdeli TB, Berglund AD et al (2019) GWAS of suicide attempt in psychiatric disorders and association with major depression polygenic risk scores. Am J Psychiatry 176:651–660. https://doi.org/10.1176/appi.ajp.2019.18080957
8. Turecki G (2014) The molecular bases of the suicidal brain. Nat Rev Neurosci 15:802–816
9. Akiskal HS, Akiskal KK, Haykal RF et al (2005) TEMPS-A: progress towards validation of a self-rated clinical version of the temperament evaluation of the Memphis, Pisa, Paris, and San Diego Autoquestionnaire. J Affect Disord 85:3–16. https://doi.org/10.1016/j.jad.2004.12.001
10. Goldberg LR (1992) The development of markers for the big-five factor structure. Psychol Assess 4:26–42. https://doi.org/10.1037/1040-3590.4.1.26
11. Luciano M, Hagnenaars SP, Davies G et al (2018) Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet 50:6–11. https://doi.org/10.1038/s41588-017-0013-8
12. van den Berg SM, de Moor MHM, Verweij KJH et al (2016) Meta-analysis of genome-wide association studies for extraversion: findings from the genetics of personality consortium. Behav Genet 46:170. https://doi.org/10.1007/S10519-015-9735-5
13. DeShong HL, Tucker RP, O’Keefe VM et al (2015) Five factor model traits as a predictor of suicide ideation and interpersonal suicide risk in a college sample. Psychiatry Res 226:217–223. https://doi.org/10.1016/j.psychres.2015.01.002
14. Na KS, Cho SE, Hong JP et al (2020) Association between personality traits and suicidality by age groups in a nationally representative Korean sample. Med (United States). https://doi.org/10.1097/MD.00000000000019161
15. Blüml V, Kapusta ND, Doering S et al (2013) Personality factors and suicide risk in a representative sample of the german general population. PLoS ONE. https://doi.org/10.1371/journal.pone.0076646
