Multiple Osteochondromas: Clinicopathological and Genetic Spectrum and Suggestions for Clinical Management

Liesbeth Hameetman¹, Judith V.M.G. Bovée¹, Antonie H.M. Taminiau², Herman M. Kroon³, Pancras C.W. Hogendoorn¹

¹Departments of Pathology, ²Orthopaedic Surgery and ³Radiology, Leiden University Medical Centre, Leiden, The Netherlands

Key words: bone neoplasm, multiple osteochondromas, genetics, clinical management, chondrosarcoma, exostosis

Corresponding author: P.C.W. Hogendoorn, PhD MD, Department of Pathology, Leiden University Medical Centre, L1-Q, PO Box 9600, 2300 RC Leiden, The Netherlands (e-mail: p.c.w.hogendoorn@lumc.nl).

Submitted: 18 August 2004
Accepted: 15 November 2004

Abstract

Multiple Osteochondromas is an autosomal dominant disorder characterised by the presence of multiple osteochondromas and a variety of orthopaedic deformities. Two genes causative of Multiple Osteochondromas, Exostosin-1 (EXT1) and Exostosin-2 (EXT2), have been identified, which act as tumour suppressor genes. Osteochondroma can progress towards its malignant counterpart, secondary peripheral chondrosarcoma and therefore adequate follow-up of Multiple Osteochondroma patients is important in order to detect malignant transformation early.

This review summarizes the considerable recent basic scientific and clinical understanding resulting in a multi-step genetic model for peripheral cartilaginous tumorigenesis. This enabled us to suggest guidelines for clinical management of Multiple Osteochondroma patients. When a patient is suspected to have Multiple Osteochondroma, the radiologic documentation, histology and patient history have to be carefully reviewed, preferably by experts and if indicated for Multiple Osteochondromas, peripheral blood of the patient can be screened for germline mutations in either EXT1 or EXT2. After the Multiple Osteochondroma diagnosis is established and all tumours are identified, a regular follow-up including plain radiographs and base-line bone scan are recommended.

Introduction

Osteochondroma is the most common benign bone tumour, which occurs as sporadic (solitary) or multiple, usually in the context of the hereditary syndrome, Multiple Osteochondromas (MO) [1, 2]. Considerable understanding obtained through research on the genetic, pathological and radiologic background of these tumours, has provided insights into the tumorigenesis of Multiple Osteochondromas resulting in the optimisation of clinical management, including radiologic and mutational screening.

Incidence

Osteochondromas represent about 50% of all surgically treated primary benign bone tumours [1]. Approximately 15% of the osteochondroma patients have multiple lesions [1, 3] of which 62% have a positive family history [4].

The incidence for Multiple Osteochondromas has been estimated at 1:50,000 in the general population [5], with a higher prevalence in males (male:female ratio of 1.5:1) [4, 6], which is partly due to incomplete penetrance in females [4].
Osteochondroma

Osteochondroma (osteocartilaginous exostosis), according to the 2002 WHO definition, is a cartilage capped benign bony neoplasm on the outer surface of bones preformed by endochondral ossification [7-9]. They develop and increase in size in the first decade of life and cease to grow at skeletal maturation or shortly thereafter. The most common site of involvement is the metaphyseal region of the long bones of the limbs, like the distal femur, upper humerus, upper tibia and fibula [1, 8]. However, osteochondromas also occur in flat bones, in particular the ilium and scapula. An important differential diagnostic feature as compared to e.g. metachondromatosis or parosteal and periosteal osteosarcoma, is the extension of the medullar cavity into the lesion and the continuity of the cortex with the underlying bone. The perichondrium, the outer layer of osteochondroma, is continuous with the periosteum of the underlying bone.

Many osteochondromas are cauliflower shaped and can be divided on macroscopical grounds to often long slender pendunculated osteochondromas and flat sessile ones.

In the cartilage cap the chondrocytes are arranged in a similar fashion as in the epiphyseal growth plate. As a typical benign tumour the chondrocytes have small single nuclei. Binucleated chondrocytes may be seen during active growth.

The stalk may fracture, which may result in reactive fibroblastic proliferation and new bone formation, erroneously leading to interpretation as the formation of secondary sarcoma. Attached to the perichondrium a secondary bursa may develop and simulate the growth of the underlying tumour. This bursa is lined by synovium and may show inflammatory changes [3].

Multiple Osteochondromas

Multiple Osteochondromas (hereditary multiple exostoses, diaphyseal aclasis) are characterised by the presence of multiple osteochondromas [2, 4, 6, 10, 11] the number of which can vary significantly between and within families. Most Multiple Osteochondroma patients also suffer from a variety of orthopaedic deformities like shortening of the ulna with secondary bowing of the radius (39-60%), inequality of the limbs (10-50%), varus or valgus angulation of the knee (8-33%), deformity of the ankle (2-54%) and disproportionately short stature [2, 4-6, 12]. It has been a matter of debate whether these deformities are a result of skeletal dysplasia or a result of local effects on the adjacent growth plate caused by developing osteochondromas.

No well-documented association between Multiple Osteochondromas and other non-bone related disorders has been described so far.

Malignant transformation

Malignant transformation of osteochondroma is estimated to be less than 1% in patients with solitary lesions and 0.5-3% in patients with Multiple Osteochondromas [2, 7]. In 94% of the cases with malignant progression a secondary peripheral chondrosarcoma has developed within the cartilage cap of an osteochondroma [13]. Secondary peripheral chondrosarcoma is a hyaline cartilage producing tumour and constitutes approximately 15% of all chondrosarcomas [1, 14], which is the third most frequent malignant bone tumour after myeloma and osteosarcoma [15]. Increasing pain, functional disability and/or a growing mass, specifically after maturation of the skeleton, may indicate malignant transformation. Radiologic features show irregular mineralisation and increased thickness (over 2 cm) of the cartilage cap of an osteochondroma. The cap shows lobules of hyaline cartilage that are separated by bands of fibrous tissue [15]. With (dynamic) contrast enhanced magnetic resonance (MR) imaging this can be seen as septal enhancement whereas osteochondromas only display peripheral enhancement. High-grade peripheral chondrosarcomas are characterised by inhomogeneous and homogeneous enhancement patterns on gadolinium-enhanced MR images [16, 17].

The histological grading of chondrosarcoma is based on nuclear size and chromasia and cellularity [18] and is the most important predictor of clinical behaviour and thus prognosis of patients with chondrosarcomas [15]. Chondrosarcomas secondary to osteochondromas are usually low-grade tumours resulting in a reasonably fair prognosis for these patients [15].

In the remaining 6% of the cases with malignant progression tumours arise in the bony stalk of the osteochondroma, including osteosarcomas and spindle cell sarcomas [19-22].

Genetics

Multiple Osteochondromas is an autosomal dominant disorder for which two genes have been isolated, Exostosis-1 (EXT1; OMIM 133700) located at 8q24 and Exostosis-2 (EXT2; OMIM 133701) located at 11p11-p12 [23-25]. 44-66% of the Multiple Osteochondroma families show linkage at the EXT1 region [26, 27], compared to 27% for EXT2 [27]. Germline mutations of EXT1 and EXT2 have been described in Multiple
Fig. 1A. Specimen radiographs and histology

A pedunculated osteochondroma shown in a macroscopic whole mount section (A) and specimen radiograph (B). C, whole mount section of a sessile osteochondroma. Note the presence of a small cartilage cap in both osteochondromas (<0.5 cm); D, radiograph of the forearm of a Multiple Osteochondroma patient. Several osteochondromas can be seen at the ends of the ulna and radius. Note that the ulna is shortened, which caused subsequent bowing of the radius; E and F, gross specimen and whole mount section of secondary peripheral chondrosarcoma. The cartilage cap is thicker than 2 cm and in the whole mount section the lobules are clearly visible.
Osteochondroma patients from Caucasian [23, 25, 28-31] and Asian populations [32-34]. Most mutations (80%) found in EXT1 and EXT2 (Fig. 2) are either nonsense, frameshift or splice-site mutations leading to premature terminations of the EXT proteins (reviewed by Zak et al [35]). Mutations in EXT1 occur in all parts of the gene, while mutations in EXT2 concentrate towards the N-terminus of the gene, implying that this part of the protein may have special functions. This seems contradictory, since only the C-terminal region is highly conserved, implicating some functional importance for this part of the protein [24, 25]. In the literature, only one somatic mutation in the EXT1 gene has been described in a sporadic chondrosarcoma [29].

Loss of the remaining wild-type allele has been demonstrated in hereditary osteochondromas [31], indicating that the EXT genes act as tumour suppressor genes in Multiple Osteochondromas. This is consistent with Knudson’s two-hit model for tumour suppressor genes [36].

Not many genotype-phenotype correlation studies have been described to draw definitive conclusions [37, 38]. There seems to be a slightly higher risk of malignant transformation in patients with an EXT1 mutation as compared to EXT2 [38].

The existence of a third EXT gene on chromosome 19p, EXT3 [39], has been suggested, however no gene has been identified, nor has this locus been implicated by other researchers.

Based on their homology with EXT1 and EXT2, three other members of the EXT-family of genes, the EXT-like genes (EXTL1-3), have been identified [40-42]. EXT1, EXT2 and EXTL3 are located at 1p36.1 [40], 1p11-p12 [41] and 8p12-p22 [42], respectively. No linkage with Multiple Osteochondromas or other bone diseases has been documented for these genes [43].

EXT1

Before linkage to Multiple Osteochondromas, osteochondromas were already known to be involved in a contiguous gene deletion syndrome, the Langer Gideon syndrome (LGS or trichorhinophalangeal syndrome type II; OMIM150230) [44], where patients carry a deletion of 8q24 [45]. Besides multiple osteochondromas the Langer Gideon syndrome is characterised by craniofacial dysmorphim and mental retardation [44, 45].

In the early nineties Cook et al found linkage to the 8q24.11-q24.13 region in Multiple Osteochondroma families [46] and two years later the EXT1 gene was identified by positional cloning [23].

The EXT1 gene, composed of 11 exons, spans approximately 350kb of genomic DNA (Fig. 3) [47] with a promoter region that has the characteristics of a house keeping gene [47]. EXT1 mRNA is ubiquitously expressed and has a coding sequence of 2238 bp [23]. In mouse embryos, high mRNA levels of the EXT1 homologue have been found in the developing limb buds [48, 49]. EXT1 homologues have also been identified in Drosophila melanagaster (tout-velu, Ttv) and Caenorhabditis elegans [50, 51].
Review of Multiple Osteochondromas

EXT2

In two large Multiple Osteochondroma pedigrees not linked to 8q24, linkage was found to a 3 cM region located at 11p11-p12, excluding the pericentrometric region [52, 53]. In 1996, the EXT2 gene was identified by positional cloning by two groups independently [24, 25].

The EXT2 gene contains 16 exons (Fig. 3) and spans approximately 108 kb of genomic DNA [51]. The mRNA consists of approximately 3kb, with a single open reading frame of 2154 bp in which the C-terminal region shows high similarity with EXT1 [24, 25]. The mRNA shows alternative splicing in exon 1a and 1b and is ubiquitously expressed [24, 25]. Homologues of EXT2 have been found in mouse (chromosome 2) [51, 54], Drosophila melanogaster (sister of tout-velu, sotv) [55] and Caenorhabditis elegans [51].

Like EXT1, EXT2 has been implicated in a contiguous gene deletion syndrome, Potocki-Shaffer syndrome (DEFECT11; OMIM 601224), where patients carry a deletion of 11p11.2-p12 [56, 57]. Patients with this syndrome demonstrate multiple osteochondromas, enlarged parietal foramina (FPP), craniofacial dysostosis and mental retardation [56, 57].

EXT function

The gene products of human EXT1 and EXT2 are endoplasmic reticulum localised type II transmembrane glycoproteins. In vivo they form a stable hetero-oligomeric complex that accumulates in the Golgi apparatus, where it is involved in heparan sulphate proteoglycan (HSPG) biosynthesis (reviewed by Esko et al [58]) (Fig. 4). The EXT1/EXT2 complex catalyses the elongation of the HS chain [59-62], which is subsequently deacetylated, sulphated and epimerised resulting in a large spectrum of structural heterogenic HS chains. The sulphation pattern of HS chains is critical for binding specific proteins [58]. Several growth factors have conserved patterns of basic amino acids for binding to HSPGs, which is crucial for proper signalling [63, 64].

Heparan Sulphate Proteoglycans (HSPG)

HSPGs are large multifunctional macromolecules involved in several growth signalling pathways, anchorage to the extracellular matrix and sequestering of growth factors (reviewed by Knudson [65]). Four HSPG families have been identified: syndecan, glypican, perlecan and CD44 isoforms.

The syndecan family consists of four members, encoding type I transmembrane polypeptides involved in the anchorage of cells to the extracellular matrix and binding of growth factors [66]. In mouse and chick, syndecan-2 and -3 have shown to be involved in signalling pathways in proliferating chondrocytes [67-70].

The six glypican family members encode proteins attached to the cell membrane with a glycosylphosphatidylinositol (GPI)-anchor. They predominantly function as co-receptors [66]. Expression of several glypicans has been found in the perichondrium, the developing limb and mesenchymal tissues of the developing mouse embryo [71].

The largest HSPG, perlecan, is the most common proteoglycan of the basement membrane. It is expressed in hyaline cartilage and in all zones of the rat growth plate during endochondral ossification [72]. Perlecan, syndecan and glypican are reported to be involved in FGF-signalling [65, 66].
The fourth HSPG family is specific isoforms of the type I transmembrane glycoproteins CD44. The CD44 gene consists of 20 exons of which 10 (so-called variable exons) can be alternatively spliced (reviewed by Ponta et al [73]). CD44 isoforms containing variable exon 3 (v3) have been shown to bind growth factors through HS side chains, thereby regulating cell growth and motility [74].

In Drosophila, the EXT1 homologue Ttv (tout-velu), also involved in HS synthesis, is required for the diffusion of Hedgehog (Hh), an important segment polarity protein (homologue of mammalian Ihh) [50]. Remarkably, in Ttv mutants only the Ihh signalling is affected, while other HSPG-dependent pathways, like FGF and WNT signalling, are not. This indicates a specificity in the regulation of the distribution of extracellular signals by HSPGs in Drosophila [75, 76].

Fig. 4. The mode of action of the EXT-proteins in heparan sulphate biosynthesis

After a tetrasaccharide linker is synthesised on conserved serine residues of the core protein, EXTL2 and/or EXTL3 initiate the polymerisation of the heparan sulphate chain by the addition of N-acetylglucosamine [60, 107]. The EXT1/EXT2 complex subsequently catalyses further elongation of the heparan sulphate chain by adding alternating units of N-acetylglucosamine and glucuronic acid [59-62]. Subsequent deacetylation and sulphation of most N-acetylglucosamines, epimerisation of the glucuronic into iduronic acid and further sulphation result in a large spectrum of structural heterogenic heparan sulphate chains [58, 108]. Adapted from Couchman et al [109] and Nybakken et al [110].
Review of Multiple Osteochondromas

Growth Signalling

Indian Hedgehog (IHH)/PTHrP signalling in the growth plate

In the growth plate EXT1 and EXT2 are expressed in the proliferative and transition zone [77] (Fig. 5). The HSPGs, expressed in all zones of the growth plate [67-72], are presumed to be involved in the diffusion of IHH to its receptor in the perichondrium. During normal embryonic growth IHH, expressed in the transition zone, is involved in a paracrine feedback loop regulating proliferation and differentiation of chondrocytes and bony collar formation in the growth plate (Fig. 5A). In this feedback loop PTHrP regulates chondrocyte differentiation by delaying the progression of chondrocytes towards the hypertrophic zone and allowing longitudinal bone growth [78]. In the rat post-natal growth plate the feedback loop is confined to the growth plate itself (Fig. 5B), in particular to the transition zone [79].

Fibroblast Growth Factor (FGF) signalling in the growth plate

The FGF-signalling pathway is dependent on HSPGs for the high affinity binding capacity of the FGF receptor (FGFR), allowing receptor dimerisation and subsequent cell signalling [80, 81]. The most potent mitogen for chondrocytes, FGF-2 (basic FGF), inhibits differentiation of chondrocytes via stimulation of extracellular matrix synthesis [82, 83]. In contrast, activation of FGFR3 in the proliferative zone (Fig. 5), by FGF18 [84] inhibits chondrocyte proliferation via phosphorylation of STAT-1 and subsequent upregulation of p21WAF/CIP1, which can inhibit the cell cycle [85]. FGFR3 activation also leads to repression of IHH signalling [80, 81, 86].

Histogenesis and secondary sarcoma formation

In the past, many have considered the histogenesis of osteochondroma as a perversion in the direction of normal bone growth resulting from aberrant epiphyseal development with displacement of epiphyseal cartilage. However, several research groups have demonstrated using different techniques that both sporadic and hereditary osteochondromas are true neoplasms [31, 87, 88], resulting in a multi-step genetic model for peripheral cartilaginous tumorigenesis (Fig. 6) [89].
Although some believe that the severity of the angular deformity is correlated with the number of sessile osteochondromas [37], several studies in mice have shown that haploinsufficiency of EXT1 or EXT2 causes severe skeletal deformities [90, 91]. Loss of the remaining wild-type allele of EXT1 in hereditary osteochondromas [31] indicated that inactivation of both copies of the EXT1 gene in cartilaginous cells of the growth plate is required for osteochondroma formation, thereby acting as a tumour suppressor gene [31]. Two studies have shown diminished HSPG expression in either osteochondromas or cultured EXT1−/− cells [92, 93]. This is hypothesised to affect the negative feedback loop by disturbing IHH diffusion to Ptc and by preventing high-affinity binding of FGF to its receptor (Fig. 5). Immunohistochemical studies have already shown that molecules involved in the IHH/PTHrP and FGF/FGFR signalling (PTHrP, PTHrP-R1, Bcl-2, FGF2, FGFR1, FGFR3 and p21) are absent in osteochondromas [94] suggesting that growth signalling is indeed disturbed in osteochondroma.

At the protein level, re-expression of several of these signalling molecules (FGF2, FGFR1, p21, PTHrP and Bcl-2) was found in secondary peripheral chondrosarcoma and the expression increased with increasing histological grade [94]. Upregulation of Bcl-2 characterised malignant transformation of osteochondroma towards grade I secondary peripheral chondrosarcoma [94]. Signalling may now occur in an autocrine fashion or in a paracrine one in which IHH acts on cells in its near vicinity, having to diffuse over only a few cell diameters and thereby avoiding HSPG-dependent diffusion [94].

The process of malignant transformation is genetically represented by chromosomal instability [95], probably caused by defects in spindle formation. The LOH found in osteochondromas was restricted to 8q24 [31], whereas in secondary peripheral chondrosarcomas LOH was found in virtually all loci tested [95]. Also a
broad range in DNA ploidy including near-haploidy and non-specific chromosomal alterations were found [95, 96]. DNA-flow cytometry of the cartilaginous cap of osteochondromas showed mild aneuploidy [31], whereas more severe aneuploidy [97-99], including near-haploidy [95], was seen in grade I secondary peripheral chondrosarcomas.

Further progression towards high-grade secondary peripheral chondrosarcomas is characterised by polyploidiisation, which is thought to be evolved from near-haploid precursor clones [89], and overexpression of p53 [95].

Near-haploidy was not found in osteochondromas [87, 88] or in high grade peripheral chondrosarcomas [95] and can be considered a progression marker towards a low malignant phenotype [89].

Patient management

Diagnosis

With the identification of EXT1 and EXT2 as the genes causative of Multiple Osteochondromas, it has become possible to screen patients with multiple lesions for germline mutations in either EXT gene in a diagnostic setting. However this procedure is time consuming and costly and therefore it is important to select patients carefully on the basis of family history, radiologic documentation and, if available, review of histology of resected lesions.

The diagnosis of Multiple Osteochondromas is based on the combination of two or more radiologically documented osteochondromas originating from the juxta-metaphyseal region of the long bones [2, 4], with or without a positive family history. Radiologically, Multiple Osteochondroma patients have a typical phenotype, easy to recognise by the expert eye. This can exclude the differential diagnoses of other skeletal disorders like metachondromatosis [100, 101], dysplasia epiphysealis hemimelica [102, 103] or non-hereditary syndromes that occur in multiple bones such as enchondromatosis (Ollier’s disease) [102, 104]. Given the specific radiologic and histological expertise needed, it is recommended to seek for an expert opinion from a bone tumour specialist or from a national bone tumour registry consisting of clinicians, radiologists and pathologists, before screening for germline mutations.

If the typical Multiple Osteochondroma radiologic phenotype is present, it is important to evaluate the patient’s family history to see whether other relatives are (possibly) affected. From these family members radiologic studies and, if available, histology of resected lesions can be examined. If there are other affected family members, Multiple Osteochondromas can be clinically established.

Then subsequent EXT mutation analysis is optional. However it can be useful to screen for germline mutations in family members presenting a mild or no phenotype and this will also give insight into the inheritance pattern (penetrance) of the specific mutation. A known EXT mutation can also be used for prenatal diagnostics. If there is no positive family history, Multiple Osteochondromas cannot be excluded, since it is possible that the patient is the founder of a new Multiple Osteochondroma family and these index patients should be screened for EXT mutations.

Mutation analysis for EXT1 and EXT2 can be performed on peripheral blood of the patient. This can be established through PCR and subsequent sequencing of all exons of EXT1 and EXT2 [30] and/or two-colour multiplex ligation-dependent probe amplification (MLPA) [105]. When a mutation in either gene is found, the Multiple Osteochondromas diagnosis can be confirmed. If there is no mutation the diagnosis of Multiple Osteochondromas cannot be excluded, since there is a small possibility that the mutation could not be detected due to technical limitations. With the currently used methods it is possible to detect point mutations or gross deletions in 75-88% of the Multiple Osteochondroma patients [105]. These methods cannot detect positional changes, like translocations, inversions, insertions or transpositions. These changes affect the structure of the gene without changing the sequence or dosage of exons.

Follow-up

When the diagnosis of Multiple Osteochondromas is established, patients should have a regular follow-up to discover potential malignant transformation at an early stage and enable adequate treatment to be implemented. To our knowledge, the literature does not mention a specific clinical and/or radiologic consensus about the most proper method for the follow-up of patients with proven Multiple Osteochondromas. The following pathways for both clinical and radiologic follow-up can be followed. Localisation of all, relatively larger, osteochondromas can be established with a base-line bone scan, which shows increased bone activity within the skeleton at sites of increased bone turnover, like at the sites of osteochondromas, but also at the epiphysis and apophyses of growing bones. Since secondary peripheral chondrosarcomas are extremely rare before puberty, this is, therefore, only recommended for patients who have reached skeletal maturaiton. Regular follow-up before that time is not necessary unless the patient presents with clinical complaints. A number of osteochondromas will demonstrate a normal uptake of the radiopharmacon, demonstrating complete maturation, while others may still show an increased activity of the radiopharmacon. This finding, at the base-line, does not immediately and specifically imply malignant transformation, but can well be explained by,
as yet, incomplete maturation of the osteochondroma or just by its distinct size. Furthermore, base-line plain radiographic examinations of areas that are not accessible to palpation, like the chest, pelvis and scapula are recommended, because in these areas of the body late detection of malignant transformation of an osteochondroma towards peripheral chondrosarcoma is most common.

After these base-line examinations, patients with Multiple Osteochondromas could routinely be seen, each year or every two years, in the outpatient clinic for clinical and radiologic follow-up. It should be emphasised to the patients to come at an earlier time if changes in their clinical condition occur, such as pain or growth of a known lesion. It is also important to realise that no new osteochondromas develop after skeletal maturation. Radiologic follow-up could consist of both plain radiographs of the pelvis, chest and scapulae in combination with follow-up bone scans. Changes in the clinical history and findings, in combination with changes on the plain radiographs or bone scans, should be regarded with suspicion. As to changes in the uptake of the radiopharmaco on bone scans however, it should be considered that increase of the uptake does not always indicate malignant transformation. It can also be a result of trauma or the formation of an overlying bursa or inflammatory reaction. Nevertheless, these changes warrant further examination through plain radiographs and dedicated magnetic resonance (MR) imaging, including contrast-enhanced MR sequences. Also the thickness of the cartilage cap can be monitored with MR imaging.

Radiologic skeletal surveys, as a means of follow-up, do not seem to be of additional value. The role of ultrasound, in the follow-up of lesions, is still controversial and needs further studies.

The process of making a Multiple Osteochondroma diagnosis and patient follow-up is summarized in a flowchart (Fig. 7).
Conclusion

With all new developments and discoveries in the genetic, pathological and radiologic behaviour of osteochondromas and secondary peripheral chondrosarcomas, it has become possible to screen and carefully monitor Multiple Osteochondroma patients and their families. This will enable us to provide patients with more adequate care and treatment strategies.

References

1. Mulder JD, Schulte HE, Kroon HM and Taconis WK. Radiologic Atlas of Bone Tumors. 2 Ed., Elsevier, Amsterdam 1993.
2. Bovee JVMG and Hogendoorn PCW. Multiple osteochondromas. In: Fletcher CDM, Unni KK and Mertens F (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
3. Dahlin’s Bone Tumors General Aspects and Data on 11,087 Cases. 5th Ed., Lippincott-Raven Publishers, Philadelphia 1996.
4. Geirnaerdt-Mallet L, Munnich A, Maroteaux P and Le Merrer M. Incomplete penetrance and expressivity suggesting in hereditary multiple exostoses. Clin Genet 1997; 52: 12-16.
5. Schmale GA, Conrad EU and Raskind WH. The natural history of hereditary multiple exostoses. J Bone Joint Surg [Am] 1994; 76A: 986-992.
6. Wicklund LC, Pauli RM, Johnston D and Hecht JT. Natural history study of hereditary multiple exostoses. Am J Med Genet 1995; 55: 43-46.
7. Khurana J, Abdul-Karim F and Bovee JVMG. Osteochondroma. In: Fletcher CDM, Unni KK and Mertens F (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
8. Huvos AG. Bone tumors. Diagnosis, treatment, and prognosis. 2 Ed., W.B. Saunders Company, Philadelphia 1991.
9. Cooper A. Exostosis. In: Cooper A and Travers B (eds). Surgical Essays. Casson, London 1818.
10. Crandall BF, Field LL, Sparks RS and Spence MA. Hereditary multiple exostosis; report of a family. Clin Orthop 1983; 190: 217-219.
11. Boyer A. Traite des Maladies Chirurgicales. Ve. Migneret, Paris 1814.
12. Shapiro F, Simon S and Glimcher MJ. Hereditary multiple exostoses; report of a family. Clin Orthop 1983; 190: 217-219.
13. Willms R, Hartwig C-H, Böhm P and Sell S. Malignant transformation of a multiple cartilaginous exostosis - a case report. Int Orthop 1997; 21: 133-136.
14. Springfield DS, Gebhardt MC and McGuire MH. Chondrosarcoma: a review. J Bone Joint Surg [Am] 1996; 78A: 141-149.
15. Bertoni F, Bacchini P and Hogendoorn PCW. Chondrosarcoma. In: Fletcher CDM, Unni KK and Mertens F (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
16. Germainard MJ, Bloem JL, Eulderink F, Hogendoorn PC and Taminiau AH. Cartilaginous tumors: correlation of gadolinium-enhanced MR imaging and histopathologic findings. Radiology 1993; 186 (3): 813-817.
17. Germainard MJ, Hogendoorn PC, Bloem JL, Taminiau AH and Van den Woude HJ. Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 2000; 214 (2): 539-546.
18. Evans HL, Kalya AG and Ramsdahl HM. Prognostic factors in chondrosarcoma of bone. A clinicopathological analysis with emphasis on histologic grading. Cancer 1977; 40: 818-831.
19. Lamovec J, Spier M and Jevtic V. Osteosarcoma arising in a solitary chondrosarcoma of the fibula. Arch Pathol Lab Med 1999; 123 (9): 832-834.
20. Matsuno T, Ichioka Y, Yagi T and Ishi S. Spindle-cell sarcoma in patients who have osteochondromatosis. A report of two cases. J Bone Joint Surg [Am] 1988; 70: 137-141.
21. Bovee JVMG, Sakkers RJ, Germainard Mia and Taminiau AHM. Intermediate grade osteosarcoma and chondrosarcoma arising in an osteochondroma. A case report of a patient with hereditary multiple exostoses. J Clin Pathol 2002; 55: 226-229.
22. Tsuchiya H, Morikawa S and Tamitaka K. Osteosarcoma arising from a multiple exostoses lesion: case report. Jpn J Clin Oncol 1990; 20: 296-298.
23. Ahn J, Ludecke H-J, Lindow S, Horton WA, Lee B, Wagner MJ, Horsthemke B and Wells DE. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet 1995; 11: 137-143.
24. Wuyts W, Van Hul W, Voltere J, Némethova M, Reiniers E, Van Hul EV, De Bourle K, de Vries BB, Hendrickx J, Huygens I, Basset P, Balemans W, Fransen E, Vits L, Coucke P, Nowak NJ, Shows TB, Mallet L, van den Ouweland AM, McCouughan J, Halley DJ and Willems PJ. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet 1996; 5 (10): 1547-1557.
25. Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M and Evans GA. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet 1996; 44: 23-29.
26. Khurana J, Abdul-Karim F and Bovee JVMG. Osteochondroma. In: Fletcher CDM, Unni KK and Mertens F (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
27. Huvos AG. Bone tumors. Diagnosis, treatment, and prognosis. 2 Ed., W.B. Saunders Company, Philadelphia 1991.
28. Cooper A. Exostosis. In: Cooper A and Travers B (eds). Surgical Essays. Casson, London 1818.
29. Crandall BF, Field LL, Sparks RS and Spence MA. Hereditary multiple exostosis; report of a family. Clin Orthop 1983; 190: 217-219.
30. Boyer A. Traite des Maladies Chirurgicales. Ve. Migneret, Paris 1814.
31. Shapiro F, Simon S and Glimcher MJ. Hereditary multiple exostoses; report of a family. Clin Orthop 1983; 190: 217-219.
32. Cooper A. Exostosis. In: Cooper A and Travers B (eds). Surgical Essays. Casson, London 1818.
33. Crandall BF, Field LL, Sparks RS and Spence MA. Hereditary multiple exostosis; report of a family. Clin Orthop 1983; 190: 217-219.
34. Shi YR, Wu JY, Hsu YA, Lee CC, Tsai CH and Tsai FJ. Mutation screening of the EXT1 gene in hereditary multiple exostoses. Jpn J Clin Oncol 1990; 20: 296-298.
35. Ahn J, Ludecke H-J, Lindow S, Horton WA, Lee B, Wagner MJ, Horsthemke B and Wells DE. Cloning of the putative tumour suppressor gene for hereditary multiple exostoses (EXT1). Nature Genet 1995; 11: 137-143.
36. Wuyts W, Van Hul W, Voltere J, Némethova M, Reiniers E, Van Hul EV, De Bourle K, de Vries BB, Hendrickx J, Huygens I, Basset P, Balemans W, Fransen E, Vits L, Coucke P, Nowak NJ, Shows TB, Mallet L, van den Ouweland AM, McCouughan J, Halley DJ and Willems PJ. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet 1996; 5 (10): 1547-1557.
37. Stickens D, Clines G, Burbee D, Ramos P, Thomas S, Hogue D, Hecht JT, Lovett M and Evans GA. The EXT2 multiple exostoses gene defines a family of putative tumour suppressor genes. Nature Genet 1996; 44: 23-29.
38. Khurana J, Abdul-Karim F and Bovee JVMG. Osteochondroma. In: Fletcher CDM, Unni KK and Mertens F (eds). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Soft Tissue and Bone. IARC Press, Lyon 2002.
39. Huvos AG. Bone tumors. Diagnosis, treatment, and prognosis. 2 Ed., W.B. Saunders Company, Philadelphia 1991.
40. Cooper A. Exostosis. In: Cooper A and Travers B (eds). Surgical Essays. Casson, London 1818.
41. Crandall BF, Field LL, Sparks RS and Spence MA. Hereditary multiple exostosis; report of a family. Clin Orthop 1983; 190: 217-219.
37. Carroll KL, Yandow SM, Ward K and Carey JC. Clinical correlation to genetic variations of hereditary multiple exostoses. J Pediatr Orthop 1999; 19: 785-791.

38. Francannet C, Cohen-Tanugi A, Le Merer M, Munnich A, Bonaventure J and Legae-Mallet L. Genotype-phenotype correlation in hereditary multiple exostoses. J Med Genet 2001; 38 (7): 430-434.

39. Le Merer M, Legae-Mallet L, Jeannin PM, Horsticken B, Schinzl A, Pauchoiu T, Toutain A, Achard F, Munnich A and Maroteaux P. A gene for hereditary multiple exostoses maps to chromosome 19p. Hum Mol Genet 1994; 3: 717-722.

40. Wax CA, Clines GA, Massa H, Trask BJ and Lovett M. Identification and localization of the gene for EXT1, a third member of the multiple exostoses gene family. Genome Res 1997; 7 (1): 10-16.

41. Wyts W, Van Hul W, Hendrickx J, Speleman F, Wauters J, De Bouulle K, Van Roy N, Van Agtmael T, Bassuyy P and Willems PJ. Identification and characterization of a novel member of the EXT gene family. EJU J Hum Genet 1997; 5: 382-389.

42. Van Hul W, Wyts W, Hendrickx J, Speleman F, Wauters J, De Bouulle K, Van Roy N, Bassuyy P and Willems PJ. Identification of a third EXT-like gene (EXT3) belonging to the EXT gene family. Genomics 1998; 52: 230-237.

43. Arai T, Akiyama Y, Nagasaki H, Murase N, Okabe S, Ikeuchi T, Saito K, Iwai T and Yusa Y. EXT3/EXT1 alterations in colorectal cancer cell lines. Int J Oncol 1999; 15 (5): 915-919.

44. Hall BD, Langer LO, Giedion A, Smith DW, Cohen MM Jr, Beals RK and Brander M. Langer-Giedion syndrome: Birth Defects Orig Artic Ser 1974; 10 (12): 147-164.

45. Ludecke H-J, Ahn J, Lin X, Hill A, Wagner MJ, Schomburg L, RK and Brandner M. Langer-Giedion syndrome. Birth Defects Orig Artic Ser 1974; 10 (12): 147-164.

46. Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG, Francomano CA, Puffenberger E, Conrad EU, Schmale G, Schellenberg G, de Vries BBA, Sandkuijl LA, Van den Ouweland AMW, Niermeijer MF, Galjaard H, Reyniers E, Willems PJ and Van den Ouweland AMW Raskind WH, Hofstede FC, Reyniers E, Wells DE, Van Hul W, Conrad EU, Hill A, Zalatayev D, Weissenbach J, Wagner MJ, Bakker E, Halley DJ and Willems PJ. Accumulation of the EXT-like gene EXTL2 encodes an alpha 4-N-acetylated heparan sulfate transferase that transfers N-acetylgalactosamine to the common glycosaminoglycan-protein linkage region. J Biol Chem 1999; 274 (20): 13933-13937.

47. McCormick C, Duncan G and Tufaro F. The putative tumor suppressor EXTL1 and EXTL2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 1998; 273 (41): 26265-26268.

48. Kitagawa H, Shimakawa H and Sugahara K. The tumor suppressor EXT-like gene EXTL2 encodes an alpha 4-N-acetylated heparan sulfate transferase that transfers N-acetylgalactosamine to the common glycosaminoglycan-protein linkage region. J Biol Chem 1999; 274 (20): 13933-13937.

49. Le Merrer M, Legeai-Mallet L, Jeannin PM, Horsthemke B, Schinzel A, Munnich A, Dupont B, Akiyama Y, Nagasaki H, Murase N, Okabe S, Ikeuchi T, Saito K, Iwai T and Yusa Y. EXT3/EXT1 alterations in colorectal cancer cell lines. Int J Oncol 1999; 15 (5): 915-919.

50. Bellaiche Y, The I and Perrimon N. Tout-velu is a drosophila homologue of the murine homolog of the human EXT2 multiple exostoses gene. Hum Mol Genet 1995; 4: 91-98.

51. Cook A, Raskind W, Blanton SH, Pauli RM, Gregg RG, Francomano CA, Puffenberger E, Conrad EU, Schmale G, Schellenberg G, de Vries BBA, Sandkuijl LA, Van den Ouweland AMW, Niermeijer MF, Galjaard H, Reyniers E, Willems PJ and Van den Ouweland AMW Raskind WH, Hofstede FC, Reyniers E, Wells DE, Van Hul W, Conrad EU, Hill A, Zalatayev D, Weissenbach J, Wagner MJ, Bakker E, Halley DJ and Willems PJ. Accumulation of the EXT-like gene EXTL2 encodes an alpha 4-N-acetylated heparan sulfate transferase that transfers N-acetylgalactosamine to the common glycosaminoglycan-protein linkage region. J Biol Chem 1999; 274 (20): 13933-13937.

52. McCormick C, Duncan G and Tufaro F. The putative tumor suppressor EXTL1 and EXTL2 form a stable complex that accumulates in the Golgi apparatus and catalyzes the synthesis of heparan sulfate. Proc Natl Acad Sci USA 2000; 97 (2): 668-673.

53. Rubin JB, Chao Y and Segal RA. Cerebellar proteoglycans regulate sonic hedgehog responses during development. Development 2002; 129 (9): 2223-2232.

54. Cardin AD and Weintraub H. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 1989; 9 (1): 21-32.

55. Knudsen CB and Knudsen W. Cartilage proteoglycans. Semin Cell Dev Biol 2001; 12 (2): 69-78.

56. Liu W, Litwack ED, Stanley MJ, Langford JK, Lander AD and Sanderson RD. Heparan sulfate proteoglycans as adhesive and anti-invasive molecules. Syndecans and glypicans have distinct functions. J Biol Chem 1998; 273 (35): 22825-22832.

57. David G, Bai XM, Van der Schueren B, Marynen P, Cassiman JJ and Van den Berghe H. Spatial and temporal changes in the expression of fibroblast (syndecan-2) during mouse embryonic development. Development 1993; 119 (3): 841-854.

58. Zimmermann P and David G. The syndecans, tuners of morphogen signalling and gradient formation. Development 2004; 131 (7): 1563-1575.

59. Lind T, Tufaro F, McCormick C, Lindahl U and Lidholt K. The putative tumor suppressors EXTL1 and EXTL2 are glycosyltransferases required for the biosynthesis of heparan sulfate. J Biol Chem 1998; 273 (41): 26265-26268.

60. Ponta H, Sherman L and Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nat Rev Mol Cell Biol 2003; 4 (1): 33-45.
74. van der Voort R, Taher TE, Wielenga UF, Spaargaren M, Prevo R, Smit L, David G, Hartmann G, Gherardi E and Pals ST. Heparan sulfate-modified CD44 promotes hepatocyte growth factor/scatter factor-induced signal transduction through the receptor tyrosine kinase c-Met. J Biol Chem 1999; 274 (10): 6499-6506.

75. The I, Bellacchi Y and Persimmon N. Hedgehog signaling is regulated through the c-ret signaling pathway that regulates chondrocyte maturation during skeletal development. J Biol Cell 1997; 136: 205-213.

76. Bornemann DJ, Duncan JE, Salleck W, Kreicbergs A, Willen H, Jonsson K, Heim S, Bridge JA, Nelson M, Orndal C, Bhatia P and Neff JR. Clonal karyotypic abnormalities of the hereditary multiple exostoses. Genes Chromosomes Cancer 1992; 21 (6): 577-581.

77. Stickens D, Brown D and Evans GA. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev Dyn 2000; 218 (3): 452-464.

78. Amling M, Sharma P, Akerman M, Rydholm A, Heim S, Willen H, Killander D and Mitelman F. Comparative cytogenetic and DNA flow cytometric analysis of 150 bone and soft-tissue tumors using nuclear suspensions. Cancer 1987; 59: 1951-1958.

79. Helio H, Karaharju E and Nording S. Flow cytometric determination of DNA content in malignant and benign bone tumours. Cytoometry 1985; 6: 165-171.

80. Mandahl N, Baidertor B, Fermo M, Akerman M, Rydholm A, Heim S, Willen H, Killander D and Mitelman F. Comparative cytogenetic and DNA flow cytometric analysis of 150 bone and soft-tissue tumors. Int J Cancer 1993; 53: 358-364.

81. Rochester GS and Cowell HH. Metachondromatosis. Report of four cases. J Bone Joint Surg Am 1985; 67 (5): 811-814.

82. Bovee JVFG, Rayen MW, Bardoel AFJ, Rosenberg C, Cornish CJ, Cleton-Jansen AM and Hogendoorn PCW. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 2000; 80: 1925-1933.

83. Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R and Cole WG. Heparan sulfate abnormalities in esophageal squamous cell carcinomas. Am J Surg Pathol 2000; 24 (1): 199-204.

84. Tomasz S, Busse M, Ueno M, Kelly OG, Skarnes WC, Sugahara K and Kusche-Gullberg M. Embryonic fibroblasts with a gene trap mutation in EXT1 produce short heparan sulfate chains. J Biol Chem 2004; 279 (31): 32134-32141.

85. Tashiro M, Shimazu A, Nakashima K, Suzuki F and Kato Y. Regulation of Ihh signaling during mouse embryogenesis. J Cell Biol 1999; 145 (4): 711-723.

86. Xiang HJ, Spanier SS, Benson NA and Bracey RC. Flow cytometric analysis of DNA in bone and soft-tissue tumors. Cancer 1987; 59: 1951-1958.

87. Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R and Cole WG. Heparan sulfate abnormalities in esophageal squamous cell carcinomas. Am J Surg Pathol 2000; 24 (1): 199-204.

88. Esko JD, Bielecki R, Belkin Y and Perrimon N. Hedgehog movement is regulated through the c-ret signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 1997; 136: 205-213.

89. Stickens D, Brown D and Evans GA. EXT genes are differentially expressed in bone and cartilage during mouse embryogenesis. Dev Dyn 2000; 218 (3): 452-464.

90. Amling M, Sharma P, Akerman M, Rydholm A, Heim S, Willen H, Killander D and Mitelman F. Comparative cytogenetic and DNA flow cytometric analysis of 150 bone and soft-tissue tumors. Int J Cancer 1993; 53: 358-364.

91. Rochester GS and Cowell HH. Metachondromatosis. Report of four cases. J Bone Joint Surg Am 1985; 67 (5): 811-814.

92. Bovee JVFG, Rayen MW, Bardoel AFJ, Rosenberg C, Cornish CJ, Cleton-Jansen AM and Hogendoorn PCW. Up-regulation of PTHrP and Bcl-2 expression characterizes the progression of osteochondroma towards peripheral chondrosarcoma and is a late event in central chondrosarcoma. Lab Invest 2000; 80: 1925-1933.

93. Bovee JVFG, Bielecki R, Belkin Y and Perrimon N. Hedgehog movement is regulated through the c-ret signaling pathway that regulates chondrocyte maturation during skeletal development. J Cell Biol 1997; 136: 205-213.

94. Hecht JT, Hall CR, Snuggs M, Hayes E, Haynes R and Cole WG. Heparan sulfate abnormalities in esophageal squamous cell carcinomas. Am J Surg Pathol 2000; 24 (1): 199-204.