Straw Checkerboard Barriers Improve Soil Characteristic and Growth Performance of Winter Cover Crops and Protect Sloping Land

Elahe Ahmadpoor Dehkordi
Shahrekord University

Ali Abbasi Surki (abbasi@sku.ac.ir)
Shahrekord University https://orcid.org/0000-0002-6962-4909

Mehdi Pajouhesh
Shahrekord University

Pejman Tahmasebi
Shahrekord University

Research Article

Keywords: Straw Barriers, Rye, Physiological Attributes, Organic Matter Content

DOI: https://doi.org/10.21203/rs.3.rs-408774/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Aims Straw checkerboard barrier technology, as a sustainable and environment-friendly method, is intended for erosion control, plant recovery at endangered areas. Finding how soil chemical properties and water status alters and how pilot cover plants respond are vital for extra management actions.

Methods In order to study soil characteristic and growth performance of winter cover crops, an experiment was carried out in 2018. Checkerboards were setup in a 1×1 m pattern with rice residues. Seeds of *Onobrychis sativa*, *Secale montanum* and *Agropyron sp* were sown at the checkerboards and bare ground as the control. Detailed analyses were carried out on the physiological responses and the related soil properties during the growing season in borders and centers of the straw checkerboards and bare ground.

Results Soil covered with straw checkerboard barriers was more effective for improving vegetation growth, established taller plants with higher biomass. Based on the physiological analyses, the rye grown in a straw checkerboard coped well with dry conditions. Higher proline content and more efficient osmotic adjustment indicate improvements of soil water retention status, which may alleviate drought stress damages and improve cover crop performance in straw checkerboard plots. Photosynthetic pigments also showed higher contents in these conditions for rye. Soil organic matter, total nitrogen, available phosphorus and potassium and water storage increased in checkerboards too; however, such effects vary with the crop type.

Conclusions This technique could be deemed as an effective management strategy in semi-arid areas and an important method for conserving natural resources and sustaining productivity.

Introduction

Successful recovery of soil and vegetation in semi-arid regions is a challenge because water availability severely limits germination, plant establishment, growth and survival (Wilson et al. 2004; Munson and Lauenroth 2012). In bare soil, the evaporation process discharges water from the soil surface, and microclimate conditions are rarely favorable for the establishment of plants; therefore, poorly covered soil can lead to erosion (Hadas 2004). Soil erosion is one of the most important soil problems in arid and semiarid Mediterranean areas, which reduces soil fertility, plant productivity and also threatens human life (Yüksek and Yüksek 2015). Therefore, in arid and semiarid sites, with undesirable seedbeds, field techniques are canonical to conserve water, improve seedbed microclimate and seedling establishment, increase soil fertility, reconstruct soil ecological community and reduce erosion.

Straw checkerboard barrier technique is widely used for controlling of erosion and habitat recovery in arid and semi-arid areas (Li et al. 2006). This technique, as an environmentally-friendly strategy, is cheap and easy to install (Zhang et al. 2018). Straw of wheat, rice, reeds and other plants are installed in the square shape 20 cm buried in the soil and about 20 cm exposed above the soil surface (Wang et al. 2020). The checkerboard barriers can be placed at various dimensions, including 0.5×0.5, 1×1, 1.5×1.5 and so on (Qu et al. 2007; Zhang et al. 2018). Straw checkerboards reduce the wind speed which decrease water loss through evaporation (Bo et al. 2015; Li et al. 2020).

After the establishment of straw checkerboard barriers, straw can improve soil water holding capacity (Li et al. 2018; Zhang et al. 2018; Li et al. 2006; Li et al. 2020), increase the microorganism numbers (Li et al. 2006), available soil nitrogen and potassium (Li et al. 2018; Zhang et al. 2018), organic matter content (Dai et al. 2019; Lie 2017; Yu Qiu et al. 2004), roughness of the underlying surface (Yu Qiu et al. 2004), and improve the soil structure (Lie 2017). Straw checkerboard barriers have the potential to create favorable conditions for plant establishment, increase the survival rate of shrub and reduce erosion risk (Li et al. 2006). Li et al. (2000) and Williams et al. (1995) showed that four years after revegetation in squares, cryptogamic crusts have been developed which reduce water and wind erosion. Zhang et al. (2018) reported that application of a straw checkerboard improved soil water content and physicochemical properties; thereby, contributed to the establishment of plant and promoted ecological restoration. Dai et al. (2019) and Sun et al. (2016) showed that the soil particle size decreased after the implement of checkered barriers and the physical properties of the soil improved; thus, a better environment for the growth of plant community was provided.

Winter cover crops are deemed as one of the most effective sustainable land management techniques for reducing soil erosion rates and recovery of degraded land (Marques et al. 2016). Cover crops decrease the kinetic energy of the raindrops on the soil surface, decrease runoff velocity and interception, protect winter rainwater storage in soil and reduce evaporation (Sharma et al. 2018; Kairis et al. 2013). Other beneficial effects of cover crops include facilitating nutrient cycling, increasing soil organic carbon sequestration, improving soil structure and reducing wind and water erosion (Ranells and Wagger 1996; Dabney et al. 2001; Paleseet al. 2014).
impact of cover crops to reduce erosion varies with the plant species and biomass production (Blanco-Canqui et al. 2011). Numerous studies have indicated that cover crops, such as rye, spring lentils, sainfoin and winter triticale decrease wind erosion by increasing soil cover, carbon build-up and improving soil aggregate stability (Bilbro and Hargrove 1991; Blanco-Canqui et al. 2013). Novara et al. (2019) indicated that, in the sloping area, the cover crop exerts a positive impact on carbon budget by an increase in the C input and a restriction on the C loss.

Sainfoin (*Onobrychis sativa*), rye (*Secale montanum*) and tall wheatgrass (*Agropyron sp*) were selected in this study as pilot, because of properties such as highly tolerant to drought, good source of animal feed, unique adaptation to poor soils and well-developed root system (Sancak et al. 2003; Kaspar and Bakker 2015; Oelke et al. 1990; Bayat et al. 2016). Previous studies have shown that legumes act as pioneer plants to enhance poor soil and have a useful effect on soil fertility (Agbenin and Adeniyi 2005). Sainfoin could provide a large amount of organic material and nitrogen content by fixing atmospheric nitrogen that improve the physico-chemical characteristics of the soil (Mohajer et al. 2012; Beyaz et al. 2011).

This study was designed for a steep land that is prone to features of water and wind erosions, high velocity of runoff with low infiltration and poor biodiversity in a semi-arid area, Shahrekord, Iran. We were interested in studying the influence of straw checkerboard barriers on growth and performance of rye, sainfoin, and tall wheatgrass to alleviate the drought effects caused by deficiency of precipitation, soil chemical properties, and water storage change in order to provide a theoretical basis for the application of straw checkerboard barrier technique to stabilize the slope surface and ecologic restoration.

Materials And Methods

Site Description

This experiment was performed at Shahrekord University, Chaharmahal and Bakhtiari Province, Iran (50° 49' E, 32° 21' N; 2050 m a.s.l.). A Mediterranean semiarid area, with warm and dry summer and cold winters. The mean annual precipitation is approximately 316 mm and average monthly temperature is 12.12 °C. The mean annual wind velocity is 2.6 m/s. The soil is classified as Entisol and the slope ranges from 10 to 14%. The ground-water table depth was below 80 m, which cannot be used by the plant. At the beginning of the study, soil samples were randomly collected from 0–30 cm depth using a soil auger; the important characteristics of the soil are shown in Table 1.

Experimental Set up

1×1 m square grids of rice straw barriers were established in January, 2018 as the checkerboards pattern, covering an area of approximately 700 m². The straw was buried in the soil to a depth of 20 cm and protruded 20 cm above the soil. A bare ground with the same area was chosen as a control plot in the adjacent to the straw checkerboard barriers (Fig. 1). Sainfoin (*Onobrychis sativa*), rye (*Secale montanum*), and tall wheatgrass (*Agropyron sp*) were seeded within each square and the bare ground manually at 2–4 cm depth in November 2018.

Measurements

Plants Growth Parameters

Plant growth parameter measurements were taken at the end of the growing period. Five plants were randomly selected from the borders of barriers, centers of barriers, and the bare ground by cutting them at the ground level. Afterward, the plants' height and above-ground biomass were assessed. The aerial parts were then oven-dried at 70 °C for 48 h and weighed to determine the dry weight.

Physiological Traits

Chlorophyll a, chlorophyll b, and carotenoids contents were determined according the methodology described by Lichtenthaler and Buschman (2001). At first, 100 mg fresh leaf sample collected from matured leaves were ground with 5 ml of 80% acetone. After filtration, extracts were adjusted to 10 ml with 80% acetone solution and the absorbance of the solution was recorded at 646.8, 663.2, and 470 nm with a spectrophotometer (HACH Company, DR 6000, Germany). Pigment contents were calculated by the following equations:

\[
\text{Chl a (mg g}^{-1} \text{FW)} = (12.7 \times \text{abs}_{663.2}) - (2.6 \times \text{abs}_{646.8}) \frac{\text{mL acetone mg}^{-1}}{}
\]
Chl b (mg g\(^{-1}\) FW) = (22.9 \times \text{abs}_{646.8}) - (4.68 \times \text{abs}_{663.2}) mlacetone mg\(^{-1}\) (2)

Carotenoids (mg g\(^{-1}\) FW) = [(100 \times \text{abs}_{470}) - (1.82 \times \text{Chl a}) - (85.02 \times \text{Chl b})] / 198 (3)

Electrolyte leakage (EL) value, specified for assessing the degree of drought tolerance was measured according to the method of Lutts et al. (1996). To this end, cleaned and freshly collected leaf samples were put into test tubes containing 10 ml distilled water and incubated for 2 h at 25 °C. Subsequently, the electrical conductivity of the solution was measured (EC1). The samples were autoclaved at 15 psi for 15 min and the second electrical conductivity (EC2) was determined. Electrolyte leakage (EL) was estimated according to the following formula:

EL (%) = (EC1/EC2) \times 100 (4)

The proline content was estimated by the method of Bates et al. (1973). The leaf fresh samples were ground with 3% salicylic acid. After adding ninhydrin and glacial acetic acid in tubes containing portions of the ground samples, tubes were kept in a 100 °C water bath. After cooling, 4-mL toluene was added. The absorbance was measured by spectrophotometer at 520 nm using the calibration curve.

The malondialdehyde (MDA) concentration was determined based on the 2-thiobarbituric acid (TBA) test proposed by Draper and Hadley (1990).

For relative water content (RWC), three leaves per plant of a similar age were detached and weighed freshly (FW). Afterward, the leaf fresh samples were immersed in distilled water in sealed vials for 24 h at 4°C in dim light. After 24 h, the leaves were weighed to obtain the turgid weight (TW). Dry weight (DW) was then determined after oven drying at 70 °C for 48 h. The RWC was calculated using the following formula (Turner 1981).

RWC (%) = \left[\frac{(FW-DW)}{(TW-DW)}\right] \times 100 (5)

In order to determine the protein content, dried samples of aerial parts of plants were passed through a 1-mm sieve and analyzed for total nitrogen concentration based on Kjeldahl method. The protein contents then were estimated using the following equations (Tessta et al. 2011):

Protein (%) = N \times 6.25 (6)

Determination of Soil Water Storage

The volumetric soil water content was measured at 5, 15, and 25 cm depths in border and center of each square as well as the bare ground during the growing season of rye, sainfoin, and tall wheatgrass (on 22.04.2019, 4.05.2019, 16.05.2019, and 29.05.2019) using a soil moisture meter (SM01, Azar-Khak-Ab urmia). Soil Water Storage (SWS), to a depth of 25 cm, was calculated as follows (Ren et al. 2008):

\[
\text{SWS} = \sum_{i=1}^{n} h_i \times \text{SWCi} \times 10/100
\]

(7)

where SWS (mm) is the soil water storage; hi (cm) is the soil layer depth; SWCi is the volumetric soil water content of soil layer i; n is the number of soil layers, i=1, 2,... etc.

Soil Measurements

After the plants harvest, soil samples were collected along a vertical line in the borders and also the centers of each square as well as the bare ground using a soil auger in 0–25 cm soil layer. Three points per treatment were taken to collect soil samples and then pooled together. Three replications for each mixed sample were obtained. The mixed samples were air dried and then sieved through a 2 mm sieve. The soil organic carbon (SOC) content was measured by Walkley-Black, potassium dichromate oxidation method (Lu 2000). Total nitrogen (TN) content was determined using the Kjeldahl digestion (Bremner and Mulvaney 1982). Soil available phosphorus (AP) was measured using the method provided by Olsen et al. (1954). Soil available potassium (AK) content was extracted with 1 N ammonium acetate and using flame photometry (Lu 2000).
Data analysis

Repeated-measures analyses of variance (RM-ANOVAs) were performed on the plant traits and soil chemical properties data (confidence level of 95%). The between-subject factors were the cover crops while the within-subject factor was the distance from barriers. Moreover, for the soil water storage data, the between-subject factors included the distance from barriers while the within-subject factor included cover crops and time. Repeated-measures analyses of variance were performed using the STATISTIX 12.0 software. The differences between the mean values were compared using the least significant difference (LSD) at $P < 0.05$.

Results

Weather Conditions

Daily precipitation and air temperature during the growing period are given in Fig. 2. The rainfall during the growing periods amounted to 300 mm and the daily mean of air temperature varied from -5.1 to 20.4°C (Fig. 2). The air temperature rose with the progress of plants growth.

Soil Chemical Properties

Total N

Soil total N was affected by cover crops ($p < 0.01$), distance from barrier ($p < 0.01$) and their interaction ($p < 0.05$) (Table 2). Soil total nitrogen content was increased with the establishment of straw barriers compared with the bare ground, especially at the border of barriers (Fig. 3). In the border of the barriers, higher levels of total N were detected in soil with sainfoin (0.118%), tall wheatgrass (0.104) and the soil with no plant (0.112). Also, lower total N content detected in the soils after rye harvest (0.086%) (Fig. 3), may relate to higher biomass of the rye produced near the borders. Straw materials may enhance N contents via higher rates of mineralization supported by higher carbon and aeration of the straw rows.

Available P

Soil available P was influenced by the cover crop type, distance from barriers and interaction between the cover crops and distance from the barrier ($p < 0.01$) (Table 2). Higher concentrations of available P were recorded in the border of barriers especially for the ones with no plant and after the rye harvest (Fig. 4). Generally, P content of the border of the barriers was averagely higher by 22.24 % than the bare ground. The P content in the soil with rye was averagely lower by 24.37% and 35.12% in the center of the barriers and bare ground, respectively, compared with the borders (Fig. 4). Higher available P content in the border of the barriers with no plant indicates that straw checkerboard incorporates to increment of available P; however, it may have been consumed with the plants in other plots. The rye may have been more efficient in availability of P.

Available K

In terms of soil available K, there were effects only by the distance from the barriers ($p < 0.01$) (Table 2). The straw checkerboards increased available K averagely 27.81% near the borders and 10.47% at the centers, respectively, compared to the bare ground (Fig. 5).

Organic Matter

The soil organic matter content was significantly affected by the cover crop type ($p < 0.01$), the distance from barriers ($p < 0.01$) and the interaction between them ($p < 0.05$) (Table 2). Higher soil organic matter content was recorded for the border of the barriers (Fig. 6). In the border of the barriers, the rye has been left more organic matters in the soil being on average 8.82% and 22.70% higher than sainfoin and tall wheatgrass, respectively (Fig. 6). Higher organic matter observed for the border of barriers with no plant indicates the effect of straw materials on organic matter. The rye and sainfoin grown in the bare ground improved the soil organic matter by 49.60% and 38.58% compared to a soil without cover crops (Fig. 6).

Plant Growth Parameters

Plant height, biomass, and shoot dry weight were significantly affected by the cover crop type ($p < 0.01$), the distance from barriers ($p < 0.01$) and their interaction (Table 3). It was observed that the straw barriers were superior to the bare ground in terms of plant height especially for the plants near the borders (Fig. 7A). For example, the height of rye in the border and center of the barriers was on
average 22.36 and 16.43% higher than the bare ground (Fig. 7A). In the border of barriers, the higher shoot fresh weight belonged to the rye, followed by the sainfoin and tall wheatgrass (Fig. 7B). Also, the border of the barriers contributed positively to higher shoot fresh weight of the rye (105.94%), sainfoin (133.38%) and tall wheatgrass (167.08%) compared to the bare ground (Fig. 7B). The rye plant grown in the border of barriers showed around 60% higher shoot dry weight compared to the bare ground (Fig. 7C). Generally, the rye showed higher amounts of biomass, shoot dry weight, and plant height than that of other cover crops.

Physiological Attributes

Leaf Photosynthetic Pigments

Leaf chlorophyll a, b and carotenoids contents were significantly different for the cover crops (p < 0.01) and the distance from barriers (p<0.01; Table 4) while the interaction effect of the cover crops and distance from the barriers was not significant (Table 4). The content of the rye chlorophyll a was significantly higher than sainfoin and tall wheatgrass (Table 5). Chlorophyll a was significantly, on average 40%, greater for the plants grown in the border of the straw barriers compared to the bare ground (Table 6). Among the different cover crops, higher chlorophyll b also was also recorded for rye plants (Table 5). The border of the straw barriers led to a significant increase in the chlorophyll b of leaves with a value of 0.181 mg/g, while no significant differences were detected between the center of the barriers and bare ground (Table 6). The same trend was observed for the carotenoid contents. The carotenoid contents of the cover crops in a descending order were as follows: rye>tall wheatgrass>sainfoin (Table 5). In addition, the border of the barriers increased the carotenoid content by 22.5% and 41.61% relative to the center of the barriers and bare ground, respectively (Table 6).

Relative Water Content (RWC)

In terms of relative water content, there were significant effects of the cover crops (p < 0.05) and distance from barrier (p < 0.01), but not their interaction (Table 4). The rye plants maintained the highest RWC among the crops (Table 5). The relative water content of sainfoin was not significantly different from that of tall wheatgrass (Table 5). Higher RWC was recorded in the border of the barriers by increasing 17.85% as compared to the bare ground (Table 6). However, no significant differences were detected between the plants grown in the center of the barriers and bare ground (Table 6).

Electrolyte Leakage (EL)

The effects of the cover crops and distance from the barrier were significant on electrolyte leakage (p<0.01; Table 4). The interaction effect of the cover crops × distance from the barrier was not significant on the EL value (Table 4). Among the different cover crops, the lowest EL value was obtained for the rye plant (Table 5). The measurement of electrolyte leakage in the leaves of the plants grown in the straw checkerboard and bare ground showed that on average 13.1% and 3.76% lower EL value is in the border and center of the barriers respectively, compared to the bare ground (Table 6).

Malondialdehyde (MDA)

MDA content was significantly affected by the cover crops and distance from the barrier (p<0.01) but, no interaction effect was found (Table 4). Among the different cover crops, sainfoin and rye recorded the highest malondialdehyde content (Table 5). Malondialdehyde content ranged between 0.033 µmol g\(^{-1}\) for the plant grown in the borders to 0.037 µmol g\(^{-1}\) for the plant grown in the bare ground (Table 6). The border plants had significantly the lowest MDA as compared to the bare ground plants. No significant differences were observed between the border and center of the barriers (Table 6).

Proline

Proline content was significantly affected by the cover crops, the distance from the barrier and their interaction (p<0.01; Table 4). The highest values of proline were obtained for the rye grown in the border and center of the barriers, while the lowest value was recorded for the rye grown in the bare ground. The tall wheatgrass also showed higher amounts of proline content in the border of the barriers but the proline content of sainfoin was the only case that was not affected by the distance from the barriers (Fig. 8).
may be due to higher N fixation (Table 5). The crude protein content of the plant grown in the straw checkerboard was also significantly greater than the ones on the bare ground (Table 6).

Soil Water Storage

During the growing seasons of the rye, sainfoin and tall wheatgrass, the soil water storage was monitored. Analysis of the soil water storage dynamic within a 0-25cm depth under the three mentioned crops at different distances from the barriers showed that a higher value of soil water storage was observed in the checkerboard plots (Fig. 9A). At the borders, plants consumed the water so that the plot without plants had higher soil water storage (Fig. 9A). The rye drained more water than the other cover crops that may be due to the higher biomass produced. In the center of the barriers, water status was more stable (Fig. 9A). In other words, although there was no water consumption in a plot without plants, there was no water storage, which may point to more evaporation because of naked soil.

The soil water storage dynamics showed variations in the straw barriers and bare ground during the growing season (Fig. 9B). During the growing season of crops, the border and center of the barriers invariably retained higher soil moisture than the bare ground and significant differences among the straw barriers and bare ground were observed. The soil water storage fell dramatically over time and changed moderately during the late growth period (Fig. 9B).

Principal Component Analysis

The analysis of the principal components of the morphophysiologic properties of plants (Chlorophyll a, chlorophyll b, carotenoids, RWC, EL, MDA, proline, protein, plant height, shoot fresh weight and shoot dry weight) showed 75.77% variation explained by PC1 and PC2 (Table 7). The highest eigenvectors are related to the chlorophyll a, carotenoids, shoot fresh weight and shoot dry weight for PC1. Moreover, there were a positive correlation protein and MDA with PC2 and a negative correlation with EL (Table 7). As shown in Figure 10, the points related to the rye plant are located on the left side of the PC1 and the points related to the tall wheatgrass and sainfoin plant are located on the right side of the PC1. Therefore, the rye plant has higher shoot fresh weight, shoot dry weight, chlorophyll a and carotenoids. Also, the points related to the sainfoin plant are located on the top of the PC2 and the tall wheatgrass plant is located on the low part of the PC2 (Fig. 10). The protein variable has the highest positive correlation with the PC2 and has caused the separation of sainfoin from the tall wheatgrass.

The PCA on soil characteristics (total N, available P, available K, soil organic matter and soil water storage) showed that PC1 and PC2 explained the 63.95% and 11.10% data variability, respectively (Table 8). The highest eigenvectors are related to the available P and the soil water storage, which have negative correlations with this principle component. The total nitrogen has a positive correlation and the available potassium has a negative correlation with the second principal component (Table 8). The results showed that the points related to the border of barriers are located on the left side of the PC1 and the points related to the bare ground are located on the right side of the PC1 (Fig. 11). In the present research, it can be noticed that PC1 represents the changes both in different plants and between the border of the barriers, center of the barriers and bare ground.

Discussion

In the semiarid areas, a large amount of carbon is lost through high mineralization rates and soil erosion; thus, cover crops are vital to preserve the soil organic carbon stock (Fernandez-Romero et al. 2016). The highest SOM content was found in the rye grown in the border of the barrier. Several studies in different climatic conditions have reported that cover crops such as rye, ryegrass, pea and oats significantly improved soil organic carbon contents relative to plots without cover crops (Olson et al. 2014; Sainju et al. 2002). Additionally, soils treated with cover crops may decrease SOC loss through reducing soil erosion (Blanco-Canqui et al. 2015). Cover crops increase soil organic material at greater depths of soil through the fast growing and their extensive roots that penetrate soil particles to form a porous network, which enhance water holding capacity (Dabney et al. 2001; Adetunji et al. 2020). Roots, as one of the most important sources of carbon and nitrogen in soil, help to stabilize carbon and nitrogen in the topsoil through their exudates and labile carbon compounds (Jackson et al. 2017). Our results proved that after the establishment of straw checkerboard barriers, the border of the barriers had significantly higher SOM content; that is, the straw buried into the soil acts as a main source of organic matter and soil organic carbon to overcome the lack of SOM. This coincides with Li et al. (2018) who showed that the rice straw checkerboard barriers have useful effect on the soil organic carbon build-up. Straw barriers provide enough carbon for soil microbes
and stimulate soil microbial growth and activity (Li et al. 2020; Karhu et al. 2014). Li et al. (2020) observed that the mineralization rate of soil increased by 155% after the implement of straw checkered barriers.

Soil organic matter improves the ability of soil to store macronutrients such as potassium and magnesium by increasing the soil cation exchange capacity (Newman et al. 2007). In this study, establishment of straw checkerboard enhanced NPK content compared with the bare ground. However, the rye absorbed more total nitrogen from soil than the other cover crops. This trend may be stimulated near the borders due to fast rates of growth. Because of N-scavenging capacity of rye, it may assimilate and recycle substantial amounts of residual soil nitrogen during the quick establishment (Staver and Brinsfield 1998; Sadeghpour et al. 2014; Thorup-Kristensen 2006).

Nielsen et al. (2015) reported that rye and canola have better potentials to mine residual soil NO$_3^-$ compared to legume cover crops. Based on field experiments, Kaspar and Singer (2011) observed that oats, rye, ryegrass and hairy vetch as cover crops decreased NO$_3^-$ leaching by 6–94%. Sainfoin increased the soil total N which may be attributed to biological N fixation (O’Reilly et al. 2012). On the other hand, higher nutrients released after the establishment of straw checkerboard barriers may be due to the decomposition and mineralization of straw (Li et al. 2020; Kasteel et al. 2007). Gaihre et al. (2013) reported that rice stubble contains many elements such as nitrogen (N), phosphorus (P), potassium (K) and sulfur (S). Almost 40% of N, 30–35% of P and 80–85% of K uptake by rice remain in the straw at maturity stage (Dobermann and Fairhurst 2002). Previous studies have shown that straw checkerboard barriers can increase the soil nitrogen, available phosphorus and available potassium content (Li et al. 2018; Zhang et al. 2018; Lie 2017). After the straw decomposition and mineralization, generated adhesive substances will aid to soil aggregates too (Xiu et al. 2019). The rye was more effective in enhancing P availability. The well-developed root system has been nominated in previous studies as a P-mobilizing species (Kamhet al. 1998). Cover crops can decrease the P loss caused by erosion, leaching and runoff (Maltais-Landry and Frossard 2018). On the other hand, organic acids released during the straw decay can activate organic phosphorus, leading to an increase in the soil nutrient availability (Shan et al. 2008).

Soil water storage is a crucial parameter for plant establishment and growth, particularly in water-limited conditions (Ren et al. 2008). The lack of sufficient precipitation during mid- to late-growth season (Fig. 2) led to a decrease in the soil water storage especially in the bare ground. Cover crops can improve the soil moisture storage through water conductivity by root channels, enhancing aggregate stability, and reducing soil compaction (Williams and Weil 2004; Soane et al. 2012). Soil water storage made an increase in the straw barriers (Fig. 9), indicating their beneficial impacts on the stored soil moisture. The buried straw makes the top layer more porous which may lead to more infiltration of water (Yang et al. 2016). Compact layer underneath the straw may accumulate more water and block the water infiltration. The soil exhibited higher porosity and lower bulk density near the borders (Chen et al. 2007) which may lead to greater water conductivity and infiltration (Wu et al. 2016). The rice residue improved the rainwater preservation in carrying over extra soil water content during the growth and development of winter plants (Das et al. 2014). The border of barriers enhanced the soil water storage, and plants can benefit from the stored soil water content originated from winter and spring rainfall during the vegetative development stage. On the other hand, fungal hyphae promoted the soil aggregation and improved the soil structure; therefore, they reduced soil bulk density and altered the soil hydrothermal processes (Peng et al. 2013; Lenka and Lal 2013). Straw checkerboard barriers could effectively weaken the wind velocity (Bo et al. 2015) and provided the most shaded conditions which have a significant effect on microclimate near the ground and resulted in a decreased evaporation while improving the water retention in the soil (Reicosky et al. 1995).

Increased plant height, aerial biomass, and shoot dry weight at checkerboard (Fig. 7A-C) may be attributed to a greater availability of macronutrients and an increase in the soil moisture storage in the root zone and reasonable soil structure (Hallidri 2001). Zhao et al. (2014) and Clarke et al. (2015) reported that the straw returned into the soil reduces the moisture evaporation, increases the soil water content and soil temperature that enhance physiological metabolism in root systems, and also ameliorate the nutrient mineralization and plant uptake. Zhang et al. (2018) showed that straw checkerboards created a suitable eco-environment for establishment of *Agrostemma githago*. Reducing bulk density and improving soil infiltration rate and soil ecological processes after the establishment of barriers (Zhang et al. 2018) may lead to an increase of root proliferation and extend deeper into the profile which increase the growth and reduce the risk of plant damages arising from drought (Payne et al. 1995). Cover crops with fibrous root system such as rye, oats and ryegrass were more efficient in decreasing the soil erosion than cover crops with thick roots (De Baets et al. 2011).

Li et al. (2020) suggested that ditch buried straw return is an effective measure in semiarid regions of China, which improves soil fertility and increases biomass accumulation and plant height. Siczak and Lipiec (2011) reported that straw mulching has a beneficial
effect on symbiotic nitrogen fixation, nitrogenase enzyme activity, nodule diameter and dry weight of soybean by improving water regime.

The leaf chlorophyll contents are good indicators of the photosynthesis activity, nutritional state and abiotic constraints (Marcu et al. 2013). High level of chlorophyll a, chlorophyll b and carotenoids in leaves of rye (Table 5), besides its drought tolerant characteristic, may be considered for their cultivation in this situation more than other ones (Hlavinka et al. 2009).

At the border of barriers, significant higher chlorophyll contents were observed. Enhanced soil moisture storage (Fig. 9A) and supply of nutrients especially nitrogen (Fig. 3) may increase the chlorophyll contents which coincide with other studies (Das et al. 2019; Silva et al. 2007). Chlorophyll depletion in leaves of plants grown in bare ground can be attributed to the continuously increasing soil moisture deficit and sensitivity of this pigment to drought stress. Carotenoids have a powerful antioxidant role in plants by scavenging reactive oxygen species; thereby, one of the main responsibilities of carotenoids is to protect the photosynthetic system against free radical stress (Özsoy et al. 2009). The straw checkerboard barriers also increased the carotenoids content in leaves to prevent chlorophyll destruction. Therefore, straw checkerboard barriers can have the ability to prevent plants facing the adverse effect of drought.

Evaluation of RWC content revealed better results for rye (Table 5) which may be due to its highly developed root system and can take full advantage of the soil water at the beginning of the growing season. Various studies have shown that grass species maintaining high amounts of RWC content can exhibit more cellular hydration under stress conditions (Chai et al. 2010). Maintaining RWC at 67.54% in the rye grown on borders should allow the rye to retain minimal cell turgidity and represent a high capacity of osmotic adjustment.

Electrolyte leakage has been widely used as an indicator of the oxidative stress (Trabelsi et al. 2019). The rye had the lowest electrolyte leakage among the three cover crops (Table 5). Significant increase in EL on the bare ground plants may be due to the fact that water deficit increases electrolyte leakage and confirms that these plants are more vulnerable to border plants.

Malondialdehyde (MDA) concentration is the final product of membrane lipid peroxidation (Anjum et al. 2011). MDA content, as an indicator of oxidative damage, reflects the extent of the membrane injury caused by reactive oxygen species (Stajner et al. 2009). Our findings showed that the MDA content was decreased when the rye and sainfoin were grown in the straw checkerboards (Table 6). The straw checkerboards provided better protection from oxidative damages and higher tolerance to drought was created by improving the soil water storage.

As a nitrogenous compound, proline is the main amino acid that plays a major role in plants under drought conditions and is responsible for osmotic adjustment in plants (Hazrati et al. 2017). Higher proline accumulation, occurred in the rye grown on the border of barriers, may be attributed to the increase in soil total nitrogen content on the border of the barriers (Azcón and Tobar 1998).

Increased soil available potassium may induce proline accumulation. It may be attributed to starvation effect of K on amino acids and proline metabolism (Bahrami-Rad and Hajiboland 2017). In this study, the rye plants showed the highest proline concentration (Fig. 8), and the least-injuries by drought in terms of plants growth; Plants grown in the bare ground suffered more (Fig. 7A-C). High proline contents were in line with maintaining protein structures; preserve the integrity of cell membranes and antioxidant protective roles in cover crops (Zhang et al. 2009).

Conclusion

Straw checkerboard barriers improved initial vegetation recovery in steep dry lands. As an effective management practice, this technique significantly has improved soil macronutrient, organic matter content and soil water storage which further creates ideal conditions for growth performance of plants. As a result, the improved plant growth leads to soil preserve and reduced erosion. Cover crops, especially the rye, improved organic matter contents of the soil, which may be important as a carbon sequestration approach. Most of the physiological parameters evaluated herein indicate that for the mentioned cover crops, rye had a better ability to survive during drought stress, can be used in such a dry condition effectively. Superior drought tolerance in rye, compared to other cover crops, was associated with increased proline content and more efficient osmotic adjustment. Based on this field experiment, it could be concluded that implement of straw checkerboards will protect cover crops more efficient to conserve natural resources and sustaining productivity.

Declarations
Acknowledgement

This work was supported by funding from the Shahrekord University. The authors would like to thank the Shahrekord University for providing financial support.

Conflict of interests

The authors declared no conflict of interests.

References

1. Adetunji AT, Ncube B, Mulidzi AR, Lewu FB (2020) Management impact and benefit of cover crops on soil quality: A review. Soil Tillage Res 204:e104717
2. Agbenin JO, Adeniyi T (2005) The microbial biomass properties of a savanna soil under improved grass and legume pastures in northern Nigeria. Agric Ecosyst Environ 109:245–254
3. Anjum SA, Xie XY, Wang LC, Saleem MF, Man C, Lei W (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6:2026–2032
4. Azcón R, Tobar RM (1998) Activity of nitrate reductase and glutamine synthetase in shoot and root of mycorrhizal Allium cepa: Effect of drought stress. Plant Sci 133:1–8
5. Bahrami-Rad S, Hajiboland R (2017) Effect of potassium application in drought-stressed tobacco (Nicotiana rustica L.) plants: comparison of root with foliar application. Ann Agric Sci 62:121–130
6. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207
7. Bayat H, Nemati H, Tehranifar A, Gazanchian A (2016) Screening different crested wheatgrass (Agropyron cristatum (L.) Gaertner,) accessions for drought stress tolerance. Arch Agron 62:6
8. Beyaz B, Kaya G, Cocu S, Sancak C (2011) Response of seeds and pollen of Onobrychis viciifolia and Onobrychis oxyodonta var. armena to NaCl stress. Sci Agric 68:477–481
9. Bilbro J, Hargrove W (1991) Cover crops for wind erosion control in semiarid regions. Cover crops for clean water. Proceedings of an International Conference West no Tennessee Experiment Station, Jackson, TN 9–11 April
10. Blanco-Canqui H, Mikha MM, Presley DR, Claassen MM (2011) Addition of cover crops enhances no-till potential for improving soil physical properties. Soil Sci Soc Am J 75:1471–1482
11. Blanco-Canqui H, Holman JD, Schlegel AJ, Tatarko J, Shaver TM (2013) Replacing fallow with cover crops in a semiarid soil: effects on soil properties. Soil Sci Soc Am J 77:1026–1034
12. Blanco-Canqui H, Shaver TM, Lindquist JL, Shapiro CA, Elmore RW, Francis CA, Hergert GW (2015) Cover crops and ecosystem services: insights from studies in temperate soils. Agron J 107:2449–2474
13. Bo TL, Ma P, Zheng XJ (2015) Numerical study on the effect of semi-buried straw checkerboard sand barriers belt on the wind speed. Aeolian Res 16:101–107
14. Bremner JM, Mulvaney CS (1982) Nitrogen-total. In: Page, A.L. (ed.), Methods of Soil Analysis. Part 2 Chemical and Microbiological Properties. Madison, WI, American Society of Agronomy, pp 595–624
15. Chai Q, Jin F, Merewitz E, Huang B (2010) Growth and physiological traits associated with drought survival and post-drought recovery in perennial turfgrass species. J Am Soc Hort Sci 135:125–133
16. Chen SY, Zhang XY, Pei D, Sun HY, Chen SL (2007) Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: field experiments on the North China Plain. Ann Appl Biol 150:261–268
17. Clarke S, Lamont K, Pan H, Barry L, Hall A, Rogiers S (2015) Spring root-zone temperature regulates root growth, nutrient uptake and shoot growth dynamics in grapevines. Aust J Grape Wine R 21:479–489
18. Dabney S, Delgado J, Reeves D (2001) Using winter cover crops to improve soil and water quality. Commun Soil Sci Plant Anal 32:1221–1250
19. Dai Y, Dong Z, Li H, He Y, Li J, Guo J (2019) Effects of checkerboard barriers on the distribution of aeolian sandy soil particles and soil organic carbon. Geomorphology 338:79–87
20. Das A, Lal R, Patel DP, Ramkrushna GI, Layek J, Ngachan SV, Ghosh PK, Bordoloi J, Kumar M (2014) Effects of tillage and biomass on soil quality and productivity of lowland rice cultivation by small scale farmers in North Eastern India. Soil Tillage Res 143:50–58
21. Das A, Layek J, Ramkrushna GI, Rangappa K, Lal R, Ghosh PK, Choudhury BU, Mandal S, Ngangom B, Dey U, Prakash N (2019) Effects of tillage and rice residue management practices on lentil root architecture, productivity and soil properties in India’s Lower Himalayas. Soil Tillage Res 194:104313
22. De Baets S, Poesen J, Meersmans J, Serlet L (2011) Cover crops and their erosion reducing effects during concentrated flow erosion. Catena 85:237–244
23. Dobermann A, Fairhurst TH (2002) Rice Straw Management. In: Taken from Better Crops International, Special supplement publication: Rice Production, vol 16. Published by the Potash and Phosphate Institute of Canada
24. Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Method Enzymol 186:421–431
25. Fernandez-Romero ML, Lozano-Garcia B, Parras-Alcantara L, Collins CD, Clark JM (2016) Effects of land management on different forms of soil carbon in olive groves in Mediterranean areas. Land Degrad Dev 27:1186–1195
26. Gaihre YK, Wassmann R, Villegas-Pangga G (2013) Impact of elevated temperatures on greenhouse gas emissions in rice systems: interaction with straw incorporation studied in a growth chamber experiment. Plant Soil 373:857–875
27. Hadas A (2004) Seedbed preparation – the soil physical environment of germinating seeds. In: Benech-Arnold RL, Sanchez RA (eds) Handbook of Seed Physiology. Applications to Agriculture. The Haworth Press, Inc., Binghamton, pp 3–49
28. Hallidri M (2001) Comparison of different mulching materials on growth, yield and quality of cucumber (Cucumis sativus L.). Acta Hort 559:49–53
29. Hazrati S, Tahmasebi-Sarvestani Z, Mokhtassi-Bidgoli A, Modarres-Sanavy SAM, Mohammadi H, Nicola S (2017) Effects of zeolite and water stress on growth, yield and chemical compositions of Aloe vera L. Agric. Water Manage 181:66–72
30. Hlavinka P, Tmka M, Seferadova D, Dubrovsky M, Zalud Z, Mozny M (2009) Effect of drought on yield variability of key crops in Czech Republic. Agric For Meteorol 149:431–442
31. Jackson RB, Lajtha K, Crow SE, Hugelius G, Kramer MG, Piñeiro G (2017) The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu Rev Ecol Evol Syst 48:419–445
32. Kairis O, Karavitis C, Kounalaki A, Salvati L, Kosmas C (2013) The effect of land management practices on soil erosion and land desertification in an olive grove. Soil Use Manag 29:597–606
33. Kaspar T, Singer J (2011) The use of cover crops to manage soil. In: Hateld J, Sauer T (eds), Soil Management: Building a Stable Base for Agriculture. SSSA., Madison, WI
34. Kaspar TC, Bakker MG (2015) Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield. J Soil Water Conserv 70:353–364
35. Kasteel R, Garnier P, Vachier P, Coquet Y (2007) Dye tracer infiltration in the plough layer after straw incorporation. Geoderma 137:360–369
36. Lei H (2017) Spatial distribution of Agriophyllum squarrosum Moq. (Chenopodiaceae) in the straw checkerboards at a revegetated land of the Tengger Desert, northern China. J Arid Land 9:176–187
37. Lenka NK, Lal R (2013) Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res 126:78–89
38. Li Sh, Li Ch, Yao D, Wang Sh (2020) Feasibility of microbially induced carbonate precipitation and checkboard barriers on desertification control and ecological restoration. Ecol Eng 152:105883
39. Li X, Zhou R, Jiang H, Zou D, Zhang X, Xie Y, Gao W, Shi J, Wang Y, Wang J, Dong R, Byambaa G, Wang J, Wu Z, Hai C (2018) Quantitative analysis of how different checkboard sand barrier materials influence soil properties: a study from the eastern edge of the Tengger Desert. China Environ Earth Sci 77:481
40. Li XR, Zhang JG, Wang XP, Liu LC (2000) Study on soil microbiotic crust and its influences on sand fixing vegetation in arid desert region. Acta Bot Sin 42:965–970
43. Li XR, Xiao HL, He MZ, Zhang JG (2006) Sand barriers of straw checkerboards for habitat restoration in extremely arid desert regions. Ecol Eng 28:149–157
44. Li Y, Songa D, Danga P, Weia L, Qina X, Siddiqueb KHM (2020) Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil Tillage Res 199:104596
45. Lichtenthaler HK, Buschman C (2001) Chlorophylls and carotenoids: Measurement and characterization by UV-VIS spectroscopy. In: Wrolstad, R.e. (ed) Current Protocols in Food Analytical Chemistry John Wiley and Sons, Inc. New York. F4.3.1-F4.3.8
46. Lu RK (2000) Soil and Agro-Chemical Analytical Methods. China Agricultural Science and Technology Press, Beijing
47. Lutts S, Kinet JM, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398
48. Maltais-Landry G, Frossard E (2015) Similar phosphorus transfers from cover crop residues and water-soluble mineral fertilizer to soils and a subsequent crop. Plant Soil 393:193–205
49. Marcu D, Cristea V, Daraban L (2013) Dose-dependent effects of gamma radiation on lettuce (Lactuca sativa var. capitata) seedlings. Int J Radiat Biol 89:219–223
50. Marques MJ, Schwilch G, Lauterburg N, Crittenden S, Tesfai M, Stolte J, Zdruli P, Zucca C, Petursdottir T, Evelpidou N, Kaaran A, AsliYilmazgil Y, Panagopoulos T, Yirdaw E, Kanninen M, Luis Rubio J, Schmiedel U, Doko A (2016) Multifaceted impacts of sustainable land management in drylands: a review. Sustainability 8:177
51. Mohajer S, Taha RM, Khorasani A, Yacocb JS (2012) Induction of different types of callus and somatic embryogenesis in various explants of Sainfoin (Onobrychis sativa). Aust J Crop Sci 6:1305–1313
52. Munson SM, Lauernoth WK (2012) Plant community recovery following restoration in semiarid grasslands. Restor Ecol 20:656–663
53. Newman Y, Wright D, Mackowiak C, Scholberg J, Cherr C (2007) Benefits of Cover Crops for Soil Health. University of Florida IFAS Extension, SS AGR. 272
54. Nielsen DC, Lyon DJ, Hergert GW, Higgins RK, Holman JD (2015) Cover crop biomass production and water use in the Central Great Plains. Agron J 107:2047–2058
55. Novara A, Minacapilli M, Santoro A, Rodrigo-Comino J, Carrubba A, Samo M, Venezia G, Cristina L (2019) Real cover crops contribution to soil organic carbon sequestration in sloping vineyard. Sci Total Environ 652:300–306
56. O’reilly KA, Lauzon JD, Vyn RJ, Van Eerd LL (2012) Nitrogen cycling, profit margins and sweet corn yield under fall cover crop systems. Can J Soil Sci 92:353–365
57. Oelke EA, Oplinger ES, Bahri H, Durgan BR, Putnam DH, Doll JD, Kelling KA (1990) Rye. In Alternative Field Crops Manual, Production and Harvest of Rye. University of Wisconsin, pp. 36–40 (Ext. Serv., Madison, and University of Minnesota, st. Paul. P. 04/1. USA)
58. Olsen SR, Cole CV, Watanable FS, Dean LA (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circular 939, Washington
59. Olson K, Ebelhar SA, Lang JM (2014) Long-term effects of cover crops on crop yields, soil organic carbon stocks and sequestration. Open J of Soil Sc 4:284
60. Ozsoy N, Candoken E, Akev N (2009) Implications for degenerative disorders: antioxidative activity, total phenols, flavonoids, ascorbic acid, β-carotene and β-tocopherol in Aloe vera. Oxid Med Cell Longev 2:99–106
61. Palese AM, Vignozzi N, Celano G, Aghelli AE, Pagliai M, Xiloyannis C (2014) Influence of soil management on soil physical characteristics and water storage in a mature rainfed olive orchard. Soil Tillage Res 144:96–109
62. Peng S, Guo T, Liu G (2013) The effects of arbuscular mycorrhizal hyphal networks on soil aggregations of purple soil in southwest China. Soil Biol Biochem 57:411–417
63. Qu J, Zu R, Zhang K, Fang H (2007) Field observations on the protective effect of semi-buried checkerboard sand barriers. Geomorphology 88:193–200
64. Ranells NN, Wagger MG (1996) Nitrogen release from grass and legume cover crop monocultures and bicultures. Agron J 88:777–882
65. Reicosky D, Kemper W, Langdale G, Douglas C, Rasmussen P (1995) Soil organic matter changes resulting from tillage and biomass production. J Soil Water Conserv 50:253–261
66. Ren XL, Jia ZK, Chen XL (2008) Rainfall concentration for increasing corn production under semiarid climate. Agric Water Manage 95:1293–1302
67. Sainju U, Singh B, Whitehead W (2002) Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia. USA Soil Tillage Res 63:167–179
68. Sancak C, Khawar KW, Özcan S (2003) Abiotic factors affecting in vitro pollen grain germination in sainfoin (Onobrychis viciifolia Scop.). Pak J Bot 35:463–467
69. Shan Y, Cai Z, Han Y, Johnson SE, Buresh RJ (2008) Organic acid accumulation under flooded soil conditions in relation to the incorporation of wheat and rice straws with different C: N ratios. Soil Sci Plant Nutr 54:46–56
70. Sharma P, Singh A, Kahlon CS, Brar AS, Grover KK, Dia M, Steiner RL (2018) The role of cover crops towards sustainable soil health and agriculture—a review paper. Am. J. Plant Sci 9: 1935
71. Siczek A, Lipiec J (2011) Soybean nodulation and nitrogen fixation in response to soil compaction and surface straw mulching. Soil Tillage Res 114:50–56
72. Silva MA, Jifon JL, DaSilva JAG, Sharma V (2007) Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian J Plant Physiol 19:193–201
73. Soane BD, Ball BC, Avidsson J, Basch G, Moreno F, Roger-Estrade J (2012) No till in northern, western and south-western Europe: a review of problems and opportunities for crop production and the environment. Soil Tillage Res 118:66–87
74. Stajner D, Popovic BM, Taski K (2009) Effects of γ-irradiation on antioxidant activity in soybean seeds. Cent Eur J Biol 4:381–386
75. Sun CL, Liu GB, Xue S (2016) Natural succession of grassland on the Loess Plateau of China affects multifractal characteristics of soil particle-size distribution and soil nutrients. Ecol Res 31:891–902
76. Testaa G, Grestab F, Cosentinoa SL (2011) Dry matter and qualitative characteristics of alfalfa as affected by harvest times and soil water content. Eur J Agron 34:144–152
77. Trabelsi L, Gargouri K, Ben Hassena A, Mbadra C, Ghrab M, Ncube B, Van Staden J, Gargouri R (2019) Impact of drought and salinity on olive water status and physiological performance in an arid climate. Agric Water Manag 213:749–759
78. Turner NC (1981) Techniques and experimental approaches for the measurement of plant water status. Plant Soil 58:339–366
79. Wang T, Qu J, Niu Q (2020) Comparative study of the shelter efficacy of straw checkerboard barriers and rocky checkerboard barriers in a wind tunnel. Aeolian Res 43:100575
80. Williams JD, dobrowolski JP, West NE, Gillette DA (1995) Microphytic crust influence on wind erosion. Trans Am Soc Agric Eng 38:131–137
81. Williams SM, Weil RR (2004) Crop cover root channels may alleviate soil compaction effects on soybean crop. Soil Sci Soc Am J 68:1403–1409
82. Wilson SD, Bakker JD, Christian JM, Xingdong Li, Ambrose LG, Waddington J (2004) Semiarid old-field restoration: is neighbor control needed? Ecol. Appl 14:476–484
83. Wu JS, Liu J, Liu XF, Yang HS, Wang XH, Xu MM, Wei YF, Bian XM (2016) Effects of rice and wheat straw ditch-buried returns on the soil physical properties of wheat field. Acta Ecol Sin 36:1–10
84. Xiu L, Zhang W, Sun Y, Wu D, Meng J, Chen W (2019) Effects of biochar and straw returning on the key cultivation limitations of Albic soil and soybean growth over 2 years. Catena 173:481–493
85. Yang H, Fenga J, Zhaia S, Daia Y, Xua M, Wua J, Shenb M, Blana X, Roger T, Koidec RT, Liud J (2016) Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system. Soil Tillage Res 163:21–31
86. Yu Qiu G, Lee IB, Shimizu H, Gao Y, Dinge G (2004) Principles of sand dune fixation with straw checkerboard technology and its effects on the environment. J Arid Environ 56:449–464
87. Yüksel F, Yüksel T (2015) Growth performance of Sainfoin and its effects on the runoff, soil loss and sediment concentration in a semi-arid region of Turkey. Catena 173:309–317
88. Zhang S, Ding G, Yu M, Gao G, Zhao Y, Wu G, Wang L (2018) Effect of Straw Checkerboards on Wind Proofing, Sand Fixation, and Ecological Restoration in Shifting Sandy Land. Int J Environ Res Public Health 15:2184
89. Zhang X, Ervin EH, Evanylo GK, Haering KC (2009) Impact of biosolids on hormone metabolism in drought-stressed tall fescue. Crop Sci 49:1893–1901
Zhao Y, Pang H, Wang J, Huo L, Li Y (2014) Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crop Res 161:16–25

Tables

Table 1. Physical and chemical properties of the studied soils.

Characteristic	Unit	Value
Ec	μS cm⁻¹	153.4
pH		7.72
Organic matter	%	0.9
TN	%	0.09
AP	mg kg⁻¹	14.8
AK	mg kg⁻¹	500.6
Bulk density	g cm⁻³	1.3
Sand	%	36
Silt	%	44.56
Clay	%	19.44

Table 2. Repeated-measures analysis of variance results for effect of straw checkerboard and different cover crops on chemical soil properties. ** and * indicate, respectively, differences at P ≤ 0.01 and P ≤ 0.05 probability level, ns indicates not significant difference.

Source	Mean squares	df	TN	AP	AK	SOM
Cover crop (C)		3	0.0002**	8.51**	4925.14 ns	0.114**
Error		8	0.00001	1.07	3672.80	0.005
Distance from barrier (D)		2	0.003**	40.387**	79156.93**	0.464**
C × D		6	0.0002*	2.922**	2863.86 ns	0.012*
Error		16	0.00008	0.452	4254.33	0.003
p (Sephericity test)			0.002	0.449	0.036	0.910
Huynh-Feldt Epsilon			0.798	1	0.952	1

Table 3. Repeated-measures analysis of variance results for effect of straw checkerboard and different cover crops on plant height, shoot fresh weight/ plant and shoot dry weight/ plant. ** and * indicate, respectively, differences at P ≤ 0.01 and P ≤ 0.05 probability level, ns indicates not significant difference.
Table 4. Repeated-measures analysis of variance results for effect of straw checkerboard and different cover crops on Chlorophyll a, Chlorophyll b, Carotenoids, RWC, Electrolyte leakage, MDA, Proline and Crude Protein. ** and * indicate, respectively, differences at \(P \leq 0.01 \) and \(P \leq 0.05 \) probability level, ns indicates not significant difference.

Source	Mean Squares			
	df	Plant height	Shoot fresh weight/plant	Shoot dry weight/plant
Cover crop (C)	2	14819.25**	38.412**	10.415**
Error	6	11.53	0.035	0.006
Distance from barrier (D)	2	213.77**	6.707**	0.799**
C × D	4	41.552*	1.887**	0.203*
Error	12	11.182	0.102	0.042
\(p \) (Sephericity test)	0.06	0.038	0.007	
Huynh-Feldt Epsilon	0.909	0.868	0.780	

Table 5. Effect of rye, sainfoin and tall wheatgrass on Chlorophyll a, Chlorophyll b, Carotenoids, RWC, Electrolyte leakage, Malondialdehyde and Crude Protein; Different letters indicate significant differences at \(P < 0.05 \) by LSD test.
Table 6. Effect of border of barriers, center of barriers and bare ground on Chlorophyll a, Chlorophyll b, Carotenoids, RWC, Electrolyte leakage, Malondialdehyde and Crude Protein; Different letters indicate significant differences at P < 0.05 by LSD test.

Cover crops	Parameter	Chlorophyll a (mg g\(^{-1}\) FW)	Chlorophyll b (mg g\(^{-1}\) FW)	Carotenoids (mg g\(^{-1}\) FW)	RWC (%)	Electrolyte leakage (%)	Malondialdehyde (µmol. g\(^{-1}\)FW)	Crude Protein (%)
Rye		0.626 a	0.191 a	0.280 a	63.182	70.71 c	0.038 a	9.18 b
Sainfoin		0.311 b	0.109 c	0.154 c	55.561	72.72 b	0.039 a	10.77 a
Tall wheatgrass		0.334 b	0.151 b	0.182 b	54.44 b	79.32 a	0.029 b	8.44 b

Table 7. Eigenvector of morphophysiological characteristics of cover crops, eigenvalues and variance in PCA axes.

Distance from barriers	Parameter	Chlorophyll a (mg g\(^{-1}\) FW)	Chlorophyll b (mg g\(^{-1}\) FW)	Carotenoids (mg g\(^{-1}\) FW)	RWC (%)	Electrolyte leakage (%)	Malondialdehyde (µmol. g\(^{-1}\)FW)	Crude Protein (%)
Border of barriers		0.504 a	0.181 a	0.245 a	63.22	69.16 c	0.033 b	10.55 a
Center of barriers		0.408 b	0.141 b	0.200 b	56.49	75.38 b	0.036 a	9.43 ab
Bare ground		0.360 c	0.128 b	0.173 c	53.46	78.22 a	0.037 a	8.41 b
Table 8. Eigenvector of soil properties, eigenvalues and variance in PCA axes.

Trait	Eigenvector	
	1	2
Total N	-0.4392	0.4762
Available P	-0.4622	0.1556
Available K	-0.4118	-0.8381
Soil organic matter	-0.4378	-0.0761
Soil water storage	-0.4818	-0.2022
Eigenvalue	3.987**	1.569
Variance (%)	65.93	11.10

Figures
Figure 1

Straw checkerboards and sampling points

\[a \text{ (2018)} \]

![Graph showing daily rainfall and air temperature over a year with labels for the establishment of straw checkerboard and cover crops growing season.]

Figure 2

![Graph showing daily rainfall and air temperature over a year with labels for the cover crops growing season.]

\[b \text{ (2019)} \]
Daily mean air temperature and rainfall in the study area after the establishment of straw checkerboard barriers (a) and during the cover crops growing seasons (b)

Figure 3

Soil total nitrogen content (%) of different cover crops under straw checkerboard barrier. Bars indicate S.E. Different letters indicate significant differences at $P < 0.05$ by LSD test.

Figure 4

Soil available phosphorus content (mg kg$^{-1}$) of different cover crops under straw checkerboard barrier. Bars indicate S.E. Different letters indicate significant differences at $P < 0.05$ by LSD test.
Figure 5

Soil available potassium content (mg.kg-1) of border of barriers, center of barriers and bare ground. Bars indicate S.E. Different letters indicate significant differences at P < 0.05 by LSD test.

Figure 6

Soil organic matter content (%) of different cover crops under straw checkerboard barrier. Bars indicate S.E. Different letters indicate significant differences at P < 0.05 by LSD test.
Figure 7

Effects of cover crops type under straw checkerboard on cover crop height (cm) (A), shoot fresh weight/plant (g) (B) and shoot dry weight/plant (g) (C). Bars indicate S.E. Different letters indicate significant differences at $P < 0.05$ by LSD test.
Figure 8

Effects of cover crops type and straw checkerboard on cover crop proline (µmol. g-1 FW). Bars indicate S.E. Different letters indicate significant differences at P < 0.05 by LSD test.
Figure 9

Dynamic change in soil water storage under cover crops type and straw checkerboard (A) and under straw checkerboard during growing season (B). Bars indicate S.E. Different letters indicate significant differences at $P < 0.05$ by LSD test.
Figure 10

Principal component analysis (PCA) of morphophysiological characteristics of different cover crops under straw checkerboard.
Figure 11

Principal component analysis (PCA) of soil properties of different cover crops under straw checkerboard