SHARP BOUNDS FOR T-HAAR MULTIPLIERS ON L^2

OLEKSANDRA BEZNOSOVA, JEAN CARLO MORAES, AND MARÍA CRISTINA PEREYRA

Abstract. We show that if a weight $w \in C^d_{2t}$ and there is $q > 1$ such that $w^{2t} \in A^d_q$, then the L^2-norm of the t-Haar multiplier of complexity (m, n) associated to w depends on the square root of the C^d_{2t}-characteristic of w times the square root A^d_q-characteristic of w^{2t} times a constant that depends polynomially on the complexity. In particular, if $w \in C^d_{2t} \cap A^d_{\infty}$ then $w^{2t} \in A^d_q$ for some $q > 1$.

1. Introduction

Recently Tuomas Hytönen settled the A_2-conjecture [H]: for all Calderón-Zygmund integral singular operators T in \mathbb{R}^N, weights $w \in A_p$, there is $C_{p,N,T} > 0$ such that,

$$\|Tf\|_{L^p(w)} \leq C_{p,N,T} \max\{1, \frac{1}{p-1}\} \|f\|_{L^p(w)}.$$

In his proof he developed and used a representation valid for any Calderón-Zygmund operator as an average of Haar shift operators of arbitrary complexity, paraproducts and their adjoints. See [L1, P4] for surveys of the A_2-conjecture. An important and hard part of the proof was to obtain bounds for Haar shifts operators that depended linearly in the A_2-characteristic and at most polynomially in the complexity.

In this paper we show that if a weight $w \in C^d_{2t} \cap A^d_{\infty}$, then the L^2-norm of the t-Haar multiplier of complexity (m, n) associated to w depends on the square root of the C^d_{2t}-characteristic of w times the square root A^d_q-characteristic of w^{2t} for some $q > 1$ depending on $t \in \mathbb{R}$ times a constant that depends polynomially on the complexity.

For $t \in \mathbb{R}$, $m, n \in \mathbb{N}$, and a weight w, the t-Haar multiplier of complexity (m, n) was introduced in [MoP], and is defined formally by

$$T_{t,w}^{m,n} f(x) = \sum_{L \in D} \sum_{I \in \mathcal{D}_m(L), J \in \mathcal{D}_n(L)} \frac{\sqrt{|I| |J|}}{|L|} \frac{w^{t}(x)}{m_{L,w}} f^{*}(f, h_I) h_J(x),$$

2010 Mathematics Subject Classification. Primary 42C99; Secondary 47B38.
Key words and phrases. A_p-weights, Haar multipliers, complexity.

The first author was supported by fellowship CAPES/FULBRIGHT, 2918-06/4.
where \mathcal{D} denotes the dyadic intervals, $|I|$ the length of interval I, $\mathcal{D}_m(L)$ denotes the dyadic subintervals of L of length $2^{-m}|L|$, h_I is a Haar function associated to $|I|$, and $\langle f, g \rangle$ denotes the L^2-inner product.

When $(m, n) = (0, 0)$ we denote the corresponding Haar multiplier by T^t_w, and, if in addition $t = 1$, simply T_w. The Haar multipliers T_w are closely related to the resolvent of the dyadic paraproduct [P1], and appeared in the study of Sobolev spaces on Lipschitz curves [P3].

A necessary condition for the boundedness of $T^{m,n}_{w,t}$ on $L^2(\mathbb{R}^N)$ is that $w \in C^d_{2t}$, see [MoP], that is,

$$[w]_{C^d_{2t}} := \sup_{I \in \mathcal{D}} \left(\frac{1}{|I|} \int_I w^{2t}(x)dx \right) \left(\frac{1}{|I|} \int_I w(x)dx \right)^{-2t} < \infty.$$

This condition is also sufficient for $t < 0$ and $t \geq 1/2$. Notice that for $0 \leq t < 1/2$ the condition C^d_{2t} is always fulfilled; in this case, boundedness of $T^{m,n}_{w,t}$ is known when $w \in A^d_{\infty}$ [MoP, KP]. The first author showed in [Be, Chapter 5], that if $w \in C^d_{2t}$ and $w^{2t} \in A^d_q$ then the L^2-norm of T^t_w, is bounded by a constant times $[w]_{C^d_{2t}}^{1/2} [w^{2t}]_{A^d_q}^{1/2}$. Here we present a different proof of this result that holds for t-Haar multipliers of complexity (m, n) with polynomial dependence on the complexity.

Theorem 1.1. Let $w \in C^d_{2t}$ and assume there is $q > 1$ such that $w^{2t} \in A^d_q$, then there is a constant $C_q > 0$ depending only on q, such that

$$\|T^{m,n}_{t,w} f\|_2 \leq C_q (m + n + 2)^3 [w]_{C^d_{2t}}^{1/2} [w^{2t}]_{A^d_q}^{1/2} \|f\|_2.$$

When $w^{2t} \in A^d_q$, this was proved in [MoP].

Using known properties of weights we can replace the condition $w^{2t} \in A^d_q$, by what may seem to be a more natural condition $w \in C^d_{2t} \cap A^d_{\infty}$.

Theorem 1.2. Let $w \in C^d_{2t} \cap A^d_{\infty}$, then

(i) if $0 \leq 2t < 1$, there is $q > 1$ such that $w \in A^d_q$, then $w^{2t} \in A^d_q$, and

$$\|T^{m,n}_{t,w} f\|_2 \leq C_q (m + n + 2)^3 [w]_{A^d_q}^{1/2} \|f\|_2 \leq C_q (m + n + 2)^3 [w]_{A^d_q}^{1/2} \|f\|_2.$$

(ii) If $2t \geq 1$ and $w \in A^d_p$ then for $q = 2t(p - 1) + 1$, $w^{2t} \in A^d_q$, and

$$\|T^{m,n}_{t,w} f\|_2 \leq C_q (m + n + 2)^3 [w]_{C^d_{2t}}^{1/2} [w^{2t}]_{A^d_q}^{1/2} \|f\|_2 \leq C_p (m + n + 2)^3 [w]_{C^d_{2t}}^{1/2} [w]_{A^d_q} \|f\|_2.$$

(iii) If $t < 0$ then for $q = 1 - 2t$, $w^{2t} \in A^d_q$, and the bound becomes linear in the C^d_{2t} characteristic of w,

$$\|T^{m,n}_{t,w} f\|_2 \leq C (m + n + 2)^3 [w]_{C^d_{2t}} \|f\|_2.$$
The result was known to be optimal when \(t = \pm 1/2 \) [Be, P2]. The bound in (ii) is not optimal since for \(t = 1 \), the \(L^2 \) norm of \(T_w \) is bounded by a constant times \([w]_{C_2^d}^2 D(w) \), where \(D(w) \) is the doubling constant of \(w \), see [P2]. Here we get the larger norm \(C[w]_{C_2^d}^2[w]_{A_q} \).

To prove this theorem we modify the argument in [MoP] that works when \(w \in A_{\infty}^d \) \((p = 2)\). In particular we need a couple of new \(A_p \)-weight lemmas that are proved using Bellman function techniques: the \(A_p \)-Little Lemma, and the \(\alpha\beta \)-Lemma.

A few open questions remain. In case (i) \(0 < 2t < 1 \), is \(w^{2t} \in A_\infty \) a necessary condition for the boundedness of \(T_{m,n}^tw \)? Here we show is sufficient. Is it possible to get an estimate independent of \(q > 1 \) such that \(w^{2t} \in A_{q_1}^d \)? More specifically, can we replace \(C_q[w^{2t}]_{A_q^d} \) by \(CD(w) \)? Similarly in case (ii).

The paper is organized as follows. In Section 2 we provide the basic definitions and basic results that are used throughout this paper. In Section 3 we prove the lemmas that are essential for the main result. In Section 4 we prove the main estimate for the \(t \)-Haar multipliers with complexity \((m, n)\). In the Appendix we prove the \(A_p \)-Little Lemma.

2. Preliminaries

2.1. Weights, maximal function and dyadic intervals.

A weight \(w \) is a locally integrable function in \(\mathbb{R} \) positive almost everywhere. The \(w \)-measure of a measurable set \(E \), denoted by \(w(E) \), is \(w(E) = \int_E w(x)dx \). For a measure \(\sigma \), \(\sigma(E) = \int_E d\sigma \), and \(|E| \) stands for the Lebesgue measure of \(E \). We define \(m_{E}^\sigma f \) to be the integral average of \(f \) on \(E \), with respect to \(\sigma \),

\[
m_{E}^\sigma f := \frac{1}{\sigma(E)} \int_E f(x)d\sigma.
\]

When \(dx = d\sigma \) we simply write \(m_{E}f \), when \(d\sigma = v dx \) we write \(m_{E}^{v}f \).

Given a weight \(w \), a measurable function \(f : \mathbb{R}^N \to \mathbb{C} \) is in \(L^p(w) \) if and only if \(\|f\|_{L^p(w)} := \left(\int_{\mathbb{R}^N} |f(x)|^p w(x) dx \right)^{1/p} < \infty \).

For a weight \(v \) we define the weighted maximal function of \(f \) by

\[
(M_v f)(x) = \sup_{I,x \in I} m_{I}^{v}|f|
\]

where \(I \) is a cube in \(\mathbb{R}^N \) with sides parallel to the axis. The operator \(M_v \) is bounded in \(L^p(v) \) for all \(p > 1 \) and furthermore

\[
(2.1) \quad \|M_v f\|_{L^p(v)} \leq C p' \|f\|_{L^p(v)},
\]

where \(p' \) is the dual exponent of \(p \), that is \(1/p + 1/p' = 1 \). A proof of this fact can be found in [CrMPz1]. When \(v = 1 \), \(M_v \) is the usual
Hardy-Littlewood maximal function, which we will denote by M. It is well-known that M is bounded in $L^p(w)$ if and only if $w \in A_p$ [Mu].

The collection of all dyadic intervals, \mathcal{D}, is given by: $\mathcal{D} = \bigcup_{n\in\mathbb{Z}} \mathcal{D}_n$, where $\mathcal{D}_n := \{ I \subset \mathbb{R} : I = [k2^{-n}, (k+1)2^{-n}), \ k \in \mathbb{Z} \}$. For a dyadic interval L, let $\mathcal{D}(L)$ be the collection of its dyadic subintervals, $\mathcal{D}(L) := \{ I \subset L : I \in \mathcal{D} \}$, and let $\mathcal{D}_n(L)$ be the n^{th}-generation of dyadic subintervals of L, $\mathcal{D}_n(L) := \{ I \in \mathcal{D}(L) : |I| = 2^{-n}|L| \}$.

For every dyadic interval $I \in \mathcal{D}_n$ there is exactly one $\hat{I} \in \mathcal{D}_{n-1}$, such that $I \subset \hat{I}$, \hat{I} is called the parent of I. Each dyadic interval I in \mathcal{D}_n has two children in \mathcal{D}_{n+1}, the right and left halves, denoted I_+ and I_- respectively.

A weight w is dyadic doubling if $w(\hat{I})/w(I) \leq C$ for all $I \in \mathcal{D}$. The smallest constant C is called the doubling constant of w and is denoted by $D(w)$. Note that $D(w) \geq 2$, and that in fact the ratio between the length of a child and the length of its parent is comparable to one, more precisely, $D(w)^{-1} \leq w(I)/w(\hat{I}) \leq 1 - D(w)^{-1}$.

2.2. Dyadic A^d_p, reverse Hölder RH^d_p and C^d_p classes. A weight w is said to belong to the dyadic Muckenhoupt A^d_p-class if and only if

$$[w]_{A^d_p} := \sup_{I \in \mathcal{D}} (m_I w)(m_{\hat{I}} w^{1-p})^{p-1} < \infty, \quad \text{for} \quad 1 < p < \infty,$$

where $[w]_{A^d_p}$ is called the A^d_p-characteristic of the weight. If a weight is in A^d_p then it is dyadic doubling. These classes are nested, $A^d_p \subset A^d_q$ for all $p \leq q$. The class A^d_∞ is defined by $A^d_\infty := \bigcup_{p>1} A^d_p$.

A weight w is said to belong to the dyadic reverse Hölder RH^d_p-class if and only if

$$[w]_{RH^d_p} := \sup_{I \in \mathcal{D}} (m_I w^p)(m_{\hat{I}} w^{-1}) < \infty, \quad \text{for} \quad 1 < p < \infty,$$

where $[w]_{RH^d_p}$ is called the RH^d_p-characteristic of the weight. If a weight is in RH^d_p then it is not necessarily dyadic doubling (in the non-dyadic setting reverse Hölder weights are always doubling). Also these classes are nested, $RH^d_p \subset RH^d_q$ for all $p \geq q$. The class RH^d_1 is defined by $RH^d_1 := \bigcup_{p>1} RH^d_p$. In the non-dyadic setting $A_\infty = RH^d_1$. In the dyadic setting the collection of dyadic doubling weights in RH^d_1 is A^d_∞, hence A^d_∞ is a proper subset of RH^d_1. See [BeRez] for some recent and very interesting results relating these classes.

The following are well-known properties of weights (see [JN]) for (ii):

Lemma 2.1. The following hold
• If $0 \leq s \leq 1$ and $w \in A^d_\infty$ then $w^s \in A^s_\infty$. More precisely, if $p > 1$ and $w \in A^d_p$ then $w^s \in A^s_p$, and $[w^s]_{A^d_p} \leq [w]_{A^d_p}^{s}$. \\
• If $s, q > 1$ then $w \in RH^d_s \cap A^d_q$ if and only if $w^s \in A^{s(q-1)+1}_s$. Moreover $[w^s]_{A^{s(q-1)+1}_s} \leq [w]_{RH^d_s}^s [w]_{A^d_q}^s$, $[w]_{A^d_q}^s \leq [w^s]_{A^{s(q-1)+1}_s}$, and $[w]_{RH^d_s} \leq [w^s]_{A^{s(q-1)+1}_s}$. \\
• If $p > 1$, and $1/p + 1/p' = 1$, then $w \in A^d_p$ if and only if $w^{-1/p-1} \in A^d_{p'}$. Moreover $[w]_{A^d_p} = [w^{-1/p-1}]_{A^d_{p'}}^{p-1}$.

The following property can be found in [GaRu],

Lemma 2.2. If $w \in RH^d_s \cap A^d_q$ then for all $E \subset B$,

$$(|E|/|B|)^{q} [w]_{A^d_q}^{-1} \leq w(E)/w(B) \leq (|E|/|B|)^{1-\frac{q}{p}} [w]_{RH^d_s}.$$

In particular $D(w) \leq 2^q [w]_{A^d_q}$.

A weight w satisfies the C^d_s-condition, for $s \in \mathbb{R}$, if

$$[w]_{C^d_s} := \sup_{I \in \mathcal{D}} \left(m_I w^s \right) \left(m_I w \right)^{-s} < \infty.$$

The quantity defined above is called the C^d_s-characteristic of w. The class of weights C^d_s was defined in [KP]. Let us analyze this definition. For $0 \leq s \leq 1$, we have that any weight satisfies the condition with C^d_s-characteristic 1, this is just a consequence of Hörder’s Inequality (for $s = 0, 1$ is trivial). When $s > 1$, the condition is analogous to the dyadic reverse Hölder condition and $[w]_{C^d_s}^{1/s} = [w]_{RH^d_s}$. For $s < 0$, we have that $w \in C^d_s$ if and only if $w \in A^d_{1-1/s}$, moreover $[w]_{C^d_s} = [w]_{A^d_{1-1/s}}^{-s}$.

Lemma 2.3. If $w \in C^d_s \cap A^d_\infty$ then the following hold

• For all $0 \leq s \leq 1$, there is a $p > 1$ such that $w^s \in A^s_p$.
• If $s > 1$ then there is $q > 1$ such that $w^s \in A^{s(q-1)+1}_s$.
• If $s < 0$ then $w^s \in A^{s-1}_{1-s}$.

The proof of this lemma is a direct application of Lemma 2.1 item by item.

2.3. Weighted Haar functions. For a given weight v and an interval I define the weighted Haar function as

$$h^v_I(x) = \frac{1}{v(I)} \left(\sqrt{\frac{v(I_-)}{v(I_+)}} \chi_{I_+}(x) - \sqrt{\frac{v(I_+)}{v(I_-)}} \chi_{I_-}(x) \right),$$

where $\chi_I(x)$ is the characteristic function of the interval I.
If \(v \) is the Lebesgue measure on \(\mathbb{R} \), we will denote the Haar function simply by \(h_I \). It is a simple exercise to verify that the weighted and unweighted Haar functions are related linearly as follows,

Proposition 2.4. For any weight \(v \), there are numbers \(\alpha_I^v, \beta_I^v \) such that

\[
 h_I(x) = \alpha_I^v h^v_I(x) + \beta_I^v \chi_I(x)/\sqrt{|I|}
\]

where (i) \(|\alpha_I^v| \leq \sqrt{m_I v} \), (ii) \(|\beta_I^v| \leq |\Delta_I v|/m_I v \), \(\Delta_I v := m_{I^+} v - m_{I^-} v \).

The family \(\{h^v_I\}_{I \in \mathcal{D}} \) is an orthonormal system in \(L^2(v) \), with inner product \(\langle f, g \rangle_v := \int_{\mathbb{R}} f(x) g(x) v(x) \, dx \).

2.4. **Carleson sequences.** If \(v \) is a weight, a positive sequence \(\{\alpha_I^v\}_{I \in \mathcal{D}} \) is called a \(v \)-Carleson sequence with intensity \(B \) if for all \(J \in \mathcal{D} \),

\[
 \sum_{I \in \mathcal{D}(J)} \lambda_I \leq B m_J v.
\]

When \(v = 1 \) we call a sequence satisfying (2.3) for all \(J \in \mathcal{D} \) a Carleson sequence with intensity \(B \).

Proposition 2.5. Let \(v \) be a weight, \(\{\lambda_I\}_{I \in \mathcal{D}} \) and \(\{\gamma_I\}_{I \in \mathcal{D}} \) be two \(v \)-Carleson sequences with intensities \(A \) and \(B \) respectively then for any \(c, d > 0 \) we have that

(i) \(\{c\lambda_I + d\gamma_I\}_{I \in \mathcal{D}} \) is a \(v \)-Carleson sequence with intensity \(cA + dB \).

(ii) \(\{\sqrt{\lambda_I} \sqrt{\gamma_I}\}_{I \in \mathcal{D}} \) is a \(v \)-Carleson sequence with intensity \(\sqrt{AB} \).

(iii) \(\{(c\sqrt{\lambda_I} + d\sqrt{\gamma_I})^2\}_{I \in \mathcal{D}} \) is a \(v \)-Carleson sequence with intensity \(2c^2A + 2d^2B \).

The proof of these statements is quite simple, see [MoP].

3. **Main tools**

In this section, we state the lemmas and theorems necessary to get the estimate for the \(t \)-Haar multipliers of complexity \((m, n) \).

3.1. **Carleson Lemmas.** The Weighted Carleson Lemma we present here is a variation in the spirit of other weighted Carleson embedding theorems that appeared before in the literature [NV, NTV1]. You can find a proof in [MoP].

Lemma 3.1 (Weighted Carleson Lemma). Let \(v \) be a weight, then \(\{\alpha_L\}_{L \in \mathcal{D}} \) is a \(v \)-Carleson sequence with intensity \(B \) if and only if for all non-negative \(v \)-measurable functions \(F \) on the line,

\[
 \sum_{L \in \mathcal{D}} \alpha_L \inf_{x \in L} F(x) \leq B \int_{\mathbb{R}} F(x) v(x) \, dx.
\]
The following lemma we view as a finer replacement for Hölder's inequality:

$$1 \leq (m_I v) (m_I w^{-1/(p-1)})^{p-1}. $$

Lemma 3.2 (A_p-Little Lemma). Let v be a weight, such that $v^{-1/(p-1)}$ is a a weight as well, and let $\{\lambda_I\}_{I \in D}$ be a Carleson sequence with intensity Q then $\{\lambda_I/(m_I v^{-1/(p-1)})^{p-1}\}_{I \in D}$ is a v-Carleson sequence with intensity $4Q$, that is for all $J \in D$,

$$\frac{1}{|J|} \sum_{I \in D(J)} \frac{\lambda_I}{m_I v^{-1/(p-1)}} \leq 4Q m_J v. $$

For $p = 2$ this was proved in [Be, Proposition 3.4], or [Be1, Proposition 2.1], using the same Bellman function as in the proof we present in the Appendix.

Lemma 3.3 ([NV]). Let v be a weight such that $v^{-1/(p-1)}$ is also a weight. Let $\{\lambda_J\}_{J \in D}$ be a Carleson sequence with intensity B. Let F be a non-negative measurable function on the line. Then

$$\sum_{J \in D} \frac{\lambda_J}{m_J v^{-1/(p-1)}} \inf_{x \in J} F(x) \leq C B \int_R F(x) v(x) \, dx. $$

Lemma 3.3 is an immediate consequence of Lemma 3.2, and the Weighted Carleson Lemma 3.1. Note that Lemma 3.2 can be deduced from Lemma 3.3 with $F(x) = \chi_J(x)$.

The following lemma, for $v = w^{-1}$, and for $\alpha = 1/4$ appeared in [Be], and for $0 < \alpha < 1/2$, in [NV]. With small modification in their proof, using the Bellman function $B(x, y) = x^\alpha y^\beta$ with domain of definition the first quadrant $x, y > 0$, we can accomplish the result below, for a complete proof see [Mo].

Lemma 3.4. (\alpha\beta-Lemma) Let u, v be weights. Then for any $J \in D$ and any $\alpha, \beta \in (0, 1/2)$

$$\sum_{I \in D(J)} \frac{|\Delta_I u|^2}{m_I u^2} |I| (m_I u)^\alpha (m_I v)^\beta \leq C_{\alpha, \beta} (m_J u)^\alpha (m_J v)^\beta. $$

The constant $C_{\alpha, \beta} = 36/\min\{\alpha - 2\alpha^2, \beta - 2\beta^2\}$.

From this lemma we immediately deduce the following,

Lemma 3.5. Let $1 < q < \infty$, $w \in A^q$, then $\{\mu^{q, q}_{I}\}_{I \in D}$, where

$$\mu^{q, q}_{I} := (m_I w)^\alpha (m_I w^{-1/(q-1)})^{\alpha(q-1)} |I| \left(\frac{|\Delta_I w|^2}{m_I w^2} + \frac{|\Delta_I w^{-1/(q-1)}|^2}{m_I w^{-1/(q-1)}^2} \right), $$

is a Carleson sequence with Carleson intensity at most $C_\alpha[w]_{A_q}^\alpha$ for any $\alpha \in (0, \max\{1/2, 1/2(q-1)\})$. Moreover, $\{\nu^q_I \}_{I \in \mathcal{D}}$, where

$$\nu^q_I := (m_Iw)(m_Iw^{\frac{1}{q-1}})^{(q-1)}|I| \left(\frac{|\Delta_I w|^2}{(m_Iw)^2} + \frac{|\Delta_I w^{\frac{1}{q-1}}|^2}{(m_Iw)^2} \right)$$

is a Carleson sequence with Carleson intensity at most $C[w]_{A_q}$.

Proof. Set $u = w$, $v = w^{-\frac{1}{q-1}}$, $\beta = \alpha(q-1)$. By hypothesis $0 < \alpha < 1/2$ and also $0 < \alpha < 1/2(q-1)$ which implies that $0 < \beta < 1/2$, we can now use Lemma 3.4 to show that $\mu^{q,\alpha}_I$ is a Carleson sequence with intensity at most $c_\alpha[w]_{A_q}^{\alpha}$. For the second statement suffices to notice that $\nu^q_I \leq \mu^{q,\alpha}_I[w]_{A_q}^{1-\alpha} \alpha$ for all $I \in \mathcal{D}$, for some $\alpha \in (0, \max\{1/2, 1/2(q-1)\})$. \qed

A proof of this lemma for $q = 2$ that works on geometric doubling metric spaces can be found in [NV1, V]. In those papers $\alpha = 1/4$ can be used, and in that case the constant C_α can be replaced by 288.

3.2. Lift Lemma

Given a dyadic interval L, and weights u, v, we introduce a family of stopping time intervals ST_L^m such that the averages of the weights over any stopping time interval $K \in ST_L^m$ are comparable to the averages on L, and $|K| \geq 2^m|L|$. This construction appeared in [NV] for the case $u = w, v = w^{-1}$. We also present a lemma that lifts w-Carleson sequences on intervals to w-Carleson sequences on “m-stopping intervals”. This was used in [NV] for a very specific choice of m-stopping time intervals ST_L^m.

Lemma 3.6 (Lift Lemma [NV]). Let u and v be weights, L be a dyadic interval and m, n be fixed positive integers. Let ST_L^m be the collection of maximal stopping time intervals $K \in \mathcal{D}(L)$, where the stopping criteria are either (i) $|\Delta_K u|/m_Ku + |\Delta_K v|/m_Kv \geq 1/m + n + 2$, or (ii) $|K| = 2^{-m}|L|$. Then for any stopping interval $K \in ST_L^m$, $e^{-1}m_Ku \leq m_Ku \leq e_mL\mu$, and hence also $e^{-1}mLv \leq m_Kv \leq e_mLv$.

Note that the roles of m and n can be interchanged and we get the family ST_L^n using the same stopping condition (i) and condition (ii) replaced by $|K| = 2^{-n}|L|$. Notice that ST_L^n is a partition of L in dyadic subintervals of length at least $2^{-m}|L|$. The following lemma lifts a w-Carleson sequence to m-stopping time intervals with comparable intensity. For the particular m-stopping time ST_L^m given by the stopping criteria (i) and (ii) in Lemma 3.6, and $w = 1$, this appeared in [NV].
Lemma 3.7. For each $L \in \mathcal{D}$ let ST_L^m be a partition of L in dyadic subintervals of length at least $2^{-m}|L|$. Assume $\{\nu_I\}_{I \in \mathcal{D}}$ is a w-Carleson sequence with intensity at most A, let $\nu_L^m := \sum_{K \in ST_L^m} \nu_K$, then $\{\nu_L^m\}_{L \in \mathcal{D}}$ is a w-Carleson sequence with intensity at most $(m + 1)A$.

For proofs you can see [MoP].

3.3. Auxiliary quantities. For a weight v, and a locally integrable function ϕ we define the following quantities,

$$P_L^m \phi := \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle| \sqrt{|I|/|L|},$$

$$S_L^{v,m} \phi := \sum_{J \in \mathcal{D}_m(L)} |\langle \phi, h_J^v \rangle_v| \sqrt{m_J v} \sqrt{|J|/|L|},$$

$$R_L^{v,m} \phi := \sum_{J \in \mathcal{D}_m(L)} \frac{|\Delta_J^v|}{m_J^v} m_J(|\phi|v) |J|/\sqrt{|L|},$$

Let $w \in A_q^d$, ST_L^m be an m-stopping time family of subintervals of L, $0 < \alpha < \max\{1/2, 1/2(q - 1)\}$, and $\{\mu_K = \mu_K^{q,\alpha}\}_{K \in \mathcal{D}}$ be the Carleson sequence with intensity $C_{\alpha}[w]_{A_q^d}$ defined in Lemma 3.5. For each $m > 0$, we introduce another sequence $\{\mu_L^m\}$, which is Carleson by Lemma 3.7:

$$\mu_L^m := \sum_{K \in ST_L^m} \mu_K^{q,\alpha} \text{ with intensity } C_{\alpha}(m + 1)[w]_{A_q^d}.$$

We will use the following estimates for $S_L^{v,m} \phi$ and $R_L^{v,m} \phi$, where $1 < p < 2$ will be dictated by the proof of the theorem.

$$S_L^{v,m} \phi \leq \left(\sum_{J \in \mathcal{D}_m(L)} |\langle \phi, h_J^v \rangle_v|^2 \right)^{1/2} (m_L v)^{1/2},$$

$$R_L^{v,m} \phi \leq C C_m (m_L v)^{(q-1)/2} (m_L v)^{1/2} \inf_{x \in L} (M_{w-1} |g|^p)(x)^{1/2} \sqrt{\mu_L^m},$$

See [NV] for the proof when $q = 2$, slight modification of their argument gives the estimate for $R_L^{v,m} \phi$. Estimating $P_L^m \phi$ is very simple:

$$(P_L^m \phi)^2 \leq \sum_{I \in \mathcal{D}_m(L)} |I|/|L| \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle|^2 = \sum_{I \in \mathcal{D}_m(L)} |\langle \phi, h_I \rangle|^2.$$

Remark 3.8. In [NV1], Nazarov and Volberg extend the results that they had in [NV] for Haar shifts to metric spaces with geometric doubling. Following the same modifications in the argument made from [NV] to [NV1], one could obtain the same result as in Theorem 4.1 on a metric space with geometric doubling, see [Mo1].
4. HAAR MULTIPLIERS

For a weight \(w, t \in \mathbb{R} \), and \(m, n \in \mathbb{N} \), a \(t \)-Haar multiplier of complexity \((m,n)\) is the operator defined as

\[
T_{t,w}^{m,n} f(x) := \sum_{L \in D} \sum_{I \in \mathcal{D}_n(L), J \in \mathcal{D}_m(L)} \sqrt{|I|/|J|} \left(\frac{w(x)}{m_l w} \right)^t (f, h_I) h_J(x).
\]

In [MoP] it is shown that \(w \in C_d^{2t} \) is a necessary condition for boundedness of \(T_{w,t}^{m,n} \) in \(L^2(\mathbb{R}) \). It is also shown that the \(C_d^{2t} \)-condition is sufficient for a \(t \)-Haar multiplier of complexity \((m,n)\) to be bounded in \(L^2(\mathbb{R}) \) for most \(t \); this was proved in [KP] for the case \(m = n = 0 \). Here we are concerned not only with the boundedness but also with the dependence of the operator norm on the \(C_d^{2t} \)-constant. For \(T_{w}^{t} \) and \(t = 1, \pm 1/2 \) this was studied in [P2]. The first author [Be] was able to obtain estimates, under the additional condition on the weight \(w^{2t} \in A_q^d \) for some \(q > 1 \), for \(T_{w}^{t} \) and for all \(t \in \mathbb{R} \). Her results were generalized for \(T_{w,t}^{m,n} \) for all \(t \) when \(w^{2t} \in A_2^d \), see [MoP]. We will show that:

Theorem 4.1. Let \(t \) be a real number and \(w \) a weight such that \(w^{2t} \in A_q^d \) for some \(q > 1 \) (i.e. \(w^{2t} \in A_{\infty}^d \)), then

\[
\|T_{t,w}^{m,n} f\|_2 \leq C_q (m + n + 2)^3 [w]_{C_d^{2t}}^{1/2} [w^{2t}]_{A_q^d}^{1/2} \|f\|_2.
\]

Using Lemmas 2.1 and 2.3 we can refine the result as follows, where \(C_m^n = n + m + 2 \).

Theorem 4.2. Let \(t \in \mathbb{R}, w \in C^{2t} \)

(i) If \(0 < 2t < 1 \) and \(w \in A_p^d \), then

\[
\|T_{t,w}^{m,n} f\|_2 \leq C_p (C_m^n)^3 [w]_{C_d^{2t}}^{1/2} [w^{2t}]_{A_p^d}^{1/2} \|f\|_2 \leq C_p (C_m^n)^3 [w]_{A_p^d} \|f\|_2.
\]

(ii) If \(t > 1 \) and \(w \in A_p^d \) then if \(q = 2t(p - 1) + 1 \)

\[
\|T_{t,w}^{m,n} f\|_2 \leq C_p (C_m^n)^3 [w]_{C_d^{2t}}^{1/2} [w^{2t}]_{A_q^d}^{1/2} \|f\|_2 \leq C_p (C_m^n)^3 [w]_{C_d^{2t}} [w]_{A_q^d} \|f\|_2.
\]

(iii) If \(t < 0 \) then

\[
\|T_{t,w}^{m,n} f\|_2 \leq C (C_m^n)^3 [w]_{C_d^{2t}} \|f\|_2 = C (C_m^n)^3 [w]_{A_{1-1/2t}^d} \|f\|_2.
\]

Remark 4.3. Throughout the proof a constant \(C_q \) will be a numerical constant depending only on the parameter \(q > 1 \) that may change from line to line.
Proof of Theorem 4.2. By Lemma 2.3 if \(w \in \mathcal{C}^d_2 \cap \mathcal{A}^d_q \), then there is \(q > 1 \) such that \(w^{2t} \in \mathcal{A}^d_q \), matching cases perfectly. Now use Theorem 4.1.

\[
\text{Proof of Theorem 4.1.} \text{ Fix } f, g \in L^2(\mathbb{R}). \text{ By duality, it is enough to show that}
\]
\[
|\langle T^{m,n}_{t,w} f, g \rangle| \leq C(m + n + 2)^3[w]_{\mathcal{C}^d_2}^{\frac{3}{2}} [w^{2t}]_{\mathcal{A}^d_q}^{\frac{1}{2}} \|f\|_2 \|g\|_2.
\]

The inner product on the left-hand-side can be expanded into a double sum, that we now estimate,
\[
|\langle T^{m,n}_{t,w} f, g \rangle| \leq \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_m(L) : J \in \mathcal{D}_n(L)} \frac{\sqrt{|I||J|}}{|L|} \frac{\sqrt{m_j(w^{2t})}}{(m_L w)^t} |\langle f, h_I \rangle| |\langle gw^1, h_J \rangle|.
\]

Write \(h_J \) as a linear combination of a weighted Haar function and a characteristic function, \(h_J = \alpha_J h_J^{w^{2t}} + \beta_J \chi_J / \sqrt{|J|} \), where \(\alpha_J = \alpha_J^{w^{2t}}, \beta_J = \beta_J^{w^{2t}}, |\alpha_J| \leq \sqrt{m_j w^{2t}}, \) and \(|\beta_J| \leq |\Delta_j(w^{2t})| / m_j w^{2t} \). Now break into two terms to be estimated separately so that,
\[
|\langle T^{m,n}_{t,w} f, g \rangle| \leq \Sigma^{m,n}_1 + \Sigma^{m,n}_2,
\]
where
\[
\Sigma^{m,n}_1 := \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_m(L) : J \in \mathcal{D}_n(L)} \frac{\sqrt{|I||J|}}{|L|} \frac{\sqrt{m_j(w^{2t})}}{(m_L w)^t} |\langle f, h_I \rangle| |\langle gw^1, h_J \rangle|,
\]
\[
\Sigma^{m,n}_2 := \sum_{L \in \mathcal{D}} \sum_{I \in \mathcal{D}_m(L) : J \in \mathcal{D}_n(L)} \frac{|J| \sqrt{|I|}}{|L|(m_L w)^t} \frac{|\Delta_j(w^{2t})|}{m_j(w^{2t})} |\langle f, h_I \rangle| m_J(|g| w^1).
\]

Let \(p = 2 - (C^m_n)^{-1} \) (note that \(2 > p > 1 \), in fact is getting closer to \(2 \) as \(m \) and \(n \) increase), and define as in (3.3), (3.4) and (3.5), the quantities \(P^m_n \phi, S^w_n \phi \) and \(R^w_n \phi \), we will use here the case \(v = w^{2t} \), for appropriate \(\phi \)s and corresponding estimates. Note that \(1 < p < 2 \).

The sequence \(\{ \eta_I \}_{I \in \mathcal{D}} \) where
\[
\eta_I := (m_I w^{2t}) (m_I w^{\frac{2t}{q-1}})^{(q-1)} \left(\frac{|\Delta_I(w^{2t})|^2}{m_I w^{2t}} + \frac{|\Delta_I(w^{2t/(q-1)})|^2}{m_I w^{-2t/(q-1)}} \right) |I|,
\]
is a Carleson sequence with intensity \(C_q[w^{2t}]_{A^d_q} \) by Lemma 3.5. The sequence \(\{ \eta^m_I \}_{I \in \mathcal{D}} \) where
\[
\eta^m_I := \sum_{I \in \mathcal{S}^m T^m_L} \eta_I,
\]
and the stopping time \(\mathcal{S}T^m_L \) is defined as in Lemma 3.6 but with respect to the weights \(u = w^{2t}, v = w^{-2t/(q-1)} \), is a Carleson sequence with intensity \(C_q(m + 1)[w^{2t}]_{A^d_q} \) by Lemma 3.7.
Observe that on the one hand \(\langle gw^t, h_j^m w^2 \rangle = \langle gw^{-t}, h_j^m \rangle w^2 \), and on the other \(m_J(|g|w^t) = m_J(|gw^{-t}|w^2) \). Therefore,

\[
\Sigma_{3}^{m,n} = \sum_{L \in D} (m_L w)^{-t} S_{L}^{w^2, n}(gw^{-t}) P^m f,
\]

\[
\Sigma_{4}^{m,n} = \sum_{L \in D} (m_L w)^{-t} R_{L}^{w^2, n}(gw^{-t}) P^m f.
\]

Estimates (3.6) and (3.7) hold for \(S_{L}^{w^2, m}(gw^{-t}) \) and \(R_{L}^{w^2, m}(gw^{-t}) \) with \(v \) and \(\phi \) replaced by \(w^2 \) and \(gw^{-t} \):

\[
S_{L}^{w^2, n}(gw^{-t}) \leq (m_L w^2)^{\frac{1}{2}} \left(\sum_{J \in D_{m}(L)} |\langle gw^{-t}, h_j^m \rangle w^2|^2 \right)^{\frac{1}{2}},
\]

\[
R_{L}^{w^2, n}(gw^{-t}) \leq C C_{m}^{n}(m_L w^2)^{\frac{1}{2}} (m_L w^2)^{\frac{1}{2}} \frac{C_{m}^{n}}{2} F^\frac{1}{2}(x) \sqrt{\eta_{m}^{n}},
\]

where \(F(x) = \inf_{x \in L} (M_{w^2} |gw^{-t}|^p(x))^{\frac{1}{p}} \).

Estimating \(\Sigma_{1}^{m,n} \): Plug in the estimates for \(S_{L}^{w^2, n}(gw^{-t}) \) and \(P^m f \), observe that \((m_L w^2)^{\frac{1}{2}} (m_L w)^t \leq [w]^{\frac{1}{2}} \), use the Cauchy-Schwarz inequality, to get

\[
\Sigma_{1}^{m,n} \leq \sum_{L \in D} [w]^{\frac{1}{2}} C_{2}^{d} \left(\sum_{J \in D_{m}(L)} |\langle gw^{-t}, h_j^m \rangle w^2|^2 \right)^{\frac{1}{2}} \left(\sum_{I \in D_{m}(L)} |\langle f, h_I \rangle|^2 \right)^{\frac{1}{2}}
\]

\[
\leq [w]^{\frac{1}{2}} C_{2}^{d} \|f\|_2 \left(\sum_{L \in D} \sum_{J \in D_{m}(L)} |\langle gw^{-t}, h_j^m \rangle w^2|^2 \right)^{\frac{1}{2}}
\]

\[
\leq [w]^{\frac{1}{2}} C_{2}^{d} \|f\|_2 \|gw^{-t}\|_{L^2(w^2)} = [w]^{\frac{1}{2}} C_{2}^{d} \|f\|_2 \|g\|_2.
\]

Estimating \(\Sigma_{2}^{m,n} \): Plug in the estimates for \(R_{L}^{w^2, n}(gw^{-t}) \) and \(P^m f \), where \(F(x) = (M_{w^2} |gw^{-t}|^p(x))^{\frac{1}{2}} \), use the Cauchy-Schwarz inequality and \((m_L w^2)^{\frac{1}{2}} (m_L w)^t \leq [w]^{\frac{1}{2}} \) to get

\[
\Sigma_{2}^{m,n} \leq C C_{m}^{n}[w]^{\frac{1}{2}} C_{2}^{d} \|f\|_2 \left(\sum_{L \in D} \frac{\sqrt{\eta_{L}^{n}}}{(m_L w^2)^{\frac{1}{2}}} \inf_{x \in L} F(x) \right)^{\frac{1}{2}}.
\]

Now using Weighted Carleson Lemma 3.1 with \(\alpha_{L} = \eta_{L}^{n}/(m_L w^q)^{1-q} \) (which by Lemma 3.2 is a \(w^2 \)-Carleson sequence with intensity no larger than \(C_q(m+1)[w]_{A_{q}} \)), \(F(x) = (M_{w^2} |gw^{-t}|^p(x))^{\frac{1}{2}} \), and \(v = w^2 \),

\[
\Sigma_{2}^{m,n} \leq C_q(C_{m}^{n})^{2} [w]^{\frac{1}{2}} C_{2}^{d} [w^2]_{A_{q}} \|f\|_2 \|M_{w^2} |gw^{-t}|^p\|_{L^2(w^2)}^{\frac{1}{2}}.
\]
Using (2.1), that is the boundedness of M_{w^2} in $L^{\frac{2}{p}}(w^{2\ell})$ for $2/p > 1$,
\[
\Sigma_2^{m,n} \leq C_q(C_m'')^2(2/p)' [w]^\frac{3}{2} [w^{2\ell}]_A^\frac{3}{2} \|f\|_2 \|gw^{-\epsilon}|p\|_L^\frac{p}{2}.
\]
\[
\leq C_q(C_m'')^3[w]^{\frac{3}{2}} [w^{2\ell}]_A^{\frac{3}{2}} \|f\|_2 \|g\|_2.
\]
Since $(2/p)' = 2/(2 - p) = 2C_m''$. The theorem is proved.

\section*{APPENDIX}

\textbf{Proof of Lemma 3.2.} We will show this inequality using a Bellman function type method. Consider $B(u, v, l) := u - \frac{1}{(v^{p-1} + 1 + l)}$ defined on the domain $\mathbb{D} = \{(u, v, l) \in \mathbb{R}^3, u > 0, v > 0, uv^{p-1} > 1 \text{ and } 0 \leq l \leq 1\}$. Note that \mathbb{D} is convex. Note that
\[
0 \leq B(u, v, l) \leq u \quad \text{for all } (u, v, l) \in \mathbb{D}
\]
and
\[
(\partial B/\partial l)(u, v, l) \geq 1/4v^{p-1} \quad \text{for all } (u, v, l) \in \mathbb{D}.
\]
and also $-(du, dv, dl)d^2B(du, dv, dl)^t$ is non-negative because, it equals
\[
-(du, dv, dl) \begin{pmatrix}
0 & 0 & 0 \\
0 & p(1 - p)^{\frac{v^{p-1}}{1 + l}} & (1 - p)^{\frac{v^{p-1}}{l(1)^3}} \\
0 & (1 - p)^{\frac{v^{p-1}}{l(1)^3}} & -2v^{1-p} \frac{v^{p-1}}{l^{1+1}}
\end{pmatrix} \begin{pmatrix}
du \\
dv \\
dl
\end{pmatrix}
\]
\[
= p(p - 1) \frac{v^{p-1}}{1 + l}(du)^2 + 2(p - 1) \frac{v^p}{(l + 1)^2} dudv + 2 \frac{v^{1-p}}{(l + 1)^3} (dv)^2 \geq 0,
\]
since all terms are positive for $p > 1$.

Now let us show that if (u_-, v_-, l_-) and (u_+, v_+, l_+) are in \mathbb{D} and we define $(u_0, v_0, l) \in \mathbb{D}$ where l is in between l_+ and l_-, $u_0 = (u_+ + u_-)/2$, $v_0 = (v_- + v_+)/2$, and $l_0 = (l_- + l_+)/2$, then
\[
B(u_0, v_0, l) - (B(u_-, v_-, l_-) + B(u_+, v_+, l_+))/2 \geq |l - l_0|/4v_0^{p-1}
\]
Write for $-1 \leq t \leq 1$, $u(t) = [(t+1)u_+ + (1-t)u_-]/2$, $v(t) = [(t+1)v_+ + (1-t)v_-]/2$, and $l(t) = [(t+1)l_+ + (1-t)l_-]/2$. Define $b(t) := B(u(t), v(t), l(t))$, then $b(0) = B(u_0, v_0, l_0)$, $b(1) = B(u_+, v_+, l_+)$, $b(-1) = B(u_-, v_-, l_-)$, $du/dt = (u_+ - u_-)/2$, $dv/dt = (v_+ - v_-)/2$ and $dl/dt = (l_+ - l_-)/2$. If (u_+, v_+, l_+) and (u_-, v_-, l_-) are in \mathbb{D} then $(u(t), v(t), l(t))$ is also in \mathbb{D} for all $|t| \leq 1$, since \mathbb{D} is convex. It is a calculus exercise to show that
\[
b(0) - \frac{b(1) + b(-1)}{2} = \frac{-1}{2} \int_{-1}^1 (1 - |t|)b''(t)dt
\]
Also it is easy to check that

\[-b''(t) = \left(\frac{du}{dt}, \frac{dv}{dt}, \frac{dl}{dt}\right) d^2B(\frac{du}{dt}, \frac{dv}{dt}, \frac{dl}{dt})^t.\]

By the Mean Value Theorem and (4.4),

\[B(u_0, v_0, l) - \frac{B(u_-, v_-, l_-) + B(u_+, v_+, l_+)}{2} = \frac{(l - l_0) \partial B(u_0, v_0, l') - \frac{1}{2} \int_{l-1}^{l-1} (1 - |t|)b''(t)dt \geq \frac{l - l_0}{4v_0^{-p-1}},}\]

where \(l'\) is a point between \(l\) and \(l_0 = (l_- + l_+)/2\).

Now we can use the Bellman function argument. Let \(u_+ = m_{J+}w\), \(u_- = m_{J-}w\), \(v_+ = m_{J+}w^{-1}\), \(v_- = m_{J-}w^{-1}\), \(l_+ = \frac{1}{|J+|Q} \sum_{I \in D(J_+)} \lambda_I\) and \(l_- = \frac{1}{|J+|Q} \sum_{I \notin D(J_+)} \lambda_I\). Thus \((u_-, v_-, l_-), (u_+, v_+, l_+) \in \mathbb{D}\) and \(u_0 = m_Jw, v_0 = m_Jw^{-1}\), and \(l_0 = \frac{1}{|J+|Q} \sum_{I \in D(J)} \lambda_I\). Then we can run the usual induction on scale arguments using the properties of the Bellman function,

\[|J|m_Jw \geq |J|B(u_0, v_0, l_0)\]

\[\geq |J|\frac{B(u_+, v_+, l_+)}{2} + |J|\frac{B(u_-, v_-, l_-)}{2} + \lambda_J/4Q(m_Jw^{-1})^{p-1}\]

\[= |J_+|B(u_+, v_+, l_+) + |J_-|B(u_-, v_-, l_-) + \lambda_J/4Q(m_Jw^{-1})^{p-1}\]

Iterating, we get

\[m_Jw \geq \frac{1}{4Q|J|} \sum_{I \in D(J)} \frac{\lambda_I}{(m_Jw^{-1/p-1})^{p-1}}.\]

\[\square\]

References

[Be] O. Beznosova, Bellman functions, paraproducts, Haar multipliers and weighted inequalities. PhD. Dissertation, University of New Mexico (2008).
[BeI] O. Beznosova, Linear bound for the dyadic paraproduct on weighted Lebesgue space \(L^2(w)\). J. Func. Anal. 255 (2008), 994 –1007.
[BeRez] O. Beznosova, A. Reznikov, Sharp estimates involving \(A_\infty\) and \(L\log L\) constants, and their applications to PDE. ArXiv:1107.1885
[CrMPz1] D. Cruz-Uribe, J. M. Martell, C. Pérez, Weights, extrapolation and the theory of Rubio the Francia. Birkhäuser, 2011.
[GaRu] J. García Cuerva, J. L. Rubio de Francia, Weighted norm inequalities and related topics. North Holland Math. Studies 116. North Holland, 1985.
[H] T. Hytönen, The sharp weighted bound for general Calderón-Symund operators. Ann. Math. 175 (2012), 1473-1506.
[JN] R. Johnson, C.J. Neugebauer, Change of variable results for \(A_\infty\)- and reverse Hölder RH-classes. Trans. Amer. Math. Soc. 328 (1991), no. 2, 639666.
SHARP BOUNDS FOR T-HAAR MULTIPLIERS ON L^2

[KP] N. H. Katz, M. C. Pereyra, *Haar multipliers, paraproducts and weighted inequalities*. Analysis of Divergence, 10, 3, (1999), 145-170.

[L1] M. T. Lacey, *The linear bound in A_2 for Calderón-Zygmund operators: A survey*. Submitted to the Proceedings of the Józef Marcinkiewicz Centenary Conference, Poznan, Poland. ArXiv:1011.5784

[Mo] J. C. Moraes, *Weighted estimates for dyadic operators with complexity*. PhD Dissertation, University of New Mexico, 2011.

[Mo1] J. C. Moraes, *Weighted estimates for dyadic operators with complexity in geometrically doubling spaces*. In preparation.

[MoP] J. C. Moraes, M. C. Pereyra, *Weighted estimates for dyadic paraproducts and t-Haar multipliers with complexity (m,n)*. Submitted to Pub. Mat.

[Mu] B. Muckenhoupt, *Weighted norm inequalities for the Hardy–Littlewood maximal function*. Trans. Amer. Math. Soc. 165 (1972), 207–226.

[NRezV] F. Nazarov, A. Reznikov, A. Volberg, *The proof of A_2 conjecture in a geometrically doubling metric space*. ArXiv:1106.1342

[NV] F. Nazarov, A. Volberg, *Bellman function, polynomial estimates of weighted dyadic shifts, and A_2 conjecture*. Preprint (2011).

[NV1] F. Nazarov, A. Volberg, *A simple sharp weighted estimate of the dyadic shifts on metric spaces with geometric doubling*. ArXiv: 1104493v2.

[NTV1] F. Nazarov, S. Treil and A. Volberg, *Two weight inequalities for individual Haar multipliers and other well localized operators*. Math. Res. Lett. 15 (2008), no.3, 583-597.

[P1] M. C. Pereyra, *On the resolvents of dyadic paraproducts*. Rev. Mat. Iberoamericana 10, 3, (1994), 627-664.

[P2] M. C. Pereyra, *Haar multipliers meet Bellman function*. Rev. Mat. Iberoamericana 25, 3, (2009), 799-840.

[P3] M. C. Pereyra, *Sobolev spaces on Lipschitz curves*. Pacific J. Math. 172 (1996), no. 2, 553–589.

[P4] M. C. Pereyra, *Dyadic harmonic analysis and weighted inequalities*. Chapter in “Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center”, Edited by T. Andrews, R. Balan, W. Czaja, K. Okoudjou, J. Benedetto. Springer 2012.

[V] A. Volberg, *Bellman function technique in Harmonic Analysis. Lectures of INRIA Summer School in Antibes, June 2011*. Preprint (2011) available at arXiv:1106.3899

[W] J. Wittwer, *A sharp estimate on the norm of the martingale transform*. Math. Res. Letters, 7 (2000), 1–12.

Department of Mathematics, Baylor University, One Bear Place #97328, Waco, TX 76798-7328, USA

E-mail address: Oleksandra_Beznosova@baylor.edu

Universidade Federal de Pelotas - UFPEL, Centro de Engenharias - CENG, Almirante Barroso 1734, sala 16, Pelotas, RS, Brasil

E-mail address: jmoraes@unm.edu

Department of Mathematics and Statistics, 1 University of New Mexico, Albuquerque, NM 87131-001, USA

E-mail address: crisp@math.unm.edu