Clinical features of cardiac nodularity-like appearance induced by Helicobacter pylori infection

Toshihiro Nishizawa, Kosuke Sakitani, Hidekazu Suzuki, Shuntaro Yoshida, Yosuke Kataoka, Yousuke Nakai, Hirotoshi Ebinuma, Takanori Kanai, Osamu Toyoshima, Kazuhiko Koike

ORCID number: Toshihiro Nishizawa 0000-0003-4876-3384; Kosuke Sakitani 0000-0002-4537-6023; Hidekazu Suzuki 0000-0002-3855-3140; Shuntaro Yoshida 0000-0002-9437-9132; Yosuke Kataoka 0000-0002-8374-6558; Yosuke Nakai 0000-0001-7411-1385; Hirotoshi Ebinuma 0000-0001-6604-053X; Takanori Kanai 0000-0002-1466-4532; Osamu Toyoshima 0000-0002-6953-6079; Kazuhiko Koike 0000-0002-9739-9243.

Author contributions: Nishizawa T analyzed data, and wrote the manuscript; Sakitani K and Yoshida S reviewed endoscopic images; Kataoka Y collected the data; Suzuki H, Nakai Y, Ebinuma H, and Kanai T critically revised the manuscript; Koike K supervised the study; Toyoshima O recruited patients, designed the study.

Institutional review board statement: This retrospective study was approved by the Ethical Review Committee of Hattori Clinic on September 6, 2019 (approval no. S1909-U06).

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were

Abstract

BACKGROUND

We have previously reported that Helicobacter pylori (H. pylori)-associated nodular gastritis could occur in both the antrum and the cardia. Cardiac nodularity-like appearance (hereafter, called as cardiac nodularity) had a high predictive accuracy for the diagnosis of H. pylori infection. In the previous study, we included only the patients who were evaluated for H. pylori infection for the first time, and excluded patients with a history of eradication. Therefore, the prevalence and clinical features of cardiac nodularity remains unknown.

AIM

To perform this cross-sectional study to explore the characteristics of cardiac nodularity.

METHODS

Consecutive patients who underwent esophagogastroduodenoscopy between
May, 2017 and August, 2019 in the Toyoshima Endoscopy Clinic were enrolled in this study. We included *H. pylori*-negative, *H. pylori*-positive, and *H. pylori*-eradicated patients, and excluded patients with unclear *H. pylori* status and eradication failure. *H. pylori* infection was diagnosed according to serum anti-*H. pylori* antibody and the urea breath test or histology. Cardiac nodularity was defined as a miliary nodular appearance or the presence of scattered whitish circular small colorations within 2 cm of the esophagogastric junction. Nodularity was visualized as whish in the narrow-band imaging mode. We collected data on the patients’ baseline characteristics.

RESULTS

A total of 1078 patients were finally included. Among *H. pylori*-negative patients, cardiac nodularity and antral nodularity were recognized in 0.14% each. Among *H. pylori*-positive patients, cardiac nodularity and antral nodularity were recognized in 54.5% and 29.5%, respectively. Among *H. pylori*-eradicated patients, cardiac nodularity and antral nodularity were recognized in 4.5% and 0.6%, respectively. The frequency of cardiac nodularity was significantly higher than that of antral nodularity in *H. pylori*-positive and -eradicated patients. The frequencies of cardiac nodularity and antral nodularity in *H. pylori*-eradicated patients were significantly lower than those in *H. pylori*-positive patients (*P* < 0.001). The patients with cardiac nodularity were significantly younger than those without cardiac nodularity (*P* = 0.0013). Intestinal metaplasia score of the patients with cardiac nodularity were significantly lower than those without cardiac nodularity (*P* = 0.0216). Among *H. pylori*-eradicated patients, the patients with cardiac nodularity underwent eradication significantly more recently compared with those without cardiac nodularity (*P* < 0.0001).

CONCLUSION

This report outlines the prevalence and clinical features of cardiac nodularity, and confirm its close association with active *H. pylori* infection.

Key Words: Cardia; Nodularity; *Helicobacter pylori*; Diagnosis; Gastritis

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The prevalence of cardiac and antral nodularity in *Helicobacter pylori* (*H. pylori*) -negative, -positive, and -eradicated patients were 0.14% and 0.14%, 54.5% and 29.5%, and 4.5% and 0.6%, respectively. Cardiac nodularity was more frequent than antral nodularity in *H. pylori*-positive and -eradicated patients. Cardiac nodularity was often found in younger patients and patients with less intestinal metaplasia. Cardiac nodularity decreased after eradication, especially in patients who underwent eradication a long time ago.

Citation: Nishizawa T, Sakitani K, Suzuki H, Yoshida S, Kataoka Y, Nakai Y, Ebinuma H, Kanai T, Toyoshima O, Koike K. Clinical features of cardiac nodularity-like appearance induced by *Helicobacter pylori* infection. *World J Gastroenterol* 2020; 26(35): 5354-5361

URL: https://www.wjgnet.com/1007-9327/full/v26/i35/5354.htm

DOI: https://dx.doi.org/10.3748/wjg.v26.i35.5354

INTRODUCTION

Helicobacter pylori (*H. pylori*) infection leads to the development of gastric atrophy, peptic ulcer, and gastric cancer[6-9]. Eradication of *H. pylori* infection has been reported as an effective strategy for treating atrophic gastritis and peptic ulcer, and preventing gastric cancer[10-12].

Nodular gastritis is a form of chronic gastritis that has a unique miliary pattern on endoscopy, with “gooseflesh-like” appearance. Many studies have shown a strong association between nodular gastritis and *H. pylori* infection[13-19]. Children and young women are reported to be predisposed to nodular gastritis. Nodular gastritis improves...
gradually with age\[^{16}\]. Several reports have suggested an association between nodular gastritis and diffuse type gastric cancer\[^{13,15,17}\].

We have previously reported that nodularity could occur in both the antrum and the cardia\[^{18}\]. Cardiac nodularity-like appearance is found more frequently than antral nodularity. Cardiac nodularity-like appearance (hereafter, called as cardiac nodularity) had a high predictive accuracy for the diagnosis of \textit{H. pylori} infection. Our previous report also showed excellent interobserver agreement on cardiac nodularity. Furthermore, histological examination of cardiac nodularity often revealed lymphoid follicles displaying lymphocyte infiltration in the cardiac gland\[^{18}\].

However, the prevalence and clinical features of cardiac nodularity remains unknown. Therefore, we performed this cross-sectional study to explore the characteristics of cardiac nodularity.

MATERIALS AND METHODS

Ethics

This study was approved by the ethical review committee of Hattori Clinic on September 6, 2019 (approval no. S1909-U06)\[^{12,19}\]. All clinical investigations were conducted according to the ethical guidelines of the Declaration of Helsinki.

Patients

Consecutive patients who underwent esophagogastroduodenoscopy (EGD) between May, 2017 and August, 2019 in the Toyoshima Endoscopy Clinic were enrolled in this study. Inclusion criteria included defined \textit{H. pylori} status (\textit{H. pylori}-negative patients, \textit{H. pylori}-positive patients, and \textit{H. pylori}-eradicated patients). The patients with unclear \textit{H. pylori} status and eradication failure were excluded from the study. EGD was conducted for the examination of symptoms and screening. We collected data on the patients’ baseline characteristics, including age and sex, and period since eradication for eradicated patients.

Endoscopic procedures

EGD was performed using the Olympus Evis Lucera Elite system with a GIF-H290Z or GIF-HQ290 endoscope (Olympus Corporation, Tokyo, Japan)\[^{20}\]. An expert physician (Toyoshima O) performed endoscopic procedures. Furthermore, EGD images were retrospectively reviewed by other expert physicians. Discrepancies in diagnosis between the two sets of physicians were resolved through discussion. Sedation with midazolam and/or pethidine was performed at the patient’s discretion\[^{21-23}\]. Antral nodularity was defined as a miliary nodular appearance consisting of whitish circular micronodules measuring ≤ 1 mm in both height and diameter. Cardiac nodularity was defined as a miliary nodular appearance or the presence of scattered whitish circular small colorations within 2 cm of the esophagogastric junction. Nodularity was visualized as whitish in the narrow-band imaging (NBI) mode. The representative endoscopic images are shown in Figure 1.

We scored atrophy, intestinal metaplasia, diffuse redness, and enlarged folds, according to the Kyoto classification\[^{24}\].

Endoscopic atrophy was diagnosed based on the Kimura and Takemoto classification\[^{25}\]. Non-atrophy and C1 were scored as Atrophy score 0, C2, and C3 as Atrophy score 1, and O1 to O3 as Atrophy score 2.

The absence of intestinal metaplasia was scored as Intestinal metaplasia score 0, the presence of intestinal metaplasia within the antrum as Intestinal metaplasia score 1, and intestinal metaplasia extending into the corpus as Intestinal metaplasia score 2. The Intestinal metaplasia score was diagnosed using white light imaging.

The absence of diffuse redness was scored as Diffuse redness score 0, mild diffuse redness or diffuse redness with regular arrangement of collecting venules (RAC) as Diffuse redness score 1, and severe diffuse redness or diffuse redness without RAC as Diffuse redness score 2.

The absence and presence of enlarged folds was scored as Enlarged folds score 0 and 1, respectively.

Diagnosis of \textit{H. pylori} infection

Serum anti-\textit{H. pylori} antibody was measured on the day of EGD. The antibody titer was measured using an enzyme immunoassay kit with antigens derived from Japanese individuals (E-plate Eiken \textit{H. pylori} antibody II; Eiken Chemical, Tokyo, Japan).
Japan. An antibody titer ≥ 10 U/mL (the cut-off value recommended by the manufacturer) was considered positive for *H. pylori* [26]. When the serum anti- *H. pylori* antibody titer was 3.0-9.9 U/mL, the findings of urea breath test or histological assessment was added. If either the urea breath test or histology was positive, patients were considered positive for *H. pylori* [27,28]. An antibody titer < 3.0 U/mL or negative urea breath test was considered to indicate *H. pylori* negativity. Eradication was confirmed by urea breath test.

Statistical analysis

Categorical data were compared using the chi-square test. Continuous data were compared using Student’s or Welch’s *t*-test, as appropriate. A two-sided *P* value of < 0.05 was considered as statistically significant. Calculations were carried out by the Stat Mate IV software (ATOMS, Tokyo, Japan).

RESULTS

The endoscopist performed 1215 EGDs during the study period. We excluded 137 patients (135 patients with unclear *H. pylori* infection status and two with eradication failure). A total of 1078 patients were finally included.

The characteristics of the participants in the present study are shown in Table 1. Among *H. pylori*-negative patients, cardiac nodularity and antral nodularity were recognized in one patient each (0.14% each). Among *H. pylori*-positive patients, cardiac nodularity and antral nodularity were recognized in 24 (54.5%) and 13 (29.5%) patients, respectively. The frequency of cardiac nodularity was significantly higher than that of antral nodularity (*P* < 0.05). Among *H. pylori*-eradicated patients, cardiac nodularity and antral nodularity were recognized in 15 (4.5%) and 2 (0.6%) patients, respectively. The frequency of cardiac nodularity was significantly higher than that of antral nodularity (*P* < 0.01). The frequencies of cardiac nodularity and antral nodularity in *H. pylori*-eradicated patients were significantly lower than those in *H. pylori*-positive patients (*P* < 0.001).

Clinical characteristics of cardiac nodularity in *H. pylori*-positive patients are shown in Table 2. The patients with cardiac nodularity were significantly younger than those without cardiac nodularity (*P* = 0.0013). Intestinal metaplasia score of the patients with cardiac nodularity were significantly lower than those without cardiac nodularity (*P* = 0.0216).

Among *H. pylori*-eradicated patients, the patients with cardiac nodularity were also significantly younger than those without cardiac nodularity (*P* = 0.0003, Table 3). Furthermore, the patients with cardiac nodularity underwent eradication significantly more recently compared with those without cardiac nodularity (*P* < 0.0001).
Table 1 Characteristics of enrolled subjects

	H. pylori negative	H. pylori positive	H. pylori eradicated
Patient number	704	44	330
Mean age (std dev)	54.2 ± 11.1	51.0 ± 13.4	60.3 ± 12.3
Male:female	358:346	19:25	185:145
Cardiac nodularity	1 (0.14%)	24 (54.5%)	15 (4.5%)
Antral nodularity	1 (0.14%)	13 (29.5%)	2 (0.6%)

\(^aP < 0.05, \)
\(^bP < 0.01\) vs antral nodularity;
\(^fP < 0.001\) vs Helicobacter pylori positive. H. pylori: Helicobacter pylori.

Table 2 Clinical characteristics of cardiac nodularity in Helicobacter pylori positive patients

	Cardiac nodularity (+)	Cardiac nodularity (-)	\(P \) value
Patient number	24	20	0.0013
Mean age (std dev)	44.9 ± 7.8	58.3 ± 15.1	
Male:female	9:15	10:10	0.598
Atrophy score	1.46 ± 0.59	1.55 ± 0.51	0.588
Intestinal metaplasia score	0.21 ± 0.59	0.80 ± 0.95	0.0216
Enlarged fold score	0.54 ± 0.51	0.60 ± 0.50	0.705
Diffuse redness score	1.75 ± 0.55	1.67 ± 0.64	0.648

Table 3 Clinical characteristics of cardiac nodularity in Helicobacter pylori eradicated patients

	Cardiac nodularity (+)	Cardiac nodularity (-)	\(P \) value
Patient number	15	315	
Mean age (std dev)	49.2 ± 12.3	60.8 ± 12.1	0.0003
Male:female	5:10	180:135	0.121
Months after eradication	41.5 ± 30.1	91.6 ± 100.0	< 0.0001

DISCUSSION

The prevalence of cardiac nodularity was 0.14%, 54.5%, and 4.5% in H. pylori-negative, -positive, and -eradicated patients, respectively. Cardiac nodularity was more frequent than antral nodularity in H. pylori-positive and -eradicated patients. Cardiac nodularity was often found in younger patients and patients with less intestinal metaplasia. Cardiac nodularity decreased after eradication, especially in patients who underwent eradication a long time ago.

Our previous study showed excellent prediction accuracy of cardiac nodularity due to H. pylori infection, with 0.928 of accuracy, 0.996 of specificity, 0.571 of sensitivity, 0.960 of positive predictive value, and 0.925 of negative predictive value\(^{[18]}\). In our previous study, we included only the patients who were evaluated for H pylori infection for the first time, and excluded patients with a history of eradication. However, the present cross-sectional study included the patients with a history of eradication also. The frequency of cardiac nodularity in H. pylori-positive patients was remarkably higher than that in H. pylori-negative patients and H. pylori-eradicated patients. Cardiac nodularity may serve as one of the predictive markers for active H. pylori infection.

Nodular gastritis is more frequent in children than in adults\(^{[29]}\). The prevalence of nodular gastritis has been reported to be 32.9%-85% in H. pylori-positive children\(^{[30] - [34]}\). The prevalence of nodular gastritis gradually decreased with age\(^{[35]}\). Our study also
showed that the patients with cardiac nodularity were significantly younger than those without cardiac nodularity. Age dependence of cardiac nodularity is in line with that of antral nodularity.

Miyamoto et al. demonstrated that atrophy scores were lower in patients with nodular gastritis than in H. pylori-positive controls. Nakashima et al. also reported that atrophy and intestinal metaplasia were rare in nodular gastritis. Our study also showed that compared with patients without cardiac nodularity, Intestinal metaplasia score of the patients with cardiac nodularity was significantly lower. Cardiac nodularity seemed to disappear with the progression of intestinal metaplasia.

Dwivedi et al. reported that 87.5% of nodular gastritis patients showed complete normalization of the gastric mucosa after H. pylori eradication therapy. Our study also showed significantly low prevalence of cardiac nodularity in H. pylori-eradicated patients, especially in patients who underwent eradication a long time ago. Cardiac nodularity seemed to disappear with improvement in gastric inflammation after H. pylori eradication.

This study had some limitations. First, this study employed only a single experienced endoscopist. Second, the study was a retrospective review at a single institution. Our results should be validated in diverse settings for generalizability.

CONCLUSION
This report outlined the prevalence and clinical features of cardiac nodularity, and confirmed its close association with active H. pylori infection.

ARTICLE HIGHLIGHTS
Research background
Helicobacter pylori (H. pylori)-associated nodular gastritis could occur in both the antrum and the cardia. Cardiac nodularity-like appearance is found more frequently than antral nodularity.

Research motivation
Previous study included only the patients who were evaluated for H. pylori infection for the first time. There still remains a lack of the prevalence and clinical features of cardiac nodularity-like appearance.

Research objectives
We aimed to evaluate the characteristics of cardiac nodularity-like appearance.

Research methods
We enrolled consecutive patients who underwent esophagogastroduodenoscopy between May, 2017 and August, 2019 in the Toyoshima Endoscopy Clinic. We included H. pylori-negative, H. pylori-positive, and H. pylori-eradicated patients, and excluded patients with unclear H. pylori status and eradication failure. Cardiac nodularity was defined as a miliary nodular appearance or the presence of scattered whitish circular small colorations within 2 cm of the esophagogastric junction.

Research results
A total of 1078 patients were finally included. The prevalence of cardiac and antral nodularity in H. pylori-negative, -positive, and -eradicated patients were 0.14% and 0.14%, 54.5% and 29.5%, and 4.5% and 0.6%, respectively. Cardiac nodularity-like appearance was more frequent than antral nodularity in H. pylori-positive and -eradicated patients. Cardiac nodularity-like appearance was often found in younger patients and patients with less intestinal metaplasia. Cardiac nodularity-like appearance decreased after eradication, especially in patients who underwent eradication a long time ago.

Research conclusions
This report outlines the prevalence and clinical features of cardiac nodularity-like appearance, and confirm its close association with active H. pylori infection.
REFERENCES

1. Suzuki H, Nishizawa T, Tsugawa H, Mogami S, Hibi T. Roles of oxidative stress in stomach disorders. *J Clin Biochem Nutr* 2012; 50: 35-39 [PMID: 22247598 DOI: 10.3164/jcbn.11-1155R]

2. Šterbenc A, Jarc E, Poljak M, Homan M. Helicobacter pylori virulence genes. *World J Gastroenterol* 2019; 25: 4870-4884 [PMID: 31543679 DOI: 10.3748/wjg.v25.i33.4870]

3. Kuboasa Y, Morii H, Kinosita S, Nakazato Y, Fujimoto A, Kikuchi M, Nishizawa T, Suzuki M, Suzuki H. Changes of gastric ulcer bleeding in the metropolitan area of Japan. *World J Gastroenterol* 2019; 25: 6342-6353 [PMID: 31754294 DOI: 10.3748/wjg.v25.i42.6342]

4. Toyoshima O, Tanakawa C, Yamamoto R, Watanabe H, Yamashita H, Sakitani K, Yoshida S, Kubo M, Matsuo K, Ito H, Koike K, Seto Y, Matsuda K. Decrease in *PSCA* expression caused by *Helicobacter pylori* infection may promote progression to severe gastritis. *Oncotarget* 2018; 9: 3936-3945 [PMID: 29423695 DOI: 10.18632/oncotarget.23276]

5. Toyoshima O, Yamao Y, Yoshida S, Matsumoto S, Yamashita H, Kanazawa T, Hata K. Endoscopic gastric atrophy is strongly associated with gastric cancer development after *Helicobacter pylori* eradication. *Surg Endosc* 2017; 31: 2140-2148 [PMID: 27604367 DOI: 10.1007/s00464-016-5211-4]

6. Sugimoto M, Murata M, Yamaoka Y. Chemoprevention of gastric cancer development after *Helicobacter pylori* eradication therapy in an East Asian population: Meta-analysis. *World J Gastroenterol* 2020; 26: 1820-1840 [PMID: 32351296 DOI: 10.3748/wjg.v26.i9.1820]

7. Mori H, Suzuki H. Update on quinolone-containing rescue therapies for *Helicobacter pylori* infection. *World J Gastroenterol* 2020, 26: 1733-1744 [PMID: 32351298 DOI: 10.3748/wjg.v26.i7.1733]

8. Nishizawa T, Suzuki H, Maekawa T, Harada N, Toyokawa T, Kawasaki T, Ohara M, Suzuki T, Kawanishi M, Noguchi K, Yoshi T, Katsuhashima S, Tsuruta H, Masuda E, Tanaka M, Katayama S, Kawamura N, Nishizawa Y, Hibi T, Takahashi M. Dual therapy for third-line *Helicobacter pylori* eradication and urea breath test prediction. *World J Gastroenterol* 2012; 18: 2735-2738 [PMID: 22690086 DOI: 10.3748/wjg.v18.i21.2735]

9. Nishizawa T, Maekawa T, Watanabe N, Harada N, Hosoda Y, Hosoi M, Yoshih M, Ohto H, Inoue S, Toyokawa T, Yamashita H, Saito H, Kawasaki T, Katayama S, Masuda E, Miyahashi H, Kimura T, Nishizawa Y, Takahashi M, Suzuki H. Clarithromycin Versus Metronidazole as First-line *Helicobacter pylori* Eradication: A Multicenter, Prospective, Randomized Controlled Study in Japan. *J Clin Gastroenterol* 2015; 49: 468-471 [PMID: 24921211 DOI: 10.1097/MCG.0000000000000165]

10. de Brito BB, da Silva FAJ, Soares AS, Pereira VA, Santos MLC, Sampaio MM, Neves PHM, de Melo FF. Pathogenesis and clinical management of *Helicobacter pylori* gastric infection. *World J Gastroenterol* 2019; 25: 5578-5589 [PMID: 31602159 DOI: 10.3748/wjg.v25.i17.5578]

11. Suzuki H, Nishizawa T, Tsugawa H, Hibi T. Molecular approaches and modern clinical strategies for the management of *Helicobacter pylori* infection in Japan. *Keio J Med* 2012; 61: 109-119 [PMID: 23324305 DOI: 10.2302/kjm.2012-0001-rc]

12. Sakitani K, Nishizawa T, Ari a M, Yoshida S, Katoa Y, Ohki D, Yamashita H, Isomura Y, Toyoshima A, Watanabe H, Iizuka T, Saito Y, Fujisaki J, Yahagi N, Koike K, Toyoshima O. Early detection of gastric cancer after *Helicobacter pylori* eradication due to endoscopic surveillance. *Helicobacter* 2018; 23: e12503 [PMID: 29924436 DOI: 10.1111/hel.12503]

13. Miyamoto M, Haruma K, Yoshimura M, Hayama T, Uno M, Nishikawa T, Tanaka S, Chayama K. Nodular gastritis in adults is caused by *Helicobacter pylori* infection. *Dig Dis Sci* 2003; 48: 968-975 [PMID: 12772798 DOI: 10.1023/a:1023166909996]

14. Hayashi S, Inamura J, Kimura K, Saeki S, Hishima T. Endoscopic features of lymphoid follicles in *Helicobacter pylori*-associated chronic gastritis. *Dig Endosc* 2015; 27: 53-60 [PMID: 25092073 DOI: 10.1111/den.12335]

15. Nishikawa I, Kato J, Terasoma S, Matsutani H, Tamaki H, Tamaki T, Kuvashima F, Nakata H, Tomeki T, Matsunaka H, Ibata Y, Yamashita Y, Maekita T, Higashi K, Ichinose M. Nodular gastritis with advances in gastric cancer development before and after *Helicobacter pylori* eradication. *JGH Open* 2018; 2: 80-86 [PMID: 30483568 DOI: 10.1002/jghb.12049]

16. Zerbib F, Vialleto G, Cayla R, Rudelli A, Sauvet P, Bechade D, Seurat PL, Lamouliatte H. [Follicular gastritis in adults. Relations with *Helicobacter pylori* histological and endoscopic aspect]. *Gastroenterol Clin Biol* 1993; 17: 529-534 [PMID: 8253308]

17. Kitanura S, Yasuda M, Muguruma N, Okamoto K, Takeuchi H, Bando Y, Miyamoto H, Okahisa T, Yano M, Torisu R, Takayama T. Prevalence and characteristics of nodular gastritis in Japanese elderly. *J Gastroenterol Hepatol* 2013; 28: 1154-1160 [PMID: 23432631 DOI: 10.1111/j.1440-1746.2012.06717.x]

18. Toyoshima O, Nishizawa T, Sakitani K, Yamakawa T, Watanabe H, Yoshida S, Nakai Y, Hata K, Ebinuma H, Suzuki H, Koike K. Nodularity-like appearance in the cardia: novel endoscopic findings for *Helicobacter pylori* infection. *Endosc Int Open* 2020; 8: E776-E774 [PMID: 32490162 DOI: 10.1055/a-1136-9890]

19. Nishizawa T, Suzuki H, Arano T, Yoshida S, Yamashita H, Hata K, Kana T, Yahagi N, Toyoshima O. Characteristics of gastric cancer detected within 1 year after successful eradication of *Helicobacter pylori*. *J Clin Biochem Nutr* 2016; 59: 226-230 [PMID: 27895391 DOI: 10.3164/jcbn.16-43]

20. Toyoshima T, Sakitani K, Suzuki H, Yamakawa T, Takahashi Y, Yoshida S, Nakai Y, Hata K, Ebinuma H, Koike K, Toyoshima O. Small-caliber endoscopes are more fragile than conventional endoscopes. *Endosc Int Open* 2019; 7: E1729-E1732 [PMID: 31828029 DOI: 10.1055/a-1136-9385]

21. Nishizawa T, Suzuki H, Arita M, Kataoka Y, Fukushima M, Kobayashi H, Taka K, Uraoka T, Kanai T, Yahagi N, Toyoshima O. Pethidine dose and female sex as risk factors for nausea after esophagogastroduodenoscopy. *J Clin Biochem Nutr* 2018; 63: 230-232 [PMID: 30487674 DOI: 10.3164/jcbn.18-5]
Nishizawa T et al. H. pylori-induced cardiac nodularity

22 Toyoshima O, Yoshida S, Nishizawa T, Yamakawa T, Sakitani K, Hata K, Takahashi Y, Fujishiro M, Watanabe H, Koike K. CF290 for pancolonic chromoendoscopy improved sessile serrated polyp detection and procedure time: a propensity score-matching study. Endosc Int Open 2019; 7: E987-E993 [PMID: 31367679 DOI: 10.1055/s-0045-19091]

23 Nishizawa T, Sakitani K, Suzuki H, Takeuchi M, Takahashi Y, Takeuchi K, Yamakawa T, Yoshida S, Hata K, Ebihara H, Koike K, Toyoshima O. Adverse events associated with bidirectional endoscopy with midazolam and pethidine. J Clin Biochem Nutr 2020; 66: 78-81 [PMID: 32001961 DOI: 10.3164/jcbn.19-73]

24 Toyoshima O, Nishizawa T, Koike K. Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis. World J Gastroenterol 2020; 26: 466-477 [PMID: 32089624 DOI: 10.3748/wjg.v26.i5.466]

25 Kimura K, Takekoto T. An endoscopic recognition of the atrophic border and its significance in chronic gastritis. Endoscopy 1989; 3: 87-97 [DOI: 10.1055/s-0028-1096086]

26 Toyoshima O, Nishizawa T, Sakitani K, Yamakawa T, Takahashi Y, Yamamichi N, Hata K, Seto Y, Koike K, Watanabe H, Suzuki H. Serum anti-Helicobacter pylori antibody titer and its association with gastric nodularity, atrophy, and age: A cross-sectional study. World J Gastroenterol 2018; 24: 4061-4068 [PMID: 30254410 DOI: 10.3748/wjg.v24.i35.4061]

27 Toyoshima O, Nishizawa T, Arita M, Kataoka Y, Sakitani K, Yoshida S, Yamashita H, Hata K, Watanabe H, Suzuki H. Helicobacter pylori infection in subjects negative for high titer serum antibody. World J Gastroenterol 2018; 24: 1419-1428 [PMID: 29632423 DOI: 10.3748/wjg.v24.i13.1419]

28 Nishizawa T, Sakitani K, Suzuki H, Yamakawa T, Takahashi Y, Yamamichi N, Watanabe H, Seto Y, Koike K, Toyoshima O. A combination of serum anti-Helicobacter pylori antibody titer and Kyoto classification score could provide a more accurate diagnosis of H pylori. United European Gastroenterol J 2019; 7: 343-348 [PMID: 31019702 DOI: 10.1177/2056636519825947]

29 Al-Enezi SA, Alsaraye SI, Aly NY, Ismail AE, Ismail WA, Al-Brahim N, El-Dousari A. Endoscopic nodular gastritis in dyspeptic adults: prevalence and association with Helicobacter pylori infection. Med Princ Pract 2010; 19: 40-45 [PMID: 19996618 DOI: 10.1159/000225263]

30 Bujanover Y, Konikoff F, Baratz M. Nodular gastritis and Helicobacter pylori. J Pediatr Gastroenterol Nutr 1990; 11: 41-44 [PMID: 2388131 DOI: 10.1097/00005176-199007000-00008]

31 Mitchell HM, Bohane TD, Tobias V, Bullpitt P, Daskalopoulos G, Carrick J, Mitchell JD, Lee A. Helicobacter pylori infection in children: potential clues to pathogenesis. J Pediatr Gastroenterol Nutr 1993; 16: 120-125 [PMID: 8450376 DOI: 10.1097/00005176-199302000-00004]

32 Shiotani A, Kamada T, Kumanoto M, Nakaey Y, Nakamura Y, Kakudo K, Haruma K. Nodular gastritis in Japanese young adults: endoscopic and histological observations. J Gastroenterol 2007; 42: 610-615 [PMID: 17701123 DOI: 10.1007/s00535-007-2073-5]

33 Prieto G, Polanco J, Larrauri J, Rota L, Lama R, Carrasco S. Helicobacter pylori infection in children: clinical, endoscopic, and histologic correlations. J Pediatr Gastroenterol Nutr 1992; 14: 420-425 [PMID: 1517945 DOI: 10.1097/00005176-199205000-00008]

34 Luzzo F, Persabene I, Immuno M, Bancuso M, Giancotti L, La Vecchia AM, Costa MC, Strisciuglio P, Pallone F. Antral nodularity and positive CagA serology are distinct and relevant markers of severe gastric inflammation in children with Helicobacter pylori infection. Helicobacter 2002; 7: 46-52 [PMID: 11886473 DOI: 10.1046/j.1523-5378.2002.00055.x]

35 Nakashima K, Nagata N, Watanabe K, Kobayakawa M, Sakurai T, Akiyama J, Hoshimoto K, Shimbo T, Uemura N. Histological features of nodular gastritis and its endoscopic classification. J Dig Dis 2011; 12: 436-442 [PMID: 2218692 DOI: 10.1111/j.1751-2980.2011.00552.x]

36 Dwivedi M, Misra SP, Misra V. Nodular gastritis in adults: clinical features, endoscopic appearance, histopathological features, and response to therapy. J Gastroenterol Hepatol 2008; 23: 943-947 [PMID: 17614956 DOI: 10.1111/j.1440-1746.2007.05044.x]
