Signature of effective mass in crackling noise asymmetry

Stefano Zapperi, Claudio Castellano∗ and Francesca Colaiori

INFN unità di Roma 1 and SMC,
Dipartimento di Fisica, Università ”La Sapienza”,
P.le A. Moro 2, 00185 Roma, Italy and
Istituto dei Sistemi Complessi, CNR,
Via dei Taurini 9, 00185 Roma, Italy

Gianfranco Durin
IEN Galileo Ferraris, str. delle Cacce 91, 10137 Torino, Italy

∗Correspondence should be addressed to CC. Electronic address: castella@pil.phys.uniroma1.it
Crackling noise is a common feature in many dynamic systems [1, 2, 3, 4, 5, 6, 7, 8, 9], the most familiar instance of which is the sound made by a sheet of paper when crumpled into a ball. Although seemingly random, this noise contains fundamental information about the properties of the system in which it occurs. One potential source of such information lies in the asymmetric shape of noise pulses emitted by a diverse range of noisy systems [8, 9, 10, 11, 12], but the cause of this asymmetry has lacked explanation [1]. Here we show that the leftward asymmetry observed in the Barkhausen effect [2] - the noise generated by the jerky motion of domain walls as they interact with impurities in a soft magnet - is a direct consequence of a magnetic domain wall’s negative effective mass. As well as providing a means of determining domain wall effective mass from a magnet’s Barkhausen noise our work suggests an inertial explanation for the origin of avalanche asymmetries in crackling noise phenomena more generally.

Crackling noise is the response of many physical systems to a slow external driving: outbursts of activity (avalanches or pulses) spanning a broad range of sizes, separated by quiescent intervals [1]. In condensed matter, notable examples are the magnetization noise emitted along the hysteresis loop in ferromagnets (i.e., the Barkhausen effect [2]), the noise from magnetic vortices in type II superconductors [3], ferroelectric materials [4] and driven ionic crystals [5]. In the context of mechanics, examples are the acoustic emission signal in fracture [6] and plasticity [7] and, on a larger scale, seismic activity in correspondence to an earthquake [8, 9]. Quantitative understanding of crackling noise is of fundamental importance in different applications, from non-destructive material testing to hazard prediction. This goal can be achieved only through the identification of general universal properties common to these systems, irrespective of their differences in the internal dynamics and microstructural details. In this context, the average shape of the individual pulses composing the signal has been recently proposed as the best tool to characterize these universal features of crackling noise [1]. In analogy with critical phenomena, it is expected that pulses of different durations can be rescaled on a universal function, whose shape would only depend on general features of the physical process underlying the noise. This scenario is supported by the analysis of a variety of models, where pulse shapes are described by universal symmetric scaling functions [12, 13, 14]. In most experimental data, however, the pulse shape is markedly asymmetric with respect to its midpoint, i.e. avalanches start fast but return
to zero more slowly. These results are puzzling because the models accurately reproduce several other universal quantities, such as avalanche distributions and power spectra.

One of the most studied examples of crackling noise is the Barkhausen effect recorded in soft magnetic materials. The Barkhausen noise is due to the motion of domain walls, the interfaces separating regions of opposite magnetization, in response to a magnetic field (see the movie as Supplementary Information). Domain walls are characterized by an effective mass, which is related to the increase of the wall energy with velocity, as experimentally revealed, for instance, in the dynamic susceptibility of insulating ferrite materials. In metallic ferromagnets, however, inertial effects are usually neglected, being much smaller than eddy current dissipation. This approximation is usually assumed in the description of the Barkhausen effect.

We show in this Letter that the asymmetry of pulse shapes is a direct signature of the effective mass associated to the objects moving under the action of the external field. In conducting ferromagnets the mass is negative and this results in a leftward asymmetry of the Barkhausen noise pulses. Our findings clarify the general meaning of pulse shapes in crackling noise phenomena: the form of avalanche displays an asymmetry that depends on the duration, and encodes important information on the characteristic time of the underlying dynamics. Only on very long timescales pulse shape symmetry and universality are recovered.

We measure Barkhausen noise pulse shapes in two ferromagnetic alloys. The experimental setup is depicted in Fig. (see Methods section). In response to an increasing external field, domain walls move, inducing in the pickup coil a voltage signal $v(t)$ proportional to the magnetization rate. The shape of the pulse is defined as the voltage $\langle v(t, T) \rangle$ at time t averaged over all avalanches of duration T. When appropriately normalized and plotted as a function of t/T, the experimentally measured shapes for different durations rescale fairly well (though not perfectly, see below) on a universal function (see Fig. left), that is clearly asymmetric, in agreement with earlier measurements. Such a leftward asymmetry implies that pulses start rapidly and decay slowly. This is precisely the opposite of the effect of standard inertia, the resistance of a body to changes on its motion, which would imply a slow increase of the velocity when the domain wall is at rest. The asymmetry
can be quantified by computing the average skewness

$$\Sigma(T) = \frac{\frac{1}{T} \int_0^T dt (v(t, T)) (t - \bar{t})^3}{\left[\frac{1}{T} \int_0^T dt (v(t, T)) (t - \bar{t})^2 \right]^{3/2}}$$ \hspace{1cm} (1)$$

where $\bar{t} = 1/T \int_0^T dt (v(t, T)) t$. As shown in Fig. 3, in both samples the skewness is always positive, indicating a leftward asymmetry, and it displays a peak for $T_{exp}^{\exp} \approx 200 \mu s$.

To account for these experimental results, we make use of a simple and successful model for the Barkhausen effect in soft metallic ferromagnets, based on the dynamics of a planar domain wall in an effective pinning potential \cite{20}. The equation of motion for the wall position x is given by

$$\beta \dot{x} = 2 I_s (c_H t - k x + W(x)),$$ \hspace{1cm} (2)$$

where β is a damping constant, I_s is the saturation magnetization, $c_H t$ is the external field increasing at rate c_H, $-k x$ is the demagnetizing field and $W(x)$ is a random field with Gaussian distribution and Brownian correlations \cite{20}. These correlations are believed to represent an effective description of a more general model with flexible domain walls \cite{21, 22}. Eq. (2) can be solved exactly and provides an excellent description of the statistical properties of the Barkhausen noise, considering that the domain wall velocity \dot{x} is proportional to the recorded voltage signal $v(t)$. The solution of the model, however, yields a symmetric pulse shape \cite{13, 14}, at odds with experimental evidence.

The assumption used to derive Eq. (2) is that at each time the work done by the effective field (i.e. the applied field corrected by the demagnetizing and pinning fields) is compensated by the energy dissipated by eddy currents, which is estimated in the quasistatic approximation \cite{20}. A more detailed analysis of eddy current dissipation, including dynamic effects (see the Methods section and Ref. 23), leads to the identification of a frequency-dependent effective mass, which turns out to be negative in the entire spectrum and equal to $M^* \approx -\beta \tau/(2 \gamma)$ at low frequencies, where τ is the longest relaxation time and $\gamma \approx 1.05$. For the materials considered in our experiments, the effective mass can be estimated to be $M^* \approx -7 \cdot 10^{-5} \text{kg/m}^2$, much larger than the positive Döring domain wall mass ($M \approx 10^{-9} \text{kg/m}^2$ \cite{16}). This negative inertial effect can also be formulated by adding a non-local damping term in the equation of motion for the wall (see Methods section)

$$\Gamma \ddot{x} + \frac{\Gamma_0}{\tau} \int_0^t e^{-(t-t')/\tau} \dot{x}(t') dt' = 2 I_s (c_H t - k x + W(x)),$$ \hspace{1cm} (3)$$

$$\int_0^T dt' e^{-(t-t')/\tau} \dot{x}(t') dt'$$
where Γ and Γ_0 are coefficients of the same order of magnitude with $\Gamma + \Gamma_0 = \beta$. In order to understand the role of the effective mass on the pulse shape, we have numerically integrated Eq. (3) for different values of τ. While the distributions of avalanches duration and size are unaffected by the addition of the inertial term, the pulse shapes become asymmetric and bear a remarkable similarity with the experimental ones (see Fig. 2, right). Also in this case the skewness is always positive (Fig. 4), indicating a leftward asymmetry, and it displays a peak in correspondence with a characteristic time $T_p \approx 10\tau$.

Using the value of the largest relaxation timescale for the samples considered experimentally (i.e. $\tau = \mu \sigma b^2 / \pi^2 \approx 5\mu s$, where b is the sample thickness, μ is the permeability and σ the conductivity), we obtain a theoretical estimate of the peak position $T_p \approx 50\mu s$, which is reasonably close to the value measured experimentally, considering the approximations involved in the model. In particular, we have treated a single domain wall moving at the center of the sample, while in the experiments several domain walls are present. This induces a non trivial interference among the eddy current patterns generated by each wall. To corroborate our interpretation of the asymmetry in terms of a negative effective mass, we have performed simulations of Eq. (3) replacing the non-local term with a positive mass term $M\ddot{x}$. The resulting skewness, reported in Fig. 4, is negative and displays a peak at $T_p \approx 10M/\Gamma$.

In conclusion, we have shown that the pulse shape asymmetry commonly observed in Barkhausen noise measurements in metals is a signature of a negative effective mass of domain walls. Remarkably, the skewness exhibits a peak that can be used to track the characteristic relaxation timescale, corresponding to the ratio between mass and damping constant. Similar asymmetric pulse shapes are also observed in seismic data, recorded in correspondence to an earthquake. Seismic movements are due to the motion of fault planes in response to the stress accumulated in the crust. A non-local dynamical effect, analogous to the one discussed here, could be due to the presence of stress overshoots. It would be interesting to test this mechanism using existing fault dynamics models.
Methods

Materials and experimental methods

In our experiments a long solenoid provides an homogeneous driving field \mathbf{H} ramped at constant rate $c_H = 4A/(m \text{s})$, while a secondary pickup coil around the sample cross section measures the induced flux. The pickup coil is made of 50 isolated copper turns, wound within 1 mm. Such a small width is required to avoid spurious effects due to demagnetizing fields. The measurements are performed only in the central part of the hysteresis loop around the coercive field, where domain wall motion is the relevant magnetization mechanism (1). In this case the recorded voltage signal $v(t)$ is proportional to the domain wall velocity \dot{x}. To reduce excess external noise during the measurement, we use a low pass pre-amplifier filter with a cutoff frequency of 100 kHz. We employ two ribbons of Fe$_{64}$Co$_{21}$B$_{15}$, having width $a = 1\text{cm}$, thickness $b = 24\mu\text{m}$, and length $c = 20\text{cm}$: the first sample is amorphous, and subjected to a small tensile stress (2MPa). The second has been partially crystallized (5%) by thermal annealing. Tensile stress and thermal annealing are used to relax part of the internal stresses, leading to a high signal to noise ratio.

Derivation of domain wall motion from eddy current dissipation

Considering the configuration described in Fig. 1, the relevant component of field $H_e = H_e(x, y, t)\hat{z}$, associated with the eddy currents produced by the moving domain wall, obeys the equation

$$\sigma \mu \frac{\partial H_e}{\partial t} - \nabla^2 H_e = 0,$$

where σ is the conductivity and μ is the permeability [19]. One should complement Eq. 1 with the Faraday condition around the wall

$$\partial_x H_e(0^+, y, t) - \partial_x H_e(0^-, y, t) = 2\sigma I_s v_x(t),$$

where $v_x(t)$ is the domain wall velocity and we have assumed $c = \infty$. Eqs. 1 and 5 are solved with the boundary condition $H_e = 0$ at the sample surface. The mean pressure on the wall is obtained as

$$P_e = \frac{2I_s}{b} \int_{-b/2}^{b/2} H_e(0, y, t)dy = \int dt' f(t - t')v_x(t').$$
A direct calculation of the response function, similar to Ref. [23], leads to

\[f(t) = -\frac{32I_s^2}{\mu a \pi^2} \theta_2\left[e^{-\pi^2 t/(\alpha^2 \mu \sigma)}\right] \sum_{n=0}^{\infty} \frac{e^{-t/\tau_n}}{(2n+1)^2}, \]

(7)

where \(\theta_2 \) is the Jacobi Elliptic Function and the relaxation times are \(\tau_n = \mu \sigma b^2 / [(2n+1)\pi^2] \).

The equation of motion for the domain wall is obtained by equating the eddy current pressure \(P_e \) to the pressure \(P_a = 2I_s H \) exerted by the applied field corrected by demagnetizing effects and pinning. The left-hand side of Eq. (3) is recovered by considering the leading contributions at short and long times, involving the largest relaxation time \(\tau \equiv \tau_0 = \mu \sigma b^2 / \pi^2 \).

The constants can be estimated as

\[\Gamma = \frac{16I_s^2 \sigma b}{\pi^3} \left(\frac{\gamma - 2\alpha}{\pi} \right) \quad \gamma = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^3} \approx 1.05. \]

(8)

In the frequency domain, we can formally rewrite Eq. (6) as \(\tilde{P}_e = (\beta + i \omega M^*) \tilde{v}_x \), with the effective mass, in the low frequency limit, given by

\[M^* \approx -\frac{8I_s^2 b^3 \mu \sigma^2}{\pi^5} = -\frac{\beta \tau}{2\gamma}. \]

(9)

Statement on financial interests

The authors declare no competing financial interest.
[1] Sethna, J., Dahmen, K. A., and Myers, C. R. Crackling noise. *Nature* **410**, 242–244 (2001).

[2] Durin, G. and Zapperi, S. The Barkhausen effect., in *the Science of Hysteresis* (eds Bertotti G. and Mayergoyz I.) 181–269 (Academic Press, New York, 2005) [cond-mat/0404512](http://arxiv.org/abs/cond-mat/0404512).

[3] Field, S., Witt, J., Nori, F.,, and Ling, X. Superconducting vortex avalanches. *Phys. Rev. Lett.* **74**, 1206 (1995).

[4] Colla, E. V., Chao, L. K., and Weissman, M. B. Barkhausen noise in a relaxor ferroelectric. *Phys. Rev. Lett.* **88**, 017601 (2002).

[5] Mitchell, T. B., Bollinger, J. J., Itano, W. M., and Dubin, D. H. E. Stick-slip dynamics of a stressed ion crystal. *Phys. Rev. Lett.* **87**, 183001 (2001).

[6] Petri, A., Paparo, G., Vespignani, A., Alippi, A., and Costantini, M. Experimental evidence for critical dynamics in microfracturing processes. *Phys. Rev. Lett.* **73**, 3423 (1994).

[7] Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J., and Grasso, J. R. Intermittent dislocation flow in viscoplastic deformation. *Nature* **410**, 667–670 (2001).

[8] Houston H., Benz H. M. and Vidale J. E. *J. Geoph. Res.* **103**, 29895 (1998).

[9] A. P. Mehta, K. A. Dahmen, Y. Ben-Zion. Universal shape profiles of earthquake ruptures. [cond-mat/0403567](http://arxiv.org/abs/cond-mat/0403567) (2004).

[10] Spasojevic, D., Bukvic, S., Milosevic, S., and Stanley, H. E. Barkhausen noise: elementary signals, power laws, and scaling relations. *Phys. Rev. E* **77**, 2531 (1996).

[11] Durin, G. and Zapperi, S. On the power spectrum of magnetization noise. *J. Magn. Magn. Mat.* **242-245**, 1085–1088 (2002).

[12] Mehta, A., Mills, A., Dahmen, K., and Sethna, J. Universal pulse shape scaling function and exponents: a critical test for avalanche models applied to Barkhausen noise. *Phys. Rev. E* **65**, 046139 (2002).

[13] O’Brien K. P. and Weissman, M. B. Statistical characterization of Barkhausen noise. *Phys. Rev. E* **50** 3446-3452 (1994).

[14] Colaiori, F., Durin, G., and Zapperi, S. Shape of a Barkhausen pulse. *J. Magn. Magn. Mat.* **272-276**, E533 (2004).

[15] Durin, G. and Zapperi, S. Scaling exponents for Barkhausen avalanches in polycrystalline and amorphous ferromagnets. *Phys. Rev. Lett.* **84**, 4075–4078 (2000).
[16] Döring, W. Über die tragheit der wände zwischen weisschen bezirken. Z. Natur. 3a, 373–379 (1948).

[17] Hubert, A. and Schäfer, R. Magnetic domains. Springer, New York, (1998).

[18] Rado, G. T., Wright, R. W., and Emerson, W. H. Ferromagnetism at very high frequencies. iii. two mechanisms of dispersion in a ferrite. Phys. Rev. 80, 273280 (1950).

[19] Bertotti, G. Hysteresis in Magnetism. Academic Press, San Diego, (1998).

[20] Alessandro, B., Beatrice, C., Bertotti, G., and Montorsi, A. Domain wall dynamics and Barkhausen effect in metallic ferromagnetic materials. i. theory. J. Appl. Phys. 68, 2901–2908 (1990).

[21] Zapperi, S., Cizeau, P., Durin, G., and Stanley, H. E. Dynamics of a ferromagnetic domain wall: avalanches, depinning transition and the Barkhausen effect. Phys. Rev. B 58, 6353–6366 (1998).

[22] Mills A. C, Hess, F. M. and Weissman M. B., Statistics of the pinning field in a soft metallic ferromagnet. Phys. Rev. B 66, 140409(R) (2002).

[23] Bishop, J. E. L. The contribution made by eddy currents to the effective mass of a magnetic domain wall. J. Phys. D: Appl. Phys. 13, L15–L19 (1980).

[24] Baldassarri, A., Colaiori, F., and Castellano, C. The average shape of a fluctuation: universality in excursions of stochastic processes. Phys. Rev. Lett 90, 060601 (2003).

[25] Schwarz, J. M. and Fisher, D. S. Depinning with dynamic stress overshoots: Mean field theory. Phys. Rev. Lett. 87, 096107 (2001).
FIG. 1: **Schematic picture of the experimental setup.** A ribbon of dimensions $a \times b \times c$ is placed in a solenoid (not shown) yielding a magnetic field in the vertical direction. The magnetization reversal process occurs via the displacement of domain walls, such as the one depicted here. The arrows indicate the directions of the magnetization. A pickup coil, wound around the sample, records a voltage signal v that is composed by distinct pulses, as the one depicted in the right panel.
FIG. 2: Comparison of the average pulse shapes in the experiments and in the model. On the left panel we report the average pulse shape obtained from Barkhausen noise measurements in a partially crystallized Fe$_{64}$Co$_{21}$B$_{15}$ ribbon. The shapes for different durations T are normalized and rescale quite well, apart from a small systematic variation related to the asymmetry. On the right panel, we report the corresponding shapes obtained from the model. The normalization constant is given by $N = \int_0^T dt \langle v(t, T) \rangle / T$.
FIG. 3: Skewness of avalanches in experiments. The skewness of the pulse shape as a function of the pulse duration obtained from experiments. The data display a peak at $T_p^{\text{exp}} \approx 200\mu\text{s}$ indicated by an arrow.
FIG. 4: **Skewness of avalanches in the model.** The skewness of the pulse shape obtained in the domain wall model for different values of eddy current time constant τ is plotted as a function of the pulse duration T. We also report a similar measurement in the case of conventional positive domain wall mass. In the latter case the skewness is negative (rightward asymmetry).