Historical literature review and molecular analysis of malaria drug resistance markers of Plasmodium falciparum field-isolates from Sudan.

CURRENT STATUS: POSTED

Nouh S. Mohamed
NURI
Nouh_saad@outlook.com
[Corresponding Author]
[ORCiD: https://orcid.org/0000-0001-6843-3361]

Hanadi Abdelbagi
Ahfad University for Women School of Pharmacy

Hussam A. Osman
Ahfad University for Women School of Pharmacy

Abdallah E. Ahmed
Nile College

Alaa M. Yousif
Ahfad University for Women School of Pharmacy

Yusraa B. Edris
Ahfad University for Women School of Pharmacy

Eman Y. Osman
Ahfad University for Women School of Pharmacy

Aahd R. Elsadig
National University

Emmanuel E. Siddig
Mycetoma Research Center

Madinna Mustafa
Nile University

Ammar A. Mohammed
Sudan Federal Ministry of Health
Yousif Ali
Sudan Federal Ministry of Health

Maha M. Osman
Alfarrabi College for Science and Technology

Mohamed S. Ali
Al-Neelain University Faculty of Medicine

Rihab A. Omer
Universitat Leipzig

Ayman Ahmed
Institute of Endemic Diseases

Carol H. Sibley
University of Washington

DOI:
10.21203/rs.2.24565/v1

SUBJECT AREAS
Infectious Diseases

KEYWORDS
Plasmodium falciparum, Molecular Markers, Multi drug resistance, Sudan.
Abstract

Background Malaria infection is still known to be a worldwide public health problem, especially in tropical and sub-tropical African countries like Sudan. The fight against malaria is still taking place due to many factors. One of these factors is the presence of Plasmodium falciparum drug resistant parasites. This study is aiming at studying the P. falciparum drug resistance markers and analyzing the historical literature on these markers in Sudan. Methods A descriptive cross-sectional healthcare-centers based study conducted in Khartoum state between December 2017 and July 2018. Febrile patients diagnosed with P. falciparum malaria infection were recruited. Two ml blood samples were collected prior to start treatment. Genotyping of the specific point mutations in the P. falciparum genome was done using Sanger sequencing method for the Pfcrt, Pfmdr-1, Pfhdfr, and Pfhdps genes. Data deposited by the worldwide antimalarial resistance network was consulted and the molecular markers previously reported from Sudan were identified, collected, and analyzed to compare between past and present frequency of malaria drug resistance mutations. One-way ANOVA test was used to calculate the least significance of frequency distribution in the molecular markers collected from the previous reports from Sudan in comparison to this study. Pearson correlation was used to investigate the association between the different drug resistance markers. Results Drug molecular markers analysis was successfully done on the 20 P. falciparum isolates. the Pfcrt K76 showed the highest frequency; 16 (80%). Pfcrt 76T was 4 (20%). For the Pfmdr-1 marker, 9 (45%) isolates were carrying the N86 allele and 11 (55%) were 86Y allele. While the Y184F of the Pfmdr-1 showed higher frequency of 184F compared to Y184; 16 (80%) and 4 (20%), respectively. Concerning the double Pfmdr-1 haplotype, NY haplotype was 2 (10%), NF was 7 (35%), YF was 9 (45%), and YY was 2 (10%). In the Pfhdfr , 51I allele showed higher frequency compared to N51; 18 (90%) and 2 (10%), respectively. Whereas for C59R, C59 was 18 (90%), and 59R was 2 (10%). For S108N, 18 (90%) for 108N and 2 (10%) for S108. The triplet haplotype ICN of the Pfhdfr ; was the most frequent haplotype; 16 (80%). Concerning the Pfhdps , all the 20 (100%) isolates were carrying the mutant alleles; 437G and 540E. the Pfhdps haplotype present was the double GE haplotype only. No statistically significant correlation was found for the Pfcrt , Pfmdr-1 , Pfhdfr , and Pfhdps . Historical reports on P. falciparum multidrug
resistant collected from 1989 to 2016 showed extreme fluctuation. High prevalence of Pfcr7 76T allele was observed in Khartoum throughout all years of previous studies, while in Gedaref Pfcr7 76T showing increased prevalence each year. All studied genes were showing increase prevalence of the mutant alleles and reduction of the wildtype alleles. In this study, the GE mutant haplotype was prevalent in all the studied samples. Frequency distribution of the Pfcr7 K76T and Pfmdr-1 N86Y alleles, Pfmdr-1 ; N86Y and Y184F, Pfhdhr ; N51I and S108N, and Pfphps ; A437G and K540E double haplotypes was significantly different across the whole years in Sudan. Conclusion This study describes the distribution of P. falciparum multidrug resistance markers throughout Sudan providing a solid baseline data of the status of these markers which could be very useful for the malaria control program not only for establishing surveillance system that monitor the change in and/or the emergence of malaria drug resistance but it will also offer a guidance for the evidence-base decision-making regarding the treatment protocol national and regional wise.

Background
Malaria infection is still known to be a worldwide public health problem, especially in tropical and subtropical African countries [1]. Based on the WHO estimations in 2019, malaria infections reached 228 million cases with 405 thousand related-deaths [1]. In Sudan, anti-malarial resistance among Plasmodium falciparum had emerged since 1955 investigated by Abbot, who firstly reported the phenomenon of drug-resistant in Wad Madani when using Amodiaquine-hydrochloride (AQ) and Pyrimethamine (P) to treat P. falciparum infections [2]. During the late 70s of the last century, high proportions of drug resistance were reported when Chloroquine (CQ) was introduced as the first-line treatment [3]. In 1991, Babiker and his colleagues investigated the drug resistance against CQ, Mefloquine (MQ) and P. They reported that drug response varieties where some isolates in in-vitro testing were found to be resistant for both CQ and P, while others were resistant to either CQ or P, whereas, no resistance against MQ has been reported [4]. Also, a similar case resistance against P was published by Ibrahim et al., 1991 in Sennar state-Sudan [5]. Other studies reported malaria drug resistance throughout the country [6-10]. However, by 2004 the National Malaria Programme (NMP) changed the malaria management protocol and shifted from CQ to the artemisinin-based combination
treatment (ACTs). The combination of Artesunate (AS) and Sulfadoxine-Pyrimethamine (SP) was then adopted as the first-line treatment against uncomplicated falciparum malaria, and artemether-lumefantrine (AL) was considered as a second-line treatment [11]. Therapeutic Efficacy Studies (TES) were conducted to monitor and detect the emergence of drug-resistant malaria parasites. Another approach for the early detection of the emergence of drug resistance was implemented by using molecular markers in order to investigate the efficacy of treatments in vitro. Once the deployment of AS+SP as a first-line treatment for *P. falciparum* malaria, TESs were conducted to evaluate SP in the form of monotherapy or combined with other anti-malarial drugs. These studies reported different efficacies of treatment and failure of SP monotherapy [12-16]. Between 2010 and 2015, Ahmed et al. conducted a study to evaluate the efficacy of AS+SP and AL and AL showed high efficacy with declining efficacy of AS+SP to treat uncomplicated malaria [17]. Altogether, studies conducted in Sudan between 2011 and 2015 detected high failure rates of treatment with AS-SP, ranging from 12.3% to 22.2%. The evidence prompted a decision to change the new first-line of treatment to AL [18]. In 2017, Mohamed et al. reported a high rate of treatment failure against AS+SP which has led to the adoption of Dihydroartemisinin-piperaquine (DHA-PPQ) as the first-line treatment [19]. A year later, Hamid et al. (2018), stated that AS+SP is still effective against falciparum malaria in New halfa and Gezira Slanj regions [20].

P. falciparum chloroquine resistance transporter (*Pfcr*) and *P. falciparum* multidrug resistance gene 1 (*Pfmdr-1*) are previously known membrane transporters associated with resistance to the drug combination of CQ and AQ or MQ and Lumefantrine (L) [21]. Also, with the suggestion of previous studies, point mutations in *Pfmdr-1* are associated with the resistant to quinoline-containing drugs and artemisinin derivatives [21, 22]. Also, the presence of *Pfmdr-1* multicopy results in resistance to MQ and L [23, 24]. However, the K76T mutation in *Pfcr* mostly associated with the *Pfcr* 72C, 73V, 74I, 75E, and 76T. The CVIET haplotype of *Pfcr* is known as the most robust CQ resistance marker in Africa [12–15]. In vitro experiments showed that N86Y and Y184F mutations in the *Pfmdr-1* gene increases the inhibitory concentrations of CQ and AQ [21, 24], and reduce susceptibility to MQ and L [24, 25].
Previous studies focused on the *P. falciparum* dihydrofolate reductase (*Pfdhfr*) and dihydropteroate synthase (*Pfdhps*) which are known targets of pyrimethamine and sulfadoxine, respectively. Both drugs are inhibiting the folate pathway leading to the death of the parasite [19]. The emergence of resistant parasites has been documented in many parts of Africa [26]. Mutations in the *Pfdhfr* codons 51, 59, and 164 [16] and the substitutions at the *Pfdhps* in the codons 436, 437, 540, 581 and 613, suggested to be conferring resistance to sulfadoxine [19].

The need for updated molecular markers studies to investigate the frequency of falciparum malaria drug-resistant is extreme. This study is aiming to describe the trend of *P. falciparum* drug resistance markers in 2017-2018 in comparison to CQ and AS/SP eras in Sudan.

Methods

A descriptive cross-sectional healthcare-centers based study conducted in Khartoum, Sennar, River Nile, Ad Damazin and Gedaref states between December 2017 and July 2018. Febrile patients (axillary temperature < 37 C) who were microscopically diagnosed with *P. falciparum* malaria infection were recruited to participate in the study after obtaining informed consent to collect the blood sample. Participants diagnosed with *P. falciparum/P. vivax* co-infection and *P. vivax* mono-infections were excluded from the study. Two ml blood samples were collected prior to start treatment. No follow up data were obtained from patients after treatment. Blood samples were preserved into lithium heparin anticoagulation blood containers and shipped to the biotechnology lab, faculty of pharmacy at The Ahfad University for women for DNA extraction and molecular genotyping of drug resistance markers.

DNA extraction

The genomic DNA was extracted using the Guanidine Chloride extraction method described previously by Ciulla et al. (1988), with minor modifications [27]. In brief, 1 ml from each blood sample was placed into 2.5 ml tube and washed using RBCs washing buffer; and then nucleated and parasite cells were lysed using cell lysis buffer. 1 ml of 6 M Guanidine chloride solution and 10 micro of proteinase K enzyme were added and incubated over night at 37°C. The following day, 2 ml Chloroform were added to the mixture and centrifuged at 14000 rpm for 10 min; 3 layers separation were formed. The upper layer containing the parasite and human DNA was transferred into new 2 ml tubes; and 1 ml
absolute ethanol was added to precipitate the DNA. Precipitated DNA was then washed with 70% ethanol and allowed to dry for 1 hour before being dissolved with 200 micro distilled water. Purity and concentration of the extracted DNA was measured using Nanodrop 1000 spectrophotometer (USA). DNA was stored in -20°C until molecular examinations later.

Parasite genotyping and assessment of multiple infection

To confirm the microscopic diagnosis, the protocol and primers sets described previously by Snounou et al. (1993) were used [28]. Whereas, for assessment of multiple infection, primers and PCR conditions used were according to the previously described protocol [29].

Drug resistance markers assessment

Genotyping of the specific point mutations in the *P. falciparum* genome was done using Sanger sequencing method using the primers sets for the *Pfcr*, *Pfmdr-1*, *Pfdhfr*, and *Pfdhps* genes as described previously [30]. Primers sets used in this study were described in table 1. PCR amplification conditions were set to 95°C for 5 min as initial denaturation followed by 35 cycles of 95°C for 1 min, 55°C for 1 min (for *Pfcr*, *Pfmdr-1*) or 58°C for 1 min (for *Pfdhfr* and *Pfdhps*), and 72°C for 1 min, followed by final extension step at 72°C for 10 min. All thermal conditions were performed in MJ thermocycler PCR machine (USA). PCR amplicons were then sequenced in both directions using the forward and reverse primer for each gene to exclude any base calling errors that could be obtained during sequencing. Sequences were validated using GENtle software (v1.9.4) and aligned in comparison with the wildtype *P. falciparum* 3D7 strain reference sequences (PF3D7_0709000 for *Pfcr*, PF3D7_0523000 for *Pfmdr-1*, PF3D7_1324800 for *Pfdhfr*, and PF3D7_0810800 for *Pfdhps*). The deduced amino acids were translated from nucleotide sequences using MEGA7 software (v7.0.26) using the standard translation code in order to determine sequences mutations at the *Pfcr* codons; 72, 73, 74, 75, and 76; *Pfmdr-1* codons 86 and 184; *Pfdhfr* codons 51, 59, and 164; and the substitutions at the *Pfdhps* in the codons 436, 437, 540, 581 and 613.

Previous reports on drug resistance markers

Data deposited by the worldwide antimalarial resistance network (WWARN) (https://www.wwarn.org/)
was consulted and the molecular markers previously reported from Sudan were identified, collected, and analyzed to compare between past and present frequency of malaria drug resistance mutations. Data sets included SP molecular surveyors (https://www.wwarn.org/sp-molecular-surveyor), and ACT partner drug molecular surveyors (https://www.wwarn.org/tracking-resistance/act-partner-drug-molecular-surveyor). Numbers and drug molecular marker genotypes of *P. falciparum* isolates included in the historical literature review data set analyzed in this study are presented in Supplementary file 1.

Statistical analysis

The statistical analysis was done using the statistical Package for Social Sciences (SPSS, v20.0). One-way ANOVA test was used to calculate the least significance difference (LSD) of frequency distribution in the molecular markers collected from the previous reports from Sudan in comparison to this study. Pearson correlation was used to investigate the association between the different drug resistance markers. P value ≤ 0.05 was considered significant.

Results

The molecular genotyping of the field-isolated *P. falciparum* and multiclonal infections assessment

In this small-scale study, a total of 28 malaria parasite isolates were genotyped, of them, 2 and 6 isolates were excluded since were *P. falciparum/P. vivax* coinfections, *P. vivax* infection, respectively. The remaining 20 isolates were *P. falciparum* mono-infections. Multiclonal infections assessment for the 20 isolates were 16 (80%) MAD20, 2 (10%) K1, and 2 (10%) RO33, based on the merozoite surface protein 1 (MSP-1) gene.

Frequency of *P. falciparum* drug resistance markers

Drug molecular markers analysis was successfully done on the 20 *P. falciparum* isolates. Out of the 20 isolates *Pfcrtn* K76 showed the highest frequency; 16 (80%). *Pfcrtn* 76T was 4 (20%). None of the isolates were carrying mixed *Pfcrtn* allele infection. For the *Pfmdr-1* marker, 9 (45%) isolates were carrying the N86 allele and 11 (55%) were carrying the 86Y allele. While the Y184F of the *Pfmdr-1* showed higher frequency of 184F compared to Y184; 16 (80%) and 4 (20%), respectively. Concerning
the double *Pfmdr-1* haplotype, NY haplotype was 2 (10%), NF was 7 (35%), YF was 9 (45%), and YY was 2 (10%).

The *Pfdhfr* N51I showed higher frequency of 51I compared to N51; 18 (90%) and 2 (10%), respectively. Whereas for C59R, C59 was 18 (90%), and 59R was 2 (10%). For S108N, 18 (90%) for 108N and 2 (10%) for S108. For the triplet haplotype of the *Pfdhfr*, the haplotype ICN was the most frequent haplotype; 16 (80%). IRN and NCS were only present in two isolates; 2 (10%) for each.

Concerning the *Pfdhps* drug molecular marker, all the 20 (100%) isolates were carrying the mutant alleles; 437G and 540E. the *Pfdhps* haplotype present was the double GE haplotype only (Table 2).

No statistically significant correlation was found for the *Pfcr*, *Pfmdr-1*, *Pfdhfr*, and *Pfdhps*. However, a statistically significantly positive correlation was observed for *Pfmdr-1* and the combined *Pfdhfr* and *Pfdhps* alleles, Pearson r' = 0.509, P value = 0.035. While, for the *Pfcr* and the combined *Pfdhfr* and *Pfdhps*, statistically insignificant negative correlation was found, Pearson r' = -0.248, P value = 0.291. *Pfdhps* was not correlated separately with any of the other mutations since present in all the studied samples.

The trend in *P. falciparum* multidrug resistance from 1989 to 2018 according to location

Reports on *P. falciparum* multidrug resistant collected from 1989 to 2016 showed extreme fluctuation. High prevalence of *Pfcr* 76T allele was observed in Khartoum throughout all years of previous studies. However, in the current study the *Pfcr* K76 is very high compared to the previous years.

While in Gedaref *Pfcr* 76T showing increased prevalence each year, reaching 89% in the study conducted in 2007. The *Pfcr* 76T allele during the previous studies is showing higher prevalence compared to *Pfcr* K76. The situation of the increase in *P. falciparum* resistance markers among the previous studies was relatively similar. All studied genes showing increase prevalence of the mutant alleles and a reduction of the wildtype alleles. However, in Khartoum the *Pfdhfr* IN and *Pfdhps* GE haplotypes prevalence in 2016 and 2018 isolates constitute nearly all the studied samples comparing to other locations (Fig. 1).

The trend in *P. falciparum* multidrug resistance from 1989 to 2018 in Sudan

For the *Pfcr*, the T allele that confers CQ resistant was at higher frequency during 2000-2001
(89.6%), however, T mutant allele frequency started to dropdown reaching up to 43.9% in 2016 and bottomed at 20% in 2018. In this study, the frequency of the K76 wildtype allele was higher compared to all previous years; 80%. Whereas, the N86Y mutation of the Pfmdr-1 was extremely flocculation during the past years (Fig. 2).

Concerning the Pf dhfr N51l and S108N, in 1996-1997 the NS wildtype haplotype was showing low frequency compared to the IN mutant haplotype; 18.6% and 74.3%. While in 1998-1999, frequency of the NS haplotype reached to 100%. The prevalence of the NS haplotype from 2002-2003 continued to decrease down to 10% in 2017-2018. On the other hand, the IN mutant haplotype increased to 85.5% in 2002-2003 reaching 92.7% in 2009-2012 and remained constant approximately at 90% in 2017-2018. However, for the Pf dhps, in 1998-1999 AK wildtype haplotype was 93.1%, but in 2002-2003 GE mutant haplotype increased to 75.1%. In 2007 the AK wildtype haplotype increased again to 77.8% and decreased to 36.1% in 2009-2012 and 51.1% in 2016. However, in this study in 2017-2018, the GE mutant haplotype was prevalent in all the studied samples 20 (100%) (Fig. 3).

The prevalence of the Pf mdr-1 double haplotype N86Y and Y184F was only obtained from 4 previous studies. Results of Pf mdr-1 double haplotype in comparison with this study showed an increase in the NY mutant haplotype in 2017-2018 compared to 2016; 45% and 31.5%, respectively. While noted a quite reduction of the NY and YY wildtype haplotypes throughout all years (Fig. 4).

Frequency distribution of the Pf crt K76T and Pf mdr-1 N86Y alleles, Pf mdr-1; N86Y and Y184F, Pf dhfr; N51l and S108N, and Pf dhps; A437G and K540E double haplotypes was significantly different across the whole years in Sudan. An illustrated statistical significance and insignificance of frequency distribution of P. falciparum multidrug resistance markers between the different years intervals is described in supplementary file 2; (tables S1-S5).

Discussion

Studying the molecular markers to monitor the prevalence of drug resistance is extremely beneficial especially for public health programs that aim to reduce the prevalence of malaria infections because drug-resistant parasites are the major threat to achieve success malaria control/elimination. In this study we aimed to investigate the fluctuation in the P. falciparum multidrug resistance markers in
Sudan during CQ, AS/SP and ACT eras. In the current small-scale study, the reported frequency of \textit{Pfcrt} K76 wildtype allele in the field-isolates was very high compared to all previous years, especially during the years of CQ deployment in Sudan [16]. However, since AS/SP era, post-CQ in 2004, \textit{Pfcrt} K76 allele tends to increase. This could be occurred due to limited exposure of the \textit{P. falciparum} parasite to the CQ or the complete absence of the pressure since infections with \textit{P. vivax} or \textit{P. falciparum} /\textit{P. vivax} coinfection is been treated with combination of AL and PQ [1]. However, this increase in \textit{Pfcrt} K76 might be due to the increase of AL pressure. Similar results supporting the reasons for the increase of \textit{Pfcrt} K76 allele were also reported from China [31].

In 2003, molecular markers studies confirmed that CQ was no longer suitable for malaria treatment and SP treatment failure was only ranging between 1.9% and 7.8%, this led to the change of treatment guidelines in 2004 [7, 32-34]. At the same time, the increase in \textit{Pfdhfr} and \textit{Pfdhps} double mutant haplotypes was noted in the following years [16]. The \textit{Pfdhfr} IN haplotype and the \textit{Pfdhps} GE haplotype which both confers the resistant to SP, increased significantly by 2007 [35], In 2017-2018, both haplotypes were showing higher frequency; 90.0% and 100%. This could be due to the continued encountered pressure at the \textit{Pfdhfr} and \textit{Pfdhps} genes in the parasite, in parallel to the reduced \textit{Pfcrt} 76T allele since CQ-pressure is limited. This phenomenon is observed significantly in all countries in which AS/SP was used as first-line therapy for malaria infections [36].

The prevalence of the \textit{Pfmdr-1} NF haplotype in 2017-2018 which could confer the resistant to AL is noted among 35% of the study samples. Comparison between previous years for the frequency distribution of \textit{Pfmdr-1} double haplotypes showed a statistically significant difference between all years and 2008; P values 0.000 for 2009 to 2012 and 2016, and 0.005 for 2017 to 2018, when at that time the recommended malaria treatment was AS/SP, and since 2009 the use of AL is significantly increased due to malpractice in drug use, such as usage of incorrect dosage and insufficient information stated to patients about the prescribed treatment which may lead to the increase in resistance and recurrent infections rates [37].

Although, in this study the quintuple NFSND haplotype of the \textit{Pfmdr-1} is not completely studied, but this is also considered alarming since the presence of NF haplotype could be accompanied with the
SND haplotype, and consequently leading to AL resistance since parasites carrying the NFSND haplotype reported to survive 15-fold higher AL concentrations [22]. Previously, development of molecular markers for AL resistance was thought to be difficult because there were no known resistant lab lines can be used as resistance controls, but with the ability to predict with the aid of the Genome-wide Analytical Study (GWAS) [38], this gave the chance to investigate further genes that could develop mutations under treatments pressure such as kelch13 and plasmepsins 2-3 multicopy at the same time investigating the Pfmdr-1 NFSND haplotype could be the role evolution for the developed mutations since allow longer survival rate of the parasite [22, 39].

Although, as previously described by Wang et al., 1997, established the association of Pf dhfr and Pf dhps haplotypes with SP resistance [40]. In the present study, Pfmdr-1 86Y allele, Pf dhfr IN haplotype and Pf dhps GE haplotype were consisting the majority of the studied samples; 90%. This however, is also similar to previous study conducted in Sudan where all the parasite isolates carrying the Pfcrt 76T and Pfmdr-1 86Y mutant alleles were carrying the mutant Pf dhfr IN haplotype and Pf dhps 540E mutation [35]. But difference obtained in this study is that most of the isolates were carrying Pfcrt K76 wildtype allele. As this is in accordance to stop the use of CQ in malaria treatment. As well, the prevalence of Pf dhps double haplotype GE could hinder the effect of SP if used as Intermittent preventive therapy during pregnancy (IPTp). Although, SP as IPTp was not implemented and there is scarce information about the use of SP during pregnancy in Sudan (Mohamed et al., unpublished data). And the presence of Pf dhfr IRN in combination with Pf dhps GE haplotypes forming the quintuple mutant haplotype confer a high risk for treatment failure in malaria-infected children and nonpregnant adults who receive SP as a seasonal malaria chemo-prevention treatment (SMC-SP) [41]. However, previous studies indicated that IPTp-SP is still efficacious in some areas with high prevalence of resistant P. falciparum parasite [42]. Nevertheless, the increased resistance rate might compromise the implication of IPTp-SP [43-45].

In this study, a small frequency of R59 mutation was observed, this could be attributed to the small sample size investigated particularly that the R59 mutation is quite known throughout most of the African countries. However, comparing to previously reported studies in Sudan, this frequency is
similar, as suggested previously, this could be due to high frequency of \textit{Pfdhfr} 51I and 108N, and \textit{Pfdhps} 437G and 540E mutations lead to a genetical cost-effectiveness competitions between the multi-drugs-resistance mutations within the parasites for determination of the effective combination of mutations that increase the parasite survival rate [46].

Conclusions And Recommendations
In addition to studying the molecular markers of malaria multi-drug resistance in the field collected isolates of \textit{P. falciparum} we reviewed and summarized the previously published reports about malaria drugs resistance in Sudan. This study describes the distribution of \textit{P. falciparum} multidrug resistance markers throughout Sudan. It also provides a solid baseline data of the status of these markers which could be very useful for the malaria control program not only for establishing surveillance system that monitor the change in and/or the emergence of malaria drug resistance but it will also offer a guidance for the evidence-base decision-making regarding the treatment protocol national and regional wise. Nevertheless, a country-wide monitoring and evaluation program for the early detection of the drug-resistance is extremely needed for more effective treatment protocol and a successful control of the disease.

List Of Abbreviations
\textbf{ACTs}; Artemisinin-based Combination Treatment
\textbf{AL}; Artemether-Lumefantrine
\textbf{AQ}; Amodiaquine-Hydrochloride
\textbf{AS}; Artesunate
\textbf{CQ}; Chloroquine
\textbf{DHA-PPQ}; Dihydroartemisinin-Piperaquine
\textbf{GWAS}; Genome-Wide Analytical Study
\textbf{IPTp}; Intermittent Preventive Therapy during Pregnancy
\textbf{L}; Lumefantrine
\textbf{MSP-1}; Merozoite Surface Protein 1
\textbf{MQ}; Mefloquine
P; Pyrimethamine

$Pfcrt$; $P. falciparum$ Chloroquine Resistance Transporter

$Pfdhfr$; $P. falciparum$ Dihydrofolate Reductase

$Pfdhps$; $P. falciparum$ Dihydropteroate Synthase

$Pfmdr-1$; $P. Falciparum$ Multidrug Resistance Gene 1

SMC-SP; Seasonal Malaria Chemo-Prevention Treatment

SP; Sulfadoxine-Pyrimethamine

TES; Therapeutic Efficacy Studies

WWARN; Worldwide Antimalarial Resistance Network

Declarations

Ethics approval and consent to participate

This study was reviewed and approved by the National University Biomedical Research Ethics Committee, National University-Sudan. Oral and written informed consents were obtained from participants’ or parents or guardians in case of children.

Consent for publication

Not applicable

Availability of data and material

All datasets used and analysed in this study are available in the manuscript. Sequences analysed in this study were not submitted into the NCBI database.

Competing interests

The authors declare that they have no competing interests

Funding

Not applicable

Author’s contributions

NSM and CHS conceived, designed the study protocol, HA, HAO, AEA, AMY, YBE, EYO, ARE, MMO and EES carried out the parasitological and molecular examinations. MM, AAM, YA, AA, MMO, MSA, and RAO conducted the genetic and molecular markers analysis. NSM, HA, HAO, AEA and EES analysed
and interpreted the data. NSM, AA, MSA, and RAO designed and supervised the experiments. NSM, AA, and CHS drafted the manuscript. All authors read and approved the final manuscript.

Acknowledgements

We are of great thanks for kind collaboration and assistance of the clinical staff of all hospitals and health centers for providing the samples. Also, great thanks to all participants contributed to this work.

References

1. WHO: World malaria report 2019. Geneva: World Health Organization 2019.

2. Abbott P: Trials with Gamoquin and Daraprim in the Treatment of Malaria at Wad Medani, Sudan. Sudan Medical Journal 1955, 1:33-38.

3. Kouznetsov R, Rooney W, Wernsdorfer W, El Gaddal A, Payne D, Abdalla R: Assessment of the sensitivity of Plasmodium falciparum to antimalarial drugs at Sennar, Sudan: use of the in vitro micro-technique and the in vivo method. Geneva: World Health Organization; 1979.

4. Babiker HA, Creasey AM, Fenton B, Bayoumi RA, Arnot DE, Walliker D: Genetic diversity of Plasmodium falciparum in a village in eastern Sudan. 1. Diversity of enzymes, 2D-PAGE proteins and antigens. Transactions of the Royal Society of Tropical Medicine Hygiene 1991, 85:572-577.

5. Ibrahim ME, Awad-El-Kariem FM, El Hassan IM, El Rashid M: A case of Plasmodium falciparum malaria sensitive to chloroquine but resistant to pyrimethamine/sulfadoxine in Sennar, Sudan. Transactions of the Royal Society of Tropical Medicine Hygiene 1991, 85:446.

6. Awad-El-Kariem F, Miles M, Warhurst D: Chloroquine-resistant Plasmodium falciparum isolates from the Sudan lack two mutations in the pfmdr1 gene thought to be associated with chloroquine resistance. Transactions of the Royal Society of Tropical Medicine Hygiene 1992, 86:587-589.
7. Khalil I, Rønn AM, Alifrangis M, Gabar HA, Satti GM, Bygbjerg IC: Dihydrofolate reductase and dihydropteroate synthase genotypes associated with in vitro resistance of Plasmodium falciparum to pyrimethamine, trimethoprim, sulfadoxine, and sulfamethoxazole. *The American journal of tropical medicine hygiene* 2003, **68:**586-589.

8. Ochong EO, van den Broek IV, Keus K, Nzila A: Association between chloroquine and amodiaquine resistance and allelic variation in the Plasmodium falciparum multiple drug resistance 1 gene and the chloroquine resistance transporter gene in isolates from the upper Nile in southern Sudan. *The American journal of tropical medicine hygiene* 2003, **69:**184-187.

9. Abdel-Muhsin A, Mackinnon M, Awadalla P, Ali E, Suleiman S, Ahmed S, Walliker D, Babiker HA: Local differentiation in Plasmodium falciparum drug resistance genes in Sudan. *Parasitology* 2003, **126:**391-400.

10. Alifrangis M, Enosse S, Khalil IF, Tarimo DS, Lemnge MM, Thompson R, Bygbjerg IC, Rønn AM: Prediction of Plasmodium falciparum resistance to sulfadoxine/pyrimethamine in vivo by mutations in the dihydrofolate reductase and dihydropteroate synthetase genes: a comparative study between sites of differing endemicity. *The American journal of tropical medicine hygiene* 2003, **69:**601-606.

11. Malik EM, Khalafalla O: Malaria in Sudan: past, present and the future. *Gezira journal of health sciences* 2004, **1**.

12. Adam I, Ibrahim M, Aelbasit I, El Bashir M: Efficacy of sulfadoxine/pyrimethamine for uncomplicated Plasmodium falciparum malaria in a small sample of Sudanese children. 2004.

13. Salah MT, Mohammed MM, Himeidan YE, Malik EM, Elbashir MI, Adam I: A
randomized comparison of sulphadoxine-pyrimethamine and combination of sulphadoxine pyrimethamine with chloroquine in the treatment of uncomplicated falciparum malaria in Eastern Sudan. *Saudi medical journal* 2005, **26**:147-148.

14. Elamin SB, Malik EM, Abdelgadir T, Khamiss AH, Mohammed MM, Ahmed ES, Adam I: *Artesunate plus sulfadoxine-pyrimethamine for treatment of uncomplicated Plasmodium falciparum malaria in Sudan*. *Malaria Journal* 2005, **4**:41.

15. Adam I, A-Elbasit I, Idris S, Malik E, Elbashir M: *A comparison of the efficacy of artesunate plus sulfadoxine-pyrimethamine with that of sulfadoxine-pyrimethamine alone, in the treatment of uncomplicated, Plasmodium falciparum malaria in eastern Sudan*. *Annals of Tropical Medicine Parasitology* 2005, **99**:449-455.

16. Adeel AA: *Drug-resistant malaria in Sudan: a review of evidence and scenarios for the future*. *Sudanese journal of paediatrics* 2012, **12**:8.

17. Adeel AA, Elnour FAA, Elmardi KA, Abd-Elmajid MB, Elhelo MM, Ali MS, Adam MA, Atta H, Zamani G, Warsame M: *High efficacy of artemether-lumefantrine and declining efficacy of artesunate+ sulfadoxine-pyrimethamine against Plasmodium falciparum in Sudan (2010-2015): evidence from in vivo and molecular marker studies*. *Malaria journal* 2016, **15**:285.

18. Organization WH: *World Malaria Day 2018" Ready to beat malaria": key messages*. World Health Organization; 2018.

19. Mohamed AO, Hamid MMA, Mohamed OS, Elkando NS, Suliman A, Adam MA, Elnour FAA, Malik EM: *Efficacies of DHA-PPQ and AS/SP in patients with uncomplicated Plasmodium falciparum malaria in an area of an unstable seasonal transmission in Sudan*. *Malar J* 2017, **16**:163.
20. Hamid MMA, Thriemer K, Elobied ME, Mahgoub NS, Boshara SA, Elsafi HM, Gumaa SA, Hamid T, Abdelbagi H, Basheir HM: Low risk of recurrence following artesunate-Sulphadoxine-pyrimethamine plus primaquine for uncomplicated Plasmodium falciparum and Plasmodium vivax infections in the Republic of the Sudan. Malaria journal 2018, 17:117.

21. Duraisingh MT, Roper C, Walliker D, Warhurst DC: Increased sensitivity to the antimalarials mefloquine and artemisinin is conferred by mutations in the pfmdr1 gene of Plasmodium falciparum. Molecular microbiology 2000, 36:955-961.

22. Malmberg M, Ngasala B, Ferreira PE, Larsson E, Jovel I, Hjalmarsson A, Petzold M, Premji Z, Gil JP, Bjorkman A, Martensson A: Temporal trends of molecular markers associated with artemether-lumefantrine tolerance/resistance in Bagamoyo district, Tanzania. Malar J 2013, 12:103.

23. Ecker A, Lehane AM, Fidock DA: Molecular markers of Plasmodium resistance to antimalarials. In Treatment and Prevention of Malaria. Springer; 2011: 249-280

24. Price RN, Uhlemann A-C, Brockman A, McGready R, Ashley E, Phaipun L, Patel R, Laing K, Looareesuwan S, White NJ: Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number. The Lancet 2004, 364:438-447.

25. Mukherjee A, Gagnon D, Wirth DF, Richard D: Inactivation of plasmepsins 2 and 3 sensitizes Plasmodium falciparum to the antimalarial drug piperaquine. Antimicrobial agents chemotherapy 2018, 62:e02309-02317.

26. Takata J, Sondo P, Burrow R, Maguire B, Hossain S, Das D, Commons R, Price R, Guerin P: The warn clinical trials publication library: a systematically constructed database of plasmodium clinical efficacy trials. 2019.
27. Ciulla TA, Sklar RM, Hauser SL: A simple method for DNA purification from peripheral blood. *Analytical biochemistry* 1988, **174**:485-488.

28. Snounou G, Viriyakosol S, Jarra W, Thaithong S, Brown KN: Identification of the four human malaria parasite species in field samples by the polymerase chain reaction and detection of a high prevalence of mixed infections. *Molecular biochemical parasitology* 1993, **58**:283-292.

29. Ntoumi F, Ngoundou-Landji J, Lekoulou F, Luty A, Deloron P, Ringwald P: Site-based study on polymorphism of *Plasmodium falciparum* MSP-1 and MSP-2 genes in isolates from two villages in Central Africa. *Parassitologia* 2000, **42**:197-203.

30. Salem OA, Mint Lekweiry K, Bouchiba H, Pascual A, Pradines B: Ould Mohamed Salem Boukhary A, et al. Characterization of *Plasmodium falciparum* genes associated with drug resistance in Hodh Elgharbi, a malaria hotspot near Malian-Mauritanian border. *Malar J* 2017, **16**:140.

31. Lu F, Zhang M, Culleton RL, Xu S, Tang J, Zhou H, Zhu G, Gu Y, Zhang C, Liu Y, et al: Return of chloroquine sensitivity to Africa? Surveillance of African *Plasmodium falciparum* chloroquine resistance through malaria imported to China. *Parasit Vectors* 2017, **10**:355.

32. Abdel Hameed A: Antimalarial drug resistance in the Eastern Mediterranean Region. 2003.

33. Abdel-Hameed A, El-Jak I, Faragalla I: Sentinel posts for monitoring therapeutice efficacy of antimalarial drugs against *Plasmodium falciparum* infections in the Sudan. *African journal of medicine medical sciences* 2001, **30**:1-5.

34. van den Broek IV, Gatkoi T, Lowoko B, Nzila A, Ochong E, Keus K: Chloroquine, sulfadoxine-pyrimethamine and amodiaquine efficacy for the treatment of uncomplicated *Plasmodium falciparum* malaria in Upper Nile, south Sudan.
Transactions of the Royal Society of Tropical Medicine Hygiene 2003, 97:229-235.

35. Osman ME, Mockenhaupt FP, Bienzle U, Elbashir MI, Giha HA: Field-based evidence for linkage of mutations associated with chloroquine (pfcrt/pfmdr1) and sulfadoxine-pyrimethamine (pfhfr/pfdhps) resistance and for the fitness cost of multiple mutations in P. falciparum. Infect Genet Evol 2007, 7:52-59.

36. Flegg JA, Metcalf CJE, Gharbi M, Venkatesan M, Shewchuk T, Hopkins Sibley C, Guerin PJ: Trends in antimalarial drug use in Africa. Am J Trop Med Hyg 2013, 89:857-865.

37. Elmannan AA, Elmardi KA, Idris YA, Spector JM, Ali NA, Malik EM: Anti-malarial prescribing practices in Sudan eight years after introduction of artemisinin-based combination therapies and implications for development of drug resistance. BMC Pharmacol Toxicol 2015, 16:3.

38. Amato R, Lim P, Miotto O, Amaratunga C, Dek D, Pearson RD, Almagro-Garcia J, Neal AT, Sreng S, Suon S, et al: Genetic markers associated with dihydroartemisinin-piperaquine failure in Plasmodium falciparum malaria in Cambodia: a genotype-phenotype association study. Lancet Infect Dis 2017, 17:164-173.

39. Bakhiet AMA, Abdelraheem MH, Kheir A, Omer S, Gismelseed L, Abdel-Muhsin AA, Naiem A, Al Hosni A, Al Dhuhli A, Al Rubkhi M, et al: Evolution of Plasmodium falciparum drug resistance genes following artemisinin combination therapy in Sudan. Trans R Soc Trop Med Hyg 2019, 113:693-700.

40. Wang P, Lee CS, Bayoumi R, Djimde A, Doumbo O, Swedberg G, Dao LD, Mshinda H, Tanner M, Watkins WM, et al: Resistance to antifolates in Plasmodium falciparum monitored by sequence analysis of dihydropteroate synthetase and dihydrofolate reductase alleles in a large number of field samples of diverse origins. Mol Biochem Parasitol 1997, 89:161-177.
Kublin JG, Dzinjalamala FK, Kamwendo DD, Malkin EM, Cortese JF, Martino LM, Mukadam RA, Rogerson SJ, Lescano AG, Molyneux ME: Molecular markers for failure of sulfadoxine-pyrimethamine and chlorproguanil-dapsone treatment of Plasmodium falciparum malaria. The Journal of infectious diseases 2002, 185:380-388.

Organization WH: Evidence Review Group: Intermittent Preventive Treatment of Malaria in Pregnancy (IPTp) with Sulfadoxine-Pyrimethamine (SP). Geneva: WHO. 2012.

Harrington WE, Morrison R, Fried M, Duffy PE: Intermittent preventive treatment in pregnant women is associated with increased risk of severe malaria in their offspring. PLoS One 2013, 8:e56183.

Shulman C, Dorman E, Cutts F, Kauwondo K, Bulmer J, Peshu N, Marsh K: Intermittent sulphadoxine-pyrimethamine to prevent severe anaemia secondary to malaria in pregnancy: a randomised placebo-controlled trial. The Lancet 1999, 353:632-636.

Harrington W, Mutabingwa T, Muehlenbachs A, Sorensen B, Bolla M, Fried M, Duffy P: Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proceedings of the National Academy of Sciences 2009, 106:9027-9032.

Group WKG-PS: Association of mutations in the Plasmodium falciparum Kelch13 gene (Pf3D7_1343700) with parasite clearance rates after artemisinin-based treatments-a WWARN individual patient data meta-analysis. BMC Med 2019, 17:1.

Tables
Table 1: Primers sets used for the amplification of the drug-target genes
Primer	Primer sequence	Annealing temp
Pfcrt 1 forward | 5′-GTT CTT GTC TTG GTA AAT GT-3′ | 55°C
Pfcrt 1 reverse | 5′- CGG ATG TTA CAA AAC TAT AGT T-3′ | 55°C
Pfmdr-1 forward | 5′-AGA GAA AAA AGA TGG TAA CCT CAG-3′ | 55°C
Pfmdr-1 reverse | 5′-ACC ACA AAC ATA AAT TAA CGG-3′ | 55°C
Pfdhfr forward | 5′-TTC TCC TTT GTA TGG AAC AAG T-3′ | 58°C
Pfdhfr reverse | 5′- ATA TTT GAA AAT CAT TTG GAT GAT TAG-3′ | 58°C
Pfdhps forward | 5′-TGC TTA AAT GAT ATG ATA CCC GAA TAT AAG-3′ | 58°C
Pfdhps reverse | 5′- TCC ACC TGA AAA GAA ATA CAT AAA T-3′ | 58°C

Table 2: The distribution of multidrug resistance markers among the 2017-2018 study isolates.

Isolate ID	Pfcrt	Pfmdr-1	Pfdhfr	Pfdhps	Combined*
Isolate 1	K	YF	ICN	GE	KYFICNGE
Isolate 2	T	NF	ICN	GE	TNFICNGE
Isolate 3	K	YF	ICN	GE	KYFICNGE
Isolate 4	K	YY	ICN	GE	KYYICNGE
Isolate 5	T	NF	ICN	GE	TNFICNGE
Isolate 6	K	NY	ICN	GE	KNYICNGE
Isolate 7	K	YF	IRN	GE	KYFIRNGE
Isolate 8	K	YF	NCS	GE	KYFNCSGE
Isolate 9	K	NY	ICN	GE	KNYICNGE
Isolate 10	T	NF	ICN	GE	TNFICNGE
Isolate 11	K	NF	ICN	GE	KNFICNGE
Isolate 12	K	YF	NCS	GE	KYFNCSGE
Isolate 13	K	NF	ICN	GE	KNFICNGE
Isolate 14	K	YF	IRN	GE	KYFIRNGE
Isolate 15	T	NF	ICN	GE	TNFICNGE
Isolate 16	K	YF	ICN	GE	KYFICNGE
Isolate 17	K	YF	ICN	GE	KYFICNGE
Isolate 18	K	YY	ICN	GE	KYYICNGE
Isolate 19	K	YF	ICN	GE	KYFICNGE
Isolate 20	K	NF	ICN	GE	KNFICNGE

*Letters denotes the wildtype and mutant alleles of the *Pfcrt* K76T; *Pfmdr-1* N86Y and Y184F; *Pfdhfr* N51I, C59R, and S108N; *Pfdhps* A437G and K540E.

Figures
Figure 1

Prevalence of P. falciparum drug resistance markers from 1989 to 2018 according to location. A: Prevalence of Pfcrt K76T alleles. B: Prevalence of Pfmdr-1 N86Y alleles. C: Prevalence of Pfdhfr double haplotypes N51I and S108N. D: Prevalence of Pfdhps double haplotypes A437G and K540E.
Figure 2

Frequency distribution of single Pfcrt K76T and Pfmdr-1 N86Y genotypes in 2017-2018 samples compared with previously published reports.
Figure 3

Frequency distribution of double haplotypes of Pfdhfr N51I and S108N, and Pfdhps A437G and K540E in 2017-2018 samples compared with previously published reports.
Figure 4

Frequency distribution of double haplotypes of Pfmdr-1 N86Y and Y184F in 2017-2018 samples compared with previously published reports.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Supplementary file 2 .docx
Supplementary file 1.docx