Data Article

Dataset on analytical characterization of bioactive components from *Azadirachta indica*, *Canna indica*, *Magnifera indica* and *Moringa oleifera* leaf extracts and their applications in nanoparticles biosynthesis

Oladotun P. Bolade, Akan B. Williams, Nsikak U. Benson*

Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria

ABSTRACT

This paper presents data on the bioactive phytoconstituents in *Azadirachta indica*, *Canna indica*, *Magnifera indica*, and *Moringa oleifera* analyzed using quantitative and qualitative phytochemical screening methods, Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectrometry (GC-MS). Extracts were prepared in water, ethanol (EtOH) and EtOH:water mix. Identification of bioactive components was based on their spectral data and retention times compared with National Institute of Standards and Technology (NIST) mass spectral library. The most prominent absorption bands indicated are O-H stretching vibration, C-H stretch of polyols, aromatic C=C stretching vibration, O-H stretch of polyols, C-H stretching vibration and C-OH polyols. The GC-MS characterization for *A. indica* showed the presence of phenols, organic acids and carbohydrates with cannabidiol as the most abundant. Crude extracts of *M. oleifera* showed six phenolic compounds with 4-hydroxy-benzoic acid and cannabidiol present prominently. Six phenolic phytoconstituents were identified in *M. indica* extracts with 1,2,3-benzenetriol as the major polyphenolic compound. Biogenic
Iron oxide nanoparticles were synthesized and the formation was confirmed using a UV spectrometer (UV-3000 ORI, Germany) between 200 and 800 nm spectral range. X-ray diffraction (XRD) characterization of the biosynthesized iron oxide nanoparticles was carried out using Empyrean, Malvern PanAnalytical.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications Table

Subject	Chemistry
Specific subject area	Analytical Chemistry, Nanotechnology
Type of data	Table, figure, spectra
How data was acquired	FTIR Agilent Cary 630, Range = 4000 – 650 cm⁻¹. Resolution – 8 cm⁻¹, Microlab PC software with ATR sampling unit. GC-MS Agilent 7890A GC/5977 MS, Column - 30 × 0.25 mm ID × 0.25 μm film, Carrier gas - Helium, flow - 1.0 mL/min, electron ionization - 70 eV, Software - Masshunter) UV spectrometer (UV-3000 ORI, Germany) between 200 and 800 nm spectral range. X-ray Diffractometer (Empyrean, Malvern PanAnalytical).
Data format	Raw spectra data, analyzed
Parameters for data collection	Azadirachta indica, Canna indica, Magnifera indica and Moringa oleifera leaves were air-dried and ground to a fine powder using a clean auto-operated grinder; ground leaves were separately extracted using ethanol (EtOH), distilled water, and a mixture of EtOH/water in the ratio 1:1.
Description of data collection	Raw extracts of A. indica, C. indica, M. indica and M. oleifera were subsequently filtered and concentrated to 1.0 mL using a BUCHI rotary evaporator under controlled pressure. 1.0 mL of crude extracts obtained separately from water, ethanol, water/ethanol (50:50%) were taken for analysis using FTIR and gas chromatography. Qualitative phytochemical analysis to determine bioactive components as reducing and stabilizing agents for the synthesized green-based nanoparticles was also carried out.
Data source location	Institution: Covenant University
	City: Ota
	Country: Nigeria
Data accessibility	All data is included in this article.
Related research article	O. P. Bolade, A. A. Akinsiku, O. S. Oluwafemi, A. B. Williams, N. U. Benson, Biogenic iron oxide nanoparticles and activated sodium persulphate for hydrocarbon remediation in contaminated soil, Environmental Technology & Innovation, 9(4), 105801, (2021), https://doi.org/10.1016/j.jece.2021.105801.

Value of the Data

- The dataset provides insight into the specific phytochemicals in A. indica, C. indica, M. indica and M. oleifera that could serve as stabilizing agents for the synthesis of green-based nanoparticles.
• The dataset provides valuable information on phytochemicals responsible for the reduction of metal ions as well as stabilizing agents for the newly formed nanoparticles.
• The data is invaluable to the scientific community because it provides novel information about bioactive components of *A. indica*, *C. indica*, *M. indica* and *M. oleifera* collected from a tropical region.
• The spectral datasets and phytochemical profile data of constituents from locally sourced *A. indica*, *C. indica*, *M. indica* and *M. oleifera* could be used in comparative studies of same plant species in other regions.
• The method and data provide very valuable information on possible phyto-constituents that could serve as precursors for drug synthesis and biosynthetic production of nanoparticles.

1. Data Description

The dataset of this article provides a comprehensive phytomapping of ethanolic extracts obtained from the leaves of *A. indica*, *C. indica*, *M. indica* and *M. oleifera* by gas chromatography (Tables 1–4). The data also show the Fourier Transform Infrared Spectroscopy (FTIR) spectra and characterization data of water only, ethanol (EtOH) only, and EtOH-water (1:1) mixture extracts of *A. indica*, *C. indica*, *M. indica* and *M. oleifera* in Fig. 1a–d and Table 5, respectively. The FTIR spectra provide information on the functional groups present in the samples. The associated data for the phytochemical screening of extracts is presented in Table 6, while the GC-MS total ion chromatogram (TIC) of phyto-constituents of ethanolic extracts of each plant is provided in Figs. 2–5.

![FTIR spectra](image-url)

Fig. 1. FTIR spectra of *A. indica* [A], *C. indica* [B], *M. indica* [C] and *M. oleifera* [D] leaves extracts in three solvent media.
Table 1
GC-MS derived phytoconstituents in ethanolic extract of *M. indica* leaves.

Retention time	Area %	IUPAC name of compound	Molecular formula	Molecular weight
08.84	0.1353	4,5-Diamo-no-2-hydroxy pyrimidine	C_{6}H_{12}O_{4}	144.1253
10.23	0.3373	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	C_{6}H_{10}O_{4}	146.1412
10.69	0.1053	Ethyl hydrogen succinate	C_{6}H_{10}O_{4}	150.1745
12.22	0.0999	5-Diethoxymethyl-3-ethoxy-4,5-dihydro-isoxazole	C_{6}H_{10}O_{2}	103.186
13.66	0.1684	4-Hydroxy-2-methylacetophenone	C_{6}H_{10}O_{2}	126.1100
14.19	0.0979	Thiomorpholine	C_{6}H_{12}NS	
14.97	0.1524	1,2,3-Benzeneritrol	C_{6}H_{12}O_{3}	
15.56	0.632	1H-Cyclopentylezulene, 1a,2,3,4,4a,5,6,7b-octahydro-1,14,7-tetramethyl-	C_{15}H_{24}	204.3511
15.75	0.2804	Caryophyllene	C_{15}H_{24}	204.3511
16.37	0.2207	Humulene	C_{15}H_{24}	204.3511
16.49	0.0873	Alloaromadendrene	C_{15}H_{24}	204.3511
16.69	0.0907	Azulene, 1,2,3,3a,4,5,6,7-octahydro-1,4-dimethyl-7-(1-methylethyl)-	C_{15}H_{24}	204.3511
16.95	0.6406	Naphthalene	C_{15}H_{24}	204.3511
17.09	0.3032	decalhydro-4-a-methyl-1-methylene-7-(1-methylethenyl)-	C_{15}H_{24}	204.3511
17.25	0.108	Benzoic acid, 4-hydroxy-	C_{15}H_{24}	138.1207
17.32	0.2091			
17.43	0.0878			
18.64	0.2695	Caryophyllene oxide	C_{15}H_{24}O	220.3505
18.97	0.1386	Sorbitol	C_{6}H_{12}O_{6}	182.1718
19.07	0.2918	Naphthalene, decalhydro-	C_{15}H_{18}	138.2499
19.35	0.1451	L-Arabinitol	C_{5}H_{12}O_{5}	152.1458
20.28	0.2396			
19.40	0.0933	Ribitol	C_{5}H_{12}O_{5}	152.1458
19.78	0.2046	1-[4-Hydroxy-1-methylproline	C_{5}H_{12}O_{5}	270.4507
21.21	0.1211	Tetradecanoic acid	C_{14}H_{28}O_{2}	228.3709
22.44	0.1883	6-Octen-1,1-ol, 3,7-dimethyl- formate	C_{14}H_{22}O_{2}	184.2753
24.21	4.7148	n-Hexadecanoic acid	C_{16}H_{32}O_{2}	256.4241
24.62	0.3464	Hexadecanoic acid, ethyl ester	C_{16}H_{30}	284.7772
24.94	2.9483	4-Cardboxycyclohexanone		
25.04	0.2215	α-D-Glucopyranose, 4-O-β-D-galactopyranosyl-	C_{14}H_{22}O_{11}	342.2965
25.49	0.139	Heptadecanoic acid	C_{17}H_{24}O_{2}	270.4507
26.23	1.6559	Phytol	C_{17}H_{30}O	296.5310
26.48	0.799	9,12-Octadecadienoic acid (Z)-	C_{18}H_{32}O_{2}	280.4455
26.57	3.6134	9,12,15-Octadecatrienic acid, (Z,Z,Z)-	C_{18}H_{34}O_{2}	278.4296
26.81	0.5386	Octadecanoic acid	C_{18}H_{32}O_{2}	284.7772
26.94	0.2266	Ethyl 9,12,15-octadecatrienoate	C_{18}H_{32}O_{2}	284.7772
27.55	0.119	Norharmane, N-trimethylsilyl-		
28.01	0.2059	Benzyl-β-d-glucoside		
28.34	0.1053	2-Tridecanone	C_{18}H_{32}O	198.3449
29.00	0.1016	5-Octen-2-one, 3,6-dimethyl-		
29.22	0.1253	7-Methyl-Z-tetradecen-1-ol acetate		
30.67	0.1071	Bacchotticineatin c		
30.76	0.0977	Cycloctadecane, 1,7,11-trimethyl-4-(1-methylethyl)-	C_{20}H_{40}	280.5316
30.94	0.9165	Glycerol 1-palmitate	C_{20}H_{38}O_{4}	330.5026
31.07	0.1529	Fumaric acid, decyl 2-fluorophenyl ester	C_{20}H_{38}O_{2}	312.5304
31.86	0.1269	Octadecanoic acid, 17-methyl-, methyl ester	C_{20}H_{38}O_{2}	296.4879
32.64	0.2174	13-Octadecenoic acid, methyl ester	C_{20}H_{38}O_{2}	238.4088
32.92	2.5892	cis-9-Hexadecenal	C_{20}H_{38}O	352.5081
32.98	2.3466	Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)-	C_{20}H_{38}O_{4}	
33.09	0.4883	9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)-	C_{20}H_{38}O_{2}	306.4828
33.16	0.6126	N-[4-(Acridin-9-ylamino)-phenyl]-acetamide		

(continued on next page)
Table 1 (continued)

Retention time	Area %	IUPAC name of compound	Molecular formula	Molecular weight
33.47	0.2293	Benz[e]azulene-3,8-dione, 5-[(acetyloxy)methyl]-3a,4,6a,7,9,10,10a,10b-octahydro-3a,10a-dihydroxy-2,10-dimethyl-,(3a-α,6a-α,10-β,10a-β,10b-β)-<+>-E-6-Tetradecen-1-ol acetate	C_{28}H_{58}	394.7601
33.66	0.095	Octacosane	C_{38}H_{80}O_{2}	240.3816
34.21	0.0878	Cyclopentadecanone, 2-hydroxy-	C_{20}H_{42}O_{2}	410.7180
34.31	0.5064	Squalene	C_{29}H_{48}O_{2}	254.4028
34.63	0.106	1-Bromo-11-iodoundecane	C_{29}H_{50}O_{2}	266.5050
34.95	3.9573	Heptadecane	C_{28}H_{50}O_{2}	210.3987
35.19	0.1548	Nonadecyl trifluoroacetate	C_{28}H_{52}O_{2}	282.5475
35.25	0.2779	13-Tetradecen-1-ol acetate	C_{29}H_{50}O_{2}	210.3987
35.33	0.094	1-Nonadecene	C_{29}H_{50}O_{2}	282.5475
37.06	0.1873	13-Nonadecane	C_{29}H_{50}O_{2}	282.5475
37.50	0.2588	γ-Tocopherol	C_{29}H_{50}O_{2}	282.5475
38.06	0.2096	Triacontyl acetate	C_{32}H_{64}O_{2}	480.8494
38.28	1.883	Vitamin E	C_{29}H_{52}O_{2}	338.6538
38.32	2.020	1-Tricosene	C_{29}H_{52}O_{2}	338.6538
38.50	0.2588	γ-Tocopherol	C_{29}H_{52}O_{2}	338.6538
38.62	0.1592	Tetracosyl acetate	C_{32}H_{64}O_{2}	480.8494
38.68	6.3061	1-Nonylcycloheptane	C_{29}H_{50}O_{2}	282.5475
39.23	1.2872	Stigmastadiene-3-one	C_{29}H_{50}O_{2}	282.5475
39.45	3.9062	β-Sitosterol	C_{29}H_{50}O_{2}	282.5475
39.66	0.9882	Stigmast-24[28]-en-3-one, (5.alpha)-	C_{29}H_{50}O_{2}	282.5475
40.03	8.8682	5-Bromophthaldehydeic acid	C_{29}H_{50}O_{2}	282.5475
40.48	0.8571	4,22-Stigmastadiene-3-one	C_{29}H_{50}O_{2}	282.5475
40.83	0.0953	1,2-Bis(trimethylsilyl)benzene	C_{29}H_{50}O_{2}	282.5475
40.98	0.0838	2-〈(Acetoxymethyl)〈-(methoxycarbonyl)biphenylene	C_{29}H_{50}O_{2}	282.5475
41.09	1.6569	D:A-Friedoursan-3-one	C_{29}H_{50}O_{2}	282.5475
41.36	1.3446	Stigmast-4-en-3-one	C_{29}H_{50}O_{2}	282.5475
41.47	0.9061	Cannabidiol	C_{29}H_{50}O_{2}	282.5475
41.61	0.3742	1,2-Bis(trimethylsilyl)benzene	C_{29}H_{50}O_{2}	282.5475
41.93	1.353	4-Acetamido-6-methoxy-8-aminoquinoline	C_{29}H_{50}O_{2}	282.5475
42.65	0.7311	Indano[1,2,3-kl]naphtho[7,8,8a,1,2,3-tuvwx]hexaphene	C_{29}H_{50}O_{2}	282.5475
43.00	0.2624	2,4-Cyclohexadien-1-one, 3,5-bis[1,1-dimethyl]4-hydroxy-	C_{29}H_{50}O_{2}	282.5475
43.32	2.6803	Cyclopentenol[4,3-b]tetrahydrofuran, 3-[(4-methyl-5-oxo-3-phenylthio)tetrahydrofuran-2-yloxymethylene]-	C_{30}H_{50}O_{2}	370.3449
43.54	0.7559	Tetratriacontane, 17-hexacycl-	C_{30}H_{50}O_{2}	370.3449
45.76	0.5625	Cyclotrisiloxane, hexamethy-	C_{6}H_{14}O_{3}Si_{3}	222.4618
50.24	0.7175	Cyclotrisiloxane, hexamethyl-	C_{6}H_{14}O_{3}Si_{3}	222.4618
Retention time	Area %	IUPAC name of compound	Molecular formula	Mol weight
----------------	--------	------------------------	-------------------	------------
6.8576	0.263	Thiazole, 4,5-dihydro-2-methyl-	C₄HₛNS	101.170
8.002	0.4441	2-Hexenoic acid	C₆H₁₀O₂	114.1424
8.6715	0.1883	2-Fluoro-5-methoxypyrimidine		
10.4339	0.8047	4H-Pyrany-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	C₆H₈O₄	144.1253
10.8802	0.1569	Isopropyl isothiocyanate	C₅H₈NS	101.170
11.4238	0.2128	N-Aminopyrrolidine	C₁₇H₂₀N₂	286.358
11.7614	0.4228	Benzoquin, 2,3-dihydro-	C₁₆H₂₆O₂	250.319
11.8357	0.2203	D-Alanine, N-allyloxyiminobenzyl, decyl ester	C₆H₈N₃O	139.1552
12.0417	0.1826	(2H)Pyrimidinone,4-amino-1N-dimethyl-	C₁₀H₁₂O₃	152.2334
12.2306	0.1549	2,6-Octadienal, 3,7-dimethyl- (Z)-	C₁₀H₁₂O₃	154.2493
12.4709	0.2256	Geraniol	C₁₀H₁₆O₂	154.2493
12.6139	0.2274	N-[5-(3,4-Dimethoxy-benzyl)]-[1,3,4]thiadiazol-2-yl]-3-fluorobenzamide		
13.4265	0.3247	Malic Acid	C₆H₈O₃	134.0874
13.6782	0.2593	2-Methoxy-4-vinylphenol	C₁₀H₁₀O₂	150.1745
15.5608	0.2434	1H-Cyclopropylazulene, 1a,2,3,4,4a,5,6,7b-octahydro-1,1,4,7-tetramethyl-	C₁₅H₂₈	204.3511
15.7553	0.1914	trans-Cinnamic acid	C₁₀H₁₂O₂	148.1586
15.9498	0.2789	gamma,Elemene OR gamma,Elemene	C₁₅H₂₈	204.3511
17.3746	0.8838	2-Hydroxy-1-(1'-pyrrolyl)-1-buten-3-one	C₁₅H₆O₃	156.1592
17.964	0.1632	L-Proline, 1-acyetyl-	C₁₂H₁₆O₃	202.3178
18.0841	0.1893	Dodecanoic acid	C₁₂H₂₆O₂	202.3178
18.1929	0.3327	Cyclohexane, 1-ethenyl-1-methyl-2-(1-methylethenyl)-4-(1-methylethenylidene)-	C₁₅H₃₄	204.3511
18.3073	0.2576	Fumaric acid, cyclobutyl ethyl ester		
18.5934	0.2391	Phosphine, methyl[1-methylbenzyl]phenyl-		
18.7879	0.4281	Carbamic acid, methylphenyl-, ethyl ester	C₁₀H₁₂O₂	179.2157
20.0925	2.4879	Ethyl alpha-d-glucopyranoside		
20.2299	0.3267	beta-D-Glucopyranoside, methyl	C₁₆H₁₄O₆	194.825
20.2928	0.2465	d-Glycero-1-gluco-heptose	C₁₈H₁₄O₆	205.3511
21.2656	0.7649	2(1H)-Pyrimidinone, 5-methyl-	C₁₂H₁₄O₆	182.1718
21.5402	0.2506	Sorbitol	C₁₅H₃₄	182.1718
22.3241	0.5687	Piperidine, 1-(1-penteny)-	C₁₂H₂₆O₃	182.1718
22.5358	0.2716	Galactitol	C₁₅H₃₄	182.1718
22.902	0.2182	Cyclohexane, 1,5-diisopropyl-2,3-dimethyl-		
23.9148	0.2894	Palmitoleic acid	C₁₆H₃₀O₂	254.4082
24.3325	7.424	n-Hexadecanoic acid	C₁₆H₃₀O₂	256.4241
24.4012	0.1754	11-Oxa-tricyclo[4.4.10]6]decane-2-ol		
24.6358	1.0398	Hexadecanoic acid, ethyl ester	C₁₆H₃₀O₂	284.4772
25.5456	0.1899	Heptadecanoic acid	C₁₇H₃₂O₂	270.4507
25.8031	0.4054	3-Heptanol, 3,5-dimethyl-	C₁₅H₃₀O₂	284.4772
26.318	11.5639	Phytol	C₁₆H₃₀O₂	278.4296
26.7129	9.7212	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	C₁₈H₃₀O₂	278.4296
26.896	1.5401	Octadecanoic acid	C₁₈H₃₂O₂	284.4772
26.9704	1.4276	Ethyl 9,12,15-octadecatrienoate		
27.2565	0.329	Octadecanoic acid, ethyl ester	C₁₈H₃₂O₂	312.5304
27.5826	0.2923	Naphtho[2,1-b:7,8-b']difuran, 1,2,9,10-tetrahydro-2,9-dimethyl-	C₂₃H₂₄O₂	340.5836
28.069	0.2169	1-Hetricosyl formate	C₂₂H₂₄O₂	340.5836
28.4009	0.2843	Benzyl beta-d-glucoside	C₂₀H₂₂O₂	312.5304
29.0245	0.213	ZZ-8,10-Hexadecadien-1-ol acetate		
29.2878	0.6416	Eicosanoic acid	C₂₀H₄₀O₂	328.5475
29.654	0.2674	Methyl 19-methyl-eicosanoate		
29.757	0.1501	(1S,15S)-Bicyclo[13.1.0]hexadecan-2-one		
30.7812	0.2073	Cycloketadecane, 1,7,11-trimethyl-4-(1-methylethyl)-	C₂₀H₄₀O₂	280.5316
30.8212	0.245	Eicosane	C₂₀H₄₂	282.5475
30.9643	1.0086	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C₂₀H₃₈O₄	330.5026

(continued on next page)
Retention time	Area %	IUPAC name of compound	Molecular formula	Mol weight
31.0787	0.254	Glycerol 1-palmitate	C₁₉H₃₂O₄	330.5026
31.4163	0.2199	Bis(2-ethylhexyl) phthalate	C₁₉H₃₂O₄	390.5561
31.5537	0.2299	Docosanoic acid	C₁₂₂H₂₄O₂	340.5836
31.8741	0.6983	Nonadecanoic acid, ethyl ester	C₁₉₂H₃₂O₂	326.5570
32.6408	0.2932	Cyclopentadecanone, 2-hydroxy-	C₁₀₂H₁₆O₂	240.3816
32.7095	0.2054	9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)-	C₁₀₂H₁₆O₂	306.4828
32.9555	3.8689	Ethanol, 2-(octadecyloxy)-	C₁₉₂H₃₂O₂	314.5463
33.0128	1.9763	Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester (Z,Z,Z)-	C₁₀₂H₁₆O₂	352.5081
33.0986	0.309	Nonadecanoic acid, ethyl ester	C₁₀₂H₂₀O₂	352.5081
33.1787	0.8062	Benzene, 1,2-dimethoxy-4-nitro-	C₈H₈NO₄	183.1614
33.4877	0.1631	Fumaric acid, pent-4-en-2-yl tridecyl ester	C₁₉H₃₂O₄	430.4780
33.9683	2.3197	Octacosane	C₁₀₀H₁₆O₂	394.7601
34.3174	0.1787	Squalene	C₁₀₂H₂₀O₂	410.7180
34.9697	3.6131	Nonacosane	C₁₀₀H₂₀O₂	408.7867
35.1986	0.1721	Octacosyl acetate	C₁₀₂H₂₀O₂	452.7962
35.2558	0.2752	1-Nonadecene	C₁₀₀H₂₀O₂	266.5050
35.6678	0.1803	Tetracosane	C₁₂₂H₂₄O₂	338.6538
35.9138	3.7204	Tetracosane	C₁₂₂H₂₄O₂	338.6538
36.9408	4.1428	Triacetylacetate	C₁₂₂H₂₄O₂	480.8494
36.2171	0.165	Triacetylacetate	C₁₂₂H₂₄O₂	480.8494
36.6292	0.1643	Triacetylacetate	C₁₂₂H₂₄O₂	480.8494
36.5032	0.1834	1,2-Bis(trimethylsilyl)benzene	C₁₂₂H₂₄O₂	461.6795
37.2928	0.9935	Vitamin E	C₁₀₂H₂₀O₂	430.7061
37.8135	3.0663	Octadecane	C₁₀₀H₂₀O₂	254.4943
38.9235	1.5839	Octadecane	C₁₀₀H₂₀O₂	254.4943
38.0195	1.0458	Pregn-4-ene-3,20-dione, 16-hydroxy-, (16,alphah)-	C₁₀₀H₂₀O₂	254.4943
38.0996	0.4445	1,2-Bis(trimethylsilyl)benzene	C₁₂₂H₂₄O₂	369.6795
38.3628	0.4534	Campesterol	C₁₀₀H₂₀O₂	400.6801
38.7405	0.8867	Stigmasterol	C₁₀₀H₂₀O₂	412.6908
38.8148	0.3705	4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-	C₁₀₀H₂₀O₂	414.7067
39.4614	2.0086	4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-	C₁₀₀H₂₀O₂	414.7067
39.6674	0.5223	4-Cyclohexene-1,2-dicarboximide, N-butyl-, cis-	C₁₀₀H₂₀O₂	414.7067
40.005	2.5958	2-Furancarboxamide, N-(8-methyl-2H-[1,2,4]thiadiazolo[2,3-a]pyridin-2-ylidene)-	C₁₀₀H₂₀O₂	282.5475
40.211	2.2065	2,6,10,14-Tetramethyl-7-(3-methylpent-4-ylidene)-penta decane	C₁₀₀H₂₀O₂	282.5475
41.7273	0.9181	2,6,10,14-Tetramethyl-7-(3-methylpent-4-ylidene)-penta decane	C₁₀₀H₂₀O₂	282.5475
43.5412	0.4271	2,6,10,14-Tetramethyl-7-(3-methylpent-4-ylidene)-penta decane	C₁₀₀H₂₀O₂	282.5475
40.4857	0.4548	4,22-Stigmastadiene-3-one	C₁₀₀H₂₀O₂	410.6749
41.0979	0.9555	D:4-Friedoursan-3-one	C₁₀₀H₂₀O₂	412.6908
41.3611	0.7263	Stigmaster-4-en-3-one	C₁₀₀H₂₀O₂	412.6908
41.4756	0.5	Cyclopropane-1-carboxamide, 2-butyl-N-(5,6,7,8-tetrahydro-7,7-dimethyl-5-oxoquinazolin-2-yl)-	C₁₀₀H₂₀O₂	412.6908
41.6186	0.1877	Hexahydropyridine, 1-methyl-4-[4,5-dihydroxyphenyl]-Cannabidiol	C₁₀₀H₂₀O₂	314.4617
41.939	0.6689	D:4-Friedoursan-3-one	C₁₀₀H₂₀O₂	314.4617
42.6543	0.3853	1H-1,2,4-Triazole-5(4H)-thione, 4-allyl-3-(3-furyl)-	C₁₀₀H₂₀O₂	314.4617
43.0033	0.1593	1,2-Bis(trimethylsilyl)benzene	C₁₀₀H₂₀O₂	314.4617
43.3123	0.4858	Pyrido[2,3-d]pyrimidine, 4-phenyl-	C₁₀₀H₂₀O₂	314.4617
45.7384	0.2579	2-(Acetoxyethyl)-3-(methoxycarbonyl)biphenylene	C₁₀₀H₂₀O₂	314.4617
Retention time	Area %	IUPAC name of compound	Molecular formula	Mol weight
----------------	--------	------------------------	-------------------	------------
12.23	0.5467	2,6-Octadienial, 3,7-dimethyl-	C_{18}H_{36}O	152.2334
12.44	0.1904	OR 2,6-Octadien-1-ol, 3,7-dimethyl-	C_{18}H_{36}O	154.2493
12.80	0.6749	OR 2,6-Octadienial, 3,7-dimethyl-	C_{18}H_{36}O	152.2334
13.28	0.3461	Indole	C_{6}H_{5}N	117.1479
16.99	0.1062	2-Methyl-3-isopropylpyrazine	C_{8}H_{12}N_{2}	136.1943
18.06	0.1089	Dodecanoic acid	C_{2}H_{22}O_{2}	200.3178
18.82	0.0892	1-Oxaspiro[2.5]octane, 4,4-dimethyl-8-methylene-2-propyl-	C_{6}H_{16}O_{6}	182.1718
19.29	0.1037	Sorbitol	C_{6}H_{12}O_{6}	154.229
20.48	0.0885	p-(Methylthio)benzyl alcohol	C_{6}H_{10}OS	178.2277
21.09	0.1822	Benzene, 1,2-dimethoxy-4-(1-propenyl)-	C_{16}H_{22}O_{2}	288.3709
21.24	0.1231	Tetradecanoic acid	C_{16}H_{28}O_{2}	212.2439
21.44	0.1036	Benzyl Benzoate	C_{16}H_{22}O_{2}	222.2802
21.51	0.1437	Cycloptanececarboxaldehyde, 2-methyl-3-methylene-	C_{16}H_{24}O_{3}	222.2802
21.86	1.3486	2-Cyclohexen-1-one, 4-hydroxy-3,5,6-trimethyl-4-(3-oxo–butenyl)-	C_{16}H_{24}O_{3}	268.4778
22.25	0.103	Bicyclo[2.2.1]heptan-2-one, 5-hydroxy-4,7,7-trimethyl-	C_{16}H_{24}O_{3}	268.4778
22.54	0.181	2-Pentadecanone, 6,10,14-trimethyl-	C_{16}H_{24}O_{3}	268.4778
22.66	0.0906	1-Cyclobutanol, 1-methyl-2-(2,2-dimethyl-6-methylenecyclohexyl)	C_{16}H_{24}O_{3}	268.4778
22.73	0.0942	Pentadecanoic acid	C_{16}H_{30}O_{2}	242.3975
22.91	0.1045	Tricyclo[4.3.1][3,8]undecane-1-carboxylic acid, methyl ester	C_{16}H_{30}O_{2}	242.3975
23.54	0.2442	Indole-6-carboxylic acid	C_{16}H_{30}O_{2}	262.4302
23.63	0.1808	5,9,13-Pentadecatrien-2-one, 6,10,14-trimethyl-	C_{18}H_{30}O_{2}	254.4082
23.89	0.0916	Palmitoleic acid	C_{16}H_{32}O_{2}	256.4241
24.27	4.3774	n-Hexadecanoic acid	C_{16}H_{32}O_{2}	284.4772
24.64	0.769	Hexadecanoic acid, ethyl ester	C_{16}H_{32}O_{2}	270.4507
25.52	0.1612	Heptadecanoic acid	C_{17}H_{34}O_{2}	296.5310
26.26	4.7447	Phytol	C_{20}H_{40}O_{4}	280.4455
26.50	1.111	9,12-Octadecadienoic acid (Z,Z)-	C_{18}H_{32}O_{2}	282.4614
26.58	1.1892	Oleic Acid	C_{18}H_{32}O_{2}	308.4986
26.85	0.7642	9,12-Octadecadienoic acid, ethyl ester	C_{20}H_{36}O_{2}	312.5304
26.94	0.3246	14-Pentadecenoic acid	C_{18}H_{32}O_{2}	254.4943
27.24	0.2336	Octadecanoic acid, 17-methyl-, methyl ester	C_{18}H_{36}O_{2}	232.6113
27.30	0.1564	Octadecane	C_{18}H_{38}O_{2}	266.5050
27.57	0.2966	Naphthal[2,1-b:3,4-b′]diferan, 2,3,7,9-tetrahydro-2,9-dimethyl-	C_{2}H_{26}O_{2}	322.6113
28.46	0.5524	9-Tricosene, (Z)-	C_{2}H_{26}O_{2}	240.4677
28.53	0.674	Heptadecane	C_{17}H_{36}O_{3}	280.5316
29.02	0.1115	Cyclohexane, 1-(1,5-dimethylhexyl)-4-(4-methylpentyl)-	C_{20}H_{40}O_{4}	280.5316
29.11	0.0859	1-Eicosene	C_{20}H_{40}O_{4}	280.5316
32.66	0.0859	1-Nonadecene	C_{19}H_{38}O_{2}	266.5050
29.45	0.1016	Cyclotetrasocane	C_{24}H_{48}O_{2}	336.6379
29.59	0.4245			
29.65	1.3267			
29.95	0.3418			
30.39	0.0819			
32.19	0.5337			

(continued on next page)
Retention time	Area %	IUPAC name of compound	Molecular formular	Mol weight
29.72	1.8179	Tetracosane	C_{24}H_{50}	338.6538
30.87	1.8751			
31.98	4.4291			
34.04	8.1295			
38.94	2.9929			
29.76	0.2311	1-Docosene	C_{22}H_{44}	308.5848
30.54	0.0776			
30.81	2.4887			
34.25	0.4713			
35.23	0.473			
30.22	0.1309	3-Eicosene, (E)-	C_{20}H_{40}	280.5316
31.21	0.1385	Octacosyl acetate	C_{20}H_{40}O_{2}	452.7962
31.34	0.0906	1-Nonadecene	C_{19}H_{38}	266.5050
31.54	0.1031			
32.42	0.1088			
31.43	0.6062	Bis(2-ethylhexyl) phthalate	C_{24}H_{38}O_{4}	390.5561
31.70	0.1813	Oleyl alcohol, trifluoroacetate		
32.14	0.1758			
32.29	0.0995	1-Hexacosene	C_{26}H_{52}	364.6911
32.71	0.1786	Cyclooctacosane	C_{28}H_{56}	392.7442
32.81	0.1506	Oxirane, tetradecyl-	C_{16}H_{32}O	240.4247
33.87	0.157			
33.03	4.1376	Heptacosane	C_{27}H_{56}	380.7335
33.19	0.4429	Butane, 2,2-bis(5-acetyl-2-thienyl)-		
33.24	0.2147	9-Hexacosene	C_{26}H_{52}	364.6911
33.69	0.1802	Octacosyl acetate	C_{20}H_{40}O_{2}	452.7962
34.30	0.1039	Oleyl alcohol, trifluoroacetate		
35.02	7.8384	Nonacosane	C_{29}H_{60}	408.7867
35.29	0.5216	1-Tricosene	C_{23}H_{46}	322.6113
35.96	6.9585	Triacontane	C_{30}H_{62}	422.8133
36.17	0.3705	Heptacosyl acetate		
36.87	5.6464	Heptacosane, 1-chloro-	C_{27}H_{55}Cl	415.179
37.09	0.1352	Triacontyl acetate	C_{22}H_{42}O_{2}	480.8494
37.30	0.5733	dl-alpha.-Tocopherol	C_{29}H_{50}O_{2}	430.7061
37.53	0.0981	Eicosane	C_{20}H_{42}	282.5475
41.74	0.4685			
43.55	1.0959			
37.83	4.0475	Dotriacontane	C_{32}H_{66}	450.8664
38.03	0.7766	Silane, dimethyl(2,2,2-trichloroethoxy)undecyloxy-	C_{32}H_{66}O_{8}	412.6908
38.75	0.5823	Stigmasterol	C_{29}H_{48}O_{2}	231.270
38.82	0.8672	Benzene, 1-nitro-4-(phenylthio)-	C_{12}H_{7}NO_{2}S	250.4626
39.26	0.6337	Cyclohexane, 1,1’-(2-propyl-1,3-propanediyl)bis-	C_{20}H_{34}O_{2}	414.7067
39.47	1.6513	.beta.-Sitosterol		
39.99	1.0972	Cyclopropane carboxamide,		
40.22	2.6996	2-cyclopropyl-2-methyl-N-(1-cyclopropylethyl)-	C_{34}H_{30}	478.9196
41.11	0.2358	2-Methyl-7-phenylindole		
41.49	1.2484	4-tert-pentylphenol, trifluoroacetate ester		
41.95	0.7345	Isobenzofuran-[1(3H)-one, 3,3-diheptyl-		
42.67	0.6008	Diacenaphthol[1,2-j:1’2’-j]fluoranthen	C_{38}H_{18}	450.5281
43.31	0.3566	5-Methyl-2-trimethylsilyloxy-acetophenone		
Ret. time	Area %	IUPAC name of identified compound	Mol. formula	Mol. wt
-----------	---------	--	--------------	----------
10.25	0.1956	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl-	C₈H₁₀O₄	144.1253
10.76	0.2414	Benzoic acid	C₇H₆O₂	122.1213
11.77	0.126	5-Hydroxymethylfurfural	C₆H₁₀O₃	126.1100
11.93	0.1363	Citronnellol	C₈H₁₀O₂	156.2652
12.45	0.4528	Benzeneacetic acid	C₈H₁₀O₂	136.1479
12.63	0.3047	Niacin	C₈H₁₅NO₂	123.1094
12.79	0.282	Citral	C₉H₁₈O	152.2334
13.28	0.2957	Indole	C₈H₈N	117.1479
14.50	0.5301	Geranic acid	C₁₈H₃₆O₂	168.2328
15.67	0.2308	Xylitol	C₃H₆O₂	152.1458
15.90	0.3185	Dimethylamine, N-(neopentoxy)-		
16.72	0.2561	Benzeneacetonitrile, 4-hydroxy-	C₈H₇NO	133.1473
16.99	0.1709	2-Acetyl-1-phenylhydrazine	C₇H₁₁NO₂O	150.1778
17.27	0.5003	Phenol, 2,4-bis[(1,1-dimethylethyl)- OR 2,4-Di-tert-butylphenol	C₈H₁₄O₂	206.3239
17.64	0.4174	Benzoic acid, 4-hydroxy-	C₇H₆O₄	138.1207
17.85	0.3759			
18.08	0.1626	Dodecanoic acid	C₁₂H₂₄O₂	200.3178
18.30	0.2702	4-(2-Methoxyphenyl)phenol		
18.42	0.3107	Methyl methacrylate	C₅H₈O₂	100.1158
18.44	0.1744	4-Phosphatricycl[6.1.0(2,6)]dec-2(6)-ene, 4,9,9-trimethyl-		
19.62	0.135	D-Gluconic acid, gamma-lactone		
20.64	0.1429	Galactitol	C₇H₁₄O₆	182.1718
21.69	0.287			
21.29	0.5651	Tetradecanoic acid	C₁₄H₂₉O₂	228.3709
21.44	0.1386	L-Arabinol	C₅H₁₀O₅	152.1458
22.43	0.1541			
21.54	0.1336	D-Arabinol	C₅H₁₀O₅	152.1458
21.77	0.6697	Tetradecanoic acid, ethyl ester	C₁₄H₂₉O₂	256.4241
22.54	0.1872	Ribitol	C₅H₁₀O₅	152.1458
22.75	0.158	Pentadecanoic acid	C₁₅H₃₀O₂	242.3975
23.23	1.353	Pentadecanoic acid, ethyl ester	C₁₅H₃₀O₂	270.4507
23.92	0.1625	Palmitoleic acid	C₁₅H₃₀O₂	254.4082
24.36	4.4729	n-Hexadecanoic acid		
24.52	8.6152			
24.56	0.3829	cis-Vaccenic acid	C₁₅H₃₀O₂	282.4614
24.73	9.0869	Hexadecanoic acid, ethyl ester	C₁₅H₃₀O₂	284.4772
25.23	0.1234	9,17-Octadecadienal, (Z)-	C₁₆H₃₂O₂	264.4461
25.32	0.4109	cis-10-Heptadecenoic acid	C₁₇H₃₂O₂	268.4348
25.43	0.3282	D-glycero-D-gulo-Heptonic acid, .delta.-lactone		
25.60	0.431	Heptadecanoic acid	C₁₇H₃₂O₂	270.4507
25.66	0.2891	E-9-Tetradecenoic acid		
25.97	0.6586	Heptadecanoic acid, ethyl ester	C₁₇H₃₂O₂	298.5038
26.27	3.7508	Phytol	C₉H₁₈O₂	296.5310
26.94	20.525	9,12,15-Octadecatrienoic acid, (ZZZ)-	C₁₈H₃₆O₂	278.4296
27.05	2.7351	9,12,15-Octadecatrienoic acid, ethyl ester. (ZZZ)-	C₁₈H₃₆O₂	306.4828
27.30	2.7511	Octadecanoic acid, ethyl ester	C₁₈H₃₆O₂	312.5304
27.60	0.2372	[1,1'-Biphenyl]-4,4'-diamine, N,N,N',N'-tetramethyl-Cyclopentane, 1,1'-[3-(2-cyclopentyl)-1,5-pentanediyl]bis-Cholestan-3-ol, 2-methylene-, (3.beta.,5.alpha.)-	C₂₀H₂₆N₂	240.3434
28.09	0.2365		C₂₁H₴₀O₂	304.5530
28.35	0.1407			
28.48	0.1464	Octanoic acid, 7-oxo-, ethyl ester		
29.30	0.4923	Eicosanoic acid	C₂₀H₄₀O₂	312.5304
29.37	0.2159	2-Hydroxy-(Z)-9-pentadecenyl propanoate		
29.41	0.2925	Butyl 9,12,15-octadecatrienoate		

(continued on next page)
Ret. time	Area %	IUPAC name of identified compound	Mol. formula	Mol. wt
29.65	0.6067	Methyl 19-methyl-eicosanoate	C_{19}H_{38}O	280.5316
30.78	0.1517	Cyclotetradecane, 1,7,11-trimethyl-4-(1-methylethyl)-	C_{20}H_{40}	280.5316
30.82	0.2786	Pentacosane	C_{25}H_{52}	352.6804
30.96	0.359	Hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C_{19}H_{38}O_{2}	330.5026
31.39	0.3206	2,6,10,14-Tetramethyl-7-(3-methylpent-4-enyldiene) pentadecane	C_{20}H_{40}	280.5316
31.55	0.1829	Docosanoic acid	C_{22}H_{44}O_{2}	340.5836
31.88	0.795	Docosanoic acid, ethyl ester	C_{24}H_{44}O_{2}	368.6367
32.64	0.1615	1-Bromo-11-iodoundecane	C_{21}H_{42}I	294.5582
32.93	1.4567	10-Heneicosene (c.t)	C_{24}H_{50}	338.6538
32.97	1.1261	Tetracosane	C_{24}H_{50}	338.6538
33.00	0.8757	Linolenic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester	C_{21}H_{36}O_{2}	352.5081
33.09	0.1778	(Z,Z,Z)-		
33.20	0.6995	Fumaric acid, isohexyl 2,3,5-trichlorophenyl ester	C_{12}H_{14}Cl_{3}O	250.2574
33.49	0.1266	Trifluoroacetyl-lavandulol	C_{12}F_{3}O_{2}	352.5081
34.31	0.1391	Squalene	C_{29}H_{50}	410.7180
34.97	3.0446	Nonacosane	C_{29}H_{50}	408.7867
35.19	0.1607	2- Chloropropionic acid, octadecyl ester	C_{21}H_{42}Cl_{2}O_{2}	361.002
35.25	0.2337	1-Eicosene	C_{20}H_{40}	280.5316
35.91	0.1328	Triacanthan	C_{10}H_{62}	422.8133
36.14	0.1966	Triacetyl acetate	C_{12}H_{22}O_{2}	480.8494
37.29	0.4897	Vitamin E	C_{29}H_{50}O_{2}	430.7061
38.01	0.2394	2,6,10,14-Tetramethyl-7-(3-methylpent-4-enyldiene) pentadecane	C_{20}H_{40}	280.5316
38.36	0.3187	Campesterol	C_{28}H_{48}O	400.6801
38.74	0.5392	Stigmasterol	C_{29}H_{48}O	412.6908
38.80	0.2678	2,3-2H-Indanone, 2-hydroxyimino-3,3,4,5,7-pentamethyl-	C_{18}H_{38}	254.4943
38.92	1.6734	Octadecane	C_{29}H_{50}O_{2}	414.7067
39.45	1.2399	.beta.-Sitosterol	C_{29}H_{50}O_{2}	414.7067
39.66	0.243	1-Bromo-11-iodoundecane	C_{20}H_{42}	282.5475
39.97	0.7175	6-Isopropenyl-4,8a-dimethyl-4a,5,6,7,8,8a-hexahydro-1H-naphthalen-2-one	C_{29}H_{48}O	410.6749
40.47	0.2618	4,22-Stigmastadiene-3-one	C_{29}H_{48}O	410.6749
40.89	0.6517	D:A-Friedoursan-3-one	C_{29}H_{48}O	412.6908
41.36	0.2975	Stigmast-4-en-3-one	C_{21}H_{30}O_{2}	314.4617
41.47	0.4222	Cannabidiol	C_{21}H_{30}O_{2}	314.4617
41.93	0.2541			
41.72	0.7527	Eicosane	C_{20}H_{42}	282.5475
43.54	0.2541			
42.65	0.2745	Neoergosterone semicarbazone		
43.29	0.1294	2-Ethylacridine		
Table 5
FTIR absorption frequency (cm\(^{-1}\))/intensity for ethanol, water and ethanol-water (1:1) extracts of A. indica, C. indica, M. indica and M. oleifera.

	A. indica												
	EtOH	881 (m)	1048 (s)	1089 (m)	1383 (w)	1451 (w)	1640 (w)	1652 (w)	2925 (w)	2974 (w)	3361 (m,b)	-	-
	EtOH/H\(_2\)O	881 (w)	1048 (w)	1089 (w)	-	1640 (m)	-	-	-	-	3264 (s,b)	-	-
H\(_2\)O	-	-	-	-	1637 (m)	-	-	-	-	3331 (s,b)	-	-	

	C. indica												
	EtOH	881 (m)	1048 (s)	1089 (m)	1383 (w)	1451 (w)	1640 (w)	1652 (w)	2925 (w)	2974 (w)	3361 (m,b)	-	-
	EtOH/H\(_2\)O	881 (w)	1048 (m)	1089 (w)	-	1640 (m)	-	-	-	-	3320 (s,b)	-	-
H\(_2\)O	-	-	-	-	1637 (m)	-	-	-	-	3331 (s,b)	-	-	

	M. oleifera													
	EtOH	881 (m)	1048 (s)	1089 (m)	1275 (w)	1331 (w)	1383 (w)	1454 (w)	1640 (w)	2895 (w)	2974 (w)	3331 (m,b)	-	-
	EtOH:H\(_2\)O (1:1)	881 (w)	1048 (w)	1089 (w)	-	-	-	-	1640 (m)	-	2975 (w)	3330 (s,b)	-	-
H\(_2\)O	-	-	-	-	1637 (m)	-	-	-	-	3316 (s,b)	-	-		

EtOH – Ethanol; m – medium; s – strong; w – weak; b – broad
Table 6
Phytochemical properties of ethanol, water and ethanol-water (1:1) extracts of A. indica, C. indica, M. indica and M. oleifera.

Biochemicals/Inference	CHO	TAN	SAP	FLA	ALK	ANTHO	BETA	QUIN	GLY	CARD-GLY	TER	TRI-TERP	PHE	COU	STE	ACIDS
EtOH extract																
M. indica	+	+	+	+	-	+	-	-	+	+	-	-	-	-	-	-
A. indica	-	+++	+	++	-	-	-	-	-	+	-	+	-	-	-	-
C. indica	-	+	+	+	-	-	-	-	-	+	-	+	-	-	-	-
M. oleifera	-	-	+	++	-	-	-	-	-	+	-	+	-	-	-	-
EtOH/H₂O (1:1) extract																
M. indica	+	+++	-	-	-	-	-	-	+	+++	-	-	-	-	-	-
A. indica	-	+++	-	+	+	-	-	-	+	-	+	-	-	-	-	-
C. indica	-	++	-	-	-	-	-	-	-	-	-	+	-	-	-	-
M. oleifera	-	++	-	-	-	-	-	-	-	+	-	+	-	-	-	-
H₂O extract																
M. indica	+	+++	-	-	-	-	-	-	+	+++	-	-	-	-	-	-
A. indica	-	+++	-	+	+	-	-	-	+	-	-	+	-	-	-	-
C. indica	-	++	-	-	-	-	-	-	-	-	-	+	-	-	-	-
M. oleifera	-	++	-	-	-	-	-	-	-	+	-	+	-	-	-	-

+= trace amount; +++= moderately present; +++= highly present; - = absent

CHO – Carbohydrates, TAN – Tannins, SAP – Saponins, FLA – Flavonoids, ALK – Alkaloids, ANTHO – Anthocyanins, BETA – Betacyanins, QUIN – Quinones, GLY – Glycosides, CARD-GLY – Cardiac Glycosides, TER – Terpenoids, TRI-TERP – Triterpenoids, PHE – Phenols, COU – Coumarins, STE – Steroids
The identified significant phenolics are listed in Table 7 in order of elution based on retention time. The most prominent phenolics found in leaf extracts of A. indica were vitamin E and Cannabidiol, while 4-hydroxy-benzoinic acid and cannabidiol were most abundant in M. oleifera leaf extracts (Table 8). For the M. indica leaves extract, six phenolic phytoconstituents were identified by the GC-MS namely 4-hydroxy-2-methylacetophenone, 1,2,3-benzenetriol, 4-hydroxy-benzoic acid, gamma-tocopherol, vitamin E, delta-8-tetrahydrocannabinol and cannabidiol (Table 9). On the other hand, A. indica had four phenolic constituents identified, representing 2.11% of the total phytochemicals in the ethanolic leaves extract (Table 10). Of these four, namely 2-methoxy-4vinylphenol, gamma tocoherol, vitamin E and cannabidiol, the latter two were the most abundant. The XRD patterns and UV/VIS absorption spectrum of biosynthesized A. indica oxide nanoparticles are presented in Figs. 6 and 7, respectively.

Fig. 2. Gas chromatography-mass spectrometry total ion chromatogram of A. indica in ethanolic extract.
2. Experimental Design, Materials and Methods

The present study used A. indica, C. indica, M. indica, and M. oleifera leaves that were sourced locally from Southwestern Nigeria. The leaves were identified and authenticated by botanists at Covenant University and Forest Research Institute of Nigeria (FRIN). To obtain the qualitative and quantitative phytochemical characterization of A. indica, C. indica, M. indica and M. oleifera, 25 g of pre-air-dried ground leaf samples of each plant was extracted separately using EtOH, water, and EtOH:water mix (1:1) for 72 h. The extracts were subsequently concentrated using a rotary evaporator and phytochemical screening was carried out according to reported standard method [1–6]. 10 g of each powdered plant material was extracted in three solvent media for 72 h. The GC-MS analysis was carried out using Agilent 7890A gas chromatograph coupled with a 5977A
Fig. 4. Gas chromatography-mass spectrometry total ion chromatogram of *C. indica* in ethanolic extract.

Table 7
Structural composition of phenolic constituents of *A. indica* leaf extracts.

RT	Area %	IUPAC name of compound	Mol. formula	Mol. weight	Chemical structure
13.7	0.259	2-Methoxy-4-vinylphenol	C_9H_10O_2	150.175	![2-Methoxy-4-vinylphenol](image)
36.5	0.183	.gamma.-Tocopherol	C_{28}H_{46}O_2	416.680	![.gamma.-Tocopherol](image)
37.3	0.994	Vitamin E	C_{29}H_{50}O_2	430.706	![Vitamin E](image)
41.9	0.669	Cannabidiol	C_{21}H_{30}O_2	314.462	![Cannabidiol](image)
Fig. 5. GC-MS total ion chromatogram of *M. oleifera* ethanolic extract.

Fig. 6. XRD patterns of biosynthesized *A. indica* oxide nanoparticles (1:1) [A] and *A. indica* oxide nanoparticles (2:1) [B].
Table 8
Structural composition of *M. oleifera* leaf extracts.

RT	Area %	IUPAC name of compound	Mol. formula	Mol. weight	Chemical structure
16.7	0.256	Benzene acetonitrile, 4-hydroxy-	C₅H₇NO	133.147	![Chemical structure](image1)
17.3	0.500	Phenol, 2,4-bis(1,1-dimethylethyl)- OR 2,4-Di-tert-butylphenol	C₁₄H₂₂O	206.324	![Chemical structure](image2)
17.6	0.417	Benzoic acid, 4-hydroxy-	C₇H₆O₃	138.121	![Chemical structure](image3)
17.9	0.376	Propylparaben	C₁₀H₁₂O₃	180.201	![Chemical structure](image4)
	0.250				
37.3	0.490	Vitamin E	C₂₉H₄₅O₂	430.706	![Chemical structure](image5)
41.5	0.422	Cannabidiol	C₂₁H₂₀O₂	314.462	![Chemical structure](image6)
41.9	0.254				

mass spectrometer. The temperature programme of the GC was maintained at an initial temperature of 50 °C with a hold for 1 min, followed by gradual increase to 300 °C at 7 °C/min for 14 min. 1 μL of each sample was injected in the split mode (split ratio 1:10). The ethanolic extracts of *A. indica*, *C. indica*, *M. indica* and *M. oleifera* were analyzed using gas chromatograph mass spectrometer Agilent 7890A and the phytochemicals were characterized for each plant. The identification of phytoconstituents present in the ethanolic extracts were carried out by comparing and matching the retention times and mass spectral data obtained with the GC mass spectra of the National Institute of Standards and Technology (NIST) library. The matched compounds are presented in Tables 1–4. For the FTIR analysis, each extract was analyzed using Agilent Cary 630 FTIR spectrometer equipped with Microlab PC software with ATR sampling unit with a resolution of 8 cm⁻¹ and scan range of 4000 to 650 cm⁻¹ [4,6].
Table 9
Structural composition of M. indica leaf extracts.

RT	Area %	IUPAC name of compound	Mol. formula	Mol. weight	Chemical structure
13.7	0.168	4-Hydroxy-2- methylacetophenone	C₉H₁₀O₂	150.175	![Chemical structure of 4-Hydroxy-2-methylacetophenone](image)
15.0	0.152	1,2,3-Benzenetriol	C₆H₆O₃	126.110	![Chemical structure of 1,2,3-Benzenetriol](image)
17.3	0.108	Benzoic acid, 4-hydroxy-	C₇H₆O₃	138.121	![Chemical structure of Benzoic acid, 4-hydroxy-](image)
36.5	0.259	.gamma.-Tocopherol	C₂₉H₄₈O₂	416.680	![Chemical structure of .gamma.-Tocopherol](image)
37.3	1.782	Vitamin E	C₂₀H₃₀O₂	430.706	![Chemical structure of Vitamin E](image)
41.5	0.906	Cannabidiol	C₂₁H₂₆O₂	314.462	![Chemical structure of Cannabidiol](image)

The synthesis of nanoparticles was performed by mixing dropwise ferric chloride solution (0.1 N) with plant extract at a ratio of 1:1 and 1:2 at a flow rate of 4 – 8 mL/min. After capping vials to prevent oxidation, the solution was constantly agitated for 10 min. Centrifugation at 10,000 rpm for 30 min resulted in the formation of nanoparticles. The nanoparticles were rinsed two times with deionized water and once with anhydrous ethanol. Synthesized nanoparticles were labeled and calcination was carried out at 600 °C. The formation of iron oxide nanoparticles was confirmed using a UV spectrometer (UV-3000 ORI, Germany). The UV-visible spectra of
Table 10
Structural composition of *A. indica* leaf extracts.

RT	Area %	IUPAC name of compound	Mol. formular	Mol. weight	Chemical structure
13.7	0.259	2-Methoxy-4-vinylphenol	C₉H₁₀O₂	150.175	![Chemical structure](image1.png)
36.5	0.183	gamma.-Tocopherol	C₂₈H₄₈O₂	416.680	![Chemical structure](image2.png)
37.3	0.994	Vitamin E	C₂₉H₅₀O₂	430.706	![Chemical structure](image3.png)
41.9	0.669	Cannabidiol	C₂₁H₃₀O₂	314.462	![Chemical structure](image4.png)

Fig. 7. UV/VIS absorption spectrum of biosynthesized iron nanoparticles.
biogenic nanoparticles were measured between 200 and 800 nm spectral range. X-ray diffraction (XRD) study was performed by coating the biosynthesized iron oxide nanoparticles onto a glass slide and analyzing the particles with a high-power CuKα radioactive source \(k = 0.154 \text{ nm} \) at 40 kV/ 40 mA using Empyrean, Malvern PanAnalytical [6].

Ethics Statement

This study did not involve human or animal subjects, and no data from social media platforms were used.

Declaration of Competing Interest

The authors declare that we have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT Author Statement

Oladotun P. Bolade: Conceptualization, Methodology, Data curation, Writing – original draft, Investigation, Writing – review & editing; Akan B. Williams: Conceptualization, Methodology, Data curation, Writing – original draft, Investigation, Supervision, Writing – review & editing; Nskak U. Benson: Conceptualization, Methodology, Data curation, Writing – original draft, Investigation, Project administration, Supervision, Writing – review & editing.

Acknowledgment

This research was supported by the Covenant University Centre for Research, Innovation and Discovery (CUCRID), through the Covenant University Seed Grant. The authors are grateful to Covenant University for providing publication assistance.

References

[1] A.A. Olajire, N.F. Ifediora, M.D. Bello, N.U. Benson, Green synthesis of copper nanoparticles using *Alchornea laxiflora* leaf extract and their catalytic application for oxidative desulphurization of model oil, Iran J Sci Technol, Trans A: Sci 9 (2017), doi:10.1007/s40995-017-0404-9.

[2] A. Harborne, Phytochemical Methods a Guide to Modern Techniques of Plant Analysis, Springer Science And Business Media, 1998.

[3] P. Archana, T. Samatha, B. Mahitha, N.R. Chamundeswari, Preliminary phytochemical screening from leaf and seed extracts of *Senna alata* L. Rosb- an ethno medicinal plant, Int J Pharm Biol Res 3 (2012) 82–89.

[4] O.P. Bolade, A.A. Akinsiku, A.O. Adeyemi, A.B. Williams, N.U. Benson, Dataset on phytochemical screening, FTIR and GC–MS characterisation of *Azadirachta indica* and *Cymbopogon citratus* as reducing and stabilising agents for nanoparticles synthesis, Data Brief 20 (2018) 917–926, doi:10.1016/j.dib.2018.08.133.

[5] P. Dubey, P. Sharma, V. Kumar, FTIR and GC–MS spectral datasets of wax from *Pinus roxburghii* Sarg. needles biomass, Data Brief 15 (2017) 615–622, doi:10.1016/j.dib.2017.09.074.

[6] O.P. Bolade, A.A. Akinsiku, O.S. Oluwafemi, A.B. Williams, N.U. Benson, Biogenic iron oxide nanoparticles and activated sodium persulphate for hydrocarbon remediation in contaminated soil, Environ. Technol. Innov. 9 (4) (2021) 105801, doi:10.1016/j.jtec.2021.105801.