New fractional inequalities of Hermite–Hadamard type involving the incomplete gamma functions

Pshtiwan Othman Mohammed 1*, Thabet Abdeljawad 2,3,4*, Dumitru Baleanu 5,6,7, Artion Kashuri 8, Faraidun Hamasalh 1 and Praveen Agarwal 9,10,11,12

*Correspondence: pshtiwansangawi@gmail.com; tabdeljawad@psu.edu.sa
1Department of Mathematics, College of Education, University of Sulaimani, Sulaimani, Kurdistan Region, Iraq
2Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia
Full list of author information is available at the end of the article

Abstract
A specific type of convex functions is discussed. By examining this, we investigate new Hermite–Hadamard type integral inequalities for the Riemann–Liouville fractional operators involving the generalized incomplete gamma functions. Finally, we expose some examples of special functions to support the usefulness and effectiveness of our results.

MSC: 26D07; 26D10; 26D15
Keywords: Riemann–Liouville fractional integral; Hermite–Hadamard inequality; Incomplete gamma function; Bessel function; q-digamma function

1 Introduction
In the past two decades, fractional calculus has received much attention. The fast interest in the topic is due to its extensive applications in various fields such as biochemistry, physics, viscoelasticity, fluid mechanics, computer modeling, and engineering, see [1–7] for further details. Most of the studies have been devoted to the existence and uniqueness of solutions for fractional differential or difference equations; see e.g. [8–12].

A fractional differential equation needs a certain inequality for existence and uniqueness of solution. For this reason, a huge number of mathematicians have competed to seek such inequalities; see e.g. [13–25].

As always, it is important and necessary to specify which model or definition of fractional calculus is being used because there are many different ways of defining fractional operators (integrals and derivatives). To further facilitate the discussion of this model, we present here the definition which is most commonly used for fractional operators, namely the Riemann–Liouville (RL) definition.

Definition 1.1 ([1, 2]) For any L^1 function \(\tilde{w}(x) \) on an interval \([\varepsilon_3, \varepsilon_4]\) with \(x \in [\varepsilon_3, \varepsilon_4] \), the \(\kappa \)th left-RL fractional integral of \(\tilde{w}(x) \) is given by

\[
\text{RL}^{\kappa}_{\varepsilon_3} \tilde{w}(x) := \frac{1}{\Gamma(\kappa)} \int_{\varepsilon_3}^{x} (x - \zeta)^{\kappa - 1} \tilde{w}(\zeta) \, d\zeta
\] (1.1)
for Re(\(\kappa\)) > 0. Also, the \(\kappa\)th right-RL fractional integral of \(\tilde{w}(x)\) is given by

\[
\text{RL}^{\kappa}_{\epsilon_4} \tilde{w}(x) := \frac{1}{\Gamma(\kappa)} \int_{\epsilon_3}^{\epsilon_4} (\zeta - x)^{\kappa-1} \tilde{w}(\zeta) \, d\zeta. \tag{1.2}
\]

Before starting the main findings, we review some definitions, notations, theorems which will be necessary later to proceed.

Definition 1.2 ([26]) We say that the function \(\tilde{w} : J \subseteq \mathbb{R} \rightarrow \mathbb{R}\) is convex on \(J\) if

\[
\tilde{w}(\zeta \epsilon_3 + (1 - \zeta) \epsilon_4) \leq \zeta \tilde{w}(\epsilon_3) + (1 - \zeta) \tilde{w}(\epsilon_4) \tag{1.3}
\]

holds for every \(\epsilon_3, \epsilon_4 \in J\) and \(\zeta \in [0,1]\).

Definition 1.3 ([27]) We say that the function \(\tilde{w} : J \subseteq \mathbb{R} \rightarrow \mathbb{R}\) is exponential type convex (or briefly exp-convex function) on \(J\) if

\[
\tilde{w}(\zeta \epsilon_3 + (1 - \zeta) \epsilon_4) \leq (e^{\zeta} - 1)\tilde{w}(\epsilon_3) + (e^{1 - \zeta} - 1)\tilde{w}(\epsilon_4) \tag{1.4}
\]

holds for every \(\epsilon_3, \epsilon_4 \in J\) and \(\zeta \in [0,1]\).

The well-known integral inequality of Hermite–Hadamard type (HH-type) for such a convex function (1.3) is given by

\[
\tilde{w}\left(\frac{\epsilon_3 + \epsilon_4}{2}\right) \leq \frac{1}{\epsilon_4 - \epsilon_3} \int_{\epsilon_3}^{\epsilon_4} \tilde{w}(x) \, dx \leq \frac{\tilde{w}(\epsilon_3) + \tilde{w}(\epsilon_4)}{2}. \tag{1.5}
\]

On the same convex function (1.3), in 2013, Sarikaya et al. [28] generalized the HH-inequality (1.5) to fractional integrals of RL type, which is as follows:

\[
\tilde{w}\left(\frac{\epsilon_3 + \epsilon_4}{2}\right) \leq \frac{\Gamma(\kappa + 1)}{2(\epsilon_4 - \epsilon_3)^\kappa} \left[\text{RL}_{\epsilon_3}^{\kappa} \tilde{w}(\epsilon_4) + \text{RL}_{\epsilon_4}^{\kappa} \tilde{w}(\epsilon_3)\right] \leq \frac{\tilde{w}(\epsilon_3) + \tilde{w}(\epsilon_4)}{2}, \tag{1.6}
\]

where \(\kappa > 0\) and \(\tilde{w} : [\epsilon_3, \epsilon_4] \rightarrow \mathbb{R}\) is supposed to be an \(L^1\) convex function. One year later, Sarikaya and Yildirim [29] found a new version of the above inequality, which is as follows:

\[
\tilde{w}\left(\frac{\epsilon_3 + \epsilon_4}{2}\right) \leq \frac{2^{\kappa-1}\Gamma(\kappa + 1)(\epsilon_4 - \epsilon_3)^\kappa}{\epsilon_4 - \epsilon_3} \left[\text{RL}_{\epsilon_3}^{\kappa} \tilde{w}(\epsilon_4) + \text{RL}_{\epsilon_4}^{\kappa} \tilde{w}(\epsilon_3)\right] \leq \frac{\tilde{w}(\epsilon_3) + \tilde{w}(\epsilon_4)}{2}. \tag{1.7}
\]

Again, one can note that this result is valid for any \(L^1\) convex function \(\tilde{w} : [\epsilon_3, \epsilon_4] \rightarrow \mathbb{R}\) and for each \(\kappa > 0\).

In 2020, Kadakal and Işcan obtained the new refinement of the classical HH-inequality (1.5) on the exp-convex function (1.4), which is as follows:

\[
\frac{1}{2(e^2 - 1)} \tilde{w}\left(\frac{\epsilon_3 + \epsilon_4}{2}\right) \leq \frac{1}{\epsilon_4 - \epsilon_3} \int_{\epsilon_3}^{\epsilon_4} \tilde{w}(x) \, dx \leq (e - 2) \left[\tilde{w}(\epsilon_3) + \tilde{w}(\epsilon_4)\right]. \tag{1.8}
\]
A huge number of generalizations and modifications of classical HH-inequality (1.5) have been established by means of fractional operators (1.1) and (1.2); e.g. see [20, 26, 30–44].

In this study, we follow the line of result mentioned above to investigate a new integral inequality, namely, the RL version of the new HH-type inequality (1.8). The rest of the attempt is designed as follows: in Sect. 2.1 we prove the HH inequalities of trapezoidal type by using differintegrals starting from the endpoints of the interval. In Sect. 2.2, we prove the HH inequalities of midpoint type by using differintegrals starting from the midpoint of the interval for the RL-fractional operators. Finally, some applications on special functions are exposed in Sect. 4.

2 Main results

Our main results are split into two subsections. The following facts will be needed in establishing our main results.

Remark 2.1 For $\text{Re}(\kappa) > 0$, the following identities can hold:

\[\int_{0}^{1} \xi^{\kappa-1} e^\xi \, d\xi = (–1)^{\kappa} \gamma(\kappa, –1); \quad (2.1) \]
\[\int_{0}^{1} \xi^{\kappa-1} e^{1 – \xi} \, d\xi = e \gamma(\kappa, 1), \quad (2.2) \]

where $\gamma(\cdot, \cdot)$ is the lower incomplete gamma function [45]:

\[\gamma(\kappa, x) = \int_{x}^{\infty} \xi^{\kappa-1} e^{–\xi} \, d\xi, \quad x \in \mathbb{C}. \quad (2.3) \]

Proof By making change of the variable $u := –\xi$ in the first integral, we get

\[\int_{0}^{1} \xi^{\kappa-1} e^\xi \, d\xi = (–1)^{\kappa} \int_{0}^{1} u^{\kappa-1} e^{–u} \, du = (–1)^{\kappa} \gamma(\kappa, –1), \]

which ends identity (2.1).

Identity (2.2) can be directly obtained from the original definition (2.3). □

Remark 2.2 For $\text{Re}(\kappa) > 0$, the following identities can hold:

\[\int_{0}^{1} \xi^{\kappa-1} e^{\xi/2} \, d\xi = (–2)^{\kappa} \gamma\left(\kappa, \frac{1}{2}\right); \quad (2.4) \]
\[\int_{0}^{1} \xi^{\kappa-1} e^{1 – \xi/2} \, d\xi = e 2^{\kappa} \gamma\left(\kappa, \frac{1}{2}\right). \quad (2.5) \]

Proof We can use the same method used for Remark 2.1 to produce the results for Remark 2.2. □
Lemma 2.1 ([28]) If $\tilde{w} : [\varepsilon_3, \varepsilon_4] \to \mathcal{R}$ is $L^1[\varepsilon_3, \varepsilon_4]$ with $0 < \varepsilon_3 < \varepsilon_4$ and $\kappa > 0$, then we have
\[
\frac{\tilde{w}(\varepsilon_3) + \tilde{w}(\varepsilon_4)}{2} - \frac{\Gamma(\kappa + 1)}{2(\varepsilon_4 - \varepsilon_3)^\kappa} [\mathcal{R}\int_{\varepsilon_3}^{\varepsilon_4} \tilde{w}(\varepsilon_4) + \mathcal{R}\int_{\varepsilon_3}^{\varepsilon_4} \tilde{w}(\varepsilon_3)]
\]
\[= \frac{\varepsilon_4 - \varepsilon_3}{2} \int_0^1 [(1 - \xi)^\kappa - \xi^\kappa] \tilde{w}'(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4) d\xi.\]

Lemma 2.2 ([29]) If $\tilde{w} : [\varepsilon_3, \varepsilon_4] \to \mathcal{R}$ is $L^1[\varepsilon_3, \varepsilon_4]$ with $0 < \varepsilon_3 < \varepsilon_4$ and $\kappa > 0$, then we have
\[
\frac{2^{\kappa - 1}}{(\varepsilon_4 - \varepsilon_3)^\kappa} [\mathcal{R}\int_{\varepsilon_3}^{\varepsilon_4} \tilde{w}(\varepsilon_4) + \mathcal{R}\int_{\varepsilon_3}^{\varepsilon_4} \tilde{w}(\varepsilon_3)] - \tilde{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right)
\]
\[= \frac{\varepsilon_4 - \varepsilon_3}{4} \left[\int_0^1 \xi^\kappa \tilde{w}'\left(\frac{\xi \varepsilon_3 + \frac{2 - \xi}{2} \varepsilon_4}{\varepsilon_4}\right) d\xi - \int_0^1 \xi^{\kappa - 1} \tilde{w}'\left(\frac{2 - \xi}{2} \varepsilon_3 + \frac{\xi}{2} \varepsilon_4\right) d\xi \right].
\]

2.1 Trapezoidal inequalities

Proposition 2.1 Suppose that $\tilde{w} : [\varepsilon_3, \varepsilon_4] \to \mathcal{R}$ is an L^1 and exp-convex function. Then we have, for $\kappa > 0$,
\[
\tilde{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right) \leq \left(\varepsilon_3 \right)^{\frac{1}{\kappa}} \left(\varepsilon_4 \right)^{\frac{1}{\kappa}} \tilde{w}\left(\frac{\varepsilon_3 + (1 - \xi)\varepsilon_4}{2} \right) + \left(1 - \xi\right) \tilde{w}\left(\frac{(1 - \xi)\varepsilon_3 + \xi \varepsilon_4}{2} \right).
\]

Proof By the exp-convexity of f, we have
\[
\tilde{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right) = \tilde{w}\left(\frac{\xi \varepsilon_3 + (1 - \xi)\varepsilon_4}{2} \right) + \left(1 - \xi\right) \tilde{w}\left(\frac{(1 - \xi)\varepsilon_3 + \xi \varepsilon_4}{2} \right).
\]
Multiplying by $\xi^{\kappa - 1}$ on both sides and then integrating over $[0, 1]$, we get
\[
\frac{1}{\kappa} \tilde{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right) \leq \left(\varepsilon_3 \right)^{\frac{1}{\kappa}} \int_0^1 \xi^{\kappa - 1} \tilde{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4) d\xi
\]
\[+ \left(1 - \xi\right) \tilde{w}\left(\frac{(1 - \xi)\varepsilon_3 + \xi \varepsilon_4}{2} \right) \int_0^1 \xi^{\kappa - 1} d\xi.
\]
Multiplying by $\kappa > 0$ on both sides and making the change of variables in the last inequality, we obtain
\[
\tilde{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right) \leq \kappa \left(\varepsilon_3 \right)^{\frac{1}{\kappa}} \int_0^1 \xi^{\kappa - 1} \tilde{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4) d\xi
\]
\[+ \left(1 - \xi\right) \tilde{w}\left(\frac{(1 - \xi)\varepsilon_3 + \xi \varepsilon_4}{2} \right) \int_0^1 \xi^{\kappa - 1} d\xi.
\]
On the other hand, we have by exp-convexity
\[
\tilde{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4) \leq (\varepsilon_3 \to 1) \tilde{w}(\varepsilon_3) + (\varepsilon_3 \to 1) \tilde{w}(\varepsilon_4);
\]
\[\tilde{w}(1 - \zeta)\bar{w}_3 + \zeta\bar{w}_4 \leq (e^{1-\zeta} - 1)\tilde{w}(\bar{w}_3) + (e^\zeta - 1)\tilde{w}(\bar{w}_4). \]

Adding both inequalities, we get
\[\tilde{w}(\zeta\bar{w}_3 + (1 - \zeta)\bar{w}_4) + \tilde{w}((1 - \zeta)\bar{w}_3 + \zeta\bar{w}_4) \leq (e^\zeta + e^{1-\zeta} - 2)[\tilde{w}(\bar{w}_3) + \tilde{w}(\bar{w}_4)]. \]

Multiplying by \(\zeta\kappa^{\frac{1}{2}} \) on both sides and then integrating over \([0, 1]\), we get
\[
\int_0^1 \zeta^{\frac{1}{2}} \tilde{w}(\zeta\bar{w}_3 + (1 - \zeta)\bar{w}_4) \, d\zeta + \int_0^1 \zeta^{\frac{1}{2}} \tilde{w}((1 - \zeta)\bar{w}_3 + \zeta\bar{w}_4) \, d\zeta \\
\leq [\tilde{w}(\bar{w}_3) + \tilde{w}(\bar{w}_4)] \int_0^1 \zeta^{\frac{1}{2}} (e^\zeta + e^{1-\zeta} - 2) \, d\zeta.
\]

By making the change of variables and Remark 2.1, we get
\[
\frac{\Gamma(\kappa)}{(\bar{w}_4 - \bar{w}_3)\kappa} \left[\mathcal{R}L_{\bar{w}_3} \tilde{w}(\bar{w}_4) + \mathcal{R}L_{\bar{w}_4} \tilde{w}(\bar{w}_3) \right] \\
\leq \left(e^\gamma(\kappa, 1) + (-1)^\kappa \gamma(\kappa, -1) - \frac{2}{\kappa} \right)[\tilde{w}(\bar{w}_3) + \tilde{w}(\bar{w}_4)].
\]

Multiplying by positive constants \(\kappa > 0 \) and \((e^{\frac{1}{2}} - 1) > 0 \) on both sides, we get
\[
\frac{(e^{\frac{1}{2}} - 1)\Gamma(\kappa + 1)}{(\bar{w}_4 - \bar{w}_3)\kappa} \left[\mathcal{R}L_{\bar{w}_3} \tilde{w}(\bar{w}_4) + \mathcal{R}L_{\bar{w}_4} \tilde{w}(\bar{w}_3) \right] \\
\leq \kappa \left(e^\gamma(\kappa, 1) + (-1)^\kappa \gamma(\kappa, -1) - \frac{2}{\kappa} \right)[\tilde{w}(\bar{w}_3) + \tilde{w}(\bar{w}_4)].
\]

Both of inequalities (2.7) and (2.8) rearrange to the required result. \(\Box \)

Remark 2.3 The expression \((-1)^\kappa \gamma(\kappa, -1)\) occurring in inequality (2.6) may not be clear for the readers, and they will imagine that this value is complex, or does it make sense? Actually, the complex part coming from \((-1)^\kappa\) cancels out the complex part coming from the incomplete gamma \(\gamma(\kappa, -1) \). Furthermore, this value came from the integral formula (2.1): from looking at the integral we can clearly see that it is real (and positive). Therefore, the answer is yes, it does make sense; the overall expression is real and positive.

On the other hand, we can clarify the above expression by using the Taylor expansion for the integral formula (2.1):
\[
(-1)^\kappa \gamma(\kappa, -1) = \int_0^1 \zeta^{\kappa-1} e^\zeta \, d\zeta = \int_0^1 \zeta^{\kappa-1} \left(1 + \zeta + \frac{\zeta^2}{2!} + \cdots \right) \, d\zeta \\
= \frac{1}{\kappa} + \frac{1}{\kappa + 1} + \frac{1}{2!(\kappa + 2)!} + \frac{1}{3!(\kappa + 3)} + \cdots \\
= \sum_{i=0}^{\infty} \frac{1}{i!(\kappa + i)}.
\]

This formula confirms that \((-1)^\kappa \gamma(\kappa, -1) > 0 \) for \(\kappa > 0 \).
Remark 2.4 Inequality (2.6) with $\kappa = 1$ becomes inequality (1.8).

Theorem 2.1 Let $\hat{w}: [\varepsilon_3, \varepsilon_4] \rightarrow \mathcal{R}$ be $L^1[\varepsilon_3, \varepsilon_4]$ with $0 < \varepsilon_3 < \varepsilon_4$ and $\kappa > 0$. If $|\hat{w}|$ is an exp-convex function, then we have

$$
\left| \frac{\hat{w}(\varepsilon_3) + \hat{w}(\varepsilon_4)}{2} - \frac{\Gamma(\kappa + 1)}{2(\varepsilon_4 - \varepsilon_3)^\kappa} \left[R_L J_{\varepsilon_3}^{1/2} \hat{w}(\varepsilon_4) + R_L J_{\varepsilon_4}^{1/2} \hat{w}(\varepsilon_3) \right] \right|
\leq \frac{\varepsilon_4 - \varepsilon_3}{2} \left(\left| \delta_0(\kappa, h_0) + \delta_1(\kappa, h_1) \right| |\hat{w}(\varepsilon_3)| + \left| \delta_0(\kappa, h_1) + \delta_1(\kappa, h_0) \right| |\hat{w}'(\varepsilon_4)| \right)
\leq \frac{\varepsilon_4 - \varepsilon_3}{2} \left(\left| \delta_0(\kappa, h_0) + \delta_1(\kappa, h_1) \right| |\hat{w}(\varepsilon_3)| + \left| \delta_0(\kappa, h_1) + \delta_1(\kappa, h_0) \right| |\hat{w}'(\varepsilon_4)| \right)
= \frac{(\varepsilon_4 - \varepsilon_3)}{2} |\hat{w}(\varepsilon_3)| + |\hat{w}'(\varepsilon_4)| \sum_{i=0}^{1} \sum_{j=0}^{1} \delta_i(\kappa, h_i),
$$

(2.9)

where

$$
\delta_0(\kappa, h_j) = (-1)^j h_j \left[\gamma(\kappa + 1, (-1)^j) - \gamma\left(\kappa + 1, \frac{(-1)^j}{2}\right) \right] + (-1)^{j+1} \frac{1}{\kappa + 1} \left[1 - \left(\frac{1}{2} \right)^{\kappa + 1} \right];
$$

$$
\delta_1(\kappa, h_j) = \frac{1}{\kappa + 1} \left(\frac{1}{2} \right)^{\kappa + 1} + (-1)^{j+1} h_j \gamma\left(\kappa + 1, \frac{(-1)^j}{2}\right),
$$

and

$$
h_j = \begin{cases}
\varepsilon, & \text{if } j = 0, \\
(-1)^\varepsilon, & \text{if } j = 1.
\end{cases}
$$

Proof From Lemma 2.1, we have

$$
\left| \frac{\hat{w}(\varepsilon_3) + \hat{w}(\varepsilon_4)}{2} - \frac{\Gamma(\kappa + 1)}{2(\varepsilon_4 - \varepsilon_3)^\kappa} \left[R_L J_{\varepsilon_3}^{1/2} \hat{w}(\varepsilon_4) + R_L J_{\varepsilon_4}^{1/2} \hat{w}(\varepsilon_3) \right] \right|
\leq \frac{\varepsilon_4 - \varepsilon_3}{2} \int_0^1 \left| (1 - \xi)^\kappa - \xi^\kappa \right| |\hat{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4)| d\xi
\leq \frac{\varepsilon_4 - \varepsilon_3}{2} \left[\int_0^{\frac{1}{2}} \left| (1 - \xi)^\kappa - \xi^\kappa \right| |\hat{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4)| d\xi + \int_0^{\frac{1}{2}} \left| \xi^\kappa - (1 - \xi)^\kappa \right| |\hat{w}(\xi \varepsilon_3 + (1 - \xi)\varepsilon_4)| d\xi \right].
$$

By using the exp-convexity of $|\hat{w}|$, it follows that

$$
\left| \frac{\hat{w}(\varepsilon_3) + \hat{w}(\varepsilon_4)}{2} - \frac{\Gamma(\kappa + 1)}{2(\varepsilon_4 - \varepsilon_3)^\kappa} \left[R_L J_{\varepsilon_3}^{1/2} \hat{w}(\varepsilon_4) + R_L J_{\varepsilon_4}^{1/2} \hat{w}(\varepsilon_3) \right] \right|
\leq \frac{\varepsilon_4 - \varepsilon_3}{2} \left[\int_0^{\frac{1}{2}} \left[(1 - \xi)^\kappa - \xi^\kappa \right] \left[(\varepsilon^\kappa - 1) |\hat{w}(\varepsilon_3)| + (e^{1-\kappa} - 1) |\hat{w}'(\varepsilon_4)| \right] d\xi + \int_0^{\frac{1}{2}} \left[\xi^\kappa - (1 - \xi)^\kappa \right] \left[(\varepsilon^\kappa - 1) |\hat{w}(\varepsilon_3)| + (e^{1-\kappa} - 1) |\hat{w}'(\varepsilon_4)| \right] d\xi \right].
$$

$$
= \frac{\varepsilon_4 - \varepsilon_3}{2} \left(\left| \delta_0(\kappa, h_0) + \delta_1(\kappa, h_1) \right| |\hat{w}(\varepsilon_3)| + \left| \delta_0(\kappa, h_1) + \delta_1(\kappa, h_0) \right| |\hat{w}'(\varepsilon_4)| \right).
$$
Thus, our proof is completed. □

Remark 2.5 Inequality (2.9) with \(\kappa = 1 \) becomes the following inequality:

\[
\left| \frac{\bar{\omega}(\varepsilon_3) + \bar{\omega}(\varepsilon_4)}{2} - \frac{1}{\varepsilon_4 - \varepsilon_3} \int_{\varepsilon_3}^{\varepsilon_4} \bar{\omega}(x) \, dx \right| \leq (\varepsilon_4 - \varepsilon_3) \left(4e^2 - e - \frac{7}{2} \right) \frac{|\bar{\omega}(\varepsilon_3)| + |\bar{\omega}(\varepsilon_4)|}{2},
\]

which was obtained by Kadakal and Işcan [27].

2.2 Midpoint inequalities

Proposition 2.2 If \(\tilde{w} : [\varepsilon_3, \varepsilon_4] \to \mathcal{R} \) is an \(L^1 \) and exp-convex function and \(\kappa > 0 \), then we have

\[
\tilde{w} \left(\frac{\varepsilon_3 + \varepsilon_4}{2} \right) \leq (e^{\frac{3}{2}} - 1)2^\kappa \Gamma(\kappa + 1) \left[\int_{\varepsilon_3}^{\varepsilon_4} \bar{w}(x) \, dx \right] \leq \kappa (e^{\frac{3}{2}} - 1) \left[e^{2\kappa} \gamma \left(\frac{\kappa}{2} + 1 \right) + (-2)^\kappa \gamma \left(\frac{\kappa}{2} - 1 \right) \right] \frac{|\tilde{w}(\varepsilon_3)| + |\tilde{w}(\varepsilon_4)|}{2},
\]

Proof By the exp-convexity of \(f \), we have

\[
\tilde{w} \left(\frac{\varepsilon_3 + \varepsilon_4}{2} \right) = \tilde{w} \left(\frac{\varepsilon_3 + \varepsilon_4}{2} \right) \leq (e^{\frac{3}{2}} - 1) \tilde{w} \left(\frac{\varepsilon_3 + \frac{2 - \varepsilon_4}{2}}{2} \right) + (e^{\frac{3}{2}} - 1) \tilde{w} \left(\frac{\varepsilon_3 + \frac{2 - \varepsilon_4}{2}}{2} \right).
\]

Multiplying by \(\varepsilon^{\kappa-1} \) on both sides and then integrating over \([0, 1]\), we get

\[
\frac{1}{\kappa} \tilde{w} \left(\frac{\varepsilon_3 + \varepsilon_4}{2} \right) \leq (e^{\frac{3}{2}} - 1) \int_{0}^{1} \varepsilon^{\kappa-1} \tilde{w} \left(\frac{\varepsilon_3 + \frac{2 - \varepsilon_4}{2}}{2} \right) d\varepsilon + (e^{\frac{3}{2}} - 1) \int_{0}^{1} \varepsilon^{\kappa-1} \tilde{w} \left(\frac{\varepsilon_3 + \frac{2 - \varepsilon_4}{2}}{2} \right) d\varepsilon.
\]
Multiplying by $\kappa > 0$ on both sides and making the change of variables, we get

$$
\tilde{w} \left(\frac{\varepsilon_3 + \varepsilon_4}{2} \right) \leq \kappa (e^{\frac{1}{2}} - 1) \left[\frac{1}{\varepsilon_4 - \varepsilon_3} \int_{\varepsilon_4}^{\varepsilon_4} \left(\frac{\varepsilon_4 - u}{\varepsilon_4 - \varepsilon_3} \right)^{\kappa - 1} \tilde{w}(u) \, du \right.
\left. + \frac{1}{\varepsilon_4 - \varepsilon_3} \int_{\varepsilon_3}^{\varepsilon_4} \left(\frac{\varepsilon_4 - u}{\varepsilon_4 - \varepsilon_3} \right)^{\kappa - 1} \tilde{w}(v) \, dv \right]
= \frac{(e^{\frac{1}{2}} - 1)^2 \Gamma(\kappa + 1)}{(\varepsilon_4 - \varepsilon_3)^\kappa} \left[RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_4) + RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_3) \right].
\tag{2.12}
$$

On the other hand, we have by exp-convexity

$$
\tilde{w} \left(\frac{\varepsilon_3 + 2 - \varepsilon_4}{2} \right) \leq (e^{\frac{1}{2}} - 1) \tilde{w}(\varepsilon_3) + (e^{1 - \frac{1}{2}} - 1) \tilde{w}(\varepsilon_4);
\tilde{w} \left(\frac{2 - \varepsilon_3 + \varepsilon_4}{2} \right) \leq (e^{\frac{1}{2}} - 1) \tilde{w}(\varepsilon_3) + (e^{\frac{1}{2}} - 1) \tilde{w}(\varepsilon_4).
$$

Adding both inequalities, we get

$$
\tilde{w} \left(\frac{\varepsilon_3 + 2 - \varepsilon_4}{2} \right) + \tilde{w} \left(\frac{2 - \varepsilon_3 + \varepsilon_4}{2} \right) \leq (e^{\frac{1}{2}} + e^{1 - \frac{1}{2}} - 2) \left[\tilde{w}(\varepsilon_3) + \tilde{w}(\varepsilon_4) \right].
$$

Multiplying by \tilde{w} on both sides and then integrating over $[0,1]$, we get

$$
\int_0^1 s^{e-1} \tilde{w} \left(\frac{s + 2 - s e_4}{2} \right) \, ds + \int_0^1 s^{e-1} \tilde{w} \left(\frac{s - e_3 + s e_4}{2} \right) \, ds
\leq \left[\tilde{w}(\varepsilon_3) + \tilde{w}(\varepsilon_4) \right] \int_0^1 s^{e-1} \left(e^{\frac{1}{2}} + e^{1 - \frac{1}{2}} - 2 \right) \, ds.
$$

By making the change of variables and Remark 2.2, we get

$$
\frac{2^e \Gamma(\kappa)}{(\varepsilon_4 - \varepsilon_3)^\kappa} \left[RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_4) + RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_3) \right]
\leq e^{2^e \gamma} \left(\kappa, \frac{1}{2} \right) + (-2)^{2} \gamma \left(\kappa, -\frac{1}{2} \right) - \frac{2}{\kappa} \left[\tilde{w}(\varepsilon_3) + \tilde{w}(\varepsilon_4) \right].
$$

Multiplying by positive constants $\kappa > 0$ and $(e^{\frac{1}{2}} - 1) > 0$ on both sides, we get

$$
\frac{(e^{\frac{1}{2}} - 1)^2 \Gamma(\kappa + 1)}{(\varepsilon_4 - \varepsilon_3)^\kappa} \left[RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_4) + RL_{\varepsilon_3 + \varepsilon_4}^{\varepsilon_4}, \tilde{w}(\varepsilon_3) \right]
\leq \kappa (e^{\frac{1}{2}} - 1) \left[e^{2^e \gamma} \left(\kappa, \frac{1}{2} \right) + (-2)^{2} \gamma \left(\kappa, -\frac{1}{2} \right) - \frac{2}{\kappa} \right] \left[\tilde{w}(\varepsilon_3) + \tilde{w}(\varepsilon_4) \right].
\tag{2.13}
$$

Both of inequalities (2.12) and (2.13) rearrange to the required result. \(\square\)
Theorem 2.2 Let \(\tilde{w} : [\varepsilon_3, \varepsilon_4] \to \mathbb{R} \) be \(L^1[\varepsilon_3, \varepsilon_4] \) with \(0 < \varepsilon_3 < \varepsilon_4 \) and \(\kappa > 0 \). If \(|\tilde{w}| \) is an exp-convex function, then we have

\[
\frac{2^{\varepsilon_3-\varepsilon_4} \Gamma(\kappa + 1)}{\varepsilon_3 - \varepsilon_4} \left[\left| \mathcal{R} I^\varepsilon_3 (\frac{\varepsilon_4}{2} + \varepsilon_4) \tilde{w}(\varepsilon_4) + \mathcal{R} I^\varepsilon_4 (\frac{\varepsilon_3}{2} + \varepsilon_3) \tilde{w}(\varepsilon_3) \right| - \tilde{w}(\frac{\varepsilon_3 + \varepsilon_4}{2}) \right]
\leq \left(\varepsilon_4 - \varepsilon_3 \right) \left| \tilde{w}(\varepsilon_3) \right| + \left| \tilde{w}(\varepsilon_4) \right| \leq \frac{1}{4} \sum_{j=0}^{\tilde{\delta}(\kappa, h_j)}, (2.14)
\]

where \(h_j \) is as before, and

\[
\tilde{\delta}(\kappa, h_j) = (-1)^j h_j 2^{\varepsilon + 1} \left(\kappa + 1, \frac{(-1)^j}{2} \right) - \frac{1}{\kappa + 1}.
\]

Proof With the help of Lemma 2.2 and the exp-convexity of \(|\tilde{w}| \), we have

\[
\frac{2^{\varepsilon_3-\varepsilon_4} \Gamma(\kappa + 1)}{\varepsilon_3 - \varepsilon_4} \left[\left| \mathcal{R} I^\varepsilon_3 (\frac{\varepsilon_4}{2} + \varepsilon_4) \tilde{w}(\varepsilon_4) + \mathcal{R} I^\varepsilon_4 (\frac{\varepsilon_3}{2} + \varepsilon_3) \tilde{w}(\varepsilon_3) \right| - \tilde{w}(\frac{\varepsilon_3 + \varepsilon_4}{2}) \right]
\leq \left(\varepsilon_4 - \varepsilon_3 \right) \left| \tilde{w}(\varepsilon_3) \right| + \left| \tilde{w}(\varepsilon_4) \right| \leq \frac{1}{4} \sum_{j=0}^{\tilde{\delta}(\kappa, h_j)},
\]

where the following identities are used:

\[
\tilde{\delta}(\kappa, h_0) = \int_0^1 \zeta^\kappa (e^{\frac{\varepsilon_4}{\varepsilon_3}} - 1) \, d\zeta;
\]

\[
\tilde{\delta}(\kappa, h_1) = \int_0^1 \zeta^\kappa (e^{\frac{\varepsilon_4}{\varepsilon_3}} - 1) \, d\zeta.
\]

Thus, our proof is completed. \(\square \)

Remark 2.6 Inequality (2.14) with \(\kappa = 1 \) becomes the following inequality:

\[
\left| \frac{1}{\varepsilon_4 - \varepsilon_3} \int_{\varepsilon_3}^{\varepsilon_4} \tilde{w}(x) \, dx - \tilde{w}(\frac{\varepsilon_3 + \varepsilon_4}{2}) \right| \leq \left(\varepsilon_4 - \varepsilon_3 \right) \left(3 + 4e - 8e^\frac{1}{2} \right) \left| \tilde{w}(\varepsilon_3) \right| + \left| \tilde{w}(\varepsilon_4) \right| \leq \frac{1}{4} \sum_{j=0}^{\tilde{\delta}(\kappa, h_j)} \left| \tilde{w}(\varepsilon_3) \right| + \left| \tilde{w}(\varepsilon_4) \right|. \tag{2.15}
\]

3 He’s inequality

This section deals with the HH-inequality in the sense of He’s fractional derivatives as introduced in Definition 3.1. As we discussed before, there are many definitions on fractional derivatives in the literature. Hereafter we recall the fractional derivatives by the variational iteration method [46, 47]. A complete review on variational iteration method and its application and development are available in references [48, 49].

Let us recall the following fractional derivative introduced by He [47].
Definition 3.1 For any L^1 function \bar{w} on an interval $[0, s]$, the κth He's fractional derivative of $\bar{w}(s)$ is defined by

$$D_\kappa^s \bar{w}(s) = \frac{1}{\Gamma(n-\kappa)} \frac{d^n}{ds^n} \int_0^s (s-\zeta)^n \bar{w}(\zeta) d\zeta.$$

Now, by making use of exp-convexity of \bar{w}, we have

$$\bar{w}\left(\frac{\varepsilon_3 + \varepsilon_4}{2}\right) = \bar{w}\left(\frac{[\varepsilon_3 + (1-\varepsilon_3)\varepsilon_4] + [(1-\varepsilon_3 + \varepsilon_4)]}{2}\right) \leq (\varepsilon^2_3 - 1) \left[\bar{w}(\varepsilon_3 + (1-\varepsilon_3)\varepsilon_4) + \bar{w}(1-\varepsilon_3 + \varepsilon_4)\right]. \tag{3.1}$$

Taking $\varepsilon_3 = 0$ and $\varepsilon_4 > 0$ for all $s \in (0, 1)$, multiplying by $\frac{(s-\zeta)^{n-\kappa}}{\Gamma(n-\kappa)}$ on both sides of (3.1), and integrating with respect to t over $[0, 1]$, we get

$$\frac{1}{\Gamma(n-\kappa)} \bar{w}\left(\frac{\varepsilon_4}{2}\right) \int_0^s (s-\zeta)^{n-\kappa} d\zeta \leq \frac{(\varepsilon^2_3 - 1)}{\Gamma(n-\kappa)} \left[\int_0^s (t-\zeta)^{n-\kappa} \bar{w}(1-\varepsilon_4) d\zeta + \int_0^s (\zeta-\varepsilon_3)^{n-\kappa} \bar{w}(\varepsilon_4) d\zeta\right].$$

Hence

$$\frac{(-1)^{n-\kappa}s^{n-\kappa}}{\Gamma(n-\kappa)} \bar{w}\left(\frac{\varepsilon_4}{2}\right) \leq \frac{(\varepsilon^2_3 - 1)/s^{n-\kappa}}{\Gamma(n-\kappa)} \left[\int_0^s (s-\zeta)^{n-\kappa} \bar{w}(\varepsilon_4) d\zeta + \int_0^s (\zeta-\varepsilon_3)^{n-\kappa} \bar{w}(\varepsilon_4) d\zeta\right]. \tag{3.2}$$

After getting the n^{th} derivatives on both sides of (3.2) with respect to s and using Definition 3.1, we obtain

$$(-1)^{n-\kappa} \bar{w}\left(\frac{\varepsilon_4}{2}\right) \leq \frac{(\varepsilon^2_3 - 1)/s^{n-\kappa}}{\Gamma(n-\kappa)} \left[D_{sb}^n \bar{w}(sb) + (-1)^{n-\kappa}D^s_{(1-s)b} \bar{w}(1-s)b\right]. \tag{3.3}$$

4 Examples

In this section, some examples in the frame of special functions, matrices, and fractional Zakharov–Kuznetsov functions are selected to fulfil the applicability of obtained results.

Example 4.1 Let the function $\mathcal{J}_\beta : \mathcal{R} \rightarrow [1, \infty)$ be defined by [50]

$$\mathcal{J}_\beta(z) = 2^\beta \Gamma(\beta + 1) z^{-\beta} I_\beta(z), \quad z \in \mathcal{R}.$$

In our attempt, we consider the first kind modified Bessel function I_β, given by [50]

$$I_\beta(z) = \sum_{n=0}^{\infty} \frac{z^{\beta + 2n}}{n! \Gamma(\beta + n + 1)}.$$
Then, the first and second order derivatives of $J_{\bar{\rho}}(z)$ are given as follows:

\[
J'_{\bar{\rho}}(z) = \frac{z}{2(\bar{\rho} + 1)} J_{\bar{\rho}+1}(z),
\]

\[
J''_{\bar{\rho}}(z) = \frac{1}{4(\bar{\rho} + 1)} \left[\frac{z^2}{\bar{\rho} + 2} J_{\bar{\rho}+2}(z) + 2J_{\bar{\rho}+1}(z) \right].
\]

(4.1)

Let $\bar{w}(z) := J'_{\bar{\rho}}(z)$. Then, with the help of Remark 2.5 and the two identities in (4.1), we can deduce

\[
\left| \frac{\varepsilon_3 J_{\bar{\rho}+1}(\varepsilon_3) + \varepsilon_4 J_{\bar{\rho}+1}(\varepsilon_4)}{4(\bar{\rho} + 1)} - \frac{J_{\bar{\rho}}(\varepsilon_4) - J_{\bar{\rho}}(\varepsilon_3)}{\varepsilon_4 - \varepsilon_3} \right|
\leq (\varepsilon_4 - \varepsilon_3) \left(4e - 7 \right) \left\{ \frac{\varepsilon_3^2 J_{\bar{\rho}+2}(\varepsilon_3) + \varepsilon_4^2 J_{\bar{\rho}+2}(\varepsilon_4)}{8(\bar{\rho} + 1)(\bar{\rho} + 2)} + \frac{J_{\bar{\rho}+1}(\varepsilon_3) + J_{\bar{\rho}+1}(\varepsilon_4)}{4(\bar{\rho} + 1)} \right\}.
\]

Also, from Remark 2.6 and the two identities in (4.1), we can deduce

\[
\left| \frac{J_{\bar{\rho}}(\varepsilon_4) - J_{\bar{\rho}}(\varepsilon_3)}{\varepsilon_4 - \varepsilon_3} - J_{\bar{\rho}+1}(\varepsilon_3 + \varepsilon_4) {2} \right|
\leq (\varepsilon_4 - \varepsilon_3)(3 + 4e - 8e) \left\{ \frac{\varepsilon_3^2 J_{\bar{\rho}+2}(\varepsilon_3) + \varepsilon_4^2 J_{\bar{\rho}+2}(\varepsilon_4)}{16(\bar{\rho} + 1)(\bar{\rho} + 2)} + \frac{J_{\bar{\rho}+1}(\varepsilon_3) + J_{\bar{\rho}+1}(\varepsilon_4)}{8(\bar{\rho} + 1)} \right\}
\]

for $\bar{\rho} > -1, \varepsilon_3, \varepsilon_4 \in \mathbb{R}$ with $0 < \varepsilon_3 < \varepsilon_4$.

Example 4.2 In this example, we deal with the second kind modified Bessel function $K_{\bar{\rho}}$, given by [50]

\[
K_{\bar{\rho}}(z) = \frac{\pi}{2} J_{\bar{\rho}}(z) + J_{\bar{\rho}}(z) \sin(\bar{\rho}\pi).
\]

Let $\bar{w}(z) := \left(\frac{K_{\bar{\rho}}(z)}{z^{\bar{\rho}}} \right)^\prime$ with $\bar{\rho} \in \mathbb{R}$. Following [50], we have the following integral representation:

\[
K_{\bar{\rho}}(z) = \int_0^\infty e^{-z \cosh t} \cosh(\bar{\rho}t) \, dt, \quad z > 0.
\]

One can easily observe that the function $z \mapsto K_{\bar{\rho}}(z)$ is completely monotonic on $(0, \infty)$ for each $\bar{\rho} \in \mathbb{R}$. Also, we know that the product of two completely monotonic functions is also completely monotonic, then $z \mapsto \bar{w}(z)$ is a strictly completely monotonic function on $(0, \infty)$ for each $\bar{\rho} > 1$. Thus, the function

\[
\bar{w}(z) = \left(\frac{K_{\bar{\rho}}(z)}{z^{\bar{\rho}}} \right)^\prime = \frac{K_{\bar{\rho}+1}(z)}{z^{\bar{\rho}}};
\]

\[
\bar{w}'(z) = \frac{K_{\bar{\rho}+2}(z)}{z^{\bar{\rho}}} - \frac{K_{\bar{\rho}+1}(z)}{z^{\bar{\rho}+1}}
\]

(4.2)

becomes strictly completely monotonic on $(0, \infty)$ for each $\bar{\rho} > 1$. Hence $\bar{w}(z)$ becomes a convex function. Then, with the help of identities (4.2), and Remark 2.5 and Remark 2.6,
respectively, we can deduce
\[
\frac{e_3^\beta K_{\beta+1}(\epsilon_4) + e_4^\beta K_{\beta+1}(\epsilon_3)}{2} + \frac{e_3^\beta K_{\beta}(\epsilon_4) - e_3^\beta K_{\beta}(\epsilon_3)}{\epsilon_4 - \epsilon_3} \\
\leq (\epsilon_4 - \epsilon_3) \left(4e^{\frac{1}{2}} - e - \frac{7}{2} \right) \\
\times \left\{ e_4^\beta K_{\beta+1}(\epsilon_3) + e_3^\beta K_{\beta+1}(\epsilon_4) \right\} + \frac{e_3^\beta K_{\beta}(\epsilon_3) + e_4^\beta K_{\beta}(\epsilon_4)}{2} \\
\right) \\
\text{and}
\leq (\epsilon_4 - \epsilon_3) \left(3 + 4e - 8e^{\frac{1}{2}} \right) \\
\times \left\{ e_4^\beta K_{\beta+1}(\epsilon_3) + e_3^\beta K_{\beta+1}(\epsilon_4) \right\} + \frac{e_3^\beta K_{\beta}(\epsilon_3) + e_4^\beta K_{\beta}(\epsilon_4)}{4} \\
\right) \\
\text{for each } \beta > 0\text{ and } \epsilon_3, \epsilon_4 \in \mathbb{R} \text{ with } 0 < \epsilon_3 < \epsilon_4.
\]

Example 4.3 In this example, we deal with the \(q \)-digamma function \(\Psi_{\rho} \), given by [50]

\[
\Psi_{\rho}(z) = -\ln(1 - \rho) + \ln(\rho) \sum_{i=0}^{\infty} \frac{\rho^{iz}}{1 - \rho^{iz}} \\
= -\ln(1 - \rho) + \ln(\rho) \sum_{i=1}^{\infty} \frac{\rho^{iz}}{1 - \rho^{iz}} \text{ for } 0 < \rho < 1,
\]

or equivalently,

\[
\Psi_{\rho}(z) = -\ln(\rho - 1) + \ln(\rho) \left(z - \frac{1}{2} \sum_{i=0}^{\infty} \frac{\rho^{-(i+1)}z}{1 - \rho^{-(i+1)}} \right) \\
= -\ln(\rho - 1) + \ln(\rho) \left(z - \frac{1}{2} \sum_{i=1}^{\infty} \frac{\rho^{-iz}}{1 - \rho^{-iz}} \right) \text{ for } \rho > 1 \text{ and } z > 0.
\]

From the above definitions, we can observe that the function \(z \mapsto \Psi'_{\rho}(z) \) is completely monotonic on \((0, \infty)\) for each \(\rho > 0 \). Consequently, we see that \(z \mapsto \Psi''_{\rho}(z) \) is a convex function on \((0, \infty)\).

Set \(\bar{w}(z) := \Psi'_{\rho}(z) \) with \(\rho > 0 \), then we see that \(\bar{w}'(z) := \Psi''_{\rho}(z) \) is completely monotonic on \((0, \infty)\). Then, with the help of Remark 2.5, we can obtain

\[
\Psi''_{\rho} \left(\frac{\epsilon_3 + \epsilon_4}{2} \right) \leq \left| \Psi_{\rho}(\epsilon_4) - \Psi_{\rho}(\epsilon_3) \right| \leq \frac{\Psi_{\rho}(\epsilon_3) + \Psi_{\rho}(\epsilon_4)}{2}.
\] (4.3)

Combining inequalities (1.5) and (2.10), we obtain

\[
\left| \frac{\Psi_{\rho}(\epsilon_3) + \Psi_{\rho}(\epsilon_4)}{2} - \frac{\Psi_{\rho}(\epsilon_4) - \Psi_{\rho}(\epsilon_3)}{\epsilon_4 - \epsilon_3} \right| \leq \frac{\epsilon_4 - \epsilon_3}{2} \left(4e^{\frac{1}{2}} - e - \frac{7}{2} \right) \left(|\Psi''_{\rho}(\epsilon_3)| + |\Psi''_{\rho}(\epsilon_4)| \right).
\]
Also, combining inequalities (1.5) and (2.15), we obtain
\[
\left| \frac{\Psi_{\rho}(\epsilon_4) - \Psi_{\rho}(\epsilon_3)}{\epsilon_4 - \epsilon_3} - \Psi_{\rho}'\left(\frac{\epsilon_3 + \epsilon_4}{2}\right) \right| \leq \frac{\epsilon_4 - \epsilon_3}{4} \left(3 + 4e - 8e^2\right) \left(\left|\Psi_{\rho}''(\epsilon_3)\right| + \left|\Psi_{\rho}''(\epsilon_4)\right|\right).
\]

Example 4.4 We denote by \mathbb{C}^n the set of $n \times n$ complex matrices, by \mathbb{M}_n the algebra of $n \times n$ complex matrices, and by \mathbb{M}^+_n the strictly positive matrices in \mathbb{M}_n. That is, $A \in \mathbb{M}^+_n$ if $\langle Ax, x \rangle > 0$ for all nonzero $x \in \mathbb{C}^n$.

In [51], Sababheh proved that the function
\[
f(v) = \|A^\top XB^{1-v} + A^{1-v} XB^v\|, \quad A, B \in \mathbb{M}^+_n, \quad X \in \mathbb{M}_n
\]
is convex for all $v \in [0, 1]$. Then, from [27], this nonnegative function is exp-convex on $[0, 1]$.

Then, by using Propositions 2.1 and 2.2 with $A, B \in \mathbb{M}^+_n$, $X \in \mathbb{M}_n$, respectively, we have
\[
\left\| A^{\frac{\epsilon_4 - \epsilon_3}{2}} XB^{1-\frac{\epsilon_4 + \epsilon_3}{2}} + A^{1-\frac{\epsilon_4 - \epsilon_3}{2}} XB^{\frac{\epsilon_4 + \epsilon_3}{2}} \right\|
\leq \left(\frac{e^{1/2} - 1}{\epsilon_4 - \epsilon_3}\right)^2 \left(\frac{\kappa - 1}{\kappa}\right)^{\gamma(\kappa, 1) + (-1)^s \gamma(\kappa, -1) - \frac{2}{\kappa}}
\times \left\| A^{\gamma}(XB^{1-\gamma})^3 + A^{1-\gamma}(XB^\gamma)^3 \right\| + \left\| A^{\gamma}(XB^{1-\gamma})^3 + A^{1-\gamma}(XB^\gamma)^3 \right\|
\]
and
\[
\left\| A^{\frac{\epsilon_4 - \epsilon_3}{2}} XB^{1-\frac{\epsilon_4 + \epsilon_3}{2}} + A^{1-\frac{\epsilon_4 - \epsilon_3}{2}} XB^{\frac{\epsilon_4 + \epsilon_3}{2}} \right\|
\leq \left(\frac{e^{1/2} - 1}{\epsilon_4 - \epsilon_3}\right)^2 \left(\frac{\kappa - 1}{\kappa}\right)^{\gamma(\kappa, 1/2) + (-2)^s \gamma(\kappa, -1/2) - \frac{2}{\kappa}}
\times \left\| A^{\gamma}(XB^{1-\gamma})^3 + A^{1-\gamma}(XB^\gamma)^3 \right\| + \left\| A^{\gamma}(XB^{1-\gamma})^3 + A^{1-\gamma}(XB^\gamma)^3 \right\|
\]
for all $\epsilon_3, \epsilon_4 \in [0, 1]$, where $\epsilon_3 < \epsilon_4$ and $\kappa > 0$.

The following two examples are dedicated to Sect. 3.

Example 4.5 Consider the fractional Zakharov–Kuznetsov ZK(2, 2, 2) equation [52]:
\[
D_s^\kappa u + \left(\frac{u^2}{x}\right)_x + \frac{1}{8} \left(\frac{u^2}{xxx}\right) + \frac{1}{8} \left(\frac{u^2}{yyy}\right) = 0.
\]

Denote $f = u(x, y, T)$, where $T = \frac{s^\kappa}{\Gamma(1+\kappa)}$. Also, suppose that $\epsilon_4 > 0$ for all $s \in (0, 1)$. From equation (4.6), we have
\[
D_s^\kappa u = \left[-\left(\frac{u^2}{x}\right)_x + \frac{1}{8} \left(\frac{u^2}{xxx}\right) + \frac{1}{8} \left(\frac{u^2}{yyy}\right)\right].
\]
Applying inequality (3.3), we get

\[
(-1)^{n-x-1} u \left(x, y, \frac{\epsilon_4}{2} \right)
\]

\[
\leq \frac{(e_1^\epsilon - 1)s^\epsilon}{\epsilon_4^{n-x}} \left[D_{x_4}^\epsilon u(x, y, s\epsilon_4) + (-1)^{n-x-1} D_{(1-s)\epsilon_4}^\epsilon u(x, y, (1-s)\epsilon_4) \right],
\]

(4.8)

where \(D_{x_4}^\epsilon u \) is defined by (4.7).

Example 4.6 Consider the fractional Zakharov–Kuznetsov ZK(3,3,3) equation [52]

\[
D_{x}^\epsilon w + (w^3)_x + 2(w^3)_{xxx} + 2(w^3)_{yyy} = 0.
\]

(4.9)

Let us denote \(f = w(x, y, T) \), where \(T = \frac{t^\epsilon}{\Gamma(1+\epsilon)} \). Also, suppose that \(\epsilon > 0 \) for all \(s \in (0,1) \). From equation (4.9), we have

\[
D_{x}^\epsilon w = -\left[(w^3)_x + 2(w^3)_{xxx} + 2(w^3)_{yyy} \right].
\]

(4.10)

Applying inequality (3.3), we obtain

\[
(-1)^{n-x-1} w \left(x, y, \frac{\epsilon_4}{2} \right)
\]

\[
\leq \frac{(e_1^\epsilon - 1)s^\epsilon}{\epsilon_4^{n-x}} \left[D_{x_4}^\epsilon w(x, y, s\epsilon_4) + (-1)^{n-x-1} D_{(1-s)\epsilon_4}^\epsilon w(x, y, (1-s)\epsilon_4) \right],
\]

(4.11)

where \(D_{x_4}^\epsilon w \) is defined by (4.10).

5 Conclusion

The study dealt with investigating new inequalities of HH-type for the new type of convex functions, namely the exp-convex function. The new results are established via the Riemann–Liouville fractional operators. Finally, we have applied our findings on special functions. By examining this, we can see the usefulness and efficiency of our results.

Acknowledgements

The second author would like to thank Prince Sultan University for funding this work through research group Nonlinear Analysis Methods in Applied Mathematics (NAMAM) group number RG-DES-2017-01-17.

Funding

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Consent for publication

Not applicable.

Authors’ contributions

All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.
27. Kadakal, M., I¸scan, I.: Exponential type convexity and some related inequalities. J. Inequal. Appl.

23. Baleanu, D., Mohammed, P.O., Vivas-Cortez, M., Rangel-Oliveros, Y.: Some modifications in conformable fractional MT

22. Mohammed, P.O.: Some new Hermite–Hadamard type inequalities for

25. Vivas-Cortez, M., Abdeljawad, T., Mohammed, P.O., Rangel-Oliveros, Y.: Simpson's integral inequalities for twice differentiable convex functions. Math. Inequal. Appl. 20, Article ID 6598682 (2020)

24. Mohammed, P.O., Abdeljawad, T.: Integral inequalities for a fractional operator of a function with respect to another function with nonsingular kernel. Adv. Differ. Equ. 2020, 374 (2020)

20. Baleanu, D., Mohammed, P.O., Zeng, S.: Inequalities of trapezoidal type in involving generalized fractional integrals. AIMS Math. 5, 7316–7331 (2020)

19. Denton, Z., Vatsala, A.S.: Fractional integral inequalities and applications. Comput. Math. Appl. 59(3), 1087–1094 (2010)

18. Basci, Y., Baleanu, D.: Certain Hermite–Hadamard inequalities for logarithmically convex functions with applications. Mathematics 7, 163 (2019)

17. Saker, S.H., Rezk, H.M., Abohela, I., Baleanu, D.: Refinement multidimensional dynamic inequalities with general kernels and measures. J. Inequal. Appl. 2019, 306 (2019)

16. Basci, Y., Baleanu, D.: Ostrowski type inequalities involving psi-Hilfer fractional integrals. Mathematics 7, 770 (2019)

15. Yasemin, B., Baleanu, D.: Hardy-type inequalities within fractional derivatives without singular kernel. J. Inequal. Appl. 2018, 304 (2018)

14. Yasemin, B., Baleanu, D.: New aspects of Opial-type integral inequalities. Adv. Differ. Equ. 2018, 452 (2018)

13. Yasemin, B., Baleanu, D.: Fractional complex transform for fractional differential equations. Math. Comput. Appl. 25(1), 58–68 (2012)

12. Jarad, F., Abdeljawad, T., Hammouch, Z.: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

10. Mohammed, P.O., Abdeljawad, T., Jia, J., Chu, Y.-M.: Existence and uniqueness of uncertain fractional backward difference equations of Riemann–Liouville type. Math. Probl. Eng. 2020, Article ID 6598682 (2020)

9. Abdeljawad, T., Baleanu, D.: Fractional integral inequalities and applications. Math. Comput. Model. Mat. 57, 7316–7331 (2020)

8. Atangana, A.: Fractional Operators with Constant and Variable Order with Application to Geo-Hydrology. Academic Press, New York (2017)

7. Li, Z.B., He, J.-H., Li, Z.B.: Fractional model for heat conduction in polar bear hairs. Therm. Sci. 15, 1–5 (2011)

6. Wang, G.L., He, J.-H., Li, Z.B.: Fractional complex transform for Riemann–Liouville type. Math. Probl. Eng. 2020, Article ID 1250970 (2020)

5. He, J.-H., Elagan, S.K., Li, Z.B.: Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus. Phys. Lett. A 315, 257–259 (2012)

4. Baleanu, D., Mohammad, P.O., Valdes, J.E.N.: Non-conformable fractional Laplace transform. Kragujev. J. Math. 46(3), 341–354 (2022)

3. Martinez, M., Mohammad, P.O., Valdes, J.E.N.: Non-conformable fractional Laplace transform. Kragujev. J. Math. 46(3), 341–354 (2022)

2. Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117, 16–20 (2018)

1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)
29. Sarikaya, M.Z., Yildirim, H.: On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 17(2), 1049–1059 (2017)
30. Mohammed, P.O.: Hermite–Hadamard inequalities for Riemann–Liouville fractional integrals of a convex function with respect to a monotone function. Math. Methods Appl. Sci., 1–11 (2019). https://doi.org/10.1002/mma.5784
31. Mohammed, P.O., Abdeljawad, T.: Modification of certain fractional integral inequalities for convex functions. Adv. Differ. Equ. 2020, 69 (2020)
32. Mohammed, P.O., Brevik, I.: A new version of the Hermite–Hadamard inequality for Riemann–Liouville fractional integrals. Symmetry 12, 610 (2020). https://doi.org/10.3390/sym12040610
33. Mohammed, P.O., Sarikaya, M.Z.: Hermite–Hadamard type inequalities for F-convex function involving fractional integrals. J. Inequal. Appl. 2018, 359 (2018)
34. Mohammed, P.O., Sarikaya, M.Z.: On generalized fractional integral inequalities for twice differentiable convex functions. J. Comput. Appl. Math. 372, 112740 (2020)
35. Mohammed, P.O., Sarikaya, M.Z., Baleanu, D.: On the generalized Hermite–Hadamard inequalities via the tempered fractional integrals. Symmetry 12, 595 (2020). https://doi.org/10.3390/sym12040595
36. Han, J., Mohammed, P.O., Zeng, H.: Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 18(1), 794–806 (2020)
37. Abdeljawad, T., Mohammed, P.O., Kashuri, A.: New modified conformable fractional integral inequalities of Hermite–Hadamard type with applications. J. Funct. Spaces 2020, Article ID 4352357 (2020)
38. Chu, H.-H., Rashid, S., Hammouch, Z., Chu, Y.-M.: New fractional estimates for Hermite–Hadamard–Mercer’s type inequalities. Alex. Eng. J. 59, 3079–3089 (2020)
39. Abdeljawad, T., Rashid, S., Hammouch, Z., et al.: Some new local fractional inequalities associated with generalized (s,m)-convex functions and applications. Adv. Differ. Equ. 2020, 406 (2020)
40. Rashid, S., Latif, M.A., Hammouch, Z., Chu, Y.-M.: Fractional integral inequalities for strongly h-preinvex functions for a kth order differentiable functions. Symmetry 11, 1448 (2020)
41. Rashid, S., Kalsoom, H., Hammouch, Z., Ashraf, R., Baleanu, D., Chu, Y.-M.: New multi-parametrized estimates having pH-order differentiability in fractional calculus for predominating h-convex functions in Hilbert space. Symmetry 12, 222 (2020)
42. Mohammed, P.O., Vivas-Cortez, M., Abdeljawad, T., Rangel-Oliveros, Y.: Integral inequalities of Hermite–Hadamard type for quasi-convex functions with applications. AIMIS Math. 5, 7316–7331 (2020)
43. Mohammed, P.O., Abdeljawad, T., Kashuri, A.: Fractional Hermite–Hadamard–Fejér inequalities for a convex function with respect to an increasing function involving a positive weighted symmetric function. Symmetry 12, 1503 (2020)
44. Mohammed, P.O., Abdeljawad, T., Zeng, S., Kashuri, A.: Fractional Hermite–Hadamard integral inequalities for a new class of convex functions. Symmetry 12, 1485 (2020)
45. Magnasco, V.: Elementary Molecular Quantum Mechanics: Mathematical Methods and Applications, 2nd edn. Elsevier, New York (2013)
46. He, J.-H.: A short remark on fractional variational iteration method. Phys. Lett. A 375, 3362–3366 (2011)
47. He, J.-H.: A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53, 3698–3718 (2014)
48. He, J.-H.: Asymptotic methods for solitary solutions and compactons. Abstr. Appl. Anal. 2012, Article ID 916793 (2012)
49. He, J.-H.: Some asymptotic methods for strongly nonlinear equations. Int. J. Mod. Phys. B 20(10), 1141–1199 (2006)
50. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1944)
51. Sababheh, M.: Convex functions and means of matrices (2016). arXiv:1606.08099v1 [math.FA]
52. Wang, K.-L.: Numerical method for fractional Zakharov–Kuznetsov equations with He’s fractional derivative. Therm. Sci. 23(4), 2163–2170 (2019)