Generalized epileptic seizure in an adolescent idiopathic scoliosis (AIS) patient with syringomyelia after deformity correction surgery

Gultekin Sitki Cecen a, *, Deniz Gulabi a, Ismail Oltulu b, Tolga Onay c

a Dr. Lütfi Kirdar Kartal Training and Research Hospital, Kartal, Istanbul 34862, Turkey
b Medipol University, Faculty of Medicine, Orthopaedic and Traumatology Department, Istanbul 34083, Turkey
c Adıyaman State Hospital, Adıyaman 02200, Turkey

A B S T R A C T

INTRODUCTION: Adolescent idiopathic scoliosis and epilepsy are pathologies rarely seen together. In this study we report an AIS case we operated in which epilepsy was seen post-operatively. We want to emphasize the items one should pay attention in such cases.

PRESENTATION OF CASE: In a 14-year-old girl with AIS and concomitant syringomyelia and spondylolisthesis, posterior deformity correction and fusion were performed. After stabilization the patient was discharged on the 10th day of discharge epileptic seizure appeared.

DISCUSSION: In scoliosis surgery, the mechanic stress and bleeding caused by the operation itself can cause neurological problems due to primary nervous system injury. The operation and bleeding during and after the operation, pulmonary and cardiac functional instability, metabolic imbalance can be the causes of epileptic seizures.

CONCLUSION: Epilepsy seen after a major surgery like scoliosis surgery, can be either as a result of central nervous system origined vascular and hypoxic problems or metabolic. In our case we concluded that massive hemorrhage must have induced epilepsy. In neurologic consultations the case was considered as an incidental epileptic picture.

© 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Scoliosis is frequently idiopathic, in patients with additional neurological problems like syringomyelia complication rate is higher.1

Syringomyelia is a cystic cavitation of the spinal cord accompanying 80% of the scoliosis cases. Usually cysts localized at the dorsal aspect of the central canal are supposed to squeeze medial nuclear groups thus effecting anterior horn cells and it is reported that at these levels trunkal muscular balance is lost, influencing scoliosis.2,3

Epilepsy affects approximately 1% of the whole population and though different etiological factors are suggested, certain etiological cause cannot be obtained in most of the cases. Genetic factors are thought to play a role in the etiology of 40% of epilepsy cases which cannot be explained and which are idiopathic.4–6 In epileptic seizures the most common seizures are partial epileptic seizures.7 In epilepsy etiology, cellular metabolic mechanisms also share a part and blood Ca2+ levels should be closely monitored. Central nervous system space occupying lesions also should be kept in mind in etiology. After massive hemorrhages, cerebral ischemia can trigger convulsions at the early post-operative period.8,9

In our literature survey there is no reported case of epilepsy after scoliosis surgery yet known to our knowledge. In our study we report a case of rare complication of a case of with syringomyelia after corrective scoliosis surgery of an AIS patient.

2. Presentation of case

A 14-year-old female patient was admitted with a complaint of back pain, low-back pain and curvature of her trunk. Her physical examination and radiological observation revealed thoracolumbar scoliosis. Also at L5–S1 level Grade I spondylolisthesis, at C4–5 level noncompressive central disk protrusions, thoracal syringomyelia was noted.

After overall investigation and planning corrective surgery for scoliosis was performed under general anesthesia with posterior incision between Thorakal 2 and Lumbar 3 vertebrae by dissection of posterior elements and muscles. To avoid injury to the syrinx without using an osteotome, with the help of burr motors articular resections were performed, Spondylolisthesis screws were inserted at the concave side of the T5 and L1 vertebrae. T2–4 vertebrae were fixed with pedicular screws. At the convex side of the vertebrae pedicle screws were applied and instrumentation was concluded. After the rod adopted to the spondylolisthesis screws of the concave side were pulled, the fixation ended with the rod applied to
Fig. 1. 14-Year-old female standing orthorontgenogram AP graphy. Lenke Tip3A.

Fig. 2. 14-Year-old female standing orthorontgenogram LAT graphy. Lenke Tip3A.

Fig. 3. 14-Year-old female standing orthorontgenogram post-operative AP graphy.

Fig. 4. 14-Year-old female standing orthorontgenogram post-operative LAT graphy.
3. Discussion

In scoliosis surgery, the mechanical stress and bleeding caused by the operation itself can cause neurological problems due to primary nervous system injury. Besides we sometimes have to face more complicated problems like epileptic seizures, operation and bleeding during and after the operation, pulmonary and cardiac functional instability, metabolic imbalance can be the causes of epileptic seizures.1,2 In early post-operative period change in Ca vs Mg levels, infection, subarachnoid hemorrhage can also cause epilepsy.10,13,14 During AIS surgery 2000–2500 ml bleeding in average is accepted as normal. This bleeding can cause hemorrhagic shock. The hypoxia due to bleeding can damage cellular functioning in the brain causing convulsive seizures. Massive blood transfusion can cause hypocalcemia which can trigger convulsions.14–19

In our case we report that hypoxia depending on massive hemorrhage can be the cause of epileptic seizure.

In AIS surgery to restrict hemorrhage, primarily hypotensive anesthesia, secondarily gentle dissection and decortication of the muscles, control of blood loss, rapid blood transfusion are necessary to avoid probable neurological problems.

In our case hemorrhage amount and electrolyte levels were carefully monitored and adequate timing and transfusion rates are administered to avoid hypoxic injury.

4. Conclusion

In literature after scoliosis surgery this is the only reported case of epilepsy yet known to our knowledge. We report this case to share our experience with epilepsy problem in an AIS case and draw attention to the importance of patient history, monitoring, and follow-up. We think that in AIS operations, knowledge about hypoxic injury and problems must be added to the pre-operative patient information and consent form.

In this case we could not determine any findings to explain the cause of epilepsy and concluded that the epileptic seizure is miscellaneous.

Conflict of interest statement

None.

Funding

None.

Ethical approval

Written informed consent was obtained from the patient and her family for publication of this case report and accompanying images. A copy of the written consent is available for review by Editor in Chief of this journal on request.

Author contributions

Gultekin Sıtkı Cecen: design the study, writing; Deniz Gulabi: writing, review; İsmail Oltulu: data collection; Tolga Onay: data collection.

References

1. Weiss HR, Goodall D. Rate of complications in scoliosis surgery. Spine 2008;33(3):9. http://dx.doi.org/10.1097/BRS.0b013e318167f8c9.
2. Williams B. Orthopaedic features in the presentation of syringomyelia. Journal of Bone and Joint Surgery 1979;61B:314.
3. Huebert HT, MacKinnon WB. Syringomyelia and scoliosis. Journal of Bone and Joint Surgery 1969;51B:338.
4. Browne TR, Holmes GL. Handbook of epilepsy. Epilepsy: definitions and background. 3rd edition, USA; 2004:6–7.
5. Guberman A, Bruni J. Essentials of clinical epilepsy. Epidemiology. 2nd edition, USA; 1999.
6. Cockerell CO, Shorvon SD. Epilepsy current concepts. Epidemiology. London; 1996.
7. Walter N, Bradley G, Robert B, Daroff, Gerald M, Fenichel C, et al. Eurology in clinical practice. Epilepsies 2000;71:1745.
8. Janicki J, Alman B. Scoliosis: review of diagnosis and treatment. Paediatric Child Health 2007;12(November (9)):771–6.
9. Siewiczki TM, Zhou K, Yochem J, Chen L, Jin Y. TRPM channels mediate epileptic-like convulsions via systemic ion homeostasis. Current Biology 2011;21(10):883–8.
10. Marino D, Vatti G, Ruffa A, Malandrini A, Rocchi R, Bracco S, et al. Transient periodic lateralised epileptiform discharges (PLEDs) following internal carotid artery stenting. Epileptic Disorders 2012;14(1):85–9.
11. Drummond JC, Petrovitch CT. The massively bleeding patient. Anesthesiology Clinics of North America 2001;19(4):633–48.
12. Kruskall MS, Mintz PD, Bergin JJ, Johnston MF, Klein HG, Miller JD, et al. Transfusion therapy in emergency medicine. Annals of Emergency Medicine 1988;17(4):327–35.
13. Xing J, Yan X, Estevez A, Strange K. Highly Ca2+-selective TRPM channels regulate IP3-dependent oscillatory Ca2+ signaling in the C. elegans intestine. Journal of General Physiology 2008;131(3):245–55.
14. Ho KM, Leonard AD. Concentration-dependent effect of hypocalcaemia on mortality of patients with critical bleeding requiring massive transfusion: a cohort study. Anesthesia and Intensive Care 2011;39(1):46–54.
15. Ho KM, Leonard A. Risk factors and outcome associated with hypomagnesemia in massive transfusion. Transfusion 2011;51(February (2)):270–6.
16. Wilson RF, Binkley LE, Sabo Jr FM, Wilson JA, Munkarah MM, Dulchavsky SA, et al. Electrolyte and acid–base changes with massive blood transfusions. American Surgeon 1992;58(9):535–44.
17. Rutledge R, Sheldon GF, Collins ML. Massive transfusion. Critical Care Clinics 1986;2(October (4)):791–805.
18. Sibler KC, Napolitano LM. Complications of massive transfusion. Chest 2010;137(January (1)):209–20, http://dx.doi.org/10.1378/chest.09-0252.
19. Lier H, Krep H, Schroeder S, Stuber FJ. Preconditions of hemostasis in Trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. Trauma 2008;65(October (4)):951–60.

Open Access
This article is published Open Access at sciencedirect.com. It is distributed under the JJSCR Supplemental terms and conditions, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.