Enhanced Approximation of Labeled Multi-object Density based on Correlation Analysis

Wei Yi, Suqi Li
University of Electronic Science and Technology of China, School of Electronic Engineering, Chengdu City, China
Email: kussoyi@gmail.com

Abstract—Multi-object density is a fundamental descriptor of a point process and has ability to describe the randomness of number and values of objects, as well as the statistical correlation between objects. Due to its comprehensive nature, it usually has a complicate mathematical structure making the set integral suffering from the curse of dimension and the combinatorial nature of the problem. Hence, the approximation of multi-object density is a key research theme in point process theory or finite set statistics (FISST). Conventional approaches usually discard part or all of statistical correlation mechanically in return for computational efficiency, without considering the real situation of correlation between objects. In this paper, we propose an enhanced approximation of labeled multi-object (LMO) density which evaluates the correlation between objects adaptively and factorizes the LMO density into densities of several independent subsets according to the correlation analysis. Besides, to get a tractable factorization of LMO density, we derive the set marginal density of any subset of the universal labeled RFS, the generalized labeled multi-Bernoulli (GLMB) RFS family and its subclasses. The proposed method takes into account the simplification of the complicate structure of LMO density and the reservation of necessary correlation at the same time.

I. INTRODUCTION

In multi-object inference, the mission is to simultaneously estimate the number of objects as well as their individual states. The applications of multi-object inference involves a wide range of areas, such as forestry [1], biology [2], physics [3], computer vision [4], wireless networks [5], communications [6], multi-target tracking [7], [8], and robotic [9]. The states of objects in multi-object systems such as the coordinates of molecules in a liquid/crystal, trees in a forest, stars in a galaxy is a typical point pattern which is modeled by point processes (specifically simple finite point processes or random finite sets (RFS)) derived from stochastic geometry. The point process theory provides the tools for characterizing the underlying laws of the point patterns. Moreover, finite set statistics (FISST) [10] proposed by Mahler also provides mathematical tools for dealing with RFSs based on a notion of integration and density that is consistent with point process theory.

A fundamental descriptor of point processes is multi-object probability density which can capture the uncertainty of the number and and values of objects, as well as the statistical correlation between objects. Due to its comprehensive nature, the multi-object density usually has a complicate mathematical structure, namely, the multiple hypotheses involving different cardinalities, and the high-dimensional densities conditional on given cardinalities. The core of multi-object estimation is dynamic Bayesian inference. Computing the posterior via Bayes rule requires integrating the product of the prior and likelihood function to obtain the normalizing constant. This integration poses significant practical challenges especially for RFS prior because the complicate structure of multi-object probability density makes the set integral suffer from the curse of dimensionality and the inherently combinatorial nature of the problem.

To solve these problems, tractable approximations of multi-object probability density are necessary and two points during the approximation should be remarked. Firstly, statistical independence between objects can be utilized to enable the parallel implementation to reduce both the number of combination and the dimension of joint density. Secondly, statistical correlation between objects also should be emphasized when required. Statistical correlation usually comes from the ambiguous observation (relative to multiple objects) when considering the posterior multi-object density, or from the interactions between objects in Markov point processes [11]. If one does not consider the correlation when objects strongly depend on each other, multi-object estimation may have a big deviation.

Conventional approach usually approximates multi-object probability density as a certain class of density. There exist two categories of approximate densities: one is to completely discard the correlation between objects and assume thorough independence of objects, such as Poisson process [10], [12], independent identically distributed (i.i.d) process [10], [13], multi-Bernoulli (MB) density [10], [14], [15]. While this kind of densities enjoy many analytical properties, it has been shown that sometimes they are too simplistic for the dynamic Bayesian inference of point processes in complicated scenarios [15]. The other is to cast away only a part of correlation between objects with the typical examples generalized labeled multi-Bernoulli (GLMB) RFS family [16]–[19] and its subclasses. The advantages of the class of GLMB density is that it is a conjugate prior that is also closed under the Chapman-Kolmogorov equation for the standard multi-object system model. Moreover, the set integral of GLMB density only involves the integrals on single-object space getting rid of the curse of dimensionality. However, the class of GLMB densities are not necessarily closed under generic multi-object system because it still assumes independence of objects under each hypothesis involving the existence of different objects. To summarize, the conventional approximate approaches usually
discard part or all of statistical correlation mechanically in return for computational efficiency, without regard for the real situation of correlation between objects.

With the recent development of labeled set filters and their advantageous performance compared to previous (unlabeled) random set filters, such as identifying object identities, simplifying the multi-object transition kernel, the study on point processes turns to the labeled set gradually. In this paper, we propose an enhanced approximate approach for labeled multi-object (LMO) density \(^{[21]}\) which does approximation based on the results of correlation analysis. The proposed method will not approximate the LMO density using a certain type of distribution mechanically regardless the real correlation between objects, but evaluate the correlation between objects adaptively and factorize the LMO density into densities of several independent subsets according to correlation analysis. The proposed method takes into account the simplification of the concentrate structure of LMO density and the reservation of necessary correlation at the same time. Note that the proposed method also can be used to make the further approximation of small class of LMO density, such as GLMB RFS family.

The key point of the proposed approximation is the set marginal density. However, the computation of set marginal density is not mature. In \(^{[22]}\), we preliminarily give the concept of set marginal and its computing method for joint multi-Bernoulli RFS. In this paper, we further derive the analytical expressions of set marginal density for the universal LMO density, GLMB density family and some subclasses of GLMB density including \(\delta\)-GLMB and Marginal \(\delta\)-GLMB (M\(\delta\)-GLMB) density, which guarantee the proposed approximation has great practicability.

II. BACKGROUND

A. Notations

We adhere to the convention that single-object states are represented by lowercase letters, e.g., \(x\), while multi-object states are represented by uppercase letters, e.g., \(X\), \(\pi\). To distinguish labeled states and distributions from the unlabeled ones, bold-type letters are adopted for the labeled ones, e.g., \(X\), \(\pi\). Moreover, blackboard bold letters represent spaces, e.g., the state space is represented by \(\mathbb{X}\), the label space by \(\mathbb{L}\). The collection of all finite sets of \(\mathbb{X}\) is denoted by \(\mathcal{F}(\mathbb{X})\).

B. Labeled RFS and LMO Density

A labeled RFS is an RFS whose elements are identified by distinct labels \(^{[16]}, [17]\). A labeled RFS with (kinematic) state space \(\mathbb{X}\) and (discrete) label space \(\mathbb{L}\) is an RFS on \(\mathbb{X} \times \mathbb{L}\) such that each realization \(X\) has distinct labels, i.e., \(|\mathcal{L}(X)| = |X|\). A labeled RFS and its unlabeled version have the same cardinality distribution. For an arbitrary labeled RFS, its multi-object density can be represented as the expression given in Lemma 1 \(^{[21]}\), and our main results in this paper follow from this expression.

Lemma 1. Given an LMO density \(\pi\) on \(\mathcal{F}(\mathbb{X} \times \mathbb{L})\), and for any positive integer \(n\), we define the joint existence probability of the label set \(\{\ell_1, \ell_2, \cdots, \ell_n\}\) by

\[
\omega(\{\ell_1, \cdots, \ell_n\}) = \int \pi(\{x_1, \ell_1\}, \cdots, \{x_n, \ell_n\}) d(x_1, \cdots, x_n)
\]

and the joint probability density on \(\mathbb{X}^n\) of the states \(x_1, \cdots, x_n\) conditional on their corresponding labels \(\ell_1, \cdots, \ell_n\) by

\[
p(\{x_1, \ell_1\}, \cdots, \{x_n, \ell_n\}) = \frac{\pi(\{x_1, \ell_1\}, \cdots, \{x_n, \ell_n\})}{\omega(\{\ell_1, \cdots, \ell_n\})}.
\]

Thus, the LMO density can be expressed as

\[
\pi(X) = \omega(\mathcal{L}(X)) p(X).\]

C. GLMB RFS Family and Its Subclasses

GLMB RFS family \(^{[16]}\) is a class of tractable labeled RFS whose density is conjugate with standard multi-object likelihood function, and is closed under the multi-object Chapman-Kolmogorov equation with respect to the standard multi-object motion model.

A GLMB RFS is a labeled RFS with state space \(\mathbb{X}\) and (discrete) label space \(\mathbb{L}\) distributed according to

\[
\pi_{\text{GLMB}}(X) = \Delta(X) \sum_{c \in \mathbb{C}} \omega(c) \big(\mathcal{L}(X)\big) \big[p(c) \big]^{\mathbb{X}} \]

where \(\mathbb{C}\) is a discrete index set, \(\omega(c)(L)\) and \(p(c)\) satisfy

\[
\sum_{L \subseteq L} \sum_{c \in \mathbb{C}} \omega(c)(L) = 1 \quad \text{and} \quad \int p(c)(x, \ell) dx = 1.
\]

A \(\delta\)-GLMB RFS with state space \(\mathbb{X}\) and discrete label space \(\mathbb{L}\) is a special case of GLMB RFS with

\[
\mathbb{C} = \mathcal{F}(\mathbb{L}) \times \Xi
\]

\[
\omega(c)(\mathcal{L}) = \omega(I, \xi)(L) = \omega(I, \xi) \delta_I(L)
\]

\[
p(c) = \rho(I, \xi) = \rho(\xi)
\]

where \(\Xi\) is a discrete space, i.e., it is distributed according to

\[
\pi_{\text{GLMB}}(X) = \Delta(X) \sum_{(I, \xi) \in \mathcal{F}(\mathbb{L}) \times \Xi} \omega(I, \xi) \delta_I(\mathcal{L}(X)) \big[p(\xi) \big]^{\mathbb{X}}.
\]

An marginalized \(\delta\)-GLMB density \(\pi_{\text{MGLMB}}\) corresponding to the \(\delta\)-GLMB density \(\pi_{\text{GLMB}}\) in \(^{(7)}\) is a probability density of the form

\[
\pi_{\text{MGLMB}}(X) = \Delta(X) \sum_{I \in \mathcal{F}(\mathbb{L})} \omega(I) \delta_I(\mathcal{L}(X)) \big[p(I) \big]^{\mathbb{X}}
\]

where

\[
\omega(I) = \sum_{\xi \in \Xi} \omega(I, \xi) \quad \text{and} \quad p(I)(x, \ell) = 1_I(\ell) \frac{1}{\omega(I)} \sum_{\xi \in \Xi} \omega(I, \xi) p(\xi)(x, \ell).
\]
D. δ-GLMB Density Approximation of LMO Density

An arbitrary LMO density can be approximated as a tractable δ-GLMB density, which is applied to δ-GLMB filter for generic observation model [21].

Lemma 2. Given any LMO density π, the δ-GLMB density which preserves the cardinality distribution and probability hypothesis density (PHD) of π, and minimizes the Kullback-Leibler divergence from π, is given by

$$\hat{\pi}_{\text{GLMB}}(X) = \Delta(X) \sum_{I \in \mathcal{I}(L)} \hat{c}(I) \delta I(L(X))|\hat{p}(I)|^X$$ (10)

where

$$\hat{c}(I) = \omega(I)$$
$$\hat{p}(I) = 1_{f(I)}$$
$$p(x, \ell) = \int p(\{x, \ell\}, (x_1, \ell_1), \cdots, (x_n, \ell_n)) \delta(x_1, \cdots, x_n).$$ (11)

E. Correlation Coefficient

The correlation coefficient [23] is a measure that determines the degree to which two random variables are correlated. The most commonly used measure is the Pearson’s correlation coefficient, denoted by ρ, commonly called simply “the correlation coefficient”, which is sensitive only to a linear relationship between two variables. The correlation coefficient between two random variables A and B with $\text{cov}(A, B)$ the covariance of A and B, and σ_A, σ_B the standard deviations, is defined as:

$$\rho_{A,B} = \frac{\text{cov}(A, B)}{\sigma_A \sigma_B}. $$ (12)

Our results in this paper follow from this correlation coefficient.

F. Kullback-Leibler divergence

In probability theory and information theory, the Kullback-Leibler divergence (KLD) [34] is a measure of the difference between two probability distributions, and its extension to multi-object densities $f(X)$ and $g(X)$ is given in [35] by

$$D_{KL}(f; g) = \int f(X) \log \frac{f(X)}{g(X)} \delta X$$ (13)

where the integral in (13) is a set integral.

III. ENHANCED APPROXIMATE STRATEGY BASED ON CORRELATION ANALYSIS

The LMO density usually is approximated as a given type of multi-object density. In [21], it proposed a tractable δ-GLMB density approximation for an arbitrary LMO density, which matches the PHD and cardinality distribution of LMO density. For standard multi-object system, GLMB density is a closed solution [16], and it can be further approximated using LMB density [20] or M5-GLMB density [19]. These approximations usually discard all or part of correlation of original LMO density mechanically for the sake of computation efficiency, without respect for the real situation of correlation between objects.

Actually, correlation of objects play a important role in multi-object estimation. On one hand, when objects exhibit none correlation, the statistical independence can be utilized to enable parallel implementation, and thus simplify computation and enhance estimation performance [19], [24]–[30]. On the other hand, when objects are strongly correlation with each other, their statistics should be jointly considered, or it will produce poor estimation like the the aforementioned strategies.

In practice, the real situation of correlation between objects is usually complicate. Empirical data suggests that in most scenarios not all objects have correlation with each other, but only a small faction of objects has correlation with the other small faction of objects and which object has correlation with which is usually unknown and time-varying.

In this section, we present an enhanced approximate strategy for the approximation of LMO density, in which the correlation between different objects is estimated adaptively, and the original LMO density is factorized into densities of several independent subsets according to the correlation estimate. Besides, we derive the analytical expression of set marginal density of any subsets of the universal LMO RFS and GLMB RFS family.

A. Correlation Estimate

Firstly, we introduce a concept of basic component of labeled RFS in Definition 1, which is important in estimating the correlation between objects.

Definition 1. For an arbitrary labeled RFS Ψ on space $X \times L$ (L is a finite label space), it can be seen as the union of $|L|$ random subsets, i.e., $\Psi = \bigcup_{\ell \in L} \psi_\ell$, with each ψ_ℓ on space $X \times \{\ell\}$. We refer each random finite subset $\psi_\ell, \ell \in L$ to as a basic component (BC) of Ψ.

A BC ψ_ℓ, namely, the random finite subset related to the target with label ℓ, is a labeled Bernoulli RFS which is either the empty set or the singleton set $\{x, \ell\}$.

A BC ψ_ℓ is the mathematical representation of the object ℓ, and can describe both the uncertainty of existence and the randomness of state of object ℓ. Hence, to evaluate the correlation between different BCs, we should consider comprehensively from two aspects: 1) the correlation of objects’ existences ; 2) the correlation of object states.

1) Absolute Correlation Coefficient of Existence, $\alpha_{x,\ell}$: To describe its uncertainty of existence, we define a random variable E_ℓ for each BC ψ_ℓ as

$$E_\ell = \begin{cases} 0, & \psi_\ell = \emptyset \\ 1, & \psi_\ell = \{x, \ell\} \end{cases}, \ell \in L$$ (14)

and the statistics of all E_ℓs, $\ell \in L$ are distributed according to the joint probability distribution

$$Pr((\cap_{\ell \in I} \{E_\ell = 1\}) \cap (\cap_{\ell \in I, \ell' \in I} \{E_{\ell'} = 0\})) = \omega(I), \ I \subseteq L$$ (15)

where “/” denotes the different set, and $\omega(I)$ is the joint existence probability of the label set I given in Lemma 1.
We define the absolute correlation coefficient of existence between \(\psi_\ell \) and \(\psi_{\ell'} \), \(\ell \neq \ell' \in \mathbb{L} \) as
\[
\alpha_{\ell, \ell'} = |\rho_{E_\ell, E_{\ell'}}| \tag{16}
\]
where \(|\cdot| \) denotes the absolute value of \(\cdot \), and \(\rho_{E_\ell, E_{\ell'}} \) is the correlation coefficient between \(E_\ell \) and \(E_{\ell'} \) which can be computed from the joint existence distribution in \(\mathbb{F} \) according to \((12) \).

2) Absolute Correlation Coefficient of State, \(\beta_{\ell, \ell'} \): To estimate correlation between states of \(\psi_\ell \) and \(\psi_{\ell'} \) is on the condition that both \(\psi_\ell \) and \(\psi_{\ell'} \) exist. Under each hypothesis (involving the existing objects with target label set \(I \in \mathbb{F}(\mathbb{L}) \)) where \(I \) includes \(\ell \) and \(\ell' \), we can compute a correlation coefficient between \((x, \ell) \) and \((x', \ell') \), denoted as \(\rho_{x, \ell'|x'} \), from the corresponding conditional joint probability density \(p(X|I(X) = I) \) defined in Lemma 1, according to \((12) \).

For any two \(\ell \neq \ell' \in \mathbb{L} \), we define the absolute correlation coefficient of state between \(\psi_\ell \) and \(\psi_{\ell'} \) as
\[
\beta_{\ell, \ell'} = \frac{\sum_{I \in \mathbb{F}(\mathbb{L})} 1_I(\{\ell, \ell'\}) \omega(I) |\rho_{\ell, \ell'|x} - \rho_{\ell', \ell|x}|}{\sum_{I \in \mathbb{F}(\mathbb{L})} 1_I(\{\ell, \ell'\}) \omega(I)} \tag{17}
\]
where \(1_I(I') \) denotes an indicator function
\[
1_I(I') = \begin{cases} 1, & I' \subseteq I \\ 0, & \text{otherwise} \end{cases}
\tag{18}
\]
\(\beta_{\ell, \ell'} \) actually is the weighted sum of absolute \(\rho_{\ell, \ell'|x} - \rho_{\ell', \ell|x} \) over all hypotheses where the existing target label set \(I \) includes \(\ell \) and \(\ell' \).

Definition 2. For an arbitrary labeled RFS \(\Psi \) on space \(\mathbb{X} \times \mathbb{L} \) (\(\mathbb{L} \) is a finite label space), the absolute correlation coefficient between any two BCs \(\psi_{\ell_1} \) and \(\psi_{\ell_2} \), \(\ell_1 \neq \ell_2 \in \mathbb{L} \), is defined as
\[
\gamma_{\ell_1, \ell_2} = \omega_E \alpha_{\ell_1, \ell_2} + \omega_S \beta_{\ell_1, \ell_2} \tag{19}
\]
where \(\omega_E + \omega_S = 1 \) with \(\omega_E \), \(\omega_S \) the weighting coefficients of \(\alpha_{\ell_1, \ell_2} \), \(\beta_{\ell_1, \ell_2} \) respectively, and \(\alpha_{\ell_1, \ell_2} \), \(\beta_{\ell_1, \ell_2} \) are the absolute correlation coefficients of existence and state defined in \((16) \) and \((17) \), respectively.

Note that the absolute correlation coefficient whose value goes form 0 to 1 is a indicator to evaluate the correlation between BCs comprehensively. The value is bigger, the correlation is stronger and visa versa. The value of \(\omega_E \) or \(\omega_S \) varies with different applications. If the correlation of state is emphasized, the value of \(\omega_S \) is larger; otherwise, the value of \(\omega_E \) is larger.

B. Factorization of LMO density

After estimating the correlation between different BCs, we can divide all \(\psi_i \), \(\ell \in \mathbb{L} \) into several groups such that BCs within a group have correlation, and BCs between different groups exhibit none correlation. We represent each group as the union of the BCs within the group, then \(\Psi \) can be divided into several independent random finite subsets, i.e., \(\Psi = \bigcup_{i=1}^{n} \Psi_i \).

Lemma 3. Let \(\Psi = \Psi_1 \cup \cdots \cup \Psi_n \) where \(\Psi_1, \cdots, \Psi_n \) are statistically independent random finite subsets. The probability density of \(\Psi \) is related to the probability densities of \(\Psi_1, \cdots, \Psi_n \) as follows:
\[
\pi_{\Psi}(X) = \sum_{W_1 \cup \cdots \cup W_n = X} \pi_{\Psi_1}(W_1) \cdots \pi_{\Psi_n}(W_n). \tag{20}
\]

Lemma 3 is a conclusion provided in \([10] \). For the labeled RFS, we can obtain the similar conclusions as Proposition 1.

Proposition 1. If a labeled RFS \(\Psi \) on space \(\mathbb{X} \times \mathbb{L} \) can be divided into \(N \) independent label random subsets \(\Psi_i \) on space \(\mathbb{X} \times \mathbb{L}_i, i = 1, \cdots, N \), i.e., \(\Psi = \bigcup_{i=1}^{N} \Psi_i \) with \(\mathbb{L} = \mathbb{L}_1 \uplus \cdots \uplus \mathbb{L}_N \), then \(f_{\Psi}(X) \) is related to the probability densities of \(\Psi_1, \cdots, \Psi_n \) as follows:
\[
\pi_{\Psi}(X) = \pi_{\Psi_1}(X \cap \mathbb{X} \times \mathbb{L}_1) \cdots \pi_{\Psi_n}(X \cap \mathbb{X} \times \mathbb{L}_N). \tag{21}
\]

According to Proposition 1, we can give an approximation of LMO density which can decrease the dimension of states and reduce the number of hypotheses by utilizing independence and retain correlation if required by adopting LMO densities of independent random finite subsets. However, we still have a problem that how to compute the LMO density of each random subset from the global LMO density, which will be discussed in the following subsection.

C. Set Marginal Density

In \([22] \), we have given concept of the set marginal density as shown in Definition 3 and its generalized computing method as shown in Lemma 4. In this section, Propositions 2–5 provide the specified method to compute the set marginal density of the universal LMO density, GLMB density and some special cases of GLMB density including \(\delta \)-GLMB and \(M \delta \)-GLMB densities, respectively.

Definition 3. Let \(\Psi \) be an RFS. Then for any random finite subset of \(\Psi \), denoted by \(\Psi_i \), its multi-object density \(f_{\Psi_i}(X) \), is called as set marginal density of \(\Psi_i \) with respect to \(\Psi \).

Lemma 4. Let \(\Psi \) be an RFS. Then for any random finite subset of \(\Psi \), denoted by \(\Psi_i \), its set marginal density of \(\Psi_i \) with respect to \(\Psi \), denoted by \(f_{\Psi_i}(X) \) can be derived by
\[
f_{\Psi_i}(X) = \delta \frac{\Pr(\Psi_i \subseteq S, \Psi/\Psi_i \subseteq X)}{\delta X} \bigg|_{S=\emptyset} \tag{22}
\]
where “\(\delta/\delta X \)” denotes a set derivative.

Proposition 2. Assume a labeled RFS \(\Psi \), whose state space is \(\mathbb{X} \times \mathbb{L} \) and multi-object density is \(\pi_{\Psi}(X) = \omega(L(X))p(X) \). If \(\Psi_i \) is a random finite subset of \(\Psi \) and its state space is \(\mathbb{X} \times \mathbb{L}_i \), with \(\mathbb{L}_1 \subseteq \mathbb{L} \), then the set marginal density of \(\Psi_{i} \) is
\[
\pi_{\Psi_i}(X) = \sum_{I \in \mathbb{F}(\mathbb{L}/\mathbb{L}_i)} \omega(L(X) \cup I)p_{i}(X) \tag{23}
\]
where
\[
p_{i}(\ell_1, \cdots, \ell_n)(X) = \int p(X \cup \{(x_1, \ell_1), \cdots, (x_n, \ell_n)\}) \, dx_1 \cdots \, dx_n. \tag{24}
\]
Proposition 3. Assume a GLMB RFS Ψ, whose state space is $\mathcal{X} \times \mathcal{L}$ and multi-object density has the form of (24). If Ψ_1 is a random finite subset of Ψ and its state space is $\mathcal{X} \times \mathcal{L}_1$ with $\mathcal{L}_1 \subseteq \mathcal{L}$, then the set marginal density of Ψ_1 is

$$\pi_{\Psi_1}(X) = \sum_{I_2 \in \mathcal{F}(\mathcal{L}/\mathcal{L}_1)} \sum_{I_1 \in \mathcal{F}(\mathcal{L}_1)} \omega^\text{c}(L(X) \cup I) [p^\text{c}(\xi)]^{X}.$$ \hspace{1cm} (25)

Proposition 4. Assume a δ-GLMB RFS Ψ on state space is $\mathcal{X} \times \mathcal{L}$ and its multi-object density has the same form of (27). If Ψ_1 is a random finite subset of Ψ and its state space is $\mathcal{X} \times \mathcal{L}_1$ with $\mathcal{L}_1 \subseteq \mathcal{L}$, then the set marginal density of Ψ_1 is

$$\pi_{\Psi_1}(X) = \sum_{I_2 \in \mathcal{F}(\mathcal{L}/\mathcal{L}_1)} \sum_{I_1 \in \mathcal{F}(\mathcal{L}_1)} \delta_{I_1}(L(X)) [\omega^\text{c}(I_1 \cup I_2, \xi)]^{X}.$$ \hspace{1cm} (26)

Proposition 5. Assume a $M\delta$-GLMB RFS Ψ on state space is $\mathcal{X} \times \mathcal{L}$ and its multi-object density has the same form of (28). If Ψ_1 is a random finite subset of Ψ and its state space is $\mathcal{X} \times \mathcal{L}_1$ with $\mathcal{L}_1 \subseteq \mathcal{L}$, then the set marginal density of Ψ_1 is

$$\pi_{\Psi_1}(X) = \sum_{I_2 \in \mathcal{F}(\mathcal{L}/\mathcal{L}_1)} \sum_{I_1 \in \mathcal{F}(\mathcal{L}_1)} \delta_{I_1}(L(X)) [\omega^\text{c}(I_1 \cup I_2, \xi)]^{X}.$$ \hspace{1cm} (27)

IV. NUMERICAL RESULTS

Consider a labeled RFS Ψ on space $\mathcal{X} \times \mathcal{L}$, where $\mathcal{X} = \mathbb{R}$ is the field of real number and $\mathcal{L} = \{1, 2, 3\}$. We design an LMO density of Ψ shown as

$$\pi(X) = \begin{cases} 0.01, & X = \emptyset \\ 0.01 \mathcal{N}(x; m_{11}, R_{11}), & X = \{(x, 1)\} \\ 0.01 \mathcal{N}(x; m_{22}, R_{22}), & X = \{(x, 2)\} \\ 0.09 \mathcal{N}(x; m_{33}, R_{33}), & X = \{(x, 3)\} \\ 0.07 \mathcal{N}(x_1; m_{12}, R_{12}), & X = \{(x_1, 1), (x_2, 2)\} \\ 0.09 \mathcal{N}(x_1; m_{13}, R_{13}), & X = \{(x_1, 1), (x_2, 3)\} \\ 0.09 \mathcal{N}(x_1; m_{23}, R_{23}), & X = \{(x_1, 2), (x_2, 3)\} \\ 0.63 \mathcal{N}(x_1, x_2, x_3; m_{123}, R_{123}), & X = \{(x_1, 1), (x_2, 2), (x_3, 3)\} \end{cases}$$ \hspace{1cm} (28)

where

$$m_{12} = m_{12}(i), R_{12} = R_{12}(i, i), i = 1, 2$$
$$m_{13} = m_{13}(i), R_{13} = R_{13}(i, i), i = 1, 3$$
$$m_{23} = m_{23}(i), R_{23} = R_{23}(i, i), i = 2, 3$$
$$m_{123} = m_{123}(i), R_{123} = R_{123}(i, i, i), i = 1, 2, 3.$$

A. Approximations of LMO density

In the subsection, we give three approximations of the LMO density in (28).

- δ-GLMB density approximation, $\pi_{\delta\text{GLMB}}$, according to Lemma 2:

- Correlation analysis (CA) based approximation, π_{CA}, proposed in Section III;

- CA based approximation of the approximate δ-GLMB density, $\pi_{\text{CA}}^{\delta\text{GLMB}}$, which first approximates the LMO density as a δ-GLMB density and then approximate the resulting δ-GLMB density using the CA based method.

1) δ-GLMB Density Approximation: Based on lemma 2, we approximate (28) into a δ-GLMB density shown as

$$\pi_{\delta\text{GLMB}}(X) = \begin{cases} 0.01, & X = \emptyset \\ 0.01 \mathcal{N}(x; m_{11}, R_{11}), & X = \{(x, 1)\} \\ 0.01 \mathcal{N}(x; m_{22}, R_{22}), & X = \{(x, 2)\} \\ 0.09 \mathcal{N}(x; m_{33}, R_{33}), & X = \{(x, 3)\} \\ 0.07 \prod_{i \in \{1, 2\}} \mathcal{N}(x_i; m_{12i}, R_{12i}), & X = \{(x_1, 1), (x_2, 2)\} \\ 0.09 \prod_{i \in \{1, 2\}} \mathcal{N}(x_i; m_{13i}, R_{13i}), & X = \{(x_1, 1), (x_2, 3)\} \\ 0.09 \prod_{i \in \{2, 3\}} \mathcal{N}(x_i; m_{23i}, R_{23i}), & X = \{(x_2, 2), (x_3, 3)\} \\ 0.63 \prod_{i \in \{1, 2, 3\}} \mathcal{N}(x_i; m_{123i}, R_{123i}), & X = \{(x_1, 1), (x_2, 2), (x_3, 3)\} \end{cases}$$ \hspace{1cm} (30)

where

$$m_{12} = m_{12}(i), R_{12} = R_{12}(i, i), i = 1, 2$$
$$m_{13} = m_{13}(i), R_{13} = R_{13}(i, i), i = 1, 3$$
$$m_{23} = m_{23}(i), R_{23} = R_{23}(i, i), i = 2, 3$$
$$m_{123} = m_{123}(i), R_{123} = R_{123}(i, i, i), i = 1, 2, 3.$$

2) CA based Approximation: From (28), we can extract the distribution of (E_1, E_2, E_3) as Table I.

According to (13), we can get the absolute correlation coefficients between each BCs of Ψ, i.e., ψ_1, ψ_2 and ψ_3 as

$$\gamma_{12} = \frac{\alpha_{1,2} + \beta_{1,2}}{2} = \frac{0.375 + 0.616}{2} = 0.4955$$ \hspace{1cm} (32)
where $\omega_E = \omega_S = \frac{1}{2}$ in (19). Hence, we can conclude that ψ_3 is independent of ψ_1 and ψ_2, and ψ_1 and ψ_2 do have correlation. We can divide Ψ into two independent subsets, namely, $\psi_1 \cup \psi_2$ and ψ_3.

Let $\Psi_a = \psi_1 \cup \psi_2$ and $\Psi_b = \psi_3$. According to Proposition 2, we can compute the set marginal density of Ψ_a and Ψ_b as

$$\pi_{\Psi_a}(X) = \begin{cases} 0.1, & X = \emptyset \\ 0.1\mathcal{N}(x; \hat{m}_{a,1}, \hat{R}_{a,1}), & X = \{(x, 1)\} \\ 0.1\mathcal{N}(x; \hat{m}_{a,2}, \hat{R}_{a,2}), & X = \{(x, 2)\} \\ 0.7 \prod_{i \in \{1,2\}} \mathcal{N}(x; \hat{m}_{a,12, i}, \hat{R}_{a,12, i}), & X = \{(x, 1), (x, 2)\} \end{cases}$$ (35)

where

$$m_{a,1} = 1, R_{a,1} = 1$$
$$m_{a,2} = 2, R_{a,2} = 2$$
$$m_{a,12} = \begin{pmatrix} 1.1 \\ 1.2 \end{pmatrix}, R_{a,12} = \begin{pmatrix} 1.2 & 1 \\ 1 & 2 \end{pmatrix}$$ (36)

and

$$\pi_{\Psi_b}(X) = \begin{cases} 0.1, & X = \emptyset \\ 0.9\mathcal{N}(x; \hat{m}_{b,3}, \hat{R}_{b,3}), & X = \{(x, 3)\} \end{cases}$$ (37)

where

$$m_{b,3} = 3, R_{b,3} = 8.$$ (38)

Finally, we can obtain the CA based approximation as

$$\pi_{CA}(X) = \pi_{\Psi_a}(X \cap \mathbb{X} \times \mathbb{L}_a)\pi_{\Psi_b}(X \cap \mathbb{X} \times \mathbb{L}_b)$$ (39)

with $\mathbb{L}_a = \{1, 2\}$ and $\mathbb{L}_b = \{3\}$.

3) CA based Approximation of the Approximate GLMB Density: Let $\hat{\Psi}$ denotes the approximate δ-GLMB RFS whose density is $\hat{\pi}(X)$, and $\psi_{1, \ell}, \ell \in \{1, 2, 3\}$ denote the BCs of $\hat{\Psi}$.

According to (19), we can get the absolute correlation coefficients between ψ_1, ψ_2, and ψ_3 as

$$\gamma_{1,2} = \frac{\alpha_{1,2}}{2} = 0.1875$$ (40)
$$\gamma_{2,3} = 0$$ (41)
$$\gamma_{1,3} = 0$$ (42)

where $\omega_E = \omega_S = \frac{1}{2}$ in (19). One can find that the approximate GLMB density does lose a part of correlation towards the original LMO density comparing (32) and (40).

Hence, we can also conclude that ψ_3 is independent of both ψ_1 and ψ_2, and ψ_1 and ψ_2 do have correlation. Then we can also divide $\hat{\Psi}$ into two independent subsets, namely, $\hat{\psi}_1 \cup \hat{\psi}_2$ and $\hat{\psi}_3$.

Let $\Psi_a = \hat{\psi}_1 \cup \hat{\psi}_2$ and $\Psi_b = \hat{\psi}_3$. According to Proposition 3, we can compute the set marginal density of Ψ_a and Ψ_b as

$$\pi_{\hat{\Psi}_a}(X) = \begin{cases} 0.1, & X = \emptyset \\ 0.1\mathcal{N}(x; \hat{m}_{a,1}, \hat{R}_{a,1}), & X = \{(x, 1)\} \\ 0.1\mathcal{N}(x; \hat{m}_{a,2}, \hat{R}_{a,2}), & X = \{(x, 2)\} \\ 0.7 \prod_{i \in \{1,2\}} \mathcal{N}(x; \hat{m}_{a,12, i}, \hat{R}_{a,12, i}), & X = \{(x, 1), (x, 2)\} \end{cases}$$ (43)

where

$$\hat{m}_{a,1} = 1, \hat{R}_{a,1} = 1$$
$$\hat{m}_{a,2} = 2, \hat{R}_{a,2} = 2$$
$$\hat{m}_{a,12} = 1.1, \hat{R}_{a,12} = 1.2$$
$$\hat{m}_{a,12} = 2.2, \hat{R}_{a,12} = 2.2$$

$$\pi_{\hat{\psi}_a}(X) = \begin{cases} 0.1, & X = \emptyset \\ 0.9\mathcal{N}(x; \hat{m}_{b,3}, \hat{R}_{b,3}), & X = \{(x, 3)\} \end{cases}$$ (46)

where

$$\hat{m}_{b,3} = 3, \hat{R}_{b,3} = 8.$$ (47)

Hence, the CA based approximation of the approximated GLMB density is

$$\hat{\pi}_{GLMB}(X) = \pi_{\hat{\Psi}_a}(X \cap X \times \mathbb{L}_a)\pi_{\hat{\psi}_a}(X \cap X \times \mathbb{L}_b)$$ (48)

and

$\hat{\pi}_{GLMB}$ is summarized as Table II.

TABLE II	Computation Analysis				
	T_0	T_1	T_2	T_3	Correlation loss
π_{GLMB}	8	12	0	0	yes
π_{CA}	4	3	1	0	no
$\hat{\pi}_{GLMB}$	4	5	0	0	yes (same as π_{GLMB})

T_0: NO. of hypotheses
T_1: NO. of densities on X
T_2: NO. of densities on X^2
T_3: NO. of densities on X^3

Note that the hypotheses here involves different existing target label sets I, and the hypothesis $I = \emptyset$ is omitted because it can be determined by other hypotheses totally.
2) **Approximate Error:** Herein, we evaluate the approximate error of three approximations in terms of KLD.

The KLD between $\hat{\pi}_{CA}$ and π, $\hat{\pi}_{GLMB}$ and π, $\hat{\pi}_{CA}$ and π is computed as respectively, according to (13).

$$D_{KL}(\pi; \hat{\pi}_{GLMB}) = 0.2404$$ \hspace{1cm} (49)

$$D_{KL}(\pi; \hat{\pi}_{CA}) = 0$$ \hspace{1cm} (50)

$$D_{KL}(\hat{\pi}_{CA}; \hat{\pi}_{GLMB}) = 0.2404.$$ \hspace{1cm} (51)

We can also obtain the KLD between $\hat{\pi}_{GLMB}$ and $\hat{\pi}_{CA}$,

$$D_{KL}(\hat{\pi}_{GLMB}; \hat{\pi}_{CA}) = 0.$$ \hspace{1cm} (52)

3) **Summary:** δ-GLMB approximation of LMO density actually approximates the conditional joint probability density $P(X)$ under each hypothesis as the product of its marginal densities and retains all hypotheses. Thus, as shown in Table II, the number of hypotheses of $\hat{\pi}_{GLMB}$ are the same as π, and all the densities of $\hat{\pi}_{GLMB}$ are on space \mathcal{X}. As $\hat{\pi}_{CA}$ loses a certain degree of correlation, it has the approximate error (the KLD between π and $\hat{\pi}_{GLMB}$ is not zero). Further comparing $\hat{\pi}_{CA}$ with $\hat{\pi}_{GLMB}$, we find that $\hat{\pi}_{GLMB}$ has redundant statistical information, for it can be further simplified by reducing the number of hypotheses and number of densities without approximate error.

As for $\hat{\pi}_{CA}$, it reduces the number of hypotheses by utilizing independence, and also retains high-dimensional densities to keep correlation. As shown in Table II, even though $\hat{\pi}_{CA}$ has a density on space \mathcal{X}^2 while $\hat{\pi}_{GLMB}$ does not have, $\hat{\pi}_{CA}$ only has 3 densities on space \mathcal{X} while $\hat{\pi}_{GLMB}$ has 12. Furthermore, the high-dimensional density of $\hat{\pi}_{CA}$ is retained in return for keeping required correlation. Hence, $\hat{\pi}_{CA}$ is a kind of approximation which can balance the computational complexity and approximate error.

V. **Conclusion**

In this paper, we proposed an enhanced approximation of labeled multi-object (LMO) density which evaluates the correlation between objects adaptively and factorizes the LMO density into densities of several independent subsets according to the correlation analysis. Furthermore, to obtain a tractable factorization of LMO density, we derived the set marginal density of any subset of the universal labeled RFS, and GLMB RFS family and its subclasses. Unlike the conventional approximate approach which sacrifices statistical correlation for computational efficiency, the proposed method takes into account the simplification of the complex structure of LMO density and the reservation of necessary correlation at the same time.

REFERENCES

[1] D. Stoyan and A. Penttinen, “Recent applications of point process methods in forestry statistics,” *Statistical Science*, Vol. 15, No. 1, pp. 61-78, 2000.

[2] V. Marmarelis and T. Berger, “General methodology for nonlinear modeling of neural systems with Poisson point-process inputs,” *Mathematical Biosciences*, Vol. 196, No. 1, pp. 1-13, 2005.

[3] D. L. Snyder, L. J. Thomas, and M. M. Ter-Pogossian, “A mathematical model for positron-emission tomography systems having time-of-flight measurements,” *IEEE Trans. Nuclear Science*, Vol. 28, No. 3, pp. 3575-3583, June 1981.

[4] R. Hoseinnezhad, B.-N. Vo, B.-T. Vo, and D. Suter, “Visual tracking of numerous targets via multi-Bernoulli filtering of image data,” *Pattern Recognition*, Vol. 45, No. 10, pp. 3625-3635, Oct. 2012.

[5] F. Raccelli, M. Klein, M. Lebourges, and S. A. Zuyev, “Stochastic geometry and architecture of communication networks,” *Telecommunication Systems*, Vol. 7, No. 1-3, pp. 209-227, 1997.

[6] D. Angelosante, E. Biglieri and M. Lops, “Multiuser detection in a dynamic environment. Part II: Joint user identification and parameter estimation,” *IEEE Trans. Inf. Theory*, Vol. 55, No. 5, pp. 2365-2374, May 2009.

[7] R. Mahler, “Multitarget Bayes filtering via first-order multitarget moments,” *IEEE Trans. Aeroesp. Electron. Syst.*, Vol. 39, No. 4, pp. 1152-1178, Oct 2003.

[8] R. Mahler, Advances in Statistical Multisource-Multitarget Information Fusion, Artech House, 2014.

[9] I. Mullane, B.-N. Vo, M. Adams, and B.-T. Vo, “A random-finite-set approach to Bayesian SLAM,” *IEEE Trans. Robotics*, Vol. 27, No. 2, pp. 268-282, Apr. 2011.

[10] R. Mahler, Statistical multisource-multitarget information fusion, Norwood, MA: Artech House, 2007.

[11] B. D. Ripley and F. P. Kelly, “Markov Point Processes,” Journal of the London Mathematical Society, Vol. 2, No. 1, pp. 188C192, 1977.

[12] B. T. Vo and W. K. Ma, “The gaussian mixture probability hypothesis density filter,” *IEEE Trans. on Signal Process.*, Vol. 54, No. 11, pp. 4091-4104, Nov. 2006.

[13] R. Mahler, “PHD filters of higher order in target number,” *IEEE Trans. Aerosp. Electron. Syst.*, Vol. 43, No. 4, pp. 1532-1543, Oct. 2007.

[14] B. T. Vo, B. N. Vo and A. Cantoni, “The cardinality balanced multi-object multi-Bernoulli filter and its implementation,” *IEEE Trans. on Signal Process.*, vol. 57, No. 2, pp. 409-423, Feb. 2009.

[15] B. T. Vo, B. N. Vo, N. T. Pham and D. Suter, “Joint detection and estimation of multiple objects from image observation,” *IEEE Trans. on Signal Process.*, Vol. 58, No. 10, pp. 5129-5141, Oct. 2010.

[16] B. T. Vo and B. N. Vo, “Labeled random finite sets and multi-object conjugate priors,” *IEEE Trans. on Signal Process.*, Vol. 61, No. 13, pp. 3460-3475, Jul. 2013.

[17] B. N. Vo, B. T. Vo, and D. Phung, “Labeled random finite sets and the Bayes multi-object tracking filter,” *IEEE Trans. on Signal Process.*, Vol. 62, No. 24, pp. 3460-3475, Dec. 2014.

[18] C. Fantacci, B. T. Vo, F. Pap and B. N. Vo, “The marginalized δ-GLMB filter,” *arXiv preprint arXiv:1501.00926*, 2015.

[19] M. Beard, B. T. Vo, and B. N. Vo, “Bayesian multi-object tracking with merged measurements using labelled random finite sets,” *IEEE Trans. on Signal Process.*, Vol. 63, No. 16, pp. 4348-4358, Aug. 2015.

[20] S. Reuter, B. T. Vo, B. N. Vo, and K. Dietmayer, “The labeled multi-Bernoulli filter,” *IEEE Trans. on Signal Process.*, Vol. 62, No. 12, pp. 3126-3140, Jun. 2014.

[21] F. Pap, B. N. Vo, B. T. Vo, C. Fantacci, and M. Beard, “Generalized labeled multi-Bernoulli approximation of multi-object densities,” *arXiv preprint arXiv:1412.5294*, 2015.

[22] S. Q. Li, W. Yi, B. L. Wang, and L. J. Kong, “Joint multi-Bernoulli random finite set for two-target scenario,” under review in *IEEE Trans. on Signal Process.*.

[23] O. Kallenberg, Foundations of modern probability, MA: Artech House, 2002.

[24] F. Pap and D. Y. Kim, “A particle multi-object tracker for superpositional measurements using labeled random finite sets,” *IEEE Trans. on Signal Process.*, Vol. 63, pp. 4348-4358, 2015.

[25] F. Pap and A. K. Gosar, “Bayesian track-before-detect for closely spaced targets,” presented at the 23rd European Signal Processing Conference (EUSIPCO), 2015.

[26] J. Vermaak, S. J. Godsill, and P. Perez, “Monte Carlo filtering for multi-target tracking and data association,” *IEEE Trans. Aerosp. Electron. Syst.*, vol. 41, pp. 309-332, 2005.

[27] M. Orton and W. Fitzgerald, “A Bayesian approach to tracking multiple targets using sensor arrays and particle filters,” *IEEE Trans. Signal Process.*, Vol. 50, No. 12, pp. 216-223, 2002.

[28] A. F. Garcia-Fernandez, J. Grajal, and M. R. Morelandel, “Two-layer particle filter for multiple target detection and tracking,” *IEEE Trans. Aerosp. Electron. Syst.*, 2013.
[29] M. R. Morelande, C. M. Kreucher, and K. Kastella, “A Bayesian Approach to Multiple Target Detection and Tracking,” IEEE Trans. on Signal Process., Vol. 55, pp. 1589-1604, May 2007.
[30] W. Yi, M. Morelande, L. Kong, and J. Yang, “A computationally efficient particle filter for multi-target tracking using an independence approximation,” IEEE Trans. on Signal Process., vol. 66, pp. 843-856, Feb. 2013.
[31] B. T. Vo, B. N. Vo, N. T. Pham and D. Suter, “Joint detection and estimation of multiple objects from image observation,” IEEE Trans. on Signal Process., Vol. 58, No. 10, pp. 5129-5141, Oct. 2010.
[32] J. Cardoso, “Dependence, correlation and Gaussianity in independent component analysis,” J. Mach. Learn. Res., vol. 4, pp. 1177-1203, 2003.
[33] B. L. Wang, W. Yi, S. Q. Li, M. R. Morelande, G. L. Cui, L. J. Kong and X. B. Yang, “Distributed multi-object tracking via generalized multi-Bernoulli random finite sets,” in Proc. IEEE Int. Fusion Conf., pp. 253-261, Jul. 2015.
[34] G. Battistelli, L. Chisci, S. Morrocchi, and F. Papi, “An information theoretic approach to distributed state estimation.” in Proc. 18th IFAC World Congr., Milan, Italy, pp. 12477-12482, 2011.
[35] G. Battistelli, L. Chisci, C. Fantacci, A. Farina, and A. Graziano, “Consensus CPHD Filter for Distributed Multitarget Tracking,” IEEE J. Selected Topics in Signal Processing, vol. 7, No. 3, pp. 508C520, 2013.