Genome-wide identification and expression analysis of the VQ gene family in soybean (Glycine max)

Yongbin Wang Equal first author, 1, 2, Zhenfeng Jiang Equal first author, 1, Zhenxiang Li 3, Yuanling Zhao 2, Weiwei Tan 2, Zhaojun Liu 2, Shaobin Cui 4, Xiaoguang Yu 4, Jun Ma 4, Guangjin Wang Correspond. 5, Wenbin Li Correspond.

1 Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
2 Biotechnology Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
3 Harbin Normal University, Harbin, Heilongjiang, China
4 Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
5 Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China

Corresponding Authors: Guangjin Wang, Wenbin Li
Email address: gjw1962@yeah.net, wenbinli@neau.edu.cn

Background. VQ proteins, the plant-specific transcription factors, are involved in plant development and multiple stresses; however, only few articles systematic reported the VQ genes in soybean. Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (I-VII). Conserved domain analysis indicated that VQ gene family members all contain the VQ domains. VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed that cis-elements related to stress responses, phytohormone responses and controlling physical as well as reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were showed expressing in nine tissues, suggesting their putative function in many aspects of plant growth and development as well as response to stress in Glycine max. Results. This study aims to understand the roles of VQ genes in various development processes and their expression patterns in responses to stimuli. Our results provide basic information in identification and classification of GmVQ genes. Further experimental analysis will allows us to know the functions of GmVQs participation in plant growth and stress responses.
Genome-wide identification and expression analysis of the VQ gene family in soybean (Glycine max)

Yongbin Wang1,2*, Zhenfeng Jiang1*, Zhenxiang Li3, Yuanling Zhao2, Weiwei Tan2, Zhaojun Liu2, Shaobin Cui4, Xiaoguang Yu4, Jun Ma4, Guangjin Wang5, Wenbin Li1

1 Key Laboratory of Soybean Biology in Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, Northeast Agricultural University, Harbin, Heilongjiang, 150030, PR China
2 Biotechnology Research Institute Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China
3 Harbin Normal University, Harbin, Heilongjiang, 150025, PR China
4 Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China
5 Soybean Research Institute Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, 150086, PR China

Corresponding Author:
Wenbin Li1

NO.600 Changjiang Street, Xiangfang District, Harbin, Heilongjiang, 150030, China
Email address: wenbinli@neau.edu.cn

Guangjin Wang5

NO.368 Xuefu road, Nangang District, Harbin, Heilongjiang, 150086, China
Email address: gjw1962@yeah.net

* Equal contributors.
Abstract

Background. VQ proteins, the plant-specific transcription factors, are involved in plant development and multiple stresses; however, only few articles systematically reported the VQ genes in soybean.

Methods. In total, we identified 75 GmVQ genes, which were classified into 7 groups (I - VII). Conserved domain analysis indicated that VQ gene family members all contain the VQ domains. VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. Promoter analysis revealed that *cis*-elements related to stress responses, phytohormone responses and controlling physical as well as reproductive growth. Based on the RNA-seq and qRT-PCR analysis, GmVQ genes were showed expressing in nine tissues, suggesting their putative function in many aspects of plant growth and development as well as response to stress in *Glycine max*.

Results. This study aims to understand the roles of VQ genes in various development processes and their expression patterns in responses to stimuli. Our results provide basic information in identification and classification of GmVQ genes. Further experimental analysis will allows us to know the functions of GmVQs participation in plant growth and stress responses.

Introduction

VQ genes are plant specific genes, which involved in plant development and multiple stress responses (*Cheng et al., 2012.* A conserved amino acid region has been identified within them, which composed of approximately 50-60 amino acids with a highly conserved the FxxhVQxhTG motif (*Jing & Lin, 2015*). The VQ domain possesses multiple biological functions in VQ proteins, such as the mutant strain of *AtVQ14* (changes from IVQQ to EDLE) in the VQ domain result in producing small seeds, nevertheless the mutations in other locations does not have this characteristic (*Wang et al., 2010*). Furthermore, studies have reported that VQ genes are different in plants and do not have any intron in higher plants, whereas most VQ genes contain one or
more introns in moss (Li et al., 2014; Jiang et al., 2018; Dong et al., 2018). VQ proteins can interact with the WRKY proteins, for example, SIB1 and SIB2 are also VQ proteins, they were interacted with WRKY33 by recognizing the WRKY domain in C-terminal to activating the defense of plants (Lai et al., 2011).

VQ proteins were reported in dicotyledon such as Arabidopsis thaliana (Cheng et al., 2012), Vitis vinifera (Wang et al., 2015), Camellia sinensis (Guo et al., 2018), and monocotyledon such as Oryza sativa (Kim et al., 2013), Zea mays (Song et al., 2016). VQ proteins perform a variety of functions in plant development. For example, IKU1 (AT2G35230) is one of the VQ protein, it involved in regulating endosperm development and affect the seed formation during plant growth (Garcia & Berger, 2003). Under the far-red and low intensity of white light conditions, over expression of AtVQ29 can reduces the hypocotyl growth and it has higher expression in stem cells (Perruc et al., 1999). Furthermore, VQ genes regulate varying functions under abiotic and biotic stresses. AtCaMBP25 (also named AtVQ15) overexpression in transgenic plants had highly sensitive to osmotic stress in germination and early growth of seeds (Perruc et al., 1999). AtVQ9 alleviated the activity of WRKY8 under salt stress (Hu et al., 2013). The transcript levels of AtVQ23 and AtVQ16 are strongly induced by Botrytis cinerea infection and SA stress (Lai et al., 2011).

Glycine max is an important economic crop, widely cultivated in a number of countries. They are often subjected to abiotic stresses during the growth process, such as drought, high salinity, and other abiotic stresses were severely influenced on soybean production (Liu & Li, 2010). Therefore, identification of resistance genes has great significance for improving the yield and quality of soybean through molecular breeding. In this study, we identified 75 VQ genes of the soybean genome, and analyzed their phylogenetic, evolutionary motif, structure, promoter, and expression pattern. In addition, we analyzed the GmVQs’s expression level in different multiple abiotic stresses. Our results provide a basic information on identification and classification of GmVQ genes, and further experimental analysis allows us to comprehend the functions of GmVQs participate in plant growth and stress responses.
Materials & Methods

Identification of VQ genes

The Hidden Markov Model (HMM) profiles of the VQ motif PF05678 were downloaded from the Pfam database (Punta et al., 2012). HMM searched VQ motif (PF05678) from the G. max proteins database with the values (e-value) cut-off at 0.1 (Punta et al., 2012). The integrity of the VQ motif was determined using the online program SMART (http://smart.embl-heidelberg.de/) with an e-value < 0.1 (Letunic et al., 2012). In addition, the three fields (length, molecular weight, and isoelectric point) of each VQ protein were predicted by the online ExPasy program (http://www.expasy.org_tools/) (Rueda et al., 2015).

Phylogenetic analysis

To investigate the phylogenetic relationship of the VQ gene families among A. thaliana, O. sativa, and G. max, AtVQ and OsVQ proteins were downloaded from phytozomes (http://www.phytozome.org) based on the previous studies (Cheng et al., 2012, Li et al., 2014, Goodstein et al., 2012). VQ proteins were aligned using the BioEdit program. A neighbor-joining (NJ) phylogenetic tree was constructed using these proteins through MEGA7.0 software (Tamura et al., 2011). Bootstrapping was performed with 1000 replications. Genes were classified according to the distance homology with A. thaliana and O. sativa genes (Cheng et al., 2012, Li et al., 2014).

Sequence alignment, motif prediction and gene structure of GmVQ genes

Multiple alignments of the VQ full length proteins were conducted using Jalview software with default parameter settings. The online MEME analysis used to identify the unknown conserved motifs (http://meme. ebi. edu. au/meme/intro.html) using the following parameters: site distribution: zero or one occurrence (of a contributing motif site) per sequence, maximum number of motifs: 20, and optimum motif width ≥6 and ≤200 (Bailey et al., 2015). A gene
structure displaying server program (http://gsds.cbi.pku.edu.cn/index.php) was used to show the structure of *Glycine max* VQ gene.

Gene duplication and collinearity analysis

The physical locations of the *GmVQ* genes on the soybean chromosomes were mapped by using MG2C website (http://mg2c.iask.in/mg2c_v2.0/). The analysis of synteny among the soybean genomes was conducted locally using a method similar to the one developed for the PGDD (http://chibba.agtec.uga.edu/duplication/) (Krzywinski et al., 2009). First, BLASTP, OrthoMCL software (http://orthomcl.org/orthomcl/about.do#release) and MCScanX software (Wang et al., 2012) were used to search for potential homologous gene pairs (E < 1 e^{-5}, top 5 matches) across multiple genomes. Then, these homologous pairs were used as the input for the PGDD database (http://chibba.agtec.uga.edu/duplication/). Ideograms were created using Circos (Krzywinski et al., 2009).

Calculating Ka and Ks

The *Ka* and *Ks* were used to assess the selection history and divergence time of gene families (Li et al., 1981). The number of synonymous (*Ks*) and nonsynonymous (*Ka*) substitutions of duplicated *VQ* genes was computed by using the KaKs_Calculator 2.0 with the NG method (Xu et al., 2018). The divergence time (*T*) was calculated using the formula $T = Ks / (2 \times 6.1 \times 10^{-9}) \times 10^6$ million years ago (MYA) (Kim et al., 2013).

VQ genes expression analysis of soybean

The expression data of *VQ* genes in different tissues, including seed, pod, SAM, stem, flower, leaf, root, root hair and nodule, is available in Phytozome V12.1 database (https://phytozome.jgi.doe.gov/pz/portal.html). The expression profile for *VQ* genes was utilized for generating the heatmap and k-means clustering using R 3.2.2 software (Gentleman et al., 2004).
Plant material and treatments

Glycine max (Williams 82) was used in this study. Seeds were planted in a 3:1 (w/w) mixture of soil and sand, germinated, and irrigated with half-strength Hoagland solution once every 2 days. The seedlings were grown in a night temperature of 20 °C and day temperature of 22 °C, relative humidity of 60 %, and a 16/8 h photoperiod (daytime: 05:00–21:00). After 4 weeks, the germinated seedlings were treated with 20% PEG6000 (drought), 250 mM NaCl solution (salt), 4 °C (cold), 100 μM abscisic acid (ABA), 100 μM salicylic acid (SA) solutions. Control and treated seedlings were harvested 1 h, 6 h, 12 h, and 24 h after treatment. All samples were frozen in liquid nitrogen and stored at -80 °C until use.

RNA extraction and Quantitative real-time PCR (qRT-PCR)

Total RNA was extracted from _G. max_ using RNAiso Plus (TaKaRa, Toyoto, Japan) according to manufacturer's instructions. The cDNA synthesis was carried out with approximately 2 μg RNA using PrimeScript RT reagent Kit with gDNA Eraser (TaKaRa, Toyoto, Japan). Quantitative Real-time PCR (qRT-PCR) was performed using SYBR Premix Ex Taq II (TaKaRa, Toyoto, Japan) on an ABI Prism 7000 sequence detection system (Applied Biosystems, USA) with the primers listed in Table S1. PCR amplification was performed in accordance with SYBR Premix Ex Taq (TaKaRa, Toyoto, Japan) response system. For each sample, three technical replicates were conducted to calculate the averaged Ct values. Relative expression was calculated by the 2^−ΔΔCt method (Livak & Schmittgen, 2001). The actin and GAPDH genes were used as internal control.

Gene Ontology Enrichment

Once the sequences were obtained ran a BLASTX search against the UNIPROT database at a 1e-30 significance level. The matches were extracted and compared to the GO annotation generated against UNIPROT hits located at EBI. The GO annotation of the GmVQ genes by using WEGO.
Analyzed the cis-elements of GmVQ promoters

The cis-elements of GmVQ promoters were analyzed to further understand the GmVQ gene family. We examined the sequences within 1500 base pairs (bp) upstream of initiation codons (ATG) for promoter analysis and searched for these sequences in the soybean genome. The cis-elements in promoters were subsequently searched using the PlantCARE database (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Gene interaction network

Protein sequence of GmWRKY transcription factors were obtained from the genome database of soybean, also were mapped to the WRKY proteins of Arabidopsis by BLASTP tool in the TAIR database. Subsequently, the interaction between GmVQs and GmWRKYs were forecasted based on the PAIR website (http://www.cls.zju.edu.cn/pair/), their network was drawn in Cytoscape 3.6.1.

Results

Identification of GmVQs

Hidden Markov Model (HMM) of the VQ motif (PF05678) was used to search for putative VQs in soybean proteins database. A total of 75 VQs were identified and were named from GmVQ1 to GmVQ75 based on their physical locations on the chromosomes. This is different from the previous study, which 74 GmVQs were identified before the database updated (Wang et al., 2014; Zhou et al., 2016). ExPasy predicted that these 75 VQ proteins have different physical and chemical properties whose amino acid lengths ranged from 89 aa (GmVQ37) to 486 aa (GmVQ18), with an average of 223 aa and most of them were less than 300 aa. The molecular weights of these 75 VQ proteins ranged from 10.03 kDa (GmVQ37) to 52.79 kDa (GmVQ18) and their isoelectric points ranged from 4.29 (GmVQ69) to 10.74 (GmVQ51) (Table 1).
Phylogenetic analysis and multiple alignment of the VQ genes

To explore the phylogenetic relationships among the VQ genes of soybean, A. thaliana and O. sativa, a NJ phylogenetic tree was constructed (Fig. 1). We found that soybean and A. thaliana have a closer relationship than rice. Based on their relationship with AtVQs and OsVQs and the characteristics of GmVQs’ core domain, they were divided into 7 groups, designated Group I-VII (Figs. 1, 2). For the 75 GmVQ proteins, Group VI contains two VQ proteins; Group V has the biggest amount, with 17 VQ proteins. Groups I, II, III, IV, VII contain 7, 15, 8, 12, 14 members respectively. At the same time, we found 5 types of VQ specificity domain: FxxxVQxLTG (54/75), FxxxVQxFTG (16/75), FxxxVQxVTG (2/75), FxxxVQxLTR (1/75), FxxxVQxLTS (1/75), besides, there is also a GmVQ protein (GmVQ10) has partial domain deletion (Fig. 2). Different types of VQ domains indicate that they might have different biological functions.

Conserved motifs and gene structures of the VQ gene family

We predicted that the 75 GmVQs contained 20 conserved motifs, with the motif length ranged from 11 aa to 50 aa (Fig. S1). Every GmVQ member contains 1-7 conserved motifs (Fig. 3B). All of the proteins, excepted GmVQ22, show motif 1 which contains a specialty VQ domain. Additionally, an unrooted phylogenetic tree was constructed with VQ protein sequences, suggested that the motifs organization of VQ genes were consistent with the phylogenetic tree (Fig. 3A). Group V contains motif 4, Group IV contains motif 2. We found that most groups possess more than two motifs, suggested that every group might have special functions with a highly conserved amino acid residue. Through the VQ gene structures analysis, half of the group VI has introns; genes in group V have longer coding regions, while genes of group I have shorter coding regions than other groups (Fig. 3C). Interestingly, 78.67% (59/75) of GmVQ genes are intronless genes. It is speculated that a large number of introns might be lost in VQ genes during evolution. The phylogenetic tree shows that genes from same branches have similar
gene structures, while those from different branches have different gene structures (Fig.3A).

Chromosome location and gene duplication

We drew a chromosomal location map of *GmVQ* genes on each chromosome (Fig. 4). *GmVQs* are distributed on all soybean chromosomes, except chromosome 16, and were densely distributed on chromosome 8 and chromosome 13, containing 13 and 7 members, respectively (Fig. 4). Most of *GmVQs* are distributed on the two ends of chromosomes.

Segmental or tandem duplicate in many gene families are the main expanding way in plants. To better study the evolution of *GmVQ* genes, we further explored gene duplication events using the MCScanX software. We found that 52 pairs of genes originated from segmental duplication, and 4 pairs of genes involved in tandem duplication events (Table S2).

Evolution and divergence of the *VQ* gene family in soybean and *Arabidopsis*

With the OrthoMCL software, we found 56 paralogous pairs in soybean, 37 orthologous pairs between soybean and Arabidopsis. Some *VQ* genes have never had any homology genes. All the paralogous and orthologous pairs are listed in Table 2. At the same time, we found that two or more *GmVQ* genes match to one *AtVQ* gene, implying that they might promote the expansion of the *VQ* gene family during evolution. We calculated Ka/Ks ratios of 55 paralogous pairs in soybean (Table 3). Most Ka/Ks ratios are < 1, however, the *GmVQ54/GmVQ63* and *GmVQ65/GmVQ36* pairs are > 1. In addition, the genetic differentiation of the 55 gene pairs occurred between 5 and 30 MYA.

Expression analysis of *GmVQ* genes among various tissues

67 *GmVQ* genes were investigated using available RNA-seq data from nine different tissues (seed, pod, SAM, stem, flower, leaf, root, nodule, and root hair) (Fig. 5). We found that the expression levels of the *GmVQs* varied significantly in different tissues. Most *GmVQ* genes were found expressed in more than one detected organ. As shown in Fig. 5, genes in group A are
expressed in all analyzed tissues. The expression levels of group B in pod and stem tissues are higher. Genes in group C have specific expression in leaf and root.

Expression patterns of GmVQs under abiotic stress

We randomly selected 25 GmVQ genes from 7 groups, and made sure their responses to the plant hormones-, cold-, salt-, and drought-stress (Fig. 6-10). Under ABA treatment, most genes were up-regulated whole treatment period and six genes (GmVQ6/8/31/33/59/71) were obviously down-regulated at some treatment time points (Fig. 6, Table S3). The expression levels of 7 genes (GmVQ2/27/40/48/53/68/74) reached the peak at the 6h treatment time point and four genes (GmVQ9/21/31/71) reached the lowest expression levels at the early treatment time points (0-1 h treatment). With SA treatment, the expression levels of most GmVQs were down-regulated throughout, while GmVQ7 was up-regulated at 1h, 6h and 12 h treatment time points (Fig. 7, Table S4). In addition, nine GmVQ genes (GmVQ5/6/8/23/31/68/70/71/74) were down-regulated under all abiotic stress.

With cold treatment, the expression levels of fourteen GmVQ genes (GmVQ2/7/9/28/29/31/33/40/46/48/53/59/68/74) were up-regulated throughout (Fig. 8, Table S5), while the expression levels of three genes (GmVQ27/64/65) were down-regulated and then up-regulated during treatment. Under salt stress, the results were similar to that with cold stress treatment, most genes were up-regulated, eight genes (GmVQ9/23/27/33/65/68/70/71) were down-regulated throughout (Fig. 9, Table S6). On the contrary, under drought (PEG) stress, most genes were down-regulated, only eight genes (GmVQ2/6/7/8/21/29/33/48) were up-regulated during the treatment (Fig. 10, Table S7).

Cis-elements in GmVQ promoters

We found many hormone- and stress- related promoter’s cis-elements in GmVQ genes. Enhancer regions (CAAT-box) and core promoter element are around -30 bp of transcription start (TATA-box). Cis-acting regulatory element (A-box) are the common cis-acting elements in the promoter.
Others **cis**-elements that were found in the 75 *GmVQs* can be classified into three groups (Fig. 11). Twelve **cis**-elements involve in the hormone responsiveness; five **cis**-elements are stress-related elements: ARE/ GC/LTR/ MBS/TC; some *GmVQ* genes containe plant growth and development elements, such as CAT-box/circadian/GCN4/HD-Zip 1/MSA-like/ RY-element. In addition, some *GmVQ* genes containe W-box motif, which is binding site for WRKY transcription factor.

Gene Ontology Enrichment

To further understand the functions of the *GmVQs*, we performed GO annotation and GO enrichment analyses (Figure S2 and Table S8). The GO terms included three categories, biological process (BP), molecular function (MF) and cellular component (CC). GO enrichment confirmed that these *GmVQs* were enriched in the biological process (GO:0008150), regulation of biological process (GO:0050789) and biological regulation (GO:0065007) terms of the BP category. Cellular component (GO:0005575), intracellular (GO:0005622) and cell (GO:0005623) were the most abundant functions in the CC category (Table S8). MF was enriched in molecular function (GO:0003674) and binding (GO:0005488). The GO enrichment suggested that *GmVQs* were play curcial roles in regulated of biological process.

Gene interaction network analysis

Based on the PAIR tool, we found the functions and their interactions of the GmVQs and GmWRKYs. As shown in Fig. 12A, 3 GmWRKYs are supposed to interact with GmVQ proteins, included GmWRKY115, GmWRKY149 and GmWRKY156, all of them belong to WRKY’s IIc group. In the Fig. 12B, we found that GmWRKYs and AtWRKYs are quite similar in their core domains, indicated that they might have same functions, such as interacted with VQ proteins.

Discussion

VQ protein is a kind of specific protein that widely exists in plant, involved in plant growth and
can response to different stresses (Petersen et al., 2010; Fiil & Petersen, 2011; Xie et al., 2010). Hence, we completed genome-wide analysis of soybean VQ proteins by bioinformatic analysis and qRT-PCR to understand their regulation when environmental changed. In the previous study, 74 GmVQ genes were identified (Wang et al., 2014; Zhou et al., 2016). After the database was updated, we identified and isolated 75 GmVQ genes in the soybean genome. Compared with previous study, the number of genes in chromosome 2, 4 and 17 show a big difference. Soybean contains more VQ genes than that of A. thaliana (34) (Cheng et al., 2012), Populus trichocarpa (51) (Chu et al., 2016) and O. sativa (42) (Kim et al., 2013). The reason is the whole genome duplication events (WGD). There are two rounds of genome duplication, occurred at around 59 and 13 million years ago, which caused 75% soybean genes duplicated (Jeremy et al., 2010).

75 VQ genes were identified in Glycine max’s genome, divided into seven groups based on their comprehensive phylogenetic tree among G. max, A. thaliana, and O. sativa. These proteins are in the shorter branches and with closer spacing, suggesting that they were highly conserved during the evolution. The more closer related genes within the same group shared more similar gene structures, either in their intron or in the exon patterns. Whereas, the variation in different groups suggested the functional diversity of the VQ genes (Jiang et al., 2018). In addition, most GmVQ genes (59;78.67%) were found intronless, and most GmVQ genes (64;85.33%) encoded relatively small proteins with protein length less than 300 amino acid. This suggests that VQ gene families were intronless and they were highly conserved during evolution. At the same time, gene duplication can help plants to adapt to different environments during their development and growth (Huang et al., 2016; Storz, 2009). The main expansion of GmVQ gene family is segmental duplication (52; 92.9%), only 4 pairs of genes involved in tandem duplication events (4; 7.1%). A similar phenomenon was reported in the BrVQ gene family, which contains a high proportion of segmental duplication (71.9%) and low proportion of tandem duplication (28.1%) (Zhang et al., 2015).

Nonfunctionalization, subfunctionalization, and neofunctionalization generally take place after genome duplication, resulting in lose or fix of genes (He & Zhang, 2005; Sandve et al.,
Soybean has undergone the WGD and the whole genome triplication (WGT) compared to grapevine (Wang et al., 2017). As there are 18 VQ genes in grapevine genome, the predicted number of VQ genes in soybean should be more than 100 (Wang et al., 2015). However, in this study, we only found 75 VQ genes in the soybean genome, suggesting that there were gene loss events after genome duplication. In addition, the Ks value of each paralogous pairs was calculated to find gene duplication events, the most duplication events in GmVQ gene occurred between 5 and 30 MYA, consistent with the recent WGD in soybean (Wang et al., 2017; Schmutz et al., 2010). The Ka/Ks ratios in different gene pairs are different, but most gene pairs’ Ka/Ks ratios are less than one and only two gene pairs’ (GmVQ54-GmVQ63 and GmVQ65-GmVQ36) ratios are larger than 1, implying these gene pairs undergo different selection pressure. The above analysis indicated that purifying selection played a crucial role during the evolution, conserved VQ proteins evolved much slowly at the protein level.

Expression patterns of 67 GmVQ genes were performed to determine their tissue expression using RNA-seq data. The results showed that 24 genes were relatively highly expressed in nine tissues, indicated that they may relate to the growth and development of plants. Moreover, 76% (57/75) and 64% (48/75) of GmVQ genes’ expression levels were obviously increased in leaves and roots, respectively. More and more studies have shown that VQ proteins played a significant role in plants development. The study of A. thaliana mutants showed that AtVQ8 had a certain influence on chlorophyll formation and leaf growth and development (Cheng et al., 2012). In this study, GmVQ7 and GmVQ75 were in the same evolutionary branch with AtVQ8. Their high expression in leaves indicating they might have similar function as AtVQ8. (Cheng et al., 2012).

These results will help us to study the further function of soybean’s VQ proteins.

Plants need to face various abiotic stresses during their growth in natural conditions, the most common of which are high salt, drought and cold (Kim et al., 2013; Wang et al., 2014;). Except for regulation by environmental factors, VQ gene family is regulated by defense-related hormones, such as SA and ABA. In our study, we selected 25 GmVQs for qRT-PCR analysis under five different stresses (salt, drought, cold, SA and ABA stresses). In this study, most
GmVQ genes were up-regulated with the SA treatment, the result is consistent with previous study that most AtVQ genes can response to pathogen or the SA treatment (Cheng et al., 2012). In addition, fifteen GmVQ genes (e.g., GmVQ2/21/29/46) were up-regulated under SA treatment, suggesting that they play a potential role in stress resitance. 56% GmVQ genes (14/25) were up-regulated, which is different with the up-regulation of VQ genes in rice that only three OsVQ genes were up-regulated more than two fold (Kim et al., 2013). Increasing evidence suggests that VQ genes are involved in various stress response. For example, 23% ZmVQ genes were upregulated, all the VvVQ genes were up-regulated by drought stress (Song et al., 2016; Wang et al., 2015). Consistently, 30% of GmVQ genes were up-regulated, GmVQ2/29/33 were highly expressed under drought stress. Nevertheless, AtVQ9 and AtVQ15 were reported can response to abiotic stress during high salinity treatment. The response of VQ genes to cold stress is similar to that of Chinese cabbage (Hu et al., 2013; Zhang et al., 2015; Cheng et al., 2012). In our study, GmVQ5/6/7/31/46/58/59 and GmVQ7/9/28 were activated the salt and cold stresses, respectively, because that their promoter region exists in specific stress cis-elements. Besides, homologous GmVQ genes possessed similar expression pattern but may exhibit opposite expression trend under stress, such as GmVQ9-GmVQ21 were up-regulated under SA treatment, but GmVQ9 was up-regulated and GmVQ29 was down-regulated during cold stress. These results suggest that GmVQ genes participate in response mechanism of abiotic stresses, their regulation mechanism is complex and diverse.

As auxiliary factor, VQ genes regulate transcription, can interact with many proteins to participate in regulating complex physiological and biochemical processes of plants, such as they can interact with WRKY transcription factors (Wang et al., 2015; Lei et al., 2017; Lai et al., 2011). Studies have shown that the responses under three different pathogens, VQ protein are interacted with WRKY protein in rice (Li et al., 2014). VQ proteins and WRKY proteins may form a protein complex to exercise function. We found some of the GmVQ genes interact with group I’s WRKY, most VQ genes interact with groups I and IIC’s VQ protein in various stresses in previous reports (Dong et al., 2018; Guo et al., 2018; Lei et al., 2017). The promoter analysis
indicated that 23 of 75 GmVQ genes (30.67%) contained one or more W-box motif in their 1500 bp promoter regions, W-box were present in 78% VvVQ genes, 91% ZmVQ genes contained one or more W-box motif (Song et al., 2016). In the promoters of GmWRKY genes, W-boxes could regulate GmWRKY members (Dong et al., 2003). It indicates that WRKY protein affect VQ genes expression and thus responses to environmental stimuli (Dong et al., 2018; Guo et al., 2018).

Conclusions

75 VQ genes were identified in the soybean genomes. All VQ genes fell into seven groups (I - VII). VQ genes from the same evolutionary branches of soybean shared similar motifs and structures. The selection pressure analysis showed that most of the paralogous pairs were under a strong purifying selection in the GmVQ genes. RNA-seq analysis revealed that the VQ genes had different expression patterns in different tissues, indicating that they play crucial roles in different tissue. Finally, qRT-PCR showed that the VQ gene family was responsive to biotic and abiotic stresses. Our results provide a theoretical basis for further study on the function of GmVQs.

Acknowledgements

The authors would like to thank the key laboratory of crop and livestock molecular breeding of Heilongjiang Province for providing plenty of helpful manpower and material support.

References

Bailey, T.L., Johnson, J., Grant, C.E., and Noble, W.S. 2015. The MEME Suite. Nucleic Acids Research 43(W1): W39-W49 DOI 10.1093/nar/gkv416.
Cheng, Y., Zhou, Y., Yang, Y., Chi, Y.J., Zhou, J., Chen, J.Y., Wang, F., Fan, B., Shi, K., and Zhou, Y.H. 2012. Structural and functional analysis of VQ motif-containing proteins in Arabidopsis as interacting proteins of WRKY transcription factors. Plant Physiology 159(2):810-825 DOI 10.1104/pp.112.196816.
Chu, W., Liu, B., Wang, Y., Pan, F., Chen, Z., Yan, H., and Xiang, Y. 2016. Genome-wide analysis of poplar VQ gene family and expression profiling under PEG, NaCl, and SA treatments. Tree Genetics & Genomes
Dong, J., Chen, C., and Chen, Z. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. *Plant Molecular Biology* 51:21-37 DOI 10.1023/A:1020780022549.

Dong, Q., Zhao, S., Duan, D., Tian, Y., Wang, Y., Mao, K., Zhou, Z., and Ma, F. 2018. Structural and functional analyses of genes encoding VQ proteins in apple. *Plant Science* 272:208-219 DOI 10.1016/j.plantsci.2018.04.029.

Fiil, B.K., and Petersen, M. 2011. Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. *Plant Signaling & Behavior* 6(10):1425-1427 DOI 10.4161/psb.6.10.16759.

Garcia, D., and Berger, F. 2003. Arabidopsis haiku mutants reveal new controls of seed size by endosperm. *Plant Physiology* 131(4):1661-1670 DOI 10.1104/pp.102.018762.

Goodstein, D.M., Shu, S., Howson, R., Neupane, R., Hayes, R.D., Fazo, J., Mitros, T., Dirks, W., Hellsten, U., and Putnam, N. 2012. Phytozome: a comparative platform for green plant genomics. *Nucleic Acids Research* 40(D1):D1178-D1186 DOI 10.1093/nar/gkr944.

Guo, J., Chen, J., Yang, J., Yu, Y., Yang, Y., and Wang, W. 2018. Identification, characterization and expression analysis of the VQ motif-containing gene family in tea plant (Camellia sinensis). *BMC Genomics* 19(1):710 DOI 10.1186/s12864-018-5107-x.

He, X., and Zhang, J. 2005. Rapid Subfunctionalization Accompanied by Prolonged and Substantial Neofunctionalization in Duplicate Gene Evolution. *Genetics* 169(2):1157-1164 DOI 10.1534/genetics.104.037051.

Hu, Y., Chen, L., Wang, H., Zhang, L., Wang, F., and Yu, D. 2013. Arabidopsis transcription factor WRKY8 functions antagonistically with its interacting partner VQ9 to modulate salinity stress tolerance. *Plant Journal* 74(3):730-745 DOI 10.1111/tpj.12159.

Huang, Z., Duan, W., Song, X., Tang, J., Peng, W., Bei, Z., and Hou, X. 2016. Retention, Molecular Evolution, and Expression Divergence of the Auxin/Indole Acetic Acid and Auxin Response Factor Gene Families inBrassica RapaShed Light on Their Evolution Patterns in Plants. *Genome Biology & Evolution* 8:302-316 DOI 10.1093/gbe/evw259.

Jeremy, S., Cannon, S.B., Jessica, S., Jianxin, M., Therese, M., William, N., Hyten, D.L., Qijian, S., Thelen, J.J., and Jianlin, C. 2010. Genome sequence of the palaeopolyploid soybean. *Nature* DOI 10.1038/nature08957.

Jiang, S.Y., Sevugan, M., and Ramachandran, S. 2018. Valine-glutamine (VQ) motif coding genes are ancient and non-plant-specific with comprehensive expression regulation by various biotic and abiotic stresses. *BMC Genomics* 19(1):342 DOI 10.1186/s12864-018-4733-7.

Jing, Y., and Lin, R. 2015. The VQ Motif-Containing Protein Family of Plant-Specific Transcriptional Regulators. *Plant Physiology* 169:371-378 DOI 10.1104/pp.15.00788.

Kim, D.Y., Kwon, S.I., Choi, C., Lee, H., Ahn, I., Park, S.R., Bae, S.C., Lee, S.C., and Hwang, D.J. 2013. Expression analysis of rice VQ genes in response to biotic and abiotic stresses. *Gene* 529(2):208-214 DOI 10.1016/j.gene.2013.08.023.

Kim, M.Y., Yang, J.K., Lee, T., and Lee, S.H. 2013. Divergence of Flowering-Related Genes in Three Legume Species. *Plant Genome* 6(3):841-856 DOI 10.3835/plantgenome2013.03.0008.

Krzywinski, M., Schein, J., Birol, I., Connors, J., Gascoyne, R., Horsman, D., Jones, S.J., and Marra, M.A.
2009. Circos: an information aesthetic for comparative genomics. *Genome Research* 19(9):1639-1645 DOI 10.1101/gr.092759.109.

Lai, Z., Li, Y., Wang, F., Cheng, Y., Fan, B., Yu, J.Q., and Chen, Z. 2011. Arabidopsis sigma factor binding proteins are activators of the WRKY33 transcription factor in plant defense. *Plant Cell* 23(10):3824-3841 DOI 10.1105/tpc.111.090571.

Lei, R., Li, X., Ma, Z., Lv, Y., Hu, Y., and Yu, D. 2017. Arabidopsis WRKY2 and WRKY34 transcription factors interact with VQ20 protein to modulate pollen development and function. *Plant Journal* 91:962-976 DOI 10.1111/tpj.13619.

Letunic, I., Doerks, T., and Bork, P. 2012. SMART 7: recent updates to the protein domain annotation resource. *Nucleic Acids Research* 40(D1):302-305 DOI 10.1093/nar/gkr931.

Li, N., Li, X., Xiao, J., and Wang, S. 2014. Comprehensive analysis of VQ motif-containing gene expression in rice defense responses to three pathogens. *Plant Cell Reports* 33(9):1493-1505 DOI 10.1007/s00299-014-1633-4.

Li, W.H., Gojobori, T., and Nei, M. 1981. Pseudogenes as a paradigm of neutral evolution. *Nature* 292(5820):237-239 DOI 10.1038/292237a0.

Liu, M.M., and Li, D.M. 2010. An analysis on total factor productivity and influencing factors of soybean in China. *Journal of Agricultural Science* 2(2):P158 DOI 10.5539/jas.v2n2p158.

Livak, K.J., and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 25:402-408 DOI 10.1006/meth.2001.

Perruc, E., Charpenteau, M., Ramirez, B.C., Jauneau, A., Galaud, J.P., Ranjeva, R., and Ranty, B. 1999. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. *Plant Journal* 38:410-420 DOI 10.1111/j.1365-313X.2004.02062.x.

Petersen, K., Qiu, J.L., Lütje, J., Fiil, B.K., Hansen, S., Mundy, J., and Petersen, M. 2010. Arabidopsis MKS1 Is Involved in Basal Immunity and Requires an Intact N-terminal Domain for Proper Function. *PLoS One* 5(12):e14364 DOI 10.1371/journal.pone.0014364.

Punta, M., Coggill, P.C., Eberhardt, R.Y., Mistri, J., Tate, J., Boursnell, C., Pang, N., Forsslund, K., Ceric, G., and Clements, J. 2012. The Pfam protein families database. *Nucleic Acids Research* 40(1):D290 DOI 10.1093/nar/gkr931.

Rueda, J., Realpe, T., Mejia, G.I., Zapata, E., Rozo, J.C., Ferro, B.E., and Robledo, J. 2015. Genotypic Analysis of Genes Associated with Independent Resistance and Cross-Resistance to Isoniazid and Ethionamide in Mycobacterium tuberculosis Clinical Isolates. *Antimicrobial Agents & Chemotherapy* 59(12):7805-7810 DOI 10.1128/AAC.01028-15.

Sandve, S.R., Rohlf, R.V., and Hvidsten, T.R. 2018. Subfunctionalization versus neofunctionalization after whole-genome duplication. *Nature Genetics* 50 10.1038/s41588-018-0162-4.

Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., and Cheng, J. 2010. Genome sequence of the palaeopolyploid soybean. *Nature* 463:178-183 DOI 10.1038/nature08957.

Song, W., Zhao, H., Zhang, X., Lei, L., and Lai, J. 2016. Genome-Wide Identification of VQ Motif-Containing Proteins and their Expression Profiles Under Abiotic Stresses in Maize. *Frontiers in Plant Science* 6:1177 DOI 10.3389/fpls.2015.01177.

Stark, T.L., Liberles, D.A., Holland, B.R., and O Reilly, M.M. 2017. Analysis of a mechanistic Markov model for gene duplicates evolving under subfunctionalization. *BMC Evolutionary Biology* 17(1):38 10.1186/s12862-016-
Storz, J.F. 2009. Genome evolution: Gene duplication and the resolution of adaptive conflict. *Heredity* **102**:99 DOI 10.1038/hdy.2008.114.

Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. *Molecular Biology & Evolution* **28**:2731.

Wang, A.H., Garcia, D., Zhang, H.Y., Ke, F., Chaudhury, A., Berger, F., Peacock, W.J., Dennis, E.S., and Ming, L. 2010. The VQ motif protein IKU1 regulates endosperm growth and seed size in Arabidopsis. *Plant Journal* **63**(4):670-679 DOI 10.1111/j.1365-313X.2010.04271.x.

Wang, J., Sun, P., Li, Y., Liu, Y., Yu, J., Ma, X., Sun, S., Yang, N., Xia, R., and Lei, T. 2017. Hierarchically Aligning 10 Legume Genomes Establishes a Family-Level Genomics Platform. *Plant Physiology* **174**(1):284 DOI 10.1104/pp.16.01981.

Wang, M., Vannozzi, A., Wang, G., Zhong, Y., Corso, M., Cavallini, E., Cheng, Z.M. 2015. A comprehensive survey of the grapevine VQ gene family and its transcriptional correlation with WRKY proteins. *Frontiers in Plant Science*, 6:417 DOI 10.3389/fpls.2015.00417.

Wang, X., Zhang, H., Sun, G., Jin, Y., and Qiu, L. 2014. Identification of active VQ motif-containing genes and the expression patterns under low nitrogen treatment in soybean. *Gene* **543**(2):237-243 DOI 10.1016/j.gene.2014.04.012.

Wang Y, Tang H, Debarry J D, Tan, X., Li, J., Wang, X., Lee, T; Jin, H.; Marler, B.; Guo, H.; Kissing er, J.C. 2012. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. *Nucleic Acids Res* **40**(7):e49-e49 DOI 10.1093/nar/gkr1293.

Xie, Y.D., W., L.I., Guo, D., Dong, J., Zhang, Q., Y., F.U., Ren, D., Peng, M., and Xia, Y. 2010. The Arabidopsis gene SIGMA FACTOR-BINDING PROTEIN 1 plays a role in the salicylate- and jasmonate-mediated defence responses. *Plant Cell & Environment* **33**(5):828-839 DOI 10.1111/j.1365-3040.2009.02109.x.

Xu, L., Qiao, X., Zhang, M., and Zhang, S. 2018. Genome-Wide Analysis of Aluminum-Activated Malate Transporter Family Genes in Six Rosaceae Species, and Expression Analysis and Functional Characterization on Malate Accumulation in Chinese White Pear. *Plant Science* **24**(3):431-442 DOI 10.1111/1744-7917.12336.

Zhang, G., Wang, F., Li, J., Qian, D., Zhang, Y., Li, H., Zhang, J., and Gao, J. 2015. Genome-Wide Identification and Analysis of the VQ Motif-Containing Protein Family in Chinese Cabbage (Brassica rapa L. ssp. Pekinensis). *International Journal of Molecular Sciences* **16**(12):28683-28704 DOI 10.3390/ijms161226127.

Zhou Y, Yang Y, Zhou X, Chi Y, Fan B, Chen Z. 2016. Structural and Functional Characterization of the VQ Protein Family and VQ Protein Variants from Soybean. *Science Reports*. **6**: 34663 DOI 10.1038/srep34663.
Figure legends

Fig. 1 Phylogenetic tree analysis of the VQ genes in *Glycine max*, *Arabidopsis thaliana* and *Oryza sativa*. The phylogenetic tree was constructed using MEGA 7.0 by the neighbor-joining method. The Bootstrap value was 1,000 replicates. The three plant-specific clusters were designated as group I - VII and indicated in a specific color.

Fig. 2 Multiple sequence alignment, gene structure and multiple motifs of soybean. Alignment of VQ domain of 75 VQ proteins in soybean. Amino acids that are conserved throughout are shaded in different colors. The genes in different groups are in different colors.

Fig. 3 Phylogenetic tree, conserved motifs and gene structure in GmVQs. (A) Phylogenetic relationships (B) Conserved motifs of the GmVQs. Each motif is represented by a number in colored box. (C) Exon/intron structures of GmVQ genes.

Fig. 4 Chromosome location and duplication events analysis in *Glycine max*.

Fig. 5 Expression analysis of GmVQ genes in different tissues and different stages. The clusters were designated as group A-C. Different colors in map represent gene transcript abundance values as shown in bar at top of figure.

Fig. 6 qRT-PCR analysis reveals GmVQ genes under ABA treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).

Fig. 7 qRT-PCR analysis reveals GmVQ genes under SA treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).
Fig. 8 qRT-PCR analysis reveals *GmVQ* genes under cold treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).

Fig. 9 qRT-PCR analysis reveals *GmVQ* genes under NaCl treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).

Fig. 10 qRT-PCR analysis reveals *GmVQ* genes under drought treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p<0.05, **p<0.01).

Fig. 11 Number of each *cis*-acting element in the promoter region (1.5 kb upstream of the translation start site) of *GmVQ* genes.

Fig. 12 Interaction of GmVQ proteins with GmWRKY proteins. (A) The prediction of interaction between GmVQ proteins and GmWRKY proteins by the PAIR website, and the interaction network was draw in Cytoscape 3.6.1. (B) Sequence analysis of the WRKY domains of GmWRKY proteins and AtWRKY proteins.

Table legends

Table 1 List of all *GmVQ* genes information identified in the *Glycine max* genome.

Table 2 List of paralogous and orthologous pairs between soybean and Arabidopsis thaliana.

Table 3 List of Ka, Ks and Ka/Ks values calculated for paralogous *VQ* gene pairs.
Supplemental Data legends

Supplemental Fig. 1 Sequence logo of motifs in GmVQ genes.

Supplemental Fig. 2 Gene ontology categories assigned of the GmVQ genes

Supplemental Table 1 List of primers used in qRT-PCR.

Supplemental Table 2 List of VQ gene duplication events

Supplemental Table 3 Raw data for the ABA stress.

Supplemental Table 4 Raw data for the SA stress.

Supplemental Table 5 Raw data for the salt stress.

Supplemental Table 6 Raw data for the drought stress.

Supplemental Table 7 Raw data for the cold stress.

Supplemental Table 8 GO terms of the GmVQ genes
Figure 1

Phylogenetic tree analysis of the VQ genes in *Glycine max*, *Arabidopsis thaliana* and *Oryza sativa*.

The phylogenetic tree was constructed using MEGA 7.0 by the neighbor-joining method. The Bootstrap value was 1,000 replicates. The three plant-specific clusters were designated as group I-VII and indicated in a specific color.
Multiple sequence alignment, gene structure and multiple motifs of soybean.

Alignment of VQ domain of 75 VQ proteins in soybean. Amino acids that are conserved throughout are shaded in different colors. The genes in different groups are in different colors.
Figure 3

Phylogenetic tree, conserved motifs and gene structure in GmVQs.

(A) Phylogenetic relationships (B) Conserved motifs of the GmVQs. Each motif is represented by a number in colored box. (C) Exon/ intron structures of GmVQ genes.
Figure 4

Chromosome location and duplication events analysis in *Glycine max*.
Figure 5

Expression analysis of *GmVQ* genes in different tissues and different stages.

The clusters were designated as group A-C. Different colors in map represent gene transcript abundance values as shown in bar at top of figure.
Figure 6

qRT-PCR analysis reveals *GmVQ* genes under ABA treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01).
Figure 7

qRT-PCR analysis reveals *GmVQ* genes under SA treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01).
qRT-PCR analysis reveals *GmVQ* genes under cold treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01).
qRT-PCR analysis reveals *GmVQ* genes under NaCl treatment compared to the controls. Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01).
Figure 10

qRT-PCR analysis reveals *GmVQ* genes under drought treatment compared to the controls.

Stress treatments and time course are described in “Materials and methods”. Asterisks on top of the bars indicating statistically significant differences between the stress and counterpart controls (*p*<0.05, **p**<0.01).
Figure 11

Number of each cis-acting element in the promoter region (1.5 kb upstream of the translation start site) of GmVQ genes.
Figure 12

Interaction of GmVQ proteins with GmWRKY proteins.

(A) The prediction of interaction between GmVQ proteins and GmWRKY proteins by the PAIR website, and the interaction network was draw in Cytoscape 3.6.1. (B) Sequence analysis of the WRKY domains of GmWRKY proteins and AtWRKY proteins.
Table 1 List of all GmVQ genes information identified in the Glycine max genome.
Table 1 List of all GmVQ genes identified in the *Glycine max* genome

Gene name	Gene locus	Chromosome location	Length (aa)	pI	Molecular weight (Da)	Family group
GmVQ1	Glyma01G018700	chr1:1790049-1792039	318	10.66	34712.78	VII
GmVQ2	Glyma01G096800	chr1:31515839-31517715	289	10.24	31636.98	VII
GmVQ3	Glyma01G195300	chr1:52952165-52953181	154	9.48	16878.08	VII
GmVQ4	Glyma02G208800	chr2:39393500-39394691	212	9.96	23346.3	VII
GmVQ5	Glyma03G120700	chr3:33242128-33243660	233	7.79	24442.59	VI
GmVQ6	Glyma03G127800	chr3:34231323-34232268	167	4.79	18699.76	I
GmVQ7	Glyma03G204900	chr3:41299415-41300202	119	9.84	13358.41	II
GmVQ8	Glyma03G249100	chr3:44529232-44529956	127	9.11	14693.86	V
GmVQ9	Glyma04G099600	chr4:9570059-9571000	313	6.64	34199.48	V
GmVQ10	Glyma04G103200	chr4:9567274-9568529	205	9.14	22493.86	V
GmVQ11	Glyma04G103300	chr4:9570059-9571000	313	6.64	34199.48	V
GmVQ12	Glyma04G134200	chr4:19214276-19215243	127	6.7	14519.25	I
GmVQ13	Glyma04G214700	chr4:48626650-48627708	212	5.9	22930.94	II
GmVQ14	Glyma04G239400	chr4:50786868-50788346	240	8.96	26255.85	II
GmVQ15	Glyma05G107500	chr5:28551166-28551996	186	8.48	20503.94	VII
GmVQ16	Glyma05G133000	chr5:32592583-32593521	211	7.79	23513.49	V
GmVQ17	Glyma05G140700	chr5:33359443-33360263	113	5.43	12313.85	III
GmVQ18	Glyma05G179700	chr5:36744975-36747458	486	6.12	52793.72	V
GmVQ19	Glyma05G190000	chr5:37570564-37571544	208	6.84	22399.46	II
GmVQ20	Glyma05G198400	chr5:38262465-38265127	186	9.52	20618.64	IV
GmVQ21	Glyma06G101400	chr6:8043143-8044571	295	10.28	32310.83	III
GmVQ22	Glyma06G104400	chr6:8309457-83111289	341	6.06	37163.76	V
GmVQ23	Glyma06G104500	chr6:8314638-8315685	316	6.48	34579.04	V
GmVQ24	Glyma06G124400	chr6:10128263-10129012	249	8.11	27136.69	II
GmVQ25	Glyma06G151400	chr6:12350255-12351217	222	5.97	24195.35	II
GmVQ26	Glyma06G240300	chr6:39620687-39622549	244	7.79	26839.89	IV
GmVQ27	Glyma07G028700	chr7:2307932-2309158	193	9.98	20948.74	IV
GmVQ28	Glyma07G092500	chr7:8632559-8633302	247	5.97	27087.07	II
GmVQ29	Glyma07G198000	chr7:36647302-36650373	310	8.42	33741.87	IV
GmVQ30	Glyma08G005700	chr8:456890-461071	174	9.1	19216.73	IV
GmVQ31	Glyma08G041900	chr8:3320834-3322022	140	6.9	15589.54	II
GmVQ32	Glyma08G087400	chr8:6616587-6617687	221	6.91	24350.54	V
GmVQ33	Glyma08G096000	chr8:7331414-7331749	111	6.26	12060.59	III
GmVQ34	Glyma08G137300	chr8:10495440-10498069	472	6.33	51419.34	V
Accession	Symbol	Chromosome Position	Length	Mean	SNP Density	Tier
-----------	--------	---------------------	--------	------	-------------	------
GmVQ72	Glyma19G202300	chr19:45923283-45923992	124	9.7	13533.53	Ⅱ
GmVQ73	Glyma19G246700	chr19:49331581-49332332	102	9.19	11775.23	Ⅰ
GmVQ74	Glyma20G064500	chr20:21930212-21930913	233	10.51	25070.57	Ⅴ
GmVQ75	Glyma20G116600	chr20:35927408-35928282	157	5.9	17333.32	Ⅱ
Table 2 List of paralogous and orthologous pairs between soybean and Arabidopsis thaliana.						
Gm-Gm	Gm-Gm	Gm-At				
--------------	--------------	--------------				
GmVQ3/GmVQ47	GmVQ24/GmVQ59	GmVQ37/AtVQ1				
GmVQ5/GmVQ70	GmVQ27/GmVQ38	GmVQ64/AtVQ1				
GmVQ6/GmVQ71	GmVQ28/GmVQ45	GmVQ14/AtVQ3				
GmVQ7/GmVQ72	GmVQ29/GmVQ53	GmVQ24/AtVQ3				
GmVQ8/GmVQ73	GmVQ29/GmVQ61	GmVQ52/AtVQ3				
GmVQ9/GmVQ21	GmVQ29/GmVQ56	GmVQ59/AtVQ3				
GmVQ10/GmVQ11	GmVQ34/GmVQ68	GmVQ29/AtVQ5				
GmVQ10/GmVQ22	GmVQ34/GmVQ48	GmVQ53/AtVQ5				
GmVQ10/GmVQ23	GmVQ37/GmVQ64	GmVQ61/AtVQ5				
GmVQ10/GmVQ67	GmVQ39/GmVQ40	GmVQ56/AtVQ5				
GmVQ11/GmVQ22	GmVQ39/GmVQ41	GmVQ46/AtVQ8				
GmVQ11/GmVQ23	GmVQ39/GmVQ2	GmVQ75/AtVQ8				
GmVQ11/GmVQ67	GmVQ40/GmVQ41	GmVQ9/AtVQ9				
GmVQ13/GmVQ25	GmVQ40/GmVQ2	GmVQ21/AtVQ9				
GmVQ14/GmVQ24	GmVQ41/GmVQ2	GmVQ37/AtVQ10				
GmVQ14/GmVQ52	GmVQ42/GmVQ69	GmVQ64/AtVQ10				
GmVQ14/GmVQ59	GmVQ43/GmVQ62	GmVQ27/AtVQ11				
GmVQ15/GmVQ66	GmVQ46/GmVQ75	GmVQ38/AtVQ11				
GmVQ16/GmVQ32	GmVQ49/GmVQ26	GmVQ1/AtVQ14				
GmVQ18/GmVQ34	GmVQ50/GmVQ57	GmVQ5/AtVQ15				
GmVQ18/GmVQ68	GmVQ51/GmVQ74	GmVQ70/AtVQ15				
GmVQ18/GmVQ48	GmVQ52/GmVQ59	GmVQ44/AtVQ17				
GmVQ19/GmVQ35	GmVQ53/GmVQ61	GmVQ50/AtVQ19				
GmVQ20/GmVQ30	GmVQ53/GmVQ56	GmVQ57/AtVQ19				
GmVQ22/GmVQ23	GmVQ54/GmVQ63	GmVQ28/AtVQ20				
GmVQ22/GmVQ67	GmVQ61/GmVQ56	GmVQ45/AtVQ20				
GmVQ23/GmVQ67	GmVQ65/GmVQ36	GmVQ19/AtVQ21				
GmVQ24/GmVQ52	GmVQ68/GmVQ48	GmVQ35/AtVQ21				
		GmVQ5/AtVQ24				
		GmVQ70/AtVQ24				
		GmVQ45/AtVQ25				
		GmVQ20/AtVQ31				
		GmVQ30/AtVQ31				
		GmVQ18/AtVQ34				
		GmVQ34/AtVQ34				
		GmVQ68/AtVQ34				
		GmVQ48/AtVQ34				
Table 3 (on next page)

Table 3 List of Ka, Ks and Ka/Ks values calculated for paralogous VQ gene pairs.
Table 3 Ka, Ks and Ka/Ks values calculated for paralogous VQ gene pairs

Gene 1	Gene 2	Ka	Ks	Ka/Ks ratio
GmVQ10	GmVQ11	0.002146692	0.01590406	0.15705643
GmVQ19	GmVQ20	0.014320944	0.03213019	0.44975451
GmVQ34	GmVQ35	0.070550148	0.06695838	1.05368991
GmVQ36	GmVQ37	0.129398947	0.090241667	1.43912654
GmVQ39	GmVQ41	0.015091052	0.092583143	0.163
GmVQ43	GmVQ44	0.033904078	0.093563882	0.35511935
GmVQ47	GmVQ48	0.02957328	0.096785754	0.305554062
GmVQ56	GmVQ57	0.039057024	0.110714815	0.332771436
GmVQ61	GmVQ62	0.056833182	0.117015316	0.485690114
GmVQ72	GmVQ73	0.056768009	0.119061292	0.47680713
GmVQ74	GmVQ75	0.12662345	0.127110953	0.099616473
GmVQ76	GmVQ77	0.034291687	0.128532842	0.26679319
GmVQ78	GmVQ79	0.05795717	0.12964767	0.444865819
GmVQ80	GmVQ81	0.06050867	0.132943691	0.456214704
GmVQ82	GmVQ83	0.073555375	0.1352767	0.54942653
GmVQ84	GmVQ85	0.050072412	0.136741618	0.366183886
GmVQ86	GmVQ87	0.048248383	0.141323284	0.341347734
GmVQ88	GmVQ89	0.072358564	0.146629664	0.493487433
GmVQ90	GmVQ91	0.087215722	0.153202253	0.539919192
GmVQ92	GmVQ93	0.053173881	0.1594977	0.332441112
GmVQ94	GmVQ95	0.053995084	0.162730183	0.33170514
GmVQ96	GmVQ97	0.047558284	0.164302307	0.282979198
GmVQ98	GmVQ99	0.047558228	0.167701359	0.482685865
GmVQ100	GmVQ101	0.068414212	0.187083237	0.366901992
GmVQ102	GmVQ103	0.0785417	0.194357773	0.393679949
GmVQ104	GmVQ105	0.064674193	0.201500105	0.32906357
GmVQ106	GmVQ107	0.03180279	0.204712416	0.155390081
GmVQ108	GmVQ109	0.068428759	0.20561255	0.33306702
GmVQ110	GmVQ111	0.078527076	0.212707642	0.349230798
GmVQ112	GmVQ113	0.187484416	0.242381253	0.773510383
GmVQ114	GmVQ115	0.070535521	0.266458812	0.27811257
GmVQ116	GmVQ117	0.143077885	0.278054006	0.514568867
GmVQ118	GmVQ119	0.253964845	0.28526939	0.80926326
GmVQ120	GmVQ121	0.098963625	0.304675089	0.324816923
GmVQ122	GmVQ123	0.242648421	0.35967981	0.674603413
GmVQ124	GmVQ125	0.1121903	0.364409006	0.360998841
GmVQ126	GmVQ127	0.206068196	0.446160645	0.461386664
GmVQ128	GmVQ129	0.45196603	0.855432366	0.50496807
GmVQ130	GmVQ131	0.415845352	0.884745464	0.470016936
GmVQ132	GmVQ133	0.40356234	0.937434864	0.430494606
GmVQ134	GmVQ135	0.385776641	0.96352827	0.398384381
GmVQ136	GmVQ137	0.320802002	0.987438675	0.324882963
GmVQ138	GmVQ139	0.231784771	1.001714144	0.231398319
GmVQ140	GmVQ141	0.271393455	1.07974859	0.2513498197
GmVQ142	GmVQ143	0.564635744	1.087301323	0.51029117
GmVQ144	GmVQ145	0.281138217	1.090000891	0.257924759
GmVQ146	GmVQ147	0.422850584	1.283513273	0.32944401
GmVQ148	GmVQ149	0.280639233	1.337494009	0.209824665
GmVQ150	GmVQ151	1.027115432	1.538918692	0.667426705
GmVQ152	GmVQ153	1.074280372	1.754750767	0.612212751