Single-shot energetic-based estimator for entanglement genesis

Cyril Elouard,1,2 Alexia Auffèves,2 and Géraldine Haack3,*

1Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA
2CNRS and Université Grenoble Alpes, Institut Néel, F-38042 Grenoble, France
3Université de Genève, Department of Applied Physics,
Chemin de Pinchat 22, CH-1211 Genève 4, Switzerland

(Dated: October 15, 2018)

Producing and certifying entanglement between distant qubits is a highly desirable skill for quantum information technologies. Here we propose a new strategy to monitor and characterize entanglement genesis in a half parity measurement setup, that relies on the continuous readout of an energetic observable which is the half-parity observable itself. Based on a quantum-trajectory approach, we theoretically analyze the statistics of energetic fluctuations for a pair of continuously monitored qubits. We quantitatively relate these energetic fluctuations to the rate of entanglement produced between the qubits, and build an energetic-based estimator to assess the presence of entanglement in the circuit. Remarkably, this estimator is valid at the single-trajectory level. Our work paves the road towards a fundamental understanding of the stochastic energetic processes associated with entanglement genesis, and opens new perspectives for witnessing non-local quantum correlations thanks to thermodynamic quantities.

Entanglement is a cornerstone of quantum information technologies: Entangled pairs of qubits have for long been a resource for secure quantum key distribution [1], quantum teleportation [2], quantum repeaters for long distance quantum communication [3], while large scale entanglement can be exploited through cluster states to perform measurement-based quantum computing [4].

From a practical point of view, entangled pairs of qubits can be produced, e.g. by using quantum gates based on non-linear interactions [5], or performing measurement-based protocols of the parity observable. The latter is known to induce entanglement between two qubits initially in a separable state and has been extensively investigated in the last decade within various physical systems. Proposals have been made considering superconducting qubits jointly measured by a cavity mode [6–8] and semiconductor quantum dots jointly measured by a quantum point contact [9, 10] or by an electronic Mach-Zehnder interferometer in quantum transport experiments [11, 12]. In particular, Ref. [10] investigated the stochastic generation of entanglement, putting forward the measurement-induced entanglement genesis. Since then, measurement-induced entanglement has eventually been implemented within circuit QED experiments [8, 13, 14]. These platforms provide the technological know-how to access the quantum trajectories of individual quantum systems both subject to local measurements [15–17] or to joint-measurements [8, 14].

Recently, it was shown that the measurements allowing to reconstruct the pure state trajectories of the monitored systems are associated with energetic fluctuations of genuinely quantum origin called quantum heat. These energetic fluctuations can be turned into work in various protocols [18–21] and have been related to entropy production of quantum origin [22, 23] and provide new merit criteria to assess the performances of a feedback loop [17, 24]. So far, a thermodynamic analysis of entanglement genesis based on stochastic trajectories has remained elusive.

Here we propose a new practical application of these energetic fluctuations, based on the analysis of the half parity measurement protocol in the framework of quantum stochastic thermodynamics. Based on a quantum-trajectory approach, we theoretically analyze the statistics of energetic fluctuations for a pair of continuously monitored half spins. We quantitatively relate these quantum fluctuations to the rate of entanglement produced between the qubits, and build an energetic-based estimator to attest the presence of entanglement in the circuit. Remarkably, this analysis holds at the single trajectory level. The paper is organized as follows. In Sec. IA, we present our system and recall the basics of a half-parity measurement protocol. In Sec. IB, we relate parity measurement and energy measurement, and we introduce the quantum energetic fluctuations associated with the quantum heat. We define and compute the stochastic energetic quantities involved in the continuous measurement case. In Sec. IC, we relate the fluctuations of quantum heat to the rate of entanglement induced between the qubits. This one is investigated through the time-derivative of the concurrence, a monotone measure for two-qubit entanglement. We derive upper and lower bounds for the rate of entanglement genesis, which we exploit in Sec. ID to build an estimator assessing the presence of entanglement. The latter is based solely on energetic quantities and is valid at the single-trajectory level, constituting an alternative to tomography protocols.

* geraline.haack@unige.ch
I. RESULTS

A. Model

System—The system is made of two two-level systems (qubits) with identical energy splitting \(\epsilon \) described by their Hamiltonian \(\hat{H}_S \)

\[
\hat{H}_S = \epsilon \left(\hat{a}_z^{(1)} \otimes \mathbb{1} + \mathbb{1} \otimes \hat{a}_z^{(2)} \right),
\]

where \(\sigma_z^{(i)} \) denotes the z-Pauli matrix for qubit \(i \). We assume the two qubits to be initially in a product state, for instance a maximal superposition state:

\[
|\psi(0)\rangle = \frac{1}{2} (|\uparrow\rangle + |\downarrow\rangle) \otimes (|\uparrow\rangle + |\downarrow\rangle).
\]

This choice is motivated by previous works showing that this state belongs to the set of optimal states that lead to maximally entangled final states (i.e. Bell states) when this state belongs to the set of optimal states that lead to entanglement. On the contrary, the measurement of a coherent superposition of those states, which leads from the measurement, the two qubits are driven into the energy gap of the qubits being related by the energy gap of the qubits serving as energy filter within our model: \(\hat{\Phi} \propto \hat{H}_S \).

Quantum trajectories—Assuming a weak continuous measurement of \(\hat{\Phi} \), each realization of the measurement procedure is associated to a quantum stochastic trajectory followed by the qubits and labelled \(\gamma \) in the rest of the manuscript [25, 26]. We assume the initial state of the qubits is a known pure state, see Eq.(2), such that the trajectory \(\gamma \) is made of a sequence of pure states \(\{|\psi_{\gamma}(t)\rangle\} \). To each trajectory \(\gamma \) corresponds a stochastic measurement record \(I_\gamma(t) \):

\[
I_\gamma(t) = \langle \hat{\Phi}(t) \rangle_\gamma + \frac{dW_\gamma(t)}{2\sqrt{T}}dt.
\]

Here, \(\langle \hat{\Phi}(t) \rangle_\gamma = \langle \psi_{\gamma}(t) | \hat{\Phi} | \psi_{\gamma}(t) \rangle \) is the expectation value of the half-parity observable w.r.t. the state \(|\psi_{\gamma}(t)\rangle \). The infinitesimal Wiener increment \(dW_\gamma(t) \) is a stochastic variable characterized by a zero average and variance \(dt \), i.e. \(\langle dW_\gamma(t) \rangle_t = 0 \) and \(\langle dW_\gamma^2(t) \rangle_t = dt \), where \(\langle \cdot \rangle_t \) denotes the average over all realizations of the measurement during the time interval \([0,t] \). Note that throughout this work, we use Itô's convention for stochastic differential calculus [27, 28]. This infinitesimal Wiener increment encodes Gaussian fluctuations of the measurement record \(I_\gamma(t) \) around its expectation value \(\langle \hat{\Phi}(t) \rangle_\gamma \) and therefore captures the detector's shot noise in the weak coupling limit [26, 29]. Finally, the detector measurement rate \(I \) corresponds to the rate at which one is able to distinguish the measurement outcomes from the detector’s shot noise [11, 12, 29, 30]. Based upon the knowledge of \(I_\gamma \), the conditional dynamics of the two qubits subject to the weak measurement of the half-parity observable \(\hat{\Phi} \) is
captured by the stochastic Schrödinger equation
\[
d|\psi_\gamma(t)\rangle = \left[-i\dot{\hat{H}}_S dt - \frac{1}{2} dt (\hat{\Phi} - \langle \hat{\Phi}(t) \rangle)^2 + \frac{2}{\sqrt{dt}} dW_\gamma(t) (\hat{\Phi} - \langle \hat{\Phi}(t) \rangle) \right]|\psi_\gamma(t)\rangle. \tag{4}
\]

Using \(\hat{H}_S = c\hat{\Phi}\), see Eq. (1), one can solve analytically Eq.(4) at any time \(t\) as a function of the stochastic measurement record:
\[
|\psi(J, t)\rangle = \frac{1}{N_\gamma(t)} \left(e^{-i\epsilon + 2t\gamma J, \gamma \hat{\Phi}} - e^{-\frac{1}{2} N_\gamma(t)} \right)|\psi(0)\rangle, \tag{5}
\]
with \(N_\gamma(t)\) the time-dependent normalization factor \(N_\gamma(t) = \sqrt{(1 + e^{-2t\gamma} \cosh(4tJ, t))/2}\). Following Ref. [26], this solution is expressed in terms of the measurement outcome \(J_\gamma = 1/t \int_0^t I_\gamma(\tau) d\tau\):
\[
J_\gamma(t) = \frac{1}{t} \int_0^t \langle \hat{\Phi}(\tau) \rangle + \frac{W_\gamma(t)}{2\sqrt{t}}, \tag{6}
\]
with \(W_\gamma(t) = \int_0^t dW_\gamma(t)\) a Gaussian random variable with mean zero and variance \(t\). The time integral corresponds to a finite resolution time, typically set by experimental constraints. The probability distribution of \(J_\gamma(t)\) is a sum of three Gaussian functions of variance \(1/4t\), each peaked around one of the eigenvalues \(\{0, \pm 1\}\) of the measured observable \(\Phi\):
\[
P(J_\gamma, t) = \frac{1}{3} \sum_{j=-1}^1 \frac{1}{\sqrt{2\pi}} e^{-((J_\gamma - j)^2)/(2\sigma_0^2)}, \tag{7}
\]
with the variance \(\sigma_0 \equiv \sqrt{t}\) setting the measurement strength. In the long time limit \(t \gg (4\Gamma)^{-1}\), \(J_\gamma(t)\) only takes one of three possible outcomes which are the eigenvalues of the half-parity measurement operator: \(J_0 \equiv 0, J_{\pm 1} \equiv \pm 1\). At those long times, the measurement becomes projective. In the following work, we choose to label the different trajectories with their long-time value of \(J_\gamma\); this defines three subsets of trajectories, leading the qubits either in an entangled state \((J_\gamma = 0)\) or in a product state \((J_\gamma = \pm 1)\).

Measure of entanglement — We quantify the presence of entanglement at any time \(t\) using the concurrence, a monotone measure for two-qubit entangled states [31].

The qubits being in a pure state at each instant of time along their trajectory \(\gamma\), we can make use of a simpler definition \(C_\gamma(t) = \max \{0, 2|a\bar{d} - b\bar{c}|\} \) where \(a, b, c, d\) are the amplitudes of \(|\psi_\gamma(t)\rangle\) with respect to the computational states \(|\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle\) respectively. Inserting Eq.(5), we get a stochastic concurrence which depends on the measurement outcome \(J_\gamma\):
\[
C_\gamma(t) = \frac{1}{1 - e^{-2t\gamma}}. \tag{8}
\]

Figure 2a) shows the time evolution of the average post-selected concurrence \(\langle C\rangle\) according to the three subsets of trajectories, labeled by the final outcomes \(J_\gamma \rightarrow \{J_0, J_{\pm 1}\}\). The average is made over all realizations that belong to a given subset. At long times, \(t > 6\Gamma\), the concurrence can be directly obtained by replacing in Eq.(8) \(J_\gamma\) by the \(\Phi\)-eigenvalues \(0, \pm 1\) as the measurement becomes projective.

B. Half-parity measurement seen as an energy measurement (filter)

It is remarkable that the half-parity observable also serves as energy filter within our model: \(\Phi \propto \hat{H}_S\), both being related by the energy gap of the qubits \(\epsilon\) (see Eq. (1)). Hence, the half-parity measurement provides a direct access to the energetics of the qubits along the quantum trajectories generated by the weak measurement of \(\Phi\). The internal energy \(U_\gamma(t)\) of the two qubits along a given trajectory \(\gamma\) is given by:
\[
U_\gamma(t) = \langle \psi_\gamma(t) \rangle \hat{H}_S |\psi_\gamma(t)\rangle = \epsilon \langle \langle \hat{\Phi} \rangle |\psi_\gamma(t)\rangle. \tag{9}
\]

Considering the initial state \(|\psi(0)\rangle\) (see Eq.(2)), the initial internal energy \(U(0)\) is zero and constitutes the

FIG. 2. Post-selected average concurrence \(\langle C\rangle\) and quantum heat \(Q_\gamma\) (as a function of time i.u. of \([1/\Gamma]\)). Red dashed curves are obtained by averaging over all odd trajectories, i.e. that lead the qubits into the maximally entangled state \(|\uparrow\downarrow\rangle + |\downarrow\uparrow\rangle)/\sqrt{2}\). Blue (full, dashed) curves are obtained by averaging over all even trajectories, i.e. that lead the qubits into a product state \(|\uparrow\rangle, |\downarrow\rangle\). The half-parity measurement induces entanglement, but also serves as energy filter. When averaged over all trajectories (even and odd), \(\langle Q_\gamma \rangle = 0\) as expected for a QND-measurement \([\hat{H}_S, \hat{\Phi}] = 0\). Total number of simulated quantum trajectories: 800
energy reference. In the absence of driving, \hat{H}_S is time-independent. Hence no work is performed onto the qubits. In addition, there is no thermal reservoir involved in the problem so that a change in the internal energy of the qubits can only arise from the measurement process itself. This form of energy exchange has no classical counter-part [22, 24, 32–35] and will be, in the line of [22], referred to as quantum heat and denoted Q in this article.

Long times: projective energetic measurement—At long times, $t > (6\Gamma)^{-1}$, the change of internal energy (associated here to a net quantum heat Q) takes three different values depending on the measurement outcomes:

$$
\Delta U \equiv Q = \begin{cases} 0 & \text{for } J_\gamma = 0 \\ \epsilon & \text{for } J_\gamma = 1 \\ -\epsilon & \text{for } J_\gamma = -1.
\end{cases}
$$

(10)

When averaged over all trajectories, $\langle \Delta U \rangle_\gamma = 0$, which equals the reference internal energy at initial time $U(0) = 0$. This equality follows from $[\hat{H}_S, \hat{\Phi}] = 0$ that characterizes a QND-measurement. Indeed, as both observables commute, there must be no change of internal energy on average and this must hold at all times. At long times, the weak continuous measurement of Φ is equivalent to a projective energy measurement, and this explains the long-time values of ΔU for the different subsets of trajectories, equal to the energy of the odd states $\{\uparrow\downarrow, \downarrow\uparrow\}$ and even states $\{\uparrow\uparrow, \downarrow\downarrow\}$ respectively.

Intermediate times—At arbitrary time t, the quantum heat exchange depends on the exact outcome $J_\gamma(t)$:

$$
Q_\gamma(t) = U_\gamma(t) - U(0)
= \epsilon \frac{e^{-2\Gamma t} \sinh(4\Gamma t J_\gamma)}{1 + e^{-2\Gamma t} \cosh(4\Gamma t J_\gamma)}.
$$

(11)

This quantum heat exchange $Q_\gamma(t)$, after post-selection, is plotted in Fig. 2 b) as a function of time. As for the concurrence, an average is made within each subset of trajectories defined by the long-time value of the measurement record $J_\gamma = 0, \pm 1$. Because the half-parity measurement amounts to an energetic measurement, an access to the internal energy is sufficient to determine whether the qubits are entangled or not. A record equal to 0 implies that the qubits ended up in the odd subspace, in a coherent superposition of the odd states $\{\uparrow\downarrow, \downarrow\uparrow\} \sqrt{2}$. This result broadens the range of applications of the half-parity measurement to quantum thermodynamics and constitutes one of the main statements of this work: first introduced as a way to generate entangled state in a heralded way, this first part demonstrates that it can also serve to assess the joint internal energy of the qubits. Let us note that the rate at which the quantum heat exchange converges to its final value corresponds to the measurement-induced dephasing rates derived in previous works [11–14].

Stochastic fluctuations at arbitrary times—To derive the fluctuations of the quantum heat, let us first introduce the increment $\delta Q_\gamma(t)$ that corresponds to the stochastic infinitesimal variation of the internal energy $U_\gamma(t)$ between times t and $t + dt$ along a trajectory γ. It is related to the total quantum heat exchange $Q_\gamma(t)$ up to time t via:

$$
Q_\gamma(t) = \int_0^t \delta Q_\gamma(t') dt',
$$

(12)

and is defined as

$$
\delta Q_\gamma(t) \equiv d \left(\langle \psi_\gamma(t) | \hat{H}_S | \psi_\gamma(t) \rangle \right)
= \left(d(\langle \psi_\gamma(t) | \hat{H}_S | \psi_\gamma(t) \rangle) + \langle \psi_\gamma(t) | \hat{H}_S \left(d|\psi_\gamma(t)\rangle \right) \right)
+ \left(d(\langle \psi_\gamma(t) | \hat{H}_S | \psi_\gamma(t) \rangle) \right)
$$

(13)

Inserting Eqs. (1) and (5) into Eq. (14) and expanding the last term up to the first order in dt, we obtain

$$
\delta Q_\gamma(t) = 2e\sqrt{\Gamma}dW_{\psi_\gamma}(t) (4P_{i\uparrow}P_{j\downarrow} + P_{e}\delta_t)
\equiv \delta Q_\gamma^{(e)}(t) + \delta Q_\gamma^{(o)}(t),
$$

(15)

with

$$
\delta Q_\gamma^{(e)}(t) = 8e\sqrt{\Gamma}dW_{\psi_\gamma}(t)P_{i\uparrow}P_{j\downarrow}
\delta Q_\gamma^{(o)}(t) = 2e\sqrt{\Gamma}dW_{\psi_\gamma}(t)P_{e}\delta_t.
$$

(16)

Here, we have introduced the populations P_{ij} for the 4 two-qubit states defined as $P_{ij} \equiv P_{ij; \gamma}(t) = |\langle ij | \psi_\gamma(t) \rangle|^2$, $i, j = \uparrow, \downarrow$, and we denote $P_e = P_{\uparrow\uparrow} + P_{\downarrow\downarrow}$ and $P_{\delta} = P_{\uparrow\downarrow} + P_{\downarrow\uparrow}$ the populations within the even and odd parity subspaces respectively. From those definitions, the products $P_{i\uparrow}P_{j\downarrow}$ and P_eP_{δ} correspond respectively to the squared coherences (off-diagonal elements in the two-qubit density matrix) within the even subspace and between the even and odd subspaces. Let us recall that a (half-) parity measurement generates entanglement by distinguishing the even states form the odd ones. It is therefore the loss of coherence between the two parity subspaces that brings the two qubits in a coherent superposition of odd states when outcome $J_\gamma = 0$ is obtained. Hence, we claim that the product P_eP_{δ} (equivalently $\delta Q_\gamma^{(o)}(t)$) in Eq. (16) reflects entanglement genesis, and so does the total heat increment $\delta Q_\gamma(t)$. We demonstrate this claim in the following sections.

C. Energetic bounds for the entanglement genesis rate

To validate our claim, we define the standard deviation of the quantum heat increment between times t and $t + dt$ as

$$
\sigma_\gamma(t) = \sqrt{\langle \delta Q_\gamma^2(t) \rangle_{dt}}
= 2e\sqrt{\Gamma}dt \frac{e^{-4\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J_\gamma)}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J_\gamma))^2},
$$

(18)
where we made use of $\langle dW(t)^2 \rangle_{dt} = dt$ and $\langle dW(t) \rangle_{dt} = 0$. For simplicity, we will work in the following with dimensionless quantities:

$$\tilde{\sigma}_\gamma(t) = \frac{\sigma_\gamma(t)}{2\epsilon \sqrt{\Gamma dt}} \quad \text{and} \quad \tilde{Q}_\gamma(t) = \frac{Q_\gamma(t)}{\epsilon}.$$ \hspace{1cm} (19)

$\sqrt{\Gamma dt}$ refers to the variance of the Gaussian distribution of the measurement record $I_\gamma(t)$ during the discrete time interval dt, see the variance $\tilde{\sigma}_0$ defined in Eq. (7). Similarly to Eq. (15), we define two contributions to the standard deviation of the stochastic quantum heat increment:

$$\tilde{\sigma}_\gamma(t) = \tilde{\sigma}_\gamma^{(eo)}(t) + \tilde{\sigma}_\gamma^{(c)}(t).$$ \hspace{1cm} (20)

FIG. 3. Infinitesimal quantum heat fluctuations $\tilde{\sigma}_\gamma^{(eo)}$ as a function of the outcome J_γ and the duration of the measurement t. The contour plot (solid black lines) corresponds to the lines of constant concurrence (from 0.2 to 0.8). Regions for $C = 0, 1$ correspond to the blue ones and are explicit on the figure. There exists a one to one correspondence between a finite derivative of the concurrence (C is changing) and finite fluctuations of the increment of quantum heat exchange. At long times, measurement outcome J_γ converges to 0 or ± 1, shown with dashed lines (not anymore continuous along the x-axis). Fluctuations are not present ($\tilde{\sigma}_\gamma^{(eo)} = 0$) and $C = \{0, 1\}$ for $J_\gamma = \{0, \pm 1\}$.

Figure 3 illustrates our claim. The contour plot corresponding to constant values of the concurrence is superimposed onto the density plot of $\tilde{\sigma}_\gamma^{(eo)}(t)$. It highlights that an increase in the concurrence is associated with non-zero fluctuations of $\delta Q^{(eo)}(t)$. In contrast, the concurrence plateaus correspond to the areas where $\tilde{\sigma}_\gamma^{(eo)}$ vanishes. This observation is supported by a strict equality between the concurrence variation (the concurrence derivative) and $\tilde{\sigma}_\gamma^{(eo)}$ for the trajectories leading the qubits into an entangled state $J_\gamma = 0$ (see App. III for detailed derivation):

$$\frac{dC_\gamma}{dt} \bigg|_{J_\gamma = 0} = 4\Gamma \tilde{\sigma}_\gamma^{(eo)} \bigg|_{J_\gamma = 0}. \hspace{1cm} (21)$$

Because it constitutes at the same time the source of entanglement and a direct access to the energy and its fluctuations, it follows that the energy fluctuations must be related to the creation of entanglement. However, the practical interest of Eq. (21) is limited as it would be impossible in a heat-sensitive measurement to distinguish the two contributions $\delta Q^{(eo)}(t)$ and $\delta Q^{(c)}(t)$.

Nevertheless, at intermediate times, we demonstrate that the concurrence derivative, that characterizes the rate at which entanglement is induced by the measurement, can be upper and lower bounded by energetic quantities solely. Starting from

$$\frac{dC_\gamma(t)}{dt} = 2\Gamma \left[\frac{e^{-2\Gamma t} (1 + \cosh(4\Gamma t J_\gamma))}{1 + e^{-2\Gamma t} \cosh(4\Gamma t J_\gamma)^2} \right.$$

$$- 2\epsilon C_\gamma(t) Q_\gamma(t) \left(\tilde{\Phi}(t) \right)_\gamma.$$ \hspace{1cm} (22)

we then perform an an ensemble average over all trajectories (or equivalently over the measurement record $I_\gamma(t)$) during the time interval $[t, t + dt]$, keeping the past records $\{I_\gamma(t')\}_{t' < t}$ fixed. This interval $[t, t + dt]$ is the one over which we investigate the fluctuations of the quantum heat increment δQ_γ, and this ensemble average $\langle \rangle_{dt}$ corresponds to the one used in the definitions of the quantum heat increment fluctuations, see Eq. (18).

We then have $\langle dW_\gamma(t)/dt \rangle_{dt} = 0$ in Eq. (22) and

$$\langle \frac{dC_\gamma(t)}{dt} \rangle_{dt} = 2\Gamma \left[e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J_\gamma) \right.$$ \hspace{1cm} (23)

$$- 2\epsilon C_\gamma(t) \left(\tilde{\Phi}(t) \right)_\gamma.$$}

The first term on the r.h.s. can be upper and lower bounded with $\tilde{\sigma}_\gamma$ (see Append. III):

$$\langle \frac{dC_\gamma(t)}{dt} \rangle_{dt} \leq 2\Gamma \left[2\tilde{\sigma}_\gamma(t) - 2\tilde{Q}_\gamma^2(t) C_\gamma(t) \right] \hspace{1cm} (24)$$

$$\langle \frac{dC_\gamma(t)}{dt} \rangle_{dt} \geq 2\Gamma \left[\tilde{\sigma}_\gamma(t) - 2\tilde{Q}_\gamma^2(t) C_\gamma(t) \right] \hspace{1cm} (25)$$

Inequalities (24) and (25) constitute one of the main analytical results of this work. The entanglement rate is exclusively upper and lower bounded by thermodynamical quantities, the quantum heat and quantum heat fluctuations defined in Eq. (19). All quantities are defined over a (small) finite time interval dt. Remarkably, we can further exploit Ineq. (24) towards the derivation of an energetic-based estimator to assess the presence of entanglement at intermediate times. Of interest towards non-equilibrium quantum thermodynamics, this will be done at the level of a unique quantum trajectory.
D. Single-shot energetic-based estimator for entanglement

Formally, a witness for entanglement is an observable that takes a negative value when averaged with respect to a state that is entangled. If the witness takes a positive value, no conclusions can be drawn, the state can either be entangled or separable [36]. Following this spirit, we argue that a given quantum trajectory γ will drive the qubits onto an entangled state if,

$$\left\langle \left\langle \frac{dC_\gamma(t')}{dt} \right\rangle \right\rangle_{\Delta t} \geq 0, \quad \forall t' \in [0, t]. \quad (26)$$

This condition is motivated by the idea that accumulating positive time-derivatives would lead to a positive concurrence at final time t. While one cannot certify the presence of entanglement along individual trajectory γ from Eq. (26), the integration over time of $\frac{dC_\gamma(t')}{dt}$ used to compute the concurrence at time t is expected to play the role of the ensemble average $\langle C_\gamma(t') \rangle_{\Delta t}$ for $\Gamma dt \ll 1$ and provided $t \gtrsim \Gamma^{-1}$. Therefore, condition (26) implies an entangled state at time t for a high fraction of the considered trajectories.

Making use of inequality (24), this condition translates into:

$$\bar{\sigma}_\gamma(t) - 2\tilde{Q}_\gamma^2(t) \geq 0, \quad (27)$$

We can now use that the concurrence C_γ takes values within $[0, 1]$ to prove an inequality assessing the presence of entanglement, that only depends on energetic quantities, $\bar{\sigma}_\gamma(t) - 2\tilde{Q}_\gamma^2(t) \geq 0$. This condition fulfills the properties of a trajectory-based witness, which would read

$$W_\gamma = \frac{1}{\Delta t} \int_{t_i}^{t_i + \Delta t} \left[2\tilde{Q}_\gamma^2(t) - \bar{\sigma}_\gamma(t) \right] dt. \quad (28)$$

The time-averaged over Δt is meant to take into account a finite acquisition time during the experiment. When W_γ is negative, one can expect with high probability that the trajectory γ leads to qubits in an entangled state. When it is positive, one can not draw a definite conclusion. However, and as stated before, this quantity implies an ensemble-average $\left\langle C_\gamma(t') \right\rangle_{\Delta t}$ over all trajectories occurring during the finite time interval dt, which is not yet optimal for experimental purposes. We therefore define an estimator E_{ss} (with the label ss referring to single-shot), where the ensemble average in the definition of $\sigma_\gamma(t)$ Eq.(18) is replaced by a time average over an interval τ. This procedure is similar to a coarse-graining of the fluctuations along a single trajectory. The witness (28) then transforms into an estimator, valid at the level of single trajectory :

$$E_{ss} = \frac{1}{\Delta t} \int_{t_i}^{t_i + \Delta t} \left[2\tilde{Q}_\gamma^2(t) - \bar{\sigma}_\gamma(t) \right] dt. \quad (29)$$

The performance of E_{ss} as an estimator to attest entanglement between the qubits is analyzed through two figures of merit, its success rate (ratio of detected vs. total number of trajectories leading to entangled states) and its error rate (whenever E_{ss} takes a negative value whereas the trajectory does not lead to entangled qubits). The error rate takes the maximal value of 1.2% for the coarse-graining times $\tau = 0.1$ and $\tau = 0.4$ and 0.72% for $\tau = \Delta t$. Indeed, as the coarse-graining time increases, the time average leads to trusty measurements, as expected from the analytical bound derived with the ensemble-averaged. The finite error rate forbids us to claim an energetic witness, but its small value demonstrates the usefulness of our energetic-based estimator. As shown in Fig. 4, the success rate of E_{ss} does not strongly depend on the overall integration window Δt, but rather on the initial time t_i from which the averages are performed. At large t_i, the success rate reaches 1 as expected from the convergence of each trajectory towards one of the eigenstate.
of the measurement operator $\hat{\Phi}$. However, the success rate exceeds 0.5 for t_i as small as $3/\Gamma$ for $\tau = 0.1/\Gamma$, being promising for future experiments towards single-shot energetic-based estimators to certify the presence of entanglement.

II. DISCUSSION

In this work, we investigate the thermodynamics associated with entanglement genesis considering the paradigmatic half-parity measurement procedure. Not only this measurement generates both product states and entangled states in a heralded way, but it also constitutes an energy observable. Based on a quantum-trajectory approach, and making use of the framework provided by stochastic thermodynamics, we demonstrate that the generation of non-local quantum correlations is closely related to the presence of quantum heat fluctuations induced by the stochasticity of the weak continuous measurement. We derive analytical upper and lower bounds for the entanglement genesis rate. We then exploit the approach, and making use of the framework provided by stochastic thermodynamics, we demonstrate that the underlying fundamental role of infinitesimal heat fluctuations for the generation of entanglement considering the fluctuations associated to their generation. Whereas the quantum heat is zero on average, the quantum fluctuations of the heat increment associated to their generation can be exploited experimentally. Indeed, one could not distinguish in an experiment infinitesimal heat fluctuations originating in the loss of phase coherence between the two parity subspaces ($\sigma_\gamma^{(eo)}$) from total infinitesimal heat fluctuations (σ_γ).

III. METHODS

Long-time limit formula between the concurrence derivative and infinitesimal heat fluctuations

The fluctuations of the heat increment associated to the loss of coherences between the two parity subspaces are defined in a similar was as σ_γ:

$$\sigma_\gamma^{(eo)}(t) = \sqrt{\langle \delta Q^{(eo)^2}(t) \rangle dt} . \tag{30}$$

$$= 2\epsilon \sqrt{\Gamma dt} \frac{e^{-2t\epsilon} \cosh 4\Gamma t \sigma_\gamma}{(1 + e^{-2t\epsilon} \cosh 4\Gamma t \sigma_\gamma)^2} . \tag{31}$$

We can compare them to the derivative of the concurrence averaged over realizations occurring during the time interval dt:

$$\left\langle \frac{dC_\gamma}{dt} \right\rangle_{dt} = 2\Gamma e^{-2t\epsilon} + e^{-2t\epsilon} \cosh(4\Gamma t \sigma_\gamma) \frac{Q_\epsilon}{1 + e^{-2t\epsilon} \cosh(4\Gamma t \sigma_\gamma)}^2$$

$$- 4\Gamma Q_\epsilon \frac{\sigma_\gamma}{\epsilon} \left\langle \sigma_\gamma^2 \langle \hat{\Phi}(t) \rangle_\gamma \right\rangle . \tag{32}$$

When $t \gg 1/\Gamma$, the probability distribution of the measurement outcome J_γ is narrowly peaked around the three values corresponding to the eigenvalues of the half-parity measurement operator $\hat{\Phi}$ [26], i.e. $\pm 1, 0$. The average value of $\hat{\Phi}$ tends also to one of the three eigenvalues. Hence, for trajectories corresponding to qubits in a maximally entangled state at long times, $J_\gamma = \langle \hat{\Phi}(t) \rangle_\gamma = 0$ and the heat flow $Q_\epsilon = 0$. Consequently, Eqs. (31) and (32) simplify to

$$\sigma_\gamma^{(eo)} \bigg|_{J_\gamma = 0} = 2\epsilon \sqrt{\Gamma dt} \frac{e^{-2t\epsilon}}{(1 + e^{-2t\epsilon})^2} . \tag{33}$$

$$\left\langle \frac{dC_\gamma}{dt} \right\rangle_{dt} \bigg|_{J_\gamma = 0} = 4\Gamma Q_\epsilon e^{-2t\epsilon} \frac{\sigma_\gamma}{(1 + e^{-2t\epsilon})^2} . \tag{34}$$

When time exceeds the measurement time, the following equality holds:

$$\left\langle \frac{dC_\gamma}{dt} \right\rangle_{dt} \bigg|_{J_\gamma = 0} = \frac{2}{\epsilon} \sqrt{\Gamma dt} \sigma_\gamma^{(eo)} \bigg|_{J_\gamma = 0} . \tag{35}$$

Although only valid and meaningful at times longer than the measurement time, this relation exemplifies the underlying fundamental role of infinitesimal heat fluctuations for the generation of entanglement. As stated in the main text, this relation is only exact in the context of the half-parity measurement considered in this work and can not be exploited experimentally. Indeed, one could not distinguish in an experiment infinitesimal heat fluctuations originating in the loss of phase coherence between the two parity subspaces ($\sigma_\gamma^{(eo)}$) from total infinitesimal heat fluctuations (σ_γ).
Energetic bounds for the entanglement genesis rate

The general expression of the concurrence derivative reads
\[
\frac{dC_{\gamma}}{dt} = 2\frac{e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma)^2} - 4\Gamma \frac{e^{-2\Gamma t} \sinh(4\Gamma t J)\gamma}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma)^2} (36)
\]

Using Eqs. (6), (8) and (11), it can be rewritten as
\[
\frac{dC_{\gamma}}{dt} = 2\frac{e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma)^2} - 4\Gamma \frac{Q_{\gamma}}{c} C_{\gamma}\langle \hat{\Phi}(t)\rangle_{\gamma} + \frac{dW_{\gamma}(t)}{dt}. (37)
\]

To enable the comparison with \(\tilde{\sigma}_{\gamma}\), we perform the ensemble average \(\langle .\rangle_{dt}\) and obtain:
\[
\langle \frac{dC_{\gamma}}{dt} \rangle_{dt} = 2\frac{e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma)^2} - 4\Gamma \frac{Q_{\gamma}}{c} C_{\gamma}\langle \hat{\Phi}(t)\rangle_{\gamma}, (38)
\]

which corresponds to Eq. (23) in the main text.

Using the inequalities
\[
e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma \leq 2e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma,
\]
and
\[
e^{-2\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma \geq e^{-4\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma,
\]
we can now compare the r.h.s. of these two inequalities with the st. dev. of the total heat fluctuations \(\tilde{\sigma}_{\gamma}(t)\):
\[
\tilde{\sigma}_{\gamma}(t) = \frac{e^{-4\Gamma t} + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma}{(1 + e^{-2\Gamma t} \cosh(4\Gamma t J)\gamma)^2}. \quad \text{(41)}
\]

These bounds directly lead to Eqs. (24) and (25) in the main text.

Acknowledgements G.H. gratefully acknowledges discussions with J. Anders, J. B. Brask, N. Brunner, A. Jordan, M. Perarnau-Llobet, R. Silva and I. Siddiqi. C.E. acknowledges the US Department of Energy grant No. DE-SC0017890. This research was supported in part by the National Science Foundation under Grant No. NSF PHY-1748958. G.H. thanks the Swiss National Science Foundation for support through the MHV grant 164466. This research was supported in part by the National Science Foundation under Grant No. NSF PHY17-48958.

[1] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Phys. Rev. Lett., 67(6):661–663, 1991.
[2] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and William K. Wootters. Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett., 70(13):1895–1899, 1993.
[3] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller. Quantum repeaters: The role of imperfect local operations in quantum communication. Phys. Rev. Lett., 81(26):5932–5935, 1998.
[4] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer. Phys. Rev. Lett., 86(22):5188–5191, 2001.
[5] Chuang I. Nielsen M. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge: Cambridge University Press, 2010.
[6] Kevin Lalumiere, J. M. Gambetta, and Alexandre Blais. Tunable joint measurements in the dispersive regime of cavity qed. Physical Review A, 81(4), Apr 2010. ISSN 1094-1622. [doi:10.1103/physreva.81.040301] http://dx.doi.org/10.1103/PhysRevA.81.040301.
[7] L. Tornberg and G. Johansson. High-fidelity feedback-assisted parity measurement in circuit qed. Physical Review A, 82(1), Jul 2010. ISSN 1094-1622. [doi:10.1103/physreva.82.012329] http://dx.doi.org/10.1103/PhysRevA.82.012329.
[8] Areeya Chantasri, Mollie E. Kimchi-Schwartz, Nicolas Roch, Irfan Siddiqi, and Andrew N. Jordan. Quantum trajectories and their statistics for remotely entangled quantum bits. Physical Review X, 6(4), Dec 2016. ISSN 2160-3308. [doi:10.1103/physrevx.6.041052] URL http://dx.doi.org/10.1103/PhysRevX.6.041052.
[9] B. Trauzettel, A. N. Jordan, C. W. J. Beenakker, and M. Büttiker. Parity meter for charge qubits: An efficient quantum entangler. Physical Review B, 73(23), June 2006. ISSN 1550-235X. [doi:10.1103/physrevb.73.235331] URL http://dx.doi.org/10.1103/PhysRevB.73.235331.
[10] Nathan S. Williams and Andrew N. Jordan. Entanglement genesis under continuous parity measurement. Physical Review A, 78(6), Dec 2008. ISSN 1094-1622. [doi:10.1103/physreva.78.062322] URL http://dx.doi.org/10.1103/PhysRevA.78.062322.
[11] Géraldine Haack, Heidi Förster, and Markus Büttiker. Parity detection and entanglement with a mach-zehnder interferometer. Physical Review B, 82(15), Oct 2010. ISSN 1550-235X. [doi:10.1103/physrevb.82.155303] URL http://dx.doi.org/10.1103/PhysRevB.82.155303.
[12] Clemens Meyer zu Rheda, Géraldine Haack, and Alessandro Romito. On-demand maximally entangled states with a parity meter and continuous feedback. Physical Review B, 90(15), Oct 2014. ISSN 1550-235X. [doi:10.1103/physrevb.90.155438] URL http://dx.doi.org/10.1103/PhysRevB.90.155438.
[13] D. Ristè, M. Dukalski, C. A. Watson, G. de Lange, M. J. Tiggelman, Ya. M. Blanter, K. W. Lehnert, R. N. Schouten, and L. DiCarlo. Deterministic entanglement of superconducting qubits by parity measure-
[42] S. Gasparinetti, K.L. Viisanen, O.-P. Saira, T. Faivre, M. Arzeo, M. Meschke, and J.P. Pekola. Fast electron thermometry for ultrasensitive calorimetric detection. *Physical Review Applied*, 3(1), Jan 2015. ISSN 2331-7019. [doi:10.1103/physrevapplied.3.014007] URL http://dx.doi.org/10.1103/PhysRevApplied.3.014007.

[43] Z. Iftikhar, A. Anthore, S. Jezouin, F. D. Parmenier, Y. Jin, A. Cavanna, A. Ouerghi, U. Gennser, and F. Pierre. Primary thermometry triad at 6mk in mesoscopic circuits. *Nature Communications*, 7:12908, Sep 2016. ISSN 2041-1723. [doi:10.1038/ncomms12908] URL http://dx.doi.org/10.1038/ncomms12908.

[44] Antonio Fornieri and Francesco Giazotto. Towards phase-coherent caloritronics in superconducting circuits. *Nature Nanotechnology*, 12(10):944–952, Oct 2017. ISSN 1748-3395. [doi:10.1038/nnano.2017.204] URL http://dx.doi.org/10.1038/NNANO.2017.204.

[45] Mitali Banerjee, Moty Heiblum, Amir Rosenblatt, Yuval Oreg, Dima E. Feldman, Ady Stern, and Vladimir Umansky. Observed quantization of anyonic heat flow. *Nature*, 545(7652):75–79, Apr 2017. ISSN 1476-4687. [doi:10.1038/nature22052] URL http://dx.doi.org/10.1038/nature22052.

[46] D.M.T. van Zanten, D.M. Basko, I.M. Khaymovich, J.P. Pekola, H. Courtois, and C.B. Winkelmann. Single quantum level electron turnstile. *Physical Review Letters*, 116(16), April 2016. ISSN 0031-9007. [doi:10.1103/physrevlett.116.166801] URL http://dx.doi.org/10.1103/physrevlett.116.166801.