Diversity of PBI-DdeI satellite DNA in snakes correlates with rapid independent evolution and different functional roles

Ratchaphol Thongchum1,2,3,11, Worapong Singchat1,3,11, Nararat Laopichienpong1,3, Panupong Tawichasri1,3, Ekaphan Kraichak4, Onniru Prakhonecheep5, Siwapech Sillapaprayoon1,3, Narongrit Muangmai6, Sudarat Baicharoen4, Sunutcha Suntrarachun7, Lawan Chanhome7, Surin Peyachoknagul1 & Kornsorn Srikulnath1,3,8,9,10*

To better understand PBI-Ddel satellite DNA located in the centromeric region of python, molecular evolution analysis was conducted on 40 snake species. A ladder-like pattern of DNA bands with repetition of the 194–210 bp monomer was observed in 15 species using PCR. Molecular cloning was performed to obtain 97 AT-rich monomer sequences. Phylogenetic and network analyses showed three PBI-DdeI subfamilies with sequences grouped in species-specific clusters, suggesting rapid evolution. Slow evolution was found in eight species with shared PBI-DdeI sequences, suggesting recent species diversification, allowing PBI-DdeI no time to diverge, with limited homogenization and fixation processes. Quantitative real-time PCR showed large differences in copy number between Python bivittatus and other snakes, consistent with repeat scanning of whole genome sequences. Copy numbers were significantly higher in female Naja kaouthia than in males, concurring with chromosomal distribution of PBI-DdeI specifically localized to female W chromosomes. PBI-DdeI might act as an evolutionary driver with several repeats to promote W chromosome differentiation and heterochromatinization in N. kaouthia. Analysis revealed PBI-DdeI with a reduced copy number, compared to P. bivittatus, in most snakes studied, and it is possible that it subsequently dispersed and amplified on W chromosomes with different functional roles in N. kaouthia.

Several recent snake genome analyses have revealed that the remarkable variability in genome size results from large differences in the amount of repeated sequences1. Tandem repeats make up a large fraction of the genome, with satellite DNA (satDNA) constituting a major part of tandem repeat sequences. The repeats are organized as homogeneous long arrays of head-to-tail orientation, located in the heterochromatic regions of chromosomes such as centromeres and telomeres2–5. Repeat sequences are also found abundantly on the sex chromosomes (Y or W), and this is thought to promote sex chromosome differentiation and heterochromatinization7–9. Moreover, satDNAs have also been found with epigenetic functions10. Multiple copies of the same satDNA family exhibit

1Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. 2Interdisciplinary Program in Genetic Engineering, Graduate School, Kasetsart University, Bangkok, 10903, Thailand. 3Special Research Unit for Wildlife Genomics, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand. 4Department of Botany, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand. 5Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand. 6Bureau of Conservation and Research, Zoological Park Organization under the Royal Patronage of His Majesty the King, Bangkok, 10300, Thailand. 7Queen Saovabha Memorial Institute, The Thai Red Cross Society, Bangkok, 10330, Thailand. 8Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, CASTNASR, NRU-KU, Bangkok, 10900, Thailand. 9Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand. 10Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok, 10900, Thailand. 11These authors jointly supervised this work: Ratchaphol Thongchum and Worapong Singchat. *email: kornsorn.s@ku.ac.th
higher similarity within a species compared to within the same satDNA family of related species. This is a consequence of molecular drive mechanisms known as concerted evolution. This mechanism has evolved via homogenization throughout copies of the satDNA family and fixation in a sexual population group. However, several satDNA families have a species-specific profile (size, nucleotide sequence, copy number, and complexity) derived from satDNA turnover mechanisms such as unequal crossing over and gene conversion; this has led to the emergence of new specific satDNA families/subfamilies. Different satDNA families/subfamilies may coexist in the genome of a species and can efficiently change the arrangement of DNA sequences in heterochromatin by replacing one dominant satDNA family with another that is less well represented, differing in nucleotide sequences and/or copy numbers in related species, following "the library model". This consequence varies among satDNA families based on mutation rate, species, chromosome morphology, population size, and reproductive mode. However, this process occurs rapidly among species, resulting in the expansion of new mutations horizontally throughout the genome of distantly related species. This aspect might cause reproductive isolation and species radiation. Intriguingly, centromeric satDNA (cen-satDNA) is considered to be a conserved motif comprising several conserved domains such as the CENP box for chromosome stability. By contrast, cen-satDNA is likely to have evolved faster than satDNA of other parts of the chromosomal region, leading to the use of phylogenetic markers among diverse lineages.

The investigation of cen-satDNA sequences in squamate reptiles is far from being an in-depth analysis. Such studies have been mostly reported in lacertid and varanid lizards, with a few cases in snakes. Species-specific variants of satDNA families have been found in lacertid lizards but not in varanid lizards. However, evolutionary trends of satDNA within multiple snake species have not yet been well examined, even though snakes form the second largest group of extant reptiles. Karyotype variation is relatively small in snakes, which exhibit conserved ZZ/ZW-type sex chromosomes in most species, with the exceptions being Boa imperator, Python bivittatus and P. regius. Snakes are an excellent model to use to increase understanding of cen-satDNA evolution, including the satDNA library hypothesis. Recently, PBI-Ddel cen-satDNA located on all chromosomes was isolated from the Burmese python (P. bivittatus) and found to be conserved in only the python lineage, based on the limitation of filter hybridization. Here, we seek to improve our understanding of the PBI-Ddel evolutionary mode in snake lineages comprising 40 snake species, using dot-blot hybridization and PCR based approaches. Genome organization of the repeats was also assessed using a Southern blot hybridization. Various DNA fragments of PBI-Ddel were molecularly cloned from snakes to determine their nucleotide sequences. Quantification of PBI-Ddel was performed on different snake species using quantitative real-time polymerase chain reaction (qPCR) and determined in silico for copy number of the repeats on nine snake genome sequences. Chromosomal distribution of the satDNA was subsequently identified in snakes. This allowed us to delineate the evolutionary dynamics of PBI-Ddel and investigate its significance.

Results Isolation and characterization of PBI-Ddel. Conservation of PBI-Ddel was examined by the dot-blot hybridization of 40 snake species, using their genomic DNA. Intense hybridization signals were only observed for both male and female P. bivittatus (Supplementary Fig. S1). Specific PBI-Ddel primers were then used to amplify PBI-Ddel sequences in 40 snake species. After gel electrophoresis, PCR products showed a ladder-like pattern of DNA bands, typical of satDNAs, in 15 species (Fig. 1, Supplementary Fig. S2). This pattern was based on the repetition of an approximately 200 bp monomer unit. A total of 97 new sequences of monomer units were obtained with lengths ranging from 194 to 210 bp (Table 1). Several indels (from 12 to 14 bp) were detected (Supplementary Fig. S3). All PBI-Ddel sequences showed AT-bias with an average AT content of 58% and were characterized by possessing a secondary structure (Supplementary Fig. S4). Conserved motifs of PBI-Ddel sequences such as "AACCACGATGTTTTTCTGATTCTACTACCTCG" and "TTTCTGATTCTAC" were found in all sequence units (Supplementary Figs S3 and S5). A BLASTn search of all PBI-Ddel sequences showed similarity, ranging from 0.11% to 90.05% (Supplementary Table S2). Statistical parsimony network analysis of filter hybridization. Here, we seek to improve our understanding of the PBI-Ddel evolutionary mode in snake lineages comprising 40 snake species, using dot-blot hybridization and PCR based approaches. Genome organization of the repeats was also assessed using a Southern blot hybridization. Various DNA fragments of PBI-Ddel were molecularly cloned from snakes to determine their nucleotide sequences. Quantification of PBI-Ddel was performed on different snake species using quantitative real-time polymerase chain reaction (qPCR) and determined in silico for copy number of the repeats on nine snake genome sequences. Chromosomal distribution of the satDNA was subsequently identified in snakes. This allowed us to delineate the evolutionary dynamics of PBI-Ddel and investigate its significance.

Sequence variability of PBI-Ddel within and between species. The average π value was 0.017±0.004 (0.000 ± 0.000 in P. bivittatus and E. cenchria cenchria, to 0.060±0.006 in A. prasina), and the average h value was 40.25±13.15 (0.000 ± 0.001 in P. bivittatus and E. cenchria cenchria, to 100% ± 0.052 in A. prasina) (Table 1). The average p-distance was 5.85±0.001 (0.009±0.003 between E. enhydris and A.
javanicus, to 13.200% ± 0.200 between N. siamensis and C. radiatus) (Supplementary Table S3). AMOVA analysis of the PBI-DdeI sequences showed 3.090% intra-specific variation (p < 0.001) (0.323 of variance components) and 84.678% inter-specific variation (p < 0.001) (7.624 of variance components) (Supplementary Table S4).

Sequence variability of PBI-DdeI within and between subfamilies. The average π value of each PBI-DdeI subfamily was 6.100% ± 0.500 for SFI, 2.600% ± 0.400 for SFII, and 5.700% ± 0.500 for SFIII (Supplementary Table S5), while the average h value of SFI was 92.700% ± 2.500, 89.000% ± 5.200 for SFII, and 91.900% ± 3.100 for SFIII. The average p-distance between PBI-DdeI subfamilies was 16.200% ± 0.043 for SFI and SFII, 14.200% ± 0.035 for SFI and SFIII, and 10.600% ± 0.033 for SFII and SFIII. AMOVA analysis of PBI-DdeI sequences showed 47.120% molecular variation (p < 0.001) (5.450 of variance components) within a subfamily and 22.390% among subfamilies (p < 0.001) (2.589 of variance components) (Supplementary Table S6).

Genomic organization and chromosomal distribution of PBI-DdeI. Southern blot analyses indicated that PBI-DdeI was organized as tandem arrays in the snake genomes. In the genomic DNA of P. bivittatus digested with DdeI, hybridization with the PBI-DdeI sequence derived from P. bivittatus, N. kaouthia, or O. hannah produced a polymeric signal ladder based on the 200-bp monomer unit (Supplementary Fig. S9) but this was not found for the genomic DNA of N. kaouthia and O. hannah digested with DdeI. For chromosomal localization, the PBI-DdeI sequence was mapped onto female N. kaouthia chromosomes but not onto male chromosomes (Fig. 3). Strong hybridization signals of PBI-DdeI were localized to the q arm of the W chromosome but not observed on the Z chromosome.

SatDNA copy number analysis. Copy number quantification of PBI-DdeI showed significant differences between P. bivittatus and other snake species when examined using both absolute and relative quantification methods (Tukey’s HSD test, p ≤ 0.001) (Fig. 1, Supplementary Table S7, Supplementary Fig. S10). Copy number estimates of PBI-DdeI were significantly correlated between absolute and relative quantification methods (Spearman’s rho = 0.765, p ≤ 0.05) (Supplementary Fig. S11). The nuclear DNA content of female P. bivittatus was reported in Castoe et al. with a genome size of about 1.435 Gb, and quantification revealed that at least
were identified in scaffolds, accounting for approximately 0.353% (5.070 Mb) of the some, reflecting the difficulty of sequencing and assembling repeat-rich chromosomal regions. Southern blot suggest that these scaffolds are derived from the centromeric region but are still not yet anchored to chromo-

The PBI-DdeI copy number differed significantly between sexes in . The amount of PBI-DdeI in the other species was lower than in . No significant correlation was found among value, monomer size, AT%, and copy number (Supplementary Fig. S11).

The PBI-DdeI copy number differed significantly between sexes in , with females showing a copy number about 313 times higher than that of males (Wilcoxon signed-rank test, W = 121, p ≤ 0.001) (Supplementary Fig. S12).

Survey of the whole genome sequence data of snakes. PBI-DdeI sequences were sought in the genome sequences of snakes. For the . genome, Illumina HiSeq platform sequencing was performed for female genomic DNA with more than 1,250,000,000 reads (373,317 scaffolds). All snake genome sequences were determined for scaffolds (P. bivittatus (n = 39,112), V. berus berus (n = 25,713), P. guttatus (n = 883,920), O. hannah (n = 296,399), C. horridus (n = 186,068), C. mitnellii pyrrhus (n = 473,380), and P. flavoviridis (n = 84,502)). PBI-DdeI sequences were mapped to scaffolds with the percentage of identical matches ≥ 80 and e-value ≤ 1e-50 in P. bivittatus but not for other snakes. PBI-DdeI sequence represented 0.353% of the P. bivittatus genome.

Discussion
Sequence domains in cen-satDNA are generally conserved over very long evolutionary periods. A large number of species were examined for cen-satDNA conservation to better understand the biological role of satDNA in diversity and evolution. The PBI-DdeI was AT-rich, as commonly found in squamate reptiles and widely represented in 15 out of 40 snake genomes from different families. Conserved sequence motifs of PBI-DdeI were found in all sequence units with most characterized by a secondary structure. This might be important for chromatin condensation or interaction between protein and DNA, and suggests that PBI-DdeI plays an important role under selective pressure. The copy number of PBI-DdeI in the other 25 species of snake may be too few to be detected by dot-blot and PCR approaches. Alternatively, the loss of PBI-DdeI in several snakes might result from a stochastic effect due to random genetic drift. A satDNA family may be replaced by another satDNA family/subfamily, known as the library mode. qPCR analysis showed different copy numbers of PBI-DdeI with approximately 5.73 × 10⁶ copies per haploid genome of the P. bivittatus haploid genome was composed of PBI-DdeI sequences. The amount of PBI-DdeI in the other species was lower than in P. bivittatus at around 2.07 × 10⁶. No significant correlation was found among value, monomer size, AT%, and copy number (Supplementary Fig. S11).

Table 1. Summary of repeat features and nucleotide diversity, haplotype number, and haplotype diversity for each species studied. Number of monomeric sequenced repeats (n), nucleotide composition of repeats (AT), length of repeats, nucleotide diversity (± SD) of each species, haplotype diversity (± SD) of each species, and rate of copy number ± SD of each species.

Sample	Repeat length (bp)	n	%AT	Nucleotide diversity (π)	Haplotype diversity (h)	Accession number		
Epidemis maurus	196	11	58.70	0.036 ± 0.004	0.945 ± 0.066	LC421903	LC421913	
Xenopelis unicolor	209	5	56.50	0.012 ± 0.005	0.700 ± 0.218	LC421841	LC421845	
Python bivittatus	209	4	56.00	0.000 ± 0.000	0.000 ± 0.000	LC421837	LC421840	
Acrochordus japonicus	198	8	57.60	0.009 ± 0.002	0.750 ± 0.139	LC421919	LC421926	
Enhydris enhydris	196	7	57.10	0.005 ± 0.002	0.476 ± 0.171	LC421927	LC421933	
Leotiriodon madagascariensis	194	6	56.50	0.011 ± 0.002	1.000 ± 0.096	LC421875	LC421880	
Naja kaouthia	208	209	7	56.00	0.019 ± 0.013	0.286 ± 0.196	LC421859	LC421865
Naja siamensis	208	209	8	57.90	0.041 ± 0.012	0.750 ± 0.139	LC421851	LC421858
Ophiophagus hannah	208	209	8	56.00	0.035 ± 0.006	0.679 ± 0.122	LC421891	LC421898
Ahaetulla prasina	209	9	56.90	0.060 ± 0.006	1.000 ± 0.052	LC421866	LC421874	
Ctenophorus radians	209	7	56.90	0.018 ± 0.004	0.952 ± 0.096	LC421884	LC421890	
Eunectes murinus	208	210	5	57.90	0.006 ± 0.002	0.600 ± 0.175	LC421846	LC421850
Euprymna cenchracea cenchracea	209	3	56.00	0.000 ± 0.000	0.000 ± 0.000	LC421881	LC421883	
Crotaulus oreganus helleri	195	4	57.90	0.003 ± 0.001	0.500 ± 0.265	LC421899	LC421902	
Bopy constrictor imperator	196	5	58.20	0.004 ± 0.002	0.400 ± 0.237	LC421914	LC421918	

82.53% (approximately 5.73 × 10⁶ copies per haploid genome) of the P. bivittatus haploid genome was composed of PBI-DdeI sequences. The amount of PBI-DdeI in the other species was lower than in P. bivittatus at around 2.07 × 10⁶. No significant correlation was found among value, monomer size, AT%, and copy number (Supplementary Fig. S11).
of the satDNA changes very rapidly, despite species being closely related. This might also indicate reflection of PBI-DdeI satDNA neutral stochastic amplification. PBI-DdeI satDNA was acquired in the genome of the common ancestor of snakes, and subsequently amplified independently after the species diverged.

Do PBI-DdeI sequences suggest a rapid- or slow-evolving element. The evolutionary turnover rate of satDNA is generally either observed at a rapid (found in closely related species) or slow level (represented in
several related species)34,35. Here, phylogenetic and complex network analyses showed that the sequence group of \textit{A. prasina}, \textit{E. maurus}, \textit{B. constrictor imperator}, \textit{E. murinus}, \textit{A. javanicus}, \textit{C. oreganus helleri}, \textit{E. enhydris}, and \textit{X. unicolor} shared sequences among different species, especially \textit{A. prasina} and \textit{E. maurus}, which shared sequences in different repeated subfamilies. High \(\pi\) and \(h\) values, and low \(p\)-distances were also found in \textit{A. prasina} and \textit{E. maurus}. This suggests that the PB1-Ddel of these species shows slow evolutionary rates (0.075%/MY), similar to the rate of satDNA at 0.040% MY found in \textit{Lacerta bilineata}2. By contrast, \textit{P. bivittatus}, \textit{N. kaouthia}, \textit{N. siamensis}, \textit{L. madagascariensis}, \textit{O. hannah}, \textit{E. cerinbia cerinbia}, and \textit{C. radiatus} showed species-specific clusters of PB1-Ddel with low \(\pi\) and \(h\) values. This suggests a state of rapid evolutionary rate (approximately 0.150%/MY), where homogenization and fixation processes effectively occurred after these species split. The low copy number of the original variant might not be homogenized but can generate a new satDNA sequence variant through several homogenization and fixation processes effectively occurred after these species split. The low copy number of the \(\pi\) with low \(p\), \(h\) values, and low \(p\)-distances were also found in \textit{A. prasina} and \textit{E. maurus}. This suggests a state of rapid evolutionary rate (approximately 0.150%/MY), where homogenization and fixation processes effectively occurred after these species split. The low copy number of the original variant might not be homogenized but can generate a new satDNA sequence variant through several homogenization and fixation processes effectively occurred after these species split. The low copy number of the

\section*{Does diversity of PB1-Ddel correlate with different functional roles?}

PB1-Ddel sequences are located in the centromeric region of all chromosomes in \textit{P. bivittatus}5, which might involve chromosome segregation. However, it was cyogenetically demonstrated that PB1-Ddel was amplified in the interstitial sites of \textit{W} chromosomes in \textit{N. kaouthia} in this study. Multiple interstitial satDNA locations on the chromosome might represent remnants of the ancestral centromeric region at chromosome fusions sites, as found in barking deer (\textit{M. muntjac})31. Different chromosomal distributions of PB1-Ddel and different karyotypic features between \textit{P. bivittatus} and \textit{N. kaouthia} species suggest that the \textit{W} chromosome of \textit{N. kaouthia} was probably involved with evolutionary multiple fusions in the snake lineage59. By contrast, PB1-Ddel was also found in the male genomic DNA, based on qPCR results, indicating that PB1-Ddel sequences were also found in other chromosomes with a very low copy number. Our results clearly show that the copy numbers of most of the PB1-Ddel considered differed significantly between male and female \textit{N. kaouthia}, probably due to differential amplification, with females having on average 313 times more copies than males. PB1-Ddel represents \(3.81 \times 10^{-5}\)% of the \textit{N. kaouthia} female genome and \(1.22 \times 10^{-5}\)% of the \textit{N. kaouthia} male genome. An alternative explanation is that differential PB1-Ddel distribution patterns on \textit{N. kaouthia} \textit{W} sex chromosomes result from amplification and dispersion events from the ancestral snake lineage. The heterochromatic \textit{W} chromosome of \textit{N. kaouthia} comprises several microsatellite repeat motifs and telomeric (TTAGGG), repeats, with BACs containing repeats being amplified on the long arm of the \textit{W} chromosome5. This, in turn, suggests that the \textit{W} chromosomes of \textit{N. kaouthia} have a structurally complex origin containing various repeat sequences on the female-specific region. Co-opted PB1-Ddel acts as an evolutionary driver with several repeats to promote \textit{W} sex chromosome differentiation and heterochromatinization. Accumulations of such repeats are common features on sex chromosomes and have been reported for the sex chromosomes of many vertebrates88,84. A high rate of sequence homogenization was also found in PB1-Ddel derived from \textit{P. bivittatus} and \textit{N. kaouthia}. Both species showed a high proportion of private sequence groups in SFI, indicating the concerted evolution of PB1-Ddel. This might result from the influence of chromosomal location because both centromeres and sex chromosomes exhibit not only low rates of recombination but also show critical functions for chromosome stability, segregation, and sex chromosome differentiation89. These results lead us to predict that PB1-Ddel located in the centromeric regions of most chromosome pairs in the common ancestor of \textit{python} has a lower copy number in many snakes, and is subsequently dispersed and amplified on the \textit{W}
chromosome with different functional roles in *N. kaouthia*. Further study is required to elucidate the molecular mechanisms of PBI-DdeI dispersion in snake lineages, with possibilities including extra-chromosomal circular process DNAs or transposable element arrest processes.35-36,38

Our study provides evidence for the existence of PBI-DdeI in snakes shared by distantly related species, implying differential chromosomal location and repeat copy number in satDNA evolution. The large diversity of PBI-DdeI may have several different functions, including a critical role in genome evolution. Further studies of the genome-wide variability and organization of reptilian satDNAs are required to test current hypotheses and identify the mechanisms influencing the evolution of this genomic component. Our results advance our understanding of the organization, diversification, evolution and possible role of satDNA sequences in the genome.

Materials and Methods
Specify collection and DNA extraction. All snake samples, comprising 40 species in total, were collected from the Queen Saovabha Memorial Institute (Bangkok) and Real Zoo (Ayutthaya). Detailed information is presented in Supplementary Table S8. The sex of each individual was identified morphologically and confirmed using a molecular sexing approach.18–20 Blood samples were collected from the ventral tail vein using a 23-gauge needle attached to 2-ml disposable syringes. These contained either 10 mM ethylenediaminetetraacetic acid (EDTA) for DNA extraction or 75 USP unit/ml heparin for cell culture.37,39 Whole genomic DNA was extracted following the standard salting-out protocol as described previously by Supikamolseni et al. and used as templates for molecular sexing. Animal care and all experimental procedures were approved by the Animal Experiment Committee, Kasetsart University, Thailand (approval no. ACKU61-SCI-024) and conducted in accordance with the Regulations on Animal Experiments at Kasetsart University.

Molecular cloning of PBI-DdeI sequence based on PCR strategy. DNA fragments of PBI-DdeI sequences were amplified using specific primers PBI-DdeIF: 5′-GTTTGTGAAAGGGCAGTTTTGCC-3′ and PBI-DdeIR: 5′-GCTGATGATTACATGTTCTCCCG-3′, which were designed based on a consensus of PBI-DdeI sequences.5 PCR amplification was performed using 15 μl of 1 × buffer containing 1.5 mM MgCl2, 0.2 mM dNTPs, 0.5 μM of primers, 0.5 U of Taq polymerase recombinant (Apsalagen Co., Ltd., Bangkok, Thailand), and 25 ng of genomic DNA. PCR conditions were as follows: an initial denaturation at 94°C for 3 min, followed by 35 cycles of 94°C for 30 s, 60°C for 30 s, 72°C for 1 min 30 s, and a final extension at 72°C for 5 min. PCR products were visualized by electrophoresis on 1% agarose gel and molecularly cloned using pGEM-T Easy Vector (Promega Corporation, Madison, Wisconsin, USA). The nucleotide sequences of the DNA fragments were determined using the DNA sequencing services of First BASE Laboratories Sdn Bhd (Seri Kembangan, Selangor, Malaysia). The BLASTn programs (http://blast.ncbi.nlm.nih.gov/Blast.cgi) were used to search for nucleotide sequences in the National Center for Biotechnology Information (NCBI) database to confirm the identity of the amplified DNA fragments.

Sequence analysis. All satDNA sequences were examined for regions that formed characteristic secondary structures using the RNAfold web server (http://rna.uni-kiel.de/RNAWebSuite/RNAfold.cgi)39. Multiple sequence alignment was performed with multiple sequence comparison by log-expectation (MUSCLE) (http://www.ebi.ac.uk/Tools/msa/muscle/)40 using default parameters. After the visual inspection of alignments, consensus sequences was constructed using statistical parsimony generated in PopART v1.7.47 Analysis of molecular variance (AMOVA) was used to detect genetic differentiation among satDNA sequences by determining molecular variance and calculating F-statistics using ARLEQUIN 2.000 with 1,000 permutations.48,49 The rate of PBI-DdeI evolution was determined for the species studied according to the divergence times estimated for snakes by Vidal et al.44,45 Phylogenetic analysis was then performed using Bayesian inference with MrBayes v3.0b45. The Markov chain Monte Carlo process was used to run four chains simultaneously for one million generations, sampling every 100 generations. Log-likelihood and parameter values were assessed with Tracers ver. 1.5.46 A burn-in of 25% of saved trees was removed, and the remaining trees were used to generate a majority-rule consensus tree with average branch lengths. The Bayesian posterior probability in the sampled tree population was obtained in percentage terms. A phylogenetic network of the consensus sequences was constructed using statistical parsimony generated in PopART v1.7.47,48 Analysis of molecular variance (AMOVA) was used to detect genetic differentiation among satDNA sequences by determining molecular variance and calculating F-statistics using ARLEQUIN 2.000 with 1,000 permutations.49 This was performed at two hierarchical levels to establish how satDNA sequence variability was distributed both within and between the snake species analyzed, and within and between the satDNA subfamilies detected. Spearman’s correlation tests implemented in the statistical software R Version 3.4.3 with the “stats” package were also performed to calculate Spearman’s rank correlation coefficients for satDNA monomer size, A + T content, copy number, and π value.50

Filter hybridization (dot-blot hybridization and Southern blot hybridization). Dot-blot hybridization was performed to examine the conservation of PBI-DdeI among 40 different snakes as described previously.6 To prepare the dot blots, 200 ng of genomic DNA was denatured with 0.4 N NaOH for 10 min and then transferred onto a nylon membrane. DNA fragments of PBI-DdeI sequences derived from *P. bivittatus* were
labeled with DIG-11-dUTP using PCR DIG Labeling Mix (Roche Diagnostics GmbH, Sandhofer, Mannheim, Germany) and standard universal M13 primers, according to the manufacturer’s instructions, then hybridized to the membranes at 45°C overnight in DIG Easy Hyb solution (Roche Diagnostics GmbH). After hybridization, the membranes were washed at 45°C in 0.1% sodium dodecyl sulfate (SDS)/2× saline-sodium citrate (SSC), 0.1% SDS/1× SSC, 0.1% SDS/0.5× SSC, and 0.1% SDS/0.1× SSC for 15 min each4. Chemiluminescent signals were detected using anti-digoxigenin-AP Fab fragments and CDP-Star and exposed to KODAK T-MAT G/R A dental film (Carestream Health, Rochester, NY, USA). For Southern blot hybridization, three snake species (*P. bivittatus, Naja kaouthia,* and *Ophiophagus hannah*) showing positive results during PCR detection (see results section) were randomly selected to examine the genome organization of PBI-DdeI. Three micrograms of each genomic DNA were digested with endonucleases that had restriction sites within the sequences of each repeat, fractionated by electrophoresis on 1% agarose gel, and transferred onto a nylon membrane. SatDNA sequences derived from *P. bivittatus, N. kaouthia,* and *O. hannah* were then labeled with DIG-11-dUTP, using PCR DIG Labeling Mix according to the manufacturer’s protocol. All labeled probes were reciprocally hybridized to membranes of all the three snake species at 45°C overnight in DIG Easy Hyb solution. Hybridization and detection of signals were performed as mentioned previously.

Cell culture and chromosome preparation. Lymphocytes from two male and two female *N. kaouthia* were isolated from peripheral blood, and then cultured for 5 days in RPMI 1640 medium supplemented with 15% fetal bovine serum (FBS), 3 μg/ml concanavalin A (type IV-S) (Sigma-Aldrich, St. Louis, MO, USA), 10 μg/ml lipopolysaccharide (Sigma-Aldrich), 1% phytohaemagglutinin (HA15) (Remel, Lenexa, KS, USA), and 1% Antibiotic-Antimycotic (Life Technologies-Gibco, Carlsbad, CA, USA) as described previously9. After 5 days, lymphocytes were subjected to colcemid treatment (100 ng/ml) for 60 min and fixed (3:1 methanol/acetic acid) after hypotonic treatment in 0.075 M KCl before being harvested. The cell suspension was dropped onto clean glass slides and air-dried. The slides were kept at −80°C until required for use.

FISH (fluorescence in situ hybridization) mapping of PBI-DdeI. Chromosomal locations of PBI-DdeI were determined using FISH as described previously94,51,52. Approximately 250 ng of satDNA fragments were labeled, incorporating biotin-16-dUTP (Roche Diagnostics) by nick translation according to the manufacturer’s protocol, and ethanol-precipitated with salmon sperm DNA and Escherichia coli tRNA. After the hybridization of the biotin-labeled probes to *N. kaouthia* chromosomes, the probes were detected by incubating the chromosome slides with avidin labeled with fluorescein isothiocyanate (avidin-FITC; Invitrogen, CA, USA). Slides were subsequently stained with 1 μg/ml DAPI (4′, 6′-diamidino-2-phenylindole). Fluorescence hybridization signals were captured using a cooled Charge-Coupled Device (CCD) camera mounted on a ZEISS Axioplan2 microscope and processed using MetaSystems ISIS v.5.2.8 software (MetaSystems, Altlussheim, Germany).

Quantification of satellite DNA copy number variation based on quantitative real-time polymerase chain reaction (qPCR). Quantification of PBI-DdeI was performed on different snake species using qPCR with two different approaches: absolute quantification and relative quantification29,35. PBI-DdeI sequences were amplified using specific primers: PBI-DdeIF and PBI-DdeIR. The glyceraldehyde-3-phosphate dehydrogenase (*GAPDH*) gene was used as the reference with primer sequences GAPDH F (5′-AAACCGAGCCAAGTACGATGACAT-3′) and GAPDH R (5′-CCATCAGCAGGCGCTTCGA-3′)54. qPCR amplification was performed using 10 μl of 2× KAPA SYBR® FAST qPCR Master Mix (Kapa Biosystems, Cape Town, South Africa), 0.25 μM primers, and 25 ng of genomic DNA. The PCR conditions were as follows: initial denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 15 s, 60°C for 15 s, and 72°C for 15 s, with a final extension at 72°C for 5 min. A melting curve over a range of temperatures from 60 to 95°C was created after each run to ensure there was no non-specific product amplification. Amplification specificity was confirmed by dissociation curve analysis. Specificity of the amplified product was additionally tested on 1% agarose gel. No template control was included in any of the runs. Reactions were carried out in a 96-well optical plate and a melt curve was obtained to evaluate primer specificity. The qPCR reactions of all specimens were performed in technical triplicate. For absolute quantification17, a 10-fold serial dilution series of the clones (plasmid DNA with the PBI-DdeI clone) ranging from 1× 10^6 to 1× 10^-10^ was used to obtain a standard curve (six-point serial dilutions) (Supplementary Fig. S13). Concentration of the recombinant plasmid was obtained using NanoDrop™ 2000/2000c Spectrophotometers (Thermo Fisher Scientific, Massachusetts, USA). The plasmid copy number was calculated using the following equation: DNA (copy number) = [(6.023 × 10^23) × (Copy number/mol) × DNA amount (g)]/[DNA length (bp) × 660 × (g/mol/bp)]. Avogadro’s number = 6.023 × 10^23 molecules (copy number/mol) with an average molecular weight of a double-stranded DNA molecule of 660 g/mol/bp. Total DNA length was 3,224 bp [pGEM-T Easy Vector and inserted DNA (PBI-DdeI sequences) were 3,015 and 209 bp]. Cycle threshold (CT) values in each dilution were measured using qPCR to create different standard curves. The standard curve was constructed using cycle threshold values against the log concentration of PBI-DdeI. The regression line was fitted with R^2 = 0.984 (< 0.001). Copy number determination of the unknown total DNA sample was then obtained by interpolating its CT value against the standard curve. Absolute quantification was transformed into fold change values using the standard curve equation and always compared with a reference sample. For relative quantification, the 2^-ΔΔCT method48 was used to calculate fold changes in the amount of PBI-DdeI in the different species. Results were represented as the 2^-ΔCT of satDNA copy number. Correlation analysis of absolute and relative quantification of PBI-DdeI among snake species using Spearman’s rank correlation coefficient was performed. Copy number differences among snake genome were examined using Analysis of Variance (ANOVA) and the Tukey’s test, using the R statistical software Version 3.4.4 with the “stats” package49. Estimated values were expressed as mean ± standard deviation.
To examine copy number differences of PBI-DdeI between males and females, qPCR was performed using ten male and ten female *N. kaouthia* samples of genomic DNA, which were selected due to the presence of PBI-DdeI on the W chromosome, as determined by FIISH (see results section). PCR condition and quantification were performed as mentioned above. Statistical copy number differences of male and female *N. kaouthia* were examined using a Wilcoxon signed-rank test with R statistical software version 3.4.4 with the "stats" package.8

Discovery of PBI-DdeI sequences on the released genome sequence of snakes.

Pair-end 100 \times coverage Illumina HiSeq sequencing was performed for the genomic DNA of one female *N. kaouthia*. The sequencing library was prepared by random fragmentation of the DNA sample, followed by 5’ and 3’ adapter ligation. Library fragment sizes were performed using a TruSeq DNA PCR free kit in the range 150 bp. The Illumina HiSeq X Ten generates raw images and base calling through an integrated primary analysis software called RTA 2 (Real Time Analysis 2). The BCL (base calls) binary was converted into FASTQ using Illumina package bcl2fastq2-v2.20.0. The demultiplexing option (–barcode-mismatches) was set to default (value: 1). Low-quality sequences (duplicate reads and adapters) from raw data sequences were removed using a fastq-mc algorithm. High-quality reads were then assembled using Velvet (Velvet_1.1.07; kmer = 91) with genomic scaffolds used as the database. Whole sequence data was then deposited in a Sequence Read Archive (SRA) (accession number PRJNA506318). The FASTA genome sequences from eight snake species were also retrieved from the NCBI website (http://www.ncbi.nlm.nih.gov) for the Burmese python (*P. bivittatus*; AEQJ000000000), garter snake (*Thamnophis sirtalis*; LLFD00000000), corn snake (*Pantherophis guttatus*; JTLQ01000000), king cobra (*O. hannah*; AZIM00000000), “European adder” (*V. berus berus*; JTCP00000000), timber rattlesnake (*Crotalus horridus*; LVCRO00000000), spotted rattlesnake (*Crotalus mitchelli pyrrhus*; JPMF01000000), and habu snake (*Protobothrops flavoviridis*; BFFQ00000000). These genomes were obtained using different sequencing technologies and various levels of characteristics concerning the sequencing coverage and the assembly effort. An in-house computational pipeline, including custom-made BLASTn and sort command, was used to sort and filter the alignments results. Here, PBI-DdeI hits were initially identified in each genome using an iterative query-driven method based on sequence similarity. The consensus sequence of PBI-DdeI was used as the input and filter the alignments results. Here, PBI-DdeI hits were initially identified in each genome using an iterative query-driven method based on sequence similarity. The consensus sequence of PBI-DdeI was used as the input and filter the alignments results.

Accession numbers.

LC421837 – LC421933 (DDB) and PRJNA506318 (SRA).

Received: 27 December 2018; Accepted: 9 October 2019;
Published online: 29 October 2019

References

1. Kerkamp, H. M. et al. Genome sequencing: results and future prospects. *Toxins* 8, 360 (2016).
2. Ugarković, D. & Plohl, M. Variation in satellite DNA profiles—causes and effects. *EMBO J.* 21, 5955–5959 (2002).
3. Plohl, M., Luchetti, A., Meštrović, N. & Mantovani, B. Satellite DNA as a measure of selfishness and functionality: structure, genomics and evolution of tandem repeats in centromeric (hetero)chromatin. *Gene* 409, 72–82 (2008).
4. Chaiprasertsri, N. et al. Highly species-specific centromeric repetitive DNA sequences in lizards: molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (*Varanus macromaculatus*, Platynota). *J. Hered.* 104, 798–806 (2013).
5. Matsubara, K. et al. Molecular cloning and characterization of satellite DNA sequences from constitutive heterochromatin of the habu snake (*Protobothrops flavoviridis*, Viperidae) and the Burmese python (*Python bivittatus*, Pythonidae). *Chromosoma* 124, 529–539 (2015).
6. Prakhongcheep, O. et al. Lack of satellite DNA species-specific homogenization and relationship to chromosomal rearrangements in monitor lizards (*Varanidae*, Squamata). *BMC Evol. Biol.* 17, 193 (2017).
7. Giovannotti, M. et al. Characterization of a satellite DNA in the genus Lacerta and *Timon* (Reptilia, Lacertidae) and its role in the differentiation of the W chromosome. *J. Exp. Zool. B Mol. Dev. Evol.* 330, 83–95 (2018).
8. Ezzat, T. & Deakin, J. E. Repetitive sequence and sex chromosome evolution in vertebrates. *Adv. Evol. Biol.* 2014, 1–9 (2014).
9. Singchat, W. et al. Chromosome map of the Siamese cobra: did partial synteny of sex chromosomes in the amniote represent "a hypothetical ancestral super-sex chromosome" or random distribution? *BMC Genomics* 19, 939 (2018).
10. Bodo, D. L. et al. The quantitative architecture of centromeric chromatin. *Elipti* 3, e02137 (2014).
11. Fry, K. & Salser, W. Nucleotide sequences of HS-α satellite DNA from kangaroo rat Dipodomys ordi and characterization of similar sequences in other rodents. *Cell* 12, 1069–1084 (1977).
12. Feliciello, I., Akrap, I., Brajković, J., Zlatar, I. & Ugarković, D. Satellite DNA as a driver of population divergence in the red flour beetle *Triobium castaneum*. *Genome Biol. Evol.* 7, 228–239 (2014).
13. Gilbert, C., Hernandez, S. S., Flores-Benabib, J., Smith, E. N. & Peschotte, C. RAMPANT horizontal transfer of SPIN transposons in squamate reptiles. *Mol. Biol. Evol.* 29, 503–515 (2014).
14. Suntrmongkol, P. et al. CENP-B box, a nucleotide motif involved in centromere formation, occurs in a New World monkey. *Bioul. Lett.* 12, 20150817 (2016).
15. Giovannotti, M. et al. Slow evolving satellite DNA: the case of a centromeric satellite in *Chalcides ocellatus* (Forskål, 1775) (Reptilia, Scincidae). *Amphib.-Reptil.* 34, 401–411 (2013).
16. Uetz, P. & Hosek, J. The Reptile Database, http://www.reptile-database.org (2013).
17. Gamble, T. et al. The discovery of XY sex chromosomes in a boa and python. *Curr. Biol.* 27, 2148–2153.e4 (2017).
18. Laopichienpong, N. et al. Evolutionary dynamics of the gametologous CTNNB1 gene on the Z and W chromosomes of snakes. *J. Hered.* 108, 142–151 (2017).
19. Laopichienpong, N. et al. A novel method of caenophidian snake sex identification using molecular markers based on two gametologous genes. *Evol. Ecol.* 7, 4601–4609 (2017).
20. Tawichasri, P. et al. Using blood and non-invasive shed skin samples to identify sex of caenophidian snakes based on multiple PCR assay. *Zool. Anz.* 271, 6–14 (2017).
21. Castoe, T. A. et al. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes. *Proc. Natl. Acad. Sci. USA* 110, 20645–20650 (2013).
22. Plohl, M., Meštrović, N. & Mravinac, B. Satellite DNA evolution. *Gene* 1067, 126–152 (2012).
23. Deskin, J. E. et al. Chromosomics: bridging the gap between genomes and chromosomes. *Genes (Basel)* 10 (2019).
24. Kuhn, G. C. & Sene, F. M. Evolutionary turnover of two pBuM satellite DNA subfamilies in the *Drosophila buzzatii* species cluster (repleta group): from alpha to alpha/beta arrays. *Gene* 349, 77–85 (2005).
25. Martinson, L., Venanzetti, F., Johnsen, A., Sbordoni, V. & Bachmann, L. Molecular evolution of the *pDo500* satellite DNA family in *Dolichopoda* cave crickets (*Rhaphidophoridae*). *BMC Evol. Biol.* 9, 301 (2009).
26. Pohl, M. et al. Long-term conservation vs high sequence divergence: the case of an extraordinarily old satellite DNA in bivalve mollusks. *Heredity* (Edinb) 104, 543 (2010).
27. de A. Silva, D. M. Z. et al. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus *Asystonax*. *Sci. Rep.* 7, 12726 (2017).
28. Kumazawa, Y. Mitochondrial genomes from major lizard families suggest their phylogenetic relationships and ancient radiations. *Gene* 388, 19–26 (2007).
29. Ambrose, C. D. & Crease, T. J. Evolution of the nuclear ribosomal DNA intergenic spacer in four species of the *Daphnia pulex* complex. *BMC Genet.* 12, 13 (2011).
30. Pyron, R. A., Burbrink, F. T. & Wiens, J. J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. *BMC Evol. Biol.* 13, 93 (2013).
31. Laopichienpong, N. et al. Assessment of snake DNA barcodes based on mitochondrial COI and Cyrb genes revealed multiple putative cryptic species in Thailand. *Gene* 594, 238–247 (2016).
32. Pons, J. et al. Complex structural features of satellite DNA sequences in the genus *Pimelia* (*Coleoptera: Tenebrionidae*): random differential amplification from a common ‘satellite DNA library’. *Heredity* (Edinb) 92, 418 (2004).
33. Satovic, E. & Pohl, M. Distribution of DTHS3 satellite DNA across 12 bivalve species. *J. Genet.* 97, 575–580 (2018).
34. Hartmann, N. & Scherthan, H. Characterization of ancestral chromosome fusion points in the Indian muntjac deer. *Chromosoma* 112, 213–220 (2004).
35. Srikulnath, K., Azad, B., Singchatt, W. & Ezaz, T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. *PloS ONE* e0212683 (2019).
36. Mourier, T. Potential movement of transposable elements through DNA circularization. *Carr Genet.* 62, 697–700 (2016).
37. Singchatt, W. et al. Dynamics of telomere length in captive Siamese cobra (*Naja kaouthia*) related to age and sex. *Eco. Evol.* 9, 1–12 (2019).
38. Supikamolseni, A. et al. Molecular barcoding of venomous snakes and species-specific multiplex PCR assay to identify snake groups for which antivenom is available in Thailand. *Genet. Mol. Res.)* 14, 13981–13997 (2017).
39. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The Vienna RNA websuite. *Nucleic Acids Res.* 36, W70–W74 (2008).
40. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. *BMC Bioinformatics* 5, 113 (2004).
41. Librado, P. & Rozas, J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. *Bioinformatics* 25, 1451–1452 (2009).
42. Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. *Nucleic Acids Symp. Ser.* 41, 95–98 (1999).
43. Kumar, S., Stecher, G. & Tamura, K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. *Mol. Biol. Evol.* 33, 1870–1874 (2016).
44. Vidal, N., Rage, J. C., Couloux, A. & Hedges, S. B. The time tree of life in situ for which antivenom is available in Thailand. *Genet. Mol. Res.* 14, 13981–13997 (2017).
45. Huelsenbeck, J. P. & Ronquist, F. *MRBAYES*: Bayesian inference of phylogenetic trees.
46. Rambaut, A. & Drummond, A. *BEAST*: Bayesian evolutionary analysis by sampling trees. *Bioinformatics* 21, 2147–2155 (2005).
47. Leigh, J. W. & Bryant, D. *POPART*: full-feature software for haplotype network construction. *Methods Ecol. Evol.* 6, 1110–1116 (2015).
48. Excoffier, L. & Liischer, H. E. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. *Mol. Ecol. Resour.* 10, 564–567 (2010).
49. Schneider, S., Roessli, D. & Excoffier, L. Arlequin: a software for population genetics data analysis. *User manual ver 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, Geneva (2000).
50. Team, R. C. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015. ISBN 3-900051-07-0: *http://www.R-project.org* (2018).
51. Matsuda, Y. & Chapman, V. M. Application of fluorescence in situ hybridization in genome analysis of the mouse. *Electrophoresis* 16, 261–272 (1995).
52. Srikulnath, K. et al. Karyological characterization of the butterfly lizard (*Leiolepis revesesi rubritaeniata*, Agamidae, Squamata) by molecular cytogenetic approach. *Cytogenet. Genome Res.* 125, 213–223 (2009).
53. Paço, A., Adega, F., Mestróvic, N., Plohl, M., Chaves, R. et al. *Evolutionary story of a satellite DNA from Phodopus sungorus* (Rodentia, *Cricetidae*). *Genome Biol. Evol.* 6, 2944–2955 (2014).
54. Chaves, R., Ferreira, D., Mendes-da-Silva, A., Meles, S. & Adega, F. *FA-SAT* is an old satellite DNA frozen in several Bilateria genomes. *Genome Biol. Evol.* 9, 3073–3087 (2017).
55. Criscuolo, F. et al. Real-time quantitative PCR assay for measurement of avian telomeres. *J. Avian. Biol.* 40, 342–347 (2009).
56. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. *Methods* 25, 402–408 (2001).
57. Zerbino, D. & Birney, E. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. *Genome Res.* 18, 821–829 (2008).
58. von, F. J. et al. The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. *Proc. Natl. Acad. Sci. USA* 110, 20651–20656 (2013).
59. Gilbert, C. et al. Endogenous hepapnaviruses, bornaviruses and circoviruses in snakes. *Proc. Biol. Sci.* 281, 20141122 (2014).
60. Ullate-Agote, A., Milinkovitch, M. C. & Tizka, A. C. The genome sequence of the corn snake (*Pantherophis guttatus*), a valuable resource for EvoDevo studies in squamates, *Int. J. Dev. Biol.* 58, 881–888 (2014).
61. Castoe, T. A. et al. A proposal to sequence the genome of a garter snake (*Thamnophis sirtalis*), *Stand. Genomic Sci.* 4, 257–270 (2011).
62. Sanders, W. S. et al. A draft genome sequence of the timber rattlesnake, *Crotalus horridus*, *https://www.ncbi.nlm.nih.gov/nuccore/LVCRC00000000.1* (2016).
63. Shihata, H. et al. The habu genome reveals accelerated evolution of venom protein genes. *Sci. Rep.* 8, 11300 (2018).

Acknowledgements

This study was financially supported by grants from the Thailand Research Fund (TRF; no. RSA6180075, PHD6010014, MSD6010035) awarded to KS, WS, and PT, the Graduate School Kasetsart University (2/2559) awarded to RT, the Fellowship of Capacity Building for Kasetsart University on Internationalization at Kasetsart University (No. 0513.10109/8384) awarded to KS, and the Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University (CASTNAR, NRU-KU, Thailand) awarded to KS, the National Research Council of Thailand (NRCT; No. 2560096003012) awarded to WS and KS, the Center for...
of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Office of Higher Education Commission, Ministry of Education (AG-BIO/PERDO-CHE) awarded to KS, and Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU) awarded to KS. We would like to thank Queen Saovabha Memorial Institute (Bangkok), Zoological Park Organization (Bangkok), and REALZOO (Ayutthaya), Thailand for advice on sample preparation.

Author contributions
R.T., W.S. and K.S. conceived the ideas, designed methodology and drafted the manuscript. R.T., W.S. and P.T. carried out the lab work. R.T., W.S., N.L., P.T., E.K., O.P. and K.S. participated in data analysis and carried out the statistical analyses. R.T., W.S., N.L., P.T., E.K., O.P., S.S., N.M., S.B., S.S., L.C., S.P. and K.S. reviewed the data and the manuscript. R.T., W.S. and K.S. drafted the manuscript and prepared all figures. All authors gave final approval for publication.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-019-51863-w.

Correspondence and requests for materials should be addressed to K.S.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2019