RADIO ENGINEERING, ELECTRONICS
AND ELECTRICAL ENGINEERING

DOI 10.51582/interconf.21-22.10.2021.032

Brytov Oleksandr
ORCID ID: 0000-0003-4487-9515
Listener, National Defence University of Ukraine, Ukraine

Belyaev Danil
ORCID ID: 0000-0001-6707-554X
Ph.D, Lead Researcher,
Central research institute of weapons and military equipment
of the Armed Forces of Ukraine, Ukraine

Rasstryhin Olieksii
ORCID ID: 0000-0002-1482-6111
Doctor of Technical Sciences, Professor, General Researcher,
Central research institute of weapons and military equipment
of the Armed Forces of Ukraine, Ukraine

Shknai Oleh
ORCID ID: 0000-0002-5572-4917
Ph.D, Lead Researcher,
Central research institute of weapons and military equipment
of the Armed Forces of Ukraine, Ukraine

Zvieriev Oleksii
ORCID ID: 0000-0003-2274-3115
Candidate of Technical Sciences, Associate Professor, Researcher,
Central Research Institute of Armaments and Military Equipment
of the Armed Forces of Ukraine, Ukraine

Basarab Vitalii
ORCID ID: 0000-0002-6575-5004
Deputy Head of the 38th Joint Center for Educational Work –
Head of the Department of Organization of the Educational Process, Ukraine
ANALYSIS OF MODERN METHODS AND MEANS OF ELECTRONIC INTELLIGENCE FOR SPECIAL PURPOSES FOR MONITORING THREATENING STATIONARY AND MOBILE OBJECTS

Abstract. Electronic methods and means of reconnaissance are a set of methods and organizational structures for conducting intelligence activities using electronic equipment and radio-technical devices (systems). The development of modern element base and computing facilities allows us to miniaturize modern facilities, introducing into them previously inaccessible algorithms and methods for processing the information received. This allows real-
time monitoring of potentially dangerous (threatening) stationary and mobile objects, promptly responding to emerging terrorist threats and other dangerous phenomena. On the paper briefly discusses the main modern methods and means of electronic intelligence for special purposes, used in practice.

Keywords: electronic intelligence, radio electronic intelligence, radioprospcting, radiotechnical intelligence, radar intelligence, optoelectronic intelligence

Introduction. The emergence of electronic devices has aroused wide interest in their use in various fields of human activity. Research has begun on their application, primarily in areas requiring large physical expenditures of a person or causing serious harm (damage). Thus, methods and means of electronic reconnaissance began to develop, the main of which include methods and means of radio electronic (radio, radiotechnical, radar) and optoelectronic intelligences. Moreover, each of the components of electronic intelligence had both its advantages and disadvantages. Most of the shortcomings were associated with limitations arising from the imperfection of the element base and the ability of computing and other means of processing, transferring and storing information. Most of the available theoretical solutions were physically quite difficult to implement, and the physical samples of products often very crudely and primitively implemented the ideas of the designers. At this point in time, the development of science and technology makes it possible to implement devices and systems that allow obtaining information of interest in real time in an acceptable size quite fully. First of all, most of the modern developments of special-purpose electronic intelligence tools are aimed at monitoring threatening (potentially dangerous) stationary and mobile objects. One of the reasons is a rather serious terrorist threat that poses a challenge not only to individual countries, but also to entire regions. Thus, terrorist groups attempted to create their own state in the Middle East and Africa, carried out actions in many parts of the world. In this regard, the work devoted to the study of methods and means of detecting and preventing possible threats is of interest.

Literature review. In general, the methods and means of electronic intelligence can be reduced to active, passive, active-passive (combined). The main
advantage of active methods is the ability to adjust, within certain limits, the capabilities and structure of the emitted signals, the predictability of the expected response of the signal reflected from the object, deliberately predictable methods and processing algorithms. However, in modern conditions this leads to the rapid opening of intelligence assets, and, as a rule, to intensive counteraction. The main advantage of passive methods is the possibility of covert observation of objects of interest, the possibility of long-term accumulation of statistical information and, as a result, theoretically high enough secrecy, noise immunity and information content. However, the main disadvantage is the a priori unknown structure of signals emitted by objects, the dependence of the information received on the radiation properties of the object, a larger number of equipment and computing facilities involved for processing signals in the possible radiation range of the object. Active-passive methods allow combining the advantages of each method and leveling their disadvantages. Their essence about the general form is as follows. There is a certain number of electronic means combined into a single system. Part of the funds works for radiation and reception, part only for receiving signals. In this case, the structure and the intended methods of signal processing are known. The secrecy and security of the objects of such a system lies in the "flickering" mode of operation of the emitting devices and their quasi-chaotic radiation, with a constant change of location during the period of "silence". The reconnaissance object, even determining the position of the emitting means, does not have time to quickly react and neutralize the threat that has arisen for it. However, the use of active-passive methods impose rather stringent requirements on the means of communication, topographic reference and orientation, methods of monitoring and predicting the technical state of the system's components [1-50].

The purpose of the work is a brief overview and analysis of modern methods and means of electronic intelligence for special purposes for monitoring threatening stationary and mobile objects.

Main material. Radioelectronic intelligence refers to technical specification and implies collecting information based on acceptance and analysis of electromagnetic radiation. Uses both intercepted signals from communication
channels and the signals of the working radar, RES stations and other devices. Moves in the wavelength range from micrometer units to tens of thousands of kilometers.

Radioelectronic intelligence includes the following types of exploration:

– radio exploration - interception of communication channels (usually between people);

– radio engineering intelligence - interception of communication channels between radio-electronic means, as well as RLS signals and other devices;

– radar intelligence - mining information about objects (purposes), including the definition of their coordinates or motion parameters using radar.

When radio access, the discovery and interception of open, classified, coded gears of connected radio stations are detected, the direction finding their signals, analysis and processing of the mined information in order to open its content and locate the radiation sources. Information of radio communications on stations, systems of their construction and the content of the transmitted messages allow you to identify plans and plans of the objects of interest, their composition and location (location). The main methods used by methods and means of radio visor are:

– selection and analysis of the signal from broadband communication lines;

– filtering, processing and analysis of faxes;

– traffic analysis, keyword recognition, receipt of text and analysis of topics;

– speech recognition systems;

– continuous speech recognition;

– identification of the speaker and other methods for selecting voice messages;

– load reduction or undermining cryptographic systems.

Using secretive methods, is a fairly reliable and effective means. Used by special services of almost all states to obtain the necessary intelligence information. Basically, the work is carried out in passive mode, but options for obtaining information using narrow-controlled radiation (for example, laser), which is in some cases a demuscating factor. A distinctive feature of radio repairs is its sufficient subjectivity, which consists in the need for a critical assessment of the data obtained. This is primarily due to the fact that information issued by an
intelligence facility can be intentionally distorted, which causes the need for its multiple recheck.

To solve the problems of radio engineering intelligence to determine the structure of the signal received from the object and the coordinates of the radiation source, the methods of spectral analysis, as well as triangulate, difference-distance (hyperbolic) tall-difference and low-leveling methods for determining the location are widely used. If there are broadband communication channels between receiving items, the correlation processing of received signals is used at a high or intermediate frequency, provided that the phase ratios are saved when the frequency is transferred. Radiotechnical intelligence means must be broadband, to provide work in the entire reconnaissance frequency range, as well as ensure the direction finding an exploited source of radiation with the necessary accuracy. An additional restriction is the need for minimal lateral petals at the antennas of radio engineering exploration. This is due to the requirement of excluding false definitions of directions for pea and sources. To satisfy all the requirements in the presence of one antenna is physically impossible, liaison with which several antennas are usually used, overlapping a fully exploded frequency range. The receiving devices of radio and radio engineer reconnaissance stations are characterized by:

– reconnaissance frequency range;
– the restructuring time, which characterizes the efficiency of intelligence in the reconnaissance range;
– sensitivity;
– resolution;
– how to search for a signal of an exploration object for the carrier frequency and the likelihood of its detection.

In fact, the most important technical characteristic of the reconnaissance receiver is the full frequency range in which the search and detection of intelligent signals is carried out. In this connection, when designing means of radio engineering intelligence, they try to achieve overlapping by one reconnaissance receiver if possible as widely as possible frequency range. The variety of tasks solved using radiotechnical intelligence means determines the multi-performance receiving
devices used. Many system of direct support for radio-electronic counteraction work under conditions when only the detection of working radio-electronic means is required from radiotechnical intelligence funds (alerting of the aircraft crew about radar irradiation, for example). In this case, single-channel broadband receivers can be used, the bandwidth overlaps the entire frequency range in which the radar means of intelligence objects operate. For more detailed exploration, devices with narrowband receiving channels are used - scanning and multichannel receivers. These receivers are configured on the program for all frequencies in the intelligence range. Basically, the restructuring program is reduced to the serial view of all the frequencies of the reconnected range (panoramic sequential frequency analysis), but the operation of the work algorithms are also possible. For example, restructuring with the skipping of the range of ranges in which non-informative means for exploration. Portable scanning receivers used in the introduction of communication systems (for example, in a mobile communication system) are capable of reconnafer in the frequency band from 100 kHz to 2 GHz. For receivers of radiotechnical intelligence, this range is wider, since it overlaps all possible operating frequencies of the RES, that is, it extends to 30 GHz and above, in the range of millimeter waves.

One of the specific problems of radio engineering intelligence when determining the location of objects is the high dependence of the accuracy of the estimates obtained from the distance between the reception points (system bases) and the accuracy of its measurement, which requires increased attention when solving top acceptance and orientation tasks. As shown in the sources given in the analysis of the literature, to achieve acceptable results of the assessment of the coordinates of the radiation source, the accuracy of measuring the bases should be an order of magnitude more accurate accuracy of measuring the primary coordinates.

Radar intelligence, being one of the oldest types of electronic intelligence, is at the moment one of the most informative. This is mainly due to:

– a sufficiently long history of the development of the theoretical school;
– "more direct" methods for obtaining coordinate information (measurement errors are proportional to, in contrast to the methods of radiotechnical intelligence,
errors of measurement of primary coordinates);

– known characteristics of the emitted signal;

– simpler construction of information reception and processing systems.

Currently, the potential accuracy of the coordinate measurement in the implementation of certain conditions, for example, a phase method, reaches the equity of the wavelength of the radiated signal. The popularity and widespread multi-position (separated) radar reconnaissance systems are gaining, allowing more fully to extract information from the space-time structure of the received signal. The development of the element base leading to the cheapening of the components allows you to form the required diagram of the orientation of active and digital antenna arrays. The use of modern antennas on their base, in addition to a significant reduction in losses, allows you to more fully implement digital signal processing methods. This, in turn, makes it possible to the practical implementation of the "super-defense algorithms", providing the separation of signals of several sources in the needle diagram of the orientation. An essential feature is a weak or well-studied dependence of the propagation of signals depending on the environment. In a number of sources, radar exploration include exploration using optical (laser) radiation, provided that the processing of the received signals is similar to the methods taken in modern radar. At the same time, a demasking factor due to radiation is a significant disadvantage of this type of exploration.

Optoelectronic exploration refers to technical types of intelligence and implies collecting intelligence information on the basis of admission and analysis of electromagnetic waves of the optical spectrum range by devices that perceive and transform the energy of the corresponding radiation first into an electrical signal and then into a visible image.

Optoelectronic exploration tools are used to detect and recognize ground, air and maritime objects, ensuring tasks in night and complex meteo conditions. Optoelectronic means include:

– optical devices of direct observation;

– optoelectronic cameras.; - thermal imaging stations;

– optoelectronic television cameras;
- optoelectronic navigation and target systems.

Specified equipment allows you to conduct visual intelligence in the day and night. They have a linear resolution on the ground up to 10 cm (separate samples - 2-3 cm). Photographing the objects in the range of wavelengths of the electromagnetic emission spectrum (spectral range) 0.5-0.8 microns from a height of 10 km is up to 50 km, optical telescopes allow you to detect the start of ballistic missiles at a distance of up to 500 km. The thermal imaging stations provide a solution to a wide range of tasks. It is usually working in one of two (3-5 or 8-14 μm) or both areas of the spectral range. At the temperature resolution of 0.1-0.3 and an angular resolution of 0.5-2.5 mrad, they provide reconnaissance at a distance of up to 10 km. Optoelectronic television chambers are included in the complex intelligence and detecting systems or are established as a separate unit, operate in the spectral range (0.3-0.5 μm) and used, as a rule, to conduct intelligence in daytime conditions and at low levels of illumination. Optoelectronic television and thermal imaging stations, as well as optoelectronic chambers have a linear resolution of about 40 cm and allow you to recognize small-sized stationary and moving targets for a distance of up to 10 km. Optoelectronic control stations provide reception, processing and displaying on the screen of shooting results, have a modular design. Exploration is carried out in a completely autonomous or semi-autonomous mode. The disadvantage is the impossibility of performing the functions of natural or deliberately supplied optically opaque noise.

Conclusions.

1. The modern development of the element base and computing facilities allows the implementation of most modern methods and algorithms for obtaining information by means of electronic intelligence for special purposes for monitoring threatening stationary and mobile objects.

2. The most promising direction for obtaining information about threatening objects is the creation of combined active-passive systems with joint information processing.

3. None of the components of electronic intelligence can provide a full-fledged constant receipt of information about an object of interest in any conditions of the
situation. Elimination of this drawback is possible by using systems using data from radio electronic (radio, radiotechnical, radar) and optoelectronic intelligences.

References:
1. Artikula, A., Britov, D., Chmil, Y., Haibadulov, B., Kriuchkov, D., Reznichenko, O., Semeniuk, A., Skopintsov, O., Tulenko, I., Tulenko, M., Tytarenko, R., & Vetoshkin, A. (2021). The method of evaluating the operation of radio technicians of special purpose in extreme (crisis) situations. InterConf, (75), 247-259. – Режим доступу: https://doi.org/10.51582/interconf.19-20.09.2021.030
2. Беляев Д. М. Анализ светодового досвіду застосування військових аеростатних літальних апаратів та перспективи їх використання у Збройних Силах України / Д. М. Беляев, О. О. Расстрігін, П. П. Семенюк, В. П. Бунаков // Озброєння та військова техніка. - 2015. - № 3. - С. 67-72. - Режим доступу: http://nbuv.gov.ua/UJRN/ovt_2015_3_12
3. Беляев Д. М. Науково-методичний апарат обґрунтування основних вимог до аеродинамічних та аеростатичних характеристик прив'язного аеростата мобільного аеростатного радіолокаційного комплексу виявлення маловисотних цілей / Д. М. Беляев, О. О. Расстрігін, П. І. Кісель, Р. П. Семенюк // Озброєння та військова техніка. - 2017. - № 3. - С. 45-50. - Режим доступу: http://nbuv.gov.ua/UJRN/ovt_2017_3_10
4. Беляев Д. М. Оцінка техніко-економічної ефективності перспективного мобільного аеростатного радіолокаційного комплексу виявлення маловисотних цілей / Д. М. Беляев, О. О. Расстрігін, П. І. Кісель, Р. П. Семенюк // Озброєння та військова техніка. - 2018. - № 2. - С. 38-42. - Режим доступу: http://nbuv.gov.ua/UJRN/ovt_2018_2_8
5. Скорик Б. И. К вопросу о теории информационного взаимодействия сложных технических систем / Б. И. Скорик, А. Б. Скорик, А. А. Зверев // Системы упр., навігації та зв'язку. - 2009. - Вип. 4. - С. 116-119.
6. Zuiev, P., Zhyvotovskyi, R., Zvieriev, O., Hatsenko, S., Kuprii, V., Nakonechnyi, O., Adamenko, M., Shyshatskyi, A., Neroznak, Y., & Velychko, V. (2020). Development of complex methodology of processing heterogeneous data in intelligent decision support systems. Eastern-European Journal of Enterprise Technologies, 4(9) (106), 14–23. https://doi.org/10.15587/1729-4061.2020.208554
7. Маслов, А.Ф., Рощупкин, Е.С., Хмелевский, С.И., & Селевко, В.Н. (2002). Потенциальная точность измерения времени запаздывания путем учета фазовой структуры принимаемых разнесёнными аппертурами сигналов. Збірник наукових праць, 3 (41), 83–85. – Режим доступу: https://doi.org/10.5281/zenodo.5525818
8. Маслов А.Ф. Ошибки измерения координат источника излучения при обработке пространственной фазовой структуры принимаемого разнесенной корреляционно-базовой системой сигнала / А.Ф. Маслов, Е.С. Рощупкин, О.П. Колодей // Системы обработки информации. – 2003. – № 1(23). – С. 125-138. – Режим доступу: http://nbuv.gov.ua/UJRN/soi_2003_1_21

9. Седишев П.Ю. Однозначное оценивание дальности движущейся цели при ее сопровождении по шине и кулондруугих координатах радиолокатором с використанням когерентных сигналов с высокою частотою повторения импульсів / П.Ю. Седишев, А.О. Подорожняк, Є.С. Рощупкін // Наука і техніка Повітряних Сил Збройних Сил України. – 2009. – № 1(1). – С. 71-74. – Режим доступу: http://nbuv.gov.ua/UJRN/Nitsps_2009_1_20

10. Герасимов С.В. Оценка параметров движения маневрирующих воздушных объектов в активной некогерентной системе при обработке информации от нескольких неравноточных источников с разным темпом обзора пространства / С.В. Герасимов, Е.С. Рощупкин, О.М. Богдановский // Системы озброения и військова техніка. – 2012. – № 2(4). – С. 156-162. – Режим доступу: https://doi.org/10.5281/zenodo.5035861
доступу: https://doi.org/10.5281/zenodo.5088597

16. Крючков Д.М. Удосконалення підготовки персоналу для обслуговування радіотехнічних засобів контролю повітряного простору шляхом урахування питань технічної експлуатації в тренажних імітаційних комплексах / Д.М. Крючков, Є.С. Рошупкін, В.В. Джус, Р.В. Титаренко // Сучасні інформаційні системи. – 2020. – Т. 4, № 3. – С. 89-93. – Режим доступу: http://nbuv.gov.ua/UJRN/adinsys_2020_4_3_14

17. Кукобко С.В. Структура спеціального математичного забезпечення імітації повітряної обставинки в підсистемі тренажу АСУ спеціального призначення / С.В. Кукобко, М.А. Павленко, Є.С. Рошупкін // Системи збагачення і військова техніка. – 2008. – № 2. – С. 44-48. – Режим доступу: http://nbuv.gov.ua/UJRN/soivt_2008_2_16

18. Гайбадулов, Б.В., Джус, В.В., Коробков, Ю.В., Крючков, Д.М., & Рошупкін, Є.С. (2019, September 3). Тренажні імітаційні комплекси зенітного ракетного зброєння – досвід використання, проблемні питання та пропозиції щодо їх розв’язання. Спільні дії військових формувань і правоохоронних органів держави: Проблеми та перспективи, Одеса. – Режим доступу: https://doi.org/10.5281/zenodo.5067126

19. S. Herasimov, M. Pavlenko, E. Roshchupkin, M. Lytvynenko, O. Pukhovyi, and A. Salii, Aircraft flight route search method with the use of cellular automata, International Journal of Advanced Trends in Computer Science and Engineering, vol. 9, is. 4, 2020, p.p. 5077-5082, https://doi.org/10.30534/ijatcse/2020/129942020

20. Герасимов С.В. Теоретические основы оценки ошибок значений сигналов с гармонически меняющимися параметрами / С.В. Герасимов, Е.С. Рошупкин // Озброєння та військова техніка. – 2018. – № 2. – С. 43-49. – Режим доступу: http://nbuv.gov.ua/UJRN/ovt_2018_2_9

21. S. Herasimov, E. Roshchupkin, V. Kutsenko, S. Riazantsev and Yu. Nastishin, Statistical analysis of harmonic signals for testing of Electronic Devices, International Journal of Emerging Trends in Engineering Research, vol.8, is. 7, 2020, p.p. 3791-3798, https://doi.org/10.30534/ijeter/2020/143872020

22. S. Herasimov, Y. Kozhushko, E. Roshchupkin, V. Dekadin, V. Djus and Y. Melenti, Evaluation of surface profile of holographic diffraction reflective coatings on scattering chart using in laser alarm systems, International Journal of Emerging Trends in Engineering Research, vol.8, is. 8, 2020, p.p. 4502-4507, https://doi.org/10.30534/ijeter/2020/74882020

23. Yaroslav Kozhushko, Evgeniy Roshchupkin, Vadym Yevsieiev, Sergey Pavlenko, Sergii Starodubtsev, Roman Honcha and Yevgen Melenti, Assessment of the influence of the manufacturing quality of a reflective coating on the angular distribution function of the reflected radiation intensity of laser signaling systems, International Journal of Emerging Trends in Engineering Research, vol.8, is. 10, 2020, p.p. 6696-6701,
24. Рощупкин Е., Герасимов С., Кукобко С., Джус В., Тaran М., Шулежко В., Гайбадулов Б., Калугин Д., Титаренко Р. (2021). Постановка проблемы створення та експлуатації багатопозиційних систем інформаційного забезпечення та шляхи її розв’язання. ГРААЛЬ НАУКИ, (4), 243-252. – Режим доступу: http://doi.org/10.36074/grail-of-science.07.05.2021.047

25. Artikula, A., Britov, D., Dzhus, V., Haibadulov, B., Haibadulova, A., Herasymov, S., Kaluhin, D., Kukobko, S., Roshchupkin, Y., & Tytarenko, R. (2021). Measurement errors affecting the characteristics of multi-position systems, and ways to reduce them. InterConf, 333-346. – Режим доступу: https://doi.org/10.51582/interconf.7-8.06.2021.035

26. Великоапертурна (рознесена) радіолокаційна система: пат. 148518 Україна : G01S7/42, H01Q21/00 / Е.С. Рощупкін, С.В. Герасимов, С.В. Кукобко, М.В. Борисенко, Ю.О. Крихтін, О.Ф. Галицький, Б.В. Гайбадулов, В.В. Джус, І.В. Помогаєв, В.В. Борисов, Ю.О. Чміль, А.Ю. Задорожна. – у 202100336; заявл. 29.01.2021; опубл. 18.08.2021, бюл. № 33/2021; – 7 с. – Режим доступу: https://iprop-ua.com/inv/qnptergc

27. Herasimov, S., Borysenko, M., Roshchupkin, E. et al. Spectrum Analyzer Based on a Dynamic Filter. J Electron Test 37, 357–368 (2021), https://doi.org/10.1007/s10836-021-05954-0

28. Сидоренко Р.Г., Мегельбей Г.В., Рибалка Г.В., Резніченко А.І., Скопінцев О.О. Шляхи удосконалення радіоелектронного захисту об’єктів від впливу сучасних та перспективних засобів виявлення та ураження. Збірник наукових праць Харківського національного університету Повітряних Сил. 2019. № 3(61). С. 103-111. – Режим доступу: https://doi.org/10.30748/zhups.2019.61.13

29. Герасимов, С.В., Кадубенко, С.В., Рощупкін, Є.С., & Ліцман, А.М. (2020). Контроль частотного розподілення радіосигналів при управлінні зенітними керованими ракетами. Інформаційні технології: наука, техніка, технологія, освіта, здоров'я (MicroCAD-2020), Харків: НТУ "ХПІ". – Режим доступу: https://doi.org/10.5281/zenodo.5067901

30. Герасимов С.В. Синтез вимірювальних сигналів для визначення технічного стану систем автоматичного управління / С.В. Герасимов, С.В. Кукобко, Є.С. Рощупкин, О.О. Расстрігін // Озброєння та військова техніка. – 2016. – № 4. – С. 32-36. – Режим доступу: http://nbuv.gov.ua/UJRN/ovt_2016_4_7

31. Туринський, А.В., Певцов, Г.В., Крючков, Д.Н., & Рощупкин, Е.С. (2020). Методы повышения достоверности и эффективности контроля технического состояния радиотехнических систем подвижных объектов. Azərbaycan dövlət dəniz akademiyasının elmi Màdəriatı (ISSN 2220-1025), 1, 176–182. – Режим доступу: https://doi.org/
INTERNATIONAL SCIENTIFIC DISCUSSION: PROBLEMS, TASKS AND PROSPECTS

10.5281/zenodo.5035847

32. Герасимов, С.В., Гречка, А.В., Рошупкин, Е.С., Рошупкина, А.Е., & Кукобко, С.В. (2020). Адаптивный метод технической диагностики системы разнесенных радиотехнических устройств. Azerbaycan dövlət dəniz akademiyasının elmi əsərləri (ISSN 2220-1025), 2, 129–137. – Режим доступу: https://doi.org/10.5281/zenodo.5035853

33. Кукобко, С.В., Ветошкін, О.Г., Рошупкін, Є.С., & Джус, В.В. (2020, July 1). Автоматизоване технічне обслуговування рознесених електронних інформаційних систем. Математичне та імітаційне моделювання систем (МОДС 2020), Чернігів: ЧНТУ. – Режим доступу: https://doi.org/10.5281/zenodo.5067687

34. Герасимов, С.В., & Рошупкін, Є.С. (2019, May 15). Обґрунтування контролю технічного стану зразків озброєння для підвищення їх бойової готовності. Інформаційні технології: наука, техніка, технологія, освіта, здоров'я (МіcroCAD-2019), Харків: НТУ "ХПІ". – Режим доступу: https://doi.org/10.5281/zenodo.5067631

35. Крючков, Д.М., Павленко, М.А., Рошупкін, Є.С., Титаренко, Р.В., & Бондарев, В.В. (2020, October 21). Заостосування апарату нечіткої логіки при вирішенні завдань прогнозування технічного стану радіотехнічних засобів. Інформаційні технології: наука, техніка, технологія, освіта, здоров'я (МіcroCAD-2020), Харків: НТУ "ХПІ". – Режим доступу: https://doi.org/10.5281/zenodo.5067657

36. Рошупкін Є.С., Крючков Д.М., Павленко М.А., Шуляжко В.В., & Титаренко Р.В. (2020, July 6). Пропозиції щодо створення інтелектуальних методів прогнозування технічного стану радіотехнічних засобів протиповітряної оборони. Перспективи розвитку озброєння та військової техніки Сухопутних Військ, Львів. – Режим доступу: https://doi.org/10.5281/zenodo.5260037

37. Артикула, А.Г., Бритов, Д.М., Крючков, Д.М., & Титаренко, Р.В. (2020, July 1). Обґрунтування структури методу прогнозування й діагностики технічного стану радіотехнічних засобів. Математичне та імітаційне моделювання систем (МОДС 2020), Чернігів: ЧНТУ. – Режим доступу: https://doi.org/10.5281/zenodo.5091333

38. Скопінцев О. О. Вплив контролю технічного стану озброєння та військової техніки на їх бойову готовність / О. О. Скопінцев, Г. В. Рибалка, С. М. Швидков // Збірник наукових праць Харківського університету Повітряних Сил. - 2016. - Вип. 3. - С. 30-33. - Режим доступу: http://nbuv.gov.ua/UJRN/ZKhUPS_2016_3_9

39. Джус, В., Гайбадулов, Б., Калугін, Д., Титаренко, Р., & Кукобко, С. (2021). Вплив похибок топоприв'язки та орієнтування радіотехнічних засобів контролю повітряного простору на оцінки координатної інформації, що видаються ними. Наукові праці Державного науково-дослідного інституту випробувань і сертифікації озброєння та військової техніки, (8), 31-43. – Режим доступу: https://doi.org/10.37701/
40. Бурковський, С.І., Рощупкін, Є.С., & Шрамков, А.Ю. (2004). Вплив похибок визначення координат виносних пунктів пасивної багатопозиційної системи на точність вимірювання координат джерела випромінювання. Збірник наукових праць XI ВПС, 2(11), 103–108. – Режим доступу: https://doi.org/10.5281/zenodo.5088274

41. Борисенко М.В. Визначення оптимального переліку засобів вимірювальної техніки в складі контрольно-перевірочної апаратури зенітного ракетного озброєння / М.В. Борисенко, А.П. Волобуєв, Є.С. Рощупкін // Системи озброєння і військова техніка. – 2011. – № 2(26). – С. 114-116. – Режим доступу: http://nbuv.gov.ua/UJRN/soivt_2011_2_27

42. Меленті Є.О. Розрахунок поля електричного диполя в тропосферному хвилеводі / О.І. Сухаревський, С.В. Кукобко, Є.С. Рощупкін // Збірник наукових праць Харківського національного університету Повітряних Сил. – 2012. – № 4(33). – С. 93-98. – Режим доступу: http://nbuv.gov.ua/UJRN/ZKhUPS_2012_4_19

43. Герасимов С.В. Підвищення боєготовості зенітних ракетних військ шляхом оптимальної закупівлі комплектуючих виробів зенітних ракетних комплексів / С.В. Герасимов, Д.М. Ізосімов, Є.С. Рощупкін, В.В. Старцев // Системи озброєння і військова техніка. – 2010. – № 1(21). – С. 55-59. – Режим доступу: http://nbuv.gov.ua/UJRN/soivt_2010_1_13

44. Рощупкин Е.С. Ошибки преобразования сферических координат радиолокационных целей в прямоугольные / Е.С. Рощупкин // Зб. наук. пр. ОНДІ ЗС. – Х.: ОНДІ ЗС, 2006. – Вип. 1(3). – С. 155-161.

45. Сухаревский О. И. Рассеяние электромагнитных волн воздушными и наземными радиолокационными объектами : [монография] / О. И. Сухаревский, В. А. Василенц, С. В. Кукобко, С. В. Нечитайло, А. З. Сазонов; ред.: Сухаревский; Харьк. ун-т Воздуш. Сил им. И. Кожедуба. - Х., 2009. - 466 с.

46. Маляренко О. С. Покращання якості впізнавання цілей наземними запитувачами системи радіолокаційного впізнавання на основі зміни принципів міжперіодної обробки сигналів відповіді / О. С. Маляренко, С. В. Кукобко // Системи озброєння і військ. техніка. - 2011. - Вип. 1. - С. 110-114.

47. Артеменко А. М. Автоматизовані процедури підтримки прийняття рішень щодо ідентифікації повітряних об’єктів на командних пунктах Повітряних сил / А. М. Артеменко, Г. Г. Камалтинов, О. С. Маляренко, С. В. Кукобко // Системи оброб. інформації. - 2011. - Вип. 5. - С. 2-7.

48. Павленко М. А. Метод разработки системы информационного обеспечения процессов оценки состояния объектов управления / М. А. Павленко, С. В. Полищук,
49. Попов С. Е. Структурна модель системи інженерно-радіоелектронного забезпечення радіотехнічних військ / С. Е. Попов, С. В. Кукобко, Г. В. Мильников // Зб. наук. пр. Харків. ун-ту Повітр. сил. - 2015. - Вип. 3. - С. 45-47.

50. Стахєєв М. О. Про структуру, функції та завдання органів управління радіотехнічних з'єднань у перспективній системі управління Повітряних сил / М. О. Стахєєв, С. В. Кукобко, С. І. Хмелевський // Зб. наук. пр. Харк. ун-ту Повітр. сил. - 2008. - Вип. 2. - С. 110-112.