Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
CHAPTER TEN

Effect of the COVID-19 pandemic on psychological aspects

Jaber S. Alqahtani, Ahmad S. Almamary, Saeed M. Alghamdi, Saleh Komies, Malik Althobiani, Abdulelah M. Aldhahir, and Abdallah Y. Naser

Department of Respiratory Care, Prince Sultan Military College of Health Sciences, Dammam, Saudi Arabia

Respiratory Therapy Department, King Saud Bin Abdulaziz University for Health Sciences, Alhsa, Saudi Arabia

Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia

Faculty of Engineering, Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom

Department of Respiratory Therapy, King Abdulaziz University, Jeddah, Saudi Arabia

Respiratory Care Department, Faculty of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia

Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan

Chapter highlights

• The COVID-19 pandemic has emerged as a serious challenge to public health, medical staff, economic stability, and the functioning of governments.

• The COVID-19 pandemic has increased social solidarity, closeness, and a sense of support among the public, but more research is needed. That said, widespread psychological distress including stress, anxiety, and depression has been reported.

• Despite being trained to be resilient and emotionally reticent, medical staff regularly suffer heavily from psychological and emotional distress and frustration, yet during the COVID-19 pandemic, these feelings are aggravated.

• Depression, anxiety, obsession, insomnia, and posttraumatic stress disorder with higher risks of infection and mortality have been reported among medical care staff.

• Government guidelines and measures imposed during the COVID-19 pandemic have led to an economic crisis and recession, with jobs being lost or threatened across economic sectors.

• Unemployment has brought more stress, anxiety, fear, public dissatisfaction, and a higher mortality rate to the older group.

• The closure of schools, universities, and learning spaces during the COVID-19 pandemic has negatively affected educators, learners, and parents and caused the largest disruption in education systems in history, despite the introduction of distance learning.

• Alexithymia, inadequate supplies, and inadequate information are risk factors predisposing individuals to mental health and psychological disorders during the COVID-19 pandemic.
Protective factors such as resilience, social support, and taking advantage of preventative strategies provided by healthcare organizations have been observed to maintain psychological stability for the public and medical staff, but more research is needed.

1. Introduction

In December 2019, a disease emerged from Wuhan, China, increasing the number of death cases caused by viral infection. When it was first discovered in 2019, the disease called COVID-19 was caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2).\(^1,2\) COVID-19 started to spread rapidly to all continents in months. This deadly virus causes serious healthcare crises that affect all aspects of human life whether social, psychological, or clinical.\(^3\)–\(^10\)

Over 113 countries had been affected by COVID-19 when the World Health Organization (WHO) declared the quick and deadly virus a pandemic in March 2020.\(^11\) The virus caused a considerable burden on the healthcare system, where hospitals suffered a shortage of critical care facilities and staff due to the vast number of cases admitted to hospitals daily.\(^12\) Moreover, COVID-19 has vastly affected the world economy, education, and social life.\(^8,13,14\)

With the rapid spread of COVID-19, countries took unprecedented protective measures to prevent and control the intensity of the spread. Governments banned human inbound and outbound travel, and countries took more serious measures like national lockdowns and 24-h curfews. Using a face mask and physical distancing when going out for essential needs were strictly implemented.\(^12\) The WHO recommended all these actions to prevent the transmission of the virus among communities.\(^15\)

The governments set rules to select the appropriate lockdown criteria for each country. These protective measures helped contain the rapid spread and effects of the virus, which allowed the countries to decrease the burden on the healthcare system. At the end of 2020, the first COVID-19 vaccine (Pfizer-BioNTech) was approved and used by the United States of America Food and Drug Administration.\(^16\) Then, at the beginning of 2021, other vaccines started to be approved worldwide. However, new COVID-19 variants started to emerge in countries such as Brazil, South Africa, and England, which makes the effect of COVID-19 vaccination unclear.\(^17\)

Through May 2021, the WHO reported 1,170,942,729 vaccine doses administered, 155,665,214 confirmed cases of COVID-19, and 3,250,648 deaths.\(^18\)
COVID-19 risk factors can be categorized into two groups: demographics and comorbidity. From the literature, the demographic risk factors indicate that males are considered at high risk of COVID-19. Adults older than 65 years have a higher risk than younger adults. Chronic conditions such as diabetes mellitus, chronic kidney disease, hypertension, respiratory system diseases, and cardiovascular diseases are considered risk factors for COVID-19. Other factors such as obesity and smoking are likewise considered risk factors for COVID-19.

COVID-19 has a significant impact on society and has caused more damage in low socioeconomic communities. The impact of COVID-19 on the low socioeconomic communities occurs due to crowded housing, poor housing conditions, and limited access to outdoor space. Remote working has not been implemented in low-income societies due to limited resources. Likewise, subcommunities are considered at a greater risk of COVID-19 due to race, ethnicity, and income disparity. All the previous factors may reduce the benefits of the social distancing enforced by the governments. Thus individuals who live in communities that do not treat people equally depending on their race, ethnicity, and income status are more susceptible to COVID-19 infection and more likely to be at a greater risk of COVID-19 complications.

The global economic decline due to the COVID-19 pandemic has reached an alarming level, which raises the concern of whether the current SDGs are suitable for the postpandemic period or not. Although the SDGs were not planned to respond to the current pandemic, dealing with the pandemic should parallel the achievement of the SDGs. Dealing with the COVID-19 pandemic needs collaborative efforts that integrate the SDGs with healthcare decisions at the national level.

The psychological burden caused by the COVID-19 pandemic is a well-recognized issue. Studies have investigated the negative psychological effects of the COVID-19 pandemic on the general population and healthcare providers. Xiong et al. conclude that depression, anxiety, posttraumatic stress syndrome, psychological distress, and overall stress have been higher in the general population during the pandemic than before the pandemic. Females, people under the age of 40 years old, those with a history of psychiatric illness, the unemployed, students, and individuals who view news or social media frequently were considered vulnerable to developing psychological disorders. Other studies have explored the psychological impact of the COVID-19 pandemic on healthcare providers. Luo et al. report an overall high psychological impact among healthcare providers caused by the COVID-19 pandemic. da Silva and Neto compared the psychological
effect of the pandemic on healthcare providers before and after the pandemic and conclude that healthcare providers who had higher exposure to COVID-19 cases are suffering more from anxiety, depression, and insomnia during the pandemic.29 Thus it is evident that the COVID-19 pandemic is a severe burden on humans’ psychological aspect.

The main aim of this chapter is to provide an overview of the psychological impact of the COVID-19 pandemic. This chapter first discusses the effect of the COVID-19 pandemic on the psychological aspects and reactions of the general population and healthcare providers. An in-depth overview of the psychological impact of COVID-19 on societies, including economic, education, and health, was conducted. Psychological risk factors that could increase the psychological burden of the COVID-19 pandemic and protective factors that may maintain psychological stability and achieve better health and community well-being for the general population and medical staff are explored and summarized.

2. Positive and negative psychological responses to the COVID-19 pandemic

COVID-19 has emerged as a serious challenge to public health, economic stability, and the functioning of governments. Studies have highlighted the effect of the pandemic on the public’s psychological well-being, especially among healthcare workers, who are more likely to experience distress symptoms. While most studies focus on the pandemic’s negative consequences, others have highlighted positive effects.30

2.1 The general public’s psychological responses to the COVID-19

The spread of COVID-19 has resulted in an unprecedented number of lockdowns around the world. While the severity of these restrictions has differed from country to country, they have had a significant impact on people’s everyday lives, impacting their jobs, leisure activities, livelihoods, and abilities to engage in social activities face to face. Fortunately, technology has quickly adapted to the current situation, and technical features have been implemented to help people cope with the ongoing pandemic. Since social distancing laws force people to depend more on telecommunications such as messaging, social media networking, and video conferencing,
evidence indicates that positive attitudes arose during the introduction of lockdowns.31

People in the general population have improved their resilience. According to Serafini et al.,32,33 psychological resilience is defined as the capacity to help or retrieve psychological well-being during or after addressing stressful and disabling conditions. Given the inability to meet face to face, the mutual experiences brought by the lockdowns have increased people’s social solidarity and closeness34–36 and their sense of support for each other. As a result, enhanced social and/or community support has been linked to a lower risk of developing psychological distress and psychiatric disorders.37–39

Despite this, studies have shown that lockdowns have caused widespread psychological distress among the general public, especially those who are more vulnerable to stress.32–34,36,40 However, psychological distress may be caused by other factors than the fear of contracting the virus.41 Stress, anxiety, and depression16,42,43 are among the common signs of distress. The public’s sense of helplessness44–46 has grown because of separation from loved ones, loss of freedom, progression of the disease, and uncertainty about the future.8,47

Emotional distress, mood alterations and irritability, insomnia, post-traumatic stress symptoms, frustration, and emotional fatigue33,48 have all been reported by individuals who have been quarantined.33,48 Children and adolescents in particular are more susceptible to developing anxiety symptoms.49 The slowing economy and the suspension of academic activities are two risk factors for college students who are stressed, anxious, or depressed.14,50

Overthinking and obsession with handwashing and an aversion to crowds have been identified as negative effects of lockdowns.51 People exposed to possible infections may develop pervasive anxiety about infecting other people and their family members,28,52,53 particularly if they have had symptoms that could be due to the coronavirus, which could lead to mental breakdowns.54 Researchers have indicated that individuals without mental illness may experience new psychological symptoms, whereas those with mental illness may have their symptoms exacerbated. People who have already contracted the disease may experience shame, intense guilt, and social isolation.55

Cases of mental disorders and an increase in cases of suicide have been linked to the COVID-19 pandemic.4,5,7,8,10,50,56 Boredom, frustration, anger, and loneliness are common signs of emotional and psychological distress in the general population. If these symptoms are heightened, they can
increase the risk of suicidal ideation and, in the worst case, lead to suicide attempts.57,58

\subsection*{2.2 Healthcare professionals’ psychological responses to the COVID-19}

It is undeniable that the COVID-19 is a physiological and psychological health epidemic and that no one is immune to its effects. Apart from the immediate family members of those who contract the disease, healthcare staff are likely to be the most frequently affected simply because they are exposed to individuals who have contracted the virus. Although it is believed and expected that healthcare workers should have gained a certain level of endurance and resilience, it is understandable that they will eventually reach their breaking points. The surge in coronavirus cases, the constant exposure to deaths, the absorption of the emotional distress of patients and their families, and the exhaustion and social stigma they face may lead to considerable distress among healthcare workers.10,52,59

From a more optimistic perspective, reports show that during the current COVID-19 crisis, healthcare staff can still cultivate positive attitudes.60,61 As a result, messages of hope and assurance of social security may aid healthcare workers in a more positive response to social threats. Unfortunately, only limited resources have looked at the potential positive effects of COVID-19 on healthcare staff, while reports have shown a slew of negative consequences that significantly affect the mental health of those employed in the healthcare sector.28,62,63

Luo and colleagues28 conclude that the COVID-19 pandemic has caused a heavy psychological impact among medical workers and the general public. Despite being trained to become resilient and emotionally reticent, healthcare workers are vulnerable to developing psychological distress symptoms during the pandemic. A study shows that insomnia among healthcare workers is significantly higher compared to nonhealthcare workers.64

Aside from experiencing physical and emotional exhaustion, psychological stress, and burnout syndrome due to overwork,62 healthcare professionals may experience posttraumatic stress disorder, depersonalization, and dissociation.63,65,66 Healthcare workers have a higher risk and incidence of coronavirus infection and a higher mortality rate regardless of their staffing location.63

Healthcare providers may develop secondary stress disorders67 due to daily exposure to traumatic scenarios and discomfort, especially when confronted with helpless situations. For instance, a lack of personal protective
equipment (PPE), treatment shortages, patient care prioritization, palliative care discontinuation, or life support termination of patient cases that have no chance of recovery may lead to secondary stress disorders. Like the general population, healthcare staff have experienced negative psychological symptoms such as depression, anxiety, insomnia, distress, and post-traumatic stress disorder due to their limited medical and social support access. Healthcare workers have developed pervasive anxiety and obsessive thoughts, limiting their ability to communicate with others.

2.3 Implications

Governments worldwide have implemented social confinement as the most effective measure for preventing the spread of the coronavirus. However, as the world focuses on reducing the number of deaths and illness cases, therapeutic assistance seems to have been pushed to the sidelines. Inevitably, the pandemic has caused psychological and social distress among the public (Fig. 1). The virus causes constant anxiety, concern, and apprehension among the public, especially among the elderly, who are more vulnerable, and healthcare professionals working with coronavirus patients. Quarantines, changes in our daily lives, job loss, financial hardship, and grief over the death of a loved one may all influence people’s mental health and

Fig. 1 Psychological sequelae of the COVID-19 pandemic on people.
well-being. To sum up, countries have made a tremendous effort to mitigate the undesirable effects of the COVID-19 pandemic. Nonetheless, it is critical that the public, especially healthcare professionals, receive sufficient psychological and social support to cope with and respond to the mental stresses brought on by the coronavirus pandemic, especially during the unprecedented period where all measures exist.10,69,70

3. The psychological burden of the COVID-19 pandemic on society

The coronavirus pandemic has financially impacted many individuals and resulted in a global economic crisis and recession. The government guidelines and measures imposed, including self-isolation, social distancing, and travel restrictions, have led to a reduction in the workforce across numerous economic sectors with jobs lost or currently being threatened. For example, in the United States, unemployment peaked at levels unheard of since 1948 during the recession.71 Levels in April 2020 (14.8%) declined by December 2020 to 6.7%, although this was still elevated.71 The American Psychological Association has reported a strong relationship between depression, stress, anxiety, and loss of life satisfaction and increased unemployment.72 This trend is bidirectional between mental health and unemployment, whereby stable mental health is maintained by stable employment. In the long term, unemployment causes stress and anxiety, which eventually has a major effect on individual psychological health and can lead to negative consequences for public mental health.72 The longer the stretch of unemployment, the worse people fare, with people out of work for 6 months or more experiencing significantly greater negative mental health outcomes.73

A previous metaanalysis study that included the psychological assessment of 63,439 participants from 10 countries reported that the prevalence of anxiety is 31.9% (95% CI: 27.5–36.7) of the general population. Additionally, the prevalence of depression among 44,531 participants was 33.7% (95% CI: 27.5–40.6). Table 1 presents the details of the included studies in this systematic review.

Individuals with low income and resources are more vulnerable to stress than individuals with a good average income.74,75 Stress is strongly correlated to a decline in mental and physical health, even without considering financial conditions and strain. A study showed that, with respect to job loss during the COVID-19 pandemic, there was little comfort in solidarity; once
Study, date, country	Population	Male %	Tool	Score	Method	Depression % (n)	Anxiety % (n)	Stress % (n)
Amir Moghanibashi-	10,754	34.2%	DASS-21	28	Online survey	NA (5472)	50.9%	NA
Mansourieh, 2020,								
Iran								
M.Z. Ahmed et al.,	1074	53.2%	BAI BDI-II	23	Online survey	37.1% (399)	29% (312)	NA
2020, China								
C. Wang et al.,	1210	32.7%	DASS-21	22	Online survey	30.3% (367)	36.4% (440)	32.1% (389)
2020, China								
W. Cao et al.,	7143	30.35%	GAD-7	20	Cluster sampling	NA (1776)	24.9% (1776)	NA
2020, China								
Y. Huang et al.,	7236	45.4%	GAD-7	18	Web-based survey	20.1% (1454)	35.1% (2540)	NA
2020, China								
M. Ueda et al.,	1000	49.6%	GAD-7	25	Online survey	43.1% (431)	33.2% (332)	NA
2020, Japan								
D. Liu et al.,	14,592	31.6%	GAD-7	26	Online survey	53.5% (7503)	44.6% (6196)	NA
2020, China								
S.J. Zhou et al.,	8079	46.5%	GAD-7	26	Online survey	43.7% (3533)	37.4% (3020)	NA
2020, China								
A. Sigdel et al.,	349	54.2%	GAD-7	29	Online survey	34% (119)	31% (109)	NA
2020, Nepal								
S.S.H. Kazmi et al.,	1000	38%	DASS-21	19	Online survey	38.9% (389)	43% (430)	35.7% (357)
2020, India								
N. Othman et al.,	548	49.6%	DASS-21	19	Online survey	44.9% (246)	47.1% (258)	17.5% (96)
2020, Iraq								

Continued
Table 1 Prevalence of depression, anxiety, and stress among the general population—cont’d

Study, date, country	Population	Male %	Tool	Score	Method	Depression % (n)	Anxiety % (n)	Stress % (n)
Y. Wang et al., 2020, China	600	44.5%	SAS SDS	19	Online survey	17.17% (103)	6.33% (38)	NA
M. Qian et al., 2020, China	1011	50.44%	GAD-7	28	Telephone survey via random digital dialing	NA	26.6% (269)	NA
M. Shevlin et al., 2020, United Kingdom	2025	48%	GAD-7	22	Online survey (quota sampling)	22.12% (448)	21.63% (438)	NA
P. Odriozola Gonzalez et al., 2020, Spain	3550	35.1%	DASS-21	24	Social media	44.1% (1566)	32.4% (1150)	37%
Agberotimi et al, 2020, Nigeria	502	53.6%	GAD-7	29	Respondent-driven sampling (RDS) technique and random survey sampling (RSS)	23.5% (118)	49.6% (249)	NA
C. Mazza et al., 2020, Italy	2766	28.3%	DASS-21	27	Online survey	32.8% (906)	18.7% (517)	27.2%

DASS-21, the depression, anxiety, and stress scale; GAD-7, generalized anxiety disorder 7-item; PHQ-9, patient health questionnaire; SAS, Zung self-rating anxiety scale; SDS, Zung self-rating depression scale; BAI, the Beck Anxiety Inventory, BDI, Beck Depression Inventory, CES-D, Center for Epidemiologic Studies Depression Scale.

Modified from a study by Salari, N., et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. *Global Health* 2020;16:57.
people became reemployed, their mental health improved. The age at which a worker loses a job can lead to greater damage in terms of wellness, with this being most severe between the age of 50 and 60. During a recession, job losses for this demographic result in an increase in mortality rate, which could be due to loss of health insurance.

Several psychologists have described the emotional stages of someone who has experienced a job loss as similar to grieving. The emotional stages start with shock, then denial, anger, bargaining, and eventually acceptance and hope.

Based on the Office for Budget Responsibility (OBR) projection, the UK’s unemployment rate will reach 6.5% by the end of 2021, which amounts to around one million more unemployed people compared to the period before COVID-19. In another study, the OBR indicated that the associated length of unemployment would add an additional 200,000 people to the previous burden. Finally, unemployment or seeking a job have a negative impact on both physical and mental health. The duration of time off work is directly proportionate to the negative health consequences for physical and mental health and life satisfaction. Measures to combat COVID-19 have generally resulted in reduced income and job availability.

Education plays a vital role in developing societies, qualifying, and preparing individuals for work. The largest disruption in history to education systems has occurred during the COVID-19 pandemic. Around 1.6 million learners have been affected in more than 190 countries, and 94% of the world’s student population have been impacted by the closure of huge numbers of learning spaces. Education disruption has substantial effects beyond education, although e-learning has been shown to have several advantages.

Children and adolescents have been the groups most affected by the closure of education campuses. According to UNESCO, school closures occurred in more than 186 countries, resulting in 1.3 billion young people being affected. A study on parents who were obliged to care for their children in Japan showed that school closures led mothers with primary school children to have poorer mental health than other females. In a survey conducted by the mental health charity Young Minds, which included 2111 participants in the UK presenting with an existing mental health condition, a total of 83% reported that the pandemic had made their conditions worse. A survey carried out to investigate the impact of the COVID-19 pandemic on student mental health, which surveyed around 3239 high school and higher education students in April 2020, showed that 20% of college students’ mental health had
significantly worsened during COVID-19. According to a later survey conducted in September 2020 that included 2051 students, 75% of students reported that their mental health had “worsened,” “worsened somewhat,” or “worsened significantly” since the beginning of the pandemic; 87.03% had experienced anxiety or stress; 78.06% had experienced sadness and disappointment; and 77.47% had felt lonely or isolated. The majority of respondents reported that stress, anxiety, sadness, and depression had increased since the beginning of the pandemic. Another study conducted by Effective School Solutions found that educators, teachers, and professors had struggled as much as students with their mental health during the pandemic. In total, 84% of educators reported moderate to significant mental health challenges.

Children were one of the most affected populations because of community-based mitigation programs, such as distance learning and closing playgrounds, among other life disturbances. These precautionary measures resulted in distress and confusion in both young and older children. They also resulted in annoyance, hostility, mental and physical violence, and disappointment, which could trigger adverse mental consequences in the long run. Teachers also experienced more stress due to the increase in online classes, accompanied by symptoms of depression, lack of sleep, and anxiety due to increased workloads and working from home. In another comprehensive study on the psychological impact of COVID-19 on secondary school teachers, 34% were found to be very anxious during the pandemic while 8% of teachers had experienced depressive emotions.

Although distance learning has several advantages, most families are not able to sustain long-term distance learning due to varying education-based resources and connections. Families in poverty, working mothers, single parent families, and those with unstable employment may experience more psychological effects. Many surveys across several educational systems indicated dissatisfaction with the one-way communication and teacher-control functionalities of the system. Real-time interaction allows for the simulation of a real classroom learning situation, immediate interactive clarification of meaning, and higher quality discussion between groups. However, students in online classes may experience headaches, lack of motivation, fatigue, avoidance/procrastination, ineffective time management, and isolation due to higher exposure to the personal computer screen. The mismatch between reality and expectation can be difficult for students, especially younger learners, as children may experience a loss of motivation during interactive activities.
There was a strong association between job loss, personal economics, and level of education during COVID-19 and the impact on psychological health in all ages of societies. Fig. 2 outlines the most relevant and common psychological factors, such as education disturbance, unemployment and job loss, and financial situation, that affected and impacted the general population during COVID-19.

4. Risk and protective factors relevant to psychological reactions

4.1 Risk factors

The world has previously experienced several pandemics, such as the influenza virus (H1N1) in 1918, influenza virus (H2N2) in 1957, influenza virus (H3N2) in 1968, and flu pandemic (H1N1) in 2009. However, the COVID-19 pandemic has caused a global crisis that has affected every individual. COVID-19 has caused not only deaths and physical harm but also fear and mental health problems. This section highlights the risk factors of mental health problems based on current evidence, and protective factors that could mitigate the psychological burden of the COVID-19 pandemic.

During the past year, a growing body of research has been looking at the risk and protective factors that predisposed individuals to mental health
disorders during the pandemic. Recent research has demonstrated several risk and protective factors, such as alexithymia, inadequate supplies, and inadequate information. Individuals who experience these risk factors are more susceptible to mental health disorders. Resilience, social support, and taking advantage of preventative strategies provided by the healthcare organizations were protective factors that helped maintain psychological stability during the COVID-19 pandemic. Fig. 3 shows a summary of the risk and protective factors relevant to psychological reactions.

4.1.1 Alexithymia

Studies of COVID-19 pandemic risk factors have uncovered a risk for individuals prone to alexithymia associated with mental health and psychological symptoms. Alexithymia refers to emotional identification and expression deficiencies, and it includes externally oriented thinking, difficulty identifying feelings, and difficulty describing feelings. Individuals prone to alexithymia fail to regulate their emotions and responses, which is associated with mental health problems. Consequently, individuals

Fig. 3 Summary of the risk and protective factors that are relevant to psychological reactions.
with such traits fail to respond adequately and may show several psychological symptoms, such as depression, anxiety, and emotional distress.104

4.1.2 Inadequate supplies

Previous research has emphasized inadequate supplies and deficiency of necessities such as masks, food, water, and medication during the COVID-19 pandemic quarantine. This caused a great deal of frustration, fear, confusion, depression, stress, worry, anger, and uncertainty.35,105 Various governmental systems introduced restrictions that impacted the food supply chain.106 The food supply chain disruptions and food shortages placed substantial strain on governments, which induced panic.107

Unfortunately, countries were unprepared to protect healthcare providers and maintain adequate healthcare system supplies, resulting in uncertainty and panic. Alqahtani et al. conducted an international survey to explore the current global practices of ventilatory support management in COVID-19; in the study, the clinicians demonstrated that there was a shortage of PPE, testing, and mechanical ventilators.108 Inadequate protective equipment and ventilator supply was a major emotional issue for frontline healthcare providers. The shortage of such critical equipment contributed heavily to them developing anxiety, losing control, having fear of spreading the virus to family, and feeling isolated.109 Healthcare providers are vulnerable to emotional distress, frustration, anxiety, and depression on a normal basis; during the COVID-19 pandemic, because of increased workload and supply shortage, these feelings were exacerbated.110 Healthcare providers were more vulnerable to burnout and increased workload during the pandemic due to increased cases and shortage of medical supplies.52 Previous evidence showed that healthcare providers who worked during the SARS outbreak suffered posttraumatic stress disorder.111 Posttraumatic stress disorder and mental health problems are associated with exposure to pandemics.112–115

4.1.3 Inadequate information

Other risk factors that jeopardized mental health during the COVID-19 pandemic, which several studies have suggested, are inadequate information, rumors, and conspiracy theories.40,116–118 Bad news may cause fear, denial, anger, depression, and emotional distress. Despite extensive efforts from government leaders and health experts to create a clearer guide to mitigate the harm of COVID-19 and save individuals during quarantine, inaccurate information and its dissemination continued to undermine the global health
response to control this pandemic.119 Conflict guidelines by authorities confused the public and caused emotional distress. This caused confusion, insecurity, and isolation.120

Global health scientists and government healthcare authorities failed to provide clear advice and sufficient communication to ensure public mental health safety.95–97 A massive flow of unverified information from television broadcasts, social media, and newspapers contributed to complex emotional distress for the public. The uncertainty and fear of the COVID-19 pandemic crisis have had serious health consequences, ranging from distress and anxiety to depression and panic.121,122

4.2 Protective factors

4.2.1 Resilience

Resilience is a key protective factor to strengthen individuals’ approach to any challenging situation.123,124 It is a personal attribute that promotes psychological stability during difficult situations and responding appropriately to difficult life events and future shock. It is the ability to anticipate, adapt, absorb, cope, and recover when traumatic events happen,125 although some individuals are more likely to be rigid. Existing studies suggest that mindfulness and cognitive behavioral therapy techniques appear to improve individual resilience.126 A survey in the United States found that resilient healthcare providers reported low levels of anxiety and depression.98

4.2.2 Psychological and social support

Another essential protective measure to maintain psychological stability is psychosocial support. Recent studies examined the role of social support during the COVID-19 quarantine and found that families and healthcare providers who received social support reported reduced anxiety and depression.98 In nonpandemic situations, the study found a positive association between social support and individuals’ general well-being.127 An online survey in the United States found evidence of the association between social support and self-efficacy, lower levels of anxiety, and better sleep quality.128

4.2.3 Preventative strategies

We failed to learn a lesson from prior deadly pandemics such as H1N1, H2N2, H3N2, and the Middle East respiratory syndrome coronavirus MERS-CoV. The public, specifically healthcare providers, may have been protected better and the chaotic situation may have been prevented by learning the lesson and improving the healthcare system. Consequently,
there was a lack of necessities (such as food, water, testing, PPE, oxygen, and mechanical ventilators), and conflicting public guidelines contributed to COVID-19 cases surging and the global crisis. These effects were a source of stress and triggered unstable emotional reactions. Global authorities, scientists, politicians, healthcare staff, social media, and the public all have crucial roles to play in maintaining stable and low-level sources of stress.129

Authorities, politicians, and news agencies should work closely with scientists and healthcare providers to understand their needs to support and empower them. The preparation and training of healthcare system management and personnel in psychosocial problems and implementing protocols would help reduce the risk of people developing mental health disorders.130 Evidence-based resources that address mental health issues relating to disasters and the pandemic should be disseminated among staff. Furthermore, authorities should communicate effectively and implement clear and transparent guidelines for the public during quarantine.131–135

Providing alternatives that utilize online platforms to deliver psychological support during the COVID-19 quarantine to prevent mental health deterioration may be beneficial in gaining the public’s trust. Integrating telehealth and home-based care is imperative to address psychological concerns in more vulnerable individuals, such as the elderly, people with immunosuppressant disorders, and those already living with mental health issues.136 Telehealth plays an important role in addressing the needs of individuals with mental health instability without the need for physical contact.137 Social media networks, telephone helplines, internet access, and informative TV programs should be implemented to minimize the level of loneliness and isolation.138

5. Conclusion

The negative impact of the COVID-19 pandemic was multidimensional and led to significant negative consequences on people’s life. The prevalence of psychological disorders increased during the pandemic and varied significantly from one country to another and across different populations of the community, such as students, healthcare professionals, and the general population.4,7,10 Since the emergence of COVID-19, governments have implemented restrictions, ranging from social distancing, quarantine, travel restrictions, curfews to complete national lockdown, to contain the rapid spread and effects of the coronavirus. These restrictions jeopardized global health by causing a severe physiological impact on the
public and healthcare workers and creating an economic crisis. In addition, several risk factors, such as alexithymia, inadequate medical supplies, and lack of information, have caused mental health disorders and psychological impairment during the pandemic. Therefore individuals need to be resilient and benefit from social support and preventative strategies provided by healthcare organizations to maintain psychological stability. At the same time, government leaders and health experts should make an extra effort to provide clear advice and good communication to mitigate mental health issues caused by inaccurate and misleading information from television broadcasts, social media, and newspapers during the COVID-19 pandemic.

References

1. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497–506.
2. Cui J, Li F, Shi Z-L. Origin and evolution of pathogenic coronaviruses. Nat Rev Microbiol 2019;17:181–92.
3. Badr OI, et al. Incidence and outcomes of pulmonary embolism among hospitalized COVID-19 patients. Int J Environ Res Public Health 2021;18:7645.
4. Alyami HS, Naser AY, Dahmash EZ, Alyami MH, Alyami MS. Depression and anxiety during the COVID-19 pandemic in Saudi Arabia: a cross-sectional study. Int J Clin Pract 2021;75:e14244.
5. Varghese A, et al. Decline in the mental health of nurses across the globe during COVID-19: a systematic review and meta-analysis. J Glob Health 2021;11:05009.
6. Alwafi H, et al. Predictors of length of hospital stay, mortality, and outcomes among hospitalised COVID–19 patients in Saudi Arabia: a cross-sectional study. J Multidiscip Healthc 2021;14:839–52.
7. Alsairafi Z, Naser AY, Alsaleh FM, Awad A, Jalal Z. Mental health status of healthcare professionals and students of health sciences faculties in Kuwait during the COVID–19 pandemic. Int J Environ Res Public Health 2021;18(4):2203.
8. Naser AY, et al. The effect of the 2019 coronavirus disease outbreak on social relationships: a cross-sectional study in Jordan. Int J Soc Psychiatry 2020;67(6):664–71.
9. Shabrawishi M, et al. Clinical, radiological and therapeutic characteristics of patients with COVID-19 in Saudi Arabia. PLoS One 2020;15:e0237130.
10. Naser AY, et al. Mental health status of the general population, healthcare professionals, and university students during 2019 coronavirus disease outbreak in Jordan: a cross-sectional study. Brain Behav 2020;10:e01730.
11. World Health Organization. WHO director-General’s opening remarks at the media briefing on COVID-19—11 March 2020. WHO; 2020.
12. Tangcharoensathien V, Bassett MT, Meng Q, Mills A. Are overwhelmed health systems an inevitable consequence of covid–19? Experiences from China, Thailand, and New York State. BMJ 2021;372:n83.
13. Schleicher A. The impact of covid-19 on education insights education at a glance-2020. The Organisation for Economic Co-operation and Development; 2021.
14. CRS Report. Global economic effects of COVID-19. Congressional Research Service; 2021.
15. World Health Organisation. Coronavirus disease (COVID-19) advice for the public. WHO; 2021.
16. Duan L, et al. An investigation of mental health status of children and adolescents in China during the outbreak of COVID-19. *J Affect Disord* 2020;275:112–8.

17. Mahase E. *Covid-19: what new variants are emerging and how are they being investigated?* British Medical Journal Publishing Group; 2021.

18. World Health Organization. *WHO coronavirus (COVID-19) dashboard*; 2021.

19. Raifman MA, Raifman JR. Disparities in the population at risk of severe illness from COVID-19 by race/ethnicity and income. *Am J Prev Med* 2020;59:137–9.

20. Zhang JJ, Lee KS, Ang LW, Leo YS, Young BE. Risk factors for severe disease and efficacy of treatment in patients infected with COVID-19: a systematic review, meta-analysis, and meta-regression analysis. *Clin Infect Dis* 2020;71:2199–206.

21. Gansevoort RT, Hilbrands LB. CKD is a key risk factor for COVID-19 mortality. *Nat Rev Nephrol* 2020;16:705–6.

22. Patanavanich R, Glantz SA. Smoking is associated with COVID-19 progression: a meta-analysis. *Nicotine Tob Res* 2020;22:1653–6.

23. Malik VS, Ravindra K, Attri SV, Bhadada SK, Singh M. Higher body mass index is an important risk factor in COVID-19 patients: a systematic review and meta-analysis. *Environ Sci Pollut Res* 2020;27:42115–23.

24. Patel J, et al. Poverty, inequality and COVID-19: the forgotten vulnerable. *Public Health* 2020;183:110.

25. Heggen K, Sandset TJ, Engebretsen E. COVID-19 and sustainable development goals. *Bull World Health Organ* 2020;98:646.

26. Nature. Time to revise the sustainable development goals. *Nature* 2020;583:331–2.

27. Xiong J, et al. Impact of COVID-19 pandemic on mental health in the general population: a systematic review. *J Affect Disord* 2020;277:55–64.

28. Luo M, Guo L, Yu M, Wang H. The psychological and mental impact of coronavirus disease 2019 (COVID-19) on medical staff and general public—a systematic review and meta-analysis. *Psychiatry Res* 2020;113190.

29. da Silva FCT, Neto MLR. Psychological effects caused by the COVID-19 pandemic in health professionals; a systematic review with meta-analysis. *Prog Neuro-Psychopharmacol Biol Psychiatry* 2020;10(104):110062.

30. Nelson B. The positive effects of covid-19. *BMJ* 2020;369:m1785.

31. Alvarez FE, Argente D, Lippi F. *A simple planning problem for covid-19 lockdown*. National Bureau of Economic Research; 2020.

32. Serafini G, et al. The psychological impact of COVID-19 on the mental health in the general population. *QJM* 2020;113:531–7.

33. Bai Y, et al. Survey of stress reactions among health care workers involved with the SARS outbreak. *Psychiatr Serv* 2004;55:1055–7.

34. Barbisch D, Koenig KL, Shih F-Y. Is there a case for quarantine? Perspectives from SARS to Ebola. *Disaster Med Public Health Prep* 2015;9:547–53.

35. Brooks SK, et al. The psychological impact of quarantine and how to reduce it: rapid review of the evidence. *Lancet* 2020;395:912–20.

36. Cao W, et al. The psychological impact of the COVID-19 epidemic on college students in China. *Psychiatry Res* 2020;287:112934.

37. Naser AY, et al. Knowledge and practices during the COVID-19 outbreak in the Middle East: a cross-sectional study. *Int J Environ Res Public Health* 2021;18:4699.

38. Gariepy G, Honkaniemi H, Quesnel-Vallee A. Social support and protection from depression: systematic review of current findings in Western countries. *Br J Psychiatry* 2016;209:284–93.

39. Zimet GD, Dahlem NW, Zimet SG, Farley GK. The multidimensional scale of perceived social support. *J Pers Assess* 1988;52:30–41.

40. Cava MA, Fay KE, Beanlands HJ, McCay EA, Wignall R. The experience of quarantine for individuals affected by SARS in Toronto. *Public Health Nurs* 2005;22:398–406.
41. Clemente-Suárez VJ, Dalmitros AA, Beltran-Velasco AI, Mielgo-Ayuso J, Tornero-Aguilera JF. Social and psychophysiological consequences of the COVID-19 pandemic: an extensive literature review. *Front Psychol* 2020;11:3077.

42. Courtet P, Olié É, Debien C, Vaiva G. Keep socially (but not physically) connected and carry on: preventing suicide in the age of COVID-19. *J Clin Psychiatry* 2020;81:20 com13370.

43. Desclaux A, Badji D, Ndione AG, Sow K. Accepted monitoring or endured quarantine? Ebola contacts’ perceptions in Senegal. *Soc Sci Med* 2017;178:38–45.

44. Engel-Yeger B, et al. Extreme sensory processing patterns and their relation with clinical conditions among individuals with major affective disorders. *Psychiatry Res* 2016;236:112–8.

45. Grassi L, Magnani K. Psychiatric morbidity and burnout in the medical profession: an Italian study of general practitioners and hospital physicians. *Psychother Psychosom* 2000;69:329–34.

46. Hall RC, Hall RC, Chapman MJ. The 1995 Kikwit Ebola outbreak: lessons hospitals and physicians can apply to future viral epidemics. *Gen Hosp Psychiatry* 2008;30:446–52.

47. Abrams E, Szefler S. COVID-19 and the impact of social determinants of health. *Lancet Respir Med* 2020;8:659–61.

48. Jeong H, et al. Mental health status of people isolated due to Middle East Respiratory Syndrome. *Epidemiol Health* 2016;38:e2016048.

49. Kang L, et al. The mental health of medical workers in Wuhan, China dealing with the 2019 novel coronavirus. *Lancet Psychiatry* 2020;7(3):e14.

50. Kawohl W, Nordt C. COVID-19, unemployment, and suicide. *Lancet Psychiatry* 2020;7:389–90.

51. Alqahtani J, et al. Sleep quality, insomnia, anxiety, fatigue, stress, memory and active coping during the COVID–19 pandemic. *Int J Environ Res Public Health* 2022;19(9):4940. https://doi.org/10.3390/ijerph19094940.

52. Lai J, et al. Factors associated with mental health outcomes among health care workers exposed to coronavirus disease 2019. *JAMA Netw Open* 2020;3:e203976.

53. Luchetti M, et al. The trajectory of loneliness in response to COVID-19. *Am Psychol* 2020;75:897–908.

54. Mache S, Vitzthum K, Klapp BF, Groneberg DA. Stress, health and satisfaction of Australian and German doctors—a comparative study. *World Hosp Health Serv* 2012;48:21–7.

55. Travaglini GA, Moon C. Compliance and self-reporting during the COVID–19 pandemic: a cross-cultural study of trust and self-conscious emotions in the United States, Italy, and South Korea. *Front Psychol* 2021;12:684.

56. Sher L. COVID–19, anxiety, sleep disturbances and suicide. *Sleep Med* 2020;70:124.

57. Neto MLR, de Oliveira Araújo FJ, de Souza RI, Lima NNR, da Silva CGL. When health professionals look death in the eye: the mental health of professionals who deal daily with the new coronavirus outbreak of 2019. *Front Med Case Rep* 2020;1:1–3.

58. Orgilés M, Morales A, Delvecchio E, Mazzeschi C, Espada JP. Immediate psychological effects of the COVID–19 quarantine in youth from Italy and Spain. *Front Psychol* 2020;11:2986.

59. Urzúa A, Samaniego A, Caqueo–Urizar A, Zapata Pizarro A, Irarrázaval Domínguez M. Salud mental en trabajadores de la salud durante la pandemia por COVID–19 en Chile [Mental health problems among health care workers during the COVID–19 pandemic]. *Rev Med Chil* 2020;148:1121–7.

60. Kanekar A, Sharma M. COVID–19 and mental well-being: guidance on the application of behavioral and positive well-being strategies. In: *Healthcare*. vol. 8. Multidisciplinary Digital Publishing Institute; 2020. p. 336.

61. Mohindra R, Ravaki R, Suri V, Bhalla A, Singh SM. Issues relevant to mental health promotion in frontline health care providers managing quarantined/isolated COVID19 patients. *Asian J Psychiatr* 2020;51:102084.
62. Øyane NM, Pallesen S, Moen BE, Åkerstedt T, Bjorvatn B. Associations between night work and anxiety, depression, insomnia, sleepiness and fatigue in a sample of Norwegian nurses. *PLoS One* 2013;8:e70228.

63. Saladino V, Algeri D, Auriemma V. The psychological and social impact of Covid-19: new perspectives of well-being. *Front Psychol* 2020;11:2550.

64. Pappa S, et al. Prevalence of depression, anxiety, and insomnia among healthcare workers during the COVID-19 pandemic: a systematic review and meta-analysis. *Brain Behav Immun* 2020;88:901–7.

65. Pompili M, et al. The associations among childhood maltreatment, “male depression” and suicide risk in psychiatric patients. *Psychiatry Res* 2014;220:571–8.

66. Richter F. *The video apps we’re downloading amid the coronavirus pandemic*; 2020. Luettavissa https://www.weforum.org/agenda/2020/03/infographic-apps-pandemic-technology-data-coronavirus-covid19-tech. Luettu 3, 2020.

67. Salari N, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. *Glob Health* 2020;16:1–11.

68. Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: systematic review of the current evidence. *Brain Behav Immun* 2020;89:531–42.

69. Petzold M, Plag J, Ströhle A. Umgang mit psychischer Belastung bei Gesundheitsfachkräften im Rahmen der Covid-19-Pandemie [Dealing with psychological distress by healthcare professionals during the COVID-19 pandemic]. *Nervenarzt* 2020;91:417–21.

70. Blake H, Bermingham F, Johnson G, Tabner A. Mitigating the psychological impact of COVID-19 on healthcare workers: a digital learning package. *Int J Environ Res Public Health* 2020;17:2997.

71. Congressional Research Service. *Unemployment rates during the COVID-19 pandemic: in brief*. vol. 2021. CRS Report; 2021.

72. American Psychological Association. *The toll of job loss: the unemployment and economic crises sparked by COVID-19 are expected to have far-reaching mental health impacts*. vol. 2020. APS; 2020.

73. Pappas S. *The toll of job loss*. APS; 2020.

74. McKee-Ryan F, Song Z, Wanberg CR, Kinicki AJ. Psychological and physical well-being during unemployment: a meta-analytic study. *J Appl Psychol* 2005;90:53–76.

75. Paul KL, Moser K. Unemployment impairs mental health: meta-analyses. *J Vocat Behav* 2009;74:264–82.

76. David B. *Unemployment in the time of COVID-19: a research agenda*. 119. Sage; 2020. p. 103436.

77. Coile CC, Levine PB, McKnight R. Recessions, older workers, and longevity: how long are recessions good for your health? *Am Econ J Econ Pol* 2014;6:92–119.

78. Fowler D. *Unemployment during coronavirus: the psychology of job loss*. vol. 2021. BBC; 2021.

79. Thomson Kea. *Understanding the impacts of income and welfare policy responses to COVID-19 on inequalities in mental health: a microsimulation model*. University of Essex; 2021.

80. Holmes EA. Multidisciplinary research priorities for the COVID-19 pandemic: a call for action for mental health science. *Lancet Psychiatry* 2021;7:547–60.

81. Moore THM, et al. Interventions to reduce the impact of unemployment and economic hardship on mental health in the general population: a systematic review. *Psychol Med* 2017;47:1062–84.

82. United Nations. *Policy brief covid-19 and education*. August, United Nations; 2021.

83. Tsutsui Y. *Impact of closing schools on mental health during the COVID-19 pandemic: evidence using panel data from Japan*. University Library of Munich; 2020.
84. Lee J. Mental health effects of school closures during COVID-19. *Lancet Child Adolesc Health* 2020;4:421.
85. Mindes A. The impact of COVID-19 on student mental health. Stanford Education; 2020.
86. Young D. Educators speak on mental health. Effective School Solutions; 2020.
87. Dubey S, et al. Psychosocial impact of COVID-19. *Diabetes Metab Syndr* 2020;14:779–88.
88. Besser A, Lotem S, Zeigler-Hill V. Psychological stress and vocal symptoms among university professors in Israel: implications of the shift to online synchronous teaching during the COVID-19 pandemic. *J Voice* 2020;36(2):291.e9–291.e16.
89. Ng KC. Replacing face-to-face tutorials by synchronous online technologies: challenges and pedagogical implications. *Int Rev Res Open Dist Learn* 2007;8:335.
90. Stachteas P, Stachteas C. The psychological impact of the COVID-19 pandemic on secondary school teachers. *Psychiatriki* 2020;31:293–301.
91. Huber SG, Helm C. COVID-19 and schooling: evaluation, assessment and accountability in times of crisis-reacting quickly to explore key issues for policy, practice and research with the school barometer. In: *Educ Assess Evaluation Account*; 2020. p. 1–34.
92. BC Children’s Hospital. Impact of school closures on learning, child and family well-being during the COVID-19 pandemic. *B C Med J* 2020.
93. Wiles G. Students share impact of online classes on their mental health. The state News; 2021.
94. Zuchner I, Jakel H. Fernbeschulung während der COVID-19 bedingten Schulschließungen weiterführender Schulen: Analysen zum Gelingen aus Sicht von Schülerinnen und Schülern [Distance learning during the COVID-19-related school closings: the perspective of students from secondary schools]. *Z Erzieh* 2021;26:1–24.
95. Roe A, Blikstad-Balas M, Dalland C. The impact of COVID-19 and homeschooling on students’ engagement with physical activity. *Front Sports Act Living* 2021;2:589227.
96. Zhao Y, et al. The effects of online homeschooling on children, parents, and teachers of grades 1–9 during the COVID–19 pandemic. *Med Sci Monit* 2020;26:e925591.
97. Liu Y-C, Kuo R-L, Shih S-R. COVID-19: the first documented coronavirus pandemic in history. *Biomed J* 2020;43:328–33.
98. Liu CH, Zhang E, Wong GTF, Hyun S, Hahm HC. Factors associated with depression, anxiety, and PTSD symptomatology during the COVID-19 pandemic: clinical implications for U.S. young adult mental health. *Psychiatry Res* 2020;290:113172.
99. Mannarini S, Balottin L, Toldo I, Gatta M. Alexithymia and psychosocial problems among Italian preadolescents. A latent class analysis approach. *Scand J Psychol* 2016;57:473–81.
100. Paivio SC, McCulloch CR. Alexithymia as a mediator between childhood trauma and self-injurious behaviors. *Child Abuse Negl* 2004;28:339–54.
101. Sifneos PE. Affect, emotional conflict, and deficit: an overview. *Psychother Psychosom* 1991;56:116–22.
102. Taylor GJ. The alexithymia construct: conceptualization, validation, and relationship with basic dimensions of personality. *New Trends Exp Clin Psychiatry* 1994;10:61–74.
103. Hendryx MS, Haviland MG, Shaw DG. Dimensions of alexithymia and their relationships to anxiety and depression. *J Pers Assess* 1991;56:227–37.
104. Lankes F, Schiekofer S, Eichhammer P, Busch V. The effect of alexithymia and depressive feelings on pain perception in somatoform pain disorder. *J Psychosom Res* 2020;133:110101.
105. Pfefferbaum B, North CS. Mental health and the covid–19 pandemic. *N Engl J Med* 2020;383:510–2.
106. Bakalis S, et al. Perspectives from CO+RE: how COVID-19 changed our food systems and food security paradigms. *Curr Res Food Sci* 2020;3:166–72.
107. Singh S, Kumar R, Panchal R, Tiwari MK. Impact of COVID-19 on logistics systems and disruptions in food supply chain. *Int J Prod Res* 2021;59:1993–2008.
108. Alqahtani JS, et al. Global current practices of ventilatory support management in COVID-19 patients: an international survey. *J Multidiscip Healthc* 2020;13:1635–48.

109. Chen S, et al. Mental health status and coping strategy of medical workers in China during the COVID-19 outbreak. *medRxiv* 2020;20026872. https://doi.org/10.1101/2020.02.23.20026872.

110. Lee A, et al. Are high nurse workload/staffing ratios associated with decreased survival in critically ill patients? A cohort study. *Ann Intensive Care* 2017;7:46.

111. Wu P, et al. The psychological impact of the SARS epidemic on hospital employees in China: exposure, risk perception, and altruistic acceptance of risk. *Can J Psychiatr* 2009;54:302–11.

112. Lowe SR, Bonumwezi JL, Valdespino-Hayden Z, Galea S. Posttraumatic stress and depression in the aftermath of environmental disasters: a review of quantitative studies published in 2018. *Curr Environ Health Rep* 2019;6:344–60.

113. Mak IWC, et al. Risk factors for chronic post-traumatic stress disorder (PTSD) in SARS survivors. *Gen Hosp Psychiatry* 2010;32:590–8.

114. Wang C, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. *Int J Environ Res Public Health* 2020;17(5):1729.

115. Xiang Y-T, et al. Timely mental health care for the 2019 novel coronavirus outbreak is urgently needed. *Lancet Psychiatry* 2020;7:228–9.

116. DiGiovanni C, Conley J, Chiu D, Zaborski J. Factors influencing compliance with quarantine in Toronto during the 2003 SARS outbreak. * Biosecur Bioterror* 2004;2:265–72.

117. Braunack-Mayer A, Tooher R, Collins JE, Street JM, Marshall H. Understanding the school community’s response to school closures during the H1N1 2009 influenza pandemic. *BMC Public Health* 2013;13:344.

118. Calisher C, et al. Statement in support of the scientists, public health professionals, and medical professionals of China combatting COVID-19. *Lancet* 2020;395:e42–3.

119. Mian A, Khan S. Coronavirus: the spread of misinformation. *BMC Med* 2020;18:89.

120. Center on International Cooperation. *Responding to COVID-19: the need for conflict sensitivity*. New York University; 2020.

121. Su Z, et al. Mental health consequences of COVID–19 media coverage: the need for effective crisis communication practices. *Glob Health* 2021;17:4.

122. Rosser BA. Intolerance of uncertainty as a transdiagnostic mechanism of psychological difficulties: a systematic review of evidence pertaining to causality and temporal precedence. *Cogn Ther Res* 2019;43:438–63.

123. Loprinzi CE, Prasad K, Schroeder DR, Sood A. Stress management and resilience training (SMART) program to decrease stress and enhance resilience among breast cancer survivors: a pilot randomized clinical trial. *Clin Breast Cancer* 2011;11:364–8.

124. Sood A, Prasad K, Schroeder D, Varkey P. Stress management and resilience training among Department of Medicine faculty: a pilot randomized clinical trial. *J Gen Intern Med* 2011;26:858–61.

125. Luthar SS, Cicchetti D, Becker B. The construct of resilience: a critical evaluation and guidelines for future work. *Child Dev* 2000;71:543–62.

126. Joyce S, et al. Road to resilience: a systematic review and meta-analysis of resilience training programmes and interventions. *BMJ Open* 2018;8:e017858.

127. Peirce RS, Frone MR, Russell M, Cooper ML, Mudar P. A longitudinal model of social contact, social support, depression, and alcohol use. *Health Psychol* 2000;19:28–38.
128. Xiao H, Zhang Y, Kong D, Li S, Yang N. The effects of social support on sleep quality of medical staff treating patients with coronavirus disease 2019 (COVID-19) in January and February 2020 in China. Med Sci Monit 2020;26:e923549.

129. The University of Melbourne. Coronavirus (COVID-19): managing stress and anxiety. The University of Melbourne; 2020.

130. Shanafelt T, Ripp J, Trockel M. Understanding and addressing sources of anxiety among health care professionals during the COVID-19 pandemic. JAMA 2020;323:2133–4.

131. Local Government Association. Coronavirus (COVID-19) communications support and templates. Local Government Association; 2021.

132. Reddy B, Gupta A. Importance of effective communication during COVID–19 infodemic. J Family Med Prim Care 2020;9:3793–6.

133. Forbes. Three lessons communicators have learned during Covid-19. Forbes Communications Council; 2021.

134. Abukhalaf AHI, von Meding J. Integrating international linguistic minorities in emergency planning at institutions of higher education. Nat Hazards (Dordr) 2021;1–25.

135. Abukhalaf AHI, von Meding J. Psycholinguistics and emergency communication: a qualitative descriptive study. Int J Disaster Risk Reduct 2021;55:102061.

136. Pfefferbaum B, et al. The H1N1 crisis: a case study of the integration of mental and behavioral health in public health crises. Disaster Med Public Health Prep 2012;6:67–71.

137. Monaghesh E, Hajizadeh A. The role of telehealth during COVID–19 outbreak: a systematic review based on current evidence. BMC Public Health 2020;20:1193.

138. Saltzman L, Hansel T, Bordnick P. Loneliness, isolation, and social support factors in post–COVID–19 mental health. Psychol Trauma 2020;12:555–7.