Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials.

Permalink
https://escholarship.org/uc/item/03c0c0nt

Journal
Thorax, 69(5)

ISSN
0040-6376

Authors
Saketkoo, Lesley Ann
Mittoo, Shikha
Huscher, Dörte
et al.

Publication Date
2014-05-01

DOI
10.1136/thoraxjnl-2013-204202

Peer reviewed
ORIGINAL ARTICLE

Connective tissue disease related interstitial lung diseases and idiopathic pulmonary fibrosis: provisional core sets of domains and instruments for use in clinical trials

Lesley Ann Saketkoo,1 Shikha Mittoo,2 Dörte Huscher,3,4 Dinesh Khanna,5 Paul F Dellaria,6 Oliver Distler,7 Kevin R Flaherty,8 Sid Frankel,8 Chester V Oddis,9 Christopher P Denton,10 Aryeh Fischer,11 Otylia M Kowal-Bielecka,12 Daphne LeSage,13 Peter A Merkel,14 Kristine Phillips,5 David Pittrow,15 Jeffrey Swigris,16 Katerina Antoniou,16 Robert P Baughman,17 Flavia V Castelino,18 Romy B Christmann,19 Lisa Christopher-Stine,20 Harold R Collard,21 Vincent Cottin,22 Sonye Danoff,20 Kristin B Highland,23 Laura Hummers,20 Ami A Shah,20 Dong Soon Kim,24 David A Lynch,11 Frederick W Miller,25 Susanna M Proudman,26 Luca Richeldi,27 Jay H Ryu,28 Nora Sandorfi,14 Catherine Sarver,29 Athol U Wells,30 Vibeke Strand,31 Eric L Matteson,28 Kevin K Brown,11 James R Seibold32

ABSTRACT

RATIONALE Clinical trial design in interstitial lung diseases (ILDs) has been hampered by lack of consensus on appropriate outcome measures for reliably assessing treatment response. In the setting of connective tissue diseases (CTDs), some measures of ILD disease activity and severity may be confounded by non-pulmonary comorbidities.

METHODS The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of Outcome Measures in Rheumatology—a non-profit international organisation dedicated to consensus methodology in identification of outcome measures—conducted a series of investigations which included a Delphi process including >248 ILD medical experts as well as patient focus groups culminating in a nominal group panel of ILD experts and patients. The goal was to define and develop a consensus on the status of outcome measure candidates for use in randomised controlled trials in CTD-ILD and idiopathic pulmonary fibrosis (IPF).

RESULTS A core set comprising specific measures in the domains of lung physiology, lung imaging, survival, dyspnoea, cough and health-related quality of life is proposed as appropriate for consideration for use in a hypothetical 1-year multicentre clinical trial for either CTD-ILD or IPF. As many widely used instruments were found to lack full validation, an agenda for future research is proposed.

CONCLUSION Identification of consensus preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multicentre RCTs in the field.

BACKGROUND The diffuse idiopathic interstitial pneumonias describe a spectrum of parenchymal lung diseases sharing clinical, physiological, radiological and pathological similarities, including varying degrees of fibrosis, inflammation and vascular injury.1 Idiopathic pulmonary fibrosis (IPF) is associated with usual interstitial pneumonia (UIP), poor survival and limited treatment options.2 Interstitial lung disease (ILD), most typically presenting as non-specific interstitial pneumonitis, is a leading cause of death in systemic sclerosis (SSc)3 and a prominent clinical feature of other connective tissue diseases (CTDs), including idiopathic inflammatory myopathy (IIM) and Sjögren syndrome. UIP is also found in rheumatoid arthritis (RA) and IIM.4 5

Current evaluations of therapies focus on patient survival or markers of chronic disease progression,
for example, change in forced vital capacity (FVC). Measures of patient function, for example, 6 min walk test (6MWT), and health-related quality of life (HRQoL) have been variably applied with inconsistent results. Therapeutic research has been hampered by lack of consensus on and validation of outcome measures that reliably assess the likelihood of treatment response. Furthermore, extra-pulmonary CTD manifestations may confound measures of ILD activity/severity. Patient-reported dyspnoea is demonstrated to predict time to death, yet a satisfactory dyspnoea instrument for ILD has not yet been identified. Clinically relevant, patient-reported outcome measures (PROMs) exist for obstructive lung disease and, in the absence of disease-specific measures, have been utilised in trials of ILD.

The Outcome Measures in Rheumatology (OMERACT) filter is a dynamic and iterative process/structure through which an instrument’s performance can be evaluated under three criteria or points of examination: truth (face, content, construct and criterion validity), discrimination (reliability, sensitivity to change) and feasibility (cost, interpretability, accessibility, safety, time). The ideal instrument satisfies all three while instruments incompletely satisfying the filter may still be immediately useful but require additional study.

The Connective Tissue Disease associated Interstitial Lung Disease (CTD-ILD) working group of the OMERACT international consensus initiative convened to define outcome measures for use in randomised controlled trials (RCTs) in CTD-ILD. Given the major clinical overlap, the same process was used in parallel for IPF. We report the results of a three-component process: medical expert Delphi exercise, patient perspective investigations and a combined medical expert and patient participant nominal group technique (NGT) meeting leading to identification of preliminary core sets of domains with corresponding instruments that are clinically meaningful and feasible in the context of a 1-year multi-centre RCT for each CTD-ILD and IPF. These sets of instruments are proposed as the minimum outcome measures to be used in future RCTs and registries.

METHODS

Medical expert Delphi process

Delphi

International experts (n=270) were identified by authorship in peer-reviewed journals, specialty society membership and peer recommendations, and invited to participate in the web-based Delphi process. This began with an ‘item-collection’ stage called Tier 0, wherein participants nominated an unrestricted number of potential domains (qualities to measure) and instruments (specific tools for use as a measure) perceived as relevant for inclusion in a hypothetical 1-year RCT. This exercise produced a list of >6700 items—reduced only for redundancy, organised into 23 domains and 616 instruments and supplemented by expert advisory teams of pathologists and radiologists.

The results of Tier 0 provided the content for sequential web-based surveys: Tiers 1, 2 and 3 which progressively reduced the number of voting items as the items with the lowest ratings were dismissed. Survey items for each CTD-ILD and IPF were aligned in parallel and rated along a nine-point Likert scale from 1 (‘not at all important’) to 9 (‘absolutely important’), with ‘insufficiently familiar’ a voting alternative. An extensive online repository of item-related journal articles was available to participants throughout the process.

Analysis

A cut-off of <4 (median rating) was applied to ratings from the large number of voting items in Tier 1. Cluster analyses were applied to the ratings in Tiers 2 and 3 avoiding the use of an arbitrary cut-off, thus allowing items to aggregate independently providing an unbiased analysis of agreement among raters. A nine-cluster analysis was initially applied and reduced to three clusters for all items during both tiers.

Patient perspective investigation

Patient participation is recognised as integral to development of outcome measures by OMERACT, the US Food and Drug Administration and European Medicines Agency. To investigate the patient perspective in CTD-ILD, a set of qualitative studies were conducted: focus groups (60–90 min) of 8–12 consented participants with CTD-ILD were selected by convenience sampling and asked 1) how their life has changed since the diagnosis of their lung disease? and 2) how their lung disease has changed over time? Patient perspective data in 20 English-speaking patients with IPF were previously available. Content was extracted from verbatim transcripts and inductive analysis was applied to minimise investigator bias. Following each focus group, CTD-ILD participants (study patients with IPF were not available) rated on a seven-point Likert scale the importance of the domains identified in Tier 0 of the medical expert Delphi process.

NGT meeting

At the 2012 OMERACT 11 conference and the 2012 American Thoracic Society (ATS) International Conference, data from the Delphi and the patient perspective investigations were reviewed by medical and patient experts. Following this, a face-to-face meeting was held to apply NGT to the overall results.

At the NGT, evaluation of each domain was led by assigned teams of medical and patient participants who presented evidence-based reviews focusing on instrument validation in accordance with the OMERACT filter. Several weeks prior to team assembly, interactive educational sessions with the patient participants examined each domain and instrument. The teams served as a resource for evidence-based information during the discussion phases.

After each team presentation, all participants engaged in a ‘round-robin’ discussion allowing equal speaking time per participant over two to three rounds examining acceptance or rejection of an item, potential clinical endpoint assignment, and determination for new instrument development within that domain. Each round of discussions was followed by group voting.

All participants were requested to register a vote for each item. With participants’ full knowledge, responses from all physicians and patients with CTD-ILD were tabulated for CTD-ILD, with only those from pulmonologists and patients with IPF for IPF. All votes were recorded. (The radiologist voting was tabulated as a pulmonologist.) A priori, acceptance was agreed upon as ≥70% affirmative votes. Voting addressed inclusion/exclusion of items based on the OMERACT filter and whether the patient perspective and evidence-based data warranted the need for new instrument development for that corresponding domain.

RESULTS

Medical expert Delphi

A total of 254 (137 pulmonologists, 113 rheumatologists and 4 cardiologists) engaged in the Delphi process. Seventy-four per cent reported their primary field of interest being ILD. Participation through all stages exceeded 97%. Six domains identified were: Dyspnoea, HRQoL, Lung Physiology/Function,
Lung Imaging and Survival, and Medications for each CTD-ILD and IPF. Eighteen instruments were identified for each CTD-ILD and IPF (tables 1–4).

Focus groups

Focus groups were conducted with patients (n=45) in IIM-ILD (n=11), RA-ILD (n=13), SSc-ILD (n=17) and other CTD diagnoses (n=4) (table 5). Patient participants attributed importance to cough, dyspnoea, fatigue, participation (in family, social and leisure activities, work within and outside the home), physical function, self-care and sleep in the questionnaire and the focus groups. Changes in cough were perceived as reflecting potential worsening ILD. Dyspnoea largely carried descriptors different from current instruments. Patients with IPF identified cough, dyspnoea and HRQoL effects as central symptoms.14

OMERACT 11/ATS 2012/Domain Team meetings

Discussions and voting at the OMERACT 11/ATS 2012/Domain Team meetings resulted in the following changes based on the patient perspective data or strong evidence in recent literature (detailed in online supplement):

- Cough was reintroduced, discussed and voted upon at the NGT.
- To satisfy the reintroduction of Cough, Leicester Cough Questionnaire (LCQ) was introduced as an interim instrument to assess Cough.
- The Mahler Dyspnea Index (MDI) and University of California San Diego Shortness of Breath Questionnaire (UCSD-SBQ) were reintroduced under Dyspnoea for use in CTD-ILD and IPF, respectively, based on substantive findings in an updated literature review.
- For feasibility, HRQoL would capture ‘fatigue’, ‘participation’, ‘physical function’, ‘self-care’ and ‘sleep’ until disease-specific investigations into these components were conducted.
- NGT voting would include whether development of new instruments for Dyspnoea, Cough and HRQoL are needed.
- Owing to variability of therapies, concern regarding Medications as a core domain was expressed. However, being identified as important in the Delphi, a statement of clarification would be constructed at the NGT.
- ‘All-Cause Mortality’ was introduced as an assessment of ‘Survival’.

NGT results

The final NGT panel included 10 pulmonary experts, 12 rheumatology experts and 1 radiology expert, with 5 patient partners (tables 6–8, and see online supplement).

Table 3 Results of the Delphi Tier 3 cluster analysis of domains with median/mean reported

Five domains identified for each CTD-ILD and IPF

Domain name	CTD-ILD (median/mean) ratings on a 9-point scale	IPF (median/mean) ratings on a 9-point scale
Dyspnoea	(8.0/7.8)	(8.0/8.1)
Health-related quality of life	(8.0/7.7)	(8.0/7.8)
Lung imaging	(9.0/8.3)	(9.0/8.3)
Lung physiology/ function	(9.0/8.7)	(9.0/8.7)
Survival	(8.0/8.2)	(9.0/8.4)
Medications	(8.0/7.2)	(7.0/7.3)

CTD-ILD, connective tissue disease associated interstitial lung disease; IPF, idiopathic pulmonary fibrosis.

Table 2 Domain results of Tier 0

Tier 0 results of 23 domains
Survival
Biomarkers
Imaging
Lung physiology/function
Lung parenchyma
Lung vascular
Cardiac function
Composite scores
Gastroesophageal reflux
Cough
Dyspnoea
Fatigue

CTD, connective tissue disease; HRQoL, health-related quality of life.

Table 1 Reduction of domains and instruments in the Delphi process

Phase yielded	Analysis method	Domains CTD-ILD/IPF	Instruments CTD-ILD/IPF	Participant Dropout (%)
Tier 0	Intense review	133 nominations >23	>6700 nominations >616	0
Tier 1	<4 median cut-off	21	71/71	2
Tier 2	cluster analysis	13	58/61	<1
Tier 3	cluster analysis	5/5	18/18	0

CTD-ILD, connective tissue disease associated interstitial lung disease; IPF, idiopathic pulmonary fibrosis.
DISCUSSION

These comprehensive international investigations are the first to identify core sets of domains in each CTD-ILD and IPF along with a provisional consensus on a minimum cadre of feasible and clinically meaningful outcome measures/instruments. The proposed measures are intended to be a common denominator and clinically meaningful outcome measures/instruments. The rigorous consensus methodologies of OMERACT outline the overall status of the field. Importantly, this is the first study in ILD to incorporate patient participants in panel meetings or guidelines. From the synergy of these investigations, domains which require development of new instruments were also identified, thus providing guidance for imminent research.

Based on the current data, FVC (100% acceptance) was the measure that the group favoured most for each CTD-ILD and IPF. Again, we emphasise that the overarching construct of this exercise was limited to that of a hypothetical RCT of 1-year duration. FVC has been shown to be a consistently reliable serial variable in IPF. Declines in FVC correlate with increased risk of subsequent mortality, although no data exist demonstrating that improvement in FVC correlates with improved survival. Thus, utilising FVC as an endpoint requires consideration of the clinically meaningful magnitude of change independent of potential impact on mortality. This is particularly relevant in studies of short duration.

While changes in FVC have been shown to be reproducible in SSc-ILD, there are insufficient RCT-derived data to evaluate this in other forms of CTD-ILDs. There are confounding issues of vasculopathy, pulmonary hypertension, cardiac involvement, chest wall impairment and systemic disease activity that are often coexistent in CTD-ILDs. Nonetheless, FVC may most reliably and sensitively reflect the contribution of parenchymal disease above other endpoints.

Though a relative change from baseline predicted is preferred to absolute change from normal values, these changes are recognised as non-parametric in FVC. Thus a discrete clinically relevant threshold of minimal change was not able to be agreed upon in either IPF or CTD-ILD. Further, efforts to validate serial variables are challenged by variations in the rate of disease progression, with interval changes of FVC more likely to represent a true change in rapidly progressive disease than in less progressive disease that crosses the same threshold. Extrapolation between two value points will provide less reliable information than continuous variables; therefore, identification of a minimal clinically important difference (MCID) would be misleading without accommodating for these non-parametric changes. Panel discussions surrounding Diffusion Capacity of Lung for Carbon Monoxide (DLCO) reflected the multiple confounders for this instrument, with ranking of FVC as being the favoured marker above DLCO. A threshold of clinically meaningful change was not determined for DLCO.
Table 6 Results of nominal group proceedings with percentage for acceptance (see online supplement for expanded voting tables)

Instrument	CTD-ILD PULM+RHEUM+patients with CTD-ILD	IPF PULM+patient with IPF
Dyspnoea		
MRC Chronic Dyspnea Scale	7/9+9/12+2/3=75%	10/11+1/1=92%
Dyspnea 12	8/10+11/12+3/3=88%	6/9+1/1=70%
UCSD-SBQ	N/A	7/9+1/1=80%
Cough	7/10+10/12+2/2=79%	8/10+1/1=82%
HRQoL		
Short Form 36	10/10+11/11+3/3=100%	8/10+1/1=82%
SGRQ	9/10+9/11+2/2=87%	8/10+1/1=82%
VAS-PtGA	10/10+11/12+2/2=96%	N/A
Lung imaging		
Overall extent of ILD	11/11+9/11+3/3=92%	10/10+1/1=100%
Lung physiology		
Forced vital capacity	10/10+11/11+3/3=100%	10/10+1/1=100%
Diffusion capacity of lung	10/10+8/10+3/3=91%	10/10+1/1=100%
Survival		
All-cause mortality	Unanimous agreement	Unanimous agreement

CTD-ILD, connective tissue disease associated interstitial lung disease; HRCT, high-resolution CT; HRQoL, health-related quality of life; IPF, idiopathic pulmonary fibrosis; MRC, Medical Research Council; PtGA, Patient Global Assessment; PULM, pulmonary specialist; RHEUM, rheumatology specialist; SGRQ, St George's Respiratory Questionnaire; UCSD-SBQ, University of California San Diego Shortness of Breath Questionnaire; VAS, visual analogue scale.

Neither the 6MWT nor measures of oxygen desaturation survived the NGT process; although deemed feasible they were considered weak in discrimination in addition to construct and criterion validity. The need for supplemental oxygen was not accepted; changes in oxygenation, as judged partly by oxygen desaturation, are difficult to interpret since they do not correlate well with the sensation of dyspnoea or changes in disease progression in mild to moderate disease.19 23

The importance of patient-reported dyspnoea for assessing prognosis and disease progression are well recognised.1 7 8 We identified the Dyspnea 1224 and the Medical Research Council Dyspnea Scale18 17 as the best currently available instruments in CTD-ILD and in IPF, yet data are essentially lacking in CTD-ILD. Though the MDI has some demonstrated validity in SSc-ILD20, NGT panelists allocated this interviewer-administered instrument to the research agenda for CTD-ILD, voicing concerns of poor feasibility and uncertain reliability. The UCSD-SBQ was accepted for use in studying IPF.21 It was agreed that development of new Dyspnoea instruments is warranted to specifically reflect the restrictive lung processes of CTD-ILD and IPF.

The Short Form 36 (SF-36) was recognised as a generic HRQoL instrument as anxiety, fatigue, participation, physical function, self-care and sleep are important to patients.25 The St George’s Respiratory Questionnaire, although endorsed, lacked specificity in CTD-ILD and IPF.26 27 It was agreed that a new disease-specific instrument should be developed.

PtGA, previously validated across rheumatic and non-rheumatic diseases, correlates with dyspnoea in CTD-ILD28 29 and was accepted as a measure in CTD-ILD with improvements greater than 10 mm agreed upon as an MCID. PtGA not being validated in IPF was allocated to the research agenda in IPF. PtGA may also serve as an ‘anchor’ to determine MCIDs for

Table 7 Relation of CTD-ILD preliminary core set instruments to aspects of OMERACT filter in CTD-ILD

CTD-ILD	Dyspnoea	Cough	HRQoL	Lung physiology	Lung imaging	Survival							
Instruments	D-12	MRC	LCQ	SGRQ	SF-36	PtGA	FVC	DLCO	HRCT—overall extent of disease	All-cause mortality	Time to decline in FVC		
Truth	Face validity	Y	Y	Y	Y	Y	Y	Y	Y	±	Y	Y	Y
Content validity	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Construct validity	Y	Y	NT	Y	T	Y	NT	Y	±	Y	Y	NT	NT
Criterion validity	NT	NT	NT	NT	NT	NT	No	No	Y	±	NT	NT	
Discrimination	Discriminatory	Y	Y	NT	Y	Y	NT	Y	±	±	Yes, excepta for GGO	No	Y
Reliable	Y	Y	NT	NT	Y	NT	Y	±	±	Yes, excepta for GGO	Y	NT	NT
Reproducible	NT	±	±	N/A	NT	NT							
Sensitive to change	Y	Y	NT	NT	Y	NT	Y	±	±	Yes but relatively slow	N/A	Y	Y
Feasibility	Cost effective	Y	Y	Y	Y	Y	Y	Y	Y	Y	No*	Y	Y
Interpretability	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
Readily available	Y	Y	Y	Y	Y	Y	Y	Y	±	±	Y	Y	Y
Safe for patients	Y	Y	Y	Y	Y	Y	Y	Y	±	±	Y	Y	Y
Patient-derived content	Y	No	No	No	No	N/A	N/A	N/A	N/A	±	Y	Y	Y

PtGA is adopted under HRQoL, though it is an independent instrument.

*Not cost effective as a primary efficacy endpoint but highly cost effective as a secondary endpoint to detect treatment toxicity—see text for discussion on ‘survival’

†US Food and Drug Administration advocates patient-reported instruments be developed by qualitative data supplied by patients.18 19

±, ambiguous; CTD-ILD, connective tissue disease associated interstitial lung disease; D-12, Dyspnea-12; DLCO, diffusion capacity of lung for carbon monoxide; FVC, forced vital capacity; GGO, ground glass opacity; HRCT, high-resolution CT; LCQ, Leicester Cough Questionnaire; MRC, Medical Research Council Dyspnea Scale; N/A, not applicable; NT, not yet tested; OMERACT, Outcome Measures in Rheumatology; PtGA, Patient Global Disease Activity; SGRQ, St George’s Respiratory Questionnaire; SF-36, Short Form 36; Y, yes.
Progression-free survival in IPF was agreed to have merit,\(^3\) but not all patients as partners in the iterative process was important in identifying and re-capturing areas of potentially meaningful outcomes analyses of these measures.

We recommend these proposed measures for all future research ventures, continued use of measures outside this core set, for clinical practice and research purposes, is fully expected with further research into their performance anticipated and necessary. Rather, this endeavor defines the currently available, best validated and feasible instruments while providing a much needed prioritized research agenda focus to the research community.

This project applied rigorous multi-investigational processes that captured the perspectives of the international ILD expert community and the life experience of patients with ILD to identify a set of domains and measures. Participation remained robust through all tiers of the consensus process.

The importance of patient participation is supported by the incorporation of HRQoL, Participation and Fatigue in the RA core set for RCTs. From a practical perspective, qualitative data collection involved only English-speaking patients from North America, and results may be affected by cultural, environmental and resource-related effects requiring further investigations to follow up our reported findings. Nevertheless, the engagement of patients as partners in the iterative process was important in identifying and re-capturing areas of potentially meaningful measures of disease activity.

Conclusions

It is critical that valid and clinically useful instruments be developed and validated to assess the likelihood of treatment response in these disorders. Identification of consensus...
preliminary domains and instruments to measure them was attained and is a major advance anticipated to facilitate multi-centre RCTs in the field. However, none of the provisional endpoints were ultimately felt to be either ideal or fully validated. Feasible endpoints like FVC are not perfect; more rigorous endpoints like mortality, particularly in the setting of CTD-ILD, lack feasibility. Thus, selecting the best non-ideal endpoints from a larger group of non-ideal endpoints still leaves us with much work which includes further validation of existing and development of new instruments.

Author affiliations
1Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
2University of Toronto, Toronto, Canada
3German Rheumatism Research Centre, Berlin, Germany
4Charité Universitätsmedizin, Berlin, Germany
5University of Michigan, Ann Arbor, Michigan, USA
6B Brigham and Womens Hospital, Boston, Massachusetts, USA
7University Hospital Zurich, Zurich, Switzerland
8University of Manitoba, Manitoba, Canada
9University of Pittsburgh, Pittsburgh, Pennsylvania, USA
10Royal Free Hospital, London, UK
11National Jewish Health, Denver, Colorado, USA
12Medical University of Bialystok, Bialystok, Poland
13Patient Research Partner, Office of Public Health, New Orleans, Louisiana, USA
14University of Pennsylvania, Philadelphia, Pennsylvania, USA
15University of Dresden, Dresden, Germany
16University of Crete, Heraklion, Greece
17University of Cincinnati, Cincinnati, Ohio, USA
18Massachusetts General Hospital, Boston, Massachusetts, USA
19Boston University School of Medicine, Boston, Massachusetts, USA
20Johns Hopkins University, Baltimore, Maryland, USA
21University of California-San Francisco, San Francisco, California, USA
22Claude Bernard University, Lyon, France
23Cleveland Clinic, Cleveland, Ohio, USA
24Asian Medical Center University of Ulsan, Ulsan, South Korea
25National Institute of Environmental Health Sciences, National Institutes of Health, Bethesda, Maryland, USA
26University of Adelaide, Adelaide, Australia
27Respiratory Biomedical Research Unit, University of Southampton, UK
28Mayo Clinic College of Medicine, Rochester, Minnesota, USA
29Patient Research Partner, Maryland, USA
30Royal Brompton Hospital and National Heart and Lung Institute, London, UK
31Stanford University, Palo Alto, California, USA
32Scleroderma Research Consultants, LLC, Avon, Connecticut, USA

Correction notice This article has been corrected since it was published Online First. The author affiliation for Luca Richeldi has been updated.

Acknowledgements Acknowledgements of thanks for essential and gracious assistance: Kortnie Augustin, Louisiana State University Health Sciences Center – New Orleans, USA; Reed Barrios, Patient Expert, New Orleans, USA; Bennett deBoisblanc, Louisiana State University Health Sciences Center – New Orleans, USA; Kerri Connolly, Scleroderma Foundation, Danvers, MA, USA; Luis R Espinoza, Louisiana State University Health Sciences Center – New Orleans, USA; Daniel E and Elaine Furst, University of California – Los Angeles, CA, USA; Robert Hedlund, Patient Expert, Virginia, USA; Matthew R Lammi, Louisiana State University Health Sciences Center – New Orleans, USA; Steve Nathan, Innovia, Fairfax, Virginia, USA; Karen Nichols, Patient Expert, Virginia, USA; Frank Smart, Louisiana State University Health Sciences Center – New Orleans, USA; Virginia Steen, Georgetown University, Washington DC, USA; Valerie Thompson, DINORA; Pieter van den Assum, Patient Expert, Virginia, USA. Ms LeSage and Ms Sarver are co-investigators and have contributed their expertise as patients to key decision-making in the design, implementation as well as analysis and interpretation of data and thus listed as authors.

Contributors LAS: PI, methodologist and project leader of all three components, author of manuscript. SM: Co-PI of patient perspective, NGT panel member (content, data collection, analysis), manuscript reviewer (MR), DH: Steering Committee for Delphi, Joint Analysis Decision, Interpretation of Delphi Data (SC1), methodologist, designer of Delphi database, statistician to all three components, MR, DK: SC1, NGT panel member, MR, PFD: SC1, NGT panel member, MR, OD: SC1, NGT panel member, MR, PFD: SC1, NGT panel member, MR, RF: SC1, NGT panel member, MR, SF: Steering Committee for Patient Perspective, Qualitative analyses, Coding, Interpretation (SC2), methodology, analysis, MR. CVO: SC1, NGT panel member, MR. CPD: SC1, NGT panel member, MR. AF: SC2, NGT panel member, MR. DL: SC2, patient research partner (assist with design, analysis, interpretation), analysis, NGT panel member, MR. PAM: SC1, NGT panel member, MR. KP: SC1, DP: SC1, database construction, JS: SC2, NGT panel member, MR. KA: NGT panel member, MR. RRB: NGT panel member, MR. FVC: SC2, patient data collection, analysis, MR. LK: literature review, database content collection and assembly, MS: SC2, patient data collection, analysis, MR. HRC: content, analysis, interpretation, MR. VC: content, analysis, interpretation, MR. SD: SC2, patient data collection, analysis, MR. KBH: NGT panel member, MR. LH: SC2, patient data collection, analysis, MR. AAS: SC2, patient data collection, analysis, MR. DSK: NGT panel member, MR. DAL: NGT panel member, MR. FHWM: NGT panel member, MR. SMP: NGT panel member, MR. LR: NGT panel member, MR. IHR: NGT panel member, MR. NS: literature review, database content collection and assembly, MR. CS: SC2, patient research partner, analysis NGT panel member, MR. AUF: SC1, NGT panel member, MR. VS: SC1, NGT panel member, MR. ELM: SC1, NGT panel member, MR. KKB: SC1, NGT panel member, MR. JRS: SC1, NGT panel member, MR.

Collaborators Delphi Co-authors: "Indicates Disease Committee Member. Rohit Aggarwal*, University of Pittsburgh School of Medicine, USA; Gillian Amslie, University of Cape Town & Groote Schuur Hospital, South Africa; Firas Alkassab, University of North Carolina-Chapel Hill, Charlotte, USA; Yannick Allanore*, University Paris Descartes, France; Marina E Anderson, University of Liverpool, UK; Andrew P Andonopoulos, University of Patras School of Medicine, Greece; Danielle Antin-Ozerkis, Yale University School of Medicine, USA; Ana Arrobas, Centro Hospitalar de Coimbra, Portugal; Dana P Asherman*, University of Pittsburgh Miller School of Medicine, USA; Shervin Assassi, University of Texas Health Science Center at Houston, USA; Murray Baron, Jewish General Hospital, McGill University, USA; Joao M Batthom*, Columbia University College of Physicians & Surgeons, USA; Juergen Beh, Ludwig-Maximilians University, Munich, Germany; Lorenzo Beretta, Reference Center for Systemic Autoimmune Diseases-Milan, Italy; Clifton O Bingham III, Johns Hopkins University, USA; Matthew Birnie, St. Michael’s Hospital, Toronto, Canada; Sudhir S Birring, King’s College Hospital, UK; Francesco Boin, Johns Hopkins University, USA; Tim Bongartz*, Mayo Clinic College of Medicine, USA; Arnaud Bourdin, Département de Pneumologie et Addictologie INSERM U1046 - Université Montpellier; Demosthenes Bounous, Democritus University of Thrace, Greece; Richard Brasington, Washington University, St. Louis, USA; Paul Bresser, Onze Lieve Vrouwe Gasthuis, Netherlands; Maya H Buch, University of Leeds, UK; P Shenwood Burge, Birmingham Heartlands Hospital, UK; Loreto Carmona, Universidad Camilo José Cela and Instituto for Musculoskeletal Health, Spain; Patricia E Carella, Hospital Universitario, Spain; Carlos RR Carvalho, University of Sao Paulo Medical School, Brazil; Luis J Catoggio, Hospital Italiano de Buenos Aires, Argentina; Kevin M Chan, University of Michigan Health Systems, USA; Jeffrey Chapman, Cleveland Clinic, USA; Soumaa Chatterjee, Cleveland Clinic, USA; Felix Chua*, St. George’s Hospital NHS Trust, UK; Lorinda Chung, Stanford University School of Medicine, USA; MatthewConnor, St. Vincent’s Hospital, Australia; Tameracorte, University of Sidney, Australia; Gregory Cosgrove, National Jewish Health, USA; Ulrich Costabel, University of Duisburg-Essen, Germany; Gerard Cox, McMaster University, Canada; Bruno Cestari, Centre de Compétences Maladies Rares Pulmonaires, Paris, France; Leslie J Crofford, University of Kentucky College of Medicine, USA; Mary E Csuka, Medical University of Wisconsin, USA; De la Ciberta, Universidad de Alcalá de Henares, Montevideo, Uruguay, László Czirják, University of Pécs, Hungary; Zoe Danil, University of Thessaly, Larissa, Greece; Christine L D’Asgnies, Queen’s University, Canada; Gerald S Davis, College of Medicine University of Vermont, USA; Joao A de Andrade, University of Alabama at Birmingham, USA; Paul De Vuyt, Hospital Ename, Université Libre de Bruxelles, Belgium; Owen J Dempsey, Aberdeen Royal Infirmary Forestehill, Scotland, UK; Chris T Derk, University of Pennsylvania, USA; Jörg Ditzler, University of Erlangen-Nuremberg, Germany; William G Dixon*, University of Manchester, UK; Gregory Downey, National Jewish Health, USA; Mitty K Doyle, Alexion Pharmaceuticals Inc, Cambridge, USA; Marjolein Drent, Maastricht University, Maastricht, Netherlands; Lakshmi Durairaj, Carver College of Medicine, University of Iowa, USA; Paul Emery, University of Leeds, UK; Luis R Espinoza, Louisiana State University Health Sciences Center, New Orleans, USA; Dominique Farge, St. Louis Hospital, Paris, France; Maryam Fathi, Karolinska Institutet, Sweden; Charlie D Felt, University of Calgary, Canada; Barry Feosler, University of Alabama at Birmingham, USA; John E Fitzgerale, University of Texas Southwestern Medical Center, USA; Ivan Foeldvari, National Jewish Health, USA; George A Fox, Memorial University of Newfoundland, Canada; Tracy M Fuch, University of Utah, USA; Sara Freitas, Coimbra Hospital and University Centre, Portugal; Daniel E Furst*, University of California Los Angeles, USA; Armando Gabrielli, Università Politecnica delle Marche, Ancona, Italy; Rosario Garcia-Vicuña, Hospital Universitario de la Princesa, ISF, Spain; Ognian B Georgiev, University Hospital Alexandrovska, Sofia, Bulgaria; Anthony Gerbino, Virginia Mason Medical Center, USA; Adrian Gillissen, General Hospital Kassel, Germany; Dafna D Gladman, University of Toronto, Canada; Marilyn Glassberg, University of Miami Miller School of Medicine, USA; Birndette R Goosch, National Human Genome Research Institute, National Institutes of Health, USA; Althera Gogali, University Hospital of Ioannina, Greece; Nicole S Graham, Alfred Hospital, Melbourne, Australia; Aaram Goldberg*, Toronto General Hospital, Canada; Ragnar Gunnarsson, Oslo University Hospital, Norway; Eric Hachulla, Claude Huriez
Interstitial lung disease

Hospital, University of Lille, France; Francois C Hall, University of Cambridge, UK; Sergio Harari, U.O. di Pneumologia Ospedale San Giuseppe; Milan, Italy; Ariane L Herrick, University of Manchester, UK; Erica L Herzberg, Yale University School of Medicine, USA; Saketkoo LA, New Jersey, USA; Richard B Hubbard, University of Nottingham, UK; Nicolas Hunzelmann, Department of Dermatology, University of Cologne, Germany; Maria Eloisa Isasi, Hospital Niño Jesus, Madrid, Spain; Leander Kanitakis, Hospital Centre Hospitalier Universitaire de Fribourg, Switzerland; Mark Wencel, Via Cristi Clinic, University of Kansas Medical Center — Wichita, USA; Lewis J Wesselius, Mayo Clinic Arizona, USA; Melissa Widrom-Etchegaray, St. Mary’s Hospital, London, UK; Pearce Wilcox, University of British Columbia, Canada; Margaret L Wixler, Auckland District Health Board and University of Auckland, New Zealand; Frank A Wolff, Lund University, Sweden; Wim A Wuyts, University Hospitals Leuven, Leuven, Belgium; Gondos Yung, University of California - San Diego, USA; Pietro Zaron, Ospedale di Circolo di Busto Arsizio, Italy; Christopher J Zepplin, Royal Brompton & Women’s Hospital, Brisbane QLD Australia

Pathology Advisory Team Steve D Groshong, National Jewish Health, USA; Kevin O Leslie, Mayo Clinic College of Medicine, USA; Jeffrey L Myers, University of Michigan, USA; Richard F Padera, Brigham and Women’s Hospital, USA

Radiology Advisory Team Suaj R Desai, King’s College Hospital, London, UK; Jonathan Goldin, David Geffen School of Medicine, UCLA, USA; Ella A Kazerooni, University of Michigan, Ann Arbor, USA; Jeffrey S Klein, Fletcher Allen Health Care, University of Vermont, USA; David A Lynch, National Jewish Health, Denver, USA

Analysis and coding of patient perspective transcripts Sophia L Cenac and Harmanjot K Grewal, Louisiana State University, New Orleans, USA; Angela M Chrestensen and Sanjia Fergusson, Tulane University, New Orleans, USA; Maldry Tran, University of Toronto, Canada

Additional Statistical Support Kevin J Keen, University of Northern British Columbia, Prince George, Canada

Funding Non-profit support: These studies were supported in part by the intramural division of the National Institute of Environmental Health Sciences, National Institutes of Health; and the following non-profit organisations: Brigham and Women’s Hospital, Charité Berlin—Germany, German Rheumatism Research Centre, Ira J Fine Discovery Fund, Jonathan and Lisa Rye Scleroderma Research Foundation, Louisiana State University Health Sciences Center, Charlotte, USA; Mayo Clinic — Rochester, Minnesota, National Jewish Health Denver, Louisiana State Office of Public Health — New Orleans, OMERACT (Outcome Measures in Rheumatology), Scleroderma Foundation, Sibley Hospital Foundation, and Sonia Roth AARC Foundation. Commercial Interest Support: Abbott Laboratories Canada, Actelion, Boehringer–Ingelheim Pharmaceuticals, Celgene, Internune, Sigma Tau, UCB and United Therapeutics.

Competing interests None.

Ethics approval Louisiana State University School of Medicine Institutional Review Board for all components. Patient perspective studies also included approval from Johns Hopkins University, Massachusetts General Hospital, University of Manitoba and University of Toronto.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement We have made all data visible in the online supplement.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

1. American Thoracic Society/European Respiratory Society international multidisciplinary consensus classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 2011;183:372–400.

2. Raghu G, Criner GJ, Adcock IM, et al. An official ATS/ERS/ERS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788–824.

3. Tyndall AJ, Bannert B, Von M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010;69:1809–15.

4. de Lauretis A, Veeraraghavan S, Renzoni E. Review series: aspects of interstitial lung disease; does it differ from IPF? How should the clinical approach differ? Ann Rheum Dis 2010;69:1809–15.

5. Lane B, Bihlsom R, et al. Interstitial Lung Disease Registry; The Institute for Health Metrics and Evaluation. Global Burden of Disease Study 2010. Lancet 2013;380:1787–87.

6. Nishimura R, et al. The 2011 ACCF/AHA Guidelines for Interventional Cardiology: executive summary. J Am Coll Cardiol 2011;57:2639–98.

7. The National Jewish Center for Immunology and Respiratory Medicine. Lung Transplant Registry Database. Available at: http://www.nationaljewish.org/clinicalandresearch/ports/interactive_reports/registry_database/summary.htm; 2012.

8. Raghu G, Criner GJ, Adcock IM, et al. An official ATS/ERS/ERS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011;183:788–824.

9. Tyndall AJ, Bannert B, Von M, et al. Causes and risk factors for death in systemic sclerosis: a study from the EULAR Scleroderma Trials and Research (EUSTAR) database. Ann Rheum Dis 2010;69:1809–15.

10. de Lauretis A, Veeraraghavan S, Renzoni E. Review series: aspects of interstitial lung disease: connective tissue disease-associated interstitial lung disease: how does it differ from IPF? How should the clinical approach differ? Chron Respir Dis 2011;8:53–82.

11. Olson AL, Swigris JJ, Sprunger DB, et al. Rheumatoid arthritis-Interstitial lung disease. Arthritis Care Res (Hoboken) 2013;65:1372–8.

12. Bajwa S, Ross JR, Peacock J, et al. Interventions to improve symptoms and quality of life in patients with fibrotic interstitial lung disease: a systematic review of the literature. Thorax 2013;68:867–79.

13. Martinez FJ, Safirin S, Weckler D, et al. IPF Study Group. The clinical course of patients with idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2005;172:963–7.

Saketkoo LA, et al. Thorax 2014;69:428–436. doi:10.1136/thoraxjnl-2013-204202

435
Interstitial lung disease

8 Collard HR, King TE Jr, Bartelson BB, et al. Changes in clinical and physiologic variables predict survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2003;168:538–42.

9 Boers M, Brooks P, Strand V, et al. The OMERACT filter for outcome measures in rheumatology. J Rheumatol 1998;25:2198–9.

10 Rand Organization. Multiple articles and chapters in PDF format by the RAND Organization. http://www.rand.org/international_programs/pardee/pubs/futures_method/delphi.html (accessed 3 Dec 2012).

11 Vandevén AH, Delbecco AL. The effectiveness of nominal, Delphi, and interacting group decision making processes. Acad Manage J 1974;17:605–21.

12 Distler O, Behrens F, Huscher D, et al. Need for improved outcome measures in pulmonary arterial hypertension related to systemic sclerosis. Rheumatology (Oxford) 2006;45:1455–7.

13 Bottomley A, Jones D, Claassens L. Patient-reported outcomes: assessment and current perspectives of the guidelines of the Food and Drug Administration and the reflection paper of the European Medicines Agency. Eur J Cancer 2009;45:347–53.

14 Swigris JJ, Stewert AL, Gould MK, et al. Patients’ perspectives on how idiopathic pulmonary fibrosis affects the quality of their lives. Health Qual Life Outcomes 2005;3:61.

15 Pope C, Ziebland S, Mays N. Qualitative research in health care: analysing qualitative data. Br Med J 2000;320:114–16.

16 Fink A, Kosecoff J, Chassin M, et al. Consensus methods: characteristics and guidelines for use. http://www.rand.org/content/dam/rand/pubs/notes/2007/R3367.pdf (accessed 3 Dec 2012).

17 Beyer C, Distler JH, Allanore Y, et al. Interstitial lung disease: test properties and minimal clinically important difference. Am J Respir Crit Care Med 2011;184:3477–84.

18 Manali ED, Lyberopoulos P, Triantaflidou C, et al. MRC Dysopeea Scale: relationships with cardiopulmonary exercise testing and 6-minute walk test in idiopathic pulmonary fibrosis patients: a prospective study. BMC Pulm Med 2010;10:32.

19 Nishiya T, Taniguchi H, Kondoh Y, et al. A simple assessment of dyspnoea as a prognostic indicator in idiopathic pulmonary fibrosis. Eur Respir J 2010;36:1067–72.

20 Roth MD, Tseng CH, Clements P, et al. Scleroderma Lung Study Research Group. Predicting treatment outcomes and responder subsets in scleroderma-related interstitial lung disease. Arthritis Rheum 2001;43:624–34.

21 Swigris JJ, Han M, Vij R, et al. The UCSD Shortness of Breath Questionnaire has longitudinal construct validity in idiopathic pulmonary fibrosis. Respir Med 2012;106:1447–55.

22 du Bois RM, Weycker D, Albera C, et al. Forced vital capacity in patients with idiopathic pulmonary fibrosis: test properties and minimal clinically important difference. Am J Respir Crit Care Med 2011;184:1382–9.

23 Kim DK, Jacobson FL, Washko GR, et al. Clinical and radiographic correlates of hypoxemia and oxygen therapy in the COPD Gene study. Respir Med 2011;105:1211–21.

24 Yorke J, Swigris J, Russell AM, et al. Dyspnea-12 is a valid and reliable measure of breathlessness in patients with interstitial lung disease. Chest 2011;139:159–64.

25 Swigris JJ, Brown KK, Behr J, et al. The SF-36 and SGRQ: validity and first look at minimum important differences in IPF. Respir Med 2010;104:296–304.

26 Yorke J, Jones PW, Swigris JJ. Development and validity testing of an IPF-specific version of the St George’s Respiratory Questionnaire. Thorax 2010;65:921–6.

27 Beretta L, Santaniello A, Lemos A, et al. Validity of the Saint George’s Respiratory Questionnaire in the evaluation of the health-related quality of life in patients with interstitial lung disease secondary to systemic sclerosis. Rheumatology (Oxford) 2007;46:296–301.

28 Swigris JJ, Yorke J, Sprunger DB, et al. Assessing dyspnea and its impact on patients with connective tissue disease-related interstitial lung disease. Respir Med 2010;104:1350–5.

29 Steen VD, Medsgen TA. The value of the Health Assessment Questionnaire and special patient-generated scales to demonstrate change in systemic sclerosis patients over time. Arthritis Rheum 1997;40:1984–91.

30 Patel AS, Siegert RJ, Birgill K, et al. The development and validation of the King’s Brief Interstitial Lung Disease (K-BILD) health status questionnaire. Thorax 2012;67:804–10.

31 Wells AU, Desai SR, Rubens MB, et al. Idiopathic pulmonary fibrosis: a composite physiologic index derived from disease extent observed by computed tomography. Am J Respir Crit Care Med 2003;167:962–9.

32 Goh NS, Desai SR, Veeraraghavan S, et al. Interstitial lung disease in systemic sclerosis: a simple staging system. Am J Respir Crit Care Med 2008;177:1248–54.

33 Winkelmann A, Berger N, Maurer B, et al. Screening for interstitial lung disease in systemic sclerosis: the diagnostic accuracy of HRCT image series with high increment and reduced number of slices. Ann Rheum Dis 2012;71:549–52.

34 Tashkin DP, Elashoff R, Clements PJ, et al. Cyclophosphamide versus placebo in scleroderma-related interstitial lung disease. N Engl J Med 2006;354:2655–66.

35 Seibold JR, Denton C, Purst DE, et al. Randomized, prospective, placebo-controlled trial of bosentan in interstitial lung disease secondary to systemic sclerosis. Arthritis Rheum 2010;62:2101–8.

36 Corte TJ, Goh NS, Glaspole IN, et al. Idiopathic pulmonary fibrosis: is all-cause mortality a practical and realistic end-point for clinical trials? Thorax 2013;68:491–2.

37 Ryerson CJ, Abbitt M, Ley B, et al. Cough predicts prognosis in idiopathic pulmonary fibrosis. Respirology 2011;16:969–75.

38 Theodore AC, Tseng CH, Li N, et al. Correlation of cough with disease activity and treatment with cyclophosphamide in scleroderma interstitial lung disease: findings from the Scleroderma Lung Study. Chest 2012;142:614–21.

39 Key AL, Holt K, Hamilton A, et al. Objective cough frequency in idiopathic pulmonary fibrosis. Cough 2010;6:4.

40 Birring SS, Prudon B, Carr AJ, et al. Development of a symptom specific health status measure for patients with chronic cough: Leicester Cough Questionnaire (LCQ). Thorax 2003;58:339–43.