Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens
Phan, Tran Le Cong Huyen Bao; Delorge, Ines; Avonce, Nelson; Van Dijck, Patrick

Published in:
Frontiers in Plant Science

DOI:
10.3389/fpls.2019.01694

Publication date:
2020

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Discovery Research Portal

Citation for published version (APA):
Phan, T. L. C. H. B., Delorge, I., Avonce, N., & Van Dijck, P. (2020). Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens. Frontiers in Plant Science, 10, [1694]. https://doi.org/10.3389/fpls.2019.01694

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Functional Characterization of Class I Trehalose Biosynthesis Genes in Physcomitrella patens

Tran Le Cong Huyen Bao Phan1,2,3, Ines Delorge1,2, Nelson Avonce1,2,4* and Patrick Van Dijck1,2*

1 VIB-KU Leuven Center for Microbiology, VIB, Leuven, Belgium, 2 Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium, 3 Department of Biology, College of Natural Sciences, Cantho University, Cantho, Vietnam, 4 Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico

The function of trehalose metabolism in plants during growth and development has been extensively studied, mostly in the eudicot Arabidopsis thaliana. So far, however, not much is known about trehalose metabolism in the moss Physcomitrella patens. Here, we show that in P. patens, two active trehalose-6-phosphate synthase enzymes exist, PpTPS1 and PpTPS2. Expression of both enzymes in Saccharomyces cerevisiae can complement the glucose-growth defect of the yeast tps1Δ mutant. Truncation of N-terminal extension in PpTPS1 and PpTPS2 resulted in higher TPS activity and high trehalose levels, upon expression in yeast. Physcomitrella knockout plants were generated and analyzed in various conditions to functionally characterize these proteins. tps1Δ and tps2Δ knockouts displayed a lower amount of caulonema filaments and were significantly reduced in size of gametophores as compared to the wild type. These phenotypes were more pronounced in the tps1Δ tps2Δ mutant. Caulonema formation is induced by factors such as high energy and auxins. Only high amounts of supplied energy were able to induce caulonema filaments in the tps1Δ tps2Δ mutant. Furthermore, this mutant was less sensitive to auxins as NAA-induced caulonema development was arrested in the tps1Δ tps2Δ mutant. In contrast, formation of caulonema filaments is repressed by cytokinins. This effect was more severe in the tps1Δ and tps1Δ tps2Δ mutants. Our results demonstrate that PpTPS1 and PpTPS2 are essential for sensing and signaling sugars and plant hormones to monitor the balance between caulonema and chloronema development.

Keywords: Physcomitrella patens, trehalose metabolism, PpTPS1, PpTPS2, protonema, gametophytes, sugar signaling, plant hormones

INTRODUCTION

Trehalose is a non-reducing sugar consisting of two glucose units in an α,α-1,1 configuration. It is now well known that highly accumulated trehalose in the so-called anhydrobiotic organisms, including yeasts, tardigrades, worms, and some specific plants such as the desert plant Selaginella lepidophylla, the resurrection plant Myrothamnus flabelifolius, and the grass Sporobolus spp, helps them survive during extreme dehydration, heat, or oxidative stress (Adams et al., 1990; Müller et al., 1995;
Rebecchi et al., 2009; Wharton, 2011; Vilaça et al., 2012). In plants, trehalose is synthesized through two consecutive enzymatic reactions. The first step is mediated by trehalose-6-phosphate synthase (TPS), which results in the intermediate trehalose-6-phosphate (Tre-6P). A subsequent step results in the formation of the end product, trehalose, catalyzed by trehalose-6-phosphate phosphatase (TPP) (Cabib and Leloir, 1958).

The plant trehalose biosynthesis genes are grouped in three distinct subfamilies according to their similarity to the yeast homologues TPS1 and TPS2 in Saccharomyces cerevisiae (Leyman et al., 2001; Avonce et al., 2006). The yeast ScTPS1 gene encodes the TPS enzyme while ScTPS2 encodes the TPP enzyme (Bonini et al., 2004). In A. thaliana, class I TPS enzymes display the highest similarity to ScTps1 and contain four proteins (AtTPS1 – AtTPS4), with AtTPS1, AtTPS2, and AtTPS4 showing TPS activity (Blázquez et al., 1998; Van Dijck et al., 2002; Vandesteene et al., 2010; Delorge et al., 2015). The class II TPS proteins (AtTPS5–AtTPS11) are most similar to ScTps2, but they do not show any detectable TPS or TPP activity upon expression in yeast (Vogel et al., 2001; Ramon et al., 2009). The class III TPS proteins (AtTPPA – AtTPPP) are smaller isoforms with a well-conserved TPP domain harboring the three L-2-haloacid dehydrogenase (HAD) motifs, and they all function as active trehalose-6-phosphate phosphatases (Vogel et al., 1998; Vandesteene et al., 2012). There are no orthologues of TPP proteins present in S. cerevisiae. Interestingly, phylogenetic analysis revealed that TPP proteins are closely related to genes present in Mycobacterium, indicating that the class III genes seem to be of bacterial origin (Avonce et al., 2006; Avonce et al., 2010).

Tre-6P acts as a sugar-signaling metabolite that regulates plant metabolism and affects many aspects of plant growth and development (Schluempmann et al., 2004; Lunn et al., 2006; Wahl et al., 2013; Lunn et al., 2014; Bledsoe et al., 2017). Tre-6P is considered as a specific sensor for sucrose availability. Upon carbon starvation Tre-6P levels were low in A. thaliana seedlings and they increase strongly by addition of sucrose (Lunn et al., 2006). There is a positive correlation between Tre-6P and sucrose levels under various growth conditions. Many studies have confirmed this correlation in A. thaliana rosettes (Lunn et al., 2006; Wingler et al., 2012; Carillo et al., 2013; Yadav et al., 2014), seedlings (Lunn et al., 2006; Yadav et al., 2014), developing seeds (Thiel et al., 2011), and shoot apex (Wahl et al., 2013), as well as in wheat grains (Martínez-Barajas et al., 2011), and developing potato tubers (Debatt et al., 2011). Small changes in Tre-6P levels, as a result of increased or decreased gene expression/ enzyme activity, can perturb metabolic signaling, leading to reprogramming of expression of hundreds of genes involved in growth and stress responses (Griffiths et al., 2016). The tight regulation of sucrose levels by Tre-6P might be a homeostatic mechanism of the plant ensuring levels of sucrose to be contained in a certain range, optimal for growth (Lunn et al., 2014). Tre-6P also stimulates starch synthesis by promoting thioredoxin-mediated AGPase redox activation (Kolbe et al., 2005), and promotes biosynthetic processes in seedlings in response to high levels of sucrose (Delatte et al., 2011). SNF1-related protein kinase 1 (SnRK1), which is known to inhibit plant growth (Baena-González et al., 2007), is inhibited by Tre-6P (Zhang et al., 2009) and thereby promotes survival of growing tissues of Arabidopsis under stress. Moreover, carbon utilization and carbon allocation over plant growth are regulated through the SnRK1 signaling pathway involving Tre-6P, SnRK1, and the sugar-regulated transcription factor basic region leucine zipper transcription factor11 (bZIP11) (Delatte et al., 2011). Tre-6P signaling plays a crucial role in regulation of floral transition in A. thaliana (Wahl et al., 2013) and is involved in stress responses. Overexpression of rice TPP1 in developing maize ears with reduced Tre-6P amounts led to an increase of crop yield in non-drought and mild or even severe drought conditions (Nuccio et al., 2015).

In most vascular plants, only minute amounts of trehalose are detected, which implies that trehalose could not act as an osmoprotectant during stress conditions, as seen in stress-resistant species such as Selaginella lepidophylla, where trehalose accumulates to high amounts (Vogel et al., 2001; Fernandez et al., 2010; Pampurova et al., 2014). Therefore, several initiatives were taken to increase trehalose levels by expressing microbial TPS and TPP genes in plants. Such transgenic model and crop plants showed improved stress tolerance, but unfortunately, also resulted in abnormal plant development. Transgenic plants experienced stunted growth, abnormally shaped leaves, delayed flowering, and many other phenotypic effects (Romero et al., 1997; Penna, 2003; Ge et al., 2008; Li et al., 2011; Delorge et al., 2014). These results suggested that trehalose metabolism and plant growth signaling pathways interfere with each other.

Physcomitrella patens is an important model plant in genetic studies due to numerous advantages such as a dominant haploid phase of the life cycle, which allows phenotype selection upon gene modification. Protoplasts can easily be isolated from gametophytes and regenerate directly into filamentous tissues. Furthermore, efficient homologous recombination allows precise inactivation or modification of genes (Cove, 2005). *P. patens* has been widely used as a model organism in fundamental research, developmental studies, and as a tool to produce biopharmaceuticals on a large scale (Cove et al., 1991; Baur et al., 2005; Weise et al., 2007; Reski et al., 2015).

In *P. patens* there are two alternative generations: the haploid gametophyte stage and the diploid sporophyte stage. The protonema filaments of the gametophyte are generated by spore germination. The protonema expands its filaments to form a colony comprising chloronema and caulonema. However, at first protonema only consists of chloronemal cells, which are densely packed with many chloroplasts and divide more slowly. Next, caulonemal cells are differentiated from the chloronemal apical cells. Caulonemal cells contain fewer chloroplasts and, due to their increased rate of cell division, cause rapid colony expansion, allowing the moss to grow (Cove, 2005). The balance between these two types of tissue depends on various factors including light, sugars, and plant hormones (Reski and Abel, 1998; Thelander et al., 2005; Jang and Dolan, 2011). In high-energy conditions, such as high light and...
increased sugar concentration in the medium, caulonema filaments are induced, whereas low energy, including low light and reduced levels of sugars, stimulates chloronema branching (Thelander et al., 2005).

So far, studies in sugar metabolic signaling, particularly in trehalose metabolism, are limited in *P. patens* (Nagao et al., 2005; Nagao et al., 2006; Rother et al., 2006; Erxleben et al., 2012; Arif et al., 2018). As a bryophyte, *P. patens* represents an ancient lineage of early-diverging land plants and it is an excellent model to study the role of the metabolism of trehalose in plants from an evolutionary perspective. Therefore, in this study, we generated class I TPS knockout plants including *tps1*Δ, *tps2*Δ, and *tps1*Δ *tps2*Δ mutants to functionally characterize these proteins, and to determine the role of class I trehalose biosynthesis enzymes in response to various factors in this moss.

MATERIALS AND METHODS

Yeast Strains, Culture Conditions, Transformation, and Complementation Assay

S. cerevisiae wild-type strain, W303-1A (Thomas and Rothstein, 1989); *TPS1* deletion strain, YSH290 (W303-1A, *tps1*Δ:*TRP1*) (Hohmann et al., 1993); *TPS2* deletion strain, YSH450 (W303-1A, *tps2*Δ::*LEU2*) (Neves et al., 1995); and *TPS1* *TPS2* deletion strain, YSH652 (W303-1A, *tps1*Δ::*TRP1*, *tps2*Δ::*LEU2*) (Neves et al., 1995) were used in this study. Yeast cells were grown at 30°C with the appropriate auxotrophic requirements and supplemented with 2% (w/v) glucose or 2% (w/v) galactose, as described previously (Blázquez and Gancedo, 1995).

Class I TPS genes of *P. patens* were cloned behind the *CUP1* promoter in the yeast expression vector pSAL4 (Zentella et al., 1999) for the complementation assay. Primers used to make these constructs are listed in **Supplementary Table 1**. Plasmids were transformed using the LiAc/PEG method without heat shock (Gietz et al., 1995). Transformants were selected in synthetic medium with the appropriate auxotrophic requirements and supplemented with 2% (w/v) glucose or 2% (w/v) galactose, as described previously (Blázquez and Gancedo, 1995).

Class I TPS genes of *P. patens* were cloned behind the *CUP1* promoter in the yeast expression vector pSAL4 (Zentella et al., 1999) for the complementation assay. Primers used to make these constructs are listed in **Supplementary Table 1**. Plasmids were transformed using the LiAc/PEG method without heat shock (Gietz et al., 1995). Transformants were selected in synthetic medium with the appropriate auxotrophic requirements and supplemented with 2% (w/v) glucose or 2% (w/v) galactose, as described previously (Blázquez and Gancedo, 1995).

Plant Material and Culture Conditions

P. patens wild-type strain, “Gransden” isolate, collected from Gransden Wood, in Cambridgeshire (supplied by David Cove, University of Leeds) was used throughout the study, and knockout plants were generated in the Gransden background. Protonema or gametophores were grown axenically on agar plates containing sterile BCD medium (Ashton et al., 1979), supplemented with 1 mM CaCl2 and with or without 5 mM ammonium tartrate. The growth of chloronema is induced when ammonium tartrate is included, whereas caulonema formation is enhanced when ammonium tartrate is omitted. The agar plates were overlaid with sterile cellophane. Plants were cultivated in continuous light (45 μmol m⁻² s⁻¹) at 25°C. Each week, plants were transferred to new plates. Subcultivation was performed by harvesting plants and homogenizing in sterile water using an ULTRA-TURRAX Tube Drive disperser (IKA).

TPS Activity Measurements

TPS activity was measured by a coupled-enzyme assay as described by Hottiger et al. (1987). Specific activity was expressed as μkat/g protein. Protein concentration was determined by PIERCE™ 660 nm protein assay reagent (Thermo Scientific) and absorbance was measured at 660 nm using a bovine serum albumin (BSA) standard curve as reference.

Trehalose Determination Upon Expression in Yeast

Trehalose was determined by hydrolysis to glucose with trehalase (extracted from *Humicola grisea*) and was subsequently quantified by the glucose oxidase-peroxidase method, described by Zentella et al. (1999).

Metabolite Measurements

Tre-6P was extracted with chloroform-methanol and measured by plant extracts by LC-MS/MS (Lunn et al., 2006) with modifications as described in Figueras et al. (2016). Trehalose was measured enzymatically in the same extracts using a fluorometric assay as described in Carillo et al. (2013).

Isolation and Cloning of Class I TPS Genes

Coding sequence (CDS) of the class I trehalose-6-phosphate synthase genes of *P. patens* was isolated via RT-PCR starting from cDNA of wild-type protonema tissues. To determine the sequence of 5’-end of *PpTPS2V6.1* cDNA, the 5’ RACE (Rapid amplification of cDNA ends) System was used, according to the manufacturer's instructions (Invitrogen). After cloning in the appropriate vectors, plasmids were prepared for sequencing (VIB Genetic Service Facility, Belgium). Used primers are listed in **Supplementary Table 1**.

Quantitative-PCR (qPCR) Analysis

RNA samples were extracted with Trizol (Invitrogen), according to the manufacturer’s instructions. To synthesize cDNA, 2 μg total RNA was treated with 1 μl DNase (NEB) for 10 min at 37°C. The reaction was then stopped by denaturation at 75°C for 5 min. cDNA was synthesized from the DNase-treated RNA with the Reverse Transcription System (Promega).

Each qPCR reaction consisted of a 5 μl diluted cDNA sample (2 ng) in a mixture of 10 μl Platinum SYBR Green qPCR Supermix (Invitrogen), 0.8 μl primer-mix (10 μM each), and
4.2 μl H2O. The qPCR reactions were performed in a StepOnePlusTM Real-Time PCR System (Applied Biosystems). Amplification was performed according to the following protocol: denaturation step: 95°C, 15 s; annealing step: 58°C, 30 s; extension step: 72°C, 30 s; all steps repeated for 50 cycles. The housekeeping gene used as a reference is PpACT1. Used primers are listed in Supplementary Table 1.

Construction of Transgenic Lines
To completely disrupt the PpTPS1 or PpTPS2 gene, approximately 1 kb of flanking genomic regions of 5'-UTR and 3'-UTR of PpTPS1 or PpTPS2 was adjacent to the 5'- and 3'-ends of a selection marker in transformation vectors, respectively. Homologous recombination allows efficient integration of the selection cassette at the targeted genomic site, causing a full deletion of the PpTPS1 or PpTPS2 gene (Figure 1). PpTPS1 knockout constructs were generated in the pTN186 transformation vector (NIBB, kindly provided by Yukiko Kabeya from the Hasebe laboratory, Japan) that contains the aph4 gene for selection on hygromycin. PpTPS2 knockout constructs were made in pHIZ2 (NIBB, kindly provided by Yukiko Kabeya from the Hasebe laboratory, Japan), a plasmid that contains the ble gene, allowing selection on zeocin. The final transformation constructs were linearized by restriction digestion prior to PEG-based transformation in protoplasts. Used primers are listed in Supplementary Table 1. Furthermore, a double knockout was generated by transformation of the pHIZ2:TPS2 construct in a verified tps1A background.

Isolation of P. patens Protoplasts
Five-day-old protonema tissues were digested in 10 ml 8% (w/v) D-mannitol, supplied with 1% driselase (Sigma) for 1–1.5 h at room temperature. Protoplasts were collected via filtration on a 100 μm Cell Dissociation Sieve (CD-1TM, Sigma-Aldrich, St. Louis, MO, USA). After several washing steps with 8% (w/v) D-mannitol, protoplast density was determined with a hemocytometer and re-adjusted to an optimal density of 1.6×10⁶/ml.

Transformation of P. patens Protoplasts
Transformation started from 150 μl of protoplast suspension, which was subsequently mixed with 150 μl 2X MMg solution (100 ml contains 6.1 g MgCl₂.6H₂O, 8 g D-mannitol, 0.2 g MES, pH 5.6 adjusted with 4M KOH and filter sterilized). DNA (around 60 μg) was quickly added and the whole mixture was transferred to a fresh tube containing 300 μl of 40% PEG solution [10 ml contains 0.236 g Ca(NO₃)₂.4H₂O, 0.047 g HEPES, 0.728 g D-mannitol, 4 g PEG6000, pH 7.5 adjusted with 4M KOH, overnight incubated at room temperature, filter sterilized]. The protoplast mixture was subjected to a 5 min heat shock at 45°C and was afterwards cooled down in a water bath at room temperature. Over the next hour, the transformation samples were step by step diluted with 8% (w/v) D-mannitol to allow full recovery. Finally, protoplasts were left recovering overnight in the dark in PRM-L (BCD medium, 5 mM ammonium tartrate, 6% D-mannitol, 10 mM CaCl₂). The morning after, protoplasts were centrifuged, resuspended in 9 ml PRM-T [BCD medium, 5

FIGURE 1 | Disruption of PpTPS1/PpTPS2 genes in P. patens. The PpTPS1 or PpTPS2 genes are replaced by the antibiotic resistance genes aph4 or ble, respectively. White boxes and black lines between the boxes represent exons and introns, respectively. Black boxes indicate UTR (untranslated region). Light gray boxes indicate promoter and terminator of the resistance gene. The dark gray arrows show the zeocin expression cassette (aph4) or the hygromycin expression cassette (ble).
mM ammonium tartrate, 6% mannitol, 10 mM CaCl$_2$, 0.4% plant agar (Duchefa), and plated on cellophane covered PRM-B plates [BCD medium, 5 mM ammonium tartrate, 6% mannitol, 10 mM CaCl$_2$, 0.5% Plant agar (Duchefa)]. After 5 days of recovery, protoplasts were transferred to BCDAT plates containing the appropriate antibiotic (25 mg L$^{-1}$ zeocin, Invitrogen or 20 mg L$^{-1}$ hygromycin, Cayla). After 2 weeks of initial selection, plants were transferred to new BCDAT plates without antibiotics in order to avoid unstable transformants. At the end of this period, small parts of the grown protoplasts were again selected on BCDAT plates containing antibiotics. Two weeks of growth will eventually select stable transformants ready for genotyping.

Phenotypic Analysis

To induce formation of gametophytes, homogenized protonema was cultivated on BCD agar plates, supplemented with 1 mM CaCl$_2$ and 5 mM ammonium tartrate (BCDAT medium) for 2 weeks at 25°C under continuous light. Next, small pieces of protonema were transferred to new BCDAT plates. After 1 month, gametophores were ready for phenotyping. Induction of sporophytes occurred in BCD medium, supplemented with 1 mM CaCl$_2$ and without ammonium tartrate. Protonema colonies were incubated in baby glass jars containing thick layered agar medium at 25°C in continuous light. After a month, the moss was transferred to a growth chamber adjusted to 15°C under an 8 h light/16 h dark diurnal cycle. Around 14 days later, antheridia and archegonia were formed. To facilitate fertilization, sterile water was added on top of the gametophores. Two weeks later, sporophytes were formed. One month later, matured spores are generated and phenotyping was performed.

To assess the composition of chloronemal and caulonemal cells in protonema colonies, protonema filaments were grown on BCDAT plates at 25°C in continuous light. Discrimination of chloronemal and caulonemal cells are based on the angle of the septa. The septa of caulonemal cells are oblique and those of chloronemal cells are perpendicular. The numbers of caulonemal and chloronemal cells in protonema filaments were counted after the cultivation of protonema for 10 days. Growing filaments at the edge of protonema colonies were selected randomly to calculate the percentage of chloronemal and caulonemal cells.

Morphology of the moss was analyzed by a M165C binocular microscope (Leica). Size of protonema colonies, gametophores, and sporophytes were analyzed by ImageJ.

RESULTS

P. patens Class I TPS Proteins PpTPS1 and PpTPS2 Are Catalytically Active

Phylogenetic analysis of plant trehalose biosynthesis class I genes showed that two homologues, which are annotated as *PpTPS1* and *PpTPS2*, exist in *P. patens* (Avonce et al., 2010). BLAST analysis in the Genome Browser of Cosmoss database (The *P. patens* genome resource) predicted different splice variants for *PpTPS1* and *PpTPS2* genes. *PpTPS1* has three splice variants, which are *Pp1s240_110V6.1*, *Pp1s240_110V6.2*, and *Pp1s240_110V6.3* (Figure 2A). These splice variants mainly differed in the N-terminal end. Similarly, there are three splice variants of *PpTPS2* (*Pp1s116_157F3.1*, *Pp1s116_157V6.1*, and *Pp1s116_157V6.2*) (Figure 2B). Alignment analysis with *AtTPS1* elucidated an N-terminal extension in both full length *PpTPS1* (*Pp1s240_110V6.2*) and *PpTPS2* (*Pp1s116_157F3.1*). Interestingly, the splice variant *Pp1s116_157V6.1* (*PpTPS2V6.1*) lacks this N-terminal extension.

In order to functionally characterize these two genes, we isolated the coding sequence of class I genes by RT-PCR from...
protonemal cDNA. Among the three predicted variants of PpTPS1, only PpTS240_110V6.2 (named as PpTPS1) could be isolated. In addition, the splice variant PpTS240_115V7.6 (PpTPS2V6.2) might be a pseudogene as its sequence contains a premature stop codon and was therefore not included for further analysis. Next, the three variants of class I genes (PpTPS1, PpTPS2, and PpTPS2V6.1) were cloned in a yeast expression shuttle vector, pSA4, controlled by the CUP1 promoter. N-terminally truncated versions of PpTPS1 and PpTPS2 were also cloned in pSA4. The first 155 residues at the N-terminal end of PpTPS1 or PpTPS2 were removed, producing the truncated versions of PpTPS1 and PpTPS2. Final constructs were transformed in the yeast tps1Δ and tps1Δ tps2Δ mutants to determine whether the class I TPS enzymes can complement the growth defect on glucose-containing medium of the yeast mutants. The yeast tps1Δ and tps1Δ tps2Δ mutants are unable to grow on glucose as carbon source, as ScTps1 is required for regulating the flow of glucose into glycolysis (Blázquez et al., 1993; Thevelein and Hohmann, 1995) (Figure 3). Apart from plate assays on solid medium, liquid growth assays were performed starting from an initial OD600 of 0.05. Both on plates and in liquid media, growth of the yeast tps1Δ and tps1Δ tps2Δ mutants was restored on glucose containing medium (Figure 3) and therefore all three enzymes are considered as active trehalose-6-phosphate synthases.

Further evidence supporting the moss class I TPS proteins as active enzymes was provided by measuring TPS activity and trehalose levels upon expression in yeast. The full-length enzymes showed low activity compared to the ScTps1. Truncated PpTPS1 and PpTPS2 had a significantly higher activity, compared to their full-length version (Figure 4A). Interestingly, the activity of the splice variant PpTPS2V6.1 was higher than that of PpTPS2 since PpTPS2V6.1 lacks most of the N-terminal extension, which is present in the full length PpTPS2 and which is predicted to exert an inhibitory effect on the enzyme activity. This result is similar to results described by van Dijck et al. (2002) for A. thaliana and for Ostreococcus tauri (Avonce et al., 2010). In addition, more trehalose accumulated in the yeast tps1Δ mutant strains expressing the truncated forms of PpTPS1 and PpTPS2 in comparison with the full-length versions (Figure 4B). Likewise, the yeast tps1Δ containing PpTPS2V6.1 also accumulated more trehalose, which is in accordance with the TPS activity data.

P. patens Class I TPS Proteins Do Not Show TPP Enzymatic Activity

Plant class I TPS proteins harbor a C-terminal part, which is homologous to the TPP domain of S. cerevisiae ScTps2 and E. coli OtsB (Goddijn and van Dun, 1999). TPP functionality can therefore be tested by complementation studies in the yeast tps2Δ mutant. This mutant displays a thermosensitive phenotype since lack of trehalose and accumulating Tre-6P result in a stress-sensitive phenotype at high temperatures. In our hands, none of the class I TPS enzymes of *P. patens* were able to complement the phenotype of the tps2Δ mutant at 38°C (Figure 5). This result was expected since the TPP domains of these proteins lack the conserved motifs of the phosphatase active site (Leyman et al., 2001; Eastmond et al., 2003; Vandesteene et al., 2010) and none of the previously tested plant class I TPS enzymes have displayed bifunctional enzymatic activity (Avonce et al., 2010).

Expression Profiling of Class I Trehalose Biosynthesis Genes of *P. patens*

The expression of class I TPS genes was analyzed by quantitative-PCR (qPCR). Since no specific primers could be designed for PpTPS2V6.1, qPCR analysis for this splice variant was excluded. As shown in Figure 6, both PpTPS1 and PpTPS2 were expressed in protonema and gametophores. In both tissues PpTPS2 was expressed at higher levels as compared to PpTPS1. In the case of PpTPS1, this gene was expressed highly in protonema, whereas its expression was low in gametophores.

Functional Characterization of Transgenic *P. patens*

To understand the roles of PpTPS1 and PpTPS2 in plant metabolism and development, transgenic single and double knockout plants (tps1Δ, tps2Δ, and tps1Δ tps2Δ mutants) were generated. Genotyping by PCR was performed to confirm correct deletions. In addition, southern blot analysis was also performed to identify single insertion mutants (Supplementary Figure 1). Phenotypic analysis of transgenic plants was performed. A few days after protoplasting, filaments started growing and, after approximately 1 month, plants were ready for subcultivation. In continuous light, moss tends to develop many caulonema filaments in order to stimulate expansion and gametophores are found randomly spread in the plant. In the knockout mutants, caulonema outgrowth seemed to be impaired and gametophores were densely packed together, which might indicate a slower growth rate or altered distribution of energy in the two tissue types, especially in the double mutant as compared to the wild type (Figures 7A–G). In addition, the differentiation of chloronema to caulonema was also repressed in the single mutants. This phenomenon was more pronounced in the double tps1Δ tps2Δ mutant (Figure 7H and Supplementary Figure 2). These results imply that PpTPS1 and PpTPS2 play an important role in growth and development of *P. patens*. This is similar to *A. thaliana*, where AtTPS1 is essential during embryo development (Eastmond et al., 2002).

The effect of class I trehalose biosynthesis proteins on sporophytes was also investigated. Sporulation was initiated by growing the moss plants on BCD agar plates without ammonium tartrate for 1 month under continuous light at 25°C. After that, the plants were grown in the condition of 8 h light/16 h dark light cycle at 15°C for another 4 weeks; sporophytes were formed and ready for analysis. The double mutant (tps1Δ tps2Δ) failed to produce sporophytes, while single mutants (tps1Δ and tps2Δ) developed sporophytes and viable spores. However, no significant difference in sizes of spores was detected between single mutants and wild type (Figure 8). The result reveals that PpTPS1 and PpTPS2 are necessary, but redundant, for sporophyte production in *P. patens*.

Phan et al.

*Class I TPS genes in *Physcomitrella*

Frontiers in Plant Science | www.frontiersin.org January 2020 | Volume 10 | Article 1694
FIGURE 3 | Complementation studies of PpTPS1, PpTPS2, and PpTPS2V6.1 in the yeast tps1Δ (A and B) and tps1Δ tps2Δ (C and D) mutants. (A and C) Complementation assay was performed on plates with galactose or glucose. Copper sulfate was added to a final concentration of 100 μM to induce expression. The wild-type yeast strain transformed with the empty vector was used as a control (WT). (B and D) Bioscreen analysis was done in liquid synthetic medium lacking uracil with galactose or glucose and 100 μM copper sulfate. Wild-type (WT) strain transformed with pSAL4 (●), the deletion strain transformed with pSAL4 (○), or PpTPS1 (▲), or PpTPS2 (△), or PpΔNTPS1 (■), or PpΔNTPS2 (□), or PpTPS2V6.1 (◆).
Next, metabolite levels were determined in the knockout lines to examine whether altered expression levels of class I TPS genes affect trehalose and Tre-6P contents. All plants were grown on BCDAT medium for 1 month under continuous light at 25°C. As expected, trehalose levels were significantly reduced in all the knockout lines (Figure 9A). Comparison of Tre-6P levels in all knockout lines, compared to the wild type, showed an expected reduction in \(tps1\Delta \) and \(tps1\Delta tps2\Delta \) knockout lines, but no significant reduction in the \(tps2\Delta \) line (Figure 9B).

Transgenic Lines in Sugar Growth Conditions

Tre-6P has been reported as a key regulator of carbon utilization for growth and development in plants. Disturbance of Tre-6P levels strongly affects plant metabolic signaling (Eastmond et al., 2002; Schluepmann et al., 2003; Avonce et al., 2004; Schluepmann et al., 2004; Martins et al., 2013; Lunn et al., 2014; Griffiths et al., 2016). In *P. patens* it has been reported that caulonema formation is stimulated in the presence of high levels of sugars or high light, which induce the plant to grow rapidly. In contrast, low light or low levels of sugars will force the plant to produce more energy by formation of photosynthetic tissues, such as chloronema and gametophores (Thelander et al., 2005). Moreover, Olsson et al. (2003) showed that supplied sugars stimulate caulonema filament formation. Therefore, to investigate the relationship of trehalose metabolism and energy availability, we grew the plants on BCDAT agar plates with externally supplied glucose (25 and 150 mM) and sucrose (25 and 150 mM). Addition of glucose or sucrose, even at low levels (25 mM), induced the formation of caulonema in the wild type and the single mutants. However, increasing the concentration of glucose to 150 mM was able to induce caulonema in the \(tps1\Delta tps2\Delta \) mutant (Figure 10). The double mutant appeared less sensitive to the effect of exogenous sucrose as compared to the effect of glucose.

Besides energy availability, plant hormones also affect many signaling pathways and have pronounced effects on growth and development. The balance between caulonema and chloronema is regulated by hormones. For instance, auxins induce the formation of caulonema, while cytokinins show the opposite effect (Ashton et al., 1979; Reski and Abel, 1985). Thus, we studied the effect of auxin (NAA) and cytokinin (BAP) on trehalose metabolism in *P. patens*. For this purpose, transgenic plants were grown on media containing different concentrations of NAA or BAP, and after 1 month, the effect on morphology was analyzed by microscopy analysis.

As expected, BAP reduced the size of colonies and induced the formation of callus-like tissues in the wild type and all mutants (Figures 11A, B). This effect was more severe in the \(tps1\Delta \) and \(tps1\Delta tps2\Delta \) mutants. Whereas, NAA-induced caulonema formation was clearly observed in wild-type plants, and in the \(tps2\Delta \) line, there was only a very small effect of NAA on the \(tps1\Delta \) and \(tps1\Delta tps2\Delta \) knockout lines as no well-defined outward growth was observed (Figures 11C, D).

DISCUSSION

In this study, we present the molecular and functional characterization of the class I TPS proteins in *P. patens*. By BLAST analysis, using the Cosmoss database, two genes were subsequently found and annotated as *PpTPS1* and *PpTPS2*. By using yeast complementation studies, we show that both genes
have TPS enzymatic activity, but no TPP activity, similar to other plant class I enzymes. Moreover, *P. patens* together with *A. thaliana* (Delorge et al., 2015) are the only two plant species described so far with more than one catalytically active TPS enzyme. Interestingly and different from all characterized plants is that *P. patens* has two TPS enzymes with an N-terminal extension. Truncation of the N-terminus of PpTPS1 and PpTPS2 strongly enhanced their enzymatic activity as well as increased trehalose levels when expressed in yeast. Interestingly, a splice variant of PpTPS2 (PpTPS2V6.1) lacking the N-terminus has been predicted in the database. This might be the first time by which such a natural splice variant of the plant class I TPS proteins has been described, suggesting that harboring this variant may allow the plant to modulate rapidly TPS activity and control tightly Tre-6P production in order to respond to environmental stimuli.

Lower trehalose and Tre-6P levels were detected in knockout plants in comparison with the wild type. However, there was no
significant reduction in Tre-6P levels in the tps2Δ line as compared to the wild type. This is possibly due to TPS1, which is still capable of synthesizing Tre-6P and which is still present in the tps2Δ mutant. Interestingly, Tre-6P levels were significantly lower in the single tps1Δ mutant, which harbors TPS2. This indicates that TPS1 might be more active than TPS2 as its expression was lower compared to TPS2 (Figure 6). Remarkably, low amounts of Tre-6P were still present in the tps1Δ tps2Δ mutant. This indicates that other active trehalose-6-phosphate synthase(s) might be present in P. patens. Four class II TPS proteins (PpTPS3-PpTPS6) were described in P. patens (Avonce et al., 2010). Hence, Tre-6P in the tps1Δ tps2Δ mutant might be synthesized by the class II proteins. Therefore, further research on the functional characterization of class II proteins needs to be performed to confirm this assumption.

Different factors including sugars, light, and plant hormones define the balance between chloronema and caulonema growth in Physcomitrella. Conditions such as high light, or the presence of glucose or sucrose that provide energy for plants induce caulonema formation (Thelander et al., 2005). The same was observed in the presence of auxins. Conversely, when conditions are less energy favorable, chloronema branching is stimulated in order to invest in photosynthetic tissues. Furthermore, in the presence of cytokinins, caulonema is inhibited and chloronema is enhanced. It is likely that factors inducing the formation of one type of filaments inhibit the development of the other. Here we demonstrated that caulonema filaments were significantly reduced in knockout lines compared to wild-type plants. Tre-6P was reported to regulate sugar utilization in normal growth (Schluepmann et al., 2003); therefore, a dramatic decrease in Tre-6P levels in the tps1Δ tps2Δ mutant might lead to a disturbance in carbon allocation, resulting in a reduced growth rate. Additionally, the double mutant was unable to produce sporophytes. Sporophytes largely depend on gametophytes for energy and nutrients. Sporophytes require more energy than they can supply themselves. In P. patens, transfer of sugars from gametophores to sporophytes is facilitated through transfer cells, which are present at the boundary of the gametophores and sporophytes (Courtice et al., 1978). It is possible that in the double tps1Δ tps2Δ mutant the allocation of energy supply towards the sporophytes from gametophores is somehow hampered, leading to a failure in sexual reproduction. We then tested the effect of hormones on plant growth. We show that single knockout lines, especially the tps1Δ mutant, were less susceptible to NAA-induced caulonema formation. This phenotype was more pronounced in the tps1Δ tps2Δ mutant, which could explain the lack of caulonema in this mutant. Moreover, it was demonstrated that the transition from chloronema to caulonema is promoted by auxin (Imaizumi et al., 2002; Decker et al., 2006; Jang and Dolan, 2011). We revealed that the differentiation of chloronemal cells to caulonemal cells is significantly decreased in the knockout mutants, especially in the tps1Δ tps2Δ mutant. These results illustrate that auxin-induced caulonema formation relies on the PpTPS1/PpTPS2-dependent pathway. The link between trehalose metabolism and auxin signaling has also been revealed previously. A. thaliana seedlings expressing the E. coli TPS gene (OtsA) with elevated Tre-6P levels displayed a down-regulation of auxin/IAA genes involved in auxin response (Paul et al., 2010). Opposite to auxin, cytokinins did not have a profound effect compared to the effect of NAA, but there was a slight indication towards higher sensitivity in knockout plants. Remarkably, caulonema production in the tps1Δ mutant was less than that in the tps2Δ mutant under all treatment conditions. Moreover, the former was also less sensitive to sugars and plant hormones than the latter. This suggests that PpTPS1 might be more preferable than PpTPS2 for sensing the growth factors.

Interestingly, an increase in caulonema formation was observed in single and double mutants when high glucose or sucrose was supplied, implying that these plants are still able to sense the supplied energy. Tre-6P is a central metabolic sensor, which regulates plant growth and development. Adequate Tre-6P levels are required for carbon utilization during normal growth. It has been demonstrated previously that Arabidopsis plants with reduced Tre-6P levels experienced a growth inhibition when exogenous sugars were added (Schluepmann et al., 2003). This brings us to a question of how energy is sensed in P. patens. Sensing energy levels in the cell could be the task of PpSNF1a and/or PpSNF1b (Thelander et al., 2004). A strong connection between trehalose metabolism and SnRK1-signaling has been indicated. SnRK1 is a sucrose-non fermenting related kinase 1, and is part of a serine/threonine kinase family that acts as a metabolite sensor to adapt metabolism accordingly (Jossier et al., 2009). Upon activation by starvation conditions, SnRK1 represses energy-consuming anabolic processes, whereas it induces catabolism, in order to ensure plant survival and stress tolerance. It has been revealed that Tre-6P inhibits SnRK1 (Zhang et al., 2009; Lunn et al., 2014). Recently, it was reported that Tre-6P interacts directly with a catalytic SnRK1α subunit (KIN10) in vitro (Zhai et al., 2018). In P. patens, PpSNF1a and PpSNF1b have been shown to be involved in the maintenance of sufficient energy levels, clearly demonstrated by the inability of snf1aΔ snf1bΔ to grow in low light or darkness (Thelander et al., 2004). Interestingly, the phenotype of the
\(\text{snf1a} \Delta \text{ snf1b} \Delta \) mutant is opposite to what is seen in the \(\text{tps1} \Delta \text{ tps2} \Delta \) mutant. In the former, caulonema formation was highly induced and chloronema branching was reduced, which suggest that the plant experiences a constitutive high energy growth mode. In the \(\text{tps1} \Delta \text{ tps2} \Delta \) mutant, caulonema filaments were reduced. However, the \(\text{tps1} \Delta \text{ tps2} \Delta \) mutant was still able to develop caulonema, although to a lesser extent, in high light conditions (Supplementary Figure 3). Previously, the link between sucrose and Tre-6P was not fully clear. Nonetheless, it was recently elucidated that Tre-6P regulates sucrose levels by inhibiting the cleavage of sucrose by sucrose synthase (SUS) in castor beans (\textit{Ricinus communis}) (Fedosejevs et al., 2018). This feedback inhibition may control sucrolytic flux from the source to the sink. It was reported that SUS expression in potato is
dependent on SnRK1 (Purcell et al., 1998). A possibility is that in the tps1Δ tps2Δ mutant a relief of Tre-6P-mediated SUS repression might occur, in combination with an increase of PpSNF1a and/or PpSNF1b-induced SUS expression, leading to changes in hexose levels and altered gene expression. In A. thaliana, it was demonstrated that sucrose promotes hypocotyl elongation in the light by activating auxin signaling (Lilley et al., 2012). Recently, sucrose-induced hypocotyl elongation was reported to involve the SnRK1/Tre-6P system as either KIN10 overexpression or a tps1Δ mutant shows a defect in hypocotyl elongation, which is induced by sucrose under light/dark cycles (Simon et al., 2018). All taken together, it suggests that Tre-6P/sucrose signaling, PpSNF1, and the auxin pathway might be working together to control growth rate in P. patens. The precise mechanism by which external factors and growth regulators affect downstream signaling pathways in Physcomitrella needs to be further investigated.

In S. cerevisiae, there is a clear connection between trehalose biosynthesis and the activity of hexokinase (Bonini et al., 2003). The S. cerevisiae tps1Δ mutant is unable to grow on glucose-containing medium, which is caused by an overactive influx of sugar into glycolysis, mainly due to an overactive hexokinase

FIGURE 8 Morphology of sporophytes of wild-type (WT), tps1Δ, and tps2Δ mutants (A). Measurement of sporophyte size of WT and mutants (B). Data represent mean ± SD of six sporophytes for each line. Statistical analysis with one-way ANOVA, ns, no significant difference.

FIGURE 9 Measurement of trehalose (A) and trehalose-6-phosphate (B) levels in wild-type (WT) and transgenic plants. Data represent mean ± SD of four biological replicates. Statistical analysis with one-way ANOVA. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001.
In *A. thaliana*, *AtTPS1* is very lowly expressed in *HXK1*-antisense plants, suggesting that expression of *AtTPS1* is dependent on *HXK1* and that *AtTPS1* might participate downstream of *HXK1* (Avonce et al., 2004). If this hypothesis occurs in *P. patens*, we might expect similar phenotypes of *hxk1* and class I TPS mutants. Indeed, caulonema filaments and size of colonies were reduced in the *hxk1* knockout mutant compared to the wild type (Thelander et al., 2005). Furthermore, the inhibition of cytokinins on caulonema formation was more pronounced in the *hxk1* mutant. These phenotypes are similar to what we observed in the *tps1Δ tps2Δ* mutant in our study. Therefore, the class I TPS proteins and hexokinase might work in the same pathway of sensing growth factors to monitor the balance between chloronema and caulonema growth in *Physcomitrella*.

CONCLUSIONS

This work demonstrates the importance of class I TPS proteins in regulating growth and development as well as sexual reproduction of the moss *P. patens*. The growth of caulonema filaments is regulated by PpTPS1 and PpTPS2 as a double knockout mutant displayed a failure in caulonema expansion. Furthermore, the moss
is unable to produce sporophytes when the class I TPS genes are absent. Additionally, the presence of PpTPS1 and PpTPS2 is essential for sensing and signaling growth factors including sugars and plant hormones. Disruption in Tre-6P production led to a failure in the use of supplied sugar and hormones. These findings are consistent with studies in trehalose metabolism in angiosperms. This indicates that the trehalose metabolism is crucial in regulating plant responses over environmental conditions and that are roles conserved through the plant kingdom. Moreover, it is likely that class I TPS proteins sense energy availability and phytohormones through a pathway involving PpSNF1 and HXK1. Further investigation needs to be performed to support this assumption.

DATA AVAILABILITY STATEMENT

The raw data and generated strains supporting the conclusions of this article will be made available by the authors, without undue reservation, to any qualified researcher.

AUTHOR CONTRIBUTIONS

ID conceived the experiments. ID and TP analyzed the data. NA helped in the generation of moss mutants and contributed to data analysis. TP, ID, and PD wrote the paper. PD supervised the work.

FIGURE 11 | Morphology of wild-type (WT) and transgenic plants grown on different concentrations of cytokinin and auxin. (A) Representative images of protonema morphology of plants grown on plain BCDAT medium (control) or BCDAT medium added with different concentrations of BAP (0.1, 1, 10 µM). Bars represent 2 mm. (B) Measurement of colony size of WT and mutants after 1-month growth on the medium added with BAP. Data represent mean ± SD of four individuals of protonema colonies. (C) Representative of protonema morphology of plants grown on plain BCDAT medium (control) or BCDAT medium added with different concentrations of NAA (0.1, 1, 10 µM). Bars represent 2 mm. (D) Measurement of colony size of WT and mutants after 1-month growth on the medium added with NAA. Data represent mean ± SD of four individuals of protonema colonies. Statistical analysis with two-way ANOVA, *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001, ns, no significant difference.
FUNDING
This research was supported by the Fund for Scientific Research Flanders (FWO: grant number G.0859.10) and the fund from Vietnam International Education Development (VIED). Ines Delorge was supported by a grant from the Flemish Institute for Science and Technology (IWIT).

ACKNOWLEDGMENTS
We would like to thank Nico Van Goethem (VIB-KU Leuven Center for Microbiology) for assistance with preparation of the figures. We thank John Lunn and Regina Feil (Max Planck Golm) for Tre-6P measurements.

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2019.01694/full#supplementary-material

REFERENCES

Adams, R. P., Kendall, E., and Kartha, K. K. (1990). Comparison of free sugars in growing and desiccated plants of Selaginella lepidophylla. Biochem. Syst. Ecol. 18, 107–110. doi: 10.1016/0305-1978(90)90044-G

Arf, M. A., Alseckh, S., Harb, J., Fernie, A., and Frank, W. (2018). Abscisic acid, cold and salt stimulate conserved metabolic regulation in the moss Physcomitrella patens. Plant Biol. 20 (6), 1014–1022. doi: 10.1111/plb.12871

Ashton, N. W., Grimsley, N. H., and Cove, D. J. (1979). Analysis of gametophytic development in the moss, Physcomitrella patens, using auxin and cytokinin resistant mutants. Planta 144 (5), 427–435. doi: 10.1007/BF00380118

Avonce, N., Leyman, B., Mascorro-Gallardo, J. O., Van Dijck, P., Thevelein, J. M., and Iturriaga, G. (2004). The Arabidopsis trehalose-6-P-synthese AtTPS1 gene is a regulator of glucose, abscisic acid and stress signalling. Plant Physiol. 136, 3649–3659. doi: 10.1104/pp.104.052084

Avonce, N., Mendoza-Vargas, A., Morett, E., and Iturriaga, G. (2006). Insights on the evolution of trehalose biosynthesis. BMC Evol. Biol. 6, 109. doi: 10.1186/1471-2148-6-109

Avonce, N., Wyuts, J., Verschooten, K., Vandensteene, L., and Van Dijck, P. (2010). The Cytophaga hutchinsonii ChTPSP: first characterized bifunctional TPP-TPP protein as putative ancestor of all eukaryotic trehalose biosynthesis proteins. Mol. Biol. Evol. 27, 359–369. doi: 10.1093/molbev/msp241

Baena-González, E., Rolland, F., Thevelein, J. M., and Sheen, J. (2007). A central integrator of transcription networks in plant stress and energy signalling. Nature 448, 938–942. doi: 10.1038/nature06069

Baur, A., Reski, R., and Gorr, G. (2005). Enhanced recovery of a secreted recombinant human growth factor using stabilizing additives and by co-expression of human serum albumin in the moss Physcomitrella patens. Plant Biotechnol. J. 3, 331–340. doi: 10.1111/j.1467-7652.2005.00127.x

Blázquez, M. A., and Gancedo, C. (1995). Mode of action of the gcr9 and cat3 mutations in the suppression of the lack of growth in glucose of Saccharomyces cerevisiae tps1 mutants. Mol. Gen. Genet. 249, 655–664.

Blázquez, M. A., Lagunas, R., Gancedo, C., and Gancedo, J. M. (1993). Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinases. FEBS Lett. 329, 51–54. doi: 10.1016/0014-5793(93)80191-V

Blázquez, M. A., Santos, E., Flores, C. L., Martinez Zapater, J. M., Salinas, J., and Gancedo, C. (1998). Isolation and molecular characterization of the Arabidopsis TPS1 gene, encoding trehalose-6-phosphate synthase. Plant J. 13, 685–689. doi: 10.1046/j.1365-313X.1998.00538.x

Blédsoe, S. W., Henry, C., Griffiths, C. A., Paul, M. J., Feil, R., Lunn, J. E., Stitt, M., and Lagrimini, L. M. (2017) The role of Tre6P and SnRK1 in maize early kernel development and events leading to stress-induced kernel abortion. BMC Plant Biol 17(1):74. doi: 10.1186/s12870-017-1018-2

Bonini, B. M., Van Dijck, P., and Thevelein, J. M. (2003). Uncoupling of the glucose growth defect and the deregulation of glycolysis in Saccharomyces cerevisiae tps1 mutants expressing trehalose-6-phosphate-insensitive hexokinase from Schizosaccharomyces pombe. Biochim. Biophys. Acta 1606, 83–93. doi: 10.1016/S0005-2728(03)00086-0

Bonini, B. M., Van Dijck, P., and Thevelein, J. M. (2004). “Trehalose metabolism: enzymatic pathways and physiological functions,” in The Mycota, A treatise on the Biology of fungi with emphasis on systems for fundamental and applied research, 2nd ed., vol. 291-332 . Eds. K. Esser and G. A. Lemke (Berlin-Heidelberg: Springer Verlag). doi: 10.1007/978-3-662-00646-3_15

Cabié, E., and Leloir, L. F. (1958). The biosynthesis of trehalose phosphate. J. Biol. Chem. 231, 259–275.

Carillo, P., Feil, R., Gibon, Y., Satoh-Nagasawa, N., Jackson, D., Bläsing, O. E., et al. (2013). A fluorometric assay for trehalose in the picomole range. Plant Methods 9, 21. doi: 10.1186/1746-4811-9-21

Courtice, G. R. M., Ashton, N. W., and Cove, D. J. (1978). Evidence for the restricted passage of metabolites into the sporophyte of the moss Physcomitrella patens (Hedw.). Br. Eur. J. Bryol. 10, 191–198. doi: 10.1179/1978.10.2.191

Cove, D. J., Kammerer, W., Knight, C. D., Leech, M. J., Martin, C. R., and Wang, T. L. (1991). Developmental genetic studies of the moss, Physcomitrella patens. Symp. Soc Exp. Biol. 45, 31–43.

Cove, D. J. (2005). The moss Physcomitrella patens. Annu. Rev. Genet. 39, 339–358. doi: 10.1146/annurev.genet.39.070303.110214

Debastiani, S., Nunes-Nesi, A., Hajirezaei, M. R., Hofmann, J., Sonnewald, U., Fernie, A. R., et al. (2011). Altering trehalose-6-phosphate content in transgenic potato tubers affects tuber growth and alters responsiveness to hormones during sprouting. Plant Physiol. 156, 1754–1771. doi: 10.1104/pp.111.179903

Decker, E. L., Frank, W., Sarrnhagen, E., and Reski, R. (2006). Moss systems biology en route: phytohormones in Physcomitrella development. Plant Biol. (Stuttg) 8 (3), 397–405. doi: 10.1055/s-2006-923952

Delatte, T. L., Sedijani, P., Kondou, Y., Matsui, M., de Jong, G. J., Somsen, G. W., et al. (2011). Growth arrest by trehalose-6-phosphate: an astonishing case of
primary metabolic control over growth by way of the SnRK1 signaling pathway. *Plant Physiol.* 157, 160–174. doi: 10.1104/pp.111.180422

Delorge, I., Janiak, M., Carpentier, S. C., and Van Dijck, P. (2014). Fine tuning of trehalose biosynthesis and hydrolysis as novel tools for the generation of abiotic stress tolerant plants. *Front. Plant Sci.* 5, 147. doi: 10.3389/ fpls.2014.00147

Delorge, I., Figueroa, C. M., Feil, R., Lunn, J. E., and Van Dijck, P. (2015). Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana. *Biochem. J.* 466 (2), 283–290. doi: 10.1042/BJ20141322

Eastmond, P. J., van Dijken, A. J. H., Spielman, M., Kerr, A., Tisser, A. F., Dickinson, H. G., et al. (2002). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. *Plant J.* 29, 225–235. doi: 10.1046/j.1365-313X.2002.01220.x

Eastmond, P. J., Li, Y., and Graham, I. A. (2003). Is trehalose-6-phosphate a regulator of sugar metabolism in plants? *J. Exp. Bot.* 54, 533–537. doi: 10.1093/jxb/erg039

Erleken, A., Gessler, A., Vervliet-Scheebaum, M., and Reski, R. (2012). Metabolic profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances. *Plant Cell Rep.* 31 (2), 427–436. doi: 10.1007/s00299-011-1177-9

Fedosejevs, E. T., Feil, R., Boller, T., and Wiemken, A. (1995). Heat-induced accumulation of trehalose and trehalase in plants: friend or foe? *Trends Plant Sci.* 10, 409–417. doi: 10.1016/j.tplants.2010.04.004

Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R. S., and Clément, C. (2010). Trehalose and plant stress responses: friend or foe? *Trends Plant Sci.* 15, 409–417. doi: 10.1016/j.tplants.2010.04.004

Ge, L. F., Chao, D. Y., Shi, M., Zhu, M. Z., Gao, J. P., and Lin, H. X. (2008). Expression of trehalose-6-phosphate synthase in maize ears improves yield in well-watered and drought conditions. *Frontiers in Plant Science* | www.frontiersin.org January 2020 | Volume 10 | Article 169416

Gietz, R. D., Schliestl, R. H., Willems, A. R., and Woods, R. A. (1995). Studies on trehalose metabolism in plants. *Mol. Microbiol.* 18, 141–149. doi: 10.1111/j.1365-2958.1995.tb04280.x

Griffiths, C. A., Paul, M. J., and Foyer, C. H. (2016). Metabolic transport and associated sugar signalling systems underpinning source/sink interactions. *Biochem. Biophys. Acta* 1857, 1715–1725. doi: 10.1016/j.bbabio.2016.07.007

Hohmann, S., Neves, M. J., de Koning, W., Aljo, R., Ramos, J., and Thevelien, J. M. (1993). The growth and signalling defects of the gdhA mutant on glucose are suppressed by a deletion of the gene encoding hexokinase II. *Curr. Genet.* 23, 281–289. doi: 10.1007/BF00310888

Imaizumi, T., Kadota, A., Hasebe, M., and Wada, M. (2002). Cryptochrome light responsive genes. *Physiol. Plant.* 115, 356–367. doi: 10.1111/j.1399-3054.2002.00568.x

Jang, G., and Dolan, L. (2011). Auxin promotes the transition from chloronema to stele in Physcomitrella patens. *Plant Cell.* 23, 281–289. doi: 10.1105/tpc.110.080729

Johansen, S. C., Figueroa, C. M., Feil, R., Lunn, J. E., and Plaxton, W. C. (2015). Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. *Plant J.* 29, 225–235. doi: 10.1046/j.1365-313X.2002.01220.x

Li, H. W., Zang, B. S., Deng, X. W., and Wang, X. P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. *Planta* 234, 1007–1018. doi: 10.1007/s00425-011-1458-0

Li, L. L., Gee, C. W., Sairanen, I. Ljung, K., and Nemhauser, J. L. (2012). An endogenous carbon-sensing pathway triggers increased auxin flux and hypocotyl elongation. *Plant Physiol.* 160 (4), 2261–2270. doi: 10.1104/ pp.112.205575

Lunn, J. E., Feil, R., Hendriks, J. H. M., Gibon, Y., Morcuende, R., Osuna, D., et al. (2006). Sugar-induced increases in trehalose-6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. *Biochem. J.* 397, 139–148. doi: 10.1042/ B20060083

Martins-Barajas, E., Delatte, T., Schluepmann, H., de Jong, G. J., Somsen, G. W., Nunes, C., et al. (2011). Wheat grain development is characterized by remarkable trehalose-6-phosphate accumulation pregrain filling: tissue distribution and relationship to SNF1-related protein kinase activity. *Plant Physiol.* 156 (1), 373–381. doi: 10.1104/pp.110.174524

Muller, J., Boller, T., and Wiemken, A. (1995). Trehalose and trehalase in plants: recent developments. *Plant Physiol.* 163, 1142–1163. doi: 10.1104/ pp.113.226787

Nagasaka, M., Hohmann, S., Bell, W., Dumortier, F., Luyten, K., and Ramos, J. (1995). Control of glucose influx into glycolysis and pleiotropic effects studied in different isogenic sets of Saccharomyces cerevisiae mutants in trehalose biosynthesis. *Curr. Genet.* 28, 110–122. doi: 10.1007/BF00313424

Nuccio, M. L., Wu, J., Mowers, R., Zhou, H. P., Meghji, M., Primavesi, I. F., et al. (2015). Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. *Nat. Biotechnol.* 33 (8), 862–869. doi: 10.1038/nbt.3277

Nunes, C., et al. (2011). Wheat grain development is characterized by sugar-induced increases in trehalose-6-phosphate. *Biochem. J.* 436. doi: 10.1042/ bj.201400159-6

Pampurova, S., Verschooten, K., Avonce, N., and Van Dijck, P. (2014). Functional screening of a cDNA library from teh desiccation-tolerant plant Selaginella lepidophylla in yeast mutants identifies trehalose biosynthesis genes of plant and microbial origin. *J. Plant Physiol.* 172, 803–813. doi: 10.1016/j.jplph.2014.06.063-x

Pscheidt, J., Beemont, K. I., Re, M., Yin, F., and Boller, T. (2005). Sugar-induced increases in trehalose-6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. *Biochem. J.* 397, 139–148. doi: 10.1042/ B20060083

Penna, S. (2003). Building stress tolerance through over-producing trehalose in transgenic plants. *Trends Plant Sci.* 8, 355–357. doi: 10.1016/S1360-1385(03)00199-6

Purcell, P. C., Smith, A. M., and Haldal, N. G. (1998). Antisense expression of a sucrose nonfermenting-1-related protein kinase sequence in potato results in decreased expression of sucrose synthase in tubers and loss of sucrose-inducibility of sucrose synthase transcripts in leaves. *Plant J.* 14 (2), 195–202. doi: 10.1046/j.1365-313X.1998.00108.x

Ramón, M., De Smet, I., Vandenbroucke, L., Naudts, M., Leyman, B., Van Dijck, P., et al. (2009). Extensive expression regulation and lack of heterologous enzymatic activity of the Class II trehalose metabolism proteins from Arabidopsis thaliana. *Plant Cell Environ.* 32, 1015–1032. doi: 10.1111/j.1365- 3040.2009.01985.x
Thevelein, J. M., and Hohmann, S. (1995). Trehalose synthase: Guard to the gate of

Thiel, J., Rolletschek, H., Friedel, S., Lunn, J. E., Nguyen, T. H., Feil, R., et al. (2012). The enzyme activity and supports high trehalose levels upon expression in yeast. Biochem. J. 366, 63–71. doi: 10.1042/bj20020517

Vandesteene, L., Ramon, M., Le Roy, K., Van Dijck, P., and Rolland, F. (2010). A single active trehalose-6-P synthase (TPS) and a family of putative regulatory TPS-like proteins in Arabidopsis. Mol. Plant 3, 406–419. doi: 10.1093/mp/spq114

Vandesteene, L., Lopez-Galvis, L., Vanneste, K., Feil, R., Maere, S., Lammens, W., et al. (2012). Expansive evolution of the Trehalose-6-PHOSPHATASE gene family in Arabidopsis thaliana. Plant Physiol. 160, 884–896. doi: 10.1104/pp.112.201400

Vilaça, R., Mendes, V., Mendes, M. V., Carreto, L., Amorim, M. A., de Freitas, V., et al. (2012). Quercetin Protects Saccharomyces cerevisiae against Oxidative Stress by Inducing Trehalose Biosynthesis and the Cell Wall Integrity Pathway. PloS One 7 (9), e45494. doi: 10.1371/journal.pone.0045494

Vogel, G., Aeschbacher, R. A., Muller, J., Boller, T., and Wiemken, A. (1998). Trehalose-6-phosphate phosphatases from Arabidopsis thaliana: identification by functional complementation of the yeast tps2 mutant. Plant J. 13, 673–683. doi: 10.1046/j.1365-313X.1998.00064.x

Vogel, G., Fiehn, O., Jean-Richard-dit-Bressel, L., Boller, T., Wiemken, A., Aeschbacher, R. A., et al. (2001). Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. J. Exp. Bot. 52 (362), 1817–1826. doi: 10.1039/jx02/352.362.1817

Wahl, V., Ponnu, J., Schlereth, A., Arrivault, S., Langenecker, T., Franke, A., et al. (2013). Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339 (6120), 704–707. doi: 10.1126/science.1230406

Weise, A., Altmann, F., Rodriguez-Franco, M., Sjoberg, E. B., Bäumer, W., Launhardt, H., et al. (2007). High-level expression of secreted complex glycosylated recombinant human erythropoietin in the Physcomitrella patens Δ-fuc-t mutant. Plant Physiol. J. 5, 389–401. doi: 10.1111/j.1365-313X.2006.02448.x

Wharton, D. A. (2011). Anhydroybiosis: The Model Worm as a Model? Curr. Biol. 21 (15), R578–R579. doi: 10.1016/j.cub.2011.06.040

Wingler, A., Delatte, T. L., O’Harra, L. E., Primavesi, L. F., Jhurreea, D., Paul, M. J., et al. (2012). Trehalose-6-phosphate is required for the onset of leaf senescence associated with high carbon availability. Plant Physiol. 158, 1241–1251. doi: 10.1104/pp.111.191908

Yadav, U. P., Ivakov, A., Feil, R., Duan, G. Y., Walte, D., Giavalisco, P., et al. (2014). The sucrose-trehalose 6-phosphate (Tre6P) nexus: specificity of sucrose signalling by Tre6P? J. Exp. Bot. 65, 1051–1068. doi: 10.1093/jxb/ert457

Zentella, R., Mascorro-Gallardo, J. O., Van Dijck, P., Folch-Mallol, J., Bonini, B., Van Vaeck, V., et al. (1999). A Selaginella lepidophylla trehalose-6-phosphate synthase complements growth and stress-tolerance defects in a yeast tps1 mutant. Plant Physiol. 119, 1473–1482. doi: 10.1104/pp.119.4.1473

Zhai, Z., Keereteep, J., Liu, H., Feil, R., Lunn, J. E., and Shanklin, J. (2018). Trehalose-6-phosphate positively regulates fatty acid synthesis by stabilizing WRINKLED1. Plant Cell. 30 (10), 2616–2627. doi: 10.1105/tpc.18.00521

Zhang, Y., Primavesi, L. F., Jhurreea, D., Andraiojc, P. J., Mitchell, R. A., Powers, S. J., et al. (2009). Inhibition of SNF1-related protein kinase 1 activity and regulation of metabolic pathways by trehalose-6-phosphate. Plant Physiol. 149, 1860–1871. doi: 10.1104/pp.108.133934

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Phan, Delorge, Avoence and Van Dijck. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.