Subterranean movement inferred by temporary emigration in Barton Springs salamanders (Eurycea sosorum)

Nathan F Bendik, Dee Ann Chamberlain, Thomas J Devitt, Sarah E Donelson, Bradley Nissen, Jacob D Owen, Donelle Robinson, Bradley Nissen, Jacob D Owen, Donelle Robinson, Blake N Sissel, Kenneth Sparks

1 Watershed Protection Department, City of Austin, Austin, Texas, United States of America
2 University of Texas, Department of Integrative Biology and Biodiversity Center, Austin, Texas, United States of America
3 Tennessee State University, Department of Agricultural and Environmental Sciences, Nashville, Tennessee, United States of America
4 Randolph Air Force Base, AFCEC, JBSA ISS Natural Resource Support, San Antonio, Texas, United States of America
5 United States Fish and Wildlife Service, Austin Ecological Services Field Office, Austin, Texas, United States of America
6 Travis County, Department of Transportation and Natural Resources, Austin, Texas, United States of America
7 Baer Engineering & Environmental Consulting, Inc., Austin, Texas, United States of America

Corresponding Author: Nathan F Bendik
Email address: nathan.bendik@austintexas.gov

Movement behavior is an important aspect of animal ecology but is challenging to study in species that are unobservable for some portion of their lives, such as those inhabiting subterranean environments. Using four years of robust-design capture-recapture data, we examined the probability of movement into subterranean habitat by a population of endangered Barton Springs salamanders (Eurycea sosorum), a species that inhabits both surface and subterranean groundwater habitats. We tested the effects of environmental variables and body size on survival and temporary emigration, using the latter as a measure of subterranean habitat use. Based on 2,046 observations of 1,578 individuals, we found that temporary emigration was higher for larger salamanders, 79% of which temporarily emigrated into subterranean habitat between primary sampling intervals, on average. Body size was a better predictor of temporary emigration and survival compared to environmental covariates, although coefficients from lower ranked models suggested turbidity and dissolved oxygen may influence salamander movement between the surface and subsurface. Surface population dynamics are partly driven by movement below ground and therefore surface abundance estimates represent a fraction of the superpopulation. As such, while surface habitat management remains an important conservation strategy for this species, periodic declines in apparent surface abundance do not necessarily indicate declines of the superpopulation associated with the spring habitat.
Subterranean movement inferred by temporary emigration in Barton Springs salamanders (*Eurycea sosorum*)

Nathan F. Bendik, Dee Ann Chamberlain, Thomas J. Devitt¹, Sarah E. Donelson, Bradley Nissen², Jacob D. Owen³, Donelle Robinson⁴, Blake N. Sissel⁵, Kenneth Sparks⁶

1Watershed Protection Department, City of Austin, Austin, Texas, U.S.A.
2¹Present address: Department of Integrative Biology and Biodiversity Center, University of Texas, Austin, TX, USA
3²Present address: Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN, USA
4³Present address: AFCEC, JBSA ISS Natural Resource Support, Randolph AFB, TX, USA
5⁴Present address: Austin Ecological Services Field Office, United States Fish and Wildlife Service, Austin, TX, USA
6⁵Present address: Department of Transportation and Natural Resources, Travis County, Austin, Texas, USA
7⁶Present address: Baer Engineering & Environmental Consulting, Inc., Austin, TX, USA

Corresponding Author:
Nathan F. Bendik
505 Barton Springs Rd., Watershed Protection Department, 11th Floor, Austin, TX 78704
Email address: nathan.bendik@austintexas.gov

Abstract
Movement behavior is an important aspect of animal ecology but is challenging to study in species that are unobservable for some portion of their lives, such as those inhabiting subterranean environments. Using four years of robust-design capture-recapture data, we examined the probability of movement into subterranean habitat by a population of endangered Barton Springs salamanders (*Eurycea sosorum*), a species that inhabits both surface and subterranean groundwater habitats. We tested the effects of environmental variables and body size on survival and temporary emigration, using the latter as a measure of subterranean habitat use. Based on 2,046 observations of 1,578 individuals, we found that temporary
emigration was higher for larger salamanders, 79% of which temporarily emigrated into subterranean habitat between primary sampling intervals, on average. Body size was a better predictor of temporary emigration and survival compared to environmental covariates, although coefficients from lower ranked models suggested turbidity and dissolved oxygen may influence salamander movement between the surface and subsurface. Surface population dynamics are partly driven by movement below ground and therefore surface abundance estimates represent a fraction of the superpopulation. As such, while surface habitat management remains an important conservation strategy for this species, periodic declines in apparent surface abundance do not necessarily indicate declines of the superpopulation associated with the spring habitat.

Introduction

Amphibians are declining in many parts of the world owing to numerous factors (Lannoo 2005, Catenazzi 2015, Grant et al. 2016). Studies linking movement patterns to underlying behavioral and ecological mechanisms (Nathan et al. 2008) are needed to better understand amphibian population declines (Pittman et al. 2014). Tracking individual movement and fate has been suggested as a way to close this information gap by directly linking fitness consequences of movement to management strategies or environmental conditions (Bailey and Muths 2019). Although appealing, this approach requires radio telemetry (Bailey and Muths 2019), which is impractical for many amphibians because they are too small to be fitted with transmitters. Indirect assessments of movement behavior are often more practical for many amphibians (e.g., capture-recapture studies; Marsh et al. 2005, Lowe et al. 2006, Ringler et al. 2009, Cayuela et al. 2020), including fossorial or cave-dwelling species (Balázs et al. 2020).

Many salamander species use subterranean habitat because it provides environmental conditions that are relatively stable compared to surface habitats. Some species are obligate residents of caves with highly specialized adaptations (troglobites), while others are facultative troglophiles that periodically venture underground (Gorički et al. 2019). Studies of these populations are challenging because individuals are difficult or impossible to observe directly. Because of access restrictions to cave habitats, high levels of endemicity (Culver et al. 2000, Trontelj et al. 2009), and apparent rarity (Krejca and Weckerly 2007, Jugovic et al. 2015, DiStefano et al. 2020), answering basic ecological questions (e.g., Who lives there? How many are there?) remains a fundamental challenge for the study of cave-dwelling animals (Wynne et al. 2019). Cave-dwelling vertebrates are typically observed only in relatively small portions of their habitat, where humans can enter or remotely access their environment. Sampling generally occurs in human-accessible caves or through “windows” into their environment such as wells or spring outlets (Miller and Niemiller 2008, Graening et al. 2010, Day et al. 2016, Niemiller et al. 2016, Phillips et al.
Moreover, many cave-adapted species are of conservation concern because of their high endemism and the sensitivity of subterranean habitats to disturbance and pollution (Chippindale and Price 2005, Miller and Niemiller 2008, Fenolio et al. 2013, Devitt et al. 2019, Gorički et al. 2019), underscoring the need for basic research on the biology of subterranean fauna (Mammola et al. 2019).

Studies of cave organisms have relied mostly on capture-recapture data to make inferences about their movement behavior (Means and Johnson 1995, Trajano 1997, Lopes Ferreira et al. 2005, Băncilă et al. 2018, Balázs et al. 2020). Direct observations of recaptured individuals have been used to quantify movement patterns where habitat is accessible (Means and Johnson 1995, Trajano 1997, Balázs et al. 2020). Where animals retreat to inaccessible habitat, e.g., from a cave stream or spring outlet to the aquifer that feeds it, capture-recapture data may indicate immigration to or emigration from these areas (Means and Johnson 1995, Day et al. 2016). Explicitly modeling transitions between observable and unobservable states using capture-recapture data (so-called temporary emigration) allows for estimates of demographic parameters (Kendall et al. 1997), breeding status (e.g., Kendall and Bjorkland 2001), habitat use (Bailey et al. 2004a, Cecala et al. 2013), and movement (Băncilă et al. 2018). A temporary emigration model provides estimates of movement into and out of the sample area based on the transition rate between observable and unobservable states (Kendall et al. 1997). In cases where observable states correspond to accessible areas (e.g., within a cave gallery or at a spring outlet), quantifying temporary emigration allows inferences about the characteristics of the population that use both the accessible and inaccessible areas rather than being limited to only the area directly sampled.

Barton Springs salamanders (*Eurycea sosorum*) occur in both surface and subterranean habitat, but populations are typically only accessible for study near springs. When first described, the salamanders were assumed to be restricted to the immediate vicinity of Barton Springs in Austin, Texas (Chippindale et al. 1993), one of several large spring complexes in the Edwards Aquifer of central Texas that harbors endemic species (Bowles and Arsuffi 1993; Krejca and Reddell, 2019). Because the subterranean conduits feeding Barton Springs are largely inaccessible, biologists questioned whether the species was primarily a surface dweller that occasionally enters subterranean habitat or an obligate subterranean species that is flushed to the surface accidentally (Sweet 1978, Chippindale et al. 1993). Following its description, in 1997 this species was listed as endangered under the US Endangered Species Act of 1973 due to its exceptionally small range (at the time, known from only three springs in a city park) and presumed low abundances (Chippindale et al. 1993, City of Austin 1997, U.S. Fish and Wildlife Service 1997). Although additional occurrences of this species have subsequently been recorded outside of the type locality (Bendik et al. 2013a, McDermid et al. 2015, Devitt and Nissen 2018), abundances at those
sites are lower and surface habitat is more limited in extent compared to Barton Springs. Abundances can
be high at the type locality (e.g., > 500 individuals) but may fluctuate by orders of magnitude and
occasionally reach zero, or nearly so (Bendik and Dries 2018, Dries and Colucci 2018). This suggests that
either surface populations are occasionally extirpated and recolonized from subterranean populations or
that emigration from the surface to the aquifer is occurring (Bendik and Dries 2018). Complete
extirpation without emigration into the aquifer would suggest that the surface habitat is a population sink
(i.e., unable to be maintained without immigration; Pulliam 1988) and that surface populations could be a
dead-end in terms of species persistence. If so, changes to population management practices and recovery
planning may be necessary, because a primary focus of conservation for Barton Springs salamanders
includes management and restoration of the surface habitat (Dries et al. 2013, U.S. Fish and Wildlife
Service 2016).

Here, we report the results of a four-year robust-design capture-recapture study to better understand
movement patterns and subterranean habitat use of Barton Springs salamanders. We examined how
extrinsic environmental factors (spring discharge, turbidity, dissolved oxygen, temperature) and intrinsic
factors (body size) affect survival and temporary emigration. Population dynamics differ between
juveniles and adults in Barton Springs salamanders (Bendik and Dries 2018), and size is often correlated
with the propensity for movement in amphibians (Cayuela et al. 2020). Similarly, spring flow is an
important driver of environmental conditions (e.g., Mahler and Bourgeais 2013) that are important to the
ecology and physiology of groundwater Eurycea salamanders (Fries 2002, Woods et al. 2010, Crow et al.
2016, Bendik and Dries 2018) and may influence movement patterns as well.

Materials & Methods

Study Site

We studied Barton Springs salamanders (Figure 1) at Eliza Spring (Figure 2), part of the Barton Springs
complex in Austin, Texas, USA. Eliza Spring is adjacent to Barton Springs Pool, a popular spring-fed
swimming pool. Barton Springs is the primary discharge point for the Barton Springs segment of the
Edwards Aquifer, a sole-source karstic aquifer that responds rapidly to changes in precipitation via a
system of sinking streams that occur over a 430 km² area (Hunt et al. 2019). Eliza Spring emerges into a
concrete-bottomed pool (74 m²) with a water depth of approximately 0.3 m (Figure 2A) and harbors the
highest average densities of Barton Springs salamanders among known spring localities (4.32/m² ± 3.4
SD compared to ≤ 0.25/m² ± 0.3 at other sites within the Barton Springs complex; Dries and Colucci
2018). Throughout most of our study, the spring pool discharged directly into a concrete pipe (0.6 m
diameter) that flowed to Barton Creek, likely representing a point of no return for salamanders. During
the last year of our study, the pipe was replaced by a 1 m wide overland stream that created 25 m² of
additional habitat, but that still terminated at a concrete tunnel that conveys Barton Creek (Figure 2B).

Data Collection

We used a robust-design sampling scheme (Pollock 1982) that consisted of 15 primary sampling events
separated by ca. 3 month (range = 2–6 mo.) intervals during which the population was assumed to be
open to births, deaths, and migration. During each primary sampling event, the population was sampled
three times over the course of one week. We assumed the population was closed within each primary
sampling event. We performed surveys from October 2014 through November 2018. While observers
varied from survey to survey (typically a team of 4–6 people), a core group of 3–4 experienced observers
were present during most of our sampling events. All fieldwork was performed under the authority of
Texas Parks & Wildlife scientific permit SPR-0113-006 and U.S. Fish and Wildlife permit TE-839031.

During surveys, biologists snorkeled from downstream to upstream, searching for salamanders by
visually inspecting and moving all rocky substrate and attempting to capture all observed salamanders
using aquarium nets. Salamanders were then temporarily held in flow-through mesh containers in the
spring to await processing. Captured salamanders were photographed in a transparent water-filled tray
against a 5 mm grid using a Nikon DSLR and macro lens with two flashes mounted on a custom stand.

We measured the body length for all individuals captured to the nearest 0.1 mm using ImageJ (Rasband
1997). Body length was quantified as the mid-vertebral distance from the tip of the snout to the posterior
insertion of the hindlimbs. Photographs were then cropped to include just the head, and we used program
Wild-ID to identify individuals (Bolger et al. 2012) based on differences in color pattern. We used the R
statistical software environment (R Core Team 2020) to generate a matrix of capture histories from Wild-
ID output. Photographic identification using this approach has been shown to be more accurate than
physical tagging in a similarly patterned species (E. tonkawae; Bendik et al. 2013b). One limitation is that
small juveniles cannot be tracked reliably using photographs over periods greater than ca. two months
because of changes in pigmentation during growth (Bendik et al. 2013b). For this reason, we excluded
individuals <15.01 mm in body length (corresponding to ca. 25 mm in total length) from the capture-
recapture analysis. The resulting data set included large juveniles and all adults, based on estimates of a
mature size of 22.5 mm snout-vent length (Chippindale et al. 1993). Photographs in the final data set were
visually matched and confirmed as a match or non-match using all 20 candidate matches presented by
Wild-ID. To reduce visual matching errors, the photos were matched independently by two people and
any conflicts found were investigated and resolved.
Analysis

We estimated capture (p) and recapture (c) probabilities, survival (S), temporary emigration (γ) and abundance (N) using robust-design capture-recapture models. Capture probability is conditional upon the individuals being available for capture. Temporary emigration refers to the state when individuals in a population are temporarily unavailable for capture and is Markovian when movement from the study is dependent upon the prior state (Kendall et al. 1997). Temporary movement of a salamander out of the sampling area, given that it was present during the previous period is estimated by the parameter γ''. Staying out of the sampling area given that it was not present during the previous period is γ'. When these parameters are equal, temporary movement is considered random. All temporary migrants are part of the superpopulation—the total population of individuals in the sampling area including those temporarily unavailable for capture and those available for capture (Kendall et al. 1997). The survival parameter S is a function of both mortality and permanent emigration. Survival is apparent because the fate of each animal that permanently leaves the study area cannot be known without auxiliary information (e.g., from radio telemetry), and thus mortality and permanent emigration are confounded. Abundance (N) for each period refers to the size of the population available at the surface for capture during sampling. We did not attempt to estimate the size of the superpopulation because this requires data (or assumptions) about the source of new recruits when temporary emigration is Markovian (Wen et al. 2011; Kendall et al. 1997).

By quantifying temporary emigration, we can measure the prevalence of subterranean movement of Barton Springs salamanders at Eliza Spring. The bottom of the Eliza Spring pool was filled with concrete in the early 1900s, except for 22 formed outlets (7 in the floor and 15 on the sides) to convey the spring water, so most of the base-level substrate is impenetrable by salamanders except through those outlets. All migrants that eventually return to the surface must have retreated below ground, and this rate can be estimated as temporary emigration using capture-recapture data.

Because capture-recapture model sets with multiple parameters can result in hundreds or even thousands of different models when all possible combinations of all parameters and covariates are used, we built our model sets using a stage-based, step-down approach, starting with the most general model of time-variation supported by our data (Lebreton et al. 1992). This most general model let S vary by year (ending in Oct./Nov.) and γ'' and γ' vary by period. We were unable to successfully fit models including full-time variation of S. Proceeding with this structure, we first fit a variety of models (without covariates on survival or emigration parameters) to determine the most parsimonious structure for p and c, which included time variation within periods but equal across periods, variation between periods but constant within, full-time variation (different estimates for each individual survey), constant detection, and models where $p = c$ (and aforementioned time structures), for a total of $n = 20$ model structures of detection.
In the final model-building stage, we compared models where temporary emigration (γ'' and γ') varied over periods or as a function of environmental or individual covariates and models where survival probabilities varied with these same covariates. Specifically, we used five covariates that describe aspects of water quality and quantity measured at Barton Springs: flow (spring discharge rate), change in flow between sampling periods, water temperature, dissolved oxygen (DO) concentration, and turbidity. Increases in flow may help flush additional animals to the surface via drift, but flow may also prompt compensatory movement back into the spring outlets, influencing the rate of temporary migration in either direction. Permanent migration in response to discharge may also be reflected by apparent survival estimates. In general, increasing flow is thought to be beneficial to Barton Springs salamanders, particularly when recovering from drought conditions (Dries and Colucci 2018). Our expectation is that spring flow may have a positive influence on actual survival, but high flow could prompt migration underground, producing an overall negative effect on apparent survival if this migration is permanent.

Given the complexity of possible responses, we did not have a strong a priori hypothesis for the direction of the effect of these discharge covariates. Low DO and high temperature negatively affect survival and growth of Barton Springs salamanders under laboratory conditions (Woods et al. 2010; Crow et al. 2016), but these conditions infrequently occur in the wild, so we generally expect DO and temperature to have a positive influence on survival. Periods of high turbidity may result in excess fine sediment accumulation within salamander habitat, which has a negative relationship with relative abundance (Bendik and Dries 2018). We therefore expected turbidity to have a negative relationship with survival and the probability of remaining above ground.

We summarized mean daily water quality and water quantity statistics for Barton Springs from United States Geological Survey (USGS) gage number 08155500. Mean spring flow, temperature, DO and turbidity were calculated from the mean daily statistics between each period (Table 1). Change in flow was calculated using the difference between the first and last day of the interval between surveys (Table 1). All covariates were z-scored prior to analysis. Rather than include all possible combinations of covariate parameterizations in our model set, we chose the three sets of covariates to evaluate as a function of survival and/or temporary emigration: “flow-only” (mean flow + change in flow), “flow-temp-turbidity” (mean flow + change in flow + mean temp + mean turbidity), and “turb-DO” (turbidity + DO). Because water temperature and flow can be correlated with DO, we excluded those combinations (e.g., flow and DO: $\rho = 0.74, P = 0.003$). We did not find problems with multicollinearity among covariates based on a condition number test. We tested all combinations of the specified covariate and non-covariate models for survival and temporary emigration for a resulting model set of $n = 80$.
We also included individual covariates of body size on survival and temporary emigration. We expected survival to be lower for juvenile salamanders compared to adults (Lee et al. 2012, Messerman et al. 2020). Furthermore, lower swimming performance in smaller salamanders (e.g., in *Eurycea bislineata*; Azizi and Landberg 2002) may inhibit them from migrating back through flowing spring orifices, thus limiting their potential for temporary emigration away from the study site. Because size cannot be observed when individuals are not captured, we used a von Bertalanffy growth model (Eaton and Link 2011) to predict body lengths for unobserved individuals following first capture. Several parameters are required to describe a von Bertalanffy growth function: initial size (*s*[0]), asymptotic size (*a*), and a growth rate coefficient (*k*). An additional parameter, λ, represents individual heterogeneity in the growth curves as the mean to variance ratio (Eaton & Link, 2011). Using Bayesian analysis in JAGS (Plummer 2003), we estimated parameters *a*, *k*, λ as well as standard deviation of measurement error (sdme) from body size measurements of up to five between-period recaptures, including individuals below our size cutoff. Thus, we took advantage of all the recapture information from smaller individuals to estimate the growth curve, even though some of these were excluded from the CMR analysis. Four chains of 100,000 iterations were run following a burn-in of 30,000, and convergence was confirmed via examination of trace plots and Gelman and Rubin’s (1992) diagnostic. We used the posterior means of *a* and *k*, and the initial size, *s*[0]=7.53 mm (based on observations of captured hatchlings) to predict sizes. Size covariates were coded as categorical variables based on the mean size at first capture among recaptured individuals (24.2 mm). This allowed for an even distribution among recaptures that would transition to a larger size. Individuals > 24.2 mm were coded as 1, all others as 0, and transitions from size 1 to size 0 were not permitted. We compared all combinations of models for survival and temporary emigration parameters with body size as a single covariate or as additive with time (*n* = 26).

Our approach assumes transitions between states are estimated without error and we did not attempt to incorporate uncertainty in predictions of size. Although transition rates between states can be estimated with multi-state capture-recapture models (Lebreton et al. 2009), we view the growth model approach as more accurate because it directly incorporates information (initial size, elapsed time between surveys, shape of the growth curve) about the transition (growth) process. To assess the sensitivity of this approach to variation in the growth rate parameters, we performed a bootstrapping procedure with 1000 iterations. For each iteration, we randomly sampled parameter estimates of *a* and *k* from a single posterior MCMC draw. Next, we estimated size classes for all individuals after first capture, if unobserved. We then performed model fitting for the top model with size as a covariate on *S, γ”* and/or *γ’*. Finally, we calculated Akaike Information Criterion corrected for small samples (AICc) to select the best models (Burnham and Anderson 2002a).
We fit the data using maximum likelihood under the Huggins formulation (Huggins 1989, 1991), as implemented in program MARK v 9.0 (White 2020) and used AICc and AICc weights (w) to compare the relative strength of each model (Burnham and Anderson 2002a). We used the package RMark v 2.2.7 (Laake 2013) implemented in R v3.6 and v4.0 (R Core Team 2020) to build models and generate model-averaged parameter estimates. Standard errors for the average of time-varying parameters were calculated using the delta method.

Results

Our capture-recapture data set included 2,046 observations of 1,578 Barton Springs salamanders, 333 of which were recaptured at least once between periods. Almost all salamander observations occurred within the spring pool (99%) and only 1% occurred within the newly constructed stream (the stream was not fully colonized yet; unpublished data). During the first stage of model fitting, the best model of detection was \(p = c \) with full-time variation across all survey events (\(w = 1.00 \)). Model-averaged values of \(\hat{p} \) ranged from 0.25 (SE = 0.054) during the second survey of November 2019 to 0.82 (SE = 0.043) during the first survey of November 2017. The most general models with temporary emigration were ranked higher than the non-movement model (\(\Delta \text{AICc} = 1065 \)), with Markovian movement favored over the random movement model (\(w = 1.00; \Delta \text{AICc} = 42.4 \)). None of the models including environmental covariates were favored (Table 2; sum of \(w = 0 \)). In fact, our results indicated the effects of environmental variables (DO, spring flow, turbidity) were far outweighed by the effect of body size as a determinant of surface availability and survival (Table 2). Models with time-varying survival and emigration parameters were also more parsimonious than those where temporal variation was explained by environmental covariates (Table 2). The best model overall was \(S(\sim \text{size}), \gamma''(\sim \text{time} + \text{size}), \gamma'(\sim \text{time}), p = c(\sim \text{period}:\text{time}) \) (\(w = 0.35 \); Table 2). Goodness-of-fit tests are not available for robust-design models, but we note that the order of the top models was invariant to adjustments of the variance inflation factor, \(\hat{c} \).

Despite models with environmental covariates not ranking highly, a comparison among models (\(n = 27 \)) that only included environmental covariates as a function of survival and emigration parameters provides some insight as to the direction of different environmental effects (Table 3). An exhaustive model set of all possible covariate combinations (which is generally not recommended; Burnham and Anderson 2002b) precludes use of model averaging of the beta estimates. Instead, we provide coefficients (on the logit scale) from the top five models (sum of AICc \(w = 0.93 \)) within this subset to illustrate the direction of environmental effects (Table 4). Estimates for the top models were generally consistent and did not change sign (Table 4). Flow-temp-turbidity and flow-only models of survival outperformed turb-DO models, while turb-DO models for emigration were favored over others (Table 3). Temperature and flow were positively correlated with survival, which was consistent with our hypothesis (Table 4). Turbidity
was positively associated with both emigration parameters, but only significantly so for γ''. DO was negatively associated with both emigration parameters, but again, this affect was negligible for γ'. The remaining coefficients had 95% confidence intervals overlapping zero (Table 4). Collectively, these results suggest that salamanders move below ground with increasing turbidity and decreasing DO, which was consistent with our expectation.

Growth was modeled from 901 measurements of 372 recaptured individuals. Mean parameter estimates with 95% credence intervals from the von Bertalanffy growth model were as follows: $a = 31.57$ (30.99–32.18), $k = 7.81$ (7.14–8.52), $\lambda = 4.49$ (3.34–6.01) and $sdme = 1.25$ (1.11–1.39). The bootstrap analysis using random draws from the posterior distributions of parameter estimates from the growth model showed little variation in AICc for the top model (range 10654.32–10655.75), indicating that different potential realizations of the individual growth trajectories (based on the population mean) have little impact on our inference. This is due to our study design sampling intervals being long enough and growth of salamanders fast enough (Figure 3), that small shifts in growth rate parameters have a negligible effect on the predicted transition rates between size classes at the resolution of our data.

Body size had a positive effect on S and γ''. Estimates of the body size effect on the logit scale (beta) from the top model were 1.43 (SE = 0.17) and 1.45 (SE = 0.28) for S and γ'', respectively. Among both size classes, estimates of monthly apparent survival, \hat{S}, ranged between 0.75 (SE = 0.04) and 0.95 (SE = 0.02) (Figure 4A), which corresponds to annual survival rates between 0.03 and 0.52. Temporary emigration varied among size classes (γ' range: 0.16–0.97); the probability of moving from the pool to subterranean habitat was higher for larger individuals (mean $\hat{\gamma}'' = 0.79$, SE = 0.02) compared to smaller individuals (mean $\hat{\gamma}'' = 0.53$, SE = 0.06) (Figure 4). Similarly, the probability of remaining in subterranean habitat ($\hat{\gamma}'$ range: 0.59–0.96) was higher for larger individuals (mean $\hat{\gamma}' = 0.86$, SE = 0.02) than smaller individuals (mean $\hat{\gamma} = 0.77$, SE = 0.17) (Figure 4). Abundance (\hat{N}) at the surface during each primary period ranged from 62 (SE = 3) to 377 (SE = 9) (Figure 5).

A typical recaptured individual was not observed for at least one survey period before being observed again, which is consistent with the high estimates of temporary emigration. The median time for between-period recaptures was 105 days, which is the average time interval between surveys. In some cases, individuals were not observed for several survey periods before being recaptured. For example, 20% of between-period recaptures (66 of 333) were not seen for more than one year at some point during the study, and 13 individuals had at least a two-year span between observations.

Discussion

Our results contradict characterizations of Barton Springs salamanders as primarily surface-dwellers, or
as subterranean inhabitants accidentally flushed to the surface (see, e.g., Sweet 1978, Chippindale et al. 1993). Barton Springs salamanders at Eliza Spring can be found in abundance at the surface (Bendik and Dries 2018, Dries and Colucci 2018), but often move underground. High estimates of γ'' demonstrate that temporary emigration of individuals from the surface to the subsurface is frequent. A large proportion of individuals also remained underground between surveys, as shown by similarly high estimates of γ'.

Some individuals were not recaptured until more than a year later, suggesting that salamanders may spend long periods of time below ground before returning to the surface. Movements between the surface and subsurface may be a large component of previously observed surface population dynamics, which are characterized by high variability in abundance (Bendik and Dries 2018, Dries and Colucci 2018).

High temporary emigration in Barton Springs salamanders is consistent with observations of other plethodontid salamander populations (Bailey et al. 2004a, 2004b, Price et al. 2012, O'Donnell and Semlitsch 2015, Bendik 2017, Drukker et al. 2018). In general, surface activity of plethodontid salamanders tends to be low, with surface abundance being a small fraction of the superpopulation size (e.g., see Table 1 in O’Donnell and Semlitsch 2015). Plethodontids migrate beneath the forest floor (Bailey et al. 2004a, O’Donnell et al. 2014) or to aquatic subterranean refugia (Bonett and Chippindale 2006, Bendik and Gluesenkamp 2013, Steffen et al. 2014) in response to moisture conditions at the surface, which can influence apparent demographic patterns (Connette et al. 2015, O’Donnell and Semlitsch 2015). Although temporary emigration in plethodontids is common, reasons for lower surface availability of Barton Springs salamanders are likely different than those terrestrial salamanders. Lungless salamanders must keep their skin moist for cutaneous respiration and to prevent water loss (Feder 1983) which influences their surface activity. Neotenic *Eurycea* require suitable levels of DO (Woods et al. 2010) and flowing water to maintain activity at the surface (Bendik and Gluesenkamp 2013), but otherwise should be unaffected by the challenges of variable moisture faced by their terrestrial counterparts.

Models with environmental effects performed poorly compared to models with individual effects (body size) or time-varying parameters. Despite this, environmental effects can still provide some insight into the temporal variation we observed in salamander movement. Turbidity was positively associated with movement below ground, suggesting that either conditions worsen on the surface during higher turbidity or they improve below ground relative to the surface (e.g., via increased organic matter availability in the subterranean ecosystem). This pattern is consistent with observations of lower surface abundance when fine sediment deposition is high (Bendik and Dries 2018). DO values were negatively associated with salamanders moving below ground but not significantly associated with movement to the surface. Salamanders may move in response to declining DO in anticipation of adverse conditions, for example, as
values below 4.4 mg/L start to have negative effects on salamander growth and survival (Woods et al. 2010). However, this is speculative because DO remained above 4.8 mg/L during our study (Table 1). Furthermore, DO does not vary substantially between the near-surface and surface habitats and is higher at the springs than deep underground (Mahler and Bourgeais 2013), so salamander movement below ground in search of higher DO conditions is unlikely. However, subterranean habitat could be less metabolically taxing for individuals (e.g., less movement and lower stress due to lack of predation) and prompt migration underground as DO declines. DO is correlated with flow, which was positively associated with survival and consistent with our hypothesis. Other studies have indicated the importance of this variable for Barton Springs salamander population demographics. For example, lagged flow is positively correlated with reproduction and low flows are associated with low abundance (Bendik and Dries 2018; Dries and Colucci 2018). Spring flow may also be associated with food availability within the aquifer, although this hypothesis is untested. Temperatures during our study were within the range for optimal growth for Barton Springs salamanders (15–24°C; Crow et al. 2016), so response to temperature may be an indicator for other ecological conditions that improve survival, such as food availability, rather than indicating a direct effect on mortality. DO, temperature and flow are intertwined in this system and can exhibit correlated, but complex non-linear relationships (Mahler and Bourgeais 2013), and ultimately it is hard to isolate these effects. While an exhaustive post-hoc analysis of environmental covariates was beyond the scope of this study, this approach might be useful in the future to explore a suite of more complex models.

Smaller salamanders (< 24 mm body length) had lower survival and a lower probability of moving underground, which was consistent with our prediction. Juvenile *Eurycea* have difficulty swimming against strong currents (Barrett et al. 2010) and are weaker swimmers than larger individuals (Azizi and Landberg 2002). The spring outlets at Eliza Spring can reach high velocities (mean = 0.16 m/s, SD = 0.16, max = 0.65; City of Austin 2020) in a range that has been shown to flush juvenile *Eurycea cirrigera* from substrates without gravel (Barrett et al. 2010). If smaller salamanders have more difficulty seeking subterranean refuge at the spring surface, they will be less able to respond to increases in competition for space or predation pressure compared to larger individuals, which more readily move into subterranean refugia. This may, in part, explain why survival is also lower for juvenile salamanders, and could result in a pattern of negative density dependence, as observed in a time-series analysis from two-decades of monthly Barton Springs salamander counts (Bendik and Dries 2018). If this were the case, we should expect survival to vary with both size and year, given the differences in abundance we observed over the course of our study. In our analysis, however, time-dependent models of survival carried less weight (sum of $w = 0.44$) than those with size alone (sum of $w = 0.66$). Furthermore, a post-hoc comparison of S with an interaction between year and size did not improve upon our top model, suggesting that if there is a
survival-density relationship on smaller salamanders, it is not apparent from these data. Negative density-
dependence at the surface may also manifest itself through patterns of movement. There is a positive
correlation between estimates of \hat{N} at the beginning of the time interval and γ for that interval, and this
relationship is stronger for the smaller size class (Pearson’s product-moment correlation, $\rho = 0.60, P =
0.02$) compared to the larger size class ($\rho = 0.49, P = 0.08$). Therefore, salamanders may be moving
underground in response to increased density at the surface, and there is evidence of density-dependent
movement between habitats in other amphibians (Greyson et al. 2011). Alternative statistical approaches
to explore the relationship between density and demographic rates may be a useful avenue of future
research (e.g., Kissel et al. 2020).

Barton Springs salamanders may move into subterranean refugia for reproduction, or to avoid predation.
Egg-laying occurs below ground and courtship may as well, and reproduction is not strictly seasonal as is
the case for many other amphibians. Most individuals in the small size class were reproductively
immature (85% were < 22.5 mm in body length; Chippindale et al. 1993), which may partly explain why
temporary emigration was lower for this group. Both predators and prey of Barton Springs salamanders
are more abundant in surface habitat, but we did not measure variation in either of these factors for this
study. Potential predators include crayfish (*Procambarus clarkii*), mosquitofish (*Gambusia affinis*) and
larval damselflies (e.g., *Argia* spp.), while their prey includes a variety of invertebrates (DeSantis et al.
2013, Gillespie 2013, Owen et al. 2016, Davis et al. 2017). Below ground, the picture is quite different,
where Barton Springs salamanders are likely the top predator (along with the sympatric *E. waterlooensis*),
but invertebrate density is expected be much lower owing to a dearth of primary production in
groundwater ecosystems (Gibert et al. 1994). Barton Springs salamanders may therefore face a tradeoff
between increased food availability at the surface vs. little to no interspecific predation in subterranean
habitat. Growth is size-dependent and occurs rapidly during the first year of life (Figure 3), so
salamanders may take advantage of the resource-rich environment at the surface and therefore spend more
time above ground when young. However, more research is required to understand ecological
consequences of surface and subterranean habitat for these salamanders. Unfortunately, the subterranean
ecology of the Barton Springs segment of the Edwards Aquifer is largely undocumented; even basic
research on the diversity and distribution of its fauna is scarce (but see Hutchins 2018, Nissen et al. 2018),
despite otherwise extensive study of its hydrogeology and geochemistry (Hunt et al. 2019 and references
therein).
Conservation Implications

The City of Austin has a Habitat Conservation Plan that includes numerous measures to improve the surface habitat for Barton Springs salamanders, such as sediment mitigation and habitat expansion (Dries et al. 2013). Given the limited extent to which conservation actions can be implemented at Barton Springs, we believe improvement of surface habitat continues to be a worthwhile goal. The high frequency of movement between the surface and subsurface indicates that the population at Eliza Spring is not a population sink maintained solely by immigration from the aquifer, and that a large proportion of the population associated with the surface is typically underground. Thus, conservation actions meant to improve population persistence at the surface therefore have the potential to improve persistence of the local resident population in and around Barton Springs. For example, a recent expansion of surface habitat at Eliza Spring occurred with the addition of an overland stream (Figure 2B). Moving forward, we can build on results from this study to examine if carrying capacity or survival improve because of the newly expanded habitat. Furthermore, periodic declines in apparent surface abundance do not necessarily reflect an existential threat to the species, as was once thought. However, the extent to which local population persistence contributes to the conservation status of the species as a whole is uncertain. Newly documented localities for Barton Springs salamanders (Devitt and Nissen 2018) expand the known range of this species by (potentially) hundreds of square km within the Barton Springs segment of the Edwards Aquifer and the adjacent Trinity Aquifer. One individual was captured deep within a well (McDermid et al. 2015), while others have been regularly observed within a cave stream that eventually flows to Barton Springs (Blowing Sink Cave; Bendik et al. 2013a; City of Austin 2018a). Data on abundance and density for populations outside of Barton Springs are scarce and difficult to obtain, but available evidence suggests that both population density and spatial density (number of sites/area) both appear to be lower outside of the Barton Springs complex (Devitt and Nissen 2018, Dries and Colucci 2018; City of Austin 2018a). While this observation is partly biased by our inability to adequately explore subterranean habitats, it underscores the need to understand how populations at the endpoint of the Barton Springs system interact with other, lower density populations throughout their range. The direction and frequency of gene flow throughout the range of Barton Springs salamanders is of particular interest, because species persistence may hinge on the interconnectivity of these sparse populations (City of Austin 2018b). However, because of limited access to subterranean sites, inferences about population connectivity may have to rely on fortuitous sampling of difficult-to-access habitat.

Conclusions

Since they were described from a single spring locality in 1993, knowledge of Barton Springs salamander population ecology has mostly been gleaned from surface count surveys, limiting any inference about
what we now know is a fraction of a larger superpopulation (City of Austin 1997, U.S. Fish and Wildlife Service 2016, Bendik and Dries 2018, Dries and Colucci 2018). Using an indirect approach to detect movement, we quantified temporary emigration of Barton Springs salamanders into subterranean habitat from capture-recapture data. Temporary emigration was frequent, indicating that apparent abundance at the surface is not solely a function of immigration, recruitment and/or survival. Furthermore, these findings suggest that periodic declines in surface abundance of Barton Springs salamanders at Barton Springs are not wholly caused by mortalities, but may include emigration to adjacent, unobservable habitat. Our results demonstrate the utility of using estimates of temporary emigration to understand movement and habitat use in species where direct observation may not always be possible.

Acknowledgements

We thank the following individuals for aiding with field surveys (in no particular order): Justin Crow, Pete Diaz, Andy Gluesenkamp, Romey Swanson, Kelsey Anderson, Radmon Rice, Donella Strom, Saj Zappitello, Crystal Datri, Lindsey Sydow, Scott Hiers, Jonny Scalise, Charlotte Kucera, Todd Jackson, Luis Medina, Liza Colucci, and Jesse Meik. Jesse Meik and two anonymous reviewers provided helpful comments on the manuscript. The findings and conclusions in this article are those of the author(s) and do not necessarily represent the views of the U.S. Fish and Wildlife Service.

References

Azizi, E., and T. Landberg. 2002. Effects of metamorphosis on the aquatic escape response of the two-lined salamander (Eurycea bislineata). The Journal of Experimental Biology 205:841–849.

Bailey, L. L., and E. Muths. 2019. Integrating amphibian movement studies across scales better informs conservation decisions. Biological Conservation 236:261–268.

Bailey, L. L., T. R. Simons, and K. H. Pollock. 2004a. Spatial and temporal variation in detection probability of Plethodon salamanders using the robust capture-recapture design. Journal of Wildlife Management 68:80–90.

Bailey, L. L., T. R. Simons, and K. H. Pollock. 2004b. Estimating detection probability parameters for Plethodon salamanders using the robust capture-recapture design. Journal of Wildlife Management 68:67–79.

Balázs, G., B. Lewarne, and G. Herczeg. 2020. Extreme site fidelity of the olm (Proteus anguinus) revealed by a long-term capture–mark–recapture study. Journal of Zoology
Băncilă, R. I., R. Pradel, R. Choquet, R. Plăiașu, and O. Gimenez. 2018. Using temporary emigration to inform movement behaviour of cave-dwelling invertebrates: a case study of a cave harvestman species. Ecological Entomology 43:551–559.

Barrett, K., B. S. Helms, C. Guyer, and J. E. Schoonover. 2010. Linking process to pattern: causes of stream-breeding amphibian decline in urbanized watersheds. Biological Conservation 143:1998–2005.

Bendik, N. F. 2017. Demographics, reproduction, growth, and abundance of Jollyville Plateau salamanders (Eurycea tonkawae). Ecology and Evolution 7:5002–5015.

Bendik, N. F., and L. A. Dries. 2018. Density-dependent and density-independent drivers of population change in Barton Springs salamanders. Ecology and Evolution 8:5912–5923.

Bendik, N. F., and A. G. Gluesenkamp. 2013. Body length shrinkage in an endangered amphibian is associated with drought. Journal of Zoology 290:35–41.

Bendik, N. F., J. M. Meik, A. G. Gluesenkamp, C. E. Roelke, and P. T. Chippindale. 2013a. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders. BMC Evolutionary Biology 13:201.

Bendik, N. F., T. A. Morrison, A. G. Gluesenkamp, M. S. Sanders, and L. J. O’Donnell. 2013b. Computer-assisted photo identification outperforms visible implant elastomers in an endangered salamander, Eurycea tonkawae. PloS one 8:e59424.

Bolger, D. T., T. A. Morrison, B. Vance, D. Lee, and H. Farid. 2012. A computer-assisted system for photographic mark–recapture analysis. Methods in Ecology and Evolution 3:813–822.

Bonett, R. M., and P. T. Chippindale. 2006. Streambed microstructure predicts evolution of development and life history mode in the plethodontid salamander Eurycea tynerensis. BMC biology 4:6.

Bowles, D. E., and T. L. Arsuffi. 1993. Karst aquatic ecosystems of the Edwards Plateau region of central Texas: a consideration of their importance, threats to their existence and efforts for their conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 3:317–329.

Burnham, K. P., and D. R. Anderson. 2002a. Model selection and multi-model inference: a practical information-theoretic approach. 2nd edition. New York: Springer.
Burnham, K. P., and D. R. Anderson. 2002b. Avoiding pitfalls when using information-theoretic methods. The Journal of Wildlife Management 66:912–918.

Catenazzi, A. 2015. State of the world’s amphibians. Annual Review of Environment and Resources 40:91–119.

Cayuela, H., A. Valenzuela-Sánchez, L. Teulier, Í. Martínez-Solano, J. P. Léna, J. Merilä, E. Muths, R. Shine, L. Quay, M. Denoël, J. Clober, and B. R. Schmidt. 2020. Determinants and consequences of dispersal in vertebrates with complex life cycles: A review of pond-breeding amphibians. Quarterly Review of Biology 95:1–36.

Cecala, K. K., S. J. Price, and M. E. Dorcas. 2013. Modeling the effects of life-history traits on estimation of population parameters for a cryptic stream species. Freshwater Science 32:116–125.

Chippindale, P. T., and A. H. Price. 2005. Conservation of Texas spring and cave salamanders (Eurycea). In: M. Lannoo, ed. Amphibian Declines: The Conservation Status of United States Species. Berkeley: University of California Press, 193–197.

Chippindale, P. T., A. H. Price, and D. M. Hillis. 1993. A new species of perennibranchiate salamander (Eurycea: Plethodontidae) from Austin, Texas. Herpetologica 49:248–259.

City of Austin. 1997. The Barton Creek Report. CM-97-03. City of Austin, Watershed Protection Department. Austin, TX. http://www.austintexas.gov/watershed_protection/publications/document.cfm?id=186157 (accessed 27 October 2020)

City of Austin. 2018a. Estimates of abundance of Barton Springs salamanders at Eliza Spring using capture-mark-recapture. DR-18-03. City of Austin, Watershed Protection Department. Austin, Texas. http://www.austintexas.gov/watershed_protection/publications/document.cfm?id=290630 (accessed 27 October 2020)

City of Austin. 2018b. 2018 Annual Report, U.S. Fish and Wildlife Service Scientific Permit TE-833851. City of Austin, Watershed Protection Department. Austin, Texas.

City of Austin. 2020. Barton Springs salamander project 26 data. City of Austin open data portal, Austin, TX. https://data.austintexas.gov/Environment/Barton-Springs-Salamander-project-26-data/qxqz-zczq/data (accessed 27 October 2020)
Connette, G. M., J. A. Crawford, and W. E. Peterman. 2015. Climate change and shrinking salamanders: alternative mechanisms for changes in plethodontid salamander body size. Global Change Biology 21:2834–2843.

Crow, J., M. Forstner, K. Ostrand, and J. Tomasso. 2016. The role of temperature on survival and growth of the Barton Springs Salamander (Eurycea sosorum). Herpetological Conservation and Biology 11:328–334.

Culver, D. C., L. L. Master, M. C. Christman, and H. H. Hobbs III. 2000. Obligate cave fauna of the 48 contiguous United States. Conservation Biology 14:386–401.

Davis, D. R., D. L. DeSantis, and C. R. Gabor. 2017. Antipredator behavior of the Barton Springs salamander (Eurycea sosorum) in response to aquatic invertebrates: potential consequences of habitat restoration. Hydrobiologia 795:129–137.

Day, J., J. E. Gerken, and G. L. Adams. 2016. Population ecology and seasonal demography of the endangered grotto sculpin (Cottus specus). Ecology of Freshwater Fish 25:27–37.

DeSantis, D. L., D. R. Davis, and C. R. Gabor. 2013. Chemically mediated predator avoidance in the Barton Springs Salamander (Eurycea sosorum). Herpetologica 69:291–297.

Devitt, T. J., and B. D. Nissen. 2018. New occurrence records for Eurycea sosorum Chippindale, Price & Hillis, 1993 (Caudata, Plethodontidae) in Travis and Hays counties, Texas, USA. Check List 14:297–301.

Devitt, T. J., A. M. Wright, D. C. Cannatella, and D. M. Hillis. 2019. Species delimitation in endangered groundwater salamanders: implications for aquifer management and biodiversity conservation. Proc Natl Acad Sci U S A 116:2624–2633..

DiStefano, R. J., D. Ashley, S. K. Brewer, J. B. Mouser, and M. Niemiller. 2020. Preliminary investigation of the critically imperiled Caney Mountain cave crayfish Orconectes stygocaneyi (Hobbs III, 2001) (Decapoda: Cambaridae) in Missouri, USA. Freshwater Crayfish 25:47–57.

Dries, L. A., and L. A. Colucci. 2018. Variation in abundance in the Barton Springs salamander associated with flow regime and drought. Herpetological Conservation and Biology 13:302–316.

Dries, L. A., C. Herrington, L. A. Colucci, N. F. Bendik, D. A. Chamberlain, D. A. Johns, and E. Peacock. 2013. Major amendment and extension of the habitat conservation plan for the Barton Springs Salamander (Eurycea sosorum) and the Austin Blind Salamander (Eurycea
waterlooensis) to allow for the operation and maintenance of Barton Springs and adjacent springs. City of Austin, Austin, TX.

http://www.austintexas.gov/watershed_protection/publications/document.cfm?id=196468 (accessed 27 October 2020)

Drukker, S. S., K. K. Cecala, P. R. Gould, B. A. McKenzie, and C. Van De Ven. 2018. The ecology and natural history of the cumberland dusky salamander (Desmognathus abditus): distribution and demographics. Herpetological Conservation and Biology 13:33–46.

Eaton, M. J., and W. A. Link. 2011. Estimating age from recapture data: integrating incremental growth measures with ancillary data to infer age-at-length. Ecological Applications 21:2487–2497.

Feder, M. E. 1983. Integrating the ecology and physiology of plethodontid salamanders. Herpetologica 39:291–310.

Fenolio, D. B., M. L. Niemiller, M. G. Levy, and B. Martinez. 2013. Conservation status of the Georgia Blind Salamander (Eurycea wallacei) from the Floridan Aquifer of Florida and Georgia. IRCF Reptiles & Amphibians 20:97–111.

Fries, J. N. 2002. Upwelling flow velocity preferences of captive adult San Marcos salamanders. North American Journal of Aquaculture 64:113–116.

Gelman, A., and D. B. Rubin. 1992. Inference from iterative simulation using multiple sequences. Statistical Science 7:457–472.

Gibert, J., D. L. Danielopol, and J. A. Stanford. 1994. Groundwater Ecology. San Diego: Academic Press.

Gillespie, J. H. 2013. Application of stable isotope analysis to study temporal changes in foraging ecology in a highly endangered amphibian. PLoS ONE 8:e53041.

Gorčki, Š., M. L. Niemiller, D. B. Fenolio, and A. G. Gluesenkamp. 2019. Salamanders. In: W. B. White, D. C. Culver, and T. Pipan, ed. Encyclopedia of Caves. 3rd Edition. Academic Press, 871–884.

Graening, G. O., D. B. Fenolio, M. L. Niemiller, A. V. Brown, and J. B. Beard. 2010. The 30-year recovery effort for the Ozark cavefish (Amblyopsis rosae): Analysis of current distribution, population trends, and conservation status of this threatened species. Environmental Biology of Fishes 87:55–88.

Grant, E. H. C., D. A. W. Miller, B. R. Schmidt, M. J. Adams, S. M. Amburgey, T. Chambert, S.
S. Cruickshank, R. N. Fisher, D. M. Green, B. R. Hossack, P. T. J. Johnson, M. B. Joseph,
T. A. G. Rittenhouse, M. E. Ryan, J. H. Waddle, S. C. Walls, L. L. Bailey, G. M. Fellers, T.
A. Gorman, A. M. Ray, D. S. Pilliod, S. J. Price, D. Saenz, W. Sadinski, and E. Muths.
2016. Quantitative evidence for the effects of multiple drivers on continental-scale
amphibian declines. Scientific Reports 6:25625.

Grayson, K. L., L. L. Bailey, and H. M. Wilbur. 2011. Life history benefits of residency in a
partially migrating pond-breeding amphibian. Ecology 92:1236–1246.

Huggins, R. M. 1989. On the statistical analysis of capture experiments. Biometrika 76:133–140.

Huggins, R. M. 1991. Some practical aspects of a conditional likelihood approach to capture
experiments. Biometrics 47:725.

Hunt, B. B., B. A. Smith, and N. M. Hauwert. 2019. Barton Springs segment of the Edwards
(Balcones Fault Zone) Aquifer, central Texas. In: J. M. J. Sharp, R. T. Green, and G. M.
Schindel, ed. The Edwards Aquifer: The Past, Present, and Future of a Vital Water
Resource. Geological Society of America Memoir 215.

Hutchins, B. T. 2018. The conservation status of Texas groundwater invertebrates. Biodiversity
and Conservation 27:475–501.

Jugovic, J., E. Praprotnik, E. V. Buzan, and M. Lužnik. 2015. Estimating population size of the
cave shrimp Troglocaris anophthalmus (Crustacea, Decapoda, Caridea) using mark–
release–recapture data. Animal Biodiversity and Conservation 38:77–86.

Kendall, W. L., and R. Bjorkland. 2001. Using open robust design models to estimate temporary
emigration from capture-recapture data. Biometrics 57:1113–1122.

Kendall, W., J. Nichols, and J. Hines. 1997. Estimating temporary emigration using capture-
recapture data with Pollock’s robust design. Ecology 78:563–578.

Kissel, A. M., S. Tenan, and E. Muths. 2020. Density dependence and adult survival drive
dynamics in two high elevation amphibian populations. Diversity 12:1–15.

Krejca, J. K., and B. Weckerly. 2007. Detection probabilities of karst invertebrates. Pages 283–
289 National Cave and Karst Management Symposium.

Krejca J. K. and J. Reddell. Biology and ecology of the Edwards Aquifer. In: J. M. J. Sharp, R.
T. Green, and G. M. Schindel, ed. The Edwards Aquifer: The Past, Present, and Future of a
Vital Water Resource. Geological Society of America Memoir 215. 159–169.

Laake, J. L. 2013. RMark: An R interface for analysis of capture-recapture data with MARK.
Lannoo, M. 2005. *Amphibian Declines: The Conservation Status of United States Species*. University of California Press, Berkeley and Los Angeles.

Lebreton, J. D., J. D. Nichols, R. J. Barker, R. Pradel, and J. A. Spendelow. 2009. *Modeling Individual Animal Histories with Multistate Capture-Recapture Models*. Advances in Ecological Research. First edition. Elsevier Ltd. pp 87-173.

Lee, D. E., J. B. Bettaso, M. L. Bond, R. W. Bradley, J. R. Tietz, and P. M. Warzybok. 2012. Growth, age at maturity, and age-specific survival of the Arboreal Salamander (*Aneides lugubris*) on Southeast Farallon Island, California. Journal of Herpetology 46:64–71.

Lopes Ferreira, R., X. Prous, S. Fortes Machado, and R. Parentoni Martins. 2005. Population dynamics of *Loxosceles similis* (Moenkhaus, 1898) in a brazilian dry cave: a new method for evaluation of population size. Revista Brasileira de Zoociências 7:129–141.

Lowe, W. H., G. E. Likens, and B. J. Cosentino. 2006. Self-organisation in streams: the relationship between movement behaviour and body condition in a headwater salamander. Freshwater Biology 51:2052–2062.

Mahler, B. J., and R. Bourgeais. 2013. Dissolved oxygen fluctuations in karst spring flow and implications for endemic species: Barton Springs, Edwards Aquifer, Texas, USA. Journal of Hydrology 505:291–298.

Mammola, S., Cardoso, P., Culver, D.C., Deharveng, L., Ferreira, R.L., Fišer, C., Galassi, D.M., Griebler, C., Halse, S., Humphreys, W.F. and Isaia, M., 2019. Scientists' warning on the conservation of subterranean ecosystems. BioScience, 69:641–650.

Marsh, D. M., G. S. Milam, N. P. Gorham, and N. G. Beckman. 2005. Forest roads as partial barriers to terrestrial salamander movement. Conservation Biology 19:2004–2008.

McDermid, K., P. Sprouse, and J. Krejca. 2015. Geographic Distribution: *Eurycea sosorum* (Barton Springs salamander). Herpetological Review 46:556–578.

Means, M. L., and J. E. Johnson. 1995. Movement of threatened Ozark cavefish in Logan Cave National Wildlife Refuge, Arkansas. The Southwestern Naturalist 40:308–313.
Messerman, A. F., R. D. Semlitsch, and M. Leal. 2020. Estimating survival for elusive juvenile pond-breeding salamanders. Journal of Wildlife Management 84:562–575.

Miller, B. T., and M. L. Niemiller. 2008. Distribution and relative abundance of Tennessee Cave Salamanders (Gyrinophilus palleucus and Gyrinophilus gulolineatus) with an emphasis on Tennessee populations. Herpetological Conservation and Biology 3:1–20.

Nathan, R., W. M. Getz, E. Revilla, M. Holyoak, R. Kadmon, D. Saltz, and P. E. Smouse. 2008. A movement ecology paradigm for unifying organismal movement research. Proc Natl Acad Sci U S A 105:19052–19059.

Niemiller, M. L., B. M. Glorioso, D. B. Fenolio, R. G. Reynolds, S. J. Taylor, and B. T. Miller. 2016. Growth, survival, longevity, and population size of the Big Mouth Cave Salamander (Gyrinophilus palleucus necturoides) from the type locality in Grundy County, Tennessee, USA. Copeia:35–41.

Nissen, B. D., T. J. Devitt, N. F. Bendik, A. G. Gluesenkamp, and R. Gibson. 2018. New occurrence records for stygobiontic invertebrates from the Edwards and Trinity aquifers in west-central Texas, USA. Subterranean Biology 28:1–13.

O’Donnell, K. M., and R. D. Semlitsch. 2015. Advancing terrestrial salamander population ecology: the central role of imperfect detection. Journal of Herpetology 49:533–540.

O’Donnell, K. M., F. R. Thompson, and R. D. Semlitsch. 2014. Predicting variation in microhabitat utilization of terrestrial salamanders. Herpetologica 70:259–265.

Owen, J. D., T. J. Devitt, L. A. Colucci, and N. F. Bendik. 2016. Natural History Notes: Eurycea sosorum (Barton Springs Salamander). Predation and diet. Herpetological Review 47:275.

Phillips, J. G., D. B. Fenolio, S. L. Emel, and R. M. Bonett. 2017. Hydrologic and geologic history of the Ozark Plateau drive phylogenomic patterns in a cave-obligate salamander. Journal of Biogeography 44:2463–2474.

Pittman, S. E., M. S. Osbourn, and R. D. Semlitsch. 2014. Movement ecology of amphibians: a missing component for understanding population declines. Biological Conservation 169:44–53.

Plummer, M. 2003. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing:1–10.

Pollock, K. H. K. 1982. A capture-recapture design robust to unequal probability of capture. The
Price, S. J., R. A. Browne, and M. E. Dorcas. 2012. Resistance and resilience of a stream salamander to supraseasonal drought. Herpetologica 68:312–323.

Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 132:652–661.

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. (accessed 27 October 2020)

Rasband, W. S. 1997. ImageJ. Bethesda, Maryland, USA. https://imagej.nih.gov/ij/ (accessed 27 October 2020)

Ringler, M., E. Ursprung, and W. Hödl. 2009. Site fidelity and patterns of short- and long-term movement in the brilliant-thighed poison frog Allobates femoralis (Aromobatidae). Behavioral Ecology and Sociobiology 63:1281–1293.

Steffen, M., K. Irwin, A. Blair, and R. Bonett. 2014. Larval masquerade: a new species of paedomorphic salamander (Caudata: Plethodontidae: Eurycea) from the Ouachita Mountains of North America. Zootaxa 3786:423–442.

Sweet, S. S. 1978. The Evolutionary Development of the Texas Eurycea. Unpublished dissertation. University of California, Berkeley.

Trajano, E. 1997. Population ecology of Trichomycterus itacarambiensis, a cave catfish from eastern Brazil (Siluriformes, Trichomycteridae). Environmental Biology of Fishes 50:357–369.

Trontelj, P., C. J. Douady, C. Fišer, J. Gibert, Š. Gorički, T. Lefèbure, B. Sket, and V. Zakšek. 2009. A molecular test for cryptic diversity in ground water: How large are the ranges of macro-stygobionts? Freshwater Biology 54:727–744.

U.S. Fish and Wildlife Service. 1997. Final rule to list the Barton Springs salamander as endangered. Federal Register 62:23377–23392.

U.S. Fish and Wildlife Service. 2016. Recovery plan for the Barton Springs Salamander, Eurycea sosorum amended to include Austin Blind Salamander (Eurycea waterlooensis):148 pp. https://www.fws.gov/southwest/es/Documents/R2ES/BSS_Recovery_Plan_with_Austin_Bln_Sal_Addendum.pdf (accessed 27 October 2020)
Wen, Z., K. Pollock, J. Nichols, and P. Waser. 2011. Augmenting superpopulation capture-recapture models with population assignment data. Biometrics 67:691–700.

White, G. C. 2020. Program MARK. Fort Collins, Colorado.

http://www.phidot.org/software/mark/ (accessed 27 October 2020)

Woods, H. A., M. F. Poteet, P. D. Hitchings, R. A. Brain, and B. W. Brooks. 2010. Conservation physiology of the plethodontid salamanders *Eurycea nana* and *E. sosorum*: response to declining dissolved oxygen. Copeia 2010:540–553.

Wynne, J. J., F. G. Howarth, S. Sommer, and B. G. Dickson. 2019. Fifty years of cave arthropod sampling: techniques and best practices. International Journal of Speleology 48:33–48.
Table 1 (on next page)

Summary of environmental variables measured at Barton Springs from USGS site 08155500.

Means were computed from daily statistics for each sampling interval. The grand mean and pooled range are summary statistics for the sampling interval means (i.e., the covariate values used). The total range represents the range of all daily statistics.
Table 1. Summary of environmental variables measured at Barton Springs from USGS site 08155500.

Variable	Grand Mean ± SD	Pooled Range	Total Range
Flow (ft³/s)	86.3 ± 26.5	41–123	26–131
Change in flow (ft³/s)	4.05 ± 27.1	−31.3–2.8	NA
Dissolved oxygen (mg/L)	6.06 ± 0.366	5.38–6.64	4.80–7.50
Turbidity (FNU)	2.30 ± 0.510	1.72–2.52	0.8–31.4
Temperature (°C)	21.2 ± 0.453	20.4–21.9	18.6–22.7

Means were computed from daily statistics for each sampling interval. The grand mean and pooled range are summary statistics for the sampling interval means (i.e., the covariate values used). The total range represents the range of all daily statistics.
Table 2 (on next page)

Model selection results based on AICc for the top 15 capture-recapture models of survival, temporary emigration, and capture probability.

$S =$ apparent survival; $\gamma'' =$ unavailable at the surface | present during the last survey; $\gamma' =$ unavailable at the surface | unavailable during the last survey. All models shown below include $p = c$ within and between session variation for capture and recapture probabilities.
Table 2. Table of model selection results based on AICc for the top 15 capture-recapture models of survival, temporary emigration, and capture probability.

S = apparent survival; γ'' = unavailable at the surface | present during the last survey; γ' = unavailable at the surface | unavailable during the last survey. All models shown below include $p = c$ within and between session variation for capture and recapture probabilities.

Model	AICc	ΔAICc	AICc Weights (w)	Num. Par	-2logLik
S (~size) γ'' (~time + size) γ' (~time)	10654.86	0.00	0.35	75	10501.47
S (~size) γ'' (~time + size) γ' (~time + size)	10655.12	0.26	0.31	76	10499.63
S (~year + size) γ'' (~time + size) γ' (~time)	10655.71	0.85	0.23	78	10496.04
S (~year + size) γ'' (~time + size) γ' (~time + size)	10657.10	2.24	0.11	79	10495.33
S (~year + size) γ'' (~time + size) γ' (~size)	10680.08	25.21	0.00	67	10543.37
S (~year + size) γ'' (~time) γ' (~time)	10680.48	25.61	0.00	77	10522.90
S (~year + size) γ'' (~time) γ' (~time + size)	10682.57	27.70	0.00	78	10522.89
S (~size) γ'' (~time) γ' (~time)	10685.86	31.00	0.00	74	10534.56
S (~size) γ'' (~time + size) γ' (~size)	10687.29	32.42	0.00	64	10556.82
S (~size) γ'' (~time) γ' (~time + size)	10687.85	32.98	0.00	75	10534.45
S (~year) γ'' (~time + size) γ' (~time)	10692.17	37.30	0.00	77	10534.59
S (~flow-temp-turbidity) γ'' (~time) γ' (~time)	10693.31	38.44	0.00	77	11715.30
S (~year) γ'' (~time + size) γ' (~time + size)	10694.03	39.17	0.00	78	10534.35
S (~flow-only) γ'' (~time) γ' (~time)	10694.64	39.78	0.00	75	11720.82
S (~turb-DO) γ'' (~time) γ' (~time)	10695.45	40.59	0.00	75	11721.63
Table 3 (on next page)

Model selection results based on AICc for the top subset of models comparing environmental effects on survival and temporary emigration.

\(S = \) apparent survival; \(\gamma'' = \) unavailable at the surface | present during the last survey; \(\gamma' = \) unavailable at the surface | unavailable during the last survey. All models shown below include \(p = c \) within and between session variation for capture and recapture probabilities. \(\Delta \text{AICc} \) values are only relative to this subset of models.
Table 3. Model selection results based on AICc for the top subset of models comparing environmental effects on survival and temporary emigration.

Model	AICc	ΔAICc	Weights (w)	Num. Par	Deviance
S (flow-temp-turbidity) γ'' (turbidity-DO) γ' (turbidity-DO)	10749.22	0	0.38	56	11814.91
S (flow-only) γ'' (turbidity-DO) γ' (turbidity-DO)	10750.43	1.21	0.21	54	11820.25
S (flow-temp-turbidity) γ'' (turbidity-DO) γ' (flow-temp-turbidity)	10751.59	2.36	0.12	58	11813.13
S (flow-only) γ'' (turbidity-DO) γ' (flow-only)	10751.92	2.69	0.10	54	11821.74
S (flow-temp-turbidity) γ'' (turbidity-DO) γ' (flow-only)	10752.11	2.89	0.09	56	11817.80
S (flow-only) γ'' (turbidity-DO) γ' (flow-temp-turbidity)	10753.53	4.31	0.04	56	11819.22
S (flow-temp-turbidity) γ'' (flow-temp-turbidity) γ' (turbidity-DO)	10754.79	5.57	0.02	58	11816.34
S (flow-only) γ'' (flow-temp-turbidity) γ' (turbidity-DO)	10755.53	6.30	0.02	56	11821.22
S (flow-temp-turbidity) γ'' (flow-temp-turbidity) γ' (flow-temp-turbidity)	10757.31	8.09	0.01	60	11814.72
S (flow-only) γ'' (flow-temp-turbidity) γ' (flow-only)	10757.37	8.15	0.01	56	11823.06
Table 4 (on next page)

Coefficients representing environmental effects from the subset of models comparing environmental effects on survival and temporary emigration.

Estimates (and 95% confidence intervals) on the logit-scale are represented in boldface if the confidence interval did not contain zero. Values are given for the top five models within this subset (sum of AICc \(w = 0.93 \)).
Table 4. Coefficients representing environmental effects from the top subset of models comparing environmental effects on survival and temporary emigration.

Estimates (and 95% confidence intervals) on the logit-scale are represented in boldface if the confidence interval did not contain zero.

Parameter, covariate	Model sub-rank				
	1	2	3	4	5
S, temperature	0.35 (0.03,0.67)	0.39 (0.06,0.72)	0.30 (-0.02,0.63)		
S, spring flow	0.39 (0.15,0.64)	0.41 (0.21,0.62)	0.36 (0.06,0.66)	0.43 (0.18,0.67)	0.42 (0.15,0.69)
S, change in flow	0.27 (-0.14,0.68)	0.13 (-0.11,0.36)	0.28 (-0.15,0.71)	0.13 (-0.10,0.37)	0.28 (-0.13,0.69)
S, turbidity	0.10 (-0.33,0.54)	0.07 (-0.38,0.52)		0.08 (-0.32,0.49)	
γ'', turbidity	0.54 (0.35,0.73)	0.49 (0.31,0.68)	0.52 (0.32,0.72)	0.49 (0.30,0.68)	0.54 (0.34,0.74)
γ'', dissolved oxygen	-0.38 (-0.56,-0.20)	-0.32 (-0.49,-0.14)	-0.40 (-0.60,-0.21)	-0.31 (-0.50,-0.12)	-0.36 (-0.56,-0.16)
γ', turbidity	0.15 (-0.07,0.36)	0.10 (-0.12,0.31)	0.06 (-0.29,0.41)		
γ', dissolved oxygen	-0.23 (-0.52,0.06)	-0.17 (-0.44,0.09)			
γ', spring flow			-0.25 (-0.61,0.11)	-0.13 (-0.44,0.19)	-0.15 (-0.49,0.19)
γ', change in flow			0.05 (-0.31,0.41)	0.07 (-0.17,0.31)	0.11 (-0.12,0.34)
γ', temperature			0.20 (-0.01,0.41)		
Figure 1

An adult Barton Springs salamander (*Eurycea sosorum*) moving amongst moss in Eliza Spring.

Photo Credit: Nathan Bendik, City of Austin.
Figure 2

Eliza Spring before (A) and after (B) overland stream reconstruction.

The black circle indicates the location of the outflow drain (A) that was daylighted (B). The new overland stream (B) now flows into the bypass tunnel (underneath the sidewalk) alongside Barton Springs Pool. Photo Credit: City of Austin.
Figure 3

Growth of Barton Springs salamanders

(A) Measured growth in body length of 16 Barton Springs salamanders at different capture intervals. (B) Expected size for salamanders > 14 mm body length during the first year of growth based on a von Bertalanffy growth model. The dark solid line indicates age-at-length estimated from the mean parameter values for a and k. Light gray lines are from 30 randomly generated growth curves from the mean parameter estimates to demonstrate individual variation.
Figure 4

Model-averaged estimates of monthly apparent survival and temporary emigration.

(A) Apparent survival (B) $\gamma' = \text{unavailable at the surface} \mid \text{unavailable during the last survey}$
(C) $\gamma'' = \text{unavailable at the surface} \mid \text{present during the last survey}$. Dark blue indicates estimates for juvenile and small adults (15.01–24.20 mm body length); light orange indicates large adults (> 24.20 mm).
Figure 5

Abundance of Barton Springs salamanders at the surface of Eliza Spring from October, 2014 through November, 2018

Error bars represent 95% confidence intervals.