Real-life use of fluticasone propionate/salmeterol in patients with chronic obstructive pulmonary disease: a French observational study

Nicolas Roche1*, Céline Pribil2, Eric Van Ganse3, Philippe Serrier1,4, Bruno Housset3, Déborah Poirier6, Nathalie Texier6, Stéphane Schück6 and Isabelle Boucot7

Abstract

Background: In Europe, administration of an inhaled corticosteroid (ICS) combined with a long-acting β2 agonist is approved in chronic obstructive pulmonary disease (COPD) patients with a pre-bronchodilator FEV1 < 60% predicted normal, a history of repeated exacerbations, and who have significant symptoms despite regular bronchodilator therapy. Minimal data are available on the use of the fluticasone propionate/salmeterol xinafoate combination (FSC) in the real-life COPD setting and prescription compliance with the licensed specifications.

Methods: A French observational study was performed to describe the COPD population prescribed with FSC, prescription modalities, and the coherence of prescription practices with the market authorized population. Data were collected for patients initiating FSC treatment (500 μg fluticasone propionate, 50 μg salmeterol, dry powder inhaler) prescribed by a general practitioner (GP) or a pulmonologist, using physician and patient questionnaires.

Results: A total of 710 patients were included, 352 by GPs and 358 by pulmonologists. Mean age was over 60 years, and 70% of patients were male. More than half were current smokers and one-third had cardiovascular comorbidities. According to both physician evaluation and GOLD 2006 classification, the majority of patients (>75%) had moderate to very severe COPD. Strict compliance by prescribing physicians with the market-approved population for dry powder inhaler SFC in COPD was low, notably in ICS-naïve patients; all three conditions were fulfilled in less than a quarter of patients with prior ICS and less than 7% of ICS-naïve patients.

Conclusions: Prescription of dry powder inhaler SFC by GPs and pulmonologists has very low conformity with the three conditions defining the licensed COPD population. Prescription practices need to be improved and systematic FEV1 evaluation for COPD diagnosis and treatment management should be emphasized.

Keywords: COPD, France, GOLD, Prescription, Questionnaire, Population-based, Primary care, Pulmonologist
normal or a history of at least two exacerbations per year or one hospitalization for COPD exacerbation or both, combinations of inhaled corticosteroids (ICS) and long-acting β2 agonists (LABA) are recommend among first-line treatments.

Administration of the ICS fluticasone propionate with the LABA salmeterol xinafoate (fluticasone /salmeterol combination, FSC) with a dry powder inhaler was approved in Europe in 2003, at a dose of 500 μg fluticasone propionate with 50 μg salmeterol twice daily for treatment of COPD patients with a pre-bronchodilator FEV1 < 60% predicted normal, a history of repeated exacerbations, and who have significant symptoms despite regular bronchodilator therapy. The change of the FEV1 threshold from <50% in the GOLD guidelines [2] to <60% was mainly influenced by the TORCH study [3].

Coherence between published COPD guidelines and clinical prescription practices in the real-world setting has been brought into question [4-6]. Several reports highlight that a high proportion of patients who are prescribed inhaled medications, have not undergone spirometric testing to confirm diagnosis and severity [7-11]. Data on FSC use in the real-life COPD setting are scarce and co-therapies in patients prescribed with this combination as long-term treatment have not been reported.

Following a request by the French Health Authorities, a national, prospective, population-based, observational study was performed in adult COPD patients initiating treatment with fluticasone propionate/salmeterol (500/50 μg) administered with a dry powder inhaler, prescribed by a general practitioner (GP) or pulmonologist. The study purpose was twofold; the first step was to collect data describing patient characteristics and treatment modalities in this population, and to analyze the coherence of the prescription population with the licensed COPD population according to the Summary of Product Characteristics (SPC). In the second step, clinical outcomes after 12-months treatment with SFC in this population were evaluated. The present article reports results regarding the first of these two goals.

Methods
Study design
This was a prospective observational cohort study with 1-year follow-up in COPD patients initiating treatment with FSC delivered via a dry powder inhaler (Seretide® Diskus®, 500/50 μg). It was performed in France between March 2008 and July 2009. Patients were included by GPs and pulmonologists who were randomly selected from a validated national database of all registered physicians (Cegedim). GPs agreeing to participate were requested to include two to four consecutive eligible patients and pulmonologists to include six to nine consecutive patients. Data were collected at inclusion and at routine follow-up visits using physician questionnaires and patient self-administered questionnaires. The study was approved by the French Advisory Committee for Data Processing in Health Research (CCTIRS) and the French Data Protection Authority (CNIL) and was conducted in accordance with the Declaration of Helsinki and local regulations (ettrack number: 108314). Signed informed consent was obtained from all patients.

Patient population
To be eligible, patients had to be clinically diagnosed with COPD, initiating FSC therapy prescribed by a GP or a pulmonologist at inclusion, aged 40 years or older, and be current or former smokers with a history of at least 15 pack-years. Patients were ineligible if they had asthma, tuberculosis, cystic fibrosis, any other pulmonary condition, or cancer at inclusion, had received anticancer treatment during the previous 3 years, or were participating in another clinical or epidemiologic study.

Questionnaires and data collection
Patient data reported by the physician at inclusion included sociodemographics, disease history (including smoking) and the following cardiovascular comorbidities: (i) cardiovascular diseases including heart failure, coronary heart disease, peripheral vascular disease, and other cardiovascular diseases (e.g., arrhythmias, valve diseases) but excluding metabolic risk factors (diabetes, hypercholesterolemia); (ii) hypertension. In addition, spirometric measurements, blood gas levels and weight were recorded at inclusion and, when performed, at each follow-up visit. Cough, expectoration, and wheezing during the 3 months prior to inclusion or any follow-up visits were reported, as well as dyspnea (modified MRC scale). Other variables included exacerbations and their management during the 12 months prior to inclusion or between visits, along with COPD treatments (bronchodilators, corticosteroids, antibiotics, physician and hospital visits, vaccinations, non-drug therapies) over the same period. On the day of enrollment, a patient self-administered questionnaire was used to evaluate dyspnea (Borg scale [12]) and quality of life (QoL; Clinical COPD Questionnaire, CCQ) [13], on the basis of the week prior to the visit. Demographics and practice data were collected for physicians.

Evaluations and statistical analyses
A minimum of 267 patients per group (i.e., included by GPs or by pulmonologists) was required to estimate the frequency of any event occurring in about 50% of patients with a 5% type I error and a precision (i.e. maximum variation allowed around the estimate) of 6%. COPD severity was classified according to GOLD 2006 [14], taking into account FEV1, and to GOLD 2011 (which was not available
at the time the study was performed) [15] taking into account FEV1, dyspnea MRC score, and history of exacerbations. Prescriptions were considered compliant with the SPC when the following three conditions were fulfilled at inclusion: 1) FEV1 < 60% predicted; 2) a history of repeated exacerbations (at least two over the last year, defined as an emergency department visit, hospitalization, or a course of oral corticosteroids or antibiotics for respiratory problems); 3) significant symptoms despite regular bronchodilator therapy alone (with a long-acting β2-mimetic or long-acting anticholinergic agent).

Analyses were performed according to physician specialty using descriptive statistics. Data were further analyzed in terms of prior ICS intake versus ICS-naïve. A conservative approach was used such that missing data for FEV1, exacerbations and long-acting bronchodilators criteria were considered as non-fulfillment of the SPC criteria. A first sensitivity analysis was performed excluding patients without FEV1 data given the high proportion of patients for whom this examination was not performed, and a second analysis excluded prior repeated exacerbations, given that this is a composite criterion and considered to be less reliable than other criteria.

Agreement between investigator-assessed and GOLD 2006 classifications was evaluated with a weighted Kappa test. Comparisons within GP or pulmonologist populations (ICS-naïve versus ICS-treated patients; including versus non-including physicians) were performed using student’s t-tests and variance analysis (after a Levene test for homogeneity of variance) for quantitative data. Normality was confirmed with histograms and Shapiro-Wilk tests. Satterthwaite’s approximation or Kruskal-Wallis tests were used in cases of unequal variance. Non-parametric tests were applied in the absence of normal distribution. A Wilcoxon test was used for paired series. Chi² or Fisher exact tests were used to compare qualitative data. Significance comparisons of GP versus pulmonologist patient populations were not performed given that these populations were recruited in different settings during partially different time periods. A significance threshold of 0.05 was used and analyses were performed with SAS (v.9.1, SAS Institute, North Carolina USA).

Results
Overall 6.3% of the GPs (419 of 6620) and 8.7% of pulmonologists (177 of 2030) who were contacted agreed to participate (Figure 1). Of them, 162 GPs and 88 pulmonologists included at least one patient, with GPs including a median of two patients while pulmonologists included a median of 4.5 patients. A comparison of demographic and practice characteristics of physicians including patients with those of the national population of physicians and also with physicians who agreed to participate but did not include patients are provided in Additional file 1.
Patient population

A total of 710 patients initiating an SFC prescription were included, 352 by GPs and 358 by pulmonologists (Figure 1). Sociodemographic and clinical characteristics are presented in Table 1. Mean patient age was over 60 years and more than half of the included patients were retired (61%) and overweight or obese (57%). Almost half the patients were current smokers and cardiovascular comorbidities were reported in approximately one-third of the population. Some differences in characteristics were apparent between the GP and pulmonologist populations, with the latter having a higher proportion of patients who were retired, male, had hypertension or coronary heart disease, while fewer pulmonologist patients were current smokers. See Additional file 2 for a description of differences in patient characteristics between patients participating versus those who did not.

COPD profile and therapeutic management

At inclusion, the majority of patients had moderate to very severe COPD according to both the physician’s judgment and the GOLD-defined severity of airflow obstruction [14] (Table 1). A higher proportion of patients had very severe disease according to the GOLD criteria versus investigator judgment, which was confirmed by Kappa evaluations showing that agreement between the physician and the GOLD evaluations was poor for GPs (Kappa = 0.25) and moderate for pulmonologists (Kappa = 0.52). According to GOLD 2006 classification, pulmonologists included a higher proportion of patients with severe to very severe disease relative to GPs. FEV1 data were available in 335 patients included by pulmonologists (94%), but only 153 of the 352 patients included by GPs (43%, including 8 patients with an aberrant result considered missing in the analysis). Pulmonologist patients had a poorer mean FEV1% predicted and worse dyspnea than patients in the GP group. See Additional file 2 for a description of differences in baseline characteristics in GP patients with FEV1 available versus those without and for a comparison of investigator-assessed COPD severity versus GOLD 2006 in patients with FEV1 data.

Chronic symptoms were common in both groups, with over 80% having chronic cough, and approximately two-thirds of patients had both daily expectorations and cough (Table 1). QoL outcomes were mid-range and similar in the two groups, although symptom scores were poorer in the GP group. A history of repeated exacerbations was reported in 63% of GP patients and 30% of pulmonologist patients. Nonetheless, incidence of emergency department visits and hospitalizations was low overall with in most cases no more than one visit over 12 months, but were more common in the pulmonologist group than the GP group (Table 2). Patients in the GP group were more likely to be prescribed antibiotics and corticosteroids. Pneumococcal vaccinations had been administered in less than half the population and along with flu vaccines, were more common among GP patients than pulmonologist patients.

Prior COPD medication intake was reported in 76% of GP patients and 67% of pulmonologist patients. Co-administration of an ICS and a short-acting or long-acting bronchodilator was the most common treatment, reported in approximately half these patients (144 GP, 54%; 115 pulmonologist, 48%). The use of short-acting and/or long-acting bronchodilators (mostly anticholinergics) without ICS was reported in 35% of GP patients and 48% of pulmonologist patients (Table 2). Approximately one-third of both patient populations had received LABA with ICS.

Among the 710 patients included, a comparison of ICS-naïve patients versus those with prior ICS showed that for both GP and pulmonologist patients the ICS-naïve patient population was older (p < 0.01), had more severe COPD (investigator-assessed; p ≤ 0.0004), had been diagnosed with COPD for longer (p < 0.0001), had worse dyspnea (MRC and Borg; p ≤ 0.03) and total QoL scores (p < 0.01), were less likely to have been vaccinated (p < 0.001), have visited a specialist (p < 0.001), have received oral corticosteroid (p < 0.0001) or antibiotics (p < 0.01). In addition, GP patients with prior ICS were less likely to be current smokers (p = 0.01), more likely to have FEV1 data available (p < 0.0001, although there was no difference in FEV1 values). Pulmonologist patients with prior ICS were more likely to be female (p < 0.01), have lower percent predicted FEV1 (p < 0.01) and have consulted a GP (p < 0.01). See Additional file 3 for reasons for FSC prescription and further details of COPD therapies.

Modalities of SFC prescription and compliance with recommendations

The most common Seretide® Diskus® dose prescribed was one inhalation of 500 μg fluticasone propionate/50 μg salmeterol twice daily (72% of GP-included patients, 83% of pulmonologist patients). A dose of two inhalations twice daily was prescribed in 23% of GP patients and 12% of pulmonologist patients.

FSC use in COPD patients in the real-life context is summarized in Table 3 in terms of compliance with the SPC, and according to prior corticosteroid intake in all patients irrespective of whether FEV1 data were available. Among patients having received prior ICS, compliance with at least one of the three marketing authorization conditions for prescription was reported in over 90% of patients for both GPs and pulmonologists, however compliance with all three decreased to 16% of GP patients and 26% of pulmonologist patients. In ICS-naïve patients, these proportions decreased to 73% (GP) and 80% (pulmonologist) of patients complying with at least
Characteristic	GPs	Pulmonologists		
Age in years, mean (SD)	61.6 (11.4)	65.3 (11.5)	352	358
Male, N (%)	227 (64.5%)	269 (75.1%)	652	658
Professional status, N (%)	352	357		
Working	122 (34.7%)	57 (16.0%)	57	57
Retired	186 (52.8%)	246 (68.9%)	246	246
Other	44 (12.5%)	54 (15.1%)	54	54
BMI (kg/m²), N (%)	349	358		
Underweight (<18)	10 (2.9%)	25 (7.0%)	25	25
Normal (18–25)	131 (37.5%)	138 (38.5%)	138	138
Overweight (25–30)	133 (38.1%)	121 (33.8%)	121	121
Obese (≥ 30)	75 (21.5%)	74 (20.7%)	74	74
Current smoker, N (%)	195 (55.4%)	127 (35.6%)	127	127
Pulmonary hypertension, N (%)	12 (3.5%)	32 (9.2%)	32	32
≥1 cardiovascular comorbidity, N (%)	116 (33.0%)	138 (38.5%)	138	138
Heart failure	44 (12.5%)	43 (12.0%)	43	43
Coronary heart disease	35 (9.9%)	62 (17.3%)	62	62
Peripheral artery disease	48 (13.6%)	45 (12.6%)	45	45
Other	35 (9.9%)	55 (15.4%)	55	55
COPD severity (investigator), N (%)	352	358		
Mild	49 (13.9%)	14 (3.9%)	14	14
Moderate	197 (56.0%)	151 (42.2%)	151	151
Severe	100 (28.4%)	152 (42.4%)	152	152
Very severe	6 (1.7%)	41 (11.5%)	41	41
COPD severity (GOLD 2006), N (%)	137	323		
Grade 1 (mild)	31 (22.6%)	16 (5.0%)	16	16
Grade 2 (moderate)	62 (45.3%)	183 (56.6%)	183	183
Grade 3 (severe)	13 (9.5%)	38 (11.8%)	38	38
Grade 4 (very severe)	31 (22.6%)	86 (26.6%)	86	86
COPD severity (GOLD 2011), N (%)	136	319		
Group A: Low risk, less symptoms	20 (14.7%)	71 (22.3%)	71	71
Group B: Low risk, more symptoms	15 (11.0%)	72 (22.6%)	72	72
Group C: High risk, less symptoms	45 (33.1%)	52 (16.3%)	52	52
Group D: High risk, more symptoms	56 (41.2%)	124 (38.9%)	124	124
Median time in years since diagnosis (range)	5.0 (0–40)	4.0 (0–30)	4.0	4.0
FEV₁, mean (SD)	60.5 (22.8)	53.6 (16.7)	53.6	53.6
Arterial blood gas (mmHg), mean (SD)	72.4 (12.8)	70.0 (11.7)	70.0	70.0
PaO₂	42.1 (6.2)	41.2 (6.0)	41.2	41.2
PaCO₂	349	353		
Dyspnea (MRC grade), N (%)	58 (16.6%)	24 (6.8%)	24	24
1 (strenuous exercise)	146 (41.8%)	114 (32.3%)	114	114
2 (walking upstairs or uphill)	96 (27.5%)	103 (29.2%)	103	103
one condition, and less than 7% of patients complying with all three conditions. Compliance with the FEV1 < 60% predicted normal criteria, was considerably lower in the GP group than the pulmonologist group. Conversely, patients included by pulmonologists were less likely to have fulfilled the requirement of repeated exacerbations.

Discussion

Knowledge of real-life use of ICS/LABA combinations in the COPD setting allows for evaluation of the conformity of current prescription practices with the licensed COPD population. This can in turn be used to encourage appropriate changes in current practices to improve standards of patient care. Limited data on the use of FSC in the real-life setting have been published since the addition of COPD to the original marketing authorization for this combination based on three double-blind randomized placebo-controlled studies [16-18].

From the data obtained in this observational study of a COPD population initiating treatment with FSC administered via a dry powder inhaler, the very low rates of strict compliance with the three SPC criteria for prescription, notably in ICS-naïve patients, clearly reveal that prescribing French physicians do not adequately respect the licensing conditions. Less than a quarter of the patients with prior ICS and less than 7% of ICS-naïve patients fulfilled all three conditions. Furthermore, a small proportion of patients did not fulfill any of the conditions. When considering both two or three of the conditions, conformance improves slightly, but is still low, being reported in approximately two-thirds of patients with prior ICS, and one-third of ICS-naïve patients.

While conformance was higher for pulmonologists than GPs in terms of the number of conditions respected and for the FEV1 and previous bronchodilator criteria, overall rates were low for both medical specialties. In the case of GPs, the discrepancy between the licensed and real-life COPD populations is due at least in part to the high rate of missing spirometry measurements, with FEV1 data available for less than half of these patients. This is coherent with several studies worldwide reporting that only around a third to a half of patients undergo spirometry testing for newly diagnosed COPD or subsequently during follow-up [7,10,11,19,20].

The large proportion of missing data for FEV1 among GP patients limits the assessment of concordance between prescription practices and marketing authorizations and guidelines. The conservative approach used with missing data (i.e., absence of FEV1 considered non-adherence) may have artificially lowered the rate of conformance in the GP group. Supporting this, a sensitivity analysis including only patients for whom FEV1 measures were available gave similar conformance rates between GPs and pulmonologists for this criterion (Additional file 4). Of note, the profile of patients without FEV1 measures showed them to be generally healthier than those with measures (younger, less severe

Table 1 Main sociodemographic characteristics at inclusion and clinical profile of COPD patients prescribed with FSC (Continued)
Chronic symptoms, N (%)
Daily expectorations 261 (74.6%) 350 232 (65.4%) 355
Daily cough 307 (87.7%) 350 287 (81.1%) 354
Daily expectorations + cough 245 (70.0%) 350 224 (63.3%) 354
Quality of life (CCQ) score, median
Symptoms 3.3 2.8
Functional status 2.5 2.3
Mental status 2.0 2.0
Total 2.7 2.4
History of repeated exacerbations, N (%)
222 (63.1%) 352 106 (29.6%) 358

1Excluding vascular (hypertension) and metabolic conditions (diabetes, hypercholesterolemia).
2A: GOLD 1–2 and < 1 exacerbation/year, MRC < 2; B: GOLD 1–2 and < 1 exacerbation/year, MRC ≥ 2; C: GOLD 3–4 and/or ≥ 2 exacerbations/year, MRC < 2; D: GOLD 3–4 and/or ≥ 2 exacerbations/year, MRC ≥ 2 [15].
3An additional 8 GP patients had FEV1 results which were aberrant and were excluded from the analysis; for one pulmonologist patient only FEV1 (L) was available (% FEV1 was missing).
4During the 3 months prior to initiation.
5During 7 days prior to initiation; score on a scale of 0 to 6 where 6 is the worst score.
6During the 12 months prior to initiation; exacerbation was defined as at least two of the following separated by at least 7 days over the last year: an emergency department visit, hospitalization, or a course of oral corticosteroids or antibiotics for respiratory problems.

Roche et al. BMC Pulmonary Medicine 2014, 14:56
http://www.biomedcentral.com/1471-2466/14/56
COPD and dyspnea, and better QoL; see Additional file 2).

It could also be hypothesized that perceived QoL is a particularly important determinant of treatment decisions by GPs. Indeed, health-related QoL as measured by the CCQ was similar in pulmonologist and GP patients despite the latter patients having a lower dyspnea grade, less pronounced airflow obstruction and less frequent hospital visits. This illustrates that QoL measures, even when specifically designed for COPD patients, capture the impact of components other than those directly related to COPD. Interestingly, GP patients were younger and less likely to be retired than those treated by pulmonologists. Thus, it could be hypothesized that their perception of the disease’s impact is enhanced by their activity requirements, although this possibility remains to be tested. It was also noted that although pulmonologist patients are likely to have more severe COPD, pulmonologists tend to be more restrictive in the use of antibiotics and corticosteroids in patients treated in the community, as recommended in the French COPD guidelines. In these guidelines, antibiotics are to be prescribed only for patients with severe baseline airflow obstruction and/or lack of improvement following treatment with antibiotics, if required, and bronchodilators.

Another potential reason for discrepancy between the licensed and real-life COPD populations may lie with the possibility that exacerbations were underestimated in this study since they were only assessed from patient recall; interestingly, conformance with this criterion was particularly low among pulmonologists. A low level of overall conformity was maintained in a sensitivity analysis excluding this criterion. Difficulty evaluating prior exacerbations stems from multiple sources; not only is there an absence of consensus on the definition of COPD exacerbations [21-23], but in addition, patients tend to under-report exacerbations [24], even those that have clinical significance [25].

Differences in conformity were seen according to prior corticosteroid intake, with patients having prior ICS generally less likely to conform to prescription recommendations relative to ICS-naive patients. This may have been influenced by the fact that prior ICS treatment may

Table 2 Therapeutic management of COPD prior to initiating fluticasone/salmeterol

General care, N (%)	GP patients (n = 352)	Pulmonologists (n = 358)		
Consultation with GP	320 (91.4%)	350	251 (73.6%)	341
Consultation with specialist	173 (49.6%)	349	215 (60.6%)	355
Emergency visits	31 (8.9%)	348	53 (14.9%)	356
Hospitalizations	38 (10.9%)	350	71 (19.8%)	358
Oral corticosteroids	220 (63.0%)	349	120 (33.7%)	356
Antibiotics	289 (83.5%)	346	194 (54.6%)	355
Vaccination, N (%)				
Flu	264 (75.4%)	350	214 (60.1%)	355
Pneumococcus (within 5 years)	168 (48.1%)	349	106 (30.1%)	352
Prior medication, N (%)				
Short-acting bronchodilator	37 (13.8%)	350	26 (10.9%)	355
Long-acting ± short-acting bronchodilator	57 (21.3%)	88 (36.9%)	355	
ICS + long-acting bronchodilator	87 (32.5%)	92 (38.5%)	355	
ICS ± short-acting bronchodilator	57 (21.3%)	23 (9.6%)	355	
Other ICS combination	15 (5.6%)	6 (2.5%)	355	
Other	15 (5.6%)	4 (1.6%)	355	
Concomitant medication, N (%)				
Long-acting anticholinergic ± short-acting bronchodilator	53 (31.7%)	173 (67.1%)	355	
Short-acting bronchodilator	81 (48.5%)	71 (27.5%)	355	
Long-acting β-2 adrenergic agonist	18 (10.8%)	11 (4.3%)	355	
Other ICS	15 (9.0%)	3 (1.2%)	355	

1During the 12 months prior to inclusion.
2Missing data for 84 GP and 119 pulmonologist patients.
3At the time of FSC initiation.
4Missing data for 185 GP and 100 pulmonologist patients.
have modified their clinical profile [26]. It may also be explained by the fact that this population was older, had more severe and longer duration COPD, with a higher incidence of oral corticosteroid and antibiotic intake. Poor physician compliance with licensed conditions may also reflect a level of difficulty in applying recommendations and guidelines in the face of lack of clarity or simplicity, or in the context of individualized patient care. As reported by Corrado et al., recommendations can be considered inappropriate if other factors such as pulmonary hyperinflation, exercise capacity and tolerance, or comorbidities are not taken into account [27]. This may also explain the relatively high rates of incorrect dose prescription. Dialogue with physicians, along with improved awareness and education are needed in order to address these issues.

Analysis of populations and SPC conformance according to the GOLD 2011 classification reveals some differences compared to GOLD 2006 classification. Very severe airflow obstruction (GOLD grade 4) was reported in approximately one-quarter of the population while 40% belonged to the D GOLD 2011 category. In nearly a quarter of cases, GPs prescribed FSC to patients with GOLD 2006-defined mild COPD. This may be due to the fact that they (along with pulmonologists) tended to underestimate COPD severity relative to both 2006 and 2011 GOLD classifications (notably for most severe disease). Comparing the GOLD 2006 and 2011 classifications also shows that according to the latter, GPs were more likely than pulmonologists to see patients with more severe COPD (74% versus 55%, respectively), which was not the case with the 2006 guidelines (32% versus 38%, respectively). Furthermore, according to the GOLD 2011 classification, more patients have more severe disease, suggesting a higher rate of conformity with the SPC licensing conditions, and also that the guidelines may be evolving to adapt to the real-life situation.

Another potential study limitation concerns the representativeness of participating physicians. The low rate of physicians selected randomly from the national population who agreed to participate in the study (<10%) suggests a general reluctance to participate and consequently a potential selection bias. Nonetheless, participating physicians were broadly representative of national figures for their respective specialties in terms of age, gender and practice settings [28], although male physicians were overrepresented relative to national figures. It could be hypothesized that participating physicians were more likely to be interested in the field of COPD and prescribe treatments more adequately than less interested physicians. As a consequence, the already very high rate of non-concordance between prescriptions and guidelines could

Table 3 Compliance of practice patterns with FSC marketing conditions for prescription according to prior ICS intake, irrespective of FEV1 availability
Patients with prior ICS

Approved prescription condition respected, N (%)
FEV1 < 60% predicted1
History of repeated exacerbations
Continuous bronchodilator therapy
All conditions respected (regulatory approval criteria)
Details of conditions respected, N (%)
None
FEV1 only
Repeated exacerbations only
Continuous bronchodilator only
FEV1 and repeated exacerbations only
FEV1 and bronchodilators only
Repeated exacerbations and bronchodilators only
FEV1 and repeated exacerbations +/- bronchodilators
FEV1 or repeated exacerbations
N conditions respected, N (%)
At least one
At least two

1Missing FEV1 data were considered non-respect of condition.
be under-estimated. However, we have no means of testing this pessimistic hypothesis.

Conclusions
The COPD population prescribed with FSC by both GPs and pulmonologists conforms poorly with the licensed population with less than a quarter of ICS-treated patients and 7% of ICS-naïve patients fulfilling all three marketing conditions. Prescribing clinicians need further education on the importance of following the SPC recommendations, including FEV₁ evaluation, to ensure FSC is used only in COPD patients who are likely to benefit from it. Understanding the reasons behind clinicians’ decisions to prescribe FSC to non-conforming patients may help to resolve this issue.

Additional files
- Additional file 1: Physician demographics and practice characteristics.
- Additional file 2: Comparison of patient characteristics between various groups.
- Additional file 3: COPD therapeutic management.
- Additional file 4: Compliance in patients with available FEV₁ data.

Abbreviations
CAT: COPD Assessment Test; CCQ: Clinical COPD questionnaire; COPD: Chronic obstructive pulmonary disease; FEV₁: Forced expiratory volume in 1 sec; FSC: Fluticasone/salmeterol combination; GOLD: Global initiative for chronic obstructive lung disease; GP: General practitioner; ICS: Inhaled corticosteroids; LABA: Long-acting β₂ agonists; mMRC: Modified Medical Research Council; QoL: Quality of life; SD: Standard deviation; SPC: Summary of Product Characteristics.

Competing interests
Nicolas Roche has received over the past 5 years (i) fees for speaking, organising education, or consulting from Aerocline, Almirall, Altrana Pharma-Nycomed-Takeda, AstraZeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Meda, MSD-Chibret, Mundipharma, Novartis, Pfizer, Teva; (ii) research grants from Novartis, Nycomed, Boehringer Ingelheim and Pfizer. Eric Van Gasse has received fees for: Consultancy from Danone, ALK-ABELLO, Chiesi; Expert testimony from UBS, IMS; Grants: IMS, CNAM, MSD, GSK; Travel/ accommodations related to a consultancy from Boehringer-Ingelheim. Philippe Senier has received fees for speaking, consulting and attending conferences from Novartis, GSK, Pfizer, Boehringer Ingelheim, Astra Zeneca, Mundipharma, Vivisol, and Chiesi. Bruno Housset has received fees from Aerocline, Astra Zeneca, Boehringer Ingelheim, Chiesi, GlaxoSmithKline, Novartis, Nycomed, and Pfizer for performing continuing medical education talks and consulting work. Déborah Poirier, Nathalie Texier and Stéphane Schück were funded by GSK for medical writing services funded by GSK.

Authors’ contributions
All authors approved the original study protocol, data collection and analysis plans, and the study report, as well as revising the manuscript, and have approved the submitted version. In addition, NR participated in drafting the manuscript, and NT, DP, SS performed data management and statistical analyses.

Acknowledgements
We thank Virginie Rondeau (ISPED, INSERM, Bordeaux, France) for expert analysis of longitudinal data and Sarah MacKenzie (MediAxe, France) for medical writing services funded by GSK.

Author details
1. Respiratory and Intensive Care Medicine, Cochin Hospital Group, AP-HP, University Paris Descartes, Hôtel-Dieu de Paris, Paris, France. 2. Department of Pharmacoepidemiology and Medico-Economic Modelling, GlaxoSmithKline, Marly Le ROI, France. 3. Department of Pharmacoepidemiology, CHU Lyon, Lyon, France. 4. Private Medical Practice, Paris, France. 5. Department of Pulmonology, CHU Creteil, Creteil, France. 6. Kappa Saïté, Paris, France. 7. Respiratory and Immuno-Inflammation Department, GlaxoSmithKline, Marly Le ROI, France.

Received: 31 October 2013 **Accepted**: 24 March 2014

Published: 2 April 2014

References
1. Murray CJ, Lopez AD: Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. Lancet 1997, 349:1498–1504.
2. GOLD: Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease–2014. Available from http://www.goldcopd.org/guidelines-global-strategy-for-diagnosis-management.html. (Accessed April 2014). 3. Jenkins CR, Jones PW, Calverley PM, Celli B, Anderson JA, Ferguson GT, Yates JC, Willis LR, Vestbo J: Efficacy of salmeterol/fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: analysis from the randomised, placebo-controlled TORCH study. Respir Res 2009, 10:59. doi:10.1186/1465-9921-10-59. 4. Fitch K, Iwasaki K, Pyenson B, Plauschintz C, Zhang J: Variation in adherence with Global Initiative for Chronic Obstructive Lung Disease (GOLD) drug therapy guidelines: a retrospective actuarial claims data analysis. Curr Med Res Opin 2011, 27:1425–1429. 5. Incalzi RA, Corsonello A, Pedone C, Masotti G, Bellia V, Grassi V, Rengo F: From Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines to current clinical practice: an overview of the pharmacological therapy of stable chronic obstructive pulmonary disorder. Drugs Aging 2006, 23:411–420. 6. Roche N, Lepage T, Bourcereau J, Tenioups P: Guidelines versus clinical practice in the treatment of chronic obstructive pulmonary disease. Eur Respir J 2001, 18:903–908. 7. Han MK, Kim MG, Marlon R, Renner P, Sullivan S, Dette GB, Martinez FJ: Spirometry utilization for COPD: how do we measure up? Chest 2007, 132:403–409. 8. Olsen S, Jarbal DE, Kofoed M, Abdilskov K, Pedersen ML: Prevalence and management of patients using medication targeting obstructive lung disease: a cross-sectional study in primary healthcare in Greenland. Int J Circumpolar Health 2013, 72. doi:10.3402/ijch.v72i2.20108. 9. Chavez PC, Shokan NK: Diagnosis and management of chronic obstructive pulmonary disease (COPD) in a primary care clinic. COPD 2009, 6:446–451. 10. Arne M, Lisspers K, Ställberg B, Boman G, Hedenström H, Janson C, Emmert M: How often is diagnosis of COPD confirmed with spirometry? Respir Med 2010, 104:550–556. 11. Koefoed MM, de Pont Christensen R, Søndergaard J, Jarbal DE: Lack of spirometry use in Danish patients initiating medication targeting obstructive lung disease. Respir Med 2012, 106:1743–1748. 12. Borg G: Perceived exertion as an indicator of somatic stress. Scand J Rehabil Med 1970, 2:92–98. 13. Van der Molen T, Willemsen BW, Schokker S, ten Hacken NH, Postma DS, Juniper EF: Development, validity and responsiveness of the Clinical COPD Questionnaire. Health Qual Life Outcomes 2003, 1:13. 14. GOLD: Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease–2006. http://www.goldcopd.org/Guidelines-global-strategy-for-diagnosis-management-2006.html. (Accessed April 2014). 15. GOLD: Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease–2010. http://www.goldcopd.org/Guidelines/guideline-2010-gold-report.html. (Accessed April 2014). 16. Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gutivshik A, Anderson J, Maden C: Trial of Inhaled Salmeterol Ahd long-acting beta2 agonists study group: Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2003, 361:449–456.
17. Mahler DA, Wije P, Horstman D, Chang C-N, Yates J, Fischer T, Shah T: Effectiveness of fluticasone propionate and salmeterol combination delivered via the Diskus device in the treatment of chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 2002, 166:1084–1091.

18. Hanania NA, Darken P, Horstman D, Reiner C, Lee S, Davis S, Shah T: The efficacy and safety of fluticasone propionate (250 microg)/salmeterol (50 microg) combined in the Diskus inhaler for the treatment of COPD. *Chest* 2003, 124:834–843.

19. Gersten AS, Victor JC, Guan J, Aaron SD, To T: Pulmonary function testing in the diagnosis of asthma: a population study. *Chest* 2012, 141:190–1196.

20. Buffels J, Degryse J, Liistro G: Diagnostic certainty, co-morbidity and medication in a primary care population with presumed airway obstruction: the DIDASCO2 study. *Prim Care Respir J* 2009, 18:34–40.

21. Rodriguez-Roisin R: Toward a consensus definition for COPD exacerbations. *Chest* 2000, 117(Suppl 2):398S–401S.

22. Burge S, Wedzicha JA: COPD exacerbations: definitions and classifications. *Eur Respir J Suppl* 2003, 41:46s–53s.

23. Pauwels R, Calverley P, Buist AS, Rennard S, Fukuchi Y, Stahl E, Löfdahl CG: COPD exacerbations: the importance of a standard definition. *Respir Med* 2004, 98:99–107.

24. Seemungal TA, Donaldson GC, Paul EA, Bestall JC, Jeffries DJ, Wedzicha JA: Effect of exacerbation on quality of life in patients with chronic obstructive pulmonary disease. *Am J Respir Crit Care Med* 1998, 157(5 Pt 1):1418–1422.

25. Langsetmo L, Platt RW, Ernst P, Bourbeau J: Underreporting exacerbation of chronic obstructive pulmonary disease in a longitudinal cohort. *Am J Respir Crit Care Med* 2008, 177:396–401.

26. Burge PS, Calverley PM, Jones PW, Spencer S, Anderson JA, Maslen TK: Randomised, double blind, placebo controlled study of fluticasone propionate in patients with moderate to severe chronic obstructive pulmonary disease: the ISOLDE trial. *BMJ* 2000, 320:1297–1303.

27. Corrado A, Rossi A: How far is real life from COPD therapy guidelines? An Italian observational study. *Respir Med* 2012, 106:989–997.

28. DREES (French Ministry of Health Directorate for Research, Evaluation and Statistics): [Physicians: Estimations on January 1, 2008. Statistical Series, No. 127, October 2008] in French. 2013. http://www.drees.sante.gouv.fr/IMG/pdf/seriestat127.pdf. (Accessed September 2013).