Supplemental Material
Data S1.

Search Strategy:

PubMed

(Intermittent claudication[Title/Abstract] OR Peripheral arterial disease[Title/Abstract] OR Peripheral arterial disease[Title/Abstract] OR peripheral vascular disease[Title/Abstract] OR lower extremity arterial disease[Title/Abstract]) AND (SET[Title/Abstract] OR Exercise[Title/Abstract] OR Best medical therapy[Title/Abstract] OR BMT[Title/Abstract] OR Percutaneous angioplasty[Title/Abstract] OR PCA[Title/Abstract] OR Surgical intervention[Title/Abstract] OR Revascularization[Title/Abstract] OR Cilostazol[Title/Abstract])) AND (Maximum walking distance OR MWD OR treadmill OR walking distance OR quality of life OR walking capacity OR claudication distance OR claudication onset distance)
Study reference	Intervention	MWD measurement method	QoL assessment	Type of exercise	Support/method
Nylande 2007	Control	Graded treadmill test	Short Form (SF-36) and Claudication Scale (CLAU-S)	-	Smoking advice, exercise training, nutritional advice, prescribed statins and acetylsalicylic acid
	ER			-	Percutaneous transluminal angioplasty
Mazari 2017	ER	Fixed load treadmill test	Short Form 36 (SF-36) and VascuQoL	Gym exercise included step-ups, bicycle exercise, knee extensions with weights, heel raises, knee bends and rest station to recover.	Conducted 3 times per week for 12 weeks. The session was supervised by a physiotherapist and conducted in the cardiac gym. For the first 6 weeks, patients complete one full circuit, followed by one extra station/week, thus by 12 weeks patients will complete 2 full circuits. Finally patients perform a series of gentle stretching and cooling down exercises.
	SET			-	Combination of both the SET and ER strategies.
	SET+ER				
Fakhry, 2013	SET	Standard treadmill test	Short Form 36 (SF-36) and VascuQoL	Treadmill walking	24 weeks supervised treadmill exercise, 2x30 minute sessions/week. Patients were encouraged to walk at least 30 minutes 3 times/week + walk 1 hour per day
	ER			-	Iliac revascularisation - self expanding nitinol stent (if initial balloon angioplasty not technically successful). Femoral revascularisation - self expanding nitinol stent if lumen diameter <50% after initial balloon angioplasty. All patients given general recommendations for lifestyle changes and strongly advised to walk regularly.
Djerf 2019	ER	Graded treadmill test	Short Form 36 (SF-36) and VascuQoL	-	TASC II A-C treated with endovascular intervention, TASC II D treated with surgical revascularisation. Procedures listed: Aortoiliac endovascular procedure, Percutaneous transluminal angioplasty/subintimal angioplasty with stent, Aortoiliac open procedure, Aortobifemoral bypass, Femoro-femoral bypass.
	Control	SR + SET	Greenhalgh 2008		
------------------	--------------------------	---------------------------	-------------------------------		
ER	Standard treadmill test	Graded treadmill test	SET consisted of 30 minutes of continuous exercise to a maximum pain threshold using walking circuit interspersed with 7 lower limb training stations (eg. stair climbing, heel raises, treadmill walking) supervised by physiotherapists or nursing staff. All participants underwent OMC which involved: assessment of BP measure, dyslipidaemia, serum glucose and anti-platelet treatments and drug therapy was commenced when necessary.		
Control	Short Form 36 (SF-36) and EuroQoL 5-dimensions (EQ5D)	SF36 short-form	Stair climbing, heel raises and treadmill walking		
Lindgren 2018	-	-	Percutaneous transluminal angioplasty		
	Modern nitinol bare metal stents (BMS) were used. Calibrated angiogram compared pre- and post-implant minimum lumen diameters. IV heparin bolus of 5000 units was administered.	-	SET patients received OMC + SET. Consisted of treadmill walking for up to 78 scheduled exercise sessions that were 1 hour long, 3 days a week for 6 months. Patients received quarterly contact by research coordinators during supervised phase - then participated in a telephone-based maintenance program (7-12 months) to promote exercise adherence.		
Murphy 2015	Both groups received daily antiplatelet therapy (75mg aspirin or 75mg clopidogrel), lipid lowering and antihypertensive drugs. Patients received a pedometer and were encouraged to exercise when readouts were recorded	Graded treadmill test	EVR patients received OMC + stent revascularisation of hemodynamically significant stenoses in the aorta and iliac arteries in the symptomatic leg(s)		
Control	SF-12 (23), the Walking Impairment Questionnaire (WIQ) (10), and the Peripheral Artery Questionnaire (PAQ)	Treadmill walking	-		
Control Group	Control group received OMC according to current guidelines - use of atherosclerosis risk factor management, cilostazol, home exercise counselling	-	Control group received OMC according to current guidelines - use of atherosclerosis risk factor management, cilostazol, home exercise counselling		
SET	SET patients received OMC + SET. Consisted of treadmill walking for up to 78 scheduled exercise sessions that were 1 hour long, 3 days a week for 6 months. Patients received quarterly contact by research coordinators during supervised phase - then participated in a telephone-based maintenance program (7-12 months) to promote exercise adherence.	-	SET patients received OMC + SET. Consisted of treadmill walking for up to 78 scheduled exercise sessions that were 1 hour long, 3 days a week for 6 months. Patients received quarterly contact by research coordinators during supervised phase - then participated in a telephone-based maintenance program (7-12 months) to promote exercise adherence.		
ER	EVR patients received OMC + stent revascularisation of hemodynamically significant stenoses in the aorta and iliac arteries in the symptomatic leg(s)	-	EVR patients received OMC + stent revascularisation of hemodynamically significant stenoses in the aorta and iliac arteries in the symptomatic leg(s)		
Study	Intervention	Outcomes	Summary		
------------------	--------------	----------	---------		
Gelin 2001	Control	Quality of life evaluation	All patients were advised to give up smoking. Control patients received no other specific advice or treatment apart from the general advice given to the two treatment groups. SET patients were referred to trained physiotherapists - 30 minute sessions of specific walking training per week during the initial 6 months with 10-12 patients participating in each training class as described. After 6 months 2 sessions per week were offered. EVR patients were referred for standard angiography. Based on these findings, endovascular or open surgical procedures were chosen.		
Bo 2015	ER	Short Form 36 (SF-36) [26], as well as a disease-specific instrument, the Claudication Scale (CLAU-S)	Percutaneous transluminal angioplasty		
	SET+ER	Treadmill walking and high intensity exercises	SET two days per week for 12 weeks + one home based exercise session per week. After hospital based SET, participants conducted home based exercise sessions every week for an additional 12 weeks. Each session lasted 60 minutes (consisted of warm-up exercises, 3 high intensity intervals, two moderate intensity intervals and cool down exercises). Endovascular revascularisation was performed by an interventional radiologist. For iliac revascularisation: initial balloon angioplasty, if that failed then self-expanding nitinol stent was used. For femoral revascularisation: self-expanding nitinol stent was chosen based on angiography.		
Spronk 2009	ER	Short Form 36 (SF-36) and VascuQoL	SET performed over 24 weeks on a walking treadmill - 30 minutes per session, twice weekly supervised by a vascular technologist. Treadmill exercise was initiated at a workload of 3.5km/h without a graded incline and decreased to 1km/h when perceived maximum claudication pain occurred, and increased after a few minutes after the pain subsided.		
Crowther 2008	Control	NA	Control		
	SET	Graded treadmill test	Treadmill walking with progressive increase in intensity and duration	Exercise program initial consisted of treadmill walking 3 days per week for 25 minutes at 3.2 km/hr. Participants were required to walk until pain level was perceived as 3 or 4 on the CPS. Exercise intensity (treadmill grade and walking speed) and duration (25 to 40 minutes) was progressively increased. This was performed over a 12 month period	
----------	-----------	-----------------------	---	--	
Cheetham 2004	HET	Graded treadmill test	the Short-Form-36, the Charing Cross Symptom Specific Claudication Questionnaire (CCCQ)	All patients were given best medical treatment (antiplatelet therapy, antihypertensive therapy, cholesterol lowering agents and diabetic control. Each patient received verbal and written exercise advice - recommended a program of walking at least 3 times a week to near maximal pain for at least half an hour per session. Additional leg exercises were to be performed at home (stair climbing and tiptoe walking)	
SET	Gym exercise included stair climbing, low step climbing, high step climbing, tip toe walking, standing on tip toe from flat, standing on tip toe from ankle dorsiflexion and power-jogger walking	A 45 minute class was conducted under physiotherapy and medical supervision in a standard hospital gym. Commenced with a 5-10 minute talk on benefits of walking. Followed by half an hour of exercise consisting of a walking circuit and performing seven 2 minute exercise stations for lower limb strengthening. Stair climbing, low step climbing, high step climbing, tip toe walking, standing on tip toe from flat, standing on tip toe from ankle dorsiflexion and power-jogger walking. Each 2 minute station was interspersed with a 2 minute walking circuit			
Gardner 2002	Control	Self-reported Walking	-	Control	
Study	SET	Graded treadmill test	NA	Treadmill exercise	
-------	-----	-----------------------	----	-------------------	
Baker 2017	SET	Graded treadmill test	NA	Treadmill exercise	
Control	-	-	Control		
Brass 2012	Cilostazol	Graded treadmill test	NA	-	
Control	-	-	Placebo		

Supervised 6 months progressive exercise program followed by supervised, 12-month maintenance exercise program. The progressive program consisted of intermittent treadmill walking to near maximal claudication pain 3 days per week at a walking speed of approximately 2 mph. Walking duration began at 15 minutes for the first month of the program, and progressively increased by 5 minutes per month until a total of 40 minutes of walking was accomplished by the sixth month of rehabilitation. Walking intensity began at 50% of the maximal work load achieved during a maximal effort treadmill test, and progressively increased on an individual basis throughout the program to 80% by the sixth month of rehabilitation. Five minutes of cycling on a stationary bicycle ergometer served as both warm-up and cool-down exercise during each session. The final 12 months of the exercise program was considered the maintenance phase in which the frequency of exercise sessions was reduced to 2 days per week. Walking duration and intensity were maintained at 40 minutes and 80% of the maximal work load respectively.

Subjects performed three 60-minutes supervised exercise training sessions each week for a period of 3 months. Subjects walk on a treadmill at an initial speed of 2.0 mph to a mild to moderate pain level, stop and rest until the claudication pain has completely abated, and then resume walking. This pattern was repeated for a total of 60 minutes. If subjects can walk longer than 8 minutes without rest, the treadmill walking becomes more challenging via grade and speed increases in subsequent training sessions.

Patients were randomized to one of five study arms: placebo, K-134 at a dose of 25, 50, or 100 mg, or cilostazol at 100 mg, each twice daily.
All participants viewed a 7-minutes educational video about PAD and its clinical leg symptoms, life-threatening consequences of PAD (heart attack and stroke), other adverse outcomes (walking disability), and strategies for disease and risk factor management (smoking cessation, weight control, aerobic activity). After the video, each participant met face-to-face with the research coordinator. Participants were encouraged to ask questions about the video material. The coordinator queried participants regarding self-management behaviors (i.e., glucose monitoring, blood pressure monitoring) and gave them a calendar in which to document their daily glucose results, weekly blood pressures, and any routine lipid results provided by their primary care physician.

HET

Control
- Graded treadmill test
- San Diego Claudication Questionnaire and Physical Activity Readiness Questionnaire (PAR-Q)

HET
- -

Intervention group subjects participated in a home-based walking program with three components: 1) A one-on-one interaction with the research coordinator at baseline; 2) Walking training and weekly group walking classes with an instructor; 3) Bi-weekly telephone calls for 6 months. Participants were then encouraged to walk 1 day per week with the study exercise instructor and other participants, as available, and to continue walking on their own at least 3 days per week for a minimum of 4 days of walking each week. Participants were advised to walk 50 minutes total for each session, and use their pedometers to increase the number of steps by 50 each session.

Crowther 2012

SET
- Graded treadmill test
- Borg's Rating of Perceived Exertion (RPE) instrument and Claudication Pain Scale (CPS)

Control
- -

The exercise program initially consisted of intermittent supervised treadmill walking 3 days per week for a total time of 25 minutes at 3.2 km/hr (0.88 m/s). Participants were required to walk until the pain level was perceived as being 3 or 4 on the CPS. Exercise intensity (via treadmill grade and walking speed) and duration (25 minutes up to a maximum of 40 minutes) were progressively increased once the participant could walk continuously for 25 minutes at a level below 3 on the CPS pain scale. This exercise progression strategy was continued over the 6-month period.

Dawson 2000

Cilostazol
- NA

Cilostazol taken 100 mg twice daily.
Study	Group	Test	Outcome	Notes	
Fakhry 2015 (ERASE trial)	Control	Graded treadmill test	-	Placebo taken daily	
	SET + ER	Graded treadmill test	VascuQol and Short Form 36 Health Survey (SF-36)	Treadmill walking	ER performed by experienced interventional radiologist or vascular surgeon. For iliac and femoral revascularizations, a stent was used only if the initial balloon angioplasty was not successful (selective stenting). In addition, within 2 to 4 weeks after the procedure, patients were enrolled in the supervised exercise program described above.
	SET	Graded treadmill test	-	Treadmill walking	
Gardner 2001	SET	Graded treadmill test	Medical Outcomes Study Short Form 36 (MOS SF-36)	Treadmill walking	Exercise program consisted of treadmill walking to near maximum claudication pain. Physiotherapists were advised to start with a frequency of 2 to 3 sessions every week and approximately 30 to 45 minutes per session during the first 3 months. After this phase, the frequency was reduced to at least 1 session per week between months 3 and 6 and then to a frequency of 1 session every 4 weeks at 12 months depending on patients’ progress and preference.
	Control	Graded treadmill test	-	-	
Gardner 2014	SET	Graded treadmill test	Medical Outcomes Study Short Form 36 (MOS SF-36)	Treadmill walking with progressive increase in duration	Exercise sessions in our supervised exercise program were performed while wearing a step activity monitor as previously described. Briefly, the supervised program consisted of 3 months of intermittent treadmill walking to mild-to-moderate claudication pain 3 days per week at a speed of 2 mph and at a grade equal to 40% of the highest work load achieved during the baseline maximal treadmill test. Sessions progressively increased during the program from 15 to 40 minutes.
This program consisted of 3 months of intermittent walking to mild-to-moderate claudication pain 3 days per week at a self-selected pace, in which exercise duration was progressively increased from 20 to 45 minutes per session. Patients wore the step activity monitor during each exercise session and returned the monitor and a logbook to the research staff at the end of week 1, 4, 8, and 12. During these brief 15-minute meetings, monitor data were downloaded, results were reviewed, and feedback was provided for the upcoming month of training.

Control

- Attention-Control, light resistance program. Light resistance training was performed 3 times per week, without any walking exercise, using a Pro-Form Fusion 6.0 LX weight system. On entry, the resistance that caused fatigue in various muscle groups after 15 repetitions (15-rep maximum) was established, and was reassessed each month. The resistance training phase consisted of performing upper extremity exercises that included the bench press, military press, butterfly, biceps curl, triceps press-down, and lat pulldown. Lower extremity exercises included the leg press, leg curl, and leg extension. One set of 15 repetitions was performed for each exercise. If the resistance from the exercise machine could not be lifted, resistance bands were used instead.

Gardner 2012	SET	Graded treadmill test	Walking Impairment Questionnaire	Treadmill walking with progressive increase in intensity and duration
HET	-	-	-	-
Control	-	-	-	-

This program consisted of 6 months of supervised intermittent treadmill walking to near-maximal claudication pain 3 days per week. Walking duration and intensity of the sessions were progressively increased during the program. Walking duration began at 15 minutes for the first month of the program and increased by 5 minutes per month until 40 minutes of walking was accomplished by the sixth month of rehabilitation. Walking intensity began at an initial grade of 50% of the final workload attained during the baseline graded treadmill test and was increased by 10% every 6 weeks up to 80% during the final 6 weeks of the exercise program. During each exercise session, patients walked at approximately 2mph until their claudication pain reached a level of 3 on a 0 to 4 pain scale.

| Control | - | - | - |

This group were encouraged to walk more on their own but did not receive specific recommendations regarding an exercise program during the study.
Study	Group	Test Type	Medical Outcomes Study Short-Form 36 (MOS SF-36) and Walking Impairment Questionnaire (WIQ)	Treadmill walking with progressive increase in intensity and duration	Notes
Gardner	HET	Graded treadmill test			
	SET				
Control		NA			
Hobbs	Control	Standard treadmill test			
	ER				

Home-based exercise program was designed to be as similar to the supervised exercise program as possible, and consisted of 12 weeks of intermittent walking to near maximal claudication pain three days per week at a self-selected pace. Walking duration began at 20 minutes for the first two weeks, and progressively increased five minutes bi-weekly until a total of 45 minutes of walking was accomplished during the final two weeks of the program. These exercise durations were five minutes longer throughout the program than in the supervised program in an attempt to better match the programs on total volume of exercise determined by multiplying the intensity and the duration of walking.

This standardized program consisted of three months of supervised intermittent treadmill walking, three days per week at a speed of approximately two mph. Walking duration began at 15 minutes for the first two weeks of the program, and progressively increased by 5 minutes biweekly until a total of 40 minutes of walking was accomplished during the final two weeks of the program. Because we have previously shown that changes in COT and MWT are similar for patients who train at a relatively high exercise intensity (80% of peak work load) and patients who train at a lower intensity (40% of peak work load) for longer duration.

This group were encouraged to walk more on their own but they did not receive specific recommendations regarding an exercise program during the study.

Control

Percutaneous transluminal angioplasty
Study	Group	Test Type	Notes
Hobbs 2007	SET	Standard treadmill test	The supervised exercise comprised a 3-month, twice weekly, 1-hour physiotherapist-led exercise program. In addition to the supervised sessions, subjects were provided with a videotape of the exercise program and encouraged to undertake the exercises at home and complete an exercise log on the days that they did not attend the classes. Cilostazol was prescribed at a dose of 100 mg twice daily. If side effects were encountered (most commonly headache and diarrhoea), the dosing regimen was halved for 1 week. Programs were as followed in both SET and Cilostazol groups.
	Cilostazol	-	Control
	SET + Cilostazol	-	Control
Hodges 2008	SET	Graded treadmill test	Patients in the supervised group visited the hospital twice weekly for a period of 12 weeks. During the session patients were encouraged to walk on a treadmill (3.2 km/h) and 75% of the initial grade achieved during the exercise test) until they reached stage three or four on the PAD pain scale. Repeated until each patient had accrued 30 minutes of exercise per session.
		Self-reported rating of perceived exertion	Treadmill exercise
The patients in the control group were given normal treatment. These patients were told to walk as often as possible, but given no exercise regime to follow.

All patients received the following: Current smokers were advised to stop smoking, antiplatelet therapy, preferably 75mg aspirin once daily, was commenced if the patient was not already on it and lipid-lowering agents (statins) were prescribed and titrated to reduce LDL serum levels below 2.5–3 mmol/L, if necessary. Patients allocated to unsupervised exercise (control group) were advised to exercise daily by walking as much as possible to near maximal pain, for a period of at least 45 minutes.

Patients attended the physiotherapy department for exercise therapy three times per week for the first 6 months. Compliance was assessed with logbooks. Supervision was provided on an individual or group basis and each session lasted for about 60 minutes. A session consisted of 5 minutes warm up activities, 50 minutes of intermittent exercise and ended with 5 minutes of cool-down activities. Walking treadmill exercise was started at a low treadmill workload of 2 mph, 0% grade. Patients walked until claudication pain become moderately severe, at which time they step off the treadmill and rest until claudication pain subsides. After the patient had walked 8–10 minutes at the initial workload, either the grade was increased by 1–2%, or the speed was increased by 0.5 mph as tolerated.
Kruidenie r 2011	ER	Graded treadmill test	Medical Outcomes Study Short-Form 36 (MOS SF-36) and Euroqol-5D questionnaire	-
SET+ER		Treadmill walking, , Cycle ergometer, Indoor walking space, Small group exercise room	Treadmill walking, , Cycle ergometer, Indoor walking space, Small group exercise room	-

All patients received cardiovascular risk factor modification, including therapy with a platelet inhibitor and a statin and treatment of hypertension or diabetes or both as required. All patients who smoked were repeatedly advised to quit smoking and were offered a smoking cessation program. All patients were advised concerning lifestyle changes (eg, physical activity, weight, diet) according to the Dutch standard for cardiovascular risk management. The choice for a primary PVI for the individual patient was based on the results of imaging with duplex ultrasound or magnetic resonance angiography or both as discussed in a multidisciplinary meeting of interventional radiologists and vascular surgeons. Mainly iliac lesions generally were treated with a PVI, and depending on lesion classification, femoropopliteal lesions also were treated. Not all lesions were necessarily treated. All PVIs were performed by an experienced interventional radiologist and consisted of iliac angioplasty with selective stent placement for iliac stenoses, angioplasty with primary stent placement for superficial femoral artery stenoses, or recanalization with primary stent placement for iliac and femoral occlusions.

Patients in the PVI SET group, the SET program was scheduled to start within 3 weeks after the PVI. The SET program was performed in a community-based setting, meaning that patients followed exercise therapy by a trained physiotherapist in proximity to their homes. Organization and results of community-based SET have been described previously. SET was administered according to the guidelines of the Royal Dutch Society for Physiotherapy. The main goal of SET is to increase a patient’s walking distance by interval training with short (3–5 minutes) walking intervals up to submaximal pain (distraction not possible). Secondary goals are increasing endurance and strength and improving walking patterns. Patients generally started with a frequency of two to three sessions of 30 minutes a week. Frequency of the sessions was phased down according to the patient’s progress. Patients were encouraged to walk on a daily basis.
Authors	SET	Graded treadmill test	Medical Outcomes Study Short-Form 36 (MOS SF-36)	Treadmill walking with progressive increase in duration	Treadmill walking followed by recovery on an exercise bike with no resistance
Lamberti 2016	HET	Standard treadmill test	-	-	-
ER					
Novaković 2018	SET	Standard treadmill test	36-Item Short Form Survey (SF-36)	Treadmill walking	Interventions consisted of 36 training sessions, two or three times per week, according to the patient’s preferences. If patients could not attend prescheduled sessions, they were offered a new rescheduled session in the same week. A single training session lasted around 60 minutes and consisted of walking on a treadmill, followed by active recovery on an exercise bike with no resistance.
Control					
Mauer 2015	SET	Graded treadmill test	Baltimore Activity Scale for Intermittent Claudication (BASIC) questionnaire	Treadmill walking	Supervised exercise rehabilitation program that was designed to elicit increases in COT and PWT as previously described. This standardized program consisted of 3 months of supervised treadmill walking sessions 3 days per week. Walking duration began at 15 minutes for the first 2 weeks of the program and progressively increased by 5 minutes bi-weekly until a total of 40 minutes of walking was accomplished during the final 2 weeks of the program. Patients walked at a grade equal to 40% of the final workload from the baseline maximal treadmill test to the point of near-maximal claudication pain at which point they stopped to relieve their leg pain.

The program included two 10-minute sessions/day (6 days/week) of intermittent walking (1-minute work and 1-minute rest while seated) at a prescribed speed converted into a walking cadence and followed at home using a metronome. A semipersonalized training program was proposed according to the patient’s baseline exercise capacity (ICD less than or greater than 50 metres). The walking sessions were preferably performed indoors at home (e.g., in a hallway or a heated garage) to avoid the influence of weather on a treadmill. Open surgery or endovascular revascularization or both were planned. The team included highly experienced vascular surgeons and interventional radiologists. For each patient, the team performed the option that was most likely to yield the best hemodynamic improvement. After intervention, the patients received general recommendations regarding lifestyle changes and standardized advice to be physically active at home. The control group was advised to continue with secondary preventive activities including regular walking as recommended by the treating vascular specialist.
Control	-	-	Patients randomized to this group \(n = 7 \) participated in supervised light resistance training over the 3-month study period. Light resistance training was performed three times per week, without any walking exercise, using a Pro-Form Fusion 6.0 LX weight system. On entry, the resistance that caused fatigue in various muscle groups after 15 repetitions (15-rep maximum) was established and was reassessed each month. The resistance training phase consisted of performing upper extremity exercises that included the bench press, military press, butterfly, biceps curl, triceps press down, and lat pull-down. Lower extremity exercises included the leg press, leg curl, and leg extension. One set of 15 repetitions was performed for each exercise. If the resistance from the exercise machine could not be lifted, resistance bands were used instead.
HET	-	-	Home-based exercise rehabilitation program that was designed to be as similar to the supervised Exercise program as possible and consisted of 12 weeks of intermittent walking to near-maximal claudication pain 3 days per week at a self-selected pace. Walking duration began at 20 minutes for the first 2 weeks and progressively increased 5 minutes bi-weekly until a total of 45 minutes of walking was accomplished during the final 2 weeks of the program.
Mays 2015	Control	-	Patients assigned to the control group received verbal advice to exercise but no other formal training.
HET	Graded treadmill test	Walking Impairment Questionnaire and SF-36	Patients in the intervention group received in-hospital exercise training on a treadmill for an initial 2 weeks (3 days/week). Patients then completed 12 weeks of community-based walking exercise training. Patients instructed to walk/rest on treadmill for 35 minutes progressing to 50 minutes as tolerated. Intensity enough to induce moderate leg pain in 3-5 minutes for patients with IC. Attempts were made to increase exercise intensity weekly.
Mika 2005	SET	Standard treadmill test	NA
Study	Group	Test	Intervention
--------------	-------------	-------------------------------	---
Miika 2011	Training	Graded treadmill test	Treadmill walking with progressive increase in inclination, cycling exercise
	Control	NA	
O'Donnell 2009	Placebo	Standard treadmill test	Short form 36 (SF-36), Disease-Specific Walking Impairment Questionnaire (WIQ), and Vascular Quality of Life (VascuQoL)
	Control	NA	
Sandercock 2007	Training	Graded treadmill test	Walking instructions with diary to complete

The goal of such a workload was not to produce a claudication pain.
Study	Group	Test	Protocol	Results	
HET 2011	HET	-	-	HET group were given an exercise diary to complete and instructed to undertake three 30 minutes walking sessions per week at a RPE of 12 - 14. This group was also contacted weekly by telephone and given support and encouragement in adhering to the protocol.	
Control	-	-	-	The control group were given verbal information regarding the safety and efficacy of walking exercise but no specific instructions were given regarding exercise duration, intensity or frequency.	
Schlager 2011	SET	Standard treadmill test	Incremental exercise training	Patients underwent a standardized training program twice a week for six months. SET was based upon the current guidelines for patients with intermittent claudication and was guided by physiotherapists. After a warm up period of 5–10 min, the initial duration included 35 minutes of intermittent walking which was increased by 5 minutes each session until 50 minutes of intermittent walking was accomplished. The workload of exercise training was set to a walking speed that elicited claudication symptoms within 3–5min. Patients were trained at this workload until they achieved moderate claudication followed by a brief resting period to allow symptoms to resolve.	
Control	-	-	-		
Stewart 2008	SET	Standard treadmill test	Circuit format with no treadmill walking	Supervised exercise program comprised 5 different exercises in a circuit format. Patients were advised to rest when symptoms of claudication became intolerable and to recommence exercise when the pain subsided. After 8 minutes, the patients moved on to the next exercise. Two 1 hour classes were run each week, each with a maximum exercise time of 40 minutes with 10 minutes warm-up and cool down periods. The exercises were mainly based on calf muscle and could be continued at home without the need for specialized equipment. Treadmill exercises were not included to avoid the potential bias between the groups.	
HET	-	-	-	Control group that received exercise advice alone.	
Strandness 2002	Cilostazol Medical Outcomes	-	-	Cilostazol 100 mg twice daily	
Study (Year)	Group 1	Group 2	Outcome Measures	Placebo	Notes
--------------	---------	---------	------------------	--------	-------
Tew 2015	Controls	Graded treadmill test	EuroQoL	-	Control
HET	Controls	Graded treadmill test	Walking Impairment Questionnaire (WIQ), and Claudication Outcome Measures	-	The intervention was modelled on the structured education self-management programmes used in diabetes care
Tsai 2002	SET	Graded treadmill test	Medical Outcomes Study Short-Form 36 (MOS SF-36) Chinese version, Walking Impairment Questionnaire	Treadmill walking with progressive increase in inclination	Patients in the exercise group performed the treadmill exercise three times each week until 12 weeks. Exercise training began with 5 minutes of warm up and ended with 5 minutes of cool down. During exercise, patients’ heart rate and 12-lead electrocardiogram were continuously monitored to detect any exercise-induced dysrhythmias. Arm blood pressure values and claudication pain scores were collected every 5 minutes Exercise intensity started from 2 mph, 0% grade, with 1% grade increase every 10 minutes if patients reported a claudication pain score below 2. Patients were encouraged to exercise up to 30 minutes with their claudication pain scores between 2 and 3 (pain levels between mild and moderate).
Control	SET	Incremental shuttle walk	NA	-	Control - usual care
Zwierska 2005	SET	Incremental shuttle walk	NA	Cycling exercise	SET twice a week for 24 weeks. For each of the supervised training sessions, patients exercised in cycles of 2 minutes exercise at a crank rate of 50 rev/min, followed by 2 minutes rest, for a total exercise time of 20 minutes in a 40-minute session. For the upper limb aerobic exercise training, the arm-crank ergometer was placed on a table in front of the seated patient with the mid-point of the sprocket set at shoulder height.
Study	SET/Control	Activity	Description		
---------------------	-------------	---	---		
Duscha 2018	SET	Cycling exercise	For lower limb aerobic exercise training, the seat height was adjusted to allow slight knee flexion at bottom dead centre. Up to eight patients exercised together in the same session.		
	Control	-	Patients in the control group were given lifestyle advice, including encouragement to undertake regular exercise.		
	HET	PAD-specific maximal treadmill cardiopulmonary exercise	Patients wore the Fitbit device for 2 weeks, and were told to continue normal activities without purposely increasing or decreasing exercise.		
	Control	-	Control		
Bulinska 2016	SET (treadmill)	Graded treadmill test	The program of supervised walk training was carried out for three months (36 training sessions), three times a week from 30 (first week) up to 50 min. Each training began with a short warm-up (5–10 min) which consisted of flexibility exercises for upper and lower extremities and spine. Training was ended with stretching and breathing exercises (3–5 min). Treadmill training was conducted on a treadmill HX-100 with the constant workload protocol based on TASC II guidelines. Speed and slope were constant, amounted to 3.2 km/h (2.0 mph) and 12% grade. Patients walked up to the reach of submaximal level of pain (ACSM – level 4) and next rested in standing position when the level of pain decreased to 1 (no pain) but no longer than 2 min.		
	Control	-	Control		
SET (Nordic Pole Walking)	NA	Nordic pole walking	NPW was performed by a qualified physiotherapist using the NW technique according to the guidelines of the International Nordic Walking Federation (INWA) with the KV+ poles. The pole length was adopted for each subject based on body height (0.7 × height). Patients trained under the same conditions as in TT. During the rest period, patients monitored HR individually. NPW was conducted in a group (max 12 participants) generally in outdoor.		
	SET (Nordic Pole Walking)	Nordic pole walking	Before Nordic walking sessions, all NWG patients received individual training for 30 minutes on the handling of poles and the technique of Nordic walking, to discover the activity and become familiar with the most effective movements.		
--------	--------------------------	---------------------	--		
Girolf 2017	SET (Walking group)	Graded treadmill test	Walking on flat surface		
		NA	Walking sessions for both groups started after a 10-minutes warm-up to stimulate and effectively prepare the cardiorespiratory and muscular system for the effort. Then, each patient performed a 45-minutes session of walking at a pace dictated by the training heart rate.		
Spafford 2014	HET (NPW)	Modified shuttle walking test	-		
		NA	The HEP group was given written instructions to walk at their normal pace for at least 30 minutes three times per week.		
		-	Patients in the NPW group were given a pair of LEKI Nordic walking poles adjusted for height (height × 0.7) and asked to walk using the poles for at least 30 minutes three times per week.		

ACSM – The American College of Sports Medicine; BMS – Bare metal stent; BP – Blood pressure; COT – Claudication onset time; CPS – Composite pain scale; d – Day; ER – Endovascular revascularization; HET – Home exercise therapy; HR – Heart rate; ICD – Intermittent claudication distance; IC – Intermittent claudication; INWA – International Nordic walking federation; km/h – Kilometer/hour; mg – Milligram; m/s – meters/second; mph – Miles per hour; MWD – Maximum walking distance; MW – Maximum walking time; NR – Not reported; NPW – Nordic pole walking; OMC – Optimal Medical Care; PAD – Peripheral artery disease; PTA – Percutaneous transluminal angioplasty; PVI – Percutaneous vascular intervention; PWT – Peak walking time; RPE – Ratings of perceived exertion; SET – Supervised exercise therapy; TASC – Transatlantic Inter-Society Consensus; TT – Treadmill testing; Wk – Week; % - Percentage.
Table S2. Ranking probability percentage of each treatment arms.

Ranking probability (%) - Short term follow-up

	Rank1	Rank2	Rank3	Rank4	Rank5	Rank6
Control	0	0	0	0.09	6.62	93.28
HET	0	0.28	13.93	47.83	37.23	0.73
ER	0.02	13.79	54.79	22.43	8.75	0.2
Cilostazol	0.03	3.18	14.83	28.79	47.37	5.78
SET	0.25	82.45	16.42	0.85	0.01	0
SET_ER	99.68	0.29	0.02	0	0	0

Ranking probability (%) - Moderate term follow-up

	Rank1	Rank2	Rank3	Rank4	Rank5
Control	0	0.03	1.86	18.48	79.63
ER	0.03	1.62	43.96	50.54	3.83
HET	1.1	10.70	41.60	30.68	16.52
SET	0.95	86.53	12.24	0.26	0
SET_ER	97.9	1.73	0.33	0.03	0

Ranking probability (%) - Long term follow-up

	Rank1	Rank2	Rank3	Rank4
Control	2.97	9.65	22.6	64.72
ER	41.56	41.93	15.51	1
SET	3.01	16.59	49.59	30.49
SET_ER	52.46	31.82	12.28	3.43
Table S3. Quality of life outcomes as reported at different follow-up periods from eligible trials.

Study reference	Intervention	QoL type	QoL	Short term summary	Moderate term summary	Long term summary	
Nylande 2007	Control	Generic	SF-36	Significant improvements were seen in physical functioning and reported health transition.	Bodily pain and reported health transition were significantly improved	Only reported health transition domain was significantly improved	
	ER			Only physical functioning domain was significantly improved. Remaining domains did not change	Bodily pain and reported health transition were significantly improved	Only reported health transition domain was significantly improved	
	Control	Disease specific	CLAU-S	None of the domains significantly improved	Only severity of pain was significantly improved	Only pain during activity was significantly improved	
	ER			Pain during activity and severity of pain significantly improved. Other domains including everyday life, pain related to sleep, social life, specific fears related to illness and psychological well-being did not change	Only pain during activity was significantly improved	Only pain during activity was significantly improved	
Mazari 2017	ER	Generic	SF-36	NA	NA	None of the domains significantly improved	
	SET			NA	NA	None of the domains significantly improved	
	SET+ER			NA	NA	None of the domains significantly improved	
	ER	Disease specific	Vascu QoL	NA	NA	None of the domains significantly improved	
	SET			NA	NA	None of the domains significantly improved	
	SET+ER			NA	NA	None of the domains significantly improved	
Study	Measure	Domain	Improvement				
---------------	--------------------------	--	--				
Fakhry, 2013	SET Generic SF-36	Physical function, bodily pain and general health significantly improved	General health domain significantly decreased				
	ER	Physical function, role physical and bodily pain significantly improved	Physical functioning, role physical and bodily pain significantly improved				
	SET Disease specific Vascu QoL	VascuQoL and rating score significantly improved	Only VascuQoL score significantly improved				
	ER	VascuQoL and rating score significantly improved	Only VascuQoL score significantly improved				
Djerf 2019	ER Generic SF-36	Physical functioning and bodily pain significantly improved compared to baseline and control group	Domains including physical functioning, role physical and bodily pain significantly improved				
	Control	None of the domains significantly improved	None of the domains significantly improved				
	ER Disease specific Vascu QoL	Domains including activities, symptoms, and emotional were significantly increased	All domains significantly improved				
	Control	None of the domains significantly improved	None of the domains significantly improved				
Lindgren 2018	ER Generic SF-36	NA	NA				
	Control	NA	NA				
	ER Generic EQSD	NA	EQSD did not significantly improve				
	Control	NA	EQSD did not significantly improve				
	ER WIQ	NA	WIQ scores significantly improved				
Control	Disease specific	NA	NA	WIQ scores significantly improved			
---------------	------------------	----	----	-----------------------------------			
Control	Specific	NA	NA	No significant improvement in SF-12 physical score			
SET	Generic	NA	NA	SF-12 physical score was significantly improved compared to control but no difference within intragroup			
ER	Disease specific	NA	NA	SF-12 physical score was significantly improved compared to control but no difference within intragroup			
Control	Disease specific	NA	NA	No significant improvement in pain severity and walking distance			
SET	Disease specific	NA	NA	Pain severity and walking distance were significantly improved compared to control and baseline but no significance reported			
ER	Disease specific	NA	NA	Pain severity and walking distance were significantly improved compared to control and baseline but no significance reported			
Control	Disease specific	NA	NA	No significant improvement in physical limitation, symptoms, QoL and summary			
SET	Disease specific	NA	NA	Only PAQ summary was significantly improved compared to baseline and control			
Study	Intervention	Tool	Baseline	SET	ER	Physical limitation, symptoms, QoL and summary improved compared to baseline and control. Physical limitation, QoL and summary were significantly improved compared to SET	NA
---------------	--------------	------------	----------	-----	----	--	---------------------
Greenhalgh 2008a	ER+SET	Generic SF-36	NA	NA	NA	None of the domains significantly improved	None of the domains significantly improved
	SET		NA	NA	NA		
Greenhalgh 2008b	ER+SET	Generic SF-36	NA	NA	NA	Physical score domains significantly improved compared to SET, but no significance reported comparing with baseline	
	SET		NA	NA	NA		
Gelin 2001	Control	Generic NA	NA	NA	NA		NA
	SET		NA	NA	NA		NA
	ER		NA	NA	NA		NA
Bo 2013	ER	Generic SF-36	NA	NA	NA	Physical function, bodily pain and vitality were significantly different between the groups, but not reported against baseline.	NA
	SET+ER		NA	NA	NA		NA
	ER	Disease specific CLAU-S	NA	NA	Daily life domain showed a trend towards improvement but not statistically different. Other domains did not change.	NA	
Spronk 2009	ER	Generic SF-36	None of the domains significantly improved	None of the domains significantly improved	NA	None of the domains significantly improved	NA
	SET		None of the domains significantly improved	None of the domains significantly improved	NA	None of the domains significantly improved	NA
	ER	Disease specific Vascu QoL	None of the domains significantly improved	None of the domains significantly improved	NA	None of the domains significantly improved	NA
Study	Group 1	Group 2	Measurement	Outcome 1	Outcome 2	Outcome 3	
---------------	---------	---------	-------------	-----------	-----------	-----------	
Crowther 2008	Control	NA	NA	NA	NA	NA	
	SET	NA	None of the domains significantly improved	None of the domains significantly improved	NA	NA	
Cheetah 2004	HET	Generic	SF-36	NA	Physical functioning was significantly improved in SET compared to HET group	NA	
	SET	Disease specific	ICQ	Scores improved but not significant	Scores significantly improved	NA	
Gardner 2002	Control	Disease specific	WIQ	Scores did not change between pre and post intervention	Scores did not change between pre and post intervention	NA	
	SET	Disease specific	WIQ	Scores did not change between pre and post intervention	Scores did not change between pre and post intervention	NA	
Baker 2017	SET	NA	NA	NA	NA	NA	
	Control	NA	NA	NA	NA	NA	
Brass 2012	Cilostazol	NA	NA	NA	NA	NA	
	Control	NA	NA	NA	NA	NA	
Collins 2011	Control	Generic	SF-36	Only mental health domain significantly improved in HET compared to control group	NA	NA	
	HET	Disease specific	WIQ	Walking speed domain significantly improved in HET compared to control group	NA	NA	
Crowther 2012	SET	NA	NA	NA	NA	NA	
	Control	NA	NA	NA	NA	NA	
Dawson 2000	Cilostazol	Generic	MOS SF-36	None of the domains significantly improved	NA	NA	
Study	Intervention	Domain	Measure	Improvement			
---------------------	--------------	-----------------	-------------	---			
Fakhry 2015	SET+ER	Generic	SF-36	Physical functioning, bodily pain, physical role functioning score and general health perceptions were significantly improved			
	SET	Disease specific	VascuQoL	VascuQoL and rating score significantly improved			
	HET	Generic	SF-36	Physical function significantly increased compared to baseline			
Gardner 2001	SET	Generic	MOS SF-36	None of the domains significantly improved			
	Control	Disease specific	WIQ	None of the domains significantly improved			
	SET	Disease specific	WIQ	None of the domains significantly improved			
	Control	Disease specific	WIQ	None of the domains significantly improved			
Gardner 2014	SET	Generic	MOS SF-36	Physical function significantly increased compared to baseline			
	HET	Generic	MOS SF-36	Physical function significantly increased compared to baseline			
	Disease specific	WIQ	None of the domains significantly improved	NA	NA		
------------------	-----------------	--------------	---	------	------		
Control							
SET	Disease specific		Walking economy and fractional utilization increased significantly from baseline in the supervised exercise group	NA	NA		
HET			Walking economy and fractional utilization increased significantly from baseline in the supervised exercise group	NA	NA		
Control			None of the domains significantly improved	NA	NA		
Gardner 2012	SET	Disease specific	Walking distance and speed significantly improved	NA	NA		
			None of the domains significantly improved	NA	NA		
Control							
	HET	Generic	Physical function score significantly improved	NA	NA		
		MOS SF-36	Physical function score significantly improved	NA	NA		
Control			None of the domains significantly improved	NA	NA		
Gardner 2011	HET	Disease specific	Fractional utilization, walking distance, speed and stair climbing scores significantly increased	NA	NA		
SET	Disease specific		Walking economy, fractional utilization, walking distance, speed and stair climbing scores significantly increased	NA	NA		
Control			Fractional utilization significantly improved	NA	NA		
Control	NA	NA		NA	NA		
Study	Treatment	Generic Measure	Improvement	ER Only	SET+ER Only	ER Only	SET+ER Only
------------------	-----------	-----------------	---	---------	-------------	---------	-------------
Hobbs 2006	ER	NA	NA	NA	NA	NA	NA
	SET	NA	NA	NA	NA	NA	NA
	Cilostazol	NA	NA	NA	NA	NA	NA
	SET + Cilostazol	NA	NA	NA	NA	NA	NA
	Control	NA	NA	NA	NA	NA	NA
Hobbs 2007	SET	NA	NA	NA	NA	NA	NA
		NA	NA	NA	NA	NA	NA
Hodges 2008	SET	NA	NA	NA	NA	NA	NA
	Control	NA	NA	NA	NA	NA	NA
Kakkos 2005	HET	Generic SF-36	None of the domains significantly improved	Only mental health sub-domain significantly improved	NA	NA	NA
	SET	Disease specific WIQ	None of the domains significantly improved	None of the domains significantly improved	None of the domains significantly improved	None of the domains significantly improved	NA
		Generic MOS SF-36	Domains including mental health, vitality and mental summary score were significantly improved in SET+ER as compared to ER only	NA	NA	NA	NA
Kruidenier 2011	ER	Generic MOS SF-36	Both total score and general health were similar in both treatment strategies	NA	NA	NA	NA
	SET+ER	Disease specific EuroQoL	Both total score and general health were similar in both treatment strategies	NA	NA	NA	NA
	ER	Generic MOS SF-36	Both total score and general health were similar in both treatment strategies	NA	NA	NA	NA
	SET+ER	Disease specific EuroQoL	Both total score and general health were similar in both treatment strategies	NA	NA	NA	NA
Lamberti 2016	HET	Generic MOS SF-36	physical component summary, bodily pain, emotional role, general health, mental component summary, mental health, physical functioning, physical role, social functioning and vitality were significantly improved	NA	NA	NA	NA
Study	Type	Group	Measure	Results			
------------	-------	---------	---------	---			
Novakovic 2018	SET	Generic SF-36	physical component summary, bodily pain, emotional role, physical functioning, physical role and vitality were significantly improved				
	Control	NA	NA	NA			
Mauer 2015	SET	Disease specific BASIC-Q	Physical functioning, bodily pain and physical component summary significantly improved				
HET	Disease specific BASIC-Q	None of the domains significantly improved					
Control	Disease specific BASIC-Q	None of the domains significantly improved					
Mays 2015	Control	Generic SF-36	None of the domains significantly improved				
HET	Generic SF-36	None of the domains significantly improved					
HET	Disease specific WIQ	Distance, speed and combined percentage significantly improved with intervention compared to control group					
Control	Disease specific WIQ	None of the domains significantly improved					
HET	Disease specific WIQ	None of the domains significantly improved					
Miika 2005	SET	NA	NA	NA			
HET	NA	NA	NA	NA			
Miika 2011	SET	NA	NA	NA			
Control	NA	NA	NA	NA			
O'Donnell 2009	Cilostazol	Generic SF-36	Physical function and physical component summary were significantly improved. Physical function was significantly improved compared to control				
Control	NA	NA	NA	NA			
Study	Group	Domain	Measure	Improvement			
---------------------	----------	------------	-------------	---			
Control			Vascu QoL	None of the domains significantly improved			
Cilostazol	Disease		Vascu QoL	Pain domain significantly improved			
Control			Vascu QoL	None of the domains significantly improved			
Sandercock 2007	SET	NA	NA	NA			
Control				NA			
Schlager 2011	SET	NA	NA	NA			
Control				NA			
Stewart 2008	SET	NA	NA	NA			
Control				NA			
Strandness 2002	Cilostazol	Generic	SF-36	Significant improvement in physical function, and a trend towards improvement in bodily pain, role-physical and general health perception compared to placebo			
Control				NA			
Cilostazol	Disease		WIQ	Walking distance score improved but significance not reported			
Control			WIQ	NA			
Tew 2015	Control	Disease	WIQ	Superior improvement in WIQ speed, distance and stair-climbing scores compared to control, but significance not reported			
HET		specific		NA			
Control		Generic	EQSD	None of the domains significantly improved			
HET			EQSD	NA			
Study	Intervention	MOS SF-36	Significance	Control			
---------------	-----------------------------------	-----------	---	---------			
Tsai 2002	SET	Generic	Significant improvement was seen in physical function, role limitations/physical, bodily pain, general health and vitality as compared to baseline and control	NA			
	Control		None of the domains significantly improved	NA			
	SET	Disease	Significant improvement was seen in WIQ distance, speed and stairs walking compared to baseline. Only speed and stairs improved against control	NA			
	Control	specific	None of the domains significantly improved	NA			
Zwierska 2005	SET	NA	NA	NA			
	SET	NA	NA	NA			
	Control	NA	NA	NA			
Duscha 2018	HET	NA	NA	NA			
	Control	NA	NA	NA			
Bulinska 2016	SET (treadmill)	NA	NA	NA			
	SET (NPW)	NA	NA	NA			
	Control	NA	NA	NA			
Girold 2017	SET (NPW)	NA	NA	NA			
	SET (Walking group)	NA	NA	NA			
	HET	NA	NA	NA			
Spafford 2014	HET (NPW)	NA	NA	NA			
--------------	-----------	----	----	----			

* Data compares intergroup only. Intragroup comparing against baseline not available.

BASIC-Q – Baltimore Activity Scale for Intermittent Claudication questionnaire; CLAU-S – Claudication scale; ICQ – Intermittent Claudication Questionnaire; ER – Endovascular revascularization; EQ5D – EuroQol-5D; HET – Home exercise therapy; MOS-SF36 – Medical Outcomes Study; NA – Not available; PAQ – Peripheral artery questionnaire; QoL – Quality of life; SET – Supervised exercise therapy; SF – Short Form; NPW – Nordic pole walking; VascuQoL – Vascular QoL
Table S4. Adverse events reported in all included trials.

Study reference	Treatment	Sample size	Follow-up (months)	MI	Stroke	Any hospital admissions	Lower limb revascularization procedures	Any other vascular procedures	Amputation	All-cause mortality
Nylande 2007	Control	28	24	NR	NR	NR	NR	NR	NR	0
Nylande 2007	ER	28	24	NR	NR	NR	NR	NR	NR	1
Mazari 2017	ER	60	60	4	2	NR	14	NR	1	14
Mazari 2017	SET	60	60	2	1	NR	10	NR	0	13
Mazari 2017	SET_ER	58	60	3	5	NR	6	NR	0	12
Fakhry, 2013	SET	75	84	NR	NR	NR	32	NR	2	17
Fakhry, 2013	ER	75	84	NR	NR	NR	17	NR	3	15
Djerf 2020	ER	79	60	NR	2	NR	22	NR	0	13
Djerf 2020	Control	79	60	NR	2	NR	20	NR	1	7
Lindgren 2018	ER	45	24	3	2	NR	10	NR	1	1
Lindgren 2018	Control	47	24	2	0	NR	7	NR	0	1
Murphy 2015	Control	22	18	1	NR	NR	0	NR	0	1
Murphy 2015	SET	43	18	0	NR	NR	0	NR	NR	1
Murphy 2015	ER	46	18	0	NR	NR	1	NR	NR	0
Gelin 2001^	Control	89	12	NR	NR	NR	NR	NR	2	4
Gelin 2001^	SET	88	12	NR	NR	NR	NR	NR	0	5
Gelin 2001^	ER	87	12	NR	NR	NR	NR	NR	1	5
Bo 2013	ER	21	12	NR	NR	NR	0	NR	0	6
Bo 2013	SET_ER	29	12	NR	NR	NR	6	NR	NR	0
Spronk 2009	ER	75	12	1	NR	NR	2	NR	0	5
Spronk 2009	SET	75	12	0	NR	NR	4	NR	3	3
Crowther 2008	Control	11	12	NR	NR	NR	NR	NR	NR	NR
Crowther 2008	SET	10	12	NR	NR	NR	NR	NR	NR	NR
Gardner 2002	Control	14	18	NR	NR	NR	NR	NR	0	2
Study	Design	Week 1	Week 4	Week 6	Week 8	Week 10	Week 12	Week 14	Week 16	Week 18
------------------	----------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Gardner 2002	SET	17	18	NR	NR	NR	NR	NR	1	1
Baker 2017	SET	29	3	NR						
Baker 2017	Control	35	3	NR						
Brass 2012	Cilostazol	89	6.5	NR	1	NR	NR	NR	1	
Brass 2012	Control	87	6.5	NR	0	NR	NR	NR	0	
Collins 2011	Control	73	6	NR						
Collins 2011	HET	72	6	NR						
Crowther 2012	SET	11	6	NR						
Crowther 2012	Control	11	6	NR						
Spafford 2014	SET	28	3	0	NR	NR	NR	NR	0	
Spafford 2014	HET	24	3	1	NR	NR	NR	NR	1	
Dawson 2000	Cilostazol	227	6	NR	NR	NR	NR	NR	2	
Dawson 2000	Control	239	6	NR	NR	NR	NR	NR	1	
Fakhry 2015	SET_ER	106	12	NR	NR	NR	NR	NR	0	1
Fakhry 2015	SET	106	12	NR	NR	NR	NR	NR	2	3
Gardner 2001	SET	31	6	NR						
Gardner 2001	Control	30	6	NR						
Gardner 2014	SET	60	3	NR	1	NR	0	NR	NR	NR
Gardner 2014	HET	60	3	NR	0	NR	1	NR	NR	NR
Gardner 2014	Control	60	3	1	1	NR	0	NR	NR	NR
Gardner 2012	SET	106	6	1*	3*	NR	NR	1*	1*	NR
Gardner 2012	Control	36	6	NR						
Gardner 2011	HET	40	3	1	1	NR	1	NR	NR	NR
Gardner 2011	SET	40	3	0	1	NR	0	NR	NR	NR
Gardner 2011	Control	39	3	0	1	NR	1	NR	NR	NR
Hobbs 2006	Control	7	6	NR						
Hobbs 2006	ER	9	6	NR						
Hobbs 2006	SET	7	6	NR						
Hobbs 2007	SET	9	6	NR						
Study Year	Intervention	Item 1	Item 2	Item 3	Item 4	Item 5	Item 6	Item 7	Item 8	Item 9
------------	---------------	--------	--------	--------	--------	--------	--------	--------	--------	--------
Hobbs 2007	Cilostazol	9	6	NR						
Hobbs 2007	Control	9	6	NR						
Hodges 2008	SET	14	3	NR						
Hodges 2008	Control	14	3	NR						
Kakkos 2005	HET	10	12	NR	NR	NR	NR	NR	NR	0
Kakkos 2005	SET	12	12	NR	NR	NR	NR	NR	NR	1
Kruidenier 2011	ER	35	6	NR	NR	NR	NR	2	NR	NR
Kruidenier 2011	SET_ER	35	6	NR	NR	NR	NR	0	NR	NR
Lamberti 2016	HET	18	4	NR						
Lamberti 2016	ER	9	4	NR						
Novakovic 2019	SET	12	4.5	NR						
Novakovic 2019	Control	12	4.5	NR						
Mauer 2015	SET	16	3	NR						
Mauer 2015	Control	7	3	NR						
Mays 2015	Control	10	3.5	NR						
Mays 2015	HET	10	3.5	NR						
Mika 2005	SET	49	3	NR						
Mika 2005	HET	49	3	NR						
Mika 2011	SET	34	3	NR						
Mika 2011	Control	34	3	NR						
Sandercock 2007	SET	13	3	NR	NR	NR	1	NR	NR	NR
Sandercock 2007	HET	15	3	NR	NR	NR	0	NR	NR	NR
Sandercock 2007	Control	15	3	NR	NR	NR	0	NR	NR	NR
Schlager 2011	SET	20	12	0	NR	NR	NR	NR	NR	0
Schlager 2011	Control	20	12	1	NR	NR	NR	NR	NR	1
Stewart 2008	SET	30	6	NR	1	NR	1	NR	NR	1
Stewart 2008	HET	30	6	NR	1	NR	0	NR	NR	0
Zwierska 2005	SET	37	6	NR	NR	NR	NR	NR	NR	3
Zwierska 2005	Control	33	6	NR						
Source	Type	Group	Exercise	NR	2*	NR	NR	2*	NR	2
----------------------	------------	-------	----------	----	----	----	----	----	----	----
Greenhalgh 2008a	SET_ER	48	24	NR	2*	NR	NR	2*	NR	2
Greenhalgh 2008a	SET	45	24	NR	2*	NR	NR			
Greenhalgh 2008b	SET_ER	19	24	NR	2*	NR	NR	0	NR	1
Greenhalgh 2008b	SET	15	24	NR	2*	NR	NR	0	NR	2
Cheetham 2004	HET	30	12	NR		NR	NR			
Cheetham 2004	SET	29	12	NR		NR	NR			
O'Donnell 2009^	Cilostazol	39	6	NR		NR	NR			
O'Donnell 2009^	Control	41	6	NR		NR	NR			
Strandness 2002	Cilostazol	133	6	NR		NR	NR			
Strandness 2002	Control	128	6	NR		NR	NR			
Tew 2015	Control	9	1.5	NR	0	NR	NR			
Tew 2015	HET	14	1.5	NR	1	NR	NR			
Tsai 2002	SET	27	3	NR		NR	NR			
Tsai 2002	Control	26	3	NR		NR	NR			
Duscha 2018	HET	10	3	NR		NR	NR			
Duscha 2018	Control	9	3	NR		NR	NR			
Bullinska 2016	SET	31	1.5	NR		NR	NR			
Bullinska 2016	HET	21	1.5	NR		NR	NR			
Girolod 2017	SET	21	1	NR		NR	NR			
Girolod 2017	HET	21	1	NR		NR	NR			

* Group-wise data not available; ^ Cardiovascular adverse events reported together with other events, but individual event numbers were not provided; * Cerebral vascular accidents was considered as stroke; ER – Endovascular revascularization; HET – Home exercise therapy; SET – Supervised exercise therapy; NR – Not reported; MI – Myocardial infarction.
Figure S1. Markov Chain Monte Carlo simulation showing the trace plots and corresponding density plots during short-term follow-up.

Convergence was achieved with higher iterations (100,000) and was suitable for the network model. HET – Home exercise therapy, SET – Supervised exercise therapy, ER – Endovascular revascularization, SD – Standard deviation
Figure S2. Markov Chain Monte Carlo simulation showing the trace plots and corresponding density plots during moderate follow-up.

Convergence was achieved with higher iterations (100,000) and was suitable for the network model. HET – Home exercise therapy, SET – Supervised exercise therapy, ER – Endovascular revascularization, SD – Standard deviation.
Figure S3. Markov Chain Monte Carlo simulation showing the trace plots and corresponding density plots during long-term follow-up.

Convergence was achieved with higher iterations (100,000) and was suitable for the network model. SET – Supervised exercise therapy, ER – Endovascular revascularization, SD – Standard deviation.