Simultaneous identification of diffusion and absorption coefficients in a quasilinear elliptic problem

Herbert Egger, Jan-Frederik Pietschmann and Matthias Schlottbom

Numerical Analysis and Scientific Computing, Department of Mathematics, TU Darmstadt, Dolivostr. 15, 64293 Darmstadt, Germany

E-mail: egger@mathematik.tu-darmstadt.de, pietschmann@mathematik.tu-darmstadt.de and schlottbom@mathematik.tu-darmstadt.de

Received 25 June 2013
Accepted for publication 24 October 2013
Published 20 February 2014

Abstract

In this work, we consider the identifiability of two coefficients $a(u)$ and $c(x)$ in a quasilinear elliptic partial differential equation from the observation of the Dirichlet-to-Neumann map. We use a linearization procedure due to Isakov (1993 Arch. Ration. Mech. Anal. 124 1–12) and special singular solutions to first determine $a(0)$ and $c(x)$ for $x \in \Omega$. Based on this partial result, we are then able to determine $a(u)$ for $u \in \mathbb{R}$ by an adjoint approach.

1. Introduction

We consider the simultaneous identification of the two unknown coefficients $a = a(u)$ and $c = c(x)$ in the quasilinear elliptic problem

\begin{align}
- \text{div}(a(u)\nabla u) + cu &= 0 \quad \text{in } \Omega, \tag{1} \\
u &= g \quad \text{on } \partial \Omega, \tag{2}
\end{align}

where $\Omega \subset \mathbb{R}^n$, $n \in \{2, 3\}$, is a bounded, sufficiently regular domain. We assume access to the Dirichlet-to-Neumann map, given by

\[\Lambda_{a,c} : g \mapsto a(u)\partial_u u, \]

with u denoting the solution to (1)–(2) with Dirichlet boundary datum g. The main contribution of our manuscript is the following result.

Theorem 1.1. Let assumption 2.1 hold and assume $\Lambda_{a_1,c_1} = \Lambda_{a_2,c_2}$. Then, $a_1(u) = a_2(u)$ and $c_1(x) = c_2(x)$ for all $u \in \mathbb{R}$ and a.e. $x \in \Omega$.
Let us put this result into perspective: much of the work about the identification of unknown coefficients in elliptic and parabolic partial differential equations goes back to the seminal paper of Calderón [6]. There, \(c \equiv 0 \) and the goal is to reconstruct an unknown spatially varying conductivity \(a = a(x) \) from the observation of the Dirichlet-to-Neumann map. The Calderón problem has been studied intensively by many authors, e.g., \([3, 8, 26, 27, 29, 34]\).

Indeed, several new technical tools have been developed with this application in mind. For a comprehensive review, we refer the reader to [35]. While the question of identifiability of one spatially varying coefficient can be answered affirmatively under rather general assumptions, the simultaneous determination of two coefficients \(a = a(x) \) and \(c = c(x) \) is, in general, not possible, see [2]. If \(c \) has non-vanishing imaginary part, however, [12] provides a local uniqueness result. More recently [13], the unique determination of the two parameters \(a = a(x) \) and \(c = c(x) \) was established in the class of piecewise constant and piecewise analytic coefficients, respectively. Semilinear elliptic equations with \(a \equiv 1 \) and \(c = c(x, u) \) have been considered in [21]; the case \(c = c(u, \nabla u) \) is treated in [19]. For quasi-linear elliptic equations Sun [32] proved the uniqueness of a scalar coefficient \(a = a(x, u) \) assuming that \(c \equiv 0 \). In [33], this result was generalized to positive definite symmetric matrices \(a = a(x, u) \in \mathbb{R}^{n \times n}, n \geq 2 \). Recently, many authors considered the question of uniqueness employing only partial data on the boundary, cf [13–15, 19]. Let us also mention the Bukhgeim–Klibanov method of Carleman estimates introduced in [5] to prove global uniqueness results for various types of differential equations even in the case of non-overdetermined data or single measurements, see [24] for a review of this method and a comprehensive list of applications. Besides uniqueness, also stability issues have been considered in the literature. In this context, let us refer to the work of Alessandrini [1] and also to [24, 25]. Uniqueness results for other types of problems, e.g., of parabolic type or in nonlinear elasticity can be found in \([7, 9, 10, 17, 18, 23, 31]\) and [22, 30]. A broad overview of inverse problems for partial differential equations and many more results and references can be found in the book of Isakov [20].

The rest of the paper, which is devoted to the proof of theorem 1.1, is organized as follows. In section 2, we prove the well-posedness of (1)–(2), and rigorously define the Dirichlet-to-Neumann map. In section 3, we first utilize a linearization procedure and show by contradiction that \(a(0) \) is uniquely determined by the Dirichlet-to-Neumann map. Using the knowledge of \(a(0) \), we then obtain the identifiability of \(c(x) \) by well-known results of the linearized problem. The identifiability of \(a(u) \) for \(u \neq 0 \) is established in section 4, and we conclude with a short discussion about possible extensions of our results.

2. Preliminaries

Throughout the rest of the paper, we make the following assumption on the regularity of the domain and the coefficients.

Assumption 2.1. \(\Omega \subset \mathbb{R}^n \) is a bounded domain in two or three space dimensions and \(\partial \Omega \in C^1 \). Furthermore, we assume that \(a \in C^0(\mathbb{R}) \) and \(c \in L^\infty(\Omega) \) such that
\[
\alpha \leq a(u) \leq \frac{1}{\alpha} \quad \text{for all } u \in \mathbb{R} \quad \text{and} \quad 0 \leq c(x) \leq \frac{1}{\alpha} \quad \text{a.e. in } \Omega
\]
for some constant \(\alpha > 0 \).

We denote by \(H^1(\Omega) \) the usual Sobolev space of square integrable functions with square integrable weak derivatives. Functions \(u \in H^1(\Omega) \) have well-defined traces \(u|_{\partial \Omega} \) and we denote by \(H^{1/2}(\partial \Omega) \) the space of traces of functions in \(H^1(\Omega) \) with norm \(\|g\|_{H^{1/2}(\partial \Omega)} = \inf_{u \in H^1(\Omega): u|_{\partial \Omega} = g} \|u\|_{H^1(\Omega)}. \) The topological dual space of \(H^{1/2}(\partial \Omega) \) is denoted by \(H^{-1/2}(\partial \Omega). \)
For some of our arguments, we will transform the quasilinear equation (1) into a semilinear one. To do so, let us introduce the primitive function

$$A : \mathbb{R} \to \mathbb{R}, \quad A(u) = \int_0^u a(\tilde{u}) \, \mathrm{d}\tilde{u},$$

which is monotonically increasing and differentiable. Since we assumed that $a \geq \alpha > 0$, the function A is one-to-one and onto, and we can define its inverse $H : \mathbb{R} \to \mathbb{R}$, $H(U) = A^{-1}(U)$ with derivative

$$\frac{1}{\alpha} \geq H'(U) = \frac{1}{a(H(U))} \geq \alpha > 0.$$

For any weak solution u of (1)–(2), the function $U = A(u)$ then solves the boundary value problem

$$-\Delta U + cH(U) = 0 \quad \text{in } \Omega,$$

$$U = G \quad \text{on } \partial\Omega,$$

with boundary datum $G = A(g)$. Note that by our assumption on the coefficients $u = H(U) \in H^1(\Omega)$ whenever $U \in H^1(\Omega)$; this follows easily from the monotonicity and differentiability of H and the chain rule for Sobolev functions [11]. The next theorem establishes the well-posedness of the problems (1)–(2) and (3)–(4), respectively.

Theorem 2.2. Let assumption 2.1 hold. Then, for every $g \in H^{1/2}(\partial\Omega)$ there exists a unique solution $u \in H^1(\Omega)$ to (1)–(2) which satisfies the a priori estimate

$$\|u\|_{H^1(\Omega)} \leq C\|g\|_{H^{1/2}(\partial\Omega)},$$

with a constant C depending only on α and Ω.

For the sake of completeness, let us sketch the proof.

Proof. Let us first establish the existence of a solution: given $\tilde{u} \in L^2(\Omega)$, consider the linear boundary value problem

$$-\text{div}(a(\tilde{u})\nabla u) + cu = 0 \quad \text{in } \Omega,$$

$$u = g \quad \text{on } \partial\Omega.$$

Since \tilde{u} is measurable, so is $a(\tilde{u})$, and since $a(\tilde{u}) \geq \alpha > 0$, the existence of a unique solution $u \in H^1(\Omega)$ is ensured by the Lax–Milgram lemma, cf [11, theorem 5.8]. Moreover, we have $\|u\|_{H^1(\Omega)} \leq C\|g\|_{H^{1/2}(\partial\Omega)}$ with C only depending on α and Ω. Next, consider the nonlinear operator $T : L^2(\Omega) \to L^2(\Omega)$ defined by $Tu := u$ with u the solution of the problem above. We will establish the existence of a fixed-point for the mapping T, which then is a solution of (1)–(2), by a compactness argument: Due to the a priori estimate for the linear problem, T maps the compact convex set $M = \{v \in L^2(\Omega) : \|v\|_{H^1(\Omega)} \leq C\|g\|_{H^{1/2}(\partial\Omega)}\}$ into itself.

Moreover, T is continuous, which can be seen as follows: observe that $\tilde{u}_n \to \tilde{u}$ in $L^2(\Omega)$ implies that $\tilde{u}_n \to \tilde{u}$ a.e. for some subsequence \tilde{u}_n. By assumption 2.1 and Lebesgue’s dominated convergence theorem, we obtain $a(\tilde{u}_n)\nabla u \to a(\tilde{u})\nabla u$ in $L^2(\Omega)$. Together with the a priori estimate for the linear problem, this yields the continuity of T; see also the proof of lemma 3.1. The existence of a fixed-point for T in M then follows by Schauder’s fixed-point theorem [11, theorem 11.1]. Clearly, any regular fixed-point of T is also a solution of (1)–(2) and the a priori estimate follows from the definition of the set M.

3
Let us now turn to the question of uniqueness: assume that there exist two solutions u_1, u_2 to (1)–(2) with the same Dirichlet boundary data and set $U_1 = A(u_1)$ and $U_2 = A(u_2)$. Then, $U = U_1 - U_2$ solves

$$-\Delta U + cH'(\xi(x))U = 0 \quad \text{in } \Omega,$$

$$U = 0 \quad \text{on } \partial \Omega,$$

where we used $H(U_1(x)) - H(U_2(x)) = H'(\xi(x))(U_1(x) - U_2(x))$ a.e. for some measurable function $\xi(x)$. Since $H' \geq 0$, we obtain from the weak maximum principle \cite[theorem 8.1]{11} that $U \equiv 0$, and by monotonicity of A we deduce that $u_1 = u_2$. \hfill \Box

To give a precise definition of the Dirichlet-to-Neumann map in our functional setting, we introduce for $\tau \in \mathbb{R}$, the solution of (7)–(8) with boundary datum g^τ.

Following an idea of Isakov \cite{18}, we employ a linearization strategy to obtain uniqueness for $a(0)$ and $c(x)$. Consider the following linear boundary value problem

$$-a(0)\Delta v + cv = 0 \quad \text{in } \Omega,$$

$$v = g^\ast \quad \text{on } \partial \Omega.$$ \hfill (7)\hfill (8)

The existence of a unique weak solution $v \in H^1(\Omega)$ follows again from the Lax–Milgram theorem. The Dirichlet-to-Neumann map associated with the linear problem is given by

$$\Lambda_{a(0),c}^\ast : H^{1/2}(\partial \Omega) \to H^{-1/2}(\partial \Omega), \quad g \mapsto a(0)\partial_n v,$$

where v is the solution of (7)–(8) with boundary datum g^\ast. With similar arguments as in \cite{18}, we obtain the following result.

\textbf{Lemma 3.1.} The Dirichlet-to-Neumann map $\Lambda_{a,c}$ for (1)–(2) determines the Dirichlet-to-Neumann map $\Lambda_{a(0),c}^\ast$ associated with (7)–(8).

\textbf{Proof.} Let $g^\ast \in H^{1/2}(\partial \Omega)$ be given. For any $\tau \in \mathbb{R}$, we denote by u_τ the solution of (1)–(2) with boundary value τg^\ast. By theorem 2.2, such a solution u_τ exists and is unique, and for $\tau = 0$ we have $u_0 \equiv 0$. The function $v_\tau := (u_\tau - u_0)/\tau = u_\tau/\tau$ then is a solution of

$$-\text{div}(a(u_\tau)\nabla v_\tau) + cv_\tau = 0 \quad \text{in } \Omega,$$

$$v_\tau = g^\ast \quad \text{on } \partial \Omega.$$
Moreover, with v defined by (7)–(8), the difference $w_\tau = v - v_\tau$ solves
\[-\text{div}(a(u_\tau)\nabla w_\tau) + cw_\tau = -\text{div}((a(u_\tau) - a(0))\nabla v) \quad \text{in } \Omega,\]
\[w_\tau = 0 \quad \text{on } \partial \Omega.\]

Using standard \textit{a priori} estimates for linear elliptic problems and assumption 2.1, we obtain
\[
\|w_\tau\|_{H^{1}(\Omega)} \leq C\|(a(u_\tau) - a(0))\nabla v\|_{L^1(\Omega)},
\]
with a constant C depending only on a and Ω. Using the \textit{a priori} estimate (5), we obtain $u_\tau \to 0$ in $H^1(\Omega)$ as $\tau \to 0$, and hence, by a subsequence argument, $u_\tau(x) \to 0$ as $\tau \to 0$ for a.e. $x \in \Omega$. By continuity of the parameter, it follows that $a(u_\tau(x)) \to a(0)$ for a.e. $x \in \Omega$, and from Lebesgue’s dominated convergence theorem, we infer that $w_\tau \to 0$ in $H^1(\Omega)$ as $\tau \to 0$.

Using the definition of the co-normal derivative (6), we further obtain
\[
\frac{1}{\tau} \Lambda_{\alpha,c} \tau g^\alpha = a(u_\tau) \partial_n v_\tau \to a(0) \partial_n v = \Lambda_{\alpha(0),c}^* g^\alpha
\]
in $H^{-1/2}(\partial \Omega)$ as $\tau \to 0$, and hence $\Lambda_{\alpha(0),c}^*$ is determined by $\Lambda_{\alpha,c}$. □

As a next step, we turn to the identification of $a(0)$ and $c(x)$ from knowledge of the linearized Dirichlet-to-Neumann map $\Lambda_{\alpha(0),c}^*$. Let (a_1, c_1) and (a_2, c_2) satisfy assumption 2.1 and denote by v_1 and v_2 the corresponding solutions of (7)–(8) with coefficients $(a_1(0), c_1)$ and $(a_2(0), c_2)$, respectively. The definition of the co-normal derivative yields the following orthogonality relation
\[
\langle (\Lambda_{\alpha_1(0),c_1}^* - \Lambda_{\alpha_2(0),c_2}^*) g^\alpha, g^\alpha \rangle = \int_\Omega (a_1(0) - a_2(0))\nabla v_1 \nabla v_2 + (c_1 - c_2)v_1 v_2 \, dx. \quad (9)
\]

We are now in the position to prove the following result.

Theorem 3.2. If $\Lambda_{\alpha_1(0),c_1}^* = \Lambda_{\alpha_2(0),c_2}^*$, then $a_1(0) = a_2(0)$.

Proof. The proof is inspired by the construction of singular solutions utilized in [1]. Let $\Phi_y(x)$ be the fundamental solution for the Laplace equation, i.e., we have $\Phi_y(x) = 1/|x - y|$ for $n = 3$ and $\Phi_y(x) = \log(|x - y|)$ for $n = 2$. Note that for any $y \in \mathbb{R}^n$ we have $\Phi_y \in L^2(\Omega)$, while $\Phi_y \in H^1(\Omega)$, if, and only if, $y \notin \partial \Omega$. Now suppose that $a_1(0) \neq a_2(0)$ and let $w_i \in H^1_0(\Omega)$, $i = 1, 2$, be the solution of
\[-a_i(0) \Delta w_i + c_i w_i = -c_i \Phi_y \quad \text{in } \Omega,
\]
\[w_i = 0 \quad \text{on } \partial \Omega.
\]
The function $v_i = w_i + \Phi_y$ then is a solution of (7)–(8) with $g^\alpha = \Phi_y$, and we see that $\|v_i\|_{L^2(\Omega)} \leq C$ for all $y \in \mathbb{R}^n$, but $\|\nabla v_1 \nabla v_2\|_{L^1(\Omega)} < \infty$ only if $y \notin \partial \Omega$. Inserting v_1 and v_2 into the orthogonality relation (9) and rearranging terms, we obtain
\[
(a_1(0) - a_2(0)) \int_\Omega \nabla v_1 \nabla v_2 \, dx = \int_\Omega (c_2 - c_1)v_1 v_2 \, dx.
\]
Since the integral on the right-hand side is uniformly bounded, but that on the left-hand side diverges as $\text{dist}(y, \partial \Omega) \to 0$, we arrive at a contradiction. Hence, $a_1(0) = a_2(0)$. □

Once $a(0)$ is determined, the uniqueness of $c(x)$ follows from known results: the three-dimensional case can be found in [34] or [20, theorem 5.2.2]. For $0 \leq c \in L^\infty(\Omega)$, the uniqueness result for $n = 2$ can be deduced from the uniqueness of the conductivity problem [31], see [20, corollary 5.5.2]. The restriction $c \geq 0$ can possibly be relaxed using the results of [4, 16]. Thus, we obtain

Theorem 3.3. Assume that $\Lambda_{\alpha_1(0),c_1}^* = \Lambda_{\alpha_2(0),c_2}^*$. Then $a_1(0) = a_2(0)$ and $c_1(x) = c_2(x)$ for a.e. $x \in \Omega$.

5
4. Identification of a

To show the uniqueness of $a(u)$ for $u \neq 0$, we translate the techniques of the previous section to the nonlinear problem. By the definition of the co-normal derivative (6), there holds

$$\langle \Lambda_{a,c}, \lambda |_{\partial \Omega} \rangle = \int_{\Omega} a(u) \nabla u \nabla \lambda + cu \lambda \, dx$$

for any function $\lambda \in H^1(\Omega)$. Subtracting this identity for the two pairs (a_1, c) and (a_2, c) of admissible parameters, and using $\nabla (A_i(u(x))) = A_i'(u(x)) \nabla u = a_i(u(x)) \nabla u$, $i = 1, 2$ and integration by parts, we get

$$\langle (\Lambda_{a_1,c} - \Lambda_{a_2,c}) g, \lambda |_{\partial \Omega} \rangle = \int_{\Omega} (A_1(u_1) - A_2(u_2)) (-\Delta \lambda) + c(u_1 - u_2) \lambda \, dx$$

$$+ \int_{\partial \Omega} (A_1(g) - A_2(g)) \partial_n \lambda \, ds.$$

To simplify this expression, we consider only test functions λ which are solutions of

$$-\Delta \lambda = 0 \quad \text{in } \Omega, \quad \lambda = \lambda_D \quad \text{on } \partial \Omega$$

for some appropriate boundary datum λ_D, which yields

$$\langle (\Lambda_{a_1,c} - \Lambda_{a_2,c}) g, \lambda_D \rangle = \int_{\Omega} c(u_1 - u_2) \lambda \, dx + \int_{\partial \Omega} (A_1(g) - A_2(g)) \partial_n \lambda \, ds. \tag{12}$$

Note that the left-hand side will vanish, if the Dirichlet-to-Neumann maps coincide. We can therefore retrieve information about $a_1 - a_2$, by choosing a suitable function λ satisfying (10)–(11).

Theorem 4.1. Let $\Lambda_{a_1,c} = \Lambda_{a_2,c}$ for some a_1, a_2 and c satisfying assumption 2.1. Then, $a_1(u) = a_2(u)$ for all $u \in \mathbb{R}$.

Proof. We only consider the three dimensional case and assume, for simplicity, that the boundary $\partial \Omega$ of the domain is flat near some point $\bar{x} \in \partial \Omega$. Suppose there exists $\bar{g} \in \mathbb{R}$ with $a_1(\bar{g}) - a_2(\bar{g}) > 0$. Then by continuity, $a_1(u) < a_2(u)$ for $u \in [\bar{g}, \bar{g}]$ with $\bar{g} < \bar{g}$. Let us define the boundary datum g by

$$g(x) = \begin{cases} \bar{g}, & |x - \bar{x}| \leq r, \\ \frac{|x - \bar{x}| - r} {s - r} \bar{g} + \frac{s - |x - \bar{x}|} {s - r} g, & r < |x - \bar{x}| < s, \\ g, & |x - \bar{x}| \geq s, \end{cases}$$

where $0 < r < s$ are sufficiently small and will be specified below. For $\varepsilon > 0$ define $\lambda^\varepsilon(x) = n(x) \cdot \nabla \Phi^\varepsilon(x)$ with $y^\varepsilon = \bar{x} + \varepsilon n(\bar{x})$ and $\Phi^\varepsilon(x) = 1/|x - y|$ as in the proof of theorem 3.2. Observe that λ^ε is harmonic in Ω and uniformly bounded in $L^1(\Omega)$ for all $\varepsilon \geq 0$. Now from (12) and $\Lambda_{a_1,c} = \Lambda_{a_2,c}$, we obtain

$$-\int_{\Omega} c(u_1 - u_2) \lambda^\varepsilon \, dx = \int_{\partial \Omega} (A_1(g) - A_2(g)) \partial_n \lambda^\varepsilon \, ds$$

$$= (A_1(\bar{g}) - A_2(\bar{g})) \int_{\partial \Omega} \partial_n \lambda^\varepsilon \, ds + \int_{\partial \Omega} B(g) \partial_n \lambda^\varepsilon \, ds. \tag{13}$$

Since λ^ε is harmonic in Ω, the first integral on the right-hand side vanishes and in the second term we abbreviated

$$B(u) = (A_1(u) - A_1(\bar{g})) - (A_2(u) - A_2(\bar{g})) = \int_{\bar{g}}^{u} a_1(u) - a_2(u) \, du.$$
Since $a_1(u) - a_2(u) > 0$, the function $B(u)$ is strictly monotonically increasing and positive on $(\bar{g}, \bar{\bar{g}}]$. The second term can then be further evaluated by

$$\int_{\partial \Omega} B(g) \partial_n \lambda^x \, ds = B(\bar{g}) \int_{|x-\bar{\bar{g}}| < r} \partial_n \lambda^x \, ds + \int_{r < |x-\bar{\bar{g}}| < s} B(g) \partial_n \lambda^x \, ds$$

$$= 2\pi B(\bar{g}) \left(\frac{r^2}{(r^2 + \varepsilon^2)^{3/2}} - \frac{s^2}{(s^2 + \varepsilon^2)^{3/2}} \right),$$

where integration is performed over subsets of the boundary and $B \in [0, B(\bar{g})]$. This formula holds for all $0 < r < s$ sufficiently small and all $\varepsilon > 0$. By choosing $r = \varepsilon$ and $s = \varepsilon + \varepsilon^3$ and letting $\varepsilon \to 0$, the first integral can be made arbitrarily large while the second integral can be made arbitrarily small. Since the left-hand side of (13) is uniformly bounded as $\varepsilon \to 0$, we obtain a contradiction to the assumption that $a_1(\bar{g}) - a_2(\bar{g}) > 0$. The two dimensional case and curved boundaries can be treated with similar arguments. □

Remark 4.2. Similar orthogonality relations and adjoint problems have been used for one-dimensional equations before. In [10], the identifiability of a is established by controlling the sign of u_1 and λ_x using monotonicity arguments. This argument is, however, not applicable in the multi-dimensional case.

Summarizing the previous results, we obtain our main result.

Proof of theorem 1.1. If $\Lambda_{a_1, c_1} = \Lambda_{a_2, c_2}$, then lemma 3.1 implies that $\Lambda_{a_1(0), c_1} = \Lambda_{a_2(0), c_2}$. Thus, $a_1(0) = a_2(0)$ by theorem 3.2 and $c_1 = c_2$ by theorem 3.3. The assertion $a_1(u) = a_2(u)$ follows from theorem 4.1, which concludes the proof. □

5. Discussion

Concerning stability when reconstructing c, the best one can expect is an estimate of logarithmic type even if we assume that the coefficient a is known and constant; see [1] for details. Thus, the inverse problem considered in this paper is severely ill-posed.

Acknowledgments

HE acknowledges support by DFG via Grant IRTG 1529 and GSC 233. The work of JFP was supported by DFG via Grant 1073/1-1 and from the Daimler and Benz Stiftung via Post-Doc Stipend 32-09/12. We would like to thank Professor Bastian von Harrach for valuable comments when completing the proof of theorem 4.1.

References

[1] Alessandrini G 1990 Singular solutions of elliptic equations and the determination of conductivity by boundary measurements J. Differ. Equ. 84 252–72

[2] Arridge S R and Lionheart W R B 1998 Nonuniqueness in diffusion-based optical tomography Opt. Lett. 23 882–4

[3] Astala K and Päivärinta L 2006 Calderón’s inverse conductivity problem in the plane Ann. Math. 163 265–99

[4] Bukhgeim A L 2008 Recovering a potential from Cauchy data in the two-dimensional case J. Inverse Ill-Posed Problems 16 19–33

[5] Bukhgeim A L and Klibanov M V 1981 Uniqueness in the large of a class of multidimensional inverse problems Sov. Math. Dokl. 24 244–7

[6] Calderón A-P 1980 On an inverse boundary value problem Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro: Sociedade Brasileira de Matematica) pp 65–73
[7] Cannon J R and Yin H 1989 A class of non-linear non-classical parabolic equations J. Differ. Eqns 79 266–88
[8] Druskin V 1982 The unique solution of the inverse problem of electrical surveying and electrical well-logging for piecewise-continuous conductivity Earth Phys. 18 51–3
[9] DuChateau P and Rundell W 1985 Unicity in an inverse problem for an unknown reaction term in a reaction–diffusion equation J. Differ. Eqns 59 155–64
[10] DuChateau P, Thelwell R and Butters G 2004 Analysis of an adjoint problem approach to the identification of an unknown diffusion coefficient Inverse Problems 20 601–25
[11] Gilbarg D and Trudinger N S 2001 Elliptic Partial Differential Equations of Second Order (Berlin: Springer)
[12] Grinberg N I 2000 Local uniqueness for the inverse boundary problem for the two-dimensional diffusion equation Eur. J. Appl. Math. 11 473–89
[13] Harrach B 2009 On uniqueness in diffuse optical tomography Inverse Problems 25 055010
[14] Imanuvilov O Y, Uhlmann G and Yamamoto M 2010 The Calderón problem with partial data in two dimensions J. Am. Math. Soc. 23 655–91
[15] Imanuvilov O Y, Uhlmann G and Yamamoto M 2011 Determination of second-order elliptic operators in two dimensions from partial cauchy data Proc. Natl Acad. Sci. 108 467–72
[16] Imanuvilov O Y and Yamamoto M 2012 Inverse boundary value problem for Schrödinger equation in two dimensions SIAM J. Math. Anal. 44 1333–9
[17] Isakov V 1989 Uniqueness for inverse parabolic problems with a lateral overdetermination Commun. Partial Differ. Eqns 14 681–9
[18] Isakov V 1993 On uniqueness in inverse problems for semilinear parabolic equations Arch. Ration. Mech. Anal. 124 1–12
[19] Isakov V 2001 Uniqueness of recovery of some quasilinear partial differential equations Commun. Partial Differ. Eqns 26 1947–73
[20] Isakov V 2006 Inverse Problems for Partial Differential Equations (New York: Springer Science and Business Media)
[21] Isakov V and Sylvester J 1994 Global uniqueness for a semilinear elliptic inverse problem Commun. Pure Appl. Math. 47 1403–10
[22] Kang H and Nakamura G 2002 Identification of nonlinearity in conductivity equation via Dirichlet-to-Neumann map Inverse Problems 18 1079–88
[23] Klibanov M V 2004 Global uniqueness of a multidimensional inverse problem for a nonlinear parabolic equation Inverse Problems 20 495–514
[24] Klibanov M V 2013 Carleman estimates for global uniqueness, stability and numerical methods for coefficient inverse problems J. Inverse Ill-Posed Problems 21 477–560
[25] Klibanov M V and Timonov A 2004 Carleman Estimates for Coefficient Inverse Problems and Numerical Applications (Inverse and Ill-Posed Problems Series) (Utrecht: VSP)
[26] Kohn R and Vogelius M 1984 Determining conductivity by boundary measurements Commun. Pure Appl. Math. 37 289–98
[27] Kohn R V and Vogelius M 1985 Determining conductivity by boundary measurements: II. Interior results Commun. Pure Appl. Math. 38 643–67
[28] McLean W 2000 Strongly Elliptic Systems and Boundary Integral Equations (Cambridge: Cambridge University Press)
[29] Nachmann A 1996 Global uniqueness for a two-dimensional inverse boundary value problem Ann. Math. 143 71–96
[30] Nakamura G and Sun Z 1994 An inverse boundary value problem for St Venant–Kirchhoff materials Inverse Problems 10 1159–63
[31] Pilant M and Rundell W 1990 Recovery of an unknown specific heat by means of overposed data Numer. Methods Partial Differ. Eqns 6 1–16
[32] Sun Z 1996 On a quasilinear inverse boundary value problem Math. Z. 221 293–305
[33] Sun Z and Uhlmann G 1997 Inverse problems in quasilinear anisotropic media Am. J. Math. 119 771–97
[34] Sylvester J and Uhlmann G 1987 Global uniqueness theorem for an inverse boundary problem Ann. Math. 125 153–69
[35] Uhlmann G 2009 Electrical impedance tomography and Calderón’s problem Inverse Problems 25 123011