THE SET OF NON-SQUARES IN A NUMBER FIELD IS DIOPHANTINE

BJORN POONEN

Abstract. Fix a number field \(k \). We prove that \(k^\times - k^\times 2 \) is diophantine over \(k \). This is deduced from a theorem that for a nonconstant separable polynomial \(P(x) \in k[x] \), there are at most finitely many \(a \in k^\times \) modulo squares such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle \(X \) given by \(y^2 - az^2 = P(x) \).

1. Introduction

Throughout, let \(k \) be a global field; occasionally we impose additional conditions on its characteristic. Warning: we write \(k^n = \prod_{i=1}^n k \) and \(k^\times n = \{ a^n : a \in k^\times \} \).

1.1. Diophantine sets. A subset \(A \subseteq k^n \) is diophantine over \(k \) if there exists a closed subscheme \(V \subseteq A_{k^{n+m}} \) such that \(A \) equals the projection of \(V(k) \) under \(k^{n+m} \to k^n \). The complexity of the collection of diophantine sets over a field \(k \) determines the difficulty of solving polynomial equations over \(k \). For instance, it follows from [Mat70] that if \(\mathbb{Z} \) is diophantine over \(\mathbb{Q} \), then there is no algorithm to decide whether a multivariable polynomial equation with rational coefficients has a solution in rational numbers. Moreover, diophantine sets can built up from other diophantine sets. In particular, diophantine sets over \(k \) are closed under taking finite unions and intersections. Therefore it is of interest to gather a library of diophantine sets.

1.2. Main result. Our main theorem is the following:

Theorem 1.1. For any number field \(k \), the set \(k^\times - k^\times 2 \) is diophantine over \(k \).

In other words, there is an algebraic family of varieties \((V_t)_{t \in k} \) such that \(V_t \) has a \(k \)-point if and only if \(t \) is not a square. This result seems to be new even in the case \(k = \mathbb{Q} \).

Corollary 1.2. For any number field \(k \) and for any \(n \in \mathbb{Z}_{\geq 0} \), the set \(k^\times - k^\times 2^n \) is diophantine over \(k \).

Proof. Let \(A_n = k^\times - k^\times 2^n \). We prove by induction on \(n \) that \(A_n \) is diophantine over \(k \). The base case \(n = 1 \) is Theorem 1.1. The inductive step follows from \(A_{n+1} = A_1 \cup \{ t^2 : t \in A_n \} \).

Date: December 18, 2007.

2000 Mathematics Subject Classification. Primary 14G05; Secondary 11G35, 11U99, 14G25, 14J20.

Key words and phrases. Brauer-Manin obstruction, non-squares, diophantine set, Châtelet surface, conic bundle, Hasse principle, rational points.

This research was supported by NSF grant DMS-0301280.
1.3. **Brauer-Manin obstruction.** The main ingredient of the proof of Theorem 1.1 is the fact the Brauer-Manin obstruction is the only obstruction to the Hasse principle for certain Châtelet surfaces over number fields, so let us begin to explain what this means. For each place v of k, let k_v be the completion of k at v. Let A be the adèle ring of k. One says that there is a Brauer-Manin obstruction to the Hasse principle for a projective variety X over k if $X(A) \neq \emptyset$ but $X(A)^{Br} = \emptyset$.

1.4. **Conic bundles and Châtelet surfaces.** Let E be a rank-3 vector sheaf over a base variety B. A nowhere-vanishing section $s \in \Gamma(B, \text{Sym}^2 E)$ defines a subscheme X of $B \times E$ whose fibers over B are (possibly degenerate) conics. As a special case, we may take $(E, s) = (L_0 \oplus L_1 \oplus L_2, s_0 + s_1 + s_2)$ where each L_i is a line sheaf on B, and the $s_i \in \Gamma(B, L_i^{\otimes 2}) \subset \Gamma(B, \text{Sym}^2 E)$ are sections that do not simultaneously vanish on B.

We specialize further to the case where $B = \mathbb{P}^1$, $L_0 = L_1 = \mathcal{O}$, $L_2 = \mathcal{O}(n)$, $s_0 = 1$, $s_1 = -a$, and $s_2 = -\tilde{P}(w, x)$ where $a \in k^\times$ and $\tilde{P}(w, x) \in \Gamma(\mathbb{P}^1, \mathcal{O}(2n))$ is a separable binary form of degree $2n$. Let $P(x) := \tilde{P}(1, x) \in k[x]$, so $P(x)$ is a separable polynomial of degree $2n - 1$ or $2n$. We then call X the conic bundle given by

$$y^2 - az^2 = P(x).$$

A Châtelet surface is a conic bundle of this type with $n = 2$, i.e., with deg P equal to 3 or 4. See also [Poo07].

The proof of Theorem 1.1 relies on the Châtelet surface case of the following result about families of more general conic bundles:

Theorem 1.3. Let k be a global field of characteristic not 2. Let $P(x) \in k[x]$ be a nonconstant separable polynomial. Then there are at most finitely many classes in $k^\times / k^{\times 2}$ represented by $a \in k^\times$ such that there is a Brauer-Manin obstruction to the Hasse principle for the conic bundle X given by $y^2 - az^2 = P(x)$.

Remark 1.4. Theorem 1.3 is analogous to the classical fact that for an integral indefinite ternary quadratic form $q(x, y, z)$, the set of nonzero integers represented by q over \mathbb{Z}_p for all p but not over \mathbb{Z} fall into finitely many classes in $\mathbb{Q}^\times / \mathbb{Q}^{\times 2}$. J.-L. Colliot-Thélène and F. Xu explain how to interpret and prove this fact (and its generalization to arbitrary number fields) in terms of the integral Brauer-Manin obstruction: see [CTX07, §7], especially Proposition 7.9 and the very end of §7. Our proof of Theorem 1.3 shares several ideas with the arguments there.

1.5. **Definable subsets of k_v and their intersections with k.** The proof of Theorem 1.1 requires one more ingredient, namely that certain subsets of k defined by local conditions are diophantine over k. This is the content of Theorem 1.3 below, which is proved in more generality than needed. By a k-definable subset of k^n, we mean the subset of k^n defined by some first-order formula in the language of fields involving only constants from k, even though the variables range over elements of k_v.

Theorem 1.5. Let k be a number field. Let k_v be a nonarchimedean completion of k. For any k-definable subset A of k^n_v, the intersection $A \cap k^n$ is diophantine over k.

1.6. **Outline of paper.** Section 2 shows that Theorem 1.5 is an easy consequence of known results, namely the description of definable subsets over k_v, and the diophantineness of the valuation subring \mathcal{O} of k defined by v. Section 3 proves Theorem 1.3 by showing that for
most twists of a given conic bundle, the local Brauer evaluation map at one place is enough to rule out a Brauer-Manin obstruction. Finally, Section 4 puts everything together to prove Theorem 1.1.

2. SUBSETS OF GLOBAL FIELDS DEFINED BY LOCAL CONDITIONS

Lemma 2.1. Let $m \in \mathbb{Z}_{>0}$ be such that $\text{char } k \nmid m$. Then $k_v^{\times m} \cap k$ is diophantine over k.

Proof. The valuation subring \mathcal{O} of k defined by v is diophantine over k: see the first few paragraphs of §3 of [Rum80]. The hypothesis $\text{char } k \nmid m$ implies the existence of $c \in k^\times$ such that $1 + c\mathcal{O} \subset k_v^{\times m}$; fix such a c. The denseness of k^\times in k_v^\times implies $k_v^{\times m} \cap k = (1 + c\mathcal{O})k^{\times m}$. The latter is diophantine over k.

Proof of Theorem 1.5. Call a subset of k_v^n simple if it is one of the following two types:
\{\overline{x} \in k_v^n : f(\overline{x}) = 0\} or \{\overline{x} \in k_v^n : f(\overline{x}) \in k_v^{\times m}\} for some $f \in k[x_1, \ldots, x_n]$ and $m \in \mathbb{Z}_{>0}$. It follows from the proof of [Mac76, Theorem 1] (see also [Mac76, §2] and [Den84, §2]) that any k-definable subset A is a boolean combination of simple subsets. The complement of a simple set of the first type is a simple set of the second type (with $m = 1$). The complement of a simple set of the second type is a union of simple sets, since $k_v^{\times m}$ has finite index in k_v^\times. Therefore any k-definable A is a finite union of finite intersections of simple sets. Diophantine sets in k are closed under taking finite unions and finite intersections, so it remains to show that for every simple subset A of k_v^n, the intersection $A \cap k$ is diophantine. If A is of the first type, then this is trivial. If A is of the second type, then this follows from Lemma 2.1. □

3. FAMILY OF CONIC BUNDLES

For a place v of k let $\text{Hom}'(\text{Br } X, \text{Br } k_v)$ be the set of $f \in \text{Hom}(\text{Br } X, \text{Br } k_v)$ such that the composition $\text{Br } k \to \text{Br } X \xrightarrow{f} \text{Br } k_v$ equals the map induced by the inclusion $k \hookrightarrow k_v$. The v-adic evaluation pairing $\text{Br } X \times X(k_v) \to \text{Br } k_v$ induces a map $X(k_v) \to \text{Hom}'(\text{Br } X, \text{Br } k_v)$.

Lemma 3.1. With notation as in Theorem 1.3 there exists a finite set of places S of k, depending on $P(x)$ but not a, such that if $v \notin S$ and $v(a)$ is odd, then $X(k_v) \to \text{Hom}'(\text{Br } X, \text{Br } k_v)$ is surjective.

Proof. The function field of \mathbb{P}^1 is $k(x)$. Let $k(X)$ be the function field of X. Let Z be the zero locus of $\tilde{P}(w, x)$ in \mathbb{P}^1. Let G be the group of $f \in k(X)^\times$ having even valuation at every closed point of $\mathbb{P}^1 - Z$. Choose $P_1(x), \ldots, P_m(x) \in G$ representing a \mathbb{F}_2-basis for the image of G in $k(x)^\times/k(x)^{\times 2}k^\times$. We may assume that $P_m(x) = P(x)$. Choose S so that each $P_i(x)$ is a ratio of polynomials whose nonzero coefficients are S-units. A well-known calculation (see [Sko01, §7.1]) shows that the class of each quaternion algebra $(a, P_i(x))$ in $\text{Br } k(X)$ belongs to the subgroup $\text{Br } k \to \text{Br } X$ is an \mathbb{F}_2-vector space with the classes of $(a, P_i(x))$ for $i \leq m - 1$ as a basis.

Suppose that $v \notin S$ and $f \in \text{Hom}'(\text{Br } X, \text{Br } k_v)$. The homomorphism f is determined by where it sends $(a, P_i(x))$ for $i \leq m - 1$. We need to find $R \in X(k_v)$ mapping to f.

Let \mathcal{O}_v be the valuation ring in k_v, and let \mathbb{F}_v be its residue field. We may assume that $\text{char } \mathbb{F}_v \neq 2$. For $i \leq m - 1$, choose $c_i \in \mathcal{O}_v^\times$ whose image in \mathbb{F}_v^\times is a square or not, according to whether f sends $(a, P_i(x))$ to 0 or $1/2$ in $\mathbb{Q}/\mathbb{Z} \simeq \text{Br } k_v$. Since $v(a)$ is odd, we have $(a, c_i) = (a, P_i(x))$ in $\text{Br } k_v$. 3

View $\mathbb{P}^1 - Z$ as a smooth \mathcal{O}_v-scheme, and Y be the finite étale cover of $\mathbb{P}^1 - Z$ whose function field is obtained by adjoining $\sqrt{c_i P_i(x)}$ for $i \leq m - 1$ and also $\sqrt{P(x)}$. Then the generic fiber $Y_{k_v} := Y \times_{\mathcal{O}_v} k_v$ is geometrically integral. Assuming that S was chosen to include all v with small \mathbb{F}_v, we may assume that $v \notin S$ implies that Y has a (smooth) \mathbb{F}_v-point, which by Hensel’s lemma lifts to an k_v-point Q. There is a morphism from Y_{k_v} to the smooth projective model of $y^2 = P(x)$ over k_v, which in turn embeds as a closed subscheme of X_{k_v}, as the locus where $z = 0$. Let R be the image of Q under $Y(k_v) \to X(k_v)$, and let $\alpha = x(R) \in k_v$. Evaluating $(a, P_i(x))$ on R yields $(a, P_i(\alpha))$, which is isomorphic to (a, c_i) since $c_i P_i(\alpha) \in k_v^{2}$. Thus R maps to f, as required.

Proof of Theorem 1.3 Let S be as in Lemma 3.1. Enlarge S to assume that $\text{Pic} \mathcal{O}_{k,S}$ is trivial. Then the set of $a \in k^\times$ such that $v(a)$ is even for all $v \notin S$ has the same image in $k^\times/k^{\times 2}$ as the finitely generated group $\mathcal{O}_{k,S}^\times$, so the image is finite. Therefore it will suffice to show that if $v \notin S$ and $v(a)$ is odd, then the corresponding surface X has no Brauer-Manin obstruction to the Hasse principle.

If $X(A) = 0$, then the Hasse principle holds. Otherwise pick $Q = (Q_w) \in X(A)$, where $Q_w \in X_{k_w}$ for each w. For $A \in Br X$, let $ev_A: X(L) \to Br L$ be the evaluation map for any field extension L of k, and let $\text{inv}_w: Br k_w \to \mathbb{Q}/\mathbb{Z}$ be the usual inclusion map. Define

$$\eta: Br X \to \mathbb{Q}/\mathbb{Z} \simeq Br k_v$$

$$A \mapsto -\sum_{w \notin S} \text{inv}_w ev_A(Q_w).$$

By reciprocity, $\eta \in \text{Hom}^{\prime}(Br X, Br k_v)$. By Lemma 3.1 there exists $R \in X(k_v)$ giving rise to η. Define $Q' = (Q'_w) \in X(A)$ by $Q'_w := Q_w$ for $w \neq v$ and $Q'_v := R$. Then $Q' \in X(A)^{Br}$, so there is no Brauer-Manin obstruction to the Hasse principle for X.

4. The set of nonsquares is diophantine

Proof of Theorem 1.7: For each place v of k, define $S_v := k^\times \cap k_v^{\times 2}$ and $N_v := k^\times - S_v$. By Theorem 1.5 the sets S_v and N_v are diophantine over k.

By [Poo07, Proposition 4.1], there is a Châtelet surface $X_1: y^2 - b^2 = P(x)$ over k, with $P(x)$ a product of two irreducible quadratic polynomials, such that there is a Brauer-Manin obstruction to the Hasse principle for X_1. For $t \in k^\times$, let X_t be the (smooth projective) Châtelet surface associated to the affine surface $U_t: y^2 - tb^2 = P(x)$.

We claim that the following are equivalent for $t \in k^\times$:

(i) U_t has a k-point.

(ii) X_t has a k-point.

(iii) X_t has a k_v-point for every v and there is no Brauer-Manin obstruction to the Hasse principle for X_t.

The implications (i) \implies (ii) \implies (iii) are trivial. The implication (iii) \implies (ii) follows from [CTCS80, Theorem B]. Finally, in [CTCS80], the reduction of Theorem B to Theorem A combined with Remarque 7.4 shows that (ii) implies that X_t is k-unirational, which implies (i).
Let A be the (diophantine) set of $t \in k^\times$ such that (i) holds. The isomorphism type of U_t depends only on the image of t in $k^\times/k^{\times 2}$, so A is a union of cosets of $k^{\times 2}$ in k^\times. We will compute A by using (iii).

The affine curve $y^2 = P(x)$ is geometrically integral so it has a k_v-point for all places v outside a finite set F. So for any $t \in k^\times$, the variety X_t has a k_v-point for all $v \notin F$. Since X_1 has a k_v-point for all v and in particular for $v \in F$, if $t \in \bigcap_{v \in F} S_v$, then X_t has a k_v-point for all v.

Let $B := A \cup \bigcup_{v \in F} N_v$. If $t \in k^\times - B$, then X_t has a k_v-point for all v, and there is a Brauer-Manin obstruction to the Hasse principle for X_t. By Theorem 1.3, $k^\times - B$ consists of finitely many cosets of $k^{\times 2}$, one of which is $k^{\times 2}$ itself. Each coset of $k^{\times 2}$ is diophantine over k, so taking the union of B with all the finitely many missing cosets except $k^{\times 2}$ shows that $k^\times - k^{\times 2}$ is diophantine. \square

Acknowledgements

I thank Jean-Louis Colliot-Thélène for a few comments, and Alexandra Shlapentokh for suggesting some references.

References

[CTCS80] Jean-Louis Colliot-Thélène, Daniel Coray, and Jean-Jacques Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320 (1980), 150–191 (French). MR 592151 (82f:14020) [4]

[CTX07] Jean-Louis Colliot-Thélène and Fei Xu, Brauer-Manin obstruction for integral points of homogeneous spaces and representation of integral quadratic forms, December 12, 2007. preprint. [5]

[Den84] J. Denef, The rationality of the Poincaré series associated to the p-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129 (86c:11043) [2]

[Mac76] Angus Macintyre, On definable subsets of p-adic fields, J. Symbolic Logic 41 (1976), no. 3, 605–610. MR 0485335 (58 #5182) [2]

[Mat70] Yu. Matiyasevich, The Diophantineness of enumerable sets, Dokl. Akad. Nauk SSSR 191 (1970), 279–282 (Russian). MR 0258744 (41 #3390) [1]

[Poo07] Bjorn Poonen, Existence of rational points on smooth projective varieties, December 11, 2007. Preprint. [1.4, 4]

[Rum80] R. S. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195–217.MR583852 (81m:03053) [2]

[Sko01] Alexei Skorobogatov, Torsors and rational points, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001.MR1845760 (2002d:14032) [2]