Complete Genome Sequences of 16 Mycoplasma bovis Isolates from Canadian Bison and Cattle

Karen B. Register,a Darrell O. Bayles,b Hao Ma,a M. Claire Windeyer,c Jose Perez-Casal,d Ana L. Bras,c* Muhammad Suleman,d* Murray Woodbury,* Murray D. Jelinski,e David P. Altb

a Ruminant Diseases and Immunology Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
b Infectious Bacterial Diseases Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
c Department of Production Animal Health, University of Calgary, Calgary, AB, Canada
d Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
e Department of Large Animal Clinical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

ABSTRACT Here, we report the complete genome sequences of 12 Mycoplasma bovis isolates cultured from Canadian bison and 4 cultured from Canadian cattle. The sequences are of value for understanding the phylogenetic relationship between cattle and bison isolates and will aid in elucidating the genetic basis for virulence and host specificity.

Mycoplasma bovis is a widespread cause of pneumonia, otitis media, arthritis, mastitis, and reproductive disorders in cattle and imposes a major economic burden on the beef and dairy industries around the world (1, 2). It was first recognized as a pathogen in the 1960s, when it caused an outbreak of mastitis in an American dairy herd (3), and has since spread to nearly all countries in which cattle are raised (1, 4). In the early 2000s, M. bovis began to appear as a primary disease agent in North American bison (Bison bison) and subsequently became one of the most serious and costly infectious disease threats faced by these animals (5). One theory suggests that the relatively recent appearance of M. bovis as a pathogen in bison is due to the emergence of unique, newly evolved genotypes with an expanded host range or heightened virulence. The complete genome sequences for 11 isolates from cattle have been reported (6–11) or are otherwise found in the NCBI genome or nucleotide databases, but until now, no genome assemblies for isolates from bison have been available. To better understand the phylogenetic relationship between isolates from cattle and bison and to generate a resource for exploring the genetic basis for virulence and host specificity in M. bovis, we sequenced the genomes of 12 bison isolates and 4 cattle isolates obtained from animals in western Canada.

Details pertaining to the M. bovis isolates included in this study are provided in Table 1. Isolates were sourced from tissue samples collected at necropsy. Samples were homogenized and cultured for 48 h at 37°C in an atmosphere of 5% CO2 in selective PPLO broth (PPLO broth base [BD Diagnostic Systems], 10 g/liter yeast extract [BD Diagnostic Systems], 20% heat-inactivated horse serum [Life Technologies], 0.05% thallium acetate [MP Biomedicals], and 500 IU/ml penicillin G [Sigma]), followed by plating onto selective PPLO agar. Axenic seed stocks generated from single, well-isolated colonies grown in selective PPLO broth were confirmed to be M. bovis using a diagnostic PCR (12). Genomic DNA was purified from broth cultures using the Gentra Puregene cell kit (Qiagen) according to the kit handbook. For isolate MJ1, PacBio and Illumina libraries were derived using DNA purified from two independent seed stock expansion cultures. Libraries for all remaining isolates were obtained using DNA prepared from a single culture per isolate. PacBio sequencing was completed by the
Table 1: Isolates, geographic location, anatomic site and date of origin, sequencing metrics, and accession numbers of *M. bovis* isolates in this report

Isolate name	Geographic origin (province)	Anatomic site of origin	Yr of origin	Length (bp)	PacBio reads	Illumina reads	Genome coverage (% of CDSs)	Total no. of pseudogenes	SRA accession no. for:	No. of RNA genes	GenBank accession no.	
NADCC18	Alberta	Lung of aborted fetus	2012	1,119,681	81,403	875,877	579	29.1	914	76	SRX82368689	SRX8236886 CP022589
NADCC54	Saskatchewan	Lung	2012	1,143,450	84,172	977,092	209	29.0	929	74	SRX82368870	SRX8236887 CP022589
NADCC55	Manitoba	Lung	2012	1,159,440	68,072	1,375,282	948	29.0	940	81	SRX82368781	SRX8236888 CP022591
NADCC56	Manitoba	Lung	2012	1,085,052	116,898	1,177,141	267	29.1	884	66	SRX82368724	SRX8236889 CP022592
NADCC57	Alberta	Joint	2013	978,015	100,885	1,120,174	287	29.3	806	50	SRX82368735	SRX8236890 CP022593
NADCC60	Alberta	Joint	2013	1,157,131	72,345	1,097,492	545	29.1	951	90	SRX82368777	SRX8236894 CP022598
NADCC58	Saskatchewan	Lung	2013	1,098,413	51,044	901,441	483	29.1	893	72	SRX82368741	SRX8236891 CP022594
NADCC59	Alberta	Lung	2014	1,183,547	47,071	956,285	878	29.0	992	131	SRX82368750	SRX8236892 CP042939
NADCC61	Manitoba	Lung	2012	1,119,681	92,537	1,219,230	726	29.1	909	72	SRX82368767	SRX8236893 CP022599
NADCC67	Alberta	Joint	2013	1,113,699	29,650	855,320	305	29.1	902	83	SRX82368778	SRX8236895 CP022596
NADCC68	Alberta	Lung	2013	1,107,634	31,736	962,980	423	29.1	835	56	SRX82368786	SRX8236896 CP022597
NADCC70	Alberta	Pericardium	2014	1,103,068	45,377	1,084,481	403	29.0	904	99	SRX82368808	SRX8236898 CP022598
MJ1	Alberta	Joint	2014	1,024,574	103,538	816,930	1,272	29.4	843	84	SRX82368642	SRX8236881 CP042938
MJ2	Alberta	Lung	2014	970,516	83,560	840,623	795	29.3	801	56	SRX82368653	SRX8236882 CP022586
MJ3	Alberta	Lung	2014	1,027,226	80,405	903,132	423	29.3	835	56	SRX82368658	SRX8236883 CP022587
MJ4	Alberta	Lung	2014	1,053,367	102,039	941,902	768	29.3	854	84	SRX82368666	SRX8236884 CP022588

*Includes pseudogenes. CDSs, coding DNA sequences.

*Consecutive shaded rows indicate three pairs of isolates each obtained from a single animal. All of the other isolates were sourced from different animals.

Yale Center for Genome Analysis (New Haven, CT). Following fragmentation and end repair of genomic DNA, BluePippin size selection was used to enrich for 10- to 20-kb fragments. Libraries were sequenced using a single SMRTcell per isolate and P6-C4 chemistry on a PacBio RS II instrument. Illumina sequencing was carried out on the MiSeq system using the MiSeq v2 reagent kit to generate 2 × 150-bp paired-end reads. Libraries were prepared with the Nextera XT DNA library prep kit (Illumina), as detailed in the reference guide.

Genomes were assembled from PacBio reads using Canu (13), v. 1.5 or v. 1.8, or PacBio SMRT analysis v. 2.3.0, using the default assembly options. All assemblies were error corrected and polished by iteratively running v. 1.18 or v. 1.22 of Pilon (14) with Illumina reads, using the “fix bases” option, until no additional corrections were made. Genomes were oriented to start at the dnaA gene and trimmed to remove overlapping sequences. Genomes were annotated by NCBI using the Prokaryotic Genome Annotation Pipeline v. 4.2 (15). Details pertaining to each isolate and the corresponding assembly are provided in Table 1.

Data availability. Genome assemblies have been deposited in GenBank under BioProject accession number PRJNA378768, with the isolate-specific accession numbers indicated in Table 1. Raw sequence reads have been deposited in SRA and may be obtained by searching for the BioProject accession number using the SRA Run Selector (https://www.ncbi.nlm.nih.gov/Traces/study/).

ACKNOWLEDGMENTS

We gratefully acknowledge the excellent technical assistance of William Boatwright. A portion of this work was funded by the Alberta Livestock & Meat Agency, Ltd. The mention of trade names, proprietary products, or specified equipment does not constitute a guarantee or warranty by the USDA and does not imply approval to the exclusion of other products that may be suitable.

REFERENCES

1. Calcutt MJ, Lysnyansky I, Sachse K, Fox LK, Nicholas RAJ, Ayling RD. 2018. Gap analysis of Mycoplasma bovis disease, diagnosis and control: an aid to identify future development requirements. Transbound Emerg Dis 65:91–109. https://doi.org/10.1111/tbed.12860.

2. Maunsell FP, Woolums AR, Francoz D, Rosenbusch RF, Step DL, Wilson DJ, Janzen ED. 2011. Mycoplasma bovis infections in cattle. J Vet Intern Med 25:772–783. https://doi.org/10.1111/j.1939-1676.2011.0750.x.

3. Hale HH, Helmboldt CF, Plastridge WN, Stula EF. 1962. Bovine mastitis caused by a Mycoplasma species. Cornell Vet 52:582–591.
4. Government of New Zealand. 2017. Analysis of risk pathways for the introduction of Mycoplasma bovis into New Zealand. Ministry for Primary Industries, Wellington, New Zealand. https://www.biosecurity.govt.nz/dmsdocument/28050/direct.

5. United States Department of Agriculture. 2013. *Mycoplasma bovis*—an emerging pathogen in ranched bison. Document 222.0913. USDA:APHIS:VS:Center for Epidemiology and Animal Health, Fort Collins, CO. https://www.aphis.usda.gov/animal_health/nahms/bison/downloads/bison14/Bison14_Mbovis_1.pdf.

6. Chen S, Hao H, Zhao P, Gao P, He Y, Ji W, Wang Z, Lu Z, Liu Y, Chu Y. 2017. Complete genome sequence of *Mycoplasma bovis* strain 08M. Genome Announc 5:e00324-17. https://doi.org/10.1128/genomeA.00324-17.

7. Li Y, Zheng H, Liu Y, Jiang Y, Xin J, Chen W, Song Z. 2011. The complete genome sequence of *Mycoplasma bovis* strain Hubei-1. PLoS One 6:e20999. https://doi.org/10.1371/journal.pone.0020999.

8. Morimoto M, Kenri T, Ohmori T, Teshima K, Shibuya K, Sasakawa C, Suzuki M. 2019. Complete genome sequence of *Mycoplasma bovis* strain KG4397, isolated from cattle in Japan. Microbiol Resour Announc 8:e00838-19. https://doi.org/10.1128/MRA.00838-19.

9. Qi J, Guo A, Cui P, Chen Y, Mustafa R, Ba X, Hu C, Bai Z, Chen X, Shi L, Chen H. 2012. Comparative geno-plasticity analysis of *Mycoplasma bovis* HB0801 (Chinese isolate). PLoS One 7:e38239. https://doi.org/10.1371/journal.pone.0038239.

10. Sun P, Luo H, Zhang X, Xu J, Guo Y, He S. 2018. Whole-genome sequence of *Mycoplasma bovis* strain Ningxia-1. Genome Announc 6:e01367-17. https://doi.org/10.1128/genomeA.01367-17.

11. Wise KS, Calcutt MJ, Foecking MF, Roske K, Madupu R, Methe BA. 2011. Complete genome sequence of *Mycoplasma bovis* type strain PG45 (ATCC 25523). Infect Immun 79:982–983. https://doi.org/10.1128/IAI.00726-10.

12. Clothier KA, Jordan DM, Thompson CJ, Kinyon JM, Frane TS, Strait EL. 2010. *Mycoplasma bovis* real-time polymerase chain reaction assay validation and diagnostic performance. J Vet Diagn Invest 22:956–960. https://doi.org/10.1177/104063871002200618.

13. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. 2017. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736. https://doi.org/10.1101/gr.215087.116.

14. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakhikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl AM. 2014. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9:e112963. https://doi.org/10.1371/journal.pone.0112963.

15. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, Lomsadze A, Pruitt KD, Borodovsky M, Ostell J. 2016. NCBI Prokaryotic Genome Annotation Pipeline. Nucleic Acids Res 44:6614–6624. https://doi.org/10.1093/nar/gkw569.