ON THE GEOMETRY OF THE LLSVS EIGHTFOLD

EVGENY SHINDER, ANDREY SOLDATENKOV

Abstract. In this note we make a few remarks about the geometry of the holomorphic symplectic manifold Z constructed in [LLSvS] as a two-step contraction of the variety of twisted cubic curves on a cubic fourfold $Y \subset \mathbb{P}^5$.

We show that Z is birational to a component of the moduli space of stable sheaves in the Calabi-Yau subcategory of the derived category of Y. Using this description we deduce that the twisted cubics contained in a hyperplane section $Y_H = Y \cap H$ of Y give rise to a Lagrangian subvariety $Z_H \subset Z$. For a generic choice of the hyperplane, Z_H is birational to the theta-divisor in the intermediate Jacobian $J(Y_H)$.

Contents

1. Introduction
2. Twisted cubics and sheaves on a cubic fourfold
 2.1. Twisted cubics on cubic surfaces and determinantal representations
 2.2. Moduli spaces of sheaves on a cubic fourfold
 2.3. The symplectic form and Lagrangian subvarieties
3. Twisted cubics on a cubic threefold
 3.1. Differential of the Abel-Jacobi map
 3.2. Image of the Abel-Jacobi map
Appendix A. Differential of the Abel-Jacobi map
References

1. Introduction

We work over the field of complex numbers. Throughout the paper $Y \subset \mathbb{P}^5$ is a smooth cubic fourfold not containing a plane. In [LLSvS] the variety of generalized twisted cubic curves on Y was studied. It was shown that from this variety one can produce an irreducible holomorphic symplectic (IHS) manifold Z. It was later shown in [AL] that this manifold is birational — and hence deformation equivalent — to a Hilbert scheme of four points on a K3 surface.

Let us briefly recall the construction of Z. We follow [LLSvS] in notation and terminology and we refer to [EPS, LLSvS] for all details about the geometry of twisted cubics.

First recall that the full linear system $|O_{\mathbb{P}^1}(3)|$ embeds \mathbb{P}^1 into \mathbb{P}^3 and the image C of this embedding is called a twisted cubic. The curve C belongs to the 12-dimensional component H_0 of the Hilbert scheme of subschemes of \mathbb{P}^3 with Hilbert polynomial $3n + 1$. The curves in H_0 are called generalized twisted cubics.

One can consider generalized twisted cubic curves in projective space \mathbb{P}^k of any dimension $k \geq 3$. Every
such curve lies in a unique linear subspace $\mathbb{P}^3 \subset \mathbb{P}^k$, hence the variety of generalized twisted cubics in \mathbb{P}^k is fibred over the Grassmannian $\text{Gr}(4, k + 1)$.

It was shown in [LLSvS] that the variety $M_3(Y)$ parametrizing generalized twisted cubics contained in the cubic fourfold Y is a smooth irreducible 10-dimensional projective variety. Starting from this variety an 8-dimensional IHS manifold Z was constructed. More precisely, it was shown that there exist morphisms

\begin{equation}
M_3(Y) \xrightarrow{a} Z' \xrightarrow{\sigma} Z,
\end{equation}

and

\begin{equation}
\mu: Y \hookrightarrow Z,
\end{equation}

where a is a \mathbb{P}^2-fibre bundle and σ is the blow-up along the image of the embedding μ.

In this paper we present another point of view on Z. We show that an open subset of Z can be described as a moduli space of Gieseker stable torsion-free sheaves of rank 3 on Y.

Kuznetsov and Markushevich [KM] have constructed a closed two-form on any moduli space of torsion-free sheaves on Y. Properties of the Kuznetsov-Markushevich form are known to be closely related to the structure of the derived category of Y. The bounded derived category $\mathcal{D}^b(Y)$ of coherent sheaves on Y has an exceptional collection $\mathcal{O}_Y, \mathcal{O}_Y(1), \mathcal{O}_Y(2)$ with right orthogonal \mathcal{A}_Y, so that $\mathcal{D}^b(Y) = \langle \mathcal{A}_Y, \mathcal{O}_Y, \mathcal{O}_Y(1), \mathcal{O}_Y(2) \rangle$. The category \mathcal{A}_Y is a Calabi-Yau category of dimension two, meaning that its Serre functor is the shift by 2 [K, Section 4].

It was shown in [KM] that the two-form on moduli spaces of sheaves on Y is non-degenerate if the sheaves lie in \mathcal{A}_Y. The torsion-free sheaves mentioned above lie in \mathcal{A}_Y. This gives an alternative description of the symplectic form on Z, see Theorem 2.8.

A similar approach relying on the description of an open part of Z as a moduli space was used by Addington and Lehn in [AL] to prove that the variety Z is a deformation of a Hilbert scheme of four points on a K3 surface. In [O] Ouchi considered the case of cubic fourfolds containing a plane. He proved that one can describe (a birational model) of the LLSVS variety as a moduli space of Bridgeland-stable objects in the derived category of a twisted K3 surface. Moreover, in this situation one also has a Lagrangian embedding of the cubic fourfold into the LLSVS variety as in (1.2).

Another similar construction has been proposed by [LMS] who proved that Z is birational to a component of the moduli space of stable vector bundles of rank 6 on Y.

Using the birational equivalence between Z and the moduli space of sheaves on Y we show that twisted cubics lying in hyperplane sections of Y give rise to Lagrangian subvarieties in Z and discuss the geometry of these subvarieties, see Proposition 2.9 and Theorem 3.3. This is analogous to the case of lines on Y: it is well-known that lines on Y form an IHS fourfold, and lines contained in hyperplane sections of Y form Lagrangian surfaces in this fourfold, see for example [V].

Acknowledgements The authors would like to thank Alexander Kuznetsov, Daniel Huybrechts, Christoph Sorger, Manfred Lehn and Yukinobu Toda for useful discussions and remarks.

2. Twisted cubics and sheaves on a cubic fourfold

2.1. Twisted cubics on cubic surfaces and determinantal representations. Let us recall the structure of the general fibre of the map $a: M_3(Y) \to Z'$ in (1.1). Consider a cubic surface $S = Y \cap \mathbb{P}^3$ where \mathbb{P}^3 is a general linear subspace in \mathbb{P}^5. There exist several families of generalized twisted cubics on S. Each of the families is isomorphic to \mathbb{P}^2 and these are the fibers of the map a. The number of families
depends on S. If the surface is smooth there are 72 families, corresponding to 72 ways to represent S as a blow-up of \mathbb{P}^2 (and to the 72 roots in the lattice E_8). Each of the families is a linear system which gives a map to \mathbb{P}^2. If the surface S is singular, generalized twisted cubics on it can be of two different types. Curves of the first type are arithmetically Cohen-Macaulay (aCM), and those of the second type are non-CM. The detailed description of their geometry on surfaces with different singularity types can be found in [LLSvS], §2. For our purposes it is enough to recall that the image in Z' of non-CM curves under the map a is exactly the exceptional divisor of the blow-up $\sigma: Z' \rightarrow Z$ in (1.1), see [LLSvS], Proposition 4.1.

In this section we deal only with aCM curves and we also assume that the surface S has only ADE singularities. In this case every aCM curve belongs to a two-dimensional linear system with smooth general member, just as in the case of smooth S [LLSvS, Theorem 2.1]. Moreover, these linear systems are in one-to-one correspondence with the determinantal representations of S. Let us explain this in detail.

Let S be a cubic surface in \mathbb{P}^3 with at most ADE singularities. Let $\alpha: S \rightarrow \mathbb{P}^3$ denote the embedding and let $\tilde{S} \rightarrow S$ be the minimal resolution of singularities. Take a general aCM twisted cubic C on S and let $C \subset \tilde{S}$ be its proper preimage. Let $\tilde{L} = \mathcal{O}_{\tilde{S}}(\tilde{C})$ be the corresponding line bundle and let $L = p_*\tilde{L}$ be its direct image.

Lemma 2.1. The sheaf L has the following properties:

1. $H^0(S, L) = \mathbb{C}^3$, $H^k(S, L) = 0$ for $k \geq 1$; $H^k(S, L(-1)) = H^k(S, L(-2)) = 0$ for $k \geq 0$;
2. We have the following resolution:

 \[0 \rightarrow \mathcal{O}_{\mathbb{P}^3}(-1)^{\oplus 3} \xrightarrow{A} \mathcal{O}_{\mathbb{P}^3}^{\oplus 3} \rightarrow \alpha_* L \rightarrow 0, \]

 where A is given by a 3×3 matrix of linear forms on \mathbb{P}^3, and the surface S is the vanishing locus of $\det A$;
3. $\mathcal{E}xt^k(L, L) = 0$ for $k \geq 1$.

Proof. We note that the map $\alpha \circ p: \tilde{S} \rightarrow \mathbb{P}^3$ is given by the anticanonical linear system on \tilde{S}, so we will use the notation $K_{\tilde{S}} = \mathcal{O}_{\tilde{S}}(-1)$.

1. First we observe that $R^m p_* \tilde{L} = 0$ for $m \geq 1$. This follows from the long exact sequence of higher direct images for the triple

 \[0 \rightarrow \mathcal{O}_{\tilde{S}} \rightarrow \tilde{L} \rightarrow \mathcal{O}_{\tilde{C}} \otimes \tilde{L} \rightarrow 0, \]

 because the singularities of S are rational so that $R^m p_* \mathcal{O}_{\tilde{S}} = 0$ for $m \geq 1$ and the map p induces an embedding of \tilde{C} into S so that $R^m p_* \mathcal{O}_{\tilde{C}}$ vanishes on sheaves supported on \tilde{C} for $m \geq 1$.

 Analogously, $R^m p_* \tilde{L}(-1) = R^m p_* \tilde{L}(-2) = 0$ for $m \geq 1$. Hence it is enough to verify the cohomology vanishing for \tilde{L}.

 The linear system $|\tilde{L}|$ is two-dimensional and base point free (we refer to §2 of [LLSvS], in particular Proposition 2.5). We also know the intersection products $\tilde{L} \cdot \tilde{L} = 1$, $\tilde{L} \cdot K_{\tilde{S}} = -3$ and $K_{\tilde{S}} \cdot K_{\tilde{S}} = 3$.

 Using Riemann-Roch we find $\chi(\tilde{L}) = 3$ and $\chi(\tilde{L}(-1)) = \chi(\tilde{L}(-2)) = 0$. We have $H^0(\tilde{S}, \tilde{L}(-1)) = H^0(\tilde{S}, \tilde{L}(-2)) = 0$ which is clear from (2.2) since $|\tilde{L}|_{\tilde{C}} = \mathcal{O}_{\tilde{C}}(1)$ and $\mathcal{O}_{\tilde{S}}(1)|_{\tilde{C}} = \mathcal{O}_{\tilde{C}}(3)$. By Serre duality we have $H^2(\tilde{S}, \tilde{L}) = H^0(\tilde{S}, \tilde{L}^\vee(-1))^* = 0$, $H^2(\tilde{S}, \tilde{L}(-1)) = H^0(\tilde{S}, \tilde{L}^\vee)^* = 0$ because \tilde{L}^\vee is the ideal sheaf of \tilde{C}, and $H^2(\tilde{S}, \tilde{L}(-2)) = H^0(\tilde{S}, \tilde{L}^\vee(1))^* = 0$. The last vanishing follows from the fact that C is not contained in any hyperplane in \mathbb{P}^3. It follows that $H^1(\tilde{S}, \tilde{L}) = H^1(\tilde{S}, \tilde{L}(-1)) = H^1(\tilde{S}, \tilde{L}(-2)) = 0$.

2. We decompose the sheaf $\alpha_* L$ with respect to the full exceptional collection $\mathcal{D}^0(\mathbb{P}^3) = (\mathcal{O}_{\mathbb{P}^3}(-1), \mathcal{O}_{\mathbb{P}^3}(1), \mathcal{O}_{\mathbb{P}^3}(2))$. From part (1) it follows that $\alpha_* L$ is right-orthogonal to $\mathcal{O}_{\mathbb{P}^3}(2)$ and $\mathcal{O}_{\mathbb{P}^3}(1)$. The left mutation of $\alpha_* L$ through $\mathcal{O}_{\mathbb{P}^3}$ is given by a cone of the morphism of sheaves $\mathcal{O}_{\mathbb{P}^3} \rightarrow \alpha_* L$ induced by
the global sections of L. This cone is contained in the subcategory generated by the exceptional object $O_{P^3}(-1)$. Hence it must be equal to $O_{P^3}(-1)^{\oplus 3}[1]$, and we obtain the resolution (2.1) for $\alpha_* L$.

(3) Since L is a vector bundle outside of the singular points of S, the sheaves $\mathcal{E}xt^k(L, L)$ for $k \geq 1$ must have zero-dimensional support. It follows that it will be sufficient to prove that $\mathcal{E}xt^k(L, L) = 0$ for $k \geq 0$.

We first compute $\mathcal{E}xt^k(\alpha_* L, \alpha_* L)$. Applying $\text{Hom}(-, \alpha_* L)$ to (2.1) we get the exact sequence

$$0 \to \text{Hom}(\alpha_* L, \alpha_* L) \to H^0(\mathbb{P}^3, \alpha_* L)^{\oplus 3} \to H^0(\mathbb{P}^3, \alpha_* L(1))^{\oplus 3} \to \text{Ext}^1(\alpha_* L, \alpha_* L) \to 0,$$

where we use that $H^k(\mathbb{P}^3, \alpha_* L(m)) = 0$ for $k \geq 1$, $m \geq 0$ which is clear from (2.1). This also shows that $\text{Ext}^k(\alpha_* L, \alpha_* L) = 0$ for $k \geq 2$. We have $\dim \text{hom}(\alpha_* L, \alpha_* L) = 1$ and from the sequence above and (2.1) we compute $\dim \text{Ext}^1(\alpha_* L, \alpha_* L) = 19$.

The object $\mathcal{L}^{-1}_{\alpha_* L}$ is included into the triangle $\mathcal{L}^{-1}_{\alpha_* L} \to L \to L(-3)[2] \to \mathcal{L}^{-1}_{\alpha_* L}[1]$, see [KM], Lemma 1.3.1. Applying $\text{Hom}(-, L)$ to this triangle and using $\text{Ext}^k(\mathcal{L}^{-1}_{\alpha_* L}, L) = \text{Ext}^k(\alpha_* L, \alpha_* L)$ we get the exact sequence

$$0 \to \text{Ext}^1(L, L) \to \text{Ext}^1(\alpha_* L, \alpha_* L) \to \text{Hom}(L, L(3)) \to \text{Ext}^2(L, L) \to 0.$$

The arrow in the middle is an isomorphism. To see this note that $\text{Hom}(L, L(3)) = H^0(S, N_{S/\mathbb{P}^3}) = \mathbb{C}^{19}$ and that all the deformations of $\alpha_* L$ are induced by the deformations of its support S. It follows that $\text{Ext}^1(L, L) = \text{Ext}^2(L, L) = 0$. As we have mentioned above the sheaves $\mathcal{E}xt^k(L, L)$ have zero-dimensional support for $k \geq 1$, and from the local-to-global spectral sequence we see that $\text{Ext}^k(L, L) = H^0(S, \mathcal{E}xt^k(L, L))$ for $k \geq 1$. It follows that $\mathcal{E}xt^1(L, L) = \mathcal{E}xt^2(L, L) = 0$. To prove the vanishing of higher $\mathcal{E}xt$’s we construct a quasi-periodic free resolution for L. From (2.1) we see that the restriction of the complex $O_{P^3}(-1)^{\oplus 3} \xrightarrow{A} O_{P^3}^{\oplus 3}$ to S will have cohomology L in degree 0 and $L(-3)$ in degree -1. Hence L is quasi-isomorphic to the complex of the form

$$\ldots \to O_S(-7)^{\oplus 3} \to O_S(-6)^{\oplus 3} \to O_S(-4)^{\oplus 3} \to O_S(-3)^{\oplus 3} \to O_S(-1)^{\oplus 3} \to O_S^{\oplus 3} \to 0.$$

This complex is quasi-periodic of period two, with subsequent entries obtained tensoring by $O_S(-3)$. Applying $\mathcal{H}om(-, L)$ to this complex we see that $\mathcal{E}xt^k(L, L)$ are also quasi-periodic, and vanishing of the first two of these sheaves implies vanishing of the rest. \square

From the sheaf L we have constructed the determinantal representation of S. Conversely, given a sequence (2.1), generalized twisted cubics corresponding to this determinantal representation can be recovered as vanishing loci of sections of L. More detailed discussion of determinantal representations of cubic surfaces with different singularity types can be found in [LLSvS], §3.

2.2. Moduli spaces of sheaves on a cubic fourfold. Let $S = Y \cap \mathbb{P}^3$ be a linear section of Y with ADE singularities and L a sheaf which gives a determinantal representation of S as in (2.1). Denote by $i: S \hookrightarrow Y$ the embedding. We consider the moduli space of torsion sheaves on Y of the form $i_* L$ to get a description of an open subset of Z.

Lemma 2.2. For any $u \in \text{Ext}^1(i_* L, i_* L)$ its Yoneda square $u \circ u \in \text{Ext}^2(i_* L, i_* L)$ is zero, so that the sheaves $i_* L$ are unobstructed.

Proof. Recall that L is a rank one sheaf on S. The unobstructedness is clear when S is smooth, because L is a line bundle in this case. Then the local $\mathcal{E}xt$’s are given by $\mathcal{E}xt^k(i_* L, i_* L) = i_* A^k N_{S/Y}$ (see [KM], Lemma 1.3.2 for the proof of this). In the case when S is singular and L is not locally free we can use the same argument as in Lemma 1.3.2 of [KM] to obtain a spectral sequence $E_2^{pq} = i_* \langle \mathcal{E}xt^p(L, L) \rangle \otimes$
Lemma 2.3. The IHS manifold Z contains an open subset Z° with complement of codimension 4 which is isomorphic to an open subset \mathcal{M}_L° of \mathcal{M}_L and has the following properties.

The sheaves on Y corresponding to points of \mathcal{M}_L° are of the form $i_* L$ where L gives a determinantal representation for a linear section $S = Y \cap \mathbb{P}^3$ with ADE singularities and corresponds to an aCM twisted cubic on S.

Proof. Recall from [LLSvS] that we have an embedding $j: Y \hookrightarrow Z$ and the open subset $Z \setminus j(Y)$ corresponds to an aCM twisted cubics. If we consider linear sections $S = Y \cap \mathbb{P}^3$, then S can have non-ADE singularities, but the codimension in $\text{Gr}(4,6)$ of such linear subspaces $\mathbb{P}^3 \subset \mathbb{P}^5$ is at least 4 by [LLSvS] Proposition 4.2 and Proposition 4.3. We remove from $Z \setminus j(Y)$ the points corresponding to sections with non-ADER singularities as well, and define Z° to be an open subset obtained this way.

Over Z° we can construct the universal determinantal representation as in (2.1) and this defines an embedding of Z° into \mathcal{M}_L. The sheaves $i_* L$ are globally generated by (2.1) and their semiorthogonality to $\langle \mathcal{O}_Y(1), \mathcal{O}_Y(2) \rangle$ follows from Lemma 2.1.

The sheaves $i_* L$ are not contained in the subcategory \mathcal{A}_Y. In order to show that the closed 2-form described in [KM] is a symplectic form on \mathcal{M}_L°, we are going to project the sheaves $i_* L$ to \mathcal{A}_Y, and then show that this projection induces an isomorphism of open subsets of moduli spaces respecting the 2-forms (up to a sign).

Lemma 2.4. The sheaves $i_* L$ are globally generated and lie in the subcategory $\langle \mathcal{A}_Y, \mathcal{O}_Y \rangle$. The space of global sections $H^0(Y, i_* L)$ is three-dimensional, and the sheaf F_L defined as the kernel

\begin{equation}
0 \to F_L \to \mathcal{O}_{Y}^\boxtimes 3 \to i_* L \to 0.
\end{equation}

lies in the subcategory \mathcal{A}_Y.

Proof. From Lemma 2.1 we deduce that $i_* L$ is right orthogonal to $\mathcal{O}_Y(1)$, $\mathcal{O}_Y(2)$, so that $i_* L$ lies in $\langle \mathcal{A}_Y, \mathcal{O}_Y \rangle$. It also follows from Lemma 2.1 that $i_* L$ is globally generated, the global sections are three-dimensional and that the higher cohomology groups of L vanish. Thus F_L is (up to a shift) the left mutation of $i_* L$ through the exceptional bundle \mathcal{O}_Y, and in particular it lies in \mathcal{A}_Y.

Lemma 2.5. Consider the exact triple (2.3) where $i_* L$ is in \mathcal{M}_L°. Then F_L is a Gieseker-stable rank 3 sheaf contained in \mathcal{A}_Y with Hilbert polynomial $P(F_L, n) = \frac{3}{2} n^4 + \frac{5}{2} n^3 + \frac{31}{6} n^2 + \frac{3}{4} n$.

Proof. By Lemma 2.3 the sheaf $i_* L$ is right-orthogonal to $\mathcal{O}_Y(2)$ and $\mathcal{O}_Y(1)$. The sheaf F_L is a shift of the left mutation of $i_* L$ through \mathcal{O}_Y, hence it is contained if \mathcal{A}_Y. The Hilbert polynomial can be computed using the Hirzebruch-Riemann-Roch formula. It remains to check the stability of F_L.

\[\Lambda^k N_{S/Y} \cong \mathcal{E}xt^{p+q}(i_* L, i_* L).\] Now we can use the second part of Lemma 2.1 to conclude that in this case $\mathcal{E}xt^k(i_* L, i_* L) = i_* \Lambda^k N_{S/Y}$ as well.

We have $N_{S/Y} = \mathcal{O}_S(1)^{\oplus 2}$ and $H^m(S, \mathcal{O}_S(k)) = 0$ for $k \geq 0$, $m \geq 1$ and from the local-to-global spectral sequence we deduce that $\mathcal{E}xt^k(i_* L, i_* L) = H^0(S, \Lambda^k N_{S/Y})$. The algebra structure is induced by exterior product $\Lambda^k N_{S/Y} \otimes \Lambda^m N_{S/Y} \to \Lambda^{k+m} N_{S/Y}$ (see [KM], Lemma 1.3.3). The exterior square of any section of $N_{S/Y}$ is zero and unobstructedness follows. □

The sheaf $i_* L$ has Hilbert polynomial $P(i_* L, n) = \frac{3}{2} n^4 + \frac{5}{2} n^3 + \frac{31}{6} n^2 + \frac{3}{4} n$ which is easy to compute from (2.1). Denote by \mathcal{M}_L the irreducible component of the moduli space of semistable sheaves with this Hilbert polynomial and which contains $i_* L$.
The sheaf F_L is a subsheaf of $O_Y^{\oplus 3}$, hence it has no torsion. In order to check the stability we consider all proper saturated subsheaves $G \subset F_L$. We have to make sure that $p(G, n) < p(F_L, n)$ where p is the reduced Hilbert polynomial (see [HL] for all the relevant definitions). We use the convention that the inequalities between polynomials are supposed to hold for $n \gg 0$.

We denote by P the non-reduced Hilbert polynomial. We have $P(O_Y, n) = a_0n^4 + a_1n^3 + \ldots + a_4$, with the leading coefficient $a_0 = \frac{3}{4}$. From the exact sequence (2.3) we see that $P(F_L, n) = 3P(O_Y, n) - P(i_*L, n)$. Since i_*L has two-dimensional support, the degree of $P(i_*L, n)$ is two and hence the leading coefficient of $P(F_L, n)$ equals $3a_0$. So we have

$$p(F_L, n) = p(O_Y, n) - \frac{1}{3a_0} P(i_*L, n).\quad (2.4)$$

Let \tilde{G} be the saturation of G inside $O_Y^{\oplus 3}$. Then \tilde{G} is a reflexive sheaf and we have a diagram:

$$
\begin{array}{cccccc}
0 & \longrightarrow & G & \longrightarrow & \tilde{G} & \longrightarrow & H & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & F_L & \longrightarrow & O_Y^{\oplus 3} & \longrightarrow & i_*L & \longrightarrow & 0 \\
\end{array}
$$

In this diagram H is a torsion sheaf which injects into i_*L because F_L/\tilde{G} is torsion-free. Note that $O_Y^{\oplus 3}$ is Mumford-polystable, so $c_1(\tilde{G}) = c_1(G) \leq 0$. If $c_1(\tilde{G}) < 0$ then G is not destabilizing in F_L because $c_1(F_L) = 0$.

Next we consider the case $c_1(\tilde{G}) = 0$. In this case $\tilde{G} = O_Y^{\oplus m}$ where $m = 1$ or $m = 2$. This is clear if $rk \tilde{G} = 1$ since a reflexive sheaf of rank one is a line bundle. If $rk \tilde{G} = 2$ we can consider the quotient $O_Y^{\oplus 3}/\tilde{G}$ which is torsion-free, globally generated, of rank one and has zero first Chern class. It follows that the quotient is isomorphic to O_Y and then $\tilde{G} = O_Y^{\oplus 2}$.

We have an exact triple $0 \longrightarrow G \longrightarrow O_Y^{\oplus m} \longrightarrow H \longrightarrow 0$ with m equal to 1 or 2. We see that $p(G, n) = p(O_Y, n) - \frac{m}{m_0} P(H, n)$. Note that H is a non-zero sheaf which injects into i_*L, and the sheaf L on the surface S is torsion-free of rank one. Hence the leading coefficient of $P(H, n)$ is the same as for $P(i_*L, n)$ and this implies $\frac{1}{m_0} P(H, n) > \frac{1}{m_0} P(i_*L, n)$. From this and (2.4) we conclude that $p(G, n) < p(F_L, n)$, hence G is not destabilizing. This completes the proof.

Let us consider the moduli space of rank 3 semistable sheaves on Y with Hilbert polynomial $P(F_L, n)$. Denote by M_F its irreducible component which contains the sheaves F_L from (2.3).

Lemma 2.6. The left mutation of i_*L through O_Y gives an open embedding $M_L^G \hookrightarrow M_F$.

Proof. Let $X = Y \times M_L^G$ and $\pi: X \rightarrow M_L^G$ be the projection. On X we have the universal family of sheaves L flat over M_L^G. By definition of M_L^G and from Lemma 2.1 it follows that π_*L is a rank 3 vector bundle and we have an exact sequence $0 \rightarrow F_L \rightarrow \pi^*\pi_*L \rightarrow L \rightarrow 0$. The family of sheaves F_L defines a map $M_L^G \rightarrow M_F$. We will show that the differential of this map is an isomorphism.

For a sheaf i_*L corresponding to a point of M_L^G and any tangent vector $u \in \operatorname{Ext}^1(i_*L, i_*L)$ we have unique morphism of triangles

$$
\begin{array}{cccccc}
F_L & \longrightarrow & O_Y^{\oplus 3} & \longrightarrow & i_*L & \longrightarrow & F_L[1] \\
\downarrow u & & \downarrow 0 & & \downarrow u & & \downarrow u[1] \\
F_L[1] & \longrightarrow & O_Y^{\oplus 3}[1] & \longrightarrow & i_*L[1] & \longrightarrow & F_L[2] \\
\end{array}
$$

(2.5)
Uniqueness of \(u' \) follows from \(\text{Ext}^1(O_Y, F_L) = 0 \). Moreover, \(u \) is uniquely determined by \(u' \) because \(\text{Ext}^1(i_*L, O_Y) = \text{Ext}^3(O_Y, i_*L(-3))^* = 0 \). This shows that the mutation induced an isomorphism of \(\text{Ext}^1(i_*L, i_*L) \) and \(\text{Ext}^1(F_L, F_L) \).

Finally, let us prove that the map \(\mathcal{M}_F^0 \rightarrow \mathcal{M}_F \) is injective. It follows from Grothendieck-Verdier duality that \(\text{Ext}^2(i_*L, O_Y) = i_*L'/(2) \). Then from (2.3) we see that \(\text{Ext}^1(F_L, O_Y) = i_*L'/(2) \) and hence \(L \) can be reconstructed from \(F_L \).

2.3. **The symplectic form and Lagrangian subvarieties.** Let us recall the description of the two-form on the moduli spaces of sheaves on \(Y \) from [KM].

Given a coherent sheaf \(F \) on \(Y \) we can define its Atiyah class \(\text{At}_F \in \text{Ext}^1(F, F \otimes \Omega_Y) \). The Atiyah class is functorial, meaning that for any morphism of sheaves \(\alpha : F \rightarrow G \) we have \(\text{At}_G \circ \alpha = (\alpha \otimes \text{id}) \circ \text{At}_F \).

We define a bilinear form \(\sigma \) on the vector space \(\text{Ext}^1(F, F) \). Given two elements \(u, v \in \text{Ext}^1(F, F) \) we consider the composition \(\text{At}_F \circ u \circ v \in \text{Ext}^3(F, F \otimes \Omega_Y) \) and apply the trace map \(\text{Tr} : \text{Ext}^3(F, F \otimes \Omega_Y) \rightarrow \text{Ext}^3(O_Y, \Omega_Y) = H^{1,3}(Y) = \mathbb{C} \) to it:

\[
\sigma(u, v) = \text{Tr}(\text{At}_F \circ u \circ v).
\] (2.6)

Note that when the Kuranishi space of \(F \) is smooth then for any \(u \in \text{Ext}^1(F, F) \) we have \(u \circ u = 0 \) and then \(\sigma(u, u) = 0 \). In this case \(\sigma \) is antisymmetric. Hence the formula (2.6) defines a two-form at smooth points of moduli spaces of sheaves on \(Y \). This form is closed by [KM], Theorem 2.2.

Lemma 2.7. The formula (2.6) defines a symplectic form on \(\mathcal{M}_L^0 \) which coincides up to a non-zero constant with the restriction of the symplectic form on \(Z \) under isomorphism \(\mathcal{M}_L^0 \simeq Z^0 \).

Proof. By Lemma 2.2 the sheaves \(i_*L \) from \(\mathcal{M}_F^0 \) have unobstructed deformations, so that (2.6) indeed defines a two-form.

Recall from Lemma 2.6 that we have an open embedding \(\mathcal{M}_L^0 \hookrightarrow \mathcal{M}_F \). Let us show that this embedding respects (up to a sign) symplectic forms on \(\mathcal{M}_L \) and \(\mathcal{M}_F \) given by (2.6). Note that by functoriality of Atiyah classes the following diagram gives a morphism of triangles:

\[
\begin{array}{ccc}
F_L & \xrightarrow{\text{At}_{F_L}} & O_Y^\times 3 \times \Omega_Y^1 \times i_*L \times F_L[1] \\
& \downarrow \text{At}_{F_L} & \downarrow \text{At}_{\Omega_Y^3} = 0 & \downarrow \text{At}_{i_*L} & \downarrow \text{At}_{F_L[1]} \\
F_L \otimes \Omega_Y[1] & \rightarrow & \Omega_Y^3[1] \times i_*L \otimes \Omega_Y[1] & \rightarrow & F_L \otimes \Omega_Y[2]
\end{array}
\]

For any pair of tangent vectors \(u, v \in \text{Ext}^1(i_*L, i_*L) \) we have two morphisms of triangles as in (2.5). If we compose these two morphisms of triangles with the one induced by Atiyah classes then we get the following:

\[
\begin{array}{ccc}
F_L & \xrightarrow{\text{At}_{F_L} \circ u' \circ v'} & O_Y^2 \times \Omega_Y[3] \times i_*L \times F_L[1] \\
& \downarrow 0 & \downarrow \text{At}_{i_*L} \circ u \circ v & \downarrow \text{At}_{F_L} \circ u' \circ v'[1] \\
F_L \otimes \Omega_Y[3] & \rightarrow & \Omega_Y^3[3] \times i_*L \otimes \Omega_Y[3] & \rightarrow & F_L \otimes \Omega_Y[4]
\end{array}
\]

This diagram is a morphism of triangles and the additivity of traces implies that \(\sigma(u, v) = -\sigma(u', v') \).

By Theorem 4.3 from [KM] the form \(\sigma \) on \(\mathcal{M}_F \) is symplectic, because the sheaves \(F_L \) are contained in \(\mathcal{A}_Y \). Hence \(\sigma \) is a symplectic form on \(\mathcal{M}_L^0 \). But \(\mathcal{M}_L^0 \) is embedded into \(Z \) as an open subset with complement of codimension four. This implies that the symplectic form on \(\mathcal{M}_L^0 \) is unique up to a constant, because \(Z \) is IHS. This completes the proof. \[\Box\]
Theorem 2.8. The component \mathcal{M}_F of the moduli space of Gieseker stable sheaves with Hilbert polynomial $P(F_L, n)$ is birational to the IHS manifold Z. Under this birational equivalence the symplectic form on Z defined in [LLSvS] corresponds to the Kuznetsov-Markushevich form on \mathcal{M}_F.

Proof. Follows from Lemmas 2.3, 2.5, 2.6, 2.7.

Now we explain how hyperplane sections of Y give rise to Lagrangian subvarieties of Z. We recall that a subvariety in a symplectic manifold Z is Lagrangian if its dimension equals half the dimension of Z and the restriction of the symplectic form to the subvariety is identically zero. The symplectic form is holomorphic, so it suffices to check the condition of being Lagrangian on an open subset of a subvariety (if it is irreducible).

Let $H \subset \mathbb{P}^5$ be a generic hyperplane, so that $Y_H = Y \cap H$ is a smooth cubic threefold. Twisted cubics contained in Z form a subvariety $M_3(Y)_H \subset M_3(Y)$ whose image in Z we denote by Z_H. Its open subset $Z_H^o = Z_H \cap Z$ consists of sheaves i_*L whose support is contained in H.

Proposition 2.9. Z_H is a Lagrangian subvariety of Z.

Proof. It is clear that Z_H has dimension four since the Grassmannian of three-dimensional subspaces in H is \mathbb{P}^4. Consider a sheaf i_*L whose support S is smooth and contained in Y_H. Since L is a locally free sheaf on S we have $\text{Ext}^k(i_*L, i_*L) = i_*\Lambda^k N_{S/Y}$ (see for example [KM], Lemma 1.3.2). The higher cohomologies of the sheaves $\text{Ext}^k(i_*L, i_*L)$ vanish for $k \geq 0$, because $N_{S/Y} = \mathcal{O}_S(1)^{\oplus 2}$ and the sheaves $\mathcal{O}_S(k)$ have no higher cohomologies for $k \geq 0$. Hence from the local-to-global spectral sequence we find that $T_{i_*L}M_L = \text{Ext}^1(i_*L, i_*L) = H^0(S, N_{S/Y})$. Moreover, the Yoneda multiplication on Ext’s is given by the map $\text{Ext}^0(S, N_{S/Y}) \times H^0(S, N_{S/Y}) \to H^0(S, \Lambda^2 N_{S/Y})$ which is induced from the exterior product morphism $N_{S/Y} \otimes N_{S/Y} \to \Lambda^2 N_{S/Y}$ (see [KM], Lemma 1.3.3). Now, the tangent space to Z_H at i_*L is $H^0(S, N_{S/Y_H})$. But the exterior product $N_{S/Y_H} \otimes N_{S/Y_H} \to \Lambda^2 N_{S/Y_H} = 0$ vanishes because N_{S/Y_H} is of rank one. So the Yoneda product vanishes on the corresponding subspace of $\text{Ext}^1(i_*L, i_*L)$ and from the definition of the symplectic form (2.6) we conclude that the tangent space to Z_H is Lagrangian. This holds on an open subset of Z_H, so Z_H is a Lagrangian subvariety.

In the next section we give a description of the subvarieties Z_H in terms of intermediate Jacobians of the threefolds Y_H.

3. Twisted cubics on a cubic threefold

In this section we assume that the cubic fourfold Y and its hyperplane section Y_H are chosen generically, so that Y_H is smooth and all the surfaces obtained by intersecting Y_H with three-dimensional subspaces have at worst ADE singularities. For general Y and H this indeed will be the case, because for a general cubic threefold in \mathbb{P}^4 its hyperplane sections have only ADE singularities. One can see this from dimension count by considering the codimensions of loci of cubic surfaces with different singularity types (see for example [LLSvS], sections 2.2 and 2.3).

The cubic threefold Y_H has an intermediate Jacobian $J(Y_H)$ which is a principally polarized abelian variety. We will show that if we choose a general hyperplane H then the Abel-Jacobi map

$$\text{AJ}: Z_H \to J(Y_H)$$

defines a closed embedding on an open subset Z^o_H and the complement $Z_H \setminus Z^o_H$ is contracted to a point. The image of AJ is the theta-divisor $\Theta \subset J(Y_H)$.

8
Recall from the description of Z that we have an embedding $\mu: Y \to Z$. We have $Z_H^0 \simeq Z_H \setminus \mu(Y)$ and $Z_H \cap \mu(Y) \simeq Y_H$. Hence the Abel-Jacobi map $\AJ: Z_H \to J(Y_H)$ gives a resolution of the unique singular point of the theta-divisor and the exceptional divisor of this map is isomorphic to Y_H. This explicit description of the singularity of the theta-divisor first obtained in [B2] implies Torelli theorem for cubic threefolds.

The fact that Z_H is birational to the theta-divisor in $J(Y_H)$ also follows from [I] (see also [B1, Proposition 4.2]).

3.1. Differential of the Abel-Jacobi map

As before, we will identify the open subset Z_H^0 with an open subset in the moduli space of sheaves of the form i_*L, where $i: S \to Y_H$ is a hyperplane section and L is a sheaf which gives a determinantal representation (2.1) of this section.

The Abel-Jacobi map $\AJ: Z_H^0 \to J(Y_H)$ can be described as follows. We use the Chern classes with values in the Chow ring $\CH(Y_H)$. The second Chern class $c_2(i_*L) \in \CH^2(Y_H)$ is a cycle class of degree 3. Let $h \in \CH^1(Y_H)$ denote the class of a hyperplane section, then $c_2(i_*L) - h^2$ is a cycle class homologous to zero, and it defines an element in the intermediate Jacobian.

Since $c_2(i_*L)$ can be represented by corresponding twisted cubics, the map above extends to $\AJ: Z_H \to J(Y_H)$.

Lemma 3.1. The differential of the Abel-Jacobi map $d\AJ_{i_*L}: \Ext^1(i_*L, i_*L) \to H^{1,2}(Y_H)$ at the point corresponding to the sheaf i_*L is given by

$$
(3.1) \quad d\AJ_{i_*L}(u) = \frac{1}{2} \Tr(\At_{i_*L} \circ u),
$$

for any $u \in \Ext^1(i_*L, i_*L)$.

Proof. We apply the general formula for the derivative of the Abel-Jacobi map, see Appendix A, Proposition A.1. We have $c_1(i_*L) = 0$, so that the second Segre class equals $s_2(i_*L) = -2c_2(i_*L)$, which yields the $\frac{1}{2}$ factor in the statement. \qed

It will be convenient for us to rewrite (3.1) in terms of the linkage class of a sheaf, see [KM]. We recall its definition in our particular case of the embedding $j: Y_H \to \IP^3$. If \mathcal{F} is a sheaf on Y_H then the object $j^*j_*\mathcal{F} \in \mathcal{D}(Y_H)$ has non-zero cohomologies only in degrees -1 and 0. They are equal to $\mathcal{F} \otimes N_{Y/\IP^3}^\vee = \mathcal{F}(-3)$ and \mathcal{F} respectively. Hence the triangle

$$
\mathcal{F}(-3)[1] \to Lj^*j_*\mathcal{F} \to \mathcal{F} \to \mathcal{F}(-3)[2].
$$

The last morphism in this triangle is called the linkage class of \mathcal{F} and will be denoted by $\epsilon_\mathcal{F}: \mathcal{F} \to \mathcal{F}(-3)[2]$. The linkage class can also be described as follows (see [KM], Theorem 3.2): let us denote by $\kappa \in \Ext^1(\Omega_{Y_H}, \Omega_{Y_H}(-3))$ the extension class of the conormal sequence $0 \to \mathcal{O}_{Y_H}(-3) \to \Omega_{\IP^3}|_{Y_H} \to \Omega_{Y_H} \to 0$; then we have $\epsilon_\mathcal{F} = (\id_\mathcal{F} \otimes \kappa) \circ \At_\mathcal{F}$.

Note that composition with κ gives an isomorphism of vector spaces $H^{1,2}(Y_H) = \Ext^2(\Omega_{Y_H}, \Omega_{Y_H})$ and $\Ext^3(\Omega_{Y_H}, \Omega_{Y_H}(-3)) = H^0(Y_H, \mathcal{O}_{Y_H}(1))^*$. Composing the right hand side of (3.1) with κ and using the fact that taking traces commutes with compositions, we obtain the following expression for $d\AJ(u)$ where $u \in \Ext^1(i_*L, i_*L)$:

$$
(3.2) \quad \kappa \circ d\AJ_{i_*L} = \frac{1}{2} \Tr(\epsilon_{i_*L} \circ u) \in H^0(Y_H, \mathcal{O}_{Y_H}(1))^*.
$$

Proposition 3.2. The differential of the Abel-Jacobi map (3.1) is injective.
Proof. As before, we will denote by $i : S \hookrightarrow Y_H$ and $j : Y_H \hookrightarrow \mathbb{P}^4$ the embeddings. A point of Z_H^2 is represented by a sheaf $i_* L$. Let us also use the notation $\mathcal{F} = i_* L$. It suffices to show that the map $u \mapsto \kappa \circ d\mathcal{A}_{i_* L}(u)$ is injective.

The proof is done in three steps.

Step 1. Let us construct a locally free resolution of $j_! \mathcal{F}$. We decompose $j_! \mathcal{F}$ with respect to the exceptional collection $\mathcal{O}_{\mathbb{P}^4}(-2), \mathcal{O}_{\mathbb{P}^4}(-1), \mathcal{O}_{\mathbb{P}^4}, \mathcal{O}_{\mathbb{P}^4}(1), \mathcal{O}_{\mathbb{P}^4}(2)$. The sheaf $j_! \mathcal{F}$ is already left-orthogonal to $\mathcal{O}_{\mathbb{P}^4}(2)$ and $\mathcal{O}_{\mathbb{P}^4}(1)$ (see Lemma 2.1). It is globally generated by (2.1) and its left mutation is the shift of the sheaf \mathcal{K} from the exact triple $0 \to \mathcal{K} \to \mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 3} \to j_! \mathcal{F} \to 0$. From cohomology exact sequence we see that $H^0(\mathbb{P}^4, \mathcal{K}(1)) = \mathbb{C}^6$ and $H^k(\mathbb{P}^4, \mathcal{K}(1)) = 0$ for $k \geq 1$. We can also check that $\mathcal{K}(1)$ is globally generated (it is in fact Castelnuovo-Mumford 0-regular, as one can see using (2.1)). The left mutation of \mathcal{K} through $\mathcal{O}_{\mathbb{P}^4}(-1)$ is the cone of the surjection $\mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 6} \to \mathcal{K}$, and it lies in the subcategory generated by $\mathcal{O}_{\mathbb{P}^4}(-2)$. Since it has rank 3, this completes the construction of the resolution for $j_! \mathcal{F}$. The resulting resolution is:

\[\begin{array}{c}
0 \to \mathcal{O}_{\mathbb{P}^4}(-2)^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^4}(-1)^{\oplus 6} \to \mathcal{O}_{\mathbb{P}^4}^{\oplus 3} \to j_! \mathcal{F} \to 0.
\end{array} \]

Step 2. Let us show that the linkage class \mathcal{F} induces an isomorphism

\[\text{Ext}^1(\mathcal{F}, \mathcal{F}) \to \text{Ext}^3(\mathcal{F}, \mathcal{F}(-3)). \]

The object $L_j^* j_! \mathcal{F}$ is included into the triangle

\[L_j^* j_! \mathcal{F} \to \mathcal{F} \to \mathcal{F}(-3)[2] \to L_j^* j_! \mathcal{F}[1]. \]

Applying $\text{Hom}(\mathcal{F}, -)$ to this triangle we find the following exact sequence:

\[\text{Ext}^1(\mathcal{F}, L_j^* j_! \mathcal{F}) \to \text{Ext}^1(\mathcal{F}, \mathcal{F}) \to \text{Ext}^3(\mathcal{F}, \mathcal{F}(-3)) \to \text{Ext}^2(\mathcal{F}, L_j^* j_! \mathcal{F}). \]

Note that by (3.3) the object $L_j^* j_! \mathcal{F}$ is represented by a complex of the form $0 \to \mathcal{O}_{Y_H}(-2)^{\oplus 3} \to \mathcal{O}_{Y_H}(-1)^{\oplus 6} \to \mathcal{O}_{Y_H}^{\oplus 3} \to 0$. Let us check that $\text{Ext}^2(\mathcal{F}, L_j^* j_! \mathcal{F}) = 0$. By Serre duality $\text{Ext}^3(\mathcal{F}, \mathcal{O}_{Y_H}(-p)) = \text{Ext}^3(-p)(\mathcal{O}_{Y_H}(-p), \mathcal{F}(-2))^* = H^{3-q}(Y_H, \mathcal{F}(p-2))^*$ and from (2.1) we see that for $p = 0$ and 1 these cohomology groups vanish, and for $p = 2$ the only non-vanishing group corresponds to $q = 3$. From the spectral sequence computing $\text{Ext}^3(\mathcal{F}, L_j^* j_! \mathcal{F})$ from the complex representing $L_j^* j_! \mathcal{F}$ we see that $\text{Ext}^k(\mathcal{F}, L_j^* j_! \mathcal{F}) = 0$ for $k \neq 1$ and $\text{Ext}^1(\mathcal{F}, L_j^* j_! \mathcal{F}) = H^0(Y_H, \mathcal{F})^* = \mathbb{C}^3$.

We conclude that the map $\text{Ext}^1(\mathcal{F}, \mathcal{F}) \to \text{Ext}^3(\mathcal{F}, \mathcal{F}(-3))$ is surjective. It is actually an isomorphism, because the vector spaces are of the same dimension. The dimensions can be computed the same way as explained in the proof of Lemma 2.7.

Step 3. Let us show that $\text{Tr} : \text{Ext}^3(\mathcal{F}, \mathcal{F}(-3)) \to H^3(Y_H, \mathcal{O}_{Y_H}(-3))$ is injective.

Using Serre duality we identify the dual to the trace map with

\[\text{Tr}^* : H^0(Y_H, \mathcal{O}_{Y_H}(1)) \to \text{Hom}(\mathcal{F}, \mathcal{F}(1)). \]

One can show as in the proof of Lemma 2.2 that $\text{Hom}(\mathcal{F}, \mathcal{F}(1)) = H^0(S, \mathcal{O}(1))$ and postcomposing Tr^* with this isomorphism gives the restriction map

\[H^0(Y_H, \mathcal{O}_{Y_H}(1)) \to H^0(S, \mathcal{O}_S(1)) \]

which is surjective.

We see that the composition

\[\text{Ext}^1(\mathcal{F}, \mathcal{F}) \to \text{Ext}^3(\mathcal{F}, \mathcal{F}(-3)) \to H^3(Y_H, \mathcal{O}(-3)) \]

is injective and the proof is finished by means of formula (3.2).
3.2. Image of the Abel-Jacobi map.

Theorem 3.3. The image of the Abel-Jacobi map \(AJ : Z_H \to J(Y_H) \) is the theta-divisor \(\Theta \subset J(Y_H) \). The map \(AJ \) is an embedding on \(Z^\circ_H \) and contracts the divisor \(Y_H = Z_H \setminus Z^\circ_H \) to the unique singular point of \(\Theta \).

Proof. The divisor \(Y_H \) is contracted by the Abel-Jacobi map to a point because \(Y_H \) is a cubic threefold which has no global one-forms.

To identify the image of \(AJ \) it is enough to check that a general point of \(Z_H \) is mapped to a point of \(\Theta \).

General point \(z \in Z_H \) is represented by a smooth twisted cubic \(C \) on a smooth hyperplane section \(S \subset Y_H \). Then \(C - C_0 \) is a degree zero cycle on \(Y_H \) and \(z \) is mapped to the corresponding element of the intermediate Jacobian. The cohomology class \([C - C_0] \in H^2(S, \mathbb{Z})\) is orthogonal to the class of the canonical bundle \(K_S \) and has square \(-2\). Hence it is a root in the \(E_6 \) lattice. All such cohomology classes can be represented by differences of pairs of lines \(l_1 - l_2 \) in 6 different ways.

Recall that the Fano variety of lines on the cubic threefold \(Y_H \) is a surface which we will denote by \(X \). It was shown in [CG] that the theta divisor \(\Theta \subset J(Y_H) \) can be described as the image of the map \(X \times X \to J(Y_H) \) which sends a pair of lines \((l_1, l_2)\) to the point in \(J(Y_H) \) corresponding to degree zero cycle \(l_1 - l_2 \). The map \(X \times X \to \Theta \) has degree 6. We get a commutative diagram:

\[
\begin{array}{ccc}
X \times X & \xrightarrow{6:1} & \Theta \\
\downarrow & & \downarrow \\
Z_H & \xrightarrow{6:1} & \Theta \\
& & AJ
\end{array}
\]

It follows from the diagram above that \(AJ \) is generically of degree one. Since \(AJ \) is etale on \(Z^\circ_H \) by Proposition 3.2 and the theta-divisor \(\Theta \) is a normal variety [B2, Proposition 2, §3] we deduce that \(AJ : Z^\circ_H \to \Theta \) is an open embedding. This completes the proof. \(\square \)

Appendix A. Differential of the Abel-Jacobi map

Let \(X \) be a smooth complex projective variety of dimension \(n \). Recall that the \(p \)-th intermediate Jacobian of \(X \) is the complex torus

\[
J^p(X) = H^{2p-1}(X, \mathbb{C})/(F^p H^{2p-1}(X, \mathbb{C}) + H^{2p-1}(X, \mathbb{Z})),
\]

where \(F^p \) denotes the Hodge filtration. We use the Abel-Jacobi map [G2, Appendix A]

\[
AJ^p : CH^p(X, \mathbb{Z})_h \to J^p(X)
\]

where \(CH^p(X)_h \) is the group of homologically trivial codimension \(p \) algebraic cycles on \(X \) up to rational equivalence.

For a coherent sheaf \(F_0 \) on \(X \) we consider integral Segre characteristic classes

\[
s_p(F_0) = p! \cdot ch_p(F_0) \in CH^p(X, \mathbb{Z})
\]

where \(ch_p(F_0) \) is the \(p \)'th component Chern character \(ch(F_0) \). Segre classes can expressed in terms of the Chern classes using Newton’s formula [MS, §16].

Let us consider a deformation of \(F_0 \) over a smooth base \(B \) with basepoint \(0 \in B \), that is a coherent sheaf \(F \) on \(X \times B \) flat over \(B \) and with \(F_0 \simeq F|_{X \times \{0\}} \). We will denote by \(\pi_B \) and \(\pi_X \) the two projections
from $X \times B$ and by F_i the restriction of F to $\pi^{-1}_B(t)$, $t \in B$. In this setting the difference of Segre classes $s_p(F_i) - s_p(F_0)$ is contained in $\text{CH}^P(X, \mathbb{Z})_h$ and we get an induced Abel-Jacobi map

$$AJ_p^F : B \to J^p(X).$$

Since Segre classes are additive it follows that if $0 \to F' \to F \to F'' \to 0$ is a short exact sequences of sheaves on $X \times B$ flat over B, then

\begin{equation}
AJ_p^F = AJ_{p'}^F + AJ_{p''}^F.
\end{equation}

Recall that a coherent sheaf F_0 has an Atiyah class $\text{At}_{F_0} \in \text{Ext}^1(F_0, F_0 \otimes \Omega^p_X)$ [KM, 1.6]. The vector space $\bigoplus_{q \geq 0} \text{Ext}^q(F_0, F_0 \otimes \Omega^p_X)$ has the structure of a bi-graded algebra with multiplication induced by Yoneda product of Ext’s and exterior product of differential forms and this defines the p’th power of the Atiyah class

$$\text{At}^p_{F_0} \in \text{Ext}^p(F_0, F_0 \otimes \Omega^p_X).$$

Given any tangent vector $v \in T_0B$ we shall denote its Kodaira-Spencer class by $\text{KS}_{F_0}(v) \in \text{Ext}^q(F_0, F_0)$ and we consider the composition $\text{At}^p_{F_0} \circ \text{KS}_{F_0}(v) \in \text{Ext}^{p+1}(F_0, F_0 \otimes \Omega^p_X)$.

We will also use the trace maps [KM, 1.2]

$$\text{Tr}: \text{Ext}^q(F_0, F_0 \otimes \Omega^p_X) \to \text{Ext}^q(O_X, \Omega^p_X) = H^{p,q}(X).$$

Proposition A.1. In the above setting the differential of the Abel-Jacobi map $AJ^F_p : B \to J^p(X)$, $p \geq 2$ at $0 \in B$ is given by

\begin{equation}
dAJ_{F,0}^p(v) = \text{Tr}((-1)^{p-1} \text{At}^p_{F_0} \circ \text{KS}_{F_0}(v)),
\end{equation}

for any $v \in T_0B$. The right hand side is an element of $H^{p-1,1}(X) \subset H^{2p-1}(X, \mathbb{C})/F^p H^{2p-1}(X, \mathbb{C})$.

Proof. We argue by induction on the length of a locally free resolution of F. The base of induction is the case when F_0 is a vector bundle. Then the result is essentially contained in the paper of Griffiths [G1] (in particular formula 6.8). We will show how to do the induction step. We note that the statement is local, so we may replace the base B by an open neighborhood of $0 \in B$ every time it is necessary. In particular we assume that B is affine.

By our assumptions X is projective and we denote by $O_X(1)$ an ample line bundle. Then we can find k big enough, so that $F(k)$ is generated by global sections and has no higher cohomology. We define a sheaf G on $X \times B$ as the kernel of the natural map:

$$0 \to G \to \pi_B^* \pi_{B*}(F(k)) \otimes O_X(-k) \to F \to 0.$$

Since F is flat over B and $\pi_{B*}(F_0(k))$ is a vector bundle on B for k large enough [H, Proof of Theorem 9.9], the sheaf G is flat over B.

It follows from (A.1) that $AJ^p_G = -AJ^p_F$. Since homological dimension of G has dropped by one, induction hypothesis yields the formula (A.2) for G. It remains to relate right hand side of (A.2) for G_0 and for F_0.

Using functoriality of the Kodaira-Spencer classes we obtain the following morphism of triangles:

$$
geq G_0 \xrightarrow{\alpha} H^0(X, F_0(k)) \otimes O_X(-k) \xrightarrow{\alpha} F_0 \xrightarrow{\alpha} G_0[1]$$

$$\xrightarrow{\alpha'} G_0[1] \xrightarrow{\alpha[1]} H^0(X, F_0(k)) \otimes O_X(-k)[1] \xrightarrow{\alpha' [1]} F_0[1] \xrightarrow{\alpha[2]} G_0[2]$$
where \(u = \text{KS}_{\mathcal{F}_0}(v) \in \text{Ext}^1(\mathcal{F}_0, \mathcal{F}_0) \) and \(u' = \text{KS}_{\mathcal{G}_0}(v) \in \text{Ext}^1(\mathcal{G}_0, \mathcal{G}_0) \). Composing the vertical arrows with \(\text{At}_{\mathcal{F}_0}^{p-1}, \text{At}_{\mathcal{O}(-k)}^{p-1} \) and \(\text{At}_{\mathcal{G}_0}^{p-1} \) respectively and using the additivity of traces we get \(\text{Tr}(\text{At}_{\mathcal{F}_0}^{p-1} \circ \text{KS}_{\mathcal{F}_0}(v)) = -\text{Tr}(\text{At}_{\mathcal{G}_0}^{p-1} \circ \text{KS}_{\mathcal{G}_0}(v)) \) because the map in the middle is zero. This completes the induction step. □

References

[AL] N. Addington, M. Lehn, *On the symplectic 8-fold associated to pfaffian cubics*, arXiv:1404.5657

[B1] A. Beauville, *Vector bundles on the cubic threefold*, Symposium in Honor of C. H. Clemens, Contemporary Mathematics 312, 71-86; AMS (2002).

[B2] A. Beauville, *Les singularités du diviseur \(\Theta \) de la jacobienne intermédiaire de l’hypersurface cubique dans \(\mathbb{P}^4 \)*, Algebraic threefolds (Varenna, 1981), Lecture Notes in Math., Vol. 947, 190–208, Springer, Berlin-New York, 1982.

[BF] R.-O. Buchweitz, H. Flenner, *A semi-regularity map for modules and applications to deformations*, Compositio Math., Vol. 137, 2003, No. 2, 135–210.

[CG] H. Clemens, P. Griffiths, *The intermediate Jacobian of the cubic threefold*, Ann. of Math. (2), Vol. 95, 1972, 281–356.

[dJS] J. de Jong, J. Starr, *Cubic fourfolds and spaces of rational curves*, Ill. J. Math. 48 (2004), 415–450.

[EPS] G. Ellingsrud, R. Piene, S. A. Stremme, *On the variety of nets of quadrics defining twisted curves*. In: F. Ghione, Ch. Peskine, E. Sernesi: Space curves. Lecture Notes in Math. 1266, Springer 1987.

[G1] P. Griffiths, *Some results on algebraic cycles on algebraic manifolds*, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), 93–191, Oxford Univ. Press, London, 1969.

[G2] P. Griffiths, *Periods of integrals on algebraic manifolds, III (some global differential-geometric properties of the period mapping)* Inst. Hautes Études Sci. Publ. Math. No. 38 1970 125–180.

[H] R. Hartshorne, *Algebraic geometry*, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York-Heidelberg, 1977.

[HL] D. Huybrechts, M. Lehn, *The geometry of moduli spaces of sheaves. Second edition*. Cambridge University Press, Cambridge, 2010. xviii+325 pp.

[I] A. Iliev, *Minimal sections of conic bundles*, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8), Vol. 2, 1999, No. 2, 401–428.

[K] A. Kuznetsov, *Derived category of a cubic threefold and the variety \(V_{14} \)*, Tr. Mat. Inst. Steklova, Vol. 246, 2004, 183–207.

[KM] A. Kuznetsov, D. Markushevich, *Symplectic structures on moduli spaces of sheaves via the Atiyah class*, J. Geom. Phys. 59 (2009), 843–860.

[LLSvS] C. Lehn, M. Lehn, C. Sorger, D. van Straten, *Twisted cubics on cubic fourfolds*, arXiv:1305.0178

[LMS] M. Lahoz, E. Macri, P. Stelari, unpublished manuscript.

[MS] J. Milnor, J. D. Stasheff, *Characteristic classes*, Annals of Mathematics Studies, No. 76. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974.

[O] G. Ouchi, *Lagrangian embeddings of cubic fourfolds containing a plane*, arXiv:1407.7265

[OSS] C. Okonek, M. Schneider, H. Spindler, *Vector bundles on complex projective spaces*. Progress in Mathematics, 3. Birkhäuser, Boston, Mass., 1980. vii+389 pp.

[V] C. Voisin, *Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes*, Complex projective geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Ser., Vol. 179, 294–303.