Scalar field models for an accelerating universe

Varun Sahni
Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Pune 411007, India

Abstract. I describe a new class of quintessence+CDM models in which late time scalar field oscillations can give rise to both quintessence and cold dark matter. Additionally, a versatile ansatz for the luminosity distance is used to reconstruct the quintessence equation of state in a model independent manner from observations of high redshift supernovae.

1. A new model of quintessence and cold dark matter

The supernova-based discovery that the universe may be accelerating can be explained within a general relativistic framework provided one speculates the presence of a matter component with negative pressure, the most famous example of which is the cosmological constant ‘Λ’ (Perlmutter et al. 1998, 1999; Riess et al. 1999). Λ runs into formidable fine tuning problems since its value must be set ~ 10^{123} times smaller than the energy density in the universe at the Planck time in order to ensure that Λ dominates the total energy density at precisely the present cosmological epoch. This involves a fine tuning of one part in 10^{123} at the Planck scale or one part in 10^{53} at the Electroweak scale.

One way around this difficulty is to make Λ time-dependent, perhaps by using scalar field models which successfully generate a time-dependent Λ-term during an early Inflationary epoch. In this context the exponential potential provides an interesting illustration, since the density in the φ-field tracks the background matter/radiation density when the latter is cosmologically dominant (Ratra & Peebles 1988, Wetterich 1988, Ferreira & Joyce 1997):

\[
\frac{\rho_\phi}{\rho_B + \rho_\phi} = \frac{3(1 + w_B)}{p^2\lambda^2} \ll 1
\]

\((w_B = 0, \ 1/3 \ \text{respectively for dust, radiation}). \) This behaviour allows \(\rho_\phi \) to be fairly large initially. Based on this property we introduce a new class of cosmological models which can describe both a time-dependent Λ-term (quintessence) and cold dark matter (CDM) within the unified framework of the class of potentials (Sahni & Wang 2000)

\[V(\phi) = V_0(\cosh \lambda \phi - 1)^p. \]

\(V(\phi) \) has asymptotic forms:

\[
V(\phi) \approx \tilde{V}_0 e^{-p\lambda \phi} \text{ for } |\lambda \phi| \gg 1 \ (\phi < 0),
\]

\[
V(\phi) \approx \tilde{V}_0 (\lambda \phi)^{2p} \text{ for } |\lambda \phi| \ll 1
\]
where \(\tilde{V}_0 = V_0/2^p \). The exponential form of \(V(\phi) \) guarantees that the scalar field equation of state mimics background matter at early times so that \(w_\phi \simeq w_B \). At late times oscillations of \(\phi \) lead to a mean equation of state

\[
\langle w_\phi \rangle = \frac{\frac{1}{2} \dot{\phi}^2 - V(\phi)}{\frac{1}{2} \dot{\phi}^2 + V(\phi)} = \frac{p - 1}{p + 1},
\]

resulting in cold dark matter with \(\langle w_\phi \rangle \simeq 0 \) if \(p = 1 \), or in quintessence with \(\langle w_\phi \rangle \leq -1/3 \) if \(p \leq 1/2 \). We therefore have before us the attractive possibility of describing CDM and quintessence in a common framework by the potential

\[
V(\phi, \psi) = V_\phi (\cosh \lambda_\phi \phi - 1)^{p_\phi} + V_\psi (\cosh \lambda_\psi \psi - 1)^{p_\psi}
\]

where \(p_\psi = 1 \) in the case of CDM and \(p_\phi \leq 0.5 \) in the case of quintessence. In figure 1 we show a working example of this model which agrees well with observations of high redshift supernovae and does not suffer from the fine tuning problem faced by \(\Lambda \), since \(\rho_\phi \) can be fairly large initially. We should add that most models of quintessence usually work under the assumption that the three matter fields: baryons, CDM & quintessence need not be related in any fundamental way and might even have different physical origins. If this is indeed the case then it remains somewhat of a mystery as to why \(\Omega_\phi, \Omega_m \), (and possibly \(\Omega_b \)) have comparable magnitudes at the present time. By combining quintessence and CDM within a single class of potentials we make a small step in answering this question by showing that unified models of quintessence and CDM are conceivable (Sahni & Wang 2000).

An intriguing property of cold dark matter based on (6) is that it can have a large Jeans length which leads to suppression (frustration) of clustering on kiloparsec scales. Frustrated Cold Dark Matter (FCDM) redresses certain shortcomings of the standard CDM scenario and might provide a natural explanation for the dearth of dwarf galaxies seen in our local neighborhood (Sahni & Wang 2000).

Other quintessence potentials include \(V(\phi) \propto \phi^{-\alpha} \) (Ratra & Peebles 1988), \(V(\phi) \propto e^{3\phi^2}/\phi^{-\alpha} \) (Brax & Martin 2000) and \(V(\phi) \propto \sinh^{2p}(\phi + \phi_0) \) (Sahni & Starobinsky 2000). The latter describes quintessence which maintains a constant equation of state \(w = -(1 + p)^{-1} \) throughout the matter dominated epoch and later, during acceleration.

2. Reconstructing quintessence from supernova observations

Although a large class of scalar potentials can describe a time dependent \(\Lambda \)-term, no unique potential has so far emerged from a consideration of high energy physics theories such as supergravity or M-theory. (The situation in many respects resembles that faced by the Inflationary scenario, for a review see Sahni & Starobinsky 2000.) It is therefore meaningful to try and reconstruct \(V(\phi) \) directly from observations in a model independent manner. This is easy to do if one notes that, in a flat FRW universe, the luminosity distance determines the Hubble parameter uniquely (Starobinsky 1998, Saini et al. 2000)

\[
H(z) \equiv \frac{\dot{a}}{a} = \left[\frac{d}{dz} \left(\frac{D_L(z)}{1 + z} \right) \right]^{-1}.
\]
The Einstein equations can be written in the suggestive form

\[\frac{8 \pi G}{3 H_0^2} V(x) = \frac{H^2}{H_0^2} - \frac{x}{6 H_0^2} \frac{dH^2}{dx} - \frac{1}{2} \Omega_M x^3, \]
\((8) \)

\[\frac{8 \pi G}{3 H_0^2} \left(\frac{d\phi}{dx} \right)^2 = \frac{2}{3 H_0^2} \frac{d\ln H}{dx} - \frac{\Omega_M x}{H^2}, \]
\((9) \)

where \(x \equiv 1 + z \). Thus knowing \(D_L \), we can determine both \(H(z) \) and \(dH(z)/dz \), and hence \(V(\phi) \). The cosmic equation of state can also be reconstructed from \(D_L \) since

\[w_\phi(x) \equiv \frac{p}{\rho} = \frac{(2x/3)d\ln H/dx - 1}{1 - (H_0^2/H^2) \Omega_M x^3}. \]
\((10) \)

In order to apply our method to observations we use the following rational ansatz for the luminosity distance

\[\frac{D_L}{x} \equiv \frac{2}{H_0} \left[\frac{x - \alpha \sqrt{x} - 1 + \alpha}{\beta x + \gamma \sqrt{x} + 2 - \alpha - \beta - \gamma} \right]. \]
\((11) \)

where \(\alpha, \beta \) and \(\gamma \) are fitting parameters. This function reproduces the exact analytical form of \(D_L \) when \(\Omega_\phi = 0, \Omega_M = 1 \) and when \(\Omega_\phi = 1, \Omega_M = 0 \). It also has the correct asymptotic behaviour \(H(z)/H_0 \to 1 \) for \(z \to 0 \), and \(H(z)/H_0 \to \)

Figure 1. The evolution of the dimensionless density parameter for the CDM field \(\Omega_\psi \) (dashed line) and quintessence field \(\Omega_\phi \) (thin solid line). Baryon (dash-dotted line) and radiation densities (thick solid line) are also shown. For more details see Sahni and Wang (2000).
Figure 2. The equation of state parameter $w(\phi) = p_\phi/\rho_\phi$ as a function of redshift. The solid line corresponds to the best-fit values of the parameters. The shaded area covers the range of 68% errors, and the dotted lines the range of 90% errors. The hatched area represents the region $w_\phi \leq -1$, which is disallowed for a minimally coupled scalar field (from Saini et al. 2000).

$(1 + z)^{3/2}$ for $z \gg 1$. Applying a maximum likelihood technique to D_L given by (11) and D^obs_L obtained from observations of high redshift supernovae, we can reconstruct $H(z)$, $V(\phi)$ and $w_\phi(z)$. Our results for w_ϕ shown in fig. 2 indicate some evidence of possible evolution in w_ϕ with $-1 \leq w_\phi \lesssim -0.80$ preferred at the present epoch, and $-1 \leq w_\phi \lesssim -0.46$ at $z = 0.83$, the farthest SN in the sample (both at 90% CL). However, a cosmological constant with $w = -1$ is also consistent with the data.

Acknowledgments. The results presented in this talk were obtained in collaboration with Somak Raychaudhury, Tarun Saini, Alexei Starobinsky and Limin Wang whom I would like to thank for many enjoyable discussions.

References

Brax, P. and Martin, J. 2000, Phys. Rev. D, 61, 103502.
Ferreira, P.G. & Joyce, M. 1997, Phys. Rev. Lett. 79, 4740.
Perlmutter, S.J. et al., 1998, Nature 391, 51.
Perlmutter, S.J. et al., 1999, ApJ, 517, 565.
Ratra, B. & Peebles, P.J.E. 1988, Phys. Rev. D, 37, 3406.
Riess, A.G. et al., 1998, Astron. J. 116, 1009.
Sahni, V. & Starobinsky, A.A. 2000, Int. J. Mod. Phys. D9, 373.
Sahni, V. & Wang, L. 2000, Phys. Rev. D, (in press): [astro-ph/9910097].
Saini, S., Raychaudhury, S., Sahni, V. & Starobinsky, A.A. 2000, Phys. Rev. Lett. 85, 1162.
Starobinsky, A.A. 1998, JETP Lett., 68, 757.
Wetterich, C. 1988, Nuclear Physics B 302, 668.