Assessment of deep demersal fish fauna diversity of the Colombian Caribbean Sea

CAMILO B. GARCÍA* and JORGE M. GAMBOA

Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogotá, Colombia

ABSTRACT. We compiled georeferenced records of deep demersal fishes from the Colombian Caribbean Sea in order to assess the level of survey coverage and geographic completeness of species richness inventories at a scale of 15 min by 15 min cells, in view of threats from fishing and oil and natural gas exploration. We identified a rich fauna with a minimum of 362 species registered. Areas with high observed and predicted species richness were identified. Survey coverage and geographic richness completeness resulted in being deficient with no cell reaching the status of well-sampled spatial unit, being 83% of the Colombian Caribbean Exclusive Economic Zone bottoms unexplored, particularly depths beyond 1,000 m. A plea is made for renewed survey efforts with a focus on the protection of the Colombian Caribbean deep-sea biota.

Key words: Colombian Caribbean, deep fishes, records, soft-bottoms, species richness.

INTRODUCTION

With the migration of the fishing frontier into deeper waters and the offshore search for oil and natural gas it is now more important than ever to improve the knowledge on the deep sea biota, particularly with regard to...
fishes, since they are candidates for exploitation (e.g., Páramo et al. 2017; Grijalba-Bendeck et al. 2019) or might be affected as bycatch (e.g., Páramo et al. 2012). In Colombian Caribbean waters deep sea research has been sporadic, but three main periods can be distinguished. In the late sixties and early seventies during the past century, research vessels like the Oregon, Oregon II (U.S. Fish and Wild Life Service) and Pillsbury (University of Miami, U.S.A.), as well as several others, conducted trawling both on the continental shelf and notably on the continental slope, plus some trawls occurred at depths beyond 1,000 m. Later on, from the early part of the 20th century, interest in continental slope fauna gained momentum with the Macrofauna I and II campaigns that trawled down to a depth of 500 m (see for instance Saavedra-Díaz et al. 2000; Roa-Varón et al. 2003; Saavedra-Díaz et al. 2004; Roa-Varón et al. 2007). A decade later in the context of exploration for oil and natural gas, demersal fish samples were taken in deeper waters around 800 m (ANH I and II campaigns, Polanco et al. 2010). In searching for new fishery resources, Páramo et al. (2011) conducted trawling at depths between 200 and 550 m during years 2009 and 2010. Since then, to our knowledge, no mayor deep sea trawling surveys have been undertaken in Colombian Caribbean waters.

Paramount in diversity studies (and with a focus on conservation) is the characterization of the geographic distribution of diversity, which goes hand in hand with the assessment of the completeness of sampling of surveys, i.e., whether an asymptote in the species accumulation curve has been reached (Soberón et al. 2007; Hortal et al. 2015). The composition of species lists is necessary but not sufficient for effective diversity management and conservation. In this study we assess the level of survey coverage and geographical completeness of species richness inventories by constructing a spatialized estimate of deep soft-bottom demersal fish fauna diversity in Colombian Caribbean waters, including the San Andrés and Providencia archipelago and in the process we highlight areas that have been well- and poorly surveyed and those that have never been visited.

MATERIALS AND METHODS

Georeferenced records of demersal deep fishes were obtained from Polanco (2015), García and Armenteras (2015, see sources cited), García (2017a), Acero et al. (2018), Polanco et al. (2019) and the Global Biodiversity Information Facility (GBIF 2020). Only records with associated depth registers deeper than 200 m were included. Validity of taxonomic names was checked against the Catalog of Fishes (Fricke et al. 2019). A database was constructed with the software ModestR (García-Roselló et al. 2013) which allowed further filtering in order to lessen redundancy in the geographic records. Because our interests focused on Colombian Caribbean waters, records in our sources outside the current Colombian Exclusive Economic Zone (EEZ, obtained from Flanders Marine Institute 2019) were excluded.

ModestR produces files directly usable for the module KnowBR (Lobo et al. 2018; Guisande and Lobo 2019) of the application RWizard (Guisande et al. 2014) designed to conduct a search of both well and poorly surveyed spatial units. The study area, i.e. the Colombian Caribbean EEZ, was divided into spatial cells of size 15 min (circa 28 km) by 15 min. We chose this size as being consistent with previous similar analyses (García 2017b, 2018). Further settings were as follow: curve = ‘Rational’ (Ratkowski 1990) one of the options for adjusting a function to the accumulation of species with records that function as surrogates for effort (Lobo 2008; Lobo et al. 2018); estimator = 1, meaning that we constructed the species accumulation curve using the formula from Ugland et al. (2003); cutoff = 1, meaning that if the quotient
between number of records and number of species is 1 in a given spatial unit it is considered non-informative and completeness is not calculated; cutoffCompleteness = 0, meaning that if the value of completeness is below this value of completeness is not calculated and cutoffSlope = 1, meaning that if the final slope of the accumulation curve is higher than this value, completeness is not calculated.

We used the function SurveyQ (survey quality) of KnowBR to depict well- and poorly-surveyed equal area cells geographically. Default values were used. For well sampled spatial units a slope < 0.02, completeness > 90% and R/S (records over species) > 15. For poorly sampled cells a slope > 0.3, completeness < 50% and R/S < 3.

RESULTS

After filtering, we included a total of 362 species and 6,211 records in the database, these being the basis of the analysis (Appendix 1). A map of the study area, records and the shape of the Parque Nacional Natural Corales de Profundidad (http://www.parquesnacionales.gov.co) is shown in Figure 1. The bulk of the records were located between 200 m and 1,000 m representing 98% of all records. In turn, records between 200 m and 300 m represented 52% of all records. Apart from a couple of records in the San Andrés and Providencia archipelago, sampling was concentrated on

![Figure 1. Deep demersal fishes record locations inside the Colombian Caribbean Exclusive Economic Zone and Parque Nacional Natural Corales de Profundidad.](image-url)
the continental slope with a few records from the abyssal plains (Figure 1). Table 1 shows those species with more than 100 records in the database.

The division of the study area in equal area cells (15 min by 15 min) resulted in 85 cells. Records from each cell revealed some areas where sampling was concentrated. The Gulf of Salamanca, Guajira, Palomino and mixed coralline bottoms showed cells with an elevated number of records while most of the cells received fewer records (Figure 2). Taking into account that cells depicted were the ones with at least one record, it was clear that most of the study area had never been visited (Figure 2). The Colombian Caribbean EEZ below 200 m amounts to circa 385,000 km² while the added cell area is 65,072 km², so around 83% of the deep sea bottom has never been visited. The scarcity of records resulted in 31 out of the 85 cells for which completeness could not be calculated as the R/S quotient was one. Not surprisingly, the observed richness (Figure 3) closely followed the distribution pattern of records in cells with a correlation of 0.9 (Pearson index, \(p < 0.001\)). The Darien area is added as harboring a high number of demersal fish species (Figure 3).

Completeness ranged from 6.9% to 76.9% in cells with 75.9% of them (41 out of 54 informative cells) showing completeness above 50%; but notice that no cell reached 100% completeness (Figure 4). The ten cells showing completeness above 70% were well-distributed along the coastline (Figure 4), suggesting that the survey effort was not spatially biased in terms of completeness.

No cell attains the status of ‘high quality survey’ (Figure 5); but most cells were labeled as ‘fair quality survey’ cells with a number of interdispersed ‘poor quality survey’ cells that is in line with the image in Figure 4.

DISCUSSION

Our focus on the current Colombian EEZ caused 32 species and associated records to be dropped from the database (Appendix 2). These records are located to the west of the San Andrés and Providencia archipelago and offshore Panama outside of Colombian EEZ. Thus, it is doubtful whether the species concerned should be included in deep sea fishes national biodiversity

Species	Records	Min depth (m)	Max depth (m)	Mean depth (m)
Dibranchus atlanticus	207	198	1,440	412
Nezumia aequalis	150	223	1,143	392
Coelorinchus caelorhincus	134	200	810	327
Laemonema goodebeanorum	126	223	777	348
Chauliodus sloani	125	191	4,151	433
Synagrops bellus	122	192	810	352
Poecilopsetta inermis	113	229	750	292
Chlorophthalmus agassizi	109	200	776	301
Malacocephalus occidentalis	106	200	801	314
Neoscopelus macrolepidotus	104	276	900	475
Chaunax sutkusi	103	223	801	333
lists, although their presence in waters of the archipelago that belong to Colombia is likely. Notice that Bolaños-Cubillos et al. (2015) and Acero et al. (2019) mention several of the species excluded here in their species lists for the San Andrés and Providencia archipelago.

The scarceness of surveys and samples east of the archipelago and in depths beyond 1,000 m
shown here clearly points to the need of increased survey efforts, including for those unexplored areas as well as renewed survey efforts in areas visited in the past, as even the upper slope that has received most records is at best ‘fairly-sampled’, according to the criteria here and at our

Figure 4 Percentage completeness of deep demersal fishes inventories in cells of 15 min by 15 min in the Colombian Caribbean Exclusive Economic Zone.

Figure 5 Survey quality status of deep demersal fishes in cells of 15 min by 15 min in the Colombian Caribbean Exclusive Economic Zone.
spatial scale. Nevertheless, this study reveals a rich deep sea fish fauna taking into account that the 362 species in our database are a lower limit of species richness. Considering the values of percentage completeness and the current geographic coverage of surveys, more records for species already in the database, i.e., extension of their presently observed distribution, and more species currently not in the database, are to be expected in future campaigns.

The distribution of records with species follows the usual patterns for large diversity databases: few species with many records and many species with few records. Thus, 49.2% of the species (178 out of 362) show five or fewer records while just 3.0% of the species (11 out of 362) show more than one hundred records (Appendix 1). Interestingly *Epigonus occidentalis* (Goode and Bean 1896) and *E. pandionis* (Goode and Bean 1881), postulated as possible candidates for fishing due to their frequency in trawls (Páramo et al. 2017) do not belong to the most common species in the database but rank low to intermediary in terms of records (Appendix 1). Our time window spans decades while Páramo et al. (2017) are just snap shots of deep demersal fish presence and abundance in a limited depth range. This contrast highlights the usefulness and, indeed, a need for monitoring over long periods and extended areas if we are to understand the dynamics of ecosystems and the biology of the species.

In view of the results it is probably risky to postulate areas for conservation purposes. Observed richness suggests continental slope areas adjacent to the Gulf of Salamanca, Rosario Island archipelago (mixed coralline bottoms), slope areas to the north of Guajira Peninsula and Darien as locations of accumulation of species. Interestingly, the Gulf of Salamanca shelf (< 200 m), since here the slope (> 200 m) is known to harbor significant numbers of elasmobranchs and bony fish species (García 2017b, 2018; but notice that García 2018 includes some slope records). The ecological and biological reasons for these findings are an open question worth investigating.

The only national natural park dedicated to deep sea biota in the Colombian Caribbean is the Parque Nacional Natural Corales de Profundidad established to protect deep sea coral species. The park includes soft and mixed bottoms from 34 m to 1,240 m depth. Using the module MRFinder of ModestR a species list was composed for the park resulting in 106 species with records inside the park area (Appendix 3). Thus, although not intentionally, Corales de Profundidad might also be protecting a significant fraction of deep demersal fishes in the Colombian Caribbean. The attractive effect of structures on fishes is well-known, thus the presence of coral formations in the general area of the park is probably conducive of high species richness. Notice that cells in the park area and in their vicinity show high observed richness.

This research is one of the first steps in endeavors of studying the diversity of deep sea demersal fish species beyond the compilation of species’ names. Much work remains to be done both for scientific and practical purposes with a focus on protecting Colombian Caribbean deep sea biodiversity as derived from this assessment.

Acknowledgments

Comments by two anonymous reviewers helped to improve the manuscript.

References

Acero A, TaVera JJ, Polanco A, Bolaños-Cubillos N. 2019. Fish biodiversity in three northern islands of the seaflower biosphere reserve (Colombian Caribbean). Front Mar
ACERO A, POLO-SILVA CJ, LEÓN G, PUENTES V. 2018. First report of a sleeper shark (Somniosus sp.) in the southern Colombian Caribbean. J Appl Ichthyol. 34 (4): 981-983. doi:10.1111/jai.13712

BOLAÑOS-CUBILLOS N, ABRIL-HOWARD A, BENT-Hooker H, CALDAS JP, ACERO A. 2015. Lista de peces conocidos del archipiélago de San Andrés, Providencia y Santa Catalina, reserva de biosfera Seaflower, Caribe occidental colombiano. Bol Investig Mar Cost. 44 (1): 127-162. doi:10.25268/bimc.invemar.2015.44.1.24

FLANDERS MARINE INSTITUTE. 2019. Maritime boundaries geodatabase: maritime boundaries and Exclusive Economic Zones (200NM), version 11. [accessed 2020 July]. https://www.marineregions.org/. doi:10.14284/386

FRICKE R, ESCHMEYER WN, VAN DER LAAN R. 2019, editors. Catalog of fishes: genera, species, references. [accessed 2020 June]. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.

GARCÍA CB. 2017a. Presence and distribution of Chimaeriformes in the Colombian Caribbean Sea. Pan Am J Aquat Sci. 12 (1): 85-88

GARCÍA CB. 2017b. What do we know about soft-bottom elasmobranch species richness in the Colombian Caribbean and of its spatial distribution? Reg Stud Mar Sci. 9: 62-68. doi:10.1016/j.rsmas.2016.11.006

GARCÍA CB. 2018. Spatial richness patterns of soft-bottom fish in the Colombian Caribbean continental shelf and slope. Acta Biol Colomb. 23 (1): 59-65. doi:10.15446/abc.v23n1.66530

GARCÍA CB, ARMENTERAS D. 2015. Atlas of the ichthyofauna demersal of fondos blandos del Caribe continental colombiano: aproximación a su biodiversidad. Bogotá: Universidad Nacional de Colombia, Publicaciones Facultad de Ciencias. 765 p.

GARCÍA-ROSELLÓ E, GUISANDE C, GONZÁLEZ-DACOSTA J, HEINE J, PELAYO-VILLAMIL P, MANJARRÉS-HERNÁNDEZ A, VAAMONDE A, GRANADO-LORENCIO C. 2013. ModestR: a software tool for managing and analyzing species distribution map databases. Ecography. 36: 1202-1207. doi:10.1111/j.1600-0587.2013.00374.x

[GBIF] GLOBAL BIODIVERSITY INFORMATION FACILITY. 2020. GBIF Home Page. [accessed 2020 June]. https://www.gbif.org.

GRIJALBA-BENDECK M, PARAMO J, WOLF M. 2019. Catch composition of deep-sea resources of commercial importance in the Colombian Caribbean. Rev Biol Mar Oceanogr. 54 (2): 188-197. doi:10.22370/rbmo.2019.54.2.1891

GUISANDE C, HEINE J, GONZÁLEZ-DACOSTA J, GARCÍA-ROSELLÓ E. 2014. RWizard Software. http://www.ipez.es/RWizard. University of Vigo, Vigo.

GUISANDE C, LOBO JM. 2019. Discriminating well surveyed spatial units from exhaustive biodiversity databases. R package version. 2.0. https://cran.r-project.org/web/packages/KnowBR.

HORTAL J, DE BELLO F, DINIZ-FILHO FAA, LEWINSHON TM, LOBO JM, LADLE RJ. 2015. Seven shortfalls that beset large-scale knowledge of biodiversity. Annu Rev Ecol Evol Syst. 46: 523-549. doi:10.1146/annurev-ecolsys-112414-054400

LOBO JM. 2008. Database records as a surrogate for sampling effort provide higher species richness estimations. Biodivers Conserv. 17: 873-881. doi:10.1007/s10531-008-9333-4

LOBO JM, HORTAL J, YELAB JL, MILLÁN A, SÁNCHEZ-FERNÁNDEZ D, GARCÍA-ROSELLÓ E, GONZÁLEZ-DACOSTA J, HEINEE J, GONZÁLEZ-VILAS L, GUISANDE C. 2018. KnowBR: an application to map the geographical variation of survey effort and identify well-surveyed areas from biodiversity databases. Ecol Indic. 91: 241-248. doi:10.1016/j.ecolind.2018.03.077

PARAMO J, FUENTES D, WIFF R. 2017. Population structure and distribution of deep-water Cardinal Fish Epigonus occidentalis (Epigonidae) and Epigonus pandonis (Epigonidae) in the
Colombian Caribbean Sea. J Ichthyol. 57 (3): 424-433. doi:10.1134/S0032945217030109

PÁRAMO J, SAINT-PAUL U. 2012. Deep-sea shrimps Aristaeomorpha foliacea and Pleoticus robustus (Crustacea: Penaeoidea) in the Colombian Caribbean Sea as a new potential fishing resource. J Mar Biol Assoc UK. 92 (4): 811-818. doi:10.1017/S0025315411001202

PÁRAMO J, SAINT-PAUL U, MORENO F, PACHECO M, ALMANZA M, RODRÍGUEZ E, ARDILA G, BORDA C, BARRERO-GONZÁLEZ H. 2011. Crustáceos de profundidad en el Caribe colombiano como nuevo recurso pesquero. Informe Final Santa Marta: Universidad del Magdalena, Santa Marta.

POLANCO A. 2015. Dynamics of the continental slope demersal fish community in the Colombian Caribbean-Deep-sea research in the Caribbean [PhD thesis]. Giessen: Justus-Liebig University Giessen, Bogotá: Universidad Nacional de Colombia. 192 p.

POLANCO A, ACERO A, GARRIDO M. 2010. Aportes a la biodiversidad íctica del Caribe colombiano. In: INVEMAR, editors. Biodiversidad del margen continental del Caribe colombiano. Serie de Publicaciones Especiales, Invemar. 20. p. 318-353.

POLANCO A, DUEÑAS LF, LEÓN J, PUENTES V. 2019. New records and update on the geographic distribution of the Bony-eared Ass-fish, Acanthonus armatus Günther, 1878 (Ophidiidae, Neobythitinae), in the Caribbean region. Check List. 15 (5): 767-772. doi:10.15560/15.5.767

RATKOWSKI DA. 1990 Handbook of nonlinear regression models. New York: Marcel Dekker.

ROA-VARÓN A, SAAVEDRA LM, ACERO A, MEJÍA LS. 2007. Nuevos registros de peces para el Caribe colombiano de los órdenes Myctophiformes, Polymixiiformes, Gadiformes, Ophidiiformes y Lophiiformes. Bol Investig Mar Cost. 36: 181-207. doi:10.25268/bimc.invemar.2007.36.0.206

ROA-VARÓN A, SAAVEDRA LM, ACERO A, MEJÍA LS, NAVAS G. 2003. Nuevos registros de peces óseos para el Caribe colombiano de los órdenes Beryciformes, Zeiformes, Perciformes y Tetraodontiformes. Bol Investig Mar Cost. 32: 3-24. doi:10.25268/bimc.invemar.2003.32.0.257

SAAVEDRA-DÍAZ LM, ACERO A, NAVAS GR. 2000. Lenguados de la familia Paralichthyidae (Pisces: Pleuronectiformes) conocidos del incluyendo un nuevo registro para el área. Rev Acad Colomb Cienc Exactas Fis Nat. 24 (91): 295-310.

SAAVEDRA-DÍAZ LM, ROA-VARÓN A, ACERO A, MEJÍA LS. 2004. Primeros registros ícticos en el talud superior del Caribe colombiano (órdenes Albuliformes, Anguilliformes, Stomiiformes, Ateleopodiformes, Aulopiformes y Pleuronectiformes). Bol Investig Mar Cost. 33: 159-183. doi:10.25268/bimc.invemar.2004.33.0.254

SOBERÓN J, JIMENEZ R, GOLUBOV J, KOLEFF P. 2007. Assessing completeness of biodiversity databases at different spatial scales. Ecology. 30: 152-160. doi:10.1111/j.0906-7590.2007.04627.x

UGLAND KI, GRAY JS, ELLINGSEN KE. 2003. The species-accumulation curve and estimation of species richness. J Anim Ecol. 72: 888-897. doi:10.1046/j.1365-2656.2003.00748.x
APPENDIX 1

Deep demersal fish species list (> 200 m depth) of the Colombian Caribbean Sea with records and depth ranges.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygi	Anguilliformes	Chlopoideae	Robinia catarinae	1	300	300	300
Actinopterygi	Anguilliformes	Colocnemiidae	Colocnemus meadi	60	218	777	361
Actinopterygi	Anguilliformes	Congridae	Ariosa balearicu	3	532	857	706
Actinopterygi	Anguilliformes	Congridae	Bathycnoconger bullisi	26	229	366	286
Actinopterygi	Anguilliformes	Congridae	Bathycnoconger vicinalis	1	366	366	366
Actinopterygi	Anguilliformes	Congridae	Bathyrhynchus vicinus	9	515	732	627
Actinopterygi	Anguilliformes	Congridae	Japonobathycnoconger caribbeus	22	269	549	358
Actinopterygi	Anguilliformes	Congridae	Parabathycnoconger oregoni	2	314	315	315
Actinopterygi	Anguilliformes	Congridae	Pseudophichthys splendens	57	204	803	392
Actinopterygi	Anguilliformes	Congridae	Notothyrus flavus	3	732	732	732
Actinopterygi	Anguilliformes	Congridae	Xenomystax australis	23	458	732	509
Actinopterygi	Anguilliformes	Congridae	Xenomystax bidentatus	16	296	698	405
Actinopterygi	Anguilliformes	Congridae	Xenomystax congroides	18	210	352	237
Actinopterygi	Anguilliformes	Moringuidae	Neocentrocanthus macronotus	3	200	265	243
Actinopterygi	Anguilliformes	Muraenidae	Cynopsus savanna	2	746	746	746
Actinopterygi	Anguilliformes	Muraenidae	Gymnothorax conspersus	9	256	307	262
Actinopterygi	Anguilliformes	Muraenidae	Gymnothorax polyprionus	2	200	203	202
Actinopterygi	Anguilliformes	Nemichthyidae	Avicennia infantis	3	350	445	360
Actinopterygi	Anguilliformes	Nemichthyidae	Labichthys carinatus	1	940	940	940
Actinopterygi	Anguilliformes	Nemichthyidae	Neomichthys scolopaces	6	300	3,978	654
Actinopterygi	Anguilliformes	Nettastomatidae	Hoplunnis diomediana	1	453	453	453
Actinopterygi	Anguilliformes	Nettastomatidae	Hoplunnis megista	2	366	366	366
Actinopterygi	Anguilliformes	Nettastomatidae	Hoplunnis tenus	5	201	201	201
Actinopterygi	Anguilliformes	Nettastomatidae	Nettastoma melanura	5	503	732	621
Actinopterygi	Anguilliformes	Nettastomatidae	Venefica procerus	3	613	860	834
Actinopterygi	Anguilliformes	Ophichthidae	Ophichthys crucifiger	4	496	699	548
Actinopterygi	Anguilliformes	Ophichthidae	Ophichthys puncticeps	4	295	900	448
Actinopterygi	Anguilliformes	Synaphobranchidae	Atractodesychys phryx	2	393	500	447
Actinopterygi	Anguilliformes	Synaphobranchidae	Dystomina rugosa	2	365	450	429
Actinopterygi	Anguilliformes	Synaphobranchidae	Illyophis brunneus	8	515	1143	692
Actinopterygi	Anguilliformes	Synaphobranchidae	Synaphobranchus affinis	1	732	732	732
Actinopterygi	Anguilliformes	Synaphobranchidae	Synaphobranchus oregoni	8	265	515	301
Actinopterygi	Anguilliformes	Ateleopodiformes	Ilmenaia analis	30	329	698	423
Actinopterygi	Anguilliformes	Ateleopodidae	Ilmenaia lopesi	1	503	503	503
Actinopterygi	Aulopiformes	Bathysauridae	Bathysaurus mollis	2	1,800	4,151	2,976
Actinopterygi	Aulopiformes	Chlorophthalmidae	Chlorophthalmus agassizi	109	200	776	301
Actinopterygi	Aulopiformes	Chlorophthalmidae	Paraspidiscus truculenta	34	223	561	311
Actinopterygi	Aulopiformes	Ipnopidae	Bathypeteros bigelovi	38	223	940	456
Actinopterygi	Aulopiformes	Ipnopidae	Bathypeteros-grallator	5	1,627	4,151	2,435
Actinopterygi	Aulopiformes	Ipnopidae	Bathypeteros phenax	6	821	1,800	1,230
Actinopterygi	Aulopiformes	Ipnopidae	Bathypeteros quadrifilis	5	515	900	683
Actinopterygi	Aulopiformes	Ipnopidae	Bathypeteros viridensis	17	276	900	475
Actinopterygi	Aulopiformes	Ipnopidae	Bathyscyphus marioni	1	1,251	1,251	1,251
Actinopterygi	Aulopiformes	Ipnopidae	Ipnopis murrayi	3	821	1,800	1,416
Actinopterygi	Aulopiformes	Notosudidae	scoopellus-smithii	2	622	622	622
Actinopterygi	Aulopiformes	Symodontidae	Saurida brasiliensis	5	270	613	427
Actinopterygi	Aulopiformes	Symodontidae	Saurida caribicaea	9	200	303	219
Actinopterygi	Aulopiformes	Symodontidae	Saurida normani	3	198	298	251
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygii	Aulopiformes	Synodontidae	Synodus poeyi	1	198	198	198
Actinopterygii	Batrachoidiformes	Batrachoididae	Porichthys proctor	5	200	370	241
Actinopterygii	Beloniformes	Hemiramphidae	Hemirhamphus balzo	2	276	803	406
Actinopterygii	Beryciformes	Anoplogastridae	Anoplogaster cornuta	1	300	300	300
Actinopterygii	Beryciformes	Berycidae	Beryx decadactylus	1	378	378	378
Actinopterygii	Beryciformes	Berycidae	Beryx splendidiss	2	366	369	367
Actinopterygii	Beryciformes	Deitremidae	Deitremidae pauciradiatus	9	200	732	268
Actinopterygii	Beryciformes	Deitremidae	Deitremas argenteus	6	205	792	454
Actinopterygii	Beryciformes	Holocentridae	Ostichthys trachypoma	6	200	274	236
Actinopterygii	Beryciformes	Trachichthyidae	Gephyroberyx arwini	8	300	375	322
Actinopterygii	Beryciformes	Trachichthyidae	Hoplostethus mediterraneus	2	288	435	362
Actinopterygii	Beryciformes	Trachichthyidae	Hoplostethus occidentalis	64	329	558	350
Actinopterygii	Cetomimiformes	Barbourisiidae	Barbourista rufa	1	1,080	1,080	1,080
Actinopterygii	Gadiformes	Bregmacerothida	Bregmaceros atlanticus	53	200	801	319
Actinopterygii	Gadiformes	Macrouridae	Bathygadus favoss	21	515	1,440	758
Actinopterygii	Gadiformes	Macrouridae	Bathygadus macrops	96	269	810	422
Actinopterygii	Gadiformes	Macrouridae	Bathygadus melanobranchus	28	365	900	634
Actinopterygii	Gadiformes	Macrouridae	Cetonus globiceps	5	613	1,097	906
Actinopterygii	Gadiformes	Macrouridae	Coelorinchus cuerburgunci	134	200	810	327
Actinopterygii	Gadiformes	Macrouridae	Coelorinchus caribbaeus	96	200	503	276
Actinopterygii	Gadiformes	Macrouridae	Coryphaenoides mexicanus	12	198	1,296	884
Actinopterygii	Gadiformes	Macrouridae	Coryphaenoides zanitophorus	25	518	940	636
Actinopterygii	Gadiformes	Macrouridae	Gadomus arcatus	17	477	1,080	665
Actinopterygii	Gadiformes	Macrouridae	Gadomus dispar	4	457	622	490
Actinopterygii	Gadiformes	Macrouridae	Gadomus longifilis	23	365	1,251	644
Actinopterygii	Gadiformes	Macrouridae	Hynemocephalus aetrimus	1	576	576	576
Actinopterygii	Gadiformes	Macrouridae	Hynemocephalus bilscam	2	223	373	361
Actinopterygii	Gadiformes	Macrouridae	Hynemocephalus tectalis	91	269	940	368
Actinopterygii	Gadiformes	Macrouridae	Kuronezumia buson	3	515	732	586
Actinopterygii	Gadiformes	Macrouridae	Malacosteus laevis	13	329	612	387
Actinopterygii	Gadiformes	Macrouridae	Malacosteus occidentalis	106	200	801	314
Actinopterygii	Gadiformes	Macrouridae	Nezumia aequalis	150	223	1,143	392
Actinopterygii	Gadiformes	Macrouridae	Nezumia cyrano	16	453	960	630
Actinopterygii	Gadiformes	Macrouridae	Nezumia suilla	5	365	640	572
Actinopterygii	Gadiformes	Macrouridae	Sphagmacentrus brachyurus	6	684	1,143	779
Actinopterygii	Gadiformes	Macrouridae	Squalogadus modicatus	4	1,080	1,251	1,139
Actinopterygii	Gadiformes	Macrouridae	Trachonurus salutatus	10	612	1,251	814
Actinopterygii	Gadiformes	Macrouridae	Trachonurus villosus	3	515	814	714
Actinopterygii	Gadiformes	Macrouridae	Ventrisoss macropogon	7	223	640	411
Actinopterygii	Gadiformes	Macrouridae	Ventrisoss macmpholus	5	450	732	481
Actinopterygii	Gadiformes	Merluccidae	Merluccius albidos	47	219	662	297
Actinopterygii	Gadiformes	Merluccidae	Steindachneria argentea	66	200	770	298
Actinopterygii	Gadiformes	Moridae	Gadella imberbis	32	223	801	374
Actinopterygii	Gadiformes	Moridae	Laemonema goodbeaneorum	126	223	777	348
Actinopterygii	Gadiformes	Moridae	Physicus fulvus	6	275	503	341
Actinopterygii	Gadiformes	Physidae	Urophycis cirrata	11	270	470	331
Actinopterygii	Lophiiformes	Antennariidae	Fowlerichthys radiossus	1	192	192	192
Actinopterygii	Lophiiformes	Chaunacidae	Chaunax pictus	57	270	810	417
Actinopterygii	Lophiiformes	Chaunacidae	Chaunax saltatus	103	223	801	333
Actinopterygii	Lophiiformes	Diceraeidae	Bifococrias wedli	4	405	493	478
Actinopterygii	Lophiiformes	Lophidiidae	Lophioides beroe	2	512	512	512
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygii	Lophiiformes	Lophiidae	Lophiodes monodi	7	313	520	346
Actinopterygii	Lophiiformes	Lophiidae	Lophiodes reticulatus	11	200	500	240
Actinopterygii	Lophiiformes	Lophiidae	Lophius gastrophysus	17	286	561	347
Actinopterygii	Lophiiformes	Lophiidae	Lophius piscatorius	4	200	500	240
Actinopterygii	Lophiiformes	Melanocetidae	Melanocetus murrayi	7	523	857	562
Actinopterygii	Lophiiformes	Ogcocephalidae	Dibranchus atlanticus	207	198	1,440	412
Actinopterygii	Lophiiformes	Ogcocephalidae	Dibranchus tremendus	6	1,006	1,463	1,107
Actinopterygii	Lophiiformes	Ogcocephalidae	Haliacanthys aculeatus	20	286	295	291
Actinopterygii	Lophiiformes	Ogcocephalidae	Malthopsis gnome	12	280	491	301
Actinopterygii	Lophiiformes	Ogcocephalidae	Ogocephalus decivirostris	3	365	223	221
Actinopterygii	Lophiiformes	Ogcocephalidae	Ogocephalus parvus	6	270	360	308
Actinopterygii	Lophiiformes	Ogcocephalidae	Ogocephalus pumilus	1	290	290	290
Actinopterygii	Lophiiformes	Ogcocephalidae	Zaleutes megynyi	29	201	498	246
Actinopterygii	Lophiiformes	Onerodidae	Dolichichthys pullatus	1	4,029	4,029	4,029
Actinopterygii	Lophiiformes	Thaumatichthyidae	Thaumatichthys hinghimi	1	1,251	1,251	1,251
Actinopterygii	Myctophiformes	Myctophidae	Böltichthys supralateralis	26	195	792	361
Actinopterygii	Myctophiformes	Myctophidae	Dasyseoplos seleneops	2	275	520	396
Actinopterygii	Myctophiformes	Myctophidae	Diaphus adenomus	1	567	567	567
Actinopterygii	Myctophiformes	Myctophidae	Diaphus bertesi	2	200	200	200
Actinopterygii	Myctophiformes	Myctophidae	Diaphus dumerilii	26	200	727	299
Actinopterygii	Myctophiformes	Myctophidae	Diaphus eflulgens	2	223	365	330
Actinopterygii	Myctophiformes	Myctophidae	Diaphus garmani	24	200	1,829	409
Actinopterygii	Myctophiformes	Myctophidae	Diaphus lucidus	23	191	755	327
Actinopterygii	Myctophiformes	Myctophidae	Diaphus minus	1	270	270	270
Actinopterygii	Myctophiformes	Myctophidae	Diaphus rafinesqui	5	320	1,800	633
Actinopterygii	Myctophiformes	Myctophidae	Diaphus splendidas	13	200	857	262
Actinopterygii	Myctophiformes	Myctophidae	Diaphus taunying	1	270	270	270
Actinopterygii	Myctophiformes	Myctophidae	Lampadina luminosa	9	200	730	422
Actinopterygii	Myctophiformes	Myctophidae	Lepidiophanes guentheri	21	200	857	302
Actinopterygii	Myctophiformes	Myctophidae	Myctophum nitidulum	16	200	727	340
Actinopterygii	Myctophiformes	Neoscopidae	Neoscopelus macrolepidotus	104	276	900	475
Actinopterygii	Myctophiformes	Neoscopidae	Neoscopelus microchir	23	223	803	372
Actinopterygii	Notacanthiformes	Halosauridae	Aldrovandia affinis	5	515	1,097	559
Actinopterygii	Notacanthiformes	Halosauridae	Aldrovandia gracilis	8	395	1,710	1,039
Actinopterygii	Notacanthiformes	Halosauridae	Halosauria guentheri	32	276	1,143	433
Actinopterygii	Notacanthiformes	Halosauridae	Halosauras ovini	88	276	803	406
Actinopterygii	Notacanthiformes	Notacanthidae	Notacanthus chemnitizii	1	724	724	724
Actinopterygii	Notacanthiformes	Notacanthidae	Polyacanthonotus merretti	2	679	857	738
Actinopterygii	Ophiidiiformes	Aphyonidae	Barathronus bicolor	22	365	1,251	625
Actinopterygii	Ophiidiiformes	Bythitidae	Calamopteryx rhinorhomsor	2	200	201	201
Actinopterygii	Ophiidiiformes	Bythitidae	Cataetys laticeps	7	732	1,800	1,119
Actinopterygii	Ophiidiiformes	Bythitidae	Diplocanthopoma brachysoma	62	274	776	401
Actinopterygii	Ophiidiiformes	Bythitidae	Saccogaster staigeri	1	356	356	356
Actinopterygii	Ophiidiiformes	Ophidiidae	Acanthos armatus	13	2,215	2,564	2,366
Actinopterygii	Ophiidiiformes	Ophidiidae	Bassozetus robustus	1	1,240	1,240	1,240
Actinopterygii	Ophiidiiformes	Ophidiidae	Bathymus laticeps	2	1,627	2,983	2,531
Actinopterygii	Ophiidiiformes	Ophidiidae	Benthocometes robustus	4	223	303	287
Actinopterygii	Ophiidiiformes	Ophidiidae	Dicrolene introner	37	395	1,296	715
Actinopterygii	Ophiidiiformes	Ophidiidae	Lamprogrammus brunswigii	2	1,371	1,377	1,377
Actinopterygii	Ophiidiiformes	Ophidiidae	Lamprogrammus niger	4	515	3978	1,105
Actinopterygii	Ophiidiiformes	Ophidiidae	Lepophidium brevisarbe	18	210	505	277
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium cultratum*	2	210	210	210
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium kallion*	1	219	219	219
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium profundorum*	8	207	404	288
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium robustum*	1	200	200	200
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium zophochar*	3	210	210	210
Actinopterygii	Ophidiiformes	Ophidiidae	*Luciobrotula core bromycter*	16	540	821	612
Actinopterygii	Ophidiiformes	Ophidiidae	*Monomitus agassizii*	47	365	1,251	528
Actinopterygii	Ophidiiformes	Ophidiidae	*Neobryichthys gilli*	78	200	500	320
Actinopterygii	Ophidiiformes	Ophidiidae	*Neobryichthys margnatus*	68	205	670	305
Actinopterygii	Ophidiiformes	Ophidiidae	*Neobryichthys monocellatus*	4	229	334	257
Actinopterygii	Ophidiiformes	Ophidiidae	*Neobryichthys ocellatus*	19	192	366	234
Actinopterygii	Ophidiiformes	Ophidiidae	*Penopsis microphthalmus*	1	1,006	1,006	1,006
Actinopterygii	Ophidiiformes	Ophidiidae	*Xyleicya myersi*	5	1,251	1,440	1,301
Actinopterygii	Osmeriformes	Alepocephalidae	*Alepocephalus australis*	8	1,097	1,317	1,146
Actinopterygii	Osmeriformes	Alepocephalidae	*Bathypteroctes microlepis*	2	1,097	1,097	1,097
Actinopterygii	Osmeriformes	Alepocephalidae	*Conocara macropterus*	10	821	1,463	1,125
Actinopterygii	Osmeriformes	Alepocephalidae	*Lepidoderma macrops*	1	690	690	690
Actinopterygii	Osmeriformes	Alepocephalidae	*Narceus stomias*	7	558	1,829	1,509
Actinopterygii	Osmeriformes	Alepocephalidae	*Rouleina atrina*	4	686	1,271	828
Actinopterygii	Osmeriformes	Alepocephalidae	*Talasmania antillarum*	2	457	457	457
Actinopterygii	Osmeriformes	Alepocephalidae	*Talasmania homoptera*	5	515	640	593
Actinopterygii	Osmeriformes	Alepocephalidae	*Xenodermacichthys copei*	23	360	640	433
Actinopterygii	Osmeriformes	Argentinidae	*Argentina brueci*	33	198	439	266
Actinopterygii	Osmeriformes	Argentinidae	*Argentina striata*	72	200	500	266
Actinopterygii	Osmeriformes	Bathylagidae	*Dolicholophus longirostris*	6	445	857	699
Actinopterygii	Osmeriformes	Microstomatidae	*Xenophthalmichthys danae*	7	205	505	323
Actinopterygii	Osmeriformes	Opisthoproctidae	*Opisthopuctor soleatus*	1	374	374	374
Actinopterygii	Perciformes	Acropomatidae	*Carabips trispinosus*	15	192	523	220
Actinopterygii	Perciformes	Acropomatidae	*Synagrops bellus*	122	192	810	352
Actinopterygii	Perciformes	Acropomatidae	*Verilus atlanticus*	10	192	496	250
Actinopterygii	Perciformes	Acropomatidae	*Verilus pseudomicrolepis*	12	247	308	262
Actinopterygii	Perciformes	Acropomatidae	*Verilus sordidus*	2	201	201	201
Actinopterygii	Perciformes	Arionmatidae	*Arimona bondi*	3	351	428	383
Actinopterygii	Perciformes	Arionmatidae	*Arimona melanum*	2	298	366	355
Actinopterygii	Perciformes	Bathycurupeidae	*Bathycurupea argentea*	24	402	732	448
Actinopterygii	Perciformes	Bathycurupeidae	*Bathycurupea Schroederi*	16	205	810	387
Actinopterygii	Perciformes	Callionymidae	*Synchropus agassizii*	8	274	352	306
Actinopterygii	Perciformes	Callionymidae	*Synchropus dagmarae*	1	229	229	229
Actinopterygii	Perciformes	Caproidae	*Antigonia capros*	37	198	505	240
Actinopterygii	Perciformes	Caproidae	*Antigonia combattia*	51	192	520	243
Actinopterygii	Perciformes	Carangidae	*Decapterus macarellus*	3	198	235	226
Actinopterygii	Perciformes	Carangidae	*Decapterus tabl*	21	200	507	229
Actinopterygii	Perciformes	Carangidae	*Selar crumenophthalmus*	7	246	2,195	575
Actinopterygii	Perciformes	Carangidae	*Selene browni*	3	200	504	403
Actinopterygii	Perciformes	Carangidae	*Trachurus lathami*	2	207	207	207
Actinopterygii	Perciformes	Emmelichthidae	*Erythrocles monodi*	1	201	201	201
Actinopterygii	Perciformes	Epigonidae	*Epigonus macrops*	13	200	914	613
Actinopterygii	Perciformes	Epigonidae	*Epigonus occidentalis*	28	366	823	434
Actinopterygii	Perciformes	Epigonidae	*Epigonus pandionis*	55	223	720	343
Actinopterygii	Perciformes	Gempylidae	*Diplostomus multistriatus*	8	200	445	298
Actinopterygii	Perciformes	Gempylidae	*Lepidocycium flavobrunneum*	2	1,251	1,271	1,261
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygii	Perciformes	Gempylidae	Neolotus tripes	5	205	360	249
Actinopterygii	Perciformes	Gempylidae	Neopinnula americana	13	229	333	249
Actinopterygii	Perciformes	Gymnothoridae	Promethichthys prometheus	17	298	807	386
Actinopterygii	Perciformes	Gempylidae	Ruvettus pretiosus	3	396	558	461
Actinopterygii	Perciformes	Haemulidae	Haemulon aurolineatum	2	286	286	286
Actinopterygii	Perciformes	Haemulidae	Haemulon boschmai	2	286	295	291
Actinopterygii	Lutjanidae	Lutjanus vivanus		1	324	324	324
Actinopterygii	Lutjanidae	Pristipomoides	aquilonarum	1	198	198	198
Actinopterygii	Lutjanidae	Pristipomoides	macrophthalmus	3	201	280	220
Actinopterygii	Mullidae	Mullus	Penaeus parvus	7	219	792	417
Actinopterygii	Perciformes	Opistognathidae	Lonchopithys lemur	32	200	300	242
Actinopterygii	Perciformes	Opistognathidae	Lonchopithys micrognathus	2	265	265	265
Actinopterygii	Perciformes	Percophidae	Bembrops anatirostris	41	198	500	314
Actinopterygii	Perciformes	Percophidae	Bembrops gobioides	6	360	540	439
Actinopterygii	Perciformes	Percophidae	Bembrops magnisquamis	1	540	540	540
Actinopterygii	Perciformes	Percophidae	Bembrops occellatus	22	223	670	410
Actinopterygii	Perciformes	Percophidae	Bembrops quadrisella	3	290	384	380
Actinopterygii	Priacanthidae	Heteropriacanthus	cruentatus	4	333	432	406
Actinopterygii	Priacanthidae	Protosciatinae	bathytatoo	12	240	512	340
Actinopterygii	Priacanthidae	Protosciatinae	trewavaeae	8	191	201	199
Actinopterygii	Perciformes	Scombrolabracidae	Scombrolabra heterolepis	1	396	396	396
Actinopterygii	Serranidae	Baldivinella	aureorubens	25	198	351	249
Actinopterygii	Serranidae	Baldivinella	eos	1	316	316	316
Actinopterygii	Serranidae	Bathyanthias	cubensis	7	192	280	209
Actinopterygii	Serranidae	Bathyanthias	mexicanus	1	300	300	300
Actinopterygii	Serranidae	Bullisichthys	caribbaeae	1	219	219	219
Actinopterygii	Serranidae	Hyporthodus	flavolimbatus	1	270	270	270
Actinopterygii	Serranidae	Hyporthodus	nigratus	2	200	333	267
Actinopterygii	Serranidae	Hyporthodus	niveatus	1	316	316	316
Actinopterygii	Serranidae	Plecanthrus	garrupellus	2	200	200	200
Actinopterygii	Serranidae	Pronootogrammus	martiniicensis	1	219	219	219
Actinopterygii	Serranidae	Serranus	atrobranchus	3	300	370	323
Actinopterygii	Sparidae	Pagrus	pagrus	1	207	207	207
Actinopterygii	Symphysanodontidae	Symphysanodon	bryeri	3	200	280	216
Actinopterygii	Symphysanodontidae	Synagropidae	Parascombrospis spinosus	28	192	750	243
Actinopterygii	Trichiuridae	Benthodesmus	simonyi	15	223	659	302
Actinopterygii	Trichiuridae	Benthodesmus	tenais	45	223	732	371
Actinopterygii	Trichiuridae	Lepidopus	alitritos	8	320	366	334
Actinopterygii	Trichiuridae	Lepidopus	caudatus	6	240	404	293
Actinopterygii	Trichiuridae	Trichurus	lepturus	3	220	250	239
Actinopterygii	Pleuronectiformes	Bothidae	Chaceanepetra laghbris	7	366	576	417
Actinopterygii	Pleuronectiformes	Bothidae	Monolene atrimax	2	223	373	298
Actinopterygii	Pleuronectiformes	Bothidae	Monolene megalepis	10	206	505	235
Actinopterygii	Pleuronectiformes	Bothidae	Trichopsetta caribbacea	7	192	300	209
Actinopterygii	Pleuronectiformes	Bothidae	Trichopsetta ventralis	2	198	252	225
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus diomedeanus	2	290	316	303
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus ginsburgi	11	296	491	348
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus horendaezi	12	204	300	228
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus marginatus	62	265	698	355
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus piper	17	203	750	276
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus stigmatus	1	274	274	274
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygi	Pleuronectiformes	Paralichthyidae	*Ancylopsetta cycloidea*	9	192	269	207
Actinopterygi	Pleuronectiformes	Paralichthyidae	*Citharichthys cornutus*	5	192	300	207
Actinopterygi	Pleuronectiformes	Pleuronectidae	*Poecilopsetta beani*	4	223	333	283
Actinopterygi	Pleuronectiformes	Pleuronectidae	*Poecilopsetta inermis*	113	229	750	292
Actinopterygi	Polymixiformes	Polymixidae	*Polymixia lowei*	72	200	940	282
Actinopterygi	Polymixiformes	Polymixidae	*Polymixia nobilis*	7	366	512	412
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion ecuadorense*	34	223	810	374
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion gracile*	27	191	940	270
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion greyae*	53	265	803	334
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion imberbe*	1	219	219	219
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion longispina*	38	223	766	414
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion miniatum*	42	229	720	291
Actinopterygi	Scorpaeniformes	Peristidae	*Peristion truncaturn*	18	223	731	348
Actinopterygi	Scorpaeniformes	Scorpaenidae	*Neomerinthe beanorum*	3	200	300	260
Actinopterygi	Scorpaeniformes	Scorpaenidae	*Phenococcusus nebris*	2	300	300	300
Actinopterygi	Scorpaeniformes	Scorpaenidae	*Pontinus longispinus*	65	200	491	254
Actinopterygi	Scorpaeniformes	Scorpaenidae	*Pontinus nematophilus*	9	200	698	288
Actinopterygi	Scorpaeniformes	Scorpaenidae	*Pontinus rathbuni*	6	200	324	227
Actinopterygi	Scorpaeniformes	Sebastidae	*Helicolenus dactylopterus*	3	293	662	366
Actinopterygi	Scorpaeniformes	Sebastidae	*Trachycorpa cristulata*	1	540	540	540
Actinopterygi	Scorpaeniformes	Setarchidae	*Ectreposeastes imus*	5	400	732	550
Actinopterygi	Scorpaeniformes	Setarchidae	*Setarches guentherii*	53	200	510	273
Actinopterygi	Scorpaeniformes	Trigidae	*Bellator brachyrr*	3	200	300	209
Actinopterygi	Scorpaeniformes	Trigidae	*Bellator egretta*	2	200	203	201
Actinopterygi	Scorpaeniformes	Trigidae	*Prionotus beanii*	1	219	219	219
Actinopterygi	Scorpaeniformes	Trigidae	*Prionotus stearnsi*	10	213	351	273
Actinopterygi	Stephanoberyciformes	Gibberichthyidae	*Gibberichthys pumilus*	3	720	732	728
Actinopterygi	Stephanoberyciformes	Stephanoberyidae	*Stephanoberyx monae*	10	395	1,143	786
Actinopterygi	Stomiiformes	Gonostomatidae	*Gonostoma atlanticum*	16	200	792	255
Actinopterygi	Stomiiformes	Gonostomatidae	*Signops elongatus*	72	200	2341	452
Actinopterygi	Stomiiformes	Gonostomatidae	*Triplotus hemingi*	28	300	732	424
Actinopterygi	Stomiiformes	Phosichthyidae	*Ichthyoscopeus ovatus*	5	210	755	288
Actinopterygi	Stomiiformes	Phosichthyidae	*Pollichthys maudi*	38	191	857	341
Actinopterygi	Stomiiformes	Phosichthyidae	*Polymetme corythaeola*	19	275	857	478
Actinopterygi	Stomiiformes	Phosichthyidae	*Polymetme thaeocoryla*	13	223	274	272
Actinopterygi	Stomiiformes	Phosichthyidae	*Yarrella blackfordi*	26	283	1,143	625
Actinopterygi	Stomiiformes	Sternoptychidae	*Argyriusus atlanticus*	1	260	260	260
Actinopterygi	Stomiiformes	Sternoptychidae	*Argyroleucus aculeatus*	48	205	857	479
Actinopterygi	Stomiiformes	Sternoptychidae	*Argyroleucus gigan*	1	540	540	540
Actinopterygi	Stomiiformes	Sternoptychidae	*Maurolucus maulleri*	2	234	493	364
Actinopterygi	Stomiiformes	Sternoptychidae	*Polypus asteroides*	50	205	567	338
Actinopterygi	Stomiiformes	Sternoptychidae	*Polypus claus*	4	205	265	259
Actinopterygi	Stomiiformes	Sternoptychidae	*Polypus lateranus*	2	366	549	412
Actinopterygi	Stomiiformes	Sternoptychidae	*Sternoptyx diaphana*	43	197	4,151	585
Actinopterygi	Stomiiformes	Sternoptychidae	*Sternoptyx pseudoscura*	3	445	857	585
Actinopterygi	Stomiiformes	Stomidae	*Aristostomias grimaldi*	2	640	640	640
Actinopterygi	Stomiiformes	Stomidae	*Aristostomias schmidti*	3	600	792	708
Actinopterygi	Stomiiformes	Stomidae	*Aristostomias schmidti*	9	225	1,710	412
Actinopterygi	Stomiiformes	Stomidae	*Chauliodus sloani*	125	191	4,151	431
Actinopterygi	Stomiiformes	Stomidae	*Eustomias schmidti*	2	450	857	586
Actinopterygi	Stomiiformes	Stomidae	*Heterophotus ophistoma*	3	640	732	671
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Actinopterygii	Stomiformes	Stomiidae	*Malacosteus niger*	10	400	732	502
Actinopterygii	Stomiformes	Stomiidae	*Melanostomias macrophtus*	1	404	404	404
Actinopterygii	Stomiformes	Stomiidae	*Stomias afinity*	32	205	857	420
Actinopterygii	Stomiformes	Stomiidae	*Stomias longibarbatis*	3	225	755	358
Actinopterygii	Tetradontiformes	Triacanthodidae	*Hollardia hollardi*	6	329	558	350
Actinopterygii	Tetradontiformes	Triacanthodidae	*Parahollardia lineata*	1	369	369	369
Actinopterygii	Tetradontiformes	Triacanthodidae	*Parahollardia schmidtii*	5	200	360	222
Actinopterygii	Zeiformes	Grammicolepididae	*Grammicolepis brachiusculus*	8	324	662	442
Actinopterygii	Zeiformes	Grammicolepididae	*Xenolepidichthys dalglesi*	25	200	439	245
Actinopterygii	Zeiformes	Parazenidae	*Cytopis rosea*	95	223	732	324
Actinopterygii	Zeiformes	Parazenidae	*Parazen pacificus*	2	274	352	281
Actinopterygii	Zeiformes	Zeidae	*Zenopsis conchifer*	2	270	298	284
Actinopterygii	Zeiformes	Zenimidae	*Zenion hololepis*	72	200	540	385
Elasmobranchii	Carcharhiniformes	Carcharhinidae	*Galeocerdo cuvier*	1	365	365	365
Elasmobranchii	Carcharhiniformes	Carcharhinidae	*Apiritus canutus*	2	530	777	592
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Apiritus parvipinnis*	2	719	719	719
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Apiritus river*	3	860	860	889
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Galeus arear*	4	193	512	374
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Galeus caderati*	4	256	512	436
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Schoederichthys maculatus*	1	275	542	274
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Scoliorhinus boa*	19	223	540	298
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	*Scoliorhinus hesperius*	9	290	549	341
Elasmobranchii	Carcharhiniformes	Triakidae	*Mastactis canis*	2	298	316	307
Elasmobranchii	Rajiformes	Anacanthobatidae	*Schoederobatis americana*	51	307	803	475
Elasmobranchii	Rajiformes	Rajidae	*Brevaraja nigroventralis*	18	367	732	512
Elasmobranchii	Rajiformes	Rajidae	*Brevaraja spinosa*	4	540	612	575
Elasmobranchii	Rajiformes	Rajidae	*Cruvaraja rugosa*	7	365	732	449
Elasmobranchii	Rajiformes	Rajidae	*Dactylolobus clarkii*	18	366	512	421
Elasmobranchii	Rajiformes	Rajidae	*Dipturus bullisi*	9	201	334	302
Elasmobranchii	Rajiformes	Rajidae	*Dipturus garricki*	3	283	307	301
Elasmobranchii	Rajiformes	Rajidae	*Dipturus oregoni*	1	396	396	396
Elasmobranchii	Rajiformes	Rajidae	*Dipturus tevani*	3	240	576	407
Elasmobranchii	Rajiformes	Rajidae	*Fenestraja plutonia*	1	428	428	428
Elasmobranchii	Rajiformes	Rajidae	*Fenestraja sinusmexicanus*	2	485	485	485
Elasmobranchii	Rajiformes	Rajidae	*Gergesia atlantica*	34	223	698	498
Elasmobranchii	Squaliformes	Centrophoridae	*Centrophorus granulosus*	4	200	732	333
Elasmobranchii	Squaliformes	Centrophoridae	*Centrophorus squamosus*	1	670	670	670
Elasmobranchii	Squaliformes	Dalatidae	*Sissius brasilensis*	1	621	621	621
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus bullisi*	1	274	274	274
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus careri*	8	283	343	292
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus hilianus*	6	180	540	351
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus perryi*	22	283	375	297
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus pusillus*	1	288	288	288
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus schultzi*	43	269	823	422
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus vires*	25	288	503	331
Elasmobranchii	Squaliformes	Somniosidae	*Somniosus cf microcephalus*	1	200	200	200
Elasmobranchii	Squaliformes	Squalidae	*Squalus cabensis*	4	198	274	263
Elasmobranchii	Squaliformes	Squatinidae	*Squatinus david*	2	198	305	252
Elasmobranchii	Torpediniformes	Torpedinidae	*Tetranezus nobiliana*	6	292	369	329
Holocentrii	Chimaeriformes	Chimaeridae	*Chimaera cabana*	1	234	234	234
Holocentrii	Chimaeriformes	Chimaeridae	*Hydrolagus alberti*	27	223	1,143	477
Appendix 1. Continued.

Class	Order	Family	Species	Records	Min depth	Max depth	Mean depth
Holocephali	Chimaeriformes	Chimaeridae	*Hydrolagus mirabilis*	3	720	1,296	995
Holocephali	Chimaeriformes	Rhinichimaerida	*Neoharriotta carri*	14	288	485	329
Holocephali	Chimaeriformes	Rhinichimaerida	*Rhinichimaera atlantica*	2	914	917	916
Myxini	Myxiniformes	Myxidae	*Eptatretus acroei*	2	705	705	705
Myxini	Myxiniformes	Myxidae	*Eptatretus ancon*	8	476	670	513
Myxini	Myxiniformes	Myxidae	*Eptatretus wayuu*	5	300	303	301
Myxini	Myxiniformes	Myxidae	*Myxine mossikeri*	72	269	801	446
Myxini	Myxiniformes	Myxidae	*Myxine robinsorum*	2	783	821	793

APPENDIX 2

Species excluded from data base because records fall outside the Colombian Caribbean Exclusive Economic Zone.

Class	Order	Family	Species
Actinopterygii	Anguilliformes	Congridae	*Acromyxter atlanticus*
Actinopterygii	Anguilliformes	Congridae	*Bathyconger thysonochilas*
Actinopterygii	Anguilliformes	Congridae	*Rhynchoconger gracilior*
Actinopterygii	Anguilliformes	Nettastomatidae	*Hoplunnis similis*
Actinopterygii	Aulopiformes	Giganturidae	*Gigantura chuni*
Actinopterygii	Aulopiformes	Ipnopidae	*Bathytyphlops sewelli*
Actinopterygii	Aulopiformes	Paralepididae	*Listropops intermedia*
Actinopterygii	Aulopiformes	Paralepididae	*Stemonosusis rothschildi*
Actinopterygii	Aulopiformes	Batrachoididae	*Porichthys bathoiketes*
Actinopterygii	Aulopiformes	Batrachoididae	*Porichthys bathoiketes*
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium entomelan*
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium marmoratum*
Actinopterygii	Ophidiiformes	Ophidiidae	*Lepophidium staurophor*
Actinopterygii	Ophidiiformes	Argentinidae	*Argentina stewarti*
Actinopterygii	Ophidiiformes	Argentinidae	*Glossanodon pygmaeus*
Actinopterygii	Ophidiiformes	Argentinidae	*Parocheilus affinis*
Actinopterygii	Perciformes	Labridae	*Decodon puellaris*
Actinopterygii	Perciformes	Lutjanidae	*Rhomboplites aurorubens*
Actinopterygii	Perciformes	Percophidae	*Bembrops macromma*
Actinopterygii	Perciformes	Serranidae	*Serranus phoebe*
Actinopterygii	Perciformes	Uranoscopidae	*Kathetostoma cubana*
Actinopterygii	Pleuronectiformes	Paralichthysidae	*Anyltopsella microtenuis*
Actinopterygii	Pleuronectiformes	Paralichthysidae	*Citharichthys dinozeros*
Actinopterygii	Stomiiformes	Sternoptychidae	*Somodo megaposphalmia*
Actinopterygii	Stomiiformes	Stomiidae	*Echiostoma barbatum*
Actinopterygii	Stomiiformes	Stomiidae	*Eustomias acinosus*
Elasmobranchii	Rajiformes	Rajidae	*Breviraja mouldi*
Elasmobranchii	Rajiformes	Rajidae	*Fenestraja ishiyamai*
Elasmobranchii	Rajiformes	Rajidae	*Leucoraja garnani*
Elasmobranchii	Squaliformes	Etmopteridae	*Etmopterus robinisi*
Elasmobranchii	Squaliformes	Squalidae	*Squalus mitsukuri*
Myxini	Myxiniformes	Myxidae	*Eptatretus caribbeaus*
Myxini	Myxiniformes	Myxidae	*Eptatretus multifidens*
APPENDIX 3

Deep demersal species (> 200 m depth) recorded inside the Parque Nacional Natural Park Corales de Profundidad in the Colombian Caribbean.

Class	Order	Family	Genus	Species
Actinopterygii	Anguilliformes	Colocongridae	Coloconger	Coloconger meadi
Actinopterygii	Anguilliformes	Congridae	Bathycodus	Bathycodus bulisi
Actinopterygii	Anguilliformes	Congridae	Pseudophichthys	Pseudophichthys splendidis
Actinopterygii	Anguilliformes	Congridae	Xenomystax	Xenomystax congoides
Actinopterygii	Aulopiformes	Chlorophthalmidae	Chlorophthalmus	Chlorophthalmus agassizii
Actinopterygii	Aulopiformes	Chlorophthalmidae	Parasodus	Parasodus truculenta
Actinopterygii	Aulopiformes	Ipnomidae	Bathypetrois	Bathypetrois bigelowi
Actinopterygii	Aulopiformes	Synodontidae	Saurida	Saurida brasiliensis
Actinopterygii	Beryciformes	Trachichthyidae	Hoplostethus	Hoplostethus occidentalis
Actinopterygii	Gadiformes	Bremecarotidae	Bathygadus	Bathygadus macrops
Actinopterygii	Gadiformes	Macrouridae	Coelorinchus	Coelorinchus Capekysin
Actinopterygii	Gadiformes	Macrouridae	Coelorinchus	Coelorinchus caribbaeus
Actinopterygii	Gadiformes	Macrouridae	Gadomus	Gadomus arcuatus
Actinopterygii	Gadiformes	Macrouridae	Hymenocephalus	Hymenocephalus billisam
Actinopterygii	Gadiformes	Macrouridae	Hymenocephalus	Hymenocephalus italicus
Actinopterygii	Gadiformes	Macrouridae	Malacocephalus	Malacocephalus laevis
Actinopterygii	Gadiformes	Macrouridae	Malacocephalus	Malacocephalus occidentalis
Actinopterygii	Gadiformes	Macrouridae	Nezumia	Nezumia aquilis
Actinopterygii	Gadiformes	Macrouridae	Ventrifossa	Ventrifossa macrogon
Actinopterygii	Gadiformes	Merlucciidae	Steindachneria	Steindachneria argentea
Actinopterygii	Gadiformes	Moridae	Gadella	Gadella imberis
Actinopterygii	Gadiformes	Moridae	Laemonema	Laemonema goodbeleanorum
Actinopterygii	Gadiformes	Moridae	Physiculus	Physiculus fulvas
Actinopterygii	Lophiiformes	Chaunacidae	Chaunax	Chaunax pictus
Actinopterygii	Lophiiformes	Chaunacidae	Chaunax	Chaunax saithiasi
Actinopterygii	Lophiiformes	Lophiidae	Lophiodes	Lophiodes monodi
Actinopterygii	Lophiiformes	Ogocephalidae	Debranchus	Debranchus atlanticus
Actinopterygii	Lophiiformes	Ogocephalidae	Haileutiya	Haileutiya aculeatus
Actinopterygii	Lophiiformes	Ogocephalidae	Maltopsis	Maltopsis gnomastes
Actinopterygii	Lophiiformes	Ogocephalidae	Ogocephalus	Ogocephalus declivirostris
Actinopterygii	Myctophiformes	Myctophidae	Diaphus	Diaphus selenops
Actinopterygii	Myctophiformes	Myctophidae	Diaphus	Diaphus effulgens
Actinopterygii	Myctophiformes	Myctophidae	Diaphus	Diaphus garmani
Actinopterygii	Myctophiformes	Myctophidae	Diaphus	Diaphus lucidus
Actinopterygii	Myctophiformes	Neoscopelidae	Neoscopelus	Neoscopelus macrolepidotus
Actinopterygii	Myctophiformes	Neoscopelidae	Neoscopelus	Neoscopelus microchir
Actinopterygii	Notacanthiformes	Halosauridae	Halosaurus	Halosaurus guentheri
Actinopterygii	Notacanthiformes	Halosauridae	Halosaurus	Halosaurus ovenii
Actinopterygii	Notacanthiformes	Notacanthidae	Notacanthus	Notacanthus chemnitzii
Actinopterygii	Ophidiformes	Bythitidae	Calamoptyx	Calamoptyx robinorum
Actinopterygii	Ophidiformes	Bythitidae	Diplocanthopoma	Diplocanthopoma brachysoma
Actinopterygii	Ophidiformes	Ophidiidae	Benthocometes	Benthocometes robustus
Actinopterygii	Ophidiformes	Ophidiidae	Monomitopus	Monomitopus agassizii
Actinopterygii	Ophidiformes	Ophidiidae	Neobythites	Neobythites gilli
Actinopterygii	Ophidiformes	Ophidiidae	Neobythites	Neobythites marginatus
Actinopterygii	Osmeriformes	Argentinidae	Argentina	Argentina striata
Actinopterygii	Perciformes	Acropomatidae	Caraihops	Caraihops trispinosus
Appendix 3. Continued.

Class	Order	Family	Genus	Species
Actinopterygii	Perciformes	Acropomatidae	Synagrops	Synagrops bellus
Actinopterygii	Perciformes	Acropomatidae	Verilus	Verilus atlanticus
Actinopterygii	Perciformes	Acropomatidae	Verilus	Verilus pseudomicrolepis
Actinopterygii	Perciformes	Bathyclupeidae	Bathyclupea	Bathyclupea argentea
Actinopterygii	Perciformes	Bathyclupeidae	Bathyclupea	Bathyclupea schroederi
Actinopterygii	Perciformes	Caproidae	Antigonia	Antigonia capros
Actinopterygii	Perciformes	Caproidae	Antigonia	Antigonia combatia
Actinopterygii	Perciformes	Carangidae	Decapterus	Decapterus tabl
Actinopterygii	Perciformes	Carangidae	Salar	Salar crumenophthalmus
Actinopterygii	Perciformes	Epigonidae	Epigonus	Epigonus macrosp
Actinopterygii	Perciformes	Epigonidae	Epigonus	Epigonus occidentalis
Actinopterygii	Perciformes	Epigonidae	Epigonus	Epigonus pandonis
Actinopterygii	Perciformes	Lutjanidae	Pristipomoides	Pristipomoides macrophthalus
Actinopterygii	Perciformes	Opistognathidae	Lonchopisthias	Lonchopisthias lemur
Actinopterygii	Perciformes	Percophidae	Bembrops	Bembrops anatitans
Actinopterygii	Perciformes	Percophidae	Bembrops	Bembrops gobioides
Actinopterygii	Perciformes	Percophidae	Bembrops	Bembrops ocellatus
Actinopterygii	Perciformes	Serranidae	Bathythysin	Bathythysin cebusiss
Actinopterygii	Perciformes	Serranidae	Hyporthodus	Hyporthodus nigritos
Actinopterygii	Perciformes	Symphysanodontidae	Symphysanodon	Symphysanodon berrys
Actinopterygii	Perciformes	Trichiuridae	Benthodesmus	Benthodesmus simonyi
Actinopterygii	Perciformes	Trichiuridae	Benthodesmus	Benthodesmus tenuis
Actinopterygii	Pleuronectiformes	Bothiidae	Monolene	Monolene megalopus
Actinopterygii	Pleuronectiformes	Bothiidae	Monolene	Monolene megalopus
Actinopterygii	Pleuronectiformes	Cynoglossidae	Symphurus	Symphurus marginals
Actinopterygii	Pleuronectiformes	Paralichthyidae	Ancylotetta	Ancylotetta cycloidea
Actinopterygii	Pleuronectiformes	Pleuronectidae	Poecilopsetta	Poecilopsetta bennisi
Actinopterygii	Pleuronectiformes	Pleuronectidae	Poecilopsetta	Poecilopsetta inermis
Actinopterygii	Polynemiformes	Polyodontidae	Polyneida	Polyneida lowi
Actinopterygii	Scorpaeniformes	Peristidae	Peristion	Peristion ecuadorens
Actinopterygii	Scorpaeniformes	Peristidae	Peristion	Peristion gracile
Actinopterygii	Scorpaeniformes	Peristidae	Peristion	Peristion greyae
Actinopterygii	Scorpaeniformes	Peristidae	Peristion	Peristion longopapha
Actinopterygii	Scorpaeniformes	Peristidae	Peristion	Peristion truncatum
Actinopterygii	Scorpaeniformes	Scorpaenidae	Neomerinthes	Neomerinthes beaurum
Actinopterygii	Scorpaeniformes	Scorpaenidae	Pontina	Pontina nematopilinum
Actinopterygii	Scorpaeniformes	Olerchidae	Olerches	Olerches guentheri
Actinopterygii	Stomiiformes	Phosichthyidae	Polypterus	Polypterus corythaeola
Actinopterygii	Stomiiformes	Phosichthyidae	Polypterus	Polypterus thaeocoryla
Actinopterygii	Stomiiformes	Sternoptychidae	Argyprinus	Argyprinus atlanticus
Actinopterygii	Stomiiformes	Sternoptychidae	Argyroplecos	Argyroplecos aculeatus
Actinopterygii	Stomiiformes	Sternoptychidae	Argyroplecos	Argyroplecos gigas
Actinopterygii	Stomiiformes	Sternoptychidae	Maurolicus	Maurolicus muelleri
Actinopterygii	Stomiiformes	Sternoptychidae	Polypterus	Polypterus asteroides
Actinopterygii	Stomiiformes	Sternoptychidae	Polypterus	Polypterus lateratus
Actinopterygii	Stomiiformes	Stomiidae	Chauboides	Chauboides sloan
Actinopterygii	Tetraodontiformes	Triacanthoididae	Parahollardia	Parahollardia schmidtii
Actinopterygii	Zeiformes	Grammocolepididae	Xenolepidichthys	Xenolepidichthys dalgiesti
Actinopterygii	Zeiformes	Parazeniidae	Cyttopsis	Cyttopsis rosea
Appendix 3. Continued.

Class	Order	Family	Genus	Species
Actinopterygii	Zeiformes	Zenionidae	Zenion	Zenion hololepis
Elasmobranchii	Carcharhiniformes	Scyliorhinidae	Scyliorhimus	Scyliorhinus boa
Elasmobranchii	Rajiformes	Rajidae	Breviraja	Breviraja spinosa
Elasmobranchii	Rajiformes	Rajidae	Dipturus	Dipturus bullisi
Elasmobranchii	Rajiformes	Rajidae	Gargesiella	Gargesiella atlantica
Holocephali	Chimaeriformes	Chimaeridae	Hydrolagus	Hydrolagus alberti
Myxini	Myxiniformes	Myxinidae	Myxine	Myxine mccoskeri