A La Carte Embedding: Cheap but Effective Induction of Semantic Feature Vectors

Mikhail Khodak*,1, Nikunj Saunshi*,1, Yingyu Liang2, Tengyu Ma3, Brandon Stewart1, Sanjeev Arora1

1: Princeton University, 2: University of Wisconsin-Madison, 3: FAIR/Stanford University
Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)
Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)

Motivations for our work:

• Can we induce embeddings for all kinds of features, especially those with very few occurrences (e.g. ngrams, rare words)
Motivations

Distributed representations for words / text have had lots of successes in NLP (language models, machine translation, text classification)

Motivations for our work:

- Can we induce embeddings for all kinds of features, especially those with very few occurrences (e.g. ngrams, rare words)
- Can we develop simple methods for unsupervised text embedding that compete well with state-of-the-art LSTM methods
Motivations

Distributed representations for words and text have had lots of successes in NLP (language models, machine translation, text classification).

Motivations for our work:

- Can we induce embeddings for all kinds of features, especially those with very few occurrences (e.g. ngrams, rare words)?
- Can we develop simple methods for unsupervised text embedding that compete well with state-of-the-art LSTM methods?

We make progress on both problems:

- Simple and efficient method for embedding features (ngrams, rare words, synsets)
- Simple text embeddings using ngram embeddings which perform well on classification tasks
Word embeddings

• Core idea: Cooccurring words are trained to have high inner product
 • E.g. LSA, word2vec, GloVe and variants
Word embeddings

- Core idea: Cooccurring words are trained to have high inner product
 - E.g. LSA, word2vec, GloVe and variants

- Require few passes over a very large text corpus and do non-convex optimization
Word embeddings

• Core idea: Cooccurring words are trained to have high inner product
 • E.g. LSA, word2vec, GloVe and variants

• Require few passes over a very large text corpus and do non-convex optimization

• Used for solving analogies, language models, machine translation, text classification ...
Feature embeddings

• Capturing meaning of other natural language features
 • E.g. ngrams, phrases, sentences, annotated words, synsets
Feature embeddings

• Capturing meaning of other natural language features
 • E.g. ngrams, phrases, sentences, annotated words, synsets

• Interesting setting: features with zero or few occurrences
Feature embeddings

• Capturing meaning of other natural language features
 • E.g. ngrams, phrases, sentences, annotated words, synsets

• Interesting setting: features with zero or few occurrences

• One approach (extension of word embeddings): Learn embeddings for all features in a text corpus

\[v_f \in \mathbb{R}^d \]
Feature embeddings

Issues

• Usually need to learn embeddings for all features together
 • Need to learn many parameters
 • Computation cost paid is *prix fixe* rather than *à la carte*

• Bad quality for *rare features*
Feature embeddings

Firth revisited: Feature derives meaning from **words** around it
Feature embeddings

Firth revisited: Feature derives meaning from words around it

Given a feature f and one (few) context(s) of words around it, can we find a reliable embedding for f efficiently?
Feature embeddings

Firth revisited: Feature derives meaning from words around it

Given a feature f and one (few) context(s) of words around it, can we find a reliable embedding for f efficiently?

Scientists attending ACL work on cutting edge research in NLP

Petrichor: the earthy scent produce when rain falls on dry soil

Roger Federer won the first set of the match
Problem setup

Given: Text corpus and high quality word embeddings trained on it

Input: A feature in context(s)

Output: Good quality embedding for the feature
Linear approach

• Given a feature f and words in a context c around it

$$v_{f^{avg}} = \frac{1}{|c|} \sum_{w \in c} v_w$$
Linear approach

• Given a feature f and words in a context c around it

$$v_{f}^{avg} = \frac{1}{|c|} \sum_{w \in c} v_{w}$$

• Issues
 • stop words ("is", "the") are frequent but are less informative
 • Word vectors tend to share common components which will be amplified
Potential fixes

• Ignore stop words
Potential fixes

• Ignore stop words

• SIF weights\(^1\): Down-weight frequent words (similar to tf-idf)

\[
v_f = \frac{1}{|c|} \sum_{w \in c} \alpha_w \nu_w
\]

\[
\alpha_w = \frac{a}{a + p_w}
\]

\(p_w \) is frequency of w in corpus

1: Arora et al. ‘17
Potential fixes

• Ignore stop words

• SIF weights\(^1\): Down-weight frequent words (similar to tf-idf)

\[
v_f = \frac{1}{|c|} \sum_{w \in c} \alpha_w \, v_w \\
\alpha_w = \frac{a}{a + p_w}
\]

\(p_w\) is frequency of \(w\) in corpus

• All-but-the-top\(^2\): Remove the component of top direction from word vectors

\[
v_f = \frac{1}{|c|} \sum_{w \in c} v'_w = (I - uu^T) v_w^{avg}
\]

\(u = \text{top_direction}([v_w])\)

\(v'_w = \text{remove_component}(v_w, u)\)

1: Arora et al. ‘17, 2: Mu et al. ‘18
Our more general approach

• Down-weighting and removing directions can be achieved by matrix multiplication

\[v_f \approx A \frac{1}{|c|} \sum_{w \in c} v_w = A v_f^{avg} \]

- Induced Embedding
- Induction Matrix
Our more general approach

- Down-weighting and removing directions can be achieved by matrix multiplication

\[v_f \approx A \frac{1}{|c|} \sum_{w \in c} v_w = A v_f^{avg} \]

- Learn \(A \) by using words as features

\[A^* = \arg\min_A \sum_w |v_w - A v_w^{avg}|^2 \]

- Learn \(A \) by linear regression and is unsupervised
Theoretical justification

• [Arora et al. TACL ’18] prove that under a generative model for text, there exists a matrix A which satisfies

$$\nu_w \approx A \nu_w^{avg}$$
Theoretical justification

• [Arora et al. TACL ’18] prove that under a generative model for text, there exists a matrix A which satisfies

$$v_w \approx A v_w^{avg}$$

• Empirically we find that the best A^* recovers the original word vectors

$$\text{cosine}(v_w, A^* v_w^{avg}) \geq 0.9$$
A la carte embeddings

1. Learn induction matrix

\[A^* = \text{argmin}_A \sum_w |v_w - Av_w^{avg}|_2^2 \]
A la carte embeddings

1. Learn induction matrix

\[A^* = \text{argmin}_A \sum_w |v_w - A v_w^{avg}|_2 \]

2. A la carte embeddings

\[v_{f}^{alc} = A^* v_{f}^{avg} = A^* \left(\frac{1}{|c|} \sum_{w \in c} v_w \right) \]
A la carte embeddings

1. Learn induction matrix

\[A^* = \text{argmin}_A \sum_w |v_w - A v_w^{avg}|^2 \]

2. A la carte embeddings

\[v_f^{alc} = A^* v_f^{avg} = A^* \left(\frac{1}{|c|} \sum_{w \in c} v_w \right) \]
Advantages

• *à la carte:* Compute embedding only for given feature

• **Simple optimization:** Linear regression

• **Computational efficiency:** One pass over corpus and contexts

• **Sample efficiency:** Learn only d^2 parameters for A^* (rather than Vd)

• **Versatility:** Works for any feature which has at least 1 context
Effect of induction matrix

• We plot the extent to which A^* down-weights words against frequency of words compared to all-but-the-top
Effect of induction matrix

- We plot the extent to which A^* down-weights words against frequency of words compared to all-but-the-top

A^* mainly down-weights words with very high and very low frequency

All-but-the-top mainly down-weights frequent words
Effect of number of contexts

Contextual Rare Words (CRW) dataset\(^1\) providing contexts for rare words

- Task: Predict human-rated similarity scores for pairs of words
- Evaluation: Spearman’s rank coefficient between inner product and score

\(^1\): Subset of RW dataset [Luong et al. ’13]
Effect of number of contexts

Contextual Rare Words (CRW) dataset\(^1\) providing contexts for rare words

- Task: Predict human-rated similarity scores for pairs of words
- Evaluation: Spearman’s rank coefficient between inner product and score

Compare to the following methods:

- Average of words in context
- Average of non stop words
- SIF weighted average
- all-but-the-top

1: Subset of RW dataset [Luong et al. ‘13]
Nonce definitional task

- Task: Find embedding for unseen word/concept given its definition
- Evaluation: Rank of word/concept based on cosine similarity with true embedding

iodine: is a chemical element with symbol I and atomic number 53
Nonce definitional task

- Task: Find embedding for unseen word/concept given its definition
- Evaluation: Rank of word/concept based on cosine similarity with true embedding

iodine: is a chemical element with symbol I and atomic number 53

Method	Mean Reciprocal Rank	Median Rank
word2vec	0.00007	111012
average	0.00945	3381
average, no stop words	0.03686	861
nonce2vec\(^1\)	0.04907	623
à la carte	**0.07058**	**165.5**

\(^1\): Herbelot and Baroni ‘17
Ngram embeddings

Induce embeddings for ngrams using contexts from a text corpus

We evaluate the quality of embedding for a bigram $f = (w_1, w_2)$ by looking at closest words to this embedding by cosine similarity.

Method	beef up	cutting edge	harry potter	tight lipped
$v_f^{add} = v_{w_1} + v_{w_2}$	meat, out	cut, edges	deathly, azkaban	loose, fitting
v_f^{avg}	but, however	which, both	which, but	but, however
ECO1	meats, meat	weft, edges	robards, keach	scaly, bristly
Sent2Vec2	add, reallocate	science, multidisciplinary	naruto, pokemon	wintel, codebase
à la carte ($A^+ v_f^{avg}$)	need, improve	innovative, technology	deathly, hallows	worried, very

1: Poliak ’17, 2: Pagliardini et al. ’18
Unsupervised text embeddings

This movie is great!

\[\begin{pmatrix} v_1 \\ \vdots \\ v_d \end{pmatrix} \quad v \in \mathbb{R}^d \]
Unsupervised text embeddings

This movie is great!

Sparse
Bag-of-words, Bag-of-ngrams
Good performance

LSTM
Predict surrounding words / sentences
SOTA on some tasks

Linear
Sum of word/ngram embeddings
Compete with Bag-of-ngrams and LSTMs on some tasks
A la carte text embeddings

Linear schemes are typically weighted sums of ngram embeddings
A la carte text embeddings

Linear schemes are typically weighted sums of ngram embeddings

Types of ngrams embeddings

DisC ECO A La Carte Sent2Vec

Compositional
Flexible

Learned
High quality
Linear schemes are typically weighted sums of ngram embeddings

A La Carte text embeddings are as concatenations of sum of à la carte ngram embeddings (as in DisC)

\[v_{document}^n = \left[\sum v_{\text{word}}, \sum v_{\text{bigram}}, \ldots, \sum v_{\text{ngram}} \right] \]
A la carte text embeddings

\[
v_{\text{document}}^{alc} = \left[\sum v_{\text{word}}, \sum v_{\text{bigram}}^{alc}, \ldots, \sum v_{\text{ngram}}^{alc} \right]
\]

Method	\(n\)	Dimension	MR	CR	SUBJ	MPQA	TREC	SST (±1)	SST	IMDB
Bag-of-ngrams	1-3	100K-1M	77.8	78.3	91.8	85.8	90.0	80.9	42.3	89.8
Skip-thoughts\(^1\)	4800		80.3	83.8	94.2	88.9	93.0	85.1	45.8	
SDAE\(^2\)	2400		74.6	78.0	90.8	86.9	78.4			
CNN-LSTM\(^3\)	4800		77.8	82.0	93.6	89.4	92.6			
MC-QT\(^4\)	4800		82.4	86.0	94.8	90.2	92.4	87.6		
DisC\(^5\)	2-3	\(\leq 4800\)	80.1	81.5	92.6	87.9	90.0	85.5	46.7	89.6
Sent2Vec\(^6\)	1-2	700	76.3	79.1	91.2	87.2	85.8	80.2	31.0	85.5
à la carte	2	2400	81.3	83.7	93.5	87.6	89.0	85.8	47.8	90.3
	3	4800	81.8	84.3	93.8	87.6	89.0	86.7	48.1	90.9

1: Kiros et al. ’15, 2: Hill et al. ’16, 3: Gan et al. ’17, 4: Logeswaran and Lee ’18, 5: Arora et al. ’18, 6: Pagliardini et al. ’18
Conclusions

• Simple and efficient method for inducing embeddings for many kinds of features, given at least one context of usage

• Embeddings produced are in same semantic space as word embeddings

• Good empirical performance for rare words, ngrams and synsets

• Text embeddings that compete with unsupervised LSTMs

Code is on github: https://github.com/NLPrinceton/ALaCarte
CRW dataset available: http://nlp.cs.princeton.edu/CRW/
Future work

• Zero shot learning of feature embeddings
 • Compositional approaches

• Harder to annotate features (synsets)

• Contexts based on other syntactic structures
Thank you!

Questions?

{nsaunshi, mkhodak}@cs.princeton.edu