ELECTRONIC SUPPORTING INFORMATION
Role of Life Cycle Externalities in the Valuation of Protic Ionic Liquids – A Case Study in Biomass Pretreatment Solvents

Husain Baaqel1,2, Ismael Diaz3, Víctor Tulus4,5, Benoît Chachuat*1,2, Gonzalo Guillén-Gosálbez†4, and Jason P. Hallett1

1Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
2Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
3Departamento Ingeniería Química y del Medio Ambiente, Escuela Técnica Superior de Ingenieros Industriales, Madrid, Spain
4Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology, Vladimir-Prelog-Weg 1, Zurich 8093, Switzerland
5Departament d’Enginyeria Qumica, Universitat Rovira i Virgili, Tarragona, Spain

*Corresponding Author: b.chachuat@imperial.ac.uk
†Corresponding Author: gonzalo.guillen.gosalbez@chem.ethz.ch

S1
Appendix A. Modeling and simulation

This section details the properties used for the pseudo components in Aspen-HYSYS v9 for process simulation. For estimating the enthalpy of formation, the molecular structure of the cation and anion are first drawn and optimized in a molecular modeling and graphics software such as ArgusLab. The structure is then processed with the quantum chemistry tool MOPAC, an open source software applied here for calculating the charge density profiles and enthalpies of formation. The heat of formation of ionic liquids (ILs) is obtained as shown in Equation S1 below from the Born-Haber cycle

$$\Delta H_f^{\circ} = \Delta H_{f}^{\circ \text{cation}} + \Delta H_{f}^{\circ \text{anion}} - \Delta H_L$$

(S1)

ΔH_L is the lattice energy calculated from Equation S2 below.

$$\Delta H_L = U_{\text{pot}} + \left[p \left(\frac{n_m}{2} - 2 \right) + q \left(\frac{n_x}{2} - 2 \right) \right] RT$$

(S2)

The parameters n_m and n_x depend on the nature of the cation and anion, respectively. They are equal to 3 for monoatomic ions, 5 for linear polyatomic ions, and 6 for non-linear polyatomic ions. p and q are the oxidation states of the cation and anion, respectively. The potential energy U_{pot} is calculated from Equation S3 below.

$$U_{\text{pot}} = \gamma \left(\frac{\rho_m}{M_m} \right)^{1/3} + \delta$$

(S3)

The parameters ρ_m and M_m denote the density and the molecular weight of the IL, respectively. The coefficients γ and δ depend on the stoichiometry of the IL.
Table S1: 1-methylimidazole properties

Property	Value	Units
MW	82.10 g mol⁻¹	
BP	198 °C	
Density	1030 kg m⁻³	
ΔH_f	125700 kJ kmol⁻¹	
T_c	490.90 °C	
P_c	6086 kPa	
V_c	0.26 m³ kmol⁻¹	
Acentricity	0.35 –	

Table S2: [HMIM][HSO₄] properties

Property	Value	Units
MW	180.20 g mol⁻¹	
BP	401.800 °C	
Density	1484 kg m⁻³	
ΔH_f	-938000 kJ kmol⁻¹	
T_c	739.6 °C	
P_c	9189 kPa	
V_c	0.43 m³ kmol⁻¹	
Acentricity	0.67 –	

Table S3: [TEA][HSO₄] properties

Property	Value	Units
MW	199.30 g mol⁻¹	
BP	377.10 °C	
Density	1143 kg/m³	
ΔH_f	-884100 kJ kmol⁻¹	
T_c	644.30 °C	
P_c	4732 kPa	
V_c	0.62 m³ kmol⁻¹	
Acentricity	0.74 –	
Appendix B. Economic assessment

This appendix details the breakdown of the capital and operational expenditures, the prices of raw materials, and the costing results obtained from process simulation. The CAPEX consists of equipment costs, offsite costs, engineering and construction costs, and contingency charges. The equipment costs were estimated using Equation S4 below.

\[C_{ISBL} = \sum_{e \in \text{Equipment}} F_e C_e \]

(S4)

Here, \(C_e \) is the cost of purchased equipment \(e \) on a U.S. Gulf Coast basis as of January 2006, and \(F_e \) is the corresponding equipment installation factor. Due to unavailability of current equipment data, their costs are calculated as:

\[C_e = a + b S^n \]

(S5)

where \(a \) and \(b \) are cost constants, \(n \) is equipment type exponent and \(S \) is a size parameter. Finally, because of inflation, capital costs need to be escalated to reflect up-to-date costs. This is usually done using cost indices:

\[\text{Cost}_{\text{new}} = \text{Cost}_{\text{old}} + \frac{\text{Cost index}_{\text{new}}}{\text{Cost index}_{\text{old}}} \]

(S6)

In this work, the Chemical Engineering Plant Cost Index (CEPCI) for 2006 and 2019 are used. CEPCI is one of the most commonly-used published composite indices and was developed based on 4 main components: process equipment, construction labor, buildings and supervision and engineering.
Table S4: Breakdown of cost estimation

CAPEX, C\textsubscript{CAPEX}

- **Fixed capital, C\textsubscript{FC}**:
 - Onsite capital costs, ISBL
 - Equipment cost
 - Offsite capital costs, OSBL = 40% ISBL
 - Engineering and construction costs, C\textsubscript{Eng} = 10%(ISBL + OSBL)
 - Contingency charges, C\textsubscript{Con} = 15% (ISBL + OSBL)

OPEX, C\textsubscript{OPEX}

- **Variable cost of production, C\textsubscript{VCP}**:
 - Raw materials, C\textsubscript{RM}
 - Utilities, C\textsubscript{U}

- **Fixed cost of production, C\textsubscript{FCP}**:
 - Operation labor, C\textsubscript{OL} = 720,000USD\textsubscript{2019}
 - Supervision, C\textsubscript{Sup} = 25%C\textsubscript{OL} = 180,000USD\textsubscript{2019}
 - Salaries, C\textsubscript{Sal} = 50%(C\textsubscript{OL} + C\textsubscript{Sup}) = 450,000USD\textsubscript{2019}
 - Maintenance, C\textsubscript{Main} = 3%ISBL
 - Land, C\textsubscript{Land} = 1%(ISBL + OSBL)
 - Taxes and insurance, C\textsubscript{Tax} = 1.5%C\textsubscript{FC}
 - General plant overhead, C\textsubscript{GPO} = 65%(C\textsubscript{OL} + C\textsubscript{Sup} + C\textsubscript{Sal} + C\textsubscript{Main})

*Based on 4.8 operator per shift with 3 shift positions and an average salary of $50k per operator.

Table S5: Commodity prices used in economic assessment

Commodity	Price ($)
Methylamine (kg)	0.98
Glyoxal (kg)	1.78
Formaldehyde (kg)	0.38
Ammonia (kg)	0.56
Sulfuric acid (kg)	0.05
Triethylamine (kg)	1.36
Ionized water (m3)	0.87
Cooling water (kg)	0.50
Steam (1000 kg)	25.0
Electricity (kWh)	0.16
Table S6: Detailed CAPEX costs for 1-methylimidazole

Unit	Specifications	Eq. Cost ($ kg^{-1}$)	
Flash Tank	Diameter / Length (m)	6.35 / 22.22	1.48 × 10^{-4}
Reactor	Volume (m³)	13.59	2.17 × 10^{-4}
Heater	Area (m²)	2160.68	7.15 × 10^{-4}
Cooler 1	Area (m²)	159.45	7.15 × 10^{-4}
Cooler 2	Area (m²)	2265.48	7.15 × 10^{-4}
Cooling Tower	Vol Flow (L s^{-1})	4624.28	1.67 × 10^{-3}
Pump 1	Vol Flow (L s^{-1})	5.49	7.25 × 10^{-6}
Pump 2	Vol Flow (L s^{-1})	13.81	8.74 × 10^{-6}
Pump 3	Vol Flow (L s^{-1})	1.96	6.73 × 10^{-6}
Compressor 1	Power (kWh)	497.51	1.69 × 10^{-4}
Compressor 2	Power (kWh)	520.19	1.74 × 10^{-4}
Compressor 3	Power (kWh)	519.87	1.74 × 10^{-4}
Compressor 4	Power (kWh)	7621.36	8.28 × 10^{-4}

CAPEX Component	Total Cost ($ kg^{-1}$)
ISBL	4.1 × 10^{-3}
OSBL	1.6 × 10^{-3}
C_{Eng}	5.8 × 10^{-4}
C_{Con}	8.6 × 10^{-4}

Table S7: Detailed OPEX costs for 1-methylimidazole

Feedstock/Utility	Cost ($ kg^{-1}$)
Methylamine	0.39
Glyoxal	1.34
Formaldehyde	0.15
Ammonia	0.12
Water	2 × 10^{-4}
Steam	0.03
Cooling Water	0.73
Electricity	0.05

OPEX Component	Total Cost ($ kg^{-1}$)
C_{CVP}	2.8235
C_{FCP}	0.0130
Table S8: Detailed CAPEX costs for [HMIM][HSO₄]

Unit	Specifications	Eq. Cost ($ kg⁻¹)
Flash Tank Diameter / Length (m)	3.55 / 12.80	1.48 × 10⁻⁴
Reactor Volume (m³)	4.19	1.11 × 10⁻⁴
Heater Area (m²)	227.21	8.74 × 10⁻⁴
Cooler 1 Area (m²)	299.69	8.74 × 10⁻⁴
Cooler 2 Area (m²)	136.58	8.74 × 10⁻⁴
Cooler 3 Area (m²)	4969.67	8.74 × 10⁻⁴
Cooling Tower Vol Flow (L s⁻¹)	1211.98	5.54 × 10⁻⁴
Pump 1 Vol Flow (L s⁻¹)	2.45	6.80 × 10⁻⁶
Pump 2 Vol Flow (L s⁻¹)	12.16	8.42 × 10⁻⁶
Pump 3 Vol Flow (L s⁻¹)	2.30	6.78 × 10⁻⁶
Pump 4 Vol Flow (L s⁻¹)	10.07	8.04 × 10⁻⁶
Pump 5 Vol Flow (L s⁻¹)	2.08	6.75 × 10⁻⁶
Pump 6 Vol Flow (L s⁻¹)	3.69	6.98 × 10⁻⁶

CAPEX Component

Component	Total Cost ($ kg⁻¹)
ISBL	1.68 × 10⁻³
OSBL	6.72 × 10⁻⁴
£Eng	2.35 × 10⁻⁴
£Con	3.53 × 10⁻⁴

Table S9: Detailed OPEX costs for [HMIM][HSO₄]

Feedstock/Utility	Cost ($ kg⁻¹)
Sulfuric Acid	0.03
1-Methylimidazole	1.30
Water	2 × 10⁻⁴
Steam	4 × 10⁻³
Cooling Water	0.12
Electricity	1.37 × 10⁻⁵

OPEX Component

Component	Total Cost ($ kg⁻¹)
£CVP	1.45
£FCP	0.0108
Table S10: Detailed CAPEX costs for [TEA][HSO₄]⁻

Unit	Specifications	Eq. Cost (\$ kg⁻¹)
Flash Tank	Diameter / Length (m) 3.21 / 11.30	9.08 × 10⁻⁵
Reactor	Volume (m³) 3.79	1.05 × 10⁻⁴
Heater	Area (m²) 191.93	3.36 × 10⁻⁴
Cooler 1	Area (m²) 244.19	3.36 × 10⁻⁴
Cooler 2	Area (m²) 133.09	3.36 × 10⁻⁴
Cooler 3	Area (m²) 1527.61	3.36 × 10⁻⁴
Cooling Tower	Vol Flow (L s⁻¹) 575.07	3.20 × 10⁻⁴
Pump 1	Vol Flow (L s⁻¹) 2.22	6.77 × 10⁻⁵
Pump 2	Vol Flow (L s⁻¹) 5.77	7.30 × 10⁻⁶
Pump 3	Vol Flow (L s⁻¹) 11.76	8.35 × 10⁻⁶
Pump 4	Vol Flow (L s⁻¹) 2.26	6.77 × 10⁻⁶
Pump 5	Vol Flow (L s⁻¹) 10.07	8.04 × 10⁻⁶
Pump 6	Vol Flow (L s⁻¹) 1.68	6.70 × 10⁻⁶

CAPEX Component Total Cost (\$ kg⁻¹)

ISBL	8.96 × 10⁻⁴
OSBL	3.58 × 10⁻⁴
\(C_{\text{Eng}}\)	1.25 × 10⁻⁴
\(C_{\text{Con}}\)	1.88 × 10⁻⁴

Table S11: Detailed OPEX costs for [TEA][HSO₄]⁻

Feedstock/Utility	Cost (\$ kg⁻¹)
Sulfuric Acid	0.02
1-Methylimidazole	0.69
Water	2 × 10⁻⁴
Steam	3 × 10⁻³
Cooling Water	5.27 × 10⁻²
Electricity	1.23 × 10⁻⁵

OPEX Component Total Cost (\$ kg⁻¹)

OPEX Component	Total Cost (\$ kg⁻¹)
\(C_{\text{CVP}}\)	0.7716
\(C_{\text{FCP}}\)	0.0101
Appendix C. Environmental assessment

This appendix details the proxy data, processes and flows used in the inventory phase of LCA as well as the midpoint results from the characterization phase. For both human health and ecosystem quality expressed in biophysical units, monetization factors using the values in Table S18 were applied. Overall, the monetization proceeds as follows:

\[
\text{Monetized Cost} = \sum_{i \in \text{Impacts}} \text{MF}_i \cdot \text{EP}_i
\]
(S7)

where \(\text{MF}_i\) denotes the monetization factor for endpoint impact \(i\), and \(\text{EP}_i\) the corresponding damage. Next, a currency exchange factor and inflation factor are applied to express a monetary value in USD\(_{2019}\). For resource availability already expressed in monetary value, only an inflation factor is used for the conversion into USD\(_{2019}\).

Uncertainty in LCA data is quantified using the Pedigree matrix approach\(^\text{11}\), where a score \(U_{D,i}\) between 1 and 5 is assigned to the data based on five criteria: reliability, completeness, temporal, geographical and technological differences. All of these scores are combined with a basic uncertainty factor \(U_{D,b}\) to determine the standard deviation \(\sigma_k\) of a log-normal distribution for each mass and energy flow \(k\):

\[
\sigma_k = \exp \sqrt{\ln(U_{D,b})^2 + \sum_{i=1}^{5} \ln(U_{D,i})^2}
\]
(S8)
Table S12: Proxy data used in LCI

Data Category	Proxy data	Proxy method
Air emissions	Raw materials	0.2% by mass of inflows are assumed to be vaporized or leaked
	Cooling water	4% by volume of total cooling water are assumed to be vaporized or leaked
	CO₂	90% by mass of carbon in waste stream is assumed to be completely burned in waste treatment to produce CO₂ as per the following complete combustion equation: $C_{\alpha}H_{\beta}O_{\gamma} + \left(\alpha + \frac{\beta}{4} - \frac{\gamma}{2}\right)O_2 \rightarrow \alpha CO_2 + \frac{\beta}{2}H_2O$
Water emissions	COD	The chemical oxygen demand (COD) or total oxygen consumed is assumed to be equivalent to the amount of oxygen needed to react with the amount of carbon remaining in the waste stream after treatment which is assumed to be 10% of total carbon
	BOD	For worst case scenario, the biological oxygen demand (BOD) which is the oxygen consumed due to biological aerobic digestion by organisms is assumed to be equivalent to the amount of COD
	TOC	The total organic carbon (TOC) which is the total amount of carbon is assumed to be equivalent to 10% of the total carbon in the waste stream which is the amount of carbon remaining after treatment
	DOC	For waste case scenario, dissolved organic carbon (DOC) is assumed to be equivalent to TOC
Table S13: 1-methylimidazole inventory

Group	Inventory	Flow (per-kg product)	STDEV		
Inputs from nature					
Water, cooling, unspecified natural origin, RER	0.54639 m³	1.0502			
Water, river, RER	0.27319 m³	1.0502			
Water, well, in ground, RER	0.27319 m³	1.0502			
Methylamine \{RER\}	production	Cut-off	0.40601 kg	1.3269	
Chemical factory, organics \{GLO\}	market for	Cut-off	4.00×10^{-10}	2.9905	
Heat, district or industrial, natural gas \{RER\}	market group for	Cut-off	6.03910 MJ	1.0502	
Electricity, medium voltage \{RER\}	market group for	Cut-off	0.29371 kWh	1.0502	
Inputs from technosphere (materials)	Heat, from steam, in chemical industry \{RER\}	market for heat, from steam, in chemical industry	Cut-off	0.67102 MJ	1.0502
Glyoxal \{RER\}	production	Cut-off	0.7587 kg	1.3269	
Tap water \{RER\}	market group for	Cut-off	0.23551 kg	1.3269	
Formaldehyde \{RER\}	oxidation of methanol	Cut-off	0.39252 kg	1.3269	
Ammonia, liquid \{RER\}	ammonia production, steam reforming, liquid	Cut-off	0.22263 kg	1.3269	
Emissions to air					
Carbon dioxide, fossil		1.0246 kg	1.0502		
Methylamine		0.0008104 kg	1.0502		
Water/m³		2.23251×10^{-5} m³	1.0502		
Glyoxal		1.544×10^{-3} kg	1.0502		
Ammonia		4.443×10^{-4} kg	1.0502		
Formaldehyde		7.8347×10^{-4} kg	1.0502		
Emissions to water					
BOD5, Biological Oxygen Demand		8.2825×10^{-2} kg	1.4918		
COD, Chemical Oxygen Demand		8.2825×10^{-2} kg	1.4918		
DOC, Dissolved Organic Carbon		3.1021 \times 10^{-2} kg	1.4918		
TOC, Total Organic Carbon		3.1021 \times 10^{-2} kg	1.4918		
Water, RER		0.54662 m³	1.0502		
Methylamine		9.7271 \times 10^{-3} kg	1.0502		
Glyoxal		0.01118 kg	1.0502		
Formaldehyde		0.01373 kg	1.0502		
Ammonia		0.08065 kg	1.0502		
Imidazole		0.02934 kg	1.0502		
Outputs to technosphere					
Wastewater, average \{Europe without Switzerland\}	market for wastewater, average	Cut-off, U	0.00335 m³	1.0502	
Table S14: [HMIM][HSO₄] inventory

Group	Inventory	Flow (per-kg product)	STDEV		
Inputs from nature	Water, cooling, unspecified natural origin, RER	0.14759 m³	1.0502		
	Water, river, RER	0.0738 m³	1.0502		
	Water, well, in ground, RER	0.0738 m³	1.0502		
Inputs from technosphere	1-Methylimidazole	0.45657 kg	1.3269		
(materials)	Chemical factory, organics {GLO}	market for	Cut-off	4.00 × 10⁻¹⁰ p	2.9905
	Heat, district or industrial, natural gas {RER}	market group for	Cut-off	0.84646 MJ	1.0502
	Electricity, medium voltage {RER}	market group for	Cut-off	0.00013 kWh	1.0502
	Heat, from steam, in chemical industry {RER}	market for heat, from steam, in chemical industry	Cut-off	0.09405 MJ	1.0502
	Tap water {RER}	market group for	Cut-off	0.27581 kg	1.3269
	Sulfuric acid {RER}	production	Cut-off, U	0.54543 kg	1.3269
Emissions to air	Imidazole	0.00091 kg	1.0502		
	Water/m³	6.45411 × 10⁻⁶ m³	1.0502		
	Sulfuric acid	0.00109 kg	1.0502		
Emissions to water	Water, RER	0.14789 m³	1.0502		
Outputs to technosphere	Wastewater, average {Europe without Switzerland}				
	market for wastewater, average	Cut-off, U		2.50 × 10⁻⁵ m³	1.0502
Table S15: [TEA][HSO₄] inventory

Group	Inventory	Flow (per-kg product)	STDEV		
Inputs from nature	Water, cooling, unspecified natural origin, RER	0.07003 m³	1.0502		
	Water, river, RER	0.0738 m³	0.03502		
	Water, well, in ground, RER	0.0738 m³	0.03502		
Inputs from technosphere (materials)	Triethylamine RER	production	Cut-off, U	0.50885 kg	1.3269
	Chemical factory, organics {GLO}	market for	Cut-off	4.00 × 10^{-10} p	2.9905
	Heat, district or industrial, natural gas {RER}	market group for	Cut-off	0.12841 MJ	1.0502
	Electricity, medium voltage {RER}	market group for	Cut-off	0.00012 kWh	1.0502
	Heat, from steam, in chemical industry {RER}	market for heat, from steam, in chemical industry	Cut-off	0.01427 MJ	1.0502
	Tap water {RER}	market group for	Cut-off	0.27104 kg	1.3269
	Sulfuric acid {RER}	production	Cut-off, U	0.49319 kg	1.3269
Emissions to air	Triethylamine	1.02 × 10^{-3} kg	1.0502		
	Water/m³	3.3422 × 10^{-6} m³	1.0502		
	Sulfuric acid	0.00098 kg	1.0502		
Emissions to water	Water, RER	0.07032 m³	1.0502		
Outputs to technosphere	Wastewater, average {Europe without Switzerland}	market for wastewater, average	Cut-off, U	2.02 × 10^{-5} m³	1.0502
Table S16: LCA ReCiPe midpoint results, for 1 kg of solvent

Impact indicator	Unit	[TEA][HSO₄]	[HMIM][HSO₄]	Acetone	Glycerol
Global warming	kg CO₂ eq	1.69209	2.72340	2.44755	3.49701
Stratospheric ozone depletion	kg CFC11 eq	3.20 × 10⁻⁷	7.32 × 10⁻⁷	1.20 × 10⁻⁷	1.94 × 10⁻⁵
Ionizing radiation	kBq Co-60 eq	0.07024	0.20873	0.02407	0.11677
Ozone formation, Human health	kg NOₓ eq	0.00366	0.00397	0.00560	0.00599
Fine particulate matter formation	kg PM2.5 eq	0.00281	0.00369	0.00293	0.00513
Ozone formation, Terrestrial ecosystems	kg NOₓ eq	0.00414	0.00422	0.00615	0.00628
Terrestrial acidification	kg SO₂ eq	0.00897	0.01131	0.00840	0.01505
Freshwater eutrophication	kg P eq	0.00071	0.00078	0.00030	0.00075
Marine eutrophication	kg N eq	0.00052	0.00916	1.30E-05	0.00479
Terrestrial ecotoxicity	kg 1,4-DCB eq	7.85354	9.89144	1.71027	5.52801
Freshwater ecotoxicity	kg 1,4-DCB eq	0.05117	0.08063	0.01474	0.05628
Marine ecotoxicity	kg 1,4-DCB eq	0.07388	0.10394	0.02073	0.06780
Human carcinogenic toxicity	kg 1,4-DCB eq	0.05406	0.10076	0.04632	0.06241
Human non-carcinogenic toxicity	kg 1,4-DCB eq	1.71520	2.29409	0.42870	2.89151
Land use	m²a crop eq	0.02964	0.03823	0.00876	4.96817
Mineral resource scarcity	kg Cu eq	0.00674	0.00847	0.00125	0.00640
Fossil resource scarcity	kg oil eq	0.99145	1.18605	1.40073	0.51561
Water consumption	m³	0.10347	0.44592	0.03007	0.05052

Table S17: LCA ReCiPe endpoint results, for 1 kg of solvent

Impact indicator	Unit	[TEA][HSO₄]	[HMIM][HSO₄]	Acetone	Glycerol
Human health	DALY	4.138 × 10⁻⁶	6.700 × 10⁻⁶	4.432 × 10⁻⁶	7.467 × 10⁻⁶
Ecosystem quality	species×yr	9.444 × 10⁻⁹	1.765 × 10⁻⁸	1.015 × 10⁻⁸	5.920 × 10⁻⁸
Resource availability	USD₂₀¹³	0.387	0.421	0.535	0.165
Table S18: Monetization, currency exchange and inflation factors

Damage area	Unit	Monetization \((\text{EUR}_{2003}/\text{DALY})\)	Currency factor \((\text{USD}_{2003}/\text{EUR}_{2003})\)	Inflation factor \((\text{USD}_{2019}/\text{USD}_{2003})\)
Human health	DALY	74,000	1.16	1.46
Ecosystem quality	species×yr	9,500,000	1.16	1.46
Resource availability	USD\(_{2013}\)	–	–	1.08
Appendix D. Additional results

This appendix presents the direct cost and environmental impacts of the solvents using biomass loading as the functional unit. The data used to convert functional unit from kg of solvent to kg of biomass are reported in Table S19.

Table S19: Biomass pretreatment data used for converting the functional unit

Solvent	Reference	Biomass	Ratio (kg solvent/kg biomass)	Fraction (wt%)	Recycle (%)	Makeup (kg solvent/ton biomass)
[TEA][HSO₄]	ionoSolv³,⁵	Miscanthus	5	80%	99.2%	32
[HMIM][HSO₄]	ionoSolv³,⁵	Miscanthus	5	80%	99.2%	32
Acetone	Organosolv²	Wood	10	70%	98%	140
Glycerol	Lynam and Coronella⁷	Rice hull	10	100%	75%	2,500
Figure S1: Direct costs of solvents per kg of treated biomass

Figure S2: Endpoint environmental impacts of solvents per kg of treated biomass
References

[1] 1-Methylimidazole (M50834), accessed: 15-Mar-2020. URL https://www.sigmaaldrich.com/catalog/product/aldrich/m50834.

[2] C. Arato, E. K. Pye, and G. Gjennestad. The Lignol Approach to Biorefining of Woody Biomass to Produce Ethanol and Chemicals. In B. H. Davison, B. R. Evans, M. Finkelstein, and J. D. McMillan, editors, 26th Symposium on Biotechnology for Fuels and Chemicals, pages 871–882. Totowa, NJ, 2005. doi: 10.1007/978-1-59259-991-2_74.

[3] A. Brandt-Talbot, F. J. V. Gschwend, T. M. Fennell, P. S. and Lammens, B. Tan, J. Weale, and J. P. Hallett. An economically viable ionic liquid for the fractionation of lignocellulosic biomass. Green Chemistry, 19(13):3078–3102, 2017. doi: 10.1039/C7GC00705A.

[4] H. Gao, C. Ye, C. M. Piekarski, and J. M. Shreeve. Computational characterization of energetic salts. The Journal of Physical Chemistry C, 111(28):10718–10731, 2007. doi: 10.1021/jp070702b.

[5] F. J. V. Gschwend, F. Malaret, S. Shinde, A. Brandt-Talbot, and J. P. Hallett. Rapid pretreatment of Miscanthus using the low-cost ionic liquid triethylammonium hydrogen sulfate at elevated temperatures. Green Chemistry, 20(15):3486–3498, 2018. doi: 10.1039/C8GC00837J.

[6] H Jenkins, D. Tudela, and L. Glasser. Lattice potential energy estimation for complex ionic salts from density measurements. Inorganic Chemistry, 41(9):2364–2367, 2002. doi: 10.1021/ic011216k.

[7] J. G. Lynam and C. J. Coronella. Glycerol as an ionic liquid co-solvent for pretreatment of rice hulls to enhance glucose and xylose yield. Bioresource Technology, 166:471–478, 2014. doi: 10.1016/j.biortech.2014.05.086.

[8] G. Towler and R. Sinnott. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. Elsevier, 2012.

[9] J. O. Valderrama and R. E. Rojas. Critical properties of ionic liquids. Revisited. Industrial & Engineering Chemistry Research, 48(14):6890–6900, 2009.

[10] S. P. Verevkin, D. H. Zaitsau, V. N. Emel’yanenko, Y. U. Panlechka, A. V. Blokhin, A. B. Bazyleva, and G. J. Kabo. Thermodynamics of Ionic Liquids Precursors: 1-Methylimidazole. The Journal of Physical Chemistry B, 115(15):4404–4411, 2011. doi: 10.1021/jp201752j.

[11] B. P. Weidema and M. S. Wesnæs. Data quality management for life cycle inventoriesan example of using data quality indicators. Journal of Cleaner Production, 4(3):167–174, 1996. doi: 10.1016/S0959-6526(96)00043-1.