γδ T cells are unconventional innate-like lymphocytes that actively participate in protective immunity against tumors and infectious organisms including bacteria, viruses, and parasites. However, γδ T cells are also involved in the development of inflammatory and autoimmune diseases. γδ T cells are functionally characterized by very rapid production of pro-inflammatory cytokines, while also impacting on (slower but long-lasting) adaptive immune responses. This makes it crucial to understand the molecular mechanisms that regulate γδ T cell effector functions. Although they share many similarities with αβ T cells, our knowledge of the molecular pathways that control effector functions in γδ T cells still lags significantly behind. In this review, we focus on the segregation of interferon-γ versus interleukin-17 production in murine thymic-derived γδ T cell subsets defined by CD27 and CCR6 expression levels. We summarize the most recent studies that disclose the specific epigenetic and transcriptional mechanisms that govern the stability or plasticity of discrete pro-inflammatory γδ T cell subsets, whose manipulation may be valuable for regulating (auto)immune responses.

Keywords: γδ T cells, T cell differentiation, interleukin-17, interferon-γ, transcription factors, cytokines

MINI REVIEW ARTICLE

By secreting large amounts of IFN-γ, γδ T cells participate in controlling infection through the activation of macrophages and cytotoxic lymphocytes. IFN-γ producing γδ T cells have been shown to play major protective roles during murine West Nile, herpes and influenza viral infections (11–13); *Listeria monocytogenes*, *Escherichia coli*, and *Bordetella pertussis* bacterial infections (14–18); and *Plasmodium chabaudi* and *Toxoplasma gondii* parasitic infections (19–22). Moreover, γδ tumor-infiltrating lymphocytes constitute a critical early source of IFN-γ that controls tumor development *in vivo* (23, 24).

With respect to the production of IL-17, γδ T cells are a key component of the defense against infections with *Mycobacterium tuberculosis*, *E. coli*, *L. monocytogenes*, *Staphylococcus aureus*, *Candida albicans*, and *Pneumococci* (18, 25–32). One of the main functions of these IL-17-producing γδ T cells is to enable extremely fast neutrophil recruitment at the site of infection.

On the other hand, IL-17-producing γδ T cells have pathogenic roles in various inflammatory and autoimmune disorders (and animal models thereof), including collagen-induced arthritis (CIA) (33), experimental autoimmune encephalomyelitis (EAE) (8, 34–38), chronic granulomatous disease (39), uveitis (40), ischemic brain inflammation (41), colitis (42, 43), and psoriasis (44, 45). Moreover, IL-17 also seems to promote angiogenesis and consequently tumor growth (46) and metastasis (47).

Therefore, from a therapeutic point of view, it is of utmost importance: (i) to define in detail the γδ T cell subset(s) that perform each given function; (ii) to understand the extracellular clues that regulate the development of each subset; and (iii) to identify the molecular program(s) of differentiation that control the acquisition and maintenance of a specific effector function.

Here we will essentially focus on mouse models, but to emphasize the relevance of studying specific murine effector γδ T cell subsets we will highlight their human counterparts. For a comprehensive review on the differentiation of human γδ T cells please refer to Ref. (48). Moreover, although the present review focuses on IFN-γ- and IL-17-secreting γδ T cells, we note that some γδ T cell subsets produce other cytokines including IL-4, IL-5, IL-13 (49–51), IL-10 (52, 53), and IL-22 (54–56).
PHENOTYPIC DESCRIPTION OF IFN-γ- OR IL-17-PRODUCING γδ T CELL SUBSETS

Functional γδ T cell subsets in the mouse have been traditionally defined by their TCR Vγ usage [please note that we use the nomenclature proposed by Heilig and T onegawa (57)] and preferential tissue distribution. For example, epidermal Vγ5Vδ1 T cells are mainly associated with the production of IFN-γ (58), although they have also been shown to produce IL-17 in response to skin injury (59). Vγ6Vδ1 T cells that are present in the tongue, lungs, and reproductive tracts mainly produce IL-17. Moreover, Vγ1 T cells colonize the liver, spleen, and intestine preferentially secrete IFN-γ, whereas Vγ4 T cells, which recirculate through blood, spleen, and lymph nodes, and are also located in the lungs, favor IL-17 production. However, this dichotomy is not so strict as mouse Vγ4 T cells produce IFN-γ or IL-17 depending on the model studied (7, 60, 61).

Although a genome-wide transcriptional profiling of γδ thymocytes segregated the expression of some genes associated with IFN-γ or IL-17 production with selective Vγ chain usage (62), work from our laboratory (7), together with others (8, 63), has shown that γδ T cell functions are not mutually exclusive between Vγ1 and Vγ4 T cell subsets. Our collective efforts have identified CD27 and CCR6 as useful markers of discrete pro-inflammatory γδ T cell subsets: CD27 is expressed on IFN-γ-producing γδ T cells whereas IL-17-producing γδ T cells are CD27(−) but express CCR6 (7, 54, 63) (see Figure 1 for further details). Of note, CD122 and NK1.1 constitute additional markers of IFN-γ-producing γδ T cells (8, 63). Consequently, we favor categorization of γδ T cell subsets based on their effector functions rather than on TCR Vγ usage (10). The definition of surface phenotypes associated with effector cell functions has greatly facilitated the dissection of the molecular mechanisms that control the differentiation of IFN-γ- or IL-17-producing γδ T cells.

DIFFERENCES IN CYTOKINE PRODUCTION BETWEEN γδ AND CD4 T CELLS

One of the main differences between cytokine production by γδ and CD4 T cells resides in the spontaneous release of cytokine by γδ T cells, which strikingly contrasts with the delayed response of naïve CD4 T cells. This can be explained by γδ T cells exiting the thymus already functionally competent to produce either IFN-γ or IL-17 (7–9, 64), whereas CD4 T cells require a long differentiation program in peripheral lymphoid organs that consists of activation, intense proliferation, and induction of transcription factors that selectively control the profile of cytokines produced (65). As CD4 T helper cells have been extensively studied, it is reasonable to question if the programs of differentiation that prevail in CD4 T cells also operate in γδ T cells. Here we will focus on the molecular mechanisms that govern the differentiation of naïve CD4 T cells into IFN-γ-producing (Th1) and IL-17-producing (Th17) cells, as counterparts to CD27(+) γδ27(+) and CD27(−) CCR6(+) γδ27(−) γδ T cell subsets, respectively.

FIGURE 1 | IFN-γ-producing and IL-17-producing CD4 and γδ T cells.

In this figure, we have compared the extracellular signals and the transcriptional networks that regulate IFN-γ or IL-17 production in CD4 (left: Th1 and Th17) and γδ (right: γδ27(+) and γδ27(−)) T cells. In addition, the expression pattern of markers specifically associated with IFN-γ-producing γδ27(+) and IL-17-producing γδ27(−) T cells is detailed. The emergence of IL-17+ IFN-γ- T cells is highlighted for both CD4 and γδ T cells. Of note, the transcription factors in parenthesis (TCF1 and LEF1) below γδ27(−) T cells have been proposed to inhibit IL-17 production in these cells.
ENVIRONMENTAL CUES THAT GOVERN THE ACQUISITION OF TYPES 1 OR 17 EFFECCTOR FUNCTIONS

Upon peripheral activation, naïve CD4 T cells are polarized toward the Th1 fate in the presence of IL-12 (66). As yet, there is no precise information as to the role of IL-12 in the development of γδ T cells although IL-12 (in synergy with IL-18) induces the production of IFN-γ by γδ T cells expressing NK1.1 (63). Our unpublished data suggest that IL-15 and, to a lesser extent IL-2, strongly promote IFN-γ production by γδ T cells (Barros-Martins et al., manuscript in preparation).

Th17 polarization entails TGF-β, IL-6, and IL-1β, whereas IL-23 is required for maintenance and expansion (67–69). Although still controversial, the development of IL-17-producing γδ T cells in the thymus (and their maintenance in the periphery) appears to be dependent on TGF-β but mostly independent of IL-6 (9, 70–73). Unexpectedly, IL-7 induced rapid and substantial expansion of IL-17-producing γδ T cells (74). Furthermore, they require IL-23 and IL-1β for peripheral expansion and local induction of IL-17 (30, 75, 76). This is clearly evidenced by the significant reduction in IL-17-secreting γδ T cell numbers following L. monocytogenes infection in IL-23−/− and IL-23R−/− mice (72, 77) or in IL-1R1−/− mice upon EAE induction (36). It was also shown that IL-18 synergizes with IL-23 to promote IL-17 production by γδ T cells (78). IL-17 production by γδ T cells can be triggered independently of TCR signaling (36, 54, 76), but it is worth noting that a small subset of CD44+CD62L+ γδ T cells (a phenotype associated with γδ+ cells; see Figure 1) selectively recognized phycoerythrin via the TCR and became CD62L− in vivo (7). These data clearly highlight that distinct mechanisms govern the production of IFN-γ and IL-17 in CD4 and γδ T cells (Figure 1). Further studies are warranted to precisely delineate the molecular components of the Types 1 and 17 programs of γδ T cells.

STABILITY VERSUS PLASTICITY OF γδ T CELL SUBSETS

Initially studies suggested that the segregation between IL-17 and IFN-γ production that emerged in the thymus appeared to be stable in the two γδ T cell subsets, including in peripheral lymphoid organs and upon challenge with infectious agents in vivo (7, 76). Furthermore, incubating the γδ T cells in Th17 conditioning milieu, or the γδ− cells in Th1 conditioning milieu, failed to “convert” their cytokine production profile (63, 85). It was therefore assumed that, due to thymic “functional pre-commitment,” murine γδ T cells harbored little plasticity, in stark contrast with CD4 T cells (100).

IL-17 production by γδ T cells is also strictly dependent on RORe (70, 85, 86, 93). However, the similarities between the Type 17 program of γδ and CD4 T cells end with this transcription factor, since STAT3 and IRF4 have been shown to be dispensable for the differentiation of IL-17+ γδ T cells (93, 94). Of note, detection of IL-17+ γδ T cells in STAT3-deficient mice further suggests that IL-6, IL-21, and IL-23 are unlikely to play major roles for their development, although they may be involved in peripheral reactivation of these γδ cells. AhR has also been shown to be dispensable for IL-17 but required for IL-22 production by γδ T cells (74).

Finally, our unpublished data show that IL-17-producing γδ T cells are generated in the absence of RORe or BATF (Barros-Martins et al., manuscript in preparation). Thus, many transcription factors that are essential for Th17 development are not required for the differentiation of their IL-17+ γδ T cell counterparts.

In fact, γδ T cells appear to rely on distinct molecular pathways to regulate their production of IL-17. Namely, several transcription factors such as Sox13 and Sox4 (95, 96), Hes-1 (93), RelB (97), ETV5 (98) along with the kinase Blk (99), selectively participate in IL-17 production by γδ T cells. On the other hand, TCF1 and LEF1 are negative regulators of IL-17 expression in γδ T cells (96).

These data clearly highlight that distinct mechanisms govern the production of IFN-γ and IL-17 in CD4 and γδ T cells (Figure 1). Further studies are warranted to precisely delineate the molecular components of the Types 1 and 17 programs of γδ T cells.

TRANSCRIPTIONAL REGULATION OF CYTOKINE PRODUCTION IN γδ AND CD4 T CELLS

During Th1 polarization of naïve CD4 T cells, IL-12 activates STAT4 (80), but it is unclear if this IL-12/STAT4 axis plays any role in IFN-γ production by γδ T cells. The “master” transcription factor that regulates the production of IFN-γ in CD4 T cells is T-bet (81, 82). Whereas Th1 differentiation is fully abrogated in the absence of T-bet, γδ T cells only partially require T-bet to produce IFN-γ (83–85). Other transcription factors that have been proposed to play major roles in γδ T cells include Eomes and Egr3 (58, 84), although the potential cooperation between these three transcription factors within specific γδ T cell subsets still needs to be clarified.

Th17 differentiation relies on cytokines that target STAT3 and lead to the expression of the master transcription factor retinoic-related orphan receptor γt (RORe) (86) that synergizes with RORe (87), together with IRF4 (88) and BATF (89) to propagate IL-17 production. In vivo Th17 cell differentiation also involves the aryl hydrocarbon receptor (AhR) (90, 91). All together this led to the concept that a specific transcriptional network is operating during initiation and stabilization of the Th17 phenotype (92).
that γδ27− T cells could acquire IFN-γ expression under specific conditions.

IDENTIFICATION OF γδ IL-17+ IFN-γ+ DOUBLE PRODUCERS

By performing a series of in vitro experiments, we found that IL-1β strongly synergizes with IL-23 to induce IFN-γ expression specifically in IL-17-producing γδ27− cells (Figure 1). Importantly, epigenetic and transcriptional polarization of IL-1R1 and IL-23R predicted the responsiveness of γδ27− cells, but not γδ27+ cells, to these two inflammatory cytokines.

This plastic behavior of γδ27− T cells was also observed in vivo, as IL-17+ IFN-γ+ γδ27− cells could be found in the peritoneal cavity of mice bearing ovarian tumors (85). Moreover, these cells have been detected in the brain of mice suffering from early stages of EAE (103); and in the mesenteric lymph nodes of mice infected with L. monocytogenes (104).

Double producing IL-17+ IFN-γ+ γδ T cells have also been characterized in humans. Thus, while a fraction of neonatal and adult γδVαVβ2 T cells incubated with IL-6, IL-1β, and TGF-β in the presence of TCR agonists produced IL-17A, the addition of IL-23 resulted in IFN-γ co-production (105). Moreover, IL-17+ IFN-γ+ cells of both Vβ1 and Vβ2 subtypes were found in the circulation of HIV+ patients (106).

Thus, although their precise physiological relevance is still to be established, IL-17+ IFN-γ+ double producers can clearly be a distinct component of the γδ T cell response in scenarios of infection, cancer, and autoimmune.

CD4 IL-17+ IFN-γ+ DOUBLE PRODUCERS AND THEIR BIOLOGICAL RELEVANCE

IL-17+ T cell double producers have been well characterized in the CD4 T cell population (Figure 1). In particular, both murine (107, 108) and human (109–111) Th17 cells often show plasticity in acquiring IFN-γ production. Strikingly, these IFN-γ+ (Th1-like) Th17 cells have been strongly associated with pathogenicity in murine (107, 112, 113) and human (114) autoimmune syndromes. The molecular determinants of pathogenicity of Th1-like Th17 cells are still controversial, with studies either implicating T-bet and IFN-γ (108, 112, 115) or not (116–118). Nonetheless, it is clear that IL-23 is a major driver of Th1-like Th17 cell pathogenicity (108, 112, 117).

Similar studies on in vivo models should now explore the potential pathogenic role of γδ IL-17+ IFN-γ+ double producers. This notwithstanding, it has been proposed that, in response to L. monocytogenes, IL-17+γδ27− producing γδ27− cells become memory cells capable of providing enhanced protection against recall infection (104). Thus, γδ IL-17+ IFN-γ+ double producers may potentially play host-protective versus pathogenic roles in distinct disease models, which will be an interesting topic for future research.

CONCLUDING REMARKS

As a population, γδ T cells perform a wide variety of functions, but discrete subsets have more restricted effector properties. Although thymic development endows a significant fraction of murine γδ T cells with a “pre-determined” effector function, recent data provide strong evidence for functional plasticity in the periphery (particularly for γδ27− T cells).

Several fundamental questions remain unanswered. Is functional plasticity restricted to γδ T cells located in secondary lymphoid organs or does it extend to subsets that populate epithelial tissues/mucosas? Why did γδ T cells and CD4 T cells evolve different transcriptional networks to regulate the production of the same pro-inflammatory cytokines? What are the specific roles of γδ IL-17+ IFN-γ+ double producers in models of infection, cancer, and autoimmunity? More globally, it will be important to dissect the physiological stimuli that drive the activation of effector γδ T cells. It is particularly puzzling that we still know so little about the role of the TCRγδ, and the identity of its ligands, in the differentiation and activation of functional γδ T cell subsets. Answering these questions will improve our understanding of γδ T cell physiology and likely provide new avenues for the design of immunotherapeutic approaches.

ACKNOWLEDGMENTS

We thank Joana Barros-Martins for unpublished data mentioned here and for reading the manuscript. Our work is funded by the European Research Council (StG_260352) and the European Molecular Biology Organization Young Investigator Program. Karine Serre is funded by an individual fellowship from Fundação para a Ciência e Tecnologia.

REFERENCES

1. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Toneyawa S. Complete primary structure of a heterodimeric T-cell receptor deduced from cDNA sequences. *Nature* (1984) **309**(5971):757–62. doi:10.1038/309757a0
2. Brenner MB, McClain J, Dyalynas DP, Strominger JL, Smith JA, Owen FL, et al. Identification of a putative second T-cell receptor. *Nature* (1986) **322**(6075):145–9. doi:10.1038/322145a0
3. Saito H, Kranz DM, Takagaki Y, Hayday AC, Eisen HN, Toneyawa S. A third rearranged and expressed gene in a clone of cytotoxic T lymphocytes. *Nature* (1984) **312**(5989):36–40. doi:10.1038/312036a0
4. Hirano M, Guo P, McCurley N, Schoppm M, Das S, Boehm T, et al. Evolutionary implications of a third lymphocyte lineage in lampreys. *Nature* (2013) **501**(7467):345–8. doi:10.1038/nature12467
5. Li J, Das S, Herrin BR, Hirano M, Cooper MD. Definition of a third VLR gene in hagfish. *Proc Natl Acad Sci U S A* (2013) **110**(37):15013–8. doi:10.1073/pnas.131450110
6. Hayday AC. Gammadelta T cells and the lymphoid stress-surveillance response. *Immunity* (2009) **31**(2):184–96. doi:10.1016/j.immuni.2009.08.006
7. Ribo R, deBarras A, Pang DJ, Neves JF, Papazak V, Roberts SJ, et al. CD2 is a thymic determinate of the balance between interferon-gamma- and interleukin-17-producing gammadelta T cell subsets. *Nat Immunol* (2009) **10**(4):427–36. doi:10.1038/ni.1717
8. Jensen KD, Su X, Shin S, Li L, Youssef S, Yamasaki S, et al. Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. *Immunity* (2008) **29**(1):90–100. doi:10.1016/j.immuni.2008.04.022
9. Shibata K, Yamada H, Nakamura R, Sun X, Isumi M, Yoshikai Y. Identification of CD25+ gamma delta T cells as fetal thymus-derived naturally occurring IL-17 producers. *J Immunol* (2008) **181**(9):5940–7.
10. Prinz I, Silva-Santos B, Pennington DJ. Functional development of gammadelta T cells. *Eur J Immunol* (2013) **43**(8):1988–94. doi:10.1002/eji.201343759
11. Carding SR, Allan WC, McMickle A, Doherty PC. Activation of cytokine genes in T cells during primary and secondary murine influenza pneumonia. *J Exp Med* (1993) **177**(2):475–82. doi:10.1084/jem.177.2.475
12. Wang T, Scully E, Yin Z, Kim JH, Wang S, Yan J, et al. IFN-gamma-producing gamma delta T cells help control murine West Nile virus infection. *J Immunol* (2003) **171**(1):352–31.
13. Nishimura H, Utajima Y, Kamimoto Y, Ohata M, Watake T, Kishikawa K, et al. Intraepithelial gammadelta T cells may bridge a gap between innate
immunity and acquired immunity to herpes simplex virus type 2. J Virol (2004) 78(9):4927–30. doi:10.1128/JVI.78.9.4927-4930.2004.

14. Hiromatsu K, Yoshikai Y, Matsuzaki G, Ogha S, Muramori K, Matsumoto K, et al. A protective role of gamma/delta T cells in primary infection with Listeria monocytogenes in mice. J Exp Med (1992) 175(1):49–56. doi:10.1084/jem.175.1.49.

15. Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin GW, Lepper H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-inducing ligands by gamma/delta T cells in vivo. Nature (1995) 373(6511):255–7. doi:10.1038/37352a0.

16. Takano M, Nishimura H, Kimura Y, Mokuno Y, Washizu J, Itohara S, et al. Protective roles of gamma delta T cells and interleukin-15 in Escherichia coli infection in mice. Infect Immun (1998) 66(7):3270–8.

17. Zachariasdo O, Cassidy JP, Brady J, Mahon BP. Gammadelta T cells regulate the early inflammatory response to Bordetella pertussis infection in the murine respiratory tract. Infect Immun (2006) 74(3):1837–45. doi:10.1128/IAI.74.3.1837-1845.2006.

18. Hamada S, Umemura M, Shiono T, Hara H, Kishihara K, Tanaka K, et al. Importance of murine Vdelta1gammadelta T cells expressing interferon-gamma and interleukin-17A in innate protection against Listeria monocytogenes infection. Immunology (2008) 125(2):170–7. doi:10.1111/j.1365-2567.2008.02841.x.

19. Seixas EM, Langhorne J. Gammadelta T cells contribute to chronic parasitemia in Plasmodium chabaudi infections in mice. J Immunol (1999) 162(5):2874–1.

20. Lee YH, Shin DW, Kasper LH. Sequential analysis of cell differentials and IFN-gamma production of splenocytes from mice infected with Toxoplasma gondii. Korean J Parasitol (2000) 38(2):85–90. doi:10.3347/kjp.2000.38.2.85.

21. Seixas E, Fonseca L, Langhorne J. The influence of gammadelta T cells on the CD4+ T cell and antibody response during a primary Plasmodium chabaudi chabaudi infection in mice. Parasite Immunol (2002) 24(3):131–40. doi:10.1046/j.1365-3024.2002.00446.x.

22. Lee YH, Kasper LH. Immune responses of different mouse strains after challenge with equivalent lethal doses of Toxoplasma gondii. Parasite (2004) 11(1):89–97.

23. Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH, et al. Gamma delta T cell-derived IFN-gamma and interleukin-17A in innate protection against Plasmodium chabaudi. J Immunol (2002) 169(3):433–42. doi:10.1121/169.3.433.

24. Lanca T, Costa MF, Goncalves-Sousa N, Rei M, Grosso AR, Penido C, et al. Protective role of naturally occurring interleukin-17A-producing gammadelta T cells in skin inflammation. J Immunol (2011) 187(5):2969–81. doi:10.4049/jimmunol.1004021.

25. Nakasone C, Yamamoto N, Nakamatsu M, Kinjo T, Miyagi K, Uezu K, et al. Protective role of the inflammatory CCR2/CCL2 chemokine pathway through IL-17 in host defense against pneumococcal infection. J Exp Med (2007) 204(7):1762–73. doi:10.1084/jem.11273.

26. Umemura M, Yagahi A, Hamada S, Begum MD, Watanabe H, Kawakami K, et al. Protective role of cerebral interleukin-17-producing gammadelta T cells in the delayed phase of ischemic brain injury. J Clin Invest (2009) 118(12):4946–50. doi:10.1172/JCI36186.

27. Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, et al. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity (2010) 33(3):35–63. doi:10.1016/j.immuni.2010.08.013.

28. Wolher JE, Smith SS, Zinn KR, Bullard DC, Barnum SR. Gammadelta T cells in EAE: early trafficking events and cytokine requirements. Eur J Immunol (2009) 39(6):1516–26. doi:10.1002/eji.200839176.

29. Petersmann F, Rothhammer V, Claussen MC, Haas JD, Blanco LR, Heinik S, et al. Gammadelta T cells enhance autoimmunity by restraining regulatory T cell responses via an interleukin-23–dependent mechanism. Immunity (2010) 33(3):35–63. doi:10.1016/j.immuni.2010.08.013.

30. Romanis L, Fallarino F, De Luca A, Montagnoli C, D’Angelo C, Zelante T, et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous disease. Nature (2008) 451(7175):211–5. doi:10.1038/nature06471.

31. Dejima T, Shibata K, Yamada H, Hara H, Iwakura Y, Naito S, et al. Protective role of IL-17-producing ruminant gammadelta T cells against Mycobacterium tuberculosis infection in mice. J Immunol (2009) 183(1):560–7. doi:10.4049/jimmunol.0800241.

32. Chiaia T, Sugiyama Y, Obohosi H, Sugimori H, Nakagawa R, Takada I, et al. Pivotal role of cerebral interleukin-17–producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med (2009) 15(8):946–50. doi:10.1038/nm.1999.

33. Park SG, Mathur R, Long M, Hosh N, Hao L, Hayden MS, et al. T regulatory cells maintain intestinal homeostasis by suppressing gammadelta T cells. Immunity (2010) 33(3):35–63. doi:10.1016/j.immuni.2010.08.013.

34. Do JS, Visperas A, Dong C, Baldwin WM III, Min B. Cutting edge: generation of coloctic Th17 CD4 T cells is enhanced by IL-17+ gammadelta T cells. J Immunol (2009) 183(1):560–7. doi:10.4049/jimmunol.0800241.

35. Cai Y, Shao H, Lan C, Nian H, O’Brien RL, Born WK, et al. Major role of gammadelta T cells in the generation of IL-17+ uveitogenic T cells. J Immunol (2009) 183(1):560–7. doi:10.4049/jimmunol.0800241.

36. Pantelyushkin S, Haak S, Ingold B, Kögler F, Heppner FL, Navarini AA, et al. Rgorrampat+ innate lymphocytes and gammadelta T cells initiate psoriasis-like plaque formation in mice. J Clin Invest (2012) 122(6):2252–6. doi:10.1172/JCI61862.
daunorubicin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol (1999) 163(1):242–9.

53. Rhodes KA, Andrew EM, Newton DJ, Tramonti D, Carding SR. A sub-set of IL-10-producing gammadelta T cells protect the liver from Listeria-elicted, CD8(+) T cell-mediated injury. Eur J Immunol (2008) 38(8):2274–83. doi:10.1002/eji.200838354

54. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity (2009) 31(2):321–30. doi:10.1016/j.immuni.2009.06.020

55. Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP. Natural killer cell cytokine signature in murine and human IL-17-producing gammadelta T cells. Proc Natl Acad Sci U S A (2012) 109(43):17549–54. doi:10.1073/pnas.1204327119

56. Simonian PL, Wehrmann F, Roark CL, Born WK, O'Brien RL, Fontenot AP. Differentiation of pro-inflammatory gamma-delta T cells. Front Immunol (2012) 3:55. doi:10.3389/fimmu.2012.00061

57. Heilig JS, T onegawa S. Diversity of murine gamma genes and expression in the murine testis. Immunity (1998) 19(6):836–40. doi:10.1016/S1074-7617(00)80154-3

58. Turchinovich G, Hayday AC. Skint-1 identifies a common molecular mechanism that propagates IL-17 signaling. Immunity (2013) 39(1):231–4. doi:10.1016/j.immuni.2013.01.003

59. Michel ML, Pang DJ, Haufe SF, Potocnik AJ, Pennington DJ, Hayday AC. Interleukin-17 (IL-17) cytokine family members promote differentiation of IL-17+ regulatory T cells. J Immunol (2011) 185(11):6421–5. doi:10.4049/jimmunol.1002283

60. Meeks KD, Seeve AN, Kolls JK, Gilardi N, Berg RE. IL-17 is required for protection against systemic infection with Listeria monocytogenes. J Immunol (2009) 182(12):8026–34. doi:10.4049/jimmunol.0901588

61. Hahn YS, Taube C, Jin N, Takeda K, Park JW, Wands JM, et al. V gamma 2V delta 2 and CD4 T cells that mediate autoimmunity. J Immunol (2011) 181(1):5738–48. doi:10.4049/jimmunol.1003397

62. Chen L, He W, Kim ST, Tao I, Gao Y, Chi H, et al. Epigenetic and transcriptional programs lead to default IFN-gamma production by gammaradelta T cells. J Immunol (2007) 178(5):2730–6.

63. Schmolka N, Serre K, Grosso AR, Rei M, Pennington DJ, Gomes AQ, et al. Epigenetic and transcriptional signature of stable versus plastic differentiation of proinflammatory gammaradelta T cell subsets. Nat Immunol (2013) 14(10):1093–100. doi:10.1038/ni.2702

64. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The AP-1 transcription factor Batf controls T(H)17 differentiation. Nat Immunol (2012) 13(5):518–24. doi:10.1038/ni.2106

65. Zhu J, Yamane H, Paul WE. Differentiation of effector CD4 T cell populations. Annu Rev Immunol (2010) 28:445–89. doi:10.1146/annurev-immunol-030509-101212

66. Trinchieri G. Interleukin-12: a cytokine produced by antigen-presenting cells that regulates Th1 versus Th2 differentiation. Annu Rev Immunol (2000) 18:609–52. doi:10.1146/annurev.immunol.18.1.609

67. T cell Biology
101. Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell (2013) 14(6):681–93. doi:10.1016/j.cell.2013.01.010

102. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional and molecular signature of pathogenic TH17 cells. Nat Immunol (2013) 14(6):584–92. doi:10.1038/ni.2585

103. Reynolds JM, Martinez GI, Chung Y, Dong C. Toll-like receptor 4 signaling in Th17 cell subsets. Front. Immunol. (2013) 4:17. doi:10.3389/fimmu.2013.00431

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 31 October 2013; paper pending published: 11 November 2013; accepted: 21 November 2013; published online: 05 December 2013. Citation: Serre K and Silva-Santos B (2013) Molecular mechanisms of differentiation of murine pro-inflammatory γδ T cell subsets. Front. Immunol. 4:431. doi: 10.3389/fimmu.2013.00431

This article was submitted to T Cell Biology, a section of the journal Frontiers in Immunology.

Copyright © 2013 Serre and Silva-Santos. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.