OPTIMAL RESULTS FOR THE FRACTIONAL HEAT EQUATION INVOLVING THE HARDY potential

BOUMEDIENE ABDELLAOUI, MARÍA MEDINA, IRENEO PERAL, ANA PRIMO

Abstract. In this paper we study the influence of the Hardy potential in the fractional heat equation. In particular, we consider the problem

\begin{equation}
(P_0) \left\{ \begin{aligned}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + \theta u^p + cf
 \text{ in } \Omega \times (0,T), \\
 u(x, t) &= 0 \text{ in } \Omega \times (0,T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{aligned} \right.
\end{equation}

where $N > 2s$, $0 < s < 1$, $(-\Delta)^s$ is the fractional Laplacian of order $2s$, $p > 1$, $c, \lambda > 0$, $u_0 \geq 0$, $f \geq 0$ are in a suitable class of functions and $\theta = \{0, 1\}$. Notice that (P_0) is a linear problem, while (P_1) is a semilinear problem.

The main features in the article are:

(1) Optimal results about existence and instantaneous and complete blow up in the linear problem (P_0), where the best constant $\Lambda_{N,s}$ in the fractional Hardy inequality provides the threshold between existence and nonexistence. Similar results in the local heat equation were obtained by Baras and Goldstein in [8]. However, in the fractional setting the arguments are much more involved and they require the proof of a weak Harnack inequality for a weighted operator that appear in a natural way. Once this Harnack inequality is obtained, the optimal results follow as a simpler consequence than in the classical case.

(2) The existence of a critical power $p_+(s, \lambda)$ in the semilinear problem (P_1) such that:

(a) If $p > p_+(s, \lambda)$, the problem has no weak positive supersolutions and a phenomenon of complete and instantaneous blow up happens.

(b) If $p < p_+(s, \lambda)$, there exists a positive solution for a suitable class of nonnegative data.

1. Introduction and statement of the main results

In this work we will study the solvability of the following linear problem,

\begin{equation}
(1) \left\{ \begin{aligned}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + f \text{ in } \Omega \times (0,T), \\
 u(x, t) &= 0 \text{ in } \Omega \times (0,T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{aligned} \right.
\end{equation}

and of the semilinear problem,

\begin{equation}
(2) \left\{ \begin{aligned}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + u^p + f \text{ in } \Omega \times (0,T), \\
 u(x, t) &= 0 \text{ in } \Omega \times (0,T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{aligned} \right.
\end{equation}

\textbf{Keywords.} Fractional Laplacian heat equation, Hardy’s inequality, existence and nonexistence results, instantaneous and complete blow up.
where $N > 2s$, $0 < s < 1$, $p > 1$, and c and λ are positive constants. We assume that f and u_0 are non negative functions satisfying some hypotheses that we will precise later. By $(-\Delta)^s$ we denote the fractional Laplacian of order $2s$, that is,

$$(-\Delta)^s u(x) := a_{N,s} \text{ P.V.} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N + 2s}} \, dy, \quad s \in (0, 1),$$

where

$$a_{N,s} := 2^{2s - 1} \pi^{-\frac{N}{2}} \frac{\Gamma\left(\frac{N + 2s}{2}\right)}{|\Gamma(-s)|},$$

is the normalization constant so that the identity

$$(-\Delta)^s u = \mathcal{F}^{-1}(|\xi|^{2s} \mathcal{F} u), \quad \xi \in \mathbb{R}^N, \quad s \in (0, 1),$$

holds for every $u \in \mathcal{S}(\mathbb{R}^N)$, the Schwartz class (see [24]). This last identity justifies why we call fractional Laplacian to the integral operator. Notice that $(-\Delta)^s u$ is well defined if, for instance, $u \in \mathcal{L}^s(\mathbb{R}^N) \cap L^{2s + \beta}(\mathbb{R}^N)$ (or $C^{1,2s + \beta}$ if $2s + \beta > 1$), for some $\beta > 0$. Here

$$\mathcal{L}^s(\mathbb{R}^N) := \left\{ u : \mathbb{R}^N \to \mathbb{R} \text{ measurable : } \int_{\mathbb{R}^N} \frac{|u(x)|}{1 + |x|^{N + 2s}} \, dx < +\infty \right\},$$

endowed with the norm

$$\|u\|_{\mathcal{L}^s(\mathbb{R}^N)} := \int_{\mathbb{R}^N} \frac{|u(x)|}{1 + |x|^{N + 2s}} \, dx.$$

Notice also that, for u under these hypotheses, $(-\Delta)^s u$ is a continuous function. See [35].

In the case $s = 1$, these problems correspond to the classical heat equation, and they have been deeply understood in the past years (see for instance [8] for (1) and [3] for (2)). For $s \in (0, 1)$, the fractional setting, there exists also a large literature dealing with the case $\lambda = 0$. We refer for instance to [15, 22, 28] and the references therein. A result on the uniqueness of positive solution to the linear problem can be found in [10].

However, the case when $\lambda > 0$ and $s \in (0, 1)$ is quite different. Firstly, any solution to problem (1) is unbounded close to the origin, even for nice data. This fact was proved in the local case by Baras-Goldstein in [8]. Indeed, the precise rate of growth of the solutions near the origin will be the key to obtain the optimal results. In particular, it requires some sharp local estimates, that are based on a Harnack inequality for a related weighted problem. It is worthy to point out here the difference with the local case, where this rate is obtained just by solving an elementary linear differential equation.

Concerning to the semilinear problem (2), the main feature that we show in this paper is the existence of a critical exponent $p_+(s, \lambda)$ such that for $p > p_+(s, \lambda)$, there does not exist positive solution for any nontrivial nonnegative initial datum, while if $p < p_+(s, \lambda)$, it is possible to establish a suitable class of nonnegative data for which we can find a positive solution. Here we always assume $0 < \lambda < \Lambda_{N,s}$, where $\Lambda_{N,s}$ the critical constant in the Hardy inequality (5). As before, the local lower estimate of the solutions close to the origin is the key to obtain to have the results. Furthermore, when $p > p_+(s, \lambda)$ the nonexistence statement is understood in the strongest possible way, that is, we prove a complete and instantaneous blow up, that is, if u_n are the solutions to the truncated problems, i.e., by considering $\lambda(|x|^{2s} + \frac{1}{|y|})^{-1}$, then $u_n(x, t) \to +\infty$ as $n \to +\infty$, uniformly in $\Omega \times (0, T)$.

We will see in particular that the threshold exponent $p_+(s, \lambda)$ is the same as in the elliptic case (see [9, 21]). In fact, this critical power is related to the possibility of finding a supersolution to the problem in the whole \mathbb{R}^N. The paper is organized as follows.

- In Section 2 we describe the natural functional framework associated to our problem. We define the two notions of solution we will use along the paper: weak solutions and energy solutions. Moreover, we prove some comparison principles which are interesting themselves.
In Section 3 we describe the radial solutions of the corresponding homogeneous elliptic problem in \(\mathbb{R}^N \). These solutions will allow us to precise the singularity of the supersolutions to problem (1) near the origin. This is a key point to perform the so called ground state transformation (see [24]), and to obtain the nonexistence results afterwards.

Section 4 is devoted to study the weak Harnack inequality for the positive supersolutions of the problem resulting from the ground state transformation by Frank, Lieb and Seiringer, that introduces the difficulty of dealing with a kernel with singular coefficients. This weak Harnack inequality gives the exact blow up rate for the positive supersolutions near the spatial origin. For the proof of this result, we closely follow the work of Felsinger and Kassmann in [22], where the authors develop a weak parabolic Harnack inequality for a general type of nonlocal operators. This result does not apply straightforward to our singular operator, so, based on their scheme, we need to check every step in the Moser’s protocol (see [31]).

The goal of Section 5 is to study the linear problem \((P_0)\). The results detailed here can be seen as the extension to the fractional setting of those for the heat equation developed by P. Baras and J. A. Goldstein in [8]. Nevertheless the proofs that we present are significantly different. More precisely, we obtain the optimal summability required to the data in order to solve the problem and to prove the instantaneous and complete blow up for \(\lambda > \Lambda_{N,s} \) (where \(\Lambda_{N,s} \) is the optimal constant of the Hardy inequality obtained in Theorem 2.2 below), by using the results of Section 4. As a byproduct, we prove also the optimality of the power in the Hardy potential term. This result in the local framework was obtained by Brezis and Cabrè in [14].

Finally, in Section 6 we consider the semilinear problem (2). We study the existence of a threshold exponent, \(p^+ (\lambda, s) \), for the existence of solutions. By threshold we mean that when we consider an exponent over \(p^+ (\lambda, s) \), we are able to prove nonexistence of positive solutions even in the weak sense. Furthermore, we show that a complete blow up phenomenon also occurs in this case. Finally, the end of this section deals with the complementary interval of powers. In this range it is shown that, under some suitable hypotheses on \(f \), problem (1) has a positive solution obtained as limit of approximations.

We include two appendices with important auxiliary results.

- Appendix A includes a Hölder regularity result, that can be seen as the translation to the bounded domain case of some results in [15].
- In Appendix B we include some inequalities needed to prove the Harnack inequality in Section 4. As far as we know, these results involve some significant changes from respect to the standard ones, and therefore we consider that can be useful to include them here.

2. Functional Framework: Some preliminary results

Along this paper we will always assume that \(\Omega \) is a bounded smooth domain of \(\mathbb{R}^N \). In such a case, we need to consider the space \(X^s_0(\Omega) \) defined as

\[
X^s_0(\Omega) := \{ u \in H^s(\mathbb{R}^N) \text{ with } u = 0 \text{ a.e. in } \mathbb{R}^N \setminus \Omega \},
\]

endowed with the norm

\[
\| u \|_{X^s_0(\Omega)} := \left(\int_Q \frac{|u(x) - u(y)|^2}{|x - y|^{N+2s}} \, dx \, dy \right)^{1/2},
\]

where \(Q = \mathbb{R}^{2N} \setminus (C\Omega \times C\Omega) \). The pair \((X^s_0(\Omega), \| \cdot \|_{X^s_0(\Omega)})\) yields a Hilbert space. Moreover,

\[
(-\Delta)^s : X^s_0(\Omega) \to X^{-s}(\Omega),
\]

is a continuous operator, where \((-\Delta)^s\) is defined in (3).
In what follows we will use the relation between the norm in the space \(X^s_0(\Omega) \) and the \(L^2 \) norm of the fractional Laplacian, see [19, Proposition 3.6],

\[
\|u\|_{X^s_0(\Omega)}^2 = 2a_{N,s}^{-1}\|(-\Delta)^{s/2} u\|_{L^2(\mathbb{R}^N)}^2.
\]

It is easy to check that for \(u \) and \(\varphi \) smooth enough, with vanishing conditions outside \(\Omega \), we have the following duality product,

\[
2a_{N,s}^{-1}\int_{\mathbb{R}^N} u(-\Delta)^s \varphi \, dx = \int_Q \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x-y|^{N+2s}} \, dx \, dy,
\]

that in particular implies the selfadjointness of \((-\Delta)^s\) in \(X^s_0(\Omega) \).

We enunciate a Sobolev-type inequality that we will use throughout the paper (for a proof see for example [19]).

Theorem 2.1. (Sobolev embedding). Let \(s \in (0,1) \). There exists a constant \(S = S(N,s) \) such that, for all \(\phi \in C_0^\infty(\mathbb{R}^N) \), we have

\[
\|\phi\|_{L^{2^*}(\mathbb{R}^N)}^2 \leq S \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\phi(x) - \phi(y)|^2}{|x-y|^{N+2s}} \, dx \, dy,
\]

being

\[
2^* = \frac{2N}{N - 2s},
\]

the so called fractional critical exponent.

The parabolic problems studied in this article are related to the following Hardy inequality, proved in [27] (see also [11, 24, 36, 38]).

Theorem 2.2. (Fractional Hardy inequality). For all \(u \in C_0^\infty(\mathbb{R}^N) \) the following inequality holds,

\[
\int_{\mathbb{R}^N} |\xi|^{2s}|\hat{u}|^2 \, d\xi \geq \Lambda_{N,s} \int_{\mathbb{R}^N} |x|^{-2s} u^2 \, dx,
\]

where

\[
\Lambda_{N,s} = 2^{2s} \frac{\Gamma^2(\frac{N+2s}{4})}{\Gamma^2(\frac{N-2s}{4})}.
\]

The constant \(\Lambda_{N,s} \) is optimal and not attained.

Therefore, when \(0 \in \Omega \), using (4) we can rewrite the Hardy inequality (5) as

\[
a_{N,s} \int_Q \frac{|u(x) - u(y)|^2}{|x-y|^{N+2s}} \, dx \, dy \geq \Lambda_{N,s} \int_{\Omega} u^2 \, dx, \quad u \in X^s_0(\Omega).
\]

Remark 2.3. It can be checked that

\[
\Lambda_{N,s} \rightarrow \Lambda_{N,1} := \left(\frac{N - 2}{2} \right)^2,
\]

the classical Hardy constant, when \(s \) tends to 1. Moreover, by scaling it can be proved that the optimal constant is the same for every domain containing the pole of the Hardy potential.

Consider the general problem

\[
(P) := \begin{cases}
 u_t + (-\Delta)^s u = F(x,t,u) \text{ in } \Omega \times (0,T), \\
 u(x,t) = 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T), \\
 u(x,0) = u_0(x) \text{ if } x \in \Omega,
\end{cases}
\]

and let us denote

\[
T := \{ \phi : \mathbb{R}^N \times [0,T] \rightarrow \mathbb{R}, \text{ s.t. } -\phi_t + (-\Delta)^s \phi = \varphi, \varphi \in L^\infty(\Omega \times (0,T)), \phi = 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times (0,T), \phi(x,T) = 0 \text{ in } \Omega \}.
\]
Notice that every \(\phi \in T \) belongs in particular to \(L^\infty(\Omega \times (0, T)) \) (see [29]). We define the meaning of weak solution.

Definition 2.4. We say that \(u \) satisfies \(F \) if \(u \) is a weak solution of \(F(P) \) if \(u \) is super and subsolution, then we say that \(u \) is a weak solution.

If \(u \) is super and subsolution, then we say that \(u \) is a weak solution.

The weak solution will be considered to formulate the optimal nonexistence results. For existence results, we will consider the classical notion of finite energy solutions.

Definition 2.5. We say that \(u \in L^2(0, T; X_0^s(\Omega)) \) with \(u_t \in L^2(0, T; X^{-s}(\Omega)) \) is a finite energy supersolution (subsolution) of problem \((P) \) for \(F \in L^2(0, T; X^{-s}(\Omega)) \) if \(u(x, 0) \geq (\leq) u_0(x) \in \Omega \) and it satisfies

\[
\int_0^T \int_\Omega u_t \varphi \, dx \, dt + \int_0^T \int_Q \left(\frac{u(x, t) - u(y, t)}{|x - y|^{N + 2s}} - \varphi(x, t) - \varphi(y, t) \right) \, dx \, dy \, dt \geq (\leq) \int_0^T \int_\Omega F \varphi \, dx \, dt,
\]

for any nonnegative \(\varphi \in L^2(0, T; X_0^s(\Omega)) \), \(\varphi = 0 \) in \((\mathbb{R}^N \setminus \Omega) \times (0, T) \).

If \(u \) is super and subsolution, we say that it is a finite energy solution.

Remark 2.6. If \(u \in L^2(0, T; X_0^s(\Omega)) \) and \(u_t \in L^2(0, T; X^{-s}(\Omega)) \), then by approximating with smooth functions and taking advantage of the hilbertian structure of the space, it can be checked that \(u \in C([0, T]; L^2(\Omega)) \).

The existence and uniqueness of an energy solution to problem \((P) \) when \(F \) is in the dual space \(L^2(0, T; X^{-s}(\Omega)) \) can be obtained by means of a direct Hilbert space approach. See the result by A. N. Milgram in [30] based on a method of Vishik in [37], that is essentially an extension of the Lax-Milgram Theorem to parabolic problems. More precisely,

Theorem 2.7. If \(F \in L^2(0, T; X^{-s}(\Omega)) \), problem \((P) \) has a unique finite energy solution.

See a detailed proof in this fractional framework in [29, Theorem 26].

Remark 2.8. Notice that by defining

\[
L_\phi(u) := \int_0^T \int_\Omega -u \varphi_t \, dx \, dt + \frac{\alpha_{N,s}}{2} \int_0^T \int_Q \frac{(u(x, t) - u(y, t))(\varphi(x, t) - \varphi(y, t))}{|x - y|^{N + 2s}} \, dx \, dy \, dt
\]

and

\[
\langle \varphi, \phi \rangle := \frac{1}{2} \langle \varphi(x, 0), \phi(x, 0) \rangle_{L^2(\Omega)} + \frac{\alpha_{N,s}}{2} \left(1 - \frac{\lambda}{\Lambda_{N,s}} \right) \langle \varphi, \phi \rangle_{L^2(0, T; X_0^s(\Omega))},
\]

thanks to the Hardy inequality (see (5)) one can reproduce the previous proof to assure the existence and uniqueness of an energy solution to the problem

\[
(P_\lambda) := \begin{cases}
 u_t + (-\Delta)^s u - \frac{u}{|x|^{2s}} = F(x, t) & \text{in } \Omega \times (0, T), \\
 u(x, t) = 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u(x, 0) = u_0(x) & \text{if } x \in \Omega,
\end{cases}
\]
for $F \in L^2(0,T;X^{-s}(\Omega))$, $u_0 \in L^2(\Omega)$, and $\lambda < \Lambda_{N,s}$. For the case $\lambda = \Lambda_{N,s}$, consider the Hilbert space $H(\Omega)$ defined as the completion of $C^\infty_0(\Omega)$ with respect to the norm

$$
\|u\|_{H(\Omega)}^2 = \frac{a_{N,s}}{2} \|u\|_{X_0^s(\Omega)}^2 - \Lambda_{N,s} \int_\Omega \frac{u^2}{|x|^{2s}} \, dx.
$$

In [25], the author proves the following improved Hardy inequality,

$$
\frac{a_{N,s}}{2} \|u\|_{X_0^s(\Omega)}^2 - \Lambda_{N,s} \int_\Omega \frac{u^2}{|x|^{2s}} \, dx \geq C(\Omega, q, N, s) \|u\|_{W_0^{s,2}(\Omega)}^2,
$$

for all $s/2 < \tau < s$ (see also [21] and [4] for an alternative proof without using the Fourier transform). Thus we can see that $H(\Omega) \subset W_0^{s,2}(\Omega)$ and therefore, $H(\Omega)$ is compactly embedded in $L^p(\Omega)$ for all $1 \leq p < 2_s^*$ (see [19, Corollary 7.2]). Therefore, the proof remains the same considering $L_\phi(u)$ as in (8) (setting $\lambda = \Lambda_{N,s}$), and defining the scalar product $\langle \cdot, \cdot \rangle_*$ as

$$
\langle \varphi, \phi \rangle_* = \frac{1}{2} \langle \varphi(x,0), \phi(x,0) \rangle_{L^2(\Omega)} + \langle \varphi, \phi \rangle_{L^2(0,T;H^s(\Omega))},
$$

where the last term follows from (9).

In order to study monotonicity approaches, we will need to prove comparison results for both kind of solutions.

Lemma 2.9. (Weak Comparison Principle). Let $0 \leq \lambda \leq \Lambda_{N,s}$ and let $u, v \in C([T_1,T_2] ; L^1(\Omega))$ be weak solutions to the problems

$$
\begin{align*}
&\begin{cases}
 w_t + (-\Delta)^s w - \lambda \frac{w}{|x|^{2s}} = f_1 \quad &\text{in } \Omega \times (T_1, T_2), \\
 w = g_1 \quad &\text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2], \\
 w(x,T_1) = h_1(x) \quad &\text{in } \Omega,
\end{cases} \\
&\begin{cases}
 v_t + (-\Delta)^s v - \lambda \frac{v}{|x|^{2s}} = f_2 \quad &\text{in } \Omega \times (T_1, T_2), \\
 v = g_2 \quad &\text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2], \\
 v(x,T_1) = h_2(x) \quad &\text{in } \Omega,
\end{cases}
\end{align*}
$$

respectively. If $f_1 \leq f_2$, $g_1 \leq g_2$ and $h_1 \leq h_2$, then $u \leq v$ in $\mathbb{R}^N \times (T_1, T_2)$.

Proof. Define $w = v - u$. Hence, w is a weak solution of

$$
\begin{align*}
&\begin{cases}
 w_t + (-\Delta)^s w - \lambda \frac{w}{|x|^{2s}} = f_2 - f_1 \geq 0 \quad &\text{in } \Omega \times (T_1, T_2), \\
 w = g_2 - g_1 \geq 0 \quad &\text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2], \\
 w(x,T_1) = h_2 - h_1 \geq 0 \quad &\text{in } \Omega.
\end{cases}
\end{align*}
$$

Consider now $F \in C^\infty_0(\Omega \times (T_1,T_2))$, $F \geq 0$, and the solution φ_n to the problem

$$
\begin{align*}
&\begin{cases}
 -(-\Delta)^s \varphi_n = \lambda \frac{\varphi_{n-1}}{|x|^{2s} + \varphi_n} + F \quad &\text{in } \Omega \times (T_1, T_2), \\
 \varphi_n = 0 \quad &\text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2], \\
 \varphi_n(x,T_1) = 0 \quad &\text{in } \Omega,
\end{cases}
\end{align*}
$$

with

$$
\begin{align*}
&\begin{cases}
 -(-\Delta)^s \varphi_0 = F \quad &\text{in } \Omega \times (T_1, T_2), \\
 \varphi_0 = 0 \quad &\text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2], \\
 \varphi_0(x,T_2) = 0 \quad &\text{in } \Omega,
\end{cases}
\end{align*}
$$

Since φ_n is regular in $\Omega \times [T_1,T_2)$ and bounded in $\mathbb{R}^N \times (T_1,T_2)$ (see Appendix A), this equation can be understood in a pointwise sense. Moreover, by the Strong Comparison Principle, we know that $\varphi_n \geq 0$ and $\varphi_{n-1} \leq \varphi_n$ in $\mathbb{R}^N \times (T_1,T_2)$ for all $n \in \mathbb{N}$.
Hence, by the definition of weak solutions, and using that $w \geq 0$
\[
\int_{T_1}^{T_2} \int_{\Omega} w F \, dx \, dt = \int_{T_1}^{T_2} \int_{\Omega} w(-\varphi_n) \, dx \, dt + \int_{T_1}^{T_2} \int_{\Omega} \frac{w(-\Delta)^s \varphi_n}{|x|^{2s}} \, dx \, dt - \int_{T_1}^{T_2} \int_{\Omega} \frac{w \varphi_n}{|x|^{2s}} + \frac{1}{n} \, dx \, dt
\]
\[
\geq \int_{T_1}^{T_2} \int_{\Omega} w(-\varphi_n) \, dx \, dt + \int_{T_1}^{T_2} \int_{\Omega} w(-\Delta)^s \varphi_n \, dx \, dt - \int_{T_1}^{T_2} \int_{\Omega} \frac{w \varphi_n}{|x|^{2s}} \, dx \, dt
\]
\[
= \int_{T_1}^{T_2} \int_{\Omega} (f_2 - f_1) \varphi_n \, dx \, dt + \int_{\Omega} w(x, T_1) \varphi_n(x, T_1) \, dx \geq 0
\]
for all $F \in C_0^\infty(\Omega \times (T_1, T_2))$, $F \geq 0$. Thus, $w \geq 0$ in $\mathbb{R}^N \times (T_1, T_2)$, and therefore $u \leq v$ in $\mathbb{R}^N \times (T_1, T_2)$.

\[\square\]

Corollary 2.10. (Uniqueness of weak solutions for the linear problem).
Let suppose $F \in L^1(\Omega \times (0, T))$. Then problem $(P\lambda)$ has at most one nontrivial weak solution.

The comparison result for energy solutions can be proved in a standard way, so we skip the proof (see for example [9] for a proof in the elliptic case).

Lemma 2.11. Energy Comparison Principle. Let $0 \leq \lambda < \Lambda_{N,s}$ and let $u, v \in L^2(T_1, T_2; X_0^s(\Omega))$ with $u_t, v_t \in L^2(T_1, T_2; X^{-s}(\Omega))$ be finite energy solutions to the problems

\[
\begin{align*}
\left\{ \begin{array}{ll}
u_t + (-\Delta)^s u - \frac{u}{|x|^{2s}} = f_1 & \text{in } \Omega \times (T_1, T_2), \\
u = g_1 & \text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2), \\
u(x, T_1) = h_1(x) & \text{in } \Omega,
\end{array} \right.
\end{align*}
\]

\[
\begin{align*}
\left\{ \begin{array}{ll}
u_t + (-\Delta)^s v - \frac{v}{|x|^{2s}} = f_2 & \text{in } \Omega \times (T_1, T_2), \\
u = g_2 & \text{in } (\mathbb{R}^N \setminus \Omega) \times [T_1, T_2), \\
u(x, T_1) = h_2(x) & \text{in } \Omega,
\end{array} \right.
\end{align*}
\]

respectively. If $f_1 \leq f_2$, $g_1 \leq g_2$ and $h_1 \leq h_2$, then $u \leq v$ in $\mathbb{R}^N \times (T_1, T_2)$.

Remark 2.12. Notice that if $\lambda = \Lambda_{N,s}$, we can obtain the same result for $u, v \in L^2(T_1, T_2; H(\Omega))$, where $H(\Omega)$ was defined in (9), only by repeating exactly this proof.

Finally, consider the problem

\[
\left\{ \begin{array}{ll}
u_t + (-\Delta)^s u = 0 & \text{in } \Omega \times (0, T), \\
u(x, t) = 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
u(x, 0) = u_0(x) \geq 0 & \text{if } x \in \Omega.
\end{array} \right.
\]

We enunciate a Weak Harnack Inequality that we will use along the paper (see [22, Theorem 1.1] even in a more general setting).

Lemma 2.13. (Weak Harnack Inequality). If u is a non negative supersolution of (13) in $\Omega \times (0, T)$, then there exists $r > 0$ and a positive constant $C = C(N, s, r, t_0, \beta)$ such that

\[
\int_{R^-} u(x, t) \, dx \, dt \leq C \left(\text{essinf}_{R^+} u \right),
\]

where $R^- = B_r(0) \times (t_0 - \frac{4}{3} \beta, t_0 - \frac{1}{4} \beta)$, $R^+ = B_r(0) \times (t_0 + \frac{1}{4} \beta, t_0 + \frac{4}{3} \beta)$.

As a consequence of this lemma, we can formulate the strong maximum principle.

Theorem 2.14. (Strong Maximum Principle). If u is a non negative supersolution of (13), then $u(x, t) > 0$ in $\Omega \times (0, T)$.

3. Local behavior of solutions of the stationary equation

The purpose of this section is to analyze the behavior of the solutions of the homogeneous problem
\[(-\Delta)^s u = \lambda \frac{u}{|x|^{2s}} \quad \text{in } \mathbb{R}^N, \]
in a neighborhood of the origin, in order to use this information as a tool for proving the existence and nonexistence results. Notice that by solutions of (14) we will refer to energy or weak solutions in the sense of Definitions 2.4 and 2.5 with \(F = \lambda \frac{u}{|x|^{2s}}. \)

Lemma 3.1. Let \(0 < \lambda \leq \Lambda_{N,s} \). Then \(v_{\pm,\alpha} = |x|^{-\frac{N-2s+\alpha}{2}} \) are solutions to
\[(-\Delta)^s u = \lambda \frac{u}{|x|^{2s}} \quad \text{in } (\mathbb{R}^N \setminus \{0\}), \]
where \(\alpha \) is obtained by the identity
\[\lambda = \lambda(\alpha) = \lambda(-\alpha) = \frac{2^{2s} \Gamma\left(\frac{N+2s+2\alpha}{4}\right) \Gamma\left(\frac{N+2s-2\alpha}{4}\right)}{\Gamma\left(\frac{N-2s+2\alpha}{4}\right) \Gamma\left(\frac{N-2s-2\alpha}{4}\right)}. \]

Proof. Applying the Fourier transform of radial functions (see for instance [36, Theorem 4.1]) it yields,
\[
\mathcal{F}(v_\alpha)(\xi) = \xi^{-\frac{N-2s+\alpha}{2}} \int_0^\infty (r \xi)^{-\frac{N-2s+\alpha}{2}} J_{N-s-2s-\alpha}(r \xi) v_\alpha(r) dr = \xi^{-\frac{N-2s-\alpha}{2}} \int_0^\infty (r \xi)^{s+\alpha} J_{N-s-2s-\alpha}(r \xi) d(r \xi)
\]
\[= 2^{\alpha+s} \frac{\Gamma\left(\frac{N+2s+2\alpha}{4}\right)}{\Gamma\left(\frac{N-2s+2\alpha}{4}\right)} \xi^{-\frac{N-2s-\alpha}{2}}, \]
where \(J_{N-s-2s-\alpha} \) denotes the Bessel function of the first kind
\[J_\nu(t) = \left(\frac{t}{2}\right)^\nu \sum_{k=0}^\infty \frac{(-1)^k}{\Gamma(k+1)\Gamma(k+\nu+1)} \left(\frac{t}{2}\right)^{2k}. \]

Now, we notice that
\[(-\Delta)^s v_\alpha = \mathcal{F}^{-1}(\xi^{2s} \mathcal{F}(v_\alpha)(\xi)) = 2^{\alpha+s} \frac{\Gamma\left(\frac{N+2s+2\alpha}{4}\right)}{\Gamma\left(\frac{N-2s+2\alpha}{4}\right)} \mathcal{F}^{-1}(\xi^{-\frac{N+2s-\alpha}{2}}) = \lambda|x|^{-2s} v_\alpha \]
with \(\lambda = \lambda(\alpha) \) equal to (16). \(\square \)

Remark 3.2. Notice that \(\lambda(\alpha) = \lambda(-\alpha) = m_\alpha m_{-\alpha} \), with \(m_\alpha = 2^{\alpha+s} \frac{\Gamma\left(\frac{N+2s+2\alpha}{4}\right)}{\Gamma\left(\frac{N-2s-2\alpha}{4}\right)} \).

Lemma 3.3. The following equivalence holds true:
\[0 < \lambda(\alpha) = \lambda(-\alpha) \leq \Lambda_{N,s} \text{ if and only if } 0 \leq \alpha < \frac{N-2s}{2}. \]

For the reader convenience, we include an elemental proof of this Lemma (see also [24, 27]).

Proof. Notice that \(\lambda(\alpha) \) is a positive continuous function for \(0 \leq \alpha < \frac{N-2s}{2} \), such that \(\lambda(0) = \Lambda_{N,s} \). It is sufficient to prove that for a fixed \(s \), \(\lambda(\alpha) \) is a decreasing function.

Let consider the following representation of the Gamma function (see [7] for more details):
\[
\frac{1}{\Gamma(x)} = xe^{\gamma x} \prod_{n=1}^\infty \left(1 + \frac{x}{n}\right)e^{-\frac{x}{n}},
\]
where \(\gamma \) is the Euler constant. \(\square \)
where \(\gamma \) is the Euler-Mascheroni constant (see for instance [5]). We aim to prove that \(\log \frac{1}{\lambda(\alpha)} \) is an increasing function in \(\alpha \).

\[
\log \frac{1}{\lambda(\alpha)} = \log \frac{1}{2^{2s} \frac{1}{\Gamma\left(\frac{N+2s}{4}\right)} \frac{1}{\Gamma\left(\frac{N+2s}{4} - \alpha\right)}} = -2s \cdot \log 2 + \log \frac{(N+2s)^2 - 4\alpha^2}{(N-2s)^2 - 4\alpha^2} + 2\gamma s + \sum_{n=1}^{\infty} \left[\log \frac{(N+4n+2s)^2 - \alpha^2}{4n(n+2s)} - \frac{2s}{n} \right].
\]

Notice that the last term is a convergent series in the same way as
\[
\prod_{n=1}^{\infty} \left(1 + \frac{x}{n} \right) e^{-\frac{x}{n}}
\]
is a convergent product. We conclude just by noticing that if \(a > b \), and \(\zeta > 0 \), then \(\frac{a^2}{b^2} - \zeta^2 \) is an increasing function in \(\zeta \).

Remark 3.4. Notice that we can explicitly construct two positive solutions to the homogeneous problem (15). Henceforth, we denote
\[
\gamma = \frac{N-2s}{2} - \alpha \text{ and } \tilde{\gamma} = \frac{N-2s}{2} + \alpha,
\]
with \(0 < \gamma \leq \frac{N-2s}{2} \leq \tilde{\gamma} < (N-2s) \). Since \(N - 2\gamma - 2s = 2\alpha > 0 \) and \(N - 2\tilde{\gamma} - 2s = -2\alpha < 0 \), then \(|x|^{-\gamma} \) is the unique energy solution of these ones belonging to \(H^s(\Omega) \).

We will use these results to study the unboundedness of any positive weak supersolution, and moreover, to obtain an explicit quantitative information on the growth around the origin when the summability of the datum is large enough.

4. Weak Harnack Inequality for a Weighted Problem

Consider \(\gamma \) defined in (17). Frank, Lieb and Seiringer proved in [24, Proposition 4.1] the following representation result.

Lemma 4.1. *(Ground State Representation)* Let \(0 < \gamma < \frac{N-2s}{2} \). If \(\phi \in C_0^\infty(\mathbb{R}^N) \) and \(\tilde{\phi}(x) := |x|^{\gamma} \phi(x) \), then
\[
\int_{\mathbb{R}^N} |\xi|^{2s} |\tilde{\phi}(\xi)|^2 d\xi - (\Lambda_{N,s} + \Phi_{N,s}(\gamma)) \int_{\mathbb{R}^N} |x|^{-2s} |\phi(x)|^2 dx = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{2N}} |\phi(x) - \tilde{\phi}(y)|^2 dx \, dy,
\]

where
\[
\Phi_{N,s}(\gamma) := 2^{2s} \left(\frac{\Gamma\left(\frac{N+2s}{4}\right) \Gamma\left(\frac{N-\gamma}{2}\right)}{\Gamma\left(\frac{N+2s}{4} - \alpha\right) \Gamma\left(\frac{N-\gamma}{2} + \alpha\right)} - \frac{\Gamma^2\left(\frac{N+2s}{4}\right)}{\Gamma^2\left(\frac{N+2s}{4} - \alpha\right)} \right).
\]

A relevant fact for us is the following result.

Proposition 4.2. Consider the function
\[
\Psi_{N,s} : [0, \frac{N-2s}{2}] \to [0, \Lambda_{N,s}]
\]
\[
\gamma \to \Psi_{N,s}(\gamma) := \Lambda_{N,s} + \Phi_{N,s}(\gamma),
\]
where \(\Phi_{N,s} \) is defined by (19). Then \(\Psi_{N,s} \) is strictly increasing and surjective.
Notice that \(\lambda(\alpha) = \Psi \left(\frac{N - 2s}{2} - \alpha \right) \), therefore as a consequence, for any \(0 < \lambda < \Lambda_{N,s} \), there exists \(\alpha \in [0, \frac{N - 2s}{2}] \), such that

\[
\lambda = \lambda(\alpha) = \frac{2^{2s} \Gamma \left(\frac{N+2s+2\alpha}{2} \right) \Gamma \left(\frac{N+2s-2\alpha}{2} \right)}{\Gamma \left(\frac{N-2s+2\alpha}{2} \right) \Gamma \left(\frac{N-2s-2\alpha}{2} \right)}.
\]

Taking \(0 < \gamma = \frac{N - 2s}{2} - \alpha < \frac{N - 2s}{2} \), and \(\Lambda_{N,s} + \Phi_{N,s}(\gamma) = \lambda(\alpha) \), following Lemma 4.1 we can write the energy as

\[
\int_{\mathbb{R}^N} |\xi|^{2s} |\hat{u}(\xi,t)|^2 d\xi - \lambda(\alpha) \int_{\mathbb{R}^N} |x|^{-2s} |u(x,t)|^2 dx = \frac{a_{N,s}}{2} \int_{\mathbb{R}^{2N}} \frac{|v(x,t) - v(y,t)|^2}{|x-y|^{N+2s}} \frac{dx}{|x|^\gamma} \frac{dy}{|y|^\gamma},
\]

where \(v(x,t) := |x|^\gamma u(x,t) \). The purpose now is to write the linear problem (1) in terms of \(v \). Indeed, let us call \(H(x,t) := F(x,t) - u_t \). Thus, by (1) and (20), the Euler-Lagrange equation associated is

\[
H(x,t) = (-\Delta)^s u - \lambda \frac{u}{|x|^{2s}} = |x|^\gamma L_{\gamma} v(x,t),
\]

where

\[
L_{\gamma}(v(x,t)) := a_{N,s} \text{ p.v.} \int_{\mathbb{R}^N} (v(x,t) - v(y,t)) K(x,y) dy,
\]

and

\[
K(x,y) = \frac{1}{|x|^\gamma} \frac{1}{|y|^\gamma} \frac{1}{|x-y|^{N+2s}}, \quad 0 < \gamma = \frac{N - 2s}{2} - \alpha < \frac{N - 2s}{2}.
\]

Thus we conclude that if \(u \) is an energy solution of problem (1), then \(v \) solves the parabolic equation

\[
\begin{cases}
|x|^{-2s} v_t + L_{\gamma} v = |x|^{-\gamma} f(x,t) \text{ in } \Omega \times (0,T), \\
v(x,t) = 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T), \\
v(x,0) = v_0(x) := |x|^\gamma u_0(x) \text{ if } x \in \Omega,
\end{cases}
\]

(21)

Therefore, in order to analyze the behavior of \(u \) near the origin, we have to deal with the same question for \(v \). That is, we need to prove that the weighted operator

\[
|x|^{-2s} v_t - L_{\gamma} v,
\]
satisfies a suitable weak Harnack inequality. In the local case, this kind of result can be obtained as a consequence of some results by Chiarenza-Frasca, Chiarenza-Serapioni and Gutierrez-Wheden, see [16, 17, 26] and the references therein.

Before stating the weak Harnack inequality for the weighted operator, let us precise the natural functional framework associated to the new problem (21). For simplicity of typing we denote

\[
d\mu := \frac{dx}{|x|^{2\gamma}}, \quad \text{and} \quad d\nu := K(x,y) dxdy.
\]

Let \(\Omega \subseteq \mathbb{R}^N \). We define the weighted Sobolev space \(Y^{s,\gamma}(\Omega) \) as

\[
Y^{s,\gamma}(\Omega) := \left\{ \phi \in L^2(\Omega, |x|^{-\gamma}) : \int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 d\nu < +\infty \right\}.
\]

It is clear that \(Y^{s,\gamma}(\Omega) \) is a Hilbert space endowed with the norm

\[
\|\phi\|_{Y^{s,\gamma}(\Omega)} := \left(\int_{\Omega} |\phi(x)|^2 d\mu + \int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 d\nu \right)^{\frac{1}{2}},
\]

and we define the space \(Y^{s,\gamma}_0(\Omega) \) as the completion of \(C_0^\infty(\Omega) \) with respect to this norm. In particular, we denote

\[
|||\phi|||_{Y^{s,\gamma}_0(\Omega)} := \left(\int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 d\nu \right)^{\frac{1}{2}}.
\]
If Ω is bounded, the norms $|||\cdot|||_{Y^0_\gamma(\Omega)}$ and $|||\cdot|||_{Y^\gamma(\Omega)}$ are equivalent (see Theorem B.2 in Appendix B for more details). If $\Omega = \mathbb{R}^N$, using the definition of L_γ, we obtain that for all $w_1, w_2 \in Y^\gamma_0(\mathbb{R}^N)$,

$$\langle L_\gamma(w_1), w_2 \rangle = \frac{a_{N,s}}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (w_1(x) - w_1(y))(w_2(x) - w_2(y)) \, dv.$$

Let begin by the following natural definition.

Definition 4.3. Let begin by the following natural definition.

Assume that $v \in \mathcal{C}([0,T), L^2(\Omega, |x|^{-\gamma})) \cap L^2_{loc}(0,T; Y^\gamma_0(\Omega))$, we say that v is a supersolution to problem (21) if $v(x,0) \geq v_0(x)$ and for all $\Omega_1 \subset \subset \Omega$, for all $[t_1, t_2] \subset (0,T)$ we have

$$\int_{t_1}^{t_2} \int_{\Omega_1} -\varphi_t v \, d\mu + \frac{a_{N,s}}{2} \int_{Q} (v(x,t) - v(y,t))(\varphi(x,t) - \varphi(y,t)) \, dv \, dt \geq \int_{t_1}^{t_2} \int_{\Omega_1} \varphi \, |x|^{-\gamma} \, dx \, dt + \int_{\Omega_1} \varphi(x,t_1) v(x,t_1) \, d\mu - \int_{\Omega_1} \varphi(x,t_2) v(x,t_2) \, d\mu,$$

for any nonnegative $\varphi \in L^2((t_1,t_2), Y^\gamma(\Omega_1))$, such that moreover, $\varphi_t \in L^2((t_1,t_2), Y^{-\gamma}(\Omega_1))$, $\varphi = 0$ in $(\mathbb{R}^N \setminus \Omega_1) \times (t_1, t_2)$, where $Q := \mathbb{R}^N \setminus (\Omega_1 \times \Omega_1)$.

The main result of this section is the next Theorem.

Theorem 4.4. (Weak Harnack Inequality)

Assume that f (resp. v_0) ≥ 0 in $\Omega \times (0,T)$ (resp. in Ω). Let $v \in L^2((0,T); Y^\gamma(\mathbb{R}^N)) \cap \mathcal{C}([0,T); L^2(\mathbb{R}^N, |x|^{-\gamma}))$ be a supersolution to (21) with $v \geq 0$ in $\mathbb{R}^N \times (0,T)$.

Then for any $q < 1 + \frac{\gamma}{N}$, we have

$$(\int_{Q_1} v^q \, d\mu \, dt)^{\frac{1}{q}} \leq C \inf_{Q_2} v$$

where $Q_1 = B_r(x_0) \times (t_1, t_2), Q_2 = B_r(x_0) \times (t_3, t_4)$ with $0 < t_1 < t_2 < t_3 < t_4 < T, B_r(x_0) \subset \Omega$ and $C = C(N, r, t_1, t_2, t_3, t_4) > 0$.

The proof of this result follows the classical arguments by Moser (see [31]) with some necessary adaptation, like for instance Lemma 4.5 below. In the context of the parabolic fractional-like operators the precedent work is the interesting paper by Felsinger and Kassmann, [22], that we will closely follow here, adapting the proofs to the weighted operator appearing in (21). To make the paper self-contained, we include here the corresponding proofs.

First of all, we will need an iteration result, originally proved in [31] and extended by Bombieri and Giusti in [13] to the case of general measures in the elliptic setting (see also [34, Lemma 2.2.6]).

Lemma 4.5. Let $\{U(r)\}_{r \leq \epsilon} \subset \Omega$ be a nondecreasing family of domains $U(r) \subset \mathbb{R}^{N+1}$, and let m, c_0 be positive constants, $\eta \in (0, 1)$, $\theta \in [\frac{1}{2}, 1]$ and $0 < p_0 \leq +\infty$. Let w be a positive, measurable function defined on $U(1)$ satisfying

$$\left(\int_{U(r)} w^{p_0} \, d\mu \, dt \right)^{\frac{1}{p_0}} \leq \left(\frac{c_0}{(R - r)^m |U(1)|_{d\mu \times dt}} \right)^{\frac{1}{p_0}} \left(\int_{U(R)} w^{p} \, d\mu \, dt \right)^{\frac{1}{p}}$$

for all $r, R \in [\theta, 1], r < R$, and for all $p \in (0, \eta p_0 \wedge 1)$.

Assume also that

$$\forall s > 0 : |U(1) \cap \{w > s\}|_{d\mu \times dt} \leq \frac{c_0 |U(1)|_{d\mu \times dt}}{s}.$$

Then there exists $C(\theta, \eta, c_0, m, p_0)$ such that

$$\left(\int_{U(\theta)} w^{p_0} \, d\mu \, dt \right)^{\frac{1}{p_0}} \leq C |U(1)|_{d\mu \times dt}.$$
Hereafter, we will make use of the following notation. Given $r > 0$, we define

\begin{equation}
I_-(r) := (-r^{2s}, 0), \quad I_+(r) := (0, r^{2s}),
\end{equation}

\begin{equation}
Q_-(r) := B_r(0) \times I_-(r), \quad Q_+(r) := B_r(0) \times I_+(r).
\end{equation}

The first step to prove Theorem 4.4 is to establish the next estimate (see [22, Proposition 3.4]). Notice that we just have to consider the case where $B_r(x_0) = B_r(0)$. For simplicity, we will write B_r instead of $B_r(0)$.

Lemma 4.6. Assume that $\frac{1}{2} \leq r < R \leq 1$ and let $p > 0$. Consider $v \geq 0$, a supersolution to (21), then

\begin{equation}
(\int_{Q_-(r)} v^{-\gamma p} d\mu dt)^{\frac{1}{p}} \leq A \int_{Q_-(R)} v^{-\gamma p} d\mu dt
\end{equation}

where $\gamma := 1 + \frac{2s}{N}$, and

\[A := A(N, s, p, r, R) = C(N, s, p) \left(\frac{1}{(R-r)^{2s}} + \frac{1}{R^{2s} - r^{2s}} \right)^{\gamma}. \]

Proof. Without loss of generality we can assume that $v \geq \varepsilon > 0$ in $Q_-(r)$ (otherwise we can deal with $v + \varepsilon$ and let $\varepsilon \to 0$ at the end). Let $q > 1$ and $\psi \in Y_0^{s, \gamma}(B_R) \cap L^\infty(B_R)$ be a nonnegative radial cutoff function such that $\text{supp}(\psi) \subseteq B_R$ with $r < R$, $\psi = 1$ in B_r and

\begin{equation}
\frac{(\psi(x) - \psi(y))^2}{|x-y|^2} \leq \frac{C}{(R-r)^2}.
\end{equation}

Using $\psi^{q+1} v^{-q}$ as a test function in (21), it follows that

\[\int_{B_R} \psi^{q+1} v^{-q} v dx + \frac{\alpha_{N,s}}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (v(x, t) - v(y, t)) (\psi^{q+1}(x) v^{-q}(x, t) - \psi^{q+1}(y) v^{-q}(y, t)) d\nu \geq 0. \]

Hence, using a pointwise inequality proved in [22, Lemma 3.3], it can be deduced that

\[
\begin{align*}
\int_{B_R} \psi^{q+1} v^{-q} dx &+ \frac{\alpha_{N,s}}{2} \int_{B_r} (\psi^{1+q}(x, t) - \psi^{1+q}(y, t))^2 d\nu \\
&\leq C(q) \frac{\alpha_{N,s}}{2} \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left(\frac{v(x, t)}{\psi(x)} \right)^{1-q} + \left(\frac{v(y, t)}{\psi(y)} \right)^{1-q} (\psi(x) - \psi(y))^2 d\nu.
\end{align*}
\]

Furthermore,

\[
\begin{align*}
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \left(\frac{v(x, t)}{\psi(x)} \right)^{1-q} + \left(\frac{v(y, t)}{\psi(y)} \right)^{1-q} (\psi(x) - \psi(y))^2 d\nu \\
&\leq C \int_{B_R} \int_{B_R} \frac{v^{1-q}(x, t) (\psi(x) - \psi(y))^2 dx dy}{|x|^{\gamma} + |y|^{\gamma}|x-y|^{N+2s}} \\
&+ 4 \int_{\mathbb{R}^N \setminus B_R} \int_{B_R} \frac{v^{1-q}(x, t) (\psi(x) - \psi(y))^2 dx dy}{|x|^{\gamma} + |y|^{\gamma}|x-y|^{N+2s}}.
\end{align*}
\]

We set

\[I = \int_{B_R} \int_{B_R} \frac{v^{1-q}(x, t) (\psi(x) - \psi(y))^2 dx dy}{|x|^{\gamma} + |y|^{\gamma}|x-y|^{N+2s}}, \]

and

\[J = \int_{\mathbb{R}^N \setminus B_R} \int_{B_R} \frac{v^{1-q}(x, t) (\psi(x) - \psi(y))^2 dx dy}{|x|^{\gamma} + |y|^{\gamma}|x-y|^{N+2s}}. \]
Let begin by estimating the term J. Taking into consideration that $\frac{1}{|y|^{\gamma}} \leq \frac{1}{|x|^{\gamma}}$ for $x \in B_R$ and $y \in \mathbb{R}^N \setminus B_R$ and using Fubini, we reach that

$$J \leq \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{\mathbb{R}^N \setminus B_R \cap \{|x-y| > R-r\}\}} \frac{(\psi(x) - \psi(y))^2}{|x-y|^{N+2s}} dydx$$

$$+ \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{\mathbb{R}^N \setminus B_R \cap \{|x-y| \leq R-r\}\}} \frac{(\psi(x) - \psi(y))^2}{|x-y|^{N+2s}} dydx$$

$$\leq J_1 + J_2.$$

Setting $\rho = |x-y|$, we get

$$J_1 \leq 4 \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{\mathbb{R}^N \setminus B_R \cap \{|x-y| > R-r\}\}} \frac{dydx}{|x-y|^{N+2s}}$$

$$\leq 4 \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} dx \int_{R-r}^{\infty} \rho^{-1-2s} d\rho$$

$$\leq \frac{C}{(R-r)^{2s}} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} dx.$$

We estimate now the term J_2. Using (27), it follows that

$$J_2 \leq \frac{1}{(R-r)^2} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{\mathbb{R}^N \setminus B_R \cap \{|x-y| \leq R-r\}\}} \frac{|x-y|^2}{|x-y|^{N+2s}} dydx$$

$$\leq \frac{1}{(R-r)^2} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} dx \int_0^{R-r} \rho^{-1-2s} d\rho$$

$$\leq \frac{C}{(R-r)^{2s}} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} dx.$$

Hence

$$J \leq \frac{C}{(R-r)^{2s}} \int_{B_R} v^{1-q}(x,t) d\mu.$$

We deal now with I. Using the definition of ψ, we get easily that

$$I = \int \int_{B_R \times B_R \setminus B_r \times B_r} \frac{v^{1-q}(x,t) (\psi(x) - \psi(y))^2}{|x|^{\gamma} |y|^{\gamma} |x-y|^{N+2s}} dxdy$$

$$\leq \int_{B_r} \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t) (\psi(x) - \psi(y))^2}{|x|^{\gamma} |y|^{\gamma} |x-y|^{N+2s}} dxdy + \int_{B_R \setminus B_r} \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t) (\psi(x) - \psi(y))^2}{|x|^{\gamma} |y|^{\gamma} |x-y|^{N+2s}} dxdy$$

$$+ \int_{B_R \setminus B_r} \int_{B_r} \frac{v^{1-q}(x,t) (\psi(x) - \psi(y))^2}{|x|^{\gamma} |y|^{\gamma} |x-y|^{N+2s}} dxdy$$

$$= I_1 + I_2 + I_3.$$
Let consider now the term I_1. Since $(x, y) \in B_r \times B_R \setminus B_r$, then $|x| \leq |y|$, hence

$$I_1 = \int_{B_r} \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t) \left(\psi(x) - \psi(y)\right)^2}{|x|^{2\gamma}} \, dx \, dy \bigg/ |x-y|^{N+2s}$$

$$\leq \int_{B_r} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{B_R \setminus B_r\} \cap \{|x-y|>R-r\}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}} \, dy \, dx$$

$$+ \int_{B_r} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{B_R \setminus B_r\} \cap \{|x-y|\leq R-r\}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}} \, dy \, dx$$

$$\leq I_{11} + I_{12}.$$

As in the previous computations, by setting $\rho = |x-y|$ and using the fact that ψ is bounded, we conclude that

$$I_{11} \leq \frac{C}{(R-r)^2} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \, dx.$$

In the same way and using the fact that $\frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}} \leq \frac{C}{(R-r)^2}$, we get

$$I_{12} \leq \frac{C}{(R-r)^2} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \, dx.$$

Therefore,

$$I_1 \leq \frac{C}{(R-r)^{2s}} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \, dx.$$

We deal now with I_2. Since $\frac{1}{2} \leq r \leq |x|, |y| \leq R < 1$, then

$$I_2 \leq \int_{B_R \setminus B_r} \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t) \left(\psi(x) - \psi(y)\right)^2 \, dx \, dy}{|x-y|^{N+2s}}$$

$$\leq \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{B_R \setminus B_r\} \cap \{|x-y|>R-r\}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}} \, dy \, dx$$

$$+ \int_{B_R \setminus B_r} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \int_{\{B_R \setminus B_r\} \cap \{|x-y|\leq R-r\}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}} \, dy \, dx$$

$$\leq I_{21} + I_{22}.$$

Hence, setting $\rho = |x-y|$ and following the same computations as in the case of I_1, we obtain that

$$I_2 \leq \frac{C}{(R-r)^{2s}} \int_{B_R} \frac{v^{1-q}(x,t)}{|x|^{2\gamma}} \, dx.$$

Let consider now the term I_3 which is the more complicated.

$$I_3 = \int_{r \leq |x| \leq R} \frac{v^{1-q}(x,t)}{|x|^{\gamma}} \left(\int_{|y| \leq \frac{|x|}{2}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}|y|^{\gamma}} \, dy\right) \, dx$$

$$+ \int_{r \leq |x| \leq R} \frac{v^{1-q}(x,t)}{|x|^{\gamma}} \left(\int_{|y| \leq \frac{|x|}{2}} \frac{\left(\psi(x) - \psi(y)\right)^2}{|x-y|^{N+2s}|y|^{\gamma}} \, dy\right) \, dx$$

$$= I_{31} + I_{32}.$$
If \(|y| \leq \frac{|x|}{2} \), then \(|x - y| \geq \frac{|x|}{2} \geq \frac{1}{4} \), and thus,
\[
I_{31} \leq C \int_{r \leq |x| \leq R} \frac{v^{1-q}(x, t)}{|x|^{2\gamma}} \left(\int_{|y| \leq \frac{|x|}{4}} \frac{1}{|y|^\gamma} dy \right) dx
\]
\[
\leq C \int_{r \leq |x| \leq R} \frac{v^{1-q}(x, t)}{|x|^{\gamma}} \left(\int_{0}^{\frac{|x|}{2}} \rho^{N-1-\gamma} d\rho \right) dx
\]
\[
\leq \frac{C}{(R - r)^{2s}} \int_{B_R} \frac{v^{1-q}(x, t)}{|x|^{2\gamma}} dx.
\]
To estimate \(I_{32} \), we use the fact that \(\frac{1}{|y|^\gamma} \leq \frac{2^\gamma}{|x|^\gamma} \), hence
\[
I_{32} \leq C \int_{r \leq |x| \leq R} \frac{v^{1-q}(x, t)}{|x|^{2\gamma}} \left(\int_{\frac{|x|}{4} \leq |y| \leq r} \frac{(\psi(x) - \psi(y))^2}{|x - y|^{N+2s}|y|^{\gamma}} dy \right) dx
\]
\[
\leq C \int_{r \leq |x| \leq R} \frac{v^{1-q}(x, t)}{|x|^{2\gamma}} \left(\int_{\{\frac{|x|}{4} \leq |y| \leq r\} \cap \{|x - y| > R - r\}} \frac{(\psi(x) - \psi(y))^2}{|x - y|^{N+2s}|y|^{\gamma}} dy \right) dx
\]
\[
+ \int_{r \leq |x| \leq R} \frac{v^{1-q}(x, t)}{|x|^{2\gamma}} \left(\int_{\{\frac{|x|}{4} \leq |y| \leq r\} \cap \{|x - y| \leq R - r\}} \frac{(\psi(x) - \psi(y))^2}{|x - y|^{N+2s}|y|^{\gamma}} dy \right) dx
\]
\[
\leq I_{321} + I_{322}.
\]
To estimate \(I_{321} \) and \(I_{322} \) we use the same computations as in the estimates \(I_{11} \) and \(I_{12} \). Hence it follows that
\[
I_{32} \leq \frac{C}{(R - r)^{2s}} \int_{B_R} v^{1-q}(x, t) dx.
\]
Combining the estimates above, there results that
\[
\int_{B_R} \psi^{r+1}(v^{1-q}) d\mu + \frac{a_{N,s}}{2} \int_{B_R} J_{B_r} (v^{1-s^\frac{1}{2}}(x, t) - v^{1-s^\frac{1}{2}}(y, t))^2 d\nu
\]
\[
\leq \frac{C(q) a_{N,s}}{(R - r)^{2s}} \int_{B_R} v^{1-q}(x, t) d\mu.
\]
Set now \(\theta(t) := \min\{ \frac{t + R^{2s}}{R^{2s} - r^{2s}}, 1 \} \). Then multiplying the last inequality by \(\theta \), integrating in time in \((-R^{2s}, t)\) with \(t \in (-r^{2s}, 0)\), and noticing that \(\theta(t) = 1 \) for \(t \geq -r^{2s} \) and \(|\theta'(t)| \leq \frac{1}{R^{2s} - r^{2s}} \), it follows that
\[
\sup_{t \in I_-(r)} \int_{B_r} (v^{1-q}) d\mu + \frac{a_{N,s}}{2} \int_{Q_-(r)} \int_{B_r} (v^{1-s^\frac{1}{2}}(x, t) - v^{1-s^\frac{1}{2}}(y, t))^2 d\nu ds
\]
\[
\leq C(q) \frac{a_{N,s}}{2} (R - r)^{2s} \int_{B_R} v^{1-q}(x, t) d\mu.
\]
Recalling that \(\tau := 1 + \frac{2s}{r^{2s}} \), and defining \(w := v^{1-s^\frac{1}{2}} \), we get
\[
\int_{Q_-(r)} w^{2\tau} d\mu dt = \int_{Q_-(r)} w^{2} w^{\frac{\tau}{2}} d\mu dt
\]
\[
\leq \int_{I_-(r)} \left(\int_{B_r} w^{2} d\mu \right)^\frac{\tau}{2} \left(\int_{B_r} w^{2\tau} d\mu \right)^\frac{1}{\tau} dt.
\]
Since $\gamma > 0$ and $R \leq 1$, we conclude that
\[
\int_{Q_{-(r)}} w^{2\tau} \, d\mu dt \leq \int_{I_{-(r)}} \left(\int_{B_{r}} w^2(x,t) \, d\mu \right)^{\frac{\gamma}{n}} \left(\int_{B_{r}} \frac{w^{2\tau}}{|x|^{2\gamma}} \, dx \right)^{\frac{1}{\gamma}} \, dt.
\]
Now, using the Sobolev inequality obtained in Theorem B.9 in the Appendix,
\[
\int_{Q_{-(r)}} w^{2\tau} \, d\mu dt \leq C \sup_{t \in I_{-(r)}} \left(\int_{B_{r}} w^2(x,t) \, d\mu \right)^{\frac{\gamma}{n}}
\times \left(\int_{Q_{-(r)}} (w(x,t) - w(y,t))^2 \, d\mu dt + r^{-2s} \int_{Q_{-(r)}} w^2 \, d\mu dt \right).
\]
Applying (28) twice at this inequality, and recalling that $\frac{1}{2} \leq r \leq 1$, it can be checked that
\[
\int_{Q_{-(r)}} w^{2\tau} \, d\mu dt \leq A(q,r,N,s) \left(\int_{Q_{-(r)}} w^2 \, d\mu dt \right)^{\tau}
\]
where
\[
A(q,r,N,s) = C(q,N,s) \left(\frac{1}{(R - r)^{2s}} + \frac{1}{R^{2s} - r^{2s}} \right)^{\tau}.
\]
Setting $p := q - 1$, we conclude the proof. \hfill \Box

As an application of the previous estimate, we reach a control of $\sup_{Q_{-(r)}} v^{-1}$. More precisely, we have the following result.

Lemma 4.7. Assume that $\frac{1}{2} \leq r < R \leq 1$ and $p \in (0,1)$. Then, there exists a constant $C = C(N,s) > 0$ such that every $v \geq 0$ supersolution to the problem (21) satisfies
\[
\sup_{Q_{-(r)}} v^{-1} \leq \left(\frac{C}{\alpha(r,R)} \right)^{\frac{1}{p}} \left(\int_{Q_{-(r)}} v^{-p} \, d\mu dt \right)^{\frac{1}{p}},
\]
where
\[
\alpha(r,R) = \begin{cases}
\frac{(R - r)^{N+2s}}{(R^{2s} - r^{2s})^{\frac{N+2s}{2s}}} & \text{if } s \geq 1, \\
\frac{(R - r)^2}{R^{2s}} & \text{if } s < 1.
\end{cases}
\]

Proof. Let us consider
\[
\mathcal{M}(r,p) := \left(\int_{Q_{-(r)}} v^{-p} \, d\mu dt \right)^{\frac{1}{p}}.
\]
By Lemma 4.6, we have
\[
\mathcal{M}(r,\tau p) \leq A^{\frac{1}{p}} \mathcal{M}(r,p),
\]
where $\tau := 1 + \frac{2s}{R}$. Construct now the sequences $\{r_i\}_{i \in \mathbb{N}}$ and $\{p_i\}_{i \in \mathbb{N}}$ by setting $r_0 := R > r_1 > r_2 > ... > r$ and $p_i := pr^i$. Using again Lemma 4.6, we obtain
\[
\mathcal{M}(r,pr^{m+1}) \leq A^{\frac{1}{p}} \mathcal{M}(r,pr^{m+1}) \leq A^{\frac{1}{p}} \mathcal{M}(r,pr),
\]
with $A_m := C(p_m + 1)^2 \left((r_m - r_{m+1})^{-2s} + (r_{m+1}^{2s} - r_{m+1}^{2s})^{-1} \right)$. Iterating this and following the arguments in [22, Theorem 3.5], we conclude the result. \hfill \Box

We prove now a control of a small positive exponents of u.

Lemma 4.8. Suppose that $\frac{1}{2} \leq r < R \leq 1$, and fix $q \in (0,\tau^{-1})$, with $\tau := 1 + \frac{2s}{R}$. Then, if $v \geq 0$ is a supersolution to (21), we have
\[
\left(\int_{Q_{+(r)}} v^{q\tau} \, d\mu dt \right)^{\frac{1}{q}} \leq \alpha \int_{Q_{+(r)}} v^q \, d\mu dt,
\]
where
\[
\alpha := \left(\frac{C(q,N,s)}{\alpha(r,R)} \right)^{\frac{1}{p}} \left(\int_{Q_{+(r)}} v^{-p} \, d\mu dt \right)^{\frac{1}{p}},
\]
and $\alpha(r,R)$ is defined as above.
Using Theorem B.9 and proceeding as in Lemma 4.6, we get (30).

\[\square \]

Lemma 4.9. Assume that
\[\text{Iterating this inequality (see [22, Theorem 3.7]), we reach the next result.} \]

Proof. The proof follows similarly to the one of Lemma 4.6 (see [22, Proposition 3.6] for a detailed proof with the Lebesgue measure). We set \(a := 1 - q \in [1 - \tau^{-1}, 1] \) and \(w(x, t) = \frac{1}{x^q} \). Then, using \(v^{-a}\psi^2 \) (with \(\psi \) defined in the proof of Lemma 4.6) as a test function in (21), we reach that
\[
\sup_{t \in I_+(r)} \int_{B_r} w^2(x, t)d\mu + C(q) \frac{a_{N,s}}{2} \int_{Q_+(r)} \int_{B_r} (w^2(x, t) - w^2(y, t))^2d\text{vd}\text{d}t \\
\leq C(q) \frac{a_{N,s}}{2} \left(\frac{1}{(R - r)^{2s}} + \frac{1}{R^{2s} - r^{2s}} \right) \int_{Q_+(r)} w^2(x, t)d\mu d\text{t}.
\]

Using Theorem B.9 and proceeding as in Lemma 4.6, we get (30).

Define
\[
\mathcal{H}(r, q) = \left(\int_{Q_+(r)} v^q d\mu d\text{d}t \right)^{\frac{1}{q}}.
\]

From (30), we get \(\mathcal{H}(r, rq) \leq a^{\frac{1}{q}} \mathcal{H}(R, q) \). Let define \(q_j := \tau^{-j} \) and \(r_j := r + \frac{R - r}{2^j} \). By Lemma 4.8 for \(r_n \) and \(r_{n-1} \), it follows that
\[
\mathcal{H}(r_n, q_1 \tau) \leq a_n^\tau \mathcal{H}(r_{n-1}, q_1),
\]
where \(a_n = C(N, s) \left(\frac{1}{(r_{n-1} - r_n)^{2s}} + \frac{1}{r_{n-1}^{2s} - r_n^{2s}} \right). \) By using the definition of \(r_n \) and considering that \(r \geq \frac{1}{2} \), we get
\[
\alpha_n \leq C(N, s) \frac{2^{2ns}}{(R - r)^{2s}}.
\]

Hence
\[
\mathcal{H}(r_n, q_1 \tau) \leq \left(C(N, s) \frac{2^{2ns}}{(R - r)^{2s}} \right)^\tau \mathcal{H}(r_{n-1}, q_1).
\]

Iterating this inequality (see [22, Theorem 3.7]), we reach the next result.

Lemma 4.9. Assume that \(\frac{1}{2} \leq r \leq R \leq 1 \) and \(q \in (0, \tau^{-1}) \), with \(\tau := 1 + \frac{2s}{N} \). Then, every supersolution \(v \geq 0 \) of problem (21) satisfies
\[
\int_{Q_+(r)} v d\mu d\text{t} \leq \left(\frac{C}{|Q_+(1)|_{d\mu \times d\text{t}}} \alpha(r, R) \right)^{\frac{1-s}{q}} \left(\int_{Q_+(r)} v^q d\mu d\text{t} \right)^{\frac{1}{q}},
\]
where \(C = C(N, s) > 0 \) and
\[
\alpha(r, R) = \begin{cases} (R - r)^{\omega_1} & \text{if } s \geq \frac{1}{2}, \\
(R^{2s} - r^{2s})^{\omega_2} & \text{if } s < \frac{1}{2}, \end{cases}
\]
with \(\omega_1, \omega_2 > 0 \) depending only on \(s, N \).

In order to apply Lemma 4.5 we need to estimate
\[
|Q_+(1) \cap \{ \log v < -m - a \}|_{d\mu \times d\text{t}} \text{ and } |Q_-(1) \cap \{ \log v > m - a \}|_{d\mu \times d\text{t}},
\]
where \(m, a > 0 \) and \(v \) is a supersolution to (21). To do this, we need the following auxiliary result.
Lemma 4.10. Let \(I \subset \mathbb{R} \) and \(\psi : \mathbb{R}^N \to [0, +\infty) \) be a continuous function satisfying \(\text{supp}(\psi) \subseteq B_R \) for some \(R > 0 \) and \(|||\psi|||_{\gamma^\ast(R^N)} \leq C \). Then, for \(v : \mathbb{R}^N \times I \to [0, +\infty) \), the following inequality holds,
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (v(x, t) - v(y, t))(-\psi^2(x)v^{-1}(x, t) + \psi^2(y)v^{-1}(y, t)) \, d\nu
\geq \int_{B_R} \int_{B_R} \log \frac{\psi(y)}{\psi(x)} - \log \frac{v(y, t)}{v(x, t)} \, dv - 3 \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (\psi(x) - \psi(y))^2 \, d\nu.
\]

With this result, we can establish the estimates in (34) (see [22, Proposition 4.2] for more details),

Lemma 4.11. Assume that \(v \) is a supersolution to (21) in the cylinder \(Q := B_2 \times (-1, 1) \), then there exists a positive constant \(C = C(N, s) \) such that for some constant \(a = a(v) \), we have
\[
\forall m > 0 : |Q_+(1) \cap \{\log v < -m - a\}|_{d\mu \times dt} \leq \frac{C|B_1|_{d\nu}}{m},
\]
and
\[
\forall m > 0 : |Q_-(1) \cap \{\log v > m - a\}|_{d\mu \times dt} \leq \frac{C|B_1|_{d\nu}}{m}.
\]

Proof. Suppose that \(v \geq \epsilon > 0 \) in \(Q \). Let \(\psi \) be such that \(\psi^2 = ((1 - |x|) \vee 0) \vee 0 \), and let us denote \(w(x, t) := -\log \frac{\psi(x)}{v} \). Using \(\frac{\psi^2}{v} \) as a test function in (21) and noticing that \(\text{supp}(\psi^2) \subseteq B_{3/2} \), by Lemma 4.10 and the fact that \(|||\psi|||_{\gamma^\ast(R^N)} \leq C \), there follows
\[
\int_{B_{3/2}} \psi^2 w_1 d\mu + \frac{aN_s}{2} \int_{B_{3/2}} \int_{B_{3/2}} \psi(x)\psi(y)(w(x, t) - w(y, t))^2 dv
\leq 3\frac{aN_s}{2} \int_{B_{3/2}} \int_{\mathbb{R}^N} (\psi(x) - \psi(y))^2 d\nu \leq C.
\]

We set \(W(t) := \int_{B_{3/2}} \psi^2 w(x, t) d\mu \int_{B_{3/2}} \psi^2 d\mu \), then by the Poincaré type inequality obtained in Theorem B.10, we reach that
\[
\int_{B_{3/2}} \psi^2 w_1 d\mu + C \int_{B_{3/2}} (w(x, t) - W(t))^2 \psi^2(x) d\mu \leq C.
\]

Let \((t_1, t_2) \subset (-1, 1) \). Integrating in time the previous inequality, dividing by \(\int_{B_{3/2}} \psi^2 d\mu \), and noticing that
\[
\int_{B_{3/2}} \psi^2 d\mu \leq 2^{N-2}\gamma|B_1|_{d\nu},
\]
one gets
\[
\frac{W(t_2) - W(t_1)}{t_2 - t_1} + \frac{C_1}{|B_1|_{d\mu}(t_2 - t_1)} \int_{t_1}^{t_2} \int_{B_1} (w(x, t) - W(t))^2 d\mu \leq C_2.
\]

Define \(\tilde{W}(t) = V(t) - C_2 t \) and \(\tilde{w}(x, t) = v(x, t) - C_2 t \), then if \(\tilde{W} \) is differentiable, by letting \(t_2 \to t_1 \), we get
\[
\tilde{W}'(t) + \frac{C_1}{|B_1|_{d\mu}} \int_{B_1} (\tilde{w}(x, t) - \tilde{W}(t))^2 d\mu \leq 0 \quad \text{a.e in } (-1, 1).
\]

In the case where \(W \) is not differentiable, it is possible to follow the same discretization argument as in [22, Proposition 4.2].
Notice that from (37) we deduce $\tilde{W}'(t) \leq 0$, and therefore calling $a(v) := W(0)$ there results

$$\tilde{W}'(t) \leq W(0) = a(v) \text{ for all } t \in (0, 1),$$

Then if we define

$$G_m^+(t) := \{ x \in B_1(0) : \tilde{w}(x, t) > m + a \},$$

for $x \in G_m^+(t)$, we have

$$\tilde{w}(x, t) - \tilde{W}(t) \geq m + a - \tilde{W}(t) > 0.$$

Thus

$$\tilde{W}'(t) + \frac{C_1}{|B_1|d_H}|G_m^+(t)|d_\mu(m + a - \tilde{W}(t))^2 \leq 0.$$

Hence

$$\frac{-\tilde{W}'(t)}{(m + a - \tilde{W}(t))^2} \geq \frac{C_1}{|B_1|d_H}|G_m^+(t)|d_\mu.$$

Integrating the previous differential inequality for $t \in (0, 1)$ and substituting \tilde{w} by its value, yields

$$|Q_+(1) \cap \{ \log v + C_2 t < -m - a \}|d_\mu \times dt \leq \frac{C_1|B_1|d_H}{m}.$$

Now

$$|Q_+(1) \cap \{ \log v < -m - a \}|d_\mu \times dt \leq |Q_+(1) \cap \{ \log v + C_2 t < -m - a \}|d_\mu \times dt$$

$$+ |Q_+(1) \cap \{ C_2 t > \frac{m}{2} \}|d_\mu \times dt$$

$$\leq \frac{C|B_1|d_H}{m},$$

what finishes the proof of (35). Estimate (36) follows using the same approach. \qed

We now are able to prove the weighted weak Harnack inequality.

Proof of Theorem 4.4. Roughly speaking, the key to prove this result will be to define appropriate functions and parameters so that we can deduce the result from Theorem 4.5. Indeed, we divide the proof in two cases. Let $0 < r < 1$ such that $B_r \subset \Omega$.

1. Assume first that $s \geq \frac{1}{2}$.

 We set $\theta_1 = \frac{1}{2}$ and define $U_1(r) = B_r \times (1 - r^{2s}, 1)$, $U_2(r) = B_r \times (-1, -1 + r^{2s})$. In the same way we consider $U_1(1) = Q_+(1)$ and $U_2(1) = Q_-(1)$.

 Let $w_1 := e^{-a}v^{-1}, w_2 := e^av$ where $a = a(v)$ was defined in Lemma 4.11. From this result we obtain that

 $$|Q_+(1) \cap \{ \log w_1 > m \}|d_\mu \times dt \leq \frac{C|B_1|d_H}{m},$$

 and

 $$|Q_-(1) \cap \{ \log w_2 > m \}|d_\mu \times dt \leq \frac{C|B_1|d_H}{m}.$$

 Using Lemma 4.7, it follows that $(w_1, U_1(r))$ satisfies the conditions of Lemma 4.5 with $p_0 = \infty$ and η any positive constant. Moreover, by Lemma 4.9, $(w_2, U_2(r))$ satisfies the same conditions with $p_0 = 1$ and $\eta = \frac{N-2s}{2s} < 1$. Hence we conclude that

 $$\sup_{U_1(\theta_1)} w_1 \leq C \text{ and } \|w_2\|_{L^1(U_2(\theta_2), d_\mu)} \leq \tilde{C}.$$

 Using these estimates and the definitions of w_1 and w_2, we get

 $$\|v\|_{L^1(U_2(\frac{1}{2}), d_\mu)} \leq C \inf_{U_1(\frac{1}{2})} v,$$

 and the result follows in this case.
(2) If $0 < s < \frac{1}{2}$, we have to change the domains by setting $\theta_1 = \theta_2 = (\frac{2}{s})^{2s}$ and $U_1(r) = B_{\frac{\sqrt{2}}{s}}(1 - r, 1), U_2(r) = B_{\frac{\sqrt{2}}{s}}(-1, -1 + r)$. Then the same arguments as in the previous case allow us to conclude.

\square

Finally, to end this section, we can establish a boundedness condition on the solutions of (21).

Proposition 4.12. Let $v \in L^2((0, T); Y^s, \gamma(\mathbb{R}^N)) \cap C([0, T); L^2(\mathbb{R}^N, |x|^{-\gamma}))$ be a solution to (21). If $F \in L^\infty((0, T); L^\infty(\Omega))$ and $u_0 \in L^\infty(\Omega)$ then $v \in L^\infty((0, T); L^\infty(\Omega))$.

Proof. The proof follows as a simplified version of [29, Theorem 29], fixing $r = m = +\infty$ and testing with $G_k(v)$ in (21), so we skip the details. The presence of the singular term is handled in a straightforward way. In particular, in their notation, we will define

$$|||G_k(v)|||^2 := ||G_k(v)||^2_{L^\infty((0, T); L^2(\Omega, |x|^{-\gamma}))} + ||G_k(v)||^2_{L^2((0, T); Y^s, \gamma(\Omega))},$$

and the result follows as a consequence of Theorem 2.1. \square

Remark 4.13. Apart from the integral version we proved, if the solution is bounded we can prove the strong Harnack inequality by classical arguments. We skip the details because we do not use this inequality in the applications.

5. The Linear Problem: Dependence on the Spectral Parameter λ

Along this section we will study the problem

$$\begin{cases}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + g(x, t) \text{ in } \Omega \times (0, T), \\
 u(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u(x, 0) &= u_0(x) \geq 0 \text{ if } x \in \Omega,
\end{cases}$$

(38)

where $g(x, t)$ is a nonnegative function. The goal will be to establish some necessary and sufficient conditions on g and u_0 in order to find solutions of this problem. These results correspond to the ones obtained by P. Baras and J. A. Goldstein for the heat equation in presence of the inverse square potential (see [8]).

First, we deal with the necessary summability conditions on g and u_0.

Theorem 5.1. Let $0 < \lambda \leq \Lambda_{N, s}$. Assume that \bar{u} is a positive weak supersolution to the problem (38). Then g and u_0 must satisfy

$$\int_{t_1}^{t_2} \int_{B_r(0)} |x|^{-\gamma} g \, dx \, dt < +\infty, \quad \int_{B_r(0)} |x|^{-\gamma} u_0 \, dx < +\infty,$$

for a cylinder $B_r(0) \times (t_1, t_2) \subset \subset \Omega \times (0, T)$ small enough, where γ was defined in (17).

Proof. Fix $\varepsilon > 0$. Let consider φ_n, the positive solution to

$$\begin{cases}
 - (\varphi_n)_t + (-\Delta)^s \varphi_n &= \lambda \frac{\varphi_n^{-1}}{|x|^{2s}} + 1 \text{ in } \Omega \times (-\varepsilon, T), \\
 \varphi_n &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times (-\varepsilon, T), \\
 \varphi_n(x, T) &= 0 \text{ in } \Omega,
\end{cases}$$

(39)

with

$$\begin{cases}
 - (\varphi_0)_t + (-\Delta)^s \varphi_0 &= 1 \text{ in } \Omega \times (-\varepsilon, T), \\
 \varphi_0 &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times (-\varepsilon, T), \\
 \varphi_0(x, T) &= 0 \text{ in } \Omega.
\end{cases}$$

(40)
By Proposition A.1, \(\varphi_0 \) is regular in \(\Omega \times (-\varepsilon, T] \), and therefore every \(\varphi_n \) is regular too. Furthermore, \(\varphi_{n-1} \leq \varphi_n \leq \varphi \), where \(\varphi \) is the positive solution to
\[
\begin{cases}
-\varphi_t + (-\Delta)^s \varphi - \frac{\lambda \varphi}{|x|^2} = 1 & \text{in } \Omega \times (-\varepsilon, T),
\varphi = 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times (-\varepsilon, T],
\varphi(x, T) = 0, & \Omega.
\end{cases}
\]
As a consequence of the weak Harnack inequality obtained in Theorem 4.4 for a cylinder
\(C_{r_1,t_1,t_2} := B_r(0) \times (t_1, t_2) \subset \Omega \times (-\varepsilon, T), \) \(0 < r < r_1 \), there exists a constant \(A = A(N, s, C_{r_1,t_1,t_2}) \), such that
\[\varphi(x, t) \geq \frac{A}{|x|^{\gamma}}, \quad (x, t) \in C_{r_1,t_1,t_2}, \quad \gamma = \frac{N - 2s}{2} - \alpha.\]
Since \(\varphi_n \) is regular and bounded we can use it as a test function in (38), and then as a strong solution of (39) to obtain
\[
\int_0^T \int_\Omega g \varphi_n \, dx \, dt + \int_\Omega u_0 \varphi_n(x, 0) \, dx
= -\int_0^T \int_\Omega \tilde{u}(\varphi_n) \, dx \, dt + \int_0^T \int_\Omega \tilde{u}(-\Delta)^s \varphi_n \, dx \, dt - \lambda \int_0^T \int_\Omega \frac{\tilde{u} \varphi_n}{|x|^{2s}} \, dx \, dt
\leq -\int_0^T \int_\Omega \tilde{u}(\varphi_n) \, dx \, dt + \int_0^T \int_\Omega \tilde{u}(-\Delta)^s \varphi_n \, dx \, dt - \lambda \int_0^T \int_\Omega \frac{\tilde{u} \varphi_n}{|x|^{2s}} \, dx \, dt
= \int_0^T \int_\Omega \tilde{u} \, dx \, dt = C < +\infty.
\]
Since both integrals in the left hand side are positive, in particular each one is uniformly bounded. Thus, \(\{g \varphi_n\} \) is an increasing sequence uniformly bounded in \(L^1(\Omega \times (0, T)) \), applying the Monotone Convergence Theorem and therefore, by (41),
\[
C \int_{t_1}^{t_2} \int_{B_r(0)} |x|^{-\frac{N}{2s} + \alpha} g \, dx \, dt \leq \int_{t_1}^{t_2} \int_{B_r(0)} g \varphi \, dx \, dt
\leq \int_0^T \int_\Omega g \varphi \, dx \, dt = \lim_{n \to \infty} \int_0^T \int_\Omega g \varphi_n \, dx \, dt < +\infty.
\]
Likewise, \(\{u_0 \varphi_n(x, 0)\} \) is also an increasing sequence, uniformly bounded in \(L^1(\Omega) \), and thus, choosing \(t_1 \) and \(t_2 \) so that \(0 \in (t_1, t_2) \subset (-\varepsilon, T) \), as above we conclude
\[
C \int_{B_r(0)} |x|^{-\frac{N}{2s} + \alpha} u_0(x) \, dx \leq \int_\Omega u_0 \varphi(x, 0) \, dx < +\infty.
\]
Conversely, we would like to find the optimal summability conditions on \(g \) and \(u_0 \) to prove existence of weak solution. In this direction, notice that if \(g \in L^2(0, T; X^{-s}(\Omega)) \) and \(u_0 \in L^2(\Omega) \), by Remark 2.8 we can assure the existence of an energy solution of the problem (38) whether \(\lambda \leq \Lambda_{N,s} \). A sharper result, for a more general class of data, is the following.

Theorem 5.2. Assume \(0 < \lambda \leq \Lambda_{N,s} \) and that \(g \) and \(u_0 \) satisfy
\[
\int_\Omega \frac{u_0}{|x|^\gamma} \, dx < +\infty, \quad \int_0^T \int_\Omega \frac{g}{|x|^\gamma} \, dx \, dt < +\infty,
\]
where \(\gamma \) was defined in (17). Then problem (38) has a positive weak solution.
Proof. Consider the approximated problems

\[
\begin{cases}
 u_{nt} + (-\Delta)^s u_n &= \lambda \frac{u_{n-1}}{|x|^{2s} + \frac{1}{n}} + g_n \text{ in } \Omega \times (0, T), \\
 u_n(x, t) &= 0 \text{ in } \Omega \times (0, T), \\
 u_n(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u_n(x, 0) &= T_n(u_0(x)) \text{ if } x \in \Omega,
\end{cases}
\]

(42)

where

\[
\begin{cases}
 u_{0t} + (-\Delta)^s u_0 &= g_1 \text{ in } \Omega \times (0, T), \\
 u_0(x, t) &= 0 \text{ in } \Omega \times (0, T), \\
 u_0(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u_0(x, 0) &= T_1(u_0(x)) \text{ if } x \in \Omega,
\end{cases}
\]

(43)

with \(g_n = T_n(g) \) and

\[
T_n(g) = \begin{cases}
 g & \text{if } |g| \leq n, \\
 \frac{n}{|g|} g & \text{if } |g| > n.
\end{cases}
\]

By Lemma 2.9, it follows that \(u_0 \leq u_1 \leq \cdots \leq u_{n-1} \leq u_n \) in \(\mathbb{R}^N \times (0, T) \). Note that, since the right hand sides of these problems are bounded, every \(u_n \) is actually an energy solution.

Consider \(\varphi \) the solution of the problem

\[
\begin{cases}
 -\varphi_t + (-\Delta)^s \varphi - \lambda \frac{\varphi}{|x|^{2s}} &= 1 \text{ in } \Omega \times (-\varepsilon, T), \\
 \varphi &= 0 \text{ in } \Omega \times (-\varepsilon, T), \\
 \varphi &= 0 \text{ on } (\mathbb{R}^N \setminus \Omega) \times (-\varepsilon, T], \\
 \varphi(x, T) &= C \text{ in } \Omega,
\end{cases}
\]

(44)

where \(C > 0 \). As a consequence of the weak Harnack inequality, Theorem 4.4, and Proposition 4.12, for any cylinder \(B_r(0) \times [t_1, t_2] \subset \Omega \times (-\varepsilon, T) \) we find \(c_1, c_2 > 0 \) such that

\[
\frac{c_1}{|x|^{\gamma}} \leq \varphi(x, t) \leq \frac{c_2}{|x|^{\gamma}}.
\]

(45)

Since \(\varphi \) also belongs to \(L^2(0, T; X_0^s(\Omega)) \), we can use it as a test function in (42). Thus,

\[
\int_0^T \int_\Omega (u_n) \varphi \, dx \, dt + \int_0^T \int_{\mathbb{R}^N} u_n(-\Delta)^s \varphi \, dx \, dt = \lambda \int_0^T \int_\Omega \frac{u_{n-1} \varphi}{|x|^{2s} + n} \, dx \, dt + \int_0^T \int_\Omega g_n \varphi \, dx \, dt
\leq \lambda \int_0^T \int_\Omega \frac{u_n \varphi}{|x|^{2s}} \, dx \, dt + \int_0^T \int_\Omega g_n \varphi \, dx \, dt.
\]

Integrating in time and applying (44) and (45), we conclude that

\[
C \int_\Omega u_n(x, T) \, dx + \int_0^T \int_\Omega u_n \, dx \, dt \leq \int_0^T \int_\Omega g_n \varphi \, dx \, dt + \int_\Omega T_n(u_0(x)) \varphi(x, 0) \, dx
\leq \int_0^T \int_\Omega g \varphi \, dx \, dt + \int_\Omega u_0(x) \varphi(x, 0) \, dx
\leq C \int_0^T \int_\Omega \frac{q}{|x|^{\gamma}} \, dx \, dt + C \int_\Omega \frac{u_0(x)}{|x|^{\gamma}} \, dx \nabla
\]

by hypotheses. Hence, since the sequence \(\{u_n\} \) is increasing, we can define \(u := \lim_{n \to \infty} u_n \), and conclude that \(u \in L^1(\Omega \times (0, T)) \) by applying the Monotone Convergence Theorem.
Notice that, using the same computations as above and integrating in $\Omega \times [0,t]$ with $t \leq T$, by considering the above estimates on $\{u_n\}_{n \in \mathbb{N}}$, we reach that

\[(46)\quad \sup_{t \in [0,T]} \int_{\Omega} u_n(x,t) dx + \int_0^T \int_{\Omega} u_n dx dt \leq C \text{ for all } n.\]

Fix $T_1 > T$, and define $\bar{\varphi}$ as the unique solution to the problem

\[
\begin{cases}
-\bar{\varphi}_t + (-\Delta)^s \bar{\varphi} = 1 & \text{in } \Omega \times (-\varepsilon, T_1), \\
\bar{\varphi} > 0 & \text{in } \Omega \times (-\varepsilon, T_1), \\
\bar{\varphi} = 0 & \text{on } (\mathbb{R}^N \setminus \Omega) \times (-\varepsilon, T_1], \\
\varphi(x, T_1) = 0 & \text{in } \Omega.
\end{cases}
\]

It is clear that $\bar{\varphi} \in L^\infty(\Omega \times (-\varepsilon, T_1))$ and $\bar{\varphi}(x,t) \geq C > 0$ for all $(x,t) \in B_r(0) \times [0,T]$, where $B_r(0) \subset \subset \Omega$. Now, using $\bar{\varphi}$ as a test function in (42) and integrating in $\Omega \times (0,T)$, it follows that

\[
\int_{\Omega} u_n(x,T) \bar{\varphi}(x,T) dx dt + \int_0^T \int_{\Omega} u_n dx dt \geq \lambda \int_0^T \int_{\Omega} \frac{u_n-1}{|x|^{2s}+\frac{1}{n}} dx dt.
\]

Thus

\[
\lambda \int_0^T \int_{\Omega} \frac{u_n-1}{|x|^{2s}+\frac{1}{n}} dx dt \leq C \sup_{\{t \in [0,T]\}} \int_{\Omega} u_n(x,t) dx + \int_0^T \int_{\Omega} u_n dx dt \leq C \text{ for all } n.
\]

Hence

\[
\int_0^T \int_{\Omega} \frac{u_n-1}{|x|^{2s}+\frac{1}{n}} dx dt = \int_0^T \int_{B_r(0)} \frac{u_n-1}{|x|^{2s}+\frac{1}{n}} dx dt + \int_0^T \int_{\Omega \setminus B_r(0)} \frac{u_n-1}{|x|^{2s}+\frac{1}{n}} dx dt \leq C \int_0^T \int_{\Omega} u_n-1 dx dt \leq C.
\]

Therefore, by the Monotone Convergence Theorem we conclude that

\[
\frac{u_n-1}{|x|^{2s}+\frac{1}{n}} + g_n \uparrow \frac{u}{|x|^{2s}} + g \text{ strongly in } L^1(\Omega \times (0,T)).
\]

To conclude that u is a weak solution to problem (38), it remains to check that $u \in C([0,T]; L^1(\Omega))$. We claim that $\{u_n\}_{n \in \mathbb{N}}$ is a Cauchy sequence in $C([0,T]; L^1(\Omega))$, and hence the result follows. In order to prove this, we closely follow the argument in [33].

Let $n,m \in \mathbb{N}$, such that $n \geq m$, and denote $u_{n,m} := u_n - u_m$, and $g_{n,m} := g_n - g_m$. Clearly, $u_{n,m}, m \geq 0$. We set

\[
C_{m,n} := \lambda \int_0^t \int_{\Omega} \frac{u_{n,m}}{|x|^{2s}} dx d\tau + \int_0^t \int_{\Omega} g_{n,m} T_1(u_{n,m}) dx d\tau,
\]

and then $C_{m,n} \to 0$ as $n, m \to \infty$.

By the definition of the approximated problems in (42) and the linearity of the operator, for $t \leq T$,

\[
\int_0^t \int_{\Omega} (u_{n,m}) T_1(u_{n,m}) dx d\tau + \int_0^t \int_{\Omega} (-\Delta)^s(u_{n,m}) T_1(u_{n,m}) dx d\tau \leq C_{m,n}.
\]

Since $u_{n,m} \in L^2((0,T); X_0^s(\Omega))$, it follows that (see [29] for a detailed proof)

\[
\int_0^t \int_{\Omega} (-\Delta)^s(u_{n,m}) T_1(u_{n,m}) dx d\tau \geq \int_0^t \| T_1(u_{n,m}) \|^2_{X_0^s(\Omega)} d\tau \geq 0,
\]

and therefore,

\[
\int_0^t \int_{\Omega} (u_{n,m}) T_1(u_{n,m}) dx d\tau \leq C_{m,n}.
\]
Let define

$$\Psi(s) := \int_0^s T_1(\sigma)d\sigma.$$

Since $u_n \in C([0,T]; L^2(\Omega))$, then

$$\int_\Omega \int_0^t (u_{n,m})_t T_1(u_{n,m}) \, dx \, dt = \int_\Omega (\Psi(u_{n,m})(t) - \Psi(u_{n,m})(0)) \, dx.$$

Thus

$$\int_\Omega \psi(u_{n,m})(t) \, dx \leq C_{n,m} + \int_\Omega \Psi(u_{n,m})(0) \, dx.$$

Since $\Psi(u_{n,m})(0) = \psi(T_n(u_0) - T_m(u_0))$, noticing that $\Psi(s) \leq s$ and $T_n(u_0) - T_m(u_0) \to 0$ strongly in $L^1(\Omega)$ as $n, m \to \infty$, we obtain that

$$\int_\Omega \Psi(u_{n,m})(t) \, dx \to 0 \text{ as } n, m \to \infty.$$

Now, since

$$\int_{|u_{n,m}| < 1} \frac{|u_{n,m}|^2(t)}{2} \, dx + \int_{|u_{n,m}| > 1} \frac{|u_{n,m}|(t)}{2} \, dx \leq \int_\Omega \psi(u_{n,m})(t) \, dx,$$

then using Hölder inequality we reach the desired result.

Thus, we are in the case

$$\int_\Omega (u_{n,m})_t \psi(u_{n,m})(t) \, dx = 0 \text{ in } \Omega \times (0, T).$$

Next, we see that $\Lambda_{N,s}$ provides a real restriction on λ.

Proposition 5.3. If $\lambda > \Lambda_{N,s}$, problem (38) has no positive weak supersolution.

Proof. Consider \hat{u} as a weak supersolution to the problem

$$\begin{cases}
 u_t + (\Delta)^s u - \Lambda_{N,s} \frac{u}{|x|^{2s}} = (\lambda - \Lambda_{N,s}) \frac{u}{|x|^{2s}} + g \text{ in } \Omega \times (0, T), \\
 u(x, t) > 0 \text{ in } \Omega \times (0, T), \\
 u(x, t) = 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T].
\end{cases}$$

(48)

Since in the left hand side the constant is $\Lambda_{N,s}$, we are in the case $\alpha = 0$, and by Theorem 5.1, necessarily

$$\left((\lambda - \Lambda_{N,s}) \frac{\hat{u}}{|x|^{2s}} + g\right) |x|^{-\frac{s-2s}{2}} \in L^1(B_r(0) \times (t_1, t_2)),$$

for all $B_r(0) \times (t_1, t_2) \subset \subset \Omega \times (0, T)$ small enough. In particular, this implies

$$\left((\lambda - \Lambda_{N,s}) \frac{\hat{u}}{|x|^{2s}} \right) |x|^{-\frac{s-2s}{2}} \in L^1(B_r(0) \times (t_1, t_2)),$$

and hence, applying the weak Harnack inequality again,

$$\lambda - \Lambda_{N,s} |x|^{-N} \in L^1(B_r(0) \times (t_1, t_2)),$$

what is a contradiction. Therefore, there does not exist a positive supersolution if $\lambda > \Lambda_{N,s}$. \hfill \Box

Remark 5.4. The previous nonexistence result implies that for $\lambda > \Lambda_{N,s}$ an instantaneous and complete blow up phenomena occurs. The proof is a simple adaptation of Theorem 6.4, where this result is proved for a more involved semilinear problem.

Furthermore, we can state a nonexistence result that shows the optimality of the power $p = 1$ in the singular term u_p. The proof for this nonlocal problem closely follows the classical case, due to H. Brezis and X. Cabré (see [14]).
Theorem 5.5. Let $p > 1$, and let $u \geq 0$ satisfy
\[u_t + (-\Delta)^s u \geq \frac{u^p}{|x|^{2s}} \quad \text{in } \Omega \times (0, T), \]
in the weak sense. Then $u \equiv 0$.

Proof. Consider a cylinder $B_r(0) \times (t_1, t_2)$. If $u \geq 0$, by the Maximum Principle (Theorem 2.14), we know that there exists $\varepsilon > 0$ so that
\[u \geq \varepsilon \quad \text{in } B_r(0) \times (t_1, t_2). \]

Let define
\[\phi(s) = \begin{cases} \frac{1}{(p-1)s^{p-1}} - \frac{1}{(p-1)s^{p-1}} & \text{if } s \geq \varepsilon, \\ \frac{1}{s} & \text{if } s < \varepsilon. \end{cases} \]

Notice that $0 \leq \phi < +\infty$ in $[\varepsilon, +\infty)$, $\phi(\varepsilon) = 0$, $\phi'(\varepsilon) = 0$, and ϕ is a C^1 function satisfying $\phi'(s) = -\frac{1}{s^2}$ for $s \geq \varepsilon$. Moreover, since ϕ is concave, just applying the definition of a concave function, it follows that $(-\Delta)^s(\phi(u)) \geq \phi'(u)(-\Delta)^s u$ and thus,
\[(\phi(u))_t + (-\Delta)^s(\phi(u)) \geq \phi'(u)(u_t + (-\Delta)^s u) \geq \frac{1}{|x|^{2s}} \quad \text{for } u \geq \varepsilon. \]

Consider now the weak solution w to the elliptic equation
\[
\begin{cases}
(-\Delta)^s w = \frac{1}{|x|^{2s}} & \text{in } B_r(0), \\
w = 0 & \text{on } \mathbb{R}^N \setminus B_r(0),
\end{cases}
\]
that exists because $\frac{1}{|x|^{2s}} \in L^1(B_r(0))$ (see [29]). Hence,
\[(\phi(u) - w)_t + (-\Delta)^s(\phi(u) - w) \geq 0 \quad \text{in } B_r(0) \times (t_1, t_2), \]
in the weak sense, which implies $\phi(u) - w \geq 0$ in $B_r(0) \times (t_1, t_2)$. Thus, if we prove that w is unbounded, we reach a contradiction with the fact that ϕ is bounded, and the proof is finished.

Define $\tilde{w} := \frac{w}{|x|^{2s}}$, where the constant is chosen such that $\frac{C_{N,s}}{|x|^{2s}}$ is the fundamental solution of the fractional Laplace equation. Thus, for $|x| \leq 1/n$,
\[
\tilde{w}(x) = C_{N,s} \int_{B_r(0)} \frac{1}{|y|^{2s}|x-y|^{N-2s}} dy \geq \tilde{C} \int_{B_r(0)} \frac{1}{|y|^{2s}(|y|^{N-2s} + (1/n)^{N-2s})} dy \to +\infty
\]
when $n \to +\infty$, that is, when $|x| \to 0$. But recalling the definition of \tilde{w}, we have that $w - \tilde{w}$ is harmonic in $B_r(0)$, and hence bounded in $B_{r/2}(0)$. Therefore, $w(x) \to +\infty$ as $|x| \to 0$.

Thus, as a straightforward consequence we obtain the following result.

Corollary 5.6. Let $g \in L^1(\Omega \times (0, T))$, $g \geq 0$, and $p > 1$. Therefore, the problem
\[
\begin{cases}
u_t + (-\Delta)^s u = \lambda \frac{u^p}{|x|^{2s}} + g & \text{in } \Omega \times (0, T), \\
u(x, t) = 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
u(x, 0) = \nu_0(x) & \geq 0 \text{ if } x \in \Omega,
\end{cases}
\]
has no positive weak solution.
6. Existence and nonexistence results for a semilinear problem

The goal of this section is to study how the addition of a semilinear term of the form u^p, with $p > 1$, interferes with the solvability of the previous problems. As in the classical heat equation, see [3], the relevant feature is that for every $\lambda \in (0, \Lambda_{N,s})$ there exists a threshold for the existence, $p_+(\lambda, s)$, that depends on the spectral parameter. Indeed, we will consider the problem

$$
\begin{align*}
\begin{cases}
 u_t + (-\Delta)^s u &= \lambda \frac{|u|^{2s}}{|x|^{2s}} + u^p + cf \text{ in } \Omega \times (0,T), \\
 u(x, t) &> 0 \text{ in } \Omega \times (0,T), \\
 u(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{cases}
\end{align*}
$$

(49)

with $p > 1$ and $\lambda, c > 0$. By weak or energy solutions of this problem, we mean solutions in the sense of Definition 2.4 and Definition 2.5 by fixing $F = \lambda \frac{|u|^{2s}}{|x|^{2s}} + u^p + cf$.

We will prove that there exists such critical exponent $p_+(\lambda, s)$ so that one can prove existence of solution for problem (49) whether $1 < p < p_+(\lambda, s)$, and nonexistence for $p > p_+(\lambda, s)$. Following the same ideas as in [9], one can expect $p_+(\lambda, s)$ to depend on s and λ, and in particular to satisfy

$$
p_+(\lambda, s) = 1 + \frac{2s}{N - 2s - \alpha} = 1 + \frac{2s}{\gamma}.
$$

Note that if $\lambda = \Lambda_{N,s}$, namely, $\alpha = 0$, then $p_+(\lambda, s) = 2^*_s - 1$, and if $\lambda = 0$, i.e., $\alpha = \frac{N}{2}$, then $p_+(\lambda, s) = \infty$.

We will need some auxiliary results that allow us to build a solution whenever we have a supersolution. To prove existence of a weak solution to (49) with L^1 data from a weak supersolution, we will consider the solution obtained as limit of solutions of approximated problems (see [12, 18] for the local parabolic operators case).

Lemma 6.1. If $\bar{u} \in C([0,T); L^1(\Omega))$ is a weak positive supersolution to the equation in (49) with $\lambda \leq \Lambda_{N,s}$ and $f \in L^1(\Omega \times (0,T))$, then there exists a positive minimal weak solution to problem (49) obtained as limit of solutions of approximated problems.

Proof. If \bar{u} is a positive supersolution to (49) with $\lambda \leq \Lambda_{N,s}$, we construct a sequence $\{u_n\}_{n \in \mathbb{N}}$ starting with

$$
\begin{align*}
\begin{cases}
 u_{0t} + (-\Delta)^s u_0 &= T_1(f) \text{ in } \Omega \times (0,T), \\
 u_0(x, t) &> 0 \text{ in } \Omega \times (0,T), \\
 u_0(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T), \\
 u_0(x, 0) &= T_1(u_0(x)) \text{ if } x \in \Omega.
\end{cases}
\end{align*}
$$

(50)

By the Weak Comparison Principle (Lemma 2.9), it follows that $u_0 \leq \bar{u}$ in $\mathbb{R}^N \times (0,T)$. By iteration we define

$$
\begin{align*}
\begin{cases}
 u_{nt} + (-\Delta)^s u_n &= \lambda \frac{|u_{n-1}|^{2s}}{|x|^{2s}} + u_n^p + T_n(f) \text{ in } \Omega \times (0,T), \\
 u_n(x, t) &> 0 \text{ in } \Omega \times (0,T), \\
 u_n(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T), \\
 u_n(x, 0) &= T_n(u_0(x)) \text{ if } x \in \Omega.
\end{cases}
\end{align*}
$$

(51)
In fact, \(\{u_n\} \subseteq C([0, T); L^1(\Omega)) \cap L^p([0, T); L^p(\Omega)) \) (see [29]). As above it follows that \(u_0 \leq \ldots \leq u_{n-1} \leq u_n \leq \bar{u} \) in \(\mathbb{R}^N \times (0, T) \), so we obtain the pointwise limit \(u := \lim u_n \) that verifies \(u \leq \bar{u} \) and

\[
\begin{cases}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + u^p + f \text{ in } \Omega \times (0, T), \\
 u(x, t) &> 0 \text{ in } \Omega \times (0, T), \\
 u(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{cases}
\]

in the weak sense.

Likewise, if the supersolution belongs to the energy space, the solution we find will be also an energy solution.

Lemma 6.2. If \(\bar{u} \in L^2(0, T; X^s_0(\Omega)) \) with \(\bar{u}_t \in L^2(0, T; X^{-s}(\Omega)) \) is a positive finite energy supersolution to \((49) \) with \(\lambda \leq \Lambda_{N,s} \) and \(f \in L^2(0, T; X^{-s}(\Omega)) \), then there exists a positive minimal energy solution to problem \((49) \) obtained as limit of solutions of the approximated problems.

Proof. Proceeding as in the proof of Lemma 6.1 and using the Comparison Principle for energy solutions (Lemma 2.11), we can build a sequence \(\{u_n\} \subseteq C(\mathbb{R}^N \times (0, T)) \) of energy solutions of the approximated problems \((51) \), so that

\[
u_0 \leq u_1 \leq \ldots \leq u_n \leq \ldots \leq \bar{u} \quad \text{in } \mathbb{R}^N \times (0, T).
\]

Hence, by the Monotone Convergence Theorem we can define \(u := \lim_{n \to \infty} u_n \). Moreover, applying the energy formulation of \(u_n \),

\[
\|u_n\|_{L^2(0,T;X^s_0(\Omega))}^2 = \int_0^T \|u_n(\cdot, t)\|_{X^s_0(\Omega)}^2 \, dt = \int_0^T \int_\Omega \frac{(u_n(x, t) - u_n(y, t))^2}{|x - y|^{N+2s}} \, dx \, dy \
\]

\[
= \frac{2}{a_{N,s}} \left\{ \int_0^T \int_\Omega \left(\frac{u_n^2}{|x|^{2s}} + u_n^{p+1} + T_n(f) u_n \right) \, dx \, dt - \int_0^T \int_\Omega (u_n)_t u_n \, dx \, dt \right\}
\]

\[
= \frac{2}{a_{N,s}} \left\{ \int_0^T \int_\Omega \left(\frac{u_n^2}{|x|^{2s}} + u_n^{p+1} + T_n(f) u_n \right) \, dx \, dt - \frac{1}{2} \int_\Omega u_n(x, 0)^2 \, dx
\]

\[
+ \frac{1}{2} \int_\Omega u_n(x, 0)^2 \, dx \right\}
\]

\[
\leq \frac{2}{a_{N,s}} \left\{ \int_0^T \int_\Omega \left(\frac{\bar{u}^2}{|x|^{2s}} + \bar{u}^{p+1} + f \bar{u} \right) \, dx \, dt + \frac{1}{2} \int_\Omega \bar{u}(x, 0)^2 \, dx \right\}
\]

\[
\leq C.
\]

Thus, up to a subsequence, we know that \(u_n \to u \in L^2(0,T;X^s_0(\Omega)) \). Likewise, for every 0 \(\leq t \leq T \),

\[
\| (u_n)_t \|_{X^{-s}(\Omega)} = \sup_{\|\varphi\|_{X^s_0(\Omega)} \leq 1} \left| \int_\Omega (u_n)_t \varphi \, dx \right|
\]

\[
\leq \sup_{\|\varphi\|_{X^s_0(\Omega)} \leq 1} \left| \int_\Omega \frac{(u_n(x) - u_n(y))(\varphi(x) - \varphi(y))}{|x - y|^{N+2s}} \, dx \, dy \right|
\]

\[
+ \sup_{\|\varphi\|_{X^s_0(\Omega)} \leq 1} \left\{ \int_\Omega u_n^p \varphi \, dx + \lambda \int_\Omega \frac{u_n \varphi}{|x|^{2s}} \, dx + \int_\Omega T_n(f) \varphi \right\}
\]

\[
\leq \sup_{\|\varphi\|_{X^s_0(\Omega)} \leq 1} \left\{ \|u_n\|_{X^s_0(\Omega)} \|\varphi\|_{X^s_0(\Omega)} + \int_\Omega \bar{u}^p \varphi \, dx + \lambda \int_\Omega \frac{\bar{u} \varphi}{|x|^{2s}} \, dx + \int_\Omega f \varphi \, dx \right\}
\]

\[
\leq C\left(\|u_n\|_{X^s_0(\Omega)} + 1 + \|f\|_{L^2(\Omega)} \right).
\]
Hence,
\[
\int_0^T \| (u_n)_t \|^2_{X^{-r}(\Omega)} \, dt \leq C (\| u_n \|^2_{L^2(0,T;X^r(\Omega))} + 1 + \| f \|^2_{L^2(0,T;L^2(\Omega))}) \leq C,
\]
and therefore, up to a subsequence, \((u_n)_t \to u_t\) in \(L^2(0,T;X^{-r}(\Omega))\), and we can pass to the limit to conclude that \(u\) is a finite energy solution to (49).

\[\square \]

6.1. Nonexistence results for \(p > p_+(\lambda, s) \). Instantaneous and complete blow up. Assume first that \(p > p_+(\lambda, s) \). Thus, we can formulate the nonexistence result as follows.

Theorem 6.3. Let \(\lambda \leq \Lambda_{N,s} \). If \(p > p_+(\lambda, s) \), then problem (49) has no positive weak supersolution. In the case where \(f \equiv 0 \), the unique nonnegative supersolution is \(u \equiv 0 \).

Proof. Without loss of generality, we can assume \(f \in L^\infty(\Omega \times (0,T)) \). We argue by contradiction. Assume that \(\tilde{u} \) is a positive weak supersolution of (49). Then \(\tilde{u}_t + (-\Delta)^s \tilde{u} - \lambda \frac{\tilde{u}}{|x|^2} \geq 0 \) in \(\Omega \times (0,T) \) in the weak sense.

Since \(\tilde{u} \) is also a weak supersolution in any \(B_R(0) \times (T_1, T_2) \subset \subset \Omega \times (0,T) \), then by Lemma 6.1, the problem

\[
\begin{align*}
 u_t + (-\Delta)^s u & = \frac{\lambda u}{|x|^{2s}} + u^p + f \quad \text{in} \quad B_R(0) \times (T_1, T_2), \\
 u(x,t) & > 0 \quad \text{in} \quad B_R(0) \times (T_1, T_2), \\
 u(x,T_1) & = 0 \quad \text{in} \quad (\mathbb{R}^N \setminus B_R(0)) \times [T_1, T_2), \\
 u(x,T_1) & = \tilde{u}(x,T_1) \quad \text{if} \quad x \in B_R(0),
\end{align*}
\]

has a minimal solution \(u \) obtained by approximation of truncated problems in \(B_R(0) \times (T_1, T_2) \).

In particular \(u = \lim u_n \), with \(u_n \in L^\infty(B_R(0) \times (T_1, T_2)) \cap C^1((T_1, T_2);C^{2s+\beta}(B_R(0)))\), \(\beta > 0 \), and \(u_n \) solution to (51) in \(B_R(0) \times (T_1, T_2) \).

Notice that \(u_t + (-\Delta)^s u - \frac{\lambda u}{|x|^{2s}} \geq 0 \) in \(B_{r_1}(0) \times (T_1, T_2) \) in the weak sense, and therefore, by the weak Harnack inequality in Theorem 4.4, for all cylinder \(B_r(0) \times (t_1, t_2) \), with \(0 < r < r_1 < R \), \(0 < T_1 < t_1 < t_2 < T_2 \leq T \) there exists a constant \(C = C(N, r_1, t_1, t_2)\) such that \(u \geq C|x|^{-\frac{N+2s}{2}} \) and then for \(r \) small enough \(u > 1 \) in \(B_r(0) \times (T_1, T_2) \).

In particular, since \(u \in L^1(\Omega \times (0,T)) \), then using the fact that \(u \geq 1 \) in \(B_r(0) \times (T_1, T_2) \), we reach that \(\log(u) \in L^p(B_r(0) \times (t_1, t_2)) \), for all \(p \geq 1 \). By a suitable scaling, we can assume that the cylinder is \(B_r(0) \times (0, \tau) \).

Let \(\phi \in C^\infty_0(B_r(0)) \), then using \(\frac{|\phi|^2}{u_n} \) as a test function in the approximated problems (51) and applying the Picone (Theorem B.4) and Sobolev (Theorem 2.1) inequalities,

\[
\int_0^\tau \int_{B_r(0)} u_n^{r-1} \phi^2 \, dx \, dt \leq \int_0^\tau \int_{B_r(0)} \frac{|\phi|^2}{u_n} u_n \, dx \, dt + \int_0^\tau \int_{B_r(0)} (-\Delta)^s u_n \frac{|\phi|^2}{u_n} \, dx \, dt
\]

\[
\leq \int_{B_r(0)} \log u_n(x, \tau) |\phi|^2 \, dx + C'(N, s, \tau) \| \phi \|^2_{X^r(\Omega)}.
\]

Therefore, passing to the limit as \(n \) tends to infinity, and considering that \(u \geq C|x|^{-\frac{N+2s}{2}} \) in \(B_r(0) \times (0, \tau) \), we obtain

\[
\int_{B_r(0)} \log u(x, \tau) |\phi|^2 \, dx + C'(N, s, \tau) \| \phi \|^2_{X^r(\Omega)} \geq \int_0^\tau \int_{B_r(0)} u^{p-1} \phi^2 \, dx \, dt
\]

\[
\geq C \int_0^\tau \int_{B_r(0)} \frac{\phi^2}{|x|^{(p-1)(\frac{N}{2}+s)+\alpha}} \, dx \, dt.
\]
Using Hölder and Sobolev inequalities, it follows that

\[
\int_{B_r(0)} |\log(u(x, \tau))| |\phi|^2 dx \leq \left(\int_{B_r(0)} |\phi|^2 dx \right)^{\frac{p}{p'}} \left(\int_{B_r(0)} |\log u(x, \tau)|^{\frac{N}{2}} dx \right)^{\frac{2}{N}} \leq \left(\int_{B_r(0)} |\log u(x, \tau)|^{\frac{N}{2}} dx \right)^{\frac{2}{N}} S \|\phi\|^2_{X^2_0(\Omega)},
\]

where \(S\) is the optimal constant in the Sobolev embedding. Thus we have

\[
\left[C'(N, s, \tau) + \left(\int_{B_r(0)} |\log u(x, \tau)|^{\frac{N}{2}} dx \right)^{\frac{2}{N}} S \right] \|\phi\|^2_{X^2_0(\Omega)} \geq C \int_{B_r(0)} \frac{\phi^2}{|x|^{(p-1)\left(\frac{2}{N} - \frac{2}{\beta}\right)}} dx.
\]

Since \(p > p_+(\lambda, s)\) then, for a cylinder small enough, \((p - 1) \left(\frac{N - 2s}{2} - \alpha\right) > 2s\) and we obtain a contradiction with the Hardy inequality.

The previous nonexistence result is very strong in the sense that a complete and instantaneous blow-up phenomenon occurs. That is, if \(u_n\) is the solution to the approximated problems (51), then \(u_n(x, t) \to \infty\) as \(n \to \infty\), where \((x, t)\) is an arbitrary point in \(\Omega \times (0, T)\).

Theorem 6.4. Let \(u_n\) be a solution to the problem (51) with \(p > p_+(\lambda, s)\). Then \(u_n(x_0, t_0) \to \infty\), for all \((x_0, t_0) \in \Omega \times (0, T)\).

Proof. Without loss of generality, we can assume that \(\lambda \leq \Lambda_N\). The existence of a positive solution to problem (51) is clear and, due to the Comparison Principle, we know that \(u_n \leq u_{n+1}\) for all \(n \in \mathbb{N}\).

Suppose by contradiction that there exists \((x_0, t_0) \in \Omega \times (0, T)\) such that

\[u_n(x_0, t_0) \to C_0 < \infty\quad\text{as } n \to \infty.\]

By using the Harnack inequality (see Lemma 2.13), there exists \(s_0 > 0\) and a positive constant \(C = C(N, s_0, t_0, \beta)\) such that

\[
\iint_{R^+_0} u_n(x, t) \, dx \, dt \leq C \text{ ess inf } u_n \leq C,
\]

where \(R^+_0 = B_{s_0}(x_0) \times (t_0 - \frac{3}{4} \beta, t_0 - \frac{1}{4} \beta)\) and \(R^+_0 = B_{s_0}(x_0) \times (t_0 + \frac{1}{4} \beta, t_0 + \frac{3}{4} \beta)\).

Without loss of generality, we can suppose \(x_0 = 0\). Otherwise, we can find a finite sequence of points \(\{x_i\}_{i=0}^M\) ending with \(x_M = 0\), and of radius \(\{s_i\}_{i=0}^M\) such that \(B_{s_i}(x_i) \subset \Omega, B_{s_i}(x_i) \cap B_{s_{i+1}}(x_{i+1}) \neq \emptyset\), for all \(i = 0, \ldots, M\) and, by the Hanarck inequality,

\[
\iint_{R^+_i} u_n(x, t) \, dx \, dt \leq C \text{ ess inf } u_n,
\]

where \(R^+_i = B_{s_i}(x_i) \times (t_i - \frac{3}{4} \beta, t_i - \frac{1}{4} \beta)\) and \(R^+_i = B_{s_i}(x_i) \times (t_i + \frac{1}{4} \beta, t_i + \frac{3}{4} \beta)\), \(t_i \in (0, T)\) and \(\beta\) is small enough so that \(t_i - \frac{3}{4} \beta > 0\) and \(t_i + \frac{3}{4} \beta < T\) for all \(i = 0, \ldots, M\). Let us choose now \(t_i = t_{i-1} - \beta\) for \(i = 1, \ldots, M\). Note that in this case

\[(t_i + \frac{1}{4} \beta, t_i + \frac{3}{4} \beta) = (t_{i-1} - \frac{3}{4} \beta, t_{i-1} - \frac{1}{4} \beta),\]
and in particular, \(R_i^+ \cap R_i^{-1} \neq \emptyset\). Thus, for \(i = 1, \ldots, M\),
\[
\int \int_{R_i^+} u_n(x,t) \, dx \, dt \leq \text{ess inf}_{R_i^+} u_n(x,t) \leq \text{ess inf}_{R_i^+ \cap R_i^{-1}} u_n(x,t)
\]
\[
\leq \frac{1}{|R_i^+ \cap R_i^{-1}|} \int \int_{R_i^+ \cap R_i^{-1}} u_n(x,t) \, dx \, dt
\]
\[
\leq \frac{1}{|R_i^+ \cap R_i^{-1}|} \int \int_{R_i^{-1}} u_n(x,t) \, dx \, dt
\]
\[
\leq \ldots \leq C \int \int_{R_0} u_n(x,t) \, dx \, dt \leq \bar{C}.
\]

Therefore, supposing \(x_0 = 0\), by the Monotone Convergence Theorem there exists \(u \geq 0\) such that \(u_n \uparrow u\) strongly in \(L^1(B_r(0) \times (t_1,t_2))\). Let now \(\varphi\) be the solution to the problem
\[
\left\{
\begin{array}{ll}
-\varphi_t + (-\Delta)^s \varphi = \chi_{B_r(0) \times [t_1,t_2]} \in \Omega \times (0,T),

\varphi(x,t) > 0 \text{ in } \Omega \times (0,T),

\varphi(x,t) = 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0,T),

\varphi(x,T) = 0 \text{ in } \Omega.
\end{array}
\right.
\]
(54)

Note that, due to the regularity of the right hand sides of problems (51) and (54), both \(u_n\) and \(\varphi\) are in the energy space, and thus both can be used as test functions in the energy formulation of the problems. Indeed, considering first \(u_n\) as test function in (54) and then, after integrating by parts, \(\varphi\) in (51), and defining \(\eta := \inf_{B_r(0) \times (t_1,t_2)} \varphi(x,t)\), we have
\[
C \geq \int_{t_1}^{t_2} \int_{B_r(0)} u_n(x,t) \, dx \, dt
\]
\[
\geq \lambda \int_0^T \int_{\Omega} \frac{u_n-1}{|x|^{2s} + \frac{1}{n}} \varphi \, dx \, dt + \int_0^T \int_{\Omega} u_n^{-1} \varphi \, dx \, dt + c \int_0^T \int_{\Omega} T_n(f) \varphi \, dx \, dt
\]
\[
\geq \lambda \eta \int_{t_1}^{t_2} \int_{B_r(0)} \frac{u_n-1}{|x|^{2s} + \frac{1}{n}} \, dx \, dt + \eta \int_{t_1}^{t_2} \int_{B_r(0)} u_n^{-1} \, dx \, dt + c \eta \int_{t_1}^{t_2} \int_{B_r(0)} T_n(f) \, dx \, dt.
\]

By the Monotone Convergence Theorem,
\[
\frac{u_n}{|x|^{2s} + \frac{1}{n}} \rightharpoonup \frac{u}{|x|^{2s} + \frac{1}{n}} \text{ in } L^1(B_r(0) \times (t_1,t_2)),
\]
\[
\frac{u_n-1}{|x|^{2s} + \frac{1}{n}} \rightharpoonup f \text{ in } L^1(B_r(0) \times (t_1,t_2)).
\]

Thus it follows that \(u\) is a weak supersolution to (1) in \(B_r(0) \times (t_1,t_2)\), a contradiction with Theorem 6.3. \(\square\)

6.2. **Existence results for** \(1 < p < p_+(\lambda,s)\). The goal now is to consider the complementary interval of powers, \(1 < p < p_+(\lambda,s)\), and to prove that under some suitable hypotheses on \(f\) and \(u_0\), problem (49) has a positive solution. We will consider here the case \(f \equiv 0\). For the case \(f \neq 0\), see Remark 6.6.

First of all, notice that if \(0 < \lambda \leq \Lambda_{N,s}\) and \(1 < p < p_+(\lambda,s)\), the stationary problem
\[
(-\Delta)^s u = \lambda \frac{u}{|x|^{2s}} + u^p \text{ in } \Omega, \quad u > 0 \text{ in } \Omega, \quad u = 0 \text{ in } \mathbb{R}^N \setminus \Omega,
\]
(55)
has a positive supersolution \(u\), depending on the following cases:

(A) \(0 < \lambda < \Lambda_{N,s}\): In Proposition 2.3 of [9], the authors find a positive solution to the problem
\[
(-\Delta)^s u = \lambda \frac{u}{|x|^{2s}} + u^p + \mu u^q \text{ in } \Omega, \quad u > 0 \text{ in } \Omega, \quad u = 0 \text{ in } \mathbb{R}^N \setminus \Omega,
\]
(56)
for μ small enough, $0 < q < 1$ and $1 < p < p_+(\lambda, s)$. In particular, for every $\mu \geq 0$ this solution is a supersolution of \eqref{eq:55}. Note that for $1 < p \leq 2^*_s - 1$ this supersolution is in the energy space, and for $2^*_s - 1 < p < p_+(\lambda, s)$, it is a weak positive supersolution.

(B) If $\lambda = \Lambda_{N,s}$, then $p_+(\lambda, s) = 2^*_s - 1$. Thus, instead of $X_{s}^{0}(\Omega)$, we consider the Hilbert space $H(\Omega)$ defined in \eqref{eq:9}. Since $H(\Omega)$ is compactly embedded in $L^p(\Omega)$ for all $1 \leq p < 2^*_s$, classical variational methods in the space $H(\Omega)$ allow us to prove the existence of a positive solution w to the stationary problem \eqref{eq:55}.

Theorem 6.5. Assume that $0 < \lambda \leq \Lambda_{N,s}$ and $1 < p < p_+(\lambda, s)$. Suppose that $u_0(x) \leq \overline{w}$, where \overline{w} is a supersolution to the stationary problem

$$(-\Delta)^s w = \lambda \frac{u}{|x|^{2s}} + w^p \text{ in } \Omega, \quad w(x) > 0 \text{ in } \Omega, \quad w(x) = 0 \text{ on } \mathbb{R}^N \setminus \Omega.$$

Then for all $T > 0$, the problem

\begin{equation}
\left\{ \begin{array}{ll}
 u_t + (-\Delta)^s u &= \lambda \frac{u}{|x|^{2s}} + w^p \text{ in } (0, T), \\
 u(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{array} \right.
\end{equation}

has a global positive solution. If \overline{w} is a weak supersolution, the solution will be also weak, and likewise, if \overline{w} is an energy supersolution, problem \eqref{eq:57} will have an energy solution.

Proof. Since $\overline{w}(x) \geq u_0(x)$ for all $x \in \Omega$, then \overline{w} is a positive supersolution to problem \eqref{eq:57}. Hence, we conclude just by applying Lemma 6.1, whether \overline{w} is a weak supersolution, or Lemma 6.2, if \overline{w} is an energy supersolution. \hfill \square

Remark 6.6.

(I) With the results above we find the optimality of the power $p_+(\lambda, s)$, what was our main aim. Nevertheless, it could be interesting to know the optimal class of data for which there exists a solution and the regularity of such solutions according to the regularity of the data. In this direction, considering $g = u^p + cf$ in problem \eqref{eq:38}, Theorem 5.1 establishes that, necessarily,

$$\int_{B_{r}(0)} |x|^{-\frac{2s}{p} + \alpha} u_0 \, dx < +\infty,$$

if we expect to find a solution of problem \eqref{eq:49}.

(II) In the presence of a source term $f \geq 0$, if $f(x, t) \leq \frac{c_0(t)}{|x|^{2s}}$ with $c_0(t)$ bounded and sufficiently small, then the above computation allows us to prove the existence of a supersolution. Then the existence of a minimal solution to problem \eqref{eq:1} follows for all $p < p_+(\lambda, s)$.

Appendix A. Hölder regularity in bounded domains

Let $\beta \geq 0$, $\beta = k + \beta'$, with $k \in \mathbb{N}$ and $\beta' \in [0, 1)$, and let Ω be a bounded smooth domain. Thus, we call $C^{\beta}(\Omega)$ to the Hölder space $C^{k,\beta'}(\Omega)$. Moreover, given $\alpha, \beta \geq 0$ and $0 \leq a < b$, and taking into account the previous notation, we define the space-time Hölder spaces as follows,

$$C^{\alpha,\beta}_{t,x}(\Omega \times (a, b)) := C^{\alpha}((a, b); C^{\beta}(\Omega)).$$

This notation holds for $\Omega = \mathbb{R}^N$.

We can formulate now the regularity result. Consider the problem

\begin{equation}
\left\{ \begin{array}{ll}
 u_t + (-\Delta)^s u &= f(x, t) \text{ in } \Omega \times (0, T), \\
 u(x, t) &= 0 \text{ in } (\mathbb{R}^N \setminus \Omega) \times [0, T), \\
 u(x, 0) &= u_0(x) \text{ if } x \in \Omega,
\end{array} \right.
\end{equation}

Thus, we can study the interior Hölder regularity of the solution, attending to the regularity of the right hand side of the problem.
Proposition A.1 (Interior regularity). If \(u \) solves (58) and \(f \in C_{t,x}^{\alpha,\beta}(\Omega \times (0,T)) \), with \(\alpha,\beta > 0 \), then \(u \in C_{t,x}^{1+\alpha,2+\beta}(\Omega \times (0,T)) \).

Proof. Fix a point \((x_0, t_0) \in \Omega \times (0,T)\) and choose \(r > 0 \) small enough such that \(U := B_r(x_0) \times [t_0 - r^2, t_0] \subset \Omega \times (0,T) \). Denote

\[
U' := B_{r/2}(x_0) \times [t_0 - (r/2)^2, t_0] \quad \text{and} \quad U'' := B_{r/4}(x_0) \times [t_0 - (r/4)^2, t_0].
\]

Consider now a smooth function \(\eta(x,t) \) in \(\mathbb{R}^N \times [0,t_0] \) such that \(\eta(x,t) \in [0,1] \), \(\eta \equiv 1 \) in \(U' \) and \(\text{supp}(\eta) \subset U \), and define

\[
\tilde{f}(x,t) = \begin{cases} \eta f & \text{in } \Omega \times (0,T], \\ 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times (0,T], \end{cases}
\]

and

\[
\tilde{u}_0(x) = \begin{cases} \eta u_0 & \text{in } \Omega \times \{t = 0\}, \\ 0 & \text{in } (\mathbb{R}^N \setminus \Omega) \times \{t = 0\}. \end{cases}
\]

Let \(v \) be the solution to the problem

\[
\begin{cases} v_t + (-\Delta)^s v = \tilde{f} & \text{in } \mathbb{R}^N \times (0,T), \\ v(x,0) = \tilde{u}_0(x) & \text{on } \mathbb{R}^N \times \{t = 0\}. \end{cases}
\]

Thus, \((\partial_t + (-\Delta)^s)(u - v) = 0 \) in \(U' \) and \((u - v)(x,0) = 0 \) for \(x \in B_{r/2}(x_0) \). Hence, \(u - v \) is smooth in \(U'' \), and in particular \(\|u - v\|_{C_{t,x}^{1+\alpha,2+\beta}(U'')} \leq C \). Otherwise, since \(\tilde{f} \in C_{t,x}^{\alpha,\beta}(\mathbb{R}^N \times (0,T)) \), by Appendix A of [15] we know

\[
\|\partial_t\|_{C_{t,x}^{\alpha,\beta}(\mathbb{R}^N \times (0,T))} + \|(-\Delta)^s v\|_{C_{t,x}^{\alpha,\beta}(\mathbb{R}^N \times (0,T))} \leq C(1 + \|\tilde{f}\|_{C_{t,x}^{\alpha,\beta}(\mathbb{R}^N \times (0,T))}),
\]

and therefore \(v \in C_{t,x}^{1+\alpha,2+\beta}(\mathbb{R}^N \times (0,T)) \) (see Proposition 2.8 in [35]). Thus,

\[
\|u\|_{C_{t,x}^{1+\alpha,2+\beta}(U'')} \leq C + \|v\|_{C_{t,x}^{1+\alpha,2+\beta}(U'')} \leq C + \|v\|_{C_{t,x}^{1+\alpha,2+\beta}(\mathbb{R}^N \times (0,T))} \leq C.
\]

Recalling that \((x_0, t_0)\) was an arbitrary point of \(\Omega \times (0,T) \), this finishes the proof. Q.E.D.

Moreover, if \(f \) is continuous, we know that \(u \) is bounded in \(\Omega \times (0,T) \) (see [29]), and thus \(u \in L^\infty(0,T;L^\infty(\mathbb{R}^N)) \), and this fact, together with the regularity proved in the previous Proposition, gives pointwise sense to the equation in (58). Hence, we can understand the solution \(u \) of problem (58) as a pointwise solution to the equation in \(\Omega \times (0,T) \).

Appendix B. Fundamental Inequalities

We explain in this Appendix the functional results used in the previous sections. Recall first that we defined in (22) the measures \(\mu, \nu \) as

\[
d\mu := \frac{dx}{|x|^\gamma}, \quad \text{and} \quad d\nu := \frac{dxdy}{|x|^\gamma|y|^\gamma|x-y|^{N+2\gamma}}.
\]

Let begin by the next extension lemma whose proof follows using the same arguments of [6] (see also [19]).

Lemma B.1. Let \(\Omega \subset \mathbb{R}^N \) be a smooth domain. Then for all \(w \in Y_\gamma(\Omega) \), there exists \(\tilde{w} \in Y_{1,\gamma}(\mathbb{R}^N) \) such that \(\tilde{w}|_\Omega = w \) and

\[
\|\tilde{w}\|_{Y_{1,\gamma}(\mathbb{R}^N)} \leq C\|w\|_{Y_{\gamma}(\Omega)},
\]

where \(C := C(N,s,\Omega) > 0 \).
Recall that \(Y_0^{s,\gamma}(\Omega) \) was defined as the completion of \(C_0^\infty(\Omega) \) with respect to the norm of \(Y^{s,\gamma}(\Omega) \). It is clear that if \(\phi \equiv C \in Y_0^{s,\gamma}(\Omega) \), then \(C \equiv 0 \).

If \(\Omega \) is a bounded regular domain, we can prove the next Poincaré inequality.

Theorem B.2. There exists a positive constant \(C := C(\Omega, N, s, \gamma) \) such that for all \(\phi \in C_0^\infty(\Omega) \), we have

\[
C \int_\Omega \phi^2(x) d\mu \leq \int_\Omega \int_\Omega (\phi(x) - \phi(y))^2 d\nu.
\]

Proof. If \(\phi \equiv 0 \), the inequality follows trivially. Thus, let us define

\[
\lambda_1(\Omega) := \inf_{\{\phi \in C_0^\infty(\Omega), \phi \neq 0\}} \frac{\int_\Omega \int_\Omega (\phi(x) - \phi(y))^2 d\nu}{\int_\Omega \phi^2(x) d\mu}.
\]

Hence, to prove the lemma we need to check that \(\lambda_1(\Omega) > 0 \). We argue by contradiction, that is, let us suppose \(\lambda_1(\Omega) = 0 \). Then we get the existence of \(\{\phi_n\}_{n \in \mathbb{N}} \subset C_0^\infty(\Omega) \) such that

\[
\int_\Omega \phi_n^2(x) d\mu = 1 \quad \text{and} \quad \int_\Omega \int_\Omega (\phi_n(x) - \phi_n(y))^2 d\nu \to 0 \quad \text{as} \quad n \to \infty.
\]

It is clear that \(\|\phi_n\|_{Y^{s,\gamma}(\Omega)} \leq C \), hence we reach the existence of \(\tilde{\phi} \in Y^{s,\gamma}(\Omega) \) such that \(\phi_n \rightharpoonup \tilde{\phi} \) weakly in \(Y^{s,\gamma}(\Omega) \).

Define \(\tilde{\phi}_n \) as the extension of \(\phi_n \) given in Lemma B.1. Then

\[
\|\tilde{\phi}_n\|_{Y^{s,\gamma}(\mathbb{R}^N)} \leq C(N, s, \Omega) \|\phi_n\|_{Y^{s,\gamma}(\Omega)} \leq \tilde{C}.
\]

From [1], we obtain that

\[
\left(\int_{\mathbb{R}^N} \frac{|\tilde{\phi}_n|^2}{|x|^{2s+\gamma}} dx \right)^{\frac{1}{2}} \leq C \|\tilde{\phi}_n\|_{Y^{s,\gamma}(\mathbb{R}^N)} \leq \tilde{C}_1.
\]

Therefore, we reach that

\[
\int_{\mathbb{R}^N} \frac{|\tilde{\phi}_n|^2}{|x|^{2s+\gamma}} dx \leq C(N, s, \Omega, \gamma).
\]

Using the fact that \(Y^{s,\gamma}(\Omega) \subset Y^{s,0}(\Omega) \), it follows from [6] (see also [19]) that \(\phi_n \rightharpoonup \tilde{\phi} \) strongly in \(L^2(\Omega) \). Hence, combining the above estimates and using Vitali's Lemma we obtain that, up to a subsequence,

\[
\phi_n \to \tilde{\phi} \quad \text{strongly in} \quad L^2(\Omega, d\mu),
\]

and thus,

\[
\int_{\Omega} \tilde{\phi}^2(x) d\mu = 1. \tag{59}
\]

Since \(\|\tilde{\phi}\|_{Y^{s,\gamma}(\Omega)} \leq \|\phi_n\|_{Y^{s,\gamma}(\Omega)} \), taking in consideration that \(\int_{\Omega} \int_{\Omega} (\phi_n(x) - \phi_n(y))^2 d\nu \to 0 \) as \(n \to \infty \), we get

\[
\phi_n \to \tilde{\phi} \quad \text{strongly in} \quad Y^{s,\gamma}(\Omega), \quad \text{thus} \quad \int_{\Omega} \int_{\Omega} (\tilde{\phi}(x) - \tilde{\phi}(y))^2 d\nu = 0.
\]

Hence \(\tilde{\phi} \equiv C \). Now, as \(\tilde{\phi} \in Y_0^{s,\gamma}(\Omega) \), necessarily \(\tilde{\phi} \equiv 0 \), a contradiction with (59). \(\Box \)

As a direct application of Theorem B.2 we obtain that if \(\Omega \) is a bounded regular domain, then every \(w \in Y_0^{s,\gamma}(\Omega) \) satisfies

\[
\|\tilde{w}\|_{Y^{s,\gamma}(\mathbb{R}^N)} \leq C \left(\int_{\Omega} \int_{\Omega} (w(x) - w(y))^2 d\nu \right)^{\frac{1}{2}},
\]

where \(C := C(N, s, \Omega) > 0 \) and \(\tilde{w} \) is the extension of \(w \) given in Lemma B.1.
Define now the operator

\[L_{\gamma,\Omega}(w)(x) := a_{N,s}p.v. \int_{\Omega} (w(x) - w(y))K(x, y)dy, \]

where \(K(x, y) := \frac{1}{|x|^\gamma |y|^\gamma |x - y|^{N+2s}}. \)

In the case \(\Omega = \mathbb{R}^N, \) we have the next result.

Lemma B.3. Suppose \(\Omega = \mathbb{R}^N. \) If \(w(x) := |x|^{-\theta}, \) with \(0 < \theta < \frac{N-2s-2\gamma}{2}, \) then there exists a positive constant \(C := C(N, s, \gamma, \theta, \Omega) \) such that

\[L_{\gamma,\mathbb{R}^N}(w)(x) = C \frac{w(x)}{|x|^{2s+2\gamma}} \text{ a.e. in } \Omega. \]

Proof. Since \(\Omega = \mathbb{R}^N, \) the operator has the form

\[L_{\gamma,\mathbb{R}^N}(w)(x) := a_{N,s}p.v. \int_{\mathbb{R}^N} \frac{(w(x) - w(y))}{|x|^\gamma |y|^\gamma |x - y|^{N+2s}}dy. \]

We follow closely the arguments used by F. Ferrari and I.E. Verbitsky in [23]. By setting \(r := |x| \) and \(\rho := |y|, \) then \(x = x', y = \rho y' \) where \(|x'| = |y'| = 1. \) Thus,

\[L_{\gamma,\mathbb{R}^N}(w)(x) = \frac{1}{|x|^{2s+2\gamma}} \int_0^{+\infty} \left(\frac{r^{-\theta} - \rho^{-\theta}}{\rho^{\gamma r^{N+2s}}} \right)^{N-1} \left(\int_{|y'|=1} \frac{dH^{N-1}(y')}{|x' - \sigma y'|^{N+2s}} \right) d\rho. \]

Set now \(\sigma := \frac{\rho}{r}. \) Then

\[L_{\gamma,\mathbb{R}^N}(w)(x) = \frac{w(x)}{|x|^{2s+2\gamma}} \int_0^{+\infty} \left(1 - \sigma^{-\theta} \right)^{N-1} \sigma^{N-\gamma-1} \left(\int_{|y'|=1} \frac{dH^{N-1}(y')}{|x' - \sigma y'|^{N+2s}} \right) d\sigma. \]

Define

\[K(\sigma) := \int_{|y'|=1} \frac{dH^{N-1}(y')}{|x' - \sigma y'|^{N+2s}}, \]

then

\[K(\sigma) = 2 \frac{\pi^{\frac{N-1}{2}}}{\Gamma(\frac{N-1}{2})} \int_0^\pi \frac{\sin^{N-2}(\eta)}{(1 - 2\sigma \cos(\eta) + \sigma^2)^\frac{N+2s}{2}} d\eta. \]

Thus

\[L_{\gamma,\mathbb{R}^N}(w) = \Lambda_{N,s,\gamma} \frac{w(x)}{|x|^{2s+2\gamma}}, \]

where

\[\Lambda_{N,s,\gamma} := \int_0^{+\infty} (\sigma^{-\theta} - 1)^{N-\gamma-\theta-1} K(\sigma) d\sigma. \]

As in [23], taking into consideration the behavior of \(K \) near \(\sigma = 1 \) and at \(+\infty, \) we can prove that \(|\Lambda_{N,s,\gamma}| < \infty. \) To conclude we have just to show that \(\Lambda_{N,s,\gamma} > 0. \)

Since \(K(\frac{1}{\sigma}) = s^{N+2s}K(s) \) for all \(s > 0, \) we get

\[\Lambda_{N,s,\gamma} = \int_0^1 (\sigma^{-\theta} - 1)^{N-\gamma-\theta-1} K(\sigma) d\sigma + \int_1^{+\infty} (\sigma^{-\theta} - 1)^{N-\gamma-\theta-1} K(\sigma) d\sigma \]

\[= - \int_\infty^{-1} (\xi^{-\theta} - 1)^{\frac{N-2s+2s+\gamma-1}{2}} K(\xi) d\xi + \int_1^{+\infty} (\sigma^{-\theta} - 1)^{N-\gamma-\theta-1} K(\sigma) d\sigma \]

\[= \int_1^{+\infty} K(\sigma) (\sigma^{-\theta} - 1)^{\frac{N-\gamma-\theta-1-2s+2s+\gamma-1}{2}} d\sigma. \]

Since \(0 < \theta < N - 2s - 2\gamma, \) then the results follows.
Next we formulate an extension of a well-known Picone identity, that in the case of regular functions and the Laplacian operator was obtained by Picone in [32] (see [2] for an integral extension related to positive Radon measures).

Theorem B.4. (Picone’s Type Inequality). Consider \(u, v \in X_0^s(\Omega) \), where \((-\Delta)^s u = \tilde{v}\) is a bounded Radon measure in \(\Omega\), and \(u \geq 0\). Then,

\[
\int_{\Omega} \frac{(-\Delta)^s u}{u} v^2 \, dx \leq \frac{a_{N,s}}{2} \|v\|_{X_0^s(\Omega)}^2.
\]

See [29] for a proof. It is worthy to point out that the proof relies in a pointwise inequality. Therefore, we can reformulate the Picone inequality as follows.

Corollary B.5. Let \(w \in Y_0^{s,\gamma}(\Omega) \) be such that \(w > 0 \) in \(\Omega\). Assume that \(L_{\gamma,\Omega}(w) = \tilde{v}\) with \(\tilde{v} \in L^1_{loc}(\mathbb{R}^N)\) and \(\tilde{v} \gtrless 0\), then for all \(u \in C_0^\infty(\Omega) \), we have

\[
\frac{a_{N,s}}{2} \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^2}{|x-y|^{N+2s}} \, dxdy \geq \langle L_{\gamma,\Omega}(w), \frac{u^2}{w} \rangle.
\]

As a consequence we get the next Hardy type inequality

Theorem B.6. There exists a positive constant \(C(N, s, \gamma) \) such that for all \(\phi \in C_0^\infty(\mathbb{R}^N) \), we have

\[
C \int_{\mathbb{R}^N} \frac{\phi^2(x)}{|x|^{2s+2\gamma}} \, dx \leq \int_{\mathbb{R}^N} \int_{\mathbb{R}^N} (\phi(x) - \phi(y))^2 \, dv.
\]

Proof. Let \(\phi \in C_0^\infty(\mathbb{R}^N) \) and define \(w(x) := |x|^{-\theta} \), with \(0 < \theta < \frac{N-2s-2\gamma}{2} \). Then, by Lemma B.3,

\[
L_{\gamma,\mathbb{R}^N}(w)(x) = C \frac{w(x)}{|x|^{2s+2\gamma}} \text{ a.e in } \mathbb{R}^N.
\]

Using (62) it follows that

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\phi(x) - \phi(y)|^2}{|x-y|^{N+2s}} \frac{dxdy}{|x|^{2s+2\gamma}} \geq \langle L_{\gamma,\mathbb{R}^N}(w), \phi^2 \rangle = C(N, s, \gamma) \int_{\mathbb{R}^N} \frac{\phi^2(x)}{|x|^{2s+2\gamma}} \, dx.
\]

Hence we conclude.

In the case where \(\Omega \) is a bounded domain, we have:

Theorem B.7. There exists a positive constant \(C(\Omega, N, s, \gamma) \) such that for all \(\phi \in C_0^\infty(\Omega) \), we have

\[
C \int_{\Omega} \frac{\phi^2(x)}{|x|^{2s+2\gamma}} \, dx \leq \int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 \, dv.
\]

Proof. Let \(\phi \in C_0^\infty(\Omega) \) and define \(\tilde{\phi} \) to be the extension of \(\phi \) to \(\mathbb{R}^N\) given in Lemma B.1. Then from Theorem B.6, we get

\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} \frac{|\tilde{\phi}(x) - \tilde{\phi}(y)|^2}{|x-y|^{N+2s}} \frac{dxdy}{|x|^{2s+2\gamma}} \geq C(N, s, \gamma) \int_{\mathbb{R}^N} \frac{\tilde{\phi}^2(x)}{|x|^{2s+2\gamma}} \, dx.
\]

Now, using the fact that \(\tilde{\phi}_{|\Omega} = \phi \) and combining the results of Lemma B.1 and Theorem B.2, we reach the desired result.
Theorem B.8. There exists a positive constant $C(\Omega, N, s, \gamma)$ such that for all $\phi \in Y^{s,\gamma}(\Omega)$, we have
\[C \int_{\Omega} \frac{\phi^2(x)}{|x|^{2s+2\gamma}} \, dx \leq \int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 \, d\nu + \int_{\Omega} \phi^2(x) \, d\mu. \]

Proof. Fix $\phi \in Y^{s,\gamma}(\Omega)$ and define $\tilde{\phi}$ as the extension of ϕ to \mathbb{R}^N given in Lemma B.1. Then from Theorem B.6, we get
\[
\int_{\mathbb{R}^N} \int_{\mathbb{R}^N} |\tilde{\phi}(x) - \tilde{\phi}(y)|^2 \, dx \, dy \geq C(N, s, \gamma) \int_{\mathbb{R}^N} \frac{\tilde{\phi}^2(x)}{|x|^{2s+2\gamma}} \, dx \geq C(N, s, \gamma) \int_{\Omega} \frac{\phi^2(x)}{|x|^{2s+2\gamma}} \, dx.
\]
Since $\|\tilde{\phi}\|_{Y^{s,\gamma}(\mathbb{R}^N)} \leq C(\Omega)\|\phi\|_{Y^{s,\gamma}(\Omega)}$, then the result follows. \qed

Notice now that when $\phi \in C_0^\infty(\Omega)$, the following Sobolev inequality holds (see [1]),
\[
\left(\int_{\Omega} \frac{|\phi(x)|^2}{|x|^{2s+2\gamma}} \, dx \right)^{\frac{1}{2}} \leq C(\Omega, N, s, \gamma) \int_{\Omega} \int_{\Omega} (\phi(x) - \phi(y))^2 \, d\nu.
\]
Moreover, in the particular case $\phi \in Y^{s,\gamma}(B_R)$, as an application of Theorem B.8 we can prove the following improved inequality.

Theorem B.9. Let $R > 0$ and $\phi \in Y^{s,\gamma}(B_R)$. Then, there exists $C := C(N, s, R, \gamma) > 0$ such that
\[
C \left(\int_{B_R} \frac{|\phi|^2}{|x|^{2s+2\gamma}} \, dx \right)^{\frac{1}{2}} \leq \int_{B_R} \int_{B_R} (\phi(x) - \phi(y))^2 \, d\nu + R^{-2s} \int_{B_R} \phi^2 \, d\mu.
\]

Proof. We prove the result for $R = 1$, and then (64) follows by a scaling argument. We set $\phi_1(x) := \frac{\phi(x)}{|x|^s}$. Then from [6] we know that
\[
C \left(\int_{B_1} \frac{|\phi_1|^2}{|x|^{2s+2\gamma}} \, dx \right)^{\frac{1}{2}} \leq \int_{B_1} \int_{B_1} \frac{(\phi_1(x) - \phi_1(y))^2}{|x-y|^{N+2s}} \, dx \, dy + \int_{B_1} \phi_1^2 \, dx.
\]
To get the desired result we just have to estimate the term
\[
\int_{B_1} \int_{B_1} \frac{(\phi_1(x) - \phi_1(y))^2}{|x-y|^{N+2s}} \, dx \, dt.
\]
Since
\[
(\phi_1(x) - \phi_1(y))^2 = \frac{(\phi(x) - \phi(y))^2}{|x|^s |y|^s} + \frac{\phi_1(x)^2}{|x|^s} \left(\frac{1}{|x|^s} - \frac{1}{|y|^s} \right),
\]
it follows that
\[
\int_{B_1} \int_{B_1} \frac{(\phi_1(x) - \phi_1(y))^2}{|x-y|^{N+2s}} \, dx \, dy \leq \int_{B_1} \int_{B_1} \frac{(\phi(x) - \phi(y))^2}{|x|^s |y|^s} \, dx \, dy + \int_{B_1} L_{0,B_1}(|x|^{-\gamma}) \frac{\phi_1^2}{|x|^s} \, dx.
\]
Proceeding as in the proof of Lemma B.3, we can prove that $L_{0,B_1}(|x|^{-\gamma}) \leq C_{\gamma+2s} |x|^{-\gamma}$, and hence
\[
\int_{B_1} \int_{B_1} \frac{(\phi_1(x) - \phi_1(y))^2}{|x-y|^{N+2s}} \, dx \, dy \leq \int_{B_1} \int_{B_1} \frac{(\phi(x) - \phi(y))^2}{|x|^s |y|^s} \, dx \, dy + C \int_{B_1} \frac{\phi_1^2}{|x|^{2s+2\gamma}} \, dx.
\]
Finally, using Theorem B.8 and substituting $\phi(x) = |x|^\gamma \phi_1(x)$, we reach (64). \qed

We state now a weighted version of the Poincaré-Wintinger inequality used in the proof of Lemma 4.11.
Theorem B.10. Let \(w \in Y^{s,\gamma}(B_1) \) and assume that \(\psi \) is a radial decreasing function such that \(\text{supp} \, \psi \subset B_1 \) and \(0 \leq \psi \leq 1 \). Define

\[
W_\psi := \frac{\int_{B_1} w(x) \psi(x) \, d\mu}{\int_{B_1} \psi(x) \, d\mu}.
\]

Then, there exists \(C := C(N, s, \psi) > 0 \) such that

\[
\int_{B_1} (w(x) - W_\psi)^2 \psi(x) \, d\mu \leq C \int_{B_1} \int_{B_1} (w(x) - w(y))^2 \min\{\psi(x), \psi(y)\} \, d\nu.
\]

Proof. Define \(\Psi(x) := \frac{\psi(x)}{|x|^{2\gamma}} \), that is a radial decreasing function. Then using [20, Corollary 6] we get

\[
\int_{B_1} (w(x) - \tilde{W}_\psi)^2 \Psi(x) \, dx \leq C \int_{B_1} |x|^{-N+2s} \min\{\Psi(x), \Psi(y)\} \, dx \, dy,
\]

where

\[
\tilde{W}_\psi = \frac{\int_{B_1} w(x) \Psi(x) \, dx}{\int_{B_1} \Psi(x) \, dx}.
\]

Substituting \(\Psi \) by its value, we get

\[
\int_{B_1} (w(x) - \tilde{W}_\psi)^2 \Psi(x) \, dx = \int_{B_1} (w(x) - W_\psi)^2 \psi(x) \, d\mu,
\]

and

\[
\int_{B_1} \int_{B_1} (w(x) - w(y))^2 \min\{\Psi(x), \Psi(y)\} \, dx \, dy = \int_{B_1} \int_{B_1} |x|^{-N+2s} \min\left\{ \frac{\psi(x)}{|x|^{2\gamma}}, \frac{\psi(y)}{|y|^{2\gamma}} \right\} \, dx \, dy.
\]

Hence, to finish we just have to show that

\[
\min\left\{ \frac{\psi(x)}{|x|^{2\gamma}}, \frac{\psi(y)}{|y|^{2\gamma}} \right\} \leq \frac{\min\{\psi(x), \psi(y)\}}{|x|^\gamma |y|^\gamma} \quad \text{in } B_1 \times B_1.
\]

Without loss of generality we can assume that \(|x| \geq |y| \).

Define \(H(s) := \frac{\psi(s)}{s^{2\gamma}} \), that is a decreasing function in \((0, 1)\). Let \(s_1 := |x| \) and \(s_2 := |y| \), then

\[
\min\left\{ \frac{\psi(x)}{|x|^{2\gamma}}, \frac{\psi(y)}{|y|^{2\gamma}} \right\} = H(s_1).
\]

Using that \(\psi \) is decreasing, we obtain that \(\psi(s_1) \leq \psi(s_2) \). Thus

\[
\frac{\min\{\psi(x), \psi(y)\}}{|x|^\gamma |y|^\gamma} = \frac{\psi(s_1)}{s_1^2 s_2^2}.
\]

Since \(s_2 \leq s_1 \leq 1 \), we conclude that \(H(s_1) \leq \frac{\psi(s_1)}{s_1^2 s_2^2} \) and the result follows. \(\square \)

References

[1] B. Abdellaoui, R. Bentoufik, Caffarelli-Kohn-Nirenberg type inequalities of fractional order and applications. Preprint.

[2] B. Abdellaoui, I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the \(p \)-Laplacian with a critical potential. Ann. di Mat. Pura e Applicata, 182, 247–270, (2003).

[3] B. Abdellaoui, I. Peral, A. Primo, Influence of the Hardy potential in a semilinear heat equation, Proceedings of the Royal Society of Edinburgh, Section A Mathematics, 139, (2009), no 5, 897-926.

[4] B. Abdellaoui, I. Peral, A. Primo, A remark on the fractional Hardy inequality with a remainder term. C. R. Math. Acad. Sci. Paris 352 (2014), no. 4, 299–303.
[5] M. Abramowitz, and I. A. Stegun, *Handbook of mathematical functions with formulas, graphs, and mathematical tables*. National Bureau of Standards Applied Mathematics Series 55. For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 1964.

[6] R. A. Adams *Sobolev spaces*, Academic Press, New York, 1975.

[7] E. Artin, *The Gamma Function*, in Rosen, Michael (ed.) Exposition by Emil Artin: a selection; History of Mathematics 30. Providence, RI: American Mathematical Society (2006).

[8] P. Baras, J.A. Goldstein, *The heat equation with a singular potential*. Trans. Amer. Math. Soc. 284 (1984), no. 1, 121–139.

[9] B. Barrios, M. Medina, I. Peral, Some remarks on the solvability of non-local elliptic problems with the Hardy potential. Communications in Contemporary Mathematics. Available online, DOI: 10.1142/S0219199713500466 (2013).

[10] B. Barrios, I. Peral, F. Soria, E. Valdinoci, A Widder’s type Theorem for the heat equation with nonlocal diffusion. Arch. Ration. Mech. Anal. 213 (2014), no. 2, 629–650.

[11] W. Beckner, *Pitt’s inequality and the uncertainty principle*, Proceedings of the American Mathematical Society, Volume 123, Number 6 (1995).

[12] L. Boccardo, T. Gallouët, L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551.

[13] E. Bombieri, E. Giusti, Harnack’s inequality for elliptic differential equations on minimal surfaces, Invent. Math. 15 (1972), 24-46.

[14] H. Brezis, X. Cabré, *Some simple nonlinear PDE’s without solutions*. Boll. Unione Mat. Ital. 1-B (1998), 223-262.

[15] L. Caffarelli, A. Figalli, Regularity of solutions to the parabolic fractional obstacle problem, Journal für die Reine und Angewandte Mathematik, 680 (2013), 191-233.

[16] F. M. Chiarenza, M. Frasca, Boundedness for the solutions of a degenerate parabolic equation, Applicable Anal. 17 (1984), no. 4, 243-261.

[17] F. M. Chiarenza, R. P. Serapioni, A Harnack inequality for degenerate parabolic equations. Comm. in PDE, 9 (1984), no. 8, 719-749.

[18] A. Dall’Acchio, Approximated solutions of equations with L^1 data. Application to the H–convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207–240.

[19] E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchiker’s guide to the fractional Sobolev spaces, Bull. Sci. math. 136 (2012), no. 5, 521-573.

[20] B. Dyda, M. Kassmann, On weighted Poincaré inequalities, Ann. Acad. Sci. Fenn. Math. 38 (2013), no. 2, 721-726.

[21] M. M. Fall, Semilinear elliptic equations for the fractional Laplacian with Hardy potential, Preprint. arXiv:1109.5530v4 [math.AP].

[22] M. Felsinger, M. Kassmann, Local regularity for parabolic nonlocal operators. Comm. PDE, 38 (2013) 1539–1573.

[23] F. Ferrari, I.E. Verbitsky, Radial fractional Laplace operators and Hessian inequalities. J. Differential Equations 253 (2012), no. 1, 244–272.

[24] R. Frank, E. H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators, Journal of the American Mathematical Society (2008), Vol. 20, No. 4, 925-950.

[25] R. Frank, A simple proof of Hardy-Lieb-Thirring inequalities, Comm. Math. Phys. 290 (2009), No. 2, 789 - 800.

[26] C. E. Gutiérrez, R. L. Wheeden, *Mean value Harnack inequalities for degenerate parabolic equations*. Colloquium Mathematicum 60/61 (1990), no. 1, 157-194.

[27] I. W. Herbst, *Spectral theory of the operator $(p^2 + m^2)^{1/2} – Ze^2/r$,* Commun. math. Phys. 53 (1977), 285-294.

[28] C. Imbert, L. Silvestre, Introduction to fully nonlinear elliptic problems, preprint http://www.ma.utexas.edu/users/ilosv/index.php/Starting_page.

[29] T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations. To appear in DCDS-A, (2015).

[30] A. N. Milgram, *Supplement II in Partial Differential Equations: Vol III in Lectures in Applied Mathematics*, pp 229-229. L. Bers, F John and M. Schechter, editors. Interscience New York, 1964.

[31] J. Moser, On a pointwise estimate for parabolic differential equations, Comm. Pure Appl. Math. 17(1971). pp 101-134.

[32] M. Picon, Sui valori eccezionali di un parametro da cui dipende una equazione differenziale lineare ordinaria del secondo ordine., Ann. Scuola. Norm. Pisa. 11,(1910)1-144.

[33] A. Prignet, Existence and uniqueness of “entropy” solutions of parabolic problems with L^1 data, Nonlinear Anal. 28 (1997), no. 12, 1943–1954.
[34] L. Saloff-Coste, *Aspects of Sobolev-type inequalities*, London Mathematical Society Lecture Note Series. Vol. 289.

[35] L. Silvestre, *Regularity of the obstacle problem for a fractional power of the Laplace operator*, Comm. Pure Appl. Math. 60 (2007), no. 1, 67-112.

[36] E. M. Stein, G. Weiss, *Fractional integrals on n-dimensional Euclidean space*. J. Math. Mech. 7 (1958), 503-514.

[37] M. I. Vishik, *Mixed boundary problems*. Dokl. Akad. Nauk SSSR, 97, 193-6 (1954).

[38] D. Yafaev, *Sharp constants in the Hardy-Rellich inequalities*. J. Functional Analysis 168 (1999), no. 1, 121–144.

B. Abdellaoui, Laboratoire d’Analyse Nonlinéaire et Mathématiques Appliquées, Département de Mathématiques, Université Abou Bakr Belkaïd, Tlemcen, Tlemcen 13000, Algérie.

M. Medina, I. Peral and A. Primo, Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

E-mail addresses:
boumediene.abdellaoui@uam.es, ireneo.peral@uam.es, maria.medina@uam.es, ana.primo@uam.es.