THE EFFECT OF TWO ADHESIVE PROMOTERS ON BOND STRENGTH OF ULTRA-TRANSLUCENT ZIRCONIA TO TWO RESIN CEMENTS.

Amira K. Hafez1, Amina M. Hamdy2, Soha O. Nabih3

Abstract

Statement of the problem: The increased amount of crystals in zirconia ceramics and the absence of glass make them resistant to acid etching and chemical bonding through traditional silane application. Alternative durable bonding techniques between zirconia and resin cement are still mandatory.

Objective: This study was conducted to investigate the effect of two adhesive promoter types and two resin cements on the shear bond strength of sandblasted ultra-translucent zirconia plates to resin cement.

Materials and Methods: BruxZir anterior Zirconia blank was sliced to obtain forty-two ultra-translucent zirconia plates, followed by their sintering. All the plates were sandblasted using 50 µm alumina particles. Plates were divided into three groups according to the type of adhesive promoter: Group A: no primer, Group B: coated with zirconia primer, and group C: coated with a universal bonding agent. One plate from each group was examined under Scanning Electron Microscope. Half of the plates in each group were bonded to conventional composite resin cement while the other half were bonded to Phosphate containing one following the manufacturers’ instructions. All plates were stored in an incubator containing distilled water at 37 ºc for 1 week. Shear bond strength test was performed using universal testing machine. Data obtained were analyzed statistically.

Results: The application of Z prime and bonding to conventional resin cement resulted in the highest shear bond strength values (19.58 MPa) followed by no primer application and bonding to phosphate resin cement (15.8 MPa). Universal bonding agent showed the lowest bond strength values with both resin cements.

Conclusions: Application of MDP-containing primer showed the highest bond strength with conventional resin cement while the universal adhesive showed weak bond strength with both resin cements. Resin cements reacted almost equally when used directly on zirconia without primer application.

KEYWORDS: Adhesive promoters, Ultra-translucent zirconia, Resin cement

1. Master’s degree of Fixed Prosthodontics, Faculty of Dentistry, Ain shams University, Cairo, Egypt.
2. Professor of Fixed Prosthodontics, Faculty of Dentistry, Ain shams University, Cairo, Egypt.
3. Lecturer of Fixed Prosthodontics, Faculty of Dentistry, Ain shams University, Cairo, Egypt.
THE EFFECT OF TWO ADHESIVE PROMOTERS ON BOND STRENGTH OF ULTRA-TRANSLUCENT ZIRCONIA TO TWO RESIN CEMENTS. | AMIRA K. HAFEZ ET AL., SEP 2021.
Table 1: Materials used in this study.

| Material          | Product name       | Chemical composition (wt %)                                                                 | Manufacturer | Lot number |
|-------------------|--------------------|-------------------------------------------------------------------------------------------|--------------|------------|
| Ultra-translucent zirconia blank | Bisque-fused     | Y2O3:98%, Y2O3:97%, E(Y2O3)2:95%, HfO2:98%, Y2O3:98%, ZrO2:98%                            | Panda, Japan  | BR-139     |
| Zirconia primer   | Z-Prime            | Bisque:95%, Epolzeichnet:1%, Loesche:1%, Leucosil:1%, Rocker:1%                          | Bisco        | 1059021    |
| Universal bonding agent | All Bond            | 11.5% Bisque, 11.5% Bisque, 11.5% Bisque, 11.5% Bisque                                 | Bisco        | 1059016    |
| Composite resin cement | Die-Lite            | Bisque:10%, ZrO2:10%, ZrO2:10%, ZrO2:10%, ZrO2:10%, ZrO2:10%                           | Bisco        | 1059042    |
| Polycarbonate resin cement | Micro-2000        | Bisque:10%, ZrO2:10%, ZrO2:10%, ZrO2:10%, ZrO2:10%                                     | Bisco        | 1059013    |

Ultra-translucent Zirconia blank was sliced to produce 42 plates, each of dimensions: 10 mm width × 5 mm length × 2 mm thickness, using a diamond disc fixed on an Isomet 4000 micro saw (Buehler, USA). The plates were finished using silicon carbide 400 grit paper. All the plates were placed on the tray of zirconia sintering furnace (Nabertherm, Germany). The sintering cycle was performed according to the manufacturer’s recommendations. Acrylic resin bases were fabricated especially to hold the zirconia plates. All plates were sandblasted by sandblasting machine (Renfert, Germany) using 50 µm alumina particles with a pressure of 2.5 bar for 20 seconds. Specimens were held at 90° and 10 mm distance from the sandblasting pen using a specially designed device.

The forty-two plates were divided into 3 main groups according to the application of adhesive promoter: Group A: Sandblasted only with no primer (n=14). Group B: sandblasted and coated with zirconia primer (n=14). Z-PRIME was added in 2 coats by applying air free oil/water syringe for 10 seconds for each coat. Group C: sandblasted and coated with the universal bonding agent (n=14). The bond was also added in 2 coats, each was air-dried for 10 seconds and then light-cured for 10 seconds. One plate from each group was scanned using an environmental Scanning Electron Microscope (SEM) to explore the surface morphology at a magnification of 2000X, then elemental analysis through Energy Dispersive X-ray (EDX) was done and tabulated. Before bonding procedures, All the plates were put in an ultrasonic cleaner (MCS, China) for 3 minutes in distilled water.

Each main group was subdivided into 2 subgroups according to the resin cement type: Subgroup 1: plates were bonded to conventional resin cements (n=21). Subgroup 2: plates were bonded to adhesive resin cements (n=21). Small transparent polyvinyl tubes were cut. Each tube was 4 mm in diameter, 3 mm in height, and 2 mm thick. Each tube was bonded to the center of each zirconia plate using a bonding agent (BISCO Schaumburg, USA) and cured with a light-emitting diode (Woodpecker, Germany) of high intensity 1600mW/cm² for 10 seconds. Each cement was injected into the tube by its dispensing tip till the filling of the tube. The excess cement was removed by a micro brush. Then the resin cement was light-cured for 20 seconds. A pencil was used to draw a circle around each tube to define the area of bonding during the microscopic examination after the shear bond strength test. Using a sharp scalpel blade number 15, the tubes were cut and removed to get a resin cement cylinder (Fig. 1). All the samples were stored in an incubator (Titandx, Italy) containing distilled water at 37 °C for 1 week.
Each zirconia plate with its resin cylinder was fixed to the lower compartment of a universal testing machine (LLOYD universal testing machine, England) by screws with 5 KN load, and data were taken down by computer software. A compression mode of force at a crosshead speed of 0.5 mm/min was applied to all the samples at the resin cylinder zirconia interface up to failure using a universal testing machine (Fig.2).

All the samples were investigated to detect the mode of failure using a digital microscope (Scope capture digital microscope, Guangdong, China) at a magnification of 15X. Failure modes were classified as an adhesive failure at the resin/zirconia interface, cohesive failure within the resin cement or zirconia, or mixed adhesive/cohesive failure.

Numerical data were explored for normality by checking the data distribution using the Shapiro-Wilk test. Data showed parametric distribution. Two-way ANOVA followed by Tukey’s post hoc test was used to study the effect of different tested variables and their interaction. A comparison of the main and the simple effects was done utilizing multiple t-tests with Bonferroni correction.

Results: Morphological and elemental surface analysis:

Untreated ultra-translucent zirconia plate SEM images showed surface grooves with some debris caused by the milling process during the preparation of the samples (Fig. 3), while EDX analysis showed: the highest peak was detected for zirconia element (56.13 Wt %) also, a low peak for oxygen (23.46 Wt %) and carbon elements (20.42 Wt %) were detected. Sandblasted ultra-translucent zirconia showed a highly rough surface with irregularities (Fig. 4) and its EDX analysis showed a noticeable peak of alumina representing 0.58 Wt %.

SEM images of sandblasted zirconia coated with Z-PRIME showed micro pores and irregularities that were coated with a darker layer (Fig.5) The EDX analysis showed a peak of phosphate (07.73 wt %) and carbon (73.44 wt %). For the surface of zirconia coated with the universal bonding agent: the surface was totally covered with a grey layer and white patches were presented (Fig.6). For the EDX analysis: a peak of carbon (79.91 wt %), oxygen (15.91 wt %) and lower peak of phosphate (2.17 wt %) were detected.
THE EFFECT OF TWO ADHESIVE PROMOTERS ON BOND STRENGTH OF ULTRA-TRANSLUCENT ZIRCONIA TO TWO RESIN CEMENTS. | AMIRA K. HAFEZ ET AL., SEP 2021.

Shear bond strength:
Main effects:
Regardless of the type of resin cement, there was a significant difference between values of different groups (p=0.008). The highest shear bond strength (MPa) value was found in zirconia primer (17.32 MPa ±5.23), followed by no primer (control) (15.20 MPa ±3.34), while the lowest value was found in universal bonding agent (12.32 MPa ±3.18). Post hoc pairwise comparisons showed value of zirconia primer to be significantly higher than that of universal bonding agent (p<0.001) (Table 2).

Table 2: Mean ± standard deviation (SD) of shear bond strength (MPa) for different primers.

| Shear bond strength (MPa) (mean±SD) |  |
|-----------------------------------|--|
| No primer                         | Zirconia primer | Universal bonding agent | p-value |
| 15.20±3.34                        | 17.32±5.23A      | 12.32±3.18B              | 0.008*  |

Means with different superscript letters are statistically significantly different *; significant (p ≤ 0.05) ns; non-significant (p>0.05)

Regardless of primer type, conventional resin cement (15.26 MPa ±5.04) had a higher value than phosphate containing resin cement (14.63MPa±3.85) yet the difference was not statistically significant (p=0.610) (Table3).

Table 3: Mean ± standard deviation (SD) of shear bond strength (MPa) for different types of resin cements.

| Shear bond strength (MPa) (mean±SD) | p-value |
|-----------------------------------|--|
| Conventional                      | Phosphate containing |
| 15.26±5.04                        | 14.63±3.85          | 0.610ns               |

*; significant (p ≤ 0.05) ns; non-significant (p>0.05)

Effect of primer within each resin cement:
As shown in table 4: For the conventional resin cement, there was a significant difference between the values of different groups (p=0.005). The highest shear bond strength (MPa) value was found in zirconia primer (19.28 MPa ±6.13), followed by no primer (control) (14.53 MPa ±2.75), while the lowest value was found in universal bonding agent (11.98 MPa ±2.73). Post hoc pairwise comparisons showed the value of zirconia primer to be significantly higher than that of the universal bonding agent (p<0.001).

For the phosphate-containing resin cement, there was no significant difference between the values of different groups
The highest shear bond strength (MPa) value was found in no primer (control) (15.88 MPa ±3.94), followed by zirconia primer (15.36 MPa ±3.57), while the lowest value was found in universal bonding agent (12.65 MPa ±3.76).

**Table 4:** Mean ± standard deviation (SD) of shear bond strength (MPa) for different primers with resin cements.

| Primer Resin cement | No primer | Z–PRIME | ALL BOND UNIVERSAL | P value |
|---------------------|-----------|---------|-------------------|---------|
| Conventional composite resin cement | 14.53±2.75 | 19.28±6.13 | 11.98±2.73 | 0.005 |
| Phosphate-containing resin cement | 15.88±3.94 | 15.63±3.57 | 12.65±3.76 | 0.278 |

**Effect of resin cement within each primer:**

As shown in table 5: when no primer was applied, phosphate-containing resin cement (15.88 MPa ±3.94) had a higher value than conventional resin cement (14.53 MPa ±2.75) yet the difference was not statistically significant (p=0.531). For the zirconia primer: conventional resin cement (19.28MPa±6.13) had a higher value than phosphate-containing resin cement (15.36MPa±3.57) yet the difference was not statistically significant (p=0.074). While for the universal bonding agent: phosphate containing resin cement (12.65MPa±3.76) had a higher value than conventional resin cement (11.98MPa±2.73) yet the difference was not statistically significant (p=0.754).

**Table 5:** Mean ± standard deviation (SD) of shear bond strength (MPa) for resin cements with different primers

| Resin cement primer | Conventional composite resin cement | Phosphate containing resin cement |
|---------------------|-------------------------------------|----------------------------------|
| No primer           | 14.53±2.75                          | 15.88±3.94                       |
| Z-PRIME             | 19.28±6.13                          | 15.63±3.57                       |
| ALL BOND UNIVERSAL  | 11.98±2.73                          | 12.65±3.76                       |

**The mode of failure:**
For the control groups, the results showed adhesive failure and all remaining groups showed mixed failure.

**Discussion:**

The extended durability of all ceramic dental restorations depends on mechanically and chemically stable bonds between restoration and tooth. The conventional etching-silane treatment is not indicated for polycrystalline, glass-free non-etchant zirconia. [12] Thus surface modification for zirconia is mandatory. In this in vitro study, we investigated the effect of two adhesive promoters and two resin cements on the bond strength of sandblasted ultra-translucent zirconia to resin cement. In this study sandblasting was done to cubic zirconia ceramic with 50 µm Al2O3[13][14], 2.5MPa pressure and 10 mm operation distance according to Blatz MB et al.[13] Sandblasting is the most preferred surface-roughening method for zirconia ceramics. This method increases the surface energy and wettability but can weaken the ceramic by creating micro cracks on the zirconia surface. However, it has been shown that resin luting agents heal the minor surface flaws created by sandblasting and strengthen the ceramic. [5] Airborne-particle abrasion with aluminum oxide does not always give rise to a well-founded resin bond to zirconia. [15] Therefore, different zirconia primers have
been innovated to attain chemically improved adhesion between the resin cement and the zirconia. [16]

Z Prime Plus was selected as zirconia adhesion promoter in this study. It contains two adhesive functional monomers (carboxylic and MDP monomers) that interact chemically with the zirconium oxide layer at the resin-zirconia interfaces.

Universal bonding agent, which is composed of 10-MDP, Dimethacrylate resins, HEMA, Ethanol, Water, and Initiators, was also selected as an adhesion promoter. MDP monomers are also available in some types of self-adhesive resin cements which might improve the bonding of zirconia to resin cement. Therefore, this study was conducted to also investigate the effect of two resin cements, conventional and phosphate-containing resin cement, on bond strength to cubic zirconia.

The results of this study showed that: The SEM image of sandblasted zirconia plate showed a highly rough surface with irregularities. This suggested the increase in bond strength to resin cement. Sandblasting increases the surface roughness and activates the surface to enhance bond strength. [17]

When no primer was used after sandblasting: the phosphate-containing resin cement showed a higher shear bond strength value (15.88±3.94) than the conventional resin cement (14.53±2.75) Yet the difference was not statistically significant. (p=0.531) This may be due to the presence of MDP in phosphate-containing resin cement. 10-Methacryloyloxydecyl dihydrogen phosphate (10-MDP) is an acidic phosphate monomer, which is originally intended to bond to metal oxides and then was used with zirconia. It has an affinity to metal oxides and zirconia surface that is covered with a passive oxide layer, so it can be used for increasing the bond strength between zirconia and resin cement. [18] [19]

These findings are in agreement with Miragaya L et al [20] who documented that irrespective of the surface treatment, the phosphate-containing resin cements performed better regarding bond strength to zirconia ceramic than a conventional resin cement.

When primer was used followed by application of conventional resin cement, it was found that: The highest shear bond strength (MPa) value was found with zirconia primer (19.28 MPa ±6.13), followed by no primer (control) (14.53 MPa ±2.75), while the lowest value was found in universal bonding agent (11.98 MPa ±2.73). This may be due to Z-PRIME Plus that has two adhesive functional monomers (carboxylic and MDP monomers. The phosphate group in MDP can bond with the hydroxyl group in the oxide layer found in zirconia. The carboxylic acid group (methacrylate) has a carbon double bond, which can be polymerized and bonded to the composite resin. These interfacial forces improved the surface wettability and chemical affinity of zirconia which caused an increase in the interlocking with the resin cement. The combined effect of the acidic MDP and carboxylate monomers is the best explanation for the higher bonding strength seen with this primer. [21][22] The high value of shear strength can also be explained by the combined effect of mechanical (sandblasting) and chemical reaction (MDP) between zirconia and resin cement. The SEM image of sandblasted zirconia coated with z-prime showed many micro pores and irregularities that served as retentive areas for resin cement. Also, the EDX analysis showed the phosphate percentage in zirconia coated with z-prime was 7.73Wt% that enhanced the chemical bonding with zirconia. The EDX analysis showed the carbon percentage was 73.44Wt%. The better aging resistance of conventional resin
THE EFFECT OF TWO ADHESIVE PROMOTERS ON BOND STRENGTH OF ULTRA-TRANS-LUCENT ZIRCONIA TO TWO RESIN CEMENTS.

Amira K. Hafez et al., Sep 2021.

Cement may be attributed to the presence of the Bis-GMA monomer. The lowest shear bond strength value was found in the universal bonding agent (11.98 MPa ±2.73), this may be attributed to the lower phosphate content as was evident in EDX analysis (2.17 Wt%). Also, the layer deposited on surface as evident in SEM images might act as a barrier for proper bonding with resin cement. When the primer was used followed by application of phosphate-containing resin cement, it was found that: The highest shear bond strength (MPa) value was found with no primer (control) (15.88 MPa ±3.94), followed by zirconia primer (15.36 MPa ±3.57), while the lowest value was found in the universal bonding agent (12.65 MPa ±3.76). There was no significant difference between values of different groups. The highest shear bond strength when no primer was applied before bonding to phosphate resin cement can be attributed to phosphate group in MDP that chemically bonded with the hydroxyl group in the oxide layer found in zirconia.

These results are in agreement with Stefani [23] who reported that bond strengths of phosphate-containing resin cement to the zirconia ceramics didn’t change by primer application. This result showed that the increased MDP concentration in both the primer and phosphate-containing resin cement did not lead to an additional enhancement in bond strength. Nagaoka [24] and others reported that higher concentrations of 10-MDP in primers yielded higher shear bond strengths with a concentration dependency and suggested that a minimum 1-ppb MDP was needed to bond to zirconia. In fact, commercial 10-MDP-containing primers possess more than 1 wt% 10-MDP, whilst phosphate-containing resin cements also contain higher concentrations of 10-MDP. In this study z-prime used has 1-5 wt% 10-MDP and the phosphate-containing resin cement has 10-30 wt% 10-MDP. The results showed that the 1-5 wt% 10-MDP found in primer was enough to produce a high bond strength. On the other hand, using z prime resulted in lower bond strength than no primer application when bonding to phosphate-containing resin cement. Yet the difference was not statistically significant (p=0.074).

Different studies do not agree with the results in this study as they have documented an increase in adhesion when previously applying a 10-MDP primer, especially with phosphate-containing resin cement. [25][26] On the contrary, another study stated the opposite in phosphate-containing resin cement due to the saturation of this molecule. The use of an MDP-containing primer was effective only for the non–MDP-containing resin cement but did not increase the bond strength to the phosphate-containing resin cement. [27]

In this study, the use of universal bonding agent combined with sandblasting did not improve significantly the bond strength of zirconia to resin cement. The higher shear bond strength of Z prime and bonding to phosphate-containing resin cement than using universal bond can be attributed for the phosphate content revealed in EDX analysis (7.73 Wt% & 2.17 Wt% respectively).

This was in agreement with Sharafeddin F et al [28] who found that the Z-Prime Plus treatment exhibited the highest bond strength than All-Bond Universal treatment. This can be explained by water absorption of this universal adhesive as a consequence of aging which resulted in decreased adhesion. [29]

The mode of failure was adhesive in control groups where no primer was used. All other groups’ mode of failure was mixed. Correlating the mode of failure and bond strength values, it is recommended to use Z-prime and conventional resin cement (19.28
MPa) to obtain high shear bond strength value and mixed mode of failure that denotes more about better bonding quality. The null hypothesis was rejected with both primers and was accepted with both resin cements.

Within the limitation of the present study, the following conclusions can be drawn:

1- Resin cements reacted almost equally when used directly on zirconia without primer application.

2- Application of MDP containing zirconia primer prior to bonding with conventional resin cement provided the highest bond strength to zirconia.

3- Application of Universal bonding agent showed the lowest bond strength to both resin cements tested in this study.

References:

1. Atsu SS, Kiliçarslan MA, Kucukesmen HC, Aka S. Effect of zirconium-oxide ceramic surface treatments on the bond strength to adhesive resin. J Prosthetic Dentistry. 2006; 95:430-436.
2. Daniele Rondoni. Zirconia: Some practical aspects from the technologist’s point of view. The International Journal Of Esthetic Dentistry. 2016; 11 : (2) 1-6.
3. Chen C, Kleverlaan C, Feilzer AJ. Effect of an experimental zirconia-silica coating technique on micro tensile bond strength of zirconia in different priming conditions. Dental Mater. 2012; 28:127-134.
4. Chen L, Suh BI, Kim J, & Tay FR Evaluation of silica coating techniques for zirconia bonding. American Journal of Dentistry. 2011; 24(2) 79-84.
5. Blatz M, Sadan A, Martin J, Lang B. In vitro evaluation of shear bond strengths of resin to densely-sintered high purity zirconium-oxide ceramic after long-term storage and thermal cycling. J Prosthetic Dentistry. 2004; 91: 356-362.
6. Xie H, Chen C, Dai W, Chen G, Zhang F. In vitro short term bonding performance of zirconia treated with hot acid etching and primer conditioning. Dental Mater J. 2013; 32: 928-938.
7. Shin YJ, Shin YA, Yi YA, Kim J, Lee I, Cho B, Son H. Evaluation of the shear bond strength of resin cement to Y-TZP ceramic after different surface treatments. The Journal of Scanning microscopies. 2014;36 (5):479-486.
8. Wolfart M, Lehmann F, Wolfart S, Kern, M. Durability of resin bond strength to zirconia ceramic after using different surface conditioning methods. Dental Mater. 2007; 23: 45-50.
9. Inokoshi M, Poitevin A, Munk J, Minakuchi S, Meerbeek BV. Bonding effectiveness to different chemically pretreated dental zirconia. Clin Oral Investig. 2013;13: 1152-1157.
10. Papia E, Larsson C, Toit M, Steyern PV. Bonding between oxide ceramics and adhesive cement systems: a systematic review. J Biomed Mater Res Part B. 2013; 102:395-413.
11. Amaral M, Belli R, Cesar PF, ValandroLF, Petschelt A, and Lohbauer U. The potential of novel primers and universal adhesives to bond to zirconia,” Journal of Dentistry.2014vol. 42, no. 1, pp. 90–98.
12. Blatz MB, Vonderheide M, Conejo J. The effect of resin bonding on long-term success of high strength ceramics. J Dent Res. 2018; 97(2):132–139.
13. Blatz MB. Cementation of zirconium-oxide ceramic restorations. Pract Proced Aesthet Dent 2004; 16(1):14.
14. Cebe MA, Polat S, Cebe F, Tuncedemir MT, Isman E. Bonding performance of two newly developed self-adhering materials between zirconium and dentin. Niger J Clin Pract. 2015;18(2):221-226.
15. Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent Mater 2011; 27:71-82.
16. Yang L, Chen B, Xie H, Chen Y, Chen Y, & Chen C. Durability of Resin Bonding to Zirconia Using Products Containing 10-Methacryloyloxydecyl Dihydrogen Phosphate. The journal of adhesive dentistry, (2018);20(4), 279–287.
17. Kosmac T, Oblak C, Jevnikar P Funduk N, Marion L. The effect of surface grinding and sandblasting on flexural strength and reliability of Y-TZP zirconia ceramic. Dent Mater. 1999;15(6):426–433.
18. Tanış, M. Ç., & Akçaboy, C. Effects of Different Surface Treatment Methods and MDP Monomer on Resin Cementation of Zirconia Ceramics an In Vitro Study. Journal of lasers in medical sciences. 2015; 6(4), 174–181.
19- Yi, Y. A. et al. The effect of sandblasting and different primers on shear bond strength between yttria-tetragonal zirconia polycrystal ceramic and self-adhesive resin cement. Operative Dentistry. 2015;40(1) 63–71.

20- Miragaya L, Maia LC, Sabrosa CE, de Goes MF, da Silva EM. Evaluation of self-adhesive resin cement bond strength to yttria-stabilized zirconia ceramic (Y-TZP) using four surface treatments. J Adhes Dent 2011; 13:473–80

21- Yun J, Ha S, Lee J, Kim S. Effect of sandblasting and various metal primers on the shear bond strength of resin cement to Y-TZP ceramic. Dental Mater. 2010; 26650-658.

22- Gomes AL, Ramos JC, Reigo SS, Montero J, Alberto A. Thermo-cycling effect on micro-shear bond strength to zirconia ceramic using Er: YAG and tribochemical silica coating as surface conditioning. Lasers Med Sci. 2013-30.

23- Stefani A, Brito RB, Jr., Kina S, Andrade OS, Ambrosano GM, Carvalho AA, & Giannini M. Bond strength of resin cements to zirconia ceramic using adhesive primers Journal of Prosthodontics. 2016;25(5) 380-385.

24- Nagoka N, Yoshihara K, Feitosa VP, Tamada Y, Irie M, Yoshida Y, Van Meebeek B, Hayakawa S. Chemical interaction mechanism of 10 MDP with zirconia. Scientific reports 2017;7: 45563.

25- Ahn, J.S.; Yi, Y.A.; Lee, Y.; Seo, D.G. Shear Bond Strength of MDP-Containing Self-Adhesive Resin Cement and Y-TZP Ceramics: Effect of Phosphate Monomer-Containing Primers. Biomed. Res. Int. 2015:389234.

26- Salem, R.S.T.; Ozkurt-Kayahan, Z.; Kazazoglu, E.In Vitro Evaluation of Shear Bond Strength of Three Primer/Resin Cement Systems to Monolithic Zirconia. Int. J. Prosthodont. 2019;32:519–525.

27- Go EJ; Shin Y., Park JW. Evaluation of the Microshear Bond Strength of MDP-containing and Non-MDP-containing Self-adhesive Resin Cement on Zirconia Restoration. Oper. Dent. 2019;44:379–385.

28- Sharafeddin F and Shoale S. Effects of universal and conventional MDP primers on the shear bond strength of zirconia ceramic and Nano filled composite resin. Journal of Dentistry. 2018;19:48–56.