Regulation of lysosomal secretion by cortactin drives fibronectin deposition and cell motility

Bong Hwan Sung 1 and Alissa M. Weaver 1,2,*
1 Department of Cancer Biology; Vanderbilt University Medical Center; Nashville, TN USA; 2 Department of Pathology; Vanderbilt University Medical Center; Nashville, TN USA

Keywords: cortactin, Arp2/3 complex, branched actin, extracellular matrix, lamellipodium, late endosomal/lysosomal compartments, fibronectin, lysosomal secretion, cell motility, migration
Submitted: 12/05/11
Revised: 12/21/11
Accepted: 12/27/11
http://dx.doi.org/10.4161/bioa.1.6.19197
*Correspondence to: Alissa M. Weaver; Email: alissa.weaver@vanderbilt.edu

Directional cellular movement is required for various organismal processes, including immune defense and cancer metastasis. Proper navigation of migrating cells involves responding to a complex set of extracellular cues, including diffusible chemical signals and physical structural information. In tissues, conflicting gradients and signals may require cells to not only respond to the environment but also modulate it for efficient adhesion formation and directional cell motility. Recently, we found that cells endocytose fibronectin (FN) and resecrete it from a late endosomal/lysosomal (LE/Lys) compartment to provide an autocrine extracellular matrix (ECM) substrate for cell motility. Branched actin assembly regulated by cortactin was required for trafficking of FN-containing vesicles from LE/Lys to the cell surface. These findings suggest a model in which migrating cells use lysosomal secretion as a versatile mechanism to modulate the ECM environment, promote adhesion assembly and enhance directional migration.

Introduction

Cellular movement requires dynamic reorganization of the internal cytoskeleton and is canonically described as occurring through four sequential processes: protrusion of leading edge lamellipodia, formation of new adhesions, cell body contraction, and tail detachment. These intrinsic processes are regulated in response to external cues, such as growth factors and extracellular matrix (ECM). Branched actin assembly is required for leading edge lamellipodial protrusion, the first step in the cycle. However, actin assembly is also critical for other cellular functions, including cell-cell adhesion and membrane trafficking, which could also affect cell motility. Many groups, including our own, have studied the role of the branched actin assembly protein cortactin in cell motility due to its presence in leading edge lamellipodia and its potential role in cancer metastasis. Detailed live cell analyses have indicated that cortactin is not required for lamellipodial protrusion but does affect the stability or persistence of lamellipodia after they are formed as well as the assembly of adhesions at the leading edge of migrating cells. Interestingly, similar defects in lamellipodial persistence as those exhibited by cortactin-knockdown (KD) cells are found in cells with primary defects in integrin levels or activity. Those data suggested to us that perhaps the lamellipodial persistence defects of cortactin-KD cells are a secondary consequence of adhesion assembly defects.

Cortactin Regulates Cell Motility by Promoting Secretion of ECM

Because cortactin is known to regulate membrane trafficking and exocytosis, we hypothesized that cortactin might promote cell motility, adhesion assembly and lamellipodial persistence as a direct consequence of enhancing ECM secretion. We began by determining whether cortactin regulates extrinsic or intrinsic mechanisms of cell motility by measuring the speed of cortactin-KD or overexpressing...
cells when plated on surfaces coated with various concentrations of FN. Consistent with an extrinsic motility defect, cortactin-KD HT1080 human fibrosarcoma cells migrated poorly on uncoated surfaces but moved as rapidly as control cells on surfaces coated with high concentrations of exogenous ECM (10 μg/ml FN or 50 μg/ml Collagen I)-coated plates. Cortactin-KD cells defects in lamellipodial persistence and adhesion formation were also rescued by plating cells on 10 μg/ml FN. These findings suggested that cortactin might indeed regulate cell motility by promoting autocrine ECM secretion.

To directly test whether autocrine matrix from cortactin-expressing cells promotes cell motility, cell-free ECM was extracted from cortactin-KD and (Rescue) cells and used in migration assays. Consistent with the branched actin nucleating Arp2/3 complex being essential for cortactin to promote ECM deposition during cell motility, rescue of all cortactin-manipulated cells (control, KD and rescue) was equivalent and dampened. Furthermore, live cell TIRF imaging revealed that there were fewer moving vesicles and less fluorescent FN deposited at the base of cells, consistent with the apparent trafficking block from LE/Lys compartments. KD of the lysosome-to-plasma membrane fusion regulator, synaptotagmin 7 (Syn7) also led to defective basal deposition of FN and motility, suggesting that secretory lysosomes may be an important vehicle for ECM deposition during cell motility.

FN is Resecrated From a Late Endosomal/Lysosomal (LE/Lys) Compartment

To determine which secretory compartment is regulated by cortactin, we performed immunofluorescence colocalization studies with antibodies recognizing FN and various vesicular markers. Interestingly, FN colocalized well with the late endosomal marker Rab7 and the lysosomal marker LAMP1. In cortactin-KD cells there was an increase in both the colocalization of FN with Rab7 and LAMP1 and the size of the Rab7-positive compartment compared with control cells, suggesting a block in secretion from a late endosomal/lysosomal (LE/Lys) compartment.

Since FN is abundant in serum used in cell culture media and is highly colocalized with late endosomes in our system, we tested whether extracellular FN was endocytosed and resorted by cells to promote cell motility. We removed FN from the serum used in cell culture media by affinity chromatography with gelatin-Sepharose. After culturing cells in media containing the FN-depleted serum, we found that there was much less intracellular FN accumulation and the motility of all cortactin-manipulated cells (control, KD and rescue) was equivalent and dampened. Furthermore, live cell TIRF imaging using exogenously provided fluorescently-labeled FN revealed that the exogenous FN is internalized, contained in moving vesicles, and deposited at the basal surface of control cells. In cortactin-KD cells, FN was still internalized, but TIRF imaging revealed that there were fewer moving vesicles and less fluorescent FN deposited at the base of cells, consistent with the apparent trafficking block from LE/Lys compartments. KD of the lysosome-to-plasma membrane fusion regulator, synaptotagmin 7 (Syn7) also led to defective basal deposition of FN and motility, suggesting that secretory lysosomes may be an important vehicle for ECM deposition during cell motility.

Cortactin Regulates LE/Lys Secretion Through Interactions with Branched Actin

To define the underlying molecular interactions that mediate cortactin regulation of cell motility and FN secretion, cortactin-KD cells were rescued by reexpression of cortactin molecules with mutations in specific binding domains or phosphorylation sites. As is the case for many other cortactin-dependent phenotypes, binding to actin filaments and to the branched actin nucleating Arp2/3 complex was essential for cortactin to promote FN secretion and cell motility. By contrast, neither the tyrosine phosphorylation sites nor the SH3 domain was essential for these cortactin functions, suggesting that the most critical activity of cortactin in cell motility and FN secretion is to regulate branched actin networks. Given the specific block in FN trafficking at LE/Lys in cortactin-KD cells, these data suggest that dynamic branched actin assembly plays an important although unknown role in the generation of LE/Lys secretory vesicles.

Autocrine ECM Secretion Facilitates Effective Adhesion-Protrusion Cycles during Cell Motility

Adhesion assembly is a critical determinant of cell speed and directionality and requires binding of integrin receptors to ECM, activation of integrin-associated adhesion proteins, and assembly of the active cytoskeleton at adhesion sites. Our discovery that cells can regulate adhesion assembly and lamellipodial stability during cell motility by secreting ECM suggests an obvious mechanism by which cells might sharpen chemotactic responses and migrate more quickly. The impact of that secretion will of course depend on other environmental cues, but one could imagine a variety of in vivo situations in which the ability to modulate the surrounding environment would greatly facilitate physiologic migrations. Interestingly, although our work focused on FN, studies on Laminin-5 and collagen XVII in keratinocytes suggest that autocrine secretion of those ECM molecules may also facilitate migration and lamellipodial stability. Thus, we speculate that dynamic ECM secretion may be utilized by a variety of migratory cell types in diverse circumstances.

Lysosomal Secretion in Cell Motility

Our report indicates that lysosomal secretion is a route for FN deposition that promotes efficient cell motility. We speculate that trafficking of FN through LE/Lys may have advantages over classical Golgi secretion pathways for dynamic and directed secretion of adhesive proteins during cell movement. Since newly synthesized FN is secreted from the Golgi as a
soluble non-adhesive protein, it must be assembled into fibrils at the cell surface before it can support cell adhesion.16-18 Fibril assembly is likely to be a fairly slow process and may not occur at the leading edge of cells. By contrast, already assembled FN fibrils can be cleaved by extracellular proteinases, internalized, and rescreted in adhesive form from lysosomes to promote rapid adhesion assembly. Furthermore, lysosomal proteases themselves are known to generate FN fragments that are highly adhesive,19,20 which could further allow conversion of soluble internalized FN into an insoluble ready-to-adhere form. According to this model (Fig. 1), lysosomal secretion would be a rapid way to provide adhesive forms of FN and, if targeted to the leading edge, could alter the directionality or speed of migrating cells. One could also envision that targeted deposition of FN might reinforce a nascent protrusion to create a dominant lamellipodium and drive persistent cell migration.

Although to our knowledge no previous group has studied the role of lysosomal secretion in ECM deposition, two prior studies have shown that lysosomal secretion significantly contributes to cell motility.21,22 Thus, inhibition of lysosomal secretion by expression of a dominant negative domain of the LE/Lys v-SNARE protein VAMP7 (vesicle-associated membrane protein-7) was accompanied by a reduction in the velocity of MDCK cells in a wound healing assay21. In addition, using an shRNA screen Colvin et al. identified several lysosomal secretion regulators, including the secretory lysosome fusion regulator and VAMP7-interacting protein Syn7, as key regulators of leukocyte...
chemotaxis.22 Interestingly, in the 1970s Showell et al.23 identified a tight correla-
tion between induction of leukocyte chemotaxis and lysosome secre-
tion by N-formyl methionyl peptides (a chemotactic stimulus of 0.98 when
comparing the ED₅₀ of 19 different peptides in the two assays); the recent
findings from ourselves and others suggest that this correlation may be mechanisti-
cally meaningful.

From recent work, lysosomal secretion appears to be used by a variety of cell
types for cell motility and indeed other biological processes.24,25 By targeting
actin assembly proteins such as cortactin, it appears to be used by a variety of cell
types for cell motility.25-27 In conclusion, we have described a novel mechanism by
which the branched Type XVII collagen regulates lamellipod stability, cell
motility, and signaling in RPE to target filtering blebbins peripheral angioid streaks in
retinal pigment epithelial cells. J Biol Chem 2011; 286:26768-80; PMID:21642434; http://dx.doi.
or/10.1074/jbc.M111.236130

References
1. Raffo AJ, Schwartz MA, Porumbal C, Firda RA, Ginsberg MH, Boiss G, et al. Cell migration
integrating signals from front to back. Science 2013; 342:1774-8; PMID:24076786; http://dx.doi.
or/10.1126/science.1247253
2. Laviene LM, Acta in motilisitaii tiliireting. Curr Opin. Cell Biol. 2007; 20:65-73; PMID:17822812; http://dx.doi.org/10.1016/j.ceb.2007.01.011
3. Kribelke AM, Seng BH, Han J, Kioskses WB, Howe AK, Martens MM, et al. Cortactin
a multifunctional regulator of cellular invasions. J Cell Sci 2015; 118:57-66; PMID:
25218122; http://dx.doi.org/10.1242/jcs.151677
4. Bryan NS, Clark ES, Leysath JL, Currie JD, Webb DJ, et al. Directional control of cell
motility by enhancing lamellipodial protrusion. Cell Biol 2007; 261:1653-63; PMID:17011170; http://dx.doi.org/10.
or/10.1098/rspb.2006.0610
5. Hanke JF, Hoyningen SB, Hoffmann MF, Jess CJR. Type XVII collagen regulates
lamellipod stability, cell motility, and signaling in RPE to target filtering blebbins peripheral angioid
streaks in retinal pigment epithelial cells. J Biol Chem 2011; 286:26768-80; PMID:21642434; http://dx.doi.
or/10.1074/jbc.M111.236130
6. Goldfinger LE, Han J, Kioskses WB, Howe AK, Martens MM, et al. Cortactin
a multifunctional regulator of cellular invasions. J Cell Sci 2015; 118:57-66; PMID:
25218122; http://dx.doi.org/10.1242/jcs.151677
7. Borm B, Requardt RP, Herzog V, Kirfel G. Membrane
phosphorylation regulates lamellipodial stability and
Ginsberg MH. Spatial restriction of
a paradigm for extracellular matrix assembly. Curr Opin
Mol Cell Biol 2001; 2:793-805; PMID:11715046; http://dx.doi.org/10.
or/10.1016/S0955-0674(99)00017-4
8. Sna N, Thoden CK, Huai TP, Xu Q, Hu M, Whimedes GM, et al. Directional control of cell
movility through focal adhesion positioning and
horizontal control of cell motility. Exp Cell Res 2005; 302:83-95; PMID:15961984; http://dx.doi.
or/10.1016/j.yexcr.2004.10.027
9. Kayirhan-Denizli F, Arica MY, Denizli A. Fibronectin
fibrillogenesis in extracellular matrix. J Cell Biol 1979;
101(6):979-89; PMID:11469779; http://dx.doi.org/10.1083/jcb.83.1.255
10. Kayirhan-Denizli F, Arica MY, Denizli A. Fibronectin
fibrillogenesis in extracellular matrix. J Cell Biol 1979;
101(6):979-89; PMID:11469779; http://dx.doi.org/10.1083/jcb.83.1.255
11. Arantes RME, Andrews NW. A role for synaptotagmin
and membrane resealing during differentiation of
synaptotagmin VII regulates bone remodeling
controlled by modulating osteoclast and osteoblast secretion. Dev Neurop Sci 2006; 26:4630-7; PMID:
16641243; http://dx.doi.org/10.1016/j.dnns.2005.09.004
12. Stefani A, Lee DG, Panchal S, Reddy C, Neave P, Rhee K, et al. MT1-MMP-dependent invasion is
regulated by TIMP-2. Cell Biol 2008; 208:1621-31; PMID:18400773; http://dx.doi.org/10.
or/10.1083/jcb.200708093
13. Phillips, A.G., 1994. The structure-
cytoskeleton crosstalk. Nat Rev Mol Cell Biol
15:1276-85; PMID:16051170; http://dx.doi.org/10.
or/10.1038/305811a0
14. Hamill KJ, Kligys K, Hopkinson SB, Jones JCR.
Laminin deposition in the extracellular matrix: a complex
process combining bonding and adhesion. Curr Opin
Cell Biol 2008; 20:0203066
15. Frank DE, Carter WG. Laminin 5 deposition regulates
integrin alpha 6 expression. J Cell Biol 2002; 159:1207-17; PMID:12055333; http://dx.doi.
or/10.1083/jcb.200202002
16. Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis:
and in vivo functions. Cold Spring Harb Perspect Biol
2011; 3:a005041.; PMID:21576254; http://dx.doi.org/10.
or/10.1101/cshperspect.a005041
17. Rottner K, et al. MT1-MMP-dependent invasion is
regulated by TI-VAMP/VAMP7. Curr Biol 2008;
18:1649-59; PMID:18180334; http://dx.doi.org/10.
or/10.1016/j.cub.2008.06.065
18. Colvin RA, Means TK, Diefenbach TJ, Moita LF,
Humphries MJ, Ayad SR. Stimulation of DNA
synthesis from primary sympathetic neurons. J Cell Biol 2011; 212:1649-59; PMID:21642434; http://dx.doi.
or/10.1016/j.cub.2008.06.065
19. Humphries MJ, Ayad SR. Stimulation of DNA
synthesis from primary sympathetic neurons. J Cell Biol 2011; 212:1649-59; PMID:21642434; http://dx.doi.
or/10.1016/j.cub.2008.06.065
20. Zhao H, Ito Y, Chappel J, Andrews NW, Teitelbaum SL.
Bone remodeling: a paradigm for extracellular matrix assembly. Curr Opin Mol Cell Biol
2001; 2:793-805; PMID:11715046; http://dx.doi.org/10.
or/10.1016/S0955-0674(99)00017-4
21. Proux-Gillardeaux V, Raposo G, Irinopoulou T, Galli
reorganize the cytoskeleton and synaptotagmin
and membrane resealing during differentiation of
synaptotagmin VII regulates bone remodeling
controlled by modulating osteoclast and osteoblast secretion. Dev Neurop Sci 2006; 26:4630-7; PMID:
16641243; http://dx.doi.org/10.1016/j.dnns.2005.09.004
22. Chakrabarti S, Karakusa KS, Flavell RA, Marks MR, Miyake K, Lennard DR, et al. Impaired membrane
endotheliosis. Curr Opin. Cell Biol. 2007; 19:1725-33; PMID:
17715046; http://dx.doi.org/10.1016/j.ceb.2007.01.011
23. Arantes RME, Andrews NW. A role for synaptotagmin
and membrane resealing during differentiation of
synaptotagmin VII regulates bone remodeling
controlled by modulating osteoclast and osteoblast secretion. Dev Neurop Sci 2006; 26:4630-7; PMID:
16641243; http://dx.doi.org/10.1016/j.dnns.2005.09.004
24. Tsu C, Oshima-Cara CE, Chau G, Fernandez ND, Caruso-Medellin D, Skinner BF, et al. Lysosomal
catalase B participates in the phosphate-implanted extracellular matrix degradation and invasions via
secreted lysosomes in vivo. Biol Cell. Cancer Res 2008; 101:147-56; PMID:18298884; http://dx.doi.org/10.
or/10.1042/BC20060097
25. Zhou D, Yang J, Chang J, Andrews NW, Toth-Benz SL, Ross IV. Synaptotagmin VII regulates bone remodeling
by modulating osteoclast and osteoblast secretion. Cell Biol 2008; 19:3914-25; PMID:18551519; http://dx.doi.
or/10.1016/j.dsr.2008.03.022