Genetic Diversity and Population Structure of Tomato (Solanum lycopersicum) Germplasm Developed by Texas A&M Breeding Programs

Devi R. Kandel¹, Renesh H. Bedre¹, Kranthi K. Mandadi¹,², Kevin Crosby³, Carlos A. Avila¹,³*

¹Texas A&M AgriLife Research and Extension Center, Weslaco, TX, USA
²Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
³Department of Horticultural Sciences, Texas A&M University, College Station, TX, USA
Email: *Carlos.Avila@ag.tamu.edu

Abstract

Genetic variation developed in plant breeding programs is fundamental to creating new combinations that result in cultivars with enhanced characteristics. Over the years, tomato (Solanum lycopersicum) breeding programs associated with the Texas A&M University system have developed morphologically diverse lines of tomatoes selected for heat tolerance, fruit quality, and disease resistance to adapt them to Texas growing conditions. Here we explored the intraspecific genetic variations of 322 cultivated tomato genotypes, including 300 breeding lines developed by three Texas A&M breeding programs, as an initial step toward implementing molecular breeding approaches. Genotyping by sequencing using low coverage whole-genome sequencing (SkimGBS) identified 10,236 high-quality single-nucleotide polymorphisms (SNPs) that were used to assess genetic diversity, population structure, and phylogenetic relationship between genotypes and breeding programs. Model-based population structure analysis, phylogenetic tree construction, and principal component analysis indicated that the genotypes were grouped into two main clusters. Genetic diversity analysis revealed greater genetic diversity among the products of the three breeding programs. The germplasm developed at Texas A&M programs at Weslaco, College Station, and by Dr. Paul Leeper exhibited genetic diversity ranges of 0.175 - 0.434, 0.099 - 0.392, and 0.183 - 0.347, respectively, suggesting that there is enough variation within and between the lines from the three programs to perform selection for cultivar development. The SNPs identified here could be used to develop molecular tools for selecting various traits of interest and to select parents for future tomato breeding.
Keywords
Genetic Diversity, Single-Nucleotide Polymorphism (SNP), *Solanum lycopersicum*, Tomato, Genotyping by Sequencing (GBS)

1. Introduction

Tomato (*Solanum lycopersicum* L.) is a major vegetable crop widely grown around the world [1] [2] [3]. In the USA, fresh and processed tomatoes accounted for more than $1.85 billion in US farm cash receipts in 2018 [4]. The two leading states for fresh-market tomato production are Florida and California, which together comprise almost two-thirds of the total US fresh tomato acreage. Historically, Texas grew as many acres of tomatoes as the leading producing states, with 13,315 ha planted in the 1960s. Because of the lack of adequate cultivars, pest/disease pressure, inefficient production practices, and competition from other production areas, however, Texas growers later migrated to other crops, largely abandoning fresh market tomatoes (harvesting only 304 ha. in 2017) [5]. To satisfy customer demand, Texas imports an estimated 2.4 billion pounds/year [6]. A recent study found that Texas consumers frequently request tomatoes with "vine ripe" flavor, aroma, and texture, and will pay a premium for locally produced selections [7]. This situation represents a great opportunity for local producers to re-claim their share of the Texas tomato market. For this to be possible, however, new cultivars and production practices need to be developed to support the industry.

The Texas A&M AgriLife Research tomato breeding programs at Weslaco and College Station have been breeding tomatoes for heat tolerance, fruit quality, and disease resistance adapted to Texas growing conditions for the past five and eighteen years, respectively. Recognizing that high temperatures significantly impact tomato flavor and appearance, our work has focused on introgressing heat tolerance and high-temperature fruit set genes. The two tomato breeding programs combined have developed more than 400 families, including heat-tolerant lines with disease resistance and diverse heirloom selections with multiple fruit colors and unique flavors. Much of this work targeted improvements in both flavor and content of beneficial phytochemicals [8]. This high-yielding, heat-tolerant base germplasm was developed over a period of 37 years at Weslaco by former Texas A&M breeder Dr. Paul Leeper and has been used extensively by the current Texas A&M breeding programs and others programs in tropical regions, including the cultivars Chico III, Chico, El Monte, Monte Grande, La Pinta, Chico Grande, and Saladette [9] [10] [11] [12]. To date, elite lines in our breeding programs have been selected using conventional phenotypic selection approaches, in which large populations are screened for several breeding cycles. Although this approach has produced high-quality, high-yield cultivars, it is time-consuming and requires substantial resources to develop each new cultivar.

An alternative approach to improve breeding efficiency involves the use of
modern molecular breeding techniques for population management, including methods to obtain desired genetic heterogeneity in the end-product cultivars. One of the first steps in implementing molecular breeding approaches is to estimate the genetic variation within the breeding lines. Genetic heritable variability is indispensable in plant breeding aimed at developing new cultivars that express desirable characteristics generation after generation [13]. Furthermore, the development of improved varieties is enhanced when parents are selected based on genetic heterogeneity [14], making genetic variation estimation necessary in breeding programs to allow the selection of parental lines either to increase breeding population variation or to develop hybrids for cultivar release [15].

Genetic variation between breeding lines can be effectively determined through the use of molecular markers. In tomato, genetic diversity has been extensively studied using a wide range of molecular data. Miller and Tanksley (1990) [16] used restriction-fragment-length polymorphism (RFLP) markers for genetic diversity analysis of self-incompatible and self-compatible tomato species. To unveil the genetic variations that underlie fruit sugar and organic acid production, Zhao et al. (2016) [17] conducted a genetic diversity analysis of 174 tomato accessions using simple sequence repeat (SSR) markers. To gain insight into the morphological traits of fruits, Sacco et al. (2015) [18] performed a genetic diversity analysis of 123 tomato genotypes using single-nucleotide polymorphisms (SNPs). Similarly, Lin et al. [19] and Aflitos et al. [20] performed an evolutionary study of tomato and its wild relatives involving SNPs.

The advent of next-generation sequencing technologies coupled with bioinformatics has led genetic diversity studies into a new era. Sequencing of tomato has resulted in the discovery of large numbers of SNPs distributed throughout the genome [20] [21] [22]. Furthermore, cultivated tomato genome has been fully sequenced [23] and the genotyping by sequencing (GBS) has emerged as a powerful tool for sequencing large populations. The availability of large numbers of SNPs distributed throughout the genome, a reference genome, and the GBS technique [23] [24] [25] has made large intraspecific studies possible. This is important as most prior studies focused on interspecific variations and only a few intraspecific studies have been performed [19] [20] [26] [27]. The SNPs postulated from such intraspecific studies offer better clues to the genetic control of agronomic traits and can be used to deduce phylogenetic relationships. Parent selection based on such genetic information can greatly enhance breeding efficiency and help to achieve breeding goals such as high quality (flavor, color, shape), long shelf life, disease resistance, and heat tolerance.

In the present study, we used three representative sets of tomato breeding lines from the current Texas A&M AgriLife Research breeding programs at Weslaco and College Station and from former Texas A&M breeder Dr. Paul Leeper to assess genotypic intraspecific variations within Texas A&M germplasm. Sequencing of these lines yielded 10,236 high-quality polymorphic SNPs. Genetic distance analysis revealed that the tomato breeding lines developed by the Texas
A&M breeding programs possess a high level of genetic diversity that, upon selection, can be used to develop high-yielding adapted cultivars for Texas production. Furthermore, intraspecific SNPs identified in the present study could be used to identify economically important traits in cultivated tomatoes. Finally, based on the results of phylogenetic and genetic distance analyses, hybridization strategies can be developed to increase diversity and optimize hybrid development within and between breeding programs.

2. Materials and Methods

2.1. Plant Material

A total of 322 tomato (Solanum lycopersicum) genotypes were evaluated in this study. Among them, 300 genotypes were developed by three independent tomato breeding programs in the Texas A&M University (TAMU) system. Out of them, 127 were developed by Dr. Kevin Crosby’s breeding program at Texas A&M University, College Station, TX (designated TAM-CS); 125 by Dr. Carlos Avila’s breeding program at the Texas A&M AgriLife Research and Extension Center at Weslaco, TX (designated TAM-W); and 48 by the breeding program of Dr. Paul Leeper, a former TAMU breeder at Weslaco, Texas (designated TAM-L) (Table S1). These genotypes were developed by hybridizations of Texas A&M germplasm with a diverse set of parents including accessions from the USDA National Germplasm System and other public breeding programs mentioned below and subsequent selfing up to the F₉ generation. Pedigree information for all the breeding lines developed in Leeper’s program and some from Crosby’s program have been lost (Table S1). Breeding lines developed from all the three breeding program harbor good phenotypic variations in tomato fruit shape, size, and color. Besides the genotypes from the Texas A&M University breeding programs, 16 genotypes from the USDA collection, 3 from the Asian Vegetable Research and Development Center (AVRDC), and 3 developed by University of Florida tomato breeding program (designated FLA) were also included in the present study (Table S1).

2.2. DNA Extraction

Leaves from twelve four-week-old seedlings of the respective genotypes were collected and combined into a single bulk sample. Tissue was lyophilized, homogenized, and stored at −20°C until extraction. Genomic DNA was extracted from 50 mg of homogenized tissue using the CTAB method [28]. Qualitative and quantitative tests of the DNA were performed by electrophoresis and Qubit 2.0 fluorometry (Life Technologies, Carlsbad, CA), respectively. For each sample, 1.2 μg of DNA was sent to the Texas A&M Genomics and Bioinformatics services (College Station, TX) for sequencing.

2.3. GBS, SNP Discovery, and Population Structure

Genotyping of 322 tomato genotypes was performed using low-coverage whole-
genome sequencing (SkimGBS [29]) with a paired-end approach (150 bp × 150 bp) (Illumina HiSeq 4000) at the Texas A&M Genomics and Bioinformatics service (College Station, TX). Raw sequences from the 322 genotypes were filtered to remove low-quality reads and adapter sequences. High-quality sequence data were mapped to the tomato reference genome (S. lycopersicum v3.00) [23] using bowtie2 [30]. The aligned BAM files were sorted, quality filtered for mapping, and filtered for duplicate reads using SAMtools [31] and Picard (http://broadinstitute.github.io/picard/index.html). The GATK HaplotypeCaller (HC) [32] was used for SNP calling from the aligned data of the 322 tomato genotypes. These raw polymorphic SNPs were filtered to remove SNPs with a high percentage of missing genotypes and low minimum allele frequency (MAF). The resulting genotypes were imputed using Beagle (v4.00) [33]. The imputed genotypes were further filtered to keep only genotypes with probability ≥0.9. The polymorphic SNPs were subsequently filtered to remove the SNPs with >30% missing genotypes.

The population structure and hybrid forms of tomato genotypes were inferred using the Bayesian model-based clustering program STRUCTURE (v2.3.4) [34] using polymorphic SNPs obtained from the GBS analysis. To determine the number of populations in a given genotype, the STRUCTURE was run with 5000 burn-in periods with 5000 Markov-chain Monte Carlo (MCMC) steps using an admixture model and correlated allele frequencies among populations. The program was run independently three times for each value K ranging from 1 to 10. To detect the true value of K (population), we used the uppermost level of structure calculated using the ΔK method as described in Evanno et al., 2005 [35]. The tomato genotypes were assigned to each true population (Q) based on the value obtained for the proportion of population membership for a given K. The population structure of 322 tomato genotypes was visualized using a bar plot (sorted by Q) in the Python matplotlib package.

2.4. Phylogenetic and Principal Component Analysis

Phylogenetic analysis was performed using the unweighted pair-group method with arithmetic mean (UPGMA) algorithm implemented in TASSEL v5.2.52 [36]. The phylogenetic tree obtained from TASSEL was visualized using iTOL v4.3.3 and each population was annotated using customized annotation files [37]. The pairwise genetic distance matrix between each pair of genotypes was calculated using TASSEL v5.2.52 and visualized using the Python matplotlib package. The PCA was performed using the PCA function in TASSEL. The first three principal components were exported and visualized as a three-dimensional (3D) scatter plot using the Python matplotlib package.

3 Results

3.1. Generation of High-Quality Tomato GBS Data

We generated a total of ~598 million sequence reads (paired-end, 150 bp) using
low-coverage (average ~0.37×) whole-genome sequencing across 322 tomato genotypes. The raw sequence data were filtered to remove low-quality bases, adapter contamination, and uncalled bases to produce high-quality sequence data (~522 million reads). On an average, ~95% of high-quality reads mapped to the tomato reference genome for SNP discovery. In total, we obtained ~3.2 million SNPs from tomato SkimGBS data from the 322 genotypes, which we subsequently filtered to remove SNPs with >50% missing, rare alleles with MAF <5% across all 322 tomato genotypes, and SNPs with low genotype probability (<0.9) (Figure S1 and Figure S2). We used the remaining 10,236 high-quality SNPs for downstream analysis. SNPs were not distributed evenly across all chromosomes (Figure 1). Chromosome 12 and 1 had the highest numbers of identified SNPs with 1337 and 1208, respectively, whereas chromosomes 6 and 4 had the lowest number of identified SNPs with 173 and 255, respectively. In addition, 1279 SNPs were mapped to unanchored scaffolds (Chr00).

3.2. Genetic Distance between Tomato Genotypes

We calculated the pairwise genetic distance matrix for the 322 tomato genotypes in TASSEL v5.2.52. Genetic distance between tomato genotypes ranged from 0.092 to 0.443, with an average distance of 0.270 (Table 1 and Table S2). Among them, the combination of genotypes TAM-CS-138 and USDA-273 revealed the smallest genetic distance (0.092). Genotype TAM-CS-138 is an F5 inbred heirloom type with large, pink fruit, developed by the Texas A&M College Station breeding program, and genotype USDA-273 is a cherry tomato that produces small red fruit, from the USDA germplasm bank (Table S1). Among all possible 100,142 combinations between the 322 genotypes, the largest genetic distance (0.443) was observed between genotypes TAM-CS-111 and TAM-W-322 (Table 1). Genotype TAM-CS-111 is an F5 inbred that produces small, round red fruit, from
Table 1. Genetic distances among tomato genotypes developed by different groups.

Genotype source	No. of genotypes	Minimum diversity	Maximum diversity			
TAM-CS	138	TAM-CS-138 and USDA-273	0.092	TAM-CS-111 and TAM-W-322	0.443	0.270
TAM-W	315	TAM-W-315 and TAM-W-316	0.175	TAM-W-322 and TAM-W-172	0.434	0.264
TAM-CS	138	TAM-CS-138 and TAM-CS-230	0.099	TAM-CS-111 and TAM-CS-165	0.392	0.282
TAM-L	13	TAM-L-13 and TAM-L-54	0.183	TAM-L-51 and TAM-L-16	0.347	0.255
USDA	238	USDA-238 and USDA-273	0.192	USDA-259 and USDA-320	0.292	0.234
AVRDC	119	AVRDC-119 and AVRDC-133	0.289	AVRDC-119 and AVRDC-126	0.309	0.296
FLA	154	FLA-154 and FLA-161	0.276	FLA-147 and FLA-154	0.315	0.298

Note: AVRDC = Asian Vegetable Research and Development Center; TAM-CS = Dr. Kevin Crosby’s breeding program at Texas A&M at College Station; TAM-W = Dr. Carlos Avila’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; TAM-L = Dr. Paul Leeper’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; FLA = Florida Tomato Breeding Program; USDA = United States Department of Agriculture.

The genetic distances between the genotypes from the three Texas A&M University Breeding programs and control outgroups from the USDA, AVRDC, and Florida are presented in Table 1. Breeding lines developed by the Texas A&M College Station, Weslaco, and Leeper programs had overall intra-program genetic distance means of 0.282, 0.264, and 0.255, respectively (Table 1). The genetic diversity between germplasms from the different Texas A&M breeding programs indicates a high potential for introducing variability between programs. In regard to within-program variation, among lines from the Texas A&M AgriLife breeding program at Weslaco, the largest genetic distance (0.434) was between genotypes TAM-W-172 and TAM-W-322; among lines from the Texas A&M College Station breeding program, the largest genetic distance (0.392) was between TAM-CS-111 and TAM-CS-165; and for those from the Texas A&M Leeper program, the largest genetic distance (0.347) was between TAM-L-51 and TAM-L-16. The genotypes developed by the USDA were overall the least diverse group, with a mean genetic distance of 0.234 and a range of 0.192 - 0.292. Within that group, the genotype combination of USDA-259 and USDA-320 showed the largest genetic distance (Table 1). The sets of genotypes from the AVRDC and Florida breeding programs used in the present study showed mean genetic diversities of 0.296 and 0.298, respectively (Table 1).

3.3. Population Structure

We explored the population structure of tomato genotypes using a model-based clustering method implemented with STRUCTURE v2.3.4. The maximum value for ΔK was observed when K = 2 (Figure 2(a)), indicating the presence of two
main population clusters (Q1 and Q2) (Figure 2(b)). Out of the entire population evaluated in this study, 32 tomato genotypes (9.9%) were grouped into Q1, while the remaining 290 genotypes were placed into Q2 (90.1%) (Table 2). Of the two clusters, the genetic diversity assessment indicated that Q1 is more diverse, and it included the two genotypes with the largest genetic distance observed (genotypes TAM-W-322 and TAM-CS-111, Figure 3(a)). The range of genetic distances between genotypes assigned to cluster Q1 was 0.288 - 0.443, and the mean was 0.346 (Figure 3(a)). In cluster Q2, the range of genetic distances between genotypes was 0.092 - 0.334, with a mean of 0.268, and this cluster included the two genotypes with the smallest genetic distance (0.092), TAM-CS-138 and USDA-273 (Figure 3(b)).

The population structure analysis also revealed that genotypes from the breeding programs were distributed between the Q1 and Q2 clusters, while all evaluated genotypes from the USDA collection belonged to the Q2 cluster (Table 2 and Table S1). The majority of genotypes (62%) in the Q1 cluster were developed by the Texas A&M College Station breeding program, while germplasm developed by the Texas A&M AgriLife Weslaco and Leeper breeding programs accounted for 18.75% and 12.5%, respectively (Table 2). On the other hand, the Weslaco and College Station breeding programs contributed roughly equally (41% and 36.89%, respectively) to cluster Q2, with the Leeper program accounting for 12.5% (Table 2). The Q2 cluster included most of the genotypes from each of the three breeding programs, accounting for 95.2% of those from the Weslaco program, 84.26% of those from the College Station program, and 91.66% of those from the Leeper program.
Figure 3. Distribution of genetic distance between genotypes in two populations. (a) Distribution of genetic distance in population Q1. The maximum genetic distance (0.443) occurred between TAM-CS-111 and TAM-W-322 and the minimum (0.282) between TAM-CS-150 and TAM-CS-120; (b) Distribution of genetic distance in population Q2. The maximum genetic distance (0.334) was between TAM-CS-104 and TAM-W-204 and the minimum (0.092) between TAM-CS-138 and USDA-273.

Table 2. Distribution of tomato genotypes from six different sources into two clusters. A model-based structure analysis performed on 322 genotypes divided them into two clusters Q1 and Q2.

Genotype source	No. of genotypes	No. of genotypes in each cluster	Percentage of genotypes in each cluster		
	Q1	Q2	Q1	Q2	
Overall	322	32	290	9.9	90.1
TAM-W	125	6	119	4.8	95.2
TAM-CS	127	20	107	15.74	84.26
TAM-L	48	4	44	8.34	91.66
USDA	16	0	16	0	100
AVRDC	3	1	2	33.34	66.64
Florida	3	1	2	33.34	66.64

Note: AVRDC = Asian Vegetable Research and Development Center; TAM-CS = Dr. Kevin Crosby’s breeding program at Texas A&M at College Station; TAM-W = Dr. Carlos Avila’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; TAM-W = Dr. Paul Leeper’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; FLA = Florida Tomato Breeding Program; USDA = United States Department of Agriculture.

3.4. Phylogenetic Tree and Principal Component Analysis

Next, we constructed a phylogenetic tree based on the 10,236 SNPs and found
that it also divided the 322 tomato population into two groups and that these groups corresponded with the two population clusters Q1 and Q2 (Figure 4). Thus, the phylogenetic tree displayed consistency with the population structure revealed by the model-based clustering analysis with STRUCTURE v2.3.4 (Figure 2). Figure 4 shows that the genotypes producing the smallest genetic distance (USDA-273 and TAM-CS-138) had the shortest branches arising from the lowermost clade. Similarly, genotype TAM-W-322, which was one of the two genotypes producing the largest genetic distance with another, was placed on the

Figure 4. Phylogenetic analysis of 322 tomato genotypes built using the UPGMA hierarchical clustering method. The branches of the two predicted populations Q1 and Q2 are highlighted in orange and blue, respectively.
extreme other side of the phylogenetic tree in the longest uppermost clade (Figure 4). The phylogenetic tree indicated that the genotypes TAM-W-322, TAM-CS-111, and TAM-L-16, from the Texas A&M Weslaco, College Station, and Leeper breeding programs, respectively, had the potential to yield greater genetic diversity when combined with other genotypes. We also performed PCA to check the number of population structure groups; Figure 5 presents the distribution of tomato genotypes in scatter plots of the first three principal components in a 3D space. This PCA also revealed that the tomato genotypes clustered into two groups, with some overlap indicative of the small genetic distances between some genotypes in Q1 and Q2.

4. Discussion

Genetic diversity studies have increased in recent years due to advances in high-throughput sequencing technologies and the availability of high-resolution SNPs. For example, 5.4 million SNPs were identified between wild and cultivated tomato genomes during the sequencing of the tomato reference genome from the cultivar Heinz 1706 [23]. Likewise, 11.6 million SNPs were found from the sequencing of 360 accessions that included both cultivated and wild tomato species [19] and 180,000 - 350,000 SNPs from the sequencing of four large-fruited cultivated tomato accessions [38]. In the present study, sequencing of 322 tomato genotypes from cultivated S. lycopersicum resulted in the discovery of 3.2 million SNPs. After filtering on the basis of quality parameters, 10,236 high-quality SNPs were obtained and used for genetic diversity analysis. Among them, the largest number of SNPs were observed in chromosome 12, followed by chromosome 1 and 10 (Figure 1). The existence of unanchored scaffolds (Chr00) and the large

![Figure 5](image_url)

Figure 5. Principal component analysis (PCA) of 322 tomato genotypes. The first three principal components (PCs) are shown using a 3D scatter plot. The PCA clustered the 322 genotypes into two distinct clusters (populations) Q1 and Q2, represented by orange and blue dots, respectively. Most of the genotypes were assigned to the Q2 population.
The number of SNPs mapped to it (1279 in total) indicate that numerous genomic regions have not yet properly placed in chromosomes [2]. It also highlights the importance of identifying new intraspecific SNPs in the tested tomato breeding lines.

Past efforts to develop diverse breeding populations in Texas A&M University breeding programs are reflected in the range of genetic diversity within and between the groups of tomato lines developed by the three Texas A&M programs as well as in comparison to the outgroup lines. High ranges were expected, since some of these lines were generated from diverse sets of parents, including some that the USDA, Florida, and AVRDC programs contributed to Texas A&M diversity (Table 1 and Table S1). Among the breeding programs, the highest range and mean of genetic diversity were detected among the genotypes from the Texas A&M Weslaco (genetic distance range 0.175 - 0.434, mean 0.264) and College Station (range 0.099 - 0.392, mean 0.282) breeding programs (Table 1). These results can be explained by the possibility that a significant proportion of common parents shared has been shared between Texas A&M breeding programs and subsequent selections between programs. The largest genetic diversity was achieved from the combination of genotypes from the Weslaco and College Station programs (genetic distance of 0.443 between genotypes TAM-W-322 and TAM-CS-111), indicating that crossing germplasm from the two programs should generate more variation for cultivar development. However, in looking at the genetic diversity between the Weslaco and College Station breeding programs, we found that there was in general greater genetic diversity within than between programs, perhaps because the recently initiated program at Weslaco used College Station material for breeding population development. The broad range of genetic diversity of breeding lines within a breeding program was also reflected in the population structure analysis and the phylogenetic tree (Figure 3 and Figure 4). Genotypes from all three Texas A&M breeding programs and also from AVRDC and Florida lines were observed in both the Q1 and Q2 clusters (Figure 4). Additionally, the grouping of genotypes into two clusters with some overlaps was further validated by the PCA.

Several inbred lines developed by the Texas A&M Weslaco and College Station breeding programs were developed from the hybridization of heirloom tomato parents with morphologically diverse fruit characteristics, including color, size, and shape, in an attempt to improve quality. Though distinct in nature, heirloom tomatoes possess comparatively low genetic diversity [2] [39] [40]. Thus, a genotype developed by hybridizing two heirloom tomato strains is expected to have low genetic diversity compared to genotypes evolved from contemporary lines since heirloom genotypes that are different only in shape and color may differ only by a handful of genes [41] [42] [43]. This may have contributed to the lower genetic diversity in some of the Texas A&M Weslaco and College Station breeding program lines in the Q2 cluster.

On the other hand, some of the breeding lines were developed by introgress-
ing one or more disease-resistance genes. Disease-resistance genes are primarily introgressed from wild relatives, which have been reported to carry 20 times higher genetic diversity than that of cultivated tomato [19] [20], and which thereby contributed to the high genetic diversity in Texas A&M breeding populations. Some examples of introgressed resistance genes in the Texas A&M Agri-Life breeding population include the gene Mi-1, which confers resistance against root knot nematode caused by Meloidogyne spp. and was introgressed from Solanum peruvianum [44]; Sw-5, which confers resistance to the tomato spotted wilt virus (TSWV), introgressed from S. peruvianum [45] [46]; Ty-2 and Ty-3, which confer resistance to tomato yellow leaf curl virus (TYLCV), introgressed from S. habrochaites [47] [48] and S. chilense [49], respectively; and I-2 and I-3, conferring resistance to vascular wilt caused by Fusarium oxysporum race 2 (Fol2) and Fol1, Fol2, and Fol3, were introgressed from S. pinniplifolium [50] and S. pennelli [51] [52], respectively. Thus, introgressions of disease-resistance genes during hybridization could have played an important role in producing the genetic diversity among breeding lines observed in the present study and thus in grouping the genotypes into two clusters.

The present study revealed that the tomato breeding lines developed by the Texas A&M breeding programs possess a high level of genetic diversity and thus should be capable, upon selection, of yielding a variety of cultivars adapted for Texas production. Furthermore, the broad genetic base of the breeding lines and the higher recombination generated through hybridization could be utilized to uncover QTLs for complex traits. As the SNPs identified here were intraspecific, they could be valuable for uncovering economically important traits within cultivated tomato. Finally, our work here suggests that through the use of a phylogenetic tree and genetic distances, it is possible to develop crossing strategies to increase diversity and encourage hybrid development within and between breeding programs.

Acknowledgements

We are grateful to the USDA ARS Plant Genetic Resources Unit, the AVRDC, and Samuel Hutton at the University of Florida for providing seeds for this study. We would like to thank the Bioinformatics Genomics and Bioinformatics services, College Station, TX, for performing the GBS on tomato genotypes. We appreciate the help of Samantha Serna, Alexandra Hernandez, and Alondra Menchaca for planting tomato genotypes in the greenhouse, and Henry Awika and Sonia del Rio for tissue collection, lyophilization, and homogenization. This research was funded by Texas A&M AgriLife Research seed grant FY18-124353 assigned to C.A.A. and K.C. and Texas A&M AgriLife Research Insect-vectored Disease Seed Grant (114190-96210) to K.M.

Conflicts of Interest

The authors declare that they have no competing interests.
References

[1] Foolad, M.R. (2007) Genome Mapping and Molecular Breeding of Tomato. *International Journal of Plant Genomics, 2007*, Article ID: 64358. https://doi.org/10.1155/2007/64358

[2] Menda, N., Strickler, S.R. and Mueller, L.A. (2013) Advances in Tomato Research in the Post-Genome Era. *Plant Biotechnology, 30*, 243-256. https://doi.org/10.5511/plantbiotechnology.13.0904a

[3] Rothan, C., Diouf, I. and Causse, M. (2019) Trait Discovery and Editing in Tomato. *Plant Journal, 97*, 73-90. https://doi.org/10.1111/tpj.14152

[4] National Agricultural Statistics Service (2018) Vegetables 2018 Summary. United States Department of Agriculture, Washington DC.

[5] National Agricultural Statistics Service (2017) Census of Agriculture. United States Department of Agriculture, Washington DC.

[6] Texas Department of Agriculture (2014) Production versus Consumption Surplus and Deficit. Texas Agricultural Commodities.

[7] Segovia-Coronel, M. (2014) Measuring Consumer Acceptance and Willingness to Pay for Specialty Tomatoes: Impact of Product Taste and Health Features. Department of Agricultural Economics, Texas A & M, College Station.

[8] Lee, J.H.J., Jayaprakasha, G.K., Avila, C.A., Crosby, K.M. and Patil, B.S. (2019) Metabolomic Studies of Volatiles from Tomatoes Grown in Net-House and Open-Field Conditions. *Food Chemistry, 275*, 282-291. https://doi.org/10.1016/j.foodchem.2018.09.091

[9] Lazarte, J.E., Leeper, P.W. and Barringer, R.K. (1981) High-Temperature Fruit Set of Tomatoes. *HortScience, 16*, 289-289.

[10] Leeper, P.W. and Cox, E.L. (1986) "Freshmarket 9" Tomato. *HortScience, 21*, 156.

[11] Lazarte, J.E., Leeper, P.W. and Barringer, R.K. (1981) High-Temperature Effects on Tomato Fruit-SET. *HortScience, 16*, 444-445.

[12] Leeper, P.W. (1969) TAMU "Chico III": A Pear Type, Disease Resistant Tomato Designed for Machine Harvest. T.A.M.U. Texas Agricultural Experimental Station, College Station.

[13] Acquaah, G. (2012) Variation: Types, Origin and Scale. In: *Principles of Plant Genetics and Breeding*, 2nd Edition, John Wiley & Sons, Ltd., Hoboken.

[14] Bisen, A., Khare, D., Nair, P. and Tripathi, N. (2015) SSR Analysis of 38 Genotypes of Soybean (*Glycine max* (L.) Merr.) Genetic Diversity in India. *Physiology and Molecular Biology of Plants, 21*, 109-115. https://doi.org/10.1007/s12298-014-0269-8

[15] Denwar, N.N., Awuku, F.J., Diers, B., Addae-Frimpomaah, F., Chigeza, G., Oteng-Frimpong, R., Pooza, D.K. and Barnor, M.T. (2019) Genetic Diversity, Population Structure and Key Phenotypic Traits Driving Variation within Soybean (*Glycine max*) Collection in Ghana. *Plant Breeding*. https://doi.org/10.1111/pbr.12700

[16] Miller, J.C. and Tanksley, S.D. (1990) RFLP Analysis of Phylogenetic Relationships and Genetic Variation in the Genus *Lycopersicon*. *Theoretical and Applied Genetics, 80*, 437-448. https://doi.org/10.1007/BF00226743

[17] Zhao, J.T., Xu, Y., Ding, Q., Huang, X.L., Zhang, Y.T., Zou, Z.R., Li, M., Cui, L. and Zhang, J. (2016) Association Mapping of Main Tomato Fruit Sugars and Organic Acids. *Frontiers in Plant Science, 7*, 1286. https://doi.org/10.3389/fpls.2016.01286
[18] Sacco, A., Ruggieri, V., Parisi, M., Festa, G., Rigano, M. M., Picarella, M. E., Mazzucato, A. and Barone, A. (2015) Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform. PLoS ONE, 10, e0137139. https://doi.org/10.1371/journal.pone.0137139

[19] Lin, T., Zhu, G.T., Zhang, J.H., Xu, X.Y., Yu, Q.H., Zheng, Z., Zhang, Z.H., Lun, Y.Y., Li, S., Wang, X.X., Huang, Z.J., Li, J.M., Zhang, C.Z., Wang, T.T., Zhang, Y.Y., Wang, A.X., Zhang, Y.C., Lin, K., Li, C.Y., Xiong, G.S., Xue, Y.B., Mazzucato, A., Causse, M., Fei, Z.J., Giovannoni, J.J., Chetelat, R.T., Zamir, D., Stadler, T., Li, J.F., Ye, Z.B., Du, Y.C. and Huang, S.W. (2014) Genomic Analyses Provide Insights into the History of Tomato Breeding. Nature Genetics, 46, 1220-1226. https://doi.org/10.1038/ng.3117

[20] Aflitos, S., Schijlen, E., de Jong, H., de Ridder, D., Smit, S., Finkers, R., Wang, J., Zhang, G., Li, N., Mao, L., Bakker, F., Dirks, R., Breit, T., Gravendeel, B., Huits, H., Struss, D., Swanson-Wagner, R., van Leeuwen, H., van Ham, R.C., Fito, L., Guignier, L., Sevilla, M., Ellul, P., Ganko, E., Kapur, A., Reclus, E., de Geus, B., van de Geest, H., Lintel Hekkert, B.T., van Haarst, J., Smits, I., Koops, A., Sanchez-Perez, G., van Heusden, A.W., Visser, R., Quan, Z., Min, J., Liao, L., Wang, X., Wang, G., Yue, Z., Yang, X., Xu, N., Schranz, E., Smets, E., Yasuda, H., Rauwerda, J., Ursem, R., Schuit, C., Kerns, M., van den Berg, J., Vriezen, W., Janssen, A., Datema, E., Jahrman, T., Moquet, F., Bonnet, J. and Peters, S. (2014) Exploring Genetic Variation in the Tomato (Solanum Section Lycopersicon) Clade by Whole-Genome Sequencing. Plant Journal, 80, 136-148. https://doi.org/10.1111/tpj.12616

[21] Phan, N.T., Trinh, L.T., Rho, M.Y., Park, T.S., Kim, O.R., Zhao, J., Kim, H.M. and Sim, S.C. (2019) Identification of Loci Associated with Fruit Traits Using Genome-Wide Single Nucleotide Polymorphisms in a Core Collection of Tomato (Solanum lycopersicum L.). Scientia Horticulturae, 243, 567-574. https://doi.org/10.1016/j.scienta.2018.09.003

[22] Ruggieri, V., Francese, G., Sacco, A., D’Alessandro, A., Rigano, M.M., Parisi, M., Milone, M., Cardi, T., Menella, G. and Barone, A. (2014) An Association Mapping Approach to Identify Favourable Alleles for Tomato Fruit Quality Breeding. BMC Plant Biology, 14, 337. https://doi.org/10.1186/s12870-014-0337-9

[23] The Tomato Genome Consortium (2012) The Tomato Genome Sequence Provides Insights into Fleshy Fruit Evolution. Nature, 485, 635-641. https://doi.org/10.1038/nature11119

[24] Chung, Y.S., Choi, S.C., Jun, T.H. and Kim, C. (2017) Genotyping by Sequencing: A Promising Tool for Plant Genetics Research and Breeding. Horticulture Environment and Biotechnology, 58, 425-431. https://doi.org/10.1007/s13580-017-0297-8

[25] Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S. and Mitchell, S.E. (2011) A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE, 6, e19379. https://doi.org/10.1371/journal.pone.0019379

[26] Labate, J.A., Sheffer, S.M., Balch, T. and Robertson, L.D. (2011) Diversity and Population Structure in a Geographic Sample of Tomato Accessions. Crop Science, 51, 1068-1079. https://doi.org/10.2135/cropsci2010.05.0305

[27] Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., Picarella, M.E., Siligato, F., Soressi, G.P., Tiranti, B. and Veronesi, F. (2008) Genetic Diversity, Structure and Marker-Trait Associations in a Collection of Italian Tomato (Solanum lycopersicum L) Landraces. Theoretical and Applied Genetics, 116, 657-669. https://doi.org/10.1007/s00122-007-0699-6

[28] Weigel, D. and Glazebrook, J. (2002) Arabidopsis: A Laboratory Manual Cold
Golicz, A.A., Bayer, P.E. and Edwards, D. (2015) Skim-Based Genotyping by Sequencing. Methods in Molecular Biology, 1245, 257-270. https://doi.org/10.1007/978-1-4939-1966-6_19

Langmead, B. and Salzberg, S.L. (2012) Fast Gapped-Read Alignment with Bowtie 2. Nature Methods, 9, 357-359. https://doi.org/10.1038/nmeth.1923

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Martha, G., Abecasis, G. and Durbin, R. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352

McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M. and DePristo, M.A. (2010) The Genome Analysis Toolkit: A MapReduce Framework for Analyzing Next-Generation DNA Sequencing Data. Genome Research, 20, 1297-1303. https://doi.org/10.1101/gr.107524.110

Browning, S.R. and Browning, B.L. (2007) Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies by Use of Localized Haplotype Clustering. American Journal of Human Genetics, 81, 1084-1097. https://doi.org/10.1086/521987

Pritchard, J.K., Stephens, M. and Donnelly, P. (2000) Inference of Population Structure Using Multilocus Genotype Data. Genetics, 155, 945-959.

Evanno, G., Regnaut, S. and Goudet, J. (2005) Detecting the Number of Clusters of Individuals Using the Software Structure: A Simulation Study. Molecular Ecology, 14, 2611-2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x

Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y. and Buckler, E.S. (2007) TASSEL: Software for Association Mapping of Complex Traits in Diverse Samples. Bioinformatics, 23, 2633-2635. https://doi.org/10.1093/bioinformatics/btm308

Letunic, I. and Bork, P. (2019) Interactive Tree of Life (iTOL) v4: Recent Updates and New Developments. Nucleic Acids Research, 47, W256-W259. https://doi.org/10.1093/nar/gkz239

Causse, M., Desplat, N., Pascual, L., Le Paslier, M.C., Sauvage, C., Bauchet, G., Bernard, A., Bounon, R., Tchoumakov, M., Brunel, D. and Bouchet, J.P. (2013) Whole Genome Resequencing in Tomato Reveals Variation Associated with Introgression and Breeding Events. BMC Genomics, 14, 791. https://doi.org/10.1186/1471-2164-14-791

Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Diez, M.J., Francis, D., Causse, M., van der Knaap, E. and Canizares, J. (2015) Genomic Variation in Tomato, from Wild Ancestors to Contemporary Breeding Accessions. BMC Genomics, 16, 257. https://doi.org/10.1186/s12864-015-1444-1

Rick, C.M. (1988) Tomato-Like Nightshades-Affinities, Autoecology, and Breeders Opportunities. Economic Botany, 42, 145-154. https://doi.org/10.1007/BF02858915

Fray, R.G. and Grierson, D. (1993) Identification and Genetic Analysis of Normal and Mutant Phytoene Synthase Genes of Tomato by Sequencing, Complementation and Co-Suppression. Plant Molecular Biology, 22, 589-602. https://doi.org/10.1007/BF00047400

Rodriguez, G.R., Munos, S. anderson, C., Sim, S.C., Michel, A., Causse, M., Gardener, B.B., Francis, D. and van der Knaap, E. (2011) Distribution of SUN, OVATE,
LC, and EAS in the Tomato Germplasm and the Relationship to Fruit Shape Diversity. *Plant Physiology*, **156**, 275-285. https://doi.org/10.1104/pp.110.167577

[43] Ronen, G., Carmel-Goren, L., Zamir, D. and Hirschberg, J. (2000) An Alternative Pathway to Beta-Carotene Formation in Plant Chromoplasts Discovered by Map-Based Cloning of Beta and Old-Gold Color Mutations in Tomato. *Proceedings of the National Academy of Sciences*, **97**, 11102-11107. https://doi.org/10.1073/pnas.190177497

[44] Smith, P.G. (1944) Embryo Culture of a Tomato Species Hybrid. *Proceedings of the American Society for Horticultural Science*, **44**, 413-416.

[45] Stevens, M.R., Lamb, E.M. and Rhoads, D.D. (1995) Mapping the Sw-5 Locus for Tomato Spotted Wilt Virus-Resistance in Tomatoes Using RAPD and RFLP Analyses. *Theoretical and Applied Genetics*, **90**, 451-456. https://doi.org/10.1007/BF00221989

[46] Stevens, M.R., Scott, S.J. and Gergerich, R.C.J.E. (1994) Evaluation of Seven Lycopersicon Species for Resistance to Tomato Spotted Wilt Virus (TSWV). *Euphytica*, **80**, 79-84. https://doi.org/10.1007/BF00039301

[47] Kalloo and Banerjee, M.K. (1990) Transfer of Tomato Leaf Curl Virus-Resistance from *Lycopersicon hirsutum* to *L. esculentum*. *Plant Breeding*, **105**, 156-159. https://doi.org/10.1111/j.1439-0523.1990.tb00469.x

[48] Hanson, P.M., Bernacchi, D., Green, S., Tanksley, S.D., Muniyappa, V., Padmaja, S., Chen, H.M., Kuo, G., Fang, D. and Chen, J.T. (2000) Mapping a Wild Tomato Introgression Associated with Tomato Yellow Leaf Curl Virus Resistance in a Cultivated Tomato Line. *Journal of the American Society for Horticultural Science*, **125**, 15-20. https://doi.org/10.21273/JASHS.125.1.15

[49] Ji, Y., Schuster, D.J. and Scott, J.W. (2007) Ty-3, a Begomovirus Resistance Locus near the Tomato Yellow Leaf Curl Virus Resistance Locus Ty-1 on Chromosome 6 of Tomato. *Molecular Breeding*, **20**, 271-284. https://doi.org/10.1007/s11032-007-9089-7

[50] Ori, N., Eshed, Y., Paran, I., Presting, G., Aviv, D., Tanksley, S., Zamir, D. and Fluhr, R. (1997) The I2C Family from the Wilt Disease Resistance Locus I2 Belongs to the Nucleotide Binding, Leucine-Rich Repeat Superfamily of Plant Resistance Genes. *Plant Cell*, **9**, 521-532. https://doi.org/10.1105/tpc.9.4.521

[51] Bournival, B.L., Scott, J.W. and Vallejos, C.E. (1989) An Isozyme Marker for Resistance to Race-3 of *Fusarium oxysporum* sp *lycopersici* in Tomato. *Theoretical and Applied Genetics*, **78**, 489-494. https://doi.org/10.1007/BF00290832

[52] Scott, J.W. and Jones, J.P. (1989) Monogenic Resistance in Tomato to *Fusarium oxysporum* F. sp. *lycopersici* Race-3. *Euphytica*, **40**, 49-53.
Supplementary

Table S1. The details of 322 tomato genotypes used in genetic diversity analysis. All the genotypes were from cultivated tomato Solanum lycopersicum.

Genotype source	Genotype ID	Cluster	Pedigree	Generation	Fruit type	*Fruit Size	Fruit color
TAM-CS	TAM-CS-1	Q2	Lost pedigree	F5	Round	S	Red
TAM-CS	TAM-CS-2	Q2	b146 HD	F5	Cherry	XS	Orange
TAM-CS	TAM-CS-3	Q2	T105	F5	Roma	S	Red
TAM-CS	TAM-CS-4	Q2	BL30 med polated red	F5	Roma	S	Red
TAM-CS	TAM-CS-5	Q2	b39 vroom small pink	F5	Roma	S	Red
TAM-W	TAM-W-6	Q2	Pink Ponderosa#3 × I-2	F6	Pear	S	Red
TAM-W	TAM-W-7	Q2	1500 × AVT1106 Plant 4	F6	Round	S	Red
TAM-W	TAM-W-8	Q2	275SBR × AVT1001 Plant B	F6	Roma	S	Red
TAM-CS	TAM-CS-9	Q2	Alamo T11 VR	F7	Roma	S	Red
TAM-CS	TAM-CS-10	Q2	Alamo T13	F7	Round	S	Red
TAM-L	TAM-L-11	Q2	35	Roma	S	Red	
TAM-L	TAM-L-12	Q2	106	Roma	S	Red	
TAM-L	TAM-L-13	Q2	203	Roma	S	Red	
TAM-L	TAM-L-14	Q2	221	Beefsteak	M	Red	
TAM-L	TAM-L-15	Q2	249	Roma	S	Red	
TAM-L	TAM-L-16	Q1	265	Roma	S	Red	
TAM-L	TAM-L-17	Q2	489	Roma	S	Red	
TAM-L	TAM-L-19	Q2	530	Roma	M	Red	
TAM-L	TAM-L-20	Q2	701	Roma	S	Red	
TAM-L	TAM-L-22	Q2	725	Roma	M	Red	
TAM-L	TAM-L-23	Q2	761	Roma	M	Red	
TAM-L	TAM-L-24	Q2	782	Round	S	Red	
TAM-L	TAM-L-25	Q2	1116	Roma	S	Red	
TAM-L	TAM-L-26	Q2	1125	Roma	S	Red	
TAM-L	TAM-L-27	Q2	1131	Round	S	Red	
TAM-L	TAM-L-28	Q2	1504	Roma	S	Red	
TAM-L	TAM-L-29	Q2	1525	Roma	M	Red	
TAM-L	TAM-L-30	Q2	1531	Roma	M	Red	
TAM-L	TAM-L-31	Q2	1538	Roma	M	Red	
TAM-L	TAM-L-32	Q2	1547	Roma	S	Red	
TAM-L	TAM-L-33	Q2	1555	Beefsteak	L	Red	
TAM-L	TAM-L-35	Q2	1576	Pear	S	Red	
TAM-L	TAM-L-37	Q2	1587	Beefsteak	L	Red	
TAM-L	TAM-L-38	Q2	1603	Beefsteak	M	Red	
TAM-L	TAM-L-39	Q2	1615	Beefsteak	L	Red	
-------	----------	----	------	-----------	---	-----	
TAM-L	TAM-L-40	Q2	1633	Pearl	S	Red	
TAM-L	TAM-L-41	Q2	1656	Beefsteak	M	Red	
TAM-L	TAM-L-42	Q2	1666	Roma	L	Red	
TAM-L	TAM-L-43	Q2	1672	Round	M	Red	
TAM-L	TAM-L-44	Q2	1678	Beefsteak	L	Red	
TAM-L	TAM-L-45	Q2	1689	Beefsteak	L	Red	
TAM-L	TAM-L-46	Q2	1695				
TAM-L	TAM-L-47	Q2	1792				
TAM-L	TAM-L-49	Q2	1804	Round	S	Red	
TAM-L	TAM-L-50	Q2	1813	Roma	M	Red	
TAM-L	TAM-L-51	Q1	1838	Pear	M	Red	
TAM-L	TAM-L-52	Q2	1869	Beefsteak	M	Red	
TAM-L	TAM-L-53	Q2	1894	Roma	M	Red	
TAM-L	TAM-L-54	Q2	1987	Roma	M	Red	
TAM-L	TAM-L-55	Q2	2001	Roma	M	Red	
TAM-L	TAM-L-56	Q2	2022	Roma	S	Red	
TAM-L	TAM-L-57	Q2	275SBR × DELICIOUS PI639212	F5	Round	S	Red
TAM-W	TAM-W-59	Q2	Healan				
TAM-W	TAM-W-60	Q2	W25 × CHEROKEE PURPLE P1639211	F5	Round	S	Pink
TAM-W	TAM-W-61	Q2	W25 × CHEROKEE PURPLE P1639211	F5	Round	L	Pink
TAM-W	TAM-W-62	Q2	W25 × DELICIOUS PI639212	F5	Beefsteak	L	Red
TAM-L	TAM-L-63	Q2	W-12	Beefsteak	L	Red	
TAM-W	TAM-W-64	Q2	W25 × J-2	F5	Roma	S	Pink
TAM-W	TAM-W-65	Q2	W25 × J-2	F5	Beefsteak	L	Red
TAM-W	TAM-W-66	Q2	Vit Kaspar				
TAM-W	TAM-W-67	Q2	W29 × YELLOW PEACH	F5	Round	XS	Red
TAM-CS	TAM-CS-68	Q2	bl49	Cherry	XS	Red	
TAM-W	TAM-W-69	Q2	W9 × HILLBILLY POTATO LEAF PI 639219	F5	Round	S	Red
TAM-L	TAM-L-70	Q2	W-25	Round	M	Red	
TAM-CS	TAM-CS-71	Q2	bl44	Cherry	XS	Yellow	
TAM-W	TAM-W-72	Q2	W25 × DELICIOUS PI639212	F5	Beefsteak	L	Red
TAM-W	TAM-W-73	Q2	W9 × HILLBILLY POTATO LEAF PI 639219	F5	Beefsteak	M	Red
TAM-CS	TAM-CS-74	Q2	RG1	Beefsteak	XL	Pink	
TAM-CS	TAM-CS-75	Q2	T106	F5	Beefsteak	L	Red
---------	------------	----	------	-------	------------	----	---------------
TAM-CS	TAM-CS-76	Q2	RG1	F5	Heirloom	XL	Pink
TAM-L	TAM-L-77	Q2	W-29		Roma	S	Red
TAM-CS	TAM-CS-78	Q2	b49	F5	Heirloom	XL	Pink
TAM-CS	TAM-CS-79	Q2	Lost pedigree	F5	Beefsteak	XL	Pink
TAM-CS	TAM-CS-80	Q2	T65	F5	Round	S	Yellow
TAM-CS	TAM-CS-81	Q2	T22	F5	Beefsteak	L	Pink
TAM-CS	TAM-CS-82	Q2	RG2	F5	Beefsteak	XL	Pink
TAM-CS	TAM-CS-83	Q2	T74	F5	Beefsteak	L	Red
TAM-L	TAM-L-84	Q1	275 SBR		Round	S	Red
TAM-CS	TAM-CS-85	Q2	T74	F5	Beefsteak	XL	Red
TAM-CS	TAM-CS-86	Q2	Lost pedigree	F5	Beefsteak	L	Pink
TAM-CS	TAM-CS-87	Q2	T74	F5	Heirloom	XL	Pink
TAM-CS	TAM-CS-88	Q2	RG2	F5	Round	L	Tiger stripe
TAM-CS	TAM-CS-89	Q2	RG2	F5	Heirloom	XL	Tiger stripe
TAM-CS	TAM-CS-90	Q2	T36	F5	Beefsteak	XL	Red
TAM-L	TAM-L-91	Q2	276 SBR		Roma	S	Red
TAM-CS	TAM-CS-92	Q2	BL10	F5	Beefsteak	XL	Yellow
TAM-CS	TAM-CS-93	Q1	T37	F5	Beefsteak	XL	Pink
TAM-CS	TAM-CS-94	Q2	b9	F5	Beefsteak	XL	Red
TAM-CS	TAM-CS-95	Q2	b9	F5	Beefsteak	XL	Red
TAM-CS	TAM-CS-97	Q2	Lost pedigree	F5	Beefsteak	XL	Red
TAM-L	TAM-L-98	Q1	277 SBR		Beefsteak	L	Red
TAM-CS	TAM-CS-99	Q2	RG6	F5	Beefsteak	L	Red
TAM-CS	TAM-CS-100	Q2	BL 27 F15	F5	Beefsteak	L	Red
TAM-CS	TAM-CS-101	Q2	BL 30 v small round yellow	F5	Cherry	S	Yellow
TAM-CS	TAM-CS-102	Q2	T67	F5	Beefsteak	L	Red
TAM-CS	TAM-CS-103	Q2	BL12	F5	Beefsteak	L	Red
TAM-CS	TAM-CS-104	Q2	BL27 @ red	F5	Round	L	Red
TAM-CS	TAM-CS-105	Q2	HT-1		Heirloom	XL	Pink
TAM-CS	TAM-CS-106	Q2	T37	F5	Beefsteak	XL	Pink
TAM-CS	TAM-CS-107	Q2	T39	F5	Beefsteak	XL	Pink
TAM-CS	TAM-CS-108	Q2	RG2	F5	Beefsteak	XL	Tiger stripe
TAM-CS	TAM-CS-109	Q2	Lost pedigree	F5	Beefsteak	L	Red
TAM-CS	TAM-CS-110	Q2	Lost pedigree	F5	Round	L	Red
TAM-CS	TAM-CS-111	Q1	T105	F5	Round	S	Red
TAM-CS	TAM-CS-112	Q2	TAM Hot Ty	Beefsteak	XL	Red	
Lineage	Variety	ID	Seedling Size	Fruit Size	Fruit Color		
-----------	---------------	----------	---------------	------------	-------------		
TAM-CS	TAM-CS-113	Q1	t38	F5	Beefsteak		
TAM-CS	TAM-CS-114	Q2	bl50	F5	Cherry		
TAM-CS	TAM-CS-115	Q2	T104	F5	Round		
TAM-CS	TAM-CS-116	Q1	T94	F5	Beefsteak		
TAM-CS	TAM-CS-117	Q1	T69	F5	Beefsteak		
TAM-CS	TAM-CS-118	Q2	RG2	F5	Beefsteak		
AVRDC	AVRDC-119	Q2	AVT1001		Beefsteak		
TAM-CS	TAM-CS-120	Q1	RG2	F5	Round		
TAM-CS	TAM-CS-121	Q2	BL17	F5	Beefsteak		
TAM-CS	TAM-CS-122	Q2	BL9	F5	Roma		
TAM-CS	TAM-CS-123	Q2	T40	F5	Beefsteak		
TAM-CS	TAM-CS-124	Q2	TSW3P4	F5	Beefsteak		
TAM-CS	TAM-CS-125	Q1	T73	F5	Beefsteak		
AVRDC	AVRDC-126	Q1	AVT1106		Roma		
TAM-CS	TAM-CS-127	Q2	BL15	F5	Beefsteak		
TAM-CS	TAM-CS-128	Q2	Diablo bc vr	F5	Heirloom		
TAM-CS	TAM-CS-129	Q2	Lost pedigree	F5	Heirloom		
TAM-CS	TAM-CS-130	Q2	T20	F5	Heirloom		
TAM-CS	TAM-CS-131	Q2	T101	F5	Heirloom		
AVRDC	AVRDC-133	Q2	AVT11110		Heirloom		
TAM-CS	TAM-CS-134	Q2	BL15	F5	Beefsteak		
TAM-CS	TAM-CS-135	Q1	bl41 vroom	F5	Cherry		
TAM-CS	TAM-CS-136	Q2	BL15	F5	Roma		
TAM-CS	TAM-CS-137	Q2	T44	F5	Beefsteak		
TAM-CS	TAM-CS-138	Q2	T102	F5	Heirloom		
TAM-CS	TAM-CS-139	Q2	T19	F5	Beefsteak		
TAM-CS	TAM-CS-141	Q2	T53	F5	Beefsteak		
TAM-CS	TAM-CS-142	Q1	bl46 @ small	F5	Beefsteak		
TAM-CS	TAM-CS-143	Q2	T107	F5	Beefsteak		
TAM-CS	TAM-CS-144	Q1	T99	F5	Beefsteak		
TAM-CS	TAM-CS-145	Q2	BL30	F5	Beefsteak		
TAM-CS	TAM-CS-146	Q2	t58 @ red	F5	Beefsteak		
FLA	FLA-147	Q1	Fla8624		Beefsteak		
TAM-CS	TAM-CS-147	Q2	T97	F5	Beefsteak		
TAM-CS	TAM-CS-149	Q1	T55	F5	Heirloom		
TAM-CS	TAM-CS-150	Q1	T61	F5	Campari		
Continued

Variety	TAM-CS	TAM-CS-151	Q2	RG1P4F2	F5	Beefsteak	M	Pink
TAM-CS	TAM-CS-152	Q2	BL30 vr lg red	F5	Beefsteak	L	Red	
TAM-CS	TAM-CS-153	Q2	BL16	F5	Beefsteak	XL	Yellow	
TAM-CS	TAM-CS-154	Q2	Fls1417-8	Round	M	Red		
TAM-CS	TAM-CS-155	Q2	T82	F5	Beefsteak	XL	Red	
TAM-CS	TAM-CS-156	Q2	T79	F5	Italian	M	Red	
TAM-CS	TAM-CS-157	Q2	T27	F5	Beefsteak	XL	Red	
TAM-CS	TAM-CS-158	Q1	T33	F5				
TAM-CS	TAM-CS-159	Q2	T39	F5	Beefsteak	L	Red	
TAM-CS	TAM-CS-160	Q2	T89	F5	Campari	S	Pink	
TAM-CS	TAM-CS-161	Q2	154712-1	Beefsteak	L	Red		
TAM-CS	TAM-CS-162	Q1	BL12	F5	Heirloom	L	Tiger stripe	
TAM-CS	TAM-CS-163	Q2	BL18	F5	Cherry	S	Yellow	
TAM-CS	TAM-CS-164	Q2	b38 red round pink flesh	F5	Beefsteak	XL	Pink	
TAM-CS	TAM-CS-165	Q1	tS9 @ red cherry	F5	Beefsteak	M	Orange	
TAM-CS	TAM-CS-166	Q2	T23	F5	Round	M	Red	
TAM-CS	TAM-CS-167	Q2	T35	F5	Beefsteak	L	Red	
TAM-CS	TAM-CS-168	Q2	Mf-1	Beefsteak	XL	Red		
TAM-CS	TAM-CS-169	Q2	T57	F5	Beefsteak	M	Pink	
TAM-CS	TAM-CS-170	Q1	T62	F5	Heirloom	XL	Pink	
TAM-CS	TAM-CS-171	Q2	RG6WES2P2	F5	Beefsteak	M	Red	
TAM-W	TAM-W-172	Q1	PI 633505 Yellow Peach × I-3 Ty-3	F6	Campari	S	Yellow	
TAM-W	TAM-W-173	Q1	PI 633505 Yellow Peach × I-3 Ty-3	F6	Campari	S	Pink	
TAM-W	TAM-W-174	Q2	PI 633505 Yellow Peach × I-3 Ty-3	F6	Round	M	Red	
TAM-CS	TAM-CS-175	Q2	I-3 Ty-2	Beefsteak	XL	Red		
TAM-W	TAM-W-176	Q2	PI 633505 Yellow Peach × I-3 Ty-3	F6	Round	M	Yellow	
TAM-W	TAM-W-177	Q2	PI 639208 Black from Tula × LA4440 Plant A	F6	Round	M	Red	
TAM-W	TAM-W-178	Q2	PI 639209 Brandywine#1 × I-2 Ty-2	F6	Beefsteak	M	Red	
TAM-W	TAM-W-179	Q2	PI 639213 Juane Flamme × I-2 Ty-2	F6	Heirloom	M	Yellow	
TAM-W	TAM-W-180	Q2	PI 639213 Juane Flamme × I-2 Ty-2	F6	Beefsteak	S	Red	
TAM-W	TAM-W-181	Q2	PI 639213 Juane Flamme × I-3 Ty-3	F6	Round	M	Yellow	
TAM-CS	TAM-CS-182	Q1	I-2 Ty-2	Round	S	Red		
TAM-W	TAM-W-183	Q2	PI 639213 Juane Flamme × I-3 Ty-3	F6	Beefsteak	L	Orange	
TAM-W	TAM-W-184	Q2	PI 639215 Principe Borguese × I-2 Ty-2	F6	Round	XS	Red	
TAM-W	TAM-W-185	Q2	PI 639215 Principe Borguese × I-3 Ty-3	F6	Cherry	S	Red	
TAM-W	TAM-W-186	Q2	PI 639215 Principe Borguese × I-3 Ty-3	F6	Cherry	XS	Red	
TAM-W	TAM-W-187	Q2	PI 639217 Striped Cavern × I-2 Ty-2	F6	Heirloom	S	Tiger stripe	
Continued

Accession	Name	Description	Type	Color	Size	Shape	
TAM-W-188	Q2	PI 639217 Striped Cavern × I-2 Ty-2	F6	Beefsteak	S	Red	
TAM-CS-189	Q2	I2	F6	Beefsteak	M	Red	
TAM-W-190	Q2	PI 639217 Striped Cavern × I-2 Ty-2 Plant A	F6	Heirloom	M	Tiger stripe	
TAM-W-191	Q2	PI 647526 Brandywine#1 × I-2 Ty-2	F6	Beefsteak	XL	Red	
TAM-W-192	Q2	PI 647526 Brandywine#1 × I-2 Ty-2	F6	Heirloom	XL	Pink	
TAM-W-193	Q2	PI 647526 Brandywine#1 × I-2 Ty-2	F6	Heirloom	XL	Red	
TAM-W-194	Q2	PI 639215 Principe Borguese × I-2 Ty-2	F6	Heirloom	M	Red	
TAM-W-195	Q2	PI639209 Brandywine#1 × AVT1001 Plant A	F6	Beefsteak	M	Pink	
TAM-CS-196	Q2	I3	F6	Beefsteak	L	Red	
TAM-W-197	Q2	PI639209 Brandywine#1 × AVT1001 Plant B	F6	Round	M	Red	
TAM-W-198	Q1	PI639209 Brandywine#1 × AVT1001 Plant B	F6	Round	M	Red	
TAM-W-199	Q1	PI639209 Brandywine#1 × AVT1001 Plant C	F6	Round	M	Red	
TAM-W-200	Q2	Supersteak#1 × I-2 Ty-2	F6	Beefsteak	L	Red	
TAM-W-201	Q2	Supersteak#1 × I-2 Ty-2	F6	Beefsteak	L	Red	
USDA-203	Q2	440	F6	Round	XS	Black	
TAM-W-204	Q2	W-25×1 × Mi-1	F6	Beefsteak	XL	Red	
TAM-W-205	Q2	W-25×2 × I-3 Ty-3	F6	Round	S	Red	
TAM-W-206	Q2	W-25×4 × Mi-1	F6	Beefsteak	L	Red	
TAM-W-207	Q2	W-25×4 × Mi-1	F6	Beefsteak	L	Red	
TAM-W-208	Q1	W-29×3 × LA3473 Plant A	F6	Round	S	Red	
TAM-W-209	Q2	PI 639208 Black from Tula × LA4440 Plant A	F7	Round	S	Red	
USDA-210	Q2	Prospero	F6	Beefsteak	M	Red	
TAM-W-211	Q2	W-9×1 × I-3 Ty-3	F6	Beefsteak	M	Red	
TAM-W-212	Q2	W-9×1 × LA3473	F6	Beefsteak	XL	Red	
TAM-W-213	Q2	W-9×2 × Mi-1	F6	Beefsteak	XL	Red	
TAM-W-214	Q2	W-9×2 × Mi-1	F6	Beefsteak	XL	Red	
TAM-W-215	Q2	W9×1 × FLA417-8	F6	Beefsteak	L	Red	
TAM-W-216	Q2	PI 639211 Cherokee Purple × I-2 Ty-2	F6	Beefsteak	M	Red	
USDA-217	Q2	Ailsa Craig	F6	Round	S	Red	
TAM-W-218	Q2	PI 639211 Cherokee Purple × I-2 Ty-2	F6	Beefsteak	L	Red	
TAM-W-219	Q2	PI 639213 Juane Flamme × I-3 Ty-3	F6	Beefsteak	L	Orange	
TAM-W-220	Q2	PI 639217 Striped Cavern × I-2 Ty-2	F6	Heirloom	M	Tiger stripe	
TAM-W-221	Q2	PI 639217 Striped Cavern × I-2 Ty-2	F6	Bell pepper	M	Tiger stripe	
TAM-W-222	Q2	Supersteak#2 × I-2 Ty-2	F6	Round	L	Red	
Breed	Variety	Description	Genotype	Color	Size	Remarks	
-------	---------	-------------	----------	-------	------	---------	
TAM-W	TAM-W-223	Q2	W-25#2 × J-3 Ty-3	F6	Beefsteak	M	Red
USDA	USDA-224	Q2	Moneymaker	Round	S	Red	
TAM-W	TAM-W-225	Q2	W-25#2 × M3-1	F6	Beefsteak	L	Red
TAM-W	TAM-W-226	Q2	W-25#3 × M3-1	F6	Beefsteak	L	Red
TAM-W	TAM-W-227	Q2	W-25#3 × M3-1	F6	Beefsteak	XL	Red
TAM-W	TAM-W-228	Q2	PI 639217 Striped Cavern × FLA417-8 Plant A	Heirloom	XL	Red	
TAM-CS	TAM-CS-229	Q2	AVT1110 × Redline	Cherry	S	Pink	
TAM-CS	TAM-CS-230	Q2	AVT1001 × Black Tula	Beefsteak	L	Red	
USDA	USDA-231	Q2	Tres Cantos	Round	M	Red	
TAM-W	TAM-W-232	Q2	106 × AVT1110 Plant B	F7	Round	L	Red
TAM-W	TAM-W-233	Q2	106 × AVT1110 Plant C	F7	Round	L	Red
TAM-W	TAM-W-234	Q2	1212 × AVT1001 Plant A	F7	Pear	L	Red
TAM-W	TAM-W-235	Q2	1212 × AVT1001 Plant A	F7	Beefsteak	L	Red
TAM-W	TAM-W-236	Q2	1212 × AVT1001 Plant B	F7	Round	S	Red
TAM-W	TAM-W-237	Q2	1212 × AVT1001 Plant B	F7	Beefsteak	S	Red
USDA	USDA-238	Q2	Chico Grande	Roma	M	Red	
TAM-W	TAM-W-239	Q2	1500 × AVT1110	F7	Round	M	Red
TAM-W	TAM-W-240	Q2	1680 × AVT1106	F7	Round	M	Red
TAM-W	TAM-W-241	Q2	1790 × AVT1001 Plant A	F7	Round	M	Red
TAM-W	TAM-W-242	Q2	1790 × AVT1001 Plant B	F7	Beefsteak	M	Red
TAM-W	TAM-W-243	Q2	1790 × AVT1001 Plant B	F7	Round	S	Red
TAM-W	TAM-W-244	Q2	1790 × AVT1106 Plant A	F7	Roma	M	Red
USDA	USDA-245	Q2	Heinz 1350	Beefsteak	M	Red	
TAM-W	TAM-W-246	Q2	1803 × AVT1001 Plant A	F7	Round	M	Red
TAM-W	TAM-W-247	Q2	1803 × AVT1001 Plant B	F7	Round	S	Red
TAM-W	TAM-W-248	Q2	1820 × AVT1110 Plant 2	F7	Pear	S	Red
TAM-W	TAM-W-249	Q2	1820 × AVT1001 Plant A	F7	Beefsteak	XL	Red
TAM-W	TAM-W-250	Q2	1999 × AVT1001 Plant B	F7	Beefsteak	M	Red
TAM-W	TAM-W-251	Q2	1999 × AVT1001 Plant B	F7	Round	M	Red
USDA	USDA-252	Q2	Heinz 1370	Round	M	Red	
TAM-W	TAM-W-253	Q2	1999 × FLA417-8 Plant A	F7	Beefsteak	L	Red
TAM-W	TAM-W-254	Q2	2015 × AVT1001 Plant A	F7	Beefsteak	L	Red
TAM-W	TAM-W-255	Q2	203 × AVT1001 Plant A	F7	Beefsteak	L	Red
TAM-W	TAM-W-256	Q2	W12 × AVT1106 Plant A	F7	Roma	S	Red
TAM-W	TAM-W-257	Q2	277SBR × AVT1001 Plant A	F7	Round	M	Red
TAM-CS	TAM-CS-258	Q2	T5 × NC946 (Ty-2, Sw-5, J-3)	Cherry	S	Pink	
USDA	USDA-259	Q2	NC 50-7	Beefsteak	L	Red	
Variety	Description	Size	Color				
------------------------------	------------------------------------	------	---------				
TAM-W TAM-W-260 Q2	330 × AVT1106 Plant A	F7	Roma				
TAM-W TAM-W-261 Q2	330 × AVT1106 Plant A	F7	Round				
TAM-W TAM-W-262 Q2	330 × FLA417-8 Plant A	F7	Round				
TAM-W TAM-W-263 Q2	W12 × AVT1001 Plant A	F7	Beefsteak				
TAM-W TAM-W-264 Q2	W12 × AVT1001 Plant A	F7	Round				
TAM-W TAM-W-265 Q2	W12 × AVT1001 Plant B	F7	Beefsteak				
USDA USDA-266 Q2	Peto 460	F6	Round				
TAM-W TAM-W-267 Q2	W12 × FLA417-8 Plant 1	F7	Roma				
TAM-W TAM-W-268 Q2	W4 × AVT1106 Plant 1	F7	Beefsteak				
TAM-W TAM-W-269 Q2	W4 × AVT1106 Plant 2	F7	Round				
TAM-W TAM-W-270 Q2	W4 × AVT1106 Plant 2	F7	Round				
TAM-W TAM-W-271 Q2	106 × AVT1001 Plant A	F7	Beefsteak				
TAM-W TAM-W-272 Q2	106 × AVT1106 Plant A	F6	Round				
USDA USDA-273 Q2	Baxter’s Early Bush Cherry	F7	Cherry				
TAM-W TAM-W-274 Q2	2015 × AVT1001 Plant B	F7	Heart				
TAM-W TAM-W-275 Q2	203 × AVT1001 Plant A	F7	Beefsteak				
TAM-W TAM-W-276 Q2	275SBR × AVT1001 Plant A	F7	Round				
TAM-W TAM-W-277 Q2	275SBR × AVT1106 Plant A	F7	Round				
TAM-W TAM-W-278 Q2	275SBR × AVT1001 Plant A	F7	Beefsteak				
USDA USDA-279 Q2	T5 × NC946 (Ty-2, Sw-5, I-3)	F7	Roma				
USDA USDA-280 Q2	NC 8288	F7	Beefsteak				
TAM-CS TAM-CS-281 Q2	T5 × NC946 (Ty-2, Sw-5, I-3)	F7	Round				
TAM-CS TAM-CS-282 Q2	T5 × NC946 (Ty-2, Sw-5, I-3)	F7	Roma				
TAM-W TAM-W-283 Q2	CLN2498XFLA619y	F9	Roma				
TAM-W TAM-W-284 Q2	130710 × T55	F8	Beefsteak				
TAM-W TAM-W-285 Q2	130710 × T55	F8	Beefsteak				
TAM-W TAM-W-286 Q2	130710 × T55	F8	Round				
USDA USDA-287 Q2	Yellow Peach	F8	Beefsteak				
TAM-W TAM-W-288 Q2	130710 × T55	F8	Beefsteak				
TAM-W TAM-W-289 Q2	T11-5-1 × T55	F8	Beefsteak				
TAM-W TAM-W-290 Q2	PI 639208 Black from Tula × LA4440 Plant C	F8	Beefsteak				
TAM-CS TAM-CS-291 Q2	T215 VR × Manyell	F8	Beefsteak				
TAM-CS TAM-CS-292 Q2	Gold Nugget × T3	F8	Beefsteak				
TAM-CS TAM-CS-293 Q2	Black Seaman × T215	F8	Beefsteak				
USDA USDA-294 Q2	Rosa	F8	Beefsteak				
TAM-CS TAM-CS-295 Q2	AVT1110 × Redline	F8	Beefsteak				
TAM-CS TAM-CS-296 Q2	Alamo T13	F8	Beefsteak				

DOI: 10.4236/ajps.2019.107083 1178 American Journal of Plant Sciences
TAM-CS	TAM-CS-297	Q1	T215 VR × Manyell	F8	Beefsteak	XL	Red
TAM-CS	TAM-CS-298	Q2	Gold Nugget × Sungold	F8	Round	M	Orange
TAM-CS	TAM-CS-299	Q2	Estrella × AVT1109	F8	Italian	L	Red
TAM-CS	TAM-CS-300	Q2	Gold Nugget × T5	F8	Round	M	Red
TAM-CS	TAM-CS-301	Q2	Black icicle × T5	F8	Pear	L	Red
TAM-CS	TAM-CS-302	Q2	AVT1110 × Redline	F8	Beefsteak	M	Red
TAM-CS	TAM-CS-303	Q1	T135 × Black Tula	F8	Beefsteak	L	Red
TAM-CS	TAM-CS-304	Q2	AVT1110 × BL60	F8	Beefsteak	L	Red
TAM-CS	TAM-CS-305	Q2	AVT1104 × J & D 7	F8	Cherry	S	Yellow
TAM-CS	TAM-CS-306	Q2	AVT 1001 × Black Cherry	F8	Cherry	S	Pink
USDA	USDA-307	Q2	Flora-dade	F8	Beefsteak	XL	Red
TAM-CS	TAM-CS-308	Q2	AVT 1001 × Black Cherry	F8	Cherry	S	Pink
TAM-CS	TAM-CS-309	Q2	Gypsy × T135 VR	F8	Beefsteak	L	Pink
TAM-CS	TAM-CS-310	Q2	AVT1104 × J & D 7	F8	Beefsteak	L	Yellow
TAM-CS	TAM-CS-311	Q2	AVT1104 × J & D 7	F8	Round	M	Orange
TAM-CS	TAM-CS-312	Q2	P278 × AVT 1106	F8	Roma	S	Red
TAM-W	TAM-W-313	Q2	AVT1108 × BL100	F9	Round	L	Pink
TAM-W	TAM-W-314	Q2	CLN2498XFLA619y	F9	Roma	M	Pink
TAM-W	TAM-W-315	Q2	CLN2498XFLA619y	F9	Pear	L	Pink
TAM-W	TAM-W-316	Q2	CLN2498XFLA619y	F9	Roma	L	Pink
TAM-W	TAM-W-317	Q2	CLN2498XFLA619y	F9	Round	M	Red
TAM-W	TAM-W-318	Q2	CLN2498XFLA619y	F9	Round	S	Red
TAM-W	TAM-W-319	Q2	Zapatoc × Avt1104	F9	Roma	S	Red
USDA	USDA-320	Q2	Pomodoro Superselezione di Marmande	Heirloom	L	Red	
TAM-W	TAM-W-321	Q2	T75= (WT 501 × Merced) × (T2-25 × CLN2498) F6	F9	Heirloom	M	Pink
TAM-W	TAM-W-322	Q1	Zapatoc × Avt1104 Plant A	F9	Roma	M	Pink
TAM-W	TAM-W-323	Q2	Zapatoc × Avt1104 Plant B	F9	Round	M	Red
TAM-W	TAM-W-324	Q2	CLN2498XFLA619y	F9	Round	M	Red
TAM-W	TAM-W-325	Q2	FLA417-8 × FM9	F10	Beefsteak	M	Red
TAM-W	TAM-W-326	Q2	FLA417-8 × FM9	F10	Round	L	Red
TAM-W	TAM-W-327	Q2	FLA417-8 × FM9	F10	Round	M	Red
TAM-W	TAM-W-328	Q2	FLA417-8 × FM9	F10	Round	M	Red
TAM-CS	TAM-CS-329	Q2	AVT1104 × J & D 7	F8	Round	M	Orange
TAM-CS	TAM-CS-330	Q2	(Merced F6 × (Black Krim × FLA 417-8)) F11	F8	Beefsteak	L	Pink

AVRDC = Asian Vegetable Research and Development Center; TAM-CS = Dr. Kevin Crosby’s breeding program at Texas A&M at College Station; TAM-W = Dr. Carlos Avila’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; TAM-W = Dr. Paul Leeper’s breeding program at Texas A&M AgriLife Research and Extension Center at Weslaco, TX; FLA = Florida tomato breeding program; USDA = United States Department of Agriculture; *Fruit size: XS = extra small, S = small, M = medium, L = large, XL = extra large.
Table S2. Distance Matrix of 322 Genotypes Based on Identified SNPs Markers

https://agrilife.org/avilalab/

Figure S1. Distribution of the SNP missing rate (a) before imputation and (b) after imputation. SNPs with >50% missing, rare alleles with minor allele frequency (MAF) < 5% across all 322 tomato genotypes, and SNPs with low genotype probability (<0.9) were imputed.

Figure S2. Average missing rate of SNPs across 322 tomato genotypes (a) before imputation and (b) after imputation. SNPs with >50% missing, rare alleles with minor allele frequency (MAF) < 5% across all 322 tomato genotypes, and SNPs with low genotype probability (<0.9) were imputed.

Abbreviations

AVRDC = Asian Vegetable Research and Development Center
GBS = Genotyping by Sequencing
HC = Haplotype Caller
MAF = Minor Allele Frequency
PCA = Principal Component Analysis
SNP = Single-Nucleotide Polymorphism
TAMU = Texas A&M University