Internet Connected Modern Fire Fighting Robot

T Sabhanayagam1*, T Senthil Kumar2, M Narendra3, and J Martin Sahayaraj4

1Department of Software Engineering, School of Computing, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
2Department of Electronics and Communication Engineering, Siddharth Institute of Engineering and Technology, Puttur, Andhra Pradesh, India
3Department of Information Technology, CMR Engineering College, Hyderabad, Telangana, India.
4Department of Electronics and Communication Engineering, Sri Indu College of Engineering and Technology, Sheriguda, Telangana, India.

Email: *1sabhanat@srmist.edu.in, 2thiru.senthilkumarphd@gmail.com, 3narendramupparaju06@gmail.com, 4josemartin2k6@gmail.com,

Abstract. When technological development progresses, human interference has become less common, and machines are being used for diverse activities and humans' health. Currently, fire misfortunes still keep happenings running, place human life and properties at risk, and find fires impossible to save lives. In these situations, a robot is used to defend human lives, property and the world from the flames. This model is an IoT robot which detects fire. The robot may be told regarding its activity and disabled. An air pump or a fire style carbon dioxide pump small stretches. Medium lengths. The combination of fire and carbon monoxide is identified via the mounted sensors that generate a graph. The research is often valuable for supplying supplementary details health officials inhaled over the quantity of hazardous gas the inhabitants of the impacted region over a span such that adequate steps can be taken to repair the injury.

Keywords: man-machine interface, Security, Safe, firefighting robot Emergency

1. Introduction

Since robots have progressed and developed people who try to better people's work, advancement is obligatory for new mechanical autonomy, especially where people can endanger their work [1]. Sensor growth and technological advances eliminate risks from fire hazards dangers, [2] which helps the robots to utilize their strengths remove the daily activities of people that allow them to do higher-level activities and brains [3]. Many individuals are focused on complicated situations in large or dynamic teams [4]. However, it will be more useful after any tragedy. If robots are allowed to avoid severe fire risks, response after a fire tragedy has occurred. The local identification device is mandatory, and a robot must be built to suit the critical urban climate needs [5].

Indicators placed by fire radiation range estimates smoke and gas detectors which are available. There are small costs and standardized fire detection systems, generally [6][7]. The distributed fiber optic contains the latest innovations in temperature controls used extensively for fire elimination. However, these techniques require pre-installation sensors that find things too expensive and difficult to protect a
huge region. Practices are important to cover large areas and adopt them [8-10]. Image editing is one approach of color camera images methodology, which is, however, just fire and gas. How heat and gas are also responsible for the fire cannot be told [11-12]. A new disaster response centrally operated. It is suggested that a firefighting robot can be used in pragmatic conditions, designed under the premise of Small expense, moderate quality. It will boost health at work exceptionally places and is important in avoiding and raising casualties damage to land [13]. The act of removing harmful wildfires is to search and rescue. A firefighter must prevent the fire and efficiently and smoothly put out the fire, avoid more damage, and evacuate victims from the danger to a safer spot [14]. The gap between firefighting and computers has finally been facilitated by software, creating a more reliable and successful firefighting system. Before it rages out of reach, robots are programmed to locate a fire. One day, the robots collaborated alongside firefighters to reduce the likelihood of victims being injured [15].

2. Related Work
Currently, fire removal is a dangerous issue for a lot of them. Researchers function on various forms of transparency systems of flames. The founder of the research Ratnesh Malik et al. power robot method. Weapon system method. The robot is scheduled and In order to extinguish fire created. The computer is completely autonomous. It updates the concept that is green detection and focus, proportional power of the motor. The Buggy gets sensor and part data from its computers. UV & Infrared light is used to distinguish the atmosphere Ecosystems. The robot is appropriate for burrow fire combat, a business design, produced defence and combat systems. Photosensitive sensors are used to discern between flames. If so, the robot expresses watchfulness and sprinkles water on the spark. Sensors are used, and the microcontroller allows one to recognize the short fire period naturally. This robot is seen in several places, and those are high-risk places. Robot battle tank was developed by Kristi Kokasih et al., made from rubber, acrylic and iron. Sectors of robotics servo motors, DC motors, ultrasonic sensor, compass sensors. Fire locator, fire sensor, white color sensor, and click. The goal is to investigate, locate and stifle the fire at different fire points. DTMF sender and receiver launch the robot. Mobile Robot is an autonomous commercial fire suppression designed by H.P. Olivier et al. The paper details mobile robot fighting weapons' operation and development. The device comprises two independent DC optically. Motors. Motors. Robotic system conversion of data generated by analog to digital sensors infrared. Use five infrared sensors to capture the robot movement and three for fire identification. The extinguisher contains a water pump DC and a tank of water. The paper's fundamental theme is to feel the, and flames of fire extinguish it. The infrared sensor is used for this as a sensor that senses the infrared rays from heat. The microscope controls the extinction system.

3. Proposed System
This model is an IoT robot which detects fire. The robot may be told regarding its activity and disabled. Air pump or a fire style carbon dioxide pump small stretches. The combination of fire and carbon monoxide is identified via the mounted sensors that generate a graph. The research is often valuable for supplying supplementary details health officials inhaled over the quantity of hazardous gas the inhabitants of the impacted region over a span such that they may adequate steps can be taken to repair injury. The device architecture as seen in Figure 1. The goal of the proposed plan is to establish an IOT dependent architecture.
Figure 1: Design of the system

Fire Combat robot that can substitute the conventional fire system. This robot delivers the cloud a fire alert that can be easily reached from an Android device. Upon receipt of the alarm, the consumer may call the computerized receiver to have streaming live footage connected to the robot. By installing an Android application at the end of the client and for the device, it is possible from the place of the fire. The fire sensor, sense the smoke or fire it will send the text message to the user.

4. Results
Robot flow is divided into three phases, as defined in the system and structure plan. It receives a signal from smoke detectors through the GSM module, and it can only travel in one direction without a given route. There are some challenges. Automatic flames detection via the sensors mounted to the flames. It is extinguished by flames of fire. The infrared sensor is used for this as a sensor that senses the infrared rays from heat. The extinction system is controlled by the microscope.

If a fire threat is imminent, the firemen and the nearest fire station get warnings. The fire fighting robot is seen in Figure 2. By installing an Android application at the end of the client as well as for the device, it is possible from the place of the fire. The fire sensor, sense the smoke or fire it will send the text message to the user.
Figure 2: Fire fighting robot

5. Conclusion
The system design as the control center, executes with the same design and sensors fire warning silent. Similar to the present condition robots for the fire, the proposed robot for the firefights. Special low-cost fire designed to follow remarkable monitoring sensors via the GSM module will more accurately warn the fire service, Improving firefighting capability. The multi-faceted fire detection capability embeds the framework. The robot is more likely to fight fire in the face of barriers. A related category of robots is a special aspect of this robot. It would be financially stable, particularly if limited work on exceptional materials is to be resumed on the assumption, the real-time state of this setup. The monitor robot and other special features can appear as extensions and can be included.

Reference
[1]. Reddy, G., &Puviarasi, R. (2017). Design of Fire Fighting Biped Robot with Human Detection Module. Indian Journal of Public Health Research & Development, 8(4).
[2]. Chang, Hung-Teng, Phin-Chhang Chen, and Chih-Yi Ho. "The Intensity of Fire Rescue Training Discussion in Miaoli County."
[3]. Dinakar, K. Sai, and R. Puviarasi. "Development of a biped locomotive system capable of object recognition for firefighting robots." Indian Journal of Public Health Research & Development 8, no. 4 (2017): 1203-1209.
[4]. Papadopoulou, P., Kolomvatsos, K., &Hadjiefthymiades, S. (2020). Internet of Things in E-Government: Applications and Challenges. International Journal of Artificial Intelligence and Machine Learning (IJAIML), 10(2), 99-118.
[5]. Ayuba, B., Isyaka, M. S., &Agugua, A. G. (2018). IMPACT OF CLAIM SETTLEMENT ON PERFORMANCE OF GENERAL INSURANCE BUSINESSES: EVIDENCE FROM FEDERAL CAPITAL TERRITORY, ABUJA. International Journal of Management Science Research, 4(1), 329.
[6]. Bryndin, E. (2019). Creative innovative higher education of researchers with flexible skills and synergy of cooperation. Contemporary Research in Education and English Language Teaching, 1(1), 1-6.
[7]. Bengtsson, S., & Rockmyr, S. (2019). Conquering the Global Village of Artificial Intelligence—it’s not always cheap and cheerful: A qualitative study on how Artificial Intelligence companies internationalize to the BRIC countries.

[8]. Kumar, B. P., & Bhaskarrao, Y. (2017). A Distributed Framework for Surveillance Missions Robots to Detect Intruders. Indian Journal of Public Health Research & Development, 8(4).

[9]. Ponmudi, P., Radhika, J., Sivapiya, K., & Mangaiyarkarasi, S. GYRO LIFT-A INNOVATIVE ANTI-TREMOR STABILIZING HANDLE. International Journal of MC Square Scientific Research, 9, 146-152.

[10]. Amjath Ali, J., Thangalakshmi, B., & Beaulah, A. V. (2017). IoT Based Disaster Detection and Early Warning Device. International Journal of MC Square Scientific Research (IJMSR), 9(3), 20-25.

[11]. Gao, S., Zhang, Z., Zhao, Z., & Jamali, M. M. (2018, August). Vision and infra-red sensor-based fire fighting robot. In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS) (pp. 873-876). IEEE.

[12]. Chen, X. Y., & Yan, Y. H. (2008). Design and implementation of firefighting robot based on AVR single chip. In Computer & Information Technology (Vol. 7, pp. 29-31).

[13]. Dearie, S., Fisher, K., Rajala, B., & Wasson, S. (2001, October). Design and construction of a fully autonomous fire fighting robot. In Proceedings: Electrical Insulation Conference and Electrical Manufacturing and Coil Winding Conference (Cat. No. 01CH37264) (pp. 303-310). IEEE.

[14]. Raakib, T., & Sarrkar, M. R. A (2016, May). Develop and manufacture of a multisensor fire detection autonomous fire fighting robot using a PID controller. In 2016 5th International Conference on Informatics, Electronics and Vision (ICIIEV) (pp. 909-914). IEEE.

[15]. Paark, S. U., Parkk, J. H., Chhoi, S., Parkk, D. J., & Shien, D. S. (2010, February). Wireless image processing communication system for firefighting robots. In 2010 The 2nd International Conference on Computer and Automation Engineering (ICCAE) (Vol. 3, pp. 254-256). IEEE.