Torelli’s theorem from the topological point of view

14. Juli 2018
Torelli’s theorem states, that the isomorphism class of a smooth projective curve of genus \(g \geq 2 \) over an algebraically closed field \(k \) is uniquely determined by the isomorphism class of the associated pair \((X, \Theta)\), where \(X \) is the Jacobian variety of \(C \) and \(\Theta \) is the canonical theta divisor. The aim of this note is to give a ‘topological’ proof of this theorem. Although Torelli’s theorem is not a topological statement the proof to be presented gives a characterization of \(C \) in terms of perverse sheaves on the Jacobian variety \(X \), which are attached to the theta divisor by a ‘topological’ construction.

For complexes \(K, L \in D^b_c(X, \mathbb{Q}_l) \) define \(K * L \in D^b_c(X, \mathbb{Q}_l) \) by the direct image complex \(Ra^*(K \boxtimes L) \), where \(a : X \times X \to X \) is the addition law of \(X \). Let \(K^0_*(X) \) be the tensor product of the Grothendieck group of perverse sheaves on \(X \) with the polynomial ring \(\mathbb{Z}[t^{1/2}, t^{-1/2}] \). \(K^0_*(X) \) is a commutative ring with ring structure defined by the convolution product, hence also the quotient ring \(K_*^*(X) \) obtained by dividing the principal ideal generated by the constant perverse sheaf \(\delta_X \) on \(X \). Both rings \(K^0_*(X) \) and \(K_*^*(X) \) resemble properties of the homology ring of \(X \) endowed with the \(*\)-product, but have a much richer structure. A sheaf complex \(L \in D^b_c(X, \mathbb{Q}_l) \) defines a class in \(K_*^*(X) \) by the perverse Euler characteristic \(\sum_{\nu} (-1)^\nu \cdot p\nu(L) \cdot t^{\nu/2} \). Similar to the homology ring every irreducible closed subvariety \(Y \) has a class in \(K_*^*(X) \) defined as the class of the perverse intersection cohomology sheaf \(\delta_Y \) of \(Y \). For details see [W]. This allows to consider the product

\[
\delta_\Theta * \delta_\Theta \in K_*^*(X).
\]

Whereas the corresponding product in the homology ring of \(X \) is zero, this product turns out to be nonzero. \(\delta_\Theta * \delta_\Theta \) is of the form \(\sum_{\nu, \mu} A_{\nu, \mu} t^{\nu/2} \). Recall, the coefficients are irreducible perverse sheaves \(A_{\nu, \mu} \) on \(X \). For a perverse sheaf \(A \) on \(X \), which is a sheaf complex on \(X \), let \(\mathcal{H}^i(A) \) denote the associated cohomology sheaves for \(i \in \mathbb{Z} \). Let \(\kappa \in X(k) \) be the Riemann constant defined by \(\Theta = \kappa - \Theta \). It depends on the choice of the Abel-Jacobi map \(C \to X \).

Theorem: Let \(C \) be a curve of genus \(g \geq 3 \). There exists a unique irreducible perverse sheaf \(A = A_{\nu,0} \), among the coefficients of \(\delta_\Theta * \delta_\Theta \), characterized by one of the following equivalent properties

1. \(\mathcal{H}^{-1}(A) \) is nonzero, but not a constant sheaf on \(X \).

2. \(\mathcal{H}^{-1}(A) \) is the skyscraper sheaf \(H^1(C) \otimes \delta_{\{\kappa\}} \) with support in the point \(\kappa \in X \).

Furthermore the support of the perverse sheaf \(A \) is \(\kappa + C - C \subseteq X \).
Another case is particular, convolution where a since we apply subvariety where p to the addition law of X is the Brill-Noether subvariety $W_r = C + \cdots + C \; (r \; \text{copies})$ of X. If C is not hyperelliptic, then

$$δ_{W_r} = δ_r ,$$

since p_r is a small morphism by the theorem of Martens [M] for $r \leq g - 1$. In particular $δ_Θ = δ_{g - 1}$, which will be used in the proof. (In the hyperelliptic case $δ_Θ = δ_{g - 1} - δ_{g - 3}$. For this and further details we refer to [W]).

Proof of the theorem: Suppose C is not hyperelliptic.

1) Since the canonical morphism

$$τ : C(\iota) \times C(\j) \to C(\i+j)$$

is a finite ramified covering map, the direct image $Rτ_∗δ_{C(\i+j)}$ decomposes into a direct sum of etale sheaves $⊕μ \cdot m(i, j, ν) \cdot F_{i+j-ν,i}$ by keeping track of the underlying action of the symmetric group $Σ_{i+j}$ for the map $C(\i+j) \to C(\i+j)$ (see [W],4.1). If we apply $Rp_{i+j,*}$, this gives a formula for $δ_i * δ_j$. From $p_{i+j} ◦ τ = a ◦ (p_i × p_j)$, where $a : X \times X \to X$ is the addition law of X, one obtains for $i \geq j$ that the convolution $δ_i * δ_j$ is $δ_{i+j} \oplus δ_{i+j-1,1} \oplus \cdots \oplus δ_{i-j,j}$, where $δ_{r,s} = Rp_{i+j,*}(F_{r,s})$. A special case is

$$δ_Θ * δ_Θ = δ_{g - 1} * δ_{g - 1} = δ_{2g - 2} \oplus δ_{2g - 3,1} \oplus \cdots \oplus δ_{g - 1,g - 1} .$$

Another case is $δ_1 * δ_{2g - 3} = δ_{2g - 2} \oplus δ_{2g - 3,1}$, and together this implies

$$δ_{2g - 3} * δ_1 \leftrightarrow δ_Θ * δ_Θ .$$
2) The morphism \(f : C \times C \to \kappa + C - C \subseteq X \), defined by \((x, y) \mapsto \kappa + x - y\), is semi-small. If \(C \) is not hyperelliptic, then \(f \) is a birational map, which blows down the diagonal to the point \(\kappa \), and is an isomorphism otherwise. Hence the direct image \(Rf_*(\delta_C \boxtimes \delta_C) \) is perverse on \(X \), and necessarily decomposes \(Rf_*(\delta_C \boxtimes \delta_C) = \delta_C \ast \delta_{\kappa - C} = \delta_{\{\kappa\}} \oplus \delta_{\kappa + C - C} \) such that

\[
\mathcal{H}^{-1}(\delta_{\kappa + C - C}) \cong H^1(C) \otimes \delta_{\{\kappa\}}.
\]

3) We claim \(\delta_{2g-3} \equiv \delta_{\kappa - C} \) and \(\delta_{2g-2} \equiv \delta_{\{\kappa\}} \) in \(K_*(X) \) (ignoring Tate twists). These are the simplest cases of the duality theorem \([W]\) 5.3. This implies

\[
\delta_{2g-3} \ast \delta_1 \equiv \delta_{\{\kappa\}} + \delta_{\kappa + C - C},
\]

in \(K_*(X) \) using step 2.

Proof of the claim: By the theorem of Riemann-Roch \(C^{(2g-3)} \) \(\to X \) is a \(\mathbb{P}^{g-2} \)-bundle over \(\kappa - C \) and a \(\mathbb{P}^{g-3} \)-bundle over the open complement \(X \setminus (\kappa - C) \). Hence \(Rp_*(\delta_{C^{(2g-3)}}) \) is a direct sum of \(\delta_{\kappa - C} \) and a sum of translates of constant sheaves on \(X \). Similarly \(pr_2^{-1}2g-2(\{\kappa\}) = \mathbb{P}^{g-1} \), and \(pr_{2g-2} \) is a \(\mathbb{P}^{g-2} \)-bundle over the open complement \(X \setminus \{\kappa\} \). Hence \(\delta_{2g-2} \equiv \delta_{\{\kappa\}} \) in \(K_*(X) \).

4) \(\Theta = \kappa - \Theta \) and the definition of the convolution product implies

\[
\mathcal{H}^{-1}(\delta_\Theta \ast \delta_\Theta) \cong IH^{2g-1}(\Theta) \otimes \delta_{\{\kappa\}}
\]

for an arbitrary principally polarized abelian varieties \((X, \Theta)\), where \(IH^{2g-1}(\Theta) \) denotes the intersection cohomology group of \(\Theta \). If the singularities of \(\Theta \) have codimension \(\geq 3 \) in \(\Theta \), then ignoring Tate twists this implies (see \([W]\) 2.9 and \([W2]\))

\[
\mathcal{H}^{-1}(\delta_\Theta \ast \delta_\Theta) \cong H^1(X) \otimes \delta_{\{\kappa\}}.
\]

In fact by the Hard Lefschetz theorem \(IH^{2g-3}(\Theta) \) and \(H^1(X) \) have the same dimensions. A more elementary argument proves this for Jacobians including the case of hyperelliptic curves: For example for non-hyperelliptic curves we have \(IH^\bullet(W_d) = H^\bullet(X, Rp_{d,*}\delta_{C(\omega)}[-d]) = H^\bullet(C(d)) = (\bigotimes^d H^\bullet(C))^\Sigma_d \), since \(p_d \) is a small morphism. Thus

\[
IH^{d+\bullet}(W_d) \cong \bigoplus_{a+b=d} Sym^a \left(H^0(C)[1] \oplus H^2(C)[-1] \right) \otimes \Lambda^b(H^1(C)).
\]
For $IH^{2d-1}(W_d)$ only $a = d - 1$ contributes, hence $IH^{2d-1}(W_d) \cong H^1(C) \cong H^1(X)$. (For the hyperelliptic case see [W] 4.2).

Conclusion: For curves C, which are not hyperelliptic, the perverse sheaf A defined by $\delta_{\kappa+C-C}$ satisfies all the assertions of the theorem. $\delta_{\kappa+C-C}$ is a direct summand of $\delta_\Theta \ast \delta_\Theta$ by step 1 and 3. By step 2 and 4 we obtain modulo constant sheaves on X

$$\mathcal{H}^{-1}(\delta_\Theta \ast \delta_\Theta) \equiv H^1(X) \otimes \delta_{\{\kappa\}} \equiv H^1(C) \otimes \delta_{\{\kappa\}} \equiv \mathcal{H}^{-1}(\delta_{\kappa+C-C}) .$$

Since $K_*(X)$ is a quotient of $K^0_*(X)$, the last identity only holds modulo constant sheaves on X. But this suffices to imply the theorem.

Remark: In [W] we constructed a \overline{Q}_l-linear Tannakian category BN attached to C equivalent to the category of finite dimensional \overline{Q}_l-representations $Rep(G)$, where G is $Sp(2g-2, \overline{Q}_l)$ or $Sl(2g-2, \overline{Q}_l)$ depending on whether C is hyperelliptic or not. In this category δ_Θ corresponds to the alternating power $\Lambda^{g-1}(st)$ of the standard representation, and A corresponds to the adjoint representation.

Bibliography

[M] Martens H.H, On the variety of special divisors on a curve, Crelle 227 (1967), p.111 – 120.

[W] Weissauer R., Brill-Noether sheaves (preprint)

[W2] Weissauer R., Inner cohomology (preprint)