On the Complexity of Computing Two Nonlinearity Measures

Magnus Gausdal Find
Department of Mathematics and Computer Science
University of Southern Denmark

Abstract. We study the computational complexity of two Boolean nonlinearity measures: the nonlinearity and the multiplicative complexity. We show that if one-way functions exist, no algorithm can compute the multiplicative complexity in time $2^{O(n)}$ given the truth table of length 2^n, in fact under the same assumption it is impossible to approximate the multiplicative complexity within a factor of $(2 - \epsilon)^n/2$. When given a circuit, the problem of determining the multiplicative complexity is in the second level of the polynomial hierarchy. For nonlinearity, we show that it is #P hard to compute given a function represented by a circuit.

1 Introduction

In many cryptographical settings, such as stream ciphers, block ciphers and hashing, functions being used must be deterministic but should somehow “look” random. Since these two desires are contradictory in nature, one might settle with functions satisfying certain properties that random Boolean functions possess with high probability. One property is to be somehow different from linear functions. This can be quantitatively delineated using so called “nonlinearity measures”. Two examples of nonlinearity measures are the nonlinearity, i.e. the Hamming distance to the closest affine function, and the multiplicative complexity, i.e. the smallest number of AND gates in a circuit over the basis $(\land, \lor, 1)$ computing the function. For results relating these measures to each other and cryptographic properties we refer to \cite{64}, and the references therein. The important point for this paper is that there is a fair number of results on the form “if f has low value according to measure μ, f is vulnerable to the following attack ...”. Because of this, it was a design criteria in the Advanced Encryption Standard to have parts with high nonlinearity \cite{10}. In a concrete situation, f is an explicit, finite function, so it is natural to ask how hard it is to compute μ given (some representation of) f. In this paper, the measure μ will be either multiplicative complexity or nonlinearity. We consider the two cases where f is being represented by its truth table, or by a circuit computing f.
We should emphasize that multiplicative complexity is an interesting measure for other reasons than alone being a measure of nonlinearity: In many applications it is harder, in some sense, to handle AND gates than XOR gates, so one is interested in a circuit over $(\wedge, \oplus, 1)$ with a small number of AND gates, rather than a circuit with the smallest number of gates. Examples of this include protocols for secure multiparty computation (see e.g. [8,15]), non-interactive secure proofs of knowledge [3], and fully homomorphic encryption (see for example [20]).

It is a main topic in several papers (see e.g. [5,7,9]) to find circuits with few AND gates for specific functions using either exact or heuristic techniques. Despite this and the applications mentioned above, it appears that the computational hardness has not been studied before.

The two measures have very different complexities, depending on the representation of f.

Organization of the Paper and Results In the following section, we introduce the problems and necessary definitions. All our hardness results will be based on assumptions stronger than $\mathbf{P} \neq \mathbf{NP}$, more precisely the existence of pseudorandom function families and the “Strong Exponential Time Hypothesis”. In Section 3 we show that if pseudorandom function families exist, the multiplicative complexity of a function represented by its truth table cannot be computed (or even approximated with a factor $(2 - \epsilon)^{n/2}$) in polynomial time. This should be contrasted to the well known fact that nonlinearity can be computed in almost linear time using the Fast Walsh Transformation. In Section 4 we consider the problems when the function is represented by a circuit. We show that in terms of time complexity, under our assumptions, the situations differ very little from the case where the function is represented by a truth table. However, in terms of complexity classes, the picture looks quite different: Computing the nonlinearity is $\#\mathbf{P}$ hard, and multiplicative complexity is in the second level of the polynomial hierarchy.

2 Preliminaries

In the following, we let \mathbb{F}_2 be the finite field of size 2 and \mathbb{F}_2^n the n-dimensional vector space over \mathbb{F}_2. We denote by B_n the set of Boolean functions, mapping from \mathbb{F}_2^n into \mathbb{F}_2. We say that $f \in B_n$ is affine if there exist $a \in \mathbb{F}_2^n, c \in \mathbb{F}_2$ such that $f(x) = a \cdot x + c$ and linear if f is affine

1 Here we mean concrete finite functions, as opposed to giving good (asymptotic) upper bounds for an infinite family of functions
with $f(0) = 0$, with arithmetic over \mathbb{F}_2. This gives the symbol “+” an overloaded meaning, since we also use it for addition over the reals. It should be clear from the context, what is meant.

In the following an XOR-AND circuit is a circuit with fanin 2 over the basis $(\land, \oplus, 1)$ (arithmetic over $\mathbb{GF}(2)$). All circuits from now on are assumed to be XOR-AND circuits. We adopt standard terminology for circuits (see e.g. [21]). If nothing else is specified, for a circuit C we let n be the number of inputs and m be the number of gates, which we refer to as the size of C, denoted $|C|$. For a circuit C we let f_C denote the function computed by C, and $c_\land(C)$ denote the number of AND gates in C.

For a function $f \in B_n$, the multiplicative complexity of f, denoted $c_\land(f)$, is the smallest number of AND gates necessary and sufficient in an XOR-AND circuit computing f. The nonlinearity of a function f, denoted $NL(f)$ is the Hamming distance to its closest affine function, more precisely

$$NL(f) = 2^n - \max_{a \in \mathbb{F}_2^n, c \in \mathbb{F}_2} |\{x \in \mathbb{F}_2^n | f(x) = a \cdot x + c\}|.$$

We consider four decision problems in this paper: NL_C, NL_{TT}, MC_C and MC_{TT}. For NL_C (resp MC_C) the input is a circuit and a target $s \in \mathbb{N}$ and the goal is to determine whether the nonlinearity (resp. multiplicative complexity) of f_C is at most s. For NL_{TT} (resp. MC_{TT}) the input is a truth table of length 2^n of a function $f \in B_n$ and a target $s \in \mathbb{N}$, with the goal to determine whether the nonlinearity (resp. multiplicative complexity) of f is at most s.

We let $a \in _R D$ denote that a is distributed uniformly at random from D. We will need the following definition:

Definition 1. A family of Boolean functions $f = \{f_n\}_{n \in \mathbb{N}}$, $f_n : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$, is a pseudorandom function family if f can be computed in polynomial time and for every probabilistic polynomial time oracle Turing machine A,

$$| Pr_{k \in \mathbb{R}\{0,1\}^n} [A^{f_n(k, \cdot)}(1^n) = 1] - Pr_{g \in \mathbb{R}\mathbb{B}_n} [A^{g(\cdot)}(1^n) = 1]| \leq n^{-\omega(1)}.$$

Here A^H denotes that the algorithm A has oracle access to a function H, that might be $f_n(k, \cdot)$ for some $k \in \mathbb{F}_2^n$ or a random $g \in \mathbb{B}_n$, for more details see [1]. Some of our hardness results will be based on the following assumption.

Assumption 1 There exist pseudorandom function families.
It is known that pseudorandom function families exist if one-way functions exist \cite{11,12,1}, so we consider Assumption \cite{1} to be very plausible. We will also use the following assumptions on the exponential complexity of SAT, due to Impagliazzo and Paturi.

Assumption 2 (Strong Exponential Time Hypothesis \cite{13}) For any fixed $c < 1$, no algorithm runs in time 2^{cn} and computes SAT correctly.

3 Truth Table as Input

It is a well known result that given a function $f \in B_n$ represented by a truth table of length 2^n, the nonlinearity can be computed using $O(n2^n)$ basic arithmetic operations. This is done using the “Fast Walsh Transformation” (See \cite{19} or chapter 1 in \cite{16}).

In this section we show that the situation is different for multiplicative complexity: Under Assumption \cite{1} MC_{TT} cannot be computed in polynomial time.

In \cite{14}, Kabanets and Cai showed that if subexponentially strong pseudorandom function families exist, the Minimum Circuit Size Problem (MCSP) (the problem of determining the size of a smallest circuit of a function given its truth table) cannot be solved in polynomial time. The proof goes by showing that if MCSP could be solved in polynomial time this would induce a natural combinatorial property (as defined in \cite{17}) useful against circuits of polynomial size. Now by the celebrated result of Razborov and Rudich \cite{17}, this implies the nonexistence of subexponential pseudorandom function families.

Our proof below is similar in that we use results from \cite{2} in a way similar to what is done in \cite{14,17} (see also the excellent exposition in \cite{1}). However instead of showing the existence of a natural and useful combinatorial property and appealing to limitations of natural proofs, we give an explicit polynomial time algorithm for breaking any pseudorandom function family, contradicting Assumption \cite{1}.

Theorem 1. Under Assumption \cite{7} on input a truth table of length 2^n, MC_{TT} cannot be computed in time $2^{O(n)}$.

Proof. Let $\{f_n\}_{n \in \mathbb{N}}$ be a pseudorandom function family. Since f is computable in polynomial time it has circuits of polynomial size (see e.g. \cite{1}), so we can choose $c \geq 2$ such that $c \Lambda(f_n) \leq n^c$ for all $n \geq 2$. Suppose for the sake of contradiction that some algorithm computes MC_{TT} in
time $2^{O(n)}$. We now describe an algorithm that breaks the pseudorandom function family. The algorithm has access to an oracle $H \in B_n$, along with the promise either $H(x) = f_n(k, x)$ for $k \in_R \mathbb{F}_2^n$ or $H(x) = g(x)$ for $g \in_R B_n$. The goal of the algorithm is to distinguish between the two cases. Specifically our algorithm will return 0 if $H(x) = f_n(k, x)$ for some $k \in \mathbb{F}_2^n$, and if $H(x) = g(x)$ it will return 1 with high probability, where the probability is only taken over the choice of g.

Let $s = 10c \log n$ and define $h \in B_s$ as $h(x) = H(x0^{n-s})$. Obtain the complete truth table of h by querying H on all the $2^s = 2^{10c \log n} = n^{10c}$ points. Now compute $c_\wedge(h)$. By assumption this can be done in time $\text{poly}(n^{10c})$. If $c_\wedge(h) > n^c$, output 1, otherwise output 0. We now want to argue that this algorithm correctly distinguishes between the two cases. Suppose first that $H(x) = f_n(k, \cdot)$ for some $k \in \mathbb{F}_2^n$. One can think of h as H where some of the input bits are fixed. But in this case, H can also be thought of as f_n with n of the input bits fixed. Now take the circuit for f_n with the minimal number of AND gates. Fixing the value of some of the input bits clearly cannot increase the number of AND gates, hence $c_\wedge(h) \leq c_\wedge(f_n) \leq n^c$.

Now it remains to argue that if H is a random function, we output 1 with high probability. We do this by using the following lemma.

Lemma 1 (Boyar, Peralta, Pochuev). For all $s \geq 0$, the number of functions in B_s that can be computed with an XOR-AND circuit using at most k AND gates is at most $2^{k^2 + 2k + 2ks + s + 1}$.

If g is random on B_n, then h is random on $B_{10c \log n}$, so the probability that $c_\wedge(h) \leq n^c$ is at most:

$$\frac{2(n^c)^2 + 2(n^c) + 2(n^c)(10c \log n) + 10c \log n + 1}{2^{10c \log n}}.$$

This tends to 0, so if H is a random function the algorithm returns 0 with probability $o(1)$. In total we have

$$\left| \Pr_{k \in_R \{0,1\}^n}[A_{f_n(k, \cdot)}(1^n) = 1] - \Pr_{g \in_R B_n}[A_{g^{(\cdot)}}(1^n) = 1] \right| = |0 - (1 - o(1))|,$$

concluding that if the polynomial time algorithm for deciding MC_{TT} exists, f is not a pseudorandom function family.

A common question to ask about a computationally intractable problem is how well it can be approximated by a polynomial time algorithm. An algorithm approximates $c_\wedge(f)$ with approximation factor $\rho(n)$ if it
always outputs some value in the interval \([c_\Lambda(f), \rho(n)c_\Lambda(f)]\). By refining the proof above, we see that it is hard to compute \(c_\Lambda(f)\) within even a modest factor.

Theorem 2. For every constant \(\epsilon > 0\), under Assumption 1, no algorithm takes the \(2^n\) bit truth table of a function \(f\) and approximates \(c_\Lambda(f)\) with \(\rho(n) \leq (2 - \epsilon)^n/2\) in time \(2^{O(n)}\).

Proof. Assume for the sake of contradiction that the algorithm \(A\) violates the theorem. The algorithm breaking any pseudorandom function family works as the one in the previous proof, but instead we return 1 if the value returned by \(A\) is at least \(T = (n^c + 1) \cdot (2 - \epsilon)^n/2\). Now arguments similar to those in the proof above show that if \(A\) returns a value larger than \(T\), \(H\) must be random, and if \(H\) is random, \(h\) has multiplicative complexity at most \((n^c + 1) \cdot (2 - \epsilon)^n/2\) with probability at most

\[
\frac{2(2^{(n^c+1)\cdot(2-\epsilon)(10c \log n)/2})^2+2(n^c+1)\cdot(2-\epsilon)^{10c \log n/2}10c \log n+10c \log n+1}{2^{10c \log n}}
\]

This tends to zero, implying that under the assumption on \(A\), there is no pseudorandom function family. \(\Box\)

4 Circuit as Input

From a practical point of view, the theorems 1 and 2 might seem unrealistic. We are allowing the algorithm to be polynomial in the length of the truth table, which is exponential in the number of variables. However most functions used for practical purposes admit small circuits. To look at the entire truth table might (and in some cases should) be infeasible. When working with computational problems on circuits, it is somewhat common to consider the running time in two parameters; the number of inputs to the circuit, denoted by \(n\), and the size of the circuit, denoted by \(m\). In the following we assume that \(m\) is polynomial in \(n\). In this section we show that even determining whether a circuit computes an affine function is \textbf{coNP}-complete. In addition \(\textit{NL}_C\) can be computed in time \(\textit{poly}(m)2^n\), and is \#\textbf{P}-hard. Under Assumption 1, \(\textit{MC}_C\) cannot be computed in time \(\textit{poly}(m)2^{O(n)}\), and is contained in the second level of the polynomial hierarchy. In the following, we denote by \textit{AFFINE} the set of circuits computing affine functions.

Theorem 3. \textit{AFFINE} is \textbf{coNP} complete.
Proof. First we show that it actually is in coNP. Suppose \(C \not\in AFFINE \). Then if \(f_C(0) = 0 \), there exist \(x, y \in \mathbb{F}_2^n \) such that \(f_C(x + y) \neq f_C(x) + f_C(y) \) and if \(C(0) = 1 \), there exists \(x, y \) such that \(C(x + y) + 1 \neq C(x) + C(y) \). Given \(C, x \) and \(y \) this can clearly be computed in polynomial time. To show hardness, we reduce from TAUTOLOGY, which is coNP-complete.

Let \(F \) be a formula on \(n \) variables, \(x_1, \ldots, x_n \). Consider the following reduction: First compute \(c = F(0^n) \), then for every \(e^{(i)} \) (the vector with all coordinates 0 except the \(i \)th) compute \(F(e^{(i)}) \). If any of these or \(c \) are 0, clearly \(F \not\in TAUTOLOGY \), so we reduce to a circuit trivially not in AFFINE. We claim that \(F \) computes an affine function if and only if \(F \in TAUTOLOGY \). Suppose \(F \) computes an affine function, then \(F(x) = a \cdot x + c \) for some \(a \in \mathbb{F}_2^n \). Then for every \(e^{(i)} \), we have

\[
F(e^{(i)}) = a_i + 1 = 1 = F(0),
\]

so we must have that \(a = 0 \), and \(F \) is constant. Conversely if it is not affine, it is certainly not constant. In particular it is not a tautology. \(\square \)

So even determining whether the multiplicative complexity or nonlinearity is 0 is coNP complete. In the light of the above reduction, any algorithm for AFFINE induces an algorithm for SAT with essentially the same running time, so under Assumption 2 AFFINE needs time essentially \(2^n \). This should be contrasted with the fact that the seemingly harder problem of computing \(NL_C \) can be done in time \(\text{poly}(m)2^n \) by first computing the entire truth table and then using the Fast Walsh Transformation. Despite the fact that \(NL_C \) does not seem to require much more time to compute than AFFINE, it is hard for a much larger complexity class.

Theorem 4. \(NL_C \) is \#P-hard.

Proof. We reduce from \#SAT. Let the circuit \(C \) on \(n \) variables be an instance of \#SAT. Consider the circuit \(C' \) on \(n + 10 \) variables, defined by

\[
C'(x_1, \ldots, x_{n+10}) = C(x_1, \ldots, x_n) \land x_{n+1} \land x_{n+2} \land \ldots \land x_{n+10}.
\]

First we claim that independently of \(C \), the best affine approximation of \(f_{C'} \) is always 0. Notice that 0 agrees with \(f_{C'} \) whenever at least one of \(x_{n+1}, \ldots, x_{n+10} \) is 0, and when they are all 1 it agrees on \(|\{x \in \mathbb{F}_2^n | f_{C'}(x) = 0\}| \) many points. In total 0 and \(f_{C'} \) agree on

\[
(2^{10} - 1)2^n + |\{x \in \mathbb{F}_2^n | f_C(x) = 0\}|
\]

7
inputs. To see that any other affine function approximates $f_{C'}$ worse than 0, notice that any nonconstant affine function is balanced and thus has to disagree with $f_{C'}$ very often. The nonlinearity of $f_{C'}$ is therefore

$$NL(f_{C'}) = 2^{n+10} - \max_{a \in \mathbb{F}_2^{n+10}, c \in \mathbb{F}_2} | \{ x \in \mathbb{F}_2^{n+10} | f_{C'}(x) = a \cdot x + c \}|$$

$$= 2^{n+10} - | \{ x \in \mathbb{F}_2^{n+10} | f_{C'}(x) = 0 \}|$$

$$= 2^{n+10} - ((2^{10} - 1)2^n + | \{ x \in \mathbb{F}_2^n | f_C(x) = 0 \}|)$$

$$= 2^n - | \{ x \in \mathbb{F}_2^n | f_C(x) = 0 \}|$$

$$= | \{ x \in \mathbb{F}_2^n | f_C(x) = 1 \}|$$

So the nonlinearity of $f_{C'}$ equals the number satisfying assignments for C.

So letting the nonlinearity, s, be a part of the input for NL_C changes the problem from being in level 1 of the polynomial hierarchy to be $\#P$ hard, but does not seem to change the time complexity much. The situation for MC_C is essentially the opposite, under Assumption 1, the time MC_C needs is strictly more time than AFFINE, but is contained in Σ_2^p. By appealing to Theorem 1 and 2, the following theorem follows.

Theorem 5. Under Assumption 1, no polynomial time algorithm computes MC_C. Furthermore no algorithm with running time $\text{poly}(m)2^{O(n)}$ approximates $c_\Lambda(f)$ with a factor of $(2 - \epsilon)^{n/2}$ for any constant $\epsilon > 0$.

We conclude by showing that although MC_C under Assumption 1 requires more time, it is nevertheless contained in the second level of the polynomial hierarchy.

Theorem 6. $MC_C \in \Sigma_2^p$.

Proof. First observe that MC_C written as a language has the right form:

$$MC_C = \{ (C, s) | \exists C' \forall x \in \mathbb{F}_2^n \ (C(x) = C'(x) \text{ and } c_\Lambda(C') \leq s) \}.$$

Now it only remains to show that one can choose the size of C' is polynomial in $n + |C|$. Specifically, for any $f \in B_n$, if C' is the circuit with the smallest number of AND gates computing f, for $n \geq 3$, we can assume that $|C'| \leq 2(c_\Lambda(f) + n)^2 + c_\Lambda$. For notational convenience let $c_\Lambda(f) = M$. C' consists of XOR and AND gates and each of the M AND gates has
exactly two inputs and one output. Consider some topological ordering of the AND gates, and call the output of the \(i \)th AND gate \(o_i \). Each of the inputs to an AND gate is a sum (in \(\mathbb{F}_2 \)) of \(x_i \)'s, \(o_i \)'s and possibly the constant 1. Thus the \(2M \) inputs to the AND gates and the output, can be thought of as \(2M + 1 \) sums over \(\mathbb{F}_2 \) over \(n + M + 1 \) variables (we can think of the constant 1 as a variable with a hard-wired value). This can be computed with at most

\[
(2M + 1)(n + M + 1) \leq 2(M + n)^2
\]

XOR gates, where the inequality holds for \(n \geq 3 \). Adding \(c_\wedge(f) \) for the AND gates, we get the claim. The theorem now follows, since \(c_\wedge(f) \leq |C| \)

\[\square\]

The relation between circuit size and multiplicative complexity given in the proof above is not tight, and we do not need it to be. See [18] for a tight relationship.

Acknowledgements

The author wishes to thank Joan Boyar for helpful discussions.

References

1. Arora, S., Barak, B.: Computational Complexity - A Modern Approach. Cambridge University Press (2009)
2. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis \((\wedge, \oplus, 1)\). Theoretical Computer Science 235(1), 43–57 (2000)
3. Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. J. Cryptology 13(4), 449–472 (2000)
4. Boyar, J., Find, M., Peralta, R.: Four measures of nonlinearity. In: Spirakis, P.G., Serna, M.J. (eds.) CIAC. Lecture Notes in Computer Science, vol. 7878, pp. 61–72. Springer (2013)
5. Boyar, J., Matthews, P., Peralta, R.: Logic minimization techniques with applications to cryptology. J. Cryptology 26(2), 280–312 (2013)
6. Carlet, C.: Boolean functions for cryptography and error correcting codes. In: Crama, Y., Hammer, P.L. (eds.) Boolean Models and Methods in Mathematics, Computer Science, and Engineering, chap. 8, pp. 257–397. Cambridge, UK: Cambridge Univ. Press (2010)
7. Cenk, M., Özbudak, F.: On multiplication in finite fields. J. Complexity 26(2), 172–186 (2010)
8. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Simon, J. (ed.) STOC. pp. 11–19. ACM (1988)
9. Courtois, N., Bard, G.V., Hulme, D.: A new general-purpose method to multiply 3x3 matrices using only 23 multiplications. CoRR abs/1108.2830 (2011)
10. Daemen, J., Rijmen, V.: AES proposal: Rijndael (1999), available at http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
11. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
12. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)
13. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)
14. Kabanets, V., Yi, Cai, J.: Circuit minimization problem. In: Yao, F.F., Luks, E.M. (eds.) STOC. pp. 73–79. ACM (2000)
15. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP (2). Lecture Notes in Computer Science, vol. 5126, pp. 486–498. Springer (2008)
16. O’Donnell, R.: Analysis of Boolean Functions. Book draft. Available at www.analysisofbooleanfunctions.org (2012)
17. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)
18. Sergeev, I.S.: A relation between additive and multiplicative complexity of Boolean functions. CoRR abs/1303.4177 (2013)
19. Sloane, N., MacWilliams, F.J.: The Theory of Error-Correcting Codes. North-Holland Math. Library 16 (1977)
20. Vaikuntanathan, V.: Computing blindfolded: New developments in fully homomorphic encryption. In: Ostrovsky, R. (ed.) FOCS. pp. 5–16. IEEE (2011)
21. Wegener, I.: The Complexity of Boolean Functions. Wiley-Teubner (1987)