ON A LINEARIZED MULLINS-SEKERKA/STOKES SYSTEM FOR TWO-PHASE FLOWS

HELmut ABELs* AND ANDREAS MARquARDT
Fakultät für Mathematik
Universität Regensburg
93040 Regensburg, Germany

Abstract. We study a linearized Mullins-Sekerka/Stokes system in a bounded domain with various boundary conditions. This system plays an important role to prove the convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, and to prove solvability of the latter system locally in time. We prove solvability of the linearized system in suitable L^2-Sobolev spaces with the aid of a maximal regularity result for non-autonomous abstract linear evolution equations.

1. Introduction. We study the following linearized Mullins-Sekerka/Stokes system

$$D_t \Gamma h + b \cdot \nabla h \Gamma - bh + \frac{1}{2} X_0^* ((v^+ + v^-) \cdot n_{\Gamma_t}) + \frac{1}{2} X_0^* (\partial_{n_{\Gamma_t}} \mu) = g \quad \text{on } \Sigma \times (0, T),$$

$$h(., 0) = h_0 \quad \text{in } \Sigma,$$

where for every $t \in [0, T]$, the functions $v^\pm = v^\pm (x, t)$, $p^\pm = p^\pm (x, t)$ and $\mu^\pm = \mu^\pm (x, t)$ for $(x, t) \in \Omega^\pm_T$ with $v^\pm \in H^2(\Omega^\pm (t))$, $p^\pm \in H^1(\Omega^\pm (t))$ and $\mu^\pm \in H^2(\Omega^\pm (t))$ are the unique solutions to

$$\Delta \mu^\pm = a_1 \quad \text{in } \Omega^\pm (t),$$

$$\mu^\pm = X_0^* (\sigma \Delta \Gamma h \pm a_2 h) + a_3 \quad \text{on } \Gamma_1,$$

$$n \cdot \nabla \mu^- = a_4 \quad \text{on } \Gamma_{\mu, 1},$$

$$\mu^- = a_4 \quad \text{on } \Gamma_{\mu, 2},$$

$$-\Delta v^\pm + \nabla p^\pm = a_1 \quad \text{in } \Omega^\pm (t),$$

$$\text{div } v^\pm = 0 \quad \text{in } \Omega^\pm (t),$$

$$|v| = a_2 \quad \text{on } \Gamma_1,$$

$$[2D_s v - p I] n_{\Gamma_t} = X_0^* (a_3 h + a_4 \Delta \Gamma h + a_5 \nabla \Gamma h + a_5) \quad \text{on } \Gamma_1,$$

$$B_j (v^-, p^-) = a_5 \quad \text{on } \Gamma_{S, j}, j = 1, 2, 3.$$

Here $\Omega \subseteq \mathbb{R}^d$, $d = 2, 3$, is a bounded domain with smooth boundary, which is the disjoint union of $\Omega^+(t)$, $\Omega^-(t)$ and Γ_t, where $\Gamma_t = \partial \Omega^+(t)$ is a smoothly evolving $(d - 1)$-dimensional orientable hypersurface. We assume that $\Gamma_t \subseteq \Omega$ for all $t \in [0, T]$.}

2010 Mathematics Subject Classification. Primary: 76T99; Secondary: 35Q30, 35Q35, 35R35, 76D05, 76D45.

Key words and phrases. Two-phase flow, sharp interface limit, Cahn-Hilliard equation, free boundary problems, Mullins-Sekerka equation.

* Corresponding author: Helmut Abels.
(0, T), i.e., there is no boundary contact and contact angle. Moreover, \(\Gamma_t \) is given for \(t \in [0, T] \) as well as \(a_1, \ldots, a_4, a_1, \ldots, a_6 \) are given for some \(T > 0, \sigma > 0 \) is the surface tension constant and \(D_a \mathbf{v} = \frac{1}{2} (\nabla \mathbf{v} + \nabla \mathbf{v}^T) \). Furthermore,

\[
[g](p, t) := \lim_{h \to 0} \left[g^+(p + n_{\Gamma_t}(p)h, t) - g^-(p - n_{\Gamma_t}(p)h, t) \right] \quad \text{for } p \in \Gamma_t
\]

for suitable functions \(g^\pm \) and \(X_0: \Sigma \times [0, T] \to \Gamma := \bigcup_{t \in [0, T]} \Gamma_t \times \{t\} \) is a suitable diffeomorphism, which is described in Section 2 below. For \(a: \Sigma \times [0, T] \to \mathbb{R}^N, N \in \mathbb{N} \), we define \(X_0^{-1}a: \Gamma \to \mathbb{R}^N \) by

\[
(X_0^{-1}a)(p, t) = a(X_0^{-1}(p, t)) \quad \text{for all } (p, t) \in \Gamma
\]

and for \(b: \Gamma \to \mathbb{R}^N, N \in \mathbb{N} \), we define \(X_0^*b: \Sigma \times [0, T] \to \mathbb{R}^N \) by

\[
(X_0^*b)(s, t) = b(X_0(s, t)) \quad \text{for all } (s, t) \in \Sigma \times [0, T].
\]

This system arises in the construction of approximate solutions in the proof of convergence of a Stokes/Cahn-Hilliard system to its sharp interface limit, which is a Stokes/Mullins-Sekerka system, cf. [2]-[3]. Here \(\mathbf{v}^\pm: \bigcup_{t \in [0, T]} \Omega^\pm(t) \times \{t\} \to \mathbb{R}^d \) and \(p^\pm: \bigcup_{t \in [0, T]} \Omega^\pm(t) \times \{t\} \to \mathbb{R} \) are the velocity and pressure incompressible viscous Newtonian fluids filling the domains \(\Omega^\pm(t) \) at time \(t \), which are separated by the (fluid) interface \(\Gamma_t \). Furthermore, \(h: \Sigma \times [0, T] \to \mathbb{R} \) is a linearized height function that describes the evolution of the interface at a certain order and \(\mu^\pm: \bigcup_{t \in [0, T]} \Omega^\pm(t) \times \{t\} \to \mathbb{R} \) is a linearized chemical potential related to the fluids in \(\Omega^\pm(t) \). If one neglects the terms related to \(\mathbf{v}^\pm, p^\pm \), a similar linearized system arises in the study of the sharp interface limit of the Cahn-Hilliard equation, cf. [6]. Moreover, similar systems arise in the construction of strong solutions for a Navier-Stokes/Mullins-Sekerka system locally in time, cf. [4].

We consider different kinds of boundary conditions for \(\mathbf{v}^- \) and \(\mu^- \) simultaneously. More precisely, we assume that

\[
\partial \Omega = \Gamma_{\mu,1} \cup \Gamma_{\mu,2} = \Gamma_{S,1} \cup \Gamma_{S,2} \cup \Gamma_{S,3},
\]

where \(\Gamma_{\mu,1}, \Gamma_{\mu,2} \) and \(\Gamma_{S,1}, \Gamma_{S,2}, \Gamma_{S,3} \) are disjoint and closed. Moreover, we have

\[
B_1(\mathbf{v}^-, p^-) = \mathbf{v}^- \quad \text{on } \Gamma_{S,1}\n
(B_2(\mathbf{v}^-, p^-))_\tau = \left((2D_\tau \mathbf{v}^- - p^-) n_{\partial \Omega} \right)_\tau + \alpha_2 \mathbf{v}^- \quad \text{on } \Gamma_{S,2}\n
n_{\partial \Omega} \cdot B_2(\mathbf{v}^-, p^-) = n_{\partial \Omega} \cdot \mathbf{v}^- \quad \text{on } \Gamma_{S,2}\n
B_3(\mathbf{v}^-, p^-) = (2D_\tau \mathbf{v}^- - p^-) n_{\partial \Omega} + \alpha_3 \mathbf{v}^- \quad \text{on } \Gamma_{S,3},
\]

where \(n_{\partial \Omega} \) denotes the exterior normal on \(\partial \Omega \). To avoid a non-trivial kernel in the following we assume that one of the following cases holds true:

\[
|\Gamma_{S,1}| + \alpha_2 |\Gamma_{S,2}| + \alpha_3 |\Gamma_{S,3}| > 0
\]

Then Korn’s inequality yields

\[
\|\mathbf{v}\|_{H^1(\Omega)} \leq C \left(\|D_\tau \mathbf{v}\|_{L^2(\Omega)} + \|\mathbf{v}\|_{L^2(\Gamma_{S,2})} + \alpha_3 \|\mathbf{v}\|_{L^2(\Gamma_{S,3})} \right)
\]

for all \(\mathbf{v} \in H^1(\Omega)^d \) with \(\mathbf{v}|_{\Gamma_{S,1}} = 0, n_{\partial \Omega} \cdot \mathbf{v}|_{\Gamma_{S,2}} = 0 \), cf. [5, Corollary 5.9].

The structure of this contribution is as follows: In Section 2 we summarize some preliminaries on the parametrization of the interface \(\Gamma_t \) and non-autonomous evolution equations. In Section 3 we present and prove our main results on existence and smoothness of solutions to the linearized Mullins-Sekerka system. Finally, in the appendix we prove an auxiliary result on the existence of a pressure.
The results of this paper are extensions of results in the second author’s PhD Thesis.

2. Preliminaries.

2.1. Notation. Throughout this manuscript we denote by $\xi \in C^{\infty}(\mathbb{R})$ a cut-off function such that

$$\xi(s) = 1 \text{ if } |s| \leq \delta, \quad \xi(s) = 0 \text{ if } |s| > 2\delta, \quad \text{and } 0 \geq s\xi'(s) \geq -4 \text{ if } \delta \leq |s| \leq 2\delta. \quad (11)$$

2.2. Coordinates. We parametrize $(\Gamma_t)_{t \in [0,T_0]}$ with the aid of a family of smooth diffeomorphisms $X_0: \Sigma \times [0,T_0] \to \Gamma = \bigcup_{t \in [0,T_0]} \Gamma_t \times \{t\}$. Here either $\Sigma \subseteq \mathbb{R}^d$ is a smooth $(d-1)$-dimensional compact, orientable manifold without boundary, where $d \geq 2$ is allowed, or $d = 2$ and $\Sigma = T^1$. We have included the latter case to cover the setting in [1, 2, 3]. Moreover, $n_{\Gamma_t}(x)$ denotes the exterior normal of Γ_t in x with respect to $\Omega^-(t)$ and we denote

$$n(s,t) := n_{\Gamma_t}((X_0(s,t))_1) \quad \text{for all } s \in \Sigma, t \in [0,T_0],$$

where $(X_0(s,t))_1 \in \mathbb{R}^d$ denote the spatial components of $X_0(s,t)$. In the following we will need a tubular neighborhood of Γ_t: For $\delta > 0$ sufficiently small, the orthogonal projection $P_{\Gamma_t}(x)$ of all

$$x \in \Gamma_t(3\delta) = \{ y \in \Omega : \text{dist}(y,\Gamma_t) < 3\delta \}$$

is well-defined and smooth. Moreover, we choose δ so small that $\text{dist}(\partial\Omega, \Gamma_t) > 3\delta$ for every $t \in [0,T_0]$. Every $x \in \Gamma_t(3\delta)$ has a unique representation

$$x = P_{\Gamma_t}(x) + r n_{\Gamma_t}(P_{\Gamma_t}(x))$$

where $r = \text{sdist}(\Gamma_t, x)$. Here

$$d_{\Gamma}(x,t) := \text{sdist}(\Gamma_t, x) = \begin{cases} \text{dist}(\Omega^-(t), x) & \text{if } x \notin \Omega^-(t), \\ -\text{dist}(\Omega^+(t), x) & \text{if } x \in \Omega^-(t). \end{cases}$$

For the following we define for $\delta' \in (0,3\delta]$

$$\Gamma(\delta') = \bigcup_{t \in [0,T_0]} \Gamma_t(\delta') \times \{t\}.$$

We introduce new coordinates in $\Gamma(3\delta)$ which we denote by

$$X: (-3\delta,3\delta) \times \Sigma \times [0,T_0] \mapsto \Gamma(3\delta) \text{ by } X(r,s,t) := X_0(s,t) + r n(s,t),$$

where

$$r = \text{sdist}(\Gamma_t, x), \quad s = (X_0^{-1}(P_{\Gamma_t}(x),t))_1 := S(x,t),$$

where $(X_0^{-1}(P_{\Gamma_t}(x),t))_1$ denote the components in Σ of $X_0^{-1}(P_{\Gamma_t}(x),t)$.

In the case that h is twice continuously differentiable with respect to s and continuously differentiable with respect to t, we introduce the notations

$$D_{\Gamma} h(s,t) := \partial_t \left(h(S(x,t),t) \right)|_{x=X_0(s,t)}, \quad \nabla_{\Gamma} h(s,t) := \nabla \left(h(S(x,t),t) \right)|_{x=X_0(s,t)},$$

$$\Delta_{\Gamma} h(s,t) := \Delta \left(h(S(x,t),t) \right)|_{x=X_0(s,t)},$$
where ∇ and Δ act with respect to x. We note that in the case that $d = 2$ and $\Sigma = \mathbb{T}^1$ we have
\[
\begin{align*}
D_t h(s, t) &= (\partial_t + \partial_t S(X_0(s, t)) \cdot \partial_s) h(s, t), \\
\nabla_t h(s, t) &= \nabla S(X_0(s, t)) \partial_s h(s, t), \\
\Delta_t h(s, t) &= \Delta S(X_0(s, t)) \partial_s h(s, t) + |\nabla S(X_0(s, t))|^2 \partial_s^2 h(s, t).
\end{align*}
\]
as in [1, 2, 3].

2.3. Maximal regularity for non-autonomous equations. In order to prove our main result we use the theory of maximal regularity for non-autonomous abstract evolution equations. Therefore, we give a short overview of the basic definitions and results which we will use. These are taken from [7] and all the proofs of the statements can be found in that article.

In this subsection let X and D be two Banach spaces such that D is continuously and densely embedded in X.

Definition 2.1 (L^p-maximal regularity). Let $p \in (1, \infty)$.

1. Let $A \in \mathcal{L}(D, X)$. Then A has L^p-maximal regularity and we write $A \in \mathcal{MR}_p$ if for some bounded interval $(t_1, t_2) \subset \mathbb{R}$ and all $f \in L^p(t_1, t_2; X)$ there exists a unique $u \in W^{1, p}(t_1, t_2; X) \cap L^p(t_1, t_2; D)$ such that
 \[
 \partial_t u + Au = f \quad \text{a.e. on } (t_1, t_2),
 \]
 \[
 u(t_1) = 0.
 \]

2. Let $T > 0$ and $A : [0, T] \to \mathcal{L}(D, X)$ be a bounded and strongly measurable function. Then A has L^p-maximal regularity and we write $A \in \mathcal{MR}_p(0, T)$ if for all $f \in L^p(0, T; X)$ there exists a unique $u \in W^{1, p}(0, T; X) \cap L^p(0, T; D)$ such that
 \[
 \partial_t u + A(t) u = f \quad \text{a.e. on } (0, T),
 \]
 \[
 u(0) = 0.
 \]

It can be shown that if $A \in \mathcal{MR}_p$ for some $p \in (1, \infty)$ then $A \in \mathcal{MR}_p$ for all $p \in (1, \infty)$. Hence, we often simply write $A \in \mathcal{MR}$.

Definition 2.2 (Relative Continuity).

We say that $A : [0, T] \to \mathcal{L}(D, X)$ is relatively continuous if for each $t \in [0, T]$ and all $\epsilon > 0$ there exist $\delta > 0$, $\eta \geq 0$ such that for all $x \in D$ and for all $s \in [0, T]$ with $|s - t| \leq \delta$ the inequality
\[
\|A(t)x - A(s)x\|_X \leq \epsilon \|x\|_D + \eta \|x\|_X
\]
holds.

Theorem 2.3. Let $T > 0$ and $A : [0, T] \rightarrow \mathcal{L}(D, X)$ be a strongly measurable and relatively continuous function. If $A(t) \in \mathcal{MR}$ for all $t \in [0, T]$, then $A \in \mathcal{MR}_p(0, t)$ for every $0 < t \leq T$ and every $p \in (1, \infty)$.

Proof. See [7, Theorem 2.7].

A very important tool for proving maximal regularity properties of differential operators are perturbation techniques. Employing these can often help to show maximal regularity for a variety of operators by separating them into a main part (for which maximal regularity can be readily shown) and a perturbation.

In the following we give a perturbation result which is key to many results in the next chapter.
Definition 2.4 (Relatively Close).

Let \(Y \) be a Banach space such that

\[
D \hookrightarrow Y \hookrightarrow X.
\]

We say \(Y \) is close to \(X \) compared with \(D \), if for each \(\epsilon > 0 \) there exists \(\eta \geq 0 \) such that

\[
\|x\|_Y \leq \epsilon \|x\|_D + \eta \|x\|_X \quad \text{for all} \quad x \in D.
\]

Proposition 1. Let \(Y \) be as in Definition 2.4 and let the inclusion \(D \hookrightarrow Y \) be compact. Then \(Y \) is close to \(X \) compared with \(D \).

Proof. See [7, Example 2.9 (d)]. \(\square \)

Theorem 2.5. Let \(T > 0 \) and \(Y \) be a Banach space that is close to \(X \) compared with \(D \). Furthermore, let \(A: [0, T] \rightarrow \mathcal{L}(D, X) \) be relatively continuous and \(B: [0, T] \rightarrow \mathcal{L}(Y, X) \) be strongly measurable and bounded. If \(A(t) \in \mathcal{MR} \) for every \(t \in [0, T] \) then \(A + B \in \mathcal{MR}_p(0, T) \).

Proof. See [7, Theorem 2.11]. \(\square \)

3. Main results. We introduce the space

\[
X_T = L^2(0, T; H^\frac{7}{2}(\Sigma)) \cap H^1(0, T; H^\frac{1}{2}(\Sigma))
\]

for \(T \in (0, \infty) \), where we equip \(X_T \) with the norm

\[
\|h\|_{X_T} = \|h\|_{L^2(0, T; H^\frac{7}{2}(\Sigma))} + \|h\|_{H^1(0, T; H^\frac{1}{2}(\Sigma))} + \|h|_{t=0}\|_{H^1(\Sigma)}.
\]

Theorem 3.1. Let \(T \in (0, T_0] \). Let \(b: \Sigma \times [0, T] \rightarrow \mathbb{R}^d \) and \(b_1, b_2: \Sigma \times [0, T] \rightarrow \mathbb{R} \) be smooth given functions. For every \(g \in L^2(0, T; H^\frac{1}{2}(\Sigma)) \) and \(h_0 \in H^2(\Sigma) \), there is a unique solution \(h \in X_T \) of

\[
D_t h + b \cdot \nabla h + b_1 h + X_0^* \left(\partial_n \mu \right) = g \quad \text{on} \quad \Sigma \times (0, T),
\]

\[
h(., 0) = h_0 \quad \text{on} \quad \Sigma,
\]

where \(\mu|_{\Omega^\pm(t)} \in H^2(\Omega^\pm(t)), \) for \(t \in [0, T] \), is determined by

\[
\Delta \mu^\pm = 0 \quad \text{in} \quad \Omega^\pm(t),
\]

\[
\mu^\pm = X_0^* (\sigma \Delta \Gamma h \pm b_2 h) \quad \text{on} \quad \Gamma_t,
\]

\[
\mathbf{n}|_{\partial \Omega} \cdot \nabla \mu^- = 0 \quad \text{on} \quad \Gamma_{\mu, 1},
\]

\[
\mu^- = 0 \quad \text{on} \quad \Gamma_{\mu, 2}.
\]

Furthermore, the estimates

\[
\sum_{\pm} \|\mu^\pm\|_{L^2(0, T; H^2(\Omega^\pm(t))))} + \|\mu^\pm\|_{L^2(0, T; H^1(\Omega^\pm(t)))} \leq C \|h\|_{X_T},
\]

hold for some constant \(C > 0 \) independent of \(\mu \) and \(h \).

Proof. We may write (13) in abstract form as

\[
\partial_t h + A(t) h = g \quad \text{in} \quad \Sigma \times [0, T],
\]

\[
h(., 0) = h_0 \quad \text{in} \quad \Sigma,
\]

where \(A(t): H^\frac{7}{2}(\Sigma) \rightarrow H^\frac{1}{2}(\Sigma) \) depends on \(t \in [0, T] \). Now we fix \(t_0 \in [0, T] \) and analyze the operator \(A(t_0) \), where we replace \(t \) with the fixed \(t_0 \) in all time dependent coefficients.
In order to understand this operator we define

\[\mathcal{D}_{t_0} : H^\frac{3}{2}(\Sigma) \to H^\frac{3}{2}(\Gamma_{t_0}) : h \mapsto (X_0^{-1}(\sigma\Delta_t h))(\cdot, t_0), \]
\[S_{t_0}^N : H^\frac{3}{2}(\Gamma_{t_0}) \to H^2(\Omega^+(t_0)) \times H^2(\Omega^-(t_0)) : f \mapsto (\Delta_N)^{-1} f, \]
\[B_{t_0} : H^2(\Omega^+(t_0)) \times H^2(\Omega^-(t_0)) \to H^\frac{1}{2}(\Sigma) : (\mu^+, \mu^-) \mapsto (X_0^1(\nabla \mu \cdot \mathbf{n}_{\Gamma_{t_0}}))(\cdot, t_0), \]

where \((\Delta_N)^{-1} f\) is the unique solution \((\mu_N^+, \mu_N^-)\) to

\[\begin{align*}
\Delta \mu_N^+ &= 0 & \text{in } \Omega^+(t_0), \\
\mu_N^+ &= f & \text{on } \Gamma_{t_0}, \\
\nabla \mu_N^- \cdot \mathbf{n}_{\partial \Omega} &= 0 & \text{on } \partial \Omega.
\end{align*} \tag{16a,b,c} \]

In the literature the concatenation \(B_{t_0} \circ S_{t_0}^N\) is often referred to as the Dirichlet-to-Neumann operator and \(A_0(t_0) := B_{t_0} \circ S_{t_0}^N \circ \mathcal{D}_{t_0}\) is called the Mullins-Sekerka operator. It can be shown that

\[A_0 : [0, T] \to \mathcal{L}(H^\frac{3}{2}(\Sigma), H^\frac{3}{2}(\Sigma)) \]

has \(L^p\)-maximal regularity, i.e., \(A_0 \in \mathcal{MR}_p(0, T)\). We will not prove this in detail but just give a short sketch describing the essential ideas: first, a reference surface \(\tilde{\Sigma} \subset \subset \Omega\) is fixed such that \(\Gamma_t\) can be expressed as a graph over \(\tilde{\Sigma}\) for \(t\) in some time interval \([\tilde{t}, \tilde{t} + \epsilon] \subset [0, T]\), e.g. one may choose \(\Sigma := \Gamma_0\) and then determine \(\epsilon_0 > 0\) such that \(\Gamma_t\) may be written as graph over \(\Gamma_0\) for all \(t \in [0, \epsilon_0]\), which is possible since \(\tilde{\Sigma}\) is a smoothly evolving hypersurface. Next, a Hanzawa transformation is applied, enabling us to consider (16c) as a system on fixed domains \(\Omega^\pm\) and \(\tilde{\Sigma}\), but with time dependent coefficients (see e.g. [4, Chapter 2.2] or [12, Chapter 4]). Here, \(\Omega^+, \Omega^-\) and \(\tilde{\Sigma}\) denote disjoint sets such that \(\partial \Omega^+ = \tilde{\Sigma}\) and \(\Omega = \Omega^+ \cup \Omega^- \cup \tilde{\Sigma}\) holds and we assume in the following that \(t_0 \in [0, \epsilon_0]\). To be more specific, the Hanzawa transformation results in a system of the form

\[a(x, t, \nabla x) \tilde{\mu}^\pm = 0 \quad \text{in } \Omega^\pm, \]
\[\tilde{\mu}^\pm = \tilde{f} \quad \text{on } \tilde{\Sigma}, \]
\[\nabla \tilde{\mu}^- \cdot \mathbf{n}_{\partial \Omega} = 0 \quad \text{on } \partial \Omega, \]

where \(a\) is the transformed Laplacian, depending smoothly on \(t\) and \(\tilde{f}\) is the transformation of \(f\). Applying the Hanzawa transformation (and the diffeomorphism \(X_0\)) also to the operators \(\mathcal{D}_{t_0}\) and \(B_{t_0}\), we end up with a transformed operator \(\tilde{A}_0(t_0) \in \mathcal{L}(H^\frac{3}{2}(\Sigma), H^\frac{3}{2}(\Sigma))\) and [11, Corollary 6.6.5] implies that \(\tilde{A}_0(t_0)\) has \(L^p\)-maximal regularity. As all involved differential operators and coefficients depend smoothly on \(t\), it is possible to show that \(\tilde{A}_0 : [0, \epsilon_0] \to \mathcal{L}(H^\frac{3}{2}(\Sigma), H^\frac{3}{2}(\Sigma))\) is relatively continuous. Therefore Theorem 2.3 implies \(\tilde{A}_0 \in \mathcal{MR}_p(0, \epsilon_0)\) and, transforming back, also \(A_0 \in \mathcal{MR}_p(0, \epsilon_0)\). Repeating this procedure with a new reference surface \(\Sigma := \Gamma_{t_0}\) and iteratively continuing the argumentation, we end up with \(A_0 \in \mathcal{MR}_p(0, T)\).

We proceed by showing that \(\mathcal{A}(t_0) = A_0(t_0) + \mathcal{B}(t_0)\) holds for some lower order perturbation \(\mathcal{B}\). We introduce

\[S_{t_0}^{DN} : H^\frac{3}{2}(\Gamma_{t_0}) \to H^2(\Omega^+(t_0)) \times H^2(\Omega^-(t_0)) : f \mapsto (\Delta_{DN})^{-1} f, \]

where \((\mu_{DN}^+, \mu_{DN}^-) := (\Delta_{DN})^{-1} f\) is the unique solution to (16), replacing \(\nabla \mu_N^- \cdot \mathbf{n}_{\partial \Omega} = 0\) on \(\Gamma_{\mu, 2}\) by \(\mu_D = 0\) on \(\Gamma_{\mu, 2}\). Moreover, we write \(S^\Delta_{t_0} := S_{t_0}^{DN} - S_{t_0}^N\) and
observe that the equality

\[B_{t_0} \circ S_{t_0}^{DN} \circ D_{t_0} \sigma = A_0(t_0) + B_0(t_0) \]

(17)
is satisfied, where \(B_0(t_0) := B_{t_0} \circ S_{t_0}^{\Delta} \circ D_{t_0} \sigma \). Let \(f \in H^{\frac{3}{2}}(\Gamma_{t_0}) \) be fixed, \((\mu_N^{+}, \mu_N^{-}) := S_{DN} f, (\mu_N^{\pm}, \tilde{\mu}) := S_{t_0} f \) and \(\tilde{\mu}^\pm := \mu_N^\pm - \mu_N^{-} \), implying \((\tilde{\mu}^+, \tilde{\mu}^-) = S_{t_0} f \). Then \(\tilde{\mu}^\pm \in H^2(\Omega^\pm(t_0)) \) solves

\[
\begin{align*}
\Delta \tilde{\mu}^\pm &= 0 \quad \text{in } \Omega^\pm(t_0), \\
\tilde{n}_{\partial \Omega} \cdot \nabla \tilde{\mu}^\pm &= 0 \quad \text{on } \Gamma_{t_0}, \\
\tilde{\mu}^\pm &= \mu_N^{-} \quad \text{on } \Gamma_{\mu,2}
\end{align*}
\]

and elliptic regularity theory implies

\[\| \tilde{\mu}^- \|_{H^2(\Omega^-(t_0))} \leq C \| \mu_N^- \|_{H^2(\Gamma_{t_0})} \]

(18)

and \(\tilde{\mu}^+ \equiv 0 \) in \(\Omega^+(t_0) \). For the further argumentation, we show

\[\| \mu_N^- \|_{H^2(\partial \Omega)} \leq C \| \mu_N^- \|_{H^2(\Gamma_{t_0})}. \]

(19)

To this end let \(\gamma(x) := \xi(4d_B(x)) \) for all \(x \in \Omega \), where \(\xi \) is a cut-off function satisfying (11). In particular supp\(\gamma \cap \Gamma_t = \emptyset \) for all \(t \in [0, T_0] \) by our assumptions and \(\gamma \equiv 1 \) in \(\partial \Omega(\frac{3}{2}) \). Denoting \(\hat{\mu} := \gamma \mu_N^- \in H^2(\Omega^-(t_0)) \), we compute using \(\Delta \mu_N^- = 0 \) in \(\Omega^-(t_0) \) that \(\hat{\mu} \) is a solution to

\[
\begin{align*}
\Delta \hat{\mu} &= 2\nabla \gamma \cdot \nabla \mu_N^- + (\Delta \gamma) \mu_N^- \quad \text{in } \Omega^-(t_0), \\
\hat{\mu} &= 0 \quad \text{on } \Gamma_{t_0}, \\
\nabla \hat{\mu} \cdot \nu_{\Omega} &= 0 \quad \text{on } \partial \Omega,
\end{align*}
\]

which, again regarding elliptic regularity theory, implies \(\| \hat{\mu} \|_{H^2(\Omega^-(t_0))} \leq C \| \mu_N^- \|_{H^2(\Omega^-(t_0))} \). This is essential in view of (19) as it leads to

\[
\| \mu_N^- \|_{H^2(\partial \Omega)} = \| \hat{\mu} \|_{H^2(\partial \Omega)} \leq C \| \mu_N^- \|_{H^2(\Omega^-(t_0))} \leq C \| \mu_N^- \|_{H^2(\Gamma_{t_0})},
\]

where we used the continuity of the trace operator \(\text{tr}: H^2(\Omega^-(t_0)) \to H^\frac{3}{2}(\partial \Omega^-(t_0)) \) in the first inequality (cf. [10, Theorem 3.37]) and standard estimates for elliptic equations in the second and third inequality.

Let now \(h \in H^\frac{3}{2}(\Sigma) \) and \((\tilde{\mu}^+, \tilde{\mu}^-) := S_{t_0}^\Delta \circ D_{t_0} h \). Our prior considerations enable us to estimate

\[
\| B_{t_0} \circ S_{t_0}^\Delta \circ D_{t_0} h \|_{H^\frac{3}{2}(\Sigma)} \leq C \| \tilde{\mu}^+ \|_{H^2(\Omega^+(t_0))} \leq C \| \mu_N^- \|_{H^\frac{3}{2}(\Gamma_{t_0})} \leq C \| \sigma \Delta \Gamma h \|_{H^\frac{3}{2}(\Sigma)} \leq C \| h \|_{H^\frac{3}{2}(\Sigma)},
\]

where we employed the continuity of the trace in the first line, (18) in the second, (19) in the third and the definition of \(\mu_N^- \) in the fourth. As \(H^\frac{3}{2}(\Sigma) \) is dense in \(H^\frac{3}{2}(\Sigma) \), we may extend \(B_0(t_0) \) to an operator

\[B_0(t_0): H^\frac{3}{2}(\Sigma) \to H^\frac{3}{2}(\Sigma), \]

(20)

which shows in regard to (17) that we may view \(B_{t_0} \circ S_{t_0}^\Delta \circ D_{t_0} \) as a lower order perturbation of \(A_0(t_0) \).
Next we take care of the term involving \(b_2\) in (14b). For this we consider the operator
\[
B_1(t_0): H^{\frac{7}{2}}(\Sigma) \to H^{\frac{3}{2}}(\Sigma): h \mapsto X_0^\ast(\partial_\nu_{\Gamma_0} \mu_1),
\]
where \(\mu_1^\pm \in H^2(\Omega^\pm(t_0))\) is the solution to
\[
\begin{align*}
\Delta \mu_1^\pm &= 0 & &\text{in } \Omega^\pm(t_0), \\
\mu_1^\pm &= \pm b_2 h & &\text{on } \Gamma_0, \\
\mathbf{n}_\partial \Omega \cdot \nabla \mu_1^- &= 0 & &\text{on } \Gamma_{\mu,1}, \\
\mu_1^- &= 0 & &\text{on } \Gamma_{\mu,2}.
\end{align*}
\]
We estimate
\[
\|B_1(t_0)h\|_{H^{\frac{3}{2}}(\Sigma)} \leq C \left\| \partial_\nu_{\Gamma_0} \mu_1 \right\|_{H^{\frac{1}{2}}(\Gamma_0)} \leq C \left(\|\mu_1^+\|_{H^2(\Omega^+(t_0))} + \|\mu_1^-\|_{H^2(\Omega^-(t_0))} \right) \leq C \|h\|_{H^{\frac{7}{2}}(\Sigma)},
\]
where \(C > 0\) can be chosen independent of \(h\) and \(t_0 \in [0,T]\). Here we again employed the continuity of the trace operator and elliptic theory.

Defining
\[
B(t_0): H^{\frac{7}{2}}(\Sigma) \to H^{\frac{3}{2}}(\Sigma): h \mapsto B(t_0)h := \tilde{b}(.,t_0) : \nabla \Gamma h - b_1(.,t_0)h + (\mathcal{B}_0(t_0) + \mathcal{B}_1(t_0))h,
\]
where \(\tilde{b}\) is chosen such that \(\partial_t h + \tilde{b} \cdot \nabla \Gamma h = D_{t_1} h + b \cdot \nabla \Gamma h\), and using (21) and (20), we find that
\[
\|B(t_0)h\|_{H^{\frac{3}{2}}(\Sigma)} \leq C \|h\|_{H^{\frac{7}{2}}(\Sigma)}.
\]
Thus, we can extend \(B(t_0)\) to a bounded operator \(B(t_0): H^{\frac{3}{2}}(\Sigma) \to H^{\frac{3}{2}}(\Sigma)\). Since \(H^{\frac{3}{2}}(\Sigma)\) is close to \(H^{\frac{7}{2}}(\Sigma)\) compared to \(H^{\frac{3}{2}}(\Sigma)\) as the embedding \(H^{\frac{3}{2}}(\Sigma) \hookrightarrow H^{\frac{7}{2}}(\Sigma)\) is compact, we get due to Theorem 2.5, that \(A = A_0 + B\) has \(L^p\)-maximal regularity for all \(t \in [0,T]\).

By elliptic theory
\[
\|\mu^\pm\|_{H^1(\Omega^\pm(t))} \leq C \|X_0^{s-1}(\sigma \Delta \Gamma h + b_2 h)\|_{H^{\frac{3}{2}}(\Gamma_1)} \leq C \|h\|_{H^{\frac{7}{2}}(\Sigma)}
\]
for almost all \(t \in [0,T]\) and thus
\[
\|\mu^\pm\|_{L^6(0,T;H^1(\Omega^\pm(t)))} \leq C \|h\|_{L^6(0,T;H^{\frac{3}{2}}(\Sigma))} \leq C \|h\|_{X_T}.
\]

\(\square\)

Theorem 3.2. Let \(T \in (0,T_0]\) and \(t \in [0,T]\). For every \(f \in L^2(\Omega)^d\), \(s \in H^{\frac{3}{2}}(\Gamma_0)^d\), \(a \in H^{\frac{3}{2}}(\Gamma_1)^d\) and \(g: \partial \Omega \to \mathbb{R}^d\) such that \(g|_{\Gamma_{S,1}} \in H^{\frac{3}{2}}(\Gamma_{S,1})^d\), \(\mathbf{n}_\partial \Omega \cdot g|_{\Gamma_{S,2}} \in H^{\frac{3}{2}}(\Gamma_{S,2})^d\), \((I - \mathbf{n}_\partial \Omega \otimes \mathbf{n}_\partial \Omega)g|_{\Gamma_{S,2}} \in H^{\frac{3}{2}}(\Gamma_{S,2})^d\), \(g|_{\Gamma_{S,3}} \in H^{\frac{3}{2}}(\Gamma_{S,3})^d\) satisfying the compatibility condition
\[
\int_{\Gamma_0} \mathbf{n}_{\Gamma_0} \cdot s \, d\mathcal{H}^{d-1} + \int_{\partial \Omega} \mathbf{n}_\partial \Omega \cdot g \, d\mathcal{H}^{d-1} = 0 \quad \text{if } \Gamma_{S,3} = \emptyset
\]
(22)
Thus, defining $\tilde{w} = w + \nabla q$, the couple (\tilde{w}, \tilde{p}) solves
\[-\Delta \tilde{w} + \nabla \tilde{p} = 0 \quad \text{in } \Omega^-(t),
\]
\[\text{div } \tilde{w} = 0 \quad \text{in } \Omega^-(t),
\]
\[\tilde{w} = \mathbf{s} \quad \text{on } \Gamma_t,
\]
\[\tilde{w} = 0 \quad \text{on } \partial \Omega.
\]
and may be estimated by \(s \) in strong norms. Next, let
\[
\tilde{g} := g_j + B_j(\tilde{w}, \tilde{p}) \quad \text{on } \Gamma_{S,j}, j = 1, 2, 3
\]
and \(\tilde{a} := a - (2D_s \tilde{w} - \tilde{p}) n_{\Gamma_j} \in H^{\frac{1}{2}}(\Gamma_j)^d \), where the regularity is due to the properties of the trace operator. Then, for every strong solution \((\tilde{v}^+, \tilde{p}^+)\) of \((23)-(27)\), with \(s \equiv 0 \) and \(g, a \) substituted by \(\tilde{g}, \tilde{a} \), the functions
\[
(\tilde{v}^+, p^+) := (\tilde{v}^+, \tilde{p}^+) \quad \text{and} \quad (\tilde{v}^-, p^-) := (\tilde{v}^-- \tilde{w}, \tilde{p}^- - \tilde{p})
\]
are solutions to the original system \((23)-(27)\). So, we will consider \(s \equiv 0 \) in the following and show existence of strong solutions in that case.

As a starting point, we construct a solution \((v, p) \in V(\Omega) \times L^2(\Omega)\) to the weak formulation
\[
\int_{\Omega} 2D_s v : D_s \psi \, dx - \int_{\Omega} p \, \div \psi \, dx + \int_{\Gamma_{S,2}} \alpha_2 v \cdot \psi \, d\mathcal{H}^{d-1}(s) + \int_{\Gamma_{S,3}} \alpha_3 v \cdot \psi \, d\mathcal{H}^{d-1}(s) = \int_{\Omega} f \cdot \psi \, dx + \int_{\Gamma_1} a \cdot \psi \, d\mathcal{H}^{d-1}(s) - \int_{\partial\Omega} g \cdot \psi \, d\mathcal{H}^{d-1}(s),
\]
for all \(\psi \in H^1(\Omega)^d \) with \(\psi|_{\Gamma_{S,1}} = 0, n \cdot \psi|_{\Gamma_{S,2}} = 0 \), where
\[
V(\Omega) = \{ u \in H^1(\Omega)^d : \div u = 0, u|_{\Gamma_{S,1}} = 0, n \cdot u|_{\Gamma_{S,2}} = 0 \}.
\]

Considering first \(\psi \in V(\Omega) \) and the right hand side as a functional \(F \in (V(\Omega))' \), the Lemma of Lax-Milgram implies the existence of a unique \(v \in V(\Omega) \) solving \((29)\) for all \(\psi \in V(\Omega) \), where the coercivity of the involved bilinear form is a consequence of \((10)\).

Next consider the functional
\[
F(\psi) := -\int_{\Omega} 2D_s v : D_s \psi \, dx - \int_{\Gamma_{S,2}} \alpha_2 v \cdot \psi \, d\mathcal{H}^{d-1}(s) - \int_{\Gamma_{S,3}} \alpha_3 v \cdot \psi \, d\mathcal{H}^{d-1}(s) + \int_{\Omega} f \cdot \psi \, dx + \int_{\Gamma_1} a \cdot \psi \, d\mathcal{H}^{d-1}(s) - \int_{\partial\Omega} g \cdot \psi \, d\mathcal{H}^{d-1}(s),
\]
for all \(\psi \in H^1(\Omega)^d \) with \(\psi|_{\Gamma_{S,1}} = 0, n \cdot \psi|_{\Gamma_{S,2}} = 0 \). Then \(F \) vanishes on \(V(\Omega) \) and by Lemma A.1 in Appendix A there is a unique \(p \in L^2(\Omega) \) with \(\int_{\Omega} p \, dx = 0 \) if \(\Gamma_{S,3} = \emptyset \) such that
\[
F(\psi) = -\int_{\Omega} p \, \div \psi \, dx \quad \text{for all } \psi \in H^1(\Omega)^d \text{ with } \psi|_{\Gamma_{S,1}} = 0, n \cdot \psi|_{\Gamma_{S,2}} = 0.
\]
Hence \((v, p)\) solve \((29)\). Moreover, we obtain the estimate
\[
\|(v, p)\|_{H^1(\Omega) \times L^2(\Omega)} \leq C \left(\|f\|_{L^2(\Omega)} + \|a\|_{H^{\frac{1}{2}}(\Gamma_1)} + \|g\|_{H^{\frac{1}{2}}(\partial\Omega)} \right).
\]
We now show higher regularity of \((v, p)\) by localization.

Let \(\eta^\pm \in C^\infty(\Omega) \) be a partition of unity of \(\Omega \), such that the inclusions \(\Omega^+(t) \cup \Gamma_t(\delta) \subset \{ x \in \Omega : \eta^+(x) = 1 \} \) and \(\partial\Omega(\delta) \subset \{ x \in \Omega : \eta^-(x) = 1 \} \) hold. We choose \(\eta^\pm \) such that \(\{ x \in \Omega : \eta^+(x) = 1 \} \) has smooth boundary and define \(U^\pm := \text{supp}(\eta^\pm), \partial U^\pm_0 := \partial U^\pm \setminus \partial\Omega \) and
\[
\hat{U} := \{ x \in \Omega : \eta^+(x) \in (0, 1) \} = \{ x \in \Omega : \eta^-(x) \in (0, 1) \}.
\]
Moreover, we set \(\hat{p}^- := pm^- \) and \(\hat{v}^- := v\eta^- \) in \(\Omega \) and we correct the divergence of \(\hat{v}^- \) with the help of the Bogovskii-operator: Let \(\varphi \in C^\infty_c(\Omega) \) with \(\text{supp}(\varphi) \subset U^+ \setminus \hat{U} \)
and \(\int_{\Omega} \varphi \, dx = 1 \) and set

\[
\hat{g} := \text{div} (\tilde{v}^-) - \varphi \int_{U^+} \text{div} (\tilde{v}^-) \, dx
\]

in \(U^+ \). As \(v \in V(\Omega) \), we have \(\text{div} (\tilde{v}^-) = v \cdot \nabla \eta^- \) and thus \(\hat{g} \in H_0^1 (U^+) \), \(\int_{U^+} \hat{g} \, dx = 0 \). Consequently, [9, Theorem III.3.3] implies that there is \(\tilde{v}^- \in H_0^2 (U^+) \), which we extend onto \(\Omega \) by 0, satisfying

\[
\text{div} \tilde{v}^- = \hat{g} \text{ in } U^+,
\]

\[
\|\tilde{v}^-\|_{H^2(\Omega)} \leq C \|v\|_{H^1(\Omega)}.
\]

Therefore, \(\hat{v}^- := \tilde{v}^- - \tilde{v}^- \) fulfills \(\text{div} \hat{v}^- = 0 \) in \(U^- \) since \(\varphi \equiv 0 \) in that domain. Let now

\[
\psi \in \{ w \in H^1(U^d) : w = 0 \text{ on } \partial U_0^- \setminus S, \, w|_{\Gamma_{S,1}} = 0, \, n \cdot w|_{\Gamma_{S,2}} = 0 \},
\]

then

\[
\int_{U^-} 2D_s \hat{v}^- : D_s \psi - \hat{p}^- \text{ div } \psi \, dx + \int_{\Gamma_{S,2}} \alpha_2 v \cdot \psi \, d\mathcal{H}^{d-1}(s) + \int_{\Gamma_{S,3}} \alpha_3 v \cdot \psi \, d\mathcal{H}^{d-1}(s)
\]

\[
= \int_{U^-} 2D_s \tilde{v}^- : D_s \psi - \hat{p}^- \text{ div } \psi \, dx + \int_{\Gamma_{S,2}} \alpha_2 v \cdot \psi \, d\mathcal{H}^{d-1}(s) + \int_{\Gamma_{S,3}} \alpha_3 v \cdot \psi \, d\mathcal{H}^{d-1}(s)
\]

\[
+ \int_{\Gamma_{S,3}} \alpha_3 v \cdot \psi \, d\mathcal{H}^{d-1}(s) - \int_{U^-} 2D_s \hat{v}^- : D_s \psi \, dx
\]

\[
= \int_{U^-} f \cdot \psi \eta^- \, dx - \int_{\partial \Omega} g \cdot \psi \, d\mathcal{H}^{d-1}(s) + (p \nabla \eta^-) \cdot \psi \, dx
\]

\[
+ \int_{U^-} 2 \text{ div } (D_s \psi) \cdot \psi + (2D_s v \nabla \eta^- - \text{div } (v \otimes \nabla \eta^- + \nabla \eta^- \otimes v)) \cdot \psi \, dx,
\]

where we used the definition of \(\tilde{v}^- \) and \(\hat{p}^- \) in the first equality and integration by parts together with \(\tilde{v}^- \in H_0^2 (U^+) \) and \(\nabla \eta^- = 0 \) on \(U^- \) in the second equality. Additionally, we employed the fact that \((v, p) \) is the weak solution to \((29)\). Hence, \((\hat{v}^-, \hat{p}^-)\) are a weak solution to the system

\[
-\Delta \hat{v}^- + \nabla \hat{p}^- = \hat{f} \quad \text{in } U^-, \\
\text{div } \hat{v}^- = 0 \quad \text{in } U^-,
\]

\[
\hat{v}^- = 0 \quad \text{on } \partial U_0^-,
\]

\[
B_j (\hat{v}^-, \hat{p}^-) = g \quad \text{on } \Gamma_{S,j}, j = 1, 2, 3,
\]

(32)

where

\[
\hat{f} := f \eta^- + p \nabla \eta^- + 2 \text{ div } (D_s \tilde{v}) + 2D_s v \nabla \eta^- - \text{div } (v \otimes \nabla \eta^- + \nabla \eta^- \otimes v) \in L^2(U^-)
\]

and \(\hat{v}^- \in H_0^2 (\partial U_0^-) \) by the properties of the trace operator. Writing

\[
\bar{g} := \begin{cases}
\bar{g} \quad \text{on } \Gamma_{S,1}, \\
\alpha_j \tilde{v}^- + \bar{g} \quad \text{on } \Gamma_{S,j}, j = 2, 3,
\end{cases}
\]

using localization techniques and results for strong solutions of the stationary Stokes equation in one phase with inhomogeneous do-nothing boundary condition (cf. Theorem 3.1 in [14]), with Dirichlet boundary condition (cf. [9]) and slip-boundary
Analogously, we define \(\tilde{v}^+ := v \eta^+ \) and \(\tilde{v}^+ \in H^2_0(\tilde{U}) \) as a solution to \(\text{div} \tilde{v}^+ = \text{div} \hat{v}^+ \). Here, we do not need to correct the mean value, since
\[
\int_{\tilde{U}} \text{div} \hat{v}^+ \, dx = \int_{\partial \tilde{U}} v \cdot n_{\partial \tilde{U}} \eta^+ \, d\mathcal{H}^{d-1}(s) = -\int_{\{\eta^+=1\}} \text{div} \, v \, dx = 0.
\]

We set \(\hat{v}^+ := \hat{v}^+ - \tilde{v}^+ \) and \(\hat{p}^+ := p \eta^+ \) and get after similar calculations as before that \((\hat{v}^+ , \hat{p}^+) \) is a weak solution to the two phase stationary Stokes system
\[
-\Delta \hat{v}^+ + \nabla \hat{p}^+ = \hat{f} \quad \text{in } U^+, \quad \text{(33)}
\]
\[
\text{div} \hat{v}^+ = 0 \quad \text{in } U^+, \quad \text{(34)}
\]
\[
\hat{v}^+ = 0 \quad \text{on } \partial U^+, \quad \text{(35)}
\]
\[
[\hat{v}^+] = 0 \quad \text{on } \Gamma_t, \quad \text{(36)}
\]
\[
[2D_a \hat{v}^+ - \hat{p}^+ I] n_{\Gamma_t} = a \quad \text{on } \Gamma_t, \quad \text{(37)}
\]

where \(\hat{f} \in L^2(U^+) \). Then \(\text{[13, Theorem 1.1]} \) implies \(\hat{v}^+ |_{\Omega^+ (t)} \in H^2(\Omega^+(t)) \) and \(\hat{v}^+ |_{\Omega^+ \setminus \Omega^+(t)} \in H^2(U^+ \setminus \Omega^+(t)) \), and also that the pressure satisfies \(\hat{p}^+ |_{\Omega^+ (t)} \in H^1(\Omega^+(t)) \) and \(\hat{p}^+ |_{\Omega^+ \setminus \Omega^+(t)} \in H^1(U^+ \setminus \Omega^+(t)) \) with estimates in the associated norms. In particular, \(v = \hat{v}^+ \) in \(\Omega^+(t) \) and \(v = \hat{v}^+ + \hat{v}^+ + \hat{v}^- \) in \(\Omega^- (t) \), yielding the desired regularity and (28). To show that \(C > 0 \) may be chosen independently of \(t \in [0, T_0] \), one may make use of extension arguments, see e.g. the proof of \(\text{[1, Lemma 2.10]} \). \(\square \)

Theorem 3.3. Let \(T \in (0, T_0] \). Let \(b : \Sigma \times [0, T] \to \mathbb{R}^d \), \(b : \Sigma \times [0, T] \to \mathbb{R} \), \(a_1 : \Omega \times [0, T] \to \mathbb{R} \), \(a_2, a_3, a_5 : \Gamma \to \mathbb{R} \), \(a_4 : \partial \Omega \times [0, T] \to \mathbb{R} \), \(a_1 : \Omega \times [0, T] \to \mathbb{R}^d \), \(a_2, a_3, a_5 : \Gamma \to \mathbb{R} \) and \(a_6 : \partial \Omega \times [0, T] \to \mathbb{R}^d \) be smooth given functions such that
\[
\int_{\Gamma_S} n_{\Gamma_S} \cdot a_2 \, d\mathcal{H}^{d-1} = \int_{\partial \Omega} n_{\partial \Omega} \cdot a_6 \, d\mathcal{H}^{d-1} = 0 \quad \text{if } \Gamma_{S,3} = \emptyset.
\]

For every \(g \in L^2(0, T; H^{\frac{1}{2}}(\Sigma)) \) and \(h_0 \in H^2(\Sigma) \) there exists a unique solution \(h \in X_T \) of
\[
D_{t,t}h + b \cdot \nabla h - bh + \frac{1}{2} X_0^* (v^+ + v^-) \cdot n_{\Gamma_t} + \frac{1}{2} X_0^* (\partial n_{\Gamma_t}, \mu) = g \quad \text{in } \Sigma \times (0, T),
\]
\[
h (., 0) = h_0 \quad \text{in } \Sigma,
\]

where for every \(t \in [0, T] \), the functions \(v^\pm = v^\pm (x, t) \), \(p^\pm = p^\pm (x, t) \) and \(\mu^\pm = \mu^\pm (x, t) \) for \((x, t) \in \Omega_T^\pm \) with \(v^\pm \in H^2(\Omega^\pm (t)) \), \(p^\pm \in H^1(\Omega^\pm (t)) \) and \(\mu^\pm \in H^2(\Omega^\pm (t)) \)
are the unique solutions to
\[
\Delta \mu^\pm = a_1 \quad \text{in } \Omega^\pm(t),
\]
\[
\mu^\pm = X_0^{-1}(-\sigma \Delta h \pm a_2 h) + a_3 \quad \text{on } \Gamma_t,
\]
\[
n_{\partial \Omega} \cdot \nabla \mu^- = a_4 \quad \text{on } \Gamma_{\mu,1},
\]
\[
\mu^- = a_4 \quad \text{on } \Gamma_{\mu,2},
\]
\[
-\Delta \nu^\pm + \nabla p^\pm = a_1 \quad \text{in } \Omega^\pm(t),
\]
\[
\text{div } \nu^\pm = 0 \quad \text{in } \Omega^\pm(t),
\]
\[
[v] = a_2 \quad \text{on } \Gamma_t,
\]
\[
2D_v \nu - p I | n_{\Gamma_t} = X_0^{-1} (a_3 h + a_4 \Delta h + a_5 \nabla h + a_5) \quad \text{on } \Gamma_t,
\]
\[
B_j(\nu^-, p^-) = a_6 \quad \text{on } \Gamma_{S,j}, j = 1, 2, 3.
\] (46)

Moreover, if \(g, h_0\) and \(b, a_i\) are smooth on their respective domains for \(i \in \{1, \ldots, 5\}, j \in \{1, \ldots, 6\}\), then \(h\) is smooth and \(p^\pm, \nu^\pm\) and \(\mu^\pm\) are smooth on \(\Omega^\pm(t)\).}

Proof: We show this by a perturbation argument. First of all note that we may without loss of generality assume that \(a_1, a_3, a_4, a_1, a_2, a_5, a_6 = 0\) on their respective domains. The above system may be reduced to this case by solving
\[
\Delta \bar{\mu}^\pm = a_1 \quad \text{in } \Omega^\pm(t),
\]
\[
\bar{\mu}^\pm = a_3 \quad \text{on } \Gamma_t,
\]
\[
n \cdot \nabla \bar{\mu}^- = a_4 \quad \text{on } \Gamma_{\mu,1},
\]
\[
\bar{\mu}^- = a_4 \quad \text{on } \Gamma_{\mu,2},
\]
with the help of standard elliptic theory and
\[
-\Delta \bar{\nu}^\pm + \nabla \bar{p}^\pm = a_1 \quad \text{in } \Omega^\pm(t),
\]
\[
\text{div } \bar{\nu}^\pm = 0 \quad \text{in } \Omega^\pm(t),
\]
\[
[\bar{\nu}] = a_2 \quad \text{on } \Gamma_t,
\]
\[
2D_v \bar{\nu} - p I | n_{\Gamma_t} = a_5 \quad \text{on } \Gamma_t,
\]
\[
B_j(\bar{\nu}^-, \bar{p}^-) = a_6 \quad \text{on } \Gamma_{S,j}, j = 1, 2, 3,
\]
with the help of Theorem 3.2 and setting
\[
\hat{g} = g - \frac{1}{2} X_0^*([\partial_{n_{\Gamma_t}}, \bar{\mu}] + (\bar{\nu}^\pm + \bar{\nu}^-) \cdot n_{\Gamma_t}) .
\]

Now let \(t \in [0, T], h \in H^2(\Sigma)\) and let \(v_h^\pm \in H^2(\Omega^\pm(t))^d, p_h^\pm \in H^1(\Omega^\pm(t))\) be the solution to (42)–(46). Multiplying (42) by \(v_h^\pm\) and integrating in \(\Omega^\pm(t)\) together with integration by parts and the consideration of the boundary values (45) and (46) allows us to deduce
\[
\int_{\Omega^+(t)} 2|D_v v_h^+|^2 dx + \int_{\Omega^-(t)} 2|D_v v_h^-|^2 dx + \sum_{j=2,3} \int_{\Gamma_{S,j}} \alpha_j |v_h^-|^2 d\mathcal{H}^{d-1}(s)
\]
\[
= \int_{\Gamma_t} X_0^{-1} (a_3 h + a_4 \Delta h + a_5 \nabla h) \cdot v_h^- d\mathcal{H}^{d-1}(s).
\] (47)

Hence, by [5, Corollary 5.8] and the continuity of the trace we find
\[
\|v_h^-\|_{H^1(\Omega^-(t))} \leq C\|h\|_{H^2(\Sigma)}
\] (48)
for C independent of h and t. [5, Corollary 5.8], also implies
\[
\int_{\Omega_+^{(t)}} 2|D_s v_h^+|^2 \, dx + \int_{\Gamma_1} |v_h^+|^2 \, d\mathcal{H}^{d-1}(s) \geq C\|v_h^+\|^2_{H^1(\Omega^{(t)})},
\]
leading to
\[
\|v_h^+\|_{H^1(\Omega^{(t)})} \leq C\|h\|_{H^2(\Sigma)}
\] (49)
due to $v_h^+ = v_h^-$ on Γ_1, (48) and (47). Defining
\[
B(t) : H^{\frac{3}{2}}(\Sigma) \rightarrow H^{\frac{1}{2}}(\Sigma) : h \mapsto B(t)h = \frac{1}{2}X_0^*(\{(v_h^+ + v_h^-) \cdot n_{\Gamma_1}\}),
\]
we may use (48) and (49) to confirm
\[
\|B(t)h\|_{H^{\frac{1}{2}}(\Sigma)} \leq C\|h\|_{H^2(\Sigma)}
\] for $C > 0$ independent of h and t. As $H^{\frac{3}{2}}(\Sigma)$ is dense in $H^2(\Sigma)$ we can extend $B(t)$ to an operator $B(t) : H^2(\Sigma) \rightarrow H^{\frac{1}{2}}(\Sigma)$ and $H^2(\Sigma)$ is close to $H^{\frac{3}{2}}(\Sigma)$ compared with $H^2(\Sigma)$.

The existence of a unique solution $h \in X_T$ with the properties stated in the theorem is now a consequence of Theorem 2.5. Higher regularity may be shown by localization and e.g. the usage of difference quotients.

Acknowledgments. The authors acknowledge support by the SPP 1506 "Transport Processes at Fluidic Interfaces" of the German Science Foundation (DFG) through the grant AB285/4-2. Moreover, we are grateful to the anonymous referee for the careful reading a previous version of the manuscript and many helpful comments.

Appendix A. Existence of a pressure.

Lemma A.1. Let $F \in \{\psi \in H^1(\Omega)^d : \psi|_{\Gamma_{S,1}} = 0, n_{\partial \Omega} \cdot \psi|_{\Gamma_{S,2}} = 0\} \rightarrow \mathbb{R}$ be linear and bounded such that
\[
F(\psi) = 0 \quad \text{for all } \psi \in V(\Omega) = \{\psi \in H^1(\Omega)^d : \text{div } \psi = 0, \psi|_{\Gamma_{S,1}} = 0, n_{\partial \Omega} \cdot \psi|_{\Gamma_{S,2}} = 0\}.
\]
Then there is a unique $p \in L^2(\Omega)$ with $\int_{\Omega} p \, dx = 0$ if $\Gamma_{S,3} = \emptyset$ such that
\[
F(\psi) = -\int_{\Omega} \text{div } \psi \, dx \quad \text{for all } \psi \in H^1(\Omega)^d \text{ with } \psi|_{\Gamma_{S,1}} = 0, n_{\partial \Omega} \cdot \psi|_{\Gamma_{S,2}} = 0.
\]

Proof. We will apply the closed range theorem. To this end let
\[
X = \{\psi \in H^1(\Omega)^d : \psi|_{\Gamma_{S,1}} = 0, n_{\partial \Omega} \cdot \psi|_{\Gamma_{S,2}} = 0\},
\]
\[
Y = \left\{ g \in L^2(\Omega) : \int_{\Omega} g(x) \, dx = 0 \text{ if } \Gamma_{S,3} = \emptyset \right\}
\]
and consider
\[
T : X \rightarrow Y : \psi \mapsto -\text{div } \psi.
\]
Then T is onto, which can be seen as follows: Let $g \in Y$.

If $\Gamma_{S,3} \neq \emptyset$, then there is a unique solution $q \in H^1(\Omega)$ of
\[
\Delta q = g \quad \text{in } \Omega,
\]
\[
q|_{\Gamma_{S,3}} = 0 \quad \text{on } \Gamma_{S,3},
\]
\[
n_{\partial \Omega} \cdot \nabla q|_{\Gamma_{S,1} \cup \Gamma_{S,2}} = 0 \quad \text{on } \Gamma_{S,1} \cup \Gamma_{S,2}.
\]
Moreover, using the solvability of the stationary Stokes equation with nonhomogeneous Dirichlet boundary conditions, we find some $w \in H^1(\Omega)$ with $\text{div} \ w = 0$ and

$$w|_{\Gamma} = \nabla q|_{\Gamma_{S,1} \cup \Gamma_{S,2}}, \quad w|_{\Gamma_{S,3}} = 0.$$

Then $\psi = w - \nabla q \in X$ with $-\text{div} \ \psi = g$.

If $\Gamma_{S,3} = \emptyset$, we have $\int_{\Omega} g(x) \, dx = 0$ and can use the well-known Bogovskii operator to obtain some $\psi \in H^1_0(\Omega)$ with $-\text{div} \ \psi = g$.

Now the closed range theorem implies that $T': Y' \to X'$ is injective and

$$R(T') = N(T)^\circ = \{ F \in X' : F(\psi) = 0 \text{ for all } \psi \in V(\Omega) \}.$$

This proves the statement of the lemma.

REFERENCES

[1] H. Abels and Y. Liu, Sharp interface limit for a Stokes/Allen-Cahn system, *Archives for Rational Mechanics and Analysis* **229** (2018), 417–502.

[2] H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part II: Approximate solutions, preprint, arXiv:2003.14267.

[3] H. Abels and A. Marquardt, Sharp interface limit of a Stokes/Cahn-Hilliard system, part I: Convergence result, preprint, arXiv:2003.03139.

[4] H. Abels and M. Wilke, Well-posedness and qualitative behaviour of solutions for a two-phase Navier-Stokes/Mullins-Sekerka system, *Interfaces and Free Boundaries* **15** (2013), 39–75.

[5] G. Alessandrini, A. Morassi and E. Rosset, The linear constraint in Poincaré and Korn type inequalities, *Forum Mathematicum* **20** (2006), no. 3, 557—569.

[6] N. D. Alikakos, P. W. Bates and X. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, *Archive for Rational Mechanics and Analysis* **128** (1994), 165–205.

[7] W. Arendt, R. Chill, S. Fornaro and C. Poupaud, L^p-Maximal regularity for non-autonomous evolution equations, *Journal of Differential Equations* **237** (2007), 1–26.

[8] X. Chen, D. Hilhorst and E. Logak, Mass conserving Allen-Cahn equation and volume preserving mean curvature flow, *Interfaces and Free Boundaries* **12** (2010), 527–549.

[9] G. P. Galdi, *An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-State Problems*, second ed., Springer Monographs in Mathematics, 2011.

[10] W. McLean, *Strongly Elliptic Systems and Boundary Integral Equations*, Cambridge University Press, 2000.

[11] J. Prüss and G. Simonett, *Moving Interfaces and Quasilinear Parabolic Evolution Equations*, Birkhäuser/Springer, [Cham], 2016.

[12] S. Schaubkeck, Sharp Interface Limits for Diffuse Interface Models, Ph.D. thesis, University of Regensburg, urn:nbn:de:bvb:355-epub-294622, 2014.

[13] Y. Shibata and S. Shimizu, On a resolvent estimate of the interface problem for the Stokes system in a bounded domain, *Journal of Differential Equations* **191** (2003), 408–444.

[14] ______, On the Lp-Lq maximal regularity of the Neumann problem for the Stokes equations in a bounded domain, *Journal für die reine und angewandte Mathematik* **615** (2007), 1–53.

[15] V. A. Solonnikov and V. E. Ščadilov, A certain boundary value problem for the stationary system of Navier-Stokes equations, Trudy Mat. Inst. Steklov. **125** (1973), 196–210, 235, Boundary value problems of mathematical physics, 8.

Received June 2020; revised September 2020.

E-mail address: helmut.abels@ur.de
E-mail address: Andreas.Marquardt@ur.de