COMPARAÇÃO DE TESTES PARA AVALIAÇÃO DO RESSALTO VERTICAL EM JOGADORES DE BASQUETEBOL

Comparison of Tests to Evaluate the Vertical Rebound Jump in Basketball Players

Yasmin Siqueira Luna¹, Bruno Pena Couto², Margarida Deuza Cavalcante¹, Reginaldo Gonçalves², Leszek Antoni Szmuchrowski² e Ytalo Mota Soares¹

¹Universidade Federal da Paraíba, João Pessoa-PB, Brasil.
²Universidade Federal de Minas Gerais, Belo Horizonte-MG, Brasil.

RESUMO
O objetivo do presente estudo foi comparar o desempenho do ressalto vertical de jogadores de basquetebol por meio dos testes Hurdle Jump e Drop Jump a partir de diferentes parâmetros de desempenho e verificar se a altura dos obstáculos utilizados (barreira e caixote) se equivalem quando forem determinadas a altura ótima e a máxima para os testes mencionados. Participaram do estudo 13 jogadores de uma equipe de basquetebol masculina (idade 18,77 ±1,78 anos, estatura 182 ±7,97 centímetros, massa corporal 76,4 ±9,55 quilogramas, tempo de prática 6,0 ±1,8 anos). A normalidade e a homogeneidade dos dados foram testadas por meio dos testes Shapiro-Wilk e Levene, respectivamente. O Test T pareado foi utilizado na comparação das médias dos resultados obtidos nos testes e o nível de significância foi p≤0,05. Os resultados das comparações das médias dos parâmetros de desempenho: ressalto vertical máximo e índice de força reativa, não apresentaram diferenças significativas (p=0,256 e p=0,243, respectivamente), em contrapartida, foram identificadas diferenças nas alturas dos obstáculos correspondentes. Essas diferenças podem ser atribuídas às características da individualidade de cada sujeito e às especificidades dos testes.

Palavras-chave: Força muscular. Exercício pliométrico. Esportes.

ABSTRACT
This study aimed to compare the vertical rebound jump performance of basketball players by using Hurdle Jump and Drop Jump tests based on different performance parameters, in addition to investigating whether the height of the hurdles used (barrier and box) are equivalent when the optimal and maximum heights for the tests mentioned are determined. Thirteen players of a male basketball team were included in this study (age 18.77 ±1.78 years old, height 182 ±7.97 m, body mass 76.4 ±9.55 kg, practice time 6.0 ±1.8 years). Data normality and homogeneity were tested by applying Shapiro-Wilk and Levene tests, respectively. The paired t-test was used to compare the means of the results obtained in the tests; the significance level was p ≤ 0.05. The results regarding the comparison of the performance parameters means were the following: the maximum vertical rebound jump and reactive strength index did not show significant differences (p = 0.256 and p = 0.243, respectively); on the other hand, differences were seen for the corresponding obstacle heights. These differences can be attributed to both, individual characteristics of each subject and the specificities of the tests.

Keywords: Muscle Strength. Plyometric Exercise. Sports.

Introdução

O treinamento pliométrico (TP) é um dos métodos mais utilizados no âmbito esportivo, por se tratar de um procedimento efetivo para o desenvolvimento das capacidades físicas, a exemplo da força explosiva e da aceleração¹–³. Os mecanismos que explicam a efetividade do TP estão intimamente associados à eficiente utilização do Ciclo Alongamento-Encurtamento (CAE), refletindo em uma rápida transição entre as ações musculares excêntrica e concêntrica, capaz de reduzir as chances de dissipação da energia potencial elástica armazenada e de produzir uma maior magnitude de força muscular⁴–⁶.

Além da necessidade da transição rápida entre as fases excêntrica e concêntrica, outro fator que parece afetar diretamente a ação do CAE é a pré-ativação, que se manifesta como uma fase inicial de geração de tensão muscular, com o objetivo de preparar o músculo...
esquelético para uma posterior ação muscular vigorosa, a exemplo do momento que antecede o contato dos pés na aterrissagem após um salto ou no momento que precede um ressalto. No momento da ação muscular excêntrica também ocorre o estímulo ao reflexo de estiramento que se associará à energia elástica armazenada, gerando uma contração concêntrica mais potente. Portanto, para uma ação efetiva do CAE três condições são fundamentais: a) fase de pré-ativação bem programada antecedendo a ação excêntrica; b) ação excêntrica curta e rápida; c) imediata transição entre a ação excêntrica e a ação concêntrica.

Na literatura, os exercícios mais aplicados que apresentam características pliométricas são, por exemplo, aqueles que utilizam o ressalto, como: o Salto em Profundidade (Drop Jump) e o Salto sobre Barreiras (Hurdle Jump). O Drop Jump refere-se à execução de um ressalto vertical imediatamente após o contato com o solo, depois da realização de uma queda a uma altura de caixote previamente determinada. Já o Hurdle Jump faz menção à realização de um ressalto, depois de transpor uma barreira que está a uma altura determinada.

Apesar de o Drop Jump e o Hurdle Jump serem comumente utilizados como testes e como meios de treinamento, a comparação desses exercícios a partir de alguns parâmetros biomecânicos se faz necessária para melhor entendimento e correta utilização dos mesmos nos programas de treinamento pliométrico. A avaliação do ressalto vertical, presente nas duas situações de teste mencionadas anteriormente, é de fundamental importância para que o desenvolvimento da força explosiva nos membros inferiores dos atletas seja acompanhada pelos treinadores.

O Drop Jump é bastante utilizado para avaliar o desempenho do ressalto vertical em atletas e o parâmetro mais investigado é a altura máxima de voo do ressalto vertical. O índice de força reativa (IFR), que é designado pela razão da altura máxima de voo no ressalto pelo tempo de contato, tem sido apontado como outro parâmetro importante na avaliação do desempenho. Por sua vez, o Hurdle Jump também pode ser utilizado para avaliação do ressalto vertical, mas foram encontradas poucas pesquisas que aprofundem a sua utilização como teste. É importante esclarecer que talvez o desempenho no Drop Jump não seja o mais adequado para prescrição e monitoramento do treinamento sobre barreiras, por isso é importante investigar a especificidade do Hurdle Jump para essa situação de treinamento.

Apesar da importância dos testes mencionados e da utilização de ambos também como meio de treinamento, não foram encontrados estudos, até então, que comparem o Drop Jump e o Hurdle Jump quanto aos seguintes parâmetros de desempenho: ressalto vertical, altura do obstáculo caixote e altura ótima de ressalto. Além dessas lacunas, pretende-se saber se as alturas do obstáculo caixote, onde foram obtidos o ressalto máximo e o ótimo, são equivalentes as alturas das barreiras para os mesmos parâmetros de desempenho.

As habilidades de saltar e ressaltar são bastante utilizadas no jogo de basquete para realização de fundamentos decisivos, como o arremesso e o rebote. Devido a essas características é de suma importância a utilização de testes que avaliem o desempenho do salto e do ressalto em jogadores de basquete. Sendo assim, o detalhamento de questões relacionadas a esses testes, podem auxiliar no processo de avaliação do condicionamento atlético dessa modalidade esportiva.

Dessa forma, os objetivos do presente estudo são: 1) comparar o desempenho do ressalto vertical de jogadores de basquete por meio dos testes Hurdle Jump e Drop Jump a partir de diferentes parâmetros de desempenho; e 2) verificar se a altura dos obstáculos utilizados (barreira e caixote) se equivalem quando forem determinadas a altura ótima e a máxima para os testes mencionados.
Métodos

Participantes
Foi selecionada uma equipe masculina de basquetebol, 13 atletas (idade 18,77 ±1,78 anos; estatura 182 ±7,97 centímetros; massa corporal 76,4 ±9,55 quilogramas; tempo de prática 6,0 ±1,8 anos). Todos os participantes tinham experiência em competições regionais e nacionais. Os critérios de inclusão adotados para participação do estudo foram: ter, no mínimo, quatro anos de prática no basquetebol, treinar em uma frequência mínima de quatro vezes por semana e não relatar lesões osteomioarticulares nos membros inferiores nos últimos seis meses. O estudo foi aprovado pelo Comitê de Ética do Centro de Ciências Médicas (CCM) da Universidade Federal da Paraíba (UFPB), conforme Resolução 466/2012, do Conselho Nacional de Saúde, sob o número de parecer 2.188.167.

Instrumentos
Para a coleta de dados foram utilizados os seguintes instrumentos: antropômetro CESCORF® (estadiômetro vertical), com precisão de 0,05 cm, para medição da estatura dos sujeitos; balança digital BIOLAND® com precisão de 0,02 kg, para a quantificação da massa corporal; tapete de contato multisprint (100 x 66 cm) fabricado pela Hidrofit® (Belo Horizonte, MG), conectado ao Software Jump Test PRO 2.10 para obtenção dos valores da altura do ressalto e do tempo de contato. Os obstáculos utilizados foram: 10 caixotes de madeira com altura de 10 cm e 70 cm de largura, que somados totalizavam uma altura de 100 cm, e 9 barreiras de PVC com alturas variando entre 20 e 100 cm e larguras ajustáveis que tinham como objetivo de torná-las mais estáveis.

Delineamento experimental
As coletas foram executadas em quatro sessões, em dias não consecutivos, com intervalo de 48 horas entre o primeiro e o segundo dia, 96 horas entre o segundo e o terceiro dia e 48 horas entre o terceiro e o quarto dia. A familiarização com as técnicas de salto utilizadas nos testes foi realizada nas duas primeiras sessões. Os testes para obtenção dos dados foram realizados nas sessões 3 e 4. As variáveis controladas durante essas etapas foram o desempenho do ressalto (altura do voo), a altura dos obstáculos e o tempo de contato, sendo este último um dos critérios utilizados para a não validação da tentativa ou eliminação nos testes. O IFR foi calculado pela razão entre altura máxima de voo e o tempo de contato.

Na primeira sessão, após os sujeitos aceitarem participar da pesquisa de forma voluntária, responderem ao Par-Q, questionário que deve ser aplicado antes do início de programas de atividades físicas, como forma de identificar inadequações na saúde dos praticantes e que pode apontar a necessidade de acompanhamento médico. Dessa forma, foi importante a inclusão do mesmo para maior segurança na coleta dos dados. Ainda na primeira sessão, após assinarem os termos necessários, foram coletadas as características antropométricas (massa corporal e estatura). Logo em seguida, foi realizada uma atividade preparatória que atendia à especificidade dos testes. A ordem de realização dos testes foi definida de forma aleatória. Na segunda sessão, a familiarização foi realizada novamente. Na sessão 3 e na sessão 4 foram aplicados o Hurdle Jump e o Drop Jump, sendo um tipo de teste para cada dia, com a ordem também randomizada. Cada sessão foi precedida por uma atividade preparatória específica ao teste desempenhado.
Na Figura 1, é possível observar o delineamento experimental do estudo.

Figura 1. Representação esquemática do delineamento experimental
Fonte: Os autores

Detalhamento da Atividade Preparatória realizada nas quatro sessões
Os sujeitos realizaram nas sessões 1 e 2 uma atividade preparatória geral composta por três minutos de corrida, a uma velocidade média de 7 km/h em local plano, seguida de uma atividade preparatória específica determinada por meio de sorteio (Drop Jump ou Hurdle Jump). Essa atividade preparatória foi constituída de três séries de três ressaltos a uma altura de 20, 30 e 40 cm para caixotes ou barreiras, com intervalo de 10 segundos entre as séries de saltos. Nas sessões 3 e 4 utilizou-se a atividade preparatória conforme o teste realizado naquela sessão.

Detalhamento da Familiarização com os testes (sessão 1 e sessão 2)
Após a atividade preparatória específica, os sujeitos realizaram, no mínimo, doze ressaltos com intervalo de 30 segundos de descanso entre as tentativas, em uma altura de queda fixa em 40 cm (no caso do Drop Jump) e uma altura de transposição de barreira fixa em 40 cm (no caso do Hurdle Jump), sendo a ordem desses ressaltos compatíveis com o sorteio realizado inicialmente. Logo após os sujeitos descansaram por 5 minutos e, em seguida, partiram para a atividade preparatória especifica (com o obstáculo específico do teste realizado). Após a atividade preparatória especifica, a familiarização era realizada sob as mesmas condições, porém com o teste oposto ao executado no primeiro momento.

Testes de Desempenho do Ressalto Vertical
Salto em Profundidade (Drop Jump)
Os caixotes utilizados no teste variaram entre 20 e 100 cm. As alturas de caixote eram aumentadas progressivamente de 10 em 10 cm. Os sujeitos realizaram o Drop Jump com três tentativas para cada altura de caixote, o maior valor de ressalto vertical e o maior valor do índice de força reativa (IFR) eram registrados para cada altura de caixote, para cada tentativa era observado o valor máximo de tempo de contato de 200ms. Em cada execução os sujeitos foram orientados: a iniciar a queda dando um passo à frente com o pé dominante, deixando o corpo cair; utilizar o terço anterior do pé na aterrissagem, evitando o uso dos calcanhares na fase do primeiro contato com o solo; ressaltar verticalmente o mais alto e rápido possível; além de manter as mãos nos quadris (na região supra-iliaca) durante todo o teste e joelhos estendidos durante a fase de voo do ressalto. Caso o sujeito conseguisse manter o tempo de contato igual ou inferior a 200 ms, a altura do caixote seria aumentada, com um intervalo de 30 segundos entre as tentativas. Se em nenhuma das três tentativas o tempo de contato fosse igual ou inferior a 200ms ou o sujeito executasse o teste incorretamente (retirar as mãos dos quadris, não estender os joelhos no ressalto vertical, cair fora do tapete de contato), o teste seria interrompido e a altura do caixote anterior seria considerada a altura máxima.
Salto sobre Barreiras (Hurdle Jump)

Foram adotadas as mesmas exigências do protocolo efetuado no Drop Jump quanto ao posicionamento das mãos. Como foi avaliado o ressalto vertical, o tempo de contato foi determinado a partir do contato dos pés no solo (aterriagem após a transposição da barreira) até a perda de contato dos pés com o solo (takeoff). Ademais, os sujeitos foram instruídos a saltar no momento de transposição da barreira, sem que a distância entre os pés e o topo da barreira, no momento do voo, fosse exacerbada a fim de criar um padrão entre os participantes, relativo à transposição das barreiras.

Figura 2. Representação esquemática do Hurdle Jump
Fonte: Os autores

O Hurdle Jump foi iniciado com uma altura da barreira de 20 cm, caso o sujeito conseguisse manter o tempo de contato igual ou inferior a 200 ms a altura da barreira seria aumentada de 10 em 10 centímetros, adotando um intervalo de 30 segundos entre as tentativas. Se após as três tentativas o tempo de contato fosse superior a 200 ms, o teste seria interrompido e a altura da barreira anterior seria considerada a altura máxima. Foi adotado o protocolo criado por Soares28 para a determinação da altura máxima da barreira (maior valor do ressalto vertical) e da altura ótima de barreira (considerada aquela onde o sujeito atingiu o maior valor do IFR).

Análises Estatísticas

Para a descrição dos resultados encontrados foram utilizadas medidas de tendência central e variabilidade (média e desvio padrão). A normalidade e a homogeneidade dos dados foram verificadas por meio do teste Shapiro Wilk e Levene, respectivamente. Para estatística inferencial, o Test T pareado foi utilizado na comparação das médias dos resultados obtidos, quais sejam: o maior valor do ressalto vertical, maior valor do índice de força reativa nos dois testes utilizados e para comparação da altura dos obstáculos. Para a análise dos dados, foi utilizado o software SPSS versão 22.0 e o nível de significância adotado para todos os casos foi de $p \leq 0,05$.

Resultados

A Figura 3 apresenta a comparação entre as médias obtidas por meio do parâmetro de desempenho “ressalto vertical máximo” em ambos os testes – Drop Jump e Hurdle Jump. Os valores utilizados para calcular a média são referentes à maior altura de voo alcançada durante o ressalto vertical máximo. Não foram encontradas diferenças significativas ($p = 0,256$) entre o maior valor de ressalto vertical encontrado no Hurdle Jump comparado ao maior valor de ressalto vertical obtido no Drop Jump.

28 Soares, 2020.
Figura 2. Desempenho pelo ressalto vertical máximo nas duas situações de teste analisadas

Nota: Os valores estão dispostos em média
Fonte: Os autores

Na Figura 4 é possível observar a comparação entre as médias obtidas por meio do parâmetro de desempenho “índice de força reativa” nos dois testes estudados. Os valores utilizados para calcular a média são referentes à razão do maior ressalto vertical (altura do voo) pelo tempo de contato correspondente. Embora a média do índice de força reativa no Hurdle Jump tenha sido um pouco maior que no Drop Jump, não foram encontradas diferenças significativas (p = 0,243).

Figura 3. Desempenho pelo índice de força reativa nas duas situações de teste analisadas

Nota: Os valores estão dispostos em média
Fonte: Os autores

Quando foram comparadas as médias das alturas dos caixotes (40,76 ± 17,05 cm) e das barreiras (54,61 ±24,36cm) que resultaram nos Ressaltos Verticais Máximos foi encontrada diferença significativa (p = 0,04); quando foram comparadas as médias das alturas dos caixotes (41,53 ±16,75) e das barreiras (60 ±21,98) que resultaram nos maiores Indices de Força Reativa, a diferença também foi significativa (p = 0,01).

Os resultados individuais encontrados quanto às alturas dos obstáculos para o Salto em Profundidade e Salto sobre Barreira para os dois parâmetros em análise estão descritos na Tabela 1.
Tabela 1. Dados da altura máxima de voo (maior ressalto vertical) e maior valor de IFR e altura de obstáculos correspondentes

Sujeitos	RVM (cm)	IFR (m/s)	RVM (cm)	ACC	Valor do IFR	AR (cm)	ACC	Valor do IFR	ABC	Valor do IFR	ABC
1	41,7	50	1,35	50	39,6	50	2,32		50		
2	47,0	30	2,64	30	43,1	100**	2,25		100**		
3	38,3	30	1,99	40*	37,2	30	2,13		40*		
4	44,6	40	2,25	40	47,0	60**	2,47		60**		
5	26,9	50	1,51	50	35,8	30**	2,06		30**		
6	25,9	50	1,34	50	26,3	60**	1,49		60**		
7	41,2	30	2,35	30	34,7	20**	1,73		40**		
8	26,4	20	1,52	20	29,7	40**	1,63		40**		
9	30,4	80	1,65	80	51,8	90**	2,92		90**		
10	27,5	40	1,55	40	36,1	70**	1,84		90**		
11	34,0	60	1,78	60	32,6	70**	1,75		70**		
12	21,7	30	1,13	30	20,7	60**	1,20		60**		
13	27,7	20	1,66	20	29,7	30**	1,94		50**		

Nota: RVM: Ressalto Vertical Máximo; IFR: Índice de Força Reativa; AR: Altura do Ressalto; ACC: Altura do Caixote Correspondente; ABC: Altura da Barreira Correspondente. *Altura dos obstáculos diferentes intrateste. ** Altura dos obstáculos diferentes interteste.

Fonte: Os autores

Foi possível observar que na comparação entre os parâmetros ressalto vertical máximo (RVM) e índice de força reativa (IFR), no teste do Drop Jump, as alturas dos obstáculos apresentaram valores iguais para a maioria dos sujeitos, exceto para o sujeito 3 (RVM= 30cm, IFR= 40cm). Já na comparação entre os parâmetros RVM e IFR, no Hurdle Jump, as alturas dos obstáculos apresentaram valores iguais para a maior parte dos sujeitos, exceto para os sujeitos 3 (RVM=30, IFR=40), 7 (RVM=20, IFR=40), 10 (RVM=70, IFR=90) e 13 (RVM=20, IFR=50), todos com valor maior para o IFR.

Nas comparações intertestes foi possível identificar que as alturas dos obstáculos para o desempenho pelo ressalto vertical máximo foram diferentes para a maioria dos sujeitos, exceto para os sujeitos 1 (50 cm) e 3 (30 cm). O mesmo foi observado nas comparações para o desempenho pelo IFR, de modo que apenas os sujeitos 1 (50 cm) e 3 (40 cm) obtiveram alturas de obstáculos iguais para o Drop e para o Hurdle Jump.

Discussão

O objetivo do presente estudo foi comparar o desempenho do ressalto vertical de basquetebolistas por meio dos testes “Hurdle Jump” e “Drop Jump” a partir de diferentes parâmetros de desempenho, a saber: altura do ressalto vertical máximo e Índice de Força Reativa. Esse objetivo foi colocado na perspectiva de contribuir com a minimização dos possíveis equívocos relacionados a estimativa dos componentes da carga relacionados a avaliação do TP.

Ademais, para além da definição dos componentes da carga, para qualquer treinamento sistematizado que visa alcançar uma eficiente adaptação, é importante o respeito às diferenças individuais, de modo que a carga de treinamento esteja relacionada à capacidade neuromuscular de cada sujeito. No caso específico do Treinamento Pliométrico - TP, é possível identificar, muitas vezes, que as sessões de treinamentos dos atletas são baseadas em alturas fixas de caixotes (no caso do Drop Jump) e, de fato, as intervenções que utilizaram
desse meio de treinamento mostraram ser eficientes no aumento das capacidades relacionadas à força explosiva29,30. No entanto, outros estudos20,21 apontam que a altura de queda individualizada traz resultados eficazes e reduz as chances de ferir o princípio da individualidade biológica. Se no \textit{Drop e Hurdle Jump} a altura de queda e a altura da barreira, respectivamente, estiverem muito baixas haverá uma redução nas chances de adaptação. Em contrapartida, se essas alturas forem muito elevadas, o indivíduo pode não ter a capacidade de controlar de maneira efetiva a transição rápida entre as fases excêntrica e concêntrica20,21.

Nessa perspectiva, o presente estudo utilizou dois parâmetros para determinação das alturas máxima (pelo maior valor do ressalto vertical) e ótima (pelo maior valor de IFR encontrado) individuais de queda e de transposição de barreira. Os parâmetros apresentados caracterizam-se, principalmente, pela possibilidade de ajustes a depender das necessidades do indivíduo e dos objetivos prescritos pelo treinador, tendo em vista que não é interestante treinar na altura máxima do obstáculo constantemente28. Seguindo essa premissa, os resultados encontrados no presente estudo, revelam a importância da individualização na altura dos obstáculos para cada tipo de teste e para cada parâmetro investigado, tendo em vista que os sujeitos apresentaram seus melhores desempenhos em alturas de obstáculos divergentes inter e intrateste (Tabela 1), embora as médias no desempenho pelo ressalto vertical máximo e pelo índice de força reativa (Figuras 3 e 4) não tenham apresentado diferenças significativas (\(p = 0,256\) e \(p = 0,243\), respectivamente).

Quando se faz uma comparação entre os dois parâmetros de desempenho estudados, exclusivamente para o \textit{Drop Jump}, foi verificado que a grande maioria obteve a altura máxima e ótima com as mesmas alturas de obstáculo, apenas o sujeito 3 apresentou diferença na altura do caixote (RVM= 30, IFR= 40), sendo maior para o índice de força reativa (Tabela 1). Esse achado diverge dos encontrados no estudo de Byrne et al.20 no qual observaram que, 19 dos 22 sujeitos tiveram altura de obstáculo diferentes no \textit{Drop Jump}, para os parâmetros IFR e RVM. Entretanto, no estudo de Byrne et al.20, não foi realizada comparações para o \textit{Hurdle Jump}. No presente estudo, para o \textit{Hurdle Jump}, os sujeitos 3, 7, 10 e 13 obtiveram alturas de barreira diferentes na comparação dos parâmetros RVM e IFR (sendo maior para este último). Entretanto, não foram encontrados estudos que fizessem tal comparação utilizando o teste de \textit{Hurdle Jump}. Diante de tais resultados, mais estudos são necessários para explicar a maior altura do caixote e da barreira para o IFR encontrado no presente estudo.

No que se refere à comparação do \textit{Drop e Hurdle Jump} quanto ao parâmetro de desempenho ressalto vertical máximo, foi verificado que apenas dois sujeitos (1 e 3) apresentaram alturas de caixote e barreira iguais. O mesmo foi observado quanto ao parâmetro de desempenho IFR. Tal resultado, evidencia a necessidade de individualização na altura dos obstáculos, a fim de atender aos objetivos específicos prescritos no treinamento, principalmente, quando se trabalha com testes diferentes, tendo em vista que 11 dos 13 sujeitos que participaram da pesquisa apresentaram alturas de caixote e barreira diferentes nos dois parâmetros investigados.

Outra informação relevante é a importância da determinação da altura de queda e de transposição de barreira serem realizadas utilizando-se de técnicas específicas de salto para cada teste. Em um estudo anterior, realizado por Cappa e Behm13, que teve como objetivo comparar os saltos sobre barreira bilateral e unilateral com o salto contra movimento (SCM), foi utilizada a altura máxima alcançada neste último para determinar a altura inicial da barreira. A altura do obstáculo foi modificada de 100, 120, 140 e 160% do SCM, para os saltos bilaterais, e 70, 80 e 90% do SCM, para saltos unilaterais. Porém, o presente estudo realizou o teste \textit{Drop Jump} para determinar a altura máxima do caixote quanto ao desempenho dos parâmetros: RVM e IFR, e o teste \textit{Hurdle Jump}2 para determinar a altura máxima da barreira para os mesmos parâmetros de desempenho, com as técnicas de salto específicas para cada teste. Este fato aponta para o respeito ao princípio da especificidade,
somado ao respeito ao princípio da individualidade quando do processo de individualização da altura das barreiras e dos caixotes efetuados neste estudo. Verificou-se que, quando foram comparadas as alturas dos caixotes e das barreiras que resultaram nos maiores valores de ressalto vertical e de IFR, foram encontradas diferenças com significado estatístico nas duas comparações, com maiores valores para o obstáculo barreira, fato que corrobora a importância da especificidade dos testes, que têm características próprias de execução. Pode-se especular que, gestos diferentes podem ocasionar níveis de ativação muscular e pré-ativação distintos, o que poderia influenciar no desempenho. Entretanto, uma análise mais acurada do ponto de vista biomecânico poderá trazer informações relevantes, mas não foi o objetivo deste estudo, nem tampouco utilizou-se equipamentos específicos para tal análise.

Especificamente em relação ao basquetebol e considerando o Drop e o Hurdle Jump, a verificação do resultado da aplicação de programas de treinamento, tem realçado a utilização do Drop Jump enquanto teste31,32, e como meio de treinamento32-33. No entanto, nesses estudos nenhum protocolo foi aplicado para determinação individualizada das alturas aplicadas nos treinamentos. Essas alturas fixas também têm sido utilizadas para avaliação do treinamento32. Não foram encontrados estudos que utilizem o Hurdle Jump como teste em basquetebolistas. Quando o Hurdle Jump foi utilizado em basquetebolistas como um exercício de treinamento, não houve alusão a altura da barreira transposta34.

Conclusões

A partir do presente estudo pode-se concluir que não foram verificadas diferenças significativas entre o Drop Jump e o Hurdle Jump quanto à média dos parâmetros de desempenho pelo ressalto vertical máximo e índice de força reativa nos atletas de basquetebol investigados. Entretanto, as alturas dos obstáculos correspondentes aos maiores valores de IFR e ressalto vertical máximo para cada teste se diferenciaram. Portanto, esses achados indicam que, para se aumentar os benefícios oriundos dos Drop Jump e Hurdle Jump é recomendável aplicar a individualização com base nos valores do ressalto vertical máximo e índice de força reativa para cada teste, a fim de contribuir nas adaptações previstas na prescrição da carga de treinamento. Foi verificado que a altura dos obstáculos utilizados (barreira e caixote) não se equivalem quando foram determinadas a altura ótima (maior valor de IFR) e máxima (maior valor do ressalto vertical).

Embora o enfoque do estudo seja na especificidade dos testes e na individualização do desempenho, quando se pensa na generalização dos resultados e, especificamente, na prática do treinamento do basquetebol enquanto modalidade coletiva, diante de alguma dificuldade para individualizar os obstáculos no treinamento, pode-se utilizar sujeitos que obtiveram alturas de valores aproximados para as barreiras ou caixotes (levando em consideração o parâmetro RVM ou IFR), numa perspectiva de rentabilizar o treinamento. Além disso, vale salientar a necessidade de mais estudos que comparem os testes trabalhados nesta pesquisa, devido à escassez de informações científicas a respeito das comparações aqui efetuadas.

Referências

1. Walsh M, Arampatzis A, Shade F, Brüggemann GP. The effect of drop jump starting height and contact time on power, work performed, and moment of force. J Strength Cond Res 2004;18(3):561-66. Doi: 10.1519/1533-4287(2004)18<561:TEODJS>2.0.CO;2.
2. Markovic G. Does plyometric training improve vertical jump height? A meta-analytical review. Br J Sports Med 2007;41(6):349-355. Doi: 10.1136/bjsm.2007.035113.
3. Lundin, P. Plyometric training loads for youths and beginners. Track technique 1987;(101):3211-3213.
4. Cavagna GA. Storage and utilization of elastic energy in skeletal muscle. Exere Sport Sci Rev 1977;5(1):89-130.
25. Markwick WJ, Bird SP, Tufano JJ, Seitz LB, Haff GG. The intraday reliability of the Reactive Strength Index calculated from a drop jump in professional men's basketball. Int J Sports Physiol Perform 2015;10(4):265–270. Doi: 10.1123/ijspp.2014-0246.

26. De Villarreal ESS, Kellis E, Kraemer WJ, Izquierdo M. Determining variables of plyometric training for improving vertical jump height performance: a meta-analysis. J Strength Cond Res 2009;23(2):495-506. Doi: 10.1519/JSC.0b013e318196b7c6.

27. Schmidtbleicher D. Training for power events. In: Komi PV, editor. Strength and power in sport. Oxford: Blackwell Scientific Publications; 1992. p. 381-395.

28. Soares Y. Criação e validação de um protocolo para individualizar a altura máxima de transposição de barreiras no treinamento pliométrico [Tese de Doutorado em Ciências do Esporte]. Belo Horizonte: Universidade Federal de Minas Gerais, Escola de Educação Física, Fisioterapia e Terapia Educativa; 2016.

29. Dello Iacono A, Martone D, Milic M, Padulo J. Vertical- vs. Horizontal-Oriented drop jump training: Chronic effects on explosive performances of elite handball players. J Strength Cond Res 2017;31(4):921-931. Doi: 10.1519/JSC.0000000000001555.
30. Claudino JG, Mezêncio B, Soncin R, Ferreira JC, Couto BP, Szmuchrowski LA. Pre vertical jump performance to regulate the training volume. Int J Sports Med 2012;33(2):101-107. Doi: 10.1055/s-0031-1286293.
31. Santos E, Janeiro, MA. Effects of complex training on explosive strength in adolescent male basketball players. J Strength Cond Res 2008;22(3):903-9. Doi: 10.1519/JSC.0b013e31816a59f2.
32. Hernandez S, Ramirez-Campillo R, Álvarez C, Sanchez-Sanchez J, Moran, Pereira LA, et al. Effects of plyometric training on neuromuscular performance in youth basketball players: A pilot study on the influence of drill randomization. J Sports Sci Med 2018;17(3):372-378.
33. Matavulj D, Kukolj M, Ugarkovic D, Tihanyi J, Jarie S. Effects of plyometric training on jumping performance in junior basketball players. J Sports Med Phys Fitness 2001;41(2):159-164.
34. Gonzalo-Skok O, Sánchez-Sabaté J, Izquierdo-Lupón L, Sáez de Villarreal E. Influence of force-vector and force application plyometric training in Young elite basketball players. Eur J Sport Sci 2019;19(3):305-314. Doi:10.1080/17461391.2018.1502357.

Agradecimentos: Programa Institucional de Bolsas de Iniciação Científica - CNPq

ORCID dos autores:
Yasmin Siqueira Luna: https://orcid.org/0000-0002-3577-452
Bruno Pena Couto: https://orcid.org/0000-0003-1011-6405
Margarida Deuza Cavalcanti: https://orcid.org/0000-0002-6901-0042
Reginaldo Gonçalves: https://orcid.org/0000-0001-6089-8375
Leszek Szmuchrowski: https://orcid.org/0000-0002-8715-4226
Ytalo Mota Soares: https://orcid.org/0000-0002-9245-9219

Recebido em 20/10/18.
Revisado em 30/08/18.
Aceito em 10/09/19.

Endereço para correspondência: Ytalo Mota Soares. Endereço: - Universidade Federal da Paraíba - Campus I – Departamento de Educação Física. Lot. Cidade Universitaria, PB, CEP - 58051-900, João Pessoa – PB – Brasil. Email: ytalomota@yahoo.com.br