SpringerBriefs in Astronomy

Series Editors

Martin Ratcliffe
Valley Center, KS, USA

Wolfgang Hillebrandt
MPI für Astrophysik, Garching, Germany

Michael Inglis
Department of Physical Sciences, SUNY Suffolk County Community College,
Selden, NY, USA

David Weintraub
Department of Physics & Astronomy, Vanderbilt University, Nashville, TN, USA
SpringerBriefs in Astronomy are a series of slim high-quality publications encompassing the entire spectrum of Astronomy, Astrophysics, Astrophysical Cosmology, Planetary and Space Science, Astrobiology as well as History of Astronomy. Manuscripts for SpringerBriefs in Astronomy will be evaluated by Springer and by members of the Editorial Board. Proposals and other communication should be sent to your Publishing Editors at Springer.

Featuring compact volumes of 50 to 125 pages (approximately 20,000–45,000 words), Briefs are shorter than a conventional book but longer than a journal article. Thus Briefs serve as timely, concise tools for students, researchers, and professionals.

- Typical texts for publication might include:
- A snapshot review of the current state of a hot or emerging field
- A concise introduction to core concepts that students must understand in order to make independent contributions
- An extended research report giving more details and discussion than is possible in a conventional journal article
- A manual describing underlying principles and best practices for an experimental technique
- An essay exploring new ideas within astronomy and related areas, or broader topics such as science and society

Briefs allow authors to present their ideas and readers to absorb them with minimal time investment.

Briefs will be published as part of Springer’s eBook collection, with millions of readers worldwide. In addition, they will be available, just like other books, for individual print and electronic purchase.

Briefs are characterized by fast, global electronic dissemination, straightforward publishing agreements, easy-to-use manuscript preparation and formatting guidelines, and expedited production schedules. We aim for publication 8–12 weeks after acceptance.

More information about this series at http://www.springer.com/series/10090
Henri M. J. Boffin · David Jones

The Importance of Binaries in the Formation and Evolution of Planetary Nebulae

Springer
To our families, without whom none of this would have been possible.

Cathy, Yuki and Niall
Flori and Idris
Foreword

The evolution of stars in gravitationally bound binary systems is an extraordinarily rich field of study. Not only can the evolution of each star be dramatically altered with respect to the evolution of single stars, but a number of physical phenomena also occur that are highly relevant to other fields of astrophysics. The very long list includes, but is most certainly not limited to: tidal interactions, surface irradiation, mass transfer and accretion, the production of stellar jets and other outflow phenomena, gravitational wave emission and other relativistic effects. As many of these effects are the stellar analogues of similar phenomena occurring at much larger scales, such as in the cores of galaxies, modern astrophysics cannot be conceived without a thorough understanding of binary stars. Their relevance is further enhanced by the fact that it is believed that more than 50% of stars are found in binary or higher-order systems, which makes binarity a necessary ingredient even for the interpretation of the most basic relationships such as the classical Hertzsprung–Russell diagram.

Binary interactions occur among all types of stars and span a large range of orbital separations, from the shortest binary systems known nowadays, pairs of compact white dwarfs with orbital periods as short as five minutes (HM Cancri), through to giant stars that can be affected by the presence of companions even at orbital periods of many hundreds of years (o Ceti [Mira]).

This book by Astrophysicists Henri M. J. Boffin and David Jones focusses on the effects of binarity in the final evolutionary stages of low- and intermediate-mass stars. The relevance of binary interactions to explain the properties of planetary nebulae has been an active subject of debate since the first high-quality catalogues of narrowband images of planetary nebulae were obtained at the beginning of the 1990s both from the ground and with the Hubble Space Telescope. Today, far fewer astronomers doubt that the key to understanding the wide variety of planetary nebulae shapes, or indeed some of their peculiar chemical properties, is binary evolution. However, much work has still to be done in order to constrain the overall statistical relevance of binarity in the formation and evolution of planetary nebulae as well as the specific physical processes involved and how they are related to observed nebular properties. The topic also has important implications for our
understanding of cataclysmic variables and novae, Type Ia supernovae, symbiotic stars and other phenomena such as the production of astrophysical jets.

This book comprehensively outlines current understanding in sufficient detail as to make it a valuable reference text, providing not only a global view of the subject but also guidance for planning the future research in a field that has shown tremendous, albeit still insufficient, progress over the last three decades. I have no doubt that this book will occupy a permanent place on my desk for years to come.

La Palma, Spain

Romano L. M. Corradi
It is now clear that a binary evolutionary pathway is responsible for a significant fraction of all planetary nebulae (PNe), with some authors even going as far as claiming that the Sun will not become a PN. At the very least, it is now clear that binary interactions play a critical role in the shaping of many PNe—including some of the most well studied. Furthermore, PNe offer a unique window into many key aspects of binary evolution, providing multiple avenues to explore the various physical processes involved. Beyond the central stars themselves, the surrounding nebulae offer an additional route to trace the mass loss and mass transfer histories of these systems, meaning that one can, in principle, derive a complete picture of the impact of binary evolution on these systems. Furthermore, binary central stars of PNe represent progenitor systems for a wide range of astrophysical phenomena, including cosmologically important Type Ia supernovae and the stellar-mass gravitational wave sources that will be revealed by next-generation detectors. This combined with the fact that the majority of stars are found to reside in binary systems, many of which will interact at some point during their lives, only serves to further highlight the importance of understanding the impact of binarity on stellar evolution including the late stages which in intermediate-mass stars are characterised by the formation of a PN. Collectively, the weight of recent advances has led to the requirement that textbooks need to be rewritten. This SpringerBriefs is the very first step in this direction.

We have tried, and by no means claim to have succeeded, to present in a succinct way all the theoretical and observational support for the importance of binarity in the formation of PNe. In the process, we outline some of the key principles and techniques, as well as their flaws and advantages, used in the study of binary PNe (many of which have wider applications). As such, we hope that this book will be useful for all specialists, from graduate students to senior astronomers, working in (binary) stellar physics, but also to anyone that is interested in this very important and aesthetically beautiful phase of stellar evolution.

It is a pleasure to thank our many long-suffering collaborators who have contributed significantly to much of the work detailed within this book, including Romano Corradi, Jorge García-Rojas, Alain Jorissen, Dimitri Pourbaix, Pablo
Rodríguez-Gil, Miguel Santander-García, Roger Wesson, Brent Miszalski, Paulina Sowicka, Todd Hillwig, Hans Van Winckel, Alex Brown, Ana Escorza, Alba Aller, Myfanwy Lloyd, Lionel Siess, Sophie Van Eck, the Phoebe development team and many, many more. We also owe a debt of gratitude to the excellent scientists who over the years have contributed enormously to our understanding of planetary nebulae and binary evolution, and whose work serves as the bedrock for this book. HMJB reserves special thanks for Prof. A. Acker for introducing him to this very exciting research field.

Finally, it is important to thank the various funding agencies that have supported much of the work that this book comprises. The initial outline was drafted while HMJB was visiting the IAC, thanks to a visitor grant in the framework of a Severo Ochoa Excellence programme (SEV-2015-0548). DJ gratefully acknowledges support from the State Research Agency (AEI) of the Spanish Ministry of Science, Innovation and Universities (MCIU) and the European Regional Development Fund (FEDER) under grant AYA2017-83383-P. DJ also acknowledges support under grant P/308614 financed by funds transferred from the Spanish Ministry of Science, Innovation and Universities, charged to the General State Budgets and with funds transferred from the General Budgets of the Autonomous Community of the Canary Islands by the Ministry of Economy, Industry, Trade and Knowledge.

Garching bei München, Germany
La Palma, Spain

Henri M. J. Boffin
David Jones
Contents

1 Introduction ... 1
 1.1 Historical Overview 1
 1.2 The Evolution of Low- and Intermediate-Mass Stars 5
 1.3 Why Are Planetary Nebulae Important? 8
 1.3.1 Chemical Enrichment of the ISM 8
 1.3.2 The Kinematics and Distances of Galaxies 8
 1.3.3 Binary Central Stars and the Common Envelope Phase 9

2 The Common Envelope Phase 13
 2.1 Mass Transfer in Binary Systems 13
 2.2 Common Envelope Evolution in Brief 16
 2.3 Dynamical Mass Transfer 17
 2.4 Common Envelope Evolution Formalism 20
 2.5 Hydrodynamical Simulations 23
 2.6 Double-Degenerate Systems 25
 2.7 Grazing Envelope Evolution 25

3 Close-Binary Stars in Planetary Nebulae 27
 3.1 Searches for Close-Binary Stars 27
 3.1.1 The Beginnings 27
 3.1.2 Modern Photometric Surveys 28
 3.1.3 The Limitations of Photometric Surveys 30
 3.1.4 Spectroscopic Searches 38
 3.2 Parameters of Known Systems 40
 3.2.1 Period Distribution 40
 3.2.2 Light and Radial Velocity Curve Modelling 43
 3.2.3 Double-Degenerates 47
 3.3 Relationship Between Central Stars and Their Host Nebulae ... 48
 3.3.1 Axisymmetry, Polar Outflows and Filaments 48
 3.3.2 Nebular Masses 49
4 Long Period Central Stars of Planetary Nebulae 51
 4.1 Making the Case 51
 4.2 A Large Family 52
 4.2.1 Symbiotic Stars 55
 4.2.2 Post-RGB Stars 55
 4.2.3 Post-AGB Stars 56
 4.2.4 Barium Stars 56
 4.3 Long-Period Binaries in Planetary Nebulae 57

5 Chemical Evidence of Mass Transfer 61
 5.1 Accretion Prior to the Common Envelope 61
 5.2 The Abundance Discrepancy Problem 64

6 The Binary Fraction .. 71
 6.1 Close Binaries ... 71
 6.2 Long-Period Binaries 72
 6.3 Infrared Excess .. 73
 6.4 Planets, Mergers and Higher Order Systems 74
 6.5 Theoretical Expectations 75
 6.6 Conclusions ... 76

7 Post-AGBs and Pre-planetary Nebulae 77
 7.1 Post-AGBs, Part II 78
 7.2 Proto-Planetary Nebulae 79

8 Binarity and the Planetary Nebula Luminosity Function 85

9 Conclusions and Outlook 91
 9.1 Just How Important Is Binarity? 92
 9.1.1 Can Single Stars form Planetary Nebulae? 92
 9.1.2 Can Single Stars form Bipolar Planetary Nebulae? ... 93
 9.1.3 Will the Sun Form a Planetary Nebula? 94
 9.2 Outlook .. 95
 9.2.1 What Can PNe Tell Us About Binary Evolution? 95
 9.2.2 The Missing Pieces of the Puzzle 97

References ... 101

Index ... 111
Acronyms

\(M_\odot\) Solar mass
\(R_\odot\) Solar radius
ADF Abundance discrepancy factor
AGB Asymptotic giant branch
bCSPNe Binary central stars of planetary nebulae
BRET Bipolar, rotating, episodic jet
CE Common envelope
CS Central star
CSPNe Central stars of planetary nebulae
CV Cataclysmic variable
DD Double degenerate
ESO European Southern Observatory
FDU First dredge-up
GE Grazing envelope
GISW Generalised interacting stellar wind
HBB Hot bottom burning
IFMR Initial–final mass relation
ISW Interacting stellar wind
LMXB Low-mass X-ray binary
LSST Large Synoptic Survey Telescope
MACHO Massive Compact Halo Object project
MS Main sequence
NTT New Technology Telescope
OGLE Optical Gravitational Lensing Experiment
PN(e) Planetary nebula(e)
PNLF Planetary nebula luminosity function
RGB Red-giant branch
RLOF Roche lobe overflow
SDU Second dredge-up
SNe Supernovae
Acronym	Definition
TDU	Third dredge-up
TP-AGB	Thermally pulsing asymptotic giant branch
VLT	Very Large Telescope
WD	White dwarf
WRLOF	Wind Roche lobe overflow