Data Article

Complete mitogenome data from a European specimen of *Ostrinia scapulalis* (Walker, 1859) (Lepidoptera, Pyraloidea, Crambidae, Pyraustinae)

Bernhard Gschloessl*, Philippe Audiot, Sabine Nidelet, Gael J Kergoat, Réjane Streiff

CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, University of Montpellier, Montpellier, France

ARTICLE INFO

* Article history:
 Received 19 August 2020
 Accepted 14 October 2020
 Available online 22 October 2020

* Keywords:
 Annotation
 Assembly
 Crambidae
 Lepidoptera
 Mitogenome
 Phylogeny
 Pyraloidea

ABSTRACT

We present an assembly and annotation of the mitogenome of a European specimen of the Adzuki bean borer, *Ostrinia scapulalis* (Walker, 1859). The data were obtained by combining WGS data issue of a de novo and a previously published sequence library (Gschloessl et al., 2018). We also provide the phylogenetic positioning of the mitogenome within the *Ostrinia* genus, the *Crambidae* family and with more distant Lepidoptera species.

© 2020 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

* Corresponding author.
 E-mail address: bernhard.gschloessl@inrae.fr (B. Gschloessl).

https://doi.org/10.1016/j.dib.2020.106427
2352-3409/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
Specifications Table

Subject	Insect Science
Specific subject area	Lepidoptera, Crambidae, Mitogenomics
Type of data	

- FASTQ: DNA sequence reads
- FASTA: mitochondrial genome assembly
- GFF: mitogenome gene annotations
- TABLE: gene annotations, base composition, Lepidoptera species used for phylogenetic analysis
- FIGURE: mitogenomic circular map, AT-rich region sequence, phylogenetic tree

How data were acquired
Whole-genome shotgun sequencing on Illumina NextSeq 500 v2 platform using the paired-end protocol (2 × 150 base pairs (bp)).

Data format
Raw sequence reads and analysed (assembled and annotated) mitogenome.

Parameters for data collection
Genomic DNA was extracted from one Ostrinia scapulalis larva using the DNeasy Tissue Kit from Qiagen (Hilden, Germany). A 2 × 150bp shot-gun paired-end library with an insert size of 300bp was generated and sequenced by LGC Genomics GmbH (Berlin, Germany) on an Illumina NextSeq 500 v2 platform.

Description of data collection
The Ostrinia scapulalis mitogenome was assembled with MITObim v1.9. Genomic regions were annotated with MITOS v2. The circular mitochondrial genome map was generated with OGDRAW. Multiple sequence alignments were generated separately for each protein-coding and rRNA gene with MAFFT v7.471. Phylogenetic trees were built on the concatenated gene alignments with PHYML v3.0 and MrBayes v3.2.7a and visualized with FigTree v1.4.4.

Data source location
Samples were collected in 2015 near Abbeville/France (50°8’13.57”N; 1°50’23.62”E).

Data accessibility
Repository name: NCBI BioProject
Data identification number: PRJNA637835
Direct URL to data: http://www.ncbi.nlm.nih.gov/bioproject/637835
Repository name: NCBI Genbank
Data identification number: MT801073
Direct URL to data: http://www.ncbi.nlm.nih.gov/nuccore/MT801073

Value of the Data

- This data represents the mitogenome of a European specimen of Ostrinia scapulalis.
- The data can benefit to researchers working on Lepidoptera evolution and higher systematics.
- The present data can be used for phylogenetic studies of Lepidoptera mitogenomes especially for getting deeper insights in diversification dynamics of Ostrinia species.

1. Data Description

The O. scapulalis (hereafter named OSCA) mitogenome had a size of 15,305 bp and an A+T content of 80.9%. All 38 genetic regions commonly known for arthropod mitogenomes [2] were identified (Supplementary GFF annotation file): 13 protein-coding genes, 22 tRNA and 2 rRNA (12S rRNA and 16S rRNA) genes, and one A+T-rich control region. The gene order and the composition of start on stop codons of the protein-coding genes corresponded to those observed for other Ostrinia spp. [3,4] and Crambidae [5] mitogenomes. Fifteen intergenic spacer regions (see Table 1: positive intergenic nucleotide values) of a total length of 341 bp were identified.
Table 1
Gene features of the O. scapulalis mitogenome.

Gene (anticodon)	Start	Stop	Strand	Size	Intergenic nucleotides	Start/stop codon
trnM(cac)	1	68	+	68	–1	
trnl(gat)	68	135	+	68	0	
trnQ(ttg)	136	204	–	69	92	
ND2	297	1289	+	993	–15	ATT/TAA
trnW(tca)	1275	1341	+	67	–8	
trnC(gca)	1334	1398	–	65	0	
trnG(gta)	1399	1465	–	67	8	
COX1	1474	3009	+	1536	–5	
trnL2(taa)	3005	3071	+	67	48	
COX2	3120	3788	+	669	–35	ATA/TAA
trnK(ttt)	3754	3824	+	71	–1	
trnD(gtc)	3824	3892	+	69	0	
ATP8	3893	4054	+	162	–7	ATA/TAA
ATP6	4048	4722	+	675	–1	ATG/TAA
COX3	4722	5513	+	792	2	ATC/TAA
trnG(tcc)	5516	5582	+	67	0	
ND3	5583	5936	+	354	10	
trnA(tgc)	5947	6013	+	67	–1	
trnK(tgg)	6013	6077	+	65	–1	
trnN(gtt)	6077	6143	+	67	2	
trnS1(gct)	6146	6211	+	66	1	
trnE(ttc)	6213	6279	+	67	–2	
trnF(gaa)	6278	6346	–	69	–17	
ND5	6330	8057	–	1728	24	ATA/TAA
trnH(gtg)	8082	8148	–	67	–1	
ND4	8148	9488	–	1341	7	ATG/TAA
ND4L	9496	9739	–	294	9	ATG/TAA
trnT(tgt)	9799	9865	+	67	0	
trnP(tgg)	9866	9930	–	65	32	
ND6	9963	10,469	+	507	–1	ATA/TAA
CYTB	10,469	11,817	+	1149	–1	ATG/TAA
trn52(tga)	11,617	11,684	+	68	38	
ND1	11,723	12,661	–	939	1	ATG/TAG
trnL1(tag)	12,663	12,730	–	68	21	
16S rRNA	12,752	14,023	–	1272	46	
trnV(tac)	14,070	14,135	–	66	0	
12S rRNA	14,136	14,914	–	779	0	
A+T-rich region	14,915	15,305	–	391	0	

The gene names, the coordinates, the orientation, the size, the gene overlaps/intergenic spacers (column 6) and the start/stop codons of the O. scapulalis mitogenome are listed.

Table 2
Base composition and skewness indices for each specific gene region of the O. scapulalis mitogenome.

Type	Size [bp]	A%	G%	T%	C%	A+T%	AT skew	GC skew
Entire mitogenome	15,305	41.7	7.7	39.2	11.4	80.9	0.031	–0.197
Protein-coding genes	11,139	34.5	10.8	44.9	9.9	79.4	–0.131	0.045
tRNA	1480	41.7	10.8	39.9	7.6	81.6	0.022	0.172
rRNA	2051	41.7	9.9	43.4	4.9	85.1	–0.021	0.338
A+T-rich region	391	42.7	2.0	49.6	5.6	92.3	–0.075	–0.467

which ranged from 1 to 92 bp with the longest being located between the trnQ and ND2 genes. Furthermore, region overlaps (see Table 1: negative intergenic nucleotide values) of 1 to 35 bp could be observed for fifteen gene pairs. More annotation details can be found in Table 1 and are also represented as mitogenome map in Fig. 1. Base compositions, AT and GC skews to each genomic region type are shown in Table 2. The tRNA secondary structures showed the typical
Fig. 1. Map of the *Ostrinia scapulalis* mitogenome generated with OGDRAW. Annotated genes are highlighted.

clover-leaf except for trnS1 in which the dihydouridine (DHU) arm was replaced by an unstable loop (Supplementary Fig. 1). The characteristics of the A+T-rich region are shown in Fig. 2. Finally, we built a phylogeny based on 63 lepidopteran mitogenomes (including the generated OSCA mitogenome, Table 3), with a focus on Pyraloidea (Fig. 3 and Supplementary Fig. 2).

2. Experimental Design, Materials and Methods

2.1. DNA sampling and sequencing

Ostrinia scapulalis larval samples were collected in 2015 from a stem of mugwort in North of France (50° 8’13.57″N; 1°50’23.62″E). Genomic DNA was extracted from one larva using the DNeasy Tissue Kit from Qiagen (Hilden, Germany) according to the manufacturer’s protocol. Subsequently, a 2×150 bp shot-gun paired-end library with an insert size of 300 bp, was generated using the DNA extract and sequenced by LGC Genomics GmbH (Berlin, Germany) on
Table 3

Lepidoptera mitogenomes which were used to build the phylogenetic trees. For *Ostrinia* spp. the countries are also given in which the samples were taken.

Super-family	Family	Subfamily	Species	Genbank no.
Bombycoidea	Bombycidae	Bombycinae	*Bombyx mori*	NC_002355
Bombycoidea	Saturniidae	Saturninae	Acias selene	NC_018133
Bombycoidea	Sphingidae	Sphinginae	Manduca sexta	NC_010266
Geometroidea	Geometridae	Ennominae	Biston panterinaria	NC_020804
Geometroidea	Geometridae	Ennominae	Phthoronidia atrilineata	NC_010522
Noctuoidea	Erebidae	Lymantriinae	Lymantria dispar	NC_012893
Noctuoidea	Noctuidae	Noctuinae	Spodoptera frugiperda	NC_027836
Noctuoidea	Notodontidae	Thaumetopoinea	*Ochrogaster lunifer*	NC_011128
Papilionoidea	Nymphalidae	Danainae	Danaus plexippus	NC_021452
Papilionoidea	Nymphalidae	Nymphalinae	Melitaea cinxia	NC_018029
Papilionoidea	Papilionidae	Papilioninae	Papilio machaon	NC_018047
Pyraloidea	Crambidae	Crambinae	Chilo auricilius	NC_024644
Pyraloidea	Crambidae	Crambinae	Chilo sacchariphagus	NC_029716
Pyraloidea	Crambidae	Crambinae	Chilo suppressalis	NC_015612
Pyraloidea	Crambidae	Crambinae	Diatraea saccharalis	NC_013274
Pyraloidea	Crambidae	Crambinae	Pseudargyria interruptella	NC_029751
Pyraloidea	Crambidae	Evergestinae	Evergestis junctalis	NC_030509
Pyraloidea	Crambidae	Nymphalinae	Ephesia interruptalis	NC_021756
Pyraloidea	Crambidae	Nymphalinae	Paracycroma distinctalis	NC_023471
Pyraloidea	Crambidae	Nymphalinae	Paracycroma prodigalis	NC_020094
Pyraloidea	Crambidae	Nymphalinae	Parapoxys crinalis	NC_031151
Pyraloidea	Crambidae	Pyraustinae	Loxostege stictalis	NC_027174
Pyraloidea	Crambidae	Pyraustinae	Ostrinia furnacalis (China)	NC_003368
Pyraloidea	Crambidae	Pyraustinae	Ostrinia furnacalis (China)	MN793323
Pyraloidea	Crambidae	Pyraustinae	Ostrinia furnacalis (China)	MN747041
Pyraloidea	Crambidae	Pyraustinae	Ostrinia nubilalis (USA)	NC_003367
Pyraloidea	Crambidae	Pyraustinae	Ostrinia nubilalis (China)	MN793322
Pyraloidea	Crambidae	Pyraustinae	Ostrinia palustralis (South Korea)	MH574940
Pyraloidea	Crambidae	Pyraustinae	Ostrinia scapulalis (France)	MT810173
Pyraloidea	Crambidae	Pyraustinae	Ostrinia scapulalis (China)	NC_048887
Pyraloidea	Crambidae	Pyraustinae	Ostrinia zealis (China)	NC_048888
Pyraloidea	Crambidae	Pyraustinae	Pyrausta despicata	NC_046050
Pyraloidea	Crambidae	Schoenobiinae	Sciraphaga incertula	NC_031329
Pyraloidea	Crambidae	Spilomelinae	Cnaphalocrocis medinalis	NC_015985
Pyraloidea	Crambidae	Spilomelinae	Cydalima perspectalis	NC_042150
Pyraloidea	Crambidae	Spilomelinae	Dichrococ punctiferalis	NC_021389
Pyraloidea	Crambidae	Spilomelinae	Glyphodes pyloalis	NC_025933
Pyraloidea	Crambidae	Spilomelinae	Glyphodes quadrimaculalis	NC_022699
Pyraloidea	Crambidae	Spilomelinae	Haritolodes derogata	NC_029202
Pyraloidea	Crambidae	Spilomelinae	Maruca testulalis	NC_024283
Pyraloidea	Crambidae	Spilomelinae	Maruca vitrata	NC_024099
Pyraloidea	Crambidae	Spilomelinae	Nomophila noctuella	NC_025764
Pyraloidea	Crambidae	Spilomelinae	Omiodes indicata	NC_039177
Pyraloidea	Crambidae	Spilomelinae	Palpita hypohomalia	NC_039632
Pyraloidea	Crambidae	Spilomelinae	Patania inferior	NC_040973
Pyraloidea	Crambidae	Spilomelinae	Pycnarnac lactiferalis	NC_033540
Pyraloidea	Crambidae	Spilomelinae	Spoladea recurvalis	NC_027443
Pyraloidea	Crambidae	Spilomelinae	Tyspanodes hylaps	NC_025569
Pyraloidea	Crambidae	Spilomelinae	Tyspanodes striata	NC_030510
Pyraloidea	Pyralidae	Epipaschiniina	Lista haraldusalis	NC_024535
Pyraloidea	Pyralidae	Gallerinae	Corycyra cephalonica	NC_016866
Pyraloidea	Pyralidae	Gallerinae	Galleria mellonella	NC_028532
Pyraloidea	Pyralidae	Phycitinae	Amyelois transiliata	NC_028443
Pyraloidea	Pyralidae	Phycitinae	Ephesia elutella	NC_039716
Pyraloidea	Pyralidae	Phycitinae	Ephesia kuehniella	NC_022476
Pyraloidea	Pyralidae	Phycitinae	Euzophera pyriella	NC_037175
Pyraloidea	Pyralidae	Phycitinae	Meroperta pravella	NC_035242
Pyraloidea	Pyralidae	Phycitinae	Plodia interpunctella	NC_027961
Pyraloidea	Pyralidae	Pyralinae	Endotrichia consocia	NC_037501
Pyraloidea	Pyralidae	Pyralinae	Hypsopygia regina	NC_030508
Pyraloidea	Pyralidae	Pyralinae	Orthopygia glaucinalis	NC_047304
Pyraloidea	Pyralidae	Pyralinae	Pyralis farinalis	NC_047303
an Illumina NextSeq 500 v2 platform. In total, 372,260,856 genomic reads were generated of which 306,203,188 remained after quality trimming with Trimmomatic v0.36 [6] (specific parameters were: PE -pred33, ILLUMINACLIP:$ADAPTERF:2:26:10 HEADCROP:5 LEADING:26 TRAILING:26 SLIDINGWINDOW:5:28 MINLEN:30, with $ADAPTERF containing all Illumina adapters and their reverse complement, respectively).

2.2. Mitogenome assembly and feature analyses

The OSCA mitogenome was assembled in two steps as follows. First, the scaffolds of a previously published O. scapulalis genome draft [1], OSCA v1.2 (BioProject PRJNA390510), were searched for putative mitochondrion sequences by using blastn v2.2.28 [7] against the mitochondrial genome sequence of the closely related Asian corn borer Ostrinia furnacalis (Guenée) (NCBI
accession number NC_003368). Genome scaffolds with high quality mitochondrial hits were selected and assembled by LGC with CAP3 v2013 [8] into a mitogenome sequence of 14,864 bp. In a second step, this draft mitogenome was refined using MITObim v1.9 [9] (using the default k-mer size of 31 bp and the –pair parameter) and the Trimomatic-cleaned paired-end Illumina reads. Gene identification as well as tRNA structure prediction were carried out on the MITOS web server v2 [10], using as reference set ‘RefSeq 81 Metazoa’ and the genetic code ‘5’ for invertebrates. Nucleic base contents were determined with the wordcount program of the EMBOSS toolkit v6.6.0.0 [11]. AT/ GC skewness indices describing the genomic compositional asymmetry of a mitogenome or specific sequence region were calculated as: AT skew = [A−T] / [A+T] and GC skew = [G−C] / [G+C], where each base letter represents the respective base count. The circular map of the OSCA mitogenome was generated with the web tool OGDRAW v1.3.1 [12].

2.3. Phylogenetic analyses

In order to perform comparative analyses of O. scapulalis with other Lepidoptera the nucleotide sequences of the 13 PCGs and 2 rRNA genes of 63 mitogenomes - comprising 59 Lepidoptera species – (Table 3) were downloaded from the NCBI ‘nucleotide’ database (https://www.ncbi.nlm.nih.gov/nuccore, May 2020). Our taxon sampling was focused on the superfamilies Pyraloidea, encompassing 34 species belonging to the Crambidae (including O. scapulalis) and 13 species belonging to the Pyralidae. Regarding Ostrinia spp., we included in total nine mitogenomes belonging to five Ostrinia species. As outgroups we used 12 representative species of the lepidopteran superfamilies Bombycoidea, Geometroidea, Noctuoidea and Papilionoidea; based on the comprehensive study of Wahlberg et al. [13], we used the three Papilionoidea representatives to root our trees. The PCG and rRNA nucleotide sequences of all species were grouped into 15 gene–specific sequence sets. Each gene set was in separate globally aligned with the program MAFFT v7.471 [14] by applying the Needleman-Wunsch algorithm (mafft-ginsi for PCGs and mafft-qinsi for rRNA sequences) with a maximum of 1000 refinement iterations (–maxiterate 1000), leaving the other parameters set to their default value. Subsequently, for each species all gene–specific alignments were concatenated following the same gene order using in-house Python and Perl scripts.

Phylogenetic trees were generated with the PHYML web server v3.0 [15] and a local installation of MrBayes v3.2.7a [17]. PHYML was run using the Smart Model Selection [16] option with the Akaike Information Criterion and the tree searching method BIONJ being set and by applying 1000 bootstraps. Concerning the MrBayes analysis, a separate partition was set for each gene. For each partition the evolutionary model was set to the GTR substitution model (nst=6) with gamma-distributed rate variation (rates=invgamma) across sites and a proportion of invariable sites (GTR +I +Gamma). The standard nucleotide substitution model (nucmodel=4by4) was chosen and priors settings were left as by default. Trees were built using 100,000 samples (ngen=1,000,000, samplefreq=10). Further parameters were: printfreq=100, diagnfreq=1000, nchains=4, savebrlens=yes, starttree=random, startparams=reset, outgroup pamac (corresponding to Papilio machaon), sump burnin=25,000, sumt burnin=25,000. The phylogenetic tree was visualized using the program FigTree v1.4.4 [18].

CRediT Author Statement

BG conceived the study. RS led the ANR research program on European Ostrinia genomics. RS, PA, SN collected the samples in the field. SN, PA prepared the samples and extracted the DNA. BG was responsible for the bioinformatics analyses, i.e. improvement of the mitogenome assembly, annotation, characterization, comparative analyses. BG and GJK did the phylogenetic analyses. All authors wrote and approved the manuscript.
Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This work was supported by a grant from the French National Research Agency (ANR, project Adapt-Ome, ANR-13-BSV7-0012-01). Most of the bioinformatics analyses were performed on the CBGP HPC computational platform (Montferrier-sur-Lez, France, https://www6.montpellier.inrae.fr/cbgp_eng/Platforms/Computing-platform). We are grateful to the bioinformatics platform ABiMS (Roscoff, France, http://abims.sb-roscoff.fr) for providing computational resources.

Supplementary Materials

Supplementary material associated with this article can be found, in the online version at doi:10.1016/j.dib.2020.106427.

References

[1] B. Gschloessl, F. Dorkeld, P. Audiot, A. Bretaudeau, C. Kerdelhué, R. Streiff, De novo genome and transcriptome resources of the Adzuki bean borer Ostrinia scapulalis (Lepidoptera: crambidae), Data Brief 17 (2018) 781–787, doi:10.1016/j.dib.2018.01.073.

[2] J.L. Boone, Animal mitochondrial genomes, Nucleic Acids Res. 27 (1999) 1767–1780, doi:10.1093/nar/27.7.1767.

[3] C. Li, L. Li, Y. Ren, Z. Lu, Y. Song, L. Liu, S. Lv, Y. Yu, X. Men, Characterization of the complete mitochondrial genome of Asia Corn Borer, Ostrinia fumalalis (Lepidoptera: crambidae), Mitochondrial DNA Part B 5 (2020) 936–937, doi:10.1080/23802359.2020.1718025.

[4] N. Zhou, Y. Dong, P. Qiao, Z. Yang, Complete mitogenomic structure and phylogenetic implications of the genus ostrinia (Lepidoptera: crambidae), Insects 11 (2020), doi:10.3390/insects11040232.

[5] M. Yang, L. Song, J. Mao, Y. Shi, C. Wu, Y. Zhang, L. Huang, W. Peng, X. Liu, Complete mitochondrial genome of the soybean leaffolder, omoiodes indicata (Lepidoptera: pyraloidea: crambidae), and phylogenetic analysis for pyraloidea, Int. J. Biol. Macromol. 115 (2018) 53–60, doi:10.1016/j.ijbiomac.2018.03.041.

[6] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics 30 (2014) 2114–2120, doi:10.1093/bioinformatics/btu170.

[7] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, D.J. Lipman, Basic local alignment search tool, J. Mol. Biol. 215 (1990) 403–410, doi:10.1016/0022-2836(90)90570-K.

[8] X. Huang, A. Madan, CAP3: a DNA sequence assembly program, Genome Res. 9 (1999) 868–877, doi:10.1101/gr.9.9.868.

[9] C. Hahn, L. Bachmann, B. Chevreux, Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach, Nucleic Acids Res. 41 (2013) e129, doi:10.1093/nar/gkt371.

[10] M. Bernt, A. Donath, F. Jübling, F. Externbrink, C. Florentz, G. Fritzsch, J. Pütz, M. Middendorf, P.F. Stadler, MITOS: improved de novo metazoan mitochondrial genome annotation, Mol. Phylogenet. Evol. 69 (2013) 313–319, doi:10.1016/j.ympev.2012.08.023.

[11] P. Rice, I. Longden, A. Bleasby, EMBL-EBI: the European molecular biology open software suite, Trends Genet. 16 (2000) 276–277, doi:10.1046/j.1469-0407.2000.09525.x.

[12] S. Greiner, P. Lehwarck, R. Bock, OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes, Nucleic Acids Res. 47 (2019) W59–W64, doi:10.1093/nar/gkz238.

[13] N. Wahrburg, C.W. Wheat, C. Peña, Timing and patterns in the taxonomic diversification of Lepidoptera (butterflies and moths), PLoS One 8 (2013) e80875, doi:10.1371/journal.pone.0080875.

[14] K. Katoh, D.M. Standley, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol. 30 (2013) 772–780, doi:10.1093/molbev/mst010.

[15] S. Guindon, F. Lethiec, P. Duroux, O. Gascuel, PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference, Nucleic Acids Res. 33 (2005) W557–W559, doi:10.1093/nar/gki352.

[16] V. Lefort, J.-E. Longueville, O. Gascuel, SMS: smart model selection in PhyML, Mol. Biol. Evol. 34 (2017) 2422–2424, doi:10.1093/molbev/msx149.

[17] F. Ronquist, M. Teslenko, P. van der Mark, D.L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M.A. Suchard, J.P. Huelsenbeck, MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space, Syst. Biol. 61 (2012) 539–542, doi:10.1093/sysbio/sys029.

[18] A. Rambaut, A.J. Drummond, FigTree Version 1.4. 0, 2012.