TRPV4—A Missing Link Between Mechanosensation and Immunity

Laura Michalick 1,2 and Wolfgang M. Kuebler 1,2*

1 Institute of Physiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany. 2 Institute of Physiology, Berlin Institute of Health, Berlin, Germany

Transient receptor potential vanilloid-type 4 (TRPV4) cation channel is widely expressed in all tissues as well as in immune cells and its function as mechanosensitive Ca\(^{2+}\) channel seems to be conserved throughout all mammalian species. Of late, emerging evidence has implicated TRPV4 in the activation and differentiation of innate immune cells, especially in neutrophils, monocytes, and macrophages. As such, TRPV4 has been shown to mediate neutrophil adhesion and chemotaxis, as well as production of reactive oxygen species in response to pro-inflammatory stimuli. In macrophages, TRPV4 mediates formation of both reactive oxygen and nitrogen species, and regulates phagocytosis, thus facilitating bacterial clearance and resolution of infection. Importantly, TRPV4 may present a missing link between mechanical forces and immune responses. This connection has been exemplary highlighted by the demonstrated role of TRPV4 in macrophage activation and subsequent induction of lung injury following mechanical overventilation. Mechanosensation via TRPV4 is also expected to activate innate immune cells and establish a pro-inflammatory loop in fibrotic diseases with increased deposition of extracellular matrix (ECM) and substrate stiffness. Likewise, TRPV4 may be activated by cell migration through the endothelium or the extracellular matrix, or even by circulating immune cells squeezing through the narrow passages of the pulmonary or systemic capillary bed, a process that has recently been linked to neutrophil priming and depriming. Here, we provide an overview over the emerging role of TRPV4 in innate immune responses and highlight two distinct modes for the activation of TRPV4 by either mechanical forces (“mechanoTRPV4”) or by pathogens (“immunoTRPV4”).

Keywords: TRPV4, mechanosensation, innate immunity, infection, host defense, inflammation

INTRODUCTION

Mechanotransduction is a multistep process to convert mechanical stimuli into biochemical signals that elicit specific cellular effector functions. Over the past decade many key players in this mechanosensitive machinery have been identified, e.g., ion channels like transient receptor potential vanilloid-type 4 cation channel (TRPV4) (1, 2), PIEZO (3–5) and epithelial Na\(^{+}\) channel (ENaC) (6), cellular microcompartments such as primary cilia (7) or caveolae (8), or integrins which can sense the stiffness of the extracellular matrix (ECM) (9).

In injury, infection, or cancer immune cells are attracted by biochemical cues, yet during invasion of the affected tissue they encounter changes in the biophysical properties of the microenvironment, which in turn affect their functions. This emerging role of mechanical forces in immune responses has been termed mechanoinmunology (10). Moreover, in organs with a
high dynamic mechanical load such as the lung or the heart
immune cells face rapid changes in mechanical forces during
the respiratory or cardiac cycle; yet relatively little is known
about the effects of such mechanical cues on the innate immune
system. During cell adhesion and migration immune cells
are exposed to various biophysical stimuli including shear (in
the circulation as well as during cell adhesion), deformation
(when squeezing though narrow capillary passages or in
transmigration), or cyclic mechanical stretch (in lung and
heart as a result of ventilation or cardiac function). Although
mechanical forces have been shown to impact signaling
during adaptive immune processes (11–13), their effects on
innate immunity are rarely considered and remain poorly
understood. Recent studies, however, have implicated TRPV4
function in the regulation of innate immune responses (14–16).
In the present review, we connect this emerging evidence
with the established role of TRPV4 in mechanosensation
to propose a novel concept of mechanoimmunology
via TRPV4.

**MechanoTRPV4**

The polymodal and non-selective TRPV4 cation channel,
originally described by Strotmann et al. (17) and Liedtke et al.
(18) in 2000, has been implicated over the past decades to act as
a cellular mechanosensor in response to mechanical forces such
as shear, stretch, osmotic swelling and shrinking, stiffening, and
surface expansion (19–27) and is ubiquitously expressed in a wide
range of cell types, including parenchymal cells such as smooth
muscle cells, fibroblasts, epithelial cells, and endothelial cells as
well as in immune cells, including macrophages, neutrophils
(14, 16, 27–33).

TRPV4 activation mediates the influx of extracellular Ca$^{2+}$,
which can in turn activate Ca$^{2+}$-triggered signaling cascades
resulting in changes in transcription, vesicular transport, or
cytoskeletal remodeling. The molecular mechanism how TRPV4
is activated by mechanical forces is currently not completely
understood. At present, models for either direct or indirect
mechanical activation of TRPV4 have been proposed (34, 35).
The concept of direct activation is based on the assumption that
an initial deformation of the plasma membrane’s lipid bilayer
will cause an expansion in cross sectional area, which creates
a membrane tension-dependent energy difference followed by
conformational change of the ion channel and thereby promotes
force activation, as previously described for KCNK4 potassium
channels by Brohawn et al. (36). This concept is supported by
studies of Loukin et al. (37) who showed that TRPV4 can be
activated by pipette suction in the presence of enzyme inhibitors
in Xenopus oocytes, thus excluding mechanisms of indirect
activation (37).

The concept of indirect TRPV4 activation follows the notion
that TRPV4 is rather mechanically gated via intracellular
signaling pathways such as integrin signaling, intracellular
messengers and kinases, or simply by changes in surface
expression (38, 39). Therefore, it has been demonstrated that
forces applied to β1-integrins result in ultra-rapid activation
of Ca$^{2+}$ influx through TRPV4 channels and that the TRPV4
channels are rather activated by mechanical strain in the
cytoskeletal backbone of the focal adhesion than by deformation
of the lipid bilayer or peripheral cortical cytoskeleton (40). Such
localized indirect activation is proposed to cause highly
compartmentalized TRPV4-mediated Ca$^{2+}$ signaling at focal
adhesions and facilitates downstream activation of additional
β1-integrins (integrin-to-integrin signaling) and leads to cell
reorientation (40, 41). Moreover, several studies have shown that
TRPV4 activation in response to osmotic or mechanical stress
depends on formation of intracellular mechanomessengers, like
lipid metabolites as arachidonic acid and its derivative 5′,6′-
epoxyeicosatrienoic acid, and PIP$_2$ (21, 42–45). Additionally,
calmodulin as a classical second messenger binds to TRPV4 and
mediates Ca$^{2+}$ influx by conformational change and dissociation
of its N- and C-terminus (20). It also has been observed that
several protein kinases affect the activity of TRPV4 and/or
facilitates binding to anchoring proteins (AKAPs) and F-actin
and stabilize the channel in the plasma membrane (24, 27, 46–
48). As such, a series of intracellular signaling cascades have
been identified that modulate TRPV4 activity and may serve as
pathways for indirect TRPV4 activation by mechanical forces.

In addition to the intracellular signaling pathways activating
TRPV4, mechanical forces can affect TRPV4 trafficking and
upregulate surface expression of the channel by recruitment
from intracellular pools of TRPV4 to the plasma membrane
via mechanoreceptive structures like calveolae, integrins, or
adherens junctions (8, 26, 32, 41). Subcellular localization and
trafficking of TRPV4 have been proposed to depend on pre-
and post-translational modifications, like alternative splicing
(49), nitrosylation, glycosylation and phosphorylation (27, 47,
50, 51). As these mechanisms were, however, largely identified
using fluorescent-tagged overexpression systems their exact
role in the trafficking of endogenous TRPV4 still remains
incompletely understood.

In summary, TRPV4 may not only respond to diverse triggers
via various modes (direct and indirect) of activation, diverse
signaling pathways and protein modifications, but also different
mechanisms to increase the abundance of open Ca$^{2+}$ channels at
the plasma membrane, respectively (Figure 1).

**ImmunoTRPV4**

The role of TRPV4 in the innate immune system was first
recognized more than a decade ago due to its thermosensitivity.
Increments in body temperature in response to infection
(i.e., fever) are important activators of the immune system
recognized more than a decade ago due to its thermosensitivity.
It also has been observed that

Frontiers in Immunology | www.frontiersin.org

March 2020 | Volume 11 | Article 413

Michalick and Kuebler

TRPV4 in Inflammation and Immunity
In 2008, Spinsanti and colleagues for the first time detected high expression levels of TRPV4 in human leukocytes (58). Subsequent functional studies from our group identified an important role for TRPV4 in regulating key neutrophil functions in response to pro-inflammatory stimuli like production of reactive oxygen species, cell adhesion, or migration (16). In vivo, Trpv4-deficient mice showed a marked protection from acute lung injury in two independent studies following either acid-induced or chlorine-induced lung injury (16, 59, 60). These effects were replicated by pharmacological inhibition of TRPV4, which similar to Trpv4 deficiency attenuated characteristic signs of lung injury including hypoxemia, reduced compliance, edema formation, histological evidence of lung injury, and last not least, neutrophil infiltration and the release of pro-inflammatory cytokines (27, 59). Bone marrow chimeras from Trpv4-deficient and corresponding wild type mice revealed that the barrier protective effects in Trpv4-deficient mice was mostly attributable to a lack of TRPV4 in parenchymal tissue (presumably most relevant in endothelial cells), whereas TRPV4 deficiency in hematopoietic blood cells primarily reduced neutrophil infiltration into the injured lung (16). As such, it remains to be shown to which extent TRPV4-mediated activation of neutrophils affects organ function in vivo. In principle, these findings demonstrate that TRPV4 regulates neutrophil adhesion and migration, whereas in barrier forming cells like endothelial and epithelial cells, TRPV4 acts as a door opener for protein and fluid extravasation.

In macrophages, TRPV4 mediates both pro-inflammatory functions including phagocytosis, adhesion, and reactive oxygen species production, as well as anti-inflammatory effects and secretion of pro-resolution cytokines and bacterial clearance (14, 15). As such, macrophage TRPV4 may exert both protective and detrimental effects to the host tissue, by facilitating bacterial clearance in infection while promoting parenchymal injury in sterile inflammation (16, 27, 59). In a recent study, a similar double-edged role of mechanosensation in the modulation of the innate immune response to sterile inflammation vs. bacterial infection was reported for another emerging mechanoimmunological cation channel, PIEZO1 (5).

An important additional role of TRPV4 in innate immunity relates to expression and function in the vascular endothelium, which by way of lining the inner surface of blood vessels and regulating cell adhesion and migration via expression of adhesion molecules acts as a gate keeper and controls the access for cells of the innate (and adaptive) immune system to sites of inflammation (61). TRPV4 activation in lung endothelial cells has
been shown to increase vascular permeability (16, 27, 29), in part via disintegration of cell junctions (62) and degradation of ECM components and non-matrix components like integrins and VE-cadherins by matrix metalloproteinases (MMPs) MMP2 and MMP9 (63), and in part by calmodulin-dependent activation of the endothelial contractile machinery (64). As a consequence of these effects, TRPV4 activation results in endothelial detachment from the basal lamina, consecutive disruption of the endothelial barrier, and ultimately edema formation (65, 66). These effects seem to be most prominent in the pulmonary microvasculature (67), which may be related to TRPV4’s roles in immunity and defense on the one, and the fact that the alveolo-capillary barrier presents a large surface for pathogen invasion on the other hand.

In lung alveolar epithelium, TRPV4 has been shown to act as a critical regular of epithelial barrier function, but at the same time revealed protective effects by increasing in bacterial clearance in large airways (31, 68, 69). All these findings identify TRPV4 as an important regulator of innate host defense responses including the regulation of phagocytes such as neutrophils and macrophages, but also of barrier forming epithelial and endothelial cells.

**TRPV4 IN HOST DEFENSE**

In line with its role in innate immune cells, TRPV4 has been implicated in different scenarios of host defense. In a murine model of *Streptococcus pneumoniae* infection TRPV4-deficiency prevented leukocyte infiltration, reduced bacterial load in the alveolar space, and attenuated characteristic features of lung injury (70). While these data unequivocally highlight the role of TRPV4 in host defense against gram-positive bacteria, the mechanism of TRPV4 activation by such bacteria or their pore-forming toxins such as pneumolysin (*S. pneumoniae*), α-hemolysin (*S. aureus*), or listeriolysin O (*L. monocytogenes*) is still unclear (70–72).

In gram-negative infections with bacteria such as *Escherichia coli* and *Pseudomonas aeruginosa*, TRPV4 activation by ECM stiffening during infection synergizes with LPS-stimulated TLR4 activation of p38 and thereby promotes host defense and resolution from lung injury (15, 73). Conversely, activation of protease-activated receptor (PAR)-2 by thrombin suppresses TRPV4 activity in macrophages and resolves lung injury (74). Similarly, PARs are also activated by neutrophil elastase (NE), matrix metalloproteases (MMPs) or other microbial proteases (33, 75–79) which has been implicated to degrade ECM and thereby causing remodeling and matrix stiffening during infection (33, 63, 73, 80).

Albeit the number of studies on TRPV4 in immune cells is still limited, TRPV4 emerges as a regulator of innate immunity and host defense and may sense mechanical changes of the extracellular environment during inflammation. Therefore, occurring mechanical forces are crucial for TRPV4-mediated immune response and regulate both pro- and anti-inflammatory effects, which may have both beneficial effects in terms of bacterial clearance and resolution from injury.

**TRPV4 IN MECHANOSENSATION OF IMMUNE CELLS**

Mechanical forces generated by hemodynamic forces or a factor of ECM composition under physiological and pathophysiological conditions are acting on immune cells and can be subclassified in (i) mechanical stretch by shape changes during cell passage through narrow capillary segments, (ii) shear stress acting on circulating or adherent immune cells as a function of blood flow or viscosity, and (iii) changes in substrate stiffness of the ECM induced by inflammation (81, 82).

In particular, mechanical stretch has been implicated as a central component in pathological processes at the alveolo-capillary barrier of the lung where it has been extensively studied in the context of ventilator-induced lung injury (VILI). In endothelial and epithelial cells, TRPV4 has been shown to become activated during mechanical stretch as exerted by mechanical (over-) ventilation leading to Ca$^{2+}$ influx and subsequent loss of lung barrier integrity and the release of cytokines (27, 29, 68). For macrophages, TRPV4 function has been shown to be critical in the pro-inflammatory response to mechanical ventilation (14). As shown by Hamanaka and colleagues in studies on isolated-perfused mouse lungs, replacement of wild type with *Trpv4*-deficient macrophages in wild type lungs was sufficient to attenuate classical features of VILI, a finding that was linked to stretch-induced and TRPV4-dependent intracellular Ca$^{2+}$ signaling, and the subsequent formation of reactive oxygen and nitrogen species *in vitro*.

In neutrophils, transmigration during VILI has so far largely been considered as a response secondary to the mechanical stretch on parenchymal cells (16, 83). In contrast to the systemic circulation where neutrophil adhesion and migration are primarily localized to postcapillary venules and mediated by adhesion molecules (61), the initial mechanism of neutrophil sequestration in the lung is largely based on cytoskeletal rearrangement and formation of F-actin rims which increase cellular stiffness and as a result, decrease their ability to change their shape from spherical to elliptical. These changes in deformability prevents activated neutrophils to pass through the narrow capillary segments of the alveolo-capillary network where they get trapped at sites of inflammation (84). While neutrophil stiffening was originally considered an irreversible feature, recent studies suggest that alternating neutrophil stiffening and softening can drive the dynamic oscillation of neutrophils between the activated/primed and deactivated/deprimed state (85). Since F-actin has been shown to bind to activated TRPV4, it can be speculated that this priming/depriming occurs as a function of TRPV4 activation secondary to the formation of F-actin rims (24). Given the implications of such mechanical effects due to e.g., changes in neutrophil shape and stiffness not only on neutrophil kinetics through the vascular system but also on their biological responsiveness in health and disease (86), the molecular dissection of the underlying signaling pathways and the potential link to TRPV4 mechanosensation may be of considerable scientific interest and relevance.
Shear stress in the vasculature is a result of blood flow velocity, vessel diameter, and blood viscosity and primarily acts on endothelial cells outlining the vessel lumen. Endothelial cells respond to shear stress by segregation of TRPV4 channels from β-catenin following relocating TRPV4 from adherens junctions to focal adhesions of the basal membrane which in turn increases endothelial permeability by destabilization of junctional complexes and Ca\(^{2+}\)-mediated cytoskeletal remodeling (87). While it is reasonable to expect that circulating immune cells tethering or adhering to the vascular wall experience likewise considerable degrees of vascular shear stress, the effects of fluid shear stress on innate immune cells have so far not been extensively addressed. In the alveolar compartment, alveolar macrophages have been shown to contribute to VILI by secretion of pro-inflammatory mediators in a TRPV4-dependent manner (14). This effect is presumably predominantly caused by stretch rather than shear effects. Nevertheless, it is conceivable that shear-dependent activation of macrophages may become relevant in conditions of alveolar fluid accumulation when fluid will cyclically shift in and out of the alveolus resulting in considerable shear forces exerted not only on alveolar epithelial cells but also on alveolar macrophages (88, 89).

Finally, substrate stiffness is regulated by the composition of the ECM which changes as a function of physiological (development, aging) and pathophysiological (atherosclerosis, hypertension, fibrosis) processes (90–93). TRPV4 has been identified as a major mechanosensor for substrate stiffness, but so far this function has been exclusively attributed to parenchymal cells (30, 31, 94–96). Yet, it is fair to speculate that changes in substrate stiffness will similarly affect the mechanical forces that act upon immune cells during the processes of adhesion and transmigration, which accordingly may affect TRPV4-dependent cellular responses. Conversely, TRPV4-mediated activation of immune cells may in turn affect local ECM structure and composition by secretion of MMPs. As such, TRPV4 may play an important role in proteolytic disruption of ECM, cell-cell, and cell-matrix interaction by MMPs that is required for effective immune cell extravasation to sites of injury and inflammation (63). By similar mechanisms, TRPV4 may also contribute to chronic parenchymal remodeling, explaining its prominent role in tissue fibrosis in a positive feedback of substrate stiffening and TRPV4-mediated pro-fibrotic effects (30, 97).

In line with a critical role of substrate stiffness for immune cell function, the Ca\(^{2+}\) response to LPS in of macrophages were shown to correlate with substrate stiffness. Notably, such substrate stiffness-dependent modulation of macrophage signaling can alter macrophage phenotype toward an anti-inflammatory phenotype (M2) initiating bacteria clearance and resolution of lung injury (15, 73).

**SUMMARY AND CONCLUSION**

This review provides an update on the role of TRPV4 in mechanosensation (“mechanoTRPV4”) on the one and inflammation and host defense (“immunoTRPV4”) on the other hand with the aim to point toward a possible, albeit still speculative, role of TRPV4 in mechanoimmunology.

Activation of mechanoTRPV4 directly impacts host defense in that it reduces endothelial and epithelial barrier function, but
at the same time promotes the infiltration of innate immune cells and the release of pro- and anti-inflammatory cytokines (15, 16, 27). In addition, TRPV4 activation can regulate the delivery of circulating immune cells to local sites of inflammation and infection by mediating vasodilation (98, 99). Activation of immunoTRPV4 triggers and promotes inflammation and has emerged as a key regulator of bacterial clearance. Importantly, mechanosensitive and immunoregulatory functions of TRPV4 may not be distinct, but intrinsically linked, thus opening a new view on mechanoregulation of immune responses. This concept has already been well-established for epithelial and endothelial cells, where mechanical activation of TRPV4 has emerged as a major regulator of barrier function and inflammatory responses. Yet, this notion has also been demonstrated for innate immune cells such as macrophages where Ca\(^{2+}\) signaling as a function of TRPV4-mediated sensing of substrate stiffness has been shown to shift the immune response from pro-inflammatory to an anti-inflammatory and resolving phenotype (15, 73) (Figure 2).

Similar scenarios of mechanoregulation of immune cell function via TRPV4 may relate to a variety of scenarios where immune cells undergo changes in mechanical stress, such as during cell adhesion (shear stress) and transmigration (substrate stiffness, shape change), capillary transit (shape change) as well as tissue strain e.g., in mechanically ventilated lungs (stretch). So far, the link between mechanoTRPV4 and immunoTRPV4 has not been characterized in detail, but may provide for important insights into the regulation of innate immunity and host defense and as such, for the development of novel preventive, therapeutic, or adjuvant strategies in inflammatory and infectious diseases such as sepsis, pneumonia, or sterile inflammation as in VILI.

**AUTHOR CONTRIBUTIONS**

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

**ACKNOWLEDGMENTS**

We acknowledge support from the German Research Foundation (DFG) and the Open Access Publication Fund of Charité – Universitätsmedizin Berlin.

**REFERENCES**

1. Liedtke W, Tobin DM, Bargmann CI, Friedman JM. Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. *Proc Natl Acad Sci USA*. (2003) 100(Suppl 2):14531–6. doi: 10.1073/pnas.2235619100
2. Liedtke WB. TRPV channels' function in osmo- and mechanotransduction. In: *TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades*, eds W. B. Liedtke, S. Heller (Boca Raton, FL: CRC Press/Taylor & Francis). Available online at: http://www.ncbi.nlm.nih.gov/books/NBK5262/ (accessed September 21, 2016).
3. Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, et al. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. *Neuron*. (2016) 89:1248–63. doi: 10.1016/j.neuron.2016.01.046
4. Ibara T, Mitsui T, Nakamura Y, Kanda M, Touchiya S, Kira S, et al. The oscillation of intracellular Ca\(^{2+}\) influx associated with the circadian expression of Piezo1 and TRPV4 in the bladder urothelium. *Sci Rep.* (2018) 8:5699. doi: 10.1038/s41598-018-23115-w
5. Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD, Yun S, et al. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. *Nature*. (2019) 573:669–74. doi: 10.1038/s41586-019-1485-8
6. Guo D, Liang S, Wang S, Tang C, Yao B, Wan W, et al. Role of epithelial Na\(^{+}\) channels in endothelial function. *J Cell Sci*. (2016) 129:290–7. doi: 10.1242/jcs.168831
7. Spasic M, Jacobs CR. Primary cilia: cell and molecular mechanosensors directing whole tissue function. *Semin Cell Dev Biol*. (2017) 71:42–52. doi: 10.1016/j.semcdb.2017.08.036
8. Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, et al. Role of ciliary compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca\(^{2+}\) signals and gap junction function are regulated by cavinol in endothelial cells. *Circulation*. (2008) 117:1065–74. doi: 10.1161/CIRCULATIONAHA.107.317637
9. Ringer P, Colò G, Fässler R, Grashoff C. Sensing the mechanosignals of the extracellular matrix. *Matrix Biol*. (2017) 64:6–16. doi: 10.1016/j.matbio.2017.03.004
10. Pageon, Govindar MA, Kempe D, Biro M. Mechanoinmunology: molecular-scale forces govern immune cell functions. * Mol Biol Cell*. (2018) 29:1919–26. doi: 10.1091/mbc.E18-02-0120
11. Kim SJ, Takeuchi K, Sun Z-Y, Touma M, Castro CE, Fahmy A, et al. The alphabeta T cell receptor is an anisotropic mechanosensor. *J Biol Chem*. (2009) 284:31028–37. doi: 10.1074/jbc.M109.052712
12. Reinhel EL. The structure of a T-cell mechanosensor. *Nature*. (2019) 573:502–4. doi: 10.1038/d41586-019-02646-w
13. Harrison DL, Fang Y, Huang J. T-cell mechanobiology: force sensation, potentiation, and translation. *Front Physiol*. (2019) 7:45. doi: 10.3389/fphys.2019.00045
14. Hamanaka K, Jian M-Y, Towsley MI, King JA, Liedtke W, Weber DS, et al. TRPV4 channels augment macrophage activation and ventilator-induced lung injury. *Am J Physiol Lung Cell Mol Physiol*. (2010) 299:L353–62. doi: 10.1152/ajplung.00315.2009
15. Scheraga RG, Abraham S, Niese KA, Southern BD, Grove LM, Hite RD, et al. TRPV4 Mechanosensitive ion channel regulates lipopolysaccharide-stimulated macrophage phagocytosis. *J Immunol*. (2016) 196:428–36. doi: 10.4049/jimmunol.1501668
16. Yin J, Michalick L, Tang C, Tabuchi A, Goldberg N, Dan Q, et al. Role of transient receptor potential Vanilloid 4 in neutrophil activation and acute lung injury. *Am J Respir Cell Mol Biol*. (2016) 54:370–83. doi: 10.1165/rcmb.2014-0225OC
17. Strotmann R, Harteneck C, Nunnennacher K, Schultz G, Plant TD. OTRPCA, a nonselective cation channel that confers sensitivity to extracellular osmolarity. *Nat Cell Biol*. (2000) 2:695–702. doi: 10.1038/35036318
18. Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, et al. Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. *Cell*. (2000) 103:525–35. doi: 10.1016/S0092-8674(00)01434-3
19. Liedtke W, Friedman JM. Abnormal osmotic regulation in trpv4-/- mice. *Proc Natl Acad Sci USA*. (2003) 100:13698–703. doi: 10.1073/pnas.1735416100
20. Strotmann R, Schultz G, Plant TD. Ca\(^{2+}\) dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. *J Biol Chem*. (2003) 278:26541–9. doi: 10.1074/jbc.M302590200
21. Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the channel TRPV4. *Proc Natl Acad Sci USA*. (2004) 101:396–401. doi: 10.1073/pnas.0303329101
22. O’Neil RG, Heller S. The mechanosensitive nature of TRPV channels. *Pfuiers Arch*. (2005) 451:193–203. doi: 10.1007/s00424-005-1424-4
23. Wu L, Gao X, Brown RC, Heller S, O’Neill RG. Dual role of the TRPV4 channel as a sensor of flow and osmolality in renal epithelial cells. Am J Physiol Renal Physiol. (2007) 293:F1699–713. doi: 10.1152/ajprenal.00462.2006
24. Shin SH, Lee EJ, Hyun S, Chun J, Kim Y, Kang SS. Phosphorylation on the Ser 824 residue of TRPV4 prefers to bind with F-actin than with microtubules to expand the cell surface area. Cell Signal. (2012) 24:641–51. doi: 10.1016/j.cellsig.2011.11.002
25. Jo AO, Ryskamp DA, Phuong TT, Verkman AS, Yarishkin O, MacAulay N, et al. TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller glia. J Neurosci. (2015) 35:13525–37. doi: 10.1523/JNEUROSCI.1987.15.2015
26. Baratchi S, Almazi JG, Darby W, Tovar-Lopez FJ, Mitchell A, McIntyre P. Shear stress mediates eicosyxytosis of functional TRPV4 channels in endothelial cells. Cell Mol Life Sci. (2016) 73:649–66. doi: 10.1007/s00018-015-1818-8
27. Michalick L, Erfanlada L, Weichelt U, van der Giet M, Liedtke W, Kuebler WM. Transient receptor potential Vanilioid 4 and serum glucocorticoid-regulated kinase 1 are critical mediators of lung injury in overventilated mice in vivo. Anesthesiology. (2017) 126:300–11. doi: 10.1097/ALN.0000000000001443
28. Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, et al. Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. (2004) 287:L272–8. doi: 10.1152/ajplung.00393.2003
29. Hamaanaka K, Itoan M, Hamaanaka S, Hamaanaka Y, Kurokawa M, et al. TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol. (2007) 293:L923–32. doi: 10.1152/ajplung.00221.2007
30. Rahaman SO, Grove LM, Parachuri S, Southern BD, Abraham S, Niese KA, et al. TRPV4 mediates myofibroblast differentiation and pulmonary fibrosis in mice. J Clin Invest. (2014) 124:3225–38. doi: 10.1172/JCI75331
31. Nayak PS, Wang Y, Najrana T, Priolo LM, Rios M, Shaw SK, et al. Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respir Res. (2015) 16:60. doi: 10.1186/s12931-015-0224-4
32. Goldenberg NM, Wang L, Ranke H, Liedtke W, Tabuchi A, Kuebler WM. TRPV4 is required for hypoxic pulmonary vasoconstriction. Anesthesiology. (2015) 122:1338–48. doi: 10.1097/ALN.0000000000000647
33. Zhao P, Lieu T, Barlow N, Sostegni S, Haertes S, Kombachmer C, et al. Neutrophil Elastase Activates Protease-activated Receptor-2 (PAR2) and Transient Receptor Potential Vanililioid 4 (TRPV4) to cause inflammation and pain. J Biol Chem. (2019) 290:13875–87. doi: 10.1074/jbc.M115.642736
34. Kung C. A possible unifying principle for mechanosensation. Nature. (2005) 436:647–54. doi: 10.1038/nature03896
35. Christiansen AF, Corey DP. TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci. (2007) 8:510–21. doi: 10.1038/nrn2149
36. Brohawn SG, Su Z, MacKinnon R. Mechanosensitivity is mediated directly by and the cell membrane trafficking. Am J Physiol Lung Cell Mol Physiol. (2007) 287:L272–8. doi: 10.1523/ajplung.00393.2003
37. Loukin S, Zhou X, Su Z, Saimi Y, Kung C. Wild-type and brachyolmia-causing TRPV4 channel variants are functional. FEBS J. (2011) 278:2661–81. doi: 10.1111/febs.13306
38. Peng H, Lewandrowski U, Müller B, Sickmann A, Walz G, Wiegierski T. Identification of a Protein Kinase C-dependent phosphorylation site involved in sensitization of TRPV4 channel. Biochem Biophys Res Commun. (2010) 391:1721–5. doi: 10.1016/j.bbrc.2009.12.140
39. Arriaga M, Fernández-Fernández JM, Albrecht N, Schaefer M, Valverde MA. Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem. (2006) 281:1580–6. doi: 10.1074/jbc.M511456200
40. Lee EJ, Shin SH, Hyun S, Chun J, Kang SS. Mutation of a putative S-nitrosylation site of TRPV4 protein facilitates the channel activation. Animal Cells Syst. (2011) 15:95–106. doi: 10.1007/s11652-2011-555183
41. Xu H, Yang T, Yuan C, Cohen DM. Glycosylation of the osmoreponsive transient receptor potential channel TRPV4 on Asn-651 influences plasma membrane trafficking. Am J Physiol Renal Physiol. (2006) 290:F1103–9. doi: 10.1152/ajprenal.00245.2005
42. Smith JB, Knowlton RP, Agarwal SS. Human lymphocyte responses are enhanced by culture at 40 degrees C. J Immunol. (1978) 121:691–4.
43. Tourquier J-N, Hellmann AQ, Lesca G, Jouan A, Drouet E, Mathieu J. Fever-like thermal conditions regulate the activation of maturing dendritic cells. J Leukoc Biol. (2003) 73:493–501. doi: 10.1189/jlb.1002506
44. Tominaga M, Caterina MJ. Thermosensation and pain. J Neurobiol. (2004) 61:3–12. doi: 10.1002/neu.20079
45. Todaka H, Taniguchi J, Satoh J, Mizo A, Suzuki M. Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem. (2004) 279:35133–8. doi: 10.1074/jbc.M406260200
46. Majhi RK, Sahoo SS, Yadav M, Prateek BM, Chattopadhyay S, Goswami C. Functional expression of TRPV channels in T cells and their implications in immune regulation. FEBS J. (2015) 282:2661–81. doi: 10.1111/febs.13306
47. Mancarella S, Wang Y, Gill DL. Signal transduction: STIM1 senses both Ca2+ and heat. Nat Chem Biol. (2011) 7:344–5. doi: 10.1038/nchembio.587
48. Spinsanti G, Zannoli R, Pantì C, Ceccarelli I, Marsili L, Bachiochi V, et al. Quantitative Real-Time PCR detection of TRPV1-4 gene expression in human leukocytes from healthy and hypo-sensitive subjects. Mol Pain. (2008) 4:5. doi: 10.1186/1744-8609-4-51
49. Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, et al. TRPV4 inhibition counteracted edema and inflammation and improved pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. (2014) 307:L158–72. doi: 10.1152/ajplung.00065.2014
50. Morty RE, Kuebler WM. TRPV4: an exciting new target to promote alveolocapillary barrier function. Am J Physiol Lung Cell Mol Physiol. (2014) 307:L187–21. doi: 10.1152/ajplung.00254.2014
51. Schmidt EP, Kuebler WM, Lee WL, Downey GP. Adhesion molecules: master controllers of the circulatory system. Compr Physiol. (2016) 6:945–73. doi: 10.1002/cphy.c150020
52. Narita K, Sasamoto S, Koizumi S, Okazaki S, Nakamura H, Inoue T, et al. TRPV4 regulates the integrity of the blood-cerebrospinal fluid barrier
and modulates transepithelial protein transport. FASEB J. (2015) 29:2247–59. doi: 10.1096/fj.14-261396

63. Villalta PC, Rocic P, Townsley MI. Role of MMP2 and MMP9 in TRPV4-induced lung injury. Am J Physiol Lung Cell Mol Physiol. (2014) 307:L652–9. doi: 10.1152/ajplung.00216.2014

64. Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baerle J, et al. Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ. Res. (2008) 102:966–74. doi: 10.1161/CIRCRESAHA.107.168724

65. Alvarez DE, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ. Res. (2006) 99:988–95. doi: 10.1161/01.RES.0000247065.11756.19

66. Jian M-Y, King JA, Al-Mehdi A-B, Liedtke W, Townsley MI. High vascular pressure-induced lung injury requires P250 epoxyenopeptide-dependent activation of TRPV4. Am J Respir Cell Mol Biol. (2008) 38:386–92. doi: 10.1165/rcmb.2007-0192OC

67. Willette RN, Bao W, Nerurkar S, Yue T-L, Doe CP, Stankus G, et al. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther. (2008) 326:443–53. doi: 10.1124/jpet.107.134551

68. Pairet N, Mang S, Fois G, Keck M, Kühnbach M, Gindele J, et al. TRPV4 inhibition attenuates stretch-induced inflammatory cellular responses and lung barrier dysfunction during mechanical ventilation. PLoS ONE. (2018) 13:e0196055. doi: 10.1371/journal.pone.0196055

69. Alpizar YA, Boonen B, Sanchez A, Jung C, López-Requena A, Naert JF. Matrix Metalloprotease-1 and elastase are novel uterotonic agents. Reprod Sci. (2010) 17:135–45. doi: 10.1161/scmb.2017.08.031

70. Hilžer MB, Sehrawat T, Arab JP, Zeng Z, Gao J, Liu M, et al. Matrix metallopeptide increases expression of CXCL1 in liver sinusoidal endothelial cells to recruit neutrophils, generate sinusoidal microthombi, and promote portal hypertension. Gastroenterology. (2019) 157:193–209.e9. doi: 10.1053/j.gastro.2019.03.013

71. Yoshida K, Kondo R, Wang Q, Dörschuck CM. Neutrophil cytoskeletal rearrangements during capillary sequestration in bacterial pneumonia in rats. Am J Respir Crit Care Med. (2005) 174:689–98. doi: 10.1164/rccm.200502-276OC

72. Epenyeng AE, Toepfner N, Chilvers ER, Guck J. Mechanotransduction in neutrophil activation and deactivation. Biochim Biophys Acta. (2015) 1853:105–16. doi: 10.1016/j.bbamer.2015.07.015

73. Bashant KR, Vassallo A, Herold C, Berner R, Menschner L, Subburayalu RV, et al. Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming. J Leukoc. (2015) 105:1143–53. doi: 10.1002/jlb.MA0715-295RR

74. Baratchi S, Knoerzer M, Khosha obese K, Mitchell A, McIntyre P. Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci Rep. (2017) 7:15942. doi: 10.1038/s41598-017-16276-7

75. Wissing TB, van Haaf ten EE, Koch SE, Ippel BD, Kurniawan NA, Bouten CV, et al. Hemodynamic loads distinctively impact the secretory profile of biomaterial-activated macrophages - implications for in situ vascular tissue engineering. Biomater Sci. (2019) 8:1334–47. doi: 10.1039/C8BM01005J

76. Tabuchi A, Kuebler WM. Alveolar tidal flooding - a new mechanism of ventilator-induced lung injury? In: D105 Critical Care: Ventilator Induced Lung Injury and ARDS - From Mice to Biomarkers in ARDS. American Thoracic Society International Conference Abstracts. San Diego, CA: American Thoracic Society (2018), A7517.

77. Arciniegas E, Neves CY, Carrillo LM, Zambrano EA, Ramirez R. Endothelial-mesenchymal transition occurs during embryonic pulmonary artery development. Endothelium. (2005) 12:193–200. doi: 10.1006/endm.2003.0022783

78. Sicard D, Haak AJ, Choi KM, Craig AR, Fenreden LE, Tschumperlin DJ. Aging and anatomical variations in lung tissue stiffness. Am J Physiol Lung Cell Mol Physiol. (2018) 314:L946–55. doi: 10.1152/ajplung.00415.2017

79. Barriga EH, Franke Z, Charras G, Mayor R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature. (2018) 554:523–7. doi: 10.1038/nature25742

80. Dieffenbach PB, Maracle M, Tschumperlin DJ, Fenreden LE. Mechanobiological feedback in pulmonary vascular disease. Front Physiol. (2018) 9:951. doi: 10.3389/physiol.2018.00951

81. Arora PD, Di Gregorio M, He P, McCulloch CA. TRPV4 mediates the Ca2+ influx required for the interaction between filaggrin-1 and non-muscle myosin, and collagen remodeling. J Cell Sci. (2017) 130:2196–208. doi: 10.1242/jcs.201665

82. Sharma S, Goswami R, Zhang DX, Rahaman SO. TRPV4 regulates matrix stiffness and TGFβ1-induced epithelial-mesenchymal transition. J Cell Mol Med. (2019) 23:761–74. doi: 10.1111/jcmm.13972

83. Gilchrist CL, Leddy HA, Kaye L, Case ND, Rothenberg KE, Little D, et al. TRPV4-mediated calcium signaling in mesenchymal stem cells regulates aligned collagen matrix formation and vinculin tension. Proc Natl Acad Sci USA. (2019) 116:1992–7. doi: 10.1073/pnas.1811815116

84. Henry CD, Dalloneau A, Péréz-Berezo M-T, Plata C, Wu Y, Guillon A, et al. In vitro and in vivo evidence for an inflammatory role of the calcium channel TRPV4 in lung epithelium: potential involvement in cystic fibrosis. Am J Physiol Lung Cell Mol Physiol. (2016) 311:L664–75. doi: 10.1152/ajplung.00442.2015
98. Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kollikoff MI, Heppner TJ, et al. Elementary Ca$^{2+}$ signals through endothelial TRPV4 channels regulate vascular function. *Science*. (2012) 336:597–601. doi: 10.1126/science.1216283

99. Hong K, Cope EL, DeLallo JJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (transient receptor potential vanilloid 4) channel-dependent negative feedback mechanism regulates Gq protein-coupled receptor-induced vasoconstriction. *Arterioscler Thromb Vasc Biol*. (2018) 38:542–54. doi: 10.1161/ATVBAHA.117.310038

**Conflict of Interest:** The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Michalick and Kuebler. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.