Operadic Hochschild chain complex and free loop spaces.

by

DAVID CHATAUR AND JEAN-CLAUDE THOMAS

Abstract. We construct, for any algebra \(A \) over an operad \(O \), an Hochschild chain complex, \(C^\bullet(O, A) \) which is also an \(O \)-algebra. This Hochschild chain complex coincides with the usual one, whenever \(A \) is a commutative differential graded algebra. Let \(X \) be a simply connected space, \(N^\bullet(-) \) be the singular cochain functor, \(X^{S^1} \) be the free loop space, \(C_\infty \) be a cofibrant replacement of commutative operad and \(M_X \) a \(C_\infty \)-cofibrant model of \(X \). We prove that The operadic chain complex \(C^\bullet(C_\infty, M_X) \) is quasi-isomorphic to \(N^\bullet(X^{S^1}) \) as a \(C_\infty \)-algebra. In particular, for any prime field of coefficients this identifies the action of the large Steenrod algebra on the Hochschild homology \(H^\bullet(N^\bullet(X)) \) with the usual Steenrod operations on \(H^\bullet(X^{S^1}) \).

Mathematics Subject Classifications(2000): 55U35, 18Dxx, 55P15, 55P60

Keywords: Operads, Steenrod operations, Free loop space, \(E_\infty \)-algebra.

Introduction.

As illustrated by the fundamental result of Mandell, \([20]\), \(E_\infty \)-algebras are the good tools for the study of the homotopy theory of topological spaces. Indeed, for a prime field of coefficients the homology of a \(E_\infty \)-algebra is an unstable algebra over the large Steenrod algebra. This last property originates with the previous works of Dold, \([9]\), May \([21]\) and has been recently extensively studied by the first author and Livernet \([8]\).

In this paper we develop an application of the homotopy theory of \(E_\infty \)-algebras to the study of the free loop space, \(X^{S^1} \) on a space \(X \). For this purpose, we consider the almost free operad, denoted \(C_\infty \), which is a cofibrant model of the commutative operad. A quotient of this operad, also denoted \(C_\infty \), has been studied by Kadeisvili, \([13]\), Kontsevich, \([16]\) and Getzler-Jones, \([10]\). It appears that the category of \(C_\infty \)-algebras is a closed model category which is very similar to the category of commutative and associative differential graded algebras.

It follows from Theorem C and Proposition 4.2-2:

Main Theorem: We denote by \(N^\bullet(-) \) the normalized singular cochain functor with coefficients in an arbitrary commutative ring \(lk \) and by \(H^\bullet(-) = H(N^\bullet(-)) \) the functor of singular cohomology. Let \(X \) be a 1-connected space, if each \(H^i(X) \) is finitely generated then there exist natural equivalences of \(C_\infty \)-algebras between \(N^\bullet(X^{S^1}) \) and the operadic Hochschild complex of the \(C_\infty \)-algebra \(N^\bullet(X) \).

An associative \(C_\infty \)-algebra is a particular case of strongly homotopy algebra (see 3.3). Our result is, in this special case, a substancial improvement of the results proved in \([3]\) and \([4]\) since the structure of unstable algebra over the Steenrod algebra but also all secondary cohomological operations are preserved \([8]\).

All the paper is devoted to the proof of this result. The required knowledge about
operads is presented in section 1. In section 2 we define the operad \mathcal{C}_∞ in relation with the Barratt-Eccles operad, extensively studied by Berger and Fresse, [1]. In section 3, we construct for any operad \mathcal{O} in the category of differential graded modules the operadic Hochschild complex of an \mathcal{O}-algebra, A. When A is supposed to be an associative and commutative differential graded algebra we compare the operadic Hochschild complex of an \mathcal{O}-algebra with the usual Hochschild complex. We also study the particular case when A is an almost free \mathcal{O}-algebra (Theorem B). In the last section we end the proof of our main result (Theorem C).

1. Backgrounds about algebras over an operad.

1.1 Notation. We denote by \mathbb{k}-GM (resp. \mathbb{k}-DGM) the category of graded modules (resp. of differential graded modules). We also consider the forgetful functor:

$$\# : \mathbb{k}$-$\text{DGM} \rightarrow \mathbb{k}$-$\text{GM}, \ (V,d) \mapsto (V,d)_\# = V .$$

We are mainly concerned by the following categories :

Δ, the simplicial category of finite ordered sets with objects $[n] = \{0,1,...n\}$ and non decreasing maps

C^Δ, the category of cosimplicial objects and cosimplicial maps of C:

$$X = (\{X_n\}_{n \geq 0}, d^i, s^i)$$

$C^{\Delta^{op}}$, the category of simplicial objects and simplicial maps of C:

$$X = (\{X_n\}_{n \geq 0}, d_i, s_i)$$

1.2 Operads. Recall from [11], [10] and [17], that an operad \mathcal{O} is defined in any symmetric monoidal category C as a sequence of left $\mathbb{k}[\Sigma_i]$-modules (where Σ_i is the symmetric group) $\mathcal{O}(i), i \geq 0$, with composition products

$$\mathcal{O}(n) \otimes \mathcal{O}(i_1) \otimes \mathcal{O}(i_2) \otimes \ldots \otimes \mathcal{O}(i_n) \rightarrow \mathcal{O}(i_1 + i_2 + \ldots + i_n), \quad x_0 \otimes x_1 \otimes \ldots \otimes x_n \mapsto x_0(x_1, x_2, ..., x_n)$$

which are equivariant, associative and with a unit. Homomorphisms of operads are defined in an obvious way.

The category of operads is a closed model category [2], [12], where the weak equivalences are the quasi-isomorphisms and the fibrations are the surjections.

The universal example of operad is the endomorphism operad. Let (V,d_V) be a differential graded module, $\mathcal{E}nd_V$ is an operad in \mathbb{k}-DGM such that:

$$\mathcal{E}nd_V(n) = \text{Hom}(V^\otimes n, V), \ n \geq 1 .$$

1.3 Algebras over an operad. Let \mathcal{O} be an operad in \mathbb{k}-DGM. An \mathcal{O}-algebra, (A,ρ), is a differential graded module, $A = (\{A_i\}_{i \in \mathbb{Z}}, d_A : A_i \rightarrow A_{i-1})$, with an operadic representation

$$\rho : \mathcal{O} \rightarrow \mathcal{E}nd_A .$$

determined by a sequence of maps differential graded \mathbb{k}-modules, called the evaluation product:

$$\tilde{\rho}_n : \mathcal{O}(n) \otimes A^\otimes n \rightarrow A, \quad \tilde{\rho}_n(x \otimes a_1 \otimes a_2 \otimes \ldots \otimes a_n) = \rho_n(x)(a_1 \otimes a_2 \otimes \ldots \otimes a_n).$$

invariant under the action of Σ_n and compatible with the composition product of \mathcal{O}.
O-algebras and homomorphisms of O-algebras is a category, denoted O-ALG. If O' is another operad in lk-DGM, a homomorphism of operads \(f : O \rightarrow O' \) induces a natural functor \(f^* : O'-\text{ALG} \rightarrow O-\text{ALG} \).

The free O-algebra generated by a differential graded module V is the differential graded module

\[
F(O, V) = \bigoplus_{k=0}^{\infty} O(k) \otimes_{\Sigma_k} V^{\otimes k},
\]

with evaluation products \(\tilde{\rho}_n : O(n) \otimes F(O, V)^{\otimes n} \rightarrow F(O, V) \) induced by the composition products of O. Any homomorphism \(f : V \rightarrow W \) of graded modules extends uniquely in homomorphism of graded modules \(F(O, f) : F(O, V) \rightarrow F(O, W) \). The functor \(F(O, -) : lk-DGM \rightarrow O-\text{ALG} \) is a left adjoint to the forgetful functor O-ALG \(\rightarrow lk-DGM \).

1.4 The associative operad and the commutative operad. For each \(n \geq 0 \), the canonical augmentation \(\epsilon_n : lk[\Sigma_n] \rightarrow lk \) of the group ring \(lk[\Sigma_n] \) defines a homomorphism of operads in lk-GM

\[
\epsilon : A \rightarrow C
\]

from the associative operad A to the commutative operad C such that \(A(n) = lk[\Sigma_n] \) and \(C(n) = lk \) with composition products given respectively by composition of permutations and multiplication in \(lk \). An A-algebra is an associative differential graded algebra while a C-algebra is a commutative differential graded algebra which is also, associative. Indeed, the representations \(\rho : A \rightarrow \mathcal{E}nd_A \) and \(C \rightarrow \mathcal{E}nd_A \) are the iterated products:

\[
lk[\Sigma_n] \otimes_{\Sigma_n} A^{\otimes n} = A^{\otimes n} \rightarrow A \text{ and } lk \otimes_{\Sigma_n} (A^{\otimes n}) = (A^{\otimes n})_{\Sigma_n} \rightarrow A.
\]

The free C-algebra (resp. a free A-algebra) generated by the differential graded module V is the differential graded module \(F(C, V) = \bigoplus_{n=0}^{\infty} lk \otimes_{\Sigma_n} V^{\otimes n} = \bigoplus_{n=0}^{\infty} (V^{\otimes n})_{\Sigma_n} = S(V) \) with graded commutative multiplication of the elements of V (resp. \(F(A, V) = \bigoplus_{n=0}^{\infty} lk[\Sigma_n] \otimes_{\Sigma_n} V^{\otimes n} = \bigoplus_{n=0}^{\infty} V^{\otimes n} = T(V) \) the usual tensor algebra on V).

1.5 Let A be an O-algebra. Then A is called almost free if \(A_# = F(O_#, V) \) for a graded module V. If the category of O-algebras is a closed model category (this is the case whenever O is a cofibrant operad) then any O-algebra admits a cofibrant model. An O-algebra is cofibrant if and only if it is a retract of an almost free O-algebra.

2. The operads BΣ and C∞.

2.1 Let us denote \(A = (\{A_n\}_{n \in \mathbb{N}}, d, s) \) a simplicial differential graded module with internal differential \(d_A : A_{n,q} \rightarrow A_{n,q-1} \). Then the total complex of the bicomplex

\[
\Delta_{p-1,q} \xrightarrow{\sum_{i=0}^{p-1} (-1)^i d_i} \Delta_{p,q} \xrightarrow{d_{p+1}} \Delta_{p,q+1}
\]

is denoted by \(\text{Tot}_* (A) \):

\[
\text{Tot}(A) = \{\text{Tot}_n(A)\}_{n \in \mathbb{Z}}, \quad d : \text{Tot}_n(A) \rightarrow \{\text{Tot}_{n-1}(A)\}
\]

\[
\text{Tot}_n(A) = \bigoplus_{p+q=n} \Delta_{p,q}, \quad dx = d_A x + (-1)^p \sum_{i=1}^{p} (-1)^i d_i x, \quad x \in \Delta_{p,q}.
\]
Let $D_n(A)$ be the subcomplex generated by degeneracies in A_n. The quotient complex $\text{Tot}_s(A)/D_n(A) := N_s(A)$ is the normalized differential graded module. The quotient map $\text{Tot}(A) \rightarrow N_s(A)$ is a chain equivalence, [19]-Theorem 6.1.

The singular chain complex of X with coefficients in \mathbb{k} is $C_*(X; \mathbb{k}) := C_*(S_*(X; \mathbb{k}))$ and the normalized chain complex is $N_s(X; \mathbb{k}) := N_s(S_*(X))$. The subcomplex of normalized cochain complex $N^*(X, \mathbb{k}) \subset \text{Hom}(C_*(X, \mathbb{Z}), \mathbb{k})$ is, in this paper, simply denoted $N^*(X)$. It follows from, [19]-Theorem 9.1 that N^* is a contravariant functor from the category of pointed topological spaces to the category of augmented associative differential graded algebras.

The functor $N(-)$

$$l^k\text{-DGM}^{\Delta_{op}} \rightarrow l^k\text{-DGM}$$

is a monoidal functor. The functor N transforms operads O in $l^k\text{-DGM}^{\Delta_{op}}$ (resp. O-algebras in $l^k\text{-DGM}^{\Delta_{op}}$) into operads in $l^k\text{-DGM}$ (resp. algebras over an operad in $l^k\text{-DGM}$), [17]-page 51. For further use we need the slightly more general result.

2.2 Lemma. Let $A = \{A_{p,q}\}_{p,q\in \mathbb{N}}$ be a simplicial O-algebra. Then the total complex $\text{Tot}(A)$ is an O-algebra. Moreover, $N_s(A)$ is an O-algebra and the quotient map $\text{Tot}(A) \rightarrow N_s(A)$ is an equivalence of O-algebras.

Proof.

Let A and B be two simplicial graded modules and consider the shuffle product

$$sh : C_pA \otimes C_qB \rightarrow C_{p+q}(A \times B), a \otimes b \mapsto \sum_{\mu,\nu} (-1)^{\epsilon(\mu)} s_\mu a \times s_\nu b, \quad \begin{array}{l} a \in A_p \\ b \in B_q \end{array}$$

where the sum is taken over the $p+q$ shuffles $\mu_1 < \mu_2 < \ldots < \mu_p, \nu_1 < \nu_2 < \ldots < \nu_q$, $\mu_i, \nu_j \in \{1,2,\ldots,p+q\}$, $\epsilon(\mu)$ is the graded signature of the (p,q)-shuffle, $s_\mu = s_{\mu_p} \circ s_{\mu_{p-1}} \circ \ldots \circ s_1$, $s_\nu = s_{\nu_q} \circ s_{\nu_{q-1}} \circ \ldots \circ s_1$, [19]-Chapter 8. If we assume that A and B are two simplicial differential graded modules, one easily check that sh commutes with the differentials so that we obtain:

$$sh : \text{Tot}A \otimes \text{Tot}B \rightarrow \text{Tot}(A \times B), \quad \text{and} \quad sh : N_sA \otimes N_sB \rightarrow N_{s+q}(A \times B).$$

Since, when $A = B$, the shuffle product is associative (and commutative) one defines the iterated shuffle product

$$sh^0 = id, \quad sh^{k+1} = (sh \otimes id) \circ sh^k, \quad k \geq 0$$

Let $\hat{\rho}_{n,k} : O(k) \otimes (A_n)^{\otimes k} \rightarrow A$ be an evaluation product of A_n. We consider O as a constant simplicial module and we define the map $\hat{\rho}_k : O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(A)$ as the composite

$$O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A)^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A^\otimes k) \rightarrow N_s(A).$$

Let $\rho_{n,k} : O(k) \otimes (N_s(A))^\otimes k \rightarrow A$ be an evaluation product of A_n. We consider O as a constant simplicial module and we define the map $\rho_k : O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(A)$ as the composite

$$O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A)^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A^\otimes k) \rightarrow N_s(A).$$

Let $\hat{\rho}_{n,k} : O(k) \otimes (A_n)^{\otimes k} \rightarrow A$ be an evaluation product of A_n. We consider O as a constant simplicial module and we define the map $\hat{\rho}_k : O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(A)$ as the composite

$$O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A)^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A^\otimes k) \rightarrow N_s(A).$$

Let $\rho_{n,k} : O(k) \otimes (A_n)^{\otimes k} \rightarrow A$ be an evaluation product of A_n. We consider O as a constant simplicial module and we define the map $\rho_k : O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(A)$ as the composite

$$O(k) \otimes (N_s(A))^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A)^\otimes k \rightarrow N_s(O(k)) \otimes N_s(A^\otimes k) \rightarrow N_s(A).$$
2.3 The operad \mathcal{BE}. The operad \mathcal{BE} (also called the Barrat-Eccles operad, [1]-1.1.) is an operad in the category of differential graded \mathbb{k}-modules such that:

$$\mathcal{BE}(n) = N_* (W(\Sigma_n)) = \text{the normalized bar construction on } \Sigma_n.$$

□

2.4 Some properties of \mathcal{BE}.

1) The operad \mathcal{BE} is a resolution of the operad \mathcal{C}: the homomorphism of operads $\tau : \mathcal{BE} \rightarrow \mathcal{C}$ is defined by the augmentations of the bar resolution for each component.

2) \mathcal{BE} is an E_∞-operad. Recall that an operad $\mathcal{O} = \{ (\mathcal{O}(n))_i \}_{i \geq 0}$ in \mathbb{k}-DGM is an E_∞-operad if each $\mathcal{O}(n)$ is an acyclic Σ_n-free module.

3) The natural map $\tau : \mathcal{A} \rightarrow \mathcal{C}$ factorises as $\mathcal{A} \rightarrow \mathcal{BE} \xrightarrow{\tau} \mathcal{C}$. In particular, \mathcal{BE}-algebras are associative algebras.

4) The operad \mathcal{BE} is not cofibrant.

5) Berger and Fresse [1] have proved that the normalized singular cochains $N^* (-)$ is a functor from the category of topological spaces to the category of \mathcal{BE}-differential algebras.

6) If $\mathbb{k} = \mathbb{F}_p$ is the prime field of characteristic p and \mathcal{A} is a \mathcal{BE}-algebra then $H(\mathcal{A})$ is an unstable algebra over the big Steenrod algebra ([21], [8]). Indeed, consider the Standard small free resolution \mathcal{W} (resp. \mathcal{W}') of the cyclic group of order p; $\pi \subset \Sigma_p$ (resp. of Σ_p). Thus we obtain the homomorphism $\mathcal{W} \rightarrow \mathcal{W}' \rightarrow \mathcal{BE}(p)$ and the evaluation product $\tilde{\rho} : \mathcal{BE}(p) \otimes \mathcal{A}^p \rightarrow \mathcal{A}$ restricts to the structure map $\mathcal{W} \otimes \mathcal{A}^{\otimes p} \rightarrow \mathcal{A}$ considered by May, [21], in order to define “algebraic Steenrod operations”. Recall that the big Steenrod algebra, denoted B_p, is such that the quotient $B_p/(P^1 = id)$ is the usual Steenrod algebra, see [20]-theorem 1.4. In particular, Adem relations are satisfied ([21] and [8]).

2.5 The operad \mathcal{C}_∞. Let \mathcal{C}_∞ be a cofibrant replacement of \mathcal{C}. There exists a quasi-isomorphism of operads

$$\mathcal{C}_\infty \rightarrow \mathcal{BE}.$$

In particular, by remarks 5) and 6) above, $N^*(X)$ is a \mathcal{C}_∞-algebra and any quasi-isomorphism of \mathcal{C}_∞-algebras $\mathcal{A} \rightarrow N^*(X)$ identifies the action of the large Steenrod operations on $H(\mathcal{A})$ to the usual action on $N^*(X)$.

By (1.5) any \mathcal{C}_∞-algebra admits a cofibrant replacement which is an almost free \mathcal{C}_∞-algebra, see [13] and [2].

3. The Operadic Hochschild chain complex.

3.1 Let us recall that the category of \mathcal{O}-algebras has all limits and colimits, [10]-Theorem 1.13. In particular, [20]-3, the coproduct of two \mathcal{O}-algebras \mathcal{A} and \mathcal{B} is an \mathcal{O}-algebra, denoted $\mathcal{A} \coprod \mathcal{B}$. Hereafter, we will use the following notation: $\mathcal{A} \rightarrowtail A \coprod B \twoheadrightarrow B$ for the natural inclusions and $A \coprod A \xrightarrow{\tau} A$ for the folding map. The symmetric group Σ_n acts on $A \coprod \ldots \coprod A$ (n terms) by permutations of factors. We denote by $\tau_n : A^{\coprod n} \rightarrow A^{\coprod n}$ the homomorphism corresponding to the cyclic permutation $(n, 1, 2, \ldots, n-1) \in \Sigma_n$.

It is then easy to check that the $\hat{\rho}_n$ are composition products.
3.2 Let \(O \) be an operad in \(k\text{-DGM} \) and \(A \) be an \(O \)-algebra. We denote by \(A \) the simplicial \(O \)-algebra

\[
\Delta_n = A^\Pi_{n+1}, n \geq 0, \quad d_i : A^\Pi_{n+1} \to A^\Pi_{n}, \quad s_i : A^\Pi_{n} \to A^\Pi_{n+1}
\]

\[
d_i = \left\{ \begin{array}{ll}
id^\Pi_{n+1} \cup \nabla^\Pi_i \cup d^\Pi_{n-i} & \text{if } i = 0, 1, ..., n - 1 \\
\nabla^\Pi_i \cup d^\Pi_{n-i} \circ \tau_n & \text{if } i = n
\end{array} \right.
\]

The normalization \(N(A) \), (see 2.2), of the simplicial \(O \)-algebra \(A \) is an \(O \)-algebra, denoted \(C^d_O(A, A) \), and called the Hochschild chain complex of the \(O \)-algebra \(A \). The homology of the \(C^d_O(A, A) \) is the operadic Hochschild homology, denoted \(H^d_O(A, A) \).

3.3 If \((A, d_A)\) is any associative differential graded algebra supposed unital and augmented we denote by \(A \) the kernel of the augmentation. The (classical) Hochschild chain complex is defined as follows:

\[
\mathfrak{c}_* A = \{ \mathfrak{c}_k A \}_{k \geq 0}, \quad \mathfrak{c}_k A = A \otimes sA^\circ k,
\]

with \(A = k \oplus A \). A generator of \(\mathfrak{c}_k A \) is written \(a_0[s_{a_1}|s_{a_2}|...|s_{a_k}] \) if \(k > 0 \) and \(a[] \) if \(k = 0 \). We set \(\epsilon_i = |a_0| + |a_1| + |s_{a_2}| + ... + |s_{a_i}|, i \geq 1 \). The differential \(d = d^1 + d^2 \) is defined by:

\[
d^1 a_0[a_1|a_2|...|a_k] = da_0[a_1|a_2|...|a_k] - \sum_{i=1}^{k} (-1)^{\epsilon_i} a_0[a_1|...|da_i|...|a_k]
\]

\[
d^2 a_0[a_1|a_2|...|a_k] = (-1)^{\epsilon_0} a_0[a_1|a_2|...|a_k] + \sum_{i=2}^{k} (-1)^{\epsilon_i} a_0[a_1|...|a_{i-1}|a_i|...|a_k]
\]

\[
-(-1)^{|s|}[sa_k|s]a_0[a_1|...|a_{k-1}]
\]

Consider the shuffle map, 4.2.1, \(sh : \mathfrak{c}_* A \otimes \mathfrak{c}_* A \to \mathfrak{c}_*(A \otimes A) \) defined by:

\[
sh(a_0[a_1|a_2|...|a_n], b_0[b_1|b_2|...|b_m]) = (-1)^t \sum_{\sigma \in \Sigma_{n,m}} (-1)^{\epsilon(\sigma)} a_0 \otimes b_0[c_{\sigma(1)}|...|c_{\sigma(m+n)}]
\]

where \(t = |b_0|(|a_0| + ... + |a_n|), \quad \epsilon(\sigma) = \sum |c_{\sigma(i)}||c_{\sigma(m+j)}|, \quad \text{summed over all pairs } (i, m + j) \text{ such that } \sigma(m + j) < \sigma(i) \).

Clearly, \(sh \) induces a chain map still denoted \(sh : \mathfrak{c}_* A \otimes \mathfrak{c}_* A \to \mathfrak{c}_*(A \otimes A) \). Let \(HH_* (A) \) be the homology of \(\mathfrak{c}_* A \).

If \(A \) is commutative (in the graded sense) then the multiplication \(\mu_A : A \otimes A \to A \) is a homomorphism of differential graded algebras. Thus the composite \(\mathfrak{c}_* \mu_A \circ sh : \mathfrak{c}_* A \otimes \mathfrak{c}_* A \to \mathfrak{c}_* A \) defines a multiplication on \(\mathfrak{c}_* A \) which makes it into a commutative differential graded algebra 4.2.2.

If \(A \) is an associative (non commutative) differential graded algebra, there is no interesting product on \(\mathfrak{c}_*(A) \) while \(C^d_* (A, A) \) is naturally an associative differential graded algebra. Obviously, \(\mathfrak{c}_*(A)_# \neq C^d_* (A, A)_# \). N. Bitjong and second named author, 8, have proved that for any strongly homotopy commutative \(k\)-algebra \(A \), in the sense of 22, there is a well defined cup product on \(HH_* (A) \), (8-Theorem 1), which is induced from a non canonical product on \(\mathfrak{c}_*(A) \). In the formalism of operads, a strongly homotopy commutative \(k\)-algebra \(A \) is an associative \(\mathcal{B}_\infty \)-algebra, in the sense of 10-5.2, (see 3-Proposition 2).

The graded vector space \(C^d_* (\mathcal{B}_\infty, A) \) is not isomorphic to \(\mathfrak{c}_*(A) \). An interesting question is: Let \(A \) be a strongly homotopy commutative algebra \(A \) does \(H^d_* (\mathcal{B}_\infty, A) \cong HH_* (A) \) as commutative graded algebras?
Let A be an associative (unital) differential graded algebra. There is classically associated to A an other simplicial differential graded algebra, which we denote \underline{A} and which is defined as follows (see [14]-Exemple 1.4):

$$\underline{A}_n = A^\otimes n + 1, n \geq 0, \quad d_i : A^\otimes n + 1 \to A^\otimes n, \quad s_i : A^\otimes n \to A^\otimes n + 1$$

$$d_i = \begin{cases} \text{id} \otimes A \otimes \mu_A \otimes \text{id}^\otimes n-i & \text{if } i = 0, 1, \ldots, n-1 \\ (\otimes \mu_A \otimes \text{id}^\otimes n) \circ \tau_n & \text{if } i = n \end{cases}, \quad s_i = \text{id}^\otimes i \otimes 1 \otimes \text{id}^\otimes n-i.$$

where μ_A denotes the multiplication of A and τ_n the map $a_0 \otimes a_1 \otimes \ldots \otimes a_n \mapsto (1)^{(\sum a_0 + \ldots + a_n)} a_n \otimes a_0 \otimes \ldots \otimes a_{n-1}$.

The complex $\tilde{c}(A) = N_* \underline{A}$ is the unreduced Hochschild chain complex. By [19]-Chapter X-Corollary 2.2 and Theorem 9.1, the maps $(\text{id} \otimes s^\otimes n)$ define a quasi-isomorphism

$$\tilde{c}(A) \to c_*(A).$$

If we assume that A is commutative, $\tilde{c}_*(A)$ is also a differential graded algebra. The multiplication is the shuffle product defined in the same way that the shuffle product on $c_*(A)$. Therefore the quasi-isomorphism (1) is a homomorphism of differential graded algebras.

Theorem A. Assume that A is associative commutative differential graded algebra. Then exists a natural quasi-isomorphism of commutative differential graded algebras

$$C^\partial_*(C, A) \to c_*(A).$$

Remark. If the C-algebra A is considered as a C_∞-algebra then, by naturality there is a surjective homomorphism of C_∞-algebras

$$C^\partial_*(C_\infty, A) \to C^\partial_*(C, A).$$

Does this map induce an isomorphism in homology?

Proof. Let B be a C-algebra. By universal property, there exists a natural isomorphism $\Phi_{A,B} : A \boxplus B \to A \otimes B$ of commutative differential graded algebras such that the following diagrams commute where we put $\Phi_{A,A} = \Phi_1$.

$$\begin{array}{cc}
\begin{array}{ccc}
A \boxplus A & \xrightarrow{\Sigma} & A \\
\Phi_1 & \downarrow & \\
A \otimes A & \xrightarrow{\mu} & A \\
\end{array}
& &
\begin{array}{ccc}
A \boxplus A & \xrightarrow{T} & A \boxplus A \\
\Phi_1 & \downarrow & \\
A \otimes A & \xrightarrow{T} & A \otimes A \\
\end{array}
\end{array}$$

where, μ denotes the usual product on $A \otimes A$ and T the usual twisting map. The associativity properties permit iteration so that we obtain for any $n \geq 0$ an isomorphism $\Phi_n : A \boxplus_{n-1} \to A^\otimes n + 1$. These Φ_n’s induce an isomorphism of simplicial differential graded modules $\underline{A} \to \underline{A}$ which in turn induces an isomorphism

$$C^\partial_*(A) = N_*(\underline{A}) \to N_*(\underline{A}) = \tilde{c}_*(A).$$
Composition of the isomorphism (2) with the quasi-isomorphism (1) gives the quasi-isomorphism

$$(3) \quad C^g_*(A) \to \mathfrak{e}_*(A).$$

On the other hand, the \mathcal{C}-algebra structure on $C^g_*(A)$ is such that the isomorphism (2) is an isomorphism of differential graded algebras. Thus (3) is a quasi-isomorphism of commutative differential graded algebras.

\[\square\]

3.6 An operad C_∞ is a Hopf operad "up to homotopy" (for the notion of Hopf operad we refer to (1)-5.3), that is to say it has a diagonal which is not coassociative but only up to homotopy. In this case, the tensor product of two C_∞-algebras A and B is a C_∞-algebra $A \otimes B$ with underlying differential graded module being the tensor product of the underlying differential graded modules, denoted $A \otimes B$. Indeed, Hinich [13] has proved that if the C_∞-algebras, A and B are cofibrant then there exists a natural quasi-isomorphism

$$\Phi_{A,B} : A \coprod B \to A \otimes B.$$

Let $f : A \to A'$ and $g : B \to B'$ be two homomorphisms of C_∞-algebras. Then, by naturality of $\Phi_{A,B}$, we obtain the commutative diagram

$$
\begin{array}{ccc}
A \coprod B & \xrightarrow{f \coprod g} & A' \coprod B' \\
\Phi_{A,B} \downarrow & & \downarrow \Phi_{A',B'} \\
A \otimes B & \xrightarrow{f \otimes g} & A' \otimes B'
\end{array}
$$

If we assume that A and A' are cofibrant and that f and g are quasi-isomorphisms, then by [2]-Theorem 3.2, the homomorphism $f \coprod g$ is a quasi-isomorphism. Therefore, $f \otimes g$ is also a quasi-isomorphism.

3.7 Assume that $A = F(\mathcal{O}, V)$ is an almost free \mathcal{O}-algebra. Thus, we have the sequence of direct summands

$$\mathcal{A}_n \supset \mathcal{O}(k) \otimes \Sigma_k (V^\otimes n+1)^{\otimes k} \supset \mathcal{O}(k) \otimes \Sigma_k \left(V^{\otimes k_0} \otimes V^{\otimes k_1} \otimes \ldots \otimes V^{\otimes k_n} \right),$$

with $k = k_0 + k_1 + \ldots + k_n$. Therefore, an element of \mathcal{A}_n is finite sum of elements of the form $x \otimes v_1 \otimes \ldots v_{k_0} \otimes v_{k_0+1} \otimes \ldots v_{k_0+k_1} \otimes \ldots \otimes v_{k_0+\ldots+k_{n-1}+1} \otimes v_k$ with $x \in \mathcal{O}(k)$ and $v_{k_0+\ldots+k_{n-1}+1} \otimes v_k \in V^{\otimes k}$ with usual convention $V^{\otimes 0} = k$. With this notation we obtain explicit formulas for the map r, l and ∇ defined in 3.1:

$$r : A_0 \to A_1, \quad r(x \otimes v_1 \otimes \ldots v_{k_0} = x \otimes v_1 \otimes \ldots v_{k_0} \otimes 1$$

$$l : A_0 \to A_1, \quad l(x \otimes v_1 \otimes \ldots v_{k_0} = x \otimes 1 \otimes v_1 \otimes \ldots v_{k_0}$$

$$\nabla : A_1 \to A_0, \quad \nabla(x \otimes v_1 \otimes \ldots v_{k_0} \otimes v_{k_0+1} \otimes \ldots v_{k_0+k_1}) = x \otimes v_1 \otimes \ldots v_{k_0} v_{k_0+1} \otimes \ldots v_{k_0+k_1}.$$

Therefore,

$$d_i : A_{n+1} \to A_n, \quad d_i \left(x \otimes v_1 \otimes \ldots v_{k_0} \otimes v_{k_0+1} \otimes \ldots v_{k_0+k_1} \otimes \ldots \otimes v_{k_0+\ldots+k_n-1+1} \otimes v_k \right) =$$

$$\begin{cases} x \otimes v_1 \otimes \ldots v_{k_0} \otimes \ldots \otimes v_{k_0+k_1+1} \otimes \ldots v_{k_0+\ldots+k_{n-1}+2} \otimes \ldots \otimes v_{k_0+\ldots+k_n-1+1} \otimes v_k & \text{if } i = 0, 1, \ldots, n-1 \\
= x \otimes v_{k_0+\ldots+k_{n-2}+1} \otimes \ldots v_{k_0+\ldots+k_{n-1}} & \text{if } i = n
\end{cases}$$

$$s_i : A_n \to A_{n+1}, \quad s_i \left(x \otimes v_1 \otimes \ldots v_{k_0} \otimes v_{k_0+1} \otimes \ldots v_{k_0+k_1} \otimes \ldots \otimes v_{k_0+\ldots+k_{n-1}+1} \otimes v_k \right) =$$

$$x \otimes v_1 \otimes \ldots v_{k_0} \otimes \ldots \otimes 1 \otimes \ldots \otimes v_{k_0+\ldots+k_{n-1}+1} \otimes \ldots v_{k_0+\ldots+k_{n-1}+1} \otimes \ldots v_{k_0+\ldots+k_{n-1}+1} \otimes v_k.$$
Let us denote by \(\mathcal{A}^+_n \) the submodule of the \(k \)-module \(\mathcal{A}_n \) generated by the elements of the form \(x \otimes v_1 \ldots v_{k_0} \otimes v_{k_0+1} \ldots v_{k_0+k_1} \otimes \ldots \otimes v_{k_0+\ldots+k_n} \) with \(x \in \mathcal{O}(k) \) and \(v_{k_0+\ldots+k_n} \in V^k \) such that each \(k_i > 0 \). The above formulas for \(d_i \) and \(s_i \) show that

a) the graded module \(\mathcal{A}^+_n \) is stable for the \(d_i \)'s but not stable for the \(s_i \)'s.

b) the submodule \(\mathcal{D}_n \) of \(\mathcal{A}_n \) generated by all degenerate elements (\(\mathcal{D}_0 = 0 \)) is exactly the submodule generated by the elements \(x \otimes v_1 \ldots v_{k_0} \otimes v_{k_0+1} \ldots v_{k_0+k_1} \otimes \ldots \otimes v_{k_0+\ldots+k_n} \) such that at least one \(k_i = 0 \).

Since \(C^5_\ast(\mathcal{O}, \mathcal{A}) = N(\mathcal{A}) = \text{Tot}(\mathcal{A})/D(\mathcal{A}) \) and since \(d_\ast(\mathcal{A}^+_n) \subset \mathcal{A}^+_n \) we have proved the first part of the next result.

Theorem B. Assume that \(A = F(\mathcal{O}, \mathcal{V}) \) is an almost free \(\mathcal{O} \)-algebra. Then the restriction of the natural chain equivalence \(\text{Tot} \mathcal{A} \to N_\ast \mathcal{A} \) to the total complex, \(\text{Tot}(\mathcal{A}^+) \) is an isomorphism of differential graded modules

\[
\text{Tot}(\mathcal{A}^+) \to C^5_\ast(\mathcal{O}, \mathcal{A}).
\]

Moreover, this homomorphism is an isomorphism of \(\mathcal{O} \)-algebras.

End of proof. Let us precise first that the evaluation products of the simplicial algebra \(\mathcal{A} \) are determined by the maps

\[
\mathcal{O}(k)_q \otimes \mathcal{A}^+_{p_1,q_1} \otimes \mathcal{A}^+_{p_2,q_2} \otimes \ldots \otimes \mathcal{A}^+_{p_k,q_k} \to \mathcal{A}^+_{p_1+p_2+\ldots+p_k,q_1+\ldots+q_k},
\]

which are explicitely given by the shuffle products and the evaluation product of \(\mathcal{O} \) (see proof of lemma 2.2). This implies that the following diagram commutes

\[
\begin{array}{ccc}
\mathcal{O}(n)_q \otimes \mathcal{A}^+_{p_1,q_1} \otimes \ldots \otimes \mathcal{A}^+_{p_n,q_n} & \to & \mathcal{O}(n)_q \otimes \mathcal{A}^+_{p_1,q_1} \otimes \ldots \otimes \mathcal{A}^+_{p_n,q_n} \\
\downarrow & & \downarrow \\
\mathcal{A}^+_{p_1+\ldots+p_n,q_1+\ldots+q_n} & \to & \mathcal{A}^+_{p_1+\ldots+p_n,q_1+\ldots+q_n}
\end{array}
\]

Therefore, each \(\mathcal{A}^+_n \) is a sub \(\mathcal{O} \)-algebra of \(\mathcal{A}_n \).

It results from the formula above that \(d_0 = d_1 : \mathcal{A}_1 \to \mathcal{A}_0 \) and that \(d_i \left(\bigoplus_{p>0,q \in \mathbb{Z}} \mathcal{A}^+_{p,q} \right) \subset \bigoplus_{p>0,q \in \mathbb{Z}} \mathcal{A}^+_{p,q} \). Thus we obtain:

Proposition. Assume that \(A = F(\mathcal{O}, \mathcal{V}) \) is an almost free \(\mathcal{O} \)-algebra. Then we have the natural splitting of \(\mathcal{O} \)-algebras

\[
\text{Tot}(\mathcal{A}^+) = (A, 0) \oplus \left(\bigoplus_{p>0,q \in \mathbb{Z}} \mathcal{A}^+_{p,q}, d \right).
\]

4. **Free loop space.**

4.1 Write \(\text{Top} \) (resp. \(\text{Costop} \)) for the category of topological spaces (resp. of cosimplicial topological spaces). The geometric realization of a cosimplicial set is the covariant functor

\[
||-|| : \text{Costop} \to \text{Top}, \quad Z \mapsto ||Z|| = \text{Costop}(\Delta, Z) \subset \prod_{n \geq 0} \text{Top}(\Delta^n, Z(n)),
\]
where $|Z|$ is equipped with the topology induced by this inclusion. Here $\triangle(n) = \Delta^n$ with the usual coface and codegeneracy maps. If Z is any cosimplicial topological space, then N^*Z is a simplicial set and $N^*\mathbb{Z}$ is a simplicial cochain complex with total complex $\text{Tot}(N^*Z)$:

$$(\text{Tot}_n(N^*Z) = \bigoplus_{p-q=n} N^q\mathbb{Z}(p), \quad Dx = \sum_{i=1}^p (-1)^i C^*(d_i) + (-1)^p \delta x, \ x \in N^*\mathbb{Z}(p).$$

The d_i are the coface operators of \mathbb{Z} and δ is the internal differential of $N^*(\mathbb{Z}(p))$. Recall that in general the natural map $\text{Tot}(N^*\mathbb{Z}) \to N^*(|Z|)$ is not a weak equivalence, \[3\]. It results from lemma 2.2 and 2.3-5 that the total complex $\text{Tot}(N^*(Z))$ is naturally a C_∞-algebra and $\text{Tot}(N^*(\mathbb{Z})) \to N^*(|Z|)$ a homomorphism of C_∞-algebras.

Hereafter we denote $N^*(N^*(\mathbb{Z}))$ the normalization of $\text{Tot}(N^*(\mathbb{Z}))$.

4.2 One of the interest for considering cosimplicial spaces is the following result, \[3\]. Proposition 5.1, (see also \[23\]-Corollary 1): If $\underline{\mathbb{L}}$ is a simplicial set and T a topological space then the cosimplicial space \mathbb{L} is such that there is a homeomorphism:

$$||T\mathbb{L}|| := \text{Costop}(\underline{\triangle}, T\underline{\mathbb{L}}) \cong \text{Top}(\{\mathbb{L}\}, T) = T\mathbb{L}.$$

In particular, if we consider the simplicial set K defined as follows: $K(n) = \mathbb{Z}/(n+1)\mathbb{Z}$, and, if \overline{k}^n denotes an element in $\mathbb{Z}/n\mathbb{Z}$, the face maps $d_i : K(n) \to K(n-1)$ with $0 \leq i \leq n - 1$ and the degeneracy maps $s_j : K(n) \to K(n+1)$ with $0 \leq j \leq n$ are:

$$d_i \overline{k}^{n+1} = \begin{cases} \overline{k}^n & \text{if } k \leq i \\ \overline{k} \frac{n+1}{k-1} & \text{if } k > i \end{cases} \quad s_j \overline{k}^{n+1} = \begin{cases} \overline{k}^n \frac{n+2}{k+1} & \text{if } k \leq j \\ \overline{k} \frac{n+1}{k} & \text{if } k > j. \end{cases}$$

and $d_n \overline{k}^{n+1} = \overline{k}^n$. The geometric realization of K, \[3\] (proposition 1.4), $|K|$ is homeomorphic to the circle S^1. Therefore, the cosimplicial model, \underline{X}, for the free loop space, used by Jones, \[14\],

$$\underline{X}(n) = \text{Map}(K(n), X) = X \times \ldots \times X \quad \text{(n+1)-times}$$

$$d_i(x_0, x_1, \ldots, x_n) = (x_0, x_1, \ldots, x_i, x_{i+1}, \ldots, x_n), \quad 0 \leq i \leq n$$

$$d_{n+1}(x_0, x_1, \ldots, x_n) = (x_0, x_1, \ldots, x_n, x_0)$$

$$s_j(x_0, x_1, \ldots, x_n) = (x_0, x_1, \ldots, x_j, x_{j+2}, \ldots, x_n), \quad 0 \leq j \leq n.$$

is such that $||\underline{X}|| \cong \text{Top}(\underline{K}, X) = X^{S^1}$, ($\cong$ means homeomorphism). From lemma 2.2, we deduce then:

Proposition. If X is simply connected, the natural map $\text{Tot}(N^*\underline{X}) \to N^*(X^{S^1})$ is a quasi-isomorphism of C_∞-algebras.

4.3 Theorem C. Let X be a simply connected space such that each $H^i(X)$ is finitely generated. Given an almost free model of the space X

$$\varphi_X : M_X = (F(C, V), d) \to N^*X$$

there exists a natural quasi-isomorphism of C_∞-algebras

$$C^\partial_*(C_\infty, M_X) \to N^*(N^*(\underline{X}))$$.
Proof. Let $\varphi_X : M_X = (F(C, V), d) \to N^*(X)$ (resp. $\varphi_Y : M_Y = (F(C, V), d) \to N^*(Y)$) be a almost free model for the space X (resp. for the space Y). By universal property, we obtain the commutative diagram

\[
\begin{array}{c}
M_X \xrightarrow{\iota} M_X \coprod M_Y \xleftarrow{\xi} M_Y \\
\sim \downarrow \varphi_X \hspace{1cm} \psi_{X,Y} \downarrow \hspace{1cm} \sim \downarrow \varphi_Y \\
N^*(X) \xrightarrow{N^*(pr_X)} N^*(X \times Y) \xleftarrow{N^*(pr_Y)} N^*(Y)
\end{array}
\]

where pr_X and pr_Y (resp. i_X and i_Y) are the natural projections (resp. inclusions). We have also the following commutative diagrams

\[
\begin{array}{c}
M_X \coprod M_X \xrightarrow{\nabla} M_X \\
\psi_{X,X} \downarrow \hspace{1cm} \sim \downarrow \varphi_X \\
N^*(X \times X) \xrightarrow{N^*(\Delta_X)} N^*(X) \\
\psi_{X,X} \downarrow \hspace{1cm} \sim \downarrow \varphi_X \\
N^*(X \times Y) \xrightarrow{N^*(T_X)} N^*(X)
\end{array}
\]

where Δ_X is the diagonal and T_X the topological interchange map.

By [20]-Lemma 5.2, we know that if each $H^i(X)$ is finitely generated then $\psi_{X,X}$ is a weak equivalence of differential graded module. It is now easy to prove that iteration furnishes a quasi-isomorphism of simplicial \mathcal{C}_∞-algebras $M_X \to N^*(X)$.

\[\blacksquare\]

Acknowledgements. The authors would like to thank Benoit Fresse for pointing out a mistake in a preliminary version and Martin Markl for his careful reading and suggestions.

References

[1] C. Berger and B. Fresse, Combinatorial operad action on cochains, to appear in J. of Cambridge Math. Phil. Soc..

[2] C. Berger and I. Moerdijk, Axiomatic homotopy theory for operad. Preprint Univ. Nice 651 (2002).

[3] N. Bitjong and J-C. Thomas, On the cohomology algebra of free loop spaces, Topology 41 (2002) 85-106.

[4] N. Bitjong and J-C. Thomas, Steenrod operations and Hochschild homology, Preprint Université d’Angers (2000).

[5] R. Bott and G. Segal, The cohomology of the vector fields on a manifold, Topology 16 (1977) 285-298.

[6] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraic K-theory of spaces -II, Topology 25 (1986) 303-318.
[7] D. Chataur, *Formes différentielles sur une opérade et modèle algébrique d’une fibration*. Algebraic and Geometric Topology 2 (2002) 51-93.

[8] D. Chataur and M. Livernet *Operadic description of Steenrod operations*. Preprint C.R.M. 507 (2002).

[9] A. Dold, *Über die Steenrodschen Kohomologieoperationen*, Annals of Mathematics 73 (1961) 258-294.

[10] E. Getzler and J.D.S. Jones, *Operads, homotopy algebras, and iterated integrals for double loop spaces* Preprint 1994 http://arXiv.org/abs/hep-th:9403055.

[11] V. Ginsburg and M. M. Kapranov, *Koszul duality for operads*, Duke Math. J. 76 (1994) 203-288.

[12] V. A. Hinich, *Homological algebra of homotopy algebras*, Comm. Algebra 25 (1997) 3291-3323.

[13] V. A. Hinich, *Virtual operad algebras and realization of homotopy types*. J. Pure and Applied Algebra 159 (2000) 173-185.

[14] J. D.S. Jones, *Cyclic homology and equivariant homology*. Invent. math. 87 (1987) 403-423.

[15] T. Kadeishvili, A_{∞}-algebra structure in cohomology and the rational homotopy type, Forschungsschwerpunkt Geometrie, Universität Heidelberg, Mathematisches Institut 37 (1988) 1-64.

[16] M. Kontsevich, *Formal (non)-commutative symplectic geometry*, in “The Gelfand mathematics seminar, 1990-1992” eds L.Coerwin, I. Gelfand, J. Lepowsky, Birkhauser, Boston-Basel-Berlin, 1993.

[17] I. Kriz and P. May, *Operads, algebras, modules and motives*, AstÉrisque 223 1995.

[18] J-L. Loday, *Cyclic homology*, Grundleren der mathematischen Wissenschaften 301 Springer-Verlag 1991.

[19] S. Mac Lane, *Homology*, Grundleren der mathematischen Wissenschaften Springer-Verlag 114 1963.

[20] M.A. Mandell, E_{∞}-algebras and p-adic homotopy theory, Topology 40 (2001) 43-94.

[21] J.P. May, *A general algebraic approach to Steenrod operations*, Springer Lecture Notes in Math, 168 (1970) 153-231.

[22] H. J. Munkholm, *The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps*, Jour. of Pure and Appl. Alg. 5 (1974) 1-50.

[23] F. Patras and J.-C. Thomas, *Cochain algebras of mapping spaces and finite group actions*. To appear in Topology and its Applications (2003)
dchataur@crm.es
CRM Barcelona
Institut d’Estudis Catalans
Apartat 50E
08193 Bellaterra, Espagne

jean-claude.thomas@univ-angers.fr
Département de mathématique
Faculté des Sciences
2, Boulevard Lavoisier
49045 Angers, France