Spin-valve magnetoresistance in ferromagnetic semiconductor (Ga,Fe)Sb heterostructures with high Curie temperature

Kengo Takase,*1 Le Duc Anh,1,2 Kosuke Takiguchi,1 Nguyen Thanh Tu,1,3 and Masaaki Tanaka1,4

1Department of Electrical Engineering and Information Systems, The University of Tokyo, Japan
2Institute of Engineering Innovation, The University of Tokyo, Japan
3Department of Physics, Ho Chi Minh City University of Pedagogy, Vietnam, Viet Nam
4Center for Spintronics Research Network (CSRN), The University of Tokyo, Japan

Ferromagnetic semiconductors (FMSs), which show both ferromagnetic and semiconducting characteristics, are promising materials for future low-power spintronics devices. Among various FMSs, Fe-doped III-V FMSs are promising, because both p-type and n-type materials are available and the highest Curie temperature (T_C) exceeds room temperature. In this work, we demonstrate clear magnetoresistance due to the spin valve effect in ferromagnetic heterostructures containing high-T_C (Ga,Fe)Sb. The samples examined here consist of (Ga$_{0.75}$,Fe$_{0.25}$)Sb (40 nm, $T_C > 320$ K) / InAs (thickness $t = 0, 3, 6, 9$ nm) / (Ga$_{0.8}$,Fe$_{0.2}$)Sb (40 nm, $T_C > 320$ K) grown by low-temperature molecular-beam epitaxy. Clear MR of ~2% with an open minor loop is observed at 3.7 K when $t = 3$ nm, whose peaks (\pm0.1 T) are consistent with the coercive forces of the (Ga,Fe)Sb layers obtained with superconducting quantum interference device (SQUID) magnetometry. We found that the GMR ratio increases (from 0.03 to 1.28%) with decreasing t (from 9 to 3 nm), which is caused by the enhancement of spin-dependent scattering at the InAs/(Ga,Fe)Sb interfaces. This is the first demonstration of the spin-valve effect in Fe-doped FMS heterostructures, paving the way for device applications of high-T_C FMSs.