Construction of prokaryotic expression system of TGF-β1 epitope gene and identification of recombinant fusion protein immunity

Yong-Hong Guo, Zhi-Ming Hao, Jin-Yan Luo, Jun-Hong Wang

AIM: To insert the constructed TGF-β1 epitope gene into the C-terminus of truncated hepatitis B core antigen to increase TGF-β1 antigenicity in its prokaryotic expression system and to identify immunity of the expressed recombinant protein in order to exploit the possibility for obtaining anti-TGF-β1 vaccine.

METHODS: The TGF-β1 encoding epitope gene (the mature TGF-β1: from 78-109 amino acid residues, TGF-β1[32]) was amplified by polymerase chain reaction from the recombinant pGEM-7z/TGF-β1[32] vector. The HBcAg gene fragments (encoding HBcAg from 1-71 and 89-144 amino acid residues) were amplified from PYTA1-HBcAg vector. The recombinant vector pGEMEX-1 was used to insert HBcAg1-71, TGF-β1[32] and HBcAg89-144 into restrictive endonuclease enzyme and ligated with T4 ligase. The fusion gene fragments HBcAg1-71-TGF-β1[32]-HBcAg89-144 were recloned to pET28a (+) and the DNA sequence was confirmed by the dideoxy chain termination method. The recombinant vector pET28a (+)/CTC was transformed and expressed in E. coli BL21 (DE3) under induction of IPTG. After purification with Ni2+-NTA agarose resins, the antigenicity of purified protein was detected by ELISA and Western blot and visualized under electron microscope.

RESULTS: Enzyme digestion analysis and sequencing showed that TGF-β1 epitope gene was inserted into the C-terminus of truncated hepatitis B core antigen. SDS-PAGE analysis showed that relative molecular mass (Mr) of the expressed product by pET28a (+)/CTC was Mr 24 600. The output of the target recombinant protein was approximately 34.8% of the total bacterial protein, mainly presented in the form of inclusion body. Western blotting and ELISA demonstrated that the fusion protein could combine with anti-TGF-β1 polyclonal IgG but not with anti-HBcAg. The purity of protein was about 90 % and the protein was in the form of self-assembling particles visualized under electron microscope. This fusion protein had good anti-TGF-β1 antigenicity and could be used as anti-TGF-β1 vaccine.

CONCLUSION: A recombinant prokaryotic expression system with high expression efficiency of the target TGF-β1 epitope gene was successfully established. The fusion protein is in the form of self-assembling particles and HBcAg can increase the antigenicity of TGF-β1. The expressed TGF-β1 epitope gene shows good immunogenicity and antigenicity.
are maintained[16] It is difficult to induce high titer antibody since TGF-β is a self-protein and B cells are immune silence. Fusion peptide epitope-encoded sequences of HBcAg can enhance TGF-β immunogenicity, because HBcAg components help T-cells, and the fusion proteins retain the polymeric or the particulate nature of HBcAg[14]

In this paper, fusion protein sequences carrying the TGF-β epitope inserted into the el loop of C-terminus of truncated HBcAg were expressed in E.coli BL21. The fusion protein can form particles. HBcAg has the potential to increase the TGF-β antigenicity and immunogenicity. Our results indicate that the fusion protein can be used as an effective anti-TGF-β vaccine.

MATERIALS AND METHODS

Materials

Recombinant vector pGEM-7z/TGF-β12 (TGF-β132 is the encoding gene of mature TGF-β 79-108 amino acid residues[17] and vector pET28a (+) were provided by Dr Zhi-Ming Hao (Novagen). Top10 and E.coli BL21 strains were provided by Xi’an Huaguang Biology Company. Plasmid pYT11-HBcAg was constructed by Institute of Virology of Chinese Academy of Preventive Medicine. Rabbit anti-human TGF-β-IgG was purchased from Santa Cruz. Restriction endonuclease enzymes (EcoRI, Hind III, BamHI, XhoI),TagDNA polymerase and T\textsubscript{\textalpha} DNA ligase were purchased from Huaimei Company and TaKaaLa Company. dNTP and isopropyl-β-D-thiogalactopyranoside (IPTG) were obtained from Sigma and oligonucleotide primers were obtained from Shanghai Shenggong Company.

Cloning of target genes

The encoding genes of TGF-β epitope (mature TGF-β amino acid residues from 79-108) and HBcAg were cloned from amino acid residues 1-71 and 89 - 144.

Oligonucleotide primers were designed to amplify the encoding genes based on GenBank TGF-β12 was cloned from the recombinant plasmid pGEM-7z/TGF-β15 as the PCR fragment template. The primers have a XhoI site incorporated into the 5’ end and a BamHI site at the 3’ end and their sequences are as follows (5’-3’): CC GTCGAGCAAGCCTGCGGCGCAGCTGCGCTG (forward) and CC GGA TCC GCA GGA GCC CAC GAT CAT (reverse). HBcAg gene was amplified by PCR from the vector pYT11-HBcAg as the template (constructed by Institute of Virology, Chinese Academy of Preventive Medicine). The primers of HBcAg\textsubscript{1-71} have a EcoRI site incorporated into the 5’ end and a XhoI site at the 3’ end and their sequences are as follows (5’-3’): GGAATTCAT GATTACGGCCAACTTTGCCGCTGCTGCGGCTGCATG (forward) and CCCTCGAGTCCACCCAGGATGCT AGA TGC (reverse). The primers of HBcAg\textsubscript{89-144} have a BamHI site incorporated into the 5’ end and a HindIII site at the 3’ end and their sequences are as follows (5’-3’): CGGATCCGGTGAAGTCACAAACACTAAATGGG C (forward) and CCAAGCTTCCGCGGAAGTGTGA TAGGAT (reverse). Total volume per PCR was 100 mL containing 2.5 mol/L each dNTP, 250 mmol/L each of the 2 primers, 15 mol/L MgCl\textsubscript{2}, 3.0U Taq-plus polymerase, 100 ng DNA template and 1×PCR buffer. The PCR consisted of 30 cycles of denaturation at 94 °C for 60 s, annealing at 52 °C for 30 s, and extension at 72 °C for 30 s. The products were visualized on 10 g/L agarose gel under UV light, pre-stained with ethidium bromide. The PCR products were digested respectively using EcoR/XhoI, Xhol/BamHI, BamHI / HindIII. After digestion with the restriction endonuclease enzymes simultaneously, the expected sizes of target amplification fragments HBcAg\textsubscript{1-71} TGF-β12 and HBcAg\textsubscript{89-144} was 268, 96 and 177 bp, respectively.

Construction of recombinant prokaryotic expression vector

The PCR products were digested respectively using EcoR I /XhoI, XhoI /BamHI, BamHI I / HindIII and ligated into the cloning vector pGEM-Teasy. The resulting fragments were cloned into the vector pGEMEX-1. The purified products were cloned into the compatible sites of the vector pGEMEX-1 (Promega, USA) using T4 DNA ligase at a molar ratio of 4:1 at 4 °C overnight. The recombinant plasmid clones pGEMEX-1/ HBcAg\textsubscript{1-71} TGF-β12 HBcAg\textsubscript{89-144} [HBcAg\textsubscript{1-71}/TGF-β12-HBcAg\textsubscript{89-144} (CTC)] were sequenced using the dideoxy chain termination method. After digestion with the restriction endonuclease enzymes EcoRI and HindIII simultaneously, the fusion gene fragments CTC were cloned into the compatible sites of the prokaryotic expression vector pET-28a(+), downstream of the 6-His tag to facilitate the protein purification using T4 DNA ligase at a molar ratio of 4:1 at 4 °C overnight. The recombinant vector pET28a(+)/ CTC was selected and identified by enzyme digestion and sequencing. IPTG at the dose of 1.0 mmol/L could efficiently induce pET28a/CTC in E.coli BL21(DE3) to express the fusion gene composed of 606 base pairs and encode objective polypeptides of 201 amino acid residues(Figure 1).

Figure 1 Schematic construction of plasmid pET28a(+)/CTC.
Extraction and expression of recombinant plasmids
The single bacterial colony (Top10/pET28a(+)/CTC) was picked and incubated in 2 mL LB containing 100 g/L of Kanamycin, at 300 r/min overnight at 37 °C, then recombinant plasmids were extracted according to the manufacturer's instructions and identified by PCR and restriction endonuclease enzyme digestion. E. coli BL21 (DE3) strains containing recombinant plasmids were grown until mid-log phase (optical density at 600 nm = 0.5-1.0), and then induced to express recombinant fusion protein by adding 1 mmol/L IPTG for 8 h. Bacteria were harvested by centrifugation at 12 000 g for 2 min, resuspended in protein-buffer and seethed for 5 min. Total protein was electrophoresed on 150 g/L SDS-PAGE gel and stained with Coomassie. The rate of recombinant fusion protein to total protein was deduced by Image Master Band Leader 3.0 software.

Purification of pET28a(+)/CTC fusion protein
Due to C end of the recombinant fusion antigen with six histidines, Ni²⁺-NTA agarose resin was used to purify the recombinant fusion antigen. Briefly, 500 ml of cultivated bacterial suspension was prepared, centrifuged, resuspended with the buffer liquid (50 mmol/L phosphate, 300 mmol/L NaCl, pH 7.0), and sonicated by ultrasonic wave with the energy of 600 W for 30 min, and ultracentrifuged for 15 min at 10 000 g at 4°C. The sonicated recombinant fusion antigen was purified by Ni²⁺-NTA agarose resin with a buffer of 50 mmol/L phosphate, 20 mmol/L imidazole, pH 7.80 and 250 mmol/L NaCl, 250 mmol/L imidazole, pH 7.80, respectively, and quantified. pET28a(+)/HBe-TGF-β₁⁺ fusion protein was expressed and purified by SDS-15% PAGE. In contrast with the induced product of pET-28a(+) (negative control), a recombinant protein with expected molecular weight of 24.6X10³ Da was expressed in E. coli BL21 (DE3) as shown by SDS-PAGE.

Immunoblotting analysis of recombinant fusion protein
ELISA The expressed fusion protein was stabilized as antigen at the coated concentration (1:100, 1:200, 1:400, 1:800, 1:1600 dilution) with CBS buffer overnight at 4 °C, and blocked with 100 g/L bovine serum albumin (BSA) for 1 h at room temperature, incubated with the anti-TGF-β₁ antibody and HBe antibody as the first antibody respectively for 2 h at room temperature. After a washing, the proteins were detected by incubating in HRP-goat anti-rabbit IgG antibody (Zhongshan, Beijing) and anti-human IgG (Xi’an Huaguang) as the second antibody respectively for 1 h at room temperature. The first antibodies were replaced by PBS and used as negative control. The results of ELISA for the sample were considered as positive if the A value at 490 nm (A₄₉₀) was over the mean plus 2.1 SD of the negative samples.

Western blot
After bacteria BL21/pET-28a(+)/CTC were incubated by adding of 1 mmol/L IPTG for 8 h, 1 ml of cultivated medium was ultracentrifuged, resuspended in protein-buffer and seethed for 5 min. Total protein was electrophoresed on 150 g/L SDS-PAGE gel, and then the proteins of SDS-PAGE separated (150 g/L acrylamide) were transferred to 0.45 mm pore size PVDF membrane. Following a 30-min washing in tris-saline blotting buffer, antigen-impregnated PVDF strips were incubated with anti-TGF-β₁ antibody and anti-HBe antibody respectively for 2 h at room temperature. After a washing, the proteins were detected by incubating the strips in alkaline phosphatase-conjugated goat anti-rabbit IgG antibody and anti-human IgG respectively for 1 h at room temperature.

RESULTS
Sequence analysis of recombinant vectors nucleotide and open reading frame (ORF)
The recombinant vectors pGEMEX-1/ CTC and pET28a(+)/CTC were identified by restriction enzyme digestion in 10 g/L agarose gel electrophoresis. The recombinant vector clones were sequenced using dideoxy chain termination method. The inserted 6xHis- HBeAg₁₇₁-TGF-β₁⁻HBcAg₉₀⁻₁₄₄ had the correct open reading frame in the expression vector and correctly sequenced DNA. The nucleotide sequence of the fusion genes was analyzed. Recombinant vector pET-28a(+)/CTC was digested by bi-enzyme digestion with HindIII, EcoRI, then digestive products were visualized on 10 g/L agarose gel (Figure 2). The amplified fused HBcAg₁₇₁-TGF-β₁⁻HBcAg₉₀⁻₁₄₄ DNA fragments were confirmed by restriction enzyme digestion and contained the objective gene.

Analysis of recombinant fusion protein
Total protein was electrophoresed on 150 g/L SDS-PAGE gel and stained with Coomassie. Its molecular mass was Mr 24 600 as demonstrated by 150 g/L SDS-PAGE gel analysis. The fusion protein was about 34.8 % of total cellular protein. After purification by Ni²⁺-NTA agarose

Figure 2 Recombinant vector pET28a/CTC identified by restriction enzyme digestion. Lane A: 200 bp DNA ladder; lane B: λDNA/HindⅢ (Markers); lane C: EcoRI/+HindⅢ enzyme digestion (546 bp +3.9 kb); lane D: vector pET28a as negative control; lane E: EcoRI/+HindⅢ enzyme digestion pET28a

Western blot
After bacteria BL21/pET-28a(+)/CTC were incubated by adding of 1 mmol/L IPTG for 8 h, 1 ml of cultivated medium was ultracentrifuged, resuspended in protein-buffer and seethed for 5 min. Total protein was electrophoresed on 150 g/L SDS-PAGE gel, and then the proteins of SDS-PAGE-separated (150 g/L acrylamide) were transferred to 0.45 mm pore size PVDF membrane. Following a 30-min washing in tris-saline blotting buffer, antigen-impregnated PVDF strips were incubated with anti-TGF-β₁ antibody and anti-HBe antibody respectively for 2 h at room temperature. After a washing, the proteins were detected by incubating the strips in alkaline phosphatase-conjugated goat anti-rabbit IgG antibody and anti-human IgG respectively for 1 h at room temperature.
resin columniation, the purity of recombinant fusion protein was about 90% (Figure 3).

Electron microscopy

The expressed proteins by the constructs formed core particles observed under electron microscope, which were bigger than HBeAg core particles (Figure 5).

DISCUSSION

Anti-cytokine vaccination is a safe and effective therapy\(^{19}\). Imbalance in cytokine production or cytokine receptor expression and/or dysregulation of cytokine production provides the basis for generating pathological disorders. Cytokine production by effector cells (induced by activation but controlled by negative feedback regulation) does not accumulate in the extracellular compartment under physiologic conditions. The anti-cytokine therapeutic vaccine is to raise antibody levels over the background levels of natural antibodies while enhancing their affinity and neutralizing activity block the accumulation of overproduced cytokines, thereby inhibiting its pathogenic effects. In contrast, the neutralizing Abs do not interfere with cytokine production in normal tissues. Since it has no side effects in normal tissues, high-affinity Abs can be induced safely and effectively.

The TGF-\(\beta_1\) is chosen as an antifibrosis vaccine because it is a key cytokine in hepatic fibrosis and blockade of TGF-\(\beta_1\) prevents liver fibrosis. It is difficult to induce high titer antibody since TGF-\(\beta_1\) is a self-protein. T cells undergo a thymic-negative clonal selection against self-cytokines though anti-cytokine B cells still exist. HBeAg is an attractive candidate for induction of cytokine foreign epitopes because the HBeAg component helps T-cells and the fusion proteins retain the polymeric or the particulate nature of HBeAg. HBeAg behaves as highly immunogenic TI and TD antigens\(^{18,19}\). In recent years epitopes of various origin have been inserted into the core antigen of hepatitis B virus (HBV) allowing formation of chimeric HBV core particles. Chimeric core particles carrying the protein can induce protective immunity.

The high immunogenicity of HBeAg depends both on its structure with repetitive spikes on the surface to induce TI responses and on the efficient presentation of HBeAg by B cells to induce TD responses\(^{20\text{a}}\). Fusion
of peptide epitope sequences to HBcAg can enhance their immunogenicity. Virus-like particles generated by the heterologous expression of virus structural proteins are able to potentiate the immunogenicity of foreign epitopes presented on their surface. Several foreign epitopes from hepatitis B virus, Papillomavirus, Plasmodium falciparum and hantavirus have been introduced successfully into HBcAg capsids, and immunogenicity of the new epitopes has been demonstrated.

Foreign epitope sequence of varying length was inserted into HBcAg in various protein regions, including the N-,C-termini and some internal sites including immunodominant el loop without loss of the self-assembly properties of HBcAg. It has been demonstrated that the loop in the main determinant of the core antigen is the most promising insertion site from the immunological point of view: Epitopes inserted there possess higher antigenicity and immunogenicity than anywhere. But not all chimeric proteins are able to be particulated. The ability of chimeric HBcAg to self-assemble is most likely to depend on the physical and chemical properties of the amino acid residues forming the inserted foreign peptide.

The fusion of sequences carries the epitope of the TGF-β1 (mature encode zone amino acids 78-109) to the el loop of C-terminus of truncated HBcAg, produced in E. colia. BL21 (DE3). The expressed fusion protein is in the form of self-assembling particles observed under electron microscope. The results demonstrate that recombinant fusion protein has a good anti-TGF-β1 antigenicity. Mr 24 600 recombinant fusion protein has HBcAg characteristics and possesses TGF-β1 antigen specialty. The fusion proteins carrying the TGF-β1 antigen-domain fragment induce antibodies that react effectively with native TGF-β1, suggesting that the recombinant fusion protein can be used as a true vaccine candidate. In the present study, recombinant plasmid was constructed and expressed in BL21 (DE3) to explore the possibility for obtaining a vaccine conferring protection against liver fibrosis. We are going to use it in the hepatic fibrosis model as an anti-fibrosis vaccine. Further study is needed to detect its anti-fibrosis effect as a therapeutic vaccine.

ACKNOWLEDGMENTS

This work was supported by Mr. Yang Guangxiao and Wang Quanying of the Xi’an Huaguang Biologic Company.

REFERENCES

1. Wang JY, Guo JS, Yang CQ. Expression of exogenous rat collagenase in vitro and in a rat model of liver fibrosis. World J Gastroenterol 2002; 8: 901-907
2. Murphy F, Arthur M, Iredale J. Developing strategies for liver fibrosis treatment. Expert Opin Investig Drugs 2002; 11: 1573-1585
3. Nakamura T, Sakata R, Ueno T, Sata M, Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethyl nitrosamine-treated rats. Hepatology 2000; 32: 247-255
4. Dooley S, Delvoux B, Lahme B, Mangasser-Stephan K, Gressner AM. Modulation of transforming growth factor beta response and signaling during transdifferentiation of rat hepatic stellate cells to myofibroblasts. Hepatology 2000; 31: 1094-1106
5. Si XH, Yang LJ. Extraction and purification of TGF-beta and its effect on the induction of apoptosis of hepatocytes. World J Gastroenterol 2001; 7: 527-531
6. Moustakas A, Pardali K, Gaal A, Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett 2002; 85: 91-91
7. Sporn MB, Roberts AB. Transforming growth factor-beta: recent progress and new challenges. J Cell Biol 1992; 119: 1017-1021
8. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston: The cellular basis of hepatic fibrosis – Mechanisms and Treatment Strategies. N Engl J Med 1993; 328: 1828-1835
9. Border WA & Noble NA. Mechanisms of Disease: Transforming Growth Factor β in Tissue Fibrosis. N Engl J Med 1994; 331: 1296-1292
10. Komesi S, Vivien D, Dutrarte P. Cimereic extracellular domain type II transforming growth factor (TGF)-β receptor fused to the Fc region of human immunoglobulin as a TGF-β antagonist. Eur J Biochem 1998; 254: 505-513
11. Qi Z, Atsuchi N, Ooshima A, Takeshita A, Ueno H. Blockade of type β transforming growth factor signaling prevents liver fibrosis and dysfunction in the rat. Proc Natl Acad Sci USA 1999; 96: 2345-2349
12. Nakamura T, Sakata R, Ueno T, Sata M and Ueno H. Inhibition of transforming growth factor beta prevents progression of liver fibrosis and enhances hepatocyte regeneration in dimethyl nitrosamine-treated rats. Hepatology 2000; 32: 247-255
13. Arias M, Lahme B, Van de Leur E, Gressner AM, Weiskirchen R. Adenoviral delivery of an antisense RNA complementary to the 3' coding sequence of transforming growth factor-beta inhibits fibrogenic activities of hepatic stellate cells. Cell Growth Differ 2002; 13: 265-273
14. Ueno H, Sakamoto T, Nakamura T, Qi Z, Astuchi N, Takeshita A, Shimizu K, Ohashi H. A soluble transforming growth factor beta receptor expressed in muscle prevents liver fibrogenesis. Hum Gene Ther 2000; 11: 33-42
15. Zagury D, Burny A, Gallo RC. Toward a new generation of vaccines: the anti-cytokine therapeutic vaccines. PNAS 2001; 98: 8024-8029
16. Schödel F, Peterson D, Hughes J, Milich D. Hepatitis B virus core particles as a vaccine carrier moiety. Int Rev Immunol 1994; 11: 153-165
17. Zhuming Hao, Jinyan Luo, Quanying Wang, Guangxiao Yang, Prokaryotic expression of TGFβ(78 - 109)-HBV core fusion protein. Xian Jiu tong Daxue Xuebao (Medical Sciences) 2003; 24: 105-108
18. Milich DR, Peterson DL, Zheng J, Hughes JL, Wirtz R, Schödel F. The hepatitis nucleocapsid as a vaccine carrier moiety. Ann N Y Acad Sci 1995; 754: 187-201
19. Milich DR, McLachlan A. The nucleocapsid of hepatitis B virus is both a T cell-independent and a T cell-dependent antigen. Science 1986; 234: 1398-1401
20. Milich DR, Chen M, Schödel F, Peterson DL, Jones JE. Hughes JL. Role of B cells in antigen presentation of the hepatitis B core. Proc. Natl. Acad Sci USA 1997; 94: 14648-14653
21. Borisova G, Arya B, Dislers A, Borschukova O, Tsibinogin V, Skrastina D, Eldarov MA, Pumpens P, Skryabin KG, Grens E. Hybrid hepatitis B virus nucleocapsid bearing an immunodominant region from hepatitis B virus surface antigen. J Virol 1993; 67: 3696-3701
22. Tindle RW, Herd K,Londoño P, Fernando GJ, Chatfield SN, Malcolm K, Dougan G. Chimeric hepatitis B core antigen particles containing B and Th-epitopes of human papillomavirus type 16 E7 protein induce specific antibody and T-helper responses in immunised mice. Virology 1994; 200: 547-557
23. Schödel F, Wirtz R, Peterson D, Hughes J, Warren R, Sadoff J,
Milich D. Immunity to malaria elicited by hybrid hepatitis B virus core particles carrying circumsporozoite protein epitopes. *J Exp Med* 1994; 180: 1037-1046

24 Ulrich R, Koletzki D, Lachmann S, Lundkvist A, Zankl A, Kazaks A, Kurth A, Gelderblom HR, Borisova G, Meisel H, Krüger DH. New chimaeric hepatitis B virus core particles carrying hantavirus (serotype Puumala) epitopes: immunogenicity and protection against virus challenge. *J Biotechnol* 1999; 73: 141-153

25 Pumpens P, Borisova GP, Crowther RA, Grens E. Hepatitis B virus core particles as epitope carriers. *Intervirology* 1995; 38: 63-74

26 Tahara N, Yasumitsu H, Umeda M. Synthetic peptide-generated monoclonal antibodies to transforming growth factor-beta 1. *Hybridoma* 1993; 12: 441-453

Science Editor Wang XL and Guo SY *Language Editor* Elsevier HK