LncRNA RHPN1-AS1 Targeting miR-625/REG3A Promotes Cell Proliferation And Invasion Of Glioma Cells

Introduction: Glioma arises from the proliferation of neuroglial cells differentiated from the ectoderm. Evidence has confirmed that differentially expressed long non-coding RNAs (lncRNAs) may be involved in the development and progression of various tumors. The present study aimed to explore the biological function of lncRNA RHPN1-AS1 in glioma.

Materials and methods: The expressions of RHPN1-AS1 in glioma tissues and cells were examined using RT-PCR. Colony formation assay, MTT assay, wound healing assay and transwell assay were performed to detect cell cloning efficiency, proliferation, migration and invasion of glioma cells, respectively. Western blot was applied to assess the expression levels of migration-related and invasion-related proteins. Online bioinformatic tools and luciferase reporter assay were, respectively, employed to predict and verify the downstream target microRNA/gene of RHPN1-AS1.

Results: RHPN1-AS1 was up-regulated in glioma tissues and cells. The cell proliferation, migration and invasion of glioma were inhibited when the expression of RHPN1-AS1 was down-regulated in glioma cells. The expressions of migration-related and invasion-related proteins were also suppressed in siRHPN1-AS1 groups. Furthermore, we predicted and verified that RHPN1-AS1 was directly targeted to miR-625-5p/REG3A. Our study demonstrated that the knockdown of RHPN1-AS1 inhibited the proliferation, migration and invasion activity of glioma cells via regulating miR-625-5p/REG3A expression.

Conclusion: The results revealed that the lncRNA RHPN1-AS1 may be a molecular target in glioma therapy.

Keywords: glioma, LncRNA, RHPN1-AS1, proliferation, migration, invasion

Introduction
Gliomas, also known as neuroectodermal or neuroepithelial tumors, occur in the neuroectoderm.1,2 Most glioma tumors originate from different types of neuroglia. However, based on histogenesis and biological characteristics, a similar occurrence of neuroectodermal tumors in a variety of complex tumors is generally referred to as “glioma”.3,4 The incidence of gliomas ranges from 3 to 8 per 100,000 people in China while the global morbidity ranges from 4.67 to 5.73 per 100,000 people.5,6

At present, the standard treatment of glioma is concurrent chemotherapy with temozolomide (TMZ) after surgical excision combined with radiotherapy. However, the overall effect is not satisfactory.7,8 Due to the infiltration of glioma cells to surrounding brain tissue and poor permeability of the blood–brain barrier to chemotherapy drugs,9 it is still difficult to completely remove the tumor even
using the current advanced microsurgical techniques.10,11 Therefore, the challenge in the field of nerve tumor therapy is to find new treatment methods, which can effectively inhibit the malignant biological characteristics of glioma, thus prolonging the survival time of patients and improving their quality of life. Further studies to elucidate the molecular pathogenesis of gliomas and search for new therapeutic pathways and gene therapy targets are ongoing.

Long non-coding RNA (lncRNA), a class of RNA, does not encode proteins and has a transcript length of more than 200 nucleotides.14,15 Previous reports had proved that lncRNA is closely associated with the pathogenesis of different human malignant tumors.16,17 Some lncRNAs which may be involved in the occurrence and development of tumors are differentially expressed in tumors and normal tissues.18 LncRNA, as a by-product of RNA polymerase II transcription, was initially considered to have no biological function.19 However, recent studies have confirmed that lncRNA has many biological functions, including chromatin modification,20 chromosome silencing,21 transcriptional regulation and other biological processes,22 affecting protein function23 and the content of microRNA.24 LncRNA RHPN1-AS1 had found to be overexpressed in several cancers in previous studies, including uveal Melanoma and non-small cell lung cancer.25 However, the effect of lncRNA RHPN1-AS1 on glioma is unclear.

In the current study, we found that lncRNA RHPN1-AS1 was over-expressed in glioma tissues and cell lines. Moreover, several in vitro assays showed that RHPN1-AS1 knockdown suppressed the proliferation, migration and invasion of glioma cells. In addition, we predicted and verified lncRNA RHPN1-AS1 affected on glioma via targeting miR-625-5p/REG3A. These results provide a novel insight of glioma tumorigenesis and therapy.

Materials And Methods

Patients And Tissues

Glioma tissues and peritumoral brain edema (PTBE) tissues were collected from 37 pairs of glioma patients who underwent surgery between Oct 2009 and Dec 2011 at Taian Center Hospital. All specimens were frozen in liquid nitrogen immediately after surgical operation and then stored at −80°C. The research protocol was approved by the Taian Center Hospital and adhered to the ethical guidelines of the 1975 Declaration of Helsinki. All patients enrolled in the study gave written informed consents.

Cell Culture

Human glioma cell lines H4, A172, U251 and LN229 and a normal human astrocytes cell line NHA were purchased from Shanghai Cell Bank, Shanghai Institutes for Biological Sciences (Shanghai, China). Experimental cells were subsequently cultured in DMEM (HyClone, Logan, UT, USA) that consisted of 100 units/mL penicillin (Invitrogen, Shanghai, China), 100 µg/mL streptomycin (Invitrogen) and 10% fetal bovine serum (FBS) (Invitrogen), and then they were incubated at 37°C in a humidified atmosphere with 5% CO\textsubscript{2}.

Cell Transfection And Reagents

Small interfering RNAs (siRNA: 5ʹ-ACAGCCTATA TACA GCCAACCAGAGT-3ʹ), small interfering negative control (siNC: 5ʹ-GTCTACAGCCTCTGCTGTA-3ʹ) RNAs targeting RHPN1-AS1, miR-625-5p mimic (5ʹ-AGGGGGAA AGUUCUAUAGUC-3ʹ)/miR-NC (5ʹ-AGGUCTAAGUUC UAGCACC-3ʹ), and miR-625-5p inhibitor (5ʹ-GGACTATA GAACTTTCCCCCT-3ʹ) were designed and obtained from GenePharma (Shanghai, China). Glioma cells (U251 and LN229) were cultured to 60–70% confluency. Cells were subsequently transfected with Lipofectamine 2000 Reagent (Invitrogen) complied with manufacturer’s instruction. After plasmids transfected, the expression of RHPN1-AS1 was validated by quantitative real-time PCR (qRT-PCR).

Western Blot

Proteins were extracted using a 500-µL Radioimmunoprecipitation assay (RIPA) buffer with 1-mM phenylmethane sulfonyl fluoride (Sigma, St. Louis, MO, USA) to extract the protein lysates. Tris-buffered saline, containing 0.1% Tween-20 (TBS-T) with 5% nonfat dry milk, was used to block the cell membranes for 30 mins at 37°C. TBS-T was applied to wash the membranes for 4 times, and primary antibodies were employed to incubate them overnight at 4°C. Primary antibodies were all provided by Abcam (Cambridge, MA, USA) and the dilutions used in the current study were as follows: anti-GAPDH (1:500; ab8245), anti-N-cadherin (N-cad; 1:1000; ab18203), anti-snail (1:1000; ab53519), anti-twist (1:1000; ab50581) and REG3A (1:500; ab95316). Following extensive washing, the secondary antibody at a dilution
of 1:2000 was used to incubate membranes for 1 hr at room temperature. GAPDH served as the negative control.

RNA Extraction And qRT-PCR
Trizol (Invitrogen) was used to extract miRNAs and total RNA from glioma tissues and cell lines according to the manufacturer’s protocol. DNase I (Roche, Indianapolis, IN, USA) was used to remove residual DNA. QRT-PCR was performed to detect the expressions of RHPN1-AS1, miR-625-5p and REG3A. A cDNA synthesis kit (TaKaRa Biotechnology Co., Ltd, Dalian, China) was then used for following qRT-PCR according to the manufacturer’s instruction. GAPDH was used for normalization. The oligonucleotides, used as PCR primers, were as follows: lncRNA RHPN1-AS1 5ʹ-AGCCAGGAGGTTTCGC-3ʹ and 5ʹ-TCCGCAACAAGCA CACA-3ʹ; GAPDH 5ʹ-CACCCACTCCTCCACCTTTG-3ʹ and 5ʹ- CCACCACCCTGTGCTGTAG-3ʹ, GAPDH 5ʹ-CTCCCTCCTGGCTGTAAG-3ʹ; miR-625-5p 125ʹ-AGCCGAGCTATAGAACTTTCC-3ʹ and 5ʹ-CTCCTA CTCCCTCCTCATC-3ʹ; REG3A 5ʹ-GCCTGTGTTTGGTG-3ʹ, TGC-3ʹ and 5ʹ-ATGAGGTGGTCAGGTTGG-3ʹ; the ABI 7300 system (Applied Biosystem, Foster City, CA, USA) was performed to initially incubating the samples at 95°C for 10 mins, and then at 95°C for 10 mins, followed by 40 cycles of incubation at 95°C for 15 s and 60°C for 45 s. The 2−ΔΔCt method was employed to calculate the fold changes. All data represent the average of three replicates.

MTT Assay
The MTT Cell Proliferation and Cytotoxicity Assay Kit (Dojindo Laboratories, Tokyo, Japan) were used to assess the proliferation activity of human glioma cell lines (LN229 and U251) according to the manufacturer’s instructions. Cell lines were all culture at 96-well plates with a density of 1×104 cells/well and then transfected with siRHPN1-AS1, miR-625-5p mimics, or miR-625-5p inhibitor. The cells were incubated for 12, 24, 48 and 72 hrs. After incubation, the MTT solution was removed and replaced with dimethyl sulfoxide (DMSO; 150 µL, 4%; Sigma). A microplate reader (Bio-Tek, Instruments, Neufahrn, Germany) was used to measure the absorbance at 490 nm.

Colony Formation Assay
The cloning ability of glioma cells was detected using a colony formation assay. Briefly, cells in each treatment group were cultured in 6-well culture plates for 2 weeks to form colonies. Colonies were stained with crystal violet (2%) and counted under inverted microscope (Olympus, Tokyo, Japan). The experiments were performed 3 times.

Wound Healing Assay
Experimental cells in this study were implanted into 6-well culture plates with the density of 1.0×106 cells/well. After the cells had fused, a scratch was scraped with a pipette tip on the glioma cell monolayer, and PBS (Beyotime, Nanjing, China) was subsequently applied to wash cells for 3 times, and FBS-free medium was used to seed cells. At 0 and 48 hrs incubation, the glioma cell lines were photographed and the scratch area was assessed using Image J software (National Institutes of Health, Bethesda, MD, USA). The migration rate was calculated as follows: (area of original wound-area of wound at different times)/area of original wound×100%.

Cell Invasion Assay
To determine the invasion ability of glioma cells, a transwell invasion assay was applied. The top chambers of Matrigel-coated Transwell inserts (BD Bioscience, San Jose, CA, USA) were implanted with 5×104 cells resuspended in serum-free medium. Complete medium, acted as a chemoattractant, was added into the bottom compartment of the chamber. After incubated for 24 hrs, the surface membrane of the top cells of the remaining cells was slightly dried with cotton swabs, and PBS was used to wash the cells that was on the bottom surface of membrane, fixed in formaldehyde was used to fixed cells, crystal violet was used to stain them and then 5 representative microscopic fields were selected to count cells under an Olympus fluorescence microscope (Tokyo, Japan) to measure the rate of invasion. Experiments were conducted 3 times.

Luciferase Reporter Assay
Wt-RHPN1-AS1, mut-RHPN1-AS1 were, respectively, inserted into pmirGLO reporter vectors (Promega, Madison, WI, USA). U251 and LN229 cell lines were transfected with miR-625-5p mimics and wt-RHPN1-AS1 or mut-RHPN1-AS1 via Lipofectamine 2000. A dual-luciferase reporter assay system (Promega) was used to evaluate the relative luciferase activity at 48 hrs post-transfection. Data were exhibited as the ratio of Renilla luciferase activity to firefly luciferase activity. Luciferase reporter assays to verify the direct binding of miR-625-5p to REG3A 3’ UTR were performed as described above.
Statistical Analysis
Data were presented as mean ± standard deviation (SD). Statistical analysis was proceeded using SPSS 19.0 software (SPSS, Chicago, IL, USA). Correlation between RHPN1-AS1 expression level and miR-625-5p or REG3A expression levels in glioma tissues was evaluated through Pearson’s correlation analysis. Student’s t-test was performed to analyze the differences between 2 groups. ANOVA followed by Dunnett’s multiple comparison was applied to assess the differences among 3 independent groups. P<0.01 was considered statistically significant.

Results
LncRNA RHPN1-AS1 is significantly upregulated in glioma tissues and cell lines.

In the beginning of the study, the RHPN1-AS1 expressions in 37 glioma tissue samples and paired adjacent non-tumor tissues were detected via qRT-PCR. Figure 1A shows that the expression level of RHPN1-AS1 in glioma tissues was obviously higher than that in the PTBE tissues (P<0.001). In addition, we measured the expression of LncRNA RHPN1-AS1 in glioma cell lines (H4, A172, U251 and LN229) and normal cells (NHA) were also measured using qRT-PCR. The result showed that the expression level of RHPN1-AS1 was remarkably upregulated in H4, A172, U251 and LN229 cells compared with NHA cells (P<0.01, Figure 1B).

LncRNA RHPN1-AS1 knockdown inhibits the proliferation of glioma cells in vitro.

The expression levels of RHPN1-AS1 in glioma tissues and cell lines were markedly higher than that in PTBE tissues and NHA cells. In U251 and LN229 cells transfected with siRHPN1-AS1, the expression of RHPN1-AS1 was significantly decreased when compared to the siNC group (Figure 2A). To verify the effect of RHPN1-AS1 silence on glioma cell proliferation ability, MTT assay and colony formation assays were applied. The results of MTT and colony formation assays demonstrated that lncRNA RHPN1-AS1 knockout suppressed the proliferation ability of glioma cells (Figure 2B–E).

LncRNA RHPN1-AS1 knockdown inhibits the migration and invasion activity of glioma cells in vitro.

To explore the role of RHPN1-AS1 acted in the glioma cells migration and invasion, wound healing assay and transwell invasion test were performed. Figure 3A and B exhibited that the relative wounding width of siRHPN1-AS1 group was significantly greater than siNC group after 24 hrs culture in both U251 and LN229 cell lines (P<0.001). The result of transwell invasion test was shown in Figure 3C and D; the invasion cell number of siRHPN1-AS1 group was obviously less than siNC group (P<0.001). These results revealed that lncRNA RHPN1-AS1 knockdown effectively reduced the migration and invasion viability of glioma cells (P<0.001). To better understand the molecular mechanism of the effects of RHPN1-AS1 on migration and invasion of glioma cells, the expression levels of N-cadherin, snail, and twist, proteins associated with cell migration and invasion, were examined by Western blot. Figure 3E–G demonstrated that the expression levels of N-cad, snail and twist were all significantly inhibited in siRHPN1-AS1 group when compared with the siNC group (P<0.001). These results revealed that RHPN1-AS1 knockdown inhibited the migration and invasion of glioma cells.

![Figure 1](image1.png) **Figure 1** LncRNA RHPN1-AS1 is upregulated in glioma tissues and cells. (A) Relative expression levels of lncRNA RHPN1-AS1 in 37 pairs of glioma tissues and PTBE tissues were identified using RT-PCR. (B) Relative expression levels of lncRNA RHPN1-AS1 in normal human astrocytes cell line NHA and 4 glioma cell lines (H4, A172, U251 and LN229) were identified using RT-PCR. Data were shown as mean±SD. ***P<0.001, **P<0.01, *P<0.05 compared with PTBE tissues or NHA cell line.
Bioinformatic methods predict the interaction between lncRNA RHPN1-AS1 and miR-625-5p. We predicted that miR-625-5p was the target microRNA of lncRNA RHPN1-AS1 by miRDB. To verify the prediction, RHPN1-AS1-wt and RHPN1-AS1-mut luciferase reporter plasmids were conducted (Figure 4A). As shown, miR-625-5p mimic suppressed the relative luciferase activity after being transfected with RHPN1-AS1-wt (Figure 4B). When the binding site of miR-625-5p in RHPN1-AS1 was mutated, miR-625-5p mimic had no effect on the relative luciferase activity (Figure 4B). To further confirm the interaction between RHPN1-AS1 and miR-625-5p, U251 and LN226 cells were transfected with siRHPN1-AS1, and siRHPN1-AS1 transfection was found to promote miR-625-5p expression (Figure 4C).

MicroRNAs can regulate gene expression via targeting mRNA for degradation.27 To further predict the downstream target mRNAs of miR-625-5p, TargetScan was used. Among the potential target genes, REG3A got the highest score. We cloned the REG3A-wt and REG3A-mut luciferase reporter plasmids (Figure 4D). We transfected miR-625-5p mimic or miR-NC into glioma cells for luciferase assay. Figure 4E shows that transfecting miR-625-5p mimic obviously reduced the relative luciferase activity. In addition, the expression of REG3A was detected via RT-PCR and Western blot, as shown in Figure 4F–H, overexpression of miR-625-5p decreased the expression of REG3A expression in U251 and LN229 cells. In summary, lncRNA RHPN1-AS1 promoted proliferation and invasion of glioma cells via targeting miR-625-5p/REG3A.

Rescue experiment verified lncRNA RHPN1-AS1 accelerate proliferation, migration and invasion of glioma cells via targeting miR-625-5p.

To verify the molecular mechanism of lncRNA RHPN1-AS1, a rescue experiment was performed by transfecting siRHPN1-AS1 or miR-625-5p inhibitors into U251 cells. The results of the MTT assay and cell colony experiments showed that the addition of miR-625-5p inhibitor recovered cell proliferation ability after siRHPN1-AS1 transfection (Figure 5A–C). Similarly, the wound healing assay and transwell invasion test confirmed that miR-625-5p inhibitor enhanced the migration and invasion activities of U251 cells when the cell lines were transfected with siRHPN1-AS1 (Figure 5D–G). The expression of N-cad, snail and twist were also seen to be remarkably increased with the addition of miR-625-5p inhibitor, via Western blotting (Figure 5H and I). Overall, lncRNA RHPN1-AS1 promoted the proliferation, migration and invasion of glioma cells by targeting miR-625-5p.
MiR-625-5p overexpression inhibits the proliferation, migration and invasion of glioma cells.

To define the function of miR-625-5p in glioma cells, miR-625-5p mimic was constructed and then transfected into glioma cell lines U251 and LN229. Data from RT-PCR displayed that miR-625-5p mimic transfection obviously up-regulated the expression level of miR-625-5p in U251 and LN229 cell lines ($P<0.001$, Figure 6A). The cell proliferation was subsequently detected using MTT assay, the OD value of miR-625-5p mimic group was significantly lower than that of miR-NC group both in U251 and LN229 cell lines ($P<0.001$, Figure 6B). As shown in Figure 6C, colony cell number in miR-625-5p groups of the two cell lines were also dramatically less than that in miR-NC groups ($P<0.001$, Figure 6C). Wound healing assay was applied to measure the migration activity of cells and the results were shown in Figure 6D. Apparently, the relative wound width of miR-625-5p groups was less than that of miR-NC groups (Figure 6E).

The results from transwell assay showed that miR-625-5p mimic transfection notably declined the invasion cell number in glioma cell lines compared to that in miR-NC group ($P<0.001$, Figure 6F). Figure 6 displays that the protein expressions of N-cadherin, snail and twist were remarkably repressed in miR-625-5p groups when compared with that in miR-NC groups ($P<0.01$). These results demonstrated that the overexpression of miR-625-5p could suppress the cell proliferation, colony formation, migration and invasion in human glioma cell lines.

Discussion

Various lncRNAs show irregular expression and play functional roles in human tumours. Liu et al reported that lncRNA loc285194 inhibited p53-regulated tumor suppression by suppressing miR-211. Cui et al reported that lncRNA SNHG1 overexpression promoted the activity of non-small cell lung cancer by inhibiting miR-101-3p and regulating the Wnt/β-catenin signaling pathway. Jin et al
found that the upregulation of PlncRNA-1 accelerated cell proliferation and tumor metastasis of prostate cancer. Li et al reported that lncRNA TUG1 inhibited glioma by promoting cell apoptosis. RHPN1-AS1 was reported to be highly expressed in a variety of tumors and was considered as an oncogene. However, the role and pathogenic mechanism of lncRNA RHPN1-AS1 in human gliomas has not been completely understood.

In the present study, we first identified that the expression of lncRNA RHPN1-AS1 was enhanced in human glioma tissues and cell lines compared with PTBE tissues and NHA cell lines. As expected, RHPN1-AS1 knockdown remarkably suppressed the proliferation of U251 and LN229 cells. In addition, the migration and invasion of U251 and LN229 cells were inhibited after transfecting siRHPN1-AS1. Furthermore, we detected the expression level of several proteins (N-cadherin, snail and twist), which were correlated with cell migration and invasion, and we found that these proteins were downregulated after lncRNA RHPN1-AS1 knockdown. These results revealed that lncRNA RHPN1-AS1 might play a carcinogenic role in glioma oncogenesis and development.

Previous studies had confirmed that lncRNA modulates tumorigenesis and development by targeting microRNAs. As reported in multiple myeloma, lncRNA OIP5-AS1 knockdown-induced microRNA-410 overexpression and regulated cell proliferation and apoptosis via targeting KLF10 and modulating PTEN/PI3K/AKT signal pathway. LncRNA SNHG12 was found to regulate the proliferation and viability of human gastric cancer cells (BGC-823) via targeting microRNA-199a/b-5p. In this study, we predicted that miR-625-5p acted as the target microRNA of lncRNA RHPN1-AS1 via miRDB, and then we found that the expression of miR-625-5p negatively correlated with the expression...
of RHPN1-AS1 in glioma cell lines (U251 and LN229 cells) by luciferase reporter assays. Previous studies have reported that miR-625-5p may be a modulator in several tumors including gastric cancer, hepatocellular carcinoma and esophageal cancer. RHPN1-AS1 might act on glioma via regulating miR-625-5p.

Also, REG3A was predicted as the target gene of lncRNA RHPN1-AS1/miR-625-5p in our study. It has
been reported that REG3A was widely over-expressed in various cancers such as pancreatic cancer, colorectal cancer, and gastric cancer. In the current study, we elucidated that the expression of REG3A was significantly decreased when the expression of miR-625-5p was upregulated in U251 and LN229 cells. In addition, the knockdown of RHPN1-AS1 repressed the expression of REG3A. These results confirmed that lncRNA RHPN1-AS1 might be correlated with the expression of miR-625-5p/REG3A.

To further verify the above prediction, an miR-625-5p inhibitor was used in a rescue experiment. We found that the miR-625-5p inhibitor somewhat restored the proliferation of glioma cells with siRHPN1-AS1 transfection. In addition, the migration and invasion of glioma cells with siRHPN1-AS1 were also recovered after adding the miR-625-5p inhibitor. Furthermore, the expression levels of N-cad, snail, and twist after adding miR-625-5p inhibitor were detected, the results showed that the expression levels of these proteins were increased with miR-625-5p inhibitor. In addition, we demonstrated that the overexpression of miR-625-5p inhibited the cell proliferation, colony formation, migration and invasion viability in glioma cells. These results elucidated that RHPN1-AS1 knockdown suppressed the proliferation, migration, and invasion via targeting miR-625-5p.

In conclusion, the current data indicated that lncRNA RHPN1-AS1 played a stimulative role in the pathogenesis of human glioma, and downregulation of RHPN1-AS1 decreased the proliferation, migration, and invasion viability of glioma cell lines via targeting miR-625-5p/REG3A. The current results revealed that lncRNA RHPN1-AS1 may be a molecular therapeutic target in glioma.
Ethics approval and consent to participate
The project protocol was approved by the Taian Center Hospital.

Availability of data and materials
All data generated and/or analyzed during this study are included in this published article.

Author contributions
All authors contributed to data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Boussiotis VA, Charest A. Immunotherapies for malignant glioma. Oncogene. 2018;37(9):1121. doi:10.1038/s41388-017-0024-z
2. Rynkevičienė R, Siemiene J, Strainiene E, et al. Non-coding RNAs in glioma. Cancers. 2019;11(1):17. doi:10.3390/cancers11010017
3. Kuan A, Green J, Kitahara C, et al. Diet and risk of glioma: combined analysis of three large prospective studies in the UK and USA. Neuro-oncology. 2019;21:944–952. doi:10.1093/neuonc/noz013
4. Guayatiner O, Hegi ME. Glioma epigenetics: from subclassification to novel treatment options. Seminars in Cancer Biology. 2018;51:50–58.
5. Abbasi AW, Westerlaan HE, Holtman GA, et al. Incidence of tumour progression and pseudoprogression in high-grade gliomas: a systematic review and meta-analysis. Clin Neuroradiol. 2018;28(3):401–411. doi:10.1007/s00062-017-0584-x
6. Sadik ZH, Hanssens PE, Verheul JB, et al. Gamma knife radiosurgery for recurrent gliomas. J Neurooncol. 2018;140(3):615–622. doi:10.1007/s11060-018-2988-0
7. Jaspal T, Morgan PS, Warmuth-Metz M, et al. Response assessment in pediatric neuro-oncology: implementation and expansion of the RANO criteria in a randomized phase II trial of pediatric patients with newly diagnosed high-grade gliomas. AJNR Am J Neuroradiol. 2016;37:1581–1587. doi:10.3174/ajnr.A4782
8. Woodward DE, Cook J, Tracqui P, et al. A mathematical model of glioma growth: the effect of extent of surgical resection. Cell Prolif. 2017;50(2):269–288. doi:10.1111/cpl.12184.1996.601580.x
9. Brigli C, Puttick S, Rose S, et al. The potential for remodelling the tumour vasculature in glioblastoma. Adv Drug Deliv Rev. 2018;136:49–61. doi:10.1016/j.addr.2018.10.001
10. Gao X, Yue Q, Liu Y, et al. Image-guided chemotherapy with specifically tuned blood brain barrier permeability in glioma margins. Theranostics. 2018;8(11):3126. doi:10.7150/thno.24784
11. Ganipinni LP, Danhier F, Prétat V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J Control Release. 2018;281:42–57. doi:10.1016/j.jconrel.2018.05.008
12. Sabelström H, Quigley DA, Fenster T, et al. High density is a property of slow-cycling and treatment-resistant human glioblastoma cells. Exp Cell Res. 2019;378(1):76–86. doi:10.1016/j.yexcr.2019.03.003
13. Roos WP, Frohnappel L, Quiros S, et al. XRCC3 contributes to temozolomide resistance of glioblastoma cells by promoting DNA double-strand break repair. Cancer Lett. 2018;424:119–126. doi:10.1016/j.canlet.2018.03.025
14. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19 (3):143. doi:10.1038/nrm.2017.104
15. Uzyczynska-Ratajczak B, Lagerde J, Frankish A, et al. Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 2018;19(9):535. doi:10.1038/s41576-018-0017-y
16. Sanchez Calle A, Kawamura Y, Yamamoto Y, et al. Emerging roles of long non-coding RNA in cancer. Cancer Sci. 2018;109(7):2093–2100. doi:10.1111/cas.13642
17. Arun G, Diermeier SD, Spector DL. Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med. 2018;24(5):257–277. doi:10.1016/j.molmed.2018.01.001
18. Anastasiadou E, Jacob LS, Slack FJ. Non-coding RNA networks in cancer. Nat Rev Cancer. 2018;18(1):5. doi:10.1038/nrc.2017.99
19. Dickinson LA, Gulizia RJ, Traeger JW, et al. Inhibition of RNA polymerase II transcription in human cells by synthetic DNA-binding ligands. Proc Natl Acad Sci U S A. 1998;95(22):12890–12895. doi:10.1073/pnas.95.22.12890
20. Sun M, Nie F, Wang Y, et al. LncRNA HOXA11-AS promotes proliferation and invasion of gastric cancer by scaffolding the chromatin modification factors PRC2, LSD1, and DMT1. Cancer Res. 2016;76(21):6299–6310. doi:10.1158/0008-5472.CAN-16-0156
21. Gayen S, Maclary E, Buttigieg E, et al. A primary role for the Tsix lncRNA in maintaining random X-chromosome inactivation. Cell Rep. 2015;11(8):1251–1265. doi:10.1016/j.celrep.2015.04.039
22. Wan G, Zhou W, Hu Y, et al. Transcriptional regulation of lncRNA genes by histone modification in Alzheimer’s disease. Biomed Res Int. 2016;2016:1–4.
23. Ferreira HJ, Esteller M. Non-coding RNAs, epigenetics, and cancer: tying it all together. Cancer Metastasis Rev. 2018;37(1):55–73. doi:10.1007/s10555-017-9715-8
24. Wei D, Tan H, Chen Z, et al. MiR-145 suppresses cell proliferation and motility by inhibiting ROCK1 in hepatocellular carcinoma. Tumour Biol. 2016;37(5):6255. doi:10.1007/s13277-015-4662-3
25. Lu L, Yu X, Zhang L, et al. The Long non-coding RNAHPSN1-AS1Promotes uveal melanoma progression. Int J Mol Sci. 2017;18 (1):226. doi:10.3390/ijms18010226
26. Li X, Zhang Y, Yang C, et al. The lncRNA RHPN1-AS1 down-regulation promotes gefitinib resistance by targeting mir-299-3p/ TNFSF12 pathway in NSCLC. Cell Cycle. 2018;17:1772–1783.
27. Shen J, Zhang J, Xiao M, et al. MiR-203 suppresses bladder cancer cell growth and targets the twist1. Oncol Rep. 2018;26(8):1155–1165.
28. Gao YL, Zhao ZS, Zhang MY, et al. Long non-coding RNA PVT1 facilitates cervical cancer progression via negative regulating of miR-424. Oncol Rep. 2017;25(8). doi:10.3727/096504017X14881559833562.
29. Song X, Luo X, Gao Q, et al. Disregulation of LncRNAs in placenta and pathogenesis of preeclampsia. Curr Drug Targets. 2017;18:999. doi:10.2174/1389450118666170404160000
30. Liu Q, Huang J, Zhou N, et al. LncRNA loc285194 is a p53-regulated tumor suppressor. Nucleic Acids Res. 2013;41(9):4976–4987. doi:10.1093/nar/gkt182
31. Cu Y, Zhang F, Zhu C, et al. Upregulated IncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/b-catenin signaling pathway. Oncotarget. 2017;8(11):17785–17794. doi:10.18632/oncotarget.14854
32. Jin Y, Cui Z, Li X, et al. Upregulation of long non-coding PhncRNA-1 promotes proliferation and induces epithelial-mesenchymal transition in prostate cancer. Oncotarget. 2017;8(16):26090–26099. doi:10.18632/oncotarget.15318
33. Li J, Meng Z, Gang A, et al. LncRNA TUG1 acts as a tumor suppressor in human glioma by promoting cell apoptosis. Exp Biol Med. 2016;241(6):644. doi:10.1177/1535370215622708
34. Au HK, Chang JH, Wu YC, et al. TGF-β1 regulates cell migration through pluripotent transcription factor OCT4 in endometriosis. PLoS One. 2015;10(12):e0145256. doi:10.1371/journal.pone.0145256
35. Quan J, Elhousiny M, Johnson NW, et al. Transforming growth factor-β1 treatment of oral cancer induces epithelial-mesenchymal transition and promotes bone invasion via enhanced activity of osteoclasts. *Clin Exp Metastasis*. 2013;30(5):659–670. doi:10.1007/s10585-013-9570-0

36. Adams BD, Parsons C, Walker L, et al. Targeting noncoding RNAs in disease. *J Clin Investig*. 2017;127(3):761–771. doi:10.1172/JCI84424

37. Tan JY, Sirey T, Honti F, et al. Extensive microRNA-mediated crosstalk between lncRNAs and mRNAs in mouse embryonic stem cells. *Genome Res*. 2015;25(5):655. doi:10.1101/gr.181974.114

38. Yang N, Chen J, Zhang H, et al. LncRNA OIP5-AS1 loss-induced microRNA-410 accumulation regulates cell proliferation and apoptosis by targeting KLF10 via activating PTEN/PI3K/AKT pathway in multiple myeloma. *Cell Death Dis*. 2017;8(8):e2975. doi:10.1038/cddis.2017.358

39. Yang BF, Cai W, Chen B. LncRNA SNHG12 regulated the proliferation of gastric carcinoma cell BGC-823 by targeting microRNA-199a/b-5p. *Eur Rev Med Pharmacol Sci*. 2018;22(5):1297.

40. Ming W, Li C, Hui N, et al. Down-regulated miR-625 suppresses invasion and metastasis of gastric cancer by targeting ILK. *FEBS Lett*. 2012;586(16):2382–2388. doi:10.1016/j.febslet.2012.05.050

41. Zhou X, Zhang CZ, Lu S-X, et al. miR-625 suppresses tumour migration and invasion by targeting IGF2BP1 in hepatocellular carcinoma. *Oncogene*. 2015;34(8):965. doi:10.1038/onc.2014.462

42. Wang Z, Qiao Q, Chen M, et al. miR-625 down-regulation promotes proliferation and invasion in esophageal cancer by targeting Sox2. *FEBS Lett*. 2014;588(6):915–921. doi:10.1016/j.febslet.2014.01.035

43. Xu Q, Fu R, Yin G, et al. Microarray-based gene expression profiling reveals genes and pathways involved in the oncogenic function of REG3A on pancreatic cancer cells. *Gene*. 2016;578(2):263–273. doi:10.1016/j.gene.2015.12.039

44. Ying Y, Ling X, Wang SJ, et al. Up-regulation of REG3A in colorectal cancer cells confers proliferation and correlates with colorectal cancer risk. *Oncotarget*. 2016;7(4):3921–3933. doi:10.18632/oncotarget.6473

45. Qiu YS, Liao GJ, Jiang NN. REG3A overexpression suppresses gastric cancer cell invasion, proliferation and promotes apoptosis through PI3K/Akt signaling pathway. *Int J Mol Med*. 2018;41(6):3167–3174.