Review

Detecting Rotator Cuff Tears

A Network Meta-analysis of 144 Diagnostic Studies

Fanxiao Liu,* MD, Jinlei Dong,* MD, PhD, Wun-Jer Shen,† MD, PhD, Qinglin Kang,‡ PhD, Dongsheng Zhou,* MD, and Fei Xiong,‡§ MD

Investigation performed at Shandong Provincial Hospital, Shandong University, Jinan, China

Background: Many imaging techniques have been developed for the detection of rotator cuff tears (RCTs). Despite numerous quantitative diagnostic studies, their relative accuracy remains inconclusive.

Purpose: To determine which of 3 commonly used imaging modalities is optimal for the diagnosis of RCTs.

Study Design: Systematic review; Level of evidence, 4.

Methods: Studies evaluating the performance of magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and ultrasound (US) used in the detection of RCTs were retrieved from the PubMed/MEDLINE and Embase databases. Diagnostic data were extracted from articles that met the inclusion/exclusion criteria. A network meta-analysis was performed using an arm-based model to pool the absolute sensitivity and specificity, relative sensitivity and specificity, and diagnostic odds ratio as well as the superiority index for ranking the probability of these techniques.

Results: A total of 144 studies involving 14,059 patients (14,212 shoulders) were included in this network meta-analysis. For the detection of full-thickness (FT) tears, partial-thickness (PT) tears, or any tear, MRA had the highest sensitivity, specificity, and superiority index. For the detection of any tear, MRI had better performance than US (sensitivity: 0.84 vs 0.81, specificity: 0.86 vs 0.82, and superiority index: 0.98 vs 0.22, respectively). With regard to FT tears, MRI had a higher sensitivity and superiority index than US (0.91 vs 0.87 and 0.67 vs 0.28, respectively) and a similar specificity (0.88 vs 0.88, respectively). The results for PT tears were similar to the detection of FT tears. A sensitivity analysis was performed by removing studies involving only 1 arm for FT tears, PT tears, or any tear, and the results remained stable.

Conclusion: This network meta-analysis of diagnostic tests revealed that high-field MRA had the highest diagnostic value for detecting any tear, followed by low-field MRA, high-field MRI, high-frequency US, low-field MRI, and low-frequency US. These findings can help guide clinicians in deciding on the appropriate imaging modality.

Keywords: rotator cuff tear; MRA; MRI; ultrasound; shoulder pain

A rotator cuff tear (RCT) is a common source of shoulder pain and disability. Early diagnosis can help determine the treatment strategy to best prevent further loss of function. Imaging, along with physical examinations and clinical history, provides vital information for diagnosis and possible surgical interventions. Imaging modalities commonly used for the detection of RCTs include magnetic resonance imaging (MRI), magnetic resonance arthrography (MRA), and ultrasound (US).

The finding of a full-thickness (FT) tear is a strong indication for surgical intervention. MRA utilizing a contrast agent has high diagnostic accuracy for detecting FT tears, and some authors have even used it as the reference standard when comparing imaging modalities. However, the combination of patient characteristics, history, and clinical shoulder tests for the diagnosis of FT tears could improve the ability of MRI and a meta-analysis confirmed that 3.0-T MRI appeared equivalent to 3.0-T MRA.

In recent years, technological advances in arthroscopic shoulder surgery have made the surgical management of partial-thickness (PT) tears much less invasive and thereby more cost-effective. Consequently, the identification of a PT tear has become more meaningful. The diagnostic accuracy of MRI and MRA for PT tears is similar, and because MRA is an invasive modality, MRI is routinely used as the first-choice imaging option. The initial results of US in the detection of RCTs varied, probably because of low-frequency transducers and limited examiner experience. However, as US technology continues to advance, the advantages of US, including its low cost and capability for real-time dynamic assessments, become more evident. US is still not as widely used in clinical practice as it could be, both because of its steep learning curve and the uncertainty regarding its diagnostic
Nyaga et al.15 developed a Bayesian network meta-analysis of RCTs34,80,96,135,149,163; however, their relative accuracy remains inconclusive, which may be because a traditional meta-analysis allows only for comparisons between 2 diagnostic tests. If multiple modalities are assessed simultaneously, a traditional meta-analysis only compares directly the numerical value of sensitivity and specificity, which, consequently, a traditional meta-analysis only compares directly the numerical value of sensitivity and specificity, which, while still informative, is not rigorous or ideal.177 Recently, Nyaga et al.15 developed a Bayesian network meta-analysis using an arm-based model based on the assumption that the missing arms occur at random. This method has been applied in several studies60,118 because it not only allows analysis of the variability in the accuracy of multiple tests within and between studies simultaneously but also provides more natural variance-covariance matrix structures, making it more appealing than either a traditional meta-analysis or the contrast-based network meta-analysis model introduced by Menten and Lesaffre.99

The purpose of this study was to compare the diagnostic accuracy of 3 imaging techniques (US, MRI, and MRA) for the diagnosis of RCTs using an arm-based model of a network meta-analysis based on multiple diagnostic tests. The hypothesis was that MRI was equal to US in the diagnosis of RCTs.

METHODS

This network meta-analysis was conducted in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) statement (PROSPERO identifier: CRD42018118538) and the PRISMA-DTA (Preferred Reporting Items for a Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies) statement.97

Search Strategy

A comprehensive literature search of 2 electronic databases, PubMed/MEDLINE and Embase, was performed. An initial search was made using the following keywords: “systematic review” or “meta-analysis” AND “rotator cuff.” The full text of every article listed in the references of each identified systematic review or meta-analysis was procured. A second search was performed using the following keywords: “diagnostic,” “diagnostic imaging,” “diagnostic test,” or “diagnosis” AND “ultrasound,” “ultrasonography,” “US,” “MRI,” “magnetic resonance imaging,” “MRA,” or “magnetic resonance arthrography” AND “rotator cuff,” “supraspinatus,” “infraspinatus,” “subscapularis,” “labrum,” “shoulder joint,” “subacromial impingement,” “tendinopathy,” “shoulder,” “shoulder pain,” “shoulder impingement syndrome,” or “bursitis.” The search was limited to the English language, and the search date was from database inception to August 31, 2018.

Inclusion and Exclusion Criteria

The inclusion criteria were studies that (1) involved human patients; (2) assessed the diagnostic performance of imaging modalities for RCTs; (3) provided raw data to calculate diagnostic parameters, including the true positive, false positive, false negative, and true negative; and (4) included a surgical (open or arthroscopic) reference standard, that is, surgical findings to prove/disprove the imaging findings.

The exclusion criteria were the following: (1) commentaries, letters, case reports, reviews, or congress proceedings; (2) studies involving animal and cadaveric experiments; (3) studies providing insufficient data to calculate diagnostic parameters; and (4) non–English language studies.

Data Extraction

The following information was extracted from each study: the first author’s surname, publication year, country of origin, participant characteristics (number, age, and sex), study design, reference standard (arthroscopic or open surgery), time from MRI/MRA to reference standard, blinding, number of readers, readers’ experience, final diagnoses of included patients, muscle tendon involved, tear site, clinical findings of the shoulder, technical parameters of MRA (administration of contrast agent [intravenous: indirect or intra-articular: direct], vendor, model, magnetic strength, method, sequence, slice thickness, analyzed image plane), technical parameters of MRI (vendor, model, magnetic strength, sequence, slice thickness, analyzed image plane), technical parameters of US (vendor, transducer specifications), and diagnostic data (true positive, false positive, true negative, and false negative). If the studies had ≥2 modalities and permitted multiple comparisons, all the information and outcomes of interest were extracted. If ≥2 readers evaluated a diagnostic test in a single study, we calculated the mean average of the diagnostic data.

Risk of Bias

The risk of bias for the included trials was assessed independently by 2 researchers (F.L. and F.X.) utilizing...
QUADAS-2, a quality assessment tool for diagnostic accuracy studies. This system is composed of 11 items, and each item is graded as yes, unclear, or no.

Statistical Analysis

The whole process of searching, filtering, data extraction, and quality assessment was implemented by 2 researchers (F.L. and F.X.) independently and repeatedly. For any discrepancy, a consensus was reached by discussion with a third researcher (J.D.).

A Bayesian network meta-analysis using an arm-based model, developed by Nyaga et al. was performed by running 3 chains in parallel until there was convergence. Trace plots were used to visually check whether the distributions of the 3 simulated chains mixed properly and were stationary. We used the potential scale reduction factor, the effective number of independent simulation draws, and the Markov chain Monte Carlo error to assess convergence. To assess the relative performance of the reviewed diagnostic tests, the definitions of superior, inferior, equal, and not comparable were drawn. A diagnostic test that is pairwise superior to a
relatively large number of other tests and pairwise inferior to a relatively small number of other tests should have a high superiority value and be ranked higher than those tests that do not perform as well. In this study, the superiority index was pooled to quantify rank probabilities of each diagnostic test. All network meta-analyses were performed using R (Version 3.4.3; Comprehensive R Archive Network), package rstan (Version 2.17.3), package loo (Version 2.0.0), and package plyr. Sensitivity analyses for the detection of FT tears, PT tears, and any tear were implemented according to at least 2 arm-based tests. Subgroup analyses were performed based on the different tendons injured, gold standard (arthroscopic or open surgery), study design, QUADAS-2 score, and publication year.

RESULTS

Studies Retrieved and Characteristics

A selection flowchart for the studies chosen is presented in Figure 1. After comprehensive searching of 2 electronic

TABLE 1	Studies Included in Network Meta-analysis (N = 144)
Variable	n (%)
Publication year	
1980-1999	40 (27.8)
2000-2005	31 (21.5)
2006-2010	23 (25.1)
2011-2015	29 (16.0)
2016-2018	21 (14.6)
No. of shoulders	
Any tear	109 (75.7)
0-50	34
51-100	40
>100	35
FT tear	87 (60.4)
0-50	30
51-100	30
>100	27
PT tear	87 (60.4)
0-50	25
51-100	35
>100	27
Age range, y	15.9-66.0
Female sex	5996 (56.6)
No. of patients	
Any tear	11,032
FT tear	8542
PT tear	8575
No. of arms	
Any tear/FT tear/PT tear	144/87/87 (100.0/60.4/60.4)
No. of arms	144/87/87 (100.0/60.4/60.4)
0-50	34
51-100	35
>100	27
Design	
Prospective	42 (29.2)
Retrospective	74 (51.4)
Not reported	27 (18.8)
Prospective and retrospective	1 (0.6)
QUADAS-2 score	
7	17 (11.8)
8	18 (12.5)
9	53 (36.8)
10	34 (23.6)
11	22 (15.3)

a2D, 2-dimensional; 3D, 3-dimensional; FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
databases, excluding duplicate records, screening remaining titles and abstracts, and identifying related full text, a total of 144 studies involving 14,059 patients (14,212 shoulders) were included in this network meta-analysis. The pooled characteristics are presented in Table 1.

Data Extraction and Quality Assessment

Appendix Table A1 presents the detailed QUADAS-2 score results from each included study.

Comparison of MRA, MRI, and US

For the detection of FT tears, PT tears, or any tear, MRA had the highest sensitivity, specificity, and superiority index. For the detection of any tear, MRI had a better diagnostic value than US (sensitivity: 0.84 vs 0.81, specificity: 0.86 vs 0.82, and superiority index: 0.98 vs 0.22, respectively). With regard to FT tears, MRI had a higher sensitivity and superiority index than US (0.91 vs 0.87 and 0.67 vs 0.28, respectively) and a similar specificity (0.88 vs 0.88, respectively). The results for PT tears were similar to the detection of FT tears (Figure 2 and Table 2).

High- or Low-field MRA, High- or Low-field MRI, and High- or Low-frequency US

For the detection of FT tears, the diagnostic value rank (from high to low) of these 6 imaging modalities was 3.0-T MRA, 1.5-T MRA, 3.0-T MRI, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 8.66 vs 4.73 vs 2.21 vs 0.88 vs 0.64 vs 0.14, respectively). For the detection of PT tears, the diagnostic value rank (from high to low) was 3.0-T MRA, 3.0-T MRI, 1.5-T MRA, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 8.15 vs 5.25 vs 2.44 vs 0.95 vs 0.35 vs 0.18, respectively). For the detection of any tear, the diagnostic value rank (from high to low) was 3.0-T MRA, 1.5-T MRA, 3.0-T MRI, ≥7.5-MHz US, 1.5-T MRI, and <7.5-MHz US (superiority index: 5.85 vs 5.36 vs 2.71 vs 1.39 vs 0.83 vs 0.16, respectively) (Figure 3 and Table 3). A sensitivity analysis was performed by removing studies involving only 1 arm for FT tears, PT tears, or any tear, and the results remained stable.
Effect of Publication Year on US Accuracy

The stated diagnostic accuracy of US in articles published between 2016 and 2018 was higher than that in articles published between 2011 and 2015 for FT tears (sensitivity: 0.72 vs 0.77, specificity: 0.85 vs 0.75, and superiority index: 1.49 vs 1.10, respectively), PT tears (sensitivity: 0.60 vs 0.61, specificity: 0.82 vs 0.72, and superiority index: 1.72 vs 0.95, respectively), or any tear (sensitivity: 0.71 vs 0.80, specificity: 0.77 vs 0.67, and superiority index: 1.29 vs 1.19, respectively).

Other subgroup analyses for FT tears, PT tears, and any tear based on the different muscles involved (supraspinatus, subscapularis, infraspinatus, supraspinatus-subscapularis, supraspinatus-infraspinatus, and subscapularis-infraspinatus) (Appendix Table A2), study design (prospective or retrospective) (Appendix Table A3), QUADAS-2 score (7, 8, 9, 10, or 11) (Appendix Table A4), publication year (2000-2019) (Appendix Table A5), and gold standard (arthroscopic surgery) (Appendix Table A6) suggested a similar direction and magnitude of effect for studies investigating the diagnostic value.

DISCUSSION

An RCT is one of the most common causes of shoulder pain and disability.18,55 Yamamoto et al186 found that 20.7% of 1366 shoulders had FT RCTs in a Japanese mountain village population. Whether to proceed to arthroscopic or open surgery for RCTs depends not only on clinical findings but also on imaging results; additionally, findings during surgery are largely affected by the availability of imaging reports.178 The diagnostic accuracy and effective use of

TABLE 2
Comparison of MRA, MRI, and US

Tests	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
Any tear								
MRA	0.89 (0.85-0.91)	0.91 (0.88-0.93)	79.72 (49.55-121.35) [1]	4.92 (3.00-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	60	50
MRI	0.84 (0.82-0.87)	0.86 (0.83-0.88)	32.65 (23.99-43.54) [2]	0.98 (0.33-3.00) [2]	0.95 (0.91-1.00)	0.94 (0.90-0.99)	87	69
US	0.81 (0.78-0.85)	0.82 (0.78-0.85)	20.14 (14.04-27.79) [3]	0.22 (0.20-0.33) [3]	0.92 (0.87-0.98)	0.90 (0.85-0.95)	76	66
FT tear								
MRA	0.95 (0.93-0.97)	0.96 (0.92-0.98)	548.55 (198.58-1177.55) [1]	4.96 (4.50-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	31	30
MRI	0.91 (0.88-0.94)	0.88 (0.84-0.92)	85.49 (49.85-133.95) [2]	0.67 (0.33-1.00) [2]	0.96 (0.92-0.99)	0.92 (0.88-0.97)	45	45
US	0.87 (0.82-0.90)	0.88 (0.84-0.92)	52.71 (30.34-83.37) [3]	0.28 (0.20-0.33) [3]	0.91 (0.86-0.95)	0.93 (0.88-0.97)	41	41
PT tear								
MRA	0.81 (0.74-0.86)	0.90 (0.86-0.93)	40.79 (21.33-69.11) [1]	4.79 (3.00-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	31	28
MRI	0.67 (0.60-0.73)	0.86 (0.81-0.89)	12.68 (7.95-19.11) [2]	0.74 (0.20-3.00) [2]	0.83 (0.74-0.93)	0.95 (0.89-1.01)	43	41
US	0.62 (0.53-0.71)	0.85 (0.80-0.89)	9.91 (5.79-15.74) [3]	0.35 (0.20-1.00) [3]	0.77 (0.65-0.89)	0.95 (0.89-1.01)	39	39

aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
imaging technology are major concerns for clinicians and patients. Therefore, it is essential to compare the accuracy of MRA, MRI, and US in the diagnosis of RCTs and analyze their advantages and disadvantages under various conditions.

It has long been debated whether to inject contrast agents when using MRI for the detection of RCTs. With regard to lesions of the glenoid labrum and labral capsular ligamentous complex, MRA is thought to be the most accurate.\(^\text{7,19,71,94,125,144}\) The anatomic resolution is good, subtle defects can be depicted by contrast material, and leakage of contrast agents is usually evident, thus enhancing the diagnostic accuracy of FT tears.\(^\text{26,60,68,120}\) We found that MRA was also the most accurate method for detecting RCTs regardless of type (FT or PT tear). However, the injection of a contrast agent is an invasive procedure, infections and adverse reactions occur,\(^\text{44}\) and the examination time is longer.\(^\text{53}\) The accuracy of MRA is affected by the classification and basic properties of the contrast agent; as a result, the sensitivity and specificity were improved only by 3% to 4% when compared with plain MRI.\(^\text{27}\) False positive results due to the inflamed tendon showing high intensity,\(^\text{5,53}\) leakage through the postoperative incompletely healed tendon,\(^\text{30}\) and false negative results due to the failure of contrast to pass into the bursa can lower the sensitivity, specificity, and accuracy of MRA.\(^\text{25,88}\) Moreover, in clinical practice, doctors and radiologists make the diagnosis based on a combination of medical history, physical examination, and imaging findings, unlike in a research project, during which the investigator is deliberately blinded to the clinical findings. The differences in specificity and sensitivity between MRA and MRI are quite small, and that may be a good reason to avoid the potential risk/cost of MRA, especially if one suspects an FT tear.

A PT tear is a source of surgically treatable shoulder pain, and it may deteriorate into an FT tear; therefore, the

![Figure 3. Network meta-analysis results including sensitivity, specificity, and superiority index values of high- or low-field MRA, high- or low-field MRI, and high- or low-frequency US for the detection of rotator cuff tears. FT, full-thickness tear; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness tear; US, ultrasound.](image-url)
TABLE 3
Comparison of High- or Low-field MRA, High- or Low-field MRI, and High- or Low-frequency US

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
Any tear								
3.0-T MRA	0.87	0.88	59.59	6.5	1.10	0.99	20	13
	(0.80-0.92)	(0.82-0.93)	(25.44-115.74)	(2.33-11.00)	(0.95-1.38)	(0.88-1.20)		
1.5-T MRA	0.85	0.90	62.97	5.3	1.08	1.00	15	14
	(0.76-0.92)	(0.81-0.95)	(20.80-144.99)	(2.33-11.00)	(0.91-1.36)	(0.87-1.22)		
3.0-T MRI	0.80	0.90	53.09	2.7	1.00	1.00	12	8
	(0.64-0.90)	(0.74-0.97)	(9.75-164.12)	(1.00-1.00)	(1.00-1.00)			
1.5-T MRI	0.84	0.81	22.76	0.8	1.06	0.91	46	37
	(0.79-0.88)	(0.74-0.87)	(12.89-36.73)	(0.11-5.00)	(0.91-1.31)	(0.79-1.10)		
≥7.5-MHz US	0.85	0.81	26.44	1.3	1.08	0.91	42	39
	(0.80-0.89)	(0.75-0.86)	(14.68-43.23)	(0.14-5.00)	(0.93-1.34)	(0.81-1.10)		
<7.5-MHz US	0.76	0.61	6.87	0.16	0.97	0.69	7	6
	(0.57-0.89)	(0.37-0.81)	(1.45-19.87)	(0.09-1.00)	(0.70-1.26)	(0.41-0.94)		
FT tear								
3.0-T MRA	0.95	0.97	1149.53	8.66	1.08	1.11	15	13
	(0.88-0.98)	(0.89-0.99)	(129.82-3909.11)	(1.67-11.00)	(0.95-1.47)	(0.97-1.54)		
1.5-T MRA	0.94	0.92	396.26	4.7	1.07	1.06	10	10
	(0.83-0.99)	(0.77-0.98)	(38.23-1538.93)	(0.33-11.00)	(0.89-1.48)	(0.84-1.47)		
3.0-T MRI	0.89	0.88	194.45	2.2	1.00	1.00	5	5
	(0.64-0.98)	(0.63-0.98)	(8.52-889.32)	(0.11-5.00)	(1.00-1.00)	(1.00-1.00)		
1.5-T MRI	0.89	0.85	57.06	0.6	1.01	0.99	28	25
	(0.83-0.94)	(0.78-0.91)	(23.40-114.52)	(0.11-1.67)	(0.88-1.40)	(0.83-1.36)		
≥7.5-MHz US	0.89	0.88	72.46	0.8	1.01	1.01	22	22
	(0.82-0.94)	(0.80-0.93)	(27.12-154.88)	(0.14-2.33)	(0.88-1.40)	(0.86-1.40)		
<7.5-MHz US	0.76	0.70	14.75	0.14	0.86	0.81	3	3
	(0.44-0.93)	(0.34-0.90)	(1.17-59.51)	(0.09-0.43)	(0.48-1.26)	(0.37-1.22)		
PT tear								
3.0-T MRA	0.83	0.93	80.10	8.15	1.09	1.06	15	12
	(0.71-0.90)	(0.86-0.97)	(24.19-186.85)	(2.33-11.00)	(0.87-1.48)	(0.91-1.66)		
1.5-T MRA	0.77	0.86	24.75	2.44	1.02	0.99	14	14
	(0.65-0.86)	(0.76-0.92)	(8.52-54.77)	(0.29-9.00)	(0.78-1.44)	(0.80-1.54)		
3.0-T MRI	0.77	0.89	141.02	5.25	1.00	1.00	5	3
	(0.56-0.91)	(0.57-1.00)	(3.72-566.40)	(0.20-11.00)	(1.00-1.00)	(1.00-1.00)		
1.5-T MRI	0.64	0.80	7.85	0.35	0.85	0.92	25	25
	(0.54-0.73)	(0.71-0.87)	(3.91-13.92)	(0.11-1.00)	(0.66-1.19)	(0.75-1.42)		
≥7.5-MHz US	0.66	0.87	14.17	0.95	0.87	1.00	21	21
	(0.54-0.76)	(0.80-0.92)	(6.26-27.31)	(0.14-3.00)	(0.66-1.22)	(0.83-1.54)		
<7.5-MHz US	0.49	0.73	4.32	0.18	0.66	0.84	3	3
	(0.23-0.76)	(0.41-0.91)	(0.48-15.93)	(0.09-1.00)	(0.29-1.09)	(0.45-1.36)		

Data are reported as mean (range) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
identification and surgical repair of PT tears have recently gained attention.65 Our meta-analysis shows that MRI had a similar sensitivity to MRA in the diagnosis of bursal-side PT tears (0.73 vs 0.75, respectively). It seems not all that beneficial to inject contrast agents when using MRI for the detection of RCTs. However, technological innovations, such as using fat-suppression sequences to distinguish fat from contrast agents136 and using intravascular injections to achieve delineation of the bursal-side PT tears,137,168 make MRA still valuable under specific circumstances in which US and MRI are not definitive.34,154

MRI and US are currently regarded as the modalities of choice for the noninvasive diagnosis of rotator cuff lesions.6,12,60,114,132,161 MRI excels in localizing and defining the extent of the RCT, which is critical for diagnosis and for guiding treatment decisions.132,162 US provides a dynamic assessment of the shoulder, but it is sometimes impossible to achieve full visualization of the entire rotator cuff in patients with restricted range of motion,130 which may reduce its accuracy. MRI has been shown to be a reproducible method, with low observer variability, as opposed to US, which is considered the most operator-dependent imaging technique in the detection of shoulder disease.95,101 Another barrier to the widespread use of US is the steep learning curve.101,112,136 Murphy et al110 reported that 300 scans are required under the supervision of an experienced musculoskeletal ultrasonographer to become adept, which is not feasible for most clinicians. On the positive side, US allows patient-clinician interactions and real-time feedback101,112 and provides opportunities for patients to point out symptomatic areas.111 There are no contraindications and no artifacts from metal implants, making it the first choice in patients with pacemakers and in postoperative evaluations.30,85,129

Low cost has always been an advantage of US. Roy et al135 recommended US as the best option for the detection of FT tears, when considering economic benefits and safety, even though MRI is more accurate. In 2014, Voigt et al175 reported that false positive and false negative MRI findings in the diagnosis of RCTs resulted in an unnecessary cost of $210 million in the United States. However, Gytopoulos et al,55 focusing on the detection of PT tears, performed a cost-effectiveness analysis and found MRI to be the preferred imaging strategy rather than US. While taking all types of musculoskeletal disorders into consideration, Bureau and Ziegler15 recommended US as the primary tool to detect RCTs because of its comparable accuracy and high cost-efficiency compared with MRI.

Since the normal rotator cuff anatomy on US was first described by Middleton et al100 in 1984, the technical limitations of US have always been an issue. Nowadays, technical advancements, such as the linear array broadband transducers,96,162 and the establishment of a standardized imaging protocol29 have increased the accuracy and reliability of US. Our subgroup analysis based on the publication year found that the newer machines did provide better diagnoses of RCTs. Similarly, the technological innovations in MRI have improved its diagnostic ability. Additionally, the higher accuracy based on MRI and US may be related to the improved ability to diagnose RCTs intraoperatively. Our subgroup analyses based on MRI and US parameters demonstrated that ≥7.5-MHz US is superior to 1.5-T MRI in the detection of PT tears, PT tears, or any tear, although it is inferior to 3.0-T MRI. The differences in specificity and sensitivity between MRI and high-frequency US were quite small, and that may be a good reason to avoid the potential cost of MRI. However, in making final decisions, the available equipment (parameters of MRI and US) and examiner experience should also be taken into consideration.

We acknowledge several limitations in this network meta-analysis. We assessed the diagnostic value of the imaging modalities alone. The roles of patient history and physical examination results were not evaluated. Real-life situations, such as MRI with physical tests and US with physical tests, were not analyzed side by side. Several subgroup analyses, such as specific tendon-based analyses, were implemented based on insufficient data, which makes the results open to question. Insufficient data also made it impossible to conduct several subgroup analyses, including the diagnostic value of 3 imaging modalities for different types of partial tears, such as superficial tears, partial articular supraspinatus tendon avulsion lesions, or interstitial tears. Unfortunately, many other imaging diagnostic measures could not be included in our analysis because of the limited number of studies; these included arthro–computed tomography, which is considered by some surgeons to be the gold standard for diagnosing FT RCTs, and standard radiography, which is regarded as the first choice for the diagnosis of shoulder pain. Additionally, the diagnostic ability of these imaging modalities in evaluating rotator cuff repair postoperatively was not studied. Future advances in MRI and US technology will likely render the conclusions of older studies, and their derivative meta-analyses, out of date. Most surgeons are already using MRI to confirm the presence of RCTs, so this article will not change clinical practice, but it does provide statistical evidence to support the practice.

CONCLUSION

This network meta-analysis of diagnostic tests revealed that high-field MRA had the highest diagnostic value for detecting any tear, followed by low-field MRA, high-field MRI, high-frequency US, low-field MRI, and low-frequency US. These findings can help guide clinicians on the appropriate imaging modality.

REFERENCES

1. Adams CR, Schoolfield JD, Burkhart SS. Accuracy of preoperative magnetic resonance imaging in predicting a subscapularis tendon tear based on arthroscopy. Arthroscopy. 2010;26(11):1427-1433.
2. Al-Shawi A, Badge R, Bunker T. The detection of full thickness rotator cuff tears using ultrasound. J Bone Joint Surg Br. 2008;90:889-892.
3. Alasaarela E, Leppilaiti J, Hakala M. Ultrasound and operative evaluation of arthritic shoulder joints. Ann Rheum Dis. 1998;57(6):357-360.
4. Arend CF, Arend AA, da Silva TR. Diagnostic value of tendon thickness and structure in the sonographic diagnosis of supraspinatus
tendinopathy: a room for a two-step approach. *Eur J Radiol*. 2014; 83(6): 975-979.

5. Bachmann GF, Melzer C, Heinrichs CM, Mohrning B, Rominger MB. Diagnosis of rotator cuff lesion: comparison of US and MRI on 38 joint specimens. *Eur Radiol*. 1997; 7(2): 192-197.

6. Balich SM, Shley RC, Brown TR, Sauser DD, Quinn SF. MR imaging of the rotator cuff tendon: interobserver agreement and analysis of interpretive errors. *Radiology*. 1997; 204(1): 191-194.

7. Beltran J, Rosenberg ZS, Chandnani VP, Cuomo F, Beltran S, Rokito A. Glenohumeral instability: evaluation with MR arthrography. *Radiographics*. 1997; 17(3): 657-673.

8. Bhattacharjee GR, Bhonsle S, Mehta S. Correlation between MRI and arthroscopy in diagnosis of shoulder pathology. *J Clin Diagn Res*. 2016; 10(2): RC18-RC21.

9. Bianchi S, Martinoli C, Abdelwahab IF. Ultrasound of rotator cuff lesions: interobserver agreement and analysis of interpretive errors. *Radiology*. 1997; 204(1): 191-194.

10. Binkert CA, Zanetti M, Gerber C, Hodler J. MR arthrography of the glenohumeral joint: a tailored approach. *AJR Am J Roentgenol*. 2001; 177(1): 217-219.

11. Brandt TD, Cardone BW, Grant TH, Post M, Weiss CA. Rotator cuff tears: prospective comparison of MR imaging with arthrography, sonography, and surgery. *AJR Am J Roentgenol*. 1989; 153(1): 87-92.

12. Brenneke SL, Morgan CJ. Evaluation of ultrasonography as a diagnostic test in the assessment of rotator cuff tear tendon. *Am J Sports Med*. 1995; 20: 287-289.

13. Bretzke CA, Crass JR, Craig EV, Feinberg SB. Ultrasonography of the rotator cuff: normal and pathologic anatomy. *Invest Radiol*. 1985; 20(3): 311-315.

14. Bryant L, Shnier R, Bryant C, Murrell GA. A comparison of clinical estimation, ultrasonography, magnetic resonance imaging, and arthroscopy in determining the size of rotator cuff tears. *J Shoulder Elbow Surg*. 2002; 11(3): 219-224.

15. Bureau NJ, Ziegler D. Economics of musculoskeletal ultrasound. *Curr Radiol Rep*. 2016; 4(8): 44.

16. Burk DL Jr, Karasick D, Kurtz AB, et al. Rotator cuff tear: prospective comparison of MR imaging with arthrography, sonography, and surgery. *AJR Am J Roentgenol*. 1989; 153(1): 87-92.

17. Burk DL Jr, Torres JL, Marone PJ, Mitchell DG, Rifkin MD, Karasick D. MR imaging of shoulder injuries in professional baseball players. *J Magn Reson Imaging*. 1991; 1(3): 385-389.

18. Carbone S, Napoli A, Gumas S. MRI of adhesive capsulitis of the shoulder: comparison of the bursa in the superior subscapularis recess is a suggestive sign of the pathology. *Eur J Radiol*. 2014; 83(2): 345-348.

19. Chandnani VP, Gagliardi JA, Murmane TG, et al. Glenohumeral ligaments and shoulder capsulal mechanism: evaluation with MR arthrography. *Radiology*. 1995; 196(1): 27-32.

20. Chang CY, Wang SF, Chiu HJ, Ma HL, Sun YC, Wu HD. Comparison of shoulder ultrasound and MR imaging in diagnosing full-thickness rotator cuff tears. *Clin Imaging*. 2002; 26(1): 50-54.

21. Chang RF, Lee CC, Lo CM. Computer-aided diagnosis of different rotator cuff lesions using shoulder musculoskeletal ultrasound. *Ultrasound Med Biol*. 2016; 42(9): 2315-2322.

22. Chen DY, Haw-Chang LH, Lai KL, Chen HH, Chen YM, Chen CP. Diagnostic utility of US for detecting rotator cuff tears in rheumatoid arthritis patients: comparison with magnetic resonance imaging. *J Med Ultrasound*. 2014; 22(4): 200-206.

23. Choo HJ, Lee SJ, Kim JH, et al. Delaminated tears of the rotator cuff: prevalence, characteristics, and diagnostic accuracy using indirect MR arthrography. *AJR Am J Roentgenol*. 2015; 204(2): 360-366.

24. Choo HJ, Lee SJ, Kim OH, Seo SS, Kim JH. Comparison of three-dimensional isotropic T1-weighted fast spin-echo MR arthrography with two-dimensional MR arthrography of the shoulder. *Radiology*. 2012; 262(3): 921-931.

25. Chun KA, Kim MS, Kim YJ. Comparisons of the various partial-thickness rotator cuff tears on MR arthrography and arthroscopic correlation. *Korean J Radiol*. 2010; 11: 528-535.
46. Friedman RL, Hidalgo HJ, Gilmer PW, Mallon WJ. Ultrasonography of the rotator cuff: analysis of results in a community setting. J Shoulder Elbow Surg. 1993;2(1):22-26.

47. Fritz LB, Ouellette HA, O'Hanley TA, Kassarian J, Palmer WE. Cystic changes at supraspinatus and infraspinatus tendon insertion sites: association with age and rotator cuff disorders in 238 patients. Radiology. 2007;244:239-248.

48. Furukawa R, Morihara T, Arai Y, et al. Effect of supraspinatus fat on the detection of symptomatic full-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology. 2004;230(1):234-242.

49. Gaenslen ES, Satterlee CC, Hinson GW. Magnetic resonance imaging for evaluation of failed repairs of the rotator cuff: relationship to operative findings. J Bone Joint Surg Am. 1996;78(9):1391-1396.

50. Ge L, Pan B, Song F, et al. Comparing the diagnostic accuracy of five common tumour biomarkers and CA19-9 for pancreatic cancer: a protocol for a network meta-analysis of diagnostic test accuracy. BMJ Open. 2017;7(12):e018175.

51. Gilat R, Atoun E, Cohen O, et al. Recurrent rotator cuff tear: is ultrasound reliable? J Shoulder Elbow Surg. 2018;27(7):1263-1267.

52. Gormeli C, Gormeli G, Yucesoy C, Ataoglu B, Kanatli U. Comparison of the results of ultrasonographic evaluation and arthroscopy in patients scheduled for surgery of the supraspinatus tendon rupture. Ann Saudi Med. 2014;34(6):522-526.

53. Grainger AJ, Elliott JM, Campbell RS, Timran PF, Steibach LS, Gent AG. Direct MR arthrography: a review of current use. Clin Radiol. 2000;55(3):163-176.

54. Guo LP, Wang WM, Wang YH, Liu YP, Yu XB, Ma XJ. Ultrasound in detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2017;26(12):2067-2077.

55. Gyftopoulos S, Guja KE, Subhas N, Virk MS, Gold HT. Cost-effectiveness of magnetic resonance imaging versus ultrasonography for the detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2016;25(2):175-176.

56. Gyftopoulos S, O'Donnell J, Guja KE, Subhas N, Virk MS, Gold HT. Cost-effectiveness of magnetic resonance imaging versus ultrasonography for the detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2014;23(1):283-290.

57. Ge L, Pan B, Song F, et al. Comparing the diagnostic accuracy of five common tumour biomarkers and CA19-9 for pancreatic cancer: a protocol for a network meta-analysis of diagnostic test accuracy. BMJ Open. 2017;7(12):e018175.

58. Gilat R, Atoun E, Cohen O, et al. Recurrent rotator cuff tear: is ultrasound reliable? J Shoulder Elbow Surg. 2018;27(7):1263-1267.

59. Gormeli C, Gormeli G, Yucesoy C, Atoğlu B, Kanatlı U. Comparison of the results of ultrasonographic evaluation and arthroscopy in patients scheduled for surgery of the supraspinatus tendon rupture. Ann Saudi Med. 2014;34(6):522-526.

60. Grainger AJ, Elliott JM, Campbell RS, Timran PF, Steinbach LS, Gent AG. Direct MR arthrography: a review of current use. Clin Radiol. 2000;55(3):163-176.

61. Guo LP, Wang WM, Wang YH, Liu YP, Yu XB, Ma XJ. Ultrasound in assessment of supraspinatus tendon injury: correlation with arthroscopy. Chin Med J (Engl). 2016;129(3):361-363.

62. Gyftopoulos S, Guja KE, Subhas N, Virk MS, Gold HT. Cost-effectiveness of magnetic resonance imaging versus ultrasonography for the detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2017;26(12):2067-2077.

63. Gyftopoulos S, O'Donnell J, Shah NP, Goss J, Babb J, Recht MP. Ultrasonography of the rotator cuff: analysis of results in a community setting. J Shoulder Elbow Surg. 1993;2(1):22-26.

64. Fritz LB, Ouellette HA, O'Hanley TA, Kassarian J, Palmer WE. Cystic changes at supraspinatus and infraspinatus tendon insertion sites: association with age and rotator cuff disorders in 238 patients. Radiology. 2007;244:239-248.

65. Furukawa R, Morihara T, Arai Y, et al. Effect of supraspinatus fat on the detection of symptomatic full-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology. 2004;230(1):234-242.

66. Jacobson JA, Lancaster S, Prasad A, van Holsbeeck MT, Craig JG, Kolowich P. Full-thickness and partial-thickness supraspinatus tendon tears: value of US signs in diagnosis. Radiology. 2004;230(1):234-242.

67. Guo LP, Wang WM, Wang YH, Liu YP, Yu XB, Ma XJ. Ultrasound in detection of symptomatic full-thickness supraspinatus tendon tears. J Shoulder Elbow Surg. 2017;26(12):2067-2077.
on isotropic fat-suppressed proton density and VIBE sequences. Clin Radiol. 2014;69(4):e173-e182.
125. Park YH, Lee JY, Moon SH, et al. MR arthrography of the labral capsular ligamentous complex in the shoulder: imaging variations and pitfalls. AJR Am J Roentgenol. 2000;175(3):667-672.
126. Pattee GA, Snyder SJ. Sonographic evaluation of the rotator cuff: correlation with arthroscopy. Arthroscopy. 1988;4(1):15-20.
127. Perez JR, Massel D, Barrera CM, et al. Rotator cuff tears in the pediatric population: comparing findings on arthroscopic evaluation to pre-operative magnetic resonance imaging. J Clin Orthop Trauma. 2018;3(3 suppl 1):S123-S128.
128. Pfirrmann CW, Zanetti M, Weishaupt D, Gerber C, Hodler J. Subscapularis tendon tears: detection and grading at MR arthrography. Radiology. 1999;213(3):709-714.
129. Pierce JL, Nacey NC, Jones S, et al. Postoperative shoulder imaging: rotator cuff, labrum, and biceps tendon. Radiographics. 2016;36(6):1648-1671.
130. Prickett WD, Teefey SA, Galatz LM, Califee RP, Middleton WD, Yarnaguchi K. Accuracy of ultrasound imaging of the rotator cuff in shoulders that are painful postoperatively. J Bone Joint Surg Am. 2003;85:1084-1089.
131. Punwar S, Blewitt N. Pre-operative departmental ultrasound of the rotator cuff: sensitivity and specificity in a regional specialist orthopaedic centre. Shoulder Elbow. 2014;6(2):72-74.
132. Quinn SF, Shely RC, Demlow TA, Szumowski J. Rotator cuff tendon tears: evaluation with fat-suppressed MR imaging with arthroscopic correlation in 100 patients. Radiology. 1995;195(2):497-500.
133. Read JW, Perko M. Shoulder ultrasound: diagnostic accuracy for impingement syndrome, rotator cuff tear, and biceps tendon pathology. J Shoulder Elbow Surg. 1998;7(3):264-271.
134. Robertson PL, Schweitzer ME, Mitchell DG, et al. Rotator cuff disorders: interobserver and intraobserver variation in diagnosis with MR imaging. Radiology. 1995;194(3):831-835.
135. Roy JS, Braem C, Leblond J, et al. Diagnostic accuracy of ultrasonography, MRI and MR arthrography in the characterisation of rotator cuff disorders: a systematic review and meta-analysis. Br J Sports Med. 2015;49(20):1316-1328.
136. Rutten MJ, Maesoch BJ, Jager GJ, Blickman JG, van Holsbeeck MT. Ultrasound of the rotator cuff with MRI and anatomic correlation. Eur J Radiol. 2007;62(3):427-436.
137. Rutten MJ, Spaargaren GJ, van Loon T, de Waal Malefijt MC, Kiemey LA, Jager GJ. Detection of rotator cuff tears: the value of MRI following ultrasound. Eur Radiol. 2010;20(2):450-457.
138. Sahin-Akyar G, Miller TT, Staron RB, McCarthy DM, Feldman F. Gradient-echo versus fat-suppressed fast spin-echo MR imaging of rotator cuff tears. AJR Am J Roentgenol. 1998;171(1):223-227.
139. Saqib R, Harris J, Funk L. Comparison of magnetic resonance arthrography with arthroscopy for imaging of shoulder injuries: retrospective study. Ann R Coll Surg Engl. 2017;99(4):271-274.
140. Schreinemachers SA, van der Hulst VP, Willems WJ, Bipsat S, van der Woude HJ. Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography? Skeletal Radiol. 2009;38:967-975.
141. Seibold CJ, Mallissee TA, Erickson SJ, Boynton MD, Raasch WG, Timins ME. Rotator cuff: evaluation with US and MR imaging. Radiographics. 1999;19(3):685-705.
142. Seltzer SE, Finberg HJ, Weissman BN, Kido DK, Collier BD. Arthrosonography: gray-scale ultrasound evaluation of the shoulder. Radiology. 1979;132(2):467-468.
143. Shalaby MH, Shetha KAA, Farouk MA. Conventional MR in rotator cuff pathology: is it sufficient? The Egyptian Journal of Radiology and Nuclear Medicine. 2017;48(1):183-188.
144. Shankman S, Bencardino J, Beltran J. Glenohumeral instability: evaluation using MR arthrography of the shoulder. Skeletal Radiol. 1999;28(7):365-382.
145. Shellcock FG, Bert JM, Fritts HM, Gundy CR, Easton R, Crues JVR. Evaluation of the rotator cuff and glenoid labrum using a 0.2-Tesla extremity magnetic resonance (MR) system: MR results compared to surgical findings. J Magn Reson Imaging. 2001;14:763-770.
146. Shi LL, Mullen MG, Freehill MT, Lin A, Warner JJ, Higgins LD. Accuracy of long head of the biceps subluxation as a predictor for subscapularis tears. Arthroscopy. 2015;31(4):615-619.
147. Singh H, Yuvarajan P, Maini L, Gautam VK. Evaluation of ultrasound as a tool for etiological diagnosis of painful arc syndrome. J Clin Orthop Trauma. 2010;1:81-84.
148. Sipola P, Niemiukia L, Kroger H, Hofling I, Vaatainen U. Detection and quantification of rotator cuff tears with ultrasonography and magnetic resonance imaging: a prospective study in 77 consecutive patients with a surgical reference. Ultrasound Med Biol. 2010;36(12):1981-1989.
149. Smith TO, Back T, Toms AP, Hing CB. Diagnostic accuracy of ultrasound for rotator cuff tears in adults: a systematic review and meta-analysis. Clin Radiol. 2011;66(11):1036-1048.
150. Soble MG, Kaye AD, Guay RC. Rotator cuff tear: clinical experience with sonographic detection. Radiology. 1989;173(2):319-321.
151. Sonin AH, Peduto AJ, Fitzgerald SW, Callahan CM, Bresler ME. MR imaging of the rotator cuff mechanism: comparison of spin-echo and turbo spin-echo sequences. AJR Am J Roentgenol. 1996;167(2):333-338.
152. Sonnabend DH, Hughes JS, Giuffre BM, Farrell R. The clinical role of shoulder ultrasound. Aust N Z J Surg. 1997;67(9):630-633.
153. Sparling JW, Potter HG, Craig EV, Flatow E, Warren RF. Magnetic resonance imaging of painful shoulder arthroplasty. J Shoulder Elbow Surg. 2002;11(4):315-321.
154. Steinbach LS, Palmer WE, Schweitzer ME. Special focus session: MR arthrography. Radiographics. 2002;22(5):1223-1246.
155. Stetson WB, Phillips T, Deutsch A. The use of magnetic resonance arthrography to detect partial-thickness rotator cuff tears. J Bone Joint Surg Am. 2005;87(1):81-88.
156. Stoppino LP, Ciuffreda P, Rossi M, et al. Lesions of the rotator cuff footprint: diagnostic performance of MR arthrography compared with arthroscopy. Musculoskelet Surg. 2013;97(suppl 2):S197-S202.
157. Subhas N, Benedick A, Obuchowski NA, et al. Comparison of a fast 5-minute shoulder MRI protocol with a standard shoulder MRI protocol: a multiinstitutional multicenter study. AJR Am J Roentgenol. 2017;208(4):W146-W154.
158. Swen WA, Jacobs JW, Algra PR, et al. Sonography and magnetic resonance imaging equivalent for the assessment of full-thickness rotator cuff tears. Arthritis Rheum. 1999;42(10):2331-2338.
159. Takagishi K, Makino K, Takahira N, Ikeda T, Tsuruno K, Itoman M. Ultrasonography for diagnosis of rotator cuff tear. Skeletal Radiol. 1996;25(3):221-224.
160. Teefey SA, Hasan SA, Middleton WD, Patel M, Wright RW, Yarnaguchi K. Ultrasonography of the rotator cuff: a comparison of ultrasonographic and arthroscopic findings in one hundred consecutive cases. J Bone Joint Surg Am. 2000;82(4):498-504.
161. Teefey SA, Hansen SA, Middleton WD, Patel M, Wright RW, Yarnaguchi K. Ultrasonography of the rotator cuff: a comparison of ultrasonographic and arthroscopic findings in one hundred consecutive cases. J Bone Joint Surg Am. 2000;82(4):498-504.
162. Teefey SA, Rubin DA, Middleton WD, Yamaguchi K. Detection and quantification of rotator cuff tear: comparison of ultrasonographic, magnetic resonance imaging, and arthroscopic findings in seventy-one consecutive cases. J Bone Joint Surg Am. 2004;86(4):708-716.
163. Teng A, Liu F, Zhou D, He T, Chevalier Y, Klar RM. Effectiveness of 3-dimensional shoulder ultrasound in the diagnosis of rotator cuff tear: a meta-analysis. Medicine (Baltimore). 2018;97(3):e12405.
164. Torstensen ET, Hollinshead RM. Comparison of magnetic resonance imaging and arthroscopy in the evaluation of shoulder pathology. J Shoulder Elbow Surg. 1999;8(1):42-45.
165. Toyoda H, Ito Y, Tomo H, Nakao Y, Koike T, Takaoka K. Evaluation of rotator cuff tears with magnetic resonance arthrography. Clin Orthop Relat Res. 2005;439:109-115.
166. Tuine MJ, Aisinger D, Orwin JF. Angled oblique sagittal MR imaging of rotator cuff tears: comparison with standard oblique sagittal images. Skeletal Radiol. 2001;30(5):262-269.
APPENDIX

TABLE A1

Results of Quality Assessment of 144 Included Studies

Author (Year)	Response to QUADAS-2 Questions	QUADAS-2 Score
Adams⁴ (2010)	Y Y Y U Y Y Y U U Y N	7
Al-Shawi⁵ (2008)	Y Y Y U Y Y Y U Y	9
Alasaarela⁶ (1998)	U Y Y U Y Y Y U Y	8
Arend⁴ (2014)	Y Y Y Y Y Y Y Y N	10
Balich⁶ (1997)	Y Y Y U Y Y Y Y Y	9
Bhatnagar⁵ (2016)	U Y Y U Y Y Y U Y	8
Binkert⁷ (2001)	Y Y Y Y Y Y Y Y Y	10
Brandt⁸ (1989)	Y Y Y Y Y Y Y Y Y	10
Brenneke⁹ (1992)	Y Y Y Y Y Y Y Y Y	11
Bretzke⁸ (1985)	U U Y Y Y Y Y Y Y	7
Burk¹⁰ (1989)	U Y Y Y Y Y Y Y Y	10
Burk¹¹ (1991)	U Y Y Y U Y Y Y U Y	7

(continued)
Author (Year)	Response to QUADAS-2 Questions	QUADAS-2 Score										
Carbone18 (2014)	U Y Y Y Y Y Y Y N Y	9										
Chang20 (2002)	Y Y Y U Y Y Y Y Y Y	10										
Chang21 (2016)	Y Y Y U Y Y Y N Y Y	8										
Chen22 (2014)	U Y Y U Y Y Y U Y Y	9										
Choo23 (2015)	Y Y Y Y Y Y Y N Y	7										
Choo24 (2012)	U Y Y Y Y Y Y Y U	10										
Chun25 (2010)	U Y Y Y Y Y Y Y Y	10										
Cole26 (2016)	Y U Y U Y Y Y Y Y U	7										
Crase31 (1988)	U Y Y U Y Y Y U Y	7										
Cullen32 (2007)	Y Y Y N Y Y Y N Y	9										
Day33 (2016)	U Y Y Y Y Y Y Y Y	10										
Edmond38 (2015)	Y Y Y Y Y Y Y Y Y	11										
Elmers36 (2017)	Y Y Y Y Y Y Y U Y	9										
Etancelin-Jamet37 (2017)	Y Y Y Y Y Y Y Y Y N	10										
Farin38 (1996)	Y Y Y Y Y Y Y Y Y	7										
Farshad-Amacker39 (2015)	Y Y Y Y Y Y Y Y Y U	7										
Ferrari40 (2002)	U Y Y U Y Y Y U Y	8										
Fitzgerald41 (2018)	Y Y Y Y Y Y Y Y Y U	10										
Foti42 (2017)	Y Y Y Y Y Y Y Y Y	8										
Fotiadou44 (2008)	U Y Y Y Y Y Y Y	7										
Frei45 (2008)	Y Y Y U Y Y Y U Y	9										
Friedman46 (1993)	Y Y Y U Y Y Y	10										
Fritz47 (2007)	Y Y Y Y Y Y Y U	8										
Furukawa48 (2014)	Y Y Y Y Y Y Y Y Y	11										
Gaenslen49 (1996)	U Y Y Y Y Y Y Y	10										
Gail51 (2018)	Y U Y U Y Y Y U	7										
Gormeli52 (2014)	Y Y Y Y Y Y Y Y Y	11										
Guo53 (2016)	Y Y Y U Y Y Y U Y	9										
Gyftopoulos54 (2013)	U Y Y Y Y Y Y Y Y Y	10										
Herold55 (2006)	Y Y Y Y Y Y Y Y Y	11										
Hitachi56 (2011)	Y Y Y U Y Y Y U Y	9										
Hodler57 (1988)	Y Y Y U Y Y Y U Y	8										
Hodler60 (1992)	U Y Y Y Y Y Y Y Y	9										
Horuchi61 (2018)	Y Y Y Y Y Y Y Y U	9										
Hussain62 (2018)	U Y Y Y Y Y Y Y U	8										
Iannotti63 (2005)	U Y Y Y Y Y Y Y	9										
Iannotti64 (1991)	U Y Y Y Y Y Y Y	9										
Ilozue65 (2014)	Y Y Y Y Y Y Y Y Y	11										
Jordan66 (2015)	Y Y Y U Y Y Y Y	10										
Jung67 (2017)	Y Y Y Y Y Y Y Y Y	11										
Jung68 (2010)	U Y Y Y Y Y Y Y Y	10										
Jung69 (2012)	Y Y Y U Y Y Y U U	7										
Jung70 (2009)	Y Y Y Y Y Y Y Y Y	11										
Kang71 (2009)	Y Y Y Y Y Y Y Y Y	11										
Kluger72 (2003)	U Y Y Y Y Y Y Y Y Y	10										
Kuro73 (1991)	Y Y Y A U Y Y Y U U	9										
Lee74 (2014)	Y Y Y N Y Y Y N Y	9										
Lee75 (2015)	Y Y Y Y Y Y Y Y Y	11										
Lee76 (2016)	U U Y Y Y Y Y Y Y U U	11										
Lin77 (2016)	Y Y Y U Y Y Y Y U Y	9										
Lo78 (2016)	Y Y Y Y Y Y Y Y Y	11										
Loew83 (2000)	U Y Y Y Y Y Y Y Y	9										
Mack84 (1988)	Y Y Y Y Y Y Y Y Y	10										
Magee85 (2014)	Y Y Y Y Y Y Y Y Y	9										
Magee86 (2011)	Y Y Y Y Y Y Y Y Y	10										
Magee87 (2006)	Y Y Y Y Y Y Y Y Y	11										
Author (Year)	1	2	3	4	5	6	7	8	9	10	11	QUADAS-2 Score
-----------------------	---	---	---	---	---	---	---	---	---	----	----	---------------
Magee et al. (1997)	Y	Y	Y	U	Y	Y	Y	U	Y	Y	Y	9
Malavaleta et al. (2016)	Y	Y	Y	Y	Y	Y	U	Y	N	Y	Y	11
Martin-Hervas et al. (2001)	Y	Y	U	Y	Y	Y	U	Y	N	Y	Y	8
Masoaki et al. (1999)	Y	Y	Y	U	Y	Y	Y	Y	N	Y	Y	9
Meister et al. (2004)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	10
Middleton et al. (2004)	Y	Y	U	Y	Y	U	U	Y	Y	Y	N	8
Milosavljevic et al. (2005)	U	Y	U	Y	Y	Y	U	U	Y	Y	Y	7
Misamore et al. (1991)	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	11
Modi et al. (2013)	Y	Y	Y	U	Y	U	U	Y	Y	Y	Y	9
Mohtadi et al. (2004)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	11
Momazadeh et al. (2015)	Y	Y	U	Y	Y	Y	U	Y	Y	U	Y	10
Moosmayer et al. (2007)	U	Y	Y	N	Y	Y	Y	N	Y	Y	Y	7
Moosmayer et al. (2005)	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	10
Motamedi et al. (2002)	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	10
Murphy et al. (2013)	Y	Y	Y	U	Y	U	U	Y	Y	Y	Y	9
Naqvi et al. (2009)	Y	Y	U	Y	Y	Y	U	Y	Y	Y	Y	7
Needell et al. (1997)	Y	Y	U	Y	Y	Y	U	Y	Y	Y	Y	9
Nelson et al. (1991)	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	9
Oh et al. (2009)	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y	9
Ostor et al. (2013)	U	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	10
Paavolainen et al. (1994)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11
Palmer et al. (1993)	Y	Y	Y	U	Y	Y	Y	Y	N	Y	Y	9
Park et al. (2015)	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	10
Park et al. (2014)	U	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	9
Park et al. (2012)	U	Y	Y	Y	Y	Y	Y	Y	U	Y	Y	9
Patterson et al. (1998)	Y	Y	Y	Y	Y	U	Y	Y	Y	Y	Y	9
Perez et al. (2018)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11
Pfirrmann et al. (1999)	U	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	9
Prickett et al. (2003)	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y	9
Punwar et al. (2014)	Y	Y	Y	U	Y	Y	Y	U	Y	Y	Y	9
Quinn et al. (1995)	Y	Y	U	Y	Y	Y	U	Y	Y	Y	Y	9
Read et al. (1998)	Y	U	Y	U	Y	Y	Y	Y	Y	N	Y	8
Robertson et al. (1995)	Y	Y	Y	Y	Y	Y	Y	Y	Y	N	N	9
Rutten et al. (2010)	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	10
Saqib et al. (2017)	Y	Y	U	Y	Y	U	Y	Y	Y	Y	Y	9
Schreinemachers et al. (2009)	Y	Y	Y	Y	Y	Y	Y	U	Y	N	N	9
Shalaby et al. (2017)	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	10
Shellcock et al. (2001)	Y	Y	Y	U	Y	Y	Y	Y	N	Y	Y	9
Shi et al. (2015)	Y	Y	Y	U	Y	Y	Y	U	Y	Y	Y	9
Singh et al. (2010)	U	Y	Y	U	Y	Y	U	Y	Y	Y	Y	8
Sipola et al. (2010)	U	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	9
Soble et al. (1999)	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	9
Soni et al. (1996)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	8
Sonnabend et al. (1997)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	N	9
Sperling et al. (2002)	Y	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	10
Stetson et al. (2005)	U	Y	Y	U	Y	Y	Y	U	Y	N	Y	7
Stopping et al. (2013)	Y	Y	Y	U	Y	Y	Y	U	Y	Y	Y	9
Subhas et al. (2017)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11
Swen et al. (1999)	U	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	10
Takagishi et al. (1996)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	10
Teeff et al. (2000)	Y	Y	U	Y	Y	U	Y	Y	Y	Y	Y	9
Teeff et al. (2005)	Y	Y	Y	Y	Y	Y	Y	Y	N	Y	Y	11
Teeff et al. (2004)	Y	Y	Y	N	Y	Y	Y	N	Y	Y	Y	9
Torstensen et al. (1996)	Y	Y	Y	U	Y	Y	Y	U	Y	Y	Y	9
Toyota et al. (2005)	U	Y	Y	Y	Y	Y	Y	U	Y	Y	Y	8
Tuite et al. (2001)	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y	11
Tuite et al. (1994)	Y	Y	U	Y	Y	Y	Y	Y	Y	Y	Y	9

(continued)
TABLE A1 (continued)

Author (Year)	Response to QUADAS-2 Questions	QUADAS-2 Score
van Holsbeeck170 (1995)	U Y Y Y Y Y Y Y Y Y Y Y 10	
van Moppes172 (1995)	Y Y Y U Y Y Y Y U Y Y 9	
Venu173 (2002)	U Y Y Y Y Y Y Y Y Y N Y 9	
Vlychou174 (2009)	Y Y Y Y Y Y Y Y Y Y N 10	
Wagner176 (2002)	Y Y Y Y Y Y Y Y Y Y N 10	
Waldl177 (2007)	Y Y Y Y Y Y Y Y Y Y Y 11	
Walley179 (2001)	U Y Y Y Y Y Y Y Y Y 9	
Ward180 (2018)	Y U Y U Y Y Y U U Y Y 7	
Wiener182 (1993)	Y Y Y U Y Y Y Y Y N Y 9	
Wnorowski183 (1997)	Y Y Y U Y Y Y Y U Y Y Y 9	
Yagci184 (2001)	Y Y Y U Y Y Y Y U Y Y Y 9	
Yamakawa185 (2001)	U Y Y Y Y Y Y Y Y Y Y 10	
Yen186 (2004)	U Y Y Y U Y Y Y Y U Y Y 8	
Zehetgruber187 (2002)	Y Y Y N Y Y Y Y N Y Y 9	
Ziegler189 (2004)	U Y Y U Y Y Y U U Y Y 7	
Zlatkin190 (2004)	Y U Y Y Y Y Y Y U Y Y 9	
Zlatkin191 (1989)	Y Y Y U Y Y Y U Y N Y 8	

a N, no; U, unclear; Y, yes.

b QUADAS-2 questions are as follows:
1. Was a consecutive or random sample of patients enrolled?
2. Was a case-control design avoided?
3. Did the study avoid inappropriate exclusions?
4. Were the index test results interpreted without knowledge of the results of the reference standard?
5. If a threshold was used, was it prespecified?
6. Is the reference standard likely to correctly classify the target condition?
7. Were the reference standard results interpreted without knowledge of the results of the index test?
8. Was there an appropriate interval between the index test(s) and reference standard?
9. Did all patients receive a reference standard?
10. Did all patients receive the same reference standard?
11. Were all patients included in the analysis?

TABLE A2

Subgroup Analysis Based on Tendon

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n		
Any									
Any	MRA	0.88	0.93	106.43	4.61	1.00	1.00	21	21
		(0.82-0.93)	(0.88-0.96)	(45.91-206.08)	[1]	[1]			
	MRI	0.84	0.83	28.01	0.79	0.96	0.90	32	32
		(0.79-0.88)	(0.78-0.88)	(16.68-44.01)	[2]	[2]			
	US	0.82	0.83	22.60	0.39	0.93	0.89	44	44
		(0.77-0.86)	(0.77-0.86)	(14.21-33.58)	[3]	[3]			
Any	SSP	0.82	0.84	53.96	1.95	1.00	1.00	5	5
	MRA	0.82	0.84	53.96	1.95	1.00	1.00	5	5
		(0.55-0.96)	(0.60-0.95)	(4.02-221.20)	[1]	[1]			
	MRI	0.86	0.76	29.53	1.24	1.07	0.92	7	7
		(0.70-0.94)	(0.53-0.91)	(4.94-91.80)	[3]	[3]			

(continued)
Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
US	0.89 (0.76-0.96)	0.73 (0.54-0.87)	33.18 (6.58-92.07)	1.49 (0.20-5.00)	1.11 (0.86-1.67)	0.88 (0.62-1.26)	8	8
SSC	MRA	0.79 (0.70-0.85)	22.72 (9.64-42.89)	2.07 (0.33-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	8
MRI	0.70 (0.56-0.82)	0.87 (0.76-0.93)	18.45 (6.46-39.34)	1.54 (0.33-5.00)	0.89 (0.69-1.07)	1.03 (0.89-1.17)	12	12
US	0.35 (0.04-0.81)	0.85 (0.41-1.00)	42.60 (0.09-312.28)	0.86 (0.20-3.00)	0.45 (0.05-1.03)	1.01 (0.48-1.28)	2	2
ISP	MRA	0.64 (0.26-0.95)	43.11 (0.50-270.04)	1.73 (0.20-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	2	2
MRI	0.57 (0.20-0.88)	0.79 (0.40-1.00)	150.27 (0.40-1128.94)	1.69 (0.20-5.00)	1.00 (0.29-2.37)	1.13 (0.47-2.43)	2	2
US	0.49 (0.00-1.00)	0.77 (0.31-1.00)	6128339.61 (0.01-79792.75)	1.50 (0.20-5.00)	0.88 (0.01-2.52)	1.09 (0.41-2.36)	1	1
SSP-ISP	MRA	0.91 (0.71-0.98)	108.83 (0.50-270.04)	2.59 (0.20-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	6	6
MRI	0.87 (0.55-0.98)	0.82 (0.47-0.97)	146.28 (3.61-749.30)	2.44 (0.33-5.00)	0.97 (0.60-1.23)	1.02 (0.56-1.52)	3	3
US	0.58 (0.15-0.93)	0.64 (0.18-0.96)	12.95 (0.14-87.84)	0.45 (0.20-3.00)	0.64 (0.16-1.06)	0.79 (0.22-1.34)	1	1

FT tear

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
MRA	0.95 (0.90-0.98)	0.95 (0.88-0.98)	632.73 (114.29-1884.37)	4.80 (1.00-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	15	15
MRI	0.90 (0.86-0.93)	0.87 (0.83-0.91)	67.81 (37.58-110.73)	0.62 (0.20-1.00)	0.95 (0.90-1.01)	0.92 (0.86-0.99)	36	36
US	0.86 (0.79-0.90)	0.88 (0.84-0.91)	48.09 (21.99-79.30)	0.34 (0.20-1.00)	0.90 (0.82-0.97)	0.92 (0.87-1.00)	36	36
MRA	0.95 (0.81-0.99)	0.93 (0.76-0.99)	1237.91 (40.19-6799.52)	3.89 (1.00-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	8
MRI	0.88 (0.63-0.98)	0.83 (0.56-0.97)	104.66 (5.64-492.32)	0.93 (0.20-3.00)	0.93 (0.67-1.11)	0.90 (0.61-1.14)	5	5
US	0.85 (0.65-0.95)	0.83 (0.54-0.97)	68.59 (5.25-304.86)	0.69 (0.20-3.00)	0.90 (0.69-1.07)	0.90 (0.58-1.13)	5	5
MRA	0.61 (0.15-0.97)	0.76 (0.32-1.00)	10.22 (0.27-27864.06)	0.81 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1	1

(continued)
TABLE A2 (continued)

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiory Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
MRI	0.91 (0.57-1.00)	0.79 (0.45-0.97)	164.36 (3.07-174003.30)	1.83 (0.33-3.00)	2.03 (0.80-6.41)	1.16 (0.57-2.52)	4	4
ISP								
MRA	0.68 (0.28-1.00)	0.63 (0.29-1.00)	4.75 (0.38-13899.95)	1.62 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1	1
MRI	0.53 (0.10-0.92)	0.63 (0.30-1.00)	2.16 (0.13-1049.20)	1.07 (0.33-3.00)	0.89 (0.15-2.14)	1.10 (0.41-2.49)	1	1
SSP-ISP								
MRA	0.87 (0.63-0.97)	0.89 (0.60-0.98)	97.16 (7.63-907.87)	1.62 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	5	5
MRI	0.82 (0.53-0.95)	0.88 (0.54-0.99)	63.07 (3.93-822.75)	1.05 (0.33-3.00)	0.95 (0.63-1.26)	1.00 (0.66-1.38)	3	3
SSC-ISP								
MRA	0.54 (0.13-0.93)	0.74 (0.26-0.99)	4.99 (0.18-348.87)	1.25 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1	1
MRI	0.70 (0.28-1.00)	0.62 (0.16-0.96)	5.60 (0.21-6426.07)	1.31 (0.33-3.00)	1.70 (0.45-5.68)	0.98 (0.21-2.64)	1	1
PT tear								
Any								
MRA	0.80 (0.70-0.88)	0.91 (0.85-0.95)	49.27 (19.67-100.56)	4.77 (3.00-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	18	17
MRI	0.63 (0.55-0.71)	0.84 (0.78-0.88)	9.15 (5.28-14.41)	0.38 (0.20-1.00)	0.79 (0.66-0.93)	0.92 (0.84-1.00)	33	33
US	0.58 (0.49-0.67)	0.87 (0.82-0.91)	9.85 (5.58-15.73)	0.52 (0.20-1.00)	0.73 (0.59-0.89)	0.96 (0.90-1.03)	33	33
SSP								
MRA	0.75 (0.51-0.91)	0.81 (0.57-0.94)	23.56 (2.63-89.89)	1.63 (0.20-5.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	6	6
MRI	0.71 (0.44-0.88)	0.87 (0.54-0.99)	59.36 (2.31-304.79)	1.88 (0.20-5.00)	0.97 (0.57-1.49)	1.09 (0.66-1.59)	5	4
US	0.78 (0.51-0.95)	0.73 (0.49-0.89)	18.77 (2.04-76.67)	1.15 (0.20-5.00)	1.07 (0.66-1.63)	0.91 (0.59-1.33)	6	6
SSC								
MRA	0.64 (0.19-0.97)	0.69 (0.22-0.97)	48.93 (0.22-218.15)	1.12 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	1	1
MRI	0.69 (0.35-0.92)	0.79 (0.44-0.94)	17.24 (1.09-68.87)	1.53 (0.33-3.00)	1.35 (0.49-3.60)	1.38 (0.60-3.71)	3	3
SSP-ISP								
MRA	0.76 (0.55-0.90)	0.86 (0.64-0.96)	34.35 (4.16-114.77)	1.70 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	6	6
MRI	0.69 (0.31-0.91)	0.80 (0.39-0.97)	28.57 (0.85-137.52)	1.03 (0.33-3.00)	0.92 (0.40-1.36)	0.93 (0.45-1.27)	2	2
TABLE A3
Subgroup Analysis Based on Study Design*

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
PT-A tear								
MRA	0.74 (0.55-0.87)	0.90 (0.73-0.97)	38.42 (6.28-116.78)	1.90 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	8
MRI	0.67 (0.41-0.85)	0.82 (0.54-0.97)	20.06 (1.78-85.39)	0.85 (0.33-3.00)	0.92 (0.56-1.32)	0.92 (0.58-1.18)	5	5
PT-B tear								
MRA	0.75 (0.60-0.85)	0.92 (0.77-0.98)	62.96 (8.59-193.74)	1.80 (0.33-3.00)	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	8
MRI	0.73 (0.51-0.87)	0.84 (0.57-0.97)	27.80 (3.11-108.51)	0.89 (0.33-3.00)	0.99 (0.68-1.28)	0.92 (0.63-1.12)	6	6

*Data are reported as mean (95% CI) unless otherwise indicated. PT, full-thickness; ISP, infraspinatus; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; PT-A, articular-side partial-thickness; PT-B, bursal-side partial-thickness; SSC, subscapularis; SSP, supraspinatus; US, ultrasound.
Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
Retrospective								
Any tear								
MRA	0.87 (0.81-0.91)	0.93 (0.88-0.95)	91.72 (44.31-164.17) [1]	4.79 (3.00-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	34	27
MRI	0.82 (0.78-0.85)	0.88 (0.85-0.91)	36.39 (23.47-53.45) [2]	1.08 (0.88-1.00) [2]	0.94 (0.89-1.01)	0.96 (0.91-1.01)	59	45
US	0.77 (0.69-0.84)	0.83 (0.75-0.89)	17.43 (8.65-31.14) [3]	0.23 (0.20-0.33) [3]	0.89 (0.81-0.97)	0.89 (0.81-0.97)	25	19
FT tear								
MRA	0.94 (0.86-0.98)	0.96 (0.89-0.99)	811.66 (97.32-3419.22) [1]	4.66 (1.00-1.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	13	13
MRI	0.90 (0.84-0.93)	0.89 (0.83-0.93)	80.81 (32.87-151.96) [2]	0.77 (0.89-1.04) [2]	0.95 (0.86-1.01)	0.93 (0.86-1.01)	29	29
US	0.82 (0.71-0.89)	0.89 (0.80-0.95)	46.44 (14.80-101.86) [3]	0.32 (0.76-0.98) [3]	0.87 (0.83-1.02)	0.93 (0.83-1.02)	11	11
PT tear								
MRA	0.82 (0.72-0.89)	0.90 (0.82-0.95)	51.64 (17.15-118.56) [1]	4.49 (1.00-1.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	14	13
MRI	0.67 (0.58-0.75)	0.87 (0.80-0.91)	14.01 (6.89-24.52) [2]	0.85 (0.69-0.96) [2]	0.82 (0.88-1.05)	0.96 (0.88-1.05)	26	24
US	0.67 (0.46-0.84)	0.78 (0.62-0.89)	9.57 (2.21-28.40) [3]	0.40 (0.55-1.06) [3]	0.81 (0.69-1.01)	0.87 (0.69-1.01)	9	9
Study type not reported								
Any tear								
MRA	0.82 (0.56-0.95)	0.81 (0.51-0.97)	50.81 (3.19-243.36) [1]	2.23 (0.20-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	6	6
MRI	0.86 (0.72-0.94)	0.69 (0.51-0.83)	17.53 (4.75-45.42) [3]	0.97 (0.85-1.52) [3]	1.06 (0.59-1.37)	0.88 (0.59-1.37)	11	9
US	0.82 (0.72-0.89)	0.80 (0.69-0.88)	21.53 (8.50-44.75) [3]	1.45 (0.82-1.48) [3]	1.02 (0.75-1.55)	1.01 (0.75-1.55)	22	20
FT tear								
MRA	0.95 (0.62-1.00)	0.87 (0.53-0.99)	1396.42 (8.72-1522623.09)	2.67 (0.20-5.00) [3]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	4	4
MRI	0.92 (0.64-1.00)	0.86 (0.65-0.95)	137.15 (8.88-2350.94) [2]	0.93 (0.66-1.51) [2]	0.98 (0.71-1.64)	1.01 (0.71-1.64)	5	5
US	0.90 (0.76-0.96)	0.92 (0.84-0.96)	125.69 (29.97-379.75) [3]	1.20 (0.77-1.49) [3]	0.96 (0.89-1.76)	1.09 (0.89-1.76)	11	11
PT tear								
MRA	0.78 (0.49-0.94)	0.90 (0.63-0.99)	116.05 (4.84-619.64) [1]	4.11 (1.00-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	4	4
TABLE A3 (continued)

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
MRI	0.62 (0.41-0.81)	0.63 (0.37-0.83)	3.67 (0.77-10.82) [3]	0.40 (0.20-1.00) [3]	0.81 (0.52-1.31)	0.71 (0.40-1.07)	6	6
US	0.58 (0.42-0.74)	0.85 (0.70-0.93)	9.90 (2.87-23.58) [2]	0.92 (0.33-3.00) [2]	0.77 (0.52-1.24)	0.95 (0.76-1.34)	12	12

Data are reported as mean (95% CI) unless otherwise indicated. PT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.

TABLE A4

Subgroup Analysis Based on QUADAS-2 Score

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
Score = 7								
Any tear	MRI	0.81 (0.67-0.90)	0.69 (0.48-0.86)	12.43 (3.31-33.65) [3]	1.39 (0.50-2.00) [3]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	9
	US	0.80 (0.67-0.89)	0.75 (0.56-0.89)	15.27 (4.60-39.26) [2]	1.12 (0.80-1.91) [2]	1.12 (1.07-2.37)	12	11
	FT tear	MRI	0.86 (0.62-0.99)	0.89 (0.44-1.00)	552.22 (2.40-2043809.18) [1]	2.38 (0.40-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)
	US	0.89 (0.69-0.97)	0.91 (0.80-0.96)	103.73 (17.94-411.22) [2]	1.49 (0.80-5.00) [2]	1.08 (0.82-2.10)	13	11
	PT tear	MRI	0.85 (0.48-0.99)	0.81 (0.45-0.97)	154.43 (2.62-933.62) [1]	3.00 (0.40-5.00) [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)
	US	0.69 (0.45-0.87)	0.80 (0.53-0.95)	15.68 (1.81-58.22) [2]	1.23 (0.50-1.48) [2]	1.02 (0.64-1.80)	6	6
Score = 8								
Any tear	MRI	0.87 (0.60-0.97)	0.75 (0.32-0.96)	67.44 (2.48-338.83) [2]	1.64 (0.40-5.00) [2]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	4
	US	0.90 (0.82-0.95)	0.88 (0.75-0.95)	91.21 (24.27-226.29) [1]	3.36 (0.89-1.48) [1]	1.65 (0.86-2.75)	9	7

(continued)
Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
FT tear								
MRA	0.90	0.80	1096.80	2.52	1.00	1.00	3	3
	(0.46-1.00)	(0.32-1.00)	(1.40-1839177.49)	[1]	(0.20-5.00)	(1.00-1.00)		
MRI	0.87	0.87	63.03	1.59	1.02	1.24	6	6
	(0.70-0.95)	(0.64-0.97)	(9.36-346.21)	[2]	(0.20-5.00)	(0.73-1.90)		
US	0.84	0.82	29.44	0.82	0.98	1.16	7	7
	(0.61-0.95)	(0.61-0.94)	(5.33-139.67)	[3]	(0.20-3.00)	(0.65-1.83)		
PT tear								
MRA	0.81	0.81	55.50	2.75	1.00	1.00	2	2
	(0.41-0.97)	(0.33-1.00)	(1.08-122796.87)	[1]	(0.20-5.00)	(1.00-1.00)		
MRI	0.74	0.84	18.97	1.71	0.97	1.16	4	4
	(0.46-0.91)	(0.60-0.95)	(2.89-118.01)	[2]	(0.33-5.00)	(0.55-1.86)		
US	0.53	0.85	7.16	0.59	0.70	1.17	7	7
	(0.32-0.75)	(0.66-0.94)	(1.46-30.05)	[3]	(0.20-3.00)	(0.39-1.34)		
Score = 9								
Any tear								
MRA	0.85	0.90	65.18	3.54	1.00	1.00	17	15
	(0.76-0.91)	(0.83-0.95)	(22.06-146.99)	[1]	(1.00-5.00)	(1.00-1.00)		
MRI	0.83	0.79	20.77	0.68	0.98	0.88	29	25
	(0.77-0.88)	(0.72-0.85)	(10.56-36.26)	[2]	(0.20-3.00)	(0.88-1.11)		
US	0.84	0.81	24.16	1.09	0.99	0.89	28	23
	(0.78-0.89)	(0.73-0.87)	(11.76-43.90)	[2]	(0.20-3.00)	(0.89-1.12)		
Score = 10								
Any tear								
MRA	0.94	0.93	468.91	4.44	1.00	1.00	11	11
	(0.82-0.99)	(0.83-0.98)	(43.76-1861.43)	[1]	(1.00-5.00)	(1.00-1.00)		
MRI	0.89	0.85	55.22	0.79	0.95	0.91	16	16
	(0.79-0.95)	(0.74-0.92)	(16.11-135.21)	[1]	(0.20-3.00)	(0.84-1.09)		
US	0.87	0.84	42.45	0.48	0.92	0.91	14	14
	(0.78-0.92)	(0.73-0.92)	(13.19-102.77)	[2]	(0.20-3.00)	(0.82-1.06)		
Score = 11								
Any tear								
MRA	0.75	0.90	35.77	4.28	1.00	1.00	10	10
	(0.60-0.88)	(0.80-0.96)	(9.49-93.90)	[1]	(1.00-5.00)	(1.00-1.00)		
MRI	0.55	0.81	5.64	0.33	0.74	0.90	18	18
	(0.43-0.67)	(0.71-0.87)	(2.65-10.64)	[3]	(0.20-1.00)	(0.55-0.99)		
US	0.56	0.87	9.73	1.06	0.75	0.97	15	15
	(0.42-0.71)	(0.79-0.92)	(3.92-20.02)	[2]	(0.20-3.00)	(0.53-1.05)		

(continued)
Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n
FT tear								
MRA	0.90 (0.68-0.99)	0.93 (0.68-1.00)	934.19 [1]	3.21 [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	7	5
MRI	0.90 (0.81-0.95)	0.89 (0.74-0.96)	99.85 [2]	1.32 [2]	1.00 (0.86-1.33)	0.97 (0.79-1.31)	12	12
US	0.75 (0.49-0.92)	0.89 (0.69-0.98)	59.43 [3]	0.60 (0.53-1.18)	0.84 (0.74-1.32)	0.97 (0.74-1.00)	7	7
PT tear								
MRA	0.85 (0.73-0.91)	0.89 (0.77-0.94)	54.45 [1]	3.06 [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	6
MRI	0.73 (0.59-0.85)	0.88 (0.78-0.93)	23.44 [1]	1.05 [1]	0.87 (0.69-1.05)	0.99 (0.86-1.15)	7	7
US	0.66 (0.38-0.87)	0.88 (0.73-0.95)	21.32 [1]	0.95 (0.84-1.06)	0.78 (0.53-1.18)	0.97 (0.74-1.32)	6	6
Score = 11	Any tear							
MRA	0.83 (0.73-0.90)	0.89 (0.77-0.96)	52.94 [1]	3.56 [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	17	12
MRI	0.77 (0.63-0.87)	0.87 (0.75-0.94)	29.63 [1]	1.68 [1]	0.93 (0.75-1.11)	0.98 (0.83-1.14)	14	10
US	0.74 (0.54-0.88)	0.70 (0.52-0.85)	8.82 [1]	0.36 (0.65-1.11)	0.89 (0.57-0.99)	0.79 (0.57-0.99)	8	7
FT tear								
MRA	0.92 (0.80-0.97)	0.91 (0.75-0.98)	245.15 [1]	3.96 [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	8
MRI	0.80 (0.52-0.95)	0.83 (0.63-0.93)	36.99 [1]	0.70 [1]	0.87 (0.56-1.07)	0.91 (0.68-1.13)	7	7
US	0.84 (0.66-0.94)	0.84 (0.67-0.94)	42.51 [1]	0.85 (0.73-1.07)	0.91 (0.74-1.12)	0.93 (0.75-1.12)	6	6
PT tear								
MRA	0.71 (0.55-0.82)	0.82 (0.63-0.94)	16.45 [1]	2.58 [1]	1.00 (1.00-1.00)	1.00 (1.00-1.00)	8	7
MRI	0.72 (0.56-0.82)	0.82 (0.64-0.93)	15.35 [1]	2.68 [1]	1.02 (0.78-1.34)	1.00 (0.76-1.30)	10	8
US	0.59 (0.36-0.80)	0.67 (0.44-0.87)	4.29 [1]	0.40 (0.49-1.22)	0.85 (0.55-1.09)	0.82 (0.55-1.09)	5	5

aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRA, magnetic resonance arthrography; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.
Table A5
Subgroup Analysis Based on Publication Year (≥2000)

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n			
Any tear											
3.0-T MRI	0.80	0.90	(0.65-0.90) (0.75-0.97)	53.50	(10.23-163.38)	[2]	(0.20-5.00)	(1.00-1.00)	(1.00-1.00)	12	9
1.5-T MRI	0.85	0.83	(0.78-0.90) (0.74-0.88)	29.08	(14.12-52.18)	[4]	(0.20-5.00)	(0.91-1.32)	(0.81-1.12)	30	24
≥7.5-MHz US	0.91	0.76	(0.86-0.95) (0.66-0.85)	39.46	(15.69-79.17)	[4]	(0.33-5.00)	(0.99-1.41)	(0.71-1.04)	22	21
<7.5-MHz US	0.76	0.69	(0.25-0.99) (0.21-0.97)	93.82	(0.37-590.42)	[4]	(0.14-7.00)	(0.31-1.38)	(0.24-1.14)	12	9
FT tear											
3.0-T MRI	0.87	0.90	(0.58-0.98) (0.65-0.98)	209.97	(7.48-1001.92)	[4]	(0.20-7.00)	(1.00-1.00)	(1.00-1.00)	5	5
1.5-T MRI	0.90	0.86	(0.79-0.96) (0.76-0.93)	74.25	(21.27-185.38)	[4]	(0.20-7.00)	(0.86-1.56)	(0.82-1.34)	19	19
≥7.5-MHz US	0.89	0.87	(0.78-0.96) (0.73-0.93)	74.88	(19.86-193.84)	[4]	(0.20-7.00)	(0.85-1.54)	(0.78-1.36)	14	14
<7.5-MHz US	0.66	0.69	(0.21-0.97) (0.22-0.96)	27.19	(0.28-182.49)	[4]	(0.14-3.00)	(0.23-1.30)	(0.25-1.21)	1	1
PT tear											
3.0-T MRI	0.77	0.86	(0.53-0.91) (0.53-0.99)	125.81	(3.04-844.86)	[4]	(0.20-7.00)	(1.00-1.00)	(1.00-1.00)	5	5
1.5-T MRI	0.70	0.80	(0.58-0.80) (0.68-0.88)	10.52	(4.22-20.79)	[4]	(0.20-5.00)	(0.70-1.34)	(0.72-1.52)	15	15
≥7.5-MHz US	0.66	0.83	(0.51-0.78) (0.72-0.90)	11.07	(4.00-23.44)	[4]	(0.20-5.00)	(0.63-1.26)	(0.77-1.57)	14	14
<7.5-MHz US	0.57	0.68	(0.16-0.92) (0.23-0.96)	12.15	(0.18-71.69)	[4]	(0.14-5.00)	(0.19-1.34)	(0.26-1.50)	1	1

aData are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.

Table A6
Subgroup Analysis Based on Gold Standard (Arthroscopic Surgery)

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n			
PT tear											
3.0-T MRI	0.84	0.88	(0.68-0.93) (0.68-0.97)	73.13	(8.78-275.67)	[2]	(0.20-7.00)	(1.00-1.00)	(1.00-1.00)	10	8
1.5-T MRI	0.82	0.78	(0.71-0.89) (0.68-0.86)	18.41	(7.41-37.57)	[3]	(0.14-3.00)	(0.81-1.22)	(0.74-1.18)	17	15

(continued)
TABLE A6 (continued)

Test	Absolute Sensitivity	Absolute Specificity	Diagnostic Odds Ratio [Rank]	Superiority Index [Rank]	Relative Sensitivity	Relative Specificity	Data Sets, n	Studies, n			
≥7.5-MHz US	0.92 (0.85-0.95)	0.86 (0.77-0.92)	82.87 (30.68-173.75)	[1] 4.84 (1.00-7.00)	1.10	0.99	(0.96-1.36)	(0.84-1.29)	13	13	
<7.5-MHz US	0.63 (0.17-0.94)	0.62 (0.19-0.95)	14.26 (0.17-82.28)	[4] 0.43 (0.14-3.00)	0.75	0.71	(0.20-1.21)	(0.22-1.17)	1	1	
PT tear	3.0-T MRI	0.87 (0.59-0.98)	0.89 (0.61-0.98)	194.03 (6.27-1017.47)	[1] 3.26 (0.20-7.00)	1.00	1.00	(1.00-1.00)	(1.00-1.00)	5	5
	1.5-T MRI	0.78 (0.56-0.92)	0.81 (0.65-0.90)	20.98 (3.99-58.70)	[4] 0.53	0.91	0.92	(0.62-1.34)	(0.71-1.34)	9	9
	≥7.5-MHz US	0.92 (0.72-0.99)	0.88 (0.76-0.94)	182.00 (16.49-666.15)	[4] 3.58 (0.33-7.00)	1.07	1.01	(0.81-1.54)	(0.82-1.46)	7	7
	<7.5-MHz US	0.74 (0.25-0.99)	0.73 (0.24-0.98)	136.19 (0.47-821.28)	[3] 1.08	0.87	0.84	(0.28-1.45)	(0.27-1.32)	1	1
PT tear	3.0-T MRI	0.79 (0.58-0.91)	0.85 (0.51-1.00)	146.65 (3.13-1052.81)	[1] 3.70 (0.20-7.00)	1.00	1.00	(1.00-1.00)	(1.00-1.00)	5	5
	1.5-T MRI	0.70 (0.55-0.81)	0.77 (0.62-0.89)	9.27 (3.13-19.97)	[4] 0.72 (0.14-3.00)	0.91	0.93	(0.67-1.26)	(0.67-1.51)	12	12
	≥7.5-MHz US	0.76 (0.57-0.89)	0.91 (0.78-0.96)	44.61 (9.60-110.65)	[3] 3.64	0.98	1.10	(0.71-1.35)	(0.85-1.77)	7	7
	<7.5-MHz US	0.46 (0.08-0.87)	0.70 (0.21-0.97)	11.00 (0.09-69.49)	[4] 0.54 (0.14-3.00)	0.59	0.86	(0.10-1.18)	(0.23-1.63)	1	1

Data are reported as mean (95% CI) unless otherwise indicated. FT, full-thickness; MRI, magnetic resonance imaging; PT, partial-thickness; US, ultrasound.