Improving interpretation robustness in a tutorial dialogue system

Myroslava O. Dzikovska Elaine Farrow Johanna D. Moore

School of Informatics, University of Edinburgh
{m.dzikovska,elaine.farrow,j.moore}@ed.ac.uk
Motivation

Dialogue in Interactive Learning Environments

- Science teaching involves problem-solving and hands-on experiments
- Asking students to verbalize their reasoning can help improve learning
- Support explanation in interactive learning environments
 - Operate in a dynamically changing environment
 - Give students detailed feedback to help them construct correct explanations
 - Feedback: scripted or dynamically generated
Motivation

Dynamic Adaptive Feedback Generation

(Freedman, 2000; Clark et al., 2005; Dzikovska, 2010)

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student answer
 - Generally based on a hand-crafted parser

Problem: rule-based interpreters are brittle
Out-of-grammar utterances can cause interpretation failures
Dynamic Adaptive Feedback Generation

(Freedman, 2000; Clark et al., 2005; Dzikovska, 2010)

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student answer
 - Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer
Dynamic Adaptive Feedback Generation

(Freedman, 2000; Clark et al., 2005; Dzikovska, 2010)

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student answer
 - Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer
- Natural language generator to instantiate the strategy
 - Use the state of the environment and the information from interpretation to produce a contextualized feedback message

Problem: rule-based interpreters are brittle
Out-of-grammar utterances can cause interpretation failures
Dynamic Adaptive Feedback Generation

(Freedman, 2000; Clark et al., 2005; Dzikovska, 2010)

- Semantic interpreter
 - Detailed analyses of correct and incorrect parts of student answer
 - Generally based on a hand-crafted parser
- Tutorial planner to choose a feedback strategy
 - Prompt, hint, point out error, give away answer
- Natural language generator to instantiate the strategy
 - Use the state of the environment and the information from interpretation to produce a contextualized feedback message
- **Problem**: rule-based interpreters are brittle
 - Out-of-grammar utterances can cause interpretation failures
Outline

Approach

Experiment

Conclusions
Combining Symbolic and Statistical NLU

(Dzikovska et al, AIED 2013)

- Annotate corpus of student answers with simple accuracy labels responses
 - Correct, partially_correct_incomplete, contradictory, irrelevant, non_domain
- Labels align with common tutoring decisions
- Train a statistical classifier and combine it with the symbolic semantic interpreter
A Tutorial Dialogue System for Basic Electricity and Electronics

Exercise 3
Here is a circuit with 2 switches (Y and Z), either of which could be open or closed.

Dialogue
Tutor: Test your prediction for the fourth case, by closing both switches and observing the bulbs.
Tutor: Yes. When you're ready, go on to the next slide.
Tutor: Did the bulbs behave the way you expected?
Student: no
Tutor: Right. In the second case, you said that bulb B and bulb C would be lit. But they were off.
Tutor: Why was bulb A on when switch Y was open and switch Z was closed?
Student: It was in a closed path
Tutor: Right. Bulb A is contained in a closed path. Keep trying.
Student: I don't know
Tutor: Here's a hint. Your answer should mention a battery.
Student: The bulb got power from the battery
Tutor: Hmmmm... Here's a hint. The battery is contained in something.
Student: Bulb A and the battery were in a closed path
Tutor: That's great.
Tutor: Why was bulb C off when switch Z was open?
Student input
Architecture

Question: Why was bulb A on when switch X was open?
Student Answer: The battery was in a closed path
Reference Answer: Bulb A and the battery were contained in the same closed path
Question: Why was bulb A on when switch X was open?

Student Answer: The battery was in a closed path

Reference Answer: Bulb A and the battery were contained in the same closed path

Interpreter

Partially Correct Incomplete

- **Correct:** (Bulb B1) (Path _P1)
 - (is-closed _P1 true) (contains _P1 B1)

- **Missing:** (Battery B2) (contains _P1 B2)

- **Contradictory:** ()

Hint object: Your answer should mention a bulb

Hint relation: Bulb A was contained in something
Architecture

Question: Why was bulb A on when switch X was open?

Student Answer: The battery was in a closed path

Reference Answer: Bulb A and the battery were contained in the same closed path

Interpreter

Partially Correct Incomplete

- **Correct:** (Bulb B1) (Path P1)
 - (is-closed P1 true) (contains P1 B1)
- **Missing:** (Battery B2) (contains P1 B2)
- **Contradictory:** ()

Classifier

Partially Correct Incomplete

Hint object: Your answer should mention a bulb

Hint relation: Bulb A was contained in something

Contentless Prompt: Right. Anything else?
Question: Why was bulb A on when switch X was open?
Student Answer: The battery was in a closed path
Reference Answer: Bulb A and the battery were contained in the same closed path

Interpreter

Partially Correct Incomplete

Correct: (Bulb B1) (Path P1)
(is-closed P1 true) (contains P1 B1)

Missing: (Battery B2) (contains P1 B2)

Contradictory: ()

Hint object: Your answer should mention a bulb
Hint relation: Bulb A was contained in something

Classifier

Partially Correct Incomplete

Contentless Prompt: Right. Anything else?
Initial Evaluation

(Dzikovska et al., AIED 2013)

- Combine interpreter with classifier trained on approximately 3000 student responses
- Significant improvement in interpretation quality compared to semantic interpreter alone
- Best combination policy: use the output of the classifier only if semantic interpretation fails
Initial Evaluation

(Dzikovska et al., AIED 2013)

• Combine interpreter with classifier trained on approximately 3000 student responses
• Significant improvement in interpretation quality compared to semantic interpreter alone
• Best combination policy: use the output of the classifier only if semantic interpretation fails
• Next step: analyze non-interpretable utterance subset in more detail
Outline

Approach

Experiment

Conclusions
Distribution of labels in interpretable and non-interpretable utterances
A combination policy that uses a classifier only for interpretation failures can benefit from a classifier specific to non-interpretable utterances.
Experimental Setup

- Beetle portion of Student Response Analysis Corpus (Dzikovska et al., 2013)
 - \(\sim 3000 \) student answers to explanation questions in **BEETLE II** system
 - 36% of utterances rejected as non-interpretable
- 10-fold cross-validation
Classifiers and Combination Policies

- Classifiers: same features, different training sets
 - 20 lexical overlap and negation features
 - Sim20: trained on all data in the training folds
 - Sim20NI: trained on Non-Interpretable utterances only
Experiment

Classifiers and Combination Policies

- Classifiers: same features, different training sets
 - 20 lexical overlap and negation features
 - Sim20: trained on all data in the training folds
 - Sim20NI: trained on Non-Interpretable utterances only
- Two policies applied in case of interpretation failure
 - Best policy (in the talk): whenever interpretation fails, use the classifier result
 - Additional policy (reported in the paper): preserve some of the “non-understanding” messages
Evaluation metric: per-class and macro-averaged F_1 score

	Standalone	Interpreter + Classifier		
	Interp.	Sim20	Sim20	Sim20NI
correct	0.66	0.71	0.70	0.70
pc_incomplete	0.48	0.40	0.51	0.50
contradictory	0.27	0.45	0.47	0.51
irrelevant	0.21	0.08	0.22	0.22
non_domain	0.65	0.78	0.83	0.83
macro average	0.45	0.48	**0.55**	**0.55**
Outline

Approach

Experiment

Conclusions
Conclusions

- Investigated using a classifier to provide robustness where rule-based semantic interpretation fails
Conclusions

- Investigated using a classifier to provide robustness where rule-based semantic interpretation fails
- Utterances causing interpretation failures look different from interpretable utterances
Conclusions

- Investigated using a classifier to provide robustness where rule-based semantic interpretation fails
- Utterances causing interpretation failures look different from interpretable utterances
- The “non-interpretable” subset can be exploited to help system robustness
 - Retain the benefits of dynamic feedback generation on interpretable utterances
 - Target annotation to utterances known to be difficult for the symbolic interpreter
Future Work

- Show that the pattern we observed (contradictory utterances more problematic, can be used to train a classifier) applies to other domains
- Test classifiers with more sophisticated features
- Evaluate the combined system in user trials
Conclusions

Further Work on Understanding Student Explanations

Come see the posters from Student Response Analysis and Recognizing Textual Entailment Challenge on Saturday!