Scientific Requirement of Radio Astronomy Observation in the Philippines

R Masong¹, and R Pobre¹

¹De La Salle University, Manila; College of Science, Physics Department Optics/Photonics Technology, Instrumentation and Conservation Science (OPTICS) Research Unit Manila, National Capital Region, Philippines

Email: rizchel_masong@dlsu.edu.ph

Abstract. Planning to perform radio astronomy related observation necessarily requires a specific device known as radio telescope. These specially designed instruments observe the longest wavelengths of light, ranging from 1 millimeter to over 10 meters long. It offers various avenue of observation such as continuum observation, solar wind observation, up to spectral line observation. In archipelagic countries like Philippines, opportunities for radio astronomy observations can offer wide variety of location. That features the regions of high frequency and low frequency were identified. The researcher was able specify the characteristics of each regions as suitable site for radio observations including the types of observation to be made.

Keywords: Philippines, Radio astronomy, and Radio telescope

1. Introduction

When we started to identify the selection of the most suitable site in which where we can conduct radio astronomy observation in the Philippines. One of its primary goals is to select the best location where a radio telescope can be constructed including the bandwidth that can be observed in the locality chosen. The construction of the radio telescope can be used to improve the radio frequency coverage of different networks within the Southeast Asia. Radio frequencies within the bandwidth of 73 – 74.6 MHz, 80.5 – 82.5 MHz, and 150.05 – 153 MHz were identified that is specified for both solar and continuum observation [1]. Considerations must be clear before performing land based astronomy observations. Bandwidth identification plays a significant role; this will specify the target radio observation and will make the determined frequency set the standard and desired outcome. Also note that archipelagic, and topographic characteristics of Philippines in which can provide a wide variety of observational outcome for both high and low frequency. For high frequency observation, the site should have low water vapor contents and lower dust density; for a low frequency observation should be distant from man-made radio noise signal [2]. This study offers a brief, precise, and cost time effective way for setting the scientific requirement needed for a mentioned bandwidth for radio astronomy observation. It also gives the practically of observations for each region. For validation, measuring the RFI dimensions needed to do in order to see the classify background of interference this will verify the analysis that is provided in this study. As assumption, the region will be described depending on the criterion specified.
2. Methodology

2.1 Criterion

One of the key goals is to have a better field of view in the radio frequency spectrum within the various parts of the Philippine archipelago. Two general factors ponder in order to provide added information about the electromagnetic condition in the radio frequency spectrum. These are the geographical and anthropogenic factors [3].

2.2 Population density

The radio astronomy spectrum is increasingly polluted by intentional and unintentional human generated Radio Frequency Interference (RFI). This RFI is primarily produced by urban activity in dense residential and commercial areas. Contrarily, on rural areas one need to take into account the absorption, reflection, and scattering of radio energy around objects such as trees and other plants, and their impact in the various directions near the receiving antenna of telecommunication link. It is important to quantify the effects of these RFIs on the radio astronomy spectrum [4].

2.3 Climate Type

Climate type is one of important variable to radio propagation and must be considered. It will affect penetration of radio wave propagation where the water occupied in atmosphere will reflect or refract attenuate as well as the signal penetration in the atmosphere. We must consider a dry place in Philippines [5].

2.4 Altitude

Radio astronomy uses specified radio spectrum to recognize different emissions from sources outside the earth and the others signal known as Radio Frequency Interference (RFI). It is an essential issue to address in order to characterize a type radio astronomy observation. Different altitude of observation for example will have an effect on RFI level or noise environment to radio observation.

2.5 Atmospheric Conditions

The atmosphere is transparent or partially transparent within the radio wave range from about 15 m – 1 mm, or 200 m – 1 mm in terms of its wavelength. The density of molecules in the atmosphere could absorb, scatter, reflect, and penetrate radio signals that will lead to the reduction of signal’s amplitude. This is through the analysis of amount of rainfall.

2.6 Topography

In locating an observatory and avoid spectrum pollution most of radio observatories are often placed in valleys to further shield them from ground interference. So that altitude is a one factor in the site selection of radio astronomy observatory. Isolated land form can also be used for radio astronomy observatory.

2.7 Site Selection

Luzon Island has an area of 109,964.9 km². Regions in Luzon were primarily selected in order to determine what suitable radio observation can be performed within the northern part of the Philippine archipelago over each region with features different feasible characteristics [6].

3. Result and Discussion

Each parameters specified on Table 1 are important factors in conducting a radio astronomy observation on or before determining the frequency bandwidth. These are the altitude, population density, climate type, atmospheric conditions, and topography. Stated parameters are vital in order to associate the radio
signal that can be detected in a particular area of interest. This will unlock the radio windows to be observed.

Table 1. Regions in Luzon and its Characteristics

Region	Altitude (Highest point)	Population Density (persons per km²)	Climate Type	Atmospheric Conditions (amount of rainfall per year in mm)	Topography
Ilocos Region	1,154 m	388	I	2000 - 2750	At east composed of mountain ranges, at west composed of seas
Cagayan Valley	1,850 m	116	IV	1700 - 3000	At east seas and oceans, and at west composed of mountain ranges
Central Luzon	1,252 m	512	I, III	1800 - 3800	Marked by an extensive central plain surrounded by three mountain ranges
CALABARZON	2,328 m	870	I, II	1550 - 3500	Marked by scattered mountains, hills, plains, and mixtures of valleys
MIMAROPA	2,133.6 m	100	II, IV	1550 - 3500	Mostly composed of islands and islets
Bicol	2,462 m	320	II, III, IV	1450 - 3750	Marked by a peninsula and surrounded by seas
CAR	2,922 m	87	I	2500 - 3600	Composed of mountain ranges
NCR	127 m	20,875	III	1800 - 3800	Marked with coastal margin, plateau, and valley
Table 2. Essential RFI Characteristics for each region

Region	Essential Characteristics	Advantage	Disadvantage
Ilocos Region	Advisable for low and high frequency observation	Observations can only be made from	
		November to April	
Cagayan Valley	Advisable for low and high frequency observation	Inaccessibility of possible locations for observations	
Central Luzon	Not advisable for radio observation		
CALABARZON	Advisable for low frequency observation	The region has the most number of total rainfall	
MIMAROPA	Advisable for low frequency observation	Inaccessibility of possible locations for observations	
Bicol	Not advisable to conduct radio observation		
CAR	Advisable for low frequency observation		
NCR	Not advisable to conduct radio observation		

Advantages and disadvantages as specified in Table 2 describe the essential RFI characteristics for each regions. The primary classifications of the characteristics for advantages are specified as (1) low population density; (2) Climate type which is IV; (3) Altitude, and topography, which naturally isolates manmade radio noise; (4) atmospheric conditions that requires low amount of rainfall per year with the disadvantages. The classification of low frequency and high frequency observation. Regions suitable for low frequency observations are Ilocos, Cagayan, CALABARZON MIMAROPA, and CAR. On the other hand, for high frequency observation, Cagayan is suitable by having a low water vapor contents.

4. Conclusion
The parameters has been chosed and comparing it with other region. Majority of regions in Luzon were identified as a suitable location to conduct radio astronomy observation. The advantages and disadvantages showed the essential RFI characteristics of each region for suitable radio astronomy observation. This determines that Luzon is appropriate for low frequency and high frequency observation. This is also vital in determining the best place to construct radio telescope.

Acknowledgments
My deepest gratitude comes first to Dr. Romeric F. Pobre, my adviser for graduate school thesis who provided his upmost support for me to pursue my research interest and enabled me to finish this one. To Dr. Rogel Mari Sese and Dr. Reinabelle Reyes, they were the persons who inspired me to push astronomy research career and this paper together with other aspect of consultancy in both research and contextualization. My appreciation also extends to my laboratory colleagues, Francis, Ric Jioh, Froilan, Paul, and the rest of the OPTICS research group who suggested some ideas and methods on how I should tackle each part of my research. To my friends, who provided enough criticism in improving my paper Sir Alden, Marvin, Wilson, John, Marlon. I would also like to thank my institution De La Salle University for funding my travel in this presentation including the support of DLSU-OPTICS, and DOST-SEI as well for my scholarship! Appreciation comes with financial and administrative support. I really love these institutions. Above ground, I am indebted to my family, whose value to me only grows with age. And finally, I acknowledge my partner, Juri, who stayed with me and provided enough sunshine when I’m alone staying in the dark – who serves coffee during my overnight research writing.
References

[1] European Science Foundation; Committee on Radio Astronomy Frequencies (n.d.), retrieved from https://www.britastro.org/radio/spectrum.html.

[2] Cheng, J., 2009. New York, NY, USA: Springer.

[3] Umar, R., 2014. Doctoral dissertation, University of Malaya.

[4] Philippine Statistics Association Population Density 2015, from https://psa.gov.ph/content/philippine-population-density-based-2015-census-population.

[5] Philippine Atmospheric Geophysical Astronomical Services Association, from https://pubfiles.pagasa.dos.gov.ph/climps/climate forum/climateoutlook.pdf

[6] NAMRIA Topographic Map, (2003) from DENR-NAMRIA