ON COHOMOLGICALLY COMPLETE INTERSECTIONS IN COHEN-MACaulay RINGS

WAQAS MAHMOOD

ABSTRACT. An ideal I of a local Cohen-Macaulay ring (R, \mathfrak{m}) is called a cohomologically complete intersection if $H^i_I(R) = 0$ for all $i \neq c := \text{height}(I)$. Here $H^i_I(R)$, $i \in \mathbb{Z}$ denotes the local cohomology of R with respect to I. For instance, a set-theoretic complete intersection is a cohomologically complete intersection. Here we study cohomologically complete intersections from various homological points of view. As a main result it is shown that the vanishing $H^i_I(M) = 0$ for all $i \neq c$ is completely encoded in homological properties of $H^c_I(M)$. These results extend those of Hellus and Schenzel (see [13, Theorem 0.1]) shown in the case of a local Gorenstein ring. In particular we get a characterization of cohomologically complete intersections in a Cohen-Macaulay ring in terms of the canonical module.

1. Introduction

Let (R, \mathfrak{m}) denote a local Noetherian ring. For an ideal $I \subset R$ it is a rather difficult question to determine the smallest number $n \in \mathbb{N}$ of elements $a_1, \ldots, a_n \in R$ such that $\text{Rad}(I) = \text{Rad}(a_1, \ldots, a_n)R$. This number is called the arithmetic rank, $\text{ara}(I)$, of I. By Krull’s generalized principal ideal theorem it follows that $\text{ara}(I) \geq \text{height}(I)$. Of a particular interest is the case whenever $\text{ara}(I) = \text{height}(I)$. If this equality holds then I is called a set-theoretic complete intersection.

For the ideal I let $H^i_I(\cdot), i \in \mathbb{Z}$, denote the local cohomology functor with respect to I, see [6] for its definition and basic results. The cohomological dimension, $\text{cd}(I)$, defined by

$$\text{cd}(I) = \sup\{i \in \mathbb{Z} | H^i_I(R) \neq 0\}$$

is another invariant related to the ideal I. It is well known that

$$\text{grade } I \leq \text{height}(I) \leq \text{cd}(I) \leq \text{ara } I.$$

In particular, if I is a set-theoretically complete intersection it follows that $\text{height}(I) = \text{cd}(I)$. The converse does not hold in general (see [12, Remark 2.1(ii)]). Not so much is known about ideals with the property of grade $I = \text{cd}(I)$. We call those ideals cohomologically complete intersections. In this paper we continue with the investigations of cohomologically complete intersections, in particular when I is an ideal in a Cohen-Macaulay ring (R, \mathfrak{m}). In this case I is a cohomologically complete intersection if $\text{height}(I) = \text{cd}(I)$.

As an application of our main results there is a characterization of cohomologically complete intersections. In fact, this provides a large number of necessary conditions for an ideal to be a set-theoretic complete intersection in a local Cohen-Macaulay ring.

2000 Mathematics Subject Classification. 13D45.

Key words and phrases. Local cohomology, Cohomologically complete intersection, Local duality.

This research was partially supported by Higher Education Commission, Pakistan.
Theorem 1.1. Let \((R, \mathfrak{m})\) be a ring of dimension \(n\), \(I \subseteq R\) be an ideal of grade\((I, M) = c\), and \(M \neq 0\) be a maximal Cohen-Macaulay module with \(\text{id}_R(M) < \infty\). Then the following conditions are equivalent:

(a) \(H^i_I(M) = 0\) for all \(i \neq c\).

(b) For all \(p \in V(I) \cap \text{Supp}_R(M)\) the natural homomorphism

\[
H^h_{pR_p}(H^c_{IR_p}(M_p)) \rightarrow H^\text{dim}(M_p)_{pR_p}(M_p)
\]

is an isomorphism and \(H^i_{pR_p}(H^c_{IR_p}(M_p)) = 0\) for all \(i \neq h(p) = \dim(M_p) - c\).

(c) For all \(p \in V(I) \cap \text{Supp}_R(M)\) the natural homomorphism

\[
\text{Ext}^h_{R_p}(k(p), H^c_{IR_p}(M_p)) \rightarrow \text{Ext}^{\text{dim}(M_p)}_{R_p}(k(p), M_p)
\]

is an isomorphism and \(\text{Ext}^i_{R_p}(k(p), H^c_{IR_p}(M_p)) = 0\) for all \(i \neq h(p) = \dim(M_p) - c\).

(d) For all \(p \in V(I) \cap \text{Supp}_R(M)\) the natural homomorphism

\[
K(M_p) \rightarrow \text{Ext}^c_{R_p}(H^c_{IR_p}(M_p), K(R_p))
\]

is an isomorphism and \(\text{Ext}^i_{R_p}(H^c_{IR_p}(M_p), K(R_p)) = 0\) for all \(i \neq h(p) = \dim(M_p) - c\).

(e) \(H^i_I(R) = 0\) for all \(i \neq c\), that is \(I\) is a cohomologically complete intersection.

Note that the natural homomorphisms, in (b), (c), and (d) of the above Theorem, can be constructed by truncation complex (see Definition 4.1 and Theorem 4.2). Moreover \(K(M_p)\) denotes the canonical module of \(M_p\), see [18] for its definition and basic properties.

In the case of \(M = R\) a local Gorenstein ring the equivalence of the conditions (a), (b), (c), (d) was shown by Hellus and Schenzel as the main result of their paper (see [13, Theorem 0.1]). The new point of view here is the generalization to any maximal Cohen-Macaulay module of finite injective dimension. This implies a large bunch of new necessary conditions for an ideal to become set-theoretically a complete intersection.

As a byproduct of our investigations there is another characterization of a Cohen-Macaulay ring. H. Bass conjectured in his paper (see [1]) that if a Noetherian local ring \((R, \mathfrak{m})\) possesses a non-zero finitely generated \(R\)-module \(M\) such that its injective dimension \(\text{id}_R(M)\) is finite then \(R\) is Cohen-Macaulay ring. This was proved by M. Hochster (see [14]) in the equicharacteristic case and finally by P. Roberts (see [16]). We add here the following characterization of a local Cohen-Macaulay ring.

Theorem 1.2. Let \((R, \mathfrak{m})\) be a Noetherian local ring, \(I\) be an ideal of \(R\), and \(M \neq 0\) be a finitely generated \(R\)-module. Suppose that \(H^i_I(M) = 0\) for all \(i \neq c = \text{grade}(I, M)\), then the following are equivalent:

1. \(\text{id}_R(M) < \infty\).
2. \(\text{id}_R(H^c_I(M)) < \infty\).

If one of the equivalent conditions is satisfied then \(R\) is a Cohen-Macaulay ring.

Note that Zargar and Zakeri define a relative Cohen-Macaulay \(R\)-module \(M \neq 0\) with respect to the ideal \(I \subseteq R\) which is actually equivalent to the fact that \(H^i_I(M) = 0\) for all \(i \neq c = \text{grade}(I, M)\). They have shown that if \(M\) is a relative Cohen-Macaulay \(R\)-module with respect to \(I\), then \(\text{id}_R(H^c_I(M)) = \text{id}_R(M) - c\) (see [22, Theorem 2.6]).
Moreover recently in [23, Theorem 2.9] Zargar has proved the above Theorem 4.9 in case of M a maximal Cohen-Macaulay R-module which is relative Cohen-Macaulay in $\text{Supp}_R(M/aM) \setminus \{m\}$.

The paper is organized as follows. In the Section 2 we recall a few preliminaries used in the sequel of the paper. In Section 3 we make a comment to the Local Duality for a Cohen-Macaulay ring. In Section 4 we describe the truncation complex as it was introduced by Hellus and Schenzel (see [13, Definition 2.1]) and use it for the proofs of our main results. In Section 5 we conclude with a few applications.

2. Preliminaries

In this section we will fix the notation of the paper and summarize a few preliminaries and auxiliary results. We always assume that (R, \mathfrak{m}) is a local commutative Noetherian ring with \mathfrak{m} as a maximal ideal and $k = R/\mathfrak{m}$ denotes the residue field. Furthermore $E = E_R(k)$ denotes the injective hull of k.

Let $I \subseteq R$ be an ideal of R. For an R-module M let $H_i^I(M)$, $i \in \mathbb{Z}$ denote the local cohomology modules of M with respect to I (see [6] for its definition). We define the grade and the cohomological dimension

$$\text{grade}(I, M) = \inf \{i \in \mathbb{Z} : H_i^I(M) \neq 0\} \quad \text{and} \quad \text{cd}(I, M) = \sup \{i \in \mathbb{Z} : H_i^I(M) \neq 0\}.$$

For a finitely generated R-module M this notion of grade coincides with the usual one on the maximal length of an M-regular sequence contained in I. For any R-module X, $\text{id}_R(X)$ stands for the injective dimension of X.

Moreover, we define $\text{height}_M(I) = \text{height}_R(I/\text{Ann}_R M)$. Then $\text{grade}(I, M) \leq \text{height}_M(I) \leq \text{cd}(I, M)$. In the case of $M = R$ in addition it follows that $\text{height} I \leq \text{ara} I \leq \text{cd} I$.

Furthermore for a Cohen-Macaulay R-module M it turns out that $\text{height}_M(I) = \dim M - \dim M/IM$ for any ideal $I \subseteq R$. For a Cohen-Macaulay R-module M it is clear that $\text{height}_M(I) = \text{grade}(I, M)$.

Remark 2.1. Let $\underline{x} = x_1, \ldots, x_r \in I$ denote a system of elements of R such that $\text{Rad} I = \text{Rad}(\underline{x})R$. We consider the Čech complex $\check{C}_{\underline{x}}$ of \underline{x} with respect to $\underline{x} = x_1, \ldots, x_r$. That is

$$\check{C}_{\underline{x}} = \bigoplus_i \check{C}_{x_i},$$

where \check{C}_{x_i} is the complex $0 \rightarrow R \rightarrow R_{x_i} \rightarrow 0$. Then $\check{C}_{\underline{x}}$ has the following form

$$0 \rightarrow R \rightarrow \bigoplus_{i=1}^r R_{x_i} \rightarrow \ldots \rightarrow R_{x_1 x_2 \ldots x_r} \rightarrow 0.$$

By $\check{D}_{\underline{x}}$ we denote the truncation of $\check{C}_{\underline{x}}$ by R. That is, we have $\check{D}_{\underline{x}}^i = \check{C}_{\underline{x}}^i$ for all $i \neq 0$ and $\check{D}_{\underline{x}}^0 = 0$.

So there is a short exact sequence of complexes of flat R-modules

$$0 \rightarrow \check{D}_{\underline{x}} \rightarrow \check{C}_{\underline{x}} \rightarrow R \rightarrow 0,$$

where $\check{C}_{\underline{x}} \rightarrow R$ is the identity in homological degree zero.

For an arbitrary complex of R-module X it follows (see [19, Theorem 1.1]) that

$$H^i(\check{C}_{\underline{x}} \otimes_R X) \cong H_i^I(X)$$

for all $i \in \mathbb{Z}$.
Now let us summarize a few well-known facts about grade and local cohomology. For basic notions on grade as well as other notions of commutative algebra we refer to Matsumura’s textbook (see [13]). For the facts on homological algebra needed in this paper see [21]. Also we denote \(\check{R} \) for the completion of \(R \) with respect to the maximal ideal.

Proposition 2.2. For finitely generated \(R \)-modules \(M, N \) and \(I \subseteq R \) be an ideal we have

(a) \(\text{grade}(I, M) = \inf \{ \text{depth}(M_p) : p \in \text{Supp}_R(M) \cap V(I) \} \).

(b) Suppose that \(\text{Supp}_R(N) \subseteq \text{Supp}_R(M) \), then \(\text{cd}(I, N) \leq \text{cd}(I, M) \).

In particular \(\text{cd}(I, M) \leq \text{cd}(I) \).

Proof. The statement (a) is shown in [3, Proposition 1.2.10]. For the proof of (b) we refer to [4, Theorem 2.2]. \(\square \)

In the context of our paper we are interested in Cohen-Macaulay rings and modules. A non-zero finitely generated \(R \)-module \(M \) is called maximal Cohen-Macaulay module if \(\text{depth}(M) = \text{dim}(R) \).

Proposition 2.3. Let \((R, \mathfrak{m})\) be a Cohen-Macaulay ring of dimension \(n \) and \(I \subseteq R \) be an ideal. For a maximal Cohen-Macaulay module \(M \neq 0 \) we consider the following conditions:

(a) \(\text{grade}(I) = \text{cd}(I) \) and

(b) \(\text{grade}(I, M) = \text{cd}(I, M) \).

Then (a) implies (b), while the converse is also true provided that \(\text{Supp}_R(M) = \text{Spec}(R) \).

Proof. Let \(p \in \text{Supp}_R(M) \). Because of \(\text{depth}(M_p) = \text{depth}(R_p) = \text{dim}(R_p) \) (recall that \(M \) is maximal Cohen-Macaulay module) it follows that

\[
\text{grade}(I) \leq \text{grade}(I, M) \leq \text{cd}(I, M) \leq \text{cd}(I)
\]

So (a) implies (b). If \(\text{Supp}_R(M) = \text{Spec}(R) \) we have that \(\text{grade}(I) = \text{grade}(I, M) \) and \(\text{cd}(I, M) = \text{cd}(I) \) (see Proposition 2.2) and the converse holds also. \(\square \)

Notation 2.4. As usual we use the symbol “\(\cong \)” in order to denote an isomorphism of modules. In contrast to that we use the symbol “\(\sim \)” in the following context:

Let \(X \to Y \) be a morphism of complexes such that it induces an isomorphism in cohomologies, i.e. a quasi-isomorphism. Then we write \(X \sim Y \). That is “\(\sim \)” indicates that there is a morphism of complexes in the right direction.

Moreover if \(X \sim Y \) is a quasi-isomorphism and \(F^*_R \) is a complex of flat \(R \)-modules bounded above. Then it induces a quasi-isomorphism \(F^*_R \otimes_R X \sim F^*_R \otimes_R Y \). Similar results are true for \(\text{Hom}_R(., E^*_R) \) respectively \(\text{Hom}_R(P^*_R.,.) \) for \(E^*_R \) a bounded below complex of injective \(R \)-modules respectively \(P^*_R \) a bounded above complex of projective \(R \)-modules. For details we refer to [7]. This is the only fact we need of the theory of derived functors.

Lemma 2.5. Let \((R, \mathfrak{m})\) be a ring of dimension \(n \). Let \(X \) be a complex of \(R \)-modules such that \(\text{Supp}_R(H^i(X)) \subseteq V(\mathfrak{m}) \) for all \(i \in \mathbb{Z} \). Then \(H^i_{\mathfrak{m}}(X) \cong H^i(X) \) for all \(i \in \mathbb{Z} \).

Proof. Let \(\underline{x} = x_1, \ldots, x_n \in \mathfrak{m} \) denote a system of parameters of \(R \). Then we have the following short exact sequence of complexes of flat \(R \)-modules

\[
0 \to \check{D}_{\underline{x}} \to \check{C}_{\underline{x}} \to R \to 0.
\]
Apply the functor \(\cdot \otimes_R X \) to this sequence and we get the following long exact sequence of cohomology modules
\[
\cdots \rightarrow H^i(\check{D}_\omega \otimes_R X) \rightarrow H^i_m(X) \rightarrow H^i(X) \rightarrow \cdots
\]
Now we claim that \(\check{D}_\omega \otimes_R X \) is an exact complex. This follows because
\[
\oplus_j H^i(R_{x_j} \otimes_R X) \cong \oplus_j R_{x_j} \otimes_R H^i(X) = 0
\]
This is true since \(\text{Supp} R(H^i(X)) \subseteq V(\mathfrak{m}) \) and cohomology commutes with exact functors. So it proves that \(H^i(X) \cong H^i_m(X) \) for all \(i \in \mathbb{Z} \), as required.

In the following we need a result that was originally proved by Hellus and Schenzel (see [13, Proposition 1.4]) by a spectral sequence. Here we will give an elementary proof without using spectral sequences.

Proposition 2.6. Let \((R, \mathfrak{m}) \) be a local ring. Let \(X \) be an arbitrary \(R \)-module. Then for any integer \(s \in \mathbb{N} \) the following conditions are equivalent:

1. \(H^i_m(X) = 0 \) for all \(i < s \).
2. \(\text{Ext}^i_R(k, X) = 0 \) for all \(i < s \).

If one of the above conditions holds, then there is an isomorphism
\[
\text{Hom}_R(k, H^s_m(X)) \cong \text{Ext}^s_R(k, X).
\]

Proof. We prove the statement by an induction on \(s \). First let us consider that \(s = 0 \). Because of \(\text{Supp}(k) = \{ \mathfrak{m} \} = V(\mathfrak{m}) \) the injection \(\Gamma_m(X) \subseteq X \) induces an isomorphism
\[
\text{Hom}_R(k, \Gamma_m(X)) \cong \text{Hom}_R(k, X).
\]
Because of \(\text{Supp}(\Gamma_m(X)) \subseteq V(\mathfrak{m}) \) it follows that \(\Gamma_m(X) = 0 \) if and only if \(\text{Hom}_R(k, \Gamma_m(X)) = 0 \) which proves the claim for \(s = 0 \).

Now consider \(s + 1 \) and assume that the statement is true for all \(i \leq s \). Since \(\text{Supp}(H^i_m(X)) \subseteq V(\mathfrak{m}) \) it follows that the equivalence of the vanishing of \(H^i_m(X) \) and \(\text{Ext}^i_R(k, X) \) for all \(i \leq s \).

So it remains to prove that
\[
\text{Hom}_R(k, H^{s+1}_m(X)) \cong \text{Ext}^{s+1}_R(k, X)
\]
To this end let \(E^*_R(X) \) be a minimal injective resolution of \(X \), then
\[
\text{Hom}_R(k, (E^*_R(X))^i) = 0
\]
for all \(i \leq s \). That is we have the following exact sequence
\[
0 \rightarrow H^{s+1}_m(X) \rightarrow \Gamma_m(E^*_R(X))^{s+1} \rightarrow \Gamma_m(E^*_R(X))^{s+2}
\]
Because of \(\text{Hom}_R(k, E^*_R(X)) \cong \text{Hom}_R(k, \Gamma_m(E^*_R(X))) \) it follows that \(\text{Ext}^{s+1}_R(k, X) \cong \text{Hom}_R(k, H^{s+1}_m(X)) \). \qed

Proposition 2.7. Let \((R, \mathfrak{m}) \) be a local ring and \(M \neq 0 \) be a finitely generated \(R \)-module. Let \(I \subseteq R \) be an ideal of \(R \) with \(H^1_I(M) = 0 \) for all \(i \neq c \) and \(H^c_I(M) \neq 0 \). Then \(c = \text{grade}(IR_p, M_p) \) for all \(p \in V(I) \cap \text{Supp}_R M \). If \(M \) is in addition a Cohen-Macaulay module then \(c = \text{height}_{M_p} IR_p \) for all \(p \in V(I) \cap \text{Supp}_R M \).
Proof. Since $c = \text{grade}(I, M) \leq \text{grade}(IR_p, M_p)$ for all $p \in V(I) \cap \text{Supp}_R M$. Suppose that there is a prime ideal $p \in V(I) \cap \text{Supp}_R M$ such that $\text{grade}(IR_p, M_p) = h > c$. Then

$$0 \neq H^h_{IR_p}(M_p) \cong H^h_{IR_p}(M \otimes_R R_p) \cong H^h_I(M) \otimes_R R_p.$$

But it implies that $H^h_I(M) \neq 0$, $h > c$, which is a contradiction to our assumption. \qed

In case of a not necessarily finitely generated R-module X we put $\dim X = \dim \text{Supp}_R X$. Note that this agrees with the usual notion $\dim X = \dim R/\text{Ann}_RX$ if X is finitely generated.

3. Local Duality Theorem for a Cohen-Macaulay ring

We want to prove a variation of the Local Duality Theorem for a Cohen-Macaulay ring. Let (R, \mathfrak{m}) denote a local ring which is the factor ring of a local Gorenstein ring (S, \mathfrak{n}) with $\dim(S) = t$. Let N be a finitely generated R-module. Then by the Local Duality Theorem there is an isomorphism

$$H^i_m(N) \cong \text{Hom}_R(\text{Ext}_{S}^{t-i}(N, S), E)$$

for all $i \in \mathbb{N}$ (see [3]). Under these circumstances we define

$$K(N) := \text{Ext}_{S}^{t-r}(N, S), \dim(N) = r$$

as the canonical module of N. It was introduced by Schenzel (see [13]) as the generalization of the canonical module of a ring (see e.g. [3]).

For our purposes here we need an extension of the Local Duality of a local Gorenstein ring to a local Cohen-Macaulay ring which is valid also for modules that are not necessarily finitely generated. A more general result of Lemma 3.1 was proved by Hellus (see [11, Theorem 6.4.1]). We include here a proof of the particular case for sake of completeness.

Lemma 3.1. (Local Duality) Let (R, \mathfrak{m}) be a Cohen-Macaulay ring of dimension n. Let M be an arbitrary R-module. Then there are functorial isomorphisms

$$\text{Hom}_R(H^n_m(M), E) \cong \text{Ext}_R^{n-i}(M, K(\hat{R}))$$

for all $i \in \mathbb{N}$.

Proof. By Cohen’s Structure Theorem any complete local ring (R, \mathfrak{m}) is a homomorphic image of a regular local ring and - in particular - of local Gorenstein ring. Let \hat{R} be the homomorphic image of a local Gorenstein ring (S, \mathfrak{n}) with $\dim(S) = t$. Then $H^n_m(R) \cong H^n_{m\hat{R}}(\hat{R})$ because any R-module X with support contained in $V(\mathfrak{m})$ admits the structure of an \hat{R}-module such that $X \cong X \otimes_R \hat{R}$. Then by the Local Duality Theorem for Gorenstein rings (see [3]) there is an isomorphism $\text{Hom}_R(H^n_m(R), E) \cong \text{Ext}_{S}^{t-n}(\hat{R}, S)$.

For a system of parameters $\underline{x} = x_1, \ldots, x_n$ let $\check{C}_\underline{x}$ denote the Čech complex with respect to \underline{x}. Because R is a Cohen-Macaulay ring $H^i_\underline{x}(\hat{R}) \cong H^i(\check{C}_\underline{x}) = 0$ for all $i \neq n$. That is, $\check{C}_\underline{x}$ is a flat resolution of $H^n_\underline{x}(\hat{R})[-n]$. Therefore

$$\text{Tor}_{n-i}^R(M, H^n_m(R)) \cong H^i(\check{C}_\underline{x} \otimes_R M) \cong H^i_m(M)$$
for all \(i \in \mathbb{Z} \) and an arbitrary \(R \)-module \(M \). Now we take the Matlis dual \(\text{Hom}_R(\cdot, E) \) of this isomorphism and get

\[
\text{Hom}_R(H^i_m(M), E) \cong \text{Ext}^{n-i}_R(M, K(\hat{R}))
\]
as it is easily seen by the adjunction isomorphism. \(\Box \)

Note that the above version of the Local Duality holds for an arbitrary \(R \)-module \(M \). That is what we need in the sequel.

Corollary 3.2. Let \((R, \mathfrak{m})\) denote a Cohen-Macaulay ring of dimension \(n \). Let \(I \subseteq R \) be an ideal with \(\text{grade}(I, M) = c \) for an \(R \)-module \(M \). Then there are isomorphisms

\[
\text{Ext}^{n-i}_R(H^i_I(M), K(\hat{R})) \cong \lim_{\rightarrow} \text{Ext}^{n-i}_R(\text{Ext}_R^c(R/I^r, M), K(\hat{R}))
\]
for all \(i \in \mathbb{N} \).

Proof. By Local Duality (Lemma \ref{lem:local_duality}), we have the following isomorphisms

\[
\text{Ext}^{n-i}_R(H^i_I(M), K(\hat{R})) \cong \text{Hom}_R(H^i_m(H^i_I(M)), E)
\]
for all \(i \in \mathbb{Z} \). The module on the right side is isomorphic to

\[
\text{Hom}_R(\lim_{\rightarrow} H^i_m(\text{Ext}_R^c(R/I^r, M)), E)
\]
since \(H^i_I(M) \cong \lim_{\rightarrow} \text{Ext}_R^c(R/I^r, M) \) and because the local cohomology commutes with direct limits. Finally

\[
\text{Ext}^{n-i}_R(H^i_I(M), K(\hat{R})) \cong \lim_{\rightarrow} \text{Hom}_R(H^i_m(\text{Ext}_R^c(R/I^r, M)), E)
\]
since the Hom-functor in the first variable transforms a direct system into an inverse system, see [20, Proposition 6.4.6]. Then the claim follows since

\[
\text{Hom}_R(H^i_m(\text{Ext}_R^c(R/I^r, M)), E) \cong \text{Ext}^{n-i}_R(\text{Ext}_R^c(R/I^r, M), K(\hat{R}))
\]
as it is true again by Local Duality (see Lemma \ref{lem:local_duality}). \(\Box \)

4. The Truncation Complex

Let \((R, \mathfrak{m})\) be a local ring of dimension \(n \). Let \(M \neq 0 \) denote a finitely generated \(R \)-module and \(\text{dim} \ M = n \). Let \(I \subseteq R \) be an ideal of \(R \) with \(\text{grade}(I, M) = c \). Suppose that \(E^c_R(M) \) is a minimal injective resolution of \(M \). Then it follows from (Matlis [14] or Gabriel [5]) that

\[
E^c_R(M) \cong \bigoplus_{p \in \text{Supp} \ M} E_R(R/\mathfrak{p})^{\mu_i(p, M)},
\]
where \(\mu_i(p, M) = \text{dim}_{k(\mathfrak{p})}(\text{Ext}^r_{R/\mathfrak{p}}(k(\mathfrak{p}), M_\mathfrak{p})) \). We get \(\Gamma_I(E_R(R/\mathfrak{p})) = 0 \) for all \(\mathfrak{p} \notin V(I) \) and \(\Gamma_I(E_R(R/\mathfrak{p})) = E_R(R/\mathfrak{p}) \) for all \(\mathfrak{p} \in V(I) \). Moreover \(\mu_i(p, M) = 0 \) for all \(i < c \) since \(\text{grade}(I, M) = c \). Whence for all \(i < c \) it follows that

\[
\Gamma_I(E_R(M))^{\mathfrak{p}} \cong \bigoplus_{\mathfrak{p} \in V(I) \cap \text{Supp} \ M} \Gamma_I(E_R(R/\mathfrak{p}))^{\mu_i(p, M)} = 0.
\]
Therefore \(H^i_I(M) \) is isomorphic to the kernel of \(\Gamma_I(E_R(M))^c \rightarrow \Gamma_I(E_R(M))^{c+1} \). Whence there is an embedding of complexes of \(R \)-modules \(H^i_I(M)[-c] \rightarrow \Gamma_I(E^c_R(M))$.

Definition 4.1. Let $C_M(I)$ be the cokernel of the above embedding. It is called the truncation complex. So there is a short exact sequence of complexes of R-modules

$$0 \to H^i_I(M)[-c] \to \Gamma_I(E_R(M)) \to C_M(I) \to 0.$$

In particular it follows that $H^i(C_M(I)) = 0$ for all $i \leq c$ or $i > n$ and $H^i(C_M(I)) \cong H^i_I(M)$ for all $c < i \leq n$.

The advantage of the truncation complex is that it separates the information of cohomology modules of $H^i_I(M)$ for $i = c$ from those with $i \neq c$.

Theorem 4.2. Fix the previous notation. Let M be a maximal Cohen-Macaulay module with $\dim M/IM = d$. We put $c = \dim M - \dim M/IM = \text{grade}(I, M)$. Then we have the following results:

(a) There are an exact sequence

$$0 \to H_{m}^{n-1}(C_M(I)) \to H_{m}^{d}(H_{I}^{c}(M)) \to H_{m}^{n}(M) \to H_{m}^{n}(C_M(I)) \to 0$$

and isomorphisms $H_{m}^{n-1}(C_M(I)) \cong H_{m}^{i-c}(H_{I}^{i}(M))$ for all $i \neq n, n + 1$.

(b) There are an exact sequence

$$0 \to \text{Ext}^{n-1}_R(k, C_M(I)) \to \text{Ext}^{d}_R(k, H_{I}^{c}(M)) \to \text{Ext}^{n}_R(k, M) \to \text{Ext}^{n}_R(k, C_M(I))$$

and isomorphisms $\text{Ext}^{i-c}_R(k, H_{I}^{c}(M)) \cong \text{Ext}^{i-1}_R(k, C_M(I))$ for all $i < n$.

(c) Assume in addition that R is a Cohen-Macaulay ring. There are an exact sequence

$$0 \to \text{Ext}^{0}_R(C_M(I), K(\hat{R})) \to K(\hat{M}) \to \text{Ext}^{1}_R(H_{I}^{c}(M), K(\hat{R})) \to \text{Ext}^{1}_R(C_M(I), K(\hat{R})) \to 0$$

and isomorphisms $\text{Ext}^{i+c}_R(H_{I}^{c}(M), K(\hat{R})) \cong \text{Ext}^{i+1}_R(C_M(I), K(\hat{R}))$ for all $i > 0$.

Proof. (a) Let $x = x_1, \ldots, x_n \in m$ denote a system of parameters of R. We tensor the short exact sequence of the truncation complex by the Čech complex \check{C}_x. Then the resulting sequence of complexes remains exact because \check{C}_x is a complex of flat R-modules. That is, there is the following short exact sequence of complexes of R-modules

$$0 \to \check{C}_x \otimes_R H^i_I(M)[-c] \to \check{C}_x \otimes_R \Gamma_I(E_R(M)) \to \check{C}_x \otimes_R C_M(I) \to 0.$$

Now we look at the cohomology of the complex in the middle. Since $\Gamma_I(E_R(M))$ is a complex of injective R-modules the natural morphism

$$\Gamma_m(E_R(M)) \cong \Gamma_m(\Gamma_I(E_R(M))) \to \check{C}_x \otimes_R \Gamma_I(E_R(M))$$

induces an isomorphism in cohomology (see [19, Theorem 1.1]). Because M is a maximal Cohen-Macaulay R-module the only non-vanishing local cohomology module is $H_{m}^{n}(M)$. So the result follows from the long exact cohomology sequence.

(b) Let $F_R(k)$ be a free resolution of k. Apply the functor $\text{Hom}_R(F_R(k),.)$ to the short exact sequence of the truncation complex. Then it induces the following short exact sequences of complexes of R-modules

$$0 \to \text{Hom}_R(F_R(k), H^i_I(M)[-c] \to \text{Hom}_R(F_R(k), \Gamma_I(E_R(M))) \to \text{Hom}_R(F_R(k), C_M(I)) \to 0.$$
Now \(\text{Hom}_R(F^*_R(k), \Gamma_I(E^*_R(M))) \to \Gamma_I(\text{Hom}_R(F^*_R(k), E^*_R(M))) \) since \(F^*_R(k) \) is a right bounded complex of finitely generated free \(R \)-modules. Since any \(R \)-module of the complex \(\text{Hom}_R(F^*_R(k), E^*_R(M)) \) is injective. By [19, Theorem 1.1] it implies that the complex \(\Gamma_I(\text{Hom}_R(F^*_R(k), E^*_R(M))) \) is quasi-isomorphic to \(\hat{C} \otimes_R \text{Hom}_R(F^*_R(k), E^*_R(M)) \) where \(\hat{C} = y_1, \ldots, y_r \in I \) such that \(\text{Rad} I = \text{Rad}(y)R \).

Now tensoring with a right bounded complex of flat \(R \)-modules preserves the quasi-isomorphisms and any \(R \)-module of \(E^*_R(M) \) is injective. It induces the following quasi-isomorphism

\[
\hat{C} \otimes_R \text{Hom}_R(k, E^*_R(M)) \to \hat{C} \otimes_R \text{Hom}_R(F^*_R(k), E^*_R(M)).
\]

But the complex on the left side is isomorphic to \(\text{Hom}_R(k, E^*_R(M)) \). This is true because of each \(R \)-module of the complex \(\text{Hom}_R(k, E^*_R(M)) \) has support in \(V(\mathfrak{m}) \). Therefore the complex \(\text{Hom}_R(F^*_R(k), \Gamma_I(E^*_R(M))) \) is quasi-isomorphic to \(\text{Hom}_R(k, E^*_R(M)) \). Then the result follows by the long exact cohomology sequence. To this end note that the assumption on the maximal Cohen-Macaulayness of \(M \) implies that \(\text{Ext}^i_R(k, M) = 0 \) for all \(i < n \).

(c) Let \(E^*_R(K(\hat{R})) \) be a minimal injective resolution of \(K(\hat{R}) \). We apply the functor \(\text{Hom}_R(\cdot, E^*_R(K(\hat{R}))) \) to the short exact sequence of the truncation complex. Then we have a short exact sequence of complexes of \(R \)-modules

\[
0 \to \text{Hom}_R(C^*_M(I), E^*_R(K(\hat{R}))) \to \text{Hom}_R(\Gamma_I(E^*_R(M)), E^*_R(K(\hat{R}))) \\
\to \text{Hom}_R(H^c_I(M), E^*_R(K(\hat{R}))))[c] \to 0.
\]

By the definition of \(\text{Hom}_R(\cdot, E^*_R(K(\hat{R}))) \) and a standard isomorphisms for the direct and inverse limits the complex in the middle is isomorphic to

\[
\lim_{\leftarrow} \text{Hom}_R(R/I^r, E^*_R(M)), E^*_R(K(\hat{R}))) \cong \lim_{\leftarrow}(R/I^r \otimes_R \text{Hom}_R(E^*_R(M), E^*_R(K(\hat{R}))))
\]

For the last isomorphism note that \(R/I^r \) is finitely generated \(R \)-module for all \(r \geq 1 \). We claim that \(X := \text{Hom}_R(E^*_R(M), E^*_R(K(\hat{R})))) \) is a flat resolution of \(K(M) \). To this end we first note that

\[
X^s = \prod_{i \in \mathbb{Z}} \text{Hom}_R(E^*_R(M), E^*_R(K(\hat{R}))))[c].
\]

Therefore \(X^s, s \in \mathbb{Z} \), is a flat \(R \)-module. Moreover, by the definition we have that \(H^s(X) \cong \text{Ext}^s_R(M, K(\hat{R})) \) for all \(s \in \mathbb{Z} \). Since \(M \) is a Cohen-Macaulay \(R \)-module and \(R \) is a Cohen-Macaulay ring it follows by the Local Duality Theorem (see Lemma 3.1) that \(H^s(X) = 0 \) for all \(s \neq 0 \) and \(H^s(X) \cong K(M) \) for \(s = 0 \). In order to prove the claim we have to show that \(X^s = 0 \) for all \(s > 0 \). Since \(R \) is a Cohen-Macaulay ring so

\[
E^*_R(K(\hat{R}))) \cong \oplus_{\text{height } p = i} E_R(R/p)
\]

(see [17]). On the other side \(E^*_R(M) \cong \oplus_{q \in \text{Supp}_R(M)} E_R(R/q)^{\mu_q(M,q)} \). Since \(M \) is a maximal Cohen-Macaulay \(R \)-module it follows that \(\mu_q(M,q) = 0 \) for all \(q \in \text{Supp}_R(M) \) such that \(i + s < \text{height}(q) \). Now let \(i + s \geq \text{height}(q) \) and \(\text{height}(p) = i \). Then we have that \(\text{Hom}_R(E^*_R(R/q), E^*_R(R/p)) = 0 \) for all \(k > 0 \). Moreover this implies that

\[
\text{Hom}_R(E^*_R(R/q), E^*_R(K(\hat{R}))) = 0
\]
for all i as easily seen. This finally implies that $X^s = 0$ for all $s > 0$. So X is indeed a flat resolution of $K(M)$. Then the cohomologies of the complex
\[
\lim_{\leftarrow}(R/I^t \otimes_R \text{Hom}_R(E^t_R(M), E^t_R(K(\hat{R})))
\]
are zero for all $i \neq 0$ and $L_0\lambda^I(K(M)) = K(\hat{M})$. So the long exact sequence of local cohomologies provides the statements in (c).

4.1. **Necessary Condition of $H^j_i(M) = 0$, for all $i \neq c$.** In the following let (R, m) denote a local ring of dimension n. Let $M \neq 0$ be a finitely generated R-module with $\dim M = n$. Let $I \subset R$ be an ideal such that $c = \text{grade}(I, M)$.

Corollary 4.3. Let $M \neq 0$ be a maximal Cohen-Macaulay R-module such that $H^j_i(M) = 0$ for all $i \neq c = \text{grade}(I, M)$. Then:

(a) The natural homomorphism
\[
H^d_\mathfrak{m}(H^c_i(M)) \to H^d_\mathfrak{m}(M)
\]
is an isomorphism and $H^i_\mathfrak{m}(H^c_i(M)) = 0$ for all $i \neq d$.

(b) The natural homomorphism
\[
\text{Ext}^d_R(k, H^c_i(M)) \to \text{Ext}^d_R(k, M)
\]
is an isomorphism and $\text{Ext}^i_R(k, H^c_i(M)) = 0$ for all $i < d$.

(c) Suppose that R is in addition a Cohen-Macaulay ring. The natural homomorphism
\[
K(\hat{M}) \to \text{Ext}^i_R(H^c_i(M), K(\hat{R})))
\]
is an isomorphism and $\text{Ext}^i_R(H^c_i(M), K(\hat{R})) = 0$ for all $i > 0$.

Proof. Because of assumption $C^*_M(I)$ is an exact complex.

First we prove part (a). Apply the Čech complex $\check{C}_x \otimes_R \cdot$ to the short exact sequence of the truncation complex since \check{C}_x is a complex of flat R-modules so $\check{C}_x \otimes_R C_M^*(I)$ is exact. Whence result follows from Theorem 4.2.

Now we prove (b). Let $F^*_R(k)$ be a free resolution of k. Then apply $\text{Hom}_R(F^*_R(k), \cdot)$ to the short exact sequence of the truncation complex. Since $\text{Hom}_R(F^*_R(k), C^*_M(I))$ is an exact complex the result follows from Theorem 4.2.

Finally we prove (c). Let $E^*_R(K(\hat{R}))$ be injective resolution of $K(\hat{R})$. Then apply $\text{Hom}_R(\cdot, E^*_R(K(\hat{R})))$ to the short exact sequence of the truncation complex. Since $\text{Hom}_R(C^*_M(I)), E^*_R(K(\hat{R})))$ is an exact complex the result follows from Theorem 4.2.

Lemma 4.4. Let (R, \mathfrak{m}) be ring, $I \subseteq R$ be an ideal, and $M \neq 0$ be a maximal Cohen-Macaulay R-module. Suppose that $H^j_i(M) = 0$ for all $i \neq c = \text{grade}(I, M)$ and $\mathfrak{p} \in \text{Supp}_R(M) \cap V(I)$. Then

1. $H^i_{IR_\mathfrak{p}}(M_\mathfrak{p}) = 0$ for all $i \neq c$.
2. The natural homomorphism
\[
H^i_{IR_\mathfrak{p}}(H^c_{IR_\mathfrak{p}}(M_\mathfrak{p})) \to H^d_{IR_\mathfrak{p}}(M_\mathfrak{p})
\]
is an isomorphism for $i = h(\mathfrak{p}) = \dim(M_\mathfrak{p}) - c$ and $H^i_{IR_\mathfrak{p}}(H^c_{IR_\mathfrak{p}}(M_\mathfrak{p})) = 0$ for all $i \neq h(\mathfrak{p}) = \dim(M_\mathfrak{p}) - c$.

Proof. It is follow from Proposition 2.7 and Corollary 4.3 (a). □

4.2. Converse (Sufficient Condition of $H^i_I(M) = 0$, for all $i \neq c$). Before we can prove Theorem 4.9 which is one of the main result of this section we need the following Lemma. For the following technical result we need a few details on derived categories and derived functors. For all these facts we refer to the Lecture Note by R. Hartshorne (see [7]). We are grateful to P. Schenzel for suggesting this argument to us.

Lemma 4.5. Let $M \neq 0$ be an R-module such that $\dim_R(M) = n = \dim(R)$. Let $c = \text{grade}(I; M)$ where $I \subseteq R$ is an ideal. Then the following are equivalent:

(1) The natural homomorphism
$$\text{Ext}^i_R(k, H^c_I(M)) \rightarrow \text{Ext}^i_R(k, M)$$
is an isomorphism for all $i \in \mathbb{Z}$.

(2) The natural homomorphism
$$H^i_m(-, H^c_I(M)) \rightarrow H^i_m(M)$$
is an isomorphism for all $i \leq n$.

Proof. First of all note that the statement in (2) is equivalent to the isomorphism for all $i \in \mathbb{Z}$. This follows because of $\dim_R(H^c_I(M)) \leq d = n - c$ and $\dim_R(M) = n$ (see [4]). By applying $\text{R} \Gamma_m(\cdot)$ to the short exact sequence of the truncation complex it follows that the assumption in (2) is equivalent to the fact that $\text{R} \Gamma_m(C^*_m(I))$ is an exact complex.

Moreover by applying the derived functor $\text{R} \text{Hom}(k, \cdot)$ to the short exact sequence of the truncation complex it follows that the statement in (1) is equivalent to the fact that $\text{R} \text{Hom}(k, C^*_m(I))$ is an exact complex.

Now we prove that (2) implies (1). If $\text{R} \Gamma_m(C^*_m(I))$ is an exact complex the same is true for
$$\text{R} \text{Hom}(k, C^*_m(I)) \cong \text{R} \text{Hom}(k, \text{R} \Gamma_m(C^*_m(I)))$$
since $C^*_m(I)$ is a left bounded complex.

In order to prove that (1) implies (2) consider the short exact sequence (in fact an exact triangle in the derived category)
$$0 \rightarrow m^\alpha/m^{\alpha+1} \rightarrow R/m^{\alpha+1} \rightarrow R/m^\alpha \rightarrow 0.$$for $\alpha \in \mathbb{N}$. By applying the derived functor $\text{R} \text{Hom}(\cdot, C^*_m(I))$ it provides a short exact sequence of complexes
$$0 \rightarrow \text{R} \text{Hom}(R/m^\alpha, C^*_m(I)) \rightarrow \text{R} \text{Hom}(R/m^{\alpha+1}, C^*_m(I)) \rightarrow \text{R} \text{Hom}(m^\alpha/m^{\alpha+1}, C^*_m(I)) \rightarrow 0.$$By induction on α it follows that $\text{R} \text{Hom}(R/m^\alpha, C^*_m(I))$ is an exact complex for all $\alpha \in \mathbb{N}$. Since $\lim\sup \text{R} \text{Hom}(R/m^\alpha, C^*_m(I)) \cong \text{R} \Gamma_m(C^*_m(I))$ it follows that $\text{R} \Gamma_m(C^*_m(I))$ is exact. This finishes the proof of the Lemma.

□

Corollary 4.6. Let $M \neq 0$ be a maximal Cohen-Macaulay module over a Cohen-Macaulay ring R of dimension n and $I \subseteq R$ be an ideal of $c = \text{grade}(I; M)$. Then the following are equivalent:
(1) The natural homomorphism
\[
\text{Ext}_R^{i-c}(k, H^c_I(M)) \to \text{Ext}_R^i(k, M)
\]
is an isomorphism for \(i \geq n\) and \(\text{Ext}_R^i(k, H^c_I(M)) = 0\) for all \(i < d = n - c\).

(2) The natural homomorphism
\[
H^d_m(H^c_I(M)) \to H^n_m(M)
\]
is an isomorphism and \(H^i_m(H^c_I(M)) = 0\) for all \(i \neq d\) where \(d = n - c\).

Proof. This is an immediate consequence of Lemma 4.5.

In case we have \(#R(M) < \infty\) for the \(R\)-module \(M\) in Corollary 4.6, we get the following Corollary. Note that this Corollary provides us a new relation between the canonical module and the Ext module.

Corollary 4.7. Let \(M \neq 0\) be a maximal Cohen-Macaulay module of finite injective dimension over a local ring \(R\) of dimension \(n\) and \(I \subset R\) be an ideal of \(c = \text{grade}(I, M)\). Then the following are equivalent:

1. The natural homomorphism
 \[
 \text{Ext}_R^d(k, H^c_I(M)) \to \text{Ext}_R^n(k, M)
 \]
is an isomorphism and \(\text{Ext}_R^i(k, H^c_I(M)) = 0\) for all \(i \neq d = n - c\).

2. The natural homomorphism
 \[
 H^d_m(H^c_I(M)) \to H^n_m(M)
 \]
is an isomorphism and \(H^i_m(H^c_I(M)) = 0\) for all \(i \neq d\) where \(d = n - c\).

3. The natural homomorphism
 \[
 K(\hat{M}) \to \text{Ext}_R^n(H^c_I(M), K(\hat{R}))
 \]
is an isomorphism and \(\text{Ext}_R^{n-i}(H^c_I(M), K(\hat{R})) = 0\) for all \(i \neq d\).

Proof. Since \(M\) is of finite injective dimension so by [16] it follows that \(R\) is Cohen-Macaulay ring. Note that the equivalence of (1) \(\iff\) (2) follows from Corollary 4.6. Recall that \(\text{Ext}_R^i(k, M) = 0\) for all \(i \neq n\) since \(#R(M) = n\) under the assumption.

Next we prove the equivalence of (2) \(\iff\) (3).

In fact this is a consequence of the generalized Local Duality (see Lemma 3.1) and Matlis Duality.

Remark 4.8. (1) Let \(M \neq 0\) be a maximal Cohen-Macaulay module of finite injective dimension over a local ring \(R\). Suppose that \(I \subset R\) is an ideal with \(c = \text{grade}(I, M)\). If any of the equivalent conditions holds of Corollary 4.7 then it follows that all the Bass numbers of \(H^c_I(R)\) are zero except for \(i = d = \dim_R(M) - c\).

(2) Let \(R\) be a complete local ring of dimension \(n\) and \(M \neq 0\) be a maximal Cohen-Macaulay module of finite injective dimension. Let \(I \subset R\) be an ideal of \(c = \text{grade}(I, M)\). Then \(K(R)\) exists and by [17] Theorem 4.1 it follow that \(M \cong \bigoplus K(R)\). Therefore if \(R\) is complete so it is enough to prove Corollary 4.7 for \(K(R)\) instead of \(M\).

(3) In case \(R\) possesses a maximal Cohen-Macaulay module of finite injective dimension \(M \neq 0\) the ring \(R\) is Cohen-Macaulay and it follows that \(\text{Supp}_R M = \text{Spec} R\).
first note that \(\text{Supp}_R \hat{M} = \text{Spec} \hat{R} \) since \(\hat{M} \) is isomorphic to a direct sum of \(K(\hat{R}) \) and \(\text{Ann} K(\hat{R}) = (0) \). This implies \(\text{Ann}_R M = 0 \) which implies the claim.

Now we can prove one of our main results as follows:

Theorem 4.9. Let \(M \neq 0 \) be a maximal Cohen-Macaulay module of \(\text{id}_R(M) < \infty \) over a local ring \(R \) of dimension \(n \) and \(I \subseteq R \) be an ideal of \(c = \text{grade}(I, M) \). The following conditions are equivalent:

(a) \(H^i_I(M) = 0 \) for all \(i \neq c \).

(b) For all \(\mathfrak{p} \in V(I) \cap \text{Supp}_R(M) \) the natural homomorphism
\[
H^\mathfrak{p}_i(R)(M_\mathfrak{p}) \to H^\mathfrak{p}_c(M_\mathfrak{p})
\]
is an isomorphism and \(H^\mathfrak{p}_i(R)(M_\mathfrak{p}) = 0 \) for all \(i \neq h(\mathfrak{p}) = \dim(M_\mathfrak{p}) - c \).

(c) For all \(\mathfrak{p} \in V(I) \cap \text{Supp}_R(M) \) the natural homomorphism
\[
\text{Ext}_R^h(\mathfrak{p})(k(\mathfrak{p}), H^c_I(R)(M_\mathfrak{p})) \to \text{Ext}_R^{\dim(M_\mathfrak{p})}(k(\mathfrak{p}), (M_\mathfrak{p}))
\]
is an isomorphism and \(\text{Ext}_R^h(\mathfrak{p})(k(\mathfrak{p}), H^c_I(R)(M_\mathfrak{p})) = 0 \) for all \(i \neq h(\mathfrak{p}) = \dim(M_\mathfrak{p}) - c \).

(d) For all \(\mathfrak{p} \in V(I) \cap \text{Supp}_R(M) \) the natural homomorphism
\[
K(\hat{M}_\mathfrak{p}) \to \text{Ext}_R^c(\mathfrak{p})(H^c_I(R)(\hat{M}_\mathfrak{p}), K(\hat{R}_\mathfrak{p}))
\]
is an isomorphism and \(\text{Ext}_R^c(\mathfrak{p})(H^c_I(R)(\hat{M}_\mathfrak{p}), K(\hat{R}_\mathfrak{p})) = 0 \) for all \(i \neq h(\mathfrak{p}) \).

(e) \(H^i_I(R) = 0 \) for all \(i \neq c \), that is \(I \) is a cohomologically complete intersection.

Proof. Firstly we prove the equivalence of (a) and (e). By Remark 4.8 the assumptions imply that \(\text{Supp}_R M = \text{Spec} R \) and the equivalence follows by Proposition 2.3.

For the proof that (a) implies (b) see Lemma 4.4. By Corollary 4.7 the equivalence of (b), (c), (d) is easily seen by passing to the localization.

Now we prove that (b) implies (a).

We proceed by induction on \(\dim(M/I M) \). If \(\dim(M/I M) = 0 \) then \(V(I) \cap \text{Supp}_R(M) \subseteq V(m) \) so statement (b) holds for \(\mathfrak{p} = m \). By the definition of the truncation complex it implies that \(H^i_m(C_M(I)) = 0 \) for all \(i \in \mathbb{Z} \).

Now we apply Lemma 2.5 for \(X = C_M(I) \). Because of \(\text{Supp}_R(H_i^c(C_M(I))) \subseteq V(m) \) (recall that \(H^i(C_M(I)) = H^i_I(M) \) for all \(i \neq c \) and \(H^c(C_M(I)) = 0 \) (see the definition 4.1)). This proves the vanishing of \(H^i_I(M) \) for all \(i \neq c \).

Now let \(\dim(M/I M) > 0 \) then
\[
\dim(M_\mathfrak{p}/IM_\mathfrak{p}) < \dim(M/I M)
\]
for all \(\mathfrak{p} \in V(I) \cap \text{Supp}_R(M) \setminus \{m\} \). By the induction hypothesis it implies that
\[
H^i_I(R)(M_\mathfrak{p}) = 0
\]
for all \(i \neq c \) and all \(\mathfrak{p} \in V(I) \cap \text{Supp}(M) \setminus \{m\} \). That is \(\text{Supp}(H^i_I(M)) \subseteq V(m) \) for all \(i \neq c \). It implies that \(H^i_m(C_M(I)) = 0 \) for \(i \leq c \) and \(i > n \). Also for \(c < i \leq n \) there is an isomorphism
\[
H^i_m(C_M(I)) \cong H^i(C_M(I)) \cong H^i_I(M).
\]
On the other side note that by the assumption for $p = m$ we have $H^i_m(C_M(I)) = 0$ for all $i \in \mathbb{Z}$ (by Theorem 4.2) and hence by virtue of the last isomorphism it gives the result. This completes the proof of the Theorem.

Remark 4.10. Let us discuss the necessity of the local conditions in Theorem 4.9. It is not enough to assume the statements (b), (c), (d) in the Theorem 4.9 for $p = m$. That is, we do need these statements for all $p \in V(I) \cap \text{Supp}(M)$. This is shown by Hellus and Schenzel (see [13, Example 4.1]) where (b) is true for $p = m$ but not for a localization at p. That is, these three properties (b), (c), (d) do not localize.

In the next we are interested in the injective dimension of the local cohomology module. As a consequence it provides a new characterization of a local ring to be Cohen-Macaulay.

Theorem 4.11. Let (R, m) be a ring and I be an ideal of R. Suppose that $M \neq 0$ is a finitely generated R-module such that $H^i_I(M) = 0$ for all $i \neq c = \text{grade}(I, M)$ then the following are equivalent:

1. $\text{id}_R(M) < \infty$.
2. $\text{id}_R(H^c_I(M)) < \infty$.

Each of the equivalent conditions implies that R is a Cohen-Macaulay ring.

Proof. Let $E_R(M)$ be a minimal injective resolution of M. Since $H^i_I(M) = 0$ for all $i \neq c$ so $H^i_I(M)[-c] \rightarrow \Gamma_I(E_R(M))$ is an isomorphism of complexes in cohomology. If $\text{id}_R(M) < \infty$, then $\Gamma_I(E_R(M))$ is a finite resolution of $H^c_I(M)[-c]$ by injective R-modules. This proves $(1) \Rightarrow (2)$.

For the converse statement note that the above quasi-isomorphism of complexes induces the following isomorphism

$$\text{Ext}^{i-c}_R(k, H^c_I(M)) \cong \text{Ext}^i_R(k, M)$$

so it follows that $\text{id}_R(M) < \infty$ since $\text{Ext}^{i-c}_R(k, H^c_I(M)) = 0$ for $i \gg 0$.

Note that if one of the equivalent conditions in Theorem 4.11 hold then R will be a Cohen-Macaulay ring (see [16]).

5. Applications

In this section we will give some applications of our main results one of which is an extension of Hellus and Schenzel’s result (see [13, Lemma 4.3]).

Proposition 5.1. With the notation in Theorem 4.9 suppose in addition that $K(R)$ exists and consider the following condition:

(f) $H^i_I(K(R)) = 0$ for all $i \neq c$.

then (f) is equivalent to all the conditions of Theorem 4.9.

Proof. If R is a Cohen-Macaulay ring then $K(R)$ is a maximal Cohen-Macaulay module of finite injective dimension. Then the equivalence follows from Theorem 4.9 by view of Proposition 2.3.

Now the following Proposition is a generalization of an application of Hellus and Schenzel (see [13, Lemma 4.3]).
Proposition 5.2. Let \((R, \mathfrak{m})\) be a ring, \(I \subseteq R\) be an ideal and \(M \neq 0\) be an \(R\)-module such that \(\text{grade}(I, M) = c\). Suppose that \(x \in I\) is \(M\)-regular then the following are equivalent:

(a) \(H^i_{\mathfrak{m}/xR}(M/xM) = 0\) for all \(i \neq c - 1\).

(b) \(H^i_\mathfrak{m}(M) = 0\) for all \(i \neq c\) and \(x\) is \(\text{Hom}_R(H^c_\mathfrak{m}(M), E)\)-regular.

Proof. Since \(x\) is \(M\)-regular so we have the following short exact sequence

\[
0 \to M \xrightarrow{x} M \to M/xM \to 0
\]

Applying \(\Gamma_I\) to this sequence yields the following long exact sequence of local cohomologies

\[
\ldots \to H^{i-1}_I(M/xM) \to H^i_I(M) \xrightarrow{x} H^i_I(M) \to H^i_I(M/xM) \to \ldots
\]

Now we prove that (a) implies (b).

If \(i < c\) then there is the following exact sequence

\[
0 \to H^i_I(M) \xrightarrow{x} H^i_I(M)
\]

Let \(r \in H^i_I(M)\) then there exists \(n \in \mathbb{N}\) such that \(rI^n = 0\) it implies that \(r = 0\) because of sequence 5.2. It follows that \(H^i_I(M) = 0\) for all \(i < c\). Similarly we can prove that \(H^i_I(M) = 0\) for all \(i > c\) so \(H^i_I(M) = 0\) for all \(i \neq c\). Now applying \(\text{Hom}_R(-, E)\) to sequence 5.1 and substituting \(i = c\) then \(x\) is \(\text{Hom}_R(H^c_I(M), E)\)-regular follows from the following short exact sequence

\[
0 \to \text{Hom}_R(H^c_I(M), E) \xrightarrow{x} \text{Hom}_R(H^c_I(M), E) \to \text{Hom}_R(\text{Hom}^c_{\mathfrak{m}/xR}(M/xM), E) \to 0
\]

Now we will prove that the assertion (b) implies (a).

If \(i \leq c - 2\) or \(i > c\) then it follows from sequence 5.1 and Independence of Base Theorem (see [10]) that \(H^i_{\mathfrak{m}/xR}(M/xM) = 0\) for all \(i \leq c - 2\) or \(i > c\). If \(i = c\) then there is the following exact sequence

\[
H^c_I(M) \xrightarrow{x} H^c_I(M) \to H^c_{\mathfrak{m}/xR}(M/xM) \to 0
\]

it induces the following exact sequence

\[
0 \to \text{Hom}_R(H^c_{\mathfrak{m}/xR}(M/xM), E) \to \text{Hom}_R(H^c_I(M), E) \xrightarrow{x} \text{Hom}_R(H^c_I(M), E)
\]

since \(x\) is \(\text{Hom}_R(H^c_I(M), E)\)-regular so \(\text{Hom}_R(H^c_{\mathfrak{m}/xR}(M/xM), E)\) being the kernel of the morphism \(\text{Hom}_R(H^c_I(M), E) \xrightarrow{x} \text{Hom}_R(H^c_I(M), E)\) is zero. Therefore result follows from [10] Remark 3.11. \(\square\)

Corollary 5.3. Let \((R, \mathfrak{m})\) be a ring, \(I \subseteq R\) be an ideal of grade\((I, M) = c\) for an \(R\)-module \(M \neq 0\). Suppose that \(\underline{x} = (x_1, \ldots, x_j) \in I\) is an \(M\)-regular sequence for \(1 \leq j \leq c\) then the following are equivalent:

(a) \(H^i_{\mathfrak{m}/\underline{x}}(M/\underline{x}M) = 0\) for all \(i \neq c - j\).

(b) \(H^i_I(M) = 0\) for all \(i \neq c\) and \(\underline{x}\) is \(\text{Hom}_R(H^c_I(M), E)\)-regular.
REFERENCES

[1] H. Bass: On the ubiquity of Gorenstein Rings, Math. Z. 82 (1983), 18-29.
[2] Brodmann, Sharp: Local Cohomology. An Algebraic Introduction with Geometric Applications. Cambridge Studies in Advanced Mathematics No. 60. Cambridge University Press, (1998).
[3] W. Bruns, J. Herzog: Cohen-Macaulay Rings, Cambridge Univ. Press, 39 (1998).
[4] K. Divaani-Aazar, R. Naghipour, M. Tousi: Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc 130 (2002), 3537-3544.
[5] P. Gabriel: Objects Injectifs Dans Les Catégories abéliennes. Sém. Dubreil 12 (1959), No. 17.
[6] A. Grothendieck: Local Cohomology, Notes by R. Hartshorne, Lecture Notes in Math. vol.41, Springer,1967.
[7] R. Hartshorne: Residues and duality (Lecture Note in Mathematics, Vol. 20, Springer, 1966).
[8] R. Hartshorne: Cohomological Dimension of Algebraic Varieties, Annals of Math. 88 (1968), 403-450.
[9] M. Hochster: Topics in the homological theory of modules over commutative rings. CBMS. Regional Conference Series in Mathematics. No.24. Providence, R.I.: American Mathematical Society (AMS). 1975.
[10] C. Huneke : Lectures on Local Cohomology (with an Appendix by Amelia Taylor),Cont. Math. 436 (2007), 51-100.
[11] M. Hellus: Local Cohomology and Matlis Duality, arXiv:math/0703124v1 [math.AC](2007).
[12] M. Hellus, J. Stückerad: Local Cohomology and Matlis Duality, Universitatis Iagellonicae Acta Mathematica, Fasciculus XLV (2007).
[13] M. Hellus, P. Schenzel: On Cohomologically Complete Intersections, J. Algebra 320 (2008), 3733-3748.
[14] E. Matsi: Injective Modules Over Noetherian Rings. Pacific J. Math. 8 (1958), 511-528.
[15] H. Matsumura: Commutative Ring Theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, Cambridge (1986).
[16] P. Roberts: Le théorème d’intersection. (The intersection theorem). (French) C. R. Acad. Sci., Paris, Sér. I, 304 (1987), 177-180.
[17] R. Sharp: On Gorenstein Modules over a Complete Cohen-Macaulay Local Ring. Q. J. Math. 22 (1971), 425-434.
[18] P. Schenzel: On The Use of Local Cohomology in Algebra and Geometry. In: Six Lectures in Commutative Algebra, Proceed. Summer School on Commutative Algebra at Centre de Recerca Matem`atica, (Ed.: J. Elias, J. M. Giral, R. M. Miró-Roig, S. Zarzuela), Progr. Math. 166 (1998), 241-292.
[19] P. Schenzel: Proregular Sequences, Local Cohomology, and Completion, Math. Scand 92 (2003), 161-180.
[20] L. Vermani: An Elementary Approach to Homological Algebra. Chapman and Hall/CRC(Monographs and Surveys in Pure and Applied Mathematics) 2003.
[21] C. Weibel: An introduction to Homological Algebra, Cambridge Univ. Press, 1994.
[22] M. R. Zargar and H. Zakeri: On Injective and Gorenstein Dimensions of Local Cohomology Modules, arXiv:1204.2394v4 [math.AC].
[23] M. R. Zargar: On The Relative Cohen-Macaulay Modules, arXiv:1303.2208v1 [math.AC] 9 Mar 2013.

Abdus Salam School of Mathematical Sciences, GCU, Lahore Pakistan
E-mail address: waqassms@gmail.com