Eigenfunction Expansions of Ultradifferentiable Functions and Ultradistributions. III. Hilbert Spaces and Universality

Aparajita Dasgupta1 · Michael Ruzhansky2,3

Received: 25 January 2020 / Revised: 20 December 2020 / Accepted: 22 January 2021
© The Author(s) 2021, corrected publication 2021

Abstract
In this paper we analyse the structure of the spaces of smooth type functions, generated by elements of arbitrary Hilbert spaces, as a continuation of the research in our papers (Dasgupta and Ruzhansky in Trans Am Math Soc 368(12):8481–8498, 2016) and (Dasgupta and Ruzhansky in Trans Am Math Soc Ser B 5:81–101, 2018). We prove that these spaces are perfect sequence spaces. As a consequence we describe the tensor structure of sequential mappings on the spaces of smooth type functions and characterise their adjoint mappings. As an application we prove the universality of the spaces of smooth type functions on compact manifolds without boundary.

Keywords Smooth functions · Hilbert spaces · Komatsu classes · Sequence spaces · Tensor representations · Universality

Mathematics Subject Classification Primary 46F05 · Secondary 22E30

Communicated by Hans G. Feichtinger.

Michael Ruzhansky was partly supported by the FWO Odysseus Project G.0H94.18N: Analysis and Partial Differential Equations, by the EPSRC Grant EP/R003025/1, and by the Leverhulme Research Grant RPG-2017-151.

Michael Ruzhansky
Michael.Ruzhansky@UGent.be

Aparajita Dasgupta
adasgupta@maths.iitd.ac.in

1 Department of Mathematics, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi 110016, India

2 Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University, Ghent, Belgium

3 School of Mathematical Sciences, Queen Mary University of London, London, UK

Published online: 09 March 2021
1 Introduction

The present paper is a continuation of our papers [5] and [6]. In [6], we analysed the structure of the spaces of coefficients of eigenfunction expansions of functions in Komatsu classes [16–18] on compact manifolds. We also described the tensor structure of sequential mappings on spaces of Fourier coefficients and characterised their adjoint mappings. In particular, these classes include spaces of analytic and Gevrey functions, as well as spaces of ultradistributions, dual spaces of distributions and ultradistributions, in both Roumieu and Beurling settings. In another work, [5], we have characterised Komatsu spaces of ultradifferentiable functions and ultradistributions on compact manifolds in terms of the eigenfunction expansions related to positive elliptic operators. Here we note that, using properties of the elliptic operators and the Plancherel formula one can get such type of characterisation of smooth functions in terms of their Fourier coefficients. For example, if E is a positive elliptic pseudo-differential operator on a compact manifold X without boundary and λ_j denotes its eigenvalues in the ascending order, then smooth functions on X can be characterised in terms of their Fourier coefficients:

$$f \in C^\infty(X) \iff \forall N \exists C_N : |\mathcal{F} f(j,l)| \leq C_N \lambda_j^{-N} \text{ for all } j \geq 1, 1 \leq l \leq d_j, \quad (1.1)$$

where $\mathcal{F} f(j,l) = \left(f, e^j_l \right)_{L^2}$ with e^j_l being the lth eigenfunction corresponding to the eigenvalue λ_j (of multiplicity d_j). Such characterisations for analytic functions were obtained by Seeley in [26], with a subsequent extension to Gevrey and, more generally, to Komatsu classes, in [5]. The results obtained in [6] do not include the cases of smooth functions on compact manifolds. We will extend the results in [6] to the spaces of smooth functions. Moreover in this work, we aim at discussing an abstract analysis of the spaces of smooth type functions generated by basis elements of an arbitrary Hilbert space. Considering an abstract point of view has an advantage that the results will cover the analysis of smooth functions on different spaces like compact Lie groups and manifolds. In particular, we introduce a notion of smooth functions generated by elements of a Hilbert space \mathcal{H} forming a basis. We will show that the appearing spaces of coefficients with respect to expansions in eigenfunctions of positive self-adjoint operators are perfect spaces in the sense of the theory of sequence spaces (see, e.g., Köthe [15]). Consequently, we obtain tensor representations for linear mappings between spaces of smooth type functions. Such discrete representations in a given basis are useful in different areas of time-frequency analysis, in partial differential equations, and in numerical investigations.

Using the obtained representations we establish the universality properties of the appearing spaces. In [30], Waelbroeck proved the so-called universality of the space of Schwartz distributions $\mathcal{E}(V)$ with compact support on a C^∞-manifold V, with the δ-mapping $\delta : V \to \hat{\mathcal{E}}(V)$, that is, any vector valued C^∞-mapping $f : V \to E$, from V to a sequence space E, factors through $\delta : V \to \hat{\mathcal{E}}(V)$ by a unique linear morphism $\tilde{f} : \mathcal{E}(V) \to E$ as $f = \tilde{f} \circ \delta$. The universality of the spaces of Gevrey functions on the torus has been established in [28]. As an application of our tensor representations, we prove the universality of the spaces of smooth functions on compact manifolds.
Moreover the obtained characterisations, for example for Kotmatsu classes have found their application for the well-posedness problems for weakly hyperbolic partial differential equations [13]. The spaces of coefficients of eigenfunction expansions in \mathbb{R}^n with respect to the eigenfunctions of the harmonic oscillator have been analysed in [14], and the corresponding Komatsu classes have been investigated in [29]. The original Komatsu spaces of ultradifferentiable functions and ultradistributions have appeared in the works [16–18] by Komatsu. The universality of the spaces of Gevrey functions on the torus has been established in [27,28]. The regularity properties of spaces of distributions and ultradistributions have been analysed in [7,20], and their convolution properties appeared in [19]. The characterisations in terms of the eigenfunction expansions provide for descriptions alternative to those using the classical Fourier analysis, with applications in the theory of partial differential equations; see, e.g., [21].

Our analysis is based on the global Fourier analysis on arbitrary Hilbert spaces using techniques similar to compact manifold which was consistently developed in [9], with a number of subsequent applications, for example to the spectral properties of operators [8], or to the wave equations for the Landau Hamiltonian [13,23]. The corresponding version of the Fourier analysis is based on expansions with respect to orthogonal systems of eigenfunctions of a self-adjoint operator. The non self-adjoint version has been developed in [22], with a subsequent extension in [24,25]. Similar Gelfand triple constructions have may applications, for example in the time-frequency analysis [3].

The paper is organised as follows. In Sect. 2 we will briefly recall the constructions leading to the global Fourier analysis on arbitrary Hilbert spaces and define the smooth type function spaces. In Sect. 3 we very briefly recall the relevant definitions from the theory of sequence spaces. In Sect. 4 we present the main results of this paper and their proofs. In Sect. 5 we prove the universality results for the smooth functions on compact manifold.

2 Fourier Analysis on Hilbert Spaces

Let $(\mathcal{H}, || \cdot ||_{\mathcal{H}})$ be a separable Hilbert space and denote by

$$\mathcal{U} := \{e_{jl} : e_{jl} \in \mathcal{H}, 1 \leq l \leq d_j, d_j \in \mathbb{N}\}_{j \in \mathbb{N}}$$

a collection of elements of \mathcal{H}. We assume that \mathcal{U} is a basis of the space \mathcal{H} with the property

$$(e_{jl}, e_{mn})_{\mathcal{H}} = \delta_{jm}\delta_{ln}, \quad j, m \in \mathbb{N} \text{ and } 1 \leq l \leq d_j, 1 \leq n \leq d_m,$$

where δ_{jm} is the Kronecker delta, equal to 1 for $j = m$, and to zero otherwise. Also let us fix a sequence of positive numbers $\Lambda := \{\lambda_j\}_{j \in \mathbb{N}}$ such that $0 < \lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \ldots$.

\[\text{Birkhäuser}\]
and the series

\[\sum_{j=1}^{\infty} d_j \lambda_j^{-s_0} < \infty \]

(2.1)

converges for some \(s_0 > 0 \). For example, in a compact \(C^\infty \) manifold \(X \) of dimension \(n \) without boundary and with a fixed measure we have

\[\sum_{j=1}^{\infty} d_j (1 + \lambda_j)^{-q} < \infty \text{ if and only if } q > \frac{n}{\nu}, \]

where \(0 < \lambda_1 < \lambda_2 < \ldots \) are eigenvalues of a positive elliptic pseudo-differential operator \(E \) of an integer order \(\nu \), with \(H_j \subset L^2(X) \) the corresponding eigenspace and

\[d_j := \dim H_j, \quad H_0 := \ker E, \quad \lambda_0 := 0, \quad d_0 := \dim H_0. \]

We associate to the pair \(\{ U, \Lambda \} \) a linear self-adjoint operator \(E : H \rightarrow H \) such that

\[E^s f = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^s (f, e_{jl}) e_{jl} \]

(2.2)

for \(s \in \mathbb{R} \) and those \(f \in H \) for which the series converges in \(H \). Then \(E \) is densely defined since

\[E^s e_{jl} = \lambda_j^s e_{jl}, \quad 1 \leq l \leq d_j, \quad j \in \mathbb{N}, \]

and \(U \) is a basis of \(H \). Also we write \(H_j = \text{span}\{e_{jl}\}_{1 \leq l \leq d_j} \), and so \(\dim H_j = d_j \).

Then we have

\[H = \bigoplus_{j \in \mathbb{N}} H_j. \]

The Fourier transform for \(f \in H \) is defined as

\[F f (j, l) := (f, e_{jl})_H, \quad j \in \mathbb{N}, \quad 1 \leq l \leq d_j. \]

We next define the following notions:

The spaces of smooth type functions are defined by

\[H_E^\infty := \bigcap_{s > 0} H_E^s. \]
where

\[H_{E}^{s} := \left\{ \phi \in \mathcal{H} : \sum_{j=1}^{\infty} \lambda_{j}^{2s} ||\mathcal{F}\phi(j)||_{\mathcal{H}S}^{2} < \infty \right\}, \quad s > 0. \tag{2.3} \]

Here we refer to Theorem 4.2 for more detailed understanding of the above space. This space can be understood as the domain of the operator \(E^{s} \) from (2.2), as well as in the sense of a sequence space of Fourier coefficients \(\mathcal{F}\phi(j) \). We can also refer to [1,10,11] for a coorbit analogue of such construction with related technicalities. The topology of these spaces are defined by the natural choice of seminorms. We define spaces of distributions, \((H_{E}^{\infty})'\) as spaces of linear continuous functionals on \(H_{E}^{\infty} \). We will follow the convention,

\[\langle u, \phi \rangle_{(H_{E}^{\infty})', H_{E}^{\infty}} = (u, \phi)_{\mathcal{H}}, \]

extending the inner product on \(\mathcal{H} \). We build the triple,

\[\left(H_{E}^{\infty}, \mathcal{H}, (H_{E}^{\infty})' \right). \]

Then \(H_{E}^{-s} \) is defined and

\[(H_{E}^{s})' = H_{E}^{-s} \]

by using the pairing

\[(f, g)_{H^{-s}, E, H_{E}^{s}} = (E^{-s} f, E^{s} g)_{\mathcal{H}} = (f, g)_{\mathcal{H}} = (f, g)_{(H_{E}^{\infty})', H_{E}^{\infty}}, \]

for \(f \in H_{E}^{-s} \) and \(g \in H_{E}^{s} \).

Then we denote the space of distributions as \((H_{E}^{\infty})' = \bigcup_{s>0} H_{E}^{-s} \), referring to Remark 4.4 and subsequent analysis for the topological justification of this notation.

Since \(\mathcal{F}\phi(j) \in \mathbb{C}^{d_{j}} \) in (2.3) can be viewed as a vector, we denote

\[||\mathcal{F}\phi(j)||_{\mathcal{H}S} = \left(\text{trace}(\mathcal{F}\phi(j)\mathcal{F}(j)^*\mathcal{F}(j)^*) \right)^{1/2} = \left(\sum_{l=1}^{d_{j}} |\mathcal{F}\phi(j,l)|^{2} \right)^{1/2}, \tag{2.4} \]

where

\[\mathcal{F}\phi(j) = \begin{pmatrix} \mathcal{F}\phi(j,1) \\ \mathcal{F}\phi(j,2) \\ \vdots \\ \mathcal{F}\phi(j,d_{j}) \end{pmatrix}. \tag{2.5} \]
with $\mathcal{F}\phi(j, l) = (\phi, e_{jl})_{\mathcal{H}}, \ j \in \mathbb{N}, \ 1 \leq l \leq d_j$.

We choose to write the Hilbert–Schmidt norm rather than the ℓ^2-norm in our notations to also emphasise the appearance of such norm in these expressions. Indeed, in the version of the Fourier analysis on compact groups the Fourier coefficients are matrices, and it is important to choose the matrix norms in the right way in order to have a consistent and sharp theory. Thus, in the description of many function spaces in that setting ([4]) the Hilbert–Schmidt norms of the Fourier coefficients $\mathcal{F}\phi(j)$ play a natural role, with $\mathcal{F}\phi(j)$ being matrices (in the set-up of compact groups when the Fourier coefficients are defined in terms of the representations of the group). At the same time, when one is working in the setting of compact manifolds, it is natural to consider $\mathcal{F}\phi(j)$ as vectors, the point of view that is considered in this paper as well. A rather detailed comparison of these two setting has been carried out in [9]. Therefore, in this series of papers we continue with this notation, emphasising the norm in (2.4) as the Hilbert–Schmidt norm.

3 Sequence Spaces and Sequential Linear Mappings

In this section we briefly recall several definitions for our further analysis, referring to Köthe [15, Chap. 30] for detailed discussions.

We briefly recall that a sequence space V is a linear subspace of $\mathbb{C}^\mathbb{Z} = \{a = (a_j) | a_j \in \mathbb{C}, j \in \mathbb{Z}\}$.

The dual \hat{V} (α-dual in the terminology of Köthe [15]) is a sequence space defined by

$$\hat{V} = \{a \in \mathbb{C}^\mathbb{Z} : \sum_{j \in \mathbb{Z}} |f_j||a_j| < \infty \ \text{for all} \ f \in V\}.$$

Remark 3.1 We used \mathcal{F} to denote the Fourier transform/coefficients, we hope there is no confusion with this notation: when $\hat{\cdot}$ appears on a space, it will mean the dual (α-dual) of the space as in the above definition.

A sequence space V is called **perfect** if $\hat{\hat{V}} = V$. A sequence space is called **normal** if $f = (f_j)_{j \in \mathbb{N}} \in V$ implies $|f| = (|f_j|)_{j \in \mathbb{N}} \in V$. A dual space \hat{V} is normal so that any perfect space is normal.

A pairing $\langle \cdot, \cdot \rangle_{\hat{V}}$ on V is a bilinear function on $V \times \hat{V}$ defined by

$$\langle f, g \rangle_{\hat{V}} = \sum_{j \in \mathbb{Z}} f_jg_j \in \mathbb{C},$$

which converges absolutely by the definition of \hat{V}.

Definition 3.2 $\phi : V \to \mathbb{C}$ is called a **sequential linear functional** if there exists some $a \in \hat{V}$ such that $\phi(f) = \langle f, a \rangle_{\hat{V}}$ for all $f \in V$. We abuse the notation by also writing $a : V \to \mathbb{C}$ for this mapping.

© Birkhäuser
Definition 3.3 A mapping \(\phi : V \rightarrow W \) between two sequence spaces is called a sequential linear mapping if

1. \(\phi \) is algebraically linear,
2. for any \(g \in \hat{W} \), the composed mapping \(g \circ \phi : V \rightarrow \mathbb{C} \) is in \(\hat{V} \).

4 Tensor Representations and the Adjointness

In this section we discuss \(\alpha \)-duals of the spaces, tensor representations for mappings between these spaces and their \(\alpha \)-duals, and obtain the corresponding adjointness theorem. The tensor representation theorems can be viewed as a sequence space version of kernel theorems (for different function spaces this has been also a topic of recent research in different contexts, see e.g. [1,2,12]).

In the sequel, when speaking about an \(\alpha \)-dual of a space, we mean the \(\alpha \)-dual of the corresponding sequence space—this should be clear since we will normally write explicit definitions of the appearing \(\alpha \)-duals.

4.1 Duals and \(\alpha \)-Duals

In this section we first prove that the \(\alpha \)-dual, \(\hat{H}_E^s \) of the space \(H_E^s \), where

\[
\hat{H}_E^s = \left\{ v = (v_j)_{j \in \mathbb{N}}, v_j \in \mathbb{C}^d_j; \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |F\phi(j, l)||v_{jl}| < \infty, \text{ for all } \phi \in H_E^s \right\},
\]

coincides with the space \(H_E^{-s} \).

Remark 4.1 Here we observe that,

\[
w \in \hat{H}_E^s \implies \sum_{j=1}^{\infty} \lambda_j^{-s-s_0/2} ||w_j||_{HS} < \infty.
\]

Indeed, let \(w \in \hat{H}_E^s \). Define \(F\phi(j, l) = \lambda_j^{-(s+s_0/2)} \) for \(j \in \mathbb{N} \) and \(1 \leq l \leq d_j \).

Then \(||F\phi(j)||_{HS} = d_j^{1/2} \lambda_j^{-s-s_0/2} \). It follows from (2.1) and the definition of \(H_E^s \) that \(\phi \in H_E^s \).

From the definition of the \(\alpha \)-dual and using the inequality,

\[
||w_j||_{HS} \leq ||w_j||_{\mu^1},
\]
we can then conclude that,

$$\sum_{j=1}^{\infty} \frac{\lambda_j^{-s-s_0/2} \|w_j\|_{HS}}{\lambda_j^{-s-s_0/2} \|w_j\|_{H^1}} \leq \sum_{j=1}^{\infty} \frac{\lambda_j^{-s-s_0/2} \|w_j\|_{H^1}}{\lambda_j^{-s} \sum_{l=1}^{d_j} |\mathcal{F}\phi(j, l)| w_{jl}} < \infty. \quad (4.1)$$

Our first result is the identification of the topological dual with the α-dual.

Theorem 4.2 $\hat{H}_E^s = \left(H_E^s \right)'$.

Proof First we will show $\left(H_E^s \right)' = H_{E}^{-s} \subseteq \hat{H}_E^s$.

Let $u \in H_{E}^{-s}$.

Then from the definition we have $\sum_{j=1}^{\infty} \lambda_j^{-2s} ||\mathcal{F}u(j)||_{HS}^2 < \infty$. We denote for $j \in \mathbb{N}$,

$$u_{jl} = \mathcal{F}u(j, l) \in \mathbb{C}^{d_j}, l = 1, 2, \ldots, d_j.$$ Using the Cauchy–Schwartz inequality, for any $\phi \in H_{E}^s$ we get

$$\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |\mathcal{F}\phi(j, l)||u_{jl}| \leq \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{-2s} |\mathcal{F}\phi(j, l)|^2 \right)^{1/2} \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{-2s} |u_{jl}|^2 \right)^{1/2} < \infty, \text{ (by assumption)}.$$

This implies that $u \in \hat{H}_E^s$. We thus obtain $H_{E}^{-s} \subseteq \hat{H}_E^s$.

Next we will show that $\hat{H}_E^s \subseteq H_{E}^{-s}$.

By duality we know that $\left(H_E^s \right)' = H_{E}^{-s}$. So it will be enough if we can prove $\hat{H}_E^s \subseteq \left(H_E^s \right)'$.

Let $w \in \hat{H}_E^s$. Then for $\phi \in H_{E}^s$ we define

$$w(\phi) = \sum_{j=1}^{\infty} \lambda_j^{-s_0/2} \mathcal{F}\phi(j) \cdot w_j = \sum_{j=1}^{\infty} \lambda_j^{-s_0/2} \sum_{l=1}^{d_j} \mathcal{F}\phi(j, l) w_{jl}.$$ Then using Remark 4.1 we have

$$|w(\phi)| \leq \sum_{j=1}^{\infty} \lambda_j^{-s_0/2} ||\mathcal{F}\phi(j)||_{HS} ||w_j||_{HS} \leq C \sum_{j=1}^{\infty} \lambda_j^{-s_0/2} \lambda_j^{-s} ||w_j||_{HS} < \infty. \quad (4.2)$$
since $\phi \in H^s_E$. So $w(\phi)$ is well defined.

We next check that w is continuous. Let $\phi_m \to \phi$ as $m \to \infty$ in H^s_E. This means,

$||\phi_m - \phi||_{H^s_E} \to 0$ as $m \to \infty$, which implies $\lambda_j^s ||\mathcal{F}\phi_m(j) - \mathcal{F}\phi(j)||_{HS} \to 0$ as $m \to \infty$, for $j \in \mathbb{N}$. So we have

$$||\mathcal{F}\phi_m(j) - \mathcal{F}\phi(j)||_{HS} \leq C_m \lambda_j^{-s},$$

where $C_m \to 0$ as $m \to \infty$. Then

$$|w(\phi_m - \phi)| \leq \sum_{j=1}^{\infty} \frac{\lambda_j^{-s_0/2}}{d_j} ||\mathcal{F}\phi_m(j) - \mathcal{F}\phi(j)||_{HS} ||v||_{HS} \to 0,$$

as $m \to \infty$. Hence w is continuous. This gives $w \in (H^s_E)' = H^{-s}_E$. So we have

$\hat{H}^s_E \subseteq H^{-s}_E$, that implies $\hat{H}^s_E = H^{-s}_E$. \hfill \Box

From this we can have the following corollary.

Corollary 4.3 $v \in \hat{H}^s_E \iff \sum_{j=1}^{\infty} \lambda_j^{-2s} ||v||_{HS}^2 < \infty$ and $v \in \mathbb{C}^{d_j}$, we denote $v = (v_j)_{\mathbb{R}}$.

Remark 4.4 If we define $H^s_{\infty} = \bigcap_{s > 0} H^s_E$, then

$$v \in H^s_{\infty} \iff \sum_{j=1}^{\infty} \lambda_j^{-2s} ||v||_{HS}^2 < \infty, \ \forall s > 0,$$

where $v = \mathcal{F}v(j) \in \mathbb{C}^{d_j}$.

We next define the α-dual of the space \hat{H}^∞_E,

$$\hat{H}^\infty_E = \left\{ v = (v_j), v_j \in \mathbb{C}^{d_j} : \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |v_{jl}| |\mathcal{F}\phi(j, l)| < \infty, \ \text{for all } \phi \in H^\infty_E \right\}.$$

Using Köthe’s theory relating echelon and co-echelon spaces ([15, Ch. 30.8]) for countable union, we observe that

$$\hat{H}^\infty_E = \bigcap_{s > 0} H^s_E = \bigcup_{s > 0} \hat{H}^s_E = \bigcup_{s > 0} H^{-s}_E.$$

This is true for unions over $s > 0$, since the mentioned spaces are nested and we can replace the uncountable union by a countable one with equivalent topology. From this
we can state the following lemma and the proof will follow from our above observation.

Lemma 4.5 \(v \in \hat{H}_E^\infty \iff \) for some \(s \in \mathbb{R} \) we have \(\sum_{j=1}^{\infty} \lambda_j^{-2s}||v_j||_\text{HS}^2 < \infty \).

Next we proceed to prove that \(H_E^\infty \) is a perfect space. But before that let us prove the following lemma.

Lemma 4.6 We have \(w \in [\hat{H}_E^\infty]^\wedge \) if and only if \(\sum_{j=1}^{\infty} \lambda_j^{-2s}||w_j||_\text{HS}^2 < \infty \) for all \(s > 0 \).

Proof Let \(w \in [\hat{H}_E^\infty]^\wedge \). Let \(s \in \mathbb{R} \), we define

\[
v_{jl} = Fv(j, l) = \lambda_j^s, \quad 1 \leq l \leq d_j.
\]

Then \(||v_j||_\text{HS}^2 = d_j\lambda_j^{2s} \) and so \(v \in H_E^{-s-\frac{\lambda_0}{2}} \) because in view of (2.1) we have

\[
\sum_{j=1}^{\infty} \lambda_j^{-2s}\lambda_j^{-s_0}||v_j||_\text{HS}^2 = \sum_{j=1}^{\infty} d_j\lambda_j^{-2s}\lambda_j^{-s_0}\lambda_j^{2s} = \sum_{j=1}^{\infty} d_j\lambda_j^{-s_0} < \infty. \tag{4.3}
\]

Then \(v \in \hat{H}_E^\infty = \bigcup_{s \in \mathbb{R}} H_E^{-s} \) which gives \(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |w_{jl}||v_{jl}| < \infty \). Now we observe first that

\[
\sum_{j=1}^{\infty} \lambda_j^{2s}||w_j||_\text{HS}^2 \leq \sum_{j=1}^{\infty} d_j\lambda_j^{2s}||w_j||_\text{HS}^2
\]

\[
= \sum_{j=1}^{\infty} ||v_j||_\text{HS}^2||w_j||_\text{HS}^2, \tag{4.4}
\]

since \(d_j \geq 1 \).

We want to show that \(\sum_{j=1}^{\infty} ||v_j||_\text{HS}^2||w_j||_\text{HS}^2 < \infty \). To prove this we will use the following identity:

\[
\sum_{i=1}^{n} a_i^2 \sum_{l=1}^{n} b_l^2 = \sum_{i=1}^{n} a_i^2 b_i^2 + \sum_{i=1}^{n} a_i^2 \left(\sum_{l=1}^{n} b_l^2 - b_i^2 \right).
\]

From this we get

\[
\sum_{i=1}^{d_j} |w_{ji}|^2 \sum_{l=1}^{d_j} |v_{jl}|^2 = \sum_{i=1}^{d_j} |v_{ji}|^2 |w_{ji}|^2 + \sum_{i=1}^{d_j} |w_{ji}|^2 \left(\sum_{l=1}^{d_j} |v_{jl}|^2 - |v_{ji}|^2 \right).
\]
We consider the second term of the above inequality, that is,
\[d_j \sum_{i=1}^{d_j} |w_{ji}|^2 \left(\sum_{l=1}^{d_j} |v_{jl}|^2 - |v_{ji}|^2 \right) \leq d_j \sum_{i=1}^{d_j} |w_{ji}|^2 \sum_{l=1}^{d_j} |v_{jl}|^2 \leq d_j \sum_{i=1}^{d_j} |w_{ji}|^2 \left(C\lambda_j^{2s+s_0} \right), \]

since \(v \in H_E^{-s-s_0/2} \). Then we get
\[
\sum_{j=1}^{\infty} \|v_j\|_{\HS}^2 \|w_j\|_{\HS}^2 \leq \sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}|^2 \left(|v_{ji}|^2 + C\lambda_j^{2s+s_0} \right) \\
\leq \sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}|^2 |u_{ji}|^2 \\
\leq C \left(\sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}| |u_{ji}| \right)^2, \tag{4.5}
\]

where \(|u_{ji}|^2 = |v_{ji}|^2 + C\lambda_j^{2s+s_0} \). Now
\[
\sum_{j=1}^{\infty} \lambda_j^{-2s-2s_0} \|u_j\|_{\HS}^2 = \sum_{j=1}^{\infty} \lambda_j^{-2s-2s_0} \|v_j\|_{\HS}^2 + C \sum_{j=1}^{\infty} d_j \lambda_j^{-2s-2s_0} \lambda_j^{2s+s_0} \\
\leq C' \sum_{j=1}^{\infty} \lambda_j^{-s_0} + C \sum_{j=1}^{\infty} d_j \lambda_j^{-s_0} < \infty, \tag{4.6}
\]

which implies that \(u \in H_E^{-s-s_0} \), that is \(u \in \hat{H}_E^\infty \). This gives that
\[
\sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}| |u_{ji}| < \infty, \tag{4.7}
\]

as \(w \in \hat{H}_E^\infty \) and \(u \in \hat{H}_E^\infty \). So we have from (4.4), (4.5) and (4.7) that
\[
\sum_{j=1}^{\infty} \lambda_j^{2s} \|w_j\|_{\HS}^2 < \infty.
\]

Next we proceed to prove the opposite direction. Let
\[w \in \Sigma = \left\{ v = (v_j)_{j \in \mathbb{N}}, \ v_j \in \mathbb{C}^{d_j} \right\} \]
be such that \(\sum_{j=1}^{\infty} \lambda_j^{2s} ||w_j||^2_{HS} < \infty \) for all \(s \in \mathbb{R} \). Let \(v \in \widehat{H}_E^\infty = \bigcup_{s \in \mathbb{R}} H_{E}^{-s} \). In particular, we have \(v \in H_{E}^{-s} \) for some \(s \in \mathbb{R} \). We have to show

\[
\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |w_{jl}| |v_{jl}| < \infty.
\]

By the Cauchy–Schwartz inequality we have

\[
\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |w_{jl}| |v_{jl}| \leq \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{s} |w_{jl}|^2 \right)^{1/2} \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{-s} |v_{jl}|^2 \right)^{1/2} < \infty. \tag{4.8}
\]

It follows that \(w \in [\widehat{H}_E^\infty]^\wedge \), completing the proof. \(\Box \)

Now using Remark 4.4 and Lemma 4.6 we can prove that the spaces \(H_{E}^\infty \) are perfect spaces.

Theorem 4.7 \(H_{E}^\infty \) is a perfect space.

Proof From the definition we always have \(H_{E}^\infty \subseteq [\widehat{H}_E^\infty]^\wedge \). We will prove the other direction. Let \(w \in [\widehat{H}_E^\infty]^\wedge \), \(w = (w_j)_{j \in \mathbb{N}} \) and \(w_j \in \mathbb{C}^{d_j} \). Define

\[
\phi = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} w_{jl} e_{jl}.
\]

The series is convergent and \(\phi \in \mathcal{H} \) since

\[
||\phi||_{\mathcal{H}} = \left| \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} w_{jl} e_{jl} \right|_{\mathcal{H}} \leq \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{s_0} |w_{jl}|^2 \right)^{1/2} \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{-s_0} |e_{jl}|^2 \right)^{1/2} = \left(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \lambda_j^{s_0} |w_{jl}|^2 \right)^{1/2} \left(\sum_{j=1}^{\infty} d_j \lambda_j^{-s_0} \right)^{1/2} < \infty, \tag{4.9}
\]

since \(w \in [\widehat{H}_E^\infty]^\wedge \) and using (2.1) and Lemma 4.6.
Also from the property \((e_{j,l}, e_{m,n})_{\mathcal{H}} = \delta_{jm}\delta_{ln}\), for \(j, m \in \mathbb{N}\) and \(1 \leq l \leq d_j, 1 \leq n \leq d_m\), it is obvious that \(\mathcal{F}\phi(j, l) = (\phi, e_{j,l})_{\mathcal{H}} = w_{jl}\). This gives \(||\mathcal{F}\phi(j)||_{HS} = ||w_{jl}||_{HS}\). So by Lemma 4.6,

\[
w \in [\widehat{H}_E^\infty]^\wedge \implies \sum_{j=1}^{\infty} \lambda_j^{2s} ||w_{jl}||_{HS}^2 < \infty, \quad \text{for all } s \in \mathbb{R}
\]

\[
\implies \sum_{j=1}^{\infty} \lambda_j^{2s} ||\mathcal{F}\phi(j)||_{HS}^2 < \infty,
\]

and so from Remark 4.4 we have \(w \in H_E^\infty\) which implies that \([\widehat{H}_E^\infty]^\wedge \subseteq H_E^\infty\) holds.

\[\square\]

4.2 Adjointness

Before proving the adjointness theorem we first prove the following lemma,

Lemma 4.8 Let \(v \in H_E^\infty\) and \(w \in \widehat{H}_E^\infty\). Then we have

\[
\sum_{j=1}^{\infty} ||v_j||_{HS}||w_j||_{HS} < \infty, \quad (4.10)
\]

where \(v_j = (v_{jl})_{1 \leq l \leq d_j} = \mathcal{F}v(j, l)\), and \(j \in \mathbb{N}\), and the same for \(w\). Moreover, suppose that for all \(v \in H_E^\infty\), (4.10) holds. Then we must have \(w \in \widehat{H}_E^\infty\). Also, if for all \(w \in \widehat{H}_E^\infty\), (4.10) holds, we have \(v \in H_E^\infty\).

Proof Let us assume first that

\[
\sum_{j=1}^{\infty} ||v_j||_{HS}||w_j||_{HS} < \infty,
\]

for \(v \in H_E^\infty\) or \(w \in \widehat{H}_E^\infty\). We observe that

\[
\sum_{l=1}^{d_j} |v_{jl}| |w_{jl}| \leq ||v_j||_{HS}||w_j||_{HS}.
\]

And so we have

\[
\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |v_{jl}| |w_{jl}| \leq \sum_{j=1}^{\infty} ||v_j||_{HS}||w_j||_{HS} < \infty.
\]
Now we prove the other direction. Here we will use the following inequality,
\[
\sum_{i=1}^{n} |a_i|\sum_{l=1}^{n} |b_l| = \sum_{i=1}^{n} |a_i||b_i| + \sum_{i=1}^{n} |a_i| \left(\sum_{l=1}^{n} |b_l| - |b_l| \right),
\]
for any \(a_i, b_l \in \mathbb{R}\), yielding
\[
||v_j||_{HS}||w_j||_{HS} \leq \sum_{i=1}^{d_j} |w_{ji}| \sum_{l=1}^{d_j} |v_{jl}| = \sum_{i=1}^{d_j} |v_{ji}| |w_{ji}| + \sum_{i=1}^{d_j} |w_{ji}| \left(\sum_{l=1}^{d_j} |v_{jl}| - |v_{jl}| \right). \tag{4.11}
\]

We consider the second term of the above inequality, that is,
\[
\sum_{i=1}^{d_j} |w_{ji}| \left(\sum_{l=1}^{d_j} |v_{jl}| - |v_{jl}| \right) \leq \sum_{i=1}^{d_j} |w_{ji}| \left(C d_j \lambda_j^{-s} \right), \forall s \in \mathbb{R},
\]
since \(v \in H^\infty_E\) and so \(v \in H^s_E\), \(\forall s \in \mathbb{R}\). Then we get
\[
\sum_{j=1}^{\infty} ||v_j||_{HS}||w_j||_{HS} \leq \sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}| \left(|v_{ji}| + C d_j \lambda_j^{-s} \right). \tag{4.12}
\]

Let \(|u_{ji}| = |v_{ji}| + C d_j \lambda_j^{-s}\), for \(i = 1, 2, \ldots, d_j\). Then
\[
\sum_{i=1}^{d_j} |u_{ji}|^2 = \sum_{i=1}^{d_j} |v_{ji}|^2 + \sum_{i=1}^{d_j} C^2 d_j^2 \lambda_j^{-2s} + \sum_{i=1}^{d_j} 2C d_j \lambda_j^{-s} |v_{ji}| = ||v_j||_{HS}^2 + C^2 d_j^3 \lambda_j^{-2s} + 2C d_j^2 \lambda_j^{-2s}. \tag{4.13}
\]

Then for any \(t > 0\) we have, using (4.13), that
\[
\sum_{j=1}^{\infty} \lambda_j^{2r} ||u_j||^2_{HS} = \sum_{j=1}^{\infty} \lambda_j^{2r} ||v_j||^2_{HS} + C^2 \sum_{j=1}^{\infty} \lambda_j^{2r} d_j^2 \lambda_j^{-2s} + 2C \sum_{j=1}^{\infty} \lambda_j^{2r} d_j^2 \lambda_j^{-2s} \leq \sum_{j=1}^{\infty} \lambda_j^{2r} ||v_j||^2_{HS} + C^2 \sum_{j=1}^{\infty} d_j \lambda_j^{2r+2s_0} \lambda_j^{-2s} + 2C \sum_{j=1}^{\infty} \lambda_j^{2r+2s_0} \lambda_j^{-2s}. \tag{4.14}
\]
Now since \(v \in H^\infty_E \), in particular we can have \(2s = 2t + 3s_0 \), for any \(t > 0 \), which gives, using (2.1)

\[
\sum_{j=1}^{\infty} \lambda_j^{2t} ||u_j||^2_{\text{HS}} \leq \sum_{j=1}^{\infty} \lambda_j^{2t} ||v_j||^2_{\text{HS}} + C^2 \sum_{j=1}^{\infty} d_j \lambda_j^{-s_0} + 2C \sum_{j=1}^{\infty} \lambda_j^{-s_0} < \infty.
\]

So \(u \in H^\infty_E \). Then we have for \(w \in \hat{H}^\infty_F \),

\[
\sum_{j=1}^{\infty} ||v_j||_{\text{HS}} ||w_j||_{\text{HS}} \leq \sum_{j=1}^{\infty} \sum_{i=1}^{d_j} |w_{ji}| |u_{ji}| < \infty,
\]

completing the proof.

We next prove the adjointness theorem, also recalling Definition 3.2. Let \(\mathcal{H}, \mathcal{G} \) be two Hilbert spaces and \(E \) and \(F \) be the operators defined by (2.2) corresponding to the bases \(\{ e_j \}_{j \in \mathbb{N}} \), \(\{ h_k \}_{k \in \mathbb{N}} \), respectively, where \(d_j = \dim X_j \) and \(g_k = \dim Y_k \), and \(X_j = \text{span} \{ e_j \}_{j=1}^{d_j} \), \(Y_k = \text{span} \{ h_k \}_{k=1}^{g_k} \). Also \(\mathcal{H} = \bigoplus X_j \) and \(\mathcal{G} = \bigoplus Y_k \). We denote the corresponding spaces to the operators \(E \) and \(F \) in the Hilbert space \(\mathcal{H} \) and \(\mathcal{G} \) respectively by \(\hat{H}^\infty_E \) and \(\hat{G}^\infty_F \).

Theorem 4.9 A linear mapping \(f : H^\infty_E \rightarrow G^\infty_F \) is sequential if and only if \(f \) is represented by an infinite tensor \((f_{kji}) \), \(k, j \in \mathbb{N}, 1 \leq l \leq d_j \) and \(1 \leq i \leq g_k \) such that for any \(u \in H^\infty_E \) and \(v \in \hat{G}^\infty_F \) we have

\[
\sum_{j=1}^{d_j} \sum_{l=1}^{d_j} |f_{kji}| ||F u(j, l)|| < \infty, \quad \text{for all } k \in \mathbb{N}, \ i = 1, 2, \ldots, g_k,
\]

and

\[
\sum_{k=1}^{\infty} \sum_{i=1}^{g_k} |(v_k)_i| \left| \left(\sum_{j=1}^{\infty} f_{kji} F u(j) \right) \right| < \infty.
\]

Furthermore, the adjoint mapping \(F f : \hat{G}^\infty_F \rightarrow \hat{H}^\infty_E \) defined by the formula \(F f(v) = v \circ f \) is also sequential, and the transposed matrix \((f_{kji})^t \) represents \(F f \), with \(f \) and \(F f \) related by \(\langle f(u), v \rangle_{G^\infty_F} = \langle u, F f(v) \rangle_{H^\infty_E} \).

Let us summarise the ranges for indices in the used notation as well as give more explanation to (4.16). For \(f : H^\infty_E \rightarrow G^\infty_F \) and \(u \in H^\infty_E \) we write

\[
\mathbb{C}^{g_k} \ni f(u)_k = \sum_{j=1}^{\infty} f_{kji} F u(j) = \sum_{j=1}^{d_j} \sum_{l=1}^{d_j} f_{kji} F u(j, l), \quad k \in \mathbb{N},
\]
so that

\[f_{kji} \in \mathbb{C}^{g_k}, \quad f_{kji} \in \mathbb{C}, \quad k, j \in \mathbb{N}, \quad 1 \leq l \leq d_j, \quad 1 \leq i \leq g_k, \] \tag{4.18}

and

\[\mathbb{C} \ni (f(u)_k)_i = f(u)_k i = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_{kji} \mathcal{F}u(j, l), \quad k \in \mathbb{N}, \quad 1 \leq i \leq g_k, \] \tag{4.19}

where we view \(f_{kji} \) as a matrix, \(f_{kji} \in \mathbb{C}^{g_k \times d_j} \), and the product of the matrices has been explained in (4.17).

Remark 4.10 Let us now describe how the tensor \((f_{kji})\), \(k, j \in \mathbb{N}, \quad 1 \leq l \leq d_j, \quad 1 \leq i \leq g_k\), is constructed given a sequential mapping \(f : H_E^{\infty} \to G_F^{\infty} \). For every \(k \in \mathbb{N} \) and \(1 \leq i \leq g_k \), define the family \(v_{ki} = (v_{ki})_{j \in \mathbb{N}} \) such that each \(v_{ji}^k \in \mathbb{C}^{d_j} \) is defined by

\[v_{ji}^k(l) = \begin{cases} 1, & j = k, l = i, \\ 0, & \text{otherwise.} \end{cases} \] \tag{4.20}

Then \(v_{ki}^k \in \widehat{G_F^{\infty}} \), and since \(f \) is sequential we have \(v_{ki}^k \circ f \in \widehat{H_E^{\infty}} \), and we can write \(v_{ki}^k \circ f = (v_{ki}^k \circ f)_j \in \mathbb{C}^{d_j} \). Then for each \(1 \leq l \leq d_j \) we set

\[f_{kji} := (v_{ki}^k \circ f)_j(l), \] \tag{4.21}

the \(l^{th} \) component of the vector \((v_{ki}^k \circ f)_j \in \mathbb{C}^{d_j}\). The formula (4.21) will be shown in the proof of Theorem 4.9. In particular, since for \(\phi \in H_E^{\infty} \) we have \(f(\phi) \in G_F^{\infty} \), it will be a consequence of (4.32) and (4.33) later on that

\[v_{ki}^k \circ f(\phi) = (\mathcal{F}f(\phi))(k, i) = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_{kji} \mathcal{F}\phi(j, l), \] \tag{4.22}

so that the tensor \((f_{kji})\) is describing the transformation of the Fourier coefficients of \(\phi \) into those of \(f(\phi) \).

To prove Theorem 4.9 we first establish the following lemma.

Lemma 4.11 Let \(f : H_E^{\infty} \to G_F^{\infty} \) be a linear mapping represented by an infinite tensor \((f_{kji})_{k,j \in \mathbb{N}, 1 \leq l \leq d_j, 1 \leq i \leq g_k}\) satisfying (4.15) and (4.16). Then for all \(u \in H_E^{\infty} \) and \(v \in \widehat{G_F^{\infty}} \), we have

\[\lim_{n \to \infty} \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} |(v_k)_i| \left| \left(\sum_{1 \leq j \leq n} f_{kji} \mathcal{F}u(j) \right)_i \right| = \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} |(v_k)_i| \left| \left(\sum_{j=1}^{\infty} f_{kj} \mathcal{F}u(j) \right)_i \right|. \]
Proof of Lemma 4.11 Let $u \in H^\infty_E$ and $u \approx (\mathcal{F}u(j))_{j \in \mathbb{N}}$. Define $u^n := (\mathcal{F}u^{(n)}(j))_{j \in \mathbb{N}}$ by setting

$$\mathcal{F}u^{(n)}(j) = \begin{cases} \mathcal{F}u(j), & j \leq n, \\ 0, & j > n. \end{cases}$$

Then for any $w \in \hat{H}^\infty_E$, we get $\langle u - u^n, w \rangle_{H^\infty_E} \to 0$ as $n \to \infty$. This is true since $\sum_{j=1}^\infty |\hat{u}(j) \cdot w_j| < \infty$ so that $|\langle u - u^n, w \rangle_{H^\infty_E}| \leq \sum_{j \geq n} |\hat{u}_j \cdot w_j| \to 0$ as $n \to \infty$.

Now for any $u \in H^\infty_E$ and $v \in \hat{G}^\infty_F$ and from (4.15) and (4.16) we have

$$\langle f(u), v \rangle_{G^\infty_F} = \sum_{k=1}^\infty (f(u))_k \cdot v_k = \sum_{k=1}^\infty \left(\sum_{j=1}^\infty f_{kj} \mathcal{F}u(j) \right) \cdot v_k$$

$$= \sum_{k=1}^\infty \sum_{j=1}^{\infty} \sum_{\ell=1}^{d_j} \sum_{i=1}^{g_k} f_{kj\ell i} \mathcal{F}u(j, \ell) (v_k)_i = \sum_{j=1}^\infty \sum_{\ell=1}^{d_j} \mathcal{F}u(j, \ell) \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} f_{kj\ell i} (v_k)_i$$

$$= \sum_{j=1}^\infty \sum_{\ell=1}^{d_j} \mathcal{F}u(j, \ell) \sum_{k=1}^{\infty} f_{kj\ell} \cdot v_k = \sum_{j=1}^\infty \mathcal{F}u(j) \cdot (v \circ f)_j = \langle u, v \circ f \rangle_{H^\infty_E},$$

where

$$\mathbb{C}^{d_j} \ni (v \circ f)_j = \left\{ \sum_{k=1}^{\infty} f_{kj\ell} \cdot v_k \right\}_{\ell=1}^{d_j}, \quad j \in \mathbb{N},$$

and

$$v \circ f = \left\{ (v \circ f)_j \right\}_{j=1}^\infty.$$
Then from (4.15) and (4.16) we have \(\langle u, (v \circ f) \rangle \leq \infty \), and since \(H^\infty_E \) is perfect, we have for any \(u \approx (\mathcal{F}u(j))_{j \in \mathbb{N}} \in H^\infty_E \) that the series \(\sum_{j=1}^{\infty} |(v \circ f)_j \cdot \mathcal{F}u(j)| \) is convergent. So then \(v \circ f \in \widehat{H^\infty_E} \). Then we have

\[
\langle f(u) - f(u^n), v \rangle_{G^\infty_F} = \langle u - u^n, v \circ f \rangle_{H^\infty_E} \to 0
\]
as \(n \to \infty \). Therefore,

\[
\langle f(u), v \rangle_{G^\infty_F} = \lim_{n \to \infty} \langle f(u^n), v \rangle_{G^\infty_F},
\]
for all \(u \in H^\infty_E \) and \(v \in \widehat{G^\infty_F} \). Hence for any \(u \in H^\infty_E \) and \(v \in \widehat{G^\infty_F} \) we have

\[
\lim_{n \to \infty} \sum_{k=1}^{\infty} v_k \cdot \left(\sum_{1 \leq j \leq n} f_{kj} \mathcal{F}u(j) \right) = \sum_{k=1}^{\infty} v_k \cdot \left(\sum_{j=1}^{\infty} f_{kj} \mathcal{F}u(j) \right),
\]
that is,

\[
\lim_{n \to \infty} \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} (v_k)_i \left(\sum_{1 \leq j \leq n} f_{kj} \mathcal{F}u(j) \right)_i = \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} (v_k)_i \left(\sum_{j=1}^{\infty} f_{kj} \mathcal{F}u(j) \right)_i.
\]

Now we will use the fact that if \(u \in H^\infty_E \) then \(|u| \in H^\infty_E \) where \(|u| = (\mathcal{F}|u|)_j \in \mathbb{R}^{d_j} \), with

\[
\mathcal{F}|u|_j := \begin{bmatrix} |\mathcal{F}u(j, 1)| \\ |\mathcal{F}u(j, 2)| \\ \vdots \\ |\mathcal{F}u(j, d_j)| \end{bmatrix},
\]
in view of Theorem 4.7. The same is true for the dual space \(\left[G^\infty_F \right]^\wedge \). So then this argument gives

\[
\lim_{n \to \infty} \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} (v_k)_i \left| \left(\sum_{1 \leq j \leq n} f_{kj} \mathcal{F}u(j) \right)_i \right| = \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} (v_k)_i \left| \left(\sum_{j=1}^{\infty} f_{kj} \mathcal{F}u(j) \right)_i \right|.
\]
The proof is complete. \(\square \)

Remark 4.12 This proof does not require sequentiality and it can be used to improve the argument in [6, Theorem 4.7].
Proof of Theorem 4.9 Let us assume first that the mapping \(f : H_E^\infty \to G_F^\infty \) can be represented by \(f = (f_{kji})_{k,j \in \mathbb{N}, 1 \leq l \leq d_j, 1 \leq i \leq g_k} \), an infinite tensor such that

\[
\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} |f_{kji}| |F(j, l)| < \infty, \quad \text{for all } k \in \mathbb{N}, \ i = 1, 2, \ldots, g_k, \tag{4.24}
\]

and

\[
\sum_{k=1}^{\infty} \sum_{i=1}^{g_k} |(v_k)_i| \left| \sum_{j=1}^{\infty} f_{kj} F(j) \right|_i < \infty \tag{4.25}
\]

hold for all \(u \in H_E^\infty \) and \(v \in \widehat{G_F^\infty} \).

Let \(F u_1 = (F u_1(p))_{p \in \mathbb{N}} \) be such that for some \(j, l \) where \(j \in \mathbb{N}, 1 \leq l \leq d_j \), we have

\[
F u_1(p, q) = \begin{cases}
1, & p = j, \ q = l, \\
0, & \text{otherwise}.
\end{cases}
\]

Then \(u_1 \in H_E^\infty \) so \(f u_1 = f(u_1) \in G_F^\infty \) and

\[
(f u_1)_k = \sum_{p=1}^{\infty} f_{kp} F u_1(p) = \sum_{p=1}^{\infty} \sum_{q=1}^{d_p} f_{kpq} F u_1(p, q) = \sum_{q=1}^{d_j} \sum_{j=1}^{\infty} f_{kjq} F u_1(j, q) = f_{kjl} \in \mathbb{C}^{g_k}. \tag{4.26}
\]

We now first show that

\[
\mathcal{F}(f u)(k) = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \overline{f}_{kjl} F(j, l),
\]

where \(f_{kji} \in \mathbb{C} \) for each \(k, j \in \mathbb{N}, 1 \leq l \leq d_j \) and \(1 \leq i \leq g_k \). The way in which \(f \) has been defined we have

\[
(f u)_k = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \overline{f}_{kjl} F(j, l), \quad f_{kjl} \in \mathbb{C}^{g_k}.
\]
Also since $u \in H_\mathbb{E}^\infty$, from our assumption we have $fu \in G_\mathbb{F}^\infty$ and $fu \approx (\mathcal{F}(fu)(j))_{j \in \mathbb{N}}$, so that $(fu)_k \approx \mathcal{F}(fu)(k)$.

We can then write $\mathcal{F}(fu)(k) = \sum_{j=1}^\infty \sum_{l=1}^{d_j} f_{kjli} \mathcal{F}u(j, l)$. Since we know that $v \in [G_\mathbb{F}^\infty]^{\wedge}$ and $fu \in G_\mathbb{F}^\infty$, we have

$$\begin{align*}
\sum_{k=1}^\infty \sum_{i=1}^{g_k} |(v_k)_i| |(\mathcal{F}(fu)(k))_i| &= \sum_{k=1}^\infty \sum_{i=1}^{g_k} |(v_k)_i| \sum_{j=1}^\infty \sum_{l=1}^{d_j} f_{kjli} |\mathcal{F}u(j, l)| < \infty.
\end{align*}$$

In particular using the definition of u_1 and (4.26) we get

$$\begin{align*}
\sum_{k=1}^\infty \sum_{i=1}^{g_k} |(v_k)_i| \sum_{p=1}^\infty \sum_{q=1}^{d_p} f_{kpqi} |\mathcal{F}u_1(p, q)| &= \sum_{k=1}^\infty \sum_{i=1}^{g_k} |(v_k)_i| |f_{kjli}| < \infty, \quad (4.27)
\end{align*}$$

for any $j \in \mathbb{N}$ and $1 \leq l \leq d_j$.

Now for any $u \in H_\mathbb{E}^\infty$ consider

$$J = \sum_{j=1}^\infty \sum_{l=1}^{d_j} \sum_{k=1}^{g_k} |(v_k)_i| f_{kjli} |\mathcal{F}u(j, l)|.$$

Then we consider the series

$$I_n := \sum_{1 \leq j \leq n} \sum_{l=1}^{d_j} \sum_{k=1}^{g_k} |\sum_{i=1}^{d_j} (v_k)_i f_{kjli} |\mathcal{F}u(j, l)|,$$

so that we have

$$I_n = \sum_{1 \leq j \leq n} \sum_{l=1}^{d_j} \sum_{k=1}^{g_k} |\sum_{i=1}^{d_j} (v_k)_i f_{kjli} |\mathcal{F}u(j, l)|$$

$$= \sum_{1 \leq j \leq n} \sum_{l=1}^{d_j} \sum_{k=1}^{g_k} |\sum_{i=1}^{d_j} (v_k)_i f_{kjli} |\mathcal{F}u(j, l)|.$$

Let $\epsilon = (\epsilon_i)_{1 \leq i \leq d_k}, k \in \mathbb{N}$, be such that $\epsilon_i \in \mathbb{C}$ and $|\epsilon_i| \leq C$, for all i and such that

$$|\sum_{k=1}^\infty \sum_{i=1}^{g_k} (v_k)_i f_{kjli} |\mathcal{F}u(j, l)| = \sum_{k=1}^\infty \sum_{i=1}^{g_k} (v_k)_i f_{kjli} |\mathcal{F}u(j, l)| \epsilon_i.$$
Then

\[I_n = \sum_{1 \leq j \leq n} \sum_{l=1}^{d_j} \sum_{k=1}^{g_k} (v_k)_i f_{kjli} \mathcal{F}u(j, l) \epsilon_i \leq C \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} \sum_{l=1}^{d_j} \left| (v_k)_i \right| \sum_{1 \leq j \leq n} \sum_{l=1}^{d_j} f_{kjli} \mathcal{F}u(j, l) \epsilon_i. \quad (4.28) \]

It follows from Lemma 4.11 that

\[\lim_{n \to \infty} \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} \left| (v_k)_i \right| \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_{kjli} \mathcal{F}u(j, l) \epsilon_i = \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} \left| (v_k)_i \right| \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_{kjli} \mathcal{F}u(j, l) \epsilon_i < \infty. \]

Then

\[J = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \sum_{k=1}^{\infty} \sum_{i=1}^{g_k} (v_k)_i f_{kjli} \mathcal{F}u(j, l) \epsilon_i < \infty. \quad (4.29) \]

So we proved that if \((f_{kjli})\) satisfies

- \(\sum_{j=1}^{\infty} \sum_{l=1}^{d_j} \left| f_{kjli} \right| \mathcal{F}u(j, l) \epsilon_i < \infty, \)
- \(\sum_{k=1}^{g_k} \left| (v_k)_i \right| \left(\sum_{j=1}^{\infty} f_{kj} \mathcal{F}u(j) \right) \epsilon_i < \infty, \)

then for any \(u \in H^\infty_E\) and \(v \in \left[G^\infty_F \right]^\wedge\) we have from (4.27) and (4.29), respectively, that

(i) \(\sum_{k=1}^{\infty} \sum_{i=1}^{g_k} \left| (v_k)_i \right| \left| f_{kjli} \right| < \infty, \)

(ii) \(\sum_{j=1}^{d_j} \sum_{l=1}^{\infty} \sum_{k=1}^{g_k} (v_k)_i f_{kjli} \left| \mathcal{F}u(j, l) \right| < \infty. \)

Now recall that for \(f : H^\infty_E \to G^\infty_F\) we have

\[(f(u))_k = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_{kjli} \mathcal{F}u(j, l), \]
for any \(u \in H_E^{∞} \), then for any \(v \in \left[G_F^{∞} \right]^{^\wedge} \), the composed mapping \(v \circ f : H_E^{∞} \to \mathbb{C} \) is given by

\[
(v \circ f)(u) = \sum_{k=1}^{∞} v_k \cdot (f(u))_k = \sum_{k=1}^{∞} \sum_{i=1}^{g_k} (v_k)_i \left(\sum_{j=1}^{d_j} \sum_{l=1}^{g_k} f_{kjl} \mathcal{F} u(j, l) \right)
\]

\[
= \sum_{j=1}^{∞} \sum_{l=1}^{d_j} \left(\sum_{k=1}^{∞} \sum_{i=1}^{g_k} (v_k)_i f_{kjl} \right) \mathcal{F} u(j, l).
\]

(4.30)

So by (ii) we get that

\[
|(v \circ f)(u)| \leq \sum_{j=1}^{∞} \sum_{l=1}^{d_j} \left| \sum_{k=1}^{∞} \sum_{i=1}^{g_k} (v_k)_i f_{kjl} \right| |\mathcal{F} u(j, l)| < ∞.
\]

So \(\mathcal{F} f(v) = (\mathcal{F} f(v))_{jl} \in \mathbb{C}_{1 \leq l \leq d_j} \), with \(\mathcal{F} f(v)_{jl} = \sum_{k=1}^{∞} \sum_{i=1}^{g_k} (v_k)_i f_{kjl} \in H_E^{∞} \) (from the definition of \(\widehat{H_E}^{∞} \)), that is \(f \) is sequential. And then \(\langle f(u), v \rangle_{G_F^{∞}} = \langle u, \mathcal{F} f(v) \rangle_{H_E^{∞}} \) is also true.

Now to prove the converse part we assume that \(f : H_E^{∞} \to G_F^{∞} \) is sequential. We have to show that \(f \) can be represented as \(f \approx (f_{kji})_{k,j \in \mathbb{N}, 1 \leq i \leq g_k} \) and satisfies (4.15) and (4.16).

Define for \(k, i \) where \(k \in \mathbb{N} \) and \(1 \leq i \leq g_k \), the sequence \(u^{ki} = (u^{ki}_j)_{j \in \mathbb{N}} \) such that \(u^{ki}_j \in \mathbb{C}^{d_j} \) and \(u^{ki}_j(l) = \mathcal{F} u^{ki}(j, l) \), given by

\[
u^{ki}_j(l) = \mathcal{F} u^{ki}(j, l) = \begin{cases} 1, & j = k, l = i, \\ 0, & \text{otherwise.} \end{cases}
\]

Then \(u^{ki} \in \left[G_F^{∞} \right]^{^\wedge} \). Now since \(f \) is sequential we have \(u^{ki} \circ f \in \mathcal{F} H_E^{∞} \) and

\[
 u^{ki} \circ f = \left((u^{ki} \circ f)_j \right)_{j \in \mathbb{N}}, \text{ where } (u^{ki} \circ f)_j \in \mathbb{C}^{d_j}.
\]

We denote \(u^{ki} \circ f = \left(f^{ki}_j \right)_{j \in \mathbb{N}} \), where \(f^{ki}_j = (u^{ki} \circ f)_j \). Then \((f^{ki}_j)_{j \in \mathbb{N}} \in \widehat{H_E}^{∞} \) and \(f^{ki}_j \in \mathbb{C}^{d_j} \).

Then for any \(\phi \approx (\mathcal{F} \phi(j))_{j \in \mathbb{N}} \in H_E^{∞} \) we have

\[
\sum_{j=1}^{∞} \sum_{l=1}^{d_j} |f^{ki}_j| |\mathcal{F} \phi(j, l)| < ∞.
\]

(4.31)

For \(\phi \in H_E^{∞} \) we can write \(f(\phi) \in G_F^{∞} \). We can also write

\[
f(\phi) = (\mathcal{F} f(\phi)(p))_{p \in \mathbb{N}}.
\]
So
\[
u^{ki} \circ f(\phi) = \sum_{j=1}^{\infty} u_j^{ki} \mathcal{F}(f(\phi))_j
\]
\[= \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} u_j^{ki} \mathcal{F}(f(\phi))(j, l)
\]
\[= (\mathcal{F} f(\phi))(k, i) \text{ (from the definition of } u^{ki}). \tag{4.32}
\]

We have \(u^{ki} \circ f = (f^{ki}) \in \hat{H}^\infty_E\), so
\[
(u^{ki} \circ f)(\phi) = \sum_{j=1}^{\infty} f_j^{ki} \mathcal{F}\phi(j)
\]
\[= \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_j^{ki} \mathcal{F}\phi(j, l). \tag{4.33}
\]

From (4.32) and (4.33) we have \((\mathcal{F} f(\phi))(k, i) = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_j^{ki} \mathcal{F}\phi(j, l)\).

Hence \((f(\phi))_{ki} = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} f_j^{ki} \mathcal{F}\phi(j, l), \ k \in \mathbb{N}, \text{ and } 1 \leq i \leq g_k\), that is \(f\) is represented by the tensor \(\{(f_j^{ki})_{jl}\}_{k,j\in\mathbb{N},1\leq i\leq g_k,1\leq l\leq d_j}\). If we denote \(f_j^{ki}\) by \(f_j^{ki} = f_{kjli}\), we can say that \(f\) is represented by the tensor \((f_{kjli})_{k,j\in\mathbb{N},1\leq i\leq d_j,1\leq l\leq g_k}\). Also let \(v \in \hat{G}^\infty_F\). Since \(f(\phi) \in G^\infty_F\) for \(\phi \in H^\infty_E\), then from the definition of \(\hat{G}^\infty_F\) we have
\[
\sum_{k=1}^{\infty} \sum_{i=1}^{g_k} \sum_{j=1}^{d_j} |(v_k)_i| \sum_{j=1}^{d_j} f_{kjli} \mathcal{F}\phi(j, l) < \infty.
\]

This completes the proof of Theorem 4.9. \(\square\)

Remark 4.13 We would like to thank Prof Hans Feichtinger for pointing out that, using a different approach, Theorem 4.9 can also be seen as a consequence of the following Theorem 4.14. We also thank him for the proof of Theorem 4.14.

Theorem 4.14 Let \(X, Y\) be solid BK-spaces over \(I\) and \(J\) respectively. Assume that the finite sequences are dense in \((X, \|\cdot\|_X)\). Then a continuous linear mapping \(T : X \to Y\) can be represented as a matrix multiplication by a matrix \(A = (a_{r,s})\), given in the usual way as \(a_{r,s} := (T(e_s))_r\) if and only if the rows of \(A\) belong to \(\mathbb{K}^\alpha\) and the sequence \(A \ast x \in Y\) for any \(x \in \mathbb{X}\).
We identify $x = \sum_{r \in I} x_r e_r \in \mathbb{X}$ with its vector of coordinates $(x_r)_{r \in I}$ and correspondingly $y = \sum_{s \in J} y_s b_s$ with $(y_s)_{s \in J}$, for $y = T(x)$, where $(e_r)_{r \in I}$ and $(b_s)_{s \in J}$ are the unit vectors over the corresponding index sets.

Proof By the assumption the unit vectors form a basis for \mathbb{X}, i.e. $x = \sum_{r \in I} x_r e_r$ and by the continuity of T there exists a convergent series in $(\mathbb{Y}, || \cdot ||_\mathbb{Y})$:

$$T(x) = \sum_{r \in I} x_r T(e_r).$$

Define a matrix $\Lambda = (a_{r,s})$ as claimed, noting that the coordinates of $T(x)$ depend continuously on y, and is given by, $y_s = \sum_{r \in I} x_r (T(e_r))_s$, that is,

$$y = T(x) \implies y = A \ast x.$$

Now the property that the ‘rows’ of A belong to \mathbb{X}^α arises from the fact that $\sigma_s : x \rightarrow y_s$ (for $s \in J$, fixed) is a continuous linear functional on $(\mathbb{X}, || \cdot ||_\mathbb{X})$. If finite sequences are dense in $(\mathbb{X}, || \cdot ||_\mathbb{X})$ one has $\mathbb{X}' = \mathbb{X}^\alpha$, since $\sigma_s(X) = \sum_{r \in I} x_r \sigma_x(e_r)$, with $z = (\sigma_x(e_i))_{i \in I} \in \mathbb{X}^\alpha$.

Conversely, assume that the rows of A belong to \mathbb{X}^α. Then the linear mapping $x \rightarrow A \ast x$ is well defined mapping from $(\mathbb{X}, || \cdot ||_\mathbb{X})$ to $\mathbb{C}^\mathbb{Z}$, the space of all \mathbb{C}--sequences with coordinatewise convergence. By the assumption we have $T(x):=A \ast x \in \mathbb{Y}$ for each $x \in \mathbb{X}$. By closed graph theorem T is a bounded linear operator from $(\mathbb{X}, || \cdot ||_\mathbb{X})$ to $(\mathbb{Y}, || \cdot ||_\mathbb{Y})$. Then proving the match between the operator T and A is a bijection, one gets the result.

\[\Box\]

5 Applications to Universality

In this section we give an application of the developed analysis to the universality problem. We start with the spaces of smooth functions, and then make some remarks how the same arguments can be extended to the Komatsu classes setting from [5].

First we recall the notations:

Let \mathcal{H}, \mathcal{G} be two Hilbert spaces and let E and F be the operators corresponding to the bases $(e_j)_{j \in \mathbb{N}}$, $(h_k)_{k \in \mathbb{N}}$, as in (2.2), where $d_j = \dim X_j$ and $g_k = \dim Y_k$, and $X_j = \text{span}(e_j)_{i=1}^{d_j}$, $Y_k = \text{span}(h_{ki})_{i=1}^{g_k}$. Also $\mathcal{H} = \bigoplus_{j \in \mathbb{N}} X_j$ and $\mathcal{G} = \bigoplus_{k \in \mathbb{N}} Y_k$.

We denote the spaces of smooth type functions corresponding to the operators E and F in the Hilbert space \mathcal{H} and \mathcal{G}, respectively, by $H^\infty_{E_F}$ and $G^\infty_{F_F}$.

The main application of Theorem 4.9 will be in the setting when X, Y are compact manifold without boundary, where $\mathcal{H} = L^2(X)$ and $H^\infty_E = C^\infty(X)$, and $\mathcal{G} = L^2(Y)$, $G^\infty_F = C^\infty(Y)$.

Using Theorem 4.9 we prove the universality of the spaces of the smooth type functions, $C^\infty(X)$, where we can write

$$f \in C^\infty(X) \iff \forall N \forall C_N : |\mathcal{F} f(j, k)| \leq C_N(1 + \lambda_j)^{-N} \text{ for all } j, k.$$
Further details of such spaces can be found in [9]. In particular, if E is an elliptic pseudo-differential operator of positive order, then this is just the usual space of smooth functions on X.

Definition 5.1 Let E be a self-adjoint, positive operator. A mapping $f : X \to W$ from the compact manifold X to a sequence space W, is said to be a H^∞_E-mapping if for any $u \in \hat{W}$, the composed mapping $u \circ f : X \to \mathbb{C}$ belongs to H^∞_E.

Next we prove the universality of the spaces of smooth type functions.

Theorem 5.2 Let X be a compact manifold.

(i) The delta mapping $\delta : X \to \hat{H}^\infty_E$ defined by

$$\delta(x) = \delta_x,$$

and

$$\delta_x(\phi) = \langle \delta_x, \phi \rangle_{H^\infty_E} = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} F_\phi(j, l)(\delta_x)_{jl} = \phi(x), \quad \text{forall} \quad \phi \in H^\infty_E, \quad x \in X,$$

is a H^∞_E-mapping.

(ii) If $\tilde{g} : H^\infty_E \to G^\infty_F$ is a sequential linear mapping, then the composed mapping $\tilde{g} \circ \delta : X \to G^\infty_F$ is a H^∞_E-mapping.

(iii) For any H^∞_E-mapping $f : X \to \hat{G}^\infty_F$, there exists a unique sequential linear mapping $F f : \hat{H}^\infty_E \to \hat{G}^\infty_F$ such that $f = F f \circ \delta$.

Proof (i) Recall that $\hat{H}^\infty_E = \bigcup_{s \in \mathbb{R}} H^{-s}_E = [H^\infty_E]'$.

Let $v \in [H^\infty_E]' = H^\infty_E$. We define the composed mapping

$$v \circ \delta_x = \langle \delta_x, v \rangle_{H^\infty_E} = \sum_{j=1}^{\infty} \sum_{l=1}^{d_j} v_{jl}(\delta_x)_{jl} = v(x) \quad (\text{by definition of } \delta).$$

This is well-defined since $v \in H^\infty_E$ and $\delta_x \in [H^\infty_E]' = \hat{H}^\infty_E$. Also since $v \in H^\infty_E$, we see that $v \circ \delta \in H^\infty_E$ and that implies δ is a H^∞_E-mapping.

(ii) Let $u \in \hat{G}^\infty_F = [G^\infty_F]'$. From the definition of H^∞_E-mapping we have to show that $u \circ \tilde{g} \circ \delta \in H^\infty_E$.

Now by given condition $\tilde{g} : [H^\infty_E]' \to G^\infty_F$, so we have $u \circ \tilde{g} \in [H^\infty_E]''$.

Here we claim that $[H^\infty_E]'' = H^\infty_E$.

Note that $H^\infty_E \subseteq [H^\infty_E]''$.

Recall that, $[H^\infty_E]' = \bigcup_{s \in \mathbb{R}} H^{-s}_E$ and so for any $s \in \mathbb{R}$,

$$H^{-s}_E \subseteq [H^\infty_E]' \Rightarrow [H^\infty_E]'' \subseteq [H^{-s}_E]' \Rightarrow [H^\infty_E]'' \subseteq H^\infty_E.$$
Since the above is true for any \(s \in \mathbb{R} \), we have \([H_E^\infty]' \subseteq \bigcap_{s \in \mathbb{R}} H_E^s = H_E^\infty \) and this gives \([H_E^\infty]' = H_E^\infty \).

Then \(u \circ \tilde{g} \in H_E^\infty \). Using same argument as in the proof of (i) and from the definition of the mapping \(\delta \) we have \(u \circ \tilde{g} \circ \delta = u \circ \tilde{g}(x) \) and \(u \circ \tilde{g} \circ \delta \) belongs to \(H_E^\infty \).

So from Definition 5.1, \(\tilde{g} \circ \delta \) is a \(H_E^\infty \)-mapping.

(iii) **Existence of** \(\mathcal{F} f : \hat{H}_E^\infty \to G_F^\infty \)

By hypothesis, \(f : X \to G_F^\infty \) is a \(H_E^\infty \)-mapping so that for any \(v \in G_F^\infty \), \(v \circ f \in H_E^\infty \). A sequential linear mapping \(\tilde{f} : G_F^\infty \to H_E^\infty \) can be defined by \(\tilde{f}(v) = v \circ f \), and \(v(f(x)) = \langle f(x), v \rangle_{G_F^\infty} \).

Hence by Theorem 4.9 there is an adjoint mapping, we denote it by \(\mathcal{F} f \), where \(\mathcal{F} f : \hat{H}_E^\infty \to \hat{[G_F^\infty]} \) is a sequential mapping. By the definition of the adjoint mapping \(\mathcal{F} f \) we have

\[\langle u, \tilde{f}(v) \rangle_{H_E^\infty} = \langle \mathcal{F} f \circ u, v \rangle_{G_F^\infty}, \ u \in [H_E^\infty]' \],

where \(\langle \cdot, \cdot \rangle \) is the bilinear function on \(H_E^\infty \times \hat{H}_E^\infty \) defined in Sect. 3. The above can be written as

\[\langle u, v \circ f \rangle_{H_E^\infty} = \langle \mathcal{F} f \circ u, v \rangle_{G_F^\infty}, \ u \in \hat{H}_E^\infty. \]

For \(u = \delta_x \), this gives

\[\langle \mathcal{F} f \circ \delta_x, v \rangle_{G_F^\infty} = \langle \delta_x, v \circ f \rangle_{H_E^\infty} = (v \circ f)(x) = v(f(x)) = \langle f(x), v \rangle_{G_F^\infty}, \]

for any \(v \in G_F^\infty \). This proves \(f = \mathcal{F} f \circ \delta \). **Uniqueness of** \(\mathcal{F} f : \hat{H}_E^\infty \to G_F^\infty \).

Suppose \(\mathcal{F} f \circ \delta = f = 0 \). We have to show that \(\mathcal{F} f = 0 \) on \(\hat{H}_E^\infty \). Since \(\mathcal{F} f \) is sequential, there exists \(g : G_F^\infty \to H_E^\infty \) such that

\[\langle \mathcal{F} f \circ u, v \rangle_{G_F^\infty} = \langle u, g \circ v \rangle_{H_E^\infty}. \]

Take \(u = \delta_x \in \hat{H}_E^\infty \), then

\[\langle \mathcal{F} f \circ \delta_x, v \rangle_{G_F^\infty} = \langle \delta_x, g \circ v \rangle_{H_E^\infty} = g(v(x)) = 0 \]

for any \(v \in G_F^\infty \), that is, \(g = 0 \) on \(G_F^\infty \). From \(\langle \mathcal{F} f \circ u, v \rangle_{G_F^\infty} = 0 \) for any \(v \in G_F^\infty \), we get \(\mathcal{F} f \circ u = 0 \) for any \(u \in \hat{H}_E^\infty \), that is \(\mathcal{F} f = 0 \) on \(\hat{H}_E^\infty \). \(\square \)

5.1 Extension to Komatsu Classes

Here we briefly outline how the analysis above can be extended to the setting of Komatsu classes from [5,6].

\(\circ \) Birkhäuser
Remark 5.3 In another work ([6]) we studied the Komatsu classes of ultra-differentiable functions $\Gamma_{\{M_k\}}(X)$ on a compact manifold X, where $M_{\{k\}}$ be a sequence of positive numbers such that

1. $M_0 = 1$,
2. $M_{k+1} \leq AH^k M_k$, $k = 0, 1, 2, \ldots$,
3. $M_{2k} \leq AH^k \min_{0 \leq q \leq k} M_q M_{k-q}$, $k = 0, 1, 2, \ldots$, for some $A, H > 0$.

In [6] we have characterised the dual spaces of these Komatsu classes and have shown that these spaces are perfect spaces, i.e., these spaces coincide with their second dual spaces. Furthermore, in [6, Theorem 4.7] we proved the following theorem for Komatsu classes of functions on a compact manifold X:

Theorem 5.4 (Adjointness Theorem) Let $\{M_k\}$ and $\{N_k\}$ satisfy conditions (M.0) – (M.3). A linear mapping $f : \Gamma_{\{M_k\}}(X) \rightarrow \Gamma_{\{N_k\}}(X)$ is sequential if and only if f is represented by an infinite tensor (f_{kjli}), $k \in \mathbb{N}_0, 1 \leq j \leq d_j$ and $1 \leq l \leq d_k$ such that for any $u \in \Gamma_{\{M_k\}}(X)$ and $v \in \Gamma_{\{N_k\}}(X)$ we have

$$\sum_{j=0}^{\infty} \sum_{l=1}^{d_j} \left| f_{kjli} \right| |\mathcal{F}u(j, l)| < \infty, \text{ for all } k \in \mathbb{N}_0, i = 1, 2, \ldots, d_k,$$

and

$$\sum_{k=0}^{\infty} \sum_{i=1}^{d_k} \left| (v_k)_i \right| \left| \left(\sum_{j=0}^{\infty} f_{kjli}^* \right)_i \right| < \infty.$$

Furthermore, the adjoint mapping $\mathcal{F}f : \Gamma_{\{N_k\}}(X) \rightarrow \Gamma_{\{M_k\}}(X)$ defined by the formula $\mathcal{F}f(u) = v \circ f$ is sequential, and the transposed matrix $(f_{kj})^t$ represents $\mathcal{F}f$, with f and $\mathcal{F}f$ related by $\langle f(u), v \rangle = \langle u, \mathcal{F}f(v) \rangle$.

The above theorem described the tensor structure of sequential mappings on spaces of Fourier coefficients and characterised their adjoint mappings. Now in particular the considered classes include spaces of analytic and Gevrey functions (which are perfect spaces too), as well as spaces of ultradistributions, yielding tensor representations for linear mappings between these spaces on compact manifolds. Now using [6, Theorem 4.7] and the same techniques used in this paper to prove the universality of smooth functions in Theorem 5.2, on compact manifolds in Sect. 5, one also obtains the universality of the Gevrey classes of ultradifferentiable functions on compact groups (from [4]) and Komatsu classes of functions in compact manifolds. As the proof would be a repetition of those arguments, we omit it here.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Balazs, P., Gröchenig, K., Speckbacher, M.: Kernel theorems in coorbit theory. Trans. Am. Math. Soc. 6(11), 346–364 (2019)
2. Cordero, E., Nicola, F.: Kernel theorems for modulation spaces. J. Fourier Anal. Appl. 25(1), 131–144 (2019)
3. Cordero, E., Feichtinger, H.G., Luef, F.: Banach Gelfand triples for Gabor analysis. In: Pseudo-Differential Operators. volume 1949 of Lecture Notes in Mathematics, pp. 1–33. Springer, Berlin (2008)
4. Dasgupta, A., Ruzhansky, M.: Gevrey functions and ultradistributions on compact Lie groups and homogeneous spaces. Bull. Sci. Math. 138(6), 756–782 (2014)
5. Dasgupta, A., Ruzhansky, M.: Eigenfunction expansions of ultradifferentiable functions and ultradistributions. Trans. Am. Math. Soc. 368(12), 8481–8498 (2016)
6. Dasgupta, A., Ruzhansky, M.: Eigenfunction expansions of ultradifferentiable functions and ultradistributions. II. Tensor representations. Trans. Am. Math. Soc. Ser. B. 5, 81–101 (2018)
7. Delcroix, A., Hasler, M.F., Pilipović, S., Valmorin, V.: Embeddings of ultradistributions and periodic hyperfunctions in Colombeau type algebras through sequence spaces. Math. Proc. Camb. Philos. Soc. 137(3), 697–708 (2004)
8. Delgado, J., Ruzhansky, M.: Schatten classes on compact manifolds: kernel conditions. J. Funct. Anal. 267(3), 772–798 (2014)
9. Delgado, J., Ruzhansky, M.: Fourier multipliers, symbols and nuclearity on compact manifolds. J. Anal. Math. 135, 757–800 (2018)
10. Feichtinger, H.G., Gröchenig, K.: A unified approach to atomic decompositions via integrable group representations. Lect. Notes Math. 1302, 52–73 (1988)
11. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions I. J. Funct. Anal. 86(2), 307–340 (1989)
12. Feichtinger, H.G., Jakobsen, M.S.: The inner kernel theorem for a certain Segal algebra (2018)
13. Garetto, C., Ruzhansky, M.: Wave equation for sums of squares on compact Lie groups. J. Differ. Equ. 258(12), 4324–4347 (2015)
14. Gramchev, T., Pilipovic, S., Rodino, L.: Eigenfunction expansions in \(R^n \). Proc. Am. Math. Soc. 139(12), 4361–4368 (2011)
15. Köthe, G.: Topological vector spaces. I. Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer-Verlag New York Inc., New York (1969)
16. Komatsu, H.: Ultradistributions. I. Structure theorems and a characterization. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20, 25–105 (1973)
17. Komatsu, H.: Ultradistributions. II. The kernel theorem and ultradistributions with support in a submanifold. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24(3), 607–628 (1977)
18. Komatsu, H.: Ultradistributions. III. Vector-valued ultradistributions and the theory of kernels. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29(3), 653–717 (1982)
19. Pilipović, S., Scarpalezos, D.: Regularity properties of distributions and ultradistributions. Proc. Am. Math. Soc. 129(12), 3531–3537 (2001)
20. Pilipović, S., Prangoski, B.: On the convolution of Roumieu ultradistributions through the \(\epsilon \) tensor product. Monatsh. Math. 173(1), 83–105 (2014)
21. Rodino, L.: Linear Partial Differential Operators in Gevrey Spaces. World Scientific Publishing Co.Inc, River Edge (1993)
22. Ruzhansky, M., Tokmagambetov, N.: Nonharmonic analysis of boundary value problems. Int. Math. Res. Not. IMRN 12, 3548–3615 (2016)
23. Ruzhansky, M., Tokmagambetov, N.: Very weak solutions of wave equation for Landau Hamiltonian with irregular electromagnetic field. Lett. Math. Phys. 107(4), 591–618 (2017)
24. Ruzhansky, M., Tokmagambetov, N.: Nonharmonic analysis of boundary value problems without WZ condition. Math. Model. Nat. Phenom. 12(1), 115–140 (2017)
25. Ruzhansky, M., Tokmagambetov, N.: Convolution, Fourier analysis, and distributions generated by Riesz bases. Monatsh. Math. 187, 147–170 (2018)
26. Seeley, R.T.: Eigenfunction expansions of analytic functions. Proc. Am. Math. Soc. 21, 734–738 (1969)
27. Taguchi, Y.: Fourier coefficients of periodic functions of Gevrey classes and ultradistributions. Yokohama Math. J. 35, 51–60 (1987)
28. Taguchi, Y.: The universality of the spaces of ultradistributions \(C_s(T)^\wedge, C_s(T)^\wedge (0 < s \leq \infty), C_0(T)^\wedge \) and \(\text{Exp}(C^\infty)^\wedge \). Tokyo J. Math. 10(2), 391–401 (1987)
29. Vucković, D., Vindas, J.: Eigenfunction expansions of ultradifferentiable functions and ultradistributions in \(\mathbb{R}^n \). J. Pseudo-Differ. Oper. Appl. 7(4), 519–531 (2016)
30. Waelbroeck, L.: Differentiable mappings into b-spaces. J. Funct. Anal. 1, 409–418 (1967)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.