Carrier-transport-path-induced switching parameter fluctuation in oxide-based resistive switching memory

Nianduan Lu, Ling Li, Pengxiao Sun, Ming Wang, Qi Liu, Hangbing Lv, Shiping Long, Writam Banerjee and Ming Liu

Institute of Microelectronics, Chinese Academy of Sciences, No.3, Bei-Tu-Cheng West Road, Beijing 100029, People’s Republic of China
E-mail: lingli@ime.ac.cn and liuming@ime.ac.cn

Keywords: oxide-based resistive switching memory, first-principles calculations, switching parameter fluctuation, carrier transport path

Abstract
A key challenge in resistive switching memory is to reduce the switching parameter fluctuation, which always affects the stability and reliability of an RS device. Numerous methods have been carried out for improving the fluctuation of the switching parameter. However, because the physical nature of the switching parameter fluctuation is, to date, not well understood, a universal identification of the switching parameter fluctuation still has not be achieved. Based on the activation energy of carrier transport from the first-principles calculations, we present a physical model. This proposed model is considering the macroscopic fluctuating I–V curve and material microstructure to analyze the characteristics of carrier transport and the origin of switching parameter fluctuations. The proposed model may specially identify the defect energy level and quantify the distribution of the switching parameter. The model provides possible clues for improving the uniformity of the switching parameter as well.

1. Introduction
Oxide-based resistive switching memories have received tremendous attention from both academic and industrial communities due to the excellent memory performance [1–5]. The resistance changing behavior in oxide-based resistive switching (RS) memory is widely accepted to relate to the formation and rupture of the conducting filament (CF) [6, 7]. Generally, the percolation of some kinds of defects, such as interstitial defects and oxygen vacancies [8, 9], contributes to the formation of CF. Among several kinds of defects in oxide-based RS memory, oxygen vacancies are considered to dominate the generation of conducting paths and thereby remarkably affect carrier transport properties [10–12]. To clarify how oxygen vacancies influence the transport property, various experimental and theoretical efforts have been employed [13, 14]. In addition, after the formation of CF the carrier transport in oxide-based RS memory is based on hopping between oxygen vacancies, which may be described effectively in terms of activation energy [15, 16]. Numerous theories, such as Monte Carlo and trap-assisted tunneling (TAT) [17, 18], have recently been performed to investigate carrier transport; however, the effect of the oxygen vacancy type and activation energy on the carrier transport has never been addressed.

Since the formation of CF is random and the charge carriers may not move through the same path for every switching cycle [19], the uniformity of switching parameters for each switching cycle will be very poor. For the oxide-based RS memory, a key challenge is to reduce the switching parameter fluctuation which greatly affects the stability and reliability of the RS device [20]. Many methods, such as inserting thin interfacial layers between the switching layer and electrode [21], embedding nanocrystals into the switching layer [22], and doping [23], have been carried out for improving the uniformity of the switching parameter. However, a universal identification of the switching parameter fluctuation could not be achieved, because the physical nature of the switching parameter is still ambiguous. Progress in understanding the physics behind the carrier transport in CF and hence the switching parameter fluctuation is imperative for design of high-performance and reliable devices.
Here, on the basis of the activation energy of carrier transport from the first-principles calculations, we will present a physical model connecting macroscopic fluctuating I–V curve and material microstructure in oxide-based RS memory to investigate the characteristics of carrier transport and the origin of the switching parameter fluctuation. More importantly, we will firstly analyze the effect of activation energy of carrier transport and oxygen vacancy type on the carrier transport in CF. Some guidelines reducing the fluctuation of switching parameter are also provided.

2. Experimental

All measured RS devices (Pt/Ti/HfO$_2$/Pt, Pt/TiN/ZrO$_2$/Pt, Pt/Cu/WO$_3$/Pt) in this work had a dimension of $10 \times 10 \mu$m, which were obtained by standard nanofabrication process. The RS layer (HfO$_2$, ZrO$_2$, WO$_3$) was deposited by atomic layer deposition and the other layers were deposited by sputtering. The schematic structure of the sample is similar as [24].

The current–voltage (I–V) characteristics were carried out by the Keithley 4200-SCS semiconductor characterization system. During all the measurements, the bias voltage was applied on the top electrode while the Pt bottom electrode was grounded.

3. Model

To illustrate the carrier transport in CF and the switching parameter fluctuation, the HfO$_2$-based RS device is firstly used as an example. It is well known that, below 2000 K, hafnia (HfO$_2$) is monoclinic C2_1/c phase with space group p2$_1$/c [25] and only includes two types of oxygen vacancies [26, 27], here marked as VO$_3$ and VO$_4$, respectively. Generally speaking, the activation energy can be thought of as the height of the energy barrier. Here it will be shown that the activation energy of carrier transport for each oxygen vacancy, which is defined to be the energy that carrier leaves the defect energy level of oxygen vacancy for the conduction band, can be determined as the energy gained when the electron from the bottom of the conduction band is trapped at the defect as follows [26, 27]

$$E_a = E_p^{-1} + E_D^0 - E_p^0 - E_D^{-1} + \delta,$$

where E_p^0 and E_p^{-1} are the total energy of perfect supercell with charge 0 and -1, respectively, E_D^0 and E_D^{-1} are the energy of defect supercell with charge 0 and -1, respectively, δ is the correction for the position of the conduction band bottom which is equal to the difference between the experimental and calculated band gap. For various oxygen vacancies, the activation energy is different due to the different height of the energy barrier.

To obtain the total energy with a perfect cell and defect cell, we performed the first-principles calculations with the CASTEP code [28]. Since DFT-GGA usually underestimates band gaps [29], in this work the electronic interactions are described within the GGA + U formalism for the HfO$_2$ cell [13]. The total energy of the perfect supercell and defect supercell is calculated with the PW91 version of GGA + U, respectively. The detailed calculation process can be found in our previous work [30].

Figure 1 shows the calculated density of states (DOS) for monoclinic HfO$_2$ (m-HfO$_2$) phase with perfect and defect cell, respectively. Compared with the DOS of the perfect cell in figure 1(a), the calculated DOS of the defect cell obviously shifts toward the depth energy level, and a new DOS peak has arisen near the Fermi level (see in figures 1(b) and (c)). The results suggest that oxygen vacancy may result in the generation of new DOS in the system, which could well improve the carrier transport properties in oxide-based RS memory. Otherwise, according to the result of first-principles calculations and connecting equation (1), the activation energy of carrier transport in each oxygen vacancy can be calculated, i.e. $E_a = 1.233$ eV in VO$_3$ and $E_a = 1.341$ eV in VO$_4$.

Since the activation energy can be thought of as the height of the energy barrier, the smaller the activation energy, the shallower the energy level of oxygen vacancy, i.e. the energy level of VO$_3$ is shallower than the energy level of VO$_4$.

According to the hopping theory, conduction is the result of many series of hops through hopping space. In this situation, the total resistance of the hopping process in low-resistance state (LRS) or high-resistance state (HRS) is

$$R_{tot} = R_1 + \ldots + R_i + \ldots + R_n,$$

where the subscript i is the carrier hopping of ith number of times, R_i is the resistance of the carrier hopping of ith number of times, $R_{tot} = \sigma_{tot}^{-1} = \sigma_0^{-1} \exp \left(\frac{qE_a(path)}{k_BT} \right)$, $R_i = \sigma_0^{-1} \exp \left(\frac{qE_a}{k_BT} \right)$, E_a is the conductance pre-factor, k_B is the Boltzmann constant, T is the device temperature, $E_a(path)$ is the average activation energy for
each carrier transport path, \(E_{a(i)} \) is the activation energy of the carrier hopping of \(i \)th number of times, \(\alpha \) is the inverse of localization length, \(R_{ij} \) is the carrier hopping distance.

Equation (2) then reduces to

\[
\exp \left(\frac{qE_{a(path)}}{k_B T} \right) = \exp \left(2\alpha R_{ij} + \frac{qE_{a(1)}}{k_B T} \right) \ldots + \exp \left(2\alpha R_{ij} + \frac{qE_{a(n)}}{k_B T} \right)
\]

On the basis of equation (3), one can calculate the average activation energy for all of carrier transport paths for HRS and LRS, respectively.

To identify each defect level of carrier transport and extract the carrier transport path in CF, a key factor is to connect the macroscopic I–V characteristics and material microstructure. According to the calculation flowchart in our previous work [30], the relationship between the macroscopic I–V characteristics and material microstructure is achieved by the average activation energy, that is, the average activation energy \((E_{a(ave)}) \) in CF and the average activation energy of the carrier transport path \((E_{a(path)}) \). Next, we will calculate the average activation energy \((E_{a(ave)}) \) in CF by the following equations (4)–(8).

After the formation of CF in oxide-based RS memory, CF is well recognized to include two states: HRS and LRS. During the operation in LRS the carrier jumps among a series of defect sites. According to the variable range hopping (VRH) theory, the site energy for different defect sites is very different. Therefore the carrier hopping distances should be various, which can lead to different resistance in LRS. The larger the resistance, the lower the probability that carrier transport occurs. The different probability of carrier transport would cause the formation of various carrier transport paths and hence induces the switching parameter fluctuation in oxide-based RS memory. On the other hand, except of a series of defects for HRS, there is a gap in CF, and switching
parameter fluctuation is attributed to both the movement of the carrier through different defects and the distances of the gap.

In LRS, for ohmic contact the electric field distribution is uniform, while in HRS, the electric field distribution obeys Poisson’s equation in hopping progress because of space charge–limited current effect follows as:

$$\frac{dF(x)}{dx} = -\frac{nq}{\varepsilon},$$ \hspace{1cm} (4)

where n is the carrier concentration, q is the electronic charge, ε is the dielectric permittivity, $F(x)$ is the electric field with the distance x in CF.

The electron current for the hopping process in HRS is calculated by

$$I_{\text{hopping}} = nq\mu_0 \exp\left(-\frac{qE_{\text{a(ave)}}}{k_BT}\right) F(x) S,$$ \hspace{1cm} (5)

where μ_0 is mobility pre-factor, k_BT $E_{\text{a(ave)}}$ is the average activation energy of carrier transport in HRS, S is the cross-sectional area of CF.

According to the theory of Fowler–Nordheim emission, the tunneling current is calculated as [31, 32]

$$I_{\text{tunneling}} = \frac{q^3F_1^2S}{8\pi\hbar m}\exp\left(-\frac{8\pi\sqrt{2m}\left(q_B + E_{\text{a(ave)}}\right)^{3/2}}{3hqF_1}\right),$$ \hspace{1cm} (6)

where F_1 is the electric field during tunneling process, h is Planck’s constant, q_B is the barrier height, m is the free electron mass, $E_{\text{a(ave)}}$ is the activation energy of carrier transport in CF. Here, the hopping current is equal to the tunneling current in CF in HRS.

The applied voltage in CF can be written as

$$V = V_{\text{hopping}} + V_{\text{tunneling}} = \int_0^{L_1} F(x) dx + F_1(L - L_1),$$ \hspace{1cm} (7)

where L is the HfO$_2$ thickness, L_1 is the length of hopping process.

In LRS, the electron current can be simply written as

$$I = \sigma_{\text{LRS}}F_2S = \sigma_0 VS\left(F_2\right) \exp\left(-\frac{qE_{\text{a(ave)}}}{k_BT}\right),$$ \hspace{1cm} (8)

where F_2 is the electric field of LRS in CF, σ_0 is the conductance pre-factor, $E_{\text{a(ave)}}$ is the average activation energy of carrier transport in LRS.

By using the calculation flowchart as in [30], the experimental I–V curve can be simulated, and the current distribution in HRS and LRS can be determined. According to the current distribution, the switching parameter fluctuation is defined as the difference between the maximum and minimum value of current distribution as

$$\Delta I = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}}} \times 100\%,$$ \hspace{1cm} (9)

where I_{max} and I_{min} are the maximum and minimum values of current distribution at a constant read voltage, respectively. Here, the smaller the ΔI, the lower the switching parameter fluctuation.

4. Results and discussion

Figure 2(a) shows the simulated and experimental I–V curves of the HfO$_2$ device for several sweeps during the set process. The thickness of HfO$_2$ is 5 nm and the measurement temperature is 300 K. Good agreements between the simulated and measured data were observed. The input parameters are $T = 300$ K, $L = 5$ nm, $\alpha = 0.6$ nm$^{-1}$ [33], $R_{ij} = 0.455$ nm, $q_B = 2.48$ eV [34], $\mu_0 = 1 \times 10^{10}$, $\varepsilon = 23$ [35], $\sigma_0 = 5 \times 10^{22}$, $S = 40$ nm2 [36], $E_a = 1.15$ eV (the activation energy of carrier transport for VOD; VOD represents the abbreviation of the other defects excluding the oxygen vacancies). Here, μ_0 and σ_0 are the mobility pre-factor and conductance pre-factor, respectively, which do not have specific physical significance and are used just for fitting the experimental data. Otherwise, the other defects, such as the interstitial and ion defects, may also contribute to the carrier transport. Therefore, the other defects (VOD) excluding the oxygen vacancy will be included in discussing carrier transport. Based on our previous method [30], one can identify the defect energy level and extract the actual carrier transport path. Figures 2(b)–(d) show the identified defect energy landscape in CF for the different
operated process in figure 2(a). It is clear that the I–V characteristic (figure 2(a)) changes with the sites of different defect energy levels and height of the energy barrier for each defect in CF. In terms of the energy landscape in CF and corresponding defect types, we can easily draw the carrier transport paths for the experimental I–V of different sweeps in figure 2(a), as shown in figure 2(e). Moreover, please note that since the probability of carrier transport is various in different defect energy levels in CF, the charge carriers cannot move through the same path for each switching. As a result, the different carrier transport paths for each switching...
would induce the switching parameter fluctuation in oxide-based RS memory. The switching parameter fluctuation in RRAM could be generally affected by many factors, such as fabrication method, operation mode, etc; however, the most intrinsic effect is attributed to the carrier transport and corresponding path in CF. In this work, we will mainly focus on the effect of the carrier transport path on the switching parameter fluctuation and ignore other factors.

Since the carrier transport path in CF could be affected by the defect energy level, defect type along with concentration, device thickness, temperature and material, next we will discuss the effect of these factors on the switching parameter fluctuations. As pointed out above, oxygen vacancies are dominant to the generation of a conducting path in oxide-based RS memory, so we keep a constant VOD concentration of 10% in the full manuscript. The switching parameter fluctuation would be calculated according to equations (3), (5), (8) and (9); the detailed calculation flowchart has been reported in our previous work [30].

Figure 3(a) shows ΔI as a function of the activation energy of carrier transport (E_a) in VOD. The input parameters are the same as those in figure 2. One can see that, when the activation energy of the carrier transport in VOD is between 1.233 eV and 1.341 eV, ΔI keeps a constant minimum value for HRS and LRS, respectively. The results indicate that the switching parameter fluctuation has the lowest value, as the activation energy of carrier transport in VOD is in the range of 1.233–1.341 eV. When E_a in VOD is lower than 1.233 eV or larger than 1.341 eV, ΔI will increase and gradually trend to a constant, and the switching parameter fluctuation thus also increases with the changing E_a in VOD. Generally, the probability of carrier transport is much larger in the shallower energy level than in the deeper energy level. In addition, as mentioned above, the larger the E_a for VOD, the deeper the VOD defect level. When the VOD defect energy level is enough deep, for example, when E_a in VOD is larger than 1.341 eV, carriers only jump via hopping between oxygen vacancies and cannot jump in VOD, thus the switching parameter fluctuation is attributed to the oxygen vacancy and ΔI trends to a constant.

In contrast, when E_a for VOD is lower than 1.233 eV, the probability of carrier transport in VOD will increase, at which the switching parameter fluctuation is attributed to both oxygen vacancy and VOD defect. Therefore ΔI increases with decreasing the E_a in VOD. As a result, in the process of preparing the RS devices, if one can take effective methods to control the VOD defect energy level, the switching parameter fluctuation could be reduced.

Figure 3. The effect on switching parameter fluctuation of (a) activation energy of carrier transport in VOD, (b) oxygen vacancy concentration, (c) temperature and (d) device thickness.
Figure 3(b) shows the oxygen vacancy concentration dependence of ΔI. The input parameters are the same as those in figure 2. It is found that increasing VO3 or decreasing VO4 concentration may remarkably reduce ΔI, which suggests that the increase of VO3 concentration or decrease of VO4 concentration may improve the switching parameter fluctuations. The reason is that the VO3 defect energy level is shallower than the VO4 defect energy level, and increasing VO3 or decreasing VO4 concentration means to enhance the ratio of the shallower energy level. The switching parameter fluctuation could be reduced with increasing the probability of carrier transport in the shallower energy level, as the probability of carrier transport is larger in the shallower energy level than that in the deeper energy level.

Figure 3(c) shows the comparison between the calculation and experimental data for temperature dependence of ΔI in HRS and LRS, respectively. The input parameters are: $L = 5$ nm, $E_a = 1.261$ eV (VOD); the VO3 concentration is 20%; and the other parameters are the same as those in figure 2. It is clear here that ΔI decreases with temperature increasing, which indicates that the increase of temperature may improve the switching parameter fluctuation. Because carriers in deeper states can jump to shallower states by thermal excitation, increasing temperature can increase the carrier thermal excitation rate and decrease the height of the energy barrier of carrier transport. Consequently, the switching parameter fluctuation will reduce with the increase in the temperature. The agreement between the experimental and calculated results is good.

Figure 3(d) shows the comparison between the calculation and experimental data for thickness dependence of ΔI in the HfO2 RS device for HRS and LRS, respectively. The input parameters are $E_a = 1.27$ eV (VOD), VO3 concentration is 20%, and the other parameters are the same as those in figure 2. One can see that ΔI increases with the increase in HfO2 thickness. The results suggest that the increase in device thickness could enlarge the switching parameter fluctuation. The reason is that increasing device thickness may increase the distance of carrier transport and the amount of defect, and hence the paths of carrier transport for each switching. As a result, the switching parameter fluctuation increases with the increase in device thickness. The calculated results well agree with the experimental data.

Finally, we want to discuss the effect of material on the switching parameter fluctuation in RS memory. Here, three RS materials, i.e. HfO2, ZrO2 and WO3, will be chosen as the samples. In addition, to clearly reveal the influence of the material, we only investigate the effect of oxygen vacancy and ignore the other defects. We firstly calculate the defect energy levels of oxygen vacancies and activation energy for different materials based on the first-principles calculations as mentioned above. Figure 4 shows the schematic illustration of the calculated defect energy levels associated to the different oxygen vacancy of HfO2, ZrO2 and WO3, respectively. The difference of activation energy (ΔE_a) between maximum and minimum defect level ($\Delta E_a = E_{a,\text{max}} - E_{a,\text{min}}$).
(8), and connecting equation (9), ΔI in HRS and LRS can be calculated, respectively. The input parameters are as follows: for the HfO$_2$ device, $L = 10$ nm, the other parameters are the same as those in figure 2; for ZrO$_2$ device, $\alpha = 0.69$ nm$^{-1}$, $R_{ij} = 1$ nm, $\varphi_B = 2$ eV [36], $\mu_0 = 2.2 \times 10^5$, $L = 10$ nm, $\epsilon = 25$, $\sigma_0 = 10^{13}$, $S = 40$ nm2, $E_a = 2.15$ eV (VOD); and for WO$_3$ device, $\alpha = 1.1$ nm$^{-1}$, $R_{ij} = 1$ nm, $\varphi_B = 1.19$ eV [37], $\mu_0 = 2.2 \times 10^5$, $L = 10$ nm, $\epsilon = 35.2$, $\sigma_0 = 10^{13}$, $S = 40$ nm2, $E_a = 0.79$ eV (VOD). In order to verify the theoretical results, we also measured current distributions for the HfO$_2$, ZrO$_2$, and WO$_3$ devices at a read voltage of 0.1 V, respectively, as shown in figure 5.

Table 1. Comparison of the difference of activation energy (ΔE_a) and ΔI for the RS device with different materials.

Material	HfO$_2$	ZrO$_2$	WO$_3$
ΔE_a (eV)	0.108	0.091	0.150
ΔI in HRS (Simulation)	72.65%	69.11%	89.74%
ΔI in HRS (Experiment)	73.53%	69.00%	93.11%
ΔI in LRS (Simulation)	85.82%	82.85%	91.21%
ΔI in LRS (Experiment)	84.36%	80.62%	94.37%

Figure 5. Measured current distributions of 100 repetitive I–V sweeps at read voltage of 0.1 V and ΔI calculated by equation (9) in LRS and HRS: (a) HfO$_2$, (b) ZrO$_2$, and (c) WO$_3$.
Therefore, ZrO$_2$ RS device displays the best uniformity of switching parameter, as compared with HfO$_2$ and WO$_3$ RS device. The calculated results agree well with the experimental data, as shown in table 1.

5. Conclusion

In summary, based on the activation energy of carrier transport from the first-principles calculations a physical model connecting macroscopic fluctuating I–V characteristics and material microstructure was proposed to analyze the defect energy level of conducting filament in oxide-based RS memory. The proposed model may specially identify the defect energy level and quantify the distribution of switching parameter. According to the proposed model, some possible clues for improving the uniformity of switching parameter have been provided: (1) controlling the VOD defect level by some effective fabrication methods, (2) increasing VOS or decreasing VO4 concentration, (3) increasing temperature, (4) decreasing device thickness, and (5) choosing the material with lower ΔE_m.

Acknowledgments

This work was supported by the Ministry of Science and Technology of China under grant Nos. 2014AAA032901 and 2013CBA01604, and the National Natural Science Foundation of China under grant No. 61306117.

References

[1] Philip Wong H S, Lee H Y, Yu S M, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T and Tsai M J 2012 Metal-oxide RRAM Proc. IEEE 100 1951–70
[2] Yang X Y et al 2013 Investigation on the RESET switching mechanism of bipolar Cu/HfO$_2$/Pt RRAM devices with a statistical methodology J. Phys. D: Appl. Phys. 46 245107
[3] Wei L, Wang J, Chen Y S, Shang D S, Sun Z G, Shen B G and Sun J R 2012 Pulse-induced alternation from bipolar resistive switching to unipolar resistive switching in the Ag/AgO$_x$/NiO/Ag device J. Phys. D: Appl. Phys. 45 425303
[4] Shang J, Liu G, Yang H L, Zhu X J, Chen X X, Tan H W, Hu B L, Pan L, Xue W L and Li R W 2014 Thermally stable transparent resistive random access memory based on all-oxide heterostructures Adv. Funct. Mater. 24 2171
[5] Liu Q, Li H B, Long S B, Yin K B, Wan N, Li Y T, Sun L T and Liu M 2012 Real-time observation on dynamic growth/dissolution of conductive filaments in oxide–electrolyte-based ReRAM Adv. Mater. 24 1844
[6] Waser R, Dittmann R, Staikov G and Szt K 2009 Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges Adv. Mater. 21 2632
[7] Ielmini D, Nardi F and Cagli C 2011 Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories Nanotechnology 22 254022
[8] Peng H Y, Li Y F, Lin W N, Wang Y Z, Gao X Y and Wu T 2012 Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation Sci. Rep. 2 442
[9] Caroixa X, Ruriali R and Suñé J 2012 Transport properties of oxygen vacancy filaments in metal/crystalline or amorphous HfO$_2$/metal structures Phys. Rev. B 86 165445
[10] Lu Y, Gao B, Fu Y H and Chen B 2012 A simplified model for resistive switching of oxide-based random access memory devices IEEE Electron Device Lett. 33 306–8
[11] Tseng H C, Chang T C, Huang J J, Yang P C, Chen Y T, Jian F Y, Sze S M and Tsai M J 2011 Investigating the improvement of resistive switching trends after post-forming negative bias stress treatment Appl. Phys. Lett. 99 321204
[12] Park S G, Köpe B M and Nishi Y 2011 Impact of oxygen vacancy ordering on the formation of a conductive filament in TiO$_2$ for resistive switching memory IEEE Electron Device Lett. 32 197–9
[13] Köpe B M, Tendulkar M, Park S G, Lee H D and Nishi Y 2011 Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO$_2$, NiO and Pr$_2$O$_3$:MnO$_2$ Nanotechnology 22 254029
[14] Menzel S, Waters M, Marchewka A, Böttger U, Dittmann R and Waser R 2011 Origin of the ultra-nonlinear switching kinetics in oxide-based resistive switches Adv. Funct. Mater. 21 4487–92
[15] Tseng Y H, Shen W C and Lin C J 2012 Modelling of electron in contact resistive random access memory devices as random telegraph noise J. Appl. Phys. 111 073701
[16] Rettie A J, Lee H C, Marshall I G, Lin J F, Capan C, Lindemuth J, McCoy L, Zhou J S, Bard A J and Mullins C B 2013 Combined charge carrier transport and photoelectrochemical characterization of BiVO$_4$, single crystal intrinsic behavior of a complex metal oxide J. Am. Chem. Soc. 135 11389–96
[17] Yu S M, Chen Y Y, Guan X M, Wong H S P and KitlI J A 2012 A monte carlo study of the low resistance state retention of HfO$_2$ based resistive switching memory Appl. Phys. Lett. 100 043507
[18] Sasahi M 2012 An electron conduction model of resistive memory for resistance dispersion, fluctuation, filament structures, and set/ reset mechanism J. Appl. Phys. 111 024501
[19] Chang W Y, Cheng K J, Tsai J M, Chen H J, Chen F, Tsai M J and Wu T B 2009 Improvement of resistive switching characteristics in TiO$_2$ thin films with embedded Pt nanocrystals Appl. Phys. Lett. 95 042104
[20] Meijer G L 2008 Who wins the nonvolatile memory race? Science 319 1625
[21] Kim D C et al 2006 Improvement of resistive memory switching in NiO using IrO$_2$ Appl. Phys. Lett. 88 232106
[22] Chen L, Gou H Y, Sun Q Q, Zhou P, Lu H L, Wang P F, Ding S J and Zhang D W 2011 Enhancement of resistive switching characteristics in Al$_2$O$_3$-based RRAM with embedded ruthenium nanocrystals IEEE Electron Device Lett. 32 794–6
[23] Zhang H W, Liu L F, Gao B, Qiu Y J, Liu X Y, Lu J, Kang J F and Yu B 2011 Gd-doping effect on performance of HfO$_2$ based resistive switching memory devices using implantation approach Appl. Phys. Lett. 98 042105
[24] Wang M, Chon B, Li L, Long S B, Liu Q, Lv H B, Lu N D, Sun P X and Liu M 2014 Thermoelectric seebeck effect in oxide-based resistive switching memory Nat. Commun. 5 4598
[25] Sarakinos K et al 2010 On the phase formation of sputtered hafnium and oxynitride films J. Appl. Phys. 108 01490
[26] Foster A S, Gejo F L, Shluger A L and Nieminen R M 2002 Vacancy and interstitial defects in hafnia Phys. Rev. B 65 174117
[27] Pemmaraju C D and Sanvito S 2005 Ferromagnetism driven by intrinsic point defects in HfO2 Phys. Rev. Lett. 94 217205
[28] Clark S J et al 2005 First principle methods using CASTEP Z. Kristallogr. 220 567
[29] Hybertsen M S and Louie S G 1984 Nonlocal-density-functional approximation for exchange and correlation in semiconductors Phys. Rev. B 30 5777
[30] Lu N D, Li L, Sun P X, Wang M, Liu Q, Lv H B, Long S B and Liu M 2015 A novel method of identifying carrier transport path in metal oxide resistive random access memory J. Phys. D: Appl. Phys. 48 065101
[31] Lenzlinger M and Snow E H 1969 Fowler–Nordheim Tunneling into Thermally Grown SiO2 J. Appl. Phys. 40 278
[32] Yu S M, Guan X M and Wong H S P 2011 Conduction mechanism of TiN/HfOx/Pt resistive switching memory: a trap-assisted-tunneling model Appl. Phys. Lett. 99 063507
[33] http://dspace.library.uu.nl/bitstream/1874/672/23/c4.pdf
[34] Zhu W J, Ma T P, Tanagawa T, Kim J and Di Y 2002 Current transport in metal/hafnium oxide/silicon structure IEEE Electron Device Lett. 23 97
[35] Cherkouki K et al 2008 Electrical, structural, and chemical properties of HfO2 films formed by electron beam evaporation J. Appl. Phys. 104 064113
[36] Paskaleva L M, Bauer A J and Frey I 2011 Implication of oxygen vacancies on current conduction mechanisms in TiN/Zn1-xAlxO2/TiN metal-insulator-metal structures J. Appl. Phys. 109 076101
[37] Yu J et al 2013 Hydrothermally formed functional niobium oxide doped tungsten nanorods Nanotechnology 24 495501