Advisory Tool for Managing Failure Cascades in Systems with Wind Power

Elaine Siyu Liu, Marija Ilic
Massachusetts Institute of Technology
eliu24@mit.edu, ilic@mit.edu
Background

- Today: utilities are N-1 or N-2 robust
- No method to study imminent possibility of failure cascades for intermittent resources
- Wind: less predictable, higher congestion risk
- Our contribution:
 - Predict cascade failures as they evolve
 - Advise system operators on corrective actions

Our approach

- Offline: data-enabled learning using synthetic data.
- Online: Markovian Influence Model predictions and advisory that are reliable, applicable, and efficient.

Corrective actions, ran with both DC and AC models
1. No action
2. Generation re-dispatch:
 a) Serves load in full
 b) Minimizes generation cost
3. Smart scheduling: generation re-dispatch that
 a) Preserves all links
 b) Allows load shed
 c) Minimize load shed cost

Two Influence Models
- For link failure
- For load shed

IEEE 30 & 300 test cases
Our Approach

The Influence Model

Link Failure Prediction

Decide the status of link i by:

- Status of link j (for all j)
- Influence factor d_{ji} that characterizes the importance level (for all links j)
- Scenario specific threshold for link j

Pairwise influences from one link to another:

$$A_{ji}^{11} := \mathbb{P}(s_i[t+1] = 1|s_j[t] = 1), \quad (1)$$

$$A_{ji}^{01} := \mathbb{P}(s_i[t+1] = 1|s_j[t] = 0). \quad (2)$$

Total weighted influence from all links:

$$\tilde{s}_i[t+1] = \sum_{j=1}^{N_{br}} d_{ji} (A_{ji}^{11} s_j[t] + A_{ji}^{01} (1 - s_j[t])), \quad (3)$$

Condition to declare link failure:

$$\tilde{s}_i[t+1] \geq \epsilon_i$$

- Monte Carlo
- Optimization (LSE)
- Adaptive Thresholding
Our Approach

The Influence Model

Load Shed Prediction
- Decide the status of load i by:
 - Status of link j (for all j)
 - Influence factor e_{ji} that characterizes the importance level (for all links j)
 - Scenario specific threshold for load i

Pairwise influences from one link to a bus:

$B_{ji}^{11} := \mathbb{P}(l_i[t] = 1 | s_j[t] = 1)$, \hspace{1cm} (4) \hspace{1cm} Monte Carlo
$B_{ji}^{01} := \mathbb{P}(l_i[t] = 1 | s_j[t] = 0)$. \hspace{1cm} (5)

Total weighted influence from all links:

$\tilde{l}_i[t] = \sum_{j=1}^{N_{br}} e_{ij} (B_{ji}^{11} s_j[t] + B_{ji}^{01} (1 - s_j[t]))$, \hspace{1cm} (6) \hspace{1cm} Optimization (LSE)

Condition to declare load shed:

$\tilde{l}_i[t] \geq \delta_i$ \hspace{1cm} Adaptive Thresholding
Results - Prediction Speedup and Accuracy

- Accurate
- Fast
- Reveals structural insight

Corrective Action	Simulation	Training	Prediction
No action	170	612	15.40
Re-dispatch for full service	183	306	10.05
Re-dispatch for lowest load shed cost	246	333	6.76

Link failure prediction error

	IM	Rand.	Unif.
exp1	0.038	0.188	0.109
exp2	0.019	0.093	0.049
exp3	0.000	0.094	0.049

Load Shed prediction error

	IM	Rand.	Unif.
exp1	0.214	0.318	0.255
exp2	0.043	0.082	0.043
exp3	0.014	0.026	0.014

Structural insights from learned coefficients

- Most influences are localized.
- Influences are sparse under low loading levels.
- Some links cause large-scale damage.
- Some links and buses are particularly vulnerable.

X. Wu, D. Wu and E. Modiano, “Predicting Failure Cascades in Large Scale Power Systems via the Influence Model Framework,” in IEEE Transactions on Power Systems, Sept. 2021.
Results – Online Advisory

Metrics to evaluate corrective actions

Grid-centric

\[G(p) = \sum_{b=1}^{N_{br}} C(b) \cdot e^{-0.2t_b} \]

- load priority
- early failure penalty

User-centric

\[L(p) = \sum_{l=1}^{N} \sum_{t=1}^{T_{l}-1} C(l) \cdot LS_l(t) e^{-0.2t} \]

- load priority
- load shed amount

Network resilience

\[R(p, \Delta w) = R^G(p, \Delta w) + R^L(p, \Delta w) \]

- wind reduction

Tables

Loading level (× base load)	Link Fail Loss	Load Shed Loss
0.9	10	50
1.0	15	60
1.1	20	70
1.2	25	80
1.3	30	90
1.4	35	100
1.5	40	110
1.6	45	120
1.7	50	130
1.8	55	140

Graphs

- Link Fail Loss under AC Models
- Load Shed Loss under AC Models

Legend

- (Exp 1) PF
- (Exp 1) PF: preemptive load shed
- (Exp 2) OPF: actual generation cost uniform scale load shed
- (Exp 2) OPF: uniform generation cost uniform scale load shed
- (Exp 3) OPF: actual generation cost, cost-based load shed
- (Exp 3) OPF: uniform generation cost, cost-based load shed
Conclusions/Recommendations

• Markovian Influence Model
 – Online prediction of link failure and load shed during a wind reduction-induced cascade.
 – Speed and accuracy.

• Three strategies to minimize loss. Smart scheduling is extremely effective.

• Resilience impact factor to assess the criticality of wind reduction.
The Influence Model as an Advisory Tool

- Find the most critical links and loads
- Inform best way to shed load

Data-driven solutions are tremendously effective in predicting and managing uncertainties for utilities.

Thank you!
Questions? eliu24@mit.edu

Arxiv: 2211.15957

We thank MIT UROP, MITEI, and the Advanced Research Projects Agency-Energy, US Department of Energy (DE-AR0001277) for support.