Population-Based Assessment of Determining Predictors for Discharge Disposition in Patients with Bladder Cancer Undergoing Radical Cystectomy

Raj A. Kumar 1, Kian Asanad 1, Gus Miranda 1, Jie Cai 1, Hooman Djaladat 1, Saum Ghodoussipour 2, Mihir M. Desai 1, Inderbir S. Gill 1 and Giovanni E. Cacciamani 1,*

1 Catherine & Joseph Aresty Department of Urology, Keck Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA
2 Bladder and Urothelial Cancer Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
* Correspondence: giovanni.cacciamani@med.usc.edu; Tel.: +1-(626)-491-1531

Simple Summary: Our study analyzed 138,151 radical cystectomy patient encounters to determine which patient and facility characteristics are associated with discharge home and discharge to continued rehabilitation facilities. We used multivariate logistic regression to statistically analyze these datapoints while controlling for other variables. We found that older age, single/widowed marital status, female gender, increased Charlson Comorbidity Index, Medicaid, and Medicare insurance are associated with Continued Rehabilitation Facility (CRF) discharge.

Abstract: Objective: To assess predictors of discharge disposition—either home or to a CRF—after undergoing RC for bladder cancer in the United States. Methods: In this retrospective, cohort study, patients were divided into two cohorts: those discharged home and those discharged to CRF. We examined patient, surgical, and hospital characteristics. Multivariable logistic regression models were used to control for selected variables. All statistical tests were two-sided. Patients were derived from the Premier Healthcare Database. International classification of disease (ICD)-9 (<2014), ICD-10 (≥2015), and Current Procedural Terminology (CPT) codes were used to identify patient diagnoses and encounters. The population consisted of 138,151 patients who underwent RC for bladder cancer between 1 January 2000 and 31 December 2019. Results: Of 138,151 patients, 24,922 (18.0%) were admitted to CRFs. Multivariate analysis revealed that older age, single/widowed marital status, female gender, increased Charlson Comorbidity Index, Medicaid, and Medicare insurance are associated with CRF discharge. Rural hospital location, self-pay status, increased annual surgeon case, and robotic surgical approach are associated with home discharge. Conclusions: Several specific patient, surgical, and facility characteristics were identified that may significantly impact discharge disposition after RC for bladder cancer.

Keywords: radical cystectomy; discharge disposition; skilled nursing home; home discharge; marital status; disparities; insurance; population-based cohort study; Premier Healthcare Database

1. Introduction

Radical cystectomy (RC) is the mainstay of treatment for muscle-invasive bladder cancer and refractory non-muscle-invasive bladder cancer [1,2]. Despite significant refinement and standardization over the last several years, RC remains a morbid procedure with significant post-operative complications, readmissions, and mortality [3,4]. For this reason, careful patient selection is critical for successful surgical outcomes. There is little data regarding discharge disposition following RC—either to a Continued Rehabilitation Facility (CRF) (including skilled nursing facility (SNF), acute care rehabilitation, outpatient care rehabilitation, etc.) or directly home. A recent study linked discharge to SNFs with...
increased rate of readmission [5]. Discharge to SNF among other facilities was associated with nearly 50% higher odds of readmission at both 30 and 90 days following discharge after RC.

The cost of CRF services vary widely by state, length of stay, labor, services required, and vacancy. Per the U.S. Census Bureau, 9.2% of the U.S. population remained uninsured in 2019 [6]. Additionally, many insurance plans deter admission to CRFs, and so patients can incur significant financial burden [7]. Given the likelihood of readmission and financial strain, it is imperative to assess which patients are at risk of admission to CRFs. While several studies have associated measures such as frailty, increased age, and poor exercise tolerance with CRF discharge, there has not been a robust, systematic analysis of predictors of discharge disposition [8–10].

We hypothesized that older patients or patients without a system of care (such as having a widowed status) would be more likely to be discharged to an SNF. Additionally, we hypothesized that a self-pay insurance status would indicate CRF discharge. We also felt that the surgical approach may prove to have an impact in terms of recovery and therefore minimize CRF discharge [11].

In this study, we used a population-based approach to evaluate predictors of discharge disposition following RC.

2. Materials and Methods

2.1. Data Source

We used Premier Healthcare Database (PHD) by Premier Inc. (Charlotte, NC, USA), a large U.S. (n. 1041 contributing hospitals/healthcare systems), hospital-based, service-level, all-payer database that includes inpatient discharge information. Inpatient admissions include over 121 million visits, representing approximately 25% of all annual U.S. admissions [12]. PHD collects a large volume of data that could be identified and analyzed using ICD 9 and 10 codes as has been done in multiple past studies [13].

2.2. Study Cohort and Variables

We identified patients diagnosed with bladder cancer (BCa) between 2000 and 2019 and underwent RC. We excluded patients who died during the hospital stay. Patients were allocated into two groups based on discharge disposition after RC: those discharged home (with/without home health services) or to CRFs (Appendix A). We used medical-record-level details of International Classification of Diseases, 9th and 10th (ICD-9 and ICD-10) and diagnosis and Current Procedural Terminology (CPT) codes to identify patients (aged ≥18 years) undergoing RC for BCa, urinary diversion (continent or incontinent) and surgical approach (open or robotic [14,15]) (Appendix B). Data on patient characteristics (age, gender, race, and ethnicity, Charlson comorbidity Index (CCI), marital status, primary health insurance) surgical characteristics (urinary diversion, surgical approach) and facility characteristics (hospital size, annual hospital volume and surgeon volume, hospital location and teaching status, year of surgery, and region (Midwest, Northeast, South, West)) were analyzed.

2.3. Statistical Analysis

Annual hospital and surgeon RC volumes were calculated and presented as quintiles. Volumes at or below the 20th percentile were considered “low” and volumes above the 80th percentile were considered “high”. Values between these extremes were considered “intermediate”, as previously described [16]. Continuous and categorical variables were presented as mean and standard deviation, and median and interquartile range (IQR), respectively. A univariate analysis was performed to compare differences in baseline demographics, surgical factors, and facility characteristics between the two cohorts. In the univariate analysis, Kruskal–Wallis, chi-squared (χ²), and Fisher’s exact tests were used to compare continuous and categorical variables as appropriate. We performed separate multivariable logistic regression models. The multivariable model included variables...
previously found to be predictors of discharge to CRFs [8-10] and significant variables from our preliminary univariate analysis. Nationally representative estimates were achieved using projection weights linked to the Premier Database derived from the 1998 American Hospital Association Annual Survey and validated by the 1998 National Hospital Discharge Survey as previously described [17,18]. A two-tailed test with \(p < 0.05 \) was considered statistically significant. Data were analyzed using SAS 9.0 software and reported according to guidelines for reporting statistics for clinical research in urology [19].

3. Results

3.1. Baseline Characteristics

We identified 138,151 patients diagnosed with bladder cancer (BCa) between 2000 and 2019 and underwent RC. Baseline characteristics of the patient population are reported in Table 1. Facility characteristics are reported in Table 2. A weighted total of 138,151 patients was included. A total of 24,922 (18.0%) patients were admitted to SNFs. Median age was 70.0 (IQR:62.0–76.0). Median length of stay was 8.0 days (IQR:7.0–12.0).

Table 1. Patients and Surgical Characteristics.

Home Discharge	CFRs	\(p \) Value			
N. of Patients	113,229 (82.0%)	24,922 (18.0%)	\(<0.0001 \)		
Age, years, n (%)					
younger than 55	12,711 (93.5%)	884 (6.5%)	\(<0.0001 \)		
55–64	27,594 (91.6%)	2545 (8.4%)			
65–69	21,150 (87.0%)	3161 (13.0%)			
70–74	21,854 (81.0%)	5111 (19.0%)			
75 or Older	29,920 (69.4%)	13,221 (30.6%)			
Gender, n (%)					
Male	94,250 (83.7%)	18,406 (16.3%)	\(<0.0001 \)		
Female	18,976 (74.4%)	6516 (25.6%)			
Comorbidity index, n (%)					
CCI = 0	9371 (89.5%)	1105 (10.5%)	\(<0.0001 \)		
CCI = 1	5160 (84.6%)	937 (15.4%)			
CCI 2 or greater	98,698 (81.2%)	22,880 (18.8%)			
Race and Ethnicity, n (%)					
N-H-White	88,224 (81.6%)	19,836 (18.4%)	\(<0.0001 \)		
N-H-Black	5780 (81.2%)	1339 (18.8%)			
Hispanic	3089 (82.6%)	651 (17.4%)			
Other	15,902 (84.0%)	3028 (16.0%)			
Unknown	234 (77.5%)	68 (22.5%)			
Primary insurance, n (%)					
Self-Pay	1958 (95.9%)	83 (4.1%)	\(<0.0001 \)		
Medicaid	5658 (86.3%)	902 (13.8%)			
Medicare	68,890 (76.2%)	20,907 (23.3%)			
HMO/PPO	32,706 (93.1%)	2424 (6.9%)			
Others	4017 (86.9%)	606 (13.1%)			
Marital Status					
Married, n (%)	69,539 (86.4%)	10,962 (13.6%)	\(<0.0001 \)		
Single/Widowed, n (%)	32,701 (73.9%)	11,520 (26.1%)			
Others	10,989 (81.8%)	2440 (18.2%)			
Surgical Approach					
Robotic, n (%)	22,355 (83.3%)	4477 (16.7%)	\(<0.0001 \)		
Open, n (%)	90,874 (81.6%)	20,445 (18.4%)			
Type of Urinary Diversion					
Incontinent n (%)	101,007 (81.4%)	23,113 (18.6%)	\(<0.0001 \)		
Continent n (%)	6905 (90.9%)	695 (9.1%)			
LOS, days, mean (SD)/median (IQR)	9.7 (6.3)	8.0 (6.0–11.0)	17.2 (13.9)	13.0 (8.0–21.0)	\(<0.0001 \)
LOS ≤ 5days n, (%)	14,501 (95.2%)	733 (4.8%)	\(<0.0001 \)		
LOS > 5days n, (%)	98,728 (80.3%)	24,189 (19.7%)	\(<0.0001 \)		
Table 2. Facility Characteristics.

	Home Discharge	CFRs	p Value
Hospital volume facility, beds, n (%)			<0.0001
≤ 200	10,344 (78.6%)	2824	(21.4%)
200–299	14,711 (82.4%)	3132	(17.6%)
300–399	19,171 (82.2%)	4152	(17.8%)
≥ 400	69,003 (82.3%)	14,814	(17.7%)
Hospital teaching status n (%)			<0.0001
Teaching	63,303 (82.3%)	13,572	(17.7%)
Non-teaching	49,926 (81.5%)	11,350	(18.5%)
Hospital Location n (%)			0.1078
Urban	104,272 (81.9%)	23,026	(18.1%)
Rural	8957 (82.5%)	1896	(17.5%)
Not reported			
Annual Hospital Volume n (%)			<0.0001
High	23,230 (82.4%)	4951	(17.6%)
Intermediate	67,882 (82.7%)	14,204	(17.3%)
Low	22,117 (79.3%)	5767	(20.7%)
Annual Surgeon Volume n (%)			<0.0001
High	22,354 (83.9%)	4285	(16.1%)
Intermediate	69,758 (83.0%)	14,244	(17.0%)
Low	21,117 (76.8%)	6393	(23.2%)
Year of Surgery n (%)			<0.0001
<2005	32,569 (84.0%)	6187	(16.0%)
2006	5692 (83.1%)	1161	(16.9%)
2007	5920 (85.7%)	991	(14.3%)
2008	6044 (85.0%)	1063	(15.0%)
2009	6023 (82.7%)	1261	(17.3%)
2010	5745 (81.1%)	1342	(18.9%)
2011	5481 (81.9%)	1215	(18.1%)
2012	5118 (78.9%)	1368	(21.1%)
2013	5139 (80.1%)	1275	(19.9%)
2014	5482 (78.5%)	1500	(21.5%)
2015	5991 (79.3%)	1562	(20.7%)
2016	6657 (79.0%)	1772	(21.0%)
2017	6324 (78.5%)	1731	(21.5%)
2018	6226 (81.2%)	1437	(18.8%)
2019	4818 (82.0%)	1057	(18.0%)
Region n (%)			<0.0001
Midwest	25,572 (79.0%)	6801	(21.0%)
Northeast	21,484 (78.6%)	5833	(21.4%)
South	42,969 (84.5%)	7862	(15.5%)
West	23,204 (84.0%)	4426	(16.0%)

Of those discharged home, 94,250 (83.2%) were male and 18,976 (16.8%) female; 65,539 (61.4%) were married and 32,701 (28.9%) single. 22,355 (19.7%) underwent robotic RC and 90,874 (80.3%) underwent open RC. Of those discharged to CRFs, 18,406 (73.9%) were male and 6516 (26.1%) female; 10,962 (44.0%) were married and 11,520 (46.2%) single; 4477 (18.0%) underwent robotic RC and 20,445 (82.0%) underwent open RC. Trends over time showed increasing annual percent of patients discharged to CRF, from 16% before 2005 to 18% in 2019, with a peak of 21.5% in 2017 (Figure 1).
3.2. Predictor of Discharge Disposition after RC

Multivariate analysis (Figure 2) revealed that older age, single marital status, female gender, increased CCI score, Medicaid insurance, Medicare insurance, non-teaching hospital status, and northeast geographic location are associated with a significant increase in discharge to CRFs.

Rural hospital location, self-pay status, continent neobladder diversion, 200–299 bed hospital size, increased annual surgeon case volume, and robotic surgical approach are associated with discharge home.

3.3. Surgical Volumes-Based Analysis

Multivariate analysis was performed after separating data into high-volume (HV) and non-high-volume (NHV) cohorts (Appendix C). In the HV cohort, increased age, single marital status, female gender, CCI ≥ 2, Medicaid insurance, Medicare insurance, non-teaching hospital status, and northeast geographic location are associated with a statistically significant increase in CRF discharge.

“Other” marital status [rural hospital location, self-pay status, south geographic location, west geographic location, and robotic approach] are associated with discharge home.

In the NHV cohort (Appendix C), increased age, single marital status, “other” marital status, female gender, increased CCI score, “other” race, Medicaid insurance, Medicare insurance, non-teaching hospital status, and northeast geographic location are associated with a statistically significant increase in CRF discharge.

Rural hospital location, self-pay status, 200–299 bed hospital size [south geographic location, west geographic location, and robotic surgical approach] are associated with discharge home.
3.4. Geographic Area Analysis

Multivariate analysis was performed by geographic region: Midwest, Northeast, South, and West. Odds ratios, confidence intervals, and statistical significance are reported in Figure 3. Below we have reported our statistically significant findings.

![Figure 2. Multivariable Analysis Overall population. OR: Odds Ratio.](image-url)
Figure 3. Multivariable Analysis—Geographical Subsets. OR: Odds Ratio.

3.4.1. Midwest

In the Midwest region, increased age, single marital status, female gender, CCI score of 2, “other” insurance, “high” annual surgeon volume, and later year of surgery are associated with a statistically significant increase in CRF discharge.

“Other” race, 400 or more bed hospital size, rural hospital location, “intermediate” annual surgeon volume, and robotic approach are associated with discharge home.

3.4.2. Northeast

In the Northeast region, increased age, single marital status, “other” marital status, female gender, CCI score of 2, Medicaid insurance, Medicare insurance, “intermediate” annual hospital volume, and later year of surgery are associated with a statistically significant increase in CRF discharge.

Self-pay status, 200–299 bed hospital size, 300–399 bed hospital size, non-teaching hospital status, and later year of surgery are associated with a statistically significant increase in CRF discharge.

3.4.3. South

In the South region, increased age, single marital status, “other” marital status, female gender, CCI score of 2, Medicaid insurance, Medicare insurance, “other” insurance, non-teaching hospital status, and later year of surgery are associated with a statistically significant increase in CRF discharge.

Self-pay status, 300–399 bed hospital size, “intermediate” annual hospital volume, “high” annual surgeon volume, “intermediate” annual surgeon volume, and robotic approach are associated with discharge home.

3.4.4. West

In the West region, increased age, single marital status, female gender, CCI score of 2, Medicaid insurance, Medicare insurance, and non-teaching hospital status are associated with a statistically significant increase in CRF discharge.
CCI score of 1, continent neobladder diversion, 200–299 bed hospital size, “high” annual hospital volume, and “high” annual surgeon volume are associated with discharge home.

4. Discussion

This study evaluates the impact of patient, surgical, and facility factors on discharge disposition of patients with BCa undergoing RC and urinary diversion in the U.S.

Our study has several important findings. First, females, single or widowed patients, and those with higher CCI were significantly more likely to be discharged to a SNF. For these patients, pre-operative counselling should include discussions regarding the increased likelihood of discharge to CRFs. In 2011, Aghazadeh et al. found that older age, poor preoperative exercise tolerance, and longer hospital stay predicted CRF discharge [8]. However, that study included only 445 patients from the same institution (2004–2007). Several studies focused on frailty as an important predictor of discharge to CRFs [9,10]. Though not directly associated with CRF discharge, increased age and female gender were associated with increased frailty. This indirectly supports our findings that age and gender were associated with SNF discharge.

We found patients’ insurance status to be a significant predictor of discharge disposition. Patients who were self-pay were significantly less likely to be discharged to CRFs, while patients with Medicare and/or Medicaid were more likely to be discharged to CRFs. Both Medicaid and Medicare cover SNF stay up to a certain point [20,21]. Medicare Part A covers the entire cost of the first 20 days, and patients will be responsible for a $185.50 co-pay for the next 80 days. Patients will be entirely responsible for any subsequent SNF costs beyond the first 100 days. In 2018, one-fifth of hospitalized Medicare beneficiaries were discharged to SNFs, and Medicare paid a total of $28.5 billion on SNF services [22]. Self-pay patients are responsible for the entire cost and are therefore less likely to desire CRF stay.

Our analysis showed that higher volume surgeons and teaching hospitals were less likely to discharge patients to a CRF. This may be attributable to improved skill, reduced complication rates, use of standardized discharge pathways, and the implementation of standardized protocols including enhanced recovery after surgery (ERAS) protocols [23]. ERAS guidelines for RC were introduced in 2013 [24]. ERAS protocols have been shown to reduce length of stay for patients undergoing radical cystectomy without significant difference in complication rates and readmission rates [25,26].

That said, there is heterogeneity in the application of ERAS protocols between institutions, and even within the same institution [25]. One of the limitations of this study was that PHD did not allow us to control for institutions that have adopted ERAS protocols.

Our study reports a slight increase in discharge to CRF over time. While several novel procedures and technologies have contributed to more optimal surgical outcomes such as minimally invasive surgery and ERAS protocols, we feel that the increase in CRF discharge complements this appropriately. Discharge to CRF provides patients with continued skilled care while also permitting room turnover for more patients. Additionally, with improved surgical outcomes, more patients are eligible for RC. This broader patient pool includes more elderly patients and those with comorbidities that require skilled care even following discharge.

The multivariable analysis has shown that patients undergoing radical cystectomy with a continent urinary diversion are less likely to be discharged to CFR (OR = 0.82, 95% CI 0.76–0.90). This may be explained by targeted patient selection. Continent urinary diversion often warrants a robust selection of candidates that can more strongly tolerate surgical intervention efficiently benefit from a continent urinary diversion. In combination, home discharge, good tolerance of surgery, improved outcomes, and continent diversion may all affect the quality of life in these patients [27,28].

Our study reported that patients who underwent a robotic approach to their surgery were significantly less likely to be discharged to a skilled nursing facility. This may be
because robotic RC is associated with decreased length of hospital stay compared to open RC and report fewer complications compared to open surgery [29]. While robotic RC is known to have an increased operative time and cost to the patient, our study shows that this may lead to decreased future costs by avoiding CRF stay. Generally speaking, open RC has been shown to be more cost effective than robotic RC [30]. However, the decreased need for extended CRF stay may impact the cost of robotic RC. Further reports should account for this aspect in the cost-analysis.

Interestingly, we found that both rural hospitals and large, high-volume centers and both associated with home discharge. Though seemingly contradictory, we would reconcile this finding by noting that CRFs in rural areas are smaller and not always available [31]. Larger urban areas are more likely to have available and skilled CRFs, however would more likely utilize this option if patient recovery is slow or if there have been post-surgical complications that warrant skilled nursing staff.

Significant geographic differences were found in CRF discharge across the United States. Patients with a CCI of 2 or greater were nearly twice as likely to be discharged to a CRF in the Northeast compared to the West (OR 3.085 and 1.622, respectively). High annual surgeon volume had more than a twofold greater increase in CRF discharge prediction in the Midwest compared to the West (OR of 1.103 and 0.485, respectively). Additionally, the South has seen the greatest annual increase in CRF discharge over time (OR 1.068 per year), while the West has seen the lowest increase over time (OR 1.016 per year). Insurance status showed the highest degree of variability across geographic region, and protocols based on insurance are highly variable per state and regional regulations.

Finally, we must also recognize the changes to the CRF system over time. Most significantly, in 2006, within 30 days of admission to a nursing facility, nearly 24% of short-stay patients were readmitted to a hospital. Following this, outpatient emergency department use and rehospitalization were added as quality measures for CRFs [32].

Although our findings impact patient preoperative counseling, costs, and outcomes, this must be interpreted within the study limitations. First, the PHD does not provide data on the granularity of cancer staging. Second, we do not have information about institutional adoption and enforcement of ERAS protocols. Third, we do not have data regarding in-hospital complications that could have an impact on discharge disposition as has been previously described [11]. Finally, our study is a retrospective analysis.

There are however several strengths to our study. The large study population allows us to better identify statistically significant findings that would have been otherwise missed in a smaller sample. To our knowledge this is the first population-based study that assesses the impact of patients, surgical, and facility characteristics on discharge disposition after RC for BCa. This is the first study with this size that assesses factors associated with readmission—providing opportunity to mitigate this in both care provider and administrative level. Additionally, the use of a multivariate analysis allows us to control for several variables that may have otherwise been confounding factors.

5. Conclusions

Several specific patient, surgical, and facility characteristics were identified that may significantly impact discharge disposition after RC for bladder cancer. This new information should help guide surgeons and patients with preoperative counseling and shared decision-making process. Prompt identification of patients at risk for non-home discharge can be useful for implementing comprehensive discharge planning protocols that may help with more appropriate and efficient resource allocation.

Author Contributions: Conceptualization, R.A.K. and G.E.C.; methodology, R.A.K., G.E.C., G.M. and J.C.; software, G.M. and J.C.; validation, G.M.; formal analysis, G.M. and J.C.; investigation, R.A.K. and G.E.C.; resources, G.M.; data curation, J.C.; writing—original draft preparation, R.A.K. and G.E.C.; writing—review and editing, R.A.K., G.E.C., K.A., H.D., S.G., M.M.D. and I.S.G.; visualization, G.E.C.; supervision, G.E.C., M.M.D. and I.S.G.; project administration, G.E.C., M.M.D. and I.S.G. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.

Institutional Review Board Statement: The Premier Healthcare Database is considered exempt from institutional review board oversight based on US Title 45 Code of Federal Regulations, Part 46, for the use of existing deidentified data that cannot be directly linked to individuals.

Informed Consent Statement: Patient consent was waived due to the deidentified nature of the data.

Data Availability Statement: Restrictions apply to the availability of these data. Data were obtained from Premier, Inc., and are available from the authors with the permission of Premier, Inc.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Discharge Disposition Definition accordingly to Premiere Healthcare data.

Discharge home with/without home healthcare	DISC HOME W/HOME HEALTH PLAN ACUT IP RDM
	DISCH HOME/SELF PLANNED ACUTE IP READM
	DISCHARGED TO HOME HEALTH ORG.
	DISCHARGED TO HOME IV PROVIDER
	DISCHARGED TO HOME OR SELF CARE
DISCHome with/without continued healthcare	DIS/TRAN FACILTY UNLISTD PLAN ACUT IP RDM
	DIS/TRAN MEDC SWING BED PLAN ACUT IP RDM
	DIS/TRAN NURSNG MEDCAID PLAN ACUT IP RDM
	DIS/TRAN PSYCH HOS/DPU PLAN ACUTE IP RDM
	DIS/TRAN CUST/SUPP FAC PLAN ACUT IP RDM
	DIS/TRAN DESIG DISASTR PLAN ACUT IP RDM
	DIS/TRAN SHRT TERM HOS PLAN ACUT IP RDM
	DIS/TRAN SNF MEDICARE PLAN ACUT IP RDM
	DIS/TRANS CANCER/CHILD PLAN ACUT IP RDM
	DIS/TRANS FEDERAL FAC PLAN ACUTE IP RDM
	DIS/TRANS IRF/REH DPU PLAN ACUTE IP RDM
	DIS/TRANS MEDICR LTCH PLAN ACUTE IP RDM
	DISCH/TRANS CAH PLAN ACUTE IP READM
	DISCHARGED TO HOSPICE-HOME
Continue Rehabilitation Centers (CFRs)	DISCHARGED TO HOSPICE-MEDICAL FACILITY
	DISCHARGED/TRANSFERRED TO A CAH
	DISCHARGED/TRANSFERRED TO FEDERAL HOSP
	DISCHARGED/TRANSFERRED TO ICF
	DISCHARGED/TRANSFERRED TO OTHER FACILITY
	DISCHARGED/TRANSFERRED TO PSYCH HOSP
	DISCHARGED/TRANSFERRED TO SNF
	DISCH/GRD TO THIS INSTITUTION FOR OP SVCS
	DISCH/GRD/TRANSFRD TO SWING BED
	DISCH/GRD/TRANSFRD TO A NURSING FACILITY
	DISCHRD/XFERED CANCER CTR/CHILDREN HOSP
	DISCHRD/XFERED OTH HLTH INST NOT IN LIST
	DISCH/GRD TO OTHER INSTITUTION FOR OP SVCS
	DISCH/GRD/TRANSFRD TO A LTC HOSPITAL
	DISCH/GRD/TRANSFRD TO ANY REHAB FACILITY
Appendix B

Table A2. International Classification of Diseases, 9th and 10th (ICD-9 and ICD-10) for procedure codes.

ICD VERSION	ICD CODE	ICD DESCRIPTION
9	17.44	ENDOSCOPIC ROBOTIC ASSISTED PROC
9	56.51	FORM CUTANEOUS URETERO-ILEOSTOMY
9	56.61	FORM CUTANEOUS URETEROSTOMY NEC
9	45.00	INTESTINAL INCISION NOS
9	45.50	INTESTINAL SEGMENT ISOLATION NOS
9	17.42	LAP ROBOTIC ASSISTED PROCEDURE
9	54.21	LAPAROSCOPY
9	56.95	LIGATION OF URETER
9	17.41	OPEN ROBOTIC ASSISTED PROCEDURE
9	56.34	OPEN URETERAL BIOPSY
9	45.71	OPEN/OTHR MULT SEGMT LG BOWEL RESEC
9	17.49	OTHR/UNSPEC ROBOTIC ASSISTED PROC
9	45.62	PARTIAL RESECTION SMALL BOWEL NEC
9	46.23	PERMANENT ILEOSTOMY NEC
9	57.71	RADICAL CYSTECTOMY
9	40.53	RADICAL EXCISE ILIAC LYMPH NODES
9	40.59	RADICAL LYMPH NODE EXCISION NEC
9	40.50	RADICAL LYMPH NODE EXCISION NOS
9	60.5	RADICAL PROSTATECTOMY
9	68.7	RADICAL VAGINAL HYSTERECTOMY
9	68.79	RADICAL VAGINAL HYSTERECTOMY NOS
9	71.5	RADICAL VULVECTOMY
9	66.51	REMOVE BOTH FALLOPIAN TUBES
9	45.91	SM-TO-SM INTESTINAL ANASTOMOSIS
9	46.81	SMALL INTESTINE MANIPULATION
9	45.51	SMALL INTESTINE SEGMENT ISOLATION
9	68.4	TOTAL ABDOMINAL HYSTERECTOMY
9	68.49	TOTAL ABDOMINAL HYSTERECTOMY NOS
9	57.79	TOTAL CYSTECTOMY NEC
9	56.99	URETERAL OPERATIONS NEC
9	56.40	URETERECTOMY NOS
9	56.74	URETERONEOCYSTOSTOMY
9	57.87	URINARY BLADDER RECONSTRUCTION
9	56.71	URINARY DIVERSION TO INTESTINE
10	0T1807B	BP BIL URETERS TO BLADDER W/ATS,OA
10	0T18079	BP BIL URETERS TO COLOCUT W/ATS,OA
10	0T1807G	BP BIL URETERS TO COLOCUT W/ATS,PEA
10	0T180Z9	BP BIL URETERS TO COLOCUTANEOUS,OA
10	0T184Z9	BP BIL URETERS TO COLOCUTANEOUS,PEA
10	0T180J8	BP BIL URETERS TO COLON W/SS,OA
10	0T180JD	BP BIL URETERS TO CUTANEOUS W/SS,PA
10	0T1847C	BP BIL URETERS TO ILEOCUT W/ATS,OA
10	0T1847C	BP BIL URETERS TO ILEOCUT W/ATS,PEA
10	0T184JC	BP BIL URETERS TO ILEOCUT W/SS,PEA
10	0T180ZC	BP BIL URETERS TO ILEOCUTANEOUS,OA
10	0T184ZC	BP BIL URETERS TO ILEOCUTANEOUS,PEA
10	0T184JA	BP BIL URETERS TO ILEUM W/SS,PEA
10	0T180JB	BP BILAT URETERS TO BLADDER W/SS,OA
10	0T180J9	BP BILAT URETERS TO COLOCUT W/SS,OA
10	0T180J8	BP BILAT URETERS TO COLON W/SS,OA
ICD VERSION	ICD CODE	ICD DESCRIPTION
-------------	----------	-----------------
10	OT180JC	BP BILAT URETERS TO ILEOCUT W/SS,OA
10	OT1807A	BP BILAT URETERS TO ILEUM W/ATS,OA
10	OT1847A	BP BILAT URETERS TO ILEUM W/ATS,PEA
10	OT180JA	BP BILAT URETERS TO ILEUM W/SS,OA
10	OT1807B	BP BILATL URETERS TO COLON W/ATS,OA
10	OT18079	BP BLADDER TO COLOCUTANE W/ATS,OA
10	OT18479	BP BLADDER TO COLOCUTANE W/ATS,PEA
10	OT180Z9	BP BLADDER TO COLOCUTANEous,OA
10	OT184Z9	BP BLADDER TO COLOCUTANEous,PEA
10	OT1807D	BP BLADDER TO CUTANEous W/ATS,OA
10	OT1807C	BP BLADDER TO ILEOCUTANE W/ATS,OA
10	OT1847C	BP BLADDER TO ILEOCUTANE W/ATS,PEA
10	OT180KC	BP BLADDER TO ILEOCUTANE W/NATS,OA
10	OT180JC	BP BLADDER TO ILEOCUTANE W/SS,OA
10	OT184JC	BP BLADDER TO ILEOCUTANE W/SS,PEA
10	OT180ZC	BP BLADDER TO ILEOCUTANEous,OA
10	OT184ZC	BP BLADDER TO ILEOCUTANEous,PEA
10	OT170JD	BP LT URETER TO CUTANEous,OA
10	OT170JC	BP LT URETER TO CUTANEous,PEA
10	OT170Z9	BP LT URETER TO COLOCUTANEous,OA
10	OT174Z9	BP LT URETER TO COLOCUTANEous,PEA
10	OT170JD	BP LT URETER TO CUTANEous W/ATS,OA
10	OT170ZD	BP RT URETER TO COLOCUTANE W/ATS,OA
10	OT170Z9	BP RT URETER TO COLOCUTANEous,OA
10	OT164Z9	BP RT URETER TO COLOCUTANEous,PEA
10	OT164Z8	BP RT URETER TO COLON,PEA
10	OT1607D	BP RT URETER TO CUTANEous W/ATS,OA
10	OT164JD	BP RT URETER TO CUTANEous W/SS,PEA
10	OT164ZD	BP RT URETER TO CUTANEous,PEA
10	OT1647C	BP RT URETER TO ILEOCUTANE W/ATS,PEA
10	OT1607C	BP RT URETER TO ILEOCUTANE W/ATS,OA
10	OT160JC	BP RT URETER TO ILEOCUTANE W/SS,OA
10	OT164JC	BP RT URETER TO ILEOCUTANE W/SS,PEA
10	OT160ZC	BP RT URETER TO ILEOCUTANEous,OA
10	OT164ZC	BP RT URETER TO ILEOCUTANEous,PEA
10	OT1607A	BP RT URETER TO ILEUM W/ATS,OA
10	OT164ZA	BP RT URETER TO ILEUM,PEA
10	OT180ZD	BYPASS BIL URETERS TO CUTANEous,OA
10	OT184ZD	BYPASS BIL URETERS TO CUTANEous,PEA
10	OT180ZB	BYPASS BILAT URETERS TO BLADDER,OA
10	OT184ZB	BYPASS BILAT URETERS TO BLADDER,PEA
10	OT180Z8	BYPASS BILAT URETERS TO COLON,OA
10	OT184Z8	BYPASS BILAT URETERS TO COLON,PEA
10	OT180ZA	BYPASS BILAT URETERS TO ILEUM,OA
10	OT184ZA	BYPASS BILAT URETERS TO ILEUM,PEA
10	OT184ZD	BYPASS BLADDER TO CUTANEous,PEA
10	OT170ZB	BYPASS LEFT URETER TO BLADDER,OA
10	OT170ZA	BYPASS LEFT URETER TO ILEUM,OA
Table A2. Cont.

ICD VERSION	ICD CODE	ICD DESCRIPTION
10	0T170Z8	BYPASS LT URETER TO COLON,OA
10	0T174Z8	BYPASS LT URETER TO COLON,PEA
10	0T174ZD	BYPASS LT URETER TO CUTANEOUS,PEA
10	0T174ZA	BYPASS LT URETER TO ILEUM,PEA
10	0T160ZB	BYPASS RT URETER TO BLADDER,OA
10	0T160J8	BYPASS RT URETER TO COLON W/SS,OA
10	0T160Z8	BYPASS RT URETER TO COLON,OA
10	0T160ZD	BYPASS RT URETER TO CUTANEOUS,OA
10	0T160ZA	BYPASS RT URETER TO ILEUM,OA
10	0TB70Z2	EXCISION LT URETER,OPEN APPROACH
10	0TB73Z2	EXCISION LT URETER,PA,DIAGNOSTIC
10	0TB74Z2	EXCISION LT URETER,PEA,DIAGNOSTIC
10	0TB78Z2	EXCISION LT URETER,VN OR AOE
10	0TB80Z2	EXCISION OF BLADDER,OA,DIAGNOSTIC
10	0TB80Z2	EXCISION OF BLADDER,OPEN APPROACH
10	0TB83Z2	EXCISION OF BLADDER,PA,DIAGNOSTIC
10	0TB84Z2	EXCISION OF BLADDER,PEA,DIAGNOSTIC
10	0TB87Z2	EXCISION OF BLADDER,VN OR AO
10	0TB87Z2	EXCISION OF BLADDER,VN OR AO,DIAG
10	0TB88Z2	EXCISION OF BLADDER,VN OR AO,DIAG
10	0DB88Z2	EXCISION OF ILEUM NAT/AOE
10	0DB80Z2	EXCISION OF ILEUM, OPEN APPROACH
10	0TB70Z2	EXCISION OF LT URETER,OA,DIAGNOSTIC
10	0TB74Z2	EXCISION OF LT URETER,PEA,DIAGNOSTIC
10	0TB77Z2	EXCISION OF LT URETER,VN OR AO,DIAG
10	0TB77Z2	EXCISION OF LT URETER,OPEN APPROACH
10	0TB78Z2	EXCISION OF LT URETER,OPEN APPROACH
10	0TB80Z2	EXCISION OF LT URETER,OA,DIAGNOSTIC
10	0TB80Z2	EXCISION OF LT URETER,PEA,DIAGNOSTIC
10	0TB87Z2	EXCISION OF LT URETER,VN OR AO,DIAG
10	0TB87Z2	EXCISION OF LT URETER,PERC ENDO APP
10	0TB88Z2	EXCISION OF LT URETER,PERC ENDO APP
10	0TB60Z2	EXCISION RT URETER,OA,DIAGNOSTIC
10	0TB60Z2	EXCISION RT URETER,OPEN APPROACH
10	0TB63Z2	EXCISION RT URETER,PA,DIAGNOSTIC
10	0TB64Z2	EXCISION RT URETER,PEA,DIAGNOSTIC
10	0TB64Z2	EXCISION RT URETER,PERC ENDO APP
10	0TB67Z2	EXCISION RT URETER,VN OR AO,DIAG
10	0TB68Z2	EXCISION RT URETER,VN OR AO,DIAG
10	0DB80Z2	EXCISION SMALL INTESTINE OPEN APPRO
10	0DB84Z2	EXCISION SMALL INTESTINE PEA
10	0DB83Z2	EXCISION SMALL INTESTINE PERCU APPR
10	0TC80Z2	EXTIRPATION OF MATTER BLADDER,OA
10	0TC84Z2	EXTIRPATION OF MATTER BLADDER,PEA
10	0TN80Z2	RELEASE BLADDER,OPEN APPROACH
10	0TN84Z2	RELEASE BLADDER,PERC ENDO APP
10	0DN80Z2	RELEASE ILEUM, OPEN APPROACH
10	0DN84Z2	RELEASE ILEUM,PERC ENDO APP
10	0DN84Z2	RELEASE SMALL INTESTINE, PEA
ICD VERSION	ICD CODE	ICD DESCRIPTION
-------------	-------------	--
10	0DN80ZZ	RELEASE SMALL INTESTINE,OPEN APPR
10	0TND4ZZ	RELEASE URETHRA,PERC ENDO APP
10	0TND7ZZ	RELEASE URETHRA,VN OR AO
10	0TND8ZZ	RELEASE URETHRA,VN OR AOE
10	0TRB07ZZ	REPLACEMENT OF BLADDER W/ATS,OA
10	0TRB47Z	REPLACEMENT OF BLADDER W/ATS,PEA
10	0TRB0KZ	REPLACEMENT OF BLADDER W/NATS,OA
10	0TRB4KZ	REPLACEMENT OF BLADDER W/NATS,PEA
10	0TRB0JZ	REPLACEMENT OF BLADDER W/SS,OA
10	0TS80ZZ	REPOSITION BLADDER,OPEN APPROACH
10	0TSC0ZZ	REPOSITION BLADDER,OPEN APPROACH
10	0TSC4ZZ	REPOSITION BLADDER,OPEN APPROACH
10	0TS80ZZ	REPOSITION BLADDER,OPEN APPROACH
10	0TS80ZZ	REPOSITION BLADDER,OPEN APPROACH
10	0TS70ZZ	REPOSITION LT URETER,OPEN APPROACH
10	0TS74ZZ	REPOSITION LT URETER,PERC ENDO APP
10	0TS60ZZ	REPOSITION RT URETER,OPEN APPROACH
10	0TS80ZZ	REPOSITION SMALL INTESTINE,OA
10	0TS02ZZ	REPOSITION URETHRA,OPEN APPROACH
10	0TT70ZZ	RESECTION LT URETER,OPEN APPROACH
10	0TT80ZZ	RESECTION SMALL INTESTINE,OA
10	0TT74ZZ	RESECTION OF LT URETER,PEA
10	0TT88ZZ	RESECTION OF LT URETER,VN OR AOE
10	0TT84ZZ	RESECTION OF LT URETER,PEA
10	0TTB4ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0TTB7ZZ	RESECTION OF LT URETER,VN OR AO
10	0TTB8ZZ	RESECTION OF LT URETER,VN OR AOE
10	0TT74ZZ	RESECTION OF LT URETER,PEA
10	0TT88ZZ	RESECTION OF LT URETER,VN OR AOE
10	0TTD0ZZ	RESECTION OF LT URETER,VN OR AOE
10	0TTD4ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0TTD7ZZ	RESECTION OF LT URETER,VN OR AO
10	0TTD8ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UT90ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UT94ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0UT97ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UTG0ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UTG4ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UTG7ZZ	RESECTION OF LT URETER,VN OR AOE
10	0UTG8ZZ	RESECTION OF LT URETER,VN OR AOE
10	0VT04ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0VT07ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0UT00ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0UT04ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0TT60ZZ	RESECTION OF LT URETER,PERC ENDO APP
10	0E0W3CZ	ROBOTIC ASSISTED PX TRUNK REGION,PA
Appendix C

Table A3. Predictors of discharge disposition to CFRs. Hospital Volume Analysis.

Predictors	High Volume Hospitals	Non-High-Volume Hospitals						
	OR	Low 95% CI	High 95% CI	p-Value	OR	Low 95% CI	High 95% CI	p-Value
Age, years	1.056	1.051	1.061	<0.0001	1.068	1.066	1.071	<0.0001
Marital Status								
Married, n (%)	ref				ref			
Single/Widowed, n (%)	2.419	2.242	2.61	<0.0001	2.216	2.136	2.229	<0.0001
Others, n (%)	0.843	0.734	0.968	<0.0001	1.738	1.63	1.852	<0.0001
Gender								
Male	ref				ref			
Female	1.564	1.439	1.7	<0.0001	1.407	1.351	1.466	<0.0001
Comorbidity index								
CCI = 0	ref				ref			
CCI = 1	1.673	1.378	2.032	0.3538	1.227	1.091	1.308	0.0001
CCI = 2 or greater	2.411	2.083	2.791	<0.0001	2.217	2.042	2.407	<0.0001
Race, and Ethnicity n (%)								
N-H-White	ref				ref			
N-H-Black	1.177	1.016	1.364	0.9397	1.006	0.929	1.089	0.8775
Hispanic	2.191	1.777	2.702	0.9208	0.885	0.795	0.985	0.0117
Other	1.481	1.309	1.676	0.9327	0.852	0.805	0.901	<0.0001
Unknown	<0.001	<0.001	>999.999	0.9345	1.408	1.04	1.905	0.008
Primary insurance								
Self Pay	0.288	0.134	0.621	<0.0001	0.819	0.644	1.042	<0.0001
Medicaid	2.195	1.839	2.619	<0.0001	1.906	1.721	2.11	<0.0001
Medicare	1.88	1.674	2.111	<0.0001	1.858	1.751	1.97	<0.0001
HMO/PPO	ref				ref			
Others	2.665	2.066	3.439	<0.0001	1.672	1.495	1.87	<0.0001
Urinary diversion								
Incontinent	ref				ref			
Continent	0.945	0.809	1.102	0.4696	0.741	0.67	0.82	<0.0001
Hospital size								
≤200	ref				ref			
200–299	1.121	0.739	1.7	0.4429	0.728	0.683	0.776	<0.0001
300–399	1.183	0.89	1.573	0.5197	0.803	0.755	0.854	0.1225
≥400	1.777	1.374	2.297	<0.0001	0.793	0.749	0.838	0.0068
Hospital teaching status								
Teaching	ref				ref			
Non-teaching	1.523	1.292	1.794	<0.0001	1.209	1.161	1.258	<0.0001
Hospital Location								
Urban	ref				ref			
Rural	0.252	0.189	0.337	<0.0001	0.901	0.849	0.957	0.0007
Region n (%)								
Midwest	ref				ref			
Northeast	1.12	1.008	1.244	<0.0001	1.343	1.269	1.422	<0.0001
South	0.608	0.54	0.685	<0.0008	0.721	0.69	0.753	<0.0001
West	0.361	0.298	0.438	<0.0001	0.746	0.709	0.785	<0.0001
Surgical approach								
open	ref				ref			
robotic	0.634	0.58	0.693	<0.0001	0.73	0.693	0.768	<0.0001
Year of Surgery								
Continue	1.071	1.061	1.081	<0.0001	1.051	1.047	1.055	<0.0001
References

1. Alfred Witjes, J.; Lebret, T.; Comperat, E.M.; Cowan, N.C.; De Santis, M.; Bruins, H.M.; Hernandez, V.; Espinos, E.L.; Dunn, J.; Rouanne, M.; et al. Updated 2016 EAU Guidelines on Muscle-invasive and Metastatic Bladder Cancer. *Eur. Urol.* **2017**, *71*, 462–475. [CrossRef] [PubMed]

2. Flaig, T.W.; Spiess, P.E.; Agarwal, N.; Bangs, R.; Boorjian, S.A.; Buyyounouski, M.K.; Chang, S.; Downs, T.M.; Efstatiou, J.A.; Friedlander, T.; et al. Bladder Cancer, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. *J. Natl. Compr. Cancer Netw.* **2020**, *18*, 329–354. [CrossRef] [PubMed]

3. Stimson, C.J.; Chang, S.S.; Barocas, D.A.; Humphrey, J.E.; Patel, S.G.; Clark, P.E.; Smith, J.A., Jr; Cookson, M.S. Early and late perioperative outcomes following radical cystectomy: 90-day readmissions, morbidity and mortality in a contemporary series. *J. Urol.* **2010**, *184*, 1296–1300. [CrossRef] [PubMed]

4. Nayak, J.G.; Gore, J.L.; Holt, S.K.; Wright, J.; Mossanen, M.; Dash, A. Patient-centered risk stratification of disposition outcomes following radical cystectomy. *Urol. Oncol.* **2016**, *34*, 235.e7–235.e23. [CrossRef] [PubMed]

5. Rosenzweig, S.J.; Pfail, J.L.; Katims, A.B.; Mehrzad, R.; Wiklund, P.; Sfakianos, J.; Waingankar, N. The impact of discharge location on outcomes following radical cystectomy. *Urol. Oncol.* **2021**, *40*, 63.e1–63.e8. [CrossRef] [PubMed]

6. *Health Insurance Coverage Status and Type of Coverage by State-All Persons*: 2008 to 2019; U.S. Census Bureau: Washington, DC, USA, 2019.

7. Grabowski, D.C.; Afendulis, C.C.; McGuire, T.G. Medicare prospective payment and the volume and intensity of skilled nursing facility services. *J. Health Econ.* **2011**, *30*, 675–684. [CrossRef]

8. Aghazadeh, M.A.; Barocas, D.A.; Salem, S.; Clark, P.E.; Cookson, M.S.; Davis, R.; Gregg, J.; Stimson, C.J.; Smith, J.A., Jr; Chang, S.S. Determining factors for hospital discharge status after radical cystectomy in a large contemporary cohort. *J. Urol.* **2011**, *185*, 85–89. [CrossRef] [PubMed]

9. Theriault, B.C.; Paziokas, J.; Adkoli, A.S.; Cho, E.K.; Rao, N.; Schmidt, M.; Cole, C.; Gandhi, C.; Couldwell, W.T.; Al-Mufti, F.; et al. frailty predicts worse outcomes after intracranial meningioma surgery irrespective of existing prognostic factors. *Neurosurg. Focus* **2020**, *49*, E16. [CrossRef]

10. Schuitj, H.J.; Morin, M.L.; Allen, E.; Weaver, M.J. Does the frailty index predict discharge disposition and length of stay at the hospital and rehabilitation facilities? *Injury* **2021**, *52*, 1384–1389. [CrossRef]

11. Cacciamani, G.E.; Lee, R.S.; Yip, W.; Cai, J.; Miranda, G.; Daneshmand, S.; Aron, M.; Hooman, D.; Gill, I.; Desai, M. Impact of Patient, Surgical, and Perioperative Factors on Discharge Disposition After Radical Cystectomy for Bladder Cancer. *J. Urol.* **2021**, *206*, e245. [CrossRef]

12. Premier Healthcare Database. WHITE PAPER: PREMIER HOSPITAL DATABASE (PHD)—2 March 2020. 2020. Available online: https://learn.premierinc.com/white-papers/premier-healthcare-database-whitepaper (accessed on 25 August 2021).

13. Chung, G.; Hinoul, P.; Coplan, P.; Yoo, A. Trends in the diffusion of robotic surgery in prostate, uterus, and colorectal procedures: A retrospective population-based study. *J. Robot. Surg.* **2015**, *15*, 275–291. [CrossRef] [PubMed]

14. Wright, J.D.; Ananth, C.V.; Lewin, S.N.; Burke, W.M.; Lu, Y.S.; Neugut, A.I.; Herzog, T.J.; Hershman, D.L. Robotically assisted vs laparoscopic hysterectomy among women with benign gynecologic disease. *JAMA* **2013**, *309*, 689–698. [CrossRef] [PubMed]

15. Leow, J.J.; Chang, S.L.; Trinh, Q.D. Accurately determining patients who underwent robot-assisted surgery: Limitations of administrative databases. *BJU Int.* **2016**, *118*, 346–348. [CrossRef]

16. Kim, J.; ElRayes, W.; Wilson, F.; Su, D.; Oleynikov, D.; Morien, M.; Chen, L.W. Disparities in the receipt of robot-assisted radical prostatectomy: Between-hospital and within-hospital analysis using 2009–2011 California inpatient data. *BMJ Open* **2015**, *5*, e007409. [CrossRef]

17. Mossanen, M.; Krasnow, R.E.; Lipsitz, S.R.; Preston, M.A.; Kibel, A.S.; Ha, A.; Gore, J.L.; Smith, A.B.; Leow, J.J.; Trinh, Q.D.; et al. Associations of specific postoperative complications with costs after radical cystectomy. *BJU Int.* **2018**, *121*, 428–436. [CrossRef]

18. Leow, J.J.; Cole, A.P.; Seisen, T.; Bellmunt, J.; Mossanen, M.; Menon, M.; Preston, M.A.; Choueiri, T.K.; Kibel, A.S.; Chung, B.I.; et al. Variations in the Costs of Radical Cystectomy for Bladder Cancer in the USA. *Eur. Urol.* **2018**, *73*, 374–382. [CrossRef]

19. Assel, M.; Sjøberg, D.; Elders, A.; Wang, X.; Hsiao, K.; Bhatnagar, P.; Kibel, A.S.; Chung, B.I.; et al. Variations in the Costs of Radical Cystectomy for Bladder Cancer in the USA. *Eur. Urol.* **2018**, *73*, 374–382. [CrossRef]

20. Nursing Facilities. Medicaid. Available online: https://www.medicaid.gov/medicaid/long-term-services-supports/institutional-long-term-care/nursing-facilities/index.html (accessed on 25 August 2021).

21. SNF Care Coverage. Available online: https://www.medicare.gov/coverage/skilled-nursing-facility-snf-care (accessed on 25 August 2021).

22. Medicare Payment Advisory Commission. *Report to Congress: Medicare Payment Policy—Chapter 8: Skilled Nursing Facility Service*; MedPAC: Washington, DC, USA, 2019.

23. Aarts, M.A.; Okrainec, A.; Glicksman, A.; Pearsall, E.; Victor, J.C.; McLeod, R.S. Adoption of enhanced recovery after surgery (ERAS) strategies for colorectal surgery at academic teaching hospitals and impact on total length of hospital stay. *Surg. Endosc.* **2012**, *26*, 442–450. [CrossRef] [PubMed]

24. Ceranontla, Y.; Valerio, M.; Persson, B.; Jichlinski, P.; Ljungqvist, O.; Hubner, M.; Kassouf, W.; Muller, S.; Baldini, G.; Carli, F.; et al. Guidelines for perioperative care after radical cystectomy for bladder cancer: Enhanced Recovery After Surgery (ERAS(R)) society recommendations. *Clin. Nutr.* **2013**, *32*, 879–887. [CrossRef] [PubMed]
25. Peerbocus, M.; Wang, Z.J. Enhanced Recovery After Surgery and Radical Cystectomy: A Systematic Review and Meta-Analysis. *Res. Rep. Urol.* 2021, 13, 535–547. [CrossRef] [PubMed]

26. Liu, B.; Domes, T.; Jana, K. Evaluation of an enhanced recovery protocol on patients having radical cystectomy for bladder cancer. *Can. Urol. Assoc. J.* 2018, 12, 421. [CrossRef]

27. Longo, N.; Imbimbo, C.; Fusco, F.; Ficarra, V.; Mangiapia, F.; Di Lorenzo, G.; Creta, M.; Imperatore, V.; Mirone, V. Complications and quality of life in elderly patients with several comorbidities undergoing cutaneous ureterostomy with single stoma or ileal conduit after radical cystectomy. *BJU Int.* 2016, 118, 521–526. [CrossRef] [PubMed]

28. Creta, M.; Fusco, F.; La Rocca, R.; Capece, M.; Celentano, G.; Imbimbo, C.; Imperatore, V.; Russo, L.; Mangiapia, F.; Mirone, V.; et al. Short- and Long-Term Evaluation of Renal Function after Radical Cystectomy and Cutaneous Ureterostomy in High-Risk Patients. *J. Clin. Med.* 2020, 9, 2191. [CrossRef] [PubMed]

29. Sathianathen, N.J.; Kalapara, A.; Frydenberg, M.; Lawrentschuk, N.; Weight, C.J.; Parekh, D.; Konety, B.R. Robotic Assisted Radical Cystectomy vs Open Radical Cystectomy: Systematic Review and Meta-Analysis. *J. Urol.* 2019, 201, 715–720. [CrossRef] [PubMed]

30. Michels, C.T.J.; Wijburg, C.J.; Hannink, G.; Witjes, J.A.; Rovers, M.M.; Grutters, J.P.C.; Group, R.S. Robot-assisted Versus Open Radical Cystectomy in Bladder Cancer: An Economic Evaluation Alongside a Multicentre Comparative Effectiveness Study. *Eur. Urol. Focus* 2021, 8, 739–747. [CrossRef]

31. Clement, J.P.; Khushalani, J.; Baernholdt, M. Urban-Rural Differences in Skilled Nursing Facility Rehospitalization Rates. *J. Am. Med. Dir. Assoc.* 2018, 19, 902–906. [CrossRef]

32. Popejoy, L.L.; Wakefield, B.J.; Vogelsmeier, A.A.; Galambos, C.M.; Lewis, A.M.; Huneke, D.; Petroski, G.; Mehr, D.R. Reengineering Skilled Nursing Facility Discharge: Analysis of Reengineered Discharge Implementation. *J. Nurs. Care. Qual.* 2020, 35, 158–164. [CrossRef]