PERFECT AND SEMIPERFECT RESTRICTED ENVELOPING ALGEBRAS

SALVATORE SICILIANO AND HAMID USEFI

ABSTRACT. For a restricted Lie algebra \(L \), the conditions under which its restricted enveloping algebra \(u(L) \) is semiperfect are investigated. Moreover, it is proved that \(u(L) \) is left (or right) perfect if and only if \(L \) is finite-dimensional.

1. Introduction

Let \(R \) be a ring with unity and denote by \(\mathcal{J}(R) \) the Jacobson radical of \(R \). We recall that \(R \) is said to be semiperfect if \(R/\mathcal{J}(R) \) is Artinian and idempotents of \(R/\mathcal{J}(R) \) can be lifted to \(R \). Semiperfect rings, introduced by H. Bass in [1], turn out to be a significant class of rings from the viewpoint of homological algebra and representation theory, since they are precisely the rings \(R \) for which all finitely generated left or right \(R \)-modules have a projective cover (see e.g. [11], Chapter 8, §24). Clearly, one sided Artinian rings and local rings are semiperfect.

Recall that \(R \) is called left perfect if all left \(R \)-modules have projective covers. Right perfect rings are defined in an analogous way. The pioneering work on perfect rings was carried out by H. Bass in 1960 and most of the main characterizations of these rings are contained in his celebrated paper [1]. In particular, it follows from Bass’ results that the following conditions are equivalent: \(R \) is left perfect; every flat left \(R \)-module is projective; \(R/\mathcal{J}(R) \) is Artinian and for every sequence \(\{a_i\} \) in \(\mathcal{J}(R) \) there exists an integer \(n \) such that \(a_1a_2\cdots a_n = 0 \); \(R \) satisfies the descending chain condition on principal right ideals. It should be mentioned that, while semiperfectness is a left-right symmetric property, there exist rings which are perfect on one side but not on the other (see [1], Example 5 on page 476). However, right and left perfectness are clearly equivalent conditions provided \(R \) has a nontrivial involution. For instance, this is the case when \(R \) is a group algebra or an (ordinary or restricted) enveloping algebra.

Left perfect group rings were characterized by G. Renault in [17] and, independently, by S. M. Woods in [23]. It turns out that, for a group \(G \) and a field \(F \), the group algebra \(FG \) is left perfect if and only if \(G \) is finite. Subsequently, a generalization of these results to semigroup rings has been carried out by J. Okniński in [14]. On the other hand, although semiperfect group algebras have been also investigated in several papers (see e.g. [3, 6, 22, 24]), a full characterization is not available yet. The best partial result in this direction was obtained by J.M. Goursaud in [6] where, under the assumption that the group \(G \) is locally finite, it is proved that \(FG \) is semiperfect if and only if either \(\text{char } F = 0 \) and \(G \) is finite or \(\text{char } F = p > 0 \) and \(G \) has a normal \(p \)-group of finite index.

Date: October 21, 2016.

2010 Mathematics Subject Classification. 17B35, 16P70, 17B50.

The research of the second author was supported by NSERC of Canada under grant # RGPII 418201.
In this paper, we consider these problems in the setting of enveloping algebras. For a restricted Lie algebra \(L \) over a field \(F \) of characteristic \(p > 0 \), we denote by \(u(L) \) the restricted enveloping algebra of \(L \) and by \(L' \) the derived subalgebra of \(L \). Recall that a subset \(S \) of \(L \) is said to be \(p \)-nil if every element of \(S \) is \(p \)-nilpotent. We first provide some necessary and sufficient conditions on \(L \) such that \(u(L) \) is semiperfect. We show that if \(u(L) \) is semiperfect, then every element of \(L \) is \(p \)-algebraic and \(L \) does not contain any infinite-dimensional torus. Under the assumptions that \(F \) is perfect and \(L' \) is \(p \)-nil, we prove that for a locally finite-dimensional restricted Lie algebra \(L \), \(u(L) \) is semiperfect if and only if \(L \) contains a \(p \)-nil restricted ideal of finite codimension. We construct an infinite-dimensional abelian restricted Lie algebra \(L \) over an imperfect field \(K \) such that \(u(L) \) is semiperfect and \(L \) has no nonzero \(p \)-nil restricted ideal. Hence, the perfectness assumption on the ground field is necessary. It turns out that the structure of semiperfect ordinary enveloping algebras \(U(L) \) of arbitrary Lie algebras \(L \) is trivial and also quickly discussed.

In the last section, we prove that \(u(L) \) is left (or right) perfect if and only if \(L \) is finite-dimensional, which represents the Lie-theoretic analogue of the aforementioned result of Renault and Woods.

2. Semiperfectness

Throughout the paper, \(\mathbb{F} \) denotes a field. Of course, every field is a left and right perfect ring. To avoid any possible confusion, we recall that \(\mathbb{F} \) is called a perfect field if every finite extension of \(\mathbb{F} \) is separable.

It would be an interesting problem to characterize perfect and semiperfect Hopf algebras. Our first result, which we actually use later in the setting of restricted enveloping algebras, is a step towards this goal. Recall that an element \(\Lambda \) in a Hopf algebra \(H \) with comultiplication \(\Delta \) and counit \(\epsilon \) is called a left integral if \(h\Lambda = \epsilon(h)\Lambda \), for every \(h \in H \). Right integrals are defined analogously. Moreover, an element \(x \) of \(H \) is called group-like if \(x \neq 0 \) and \(\Delta(x) = x \otimes x \) and primitive if \(\Delta(x) = 1 \otimes x + x \otimes 1 \).

Theorem 2.1. Suppose that a Hopf algebra \(H \) is semiperfect. Then \(H \) contains no infinite chain of semisimple Hopf subalgebras. Moreover, if \(H \) is generated as an algebra by its group-like and primitive elements, then all such elements are algebraic.

Proof. For every subspace \(V \) of \(H \), we write \(\tilde{V} \) for the image of \(V \) in \(H/\mathcal{J}(H) \). By contradiction, suppose that \(H \) contains an infinite chain of semisimple Hopf subalgebras

\[
0 \subsetneq H_1 \subsetneq H_2 \subsetneq \cdots \subsetneq H_n \subsetneq \cdots.
\]

By Lemma 5.3.1 of [5], each Hopf algebra \(H_i \) is finite-dimensional. Moreover, by Theorem 2.2.1 and Corollary 2.2.4 of [13], left and right integrals of \(H_i \) coincide and form a 1-dimensional ideal of \(H_i \) which is not contained in \(\ker \epsilon_i \), where \(\epsilon_i \) denotes the counit of \(H_i \). Therefore we can find \(h_i \in \ker \epsilon_i \) such that \((1 + h_i)x = 0 = x(1 + h_i)\), for every \(x \in \ker \epsilon_i \). Note that for every \(i \leq j \) one has \((1 + h_j)(1 + h_i) = 1 + h_j = (1 + h_i)(1 + h_j)\).

As a consequence, we have a chain

\[
\overline{H}(1 + h_1) \supseteq \overline{H}(1 + h_2) \supseteq \cdots \supseteq \overline{H}(1 + h_n) \supseteq \cdots
\]

of left ideals of \(\overline{H} \). Now, since \(H \) is semiperfect, the algebra \(\overline{H} \) is left Artinian and so we must have

\[
\overline{H}(1 + h_n) = \overline{H}(1 + h_{n+1})
\]
for some n. Therefore, as the images of $1 + h_n$ and $1 + h_{n+1}$ in \tilde{H} are commuting idempotents generating the same left ideal, they must coincide. Thus we have $h_{n+1} - h_n \in \mathcal{J}(H)$. But we have

$$(h_n - h_{n+1})^2 = (h_n + 1)^2 + (h_{n+1} + 1)^2 - 2(h_n + 1)(h_{n+1} + 1) = h_n - h_{n+1}.$$

We deduce that $h_{n+1} = h_n$, because $\mathcal{J}(H)$ is free of nonzero idempotents. In particular, $1 + h_{n+1} \in H_g$, a contradiction, yielding the first part of the theorem.

Now, if H is generated as an algebra by its group-like and primitive elements, then H is clearly pointed. Let x be a group-like or a primitive element of H and suppose, by contradiction, that x is transcendental. Set $x_0 = x$ and define recursively $x_{i+1} = x_i - x_i^2$ for every $n \geq 0$. Since $H/\mathcal{J}(H)$ is (right) Artinian, we deduce from Lemma 3.1 in [24] that there exists a positive integer m such that $1 - x_m$ has a right inverse y in H. Let B denote the Hopf subalgebra of H generated by x, so that we have $1 - x_m \in B$. Then B is either the polynomial algebra $\mathbb{F}[x]$ (when x is primitive) or the Laurent polynomial algebra $\mathbb{F}[[x]]$ (when x is group-like). In particular, B has no nonzero zero-divisors. Therefore, H is pointed, it follows from the main theorem in [16] that H is a free left B-module, say $H = \oplus_{h \in S} Bh$. Note that by the proof of main theorem in [16], we can assume that $1 \in S$. Now we can deduce that y is contained in B. But the units of $\mathbb{F}[x]$ are non-zero elements of \mathbb{F}, and units of $\mathbb{F}[[x]]$ are of the form αx^k, where $0 \neq \alpha \in \mathbb{F}$ and k is an integer. This yields a contradiction, completing the proof. □

As group algebras are obviously generated by group-like elements, we remark that Theorem 2.1 generalizes Theorem 3.2 in [24].

Let L be a restricted Lie algebra over a field of characteristic $p > 0$. For $S \subseteq L$ we denote by $\langle S \rangle_p$ the restricted subalgebra generated by S. An element x of L is said to be p-algebraic if $\dim \langle x \rangle_p < \infty$ and p-transcendental, otherwise. As ordinary and restricted enveloping algebras are generated by primitive elements, Theorem 2.1 yields the following:

Corollary 2.2. Let L be restricted Lie algebra over a field of characteristic $p > 0$ such that $u(L)$ is semiperfect. Then L is p-algebraic and contains no infinite-dimensional torus.

Proof. In view of Theorem 2.1 L is clearly p-algebraic. Now suppose, by contradiction, that L contains an infinite dimensional torus T. Clearly, T gives rise to an infinite chain

$$0 \subseteq T_1 \subseteq T_2 \subseteq \cdots \subseteq T_n \subseteq \cdots$$

of finite-dimensional tori of L. Then, by [7], we see that $u(T_i)$ is a semisimple Hopf subalgebra of $u(L)$ for every i, which contradicts Theorem 2.1. □

Also, as the non-zero elements of an arbitrary Lie algebra L are transcendental in the ordinary enveloping algebra $U(L)$ of L, from Theorem 2.1 we deduce that $U(L)$ is semiperfect only in the trivial case:

Corollary 2.3. Let L be a Lie algebra. Then the ordinary enveloping algebra $U(L)$ is semiperfect if and only if $L = 0$.

Remark 2.4. As the trivial module of an ordinary enveloping algebra $U(L)$ is not projective unless $L = 0$, one can also prove Corollary 2.3 by using the fact that $U(L)$ is semiprimitive (see Theorem 8.3.14 in [19]) and so only projective $U(L)$-modules have projective covers (see e.g. [19], Exercise 20 on page 326).
Let X be a basis of L and $u \in u(L)$. Then, by the Poincaré-Birkhoff-Witt (PBW) Theorem for restricted Lie algebras (see [21], Theorem 2.5.1), there exists a finite subset of X, denoted by $\text{Supp}(u)$, such that u can be written as a linear combination of PBW monomials in the elements of $\text{Supp}(u)$ only. We recall that a restricted Lie algebra is said to be locally finite-dimensional if all of its finitely generated restricted subalgebras are finite-dimensional.

Proposition 2.5. Let L be a locally finite-dimensional restricted Lie algebra over a field of characteristic $p > 0$. Then $\mathcal{J}(u(L))$ is nil. In particular, $u(L)$ is semiperfect if and only if $u(L)/\mathcal{J}(u(L))$ is Artinian.

Proof. Let $u \in \mathcal{J}(u(L))$. Since $\text{Supp}(u)$ is finite and L is locally finite-dimensional, we have that $H = \langle \text{Supp}(u) \rangle_p$ is finite-dimensional. Since $u \in H$, we deduce that $u(L)$ is algebraic and the assertion follows from [9, §1.10]. The second part is clear as idempotents can be always lifted modulo a nil ideal. \hfill \Box

We need the following result for later use, however we were unable to find a reference for it and as such we include a proof for completeness.

Proposition 2.6. Let R be a ring and N a nil ideal of R. If R/N is semiperfect, then so is R.

Proof. Note that $\mathcal{J}(R/N) = \mathcal{J}(R)/N$. Hence, we have

$$(R/N)/\mathcal{J}(R/N) \cong (R/N)/(\mathcal{J}(R)/N) \cong R/\mathcal{J}(R).$$

Since R/N is Artinian, it follows that $R/\mathcal{J}(R)$ is Artinian.

Now, let $e \in R$ such that the image of e modulo $\mathcal{J}(R)$ is an idempotent in $R/\mathcal{J}(R)$. Since R/N is semiperfect, there exists $f \in R$ such that the image of f modulo N is an idempotent in R/N and $e - f \in \mathcal{J}(R)$. But N is nil, and it is well known that f can be lifted to an idempotent of R, that is, there exists $g \in R$ such that $f - g \in N \subseteq \mathcal{J}(R)$. Notice that $e - g \in \mathcal{J}(R)$ and we are done. \hfill \Box

Theorem 2.7. Let L be a locally finite-dimensional restricted Lie algebra over a field of characteristic $p > 0$. If L has a p-nil restricted ideal of finite codimension, then $u(L)$ is semiperfect.

Proof. Let P be a p-nil ideal of finite codimension. We first prove that the ideal $I = Pu(L)$ is nil. To do so, let $u \in I$. Then $u = \sum_{i}^{n} p_i u_i$, where each $p_i \in P$ and each $u_i \in u(L)$. Let \mathcal{B} be a basis of L containing a basis of P. Note that there exists a finite subset S of \mathcal{B} such that all the elements p_i, u_i are in $u(H)$, where H is the restricted subalgebra of L generated by S. Now, let Q be the restricted ideal of H generated by all the p_i's. Then $Q \subseteq P \cap H$, and so we see that Q is a finite-dimensional p-nilpotent restricted ideal of H. Note that $Qu(H)$ is associative nilpotent. Since $u \in Qu(H)$, u is nilpotent and as such I is nil. Now, note that

$$u(L/P) \cong u(L)/I.$$

Since L/P is finite-dimensional, clearly $u(L/P)$ is semiperfect. Hence, $u(L)/I$ is semiperfect and it follows from Proposition 2.6 that $u(L)$ is semiperfect. \hfill \Box
We remark that an argument similar to the one used in Theorem 2.7 yields an alternative and shorter proof of the analogous result for group rings obtained in [22].

For a group algebra \(\mathbb{F}G \) of a locally finite group \(G \) over a field \(\mathbb{F} \) of characteristic \(p > 0 \), it is shown by J.M. Goursaud (see [6, Théorème 8]) that \(\mathbb{F}G \) is semiperfect if and only \([G : \mathcal{O}_p(G)] < \infty \), where \(\mathcal{O}_p(G) \) is the largest normal \(p \)-subgroup of \(G \). In analogy, we let \(\mathcal{O}_p(L) \) be the sum of all \(p \)-nil restricted ideals of \(L \). Since the sum of every two \(p \)-nil restricted ideals of \(L \) is again \(p \)-nil, it follows that \(\mathcal{O}_p(L) \) is also a \(p \)-nil restricted ideal. Clearly, if \(L \) is finite-dimensional then \(\mathcal{O}_p(L) \) is just \(\text{rad}_p(L) \), the \(p \)-radical of \(L \). Therefore one might expect that the analogous result holds for restricted Lie algebras, that is, \(u(L) \) is semiperfect if and only \(\dim L/\mathcal{O}_p(L) < \infty \). In Proposition 2.8 we provide a partial converse of Theorem 2.7 and, on the other hand, in Example 2.11 we present an infinite-dimensional abelian restricted Lie algebra \(L \) over an imperfect field such that \(u(L) \) is semiperfect and yet \(\mathcal{O}_p(L) = 0 \). Thus, even in the abelian case, the Lie-theoretic analogue of Goursaud’s Theorem does not hold in general.

Proposition 2.8. Let \(L \) be a locally finite-dimensional restricted Lie algebra over a perfect field \(\mathbb{F} \) of characteristic \(p > 0 \). If \(u(L) \) is semiperfect and \(L' \) is \(p \)-nil, then \(\mathcal{O}_p(L) \) has finite codimension in \(L \).

Proof. First we show that the associative ideal \(I = \mathcal{O}_p(L)u(L) \) is nil. Let \(u \in I \). Then \(u = \sum x_i u_i \), where \(x_i \in \mathcal{O}_p(L) \) and \(u_i \in u(L) \). Now let \(H \) be the restricted subalgebra generated by all the \(x_i \)'s and all the \(\text{Supp}(u_i) \)'s. Note that \(H \) is finite-dimensional. Let \(N \) be the restricted ideal of \(H \) generated by the \(x_i \)'s. Since \(N \subseteq \mathcal{O}_p(L) \), we deduce that \(N \) is finite-dimensional and \(p \)-nilpotent. It follows that \(Nu(H) \) is nilpotent. In particular, as \(u \in Nu(H) \), we deduce that \(u \) is nilpotent. Therefore, \(I \) is a nil ideal and as such \(I \subseteq \mathcal{J}(u(L)) \). We now claim that \(I = \mathcal{J}(u(L)) \). Let \(\mathcal{L} = L/\mathcal{O}_p(L) \). Since \(L' \subseteq \mathcal{O}_p(L) \), \(\mathcal{L} \) is free of nonzero \(p \)-nilpotent elements. We claim that \(u(\mathcal{L}) \cong u(L)/I \) is reduced. Let \(u \) be a nilpotent element of \(u(\mathcal{L}) \). There exist elements \(x_1, \ldots, x_n \) in \(L \) that are linearly independent modulo \(\mathcal{O}_p(L) \) such that

\[
 u = \sum \alpha x_1^{i_1} \cdots x_n^{i_n} \quad \text{modulo } I.
\]

Thus, \(u^{\circ r} = 0 \) for some positive integer \(r \). Hence, by the PBW Theorem, the elements \(x_1^{[p]^r}, \ldots, x_n^{[p]^r} \) are linearly dependent modulo \(\mathcal{O}_p(L) \). Let \(\beta_1, \beta_2, \ldots, \beta_n \in \mathbb{F} \), not all zero, such that

\[
 \sum \beta_k x_k^{[p]^r} \in \mathcal{O}_p(L).
\]

Since \(\mathbb{F} \) is a perfect field, we get

\[
 \left(\sum \beta_k^{\frac{1}{p^k}} x_k \right)^{[p]^r} \in \mathcal{O}_p(L).
\]

But \(\mathcal{L} \) has no nonzero \(p \)-nilpotent elements. We deduce that \(\sum \beta_k^{\frac{1}{p^k}} x_k \in \mathcal{O}_p(L) \), which contradicts the fact that \(x_1, \ldots, x_n \) are linearly independent modulo \(\mathcal{O}_p(L) \). Hence, \(u(\mathcal{L}) \) is reduced. On the other hand, by Proposition 2.5 \(\mathcal{J}(u(\mathcal{L})) \) is nil. We deduce that \(\mathcal{J}(u(\mathcal{L})) = 0 \). Thus, \(\mathcal{J}(u(L)) \subseteq I \), as claimed. At this stage, as \(u(\mathcal{L}) \cong u(L)/I = u(L)/\mathcal{J}(u(L)) \) is Artinian, we deduce from [12] that \(\mathcal{L} \) is indeed finite-dimensional. Therefore \(\mathcal{O}_p(L) \) has finite codimension in \(L \), as required. \(\square \)
As an immediate consequence of Theorem 2.7 and Proposition 2.8 we have the following characterization of semiperfect commutative restricted enveloping algebras over perfect fields:

Corollary 2.9. Let L be an abelian restricted Lie algebra over a perfect field of characteristic $p > 0$. Then $u(L)$ is semiperfect if and only if $\mathcal{O}_p(L)$ has finite codimension in L.

It is worth mentioning that, in general, the properties of perfectness or semiperfectness of an algebra are not preserved under extensions of the ground field. For instance, consider the following:

Example 2.10. Let F be an algebraically closed field and let $E = F(t, t^\frac{1}{2}, \ldots)$ be the extension of the field $F(t)$ of rational functions in the variable t obtained by adjoining all the 2-power roots of t. Consider the automorphism $\alpha : E \to E$, $f(t) \mapsto f(t^2)$ and form the division algebra $D = E((x; \alpha))$ of skew Laurent series (for details, see e.g., Section 2.3 of [11]). Obviously, D is left perfect. Now, let $K = F((x; \alpha))$. Then K is a maximal subfield of D and, clearly, the algebra D is not algebraic over K. Moreover, as F is algebraically closed, K is a transcendental field extension of F. Therefore, Theorem 2.4 of [10] assures that $\mathcal{J}(D \otimes_F K) = 0$. Finally, by Exercise 6 in Section IX.6 of [3], we see that $D \otimes_F K$ is not left Artinian and, indeed, not semiperfect.

We remark that the analogue of the aforementioned result of Goursaud for restricted Lie algebras fails without the perfectness assumption on the field. We show as follows that the restriction on the ground field is required. For simplicity, we construct our example over a field F of characteristic 2 but this example could be extended to any positive characteristic. In the following we denote by K the field of rational functions in infinitely many indeterminates t_1, t_2, \ldots over F, that is, $K = F(t_1, t_2, \ldots)$.

Theorem 2.11. There exists an infinite-dimensional abelian restricted Lie algebra L over K such that $u(L)$ is semiperfect and $\mathcal{O}_p(L) = 0$.

Proof. Let L be the abelian restricted Lie algebra over K with basis x, y_1, y_2, \ldots and power mapping defined by $x^{[2]} = x, y_1^{[2]} = t_1x$ for $i \geq 1$.

We have that $\mathcal{O}_p(L) = 0$. Indeed, let $z \in L$ such that $z^{[2]} = 0$. Then $z = \alpha x + \sum \beta_i y_i$ for some $\alpha, \beta_i \in K$. We have

$$z^{[2]} = (\alpha^2 + \sum \beta_i^2 t_i)x = 0.$$

Hence, $\alpha^2 + \sum \beta_i^2 t_i = 0$. It is easy to deduce that $\alpha = \beta_i = 0$ for all i. Hence, $z = 0$ and $\mathcal{O}_p(L) = 0$. We denote by \bar{u} the image of an element u modulo $\mathcal{J}(u(L))$. Note that L is locally finite-dimensional. Hence, to show that $u(L)$ is semiperfect, by the second part of Proposition 2.8 it is enough to prove that $\bar{R} = u(L)/\mathcal{J}(u(L))$ is Artinian. For this, we will first show that $u(L)/\mathcal{J}(u(L))$ satisfies the descending chain condition on principal ideals by proceeding in the following steps.

Claim 1: Let $u \in u(L)$. Then \bar{u} is invertible in $u(L)/\mathcal{J}(u(L))$ if and only if u is invertible in $u(L)$. Suppose $\bar{u}v = 1$, for some $v \in u(L)$. Then $1 - uv$ is nilpotent. Thus, uv is invertible which implies that u is invertible.
Claim 2: Let \(u = a + bx \in u(L) \), where \(a, b \in K \). Then \(u \) is invertible if and only if \(a \neq 0 \) and \(a \neq b \). Suppose that \(a \neq 0 \) and \(a \neq b \). Then we have
\[
(a + bx)(a^{-1} + b(a^2 + ab)^{-1} x) = 1.
\]
The converse follows from the fact that \(x(x+1) = 0 \).

Claim 3: Let \(0 \neq d \in K^{2^r}(t_1^{2(r-1)}, t_2^{2(r-1)}, \ldots) \), where \(r \geq 1 \). Then there exists \(w \in u(L) \) such that \(w^{2^r} = d^{-1}x \). Suppose that
\[
d = \beta^{2^r} + \sum_{n \geq 1} \gamma_{i_1, \ldots, i_n} t_1 \cdots t_n (t_{i_1} \cdots t_{i_n})^{2(r-1)}
\]
for some \(\beta \) and \(\gamma_{i_1, \ldots, i_n} \in K \). Put
\[
w = \beta x + \sum_{n \geq 1} \gamma_{i_1, \ldots, i_n} y_1 \cdots y_n.
\]
We observe that \(w^{2^r} = d^{-1}x \).

Claim 4: For any chain of principal ideals \(0 \subseteq (u_2) \subseteq (u_1) \subseteq \bar{R} \), we have that \((u_2) = (u_1) \). Let \(v \in u(L) \) such that \(u_2 = \bar{v}u_1 \). We may assume that \(\bar{v} \) is not invertible. We show that there exists \(w \in u(L) \) such that \(u_1 - u_1 vw \) is nilpotent. Note that \((y_i(x - 1))^2 = 0 \), for every \(y_i \). It follows that \(w(L)(x - 1) \subseteq \mathcal{J}(u(L)) \). In particular, by the PBW Theorem, every element \(u \in u(L) \) can be written in the form
\[
u = \alpha + \beta x + \sum \gamma_{i_1, \ldots, i_n} y_1 \cdots y_n \mod \mathcal{J}(u(L)).
\]
Thus, for large \(r \), we have
\[
u^{2^r} = \alpha^{2^r} + \beta^{2^r} x + \sum \gamma_{i_1, \ldots, i_n} t_1 \cdots t_n (t_{i_1} \cdots t_{i_n})^{2(r-1)} x.
\]
We deduce that \(u^{2^r} = a + bx \), where \(a \in K^{2^r} \) and \(b \in K^{2^r}(t_1^{2(r-1)}, t_2^{2(r-1)}, \ldots) \).

Let \(u_1^{2^r} = a + bx \) and \(v^{2^r} = c + dx \), where \(a, c \in K^{2^r} \) and \(b, d \in K^{2^r}(t_1^{2(r-1)}, t_2^{2(r-1)}, \ldots) \).

Since \(u_1 \) is not invertible, it follows from Claim 2 that either \(a = 0 \) or \(a = b \). Similarly, since \(\bar{v} \) is not invertible, either \(c = 0 \) or \(c = d \).

Suppose first that \(a = 0 \). Then, if \(c = d \), we get \(u_2^{2^r} = u_1^{2^r} v^{2^r} = bcx(1 + x) = 0 \). Hence, \(u_2 \in \mathcal{J}(u(L)) \) and so \(u_2 = 0 \) which is a contradiction to the assumptions. We deduce that, if \(a = 0 \), then \(c = 0 \) and \(c \neq d \). Now, by Claim 3, there exists \(w \in u(L) \) such that \(w^{2^r} = d^{-1}x \). It is easy to see that \(u_2^{2^r} = (u_1 v w)^{2^r} = bcx(1 + x) = 0 \). Hence, \(u_2 \in \mathcal{J}(u(L)) \) and so \(u_2 = 0 \) which is a contradiction to the assumptions. We deduce that, if \(a = 0 \), then \(c = 0 \) and \(c \neq d \). Now, by Claim 3, there exists \(w \in u(L) \) such that \(w^{2^r} = c^{-1} \). It is clear that \(u_1^{2^r} = (u_1 v w)^{2^r} = 0 \). This completes the proof of Claim 4.

It now follows from Claim 4 that \(u(L)/\mathcal{J}(u(L)) \) satisfies the descending chain condition on principal ideals. Since \(u(L)/\mathcal{J}(u(L)) \) is semiprime, we deduce from Theorem 10.24 in Chapter 4 of [11] that \(u(L)/\mathcal{J}(u(L)) \) is Artinian, as required.

3. Perfectness

In this section, we characterize left perfect restricted enveloping algebras \(u(L) \). As the antipode of any cocommutative Hopf algebra is an involution, left and right perfectness are, in fact, equivalent conditions for \(u(L) \).
Lemma 3.1. Let L be a restricted Lie algebra over a field of characteristic $p > 0$. If $u(L)$ is left perfect, then L is finitely generated.

Proof. Let $R = u(L)$. Suppose, by contradiction, that L is not finitely generated and let $x_1, x_2, \ldots \in L$ so that $x_{k+1} \notin \langle x_1, \ldots, x_k \rangle$. Now consider the principal right ideals

$$x_1R \supseteq x_1x_2R \supseteq \cdots \supseteq x_1x_2\cdots x_kR \supseteq \cdots.$$

Since, according to Bass’ Theorem (see [1], Theorem P), R satisfies the descending chain condition on principal right ideals, there exists an integer i such that

$$x_1\cdots x_iR = x_1\cdots x_ix_{i+1}R.$$

Therefore one has

$$x_1\cdots x_i - x_1\cdots x_ix_{i+1}v = 0,$$

for some $v \in u(L)$. Let H be the restricted subalgebra of L generated by x_1, \ldots, x_i. We extend x_1, \ldots, x_i to a basis X of H and extend X to a basis $X \cup Y$ of L. Since $x_{i+1} \notin H$, we can assume that $x_{i+1} \in Y$. It is well known that $u(L)$ is a free left $u(H)$-module, that is,

$$u(L) = \bigoplus_i u_i(H)u_i,$$

where the u_i’s are distinct PBW monomials in the elements of Y. Now, we observe that Equation (3.1) is not possible because some monomials in the PBW representation of $x_{i+1}v$ involve x_{i+1} and this contradicts $u(L)$ being a free $u(H)$-module. Hence, L must be finitely generated. \hfill \Box

Lemma 3.2. Let L be a restricted Lie algebra over a field of characteristic $p > 0$. If $u(L)$ is left perfect, then so is $u(H)$ for every restricted subalgebra H of L.

Proof. Let Y be a basis for a complementary vector subspace of H in L. Since $u(L)$ is a free left $u(H)$-module, we have

$$u(L) = \bigoplus_k u_k(H)u_k,$$

where the elements u_k are distinct PBW monomials in the elements of Y. Let $h \in u(H)$ and let $I = hu(H)$ be the right ideal of $u(H)$ generated by h. Then (3.2) implies that

$$J = \bigoplus_k Iu_k$$

is a principal right ideal of $u(L)$. As a consequence, every descending chain $\{I_k\}_k$ of principal right ideals of $u(H)$ gives rise to a descending chain of principal right ideals of $u(L)$ which must stabilize, as $u(L)$ is left perfect. Therefore, by (3.2), the chain $\{I_k\}_k$ stabilizes, which finishes the proof. \hfill \Box

For a restricted Lie algebra L, we define

$$\Delta(L) = \{ x \in L \mid \dim [L, x] < \infty \}.$$

Then $\Delta(L)$ is clearly a restricted ideal of L which is the Lie algebra analogue of the FC-center of a group.

Proposition 3.3. Let L be a restricted Lie algebra over a field of characteristic $p > 0$. If $L = \Delta(L)$ and every element of L is p-algebraic, then L is locally finite-dimensional.
Proof. Let \(x_1, \ldots, x_n \in L \) and let \(H \) be the (ordinary) subalgebra of \(L \) generated by these elements. By Lemma 1.3 of [2] we have that \(\dim[H, H] < \infty \). Since \(H \) is spanned as a vector subspace by \(x_1, \ldots, x_n \) and their Lie commutators, we see that \(H \) is indeed finite-dimensional. Since every element of \(H \) is \(p \)-algebraic, it follows from Proposition 1.3(1) in Chapter 2 of [21] that \(\langle x_1, \ldots, x_n \rangle_p \) is finite-dimensional, as required. \(\square \)

The following result is an immediate consequence of Corollary 6.4 in [2]:

Lemma 3.4. Let \(L \) be a restricted Lie algebra over a field of characteristic \(p > 0 \). Then \(u(L) \) is semiprime if and only if \(u(\Delta(L)) \) is semiprime.

We can now prove the main result of this section:

Theorem 3.5. Let \(L \) be a restricted Lie algebra over a field of characteristic \(p > 0 \). Then \(u(L) \) is left perfect if and only if \(L \) is finite-dimensional.

Proof. One implication is clear. Suppose now that \(u(L) \) is left perfect. By Lemma 3.2, \(u(\Delta(L)) \) is also left perfect and so, by Lemma 3.1, \(\Delta(L) \) is finitely generated. Note that, by Corollary 2.2, every element of \(\Delta(L) \) is \(p \)-algebraic. Hence, by Proposition 3.3, we conclude that \(\Delta(L) \) is finite-dimensional. Thus, it is enough to prove that \(L/\Delta(L) \) is finite-dimensional. Note that, by Corollary 24.19 of [11], the ring \(u(L/\Delta(L)) \cong u(L)/\Delta(L)u(L) \) is left perfect, as well. Hence, we can replace \(L \) by \(L/\Delta(L) \). By [18, Lemma 2.7(i)], we have that \(\Delta(L/\Delta(L)) = 0 \). Therefore we can assume that \(\Delta(L) = 0 \). Now, Lemma 3.4 entails that \(u(L) \) is semiprime and, by Bass’ Theorem (see [1], Theorem P), \(u(L) \) satisfies the descending chain condition on principal right ideals. But then, by Theorem 10.24 in [11], \(u(L) \) is right Artinian. Since, by [12], right Artinian Hopf algebras are finite-dimensional, we conclude that \(L \) is finite-dimensional. This completes the proof. \(\square \)

Some immediate consequences of Theorem 3.5 are now in order. As the category of (left) \(u(L) \)-modules is equivalent to the category of restricted (left) \(L \)-modules, a combination of Theorem 3.5 and Theorem 24.25 in [11] yields the following:

Corollary 3.6. Let \(L \) be a restricted Lie algebra. The following conditions are equivalent:

1. every restricted flat \(L \)-module is projective;
2. \(L \) is finite-dimensional.

Let \(R \) be a ring and \(\theta : G \to \text{Aut}(R) \) be a group homomorphism. Then J.K. Park in [15] proved that the smash product \(R\#\mathbb{F}G \) is left perfect if and only if \(R \) is left perfect and \(G \) is finite. In particular, in view of Theorem 3.5 if \(R = u(L) \) for a restricted Lie algebra \(L \), we deduce the following:

Corollary 3.7. Let \(A = u(L)\#\mathbb{F}G \). Then \(A \) is left perfect if and only if \(A \) is finite-dimensional.

Note also that Theorem 3.5 generalizes Corollary 6.6 in [2]. Finally, the celebrated structure theorem of Cartier-Kostant-Milnor-Moore (see e.g. [13, §5.6]) implies that every cocommutative Hopf algebra over an algebraically closed field of characteristic zero can be presented as a smash product of a group algebra and an enveloping algebra. So, Corollary 2.3 along with Park’s result in [15] yields:
Corollary 3.8. Let H be a cocommutative Hopf algebra over an algebraically closed field F of characteristic zero. Then H is left perfect if and only if H is the group algebra of a finite group G over F.

References

[1] H. Bass: Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488.
[2] J. Bergen – D. Passman: Delta methods in enveloping rings, J. Algebra 133 (1990), 277-312.
[3] W.D. Burgess: On semi-perfect group rings, Can. J. Math. 12 (1969), 645–652.
[4] P.M. Cohn: Skew fields: Theory of general division rings. Cambridge University Press, 1995.
[5] S. Dăscălescu – C. Năstăsescu – S. Raianu: Hopf algebras. An introduction, Marcel Dekker, Inc., New York, 2001.
[6] J.-M. Goursaud: Sur les anneaux de groupes semi-parfaits, Can. J. Math. 25 (1973), 922–928.
[7] G. Hochschild: Representations of restricted Lie algebras of characteristic p, Proc. Amer. Math. Soc. 5 (1954), 603–605.
[8] T.W. Hungerford: Algebra, Springer-Verlag, New York, 1974.
[9] N. Jacobson: Structure of rings. American Mathematical Society, Providence, 1956.
[10] E. Jespers - E. Puczilowsky: On ideals of tensor products, J. Algebra 140 (1991), 124–130.
[11] T.Y. Lam: A first course in noncommutative rings. Springer-Verlag, New York, 1991.
[12] C.H. Liu – J.J. Zhang: Artinian Hopf algebras are finite dimensional, Proc. Amer. Math. Soc. 135 (2007), 1679–1680.
[13] S. Montgomery: Hopf algebras and their actions on rings, CMBS Regional Conference Series in Mathematics, 82, 1993.
[14] J. Okniński: When is the semigroup ring perfect?, Proc. Amer. Math. Soc., 89 (1983), 49–51.
[15] J.K. Park: Artinian skew group rings, Proc. Amer. Math. Soc. 75 (1979), 1–7.
[16] D.E. Radford: Pointed Hopf algebras are free over Hopf subalgebras, J. Algebra 45 (1977), 266–273.
[17] G. Renault: Sur les anneaux de groupes, C. R. Acad. Sci. Paris 273 (1971), 84–87.
[18] D.M. Riley – A. Shalev: The Lie structure of enveloping algebras, J. Algebra 162(1) (1993), 46–61.
[19] L.H. Rowen: Ring Theory. Volume I. Academic Press, Inc., San Diego, 1988.
[20] L.H. Rowen: Ring Theory. Volume II. Academic Press, Inc., San Diego, 1988.
[21] H. Strade – R. Farnsteiner: Modular Lie algebras and their representations. Marcel Dekker, New York, 1988.
[22] J. Valette: Anneaux de groupes semi-parfaits, C. R. Acad. Sci. Paris, Ser. A 275 (1972), 1219–1222.
[23] S.M. Woods: On perfect group rings, Proc. Amer. Math. Soc. 27 (1971), 49–52.
[24] S.M. Woods: Some results on semi-perfect group rings, Can. J. Math. 26 (1974), 121–129.

Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Provinciale Lecce–Arnesano, 73100–Lecce, Italy
E-mail address: salvatore.siciliano@unisalento.it

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John’s, NL, Canada, A1C 5S7
E-mail address: usefi@mun.ca