Comparison of Efficacy and Safety Outcomes in Randomized Trials of Long-Acting and Short-Acting β_2-Agonists for Chronic Obstructive Pulmonary Disease: A Review

Vamsi K Bollu1*, John Karafilidis1, Ann Colosia2, Lee Bennett1 and Nicola Hanania3*

1Sunovion Pharmaceuticals Inc. Marlborough, MA, USA
2RTI Health Solutions, USA
3Section of Pulmonary and Critical Care Medicine, Baylor College of Medicine, Houston, Texas, USA

Abstract

Limited information is available comparing the efficacy and safety of Short-Acting β_2-agonists (SABAs) versus long-acting β_2-agonists (LABAs) for maintenance therapy in Chronic Obstructive Pulmonary Disease (COPD). The objective of this research was to conduct a systematic literature review and evaluate COPD-related outcomes in a meta-analysis. The literature review identified randomized clinical trials of LABAs and SABAs as maintenance therapy in adults with stable COPD. PubMed/Medline, Embase, and the Cochrane Library were searched for reports published between January 1, 1990 and July 16, 2010. Only studies of at least 2 weeks in duration were included. Few studies directly comparing LABAs and SABAs were expected; therefore, studies with placebo or ipratropium were included for a potential indirect-comparison.

A total of 938 studies were identified with 62 meeting all inclusion criteria. Only one study directly compared outcomes for LABA versus SABA. This study reported significantly better airflow and greater reduction in symptoms for the LABA treatment. Twelve studies evaluated a SABA with a shared common comparator, but indirect meta-analysis was not tenable due to different outcome variables.

The efficacy and safety of LABAs and SABAs in patients with COPD has been demonstrated, but only LABAs have supporting data for maintenance treatment. In usual clinical care, SABAs appear to be used in place of LABAs for long-term therapy, despite the lack of any empirical support. This review supports the current evidence-based guidelines that recommend LABAs for maintenance therapy in adults with stable COPD and reserves SABAs for use as rescue medications.

Keywords: Pulmonary disease; Chronic obstructive; Adrenergic beta-agonists; Randomized controlled trials; Bronchodilators

Abbreviations: COPD: Chronic Obstructive Pulmonary Disease; LABA: Long Acting Beta Agonist; SABA: Short Acting Beta Agonist; FEV$_1$: Forced Expiratory Volume (in 1 second); BDI: Baseline Dyspnea Index; TDI: Transitional Dyspnea Index; SGRQ: St. George's Respiratory Questionnaire; CRDQ: Chronic Respiratory Disease Questionnaire

Introduction

Chronic Obstructive Pulmonary Disease (COPD) is a progressive disease affecting more than 24 million people in the United States [1,2]. It is the fourth-leading cause of death in the United States, with more than 121,000 deaths due to COPD reported in 2009 [3]. In 2002, the direct costs to treat COPD in the United States were estimated at $18 billion and this value has been projected to climb to $29.5 billion in 2010 [4]. Some of the burden of COPD is related to certain comorbid conditions such as cardiovascular disease, respiratory infections, and osteoporosis. In addition, COPD reduces quality of life by limiting the functional and exercise capacity of affected individuals.

Because no medications have been shown to alter the progression of COPD, the aims of current pharmacotherapy are to decrease symptoms, reduce the incidence and severity of exacerbations, and improve quality of life and exercise tolerance [5]. Inhaled bronchodilator medications constitute the cornerstone of symptom management in COPD. Inhaled β_2-agonists work by activating the β_2-adrenoceptor which relaxes the smooth muscle cells of airways. These agents are further classified based on duration of action into short-acting β_2-agonists (SABAs) (e.g., levalbuterol, albuterol) and Long-Acting β_2-Agonists (LABAs) (e.g., formoterol, arformoterol, indacaterol, and salmeterol). The duration of action for most SABAs is 4 to 6 hours (for levalbuterol, up to 8 hours for some patients), whereas the duration for LABAs is 12 or more hours.

For maintenance therapy in patients with moderate to severe COPD, the Global Initiative for Chronic Obstructive Lung Disease (GOLD) guidelines recommend the use of long-acting bronchodilators (including LABAs) because they are effective and convenient [6]. However, research has shown that many patients do not receive maintenance therapies and primary care physicians are often unfamiliar with the guidelines [7,8]. Some physicians or payers may consider LABAs and SABAs to be functionally equivalent and interchangeable as maintenance therapies.

Randomized Controlled Trials (RCTs) of COPD treatments differ in study design depending on the outcome variables. For RCTs examining maintenance outcomes in COPD, the primary outcome variables are related to the prevention of exacerbations or altering disease progression. However, most COPD RCTs examine improvement in airflow obstruction and symptom relief (chronic cough, excess sputum, and dyspnea). The Food and Drug Administration (FDA) in the United States has offered guidance on primary outcome measures and study durations depending on the indication sought for a COPD.
treatment. For studies measuring improvement in airflow, the recommended primary outcome variable is post-dose FEV₁ (forced expiratory volume in 1 second) and the recommended study duration is 3 to 6 months. For studies assessing the prevention of exacerbations, whether based on severity, duration, frequency of exacerbations or time to first exacerbation, the recommended study duration is 1 year. Finally, for studies examining disease progression alteration the recommended outcome variable is the reduced trajectory of serial FEV₁, measured over a 3-year period [9].

Although both SABAs and LABAs appear to be used for long-term treatment of COPD in usual clinical care [10], there have been no comprehensive reviews or meta-analyses comparing the use of LABAs versus SABAs for maintenance therapy. The objective of this study was to summarize the evidence for LABAs and SABAs in maintenance management of patients with COPD based on available published RCTs. This review examined RCTs of LABAs and SABAs in patients with stable COPD to compare their effects on lung function (FEV₁), incidence of exacerbations, and use of rescue medications, β-mediated adverse events, and symptoms such as dyspnea and exercise-tolerance measures.

Methods

The focus of this review was published, RCTs involving adult patients with stable COPD without asthma who received a LABA or a SABA either alone or combined with other therapies. The outcomes of interest were lung function as measured by FEV₁, incidence of exacerbations, use of rescue medications, dyspnea, exercise tolerance, quality of life, and β-mediated adverse events (especially cardiovascular events).

A systematic literature search was conducted using PubMed/ Medline, Embase, and the Cochrane Library to identify relevant studies published and indexed between January 1, 1990 and July 16, 2010. Multiple search terms were used and the reference sections in other literature reviews or meta-analyses were examined to identify additional studies. Maintenance therapy was broadly defined as 2 or more weeks of regular dosing of a LABA or SABA; studies with durations of less than 2 weeks were excluded. Based on a preliminary review of the literature, few direct comparative studies of SABAs versus LABAs were expected and the most common comparators for indirect meta-analysis were placebo and ipratropium. Studies that did not directly compare a LABA versus a SABA or compare a LABA or SABA with placebo or ipratropium were excluded.

Data abstraction was performed by a single investigator using a pre-specified extraction form. The following information was abstracted from each study: (1) author identification, (2) year of publication, (3) study design (parallel or crossover) and quality, (4) sample size, (5) key inclusion criteria and exclusion criteria, (6) drug and dosing for each treatment arm, and (7) baseline characteristics (mean age, gender, and predose FEV₁forced vital capacity [FVC]). The quality assessment examined the blinding of patients, care providers, and outcome assessors; similarity of treatment groups at baseline; imbalances between treatment groups in dropout rates; completion rates; whether the analysis was on the intention-to-treat patient set; how missing data were addressed; and selective reporting of outcomes [11].

For each outcome of interest, abstracted data included the outcome definition, the analysis time point, sample size, and reported summary measures (e.g., mean, standard deviation). For the outcomes with highly variable definitions, such as FEV₁, Area Under the Curve (AUC), and rescue medication use, we extracted values for a broad range of definitions. Other outcomes extracted included: exercise tolerance and related dyspnea scores on the Borg scale [12]; dyspnea as measured by Baseline Dyspnea Index (BDI) and Transitional Dyspnea Index (TDI) [13]; incidence of exacerbations; quality of life assessments measured by the St. George’s Respiratory Questionnaire (SGRQ) [14] or the Chronic Respiratory Disease Questionnaire (CRDQ) [15]; and incidence of beta-mediated adverse events, cardiac adverse events, and metabolic abnormalities.

Results

The initial search yielded 938 studies. Following abstract review, 873 studies were excluded based on criteria specified in the study protocol (Figure 1). Full-text review of the remaining 65 studies resulted in 3 additional exclusions, leaving 62 studies for data extraction. Among these 62 studies, only one study directly evaluated a SABA versus a LABA [16], 49 studies evaluated a LABA versus placebo or ipratropium [17-65], and 12 evaluated a SABA versus placebo or ipratropium [66-77]. There was insufficient data to complete a direct meta-analysis of SABA versus LABA. Due to the variations in outcomes and definitions and the small number of SABA studies, there was also insufficient data to allow meaningful indirect comparisons of LABAs and SABAs on the extracted endpoints. Below is a description of the limitations for FEV₁ and exacerbations, which were the most common outcome variables. A brief summary follows for other outcome variables.

FEV₁

Thirty-one studies reported numerical FEV₁ outcomes [20-22, 24-26, 27, 29, 30, 33-36, 38-40, 42, 44-46, 48, 49, 51, 56, 58, 59, 61, 63, 66, 67, 72-77], but only 17 studies reported change in peak FEV₁ (occurring within 1-4 hours after dosing) from baseline [16, 27-34, 36, 40, 44, 45, 48, 58, 63, 66, 67, 70, 74, 77]. None of these 17 studies included an analysis of a LABA versus ipratropium, eliminating the possibility of an indirect comparison through ipratropium. Among the placebo-controlled studies, 10 LABA [34-36, 45, 48, 58, 63] studies and 5 SABA studies [66, 67, 74, 75, 77] reported change in peak FEV₁, but only 2 of the SABA studies (both 2-weeks in duration) reported the variance for the outcome variable. Similarly, for serial measurements of FEV₁ after bronchodilator administration, there was only a single placebo controlled SABA study [69].

Figure 1: Study inclusion for data extract.
Exacerbations

Definitions for the incidence of exacerbations varied across the 35 studies reporting this outcome [16,19-21,23-30,32-34,37,41,43,47,49,50,52,56,58-60,62,64,66-70,74,76]. However, 33 studies included definitions of exacerbations that were moderate to severe based on the requirement for a change in the baseline medication regimen to improve respiration [16,19-21,23-30,32-34,37,41,43,47,49,50,52,58-60,62,64,66-70,74]. Among the 27 studies reporting the percentage of patients experiencing exacerbations: 21 studies evaluated LABA therapy versus placebo [19-21,23,27,29,30,32-34,37,41,43,47,49,50,52,58,60,62,64], but only 3 studies evaluated SABA therapy versus placebo [66,67,74]. The 3 SABA studies were all 12 weeks in length and changes in exacerbation frequency for studies shorter than 24 weeks in duration are not considered clinically meaningful.

Other outcome variables

Among the other outcome variables there were insufficient SABA studies for indirect comparisons. The number of SABA studies for each variable was dyspnea (1), use of rescue medications (1), tremor (2), six-minute walking test (2), CDRQ (4, but only 1 with sufficient numerical information), and SGRQ (1).

Discussion

The goal of this review was to complete a meta-analysis of published randomized clinical trials comparing LABAs and SABAs for maintenance treatment in COPD. Unfortunately, only a single study was found preventing the completion of a direct meta-analytic comparison. The single study was a 3-week randomized, double blind crossover trial comparing the addition of formoterol or salbutamol to ipratropium [16]. The primary outcome variable, peak expiratory flow, as well as comparing the addition of formoterol or salbutamol to ipratropium found preventing the completion of a direct meta-analytic comparison. The single RCT that compared adding a LABA (formoterol) or a SABA (albuterol) to ipratropium, found better airflow outcomes for the LABA treatment [16].

Conclusions

LABAs have been studied extensively as maintenance therapies in patients with COPD and have long-term safety and efficacy evidence. Although many patients with COPD are only treated with SABAs in usual clinical care, there is an absence of empirical support for the use of SABAs as maintenance therapy. This review supports the current evidence-based guidelines for COPD, which recommend the preferential use of LABAs for maintenance treatment of COPD and reserves the use of SABAs for rescue treatment.

Acknowledgement

Funding for this study was provided by Sunovion Pharmaceuticals Inc. Technical writing support was provided by Michael Stensland of Agile Outcomes Research Inc, Rochester, Minnesota, USA.

References

1. National Health Interview Survey (2007) Hyattsville, MD: National Center for Health Statistics.
2. Mannino DM, Homa DM, Akinbami LJ, Ford ES, Redd SC (2002) Chronic obstructive pulmonary disease surveillance—United States 1971–2000. MMWR 51: 1-16.
3. Underlying Cause of Death 1999-2010 on CDC WONDER Online Database (2012) Centers for Disease Control and Prevention, National Center for Health Statistics.
4. Chartbook on Cardiovascular, Lung, and Blood Diseases (2009) Bethesda, Md: National Heart, Lung, and Blood Institute.
5. Global Initiative for Chronic Obstructive Lung Disease (GOLD) (2010) Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease (updated 2010).
6. Fromer L, Cooper CB (2008) A review of the GOLD guidelines for the diagnosis and treatment of patients with COPD. Int J Clin Pract 62: 1219-1236.
7. Rutschmann OT, Janssens JP, Vermeulen B, Sarasin FP (2004) Knowledge of guidelines for the management of COPD: a survey of primary care physicians. Respir Med 98: 932-937.
8. Tsagaraki V, Markantonis SL, Amfilochiou A (2006) Pharmacotherapeutic management of COPD patients in Greece—adherence to international guidelines. J Clin Pharm Ther 31: 389-374.
9. Chronic obstructive pulmonary disease: developing drugs for treatment (draft guidance) (2007) Food and Drug Administration, Guidance for industry.
10. Make B, Durto MP, Paulose-Ram R, Marlon JP, Mapel DW (2012) Under treatment of COPD: a retrospective analysis of US managed care and Medicare patients. Int J Chron Obstruct Pulmon Dis 7: 1-9.
11. Single Technology Appraisal (STa): Specification for manufacturer/sponsor submission of evidence. (2009) National Institute for Health and Clinical Excellence.
12. Borg GA (1962) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14: 377-381.
13. Mahler DA, Weinberg DH, Wells CK, Feinstein AR (1984) The measurement of dyspnea. Contents, interobserver agreement, and physiologic correlates of two new clinical indexes. Chest 85: 751-758.
14. Jones PW, Quirk FH, Baveystock CM, Littlejohns P (1992) A self-complete measure of health status for chronic airflow limitation. The St. George’s Respiratory Questionnaire. Am Rev Respir Dis 145: 1321-1327.
15. Guyatt GH, Berman LB, Townsend M, Pugsley SO, Chambers LW (1987) A
measure of quality of life for clinical trials in chronic lung disease. Thorax 42: 773-778.

33. D’Urzo AD, De Salvo MC, Ramirez-Rivera A, Almeida J, Sichelidiis L, et al. (2001) In patients with COPD, treatment with a combination of formoterol and ipratropium is more effective than a combination of salbutamol and ipratropium: a 3-week, randomized, double-blind, within-patient, multicenter study. Chest 119: 1347-1356.

34. Aalbers R, Ayres J, Backer V, Decramer M, Lie R, et al. (2002) Formoterol in patients with chronic obstructive pulmonary disease: a randomized, controlled, 3-month trial. Eur Respir J 19: 936-943.

35. Akkoça Yıldız O, Özen ZP, Demir G, Erığ Gülbaş S, Saryal S, et al. (2006) Is there any difference between effects of ipratropium bromide and formoterol on exercise capacity in moderate COPD patients? Tuberk Torak 54: 105-113.

36. Baungartner RA, Hanania NA, Calhoun WJ, Sahn SA, Scharapp K, et al. (2007) Nebulized formoterol in patients with COPD: a 12-week, multicenter, randomized, double-blind, double-dummy, placebo- and active-controlled trial. Clin Ther 29: 740-748.

37. Boyd G, Morice AH, Pounscod JC, Siebert M, Pesnis L, et al. (1997) An evaluation of salmeterol in the treatment of chronic obstructive pulmonary disease (COPD) Eur Respir J 10: 815-821.

38. Broseghini C, Testi R, Polese G, Tosatto R, Rossi A (2005) A comparison between inhaled salmeterol and theophylline in the short-term treatment of stable chronic obstructive pulmonary disease. Pulm Pharmacol Ther 18: 103-108.

39. Brusasco V, Hodder R, Miravitles M, Korducki L, Towe L, et al. (2003) Health outcomes following treatment for six months with once daily tidtropium compared with twice daily salmeterol in patients with COPD. Thorax 58: 399-404.

40. Calverley PM, Pauwel R, Vestbo J, Jones P, Pride N, et al. (2003) Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 361: 449-456.

41. Calverley PM, Boonsawat W, Czeke Z, Zhong N, Petersen S, et al. (2003) Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J 22: 912-919.

42. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, et al. (2007) Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 356: 775-789.

43. Campbell M, Ellinor A, Johansson G, Tornling G, Nihlén U, et al. (2005) Formoterol for maintenance and as-needed treatment of chronic obstructive pulmonary disease. Respir Med 99: 1511-1520.

44. Campbell SC, Criner GJ, Levine BE, Simon SJ, Smith JS, et al. (2007) Cardiac safety of formoterol 12 microg twice daily in patients with chronic obstructive pulmonary disease. Pulm Pharmacol Ther 20: 571-579.

45. Celli B, Halpin D, Heppburn R, Byrne N, Keating ET, et al. (2003) Symptoms are an important outcome in chronic obstructive pulmonary disease clinical trials: results of a 3-month comparative study using the Breathlessness, Cough and Sputum Scale (BCSS). Respir Med 97: S35-S43.

46. Chapman KR, Anvidsson P, Chuchalin AG, Dhillon DP, Faurschou P, et al. (2002) The addition of salmeterol 50 microg bid to anticholinergic treatment in patients with COPD: a randomized, placebo controlled trial. Chronic obstructive pulmonary disease. Can Respir J 9: 178-185.

47. Chapman KR, Anvidsson P, Chuchalin AG, Dhillon DP, Faurschou P, et al. (2002) The addition of salmeterol 50 microg bid to anticholinergic treatment in patients with COPD. Thorax 58: 399-404.

48. Man WD, Mustafa N, Nokoletou D, Kaul S, Hart N, et al. (2004) Effect of salmeterol on respiratory muscle activity during exercise in poorly reversible COPD. Thorax 59: 471-476.

49. Neder JA, Fulj DP, Overend T, Thrirwell J, Carter R, et al. (2007) Effects of formoterol on exercise tolerance in severely disabled patients with COPD. Respir Med 101: 2056-2064.

50. Nelson HS, Gross NJ, Levine B, Kerwin EM, Rinehart M, et al. (2007) Cardiac safety profile of nebulized formoterol in adults with COPD: a 12-week, multicenter, randomized, double-blind, double-dummy, placebo- and active-controlled trial. Clin Ther 29: 2167-2176.

51. O’Donnell DE, Voduc N, Fitzpatrick M, Webb KA (2004) Effect of salmeterol on the ventilatory response to exercise in chronic obstructive pulmonary disease. Eur Respir J 24: 86-94.

52. O’Donnell DE, Scurba F, Celli B, Maher DA, Webb KA, et al. (2006) Effect of fluticasone propionate/salmeterol on lung hyperinflation and exercise endurance in COPD. Chest 130: 647-656.

53. Rennard SI, Anderson W, Zilwalkar R, Broughton J, Bailey W, et al. (2001) Use of a long-acting inhaled beta2-adrenergic agonist, salmeterol xinafoate, in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 163: 1087-1092.

54. Smith BJ, Appleton SL, Veale AJ, McElroy HJ, Veljkovic D, et al. (2004) Efficacy and tolerability of budesonide/formoterol in one hydrofluoroalkane pressurized metered-dose inhaler in patients with chronic obstructive pulmonary disease: results from a 1-year randomized controlled clinical trial. Drugs 69: 549-565.

55. Rossi A, Kristufek P, Levine BE, Thomson MH, Till D, et al. (2002) Comparison of the efficacy, tolerability, and safety of formoterol dry powder and oral, slow-release theophylline in the treatment of COPD. Chest 121: 1058-1069.

56. Rutten-van Molken M, Roos B, Van Noord JA (1999) An empirical comparison of the St George’s Respiratory Questionnaire (SGRQ) and the Chronic Respiratory Disease Questionnaire (CRQ) in a clinical trial setting. Thorax 54: 995-1003.
Eformoterol n-of-1 trials in chronic obstructive pulmonary disease poorly reversible to salbutamol. Chron Respir Dis 1: 63-69.

55. Stahl E, Wadbo M, Bengtsson T, Strom K, Lofdahl CG (2001) Health-related quality of life, symptoms, exercise capacity and lung function during treatment for moderate to severe COPD. J Outcomes Res 5: 11-24.

56. Stockley RA, Chopra N, Rice L (2006) Addition of salmeterol to existing treatment in patients with COPD: a 12 month study. Thorax 61: 122-128.

57. Szafranski W, Cukier A, Ramirez A, Menga G, Sansores R, et al. (2003) Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease. Eur Respir J 21: 74-81.

58. Tashkin DP, Littner M, Andrews CP, Tomlinson L, Rinehart M, et al. (2008) Concomitant treatment with nebulized formoterol and tiotropium in subjects with COPD: a placebo-controlled trial. Respir Med 102: 479-487.

59. Tashkin DP, Rennard SI, Martin P, Ramachandran S, Martin UJ, et al. (2008) Efficacy and safety of budesonide and formoterol in one pressurized metered-dose inhaler in patients with moderate to very severe chronic obstructive pulmonary disease: results of a 6-month randomized clinical trial. Drugs 68: 1975-2000.

60. Tashkin DP, Pearle J, Lezzone D, Varghese ST (2009) Formoterol and tiotropium compared with tiotropium alone for treatment of COPD. COPD 6: 17-25.

61. Ulrik CS (1995) Efficacy of inhaled salmeterol in the management of smokers with chronic obstructive pulmonary disease: a single centre randomised, double blind, placebo controlled, crossover study. Thorax 50: 750-754.

62. van Noord JA, de Munck DR, Bantje TA, Hop WC, Akveld ML, et al. (2000) Long-term treatment of chronic obstructive pulmonary disease with salmeterol and the additive effect of ipratropium. Eur Respir J 15: 878-885.

63. van Noord JA, Aumann JL, Janssens E, Verhaert J, Smeets JJ, et al. (2006) Effects of tiotropium with and without formoterol on airflow obstruction and resting hyperinflation in patients with COPD. Chest 129: 509-517.

64. Vogelemeier C, Kardos P, Harari S, Gans SJ, Stenglein S, et al. (2008) Formoterol mono- and combination therapy with tiotropium in patients with COPD: a 6-month study. Respir Med 102: 1511-1520.

65. Wadbo M, Lofdahl CG, Larsson K, Skoogh BE, Tornling G, et al. (2002) Effects of formoterol and ipratropium bromide in COPD: a 3-month placebo-controlled study. Eur Respir J 20: 1138-1146.

66. [No authors listed] (1997) Routine nebulized ipratropium and albuterol together are better than either alone in COPD. The COMBIVENT Inhalation Solution Study Group. Chest 112: 1514-1521.

67. [No authors listed] (1994) In chronic obstructive pulmonary disease, a combination of ipratropium and albuterol is more effective than either agent alone. An 85-day multicenter trial. COMBIVENT Inhalation Aerosol Solution Study Group. Chest 105: 1411-1419.

68. Colice GL (1996) Nebulized bronchodilators for outpatient management of stable chronic obstructive pulmonary disease. Am J Med 100: 115-18S.

69. Donohue JF, Parsey MV, Andrews C, D’Urzo T, Sharma S, et al. (2006) Evaluation of the efficacy and safety of levalbuterol in subjects with COPD. COPD 3: 125-132.

70. Gross N, Tashkin D, Miller R, Oren J, Coleman W, et al. (1998) Inhalation by nebulization of albuterol-ipratropium combination (Dey combination) is superior to either agent alone in the treatment of chronic obstructive pulmonary disease. Dey Combination Solution Study Group. Respiration 65: 354-362.

71. Hansen NC, May O (1990) Domiciliary nebulized terbutaline in severe chronic airways obstruction. Eur Respir J 3: 463-464.

72. Jaeschke R, Guyatt GH, Singer J, Keller J, Newhouse MT (1991) Mechanism of bronchodilator effect in chronic airflow limitation. CMAJ 144: 35-39.

73. Mohammed AF, Andrew K, Matusiewicz SP, Boyd G, Greening AP, et al. (1991) Effect of controlled-release salbutamol in predominantly non-reversible chronic airflow obstruction. Respir Med 85: 495-500.

74. Petty TL (1995) The combination of ipratropium and albuterol is more effective than either agent alone. Chest 107: 183S-186S.

75. Sansores R, Ramerez-Vanegas A, Reddy C, Mejia-Alfaro R (2003) Effect of the combination of two bronchodilators on breathlessness in patients with chronic obstructive pulmonary disease. A crossover clinical trial. Arch Med Res 34: 292-297.

76. Tandon MK, Kailis SG (1991) Bronchodilator treatment for partially reversible chronic obstructive airways disease. Thorax 46: 248-251.

77. Thomas P, Pugsley JA, Stewart JH (1992) Theophylline and salbutamol improve pulmonary function in patients with irreversible chronic obstructive pulmonary disease. Chest 101: 160-165.

78. Caldwell DM, Ades AE, Higgins JP (2005) Simultaneous comparison of long-acting and short-acting β2-Agonists for Chronic Obstructive Pulmonary Disease: A Review. J Pulm Resp Med 3: 137. doi:10.4172/2161-105X.1000137