Abstract

We summarize current models of the formation of spheroidal stellar systems. Whereas globular clusters form in an efficient mode of star formation inside turbulent molecular clouds, the origin of galactic spheroids, that is bulges, dwarf ellipticals, and giant ellipticals, is directly coupled with structure formation and merging of structures in the Universe. Disks are the fundamental building blocks of galaxies and the progenitors of galactic spheroids. The origin of the various types of spheroids and their global properties can be understood as a result of disk heating by external perturbations, internal disk instabilities, or minor and major mergers.

1.1 The Realm of Spheroids

Spheroids exist in the Universe with a wide range in masses and length scales. Probably the most simple, classical examples of stellar spheroids are globular star clusters with masses in the range of $10^4 M_\odot$ to $10^6 M_\odot$ and half-mass radii of order 2–10 pc (Harris 1996). These almost spherical systems appear to be stable and very long lived. Although the metallicities of different clusters in the Milky Way vary from $[\text{Fe/H}] \approx -2.5$ to solar or even larger, the strikingly narrow iron abundance spreads of stars within individual clusters (Kraft 1979) and their small age spread indicate that each cluster consists of only one stellar generation that formed on a short time scale from chemically homogenized gas. Peebles & Dicke (1968) proposed that globular clusters are the first objects that formed in the Universe. More recent models assume that globulars formed at the same time as their host galaxies (Fall & Rees 1985; Vietri & Pesce 1995). As giant molecular clouds have similar masses and radii, they are considered to be the primary sites of cluster formation. Unfortunately, the formation of stars and the condensation of molecular clouds into dense, massive star clusters is still not well understood up to now (for a recent review see Lada & Lada 2003). Klessen & Burkert (2000, 2001) and Bate, Bonnell, & Bromm (2002; see also Clarke, this volume) investigated numerically the gravitational collapse of a turbulent cloud. Their models showed that the stabilizing turbulent motion of the molecular gas is dissipated on a short dynamical time scale, resulting in collapse and star formation. These models, however, neglected energetic feedback processes, which are known to play a crucial role in regulating and terminating star formation. In order to form a gravitationally bound, dense stellar cluster, high local star formation efficiencies of order $\eta_{sf} \approx 50\%$ are required (Brown, Burkert, & Truran...
Fig. 1.1. Simulation of an equal-mass spiral galaxy merger. Each box has a size of 210 kpc. The upper-left box shows the initial condition. The other boxes show snapshots of the evolution at 4.6×10^8, 8×10^8, 1.3×10^9, 1.9×10^9, and 2.6×10^9 yr. Dark matter deficient dwarf spheroidals might form through gravitational instabilities inside tidal arms. The merger remnant is surrounded by rings and shells that provide long-term signatures of its merging history.

1991, 1995; Geyer & Burkert 2001). This is in contradiction with observations, which indicate that the fraction of molecular cloud material that turns into stars is typically of order $\eta_{sf} \leq 10\%$ due to gas ionization by the UV field of newly formed high-mass stars (Myers et al. 1986; Williams & McKee 1997; Koo 1999). Ashman & Zepf (1992) argued that globular clusters can form efficiently in interacting galaxies (Schweizer 1999), which indicates that peculiar, galactic non-equilibrium environments might enhance the star formation efficiency in molecular clouds. Under these conditions, supersonic cloud-cloud collisions or cloud implosions induced by an increase of the external gas pressure could destabilize a whole cloud complex, triggering global collapse and efficient star formation.

In contrast to globular clusters, the origin and structure of galactic spheroids (dwarf spheroidals, dwarf ellipticals, giant ellipticals, and bulges) seem to be strongly coupled with the hierarchical merging history of substructures in the Universe. Within the popular cold dark matter (CDM) cosmogony, the visible components of galaxies arise from gas infall into dark matter halos, followed by star formation. Disks are envisioned to form as a result of smooth gas accretion from the intergalactic medium (e.g., Katz & Gunn 1991; Navarro & White 1994; Steinmetz & Müller 1994). Spheroids result from processes that heat and destroy stellar disks. Low-mass dwarf spirals are particularly sensitive to stirring and harassment by the cumulative tidal interactions of high-speed galaxy encounters in galactic clusters (Moore et al. 1996; Moore, Lake, & Katz 1998), leading in the end to dwarf ellipticals. Massive spiral galaxies, on the other hand, can be destroyed by major mergers (Fig.
1.1) and transform into giant ellipticals and bulges (Toomre 1974; Kauffmann, Charlot, & White 1996).

Recently, numerical simulations have shown that the formation of disks and spheroids might be even more complex. High-resolution cosmological simulations of galaxy evolution including star formation and feedback processes (Steinmetz & Navarro 2002) as well as semi-analytical models (Khochfar & Burkert 2003) indicate that the galaxies change their morphological type frequently. For example, spheroids could form by an early merger of low-mass disks and later on rebuild new disks by smooth gas accretion. These bulge-disk systems could merge again, forming an even larger spheroid. Within the framework of this scenario galactic bulges represent early spheroids that have grown a new, surrounding disk component. It is, however, not clear up to now whether all bulges necessarily formed that way (e.g., Wyse, Gilmore, & Franx 1997). Wyse & Gilmore (1992) argued that the specific angular momentum distribution of the Milky Way’s bulge is very similar to that of the stellar halo and very different from that of the disk. This would suggest that the bulge was built up by dissipative inflow (Gnedin, Norman, & Ostriker 2000) of gas that was lost from star-forming regions and substructures in the Galactic halo, suggestive of a monolithic collapse scenario (Eggen, Lynden-Bell, & Sandage 1962). Yet another possibility are disk instabilities (Athanassoula 2002), which lead to barlike structures that later on transform into bulges through a buckling instability (Combes et al. 1990; Pfenniger & Norman 1990; Norman, Sellwood, & Hasan 1996; Noguchi 2000). Balcárs et al. (2003) report a lack of bulges with \(r^{1/4} \) surface density profiles, expected in the merging scenario, favoring the secondary process. Ellis, Abraham, & Dickinson (2001) find that intermediate-redshift bulges are bluer than their elliptical counterparts, which indicates that bulges are younger than ellipticals, in contradiction with the bottom-up structure formation scenario of the CDM model. It is likely that some bulges formed by disk instabilities and others by early mergers. In this case, two bulge populations should exist, with different kinematic and photometric properties.

Within the cosmological CDM scenario, galactic spheroids are surrounded by dark matter halos. An exception might be tidal tail galaxies. Distinct gaseous and stellar clumps are frequently found in tidal tails of interacting galaxies (Schweizer 1978; Mirabel, Lutz, & Maza 1991). Barnes & Hernquist (1992) used numerical simulations to demonstrate that these self-gravitating systems consist preferentially of gas and stars and form frequently in the thin, expanding tails of merging galaxies. In contrast to structures that form by cosmological merging, the dark matter fraction in tidal tail galaxies is negligibly small. The dwarf spheroidals orbiting the Milky Way might represent such a population of dark matter deficient tidal tail systems (Irwin & Hatzipirikou 1995; Klessen & Kroupa 1998).

The formation of galactic spheroids as a result of discrete, violent perturbations of galactic disks is supported by the observation that galaxy populations vary strongly with the galaxy density in clusters. It has been recognized early that most early-type systems are found in clusters (e.g., Hubble & Humason 1931). Detailed observations by Dressler (1980) suggested a well-defined relationship between the local density in clusters and galaxy type (see also Whitmore & Gilmore 1991). Postman & Geller (1984) extended the study of this morphology-density relation to poorer groups of galaxies and defined a single morphology-density relation that is valid over 6 orders of magnitude in density. Melnick & Sargent (1977) found a relation between the morphological type of individual galaxies and their distance from the cluster center. It is still a matter of debate whether this morphology-radius relation follows from the morphology-density relation, or vice versa. Whitmore, Gilmore,
A. Burkert and T. Naab

& Jones (1993) argued on the basis of Dressler’s data that the distance from the cluster center is the more fundamental parameter. This conclusion is supported by the study of Sanromá & Salvador-Solé (1990) who showed that the radial variations in cluster properties are preserved independent of substructure.

Hubble Space Telescope images of clusters at intermediate redshifts have confirmed that morphological transformations occur frequently in clusters. Dressler et al. (1997) and Couch et al. (1998) found an abnormally high proportion of spiral and irregular types at redshifts \(z \approx 0.5 \) and an increase of the fraction of S0 galaxies toward the present time. These observations are in agreement with cosmological models that predict that galaxy mergers lead to ellipticals and S0s, and that in dense, rich clusters no subsequent formation of a new disk component is possible (Kauffmann, White, & Guiderdoni 1993; Baugh, Cole, & Frenk 1996; Kauffmann 1996). Okamoto & Nagashima (2001) combined semi-analytical methods with cosmological \(N \)-body simulations to study the formation and evolution of cluster galaxies. Their models can reproduce the morphology-density relation for elliptical galaxies. However they also predict a clear separation between bulge-dominated and disk-dominated galaxy types in clusters. Mixed types like S0 galaxies should be rare, which is not in agreement with the observations.

1.2 Rotating Spheroids

Stellar equilibrium systems exist in two basic configurations: rotationally supported disks and pressure-supported spheroids. Disks are stabilized by the balance between centrifugal forces and gravity. Their radial surface density distribution is determined primarily by the specific angular momentum distribution of the stellar system and the shape of the gravitational potential well or the total mass distribution. The velocity dispersion \(\sigma \) of stellar disks is, by definition, small compared to their rotation \(\upsilon_{\text{rot}} \). It therefore does not affect their radial density profiles or rotation curves, while still regulating their vertical thickness.

Disks are called dynamically cold because of their small random velocities \(\sigma \ll \upsilon_{\text{rot}} \). Spheroids are, in contrast, dynamically hot stellar systems with \(\sigma \geq \upsilon_{\text{rot}} \). Even in these systems angular momentum and rotation can still play an important role. The difference between disks and ellipticals is therefore not necessarily a result of differences in the specific angular momentum distribution but rather due to differences in the stellar velocity dispersion. Stellar disks, for example, can easily be converted into spheroids through internal instabilities or external perturbations that increase the particles’ vertical velocity dispersion, even if their angular momentum distribution remains unchanged. This scenario is very attractive in explaining the origin of dwarf ellipticals, which have exponential surface brightness profiles, reminiscent of a disk progenitor. A process that could convert exponential disks into spheroids is tidal interaction in clusters (Moore et al. 1998). Galactic harassment, however, would not reduce significantly the rotational velocity, in contrast with recent observations by Geha, Guhathakurta. & van der Marel (2002).

Spheroids could either be flattened by rotation or by an anisotropic velocity distribution. Violent processes that break up disks and lead to ellipticals should in general result in anisotropic systems. However, it has been argued that especially lower-mass, disky ellipticals are rotationally flattened and isotropic systems (Bender 1988a). If the equidensity surfaces of an oblate spheroid with ellipticity \(\epsilon \) are all similar, the ratio of line-of-sight rotational velocity \(\upsilon \) to line-of-sight velocity dispersion \(\sigma \) is (Binney & Tremaine 1987)
Fig. 1.2. The ratio of line-of-sight rotational velocity to line-of-sight velocity dispersion as a function of ellipticity for disky ellipticals (triangles) and two collisionless merger remnants of disk galaxies (filled and open circles), viewed with different projection angles. The solid lines show theoretical predictions of anisotropic stellar systems with given anisotropy δ. The dashed curves show inclination effects for a system with $(\epsilon, \delta) = (0.78, 0.4)$ and $(\epsilon, \delta) = (0.7, 0.5)$.

$$\frac{v^2}{\sigma^2} = 0.5(1 - \delta) \frac{\arcsin \epsilon - \sqrt{1 - \epsilon^2}}{\sqrt{1 - \epsilon^2} - (1 - \epsilon^2) \arcsin \epsilon} - 1$$

(1.1)

where the anisotropy parameter $\delta = 1 - \Pi_{zz}/\Pi_{xx}$ measures the deviation from isotropy and Π_{ii} is the random kinetic energy tensor component in the i'th direction. The solid lines in Figure 1.2 show v/σ versus ϵ for various values of δ. For $\epsilon > 0.2$, inclination (dashed curves) mainly decreases the ellipticity, with no significant change in v/σ. The triangles in Figure 1.2 show observed lower-mass disky ellipticals. They appear to be isotropic, with $\delta < 0.2$. However, some objects, especially those with $v/\sigma \approx 0.5$, could also represent inclined anisotropic ellipticals, with intrinsic anisotropies of $\delta = 0.5$ and high ellipticities ($\epsilon \approx 0.7$). If seen edge-on, these systems would be interpreted as S0 galaxies and therefore would not be classified as disky ellipticals. The open and filled circles show two merger remnants from numerical simulations with mass ratios 3:1 and different initial disk orientations (Burkert,
Naab, & Binney 2003, in preparation). Each point represents a different projection angle and follows the theoretical dependence of ν/σ and ϵ on the inclination angle. We find that mergers of initially aligned disks result in ellipticals that are indeed intrinsically isotropic (filled circles) and fast rotating, with $\nu/\sigma = 1$. Misaligned disks, however, form ellipticals that are anisotropic (open circles) with $\delta = 0.5$ and $\nu/\sigma = 0.5$. These objects could still appear isotropic due to inclination effects.

1.3 Stellar Equilibrium Systems

Any stellar dynamical system is completely specified by its phase space distribution function $f(\vec{x}, \vec{v}, t)$, which determines the number of stars that at time t have positions \vec{x} in a small volume dx^3 and velocities \vec{v} in the small range $d\nu^3$. In collisionless systems the flow of points in the 6-dimensional phase space resembles an incompressible fluid and is determined by the Vlasov equation $df/dt = 0$. In equilibrium f must be a steady-state solution ($\partial f/\partial t = 0$) of the Vlasov equation, and the Jeans theorem holds, which says that f depends on the phase space coordinates only through integrals of motion. In the case of spherical symmetry with an isotropic velocity dispersion, f is only a function of the energy: $f = f(E = \nu^2/2 - \Phi)$, where Φ is the gravitational potential. Obviously there exist an infinite number of equilibrium distribution functions, and stellar spheroids could have a large variety of density distributions. This is not observed, however. Galaxies can be subdivided just into two major groups with respect to their density profiles: giant ellipticals and dwarf ellipticals. Giant ellipticals are characterized by de Vaucouleurs profiles (de Vaucouleurs 1948; Kormendy 1977), dwarfs by exponential profiles. The exponential profiles might be reminiscent of exponential progenitor disks. The origin of the de Vaucouleurs profile and the observed regularity in giant ellipticals is more obscure and still not completely understood.

Internal secular evolution due to two-body relaxation (e.g., Lynden-Bell & Wood 1968) could efficiently erase the information about the initial state, leading to universal structures. This is likely in the case of globular clusters with lifetimes that are large compared to their internal relaxation time scale. The situation, however, is different for galaxies, which have two-body relaxation time scales that by far exceed their age. Hernquist (1990) presented an analytical density distribution $\rho_H(r)$ that closely matches the de Vaucouleurs law:

$$
\rho_H(r) = \frac{M}{2\pi} \frac{a}{r^2} \frac{1}{(r+a)^3},
$$

where M is the total mass and a is a scale length.

The velocity dispersion profile $\sigma(r)$ in the inner region of the Hernquist spheroid is given by

$$
\sigma^2 \sim r \ln \left(\frac{a}{r} \right)
$$

and is characterized by a kinematically cold, power-law density core with a velocity dispersion that decreases toward the center and a density that diverges for $r \to 0$. Numerical simulations of galaxy mergers confirm that kinematically cold cores form as predicted by Equation 1.3. Binney (1982) calculated the fractional energy distribution $N(E)$ that would be required for a stellar systems to follow the $r^{1/4}$ law. He found the interesting result that $N(E)$ is well described by a Boltzmann law

$$
N(E) = N_0 \exp(\beta E),
$$
where $\beta = -2r_e/GM$ represents a negative temperature. Although such an energy distribution is also found in numerical simulations (Spergel & Hernquist 1992) there does not yet exist any analytical theory that could explain its origin.

The origin of universal $r^{1/4}$ profiles might require a phase of strong violent relaxation of the stellar system. Lynden-Bell (1967) noted that strong fluctuations of the gravitational potential during this relaxation phase would change the specific energy distribution on a time scale of order 2–3 dynamical time scales. Simulations of violently collapsing collisionless stellar systems (van Albada 1982) lead to equilibrium states that were in rough agreement with a de Vaucouleurs profile. A universal state, however, is only achieved if the initial density distribution is very concentrated, as otherwise phase space constraints affect the relaxation and final structure of the inner region (Burkert 1990; Hozumi, Burkert, & Fujiwara 2000). Spergel & Hernquist (1992) adopted a different approach and proposed that violent relaxation can be described by numerous random orbital perturbations that occur preferentially at perigalacticon. In this case, the probability of a particle being scattered into a given state would be proportional to the phase space accessible at perigalacticon, resulting in an exponential energy distribution.

1.4 Fundamental Plane Relations

Stellar systems are characterized by three global physical parameters: central velocity dispersion σ_0, effective radius r_e, and effective surface brightness μ_e, or, in physical units, $\log I_e = -0.4(\mu_e - 27)$. With $L \sim L_e r_e^2$ and assuming virial equilibrium ($M \sim \sigma_0^2 r_e$) Bender, Burstein, & Faber (1992) introduced an orthogonal coordinate system in the 3-space of the observable parameters $\log \sigma_0^2$, $\log r_e$ and $\log L$:

$$\kappa_1 \equiv (\log \sigma_0^2 + \log r_e) / \sqrt{2},$$
$$\kappa_2 \equiv (\log \sigma_0^2 + 2 \log L_e - \log r_e) / \sqrt{6},$$
$$\kappa_3 \equiv (\log \sigma_0^2 - \log L_e - \log r_e) / \sqrt{3}.$$

If we define the luminosity L and the mass M of a galaxy as $L = c_1 L_e r_e^2$ and $M = c_2 \sigma_0^2 r_e$, as given by the virial theorem, with c_1 and c_2 being structure constants, the effective radius can be written as $r_e = (c_1 / c_2)(M/L)^{-1} \sigma_0^2 L_e$. Then κ_1 is proportional to $\log M$, κ_2 is proportional to $\log(M/L) L_e^2$, and κ_3 is proportional to $\log(M/L)$.

Figure 1.3 shows the distribution of elliptical galaxies and bulges in κ-space. The $\kappa_1 - \kappa_3$ projection shows the plane edge-on. Its tilt is independent of the environment (Jørgensen, Franx, & Kjaergaard 1996) and does in general also exist for S0s and dwarf ellipticals (Nieto et al. 1990). In addition to the optical, a fundamental plane is also found in the infrared, but with a slightly different slope (Mobasher et al. 1999), and probably in the X-ray regime (Fukugita & Peebles 1999). The origin of the slope is not well understood up to now. It probably corresponds to variations in the internal structure and to changes in metallicity and age, which seem to correlate well with galaxy mass.

The edge-on view of the fundamental plane can be thought of as a consequence of the virial theorem, independent of initial conditions. The face-on view ($\kappa_1 - \kappa_2$ projection), on the other hand, provides important information about the formation of spheroids. In this
Fig. 1.3. This figure, adopted from Bender, Burstein, & Faber (1997), shows the distribution of all types of dynamically hot galaxies in κ-space. Large squares denote giant ellipticals ($M_T < -20.5$ mag); triangles show ellipticals of intermediate luminosity (-20.5 mag $< M_T < -18.5$ mag). Circles and diamonds denote compact ellipticals and dwarf galaxies, respectively. Open symbols are rotationally flattened galaxies, while filled symbols are anisotropic objects. Bulges are represented by crosses. The five small filled squares at low κ_1 values denote local dwarf spheroidals. The set of arrows indicates how dissipation with and without dark matter, tidal stripping, ram pressure stripping, or merging would move the objects in κ space. The curved lines marked 1.0σ and 2.5σ indicate the range of κ_1 versus κ_2 values expected from a CDM density fluctuation spectrum neglecting dissipation.

plane dwarf ellipticals and giant ellipticals divide into two orthogonal sequences (see also Kormendy 1985; Binggeli & Cameron 1991). Whereas giant ellipticals and bulges with total blue luminosities brighter than $M_{B_T} \approx -18$ mag and stellar masses $M_* > 10^{10} M_\odot$ are characterized by high surface densities that decrease systematically with increasing mass, dwarf ellipticals with $M_{B_T} \geq -18$ mag are diffuse and have surface densities that increase with mass or luminosity. Dissipationless collapse in a CDM Universe would produce structures that lie within the thin solid lines denoted 1.0σ and 2.5σ. Energy dissipation moves galaxies toward larger κ_2 values. Obviously, low-mass giant ellipticals and bulges experienced
a large amount of dissipation, leading to high surface densities, compared to the expected dissipationless values. Giant ellipticals, on the other hand, might have formed in gas-poor stellar mergers, which are preferentially dissipationless. The sequence of dwarf ellipticals that runs almost perpendicular to giant ellipticals indicates that these systems might have strongly been affected by wind-driven mass loss (Larson 1974; Arimoto & Yoshii 1986, 1987; Dekel & Silk 1986; Vader 1986; Matteucci & Tornambè 1987; Martinelli, Matteucci, & Colafrancesco 2000), which decreased both κ_2 and κ_1. The galactic wind model can also explain the observed color-magnitude relation (Faber 1973; Bower, Lucey, & Ellis 1992), according to which the integrated colors of dwarf ellipticals become progressively bluer toward fainter luminosities. Gas loss would terminate the epoch of star formation progressively later in more massive ellipticals with deeper potential wells. The stellar populations in brighter galaxies should therefore be more enhanced in heavy elements and would appear redder. Bender et al. (1997) argued, however, that progressively larger amounts of mass loss, starting from a single progenitor galaxy with $\kappa_1 \approx 3.5$ and $\kappa_2 \approx 2.6$ cannot explain the dwarf sequence, which in this case should be much steeper. Dwarf galaxies instead had to form from different progenitors with different initial densities and probably also different amounts of mass loss. It is still not clear up to now why a large range of possible progenitors and the expected strong variations in star formation and galactic mass loss histories should lead to dwarf ellipticals that populate such a narrow one-dimensional sequence in κ-space.

The dichotomy between dwarf and giant ellipticals is clearly visible when investigating their global or central properties. The situation seems to be different when one considers the shape of their light profiles, where the transition appears to be more continuous. Most bright dEs have an inner luminosity excess above the exponential surface brightness profile that is characteristic for low-luminosity dwarfs (Binggeli & Cameron 1991). The profiles of these nucleated dwarfs resemble closely the characteristic $r^{1/4}$ profiles of giant ellipticals. This observed continuity motivated Young & Currie (1994) and subsequently Jerjen & Binggeli (1997) and Binggeli & Jerjen (1998) to fit Sérsic (1968) profiles

$$I(r) = I_0 e^{-(r/r_0)^n}$$

(1.8)

to their sample of early-type dwarf and giant galaxies (see also Caon, Capaccioli, & D’Onofrio 1993). They found that the Sérsic index n and the Sérsic parameters I_0 and r_0 vary smoothly with luminosity, indicating that all ellipticals can be reunited into one sequence. The exception are compact ellipticals (Faber 1973; Burkert 1994), which are a rare and special kind of ellipticals with shapes like giants but luminosities like dwarfs. Up to now it is not clear why all ellipticals have surface brightness profiles that vary smoothly with luminosity while, at the same time, their global parameters and also their central parameters (Kormendy 1985) show a clear dichotomy between giant and dwarf ellipticals.

1.5 The Formation of Elliptical Galaxies

Elliptical galaxies have long been thought to be simple spheroidal dynamically relaxed stellar systems that follow a universal de Vaucouleurs $r^{1/4}$ law (de Vaucouleurs 1948) and are classified only by their ellipticity. The traditional formation mechanism for giant ellipticals that would naturally result in a homogeneous family of galaxies is the “monolithic collapse” model. It was motivated by the idea that the oldest stars of the spheroidal halo component of the Galaxy formed during a short period of radial collapse of gas (Eggen et al. 1962). In this case, ellipticals could have formed very early as soon as a finite over-dense
region of gas and dark matter decoupled from the expansion of the Universe and collapsed. If during the protogalactic collapse phase star formation was very efficient, a coeval spheroidal stellar system could have formed (Partridge & Peebles 1967; Larson 1969, 1974; Searle, Sargent, & Bagnuolo 1973) before the gas dissipated its kinetic and potential energy and settled into the equatorial plane, forming a disk galaxy. A possible test of this assumption is the redshift evolution of the zero point of the fundamental plane, which is a very sensitive indicator of the age of a stellar population (van Dokkum & Franx 1996). It evolves very slowly, especially for massive elliptical galaxies, indicating a formation redshift of their stars of $z \geq 3$ (Bender et al. 1998; van Dokkum et al. 1998). This scenario would be in agreement with the monolithic collapse picture.

An alternative scenario, proposed by Toomre & Toomre (1972), is that elliptical galaxies formed via a morphological transformation induced by binary mergers of disk galaxies. During the merging phase the stellar disks experienced a phase of violent relaxation due to the strong tidal interactions, resulting in a spheroidal merger remnant. The merging scenario has been tested by observations of rich clusters at intermediate and low redshifts. There is growing evidence that the abundance of spiral galaxies in clusters indeed decreases from a redshift of $z = 0.8$ to $z = 0$ (Dressler et al. 1997; Couch et al. 1998; van Dokkum et al. 2000). A similar trend is observed for the relative numbers of star-forming and post-starburst galaxies (Butcher-Oemler effect) (Butcher & Oemler 1978, 1984; Postman, Lubin, & Oke 1998; Poggianti et al. 1999). At the same time, the early-type fraction increases from 40% to 80% between $z = 1$ and $z = 0$ (van Dokkum & Franx 2001). Semi-analytical models of galaxy formation within the hierarchical merging scenario by Kauffmann (1996) and Kauffmann & Charlot (1998) are also consistent with a low formation redshift for early-type galaxies, which seems to be in contradiction with the ages of their stellar populations. Van Dokkum & Franx (2001) showed that this problem can be solved if the progenitors of present-day ellipticals are not classified as ellipticals at high redshift. In this case, the apparent luminosity and color evolution would look similar to a single age stellar population that formed at very high redshift, independent of the true star formation history.

1.5.1 Boxy and Disky Ellipticals

Further insight into the formation history of ellipticals comes from detailed observations of nearby galaxies, which can be subdivided into two groups with respect to their structural properties (Bender 1988a; Bender, Döbereiner, & Möllenhoff 1988; Kormendy & Bender 1996). Faint giant ellipticals are isotropic rotators with small minor axis rotation and disky deviations of their isophotal contours from perfect ellipses. Their diskyness might be due to a faint secondary disk component that contributes up to 30% to the total light in these galaxies. Disky ellipticals also have power-law inner density profiles (Lauer et al. 1995; Faber et al. 1997) and show little or no radio and X-ray emission (Bender et al. 1989). Bright giant elliptical galaxies with $L_B \geq 10^{11} L_{\odot}$, on the other hand, exhibit nearly elliptical or box-shaped isophotes and show flat cores. Their kinematics are generally more complex than those of disky objects. They rotate slowly, are supported by anisotropic velocity dispersions and have a large amount of minor axis rotation. Boxy galaxies have smaller values of n than disky galaxies. Occasionally, they have kinematically distinct cores (Bender 1988b; Franx & Illingworth 1988; Jedrzejewski & Schechter 1988), which are metal enhanced, indicating that gas infall and subsequent star formation must have played some role during their formation (Bender & Surma 1992; Davies, Sadler, & Peletier 1993). Boxy
ellipticals also show stronger radio emission than average and have high X-ray luminosities, consistent with emission from hot gaseous halos (Beuing et al. 1999).

The distinct physical properties of disky and boxy elliptical galaxies demonstrate that the two types of ellipticals could have experienced different formation histories. It has been argued by Kormendy & Bender (1996) and Faber et al. (1997) that the high surface densities (see Fig. 1.3), the secondary disk components, and the central power-law density cusps of disky ellipticals result from substantial gas dissipation during the merging of gas-rich progenitors. Disky ellipticals seem to continue the Hubble sequence from S0s to higher bulge-to-disk ratios. Boxy ellipticals, on the other hand, might have formed by dissipationless mergers between collisionless stellar disks or other ellipticals (Naab & Burkert 2000; Khochfar & Burkert 2003).

1.5.2 Merger Simulations

Merger simulations of disk galaxies provide the best access to a direct comparison with observations of individual galaxies. The stellar content of a galaxy is represented by particles that can be analyzed with respect to their photometric and kinematic properties in the same way as an observed galaxy. It has generally been assumed that the progenitors of elliptical galaxies are disk galaxies. That this assumption is questionable has been demonstrated by Khochfar & Burkert (2003). Their semi-analytical models show that most massive ellipticals actually formed by mixed (elliptical-spiral) or early-type mergers.

Negroponte & White (1983), Barnes (1988), and Hernquist (1992) performed the first fully self-consistent merger models of two equal-mass stellar disks embedded in dark matter halos. The remnants were slowly rotating, pressure-supported, anisotropic, and generally followed an $r^{1/4}$ surface density profile in the outer parts. However, due to phase space limitations (Carlberg 1986) the surface brightness profiles in the inner regions were flatter than observed. To solve this problem a massive central bulge component had to be included in the progenitors (Hernquist 1993a). In this case, the progenitors resembled already early-type galaxies. It seems to be unlikely that all merger progenitors of ellipticals contained a massive central bulge component. On the other hand, these simulations already emphasized that global properties of equal-mass merger remnants resemble those of ordinary, slowly rotating massive elliptical galaxies.

Additional evidence for the merger scenario are tidal tails and shells that are observed in the outer parts of ellipticals and are found to be a natural result of disk mergers (Hernquist & Spergel 1992). In addition, the formation of kinematically decoupled subsystems in merger simulations that include gas strongly support the merger scenario (Hernquist & Barnes 1991). Note, however, that Harsoula & Voglis (1998) proposed an alternative scenario where kinematically distinct subsystems can form directly from an early cosmological collapse without any major mergers thereafter.

More detailed investigations of the isophotal shapes of equal-mass merger remnants have shown that the same remnant can appear either disky or boxy when viewed from different directions (Hernquist 1993b). This result is puzzling since most boxy ellipticals are radio and X-ray luminous, in contrast to disky ellipticals. As radio and X-ray properties should not depend on projection effects, the isophotes should not change with viewing angle.

In contrast to anisotropic, equal-mass mergers, mergers with a mass ratio of 3:1 lead to remnants that are flattened and fast rotating (Bendo & Barnes 2000). Naab, Burkert, & Hernquist (1999) analyzed the photometric and kinematic properties of a typical 3:1 merger rem-
A. Burkert and T. Naab

Fig. 1.4. Rotational velocity over velocity dispersion versus characteristic ellipticity for mergers with various mass ratios. Values for observed ellipticals are overplotted. The dashed line shows the theoretically predicted correlation for an oblate isotropic rotator.

nant and compared the results to observational data of disky elliptical galaxies. They found an excellent agreement and proposed that fast-rotating disky elliptical galaxies can originate from pure collisionless 3:1 mergers, as opposed to slowly rotating, pressure-supported ellipticals, which might form from equal-mass mergers of disk galaxies. Burkert & Naab (2003) and Naab & Burkert (2003) analyzed a large number of high-resolution, statistically unbiased mergers with mass ratios of 1:1, 2:1, 3:1, and 4:1. They concluded that the dichotomy of giant ellipticals can be understood as a sequence of mass ratios of disk-disk mergers (Fig. 1.4). Equal-mass mergers produce anisotropic and slowly rotating remnants with a large amount of minor axis rotation. A subset of initial disk orientations result in purely boxy ellipticals. Only if the initial spins of the disks are aligned will the remnant appear isotropic and disky or boxy depending on the orientation. In contrast, 3:1 and 4:1 mergers form a more homogeneous group of remnants. They have preferentially disky isophotes, and are fast rotating with small minor axis rotation, independent of the assumed projection. 2:1 mergers
have intermediate properties, with boxy or disky isophotes depending on the projection and the orbital geometry of the merger.

The influence of gas on the global structure of elliptical galaxies is not well understood. Observations indicate that some giant ellipticals contain a significant amount of gas that is distributed in an extended disklike component (Oosterloo et al. 2002; Young 2002). Such an extended disk naturally forms in gas-rich, fast-rotating, 3:1 merger remnants (Naab & Burkert 2001). Even in 1:1 mergers the remaining gas in the outer parts of the remnant has high enough angular momentum to form extended gas disks as it falls back (Barnes 2002). On the other hand, the simulations of equal-mass mergers also indicate that half of the gas is driven to the center of the remnant, producing a peak in surface density that is not observed (Mihos & Hernquist 1994; Barnes & Hernquist 1996).

The presence of gas in merger simulations influences the stellar structure of the remnants. Even if star formation is neglected, stars in remnants of gas-rich mergers are less likely to be on box orbits than their collisionless counterparts (Barnes & Hernquist 1996), leading to a better agreement with observations of stellar line-of-sight velocity distributions (Bender, Saglia, & Gerhard 1994; Naab & Burkert 2001). The influence of star formation on merger remnants has theoretically been addressed in detail by Bekki & Shioya (1997), Bekki (1998), and more recently by Springel (2000). They found that the rapidity of gas consumption can affect the isophotal shapes. Secular star formation, however, leads to final density profiles that deviate significantly from the observed $r^{1/4}$ profiles in radial regimes where all ellipticals show almost perfect de Vaucouleurs laws (Burkert 1993). As star formation is likely to occur in all disk galaxy mergers this result represents a serious problem for the merger scenario.

1.6 Conclusions

Within the framework of cosmological hierarchical structure formation, galactic disks represent the fundamental building blocks where most of the stars form. Tidal encounters and galaxy mergers heat and destroy these disks, resulting in kinematically hot stellar systems. Galaxy harassment in clusters can preserve the disk structure while increasing the random kinetic energy of the stars perpendicular to the disk. In this case, exponential dwarf ellipticals would form. Galaxy mergers represent more violent processes that lead to strong violent relaxation, erasing the information about the initial state and resulting in a de Vaucouleur’s profile as seen in giant elliptical galaxies.

Detailed observations of the kinematic and geometric properties of spheroids, coupled with sophisticated high-resolution simulations, have led to major progress in understanding the origin of these systems. However, many problems still exist and need to be investigated in detail.

Violent relaxation and the origin of the $r^{1/4}$ law is still not understood up to now. Observations of nonrotating, exponential dwarf ellipticals are in contradiction with the harassment scenario. In addition, there exists no theory that can predict why the scale length of dwarf ellipticals is on average in the range of 0.5–1 kpc, independent of luminosity. More observations are required to test the theoretical predictions of two different bulge populations, one with exponential profiles, resulting from disk instabilities, and the other with de Vaucouleur’s profiles, resulting from an early, violent merger phase of the protogalaxy. It is also not clear whether the dichotomy of giant ellipticals into disk and boxy objects is preferentially due to variations in the mass ratio of the merger components. Another possibility is an additional gaseous component that settled into an equatorial disk inside the spheroid
where it turned into stars. In this case, gas dynamics and dissipation will have affected the structure preferentially in disky ellipticals, which might explain their high surface densities compared to massive, boxy ellipticals that formed preferentially by dissipationless mergers. More simulations including gas dynamics and star formation are required in order to test this scenario. The origin of the most luminous giant ellipticals is currently not understood at all. These objects are much more massive than disk galaxies and therefore could not have formed by major disk mergers. In addition, their metallicities are supersolar and higher than the stellar populations of disk galaxies. Luminous, giant ellipticals probably formed by multiple mergers within dense groups of galaxies followed by an efficient phase of star formation and metal enrichment. Whether this scenario can also explain their large ages and their location in the low-density region of the fundamental plane needs to be explored in greater detail.

Acknowledgements. Andreas Burkert would like to thank Luis Ho for the invitation to a very stimulating and pleasant conference.

References

Arimoto, N., & Yoshii, Y. 1986, A&A, 164, 260
——. 1987, A&A, 173, 23
Ashman, K. M., & Zeepf, S. E. 1992, ApJ, 384, 50
Athanassoula, E. 2002, ApJ, 569, L83
Balcells, M., Graham, A. W., Domínguez-Palmero, L., & Peletier, R. F. 2003, ApJ, 582, L79
Barnes, J. E. 1988, ApJ, 331, 699
——. 2002, MNRAS, 333, 481
Barnes, J. E., & Hernquist, L. 1992, Nature, 360, 715
——. 1996, ApJ, 471, 115
Bate, M. R., Bonnell, I. A., & Bromm, V. 2002, MNRAS, 332, L65
Baugh, C. M., Cole, S., & Frenk, C. S. 1996, MNRAS, 283, 1361
Bekki, K. 1998, ApJ, 502, L133
Bekki, K., & Shioya, Y. 1997, ApJ, 478, L17
Bender, R. 1988a, A&A, 193, L7
——. 1988b, A&A, 202, L5
Bender, R., Burstein, D., & Faber, S. M. 1992, ApJ, 399, 462
——. 1997, in Galaxy Scaling Relations: Origins, Evolution and Applications, ed. L. N. da Costa & A. Renzini (Heidelberg: Springer), 95
Bender, R., Döbereiner, S., & Möllenhoff, C. 1988, A&AS, 74, 385
Bender, R., Saglia, R. P., & Gerhard, O. E. 1994, MNRAS, 269, 785
Bender, R., Saglia, R. P., Ziegler, B., Belloni, P., Greggio, L., Hopp, U., & Bruzual A., G. 1998, ApJ, 493, 529
Bender, R., & Surma, P. 1992, A&A, 258, 250
Bender, R., Surma, P., Döbereiner, S., Möllenhoff, C., & Madejsky, R. 1989, A&A, 217, 35
Bendo, G. J., & Barnes, J. E. 2000, MNRAS, 316, 315
Beuing, J., Döbereiner, Bohringer, H., & Bender, R. 1999, MNRAS, 302, 209
Binggeli, B., & Cameron, L. M. 1991, A&A, 252, 27
Binggeli, B., & Jerjen, H. 1998, A&A, 333, 17
Binney, J. 1982, MNRAS, 200, 951
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Bower, R. G., Lucey, J. R., & Ellis, R. S. 1992, MNRAS, 254, 601
Brown, J. H., Burkert, A., & Truran, J. W. 1991, ApJ, 376, 115
——. 1995, ApJ, 440, 666
Burkert, A. 1990, MNRAS, 247, 152
——. 1993, A&A, 278, 23
A. Burkert and T. Naab

Lynden-Bell, D., & Wood, R. 1968, MNRAS, 138, 495
Martinelli, A., Matteucci, F., & Colafrancesco, S. 2000, A&A, 354, 387
Matteucci, F., & Tornambè, F. 1987, A&A, 185, 51
Melnick, J., & Sargent, W. L. W. 1977, ApJ, 215, 401
Mihos, J. C., & Hernquist, L. 1994, ApJ, 437, L47
Mirabel, I. F., Lutz, D., & Maza, J. 1991, A&A, 243, 367
Mobasher, B., Guzmán, R., Aragón-Salamanca, A., & Zepf, S. 1999, MNRAS, 304, 225
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. 1996, Nature, 379, 613
Moore, B., Lake, G., & Katz, N. 1998, ApJ, 495, 139
Myers, P. C., Dame, T. M., Thaddeus, P., Cohen, R. S., Silverberg, R. F., Dwek, E., & Hauser, M. G. 1986, ApJ, 301, 398
Naab, T., & Burkert, A. 2000, in Dynamics of Galaxies: from the Early Universe to the Present, ed. F. Combes, G. Mamon, & V. Charmandaris (San Francisco: ASP), 267
——. 2001, ApJ, 555, L91
——. 2001, in The Central Kpc of Starbursts and AGN: The La Palma Connection, ed. J. H. Knapen et al. (San Francisco: ASP), 735
——. 2003, ApJ, submitted
Naab, T., Burkert, A., & Hernquist, L. 1999, ApJ, 523, L133
Navarro, J. F., & White, S. D. M. 1994, MNRAS, 267, 401
Negroponte, J., & White, S. D. M. 1983, MNRAS, 205, 1009
Nieto, J.-L., Davoust, E., Bender, R., & Prugniel, P. 1990, A&A, 230, L17
Noguchi, M. 2000, MNRAS, 312, 194
Norman, C. A., Sellwood, J. A., & Hasan, H. 1996, ApJ, 462, 114
Okamoto, T., & Nagashima, M. 2001, ApJ, 547, 109
Oosterloo, T. A., Morganti, R., Sadler, E., Vergani, D., & Caldwell, N. 2002, AJ, 123, 729
Partridge, R. B., & Peebles, P. J. E. 1967, ApJ, 147, 868
Peebles, P. J. E., & Dicke, R. H. 1968, ApJ, 154, 891
Pfenniger, D., & Norman, C. 1990, ApJ, 363, 391
Poggianti, B. M., Smail, I., Dressler, A., Couch, W. J., Barger, A. J., Butcher, H., Ellis, R. S., & Oemler, A., Jr. 1999, ApJ, 518, 576
Postman, M., & Geller, M. J. 1984, ApJ, 281, 95
Postman, M., Lubin, L. M., & Oke, J. B. 1998, AJ, 116, 560
Sanromá, M., & Salvador-Solé, E. 1999, ApJ, 360, 16
Schweizer, F. 1978, in Structure and Properties of Nearby Galaxies, ed. E. M. Berkhuijsen & R. Wielebinski (Reidel: Dordrecht), 279
——. 1999, in Spectrophotometric Dating of Stars and Galaxies, ed. I. Hubeny, S. Heap, & R. Cornett (San Francisco: ASP), 135
Sérsic, J. L. 1968, Atlas de Galaxias Australes (Córdoba: Obs. Astron., Univ. Nac. Córdoba)
Searle, L., Sargent, W. L. W., & Bagnuolo, W. G. 1973, ApJ, 179, 427
Spergel, D. N., & Hernquist, L. 1992, ApJ, 397, L75
Springel, V. 2000, MNRAS, 312, 859
Steinmetz, M., & Müller, E. 1994, A&A, 281, L97
Steinmetz, M., & Navarro, J. F. 2002, NewA, 7, 155
Toomre, A. 1974, in IAU Symp. 58, The Formation and Dynamics of Galaxies, ed. J. R. Shakeshaft (Dordrecht: Reidel), 347
Toomre, A., & Toomre, J. 1972, ApJ, 178, 623
Vader, J. P. 1986, ApJ, 305, 390
van Albada, T.S. 1982, MNRAS, 201, 939
van Dokkum, P. G., & Franx, M. 1996, MNRAS, 281, 985
——. 2001, ApJ, 553, 90
van Dokkum, P. G., Franx, M., Fabricant, D., Illingworth, G. D., & Kelson, D. D. 2000, ApJ, 541, 95
van Dokkum, P. G., Franx, M., Kelson, D. D., & Illingworth, G. D. 1998, ApJ, 504, L17
Vietri, M., & Pesce, E. 1995, ApJ, 442, 618
Whitmore, B. C., & Gilmore, D. M. 1991, ApJ, 367, 64
Whitmore, B. C., Gilmore, D. M., & Jones, C. 1993, ApJ, 407, 489
Williams, J. P., & McKee, C. F. 1997, ApJ, 476, 166
Wyse, R. F. G., & Gilmore, G. 1992, AJ, 104, 144
A. Burkert and T. Naab

Wyse, R. F. G., Gilmore, G., & Franx, M. 1997, ARA&A, 35, 637
Young, C. K., & Currie, M. J. 1994, MNRAS, 268, L11
Young, L. M. 2002, AJ, 124, 788