Pharmacognostical Profile of *Gymnema sylvestre* and its Anti-Hyperglycemic Activity

Sorabh Sehajpal a**, Rohit Saraswat a* and Neetu Verma b#

a School of Pharmacy, OPJS University, Churu, Rajasthan, India.
b Department of Pharmaceutical Sciences, Amritsar Group of Colleges, Amritsar, Punjab, India.

Authors' contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2021/v33i58A34128

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/78327

Received 10 October 2021
Accepted 14 December 2021
Published 15 December 2021

ABSTRACT

In this paper explored the pharmacognostical profile of *gymnema sylvestre* and its anti-hyperglycemic activity has been documented well with references. The importance of the species in Ayurveda has been highlighted. The bioactive components like *gymnema sylvestre* has a variety of secondary metabolites, including oleanane, gymnemic acid, gymnemasides (A–F), gymnemic acid (IXVIII) homologue, gymnemic acid A1 and its derivatives, triterpenoidsaponins, al has been clearly included in the review kaloid (Conduritol-A), polypeptide (Gurmarin), and gymnemasaponins. This study has provided the groundwork for developing a pharmacognostical profile of medicinal plant growers and collectors. The goal of this review study is to provide a regional profile of the indigenous knowledge system for medicinal plant usage and cultural behaviors related to healing. This study aids in the identification of novel ethnomedicinal plant species in the study region, which may lead to the development of new medicines. The plant toxicity test results indicated that it may be used as an alternative to diabetes therapy with no or little adverse effects. This study confirms the conventional use of indigenous plant-derived natural medicine for treating diabetes mellitus. The study also highlighted the efficacy of "Ayurveda" which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable. I hope that this kind of research will be useful to future researchers as per their needs.
Keywords: Pharmacognostical profile; gymnema sylvestre; anti-hyperglycemic activity.

1. INTRODUCTION

Natural treatments such as Ayurveda, Yunani, and Siddha have all come from the Indian subcontinent. Researcher can discover not only novel medicines, but also new lead compounds, using such systems. Despite of encouraging results of clinical studies, further research and comprehensive clinical trials are needed. Plant medications are mostly secondary plant metabolites that don’t play a part in plant metabolism but are thought to be important in plant defense. The fundamental metabolic processes in plants and animals, on the other hand, show little variation. Gymnema sylvestre plant preparation may be one of the alternative treatments for diabetes and obesity, though it is recognized to also have a positive effect for treating diabetes through impeding sugar binding sites also and stopping glucose molecule from collecting in the body.

Naturopathic medicine has indeed been thoroughly studied since prehistoric times and also is gaining popularity today. The Indian flora has around 45,000 plant species, many of which are medicinal [1]. Type 2 diabetes resulting in increased blood glucose after every meal. It is caused by insulin shortage or dysfunction [2]. Diabetes, in its most severe form, disrupts key bodily processes, resulting in multiorgan problems. Oral hypoglycemic medicines such as sulphonylureas and biguanides are the most common pharmaceuticals used for therapy, however these treatments have a number of negative side effects. In comparison to marketed medications and much more effective treatment and usage of health complications, herbal therapies are becoming increasingly popular due to superior results and safe use [3]. Ethnobotanists are interested in plants having anti-diabetic properties since they are regarded to offer medicinal advantages in various places and a variety of them have showed various levels of anti-hyperglycemic activity [1].

Several plant species have bioactive compounds that can be extracted and used as medicines, lead compounds, and pharmacological agents. These age-old remedies may hold the secret to resolving diabetes issues in a natural way [4]. Phytomolecules’ molecular structures play a crucial role in their anti-diabetic activities. Many plant species high with terpenoids, coumarins, phenolics, flavonoids, as well as other bioactive compounds have indeed been discovered to aid in the reduction of blood sugar levels [5,6]. People from both developed and developing countries have reported all use of medicinal herbs as a cure for numerous diseases or infections, as per World Health Organization (WHO). Herbal treatments are also noted for having no side effects, being affordable, and being widely available [7]. Throughout Indian, Egyptian, Chinese, Roman, Greek, as well as Syrian literature, the first crude documented proof of the use of herbal treatment dates back about 5000 years [8,9]. The use of medicinal herbs is described in the Rigveda, Atharvaveda, Charak Samhita, and Sushrutha Samhita, among other ancient Indian treatises. This implies that herbal or traditional medicines were drawn from ancient civilizations’ rich practices and scientific heritage. In poor nations, the use of economic drug usage has been established as a platform for overcoming unpleasant effects and substantially limiting drug usage [10]. Identifying of medicinal herbs as well as the extracting of drugs from them is significant in the medical field. As a result, researchers have been heavily engaged in bioactive natural chemical screening. Morphoanatomical investigations and pharmacological evaluation have been proven to be significant techniques in the regular quality control of novel medicinal plants [11-13]. To establish a reasonable connection between the chemical, biological, and medicinal actions of traditional plants, valuable scientific information has been added to the choice of these herbal screening methods [14]. Furthermore, ethnomedical herbal data provide not only a novel avenue for drug development, but also significant socioeconomic advantages [15,16]. In India, there are about 17,000-18,000 blooming plant species, with 6000-7000 having therapeutic qualities. For this study, we focused on Gymnema sylvestre medicinal plant.

2. PHARMACOGNOSTICAL PROFILE OF Gymnema sylvestre AND ITS USES

2.1 Vernacular Name

Other names for gymnema sylvestre (g. sylvestre), Sanskrit: Meshashringi, Madhunashini, Hindi: Gur-mar, Merasingi, Marathi: Kavali, vakundi, kalikardori, Gujrathi: Dhuleti, mardashingi, Kannada:
Sannagerasehambu, Telugu: Podapatri, Tamil: Adigam, cherukurinja.

2.2 Botanical Description

G. sylvestre (gymnema sylvestre) is just a wood, growing plant which is indigenous to India and relates to Chyoanpyase group. Madhumeha (glycosuria) and other urinary diseases are destroyed by G. sylvestre, according to Sushruta. It was given the name gur-mar, which means sugar killer, because of its ability to eliminate the taste of sugar, and it is thought to be able to counteract excess sugar in diabetics.

A vulnerable species, G. sylvestre (asclepiadaceae), is indeed a slow-growing perennial medicinal wood climber endemic to central and peninsular India. A 5-year-old parental plant is shown in Fig. 1. It's a powerful anti-diabetic plant that's been used in ancient, ayurveda, as well as homoeopathic medicine for millennia. Asthma, eye problems, inflammations, family planning, and snakebite are all treated with it. Hepatoprotective, antihypercholesterolemic, antibacterial, as well as sweet-suppressing activities too are present. It's also been used in skin treatments, as just a feed intake inhibitor for caterpillar Prodenia eridania, and also to minimize Streptococcus mutans-caused dental caries.

G. sylvestre is a big, woody climber that is more or less pubescent. It is sometimes grown for medical purposes. Leaves are either elliptic or ovate, and also frequently elliptic/ovate (1.25–2.0 inches, 0.5–1.25 inches). The umbellate cymes of the flowers are tiny as well as yellow. Follicles can be terete or lanceolate, and can be up to three inches in length. The leaves of G. sylvestre have indeed been demonstrated to lower blood glucose levels, strengthen the heart, uterus, as well as cardiovascular system, and also have anti-sweet and hepatoprotective activities. In animal models, G. sylvestre leaf extract also had a lipid-lowering and antioxidant effect (Kang et al., 2012). These effects may also be observed in humans [17]. It is one of the most often used medicinal plants as an antidiabetic agent, either alone or in combination with other herbs.

The drug similarity of a natural or synthetic molecule is screened using in silico docking or molecular docking. In silico drug target identification covers a variety of methods for locating target proteins (Liu et al., 2010). Furthermore, researches on cell lines provide an animal-free way to study the physiology or biochemistry of cells, as well as evaluate the effects of different chemical compounds or medicines on particular cell types. They may also aid in the discovery of the drug mechanism of action.

2.3 Pharmacognostic Evaluation

Agnihotri et al. [18] performed a pharmacognostic evaluation of aerial sections of G. sylvestre was discovered in three different Indian sites. The foaming index, alcohol, and water soluble extractives of local samples showed minimal variance, but the botanical and physico-chemical characteristics of all the samples were quite comparable. Horseshoe-shaped petiole with three amphicribal vascular bundles, well-developed sieve tubes, anomocytic stomata only on the leaf abaxial surface, amphicribal vascular bundle fan-shaped, intraxylary phloem presence, anomocytic stomata only on the leaf abaxial surface, amphicribal vascular bundle fan-shaped, intraxylary. The only difference was in the amount of several of the chemicals. All of the samples had a TLC fingerprint profile that was almost identical.

![G. sylvestre parent plant](image_url)
Patel [19] performed pharmacognostic standardization and physicochemical analysis on G leaves. Sylvestre’s macro and microscopic qualities, and also particular insoluble ash as well as sulphated ash, alcohol, including water soluble extraction values for phytochemical analyses, were also investigated. A proximal powder assessment was conducted on the leaves, which also included determining extraction values, ash value, foreign material, moisture levels, dryness losses, as well as foam indices, as well as applying the soxhlet extraction method using ethanol to execute sequential solvent extraction.

2.4 Uses

The plant has showed potential to treat for overweight, Parkinsonism, hyperlipidemia, arthritis, as well as hypercholesterolemia [Malik et al., 2006], yet it is most widely seen as a naturopathic diabetic treatment [20]. Anti-inflammatory, antibacterial, as well as cancer-fighting activities are also found in plant bioactive compounds. Dental cavities, obesity, stomachaches, antibiotics, blood cleansers, in addition to rheumatism have all been treated with plant leaves [21]. Gurmarin, gymnemic acids, and gymnemasaponins, which are triterpene saponins, are responsible for the herb’s pleasant inactivation. G. sylvestre hypoglycemic effect has been confirmed in research [Patil et al., 2012], for beryllium nitrate as well as streptozotocin-treated rats. The antihyperglycemic effects of the crude saponin component including 5 triterpene glycosides (gymnemic acids I-IV as well as gymnemasaponin V) isolated from leaf methanol extract have also been demonstrated [Sugihara et al., 2002]. A dried leaf powders possesses anti-diabetic properties as well as the ability to inactivate sugar [22]. Sylvestre is well-known for its bitterness, caustic, thermogenic, gastrointestinal, anodyne, liver medicinal, as well as anti-inflammatory leaves [Kokate, 1999].

G. sylvestre leaf has historically been used to control diabetes as well as other disorders, whereas the flowers with bark are being used to heal phlegm-related diseases [23]. Gurmar is referenced in Sushruta, an ancient Hindu medical text, as a reliever of madhumeha (glycosuria) and some other bladder disorders. The extract is designated by the letter G. Gastrointestinal, anti-inflammatory, emetic, liver restorative, diuretics, stomachic, thermogenic, anthelmintic, stimulants, cardiotonic, laxative, antipyretic, expectorant, even uterus tonic activities have been recorded for Sylvestre. Jaundice, cardiopathy, constipation, bronchitis, asthma, conjunctivitis, amenorrhea, vesical and renal calculus, dyspepsia, Parkinsonism, and leucoderma are all treated with the plant [24]. Among several medical properties documented in historical texts are antipyretic, antihelminthic, alexipharmic, astringent, cardiotonic, anodyne, diuretic, intestinal, haemorrhoids, cough dyspepsia, hepatosplenomegaly, stimulant, laxative, stomach, intermittent fever, uterine tonic, leucoderma, and jaundice. For physical pain, the bark extract is being used as an expectorant, emetic, as well as analgesic, while the root juice is being used to cure snakebite [25]. Leaf extracts can also aid with piles, colic pain, drops, phlegm, eye problems, cardiac problems, and breathing issues.

3. PHYTOCHEMISTRY AND ITS MECHANISM OF GYMNEIC ACIDS IN ANTI DIURETIC ACTIVITY

Leaves of G. sylvestre comprises of inositol alkaloids, albumin, resins, carbohydrates, chlorophyll, formic acid, tartaric acid, anthraquinone derivatives, butyric acid, paraben, calcium oxalate (7.3 percent), organic acid (5.5 percent), cellulose (22 percent) and lignin (4.8 percent) (Sinsheimer and Rao, 1970). Further parts of the plant include anthraquinones, flavones, pentatriacontane, hentri-acontane, as well as formic acid, chlorophylls, resins, phytin, tartaric acid, butyric acid, and also amyric associated glycosides [26]. Gymnemic acid is also an organic acid glycoside with antisaccharide properties. It’s a sophisticated mix of acidic glycosides which are all related together. The primary ingredient substance is gymnemic acid. Gymnemic acids comprise saponins having triterpenoid composition (Fig. 2).

More than ten different types of gymnemic acid and related chemicals have been discovered [27]. Every gymnemic acid within leaves contains 0.0050–0.012%, as per Murakami et al. (1996). Gymnemic acid, (-) amyrin, (+) quercitol, lupeol, as well as stigma sterol have all been found in G. sylvestre. Kaempferol 3-O-beta-D-glucopyranosyl-(1–4) is a novel flavonol glycoside. -(1–6) alpha-L-rhamnopyranosyl G. sylvestre aerial portions have also been discovered to contain -beta-D-galactopyranoside [28]. beta-O-benzoyl- sitkisogenin3- O-beta-D-glucopyranosyl (1–3) are three oleanane-type triterpene glycosides. -beta-D-glucuronopyranoside, longispinogenin 3-O-beta-
Dglucopyranosyl (1→3)-beta-Dglucuronopyranoside, and 29-hydroxylongispinogenin 3-O-beta-Dglucopyranosyl (1→3)-beta-Dglucopyranosyl (1→3)-beta-Dglucopyranosyl (1→3)-beta-Dglucopyranosyl (1→3)-beta-Dglucopyranoside and the sodium salt of alternoside II were obtained from an ethanol extracts of *G. sylvestre* leaves. (Ye et al., 2001). *G. sylvestre* alcoholic excavation contains saponins. Four new triterpenoid saponins extracted from leaf of *gymnema sylvestre* have also been named as Gymnemasins A, B, C, and D which are 3-O-[beta-Dglucopyranosyl(1→3)]-beta-Dglucuronopyranosyl 3-O-[beta-Dglucopyranosyl(1→3)]-beta-Dglucuronopyranosyl, 3-O-beta-Dglucuronopyranosyl-gymnemanol, and 3-O-beta-Dglucuronopyranosyl-gymnemanol. Gymnemanol, also known as 3-beta-16 beta-22 alpha-23-28 pentahydroxyolean-12-ene, is a discovery of a new aglycone. Gymnemic acid molecules have the same atomic configuration as glucose molecules. Consequently, gymnemic acids clog up tastes bud receptor, keeping the glucose molecule throughout the food from stimulating them. Moreover, the acids attach to receptor inside the gut’s absorptive outer layers, blocking the intestine from absorbing sugar. Low blood sugar is the consequence of this.

3.1 Gymnemic Acids Mechanism of Action

Gymnemic acids are a collection of at least 17 distinct saponins that make up gymnema’s primary constituents (32). Antidiabetic, antilipidemic, and anti-inflammatory effects have been discovered in gymnemic acids (33). The phytochemical prevents glucose from being absorbed into the bloodstream. Gymnemic acid molecules have the same atomic configuration as glucose molecules. Consequently, gymnemic acids clog up tastes bud receptor, keeping the glucose molecule throughout the food from stimulating them. Moreover, the acids attach to receptor inside the gut’s absorptive outer layers, blocking the intestine from absorbing sugar (33). Low blood sugar is the consequence of this.

Furthermore, the acids have been discovered to stimulate the pancreas to generate insulin, which is necessary for glycemic management and the treatment of adult onset diabetes (34). The acids may also function as a laxative, cough suppressant, and diuretic by increasing cholesterol excretion in the faeces (33). Gymnemic acids have been shown to affect the capability of tasting receptor on the tongue to distinguish between sweet and bitter tastes. Researchers think that since the acids may block the sweet sensation, they can also block the absorption of glucose. This, however, has not been proven by study (33). In conclusion, the phytochemical promotes antidiabetic responses by boosting insulin production, enhancing glucose consumption, encouraging pancreatic islet cell regeneration, and inhibiting glucose absorption in the small intestines (Fig. 3). Gymnemic acids are also antioxidants that may scavenge reactive oxygen species and other free radicals (35,36).
Fig. 3. Gymnemic acid competes with a gut receptor site (adopted from [33])

The hypoglycemic acid impacts of G. sylvestre leaf extracts (Gymnemic acid) are manifested in the three places:

1. It helps in promoting the regeneration of cell.
2. It increases insulin secretion.
3. It prevents the intestines from absorbing glucose.
4. It improves glucose consumption by boosting the activity of enzymes involved in insulin-dependent glucose consumption, including phosphorylase activities, gluconeogenic enzyme, as well as sorbitol dehydrogenase.

3.2 Antidiabetic Activity

This botanical main therapeutic use is as an antidiabetic drug. Since the 1930s, Gymnema has been the subject of extensive study, so both diabetes that is type 1 and type 2 have shown positive results. The leaf of G. sylvestre had been found to lower urinary sugar in diabetics approximately 80 years ago, which was the first scientific proof of its usage in humans. A series of research on G. sylvestre extract published in 1990 elevated this herb from intriguing to revolutionary. Diabetic mice were given G. sylvestre extract that not only enhanced glucose homeostasis, however it also led in pancreas regeneration of cell [37]. G. According to scientific studies, sylvestre medication increased the activity of enzyme which enables sugar to be utilised via insulin-dependent systems through regulating phosphorylase concentrations, gluconeogenic enzyme, as well as sorbitol dehydrogenase. This therapeutic plant seems to correct metabolic abnormalities in the liver, kidneys, and muscles of diabetic rabbits (Shanmugasundaram et al., 1983). For rats, oral feeding powders G. sylvestre leaves (500 mg/rat) for ten days prevented and brought injectable beryllium nitrate-induced hyperglycemia to normal in 4 days, contrasted to ten days in untreated rats. G was given to normal rats. No significant hypoglycemia was observed after 25 days of consuming sylvestre leaves (Prakash et al., 1986). Between 20 and 60 days, oral therapy with aqueous extraction from G. sylvestre leaf (20 mg/day) normalized the level of blood sugar on STZ diabetic rats through regeneration of cell (Shanmugasundaram et al., 1990b). Singular or chronic (32-35 days) orally oral administration extract and perhaps G. sylvestre leaves (1 g/kg) with non-diabetic as well as STZ (30 mg/kg) generated modest diabetic mice resulted in a significant reduction in blood sugar on the OGTT (1 g/kg), with no effect on immuno-reactive insulin (IRI) densities [38]. Different doses containing aqueous extract from 50, 100, 200, as well as 500 mg/kg administered orally to ordinary as well as a strong dose–dependent hypoglycemia impact was observed in STZ diabetic rats [39].

3.3 Antioxidant Activity

Researchers believe that oxidative stress plays a key role in the progression of diabetes and associated consequences. Non-enzymatic glycation with proteins, oxidative glucose, as well as oxidative degradation of glycated proteins all produce free radicals [40]. Consequently, a powerful anti-drug must also have antioxidant properties. In research, gymnema sylvestre was revealed to also have strong antioxidant activity. According to Rachh et al., this phytochemical suppresses 2,2- diphenyl-1-picrylhydrazyl
G. sylvestre has also been shown to lower high blood TG levels actively, as well as its antiantherosclerotic potential, remained virtually equal to those of clofibrate, a common hypolipidemic properties. Leaves extract given orally to hyperlipidemic rats at a dose of 25-100 mg/kg for two weeks lowered high blood TG (triglycerides), TC (total cholesterol), LDL (low density lipoprotein), and VLDL (very low density lipoprotein) cholesterol in a dose-dependent manner. With 100 mg/kg, the ability of extraction to lower TG as well as TC also in blood, as well as its antiobesity effectiveness of a concentrated G. sylvestre extraction in conjunction plus niacin bound chromium as well as hydroxycitric acid. Sixty significantly obese people (ages 21-50, BMI>26 kg/m) actively participated in an 8-week randomized, double-blind, placebo-controlled human research in Elluru, India. The topics all were provided a 2000-calorie regular intake and had been instructed to walk under surveillance. After eight weeks, every individuals’ body mass as well as BMI had decreased around 5-6 percent. Triglycerides, cholesterol level, lipoproteins with a low density, as well as serum leptin levels all fell, whereas high density lipoprotein concentrations as urinary fatty metabolites excretion rose. This research found that combining Gymnema extract with HCA-SX, NBC may be used as a safe and effective weight loss solution that can help people lose weight and improve their BMI while also supporting healthy blood lipid levels [45,46].

3.4 Hypolipidemic Activity

Type 2 diabetes is linked to obesity and excessive lipid levels in the body. As a result, an effective antidiabetic medication must also have hypolipidemic properties. Leaves extract given orally to hyperlipidemic rats at a dose of 25-100 mg/kg for two weeks lowered high blood TG (triglycerides), TC (total cholesterol), LDL (low density lipoprotein), and VLDL (very low density lipoprotein) cholesterol in a dose-dependent manner. With 100 mg/kg, the ability of extraction to lower TG as well as TC also in blood, as well as its antiobesity effectiveness of a concentrated G. sylvestre extraction in conjunction plus niacin bound chromium as well as hydroxycitric acid. Sixty significantly obese people (ages 21-50, BMI>26 kg/m) actively participated in an 8-week randomized, double-blind, placebo-controlled human research in Elluru, India. The topics all were provided a 2000-calorie regular intake and had been instructed to walk under surveillance. After eight weeks, every individuals’ body mass as well as BMI had decreased around 5-6 percent. Triglycerides, cholesterol level, lipoproteins with a low density, as well as serum leptin levels all fell, whereas high density lipoprotein concentrations as urinary fatty metabolites excretion rose. This research found that combining Gymnema extract with HCA-SX, NBC may be used as a safe and effective weight loss solution that can help people lose weight and improve their BMI while also supporting healthy blood lipid levels [45,46].

3.6 Toxicity of Gymnema sylvestre (asclepiadaceae)

While injected i.p. to rats, their LD50 of water and ethanol extraction of G. sylvestre been found to also be 375 mg/kg [47]. A 52-week investigation of orally recurrent dose toxicities using G. sylvestre extract dust been conducted for both gender in wistar rats. This research found that rats fed up to 1% G. sylvestre in their diet for 52 weeks had no harmful effects. With 1% G. sylvestre, approximately 504 mg/kg/day in male as well as 563 mg/kg/day in female as average daily intake during 52 weeks, there was no noticeable effect [48]. There were no obvious behavioral, neurologic, or autonomic effects in a mouse acute toxicity investigation. 3990 mg/kg was the acute LD50. Its safety ratio (LD50/ED50) for normal and diabetic rats has reached to 11 and 16, significantly [39]. There have been no documented instances of human toxicity linked to the plant. However, certain over-the-counter (OTC) medications may induce a detectable hypoglycemia response in people with as little as 12 pills. Patients taking G. sylvestre supplements in addition to their regular antidiabetic medicine had normal blood urea, uric acid, and hemoglobin levels, indicating that there was no hepatotoxicity at reasonable dosages [39]. G. sylvestre usage in humans over a period of 20 months has not been linked to any major adverse pharmacological responses, according to studies [17]. It has been shown in the past that G. sylvestre may be used safely for years (Talbot, 2003). G. sylvestre must be administered with medical guidance and blood sugar levels should also be evaluated on a daily basis in nursing as well as women who are pregnant, as much as anyone with serious liver and renal ailments [49].
4. AN OVERVIEW OF ADMINISTRATION, DOSAGE OF Gymnema sylvestre AND CONTRAINDICATIONS

Ayurvedic medicine prescribes a daily dose of 6 to 60 g of dried or powdered leaves as an infusion [50]. Adults should take 25 to 75 cc of G. sylvestre liquid extract each week. Some diabetic patients react rapidly, however the greatest benefits are seen after 6 to 12 months of consistent usage. Because G. sylvestre is available in tablet form, 8 to 12 grams of leaves equivalence per day is advised. Tablets should be swallowed whole rather than crushed since they are enterically coated. 1 to 2 ml of liquid extract per day, split into divided doses, should be administered directly to the tongue by dropper and washed off after one minute for sweet desire and sweet taste depression. This may be repeated every 2 to 3 hours. As per widely accessible scientific and medical research, the dietary supplement must be normalized at 25 percent of gymnemic acids each intake, as well as the most common intake is a standard extraction of 250 mg twice each day [51].

As a nutritional supplement, the herbal extract should be taken orally. The extracts do not have a particular dosage, although an amount that does not cause toxicological consequences is advised [52]. The phytochemical is contraindicated for surgical patients, pregnant and nursing moms, and those with cardiovascular problems since it affects blood sugar, which may impede wound healing. This is due to the phytochemical’s ability to decrease blood pressure [53]. People who are sensitive to asclepiadaceae plants may also be allergic to G. sylvestre. Gymnema seems to be quite safe when taken in proper doses, but no comprehensive research have been conducted. One apparent concern is that if gymnema is effective, it may cause severe hypoglycemia by lowering blood sugar levels too low. As a result, medical monitoring is required. As a result, diabetic individuals on hypoglycemic medicines should take G. sylvestre with caution. Hypoglycemia may, however, develop in non-diabetic individuals [54]. Too far, no harmful consequences linked to foetal development during pregnancy or breast-fed babies have been documented in the medical literature. As a result, owing to a lack of safety information, it is not advised [49]. While G. sylvestre may help reduce blood sugar levels, it can also cause hypoglycemia when used with other blood sugar-lowering herbs. Eleuthero, Fenugreek, Ginger (in large doses), Kudzu, and Panax Ginseng are herbs that may help lower blood sugar [49]. G. sylvestre may improve the blood glucose management impacts for insulin as well as oral diabetes drugs like glyburide, glipizide, glimepiride, as well as metformin. Gymnema sylvestre may enhance the cholesterol-lowering benefits of medicines including Crestor, lovastatin, Lipitor, pravastatin, and simvastatin. Antidepressants, herbal therapies including St. John wort, as well as salicylates (aspirin/white willow) may boost G. sylvestre blood sugar lowering advantages, but stimulant include ephedra (Ma Huang) may reduce G. sylvestre effectiveness [49]

5. ANTI-HYPERGLYCEMIC ACTIVITY OF Gymnema sylvestre

Gymnema sylvestre extract reduce blood glucose levels, although not statistically significant, according to Mukkalwar et al. [55]. Gymnema sylvestre extract improved the regeneration of the pancreas, liver, and kidney. Gymnema sylvestre has a variety of secondary metabolites, including oleanane, gymnemic acid, gymnemasides (A-F), gymnemic acid (IXVIII) homologue, gymnemic acid A1 and its derivatives, triterpenoidsaponin, alkaloid (Conduritol-A), polypeptide (Gurmarin), and gymnemasaponins, according to Laha and Paul [56].

Gymnemagenin and Gymnestrogenin, for example, have anti-hyperglycemic properties. Gymnemic acid hypoglycemic effect could be attributed to enhance pancreatic insulin output as well as islet cell regeneration. Gymnemic acid interacts to the intestinal receptor and inhibits glucose molecules from attaching to the receptor, limiting excessive glucose absorption. Gymnemic acid binds to the Na+ glucose symporter in the intestine, limiting glucose absorption. Gymnemasaponins have anti-sweet action owing to the presence of the Acyl group, and thus they are classified as aglycone saponins. It also raises the quantity of insulin in blood plasma. [56] Gymnemagenin possesses antihyperglycemic properties.

6. CONCLUSION

Over 20 triterpene saponins have been discovered in G. sylvestre that form molecular complexes involving sterols, proteins, sterols, and tannins. G. sylvestre is very well for the
capacity to block sweet taste, and has been demonstrated to be beneficial in the treatment of obesity and diabetes. 1. G. sylvestre leaf extracts have been shown to inhibit glucose absorption all through the intestinal tract and also glucan production via glucosyltransferase. Gymnema products have been developed, comprising capsule, tea, bioshape®, as well as diaxinol®, that are used to treat various types of ailments. Despite the differences in hypoglycemic impact and precise mode of action and extracts of gymnema sylvestre are regarded as a viable option in diabetes. The plant toxicity test results indicated that it may be used as an alternative to diabetes therapy with no or little adverse effects. This study also confirmed the conventional use through indigenous plant-origin natural remedy to treat of diabetes mellitus. Gymnema sylvestre has been demonstrated to have strong antidiabetic effect by reducing sugar levels, boosting insulin secretion, as well as preventing pancreatic cells from oxidative stress damages. Grover et al. [1] discovered that providing insulin-treated people solubility in water extraction of gymnema sylvestre leaves lowered fasting blood glucose levels and boosted insulin secretion. Further research by Bnouham et al. [57] indicated that supplementing with gymnema sylvestre boosts serum insulin levels, implying that the phytochemical promotes the regrowth of pancreatic beta cells for type 2 diabetes patients. The study highlights the efficacy of “Ayurveda” which is an ancient tradition, used in some parts of India. This ancient concept should be carefully evaluated in the light of modern medical science and can be utilized partially if found suitable. I hope that this research will be useful to future researchers.

CONSENT
It is not applicable.

ETHICAL APPROVAL
It is not applicable.

COMPETING INTERESTS
Authors have declared that no competing interests exist.

REFERENCES
1. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti-diabetic potential. Journal of Ethnopharmacology. 2002;81(1):81–100.
2. Modak M, Dixit P, Londhe J, Ghaskadbi S, Devasagayam TPA. Indian herbs and herbal drugs used for the treatment of diabetes. J Clin Biochem Nutr. 2007;40(3):163.
3. Smith CM, Reynard AM. Essentials of Pharmacology. Philadelphia, Pa, USA: WB Saunders; 1995.
4. Babu PA, Suneetha G, Boddepalli R, Lakshmi VV, Rani TS, Rambabu Y, Srivivas K. A database of 389 medicinal plants for diabetes. Bioinformation. 2006;1(4):130-1.
5. Ji H-F, Li X-J, Zhang H-Y. Natural products and drug discovery: can thousands of years of ancient medical knowledge lead us to new and powerful drug combinations in the fight against cancer and dementia? EMBO Rep. 2009 Mar;10(3):194-200.
6. Jung M, Park M, Lee HC, Kang Y-H, Kang ES, Kim SK. Antidiabetic agents from medicinal plants. Current Medicinal Chemistry. 2006;13(10):1203-1218.
7. Gupta LM, Raina R. Side effects of some medicinal plants. Curr Sci 1998;75:897-900.
8. Kang H, Kim YS, Chung GC. Characterization of natural rubber biosynthesisin Ficus benghalensis. Plant Physiology and Biochemistry. 2000;38(12):979-987.
9. Malik JK, Manvi FV, Nanjware BR, Dwivedi DK, Purohit P, Chouhan S. Anti-arthritic activity of leaves of Gymnema sylvestre R.Br. leaves in rats. Der Pharmacia Lettre. 2010;2:336–341.
10. Ahmad A, Gupta G, Afzal M, Kazmi I, Anwar F. Antiulcer and antioxidant activities of a new steroid from Morus alba. Life Sci. 2013;92(3),202-210.
11. Patil VV and Patil VR: A comparative evaluation of the anti-inflammatory activity of the bark of Ficus benghalensis in plants of different age. Journal of Basic and Clinical Pharmacy. 2010;1:107-113.
12. Rachh PR, Patel SR, Hirpara HV, Rupareliya, MT, Rachh MR, Bhargava AS and Modi DC. In vitro evaluation of antioxidant activity of Gymnema sylvestre R. Br. leaf extract. Science. 2009;54:141–148.
13. Sugihara Y, Nojima H, Matsuda H, Murakami T, Yoshikawa M and Kimura I. Antihyperglycemic effects of
gymnemic acid IV. A compound derived from Gymnema sylvestre leaves in streptozotocin-diabetic mice. J. Asian Nat. Prod. Res., 2000;2:321–327.

14. Perumal SR, Ignacimuthu S. Antibacterial activity of some folklore medicinal plants used by tribals in Western Ghats of India. J Ethnopharmacol. 2000;69:63-71.

15. Gong H, Li S, He L, Kasimu R. Microscopic identification and in vitro activity of Agastacherugosa (Fisch. et Mey) from Xinjiang, China. BMC Complement Altern Med. 2017;17:95.

16. Zaidan MR, Noor Rain A, Badrul AR, Adlin A, Norazah A, Zakiah I. In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method. Trop Biomed, 2005; 22(2):165-70.

17. Baskaran K, Ahamath BK, Shanmugasundaram KR, Shanmugasundaram ERB. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. Journal of Ethnopharmacology. 1990;30(3):295–305.

18. Agnihotri AK, Khatoon S, Agarwal M, Rawat AKS, Mehrrota S, Pushpangadan P. Pharmacognostical evaluation of Gymnema sylvestre R. br. Nat Prod Sci. 2004;10(4):168–72.

19. Patel MR. Pharmacognostic and phytochemical evaluation of Gymnea sylvestre leaf. World J Pharm Pharm Sci. 2017;6(7):1532–8.

20. Shanmugasundaram ER, Gopinath KL, Radha Shanmugasundaram K and Rajendra VM Possible regeneration of the islets of langerhans in streptozotocin-diabetic rats given Gymnema sylvestre leaf extracts. J. Ethnopharmacol. 1990;30:265–279.

21. Parimala Devi B, Ramasubramaniaraja R. Pharmacognostical and antimicrobial screening of Gymnema sylvestre R.Br. and evaluation of Gurmar herbal tooth paste and powder, composed of Gymnema sylvestre R.Br. extracts in dental caries. International Journal of Pharma and Bio Sciences. 2010;1(3):1–16.

22. Galletto R, Siqueira VLD, Ferreira EB, Oliveira A, Bazotte R. Absence of antidiabetic and hypolipidemic effect of Gymnema sylvestre in non-diabetic and alloxan-diabetic rats. Brazilian Archives of Biology and Technology. 2004;47(4):545–551.

23. Kirtikar KR, Basu BD. Indian Medicinal Plants. Vol. 3. Delhi, India: Periodicals Experts; 1975.

24. Anis M, Sharma MP, Iqbal M. Herbal ethnomedicine of the Gwalior forest division in Madhya Pradesh, India. Pharmaceutical Biology. 2000;38(4):241–253.

25. Sastry BS. Gymnema sylvestre. Varanasi, India: Bhav Prakash Nighantu, Chaukhhambha; 1994.

26. Dateo GP, Long L. Gymnemic acid, the antisaccharine principle of Gymnema sylvestre studies on isolation and heterogenesis of gymnemic acid A1. J. Agr. Food Chem. 1973;21:899–903.

27. Suttisri R, Lee IS and Kinghorn AD. Plant-derived triterpenoid sweetness inhibitors. J. Ethnopharmacol., 1995;47: 9–26.

28. Liu X, Ye W, Yu B, Zhao S, Wu H, Che C. Two new flavonol glycosides from Gymnema sylvestre and Euphorbia ebracteolata. Carbohydr. Res. 2004;339(4):891–895.

29. Sahu NP, Mahato SB, Sarkar SK and Poddar G. Triterpenoid saponins from Gymnema sylvestre. Phytochemistry. 1996;41(4):1181–1185.

30. Stocklin W. Gymnestrogenin a new pentahydroxytriterpene from the leaves of Gymnema sylvestre R. Br., Helvetica Chim. Acta, 1968;51(6): 1235–1242.

31. Ota M, Tonosaki, K, Miwa K, Furuwatari T and Ariyoshi Y. Synthesis and characterization of the sweetness-suppressing polypeptide gurmamarin and entGurmarin. Biopolymers. 1996;39:199–205.

32. Leach MJ. Gymnema sylvestre for diabetes mellitus: A systematic review. J. Altern. Compl. Med. 2007;13(9): 977–983.

33. Kanetkar P, Singhal R, Kamat M. Gymnema sylvestre: A memoir. J. Clin. Biochem. Nutr., 2007;41(2):77–81.

34. Daisy P, Eliza J, Mohamed Farook KAM. A novel dihydroxy gymnemic triacetate isolated from Gymnema sylvestre possessing normoglycemic and hypolipidemic activity on STZ-induced diabetic rats. J. Ethnopharmacol. 2009;126(2):339–344.

35. Zhang M, Swarts SG, Yin L, Liu C, Tian Y, Cao Y and Okunieff P. Antioxidant properties of quercetin. Adv. Exp. Med. Biol., 2011;701:283–289.
36. Kaskoos RA, Hapog AB, Faraj AM. Comparative antioxidant activity of Gymnema sylvestre, Enicostemma littorale, Momordica charantia and their composite extract. J. Pharmacogn. Phytochem. 2015;4(1):95–98.

37. Chopra RN, Nayer SL and Chopra IC. Glossary of Indian Medicinal Plants, 3rd Edn. New Delhi: Council of Scientific and Industrial Research. 1992:7–246.

38. Okabayashi Y, Tani S, Fujisawa T, Koide, M., Hasegawa, H., Nakamura, T., Fujii, M. and Otsuki, M. Effect of Gymnema sylvestre R. Br. on glucose homeostasis in rats. Diabetes Res. Clin. Pract. 1990;9:143–8.

39. Chattopadhyay RR. A comparative evaluation of some blood sugar lowering agents of plant origin. J. Ethnopharmacol., 1999;67:367–372.

40. Maritim AC, Sanders RA, Watkins, J.B. Diabetes, oxidative stress, and antioxidants: A review. J. Biochem. Mol. Toxic. 2003;17(1): 24–38.

41. Bhandari U, Khanna G, Kumar, V and Tripathi, C. Evaluation of antiobesity and cardioprotective effect of Gymnema sylvestre extract in murine model. Indian J. Pharmacol. 2012;44(5): 607–613

42. Bishayee A and Chatterjee M Hypolipidemic and antithrombotic effects of oral Gymnema sylvestre R. Br. leaf extract in albino rats fed a high fat diet. Phytother. Res. 1994;8: 118–120.

43. Shigematsu N, Asano R, Shimosaka M and Okazaki M. Effect of administration with the extract of Gymnema sylvestre R. Br. leaves on lipid metabolism in rats. Bull. Pharm. Bull., 2001;24(6): 713–717.

44. Ninomiya Y, Imoto T. Gurmarin inhibition of sweet taste responses in mice. Am. J. Physiol. 1995;268: R1019–R1025.

45. Preuss HG, Bagchi D, Bagchi, M, Sanyasi Rao CV, Satyanarayana S and Dey DK. Efficacy of a novel, natural extract of (α)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX, nicin-bound chromium and Gymnema sylvestre extract in weight management in human volunteers. Nutr. Res. 2004;24: 45–58.

46. Preuss HG, Bagchi D, Bagchi M, Sanyasi Rao CV, Dey DK and Satyanarayana S. Effects of a natural extract of (α)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus nicin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes. Metab. 2004a;6:171–180.

47. Bhakuni DS, Dhar ML, Dhar MM, Dhawan BN. Gupta B, Srimal RC. Screening of Indian plants for biological activity. Indian J. Exp. Biol. 1971;9(1): 91–102.

48. Ogawa Y, Sekita K, Umemura T, Saito M., Ono A, Kawasaki Y, Uchida O, Matsushima Y, Inoue T and Kanno J. Gymnema sylvestre leaf extract: A 52-week dietary toxicity study in wistar rats. Shokuhin Eiseigaku Zasshi. 2004;45(1): 8–18.

49. Joffe DJ and Freed SH Effect of extended release Gymnema sylvestre leaf extract alone or in combination with oral hypoglycemics or insulin regimens for type 1 and type 2 diabetes. Diabetes Control Newsletter. 2001;76: 30.

50. Kapoor LD. Handbook of Ayurvedic Medicinal Plants, CRC Press, Boca Raton, Florida, 1990;185.

51. Shailendra Gurav, Vijay Gulkari., Nandkishore Duragkar and Arun Patil. Pharmacognosy, phytochemistry, pharmacology and clinical applications of Gymnema sylvestre R. Br., Department of Pharmaceutical Sciences, Nagpur university, Amaravati road, Campus, Nagpur. 2007;1(2): 414–433

52. Tiwari Pragya, Mishra B.N. and Sangwan, Neelam S. Phytochemical and pharmacological properties of Gymnema sylvestre: An Important Medicinal Plant. BioMed. Res. International, 2014: Article ID 830285.

53. Pothuraju R, Sharma RK, Chagalamarri J, Jangra S and Kumar Kavadi P. A systematic review of Gymnema sylvestre in obesity and diabetes management. J. Sci. Food Agric. 2014;94(5):834–840.

54. Potawale SE, Shinde VM, Anandi L, Borade S, Dhalawat, H. and Deshmukh, R.S. Gymnema sylvestre: A comprehensive review. Pharmacologyonline. 2008;2:144–157.

55. Mulkalwar S, Shah AS, Kataria P, Gupta T, Tilak AV, Sharma B. A comparative study of antihyperglycemic effect of Gymnema sylvestre and metformin in streptozotocin induced diabetic rats. Int J Basic Clin Pharmacol. 2018;7(8):1579.

56. Laha S, Paul S. Gymnema sylvestre (gurmar): A potent herb with anti-diabetic...
and antioxidant potential. Pharmacogn J. 2019;11(2):201-6.

57. Bnouham M, Ziyyat A, Mekhfi H, Tahri A, Legssyer A. Medicinal plants with potential antidiabetic activity - A review of ten years of herbal medicine research (1990-2000). Int. J. Diabetes & Metab. 2006;14:1-25.

© 2021 Sehajpal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/78327