On a connection between formulas about q–gamma functions

Wolfram Koepf, Predrag M. Rajković, Sladjana D. Marinković

To cite this article: Wolfram Koepf, Predrag M. Rajković, Sladjana D. Marinković (2016) On a connection between formulas about q–gamma functions, Journal of Nonlinear Mathematical Physics 23:3, 343–350, DOI: https://doi.org/10.1080/14029251.2016.1199496

To link to this article: https://doi.org/10.1080/14029251.2016.1199496

Published online: 04 January 2021
In this short communication, we want to pay attention to a few wrong formulas which are unfortunately cited and used in a dozen papers afterwards. We prove that the provided relations and asymptotic expansion about the q-gamma function are not correct. This is illustrated by numerous concrete counterexamples. The error came from the wrong assumption about the existence of a parameter which does not depend on anything. Here, we apply a similar procedure and derive a correct formula for the q-gamma function.

Keywords: q-Gamma function; asymptotic expansion; boundary functions.

2000 Mathematics Subject Classification: 33D05, 11A67

1. Introduction

Since J. Thomae (1869) and F. H. Jackson (1904) defined the q-gamma function, it plays an important role in the theory of the basic hypergeometric series [5] and its applications [8]. Its properties and different representations were discussed in numerous papers, such as in [4], [12] and [11]. A few successful algorithms for its numerical evaluation are introduced in [7] and [6] and [1]. An asymptotic expansion of the q-gamma function was provided in [3].

Here, we will make observations on the asymptotic expansions given in [9, 10].

Let $q \in [0, 1)$. A q-number $[a]_q$ is

$$[a]_q := \frac{1 - q^a}{1 - q}, \quad a \in \mathbb{R}.$$

The factorial of a positive integer number $[n]_q$ is given by

$$[0]_q! := 1, \quad [n]_q! := [n]_q[n - 1]_q \cdots [1]_q, \quad (n \in \mathbb{N}).$$
An important role in q–calculus plays the q-Pochhammer symbol defined by
\[
(a; q)_0 = 1, \quad (a; q)_n = \prod_{i=0}^{n-1} (1 - aq^i) \quad (n \in \mathbb{N} \cup \{+\infty\}),
\]
and
\[
(a; q)_\lambda = \frac{(a; q)_\infty}{(aq^\lambda; q)_\infty} \quad (|q| < 1, \lambda \in \mathbb{C}).
\]
The q-gamma function
\[
\Gamma_q(z) = (q; q)_{z-1} (1 - q)^{1-z} = \frac{(q; q)_\infty}{(q^z; q)_\infty} (1 - q)^{1-z} \quad (0 < q < 1, z \notin \mathbb{Z}^-)
\]
has the following properties:
\[
\Gamma_q(z + 1) = [z]_q \Gamma_q(z) \quad (z \in \mathbb{C}), \quad \Gamma_q(n + 1) = [n]_q! \quad (n \in \mathbb{N}_0).
\]
In particular,
\[
\lim_{q \to 1^-} \Gamma_q(z) = \Gamma(z).
\]
The exact q–Gauss multiplication formula can be found in [5] or [4]:
\[
\Gamma_q(nx) \prod_{k=1}^{n-1} \Gamma_q\left(\frac{k}{n}\right) = [n]_q^{nx-1} \prod_{k=0}^{n-1} \Gamma_q\left(x + \frac{k}{n}\right) \quad (x > 0; n \in \mathbb{N}).
\]
Equivalently, substituting $z = nx$, it can be written in the form
\[
\Gamma_q\left(z\right) \prod_{k=1}^{n-1} \Gamma_q\left(\frac{k}{n}\right) = [n]_q^{z-1} \prod_{k=0}^{n-1} \Gamma_q\left(\frac{z+k}{n}\right) \quad (z > 0; n \in \mathbb{N}).
\]

2. Our corrections to the paper [9]
Starting from the definition
\[
\Gamma_q(x) = (q; q)_\infty (1 - q)^{1-x} (q^x; q)_\infty^{-1},
\]
we can write
\[
\Gamma_q(x) = (q; q)_\infty (1 - q)^{1/2} (1 - q)^{1/2-x} e^{-\log(q^x)\lambda}.
\]
Hence the function $\Gamma_q(x)$ can be written in the form
\[
\Gamma_q(x) = a(q) \cdot (1 - q)^{1/2-x} e^{\mu(x)} \quad (a(q) \in \mathbb{R}),
\]
where
\[
0 < a(q) = (q; q)_\infty (1 - q)^{1/2} < 1, \quad \mu(x, q) = -\log(q^x; q)_\infty.
\]
Let
\[
\psi(x, q) = \frac{q^x}{(1-q)(1-q^x)}.
\]
Using estimate (2.3), we get

\[0 < \mu(x, q) < \psi(x, q) \quad (0 < q < 1, \ x > 0), \]

it exists \(\theta(x, q) \in (0, 1) \) such that

\[\mu(x, q) = \theta(x, q) \cdot \psi(x, q). \]

Therefore, relation (2.1) becomes

\[\Gamma_q(x) = a(q) \cdot (1 - q)^{1/2 - x} e^{\theta(x, q) \cdot \psi(x, q)}. \quad (2.3) \]

On the other hand, formula (1.2) can be written in the form

\[a_p(q)\Gamma_q(x) = \left[\sum_{k=0}^{p-1} \Gamma_{q^p} \left(\frac{x+k}{p} \right) \right] \quad (x > 0; \ p \in \mathbb{N}), \quad (2.4) \]

where

\[a_p(q) = \left[\sum_{k=0}^{p-1} \Gamma_{q^p} \left(\frac{k}{p} \right) \Gamma(p \cdot \frac{2x+k}{p}) \cdots \Gamma(p \cdot \frac{p}{p}) \right]. \]

Substituting \(q \to q^p \) and \(x \to k/p \) into the definition (1.1) of the \(q \)-gamma function, we have

\[\Gamma_{q^p} \left(\frac{k}{p} \right) = \frac{(q^p; q^p)^n}{(q^p; q^p)^n} (1 - q^p)^{1-k/p} = (1 - q^p)^{1-k/p} \lim_{n \to \infty} \frac{(q^p; q^p)_n}{(q^p; q^p)_n}. \]

Moreover, using

\[\prod_{k=1}^{p} (1 - q^p)^{1-k/p} = (1 - q^p)^{p-1}, \]

the following holds:

\[a_p(q) = \left[\sum_{k=0}^{p-1} \Gamma_{q^p} \left(\frac{k}{p} \right) \right] = \left[\sum_{k=0}^{p-1} (1 - q^p)^{1-k/p} \lim_{n \to \infty} \frac{(q^p; q^p)_n}{(q^p; q^p)_n} \right] = [p]_q \prod_{k=1}^{p} (1 - q^p)^{1-k/p} \lim_{n \to \infty} \frac{(q^p; q^p)_n}{(q^p; q^p)_n} = [p]_q (1 - q^p)^{p-1} \lim_{n \to \infty} \frac{(q^p; q^p)_n}{(q^p; q^p)_n}. \]

The following identity is valid

\[\prod_{k=1}^{p} (q^k; q^p)_n = (q; q)_n. \]

Using estimate (2.3), we get

\[\Gamma_{q^p}(n + 1) = a(q^p) \cdot (1 - q^p)^{-n-1/2} e^{\theta(n+1,q^p) \cdot \psi(n+1,q^p)} \]

Since

\[\frac{(q^p; q^p)_n}{(1 - q^p)^{np}} = \Gamma_{q^p}(n + 1) = a(q^p) \cdot (1 - q^p)^{p(-1/2 - n)} e^{p \cdot \theta(n+1,q^p) \cdot \psi(n+1,q^p)}, \]

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
345
and
\[\prod_{k=1}^{p}(q^k; q^p)_n \frac{(q^k q)^{np}}{(1-q)^{np}} = \Gamma_q(np+1) = a(q) \cdot (1-q)^{-1/2-np} \cdot e^{\theta(np+1,q)} \psi(np+1,q), \]
we have
\[a_p(q) = \frac{a^p(q^p)}{a(q)} [p]^{1/2} \lim_{n \to \infty} \frac{e^{\theta(n+1,q^p) \psi(n+1,q^p)}}{e^{\theta(np+1,q) \psi(np+1,q)}}. \]
From
\[\lim_{n \to \infty} \psi(n+1,q^p) = \lim_{n \to \infty} \psi(np+1,q) = 0 \quad (0 < q < 1; \ p \in \mathbb{N}), \]
we find
\[a_p(q) = [p]^{1/2} \frac{a^p(q^p)}{a(q)}. \]
In that manner, the parameter \(a_p(q)\) from formula (2.4) is expressed via the parameter \(a(q)\) from formula (2.3).

3. Faults in paper [9]

In the very beginning of this section, we wish to express our opinion that in [9] an excellent approach was exposed, but a few mistakes were made in its realization. So, we have decided to refer to them.

In [9], the author has supposed that \(\Gamma_q(x)\) for \(0 < q < 1; \ x > 0\), can be written in the form
\[\Gamma_q(x) = a \cdot (1-q)^{1/2-x} e^{\mu(x)} \quad (a \in \mathbb{R}), \]
where
\[\mu(x) = -\log(q^x; q) \]
\(> 0\).

His efforts in looking for \(\mu(x)\) we shortened a lot by starting from the definition of \(\Gamma_q(x)\). From the fact that
\[0 < \mu(x) < \frac{q^x}{(1-q)(1-q^x)}, \]
and
\[(1-q)(1-q^x) = 1 - q - q^x + q^{x+1} > 1 - q - q^x, \]
the author in [9] concluded wrongly that
\[0 < \mu(x) < \frac{q^x}{(1-q)-q^x}. \]
But, expression \(1 - q - q^x\) is not positive for all \(q \in (0, 1)\) and \(x > 0\). Indeed,
\[1 - q - q^x \leq 0 \iff 1 - q \leq q^x \iff x \cdot \log q \geq \log(1-q) \iff x \leq \frac{\log(1-q)}{\log q}. \]

Example 3.1. We examined the sign changes of the function \(h_q(x) \equiv 1 - q - q^x\) for different \(q\) and \(x\). Notice that \(x \to +\infty\) if \(q \to 1^−\).
Table 1. Unique real zero of the function \(h_q(x) \) and the sign changes for random values of \(q \) and \(x \)

\(q \)	\(x : 1 - q - q^x = 0 \)	\(x \)	\(q \)	\(1 - q - q^x \)
0.1	0.045758	1.10500	0.592727	-0.15378
0.3	0.296248	2.27287	0.752038	-0.275286
0.5	1.0000	6.47584	0.816692	-0.0861563
0.7	3.37555	43.2362	0.946066	-0.0370453
0.9	21.8543	60.1635	0.954814	-0.0167368

This estimate should be written in the form

\[
0 < \mu(x) < \frac{q^x}{(1-q) - q^x}, \quad \left(0 < q < 1; \ x > \frac{\log(1-q)}{\log q} \right).
\]

Furthermore, from the estimate

\[
0 < \mu(x) < \frac{q^x}{(1-q) - q^x},
\]

the author in [9] concluded wrongly that

\[
\mu(x) = \frac{\theta q^x}{(1-q) - q^x},
\]

where \(\theta \) is a number independent of \(x \) between 0 and 1.

Example 3.2. We find counterexamples which show that \(\theta \) depends on \(x \) and \(q \). In the first table, we fixed \(q = 0.9 \) and take a few random values for \(x \). In another we changed the rule of variables.

Table 2. The dependence of parameter \(\theta \) from \(x \) and \(q \)

\(x \)	\(q \)	\(\theta \)	\(x \)	\(q \)	\(\theta \)
3.78377	0.9	-7.27980	10.5	0.063920	1.00000
13.2544	0.9	-1.58344	10.5	0.234682	1.00000
20.6473	0.9	-0.139893	10.5	0.494904	0.99898
25.7471	0.9	0.342512	10.5	0.618621	0.98504
32.2948	0.9	0.673069	10.5	0.806515	0.473541
43.8850	0.9	0.904181	10.5	0.915828	-0.419682

In continuation, the author in [9] got the wrong formulas (2.21)-(2.27). He concluded that

\[
a_p = \sqrt{\frac{2}{[2]q}}\Gamma_{q^2}(1/2),
\]

and

\[
\Gamma_q(x) = \sqrt{\frac{2}{[2]q}}\Gamma_{q^2}(1/2)(1-q)^{1/2-x} e^\theta \frac{q^x}{x!} \quad (0 < \theta < 1).
\]

The following wrong version of the \(q \)-Gauss multiplication formula was provided

\[
[n]^{1/2-x} [2]^{(n-1)/2} [q^{n-1}/q^2} (1/2) \Gamma_q(x) = \prod_{k=0}^{n-1} \Gamma_q \left(\frac{x+k}{n} \right) \quad (x > 0; \ n \in \mathbb{N}).
\]

Co-published by Atlantis Press and Taylor & Francis
Copyright: the authors
In a special case, for $n = 2$, it agrees with the exact q–Legendre relation. Also, when $q \to 1$, it reduces to well-known formulas for the gamma function.

4. Bounds of the q-gamma function

Let

$$g(x) = \ln \Gamma_q(x)$$

Since

$$g(x + 1) = \ln \Gamma_q(x + 1) = \ln ([x]_q \Gamma_q(x)) = \ln [x]_q + g(x),$$

(4.1)

by induction, we get

$$g(x + n) = \sum_{k=0}^{n-1} \ln [x + k]_q + g(x) \quad (n \in \mathbb{N}).$$

In the paper [2] it was proven that $g(x)$ is a convex function.

Lemma 4.1. If $x \in (0, 1)$ and $n \in \mathbb{N}$, then

$$g(n) + x \ln [x + n - 1]_q \leq g(x + n) \leq (1 - x)g(n) + xg(n + 1)$$

Proof. Since

$$x + n = (1 - x)n + x(n + 1),$$

we can write

$$g(x + n) = g((1 - x)n + x(n + 1)) \leq (1 - x)g(n) + xg(n + 1).$$

Let us find a lower bound for $\Gamma_q(x)$. Since

$$n = (1 - x)(x + n) + x(x + n - 1),$$

and because of the convexity of the function $g(x)$, we have

$$g(n) \leq (1 - x)g(x + n) + xg(x + n - 1).$$

Applying (4.1), for $x \to x + n - 1$, we can write

$$g(x + n) = \ln [x + n - 1]_q + g(x + n - 1),$$

wherefrom

$$g(n) \leq (1 - x)g(x + n) + x(g(x + n) - \ln [x + n - 1]_q) = g(x + n) - x \ln [x + n - 1]_q,$$

i.e.,

$$g(n) + x \ln [x + n - 1]_q \leq g(x + n). \square$$

Theorem 4.1. The following bounds are valid:

$$[n - 1]_q! [n - 1 + x]_q^* \leq \Gamma_q(n + x) \leq [n - 1]_q! [n]_q^* \quad (n \in \mathbb{N}; 0 \leq x < 1).$$
Proof. According to the upper bound for $g(x)$, we get e.g.
\[\ln \Gamma_q(x + n) \leq (1 - x) \ln \Gamma_q(n) + x \ln \Gamma_q(n + 1). \]
Since the real logarithm is an increasing and continuous function, we have
\[\Gamma_q(x + n) \leq (\lceil n - 1 \rceil_q !)^{1 - x} \lceil n \rceil_q ! x, \]
wherefrom
\[\Gamma_q(x + n) \leq (\lceil n - 1 \rceil_q ! \lceil n \rceil_q) ! x. \]

According to the lower bound for $g(x)$, we get
\[\ln \Gamma_q(n) + x \ln [n + n - 1]_q \leq \ln \Gamma_q(x + n), \]
i.e.,
\[\Gamma_q(n) [n + n - 1]_q^x \leq \Gamma_q(n + x). \]

Theorem 4.2.
\[[n - (1 - x)]_q \leq \left(\frac{\Gamma_q(n + x)}{\lceil n \rceil_q !} \right)^{1/x} \leq [n]_q \quad (n \in \mathbb{N}_0; 0 \leq x < 1). \]

Fig. 1. $\Gamma_q(x)$ and its boundary functions (green and blue) for $q = 0.5$.

Theorem 4.3. For any $n \in \mathbb{N}$ and $x \in (0, 1)$ there exists $\theta = \theta(n, x, q) \in (0, 1)$ such that
\[\Gamma_q(n + x) = \lceil n - 1 \rceil_q ! \lceil n - \theta (1 - x) \rceil_q ! x. \]
Introducing $y = n + x \; (n \in \mathbb{N}_0; 0 \leq x < 1)$ and denoting $n = \lfloor y \rfloor$, we can write
\[\lceil \lfloor y \rfloor - 1 \rceil_q ! \lfloor y - 1 \rfloor_q^{- \lfloor y \rfloor} \leq \Gamma_q(y) \leq \lceil \lfloor y \rfloor - 1 \rceil_q ! \lceil \lfloor y \rfloor \rceil_q^{- \lfloor y \rfloor} \quad (y > 1). \]

Theorem 4.4. For any $y \in (1, +\infty) \setminus \mathbb{N}$, there exists $\theta = \theta(y, q) \in (0, 1)$ such that
\[\Gamma_q(y) = \lceil \lfloor y \rfloor - 1 \rceil_q ! \lfloor y \rfloor - \theta (1 - (y - \lfloor y \rfloor)) \rceil_q^{- \lfloor y \rfloor}. \]
Example 4.1. For $y = 15.5$ and $q = 0.1(0.1)0.9$, we have got the following values for θ:

$$\hat{\theta} = \{0.9851, 0.4021, 0.4259, 0.4432, 0.4569, 0.47762, 0.4855, 0.4917\}.$$

Also, for $q = 0.5$ and $y = 2.31(2)22.31$, we have got $\theta \in (0.4468, 0.4623)$.

Acknowledgement

This paper is supported by the Ministry of Science and Technological Development of the Republic Serbia, projects No 174011.

References

[1] G. Allasia, F. Bonardo, On the Numerical Evaluation of Two Infinite Products, *Mathematics of Computation* 35 No. 151 (1980) 917–931.
[2] R. Askey, The q–gamma and q–beta functions, Appl. Anal. 8 (1978) 125–141.
[3] A.B.O. Daalhuis, Asymptotic Expansions for q–Gamma, q–Exponential, and q–Bessel Functions, *Journal of Math. Analysis and Applications* 186 (1994) 896–1994.
[4] I. Ege, E. Yyllyrym, Some generalized equalities for the q–gamma function, *Filomat* 26 No. 6 (2012) 1227-1232.
[5] G. Gasper, M. Rahman, *Basic Hypergeometric Series, 2nd Ed*, Encyclopedia of Math. and its Appl, 96 (Cambridge University Press, Cambridge 2004).
[6] B. Gabutti, G. Allasia, Evaluation of q-gamma function and q-analogues by iterative algorithms, *Numer Algor* 49 (2008) 159–168.
[7] L. Gateschi, Procedimenti iterativi per il calcolo numerico di due prodotti infiniti, *Rend. Sem. Mat. Univ. Politec. Torino* 29 (1969/70) 187–201.
[8] T.H. Koornwinder, Special functions and q-commuting variables, in Special Functions, q–Series and Related Topics, M.E.H. Ismail, D.R. Masson and M. Rahman (eds.), Fields Institute Communications 14, American Mathematical Society (1997) 131–166.
[9] M. Mansour, An asymptotic expansion of the q-gamma function $\Gamma_{q}(x)$, *Journal of Nonlinear Mathematical Physics* 13 No. 4 (2006) 479–483.
[10] M. Mansour, A Family of Sequences Related to an Asymptotic Expansion of the q–gamma Function, *Int. Journal of Math. Analysis* 3 No. 23 (2009) 1131–1137.
[11] M. Mansour, On the functional equations of the q-Gamma function, *Aequationes Mathematicae* 89 (2015) 1041–1050.
[12] A. Sole, V.G. Kac, On integral representations of q-gamma and q-beta functions, *Rend. Mat. Acc. Lincei* 9 (2005) 11–29.