Single-beam Zeeman slower and magneto-optical trap using a nanofabricated grating

D. S. Barker,* E. B. Norrgard, N. N. Klimov, J. A. Fedchak, J. Scherschligt, and S. Eckel†
Sensor Science Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

We demonstrate a compact (0.25 L) system for laser cooling and trapping atoms from a heated dispenser source. Our system uses a nanofabricated diffraction grating to generate a magneto-optical trap (MOT) using a single input laser beam. An aperture in the grating allows atoms from the dispenser to be loaded from behind the chip, increasing the interaction distance of atoms with the cooling light. To take full advantage of this increased distance, we extend the magnetic field gradient of the MOT to create a Zeeman slower. The MOT traps approximately 10^9Li atoms emitted from an effusive source with loading rates greater than 10^6s^{-1}. Our design is portable to a variety of atomic and molecular species and could be a principal component of miniaturized cold-atom-based technologies.

I. INTRODUCTION

Miniaturized cold-atom systems may form the basis of a host of emerging quantum technologies, from quantum repeaters [1] to clocks [2]. Such miniaturized systems will likely employ a magneto-optical trap (MOT) for initial cooling and trapping of atoms. Conventional MOTs confine an atomic gas near the center of a quadrupole magnetic field in the overlap region of three pairs of counterpropagating laser beams [3]. Due to the number of laser beams, MOTs typically have expansive optical layouts with a large number of mechanical degrees of freedom. Even mobile experiments that incorporate MOTs have found use in cold-atom-based technologies.

Previous reasearch on MOT miniaturization has focused on elements that can be trapped from a room temperature background vapor, namely Cs or Rb. However, many other elements can be laser cooled and each have advantages for various quantum technologies. For example, Sr [7] or Yb [8] can be used as a highly-accurate clock. Lithium, due to its low mass, has been identified as a possible sensor atom for primary vacuum gauges [9, 10] and, given its large recoil energy, could find use in cold-atom-based quantum technologies beyond the laboratory environment, the size and robustness of MOTs need to be improved.

Previous research on MOT miniaturization has focused on elements that can be trapped from a room temperature background vapor, namely Cs or Rb. However, many other elements can be laser cooled and each have advantages for various quantum technologies. For example, Sr [7] or Yb [8] can be used as a highly-accurate clock. Lithium, due to its low mass, has been identified as a possible sensor atom for primary vacuum gauges [9, 10] and, given its large recoil energy, could find use in cold-atom-based quantum technologies beyond the laboratory environment, the size and robustness of MOTs need to be improved.

Previous reasearch on MOT miniaturization has focused on elements that can be trapped from a room temperature background vapor, namely Cs or Rb. However, many other elements can be laser cooled and each have advantages for various quantum technologies. For example, Sr [7] or Yb [8] can be used as a highly-accurate clock. Lithium, due to its low mass, has been identified as a possible sensor atom for primary vacuum gauges [9, 10] and, given its large recoil energy, could find use in cold-atom-based quantum technologies beyond the laboratory environment, the size and robustness of MOTs need to be improved.

Previous reasearch on MOT miniaturization has focused on elements that can be trapped from a room temperature background vapor, namely Cs or Rb. However, many other elements can be laser cooled and each have advantages for various quantum technologies. For example, Sr [7] or Yb [8] can be used as a highly-accurate clock. Lithium, due to its low mass, has been identified as a possible sensor atom for primary vacuum gauges [9, 10] and, given its large recoil energy, could find use in cold-atom-based quantum technologies beyond the laboratory environment, the size and robustness of MOTs need to be improved.

The atom loading rate R of a MOT depends strongly on the capture velocity v_c. Namely, $R \propto (v_c/\nu_p)^4$, where the constant of proportionality depends on the total flux from the source, $\nu_p = \sqrt{2k_B T/m}$ is the most probable thermal velocity of particles with temperature T and mass m (k_B is Boltzmann’s constant) [35]. While difficult to calculate a priori, a reasonable upper limit on v_c is given by the maximum atomic velocity that can be stopped in a distance d_s (typically a MOT laser beam radius r_b) by the radiation force, i.e., $v_c < \sqrt{d_s \hbar k \Gamma / m}$, where $k = 2\pi/\lambda$ is the wavenumber of the cooling light with wavelength λ, Γ is the decay rate of the excited state, and \hbar is the reduced Planck constant. The corresponding figure of merit for R is then $(d_s \hbar k \Gamma / 2k_B T)^4$, assuming the same source output flux. Lithium’s figure of merit is among the worst of all laser-coolable atoms, with its red cooling wavelength of $\lambda_{Li} \approx 671 \text{nm}$, linewidth of $\Gamma_{Li} \approx 2 \times 6 \text{MHz}$, and typical source operating temperature $T \approx 700 \text{K}$.

Lithium’s poor figure of merit is worsened when loading a grating MOT directly from a dispenser. For simplicity, the dispenser could be placed to the side to avoid blocking laser beams (see Fig. 1). This placement re-
FIG. 1. Cartoon representation of the experimental apparatus (not to scale). Red arrows depict the input and diffracted laser beams. The blue arrows wrapping each laser beam denote its circular polarization. Copper rings represent electromagnetic fields, while the Zeeman coil increases the magnetic field behind the diffraction grating. Lithium atoms that leave the heated dispenser are slowed by the single laser beam behind the grating and then captured into the MOT. The second dispenser in the background illustrates a hypothetical side-loading configuration, which we compare to our experimental results. The axes of ensuing figures refer to the coordinate system shown here. The gravitational force is antiparallel to the z axis.

sults in $d_s \lesssim \sqrt{2} r_b$ for a conventional six-beam MOT, but only $d_s \lesssim r_b/2$ for a grating MOT. Moreover, a dispenser placed to the side of a grating MOT will tend to deposit metal on the grating, gradually reducing its performance.

Another important MOT performance metric is the steady-state atom number $N_S = R \tau$, where τ is the trap lifetime. To achieve the same output flux, different elements require different source temperatures, T. Higher temperature sources outgas undesired species at a rate that is exponential in T. These undesired species can collide with trapped atoms, reducing τ.

We exploit the natural integrability of the tetrahedral MOT configuration with a Zeeman slower by etching an aperture in the grating and loading the atoms from behind [13, 36]. Light passing through the aperture in the chip can interact with the counter-propagating atoms for a longer distance, increasing d_s (see Fig. 1). By tailoring the magnetic field behind the chip, we make a Zeeman slower to capture atoms with higher initial velocity. The aperture can also serve as a gas flow limiter, allowing for differential pumping that mitigates the effects of dispenser outgassing.

II. DESCRIPTION OF THE TRAP

A nanofabricated silicon diffraction grating chip forms the core of the device, as shown in Fig. 2(a). The grating chip was fabricated using photolithography at the National Institute of Standards and Technology in the Center for Nanoscale Science and Technology (CNST) NanoFab cleanroom facility [37]. The chip consists of three one-dimensional diffraction gratings, which are arranged so that their grooves form concentric equilateral triangles (see Fig. 2(b) and Fig. 2(c)). Each grating has a period $p = 1.00(5)$ μm and a 500(10) nm trench width (see Fig. 2(d)). (here, and throughout the paper, parenthetical quantities represent standard uncertainties). The gratings are cropped by an outer circle with a diameter of 22 nm. The diffraction gratings have a first-order diffraction angle $\theta_d \approx 42^\circ$ at λ_{Li}. The grating...
ing trenches are etched to 168(2) nm depth (approximately \(\lambda_{Li}/4\)), chosen to minimize zero-order reflections. A 100(5) nm layer of aluminum is deposited on the chip surface. The aluminum coating thickness was chosen by interpolating the data of Ref. [30] to yield, at \(\lambda_{Li}\), the optimum first-order diffraction efficiency of 33 \% for a triangular grating MOT; we measure 37(1) \%. Higher order diffraction is suppressed because \(p < 2\lambda_{Li}\). For normally-incident, circularly-polarized light, the normalized Stokes parameters of the first-order diffracted beam are \(Q = 0.03(1), U = 0.13(1), V = 0.84(1)\). A triangular aperture, defined by an inscribed circle of radius 1.5 mm, allows both light and atoms to pass through the chip.

Three sets of electromagnets generate the necessary magnetic fields (see Fig. 2(a)). Set (2) is an anti-Helmholtz pair that produces the magnetic field gradient needed for the MOT. Set (3) extends the range of the magnetic field beyond the chip and adapts it into the square root profile of a Zeeman slower (see Sec. IV). The antisymmetric set (1) prevents the field from set (3) from shifting the MOT axially. All sets are made from direct bond copper on an aluminum nitride substrate.

Our Li dispenser is a custom-length commercially-available vapor source. It consists of a stainless-steel tube filled with 15 mg of unenriched Li. The dispenser emits atoms through a 5 mm by 0.1 mm rectangular slit. Assuming an operating temperature of 375 °C, the dispenser can operate continuously for approximately 200 days before exhausting its Li supply [38, 39]. Future versions of our trapping system will use a 3D-printed titanium dispenser that can hold more than 100 mg of Li [40]; allowing at least 500 days of continuous operation.

The full 0.25 L assembly is constructed on a standard vacuum flange and inserted into a vacuum chamber pumped by a 50 L/s ion pump. The vacuum chamber has a base pressure of 3(1) \(\times 10^{-8}\) Pa. Outgassing from the Li source causes the pressure to increase to approximately \(10^{-6}\) Pa.

The single, intensity-stabilized laser beam strikes the grating normally. It has a 1/e\(^2\) radius of 20(1) mm; an iris stops the beam to fit the grating. The center frequency of the laser is detuned relative to the \(^2S_{1/2}(F = 2)\) to \(^2P_{3/2}(F' = 3)\) cycling transition, which has saturation intensity \(I_{sat} \approx 2.54\) mW/cm\(^2\). An electro-optic modulator adds sidebands at approximately 813 MHz; the +1 sideband is equally detuned from the \(^2S_{1/2}(F = 1)\) to \(^2P_{3/2}(F' = 2)\) “repump” transition. Because the MOT magnetic field gradient continuously deforms into the Zeeman slower field, an additional slowing laser would not improve atom capture. Intensities, \(I\), reported herein are the carrier intensity at the center of the incident beam. Fluorescence from the MOT is continuously monitored by a camera along an axis orthogonal to the cooling beam. The same camera also records absorption images to more accurately measure the number of trapped atoms.

![Figure 3](image-url)

FIG. 3. MOT parameters. (a) Absorption images showing the optical density (OD) of the \(^7\)Li cloud at three different expansion times \(t\). (b) Fitted \(x\) (blue) and \(z\) (orange) squared \(1/e\) radii \(w_i^2\) of the cloud vs. \(t^2\) (most error bars are smaller than the data points). (c) Steady-state atom number \(N_S\) vs. laser detuning and intensity, in units of \(I_{Li}\) and \(I_{sat}\), respectively.

III. MOT PARAMETERS

Figure 3(a) shows images of the cloud of \(^7\)Li atoms previously trapped in the MOT after various expansion times \(t\). The diffraction grating is not visible in the images, as the MOT forms approximately 4 mm from the chip. The fitted \(1/e\) radii of the cloud, shown in Fig. 3(b), follow the expected \(w_i^2(t) = w_0^2(2k_B T_{MOT}/m)^2\), where \(T_{MOT}\) is the temperature of the trapped cloud and \(w_0\) is the initial radius. The measured temperatures are 900(50) \(\mu\)K in the radial direction and 590(30) \(\mu\)K in the axial direction. For the data in Fig. 3(a) and Fig. 3(b), the laser detuning is \(\Delta/\Gamma_{Li} = -2.0\), the saturation parameter is \(s_0 = I/I_{sat} = 3.6\), the carrier-to-repump power ratio is about 3 : 2, the magnetic field gradient at the center of the MOT is \(B' = 4.5\) mT/cm, and the peak magnetic field of the Zeeman slower is \(B_{max} \approx 12\) mT. These
trapping parameters and the extracted temperatures are similar to those of “compressed” Li MOTs reported in the literature [41–43].

Figure 3(c) shows the equilibrium atom number N_s in the MOT as a function of detuning and intensity of the laser beam. The magnetic field gradient, peak Zeeman slower field, and carrier-to-repump ratio are the same as in Fig. 3(a) and Fig. 3(b). The captured atom number increases with laser intensity and begins to saturate at $I/I_{\text{sat}} \approx 2.5$. We find that the maximum atom number occurs near a detuning of $\Delta/\Gamma_{1i} \approx -2.5$. Varying the carrier-to-repump power ratio between 1 : 1 and 2 : 1 does not qualitatively change the results in Fig. 3(c) or substantially affect the maximum atom number.

The simplicity of our setup complicates measurement of the MOT lifetime. There is not a distinct Zeeman slowing laser beam and the Li dispenser takes minutes to turn off, so the MOT always loads atoms during operation. However, we can shut off the current in the Zeeman and compensation coils (see Fig. 1 and Fig. 2(a)) to drastically reduce the MOT loading rate (see Sec. IV). The MOT population then exponentially decays to a lower equilibrium atom number. Fitting the MOT decay curves yields trap lifetimes $\tau \approx 1$ s for our operating conditions.

IV. ZEEMAN SLOWER PERFORMANCE

To quantitatively understand the loading of the MOT, we calculate the average force f exerted on an atom by the input beam, with wavevector k_0, and its reflections, with wavevector k_i ($i = 1, 2, 3$), through

$$f = \sum_{i=0}^{3} \frac{\hbar k_i \Gamma}{2} \sum_{m'_{L_i}} \frac{1}{1 + s_{\text{total}} + 4\delta_i^2/\Gamma^2} \delta_i = \Delta - k_0 \cdot \mathbf{v} - m'_L \mu_B B/\hbar$$

where we have assumed an S to P transition (i.e., ignoring fine and hyperfine structure) [14]. Here, $s_i = I_i/I_{\text{sat}}$ is the saturation parameter for beam i (with intensity I_i), $s_{\text{total}} = \sum_i s_i$, Δ is the detuning, \mathbf{v} is the atom’s velocity, μ_B is the Bohr magneton, m'_L is the projection of the excited state orbital angular momentum onto the magnetic field, and γ_i is the angle between the magnetic field \mathbf{B} and wavevector k_i. The polarization of beam i is denoted by $\epsilon_i = \pm 1$, where +1 (-1) represents right-handed (left-handed) circular polarization. P is a Wigner d-matrix that determines transition probabilities to excited state m'_{L_i} and is given by $P(m'_{L_i} = -1, \gamma_i, \epsilon_i = \pm 1) = (1 + \cos \gamma_i)^2/4$, $P(m'_{L_i} = 0, \gamma_i, \epsilon_i = \pm 1) = \sin^2 \gamma_i/2$, and $P(m'_{L_i} = +1, \gamma_i, \epsilon_i = \pm 1) = (1 \pm \cos \gamma_i)^2/4$.

The calculated force along the z axis is shown in Fig. 4 for a magnetic field gradient of $B' = 4.5$ mT/cm and maximum magnetic field $B_{\text{max}} \approx 12$ mT. For these values of B' and B_{max}, the magnetic field behind the chip closely matches the ideal $B(z) \propto \sqrt{z}$ Zeeman slower profile. The input laser beam (see Fig. 1) is resonant with the cycling transition along the bright yellow curve (i.e., $kv = -\Delta + \mu_B B/\hbar$), maximizing the slowing force f (see Eq. 1). The force is reduced in the MOT region (the yellow curve darkens to pale green) because the diffracted laser beams increase s_{total} (see Fig. 6). The dispenser source is located at $z_s \approx 54$ mm, beyond the maximum of the magnetic field at $z_{\text{max}} \approx 30$ mm, and about 10 times further from the MOT than the aperture at $z_a = 5$ mm with characteristic radius $r_a = 2$ mm.

Behind the aperture (see Fig. 1), atoms are slowed similarly to an ideal Zeeman slower, where the velocity follows $v_B(z) = \mu_B B(z)/\hbar$. In this case, all initial velocities $v_0 < v_c = \mu_B B_{\text{max}}/\hbar k$ should be slowed. Fig. 4 shows simulated on-axis $v(z)$ trajectories. Atoms emitted from the source with v_0 receive a slowing impulse as they come into resonance with the slowing laser beam in the region of increasing magnetic field ($z \gtrsim 30$ mm in Fig. 4), travel along the Zeeman slower at nearly constant velocity, and then fall onto the $v_B(z)$ curve.

We calculate the resulting loading rate by considering an effusive source with surface area S. Each area element of the source dS emits ϕ atoms per second per unit area per steradian according to a cosine distribution [44]. Due to the size of the chip aperture and MOT beams, only atoms emitted at angles θ (relative to the z axis) less than the capture angle θ_c are captured by the MOT. Integrating over the full source surface S leads to

$$R = 8\sqrt{\pi} \int_S \phi dS \int_0^{\theta_c} \cos \theta d\theta \int_0^{v_B(\theta)} v_B^2 e^{-v_B^2/v_F^2} dv_B. \tag{2}$$

As a first approximation, we consider a point source at
x = 0, take v_c to be independent of θ, and define the capture angle θ_c through geometry, i.e., $\tan \theta_c = r_a/(z_s - z_a)$. The capture velocity then scales as $v_c \propto B_{\text{max}}$ and thus the loading rate $R \propto B_{\text{max}}^4$. Fig. 5 shows the experimental efficacy of our Zeeman slower for four different magnetic field gradients B'. At most, we observe a factor of 4 increase in R for a doubling of B_{max}, suggesting a scaling closer to B_{max}^2.

The naïve B_{max}^4 scaling breaks down if the acceleration required to keep an atom on the $v_B(z)$ curve, see Fig. 4, exceeds the maximum possible acceleration from the slowing laser beam. This condition is expressed as

$$\frac{dv_B}{dt} = \frac{dv_B}{dz} \frac{dz}{dt} = \frac{\mu_B}{\hbar k_0} \frac{dB(z)}{dz} v_B \leq \frac{\hbar k_0 \Gamma}{2m} \frac{s_0}{1 + s_0}$$ \hspace{1cm} (3)

where the right hand side of the inequality is the maximum magnitude of f in the Zeeman slower region (see Eq. 1). In the present study, the largest $v_B(z_{\text{max}}) \approx 120 \text{ m/s}$, defined by $B_{\text{max}} \approx 13 \text{ mT}$. Combining this largest $v_B(z_{\text{max}})$ with $s = 3.9$ and the largest $B' = 5.5 \text{ mT/cm}$ from Fig. 5, we find that the inequality in Eq. 3 is always fulfilled. Because $dB(z)/dz < B'$ in our apparatus, our calculation also demonstrates that deviations from the ideal $B(z) \propto \sqrt{z}$ field in the Zeeman slower region cannot explain the observed scaling of R with B_{max}.

Another potential deviation from $R \propto B_{\text{max}}^4$ is the assumed independence of v_c and θ_c. Consider the on-axis atomic trajectories in Fig. 6 with non-zero initial angle with the z axis. These trajectories blossom: as the axial velocity decreases, the initial transverse velocity causes the atom to deviate farther off-axis. The blossoming effect reduces θ_c. Neglecting the initial velocity change in the increasing magnetic field region ($z \gtrsim 30 \text{ mm}$ in Fig. 4), an atom will travel at its initial velocity v_0 until it intersects the universal $v_B(z)$ curve. To illustrate the blossoming effect, we take $v_B(z) \approx v'z$ so the atom falls onto the universal trajectory at $z_I = v_0/v'$, where $v' = \mu_B B'/\hbar k$. Along the $v_B(z)$ trajectory, the atom obeys $z(t) = (v_0/v') e^{-v't}$. The angle θ_c that just clears the aperture can then be determined from the source-aperture travel time t_{sa}.

$$\tan \theta_c \approx \frac{r_a}{v_0 t_{sa}} = \frac{r_a}{z_s - z_a} \left(\frac{z_s - z_a}{z_s - z_I[1 - \log(z_I/z_a)]}\right)$$ \hspace{1cm} (4)

where we have assumed $\theta_c \ll 1$. For our device, the term in parentheses reduces θ_c by approximately 70 % of the geometric limit at $B' = 5.5 \text{ mT/cm}$ and $B_{\text{max}} = 13 \text{ mT}$ (see Fig. 5). With this correction, the loading rate, evaluated numerically, scales roughly as $R \propto B_{\text{max}}^3$ in our region of experimental interest.

Finally, we consider a source that is misaligned with respect to the slowing laser beam. Fig. 6 shows several such trajectories, which start at $x \approx 5 \text{ mm}$ with various emission angles. Simulations of these off-axis trajectories indicate that atoms starting outside the slowing laser beam can still be captured provided that they enter the Zeeman slower at a position z_c such that $v_B(z_c) > v_0$ and subsequently clear the aperture. We use these two conditions to calculate the scaling of the loading rate for each B', shown in Fig. 5 as the solid curves. The model suggests that the vast majority of the flux is being emitted from the source approximately 2.5 mm outside of the slowing laser beam, a slight misalignment.

After disassembling the apparatus, we discovered that the Li metal had migrated out of the dispenser onto its exterior surface. Most of the Li was positioned just outside of the Zeeman slower beam, as suggested by our loading rate calculation. The Li migration may have been exacerbated because the gravitational force is antiparallel to the z axis (see Fig. 1) and might be reduced by reorienting the apparatus. However, restricting the orientation of the device is undesirable for future applications. Inserting a Ni mesh into the dispenser to wick the Li metal would prevent migration in all orientations [40, 45] and improve the loading rate scaling to $R \propto B_{\text{max}}^3$.

The above results suggest the device would be improved by moving the source further from the MOT while maintaining alignment with the slowing laser beam. Consider a fixed magnetic field gradient B' throughout all space and a movable source with position z_s. The capture velocity for atoms travelling along the z axis is $v_c = v' z_s$. As the source moves away from the MOT, the capture velocity increases because $v_c \propto z_s$, but θ_c decreases as $\tan \theta_c = r_a/(z_s - z_a)$ for small v_0 and as $\tan \theta_c \approx r_a v'/[v_0 \log(z_a/z_s)]$ for velocities $v_0 \gtrsim v' z_s$. To understand the competition between v_c and θ_c, we numerically evaluate Eq. 2 as a function of z_s. We find that R is roughly constant for $z_s/z_a < 3$ and becomes $R \propto (z_s/z_a)^{3/2}$ for $z_s/z_a > 10$. Therefore, placing the source farther behind the chip is optimal, provided that optical alignment can be maintained, the inequality in Eq. 3 is always satisfied, and the magnetic field gradient can be extended to continue the Zeeman slower.
FIG. 6. Off-axis trajectories of atoms. The color plot shows the total saturation parameter of all lasers, s_{total}; stream lines show magnetic field lines with increasing magnetic field magnitude darker. Blue (green) trajectories are trapped trajectories from a source placed behind (to the side of) the chip starting at 0.7v_c (0.25v_c); gray trajectories are untrapped. The width of the trajectory curves indicates the magnitude of the velocity.

Loading from behind the chip should always outperform loading from the side, given that v_c and θ_c are roughly equivalent for a source at $z_s = z_a$ and a source placed to the side (see Fig. 1). However, outperforming side loading places additional restrictions on the size of the apparatus ($z_s/z_a > 3$), beam alignments, and source placement. As an example, a source placed to the side might have performed equally well in the device presented here. We simulated several side-loaded trajectories, shown in green in Fig. 6, and found that the side-loaded capture velocity is roughly 25% that of the best on-axis capture velocity. The reduction in capture velocity is compensated by the increase in θ_c, causing R to be unchanged. Moving our source forward to the position of the peak magnetic field (i.e., $z_s = z_{\text{max}}$) would be sufficient for back loading to be faster than side loading.

V. DISCUSSION

We have demonstrated a single-beam slowing and trapping apparatus for 7Li atoms. We trap more than 10^6 atoms with loading rates exceeding 10^6 s$^{-1}$. The integrated Zeeman slower behind the chip is effective in increasing the captured flux by over a factor of three. The source placement prevents unwanted metal deposition on the grating and allows for future vacuum improvements via differential pumping.

Our design can easily be adapted to serve as cold gas source for a variety of applications. By implementing differential pumping or using a low-outgassing atom source (rather than a dispenser) [46, 47], our device could be used as a primary vacuum gauge [9, 10]. The diffraction grating period and etch depth can be altered to optimize trapping of other elements, such as Rb, Cs, Ca, Sr, or Yb. Trapping alkaline-earth atoms using our apparatus would allow development of portable optical frequency standards, which could be used for geodesy [48] or space-based gravitational wave detection [49] and will be necessary for future redefinition of the SI second [50]. A multiple-length Z-wire magnetic trap [51] could be patterned onto the backside of our grating chip; permitting atoms to be pulled closer to the chip surface for chip-scale atom interferometers [32, 52] or quantum memories [33, 34]. The tetrahedral MOT configuration should also be applicable to “type-II” MOTs [53, 54], which are used to laser-cool and trap molecules [55, 56]. We anticipate that, with suitable modifications to the grating, our system could trap molecules from a buffer gas beam source [57], enabling development of deployable devices using laser-cooled molecules.

Improvements to the present design can be made to increase both R and N_s. First, our dispenser could be redesigned to better mode-match with our slowing laser beam and be placed closer to the maximum of the magnetic field. Together, the changes to the dispenser should increase our loading rate by at least a factor of 10. Second, the Zeeman slower can be shortened by increasing the magnetic field gradient. Because of the lack of a counter-propagating beam [58], the increased magnetic field gradient should not impact the capture velocity, provided the inequality in Eq. 3 is satisfied. Third, adding differential pumping, which was not implemented here, will decrease the loss rate τ and hence increase the equilibrium number of atoms in the MOT.
ACKNOWLEDGEMENTS

The authors thank W. McGehee and S. Maxwell, for their careful reading of the manuscript. The authors also thank the CNST NanoFab staff for allowing them to use the facility to fabricate grating chips. D. S. B. and E. B. N. acknowledge support from the National Research Council Postdoctoral Research Associateship Program.

[1] A. Kuzmich, W. P. Bowen, A. D. Boozer, A. Boca, C. W. Chou, L.-M. Duan, and H. J. Kimble, Nature 423, 731 (2003).
[2] S. B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Döscher, S. Häfner, U. Sterr, and C. Lisdat, Physical Review Letters 118, 073601 (2017).
[3] E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, Physical Review Letters 59, 2631 (1987).
[4] M. Hauth, C. Freier, V. Schkolnik, A. Senger, M. Schmidt, and A. Peters, Applied Physics B 113, 49 (2013).
[5] D. Becker, M. D. Lachmann, S. T. Seidel, H. Ahlers, A. N. Dinkelaker, J. Grosse, O. Hellmig, H. Müntinga, V. Schkolnik, T. Wendrich, A. Wenzlawski, B. Weps, R. Corgier, D. Lüdtke, T. Franz, N. Gaaloul, W. Herr, M. Popp, S. Amri, H. Duncker, M. Erbe, A. Köhfeldt, A. Kubellka-Lange, C. Braxmaier, E. Charron, W. Ertmer, M. Krutzik, C. Lämmerzahl, A. Peters, W. P. Schleich, K. Sengstock, R. Walser, A. Wicht, P. Windpassinger, and E. M. Rasel, Nature 562, 391 (2018).
[6] L. Liu, D.-S. Lü, W.-B. Chen, T. Li, Q.-Z. Qu, B. Wang, L. Li, W. Ren, Z.-R. Dong, J.-B. Zhao, W.-B. Xia, X. Zhao, J.-W. Ji, M.-F. Ye, Y.-G. Sun, Y.-Y. Yao, D. Song, Z.-G. Liang, S.-J. Hu, D.-H. Yu, X. Hou, W. Shi, H.-G. Zang, J.-F. Xiang, X.-K. Peng, and Y.-Z. Wang, Nature Communications 9, 2760 (2018).
[7] S. L. Campbell, R. B. Hutson, G. E. Marti, A. Goban, N. Darkwah Oppong, R. L. McNally, L. Sonderhouse, J. M. Robinson, W. Zhang, B. J. Bloom, and J. Ye, Science 358, 90 (2017).
[8] N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, and A. D. Ludlow, Science 341, 1215 (2013).
[9] J. Scherschligt, J. A. Fedchak, D. S. Barker, S. Eckel, N. Klimov, C. Makrides, and E. Tiesinga, Metrologia 54, S125 (2017).
[10] J. P. McGilligan, P. F. Griffin, R. Elvin, S. J. Ingleby, E. Riis, and A. S. Arnold, Scientific Reports 7, 384 (2017).
[11] J. G. H. Franssen, T. C. H. de Raadt, M. A. W. van Ninhuijs, and O. J. Luiten, Physical Review Accelerators and Beams 22, 023401 (2019).
[12] S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, Optics Express 17, 14109 (2009).
[13] S. Pollock, J. P. Cotter, A. Laliotis, F. Ramirez-Martinez, and E. A. Hinds, New Journal of Physics 13, 043029 (2011).
[14] J. P. McGilligan, P. F. Griffin, E. Riis, and A. S. Arnold, Optics Express 23, 8948 (2015).
[15] J. P. McGilligan, P. F. Griffin, E. Riis, and A. S. Arnold, Journal of the Optical Society of America B 33, 1271 (2016).
[16] J. P. Cotter, J. P. McGilligan, P. F. Griffin, I. M. Rabey, K. Docherty, E. Riis, A. S. Arnold, and E. A. Hinds, Applied Physics B 122, 172 (2016).
[17] J. Fortagh and C. Zimmermann, Reviews of Modern Physics 79, 335 (2007).
[18] M. Keil, O. Amit, S. Zhou, D. Gросwasser, Y. Japha, and R. Folman, Journal of Modern Optics 63, 1840 (2016).
[19] E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeulter, Physical Review Letters 104, 203603 (2010).
[20] K. Lindquist, M. Stephens, and C. Wieman, Physical Review A 46, 4082 (1992).
[21] Z. Lin, K. Shimizu, M. Zhan, F. Shimizu, and H. Takuma, Japanese Journal of Applied Physics 30, L 1324 (1991).
[22] Commercial fabrication facilities, equipment, materials or computational software are identified in this paper in
order to adequately specify device fabrication, the experimental procedure and data analysis. Such identification is not intended to imply endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the facility, equipment, material or software identified is necessarily the best available.

[38] H. C. W. Beijerinck and N. F. Verster, *Journal of Applied Physics* **46**, 2083 (1975).

[39] C. B. Alcock, V. P. Itkin, and M. K. Horrigan, *Canadian Metallurgical Quarterly* **23**, 309 (1984).

[40] E. B. Norrgard, D. S. Barker, J. A. Fedchak, N. Klimov, J. Scherschligt, and S. P. Eckel, *Review of Scientific Instruments* **89**, 056101 (2018).

[41] M. O. Mewes, G. Ferrari, F. Schreck, A. Sinatra, and C. Salomon, *Physical Review A* **61**, 011403(R) (1999).

[42] A. T. Grier, I. Ferrier-Barbut, B. S. Rem, M. Delehaye, L. Khaykovich, F. Chevy, and C. Salomon, *Physical Review A* **87**, 063411 (2013).

[43] A. Burchianti, G. Valtolina, J. A. Seman, E. Pace, M. De Pas, M. Inguscio, M. Zaccanti, and G. Roati, *Physical Review A* **90**, 043408 (2014).

[44] K. J. Ross and B. Sonntag, *Review of Scientific Instruments* **66**, 4409 (1995).

[45] W. Gunton, M. Semczuk, and K. W. Madison, *Physical Review A* **88**, 023624 (2013).

[46] S. Kang, R. P. Mott, K. A. Gilmore, L. D. Sorenson, M. T. Rakher, E. A. Donley, J. Kitching, and C. S. Roper, *Applied Physics Letters* **110**, 244101 (2017).

[47] D. S. Barker, E. B. Norrgard, J. Scherschligt, J. A. Fedchak, and S. Eckel, *Physical Review A* **98**, 043412 (2018).

[48] C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, *Science* **329**, 1630 (2010).

[49] A. Vutha, *New Journal of Physics* **17**, 063030 (2015).

[50] T. E. Parker, *Review of Scientific Instruments* **83**, 021102 (2012).

[51] M. B. Squires, S. E. Olson, B. Kasch, J. A. Stickney, C. J. Erickson, J. A. R. Crow, E. J. Carlson, and J. H. Burke, *Applied Physics Letters* **109**, 264101 (2016).

[52] S. Abend, M. Gebbe, M. Gersemann, H. Ahlers, H. Müntinga, E. Giese, N. Gaaloul, C. Schubert, C. Lämmerzahl, W. Ertmer, W. P. Schleich, and E. M. Rasel, *Physical Review Letters* **117**, 203003 (2016).

[53] J. Flemming, A. M. Tuboy, D. M. B. P. Milori, L. G. Marcassa, S. C. Zilio, and V. S. Bagnato, *Optics Communications* **135**, 269 (1997).

[54] K. N. Jarvis, B. E. Sauer, and M. R. Tarbutt, *Physical Review A* **98**, 043432 (2018).

[55] J. F. Barry, D. J. McCarron, E. B. Norrgard, M. H. Steinecker, and D. Demille, *Nature* **512**, 286 (2014).

[56] M. R. Tarbutt, *New Journal of Physics* **17**, 015007 (2015).

[57] N. R. Hutzler, H.-I. Lu, and J. M. Doyle, *Chemical Reviews* **112**, 4803 (2012).

[58] D. Haubrich, A. Höpe, and D. Meschede, *Optics Communications* **102**, 225 (1993).