The Soliton-Kähler-Ricci Flow over Fano Manifolds

NEFTON PALI

May 5, 2014

Abstract

We introduce a flow of Kähler structures over Fano manifolds with formal limit at infinite time a Kähler-Ricci soliton. This flow correspond to a Perelman’s modified backward Kähler-Ricci type flow that we call Soliton-Kähler-Ricci flow. It can be generated by the Soliton-Ricci flow. We assume that the Soliton-Ricci flow exists for all times and the Bakry-Emery-Ricci tensor preserve a positive uniform lower bound with respect to the evolving metric. In this case we show that the corresponding Soliton-Kähler-Ricci flow converges exponentially fast to a Kähler-Ricci soliton.

1 Introduction

This paper is the continuation of the work [Pal2] in the Kähler setting.

The notion of Kähler-Ricci soliton (in short KRS) is a natural generalization of the notion of Kähler-Einstein metric. A KRS over a Fano manifold X is a Kähler metric in the class $2\pi c_1(X)$ such that the gradient of the default potential of the metric to be Kähler-Einstein is holomorphic. The terminology is justified by the fact that the pull back of the KRS metric via the flow of automorphisms generated by this gradient provides a Kähler-Ricci flow.

We remind that the Kähler-Ricci flow (in short KRF) has been introduced by H. Cao in [Cao]. In the Fano case it exists for all positive times. Its convergence in the classic sense implies the existence of a Kähler-Einstein metric. The fact that not all Fano manifolds admit Kähler-Einstein metrics implies the non convergence in the classic sense of the KRF in general.

Our approach for the construction of Kähler-Ricci solitons is based on the study of a flow of Kähler structures $(X, J_t, g_t)_{t \geq 0}$ associated to any normalized smooth volume form $\Omega > 0$ that we will call Ω-Soliton-Kähler-Ricci flow (in short Ω-SKRF). (See the definition below.) Its formal limit is precisely the KRS equation with corresponding volume form Ω.

It turns out that this flow is generated by the backward KRF via the diffeomorphisms flow corresponding to the gradient of functions satisfying Perelman’s
backward heat equation [Per] for the KRF. In particular our point of view gives a new reason for considering Perelman’s backward heat equation.

Using a result in [Pal1] we can show that the Ω-SKRF can be generated by the Ω-Soliton-Ricci flow (in short Ω-SRF) introduced in [Pal2] via an ODE flow of complex structures of Lax type. (See corollary 2 below.)

Let \(M \) be the space of smooth Riemannian metrics. We have explained in [Pal2] that it make sense to consider the Ω-SRF for a special set \(\mathcal{S}_{\text{SKRF}}^{K, +} \subset M \) of initial data (see [Pal2] for the definition) that we call positive scattering data with center of polarization \(K \).

In this paper we denote by \(K_{\mathcal{J}} \) the set of \(\mathcal{J} \)-invariant Kähler metrics. We define the set of positive Kähler scattering data as the set

\[
\mathcal{S}_{\text{SKRF}}^{K, +} := \mathcal{S}_{\text{SKRF}}^{K} \cap K_{\mathcal{J}}.
\]

With this notations hold the following result which is a consequence of the convergence result for the Ω-SRF obtained in [Pal2].

Theorem 1. Let \((X, J_0)\) be a Fano manifold and assume there exist \(g_0 \in \mathcal{S}_{\text{SKRF}}^{K, +} \), for some smooth volume form \(\Omega > 0 \) and some center of polarization \(K \), such that the solution \((g_t)\) of the Ω-SRF with initial data \(g_0 \) exists for all times and satisfies \(\text{Ric}_{g_t}(\Omega) \geq \delta g_t \) for some uniform bound \(\delta \in \mathbb{R}_{>0} \).

Then the corresponding solution \((J_t, g_t)_{t \geq 0}\) of the Ω-SKRF converges exponentially fast with all its space derivatives to a \(J_{\infty} \)-invariant Kähler-Ricci soliton \(g_{\infty} = \text{Ric}_{g_{\infty}}(\Omega) \).

Furthermore assume there exists a positive Kähler scattering data \(g_0 \in \mathcal{S}_{\text{SKRF}}^{K, +} \) with \(g_0 J_0 \in 2\pi c_1(X) \) such that the evolving complex structure \(J_t \) stays constant along a solution \((J_t, g_t)_{t \in [0, T]}\) of the Ω-SKRF with initial data \((J_0, g_0)\). Then \(g_0 \) is a \(J_0 \)-invariant Kähler-Ricci soliton and \(g_t \equiv g_0 \).

2 The Soliton-Kähler-Ricci Flow

Let \(\Omega > 0 \) be a smooth volume form over an oriented Riemannian manifold \((X, g)\). We remind that the Ω-Bakry-Emery-Ricci tensor of \(g \) is defined by the formula

\[
\text{Ric}_g(\Omega) := \text{Ric}(g) + \nabla_g d\log \frac{dV_g}{\Omega}.
\]

A Riemannian metric \(g \) is called a Ω-Shrinking Ricci soliton (in short Ω-ShRS) if \(g = \text{Ric}_g(\Omega) \). Let now \((X, J)\) be a complex manifold. A \(J \)-invariant Kähler metric \(g \) is called a \(J \)-Kähler-Ricci soliton (in short \(J \)-KRS) if there exist a smooth volume form \(\Omega > 0 \) such that \(g = \text{Ric}_g(\Omega) \).

The discussion below will show that if a compact Kähler manifold admit a Kähler-Ricci soliton \(g \) then this manifold is Fano and the choice of \(\Omega \) corresponding to \(g \) is unique up to a normalizing constant.

We remind first that any smooth volume form \(\Omega > 0 \) over a complex manifold \((X, J)\) of complex dimension \(n \) induces a hermitian metric \(h_\Omega \) over the canonical
bundle $K_{X,J} := \Lambda_{n,0}^{n,0}T_x^*$ given by the formula

$$h_{11}(\alpha, \beta) := \frac{n! \alpha \wedge \bar{\beta}}{\Omega}.$$

By abuse of notations we will denote by Ω^{-1} the metric h_{11}. The dual metric h_{11}^* on the anti-canonical bundle $K_{X,J}^{-1} = \Lambda_{n,0}^{n,0}T_x$ is given by the formula

$$h_{11}^*(\xi, \eta) = (-i)^n \Omega(\xi, \bar{\eta}) / n!.$$

Abusing notations again, we denote by Ω the dual metric h_{11}^*. We define the Ω-Ricci form

$$\text{Ric}_J(\Omega) := i C_{\Omega}(K_{X,J}^{-1}) = - i C_{\Omega^{-1}}(K_{X,J}),$$

where $C_h(L)$ denotes the Chern curvature of a hermitian line bundle. In particular we observe the identity $\text{Ric}_J(\omega) = \text{Ric}_J(\omega^n)$. We remind also that for any J-invariant Kähler metric g the associated symplectic form $\omega := gJ$ satisfies the elementary identity

$$\text{Ric}(g) = - \text{Ric}_J(\omega)J.$$ (2.1)

Moreover for all twice differentiable function f hold the identity

$$\nabla_g df = -(i \partial_J \bar{\partial}_J f)J + g \bar{\partial}_{T_{X,J}} \nabla_g \log \frac{dV_g}{\Omega}.$$ (See the decomposition formula [6.5] in the appendix.) We infer the decomposition identity

$$\text{Ric}_g(\Omega) = - \text{Ric}_J(\Omega)J + g \bar{\partial}_{T_{X,J}} \nabla_g \log \frac{dV_g}{\Omega}.$$ (2.2)

Thus a J-invariant Kähler metric g is a J-KRS iff there exist a smooth volume form $\Omega > 0$ such that

$$\begin{cases}
g = - \text{Ric}_J(\Omega)J, \\
\bar{\partial}_{T_{X,J}} \nabla_g \log \frac{dV_g}{\Omega} = 0.
\end{cases}$$

The first equation of this system implies that (X, J) must be a Fano variety. We can translate the notion of Kähler-Ricci soliton in symplectic terms. In fact let (X, J_0) be a Fano manifold of complex dimension n, let $c_1 := c_1(X, [J_0])$, where $[J_0]$ is the co-boundary class of the complex structure J_0 and set

$$\mathcal{J}^{+}_{X,J_0} := \left\{ J \in [J_0] \mid N_J = 0, \exists \omega \in K^{2\pi c_1}_J \right\},$$

where N_J denotes the Nijenhuis tensor and

$$K^{2\pi c_1}_J := \left\{ \omega \in 2\pi c_1 \mid \omega = J^* \omega J, -\omega J > 0 \right\},$$

3
is the set of J-invariant Kähler forms $\omega \in 2\pi c_1$. It is clear that for any complex structure $J \in \mathcal{J}_{X,J_0}$ and any form $\omega \in \mathcal{K}_j^{2\pi c_1}$ there exist a unique smooth volume form $\Omega > 0$ with $\int_X \Omega = (2\pi c_1)^n$ such that $\omega = \text{Ric}_j(\Omega)$.

This induces an inverse functional Ric_j^{-1} such that $\Omega = \text{Ric}_j^{-1}(\omega)$. With this notation we infer that a J-invariant form $\omega \in 2\pi c_1$ is the symplectic form associated to a J-KRS if and only if $0 < g := -\omega J$ and

$$\bar{\partial}_{TX,J} \nabla g \log \frac{\omega^n}{\text{Ric}_j^{-1}(\omega)} = 0.$$

In equivalent volume terms we say that a smooth volume form $\Omega > 0$ with $\int_X \Omega = (2\pi c_1)^n$ is a J-Soliton-Volume-Form (in short J-SVF) if

$$\begin{cases}
0 < g := -\text{Ric}_j(\Omega) J , \\
\bar{\partial}_{TX,J} \nabla g \log \frac{\text{Ric}_j(\Omega)^n}{\Omega} = 0 .
\end{cases}$$

We deduce a natural bijection between the sets $\{ g \ | \ J\text{-KRS}\}$ and $\{ \Omega \ | \ J\text{-SVF}\}$. We define also the set of Soliton-Volume-Forms over (X, J_0) as

$$\mathcal{SV}_{X,J_0} := \left\{ \Omega > 0 \ | \ \int_X \Omega = (2\pi c_1)^n, \ \exists J \in \mathcal{J}_{X,J_0}^+ : \Omega \text{ is a } J\text{-SVF} \right\} .$$

We would like to investigate under which conditions $\mathcal{SV}_{X,J_0} \neq \emptyset$. For this purpose it seem natural to consider the following flow of Kähler structures.

Definition 1. (The Ω-Soliton-Kähler-Ricci flow). Let (X, J_0) be a Fano manifold and let $\Omega > 0$ be a smooth volume form with $\int_X \Omega = (2\pi c_1)^n$. A Ω-Soliton-Kähler-Ricci flow (in short Ω-SKRF) is a flow of Kähler structures $(X, J_t, \omega_t)_{t \geq 0}$ which is solution of the evolution system

$$\begin{cases}
\frac{d}{dt} \omega_t = \text{Ric}_{J_t}(\Omega) - \omega_t , \\
\frac{d}{dt} J_t = J_t \bar{\partial}_{TX,J_t} \nabla g_t \log \frac{\omega^n_t}{\Omega} ,
\end{cases} \quad (2.3)$$

where $g_t := -\omega_t J_t$.

The Ω-SKRF equation/system (2.3) can be written in an equivalent way as

$$\begin{cases}
\frac{d}{dt} \omega_t - i \partial_{J_t} \bar{\partial}_{J_t} f_t = \text{Ric}_{J_t}(\omega_t) - \omega_t , \\
\frac{d}{dt} J_t = J_t \bar{\partial}_{TX,J_t} \nabla g_t f_t , \\
e^{-f_t} \omega^n_t = \Omega .
\end{cases} \quad (2.4)$$
We observe also that (2.3) or (2.4) are equivalent to the system
\[
\begin{align*}
\frac{d}{dt} \omega_t &= \text{Ric}_{J_t}(\Omega) - \omega_t, \\
J_t &:= (\Phi_t^{-1})^* J_0 := \left[(d\Phi_t \cdot J_0) \circ \Phi_t^{-1} \right] \cdot d\Phi_t^{-1}, \\
\frac{d}{dt} \Phi_t &= - \left(\frac{1}{2} \nabla_g \log \frac{\omega_t^n}{\Omega} \right) \circ \Phi_t, \\
\Phi_0 &= \text{Id}_X.
\end{align*}
\]
(2.5)

In fact lemma 4 combined with lemma 5 in the appendix implies
\[
\frac{d}{dt} (\Phi_t^* J_t) = \Phi_t^* \left(\frac{d}{dt} J_t - \frac{1}{2} L\nabla_{g_t,f_t} J_t \right) = \Phi_t^* \left(\frac{d}{dt} J_t - J_t \tilde{\partial}_{TX,J_t} \nabla_{g_t,f_t} \right) = 0.
\]

We define now \(\hat{\omega}_t := \Phi_t^* \omega_t\), \(\hat{g}_t := \Phi_t^* g_t = -\hat{\omega}_t J_0\) and we observe that the evolving family
\((J_0, \hat{\omega}_t) \equiv \Phi_t^* (J_t, \omega_t)\),
represents a backward Kähler-Ricci flow over \(X\). In fact the Kähler condition
\[
\nabla_{\hat{g}_t} J_0 = \Phi_t^* (\nabla_{g_t} J_t) = 0,
\]
hold and
\[
\frac{d}{dt} \hat{\omega}_t = \Phi_t^* \left(\frac{d}{dt} \omega_t - \frac{1}{2} L\nabla_{g_t,f_t} \omega_t \right) = \Phi_t^* \left(\text{Ric}_{J_t}(\omega_t) - \omega_t \right) = \text{Ric}_{J_0}(\hat{\omega}_t) - \hat{\omega}_t,
\]
by the formula (6.4) in the appendix. We observe that the volume form preserving condition \(e^{-f_t} \omega_t^n = \Omega\) in the equation (2.4) is equivalent to the heat equation
\[
2 \frac{d}{dt} f_t = \text{Tr}_{\omega_t} \frac{d}{dt} \omega_t = - \Delta g_t f_t + \text{Scal}(g_t) - 2n,
\]
(2.6)
with initial data \(f_0 := \log \frac{\omega_0^n}{\Omega}\). (In this paper we adopt the sign convention \(\Delta_g := -\text{div}_g \nabla_g\).) In its turn this is equivalent to the heat equation
\[
2 \frac{d}{dt} \hat{f}_t = - \Delta_{\hat{g}_t} \hat{f}_t - |\nabla_{\hat{g}_t} \hat{f}_t|_{\hat{g}_t}^2 + \text{Scal}(\hat{g}_t) - 2n,
\]
(2.7)
with same initial data \(\hat{f}_0 := \log \frac{\omega^n}{\Omega} \). In fact let \(\hat{f}_t := f_t \circ \Phi_t \) and observe that the evolution equation of \(\Phi_t \) in (2.5) implies
\[
\frac{d}{dt} \hat{f}_t = \left(\frac{d}{dt} f_t \right) \circ \Phi_t + \left(\nabla g_t f_t \circ \Phi_t \circ \Phi_t \right) \cdot \phi_t \circ \Phi_t,
\]
\[
= \left(\frac{d}{dt} f_t - \frac{1}{2} |\nabla g_t f_t|_{g_t}^2 \right) \circ \Phi_t.
\]
We observe also that the derivation identity
\[
0 = \frac{d}{dt} \left(\Phi_t^{-1} \circ \Phi_t \right) = \left(\frac{d}{dt} \Phi_t^{-1} \right) \circ \Phi_t + \frac{d}{dt} \Phi_t^{-1} \cdot \frac{d}{dt} \Phi_t,
\]
combined with the evolution equation of \(\Phi_t \) in the system (2.5) implies
\[
2 d \Phi_t \cdot \left(\frac{d}{dt} \Phi_t^{-1} \right) \circ \Phi_t = \nabla g_t f_t \circ \Phi_t = d \Phi_t \cdot \nabla g_t \hat{f}_t.
\]
We infer the evolution formula
\[
\frac{d}{dt} \Phi_t^{-1} = \frac{1}{2} \left(\nabla g_t \hat{f}_t \right) \circ \Phi_t^{-1}.
\] (2.8)
In conclusion we deduce that the \(\Omega \)-SKRF \((J_t, \omega_t)_{t \geq 0}\) is equivalent to the system of independent equations
\[
\begin{aligned}
\frac{d}{dt} \hat{\omega}_t &= \text{Ric}_{g_t} (\hat{\omega}_t) - \hat{\omega}_t, \\
2 \frac{d}{dt} \hat{f}_t &= - \Delta_{\hat{g}_t} \hat{f}_t - |\nabla_{\hat{g}_t} \hat{f}_t|_{\hat{g}_t}^2 + \text{Scal}(\hat{g}_t) - 2n, \\
e^{-\hat{f}_0 \hat{\omega}_0} = \Omega,
\end{aligned}
\]
by means of the gradient flow of diffeomorphisms (2.8).

Notation. Let \((X, g, J)\) be a Kähler manifold with symplectic form \(\omega := gJ\) and consider \(v \in S^2 g T_X, \alpha \in \Lambda^2 g T_X\). We define the endomorphisms \(v^* g := g^{-1} v\) and \(\alpha^* g := \omega^{-1} \alpha\). For example we will define the endomorphisms
\[
\text{Ric}^*_g (\Omega) := g^{-1} \text{Ric}_g (\Omega),
\]
and
\[
\text{Ric}^*_J (\Omega)_g := \omega^{-1} \text{Ric}_J (\Omega).
\]
With this notations formula (2.2) implies the decomposition identity
\[
\text{Ric}_g^* (\Omega) = \text{Ric}_J^* (\Omega)_g + \bar{\partial}_{\bar{x}, J} \nabla_g \log \frac{dV_g}{\Omega}.
\] (2.9)
3 The Riemannian nature of the Soliton-Kähler-Ricci Flow

The goal of this section is to show that the Kähler structure along the SKRF comes for free from the SRF introduced in [Pal2] by means of a Lax type ODE for the complex structures which preserves the Kähler condition. For this purpose let \((J_t, g_t)_{t \geq 0}\) be a \(\Omega\)-SKRF. Time deriving the identity \(g_t = -\omega_t J_t\) we obtain

\[
\frac{d}{dt} g_t = - \frac{d}{dt} \omega_t J_t - \omega_t \frac{d}{dt} J_t
\]

\[
= - \text{Ric}_{\omega_t}(\Omega) J_t + \omega_t \frac{d}{dt} J_t - \omega_t J_t \bar{\partial}_{X, J_t} \nabla_{g_t} f_t
\]

\[
= - \text{Ric}_{\omega_t}(\Omega) J_t + g_t \bar{\partial}_{X, J_t} \nabla_{g_t} f_t - g_t
\]

\[
= \text{Ric}_{g_t}(\Omega) - g_t,
\]

thanks to the complex decomposition (2.2). We have obtained the evolving system of Kähler structures \((J_t, g_t)_{t \geq 0}\),

\[
\left\{ \begin{array}{l}
\frac{d}{dt} g_t = \text{Ric}_{g_t}(\Omega) - g_t, \\
2 \frac{d}{dt} J_t = J_t \nabla^2_{g_t} \log \frac{d\Omega}{g_t} - \nabla^2_{g_t} \log \frac{d\Omega}{g_t} J_t,
\end{array} \right.
\]

which is equivalent to (2.3). (The second equation in the system follows from the fact that in the Kähler case the Chern connection coincides with the Levi-Civita connection.) We observe that the identity (2.1) implies that the Ricci endomorphism

\[
\text{Ric}^*(g) = \text{Ric}^*_\omega(\omega)_{g_t},
\]

is \(J\)-linear. Thus the system (3.1) is equivalent to the evolution of the couple \((J_t, g_t)\) under the system

\[
\left\{ \begin{array}{l}
\dot{g}_t = \text{Ric}_{g_t}(\Omega) - g_t, \\
2 \dot{J}_t = J_t \dot{g}_t - \dot{g}_t J_t, \\
J_t^2 = - \mathcal{L}_{T_X}, \quad (J_t)_{g_t}^T = - J_t, \quad \nabla_{g_t} J_t = 0,
\end{array} \right.
\]

where for notation simplicity we set \(\dot{g}_t := \frac{d}{dt} g_t\) and \(\dot{J}_t := \frac{d}{dt} J_t\). Moreover \((J_t)_{g_t}^T\) denotes the transpose of \(J_t\) with respect to \(g_t\). We remind now an elementary fact (see lemma 4 in [Pal1]).

Lemma 1. Let \((g_t)_{t \geq 0}\) be a smooth family of Riemannian metrics and let \((J_t)_{t \geq 0}\) be a family of endomorphisms of \(T_X\) solution of the ODE

\[
2 \dot{J}_t = J_t \dot{g}_t - \dot{g}_t J_t,
\]
with initial conditions $J_0^2 = -1_{T_X}$ and $(J_0)^T_{g_0} = -J_0$. Then this conditions are preserved in time i.e. $J_t^2 = -1_{T_X}$ and $(J_t)^T_{g_t} = -J_t$ for all $t \geq 0$.

We deduce that the system (3.2) is equivalent to the system

\[
\begin{cases}
\dot{g}_t = \Ric_{g_t}(\Omega) - g_t, \\
2 \dot{J}_t = J_t \dot{g}^*_t - \dot{g}_t^* J_t, \\
\nabla_{g_t} J_t = 0,
\end{cases}
\tag{3.3}
\]

with Kähler initial data (J_0, g_0). We show now how we can get rid of the last equation. We define the vector space

$$
\mathbb{F}_g := \left\{ v \in C^\infty(X, S^2 T_X^*) \mid \nabla_{T_X, g} v = 0 \right\},
$$

where $\nabla_{T_X, g}$ denotes the covariant exterior derivative acting on T_X-valued differential forms and we remind the following key result obtained in [Pal1].

Proposition 1. Let $(g_t)_{t \geq 0}$ be a smooth family of Riemannian metrics such that $\dot{g}_t \in \mathbb{F}_g$, and let $(J_t)_{t \geq 0}$ be a family of endomorphisms of T_X solution of the ODE

\[
\dot{J}_t = J_t \dot{g}^*_t - \dot{g}_t^* J_t,
\]

with Kähler initial data (J_0, g_0). Then $(J_t, g_t)_{t \geq 0}$ is a smooth family of Kähler structures.

In particular using lemma 1 in [Pal2] we infer the following corollary which provides a simple way to generate Kähler structures.

Corollary 1. Let $(J_t, g_t)_{t \geq 0} \subset C^\infty(X, \text{End}_{g}(T_X)) \times \mathcal{M}$ be the solution of the ODE

\[
\begin{cases}
\frac{d}{dt} \dot{g}_t^* = 0, \\
2 \frac{d}{dt} J_t = J_t \dot{g}_t^* - \dot{g}_t^* J_t,
\end{cases}
\tag{3.4}
\]

with (J_0, g_0) Kähler data and with $\nabla_{T_X, g_0} (\dot{g}_0^*)^p = 0$ for all $p \in \mathbb{Z}_{>0}$. Then $(J_t, g_t)_{t \geq 0}$ is a smooth family of Kähler structures.

We remind also the definitions introduced in [Pal2]. We define the set of pre-scattering data

$$
\mathcal{S}_\Omega := \left\{ g \in \mathcal{M} \mid \nabla_{T_X, g} \Ric_g(\Omega) = 0 \right\}.
$$

Definition 2. (The Ω-Soliton-Ricci flow). Let $\Omega > 0$ be a smooth volume form over an oriented Riemannian manifold X. A Ω-Soliton-Ricci Flow (in short Ω-SRF) is a Flow of Riemannian metrics $(g_t)_{t \geq 0} \subset \mathcal{S}_\Omega$ solution of the evolution equation $\dot{g}_t = \Ric_g(\Omega) - g_t$.

8
From Proposition 1 we deduce the following fact which shows the Riemannian nature of the Ω-SKRF. Namely that the Ω-SKRF can be generated by the Ω-SRF.

Corollary 2. Let $\Omega > 0$ be a smooth volume form over a Kähler manifold (X, J_0) and let $(g_t)_{t \geq 0}$ be a solution of the Ω-SRF with Kähler initial data (J_0, g_0). Then the family $(J_t, g_t)_{t \geq 0}$ with $(J_t)_{t \geq 0}$ the solution of the ODE

$$2 J_t = J_0 g_t^* - \dot{g}_t^* J_t ,$$

is a solution of the Ω-SKRF equation.

4 The set of Kähler pre-scattering data

We define the set of Kähler pre-scattering data as $S_{\Omega, J} := S_\omega \cap K_J$. Using the complex decomposition formula (2.9) we infer the equality

$$S_{\Omega, J} = \{ g \in K_J \mid \partial g_{TX,J} \bar{\partial} g_{TX,J} \nabla g \log \frac{dV_g}{\Omega} = - \bar{\partial} g_{TX,J} \text{Ric}_J^* (\Omega) g \} .$$

In fact the identity $d \text{Ric}_J (\Omega) = 0$ is equivalent to the identity $\partial g_{TX,J} \text{Ric}_J^* (\Omega) g = 0$, which in its turn is equivalent to the identity

$$\partial g_{TX,J} \text{Ric}_J^* (\Omega) g = 0 .$$

We observe now the following quite elementary facts.

Lemma 2. Let (X, J) be a Fano manifold and let $g \in S_{\Omega, J}$ such that $\omega := gJ \in 2\pi c_1(X)$. Then g is a J-invariant KRS iff $\text{Ric}_J (\Omega)$ is J-invariant.

Proof. In the case $\text{Ric}_J (\Omega) = \mathbb{H}_{TX}$ the condition $g \in S_{\Omega, J}$ is equivalent to the condition

$$\partial g_{TX,J} \nabla g \log \frac{dV_g}{\Omega} = 0 . \quad (4.1)$$

(i.e the J-invariance of $\text{Ric}_g (\Omega)$ and thus that g is a J-invariant KRS.) In fact in this case

$$\partial g_{TX,J} \nabla g \log \frac{dV_g}{\Omega} = 0 ,$$

which by a standard Kähler identity implies

$$\partial^* g_{TX,J} \nabla g \log \frac{dV_g}{\Omega} = 0 .$$

Thus an integration by parts yields the required identity (4.1).

On the other hand if we assume that $\text{Ric}_J (\Omega)$ is J-invariant i.e we assume (4.1) then the condition $g \in S_{\Omega, J}$ is equivalent to the condition

$$\partial g_{TX,J} \text{Ric}_J^* (\Omega) g = 0 .$$
For cohomology reasons hold the identity
\[\omega = \text{Ric}_J(\Omega) + i \partial_J \bar{\partial}_J u , \]
for some \(u \in C^\infty(X, \mathbb{R}) \). We deduce the equalities
\[0 = \bar{\partial}_{\mathcal{T}_X,J} \left(i \partial_J \bar{\partial}_J u \right)^* = \bar{\partial}_{\mathcal{T}_X,J} \partial^\mathcal{T}_X,J \nabla g u . \]
Using again a standard Kähler identity we infer
\[\partial^* \nabla g u = 0 . \]
An integration by parts yields the conclusion \(i \partial_J \bar{\partial}_J u \equiv 0 \), i.e. \(u \equiv 0 \), which implies the required KRS equation.

Lemma 3. Let \((X, J)\) be a Kähler manifold and let \((g_t)_{t \in [0, T)}\) be a smooth family of \(J\)-invariant Kähler metrics solution of the equation
\[\dot{g}_t = \text{Ric}_{g_t}(\Omega) - g_t . \]
Then this family is given by the formula
\[g_t = - \text{Ric}_J(\Omega) J + \left(g_0 + \text{Ric}_J(\Omega) J \right) e^{-t} , \]
with \(J\)-invariant Kähler initial data \(g_0 \) solution of the equation
\[\bar{\partial}_{\mathcal{T}_X,J} \nabla g_0 \log \frac{dV_{g_0}}{\Omega} = 0 . \]
Proof. The fact that \(g_t \) is \(J\)-invariant implies that \(\dot{g}_t \) is also \(J\)-invariant. Then the decomposition formula \([2.2]\) combined with the evolution equation of \(g_t \) provides
\[\dot{g}_t = - \text{Ric}_J(\Omega) J - g_t , \]
which implies the required conclusion.

From the previous lemmas we deduce directly the following corollary.

Corollary 3. Let \(g_0 \in \mathcal{S}_{\Omega,J} \) with \(gJ \in 2\pi c_1(X) \) be an initial data for the \(\Omega\)-SKRF such that the complex structure stays constant along the flow. Then \(g_0 \) is a \(J\)-invariant KRS and \(g_t \equiv g_0 = - \text{Ric}_J(\Omega) J \).

The last statement in the theorem follows directly from this corollary.
5 On the smooth convergence of the Soliton-Kähler-Ricci flow

We show now the convergence statement in theorem 1. According to the convergence result for the Ω-SRF obtained in [Pal2] we just need to show the smooth convergence of the complex structures. We consider the differential system

\[
\begin{align*}
2 \dot{J}_t &= [J_t, \dot{g}_t^*], \\
2 \dot{g}_t &= -\Delta_{g_t} g_t - 2 \dot{g}_t,
\end{align*}
\]

along the Ω-SRF (see [Pal2]) and we remind the uniform estimates

\[
|\dot{g}_t|_{g_t} \leq |\dot{g}_0|_{C^0(X),g_0} e^{-\delta t/2},
\]

\[
e^{-C} g_0 \leq g_t \leq e^C g_0,
\]

proved in [Pal2]. We consider also the estimate of the norm

\[
|\dot{J}_t|_{g_t} \leq \sqrt{2n} |J_t|_{g_t} |\dot{g}_t|_{g_t},
\]

where the constant $\sqrt{2n}$ comes from the equivalence between the Riemannian norm and the operator norm on the space of endomorphisms of $T_{X,x}$. We observe now the trivial identities

\[
|J_t|_{g_t}^2 = \text{Tr}_n \left[J_t (J_t)^T_{g_t} \right] = - \text{Tr}_n J_t^2 = \text{Tr}_n \|_{T_{X,x}} = 2n.
\]

We deduce the exponential estimate of the variation of the complex structure

\[
|\dot{J}_t|_{g_t} \leq 2n |\dot{g}_0|_{C^0(X),g_0} e^{-\delta t/2},
\]

and thus the convergence of the integral

\[
\int_0^{+\infty} |\dot{J}_t|_{g_0} dt < + \infty.
\]

In its turn this shows the existence of the integral

\[
J_\infty := J_0 + \int_0^{+\infty} \dot{J}_t dt,
\]

thanks to Bochner’s theorem. Moreover hold the exponential estimate

\[
|J_\infty - J_t|_{g_0} \leq \int_t^{+\infty} |\dot{J}_s|_{g_0} ds \leq C' e^{-\delta t/2}.
\]

On the other hand the Kähler identity $\nabla_{g_t} J_t \equiv 0$ implies the equality

\[
2 \nabla_{g_t}^p \dot{J}_t = [J_t, \nabla_{g_t}^p \dot{g}_t^*],
\]

where p denotes the complex conjugate of p. This completes the proof of the smooth convergence statement.
for all $p \in \mathbb{N}$. We deduce the estimates
\[
|\nabla_{g_t} J_t|_{g_t} \leq \sqrt{2n} |J_t|_{g_t} |\nabla_{g_t} g_t|_{g_t} \leq 2n C_p e^{-\varepsilon_p t},
\]
thanks to the exponential decay of the evolving Riemannian metrics proved in [Pal2]. The fact that the flow of Riemannian metrics $(g_t)_{t \geq 0}$ is uniformly bounded in time for any $C^p(X)$-norm implies the uniform estimate
\[
|\nabla_{g_0} J_t|_{g_0} \leq C'_p e^{-\varepsilon_p t}.
\]
We infer the convergence of the integral
\[
\int_0^{+\infty} |\nabla_{g_0} J_t|_{g_0} dt < +\infty,
\]
and thus the existence of the integral
\[
I_p := \nabla_{g_0} J_0 + \int_0^{+\infty} \nabla_{g_0} J_t dt.
\]
We deduce the exponential estimate
\[
|I_p - \nabla_{g_0} J_t|_{g_0} \leq \int_t^{+\infty} |\nabla_{g_0} J_s|_{g_0} ds \leq C'_p e^{-\varepsilon_p t}.
\]
A basic calculus fact combined with an induction on p implies $I_p = \nabla_{g_0} J_\infty$. We deduce that (J_∞, g_∞) is a Kähler structure. Then the convergence result in [Pal2] implies that g_∞ is a J_∞-invariant KRS.

6 Appendix. Basic differential identities

The results explained in this appendix are well known. We include them here for readers convenience.

Lemma 4. Let M be a differentiable manifold and let
\[
(\xi_t)_{t \geq 0} \subset C^\infty(M, T^*_M), \quad (\alpha_t)_{t \geq 0} \subset C^\infty(M, (T^*_M)^{\otimes p} \otimes T^*_M),
\]
be smooth families and let $(\Phi_t)_{t \geq 0}$ be the flow of diffeomorphisms induced by the family $(\xi_t)_{t \geq 0}$, i.e.
\[
\frac{d}{dt} \Phi_t = \xi_t \circ \Phi_t, \quad \Phi_0 = \text{Id}_M.
\]
Then hold the derivation formula
\[
\frac{d}{dt} (\Phi_t^* \alpha_t) = \Phi_t^* \left(\frac{d}{dt} \alpha_t + L_{\xi_t} \alpha_t \right),
\]

12
Proof. We prove first the particular case
\[
\frac{d}{dt}_{|t=0} (\Phi_t^* \alpha) = L_{\xi_0} \alpha , \tag{6.1}
\]
where \(\alpha \) is \(t \)-independent. For this purpose we consider the 1-parameter sub-

group of diffeomorphisms \((\Psi_t)_{t \geq 0}\) induced by \(\xi_0 \), i.e
\[
\frac{d}{dt} \Psi_t = \xi_0 \circ \Psi_t, \quad \Psi_0 = \text{Id}_M.
\]
Let \(\hat{\Psi} : \mathbb{R}_{\geq 0} \times M \to M \) given by \(\hat{\Psi}(t, x) = \Psi_t^{-1}(x) \) and observe the equalities
\[
\frac{d}{dt}_{|t=0} \Psi_t^{-1} = -\xi_0 = \frac{d}{dt}_{|t=0} \Phi_t^{-1} , \tag{6.2}
\]
We will note by \(\partial \) the partial derivatives of the coefficients of the tensors with
respect to a trivialization of the tangent bundle over an open set \(U \subset M \). Let
\(v \in T_{M,x}^{O} \). Then
\[
(L_{\xi_0} \alpha) \cdot v = \left(\frac{d}{dt}_{|t=0} (\Psi_t^*) \alpha \right) \cdot v \\
= \frac{d}{dt}_{|t=0} \left[(d\Psi_t^{-1})^r \cdot (\alpha \circ \Psi_t) \cdot (d\Psi_t)^p \cdot v \right] \\
= \left[\frac{d}{dt}_{|t=0} (\partial_x \hat{\Psi})^r(t, \Psi_t(x)) \right] \cdot \alpha \cdot v \\
+ \frac{d}{dt}_{|t=0} \left[(\alpha \circ \Psi_t) \cdot (d\Psi_t)^p \cdot v \right] \\
= (\partial_x \hat{\Psi})^r(0, x) \cdot \alpha \cdot v + \left((\partial^2_x \hat{\Psi})^r(0, x) \cdot \xi_0^p(x) \right) \cdot \alpha \cdot v \\
+ \left(\frac{d}{dt}_{|t=0} \alpha(\Psi_t(x)) \right) \cdot v + \alpha(x) \cdot (\partial_t \partial_x \Psi)^p(0, x) \cdot v \\
= - (\partial_x \xi_0)^r(x) \cdot \alpha \cdot v \\
+ (\partial_x \alpha(x) \cdot v) \cdot \xi_0(x) + \alpha(x) \cdot (\partial_x \xi_0)^p(x) \cdot v ,
\]

since the map
\[
(\partial^2_x \hat{\Psi})^r(0, x) : S^2 T^r_U \to T^r_U,
\]
is zero. Observe in fact the identity
\[
\partial_x \Psi_t^{-1} = \text{Id}_{T^r_U}.
\]
Moreover the same computation and conclusion work for Φ_t thanks to (6.2). We infer the identity (6.1). We prove now the general case. We expand the time derivative

$$
\frac{d}{dt} (\Phi_t^* \alpha_t) = \frac{d}{ds} \big|_{s=0} \Phi_{t+s}^* \alpha_{t+s}
$$

$$
= \Phi_t^* \left(\frac{d}{dt} \alpha_t \right) + \frac{d}{ds} \big|_{s=0} \Phi_{t+s}^* \alpha_t
$$

$$
= \Phi_t^* \left(\frac{d}{dt} \alpha_t \right) + \frac{d}{ds} \big|_{s=0} (\Phi_t^{-1} \Phi_{t+s})^* \Phi_t^* \alpha_t.
$$

We set $\Phi_s^t := \Phi_t^{-1} \Phi_{t+s}$ and we observe the equalities

$$
\frac{d}{ds} \big|_{s=0} \Phi_s^t = \frac{d}{ds} \big|_{s=0} \Phi_{t+s}
$$

$$
= \frac{d}{ds} \big|_{s=0} (\Phi_t^{-1} \Phi_s)
$$

$$
= \Phi_t^* \xi_t.
$$

Then the identity (6.1) applied to the family $(\Phi_s^t)_s$ implies

$$
\frac{d}{dt} (\Phi_t^* \alpha_t) = \Phi_t^* \left(\frac{d}{dt} \alpha_t \right) + L_{\xi_t} \Phi_t^* \alpha_t
$$

$$
= \Phi_t^* \left(\frac{d}{dt} \alpha_t + L_{\xi_t} \alpha_t \right).
$$

Lemma 5. Let (X, J) be an almost complex manifold and let N_j be the Nijenhuis tensor. Then for any $\xi \in C^\infty(X, T_X)$ hold the identity

$$
L_{\xi} J = 2 J \left(\bar{\partial}_{\tau X,j} \xi - \xi \circ N_j \right).
$$

Proof. Let $\eta \in C^\infty(X, T_X)$. Then

$$
\bar{\partial}_{\tau X,j} \xi(\eta) = [\eta^{0,1}, \xi^{1,0}]^{1,0} + [\eta^{1,0}, \xi^{0,1}]^{0,1},
$$

$$
N_j(\xi, \eta) = [\xi^{1,0}, \eta^{0,1}]^{0,1} + [\xi^{0,1}, \eta^{1,0}]^{1,0},
$$

and the conclusion follows by decomposing in type $(1,0)$ and $(0,1)$ the identity

$$
(L_{\xi} J) \eta = [\xi, J \eta] - J[\xi, \eta].
$$
We observe now that if \((X, J, \omega)\) is a Kähler manifold and \(u \in C^\infty(X, \mathbb{R})\), then hold the identities
\[
\nabla_\omega u \cdot \omega = - (du) \cdot J = - i \partial J u + i \bar{\partial} J u ,
\]
and
\[
L_{\nabla_\omega u} \omega = d (\nabla_\omega u \cdot \omega) = 2 i \partial J \bar{\partial} J u . \quad (6.4)
\]

Lemma 6. Let \((X, J, g)\) be a Kähler manifold and let \(u \in C^\infty(X, \mathbb{R})\). Then hold the decomposition formula
\[
\nabla_g d u = i \partial J \bar{\partial} J u \left(\cdot, J \cdot \right) + g \left(\cdot, \bar{\partial}_{TX,J} \nabla_g u \cdot \right) . \quad (6.5)
\]

Proof. Let \(\xi, \eta, \mu \in C^\infty(X, T_X)\). By definition of Lie derivative hold the identity
\[
\xi \cdot g(\eta, \mu) = (L_\xi g)(\eta, \mu) + g(L_\xi \eta, \mu) + g(\eta, L_\xi \mu) .
\]

Let \(\omega := g(J, \cdot)\) be the induced Kähler form. Then by using again the definition of Lie derivative we infer the equalities
\[
\xi \cdot g(\eta, \mu) = \xi \cdot \omega(\eta, J \mu)
\]
\[
= (L_\xi \omega)(\eta, J \mu) + \omega(L_\xi \eta, J \mu) + \omega(\eta, L_\xi (J \mu))
\]
\[
= (L_\xi \omega)(\eta, J \mu) + g(L_\xi \eta, \mu) + \omega(\eta, (L_\xi J) \mu) + g(\eta, L_\xi \mu) .
\]

We deduce the identity
\[
L_\xi g = L_\xi \omega \left(\cdot, J \cdot \right) + \omega \left(\cdot, L_\xi J \cdot \right) .
\]

We apply this identity to the vector field \(\xi := \nabla_g u\). Then the conclusion follows from the identity
\[
L_{\nabla_g u} g = 2 \nabla_g d u ,
\]
combined with (6.4), and (6.3).

References

[Cao] CAO, H.D., *Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds*, Invent. Math., 81, 1985, 359-372.

[Pal1] PALI, N., *The total second variation of Perelman’s W-functional*, arXiv:math.

[Pal2] PALI, N., *The Soliton-Ricci Flow over Compact Manifolds*, arXiv:math

[Per] PERELMAN, G., *The entropy formula for the Ricci flow and its geometric applications*, arXiv/math/0211159.

15
Nefton Pali
Université Paris Sud, Département de Mathématiques
Bâtiment 425 F91405 Orsay, France
E-mail: nefton.pali@math.u-psud.fr