This research aims to investigate the effect of teaching the socio-scientific issues, “Global Warming, Sustainable development and Bio-technology” in 8th class, with the case-oriented station technique on the academic achievement of the students and their motivation toward science learning. The study was carried out with 71 students in 8th class in 2 secondary schools of a district with approximately 20,000 population in the Eastern Anatolia Region. The mixed-method, consisting of the data collected as qualitatively and quantitatively, was employed. In the quantitative part of the study, the Socio-scientific issues Achievement Test and the Science Learning Motivation Scale developed by Dede and Yaman (2008) to measure students’ motivation to learn were used. Unstructured interview, which is one of the qualitative research methods, was preferred in order to support the study with student opinions and comments. The Socio-scientific Issues Achievement Test and the Science Learning Motivation Scale were applied to the experimental and control groups as pre-test at the beginning and as post-test at the end of the study. Results indicated that teaching the socio-scientific issues with case-oriented station technique positively affected the students’ academic achievements and their motivation toward science learning. Besides, the interviews showed that the students found it useful, fun, remarkable and permanent to learn socio-scientific issues using the case-oriented station technique.
Introduction

Today, with the rapid development of science and technology, the need for manpower to keep up with this development is increasing day by day. For individuals to have the equipment required by the age, a science education arising curiosity in individuals, enabling them to conduct research, study and make an experiment and allowing to know the natural environment has gained significance (Yüksel, 2017). Science education to be provided to students should meet the need to increase the scientific literacy of our community and future citizens (Çepni, 2014). In this context, the science curricula are prepared being updated according to needs, developments and innovations in our country. In 2013, the added objectives to the Science teaching curricula related to the subject studied are as follows (MoNE, 2013):

- To realize the reciprocal interaction between individual, environment and society, and raise awareness of sustainable development of society, economy and natural resources.
- To take responsibility for daily life problems and to use knowledge, scientific process skills and other life skills related to science to solve these problems.
- To develop scientific thinking habits by using Socio-Scientific issues (SSIs).

The added objectives to the Science teaching curricula related to the subject studied in 2017 are as follows (MoNE, 2017):

- This course aims to give basic information about astronomy, biology, physics, chemistry, earth and environmental sciences and science and engineering applications.
- To develop reasoning, scientific thinking habits and decision-making skills by using socio-scientific issues.
- To ensure the adoption of universal moral values, national and cultural values and scientific ethical principles.

Among the objectives added to the science curriculum in 2013, SSIs were directly included in the program for the first time, and in addition to the scientific process skills of the individual, developing responsibility towards social problems and solving these problems were added as the functions. In the updated program in 2017, it is seen that it was aimed to relate the subjects to daily life, adopt universal and national values, develop discussion and decision-making skills.

The SSIs, which are mentioned in the curriculum and the theme of study, is scientific and social issues based on science, including controversial social dilemmas (Ratcliffe & Grace, 2003; Sadler & Zeidler, 2005; Topçu, Sadler, & Yılmaz-Tütün, 2010). Besides, socio-scientific issues are moral and ethical issues that are controversial by nature but have no single consequences (Sadler & Zeidler, 2005). Individuals must reach an effective decision on a socio-scientific issue, evaluate the possible ethical, moral and legal consequences of the issue together, and consider the critical thinking skills to develop socio-scientific issues in the program (Çakırlar Altuntaş, Yılmaz & Duran, 2017). In consideration of this information, it can be emphasized that addressing socio-scientific issues in science classes is an important tool both for the student's personal development and for the development of society (Balkan Kıyıcı, 2008). In particular, decisions on controversial socio-scientific issues in the field of science have created a necessity to form a scientific literate society that can make informed decisions using science’s ways of thinking and critically evaluate arguments on the future of societies, and perhaps the survival of our world, allegations put forth in scientific discussions, justifications, reasoning and arguments (Şahin & Hacoğlu, 2010).

In this context, the case-study method and station technique, which is considered as appropriate to the teaching of SSIs, were applied together in the research. The case study method is the method that has the features that contribute to teaching the socio-scientific issues such as to relate topics to daily life, problem-solving, decision-making, discussion and development of high-level thinking skills. This method necessitates the active participation of individuals both mentally and emotionally. The discussion of moral and social dilemmas in the classroom, where various arguments are contested,
different rights and perspectives can be defined, is an excellent opportunity for students to gain perspectives, but also to question their understanding of morality (Aydın, 2007). The station technique, which will be applied with the case study method, is a student-centred technique that teaches how to advance what the previous group has done through the whole class contributing to each stage (at each station) (Gözütok 2006, p.256). In this technique, it is also aimed to uncover the qualifications such as reinforcing topics with activities in different intelligence areas, creativity and cooperation. It can be claimed that the more a content and teaching approach supports the development of skills, the better and more useful it is (Evren Yapıcıoğlu, 2016).

The methods and techniques selected correctly in accordance with the subjects and achievements are necessary and important in terms of revealing the potentials of students at a high level and increasing their academic achievement. In this scope, as the topic forms of the SSIs are taken into consideration, the case-oriented station technique, considered to be suitable for teaching the topics, is believed to be significant in terms of motivating students to the lesson or issue with various activities in addition to increasing their academic achievements, so to increase motivation towards science lesson and to help students develop higher-level thinking skills. Besides, the present study differs from other studies on the SSIs in that it is a study, in which two different methods and techniques are used in teaching SSI and will contribute to the literature.

This research aims to investigate the effect of teaching the socio-scientific issues, ”Global Warming (GW), Sustainable Development (SD) and Biotechnology (BT)” in 8th class with the case-oriented station technique on the academic achievement of the students and their motivations related to learning science lesson. In this research, the following 3 research questions were asked in line with the aims of the study:

1. Does teaching the 8th-grade socio-scientific issues (GW-SD-BT) using case-oriented station technique contribute to the students' academic achievements?
2. Does teaching the 8th-grade socio-scientific issues (GW-SD-BT) using case-oriented station technique contribute to the students' motivations?
3. What are the students' opinions after the application of teaching the socio-scientific issues, (GW-SD-BT) in 8th class with the case-oriented station technique?

Method

Research Design

The mixed-method, consisting of the data collected as qualitatively and quantitatively, was employed in the study. In terms of using the mixed-method approach, each event and fact has a qualitative and quantitative dimension that should be investigated. By investigating these dimensions together, it is seen whether the collected data support each other or not. There is not only a single approach to using mixed methods. While quantitative methods come to the forefront in research designs, sometimes qualitative methods can be dominant. In some cases, both methods can be used equally (Yıldırım & Şimşek, 2013). In the present study, the quantitative data were collected, then supported with the qualitative data. In this context, the descriptive pattern was selected from mixed-method research designs. In descriptive research, data are first collected by quantitative methods, and then qualitative data are gathered considering the analysis of these data (Creswell & Plano-Clark, 2015). The contribution of the data collected by this method to the research is equal (Yıldırım & Şimşek, 2013). The quasi-experimental model, one of the quantitative research methods, was applied. The fact that a study is quasi-experimental shows that the research can reveal the cause and effect relationship and that this result can be generalized with similar results (Can, 2013).

For the research, ethical compliance was obtained from the Human Research Ethics Committee of Erzincan Binali Yıldırım University on 01.02.2018 and with protocol number 01/18. Taking into consideration the ethical committee decision, necessary research permit was obtained from the
provincial directorate of national education, where the schools where the research was conducted, through correspondence between institutions.

Study Group

The research was carried out with 71 students in 8th class in 2 secondary schools of a district with approximately 20,000 population in the Eastern Anatolia Region. The sampling method, in which equal probability of selection is given to each sampling unit, is called the simple random sampling method (Büyüköztürk, 2013). The study group was selected with the simple random sampling method consisting of 2 secondary schools out of 3 located in the district, and 2 classrooms out of 4 in these schools. The experimental group consisted of totally 35 students including 16 girls and 19 boys while the control group consisted of 36 students including 17 girls and 19 boys.

Data Collection Tools

The Socio-scientific Issues Achievement Test (SIAT) developed to measure the effectiveness of training and the Science Learning Motivation Scale (SLMS) to measure students' motivations related to learning (Dede & Yaman, 2008) were administered to the control end experimental groups as pre-test and post-test and analyzed.

SIAT Test: According to the determined gains in science education, a qualified and well-prepared measurement scale is needed to determine student achievements. Although there are several measurement tools applied to find out students' learning, multiple-choice tests are of particular importance in terms of time, preparation, objectivity, usability and ease of application in classroom environment (Ayvacı & Durmuş, 2016). In this scope, the multiple-choice questions including the "Global Warming, Sustainable Development, Biotechnology" in the unit of "Living Organisms and Energy Relations" of 8th class within the context of SSIs were developed as SIAT. Validity is one of the most significant features that should be in a measurement tool. The validity, in the most general and classic definition, what the measuring tool wants to measure is the degree to which it can measure without mixing other variables. The method to determine the validity of a test consists of analyzing the scope of the test, comparing the scores obtained from the test with the appropriate criteria, investigating the structure to be measured in the test (Atılgan, Kan & Doğan, 2009). To provide the content validity of the achievement test in the research, the table of specifications was prepared and expert opinions were received.

To prepare the SIAT question pool, various resources related to the unit were reviewed. Questions with different difficulty levels from the trial exams by the MoNE, from the science course books approved by the MoNE, from the tests of different publishers were selected considering the number of gains in the unit and hours of the course. 43 questions selected were presented to the opinions of 2 academicians and 2 science teachers. Considering the opinions and evaluations of the experts, some questions were omitted and a pilot achievement test consisting of 38 questions was prepared. The pilot achievement test was applied to 85 9th grade students in two different high schools located in the mentioned district in which the research was carried out. As a result of the pilot application, each item in the test was analysed in terms of providing construct validity. The construct validity is related to the concept that the scores obtained from the test assume that the test is measured, that is, to what extent the structure measures (Büyüköztürk, 2013). Item discrimination index (-1.00 to +1.00) varies, but the items with low discrimination rates below .20 should be removed from the test because the discrimination rates are low (Güler, 2011). For this reason, 11 units with a distinctive index below .20 in the test (5, 11, 16, 20, 23, 28, 30, 31, 35, 37, 38) were excluded from the test. 2 items (10, 18) with item discrimination index between .20 -.30 were used in the test by correcting the distractors as a result of the evaluations of a science education expert and a researcher. In an ideal achievement test, the average difficulty index of the questions should be around .50 (Güler, 2011). The average difficulty of the test is .50 and 8 easy items (1, 2, 3, 6, 8, 14, 15, 22) were also excluded from the test. During the item analysis process, after determining the difficulty and discrimination values of some items, some questions were removed from the test and a final achievement test consisting of 19 items was created.
In the present study, the single-application method (KR-20), also called internal consistency, was used. Kuder and Richardson (1937) developed the KR-20 formula based on the assumption that each substance has the same medium and variance (Atılgan et al. 2009). In the present research, the internal consistency analysis was performed to determine the reliability of the achievement test, and the KR-20 value of the pilot test was found to be reliable as .70. According to this result, it can be claimed that the test is good discriminating and moderately difficult and reliable (Kan, 2008; Küçükahmet, 2002; Tekin, 2004).

SLMS Test: To determine the motivation levels of students related to science learning, the SLMS test developed by Dede and Yaman (2008) was used. The researchers applied the preliminary applications of the motivation scale on 421 students. To determine the validity of the scale consisting of 23 items, the exploratory factor analysis was used, and it was found to be divided into five factors, explaining 47% the total variance of the scale, as, “Research for motivation”, “Performance for motivation”, “Communication for motivation”, “Motivation for cooperative learning”, “Motivation for participation”. The variance values explained related to the factors of the scale were found to be 21.37 % for the first factor, 7.88 % for the second, 7.27 % for the third, 5.88 for the fourth, and 4.76 for the fifth. Also, Cronbach’s alpha value of this scale, which was in Likert type, was found to be .80 (Dede & Yaman, 2008).

Qualitative interviews: To support the study with student opinions and interpretations, the unstructured interview, which is one of the qualitative research methods, was preferred. Unstructured interviews provide the researcher with a great deal of freedom to ask related items. The questions and their order are not fixed, they can be changed during the interview. In this method, it is aimed to collect rich and sufficient information (Büyüköztürk, 2013). The unstructured interview consists of open-ended and flexible questions, and it is commonly in a chat-style (Merriam, 2013). Also, these chat-style interviews help the researcher to adapt to the situation and individual differences being interviewed (Yıldırım & Şimşek, 2013). The unstructured interview was preferred because it was thought to contribute to the research within the framework of the mentioned characteristics. Totally 11 students, with low science achievement (n=3), with moderate science achievement (n=5) and with high science achievement (n=3), were selected based on volunteering for interview purposes. Necessary approvals were obtained from the parents of the students determined following the decision of the ethics committee of human studies. Firstly, the purpose of the study was explained to the students and it was stated to the students that grading was not applied for evaluation and their names would be kept secret. Also, before the interview, the students were reminded of basic concepts related to the research and asked to write their thoughts. In this way, it was tried to prevent the students from being forced, excited and getting out of the subject while expressing their thoughts during the interview. The interviews were applied to the experimental group. In one lesson (40 minutes), students’ answers were recorded directly by the researcher with a paper and a pen. Each student was individually interviewed and being affected by each other was prevented. Interviews were repeated several times and statements that were regarded as significant during the interview were identified. Also, behaviors that can be directed to students were avoided and their opinions were recorded without changing. The students were coded and numbered without giving their names.

Data Collection

The SIAT and SLMS tests were administered to the experimental and control groups as pre-test at the beginning of the research process. Then, for 3 weeks, the experimental groups were taught with case-oriented station technique and the control groups were taught within the framework of the program prepared by the MoNE. The SIAT and MS SLMS SL tests were applied to the students as post-test at the end of the lessons. For the case-oriented station technique, 4 stations were created for 2-hour courses, taking into account the gains, physical characteristics and availability of the classes. Students were distributed heterogeneously to the stations and elected a group president for each station. The students were informed about the case study and station technique. For the case study, internet news related to the gain was found, the questions related to the news were created, and
different station activities (posters, experiments, pictures, etc.) were prepared with 12 sample cases to present at each station, which also facilitated understanding of the sample event. At the same time, as the cases contained the necessary information for the subjects to be reinforced at the stations, the relevant information did not have to be included in the stations. Case studies and worksheets were completed with instructions and names were given to each station. The necessary material list was prepared and provided for the activities to be held at the stations. Under the guidance of the researcher, the groups worked at each station for 15 minutes and then moved to the other stations after the duration. After reading the cases (newspaper news) to the stations, the groups answered questions about the cases and carried out activities on the same topic. At the end of the events, the resulting products were exhibited and interpreted.

Data Analysis

The results of the SIAT and SLMS tests, administered to the experimental and control groups as the pre-test and post-test at the beginning of the research process, were analyzed with the statistical programs. Before the analysis process, the normality of distribution of pre-test and post-test scores of SIAT and SLMS was determined. The Kolmogorov-Smirnov normality test is recommended for the samples larger than 50 (Büyüköztürk, 2013). As the sample of the research was larger than 50, the Kolmogorov-Smirnov test was applied. The analysis results are presented in Table 1.

Table 1.

Sub-dimensions	Test	Statistics	df	p
The Socio-scientific issues achievement test	Pre	.09	71	.09
	Post	.08	71	.18
Science learning motivation scale	Pre	.08	71	.20
	Post	.08	71	.20

As the analysis results in Table 1 are taken into consideration, it is seen that the pre-test and post-test scores distribute normally (p>.05). For this reason, the t-test, which is among the parametric tests, was applied in the analysis of the data.

In the analysis of qualitative data, content analysis technique was used, and the data were analyzed by creating codes and categories. 4 categories with 15 codes were created for student views on socio-scientific issues, 4 categories with 22 codes for opinions on station technique, and 2 categories with 11 codes for opinions on case study method. Besides, the data were coded under the themes determined by another expert and according to the results, the items with “Consensus” and “Dissidence” were determined. The codes gathered were analyzed with the Reliability= (Consensus/ Consensus+ Dissidence) formula suggested by Miles and Huberman (1994). The percentage of consensus was found to be reliable, with a percentage of 81%, as it is above 70% (Miles & Huberman, 1994). Also, the validity was tried to be provided by a detailed description of the method and process, giving the findings with direct quotations and expert examination in the research.

Findings

The findings related to the SIAT and SLMS tests, prepared for this research, and interviews held are presented in this section.

Findings Obtained from the SIAT Test

The SIAT was applied to the experimental and control groups before the issues stated in the research, the findings of the independent samples t-test are presented in Table 2.
Table 2.
Comparison of Pre-Test T-Test Scores of Experimental and Control Groups.

Test	Group	N	\(\bar{x} \)	Sd	df	t	P
Pre-test scores	Control group	35	8.69	3.16	69	-1.24	.22
	Experimental group	36	9.50	2.26			

As a result of the independent samples t test, there was no significant difference (\(p > .05 \)) between the control group pretest mean score (\(\bar{x} = 8.69 \)) and the experimental group pretest mean score (\(\bar{x} = 9.50 \)). The dependent samples t-test was applied to compare the SIAT averages of the pre-test and post-test of the students in the experimental and control groups. The results are presented in Table 3.

Table 3.
Experimental and Control Group Pre-Test Post-Test Dependent Samples T Test Results.

Group	Test	N	\(\bar{x} \)	Sd	df	t	P
Control group	Pre-test	35	8.51	3.02	34	-8.28	.00
	Post-test	35	10.11	3.39			
Experimental group	Pre-test	36	9.50	2.26	35	-20.69	.00
	Post-test	36	14.72	2.51			

A significant difference (\(t = -8.28 \ p < .05 \)) was found between the SIAT average (\(\bar{x}_{pre-test} = 8.51 \)) before beginning the issues and the post-test SIAT average after finishing the issues (\(\bar{x}_{post-test} = 10.11 \)) in the control group. Similarly, in the experimental group, significant difference (\(t = -20.69 \ p < 0.05 \)) was found between the pre-test SIAT average (\(\bar{x}_{pre-test} = 9.50 \)) and post-test SIAT average (\(\bar{x}_{post-test} = 14.72 \)). The independent samples t-test was performed between the post-test averages of the groups to determine which methods are more effective in the control and experimental groups. The results are presented in Table 4.

Table 4.
Independent Samples T-Test Results of the SIAT Score Averages of the Experimental and Control Groups.

Test	Group	N	\(\bar{x} \)	Sd	df	t	P
Post-test scores	Control group	36	10.11	3.34	70	-6.61	.00
	Experimental group	36	14.72	2.51			

In the independent samples t-test, a significant difference (\(t = -6.61 \ p < .05 \)) was found between the control group post-test average (\(\bar{x} = 10.11 \)) and experimental group post-test average (\(\bar{x} = 14.72 \)), in favor of the experimental group.

Findings Obtained from the SLMS

In the research, before starting the issues stated in the research, the SLMS was applied to the experimental and control groups. The independent-samples t-test findings gathered with the SLMS are presented in Table 5.

Table 5.
Independent Samples T-Test Result of SLMS Pre-Test Applied to the Experimental and Control Groups.

Test	Group	N	\(\bar{x} \)	Sd	df	t	P
Pre-test scores	Control group	35	95.36	13.72	69	.687	.49
	Experimental group	36	93.38	10.40			
No statistically meaningful difference was observed although the pre-test SLMS average of the independent samples t-test of the control group ($\bar{x}=95.36$) was higher than the pre-test SLMS average of the independent samples t-test of the experimental group ($\bar{x}=93.38$). The dependent samples t-test was applied to compare the pre-test and post-test of SLMS averages of students in the experimental and control groups. The results are presented in Table 6.

Table 6.
Dependent Samples T-Test Results From SLMS Pre-Test and Post-Test Score Averages of the Experimental and Control Groups.

Group	Test	N	\bar{x}	Sd	df	t	P
Control group	Pre-test	35	95.31	10.64	34	.081	.94
	Post-test	35	95.14	13.85			
Experimental group	Pre-test	36	93.38	8.21	35	2.34	.03
	Post-test	36	98.08	10.40			

In the dependent samples t-test results, no statistical difference was found between the pre-test average ($\bar{x}=95.31$) and post-test average ($\bar{x}=95.14$) of the students in the control group. In the dependent samples t-test results, a significant difference ($t=2.34, p<.05$) was seen in favor of the post-test average between the pre-test average ($\bar{x}=93.38$) and the post-test average ($\bar{x}=98.08$) of the students in the experimental group.

To compare the effect of the methods used in the control and experimental groups on the motivation for learning science, independent samples t-test was performed between the post-test averages of the groups. The results are presented in Table 7.

Table 7.
Independent Samples T-Test Results Related To slms Post-Test Averages of the Experimental and Control Groups.

Test	Group	N	\bar{x}	Sd	df	t	p
Post-test scores	Control group	36	95.61	10.64	70	-1.10	.27
	Experimental group	36	98.08	8.21			

In the independent samples t-test, no significant difference ($t=-1.10, p>.05$) was encountered although the post-test average of the experimental group ($\bar{x}=98.08$) was higher than that of the control group ($\bar{x}=95.61$).

Findings Gathered from the Qualitative Data

4 categories and 15 coded were created related to student opinions about the socio-scientific issues.

In issue category, there are topics that the students mentioned during the interview. In this category, there are 3 codes including global warming, sustainable development and biotechnology. 7 students (63.00%) expressed their opinions related to global warming, 3 (27.00%) to sustainable development and 9 (81.00%) to biotechnology. The student coded as S4 stated: "...glaciers melt as a result of global warming and endanger the lives of the animals living there. To prevent this is in our hands". The student coded as S9 claimed: "...we learned about the benefits, harms, and uses of biotechnology. For example, the prolonged shelf life of foods is useful, can be given as the treatment of diseases."

In the cognitive category, 5 codes were created as information, researching, different opinions, beneficial and important. 3 students (27.00%) expressed their opinions about information, 1 (9.00%) researching, 2 (18.00%) different opinions, 4 (36.00%) beneficial, 2 (18.00%) important. The student coded as S1 stated: "...we talked about socio-scientific issues, exchanged ideas, I think it was very useful".
In affective category, there are 2 codes as engaging and fun. 2 students (18.00%) expressed their opinions about engaging and 2 students (18.00%) about fun. The student coded as S11 claimed, "... The topics were interesting to me. I'm not bored because it's different".

In the suggestion category, there are 5 codes as social work, environmental protection, awareness raising, recycling and energy saving. 1 (9.00%) student expressed an opinion about social work, 4 (36.00%) environmental protection, 1 student (9.00%) awareness rising, 3 (27.00%) recycling and 3 students (27.00%) energy saving.

Table 8.

| Codes and Categories related to the Opinions about Socio-Scientific Issues. |
|---------------------------------|-------|--------|-----------|
| Categories | Codes | f | % | Cod names |
| Issue | Global Warming | 7 | 63.00 | S2, S4, S6, S7, S9, S10, S11 |
| | Sustainable Development | 3 | 27.00 | S2, S4, S10 |
| | Biotechnology | 9 | 81.00 | S2, S4, S6, S7, S9, S10, S11 |
| Cognitive | Information | 3 | 27.00 | S2, S4, S7 |
| | Researching | 1 | 9.00 | S10 |
| | Different Opinions | 2 | 18.00 | S2, S4 |
| | Beneficial | 4 | 36.00 | S2, S4, S6, S9, S11 |
| | Important | 2 | 18.00 | S9, S10 |
| Affective | Engaging | 2 | 18.00 | S2, S11 |
| | Fun | 2 | 18.00 | S4, S3 |
| Suggestion | Social work | 1 | 9.00 | S9 |
| | Environmental protection | 4 | 36.00 | S2, S4, S6, S10 |
| | Awareness rising | 1 | 9.00 | S9 |
| | Recycling | 3 | 27.00 | S3, S4, S6 |
| | Energy saving | 3 | 27.00 | S4, S6, S11 |

Table 9.

| Codes and Categories related to the Opinions about Station Technique. |
|---------------------------------|-------|--------|-----------|
| Categories | Codes | f | % | Cod names |
| Station | Experiment | 6 | 54.00 | S4, S5, S6, S8, S9, S10 |
| | Design | 3 | 27.00 | S2, S3, S7 |
| | Poster | 1 | 9.00 | S1 |
| | Painting | 1 | 9.00 | S10 |
| Positive | Permanent learning | 2 | 18.00 | S2, S5 |
| | Information | 3 | 27.00 | S2, S3, S5 |
| | Useful | 3 | 27.00 | S2, S3, S6, S11 |
| | Effective | 1 | 9.00 | S2 |
| | Group work | 5 | 45.00 | S2, S4, S5, S7, S9 |
| | Responsibility | 1 | 9.00 | S2 |
| | Group contribution | 1 | 9.00 | S2 |
| | Fun | 3 | 27.00 | S2, S7, S10 |
| | Sharing | 3 | 27.00 | S4, S7, S9 |
| | Different events | 1 | 9.00 | S6 |
| | Enjoyed | 2 | 18.00 | S3, S9 |
| Negative | Interruption | 2 | 18.00 | S7, S10 |
| | Joint decision | 1 | 9.00 | S3 |
| | Relocation | 2 | 18.00 | S3, S10 |
The student coded as S8 stated: "...tree cutting can be reduced by recycling paper. If people throw one or a few used pieces of useless paper into recycling bins every day, half of the trees in our world will be saved.". S9 claimed: "...I think socio-scientific issues should be explained in social areas outside the school. For example, the harms of global warming should be explained in conferences. Thus, people can work to save the lives of living things by applying what they have learned"

3 categories and 22 codes were created related to the opinions about the station technique.

Station category consists of the stations which the students admired most. In this category, there are 4 codes; experiment, design, poster and painting. 6 students (54.00%) claimed that they admired the experiment station, 3 students (27.00%) design, 1 student (9.00%) poster and 1 student (9.00%) painting. The student coded as S8 stated: "...my favorite was an experiment. Because I like to learn by observing and researching things".

Positive category consists of positive expressions related to the station technique. In this category, there are 11 codes including permanent learning, information, useful, effective, group work, responsibility, group contribution, fun, sharing, different events, enjoyed. 2 students expressed opinion (18%) that it provided permanent learning, 3 students (27.00%) that it was informative technique, 3 students (27.00%) that the stations were useful in learning the issue, 1 (9.00%) that it provided effective learning, 5 students (45.00%) liked the group work in this technique most, 1 student (9.00%) that the station techniques provided responsibility, 1 student (9%) that everyone contributed to the group, 3 students (27.00%) that the station technique was fun, 3 students (27.00%) that it increased sharing in group, 1 student (9.00%) that different event performed in stations, 2 students (18.00%) enjoyed the station technique. The student coded as S2 said: "...I like group work because it requires responsibility for me. If my friends contribute to the group, I would like to contribute. Also maybe I would not understand if the teacher taught me, but now, I do not forget the issues that came to mind for our work". S2 also stated: "...Thanks to the stations, the subjects were better in my mind, the lesson was quicker, meaningful and fun."

In negative category, there are negative expressions of the student that they do not like about the station technique. In this category, there are 3 codes; interruption, joint decision and relocation. 2 students (18%) expressed that they were disturbed by the transition from one station to another before the end, 1 student (9%) the s/he does not enjoy joint decisions because s/he wants to make individual decisions, 2 students (18%) that they found the continuous relocation struggling. The student coded as S7 claimed: "...When I started a station, I would love to end up. But we’ve always moved." The student coded as S3 stated: "...we made a group decision, but I love working one time, so my decisions don’t need to be approved by others." Two categories of 11 codes were created for the opinions about the case study method.

Table 10.

Categories	Codes	f	%	Cod names
Method	Different opinions	3	27.00	S1, S4, S7
	Group work	5	45.00	S2, S6, S8, S7, S9
	Information	3	27.00	S5, S6, S10
	Useful	2	18.00	S9, S11
	Decision making	2	18.00	S5, S11
Case-study	News	3	27.00	S2, S3, S9
	New information	2	18.00	S1, S2
	Daily events	4	36.00	S2, S5, S9, S10
	Guiding	2	18.00	S3, S10
	Interesting	4	36.00	S2, S4, S7, S10
	Awareness	2	18.00	S5, S6
Method category consists of student opinions related to the case study method. There are 5 codes; different opinions, group work, information, useful, decision making. 3 students (27.00%) claimed that different opinions were expressed thanks to this method, 5 students (45%) that it was fun to examine case studies with group work, 3 students (27.00%) that the method provided information, 2 students (18.00%) that useful works were conducted, 2 students (18.00%) that it was significant to make decision with this method. The student coded as S4 stated: "...our friends in the group said different ideas. I like to hear everyone's thoughts."

Case-study category consists of student opinions about the cases selected for the method. 3 students (27.00%) found the cases from newspaper news to be effective, 2 students (18.00%) stressed that they gained the information they had never heard before thanks to the case study. 4 students (36%) found it effective that the case studies consisted of daily events. 2 students (18.00%) expressed that the case study was guiding to answer to given questions, 4 students (36.00%) that the cases were interesting, 2 students (18.00%) that case studies provided awareness about the society. The student coded as S3 stated: "...I've had information with the news I've never seen in newspaper news". Ö7 claimed: "...There was interesting news seen in our daily lives. I wasn't distracted by the news as I found them interesting."

Discussion, Conclusion and Implications

Conclusion Related to the Findings Gathered from the SIAT Test

Any significant difference was not observed in the SIAT pre-test results administered to the experimental and control groups for the sub-problem "Does teaching the socio-scientific issues, (GW-SD-BT) in 8th class with the case-oriented station technique have any effect on the academic achievement of the students?" This shows that the readiness and knowledge levels of the students are close to each other. Similarly, in the studies by Albayrak (2016) and Aydemir (2010), it was noticed that there was no significant difference between the pre-test achievement score averages of the groups.

Meaningful difference encountered in favor of the post-test in the experimental and control groups according to the dependent samples t-test results between the pre-test and post-test SIAT averages shows that both the program approved by the MoNE and case-oriented station technique were effective in teaching the socio-scientific issues (GW-SD and BT) in 8th class. In studies in which the case study method (İbrahimoğlu, 2010; Sancar, 2010) and the station technique (Albayrak, 2016; Çakmak, 2018; Koca, 2018; Yüksel, 2017) were used, it is seen that similar results with the present study were reached.

Independent samples t-test results between the post-test averages of the groups to determine which methods are more effective in the control and experimental groups demonstrated that the case-oriented station technique used in the study increased the academic achievement in the 8th class socio-scientific issues (GW-SD and BT) compared with the current program of the MoNE, and was more effective in teaching. The present study and other studies supported that the case study method has a positive effect on the academic achievement of the students (Adalı, 2005; Çakır, 2002; Herreid, 1994; İbrahimoğlu, 2010; Pehlivanlar, 2005; Stepien & Gallager, 1993; Üğur, 2007; Yağçınkaya, 2010). The results gathered from the relevant researches demonstrate similarity with this study. In the study by İbrahimoğlu (2010), it was found that using the case study method in social studies lesson increased academic achievement. Yağçınkaya (2010) found that the case-oriented learning model is an effective method to eliminate students' misconceptions compared to the traditional method. As the literature was reviewed, it was seen that the activities with the station technique has a positive effect on academic achievement and teaching (Albayrak, 2016; Arslan, 2017; Aydemir, 2010; Avci, 2015; Benek, 2012; Çakmak, 2018; Demir, 2008; Demirırs, 2007; Erdağı, 2014; Farkas, 2002; Frailing, 1982; Güneş, 2009; Kara Ekemen, 2017; Koca, 2018; Mergen, 2011; Robert, 1999; Yüksel, 2017).
Conclusion Related to the Findings Obtained from the SLMS Scale

Any significant difference was not seen (p>.05) between the groups according to the SLMS pre-test results applied to the experimental and control groups in the t-test, in which the pre-test averages of the groups were compared, in terms of the sub-problem "Does teaching the socio-scientific issues, (GW-SD-BT) in 8th class with the case-oriented station technique have any effect on the motivations of the students?" According to the dependent samples t-test results in which the SLMS pre-test and post-test scores of the students in the control and experimental groups a meaningful difference was found in the experimental group (p<.05) while no significant difference was observed among the scores of the students in the control group (p>.05). This shows that the activities and collaboration with the methods and techniques used in the course increase the motivation of the experimental group students to learn science lesson. As the literature was reviewed, similar results were encountered (Akıllı et al., 2017; Aytekin, 2018; Eilks, 2002; İnel, 2012; Oksal, 2014; Özaydın Özkara, 2016; Yakar, 2017; Yıldırım Sönmez, 2015). Eilks (2002) concluded that the station technique applied in chemistry class increased the motivation of the students. He stated that this situation affected learning through cooperation. Yakar (2017) found that the experimental group students had higher motivation in his thesis in which he used the Socratic questioning technique for socio-scientific issues. Yıldırım Sönmez (2015) stated in the thesis where a case-oriented learning method was applied, that the method had a positive effect on motivation in favor of the experimental group for learning chemistry lesson.

The post-test averages of the independent samples t-test between groups applied in order to compare the effect of the methods in the control and experimental groups on the motivation toward science learning demonstrated that no statistically meaningful difference occurred (p>.05) even if the post-test average of the experimental group (\(\bar{x}=98.08\)) was more than that of the control group (\(\bar{x}=95.61\)). Although the method applied positively affected the motivation of students to learn science, it can be claimed that this difference was not meaningful. This is thought to be due to the short duration of the study. Besides, some researchers attributed the lack of a significant difference between motivation scores for learning to the high or low student and school achievement, crowded classes, and poor socioeconomic status (Aydoğdu, 2017; Karcı, 2018; Konu 2017; Yalçınkaya, 2010).

Conclusion Related to the Findings Gathered from the Qualitative Data

Student opinions on the interviews held to find the answer to the sub-problem "What are the students' opinions after the application of teaching the socio-scientific issues, (GW-SD-BT) in 8th class with the case-oriented station technique?" were analyzed by grouping into codes and categories as socio-scientific issues, case study method and station technique. As the findings gathered from the student opinions related to the SSIs, it is seen that the students expressed opinions related to the issues of global warming, sustainable development, and biotechnology, made suggestions, interpreted about their uses and harms by giving examples. So, the SSIs take the attention of the students and develop critical thinking and decision-making skills. In parallel to this result, similar results were encountered in the relevant literature. Zeidler and Nichols (2009) pointed out in their study that the SSIs teaching motivates students for scientific issues, but also contributed to inter-disciplinary connections such as critical thinking, reading skills, and being democratic, tolerant and caring about human values. Similarly, Dolan et. al. (2009) stressed in their research that the SSIs offer a multidimensional approach, such as understanding and discussing the importance of science for society, social conscience, and not only scientific content on a subject, but also in daily life. Talens (2016) stated in his study that the SSIs teaching is important for students to connect with the real-life, examine the positive and negative aspects of the chosen subject and gain experience for the students. Related to this topic, taking attention to social concerns and their effects, access to information through scientific ideas and practices, criticism, sharing information, use of information and communication technology, students’ use of experiences and social interaction were important factors in the SSI model developed by Friedrichsen, Sadler, Graham and Brown (2016). Babacan (2017) stated in his study that activities carried out with socio-scientific issues improved students’ critical thinking skills and students produced answers that are more qualified after activities.

940
During the interviews, the students made suggestions about energy saving, recycling and environmental protection based on the subjects they saw in the activities and stated that social studies should be done on these issues. Taşpınar (2011), in his socio-scientific discussion supported by health, observed that students were more participant in events they encountered in their daily lives. Yakar (2017) states in his thesis on socio-scientific issues that SSIs are considered significant by students in terms of being a tool for learning situations and events related to people, society, world, environment. Also, it was concluded that the students enjoyed, loved and wondered while discussing and researching these subjects. Therefore, the researcher stated that SSIs are important issues to be learned from within life. Similarly, Pelch and McConnel (2017) emphasized that the continuous use of SSIs in the course has a positive effect on students' interest and attitude towards science.

In the interviews, the students found that the news given as a case was open to discussion, which helped to create different ideas, and that they were important, useful, interesting and fun. Sadler (2011) stressed that it is important to use the media in SSI teaching to enable students to relate what they have learned to everyday life and to use technology to enrich learning experiences in the classroom. As it is supported in the literature, in the present study, it is seen that the case study method chosen for teaching socio-scientific issues is appropriate, effective and useful for teaching these issues.

When the findings obtained from the students' opinions about the case study method with socio-scientific issue content are examined, the students mentioned the case studies in their activities as an interesting and useful method in-group news, which are frequently encountered in daily life, interesting, help to produce different ideas and make decisions. It is seen that studies in the literature are in parallel with the present study. İbrahimoğlu (2010) revealed in his thesis that students stated that the course was enjoyable with the case study method, as the effective participation was ensured and examples from daily life were carried to the classroom. Özkan (2010), in the interview with teachers about the purpose of using the case study in the classroom, found the results of reconciling the course with the students' lives, providing persistent learning by understanding and participating in the course, providing the students to try to solve and confront the problems and concretize the event. In other studies, similar results are encountered (Ada, Baysal & Kadioğlu, 2009; Aydemir, 2010; Herreid, 1994; Pehlivanlar, 2005; Uğur, 2007; Utkür, 2016).

During the interviews about station technique consisting of socio-scientific issues, the students found the activities to be permanent, useful and fun. Also, most of the students stated that they enjoyed group work, sharing, taking responsibility and contributing. Frutani (2007) found in the research that students love learning stations and develop responsibility and cooperation. Porter (2004) pointed out that students admired the station technique in mathematics lesson, they enjoyed during learning in the lesson.

During the research process, in the interviews related to the socio-scientific case-oriented station technique, some students emphasized the unfinished station activities and the continuous relocation as a negative situation. Besides, in the long-term applications, students were observed to move away from their goals. In parallel to this result, Eilks (2002) stated that the station technique may be difficult for students in the first application and that students may move away from their original goals in the long-term practice. Avcı (2015) stated in his research that some students found activities about station technique too boring and could not train time.

As the relevant literature was reviewed, the results obtained from the interviews about the station technique are generally positive and they are in parallel with the present research results (Alacapınar, 2009; Albayrak, 2016; Arslan, 2017; Avcı, 2015; Batdı & Semerci, 2012; Benek, 2012; Çakmak, 2018; Demir, 2008; Demirör, 2007; Eilks, 2002; Erdağ, 2014; Frutani, 2007; Genç, 2013; Maden & Durukan, 2010; Mergen, 2011; Ocak, 2010; Porter, 2004; Yüksel, 2017).
According to the results reached considering the research findings, case-oriented station technique seems to be appropriate, effective and useful for teaching socio-scientific issues. Also, the present study differs from many studies on socio-scientific issues in terms of the existence of two different methods and techniques and the use of qualitative and quantitative studies together.

Recommendations

In this section, according to the results of the study, recommendations for the effective use of case-oriented station technique are given to researchers and practitioners.

- As the literature is reviewed, it is seen that there are few studies on teaching socio-scientific issues in the classroom. The case-oriented station technique is an effective and useful study in the teaching of socio-scientific issues and is one of the few studies conducted. So, further research on the teaching of socio-scientific issues in the classroom is recommended.
- Case-oriented station technique can be applied to other issues rather than those in this research; Global Warming, Sustainable Development and Biotechnology.
- In the research, it was observed that the students discussed and produced different ideas about socio-scientific issues and made suggestions for social problems. In this context, more attention should be paid to socio-scientific issues in terms of raising individuals who think, criticize and produce ideas in the future.
- In the study, it was seen that the socio-scientific issues mentioned in the newspaper news attracted the attention of the students. Therefore, students should be encouraged to read newspapers, articles and journals containing socio-scientific issues.
- This research was limited to 8th class students. The case-oriented station technique can be repeated with students at different class levels.
- The research was carried out in the science course. It is thought to be beneficial to apply it in different courses.
- This study is limited to a specific sample and is recommended to be applied in larger samples.
- The number of stations that will appeal to each student in the classroom can be increased by investigating the interests and abilities of the students in different studies related to the station technique.
- To implement these and similar activities in crowded classrooms, teachers should make a detailed plan in advance and take precautions against negative situations in cooperation with the students.
Giriş

Günümüzde, bilim ve teknolojinin hızla gelişmesiyle birlikte bu gelişime ayak uyduracak insan gücüne olan ihtiyaçta her geçen gün artmaktadır. Bireylerin şunların gerektirdiği donanıma sahip olabilmeleri için bireyde merak uyandırın, araştırma, inceleme ve deney yapmalara olanak vermek, doğal çevreyi tanıma fırsatı veren bir fen eğitimi önem kazanmıştır (Yüksel, 2017). Öğrencilere verilecek olan fen eğitimi, toplumumuzun ve gelecekteki vatandaşlarının bilimsel okuryazarlığı artırma ihtiyacı karşılamlıdırdır (Çepni, 2014). Bu çerçevede ülkemizde fen öğretim programları ihtiyaç, değişim ve yeniliklere göre güncellenmektedir. 2013 yılında Fen bilimleri öğretim programına, çalışılan konu ile ilgili eklenen amaçlar şunlardır (MEB, 2013):

- Birey, çevre ve toplum arasındaki karşılıklı etkileşimi fark etmek ve toplum, ekonomi, doğal kaynaklara ilişkin sürdürülebilir kalkınma bilincini geliştirmektir.
- Günlük yaşam sorunlarına ilişkin sorumluluk alınmasını ve bu sorunları çözmede fen bilimlerine ilişkin bilgi, bilimsel süreç becerileri ve diğer yaşam becerilerinin kullanılmasını sağlamaktır.
- Sosyobilimsel konuları (SBK) kullanarak bilimsel düşünceye alışkanlıklarını geliştirmektir.

2017 yılında Fen bilimleri öğretim programına, çalışılan konu ile ilgili eklenen amaçlar şunlardır (MEB, 2017):

- Astronomi, biyoloji, fizik, kimya, yer ve çevre bilimleri ile fen ve mühendislik uygulamaları hakkında temel bilgiler kazandırmaktır.
- Sosyobilimsel konuları kullanarak mühakeme yeteneği, bilimsel düşünceye alışkanlıkları ve karar verme becerileri geliştirmektir.
- Evrensel ahlak değerleri, millî ve kültürel değerler ile bilimsel etik ilkelerinin benimsenmesini sağlamlaktır.

Fen bilimleri öğretim programına, 2013 yılında eklenen amaçlar arasında SBK ilk defa programda doğrudan yer almaktadır. Bu ülkenin bilimsel süreç becerilerinin yanı sıra toplumsal sorunlara ve bu sorunlara çözümleye karşı sorumluluk geliştirmeye amaç olarak eklenmiştir. 2017 yılında güncellenen programda, konuların günlük yaşamla ilişkili gelişimsel dönüşüm, evrensel ve millî değerlerin benimsenmesini, tartışma ve karar verme becerilerinin geliştirilmesini amaçlamaktadır.

Programda adı geçen ve yapılacak çalışmanın konusu olan SBK; fen bilimlerinde temel alan, tartışmalı, sosyal ikiyemler içeren bilimsel ve sosyal konulardır (Ratcliffe & Grace, 2003; Sadler & Zeidler, 2005; Topçu, Sadler & Yılmaz-Tütün, 2010). Ayrıca sosyobilimsel konular doğası gereği tartışmalı olmakla birlikte tek bir sonucu olmayan ahlaki ve etik konulardır (Sadler & Zeidler, 2005). Bireyin sosyobilimsel bir konuda etkili karara ulaşabilmesi, konunun olası etik, ahlaki ve yasal sonuçlarını birlikte değerlendirmesi, eleştirel düşünme becerilerinin gelişebilmesi için sosyobilimsel konuların programda ele alınması gereklidir (Çakır, Altuntaş, Yılmaz & Duran, 2017). Bu bilgiler işığında fen derslerinde sosyobilimsel konuların ele alınmasını hem öğrencilerin kendisi kişisel gelişimi için hem de toplumun gelişip ilerleyebilmesi için oldukça önemli bir arac olduğu vurgulanabilir (Balkan, Kıyıcı, 2008). Özellikle fen bilimleri alanında tartışmalı sosyobilimsel konularda alınacak kararlar, toplumların geleçeğini ve belki de dünyamızın varlığını sürdürmesini etkiledeği geçerli, bilimsel tartışmalarla öne sürülen iddialar, gerekçeleri, mühakeme ve argümanları eleştirel olarak değerlendirilebilecek ve bilimin dönüşüne yolunu bulan olarak verebilecek bilim okuryazarları bir toplum oluşturmak için gerekliklik olusturmmuştur (Şahin & Hacıoğlu, 2010).
Araştırmada, SBK’ların öğretimi için uygun olarak görülen örnek olay yöntemi ve istasyon tekniğini birlikte kullanılmıştır. Örnek olay yöntemi; konuların günlük hayatla ilişkilendirilmesi, problem çözme, karar verme, tartışma ve üst düzey düşünceye becerileri geliştirmeyi gibi sosyobilimcilik konularının öğretimine yardımcı olacak özelliklere sahip bir yöntemdir. Bu yöntem, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntemi, bireylerin hem zihinsel hem de duygusal yönden aktif katılmalarını gerektirir. Örnek olay yöntem
den sonra öğrencilerin uygulama ile ilgili görüşleri nelerdir?
araştırmanın neden sonuç ilişkisini ortaya koyabilmesini ve ortaya koyduğu bu sonuçun benzer sonuçlarla genellenebilir olması gösterir (Can, 2013).

Araştırma için Erzincan Binali Yıldırım Üniversitesi, İnsan Araştırmaları Etik Kurulu’nun 01.02.2018 tarih ve 01/18 protokol numaralı “araştırmanın yapılması etik açısından uygunluk” kararı alınmıştır. Etik kurulu kararı da dikkate alınarak, kurumlar arası yazılımlar ile araştırmanın yapıldığı Milli Eğitim Müdürlüğünden gerekli araştırma izni alınmıştır.

Çalışma Grubu

Araştırma, Doğu Anadolu’nun yaklaşık 20.000 nüfuslu bir ilçesinin 2 ortaokulunda okuyan 71 öğrenciden oluşan 8. sınıf öğrencileriyle gerçekleştirilmiştir. Her bir örnekleme birimine eşit seçilme olasılığı vererek örnekleme alındığı yönteme basit seçkisiz örnekleme yöntemi denir (Büyüköztürk, 2013). Çalışma grubu; İlçede bulunan 3 ortaokuldan 2 ortaokul, okullarda bulunan 4 şubeden de 2 şube basit seçkisiz örnekleme yöntemi ile belirlenmiştir. 71 öğrenciden, 16 kız 19 erkek olmak üzere 35 öğrenci deney grubunu, 17 kız 19 erkek olmak üzere 36 öğrenci ise kontrol grubunu oluşturmuştur.

Veri Toplama Araçları

Verilen eğitimin etkililiğini ölçmek amacıyla, geliştirilen Sosyobilimsel Konular Başarı Testi (SBT) ve öğrencilerin öğrenmeye yönelik motivasyonlarını ölçmek amacıyla Fen Öğrenmeye Yönelik Motivasyon Ölçüğü (FMÖ) (Dede & Yaman, 2008), kontrol ve deney gruplarına ön test -son test olarak uygulanmıştır.

SBT Testi: Fen eğitiminde, belirlenen kazanımlar doğrultusunda öğrencilerin başarılarını tespit etmek için nitelikli ve iyi hazırlanmış bir ölçme aracına ihtiyaç vardır. Öğrenci öğrenmelerini ortaya çıkarmak için kullanılan birçok ölçme aracı olmakla birlikte zaman, hazırlama, objektiflik, kullanılabilirlik ve sınıf ortamında kolayca uygulanabilir olmak için çoktan seçmeli testler ayrı bir öneme sahiptir (Ayvacı & Durmuş, 2016). Bu çerçevede araştırımda, 8. sınıf “Canlılar ve Enerji İlişkileri” ünitesinde SBT kapsamında yer alan “Küresel Isınma, Sürdürülebilir Kalkınma, Biyoteknoloji” konuları içeren çoktan seçme sorular SBT olarak geliştirilmiştir. Gerçekleştirdiği ölçüm aracında bulunan en önemli özelliklerden biridir. En genel ve klasik tanımlı geçerlilik; ölçme aracının ölçmek istediği özelliğe başka değişkenler karıştırmadan ölçebilme derecesidir. Bir testin geçerliliğini belirlemeye yönelik, testin kapsamını analiz etmeyi, testten elde edilen puanları uygur bir ölçütün olup olmadığına karar vermek, testin ölçümü istenilen yapıya uyguşununu belirlemeyi içerir (Atilgan, Kan & Doğan, 2009). Araştırımda başarı testini kapsam geçerliliğini sağlamak açısından belirli bir tablosu hazırlamış ve ayrıca uzman görüşleri alınmıştır.

SBT soru havuzu oluşturmak için, üniteyle alakalı çeşitli kaynaklar taramıştır. MEB tarafından yapılan deneme sınavlarından, MEB tarafından onaylanmış fen bilimleri ders kitaplarında, farklı yayınların testlerinden unutulan kazanımlar ve ders saati dikkate alınarak zorluk düzeyleri farklı sorular seçilmiştir. Seçilen 43 soruda; 2 öğretim üyesi, 2 fen bilimleri öğretmeni görüşüne sunulmuştur. Uzmanlardan alınan görüş ve değerlendirmeler sonucunda bazı sorular çıkarılmıştır. Pilot çalışırken, 12 adet sorguda .30 tabanlı ortalamalar tahmin edilmiştir ve testin geçerliliği sağlanmıştır. Testin ortalama güçlüğü .50 olup çok kolay olan 8 tane (5, 11, 16, 20, 23, 28, 30, 31, 35, 37, 38) madde alınmamıştır. Madde analizi sürecinde, madde güçlük ve ayırt edicilik değerleri belirlendikten sonra bazı sorular testten çıkarılarak 19 maddeden oluşan nihai testi hazırlanmıştır.
oluşturulmuştur. Mevcut araştırmanda, tek uygulamaya dayalı yöntem (KR-20) kullanıldı. Kuder & Richardson (1937), her maddenin birbirile paralel, aynı ortam ve varyansa sahip olduğu varsayımından hareketle KR-20 formülünü geliştirilmişdir (Atılgan et al. 2009). Mevcut araştırmanda, başarı testinin güveniriliğini tespit etmek için üç tür analizi yapılarak KR-20 değeri .70 bulundu. Güvenirlik katsayısı .70 ve üzeri olan testler genel olarak yeterli güvenilirliğe sahip olarak kabul edilir (Fraenkel & Wallen, 2009 akt. Öztürk & Alper, 2019). Bu sonuçta göre, testin aynı ayırt edici ve orta güçlü olmakla birlikte güvenilir olduğu söylenebilir (Kan, 2008; Küçükahmet, 2002; Tekin, 2004).

FMÖ Testi: Öğrencilerin fen öğrenmeye yönelik motivasyon düzeylerini tespit etmek için Dede ve Yaman (2008) tarafından geliştirilen FMÖ kullanılmıştır. Araştırmacılar motivasyon ölçeğinin ön uygulamalarını 421 öğrenci üzerinde gerçekleştirmişlerdir. 23 maddenin oluşan ölçeğin geçerliliğini belirlemek amacıyla uygulayıcı faktör analizi yapılarak ölçeğin toplam varyansın %47’sini açıklayan; “ Araştırma yapmaya yönelik motivasyon”, “Performansa yönelik motivasyon”, “İletişime yönelik motivasyon”, “İşbirliklere yönelik motivasyon”, “Katılıma yönelik motivasyon” olmak üzere beş faktör altında toplandığı görülmüştür. Ölçeğin faktörlerine ilişkin açıklanan varyans değerlerini birinci faktör için %21.37, ikinci faktör için %7.88, üçüncü faktör için %7.27, dördüncü faktör için % 5.88 ve beşinci faktör için % 4.76 olarak bulunmuştur. Ayrıca likert tipi bu ölçeğin Cronbach Alfa değeri .80 olarak bulunmuştur (Dede & Yaman, 2008).

Nitel görüşmeler: Yapılan çalışmayı öğrenci görüşleri ve yorumlarıyla desteklemek amacıyla nitel araştırma yöntemi olan yapılandırılmamış görüşme tercih edilmiştir. Yapılandırılmamış görüşme, araştırmacının sorgulama alanlarının büyük bir kısımını kapsayarak soruların genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorguların sadece birbirinin üzerine gelmemesi, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birlikte konulması, sorgulama alanlarının genel ve spesifik yönleriyle birli...
bilgileri içerdğinden konularla alakalı bilgilerin istasyonlarda yer verilmesine gerek kalmamıştır. Örnek olay ve çalışma kâğıtları yöntelerle birlikte tamamlanıp her bir istasyona isim verilmiştir. İstasyonlarda yapılacak etkinlikler için gerekli malzeme listesi çıkarılmış ve temin edilmiştir. Araştırmacı öğretmenin rehberliğinde, gruplar her istasyonda 15 dakika çalışmış süre bitiminde diğer istasyonlara geçmişlerdir. Gruplar, istasyonlara örnek olaylar (gazete haberi) okuyarak olaya ilgili sorular cevaplendikten sonra aynı konuda ilgili etkinlikler yapılmışlardır. Çalışmalar sonunda kalan sürede ortaya çıkan ürünler sergilenmiş ve yorumlanmıştır.

Verilerin Analizi

Araştırma sürecinin başında deney ve kontrol gruplarına ön test ve son test olarak uygulanan SBT ve FMÖ test sonuçları istatistiksel programlarla analiz edilmiştir. Analiz sürecinden önce SBT ve FMÖ ön test ve son test puanlarının normallığı tespit edilmiştir. SBT ve FMÖ ön test ve son test puanlarının dağılımlının normal olduğu 50'den büyük örneklemelerde Kolmogorov-Smirnov normallık testinin kullanılması önerilmektedir (Büyüköztürk, 2013). Araştırmanın örneklemini 50'den büyük olduğu için Kolmogorov-Smirnov testi kullanılmıştır. Analiz sonuçları Tablo 1'de gösterilmiştir.

Tablo 1. Ön Test ve Son Test Verilerinin Normallik Testi Sonuçları

Alt boyutlar	Test	İstatistik	ss	p
Sosyobilimsel Konular Başarı Testi	Ön	.09	71	.09
	Son	.08	71	.18
Fen Öğrenmeye Yönelik Motivasyon Ölçeği	Ön	.08	71	.20
	Son	.08	71	.20

Tablo 1'de analiz sonuçlarına bakıldığında ön test ve son test puanlarının normal dağıldığı görülmüklmiştir (p>.05). Bu nedenle, verilerin analizinde parametrik testlerden olan t testinden yararlanılmıştır.

Nitel verilerin analizinde ise içerik analiz tekniği kullanılmış, veriler kod ve kategori oluşturularak incelenmiştir. Sosyobilimsel konularda öğrenici görüşlerine ait 4 kategori 15 kod, istasyon tekniğinde ilgili görüşlere ait 4 kategori 22 kod, örnekt oluyan temalar ile ilgili görüşlere ait 2 kategori 11 kod oluşturulmuştur. Ayrıca veriler baz bir uzmana belirli temalar altında kodlandığını alıncı sonuçlara göre “Görüş Birliği” ve “Görüş Ayrılığı” olan Maddeler tespit edilmiştir. Elde edilen kodlar Miles ve Huberman'ın (1994) önerdiği Güvenirlik= (Görüş Birliği) / (Görüş Birliği + Görüş Ayrılığı) formülü ile hesaplanmıştır. Uygun yüzdesi %81.00 bulunarak yüzde %70.00'in üzerinde (Miles & Huberman, 1994) olması nedeniyle güvenilir bulunmaktadır. Ayrıca araştırımda yöntemden ve sürecin ayrıntılı betimlenmesi, bulguların doğrudan alıntılarla verilmesi ve uzman incelemesiyle geçerlilik sağlanmaya çalışılmıştır.

Bulgular

Bu araştırma için hazırlanan SBT, FMÖ uygulamalarından elde edilen verilere ait bulgular ve yapılan görüşmelerle ilgili bulgular yer almaktadır.

SBT Testinden Elde Edilen Bulgular

Araştırımda, deney ve kontrol gruplarına çalışma yer alan konulara başlamadan önce SBT uygulandı. SBT ortalamalarıyla elde edilen bağımsız örneklem t testi Tablo 2' de gösterilmiştir.

Tablo 2. Deney ve Kontrol Gruplarından Ön Test T Testi Puanlarının Karşılaştırması

Test	Grup	N	x	ss	sd	t	p
Ön test puanları	Kontrol grubu	35	8.69	3.16	69	-1.24	.22
	Deney grubu	36	9.50	2.26			
Bağımsız örneklem t testi, kontrol grubu ön test puan ortalaması (x̅=8.69) ile deney grubu ön test puan ortalaması (x̅=9.50) arasında anlamlı bir fark görülmemiştir (p>.05). Deney ve kontrol gruplarındaki öğrencilerin ön ve son test SBT ortalamalarını karşılaştırmak amacıyla bağımsız örneklem t testi yapılmıştır. Sonuçlar Tablo 3’dede gösterilmiştir.

Tablo 3.
Deney ve Kontrol Grubu Ön Test- Son Test Bağımsız Örnekler T Testi Sonuçları.

Grup	Test	N	x̅	ss	sd	t	p
Kontrol grubu	Ön test	35	8.51	3.02	34	-8.28	.00
	Son test	35	10.11	3.39			
Deney grubu	Ön test	36	9.50	2.26	35	-20.69	.00
	Son test	36	14.72	2.51			

Kontrol grubunda konulara başlamadan önce yapılan ön test SBT ortalaması (x̅=8.51) ile konular işlendikten sonraki son test SBT ortalaması (x̅=10.11) arasında anlamlı fark olduğu görülmüştür (t=-8.28 p<.05). Aynı şekilde deney grubunda ön test SBT ortalaması (x̅=9.50) ile son test SBT ortalaması (x̅=14.72) arasında anlamlı fark olduğu görülmüştür (t=-20.69 p<.05). Kontrol ve deney gruplarında uygulanan yöntemlerin hangisini daha etkili olduğuunu belirlemek için grupların son test ortalamalarını arasında bağımsız örneklem t testi yapılmıştır. Sonuçlar Tablo 4’de gösterilmiştir.

Tablo 4.
Deney ve Kontrol Grupları SBT Son Test Puan Ortalamaları Bağımsız Örnekler T Testi Sonuçları.

Test	Grup	N	x̅	ss	sd	t	p
Son test puanları	Kontrol grubu	36	10.11	3.34	70	-6.61	.00
	Deney grubu	36	14.72	2.51			

Yapılan bağımsız örneklem t testinde kontrol grubu son test ortalaması (x̅=10.11) ile deney grubu son test ortalaması (x̅=14.72) arasında deney grubu lehine anlamlı fark bulunmuştur (t=-6.61 p<.05).

FMÖ Elde Edilen Bulgular

Araştırımda, deney ve kontrol gruplarına çalışmada yer alan konulara başlamadan önce FMÖ uygulanmıştır. FMÖ ortalamalarıyla elde edilen bağımsız örneklem t testi Tablo 5’de gösterilmiştir.

Tablo 5.
Deney Ve Kontrol Grubu FMÖ Ön Test Bağımsız Örnekler T Testi Sonucu.

Test	Grup	N	x̅	ss	sd	t	p
Ön test puanları	Kontrol grubu	35	95.36	13.72	69	.69	.49
	Deney grubu	36	93.38	10.40			

Bağımsız örneklem t testi kontrol grubu ön test FMÖ ortalaması (x̅=95.36) deney grubu ön test FMÖ ortalamasından (x̅=93.38) daha fazla olsa da istatistiksel olarak anlamlı bir fark görülmemiştir (t=.687 p>.05). Deney ve kontrol gruplarındaki öğrencilerin ön test ve son test FMÖ ortalamalarını karşılaştırmak amacıyla bağımsız örneklem t testi yapılmıştır. Sonuçlar Tablo 6’de gösterilmiştir.

Tablo 6.
Deney Ve Kontrol Grubu FMÖ Ön Test Son Test Puan Ortalamaları Bağımsız Örnekler T Testi Sonucu.

Grup	Test	N	x̅	ss	sd	t	p
Kontrol grubu	Ön test	35	95.31	10.64	34	.08	.93
	Son test	35	95.14	13.85			
Deney grubu	Ön test	36	93.38	8.21	35	2.34	.03
	Son test	36	98.08	10.40			
Bağımlı örneklem t testi sonuçlarında kontrol gruplarındaki öğrencilerin ön test ortalaması \((\bar{x} = 95.31) \) ile son test ortalaması \((\bar{x} = 95.14) \) arasında istatistiksel olarak fark görülmemiştir \((t = 0.08, p > 0.05) \). Bağımlı örneklem t testi sonuçlarında deney gruplarındaki öğrencilerin ön test ortalaması \((\bar{x} = 93.38) \) ile son test ortalaması \((\bar{x} = 98.08) \) arasında son test ortalaması lehine anlamlı fark görülmüştür \((t = 2.34, p < 0.05) \). Kontrol ve deney gruplarında uygulanan yöntemlerin fen öğrenmeye yönelik motivasıonna etkisini karşılaştırma için grupların son test ortalamalarına arasında bağımsız örneklem t testi yapılmıştır. Sonuçlar Tablo 7'de gösterilmiştir.

Tablo 7.
Deney ve Kontrol Grupları FMÖ Son Test Puan Ortalamaları Bağımsız Örnekler T Testi Sonucu.

Test	Grup	N	\(\bar{x} \)	ss	sd	t	p
Son test puanları	Kontrol grubu	36	95.61	10.64	70	-1.10	.27
	Deney grubu	36	98.08	8.21			

Yapılan bağımsız örneklem t testinde deney grubu son test ortalaması \((\bar{x} = 98.08) \) kontrol grubu son test ortalamasından \((\bar{x} = 95.61) \) daha fazla olsa da istatistiksel olarak anlamlı fark oluşmamıştır \((t = -1.10, p > 0.05) \).

Nitel Verilerden Elde Edilen Bulgular

Sosyobilimsel konular hakkında öğrenci görüşlerine ait 4 kategori 15 kod oluşturulmuştur.

Konu kategorisinde: öğrencilerin görüşme sırasında değindikleri konular yer almaktadır. Bu kategoride; küresel ısınma, sürdürülebilir kalkınma ve biyoteknoloji olmak üzere 3 kod bulunmaktadır. 7 öğrenci (%63.00) küresel ısınma, 3 öğrenci (%27.00) sürdürülebilir kalkınma ve 9 öğrenci (%81.00) biyoteknoloji ile ilgili görüşlerini ifade etmişlerdir. Ö4'nolu öğrenci “...küresel ısınma sonucu buzular eriyor ve oradaki hayvanlar yaşamları tehlikeye giriyor. Bunu engellemek bizim yani insanların elinde” şeklinde görüş bildirmiştir. Ö8'nolu öğrenci “...biyoteknolojinin yararlarını, zararlarını, kullanıldığı yerleri öngrendik. Mesela yararlı olarak yiyeceklerin raf ömrünün uzaması, hastalıkların tedavisi örneği verilebilir” şeklinde görüş bildirmiştir.

Bilişsel kategorisinde; bilgi, araştırma, farklı fikirler, yararlı ve önemli olmak üzere 5 kod oluşturulmuştur. 4 öğrenci (%36.00) bilgi, 1 öğrenci (%9) araştırma, 2 öğrenci (%18.00) farklı fikirler, 4 öğrenci (%36.00) yararlı, 2 öğrenci (%18.00) önemli ifadeler içeren görüşler belirtilmiştir. Ö6'nolu öğrenci “...sosyobilimsel konular üzerine konuşuldu, fikir alışverişiyaptık bence çok yararlı oldu” şeklinde görüş bildirmiştir.

Duyusal kategorisinde; ilgi çekici ve eğlenceli olmak üzere 2 kod bulunmaktadır. 2 öğrenci (%18.00) ilgi çekici, 2 öğrenci (%18.00) ise eğlenceli ifadeler içeren görüşler ifade etmiştir. Ö11'nolu öğrenci “...konular bana ilgi çekici geldi. Farklı olduğu için siklakadım” şeklinde görüş bildirmiştir.

Öneri kategorisinde; Toplumsal çalışma, Çevre koruma, Bilinçlendirme, Geri dönüştüm, Enerji tasarrufu olmak üzere 5 kod bulunmaktadır. 1 öğrenci (%9.00) toplumsal çalışma, 4 öğrenci (%36.00) çevre koruma, 1 öğrenci (%9.00) bilinçlendirme, 3 öğrenci (%27.00) geri dönüşüm, 3 öğrenci (%27.00) enerji tasarrufu ifadeler içeren görüşler belirtilmiştir.

Ö4'nolu öğrenci “...kağıtların geri dönüştürülmesiyle ağaç kesimi aza indirilebilir. İnsanlar geri dönüşüm kutuları her gün bir ya da birkaç ton kullanılmış ise yaramayan kağıtları atsalar dünyamızdaki ağaçların yarısı bizim sayemizde kurtulmuş olur” şeklinde görüş bildirmiştir. Ö9'nolu öğrenci “...sosyobilimsel konular okul dışında toplumsal alanlarda anlatılmalı bence. Mesela küresel ısınmanın zararları konferanslarla anlatılmalıdır. Böylece insanlar每隔renklerini uygulayarak canlılarının yaşamlarını kurtarmak için çalışmalar yapabilir” şeklinde görüş bildirmiştir.

İstasyon tekniği ile ilgili görüşlere ait 3 kategori 22 kod oluşturulmuştur.
İstasyon kategorisi; öğrencilerin en beğendiği istasyonları içermektedir. Bu kategoride Deney, Tasarım, Afiş ve Resim olmak üzere 4 kod bulunmaktadır. 6 öğrenci (%54.00) deney, 3 öğrenci (%27.00) tasarım, 1 öğrenci (%9.00) afiş, 1 öğrenci (%9.00) resim istasyonunu en çok beğendiğini söylemiştir. Öğrencinin "...en çok sevdiğim deney yapmak oldu. Çünkü bir şeyleri gözlemleyerek ve araştırarak öğrenmeyi çok sevdim" şeklinde görüş bildirmiştir.

Tablo 8.
Sosyobilimsel Konular ile İlgili Görüşlere Ait Kod ve Kategoriler.

Kategori	Kod	f	%	Kod isim
Konu	Küresel isına	7	63.00	Ö2, Ö4, Ö6, Ö7, Ö9, Ö10, Ö11
	Sürdürülebilir kalkınma	3	27.00	Ö1, Ö4, Ö10
	Biyoteknoloji	9	81.00	Ö2, Ö4, Ö6, Ö7, Ö9, Ö10, Ö11
Bilişsel	Bilgi	3	27.00	Ö3, Ö4, Ö7
	Araştırm	1	9.00	Ö10
	Farklı fikirler	2	18.00	Ö4, Ö5
	Yararlı	4	36.00	Ö1, Ö5, Ö9, Ö11
	Önemli	2	19.00	Ö6, Ö10
Duyuşsal	İlgı çekici	2	18.00	Ö2, Ö11
	Eğlenceli	2	18.00	Ö3, Ö4
Öneri	Toplumsal çalışma	1	9.00	Ö8
	Çevre koruma	4	36.00	Ö2, Ö6, Ö9, Ö10
	Bilinçlendirme	1	9.00	Ö5
	Geri dönüşüm	3	27.00	Ö3, Ö6, Ö11
	Enerji tasarrufu	3	27.00	Ö4, Ö6, Ö11

Tablo 9.
İstasyon Tekniği ile İlgili Görüşlere Ait Kod ve Kategoriler.

Kategori	Kod	f	%	Kod isim
İstasyon	Deney	6	54.00	Ö3, Ö5, Ö8, Ö9, Ö10
	Tasarı	3	27.00	Ö1, Ö5, Ö7
	Afiş	1	9.00	Ö4
	Resim	1	9.00	Ö10
Olumlu	Kalıcı öğrenme	2	18.00	Ö1, Ö5
	Bilgi	3	27.00	Ö1, Ö5, Ö9
	Yararlı	3	27.00	Ö1, Ö6, Ö11
	Etkili	1	9.00	Ö2
	Grup çalışması	5	45.00	Ö2, Ö6, Ö9, Ö11
	Sorumlulu	1	9.00	Ö3
	Gruba katkı	1	9.00	Ö6
	Eğlenceli	3	27.00	Ö3, Ö7, Ö10
	Paylaşım	3	27.00	Ö3, Ö5, Ö9
	Farklı etkinlikler	1	9.00	Ö5
	Hoşuma gitti	2	18.00	Ö1, Ö3
Olumsuz	Yarım kalma	2	18.00	Ö3, Ö11
	Ortak karar	1	9.00	Ö7
	Yer değiştirme	2	18.00	Ö3, Ö10

Olumlu kategorisi; istasyon teknği ile ilgili olumlu ifadeleri içermektedir. Bu kategoride; Kalıcı öğrenme, Bilgi, Yararlı, Etkili, Grup çalışması, Sorumlulu, Gruba katkı, Eğlenceli, Paylaşım, Farklı etkinlikler, Hoşuma gitti olmak üzere 11 kod bulunmaktadır. 2 öğrenci (%18.00) kalıcı öğrenme sağladiğini, 3 öğrenci (%27.00) bilgi verici teknik olduğunu, 3 öğrenci (%27.00) istasyonların konuyu öğrenmelerinde yararlı olduğunu, 1 öğrenci (%9.00) etkili öğrenme gerçekleştirdiğini, 5 öğrenci (%45.00)
bu teknikte grup çalışmalarını çok sevdiklerini, 1 öğrenci (%9.00) istasyon tekniğinin sorumluluk sağladığını, 1 öğrenci (%9.00) herkesin gruba katkısı sağladığını, 3 öğrenci (%27.00) istasyonları eğlenceli bulduğunu, 3 öğrenci (%27.00) grup içinde paylaşımayı artırdığını, 2 öğrenci (%18) ise istasyon tekniğinin hoşuna gittiğini belirtmiştir. Ö1'nolu öğrenci “…grup çalışmalarını seviyorum çünkü bana göre sorumluluk gerektiriyor. Arkadaşlarım grupda katkı sağlıyorsa benim de katkımı olsun diyorum ayrıca sadece hoca anlatsaydı belki de anlamazdım ama şimdi yaptığı çalışma okuma geldiği için konuları unutmuyorum” şeklinde görüş bildirmiştir. Ö2’nolu öğrenci “…istasyonlar sayesinde konulara daha iyi kaldım, ders daha çabuk, anlamlı ve eğlenceli geçti” şeklinde görüş bildirmiştir.

Tablo 10.

Kategori	Kod isim	Kod	%	
YÖNETİM				
DİFERİ FİKIRLER	Ö1, Ö3, Ö7	3	27.00	
GRUP ÇALIŞMASI	Ö2, Ö4, Ö7	5	45.00	
BİLGİ	Ö3, Ö9, Ö10	3	27.00	
YARARLI	Ö5, Ö11	2	18.00	
KARAR VERME	Ö6, Ö12	2	18.00	
HABERLER	Ö2, Ö3, Ö9	3	27.00	
YENILGİLER	Ö2, Ö3, Ö9	2	18.00	
GÜNLUK HAYAT	Ö2, Ö7, Ö9	4	36.00	
YÖNLENDİRİCİ	Ö3, Ö10	2	18.00	
İLİÇEKİCİ	Ö2, Ö9, Ö10	4	36.00	
BİLIŞME	Ö3, Ö6	2	18.00	

Örnek olay yöntemi ile ilgili görüşlere ait kodlar 11 kod oluşturmaktadır.

YÖNETİM kategorisi; örnek olay yöntemi ile ilgili öğrenci görüşlerini içermektedir. Farklı fikirler, grup çalışması, bilgi, yararlı, karar verme olmak üzere 5 kod bulunmaktadır. 3 öğrenci (%27.00) bu yöntem sayesinde farklı fikirlerin dile getirildiğini, 5 öğrenci (%45.00) grup çalışmasıyla örnek olayların incelenmesinin eğlenceli olduğunu, 3 öğrenci (%27.00) yöntemin bilgi edinmeye sağladığı, 2 öğrenci (%18) yararlı çalışmalar yapıldığını, 2 öğrenci (%18) bu yöntemle karar vermenin önemli olduğunu belirtmiştir. Ö7’nolu öğrenci “…grupça karar aldık ama ben tek çalışmayı seviyorum o zaman kararlarının başkaları tarafından onaylanmasına gerek kalmaz” şeklinde görüş bildirmiştir.

Örnek olay yöntemi ile ilgili görüşlere ait 11 kod oluşturmaktadır.

YÖNETİM kategorisi; örnek olay yöntemi ile ilgili öğrenci görüşlerini içermektedir. Farklı fikirler, grup çalışması, bilgi, yararlı, karar verme olmak üzere 5 kod bulunmaktadır. 3 öğrenci (%27.00) bu yöntem sayesinde farklı fikirlerin dile getirildiğini, 5 öğrenci (%45.00) grup çalışmasıyla örnek olayların incelenmesinin eğlenceli olduğunu, 3 öğrenci (%27.00) yöntemin bilgi edinmeye sağladığı, 2 öğrenci (%18) yararlı çalışmalar yapıldığını, 2 öğrenci (%18) bu yöntemle karar vermenin önemli olduğunu belirtmiştir. Ö7’nolu öğrenci “…grupça karar aldık ama ben tek çalışmayı seviyorum o zaman kararlarının başkaları tarafından onaylanmasına gerek kalmaz” şeklinde görüş bildirmiştir.

Örnek olay yöntemi ile ilgili görüşlere ait 11 kod oluşturmaktadır.

YÖNETİM kategorisi; örnek olay yöntemi ile ilgili öğrenci görüşlerini içermektedir. Farklı fikirler, grup çalışması, bilgi, yararlı, karar verme olmak üzere 5 kod bulunmaktadır. 3 öğrenci (%27.00) bu yöntem sayesinde farklı fikirlerin dile getirildiğini, 5 öğrenci (%45.00) grup çalışmasıyla örnek olayların incelenmesinin eğlenceli olduğunu, 3 öğrenci (%27.00) yöntemin bilgi edinmeye sağladığı, 2 öğrenci (%18) yararlı çalışmalar yapıldığını, 2 öğrenci (%18) bu yöntemle karar vermenin önemli olduğunu belirtmiştir. Ö7’nolu öğrenci “…grupça karar aldık ama ben tek çalışmayı seviyorum o zaman kararlarının başkaları tarafından onaylanmasına gerek kalmaz” şeklinde görüş bildirmiştir.
SBT Testinden Elde Edilen Bulgulara İlişkin Sonuçlar

“8. sınıf Sosyobilimsel konuların (KI-SK-BT) örnek olay destekli istasyon tekniği kullanılarak işlenebilirliğinin öğrencilerin akademik başarısına etkisi var mıdır?” problemi için yapılan SBT deney ve kontrol grubu ön test sonuçlarında anlamlı fark görülmemiştir. Bu durum öğrencilerin hazır buluntu sayısında ve bilgi düzeylerinin birbirine yakın olduğunu göstermektedir. Benzer şekilde, Albayrak (2016) ve Aydemir (2017) yaptığı çalışmalarda, grupların ön-test başarı puan ortalamalarının arasında anlamlı bir fark olmadığı görülmüştür.

Deney ve kontrol grubunda, ön ve son SBT ortalamaları arasında yapılan bağımsız örneklem t testi sonucunda son test lehine anlamlı fark olduğu bulunmuştur. 8. sınıf sosyobilimsel konuların (KI, SK, BT) öğretiminde hem MEB’in ön gördüğü program hem de örnek olay destekli istasyon tekniği etkili olduğunu göstermiştir. Örnek olay yöntemi (İbrahimoğlu, 2010; Sancar, 2010) ve istasyon teknikinin (Albayrak, 2016; Çakmak, 2018; Koca, 2018; Yüksel, 2017) kullanıldığı araştırmalarda, mevcut çalışma ve benzer sonuçlara ulaşılırak gösterilmiştir.

Kontrol ve deney gruplarında uygulanan yöntemlerin hangisinin daha etkili olduğunu belirlemek için grupların son test ortalamaları arasında yapılan bağımlı örneklem t testi sonucunda, grupların arasında anlamlı bir fark bulunmamıştır. Kontrol grubunun ve deney grubunun FMÖ ön-puan ortalamalarının karşılaştırıldığı bağımlı örneklem t testi sonucunda, deney grubunda (p<.05) anlamlı fark olduğu görülmüştür. Bu durum, derste kullanılan yöntem ve etkinlik ile çalışmanın, deney grubu öğrencilerin fen dersine öğrenmeye yönelik motivasyonunu artırığı göstermektedir. Literatür incelendiğinde benzer sonuçlara ulaşılmıştır (Akşin et al., 2017; Aytekin, 2018; Eilks, 2002; Inel, 2012; Oksal, 2014; Özyaydın Özkara, 2016; Yıldırım Sönmez, 2017).
Kontrol ve deney gruplarında uygulanan yöntemlerin fen öğrenmeye yönelik motivasyona etkisini karşılaştırmak için grupların son test ortalamaları arasında yapılan bağımsız t testi sonucu, deney grubu son test ortalamasının (x̅=98.08) kontrol grubu son test ortalamasından (x̅=95.61) daha fazla olsa da istatistiksel olarak anlamamı (p>0.05) oluşturgun göstermiştir. Uygulanan yöntemin öğrencilerin fen öğrenmeye yönelik motivasyonuna olumu etki etmesine rağmen; bu farkın anlamlı düzeyde olmadığı söylenebilir. Bu durumın yapılışının sürenin kısa olmasıyla bağlıdır. Ayrıca, bazı araştırmacılar öğrenmeye yönelik motivasyon puanlarını arasında anlamlı fark oluşturmamasını, öğrencilerin okul başarı düzeyinin yüksek veya düşük olması, sınıfların kalabalık olması, sosyoekonomik durumun zayıf olmasıyla bağlamışlardır (Aydoğdu, 2017; Karci, 2018; Konu, 2017; Yalçınkaya, 2010).

Nitel verilerinden elde edilen bulguların iliskin sonuçlar

“8. sınıf Sosyobilimsel Konuların (KI-SK-BT) örnek olay destekli istasyon tekniği kullanılarak işlenmesinden sonra öğrencilerin uygulama ile ilgili görüşleri nelerdir?” alt problemine cevap aramak için yapılan görüşmelerde öğrenci görüşleri; sosyobilimsel konular, öğrenci olayi ve istasyon tekniği olarak kod ve kategorilerin ayrılmıştır.

SBK’lar ile ilgili öğrenci görüşlerinden elde edilen bulgulara bakıldığında, öğrencilerin küresel sınır, sürdürülebilir kalkınma, biyoteknoloji konularıyla ilgili görüş bildirdikleri, öne çıkarılmıştır. Öğrenciler, SBK öğretimiyle salgılanmakla birlikte disiplinlerarası eleştirilerle eleştirildi, okuma becerileri, demokratik, hırsızlık, insa inançları ve cậu finallyalı olarak da etkili olduğunu belirtmişlerdir. Benzer şekilde, Dolan et al. (2009) araştırmalarında, SBK’lar için konuyla ilgili sadece bilimsel içerik değil aynı zamanda günlük hayat içinde, toplum açısından bilimin önemini kavramıştır. Ayrıca, öğrencilerin degerleme ve öğrencilerin sadece bilimsel içerikler değil aynı zamanda günlük hayat içinde, toplum açısından bilimin önemini kavramıştır. Dolarayla SBK’lar öğrencilerin dikkatini çekmekle birlikte eleştirel düşünme ve karar verme becerilerini geliştirdiğini söyleyebilir. Bu sonucu paralel olarak literatürde benzer sonuçlar olduğu görülmektedir. Zeidler ve Nichols (2009) çalışmaları, SBK öğretiminin öğrencilerin bilimsel konulara motive olmalarını sağlayacağı, disiplinlerarası eleştiriler, okuma becerileri, demokratik, hırsızlık, insa inançları ve cậu finallyalı olarak da etkili olduğunu belirtmiştir. Dolayısıyla araştırmacı, SBK’ları yaşamın içinden öğrenilmesi gereken önemli konular olduğunu belirtmiştir. Benzer şekilde, Pelch ve McConn (2017) çalışmalarda SBK’nın destekli istasyon tekniği, öğrencilerin eleştirilerde becerileri eleştirel düşünme ve-uppercase text in the text. The text is a natural reading version of the document.
kullanmanın önemli olduğunu vurgulamıştır. Literatürdeki çalışmalarında da desteklediğimi üzere, yapılan araştırmada sosyobilimsel konuların öğretim için seçilen örnek olay yönteminin bu konuların öğretmeninin uygulaması etkili ve yararlı olduğu görülmektedir.

Sosyobilimsel konu içerikli örnek olay yönteminin sosyobilimsel konuların öğretimi için uygun, etkili ve yararlı olduğu görülmektedir. Literatürden de desteklendiği üzere, yapılan araştırmada sosyobilimsel konuların öğretimi için dersin zevkiyle geçtiğini, etkin katılımın sağlandığını, günlük hayatın öğretmenin sınıfı altında bulunduğu, öğretmenin sorunları karşı karşıya getirip çözme yeteneklerini sağladığı, olayı somutlaştırma sonuçlarını bulmuştur. Yapılan bazı araştırmalarla da benzer sonuçlarda ulaşıldığı görülmektedir (Ada, Baysal & Kadıoğlu, 2009; Aydemir, 2010; Herreid, 1994; Pehlivanlar, 2005; Uğur, 2007; Ütkür, 2016).

Araştırmada, sosyobilimsel konu içerikli istasyon tekniği ile ilgili yapılan görüşmelerde öğretmenlerin eğitimlerini birçoğunu grup çalışmalardır, paylaşımı, sorumluluk almayı, katkı sağlama Eğitim ve Öğretim Dergisi, 10(3), 2020, 929-960 penetrate medikleri belirtilmiştir.

Araştırma sırasında, sosyobilimsel konu içerikli istasyon tekniği ile ilgili yapılan görüşmelerde, bazı öğrenciler istasyon teknigiinin yarım kalmasını, sürekli yer değiştirmeyi olumsuz bir durum olarak vurgulamıştır. Ayrıca uzun süreli uygulamalarda öğrencilerin amaçlarından uzaklaştığı görülmüştür. Bu sonucu paralel olarak Elks (2002), istasyon teknigiinin ilk uygulamada öğretmenlerin zor gelebileceğini, uzun süre uygulamada ise öğrencilerin asıl hedeflerinden uzaklaşabileceğini belirtilmiştir. Avcı (2015), araştırmasında istasyon tekniği ile ilgili bazı öğrencilerin etkinlikleri fazla ve sıkıcı buldu, zamanı yetiştiremedikleri belirtmiştir.

dolayısıyla, sosyobilimsel konu içerikli istasyon teknigiinin, sosyobilimsel konuların öğretimi için uygun, etkili ve yararlı olduğu görülmektedir. Ayrıca mevcut araştırmalarda, iki farklı yöntem ve tekniğin olması, nitel ve nicel çalışmaların birlikte kullanılması açısından sosyobilimsel konularla ilgili yapılan pek çok araştırmadan farklılık göstermektedir.

Öneriler

Bu kısımda, yapılmış olan araştırmanın sonuçlarına göre araştırmacılar ve uygulayıcılarla örnek olay destekli istasyon teknigiinin etkili kullanılmak yönelik öneriler yer almaktadır.

- Literatür incelendiğinde, sosyobilimsel konuların sınıf ortamında öğretmeniyile ilgili çalışmaların az sayıda olduğu görülmektedir. Örnek olay destekli istasyon teknigi, sosyobilimsel konuların öğretiminde etkili ve yararlı bir çalışma olup yapılan az sayıda çalışmalardan biridir. Dolayısıyla, sosyobilimsel konuların sınıf ortamında öğretmeniyile ilgili daha fazla araştırma yapılması önerilmektedir.

- Örnek olay destekli istasyon teknigi, araştırmada konu olarak geçen Küresel Isınma, Sürdürülebilir Kalkınma ve Biyoteknoloji konuları dışında başka sosyobilimsel konularla da uygulanabilir.
Yapılan araştırmada öğrenciler sosyobilimsel konularla ilgili tartışıp farklı fikirler ürettikleri, toplumsal sorunlarda önerilerde bulundukları gözlemlenmiştir. Bu çerçevede; gelecekte düşünülen, eleştiren, fikir üreten bireylere yetiştirme açısından sosyobilimsel konulara daha fazla önem verilmelidir.

Yapılan araştırmada gazete haberlerinde geçen sosyobilimsel konuların öğrencilerin ilgisini çektiği görülmüştür. Dolayısıyla öğrencilerin sosyobilimsel konular içeren gazete, makale, dergi okumaları teşvik edilmeli, belirlenen zamanlarda sınıf ortamında bu konular tartışılmalıdır.

Bu araştırma, 8. sınıf öğrencileri ile sınırlı tutulmuştur. Örnek olay destekli istasyon tekniği, farklı sınıf düzeyinde öğrencilerle tekrarlanabilir.

Yapılan araştırma fen bilimleri dersinde kullanılmıştır. Farklı derslerde de uygulanmasını faydali olacağını düşünülmektedir.

Bu çalışma, belirli bir örnekleme sınırlı olup daha büyük örneklemlerde uygulanması önerilmektedir.

İstasyon tekniği ile ilgili yapılacak farklı çalışmalarında öğrencilerin ilgi ve yetenekleri araştırılacak sınıftaki her öğrenciyi hitap edecek istasyon sayısı arttırlabilir.

Kalabalık sınıflarda bu ve benzeri çalışmaların uygulanması için öğretmenlerin önceden ayrıntılı bir plan yapması olumsuz durumlara karşı öğrencilerle iş birliği halinde önlemler Alma olması gerekir.
References

Ada, S., Baysal, Z. N., & Kadıoğlu H. (2009). Projeye dayalı öğrenme yaklaşımının öğrencilerin sosyal bilgiler dersine ilişkin tutumlarına ve görsel sunu uygulamalarına etkisi. Ahi Evran Üniversitesi Eğitim Fakültesi Dergisi, 10(3), 89-96.

Adali, B. (2005). İlköğretim 5. sınıf fen bilgisi dersinde virüsler-bakteriler-mantarlar ve protistler konularının öğreniminde örnek olay yöntemi kullanılarak öğrencilerin akademik başarılarına ve fen bilgisi dersine yönelik tutumlarına etkisi. Unpublished master thesis, Mustafa Kemal Üniversitesi, Hatay.

Akhill, M., Keskin, H. K., & Ay, Ş. (2017). Farklılaştırılmış fen deneylerini değerlendirme sürecinin öğrencilerin fene karşı tutum ve motivasyonları üzerindeki etkisi. e–Kafkas Eğitim Araştırmaları Dergisi, 4(1), 51-56.

Alacapınar, F. (2009). Örnek olay yöntemi ve eğitimde örnek olaylar. Ankara: Anı Yayıncılık.

Albayrak, H. (2017). Astronomi konularında istasyon tekniğinin öğrencilerin akademik başarısına ve astronomiye karşı tutumuna etkisi, Unpublished master thesis, Erzincan Üniversitesi Fen Bilimleri Enstitüsü, Erzincan.

American Psychological Association, American Educational Research Association ve National Council on Measurement in Education. (1974). Standards for educational and psychological tests, Washington D.C.

Arslan, A. (2017). Türkçe öğretiminde istasyon tekniği kullanımının öğrencilerde akademik başarıya, tutuma ve kalıcılığa etkisi, Unpublished master thesis, Cumhuriyet Üniversitesi, Sivas.

Atilgan, H., Kan, A., & Doğan, N. (2009). Eğitimde örnekleme ve değerlendirme. Ankara: Anı Yayıncılık.

Avcı, H. (2015). İngilizce öğretiminde istasyon tekniğinin kullanımının akademik başarıya, tutumlara ve kalıcılığa etkisi, Unpublished master thesis, Fırat Üniversitesi Eğitim Bilimleri Enstitüsü, Elazığ.

Aydemir, G. (2010). Sosyal bilgiler öğretiminde örnek olay yönteminin öğrencilerin çevre bilincine ve çevreye yönelik tutumlarına etkisi, Unpublished master thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

Aydın, M.Z. (2007). Din Öğretiminde Yöntemler. Nobel Yayın Dağıtım.

Aydınoğlu, Z. (2017). Argümantasyon tabanlı öğretimin öğrencilerin fene yönelik akademik başarı, motivasyon, ilgi ve tutumlara etkisini incelenmesi, Unpublished master thesis, Sakarya Üniversitesi Eğitim Bilimleri Enstitüsü, Sakarya.

Aytın, A. (2018). Ortaokul 5. sınıf fen bilimleri dersi “Işının ve Sesin Yayılması” ünitesine yönelik geliştirmeli materyal ve deney etkinliklerinin öğrenci akademik başarısını ve motivasyonuna etkisinin incelenmesi, Unpublished master thesis, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü, Kocaeli.

Ayvacı, H. Ş. & Durmuş, A. (2016). Bir başarı testi geliştirme çalışması: ısı ve sicaklık bağıntı testi geçerlilik ve güvenilirlik araştırması, Ondokuz Mayıs Üniversitesi Eğitim Fakültesi Dergisi, 35(1), 87-103.

Babacan, M. A. (2017). Sosyobilimsel konulardaki etkinliklerin yedinci sınıf öğrencilerinin eleştirel düşünme becerilerine etkisi, Unpublished master thesis, Ömer Halisdemir Üniversitesi Eğitim Bilimleri Enstitüsü, Niğde.

Balkan Kıyıcı, F. (2008). Fen bilgisi öğretmen adaylarının günlük yaşamları ile bilimsel bilgileri ilişkilendirilme düzeyleri ve bunu etkileyen faktörlerin belirlenmesi, Unpublished doctoral dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Batd, V. & Semerci, C. (2012). Derslerde istasyon tekniği uygulamasının yansıtıcı sorgulaması, Eğitim Fakültesi Dergisi, 1(1), 190-203.
Benek, İ. & Kocakaya, S. (2012). İstasyonlarda öğrenme tekniğine yönelik öğrenci görüşleri, Eğitim ve Öğretim Araştırmaları Dergisi, 1(3), 8-18.

Benek, İ. (2012). İstasyonlarda öğrenme tekniğinin ilköğretim 7. sınıf öğrencilerinin fen ve teknoloji dersindeki başarılarına etkisi, Unpublished master thesis, Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van.

Büyüköztürk, Ş., Kılıç Çakmak, E., Akgün, Ö. A., Karadeniz, Ş., & Demirel, F. (2013). Bilimsel araştırma yöntemleri (15. ed), Ankara: Pegem Yayıncılık.

Can, A. (2013). SPSS ile bilimsel araştırma sürecinde nicel veri analizi. Ankara: Pegem Akademi.

Creswell, J. W. & Plano-Clark, V. L. (2015). Karma yöntem araştırmaları: Tasarımı ve yürütülmesi. Çev. Ed.: Totan, T. Ankara: Anı Yayıncılık.

Çakmak, M. (2018). İstasyon tekniğinin 6. sınıf madde ve ısı ünitesindeki öğrenci başarısına etkisi ve öğrencilerin tekniiğe ilişkin görüşleri, Unpublished master thesis, Dicle Üniversitesi Eğitim Bilimleri Enstitüsü, Diyarbakır.

Çepni, S. (2014). Kuramdan uygulamaya fen ve teknoloji öğretimi (11. ed). Ankara: Pegem Akademi.

Dede, Y. & Yaman, S. (2008). Fen Öğrenmeye Yönelik Motivasyon Ölçeği: Geçerlilik ve Güvenirililik Çalışması, Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitim (EFMED), 2(1) 19-37.

Demir, M. R. (2008). İstasyonlarda öğrenme modelinin hayat bilgisi dersindeki üst düzey beceri erişine etkisi, Unpublished master thesis, Hacettepe Üniversitesi Sosyal Bilimler Enstitüsü, Ankara.

Demirörs, F. (2007). Lise 1. sınıf öğrencileri için ohm yasası konusunda öğrenme istasyonlarının geliştirilmesi ve uygulanması, Unpublished master thesis, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara.

Dolan, T. H., Nichols, B. H., & Zeidler, D. L. (2009). Using socioscientific issues in primary classrooms, Journal of Elementary Science Education, 21(3), 1-12.

Elks I. (2002). Learning at stations in secondary level chemistry lessons, Science Education International, 13(1), 11-18.

Erdağlı, S. (2014). İstasyon tekniğinin fen ve teknoloji dersinin akademik başarısına etkisi, Kafkas Üniversitesi Fen bilimleri Enstitüsü, Kars.

Evren Yapıçoğlu A. (2016). Fen bilimleri öğretmen adaylarının sosyobilimsel durum temelli öğretim yaklaşımı uygulamalarına yönelik görüşleri ve çalışmalarına yansıtımlar, Hacettepe Üniversitesi Eğitim Bilimleri Enstitüsü Eğitim Araştırmaları Dergisi, 2(2), 133-151.

Farkas, R. D. (2002). Effects of traditional versus learning styles instructional methods on seventh-grade students’ achievement, attitudes, empathy, and transfer skills through a study of the holocaust, Unpublished PhD Thesis, St.John”s Üniversitesi Enstitüsü.

Fraenkel, J. R. & Wallen, N. E. (2009). How to design and evaluate research in education. New York: McGraw-Hill Higher Education.

Fraling, C. C. (1982). A study to improve reading comprehension skills through the use of prepared reading learning stations, MA Thesis, ABD.
Friedrichsen, P. J., Sadler, T. D., Graham, K., & Brown, P. (2016). Design of a socio-scientific issue curriculum unit: Antibiotic resistance, natural selection, and modeling, *International Journal of Designs for Learning*, 7(1), 76-86.

Furutani, S. S. (2007). *How does one successfully implement learning centers at the third grade level*, Unpublished master thesis, Pacific Lutheran University.

Genç, M. (2013). Çevre Eğitiminde İstasyon Tekniğinin Kullanılması Hakkında Öğretmen Adaylarının Görüşleri, *Erzincan universitesi Eğitim Fakültesi Dergisi*, 15(2), 188-203.

Gözütok, F. D. (2006). *Öğretim İkile ve Yöntemleri*. Ankara: Ekinoks Yayınları.

Güler, N. (2011). *Eğitim Bilimleri Ölçme ve Değerlendirme*. Ankara: Pegem Akademi Yayınları.

Güneş, E. (2009). *Fen ve teknoloji dersinde istasyon tekniği ile yapılan öğretimin erişiyi ve kalıcılığı etkisi*, Unpublished master thesis, Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.

Herried, F. C. (1994). *Cased Studies in Science*, A Novel Method of Science Education. *Journal of College Science Teaching*, P. 221-229.

İbrahimoglu, Z. (2010). *6.sinif sosyal bilgiler dersinde örnek olay kullananının öğrencilerin akademik başarı, derse karşı tutum ve eleştirel düşünce becerileri üzerine etkisi*, Unpublished master thesis, Marmara Üniversitesi, Eğitim Bilimleri Enstitüsü, İstanbul.

İnel, D. (2012). *Kavram karikatürleri destekli probleme dayalı öğrenme yönteminin öğrencilerin problem çözme becerileri algılama, fen öğrenmeye yönelik motivasyonlar ve kavramsal anlama düzeylerine etkileri*, Unpublished doctoral dissertation, Dokuz Eylül Üniversitesi Eğitim Bilimleri Enstitüsü, İzmir.

Kan, A. (2008). *Eğitimde ölçme ve değerlendirme*. Ankara: Pegem Akademi Yayıncılık.

Kara Ekemen, D. (2017). *Biyolojik çeşitlilik ve korunması konusunun öğretimlerinde istasyon tekniği kullanımının 9. sınıf öğrencilerinin akademik başarıları ve tutumları üzerine etkisi*, Unpublished master thesis, Afyon Kocatepe Üniversitesi, Sosyal Bilimler Enstitüsü, Afyonkarahisar.

Karslı, M. (2018). *STEM etkinliklerine dayalı senaryo tabanlı öğrenme yaklaşımının (STÖY) öğrencilerin akademik başarılara, mesleki seçmeleri ve motivasyonları üzerine etkisini incelenmesi*, Unpublished master thesis, Çukurova Üniversitesi Sosyal Bilimler Enstitüsü, Adana.

Koca M. (2018). *Altıncı sınıf fen bilimleri dersi hücre konusunun öğretiminde istasyon tekniği uygulamasının öğrencilerin akademik başarısına, kalıcılığına ve tutumlarına etkisi*, Yüksek lisans tezi, Firat Üniversitesi Eğitim Bilimleri Enstitüsü, Elazığ.

Konu, M. (2017). *Yaşam temelli probleme dayalı öğretim uygulamalarının öğrencilerin biyoloji dersindeki başarılara, tutumlarına, motivasyonlarına ve problem çözme becerilerine etkisi*, Unpublished doctoral dissertation, Atatürk Üniversitesi Eğitim Bilimleri Enstitüsü, Erzurum.

Küçükahmet, L. (2002). *Öğretimde planlama ve değerlendirme*. Ankara: Nobel Yayınevi.

M.E.B. (2013). İlkokul programı (ilkokullar) fen bilimleri dersi (3-8. sınıflar) öğretim programı, Talim ve Terbiye Kurulu Başkanlığı, Ankara.

M.E.B. (2017). İlkokul programı (ilkokullar) fen bilimleri dersi (3-8. sınıflar) öğretim programı, Talim ve Terbiye Kurulu Başkanlığı, Ankara.

Maden, S. & Durukan, E. (2010). *İstasyon tekniğinin yaratıcı yazma becerisi kazandırmaya ve derse karşı tutuma etkisi*, TÜBAR-XXVII.

Mergen, H. H. (2011). *İlköğretim 5. sınıf sosyal bilgiler dersinde öğrenme istasyonları uygulamasının akademik başarıya ve kalıcılığa etkisi*, Unpublished doctoral dissertation, Ataköy Kocatepe Üniversitesi, Sosyal Bilimler Enstitüsü, Afyonkarahisar.
Merriam, S.B. (2013). *Nitel Araştırma Desen ve Uygulama İçin Bir Rehber*. Çev. Editörü: Selahattin Turan. Ankara: Nobel Yayınları.

Miles, M.B. & Huberman, A.M. (1994). *Qualitative data analysis: An expanded sourcebook*. Thousand Oaks, CA: Sage.

Ocak, G. (2010). The effect of learning stations on the level of academic success and retention of elementary school students, *The New Educational Review, 21*(2), 146-157.

Oksal, B. (2014). *The effects of cooperative learning and technology on english language learners’ speaking anxiety and motivation level: a case study at a Turkish private university*, MA thesis, Bahçeşehir University, İstanbul.

Özaydın Özkara, B. (2016). *Probleme ve iş birliğine dayalı çevrimiçi öğrenmenin öğrenci başarısı, motivasyonu ve memnuniyetine etkisi*, Unpublished doctoral dissertation, Gazi Üniversitesi Eğitim Bilimleri Enstitüsü, Ankara.

Ozkan, Ö. (2010). *Örnek olay yönteminin hayat bilgisi dersi öğrenme ortamlarında kullanımının etkiliği*, Unpublished master thesis, Marmara Üniversitesi, İstanbul.

Öztürk, S. & Alper, A. (2019). Programlama öğretimindeki ters-yüz öğretim yönteminin öğrencilerin başarılara, bilgisyara yönelik tutumuna ve kendi kendine öğrenme düzeylerine etkisi. *Bilim, Eğitim, Sanat ve Teknoloji Dergisi (BEST Dergi), 3*(1), 13-26.

Pehlivanlar, E. (2005). *İlköğretim 6. Sınıf “Canlının İç Yapısına Yolculuk” ünitesinde örnek olay yönteminin başarısı*, hatırlama ve bilgi üstü becerilerin gelişimine etkisi, Unpublished master thesis, Marmara Üniversitesi, İstanbul.

Pelch, M.A. & McConnell, D.A. (2017). How does adding an emphasis on socioscientific issues influence student attitudes about science, its relevance, and their interpretations of sustainability?, *Journal of Geoscience Education, 65*, 203-214.

Porter E. J. (2004). *Classroom learning centers: study of a junior high school learning assisted program in mathematics*, MA thesis, Pacific Lutheran University.

Ratcliffe, M. & Grace, M. (2003). *Science Education for citizenship: Teaching socio -scientific issues*, Maidenhead, *Open University Press*.

Robert, P. H. (1999). *Effects of multisensory resources on the achievement and science attitudes of seventh-grade suburban students taught science concepts on and above grade level*, Unpublished Doctoral Dissertation, St. John’s University, New York.

Sadler, T. D. & Zeidler, D. L. (2005). Patterns of informal reasoning in the context of socioscientific decision making. *Journal of Research in Science Teaching, 42*, 112–138.

Sadler, T. D. (2009). Situated learning in science education: Socio-scientific issues as contexts for practice, *Studies in Science Education, 45*, 1-42.

Sadler, T. D. (2011). Socio-scientific issues in the classroom: Teaching, learning and research, New York: Springer.

Sancar, N. A. (2010). *İlköğretim birinci kademe fen ve teknoloji dersi öğretiminde kullanılan örnek olay yönteminin etkiliği*, Unpublished master thesis, Beykent Üniversitesi, İstanbul.

Stepien, W. & Gallager, S. (1993). *Problem-based learning: As Authentic as it gets, Educational Leadership, 50*(7), 25-28.

Şahin, F. & Hacıoğlu, Y. (2010). Bilimsel tartışma destekli örnek olayların 8. sınıf öğrencilerinin “kalıtım” konusunda kavram öğrenmelerine ve okuduğunu anlamaya becerilerine etkisi, *International Conference on New Trends in Education and Their Implications, 269-275*.

959
Zeliha Gül TÜRE, Paşa YALÇIN, Sema ALTUN YALÇIN – Pegem Eğitim ve Öğretim Dergisi, 10(3), 2020, 929-960

Talens, J. (2016). Teaching with socio-scientific issues in physical science: teacher and students’ experiences, *International Journal of Evaluation and Research in Education (IJERE)*, 5(4), 271-283.

Taşpınar, P. (2011). Sosyobilimsel tartışma destekli sağlık eğitimi etkinliklerinin ilköğretim 5. sınıf öğrencilerinde sağlık bilincinin ve içerik bilgisinin gelişimine etkisi, Yüksek lisans tezi, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

Tekin, H. 2004. *Eğitimde ölçme ve değerlendirme*. Ankara: Yargı Yayınevi.

Topçu, M. S. (2017). Sosyobilimsel konular ve öğretimi (2. ed). Ankara: Pegem Akademi.

Topçu, M. S., Sadler, T. D., & Yılmaz-Tuzun, O. (2010). Preservice science teachers’ informal reasoning about socio-scientific issues: The influence of issue context, *International Journal of Science Education*, 32(18), 2475-2495.

Uğur, A. (2007). Oluşturmacı sosyal bilgiler öğretiminde örnek olay incelemesi tekniğinin öğrencilerin empatik düşünme becerilerine etkisi bir eylem araştırması, Unpublished master thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

Ütkür, N. (2016). Örnek olay yönteminin hayat bilgisi dersinde uygulanmasına yönelik bir eylem araştırması, Unpublished master thesis, Marmara Üniversitesi Eğitim Bilimleri Enstitüsü, İstanbul.

Yakar, P. (2017). Sokratik sorgulama tekniğinin ortaokul öğrencilerinin sosyobilimsel konulara yönelik tutumlarına ve fen öğrenmeyi yönelik motivasyon düzeylerine etkisi, Unpublished master thesis, Muğla Sıtkı Koçman Üniversitesi Eğitim Bilimleri Enstitüsü, Muğla.

Yıldırın Sönmez, D. (2015). *Effect of case based learning on 10th grade students’ understanding of gas concepts, their attitude and motivation*, Unpublished doctoral dissertation, The Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara.

Yıldırım, A. & Şimşek, H. (2013). *Sosyal bilimlerde nitel araştırma yöntemleri*. Ankara: Seçkin Yayıncılık.

Yüksel, Ö. (2017). Evsel atıklar ve geri dönüşüm -kimya endüstrisi konularında istasyon tekniğinin öğrencilerin akademik başarısına ve görüşlerine etkisi, Unpublished master thesis, Ordu Üniversitesi Fen Bilimleri Enstitüsü, Ordu.

Zeidler, D. L., & Nichols, B. H. (2009). Socio-scientific issues: *Theory and practice, Journal of Elementary Science Education*, 21(2), 49-58.