ON THE UNIQUENESS FOR ONE-DIMENSIONAL
CONSTRAINED HAMILTON-JACOBI EQUATIONS

YEONEUNG KIM

Abstract. The goal of this paper is to study uniqueness of a one-dimensional
Hamilton-Jacobi equation
\[\begin{cases}
 u_t = |u_x|^2 + R(x, I(t)) & \text{in } \mathbb{R} \times (0, \infty), \\
 \max_{\mathbb{R}} u(\cdot, t) = 0 & \text{on } [0, \infty),
\end{cases} \]
with an initial condition \(u_0(x, 0) = u_0(x) \) on \(\mathbb{R} \). A reaction term \(R(x, I(t)) \) is given
while \(I(t) \) is an unknown constraint (Lagrange multiplier) that forces maximum
of \(u \) to be always zero. In the paper, we prove uniqueness of a pair of unknowns
\((u, I)\) using dynamic programming principle in one dimensional space for some
particular class of nonseparable reaction \(R(x, I(t)) \).

1. Introduction

The non-local parabolic equations arising in adaptive dynamics (see [8, 9, 10, 11])
have an interesting feature so called Dirac concentration of density as a diffusion
coefficient vanishes. To illustrate this, we consider the following evolution equation
\[\begin{align*}
 n^\varepsilon_t - \varepsilon \Delta n^\varepsilon &= \frac{n^\varepsilon}{\varepsilon} R(x, I^\varepsilon(t)) & \text{in } \mathbb{R}^n \times (0, \infty), \\
 n^\varepsilon(x, 0) &= n_0^\varepsilon \in L^1(\mathbb{R}^n) & \text{on } \mathbb{R}^n, \\
 I^\varepsilon(t) &= \int_{\mathbb{R}^n} \psi(x) n^\varepsilon(t, x) \, dx,
\end{align*} \]
where the spatial variable \(x \) denotes ‘traits’ in the environment. Furthermore, \(n^\varepsilon \),
\(R(x, I^\varepsilon(t)) \), \(\varepsilon \) and \(\psi(x) \) describe density of the population, reproduction rate, mu-
tation rate and consumption rate by a trait \(x \). Here \(\psi \) assumed to be a non-
negative compactly supported function. We then take Hopf-Cole transformation
\[n^\varepsilon(x, t) = e^{u^\varepsilon(x,t)/\varepsilon}. \]
It was shown in many literatures that as mutation rate \(\varepsilon \) van-
ishes, \(u^\varepsilon \) converges locally uniformly to \(u \) which is a viscosity solution to
\[\begin{align*}
 u_t &= |Du|^2 + R(x, I(t)) & \text{in } \mathbb{R}^n \times (0, \infty), \\
 \max_{\mathbb{R}^n} u(\cdot, t) &= 0 & \text{on } [0, \infty), \\
 u(x, 0) &= u_0(x) & \text{on } \mathbb{R}^n.
\end{align*} \]
The constraint of \(u \) is obtained from the property that \(I^\varepsilon \) is positive and uniformly
bounded. It was also shown that
\[n^\varepsilon(x, t) n(x, t) \rightarrow \mathcal{P}(x)(x(t) - \mathcal{X}(t)) \text{ weakly in the sense of measure } \]

Date: July 11, 2018.
2010 Mathematics Subject Classification. 35A02; 35F21; 35Q92 .
Key words and phrases. Hamilton-Jacobi equation with constraint, selection-mutation model.
Supported in part by NSF grant DMS-1664424.
where
\[u(x,t) = \max_{\mathbb{R}} u(\cdot, t) = 0 \text{ and } \rho(t) = \frac{I(t)}{\psi(x)} \]
for the solution \(u^\varepsilon(x,t) \) to (1.2) (see [14, 6]). Despite the existence of solutions to (1.2) is quite well understood, the uniqueness is relatively less known. In the recent work by S. Mirrahimi, J. -M. Roquejoffre [13], the uniqueness of the solution is shown when the reaction and initial condition \(u_0(x) \) are strictly concave so that regularity of maximum point is obtained. However, the uniqueness for general initial data and a nonconcave reaction is still open. In this paper, the uniqueness property for constrained Hamilton-Jacobi equations in 1-D with some nonseparable reaction terms is obtained using dynamic programming principle.

1.1. Setting and main result. We need following assumptions on
\[R(x,I) : \mathbb{R} \times [0, \infty) \to \mathbb{R} \text{ and } u_0(x) : \mathbb{R} \to \mathbb{R}. \]
where the reaction term is defined as
\[R(x,I) = \begin{cases} b(x) - Q(I) & \text{for } x \geq 0, \\ R'(x,I) & \text{for } x < 0. \end{cases} \]

Main Assumptions. For a positive \(I_M \),
(A1) \(R \) is smooth and \(R'(\cdot,I) < 0 \) on \((-\infty,0)\) for any positive \(I \);
(A2) sup\(\{0 \leq I \leq I_M\} \|R(\cdot,I)\|_{W^{2,\infty}} < \infty \) and \(R \) is strictly decreasing in \(I \);
(A3) \(Q(I) \geq 0 \) is strictly increasing in \(I \) and \(Q(0) = 0 \)
(A4) sup\(R(\cdot,I_M) = 0 \);
(A5) min\(R(\cdot,0) = 0 \);
(A6) \(b(x) \) is strictly increasing on \([0, \infty)\) with \(b(0)=0 \);
(A7) \(b'(x) \) is Lipschitz continuous, hence, nonnegative;
(A8) \(u_0(x) \in C^2(\mathbb{R}) \) with \(\|u_0\|_{C^2(\mathbb{R})} < \infty \), max\(x \in \mathbb{R} \) \(u_0(\cdot) \) = \(u_0(0) = 0 \) and \(u_0(x) < 0 \) elsewhere.

Additionally, \(f \in W^{1,\infty}(\mathbb{R}^n) \), that is; \(\|f\|_{L^{\infty}(\mathbb{R}^n)} + \|Df\|_{L^{\infty}(\mathbb{R}^n)} < \infty \).

Now we are ready to state our main theorem. Under the assumptions above, we consider the following equation.
\[
\begin{cases}
 u_t = u_x^2 + R(x,I(t)) & \text{in } \mathbb{R} \times (0, \infty), \\
 \max_{\mathbb{R}} u(\cdot,t) = 0 & \text{on } [0, \infty), \\
 u(x,0) = u_0(x) & \text{on } \mathbb{R}.
\end{cases}
\]

Theorem 1.1. There exists at most one pair \((u,I)\) such that \(u(x,t) \in C(\mathbb{R} \times (0, \infty)) \)
solves (1.6) in viscosity sense and \(I(t) \in C([0, \infty)) \) is strictly increasing.

2. Preliminary

Throughout the section, let us assume \((u,I) \in C(\mathbb{R} \times (0, \infty)) \times C([0, \infty)) \) is a pair of solution to (1.6) in viscosity sense. By a Lipschitz estimate provided by the author in [15], one can assume further that \(u \) is Lipschitz continuous in \(\mathbb{R} \times [0, T] \) for
any positive T. Now we follow dynamic programming principle arguments presented in [13], which yields

$$u(x,t) = \sup_{\gamma(t) = x} \{ F(\gamma) : \gamma \in AC([0,t]; \mathbb{R}) \}$$

where

$$F(\gamma) := u_0(\gamma(0)) + \int_0^t \left(-\frac{\dot{\gamma}^2}{4} + R(\gamma(s), I(s)) \right) ds.$$ (2.1)

Furthermore, one can actually show that there exists a path $\gamma(s) \in C^1([0,t); \mathbb{R})$ such that

$$u(x,t) = u_0(\gamma(0)) + \int_0^t \left(-\frac{\dot{\gamma}^2}{4} + R(\gamma(s), I(s)) \right) ds$$ (2.3)

with $\gamma(t) = 0$ and it satisfies Euler-Lagrange equation

$$\begin{align*}
\ddot{\gamma}(s) + 2R_x(\gamma(s), I(s)) &= 0, \\
\dot{\gamma}(0) + 2u_0(\gamma(0)) &= 0, \\
\gamma(t) &= x.
\end{align*}$$ (2.4)

For the details, see [13] and references therein.

There could be more than one solution to the equation above. However, the Euler-Lagrange equation reduces to a simpler equation that results in the existence of a unique solution in our setting. We start with some generic properties.

Proposition 2.1. Assume that $\max_\mathbb{R} u(\cdot, t) = u(x', t) = 0$. Then $R(x', I(t)) = 0$.

Proof. By viscosity subsolution test, one can easily obtain $R(x', I(t)) \geq 0$. Now we assume that $R(x', I(t)) > 0$. Then there exists $t_0 > 0$ such that $R(x', I(s)) > 0$ on $[t, t + t_0]$ by the continuity of I and R. Integrating (1.6) both sides over $\{x'\} \times [t, t + t_0]$ yields

$$u(x', t + t_0) - u(x', t) \geq \int_t^{t+t_0} R(x', I(s)) ds > 0$$

Hence, we get

$$u(x', t + t_0) > 0,$$

which violates the maximum constraint.

Definition 1. We define $x(t) \in \mathbb{R}$ to satisfy

$$R(x(t), I(t)) = 0$$

for $t > 0$ and a strictly increasing $I(t)$. Then, together with Proposition 2.1, we have

$$\max_\mathbb{R} u(\cdot, t) = u(x(t), t)) = 0.$$ (2.5)

Proposition 2.2. $I(0) = 0$ and $I(s) \leq I_M$ on $[0, \infty)$.
Proof. Let us first prove $I(0) = 0$ when (u, I) is a pair of solution. We may assume $I(0) > 0$. From the property (2.5), we deduce

$$0 = \lim_{t \to 0^+} u(x(t), t) = u(x(0^+), 0) < 0$$

where $x(0^+)$ is a right limit of $x(t)$, which yields contradiction. Therefore, $I(0) = 0$. The second part of the proposition, $I(s) \leq I_M$, is a straight consequence of Proposition 2.1 due to the assumption on R. \qed

We also need some regularity properties of the solution $u(x, t)$, which play crucial roles in analyzing the trajectory $\gamma(s)$.

Definition 2. For a real valued function $u(x)$ define for $x \in \mathbb{R}^n$, we define super differential and sub differential at x as

$$D^+u(x) = \{ p \in \mathbb{R}^n : \lim_{y \to x} \inf \frac{u(y) - u(x) - p \cdot (y - x)}{|y - x|} \geq 0 \}$$

$$D^-u(x) = \{ p \in \mathbb{R}^n : \lim_{y \to x} \sup \frac{u(y) - u(x) - p \cdot (y - x)}{|y - x|} \leq 0 \}$$

Lemma 2.3. A solution $u(x, t)$ is semiconvex in $x \in \mathbb{R}$ for any fixed positive T.

Proof. Let us define $v(x, t) = -u(x, t)$ and prove $v(x, t)$ is semiconcave in $\mathbb{R} \times [0, T]$. Cleary, v satisfies

$$\begin{cases}
 v_t + v_x^2 + R(x, I(t)) = 0 & \text{in } \mathbb{R}^n \times (0, T], \\
 v(x, 0) = -u(x, 0) & \text{on } \mathbb{R}.
\end{cases}$$

in viscosity sense. To prove semiconcavity of v, we first provide a priori estimate for v^ε where v^ε is a unique solution to

$$\begin{cases}
 v_t^\varepsilon + (v_x^\varepsilon)^2 + R(x, I(t)) = \varepsilon v_{xx}^\varepsilon & \text{in } \mathbb{R} \times (0, T], \\
 v^\varepsilon(x, 0) = -u_0(x) := v_0(x) & \text{on } \mathbb{R}.
\end{cases}$$

Differentiating (2.9) twice with respect to x and substituting w for v_{xx}^ε yields

$$w_t + 2w^2 + 2v_xw_x + R_{xx} = \varepsilon w_{xx}.$$ \hspace{1cm} (2.10)

It is known that w is bounded but the bound depends on ε. However, one can actually show that the bound is uniform in ε. To justify this, we first notice that w is a subsolution to the following parabolic equation

$$\begin{cases}
 w_t + v_xw_x + R_{xx} = \varepsilon w_{xx} & \text{in } \mathbb{R} \times (0, T], \\
 w(x, 0) = v_0''(x) & \text{on } \mathbb{R}.
\end{cases}$$

(2.11)

On the other hand, $v_0 + Ct$ and $v_0 - Ct$ are supersolution and subsolution to (2.11) respectively where C depends only on the bound for R_{xx}. Therefore, by comparison principle, one can obtain $|w| < C$ where C does not depend on ε. As a last step, we need the following estimate.

Claim. There exists positive C that depends only on T such that

$$\|v_t^\varepsilon\|_{L^\infty(\mathbb{R} \times [0, T])} + \|v_x^\varepsilon\|_{L^\infty(\mathbb{R} \times [0, T])} < C$$
Proof of claim. Since $0 \leq I(t) \leq I_M$, $R(x,I)$ is bounded, for $C > 0$ large enough, we have
\begin{equation}
 v_0(x) - Ct \leq v^\varepsilon(x,t) \leq v_0(x) + Ct
\end{equation}
by the comparison principle. Using the comparison principle one more time yields
\begin{equation}
 v^\varepsilon(s + t) \geq v^\varepsilon(t) - Cs
\end{equation}
for $s, t \geq 0$. Therefore, $v^\varepsilon_t > -C$ in $\mathbb{R} \times [0, T]$. On the other hand, observing the original equation \[2.9\], we can derive $\|v^\varepsilon_x\|_{L^\infty(\mathbb{R} \times [0, T])} < C$ as v^ε_{xx} is bounded above. Finally, an upper bound for v^ε_t is obtained, and such bounds depend only on T.

As a consequence, v^ε converges locally uniformly to v as ε goes to 0 by Arzela-Ascoli and by the uniqueness and stability of a viscosity solution. Moreover, the semiconcavity of v^ε in x implies that
\begin{equation}
 v^\varepsilon(x,t) - K |x|^2
\end{equation}
is concave in x for some positive K. Combining it with locally uniform convergence of v^ε, we get semiconcavity of v in x. Therefore, u is locally semiconvex in x.

Lemma 2.4. For each $t \in (0, \infty)$, $u(x,t)$ is differentiable at $(x(t), t)$ with respect to the space variable x and it satisfies
\begin{equation}
 0 = u_x(x(t), t) = -\frac{\dot{\gamma}_x(t)}{2}.
\end{equation}
In addition to that, by the maximum constraint, we have $\dot{\gamma}_x(t) = 0$.

Proof. By Lemma 2.3, $v(x,t) = -u(x,t)$ is semiconcave in x. Hence, supper differential at $(x(t), t)$ is nonempty. On the other hand $p = 0$ is a subdifferential of for v at $(x(t), t)$. Therefore, u is differentiable with respect to the space variable at $(x(t), t)$. Moreover, the derivative is 0.

A classical result in \[3\] suggests that
\[\eta(t) \in \nabla^+ v(x(t), t)\]
where $\dot{\gamma}_x(s) = 2\eta(s)$ for $s \in [0, t]$ and v is defined as above. Combining these two, we get the result using the differentiability of v at $(x(t), t)$.

Proposition 2.5. Let $\gamma(s) \in C^1([0, t]; \mathbb{R})$ an optimizing path whose terminal point is $x(t)$ and $x(s) \in \mathbb{R}$ satisfy $R(x(s), I(s)) = 0$ for $s > 0$. Then we have $\gamma(s) > x(s)$ for $s \in (0, t)$.

Proof. We may assume first that $\gamma(s) \geq 0$ since $F(\gamma^+) \geq F(\gamma)$ where
\begin{equation}
 \gamma^+(s) = \begin{cases}
 \gamma(s) & \text{if } \gamma(s) > 0 \\
 0 & \text{if } \gamma(s) \leq 0
\end{cases}
\end{equation}
Now we assume $\gamma(s) < x(s)$ on $(0, t)$. Then $R(\gamma(s), I(s)) < R(x(s), I(s)) = 0$ on $(0, t)$, which yields
\[0 = u(x(t), t) = \int_{t_0}^t \left(-\frac{\dot{\gamma}_x^2}{4} + R(\gamma(s), I(s)) \right) + u_0(\gamma(0)) < 0.\]
Hence, there exists $t' \in (t_0, t)$ such that $\gamma(t') = x(t')$. On the other hand, $\gamma(s)$ satisfies the Euler-Lagrange equation, which is,

$$\ddot{\gamma}(s) + R_x(\gamma(s), I(s)) = \dot{\gamma}(s) + b'(\gamma(s)) = 0. \quad (2.16)$$

Integrating the equation from t' to t gives

$$0 = \dot{\gamma}(t) - \dot{\gamma}(t_0) = \int_{t_0}^{t} b'(\gamma(s)) > 0,$$

by the lemma above. Therefore, $\gamma(s) > x(s)$ on $(0, t)$. □

3. Proof of the theorem 1.1

We assume that we have two pairs of solutions (u_1, I_1) and (u_2, I_2) to (1.6) for $n = 1$ and consider two cases. Let us fix the time T.

Case 1: $I_1(s)$ and $I_2(s)$ intersect only at the origin for $s \in [0, T]$. Without loss of generality, let us assume $I_1 < I_2$ except for the terminal point. Then u_1 is a viscosity supersolution to

$$\begin{cases} (u_2)_t = (u_2)_x^2 + R_x(I_2(t)) & \text{in } \mathbb{R} \times (0, t], \\ u(x, 0) = u_0(x) & \text{on } \mathbb{R}. \end{cases} \quad (3.1)$$

By the comparison principle and the maximum constraint, we have $x_1(s) = x_2(s)$ for all s, where x_1, x_2 are defined as above, which is a contradiction.

Case 2: $I_1(s)$ and $I_2(s)$ intersect at more than one point including the terminal point t. Let $t_0 < t_1 \in [0, t]$ be points such that

$$I_1(t_i) = I_2(t_i) \text{ for } i = 1, 2. \quad (3.2)$$

Hence, we have $x_1(t_0) = x_2(t_0) := \alpha$ and $x_1(t_1) = x_2(t_1) := \beta$. In addition to that, we may assume that

$$I_1 > I_2 \text{ for } i \in (t_0, t_1).$$

For the t_i's above, we define $\gamma_1(s)$ and $\eta_1(s)$ as optimizing trajectories corresponding to I_1 whose terminal points are α and β respectively. Similarly, one can define $\gamma_2(s)$ and $\eta_2(s)$ as optimizing trajectories corresponding to I_2 whose terminal points are α and β respectively. By Proposition 2.5 and Lemma 2.4, for each $i = 1, 2$, γ_i satisfies

$$\begin{cases} \ddot{\gamma}_i + 2b'(\gamma_i) = 0, \\ \dot{\gamma}_i(t) = 0, \\ \gamma(t) = \alpha. \end{cases}$$

Similarly, for each $i = 1, 2$, η_i is a solution to

$$\begin{cases} \ddot{\eta}_i + 2b'(\eta_i) = 0, \\ \dot{\eta}_i(t) = 0, \\ \gamma(t) = \beta. \end{cases}$$
ON THE UNIQUENESS FOR ONE-DIMENSIONAL CONSTRAINED HAMILTON-JACOBI EQUATIONS

Therefore, \(\gamma_1 = \gamma_2 := \gamma \) and \(\eta_1 = \eta_2 = \eta \). Applying this property to the relations

\[
0 = u_1(\beta, t_1) = \int_0^{t_1} \left(-\frac{\gamma^2}{4} + b(\gamma) - Q(I_1) \right) \, ds + u_0(\gamma(0), 0),
\]

\[
0 = u_2(\beta, t_0) = \int_0^{t_1} \left(-\frac{\gamma^2}{4} + b(\gamma) - Q(I_2) \right) \, ds + u_0(\gamma(0), 0),
\]

\[
0 = u_1(\alpha, t_1) = \int_0^{t_1} \left(-\frac{\eta^2}{4} + b(\gamma) - Q(I_1) \right) \, ds + u_0(\eta(0), 0),
\]

\[
0 = u_2(\alpha, t_0) = \int_0^{t_1} \left(-\frac{\eta^2}{4} + b(\gamma) - Q(I_2) \right) \, ds + u_0(\eta(0), 0),
\]

we end up getting

\[
0 = \int_{t_0}^{t_1} (Q(I_1) - Q(I_2)) \, ds,
\]

which contradicts \(I_1 > I_2 \) on \((t_0, t_1)\).

References

[1] S. Armstrong, H. V. Tran, *Viscosity solutions of general viscous Hamilton-Jacobi equations*, Mathematische Annalen. 361 (2014), 647-687.

[2] G. Barles, *Discontinuous viscosity solutions of first-order Hamilton-Jacobi equations: a guided visit*, Nonlinear Analysis: Theory, Methods & Appl. 20 (1999), no. 9, 1123-1134.

[3] P. Cannarsa, C. Sinestrari, *Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control*, Progress in Nonlinear Differential Equations and Their Applications.

[4] G. Barles, S. Mirrahimi, B. Perthame, *Concentration in Lotka-Volterra parabolic or integral equations: a general convergence result*, Methods Appl. Anal. 16 (2009), no. 3, pp.321-340.

[5] G. Barles, B. Perthame, *Concentrations and constrained Hamilton-Jacobi equations arising in adaptive dynamics*, Contemporary Math. 439 (2007), 57-68.

[6] O. Diekmann, P.-E. Jabin, S. Mischler, B. Perthame, *The dynamics of adaptation: an illuminating example and a Hamilton-Jacobi approach*, Th. Pop. Biol. 67 (2005), no. 4, 257-271.

[7] M. G. Crandall, L. C. Evans, P.-L. Lions, *Some properties of viscosity solutions of Hamilton-Jacobi equations*, Transaction of American Mathematical Society, 282 (1984), no. 2, 487-502.

[8] O. Diekmann, *Beginner’s guide to adaptive dynamics*, Banach Center Publications 63 (2004), 47-86.

[9] S. A. H. Geritz, E. Kisdi, G. Mészáros, J. A. J. Metz, *Dynamics of adaptation and evolutionary branching*, Phy. Rev. Letters 78 (1997), 2024-2027.

[10] S. A. H. Geritz, E. Kisdi, G. Mészáros, J. A. J. Metz, *Evolutionary singular strategies and the adaptive growth and branching of the evolutionary tree*, Evolutionary Ecology 12 (1998), 35-57.

[11] S. A. H. Geritz, E. Kisdi, M. Gyllenberg, F. J. Jacobs, J. A. J. Metz *Link between population dynamics and dynamics of Darwinian evolution*, Phy. Rev. Letters 95 (2005), no. 7.

[12] N. Q. Le, H. Mitake, H. V. Tran, *Dynamical and Geometric Aspects of Hamilton-Jacobi and Linearized Monge-Ampere Equations*, Lecture notes in Mathematics 2183 (2016).

[13] S. Mirrahimi, J.-M. Roquejoffre, *A class of Hamilton-Jacobi equations with constraint: Uniqueness and constructive approach*, J. of Differential Equations 250.5 (2016), 4717-4738.

[14] B. Perthame, G. Barles, *Dirac concentrations in Lotka-Volterra parabolic PDEs*, Indiana Univ. Math., J. 57 (2008), no. 7, 3275-3301.

[15] Y. Kim, *Wellposedness for constrained Hamilton-Jacobi equations*, preprint
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WISCONSIN MADISON, 480 LINCOLN DRIVE, MADISON, WI 53706, USA
E-mail address: yeonkim@math.wisc.edu