A note on optimization in \mathbb{R}^n

Fabio Silva Botelho

Abstract In this article, we develop an algorithm suitable for constrained optimization in \mathbb{R}^n. The results are developed through standard tools of n-dimensional real analysis and basic concepts of optimization. Indeed, the well known Banach fixed point theorem has a fundamental role in the main result establishment.

Keywords Optimization · Inequality constraints · Convergence

Mathematics Subject Classification (2010) 49M05 · 49M15

1 Introduction

In this short letter we develop a proximal algorithm for constrained optimization.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 class function. Consider the problem of minimizing locally f subject to $g(x) \leq 0$, where $g : \mathbb{R}^n \to \mathbb{R}$ is a given C^2 class function.

The lagrangian for this problem, denoted by $L : \mathbb{R}^{n+1} \to \mathbb{R}$ may be expressed by

$$L(x, \lambda) = f(x) + \lambda^2 g(x).$$

We define the proximal formulation for such a problem, denoted by L_p by

$$L_p(x, \lambda, x_k) = f(x) + \lambda^2 g(x) + \frac{K}{2} |x - x_k|^2.$$
2 The main result

Linearizing L_p, we propose the following procedure for looking for a critical point of such a function:

Consider

$$L_p(x, \lambda, x_k) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{1}{2} [f''(x_k)(x - x_k)] \cdot (x - x_k) + \lambda^2 (g(x_k) + g'(x_k) \cdot (x - x_k)) + \frac{K}{2} |x - x_k|^2.$$

Hence from

$$\frac{\partial L_p(x, \lambda, x_k)}{\partial x} = 0$$
we obtain,

$$f''(x_k)(x - x_k) + K(x - x_k) + f'(x_k) + \lambda^2 g'(x_k) = 0,$$
that is,

$$x - x_k = -(f''(x_k) + K I_d)^{-1}(f'(x_k) + \lambda^2 g'(x_k)),$$
and therefore

$$x(\lambda, x_k) = x_k - (f''(x_k) + K I_d)^{-1}(f'(x_k) + \lambda^2 g'(x_k)),$$
where I_d denotes the $n \times n$ identity matrix.

We define $L_1(\lambda, x_k) = \tilde{L}_p(x(\lambda, x_k), x_k, \lambda)$ so that

$$L_1(\lambda, x_k) = -\frac{1}{2} [(f''(x_k) + K I_d)^{-1}(f'(x_k) + \lambda^2 g'(x_k))] \cdot (f'(x_k) + \lambda^2 g'(x_k)) + f(x_k) + \lambda^2 g(x_k)$$

From

$$\frac{\partial L_1(\lambda, x_k)}{\partial \lambda} = 0,$$
we get

$$[(f''(x_k) + K I_d)^{-1}(f'(x_k) + \lambda^2 g'(x_k))] \cdot g'(x_k) \lambda - \lambda g(x_k) = 0,$$
so that we have two solutions,

$$\lambda_1 = 0$$
and

$$\lambda_2^2(x_k) = -\left(\frac{[(f''(x_k) + K I_d)^{-1}f'(x_k)] \cdot g'(x_k) - g(x_k)}{[(f''(x_k) + K I_d)^{-1}g'(x_k)] \cdot g'(x_k)} \right).$$

Observe that if $(\lambda_2^2(x_k) < 0$ then $\lambda_2^2(x_k)$ is complex so that, from the condition $\lambda^2 \geq 0$, we obtain

$$\lambda^2(x_k) = \max\{0, (\lambda_2^2(x_k))\}.$$
Also, from the generalized inverse function theorem $\lambda^2(x)$ is locally Lipschtzian (see [3,11,12] for details). Hence, we may infer that for a given $x_0 \in \mathbb{R}^n$ there exists $r > 0$ and $\hat{K}_3 > 0$ such that

$$|\lambda^2(x) - \lambda^2(y)| \leq \hat{K}_3|x - y|,$$

$\forall x, y \in B_r(x_0)$. With such results in mind, for such an $x_0 \in \mathbb{R}^n$, define $\{x_k\}$ by

$$x_1 = x_0 - (f''(x_0) + KId)^{-1}(f'(x_0) + \lambda^2(x_0)g'(x_0)),$$

$$x_{k+1} = x_k - (f''(x_k) + KId)^{-1}(f'(x_k) + \lambda^2(x_k)g'(x_k)), \forall k \in \mathbb{N}.$$

Assume

$$g(x_0) < 0$$

and there exists \hat{K}_1 such that $|f''(x)| \leq \hat{K}_1, \forall x \in B_r(x_0)$. Define

$$K_3 = \hat{K}_3 \left(\sup_{x \in B_r(x_0)} |g'(x)| \right),$$

$$\alpha_1 = \frac{2K_3}{|K - \hat{K}_1|}$$

and suppose

$$f''(x) + \lambda^2(x)g''(x) \geq \alpha_1(\hat{K}_1 + K)Id, \forall x, y \in B_r(x_0).$$

(5)

Suppose also K is such that $K > \hat{K}_1$,

$$0 < \alpha_1 < 1,$$

$$\left(1 - \frac{\alpha_1}{4}\right)Id \leq ((f''(x) + KId)^{-1}(f''(y) + KId) \equiv H(x,y) \leq \left(1 + \frac{\alpha_1}{4}\right)Id,$$

$\forall x, y \in B_r(x_0)$ and

$$0 \leq \frac{f''(x) + \lambda(x)g''(x)}{K - \hat{K}_1} \leq \left(1 - \frac{\alpha_1}{2}\right)Id, \forall x, y \in B_r(x_0).$$

(7)

Observe that since $|f''(x)| \leq \hat{K}_1$, we have

$$0 \leq (K - \hat{K}_1)Id \leq f''(x) + KId,$$

so that

$$(f''(x) + KId)^{-1} \leq \frac{1}{K - \hat{K}_1}Id,$$

(8)

and

$$|(f''(x) + KId)^{-1}|K_3 \leq \frac{K_3}{|K - \hat{K}_1|} = \frac{\alpha_1}{2}, \forall x \in B_r(x_0).$$

(9)

Assume $K > 0$ is such that

$$x_1 \in B_{r(1-\alpha_0)}(x_0)$$
and suppose the induction hypotheses
\[x_2, \ldots, x_{k+1} \in B_r(x_0). \]
where \(0 < \alpha_0 < 1 \) is specified in the next lines.

Note that,
\[x_{k+2} - x_{k+1} = -(f''(x_{k+1}) + KI_d)^{-1}(f'(x_{k+1}) + \lambda^2(x_{k+1})g'(x_{k+1})), \]
and
\[x_{k+1} - x_k = -(f''(x_k) + KI_d)^{-1}(f'(x_k) + \lambda^2(x_k)g'(x_k)), \]
so that,
\[(f''(x_{k+1}) + KI_d)(x_{k+2} - x_{k+1}) = -(f'(x_{k+1}) + \lambda^2(x_{k+1})g'(x_{k+1})), \]
and
\[(f''(x_k) + KI_d)(x_{k+1} - x_k) = -(f'(x_k) + \lambda^2(x_k)g'(x_k)). \]

Therefore,
\[(f''(x_{k+1}) + KI_d)(x_{k+2} - x_{k+1}) = (f''(x_k) + KI_d)(x_{k+1} - x_k) \]
\[= (f''(x_k) + KI_d)(x_{k+1} - x_k) - (f'(x_{k+1}) + \lambda^2(x_{k+1})g'(x_{k+1}))(x_{k+1} - x_k) \]
\[= (f''(x_k) + KI_d)(x_{k+1} - x_k) - (f'(x_{k+1}) + \lambda^2(x_{k+1})g'(x_{k+1}))(x_{k+1} - x_k) \]
where \(\tilde{x}_k \) is on the line connecting \(x_k \) and \(x_{k+1} \).

Thus,
\[x_{k+2} - x_{k+1} = (f''(x_{k+1}) + KI_d)^{-1}[f''(x_k) + KI_d](x_{k+1} - x_k) \]
\[= (f''(x_k) + KI_d)(x_{k+1} - x_k) - (f'(x_{k+1}) + \lambda^2(x_{k+1})g'(x_{k+1}))(x_{k+1} - x_k) \]
\[= (f''(x_k) + KI_d)(x_{k+1} - x_k) - (f'(x_k) + \lambda^2(x_k)g'(x_k)), \]
so that
\[|x_{k+2} - x_{k+1}| \leq |H(x_{k+1}, x_k) - (f''(x_{k+1}) + KI_d)^{-1}(f''(\tilde{x}_k) \]
\[+ \lambda^2(x_{k+1})g''(\tilde{x}_k))||x_{k+1} - x_k| \]
\[+ |(f''(x_{k+1}) + KI_d)^{-1}K_3||x_{k+1} - x_k|. \]

Observe that, from [3],
\[f''(\tilde{x}_k) + \lambda^2(\tilde{x}_{k+1})g'(x_k) \geq \alpha_1(\tilde{K}_1 + K)I_d \geq \alpha_1(f''(x_{k+1}) + KI_d), \]
so that
\[((f''(x_{k+1}) + KI_d)^{-1}(f''(\tilde{x}_k) + \lambda^2(x_{k+1})g''(\tilde{x}_k)) \geq \alpha_1I_d. \]
Hence, from this, (6), (8) and (7), we obtain
\[
I_d \left(1 + \frac{\alpha_1}{4}\right) - \alpha_1 I_d
\geq H(x_{k+1}, x_k) - (f''(x_{k+1}) + K I_d)^{-1}(f''(\tilde{x}_k) + \lambda^2(x_{k+1})g''(\tilde{x}_k))
\geq I_d \left(1 - \frac{\alpha_1}{4}\right) - (K I_d - \hat{K}_1 I_d)^{-1}(f''(\tilde{x}_k) + \lambda^2(x_{k+1})g''(\tilde{x}_k))
\geq I_d \left(1 - \frac{\alpha_1}{4}\right) - I_d \left(1 - \frac{\alpha_1}{2}\right)
= \frac{\alpha_1}{4} I_d
\geq 0,
\]
and therefore,
\[
|H(x_{k+1}, x_k) - (f''(x_k) + K I_d)^{-1}(f''(\tilde{x}_k) + \lambda^2(x_{k+1})g''(\tilde{x}_k))| \leq 1 - \frac{3\alpha_1}{4}.
\]
On the other hand, from (9) we have,
\[
|(f''(x_k) + K I_d)^{-1}K_3| \leq \frac{\alpha_1}{2}.
\]
From (11) and these last two inequalities, we obtain
\[
|x_{k+2} - x_{k+1}| \leq \left(1 - \frac{3\alpha_1}{4} + \frac{\alpha_1}{2}\right)|x_{k+1} - x_k| = \left(1 - \frac{\alpha_1}{4}\right)|x_{k+1} - x_k|.
\]
Thus, denoting \(\alpha_0 = 1 - \alpha_1/4\), we have obtained,
\[
|x_{j+2} - x_{j+1}| \leq \alpha_0|x_{j+1} - x_j|, \forall j \in \{1, \cdots, k + 1\}
\]
so that
\[
|x_{j+2} - x_{j+1}| \leq \alpha_0|x_{j+1} - x_j|
\leq \alpha_0^2|x_{j} - x_{j-1}|
\leq \cdots
\leq \alpha_0^{j+1}|x_1 - x_0|, \forall j \in \{1, \cdots, k\}.
\]
Thus,
\[
|x_{k+2} - x_1|
= |x_{k+2} - x_{k+1} + x_{k+1} - x_k + x_k - x_{k-1} + \cdots + x_2 - x_1|
\leq |x_{k+2} - x_{k+1}| + |x_{k+1} - x_k| + \cdots + |x_2 - x_1|
\leq \sum_{j=1}^{k+1} \alpha_0^j |x_1 - x_0|
\leq \sum_{j=1}^{+\infty} \alpha_0^j |x_1 - x_0|
= \frac{\alpha_0}{1 - \alpha_0} |x_1 - x_0|,
\]
so that

\[
|x_{k+2} - x_0| \leq |x_{k+2} - x_1| + |x_1 - x_0| \\
\leq \frac{\alpha_0}{1 - \alpha_0} |x_1 - x_0| + |x_1 - x_0| \\
= \frac{1}{1 - \alpha_0} |x_1 - x_0| \\
< \frac{1}{1 - \alpha_0} r(1 - \alpha_0) \\
= r.
\]

(15)

Hence \(x_{k+2} \in B_r(x_0)\), and therefore the induction is complete, so that, \(x_k \in B_r(x_0), \forall k \in \mathbb{N}\).

Moreover, \(\{x_k\}\) is a Cauchy sequence, so that there exists \(\tilde{x}\), such that

\(x_k \to \tilde{x}, \text{ as } k \to \infty\).

Finally

\[
0 = \lim_{k \to \infty} (x_{k+1} - x_k) \\
= \lim_{k \to \infty} [-((f''(x_k) + KI_d)^{-1}(f'(x_k) + \tilde{\lambda}^2(x_k)g'(x_k)))] \\
= -(f''(\tilde{x}) + KI_d)^{-1}(f'(\tilde{x}) + \tilde{\lambda}^2g'(\tilde{x})).
\]

(16)

Hence, from this and

\[det(f''(\tilde{x}) + KI_d) \neq 0,\]

we obtain

\[f'(\tilde{x}) + \tilde{\lambda}^2g'(\tilde{x}) = 0\]

In such a case, from (22) letting \(k \to \infty\), we also obtain

\[\tilde{\lambda}^2 g(\tilde{x}) = 0.\]

Thus if \(\tilde{\lambda}^2 > 0\), then \(g(\tilde{x}) = 0\).

If \(\lambda = 0\), then \(f'(\tilde{x}) = 0\) and

\[(\lambda_1^2)(\tilde{x}) \leq 0\]

so that from (23), since \((f''(\tilde{x}) + KI_d)^{-1}\) is positive definite, letting \(k \to \infty\), we get

\[g(\tilde{x}) = (\lambda_2^2)(\tilde{x})[(f''(\tilde{x}) + KI_d)^{-1}g'(\tilde{x})] \cdot g'(\tilde{x}) \leq 0.\]

That is, in any case,

\[g(\tilde{x}) \leq 0.\]
Remark 1 For the more general case with m_1 equality scalar constraints
\[h_j(x) = 0, \forall j \in \{1, \ldots, m_1\} \]
and m_2 inequality scalar constraints
\[g_l(x) \leq 0, \forall l \in \{1, \ldots, m_2\}, \]
where $h_j, g_l : \mathbb{R}^n \to \mathbb{R}$ are C^2 class functions, $\forall j \in \{1, \ldots, m_1\}$ and $\forall l \in \{1, \ldots, m_2\}$, we assume $m_1 + m_2 < n$ and define the Lagrangian L_p by
\[
L_p(x, \lambda, x_k) = f(x) + \sum_{j=1}^{m_1} (\lambda_h) h_j(x) + \sum_{l=1}^{m_2} (\lambda_g) g_l(x) + \frac{K}{2} |x - x_k|^2.
\]
Linearizing L_p, we propose the following procedure for looking for a critical point of such a function:
Consider
\[
\tilde{L}_p(x, \lambda, x_k) = f(x_k) + f'(x_k) \cdot (x - x_k) + \frac{1}{2} [f''(x_k) (x - x_k)] \cdot (x - x_k)
\]
\[+ \sum_{j=1}^{m_1} (\lambda_h) h_j(x_k) + h_j'(x_k) \cdot (x - x_k)
\]
\[+ \sum_{l=1}^{m_2} (\lambda_g) g_l(x_k) + g_l'(x_k) \cdot (x - x_k) + \frac{K}{2} |x - x_k|^2.
\]
Hence from
\[
\frac{\partial \tilde{L}_p(x, \lambda, x_k)}{\partial x} = 0,
\]
we obtain,
\[
f''(x_k)(x - x_k) + K(x - x_k) + f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h) h_j'(x_k) + \sum_{l=1}^{m_2} (\lambda_g) g_l'(x_k) = 0,
\]
that is,
\[
x - x_k = -(f''(x_k) + K I_d)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h) h_j'(x_k) + \sum_{l=1}^{m_2} (\lambda_g) g_l'(x_k) \right),
\]
and therefore
\[
x(\lambda, x_k) = x_k - (f''(x_k) + K I_d)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h) h_j'(x_k) + \sum_{l=1}^{m_2} (\lambda_g) g_l'(x_k) \right),
\]
where I_d denotes the $n \times n$ identity matrix.
We define $L_1(\lambda, x_k) = \tilde{L}_p(x(\lambda, x_k), x_k, \lambda)$, so that
\[L_1(\lambda, x_k) = -\frac{1}{2} \left(f''(x_k) + KI_d \right)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h'_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g'_l(x_k) \right) \cdot \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h'_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g'_l(x_k) \right) + f(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g_l(x_k). \] (18)

From \[\frac{\partial L_1(\lambda, x_k)}{\partial (\lambda g)_l} = 0, \] we get
\[\left(f''(x_k) + KI_d \right)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h'_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g'_l(x_k) \right) \cdot g'_l(x_k) (\lambda g)_l - (\lambda g)_l g_l(x_k) = 0, \] (19)

From \[\frac{\partial L_1(\lambda, x_k)}{\partial (\lambda h)_j} = 0, \] we have
\[\left(f''(x_k) + KI_d \right)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h'_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g'_l(x_k) \right) \cdot h'_j(x_k) - h_j(x_k) = 0, \] (20)

\[\forall j \in \{1, \ldots, m_1\}. \] Solving the linear system which comprises these last \(m_1 \) equations and the \(m_2 \) equations
\[\left(f''(x_k) + KI_d \right)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h'_j(x_k) + \sum_{l=1}^{m_2} (\lambda_g)_l^2 g'_l(x_k) \right) \cdot g'_l(x_k) - g_l(x_k) = 0, \] (21)

\[\forall l \in \{1, \ldots, m_2\}, \] we may obtain a solution
\[((\lambda_h)_j(x_k), (\lambda_g)_l^2(x_k)). \]

Thus, to obtain a concerning critical point, we follow the following algorithm.
1. Choose $x_0 \in \mathbb{R}^n$, $K_{\text{max}} \in \mathbb{N}$ (K_{max} is the maximum number of iterations), set $k = 0$ and $e_1 \approx 10^{-5}$.

2. Obtain a solution $((\lambda_h)_j(x_k), (\lambda_g)_l^2(x_k))$

 by solving the linear system (in $(\lambda_h)_j$ and $(\lambda_g)_l^2$) indicated in (20) and (21).

 Observe that if $(\lambda_g)_l^2 < 0$ then $(\lambda_h)_j(x_k)$ is complex.

 To up-date λ_h and λ_g proceed as follows:

3. For each $l \in \{1, \ldots, m_2\}$ if $(\lambda_g)_l^2(x_k) \leq 0$, then set $(\lambda_g)_l(x_k) = 0$.

4. Define $J = \{l \in \{1, \ldots, m_2\} \text{ such that } (\lambda_g)_l^2(x_k) > 0\}$.

5. Recalculate $(\lambda_h)_j(x_k)$ and the non-zero $(\lambda_g)_l^2(x_k)$ for $l \in J$ through the solution of the linear system (in $(\lambda_h)_j$ and $(\lambda_g)_l^2$)

 $$
 \left((f''(x_k) + KI_d)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h_j'(x_k)
 + \sum_{l \in J} (\lambda_g)_l^2 g_l(x_k) \right) \right) \cdot h_j'(x_k) - h_j(x_k) = 0,
 $$

 $\forall j \in \{1, \ldots, m_1\}$ and

 $$
 \left((f''(x_k) + KI_d)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j h_j'(x_k)
 + \sum_{l \in J} (\lambda_g)_l^2 g_l(x_k) \right) \right) \cdot g_l(x_k) - g_l(x_k) = 0,
 $$

 $\forall l \in J$.

6. If $(\lambda_g)_l^2(x_k) \geq 0$, $\forall l \in \{1, \ldots, m_2\}$, then go to 7 otherwise go to item 8.

7. Up-date x_k through the equation

 $$
 x_{k+1} = x_k - (f''(x_k) + KI_d)^{-1} \left(f'(x_k) + \sum_{j=1}^{m_1} (\lambda_h)_j(x_k) h_j'(x_k)
 + \sum_{l=1}^{m_2} (\lambda_g)_l^2(x_k) g_l'(x_k) \right).
 $$

8. If $|x_{k+1} - x_k| < e_1$ or $k > K_{\text{max}}$, then stop, otherwise $k := k + 1$ and go to 2.

3 Conclusion

In this article we have developed an algorithm for constrained optimization in \mathbb{R}^n. We prove the main result only for the special case of a single scalar
inequality constraint. However, we highlight the proof of a more general result involving equality and inequality constraints may be developed in a similar fashion, as indicated in remark 1. We postpone the presentation of the formal details for such a more general case for a future work.

References

1. F. Botelho, Functional Analysis and Applied Optimization in Banach Spaces, Springer Switzerland, 2014.
2. F. Botelho, Real Analysis and Applications, (Springer Switzerland, 2018).
3. K. Ito and K. Kunisch, Lagrange Multiplier Approach to Variational Problems and Applications, Advances in Design and Control, SIAM, Philadelphia (2008).
4. D.G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, Inc. (1969).