Pivotal Role of Renal Kallikrein-Kinin System in the Development of Hypertension and Approaches to New Drugs Based on This Relationship

Makoto Katori and Masataka Majima

Department of Pharmacology, Kitasato University School of Medicine, Kitasato 1-15-1, Sagamihara, Kanagawa 228, Japan

Received September 11, 1995

ABSTRACT—Renal kallikrein is one of the tissue kallikreins, and the distal nephron is fully equipped as an element of the kallikrein-kinin system. Although a low excretion of urinary kallikrein has been reported in essential hypertension, the results from studies on patients with hypertension are not consistent. Congenitally hypertensive animals also excrete lowered levels of urinary kallikrein, but the effects of this are yet unknown. Extensive genetic and environmental studies on large Utah pedigrees suggest that the causes of hypertension are closely related to the combination of low kallikrein excretion and the potassium intake. Mutant kininogen-deficient Brown Norway-Katholiek rats, which cannot generate kinin in the urine, are very sensitive to salt loading and to sodium retention by aldosterone released by a non-pressor dose of angiotensin II, which results in hypertension. The major function of renal kallikrein-kinin system is to excrete sodium and water when excess sodium is present in the body. Failure of this function causes accumulation of sodium in the cerebrospinal fluid and erythrocytes, and probably in the vascular smooth muscle, which become sensitive to vasoconstrictors. We hypothesize that impaired function of the renal kallikrein-kinin system may play a pivotal role in the early development of hypertension. Inhibitors of kinin degradation in renal tubules and agents, which accelerate the secretion of urinary kallikrein from the connecting tubules and increase the generation of urinary kinin, may be novel drugs against hypertension.

Keywords: Renal kallikrein, Kininogen, Urinary kinin, Sodium accumulation, Hypertension

Introduction

I. Renal kallikrein-kinin system .. 96
 1. The kallikrein-kinin system: general points
 2. Angiotensin-converting enzyme inhibitors and bradykinin
 3. Independent functions of the renal kallikrein-kinin system
 a. Kallikrein
 i) Localization
 ii) Stimuli for kallikrein secretion
 b. Kallikrein inhibitors
 c. Kininogens
 d. Kininases
 e. Kinin receptors

II. Renal kallikrein-kinin system and hypertension 104
 1. Hypertensive patients
 2. Animal models of hypertension
 3. Genetic background

III. Congenital deficiency in the kallikrein-kinin system 108

IV. Role of renal kallikrein-kinin system in sodium accumulation ... 116

V. Novel approaches to development of drugs against hypertensive .. 117
 1. Inhibition of kinin degradation
 a. Renal kininase inhibitors
 b. Inhibitors of neutral endopeptidase
 2. Enhanced kinin generation

Conclusions
Introduction

The primary cause of essential hypertension has not been identified despite intensive research on the various mechanisms that may be involved in its development. The theoretical possibility that hypertension results from an excess of vasoconstrictive substances or a deficiency of vasodilating substances has led to research into the roles of the renin-angiotensin system and the kallikrein-kinin system.

The genetic and environmental determinants of hypertension, lipid abnormalities and coronary artery disease have been studied for 15 years in Utah in population-based multigenerational pedigrees (1). According to this study and related studies, the genetic loci for the structural genes for renin (2) and angiotensin-converting enzyme (ACE) (3) and the sodium antiport system (4) were not found to be DNA markers for hypertension. Angiotensinogen shows moderate hypertension susceptibility, and the angiotensinogen variant, recently found to be a promoter of hypertension, is present in approximately 30% of the general population (1, 5). Another recent review (6) indicates that the genes of the renin-angiotensin-aldosterone system are directly responsible for some types of hypertension such as Liddle's syndrome, but in familial essential hypertension, neither renin nor ACE genes contribute to a large extent to the genetics of hypertension, at least in humans. An ACE gene polymorphism may be a strong marker of coronary and cardiac diseases and diabetic complications. Angiotensinogen gene polymorphism appears to be linked to hypertension, and molecular variants of this protein are associated with high blood pressure in various populations and ethnic groups. An angiotensin II AT1-receptor variant is associated with essential hypertension, and this gene variant together with ACE gene polymorphism increases the relative risk of myocardial infarction. Mice that are made completely deficient in the angiotensinogen gene by a gene-targeting method cannot maintain normal systemic blood pressure and they die gradually after birth (7). In contrast, when the angiotensin II type 1a-receptor gene is made deficient in mice by a gene-targeting method, they also cannot maintain normal systemic blood pressure, despite having a markedly high renin activity in their plasma, but no death after birth was observed (8). The difference in the death rate after birth between the two types of the deficiency in the components of the renin-angiotensin system may be due to residual secretion of aldosterone in the latter mutant mice through angiotensin II type II receptors present in the adrenal glands, whereas the former may fail to secrete aldosterone, because they lack the ability to generate angiotensin II. Therefore, the important role of the renin-angiotensin-aldosterone system in maintenance of the normal systemic blood pressure through aldosterone release might have been clarified.

In contrast, segregating single-gene effects were found for several “intermediate phenotypes” associated with hypertension, including erythrocyte sodium-lithium countertransport (9), intra-erythrocytic sodium levels (10) and total urinary kallikrein excretion (11). Furthermore, an important gene-environment interaction was found between urinary kallikrein and potassium intake (1, 12). These studies on the genetic determinants of hypertension indicate that the renal kallikrein-kinin system may play an important role in the development of hypertension. Many reviews on the renal kallikrein-kinin system have been published (13–17). A more recent review on the roles of the kallikrein-kinin system in human diseases, particularly in hypertension, was published in 1995 (18). A good review on the kallikrein-kinin system, acting locally in endothelial cells, cardiac myocytes and vascular smooth muscles, and on its roles in ventricular hypertrophy, myocardial ischemia and remodeling will soon be published (19). The transgenic mice bearing an overexpressed human kallikrein have high levels of kallikrein in their serum and various tissues, which results in sustained hypotension (20). Mice whose bradykinin B2-receptor gene was knocked out were reported (21), but induction of hypertension has not been reported. Despite recent accumulation of ample data, the definite role of the renal kallikrein-kinin system in essential hypertension remains to be clarified, because it is difficult to completely eliminate the components of this system in a living animal. We have been studying the role of the renal kallikrein-kinin system with mutant kininogen-deficient rats that cannot generate kinin in their urine (Brown Norway-Katholiek (BN-Ka) rats). The susceptibility of these mutant kininogen-deficient BN-Ka rats to salt and development of hypertension have been summarized in a short review (22).

The present review will discuss the mechanisms of the development of essential hypertension with particular reference to the renal kallikrein-kinin system.

I. Renal kallikrein-kinin system

1. The kallikrein-kinin system: general points

Bradykinin (BK) is a biological peptide with potent activities in vasodilation, increased vascular permeability, smooth muscle contraction, pain generation, natriuresis, diuresis and renal blood flow increase. This peptide is released from precursor proteins, the kininogens, by proteolytic enzymes, the kallikreins. There are two kallikreins, plasma kallikrein and tissue (glandular) kallikrein, and two kininogens, high and low molecular
weight (HMW and LMW) kininogens. As shown in Fig. 1, plasma kallikrein is present in plasma in its inactive form, prekallikrein, which is directly activated by blood clotting factor XIIa (23), and active plasma kallikrein cleaves BK from HMW kininogen; On the other hand, tissue kallikrein is released in its active form from glandular tissues and the kidney and cleaves lysyl-BK (kallidin) (human) (24) or BK (rat) (25) preferentially from LMW kininogen. Intravascular activation of the plasma kallikrein-kinin system triggers hypotension, while the activation of this system in the perivascular space causes inflammatory responses. The plasma kallikrein-kinin system works independently from the tissue or glandular kallikrein-kinin system in vivo. Plasma kallikrein is inhibited by a soy bean trypsin inhibitor, whereas tissue kallikrein is not, but aprotinin inhibits both kallikreins.

Renal kallikrein is a tissue or glandular kallikrein. The gene of murine tissue kallikrein belongs to a multigene family of similar serine-proteases. Thirteen genes of serine proteases are localized on one chromosome in the rat (26). The true tissue kallikrein gene in the kidney is composed of 5 exons and 4 introns, its length being about 4.5 kilobase pairs (26, 27); and recently, the nomenclature of the glandular kallikrein gene family has been unified (28). The functions of this group of serine proteases are not completely known, but the amino acid sequences of the kallikrein gene family are mutually quite similar, and the substrate specificity and the reactivity against inhibitors or antibodies are shared. The kallikrein-like proteases purified from rat salivary glands include glandular (tissue) kallikrein (rK1), tonin (rK2), rK7, rK8, rK9 and rK10. In the rat kidney, rK1 and rK7 are the main proteases expressed (27). In humans, three serine protease genes, hK1 (glandular kallikrein), hK3 (prostate specific antigen) and hK2, are present on chromosome 19 (29).

2. Angiotensin-converting enzyme inhibitors and bradykinin

Kinin is not constantly generated in the plasma by the plasma kallikrein-kinin system, since plasma kallikrein is present in plasma in an inactive form, plasma prekallikrein, as mentioned above. Plasma prekallikrein is activated only when coagulation factor XII is activated to XIIa, which directly activates plasma prekallikrein. The activation of factor XII is induced by exposure of plasma protein to negatively charged surfaces, such as kaolin, glass, ellagic acid, lipopolysaccharides and carrageenan (30–32). Bacterial proteases liberate BK by activating the factor XII-prekallikrein cascade, or directly, by their proteolytic activity, from guinea pig HMW kininogen (33–36). Plasma prekallikrein is not activated even when plasma is exuded into the perivascular space (37). This was successfully demonstrated when a degradation product of BK, BK-(1-5) or des-Phe8,Arg9-BK, instead of BK itself, was measured in the rat pleural exudate after intrapleural injection of histamine (38). Intrapleural injection of histamine to rats caused exudation of plasma proteins into the pleural cavity, but neither BK-(1-5), des-Phe8,Arg9-BK nor BK was detected (37), whereas intrapleural injection of carrageenin generates a large amount of BK-(1-5) in the exudate, since carrageenin activates factor XII in the plasma proteins (38).

Immunoreactive glandular kallikrein may be present in the plasma (39–42). However, the active kallikrein is
immediately bound to the large amounts of inhibitors present in the plasma (42) and is inactivated, although there have been reports that blood kinins may be generated (43, 44). Therefore, even if kinin is generated in the plasma without activation of factor XII, its amount may be negligible.

The anti-hypertensive effect of ACE inhibitors may be relevant to the inhibition of kininase II or to increased levels of kinin in the plasma. The hypotensive effects of an ACE inhibitor, perindopril, in spontaneously hypertensive rats (SHR) on low- and high-NaCl diets are attenuated by a BK B2-receptor antagonist Hoe 140 (D-Arg[Hyp3,Thi5,D-Tic7,Oic8]BK) (45). In healthy subjects, plasma kinin levels are increased from 16.1 ± 1.9 pmol/l to 22.4 ± 2.8 or 29.1 ± 4.7 pmol/l (46) after administration of ACE inhibitors. In rats, captopril slightly (from 10 ± 3 to 29 ± 7 pg/ml) increases the BK level in the arterial blood of anesthetized rats (47) (Fig. 2), but this increase in BK is not sufficient to reduce the systemic blood pressure, since an intravenous infusion of nearly 1000 ng/min of BK is required to decrease the systemic blood pressure, and the BK concentration in the arterial blood during the infusion of 1000 ng/min of exogenous BK is 900–1000 pg/ml (47). Therefore, in the anesthetized rats, the concentration of BK in the arterial blood, which is required for reduction of the systemic blood pressure, is 30 times higher than those reached after captopril treatment without infusion of exogenous BK.

Nevertheless, cardiac tissue and endothelial cells contain a local kallikrein-kinin system and the beneficial effects of ACE inhibitors on cardiovascular diseases have been reported (48). The effects of an ACE inhibitor such as ramipril, given in non-blood pressure-lowering doses, are as follows: accumulation of cGMP in cultured bovine aortic endothelial cells; restoration of the increased height of contraction by norepinephrine of isolated aortic rings from rabbits fed a cholesterol-enriched diet and loss of relaxation by acetylcholine of the same aortic rings; inhibition of ventricular fibrillation of isolated working rat heart with postischemic-reperfusion; reduction in infarct size in the rabbit; restoration of the increased left ventricular weight in rats with aortic banding; reduction of neo-intima formation in rats using a balloon catheter; reduction of myocardial left ventricular hypertrophy in SHR and so forth. Most of the beneficial effects of ACE inhibitors like ramipril were reversed by pretreatment with Hoe 140, and these beneficial effects may be related to the formation of nitric oxide and prostacyclin enhanced by BK released (48).

3. Independent functions of the renal kallikrein-kinin system

The kidney displays a full set of kallikrein-kinin system components in its distal tubules, as shown in Fig. 3. This system works independently from that in other organs and tissues including plasma. The localization of the components of the kallikrein-kinin system in the kidney is summarized in a review (17).
a. Kallikrein

i) Localization: A suspension of rat renal cortical cells contains kallikrein activity (49). Using a single nephron, it was found that more than 85% of the active and inactive kallikreins in the rat kidney are localized in the granular portion of the distal tubules and the cortical collecting duct (50–52). No kallikrein was detected in the glomerulus, the thick ascending limb of Henle's loop, the bright portion of the distal tubules (macula densa) and the light portion of the cortical collecting tubules (51). Electron micrographic studies indicated that kallikrein was only located in the distal tubules (53, 54). Recent studies confirmed that kallikrein is present exclusively in the granular cells of the connecting tubule of the distal nephron, where kallikrein is concentrated mainly on the luminal side of the cells and at both sides of the nuclei, and to a lesser extent was associated with the plasma membranes and basolateral infoldings. The immunoreactivity is related to free polyribosomes, the rough endoplasmic reticulum and Golgi complexes, suggesting that kallikrein is actively synthesized in this particular type of cell (55–57).

Tissue kallikrein mRNA is expressed dominantly in cells of the distal tubules, but also in the vascular pole of the glomeruli (58) and in the connecting tubules of the outer cortex (59). Although kallikrein is present in the granular peripolar cells of the human kidney, mRNA was not found there (60). It is possible that the kallikrein in these cells has been absorbed from the glomerular filtrate. Tissue kallikrein mRNA and protein are present in the walls of the renal blood vessels (60). From studies with human tissue kallikrein mRNA in diseased kidneys, it was suggested that the tissue kallikrein gene in the kidney may not be constitutively expressed, but is expressed in response to physiological and pathological stimuli; however, this conclusion needs to be confirmed.

ii) Stimuli for kallikrein secretion: Renal perfusion pressure may be one of the major factors controlling urinary kallikrein excretion in anesthetized dogs (61). Chronic arterial constriction of the kidney in conscious dogs and anesthetized rats is associated with a lower kallikrein excretion from the stenotic kidney than from the contralateral kidney (62). In isolated perfused hog and rat kidneys also, kallikrein excretion is dependent on the perfusion pressure (63–65).

A low-sodium diet or salt deprivation always accelerates renal kallikrein synthesis and excretion in humans (66, 67) and rats (68, 69). A study with microdissected segments of rabbit nephron revealed (70) that both active and inactive kallikrein in the granular portion of the distal convoluted tubules and in the cortical collecting tubules (connecting tubules) increased markedly during low sodium intake without altering either the distribution profile or the ratio of active to total kallikrein in the nephron or urine. The increased kallikrein excretion due to prolonged sodium deprivation may be mediated by aldosterone release through activation of the renin-angiotensin system by long-term restriction of sodium intake, since this increase is reversed by the aldosterone antagonist spironolactone and is induced by administration of fluorocortisone, a synthetic sodium retaining steroid (66, 67). Patients with hyper-aldosteronism excrete higher amounts of kallikrein in the urine (67, 71), as Fig. 4 shows. The same phenomenon was seen in patients with Bartter's syndrome (72). Administration of spironolactone to patients with primary aldosteronism decreases
the high urinary kallikrein level (66, 67). The removal of aldosterone-producing tumors reverses the increased excretion of urinary kallikrein (73).

Fig. 4. Kallikrein excretion in normal subjects and patients with either essential hypertension or primary aldosteronism. E.U. = esterase unit, Ad lib Na⁺ = ad libitum sodium intake, and UNaV = sodium excretion. (quoted from Ref. 67 with permission)

Long-term administration of deoxycorticosterone is reported to increase kallikrein excretion (74). As Fig. 5 indicates, in deoxycorticosterone acetate (DOCA)-salt hypertension in rats, urinary levels of kallikrein and prokallikrein rose to a peak at the age of 10 weeks (3 weeks after the start of treatment), simultaneously with peaks of urinary excretion of sodium and water in normal Brown Norway-Kitasato rats. However, the increases were transient and the predadministration levels were regained when the systolic blood pressure reached a plateau, at 15 weeks (Figs. 5 and 16) (74) (see below for details).

Accelerated synthesis of kallikrein by aldosterone was reported in isolated rat renal cortex cells in suspension, and the increase of kallikrein was inhibited by spironolactone (49). Aldosterone also increases kallikrein release from rat renal cortical cell plasma membranes and endoplasmic reticulum (75). Adrenalectomy decreased both the kallikrein content in the connecting tubules and the Na⁺/K⁺ ATPase activity in microdissected rabbit nephron, but a single injection of aldosterone to adrenalectomized rats caused restoration of the Na⁺/K⁺ ATPase activity, although not the kallikrein content (76).

The effects of high sodium intake are still controversial. Acute sodium loading in rats induced an increase in urinary kallikrein excretion, but a second administration of sodium after 40-min interval did not enhance the kallikrein concentrations in urine (77). Furthermore, feeding rats a high-salt diet for 10 days decreased the total amount of immunoreactive kallikrein in the urine and kidney (78).

Excretion of urinary kallikrein varies directly with potassium intake and parallels the excretion of aldosterone without increased excretion of sodium in both normal and hypertensive subjects. The increase brought about in urinary kallikrein excretion in hypertensive subjects by potassium intake is less than that in normotensive subjects; and the increase in white subjects is higher than that in black subjects (79). The cells of connecting tubules, which synthesize and secrete urinary kallikrein, seem to participate in the process of potassium secretion. A recent electron microscopic study (80) revealed that a high-potassium diet produces hypertrophy and hyperplasia of the kallikrein-containing cells, including hypertrophy of the components of both the Golgi complex and rough endoplasmic reticulum and a large number of secretory-like vesicles containing kallikrein. The results suggest that a high-potassium diet increased the synthesis and secretion of kallikrein. It is well-known that aldosterone is synthesized and released from the glomerulosa cells of the adrenals. The glomerulosa cell is sensitive to changes in external potassium concentration and an infusion of 10 mEq of potassium over 30 min produces no measurable change in the serum potassium level of humans, but does increase plasma aldosterone levels by 25% (81). The transduction mechanism used by potassium is depolarization of the membrane with opening of the voltage-dependent calcium channels, and it is different from that used by angiotensin II, which is receptor-mediated (82).

Intravenous infusion of vasopressin (antidiuretic hormone) was reported to stimulate both the release of urinary kallikrein and the intrarenal formation of kinin in the dog and rat (83).

We have found that oxytocin is a renal kallikrein releaser (84). Intravenous infusion of oxytocin in Sprague-Dawley (SD) strain rats accelerated kallikrein secretion in accordance with increases in urine volume and urinary sodium excretion (see section V, 2 a). It remains questionable whether endogenous oxytocin plays the same role, but endogenous accelerators of renal kallikrein release

Fig. 4. Kallikrein excretion in normal subjects and patients with either essential hypertension or primary aldosteronism. E.U. = esterase unit, Ad lib Na⁺ = ad libitum sodium intake, and UNaV = sodium excretion. (quoted from Ref. 67 with permission)
must be present, since there must be biochemical links between sodium accumulation and the acceleration of the secretion of renal kallikrein.

b. Kallikrein inhibitors

Apart from inhibitors in the plasma such as α_1-antitrypsin inhibitor, which inhibit urinary kallikrein (85), a tissue kallikrein inhibitor, kallistatin, has been isolated and purified, and its cDNA sequence has now been clarified (86–88). Kallistatin inhibits human tissue kallikrein activity toward either kininogen or a tripeptide substrate and belongs to the serpin superfamily, including protein C inhibitor, α_1-antitrypsin, and α_1-antichymotrypsin. The cDNA sequence of the kallikrein binding protein shares 68.8% identity with human α_1-antichymotrypsin. This protein is expressed at high levels in the liver and at low levels in the lung, salivary gland and kidney (86). In the kidney, the mRNA of this protein can be detected most abundantly in the inner medullary collecting duct, with small amounts in the outer medullary collecting duct, proximal convoluted tubules and the glomerulus (89). No signals are found in the connecting tubules or the cortical collecting duct (89). It is interesting that kallistatin is localized in tubules distal to the secretion site of renal kallikrein, the connecting tubules, and that it works immediately after kinin is generated and bound to the receptors in the collecting duct. SHR show lower levels of kallistatin in the serum, lung, heart, sali-
vary glands and kidney than Wistar Kyoto rats (86).

c. Kininogens

Kininogen was detected in human urine (90, 91). By the use of antibody against the heavy (H) chains of both kininogens, LMW kininogen was isolated, and the H chain antigen was localized in the kidney, where it was diffusely distributed in cells of the distal tubules and in the cortical and medullary collecting ducts. No intact HMW kininogen was found in the kidney or urine (92). Immunoreactive kininogen was localized in the principal cells of the collecting ducts and is restricted to the luminal portion of the principal cells (93). Immunoreactive tissue kallikrein was detected in the cells of the connecting tubules, the segment of the nephron preceding the cortical collecting ducts. Figure 6 shows the co-existence of tissue kallikrein and kininogen in the same transitional tubules, but in different cells (93, 94). The close relationship between cells that contain tissue kallikrein and kininogen suggests that kinins could be generated in the lumen of the collecting tubules. The mRNA of LMW kininogen is expressed in the renal cortex and medulla (95), suggesting the biosynthesis of LMW kininogen in the distal tubule.

A study with the mutant kininogen-deficient Brown Norway-Katholiek (mutant BN-Ka) rats indicated that intravenous infusion of partially purified rat LMW kininogen increased kinin excretion in ureter urine, whereas that of HMW kininogen caused a slight increase in kinin in the urine (96), indicating that the kidney secretes LMW kininogen and urinary kallikrein releases urinary kinin mainly from LMW kininogen.

Antigen against HMW kininogen, which was taken as an indicator of kininogens, was immunohistochemically localized at the distal tubules, but the intensity of the antigen immunostaining was similar in both normal BN-Kitasato (BN-Ki) rats and kininogen-deficient BN-Ka rats. HMW kininogen antigen in mutant BN-Ka rats was almost the same as that in normal BN-Ki rats. HMW kininogen was predominantly found in the microsomal fractions of kidney homogenates. The uptake of radio-labeled HMW kininogen by the tubular cells after incubation was only 0.6%. The mRNA of HMW kininogen, visualized by polymerase chain reaction amplification had almost the same intensity in the two strains of rats (97). As far as HMW kininogen is taken as an indicator, the results suggest that kininogens may be locally synthesized in the connecting tubules even in the kidney of mutant BN-Ka rats. The mutant BK-Ka rats can synthesize kininogens in the liver, but cannot release them from this organ into the blood stream (see below). In the same way, the connecting tubular cells can synthesize kininogens, but may not release them into the lumen. This could be accounted for by the fact that kinin cannot be detected in the urine of mutant kininogen-deficient BN-Ka rats.

Fig. 6. Diagram of the immunocytochemical localization of kallikrein and kininogen in the human nephron (a) and a schematic representation of the intermingled CNT cells and principal cells at the junction between CNT and CCD (b). AA, afferent arteriole; G, glomerulus; EA, efferent arteriole; PT, proximal tubule; LH, loop of Henle; MD, macula densa; DCT, distal convoluted tubule; CCD, cortical collecting duct; CNT, connecting tubule. (quoted from Ref. 93 with permission)
d. Kininases

Kininases, which inactivate plasma kinins, are distributed in two major parts of the nephron: in the proximal tubules and medullary collecting duct. The micropuncture technique revealed that almost all of the $[^{3}H]BK$ injected into the proximal tubules is destroyed in the proximal tubules (98). It was reported that kininase II is concentrated in the proximal tubules along the brush border membrane of the cells or the S3 proximal tubule segments of the proximal tubules (99-101). Determination of kininase activity in the individual segments by the microdissection technique indicated that kininase activity is not only found in the proximal tubules, but is also present in the medullary collecting duct (100). Neutral endopeptidase (NEP) is also present in the outer surface of the brush border plasma membrane of the proximal tubules, and to a lesser extent, in the vesicular organelles both in the apical cytoplasm and on the basal infoldings of the proximal tubule cells (102). Stop-flow experiments suggest that NEP is localized in the distal tubule site (103, 104), but other researchers reported that no immunolabeling of this enzyme is observed in the distal portion of the nephron (102). Biochemical analysis of rat urine indicates that NEP accounts for 68% of the total kininase activity in rat urine, while kininase II and kininase I account for 23% and 9%, respectively (105). Urinary NEP accounts for more than half of the renal kininases in humans (106).

A kinin-hydrolyzing enzyme, which does not respond to inhibitors of the kininase I and II family of enzymes, is localized along the cortical and medullary collecting tubules of the rabbit (100). A new kininase I type (or carboxypeptidase type) enzyme was purified from human urine and kidney tissue. It differs from circulating kininase I in size, inhibitory profile and immunogenic specificity (107).

Our study (108) on the degradation pathways of BK reveals that the pathway in rat urine is completely different from that in rat or human plasma (109), as shown in Fig. 7. In the latter, the major metabolite of BK during incubation with plasma in vitro is BK-(1–5) or Arg-Pro-Gly-Phe (109), whereas during incubation of BK with rat urine, BK-(1–6) is the major metabolite and BK-(1–5) was not detected (108). Further analysis of kininases in rat urine revealed that the main kininases are NEP and carboxypeptidase Y-like exopeptidase (110), the latter of which was originally found in yeast. ACE inhibitors such as captopril or lisinopril scarcely inhibited the activity of these enzymes, but ebelactone B, isolated from the culture medium of actinomycetes, inhibits the activity of carboxypeptidase Y-like kininase in rat urine, without inhibiting plasma kininases. Treatment of anesthetized SD strain rats with ebelactone B during the infusion of physiological saline (6 ml/kg/hr) markedly increases the kinin levels in the urine and exerts diuretic and natriuretic actions (111).

![Fig. 7. Pathways of bradykinin degradation by rat urine and rat plasma. Bradykinin-(1–n) indicates bradykinin degradation products with n amino acids from the N terminal.](image-url)
e. Kinin receptors

The \[^{3}H\]BK binding capacities along the nephron of the rabbit are maximal at the cortical collecting duct and outer medullary collecting duct and marginal at glomeruli, distal straight tubules and distal tubules (112, 113). BK inhibits net sodium absorption without affecting net potassium transport or the transepithelial potential difference (114). BK inhibits net chloride absorption, but does not affect the transepithelial voltage or the bicarbonate flux (115). Two types of BK receptors, B1 and B2, have been recognized (116). The B2-receptor seems to be present in the nephron, since the natriuretic and diuretic effects of BK are antagonized by the selective B2-antagonist Hoe 140 (111). Using chemically crosslinked conjugates of bovine serum albumin and the B2-agonist of BK or the potent B2-antagonist Hoe 140, the receptor has been found in straight portions of the proximal tubules, distal straight tubules, connecting tubules and collecting ducts of the rat kidney (117). The B2 receptors are present in the luminal membranes, in the basal infoldings of the tubule cells and in the smooth muscle cells of the cortical radial artery and of afferent arterioles. The B2 receptors are co-localized with kallikrein and kininogens in the connecting tubules and collecting duct cell layers, respectively.

Short summary: Kinins generated by the plasma kallikrein-kinin system may not have an important role in hypertension. In contrast, renal distal nephrons possess a full set of kallikrein-kinin system components and thus act as the "renal" kallikrein-kinin system, which works independently from other kallikrein-kinin systems for excretion of sodium and water.

II. Renal kallikrein-kinin system and hypertension

1. Hypertensive patients

In 1934, Elliot and Nuzum had already noticed that hypertensive patients without clinically apparent renal disease have significantly lower levels of urinary kallikrein than normotensive subjects (118). This abnormality in human hypertension was not confirmed until 1971. Margolius et al. (71) reported lower levels of urinary kallikrein-kinin in patients with essential hypertension than in a control population, normal levels in patients with renal artery stenosis, and raised levels in patients with phaeochromocytoma and primary aldosteronism (Fig. 4). Since that time, multiple studies have been carried out in various individuals with hypertension and animal models of hypertension, showing similar findings of lowered kallikrein excretion in hypertension (119–129).

However, there were indications that variables such as race and renal function must be considered (130). Kallikrein excretion in white hypertensive men was lower than that in white normotensives during normal sodium intake, but was not different from that in black hypertensives and black control subjects under the same conditions. The kallikrein levels in the urine of normotensive black subjects are significantly lower than those in normal white subjects. All groups have greater urinary kallikrein activity on a low-sodium diet vs a unrestricted sodium intake, but the increase in black hypertensives is small. Plasma renin activity shows similar increments after sodium restriction in all groups. Similar results on reduced excretion of urinary kallikrein in black subjects were obtained (131).

Patients with malignant essential hypertension excrete less urinary kallikrein than those with non-malignant essential hypertension and normotensive control subjects (132). Some studies have reported that white patients with uncomplicated essential hypertension show normal kallikrein excretion rates with normal plasma renin activity and aldosterone (133). Only hypertensives over 40 years old excrete a significantly lower excretion of urinary kallikrein (134). Another report states that 20% of the hypertensive patients show low kallikrein excretion (135). This low excretion rate may be accompanied with low plasma renin activity (136), but there was no significant difference between the urinary kallikrein excretion of patients with low renin essential hypertension and those with normal renin essential hypertension in either black or white patients (137). Thus, the lower kallikrein excretion in essential hypertension is still controversial. Japanese patients with low-renin hypertension show significant reductions in both active urinary kallikrein and kinin excretion, together with increased levels of a kallikrein inhibitory material and kininase in urine and with reduced level of kininogen (138).

Kallikrein excretion was decreased in hypertensive patients with mild renal insufficiency (137). Although no significant difference in the urinary kallikrein excretion of patients with low-renin essential hypertension was found, hypertensive patients with mild renal insufficiency showed reduced urinary kallikrein excretion (137). Patients with reduced glomerular filtration rates showed markedly decreased urinary kallikrein excretion, like those with hypertension (139). Renal parenchymal diseases with hypertension, such as chronic glomerulonephritis, are associated with diminished urinary kallikrein activity (137). Rats with renovascular hypertension have decreased kallikrein levels both in renal tissue and in urine (120, 140). In two kidney-one clip Goldblatt hypertensive rats, the urinary kallikrein level was low in the urine from the stenotic kidney, whereas that of the contralateral kidney was normal (141). In Dahl salt-sensitive rats fed a normal sodium diet (0.45% NaCl), the urinary kallikrein level...
determined by the kinin generating activity, is lower than the level determined by direct radioimmunoassay for the enzymic protein (142). The level of urinary protein is higher in these rats (142). The lower level of the kallikrein may be due to inhibitors leaking from the plasma. The reduced levels of kallikrein in hypertension should be distinguished from those due to impaired renal function. However, recent studies suggest a strong influence of urinary kallikrein excretion on the salt-sensitivity of blood pressure in normotensive patients (143). In a randomized cross-over double-blind study, the urinary excretion of active kallikrein was significantly lower in salt-sensitive hypertensives than in salt-resistant hypertensive patients, and it showed an inverse correlation with plasma atrial natriuretic peptide (ANP) levels (144). Thus, at least some of the hypertensive patients excrete lower levels of kallikrein without reduced renal function.

2. Animal models of hypertension

Reduced excretion of urinary kallikrein was also reported in genetically hypertensive rat models (140, 141, 145, 146), in rats made hypertensive by deoxycortico-sterone plus 1% salt, and in rats receiving deoxycortico-sterone alone (140). Rats of the genetically hypertensive New Zealand strain excreted reduced levels of urinary kallikrein (145). The urinary excretion of kallikrein by hypertensive Fawn-Hooded (FH/Wjd) male and female rats was less than that of Wistar rats (and male < female in urinary kallikrein excretion) from 1.5 months before the hypertension developed at the ages of 2 (male) and 4.5 (female) months (146). FH male rats excreted more sodium and urine than all other groups. Only FH male rats developed proteinuria, but neither an inhibitor of urinary kallikrein nor increased degradation of this enzyme in the urine was found in FH rats.

In Okamoto-Aoki SHR, kallikrein excretion was subnormal (140, 147–150). A time course study (148) revealed that urinary excretion of active and total kallikrein was significantly lower in the SHR on a normal sodium diet from 4 through 15 weeks of age. The average values of active and total kallikrein activity in the SHR were 69.5% and 67.4%, respectively, of the values in age-matched Wistar-Kyoto rats (WKY) throughout the development of hypertension, even after reaching a plateau of systolic

Fig. 8. Changes in the activities of urinary kallikrein (A), and prokallikrein (B), systolic blood pressure (C), and plasma renin activity (D) of spontaneously hypertensive rats (SHR) and Wistar Kyoto rats (WKY). Values in SHR were compared with those in WKY. *P < 0.05, **P < 0.01.

(quoted from Ref. 151 with permission)
blood pressure at 10–11 weeks. SHR exhibited a lower urinary excretion of sodium and water than WKY, together with a higher cumulative sodium balance at all ages studied and a higher cumulative water balance only at 7 and 8 weeks of age. In response to an acute decrease in renal perfusion pressure, the slopes of the regression lines correlating urinary kallikrein to systolic arterial pressure to urinary excretion and to the cumulative balance of sodium and water were always significantly less in SHR than in WKY, indicating reduced excretion of urinary kallikrein (148).

The reduced urinary kallikrein excretion in SHR was also confirmed during the development of hypertension (151), but the difference of the urinary kallikrein level between SHR and WKY disappeared when the systolic pressure reached a plateau at the age of 10 weeks (Fig. 8). Thus, this result does not agree with the report that lower excretion of urinary kallikrein persists after the blood pressure has reached a plateau (148). The reason for this discrepancy is not clear. The reduced excretion of not only sodium, but also potassium and creatinine with an increased serum creatinine level from the age of 4 weeks (weanlings) (151) may suggest renal insufficiency. Abnormalities in glomerular function in rats developing spontaneous hypertension were reported in clearance and micropuncture studies in 6-week-old SHR (152). Nevertheless, the fact that the inhibition of urinary kallikrein in SHR with aprotinin, a polyvalent serine esterase inhibitor, increased the systolic blood pressure during the development of hypertension (for 3 days from the age of 7 weeks) (151) indicates that the urinary kallikrein excreted still accelerates sodium excretion and suppresses increases in the systolic blood pressure during the development of hypertension in SHR, even if the urinary kallikrein level is reduced at the developmental stage of hypertension. However, the kallikrein activity reduced by impaired renal function caused by the continuing hypertension should be carefully distinguished from the original reduction of kallikrein activity.

The reduced urinary kallikrein level (68% to 66%) of SHR is not due to a defect in synthesis by the renal cortex at birth, but to a defect in prokallikrein activation, since the total kallikrein is not reduced in the renal cortex of newborn SHR when compared with that in WKY, while active urinary kallikrein is reduced (149). During the development of hypertension from 4 to 12 weeks of age, the renal content of both active kallikrein and total kallikrein relative to the renal cortex weight is reduced, although the active kallikrein content per g of cortex weight is increased at 4, 8 and 12 weeks of age (149). When their diet was switched from a 0.4% to a 0.0064% sodium chloride diet, normotensive Dahl salt-sensitive rats failed to reach the maximum in kallikrein activity or total kallikrein (150). The enzymatic activity of renal tissue kallikrein per mg of renal tissue protein increased from 4 to 52 weeks in SHR, but fell at 78 weeks as a result of tubular atrophy and fibrosis in advanced hypertension; and this was also observed in human biopsy specimens (153). The ratio of active kallikrein to prokallikrein in urine has been reported to be near unity (149) and 50% (154). As renal kallikrein is a mineralocorticoid-regulated protein, renal kallikrein messenger RNA levels were studied, but no differences were found between adrenalectomized rats and those treated for 5–14 days with 9α-fludrocortisone, corticosterone or dexamethasone, or between SHR and their appropriate controls, so that the changes in renal kallikrein activity and immunoreactivity after long-term mineralocorticoid administration in adrenalectomized rats and in genetically hypertensive rats may reflect modulation at the post-transcriptional level (155). These results suggest that genetically hypertensive rats may have a disposition towards reduced secretion of urinary kallikrein.

Adducin is a cytoskeletal protein that interacts with other membrane-skeleton proteins that affect ion transport across the cell membrane. In the Milan hypertensive strain of rats, which show fast ion transport across the cell membrane (156–158), the cDNA of adducin sequences shows a one-point mutation in each of the two genes coding for the α- and β-subunits of adducin (159). A case-control study to test the association between the α-adducin locus and hypertension revealed that a polymorphism within the α-adducin gene may affect the blood pressure in humans (160). These results, taken together, cannot exclude the possibility that the reduced excretion of urinary kallikrein in congenitally hypertensive rats may be attributable to a disorder in the excretion of active kallikrein due to an insufficiency of the cytoskeletal protein for secretion.

3. Genetic background

The separation of Okamoto-Aoki genetically hypertensive rats from WKY indicates the importance of genetic factors in the development of hypertension. Similar hypertensive rat strains have also been reported (140, 141, 145, 146). The most convincing evidence of the pivotal role of the kidney was provided by the experiments on cross-transplantation of kidneys between normotensive and spontaneously hypertensive strains (161, 162). Normotensive recipient rats, which received SHR donor kidneys even in the prehypertensive stage (5–6 weeks of age), had significantly higher values of blood pressure and serum urea (161). When the F1 hybrids between SHR and Wistar rats received a kidney from SHR, they showed higher blood pressure than Wistar rats with low renin activity both in the plasma and the kidney (162). Similar
the effect of salt is polygenetic, the kidney appears to play these animals can be explained by the altered renin gene. Considerable difficulties remain before the hypertension in nin gene may be present in congenitally hypertensive rats, SHR. Thus, although a structural alteration in the resistant rats exhibit a 2.7-kb band, which is also carried band, which is also seen in Lewis rats, and Dahl salt-sensitive and salt-resistant strains of rats (165), kidneys from the hypertension-prone rats exerted a prohypertensive effect, while those from hypertension-resistant rats generally had an anti-hypertensive effect. These effects on blood pressure were most clear-cut in rats maintained on a low-sodium diet (0.3% NaCl), indicating that the kidney of the donor may be a genetic determinant. The renal involvement in the development of hypertension is suggested by the results of electrolyte-balance studies demonstrating a period of relative sodium and water retention in SHR. The dietary sodium restriction retards the development of hypertension in SHR, but does not prevent the hypertension (166). In rats of the Milan hypertensive strain younger than 9 weeks of age, the sodium retention observed is due to a significantly lower urinary excretion of dietary sodium (167).

It is quite feasible that the mechanism of development of hypertension may spring from abnormalities in the renin gene. In an F2 population derived from crossing Dahl salt-sensitive rats and salt-resistant rats, a restriction fragment length polymorphism (RFLP) in the renin gene cosegregated with blood pressure. One dose of the salt-sensitive rat renin allele was associated with an increment in blood pressure of approximately 10 mmHg, and two doses of this allele increased blood pressure approximately 20 mmHg (168). In Southern blotting using cDNA and an oligonucleotide probe of the SHR renin gene, a “deletion” of around 650 base pairs was found in the first intron (intron A) of the SHR gene, in comparison with the WKY gene (169). However, another study (170), which examined the inheritance of a DNA RFLP in the renin gene in an F2 population derived from inbred SHR and inbred normotensive Lewis rats, indicated that the blood pressure in rats that inherited a single SHR renin allele (1.7-kb band) was significantly higher than that in rats that inherited only the Lewis renin allele (2.7-kb band). However, Dahl salt-sensitive rats exhibit a 1.7-kb band, which is also seen in Lewis rats, and Dahl salt-resistant rats exhibit a 2.7-kb band, which is also carried by SHR. Thus, although a structural alteration in therenin gene may be present in congenitally hypertensive rats, considerable difficulties remain before the hypertension in these animals can be explained by the altered renin gene.

Although the inherited susceptibility or resistance to the effect of salt is polygenic, the kidney appears to play a primary role in the determination of blood pressure (165, 171, 172). This relation may be presented on the gene basis (173). Molecular evidence of an association between a sequence alteration in the kallikrein gene family and the transmission of increased blood pressure has been presented. In recombinant inbred (RI) strains derived from SHR and normotensive BN rats, the RI strains that inherited RFLP of kallikrein from the SHR progenitor strains (6.4-kb fragment) show significantly greater median systolic, diastolic and mean arterial pressures than the RI strains that inherited the kallikrein RFLP from the BN progenitor strains (173).

Segregation analysis on a large number of Utah pedigrees, covering 1.2 million subjects (approximately 30% of the current Utah adult population) as well as 140,000 Utah death certificates over a 20-year period, was carried out to find the genetic and environmental determinants of lipid abnormalities and coronary arterial disease (1).

A large-scale epidemiologic study provides some information about possible longer-term relationships between urinary kallikrein and blood pressure (174, 175). In a population of more than 700 healthy children aged 2–14 years, a familial aggregation of high blood pressure was found in children studied for 15 years. Urinary kallikrein, which was also aggregated in families, was lower in black children than white children and was inversely related to blood pressure. Similar significant inverse relationships between urinary kallikrein or creatinine concentration and blood pressure were found in white and black children, and they were relatively stable over an eight-year period of observation (175). A study with 405 normotensive adults and 391 youths in 57 Utah pedigrees provided evidence that total urinary kallikrein excretion was highly familial, with 51% of the total variance attributable to a dominant allele for high total urinary kallikrein excretion and 27% attributable to the combined effects of polygenes and shared family environment (11). An estimated 28% of the population has one or two copies of the dominant allele for high total urinary kallikrein excretion. About 83% of the population could be assigned to one of the two genotypic populations. Individuals with the high total urinary kallikrein excretion genotype were significantly less likely to have one or two hypertensive parents (11). Using the same analysis on large Utah pedigrees, significant statistical urinary potassium interaction with the inferred major gene for kallikrein was found (12): The heterozygote kallikrein group (with a frequency of 50%) shows a significant association between urinary kallikrein and urinary potassium, whereas there was no association with potassium in the low homozygotes. The model predicted that an increase in urinary potassium excretion in these
pedigrees would be associated with high kallikrein levels in the heterozygotes similar to the high levels in the homozygotes, and that a decrease in urinary potassium excretion in heterozygous individuals would be associated with kallikrein levels similar to the levels in homozygous individuals with low kallikrein (12). Because, in the steady state, urinary potassium represents dietary potassium intake, this study suggests that an increase in dietary potassium intake in 50% of these pedigree members, estimated to be heterozygous at the kallikrein locus, would be associated with an increase in an underlying genetically determined low kallikrein level (12). Urinary potassium, pH and systolic blood pressure differences explained 34% of the differences in kallikrein levels between monozygous twins (176), suggesting an additional unmeasured environmental variable that is associated with decreased kallikrein excretion and elevated blood pressure.

On the basis of these observations, Williams (1) proposed the following hypothesis (Fig. 9): subjects can be divided into three kallikrein genotypes; approximately half will be heterozygous for this single-gene trait. In this population with the heterozygous genotype, low potassium intake would have a high susceptibility to hypertension, whereas high potassium intake would reduce the risk of hypertension. Kallikrein levels in approximately 30% of the population are low in “low homozygotes”, who have a high risk of hypertension. Approximately 20% of the population are, according to segregation analysis, “high homozygotes”, who are at a low risk of hypertension regardless of potassium intake (1).

The hypertensive effect of dietary potassium intake is controversial, but a randomized, cross-over, double-blind study conducted for four days on 22 patients of ≥60 years old revealed a decrease in systemic blood pressure during potassium chloride ingestion (120 mmol/day) (177). As more sodium, potassium and aldosterone were excreted during the daytime, while urinary kallikrein was excreted at a fixed rate throughout both day and night (178), a long-term study may be necessary. Nevertheless, it is highly likely that ordinary essential hypertension occurs in people who have susceptibility genes at both angiotensinogen (5) and kallikrein loci, as long as they consume a high-sodium, low-potassium diet (1).

Short summary: Low excretion of urinary kallikrein has been reported in hypertensive patients and congenitally hypertensive animals, but the effects of the low kallikrein excretion have not been clearly identified. Nevertheless, the extensive genetic and environmental studies on large Utah pedigrees suggest that the development of hypertension is strongly related to the combination of a lower kallikrein excretion genotype and potassium intake.

III. Congenital deficiency in the kallikrein-kinin system

Despite a large body of references suggesting the importance of the role of the urinary kallikrein-kinin system in the development of hypertension, direct and definitive evidence providing the missing link between reduced excretion of urinary kallikrein and the development of hypertension are lacking. The main reason for this may have been that it was impossible to eliminate the kinin components from living animals. However, this has been successfully achieved using mutant rats devoid of kininogens, the precursors of kinins, in the plasma.

1. Mutant Brown Norway-Katholiekm rats

Mutant rats of the Brown Norway (BN) strain (*Rattus norvegicus*, BN/fMaI) were discovered at the Katholieke University of Leuven, Belgium, and were reported to be devoid of kallikrein-like activity and have a low level of kininogen in plasma (179–181). This was confirmed by another group (182). This BN strain of rats show a prolonged kaolin-activated partial thromboplastin time due to lack of HMW kininogen and low level of plasma prekallikrein (183). They were designated as BN-Katholiekm (BN-Ka) rats (182). Further studies revealed that both HMW and LMW kininogens were almost entirely absent from the plasma (184, 185) (Fig. 10), and they are practi-
cally incapable of excreting kinin in their urine (185, 186) (Fig. 10). Normal rats of the same strain were kept at the Kitasato University animal facilities and were designated as BN-Kitasato (BN-Ki) rats (182). They show the same levels of kininogens as rats of other strains, such as the SD strain (185). The mutant BN-Ka rats are capable of producing kininogens in the liver, but cannot release them into the blood stream, because of a point mutation of Ala163 to threonine in the structure of the kininogens (187). The HMW, LMW and prekallikrein mRNA are present in the liver of BN-Ka rats with a similar size and abundance, compared with BN/Orl rats (188). The roles of the plasma kallikrein-kinin system in inflammation using these mutant BN-Ka rats (189) have been reviewed (190).

Congenital deficiency of kininogens in the plasma was also reported in humans (191–194). We reported (195, 196) the first case in Japan of kininogen-deficient twin sisters (Fujiwara trait), who are congenitally deficient in HMW and LMW kininogens in the plasma, have reduced levels of plasma prekallikrein, and show prolongation of

Fig. 10. Kininogen levels in plasma (upper panel) and urinary kinin excretion (lower panel) in normal Brown Norway Kitasato (BN-Ki) rats and mutant BN-Katholiek (BN-Ka) rats. Values are means±SEM of four rats. BK eq, bradykinin equivalent; HMW, high molecular weight; LMW, low molecular weight.

(quoted from Ref. 185 with permission)

Fig. 11. Changes in systolic blood pressure in normal Brown Norway-Kitasato (BN-Ki) rats and mutant BN-Katholiek (BN-Ka) rats given NaCl-loaded diets. Both strains of rats were fed NaCl diets from 2% to 8% from the age of 7 weeks for two weeks (Panel A) and a 2% NaCl diet between the ages of 7 and 11 weeks (Panel B). Values are means (±SEM) of 7–12 rats. Values in BN-Ka rats were compared with those in BN-Ki rats of the same age. **P<0.01, ***P<0.001.

(quoted from Ref. 199 with permission)
the activated partial thromboplastin time, since HMW kininogen and plasma kallikrein are essential in the activation of coagulation factor XII. However, the sisters displayed no apparent clinical symptoms and underwent appendectomy without excessive bleeding (195). Susceptibility to salt and hypertension has not been studied. A similar kininogen-deficient family has also been discovered in Japan (197).

Like kininogen-deficient humans, mutant kininogen-deficient BN-Ka rats have no apparent symptoms. The change of the systemic blood pressure during growth in mutant BN-Ka rats is the same as in normal BN-Ki rats, when they take 0.3% NaCl in the diet and drink distilled water (185) (see Fig. 15). The dose-response curve of angiotensin II injected intravenously into mutant BN-Ka rats is not different from that in normal BN-Ki rats, suggesting that the arteriolar smooth muscle in the former animals is no more sensitive to angiotensin II than that of the latter (198). Breeding of mutant BN-Ka rats between sisters and brothers is not easy, because the breeding rate is low. Nevertheless, the following experimental results clearly indicate that mutant BN-Ka rats are very sensitive to ingested salt, which causes sodium accumulation and consequent hypertension. Furthermore, sodium accumulation is also readily induced by aldosterone released by a non-pressor dose of angiotensin II.

2. Hypertension induced by low salt loading in mutant BN-Ka rats

Feeding normal BN-Ki rats with a diet containing increasing concentrations of NaCl caused increases in systolic blood pressure, measured by the tail cuff method, when the dietary concentration of NaCl exceeded 4% (199) (Fig. 11A), whereas kininogen-deficient BN-Ka rats

![Fig. 12. Bar graphs show changes in water intake (A), and urine volume (B), and urinary excretion of sodium (C), potassium (D), and creatinine (E) in normal Brown Norway Kitasato (BN-Ki) rats and mutant BN-Katholiek (BN-Ka) rats. Values are means ±SEM of n rats. After measurement at 7 weeks of age, the diet was changed from low NaCl (0.3%) to 2% NaCl. Values in BN-Ka rats were compared with those in BN-Ki rats at the same age. *P<0.05. (quoted from Ref. 199 with permission)](image-url)
showed an increase in systolic blood pressure after receiving only 2% of NaCl in their diets. Figure 11B shows the changes in the systolic blood pressure of rats of both strains fed with a 2% NaCl diet for four weeks. In the mutant BN-Ka rats, the systolic blood pressure increased up to 167 ± 4 mmHg, whereas that of normal BN-Ki rats did not change during the four-week period. During the period of feeding with the 2% NaCl diet, both strains of rats showed increases in water intake and urine volume, but mutant BN-Ka rats ingested more water and excreted less urine than the normal BN-Ki rats (Fig. 12) (199), so that the tentatively calculated difference (water intake minus urine volume) was much larger in the former than in the latter, which was constant during the four-week period. Urinary excretion of sodium also increased, but mutant BN-Ka rats excreted less than the normal BN-Ki rats (Fig. 12). Urinary excretions of potassium and creatinine were not different between normal BN-Ki rats and mutant BN-Ka rats. Despite the reduced excretion of sodium and water in mutant BN-Ka rats, their serum sodium level increased slightly, whereas that of normal BN-Ki rats was constant. Interestingly, the sodium levels in the erythrocytes during the 2% sodium loading were increased significantly in the mutant BN-Ka rats, but remained constant in the normal BN-Ki rats. Plasma renin activity was reduced and then tended to increase, but there was no difference between the two strains.

A 7-day subcutaneous infusion of LMW kininogen by a mini-osmotic pump, implanted subcutaneously in the back, performed from day 8 in kininogen-deficient BN-Ka rats fed a 2% NaCl diet lowered the systolic blood pressure to the control level, together with increases in urinary kinin, and sodium excretion and in urine volume. In contrast, subcutaneous infusion of the BK B2-antagonist Hoe 140 into normal BN-Ki rats fed a 2% NaCl diet resulted in an increase in systolic blood pressure to 166 ± 23 mmHg, which was significantly higher than the systolic blood pressure of normal BN-Ki rats receiving the physiological saline vehicle. The increase in systolic blood pressure in normal BN-Ki rats was accompanied by reduced excretion of urinary sodium and reduced urine volume.

These results clearly indicate that mutant BN-Ka rats are extremely sensitive to ingested salt and shows a direct relationship between kininogen deficiency or lack of kinin generation, sodium excretion and increase in systolic blood pressure.

As shown in Fig. 11A, dietary sodium concentrations of over 4% increase systemic blood pressure even in normal BN-Ki rats. Usually, 7–9% of the sodium concentrations is used for the induction of experimental hypertension in normotensive rats. However, it should be kept in mind that excretion of active urinary kallikrein, not urinary prokallikrein, is also reduced by the intake of more than 4% of sodium in the diet (Fig. 13). Accordingly, hypertension experiments with high sodium concentrations in the diet may have been carried out while the urinary kallikrein levels were reduced without the researchers’ knowledge.

3. Hypertension induced by a non-pressor dose of angiotensin II in mutant BN-Ka rats

Even during feeding with a 0.3% sodium diet, excess aldosterone release, e.g., by a low dose of angiotensin II, induces hypertension in mutant BN-Ka rats. Subcutaneous infusion of a non-pressor dose (20 μg/day/rat) of angiotensin II in normal BN-Ki rats with a mini-osmotic pump for two weeks did not change the systolic blood pressure (Fig. 14A), but the same treatment in mutant BN-Ka rats caused hypertension (180 ± 8 mmHg), sug-
gesting that hypertension may not be due to direct vaso-
constriction by this substance, but to other factors (198).
The heart rate was also increased markedly (Fig. 14B).
The serum sodium level was significantly increased, and
the hematocrit decreased, in deficient BN-Ka rats. The
sodium level in the erythrocytes rose gradually during

Fig. 14. Changes in systolic blood pressure (A), heart rate (B), and
sodium concentration in erythrocytes (RBC[Na]) (C) in normal
Brown Norway-Kitasato (BN-Ki) rats and mutant Brown Norway
Katholiek (BN-Ka) rats during infusion of low-dose angiotensin II
(Ang II). Values show mean±SEM of the numbers (n) of rats. After
blood pressure measurement at 7 weeks of age, Ang II (20 μg/d per
rat SC) was infused for 2 weeks. Spironolactone (50 mg/d per rat) was
given to Ang II-treated BN-Ka rats for 7 days. Values in BN-Ka rats were compared with those in BN-Ki rats at the same age; *P<0.05, **P<0.01, ***P<0.001. Values in BN-Ka rats with spironolactone were compared with those in BN-Ka rats receiving only Ang II; #P<0.05.

Fig. 15. Graphs show inhibitory effects of continuous subcuta-
neous administration of kininogen on increases of systolic blood
pressure (A), heart rate (B), and erythrocyte sodium concentration
(RBC[Na]) (C) in mutant Brown Norway Katholiek (BN-Ka) rats given low-dose angiotensin II (Ang II). From 7 weeks of age, Ang II
(20 μg/d per rat SC) was infused for 2 weeks. After blood pressure
determination at 8 weeks of age, subcutaneous infusion of low-
molecular-weight kininogen was started. Values show mean±SEM
of the numbers (n) of rats and were compared between the group
(closed circles, hatched column) and a vehicle control group (open
circles, open column). *P<0.05.

(quoted from Ref. 198 with permission)
subcutaneous infusion of angiotensin II in mutant BN-Ka rats (Fig. 14C), and that in the cerebrospinal fluid was also markedly increased, suggesting that sodium was accumulated in the body fluid and the cells.

Simultaneous subcutaneous infusion of spironolactone, an aldosterone antagonist, with angiotensin II in mutant BN-Ka rats in the second week of the angiotensin infusion period reduced the high systolic blood pressure to the level seen in the normal BN-Ki rats (Fig. 14A). Simultaneously, the increases in heart rate (Fig. 14B) and in the sodium levels in the erythrocytes (Fig. 14C) and the cerebrospinal fluid returned to the normal BN-Ki rat levels during the spironolactone treatment, indicating that the aldosterone released by angiotensin infusion had induced both the hypertension and the increase in these parameters. Urinary secretion of aldosterone was increased during the angiotensin infusion, but there was no difference between the two strains of rats.

Because of the lack of plasma kininogens in the BN-Ka rats, supplementary LMW kininogen was infused for the second week of the angiotensin infusion period with a mini-osmotic pump. This supplementation markedly decreased the systolic blood pressure, heart rate and erythrocyte sodium levels (Fig. 15). By contrast, the subcutaneous infusion of the BK B2-receptor antagonist Hoe 140 in normal BN-Ki rats during the second week of angiotensin infusion markedly increased the systolic blood pressure, heart rate and sodium levels in the erythrocytes. The possibility that the arterioles of deficient BN-Ka rats are essentially more sensitive to angiotensin II than those of normal BN-Ki rats was eliminated by the finding that in anesthetized rats of both strains, the dose-response curves of angiotensin II were not significantly different (198).

These results indicate that kininogen-deficient BN-Ka rats, incapable of generating kinin in the renal tubules, show lowered renal excretion of sodium and water and are readily susceptible to hypertension due to sodium accumulation, once either the diet is loaded with a low level of salt or aldosterone is released by angiotensin II. This was mimicked in the normal BN-Ki rats when they were treated with Hoe 140.

As mentioned before in animal models with hypertension (151), Okamoto-Aoki SHR excreted reduced levels of urinary active kallikrein and prokallikrein from the age of four weeks (the weaning period) to the time when the systemic blood pressure reached a plateau. The SHR also show higher plasma renin activity immediately after weaning (151) and the sodium level in erythrocytes was increased. These findings suggest that the induction of hypertension in kininogen-deficient BN-Ka rats by subcutaneous infusion of a non-pressor dose of angiotensin II is not specific to this strain, but may be a universal mechanism that also operates in genetically hypertensive rats such as Okamoto-Aoki SHR rats.

4. DOCA-salt hypertension in mutant BN-Ka rats

As in other strains of rats, a 1% sodium concentration in the drinking water with weekly subcutaneous injections of DOCA to uninephrectomized normal BN-Ki rats at 7 weeks of age caused a gradual increase in the systolic blood pressure, which reached a plateau (180 ± 10 mmHg) at 18 weeks of age (185) (Fig. 16). The same treatment in mutant BN-Ka rats increased the systolic blood pressure rapidly to 158 ± 6 mmHg within 2 weeks and then caused a further slight rise (Fig. 16). As Fig. 5 shows, the time courses of excretion of urinary kallikrein were the same in

Fig. 16. Line graph showing changes with age in systolic blood pressure of normal Brown Norway Katholiek (BN-Ka) rats under no treatment and during deoxycorticosterone acetate (DOCA)-salt treatment. Ordinate shows systolic blood pressure (mmHg) and abscissa indicates age in weeks. Values show means ± SEM. Pressures were plotted against age and compared with pressures at the same age under no treatment (open circles, BN-Ka and open triangles, BN-Ki). Closed circles (BN-Ka) and closed triangles (BN-Ki) indicate systemic blood pressure during DOCA-salt treatment after removal of left kidney at 7 weeks of age (Ope). Rats received 1% NaCl drinking water immediately after the operation and subcutaneous injection of DOCA once a week from the eighth week (DOCA). For DOCA-salt treatment, two series of experiments were combined, and the number of rats for each value varied from seven to 16 for BN-Ki rats and from five to 14 for BN-Ka rats. Blood pressure values of BN-Ka rats were compared each week with those of BN-Ki. *P < 0.05, **P < 0.01. (quoted from Ref. 185 with permission)
both normal BN-Ki rats and mutant BN-Ka rats, so that urinary kallikrein activities peaked at 10 weeks and declined thereafter, following the changes in urinary sodium excretion and urine volume in normal BN-Ki rats. In contrast, mutant BN-Ka rats were unable to excrete sodium and water in the urine, and the systemic blood pressure increased very rapidly almost to its maximum within 3 weeks after the start of treatment. These time course studies indicate that the natriuresis due to the renal kallikrein-kinin system suppressed the systemic blood pressure rise in normal BN-Ki rats and that the decrease in the kallikrein activity to the preinjection level, even during the treatment, allows the development of hypertension. These results clearly indicate that the urinary kallikrein-kinin system prevents the early increase of the systolic blood pressure in the DOCA-salt hypertension model by acceleration of sodium excretion and consequent prevention of the sodium accumulation that took place in the early phase.

5. Importance of sodium accumulation and increased vascular sensitivity in induction of hypertension

Low sodium loading or angiotensin II infusion in mutant BN-Ka rats increases the circulating blood volume with sodium retention, since the hematocrit value in deficient BN-Ka rats was decreased during angiotensin infusion, whereas no difference in hematocrit was observed after a similar infusion in normal BN-Ki rats (198). However, the following experiments (200) indicate that sodium accumulation plays a crucial role in the development of hypertension.

A large volume (6 ml/kg/hr) of 0.15 M or 0.3 M NaCl solution was infused intra-arterially for 4 days into conscious, unrestrained rats through an indwelling catheter. Infusion of normal BN-Ki rats with 0.15 or 0.3 M NaCl increased neither the mean arterial pressure (Fig. 17) nor the sodium levels in the serum, cerebrospinal fluid or erythrocytes. In contrast, infusion of the same volume of 0.3 M NaCl solution into mutant kininogen-deficient BN-Ka rats significantly increased the mean arterial pressure (Fig. 17), together with increase in the sodium levels in the serum, cerebrospinal fluid and erythrocytes, although infusion of 0.15 M NaCl solution did not change these parameters. The hematocrit values were not significantly changed in either strain by either infusion. Thus, sodium accumulation in the body is considered to be more important than the circulating blood volume in the development of hypertension.

Interestingly, after a 4-day infusion of 0.3 M NaCl solution to conscious mutant BN-Ka rats, the dose-response curve of the arteriolar response to angiotensin II shifted to the left, bringing about tenfold increases in the arteriolar responses to angiotensin II (Fig. 18). The arteriolar sensitivity to norepinephrine also increased 30-fold (200). The sensitivity of the arterioles of normal BN-Ki rats was not changed after infusion of either 0.15 or 0.3 M NaCl solution.

A similar increase in responsiveness was reported in hypertension models and hypertensive patients: Enhanced sympathetic control of the heart at baseline and in response to adrenergic stimulation was observed in a conscious canine perinephritic hypertension model during the development of hypertension (201, 202). This enhanced vascular responsiveness is attributed to the \(\alpha_1\)-adrenergic receptor density in the membrane preparations from aortic tissue (203). Perfused segments of second-

Fig. 17. Changes in the mean blood pressure during the intra-arterial infusion of NaCl solution in conscious deficient Brown Norway Katholiek (BN-Ka) rats and conscious normal Brown Norway Kitasato (BN-Ki) rats. Values show the means ± S.E.M. from five rats. Sodium chloride solutions (0.3 M or 0.15 M) were infused (6 ml/kg/hr) into the abdominal aorta for 4 days from 10 weeks of age. Values from rats infused with 0.3 M sodium chloride solution (closed circles) were compared with those infused with 0.15 M sodium chloride solution (open circles) on the same day. *P<0.05, **P<0.01.

(quoted from Ref. 200 with permission)
order mesenteric resistance arteries from SHR show greater sensitivity to norepinephrine than those from WKY. This increase was due to depressed endothelium-dependent dilatation, since removal of the endothelium abolished the difference in sensitivity to norepinephrine between the two strains (204). In humans, normotensive subjects with positive family histories of hypertension are characterized by a higher sensitivity to angiotensin II in the systemic and renal circulation than in subjects with negative family histories of hypertension (205). In normotensive subjects with a positive family history of essential hypertension, the responsiveness of blood pressure to infused norepinephrine is exaggerated, and an increase in potassium intake may improve the norepinephrine hypersensitivity and simultaneously normalize the lower blood pressure (206). Furthermore, in borderline hypertensive patients and mild hypertensive patients during isometric exercise at 30% of maximum force for 3 min, the increase in blood pressure was mainly associated with an increase in peripheral resistance (207).

It has been reported (208) that bolus injections of increasing concentrations of NaCl into the cisterna magna of SD strain rats enhances the discharge of the sympathetic nerves in a concentration-dependent manner and increases the systemic blood pressure. Increased sympathetic drive is frequently observed in young hypertensive patients, particularly during the initial phases of hypertension (209). This increase may be caused by an accumulation of sodium in body, especially in the cerebrospinal fluid.

We may conclude from these results that failure of renal sodium excretion may result in sodium accumulation in the body, and that this sodium accumulation in erythrocytes or even in vascular smooth muscle causes an increased arteriolar response to vasoconstrictive substances such as angiotensin II and norepinephrine. The increased sodium concentrations in the cerebrospinal fluid enhanced the sympathetic discharge, further increasing the norepinephrine release. Thus, sustained increase in systolic blood pressure can be, at least partly, induced by increased sympathetic tone due to sodium accumulation.

Short summary: The discovery of mutant kininogen-deficient BN-Ka rats, which lack kinin generation in urine, may help to clarify the complicated mechanism of the development of hypertension. BN-Ka rats are very sensitive to ingested salt and to sodium retention by aldosterone released by a non-pressor dose of angiotensin II, and they are very susceptible to hypertension due to sodium accumulation in the cerebrospinal fluid and in the erythrocytes, and probably in the vascular smooth muscle. BN-Ka rats show an increased vasoconstrictive response even after a 4-day infusion of 0.3 M NaCl solution, resulting in hypertension. Thus, sodium accumulation in the body and lack of sodium excretion are crucial elements in the development of hypertension.

Fig. 18. Changes in the elevation of the mean blood pressure (MBP) after a bolus intra-arterial injection of angiotensin II to NaCl-infused conscious deficient Brown Norway Katholiek (BN-Ka) rats and conscious normal Brown Norway Kitasato (BN-Ki) rats. Values show the means ± S.E.M. from six rats. Sodium chloride solution (0.3 M or 0.15 M) was infused (6 mg/kg/hr) into the abdominal aorta for 4 days from 10 weeks of age. Values from rats infused with 0.3 M sodium chloride solution (closed circles) were compared with those infused with 0.15 M sodium chloride solution (open circles). *P<0.05, **P<0.01. Values represented by open triangles are those from untreated rats. (quoted from Ref. 200 with permission)
IV. Role of renal kallikrein-kinin system in sodium accumulation

The above mentioned studies on kininogen-deficient BN-Ka rats have clearly demonstrated that the renal kallikrein-kinin system, located along the nephron from the connecting tubule to the cortical collecting duct, plays a role in excretion of sodium. The failure of sodium excretion allows accumulation of sodium in the cells and cerebrospinal fluid. This is easy to accept, since BK is a potent natriuretic agent. However, the contribution of the kallikrein-kinin system to sodium excretion is probably minimal, when no excess sodium is taken up. The systemic blood pressure increases with age from the 4th week of age in normal BK-Ki rats and kininogen-deficient BN-Ka rats, but there is no difference in the systemic blood pressure between mutant BN-Ka rats and normal BN-Ki rats, when both are fed a 0.3% sodium diet (Fig. 16). In contrast, as mentioned above, 2% NaCl in the diet or the release of aldosterone by a non-pressor dose of angiotensin II accelerates sodium accumulation. Accordingly, the crucial role of the renal kallikrein-kinin system is to excrete the excess sodium. It is reported (210) that nearly 95% of the sodium filtered by the renal glomeruli is reabsorbed before reaching the cortical collecting duct. Furthermore, the tubuloglomerular feedback system may regulate the glomerular filtration rate depending upon the sodium concentrations in the macula densa of the tubules. Thus, if the amount of sodium exceeds the reabsorption ability of the tubules preceding the connecting tubules, sodium can reach the cortical collecting duct, where the BK B2-receptors that can excrete the excess sodium, are distributed.

Therefore, we propose the hypothesis that the renal kallikrein-kinin system acts as a sort of floodgate for retained sodium. As shown in Fig. 19, normal BN-Ki rats or WKY fully open the floodgate of the renal kallikrein-kinin system. Once sodium begins to be accumulated in the body, either by excess salt loading or by aldosterone release by angiotensin II, the gate opens and the kinin generated in the cortical collecting duct inhibits sodium reabsorption and accelerates the excretion, thus preventing accumulation (22). In contrast, lack of kinin generation in the collecting duct, as in mutant kininogen-deficient BN-Ka rats, closes the floodgate; and a low dose (2%) of sodium or a release of aldosterone by angiotensin II may initiate the accumulation of sodium in the serum, cerebrospinal fluid and erythrocytes (22). The reduction

Fig. 19. Role of the kallikrein-kinin system (KKS) in the kidney. BN-Ki, normal Brown Norway Kitasato rats; WKY, Wistar Kyoto rats; Deficient BN-Ka, kininogen-deficient Brown Norway Katholiek rats; SHR, spontaneously hypertensive rats; Ang, angiotensin II; Ald, aldosterone.

(quoted from Ref. 22 with permission)
of the gate size, as in SHR, together with the increase in renin release, may cause hypertension due to the sodium accumulation.

Renal kallikrein may be released into the basolateral side, and kinin released in the interstitial space may play some role in vasodilatation. Nevertheless, luminal kinin fulfills a much more important function. As mentioned above (108), the degradation pathways of BK in urine and plasma are quite different. Treatment of DOCA-salt hypertensive rats with a selective inhibitor of the carboxypeptidase Y-like endopeptidase ebelactone B suppressed the high blood pressure during the administration (211) (see section V, 1a). Poststatin, an inhibitor of both carboxypeptidase Y-like exopeptidase and NEP, also shows the same suppressive effect (212).

These results clearly indicate that the major site of action of BK, in relation to its regulation of systemic blood pressure, is not on the basolateral side of the collecting duct, but on the luminal side. Thus, kinin generated in the cortical collecting duct inhibits the reabsorption of sodium on the luminal side and accelerates the sodium excretion to prevent the development of hypertension.

Short summary: From the above-mentioned results, we hypothesize that the renal kallikrein-kinin system is a floodgate for accumulated sodium. If it is closed as in mutant BN-Ka rats, sodium is easily accumulated, and hypertension develops. When the gate size is restricted as in congenitally hypertensive rats, sodium again tends to be accumulated, and hypertension follows. Thus, the renal kallikrein-kinin system plays a pivotal role in suppressing the early development of hypertension by allowing sodium excretion.

V. Novel approaches to development of drugs against hypertension

A large variety of anti-hypertensive drugs are available for controlling hypertension, for example, diuretics, calcium entry blockers, adrenergic \(\alpha\)-receptor antagonists and \(\beta\)-receptor antagonists, and ACE inhibitors. Nevertheless, no drugs have been developed to “prevent” hypertension, since the mechanism of development of essential hypertension is not known. We propose that the renal kallikrein-kinin system may play a suppressive role in the initial stage of hypertension, and that reduction of its activity may trigger the development of hypertension through sodium accumulation in animals predisposed to such accumulation. Therefore, some of the drugs that potentiate the renal kallikrein-kinin system may be useful for preventing essential hypertension. Inhibitors of urinary kininases are regarded as such drugs. Another type of drug may accelerate the secretion of renal kallikrein from the renal connecting duct.

1. Inhibition of kinin degradation

 a. Renal kininase inhibitors

 Ebelactone B is isolated from the culture medium of *Actinomycetes* and selectively inhibits the activity of carboxypeptidase Y-like exopeptidase in rat urine as well as carboxypeptidase Y from yeast without inhibiting carboxypeptidases A and B or other kininases in the plasma and urine (111). Administration of ebelactone B to anesthetized rats caused diuresis and natriuresis in parallel with increased secretion of urinary kinin. This diuresis and natriuresis due to ebelactone B are blocked by the BK antagonist Hoe 140 (211). In DOCA-salt hypertension rats (185), subcutaneous infusion of lisinopril with a mini-osmotic pump for one week from 8 weeks of age does not reduce the systemic blood pressure, since renin has been suppressed in this model. In contrast, the high blood pressure is suppressed by subcutaneous infusion of ebelactone B (211) (Fig. 20). The urinary sodium excretion of normal BN-Ki rats was increased and urine volume tended to be increased in the BN-Ki rats. Mutant kininogen-deficient BN-Ka rats rapidly developed hypertension on the same treatment, and their systemic blood pressure leveled off 2 weeks after the onset of the treatment (at 9 weeks of age), but neither ebelactone B nor lisinopril had any effect, since no kinin was generated in the urine (211). Poststatin, which is isolated from the fermentation broth of *Streptomyces viridochromogens* MH534-30F3, inhibits all kininase activity in rat urine (108). Treatment of rats in DOCA-salt hypertension with poststatin also reduced the high blood pressure during this treatment (212).

 b. Inhibitors of neutral endopeptidase

 NEP is another major kininase in rat urine (110), but is also reported to be a proteinase for hydrolysis of atrial natriuretic peptide (or factor) (ANP) and enkephalins (213) and significantly contributes to the extrarenal metabolism of ANP (214). It has also been reported that a peptidase sensitive to phosphoramidon, an inhibitor of NEP, is present in the pig kidney microvillar membrane (215). NEP is present in high concentration in the glomeruli and brush borders of the proximal tubules of the kidney (216). In fact, NEP is responsible for 68% of the total kininases in the rat. Phosphoramidon decreased the total kininase activity by 77% and increased kinin excretion by 73%, urine volume by 15% and urinary excretion of sodium by 37% without changing the systemic blood pressure, renal blood flow, the glomerular filtration rate or urinary excretion of potassium (217). Many inhibitors of NEP have been developed. They increase the
endogenous ANP plasma level in normal volunteers and in experimental animals (218-221), or in congestive heart failure models (222, 223) and in cirrhotic patients with ascites (224), in association with an increase in urine volume and mean urinary sodium excretion. NEP does not contribute to the kinin hydrolysis in plasma (225).

It is interesting to know whether NEP inhibitors suppress the systemic blood pressure in hypertensive models and hypertensive patients. NEP inhibitors, candoxatrilat, or its prodrug candoxatril, and SCH 34826 ((S)-N-[N-[1-[1(2,2-dimethyl-1, 3-dioxolan-4-yl)methoxy]carbonyl]-2-phenylethyl]-l-phenylalanine), reduced the systolic blood pressure of one-kidney DOCA-salt hypertensive rats by 30-40% (215, 226, 227) for 3 hr with increased urine volume output and renal urinary sodium excretion. NEP does not contribute to the kinin hydrolysis in plasma (225).

Fig. 20. Effects of ebelactone B and lisinopril on the developmental stage of deoxycorticosterone acetate-salt hypertension. Values (systolic blood pressure) are means ±SEM of the number (n) of rats. After uninephrectomy at 7 weeks of age, deoxycorticosterone acetate (5 mg/kg, s.c.) was administered once a week. From 8 weeks of age, ebelactone B (5, 15 mg/kg/day) or lisinopril (5 mg/kg/day) was administered (s.c.) for a week to deoxycorticosterone acetate-salt treated normal BN-Ki rats and kininogen-deficient BN-Ka rats. Values from rats receiving ebelactone B or lisinopril were compared with those of rats receiving vehicle at the same time. *P<0.05.

Values from rats receiving ebelactone B or lisinopril were compared with those of rats receiving vehicle at the same time. *P<0.05.

Endogenous ANP plasma level in normal volunteers and in experimental animals (218-221), or in congestive heart failure models (222, 223) and in cirrhotic patients with ascites (224), in association with an increase in urine volume and mean urinary sodium excretion. NEP does not contribute to the kinin hydrolysis in plasma (225).

It is interesting to know whether NEP inhibitors suppress the systemic blood pressure in hypertensive models and hypertensive patients. NEP inhibitors, candoxatrilat, or its prodrug candoxatril, and SCH 34826 ((S)-N-[N-[1-[1(2,2-dimethyl-1,3-dioxolan-4-yl)methoxy]carbonyl]-2-phenylethyl]-l-phenylalanine), reduced the systolic blood pressure of one-kidney DOCA-salt hypertensive rats by 30-40% (215, 226, 227) for 3 hr with increased urine volume output and renal urinary sodium excretion. NEP does not contribute to the kinin hydrolysis in plasma (225).

The plasma ANP level in the DOCA-salt hypertensive model was increased by SCH 34826 at 1 hr, but returned to the preinjection level at 3 hr (226). Thus, a direct relationship between plasma ANP levels and the antihypertensive effect of SCH 34826 is not always present, so that the reduction of blood pressure by this inhibitor in DOCA-salt hypertensive rats is unlikely to be due to increased plasma ANP levels (228). The ability of NEP inhibition to alter the plasma levels of ANP is influenced by the activity of the ANP c receptors (214). Nevertheless, the reduction of the blood pressure by candoxatrilat was abolished by pretreatment with ANP antiserum (229). SCH 348226 was devoid of acute antihypertensive activity in conscious SHR, but reduced blood pressure by day 3 of a 5-day treatment schedule (226). SQ 29,072 (7-[2-mercaptomethyl]-1-oxo-3-phenyl-propyl]aminoheptio acid), another NEP inhibitor, significantly lowered the mean arterial pressure in conscious hydrated SHR at a larger dose (300 μmol/kg) (230). Thiorphan, an NEP inhibitor, increased plasma and urinary ANP levels with increased sodium excretion in SHR, but the degree of natriuresis was much greater than that expected from the rise of the plasma ANP level (230, 231), indicating that urinary ANP may play some direct role in natriuresis at the distal nephron, and inhibition of NEP may result in natriuresis, which may be due to the inhibition of cleavage by NEP of other peptides such as BK. The same was true in Dahl salt-sensitive rats (232). A modest natriuresis during infusion of ANP in rats was enhanced markedly by thiorphan, but the decrease in mean arterial pressure seen during the infusion of ANP was not magnified by thiorphan. Analysis by reversed-phase high performance liquid chromatography revealed that α-recom-
Combinant ANP(1–28) in the plasma of Dahl salt-sensitive rats is degraded to α-recombinant ANP(1–25) in urine, and candoxatril inhibits this degradation (232), indicating the presence of NEP in the kidney (233, 234). Indeed, NEP is found in high concentrations in the kidney, liver and lung (235). This natriuresis by ANP was completely abolished by a BK antagonist (236), but it is reported that no BK antagonist contributes to the antihypertensive response to NEP inhibition (228, 229, 237). Infusion of an NEP inhibitor, UK73967 (3-[1-[[4-carboxycyclohexyl]-amino][carbonyl]cyclopentyl]-2-[(methoxyethoxy)methyl]propionic acid) (10 mg/kg), into anesthetized normotensive rats significantly decreased NEP activity and increased kinin, urine volume and urinary sodium excretion levels, but did not induce any significant increase in plasma ANP. Simultaneous administration of Hoe 140 canceled the increases of urine volume and urinary sodium excretion caused by UK73967 (238). These results indicate that NEP may play some role in the kidney so that its inhibition induces natriuresis, probably through inhibition of kinin degradation. These results may support our findings that NEP is one of the major kininases contributing to kinin degradation in rat urine (110). Sixty percent of the total kininase activities in human urine are attributed to NEP (239). Thus, it is important to see the effects of NEP inhibitors in essential hypertension.

In clinical studies with NEP inhibitors in hypertensive patients, the results were not always consistent on the role of ANP: Candoxatril (10, 50 and 200 mg) raised the plasma ANP concentrations similarly at all three doses, but only the highest dose induced significant natriuresis without changes in blood pressure and heart rate (240). Candoxatril also increased the plasma ANP levels in hypertensive patients in a sodium-related manner. Urinary sodium excretion was increased up to 6 hr after drug administration, but no difference from normotensive subjects was observed in urinary cGMP excretion (241). In contrast, SCH 42495 (N-[2(S)-(acetylthiomethyl)-3-(2-methyl-phenyl)-1-oxopropyl]-L-methionine ethyl ester) increased the plasma cGMP level in positive correlation

![Fig. 21. Effect of Hoe 140, a bradykinin B2-antagonist, on the increases in urine volume (A) and urinary excretions of active kallikrein (B), sodium (C), chloride (D), potassium (E) and creatinine (F) induced by intravenous infusion of oxytocin (OT). OT was infused at the rate of 30 nmol/kg/30 min, and Hoe 140 was infused at the rate of 4.5 mg/kg/90 min as shown in the scale below. The value represents the means±S.E.M. Each value of the Hoe 140-treated group (■) was compared with that of the Hoe 140 non-treated group (OT-infused group) (●) (*P<0.05, **P<0.01) or the vehicle-infused group (○) (P<0.05, ***P<0.01, ****P<0.001) at the same time period. In the urinary kallikrein analysis, the values during infusion of OT were compared with that at the time of 15 min (**P<0.05, ***P<0.01). ●: n=6 for A and B, n=5 for C–E, n=4 for F, ●: n=5 for A–F, ○: n=5 for A–E, n=4 for F. (quoted from Ref. 84 with permission)
with an increase in the plasma ANP level (242). A 28-day course of treatment of essential hypertensive patients with candoxatril (200 mg) did not induce either a fall in supine blood pressure or urinary excretion of more cGMP than was excreted by the placebo-treated patients (243). In salt-loaded volunteers, SCH 34826 (400–600 mg) significantly increased the urinary excretion of sodium, cGMP and ANP without causing changes in ANP and cGMP levels in the plasma, suggesting that ANP has specific renal effects in normal individuals after sodium loading (244). In low-renin essential hypertensive patients, SCH 34826 (400 mg, four times a day) significantly reduced supine systolic and diastolic blood pressures, but the urinary excretion of sodium and the urine volume was not altered (245). These results suggest that in human subjects, NEP is present in the renal tubules and that NEP inhibitors may induce natriuresis and diuresis by inhibition of NEP in the kidney, probably through the inhibition of kinin degradation in the renal tubules. Experiments should be carefully designed to provide clear evidence, since the renal kallikrein-kinin system works only when sodium is liable to be accumulated in the body.

2. Enhanced kinin generation

One technique for raising the kinin concentration in the renal cortical collecting duct is to accelerate excretion of urinary kallikrein. Several stimuli for kallikrein secretion are known (84) (see section I, 3 a ii), including sodium deprivation, administration of DOCA or aldosterone, and potassium intake. These medical interventions could be used to accelerate urinary kallikrein secretion. We may add oxytocin can be added as another such accelerator. Oxytocin differs in its structure from vasopressin only by two amino acids, and it was reported (246) that the serum level of oxytocin in males (1.80±0.07 μU/ml) is the same as that in non-pregnant females (1.71±0.07 μU/ml); These results were confirmed by Leake et al. (247). The results definitely indicate that oxytocin plays a physiological role in both males and females, in addition to its induction of the uterine contractions of labor in females. As Fig. 21 indicates, in SD strain male rats, intravenous infusion of oxytocin under pentobarbital anesthesia increases the urine volume and urinary sodium excretion as well as kallikrein secretion (84). The increase in sodium excretion and urine volume due to oxytocin was markedly reduced by infusion of the BK B2-receptor antagonist Hoe 140. Thus, oxytocin may be a candidate for a urinary kallikrein releaser, although it has own weak natriuretic activity.

Short summary: Besides many known anti-hypertensive drugs, an alternative approach against hypertension may be to increase the amount of urinary kinin. As the degradation pathway of BK by urine is quite different from that by plasma, inhibitors of urine kininases may be a good candidate of this type of drugs. Ebelactone B, an inhibitor of carboxypeptidase Y, reduced the high blood pressure in the rat DOCA-salt hypertension model, whereas ACE inhibitors are ineffective. Many inhibitors of NEP have been developed, but inhibition of ANP degradation has been focused on, while that of BK degradation in urine is ignored. However, recent reports suggest that the site of action may be the kidney and the possibility that BK may be a target peptide for the hypertensive action cannot be excluded, since NEP is one of urinary kininases in rats and humans. Secondly, if congenitally hypertensive animals as well as patients with essential hypertension secrete less kallikrein, agents that accelerate secretion of urinary kallikrein may be another way to develop new drugs. The findings that oxytocin, which is an endogenous hypophysis hormone, accelerates secretion of urinary kallikrein may be interesting and provide a clue for the development of new anti-hypertensive drugs.

Conclusions

Along the nephrons from the connecting tubules to the collecting duct, the kidney is equipped with all the components of the kallikrein-kinin system. Kinins are known to inhibit sodium and chloride reabsorption in the collecting tubular cells through distributed B2-receptors and to increase the secretion of sodium and water. However, the system does not appear to be active in sodium and water excretion, unless there is a tendency for sodium to be accumulated in the body. Once this condition is met, however, kinin generated by renal kallikrein causes the excretion of sodium and water. Accordingly, reduction of kinin generation either by reduced excretion of renal kallikrein, as in SHR, or through a deficiency of LMW kininogen in the plasma, as in mutant BN-Ka rats, may cause accumulation of sodium in cells such as the erythrocytes and probably the vascular smooth muscle cells, and in body fluids, such as cerebrospinal fluid. Sodium accumulation in vascular smooth muscle cells shifts to the left the dose-response curve of arterioles for vasoconstrictors like norepinephrine and angiotensin II. In addition, sodium retention in the cerebrospinal fluid results in increased sympathetic discharge. The reduced excretion of urinary kallikrein in hypertensive patients as well as in hypertensive models, which has been discussed for a long period, has not been clearly established, but large-scale studies on genetic and environmental determinants have revealed that low kallikrein homozygotes have a high risk of hypertension, and heterozygotes for kallikrein genotypes with low potassium intake are also
highly susceptible to hypertension. When these findings are taken together, the cause of essential hypertension may be simply explained by decreased sodium excretion in the kidney and sodium accumulation in the body. The contribution of the renal kallikrein-kinin system may be limited in the early stage of the development of hypertension, as seen in DOCA-salt hypertension models, but drugs that enhance the renal kallikrein-kinin system, such as urinary kininase inhibitors or accelerators of urinary kallikrein excretion, may be useful as a new approach for controlling of essential hypertension.

Acknowledgments
We express our deep appreciation for the contribution of the staff and technicians in the Department of Pharmacology, Kitasato University School of Medicine. We also extend our sincere thanks for the skilful technical assistance of technicians in the Biochemical Division and the great efforts of technicians in the Animal Facilities of the School of Medicine. The authors also appreciate the reliability and high standard of the work of Mr. Chris W.P. Reynolds, who reviewed the English of this manuscript. Finally, we are grateful for the warm support provided by our families throughout the course of these studies.

REFERENCES

1 Williams RR and Hunt SC: Genetic basis of familial dyslipidemia and hypertension: 15-year results from Utah. Am J Hypertens 6, 319S – 327S (1993)
2 Naffilan AJ, Williams RR, Burt D, Paul M, Pratt RE, Hobart P, Chirgwin J and Dzau VJ: A lack of genetic linkage of renin gene restriction fragment length polymorphisms with human hypertension. Hypertension 4, 614 – 618 (1989)
3 Jeunemaitre X, Lifton RP, Hunt SC, Williams RR and Lalouel J-M: Absence of linkage between the angiotensin converting enzyme locus and human essential hypertension. Nat Genet 1, 72 – 75 (1992)
4 Lifton RP, Hunt SC, Williams RR, Pouysségur J and Lalouel J-M: Exclusion of the Na+-H+ antiporter as a candidate gene in human essential hypertension. Hypertension 17, 8 – 14 (1991)
5 Jeunemaitre X, Soubrier F, Koteliansky YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel J-M and Corvol P: Molecular basis of human hypertension: Role of angiotensinogen. Cell 71, 169 – 180 (1992)
6 Corvol P: Role of the renin-angiotensin-aldosterone system in blood pressure regulation and in human hypertension: new sights from molecular genetics. Recent Prog Horm Res 50, 287 – 308 (1995)
7 Tanimoto K, Sugiyama F, Goto Y, Ishida J, Takimoto E, Yagami K, Fukamizu A and Murakami K: Angiotensinogen-deficient mice with hypertension. J Biol Chem 269, 31334 – 31337 (1994)
8 Sugaya T, Nishimatsu S, Tanimoto K, Takimoto E, Yamagishi T, Imamura K, Goto S, Imaiumi K, Hisada Y, Otsuka A, Uchida H, Sugiuara M, Fukuda K, Fukamizu A and Murakami K: Angiotensin II type 1a receptor-deficient mice with hypertension and hyperreninemia. J Biol Chem 270, 18719 – 18722 (1995)
9 Hasstedt SJ, Wu L, Ash KO, Kuida H and Williams RR: Hypertension and sodium-lithium countertransport in Utah pedigrees: evidence for major locus inheritance. Am J Hum Genet 43, 14 – 22 (1988)
10 Hasstedt ST, Hunt SC, Wu LL and Williams RR: The inheritance of intraerythrocytic sodium level. Am J Med Genet 29, 193 – 203 (1988)
11 Berry TD, Hasstedt SJ, Hunt SC, Wu LL, Smith JB, Ash KO, Kuida H and Williams RR: A gene for high urinary kallikrein may protect against hypertension in Utah kindreds. Hypertension 3, 3 – 8 (1989)
12 Hunt SC, Hasstedt SJ, Wu LL and Williams RR: A gene-environmental interaction between inferred kallikrein genotype and potassium. Hypertension 22, 161 – 168 (1993)
13 Scicli AG and Carretero OA: Renal kallikrein-kinin system. Kidney Int 29, 120 – 130 (1986)
14 Carretero OA and Scicli AG: The renal kallikrein-kinin system. Am J Physiol 238, F247 – F255 (1980)
15 Mayfield RK and Margolius HS: Renal kallikrein-kinin system. Relation to renal function and blood pressure. Am J Nephrol 3, 145 – 155 (1983)
16 Carretero OA and Scicli AG: Kinins as regulators of blood flow and blood pressure. In Hypertension: Pathophysiology, Diagnosis, and Management, Edited by Laragh JH and Brenner BM, Chapter 52, pp 805 – 817, Raven Press, Ltd, New York (1990)
17 Bhoola KD, Figueroa CD and Worthy K: Bioregulation of kinins: Kallikreins, kininogens, and kininases. Pharmacol Rev 44, 1 – 80 (1992)
18 Margolius HS: Kallikreins and kinins. Some unanswered questions about system characteristics and roles in human disease. Hypertension 26, 221 – 229 (1995)
19 Sholvenska BA: Kinins in the cardiovascular system. Immunopharmacology, Supp (in press)
20 Wang J, Xiong W, Yang S, Davis T, Chao J and Chao J: Human tissue kallikrein induces hypotension in transgenic mice. Hypertension 23, 236 – 243 (1994)
21 Borkowski JA, Ransom RW, Seabrook GR, Trumbauer M, Chen H, Hill RG, Strader CD and Hess IR: Targeted disruption of a B2 bradykinin receptor gene in mice eliminates bradykinin action in smooth muscle and neurons. J Biol Chem 270, 13706 – 13710 (1995)
22 Majima M and Katori M: Approaches to the development of novel antihypertensive drugs: crucial role of the renal kallikrein-kinin system. Trends Pharmacol Sci 16, 239 – 246 (1995)
23 Nossel HL: The contact system. In Human Blood Coagulation, Haemostasis and Thrombosis, Edited by Biggs R, pp 79 – 132, Blackwell Sci Pub, London (1972)
24 Pierce JV and Webster ME: Human plasma kallikreins: isolation and chemical studies. Biochem Biophys Res Commun 5, 353 – 357 (1961)
25 Kato H, Enjoji K, Miyata T, Hayashi I, Ohishi S and Iwanaga S: Demonstration of arginyl-bradykinin moiety in rat HMW kininogen: Direct evidence for liberation of bradykinin by rat glandular kallikreins. Biochem Biophys Res Commun 127, 289 – 295 (1985)
26 Inoue H, Fuki K and Miyake Y: Identification and structure of the rat true tissue kallikrein gene expressed in the kidney. J Biochem 105, 834 – 840 (1989)
27 Berg T, Bradshaw RA, Carretero OA, Chao J, Chao L, Clements JA, Fahnstock M, Fritz H, Gauthier P, MacDonald RJ, Margolius HS, Morris BJ, Richards RI and Scicli AG: A
common nomenclature for members of the tissue (glandular) kallikrein gene families. Agents Actions Supp 38/1, 19–25 (1992)

28 Clements J, Mukhtar A, Ehrlich A and Fuller P: A reevaluation of the tissue-specific pattern of expression of the rat kallikrein gene family. Agents Actions Supp 38/1, 34–41 (1992)

29 Riegman PH, Vlietstra RJ, Suurmeijer L, Cleutjens CB and Trapman J: Characterization of the human kallikrein locus. Genomics 14, 6–11 (1992)

30 Uchida Y, Tanaka K, Harada Y, Ueno A and Katori M: Activation of plasma kallikrein-kinin system and its significant role in pleural fluid accumulation of rat carrageenin-induced pleurisy. Inflammation 7, 121–131 (1983)

31 Majima M, Tani Y and Katori M: Loss of the activity of human coagulation factor XII by a chymotrypsin-like protease activated in rat mast cells during degradation with compound 48/80. Thromb Res 46, 855–867 (1987)

32 Katori M, Majima M, Odoi-Adome R, Sunahara N and Uchida Y: Evidence for involvement of a plasma kallikrein-kinin system in the immediate hypotension produced by endotoxin inanaesthetized rats. Br J Pharmacol 98, 1381–1391 (1989)

33 Matsumoto K, Yamamoto T, Kamata R and Maeda H: Pathogenesis of serratial infection: Activation of Hageman factor-prekallikrein cascade by serratial protease. J Biochem 976, 739–749 (1984)

34 Molla A, Yamamoto T, Akaike T, Miyoshi S and Maeda H: Activation of Hageman factor and prekallikrein and generation of kinin by various microbial proteinases. J Biol Chem 264, 10589–10594 (1989)

35 Kaminishi H, Tanaka M, Cho T, Maeda H and Hagihara Y: Activation of the plasma kallikrein-kinin system by Candida albicans proteinase. Infect Immun 58, 2139–2143 (1990)

36 Maruo K, Akaike T, Matsumura Y, Kohmoto S, Inada Y, Ono T, Arao T and Maeda H: Triggering of the vascular permeability reaction by activation of the Hageman factor-prekallikrein system by house dust mite proteinase. Biochim Biophys Acta 1074, 62–68 (1986)

37 Katori M, Harada Y, Ueno A, Majima M, Oda T and Kawamura M: Modulation of plasma exudation by PGE2 and that of leukocyte migration by LTBr in inflammatory models. Dermatologica 179, Supp 60–63 (1989)

38 Majima M, Sunahara N, Harada Y and Katori M: Detection of the products of degradation by bradykinin of enzyme immunoassays as markers for the release of kinin in vivo. Biochem Pharmacol 45, 559–567 (1993)

39 Nustad K, Orstravik TB and Gautvik KM: Radioimmunological measurement of rat submandibular gland kallikrein in tissue and serum (abstract). Microvasc Res 15, 115–116 (1978)

40 Rabito SF, Amin V, Scicli AG and Carretero OA: Glandular kallikrein in plasma and urine. In Adv Exp Med Biol, Vol 120A, Kinins II, Edited by Fuji S, Moriya H and Suzuki T, pp 127–142, Plenum Press, New York (1979)

41 Geiger R, Clasnitz Here B, Fink E and Fritz H: Isolation of an enzymatically active glandular kallikrein from human plasma. Hoppe Seylers Z Physiol Chem 1361, 1795–1803 (1980)

42 Lawton WT, Proud D, French ME, Pierce JV, Keiser HR and Pisano JJ: Characterization and origin of immunoreactive glandular kallikrein in rat plasma. Biochem Pharmacol 30, 1731–1737 (1981)

43 Scicli AG, Mindroiu T Scicli G and Carretero OA: Blood kinins, their concentration in normal subjects and in patients with congenital deficiency in plasma prekallikrein and kininogen. J Lab Clin Med 100, 81–93 (1982)

44 Scicli AG, Orstravik TB, Rabito S, Murray RD and Carretero OA: Blood kinins after sympathetic nerve stimulation of the rat submandibular gland. Hypertension 5, 1101–1106 (1983)

45 Bouaziz H, Joulin Y, Safar M and Benetos A: Effects of bradykinin B2 receptor antagonism on the hypotensive effects of ACE inhibition. Br J Pharmacol 113, 717–722 (1994)

46 Pelacani A, Brunner HR and Nussberger J: Plasma kinins increase after angiotensin-converting enzyme inhibition in human subjects. Clin Sci 87, 567–574 (1994)

47 Majima M, Katori M, Ogino M, Saito M, Sugimoto K, Adachi K, Sunahara N, Kato H, Tatemiichi N and Takei Y: Failure of endogenous blood kinin levels elevated by captopril to induce hypotension in normotensive and hypertensive rats —An assay for kinin by a new ELISA. Biomed Res 17, 679–708 (1995)

48 Linz W, Wiemer G and Schoelkens BA: Contribution of bradykinin to the cardiovascular effects of ramipril. J Cardiovas Pharmacol 22, Supp 9, S1–S8 (1993)

49 Kaizu T and Margolius HS: Studies on rat renal cortical cell kallikrein. 1. Separation and measurement. Biochim Biophys Acta 411, 305–315 (1975)

50 Tomita K, Endou H and Sakai F: Localization of kallikrein-like activity along a single nephron in rabbits. Pflugers Arch 389, 91–95 (1981)

51 Omata K, Carretero OA, Scicli AG and Jackson BA: Localization of active and inactive kallikrein in the isolated tubular segments of the rabbit nephron. Kidney Int 22, 602–607 (1982)

52 Proud D, Knepper MA and Pisano JJ: Distribution of immunoreactive kallikrein along the rat nephron. Am J Physiol 244, F510–515 (1983)

53 Ostravik TB, Nustad K, Brandtzaeg P and Pierce J: Cellular origin of urinary kallikreins. J Histochem Cytochem 24, 1037–1039 (1976)

54 Ostravik TB and Inagami T: The localization of kallikrein in the rat kidney and its anatomical relationship to renin. J Histochem Cytochem 30, 385–390 (1982)

55 Figueroa CD, Caorsi I, Subbiah J and Vio CP: Immunoreactive kallikrein localization in the rat kidney: An immuno-electron-microscopic study. J Histochem Cytochem 32, 117–121 (1984)

56 Figueroa CD, Aorst J and Vio CP: Visualization of renal kallikrein in luminal and basolateral membranes: Effect of tissue processing method. J Histochem Cytochem 32, 1238–1240 (1984)

57 Vio CP and Figueroa CD: Subcellular localization of renal kallikrein by ultrastructural immunocytochemistry. Kidney Int 28, 35–42 (1985)

58 Xiong W, Chao L and Chao J: Renal kallikrein mRNA localization by in situ hybridization. Kidney Int 35, 1324–1329 (1989)

59 El-Dahr SS and Chao J: Spatial and temporal expression of urinary kallikreins proteinase. J Histochem Cytochem 38, 48/80. Thromb Res 46, 855–867 (1987)

60 Cumming AD, Walsh T, Wojtacha D, Fleming S, Thomson D and Jenkins DAS: Expression of tissue kallikrein in human kidney. Clin Sci 87, 5–11 (1994)

61 Bevan DR, MacFarlane NAA and Mills IH: The dependence of urinary kallikrein excretion on renal artery pressure. J Physiol
62 Keiser HR, Andrews MJ Jr, Guyton RA, Margolius HS and Pisano JJ: Urinary kallikrein in dogs with constriction of one renal artery. Proc Soc Exp Biol Med 151, 53 – 56 (1976)

63 Bonner G, Schwertschlag U, Martin-Greze M and Gross F: Effect of changes in perfusion pressure on urinary kallikrein in the isolated perfused rat kidney. Renal Physiol 6, 288–294 (1983)

64 Maier M and Binder BB: Dependence of urokallikrein excretion on the perfusion pressure in explanted perfused kidneys. In Adv Exp Med Biol, Vol 120B, Kinins II, Edited by Fuji C, Moriya H and Suzuki T, pp 527–538, Plenum Press, New York (1979)

65 Misumi J, Alhenc-Gelas F, Marre M, Marchetti J, Corvol P and Menard J: Regulation of kallikrein and renin release by the isolated perfused rat kidney. Kidney Int 24, 58–65 (1983)

66 Margolius HS, Horowitz D, Geller RG, Alexander RW, Gill JR Jr, Pisano JJ and Keiser HR: Urinary kallikrein excretion in normal man. Relationships of sodium intake and sodium-retaining steroids. Circ Res 35, 812–819 (1974)

67 Margolius HS, Horowitz D, Pisano JJ and Keiser HR: Urinary kallikrein excretion in hypertensive man. Relationships to sodium intake and sodium-retaining steroids. Circ Res 35, 820–825 (1974)

68 Geller RG, Margolius HS, Pisano JJ and Keiser HR: Effects of mineralocorticoids, altered sodium uptake and adrenalectomy on urinary kallikrein in rats. Circ Res 31, 857–861 (1972)

69 Bascands JL, Girolami J-P, Pecher C, Moatti J-P, Manuel Y, Keiser HR, Andrews MJ Jr, Guyton RA, Margolius HS and Sjoerdsma A: Altered perfused rat kidney. Kidney Int 24, 58–65 (1983)

70 Omata K, Carretero OA, Itoh S and Scielci AG: Active and inactive kallikrein in rabbit connecting tubules and urine during low and normal sodium intake. Kidney Int 24, 714–718 (1983)

71 Margolius HS, Geller R, Pisano J and Sjoerdsma A: Altered urinary kallikrein excretion in human hypertension. Lancet ii, 1063–1065 (1971)

72 Halushka PV, Wohltmann H, Privitera PJ, Harwig R and Margolius HS: Bartter’s syndrome. Uroinary prostaglandin E-like material and kallikrein; indomethacin effects. Ann Intern Med 87, 281–286 (1977)

73 Miyashita A: Urinary kallikrein determination and its physiological role in human kidney. Jpn J Urol 62, 280–291 (1971)

74 Katori M, Majima M, Mohsin SSJ, Hanazuka M and Mizokami M: Urinary kallikrein determination and its physiological role in human kidney. Jpn J Urol 62, 507–518 (1971)

75 Nishimura K, Alhenc-Gelas F, Marre M, Marchetti J, Corvol P and Menard J: Regulation of kallikrein and renin release by the isolated perfused rat kidney. Kidney Int 24, 58–65 (1983)

76 Maier M and Binder BB: Dependence of urokallikrein excretion on the perfusion pressure in explanted perfused kidneys. In Adv Exp Med Biol, Vol 120B, Kinins II, Edited by Fuji C, Moriya H and Suzuki T, pp 527–538, Plenum Press, New York (1979)

77 Marchetti J, Imbert-Teboul M, Alhec-Gelas F, Allegreni J, Menard J and Morel F: Kallikrein along the rabbit micro-dissected nephron: A micromethod for its measurement. Effect of adrenalectomy and DOCA treatment. Pfugers Arch 401, 27–33 (1984)

78 Martin-Greze M, Bonner G and Gross F: The influence of isotonic saline administration of the urinary excretion of kallikrein in rats. Biochem Pharmacol 33, 3585–3590 (1984)

79 Liaverthal W, Oza NB, Bernard DB and Levinsky NG: Effects of alterations in sodium and water metabolism on urinary excretion of active and inactive kallikrein in man. J Clin Endocrinol Metab 56, 513–519 (1983)

80 Horowitz D, Margolius HS and Keiser HR: Effects of dietary potassium and race on urinary excretion of kallikrein and aldosterone in man. J Clin Endocrinol Metab 47, 296–299 (1978)

81 Vio CP and Figueroa CD: Evidence for a stimulatory effect of high potassium diet on renal kallikrein. Kidney Int 31, 1327–1334 (1987)

82 Himathongkam T, Dulhy RG and Williams GH: Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab 41, 153–159 (1975)

83 Quinn SJ, Corwin MC and Williams GH: Electric properties of isolated rat adrenal glomerulosa and fasciculata cells. Endocrinology 120, 903–914 (1987)

84 Fejes-Toth G, Zabajaszk Y and Filep J: Effect of vasopressin on renal kallikrein excretion. Am J Physiol 239, F388–F392 (1980)

85 Adachi K, Majima M, Katori M and Nishijima M: Oxytoin-induced natriuresis mediated by the renal kallikrein-kinin system in anesthetized male rats. Jpn J Pharmacol 67, 243–252 (1995)

86 Geiger R and Mann K: A kallikrein-specific inhibitor in rat kidney tubules. Hoppe Seyler Z Physiol Chem 375, 553–558 (1976)

87 Chao J, Chai KX, Chen L-M, Xiong W, Chao S, Woodley-Miller C, Wang L, Lu HS and Chao L: Tissue kallikrein-binding protein is a serpin. I. Purification, characterization, and distribution in normotensive and spontaneously hypertensive rats. J Biol Chem 266, 16392–16401 (1990)

88 Chai KX, Ma J-X, Murray SR, Chao J and Chao L: Molecular cloning and analysis of the rat kallikrein-binding protein gene. J Biol Chem 266, 16029–16036 (1991)

89 Zhou GX, Chao L and Chao J: Kallistatin: A novel human tissue kallikrein inhibitor. J Biol Chem 267, 25873–25880 (1992)

90 Yang T, Terada Y, Nonoguchi H, Tsujino M, Tomita K and Marumo F: Distribution of kallikrein-binding protein mRNA in kidneys and difference between SHR and WKY rats. Am J Physiol 267, F325–F330 (1994)

91 Hial V, Keiser HR and Pisano JJ: Origin and content of methionyl-lysyl-bradykinin, lysyl-bradykinin and bradykinin in human urine. Biochem Pharmacol 25, 2499–2503 (1976)

92 Pisano JJ, Yates K and Pierce JV: Kinogenin in human urine. Agents Actions 8, 1–2 (1978)

93 Proud D, Perkins M, Pierce JV, Yates K, Hight P, Herrig P, Mark MM, Bahu R, Carone F and Pisano JJ: Characterization and localization of human renal kinogenin. J Biol Chem 250, 10634–10639 (1981)

94 Figueroa CD, Maciver AG, Mackenzie JC and Bhoola KD: Localization of immunoreactive kinogenin and tissue kallikrein in the human nephron. Histochemistry 90, 437–442 (1988)

95 Chao J, Swain C, Chao S, Xiong W and Chao L: Tissue distribution and kinogenin gene expression after acute-phase inflammation. Biochim Biophys Acta 1061, 392–398 (1991)

96 Hagiwara Y, Kojima M, Hayashi I and Ohishi S: Demonstration of derivation of rat urinary bradykinin from plasma low-molecular-weight kinogenin: a study using kinogenin-deficient rats. Biochem Biophys Res Commun 204, 1219–1224 (1994)
of high-molecular-weight kininogen in kininogen-deficient rat kidneys. J Biochem 116, 59–63 (1994)
98 Carone FA, Pullman TN, Oparil S and Nakamura S: Micropuncture evidence of rapid hydrolysis of bradykinin by rat proximal tubules. Am J Physiol 230, 1420–1424 (1976)
99 Sudo J: Distribution of peptidases in the metabolism of peptide hormones, particularly angiotensin II, along the isolated single nephron of rat. Folia Pharmacol Jpn 78, 27–44 (1981) (Abstr in English)
100 Marchetti J, Roseau S and Alhenc-Gelas F: Angiotensin I converting enzyme and kinin-hydrolyzing enzymes along the rabbit single nephron. Kidney Int 31, 744–751 (1987)
101 Ikemoto F, Song GB, Tominaga M, Kanayama Y and Yamamoto K: Angiotensin-converting enzyme in the rat kidney. Activity, distribution, and response to angiotensin-converting enzyme inhibitors. Nephron 55, Supp 1, 3–9 (1990)
102 Schulz WW, Hagler HK, Buja LM and Erdos EG: Ultra-structural localization of angiotensin I-converting enzyme (EC 3.4.15.1) and neutral metalloendopeptidase (EC 3.4.24.11) in the proximal tubules of the human kidney. Lab Invest 59, 789–797 (1988)
103 Skidgel RA, Davis RM and Erdos EG: Purification of a human urinary carboxypeptidase (kininase) distinct from carboxypeptidase A, B or N. Anal Biochem 140, 520–531 (1984)
104 Sakakibara T, Ura N, Shimamoto K, Mori Y, Saito S, Ise T, Sasa Y, Yamauchi K and limura O: Localization of neutral endopeptidase in the kidney determined by the stop-flow method. Adv Exp Med Biol 247B, 437–440 (1989)
105 Ura N, Carretero OA and Erdos EG: Role of renal endopeptidase 24.11 in kinin metabolism in vitro and in vivo. Kidney Int 32, 507–513 (1987)
106 Ura N, Shimamoto K, Satoh S, Kuroda S, Nomura N, Ohtomo Y, Masuda A and limura O: Renal kininase I, kininase II and neutral endopeptidase 24.11 activities in patients with essential hypertension, primary aldosteronism and Cushing’s syndrome. Hypertens Res 16, 253–258 (1993)
107 Marinikovi DV, Ward PE, Erdos EG and Mills IH: Carboxypeptidase-type kininase of human kidney and urine. Proc Soc Exp Biol Med 165, 6–12 (1980)
108 Majima M, Shima C, Saito M, Kuribayashi Y, Katori M and Aoyagi T: Poststatin, a novel inhibitor of bradykinin-degrading enzymes in rat urine. Eur J Pharmacol 232, 181–190 (1993)
109 Shima C, Majima M and Katori M: A stable degradation product of bradykinin, Arg-Pro-Pro-Gly-Phe, in the degradation in human plasma. Jpn J Pharmacol 60, 111–119 (1992)
110 Kuribayashi Y, Majima M and Katori M: Major kininases in rat urine are neutral endopeptidase and carboxypeptidase Y-like exopeptidase. Biomed Res 14, 191–201 (1993)
111 Majima M, Kuribayashi Y, Ikeda Y, Adachi K, Kato H, Katori M and Aoyagi T: Diuretic and natriuretic effect of ebeulactone B in anesthetized rats by inhibition of a urinary carboxypeptidase Y-like kininase. Jpn J Pharmacol 65, 79–82 (1994)
112 Tomita K and Pisano JJ: Binding of [3H]-bradykinin in isolated nephron segments of the rabbit. Am J Physiol 246, F732–F737 (1984)
113 Kauer ML: Bradykinin action on the efflux of luminal 22Na in the rat nephron. J Pharmacol Exp Ther 214, 119–123 (1980)
114 Tomita K, Pisano JJ and Knepper MA: Control of sodium and potassium transport in the cortical collecting duct of the rat. J Clin Invest 76, 132–136 (1985)
115 Tomita K, Pisano JJ, Brug MB and Knepper MA: Effects of vasopressin and bradykinin on anion transport by the rat cortical collecting duct. Evidence for an electroneutral sodium chloride transport pathway. J Clin Invest 77, 136–141 (1986)
116 Regoli D and Barabe J: Pharmacology of bradykinin and related kinins. Pharmacol Rev 32, 1–46 (1980)
117 Fugueroa CD, Gonzalez CB, Grigoriev S, Alla SA, Haasemann M, Jarnagin K and Mueller-Esterl W: Probing for the bradykinin B2 receptor in rat kidney by anti-peptide and anti-ligand antibodies. J Histochem Cytochem 43, 137–148 (1995)
118 Elliot AH and Nuzum FR: The urinary excretion of a depressor substance (kallikrein of Frey and Kraut) in arterial hypertension. Endocrinology 18, 462 (1934)
119 Margolius HS, Horowitz D, Pisano JJ and Keiser HR: Urinary kallikrein excretion in hypertensive man: relationships to sodium intake and sodium-retaining steroids. Circ Res 35, 820–825 (1974)
120 Carretero OA, Oza NB and Schork A: Renal kallikrein, plasma renin, and plasma aldosterone in renal hypertension. Acta Physiol Lat Am 24, 448–452 (1974)
121 Seino J, Abe K, Otsuka Y, Saito T, Irokawa N, Yasujima M, Chiba S and Yoshinaka K: Urinary kallikrein excretion and sodium metabolism in hypertensive patients. Tohoku J Exp Med 116, 359–367 (1975)
122 Horowitz D, Margolius HS and Keiser HR: Effects of dietary potassium and race on urinary excretion of kallikrein and aldosterone in man. J Clin Endocrinol Metab 47, 296–299 (1978)
123 Lechi A, Covi G, Lechi C, Corquati A, Arosio E, Zatti M and Scuro LA: Urinary kallikrein excretion and plasma renin activity in patients with essential hypertension and primary aldosteronism. Clin Sci Mol Med 55, 51–55 (1978)
124 Abe K, Yasujima M, Irokawa N, Seino M, Chiba S, Sakurai Y, Sato M, Imai Y, Saito K, Ito T, Haruyama T, Otsuka Y and Yoshinaka K: The role of intrarenal vasoactive substances in the pathogenesis of essential hypertension. Clin Sci Mol Med 55, 363s–366s (1978)
125 Mersey JH, Williams GH, Emanual R, Dluyh RG, Wong PY and Moore TJ: Plasma bradykinin levels and urinary kallikrein excretion in normal renin essential hypertension. J Clin Endocrinol Metab 48, 642–647 (1979)
126 Keiser HR: The kallikrein-kinin system in essential hypertension. Clin Exp Hypertens 2, 675–691 (1979)
127 Shimamoto K, Ura N, Tanaka S, Ogasawara A, Nakao T, Nakanishi Y, Chao J, Margolius HS and limura O: Excretion of human urinary kallikrein quantity measured by a direct radioimmunoassay of human urinary kallikrein in patients with essential hypertension and secondary hypertensive disease. Jpn Circ J 45, 1092–1097 (1981)
128 Ura N, Shimamoto K, Nakao T, Ogasawara A, Tanaka S, Mita T, Nishimura T and limura O: The excretion of human urinary kallikrein quantity and activity in normal and low renin subgroups of essential hypertension. Clin Exp Hypertens 5, 329–337 (1985)
129 Favre L, Jornot L, Riodel A and Vallotton M: Urinary excretion of renal prostaglandins, kallikrein, vasopressin and aldosterone in essential hypertension. Clin Exp Hypertens 7, 1663–1679 (1985)
130 Levy SB, Lilley JJ, Frigon RP and Stone RA: Urinary kallikrein and plasma renin activity as determinants of renal blood flow. J Clin Invest 60, 129–138 (1977)
131 Carretero OA and Scicli AG: The kallikrein-kinin system in humans and in experimental hypertension. Klin Wochenschr 56, Suppl 1, 113–125 (1978)

132 Hilme E, Herlitz H, Gyzander E and Hansson L: Urinary kallikrein excretion is low in malignant essential hypertension. J Hypertens 10, 869–874 (1992)

133 Lawton WJ and Fitz AE: Urinary kallikrein in normal renal essential hypertension. Circulation 56, 856–859 (1977)

134 Koolen ML, Daha MR, Frolich M, Van Es LA and Van Brummelen P: Direct and indirect measurement of urinary kallikrein excretion in patients with essential hypertension and normotensives: relation to age and plasma renin and aldosterone levels. Eur J Clin Invest 14, 171–174 (1984)

135 Zschiedrich H, Fleckenstein P, Geiger R, Fink E, Sinterhauf K, Philip T, Distler A and Wolffs HP: Urinary kallikrein excretion in normotensive subjects and in patients with essential hypertension. Clin Exp Hypertens 2, 693–708 (1980)

136 Shimamoto K, Masuda A, Ando T, Ura N, Nakagawa M, Mori Y, Nakagawa H, Sakakibara T, Ogata H and Limura O: Mechanisms of suppression of renal kallikrein activity in low renin essential hypertension and renoparenchymal hypertension. Hypertension 14, 375–378 (1989)

137 Holland B, Chud JM and Braunstein H: Urinary kallikrein excretion in essential and mineralocorticoid hypertension. J Clin Invest 65, 347–356 (1980)

138 Nakahashi Y, Shimamoto K, Ura N, Tanaka S, Nishitani T, Ishida H, Yokoyama T, Ando T and Limura O: Comprehensive studies on the renal kallikrein-kinin system in essential hypertension. In Adv Exp Med Biol, Vol 198B, Kinins III, Part B, Edited by Greenbaum LM and Margolius HS, pp 351–357, Plenum Press, New York (1986)

139 Mitas JA, Levy SB, Holle R, Frigon RP and Stone RA: Urinary kallikrein activity in the hypertension of renal parenchymal disease. N Engl J Med 299, 162–165 (1978)

140 Keiser HG, Geller RG, Margolius HS and Pisano JJ: Urinary kallikrein in hypertensive animal models. Fed Proc 35, 199–202 (1976)

141 Girolami JP, Praddaude F, Ader JL, Tran-Van T and Eche JP: Bilateral urinary kallikrein excretion in the Goldblatt hypertensive rats. Eur Heart J 4, 67–72 (1983)

142 Carretero OA, Amin VM, Ochollik T, Scicli AG and Koch J: Urinary kallikrein in rats bred to susceptibility and resistance to renal parenchymal disease. N Engl J Med 299, 162–165 (1978)

143 Ferrari P, Torielli L, Cirillo M, Salardi S and Bianchi G: Sodium transport kinetics in erythrocytes and inside-out vesicles from Milan rats. J Hypertens 5, 703–711 (1989)

144 Iwai J, Knudsen KD, Dahl LD, Heine M and Leif G: Genetic differences in kallikrein in rats bred to susceptibility and resistance to renal parenchymal disease. N Engl J Med 299, 162–165 (1978)

145 Keiser HG, Geller RG, Margolius HS and Pisano JJ: Urinary kallikrein in hypertensive animal models. Fed Proc 35, 199–202 (1976)

146 Gilboa N, Rudofsky U and Magro, A.: Urinary and renal kallikrein in hypertensive fawn- hooded (FH/Wj) rats. Lab Invest 50, 72–78 (1984)

147 Ader J-L, Pollock DM, Butterfield MI and Arendshorst WJ: Abnormalities in kallikrein excretion in spontaneously hypertensive rats. Am J Physiol 248, F396–F403 (1985)

148 Ader J-L, Tran-Van T and Praddaude F: Reduced urinary kallikrein activity in rats developing spontaneous hypertension. Am J Physiol 252, F964–F969 (1987)

149 Praddaude F, Tran-Van T and Ader JL: Renal kallikrein activity in rats developing spontaneous hypertension. Hypertension 14, 375–378 (1989)

150 Arlott LA and Serra SR: Decreased total and active urinary kallikrein in normotensive Dahl salt susceptible rats. Kidney Int 28, 440–446 (1985)

151 Mohsin SSJ, Majima M, Katori M and Sharma JN: Important suppressive roles of the kallikrein-kinin system during the developmental stage of hypertension in spontaneously hypertensive rats. Asia Pacific J Pharmacol 7, 73–82 (1992)

152 Dilley JR, Stier CT Jr and Arendshorst WJ: Abnormalities in glomerular function in rats developing spontaneous hypertension. Am J Physiol 246, F12–F20 (1984)

153 Figueroa CD, Bhoola KD, Macfver AG and Mackenzie JC: An ontogenic study of renal tissue kallikrein in Okamoto spontaneously hypertensive rats: Comparisons with human hypertensive nephropathy. Nephrol Dial Transplant 7, 516–525 (1992)

154 Yasujima M, Abe K, Yannou M, Kohzuki M, Omata K, Kasai Y, Saito T, Takeuchi K, Itoh S, Kanazawa M, Hiwatari M, Saito T, Saito S and Yoshinaga K: Renal kallikrein activity in spontaneously hypertensive rats. J Hypertens 5, 687–692 (1987)

155 Fuller PJ, Clements JA, Nikolaides I, Hiwatari M and Funder JW: Expression of the renal kallikrein gene in mineralocorticoid-treated and genetically hypertensive rats. J Hypertens 4, 427–433 (1986)

156 Ferrari P, Torielli L, Salardi S Rizzo A and Bianchi G: Na+/K+/Cl− cotransport in ressealed ghosts from erythrocytes of the Milan hypertensive rats. Biochim Biophys Acta 1111, 111–119 (1992)

157 Cusi D, Nieta E, Barlascina C, Bollini P, Cesana B, Stella P, Robba C, Merati GP and Bianchi G: Erythrocyte Na+, K+, Cl− cotransport and kidney function in essential hypertension. J Hypertens 11, 805–813 (1993)

158 Ferrari P, Torielli L, Cirillo M, Salardi S and Bianchi G: Sodium transport kinetics in erythrocytes and inside-out vesicles from Milan rats. J Hypertens 5, 703–711 (1991)

159 Bianchi G, Toripodi G, Casari G, Saito T, Sato S and Ishida H, Yokoyama T, Ando T and Limura O: Comprehensive study of renal tissue kallikrein in Okamoto spontaneously hypertensive rats. J Hypertens 5, 687–692 (1987)

160 Moens MJ, Pauwels D, Bellemans J, De Smedt K and Fytche A: Role of genetic factors in blood pressure variation. Proc Natl Acad Sci USA 91, 3999–4003 (1994)

161 Cesari G, Barlascina C, Cusi D, Zagato L, Muirhead R, Righetti M, Nembrbi P, Amar K, Gatti M, Macciardi F, Binelli G and Bianchi G: Association of the α-adducin locus with essential hypertension. Hypertension 25, 320–326 (1995)

162 Bianchi GP, Fox U, Di Francesco GF, Giovannetti M and Bagetti D: Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med 47, 435–448 (1974)

163 Kawabe K, Watanabe T, Shiono K and Sokabe H: Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats using F1 hybrids. Jpn Heart J 19, 886–894 (1978)

164 Dahl LK, Heine M and Tassinari L: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194, 480–482 (1962)
influence on the development of renal hypertension in parabiotic rats. J Exp Med 129, 507–522 (1969)

165 Dahl LK, Heine M and Thompson K: Genetic influence of the kidneys on blood pressure—Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res 34, 94–101 (1974)

166 Beierwalter WH, Arendshorst WJ and Klemmer PJ: Electrolyte and water balance in young spontaneously hypertensive rats. Hypertension 4, 908–915 (1982)

167 Bianchi GP, Baer G, Fox U, Duzzi L, Pagetti D and Giovanetti M: Changes in renin, water balance, and sodium balance during development of high blood pressure in genetically hypertensive rats. Circ Res 36, 1-153–1-161 (1975)

168 Rapp JP, Wang S-M and Dene H: A genetic polymorphism in the renin gene of Dahl rats cosegregates with blood pressure. Science 243, 542–544 (1989)

169 Samani NJ, Brammar WJ and Swales JD: A major structural abnormality in the renin gene of the spontaneously hypertensive rat. J Hypertens 7, 249–254 (1989)

170 Kurz TW, Simonet K, Kabra PM, Wolfe S, Chan L and Hjelle BL: Co segregation of the renin allele of the spontaneously hypertensive rats with an increase in blood pressure. J Clin Invest 85, 1328–1332 (1990)

171 Dahl LK, Heine M and Thompson K: Genetic influence of renal homografts on blood pressure of rats from different strains. Proc Soc Exp Biol Med 140, 852–856 (1972)

172 Dahl LK and Heine M: Primary role of renal homografts in regulating chronic blood pressure levels in rats. Circ Res 36, 692–696 (1975)

173 Pravenec M, Kren V, Kunes J, Seidl M, Carretero OA, Simonet L and Kurz TW: Co-segregation of blood pressure with a kallikrein gene family polymorphism. Hypertension 17, 242–246 (1991)

174 Zinner SH, Levy PS and Kass EH: Familial aggregation of blood pressure in childhood. N Engl J Med 284, 401 (1971)

175 Zinner SH, Margolius HS, Rosner B and Kass EH: Stability of blood pressure rank and urinary kallikrein concentration in childhood: an eight-year follow-up. Circulation 58, 908–915 (1978)

176 Hunt SC, Slattery MA, Meikle AW and Williams RR: Environmental determinants of urinary kallikrein excretion. Am J Hypertens 6, 226–233 (1993)

177 Smith SR, Klotman PE and Sventkey LP: Potassium chloride lowers blood pressure and causes natriuresis in older patients with hypertension. Am J Nephrol 2, 1302–1309 (1992)

178 Staessen JA, Birkhaeuser W, Bullpitt CJ, Fagard R, Fletcher AE, Lijnen P, Thijs L and Amery A: The relationship between blood pressure and sodium and potassium excretion during the day and at night. J Hypertens 11, 443–447 (1993)

179 Damas J and Adams A: The kallikrein-kininogen-kinin system in the Brown Norway rat. Biomedicine 31, 249 (1979)

180 Damas J and Adams A: Congenital deficiency in plasma kallikrein and kininogens in the Brown Norway rat. Experientia 36, 586–587 (1980)

181 Damas J and Adams A: Sur une deficience en prekallikreine plasmatique chez une souche de rats Brown Norway. Arch Int Physiol Biochim 88, 511–514 (1980) (Abstr in English)

182 Oh-ishi S, Satoh K, Hayashi I, Yamazaki K and Nakano T: Differences in prekallikrein and high molecular weight kininogen levels in two strains of Brown Norway rat (Kitasato strain and Katholiek strain). Thromb Res 28, 143–147 (1982)

183 Oh-ishi S, Hayashi I, Satoh K and Nakano T: Prolonged activated thromboplastin time and deficiency of high molecular weight kininogen in Brown Norway rat mutant (Katholiek strain). Thromb Res 33, 371–377 (1984)

184 Oh-ishi S, Hayashi I, Yamaki K, Yamashu A, Nakano T, Utsunomiya I and Nagashima Y: Evidence for a role of the plasma kallikrein-kinin system in acute inflammation: reduced exudation during carrageenin- and kaolin-pleurisies in kininogen-deficient rats. Agents Actions 18, 450–454 (1986)

185 Majima M, Katori M, Hanazuka M, Mizogami S, Nakano T, Nakao Y, Mikami R, Uryu H, Okamura R, Mohsin SJJ, and Oh-ishi S: Suppression of rat deoxycorticosterone-salt hypertension by kallikrein-kinin system. Hypertension 17, 806–813 (1991)

186 Yamashu A, Oh-ishi S, Hayashi I, Hayashi M, Yamaki K, Nakano T and Syunahara N: Differentiation of kinin fractions in ureter urine and bladder urine of normal and kininogen-deficient rats. J Pharmacobiodyn 12, 287–292 (1989)

187 Hayashi I, Hoshiko S, Manabe O and Oh-ishi S: A point mutation of alanine 163 to threonine is responsible for the defective secretion of high molecular weight kininogen by the liver of Brown Norway Katholiek rats. J Biol Chem 268, 17219–17224 (1993)

188 Lattion A-L, Baussant T, Alhenc-Gelas F, Seidah NG, Corvol P and Soubrier F: The high-molecular-mass kininogen deficient rat expresses all kininogen mRNA species, but does not export the high-molecular-mass kininogen synthesized. FEBS Lett 239, 59–64 (1988)

189 Oh-ishi S, Hayashi I, Utsunomiya I, Hayashi M, Yamaki K, Yamashu A and Nakano T: Roles of kallikrein-kinin system in acute inflammation: Studies on high- and low-molecular weight kininogen-deficient rats (B/N-Katholiek strain). Agents Actions 21, 384–386 (1987)

190 Oh-ishi S: Biological regulation by the kallikrein-kinin system: A study with a kininogen-deficient rat strain. Folia Pharmacol Jpn 101, 209–218 (1993) (Abstr in English)

191 Lacombe MJ Varet B and Levey J: The high-molecular-mass kininogen-synthesizing liver of Brown Norway Katholiek rats. J Biol Chem 268, 1650-1662 (1975)

192 Guimaraes JA, Pierce JV and Kaplan AP: Williams trait: Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56, 1650–1662 (1975)

193 Donaldson VH, Glueck HI, Millar RD and Lacome M-J: Flaujesc trait: Deficiency of human plasma kininogen. J Clin Invest 56, 1663–1672 (1975)

194 Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimaraes JA, Pierce JV and Kaplan AP: Williams trait: Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56, 1650–1662 (1975)

195 Lijnen P, Thijs L and Amery A: The relationship between blood pressure and sodium and potassium excretion during the day and at night. J Hypertens 11, 443–447 (1993)

196 Majima M, Katori M, Hanazuka M, Mizogami S, Nakano T, Nakao Y, Mikami R, Uryu H, Okamura R, Mohsin SJJ, and Oh-ishi S: Suppression of rat deoxycorticosterone-salt hypertension by kallikrein-kinin system. Hypertension 17, 806–813 (1991)

197 Yamasu A, Oh-ishi S, Hayashi I, Hayashi M, Yamaki K, Nakano T and Syunahara N: Differentiation of kinin fractions in ureter urine and bladder urine of normal and kininogen-deficient rats. J Pharmacobiodyn 12, 287–292 (1989)

198 Hayashi I, Hoshiko S, Manabe O and Oh-ishi S: A point mutation of alanine 163 to threonine is responsible for the defective secretion of high molecular weight kininogen by the liver of Brown Norway Katholiek rats. J Biol Chem 268, 17219–17224 (1993)

199 Lattion A-L, Baussant T, Alhenc-Gelas F, Seidah NG, Corvol P and Soubrier F: The high-molecular-mass kininogen deficient rat expresses all kininogen mRNA species, but does not export the high-molecular-mass kininogen synthesized. FEBS Lett 239, 59–64 (1988)

200 Oh-ishi S: Biological regulation by the kallikrein-kinin system: A study with a kininogen-deficient rat strain. Folia Pharmacol Jpn 101, 209–218 (1993) (Abstr in English)

201 Lacombe MJ Varet B and Levey J: The high-molecular-mass kininogen-synthesizing liver of Brown Norway Katholiek rats. J Biol Chem 268, 1650-1662 (1975)

202 Guimaraes JA, Pierce JV and Kaplan AP: Williams trait: Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56, 1650–1662 (1975)

203 Donaldson VH, Glueck HI, Millar RD and Lacome M-J: Flaujesc trait: Deficiency of human plasma kininogen. J Clin Invest 56, 1663–1672 (1975)

204 Colman RW, Bagdasarian A, Talamo RC, Scott CF, Seavey M, Guimarães JA, Pierce JV and Kaplan AP: Williams trait: Human kininogen deficiency with diminished levels of plasminogen proactivator and prekallikrein associated with abnormalities of the Hageman factor-dependent pathways. J Clin Invest 56, 1650–1662 (1975)
high and low molecular weight kininogens with low level of prekallikrein. Tohoku J Exp Med 133, 67-80 (1981)

197 Nakamura K, Iijima K, Fukuda C, Kadowaki H, Ikoma H, Oh-ishi S, Uchida Y and Katori M: Tachibana trait: Human high molecular weight kininogen deficiency with diminished levels of prekallikrein and low molecular weight kininogen. Acta Hematol Jpn 48, 1473-1479 (1983)

198 Majima M, Mizogami S, Kuribayashi Y, Katori M and Oh-ishi S: Hypertension induced by a nonpressor dose of angiotensin II in kininogen-deficient rats. Hypertension 24, 111-119 (1994)

199 Majima M, Yoshida O, Mihara H, Muto T, Mizogami S, Kuribayashi Y, Katori M and Oh-ishi S: High sensitivity to salt in kininogen-deficient Brown Norway Katholiek rats. Hypertension 22, 705-714 (1993)

200 Majima M, Adachi K, Kuribayashi Y, Mizogami S and Katori M: Increase in vascular sensitivity to angiotensin II and norepinephrine after four-days infusion of 0.3 M sodium chloride in conscious kininogen-deficient Brown Norway Katholiek rats. Jpn J Pharmacol 69, 149-158 (1995)

201 Gelpi RJ, Hittinger L, Fujii AM, Crocker VM, Minsky I and Vatner SF: Sympathetic augmentation of cardiac function early in developing hypertension in conscious dogs. Am J Physiol 255, H1525-H1534 (1988)

202 Shannon RP, Gelpi RJ, Hittinger L, Vatner DE, Homey CJ, Graham RM and Vatner SF: The inotropic response to norepinephrine is augmented early and maintained late in conscious dogs with perinephritic hypertension. Circ Res 68, 543-554 (1991)

203 Uemura N, Vatner DE, Shen Y-T, Wang J and Vatner SF: In pathogenetic and therapeutic relevance of.
226 Sybertz EJ, Chiu PJS, Vemulapalli S, Watkins R and Haslanger MF: Atrial natriuretic factor-potentiating and antihypertensive activity of SCH 34826—An orally active neutral metallopeptidase inhibitor. Hypertension 15, 152–161 (1990)

227 Seymour AA, Norman JA, Asaad MM, Fennell SA, Swerdel JN, Little DK and Dorso CR: Renal and depressor effects of SQ 29,072, a neutral endopeptidase inhibitor, in conscious hypertensive rats. J Cardiovasc Pharmacol 16, 163–172 (1990)

228 Sybertz EJ: SCH 34826: an overview of its profile as a neutral endopeptidase inhibitor and ANF potentiator. Clin Nephrol 36, 187–191 (1991)

229 Sybertz EJ, Chiu PJS, Watkins RW and Vemulapalli S: Neutral metalloendopeptidase inhibitors as ANF potentiators: sites and mechanisms of action. Can J Physiol Pharmacol 69, 1628–1635 (1991)

230 Hirata Y, Matsuoka H, Hayakawa H, Sugimoto T, Suzuki E, Sugimoto T, Kanagawa K and Matsuo H: Role of endogenous atrial natriuretic peptide in regulating sodium excretion in spontaneously hypertensive rats. Hypertension 17, 1025–1032 (1991)

231 Cavero PG, Margulies KB, Winaver J, Seymour AA, Delaney NG and Burnett JC Jr: Cardiorenal actions of neutral endopeptidase inhibition in experimental congestive heart failure. Circulation 82, 196–201 (1990)

232 Suzuki E, Hirata Y, Matsuoka H, Sugimoto T, Hayakawa H, Sugimoto T, Kanagawa K, Minamino N and Matsuo H: Characterization of atrial natriuretic peptide in urine from rats treated with a neutral endopeptidase inhibitor. Biochem Biophys Res Commun 182, 1270–1276 (1992)

233 Kenny AJ and Stephenson SL: Role of endopeptidase-24.11 in the inactivation of atrial natriuretic peptide. FEBS Lett 232, 1–8 (1988)

234 Roques BP, Fournie-Zaluski M-C, Soroca E, Lecomte JM, Malfroy B, Liorens C and Schwarz J-C: The enkephalinase inhibitor thiorphan shows antinociceptive activity in mice. Nature 288, 286–288 (1980)

235 Ronco P, Pollard H, Galceran M, Delauche M, Schwartz JC and Verroust P: Distribution of enkephalinase (membrane metalloendopeptidase EC 3.4.24.11) in rat organs: Detection using a monoclonal antibody. Lab Invest 58, 210–217 (1988)

236 Smits GJ, McGraw SE and Trapani AJ: Interaction of ANP and bradykinin during endopeptidase 24.11 inhibition: renal effects. Am J Physiol 258, F1417–F1424 (1990)

237 Sybertz EJ, Chiu PJS, Vemulapalli S, Pitts B, Foster CJ, Watkins RW, Barnett A and Haslanger MF: SCH 39370, a neutralmetalloendopeptidase inhibitor potentiates biological responses to atrial natriuretic factor and lowers blood pressure in desoxycorticosterone acetate-sodium hypertensive rats. J Pharmacol Exp Ther 250, 624–631 (1989)

238 Ura N, Shimamoto K, Kuroda S, Nomura N, Iwata M, Aoyama T and limura O: The role of kinins and atrial natriuretic peptide on the renal effects of neutral endopeptidase inhibitor in rats. Clin Exp Hypertens 16, 799–808 (1994)

239 Ogata H, Ura N, Shimamoto K, Sakakibara T, Ando T, Nishimiya T, Nakagawa M, Fukuyama S, Masuda A, Yamaguchi Y, Ise T, Saito S, Shiiki M, Uno K and limura O: A sensitive method for differential determination of kininase I, II and neutral endopeptidase (NEP) in human urine. In Adv Exp Med Biol, Vol 247B. Kinins V, Part B, Edited by Abe K, Moriya H and Fujii S, pp 343–348, Plenum Press, New York (1989)

240 O’Connell JE, Jardine AG, Davidson G and Connell MC: Candoxatril, an orally active neutral endopeptidase inhibitor, raises plasma atrial natriuretic factor and is natriuretic in essential hypertension. J Hypertens 10, 271–277 (1992)

241 Sagnella GA, Singer DRJ, Markandu ND, Backley MG and MacGregor GA: Is atrial natriuretic peptide-guanosine 3',5' cyclic monophosphate coupling a determinant of urinary sodium excretion in essential hypertension? J Hypertens 10, 349–354 (1992)

242 Ogihara T, Rakugi H, Masuo K, Yu H, Nagano M and Mikami H: Antihypertensive effects of the neutral endopeptidase inhibitor SCH 42495 in essential hypertension. Am J Hypertens 7, 943–947 (1994)

243 Bevan EG, Connell JMC, Doyle J, Carmichael HA, Davies DL, Lorimer AR and Mclnnes GT: Candoxatril, a neutral endopeptidase inhibitor: efficacy and tolerability in essential hypertension. J Hypertens 10, 607–613 (1992)

244 Burnier M, Porchet M, Ganslmaier M, Nussberger J, Kosoglou T, Waerber B and Brunner H: Natriuretic effects of SCH 34826, an orally active neutral endopeptidase (NEP) inhibitor: Results of a randomized four way crossover study in salt loaded volunteers. J Hypertens 8, Supp 3, s99 (1990)

245 Kosoglou T, Herron JM, Chen R, Given B, Sybertz EJ and Affrime MB: Antihypertensive effect of the atriopeptidase inhibitor SCH 34826 in essential hypertension. Circulation 82, Supp II, 2201 (1990)

246 Amico JA, Seif SM and Robinson AG: Oxytocin in human plasma: Correlation with neurophysin and stimulation with estrogen. J Clin Endocrinol Metab 52, 988–993 (1981)

247 Leake RD, Weitzman RE, Glitz TH and Fisher DA: Plasma oxytocin concentrations in men, nonpregnant women, and pregnant women before and during spontaneous labor. J Clin Endocrinol Metab 53, 730–733 (1981)