Article

Multigene Phylogeny Reveals *Haploanthostomella elaeidis* gen. et sp. nov. and Familial Replacement of *Endocalyx* (Xylariales, Sordariomycetes, Ascomycota)

Sirinapa Konta 1,2,3, Kevin D. Hyde 2, Prapassorn D. Eungwanchayapant 3, Samantha C. Karunarathna 1,4,5, Milan C. Samarakoon 2, Jianchu Xu 1,4,5, Lucas A. P. Dauner 1, Sasith Thanaranga Aluthwaththa 6,7, Saisamorn Lumyong 8,9 and Saowaluck Tibpromma 1,4,5,*

1 CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; sirinapakonta@gmail.com (S.K.); samanthakarunarathna@gmail.com (S.C.K.); jxu@mail.kib.ac.cn (J.X.); luke.dauner1@gmail.com (L.A.P.D.)
2 Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; kdhyde3@gmail.com (K.D.H.); milan.chameera@yahoo.com (M.C.S.)
3 School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand; prapassorn@mu.ac.th
4 World Agroforestry Centre, East and Central Asia, Kunming University, Xuedonglu 100, Nanning 530004, China; aluthwaththa@yahoo.com
5 State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Xuedonglu 100, Nanning 530004, China
6 Research Center of Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; saisamorn.l@cmu.ac.th
7 Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
* Correspondence: saowaluckfai@gmail.com (S.T.)

Abstract: During our investigation of palm fungi in Thailand, two interesting taxa from *Elaeis guineensis* and *Metroxylon sagu* (Arecaeae) were collected. Based on phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 nucleotide sequences as well as unique morphological characteristics, we introduce the new genus *Haploanthostomella* within Xylariales, and a new species *Endocalyx metroxyli*. Additionally, in our study, the genus *Endocalyx* is transferred to the family Cai niaceae based on its brown conidia and molecular phylogenetic evidence.

Keywords: Apiosporaceae; Cai niaceae; fungi; palms; Thailand; Xylariales

1. Introduction

Palm trees represent a family of perennial lianas and consist of many diverse species worldwide, with the fossil record indicating around 65 million years of evolutionary history [1]. Microfungi on palms have been studied, but only a few have been analyzed using morphology and DNA sequence data. Several fungal species are currently unknown to science, with the total number estimated at somewhere between 2.2 and 3.8 million [2]. Thus, palms are a particularly interesting plant family for studying microfungi species unknown to science.

The subclass Xylariomycetidae has recently been updated to contain three orders (Amphisphaeriales, Delonicicolales, and Xylariales) and 35 families [3]. Recently, the family Induratiaceae was introduced in this subclass by Samarakoon et al. [4] with an updated phylogeny of Xylariales. Cai niaceae is a family of particular interest, as all members in this family tend to be found on monocotyledons, the majority of which are grasses [5]. In previous studies, Cai niaceae was accepted in the Xylariales [3,6]. Later, Hongsanan et al. [7], and Wijayawardene et al. [8] assigned Cai niaceae to the Xylariomycetidae as an incertae sedis family.
The Xylariales is one of the largest orders and includes 15 families, 160 genera, and 52 genera incertae sedis [3]. Family Cainiaceae was introduced by Krug [9] to include species of Cainia with unique apical rings in the ascus that consist of a series of rings and ascospores with longitudinal germ slits. An asexual morph of Cainiaceae was coelomycetous with black, scattered, immersed pycnidial conidiomata; hyaline, denticulate, sympodially proliferating conidiophores; hyaline, filiform, branched or simple, septate conidiogenous cells with one to three phialides; and hyaline, elongate fusiform, falcate to lunate, unicellular or septate conidia, with pointed ends [10]. At present, seven genera have been accepted into this family (Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora, and Seynesia) [3,11].

Since 2014, fungal research in Thailand has revealed a high diversity of novel species [12–14]. In this study, we found fungal species unknown to science from Thailand. The phylogeny results show that Endocalyx grouped within Cainiaceae, and so we transferred Endocalyx from Apiosporaceae (Amphisphaeriales) to Cainiaceae (Xylariales) based on both morphology and multigene phylogeny. We also introduce the new species Endocalyx metroxyli, collected from the economically important oil palm host (Elaeis guineensis). Lastly, we introduce the new genus Haploanthostomella associated with true sago palm (Metroxylon sagu).

2. Materials and Methods

2.1. Collection, Isolation, and Identification

Saprobic fungi growing on dead leaves, petioles and rachis of Elaeis guineensis and Metroxylon sagu were collected in Krabi and Surat Thani Provinces of Thailand, placed in ziplock bags and brought to the mycology laboratory at the Center of Excellence in Fungal Research, and morphological characteristics were observed. Specimens were examined following the methods provided by Konta et al. [15]. Single spore isolates were obtained following the method of Senanayake et al. [16], using malt extract agar (MEA) and incubating at 25–28 °C overnight. Germinating conidia were transferred to new MEA media and pure cultures were kept at 25–28 °C. Specimens and cultures were deposited in the herbarium of Mae Fah Luang University (MFLU) and Mae Fah Luang University Culture Collection (MFLUCC), Chiang Rai, Thailand, respectively. Faces of Fungi and Index Fungorum numbers were registered as outlined in Jayasiri et al. [17] and Index Fungorum [18].

2.2. DNA Extraction and Amplification (PCR)

Genomic DNA was extracted from fruiting bodies of Haploanthostomella elaeidis and fungal mycelium of Endocalyx metroxyli. DNA extraction and amplification were followed Dissanayake et al. [19]. Konta et al.’s method [16] was followed for PCR amplification of ITS, LSU, SSU, tef1-α and rpb2, while O’Donnell and Cigelnik’s method [20] was followed for PCR amplification of the tub2 region. Amplification was done using the primers ITS5 and ITS4 for the internal transcribed spacer regions and intervening 5.8S rDNA (ITS), the primers LR5 and LR0R for the large subunit (LSU) rRNA gene, the primer pair rRPB2-5f and rRPB2-7cR for the RNA polymerase II second largest subunit (rpb2) gene, and the primers T1 and T22 for the partial gene β-tubulin (tub2). PCR amplifications were performed using 1× PCR buffer with 8.5 μL ddH2O, 12.5 μL 2× Easy Taq PCR SuperMix (mixture of Easy Taq TM DNA Polymerase, dNTPs and optimized buffer (Beijing Trans Gen Biotech Co., Beijing, China)), 2 μL of DNA template, and 1 μL each of forward and reverse primers (10 pM) in a final volume of 25 μL. The cycle conditions in the initiation step were started at 95 °C for 3 min, followed by 35 cycles at 95 °C for 30 s, 55 °C for 50 s, 72 °C for 30 s (for ITS, LSU); 95 °C for 5 min, followed by 35 cycles at 95 °C for 1 min, 54 °C for 2 min, 72 °C for 1:5 min (for rpb2); 95 °C for 5 min, followed by 35 cycles at 94 °C for 1 min, 52 °C for 1 min, 72 °C for 1:5 min (for tub2); a final elongation step at 72 °C for 10 min and a final hold at 4 °C were done as the last steps. Purification and sequencing were performed by
Table 1. Names, strain numbers and corresponding GenBank accession numbers of the taxa used in phylogenetic analyses, the ex-type strains are in bold.

Order	Family	Species	Strain No.	GenBank Accession No.	References
Amphisphaeriales	Apiosporaceae	*Arthrinium balearicum*	AP24118	MK014869	MK017946 [21]
		Arthrinium cariciola	CBS 145127	MK014871	MK017948 [21]
		Arthrinium hydei	CBS 114990	KF144980	KF144982 [22]
		Arthrinium phragmitis	CBS 135458	KF144909	KF144956 [22]
		Arthrinium pseudopagazzinii	CBS 102052	KF144911	KF144958 [22]
		Nigrospora aurantia	CGMCC 3.18130	NR_153477	- [23]
		Nigrospora brasiliensis	CBS 123.58	-	KY806276 [24]
		Nigrospora zimmermannii	CBS 290.62	-	KY806276 [25]

Xylariales

Order	Family	Species	Strain No.	GenBank Accession No.	References
		Alishanica miscanthii	FLU31025	MK503821	MK503827 [3]
		Amphibambusa bambusicola	MFLUCC 11-0617	KP744433	- [28]
		Atrotoxula lineata	HKUCC 3263	AF009807	- [29]
		Cainia anthoxanthis	MFLUCC 15-0539	KR092787	KL092777 [3]
		Cainia desmazieri	CAI	KT949896	KT949896 [29]
		Cainia globosa	MFLUCC 13-0663	KX822127	KX822123 [30]
		Cainia graminis	CBS 136.62	KR092793	AF431949 [5,31]
		Cainia globosa	MFLUCC 17-1485	MT214370	MT214464 [11]
		Endocalyx cinctus	JCM 7946	LC228648	LC228704 [32]
		Endocalyx metoxyphi	MFLUCC 15-0723A	MT292916	MT292913 [32]
		Endocalyx metoxyphi	MFLUCC 15-0723B	MT292916	MT292914 [32]
		Segesnia crampens	SMH 1291	-	AF29410 [33]
		Chyphosphaeria numiliana	CBS 140735	KT949897	KT949897 [29,34]

Xylariales

Order	Family	Species	Strain No.	GenBank Accession No.	References
		Contoecia anandra	Co108	GU553338	GU553349 [35]
		Contoecia cruciformis	Co116	GU553336	GU553347 [35]

Sangon Biotech Co., Shanghai, China. Consensus sequences were computed using SeqMan software, and new sequences generated in this study were deposited in GenBank (Table 1).
Order	Family	Species	Strain No.	GenBank Accession No.	References				
Xylariales	Coniocessiaceae	Coniocessia maxima	Co117	GU553332 GU553344	[35]				
Xylariales	Coniocessiaceae	Coniocessia minima	Co111	GU553334 GU553345	[35]				
Xylariales	Coniocessiaceae	Coniocessia nodulisporioides	CBS 281.77T	- AJ675224	[36]				
Xylariales	Coniocessiaceae	Paracystara rosacearium	TASM 6132	MGS28941 MGS29050	[37]				
Xylariales	Diatrypaceae	Allocryptovalsa polyspora	MFLUCC 17-0364	MF959500 MF959503 MG334556	[38]				
Xylariales	Diatrypaceae	Allodiutypa arengae	MFLUCC 15-0713	MN308411 MN308402 MN542886 MN340297	[39]				
Xylariales	Diatrypaceae	Cryptosalva rabenosoriitii	Crel = CBS 125974	KC774567 KC774567 -	[40]				
Xylariales	Diatrypaceae	Diutypa disciformis	CBS 197.49	- DQ470964 DQ470915	[41]				
Xylariales	Diatrypaceae	Diutypella veruciformis	UCROK1467	JX144793 - - JX174093	[42]				
Xylariales	Diatrypaceae	Eutypa lata	CBS 208.87	DQ006927 MH873795 -	[43,44]				
Xylariales	Diatrypaceae	Entypella caricae	ELC5	AJ302460 - - -	[45]				
Xylariales	Diatrypaceae	Halodiutypa salinicola	MFLUCC 15-1277	KX573915 - - KX573932	[46]				
Xylariales	Diatrypaceae	Monosporascus cannobalus	CMM3646	JX971617 - - -	Unpublished				
Xylariales	Diatrypaceae	Neoentypella baoshanensis	ELS1C, CBS 274.87	AJ302460 - - -	[45]				
Xylariales	Diatrypaceae	Pedantypella rhizophorae	BCC44857	KJ888853 KJ888850	[47]				
Xylariales	Diatrypaceae	Peronutypa longiasca	MFLUCC 17-0371	MF959502 MF959505 MG334558	[38]				
Xylariales	Fasciatisporaceae	Fasciatispora arengae	MFLUCC 15-0326a	MK120275 MK120300 MK890794 MK890793	[48]				
Xylariales	Fasciatisporaceae	Fasciatispora calami	MFLUCC 15-0294	- MF459055 - MF459056	[49]				
Xylariales	Fasciatisporaceae	Fasciatispora cocos	MFLUCC 18-1445	MN482680 MN482675 MN481517 MN350154	[13]				
Xylariales	Fasciatisporaceae	Fasciatispora nypae	MFLUCC 11-0382	- KP744484 - -	[28]				
Xylariales	Fasciatisporaceae	Fasciatispora petrakii	- AY083828	- - Unpublished					
Xylariales	Graphostromaceae	Bicogniauxia numularia	MUCL 51395	KY610382 KY610427 KY624236 KY2271241	[50]				
Xylariales	Graphostromaceae	Camilla obularia	ATCC 28093	KY610384 KY610429 KY624238 KY2271243	[50]				
Xylariales	Graphostromaceae	Graphostroma platystemon	CBS 270.87	JX658535 DQ836906 KY624296 HK934108	[50–53]				
Xylariales	Graphostromaceae	Obolarina dryophila	MUCL 49882	GQ428316 GQ428316 KY624284 GQ428322	[50,54]				
Xylariales	Hansfordiaceae	Hansfordia pulvinata	CBS 194.56	MK442585 MH691922 KU684307 -	[24]				
Xylariales	Hansfordiaceae	Hansfordia pulvinata	CBS 144422	MK442587 MK442527 - -	[24]				
Xylariales	Hypoxylaceae	Anulidepoxylon truncatum	CBS 140778	KY610419 KY610419 KY624277 KO376382	[50,55]				
Xylariales	Hypoxylaceae	Anthocanalis sparti	MFLUCC 10-0010	KP297394 KP340536 KP340522 KP340605	[54]				
Xylariales	Hypoxylaceae	Anthostoma decipiens	CD = CBS 133221	KC774565 KC774565 - -	[40]				
Order	Family	Species	Strain No.	ITS	LSU	rpb2	tub2	References	
---------------------------	---------------------	------------------------	------------	-----------	-----------	-----------	-----------	--------------------------	
Xylariales	Hypoxylaceae	Daldinia concentrica	CBS 113277	AY616683	KY610434	KY624243	KY977274	[50,56,57]	
Xylariales	Hypoxylaceae	Eustonema depressens	ATCC 46302	KY610389	KY610443	KY624253	KY271248	[50]	
Xylariales	Hypoxylaceae	Hypomontagnella	MUCL 54604	KY610404	KY610487	KY624305	KY271273	[50]	
Xylariales	Hypoxylaceae	Xyloxylin fragiforme	MUCL 51264	KC477229	KM186295	KM186296	KY271282	[50,59,60]	
Xylariales	Hypoxylaceae	Hypholoma	CBS 119016	KY610473	KY624290	KY271262	[50,55,57]		
Xylariales	Hypoxylaceae	Pyrenomyxa	CBS 116990T	AM749920	-	-	-	[61]	
Xylariales	Hypoxylaceae	Pyrenomyxa pica	ILLS 58257	EF562506	-	-	-	[62]	
Xylariales	Pyrenopolyporus	Pyrenopolyporus	MUCL 52673	KY610421	KY610472	KY624309	KU159530	[50,55]	
Xylariales	Xylariaceae	Phylacia sagrana	CBS 119992	AM749919	-	-	-	[61]	
Xylariales	Xylariaceae	Pyrenopolyporus	TBRC:8873	MH938529	MH938538	MK165428	MK165419	[64]	
Xylariales	Xylariaceae	Creosphaeria	STMA 14087	KY610411	KY610468	KY624265	KY271258	[50]	
Xylariales	Xylariaceae	Lobostoma	CBS 133207	KC774618	KC774618	KC774563	MF489024	[29,40]	
Xylariales	Xylariaceae	Idriella lunata	MFLU 18-0261	MFLU 18-0261	MFLU 18-0261	MFLU 18-0261	MFLU 18-0261	MFLU 18-0261	[66]
Xylariales	Xylariaceae	Microdochium	CBS 423.78	KP859012	KP858948	KP859121	KP859076	[67]	
Xylariales	Xylariaceae	Polystigma folaeum	MFLU 15-3091	K594023	M981079	-	-	[68]	
Xylariales	Xylariaceae	Polystigma rubrum	MFLU 15-3091	K594023	M981079	-	-	[68]	
Xylariales	Xylariaceae	Acrocriella occulta	RS9	KT949893	KT949893	-	-	[29]	
Xylariales	Xylariaceae	Acrocriella omanensis	SQUCC 15091	MG584568	MG584570	-	-	[69]	
Xylariales	Xylariaceae	Requienella fraxini	RS2	KT949909	KT949909	-	-	[29]	
Xylariales	Xylariaceae	Requienella foresti	RS12 = CBS 140502	KT949912	KT949912	MK523300	-	[29,64]	
Xylariales	Xylariaceae	Abieticola koreana	EML-F0010-1	JN977612	JQ014618	KP792128	KP792126	[70]	
Xylariales	Xylariaceae	Amphimellinia nigrospora	HAST 91092308	GU322457	-	GQ684340	GQ495951	[71]	
Xylariales	Xylariaceae	Anthostomella fornsa	MFLUCC 14-0170	K97403	K9340544	K9340531	K946614	[59]	
Table 1. Cont.

Order	Family	Species	Strain No.	GenBank Accession No.	References				
Xylariales	Xylariaceae	Anthostomella helicofissa	MFLUCC 14-0173	KP297406	[59]				
Xylariales	Xylariaceae	Anthostomella obesa	MFLUCC 14-0171	KP297405	[59]				
Xylariales	Xylariaceae	Anthostomella pseudobambusica	MFLUCC 15-0192	KU940153	-				
Xylariales	Xylariaceae	Anthostomeloides braehetii	CBS 110128	EU355209	[73]				
Xylariales	Xylariaceae	Anthostomeloides fortescensae	MFLUCC 14-0558	KP297397	[66]				
Xylariales	Xylariaceae	Anthostomeloides krabienis	MFLUCC 15-0678	KX305927	-				
Xylariales	Xylariaceae	Anthostomeloides leucospermii	CBS 110126	EU3552100	[73]				
Xylariales	Xylariaceae	Anthostomeloides proteae	CBS 110127	EU3552101	-				
Xylariales	Xylariaceae	Astrocystis mirabilis	94070803 HAST	GU322448	[71]				
Xylariales	Xylariaceae	Brunneiperidium gracilentum	MFLUCC 14-0011 Ex-type	KP297400	-				
Xylariales	Xylariaceae	Collodiocula japonica	CBS 124266	JF440974	[50,74]				
Xylariales	Xylariaceae	Coniolariella ganssi	Co27TRAN 842C, CBS114379 (T)	GU355325	-				
Xylariales	Xylariaceae	Entalbostroma erumpens	ICMP 21152	KX258206	[75]				
Xylariales	Xylariaceae	Entoleuca mammata	J.D.R. 100	GU300072	[71]				
Xylariales	Xylariaceae	Entoleuca sphaeriostomum	J.D.R. 261	GU292821	[71]				
Xylariales	Xylariaceae	Halorosellinia ocanica	SGLA82	EU715635	-				
Xylariales	Xylariaceae	Hypoplospora rostrata	NRRL 66178	KM067909	-				
Xylariales	Xylariaceae	Hypoploeostrum sanguineum	J.D.R. 169	GU322433	[71]				
Xylariales	Xylariaceae	Kretzschmaria clavus	YMJ 114	EF026126	[71,78]				
Xylariales	Xylariaceae	Linosporopsis notriochotica	LIF1 = CBS 145761	MN818952	[79]				
Xylariales	Xylariaceae	Lunatiannulus irregularis	MFLUCC 14-0014	KP297398	[57]				
Xylariales	Xylariaceae	Nemania serpens	CBS 679.86	KU683765	[80]				
Xylariales	Xylariaceae	Neoclytrilla arengeae	MFLUCC 15-0292	MT496747	-				
Xylariales	Xylariaceae	Podosordaria mexicana	WSP 176	GU324762	[71]				
Xylariales	Xylariaceae	Poronia punctata	CBS 656.78	KT281904	[5,50]				
Xylariales	Xylariaceae	Rosellinia aquila	MUCL 51703	KY610496	[50]				
Xylariales	Xylariaceae	Rostrohypoxylon teretibranum	CBS 119137	DQ631943	[82,83]				
Xylariales	Xylariaceae	Ruwenzoria pseudoumatula	MUCL 51394	KY610494	[50]				
Xylariales	Xylariaceae	Sarcoxylon compactum	CBS 359.61	KT281903	[5,50]				
Order	Family	Species	Strain No.	GenBank Accession No.	References				
--------------	-------------------	--------------------------	------------	-----------------------	------------				
Xylariales	Xylariaceae	STILLHOHYPOXYLOXON							
		claeicola							
		Y.M.J. 173	EF026148	-	GQ844826	EF025616	[71]		
Xylariales	Xylariaceae	STILLHOHYPOXYLOXON							
		claeidisi							
		MFLUCC 15-0295a	MT496745	MT496755	MT502416	MT502420	[81]		
Xylariales	Xylariaceae	STILLHOHYPOXYLOXON							
		quisquiliarum							
		Y.M.J. 172	EF026119	-	GQ853020	EF025605	[71]		
Xylariales	Xylariaceae	VAMSAPIRYA							
		bambusiscola							
		MFLUCC 11-0477	KM462835	KM462836	KM462834	KM462833	[84]		
Xylariales	Xylariaceae	VAMSAPIRYA							
		bre-viculiodiaphora							
		MFLUCC 14-0436	MF621584	MF621588	-	-	[39]		
Xylariales	Xylariaceae	VAMSAPIRYA							
		indica							
		MFLUCC 12-0544	KM462839	KM462840	KM462841	KM462838	[84]		
Xylariales	Xylariaceae	VAMSAPIRYA							
		kluonkonensis							
		MFLUCC 11-0475	KM462630	KM462631	KM462629	KM462628	[84]		
Xylariales	Xylariaceae	VAMSAPIRYA							
		yunnana							
		KUMCC 18-0008	MG833874	MG833873	MG833875	-	[85]		
Xylariales	Xylariaceae	VIRGARIA							
		boninensis							
		JCM 18624	AB740956	-	AB740960	-	[86]		
Xylariales	Xylariaceae	VIRGARIA		CBS 128006		-	[44]		
Xylariales	Xylariaceae	XYLARIA		CBS 122620	KY610407	KY610495	KY624211	KY272129	[50,87]
Sordariomyces	genera incertae sedis	XYLARIALES genera incertae sedis							
		Melanographium							
		phoenicis							
		MFLUCC 18-1481	MN482677	MN482678	-	-	[13]		
Sordariomyces	genera incertae sedis	XYLARIALES genera incertae sedis							
		Ceratocladium							
		micropernum							
		CBS126092	MH864077	MH875534	-	-	[44]		
Xylariales	Xylariaceae	ASCOTRICA							
		chartarum							
		CBS 234.97	KF893284	-	-	KF893271	[88]		
Xylariales	Xylariaceae	ASCOTRICA							
		longipila							
		OUCMB110118	KC503896	-	-	KF893265	[88]		
Xylariales	Xylariaceae	ASCOTRICA							
		luzitanica							
		CBS 462.70	KF893289	-	-	KF893275	[88]		
Xylariales	Xylariaceae	ASCOTRICA							
		parciopora							
		OUCMB1100003 (T)	JX014298	-	-	KF893267	[88]		
Xylariales	Xylariaceae	ASCOTRICA							
		sinuosa							
		OUCMB1101190 (T)	JX014299	-	-	KF893266	[88]		
Xylariales	Xylariaceae	ALLOANTHOSTOMELLA							
		rubicola							
		MFLUCC 14-0175	KP297407	KP340548	KP340535	KP406618	[89]		
Xylariales	Xylariaceae	CIRCINOTRICHUM							
		cypadis							
		CPC 17225	KJ869121	KJ869178	-	-	[26]		
Xylariales	Xylariaceae	CIRCINOTRICHUM							
		maccaliforme							
		CPC 24566	KR611874	KR611895	-	-	[90]		
Xylariales	Xylariaceae	CIRCINOTRICHUM							
		papuense							
		CBS 101373	KR611876	KR611897	-	-	[90]		
Xylariales	Xylariaceae	CIRCINOTRICHUM							
		sinense							
		KY994106	KY994107	-	-	[91]			
Xylariales	Xylariaceae	GYROTHRIX							
		eucalypti							
		CPC 36066	MN562109	MN567617	-	-	[92]		
Xylariales	Xylariaceae	GYROTHRIX							
		inops							
		BE108	KC775746	KC775721	-	-	[66]		
Xylariales	Xylariaceae	GYROTHRIX							
		oleae							
		CPC 37069	MN562136	MN567643	-	-	[92]		
Xylariales	Xylariaceae	GYROTHRIX							
		ramosa							
		MUCUL54061	KC775747	KC775722	-	-	[66]		
Xylariales	Xylariaceae	HAPLOANTHOSTOMELLA							
		claeidisi							
		MFLU 20-0522	MT929161	MT929312	MT928154	-	This study		
Table 1. Cont.

Order	Family	Species	Strain No.	GenBank Accession No.	References			
Xylariales	Xylaricales genera incertae sedis	Neanathostomella pseudostromaticica	MFLUCC 11-0610	KU940158	KU863146	-	-	[72]
Xylariales	Xylaricales genera incertae sedis	Neanathostomella viticola	MFLUCC 16-0243	KX505957	KX505958	KX789496	KX789495	[89]
Xylariales	Xylaricales genera incertae sedis	Pseudoanthostomella conorum	CBS 119333	EU352099	-	-	-	[73]
Xylariales	Xylaricales genera incertae sedis	Pseudoanthostomella delitescens	MFLUCC 16-0477	KX533451	KX533452	KX789491	KX789490	[89]
Xylariales	Xylaricales genera incertae sedis	Pseudoanthostomella pulvigerae	MFLUCC 16-0478	KX533453	KX533454	KX789492	-	[89]
Xylariales	Xylaricales genera incertae sedis	Pseudoanthostomella seepilitta	AY908989	AY875645	-	-	-	Unpublished
Xylariales	Xylaricales genera incertae sedis	Xenoanthostomella chromolaenae	MFLUCC 17-1484	MN638863	MN638848	-	-	[3]
Xylariales	Zygosporiaceae	Zygosporum oscheoides	MFLUCC 14-0402	MF621585	MF621589	-	-	[93]
Xylariales	Zygosporiaceae	Zygosporum minus	HKAS99625	MF621586	MF621590	-	-	[93]

2.3. Phylogenetic Analyses

The consensus sequences were put through a BLAST search in the NCBI GenBank nucleotide database to search for the fungal sequences of closest relatives that have been deposited in the NCBI database. Dissanayake et al.’s study [19] was followed for the phylogenetic analyses. Voglmayr and Beenken’s study [79] was used as a reference of the dataset. Both individual and combined ITS, LSU, rpb2, and tub2 nucleotide sequences were analyzed. A total of 151 taxa were used for the phylogenetic analyses in order to find the taxonomic placement of each species. Three genera viz. *Delonicicola*, *Furfurella* (Delonicicolaceae), and *Leptosillia* (Leptosilliaceae) in Delonicicolales were used as the outgroup taxa.

The MAFFT online program was used to obtain initial alignments for each locus [94]. Alignments were manually edited and single gene sequence data sets were combined using MEGA7 [95]. The Alignment Transformation Environment online program was used to convert the file format [96]. MrModeltest [97] was used to find the best model for maximum likelihood (ML) and Bayesian analyses (BYPP). The six simultaneous Markov chains were run for 20,000,000 generations and trees were sampled every 1000th generation. Bayesian posterior probabilities from MCMC were evaluated with a final average standard deviation of the split frequency of <0.01. Bootstrap values for ML equal to or greater than 50% and BYPP equal to or greater than 0.90 are given at the nodes (Figure 1). Fig Tree v1.4.0 was used to configure the phylogenetic trees [98] and edited using Microsoft Office PowerPoint 2010 and Adobe Photoshop CS6 (Adobe Systems Incorporated, 345 Park Avenue, San Jose, CA, USA).
Figure 1. Maximum likelihood majority rule consensus tree for the analyses of selected Xylariomycetidae isolates based on a dataset of combined ITS, LSU, rpb2, and tub2 nucleotide sequence. Bootstrap support values for maximum likelihood (ML) equal to or higher than 50% are given above each branch. Bayesian posterior probabilities (BYPP) equal to or greater than 0.90 are given at the nodes. Novel taxa are in blue bold and ex-type strains are in black bold. The tree is rooted to Delonicicolaceae and Leptosilliaceae (Delonicicolales). The asterisks represent unstable species.
3. Results

3.1. Morphology and Phylogeny

The combined dataset comprised 151 taxa from selected taxa in Amphisphaeriales, Delonicicolales, and Xylariales (Table 1). The RAxML analyses of the combined dataset yielded the best-scoring tree (Figure 1) with a final ML optimization likelihood value of -126584.196783. The matrix had 4598 distinct alignment patterns, with 65.07% undetermined characters or gaps. Estimated base frequencies were: A = 0.243574, C = 0.257762, G = 0.258457, T = 0.240207; substitution rates AC = 1.296272, AG = 3.089851, AT = 1.400263, CG = 1.060328, CT = 9.900102, GT = 1.000000; gamma distribution shape parameter α = 0.443932. Tree-Length = 25.372161. Bayesian analysis resulted in a tree with similar topology and clades as the ML tree. Phylogenetic analyses of the combined ITS, LSU, rpb2, and tub2 loci show two novel taxa within the monospecific genus *Haploanthostomella* (type species *Haploanthostomella elaeidis*; Xylariales incertae sedis) and the novel taxa *Endocalyx metroxyli*, with the genus *Endocalyx* being placed in Cainiaceae.

3.1.1. *Haploanthostomella* Konta & K.D. Hyde. gen. nov.

Index Fungorum number: IF557876; Facesoffungi number: FoF09173

Etymology: “*haplos*” (απλός) in Greek means single; *Anthostomella* refers to its morphological similarity to *Anthostomella*.

Saprobic on dead leaves and rachis in terrestrial habitats. Sexual morph: *Ascomata* immersed in the host epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. *Peridial wall* thick, comprised of several layers of cells, outwardly comprising dark brown cells of *textura prismatica* and inwardly comprising hyaline cells of *textura angularis*. *Paraphyses* septate, tapering hyphae-like, hyaline. *Asci* eight-spored, unitunicate, clavate to cylindric, short pedicellate, with J-, apical ring. *Ascospores* uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline or brown to dark brown, verrucose with a mucilaginous cap at apex. *Germ slit* straight, less than spore-length. Asexual morph: Not observed.

Type species: *Haploanthostomella elaeidis* Konta & K.D. Hyde.

Notes: *Anthostomella* species were proven to be polyphyletic, and it is of no surprise that a new genus with anthostomella-like characteristics was discovered in this study [99]. Phylogenetic analyses based on a single dataset of ITS (supporting information section) and combined sequence data indicated that *Haploanthostomella* belongs to Xylariales genera incertae sedis, separating well from other genera but with low bootstrap values (Figure 1). According to the phylogenetic tree (Figure 1), seven genera (*Ceratocladium*, *Circinotrichum*, *Gyrothrix*, *Idriella*, *Neoanthostomella*, *Virgaria* and *Xenoanthostomella*) are closely related to our new genus, but morphological characteristics of these genera are different. The genera *Neoanthostomella*, *Virgaria*, and *Xenoanthostomella* were compared morphologically since they are similar to our new taxon. *Haploanthostomella* differs from *Virgaria*, *Neoanthostomella*, and *Xenoanthostomella* in having a J- apical ring, fusoid-ovoid ascospores, and verrucose with a mucilaginous cap at the apex, while *Virgaria* has asci with a J+ apical ring and smooth-walled ellipsoidal ascospores lacking of a mucilaginous sheath; *Neoanthostomella* smooth-walled ellipsoidal ascospores surrounded by a thick mucilaginous sheath; *Xenoanthostomella* has unilocular ascoma, and ascospores lacking germ slits and mucilaginous sheaths [13,72,89]. Therefore, *Haploanthostomella* is described here as a new genus based on phylogeny coupled with morphology. In addition, we provide a key to genera with *Anthostomella*-like characteristics.

3.1.2. *Haploanthostomella elaeidis* Konta & K.D. Hyde., sp. nov.

Index Fungorum number: IF557877; Facesoffungi number: FoF09174 (Figure 2)
Figure 2. Haploanthostomella elaeidis (MFLU 20-0522, holotype). (A) Substrate. (B,C) Appearance of ascomata on the host surface. (D) Sections of ascomata. (E) Peridium. (F) Hamathecium. (G) Septa of paraphyses show in red arrows. (H–K) Asci. (L) J- apical ring in Melzer’s reagent. (M,N,P–R) Ascospores with mucilaginous cap (red arrows in M, Q, R) and germ slit (red arrows in P). (O) An ascospore with verrucose wall. Scale bars: B = 1000 μm, C = 200 μm, D = 500 μm, E, G, L = 20 μm, F, H–K = 50 μm, M–P = 10 μm, Q–R = 5 μm.

Etymology: Referring to the genus of palm trees Elaeis Jacq.
Holotype: MFLU 20-0522.

Saprobic on dead leaves and rachis of Elaeis guineensis. Sexual morph: Ascomata 160–280 × 130–350 μm (x̅ = 220 × 240 μm, n = 20), immersed in the host
epidermis, beneath a clypeus, visible as slightly raised blackened areas, dark brown to black, coriaceous, solitary or aggregated into clusters, scattered, with an ostiolar canal. *Peridial wall* 13–45 µm wide, thick, comprising several layers of cells, outwardly comprising dark brown cells of *textura irregularis* and inwardly comprising hyaline cells of *textura prismatica*, 7–20 µm wide. *Paraphyses* 1.5–4.5 µm wide, septate, hyphae-like, hyaline. *Asci* 50–90 × 10–15 µm (x⁻ = 70 × 12 µm, n = 40), 8-spored, unitunicate, clavate to cylindric, short pedicellate, with J- apical ring. *Ascospores* 10–18 × 5–8 µm (x⁻ = 14 × 6 µm, n = 100), uni–biseriate into the asci, unicellular, obovoid, fusoid, hyaline to light brown when immature and brown to dark brown when mature, mostly one, rarely two-guttulate, cell wall verrucose, with a mucilaginous cap at the apex. *Germslit* 3–6 µm length (x⁻ = 5 µm, n = 50), straight, less than spore-length. Asexual morph: Not observed.

Material examined: THAILAND, Surat Thani Province, on dead leaves and rachis of *Elaeis guineensis* Jacq. (Areaceae) on the ground, 21 July 2017, Sirinapa Konta, SRWD12 (MFLU 20-0522, holotype).

Notes: A BLAST search of *H. elaeidis* ITS sequence shows 83.87% similarity with *Gyrothrix oleae* (CPC 37069); LSU sequence shows 95.95% similarity with *Gyrothrix eucalypti* (CPC 36066); and *rpb2* sequence shows 80.95% similarity with *Lopadostoma meridionale* (LG). Only the sexual morph of *H. elaeidis* was found in nature, and we could not obtain a pure culture from fresh samples. Therefore, the morphological characteristics of *H. elaeidis* were not compared with *Ceratocladium*, *Circinotrichum*, *Gyrothrix*, and *Idriella*, as they only had asexual morphs found in nature. Hence, the morphological features of *H. elaeidis* were only compared with *Neoanthostomella*, *Virgaria*, and *Xenoanthostomella*, as they have sexual morphs.

Key to genera related to Anthostomella-like genera

1. Hyaline ascospores
 1. Brown ascospores
 2. Asci with a J- apical ring
 3. Asci with or without J+ apical ring
 4. Ascospores with or without germ slit
 5. Ascospores with germ slit and the length less than spore length with a mucilaginous cap at the apex
 6. Ascospores with or without germ slit, with mucilaginous sheath
 7. Ellipsoid ascospores without mucilaginous sheath

2. Asci with or without J+ apical ring
 3. Asci with or without germ slit
 4. Asci with germ slit extending over full length with mucilaginous sheath
 5. Ellipsoid ascospores without mucilaginous sheath

3. Ascospores with or without germ slit, with mucilaginous sheath
 4. Asci with germ slit less than spore length, with or without mucilaginous sheath
 5. Ascospores with or without germ slit, with or without mucilaginous sheath
 6. Asci with germ slit extending over full length with mucilaginous sheath
 7. Inequilaterally oblong-ellipsoidal ascospores with mucilaginous sheath

3.1.3. **Endocalyx** Berk. & Broome, J. Linn. Soc., Bot. 15(1): 84 (1876) [1877]

Saprobic on various plants. *Colonies* on host plant, pustules nearly flat or raised, circular, discolored, dark brown to black, at last bursting, the conidiomata developing. Sexual morph: Undetermined. Asexual morph: *Conidiomata* scattered, erect, cupulate to cylindrical; peridial hyphae enclosing the inner conidial mass, nonsporiferous, brown to yellowish brown; some species consisting of two parts of conidiomata: (1) a basal cylinder covering a central column, rough-walled, carbonaceous, composed of black hyphae which are sometimes branched and are adherent to one another; (2) a slender central column, synnematous, expanding radially apically, high, enclosed by the peridial hyphae which are nonsporiferous, orange-yellow to lemon-yellow. *Peridial wall* thick, comprising dark brown, thick-walled cells of *textura angularis*. *Conidiophores* thread-like, septate, with or without short pegs bearing the conidia, meristematic at the base, colorless basally and gradually turning brown apically, 1–2 µm wide; *peridium* thick, comprising dark brown, thick-walled cells of *textura angularis*. *Conidiogenous cells* holoblastic, integrated, determinate. *Conidia*
solitary, unicellular, flattened, round, oval or slightly polygonal in face view, at first pale, dark brown to fuscous black at maturity, with or without guttules, often with a longitudinal hyaline straight germ slit extending the full-length (adapted from [99–101]).

Type species: *Endocalyx thwaitesii* Berk. & Broome

Notes: *Endocalyx* is a coelomycetous genus in Cainiaceae with *E. cinctus* collected from Japan *E. metroxyli* sp. nov. collected from Thailand. Phylogenetic analyses of a single dataset of ITS (supporting information section) and phylogenetic analyses of a combined dataset of ITS, LSU, rpb2, and tub2 regions (Figure 1) confirm the placement of *Endocalyx* within Cainiaceae. ITS analyses showed that *Endocalyx* is closely related to *Amphibambusa* and *Atrotorquata* (supporting information section), while Figure 1 shows that *Endocalyx* formed a basal clade to other cainiaceous genera (*Alishanica, Amphibambusa, Arecophila, Atrotorquata, Cainia, Longiappendispora*, and *Seynesia*) with high bootstrap support. Morphologically, *Endocalyx* has been revised and described only as an asexual morph of the genus [100,101], while all genera in Cainiaceae have been described in their sexual morphs, except the type genus *Cainia*, for which both asexual and sexual morphs have been described. We could not compare the morphology of *Endocalyx* to *Arecophila, Seynesia*, and *Amphibambusa* (sister species in Figure 1). Therefore, *Cainia* was used for morphological comparisons; *Endocalyx* differs from *Cainia* in having erect conidiomata and also the ostiole opening surrounded by yellow hyphae, ellipsoid-globose conidia, unicellular with brown to dark brown color, and a germ slit. *Cainia* has immersed conidiomata, conidiogenous cells with one to three phialides, and elongate fusiform conidia, unicellular or septate, hyaline, with pointed ends [100–102].

Table 2. Host and locality information of *Endocalyx* reported worldwide based on the records of Species Fungorum 2021.

No.	Species	Host	Country	Reference
1	*Endocalyx amarkantakensis*	*Shorea robusta* (Dipterocarpaceae)	India (Holotype)	[103]
		Livistona chinensis var. boninensis (Arecaceae; solitary palm)	Japan	[104]
		Oncosperma fasciculatum (Arecaceae; clustering, rarely solitary palm)	Japan	[101]
	E. cinctus *	*Oncosperma* sp. (Arecaceae; clustering, rarely solitary palm)	Sri Lanka (Holotype)	[100]
		Phoenix canariensis (Arecaceae; solitary palm)	Japan	[101]
		Phoenix hanceana (Arecaceae; solitary palm)	Hong Kong	[105]
		Trachycarpus fortunei (Arecaceae; solitary palm)	Japan	[101]
3	*E. collantensis*	Smilax sp. (Smilacaceae)	Cuba (Holotype)	[106]
4	*E. indicus*	twigs of woody	India (Holotype)	[107]
5	*E. indumentum*	*Livistona chinensis var. boninensis* (Arecaceae; solitary palm)	Japan (Holotype)	[101,104]
		Phoenix canariensis (Arecaceae; solitary palm)	Japan	[104]
No.	Species	Host	Country	Reference
-----	--------------------------	---------------------------	--------------	-------------
		Eudicots	Monocots	
6	*Acrocomia mexicana*	Mexico	[108]	
	(Areaceae)			
	Archontophoenix alexandrae	Hong Kong (solitary palm)	[105,109]	
	(Areaceae; solitary palm)	Malaysia	[109]	
		Singapore	[109]	
	Arenga engleri	Hong Kong	[105]	
	(Areaceae; clustering palm)	Japan	[104]	
	Dypsis lutescens	Japan	[104]	
	(=*Chrysalidocarpus lutescens*)	(Areaceae; clustering palm)	[100]	
	Caryota urens	Sri Lanka (Holotype)	[100]	
	(Areaceae; solitary palm)			
		Australia	[109]	
		Ghana	[110]	
		Hawaii	[111,112]	
	Cocos nucifera	Japanese	[104]	
	(Areaceae; solitary palm)	Malaysia	[109,113]	
		Papua New Guinea	[114]	
	Coffea arabica	Venezuela	[115]	
	(Rubiaceae)			
6	*Draecena fragrans*	Cuba	[116]	
	(Asparagaceae)			
	Elaeis guineensis	Ghana	[110]	
	(Areaceae; solitary palm)	Myanmar	[117]	
		Sierra Leone	[113]	
	Elaeis sp. (Areaceae; solitary palm)	Japan	[104]	
	Licuala longicalycata	Thailand	[118]	
	(Areaceae; solitary palm)			
	Livistona chinensis	Hong Kong	[105]	
	(Areaceae; solitary palm)			
	Livistona chinensis var. boninensis (Areaceae; solitary palm)	Japan	[104]	
	Livistona rotundifolia	Taiwan	[119]	
	(Areaceae; solitary palm)			
	Livistona speciosa	Myanmar	[117]	
Table 2. Cont.

No.	Species	Host	Country	Reference
		Eudicots	Monocots	
		Nannorrhops ritchiana (Arecaceae; clustering palm)	Pakistan	[120]
		Phoenix canariensis (Arecaceae; solitary palm)	Japan	[104]
		Phoenix hanceana (Arecaceae; solitary palm)	Hong Kong	[105,121]
		Phoenix reclinata (Arecaceae; solitary palm)	Ghana	[110]
		Phoenix roebelenii (Arecaceae; solitary palm)	Japan	[104]
		Phoenix roebelenii-senegalensis (Arecaceae; solitary palm)	Japan	[104]
		Ravenala madagascariensis (Strelitziaceae)	Japan	[104]
		Ripogonum scandens (Ripogonaceae)	New Zealand	[122]
		Roystonea borinquena (Arecaceae; solitary palm)	USA (Florida)	[123]
		Roystonea regia (Arecaceae; solitary palm)	Cuba	[124–127]
		Sabal palmetto (Arecaceae; solitary palm)	USA (Florida)	[128]
		Serenoa serrulata (Arecaceae; clustering and solitary palm)	USA (Florida)	[129]
		Smilax sp. (Smilacaceae)	USA (Florida)	[128]
		Trachycarpus fortunei (Arecaceae; solitary palm)	China	[109]
		unknown, palm	Australia	[109]
			China	[109]
			Hong Kong	[109]
			Malaysia	[109]
			Seychelles	[109]
			Singapore	[109]
		Wodyetia bifurcata (Arecaceae; solitary palm)	Florida	[123]
		E. melannoxanthus (=E. melannoxanthus var. grossus)		
		Trachycarpus fortunei (Arecaceae; solitary palm)	Japan	[101]
Table 2. Cont.

No.	Species	Eudicots	Monocots	Country	Reference
6	E. melanoxanthus (≡ E. melanoxanthus var. melanoxanthus)				
7	E. thwaitesii (Type species)				

Eudicots

- **Acrocomia intumescens** (Arecaceae; solitary palm) - Brazil [102]
- **Butia yatay** (Arecaceae; solitary palm) - Argentina [130]
- **Cocos nucifera** (Arecaceae; solitary palm) - Ghana [101]
- **Euterpe edulis** (Arecaceae; solitary, or rarely clustering palm (growing in dense tufts or clumps) and then with few stems) - Argentina [130]
- **Euterpe oleracea** (Arecaceae; clustering palm) - Brazil [102]
- **Livistona chinensis var. boninensis** (Arecaceae; solitary palm) - Japan [101]
- **Livistona chinensis var. subglobosa** (Arecaceae; solitary palm) - Japan [101]
- **Phoenix canariensis** (Arecaceae; solitary palm) - Japan [101]
- **Phoenix roebelenii** (Arecaceae; solitary palm) - Japan [101]
- **Satakentia liukiuensis** (Arecaceae; solitary palm) - Japan [101]
- **Syagrus coronata** (Arecaceae; solitary palm) - Brazil [131]
- **Syagrus romanzoffiana** (Arecaceae; solitary palm) - Argentina [130]
- **Trachycarpus fortunei** (Arecaceae; solitary palm) - Japan [101]
- **Washingtonia robusta** (Arecaceae; solitary palm) - Japan [101]

Monocots

- **Cissus oreophila** (Vitaceae) - Ghana [132]
- **Cissus sp.** (Vitaceae) - Ghana [133]
- **Oncosperma sp.** (Arecaceae; clustering, rarely solitary palm) - Sri Lanka (Holotype) [133]

* Have molecular data.
Figure 3. *Endocalyx metroxyli* (MFLU 15-1454, holotype). (A) Forest in Krabi Province. (B) Palm samples. (C–E) Appearance of conidiomata on host. (F) Vertical cut of a conidioma. (G–H) Vertical section of a conidioma. (I) Section of peridium. (J) Group of conidia. (K) Conidiophores reduced to conidiogenous cell with conidium. (L–S) Conidia (P–R, Conidia with conidiogenous cells). (T) Germ slit (red arrow). (U) Germinated conidia. (V) Colonies on MEA media. Scale bars: B = 2 cm, C = 500 μm, D–H = 200 μm, I, J = 20 μm, L–T = 5 μm, U = 10 μm.
Recently, *Longiappendispora* was introduced under Cainiaceae, with seven genera in total included in the family by Mapook et al. [11]. In our study, detailed molecular analyses were done for *Endocalyx* and its placement in Cainiaceae (Xyaliales) was confirmed. Previously, *Endocalyx* was classified in Apiosporaceae (Xylariales, Sordariomycetes) based on morphological evidence. As the first detailed molecular data of *Endocalyx cinctus* have been made available from a Japan laboratory [32], their current placement is supported (Figure 1). However, there are no recent publications referring to the molecular data of this genus yet. Thus, in this study, we present the placement of *Endocalyx* based on multigene phylogenetic analyses with recent sequence data from the Japan collection as well as the Thailand collection. In addition, we accept eight genera in Cainiaceae (*Alishanica*, *Amphibambusa*, *Arecophila*, *Atrotorquata*, *Cainia*, *Endocalyx*, *Longiappendispora*, and *Seynesia*), and seven species by including our new species in the genus *Endocalyx* (Table 2). In addition, we provide a key for the members of Cainiaceae.

3.1.4. *Endocalyx metroxyli* Konta & K.D. Hyde. sp. nov.

Index Fungorum number: IF558116, **Facesoffungi number:** FoF09176 (Figure 3)

Etymology: Refers to the name of the host genus, *Metroxylon*.

Holotype: MFLU 15-1454.

Saprobic on dead petiole of *Metroxylon sagu*. **Colonies** on host plant, pustules. **Sexual morph:** Undetermined. **Asexual morph:** **Conidiomata** 340–660 µm wide, in vertical section 495–820 × 325–485 µm, acervulus, solitary, semi-immersed to immersed in the host epidermis, beneath a clypeus, visible as slightly raised and blackened, black, carbonaceous, fragile, with an ostiolar canal. **Ostiolar opening** surrounded by a yellow margin. **Peridial wall** 34–80 µm wide, thick, comprising dark brown cells of *textura angularis*. **Conidiomata** not observed with a basal cylinder covering a central column or a slender central column in our collection. **Conidiophores** reduced to conidiogenous cell, hyaline to pale-brown, unbranched, smooth. **Conidia** 13–16 × 7–10 µm (x = 13 × 10 µm, n = 30), unicellular, ellipsoid-globose, brown to dark brown, with short pegs bearing conidia, with germ slit, smooth-walled.

Culture characteristics: Colonies on MEA, at first white, raised, effuse, velvety to hairy, circular, smooth at the margin, white from above, pale-brown from below.

Material examined: Thailand, Krabi Province, on dead petiole of *Metroxylon sagu* Rottb. on the ground (Areaceae), 8 December 2014, Sirinapa Konta KBR04h2 (MFLU 15-1454, holotype); ex-type living culture, MFLUCC 15-0723A; *ibid*. MFLUCC 15-0723B, MFLUCC 15-0723C.

Additional sequence data: SSU: MT929310, MT929311, *tef1*-α: MT928152, MT928153.

Notes: *Endocalyx metroxyli* is phylogenetically well supported and is placed in Cainiaceae (Figure 1). *Endocalyx metroxyli* is closely related to *E. cinctus* with high bootstrap support but is distinct in morphological characteristics. A BLAST search of *E. metroxyli* ITS sequence shows 83.10% similarity with *Requienella seminuda* (CBS 140502) (CPC 37069), LSU sequence shows 96.14% similarity with *Entosordaria quercina* (RQ), *tub2* sequence shows 86.94% similarity with *Daldinia dennisi var. dennisi*, SSU sequence shows 97.92% similarity with *Xenoanthostomella chromolaenae* (MFLUCC 17-1484), and *tef1*-α sequence shows 89.39% similarity with *Barrmaelia macrospor* (BM).

Endocalyx metroxyli is morphologically similar to *E. melanoxanthus*. However, *Endocalyx metroxyli* does not have erect conidiomata developing from the pustules, as was mentioned by Petch [100], Okada and Tubaki [101], and Vitoria et al. [102,131]. In this study, we found only a black raised pustule structure with ostiole surrounded by a yellow hyphae ring, and hyaline conidiophore, unicellular, dark brown conidia with a longitudinal germ slit. *Endocalyx melanoxanthus* was collected and described from palm hosts (Areaceae), and a few collections were collected from other host plants (Table 2). According to Species Fungorum [134], *E. melanoxanthus var. Grossus* (G. Okada & Tubaki) and *E. melanoxanthus var. melanoxanthus* (Berk. & Broome) are considered as *E. melanoxanthus*, even though they have several different characteristics.
Endocalyx metroxyli is morphologically similar to *E. melanoxanthus var. melanoxanthus*, in having black raised pustules surrounded by yellow hyphae and smooth-walled conidia with no significant size differences [100–102]. However, our new taxon lacks cupulate or cylindrical conidiomata [101,102]. On the other hand, *E. metroxyli* differs from *E. melanoxanthus var. grossus* by lacking the production of ornamented conidia [100,101].

Keys to genera of Cainiaceae

1. Asexual morph
 1.1 Coelomycetous; 1–3 phialides conidiogenous cells, and elongate fusiform conidia with unicellular or septate, with pointed ends
 1.1 Coelomycetous; conidiomata with ostiolar opening surrounded by yellow, with unicellular conidia, ellipsoid-globose, pale to dark brown to black, with a straight germ slit extending the full-length

2. Sexual morph
 2.1 Cylindrical-clavate asci, ascospores with 1-septate
 2.1 Cylindrical, or cylindrical to elongate cylindrical asci, ascospores with 1-septate
 2.2 Ellipsoidal ascospores, with brown, and sheath
 2.2 Ellipsoidal to fusiform ascospores, with brown, and sheath
 2.3 Ellipsoid to broadly fusiform ascospores, longitudinal striations, bristle-like polar appendages from both ends, without a gelatinous sheath
 2.3 Fusiform to broad-fusiform ascospores with pointed at both ends, striation wall, and sheath
 2.3 Ellipsoidal or oblong ascospores
 2.4 Oblong ascospores with cap-like appendage, germ slits
 2.4 Ellipsoidal ascospores
 2.5 Ascospores with striation wall, brown, and sheath
 2.5 Ascospores with striate or verrucose wall, and subhyaline to brown

4. Discussion

Based on phylogeny and morphological characteristics, the new monotypic genus *Haploanthostomella* (type species: *Haploanthostomella elaeidis*) and the new species *Endocalyx metroxyli* have been established. The former new species was isolated from a dead rachis of *Elaeis guineensis*, and the latter from a dead petiole of *Metroxylon sagu* (Areaceae) in Thailand. Phylogenetic analyses of combined datasets together with morphological characteristics revealed that *Haploanthostomella* belongs to Xylariales incertae sedis, while *Endocalyx* belongs to the Cainiaceae (Xylariales).

Based on morphological features, *Endocalyx* was assigned to Apiosporaceae (Amphisphaeriales, Sordariomycetes), together with four other genera, viz. *Appendicospora*, *Arthrinium*, *Dictyoarthrinium*, and *Nigrospora* [3,8]. Later, *Dictyoarthrinium* was transferred to Didymosphaeriaceae (Pleosporales, Dothideomycetes) [135]. According to our phylogenetic analyses (Figure 1), *Arthrinium* and *Nigrospora* should be accepted under the Apiosporaceae, while *Appendicospora* did not clade to this family (supporting information section), and *Endocalyx* fits well within the Cainiaceae.

Interestingly, four out of seven species in the genus *Endocalyx* (*E. melanoxanthus*, *E. cinctus*, *E. indumentum*, and *E. thwaitesii*) were collected from palm hosts (Table 2).
Endocalyx metroxyli is similar to other species by having dark brown conidia with a full-length germ slit, but differs from other species by not having conidiomata produced from the pustulate and no thread-like structure of conidiophores. Morphological characteristics of species in the genus are mostly flat or raised pustules, capsule or slender conidiomata with or without branches at the apex, and brown to dark brown conidia with smooth walls (E. amarkantakensis, E. collantesis, E. indumentum, E. melanoxanthus, E. melanoxanthus var. melanoxanthus), while some species are verrucose-walled (E. cinctus, E. indumentum, E. melanoxanthus var. grossus, E. thwaitesii). We referred to previous publications for morphological comparisons to the taxa in this study, as we did not observe all holotype specimens [100–102].

According to the literature, there are also strains derived from another two species and two varieties. Excluding E. cinctus, no sequence data are available for generic types of Endocalyx and other species, and their morphology and host substrates are closely related to our novel taxon. Endocalyx species have been reported in several countries, especially in tropical and subtropical regions. Furthermore, palm trees (Areaceae) have most commonly been reported as the host, while several species have been presented from other hosts (Table 2).

The phylogenetic placement of many groups within the Xylariales remains unclear (e.g., Anthostomelloides, Calceomyces, Circinotrichum, Fasciatispora (only F. petrakii), Gyrothyrix, Melanographium, Neanthostomella, Pseudoanthostomella, and Xenoanthostomella, Figure 1). Thus, it is necessary to collect and analyze more fungal specimens from Xylariales using multigene phylogeny (with protein coding genes) and morphology to resolve their taxonomical placement and delimitation.

Author Contributions: Conceptualization, S.K.; Formal analysis, S.K.; Funding acquisition, K.D.H. and S.T.; Methodology, S.K.; Resources, S.C.K., J.X. and S.T.; Supervision, K.D.H. and P.D.E.; Writing—original draft, S.K., S.C.K., M.C.S., S.T.A., L.A.P., D. and S.T.; Writing—review and editing, K.D.H., S.C.K., S.T. and S.L. All authors have read and agreed to the published version of the manuscript.

Funding: Saowaluck Tibpromma would like to thank the International Postdoctoral Exchange Fellowship Program (number Y9180822S1), CAS President’s International Fellowship Initiative (PIFI) (number 2020PC0009), China Postdoctoral Science Foundation, and the Yunnan Human Resources, and Social Security Department Foundation for funding her postdoctoral research. Samantha C. Kaunarathna thanks CAS President’s International Fellowship Initiative (PIFI) for funding his postdoctoral research (No. 2018PC0006) and the National Science Foundation of China (NSFC) for funding this work under the project code 3185110759. Kevin D. Hyde thanks the Thailand Research Funds for the grant “Impact of Climate Change on Fungal Diversity and Biogeography in the Greater Mekong Subregion (RDG6130001)”. This work was partly supported by Chiang Mai University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: Sirinapa Konta is grateful to Paul Kirk, Shaun Pennycook, Saranyaphat Boonmee, and Sirilak Radbouchoom for their valuable suggestions and help.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lewis, C.E.; Baker, W.J.; Asmussen, C.B. DNA and palm evolution. Palms 2000, 44, 19–24.
2. Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Fungal Kingd. 2017, 4, 79–95. [CrossRef]
3. Hyde, K.D.; Norphanphoun, C.; Maharachchikumbura, S.S.N.; Bhat, D.J.; Jones, E.B.G.; Bundhun, D.; Chen, Y.J.; Bao, D.F.; Boonmee, S.; Calabon, M.S.; et al. Refined families of Sordariomycetes. Mycosphere 2020, 11, 305–1059. [CrossRef]
4. Samarakoon, M.C.; Thongbai, B.; Hyde, K.D.; Brönstrup, M.; Beutling, U.; Lambert, C.; Miller, A.N.; Liu, J.K.J.; Promputtha, I.; Stadler, M. Elucidation of the life cycle of the endophytic genus Muscodor and its transfer into the genus Induratia in Induratiaceae fam. nov., based on a polyphasic taxonomic approach. Fungal Divers. 2020, 101, 177–210. [CrossRef]
5. Senanayake, I.C.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Bhat, J.D.; Jones, E.B.G.; McKenzie, E.H.C.; Dai, D.Q.; Daranagama, D.A.; Dayarathne, M.C.; Goonasekara, I.D.; et al. Towards unraveling relationships in Xylariomycetidae (Sordariomycetes). *Fungal Divers.* 2015, 73, 73–144. [CrossRef]

6. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.G.; McKenzie, E.H.; Huang, S.K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D’souza, M.J.; Goonasekara, I.D.; et al. Towards a natural classification and backbone tree for Sordariomycetes. *Fungal Divers.* 2015, 72, 199–301. [CrossRef]

7. Hongsan, S.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Samarakoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.M.; Bahkali, A.H. An updated phylogeny of *Sordariomycetes* based on phylogenetic and molecular clock evidence. *Fungal Divers.* 2017, 84, 25–41. [CrossRef]

8. Wijayawardene, N.N.; Hyde, K.D.; Al-Ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.L.; Aptroot, A.; Leontyev, D.V.; Saxena, R.K.; et al. Outline of Fungi and fungus-like taxa. *Mycosphere* 2020, 11, 1060–1456. [CrossRef]

9. Krug, J.C. The genus *Cainia* and a new family, *Cainiaceae*. *Sydowia* 1978, 30, 122–133.

10. Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.G.; McKenzie, E.H.C.; Bhat, J.D.; Dayarathne, M.C.; Huang, S.K.; Norphanphoun, C.; Senanayake, I.C.; Perera, R.H.; et al. Families of Sordariomycetes. *Fungal Divers.* 2016, 79, 1–317. [CrossRef]

11. Mapook, A.; Hyde, K.D.; McKenzie, E.H.; Jones, E.G.; Bhat, D.J.; Jeewon, R.; Stadler, M.; Samarakoon, M.C.; Malaithong, M.; Tanunchai, B.; et al. Taxonomic and phylogenetic contributions to fungi associated with the invasive weed *Chromolaena odorata* (Siam weed). *Fungal Divers.* 2020, 101, 1–175. [CrossRef]

12. Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity—Up to 96% of fungi in northern Thailand are novel. *Fungal Divers.* 2018, 93, 215–239. [CrossRef]

13. Hyde, K.D.; Dong, Y.; Phookamsak, R.; Jeewon, R.; Bhat, D.J.; Jones, E.B.; Liu, N.G.; Abeywickrama, P.D.; Mapook, A.; Wei, D.P.; et al. Fungal diversity notes 1151–1276: Taxonomic and phylogenetic contributions on genera and species of fungal taxa. *Fungal Divers.* 2020, 100, 5–277. [CrossRef]

14. Hyde, K.D.; Jeewon, R.; Chen, Y.J.; Buhnjun, C.S.; Calabon, M.S.; Jiang, H.B.; Lin, C.G.; Norphanphoun, C.; Sysoypanhong, P.; Dem, P.; et al. The numbers of fungi: Is the descriptive curve flattening? *Fungal Divers.* 2020, 103, 219–271. [CrossRef]

15. Konta, S.; Hyde, K.D.; Eungwanichayapant, P.D.; Doilom, M.; Tennakoon, D.S.; Senwanna, C.; Boonmee, S. *Fissuroma* (Aigialaceae: Pleosporales) appears to be hyperdiverse on Areaceae: Evidence from two new species from southern Thailand. *Acta Bot. Bras.* 2020, 34, 384–393. [CrossRef]

16. Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.G.; Dem, P.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. *MYCOSP* 2020, 11, 2678–2754. [CrossRef]

17. Jayasiri, S.C.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The Faces of Fungi database: Fungal names linked with morphology, phylogeny and human impacts. *Fungal Divers.* 2015, 74, 3–18. [CrossRef]

18. Index Fungorum. 2021. Available online: http://www.indexfungorum.org/names/Names.asp (accessed on 30 April 2020).

19. Dissanayake, A.J.; Buhnjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. *Mycosphere* 2020, 11, 2652–2676. [CrossRef]

20. O’Donnell, K.; Cigelnik, E. Two divergent intragenomic rDNA ITS2 types within amonophyletic lineage of the fungus *Fusarium* are nonorthologous. *Mol. Phylogenet. Evol.* 1997, 7, 103–116. [CrossRef] [PubMed]

21. Pintos, A.; Alvarado, P.; Planas, J.; Jarling, R. Six new species of *Arthrinium* from Europe and notes about *A. caricicola* and other species found in Carex spp. hosts. *MycoKeys* 2019, 49, 15–48. [CrossRef]

22. Crous, P.W.; Groenewald, J.Z. A phylogenetic re-evaluation of *Arthrinium*. *IMA Fungus* 2014, 3, 133–154. [CrossRef]

23. Wang, M.; Liu, F.; Crous, P.W.; Cai, L. Phylogenetic reassessment of *Nigrospora*: Ubiquitous endophytes, plant and human pathogens. *Pers. Mol. Phylogeny Evol. Fungi* 2017, 39, 118–142. [CrossRef] [PubMed]

24. Crous, P.W.; Schumacher, R.K.; Akulov, A.; Thangavel, R.; Hernández-Restrepo, M.; Carnegie, A.J.; Cheewangkoon, R.; Wingfield, M.J.; Summerell, B.A.; Quaedvlieg, W.; et al. New and interesting fungi. 2. *Fungal Syst. Evol.* 2019, 3, 57–134. [CrossRef] [PubMed]

25. Liu, F.; Bonthond, G.; Groenewald, J.Z.; Cai, L.; Crous, P.W. *Sporocadaceae*, a family of coelomycetous fungi with appendage-bearing conidia. *Stud. Mycol.* 2019, 92, 287–415. [CrossRef] [PubMed]

26. Crous, P.W.; Shivag, R.G.; Quaedvlieg, W.; van der Bank, M.; Zhang, Y.; Summerell, B.A.; Guarro, J.; Wingfield, M.J.; Wood, A.R.; Alfenas, A.C.; et al. Fungal Planet description sheets: 214–280. *Pers. Mol. Phylogeny Evol. Fungi* 2014, 32, 184–306. [CrossRef] [PubMed]

27. Jeewon, R.; Liew, E.C.; Hyde, K.D. Molecular systematics of the *Amphisphaeriaceae* based on cladistic analyses of partial LSU rDNA gene sequences. *Mycol. Res.* 2003, 107, 1392–1402. [CrossRef]

28. Liu, J.K.; Hyde, K.D.; Jones, E.G.; Ariyawansa, H.A.; Bhat, D.J.; Boonmee, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. *Fungal Divers.* 2015, 72, 1–197. [CrossRef]

29. Jaklitsch, W.M.; Gardiennet, A.; Voglmayr, H. Resolution of morphology-based taxonomic delusions: Acrocordiella, Basidipteropsis, Blogiascospora, Clypeosphaeria, Hymenopleella, Leptuteypa, Pseudapiospora, Requienella, Seiridium and Strickeria. *Pers. Mol. Phylogeny Evol. Fungi* 2016, 37, 82–105. [CrossRef]
30. Tibpromma, S.; Hyde, K.D.; Jeewon, R.; Maharachchikumbura, S.S.; Liu, J.K.; Bhat, D.J.; Jones, E.G.; McKenzie, E.H.; Camporesi, E.; Bulgakov, T.S.; et al. Fungal diversity notes 491–602: Taxonomic and phylogenetic contributions to fungal taxa. *Fungal Divers.* 2017, 83, 1–261. [CrossRef]

31. Lumbsch, H.T.; Schmitt, I.; Lindemuth, R.; Miller, A.; Mangold, A.; Fernandez, F.; Huhndorf, S. Performance of four ribosomal DNA regions to infer higher-level phylogenetic relationships of inoperculate euascomycetes (Leotiomyceta). *Mol. Phylogenet. Evol.* 2005, 34, 512–524. [CrossRef]

32. Okada, G.; Iida, T.; Ohkuma, M. The DNA Bank, RIKEN Bio Resource Research Center, Japan, 2017. Available online: https://www.jcm.riken.jp/cgi-bin/jcm/jcm_number?JCM=7946 (accessed on 30 April 2020).

33. Bhattacharya, D.; Lutzoni, F.; Reeb, V.; Simon, D.; Nason, J.; Fernandez, F. Widespread occurrence of spicosecial inltrons in the rDNA genes of ascomycetes. *Mol. Biol. Evol.* 2000, 17, 1971–1984. [CrossRef]

34. Voglmayr, H.; Friebes, G.; Gardiennet, A.; Jaklitsch, W.M. *Barrmaelia* and *Entosordaria* in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on *Anthostomella*-like genera based on multigene phylogenies. *Mycol. Prog.* 2018, 17, 155–177. [CrossRef] [PubMed]

35. Asgari, B.; Zare, R. A contribution to the taxonomy of the genus *Coniochaeta* (Xylariales). *Mycol. Prog.* 2011, 10, 189–206. [CrossRef]

36. Garcia, D.; Stchigel, A.M.; Cano, J.; Calduch, M.; Hawksworth, D.L.; Guarro, J. Molecular phylogeny of *Coniochaetales*. *Mycol. Res.* 2006, 110, 1271–1289. [CrossRef]

37. Wanasinghe, D.N.; Phukhamsakda, C.; Hyde, K.D.; Jeewon, R., Lee, H.B.; Jones, E.G.; Tibpromma, S.; Tennakoon, D.S.; DIssanayake, A.J.; Jayasiri, S.C.; et al. Fungal diversity notes 709–839: Taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on Rosaceae. *Fungal Divers.* 2018, 89, 1–236. [CrossRef]

38. Senwanna, C.; Phoakamsak, R.; Doilom, M.; Hyde, K.D.; Cheewangkoon, R. Novel taxon of Diatrypaceae from Para rubber (*Hevea brasiliensis*) in southern Thailand; introducing a novel genus *Alloepitype*. *Mycosphere* 2017, 8, 1835–1835. [CrossRef]

39. Konta, S.; Maharachchikumbura, S.S.N.; Senanayake, I.C.; McKenzie, E.H.C.; Stadler, M.; Boonmee, S.; Phookamsak, R.; Jayawardena, R.S.; Senwanna, C.; Hyde, K.D.; et al. A new genus *Allodiatype*, five new species and a new host record of diatryaceous fungi from palms (Areaceae). *Mycosphere* 2020, 11, 239–268. [CrossRef]

40. Jaklitsch, W.M.; Fournier, J.; Rogers, J.D.; Voglmayr, H. Phylogenetic and taxonomic revision of *Lopodostoma*. *Pers. Moll. Phylogeny Evol. Fungi* 2014, 32, 52–82. [CrossRef]

41. Spatafora, J.W.; Sung, G.H.; Johnson, D.; Hesse, C.; O'Rourke, B.; Serdani, M.; Spotts, R.; Lutzoni, F.; Miadlikowska, J.; et al. A five-gene phylogeny of Pezizomycotina. *Mycologia* 2006, 98, 1018–1028. [CrossRef] [PubMed]

42. Lynch, S.C.; Eskalen, A.; Zambino, P.J.; Mayorquin, J.S.; Wang, D.H. Identification and pathogenicity of Botryosphaeriaceae species associated with coast live oak (*Quercus agrifolia*) decline in southern California. *Mycologia* 2013, 105, 125–140. [CrossRef]

43. Rolshausen, P.E.; Mahoney, N.E.; Molyneux, R.J.; Gubler, W.D. A reassessment of the species concept in *Eutypa lata*, the causal agent of Eutypa dieback of grapevine. *Phytopathology* 2006, 96, 369–377. [CrossRef] [PubMed]

44. Vu, D.; Groenewald, M.; De Vries, M.; Gehmann, T.; Stiefler, B.; Eberhardt, U.; Al-Hatmi, A.; Groenewald, J.Z.; Cardinali, G.; Jones-Barrmaelia, J.; et al. A new genus *Allocryptovalsa*. *Bot. Mar.* 2018, 96, 1076–1087. [CrossRef]

45. Dayarathne, M.C.; Phoakamsak, R.; Hyde, K.D.; Manawasinghe, I.S.; To-Anun, C.; Jones, G.E. *Halodiatype*, a novel diatryaceous fungus from mangroves with *H. salinicola* and *H. avicenniae* spp. nov. *Mycosphere* 2016, 7, 612–627. [CrossRef]

46. Klayssuban, A.; Sakayaroj, J.; Jones, E.G. An additional marine fungal lineage in the Diatrypaceae, Xylariales: *Pamunispora rhizophoret.* *Bot. Mar.* 2014, 57, 413–420. [CrossRef]

47. Hyde, K.D.; Tennakoon, D.S.; Jeewon, R.; Bhat, D.J.; Maharachchikumbura, S.S.N.; Rossi, W.; Leonardi, M.; Lee, H.B.; Mun, H.Y.; Houbraken, J.; et al. Large-scale generation and analysis of filamentous fungal DNA barcodes boosts coverage for kingdom fungi and reveals thresholds for fungal species and higher taxon delimitation. *Stud. Mycol.* 2019, 92, 135–154. [CrossRef] [PubMed]

48. Lopadostoma, H.; González, V.; Sánchez-Ballestros, J.; Rubio, V.; Checa, J.; Bills, G.F.; Salazar, O.; Platas, G.; Peláez, F. Molecular phylogenetic studies on the Diatrypaceae based on rDNA-ITS sequences. *Mycologia* 2004, 96, 249–259. [CrossRef] [PubMed]

49. Dayarathne, M.C.; Phoakamsak, R.; Hyde, K.D.; Manawasinghe, I.S.; To-Anun, C.; Jones, G.E. *Halodiatype*, a novel diatryaceous fungus from mangroves with *H. salinicola* and *H. avicenniae* spp. nov. *Mycosphere* 2018, 96, 1107–1108. [CrossRef] [PubMed]

50. Acero, F.; Bazzicalupo, A.; Chethana, K.T.; Clericiuzio, M.; Dayarathne, M.C.; DIssanayake, A.J.; Ekanayaka, A.H.; He, M.Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species of fungal taxa. *Fungal Divers.* 2019, 96, 1–242. [CrossRef]

51. Hyde, K.D.; Norphaphone, C.; Abreu, V.P.; Bazzicalupo, A.; Chethana, K.T.; Clericiuzio, M.; Dayarathne, M.C.; DIssanayake, A.J.; Ekanayaka, A.H.; He, M.Q.; et al. Fungal diversity notes 603–708: Taxonomic and phylogenetic notes on genera and species of fungal taxa. *Fungal Divers.* 2017, 87, 1–235. [CrossRef]

52. Zhang, N.; Castlebury, L.A.; Miller, A.N.; Huhndorf, S.M.; Schoch, C.L.; Seifert, K.A.; Rossman, A.Y.; Rogers, J.D.; Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; et al. An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. *Mycologia* 2006, 98, 1076–1087. [CrossRef]

53. Stadler, M.; Lassæe, T.; Fournier, J.; Decock, C.; Schmieschek, B.; Tichy, H.V.; Persóh, D. A polyphasic taxonomy of *Daldinia* (Xylariaeae). *Stud. Mycol.* 2014, 77, 1–143. [CrossRef]

54. Pažoutová, S.; Šrutka, P.; Holuša, J.; Chudičková, M.; Kolařík, M. The phylogenetic position of *Obolinarla dryophila* (Xylariales). *Mycol. Prog.* 2010, 9, 501–507. [CrossRef]
55. Kuhnert, E.; Sir, E.B.; Lambert, C.; Hyde, K.D.; Hladki, A.I.; Romero, A.I.; Rohde, M.; Stadler, M. Phylogenetic and chemotaxonomic resolution of the genus *Annulohypoxylon* (Xylariaceae) including four new species. *Fungal Divers*. 2017, 85, 1–43. [CrossRef]

56. Triebel, D.; Peršoh, D.; Wollweber, H.; Stadler, M. Phylogenetic relationships among *Daldinia*, *Entonaea*, and *Hypoxylon* as inferred from ITS nrDNA analyses of Xylariales. *Nova Hedwigia* 2005, 80, 25–43. [CrossRef]

57. Kuhnert, E.; Fournier, J.; Peršoh, D.; Luangs-And, J.; Stadler, M. New *Hypoxylon* species from Martinique and new evidence on the molecular phylogeny of *Hypoxylon* based on ITS rDNA and β-tubulin data. *Fungal Divers.* 2014, 64, 181–203. [CrossRef]

58. Læssøe, T.; Sriskitikulchai, P.; Jenifer, J.; Luangs-And, D.; Stadler, M. *Theissenia* reconsidered, including molecular phylogeny of the type species *T. pyrenophorata* and a new genus *Durotheca* (Xylariaceae, Ascomycota). *IMA Fungus* 2013, 4, 57–69. [CrossRef] [PubMed]

59. Daranagama, D.A.; Liu, X.; Chamyuang, S.; Stadler, M.; Bahkali, A.; Hyde, K.D. *Rhopalostroma brevistipitatum* sp. nov. from Thailand with an extended generic description for *Rhopalostroma*. *Phyto-taxa* 2015, 227, 229–242. [CrossRef]

60. Stadler, M.; Kuhnert, E.; Peršoh, D.; Fournier, J. The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (IFIN) concept. *Mycolology* 2013, 4, 5–21. [CrossRef]

61. Bitzer, J.; Læssøe, T.; Kummer, V.; Decock, C.; Tichy, H.V.; Piepenbring, M.; Peršoh, D.; Stadler, M. Affinities of *Thuemenella* cubispora and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. *Mycol. Res.* 2008, 112, 251–270. [CrossRef]

62. Miller, A.N.; Vasilyeva, L.N.; Rogers, J.D. *Chlorostroma subcubisporum* gen. et sp. nov. and notes on the systematic position of *Thuemenella cubispora*. *Sydowia* 2007, 59, 138–147.

63. Stadler, M.; Flessa, F.; Rambold, G.; Peršoh, D.; Fournier, J.; Læssøe, T.; Chlebicki, A.; Lechat, C. Chemotaxonomic and phylogenetic studies of *Thamnomyces*. *Mycoeciescence* 2005, 51, 189–207. [CrossRef]

64. Voglmayr, H.; Aguirre-Hudson, M.B.; Wagner, H.G.; Tello, S.; Jaklitsch, W.M. Lichens or endophytes? The enigmatic genus *Phylacia* and the daldinoid Xylariaceae, inferred from chemotypes of cultures and ribosomal DNA sequences. *Mycol. Res.* 2008, 112, 79–86. [CrossRef]

65. Zhang, C.L.; Wang, G.P.; Mao, L.J.; Komon-Zelazowska, M.; Yuan, Z.L.; Lin, F.C.; Druzhinina, I.S.; Kubicek, C.P. *Muscodor fengyangensis* sp. nov. from southeast China: Morphology, physiology and production of volatile compounds. *Fungal Biol. Rev.* 2010, 114, 797–808. [CrossRef]

66. Becerra-Hernández, C.I.; González, D.; De Luna, E.; Mena-Portales, J. First report of pleoanamorphy in *Gyrothrix verticiclada* with an *Idriella*-like synanamorph. *Cryptogam. Mycol.* 2016, 37, 241–252. [CrossRef]

67. Hernández-Restrepo, M.; Groenewald, J.Z.; Crous, P.W. Taxonomic and phylogenetic re-evaluation of *Microdochium*, *Monographella* and *Idriella*. *Pers. Mol. Phylogeny Evol. Fungi* 2016, 36, 57–82. [CrossRef]

68. Bundhun, D.; Jeewon, R.; Dayarathne, M.C.; Bulgakov, T.S.; Khramtsov, A.K.; Aluthmuhandiram, J.V.; Pem, D.; To-Anun, C.; Hyde, K.D. A morpho-molecular re-appraisal of *Polystigma fulvum* and *P. rubrum* (Polystigma, Polystigmataceae). *Phytotaxa* 2019, 422, 228–260. [CrossRef] [PubMed]

69. Zhang, C.L.; Wang, G.P.; Mao, L.J.; Komon-Zelazowska, M.; Yuan, Z.L.; Lin, F.C.; Druzhinina, I.S.; Kubicek, C.P. *Muscodor fengyangensis* sp. nov. from southeast China: Morphology, physiology and production of volatile compounds. *Fungal Biol. Rev.* 2010, 114, 797–808. [CrossRef] [PubMed]

70. Maharachchikumbura, S.S.N.; Hyde, K.D.; Perera, R.H.; Al-Sadi, A.M. *Acrocoridella omanensis* sp. nov. (Requienellaceae, Xylariales) from the Sultanate of Oman. *Phytotaxa* 2018, 298, 294–300. [CrossRef]

71. Park, J.H.; Choi, G.J.; Lee, H.B.; Kim, K.M.; Jung, H.S.; Lee, S.W.; Jang, K.S.; Cho, K.Y.; Kim, J.C. Griseofulvin from *Polystigma fulvum* strain F0010, an endophytic fungus of *Abies holophylla*. *Fungal Divers.* 2017, 82, 1–105. [CrossRef]

72. Marincowitz, S.; Crous, P.W.; Groenewald, J.Z.; Wingfield, M.J. *Microfungi Occurring on Proteaceae in the Fynbos*; CBS Biodiversity Series; CBS-KNAW Fungal Biodiversity Centre: Utrecht, The Netherlands, 2008.

73. Jaklitsch, W.M.; Voglmayr, H. Phylogenetic relationships of five genera of Xylariales and *Rosasphearia* gen. nov. (Hypocreales). *Fungal Divers.* 2012, 52, 75–98. [CrossRef]

74. Johnston, P.R.; Rogers, J.D.; Park, D.; Martin, N.A. *Entalbostroma erumpens* gen. et sp. nov. (Xylariales) from *Phormium* in New Zealand. *Mycotaxon* 2016, 131, 765–771. [CrossRef]

75. Socá-Chafre, G.; Rivera-Orduña, F.N.; Hidalgo-Lara, M.E.; Hernandez-Rodriguez, C.; Marsch, R.; Flores-Cotera, L.B. Molecular phylogeny and paclitaxel screening of fungal endophytes from *Taxus globosa*. *Fungal Biol. Res.* 2011, 115, 143–156. [CrossRef]

76. Jayanetti, D.R.; Yue, Q.; Bills, G.F.; Glaer, J.B. *Hypocoprins A–C*: New sesquiterpenoids from the coprophilous fungus *Hypocopra rostrata*. *J. Nat. Prod.* 2015, 78, 396–401. [CrossRef] [PubMed]

77. Ju, Y.M.; Hsieh, H.M.; Ho, M.C.; Szu, D.H.; Fang, M.J. *Theissenia rogersii* sp. nov. and phylogenetic position of *Theissenia*. *Mycologia* 2007, 99, 612–621. [CrossRef] [PubMed]

78. Voglmayr, H.; Beenken, L. *Linosporopsis*, a new leaf-inhabiting sceloc sporous genus in Xylariaceae. *Mycol. Prog.* 2020, 19, 205–222. [CrossRef]
109. Taylor, J.E.; Hyde, K.D. *Microfungi of Tropical and Temperate Palms*; Fungal Diversity Press: Hong Kong, China, 2003; pp. 1–459.

110. Hughes, S.J. Fungi from the gold coast. *I. Mycol. Pap.* 1952, 48, 1–91.

111. Anonymous. *Index of Plant Diseases in the United States*. *USDA Agric. Handb.* 1960, 165, 1–531.

112. Raabe, R.D.; Conners, I.L.; Martinez, A.P. *Checklist of Plant Diseases in Hawaii*; Information Text Series No. 22; College of Tropical Agriculture and Human Resources, University of Hawaii: Honolulu, HI, USA, 1981; pp. 1–313.

113. Turner, P.D. Microorganisms associated with oil palm (*Elaeis guineensis* Jacq.). *Phytopathol. Pap.* 1971, 14, 1–58.

114. Shaw, D.E. *Microorganisms in Papua New Guinea*. *Dept. Prim. Ind. Res. Bull.* 1984, 33, 1–344.

115. Urtiaga, R. [Host index of plant diseases and disorders from Venezuela—Addendum]. 2004; pp. 1–268. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39196&thisError= (accessed on 30 April 2020).

116. Urtiaga, R. *Indice de enfermedades en plantas de Venezuela y Cuba*, Second Edition. 2004; pp. 1–301. Available online: https://nt.ars-grin.gov/fungaldatabases/fungushost/new_rptOneLit.cfm?fungRec=39195&thisError= (accessed on 30 April 2020).

117. Thaung, M.M. *A list of hypomycetes (and agonomycetes) in Burma*. *Australas. Mycol.* 2008, 27, 149–172.

118. Pinruan, U.; Hyde, K.D.; Lumyong, S.; McKenzie, E.H.C.; Jones, E.B.G. Occurrence of fungi on tissues of the peat swamp palm *Licuala longicalycata*. *Fungal Divers.* 2007, 25, 157–173.

119. Matsushima, T. *Matsushima Mycological Memoirs No. 1. Saprophytic Microfungi from Taiwán, PartI*; Matsushima Fungus collection: Kobe, Japan, 1980; pp. 1–82.

120. Ahmad, S. *Fungi of West Pakistan*. *Biol. Soc. Pak. Monogr.* 1969, 5, 1–110.

121. Zhuang, W.Y. *Higher Fungi of Tropical China*; Mycotaxon Limited: Ithaca, NY, USA, 2001; pp. 1–485.

122. Ellis, M.B. *Dematiaceous Hyphomycetes*; Commonwealth Mycological Institute: London, UK, 1971; pp. 1–608.

123. Species Fungorum. 2021. Available online: http://www.speciesfungorum.org/Names/Names.asp (accessed on 30 April 2020).

124. Samarakoon, B.C.; Wanasinghe, D.N.; Samarakoon, M.C.; Phookamsak, R.; McKenzie, E.H.; Chomnunti, P.; Hyde, K.D.; Lumyong, S.; Karunarathna, S.C. Multi-gene phylogenetic evidence suggests *Dictyoarthrinium* belongs in Didymosphaeriaceae (Pleosporales, Dothideomycetes) and *Dictyoarthrinium musae* sp. nov. on *Musa* from Thailand. *MycoKeys* 2020, 71, 101–118.