

BOHB: Robust and Efficient Hyperparameter Optimization at Scale

Stefan Falkner 1 Aaron Klein 1 Frank Hutter 1

Abstract

Modern deep learning methods are very sensitive to many hyperparameters, and, due to the long training times of state-of-the-art models, vanilla Bayesian hyperparameter optimization is typically computationally infeasible. On the other hand, bandit-based configuration evaluation approaches based on random search lack guidance and do not converge to the best configurations as quickly. Here, we propose to combine the benefits of both Bayesian optimization and bandit-based methods, in order to achieve the best of both worlds: strong anytime performance and fast convergence to optimal configurations. We propose a new practical state-of-the-art hyperparameter optimization method, which consistently outperforms both Bayesian optimization and Hyperband on a wide range of problem types, including high-dimensional toy functions, support vector machines, feed-forward neural networks, Bayesian neural networks, deep reinforcement learning, and convolutional neural networks. Our method is robust and versatile, while at the same time being conceptually simple and easy to implement.

1. Introduction

Machine learning has recently achieved great successes in a wide range of practical applications, but the performance of the most prominent methods depends more strongly than ever on the correct setting of many internal hyperparameters (see, e.g., Henderson et al. (2017); Melis et al. (2017)). The best-performing models for many modern applications of deep learning are getting ever larger and thus more computationally expensive to train, but at the same time both researchers and practitioners desire to set as many hyperparameters automatically as possible. These constraints call for a practical solution to the hyperparameter optimization (HPO) problem that fulfills many desiderata:

1. Strong Anytime Performance. Since large contemporary neural networks often require days or even weeks to train, HPO methods that view performance as a black box function to be optimized require extreme resources. The overall budget that most researchers and practitioners can afford during development is often not much larger than that of fully training a handful of models, and hence practical HPO methods must go beyond this blackbox view to already yield good configurations with such a small budget.

2. Strong Final Performance. On the other hand, what matters most at deployment time is the performance of the best configuration a HPO method can find given a larger budget. Since finding the best configurations in a large space requires guidance, this is where methods based on random search struggle.

3. Effective Use of Parallel Resources. With the rise of parallel computing, large parallel resources are often available (e.g., compute clusters or cloud computing), and practical HPO methods need to be able to use these effectively.

4. Scalability. Modern deep neural networks require the setting of a multitude of hyperparameters, including architectural choices (e.g., the number and width of layers), optimization hyperparameters (e.g., learning rate schedules, momentum, and batch size), and regularization hyperparameters (e.g., weight decay and dropout rates). Practical modern HPO methods therefore must be able to easily handle problems ranging from just a few to many dozens of hyperparameters.

5. Robustness & Flexibility. The challenges for hyperparameter optimization vary substantially across subfields of machine learning; e.g., deep reinforcement learning systems are known to be very noisy (Henderson et al., 2017), while probabilistic deep learning is often very sensitive to a few key hyperparameters. Different hyperparameter optimization problems also give rise to different types of hyperparameters (such as binary, categorical, integer, and continuous), each of which needs to be handled effectively by a practical HPO method.

As we will discuss in Section 2, while there has been a lot of recent progress in the field of hyperparameter optimization,
BOHB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 1. Illustration of typical results obtained, here for optimizing six hyperparameters of a neural network. We show the immediate regret of the best configuration found by 4 methods as a function of time. Hyperband has strong anytime performance, but for larger budgets does not perform much better than random search. In contrast, Bayesian optimization starts slowly (like random search), but given enough time outperforms Hyperband. Our new method BOHB achieves the best of both worlds, starting fast and also converging to the global optimum quickly.

all existing methods have some strengths and weaknesses, but none of them fulfills all of these desiderata. The key contribution of this paper is therefore to combine the strengths of several methods (in particular, Hyperband (Li et al., 2017) and a robust & effective variant (Bergstra et al., 2011) of Bayesian optimization (Brochu et al., 2010; Shahriari et al., 2016)) to propose a practical HPO method that fulfills all of these desiderata. We first describe Bayesian optimization and Hyperband in more detail (Section 3) and then show how to combine them in our new method BOHB, as well as how to effectively parallelize the resulting system (Section 4). Our extensive empirical evaluation (Section 5) demonstrates that our method combines the best aspects of Bayesian optimization and Hyperband: it often finds good solutions over an order of magnitude faster than Bayesian optimization and converges to the best solutions orders of magnitudes faster than Hyperband. Figure 1 illustrates this pattern in a nutshell for optimizing six hyperparameters of a neural network.

2. Related Work on Model-based Hyperparameter Optimization

Bayesian optimization has been successfully applied to optimize hyperparameters of neural networks in many works: Snoek et al. (2012) obtained state-of-the-art performance on CIFAR-10 by optimizing the hyperparameters of convolutional neural networks; Bergstra et al. (2014) used TPE (Bergstra et al., 2011) to optimize a highly parameterized three layer convolutional neural network; and Mendoza et al. (2016) won 3 datasets in the 2016 AutoML challenge by automatically finding the right architecture and hyperparameters for fully-connected neural networks.

Gaussian processes are the most commonly-used probabilistic model in Bayesian optimization (Shahriari et al., 2016), since they obtain smooth and well-calibrated uncertainty estimates. However, Gaussian processes do not typically scale well to high dimensions and exhibit cubic complexity in the number of data points (scalability); they also do not apply to complex configuration spaces without special kernels (flexibility) and require carefully-set hyperpriors (robustness).

To speed up the hyperparameter optimization of machine learning algorithms, recent methods in Bayesian optimization try to extend the traditional blackbox setting by exploiting cheaper fidelities of the objective function (Swersky et al., 2014; Klein et al., 2017a; Swersky et al., 2013; Kandasamy et al., 2017; Klein et al., 2017c; Poloczek et al., 2017). For instance, multi-task Bayesian optimization (Swersky et al., 2013) exploits correlation between tasks to warm-start the optimization procedure. Fabolas (Klein et al., 2017a) uses similar techniques to evaluate configurations on subsets of the training data and to extrapolate their performance to the full dataset. Even though these methods achieved both good anytime and final performance, they are based on Gaussian processes, which, as described above, do not satisfy all of our desiderata. Alternative models, such as random forests (Hutter et al., 2011) or Bayesian neural networks (Snoek et al., 2015; Springenberg et al., 2014; Springenberg et al., 2016; Perrone et al., 2017), scale better with the number of dimensions, but with the exception of Klein et al. (2017c) have not yet been adopted for multi-fidelity optimization.

Hyperband (Li et al., 2017) is a bandit strategy that dynamically allocates resources to a set of random configurations and uses successive halving (Jamieson & Talwalkar, 2016) to stop poorly performing configurations. We describe this in more detail in Section 3.2. Compared to Bayesian optimization methods that do not use multiple fidelities, Hyperband showed strong anytime performance, as well as flexibility and scalability to higher-dimensional spaces. However, it only samples configurations randomly and does not learn from previously sampled configurations. This can lead to a worse final performance than model-based approaches, as we show empirically in Section 5.

Concurrently to our work, two other groups (Bertrand et al., 2017; Wang et al., 2018) also attempted to combine Bayesian optimization with Hyperband. However, neither of them achieve the consistent and large speedups our method achieves. Furthermore, the method of Bertrand et al. (2017) is based on Gaussian processes and thus shares the limitations discussed above. We discuss differences between our work and these two papers in more detail in Appendix B.
3. Bayesian Optimization and Hyperband

The validation performance of machine learning algorithms can be modelled as a function \(f : X \to \mathbb{R} \) of their hyperparameters \(x \in X \). We note that the hyperparameter configuration space \(X \) can include both discrete and continuous dimensions. The hyperparameter optimization (HPO) problem is then defined as finding \(x^* \in \arg \min_{x \in X} f(x) \).

Due to the intrinsic randomness of most machine learning algorithms (e.g., stochastic gradient descent), we assume that we cannot observe \(f(x) \) directly but rather only through noisy observations \(y(x) = f(x) + \epsilon \), with \(\epsilon \sim \mathcal{N}(0, \sigma^2_{\text{noise}}) \).

We now discuss the two methods for tackling this optimization problem in more detail that we will use as components of our new method: Bayesian optimization and Hyperband.

3.1. Bayesian Optimization

In each iteration \(i \), Bayesian optimization (BO) uses a probabilistic model \(p(f|D) \) to model the objective function \(f \) based on the already observed data points \(D = \{(x_0, y_0), \ldots , (x_{i-1}, y_{i-1})\} \). BO uses an acquisition function \(a : X \to \mathbb{R} \) based on the current model \(p(f|D) \) that trades off exploration and exploitation. Based on the model and the acquisition function, it iterates the following three steps: (1) select the point that maximizes the acquisition function \(x_{\text{new}} = \arg \max_x a(x) \), (2) evaluate the objective function \(y_{\text{new}} = f(x_{\text{new}}) + \epsilon \), and (3) augment the data \(D \leftarrow D \cup (x_{\text{new}}, y_{\text{new}}) \) and refit the model. A common acquisition function is the expected improvement (EI) over the currently best observed value \(\alpha = \min\{y_0, \ldots, y_n\} \):

\[
a(x) = \int \max(0, \alpha - f(x)) \, dp(f|D). \tag{1}
\]

Tree Parzen Estimator. The Tree Parzen Estimator (TPE) (Bergstra et al., 2011) is a Bayesian optimization method that uses a kernel density estimator to model the densities

\[
\begin{align*}
l(x) &= p(y < \alpha | x, D) \\
g(x) &= p(y > \alpha | x, D)
\end{align*}
\]

over the input configuration space instead of modeling the objective function \(f \) directly by \(p(f|D) \). To select a new candidate \(x_{\text{new}} \) to evaluate, it maximizes the ratio \(l(x)/g(x) \); Bergstra et al. (2011) showed that this is equivalent to maximizing EI in Equation (1). Due to the nature of kernel density estimators, TPE easily supports mixed continuous and discrete spaces, and model construction scales linearly in the number of data points (in contrast to the cubic-time Gaussian processes (GPs) predominant in the BO literature).

3.2. Hyperband

While the objective function \(f : X \to \mathbb{R} \) is typically expensive to evaluate (since it requires training a machine learning model with the specified hyperparameters), in most applications it is possible to define cheap-to-evaluate approximate versions \(f(\cdot, b) \) of \(f(\cdot) \) that are parameterized by a so-called budget \(b \in [b_{\text{min}}, b_{\text{max}}] \). With the maximum budget \(b = b_{\text{max}} \), we have \(f(\cdot, b_{\text{max}}) = f(\cdot) \), whereas with \(b < b_{\text{max}} \), \(f(\cdot, b) \) is only an approximation of \(f(\cdot) \) whose quality typically increases with \(b \). In our experiments, we will use this budget to encode the number of iterations for an iterative algorithm, the number of data points used, the number of steps in an MCMC chain, and the number of trials in deep reinforcement learning.

Hyperband (HB) (Li et al., 2017) is a multi-armed bandit strategy for hyperparameter optimization that takes advantage of these different budgets \(b \) by repeatedly calling SuccessiveHalving (SH) (Jamieson & Talwark, 2016) to identify the best out of \(n \) randomly sampled configurations. It balances very aggressive evaluations with many configurations on the smallest budget, and very conservative runs that are directly evaluated on \(b_{\text{max}} \). The exact procedure for this trade-off is shown in Algorithm 1 (with pseudocode for SH shown in Appendix C). Line 1 computes the geometrically spaced budget \(\in [b_{\text{min}}, b_{\text{max}}] \). The number of configurations sampled in line 3 is chosen such that every SH run requires the same total budget. SH internally evaluates configurations on a given budget, ranks them by their performance, and continues the top \(\eta^{-1} \) (usually the best-performing third) on a budget \(\eta \) times larger. This is repeated until the maximum budget is reached. In practice, HB works very well and typically outperforms random search and Bayesian optimization methods operating on the full function evaluation budget quite easily for small to medium total budgets. However, its convergence to the global optimum is limited by its reliance on randomly-drawn configurations, and with large budgets its advantage over random search typically diminishes.

Algorithm 1: Pseudocode for Hyperband using SuccessiveHalving (SH) as a subroutine.

```plaintext
input : budgets \( b_{\text{min}} \) and \( b_{\text{max}} \), \( \eta \)
1 \( s_{\text{max}} = \lceil \log_\eta \frac{b_{\text{max}}}{b_{\text{min}}} \rceil \)
2 for \( s = \{s_{\text{max}}, s_{\text{max}} - 1, \ldots, 0\} \) do
3 \quad sample \( n = \lceil \frac{s_{\text{max}}+1}{s+1} \cdot \eta^s \rceil \) configurations
4 \quad run SH on them with \( \eta^s \cdot b_{\text{max}} \) as initial budget
```

4. Model-Based Hyperband

We now introduce our new practical HPO method, which we dub BOHB since it combines Bayesian optimization (BO) and Hyperband (HB). We designed BOHB to satisfy all the desiderata described in the introduction. HB already satisfies most of these desiderata (in particular, strong anytime...
performance, scalability, robustness and flexibility), and we combine it with BO to also satisfy the desideratum of strong final performance in BOHB. We also describe how to extend BOHB to make effective use of parallel resources.

In the design of BOHB’s BO component, on top of the five desiderata above, we also followed two additional ones:

6. Simplicity. Simplicity is a virtue, since simple approaches can be easily verified, have less components that can break, and can be easily reimplemented in different frameworks. HB is very simple, but standard GP-BO methods are not: they tend to require complex approximations, complex MCMC sampling over hyperparameters, and for good performance also data-dependent choices of kernel functions and hyperparameters.

7. Computational efficiency. Since our HB component allows us to carry out many function evaluations at small budgets, the cubic complexity of standard GPs, and even the lower complexity of approximate GPs would become problematic. Furthermore, compared to these cheap function evaluations, the complexity of computing sophisticated acquisition functions may also become a bottleneck, especially when parallelization effectively reduces the cost of function evaluations.

For these reasons, along with the reasons of scalability, robustness & flexibility, we based BOHB’s BO component on the simple TPE method discussed above. As reliable GP-based BO methods become available that satisfy all the desiderata above, it would be easy to replace TPE with them.

4.1. Algorithm description

BOHB relies on HB to determine how many configurations to evaluate with which budget, but it replaces the random selection of configurations at the beginning of each HB iteration by a model-based search. Once the desired number of configurations for the iteration is reached, the standard successive halving procedure is carried out using these configurations. We keep track of the performance of all function evaluations \(g(x, b) + \epsilon \) of configurations \(x \) on all budgets \(b \) to use as a basis for our models in later iterations.

We follow HB’s way of choosing the budgets and continue to use SH, but we replace the random sampling by a BO component to guide the search. We construct a model and use BO to select a new configuration, based on the configurations evaluated so far. In the remainder of this section, we will explain this procedure summarized by the pseudocode in Algorithm 2.

The BO part of BOHB closely resembles TPE, with one major difference: we opted for a single multidimensional KDE compared to the hierarchy of one-dimensional KDEs used in TPE in order to better handle interaction effects in the input space. To fit useful KDEs (in line 4 of Algorithm 2), we require a minimum number of data points \(N_{min} \); this is set to \(d + 1 \) for our experiments, where \(d \) is the number of hyperparameters. To build a model as early as possible, we do not wait until \(N_b = |D_b| \), the number of observations for budget \(b \), is large enough to satisfy \(q \cdot N_b \geq N_{min} \). Instead, after initializing with \(N_{min} + 2 \) random configurations (line 3), we choose the

\[
\begin{align*}
N_{b,l} &= \max(N_{min}, q \cdot N_b) \\
N_{b,g} &= \max(N_{min}, N_b - N_{b,l})
\end{align*}
\]

best and worst configurations, respectively, to model the two densities. This ensures that both models have enough datapoints and have the least overlap when only a limited number of observations is available. We used the KDE implementation from statsmodels (Seabold & Perktold, 2010), estimating the KDE’s bandwidth with the default estimation procedure (Scott’s rule of thumb), which is efficient and performed well in our experience. Details on our KDE are given in Appendix D.

As the optimization progresses, more configurations are evaluated on bigger budgets. Given that the goal is to optimize on the largest budget, BOHB always uses the model for the largest budget for which enough observations are available (line 2). This enables it to overcome wrong conclusions drawn on smaller budgets by eventually relying on results with the highest fidelity only.

To optimize EI (lines 5-6), we sample \(N_s \) points from \(l'(x) \), which is the same KDE as \(l(x) \) but with all bandwidths multiplied by a factor \(b_x \) to encourage more exploration around the promising configurations. We observed that this improves convergence especially in the late stages of the optimization, when the model on the biggest budget is queried frequently but updated rarely.

In order to keep the theoretical guarantees of HB, we also sample a constant fraction \(\rho \) of the configurations uniformly at random (line 1). Besides global exploration, this guarantees that after \(m \cdot (s_{max} + 1) \) SH runs, our method has (on average) evaluated \(\rho \cdot m \cdot (s_{max} + 1) \) random configurations on \(b_{max} \). As every SH run consumes a budget of at most \((s_{max} + 1) \cdot b_{max} \), in the same time random search evaluates \((\rho^{-1} \cdot (s_{max} + 1)) \)-times as many configuration on the largest budget. This means, that in the worst case (when the lower fidelities are misleading), BOHB is at most this factor times slower than RS, but it is still guaranteed to converge eventually. The same argument holds for HB, but in practice both HB and BOHB substantially outperform RS in our experiments.

No optimizer is free of hyperparameters itself, and their effects have to be studied carefully. We therefore include a detailed empirical analysis of BOHB’s hyperparameters in Appendix G that shows each hyperparameter’s effect when
4.2. Parallelization

Modern optimizers must be able to take advantage of parallel resources effectively and efficiently. BOHB achieves that by inheriting properties from both TPE and HB. The parallelism in TPE is achieved by limiting the number of samples to optimize EI, purposefully not optimizing it fully to obtain diversity. This ensures that consecutive suggestions by the model are diverse enough to yield near-linear speedups when evaluated in parallel. On the other hand, HB can be parallelized by (a) starting different iterations at the same time (a parallel for loop in Alg. 1), and (b) evaluating configurations concurrently within each SH run.

Our parallelization strategy of BOHB is as follows. We start with the first SH run that sequential HB would perform (the most aggressive one, starting from the lowest budget), sampling configurations with the strategy outlined in Algorithm 2 until either (a) all workers are busy, or (b) enough configurations have been sampled for this SH run. In case (a), we simply wait for a worker to free up and then sample a new configuration. In case (b), we start the next SH run in parallel, sampling the configurations to run for it also according to Algorithm 2; observations \(D \) (and therefore the resulting models) are shared across all SH runs. BOHB is an anytime algorithm that at each point in time keeps track of the configuration that achieved the best validation performance; it can also be given a maximum budget of SH runs.

We note that SH has also been parallelized in (so far unpublished) independent work (Li et al., 2018). Next to parallelizing SH runs (by filling the next free worker with the ready-to-be-executed run with the largest budget), that work mentioned that HB can trivially be parallelized by running its SH runs in parallel. In contrast to this approach of parallelizing HB by having separate pools of workers for each SH run, we rather join all workers into a single pool, and whenever a worker becomes available preferentially execute waiting runs with smaller budgets. New SH runs are only started when the SH runs currently executed are not waiting for a worker to free up. This strategy (a) allows us to achieve better speedups by using all workers in the most aggressive (and often most effective) bracket first, and (b) also takes full advantage of models built on smaller budgets. Figure 2 demonstrates that our method of parallelization can effectively exploit many parallel workers.

5. Experiments

We now comprehensively evaluate BOHB’s empirical performance in a wide range of tasks, including a high-dimensional toy function, as well as optimizing the hyperparameters of support vector machines, feed-forward neural networks, Bayesian neural networks, deep reinforcement learning agents and convolutional neural networks. Code for BOHB and our benchmarks is publicly available at https://github.com/automl/HpBandSter

To compare against TPE, we used the Hyperopt package (Bergstra et al., 2011), and for all GP-BO methods we used the RoBO python package (Klein et al., 2017b). In all experiments we set \(\eta = 3 \) for HB and BOHB as recommended by Li et al. (2017). If not stated otherwise, for all methods we report the mean performance and the standard error of the mean of the best observed configuration so far (incumbent) at a given budget.
5.1. Artificial Toy Function: Counting Ones

In this experiment we investigated BOHB’s behavior in high-dimensional mixed continuous / categorical configuration spaces. Since GP-BO methods do not work well on such configuration spaces (Eggensperger et al., 2013) we do not include them in this experiment. However, we do use SMAC (Hutter et al., 2011), since its random forest are known to perform well in high-dimensional categorical spaces (Eggensperger et al., 2013).

Given a set of N_{cat} categorical variables $x \in \{0, 1\}$ and N_{cont} continuous variables $x \in [0, 1]$, we defined the counting one problem as:

$$f(x) = - \left(\sum_{i=0}^{N_{\text{cat}}} x_i + \sum_{j=N_{\text{cat}}+1}^{N_{\text{cat}}+N_{\text{cont}}} \mathbb{E}_{X \sim B_i(X)}[X] \right).$$

The expectation is taken with respect to a Bernoulli distribution B_i with parameter $p = x_i$. As a budget for HB and BOHB, we used the number of samples $b \in [9, 729]$ allowed to approximate this expectation; all other methods always evaluated on the full budget, i.e., $b = 729$.

For each method, we performed 512 independent runs and report the immediate regret $|f(x_{\text{inc}}) - f(x_*)|$ where $x_* \in \arg \min f(x)$ and x_{inc} is the incumbent at a specific time step. Figure 3 shows the results for a 16-dimensional space with $N_{\text{cat}} = 8$ and $N_{\text{cont}} = 8$ parameters. The results for other dimensions can be found in Appendix H.

Random search worked very poorly on this benchmark and was quickly dominated by the model-based methods SMAC and TPE. Even though HB was faster in the beginning, SMAC and TPE clearly outperformed it after having obtained a sufficiently informative model. BOHB worked as well as HB in the beginning and then quickly started to perform better and — as the only method — converged in the time budget. We obtained similar results for other dimensionalities (see Figure 7 in the supplementary material). However, we note that with as many as 64 dimensions, TPE and SMAC started to perform better than BOHB since the noise grows and evaluating configurations on a smaller budget does not help to build better models for the full budget.

5.2. Comprehensive Experiments on Surrogate Benchmarks

For the next experiments we constructed a set of surrogate benchmarks based on offline data following Eggensperger et al. (2015). Optimizing a surrogate instead of the real objective function is substantially cheaper, which allows us to afford many independent runs for each optimizer and to draw statistically more meaningful conclusions. More detailed discussion of how we generated these surrogates can be found in Appendix I in the supplementary material. To better compare the convergence towards the true optimum, we again computed the immediate regret of the incumbent.

5.2.1. Support Vector Machine on MNIST

To compare against GP-BO, we used the support vector machine on MNIST surrogate from Klein et al. (2017a). This surrogate imitates the hyperparameter optimization of a support vector machine with a RBF kernel with two hyperparameters: the regularization parameter C and the kernel parameter γ. The budget is given by the number of training datapoints, where the minimum budget is $1/512$ of the training data and the maximum budget is the full training data. For further details, we refer to Klein et al. (2017a).

Figure 4 compares BOHB to various BO methods, such as Fabolas (Klein et al., 2017a), multi-task Bayesian optimization (MTBO) (Swersky et al., 2013), GP-BO with expected improvement (Snoek et al., 2012; Klein et al., 2017b), RS and HB. BOHB achieved similar performance as Fabolas and worked slightly better than HB. We note that this is a low-dimensional continuous problem, for which it is well known that GP-BO methods usually work better than other methods, such as kernel density estimators (Eggensperger et al., 2013).

5.2.2. Feed-forward Neural Networks on OpenML Datasets

We optimized six hyperparameters that control the training procedure (initial learning rate, batch size, dropout, exponential decay factor for learning rate) and the architecture (number of layers, units per layer) of a feed forward neural network for six different datasets gathered from OpenML (Vanschoren et al., 2014): Adult (Kohavi, 1996), Higgs (Baldi et al., 2014), Letter (Frey & Slate, 1991), MNIST (LeCun et al., 2001), Optdigits (Lichman, 2013), and Poker (Caterral et al., 2002). A detailed description of all hyperparameter ranges and training budgets can be found in Appendix I.
We ran random search (RS), TPE, HB, GP-BO, Hyperband with LC-Net (HB-LCNet, see Klein et al. (2017c)) and BOHB on all six datasets and summarize the results for one of them in Figure 5. Figures for the other datasets are shown in Appendix E.

We note that HB initially performed much better than the vanilla BO methods and achieved a roughly three-fold speedup over RS. However, for large enough budgets TPE and GP-BO caught up in all cases, and in the end found better configurations than HB and RS. HB and BOHB started out identically, but BOHB achieved the same final performance as HB 100 times faster, while at the same time yielding a final result that was better than that of the other BO methods. All model-based methods substantially outperformed RS at the end of their budget, whereas HB approached the same performance. Interestingly, the speedups that TPE and GP-BO achieved over RS are comparable to the speedups that BOHB achieved over HB. Finally, HB-LCNet performed somewhat better than HB alone, but consistently worse than BOHB, even when tuning HB-LCNet. We only compare to HB-LCNet on this benchmark, since it is the only one that includes full learning curves (for which the parametric functions in HB-LCNet were designed). Also, HB-LCNet requires access to performance values for all budgets, which we do not obtain when, e.g., using data subset sizes as a budget, and we thus expect HB-LCNet to perform poorly in the other cases.

5.3. Bayesian Neural Networks

For this experiment we optimized the hyperparameters and the architecture of a two-layer fully connected Bayesian neural network trained with Markov Chain Monte-Carlo (MCMC) sampling. We used stochastic gradient Hamiltonian Monte-Carlo sampling (SGHMC) (Chen et al., 2014) with scale adaption (Springenberg et al., 2016) to sample the parameter vector of the network. Note that to the best of our knowledge this is the first application of hyperparameter optimization for Bayesian neural networks.

As tunable hyperparameters, we exposed the step length, the length of the burn-in period, the number of units in each layer, and the decay parameter of the momentum variable. A detailed description of the configuration space can be found in Appendix J. We used the Bayesian neural network implementation provided in the RoBO python package (Klein et al., 2017b) as described by Springenberg et al. (2016).

We considered two different UCI (Lichman, 2013) regression datasets, *Boston housing* and *protein structure* as described by Hernández-Lobato & Adams (2015) and report the negative log-likelihood of the validation data. For BOHB and HB, we set the minimum budget to 500 MCMC steps and the maximum budget to 10000 steps. RS and TPE evaluated each configuration on the maximum budget. For each hyperparameter optimization method, we performed 50 independent runs to obtain statistically significant results.

As Figure 6 shows, HB initially performed better than TPE, but TPE caught up given enough time. BOHB converged faster than both HB and TPE and even found a better configuration than the baselines on the Boston housing dataset.

5.4. Reinforcement Learning

Next, we optimized eight hyperparameters of proximal policy optimization (PPO) (Schulman et al., 2017) to learn the *cartpole swing-up* task. For PPO, we used the implementation from the TensorForce framework developed by Schaarschmidt et al. (2017) and we used the implementation from OpenAI Gym (Brockman et al., 2016) for the cartpole environment. The configuration space for this experiment can be found in Appendix K.

To find a configuration that not only converges quickly but also works robustly, for each function evaluation we ran a
6. Conclusions

We introduced BOHB, a simple yet effective method for hyperparameter optimization satisfying the desiderata outlined above: it is robust, flexible, scalable (to both high dimensions and parallel resources), and achieves both strong anytime performance and strong final performance. We thoroughly evaluated its performance on a diverse set of benchmarks and demonstrated its improved performance compared to a wide range of other state-of-the-art approaches. Our easy-to-use open-source implementation (available under https://github.com/automl/HpBandSter) should allow the community to effectively use our method on new problems. To further improve BOHB, we will consider an automatic adaptation of the budgets used to alleviate the problem of misspecification by the user while maintaining the versatility and robustness of the current version.

5.5. Convolutional Neural Networks on CIFAR-10

For a final evaluation, we optimized the hyperparameters of a medium-sized residual network (depth 20 and basewidth of 64; roughly 8.5M parameters) with Shake-Shake (Gastaldi, 2017) and Cutout (DeVries & Taylor, 2017) regularization. To perform hyperparameter optimization, we split off 5000 training images as a validation set. As hyperparameters, we optimized learning rate, momentum, weight decay, and batch size.

We ran BOHB with budgets of 22, 66, 200, and 600 epochs, using 19 parallel workers. Each worker used 2 NVIDIA TI 1080 GPUs for parallel training, which resulted in runs with the longest budget taking approximately 7 hours (on 2 GPUs). The complete BOHB run of 16 iterations required a total of 33 GPU days (corresponding to a cost of less than 3 full function evaluations on each of the 19 workers) and achieved a test error of 2.78% ± 0.09% (which is better than the error Gastaldi (2017) obtained with a slightly larger network). While we note that the performance numbers from different papers are not directly comparable due to the use of different optimization and regularization approaches, it is still instructive to compare this result to others in the literature. Our result is better than that of last year’s state-of-the-art neural architecture search by reinforcement learning (3.65% (Zoph & Le, 2017)) and the recent paper on progressive neural architecture search (3.41% (Liu et al., 2017)), but it does not quite reach the state-of-the-art performance of 2.4% and 2.1% reported in recent arXiv papers on reinforcement learning (Zoph et al., 2017) and evolutionary search (Real et al., 2018). However, since these approaches used 60 to 95 times more compute resources (2000 and 3150 GPU days, respectively!), as well as networks with 3-4 more parameters, we believe that our results are a strong indication of the practical usefulness of BOHB for resource-constrained optimization.

configuration for nine individual trials with a different seed for the random number generator. We returned the average number of episodes until PPO has converged to the optimum, defining convergence to mean that the reinforcement learning agent achieved the highest possible reward for 20 consecutive episodes. For each hyperparameter configuration we stopped training after the agent has either converged or ran for a maximum of 3000 episodes. The minimum budget for BOHB and HB was one trial and the maximum budget were nine trials, and all other methods used a fixed number of nine trials. As in the previous benchmark, for each hyperparameter optimization method we performed 50 independent runs.

Figure 7 shows that HB and BOHB worked equally well in the beginning, but BOHB converged to better configurations in the end. Apparently, the budget for this benchmark was not sufficient for TPE to find the same configuration.
Acknowledgements

We thank Ilya Loshchilov for suggesting to track the best hyperparameter setting across different budgets (already in late 2015), which influenced our thoughts about the problem and ultimately the development of BOHB. This work has partly been supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under grant no. 716721, by the European Commission under grant no. H2020-ICT-645403-ROBDREAM, and by the German Research Foundation (DFG) under Priority Programme Autonomous Learning (SPP 1527, grant BR 3815/8-1 and HU 1900/3-1). Furthermore, the authors acknowledge support by the state of Baden-Württemberg through bwHPC and the DFG through grant no. INST 39/963-1 FUGG.

References

Proceedings of the International Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

Bach, F. and Blei, D. (eds.). Proceedings of the 32nd International Conference on Machine Learning (ICML’15), volume 37, 2015. Omnipress.

Baldi, P., Sadowski, P., and Whiteson, D. Searching for exotic particles in high-energy physics with deep learning. Nature communications, 5, 2014.

Bergstra, J., Bardenet, R., Bengio, Y., and Kégl, B. Algorithms for hyper-parameter optimization. In Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K. (eds.), Proceedings of the 25th International Conference on Advances in Neural Information Processing Systems (NIPS’11), pp. 2546–2554, 2011.

Bergstra, J., Yamins, D., and Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for vision architectures. In Dasgupta, S. and McAllester, D. (eds.), Proceedings of the 30th International Conference on Machine Learning (ICML’13), pp. 115–123. Omnipress, 2014.

Bertrand, H., Ardon, R., Perrot, M., and Bloch, I. Hyperparameter optimization of deep neural networks: Combining hyperband with Bayesian model selection. Proceedings of Conférence sur l'Apprentissage Automatique (CAP 2017), 2017.

Brochu, E., Cora, V., and de Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning. arXiv:1012.2599, 2010.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W. Openai gym, 2016.

Catrall, R., Oppacher, F., and Deugo, D. Evolutionary data mining with automatic rule generalization. Recent Advances in Computers, Computing and Communications, 1(1):296–300, 2002.

Chen, T., Fox, E., and Guestrin, C. Stochastic gradient Hamiltonian Monte Carlo. In Xing, E. and Jebara, T. (eds.), Proceedings of the 31th International Conference on Machine Learning, (ICML’14). Omnipress, 2014.

DeVries, T. and Taylor, G. W. Improved regularization of convolutional neural networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., and Leyton-Brown, K. Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In NIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt’13), 2013.

Eggensperger, K., Hutter, F., Hoos, H., and Leyton-Brown, K. Efficient benchmarking of hyperparameter optimizers via surrogates. In Bonet, B. and Koenig, S. (eds.), Proceedings of the Twenty-nineth National Conference on Artificial Intelligence (AAAI’15), pp. 1114–1120. AAAI Press, 2015.

Frey, P. W. and Slate, D. J. Letter recognition using holland-style adaptive classifiers. Machine Learning, 6(2):161–182, Mar 1991.

Gastaldi, X. Shake-shake regularization. arXiv preprint arXiv:1705.07485, 2017.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. Deep reinforcement learning that matters. arXiv preprint arXiv:1709.06560, 2017.

Hernández-Lobato, J. and Adams, R. Probabilistic backpropagation for scalable learning of Bayesian neural networks. In Bach & Blei (2015).

Hutter, F., Hoos, H., and Leyton-Brown, K. Sequential model-based optimization for general algorithm configuration. In Coello, C. (ed.), Proceedings of the Fifth International Conference on Learning and Intelligent Optimization (LION’11), volume 6683 of Lecture Notes in Computer Science, pp. 507–523. Springer-Verlag, 2011.

Jamieson, K. and Talwalkar, A. Non-stochastic best arm identification and hyperparameter optimization. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Kandasamy, K., Dasarathy, G., Schneider, J., and Poczos, B. Multifidelity bayesian optimisation with continuous approximations. arXiv preprint arXiv:1703.06240, 2017.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. Fast Bayesian hyperparameter optimization on large datasets. Electron. J. Statist., 11(2):4945–4968, 2017a.

Klein, A., Falkner, S., Mansur, N., and Hutter, F. Robo: A flexible and robust bayesian optimization framework in python. In NIPS 2017 Bayesian Optimization Workshop, December 2017b.

Klein, A., Falkner, S., Springenberg, J. T., and Hutter, F. Learning curve prediction with Bayesian neural networks. In Proceedings of the International Conference on Learning Representations (ICLR’17) iclr (2017). Published online: iclr.cc.

Kohavi, R. Scaling up the accuracy of naive-bayes classifiers: A decision-tree hybrid. In KDD, volume 96, pp. 202–207, 1996.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning applied to document recognition. In Haykin, S. and Kosko, B. (eds.), Intelligent Signal Processing, pp. 306–351. IEEE Press, 2001. URL http://www.iro.umontreal.ca/~lisa/pontiers/lecun-01a.pdf.
BOHB: Robust and Efficient Hyperparameter Optimization at Scale

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. In Proceedings of the International Conference on Learning Representations (ICLR’17) iclr (2017). Published online: iclr.cc.

Li, L., Jamieson, K., Rostamizadeh, A., Gonina, K., Hardt, M., Recht, B., and Talwalkar, A. Massively parallel hyperparameter tuning, 2018. URL https://openreview.net/forum?id=S1Y7001RZ.

Lichman, M. UCI machine learning repository, 2013. URL http://archive.ics.uci.edu/ml.

Liu, C., Zoph, B., Shlens, J., Hua, W., Li, L.-J., Fei-Fei, L., Yuille, A., Huang, J., and Murphy, K. Progressive neural architecture search. arXiv preprint arXiv:1712.00559, 2017.

Melis, G., Dyer, C., and Blunsom, P. On the state of the art of evaluation in neural language models. arXiv preprint arXiv:1707.05589, 2017.

Mendoza, H., Klein, A., Feurer, M., Springenberg, J., and Hutter, F. Towards automatically-tuned neural networks. In ICML 2016 AutoML Workshop, 2016.

Perrone, V., Jenatton, R., Seeger, M., and Archambeau, C. Multiple adaptive bayesian linear regression for scalable bayesian optimization with warm start. arXiv preprint arXiv:1712.02902, 2017.

Poloczek, M., Wang, J., and Frazier, P. Multi-information source optimization. In Advances in Neural Information Processing Systems, pp. 4291–4301, 2017.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. V. Regularized Evolution for Image Classifier Architecture Search. In arXiv:1802.01548 [cs], February 2018.

Schaarschmidt, M., Kuhnle, A., and Fricke, K. Tensorforce: A tensorflow library for applied reinforcement learning. Web page, 2017. URL https://github.com/reinforceio/tensorforce.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Seabold, S. and Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference, 2010.

Shahriari, B., Swersky, K., Wang, Z., Adams, R., and de Freitas, N. Taking the human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2016.

Snoek, J., Larochelle, H., and Adams, R. P. Practical Bayesian optimization of machine learning algorithms. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K. (eds.), Proceedings of the 26th International Conference on Advances in Neural Information Processing Systems (NIPS’12), pp. 2960–2968, 2012.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, and Adams, R. Scalable Bayesian optimization using deep neural networks. In Bach & Blei (2015), pp. 2171–2180.
A. Available Software

To promote reproducible science and enable other researchers to use our method, we provide an open-source implementation of BOHB and Hyperband. It is available under https://github.com/automl/HpBandSter. The benchmarks and our scripts used to produce the data shown in the paper can be found in the icml_2018 branch.

B. Comparison to other Combinations of Bayesian optimization and Hyperband

Here we discuss the differences between our method and the related approaches of Bertrand et al. (2017) and Wang et al. (2018) in more detail. We note that these works are independent and concurrent; our work extends our preliminary short workshop papers at NIPS 2017 (?) and ICLR 2018 (?)

While the general idea of combining Hyperband and Bayesian optimization by Bertrand et al. (2017) is the same as in our work, they use a Gaussian process for modeling the performance. The budget is modeled like any other dimension of the search space, without any special treatment. Based on our experience with Fabolas (Klein et al., 2017), we expect that the squared exponential kernel might not extrapolate well, which would hinder performance. Also, the small evaluation provided by Bertrand et al. (2017) does not allow strong conclusions about the performance of their method.

Wang et al. (2018) also independently combined TPE and Hyperband, but in a slightly different way than we did. In their method, TPE is used as a subroutine in every iteration of Hyperband. In particular, a new model is built from scratch at the beginning of every SuccessiveHalving run (Algorithm 3, line 8 in Wang et al. (2018)). This means that in later iterations of the algorithm, the model does not benefit from any of the evaluations in previous iterations. In contrast, BOHB collects all evaluations on all budgets and uses the largest budget with enough evaluations (admittedly a heuristic, but we would argue a reasonable one) as a base for future evaluations. This way, BOHB aggregates more knowledge into its models for the different budgets as the optimization progresses. We believe this to be a crucial part of the strong performance of our method. Empirically, Wang et al. (2018) did not achieve the consistent and large speedups across a wide range of applications BOHB achieved in our experiments.

C. Successive Halving

SuccessiveHalving is a simple heuristic to allocate more resources to promising candidates. For completeness, we provide pseudo code for it in Algorithm 1. It is initialized with a set of configurations, a minimum and maximum budget, and a scaling parameter η. In the first stage all configurations are evaluated on the smallest budget (line 3). The losses are then sorted and only the best $1/\eta$ configurations are kept in the set C (line 4). For the following stage, the budget is increased by a factor of η (line 5). This is repeated until the maximum budget for a single configuration is reached (line 2). Within Hyperband, the budgets are chosen such that all SuccessiveHalving executions require a similar total budget.

Algorithm 1: Pseudocode for SuccessiveHalving used by Hyperband as a subroutine.

$b = b_0$			
while $b \leq b_{max}$ do			
$L = \{ f(c, \cdot) : c \in C \}$			
$C = \text{top}_k(C, L,	C	/\eta)$	
$b = \eta \cdot b$			

D. Details on the Kernel Density Estimator

We used the MultivariateKDE from the statsmodels package (Seabold & Perktold, 2010), which constructs a factorized
kernel, with a one-dimensional kernel for each dimension. Note that using this product of 1-d kernels differs from the original TPE, which uses a pdf that is the product of 1-d pdfs. For the continuous parameters a Gaussian kernel is used, whereas the Aitchison-Aitken kernel is the default for categorical parameters. We used Scott’s rule for efficient bandwidth estimation, as preliminary experiments with maximum-likelihood based bandwidth selection did not yield better performance but caused a significant overhead.

E. Performance of all methods on all surrogates

Figure 1 shows the performance of all methods we evaluated on all our surrogate benchmarks. Random search is clearly the worst optimizer across all datasets when the budget is large enough for GP-BO and TPE to leverage their model. Hyperband and the two methods based on it (HB-LCNet) and BOHB improve much more quickly due to the smaller budgets used. On all surrogate benchmarks, BOHB starts to outperform HB after the first couple of iterations (sometimes even earlier, e.g., on dataset letter). The same dataset also shows that traditional BO methods can still have an advantage for very large budgets, since in these late stages of the optimization process the low fidelity evaluations of BOHB can cause a constant overhead without any gain.

F. Performance of parallel runs

Figure 2 shows the performance of BOHB when run in parallel on all our surrogate benchmarks. The speed-ups
are quite consistent, and almost linear for a small number of workers (2-8). For more workers, more random configurations are evaluated in parallel before the first model is built, which degrades performance. But even for 32 workers, linear speedups are possible (see, e.g., dataset letter, for reaching a regret of 2×10^{-3}).

We note that in order to carry out this evaluation of parallel performance, we actually ran in real time. For this reason, we decided to not evaluate all possible numbers of workers for dataset poker, for which each run with less than 16 workers would have taken more than a day, and we do not expect any different behavior compared to the other datasets.

G. Evaluating the hyperparameters of BOHB

In this section, we evaluate the importance of the individual hyperparameters of BOHB, namely the number of samples used to optimize the acquisition function (Figure 3), the fraction of purely random configuration ρ (Figure 4), the scaling parameter η (Figure 5), and the bandwidth factor used to encourage exploration (Figure 6). Additionally, we want to discuss the importance of η, b_{\min}.
and \(b_{\text{max}} \) already present in HB. The parameter \(\eta \) controls how aggressively SH cuts down the budget and the number of configurations evaluated. Like HB (Li et al., 2017), BOHB is also quite insensitive to this choice in a reasonable range. For our experiments, we use the same default value (\(\eta = 3 \)) for HB and BOHB.

More important for the optimization are \(b_{\text{min}} \) and \(b_{\text{max}} \), which are problem specific and inputs to both HB and BOHB. While the maximum budget is often naturally defined, or is constrained by compute resources, the situation for the minimum budget is often different. To get substantial speedups, an evaluation with a budget of \(b_{\text{min}} \) should contain some information about the quality of a configuration with larger budgets; for example, when subsampling the data, the smallest subset should not be one datum, but rather enough points to fit a meaningful model. This requires knowledge about the benchmark and the algorithm being optimized.

H. Counting Ones

We now show results for the counting ones function for different dimensions. Figure 7 shows the mean performance of all applicable methods in \(d = 8, 16, 32 \) and 64 dimensions for a budget of 8192 full function evaluations.

We draw the following conclusions from the results:

1. Despite its simple definition, this problem is quite challenging for the methods we applied to it. RS and HB both suffer from the fact that drawing configurations at random performs quite poorly in this space. The model-based approaches SMAC and TPE performed substantially better, especially with large budgets. They required a larger number of samples before converging.
Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 4. Performance on the surrogates for all six datasets for different random fractions to the true optimum than BOHB. However, we would like to mention that SMAC and TPE treated the problem as a blackbox optimization problem; the results for SMAC could likely be improved by treating individual samples as “instances” and using SMAC’s intensification mechanism to reject poor configurations based on few samples and evaluate promising configurations with more samples.

2. BOHB struggles in the very high dimensional case. We attribute this to the fact that the noise is substantially higher in this case, such that larger budgets are required to build a good model. Therefore, given a large enough budget, BOHB’s evaluations on small budgets lead to a constant overhead over only using the more reliable evaluations on larger budgets. Since the optimization problem is perfectly separable (there are no interaction effects between any dimensions), we also expect TPE’s univariate KDE to perform better than BOHB’s multivariate one.

I. Surrogates

I.1. Constructing the Surrogates

To build a surrogate, we sampled 10,000 random configurations for each dataset, trained them for 50 epochs, and recorded their classification error after each epoch, along with their total training time. We fitted two independent random forests that predict these two quantities as a function of the hyperparameter configuration used. This enabled us to predict the classification error as a function of time with sufficient accuracy. As almost all networks converged within the 50 epochs, we extend the curves by the last obtained value if the budget would allow for more epochs.
Figure 5. Performance on the surrogates for all six datasets for different values of η.

The surrogates enable cheap benchmarking, allowing us to run each algorithm 256 times. Since evaluating a configuration with the random forest is inexpensive, we used a global optimizer (differential evolution) to find the true optimum. We allowed the optimizer 10,000 iterations which should be sufficient to find the true optimum.

Besides these positive aspects of benchmarking with surrogates, there are also some drawbacks that we want to mention explicitly:

(a) There is no guarantee that the surrogate actually reflects the important properties of the true benchmark.

(b) The presented results show the optimized classification error on the validation set used during training. There is no test performance that could indicate overfitting.

(c) Training with stochastic gradient descent is an inherently noisy process, i.e. two evaluations of the same configuration can result in different performances. This is not at all reflected by our surrogates, making them a potentially easier to optimize than the true benchmark they are based on.

(d) By fixing the budgets (see below) and having deterministic surrogates, the global minima might be the result of some small fluctuations in the classification error in the surrogates’ training data. That means that the surrogate’s minimizer might not be the true minimizer of the real benchmark.

None of these downsides necessarily have substantial implications for comparing different optimizers; they simply show that the surrogate benchmarks are not perfect models for the real benchmark they mimic. Nevertheless, we believe that, especially for development of novel algorithms,
the positive aspects outweigh the negative ones.

I.2. Determining the budgets

To choose the largest budget for training, we looked at the best configuration as predicted by the surrogate and its training time. We chose the closest power of 3 (because we also used \(\eta = 3\) for HB and BOHB) to achieve that performance. We chose the smallest budget for HB such that most configurations had finished at least one epoch. Table 2 lists the budgets used for all datasets.

Hyperparameter	Range	Log-transform		
batch size	\([2^4, 2^8]\)	yes		
dropout rate	\([0, 0.5]\)	no		
initial learning rate	\([10^{-6}, 10^{-2}]\)	yes		
exponential decay factor	\([-0.185, 0]\)	no		
# hidden layers	\(1, 2, 3, 4, 5	\)	no
# units per layer	\([2^4, 2^8]\)	yes		

Table 2. The budgets used by HB and BOHB; random search and TPE only used the last budget

Dataset	Budgets in seconds for HB and BOHB
Adult	9, 27, 81, 243
Higgs	9, 27, 81, 243
Letter	3, 9, 27, 81
Poker	81, 243, 729, 2187
Supplementary material for: BO-HB: Robust and Efficient Hyperparameter Optimization at Scale

Figure 7. Mean performance of BOHB, HB, TPE, SMAC and RS on the mixed domain counting ones function with different dimensions. As uncertainties, we show the standard error of the mean based on 512 runs.

Table 3. The hyperparameters for the Bayesian neural network task.

Hyperparameter	Range	Log-transform
# units layer 1	$[2^4, 2^9]$	yes
# units layer 2	$[2^4, 2^9]$	yes
step length	$[10^{-6}, 10^{-1}]$	yes
burn in	$[0, 0.8]$	no
momentum decay	$[0, 1]$	no

J. Bayesian Neural Networks

We optimized the hyperparameters described in Table 3 for a Bayesian neural network trained with SGHMC on two UCI regression datasets: Boston Housing and Protein Structure. The budget for this benchmark was the number of steps for the MCMC sampler. We set the minimum budget to 500 steps and the maximum budget to 10000 steps. After sampling 100 parameter vectors, we computed the log-likelihood on the validation dataset by averaging the predictive mean and variances of the individual models. The performance of all methods for both datasets is shown in Figure 8.

Table 4. The hyperparameters for the PPO Cartpole task.

Hyperparameter	Range	Log-transform
# units layer 1	$[2^3, 2^7]$	yes
# units layer 2	$[2^3, 2^7]$	yes
batch size	$[2^3, 2^8]$	yes
learning rate	$[10^{-7}, 10^{-1}]$	yes
discount	$[0, 0.1]$	no
likelihood ratio clipping	$[0, 1]$	no
entropy regularization	$[0, 1]$	no

K. Reinforcement Learning

Table 4 shows the hyperparameters we optimized for the PPO Cartpole task.

References

Bertrand, H., Ardon, R., Perrot, M., and Bloch, I. Hyperparameter optimization of deep neural networks: Combining hyperband with Bayesian model selection. *Proceedings of Conférence sur l’Apprentissage Automatique (CAP 2017)*, 2017.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. Fast Bayesian optimization of machine learning hy-
Figure 8. Mean performance of TPE, RS, HB and BOHB for optimizing the 5 hyperparameters of a Bayesian neural network on two different UCI datasets. As uncertainties, we show the standard error of the mean based on 50 runs.

perparameters on large datasets. In Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. Hyperband: Bandit-based configuration evaluation for hyperparameter optimization. In Proceedings of the International Conference on Learning Representations (ICLR’17), 2017. Published online: iclr.cc.

Seabold, S. and Perktold, J. Statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference, 2010.

Wang, J., Xu, J., and Wang, X. Combination of hyperband and bayesian optimization for hyperparameter optimization in deep learning. arXiv preprint arxiv:1801.01596, 01 2018.