Investigation of candidate biomarkers and prognostic values in endometrial cancer based on bioinformatics analysis

CURRENT STATUS: UNDER REVISION

BMC Genetics

Yaowei Li
Affiliated Tumor Hospital of Guangxi Medical University

Li Li
Affiliated Tumor Hospital of Guangxi Medical University

✉ gxykdx_lyw@163.com
Corresponding Author
ORCiD: https://orcid.org/0000-0003-2378-7902

DOI:
10.21203/rs.2.16264/v1

SUBJECT AREAS
Molecular Genetics
Medical Genetics

KEYWORDS
Endometrial cancer, Differentially expressed genes, Differentially expressed miRNAs, Functional enrichment analysis, Protein-protein interaction, Survival analysis
Abstract

Background: Endometrial cancer is a common gynecological cancer whose incidence is increasing annually worldwide. However, the biomarkers that provide the prognosis and progression of endometrial cancer are still lacking.

Methods: The differentially expressed mRNAs and miRNAs were screened out using mRNA and miRNA expression data of endometrial cancer from Gene Expression Omnibus, and then validated in the Cancer Genome Atlas. The Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were conducted using the Database for Annotation, Visualization and Integrated Discovery. A protein–protein interaction network was constructed by STRING and visualized using Cytoscape. OncoLnc was used for studying the prognostic effects of the hub genes. In addition, miRecords were used to predict target genes of differentially expressed miRNAs, and then a miRNA-mRNA regulatory network was constructed.

Results: Two eligible human endometrial cancer datasets (GSE17025 and GSE25405) met the requirement. A total of 520 differentially expressed mRNAs and 30 differentially expressed miRNAs were identified. These differentially expressed mRNAs were mainly enriched in cell cycle, skeletal system development, vasculature development, oocyte maturation, and oocyte meiosis signaling pathways. 160 pairs of differentially expressed miRNAs and mRNAs, including 22 differentially expressed miRNAs and 71 overlapping differentially expressed mRNAs, were validated in endometrial cancer samples using starBase v2.0 project. And the prognosis analysis found that Cyclin E1 (CCNE1, one of the 82 hub genes, which was correlated with hsa-miR-195) was correlated with significantly worse overall survival in endometrial cancer patients.

Conclusions: These hub genes and differentially expressed miRNAs might be used as molecular targets for the treatment of endometrial cancer and prognostic biomarkers for endometrial cancer.

Background

Endometrial cancer (EC), that is, uterine corpus endometrial carcinoma (UCEC), is derived from the endometrium epithelial malignant tumors. With an increase in obesity and an aging population, the incidence and mortality rates of EC are increasing in developed countries [1]. According to the latest
statistics of the American Cancer Society [2], Over 61,000 cases were estimated to be diagnosed with EC in 2017. At present, advanced stage EC still accounts for 20% to 30%, once relapsed, the prognosis of which is very poor.

Currently, the biomarkers of EC are still lacking in efficiency in diagnosis and prognosis. For example, Cancer antigen 125 (CA125), being most frequently used as a biomarker for ovarian cancer, has some diagnostic/prognostic value in EC [3]. However, CA125 level is elevated in a number of physiological and pathological gynecological and non-gynecological conditions, such as age [4,5], pregnancy [6], menstruation [4,6], endometriosis [6], benign ovarian cysts [6], pelvic inflammatory disease [6], peritonitis [6], pancreatitis [6] and pneumonia [6]; human epididymis protein 4 (HE4) also has some diagnosis/prognosis value in EC [7]. Similar to the high expression of CA125, HE4 level is also elevated in many physiological and non-gynaecological diseases, such as age [8], menopausal status [8], Body Mass Index [8], smoking status [8], creatine levels [8], pulmonary adenocarcinoma [9], chronic kidney disease [7], renal failure [10], and kidney fibrosis [11].

Due to these factors reduce the clinical value of the existing biomarkers in the progress and prognosis of EC, it is crucial to discover new biomarkers and investigate the molecular mechanisms in the progression of EC.

Materials And Methods
Microarray expression data
The mRNA and miRNA expression data of the GSE17025 and GSE25405 datasets were respectively downloaded from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). The mRNA dataset GSE17025 consisted of data from 103 samples, 91 EC tissue samples and 12 normal endometrium (NE) tissue samples. mRNA expression profiles were measured using the GPL570 [HG.U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array platform [12]. The miRNA dataset GSE25405 contained 41 EC tissue samples and seven NE tissue samples. The miRNA expression profile was detected using the GPL7731 Agilent-019118 Human miRNA Microarray 2.0 G4470B platform.

The RNA-seq data
The mRNA and miRNA-seq data of patients with UCEC were downloaded from TCGA (www.cancergenome.nih.gov) by the tool named shengxin.ren (http://www.shengxin.ren; accessed
June 20, 2019). The mRNA and miRNA-seq data were composed of 544 EC tissue samples, 35 NE tissue samples, 539 EC tissue samples and 33 NE tissue samples, respectively.

Identification of DEGs and DEMs
The Limma package (version 3.36.5) in R/Bioconductor was used to identify DEGs and DEMs between EC and NE tissue samples [13]. The adjusted P-value (adj.P-value) < 0.05 and |log2 fold change (FC)| >1 were set as the threshold value [14]. The original probe-level data in Series Matrix Files were converted into gene symbol based on platform annotation files. The expression values of multiple probes corresponding to the same gene were selected by the minimum adj.P.Value.

Functional and pathway enrichment analysis
The Database for Annotation, Visualization and Integrated Discovery (DAVID, http://david.ncifcrf.gov) facilitates users to perform biological analysis from data collection [15]. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted with DAVID. FDR < 0.05 was set as statistically significant.

Construction of PPI network and module analysis
PPI network of DEGs was constructed using STRING database (version 11.0, https://string-db.org/) and visualized using Cytoscape (version 3.7.1) [16,17]. The parameter was set as medium confidence score ≥ 0.7, module analyses were conducted using Cytoscape software MCODE package with degree cut-off = 2, node score cut-off = 0.2, max depth = 100 and k-score = 2 [18]. The functional enrichment analyses for these DEGs in the modules were conducted with DAVID.

Prediction of the target gene of miRNA
The target gene of miRNA (TG-miRNA) was predicted by employing miRecords (http://c1.accurascience.com/miRecords/), which includes 11 different miRNA target genes predicted databases [19]. A TG-miRNA can only be identified when at least four different prediction databases predict that the gene is a target gene.

Construction of the miRNA-mRNA regulatory network
The intersection of TG-miRNAs and DEGs were considered to be potentially valuable differentially expressed target genes. Pearson correlation analysis was then used in starBase (http://starbase.sysu.edu.cn/) to verify the association between these potentially valuable differentially expressed target genes and DEMs in patients with EC [20,21]. These significant
differentially expression target genes and corresponding miRNAs were used to construct a miRNA-mRNA regulatory network using the Cytoscape software. The Degree of interaction of the node ≥ 5 which was defined as hub miRNA.

Survival analysis of hub genes

The overall survival of patients with EC with regard to hub genes were calculated using Kaplan-Meier analysis in OncoLnc (www.oncolnc.org). The patients were divided into two (high vs. low) groups according to the median values of mRNA expression of the hub gene. The log-rank test was used to examine the significance of difference between two groups.

Results
Identification of DEGs and DEMs

A total of 1,961 DEGs and 149 DEMs were identified from GSE17025 and GSE25405, respectively; 2,339 DEGs and 205 DEMs were identified from the mRNA and miRNA data of uterine corpus endometrial carcinoma in TCGA (named TCGA-UCEC and TCGA-UCEC_miRNA, respectively); 520 common DEGs and 30 common DEMs were screened out with Venny 2.1.0 [22], respectively (Fig. 1a, Fig. 1b). there were 212 upregulated genes and 308 downregulated genes, and 15 upregulated and 15 downregulated miRNAs in EC tissues compared with NE tissues, respectively (Table 1, Table 2).

Functional and pathway enrichment analysis

The functional and pathway enrichment analyses of DEGs were conducted with DAVID. The upregulated genes were mainly enriched in biological processes, which were cell cycle, cell division, and DNA replication signaling pathways, while downregulated genes were mainly enriched in skeletal system development, vasculature development, and cell adhesion signaling pathways (Table 3). Moreover, three KEGG pathways were enriched in upregulated genes, including cell cycle, oocyte maturation, and oocyte meiosis signaling pathways (Table 3). There were no KEGG pathways enriched in downregulated genes.

Construction of PPI network and module analysis

A PPI network consisting of 287 nodes and 1,840 edges was constructed, which included 212 upregulated and 308 downregulated genes (Fig. 2). Then, 82 nodes were screened out as hub genes (Degree of interaction ≥ 10 were selected as the threshold) [23], there were close correlations among
hub genes (Fig. 3, Additional file 1). After analyzing the network with the MCODE app in Cytoscape software, an important module was obtained, including 50 nodes and 1,082 edges (Fig. 4). Functional enrichment analyses of biological processes with regard to this module showed that these genes were enriched in cell cycle, cell division, and DNA replication signaling pathways (Table 4). Three KEGG pathways were enriched in cell cycle, oocyte meiosis, and oocyte maturation signaling pathways (Table 4).

Analysis of miRNA-mRNA regulatory network
Thirty commonly identified DEMs were screened out from GSE25405 and TCGA-UCEC_miRNA, including 15 upregulated and 15 downregulated miRNAs (Table 2). Based on miRecords database, 6,865 TG-miRNAs were screened out, of which 199, were validated in 520 common DEGs (Fig. 1a). These 199 commonly identified DEGs and 30 commonly identified DEMs were used to construct a miRNA-mRNA network. In patients with EC, 160 pairs of DEMs-DEGs relationships with reverse association expression were confirmed using starBase v2.0 project, including 22 DEMs and 71 overlapping DEGs (Fig. 5, Additional file 2). In the network, hsa-miR–200b, hsa-miR–200c, hsa-miR–429, hsa-miR–424, hsa-miR–195, hsa-miR–653, and hsa-miR–141 showed a higher degree of interaction (degree of interaction ≥ 5, Table 5).

Survival analysis
The prognostic value of 82 hub genes were assessed in OncoLnc. Related results found that high mRNA expression of BUB1, TOP2A, CDCA8, TTK, ASPM, UBE2C, BIRC5, HJURP, CENPA, MCM10, FOXM1, SPAG5, EXO1, ESPL1, OIP5, MCM4, CDC25C, DEPDC1, KIF18B, ERCC6L, CKAP2L, ATAD2, TK1, CCNF, E2F1, and CCNE1 were associated with significantly worse overall survival for EC patients, and low expression of MYC was correlated with significantly worse overall survival in EC patients (data not shown). What makes us interesting was that CCNE1 was also identified as a target gene of hsa-miR–195 (Fig. 6, Fig. 7).

Discussion
In recent years, although clinical medical scientists have made significant progress in the treatment of EC with surgery and chemotherapy, the incidence and mortality rate of EC are still increasing [24]. It is necessary to further understand the etiology and mechanism of EC progression to improve the
prognosis of EC.

In this study, by integrating GSE17025 with TCGA-UCEC, 520 common DEGs were screened out in EC tissues compared with NE tissues. These 520 common DEGs were composed of 212 upregulated genes and 308 downregulated genes. These upregulated DEGs were mainly enriched in cell cycle, cell division, and DNA replication signaling pathways, while the downregulated DEGs in skeletal system development, vasculature development, and cell adhesion signaling pathways. Following, 82 hub genes were screened out from PPI network. After analyzing the survival of these 82 hub genes, 26 upregulated genes and one downregulated gene revealed poor prognosis of patients with EC.

Similarly, 30 common DEMs were screened out from GSE25405 and TCGA-UCEC_miRNA. After integrating 6,865 TG-miRNAs with these 520 common DEGs, 71 overlapping DEGs were screened out and showed close correlations with 22 common DEMs in EC (Fig. 5, Additional file 2). Moreover, high mRNA expression of CCNE1 (one of the 82 hub genes, which was correlated with hsa-miR–195) was correlated with significantly worse overall survival in EC patients.

MiRNAs are endogenous small non-coding RNAs, which can inhibit gene expression by mRNA degradation/destabilization or through impaired translation [25,26]. The abnormal expression of miRNAs occurs in a variety of tumors and often appears to be associated with altered malignant potential, such as changes in tumor cell survival, proliferation, and invasion [27].

In this study, 30 common DEMs were screened out from EC tissues compared with NE tissues, such as hsa-miR–200b, hsa-miR–200c, hsa-miR–429, hsa-miR–141, hsa-miR–424, hsa-miR–195, and hsa-miR–653. The microRNA–200 (miR–200) family consists of miR–200a, miR–200b, miR–200c, miR–429 and miR–141, which all have the same seed sequence and homologous targets. The expression of hsa-miR–200b is upregulated in many malignant tumors [28–30], and its role in the inhibition of mesenchymal characteristics and metastasis has been revealed in prostate, gastric carcinoma, and hepatocellular carcinoma by regulating the ZEB1 expression or directly targeting ZEB2 or via Rho/ROCK signaling pathway [31–33]. The current study suggested that hsa-miR–200b was also upregulated, which was consistent with the previous study [34]. Hsa-miR–200c has been widely investigated during the last few years. There have been numerous studies demonstrating the
association between an aberrant expression level of miR–200c and the prognosis of various human malignancies, such as breast cancer [28,35,36], prostate cancer [37], ovarian cancer [38], and endometrial cancer [39]. Some of these studies verified the anti-oncogenic function of miR–200c in certain cancer types, indicating the potential correlation of elevated expression levels of miR–200c and superior prognosis [36,38,39]. However, other studies have provided opposing evidence, suggesting that miR–200c serves as an oncogene [28,35,37]. These conclusions suggest that miR–200c is a notable biomarker for prognosis of cancer. Our present study suggested that hsa-miR–200c was upregulated, which was consistent with the previous study [39]. Recent reports have shown that hsa-miR–429 expression is frequently upregulated and may function as an oncogene in several cancers [40, 41], such as endometrial carcinoma [40], which is consistent with the finding of this study. One study showed that upregulation of hsa-miR–429 can effectively suggest a decrease in overall survival of serous ovarian cancer [42]; in contrast, some studies have shown that hsa-miR–429 was downregulated in some malignant tumors and involved in tumor-suppressor function [43,44]. These results indicate that hsa-miR–429 plays different (even opposite) roles in tumorigenesis and cancer progression in different tumors. Hsa-miR–141 is also an important member in the miR–200 family, several previous studies have shown that has-miR–141 was involved in prognosis of cancer [45–47].

Some previous studies have found that hsa-miR–424 was downregulated and could acts as a tumor suppressor in some cancers [48–50]. Our current study showed that hsa-miR–424 was also downregulated, which was consistent with the previous study [50]. Hsa-miR–195 is one member of the miR–15a, –15b, –16, –195, and –497 families, which participates in the occurrence and developmental progress of many malignant tumors and regulation of malignant biological behaviors [50–53]. In our study, hsa-miR–195 showed a lower level compared EC tissues with NE tissues, which was consistent with the previous study [52]. So far, there have been few reports on the role of hsa-miR–653 in the malignant biological behavior of tumors. According to the above mentioned finding, we speculates that hsa-miR–200b, hsa-miR–200c, hsa-miR–429, hsa-miR–141, hsa-miR–424, hsa-miR–195 and hsa-miR–653 could also play important roles in
biological behavior of EC by multiple pathways.

CCNE1, that is Cyclin E1, belongs to the cyclin family which, through association with cyclin-dependent kinase 2, controls cell cycle progression from G1 to S phase [54]. Previous researches have shown that the upregulation of CCNE1 could contribute to cancer development or tumorigenesis in many cancers [55–60], and CCNE1 can serve as a reliable independent prognostic marker [59,60]. MiRNAs from multiple families have been identified to target CCNE1 in a variety of malignant tumors, such as hepatocellular carcinoma [61], osteosarcoma [62], cervical cancer [63], bladder cancer [64]. In current study, survival analysis of the hub genes related to DEMs showed that high expression of CCNE1 could indicate poor prognosis in EC patients.

Conclusion

Based on bioinformatics analyses of EC-related microarray data in the GEO database and clinical data related to EC in TCGA database, we found that 27 hub genes (BUB1, TOP2A, CDCA8, TTK, ASPM, UBE2C, BIRC5, HJURP, CENPA, MCM10, FOXM1, SPAG5, EXO1, ESPL1, OIP5, MCM4, CDC25C, DEPDC1, KIF18B, ERCC6L, CKAP2L, ATAD2, TK1, CCNF, E2F1, CCNE1, and MYC) were involved in poor prognosis in EC patients, and seven miRNAs (hsa-miR–200b, hsa-miR–200c, hsa-miR–429, hsa-miR–141, hsa-miR–424, hsa-miR–195, and hsa-miR–653) participated in biological behaviors of EC. However, further molecular biological researches are still needed to confirm the actual clinical value of our findings.

Declarations

Authors’ contributions

YL conceived, designed this study and wrote the manuscript; YL and LL performed data analysis; LL reviewed the manuscript.

Author details

1Department of Gynecologic Oncology, Affiliated Tumor Hospital of Guangxi Medical University, Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Ministry of Education, Nanning, Guangxi 530021, People’s Republic of China. 2 Department of Gynecology and obstetrics, Shangyu People’s Hospital, Shangyu, Zhejiang 312300, People’s Republic of China.

Acknowledgments

Not applicable.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets used and/or analyzed during the present study are available from the corresponding author on reasonable request.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This study was funded by the Scientific Research and Technology Development Program of Guangxi (NO. Guike 14140004) and the Natural Science Foundation of Guangxi (NO. 2014jjAA40673).

References
1. Lortet-Tieulent J, Ferlay J, Bray F, Jemal A. International Patterns and Trends in Endometrial Cancer Incidence, 1978–2013. Journal of the National Cancer Institute. 2018;110(4):354–61.
2. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA: a cancer journal for clinicians. 2017;67(1):7–30.
3. Fambrini M, Sorbi F, Sisti G, Cioni R, Turrini I, Taddei G, et al. Endometrial carcinoma in high-risk populations: is it time to consider a screening policy? Cytopathology: official journal of the British Society for Clinical Cytology. 2014;25(2):71–7.
4. Hirsch M, Duffy J, Davis CJ, Nieves Plana M, Khan KS, International Collaboration to Harmonise O, et al. Diagnostic accuracy of cancer antigen 125 for endometriosis: a systematic review and meta-analysis. BJOG: an international journal of obstetrics and gynaecology. 2016;123(11):1761–8.
5. Jiang T, Huang L, Zhang S. Preoperative serum CA125: a useful marker for surgical management of endometrial cancer. BMC cancer. 2015;15:396.
6. Simmons AR, Baggerly K, Bast RC, Jr. The emerging role of HE4 in the evaluation of epithelial ovarian and endometrial carcinomas. Oncology. 2013;27(6):548–56.
7. Aggarwal P, Kehoe S. Serum tumour markers in gynaecological cancers. Maturitas. 2010;67(1):46–53.
8. Chen Y, RenYL, Li N, Yi XF, Wang HY. Serum human epididymis protein 4 vs. carbohydrate antigen
125 and their combination for endometrial cancer diagnosis: a meta-analysis. European review for medical and pharmacological sciences. 2016;20(10):1974–85.

9. Bolstad N, Oijordsbakken M, Nustad K, Bjerner J. Human epididymis protein 4 reference limits and natural variation in a Nordic reference population. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2012;33(1):141–8.

10. Kamei M, Yamashita S, Tokuishi K, Hashioto T, Moroga T, Suehiro S, et al. HE4 expression can be associated with lymph node metastases and disease-free survival in breast cancer. Anticancer research. 2010;30(11):4779–83.

11. Hertlein L, Stieber P, Kirschenhofer A, Krocker K, Nagel D, Lenhard M, et al. Human epididymis protein 4 (HE4) in benign and malignant diseases. Clinical chemistry and laboratory medicine. 2012;50(12):2181–8.

12. Day RS, McDade KK, Chandran UR, Lisovich A, Conrads TP, Hood BL, et al. Identifier mapping performance for integrating transcriptomics and proteomics experimental results. BMC bioinformatics, 2011; 12: 213.

13. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic acids research. 2015;43(7):e47.

14. Hardcastle TJ. Generalized empirical Bayesian methods for discovery of differential data in high-throughput biology. Bioinformatics. 2016;32(2):195–202.

15. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature protocols. 2009;4(1):44–57.

16. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic acids research. 2015;43(Database issue):D447–52.

17. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research. 2003;13(11):2498–504.

18. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein
interaction networks. BMC bioinformatics. 2003;4:2.

19. Xiao F, Zuo Z, Cai G, Kang S, Gao X, Li T. miRecords: an integrated resource for microRNA-target interactions. Nucleic acids research. 2009;37(Database issue):D105-10.

20. Li JH et al: starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data, Nucleic Acids Res. 2014 Jan;42:D92–7

21. Zhou KR, Liu S, Cai L et al: starBase: decoding the atlas of miRNA-target, RNA-RNA and protein-RNA interactions.

22. Oliveros, J. C. (2007–2015) Venny. An interactive tool for comparing lists with Venn's diagrams. https://bioinfogp.cnb.csic.es/tools/venny/index.html

23. Xu Z, Zhou Y, Cao Y, Dinh TL, Wan J, Zhao M. Identification of candidate biomarkers and analysis of prognostic values in ovarian cancer by integrated bioinformatics analysis. Medical oncology. 2016;33(11):130.

24. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA: a cancer journal for clinicians. 2016;66(1):7–30.

25. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nature reviews Genetics. 2010;11(9):597–610.

26. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

27. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nature reviews Cancer. 2006;6(11):857–66.

28. Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M, et al. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clinical cancer research: an official journal of the American Association for Cancer Research. 2012;18(21):5972–82.

29. Rao Q, Shen Q, Zhou H, Peng Y, Li J, Lin Z. Aberrant microRNA expression in human cervical carcinomas. Medical oncology. 2012;29(2):1242–8.

30. Toiyama Y, Hur K, Tanaka K, Inoue Y, Kusunoki M, Boland CR, et al. Serum miR–200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Annals of surgery.
31. Williams LV, Veliceasa D, Vinokour E, Volpert OV. miR–200b inhibits prostate cancer EMT, growth and metastasis. PloS one. 2013;8(12):e83991.

32. Kurashige J, Kamohara H, Watanabe M, Hiyoshi Y, Iwatsuki M, Tanaka Y, et al. MicroRNA–200b regulates cell proliferation, invasion, and migration by directly targeting ZEB2 in gastric carcinoma. Annals of surgical oncology. 2012;19 Suppl 3:S656–64.

33. Wong CM, Wei L, Au SL, Fan DN, Zhou Y, Tsang FH, et al. MiR–200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget. 2015;6(15):13658–70.

34. Dai Y, Xia W, Song T, Su X, Li J, Li S, et al. MicroRNA–200b is overexpressed in endometrial adenocarcinomas and enhances MMP2 activity by downregulating TIMP2 in human endometrial cancer cell line HEC–1A cells. Nucleic acid therapeutics. 2013;23(1):29–34.

35. Antolin S, Calvo L, Blanco-Calvo M, Santiago MP, Lorenzo-Patino MJ, Haz-Conde M, et al. Circulating miR–200c and miR–141 and outcomes in patients with breast cancer. BMC cancer. 2015;15:297.

36. Song C, Liu LZ, Pei XQ, Liu X, Yang L, Ye F, et al. miR–200c inhibits breast cancer proliferation by targeting KRAS. Oncotarget. 2015;6(33):34968–78.

37. Lin HM, Castillo L, Mahon KL, Chiam K, Lee BY, Nguyen Q, et al. Circulating microRNAs are associated with docetaxel chemotherapy outcome in castration-resistant prostate cancer. British journal of cancer. 2014;110(10):2462–71.

38. Gao YC, Wu J. MicroRNA–200c and microRNA–141 as potential diagnostic and prognostic biomarkers for ovarian cancer. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2015;36(6):4843–50.

39. Karaayvaz M, Zhang C, Liang S, Shroyer KR, Ju J. Prognostic significance of miR–205 in endometrial cancer. PloS one. 2012;7(4):e35158.

40. Snowdon J, Zhang X, Childs T, Tron VA, Feilotter H. The microRNA–200 family is upregulated in endometrial carcinoma. PloS one. 2011;6(8):e22828.

41. Han Y, Chen J, Zhao X, Liang C, Wang Y, Sun L, et al. MicroRNA expression signatures of bladder
cancer revealed by deep sequencing. PloS one. 2011;6(3):e18286.

42. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, et al. MicroRNA expression profiles in serous ovarian carcinoma. Clinical cancer research: an official journal of the American Association for Cancer Research. 2008;14(9):2690–5.

43. Uhlmann S, Zhang JD, Schwager A, Mannsperger H, Riazalhosseini Y, Burmester S, et al. miR-200bc/429 cluster targets PLCgamma1 and differentially regulates proliferation and EGF-driven invasion than miR-200a/141 in breast cancer. Oncogene. 2010;29(30):4297–306.

44. Sun T, Wang C, Xing J, Wu D. miR-429 modulates the expression of c-myc in human gastric carcinoma cells. European journal of cancer. 2011;47(17):2552–9.

45. Brunet Vega A, Pericay C, Moya I, Ferrer A, Dotor E, Pisa A, et al. microRNA expression profile in stage III colorectal cancer: circulating miR-18a and miR-29a as promising biomarkers. Oncology reports. 2013;30(1):320–6.

46. Lu YB, Hu JJ, Sun WJ, Duan XH, Chen X. Prognostic value of miR-141 downregulation in gastric cancer. Genetics and molecular research: GMR. 2015;14(4):17305–11.

47. Wszolek MF, Rieger-Christ KM, Kenney PA, Gould JJ, Silva Neto B, Lavoie AK, et al. A MicroRNA expression profile defining the invasive bladder tumor phenotype. Urologic oncology. 2011;29(6):794–801 e1.

48. Wu CT, Lin WY, Chang YH, Lin PY, Chen WC, Chen MF. DNMT1-dependent suppression of microRNA424 regulates tumor progression in human bladder cancer. Oncotarget. 2015;6(27):24119–31.

49. Zhou Y, An Q, Guo RX, Qiao YH, Li LX, Zhang XY, et al. miR424–5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life sciences. 2017;171:9–15.

50. Li Q, Qiu XM, Li QH, Wang XY, Li L, Xu M, et al. MicroRNA-424 may function as a tumor suppressor in endometrial carcinoma cells by targeting E2F7. Oncology reports. 2015;33(5):2354–60.

51. Cai C, Chen QB, Han ZD, Zhang YQ, He HC, Chen JH, et al. miR–195 Inhibits Tumor Progression by Targeting RPS6KB1 in Human Prostate Cancer. Clinical cancer research: an official journal of the
American Association for Cancer Research. 2015;21(21):4922–34.

52. Tsukamoto O, Miura K, Mishima H, Abe S, Kaneuchi M, Higashijima A, et al. Identification of endometrioid endometrial carcinoma-associated microRNAs in tissue and plasma. Gynecologic oncology. 2014;132(3):715–21.

53. Wang R, Zhao N, Li S, Fang JH, Chen MX, Yang J, et al. MicroRNA-195 suppresses angiogenesis and metastasis of hepatocellular carcinoma by inhibiting the expression of VEGF, VAV2, and CDC42. Hepatology. 2013;58(2):642–53.

54. Sauer K, Lehner CF. The role of cyclin E in the regulation of entry into S phase. Progress in cell cycle research. 1995;1:125–39.

55. Han Z, Zhang Y, Yang Q, Liu B, Wu J, Zhang Y, et al. miR-497 and miR-34a retard lung cancer growth by co-inhibiting cyclin E1 (CCNE1). Oncotarget. 2015;6(15):13149–63.

56. Liang Y, Gao H, Lin SY, Goss JA, Brunicardi FC, Li K. siRNA-based targeting of cyclin E overexpression inhibits breast cancer cell growth and suppresses tumor development in breast cancer mouse model. PloS one. 2010;5(9):e12860.

57. Mao L, Ding J, Perdue A, Yang L, Zha Y, Ren M, et al. Cyclin E1 is a common target of BMI1 and MYCN and a prognostic marker for neuroblastoma progression. Oncogene. 2012;31(33):3785–95.

58. Nakayama N, Nakayama K, Shamima Y, Ishikawa M, Katagiri A, Iida K, et al. Gene amplification CCNE1 is related to poor survival and potential therapeutic target in ovarian cancer. Cancer. 2010;116(11):2621–34.

59. Hunt KK, Keyomarsi K. Cyclin E as a prognostic and predictive marker in breast cancer. Seminars in cancer biology. 2005;15(4):319–26.

60. Lopez-Beltran A, MacLennan GT, Montironi R. Cyclin E as molecular marker in the management of breast cancer: a review. Analytical and quantitative cytology and histology. 2006;28(2):111–4.

61. Zhang X, Hu S, Zhang X, Wang L, Zhang X, Yan B, et al. MicroRNA-7 arrests cell cycle in G1 phase by directly targeting CCNE1 in human hepatocellular carcinoma cells. Biochemical and biophysical research communications. 2014;443(3):1078–84.

62. Wang J, Xu G, Shen F, Kang Y. miR-132 targeting cyclin E1 suppresses cell proliferation in
osteosarcoma cells. Tumour biology: the journal of the International Society for Oncodevelopmental Biology and Medicine. 2014;35(5):4859–65.

63.Zubillaga-Guerrero MI, Alarcon-Romero Ldel C, Illades-Aguiar B, Flores-Alfaro E, Bermudez-Morales VH, Deas J, et al. MicroRNA miR–16–1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells. International journal of clinical and experimental medicine. 2015;8(9):15999–6006.

64.Matsushita R, Seki N, Chiyomaru T, Inoguchi S, Ishihara T, Goto Y, et al. Tumour-suppressive microRNA–144–5p directly targets CCNE1/2 as potential prognostic markers in bladder cancer. British journal of cancer. 2015;113(2):282–9.

Tables

Table 1 Top 10 DEGs in EC tissues compared with NE tissues according to the data from TCGA database.

DEG	logFC	P-value	adj. P-value
upregulated genes			
SFN	4.465258403	5.76E-42	2.15E-40
PRAME	4.193768196	5.79E-69	7.66E-67
MYBL2	4.109297769	2.84E-74	4.67E-72
UBE2C	4.074765041	1.71E-69	2.33E-67
CDC20	3.919322957	1.25E-78	2.67E-76
AQP5	3.427650505	2.06E-18	2.18E-17
PRSS8	3.413404932	1.96E-49	1.06E-47
TK1	3.400033651	3.60E-77	6.98E-75
PI3	3.370250122	7.80E-14	5.87E-13
TPX2	3.308872927	1.19E-58	9.97E-57
downregulated genes			
DES	-6.619094047	8.36E-54	5.54E-52
MYH11	-5.635290069	6.17E-75	1.05E-72
CNN1	-5.55734654	5.08E-64	5.45E-62
ACTG2	-4.902138932	4.13E-50	2.32E-48
LMOD1	-4.795641474	4.82E-86	1.42E-83
OGN	-4.663558704	9.95E-120	1.55E-116
DPT	-4.427179281	6.84E-99	3.98E-96
SPARCL1	-4.386222474	1.33E-70	1.90E-68
ZCCHC12	-4.328794652	2.64E-68	3.40E-66
SFRP4	-4.266562157	4.62E-26	7.95E-25

DEGs, differentially expressed genes; EC, endometrial cancer; NE, normal endometrium; FC, fold-change; adj. P-value, adjusted P-value.
Table 2 Top 10 DEMs in EC tissues compared with NE tissues according to the data from GEO database.

miRNA	logFC	P-value	adj. P-value
upregulated miRNA			
hsa-miR-205	5.717071419	8.28E-10	3.45E-07
hsa-miR-135b	3.002833732	6.43E-05	1.87E-03
hsa-miR-182	2.827333932	2.90E-06	2.00E-04
hsa-miR-183	2.705891835	2.87E-05	1.06E-03
hsa-miR-429	2.437603498	9.52E-07	9.11E-05
hsa-miR-200b	2.244848862	1.74E-06	1.37E-04
hsa-miR-96	2.195969063	7.78E-05	2.14E-03
hsa-miR-200a	1.973216466	4.25E-05	1.43E-03
hsa-miR-202	1.943991213	4.19E-03	4.31E-02
hsa-miR-210	1.715073494	1.94E-04	3.85E-03
downregulated miRNA			
hsa-miR-424	-4.875026249	1.77E-13	3.59E-10
hsa-miR-143	-4.140227835	5.97E-07	6.07E-05
hsa-miR-133b	-4.081321667	4.19E-06	2.54E-04
hsa-miR-376c	-3.636752313	9.60E-05	2.41E-03
hsa-miR-195	-3.523216268	1.67E-07	2.57E-05
hsa-miR-204	-3.51217031	7.22E-04	1.10E-02
hsa-miR-145	-3.493087645	1.82E-05	7.61E-04
hsa-miR-411	-3.39771373	3.84E-06	2.40E-04
hsa-miR-381	-3.035325968	4.20E-05	1.41E-03
hsa-miR-379	-2.971031318	2.79E-06	1.95E-04

DEMs, differentially expressed miRNAs; EC, endometrial cancer; NE, normal endometrium; miRNA or miR, microRNA; FC, fold-change; adj. P-value, adjusted P-value.

Table 3 Top 10 GO terms of biological processes and significant KEGG pathways of upregulated and downregulated DEGs for EC tissues compared with NE tissues.
Term	Description	Count	P-Value	FDR
Upregulated DEGs				
GO:0022403	cell cycle phase	47	1.16E-30	1.93E-27
GO:0000279	M phase	42	2.96E-29	4.94E-26
GO:0000278	mitotic cell cycle	42	3.27E-27	5.44E-24
GO:0000280	nuclear division	34	3.43E-26	5.71E-23
GO:0007067	mitosis	34	3.43E-26	5.71E-23
GO:0000087	M phase of mitotic cell cycle	34	6.25E-26	1.04E-22
GO:0022402	cell cycle process	48	9.63E-26	1.60E-22
GO:0048285	organelle fission	34	1.30E-25	2.16E-22
GO:0007049	cell cycle	53	3.71E-24	6.18E-21
GO:0051301	cell division	33	5.63E-21	9.38E-18
KEGG pathway				
hsa04110	Cell cycle	18	1.70E-11	1.87E-08
hsa04914	Progesterone-mediated oocyte maturation	10	1.30E-05	1.42E-02
hsa04114	oocyte meiosis	11	1.48E-05	1.62E-02
Downregulated DEGs				
GO:0001501	skeletal system development	21	2.58E-07	4.35E-04
GO:0001944	vasculature development	16	1.53E-05	2.57E-02
GO:0007155	cell adhesion	28	2.67E-05	4.50E-02
GO:0022610	biological adhesion	28	2.74E-05	4.61E-02

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; EC, endometrial cancer; NE, normal endometrium; FDR, false discovery rate.

Table 4 Top 10 GO terms of biological processes and significant KEGG pathways of the DEGs in module.
Term	Description	Count	P-value	FDR
Biological processes				
GO:0000279	M phase	32	8.12E-40	1.14E-36
GO:0022403	cell cycle phase	32	1.24E-36	1.75E-33
GO:0000278	mitotic cell cycle	31	2.61E-36	3.67E-33
GO:0000280	nuclear division	27	2.86E-35	4.02E-32
GO:0007067	mitosis	27	2.86E-35	4.02E-32
GO:0000087	M phase of mitotic cell cycle	27	4.67E-35	6.57E-32
GO:0048285	organelle fission	27	8.52E-35	1.20E-31
GO:0022402	cell cycle process	33	4.25E-34	5.97E-31
GO:0007049	cell cycle	35	6.14E-33	8.63E-30
GO:0051301	cell division	27	7.85E-32	1.10E-28
KEGG pathway				
hsa04110	Cell cycle	13	4.76E-17	2.96E-14
hsa04114	oocyte meiosis	9	4.14E-10	2.58E-07
hsa04914	Progesterone-mediated oocyte maturation	7	1.37E-07	8.55E-05

GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; FDR, false discovery rate.

Table 5 Top 7 miRNAs with the highest degree of interaction in the miRNA-mRNA interactions network (Degree of interaction ≥ 5).

Node	Degree of interaction
hsa-miR-200b	10
hsa-miR-200c	10
hsa-miR-429	9
hsa-miR-424	6
hsa-miR-195	6
hsa-miR-653	6
hsa-miR-141	5
miR, microRNA.

Figures

(a) GSE17025

(b) GSE25405

Figure 1

(a): Venn diagram of the differentially expressed genes among these three datasets. (b):
Venn diagram of the differentially expressed miRNAs between two datasets. TCGA-UCEC: the mRNA data of uterine corpus endometrial carcinoma in the Cancer Genome Atlas, TCGA-UCEC_miRNA: the miRNA data of uterine corpus endometrial carcinoma in the Cancer Genome Atlas, TG-miRNA: the target gene of differentially expressed miRNA.

Figure 2

Protein-protein interaction network of the differentially expressed genes in endometrial cancer tissues compared with normal endometrium tissues. Green and red nodes represent upregulated and downregulated genes, respectively. The edges/lines stand for the regulatory association between nodes.
Figure 3

Protein-protein interaction network of hub genes of the differentially expressed genes in endometrial cancer tissues compared with normal endometrium tissues. Green and red nodes represent upregulated and downregulated genes, respectively. The edges/lines stand for the regulatory association between nodes.
Figure 4

Demonstration of the important module by cytoscape. The edges/lines stand for interaction relationship between nodes.
Figure 5
The miRNA-mRNA regulatory network. Green and red nodes stand for upregulation and downregulation, respectively. The ellipses represent genes and the triangles represent miRNAs.
Figure 6

Overall survival analysis of CCNE1 expression with prognosis of endometrial cancer patients (Logrank p-value = 0.000157). Based on the median expression level of CCNE1, the patients with EC were divided into two (high vs. low) groups.
The correlated expression of CCNE1 and hsa-miR-195-5p (hsa-miR-195) in 538 patients with endometrial cancer. The correlation coefficients -0.355 with p-value = 1.93e-17 indicated that CCNE1 and hsa-miR-195 expression levels were correlated with each other; data source: starBase v3.0 project.

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

Additional file 2.pdf
Additional file 1.pdf