Since the discovery of insulin one hundred years ago, diabetes was seen as being characterised by hyperglycaemia but constituting different conditions. Initially that heterogeneity was defined as childhood-onset and adult-onset diabetes, then insulin dependent and non-insulin dependent. Realisation that even these distinctions do not identify all such cases lead to the definition morphing into type 1 diabetes and type 2 diabetes, in which the presence of specific diabetes-associated autoantibodies such as to glutamic acid decarboxylase (GADA) and certain histocompatibility (HLA) alleles defining the former by inclusion and the latter by exclusion (1, 2). Unfortunately, GADA is not specific for type 1, insulin-dependent, diabetes and can be identified in cases who do not require insulin treatment at diagnosis. To complicate matters further, it transpires that the commonest presentation of classic type 1 diabetes is in adult-life and, in them, the majority are not, at least initially, insulin dependent. That has led to much discussion about the nature of that disease in adults, its treatment and what it should be called, if not type 1 diabetes. In this sequence of articles on this important topic, leading authorities in the field discuss some of these key questions.
additive, predisposing to LADA, simply because there is a threshold effect leading to hyperglycaemia and that threshold is lowered by one or the other, or both (7, 9). Intriguingly, she also notes the effect of smoking, which is known to impact another autoimmune disease, rheumatoid arthritis, though the effect is compounded by obesity and the tendency to smoke both being linked to type 2 diabetes. Nevertheless, the interaction with HLA risk alleles and these non-genetically determined risk factors raise the very real possibility that the observation is genuine (6).

Zhao and Li compare and contrast the nature of LADA and rheumatoid arthritis including their respective clinical course and the immune therapy used in the latter (10). Bjorklund et al., having failed to show a beneficial effect in progression of LADA cases with high GADA levels using sitagliptin, tested the feasibility of using intralymphatic GAD-alum given with oral vitamin D as therapy (10); after 5 months, using a limited number of cases, the results were interesting and the study continues. We hope these interesting papers will stimulate the reader to consider LADA in more detail, as we continue to grapple with the management of this important form of diabetes.

Author contributions
The author confirms being the sole contributor of this work and has approved it for publication.

Acknowledgments
I appreciate the discussions with my collaborators including the Action LADA consortium, Professor Zhuguang Zhou and Professor Bernhard Boehm.

Conflict of interest
The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
References

1. Leslie RD, Evans-Molina C, Freund-Brown J, Buzzetti R, Dabelea D, Gillespie KM, et al. Adult-onset type 1 diabetes: Current understanding and challenges. *Diabetes Care* (2021) 44(11):2449–56. doi: 10.2337/dc21-0770

2. Holt RIG, DeVries JH, Hess-Fischl A, Hirsch IB, Kirkman MS, Klupa T, et al. The management of type 1 diabetes in adults: a consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD). *Diabetes Care* (2021) 44(11):2589–625. doi: 10.2337/dc21-0043

3. Battaglia M, Ahmed S, Anderson MS, Atkinson MA, Becker D, Bingley PJ, et al. Introducing the endotype concept to address the challenge of disease heterogeneity in type 1 diabetes. *Diabetes Care* (2019) 43(1):5–12. doi: 10.2337/dc19-0880

4. Hawa MI, Kolb H, Schloot N, Beyan H, Paschou SA, Buzzetti R, et al. Adult-onset autoimmune diabetes in Europe is prevalent with a broad clinical phenotype: Action LADA 7. *Diabetes Care* (2013) 36(4):908–13. doi: 10.2337/dc12-0931

5. Harding JL, Wander PL, Zhang X, Li X, Karuranga S, Chen H, et al. The incidence of adult-onset type 1 diabetes: A systematic review from 32 countries and regions. *Diabetes Care* (2022) 45(4):994–1006. doi: 10.2337/dc21-1752

6. Cousminer DL, Ablqvist E, Mishra R, Andersen MK, Chesi A, Hawa MI, et al. First genome-wide association study of latent autoimmune diabetes in adults reveals novel insights linking immune and metabolic diabetes. *Diabetes Care* (2018) 41(1):2396–403. doi: 10.2337/dc18-1032

7. Redondo MJ, Evans-Molina C, Stock AK, Atkinson MA, Sosenko J. The influence of type 2 diabetes-associated factors on type 1 diabetes. *Diabetes Care* (2019) 42:1357–64. doi: 10.2337/dc19-0102

8. Hawa MI, Thivolet C, Mauricio D, Alemanno I, Cipponeri E, Collier D, et al. Metabolic syndrome and autoimmune diabetes: Action lada 3. *Diabetes Care* (2009) 32(1):160–4. doi: 10.2337/dc08-1419

9. Ablqvist E, Storm P, Kärrämäki A, Martinell M, Dorkhan M, Carlsson A, et al. Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. *Lancet Diabetes Endocrinol* (2018) 6(5):361–9. doi: 10.1016/S2213-8587(18)30051-2

10. Buzzetti R, Tuomi T, Mauricio D, Pietropaolo M, Zhou Z, Pozzilli P, et al. Management of latent autoimmune diabetes in adults: A consensus statement from an international expert panel. *Diabetes* (2020) 69(10):2037–47. doi: 10.2337/db20-0017