Figure 1: Branching times for L2 and L4 were smaller than L1 and L3 indicating recent introduction into the region (p < 0.001 [KS test]).

Table 1: Demographic characteristics of study participants included in the study, by lineage.

Lineage 1	Lineage 2	Lineage 3	Lineage 4	Total
(n=162)	(n=45)	(n=273)	(n=132)	(n=512)
Gender:				
Female	59 (36.4%)	13 (28.9%)	103 (37.7%)	41 (31.5%)
Male	103 (63.6%)	32 (71.1%)	170 (62.3%)	216 (68.5%)
Median Age (Range)				
32 (18-74)	29 (18-57)	31 (18-70)	30 (18-65)	31 (18-74)
Snum:				
Positive	138 (85.2%)	40 (88.9%)	222 (81.3%)	110 (83.3%)
Negative	24 (14.8%)	6 (11.1%)	58 (18.7%)	24 (16.7%)
HIV Positive	6 (3.7%)	1 (2.2%)	17 (6.2%)	14 (10.6%)
Known Diabetes Mellitus	21 (13.9%)	3 (6.7%)	38 (13.9%)	18 (13.9%)
				80 (13.1%)

Table 1: Adverse events

Adverse event	Clarithromycin-based regimen	Linezolid-based regimen							
Any Grade	Grade 1	Grade 2	Grade 3	Grade 4	Any grade	Grade 1	Grade 2	Grade 3	Grade 4
Vomiting	7	8	3	1	7	7	5	2	1
Sexual dysfunction	6	3	3	2	6	6	4	2	1
Nausea	4	3	1	0	7	7	5	2	1
Diarrhea	2	2	2	1	3	3	2	2	1

1400. Pretomanid in the Treatment of Patients with Tuberculosis in the United States: the Bedaquiline, Pretomanid and Linezolid (BPaL) Accelerated Monitoring (BAM) Project

Neela Goswami, MD, MPH; Lakshmi Praveena Pedareddy, MD; John Jerub, MD; Angel Colon Semidey, MD; Elaine Darnall, RN, BN; Patricia Macias, MD; Suppyra Jasuja, MD, MPH; Karen Landers, MD; Shom Dasgupta, MD; Margaret O’Keeffe, MD; Matthew Cheng, MD; Christopher Spitters, MD, MPH; Lana Dow, RN, BSN; Masa Nahta, MD, MD; Malini DaSilva, MD, MPH; Tracina Cropper, PHA; Claire Glickskeck, BS, MD; David Ashkin, MD; Connie Haley, MD, MPH; U.S. Centers for Disease Control and Prevention, Atlanta, Georgia; Puerto Rico Department of Health, San Juan, Puerto Rico; Illinois Department of Public Health, Chicago, Illinois; Cook County Department of Public Health, Chicago, Illinois; Alabama Department of Public Health, Montgomery, Alabama; Los Angeles County Department of Public Health, Los Angeles, California; New York State Department of Health, Albany, New York; South Carolina Health District Board of Health, Columbia, South Carolina; Washington State Department of Health, Olympia, Washington; Seattle King County TB Program, Seattle, Washington; HealthPartners Institute, Minneapolis, MN; Florida Department of Health, Miami, Florida; Southeastern National TB Center, Gainesville, Florida

Session: P-80. Tuberculosis and other Mycobacterial Infections

Conclusion. A clarithromycin-based regimen for NTM treatment was safe and well tolerated in our patient population. This combination provides a good alternative for patients requiring medications that are CYP substrates, or those who cannot tolerate azithromycin.

Disclosures. Matthew Cheng, MD, GenE Lifesciences (Advisor or Review Panel member); Kanvas Biosciences (Board Member, Shareholder); npexus biosciences (Advisor or Review Panel member)
(88%) had pulmonary TB disease only; two (12%) had both pulmonary and extrapulmonary disease. Of all patients, 16 had Mycobacterium tuberculosis isolated from sputum and 7 (44%) had cavity disease. The preliminary drug susceptibilities were 8 MDR patterns, 8 pre-XDR, and 1 unreported. Three patients received BPAI as their only treatment; six first received treatment for drug-susceptible TB, and eight received other regimens for MDR TB before BPAI. Eleven (65%) patients had ≥ 1 side effect reported during any TB treatment, including peripheral neuropathy (n=5), depression (n=4), vestibular dysfunction (n=3), and vision changes (n=3). Timing related to specific TB drug use was not reported. Sixteen (94%) patients received less than the approved initial dose of 1200 mg linezolid daily, and 15 (88%) patients underwent monitoring of linezolid exposure. All 16 patients with M. tuberculosis in initial sputa converted to negative culture results within 6 months of starting treatment. At 12 months after BPAI initiation, all patients had completed treatment, without TB recurrences or deaths reported.

Conclusion. In the early period after FDA approval, most U.S. patients received BPAI off-label with an initial linezolid dose lower than the approved 1200mg yet still achieved good outcomes. Most reported patients underwent some monitoring of linezolid exposure. Monitoring of BPAI use is important and should continue.

Disclosures. All Authors: No reported disclosures

1401. Infliximab for Immune Reconstitution Inflammatory Syndrome (IRIS) in Tuberculous Meningitis: A Treatment Paradox
Ahad Azeem, MBBS1; Faran Ahmad, MBBS2; Manasa Velagapudi, MBBS3; VA Nebraska Western Iowa Health Care System/Creighton University School of Medicine, Omaha, Nebraska; 2Creighton University School of Medicine, Omaha, Nebraska; 3CHI Health - Creighton University Medical Center - Bergan Mercy, Omaha, Nebraska

Session: P-80. Tuberculosis and other Mycobacterial Infections

Background. Tumor necrosis factor (TNF)-α inhibitors are known for the reactivation of latent tuberculosis (TB). As a paradox, it has been reported to have a role in the treatment of immune reconstitution inflammatory syndrome (IRIS) from anti-TB therapy.

Methods. We report a case of paradoxical worsening of central nervous system TB after initiation of anti-TB medications, which was treated successfully with infliximab (TNF-α inhibitor).

Results. A 34-year-old man from Nepal with a history of untreated latent TB presented with complaints of occipital headache, slurred speech, and witnessed seizure. His physical exam was consistent with hyperreflexia. MRI of the brain revealed multiple small contrast-enhancing lesions in cerebral hemispheres. CT Chest showed bilateral centrilobular nodules suggestive of miliary TB. Cerebrospinal fluid (CSF) analysis showed pleocytosis, high protein, and low glucose. He was started on isoniazid, rifampin, ethambutol, and pyrazinamide along with high-dose dexamethasone for TB meningitis.

Conclusions. TB after initiation of anti-TB medications, which was treated successfully with infliximab is a rare paradox and needs to be reported.

Disclosures. All Authors: No reported disclosures

1402. NTM Infections: A Rising Global Health Problem/Clinical Characteristics and Outcomes of Patients with Non-Tuberculous Mycobacterial Infections at Two Tertiary Academic Medical Centers
Abdelhamid Nawaw, MD1; Julia Madrid-Morales, MD2; Carolina Velez-Meija, MD3; Rigoberto De Jesus Pizarro, MD4; Victor Cepeda, MD5; Kelly R. Reveles, PharmD6; Pilar de la Cuesta-Zuluaga, MD7; Hala Javert, MD8; Mark M. Spiro9; University of Texas Health Science Center at San Antonio, Texas, USA; San Antonio, Texas; 2Southern Illinois Healthcare (SIH), Herrin, Illinois; 3University of Texas at Austin, San Antonio, Texas; 4University of Texas health and science center San Antonio, Audie L. Murphy VA Medical Center, San Antonio, Texas; 5UT Health San Antonio, San Antonio, Texas

Session: P-80. Tuberculosis and other Mycobacterial Infections

Background. Non-Tuberculous Mycobacteria (NTM) cause infections in immunocompetent as well as immunocompromised individuals affecting pulmonary and extra pulmonary sites. These pathogens are widely distributed globally and recent reports have shown their rise in many developed countries. Our study aimed to assess the disease magnitude, describe patient characteristics and risk factors, assess diagnostic and therapeutic measures and review outcomes furthering our understanding of the overall disease process.

Methods. We conducted a retrospective, multicenter review of patients with positive NTM cultures treated at University Hospital System and South Texas Veterans Health Care System (STVHCS) from 2011 to 2018. Infections were classified as pulmonary or extrapulmonary, and we recorded demographics, microbiological data, treatment regimens, duration, complications, follow-up and mortality. All categorical variables were described using percentages and compared between groups using the chi-square test.

Results. A total of 176 patients were included for analysis, of which 111 (63.1%) met criteria for NTM disease (2020 ATS/IDSA). The most common cultured mycobacterium was M. Avium Complex (MAC), M. abscessus-chelonae was more commonly associated with clinical disease and isolated from an extra pulmonary site whereas M. simiae complex was more commonly associated with pulmonary disease. Of all patients, 16 had pulmonary or extrapulmonary, and we recorded demographics, microbiological data, treatment regimens, duration, complications, follow-up and mortality. All categorical variables were described using percentages and compared between groups using the chi-square test.

Table 1. Characteristics of patients overall (all culture positive patients) and by clinical infection

Characteristic	Culture Positive (n=176)	Clinical Infection (n=111)	No Clinical Infection (n=65)	P-value
Age (years), median (IQR)	66 (56-74)	67 (54-76)	62 (53-71)	0.0003
Male sex, % (n)	109 (62.7%)	71 (64%)	38 (58.5%)	0.2623
Charlson Comorbidity score (IQR)	2 (1-3)	2 (1-3)	2 (1-3)	0.0001
Pulmonary source, % (n)	137 (78.1%)	97 (87%)	40 (61.5%)	<0.0001
Organism, % (n)				
M. avium complex	54 (30.7%)	30 (27.1%)	24 (36.9%)	0.1623
M. abscessus-chelonae complex	44 (25.5%)	27 (24.3%)	17 (26.2%)	0.6975
M. simiae complex	29 (16.6%)	16 (14.4%)	13 (20.0%)	0.0001
M. fortuitum	11 (6.3%)	8 (7.2%)	3 (4.6%)	0.1961
M. kansasii	8 (4.6%)	5 (4.5%)	3 (4.6%)	0.2623
M. morganii	6 (3.5%)	3 (2.7%)	3 (4.6%)	0.2623
M. scrofulaceum	5 (2.9%)	4 (3.6%)	1 (1.5%)	0.5935
M. szulgai	5 (2.9%)	4 (3.6%)	1 (1.5%)	0.5935
M. xenopi	3 (1.7%)	2 (1.8%)	1 (1.5%)	0.7512
Other	53 (30.7%)	39 (35.2%)	14 (21.5%)	<0.0001
Anaerobic treatment, % (n)				
Initial treatment, n (%)				
Macrolide/levofloxacin/macrolone	88 (50.5%)	64 (57.7%)	24 (36.9%)	<0.0001
Amikacin	50 (28.6%)	32 (28.9%)	18 (27.7%)	0.6975
Fluoroquinolone	50 (28.6%)	33 (29.8%)	17 (26.2%)	0.6975
Cotrimoxazole	20 (11.5%)	14 (12.7%)	6 (9.2%)	0.2623
Gentamicin	18 (10.3%)	13 (11.8%)	5 (7.7%)	0.2623
Imipenem	13 (7.5%)	9 (8.1%)	4 (6.2%)	0.4945
linezolid	5 (2.9%)	4 (3.6%)	1 (1.5%)	0.5935
Trimethoprim-sulfamethoxazole	20 (11.5%)	16 (14.4%)	4 (6.2%)	<0.0001
Treatment duration, median (IQR)	15 (10-21)	15 (10-20)	5 (3.75-11)	0.7470

*Value indicates comparison between clinical infection versus no clinical infection

Table 2. Health outcomes of treated patients with clinical infection

Characteristic	Overall (n=89)
Cure, n (%)	42 (47.2%)
Treatment failure, n (%)	15 (16.9%)
Relapse/recurrence, n (%)	8 (9.0%)
All-cause mortality, n (%)	24 (27.0%)
NTM-related mortality, n (%)	13 (14.6%)
Adverse effects, n (%)	42 (47.2%)
Treatment halted, n (%)	27 (30.3%)
Treatment duration, median (IGR)	10 (2.17)

Treatment by bug

MRI Brain (axial T2/flair sequence) shows hyperintensities in multiple locations including the involvement of the left optic nerve and the left occipital region.

Conclusion. Exacerbation of pre-existing clinical symptoms, formation of new lesions, or cavitation of prior pulmonary infiltrates is known as tuberculosis IRIS or paradoxical reaction. Despite the clinical and radiological exacerbation, mycobacterial cultures usually stay negative. Continuation of anti-TB medications and high-dose corticosteroids are the backbone of treatment but in refractory cases, immune modulation is needed with anti-TNF-α agents.

Disclosures. All Authors: No reported disclosures