Title
Mangotoxin production of *Pseudomonas syringae* pv. *syringae* is regulated by MgoA

Author(s)
Carrión, Víctor J.; van der Voort, Menno; Arrebola, Eva; Gutiérrez-Barranquero, José A.; de Vicente, Antonio; Raaijmakers, Jos M.; Cazorla, Francisco M.

Publication date
2014-02-21

Original citation
CARRIÓN, V. J., VAN DER VOORT, M., ARREBOLA, E., GUTIÉRREZ-BARRANQUERO, J. A., DE VICENTE, A., RAAIJMAKERS, J. M. & CAZORLA, F. M. 2014. Mangotoxin production of *Pseudomonas syringae* pv. *syringae* is regulated by MgoA. BMC Microbiology, 14:46, 1-13. http://dx.doi.org/10.1186/1471-2180-14-46

Type of publication
Article (peer-reviewed)

Link to publisher's version
http://dx.doi.org/10.1186/1471-2180-14-46

Access to the full text of the published version may require a subscription.

Rights
© Carrión et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://creativecommons.org/licenses/by/2.0

Item downloaded from
http://hdl.handle.net/10468/2243

Downloaded on 2022-03-29T21:08:53Z
Mangotoxin production of *Pseudomonas syringae* pv. syringae is regulated by MgoA

Víctor J Carrión1,3,4, Menno van der Voort3, Eva Arrebola2, José A Gutiérrez-Barranquero1,5, Antonio de Vicente1, Jos M Raaijmakers3,4 and Francisco M Cazorla1*

Abstract

Background: The antimetabolite mangotoxin is a key factor in virulence of *Pseudomonas syringae* pv. syringae strains which cause apical necrosis of mango trees. Previous studies showed that mangotoxin biosynthesis is governed by the *mbo* operon. Random mutagenesis led to the identification of two other gene clusters that affect mangotoxin biosynthesis. These are the *gacS/gacA* genes and *mgo* operon which harbors the four genes *mgoBCAD*.

Results: The current study shows that disruption of the nonribosomal peptide synthetase (NRPS) gene *mgoA* resulted in loss of mangotoxin production and reduced virulence on tomato leaves. Transcriptional analyses by qPCR and promoter reporter fusions revealed that *mbo* expression is regulated by both *gacS/gacA* and *mgo* genes. Also, expression of the *mgo* operon was shown to be regulated by *gacS/gacA*. Heterologous expression under the native promoter of the *mbo* operon resulted in mangotoxin production in non-producing *P. syringae* strains, but not in other *Pseudomonas* species. Also introduction of the *mbo* and *mgo* operons in nonproducing *P. protegens* Pf-5 did not confer mangotoxin production but did enhance transcription of the *mbo* promoter.

Conclusions: From the data obtained in this study, we conclude that both *mbo* and *mgo* operons are under the control of the *gacS/gacA* two-component system and that the MgoA product acts as a positive regulator of mangotoxin biosynthesis.

Keywords: Antimetabolite toxin, *mgo* operon, *GacS/GacA*, Plant-microbe interaction

Background

Pseudomonas syringae is one of the most ubiquitous plant pathogens, causing various economically important diseases [1]. The present study focuses on *P. syringae* pv. syringae UMAF0158 (CECT 7752) which causes apical necrosis of mango [2,3]. The antimetabolite mangotoxin is a key virulence factor of strain UMAF0158 [4,5]. This toxin is produced in the early exponential growth phase and inhibits ornithine N-acetyl transferase, a key enzyme belonging to the ornithine/arginine biosynthetic pathway [2].

Random mini-Tn5 mutagenesis followed by cloning, sequencing and heterologous expression recently led to the identification of the gene cluster that governs mangotoxin biosynthesis [6]. The *mbo* operon (mangotoxin biosynthetic operon) is composed of six genes, *mboABCDEF*. Disruption of each of these genes resulted in mangotoxin deficient mutants and constitutive expression of the *mbo* operon in non-mangotoxin producing *P. syringae* strains conferred mangotoxin production [6]. Screening of the random mutant library also led to the identification of several other genes that may be involved in the regulation of mangotoxin biosynthesis [4]. These included the *gacS/gacA* genes and the so-called mangotoxin generating operon *mgo* [6,7].

The GacS/GacA two-component regulatory system is highly conserved in Gram-negative bacteria and is involved in a variety of functions, including pathogenicity [8], quorum sensing [9,10], secondary metabolite production [11-14] and biofilm formation [15-17]. In *Pseudomonas syringae*, the GacS/GacA two-component system regulates the production of the phytotoxins syringomycin and syringopeptin [18-20], tabtoxin [21,22] and phaseolotoxin [23]. In *P. syringae* pv. tomato DC3000, GacS/GacA regulate the *hrpR, hrpS*, and *hrpL* genes, which are required for the activation of the Hrp...
type III secretion and effector genes [24,25]. However, in *P. syringae* pv. syringae B728a, GacA appears not to be required for *hrp* gene expression [25].

The *mgo* operon is composed of four genes, *mgoBCAD* [4,7]. Mutants in each gene belonging to the *mgo* operon showed an alteration (*mgoB* mutant) or lack of mangotoxin production (*mgoC*, *mgoA* and *mgoD* mutants). These genes encode for different hypothetical proteins with predicted domains for a haem oxygenase (MgoB), a *p*-aminobenzoate *N*-oxygenase (MgoC), a nonribosomal peptide synthetase (MgoA), and a polyketide cyclase/dehydrase or lipid transporter (MgoD) [4,7]. The predicted amino acid sequence of MgoA suggests only one amino acid activation module and 14 conserved domains, including aminoacyl adenylation, condensation, thiolation, and additional reduction domains [4]. Genes homologous to the *mgo* operon have been found in the genomes of most *Pseudomonas* spp., with the exception of *P. protegens* Pf-5 and CHAO [26,27]. Recent studies on the *pyf* gene cluster in *P. entomophila*, a homologue of the *mgo* operon, suggested that it affects virulence [28]. Almost all the fluorescent *Pseudomonas* spp. lack the *mbo* operon [29,30], but the *mgo* operon is conserved in all of them (except *P. protegens* Pf-5) [4,7,26-28]. To date, however, the functions of *mgo* operon are yet unknown.

The overall objective of this study was to get insight into the role of the *mgo* operon in regulation of mangotoxin production in *P. syringae* pv. syringae UMAF0158 and unravel the interplay between *mgo*, *mbo* and the gacS/gacA two-component regulatory system.

Methods

Bacterial strains and culture conditions

The wild type strain *P. syringae* pv. syringae UMAF0158 (CECT 7752) and the collection of selected derivative mutants used in this study (Table 1) were grown on *Pseudomonas* agar F (Difco) plates, in liquid King’s medium B (KMB) [31] or in *Pseudomonas* minimal medium (PMS) [32] at 28°C. *Escherichia coli* strain DH5α was used as a host for plasmid complementation experiments. It was routinely grown on Luria-Bertani (LB) plates or in LB broth at 37°C. Antibiotics for selection of *P. syringae* pv. syringae UMAF0158 and *E. coli* derivatives were ampicillin (100 mg L⁻¹), kanamycin (50 mg L⁻¹), gentamycin (30 mg L⁻¹) or tetracycline (25 mg L⁻¹).

Mangotoxin production assay

Antimetabolite toxin production was assayed by the indicator technique previously described [32]. Briefly, a double layer of the indicator microorganism *E. coli* CECT 831 was prepared; after solidification, the *P. syringae* pv. syringae strains to be tested were stab-inoculated. The plates were initially incubated at 22°C for 24 h, and then at 37°C for an additional 24 h [2]. To evaluate mangotoxin activity, the same plate bioassay was carried out with the addition of 100 μL of a 6 mM solution of *N*-acetyl-ornithine or L-ornithine to the double layer of *E. coli* [2]. To determine growth characteristics of representative strains, the wild type mangotoxin-producing *P. syringae* pv. syringae UMAF0158 and derivatives mutants in *mboA*, *mgoA* and *gacA* genes were used to obtain initial cultures in 10 ml of LB broth. The bacterial strains were grown during 24 h at 28°C to prepare an optimal bacterial inoculum with an optical density of 0.8 at 600 nm (approximately 10⁹ cfu ml⁻¹). One ml from these bacterial inocula was used to inoculate 100 ml of PMS broth. The cultures were incubated at 22°C under orbital shaking at 150 rpm until the stationary phase. Samples were collected every 6 or 12 h to monitor the bacterial growth. Bacterial cfu per sample were determined by 10-fold serial dilutions on KMB plates. At the same time, the mangotoxin production assessment was performed by a cell-free filtrate dilution sequence at 50%. The mangotoxin production is measured using arbitrary units, which can be defined as the relative toxic volume of cell free filtrates of liquid cultures, which produces an inhibition halo of 18 mm in diameter under standard assay conditions [2]. The methodology presented a detection threshold of 0.5 toxic units, due to the diameter of the wells where the cell-free filtrate were deposited (9 mm).

Complementation experiments

DNA fragments of approximately 7 kb containing the *mgo* and *mbo* operons, including the promoter and terminator regions, were obtained by PCR using specific primers (Additional file 1: Table S1) and high fidelity polymerase (Phusion DNA polymerase, Finnzymes). The PCR amplification products were cloned in pGEM-T Easy (Promega), and the plasmids obtained were digested with *XbaI* for the *mgo* operon and with *EcoRI* and *PstI* for the *mbo* operon. After the digestion, both operons fragment were obtained from gel with the NucleoSpin kit (GE Healthcare) and purified with the NucleoSpin kit according to the manufacturer’s instructions. *E. coli* DH5α was transformed with the plasmids obtained, by heat shock transformation [38], and transformed colonies were selected on LB agar plates supplemented with gentamicin (30 mg L⁻¹) in the case of pBBRMCS-5 and tetracycline (25 mg L⁻¹) for pMP220. Plasmids with the *mgo* and *mbo* operon cloned were obtained (Table 1). Correct integration and orientation of the fragments was verified by PCR and restriction analysis of isolated plasmids (data not shown). The pLac-*mgoBCAD* construct was subsequently electroporated into the *mboA*, *mgoA* and *gacA*
mutants, and the wild-type strains \textit{P. syringae} pv. syringae UMAF0158 and \textit{P. protegens} Pf-5. The pMP-\textit{mboABCDEF} construct was transformed in \textit{P. protegens} Pf-5 which previously contained the pLac-\textit{mgoBCAD}, therefore this bacteria finally harbored both operons, the \textit{mgo} and \textit{mbo} operon. Transformed cells were selected on KMB agar supplemented with correspondent antibiotics. The presence of the different plasmids was confirmed by PCR analysis with specific primers for pBBR1MCS-5 and pMP220 and plasmid profiling.

Virulence evaluation

The virulence of different mangotoxin producing or non-producing \textit{P. syringae} pv. syringae strains were analyzed in detached tomato leaflets (\textit{Solanum lycopersicum Mill.}) cv. Hellfrucht Frühstamm maintained \textit{in vitro} using Murashige and Skoog medium (MS, Sigma-Aldrich) [4,5]. Bacterial suspensions from exponentially growing cultures were adjusted to 10^8 cfu ml$^{-1}$. The leaflets were inoculated by placing six 10μl drops of the bacterial suspension on six different points on the same leaflet. Inoculations were then carried out by piercing through the droplets with a sterile entomological pin. The leaflets were maintained in MS media at 22°C and a 16:8-h light: dark photoperiod. Six tomato leaflets were used to evaluate each strain. Detached leaflets only inoculated with sterile distilled water were included in all experiments as a control. These experiments were repeated three times. The development of necrotic symptoms at the inoculation points ($n = 108$) was

Table 1 Bacterial strains and plasmids used in this study

Strain or plasmid	Relevant characteristics	Reference/source
Strains		
\textit{E. coli}		
DH5α	\textit{E. coli} [F Φ80lacZ ΔM15 Δ(lacZYA-argF)U169 deoR recA endA1 hsdR17 (rK-mK+)/F-λpirA supE44 lambda- thi-1]	[33]
CECT831	Indicator strain for mangotoxin production	CECTa
\textit{P. syringae} pv. syringae		
UMAF0158	Wild type, isolated from mango, mangotoxin producer, Nff	[2]
\textit{mboA}a	Derivative mutant of UMAF0158 by insertion in \textit{mboA}, Kmr, Nff (named \textit{mboA}a)	[6]
\textit{ΔmgoA}	Derivative mutant of UMAF0158 by deletion of \textit{mgoA}, Nff (named \textit{ΔmgoA})	[7]
2β87	miniTn5 mutant of UMAF0158 in \textit{gacA} defective in mangotoxin, Kmr, Nff (named \textit{gacA}a)	[4]
3αE10	miniTn5 mutant of UMAF0158 in \textit{gac5} defective in mangotoxin, Kmr, Nf'(named \textit{gac5}a)	[2]
3γH1	miniTn5 mutant of UMAF0158, defective in mangotoxin production, Kmr, Nff	[2]
4βA2	miniTn5 mutant of UMAF0158, defective in mangotoxin production, Kmr, Nff	[2]
5αC5	miniTn5 mutant of UMAF0158, defective in mangotoxin production, Kmr, Nff	[2]
6γF6	miniTn5 mutant of UMAF0158, defective in mangotoxin production, Kmr, Nff	[2]
\textit{P. protegens} Pf-5	Non mangotoxin producer, \textit{mbo} and \textit{mgo} operon absent	[35]
Plasmids		
pBBR1MCS-5	4.7 kb broad-host-range cloning vector, Gmr	[36]
pGEM-T	3.0 kb cloning vector, Apr	Invitrogen
pGEM-TBCAD	\textit{mgoBCAD} cloned in pGEM-T, Apr	This study
pLac-\textit{mgoBCAD}	\textit{mgoBCAD} cloned in pBBR1MCS-5 downstream the \textit{lacZ} promoter in the vector, \textit{mgo} operon expression under its own and \textit{P}_{lacZ} promoter, Gmr	This study
pLac-\textit{mboABCDEF}	\textit{mboABCDEF} cloned in pBBR1MCS-5 downstream the \textit{lacZ} promoter in the vector, \textit{mbo} operon expression under its own and \textit{P}_{lacZ} promoter, Gmr	[6]
pLac-\textit{mboFEDCBA}	\textit{mboABCDEF} cloned in pBBR1MCS-5 in the opposite direction than the \textit{lacZ} promoter in the vector, \textit{mbo} operon expression under its own promoter, Gmr	[6]
pMP220	Promoter-probe vector containing a promoterless LacZ gene, Tetr	[37]
pMP-\textit{mboABCDEF}	\textit{mboABCDEF} cloned in promoter-probe vector containing a promoterless LacZ gene, \textit{mbo} operon expression under its own promoter, Tetr	This study
pMP-P_{\textit{mbo}}	pMP220 vector containing the \textit{mbo} operon promoter, Tetr	[6]

aCECT: Spanish Type Culture Collection, Spain.
determined after 10-day. The severity symptoms were evaluated by the analysis of the total necrotic area per leaflet induced by the inoculated strains after 10 days of incubation. For severity measurement, the necrotic areas of the inoculation points were digitally analyzed on the six leaflets, using the computer image software VISILOG 5.0 (Noesis Vision Inc.). At the same time, two inoculated leaflets were used to estimate the daily development of the total bacterial population. For that purpose, whole tomato leaflets were homogenized in sterile water and bacterial counts were determined plating by 10-fold serial dilutions on KMB plates. Bacterial growth inside the plant tissue was recorded after H2O2 leaf surface dis-infection. Colony counts growth based on the typical morphology of P. syringae pv. syringae UMAF0158 were recorded after incubation at 28°C for 48 h.

Transcriptional analysis
From PMS cultures described above, cells from 2 ml cultures were collected and spun down at 12,000 rpm (1 min) from the wild type strain and the derivative mutants in gacA and mgoA. The cells were frozen in liquid N2 and stored at -80°C. For the RNA isolations and cDNA synthesis, three biological replicates were used for each time point. For the transcriptional analyses, RNA was isolated from the frozen bacterial cells with Trizol reagent (Invitrogen), followed by DNase I (GE Healthcare) treatment. One μg of RNA was used for cDNA synthesis with Superscript III (Invitrogen) according to the manufacturer's protocol. For the real-time quantitative PCR (Q-PCR), conducted with the 7300SDS system from Applied Biosystems, the SYBR Green Core kit (Eurogentec) with a final concentration of 3.5 mM MgCl2 was used according to the manufacturer’s protocol. The concentration of the primers was optimized (400 nM final concentration for all of them), and a dissociation curve was performed to check the specificity of the primers. The primers used for the Q-PCR are listed in Additional file 1: Table S1. To correct for small differences in template concentration, rpoD was used as the reference housekeeping gene. The cycle in which the SYBR green fluorescence crossed a manually set cycle threshold (C_T) was used to determine transcript levels. For each gene, the threshold was fixed based on the exponential segment of the PCR curve. The C_T value of mboA was corrected for the housekeeping gene rpoD as follows: \(\Delta C_T = C_T (\text{mboA}) - C_T (\text{rpoD}) \); the same formula was used for the other genes studied. The relative quantification (RQ) values were calculated by the following formula: \(\text{RQ} = 2^{\left(\frac{\Delta C_T \text{(mutant)}}{\Delta C_T \text{(wild type)}} \right)} \) [39,40]. Q-PCR analysis was performed in duplicate (technical replicates) on three independent RNA isolations (biological replicates).

β-galactosidase assays
To study the mbo operon expression in different genetic backgrounds, the mbo operon promoter (Pmbo) cloned into pMP220 [19] as previously described [6] was used. The derivative mutants in mgoA, gacA and gacS genes were transformed with plasmid pMP::Pmbo which contains the Pmbo. The plasmid pLac-mgoBCAD (harboring the mgo operon) was also used to complement the mgoA, gacA and gacS mutants and finally the β-galactosidase activity of Pmbo was measured. In order to evaluate the effect of the mgo operon on the activity of Pmbo, P. protegens Pf-5 was used due to the absence of the two operons in its genome. First, P. protegens Pf-5 was transformed with the pMP::Pmbo and the promoter activity was measured, and secondly to measure the effect on the mbo operon transcription, this strain containing the plasmid pMP::Pmbo was also transformed with the plasmid pLac-mgoBCAD (mgo operon under pLac regulation). As a negative control the β-galactosidase activity was measured for the wild type strain P. syringae pv. syringae UMAF0158 and each strain used in this assay, transformed with empty vector pMP220. β-galactosidase activities were quantified by the Miller method [41]. Briefly, an overnight culture obtained as previously described in growth curve and toxins assay section were prepared. The samples were collected at 18 h, and the cells were harvested and suspended in assay buffer to eliminate any error in the detection of β-galactosidase activity due to the effects of different carbon sources present in the growth medium. The results presented are from three separate experiments, each conducted in triplicate.

Phylogeny of the mgoA gene
In order to identify the presence of the mgoA gene in the different genomes of Pseudomonas strains, the mgoA gene from P. syringae pv. syringae UMAF0158 was used in BLASTP [42] comparisons with whole genome sequences of Pseudomonas spp. available in the databases. Once the amino acid sequences of all the orthologous mgoA genes were obtained, the putative adenylation domains were identified using the PKS/NRPS Analysis Web-site (http://nrps.igs.umaryland.edu/nrps) [43]. Other adenylation domains of which the activated amino acid is already known were obtained from the database and from De Bruijn met al. [44]. Two phylogenetic analyses were done, the first was using the adenylation domain of all the NRPSs (328 residues) and the second was using the almost entire sequence of MgoA (1015 residues). Amino acid sequences were aligned with Muscle (MEGA5 software) and determination of the optimal amino acid substitution model and phylogenetic tree construction were done using MEGA5 software [45]. Neighbor-joining, maximum parsimony and maximum-likelihood phylogenetic trees of the individual
gene sequences were generated in MEGA5 by using the optimal model parameters and the option of complete deletion to eliminate positions containing gaps. Confidence levels for the branching points were determined using 1,000 bootstrap replicates.

Bioinformatics and statistical analysis

Searches for sequence similarity in the NCBI databases were carried out using BLAST algorithms [42]. Genome and nucleotide sequences were visualized and manipulated using the Artemis genome browser [46] and compared using ACT [47] in combination with WebACT [48]. The statistical analysis of incidence was performed by SAS9.2 software (SAS Institute Inc.) by Enterprise Guide 4.2 using generalized linear model analysis. The β-galactosidase and the necrotic area data were statistically analyzed using an analysis of variance, followed by Fisher’s least significant difference test (p = 0.05), and for β-galactosidase activity on *P. protegens* Pf5, a Student’s *t*-test was carried out (p = 0.05), using the IBM.SSPS 19 software (IBM® Company).

Results

Involvement of mbo genes in mangotoxin production and virulence in *P. syringae* pv. syringae UMAF0158

Six mangotoxin deficient mutants of *P. syringae* pv. syringae UMAF0158, were previously obtained and characterized for mangotoxin production (Table 1 and Figure 1). Mangotoxin characterization showed that although these mutants did not show mangotoxin production, a slight production of a yet unknown antimicrobial compound was observed for mutants 4βA2 (*mboB*) and 5αC5 (*mboD*) (Figure 1). For two mutants (3γH1 and 6γF6), the Tn5 insertion was located in *mgoC* and *mgoA* respectively. Two other non-mangotoxin producing mutants were disrupted in the genes encoding the GacS/GacA two-component regulatory system (3αE10 and 2βB7 respectively). Growth of the *mgoA* mutant was shown to be similar to that of the

Figure 1 Mangotoxin production by random miniTn5 insertional mutants. Three pairs of mutants in different genes of the mbo and mgo operon, and in the gacS/gacA two-component regulatory system, obtained in previous works and tested for mangotoxin production. The corresponding disrupted gene is detailed in brackets. The *P. syringae* pv. syringae strains UMAF0158 (mangoxin-producing wilt-type strain) and B728a (nonproducing) were used as references. Mangotoxin production was evaluated using PMS minimal medium supplemented or not with ornithine. The results are indicated as follows: - absence of inhibition halo, + presence of inhibition halo, * slight toxicity which was not reverted by addition of ornithine. Toxic activity reverted in presence of ornithine denotes the production of mangotoxin.
Figure 2 Transcriptional analysis and mbo operon promoter activity. mboA, mboC and mboE (A), belonging to the mbo operon and mgoB and mgoA (B), belonging to the mgo operon transcript levels in the wild type strain P. syringae pv. syringae UMAF0158 and mgoA and gacA mutants. (C) Comparison of the described consensus motif (5'-CANGGANG-3') for P. fluorescens [49-51]: The search was done in front of each start codon of the mgo and mbo genes. (D) β-galactosidase activity of the mbo operon promoter in the wild-type strain UMAF0158 and mgoA, gacS and gacA mutants. These strains were transformed with the mbo operon promoter named pMP::P_{mbo} and the empty promoter-probe vector pMP220 was used as a control. The different mutants were also transformed with the vector pLac-mgoBCAD. Log2RQ represents the expression levels of the studied genes by relative quantification scores. Values below 0 indicates lower expression than the housekeeping gene used for normalization of data. The results are average of three independent experiments performed in triplicate. Error bars indicate standard deviation. Data were analysed for significance using an arcsine square root transformation with analysis of variance followed by Fisher's least significant difference test (P = 0.05). Values of bars with different letter designations represent a statistically significant difference.
wild type strain, with cell densities of up to 10^{11} cfu ml$^{-1}$ in liquid medium after 108 h of growth at 22°C (Additional file 2: Figure S1A). In contrast, the gacA mutant presented an altered growth, with cell densities in the stationary phase reaching only 10^9 cfu ml$^{-1}$ (Additional file 2: Figure S1A). The dynamics of the mangotoxin production in relation to bacterial growth was followed during four days of incubation. Mangotoxin production was detectable after 24 h of growth, increased up to 1.4 toxic units (T.U.), then reduced slightly upon entry of the stationary phase and then stabilized (Additional file 2: Figure S1B).

In order to know if the virulence of the derivative mutants mboA- and mgoA was reduced in comparison with the wild type strain, detached tomato leaflets were artificially inoculated. Artificial inoculation experiments using detached tomato leaflets [4] showed that bacterial growth inside the tomato leaflets of the mboA- and ΔmgoA mutants as well as their complemented derivatives followed similar dynamics (Additional file 3: Figure S2A). When inoculations were performed, development of necrotic lesions was observed on the leaf. Disease severity, represented by the necrotic area, showed that both mangotoxin defective mutants were less virulent than the wild type UMAF0158 (Additional file 3: Figure S2B and S2C). When derivative strains were complemented with the mboA and mgoA genes disease severity increased but complementation did not fully restore virulence to wild type level (Additional file 3: Figure S2B and S2C).

Mangotoxin production and transcriptional regulation in the gacA and mgoA mutant

To study the role of mgoA and gacA in mangotoxin biosynthesis, transcription of the mboACE and mgoBA genes was analyzed for the wild type strain, and for the mgoA and gacA derivative mutants. Time course experiments showed that the mbo genes in the wild type are expressed at the highest level after 12 to 24 h (Additional file 4: Figure S3). Therefore all comparisons between wild type and mutants were performed at 18 h of growth. Transcript levels of the mboACE genes after 18 h of growth were significantly lower in the gacA and the mgoA mutants than in the wild type (Figure 2A). Also the transcript levels of mgoB and mgoA were significantly lower in the gacA mutant (Figure 2B). The mgoA mutation did not affect transcription of gacS/gacA (data not shown). Also mboA, mboC, or mboE mutations did not significantly affect transcription of gacS/gacA or mgoA (data not shown). These results indicate that the GacS/GacA two-component regulatory system affects transcription of both the mbo and mgo genes and that the product of the mgo operon influences transcription of the mbo genes. To further study if the GacS/GacA two-component regulatory system could regulate the mgo and mbo genes via RNA repressor binding proteins [49-51], the upstream

Table 2 Toxic activity of *P. syringae* pv *syringae* UMAF0158 mutants and mgo operon complemented strains

Strains	E. coli inhibition assay	Mangotoxin production	
	PMS	PMS + ornithine	
Wild type strain and derivative mutants			
UMAF0158	+	-	Yes
mboA	-*	-*	No
ΔmgoA	-	-	No
gacA	-	-	No
gacS	-	-	No
Transformed with empty vector			
UMAF0158	+	-	Yes
mboA	-*	-*	No
ΔmgoA	-	-	No
gacA	-	-	No
gacS	-	-	No
Transformed with pLac-mgoBCAD			
UMAF0158	++	-	Yes
mboA	-*	-*	No
ΔmgoA	++	-	Yes
gacA	-	-	No
gacS	-	-	No

The results are indicated as follows: - absence of inhibition halo, + inhibition halo between 5-10 mm, ++ inhibition halo bigger 10 mm, -* slight toxicity which did not revert in presence of ornithine. Toxic activity, which reverts in the presence of ornithine, denotes the production of mangotoxin.
regions of the mgo and mbo genes were inspected for the presence of the described consensus motif (5′-CANG-GANG-3′) previously described in *P. protegens* CHAO [49]. This motif allows the binding of the repressor to the RNA, and these repressor proteins can be removed by Gac/Rsm. The complete consensus sequence was not detected upstream of any of the mbo/mgo genes (Figure 2C). However, consensus GGA motifs for binding of the RNA binding proteins [49-51] were detected upstream of the mbo and mgo operons (Figure 2C). It must be taken into account that the described consensus sequence is from *P. protegens* [49], and nothing is known yet about the recognition site of RNA binding proteins in *P. syringae*.

As the transcription of the mgo operon was substantially lower in the gacA mutant (Figure 2B), we subsequently tested whether introduction of extra copies of the mgo operon in the gacS or gacA mutant could restore mangotoxin production. When the mgo operon

Figure 3 Phylogeny of the MgoA adenylation domain. Neighbor-joining tree, constructed with MEGA5 using the adenylation domains extracted from nonribosomal peptide synthetases involved in syringomycin, syringopeptin, massetolide A, arthrofactin synthesis and mangotoxin biosynthesis (MgoA). The presence (+) or absence (-) of the mbo operon is shown in the phylogenetic tree. The boxes indicate the different groups of *Pseudomonas* species which are able to produce mangotoxin when were transformed with pLac-mboABCDEF (mbo operon under its own and P*lac* promoter expression) or pLac-mboFEDCBA (mbo operon under its own promoter expression). Also is indicated the signature sequence of the adenylation domains in each strain. The evolutionary history was inferred using the Neighbor-Joining method [52]. The evolutionary distances were computed using the JTT matrix-based method [53] and are in the units of the number of amino acid substitutions per site. The variation rate among sites was modelled with a gamma distribution. The analysis involved 126 amino acid sequences. There were a total of 328 positions in the final dataset. Evolutionary analyses were conducted in MEGA5 [45]. Bootstrap values (1,000 repetitions) are shown on branches.
was introduced in the mgoA mutant mangotoxin production was restored, which was not the case for the mboI, gacA and gacS mutants (Table 2).

The mgo operon is a positive regulator of mbo operon transcription

To further elucidate the role of the mgo operon in the regulation of mangotoxin biosynthesis, expression assays were carried out using a plasmid reporter construction consisting of the mbo operon promoter fused to a promoterless lacZ gene. When the plasmid reporter was transferred into the wild type strain, high levels of β-galactosidase activity were found, whereas for the mgoA, gacA and gacS mutants this activity was substantially lower (Figure 2D). For the mgoA mutant, complementation with the mgo operon restored β-galactosidase activity to similar levels as in the wild type strain (Figure 2D). In contrast, no restoration of the β-galactosidase activity was found when the mgo operon was introduced in the gacS/gacA, confirming results described above (Table 2).

MgoA phylogeny and mangotoxin production in other strains

The amino acid sequence of a typical non-ribosomal peptide synthetase (NRPS) displays an adenylation (A) domain responsible for recognition and subsequent activation of an amino acid substrate. It also contains the typical thiolation (T) and condensation (C) domains. Finally, the thioesterase (TE) domain releases the final molecule from the NRPS assembly line. Based on the specific signature sequences described previously for A domains, analysis of MgoA did not allow prediction of the amino acid to be activated. Therefore, a phylogenetic analysis was performed with multiple A domains from NRPSs of which activated amino acids are known and with MgoA from other *Pseudomonas* species (Figure 3 and Additional file 5: Figure S4). The results showed that the A domains from the different MgoA orthologues grouped in the same cluster, separate from other A domains for which the activated amino acid residue is known (Figure 3).

To determine if mgoA present in other *Pseudomonas* species can regulate the mbo operon, reporter constructs pLac-mboABCDEF (mbo operon under its own and under pLac promoter expression) and pLac-mboFEDCBA (mbo operon only under its own promoter expression) were used. Firstly, only specific *P. syringae* pathovars harbor the mbo operon, and almost all strains from these pathovars produce mangotoxin [29], with or without the introduction of the mbo operon containing plasmids (Figure 3). Our results showed that other *P. syringae* pathovars, that do not contain the mbo operon, are all able to produce mangotoxin when they were transformed with pLac-mboABCDEF and pLac-mboFEDCBA (Figure 3). When different *P. fluorescens* strains were transformed with either vector, they only produced mangotoxin when the mbo operon was expressed constitutively but not when they were transformed with the mbo operon with its native promoter (Figure 3).

To further investigate if the mgo operon is able to regulate the expression of the mbo operon, we introduced the mbo operon promoter reporter construct (pMP::P_{mbo}) and the mgo genes in *P. protegens* Pf-5, which lacks both the mgo and the mbo operons in its genome. Compared to the promoter activity in the wild-type Pf-5 background, a two-fold increase in ectopic mbo promoter activity was observed when Pf-5 was complemented with the mgo operon (Figure 4A). When *P. protegens* Pf-5 was transformed with pLac-mboABCDEF (mbo operon under pLac regulation), it produces mangotoxin. However, when *P. protegens* Pf-5 was transformed with pMP-mboFEDCBA (mbo operon under only...
Its own promoter expression) it was not able to produce detectable amounts of mangotoxin, neither in absence nor in presence of the mgo operon of P. syringae pv. syringae UMAF0158 (Figure 4B). Therefore, the presence of the mbo and mgo operons in P. protegens Pf-5 would be not sufficient for the production of detectable amounts of mangotoxin.

Discussion

The results of our study show that the regulation of mangotoxin biosynthesis in the plant pathogenic P. syringae pv. syringae strain UMAF0158 is governed by a complex interplay between the GacS/GacA two-component regulatory system, the nonribosomal peptide synthetase mgoA and the mangotoxin biosynthesis operon mbo. We showed that disruption of the mbo biosynthesis genes leads to reduced virulence. Introduction of the mbo operon in these biosynthesis mutants restored mangotoxin production but did not lead to full restoration of virulence on tomato leaflets. Multiple copies of the plasmid with the mbo operon could lead to overproduction of mangotoxin which may affect the regulation or production of other virulence factors such as syringomycin and syringopeptin.

Taken together the obtained results of this work and the previously described data [4,6,7], a simplified model for the interplay among these genes can be constructed (Figure 5). In this model, the GacS/GacA two-component regulatory system receives a yet unknown signal that activates a set of small RNAs [8,50,54]. The expression of genes regulated by the GacS/GacA might be mediated through the Rsm pathway [55,56]. In fact, components of this pathway such as the three small RNAs RsmX, RsmY and RsmZ and two RNA-binding proteins (RsmA and RsmE) were found in the genome of P. syringae pv. syringae UMAF0158 (Unpublished data). Transcriptional analysis of the mgo, mbo and gac genes showed that the mbo genes were markedly down-regulated in both the gacA and mgoA mutants. On the other hand, the transcriptional levels of mgoB and mgoA, also showed down-regulation in the gacA mutant, indicating that the mgo operon is also under regulation by the GacS/GacA two-component regulatory system. These data suggest that GacS/GacA is regulating the mbo operon expression via the mgo operon, however direct regulation of the mbo operon by the two-component regulatory system gacS/gacA cannot be excluded (Figure 5).

Transcriptional analysis with a lacZ fusion on the promoter of the mbo operon (P_mbo), revealed that the product of the mgo operon could act as positive regulator of mbo transcription. Interestingly, the pvfC gene (homologue of mgoA) is considered a regulator of virulence in P. entomophila, but appears not to be part of the GacS/GacA regulatory cascade [28]. In strain UMAF0158, introduction of the mgo operon in a gac mutant could not restore mangotoxin production or mbo-promoter activity, suggesting that next

Figure 5 Proposed model for regulation of mangotoxin biosynthesis in P. syringae pv. syringae. In this model, GacS/GacA two-component regulatory system activates directly or indirectly the transcription of the mgo operon. And the mgo operon could synthetize a positive regulator of the mbo operon transcription. The mbo operon produces mangotoxin which acts as virulence factor.
to the mgo operon, additional factors are regulated by the gac system that influence mangotoxin production. It is worth noting that *P. entomophila* and *P. syringae* pv. *syringae* harbor two different genetic backgrounds, adapted to different environments. The first is found in diverse environments such as soil, aquatic ecosystems, rhizosphere, and in pathogenic interactions with *Drosophila melanogaster* [57]. The second is adapted for plant infection and epiphytic survival [3]. Therefore, the regulatory roles of these orthologues can substantially differ between these two *Pseudomonas* species. On the other hand, the fact that both PvfC and MgoA are involved in the regulation of virulence could indicate that in other *Pseudomonas* spp. these factors would be involved in the regulation of virulence and/or secondary metabolite production.

Phylogenetic analysis of MgoA and the adenylation domains suggested an evolutionary specialization of this protein into the *Pseudomonas* genus. In this context, it is worth noting that the transformation of the mbo operon under the expression of its own promoter only confers mangotoxin production in the *P. syringae* group and not in the *P. fluorescens* group. Therefore, it seems that the NRPS MgoA is involved in different signal transduction pathways depending of the *Pseudomonas* species. In the case of *P. syringae*, MgoA appears to activate mangotoxin production. It remains to be studied if MgoA is also involved in the regulation and production of other antimetabolites in the *P. syringae* group, such as tabtoxin and phaseolotoxin. The positive regulation of the mbo operon promoter activity in the presence of the mgo operon in *P. fluorescens* Pf-5, combined with the lack of detectable amounts of mangotoxin suggests that additional factors for mangotoxin biosynthesis or its export are not present in the *P. fluorescens* group.

Conclusions

In summary, for *P. syringae* pv. *syringae* UMAF0158, the GacS/GacA two-component system regulates transcription of the mgo and mbo operons and thereby mangotoxin biosynthesis. At the same time, the mgo operon product seems to act as a positive regulator of the mbo operon. The proposed model for mangotoxin biosynthesis is a simplified and initial overview of the interaction between the gac, mgo and mbo gene products based on the results obtained in the current study. This is the first evidence of the interplay between MgoA and the GacS/GacA two-component regulatory system in the regulation of the mangotoxin biosynthesis.

Ethics statement

We the authors hereby declare that there is no conflict of interests concerning this manuscript.

Competing interests

We the authors hereby declare that there is no conflict of interests concerning this manuscript.

Authors’ contributions

VJC, MV, EA, AV, JMR and FMC conceived the study. VJC and EA did all the experiments. JMR and AV supported the research. VJC, MV, JMR and FMC wrote the manuscript. VJC, EA, MV, AV, JMR and FMC coordinated and critically revised the manuscript. All authors read and approved the manuscript.

Acknowledgements

This work was supported by grants from the Regional Government of Andalucía (Spain), grants from CICE - Junta de Andalucía, Ayudas Grupo PAIDI AGR-169, and Proyecto de Excelencia (P07-AGR-02471) and Plan Nacional de I + D + I del Ministerio de Ciencia e Innovacion (AGL2011-30354-C02-01) cofinanced by FEDER (EU). Plan Propio of the University of Málaga funded a stay of VJC in the Wageningen University, The Netherlands. This is publication No. 5584 of the Netherlands Institute of Ecology (NIOO-KNAW). VJC was...
References

1. Kennelly MM, Cazorla FM, de Vicente A, Ramos C, Sundin GW: Pseudomonas syringae diseases of fruit trees: progress toward understanding and control. Plant Dis 2006, 90:14–17.

2. Arrebola E, Cazorla FM, Durán VE, Rivera E, Olea F, Codina JC, Pérez-García A, de Vicente A: Mangotoxin: a novel antimetabolite toxin produced by Pseudomonas syringae inhibiting ornithine/arginine biosynthesis. Microbiol Mol Plant Pathos 2003, 63(3):117–127.

3. Cazorla FM, Toles JA, Olalla L, Pérez-García A, Farré JM, de Vicente A: Bacterial apical necrosis of mango in southern Spain: a disease caused by Pseudomonas syringae pv. syringae. Phytopathology 1998, 88(7):614–620.

4. Arrebola E, Cazorla FM, Romero D, Pérez-García A, de Vicente A: A nonribosomal peptide synthetase gene (mgoA) of Pseudomonas syringae pv. syringae is involved in mangotoxin biosynthesis and is required for full virulence. Mol Plant-Microbe Interact 2007, 20(5):500–509.

5. Arrebola E, Cazorla FM, Codina JC, Gutiérrez-Barranquero JA, Pérez-García A, de Vicente A: Contribution of mangotoxin to the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Int Microbiol 2009, 12(1):119–709.087–95.

6. Carrión VJ, Arrebola E, Cazorla FM, Murillo J, de Vicente A: The mgo operon is specific and essential for biosynthesis of mangotoxin in Pseudomonas syringae. PLoS One 2012, 7(5):e36709.

7. Arrebola E, Carrión VJ, Cazorla FM, Pérez-García A, Murillo J, de Vicente A: Characterisation of the mgo operon in Pseudomonas syringae pv. syringae UMA01389 that is required for mangotoxin production. BMC Microbiol 2012, 12(1):10.

8. Heeb S, Haas D: Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact 2001, 14(12):1351–1363.

9. Chancey ST, Wood DW, Pierson LS: Two-component transcriptional regulation of N-acetylhomoserine lactone production in Pseudomonas aeruginosa. Appl Environ Microbiol 1999, 65(6):2294–2299.

10. Kay E, Humair B, Dénervaud V, Riedel K, Spahr S, Eberl L, Valverde C, Haas D: Two-component regulatory systems in Pseudomonas syringae. J Bacteriol 2006, 188(16):6026–6033.

11. Corbell N, Loper JE: A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J Bacteriol 1995, 177(2):6230–6236.

12. Whistler CA, Pierson LS: Repression of phenazine antibiotic production in Pseudomonas aeruginosa strain 30-84 by RpeA. J Bacteriol 2003, 185(3):3718–3725.

13. Hassan KA, Johnson A, Shaffer BT, Retal M, Doudoroff D, Chaterjee AK: Characterization of the salA, syf, and syg regulatory genes located at the right border of the synergomycin gene cluster of Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 2002, 15(1):43–53.

14. Cheng X, de Bruijn L, van de Vooort M, Loper JE, Raaijmakers JM: The Gac regulon of Pseudomonas fluorescens SBW25. Environ Microbiol Rep 2013, 5(4):608–619.

15. Perkins MD, Cei H, Storey DG: Pseudomonas aeruginosa GacA, a factor in multihost virulence, is also essential for biofilm formation. Mol Microbiol 2001, 40(5):1215–1226.

16. Petrova OE, Sauer K: The novel two-component regulatory system BfsR regulates biofilm development by controlling the small RNA rsmZ through CaF. J Bacteriol 2010, 192(20):5275–5288.

17. Muller J, Shulka S, Jost K, Spormann A: The m od operon in Shawnella oneidensis MR-1 is induced in response to starvation and regulated by ArcA/ArcB and BarA/UvrY. BMC Microbiol 2013, 13(1):119.

18. Lu S-E, Scholz-Schroeder BK, Gross DC: Characterization of the saA, syf, and syg regulatory genes located at the right border of the synergomycin gene cluster of Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 2002, 15(1):43–53.

19. Wang N, Lu S-E, Wang J, Chen ZJ, Gross DC: The expression of genes encoding lipodepsipeptide phytotoxins by Pseudomonas syringae pv. syringae is coordinated in response to plant signal molecules. Mol Plant-Microbe Interact 2006, 19(3):257–269.

20. Lu S-E, Wang N, Wang J, Chen ZJ, Gross DC: Oligonucleotide microarray analysis of the SalA regulon controlling phytotoxin production by Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 2005, 18(4):324–333.

21. Barta TM, Kinscherf TG, Wills DK: Regulation of tabtoxin production by the IemA gene in Pseudomonas syringae. J Bacteriol 1992, 174(9):3021–3029.

22. Bender CL, Alarcón-Chávez F, Gross DC: Pseudomonas syringae phytotoxins: mode of action, regulation, and biosynthesis by peptide and polyketide synthetases. Microbiol Mol Biol Rev 1999, 63(2):266–292.

23. de la Torre-Zavala S, Aguilar S, Ibarra-Laclette E, Hernandez-Flores JL, Hernández-Morales A, Murillo J, Alvarez-Morales A: Gene expression of Pht cluster genes and a putative non-ribosomal peptide synthetase required for phaseltoxin production is regulated by GacA/GacB in Pseudomonas syringae pv. phaseolicola. Res Microbiol 2011, 162(5):488–498.

24. Wills DK, Hrabak EM, Rich JL, Barta TM, Lindov SE, Panopoulos NJ: Isolation and characterization of a Pseudomonas syringae pv. syringae mutant deficient in lesion formation on bean. Mol Plant-Microbe Interact 1990, 3(3):149–156.

25. Chatterjee A, Cui Y, Yang H, Collmer A, Alfano JR, Chatterjee AK: Pf-5 has far-reaching transcriptional effects in Pseudomonas syringae pv. tomato DC3000 by controlling regulatory RNA, transcriptional activators, and alternate sigma factors. Mol Plant-Microbe Interact 2003, 16(12):1106–1117.

26. Lindeberg M, Myers CR, Collmer A, Schneider DJ: Roadmap to new virulence determinants in Pseudomonas syringae: insights from comparative genomics and genome organization. Mol Plant-Microbe Interact 2008, 21(6):685–700.

27. Loper JE, Hassank KA, Mavrodi DV, Davis EW II, Lim CK, Shaffer BT, Elbourne LDH, Stockwell VO, Hartney SL, Breakwell K, Henkelis MD, Tetu SG, Rangel LL, Kiarksa TA, Wilson NL, van de Mottel JE, Song C, Blumhagen R, Rudune D, Hostetler JB, Brinkak LM, Durkin AS, Kuepfler DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS III, Pierson EA, Lindov SE, Kobayashi HY, et al: Comparative genomics of Pseudomonas syringae spp.: insights into diversity and inheritance of traits involved in multifactorial interactions. PLoS Genet 2012, 8(7):e1002784.

28. Valler-Gely I, Opoa O, Bonface A, Novikov A, Lemaire B: A secondary metabolism acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 2010, 12(11):1666–1679.

29. Carrión VJ, Gutiérrez-Barranquero JA, Arrebola E, Barbaj L, Codina JC, de Vicente A, Cazorla FM, Murillo J: The mangotoxin biosynthetic operon (mgo) is specifically distributed within Pseudomonas syringae genospecies 1 and was acquired only once during evolution. Appl Environ Microbiol 2013, 79(3):756–767.

30. Gutiérrez-Barranquero JA, Carrión VJ, Murillo J, Arrebola E, Arnold DL, Cazorla FM, de Vicente A: A Pseudomonas syringae diversity survey reveals a differentiated phylogopyte of the pathovar syringae associated with the mango host and mangotoxin production. Phytopathology 2013, 103(11):115–129.

31. King EO, Ward MK, Raney DE: Two simple media for the demonstration of pyocyanin and fluorescine. J Lab Clin Med 1954, 44(2):301–307.

32. Gasson MJ: Indicator technique for antimetabolite toxin production by Pseudomonas syringae pv. syringae. J Appl Bacteriol 1980, 51:465–470.

33. Hanahan D: Studies on transformation of Escherichia coli with plasmids. J Mol Biol 1983, 166(1):557–580.

34. Fell H, Fell WS, Chain P, Larimer F, D’Aquio C, Gopelnad L, Liyakis A, Trong S, Nolan M, Golmstein E, Theil J, Maffitt S, Loper JE, Lapidus AD, Dertter JC, Land M, Richardson PM, Kympekis NC, Ivanova N, Lindow SE: Comparison of the complete genome sequences of Pseudomonas syringae pv. syringae B728a and pv. tomato DC3000. Proc Natl Acad Sci USA 2005, 102(31):11064–11069.
35. Howell CR, Stipanovic RD: Suppression of Pythium ultimum-induced damping-off of seedlings by Pseudomonas fluorescens and its antibiotic, pyoluteorin. Phytopathology 1980, 70(7):72–77.

36. Kovach ME, Elzer PH, Steven Hill D, Robertson GT, Farris MA, Roop II RM, Peterson RM: Four new derivatives of the broad-host-range cloning vector pBR322/MCS, carrying different antibiotic-resistance cassettes. Gene 1995, 166(1):175–176.

37. Späink HP, Okker RHJ, Wijffelman CA, Pees E, Lugtenberg BJ: Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRL14. Plant Mol Biol 1987, 9(1):27–39.

38. Sambrook J, Russell DW: Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 2001.

39. de Bruijn I, de Kock MJD, de Waard P, van Beek TA, Raaijmakers JM: Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens.

40. de Bruijn I, Raaijmakers JM: Regulation of cyclic lipopeptide biosynthesis in Pseudomonas fluorescens by the ClpP protease. J Bacteriol 2009, 191(6):1910–1923.

41. Miller JH: Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1972.

42. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215(3):403–410.

43. Bachmann BO, Ravel J: Chapter 8 methods for in silico prediction of microbial polyketide and nonribosomal peptide biosynthetic pathways from DNA sequence data. In Method Enzymol. Edited by David AH. PA: Academic Press, 2009:181–217. vol. Volume 458.

44. de Bruijn I, de Kock MJD, Yang M, de Waard P, van Beek TA, Raaijmakers JM: Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 2007, 63(2):417–428.

45. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA4: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011, 28(10):2731–2739.

46. Rutherford K, Parkhill J, Crook J, Horsnell T, Rice P, Rajandream MA, Barrell B: Artemis: sequence visualization and annotation. Bioinformatics 2000, 16(10):944–945.

47. Carver TJ, Rutherford KM, Bertram M, Rajandream MA, Barrell BG, Parkhill J: ACT: the Artemis comparison tool. Bioinformatics 2005, 21(16):3422–3423.

48. Abbott JC, Aanensen DM, Rutherford K, Butler S, Spratt BG: WebACT—an online companion for the Artemis Comparison Tool. Bioinformatics 2005, 21(18):3665–3666.

49. Blumer CR, Heeb S, Pessi G, Haas D: Global GacA-steered control of cyanide and exoprotease production in Pseudomonas fluorescens involves specific ribosome binding sites. Proc Natl Acad Sci USA 1999, 96(24):14073–14078.

50. Valverde C, Lindell M, Wagner EGH, Haas D: A repeated GGA motif is critical for the activity and stability of the riboregulator RsmY of Pseudomonas fluorescens. J Biol Chem 2004, 279(24):25066–25074.

51. Dubey AK, Baker CS, Suzuki K, Jones AO, Pandit P, Ronofo T, Babitzke P: CsrA regulates translation of the Escherichia coli carbon starvation gene, csrA, by blocking ribosome access to the csrA transcript. J Bacteriol 2003, 185(15):4450–4460.

52. Saitou N, Nei M: The neighbor-joining method: a new method for constructing phylogenetic trees. Mol Biol Evol 1987, 4(4):406–425.

53. Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 1992, 8(3):275–282.

54. Lapouge K, Sineva E, Lindell M, Starke K, Baker CS, Babitzke P, Haas D: Mechanism of hcnA mRNA recognition in the Gac/Rsm signal transduction pathway of Pseudomonas fluorescens. Mol Microbiol 2007, 66(2):341–356.

55. Lapouge K, Schmidt M, Alain FHT, Haas D: Gac/Rsm signal transduction pathway of gamma-proteobacteria: from RNA recognition to regulation of social behaviour. Mol Microbiol 2008, 67(2):241–253.