BASHKIR STATE UNIVERSITY

Department of Mathematics

ANDREEV Konstantin Vasil’evich

SPINOR FORMALISM AND THE GEOMETRY OF SIX-DIMENSIONAL RIEMANNIAN SPACES

Thesis for the candidate degree of physical and mathematical sciences (Ph.D. Thesis in Physics and Mathematics)

Scientific advisor:
Ph.D in Physics and Mathematics,
Associate Professor È. G. Neifel’d.

UFA - 1997
I

English edition

Table of Contents

1 Introduction 5
 1.1 Basic definitions 6
 1.2 Second chapter 8
 1.3 Third chapter 9
 1.4 Fourth chapter 10
 1.5 Fifth chapter 11
 1.6 Conclusion 12
 1.7 Introduction for the English edition 13

2 Basic identities and formulas 14
 2.1 Bivectors of the space $\Lambda^2 \mathbb{C}^4(\Lambda^2 \mathbb{R}^4)$ 14
 2.1.1 Norden operators 14
 2.1.2 Conjugation in the bundle A 16
 2.2 Spinor representation of special form tensors. The covering corresponding to this decomposition 18
 2.2.1 Theorem on the double covering $SL(4, \mathbb{C})/\{\pm 1\} \cong SO(6, \mathbb{C})$ 18
 2.2.2 Real representation of the double covering $SL(4, \mathbb{C})/\{\pm 1\} \cong SO(6, \mathbb{C})$ in the presence of the involution $S_{\alpha \beta}$ 25
 2.2.3 Inclusion $\mathbb{R}^6_{(2,4)} \subset \mathbb{C} \mathbb{R}^6$ in the special basis 27
 2.2.4 Infinitesimal transformation 31
 2.3 Generalized Norden operators 32

3 Connections in the bundle A^C with the base CV^6 33
 3.1 Connection in a bundle 34
 3.1.1 Normalization (spinor normalization) of the quadric $\mathbb{C}Q_6$ in CP_7 35
 3.1.2 Neifeld operators 36
 3.1.3 Real and complex representations of the connection 38
 3.1.4 Involution in CP_7 41
 3.1.5 Riemannian connection compatible with the involution 42
 3.1.6 Bitwistor equation 44

4 Theorems on the curvature tensor. The canonical form of bivectors of 6-dimensional (pseudo-) Euclidean spaces $\mathbb{R}^6_{(p,q)}$ with the even index q 45
Chapter	Section	Title	Page
4.1	Theorem on bitensors of the 6-dimensional space	46	
4.1.1	Corollaries from the theorem	48	
4.2	Basic properties and identities of the curvature tensor	49	
4.3	The canonical form of bivectors of the 6-dimensional (pseudo-) Euclidean space $\mathbb{R}^6_{(p,q)}$ with the metric of the even index q	50	
4.4	Geometric representation of a twistor in $\mathbb{R}^6_{(2,4)}$	52	
4.4.1	Stereographic projection	52	
4.4.2	The geometric twistor picture in the 6-dimensional space	55	
5	The theorem on two quadrics	57	
5.1	Solutions of the bitwistor equation	57	
5.2	Rosenfeld null-pairs	58	
5.3	Construction of the quadrics CQ_6 and $\tilde{C}Q_6$	59	
5.4	Correspondence $CQ_6 \mapsto \tilde{C}Q_6$	61	
5.5	The connection operators η^A_{KL}	63	
5.6	Correspondence $\tilde{C}Q_6 \mapsto CQ_6$	68	
5.7	Theorem on two quadrics	70	
5.8	Summary	72	
6	Appendix	73	
6.1	Proof of the second chapter equations	73	
6.1.1	Proof of the equations containing the operator $A_{\alpha\beta\gamma\delta}$	73	
6.1.2	Proof of the equation of the 4-vector $e_{\alpha\beta\gamma\delta}$	74	
6.1.3	Proof of the equation of the 6-vector $e_{\alpha\beta\gamma\delta\rho\sigma}$	74	
6.1.4	Proof of the equation containing the operator $N_{a\gamma}$	75	
6.2	Proof of the forth chapter equations	76	
6.2.1	Proof the Bianchi identity	76	
6.2.2	Proof of the identities related to the Weyl tensor	77	
6.2.3	The proof of the Ricci identity	77	
6.2.4	The proof of the differential Bianchi identity	79	
6.2.5	Proof of the formulas associated with the metric induced in the cross-section of the cone K_6	80	
6.2.6	Proof of the first invariant formulas	81	
6.2.7	Proof of the second invariant formulas	82	
6.3	Proof of the fifth chapter equations	84	
6.3.1	The proof of the integrability conditions of the bitwistor equation	84	
List of Tables

1 Matrix form of the spin-tensor s for the real inclusions. 30

List of Figures

1 Correspondence $\forall CP_2 \subset CP_3 \leftrightarrow R$ 62
2 Correspondence $CP_3 \supset CP_1 \leftrightarrow CP_1 \subset K_6$ 62
1 Introduction

The proposed thesis is a theoretical study of the 6-dimensional Riemannian space geometry devoted to some questions related to this geometry.

The study of some 6-dimensional Riemannian spaces is done using the corresponding 6-dimensional spinor formalism [3], [40], [45] and the Norden-Neifeld normalization theory [10]-[16], [17]-[22] that simplifies the important relations written down in the tensor form and that leads to the original results.

The subject choice is caused by the increased interest to such the spaces in these latter days. These spaces naturally appear in the Penrose spinor-twistor formalism [23]-[26], [45]-[48]. Here the pseudo-Euclidean space $\mathbb{R}^6_{(2,4)}$, whose an isotropic cone allows to define the conformal pseudo-Euclidean Minkowski space, plays an important role. Moreover, twistors in the Penrose theory will be represented by spinors coordinated with the space $\mathbb{R}^6_{(2,4)}$. However, if in the monography [23], twistors form the 4-dimensional complex vector bundle with the 4-dimensional real manifold as the base, in these thesis, the 6-dimensional complex analytic Riemannian space $\mathbb{C}V^6$ serves as the base. This leads to new results in the twistor theory. At the same time, a conformal pseudo-Euclidean space is associated with a complex analytic quadric $\mathbb{C}Q_6$, [36], [37] that leads to the studying of properties of the group $SO(8,\mathbb{C})$ [39], [43], and hence the Cartan triality principle [3]. In this case, the specified complex-Euclidean geometry appears as the intrinsic geometry of this normalized quadric. Writing out the derivational equations for this quadric [13], it is possible to define the invariant equation under conformal transformations and hence the normalization replacement. This equation we call bitwistor equation by analogy to the Penrose twistor equation. Solutions of this equation form pairs which can be interpreted as Rosenfeld null-pairs [32] that leads to the 6-dimensional quadric and the Cartan triality principle. It is expedient to consider the following three manifolds, diffeomorphic to each other:

1. the manifold of all points of the quadric $\mathbb{C}Q_6$;
2. the manifold of I-family maximal planar generators $\mathbb{C}P_3$ of the quadric $\mathbb{C}Q_6$;
3. the manifold of II-family maximal planar generators $\mathbb{C}P_3$ of the quadric $\mathbb{C}Q_6$.

A normalization of one of such the manifolds allows on this one to consider conformal (pseudo-)Euclidean connections which will be Weyl connections. This leads to a generalization of the triality principle to B-spaces in the Norden terminology.

Thus, the 6-dimensional spinor formalism is based on the Cartan’s [3] and Brauer’s [40] works. The 4-dimensional spinor-twistor formalism and the twistor algebra are described in [23]-[26], [45]-[48]. The Lie group’s and Lie algebra’s isomorphisms, associated with these formalisms, are considered in [1], [29], [30], [49]. In addition, a piece of the information on the Clifford algebras and the octaves is taken from [30] and [23]. A piece of the information on quadrics and planar generators is given in [36] and [37]. A normalization of a maximal planar generator manifold is also described in [13]-[15], [18], [20], [22]. Connections in bundles is induced according to [15], [19], [21], [22]. A real space inclusion in a complex space is considered in [10]. The complex and real representations of (pseudo-)Riemannian
spaces are carried out according to [4], [5] and [7]. Rosenfeld null-pairs were taken from [32]. The Klein correspondence is given in [52] and [53]. Physical applications of twistors can be found in [23], [50] and [51].

The basic content, divided in four sections, will be considered below. For this purpose, some definitions is necessary to make preliminary.

1.1 Basic definitions

These definitions are made according to [10]-[16]. Note, that all functions, involved in constructions, are assumed to be sufficiently smooth; all definitions, statements, constructions are a local.

Complex analytic Riemannian space $\mathbb{C}V^n$ is a complex analytic manifold, in which each tangent space is equipped with an analytical quadratic metric. Such the metric is defined by means of a nondegenerate symmetric tensor $g_{\alpha\beta}$ whose the coordinates are analytic functions of the point coordinates. This tensor corresponds to the torsion-free complex Riemannian connection whose the coefficients are determined by the Christoffel symbols, and therefore these coefficients are analytic functions.

The tangent bundle $\tau^C(CV^n)$ to the manifold has fibers $\tau^C_x\cong \mathbb{C}R^n$, i.e., each fiber will be isomorphic to the complex n-dimensional Euclidean space whose the metric is determined by the value of the Euclidean metric tensor at the given point x. Let $n=6$. By $\Lambda^2\mathbb{C}^4$, we denote the bivector space of \mathbb{C}^4, and by Λ, we denote the corresponding bundle with the base $\mathbb{C}V^6$. Each fiber of this bundle is isomorphic to $\mathbb{C}R^6(\mathbb{C}R^6\cong \Lambda^2\mathbb{C}^4)$. It follows that in the six-dimensional case, the complex Riemannian space $\mathbb{C}V^6$ will be the base of the bundle $A^C=\mathbb{C}^4(\mathbb{C}V^6)$. Then the canonical projection $p: \mathbb{C}^4_x \hookrightarrow x \in \mathbb{C}V^6$ maps the fiber \mathbb{C}^4_x to the point x of the base.

A real (pseudo-)Riemannian space $V^n_{(p,q)}$ is regarded as a real n-dimension surface in the space $\mathbb{C}V^n$. In a neighborhood U, this is an inclusion which is locally determined by the parametric equations

$$z^\alpha = z^\alpha(u^i)(\alpha, \beta, ..., i, j, g, h = \overline{1, n}), \quad (1)$$

where z^α are the complex coordinates of the base point x; the parameters u^i are the local coordinates of the space $V^n_{(p,q)}$. By $\tau^R_x(V^n_{(p,q)}) \cong \mathbb{R}^n_{(p,q)}$, we denote the real tangent space to the surface $[\Pi]$ at the point x. The partial derivatives ($\partial_i z^\alpha =: H_i^\alpha$) define inclusion H of the real tangent space τ^R_x in the complex tangent space τ^C_x

$$H : \tau^R_x \hookrightarrow \tau^C_x, \quad (2)$$

$$z^\alpha = z^\alpha(u^i(t)), \quad V^\alpha := \frac{dz^\alpha}{dt} = H_i^\alpha \frac{du^i}{dt} =: H_i^\alpha u^i, \quad (3)$$

where the differentiation is carried out along the real curve $\gamma(t)$ of the surface $[\Pi]$. Since, the matrix $\|H_i^\alpha\|$ is a nonsingular Jacobian matrix then the operator H_i^α such that

$$\begin{align*}
H_i^\alpha H_j^{\alpha} &= \delta_{\alpha}^\beta, \\
H_i^\alpha H_j^{\alpha} &= \delta_{j}^i
\end{align*} \quad (4)$$

The differentiation is carried out along the real curve $\gamma(t)$ of the surface $[\Pi]$. Since, the matrix $\|H_i^\alpha\|$ is a nonsingular Jacobian matrix then the operator H_i^α
exists. It follows that in the complex space, the operator H^α_i defines involution

$$S_{\alpha}^{\beta'} = H^i_\alpha H_i^{\beta'},$$ \hspace{1cm} (5)$$

where the coordinates $H_i^{\beta'}$ are conjugated to the coordinates H_i^{β} [10]. Therefore,

$$v^i = H^i_\alpha V^\alpha = \overline{H^i_\alpha V^\alpha} \Rightarrow S_{\alpha}^{\beta'} V^\alpha = \overline{V^{\beta'}}. \hspace{1cm} (6)$$

This is a necessary and sufficient condition for the vector $V^\alpha \in \tau^C_x$ to be real. At the same time,

$$S_{\alpha}^{\beta'} S_{\beta'}^{\gamma} = \delta^{\alpha}_{\gamma}. \hspace{1cm} (7)$$

The metric of $\tau^R_x(V^n_{(p,q)})$ is defined with the help of the relation

$$g_{\alpha\beta} V^\alpha V^\beta = g_{\alpha\beta} \overline{V^\alpha V^\beta}, \forall \overline{V^{\beta'}} = S_{\alpha}^{\beta'} V^\alpha. \hspace{1cm} (8)$$

This is means that a real tensor of the space $\tau^R_x(V^n_{(p,q)})$ is determined as a tensor conjugated under the action of the specified Hermitian involution

$$g_{\alpha\beta} = S_{\alpha}^{\gamma'} S_{\beta}^{\delta'} \overline{g_{\gamma'}^{\delta'}}. \hspace{1cm} (9)$$

Therefore, the tensor

$$g_{ij} := H^i_\alpha H^j_\beta g_{\alpha\beta} = \overline{H^i_\alpha H^j_\beta g_{\alpha\beta}}$$ \hspace{1cm} (10)$$

is the metric tensor of $\tau^R_x(V^n_{(p,q)}) \subset \tau^C_x(CV^n)$. A metric form significantly depends on a structure of the operator H^α_i and hence the involution $S_{\alpha}^{\beta'}$. The complex Riemannian connection on the space $C^\alpha \subset CV^n$ induces a connection

$$\nabla_i := H^i_\alpha \nabla_\alpha \hspace{1cm} (11)$$

on the real space such that

$$\nabla_i H^j_\alpha = i b_{ij}^g H^g_\alpha, \quad \nabla_i g_{jj} = 2i b_{i(jg)}, \quad b_{ij}^h := b_{ij}^h g_{hh}. \hspace{1cm} (12)$$

Demand that the induced connection was the Riemannian one then

$$b_{ijh} = b_{jih}, \quad b_{ijh} = -b_{ihj} \Rightarrow b_{ijh} = 0, \hspace{1cm} (13)$$

and hence

$$\nabla_i S_{\alpha}^{\beta'} = 0 \Rightarrow \nabla_\gamma S_{\alpha}^{\beta'} = 0. \hspace{1cm} (14)$$

For $n = 6$, the restriction of the base $CV^6 \mapsto V^6_{(p,q)}$ allows to determine the bundle $A^C(S) = C^4(S)(V^6_{(p,q)})$ whose fibers should be supplied with an additional structure s. It will be shown that in the case of the even metric index (i.e., the number of minuses is even), this structure is determined by a Hermitian symmetric tensor, and in the case of the odd metric index, this structure is determined by a Hermitian involution. For a pseudo-Riemannian space of the even index, equal to 4, the bundle $A^C(S)$ is called twistor bundle because its each fiber will be isomorphic to the vector space \mathbb{T} [23].
1.2 Second chapter

The main results of this chapter are based on the works [23–26], where the 4-dimensional spinor formalism is developed. The connection operators are introduced in [17]. A piece of the information on Lie groups is taken from [1], [29], [30]. The 6-dimensional spinor formalism, constructed in this chapter, are based on the three following isomorphisms:

1. the isomorphism between the spaces $\mathbb{C}R^6 \cong \Lambda^2 \mathbb{C}^4$;
2. the isomorphism between the groups $SO(6, \mathbb{C}) \cong SL(4, \mathbb{C})/\{\pm 1\}$;
3. the isomorphism between the Lie algebras $so(6, \mathbb{C}) \cong sl(4, \mathbb{C})$.

Explicitly, these isomorphisms are described as

1. $r^a = \frac{1}{2} \eta^a_{ab} R^{ab}$, where r^a are the coordinates of a vector of $\mathbb{C}R^6$, R^{ab} are the coordinates of a bivector of $\Lambda^2 \mathbb{C}^4$, η^a_{ab} are the coordinates of the connecting Norden operators;
2. $K_\alpha^\beta = \frac{1}{4} \eta^a_{ab} \eta_{cd} \cdot 2 S^a_c S^b_d$, where K_α^β is the coordinates of a transformation from the group $SO(6, \mathbb{C})$, S^a_b is the coordinates of a transformation from the group $SL(4, \mathbb{C})$;
3. $T^{\alpha\beta} = A^{\alpha\beta}_a b^T a^b$, where $T^{\alpha\beta}$ are the coordinates of a bivector of $\Lambda^2 \mathbb{C}R^6$, T^a_b is the coordinates of a traceless operator in \mathbb{C}^4.

At the same time, connecting Norden operators are defined with the help of the following relations

$$g^{\alpha\beta} = 1/4 \cdot \eta^\alpha_{aa_1} \eta^\beta_{bb_1} \varepsilon^{a_1b_1}, \quad \varepsilon^{a_1b_1} = \eta_\alpha^{aa_1} \eta_\beta^{bb_1} g^{\alpha\beta},$$ \hspace{1cm} (15)

where $(\alpha, \beta, \ldots = 1, 2, 3, 4, 5, 6)$; $a_1, b_1, a, b, e, f, k, l, m, n, ... = 1, 2, 3, 4$; $i, j, g, h = 1, 2, 3, 4, 5, 6)$. From this, it follows that the connecting Norden operators will satisfy the Clifford equation, and therefor they will define the full Clifford algebra which can be realized with the help of the matrix algebra of dimension 8×8.

Considering the inclusion $\mathbb{R}^6_{(p,q)} \subset \mathbb{C}R^6$ in the case of the even metric index q, the decomposition

$$s_{aa_1}^{b'c'} = s_{ab'}^{c'b'} \varepsilon_{cc_1aa_1}, \quad s_{a'b} = \pm s_{ba'}$$ \hspace{1cm} (16)

and in the case of the odd metric index q, the decomposition

$$s_{aa_1}^{b'c'} = 2 s_{a[a'}^{b']}, \quad s_{a'b} = \pm \delta_{a}^{c}$$ \hspace{1cm} (17)

can be obtained. The tensor $s_{aa_1}^{b'c'}$ is defined by means of the tensor Hermitian involution $S^a_\alpha^{\beta'} = (1/4) \eta^{aa_1} \eta^\beta_{bb_1} s_{aa_1}^{b'c'}$. As an indicative example, in the special basis, the inclusion $\mathbb{R}^6_{(2,4)} \subset \mathbb{C}R^6$ is considered.

In the conclusion of the given chapter, generalized connecting Norden operators are entered as analytical functions of the coordinates of a point z^γ so that the equality

$$g^{\alpha\beta}(z^\gamma) = 1/4 \cdot \eta^\alpha_{aa_1}(z^\gamma) \eta^\beta_{bb_1}(z^\gamma) \varepsilon^{a_1b_1}(z^\gamma)$$ \hspace{1cm} (18)
is executed. This completes the construction of the required spinor formalism for the space $\mathbb{C}V^6$.

It should be noted that the spinor formalism is largely similar to the 4-dimensional Penrose spinor formalism in which the pseudo-Riemannian space $V^4_{(1,3)}$ is the base of the bundles $\mathbb{C}^2(V^4_{(1,3)})$ and $\mathbb{C}^4(V^4_{(1,3)})$. At Penrose, a vector in $\mathbb{C}^2(V^4_{(1,3)})$ is called spinor, and a vector in $\mathbb{C}^4(V^4_{(1,3)})$ is called twistor. The main feature of twistors of this thesis is that twistor is a vector of the bundle $\mathbb{C}^4(V^6_{(2,4)})$ that gives new results. This can lead to a new interpretation of the twistor physical exegesis which is described in the monography [23].

1.3 Third chapter

The third chapter is devoted to the introduction of connections in the bundles with the complex base $\mathbb{C}V^6$. This procedure is carried out according to [15], [19], [23]. The real and complex representations are taken from [4], [7]. As the base, the complex analytic Riemannian space $\mathbb{C}V^6$ is considered. To carry out this procedure, we consider a complex analytic quadric $\mathbb{C}Q^6_6$ embedded in the projective space $\mathbb{C}P^7$.

\[G_{AB} X^A X^B = 0, \]
(19)

where $(A, B, ..., = 1, 8)$. A manifold of maximal planar generators $\mathbb{C}P^3$ of one of the two families is a complex six-dimensional manifold. Next, we consider harmonic normalization which in local coordinates has the form

\[X^a = X^a(u^\Lambda), \quad Y_b = Y_b(u^\Lambda), \]
(20)

where u^Λ are twelve real parameters $(\Lambda, \Psi, ..., = 1, 12)$. The first derivation equation of this normalized family has the form

\[\nabla_\Lambda X_a = Y^b M_{\Lambda ab}, \quad M_{\Lambda ab} = -M_{\Lambda ba}. \]
(21)

For the transfer of binary indices, we use quadrivector ε_{abcd} which is skew-symmetric in all its indices

\[M_{\Lambda ab} = \frac{1}{2} M_{\Lambda cd} \varepsilon_{abcd}. \]
(22)

In addition, by means of the operators $M_{\Lambda ab}$, a bivector of $\Lambda^2 \mathbb{C}^4$ is associated with a vector of the tangent bundle

\[V^{ab} = M_{\Lambda ab} V^\Lambda. \]
(23)

This defines the metric tensor

\[G_{\Lambda\Psi} = \frac{1}{4} (M_{\Lambda ab} M_{\Psi cd} \varepsilon_{abcd} + \bar{M}_{\Lambda a'b'} \bar{M}_{\Psi c'd'} \varepsilon_{a'b'c'd'}) \]
(24)

in the tangent bundle. Thus, the base will become the 12-dimensional pseudo-Riemannian space $V^{12}_{(6,6)}$ (the real representation of the manifold of the maximal planar generators) with the metric tensor $G_{\Lambda\Psi}$ and the complex structure $f_{\Lambda\Psi}$ satisfying the following relation

\[\triangle_{\Lambda \Psi} = \frac{1}{2} (\delta_{\Lambda \Psi} + i f_{\Lambda \Psi}) = \frac{1}{2} M_{\Lambda ab} M_{\Psi ab} \]
(25)
and defined on this manifold. As a fiber of A^C, we consider the space \mathbb{C}^4 defined by the four basic points X_a of a planar generator. The complex representation of the space $V_{(6,6)}^{12}$ is the space $\mathbb{C}V^6$ so that a mapping between the tangent spaces is done with the help of Neifeld operators m_α^Λ. In this case, the connection coefficients are determined by the equation

$$\nabla_\alpha m_\alpha^\Lambda = 0, \quad \bar{\nabla}_{\alpha'} \bar{m}_{\alpha'}^\Lambda = 0. \quad (26)$$

Then as the complex covariant derivative, we can take

$$\nabla_\alpha = m_\alpha^\Lambda \nabla_\Lambda, \quad \bar{\nabla}_{\alpha'} = \bar{m}_{\alpha'}^\Lambda \nabla_\Lambda. \quad (27)$$

Then in this chapter, the properties of the torsion-free Riemannian connection, prolonged on fibers of A^C, are established. It turns out, this prolongation is uniquely given by the requirement of the covariant constancy of the quadrivector ε_{abcd}. Then using the inclusion operators, we can come to the real connection, but it is necessary to require the covariant constancy of the Hermitian involution.

This allows us to consider the conformally invariant bitwistor equation

$$\nabla^{(d} X^{a)} = 0. \quad (28)$$

Its solutions are associated with Rosenfeld null-pairs which play an important role in further studies.

1.4 Fourth chapter

The fourth chapter is devoted to the classification of Riemann curvature tensor of the 6-dimensional (pseudo-)Riemannian spaces. In addition, the properties of bivectors of these spaces are investigated in this chapter.

We will show how to simplify the tensor record of the basic identities for the curvature tensor using the spinor formalism specified in the first chapter. In addition, it is shown that the classification of such a tensor can be reduced to the classification of curvature spin-tensor of the space \mathbb{C}^4 such that

$$R_{\alpha\beta\gamma\delta} = A_{\alpha\beta a}^b A_{\gamma\delta c}^d R_{b}^{a} c^d. \quad (29)$$

In this case, the curvature tensor satisfies the Bianchi identity

$$R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0 \quad (30)$$

which have the spinor representation

$$R_{\epsilon}^{d} s = -\frac{1}{8} R_{\delta}^{d} s. \quad (31)$$

As we can see, instead of the 105 equations from (30), in (31) the 16 ones only can be considered, 15 of which are significant. In the same way, we can construct the spinor analogue of the Weyl tensor

$$C_{\alpha\beta\gamma\delta} = A_{\alpha\beta a}^b A_{\gamma\delta c}^d C_{b}^{a} c^d. \quad (32)$$
As a corollary from this theorem, the following fact is very interesting. An arbitrary simple isotropic bivector of the space $\Lambda^2\mathbb{C}^6$ defines a vector of the space \mathbb{C}^4 up to a factor. This will allow to construct the geometric interpretation of isotropic twistor in the space $\mathbb{R}^{6(2,4)}$. This interpretation in many respects similar to the exegesis of a spinor in the space $\mathbb{R}^{4(1,3)}$: flag consisted of flagpole and flag-plane.

Finally, it is argued that in the space $\mathbb{R}^{6(p,q)}$ of the even index q, any bivector can be reduced to canonical form in some basis

$$\frac{1}{2}R_{\alpha\beta}X^\alpha Y^\beta = R_{16}X^{[1}Y^{6]} + R_{23}X^{[3}Y^{3]} + R_{45}X^{[4}Y^{5]}.$$ \hfill (33)

1.5 Fifth chapter

In the last chapter, the 8-dimensional complex space \mathbb{T}^2 constructs as the direct sum $\mathbb{C}^4 \oplus \mathbb{C}^*\mathbb{C}^4$ using a vector X^a and a covector Y^b from fibers of the bundles $A^\mathbb{C}$ and $A^{\mathbb{C}^*}$ respectively

$$X^A := (X^a, Y^b)$$ \hfill (34)

and $X^A \in \mathbb{T}^2$. In this case, X^a and Y^b satisfy the following system

$$\begin{cases} X^a = \dot{X}^a - ir^{ab}Y^b, \\ Y^b = \dot{Y}^b, \end{cases}$$ \hfill (35)

where r^{ab} are the coordinates of a bivector of $\Lambda^2\mathbb{C}\mathbb{R}^6$, and \dot{X}^a, \dot{Y}^b are the values of X^a, Y^b at the point O. In fact, the system (35) can be regarded as bitwistor equation solutions, and X^a, Y^b will be its particular solutions. Considering the locus of points, for which $X^a = 0$, we can come to Rosenfeld null-pairs and then we can formulate the following assertion.

Theorem 1. (The triality principle for two B-cylinders).

In the projective space \mathbb{CP}_7, there are two quadrics (two B-cylinders) with the following main properties:

1. The planar generator \mathbb{CP}_3 of a one quadric will uniquely define the point R on the other quadric, and this mapping will be bijective.

2. The planar generator \mathbb{CP}_2 of a one quadric will uniquely define the point R on the other quadric. But the point R of the second quadric can be associated to the manifold of planar generators \mathbb{CP}_2 belonging to the same planar generator \mathbb{CP}_3 of the first quadric.

3. The rectilinear generator \mathbb{CP}_1 of a one quadric will uniquely define the rectilinear generator \mathbb{CP}_1 of the other quadric, and this mapping will be bijective. And all the rectilinear generators belonging to the same planar generator \mathbb{CP}_3 of the first quadric define the beam centered at R belonging to the second quadric.

This allows us to introduce connecting operators η^A_{KL} such that

$$r^A = \frac{1}{4}\eta^A_{KL}R^{KL},$$ \hfill (36)
where \(r^A \) are the coordinates of a vector of \(\mathbb{CR}^8 \), and \(R_{KL}^{AB} \) are the coordinates of a spin-tensor of \(\mathbb{CR}^8 \). Therefore, the operators \(\eta^A_{KL} \) define the full Clifford algebra since this operators will satisfy the Clifford equation

\[
G_{AB}\delta^K_L = \eta_{AK}R_{LB} + \eta_{BK}R_{LA}.
\]

(37)

In this case, we will have the two metric tensors

\[
\varepsilon_{KLMN} = \eta^A_{KL}\eta_{AMN}, \quad G_{AB} = \frac{1}{4}\eta^A_{KL}\eta^B_{MN}\varepsilon_{KM}\varepsilon_{LN}, \quad \varepsilon_{(KL)(MN)} = \frac{1}{2}\varepsilon_{KL}\varepsilon_{MN}.
\]

(38)

With the first tensor we can raise and lower a pair of indices, and with the second we can make the specified operation with a single index. This imposes some severe constraints on the connecting operators such as

\[
\eta^A_{(MN)} = \frac{1}{8}\eta^A_{KL}\varepsilon^{KL}\varepsilon_{MN}.
\]

(39)

Such the connecting operators will determine *structural constants* of the octonion algebra. Later on, this will lead to the double covering \(\text{Spin}(8, \mathbb{C})/\{\pm 1\} \cong \text{SO}(8, \mathbb{C}) \). Therefore, the operators \(\eta^A_{KL} \) will be very similar to the connecting Norden operators \(\eta^a_{kl} \) in their properties.

1.6 Conclusion

It should be noted that at the end of the thesis, Appendix is available in which all the necessary algebraic calculations are presented.

The main results of the dissertation were published in the press:

1. "О бивекторах 6-мерных римановых пространств" [O bivektorakh 6-mernyx rimanovykh prostranstv]. УТИС [UTIS], Уфа [Ufa], 1996, с. 59-61 [pp. 59-61];
2. "О структуре тензора кривизны 6-мерных римановых пространств" [O structure tenzorakrivizny 6-mernyx rimanovykh prostranstv]. Вестник БГУ [Vestnik BGU], Уфа [Ufa], N2(I), 1996, с. 44-47 [pp. 44-47];
3. "О твисторных расслоениях с 6-мерной базой" [O tvistornykh rassloeniyakh s 6-mernoj basoi]. МГС [MGS], Казань [Kazan'], 1997, с. 13 [p. 13];
4. "О геометрии битвисторов" [O geometrii bitvistorov]. РКСА [RKSA], Уфа [Ufa], 1997, c. 85-87 [pp. 85-87],

and reported at conferences:

1. "Ленинские горы - 95" [Leninskie gory - 95], г. Москва [Moskva];
2. "Чебышевские чтения - 96" [Chebyshevskie chteniya - 96], г. Москва [Moskva];
3. "Лобачевские чтения - 97" [Lobachevskie chteniya - 97], г. Казань [Kazan'];
4. many conferences and seminars in Ufa and seminars, held in Kazan (KSU, Department of Geometry).

The author is grateful for the help in the preparation of the thesis to his supervisor Assoc. Prof. È. G. Neifeld and the chair of geometry at KSU (Head of Department Professor B. N. Shapukov).
1.7 Introduction for the English edition

The Ph.D. thesis defence has taken place at 14:00, on December, 25th, 1997 at Kazan State University at the session of Dissertation Council (K 053.29.05) at Kazan State University located to the address: 18 Kremlevskaya str., Kazan, 420008, Russia. The Russian edition (on the pp. 90-210) contains the original variant of the Ph. D. thesis with the corrected typing errors and the original numbering of the pages (pp. 1-121). Besides, two figures which have been lost at the thesis printing are included in the English edition. English translation of the Ph. D. thesis was executed in 2012. Transliteration on Cyrillic is given according to the scheme MR(new).

Note that the constructed formalism for n=8 is initial induction step for the construction of alternative-elastic group algebras for n mod 8 =0 [3]. The spinor formalism for n=8 gives the opportunity to construct Lie operator analogues for the spinor (and pair-spin) bundle with the base: the space-time manifold and to transfer the metric into pair-spin fibers with the same base [1], [2]. In addition, the spinor formalism allows us to construct hypercomplex Cayley-Dickson algebra generator in the explicit form [3]. Moreover, the spinor formalism for even n can be constructed with the help of the particular solutions of the reduced Clifford equation [1], [2]. Physical applications of this theory for n=6 can be found in [1].

References

[1] К.В. Андреев [K.V. Andreev]: О спинорном формализме при четной размерности базового пространства [O spinornom formalizme pri chetnoi razmernosti bazovogo prostranstva]. ВИНИТИ - 298-В-11 [VINITI-298-V-11], июнь 2011 [iun’ 2011]. [in Russian: On the spinor formalism for the base space of even dimension]

[2] K.V. Andreev. On the spinor formalism for even n. [arXiv:1202.0941v2].

[3] K.V. Andreev. On the metric hypercomplex group alternative-elastic algebras for n mod 8 = 0. [arXiv:1110.4737v1].

[4] K. Scharnhorst and J.-W. van Holten: Nonlinear Bogolyubov-Valatin transformations: 2 modes. Annals of Physics (New York), 326(2011)2868-2933 [arXiv:1002.2737v3 NIKHEF preprint NIKHEF/2010-005] (DOI: 10.1016/j.aop.2011.05.001).
2 Basic identities and formulas

This chapter is devoted to the study of algebraic properties of the double covering

\[SO(6, \mathbb{C}) \cong SL(4, \mathbb{C})/\{ \pm 1 \}. \]

On the basis of this isomorphism the elementary algebraic framework necessary for further investigations is constructed. To do this, various vector bundles with the base \(CV^6(\mathbb{C}^\mathbb{R}) \) discuss. The tangent bundle \(T \mathbb{C} \mathbb{R}_6 \) which contains fibers isomorphic to \(\mathbb{C} \mathbb{R}^6 \) is isomorphic to \(\Lambda^2 \) with fibers isomorphic to \(\Lambda^2 \mathbb{C}^4 \) that follows from the existence of the connecting Norden operators

\[r^\alpha = \frac{1}{2} \eta^\alpha_{aa_1} R^{aa_1}, \]

where \((\alpha, \beta, \ldots = 1, 2, 3, 4, 5, 6; a_1, b_1, a, b, \ldots = 1, 2, 3, 4)\). In addition, we consider the bundle \(A^\mathbb{C} \) with fibers isomorphic to \(\mathbb{C}^4 \) and the base \(CV^6(\mathbb{C}^\mathbb{R}) \). From this, the existence of the operators \(A_{\alpha \beta}^{ab} \)

\[T_{\alpha \beta} = A_{\alpha \beta}^{ab} T_{cd}^{d}, \quad T_a^a = 0, \quad T_{\alpha \beta} = -T_{\alpha \beta} \]

will imply. As follows from the results of the penultimate subsection of this chapter considering infinitesimal transformations, the resulting operators are an algebraic realization of the isomorphism between the Lie algebras

\[so(6, \mathbb{C}) \cong sl(4, \mathbb{C}). \]

Then we will study real inclusions with the help of the inclusion operator \(H_\alpha^\alpha \) and the involution \(S_\alpha^\beta \). The conjugation operation induced in the bundle \(A^\mathbb{C} \) is divided into the two classes. In the first case (the space \(V^6(\mathbb{R}) \) has the metric of the even index \(q \)), the conjugation is carried out by means of Hermitian polarity tensor

\[s_{aa'} := s_{aa'} X_a. \]

In the second case (\(q \) is odd), the conjugation is carried out by means of Hermitian involution tensor \(s_{a a'} \)

\[\bar{X}_{a'} := s_{a a'} X_a. \]

The second subsection is just devoted to the elucidation of this fact which is proved by using the theorems from the monography [23].

2.1 Bivectors of the space \(\Lambda^2 \mathbb{C}^4(\Lambda^2 \mathbb{R}^4) \)

2.1.1 Norden operators

It is known that one can establish the isomorphism between the complex Euclidean space \(\mathbb{C} \mathbb{R}^6 (\mathbb{R}^6_{(3,3)}) \) and the bivector space \(\Lambda^2 \mathbb{C}^4(\Lambda^2 \mathbb{R}^4) \). This isomorphism is determined by connecting Norden operators [17] satisfying the following conditions

\[\frac{1}{2} \eta^\alpha_{aa_1} \eta^\beta_{bb_1} = \delta_{\alpha \beta}, \quad \eta^\alpha_{aa_1} \eta^\beta = \delta_{aa_1} \delta_{bb_1} := 2 \delta_{[a} [b \delta_{a_1} b_1] \]

so that the following equations

\[r^\alpha = 1/2 \cdot \eta^\alpha_{aa_1} R^{aa_1}, \quad R^{aa_1} = \eta^a_{aa_1} r^a, \]

where \((\alpha, \beta, \ldots = 1, 2, 3, 4, 5, 6; a_1, b_1, a, b, e, f, k, l, m, n, \ldots = 1, 2, 3, 4; i, j, g, h = 1, 2, 3, 4, 5, 6)\) and

\[g^{\alpha \beta} = 1/4 \cdot \eta^\alpha_{aa_1} \eta^\beta \epsilon_{aa_1} b_1, \quad \epsilon_{aa_1} b_1 = \eta^\alpha_{aa_1} \eta^\beta b_1 g^{\alpha \beta}, \]

\[g_{\alpha \beta} = 1/4 \cdot \eta^\alpha_{aa_1} \eta^\beta b_1 \epsilon_{aa_1} b_1, \quad \epsilon_{aa_1} b_1 = \eta^\alpha_{aa_1} \eta^\beta b_1 g_{\alpha \beta} \]

(42)
are executed. In this case, \(R^{a a_1} \) are the coordinates of a bivector of the space \(\Lambda^2 \mathbb{C}^4 \), and \(r^a \) are the coordinates of its image from \(\mathbb{CR}^6 \); \(g^{a \beta} \) is the metric tensor of \(\mathbb{CR}^6 \), its image is the spin-tensor (quadrivector) \(\varepsilon_{a a_1 b b_1} \) antisymmetric in all indices.

Note 1. Note that with the help of the metric tensor \(g_{\alpha \beta} \), defined on the space \(\mathbb{CR}^6 \), we can raise and lower single indexes. Using the metric quadrivector \(\varepsilon_{a a_1 b b_1} \), defined in the bundle \(\Lambda \), we can raise and lower pair skew-symmetric indices only, and there is no a metric spin-tensor with which one could do a similar operation with single indexes.

It follows that there are the operators \(A_{\alpha \beta d}^c \) such that

\[
T_{\alpha \beta} = A_{\alpha \beta d}^c T_c^d, \quad T_k^k = 0, \quad T_{\alpha \beta} = -T_{\alpha \beta}.
\]

We will give a proof of this fact.

Proof. For the Levi-Civita symbol, we have

\[
\varepsilon^{abcd} \varepsilon_{klmn} = 24 \delta_k^a \delta_l^b \delta_m^c \delta_n^d, \quad \varepsilon^{abcd} \varepsilon_{klmd} = 6 \delta_k^a \delta_l^b \delta_m^c \delta_n^d, \quad \varepsilon^{abcd} \varepsilon_{klcd} = 4 \delta_k^a \delta_l^b, \quad \varepsilon^{abcd} \varepsilon_{abcd} = 24, \quad \delta_{ab} := 2 \delta_{[a}^d \delta_{b]}^b.
\]

Moreover, since \(\varepsilon^{abcd} \) is the metric spin-tensor, it follows [23 v.2, p. 65, eq. (6.2.19)(eng)] that

\[
R_{ab} = \frac{1}{2} \varepsilon_{abcd} R^{cd}.
\]

Then, taking into account the formulas (41) and (42), for the tensor \(T_{\alpha \beta} \), we have

\[
T_{[\alpha \beta]} = 1/4 \cdot \eta_{\alpha a a_1} \eta_{\beta b b_1} \cdot 3/2 (T_{a [a_1 b b_1]} - T_{[b b_1 a] a_1}) = 1/4 \eta_{\alpha a a_1} \eta_{\beta b b_1} - 1/2 (T_{k d} \varepsilon_{a d b b_1} - T_{k d} \varepsilon_{a d b b_1}) = 1/2 \eta_{\alpha a} \eta_{\beta b} \varepsilon_{a d b b_1} \cdot 1/4 (T_{k d} - T_{k d}).
\]

Therefore, we must put

\[
A_{\alpha \beta d}^c := \frac{1}{2} \eta_{\alpha a} \eta_{\beta b} \varepsilon_{d a b b_1}, \quad T_c^d := 1/4 (T_{k d} - T_{k d}),
\]

to obtain the formula (43).

The most important relations for the important operators \(A_{\alpha \beta b}^a \) have the form

\[
A_{\alpha \beta d}^c A_{a b}^{\beta *} = \frac{1}{2} \delta_{a c} \delta_{b d} - 2 \delta_{a d} \delta_{b c}, \quad A_{\alpha \beta d}^c A_{a \mu}^{\beta} = \frac{1}{2} \delta_{a c} \delta_{\mu d}, \quad A_{\alpha \beta d}^c A_{a \gamma}^{\beta} = \delta_{a c} \eta_{\gamma d} + \frac{1}{3} \delta_{\gamma c} \delta_{a d} - \frac{1}{3} \delta_{d c} \delta_{a \gamma} + \frac{1}{2} \eta_{a}^{\gamma d} \delta_{\gamma c} + \frac{1}{2} \eta_{a}^{\gamma d} \delta_{\gamma c} - 1/4 \eta_{a}^{\gamma d} \delta_{\gamma c} + \frac{1}{2} \eta_{a}^{\gamma d}, \quad T_{m n} = \frac{1}{2} A_{\alpha \beta m}^{n} T_{\beta a}, \quad T_{\beta a} = -T_{\alpha \beta}.
\]

The proof of these formulas is rather cumbersome, and therefore it is given in Appendix (472)-(476).

It should be noted that the connecting Norden operators define the Clifford algebra.
Proof. Consider the identity
\[
\eta(\alpha_{ab}\eta_{\beta}^{cd}) = -\eta(\alpha_{cb}\eta_{\beta^{ad}}) = \eta(\alpha_{ab}\eta_{\beta}^{cd}),
\]
the contraction of which with \(\varepsilon_{bcdf}\) gives the relations
\[
\eta(\alpha_{ab}\eta_{\beta}^{cd})\varepsilon_{bcdf} = \frac{1}{24}\eta(\alpha_{kl}\eta_{\beta}^{mn})\varepsilon_{klmn}\varepsilon_{abcd}\varepsilon_{bcdf},
\]
where \(g_{\alpha\beta}\) is the same as in the formulas (42). We define
\[
\gamma_{\lambda} := \sqrt{2}\left(\begin{array}{c}
0 \\
g_{\alpha\beta}
\end{array}\right),
\]
where \(\lambda, \psi, ..., = 1, 6\). The operators \(\gamma_{\lambda}\) satisfy the identity
\[
\gamma_{\lambda}\gamma_{\psi} + \gamma_{\psi}\gamma_{\lambda} = 2g_{\lambda\psi}I
\]
which follows from the last equation of (49). The equality (51) is the Clifford equation [23, v. 2, p. 441, eq. (51)(eng)] such that \(\gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}, \gamma_{6}\) can be represented by means of complex matrixes of dimension \(8 \times 8\), \(g_{\alpha\beta}\) is the metric tensor (42), and \(I\) is the identity operator.

The opposite is true. Suppose we have the equation (51). Then we can construct the element \(\gamma_{7}\)
\[
\gamma_{7} := \gamma_{1}\gamma_{2}\gamma_{3}\gamma_{4}\gamma_{5}\gamma_{6}, \quad (\gamma_{7})^{2} = I.
\]
In this case, since \(n = 6\) (even), \(\gamma_{7}\) anticommutes with every element \(\gamma_{\alpha}\) (\(\alpha = 1, 6\)). This means that for \(\gamma_{\alpha}\), the representation (50) is possible, and therefore the identity (48) is executed.

It follows that the connecting Norden operators determine the full Clifford algebra which is formed by the finite sums
\[
AI + B^{\lambda}\gamma_{\lambda} + C^{\lambda\mu}\gamma_{\lambda}\gamma_{\mu} + ...
\]
Dimension of this algebra is equal to \(2^{6} = 64\). Such the algebra can be represented by the full matrix algebra, elements of that have the dimension \(8 \times 8\) [23, v. 2, p. 440-464(eng)].

2.1.2 Conjugation in the bundle \(A^{C}(S)\)

In this subsection the statement concerning an inclusion of real spaces in the complex one is formulated, the proof is given in the next subsection.

Consider the 6-dimensional (pseudo-)Euclidean space \(R^{6}_{(p,q)}\) embedded in \(C^{6}\), the tangent space \(\tau^{C}(R^{6}_{(p,q)})\) of which we will consider as a real subspace in \(C^{4}\). This will lead to the vector bundle \(A^{C}(S)\) with fibers isomorphic to \(C^{4}\). Besides, the bundle \(A^{C}(S)\) will be equipped with structure \(s\). We need to clarify the nature of this structure. To do this, we will consider a simple bivector of the \(\tau^{C}(\tau^{R})\). A
necessary and sufficient condition of the simplicity for this bivector is expressed by the formula
\[R_{ab} = X^a Y^b - X^b Y^a, \quad X^a Y^a \in \mathbb{C}^4, \]
where \(i, j = 1, 6; a, b, c, d, k, l, m, n, \ldots = 1, 4. \)

Note 2. Based on the formula (41), a simple bivector of the space \(\Lambda^2 \mathbb{C}^4 \) is uniquely associated with an isotropic vector of the space \(\mathbb{C} \mathbb{R}^6 \), and this mapping will be bijective. This follows from the relation
\[0 = \varepsilon_{abcd} X^a Y^b X^c Y^d = \frac{1}{4} \varepsilon_{abcd} R_{ab} R_{cd} = \frac{1}{2} \eta_{\alpha \beta} r^\alpha r^\beta = r^\alpha r_\alpha = 0. \]

Further, any bivector should be self-conjugated with respect to the spin-tensor \(s_{aa_1 b_1} \) (the notation introduced according to [23])
\[s_{aa_1 b_1} = g_{ij} \eta^{i b_1} \eta^{j a_1}, \quad g_{ij} = 1/4 \cdot \eta_{i b_1} \eta_{j a_1}, \]
where \(g_{ij} \) is the metric tensor [10]. The last equation expresses the Hermitian symmetry of the spin-tensor \(s \). Such the tensor was introduced in [10]. In the case of the metric of the even index, the spin-tensor \(s_{aa_1 b_1} \) has the form
\[s_{aa_1 b_1} = s_{cb} s_{c}^{1 a_1} \varepsilon_{c_1 a a_1}, \quad s_{aa_1} = \pm s_{ba_1}, \]
and in the case of the odd index, we obtain
\[s_{aa_1 b_1} = 2 s_{[a b} s_{a_1]} b_1, \quad s_{a} b^c = \pm \delta_{a}^c. \]

If \(R_{ab} \) is simple and belongs to the tangent space \(\tau^R \) then for the vectors, defining the bivector, in the case of the even index metric, the identities [23] v. 2, p. 63, eq. (6.2.13)(eng)
\[X_a X_{a'} s^{aa'} = 0, \quad Y_a Y_{a'} s^{aa'} = 0, \quad X_a Y_{a'} s^{aa'} = 0 \]
and in the case of the odd index metric, the identities
\[X_{a'} X^a s_{a} a' = 0, \quad X_{a'} Y^a s_{a} a' = 0, \quad Y_{a'} Y^a s_{a} a' = 0 \]
are executed. Thus, the structure \(s \) of the bundle \(A^c(S) \) is determined. In the case of the even index metric, the spin-tensor \(s_{kk'} \) fulfills a role of the metric spin-tensor with which the help we can raise and lower single indexes, and in the case of the odd index metric, with the help of the spin-tensor \(s_{k} k' \), the identification between the primed (complex conjugate) and unprimed spaces is carried out. The proof of this assertion is given in the next section.
2.2 Spinor representation of special form tensors. The covering corresponding to this decomposition

2.2.1 Theorem on the double covering \(SL(4, \mathbb{C})/\{\pm 1\} \cong SO(6, \mathbb{C}) \)

Before the proof, we need to more thoroughly understand with the double covering \(SL(4, \mathbb{C})/\{\pm 1\} \cong SO(6, \mathbb{C}) \). Below, the explicit representation of this covering by means of the connecting Norden operators \(\eta_{a}^{ab} \) will be obtained. Using this representation, it is easier to understand how the real inclusion \(\mathbb{R}^{(2,4)} \subset \mathbb{C}^{6} \) is occurs and hence how to construct the explicit representation of the involution operator in the spinor form. In addition, the results of this section will be useful in the study of the bivector structure of the space \(\mathbb{C}^{6} \).

By \(K_{\alpha}^{\beta} \), we denote a transformation form the group \(SO(6, \mathbb{C}) \), and let \(S_{a}^{b} \) be a transformation from the group \(SL(4, \mathbb{C}) \). Then the following theorem will be true.

Theorem 1. Each transformation \(K_{a}^{\beta} \) corresponds to two and only two transformations \(\pm S_{a}^{b}(\pm S_{ab}) \) such that \(\det S_{a}^{d} = 1 \) (or \(\det S_{cd} = 1 \)). And on the contrary, each transformation \(\pm S_{a}^{b}(\pm S_{ab}) \) corresponds to one and only one transformation \(K_{a}^{\beta} \).

Proof. Suppose, that there are the two transformations \(\pm S_{a}^{b}(\pm S_{ab}) \) such that

\[
\varepsilon := \varepsilon_{1234},
\]

\[
S_{a}^{b}S_{a_{1}}^{c_{1}}S_{c_{1}}^{d_{1}}\varepsilon_{bb_{1}dd_{1}} = \varepsilon_{aa_{1}cc_{1}} (S_{ab}S_{a_{1}b_{1}}S_{cd}S_{c_{1}d_{1}}\varepsilon_{bb_{1}dd_{1}} = \varepsilon^{-2}\varepsilon_{aa_{1}cc_{1}}) \quad \text{(61)}
\]

The last equation means that \(\det S_{a}^{d} = 1 \) (or \(\det S_{cd} = 1 \)). Define

\[
K_{a}^{\beta} := \frac{1}{4} \eta_{a}^{ab}\eta_{cd}^{\varepsilon_{2}} \cdot 2\varepsilon_{S_{a}^{b}S_{c}^{d}c_{d}} (K_{a}^{\beta} := \frac{1}{4} \eta_{a}^{ab}\eta_{cd}^{\varepsilon_{2}} \cdot \varepsilon_{S_{a}^{b}S_{c}^{d}c_{d}} \varepsilon_{kcd}) \quad \text{(62)}
\]

\[
\varepsilon := \pm 1.
\]

Then on the basis of (61) and (62), we will obtain

\[
K_{a}^{\beta} K_{\beta}^{\delta} g_{ab} = g_{\alpha\gamma} \quad \text{(63)}
\]

Thus, from (61), the equation (63) will follow.

If now, on the contrary, \(K_{a}^{\beta} \) of the form (63) is set. Define

\[
K_{a_{1}b_{1}}^{bb_{1}} := \eta^{a_{1}a}_{\alpha}, \eta^{b_{1}b}_{\beta} K_{a}^{\beta} \quad \text{(64)}
\]

Thus, (63) can be copied as

\[
\frac{1}{4} K_{a_{1}b_{1}}^{bb_{1}} K_{\alpha}^{\beta} \varepsilon_{bb_{1}dd_{1}} = \varepsilon_{aa_{1}cc_{1}} \quad \text{(65)}
\]

The formula (65) means that the transformation \(K_{a_{1}b_{1}}^{bb_{1}} \) should be regular, i.e., \(\forall r^{aa_{1}} \neq 0 \Rightarrow K_{a_{1}b_{1}r^{aa_{1}}} \neq 0, K_{a_{1}b_{1}r_{bb_{1}}} \neq 0. \)

Proof. Indeed, we will assume the contrary: \(\exists r^{aa_{1}} \neq 0 \) and \(K_{a_{1}b_{1}r^{aa_{1}}} = 0 \). It will mean that the transformation \(K_{a_{1}b_{1}}^{bb_{1}} \) is singular

\[
0 = r_{bb_{1}} \cdot \frac{1}{4} K_{a_{1}b_{1}}^{bb_{1}} K_{\alpha}^{\beta} \varepsilon_{bb_{1}dd_{1}} = \varepsilon_{aa_{1}cc_{1}} r^{aa_{1}} \quad \text{(66)}
\]

From this, the equality \(r^{aa_{1}} = 0 \) will follows. Contradiction. □
For further calculations we need the following lemma.

Lemma 1. Choose two non-zero vectors $r_1^\alpha, r_2^\beta \in \mathbb{C}_x$, where x is an arbitrary point at the base: the complex Euclidean space \mathbb{C}^6 equipped with the metric tensor $g_{\alpha\beta}$. Then the three following conditions are equivalent:

1. $r_1^\alpha (r_1)_\alpha = 0$, $r_2^\alpha (r_2)_\alpha = 0$, $r_1^\alpha (r_2)_\alpha = 0$;
2. $r_1^\alpha = \frac{1}{2} \eta^\alpha_{\alpha_1}X^aY^{\alpha_1}$, $r_2^\alpha = \frac{1}{2} \eta^\alpha_{\alpha_1}X^aZ^{\alpha_1}$;
3. $(r_1)_\alpha = \frac{1}{2} \eta_{\alpha\alpha_1}X_\alpha \tilde{Y}_{\alpha_1}$, $(r_2)_\alpha = \frac{1}{2} \eta_{\alpha\alpha_1}X_\alpha \tilde{Z}_{\alpha_1}$;

where the vectors X^a, Y^a, Z^a belong to the fiber \mathbb{C}_x^4 of the bundle A^C, and $\tilde{X}_\alpha, \tilde{Y}_\alpha, \tilde{Z}_\alpha$ are covectors of the dual fiber.

Proof. 1) \Rightarrow 2).
Consider the first equation of Condition 1). and define

\[r_1^{\alpha a_1} := \eta_{\alpha a_1} r_1^\alpha, \]

(67)
and then on the basis of (42), we obtain

\[
\begin{align*}
r_1^\alpha (r_1)_\alpha &= g_{\alpha\beta} r_1^\alpha r_1^\beta = \frac{1}{2} \eta_{\alpha\alpha_1} \eta_{\beta\beta_1} e^{\alpha_1\beta_1} \varepsilon_{\alpha_1\beta_1\alpha_2\beta_2} \frac{1}{2} \eta_{\alpha\alpha_4} r_1^{\alpha_4} \frac{1}{2} \eta_{\beta\beta_4} r_1^{\beta_4} \\
&= \frac{1}{2} r_1^{\alpha a_1} \delta_{[a_1}^c \delta_{a_2]}^d a_1 r_1^{[a_2] \delta_{d_k]}^c \delta_{k_k]}^c \varepsilon_{a_1\alpha_1\alpha_2\beta_2} = \frac{1}{2} r_1^{\alpha a_1} (r_1)_{a_1} = 0.
\end{align*}
\]

(68)
Define

\[p f(r) := r^\alpha r_\alpha = \frac{1}{2} r^{a_1 a_1} r_{a_1}. \]

(69)
Then from (49), the equalities

\[r^{ab} r_{bc} = -p f(r) \delta^d_c \iff 3 r^{a[b} r^{c]} = p f(r) \varepsilon^{abcd} \]

(70)
will follow, and for the vector $r_1^{\alpha a_1}$, we obtain

\[r_1^{ab} r_{cd} = r_1^{ac} r_{bd} - r_1^{bc} r_{ad}. \]

(71)
Since, r_1^{cd} is a non-zero bivector then some covectors A_c, B_d, that $r_1^{cd} A_c B_d \neq 0$, $r_1^{cd} A_c B_d \in \mathbb{R}$, exist. Put

\[P^a := \sqrt{2} r_1^{ak} A_k / \sqrt{(r_1^{cd} A_c B_d)}, \quad Q^a := \sqrt{2} r_1^{bk} B_k / \sqrt{(r_1^{cd} A_c B_d)}. \]

(72)
Then from (71), the equality

\[r_1^{ab} = P^{[a} Q^{b]} \]

(73)
will follow. In this case, P^a, Q^a are linearly independent. It is also possible to obtain the expansion for r_2^{ab}

\[r_2^{ab} = R^{[a} S^{b]} \]

(74)
from the second equation of Condition 1). such that the vectors R^a, S^a will be also linearly independent. From the third equation of Condition 3). implies the following relation

\[0 = r_1^\alpha (r_2)_\alpha = \frac{1}{4} \varepsilon_{abcd} r_1^{ab} r_2^{cd} = \frac{1}{4} \varepsilon_{abcd} P^a Q^b R^c S^d = 0. \]

(75)
This means that the vectors P^a, Q^b, R^c, S^d are linearly dependent

$$\alpha P^a + \beta Q^a + \gamma R^a + \delta S^a = 0, \quad |\alpha| + |\beta| + |\gamma| + |\delta| \neq 0. \quad (76)$$

In this case, either $\alpha \neq 0$ or $\beta \neq 0$. Otherwise, $(\alpha = \beta = 0)$, and the vectors R^c, S^c would be linearly dependent. For definiteness, let $\alpha \neq 0$. Then again, either $\gamma \neq 0$ or $\delta \neq 0$. Put

$$X^a := P^a + (\beta/\alpha)Q^a = -(\gamma/\alpha)R^a + (\delta/\alpha)S^a, \quad Y^a := Q^a, \quad Z^a := \begin{cases} (\alpha/\delta)R^a, & \delta \neq 0, \gamma = 0, \\ -(\alpha/\gamma)S^a, & \gamma \neq 0. \end{cases} \quad (77)$$

Thus, from (77), Condition 2) of the lemma implies.

2) \Rightarrow 1).

It is verified directly, for example,

$$r_1^\alpha(r_2)\alpha = \frac{1}{4} \varepsilon_{aa.bb} X^a Y^{a1} Y^{b1} Z^{b1} = 0. \quad (78)$$

In the same way, the equivalences 1) \Rightarrow 3) and 3) \Rightarrow 1) can be proved. These implications are possible because of the metric tensor presence in the tangent bundle and the metric quadrivector presence in the bundle A^c.

Take two non-zero isotropic vectors

$$\begin{align*}
 r_1^\alpha &= \frac{1}{2} \eta^{\alpha a1} M^a N^{a1}, \\
 r_2^\alpha &= \frac{1}{2} \eta^{\alpha a1} M^a L^{a1}
\end{align*} \quad (79)$$

and two non-zero isotropic covectors

$$\begin{align*}
 (\tilde{r}_1)\alpha &= \frac{1}{2} \eta_{\alpha a1} \tilde{M}_a \tilde{N}_{a1}, \\
 (\tilde{r}_2)\alpha &= \frac{1}{2} \eta_{\alpha a1} \tilde{M}_a \tilde{L}_{a1}
\end{align*} \quad (80)$$

satisfying Condition 2). and Condition 3). of Lemma 1 respectively. We act on (79), (80) with the orthogonal transformation K^{α}_{β} and obtain

$$\begin{align*}
 r_3^\alpha := K^\alpha_{\beta} r_1^\beta, \\
 r_4^\alpha := K^\alpha_{\beta} r_2^\beta, \\
 (\tilde{r}_3)\alpha := K_{\alpha}^{\beta} (\tilde{r}_1)\beta, \\
 (\tilde{r}_4)\alpha := K_{\alpha}^{\beta} (\tilde{r}_2)\beta
\end{align*} \quad (81)$$

Then from Condition 1). of Lemma 1 with the account (63) and (65), the equations

$$\begin{align*}
 r_3^\alpha (r_3)\alpha &= K^\alpha_{\beta} K^\beta_{\gamma} g_{\beta\delta} r_1^\alpha r_1^\gamma = r_1^\alpha (r_1)\alpha = 0, \\
 r_4^\alpha (r_3)\alpha &= r_2^\alpha (r_1)\alpha = 0, \\
 r_4^\alpha (r_4)\alpha &= r_2^\alpha (r_2)\alpha = 0, \\
 (\tilde{r}_3)\alpha &= \tilde{r}_2^\alpha (\tilde{r}_1)\alpha = 0, \\
 (\tilde{r}_4)\alpha &= \tilde{r}_2^\alpha (\tilde{r}_2)\alpha = 0
\end{align*} \quad (82)$$

will follow. Since, the transformation $K_{aa_{bb}}$ is regular then the vectors and covectors (81) are non-zero elements, and hence from Condition 2). and Condition 3). of Lemma 1 we obtain

$$\begin{align*}
 r_3^\alpha &= \frac{1}{2} \eta^{\alpha a1} X^a Y^{a1}, \\
 r_4^\alpha &= \frac{1}{2} \eta^{\alpha a1} X^a Z^{a1}, \\
 (\tilde{r}_3)\alpha &= \frac{1}{2} \eta_{\alpha a1} \tilde{X}_a \tilde{Y}_{a1}, \\
 (\tilde{r}_4)\alpha &= \frac{1}{2} \eta_{\alpha a1} \tilde{X}_a \tilde{Z}_{a1}
\end{align*} \quad (83)$$
Consider the identity
\[r_3^{[\alpha r_4^\beta]} = K_{[\gamma}^{[\alpha K_\delta]} r_1^{[\gamma r_2^\delta]}, \]
(84)

We rewrite it using the formulas \((43)\) and \((47)\)
\[A^{\alpha \beta}_a b \cdot \frac{1}{4} A^{r b_1} X^c Z^{c_1}_1 \varepsilon_{c_1 b b_1} = \]
\[= \frac{1}{4} A^{\gamma \delta}_r s M^s N^k_1 M^l L^1 \varepsilon_{l_1 s k_1} A^{\gamma \delta c}_d A^{\alpha \beta}_a b \cdot \frac{1}{8} (K_{d m}^{a k} K_{c m}^{b k} - K_{c m a k} K_{d m b k}), \]
(85)

Define
\[T_b := Y^{b_1} X^c Z^{c_1}_1 \varepsilon_{c_1 b b_1}, \quad P_c := N^k_1 M^l L^1 \varepsilon_{k_1 l_1 c}, \]
\[\tilde{K}^{c}_{a b} := \frac{1}{8} (K_{c m a k} K_{d m b k} - K_{d m}^{a k} K_{c m}^{b k}) \]
(86)
such that the equations
\[X^c T_c = 0, \quad M^c P_c = 0, \quad \tilde{K}^{c}_{a b} = 0, \quad \tilde{K}^{c}_{d b} = 0, \]
(87)
\[K_{a a}^{b b_1} K_{c c_1}^{d d_1} - K_{a a}^{d d_1} K_{c c_1}^{b b_1} = 8 \varepsilon_{c c_1 k [a_1} \tilde{K}^{c}_{a b]} K_{r}^{b_1} \varepsilon_{b_1]} r^{[b} c_1 k] d m b k, \]
(88)
are executed. Whence,
\[X^a T_b = -2 M^d P_c \tilde{K}^{c}_{d b}. \]
(89)

In the same way, from the identity
\[(\tilde{r}_3)_{[\gamma (\tilde{r}_4)_\delta]} = K_{[\gamma}^{[\alpha K_\delta]} (\tilde{r}_1)_{[\gamma (\tilde{r}_2)_\delta]}, \]
(90)
determining
\[\tilde{T}^b := \tilde{Y}^{b_1} \tilde{X}^c \tilde{Z}^{c_1}_1 \varepsilon_{c_1 b b_1}, \quad \tilde{P}^b := \tilde{N}^{k_1} \tilde{M}_1 \tilde{Z}^{k_1 l_1 c}_1, \]
(91)
we can obtain
\[\tilde{X}^d \tilde{T}^c = -2 \tilde{M}_a \tilde{P}^b \tilde{K}^{c}_{d b}. \]
(92)

We now find homogeneous solution satisfying the equations \((89)\) and \((92)\)
\[\begin{cases}
(\tilde{K}_{\text{homogeneous}})^{d b}_{a} M^{d} P_{c} = 0, \\
(\tilde{K}_{\text{homogeneous}})^{d b}_{a} \tilde{M}_{a} \tilde{P}^{b} = 0,
\end{cases} \quad \Leftrightarrow \quad \begin{cases}
M^{d} P_{d} = 0, \\
\tilde{M}_{a} \tilde{P}^{a} = 0.
\end{cases} \]
(93)

These two systems should coincide identically since the left system is valid for each \(M^a, \tilde{M}_a, P_a, \tilde{P}^a\) satisfying the right system. This is possible only when
\[(\tilde{K}_{\text{homogeneous}})^{d b}_{a} = \alpha \delta^d_a \delta^b_a, \quad \alpha \in \mathbb{C}. \]
(94)

Next, we consider particular solution of the equation \((89)\), for example. This solution should be regular that means that we can not satisfy the condition
\[\exists \ M^d \neq 0, P_c \neq 0, \quad \text{that} \quad (\tilde{K}_{\text{particular}})^{d b}_{a} M^{d} P_{c} = 0 \]
(95)
(The condition \((95)\) is equivalent to the singularity of the transformation \(K_{a a}^{b b_1}\) (see \((88)\))). To solve \((89)\), we need the following lemma.
Lemma 2. Let $A,B,C,...$ be collective indices. Then the three following conditions on λ_{AB}^{Q} are equivalent:

1. $\lambda_{AB}^{Q} \xi_{Q}$ can be represented as $\rho_{A} \xi_{B}$ for each ξ_{Q};
2. $\lambda_{A_{1}|B_{1}}^{Q_{1}} \lambda_{A_{2}|B_{2}}^{Q_{2}} = 0$;
3. λ_{AB}^{Q} can be represented either as $\alpha_{A} \varphi_{B}^{Q}$, or as $\theta_{A}^{Q} \beta_{B}$.

Proof. It is given on the page 160 of [23, v. 1, Pr. (3.5.8)(eng)]. As in its proof, the metric tensor did not participate then this lemma is true for any arrangement of indices: or top, or bottom.

We apply Lemma 2 to the equation (89) and obtain the 2 variants:

$$a). \quad (\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = A^{a}B_{bd}; \quad b). \quad (\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = A_{d}^{a}B_{b} \quad (96)$$

First. Suppose that Item a). and Item b). are performed simultaneously. We use one more lemma.

Lemma 3. From $\psi_{AB} \varphi_{C} = \chi_{A} \theta_{BC}$, the execution of the identities $\psi_{AB} = \chi_{A} \xi_{B}$, $\theta_{BC} = \xi_{B} \varphi_{C}$ follows for some ξ_{B}.

Proof. It is given on page 160 of the monography [23, v. 1, (3.5.6)(eng)]. And just as in the previous lemma, the location of the index is not significant.

We apply this lemma to the equation (96) that will give

$$(\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = A_{d}^{a}B_{d}C_{b}. \quad (97)$$

But there is the vector $M_{d} \neq 0$, that $M_{d}P_{d} = 0$ and $M_{d}A_{d} = 0$, then from (97), the statement (95) follows that is impossible. From this, we conclude that at the same time, a). and b). from (96) can not be executed.

Second. Now, we apply Lemma 2 to the equation (96). This will give the four variants:

I). a). $$(\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = A^{ac}B_{db}; \quad b). \quad (\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = C^{a}D_{db},$$

II). a). $$(\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = S_{d}^{a}E_{b}^{c}; \quad b). \quad (\tilde{K}_{\text{particular}})_{c_{b}^{a}P_{c}} = U_{d}^{ac}V_{b}. \quad (98)$$

Items b). in the both cases disappear as they lead to a singular transformation (see the explanation after the formula (97)).

For definiteness, we will consider Item II).a). We contract common solution

$$\tilde{K}_{d}^{c_{b}^{a}} = S_{d}^{a}E_{b}^{c} + \alpha_{d}^{c} \delta_{b}^{a} \quad (99)$$

of the equation (89) with δ_{c}^{d} and using (87), we obtain

$$0 = S_{k}^{a}E_{b}^{k} + 4\alpha_{b}^{a} \Rightarrow E_{b}^{k} = -4\alpha(S^{-1})_{b}^{k} \quad (100)$$
(the transformation S_k^a is nondegenerate since otherwise the transformation $\tilde{K}_d^c b$ will be singular that would entail the singular transformation $K_{aa_1}^{bb_1}$). Therefore,

$$\tilde{K}_d^c b = (-\alpha)(4S_d^a(S^{-1})_b^c - \delta_d^c \delta_b^a).$$

(101)

Contract (88) with $\varepsilon_{dd_1pp_1}K_{ss_1}^{pp_1}$ that will give with the account (65)

$$K_{aa_1}^{bb_1} \varepsilon_{ss_1cc_1} - K_{cc_1}^{bb_1} \varepsilon_{ss_1aa_1} = 8\varepsilon_{cc_1k[a_1} \tilde{K}_a^{k r} |b K_{ss_1}^{b}] r.$$

(102)

Contract (102) with $\varepsilon_{ss_1cc_1}$ using the formulas (44)

$$5K_{aa_1}^{bb_1} = 8\tilde{K}_a^{k r} |b K_{k[a_1}^{b}] r$$

(103)

and substitute (101) in (103)

$$5K_{aa_1}^{bb_1} = (-8\alpha)K_{k[a_1}^{[b_i] r}|4S_a^{b]}(S^{-1})_r^k - \delta_a^{[k} \delta_r^{b]}),$$

$$K_{aa_1}^{bb_1} = \frac{32\alpha}{5+8\alpha}K_{k[a_1}^{r[b_i S_a^{b]}(S^{-1})_r^k}$$

(104)

(\(\alpha \neq 0, \alpha \neq \pm 5/8;\) otherwise, the transformation $\tilde{K}_d^c b$ is singular). Put

$$K_{aa_1}^{bb_1} := 2M_{[a_1}^{[b_i S_a^{b]}]}$$

(105)

and obtain

$$K_{aa_1}^{bb_1} := \frac{32\alpha}{5+8\alpha}S_a^{[b(M_{a_1}^{b_1] + \frac{1}{2}S_{a_1}^{b_1}]M_k^r(S^{-1})_r^k = 2M_{[a_1}^{[b_i S_a^{b]}].}$$

(106)

Define

$$M_k^r := \beta S_k^r \Rightarrow \beta = \frac{8\alpha}{5-8\alpha}M_k^r(S^{-1})_r^k \Rightarrow \alpha = \frac{1}{8}.$$

(107)

Then from (106), the definition

$$K_{aa_1}^{bb_1} := 2\beta S_{[a_1}^{[b_i S_a^{b]}}$$

(108)

follows. Substituting (108) in (65), we find out that $\beta = \pm 1$.

Similarly, Item I).a). shall be considered. In this case, the transformation $K_{aa_1}^{bb_1}$ has the form

$$K_{aa_1}^{bb_1} := \beta S_{ac} S_{a_1 c_1} \varepsilon_{cc_1}^{bb_1}$$

(109)

Note that the factor ε can be included in the definition of S_{ac}.

In this way, from (63), we can really come to (61) that completes the proof of the inverse path of the theorem. Therefore, the transformation $S_a^{b} (S_{ab})$ will match to one and only one transformation K_{a}^β, and conversely, each transformation K_{a}^β will correspond to two and only two transformations $\pm S_a^{b}$ ($\pm S_{ab}$), that $det \| S_c^{d} \|= 1 (det \| S_{cd} \|= 1)$.

Find out what a transformation corresponds to the special transformation K_{a}^β. For this purpose, let’s consider the following identity

$$K_{a}^\beta K_{\alpha}^\delta K_{\gamma}^\xi K_{\nu}^\nu K_{\pi}^\pi K_{\sigma}^\xi \varepsilon_{\beta \delta \mu \chi \omega \xi} = \pm \varepsilon_{\alpha \gamma \lambda \nu \pi \sigma},$$

$$\varepsilon_{\beta \delta \mu \chi \omega \xi} = \varepsilon_{[\beta \delta \mu \chi \omega \xi]}, \quad e := e_{123456}.$$
At the same time, \(e_{\beta \delta \mu \chi \omega \xi} \) is the 6-vector skew-symmetric in all indices. Consequently, we can get the record

\[
K_1^\beta K_2^\delta K_3^\mu K_4^\nu K_5^\omega K_6^\xi e_{\beta \delta \mu \chi \omega \xi} = \pm e_{123456} \quad \Rightarrow \quad det \| K_\alpha^\beta \| = \pm 1 \tag{111}
\]
equivalent to \((110)\). If \(K_\alpha^\beta \) is the special transformation then in \((110)\), the sign "+" is chosen that means that \(det \| K_\alpha^\beta \| = 1 \). In otherwise case (the non-special transformation), the sign "-" is chosen. Since for a 4-vector, there are the identities

\[
e_{\alpha \beta \gamma \delta} = e_{[\alpha \beta \gamma \delta]},
\]

\[
e_{\alpha \beta \gamma \delta} = A_{\alpha \beta \gamma \delta} e_{a b c d}, \tag{112}
\]

\[
e_a^b := \frac{1}{3} e_{a b k} k,
\]

following from \((11)\) then, using its symmetries, we can obtain the expansion

\[
B_{\alpha \beta \gamma \delta r}^k := A_{\alpha \beta \gamma r}^d A_{\gamma \delta r}^k + A_{\alpha \beta \delta c} A_{\gamma \delta r}^c,
\]

\[
e_{\alpha \beta \gamma \delta} := B_{\alpha \beta \gamma \delta r}^k e_k^r,
\]

\[
e_k^k = 0
\]

(the proof is given in Appendix \((477)-(479)\)). In turn, using these formulas, we can obtain the expansion for the 6-vector

\[
e_{\alpha \beta \gamma \delta \lambda \mu} = A_{\alpha \beta \gamma \delta}^{a b} A_{\gamma \delta r}^c A_{\lambda \mu}^k e_a^b c d k,
\]

\[
e_a^b d l = \frac{i}{8} (2((4\delta_c^b \delta_\lambda^l - \delta_\delta^l \delta_c^b)\delta_a^d + (4\delta_k^d \delta_a^l - \delta_k^l \delta_a^d)\delta_c^b) -

- (4\delta_k^d \delta_a^l - \delta_\delta^l \delta_k^d)\delta_c^d - (4\delta_k^d \delta_a^l - \delta_\delta^l \delta_k^d)\delta_a^b)
\]

\[
(114)
\]

(the proof is given in Appendix \((480)-(489)\)). From \((114)\), the identity

\[
e_{\alpha \beta \gamma \lambda \pi \alpha} = 2 \eta_{[\alpha} b_{b_1} \eta_{[\lambda} d_{d_1} \eta_{\pi} x_{x_1} \eta_{\sigma] s_{s_1}} \cdot i \delta_{d_1}^d \delta_{b_1}^b \delta_m \delta_{m_1} \delta_{x_1} \delta_{r_1} \delta_{s_1} =

= \frac{1}{4} \eta_{[\alpha} b_{b_1} \eta_{[\lambda} d_{d_1} \eta_{\pi} x_{x_1} \eta_{\sigma] s_{s_1}} \cdot i \epsilon_{r_1} \epsilon_{d_1} \epsilon_{b_1} \epsilon_{m_1} \epsilon_{x_1} \epsilon_{s_1} =

= i (A_{\alpha \beta} a A_{\gamma \alpha} c A_{\pi \sigma} b + A_{\alpha \beta} a A_{\lambda \nu} b A_{\pi \sigma} c)
\]

\[
(115)
\]

will imply. From \((114)\) and \((115)\), applying the definition \((110)\) to the special (non-special) transformations, we obtain

\[
S_a^b S_a^c d c d i c b d i = \epsilon_{aa cc} (S_a^b S_a^c d c d i c b d i = \epsilon^{-2} \epsilon_{aa cc}) \tag{116}
\]

that gives the identity \((61)\). It follows that \((108)\) corresponds to the special transformation and \((109)\) corresponds to the non-special transformation \(K_\alpha^\beta \).

Finally, the transformations \(S_a^b \) and \(i S_a^b \) belong to the same group \(SL(4, \mathbb{C}) \). This means that in the formula \((108)\), we can consider only the case when \(\beta = +1 \). Therefore, the group \(SL(4, \mathbb{C}) \) is the double covering of the connected identity component of the group \(SO(6, \mathbb{C}) \) (we denote it as \(SO^c(6, \mathbb{C}) \)).
2.2.2 Real representation of the double covering $SL(4, \mathbb{C})/\{\pm 1\} \cong SO(6, \mathbb{C})$ in the presence of the involution $S_{\alpha}^{\beta'}$

Theorem 2. Suppose that in the six-dimensional complex Euclidean space $\mathbb{C}R^6$, the involution

$$S_{\alpha}^{\beta'}S_{\beta'}^{\gamma} = \delta_{\alpha}^{\gamma}, \quad S_{\alpha}^{\beta'}S_{\gamma}^{\delta'}g_{\delta'\gamma'} = g_{\alpha\gamma}$$

(117)

is given. Define

$$s_{aba'b'} = \tilde{\eta}_{\beta'a'b'}\eta_{\alpha ab}S_{\alpha}^{\beta'}$$

(118)

then the relations

$$s_{aba'b'} = \bar{s}_{a'b'ab}, \quad s_{ab}^{a'b'}\bar{s}_{a'b'}^{cd} = 2\delta_{ab}$$

(119)

are executed, and there are two and only two decompositions

$$I). \quad s_{ab}^{a'b'} = 2s_{[a}^{a'}s_{b]}^{b'}, \quad s_{a'b'}^{b'} = \pm \delta_{a}^{b'},$$

(120)

$$II). \quad s_{aba'b'} = 2s_{[a[a']^{|s_{b}]}^{b'}], \quad s_{ab'} = \pm \bar{s}_{b'a}.$$

In addition, for real inclusions, the identities

$$I). \quad \tilde{\eta}_{a}^{a'b'} = \eta_{b}^{cd}s_{c}^{a'}s_{d}^{b'}, \quad A_{ija}^{b'} = A_{ijc}^{d}s_{a}^{c}s_{d}^{b'},$$

(121)

$$II). \quad \tilde{\eta}_{i}^{a'b'} = \eta_{j}^{cd}s_{i}^{ca'}s_{j}^{db'}, \quad A_{ija}^{b'} = -A_{ijc}^{d}s_{da'}s_{d}^{b'}$$

will be true.

Proof. The proof of the expansion (120) is carried out as in the previous theorem. All changes are confined to the replacement of the transformation K_{α}^{β} on the transformation $S_{\alpha}^{\beta'}$ so that

$$S_{\alpha}^{\beta'}S_{\beta'}^{\gamma} = g_{\alpha\gamma}$$

(122)

is the analog of (63) that will give the equation

$$s_{a'b'}^{b'}s_{a1}^{a's_{c}^{d's_{b'}^{c1}d'1}} = \varepsilon_{aa1cc1},$$

(123)

$$s_{ab}^{a'b'}s_{a1}^{a's_{d}^{c's_{b'}^{c1}d'1}} = \varepsilon_{aa1cc1}$$

similar to (61) (the relevant factor is included in the definition of the spin-tensor s).

From (117) and (122), it is possible to obtain

$$S_{\alpha}^{\beta'} = \bar{S}_{\beta'}^{\alpha}.$$

(124)

From this, the equation

$$\bar{s}_{a'b'ab} = \tilde{\eta}_{\alpha'}^{a'b'}\eta_{\beta'ab}\bar{S}_{\alpha}^{\beta'} = \tilde{\eta}_{\beta'a'b'}\eta_{\alpha ab}\bar{S}_{\beta'}^{\alpha} = s_{aba'b'}$$

(125)

will follow.

Note that in the tangent bundle $\tau^C(\tau^R)$ there is the metric tensor $g_{\alpha\beta}(g_{ij})$ with help of which single indices can be raised and lowered. In the bundle $A^C(S)$, the similar role is carried out by means of the quadrivector ε_{abcd}. The tensor $\bar{g}_{\alpha'\beta'}(\varepsilon_{a'b'c'd'})$ is one, the coordinates of which are conjugated to the coordinates of the tensor.
consider the identities following from \((117)\)

\[
S_\alpha \beta' \bar{S}_\beta \gamma = \delta_\alpha \gamma,
\]

\[
\frac{1}{4} \eta_{\alpha a a_1} \bar{\eta}_{e a_1} b'b'_{1} s_{a a_1} \frac{1}{4} \bar{\eta}_{\beta d d_1} \eta_{e c c_1} \bar{s}_{d d_1} c c_1 = \frac{1}{4} \bar{\eta}_{\alpha a a_1} \eta_{e c c_1} 2 \delta_\alpha c \delta_\alpha a_1 c_1,
\]

\[(126)\]

we now investigate Item II). From the last identity of \((126)\), we obtain

\[
\begin{align*}
\delta_\alpha a_1 c_1 &= \frac{1}{4} \eta_{\alpha a a_1} \bar{\eta}_{e a_1} b'b'_{1} s_{a a_1} \bar{s}_{d d_1} c c_1 = \delta_\alpha a_1 c_1, \\
\end{align*}
\]

\[(127)\]

We define \(s^{kl'}\) as follows

\[
s^{kl'} s_{km'} = \delta_{m'}^{l'}
\]

\[(128)\]

such that

\[
\begin{align*}
s^{kl'} s_{k_1 l_1}^{m m'} s_{m_1 n_1} = \delta_{k_1 m_1}^{l_1 n_1} = \delta_{k_1 m_1}^{l_1 n_1}.
\end{align*}
\]

\[(129)\]

Multiply \((127)\) by \(s^{a' k_1 s_1 d n'} s_{d n'} d_1 \) and obtain

\[
\begin{align*}
s^{a' k_1 s_1 d n'} d_1 = \delta_{a' k_1 s_1 d n'} d_1 = \delta_{a' k_1 s_1 d n'} d_1.
\end{align*}
\]

\[(130)\]

then \[(130)\] can be rewritten as

\[
\tilde{N}_{a' n'} = s^{a' k_1 s_1 d n'} d_1
\]

\[(131)\]

From this, the identity

\[
\tilde{N}_{a' n'} = s^{a' k_1 s_1 d n'} d_1 = n \delta_{a' n'} = n s^{a' k_1 s_1 d n'} d_1
\]

\[(132)\]

will follow (the proof is given in Appendix \((490) - (495)\)). Therefore, from \[(128)\], the relation

\[
s_{a a_1} b' c = \pm s_{a a_1} b' c
\]

\[(134)\]

follows. Similarly, we analyze Item I). From the identity \[(126)\], the equation

\[
\begin{align*}
s_{a a_1 b' c} = \delta_{a a_1} b' c
\end{align*}
\]

\[(135)\]

follows. Define

\[
N_{a} c := s_{a a_1} b' c
\]

\[(136)\]

and obtain

\[
\tilde{N}_{a} c = \delta_{a a_1} c_1.
\]

\[(137)\]

From here, the relation

\[
\tilde{N}_{a} c = n \delta_{a} c = s_{a a_1 b' c},
\]

\[(138)\]
will follow, defining the following equation
\[s_a^{\prime} \bar{s}_b^{\prime} c = \pm \delta_a^c. \] (139)

And we will need to prove \([121]\) only. We use the inclusion operator \(H_i^\alpha\) and the involution \(S_\alpha^\beta\) defined by the formula (5). For Item II), we have
\[\bar{\eta}_i^{\prime ab} = \bar{H}_i^{\alpha} \bar{\eta}_{\alpha}^{\prime ab} = \bar{H}_i^{\alpha} \bar{S}_\alpha^{\beta} \eta_{\beta cd} s_c^{\alpha} s_d^{\prime ab} = \]
\[\bar{H}_i^{\alpha} \eta_{\beta cd} s_c^{\alpha} s_d^{\prime ab} = \eta_{\beta cd} s_c^{\alpha} s_d^{\prime ab}, \] (140)
\[\tilde{A}_{ija}^{\prime b'} = \bar{\eta}_i^{\prime k j} \bar{\eta}_j^{a' k'} = H_i^{\gamma} H_j^{\delta} \eta_{[\gamma k] \eta_{\delta]}^{a k} s_a^{\alpha} s^{\prime b'} = -\tilde{A}_{ija} s_a^{\alpha} s^{\prime b'}. \] (141)

For Item I), the proof is such
\[\bar{\eta}_i^{\prime ab} = \bar{H}_i^{\alpha} \bar{\eta}_{\alpha}^{\prime ab} = \bar{H}_i^{\alpha} \bar{S}_\alpha^{\beta} \eta_{\beta cd} s_c^{\alpha} s_d^{b'} = \]
\[\bar{H}_i^{\beta} \eta_{\beta cd} s_c^{\alpha} s_d^{b'} = \eta_{\beta cd} s_c^{\alpha} s_d^{b'}, \] (142)
\[\tilde{A}_{ija}^{\prime b'} = \bar{\eta}_i^{\prime k j} \bar{\eta}_j^{a' k'} = H_i^{\gamma} H_j^{\delta} \eta_{[\gamma k] \eta_{\delta]}^{a k} s_a^{\alpha} s^{\prime b'} = \eta_{[\gamma k] \eta_{\delta]}^{a k} s_a^{\alpha} s^{\prime b'} = \tilde{A}_{ija} s_a^{\alpha} s^{\prime b'}. \] (143)

\[\square \]

2.2.3 Inclusion \(\mathbb{R}^6_{(2,4)} \subset \mathbb{CR}^6\) in the special basis

Let us now consider an inclusion of the real space \(\mathbb{R}^6_{(2,4)}\) in the complex space \(\mathbb{CR}^6\) as example. In this case, we have the opportunity to carry out the identification of upper primed indexes with lower unprimed indices using the spin-tensor \(s_a^{\alpha}.\)

Consider the identities
\[K_i^{\prime j} = \bar{K}_j^{\prime i}, \quad K_i^{\prime j} := H_i^{\alpha} H_j^{\beta} K_{\alpha}^{\beta}, \]
\[\eta_j^{\prime ab} K_i^{\prime j} \eta_{\cd}^{cd} = \eta_j^{\prime ab} \bar{K}_i^{\prime j} \eta_{\cd}^{cd}, \] (144)
\[2S_{\bar{c}}^{\prime a} S_{\bar{d}}^{\prime b} = \frac{1}{4} \eta_j^{\prime ab} \eta_j^{\prime mn} 2 \bar{S}_{\bar{m}}^{\prime k} \bar{S}_{\bar{n}}^{\prime l} \bar{\eta}_{lk} \eta_{ij}^{\prime cd}; \]
\[S_{\bar{c}}^{\prime a} S_{\bar{d}}^{\prime b} = \frac{1}{4} s_{a b m n} \bar{S}_{\bar{m}}^{\prime \bar{k}} \bar{S}_{\bar{n}}^{\prime \bar{l}} \bar{\eta}_{lk} \eta_{ij}^{\prime cd}, \]
\[S_{\bar{c}}^{\prime a} S_{\bar{d}}^{\prime b} = s_{a b m n} \bar{S}_{\bar{m}}^{\prime \bar{k}} \bar{S}_{\bar{n}}^{\prime \bar{l}} \bar{\eta}_{lk} \eta_{ij}^{\prime cd}; \] (145)
\[s_{\bar{k} \bar{l}}^{\prime} \bar{S}_{\bar{k}}^{\prime m} s_{a b m} \bar{S}_{\bar{c}}^{\prime a} \bar{S}_{\bar{d}}^{\prime b} s_{b n} \bar{S}_{\bar{n}}^{\prime c} \eta_{ij}^{\prime cd} = \delta_{\bar{c} \delta_d}^{\bar{b}}. \]

Define
\[N_c^{\prime l} := s_{\bar{k} \bar{l}}^{\prime} \bar{S}_{\bar{k}}^{\prime m} s_{a b m} \bar{S}_{\bar{c}}^{\prime a} \] (146)
and obtain
\[N_{[c}^{\prime a} N_{d]}^{\prime b} = \delta_{[c}^{\prime a} \delta_{d]}^{\prime b}. \] (147)

From this, the equation
\[N_c^{\prime l} = s_{\bar{k} \bar{l}}^{\prime} \bar{S}_{\bar{k}}^{\prime m} s_{a b m} \bar{S}_{\bar{c}}^{\prime a} = n \delta_c^{\prime l}, \quad n = \pm 1 \] (148)
will follow (the proof is given in Appendix (490) - (495)). Choosing the sign “+” in (148), we obtain the transformation of the group isomorphic to the group \(SU(2,2) \) which will, as is evident from the above, the double covering of the connected identity component of the group \(SO^e(2,4) \). This component is determined by the following conditions

1). \(det \| K_\alpha^\beta \| = 1 \) \(\alpha, \beta = 1,6 \), 2). \(det \| K_\alpha^\beta \| > 0 \) \(\alpha, \beta = 1,2 \).

(149)

If in the (148), “-” is chosen then in 2). from (149), the sign will change to the opposite. Next, to better understand how this works in the practice, we use a representation of the obtained results in the special basis. For this, we define the basis of \(CR^6 \) as follows

\[
t^\alpha = (1,0,0,0,0,0), \quad v^\alpha = (0,1,0,0,0,0), \quad w^\alpha = (0,0,i,0,0,0), \quad x^\alpha = (0,0,0,i,0,0), \quad y^\alpha = (0,0,0,0,i,0), \quad z^\alpha = (0,0,0,0,0,i).
\]

(150)

Let in this basis, the matrix of the metric tensor \(g_{\alpha\beta} \) has the form

\[
\| g_{\alpha\beta} \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\]

(151)

We define the real representation of the inclusion \(\mathbb{R}^{6}_{(2,4)} \subset CR^6 \) with the help of the operator \(H_i^\alpha \)

\[
\| H_i^\alpha \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & i & 0 & 0 & 0 \\
0 & 0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & i & 0 \\
0 & 0 & 0 & 0 & 0 & i
\end{pmatrix}, \quad \| H_i^\beta \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 & 0 & 0 \\
0 & 0 & 0 & -i & 0 & 0 \\
0 & 0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & 0 & -i
\end{pmatrix}.
\]

(152)

Then (150) is a self-conjugate basis with respect to the involution \(S_\alpha^\beta' \)

\[
\| S_\alpha^\beta' \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}.
\]

(153)

Therefore, in the space \(\mathbb{R}^{6}_{(2,4)} \), the induced metric tensor \(g_{ij} \) would have the matrix

\[
\| g_{ij} \| = || H_i^\alpha H_j^\beta g_{\alpha\beta} ||
\]

(154)
in the basis
\[
\begin{align*}
t^i &= H^i_\alpha t^\alpha = (1, 0, 0, 0, 0, 0), \\
v^i &= H^i_\alpha v^\alpha = (0, 1, 0, 0, 0, 0), \\
w^i &= H^i_\alpha w^\alpha = (0, 0, 1, 0, 0, 0), \\
x^i &= H^i_\alpha x^\alpha = (0, 0, 0, 1, 0, 0), \\
y^i &= H^i_\alpha y^\alpha = (0, 0, 0, 0, 1, 0), \\
z^i &= H^i_\alpha z^\alpha = (0, 0, 0, 0, 0, 1).
\end{align*}
\]

We will define the vector basis in the bundle \(A^c(S) \) as
\[
\begin{align*}
X^a &= (1, 0, 0, 0), \\
Y^a &= (0, 1, 0, 0), \\
Z^a &= (0, 0, 1, 0), \\
T^a &= (0, 0, 1, 0), \\
\varepsilon_{abcd}X^aY^bZ^cT^d &= 1, \\
\varepsilon &= 1.
\end{align*}
\]

Then in the bases (154) and (156), the decomposition
\[
R^{ab} = 2(R^{12}X^{[a}Y^{b]} + R^{13}X^{[a}Z^{b]} + R^{14}X^{[a}T^{b]} + R^{23}Y^{[a}Z^{b]} + R^{24}Y^{[a}T^{b]} + R^{34}Z^{[a}T^{b]} = \frac{1}{\sqrt{2}}(R^{12} + R^{34}) \cdot \sqrt{2}(X^{[a}Y^{b]} + Z^{[a}T^{b]} + V^v + W^w + X^x + Y^y + Z^z) \cdot \eta_{ab} = v^i\eta_{ab}^i
\]
takes place. Therefore, we can put
\[
\begin{align*}
v^i\eta_{ab}^i &:= \sqrt{2}(X^{[a}Y^{b]} + Z^{[a}T^{b]}), \\
w^i\eta_{ab}^i &:= \sqrt{2}(X^{[a}Y^{b]} - Z^{[a}T^{b]}), \\
y^i\eta_{ab}^i &:= \sqrt{2}(X^{[a}Z^{b]} + Y^{[a}T^{b]}), \\
x^i\eta_{ab}^i &:= -\sqrt{2}(X^{[a}Z^{b]} - Y^{[a}T^{b]}), \\
z^i\eta_{ab}^i &:= \sqrt{2}(X^{[a}T^{b]} + Y^{[a}Z^{b]}), \\
t^i\eta_{ab}^i &:= \sqrt{2}(X^{[a}T^{b]} - Y^{[a}Z^{b})
\end{align*}
\]
that will define the connecting Norden operators \(\eta_{ab}^{a_1} \) in these bases as
\[
\begin{align*}
\eta_{12}^{12} &= \frac{1}{\sqrt{2}}, & \eta_{14}^{34} &= \frac{1}{\sqrt{2}}, & \eta_{13}^{12} &= \frac{1}{\sqrt{2}}, & \eta_{13}^{34} &= -\frac{1}{\sqrt{2}}, \\
\eta_{14}^{14} &= \frac{1}{\sqrt{2}}, & \eta_{23}^{23} &= -\frac{1}{\sqrt{2}}, & \eta_{14}^{14} &= \frac{1}{\sqrt{2}}, & \eta_{23}^{23} &= \frac{1}{\sqrt{2}}, \\
\eta_{23}^{13} &= \frac{1}{\sqrt{2}}, & \eta_{54}^{24} &= \frac{1}{\sqrt{2}}, & \eta_{43}^{13} &= -\frac{1}{\sqrt{2}}, & \eta_{54}^{24} &= \frac{1}{\sqrt{2}}
\end{align*}
\]
Table 1: Matrix form of the spin-tensor s for the real inclusions.

	Space	$s_{kk'}$	s in the special basis	Isomorphism
1	R^6_6 ≪ ++ ++ ++ ++ ≫	$s_{kk'}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$SU(4)/\{\pm 1\} \cong SO^e(6)$
2	$R^6_9(1,5)$ ≪ − − − − − − ≫	$s_{kk'}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$	$SL(2, H)/\{\pm 1\} \cong SO^e(1, 5)$
3	$R^6_9(2,4)$ ≪ ++ − − − − ≫	$s_{kk'}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$	$SU(2, 2)/\{\pm 1\} \cong SO^e(2, 4)$
4	$R^6_9(3,3)$ ≪ + + + − − − ≫	$s_{kk'}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$SL(4, R)/\{\pm 1\} \cong SO^e(3, 3)$

From (158), the following conditions

$$
T = \frac{i}{\sqrt{2}}(R^{23} - R^{14}), \quad V = \frac{1}{\sqrt{2}}(R^{12} + R^{34}),
$$

$$
W = \frac{1}{\sqrt{2}}(R^{12} - R^{34}), \quad X = \frac{i}{\sqrt{2}}(R^{13} - R^{24}),
$$

$$
Y = \frac{1}{\sqrt{2}}(R^{13} + R^{24}), \quad Z = \frac{-i}{\sqrt{2}}(R^{14} + R^{23}),
$$

$$
R^{12} = \frac{1}{\sqrt{2}}(V + W), \quad R^{13} = \frac{1}{\sqrt{2}}(Y - iX),
$$

$$
R^{14} = \frac{i}{\sqrt{2}}(T + Z), \quad R^{23} = \frac{i}{\sqrt{2}}(Z - T),
$$

$$
R^{24} = \frac{1}{\sqrt{2}}(Y + iX), \quad R^{34} = \frac{1}{\sqrt{2}}(V - W)
$$

(160)

imply so that the inverse values η^i_{aa} have the form

$$
\eta^2_{12} = \frac{1}{\sqrt{2}}, \quad \eta^2_{34} = \frac{1}{\sqrt{2}}, \quad \eta^3_{12} = \frac{1}{\sqrt{2}}, \quad \eta^3_{34} = -\frac{1}{\sqrt{2}},
$$

$$
\eta^4_{14} = \frac{i}{\sqrt{2}}, \quad \eta^4_{23} = \frac{1}{\sqrt{2}}, \quad \eta^6_{14} = -\frac{i}{\sqrt{2}}, \quad \eta^6_{23} = -\frac{1}{\sqrt{2}},
$$

(161)

and moreover, the equalities

$$
\overline{R^{23}} = -R^{23} = R_{41}, \quad \overline{R^{34}} = R^{34} = R_{12},
$$

$$
\overline{R^{12}} = R^{12} = R_{34}, \quad \overline{R^{13}} = R^{24} = R_{31}
$$

(162)
will be true. At the performance of (162), choose the covector basis coordinated with the basis (156) as follows

\[X_a = s_{aa'} \bar{X}^{a'} = (0, 0, 1, 0), \quad Y_a = s_{aa'} \bar{Y}^{a'} = (0, 0, 0, 1), \]
\[Z_a = s_{aa'} \bar{Z}^{a'} = (1, 0, 0, 0), \quad T_a = s_{aa'} \bar{T}^{a'} = (0, 1, 0, 0). \] (163)

This determines the Hermitian polarity

\[\| s_{aa'} \| = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \] (164)

by which the bundle \(A^G(S) \) (its base is \(\mathbb{R}_6^{(2,4)} \)) is endowed. It follows that the pfaffian of the bivector \(R^a_b \) has the form

\[pf(R) := \frac{1}{2} R^a_b R_a^b = 2(R^{12}R^{34} - R^{13}R^{24} + R^{14}R^{23}) = T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2. \] (165)

In the special basis for the remaining inclusion cases, the matrix form of the spin-tensor \(s \) is given in the table [1].

2.2.4 Infinitesimal transformation

Suppose we have \(K_{\alpha}^{\beta}(\lambda) \): a one-parameter family satisfying the condition

\[g_{\alpha\delta} = K_{\alpha}^{\beta}(\lambda)K_{\delta}^{\gamma}(\lambda)g_{\beta\gamma}, \quad K_{\alpha}^{\beta}(0) = \delta_{\alpha}^{\beta}. \] (166)

The infinitesimal transformation, corresponding to it, is defined as

\[T_{\delta}^{\gamma} = \left[\frac{d}{d\lambda} K_{\delta}^{\gamma}(\lambda) \right] \bigg|_{\lambda=0}. \] (167)

Then from (166), the equation

\[T_{\alpha\beta} = -T_{\beta\alpha} \] (168)

follows. According to [23] v. 1, p. 176(eng), from (166), the equation (168) follows, and from (168) with the help of the exponent

\[K_{\delta}^{\gamma}(\lambda) := \exp(\lambda T_{\delta}^{\gamma}), \] (169)

we can obtain (166).

Suppose also that an one-parameter family \(S_{a}^{b}(\lambda) \)

\[S_{a}^{b}(\lambda)S_{c}^{d}(\lambda)S_{a_1}^{b_1}(\lambda)S_{c_1}^{d_1}(\lambda) \varepsilon_{bb_1dd_1} = \varepsilon_{aa_1cc_1}, \quad S_{a}^{b}(0) = \delta_{a}^{b} \] (170)

is given. We will differentiate it assuming

\[T_{a}^{b} := \left[\frac{d}{d\lambda} S_{a}^{b}(\lambda) \right] \bigg|_{\lambda=0}, \] (171)
and we will obtain
\[\varepsilon_{b[a_{1}cc_{1}]T_{a}^{b}} = 0 \iff T_{a}^{a} = 0. \] (172)

The opposite is true. Let
\[S_{a}^{b}(\lambda) := \exp(\lambda T_{a}^{b}). \] (173)

Then the following identity
\[S_{a}^{b}(\lambda)S_{c}^{d}(\lambda)S_{a_{1}}^{b_{1}}(\lambda)S_{c_{1}}^{d_{1}}(\lambda)\varepsilon_{bb_{1}dd_{1}} = \]
\[= \exp(\lambda T_{a}^{b})\exp(\lambda T_{c}^{d})\exp(\lambda T_{a_{1}}^{b_{1}})\exp(\lambda T_{c_{1}}^{d_{1}})\varepsilon_{bb_{1}dd_{1}} = \]
\[= \det(\exp(\lambda T_{a}^{b}))\varepsilon_{aa_{1}cc_{1}} = \exp(\lambda \text{tr}(T_{a}^{b}))\varepsilon_{aa_{1}cc_{1}} = \varepsilon_{aa_{1}cc_{1}} \] is satisfied. Since
\[K_{\alpha}^{\beta}(\lambda) = \frac{1}{4}\eta_{\alpha}^{aa_{1}}\eta_{\beta}^{bb_{1}}2S_{[a}^{b}(\lambda)S_{a_{1}]^{b_{1}}(\lambda) \] (175)
then, differentiating with respect to \(\lambda \), setting \(\lambda = 0 \), and lowering the superscript with the help of the metric tensor \(g_{\alpha\beta} \), we obtain
\[T_{\alpha\beta} = \frac{1}{2}\eta_{\alpha}^{aa_{1}}\eta_{\beta}^{bb_{1}}(T_{a}^{b}\delta_{a_{1}}^{b_{1}} + T_{a_{1}}^{b_{1}}\delta_{a}^{b}) = A_{\alpha\beta}^{ab}T_{a}^{b}. \] (176)

Now, the purpose of this subsection is visible. In fact, \(176\) is an algebraic interpretation of the isomorphism between the Lie algebras
\[so(6, \mathbb{C}) \cong sl(4, \mathbb{C}), \] (177)
and the definition \(143\), given at the beginning of this chapter, is quite justified.

2.3 Generalized Norden operators

If the complex analytic Riemannian space \(\mathbb{C}V^{6} \), which will be the base of the tangent bundle \(\tau^{c} \) and bundle \(\Lambda \), is set then there is the tensor \(g_{\alpha\beta}(z^{\gamma}) \) which is the metric tensor. This tensor is analytic on \(z^{\gamma} \), where \(z^{\gamma} \) are the coordinates of a base point. The tensor value at the point \(O(z_{0}^{\alpha}) \) is denoted as \(\tilde{g}_{\alpha\beta} \)
\[\tilde{g}_{\alpha\beta} := g_{\alpha\beta}(z_{0}^{\gamma}). \] (178)

Since, the tensor \(\tilde{g}_{\alpha\beta} \) has a symmetric matrix, it can be reduced to the diagonal form by means of a nonsingular transformation \(\hat{P}_{\alpha}^{\gamma} \)
\[\hat{g}_{\alpha\beta} = \hat{P}_{\alpha}^{\gamma}\hat{P}_{\beta}^{\delta}\tilde{g}_{\gamma\delta}, \quad \hat{P}_{\alpha}^{\gamma} := P_{\alpha}^{\gamma}(z_{0}^{\delta}), \] (179)
where \(P_{\alpha}^{\gamma}(z^{\delta}) \) are analytic functions of the point coordinates. But for the tensor \(\hat{g}_{\alpha\beta} \), the following relations
\[\hat{g}_{\alpha\beta} = 1/4 \cdot \eta_{\alpha}^{aa_{1}}\eta_{\beta}^{bb_{1}}\varepsilon_{aa_{1}bb_{1}}, \quad \varepsilon_{aa_{1}bb_{1}} = \eta_{\alpha}^{aa_{1}}\eta_{\beta}^{bb_{1}}\varepsilon_{\alpha\beta} \] (180)
are executed, where \(\eta_{\alpha}^{aa_{1}} \) are the connecting Norden operators satisfying the relation \(40\). Then from \(179\), the equation
\[g_{\alpha\beta}(z_{0}^{\gamma}) := \hat{g}_{\alpha\beta}(\hat{P}^{-1})_{\gamma}^{\alpha}(\hat{P}^{-1})_{\delta}^{\beta} = (\hat{P}^{-1})_{\gamma}^{\alpha}(\hat{P}^{-1})_{\delta}^{\beta}\eta_{\alpha}^{aa_{1}}\eta_{\beta}^{bb_{1}}\varepsilon_{aa_{1}bb_{1}} \] (181)
follows. We define generalized connecting Norden operators as
\[\eta_\alpha^{aa_1}(z^\delta) := (\hat{P}^{-1})^{\gamma}_\delta \alpha \eta_\alpha^{aa_1} \sqrt{\varepsilon^{-1}(z^\delta)}, \quad \varepsilon_{abcd}(z^\delta) = \varepsilon(z^\delta) \hat{\varepsilon}_{abcd}, \quad \varepsilon_{1234}(z^\delta) = \varepsilon(z^\delta). \]
(182)

As the root we can take any of the two options. Generally speaking, \(\ll \) \(\gg \) can be omitted since all calculations are valid for an arbitrary point \(O \), and at the same time, the functions \(P_\alpha^\gamma(z^\delta) \), \(\varepsilon(z^\delta) \) are analytic. Then from (180), the identities
\[g^{\alpha\beta}(z^\delta) = 1/4 \cdot \eta_\alpha^{aa_1}(z^\delta) \eta_\beta^{bb_1}(z^\delta) \varepsilon^{aa_1 bb_1}(z^\delta), \]
\[\varepsilon^{aa_1 bb_1}(z^\delta) = \eta_\alpha^{aa_1}(z^\delta) \eta_\beta^{bb_1}(z^\delta) g^{\alpha\beta}(z^\delta) \]
will follow. Below, we shall use the generalized connecting Norden operators.

3 Connections in the bundle \(A^C \) with the base \(CV^6 \)

This chapter is devoted to the depiction of the two approaches to the introduction of a connection in the bundle \(A^C \). The first is described in the monography \[23\], and the second is determined with the help of the Norden-Neifeld normalization theory. In the first subsection, the two definitions of a connection in the bundles according to these theories are considered.

In the second section, we consider a normalization of a maximal planar generator manifold for a quadric \(CP_6 \) embedded in the projective space \(CP_7 \). This manifold is diffeomorphic to the one of all points of this quadric. Considering the derivation equations of the normalized family of maximal planar generators, we arrive to the Norden connecting operator definition in terms of Neifeld operators. If in the bundle \(A^C \) we consider the quadrivector \(\varepsilon_{abcd} \) as the metric tensor antisymmetric in all indices then the metric tensor \(G_{\Lambda\Psi} \) is induced on the base, and therefore the maximal planar generator manifold transforms to the real pseudo-Riemannian space \(V^{12}_{6,6} \) with the complex structure \(f_\Lambda^\Psi \). We can move to the complex representation of our manifold taking the space \(CV^6 \) as the base. A 4-dimensional cone generator of the 8-dimensional space \(CR^8 \) (i.e., in the projective geometry, this will just be a 3-dimensional generator of the quadric \(CP_6 \subset CP_7 \)) corresponds to a fiber of the bundle \(A^C \) with the base \(CV^6 \). Then we obtain that the torsion-free Riemannian connection, introduced by the formulas
\[\nabla_\alpha g_{\beta\gamma} = 0, \quad \nabla_\alpha g_{\beta\gamma} = 0, \]
can be uniquely prolonged to the equiaffine connection in the bundle \(A^C(CV^6) \)
\[\nabla_\alpha \varepsilon_{abcd} = 0, \quad \nabla_\alpha \varepsilon_{abcd} = 0, \]
where \(\alpha, \beta, ..., = 1, 2, 3, 4, 5, 6 \). The existence and the uniqueness of such the connections are proved in this chapter.

Next, the real torsion-free Riemannian connection, induced by the inclusion \(V^6_{(p,q)} \subset CV^6 \), is described. Such the connection must be coordinated with the involution, i.e., the following relation
\[\nabla_\alpha S_{\beta\gamma} = 0, \quad \nabla_\alpha S_{\beta\gamma} = 0 \]
must be satisfied. Then using the results of the first chapter, we introduce either a Hermitian polarity or a Hermitian involution in the bundle \(A^C \). The specified structure must be a covariant constant. The bitwistor equation
\[\nabla^a(b X^c) = 0 \]
is obtained from the results of these subsections. This equation is a conformal invariant and an invariant under a normalization transformation. Solutions of this equation will be discussed in the next chapter.
3.1 Connection in a bundle

Let a bundle R with the base $V^{2n}_{(n,n)}$ and fibers isomorphic to \mathbb{C}^k be given. We define covariant derivative operator acting on the bundle R along a vector field X as a mapping between two smooth sections of the fiber \mathbb{C}^k_x

$$\nabla_X s : x \mapsto \nabla_X s(x),$$ \hspace{1cm} (184)

where $s(x)$ is section. If $X = \frac{\partial}{\partial x^i}$ then this will give the decomposition

$$\nabla_i \frac{\partial}{\partial x^i} s = \nabla_is,$$

(185)

where $i, j, k, ... = 1, 2n$. The operator ∇_i must satisfy the following relations (which incidentally can be put in its definition)

$$\nabla_i (X^a + Y^a) = \nabla_i X^a + \nabla_i Y^a,$$

$$\nabla_i (fX^a) = f\nabla_i X^a + X^a \nabla_i f,$$

$$\nabla_i (X_a Y^a) = Y^a \nabla_i X_a + X_a \nabla_i Y^a,$$

$$\nabla_i X^{a'} = \nabla_i X^a,$$

$$\nabla_i \tilde{X}^a = \nabla_i X^a,$$

$$\nabla_i k = 0,$$

$$\nabla_i (g + h) = \nabla_i g + \nabla_i h,$$

$$\nabla_i (gh) + g\nabla_i h + h\nabla_i g,$$

(186)

where $a, b, c, ..., f = 1, n$. In this case, k, g, h are analytical functions, $k = const$; X^a, Y^a are vectors of the fiber \mathbb{C}^k_x, and X_a, Y_a are covectors of the dual space \mathbb{C}^k_x. In the basis $s_a(x)$ of the fiber \mathbb{C}^k_x, the section $s(x)$ can be decomposed as

$$s = s^a s_a$$

(187)

so that the connection coefficients are determined from the following equation

$$\nabla_is_a = \Gamma_{ia}^c s_c.$$ \hspace{1cm} (188)

Then the differentiation can be accomplished as follows

$$\nabla_i X^a = \partial_i X^a + \Gamma_{ic}^a X^c.$$ \hspace{1cm} (189)

The repeated covariant derivative is written down as

$$\nabla_i \nabla_j X^a = \partial_i \nabla_j X^a - \Gamma_{ij}^k \nabla_k X^a + \Gamma_{ic}^a X^c.$$ \hspace{1cm} (190)

By Γ, we denote the connection defined by means of Γ_{ij}^k in the tangent bundle. The tensor T_{ij}^k defining with the help of the relation

$$2\nabla_i \nabla_j f = T_{ij}^k \nabla_k f$$ \hspace{1cm} (191)

is called torsion tensor of the connection Γ. The tensor R_{ijk}^l defining with the help of the following condition

$$(2\nabla_i \nabla_j - T_{ij}^k \nabla_k) X^i = R_{ijk}^l X^k$$ \hspace{1cm} (192)
is called curvature tensor of the connection Γ. If the torsion is equal to zero then the operator ∇_i is called symmetric covariant derivative operator.

Let ∇_i be a symmetric covariant derivative operator, and $\tilde{\nabla}_i$ is an arbitrary covariant derivative operator. Then

$$(\tilde{\nabla}_i - \nabla_i)f = 0, \quad (193)$$

and we can define the tensor Q_{ib}^a called strain tensor

$$\begin{align*}
(\tilde{\nabla}_i - \nabla_i)X^a &= Q_{ib}^a X^b, \\
(\tilde{\nabla}_i - \nabla_i)X_a &= -Q_{ia}^b X_b, \\
(\tilde{\nabla}_i - \nabla_i)X^a' &= Q_{ib}^a' X^b', \\
(\tilde{\nabla}_i - \nabla_i)X_a' &= -Q_{ia}^b' X_b'.
\end{align*} \quad (194)$$

If $R = \tau^R(V_{2n})$ is the tangent bundle then the torsion of the operator $\tilde{\nabla}_i$ has the form

$$\tilde{T}_{ij}^k = 2Q_{[ij]}^k, \quad (195)$$

where Q_{ij}^k is strain tensor in the tangent bundle.

3.1.1 Normalization (spinor normalization) of the quadric $\mathbb{C}Q_6$ in $\mathbb{C}P_7$

Consider a nonsingular quadric $\mathbb{C}Q_6$ embedded in the projective space $\mathbb{C}P_7$. It can be described by means of the equation

$$G_{AB}X^AX^B = 0 \iff (X, X) = 0 \ (A, B, \ldots = 1, 8). \quad (196)$$

Based on the Cartan triality principle [3, p. 119(eng)], the manifold of quadric points is diffeomorphic to a manifold of 3-dimensional planar generators representing one and the same family (so we have the three manifolds are isomorphic to each other). Basic points of these generators

$$X_a = (X_a^A) \quad (a, b, \ldots, i, j, \ldots, p, q, \ldots = 1, 4) \quad (197)$$

determine the equation

$$(X_a, X_b) = 0. \quad (198)$$

We define a planar generator with the help of its matrix coordinate $Z = (Z_a^p)$

$$X_a := A_a + B_p Z_a^p, \quad (A_a, B_p) := d_{ap}, \quad B^a := d^{ap} B_p \quad (199)$$

then from (198), the equation

$$Z_{ab} = -Z_{ba}, \quad Z_{ab} := d_{ap} Z_a^p \quad (200)$$

follows. This means that X_a depend on the 6 complex parameters. As is well known [11], [13], spinor normalization of a maximal planar generator manifold is defined by means of the giving of such a real differential correspondence between maximal planar generators of the quadric

$$f : \mathbb{C}P_3(X_a) \rightarrow \mathbb{C}P_3(Y_p) \quad (201)$$
that the generator $\mathbb{CP}_3(X_a)$ corresponds to the plane $\mathbb{CP}_3(Y_p)$, which does not intersect the first. For the six-dimensional quadric, these planar generators must belong to one of the two family. We will require that the normalization was harmonic \[22\] p. 209. In the local coordinates, the normalization is determined by the parametric equations

$$X_a = X_a(u^A), \quad Y_a = Y_a(u^A) \quad (\Lambda, \Psi, ... = \Gamma, \Omega).$$ \hspace{1cm} (202)

In this case, the relations

$$(X_a, X_b) = 0, \quad (Y_p, Y_q) = 0, \quad (X_a, Y_p) = c_{ap}$$ \hspace{1cm} (203)

are executed. Due to the nondegeneracy of c_{ap}, we can define

$$Y^a := c^{ap}Y_p, \quad c^{ap}c_{pb} = \delta^a_b, \quad (X_a, Y^b) = \delta^a_b.$$ \hspace{1cm} (204)

3.1.2 Neifeld operators

Derivation equations of the normalized family of maximal planar generators have the form \[11\], \[13\]

$$\left\{ \begin{array}{l}
\nabla_\Lambda X_a = Y^b M_{\Lambda ab}, \\
\nabla_\Lambda Y^b = X_a N_{\Lambda ab}.
\end{array} \right.$$ \hspace{1cm} (205)

Then from (203), the equalities

$$M_{\Lambda (ab)} = 0, \quad N_{\Lambda (ab)} = 0, \quad \Gamma_{\Lambda a}^c = \tilde{\Gamma}_{\Lambda a}^c$$ \hspace{1cm} (206)

will follow, where $\Gamma_{\Lambda a}^c$ are the coefficients of the conformal torsion-free pseudo-Euclidean connection in the complex vector bundle whose the base is the maximal planar generator manifold. Note that the complex vector bundle is the metrizable in the sense that in it we can set a field of the metric quadrivector ε_{abcd}. Since the normalization is harmonic then the connection, defined above, is *equiaffine*: the quadrivector ε_{abcd} is a covariant constant. It allows to use ε_{abcd} for the transfer of indexes. The operators $M_{\Lambda ab}$ are *connecting operators* so that each bivector of the fiber associates with the real vector of the tangent bundle

$$V^{ab} := M_{\Lambda ab} V^\Lambda.$$ \hspace{1cm} (207)

This correspondence is bijective. It follows that we can determine

$$\left\{ \begin{array}{l}
M_{\Lambda ab} M_{\Lambda cd} = \delta_{ab}^{cd}, \\
\tilde{M}_{\Lambda a'b'} M_{\Lambda ab} = 0, \quad det \left| M_{\Lambda ab} \right| \neq 0.
\end{array} \right.$$ \hspace{1cm} (208)

Then the operator

$$\triangle_\Lambda \Psi = \frac{1}{2}(\delta_\Psi + if_\Lambda \Psi) = \frac{1}{2}M_{\Lambda ab} M^{\Psi ab}$$ \hspace{1cm} (209)

is *Norden affinor* \[17\] such that

$$f_\Lambda \Psi M^{\Lambda cd} = -i M^{\Psi cd},$$ \hspace{1cm} (210)
where \(f_{\Lambda}^{\Psi} \) is the operator of the complex structure

\[
f^2 = -E. \tag{211}
\]

Let’s define Neifeld operators \(m_{\alpha}^{\Lambda} \) as

\[
\begin{cases}
m_{\alpha}^{\Lambda} m_{\beta}^{\Lambda} = \delta_{\alpha \beta}, \\
m_{\alpha}^{\Lambda} \bar{m}_{\beta'}^{\Lambda} = 0, \\
\det \left\| m_{\alpha}^{\Lambda} \right\| \neq 0
\end{cases} \tag{212}
\]

according to [10], and then

\[
\Delta_{\Lambda}^{\Psi} = \frac{1}{2} (\delta_{\Lambda}^{\Psi} + i f_{\Lambda}^{\Psi}) = m_{\alpha}^{\Lambda} m_{\alpha}^{\Psi} \quad (\alpha, \beta, ... = 1, 6) \tag{213}
\]

is the same Norden affinor. At the same time,

\[
f_{\Lambda}^{\Psi} m_{\alpha}^{\Lambda} = -i m_{\alpha}^{\Psi}. \tag{214}
\]

This means that we have the following decomposition

\[
m_{\alpha}^{\Lambda} = \frac{1}{2} \eta_{\alpha}^{ab} M_{ab}^{\Lambda} \tag{215}
\]

which defines the connecting Norden operators \(\eta_{\alpha}^{ab} = -\eta_{\alpha}^{ba} \). For an arbitrary tensor \(A_{\Lambda \Psi} \), we will have the following decomposition

\[
\begin{cases}
a_{\alpha \beta} = m_{\alpha}^{\Lambda} m_{\beta}^{\Psi} A_{\Lambda \Psi}, \\
a_{\alpha' \beta} = \bar{m}_{\alpha'}^{\Lambda} m_{\beta}^{\Psi} A_{\Lambda \Psi}, \\
a_{\alpha \beta' \gamma \delta} = M_{ab}^{\Lambda} M_{\gamma \delta}^{\Psi} A_{\Lambda \Psi}, \\
a_{\alpha' \beta' \gamma \delta} = \bar{M}_{a'b'}^{\Lambda} \bar{M}_{\gamma \delta}^{\Psi} A_{\Lambda \Psi}.
\end{cases} \tag{216}
\]

In this case, the metric quadrivector will correspond to the metric tensor \(G_{\Lambda \Psi} \) so that

\[
\begin{cases}
g_{\alpha \beta} = m_{\alpha}^{\Lambda} m_{\beta}^{\Psi} G_{\Lambda \Psi}, \\
g_{\alpha' \beta} = 0, \\
\varepsilon_{\alpha \beta \gamma \delta} = M_{ab}^{\Lambda} M_{\gamma \delta}^{\Psi} G_{\Lambda \Psi}, \\
\varepsilon_{\alpha' \beta' \gamma \delta} = 0.
\end{cases} \tag{217}
\]

The inverse relationships have the form

\[
G_{\Lambda \Psi} = \frac{1}{4} (M_{ab}^{\Lambda} M_{\gamma \delta}^{\Psi} \varepsilon_{abcd} + \bar{M}_{ab}^{\Lambda} \bar{M}_{\gamma \delta}^{\Psi} \varepsilon_{a' b' c' d'}),
\]

\[
\eta_{\alpha}^{ab} = m_{\alpha}^{\Lambda} M_{ab}^{\Lambda}, \quad \bar{\eta}_{\alpha'}^{a'b'} = \bar{m}_{\alpha'}^{\Lambda} \bar{M}_{a'b'}^{\Lambda}, \tag{218}
\]

\[
\eta_{\alpha}^{ab} = \bar{m}_{\alpha}^{\Lambda} M_{ab}^{\Lambda}, \quad \bar{\eta}_{\alpha'}^{a'b'} = m_{\alpha'}^{\Lambda} \bar{M}_{a'b'}^{\Lambda} \equiv 0.
\]

The last pair of the equations appears due to the analyticity of \(M_{ab}^{\Lambda} \). From this, taking into account (208), (212), (215), the equations

\[
\eta_{\alpha}^{ab} \eta_{\alpha'}^{cd} = M_{ab}^{\Lambda} M_{\gamma \delta}^{\Psi} = \delta_{ab}^{\gamma \delta}, \quad \frac{1}{4} \eta_{\alpha}^{ab} \eta_{\beta}^{cd} \delta_{ab}^{\gamma \delta} = \delta_{\beta}^{\gamma \delta} \tag{219}
\]

will follow. Thus, the maximal planar generator manifold is equipped with the metric tensor \(G_{\Lambda \Psi} \), and therefore this manifold is diffeomorphic to the pseudo-Riemannian real space \(V_{(6,6)}^{12} \) with the complex structure \(f_{\Lambda}^{\Psi} \).
3.1.3 Real and complex representations of the connection

Let us construct a more general connection. We say that two connections are equivalent if they define the same parallel transport along any curve of the base. The complex and real representations are carried out according to [7, p. 169-178(rus)].

Theorem 1. Let $V_{(n,n)}^{2n}$ be a real pseudo-Riemannian space with the complex structure and $\mathbb{C}V^n$ be a complex analytic Riemannian space. Let $\mathbb{C}V^n$ be the complex representation of $V_{(n,n)}^{2n}$. Then the two following definitions are equivalent (specify the same connection)

1. In the tangent bundle $\tau^R(V_{(n,n)}^{2n})$, there is the torsion-free Riemannian connection such that the tensor m^α_Λ is a covariant constant

\[
\nabla_\Lambda G\psi = 0, \tag{220}
\]

\[
\nabla_\Lambda m^\alpha_\psi = 0, \quad \nabla_\Lambda \bar{m}^{\alpha'}_\psi = 0. \tag{221}
\]

2. In the tangent bundle $\tau^C(\mathbb{C}V^n)$, there is the torsion-free Riemannian connection such that the tensor m^α_Λ is a covariant constant

\[
\begin{align*}
\nabla_\alpha g_{\beta\gamma} &= 0, \\
\nabla^\alpha g_{\beta\gamma} &= 0, \\
\n\nabla_\beta m^\alpha_\psi &= 0, \\
\n\nabla_{\bar{\beta}} m^{\alpha'}_\psi &= 0, \tag{222}
\end{align*}
\]

and the definition

\[
\nabla_\alpha := m^\alpha_\Lambda \nabla_\Lambda, \quad \nabla_{\alpha'} := \bar{m}^{\alpha'}_\Lambda \nabla_\Lambda \tag{224}
\]

is made.

Proof.

First. Let Connection 1) exists then we multiply (221) by m^β_Λ and obtain

\[
\begin{align*}
\nabla_\Lambda m^\alpha_\psi &= 0, \\
0 &= m^\beta_\Lambda \nabla_\Lambda m^\alpha_\psi = \nabla_\Lambda m^\alpha_\psi, \\
0 &= \bar{m}^{\beta'}_\Lambda \nabla_\Lambda m^{\alpha'}_\psi = \nabla_{\bar{\beta}} m^{\alpha'}_\psi \tag{225}
\end{align*}
\]

taking into account the definition (223). Inverse. Assume that (223) is executed then obtain

\[
\begin{align*}
\nabla_\alpha &:= m^\alpha_\Lambda \nabla_\Lambda, \\
m^\alpha_\psi \nabla_\alpha &= \Delta^A \nabla_\Lambda \Leftrightarrow \bar{m}^{\alpha'}_\psi \nabla_{\alpha'} = \bar{\Delta}^A \nabla_\Lambda \tag{226}
\end{align*}
\]

taking into account the definitions (212) and (213). We will combine these two equations and obtain

\[
\nabla_\Lambda = (\Delta^A + \bar{\Delta}^A) \nabla_\Lambda + m^\alpha_\Lambda \nabla_\alpha + \bar{m}^{\alpha'}_\Lambda \nabla_{\alpha'}. \tag{227}
\]

Then from the condition (223), the identity

\[
\nabla_\Lambda m^\beta_\psi = m^\alpha_\Lambda \nabla_\alpha m^\beta_\psi + \bar{m}^{\alpha'}_\Lambda \nabla_{\alpha'} m^\beta_\psi = 0 \tag{228}
\]
follows.

Second. Because, from (221) or (223), the covariant constancy of the complex structure operator will follow due to the performance of (214) then the existence of the affine connection in the tangent bundle $\tau^C(\mathcal{V}_n)$ will imply according to [4, v. 2, pp. 135-139]. Considering the torsion-free Riemannian connection, we find that if we know Connection 1), we can define Connection 2) with the help of the condition (221) rewriting as

$$\Gamma_{\alpha\beta} := \Gamma_{\alpha\theta} \psi m_\alpha \theta m_\beta \psi + m_\beta \psi \partial_\alpha m_\alpha \psi, \quad \tilde{\Gamma}_{\alpha\beta} := \Gamma_{\alpha\theta} \psi \bar{m}_\alpha \theta \bar{m}_\beta \psi + \bar{m}_\beta \psi \partial_\alpha \bar{m}_\alpha \psi.$$

(229)

And if we know Connection 2), then we can define Connection 1). rewriting the condition (223) as

$$\Gamma_{\beta\theta} \psi := \Gamma_{\beta\alpha} \gamma m_\alpha \theta m_\gamma \psi + \Gamma_{\beta\alpha} \gamma \tilde{m}_\alpha \theta \tilde{m}_\gamma \psi - m_\alpha \theta \partial_\beta m_\alpha \psi - \tilde{m}_\alpha \theta \partial_\beta \bar{m}_\alpha \psi,$$

$$\Gamma_{\beta\theta} \psi := \Gamma_{\beta\alpha} \gamma m_\alpha \theta m_\gamma \psi + \Gamma_{\beta\alpha} \gamma \tilde{m}_\alpha \theta \tilde{m}_\gamma \psi - m_\alpha \theta \partial_\beta m_\alpha \psi - \tilde{m}_\alpha \theta \partial_\beta \bar{m}_\alpha \psi.$$

(230)

At the same time, the equations

$$\Gamma_{\alpha\theta} \psi := \Gamma_{\beta\theta} \psi m_\alpha \theta + \Gamma_{\beta\theta} \psi \bar{m}_\theta \bar{m}_\alpha \psi, \quad \Gamma_{\beta\theta} \psi = \Gamma_{\alpha\theta} \psi m_\beta \Lambda, \quad \Gamma_{\beta\theta} \psi = \Gamma_{\alpha\theta} \psi m_\beta \Lambda,$$

$$\partial_\beta = m_\beta \theta \partial_\psi, \quad \partial_\beta = \bar{m}_\beta \theta \bar{\partial}_\psi, \quad \partial_\Lambda = m_\Lambda \partial_\beta + \bar{m}_\Lambda \partial_\beta'$$

(231)

are executed.

Third. From (212) and (213), the equations

$$g_{\alpha\beta} = G_{\psi\Lambda} m_\alpha \psi m_\beta \Lambda,$$

$$G_{\Theta \Psi} \Delta_\Lambda \psi \Delta_\Psi \psi = m_\alpha \Lambda m_\beta \Psi g_{\alpha\beta},$$

$$\frac{1}{2}(G_{\Lambda \Psi} + iG_{\Theta \Lambda \Phi \psi \theta}) = m_\alpha \Lambda m_\beta \Psi g_{\alpha\beta},$$

$$\frac{1}{2}(G_{\Lambda \Psi} - iG_{\Theta \Lambda \Phi \psi \theta}) = \tilde{m}_\alpha \Lambda \bar{m}_\beta \psi \tilde{g}_{\alpha\beta},$$

$$G_{\Lambda \Psi} = m_\alpha \Lambda m_\beta \Psi g_{\alpha\beta} + \tilde{m}_\alpha \Lambda \bar{m}_\beta \psi g_{\alpha\beta}$$

(232)

will follow. Therefore, from the conditions (222), the equation (220) will follow too. Conversely, if (220) is executed then we have

$$m_\alpha \Lambda m_\beta \Psi m_\gamma \psi \nabla_\Lambda G_{\psi\Theta} = 0 \Leftrightarrow \nabla_\alpha g_{\beta\gamma} = 0,$$

$$\bar{m}_\alpha \Lambda m_\beta \Psi m_\gamma \psi \nabla_\Lambda G_{\psi\Theta} = 0 \Leftrightarrow \nabla_\alpha \bar{g}_{\beta\gamma} = 0.$$

(233)

Fourth. Since, Connection 1). is the unique, then Connection 2). is the unique too.

Note that for an analytical connection, the analytical conditions have the form

$$\Gamma_{\alpha\beta} \equiv 0, \quad \partial_\alpha m_\beta \Lambda \equiv 0 \Rightarrow \nabla_\alpha m_\beta \Lambda \equiv 0.$$

Theorem 2. Let the real pseudo-Riemannian space $V_{(6,6)}^{12}$ be given as the base of the bundles. Then the two torsion-free connections, given in the bundles $\tau^R(V_{(6,6)}^{12})$ and ΛC, are equivalent:

1. the Riemannian connection, defined in the bundle $\tau^R(V_{(6,6)}^{12})$ by means of the condition

$$\nabla_\Lambda G_{\psi\Theta} = 0.$$

(234)

39
2. the Riemannian connection, defined in the bundle A^C by means of the conditions
\[
\nabla_{A} \varepsilon_{abcd} = 0, \quad \nabla_{A} \varepsilon_{a'b'c'd'} = 0. \tag{235}
\]
Thus, Connection 2) is uniquely determined from the conditions
\[
\nabla_{A} M_{\varphi}^{ab} = 0, \quad \nabla_{A} \bar{M}_{\varphi}^{a'b'} = 0. \tag{236}
\]

Proof. In the tangent bundle, the torsion-free Riemannian connection, defined with the help of the condition (234), always exists and it is the unique. We will rewrite the first condition (236) as
\[
\nabla_{A} M_{\varphi}^{aa_1} = \partial_{A} M_{\varphi}^{aa_1} - \Gamma_{A \Psi}^{\varphi} M_{\Theta}^{aa_1} + \Gamma_{A \varphi}^{\varphi} M_{\Psi}^{aa_1} + \Gamma_{A \varphi}^{a_1} M_{\Psi}^{ac} = 0. \tag{237}
\]
Multiply this equation by $M_{\varphi}^{ac_1}$$\Gamma_{A \varphi}^{a_1} = -\frac{1}{2} (M_{\varphi}^{ac_1} \partial_{A} M_{\varphi}^{aa_1} - \Gamma_{A \Psi}^{\varphi} M_{\Theta}^{aa_1} M_{\varphi}^{ac} + \Gamma_{A \varphi}^{a_1} M_{\varphi}^{ac_1} + \Gamma_{A \varphi}^{a_1} M_{\Psi}^{ac_1}). \tag{238}
\]
Besides, from the conditions (235) and (208), the equation
\[
\frac{1}{24} M_{\varphi}^{ab} M_{\Theta}^{cd} \partial_{A} (M_{\varphi}^{ab} M_{\Theta}^{cd}) = \frac{1}{24} \varepsilon_{abcd} \partial_{A} \varepsilon_{abcd} =
\frac{1}{24} \varepsilon_{abcd} (\nabla_{A} \varepsilon_{abcd} + 4 \Gamma_{A [k}^{l} \varepsilon_{l]bcd}) = \frac{1}{6} \varepsilon_{abcd} \Gamma_{A}^{k} \varepsilon_{kbcd} = \Gamma_{A}^{k}
\]
follows. On this basis, the equation (238) can be put in the definition of Connection 2).

Suppose that in the bundle A^C, there is another operator of the symmetric covariant derivative $\bar{\nabla}_{A}$ such that
\[
\nabla_{A} \varepsilon_{abcd} = 0 \Rightarrow (\nabla_{A} - \nabla_{\bar{A}}) \varepsilon_{abcd} = 0 \Leftrightarrow Q_{A}^{k} = 0, \tag{240}
\]
where the tensor $Q_{A}^{a}b$ is the strain tensor defined in the bundle A^C. Let the tensor $Q_{A \varphi}^{\varphi}$ be the strain tensor in the tangent bundle $\tau^{n}(V_{(6,0)}^{12})$. Consider the action of these operators on a bivector $R^{ab} = M_{\varphi}^{ab} r^{\varphi}$
\[
(\nabla_{A} - \nabla_{\bar{A}}) R^{ab} = (Q_{A}^{a}b \delta_{l}^{b} - Q_{A}^{b}b \delta_{l}^{a}) R^{kl} = M_{\varphi}^{ab} (\nabla_{A} - \nabla_{\bar{A}}) r^{\varphi} = M_{\varphi}^{ab} Q_{A \varphi}^{\varphi} r^{\varphi},
\]
\[
(\nabla_{A} - \nabla_{\bar{A}}) R_{ab} = -M_{\varphi}^{ab} Q_{A \varphi}^{\varphi} r^{\varphi}. \tag{241}
\]
From this, the identities
\[
M_{\varphi}^{ab} Q_{A \varphi}^{\varphi} r^{\varphi} = 2Q_{A}^{a}b \delta_{l}^{b} R^{kt},
M_{\varphi}^{ab} Q_{A \varphi}^{\varphi} r^{\varphi} = 2Q_{A}^{a}b \delta_{l}^{b} M_{\Theta}^{kt} r^{\varphi},
M_{\varphi}^{ab} Q_{A \varphi}^{\varphi} r^{\varphi} = M_{\Theta}^{kt} 2Q_{A}^{a}b \delta_{l}^{b} = 2M_{\Theta}^{k[b} Q_{A}^{a]l},
Q_{A \varphi}^{\varphi} = M_{\Theta}^{bb} M_{\varphi}^{ab} Q_{A}^{a} + M_{\Theta}^{b[b} M_{\varphi}^{a]b} Q_{A}^{a} =
-M_{\varphi}^{bb} M_{\Theta}^{ab} Q_{A}^{a} - M_{\varphi}^{b[b} M_{\Theta}^{a]b} Q_{A}^{a} \tag{242}
\]
will follow. Whence, we obtain
\[
Q_{A \varphi}^{\varphi} = -Q_{A \varphi}. \tag{243}
\]
In the absence of the torsion, we have

\[Q_\Lambda \Theta \Psi = Q_\Theta \Lambda \Psi \]

(244)

then

\[Q_\Lambda \Theta \Psi = 0, \]

(245)

and this means the uniqueness of Connection 2).

Corollary 1. Let as the base of the bundle, the complex analytic Riemannian space \(\mathbb{C}V^6 \) be given. Then the two torsion-free connections, given in the bundles \(\tau^C(\mathbb{C}V^6) \) and \(A^C \), are equivalent:

1. the Riemannian analytic connection, defined in the bundle \(\tau^C(\mathbb{C}V^6) \) by means of the conditions
 \[\nabla_\alpha g_{\beta \gamma} = 0, \quad \bar{\nabla}_{\alpha'} g_{\beta' \gamma'} = 0. \]
 (246)

2. the Riemannian analytic connection, defined in the bundle \(A^C \) by means of the conditions
 \[\nabla_\alpha \varepsilon_{abcd} = 0, \quad \bar{\nabla}_{\alpha'} \bar{\varepsilon}_{a'b'c'd'} = 0. \]
 (247)

Thus, Connection 2). is uniquely determined by means of the conditions

\[\nabla_\alpha \eta_{\beta}^{ab} = 0, \quad \bar{\nabla}_{\alpha'} \bar{\eta}_{\beta'}^{a'b'} = 0. \]

(248)

Proof. The proof follows from Theorem 1, Theorem 2, the analyticity (218), and the equation (214). In particular, the analyticity of \(\eta_{\beta}^{ab} \) means \(\partial_\alpha' \eta_{\beta}^{ab} \equiv 0 \), and from (214), the equality \(\Gamma_{\alpha'\beta}' = 0 \) implies. \(\square \)

3.1.4 Involution in \(\mathbb{CP}_7 \)

Suppose now that in \(\mathbb{CP}_7 \) an involution is given in the sense of [10]

\[\bar{S}_{A'B'} S_{B'D'} = \delta_{A'B'} \]

(249)

then the condition of the reality of the point \(X^A \) takes the form

\[S_{A'B'} \bar{X}^A = X^{B'}. \]

(250)

We require that this involution defines an embedding of a real quadric in the complex one. This is equivalent to that the tensor, defining the quadric, is self-conjugated with respect to this involution. Then maximum planar generators of the real quadric must satisfy the conditions

1). \(\bar{S}_{A'B'} \bar{X}^{A'}_{a'} s_{a}^{a'} = X_{a}^{B'}, \) \hspace{1cm} 2). \(\bar{S}_{A'B'} \bar{X}^{A'}_{a} s^{a'} = X^{aB'}. \)

(251)

Here the spin-tensors \(s_{a}^{a'} \) and \(s^{a'} \) define Hermitian involution and Hermitian polarity in the complex bundle respectively. These two cases arise from the fact that in the bundle with fibers isomorphic to \(\mathbb{C}^4 \), we do not have a tensor with which the help single indices can be raised and lowered. The first case means that the generator itself and the conjugate one belong one and the same family, in the second case,
these generators belong to the two different families. Therefore, all possible cases of real inclusions are exhausted that follows from the results of the second chapter. From \[120\), \(249\)-\(251\), the identities

\[
1. \ s_a^a s_a^b = \pm \delta_a^b, \quad 2. \ s_{aa'} s_a^b = \pm \delta_a^b
\]

will follow. Next, we consider Item 2). only as the most interesting from the standpoint of physics \[23\ v.2, p.68(eng)\]. Item 1). is treated similarly and we omit it. Then

\[
\bar{X}^{b'} = \bar{s}^{b'a} X_a.
\]

Therefore, we can write down the expression

\[
(X_a, \bar{X}^{b'}) = 0, \quad (Y_p, \bar{Y}^{q'}) = 0, \quad (X_a, \bar{Y}^{b'}) = s_{ab'}
\]

equivalent to \(203\), \(204\). Put

\[
\left\{ \begin{array}{l}
\nabla_\Lambda \bar{x}^{a'} = \bar{y}^{b'} \bar{M}_{\Lambda}^{a'b'}, \\
\nabla_\Lambda \bar{y}^{b'} = \bar{x}^{a'} \bar{N}_{\Lambda a'b'}
\end{array} \right.
\]

then from \(254\), the identities

\[
\bar{M}_{\Lambda a'b'} = -\frac{1}{2} s_{ca'} s_{db'} \varepsilon^{cdab} M_{\Lambda ab}, \quad \nabla_\Lambda s_{ab'} = 0
\]

will follow. Therefore, by means of the equation

\[
S_\Lambda^\Theta = \frac{1}{2} (M_{\Lambda ab} \bar{M}_{\Theta e'd'} s_{e'd'} s^{cd} + \bar{M}_{\Lambda a'b'} M_{\Theta e'd'} s_{e'd'} s^{cd}),
\]

we define the real involution

\[
S_\Lambda^\Theta S_\Theta^\Psi = \delta_\Lambda^\Psi, \quad \bar{M}_{\Lambda a'b'} = -S_\Lambda^\Psi \bar{M}_{\Psi a'b'}, \quad S_\Lambda^\Theta f_\Theta^\Lambda = -f_\Lambda^\Theta S_\Theta^\Lambda.
\]

In addition, we can define the complex representation of the involution according to \[10\]

\[
\left\{ \begin{array}{l}
S_{\alpha}^{\beta} = 0, \\
S_{\alpha}^{\beta'} = m_\alpha \bar{m}_{\beta'} \psi S_{\Lambda}^\Psi, \quad S_{\alpha}^{\beta'} S_{\beta'}^\gamma = \delta_\alpha^\gamma.
\end{array} \right.
\]

3.1.5 Riemannian connection compatible with the involution

Corollary 2. Let the complex analytic Riemannian space \(\mathbb{C}V^6\) be given as the base of the bundles. Then the two torsion-free connections, given in the bundles \(\tau^C(\mathbb{C}V^6)\) and \(A^C(S)\) are equivalent:

1. the Riemannian real connection, defined in the bundle \(\tau^C(\mathbb{C}V^6)\) by means of the conditions

\[
\nabla_\alpha g_{\beta\gamma} = 0, \quad \nabla_\alpha S_\gamma^{\beta'} = 0
\]

(such the connection we call connection compatible with the involution).
2. the Riemannian real connection, defined in the bundle $A^C(S)$ by means of the conditions
\[\nabla_{\alpha \varepsilon} abcd = 0, \quad \nabla_{\alpha} s_{aba'b'} = 0. \] (261)

Thus, Connection 2) is uniquely determined by means of the condition
\[\nabla_{\alpha} \eta_{\beta}^a b = 0. \] (262)

Proof. Under the conditions of Corollary 1, we consider Connection 1) specified by means of the conditions (248) then from the reality of the conditions, the equation
\[S_{\beta} \gamma' \delta_{\gamma'} = \partial_{\beta} \] (263)
will follow. Therefore, from the covariant constancy of the involution tensor, we give
\[\nabla_{\gamma} = S_{\gamma}^\beta \nabla_{\beta'} \] (264)
that will define the real connection. If we put
\[s_{aba'b'} := \epsilon_{a'\alpha}^b \eta_{\beta}' a' \eta_{\beta'}^b S_{\alpha} \beta', \] (265)
then from (262) and (260), the equation
\[\nabla_{\alpha} s_{aba'b'} = 0 \] (266)
will follow.

Corollary 3. Let the real Riemannian space $V^6_{(2,4)}$ be given as the base of the bundles. Then the two torsion-free connections, given in the bundles $\tau^R(V^6_{(2,4)})$ and $A^C(S)$, are equivalent:

1. the Riemannian real connection, defined in the bundle $\tau^R(V^6_{(2,4)})$ by means of the conditions
\[\nabla_{i} g_{jk} = 0. \] (267)

2. the Riemannian real connection, defined in the bundle $A^C(S)$ by means of the conditions
\[\nabla_{i} \varepsilon_{abcd} = 0, \quad \nabla_{i} s_{ab'} = 0. \] (268)

Thus, Connection 2) is uniquely determined by means of the condition
\[\nabla_{i} \eta_{j}^{a b} = 0. \] (269)

Proof. It follows from preceding Corollary 2) under the condition of the covariant constancy of the inclusion operator H_{i}^{α} which will determine the appropriate connection. We will only prove the covariant constancy of the Hermitian polarity tensor. Since,
\[\nabla_{\alpha} s_{abc'd'} = \nabla_{\alpha} s_{[a|c'|s_{b]d'}} = 0. \] (270)

Deploying this equation by the Leibniz rule and contracting with $s^{ac'}$, we get
\[\nabla_{\alpha} s_{bd'} = -1/2 s_{bd'} s^{ac'} \nabla_{\alpha} s_{ac'}. \] (271)

After the contraction with $s^{bd'}$ of this equation, we finally obtain
\[s^{ac'} \nabla_{\alpha} s_{ac'} = 0, \quad \nabla_{\alpha} s_{ac'} = 0. \] (272)
3.1.6 Bitwistor equation

From (205), (208), (215), assuming
\[\nabla_{ab} := \eta_{\alpha} \eta_{ab} \nabla_{\alpha}, \]
we obtain
\[\nabla_\alpha X_a = Y^b \eta_{ab} \Leftrightarrow \nabla_{cd} X_a = Y^b \varepsilon_{cdab} \]
such that the equations
\[\nabla_c (d X_a) = 0, \quad \nabla_c (d^a X^a) = 0, \]
the last of which we called bitwistor equation, are executed. Using this equation, we can investigate the conformal structure of the spaces \(\mathbb{CR}^6 \). It should be noted that the bitwistor equation does not change under conformal transformations of the metric and this equation is invariant under normalization transformations in the sense of [11], [13].

Proof. Indeed, suppose that a conformal transformation of the metric has the form
\[g_{\alpha\beta} \mapsto \tilde{g}_{\alpha\beta} = \Omega^2 g_{\alpha\beta}. \]
Then from the equation
\[\tilde{\nabla}_\alpha \varepsilon_{abcd} = \nabla_\alpha \varepsilon_{abcd} = 0, \]
the condition
\[0 = \tilde{\nabla}_\alpha (\Omega^2 \varepsilon_{abcd}) = \varepsilon_{abcd} (2\Omega \nabla_\alpha \Omega - \Omega^2 \Theta_{ak}^k) = 0 \]
will follow. Let’s put
\[B_\alpha := \frac{1}{2} \Theta_{ak}^k. \]
Because \(\nabla_\alpha \) and \(\tilde{\nabla}_\alpha \) are symmetrical operators then in the tangent bundle \(\tau^C (\mathbb{CV}^6) \), the equation
\[Q_{\alpha\beta\gamma} = Q_{\beta\alpha\gamma} \]
is executed. Then in the bundle \(A^C \), the relations
\[\Theta_{c_{1}a}^b = B_{ca} \delta_{c_1}^b - B_{c_1a} \delta_{c}^b, \quad B_{ab} = -B_{ba} \]
are executed too. Then
\[B_\alpha = \frac{1}{2} \eta_{\alpha}^a B_{ab} = \Omega^{-1} \nabla_a \Omega. \]
Put
\[\hat{X}^c = X^c. \]
Then, according to
\[\tilde{\nabla}_{ab} X^c = \nabla_{ab} X^c + 2B_{[a|k]} \delta_{k}^c X^k, \]
we obtain
\[\tilde{\nabla}^{a(b} \hat{X}^{c)} = \Omega^{-2} \nabla^{a(b} X^{c)}. \]
This means that the bitwistor equation is a conformal invariant. \(\square \)
4 Theorems on the curvature tensor. The canonical form of bivectors of 6-dimensional (pseudo-) Euclidean spaces $\mathbb{R}^6_{(p,q)}$ with the even index q

Since the connection, introduced in the tangent space of $\mathbb{C}V_6$, satisfies the equations

$$\nabla_{\alpha} g_{\gamma\delta} = 0, \quad \bar{\nabla}_{\alpha'} \bar{g}_{\gamma'\delta'} = 0$$

and the connection in the bundle $A_{\mathbb{C}}$ is determined from the relations

$$\nabla_{\alpha} \eta_{\beta}^{ab} = 0, \quad \bar{\nabla}_{\alpha'} \bar{\eta}_{\beta'}^{a'b'} = 0$$

then we can choose a nonholonomic special basis such that the metric $g_{\gamma\delta}$ will have the diagonal form with $\ll +1 \gg$ on the main diagonal in this basis, and the coordinates of the generalized connecting Norden operators will be some constants (similar to the formulas (159)-(161)). From this, it follows that the coordinates of the operators $A_{\alpha\beta}^{ab}$ will be some constants in the basis. Then the curvature tensor with the help of the operators $A_{\alpha\beta}^{ab}$ can be represented as

$$R_{\alpha\beta\gamma\delta} = A_{\alpha\beta}^{ab} A_{\gamma\delta}^{cd} R_{bc}^{\quad ad}.$$

In this case, knowing the structure of the spin-tensor $R_{bc}^{\quad ad}$, we can restore the structure of the curvature tensor. But the study of the structure of the spin-tensor $R_{bc}^{\quad ad}$ is facilitated by the fact that it does not almost contain non-significant components. In the 4-dimensional case, similar tensor, called curvature spinors [23], greatly simplify the classification of the curvature tensor of the 4-dimensional space. This classification was undertaken for the first time by Petrov with the help of direct tensor methods. Therefore, it is expected that it will be easier to classify the spin-tensor $R_{bc}^{\quad ad}$ rather than to deal with the classification of the tensor $R_{\alpha\beta\gamma\delta}$. The first part of this chapter is devoted to the interaction between the tensor and the spin-tensor.

The canonical form of a skew-symmetric bilinear form for the even index q of the metric of the space $\mathbb{R}^6_{(p,q)}$ is discussed in the third subsection. This form in the special basis has the representation

$$\frac{1}{2} R_{\alpha\beta} X^\alpha Y^\beta = R_{16} X^{[1} Y^{6]} + R_{23} X^{[2} Y^{3]} + R_{45} X^{[4} Y^{5]}.$$

In addition, such the fact as a correspondence between vectors of \mathbb{C}^4 and isotropic simple bivectors belonging to the isotropic cone K_6 of $\mathbb{C} \mathbb{R}^6$ is established. This correspondence will determine a vector up to the factor $re^{i\Theta} \in \mathbb{C}$. Based on this correspondence, we can talk about the geometric interpretation of isotropic twistor of \mathbb{C}^4 (in the sense of $s_{aa'} X^a X^{a'} = 0$) into the space $\mathbb{R}^6_{(2,4)}$. To implement it, we need to learn how to compare isotropic vectors belonging to the cone K_6. Therefore, using the stereographic projection, we have an invariant (coordinate-independent) way to define a vector, tangent to K_6 and applied at the point P. Its norm, taken with the sign ",", is associated to the isotropic vector K with the beginning at the apex of the cone and the ending at the point P. This norm is called extension of the vector K. Then we can choose the unit vector k and compare all isotropic vectors with this vector. In this case, the ambiguity of the correspondence can be removed as follows:

1. **flagpole**: r is the extension of any isotropic vector determined by the specified isotropic simple bivector (the isotropic 2-plane) belonging to the cone K_6;

2. **flag-plane**: the plane Π is spanned on the flagpole and the vector orthogonal to the flagpole. Θ is an angle of the rotation of the 3-half-plane Π around the flagpole.

The resulting interpretation is similar to the correspondence between spinors and isotropic vectors of the Minkowski space discussed in the monography [23].
4.1 Theorem on bitensors of the 6-dimensional space

Before to pass to the investigation of curvature tensor properties in the space \(CV^6 \), we consider the following theorem.

Theorem 1. The classification of a bitensor, possessing the properties

\[
R_{\alpha\beta\gamma\delta} = R_{[\alpha\beta][\gamma\delta]}, \quad R_{\alpha\beta\gamma\delta} = R_{\gamma\delta\alpha\beta}, \quad R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0 \tag{286}
\]

and belonging to the tangent bundle \(\tau^C(CV^6) \) over the analytic Riemannian space \(CV^6 \), can be reduced to the classification of a spin-tensor \(R_{\alpha\beta\gamma\delta} \) of the 4-dimensional complex spinor space such that

\[
R_{\alpha\beta\gamma\delta} = A_{\alpha\beta\gamma\delta} R_{\alpha\beta\gamma\delta} \tag{287}
\]

Besides, the equations

\[
R_{k^r_k^s} = R_{s^r_k^k} = 0, \quad R_{c^d_s} = R_{s^r_c} \tag{288}
\]

are executed. The decomposition

\[
R_{c^d_s} = C_{c^d_s} - P_{c^d_s} \tag{289}
\]

corresponds to the decomposition of the tensor \(R_{\alpha\beta\gamma\delta} \)

\[
R_{\alpha\beta\gamma\delta} = C_{\alpha\beta\gamma\delta} + R_{(\alpha} [\gamma g_{\beta]} \delta] - 1/10 R g_{[\alpha} [\gamma g_{\beta]} \delta] \tag{290}
\]

on the irreducible components not resulted by orthogonal transformations. These components will satisfy the following relations

\[
P_{c^s} = -4(\delta_s^r \delta_s^d) \tag{291}
\]

\[
C_{c^d_s} = R_{c^d_s} + \frac{1}{40} \cdot R(3\delta_s^d \delta_c^r - 2\delta_s^r \delta_c^d) \tag{292}
\]

\[
R = R_{\alpha\beta} \gamma, \quad P_{k^d_s} = 1/2 \cdot R\delta_s^d, \tag{293}
\]

\[
R_{l^d_l^s} = -\frac{1}{8} \cdot R\delta_s^d \tag{294}
\]

the last of which is equivalent to the Bianchi identity \((286)\).

Proof. On the basis of \((41)\), we have the following equality

\[
R_{\alpha\beta\gamma\delta} = 1/16 \cdot \eta_{\alpha a_1} \eta_{\beta b_1} \eta_{\gamma c_1} \eta_{\delta d_1} R_{a_1 b_1 c_1 d_1} \tag{295}
\]

Put

\[
R_{c^d_s} = \frac{1}{4} R_{c^d_s} \tag{296}
\]

From this, taking into account \((43)\), the formula \((287)\) follows

\[
R_{\alpha\beta\gamma\delta} = A_{\alpha\beta\gamma\delta} \cdot R_{c^d_s} \tag{297}
\]
Then the equation
\[R_{\beta \delta} = R_{\alpha \beta}{}^{\alpha}{}_{\delta} = A_{\alpha \beta d}{}^{c}A_{\gamma r}{}^{s}R_{c d}{}_{r}{}^{s} = (\eta_{\beta}{}^{c s}\eta_{\delta r d} + \eta_{\beta}{}^{c k}\eta_{\delta k r d})R_{c d}{}_{r}{}^{s} = \]
\[= \frac{1}{4}\eta_{\beta}{}^{c s}\eta_{\delta r d} \cdot 4(R_{[c}{}_{d}{}^{[r}{}_{s]}{}^{]} - R_{[c}{}_{k}{}^{[r}{}_{d}{}_{s]}{}^{]}) \]
is executed. Put
\[P_{cs}{}^{r d} := -4(R_{[c}{}_{r}{}^{d}{}_{s]}{}^{]} - R_{[c}{}_{k}{}^{[r}{}_{d}{}_{s]}{}^{]}) \]
then
\[R_{\beta \delta} = \frac{1}{4}\eta_{\beta}{}^{c s}\eta_{\delta r d} P_{cs}{}^{r d}, \]
and this proves the formula (291). Since, the scalar curvature is given by
\[R = R_{\beta}{}^{\beta} = \frac{1}{4}\eta_{\beta}{}^{c c}\eta_{\alpha a c}P_{cc}{}_{a a c} = \frac{1}{4}\zeta_{a a c}{}^{c c}P_{cc}{}_{a a c} = \frac{1}{2}P_{a a c}{}_{a a c} = -2R_{k r}{}^{k}.
\]
and, moreover, the equation
\[P_{k s}{}^{k} = -4(R_{[k}{}_{r}{}^{k}{}_{s]}{}^{]} + R_{[r}{}_{k}{}^{[r}{}_{s]}{}^{]}) = \]
\[= -4(-\frac{1}{2}R_{k s}{}^{k}{}^{k} + \frac{1}{2}(R_{k r}{}_{k}{}^{r}{}_{d}{}^{s} + 4R_{k s}{}^{d}{}^{k} - 2R_{k r}{}_{s}{}^{d}{}^{k})) = -R_{k r}{}_{k}{}^{r}{}_{s}{}^{d} = \frac{1}{2}R_{k r}{}_{s}{}^{d} \]
is executed then the formulas (293) will actually be true.

The Bianchi identity (286) can be rewritten as
\[(A_{\alpha \beta d}{}^{c}A_{\gamma r}{}^{s} + A_{\alpha \gamma d}{}^{c}A_{\beta r}{}^{s} + A_{\alpha \delta d}{}^{c}A_{\beta \gamma r}{}^{s}) \cdot R_{c d}{}_{r}{}^{s} = 0. \]
Contracting this equation with \(A_{\alpha \beta l}^{r}A_{\gamma r}{}^{s} \) and taking into account (47), we will obtain
\[4R_{k m}{}_{l}{}^{k}{}_{s}{}^{n} + 4R_{r}{}_{l}{}^{r}{}_{s}{}^{m} - 2R_{k r}{}_{l}{}^{k}{}_{s}{}^{n} - 2R_{k s}{}_{r}{}^{m}{}_{l}{}^{r} -
\]
\[- 2R_{k r}{}_{s}{}^{n}{}_{s}{}^{m} - 2R_{k s}{}^{r}{}_{s}{}^{m}{}_{s}{}^{l} = 0. \]
Contracting this equation with \(\delta_{n}{}_{l} \), we will obtain the formula (294). In this case, all 15 significant equations are stored (all calculations are given in Appendix (496) - (498)).

Put
\[C_{\alpha \beta}{}_{\gamma}{}_{\delta} := A_{\alpha \beta d}{}^{c}A_{\gamma r}{}^{s}C_{c d}{}_{r}{}^{s}, \]
\[C_{\alpha \beta}{}_{\gamma}{}_{\delta} := R_{\alpha \beta}{}_{\gamma}{}_{\delta} - R_{[\gamma}{}_{g}{}_{\beta]}{}_{\delta]} + 1/10Rg_{[\gamma}{}_{g}{}_{\beta]}{}_{\delta]. \]
From (43), (291), (293), the equations
\[R_{[\gamma}{}_{g}{}_{\beta]}{}_{\delta]} = A_{\alpha \beta d}{}^{c}A_{\gamma r}{}^{s}R_{c d}{}_{r}{}^{s} \cdot \frac{1}{4}(P_{r c}{}^{d}{}_{r}{}^{s} - 1/2R\delta s{}_{c}{}^{d}{}_{c}{}^{r} + \frac{1}{4}R\delta s{}_{c}{}^{r}{}_{d}{}^{c}) \],
\[g_{[\gamma}{}_{g}{}_{\beta]}{}_{\delta]} = A_{\alpha \beta d}{}^{c}A_{\gamma r}{}^{s} \cdot \frac{1}{4}(1/2\delta s{}_{c}{}^{d}{}_{c}{}^{r} - 2\delta s{}_{c}{}^{d}{}_{c}{}^{r}) \]
will follow, and therefore the decompositions (289), (292) are executed (all calculations are given in Appendix (499) - (504)).
4.1.1 Corollaries from the theorem

Corollary 1. 1. The simplicity conditions of a bivector of the 6-dimensional space \mathbb{CR}^6 can be written down as

$$ p^{[\alpha\beta} p_{\gamma\delta]} = 0. \tag{307} $$

The coordinates of the bivector can be associated to the traceless complex matrix 4×4 such that

$$ p^d_l p_s^l - 1/4(p^l_k p_k^l) \delta_s^d = 0. \tag{308} $$

2. A simple bivector of the space \mathbb{CR}^6, constructed on isotropic vectors ($p^{\alpha\beta} p_{\alpha\beta} = 0$), can be associated to degenerate Rosenfeld null-pair: a covector and a vector of the space \mathbb{C}^4, the contraction of which is zero. In this case, the given vector and covector are determined to within a complex factor.

Proof. 1). A bivector is simple if and only if there is the decomposition

$$ p^{\alpha\beta} = X^\alpha Y^\beta - Y^\alpha X^\beta. \tag{309} $$

Therefore, if (309) is satisfied then the formula (307) will be true.

Conversely, if the condition (307) is executed then it can be written down as

$$ p^{\alpha\beta} p^{\gamma\delta} - p^{\alpha\gamma} p^{\beta\delta} + p^{\beta\gamma} p^{\alpha\delta} = 0. \tag{310} $$

We contract this equation with nonzero covectors T_δ and Z_γ, that $p^{\gamma\delta} Z_\gamma T_\delta \neq 0$,

$$ p^{\alpha\beta} = \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} (p^{\alpha\gamma} Z_\gamma p^{\beta\delta} T_\delta - p^{\beta\gamma} Z_\gamma p^{\alpha\delta} T_\delta). \tag{311} $$

Put

$$ X^\alpha := \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} p^{\alpha\gamma} Z_\gamma, \quad Y^\beta := \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} p^{\beta\delta} T_\delta \tag{312} $$

whence the condition (309) will follow. Since the tensor $R_{\alpha\beta\gamma\delta} = p_{\alpha\beta} p_{\gamma\delta}$ satisfies the conditions of Theorem 1 then the formula (308) is a direct consequence of the Bianchi identity (294).

2). Under the condition of Item 1)., we add the isotropy condition

$$ p^{\alpha\beta} p_{\alpha\beta} = 0 \tag{313} $$

which in view of the formulas (47), takes the form

$$ A^{\alpha\beta}_{\ a} \ A_{\alpha\beta\delta} \ p^a d \ p^d c = 0, \quad p^a d p^d a = 0. \tag{141} $$

It follows that there exist nonzero X^a and Y_b, that

$$ p^b a = X^a Y_b, \quad X^a Y_a = 0. \tag{315} $$

This formula can be viewed as a consequence of Lemma 1 of the second chapter (it is enough to consider the bivector $p^{\alpha\beta} = r_{1\alpha} r_{2\beta}$, where $r_{1\alpha}$ and $r_{2\alpha}$ are the same as in the lemma). In this case, X^a and Y_b are defined up to the transformation

$$ X^a \mapsto e^\phi X^a, \quad Y_b \mapsto e^{-\phi} Y_b. \tag{316} $$

□
Note that the pair \((X^a, Y_b)\) is Rosenfeld null-pair. In the space \(\mathbb{CP}^4 \cong \mathbb{C}^4 / \mathbb{C}\) (where \(\mathbb{C}^* = \mathbb{C}^* / 0\)), \(X^a\) will determine the point, and \(Y_b\) will determine the plane with the incidence condition

\[X^a Y_a = 0. \] (317)

Therefore, we can define the space \(\mathbb{CP}^4 \cong \mathbb{C}^4 / \mathbb{C}\) and the dual space \(\mathbb{CP}^4\). Then the space \(\mathbb{CP}^4 \times \mathbb{CP}^4\) is Rosenfeld null-pair space. It should be noted that such the spaces have been studied for the first time in [34] and [6].

Corollary 2. In the case of the reality of the bitensor from Theorem 1, for the even index metric, the condition

\[R_{ab'c'd'} = \tilde{R}_{b'ad'c} \] (318)

is imposed, and for the odd index metric, the condition

\[R_{a'b' c'd'} = \tilde{R}_{a'b' c'd'} \] (319)

is imposed.

Proof. It is based on the properties of the inclusion tensor \(s_{...}\). □

4.2 Basic properties and identities of the curvature tensor

As an example, let’s consider basic properties of the curvature tensor of the Riemannian space \(\mathbb{CV}^b\). Because in a nonholonomic basis, the operators \(A_{a\beta}^b\) are constant then we can get all properties of the curvature tensor considering the spin-tensor \(R_{a}^{b}c^{d}\). The curvature tensor of the space \(\mathbb{CV}_v\) in a neighborhood \(U\) satisfies Theorem 1. We set

\[\Box_a^d := \frac{1}{2}(\nabla_{ak}\nabla^{dk} - \nabla^{dk}\nabla_{ak}), \]

\[\Box_{\alpha\beta} := 2\nabla_{[\alpha}\nabla_{\beta]}. \]

Due to the covariant constancy of the generalized connecting Norden operators, we have

\[\nabla_{[\alpha}\nabla_{\beta]} = \frac{1}{4}\eta_{[\alpha}^{\alpha_1}\eta_{\beta]}^{\beta_1}\nabla_{\alpha_1}\nabla_{\beta_1} = \]

\[= \frac{1}{4}\eta_{[\alpha}^{\alpha_1}\eta_{\beta]}^{\beta_1}\cdot \frac{3}{2}(\nabla_{[\alpha_1}\nabla_{\beta_1]} - \nabla_{\beta_1}\nabla_{\alpha_1}) = \]

\[= \frac{1}{4}\eta_{[\alpha}^{\alpha_1}\eta_{\beta]}^{\beta_1}\cdot \frac{1}{4}(\varepsilon_{\alpha_1\beta_1\varepsilon}^{\kappa\nu\mu\alpha}d\nabla_{ak}\nabla_{\nu\mu\alpha} - \varepsilon_{\beta_1\alpha_1\varepsilon}^{\kappa\nu\mu\beta}d\nabla_{ak}\nabla_{\nu\mu\beta}) = \]

\[= \frac{1}{4}\eta_{[\alpha}^{\alpha_1}\eta_{\beta]}^{\beta_1}\cdot \frac{1}{4}A_{\alpha\beta\alpha_1}\varepsilon^{\kappa\nu\mu\delta}d\nabla_{ak}\nabla_{\nu\mu\delta} + 2\varepsilon_{\alpha_1\beta_1\varepsilon}^{\kappa\nu\mu\alpha}d\nabla_{\nu\mu\alpha} = A_{\alpha\beta\alpha_1}\nabla_{ak}\nabla_{\nu\mu\delta} + 2\varepsilon_{\alpha_1\beta_1\varepsilon}^{\kappa\nu\mu\alpha}d\nabla_{\nu\mu\alpha}. \]

Therefore,

\[\Box_{\alpha\beta} = A_{\alpha\beta\alpha_1}\Box_a^d. \] (322)

We formulate the few basic statements concerning the operator \(\Box_a^d\):
1. From the Ricci identity
\[\Box_{\alpha\beta} k^{\gamma\delta} = R_{\alpha\beta\lambda} \gamma^k \lambda^d + R_{\alpha\beta\lambda} \delta^k \lambda^d, \quad \Box_{\alpha\beta} r^\gamma = R_{\alpha\beta\lambda} \gamma^\lambda \] (323)
will follow the identities \((k^{\alpha\beta} = -k^{\beta\alpha})\)
\[\Box_{a} b k^{c}_d = R_{a}^{b} m c k^{m}_d - R_{a}^{b} d k^{c}_n, \quad \Box_{a} b r^{cc} = R_{a}^{b} m c r^{mc} + R_{a}^{b} m c r^{cm}. \] (324)
And from this, we obtain finally
\[\Box_{a} b X^c = R_{a}^{b} m c X^m, \quad \Box_{a} b X^c = -R_{a}^{b} c m X^m \] (325)
(the proof is given in Appendix (507)-(521)).

2. The differential Bianchi identity
\[\nabla [\alpha R_{\beta\gamma}]^{\delta\lambda} = 0 \] (326)
has the form
\[\nabla [cm R_t]^k_{\ r} = \delta_{m}^{k} \nabla [cm R_t]^{n} s \] (327)
(the proof is given in Appendix (522)-(529)).

3. Contracting (327) with \(\delta^{k}_{c}\), we obtain
\[\nabla [cm R_t]^{c}_{\ r} = 0, \] (328)
and the contraction of (328) with \(\delta^{m}_{s}\) will give
\[\nabla [cm R_t]^{c}_{\ r m} = 1/8 \nabla [rt] R \] (329)
which is equivalent to the well-known equation
\[\nabla^{\alpha}(R_{\alpha\beta} - 1/2 R g_{\alpha\beta}) = 0. \] (330)

4.3 The canonical form of bivectors of the 6-dimensional (pseudo-) Euclidean space \(R_{(p,q)}^6\) with the metric of the even index \(q\)

Theorem 2. (On the canonical form of a bivector.) For the space \(R_{(p,q)}^6\) with the metric of the even index \(q = 0, 6\), a nondegenerate skew-symmetric bilinear form can be reduced to canonical form in some basis
\[\frac{1}{2} R_{\alpha\beta} X^{\alpha} Y^{\beta} = R_{16} X^{[1] Y^6} + R_{23} X^{[2] Y^3} + R_{45} X^{[4] Y^5}. \] (331)

Proof. In the case of the space \(R_{(p,q)}^6\) with the metric of the even index \(q\), the equations
\[R_{\alpha\beta} = A_{\alpha\beta a} R_{b}^{a}, \quad R_{b}^{a} = -R_{b}^{a}, \quad R_{a}^{a} = 0 \] (332)
are executed that means that \(i R_{b}^{a}\) is an Hermitian tensor in the case of \(q = 0, 6\). Therefore, the matrix of the tensor \(R_{b}^{a}\) is reduced to the diagonal form by transformations of the group isomorphic to \(SU(4)\). These transformations correspond to
ones of the orthogonal group $SO^e(6, \mathbb{R})$. It follows that the matrix of the tensor R^a_b in the special basis has the form

$$
R^a_b = \begin{pmatrix}
\lambda_1 & 0 & 0 & 0 \\
0 & \lambda_2 & 0 & 0 \\
0 & 0 & \lambda_3 & 0 \\
0 & 0 & 0 & \lambda_4
\end{pmatrix},
$$

(333)

$q = 0, 6, \; \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in i\mathbb{R}, \; \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0$.

At the same time, the two equalities

$$
\tilde{R}^a_b = S_b^c R^d_c \tilde{S}^a_d, \quad S_b^a \tilde{S}^a_b = \delta^a_c
$$

(334)

are executed.

Proof. We consider a transformation K^α_β from the group $SO^e(6, \mathbb{R})$ and a spinor representation S^a_b corresponding to K^α_β from the group $SU(4)$

$$
K^\alpha_\beta R^\beta_\delta = \frac{1}{2} A^\alpha_\beta b^d [K^\alpha_\beta]_{bk} A^d_c R^c_d = -\frac{1}{2} \frac{1}{2} \delta^a_b \delta^d_c - 2\delta^a_d \delta^b_c \right) K^\alpha_\beta [K^\alpha_\beta]_{bk} R^c_d = = \frac{1}{2} A^\alpha_\delta c^d K^\delta_\beta b^k R^c_a = \frac{1}{8} K^\alpha_\delta c^d K^\delta_\beta R^c_a A^a_\delta c^d = = R^a_\beta = A^a_\delta c^d \tilde{R}^c_d.
$$

(335)

Multiply both sides (335) by $A^\alpha_\beta p^t$ and obtain

$$
\frac{1}{8} S^a_p S^a_r [K^\alpha_\beta]_{mn} \varepsilon_{s b l k c}^m n m t r R^a_b = \tilde{R}^t_p,
$$

$$
= \frac{1}{2} S^a_p [((S^{-1})_{b q} \varepsilon_{r m n p})] \varepsilon_{s b l k c}^m n m t r R^a_b = \frac{1}{8} (6 S^a_p (S^{-1})_{b q} - 4 S^a_r (S^{-1})_{b q} \delta^t_p \delta^r_p) R^a_b = = S^a_p R^b (S^{-1})_{b q} = S^a_p R^b \tilde{S}^t_b = \tilde{R}^t_p.
$$

(336)

Using the special basis in the case of $q = 0,6$, we found the corresponding coordinates of the cobivector from $\mathbb{F}^6_{(p,q)}$

$$
R_{16} = A_{16a}^b R^a_b = -R_{61},
$$

$$
R_{23} = A_{23a}^b R^a_b = -R_{32},
$$

$$
R_{45} = A_{45a}^b R^a_b = -R_{54}.
$$

(337)

Note that for the case $q = 2,4$, a similar statement can be formulated. But here there will be some difficulties associated with the problem of the diagonalization since in this case, in the special basis, the matrix of the Hermitian polarity tensor will be different from the identity.
4.4 Geometric representation of a twistor in $\mathbb{R}^6_{(2,4)}$

4.4.1 Stereographic projection

This part defines the notion extension of the isotropic vector for the space $\mathbb{R}^6_{(2,4)}$ with the metric of the index equal to 4. It will be shown how to choose a vector of unit extension. Then vectors collinear to this vector will differ from the latter by a real factor r: extension of the flagpole.

Let the metric of the space $\mathbb{R}^6_{(2,4)}$ has the form

$$dS^2 = dT^2 + dV^2 - dW^2 - dX^2 - dY^2 - dZ^2,$$

and let a cross-section of the light cone K_6

$$T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2 = 0$$

be set by the plane $V+W=1$. Let’s consider the stereographic projection of this section on the plane $(V=0,W=1)$ with the pole $N(0, \frac{1}{2}, \frac{1}{2}, 0, 0, 0)$ so that the point $P(T,V,W,X,Y,Z)$ corresponds to the point $p(t,0,1,x,y,z)$ in the plane $(V=0,W=1)$. Then

$$T/t = X/x = Y/y = Z/z = -\left(\frac{V - \frac{1}{2}}{\frac{1}{2}}\right).$$

We make the substitution

$$\varsigma = -ix + y, \quad \omega = -i(t + z), \quad \eta = i(z - t)$$

and obtain

$$\varsigma = \frac{-iX + Y}{2V - 1}, \quad \eta = \frac{-i(T + Z)}{2V - 1}, \quad \omega = \frac{i(Z - T)}{2V - 1}.\tag{342}$$

Therefore, the metric, induced in the cross-section, has the form

$$ds^2 := dT^2 - dX^2 - dY^2 - dZ^2 = -\frac{d\varsigma d\bar{\varsigma} + d\omega d\eta}{(\varsigma \bar{\varsigma} + \eta \omega)^2}\tag{343}$$

(the proof of this fact is given in Appendix (530)-(535)). Put

$$X := \begin{pmatrix} \omega & \varsigma \\ -\bar{\varsigma} & \eta \end{pmatrix}, \quad dX := \begin{pmatrix} d\omega & d\varsigma \\ -d\bar{\varsigma} & d\eta \end{pmatrix}, \quad \frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial \omega} & \frac{\partial}{\partial \varsigma} \\ -\frac{\partial}{\partial \bar{\varsigma}} & \frac{\partial}{\partial \eta} \end{pmatrix}.$$

Then (343) can be rewritten as

$$ds^2 = -\frac{det(dX)}{(det(X))^2}, \quad X^T + X = 0.\tag{345}$$

Consider the linear-fractional group L

$$\tilde{X} = (AX + B)(CX + D)^{-1}, \quad S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad detS = 1.\tag{346}$$
The reality condition, imposed on X ($X^* + X = 0$), gives the linear-fractional unitary subgroup $LU(2, 2)$ so that the matrix S from (346) satisfies the identity

$$S^* \hat{E}S = \hat{E}, \quad \hat{E} := \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}.$$

Further, we define the special basis \[R_{12} = 1/\sqrt{2}(V + W) = \omega^0\xi^1 - \omega^1\xi^0, \]
\[R_{34} = 1/\sqrt{2}(V - W) = \pi^0\eta^1 - \pi^1\eta^0, \]
\[R_{14} = i/\sqrt{2}(T + Z) = \omega^0\eta^0 - \xi^0\pi^0, \]
\[R_{23} = i/\sqrt{2}(Z - T) = \xi^1\pi^1 - \omega^1\eta^1, \]
\[R_{24} = 1/\sqrt{2}(Y + iX) = \omega^1\eta^0 - \xi^1\pi^0, \]
\[R_{13} = 1/\sqrt{2}(Y - iX) = \xi^0\pi^1 - \omega^0\eta^1. \]

This relations are the remarkable because it shows as the bivector R_{ab} is expressed in terms of its spinor components. Define

$$X := YZ^{-1}, \quad \tilde{Y} = AY + BZ, \quad \tilde{Z} = CY + DZ, \quad Y = \begin{pmatrix} \omega^0 \\ \omega^1 \end{pmatrix}, \quad Z = \begin{pmatrix} \pi^0 \\ \pi^1 \end{pmatrix}.$$

then from (348), the equations

$$R := ||R_{ab}|| = \begin{pmatrix} (\det Y)J & YZ^{-1}(\det Z)J \\ -(YZ^{-1}(\det Z)J)^T & (\det Z)J \end{pmatrix} = \begin{pmatrix} Y \\ Z \end{pmatrix}J \begin{pmatrix} Y^T & Z^T \end{pmatrix},$$

$$J := \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}, \quad \tilde{R} = SRS^T$$

will follow. Determine

$$\tilde{S} := I\bar{S}\bar{I}^{-1}, \quad \bar{I} := \frac{1}{\sqrt{2}} \begin{pmatrix} E & E \\ -E & E \end{pmatrix},$$

then

$$\tilde{S}^* \tilde{E}\tilde{S} = \tilde{E}.$$

The matrixes S form the group isomorphic $SU(2, 2)$ so the matrixes \tilde{S} form the group $SU(2, 2)$. A transformation from the group $LU(2, 2)$ is called twistor transformation. Due to the double covering of the connected identity component of the group $SO(2, 4)$ (which is denoted as $SO^e(2, 4)$) by the group $SU(2, 2)$ and due to the double covering of the conformal group $C^+_+(1, 3)$ \[v. 2, p. 304, eq. (9.2.10)(eng) \] by the group $SO^e(2, 4)$, the existence of the isomorphisms

$$SU(2, 2)/\{\pm 1; \pm i\} \cong LU(2, 2) \cong C^+_+(1, 3) \cong SO^e(2, 4)/\{\pm 1\}$$

will imply. This means that the group $LU(2, 2)$ exhausts all conformal transformations of the group $C^+_+(1, 3)$. The matrix S is restored up to a factor λ, that $\lambda^4 = 1$ (det(S)=1), and whence we obtain the ambiguity. Sine we have the equalities

$$Y = AX + B \Rightarrow dX = AdY, \quad Y = X^{-1} \Rightarrow dX = -X^{-1}dXX^{-1}.$$

\[(347) \]
\[(348) \]
\[(349) \]
\[(350) \]
\[(351) \]
\[(352) \]
\[(353) \]
\[(354) \]
where A and B is some constant matrixes, then
\[\tilde{Z}^* d\tilde{X} \tilde{Z} = Z^* dX Z. \] (355)

This equation is an invariant under the group LU(2, 2). The proof of this fact is considered in Appendix (536)-(549). Other invariant can be obtained with the help of the identity
\[Y = AX + B \Rightarrow \frac{\partial}{\partial X} = A^T \frac{\partial}{\partial Y}, \quad Y = X^{-1} \Rightarrow \frac{\partial}{\partial X} = -Y^T \frac{\partial}{\partial Y} Y^T, \] (356)

where A and B is also some constant matrixes. This invariant will have the form
\[\tilde{Z}^{-1} \frac{\partial}{\partial X} \tilde{Z}^{-1} = Z^{-1} \frac{\partial}{\partial X} Z^{-1} \] (357)

(the proof of this fact is given in Appendix (550)-(564)). This means that there is a real vector \(\tilde{L} \) tangent to the hyperboloid resulting with the help of the cross-section of the cone \(K_6 \) by the plane \(V + W = 1 \). This vector is an invariant under transformations of a basis from the group LU(2, 2) (i.e., coordinate-independent in the tangent space to this hyperboloid). The vector \(\tilde{L} \) is uniquely determined by the matrix
\[
\tilde{L} := \frac{1}{\sqrt{2}} \left(Z^{-1} \frac{\partial}{\partial X} Z^{-1} - Z^{-1} \frac{\partial}{\partial X} Z^T \right) = \\
= \left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
\end{array} \right) \left(\frac{\partial}{\partial \omega} (-\eta^0 \pi^0 + \eta^0 \pi^0) + \frac{\partial}{\partial \eta} (-\eta^1 \pi^1 + \eta^1 \pi^1) + \\
+ \frac{\partial}{\partial \xi} (-\eta^\bar{1} \pi^0 + \eta^\bar{1} \pi^0) + \frac{\partial}{\partial \bar{\xi}} (\eta^0 \pi^1 - \eta^1 \pi^0) \right) + \frac{1}{(\det(Z))^2 \sqrt{2}} := \left(\begin{array}{cc}
0 & 1 \\
-1 & 0 \\
\end{array} \right) \tilde{L}.
\] (358)

For the metric (345), the norm of this vector will be such
\[|| \tilde{L} || = - \frac{1}{2 (\det(Y))^2} = - \frac{1}{(V + W)^2}. \] (359)

An isotropic vector k is called a vector of \textit{first type unit extension} [23] in the case when k is sets the point belonging to the cross-section of the isotropic cone by the plane \(V + W = 1 \). Then \(|| \tilde{L} || = -1 \) and any isotropic vector K collinear with k is defined as
\[K = (- || \tilde{L} ||)^{1/2} k. \] (360)

However, when \(V=-W \) we will obtain a vector with the infinite first type extension. To learn to distinguish between them, it is necessary to set a cross-section of the cone \(K_6 \) by the plane \(T+Z=1 \) and to enter a vector \(\tilde{L} \) with the norm
\[|| \tilde{L} || = - \frac{1}{(T + Z)^2} \] (361)
in the same way. An isotropic vector k is called a vector of \textit{second type unit extension} in the case when k is set the point belonging to the cross-section of the isotropic cone by the plane \(T + Z = 1 \) and the first type extension will not be finite. We define \textit{extension} of the vector K as
1. **first type extension** if such the extension is finite;

2. **second type extension** if the first type extension is infinite.

Note that the vector \hat{L} is not coordinate-independent in the space $\mathbb{R}^6_{(2,4)}$ although it is an invariant of the tangent space to the hyperboloid resulting the cross-section of the cone K_6 by the plane $V+W=1$. Our next task is to find an invariant in the space $\mathbb{R}^6_{(2,4)}$.

4.4.2 The geometric twistor picture in the 6-dimensional space

Now there is a possibility to represent isotropic twistor in the space $\mathbb{R}^6_{(2,4)}$ visually. Let’s consider a pair of vectors of an equal extension in $\mathbb{R}^6_{(2,4)}$

$$K^\alpha = \eta_{ab}^\alpha iT^{[a}X^{b]}, \quad N^\alpha = \eta_{ab}^\alpha T^{[a}Z^{b]}.$$

(362)

From Lemma 1 of the second chapter, the conditions

$$K^\alpha K_\alpha = 0, \quad N^\alpha K_\alpha = 0, \quad N^\alpha N_\alpha = 0$$

(363)

will follow. We choose a vector Y^a in such a way to satisfy the conditions

$$Y^aY_a = 0, \quad Y^aX_a = 0, \quad Y^aZ_a = 0,$$

\[\varepsilon^{abcd}X_aY_bZ_cT_d = X^cZ_cY^dT_d = 1, \quad \varepsilon^{abcd} = 24X^{[a}Y^{b}Z^{c}T^{d]}.
\]

(365)

Thus, we will obtain the vector basis X^a, Y^a, Z^a, T^a (recall that $Y_a = s_{aa}Y^a$)

$$Y^aY_a = 0, \quad Y^aX_a = 0, \quad Y^aZ_a = 0, \quad X^aX_a = 0, \quad X^aT_a = 0,$$

\[Z^aZ_a = 0, \quad Z^aT_a = 0, \quad T^aT_a = 0.
\]

(366)

Whence,

$$\varepsilon_{abcd}T^{[e}Y^{d]} = -2X_{[a}Z_{b]}.$$

(367)

Therefore, the vectors

$$L^\alpha = \eta_{ab}^\alpha(-T^{[a}Y^{b]} + X^{[a}Z^{b]}), \quad M^\alpha = \eta_{ab}^\alpha(-i)(T^{[a}Y^{b]} + X^{[a}Z^{b]}).$$

(368)

satisfy to the parities

$$L^\alpha = \tilde{L}^\alpha, \quad M^\alpha = \tilde{M}^\alpha,$$

$$L^\alpha K_\alpha = 0, \quad L^\alpha M_\alpha = 0, \quad M^\alpha K_\alpha = 0, \quad L^\alpha N_\alpha = 0, \quad M^\alpha N_\alpha = 0$$

$$L^\alpha L_\alpha = -2, \quad M^\alpha M_\alpha = -2$$

(369)

Now we can construct the threevector

$$P^{\alpha\beta\gamma} = 6K^{[\alpha}N^{\beta}L^{\gamma]}.$$

(370)
Knowing K^α, we know T^a and X^a up to
\[
X^a \mapsto \lambda_1 X^a + \mu_1 T^a, \quad T^a \mapsto \nu_1 X^a + \xi_1 T^a, \quad \text{det} \left(\begin{array}{cc} \lambda_1 & \mu_1 \\ \nu_1 & \xi_1 \end{array} \right) = 1. \tag{371}
\]
And if we know N^α then an arbitrariness in a choice of T^a and Z^a will be such
\[
Z^a \mapsto \lambda_2 Z^a + \mu_2 T^a, \quad T^a \mapsto \nu_2 Z^a + \xi_2 T^a, \quad \text{det} \left(\begin{array}{cc} \lambda_2 & \mu_2 \\ \nu_2 & \xi_2 \end{array} \right) = 1. \tag{372}
\]
Therefor, $\nu_1 = \nu_2 = 0$ and $\xi_2 = \xi_1$. For Y^a, we obtain
\[
Y^a \mapsto \alpha X^a + \beta Y^a + \gamma Z^a + \delta T^a. \tag{373}
\]
If we require that two such bases (similar \((366)\)) are related by a transformation from the group $LU(2,2)$ then we obtain
\[
\begin{align*}
X^a & \mapsto \tau^{-1} X^a + \mu T^a, \quad T^a \mapsto \tau T^a, \\
Z^a & \mapsto \tau^{-1} Z^a + \chi T^a, \quad Y^a \mapsto -\bar{\chi} X^a + \tau Y^a - \bar{\mu} Z^a + \delta T^a,
\end{align*}
\]
\[
\bar{\chi} \mu + \bar{\mu} \chi + \tau \bar{\delta} + \bar{\tau} \delta = 0, \quad \tau \bar{\tau} = 1. \tag{374}
\]
Whence,
\[
\begin{align*}
X^{[aT^b]} & \mapsto X^{[aT^b]} \iff K^\alpha \mapsto K^\alpha, \\
Z^{[aT^b]} & \mapsto Z^{[aT^b]} \iff N^\alpha \mapsto N^\alpha, \\
T^{[aY^b]} & \mapsto -\tau \bar{\chi} X^{[aY^b]} + \tau^2 T^{[aY^b]} - \bar{\mu} T^{[aZ^b]} , \\
X^{[aZ^b]} & \mapsto \tau^{-2} X^{[aZ^b]} + \tau^{-1} \chi X^{[aT^b]} + \tau^{-1} \mu T^{[aZ^b]}
\end{align*}
\]
Define
\[
\tau =: e^{i\Theta} \tag{376}
\]
then
\[
\begin{align*}
L^\alpha & \mapsto L^\alpha \cos(2\Theta) + M^\alpha \sin(2\Theta) - \\
& -i(\bar{\chi} \tau - \bar{\tau} \chi) K^\alpha + (\mu \bar{\tau} + \tau \bar{\mu}) N^\alpha \\
M^\alpha & \mapsto M^\alpha \cos(2\Theta) - L^\alpha \sin(2\Theta) + \\
& + (\bar{\chi} \tau + \bar{\tau} \chi) K^\alpha - i(\mu \bar{\tau} - \tau \bar{\mu}) N^\alpha \tag{377}
\end{align*}
\]
Therefor, the 3-half-plane, spanned by $K^\alpha, N^\alpha, L^\alpha$, is coordinate-independent in the space $\mathbb{R}^6_{(2,4)}$. Thus, our design can be presented as follows. The first type extension of the vectors K^α and N^α should be the same. K^α and N^α determine flagpole: the set of vectors with:
1. the first type extension is equal to the first type extension of the vector K^α;
2. the start coinciding with the beginning of the vector K^α.

$K^\alpha, N^\alpha, L^\alpha$ determine the 3-half-plane which we call flag-plane. Thus, knowing K^α and N^α, we know the twistor T^a up to the phase Θ. In turn, in the 2-plane (L^α, M^α), 2Θ is an angle of the rotation of the flag (3-half-plane $P^{\alpha\beta\gamma}$) around the flagpole (N^α, K^α). Therefore, a rotation of the flag on 2π will lead to the twistors $-T^a$, and only a rotation on 4π will return our design to the original.
state. In addition, collinear twistors can be distinguished from each other using the concept extension of the vector for the K^α so that under the transformation $T^a \mapsto rT^a$, $Y^a \mapsto r^{-1}Y^a$ ($r \in \mathbb{R}\setminus\{0\}$), the flagpole is multiplied by r and the flag-plane remains unchanged. Finally, it should be noted that the mentioned geometrical structure is uniquely determined by the twistor T^a. In the case of the infinite first type extension of the vector K^α, we consider the cone $K_4 \subset K_6$ on which the vector N^α lays. But non-zero vectors K^α and N^α have the finite second type extension giving the geometric interpretation of a spinor on the isotropic cone K_4.

5 The theorem on two quadrics

In this chapter, we study the common solution
\[
\begin{align*}
X^a &= \dot{X}^a - ir^{ab}\dot{Y}_b, \\
Y_b &= \dot{Y}_b
\end{align*}
\]
of the bitwistor equation leading to the Rosenfeld null-pair
\[
X^A := (X^a, Y_b).
\]
\dot{X}^a, \dot{Y}_b will be some partial solutions of the bitwistor equation \[275\]. We are interested in the locus of points defined by the equation
\[
X^a = 0.
\]
It is shown that the solutions of this equation lead to the two quadrics, for which the modified triality principle is just. It is proved that the modified triality principle is the generalization of the Cartan triality principle and the Klein correspondence that allows to realize it explicitly with the help of operators $\eta_{\mathcal{A}KL}$ which is the generalization of the connecting Norden operators $\eta_{\alpha^{ab}}$. The connecting operators $\eta_{\mathcal{A}KL}$ satisfy the Clifford equation that leads to the Cayley numbers. A proof of the generalized theorem is an example of an application of the 6-dimensional spinor formalism, developed above, which is closely associated with the 4-dimensional spinor formalism \[23\].

5.1 Solutions of the bitwistor equation

Let us consider the bundle $\mathcal{A}^\mathbb{C}$ with fibers isomorphic to \mathbb{C}^4 and the base $\mathbb{C}V^6$ which is an analytic complex space with the quadratic metric. The equation
\[
\nabla^{a(b}X^{c)} = 0 \quad (a,b,\ldots = 1,4)
\]
is called bitwistor equation (X^c are analytic functions). By the above, the bitwistor equation is a conformal invariant. Furthermore, the integrability condition of the equation \[378\] has the form
\[
\frac{1}{2} \varepsilon_{akmn}\nabla^{m(n}\nabla^{d[k]l}\nabla^{c)}X^c = \frac{5}{6}C_a^{c \, d \, X^d} = 0
\]
(\text{the proof of this fact is given in Appendix \[565\] - \[568\]). We restrict ourselves by the case of the conformal space (see \[305\])
\[
C_a^{c \, d \, X} = 0.
\]
This means that the space $\mathbb{C}V^6$ is conformal to the space $\mathbb{C}\mathbb{R}^6$ which, without loss of generality, we shall consider below. If X^c is a solution of (378) then the spin-tensor $\nabla^{ab}\nabla^{cd}X^r$ is antisymmetric on rd, it is also antisymmetric on br in view of that the space is flat and the derivatives are commute. In addition, there is the antisymmetry on the pairs ab, cd, rc, ra. This means that $\nabla^{ab}\nabla^{cd}X^r$ is antisymmetric on $abcdr$ and hence it equals to zero. We fix the point O in the space $\mathbb{C}\mathbb{R}^6$. O is the origin of coordinates. All other points describe by vectors r^a with the beginning at O then for $r^a \neq 0$, we have

$$\nabla_a r^\beta = \delta_\alpha^\beta.$$ \hfill (381)

Therefore, $\nabla^{ab}X^c$ is a constant antisymmetric on abc that follows from (379). We set

$$\nabla^{cd}X^a = -i\varepsilon^{cdab}Y_b.$$ \hfill (382)

Integrating this equation, we obtain common solution

$$\begin{cases}
X^a = \dot{X}^a - i\varepsilon^{ab}Y^b, \\
Y_b = \dot{Y}_b.
\end{cases}$$ \hfill (383)

Here r^{ab} is the bivector from the formula [41], where the factor i is chosen for the convenience (it is clarified under the considering the real case). \dot{X}^a is a constant vector field whose the value matches the one of the field X^a at the point O. For the space $\mathbb{R}^6_{(2,4)}$, we have

$$Y_k = s_{km'}\dot{Y}^{m'}, \quad \dot{Y}^{m'} = \overline{Y}_m.$$ \hfill (384)

In addition, the radius vector $\gamma(=\frac{1}{2}\eta_{ab}R^{ab})$ satisfies the following relations

$$\frac{1}{2}r^{ab}r_{ab} = p\tilde{f}(r), \quad r^{ab}r_{bc} = -\frac{1}{2}p\tilde{f}(r)\delta_c^a.$$ \hfill (385)

5.2 Rosenfeld null-pairs

Denote by $A^{\mathbb{C}*}$ the spinor 4-dimensional complex vector space. Such the space is dual to the space $A^\mathbb{C}$. Then the 8-dimensional complex space \mathbb{T}^2 is formed as the direct sum $A^\mathbb{C} \oplus A^{\mathbb{C}*}$. That is, if $X^a (a, b, ... = 1, 4)$ are the coordinates of a vector in $A^\mathbb{C}$, and Y_b are the coordinates of a covector in $A^{\mathbb{C}*}$ then

$$X^A := (X^a, Y_b) \quad (A, B, ... = 1, 8)$$ \hfill (386)

are the coordinates of a vector in T^2. The transformation (383) is a linear one not keeping the structure of the direct sum. We will consider the bivector coordinates r^{ab} as the ones in the complex affine space $\mathbb{C}A_6$. We are interested in a set of points defined by the equation

$$X^a = 0 \quad \iff \quad \dot{X}^a = i\varepsilon^{ab}Y_b.$$ \hfill (387)

This is a system of 4 linear equations with 6 unknowns. To determine its rank, we consider homogeneous equation

$$r^{ab}Y_b = 0,$$ \hfill (388)
which has nontrivial solutions if and only if the bivector is simple

$$\varepsilon_{ab} r^{ab} = -p f(r) \delta_f = 0,$$

and therefore this bivector can be represented as

$$r_{\text{homogeneous}} = \hat{P}^a \hat{Q}^b - \hat{P}^b \hat{Q}^a,$$

where P^a and Q^a are defined up to linear combinations of them. From this, it follows that

$$\hat{P}^a \dot{Y}_a = 0, \quad \hat{Q}^a \dot{Y}_a = 0.$$

Denote by X^a, S^a, Z^a those solutions of the equation

$$X^a Y_a = 0,$$

that form a basis. Then our solution (390) takes the form

$$r_{\text{homogeneous}} = \lambda_1 \dot{S}^{[a} \dot{X}^{b]} + \lambda_2 \dot{X}^{[a} \dot{Z}^{b]} + \lambda_3 \dot{S}^{[a} \dot{Z}^{b]}$$

and hence determines a 3-dimensional subspace in the bivector space. From here, common solution

$$r^{ab} = r^{ab}_{\text{particular}} + \lambda_1 \dot{S}^{[a} \dot{X}^{b]} + \lambda_2 \dot{X}^{[a} \dot{Z}^{b]} + \lambda_3 \dot{S}^{[a} \dot{Z}^{b]}$$

of the equation (387) is obtained, where $r^{ab}_{\text{particular}}$ is an arbitrary bivector being particular solution of (387).

5.3 Construction of the quadrics $\mathbb{C}Q_6$ and $\mathbb{C}\tilde{Q}_6$

The space \mathbb{T}^2 will be the complex space in which the scalar square of a vector is determined by the quadratic form

$$\varepsilon_{AB} X^A X^B = 2 X^a Y_a,$$

in the sense of (386) so that the matrix of the spin-tensor ε_{AB} has the form

$$\| \varepsilon_{AB} \| = \begin{pmatrix} 0 & \delta_a^c \\ \delta^b_d & 0 \end{pmatrix}$$

in the special basis. The form (395) is invariant under the transformation (383)

$$X^a Y_a = (\dot{X}^a - i r^{ab} \dot{Y}_b) \dot{Y}_a = \dot{X}^a \dot{Y}_b.$$

For the fixed r^{ab}, the equation (387) will define the 4-dimensional subspace in \mathbb{T}^2 which will be the 4-dimensional planar generator of the cone

$$\varepsilon_{AB} X^A X^B = 0.$$
Thus, in the projective space \(\mathbb{CP}_7 \), we can consider the quadric \(\mathbb{C}Q_6 \) defined by the equation (398). 4 basis points of the generator satisfy the condition

\[
\varepsilon_{AB} X_i^A X_j^B = 0 \quad (i, j, \ldots = 1, 4).
\]

Put

\[
X_1^A := (\dot{X}^a, \dot{Y}_b), \quad X_2^A := (\dot{Z}^a, \dot{T}_b), \quad X_3^A := (\dot{L}^a, \dot{N}_b), \quad X_4^A := (\dot{K}^a, \dot{M}_b).
\]

On the basis of the common solution (394), each point of the quadric \(\mathbb{C}Q_6 \) can be associated to the 3-dimensional isotropic plane of the space \(\mathbb{CA}_6 \). The point \((t,v,w,x,y,z)\) of the space \(\mathbb{CA}_6 \) can be represented by the line \((\lambda T, \lambda V, \lambda U, \lambda S, \lambda W, \lambda X, \lambda Y, \lambda Z)\) of the space \(\mathbb{CR}_8 \) having the metric

\[
dL^2 = dT^2 + dV^2 + dU^2 + dS^2 + dW^2 + dX^2 + dY^2 + dZ^2.
\]

This line will be a generator of the isotropic cone \(\mathbb{CK}_8 \)

\[
T^2 + V^2 + U^2 + S^2 + W^2 + X^2 + Y^2 + Z^2 = 0.
\]

The intersection of the 7-plane \(U - iS = 1 \) with the cone \(\mathbb{CK}_8 \) has the induced metric

\[
d\tilde{L}^2 = dT^2 + dV^2 + dW^2 + dX^2 + dY^2 + dZ^2.
\]

This space has the form of a paraboloid in \(\mathbb{CK}_8 \), and it is identical to the space \(\mathbb{CR}_6 \)

\[
U = 1 + iS = \frac{1}{2}(1 - T^2 - V^2 - W^2 - X^2 - Y^2 - Z^2).
\]

Every generator of this cone (a set of points belonging to \(\mathbb{CK}_8 \) with the constant ratio \(T:V:U:S:W:X:Y:Z \)), not lying on the hyperplane \(U = iS \), intersects the paraboloid in the single point. Every generator of the cone, lying on the hyperplane \(U = iS \), corresponds to the point belonging to the infinity of the space \(\mathbb{CR}_6 \). Thus, straight lines of \(\mathbb{CR}_8 \) passing through the origin of \(\mathbb{CR}_8 \) correspond to points of the projective space \(\mathbb{CP}_7 \). The stereographic projection of this section on the plane \((S=0, U=1)\) with the pole \(N(0,0,\frac{1}{2},i,0,0,0,0) \) maps the point \(P(T,V,U,S,W,X,Y,Z) \) of the hyperboloid to the point \(p(t,v,1,0,w,x,y,z) \) of the plane \((S=0, U=1)\)

\[
\lambda T = t, \quad \lambda V = v, \quad \lambda W = w, \quad \lambda X = x, \quad \lambda Y = y, \quad \lambda Z = z,
\]

\[
\lambda = \frac{1}{U+iS}, \quad \lambda U = \frac{1}{2}(1 - t^2 - v^2 - w^2 - x^2 - y^2 - z^2) = -\lambda iS + 1, \quad p f(r) = -\frac{U-iS}{U+iS}.
\]

All generators of the same cone \(\mathbb{CK}_8 \) form the quadric \(\mathbb{C}Q_6 \) in the projective space \(\mathbb{CP}_7 \)

\[
G_{AB} R^A R^B = 0.
\]
5.4 Correspondence $\mathbb{C}Q_6 \leftrightarrow \mathbb{C}\tilde{Q}_6$

1. On the basis of (394),

$$r_{ab} = r_{ab}^{\text{particular}} + r_{ab}^{\text{homogenous}} = r_{ab}^{\text{particulare}} + \lambda_1 \dot{S}^{[a} \dot{X}^{b]} + \lambda_2 \dot{X}^{[a} \dot{Z}^{b]} + \lambda_3 \dot{Z}^{[a} \dot{Y}^{b]}. \tag{408}$$

Therefor, by this equation, the 4-dimensional planar generator of the cone $\mathbb{C}K_8$ is determined. The equations (399), (400) will define the system

$$\begin{cases}
ir_{ab} \dot{Y}_b = \dot{X}^a, \\
ir_{ab} \dot{T}_b = \dot{Z}^a, \\
ir_{ab} \dot{N}_b = \dot{L}^a, \\
ir_{ab} \dot{M}_b = \dot{K}^a
\end{cases} \tag{409}$$

with the conditions

$$\dot{X}^a \dot{Y}_a = 0, \quad \dot{Z}^a \dot{T}_a = 0, \quad \dot{L}^a \dot{N}_a = 0, \quad \dot{K}^a \dot{M}_a = 0,\tag{410}$$

$$\dot{X}^a \dot{T}_a = -\dot{Z}^a \dot{Y}_a, \quad \dot{X}^a \dot{N}_a = -\dot{L}^a \dot{Y}_a, \quad \dot{X}^a \dot{M}_a = -\dot{K}^a \dot{Y}_a, \quad \dot{Z}^a \dot{N}_a = -\dot{L}^a \dot{M}_a, \quad \dot{Z}^a \dot{M}_a = -\dot{K}^a \dot{T}_a, \quad \dot{K}^a \dot{N}_a = -\dot{L}^a \dot{T}_a.$$

Thus, from the 16 equations with the 6 unknowns r_{ab}^{ab}, only 6 from them will be significant (the 10 communication conditions (410)). Then the 3-dimensional planar generator $\mathbb{C}P_3$ belonging to the quadric $\mathbb{C}Q_6$ will uniquely define the point of $\mathbb{C}A_6$ and hence the point of the quadric $\mathbb{C}\tilde{Q}_6$.

2. If from the system (409), we know only the one equation

$$ir_{ab} \dot{Y}_b = \dot{X}^a \tag{411}$$

with the condition

$$\dot{X}^a \dot{Y}_a = 0 \tag{412}$$

then from the 4 equations, only 3 from them will be significant (the 1 communication condition (412)). This means that the point of the quadric $\mathbb{C}Q_6$ will uniquely define the 3-dimensional planar generator $\mathbb{C}P_3$ belonging to the quadric $\mathbb{C}\tilde{Q}_6$. This is follows from (394).

3. If from the system (409), we know only the two equations

$$\begin{cases}
ir_{ab} \dot{Y}_b = X^a, \\
ir_{ab} \dot{T}_b = Z^a
\end{cases} \tag{413}$$

with the condition

$$\dot{X}^a \dot{Y}_a = 0, \quad \dot{Z}^a \dot{T}_a = 0, \quad \dot{X}^a \dot{T}_a = -\dot{Z}^a \dot{Y}_a \tag{414}$$

then from the 8 equations, only 5 from them will be significant (the 6 unknowns and the 3 communication conditions (414)). This means that the rectilinear generator $\mathbb{C}P_1$ of the quadric $\mathbb{C}Q_6$ will uniquely define the rectilinear generator $\mathbb{C}P_1$ belonging to the quadric $\mathbb{C}\tilde{Q}_6$. In this case, the manifold of generators $\mathbb{C}P_1(\mathbb{C}Q_6)$ belonging to the same generator $\mathbb{C}P_3(\mathbb{C}Q_6)$ defines the beam of generators $\mathbb{C}P_1(\mathbb{C}\tilde{Q}_6)$ belonging to the quadric $\mathbb{C}Q_6$ (this beam is a cone). The center of the beam is determined by the system (409).
Fig. 1: Correspondence $\forall CP_2 \subset CP_3 \leftrightarrow R$

Fig. 2: Correspondence $CP_3 \supset CP_1 \leftrightarrow CP_1 \subset K_6$
4. If from the system \((409)\), we know only three equations

\[
\begin{align*}
ir_1^{ab} \dot{Y}_b &= \dot{X}^a, \\
ir_2^{ab} \dot{T}_b &= \dot{Z}^a, \\
ir_3^{ab} \dot{N}_b &= \dot{L}^a
\end{align*}
\]
(415)

with the condition

\[
\dot{X}^a \dot{Y}_a = 0, \quad \dot{Z}^a \dot{T}_a = 0, \quad \dot{L}^a \dot{N}_a = 0, \\
\dot{X}^a \dot{T}_a = - \dot{Z}^a \dot{Y}_a, \quad \dot{X}^a \dot{N}_a = - \dot{L}^a \dot{Y}_a, \quad \dot{Z}^a \dot{N}_a = - \dot{L}^a \dot{T}_a
\]
(416)

then from the 12 equations, only 6 from them will be significant (the 6 unknowns and the 6 communication conditions \((416)\)). This means, that the 2-dimensional generator \(\mathbb{C}P_2\) of the quadric \(\mathbb{C}Q_6\) will uniquely define the point of the quadric \(\mathbb{C}Q_6\). At the same time, the manifold of generators \(\mathbb{C}P_2(\mathbb{C}Q_6)\) belonging to the same generator \(\mathbb{C}P_3(\mathbb{C}Q_6)\) uniquely determines the same point of the quadric \(\mathbb{C}Q_6\). This point is determined by the system \((409)\).

5.5 The connection operators \(\eta^A_{KL}\)

Based on the foregoing, we consider the rectilinear generator of the quadric \(\mathbb{C}Q_6\) defined by the bivector

\[
\begin{align*}
\hat{R}^{AB} &= X_1^{[A} X_2^{B]} = \left(\begin{array}{ccc}
\dot{X}^a \dot{Z}^b - \dot{X}^b \dot{Z}^a & \dot{X}^a \dot{T}_d - \dot{Y}_d \dot{Z}^a \\
\dot{Y}_c \dot{Z}^b - \dot{T}_c \dot{X}^b & \dot{Y}_c \dot{T}_d - \dot{Y}_d \dot{T}_c
\end{array} \right) \\
&= \left(\begin{array}{ccc}
-2r_1^{[a} | r_2^{b]} r_4^\gamma_\gamma & 2ir_1^{ar} Y_4^r \\
2ir_1^{ar} Y_4^r & 2Y_1^{r} r_4^T_4
\end{array} \right)
\end{align*}
\]

Put

\[
R^{AB} := \varepsilon^{BC} R^C_{\quad A} = \hat{T}_1 \hat{X}^l \left(\begin{array}{ccc}
r_1^{an} & \frac{1}{2} i \delta^a_k r^\gamma_\gamma & 0 \\
- \delta^a_c r_4 & 2Y_1^{r} r_4^T_4 & 0
\end{array} \right),
\]
(418)

\[
R_{AB} := \varepsilon_{AC} R^C_{\quad B} = \hat{T}_1 \hat{X}^l \left(\begin{array}{ccc}
r_1^{ck} & - \frac{1}{2} i \delta^a_k r^\gamma_\gamma \\
- \delta^a_c r_4 & r_1^{an}
\end{array} \right).
\]
(419)

At the same time, the equation

\[
R_{A}^{\quad C} \hat{R}^{AB} = 0
\]
(420)

will be true that means that any spin-tensor \(\hat{R}^{AB}\), representing the generator \(\mathbb{C}P_1(\mathbb{C}Q_6)\), will contain the same spin-tensor \(R^A_{\quad K}\) in its expansion, wherein the second spin-tensor \(P^{KB}\) of the decomposition will be responsible for the position of \(\mathbb{C}P_1\) in \(\mathbb{C}P_3\). Therefore, there is a reason to assign the bispinor \(R^{AB}\) to the point of the quadric \(\mathbb{C}Q_6\). This point is uniquely determined. In the transition to the space \(\mathbb{C}R^8\), we put

\[
\begin{align*}
 r_1^{12} &= \frac{1}{\sqrt{2}} (v + iw), & r_1^{13} &= \frac{1}{\sqrt{2}} (x + iy), & r_1^{14} &= \frac{1}{\sqrt{2}} (t + iz), \\
 r_1^{23} &= \frac{1}{\sqrt{2}} (iz - t), & r_1^{24} &= \frac{1}{\sqrt{2}} (-x + iy), & r_1^{34} &= \frac{1}{\sqrt{2}} (v - iw).
\end{align*}
\]
(421)
Then we define homogeneous coordinates of \(\mathbb{C} \mathbb{R}^8 \) as follows

\[
\lambda = \left\{ \begin{array}{c}
R_{12} : R_{13} : R_{14} : R_{23} : R_{24} : R_{34} : R_{15} : R_{51}, \\
r_{12} : r_{13} : r_{14} : r_{23} : r_{24} : r_{34} : -\frac{1}{2} ir^\gamma r_\gamma : -i,
\end{array} \right\}
\]

\[
R_{12} = \frac{1}{\sqrt{2}} (V + iW), \quad R_{13} = \frac{1}{\sqrt{2}} (iY + X), \quad R_{14} = \frac{1}{\sqrt{2}} (iT - Z), \\
R_{23} = \frac{1}{\sqrt{2}} (-Z - iT), \quad R_{24} = \frac{1}{\sqrt{2}} (-X + iY), \quad R_{34} = \frac{1}{\sqrt{2}} (V - iW), \\
R_{51} = S - iU, \quad R_{15} = \frac{1}{2} (iU + S),
\]

\[
R_{AB} R_{AB} = 8(R_{12} R_{34} - R_{13} R_{24} + R_{14} R_{23} + R_{15} R_{51}) = \\
= 4(T^2 + V^2 + U^2 + S^2 + W^2 + X^2 + Y^2 + Z^2) := 4nf(R) \tag{424}
\]

For \((R_i)^A\), to define a generator of the quadric \(\mathbb{C} \tilde{Q}_6 \), it is necessary and sufficient to have the condition

\[
G_{AB} R_i^A R_j^B = 0. \tag{425}
\]

We define some connection operators \(\eta_{A}^{BC} \) so that

\[
R_A = \frac{1}{4} \eta_{A}^{BC} R_{BC}, \quad R_A = \frac{1}{4} \eta_{A}^{BC} R_{BC}. \tag{426}
\]

Then these operators satisfy the reduced Clifford equation

\[
G_{AB} \delta_K^L = \eta_{AK} R_{B} R_{L} + \eta_{BK} R_{A} R_{L}.
\]

Therefore, we can define the operators \(\gamma_A \) as

\[
\gamma_A := \sqrt{2} \begin{pmatrix}
0 & \sigma_A \\
\eta_A & 0
\end{pmatrix}, \quad \eta_A := \eta_A^{KR}, \quad \sigma_A := (\eta_A)^T_{RL}.
\]

Then \(\gamma_A \) will satisfy the Clifford equation

\[
\gamma_A \gamma_B + \gamma_B \gamma_A = 2G_{AB} I. \tag{429}
\]

At the same time, the lowering and raising of single indices is done by using the metric spin-tensor \(\epsilon_{AB} \), determined above. Define

\[
\epsilon_{PQRT} := \eta_{PQ} \eta_{RT} G_{AB}, \quad \epsilon_{PQRT} = \epsilon_{RTPQ} \tag{430}
\]
that will give another metric spin-tensor ε_{PQRT} with which the help we can raise and lower a pair of indices. Indeed, if the equation (427) contracts with δ^{L}_{K} then we obtain
\[G_{AB} = \frac{1}{4} \eta_{A}^{PQ} \eta_{BPQ}. \]
(431)

Contract (430) with η_{C}^{PQ} and obtain
\[\eta_{CRT} = \frac{1}{4} \eta_{C}^{PQ} \varepsilon_{PQRT}. \]
(432)

Now, the identity (427) can be rewritten as (contracting with $\eta^{A}_{ST} \eta^{B}_{PQ}$)
\[\varepsilon_{STPQ} \delta_{K}^{L} = \varepsilon_{STK}^{R} \varepsilon_{PQ}^{L_{R}} + \varepsilon_{PQK}^{R} \varepsilon_{ST}^{L_{R}}. \]
(433)

Contracting (433) with δ_{L}^{K}, we obtain
\[\varepsilon_{STPQ} = \frac{1}{4} \varepsilon_{ST}^{KR} \varepsilon_{PQKR}. \]
(434)

The result of the applying for the two metric spin-tensors should be the same
\[\varepsilon_{PQ} = \frac{1}{4} \varepsilon_{PQRT} \varepsilon^{RT}. \]
(435)

Thus, in the presence of the 3 metric tensor $G_{AB}, \varepsilon_{PQRT}, \varepsilon_{RT}$, we obtain the equation (427) from the Clifford equation (429). Then η^{BC}_{A} will be the generators of the corresponding Clifford algebra. Now, we will lower the index L in (433) and contract this equation with the ε^{ST}. Then we will obtain
\[\varepsilon_{PQ(KL)} = \frac{1}{2} \varepsilon_{PQ} \varepsilon_{KL}, \quad \varepsilon_{[PQ](KL)} = 0 \]
(436)

that will lead to the identity
\[\eta_{A}^{(MN)} = \frac{1}{8} \eta_{A}^{KL} \varepsilon_{KL} \varepsilon^{MN}. \]
(437)

If the matrixes of the tensors $g_{\Lambda \Psi}$ and ε_{KL} have the form
\[
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix},
\]

(438)
Thus, the bispinor \hat{C}_P to the planar generator \hat{C}_P^{AB} is determined. We contract the last identity with $\hat{\delta}^{(423)}$.

Next, we consider the bivector \hat{C}_P, X, so that in an abbreviated form, we can rewrite (439) as

$$
\eta_{A}^{MN} = \left(\eta_{a}^{ab} \frac{\lambda}{\hat{\mu}} \eta_{cd}^{b} \right), \quad \eta_{a}^{cd} = \frac{1}{2} \epsilon_{abcd} \eta_{a}^{ab}.
$$

where ϵ_{abcd} is the quadrivector (42). In fact, here we used the same basis as in the formula (423).

Next, we consider the bivector \hat{R}^{AB} of the form (417) such that its vectors X^{A}, X^{A}, defined by the formula (400), satisfy the system (409). By this, the identities

$$
ir_{ab}^{\hat{b}} \dot{Y}_{b} = \dot{X}_{a}, \quad ir_{ab} \dot{Z}_{b} = pf(r) \dot{T}_{a},
$$

$$
\frac{1}{2} ir_{cd} \epsilon_{abcd} \dot{Y}_{b} \epsilon_{aklm} = \dot{X}_{a} \epsilon_{aklm},
$$

$$
3ir_{l} \dot{Y}_{m} = \dot{X}_{a} \epsilon_{aklm},
$$

$$
ir_{kl} \dot{Y}_{m} + 2ir_{m(k} \dot{Y}_{l)} = \dot{X}_{a} \epsilon_{aklm}
$$

is determined. We contract the last identity with \dot{Z}^{m} and obtain

$$
ir_{kl} \dot{Y}_{m} \dot{Z}^{m} = \dot{X}_{a} \dot{Z}_{a} \epsilon_{klmn} + pf(r) \cdot 2 \dot{T}_{l} \dot{Y}_{l}.
$$

Thus, the bispinor \hat{R}^{AB} determines the rectilinear generator $\mathbb{C}P_{1}(\mathbb{C}Q_{6})$ belonging to the planar generator $\mathbb{C}P_{3}(\mathbb{C}Q_{6})$ which determines the point of the quadric $\mathbb{C}Q_{6}$. R^{AB} will be the coordinates of this point. We define the spin-tensor \hat{R}^{AB}

$$
\hat{R}^{AB} := \hat{R}^{AK} \hat{P}_{K}^{B}, \quad \hat{P}_{K}^{B} := \begin{pmatrix} 2\delta_{m}^{k} & 0 \\ 0 & -2pf(r) \hat{i} \delta_{m}^{r} \end{pmatrix}.
$$

The spin-tensor \hat{R}^{AB} will continue to represent the rectilinear generator $\mathbb{C}P_{1}(\mathbb{C}Q_{6})$ belonging to the planar generator $\mathbb{C}P_{3}(\mathbb{C}Q_{6})$. We apply the operator η_{A}^{KL} to the spin-tensor \hat{R}^{AB} and obtain

$$
\eta_{A}^{KL} \hat{R}_{KL} = \eta_{A}^{KL} \dot{Y}_{m} \dot{Z}^{m} \left(\begin{array}{c} r_{am}^{\gamma} \\ -i \hat{\delta}_{k}^{c} \gamma_{r} \end{array} \right) = \eta_{A}^{KL} R^{KL}.
$$
Thus, the operators \(\eta^A_{KL} \) take each rectilinear generator \(\mathbb{C}P_1(\mathbb{C}Q_6) \), belonging to the planar generator \(\mathbb{C}P_3(\mathbb{C}Q_6) \), to the same generator \(\mathbb{C}P_3(\mathbb{C}Q_6) \), and this determines the point of the quadric \(\mathbb{C}Q_6 \). In homogeneous coordinates, the spin-tensor \(R^{KL} \) determines the coordinates of the point \(R \) of the space \(\mathbb{C}R^8 \).

We contract the identity (427) with the \(\delta^L_B \)

\[
G_{AK} = S^M_A \varepsilon_{KM}, \quad S^M_A := \eta^M_{AR} \eta^L_R + \eta^L_R \eta^M_{AR}. \quad (445)
\]

Since \(G_{AB}, \varepsilon_{KL} \) have the form (438) then \(\| S^M_A \| \) has the form

\[
\| S^M_A \| = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{pmatrix}. \quad (446)
\]

Therefore, \(S^M_A \) is an involution tensor, and the quadrics are \(B \)-cylinders.

Let us find out what is the number of a family which comprises this generator \(\mathbb{C}P_3(\mathbb{C}Q_6) \). For this purpose, we consider the conditions

\[
\varepsilon_{AB} X_i^A X_j^B = 0,
\]

\[
X^{ABCD} := \varepsilon^{ijkl} X_i^A X_j^B X_k^C X_l^D,
\]

where \(\varepsilon^{ijkl} \) is a 4-vector antisymmetrical in all indices. Also we consider the 8-vector \(e_{ABCDKLNM} \) antisymmetrical in all indices too. If in the condition

\[
\frac{1}{24} e_{ABCDKLNM} X^{ABCD} = \rho \varepsilon_{KR} \varepsilon_{LT} \varepsilon_{MU} \varepsilon_{NV} X^{RTUV}, \quad \rho^2 = 1, \quad (448)
\]

\(\rho = 1 \), then we say that the planar generator \(\mathbb{C}P_3(\mathbb{C}Q_6) \) belongs to family I, and if \(\rho = -1 \), then the planar generator belongs to family II. In our case

\[
X_i^A = (\hat{X}_i^a, \hat{Y}_i^b)
\]

and then

\[
\varepsilon^{ijkl} X_i^1 X_j^2 X_k^3 X_l^4 = \rho \varepsilon^{ijkl} X_i^1 X_j^2 X_k^3 X_l^4. \quad (450)
\]

The spin-tensor \(\varepsilon_{KL} \) has the form (438). Whence, \(\rho = 1 \). This means that our generators should belong to family I.

In addition, there is the tensor \(\bar{S}^L_K \)

\[
\| \bar{S}^L_K \| = \frac{1}{\sqrt{2}} \begin{pmatrix}
1 & 0 & 0 & 0 & -i & 0 & 0 & 0 \\
0 & i & 0 & 0 & 0 & -i & 0 & 0 \\
0 & 0 & i & 0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & i & 0 & 0 & 0 & -i \\
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}, \quad det \| \bar{S}^L_K \| = 1 \quad (451)
\]
such that

\[\varepsilon_{AB} \tilde{S}_K^A \tilde{S}_L^B = G_{KL}. \]

(452)

Therefore, we will obtain

\[X_i^A = \tilde{S}_K^A R_i^K, \]

(453)

and (447) can be rewritten as

\[G_{AB} R_i^A R_i^K = 0, \]

\[X^{ABCD} = \tilde{S}_K^A \tilde{S}_L^B \tilde{S}_N^C \tilde{S}_M^D R^{KLMN}. \]

(454)

Since \(\rho = 1 \) then we have the identities

\[\frac{1}{24} \varepsilon_{ABCDKLMN} X^{ABCD} = \varepsilon_{KR} \varepsilon_{LT} \varepsilon_{MU} \varepsilon_{NV} X^{RTUV}, \]

\[\frac{1}{24} \varepsilon_{ABCDKLMN} \tilde{S}_U^A \tilde{S}_S^B \tilde{S}_T^C \tilde{S}_V^D R^{USTV} = \varepsilon_{KP} \varepsilon_{LQ} \varepsilon_{MX} \varepsilon_{NY} \tilde{S}_G^P \tilde{S}_H^Q \tilde{S}_Z^X \tilde{S}_W^Y R^{GHZW}, \]

\[\frac{1}{24} \varepsilon_{ABCDKLMN} \tilde{S}_U^A \tilde{S}_S^B \tilde{S}_T^C \tilde{S}_V^D \tilde{S}_P^K \tilde{S}_Q^L \tilde{S}_R^K \tilde{S}_M^D R^{USTV} = \]

\[= G_{PG} G_{QM} G_{XZ} G_{YW} R^{GHZW}, \]

\[\frac{1}{24} \det || S_P^A || e_{PQXYUSTV} R^{USTV} = G_{PG} G_{QM} G_{XZ} G_{YW} R^{GHZW}, \]

\[\frac{1}{24} e_{PQXYUSTV} R^{USTV} = G_{PG} G_{QM} G_{XZ} G_{YW} R^{GHZW}. \]

(455)

This shows that the generator \(\mathbb{CP}_3(\mathbb{C}Q_6) \) must belong to family I. In order to achieve the same result for the generator of family II we should choose the spin-tensor

\[\tilde{\varepsilon}_{KL} := \sqrt{i} \varepsilon_{KL} \]

(456)

as the metric spin-tensor by means of which single indices lower and raise.

5.6 Correspondence \(\mathbb{C}Q_6 \longrightarrow \mathbb{C}Q_6 \)

Applying the operators \(\eta_A^{KL} \) to (425), we obtain

\[R_i^{AB} R_j^A_{AB} = 0 \iff ((R_i)^{AB} - (R_j)^{AB})((R_k)^{AB} - (R_l)^{AB}) = 0 \iff \]

\[((r_i)^{ab} - (r_j)^{ab})((r_k)^{ab} - (r_l)^{ab}) = 0. \]

(457)

Here as usual, \(i, j \) is the number of basis points. This defines the system

\[
\begin{align*}
 i(r_1)^{ab} \hat{Y}_b &= X^a, \\
 i(r_2)^{ab} \hat{Y}_b &= \hat{X}^a, \\
 i(r_3)^{ab} \hat{Y}_b &= \hat{X}^a, \\
 i(r_4)^{ab} \hat{Y}_b &= X^a,
\end{align*}
\]

\[
\iff
\begin{align*}
 i((r_1)^{ab} - (r_2)^{ab}) \hat{Y}_b &= 0, \\
 i((r_1)^{ab} - (r_3)^{ab}) \hat{Y}_b &= 0, \\
 i((r_3)^{ab} - (r_4)^{ab}) \hat{Y}_b &= 0, \\
 i(r_1)^{ab} \hat{Y}_b &= \hat{X}^a.
\end{align*}
\]

(458)

Next we consider only the right system. It is constructed as follows. Always there is a covector \(Y_a \) which resets 3 different simple bivectors. This statement is reduced to the existence of a covector orthogonal to three linearly independent vectors since any simple bivector is decomposed by the formula \(r^{ab} = 2 P^{[a} Q^{b]} \). From the fourth
equation, the spinor X^a is determined. Therefore, such the system is always defined. On the other hand, on the basis of the fact that all r_i^{ab} have the form \[(r_i)^{ab} = 0 \] (for the fixed $\lambda_1, \lambda_2, \lambda_3$), the equality \[((r_i)^{ab} - (r_j)^{ab})(r_k)^{ab} - (r_l)^{ab} = 0 \] is executed.

1. So, let us know the last equation of the system \[(458) \]
\[i r_1^{ab} \dot{Y}_b = \dot{X}^a \] (460)
then we have the 4 equations, all of which will be significant. Since, we have the eight unknowns (X^a, \dot{Y}_b) for fixed $(r_1)^{ab}$ then the point of the quadric $\mathbb{C}Q_6$ uniquely defines the 3-dimensional planar generator $\mathbb{C}P_3(\mathbb{C}Q_6)$.

2. If we know all the equations of the system \[(458) \] with the conditions
\[((r_1)^{ab} - (r_2)^{ab})(r_1)^{ab} - (r_2)^{ab} = 0, \quad ((r_1)^{ab} - (r_3)^{ab})(r_1)^{ab} - (r_3)^{ab} = 0, \]
\[((r_3)^{ab} - (r_4)^{ab})(r_3)^{ab} - (r_4)^{ab} = 0, \]
\[(r_1)^{ab}(r_2)^{ab} = 0, \quad (r_1)^{ab}(r_3)^{ab} = 0, \quad (r_1)^{ab}(r_4)^{ab} = 0, \]
\[(r_2)^{ab}(r_3)^{ab} = 0, \quad (r_2)^{ab}(r_4)^{ab} = 0, \quad (r_3)^{ab}(r_4)^{ab} = 0 \] (461)
then from the 16 equations, only 7 from them will be significant (the 8 unknowns and the 9 communication conditions \[(461) \]). Therefore, the generator $\mathbb{C}P_3(\mathbb{C}Q_6)$ will uniquely define the point of the quadric $\mathbb{C}Q_6$.

3. If we know the three equations of system \[(458) \]
\[\left\{ \begin{array}{l}
 i((r_1)^{ab} - (r_2)^{ab}) \dot{Y}_b = 0, \\
 i((r_1)^{ab} - (r_3)^{ab}) \dot{Y}_b = 0, \\
 i(r_1)^{ab} \dot{Y}_b = \dot{X}^a
\end{array} \right. \] (462)
with the conditions
\[((r_1)^{ab} - (r_2)^{ab})(r_1)^{ab} - (r_2)^{ab} = 0, \quad ((r_1)^{ab} - (r_3)^{ab})(r_1)^{ab} - (r_3)^{ab} = 0, \]
\[(r_1)^{ab}(r_2)^{ab} = 0, \quad (r_1)^{ab}(r_3)^{ab} = 0, \quad (r_2)^{ab}(r_3)^{ab} = 0 \] (463)
then from the 12 equations, only 7 from them will be significant (the 8 unknowns and the 5 communication conditions \[(463) \]). This means that the generator $\mathbb{C}P_2(\mathbb{C}Q_6)$ will uniquely define the point of the quadric $\mathbb{C}Q_6$. In this case, the manifold of generators $\mathbb{C}P_2(\mathbb{C}Q_6)$, belonging to the generator $\mathbb{C}P_3(\mathbb{C}Q_6)$, uniquely defines the point of the quadric $\mathbb{C}Q_6$.

4. If we know the two equations of the system \[(458) \]
\[\left\{ \begin{array}{l}
 i((r_1)^{ab} - (r_2)^{ab}) \dot{Y}_b = 0, \\
 i(r_1)^{ab} \dot{Y}_b = \dot{X}^a
\end{array} \right. \] (464)
with the conditions
\[((r_1)^{ab} - (r_2)^{ab})(r_1)^{ab} - (r_2)^{ab} = 0, \quad (r_1)^{ab}(r_2)^{ab} = 0 \] (465)
then from the 8 equations, only 6 from them will be significant (the 8 unknowns and the 2 communication conditions 465)). This means that the rectilinear generator \(\mathbb{C}P_1 \) of the quadric \(\mathbb{C}Q_6 \) will uniquely define the rectilinear generator \(\mathbb{C}P_1 \) belonging to the quadric \(\mathbb{C}Q_6 \). In this case, the manifold of generators \(\mathbb{C}P_1(\mathbb{C}Q_6) \), belonging to the same generator \(\mathbb{C}P_3(\mathbb{C}Q_6) \), defines the beam of generators \(\mathbb{C}P_1(\mathbb{C}Q_6) \) belonging to the quadric \(\mathbb{C}Q_6 \) (this beam is a cone). The center of the beam is determined by the system (458).

5.7 Theorem on two quadrics

Thus, the theorem is proved

Theorem 1. *(The triality principle for two B-cylinders).*

In the projective space \(\mathbb{C}P_7 \), there are two quadrics (two B-cylinders) with the following main properties:

1. The planar generator \(\mathbb{C}P_3 \) of a one quadric will define one-to-one the point \(R \) on the other quadric.

2. The planar generator \(\mathbb{C}P_2 \) of a one quadric will uniquely define the point \(R \) on the other quadric. But the point \(R \) of the second quadric can be associated to the manifold of planar generators \(\mathbb{C}P_2 \) belonging to the same planar generator \(\mathbb{C}P_3 \) of the first quadric.

3. The rectilinear generator \(\mathbb{C}P_1 \) of a one quadric will define one-to-one the rectilinear generator \(\mathbb{C}P_1 \) of the other quadric. And all the rectilinear generators belonging to the same planar generator \(\mathbb{C}P_3 \) of the first quadric define the beam centered at \(R \) belonging to the second quadric.

This theorem is actually the generalization of the Klein correspondence. Prove this.

Proof.

On the quadric \(\mathbb{C}Q_6 \), we consider only those generators which have the form

\[
X^A = (0, Y_b).
\]

(466)

The manifold of such the generators is diffeomorphic to \(\mathbb{C}P_3 \). In this case, each generator can be associated to the point of the quadric \(\mathbb{C}Q_4 \subset \mathbb{C}Q_6 \). According to the system (409), the first equation of it takes the form

\[
r^{ab}\dot{Y}_b = 0.
\]

(467)

Until the end of the proof, we set \(A, B, A', B', ..., = 1, 2 \). In addition, we consider the spinor representation of a twistor according to [23] v.2, p. 49, eq. (6.1.24) and p.65, (6.2.18)(eng)].

\[
\dot{Y}_b = (\dot{\pi}_B, \dot{\omega}^B'),
\]

\[
r^{ab} = \text{const} \begin{pmatrix}
-\frac{1}{2}\varepsilon^{AB}r_c r^c & i \bar{r}^{A} B' \\
-i \bar{r}^{A'} B & \bar{\varepsilon} A' B'
\end{pmatrix}
\]

(468)
Therefore, the equation $R^{ab}Y_b = 0$ can be rewritten as a system of two equations

\[
\begin{align*}
-\frac{1}{2}\varepsilon^{AB}r_e r^e \hat{\pi}_B + i r^A B'^{\dot{\omega}} B' &= 0, \\
-ir^A B B' \hat{\pi}_B + \varepsilon^A B'^{\dot{\omega}} B' &= 0,
\end{align*}
\]
(469)

and only one of them will be significant

\[ir^{AA'} \hat{\pi}_{A'} = \dot{\omega}^A.\]
(470)

Here we use the metric spinors $\varepsilon_{A'B'}, \varepsilon_{AB}$ with the help of which spinor indices raise and lower. This spinors pass each other by the conjugation. This defines the system

\[
\begin{align*}
ir^{AA'} \hat{\pi}_{A'} &= \dot{\omega}^A, \\
ir^{AA'} \hat{\pi}_{A'} &= \dot{\xi}^A,
\end{align*}
\]
(471)

The system coincides with the one [23] v. 2, p. 63, eq. (6.2.14)(eng) which, in turn, leads to the Klein correspondence.

It should be noted in conclusion that from this theorem, the Cartan triality principle implies: There are the 3 diffeomorphic manifolds:

1. the manifold of all points of the quadric;
2. the manifold of I-family maximal planar generators;
3. the manifold of II-family maximal planar generators.

This is true, because the two constructed quadrics can be identified, for example, by means of the spin-tensor \tilde{S}_K^L. The manifold of all points of the quadric is diffeomorphic to the maximal plain generator manifold of one of the two families. In addition, since the Cartan triality principle is performed then the operators η^i_{KL} for the inclusion $\mathbb{R}^8 \subset \mathbb{C}^8$ define the octave algebra since satisfy to the reduced Clifford equation. This assertion is based on the results given in the monography [23] v.2, p. 461-464(eng) which deals with the structure constants of this algebra.

\footnote{The algebraic definition of structural constant has been published in [1]. This definition has the form $\eta^i_{jk} := \sqrt{2} \eta^i_{AB} \eta^j_{YA} \eta^k_{XB} X^X X^Y$. Here $X^X X = 2$; $A, B, \ldots = 1, 8$; $i, j, \ldots = 1, 8$; algebra identity is determined as $\frac{1}{4\sqrt{2}} \eta^{AB} \varepsilon_{AB}$; the metric spin-tensor ε_{AB} is the same as in (438). Later [2], [3], this will lead to the generalization of the definition on n-dimensional spaces with $n \mod 8 = 0$ and hence to the group alternative-elastic algebra definition [4].}

References

[1] K. V. Andreev: Structure constants of the algebra of octaves. The Clifford equation. Izv. Vyssh. Uchebn. Zaved. Mat., 2001, no. 3, 3–6. [http://mi.mathnet.ru/eng/ivm856]

[2] K.V. Andreev. On the spinor formalism for even n. [arXiv:1202.0941v2].

[3] К.В. Андреев [K.V. Andreev]: О спинорном формализме при четной размерности базового пространства [O spinornom formalizme pri chetno˘ı razmernosti bazovogo prostранства]. ВИНИТИ - 298-Б-11 [VINITI-298-V-11], июнь 2011 [jun' 2011]. [in Russian: On the spinor formalism for the base space of even dimension]

[4] K.V. Andreev. On the metric hypercomplex group alternative-elastic algebras for $n \mod 8 = 0$. [arXiv:1110.4737v1].
5.8 Summary

On the defence, the following major provisions are submitted:

1. An inclusion \(\mathbb{R}_6^{(p,q)} \subset \mathbb{C}\mathbb{R}_6 \) is carried out by means of the operator \(H_i^\alpha \). The operator \(H_i^\alpha \) defines the involution, the spinor representation of which has the form

\[
S_{\alpha}^{\beta'} = \frac{1}{4} \eta_{\alpha c} \bar{\eta}^{\beta' d'} \cdot 2 s_a^{c'} s_b^{d'} , \quad s_a^{c'} \bar{s}_{c'}^d = \pm \delta_d^a
\]

for odd \(q \) and

\[
S_{\alpha}^{\beta'} = \frac{1}{4} \eta_{\alpha c} \bar{\eta}^{\beta' d'} \cdot s^{k} s^{n} \varepsilon_{knab} , \quad s_{ae'} = \pm \bar{s}_{e'a}
\]

for even \(q \).

2. The operators \(A_{\alpha\beta a}^b \) are founded in an explicit form. This operators are determined by using the correspondence between bivectors of the space \(\mathbb{C}\mathbb{R}_6 \) and traceless operators of the space \(\mathbb{C}^4 \). This allows us to study the algebraic structure of the curvature tensor \(R_{\alpha\beta\gamma\delta} \) of the space \(\mathbb{C}\mathbb{R}_6 \) on its spinor image: the spin-tensor \(R_{a}^{b} c d \).

3. It is proved that a simple isotropic bivector of the space \(\Lambda^2 \mathbb{C}^6 \) defines a degenerate Rosenfeld null-pair up to a complex factor: a vector and covector of the spaces \(\mathbb{C}^4 \), the contracting of which is zero.

4. It is stated that a bivector of the space \(\Lambda^2 \mathbb{R}_6^{(p,q)} \) for even \(q \) can be reduced to the canonical form in some basis.

5. The generalized triality principle for a pair of B-cylinders is proved.

6. The operators \(\eta_{KL}^A \) satisfying the Clifford equation and responsible for the correspondence between rectilinear generators of two B-cylinders are defined. In addition, these operators define the structure constants of the octave algebra.
6 Appendix

6.1 Proof of the second chapter equations

6.1.1 Proof of the equations containing the operator $A^{b}_{\alpha\beta a}$

Define $(\alpha, \beta, \ldots = 1, 2, 3, 4, 5, 6; \ a, b, c, \ldots)$ and $\ A_{\alpha\beta a}^{b}$.

We have

$$A_{\alpha\beta a}^{b} = \eta^{ca}_{\alpha} \eta^{\beta}_{\beta a} \delta^{a}_{a}$$

and

$$A_{\alpha\beta a}^{b} A^{\beta}_{r s} = \eta_{\alpha}^{ca} \eta_{\beta a}^{\beta} \delta^{a}_{a} \eta_{\alpha}^{ca} \eta_{\beta a}^{\beta} = \delta^{a}_{a}.$$

We can then prove that

$$\delta^{a}_{a} = \eta_{\alpha}^{ca} \eta_{\beta a}^{\beta} \delta^{a}_{a} = \eta_{\alpha}^{ca} \eta_{\beta a}^{\beta}.$$
6.1.2 Proof of the equation of the 4-vector $e_{\alpha\beta\gamma\delta}$

Let

$$e_{\alpha\beta\gamma\delta} = e_{[\alpha\beta\gamma\delta]} = A_{\alpha\beta}^a A_{\gamma\delta}^b c_{a \: b \: d} \cdot e_{k \: d} = e_{a \: k \: k} = 0, \quad e_{a \: b \: d} = e_{c \: a \: b}, \quad e_{k \: t} = 0.$$

(477)

The contraction with $A_{\alpha\beta \: n} \: A_{\gamma\delta \: s}$ gives

$$A_{\alpha\beta \: m} \: A_{\gamma\delta \: r} A_{\alpha\beta}^a A_{\gamma\delta}^b c_{a \: b \: d} = (\frac{1}{2} \delta^s_{\gamma\delta} - 2 \delta^r_{\gamma\delta}) (\frac{1}{2} \delta^m_{\gamma\delta} - 2 \delta^m_{\gamma\delta}) e_{a \: b \: d} = 4 e_{m \: n \: r \: s} =$$

$$= - (\delta_{\gamma\delta}^{m
\gamma\delta} r A_{\alpha\beta}^a A_{\gamma\delta}^b c_{a \: b \: d} =$$

$$= - \eta_{\gamma}^{a \: n \: b} \eta_{\beta}^{a \: k \: m} \delta_{n \: k} + \frac{1}{2} \eta_{\gamma}^{a \: k \: b} \eta_{\beta}^{a \: m} \delta_{n \: m}.$$

(477)

Then

$$e_{m \: s} := \frac{1}{2} e_{m \: t} = 2 e_{m \: n \: r \: s} = 2 (e_{m \: s} \delta_{n \: m} + e_{r \: n} \delta_{m \: r} - (e_{r \: s} \delta_{m \: r} + e_{m \: n} \delta_{r \: s}).$$

(479)

6.1.3 Proof of the equation of the 6-vector $e_{\alpha\beta\gamma\delta\rho\sigma}$

Let

$$e_{\alpha\beta\gamma\delta\rho\sigma} = e_{[\alpha\beta\gamma\delta\rho\sigma]} = A_{\alpha\beta}^a A_{\gamma\delta}^b A_{\rho\sigma}^c e_{a \: b \: c \: d} \cdot e_{k \: d} = e_{a \: k \: k} = 0, \quad e_{a \: b \: d} = e_{c \: a \: b}, \quad e_{k \: t} = 0.$$

(480)

We use (478) and obtain ($e_{m \: n}^{q} \: s := e_{m \: k}^{q} \: p \: s = e_{k \: p}^{q} \: m}$

$$6 e_{m \: n}^{q \: s} = 2 (e_{m \: s} \delta_{n \: m} + e_{n \: q} \delta_{m \: n}) - (e_{r \: s} \delta_{m \: r} + e_{m \: n} \delta_{r \: s}) =$$

$$= 2 (e_{m \: s} \delta_{n \: m} + e_{n \: q} \delta_{m \: n} - (e_{p} \: s \delta_{m \: p} + e_{m \: n} \delta_{p \: s}).$$

(480)

The contraction of (481) with δ_{q}^{p} gives

$$0 = 6 e_{m \: n}^{q \: s} = 2 (e_{m \: s} \delta_{n \: m} + e_{n \: q} \delta_{m \: n} + 4 e_{m \: n} \delta_{r \: s}) = -(e_{p} \: s \delta_{m \: p} + e_{m \: n} \delta_{p \: s}).$$

(482)
The contraction of \((481)\) with \(\delta_n^r\) gives
\[
8e_m^{sp}q + 2e_t^p q \delta m^s - e_m^{sp}q - e_m^{sp}q = 2(e_m^{qsp} + e_p^{ksp} \delta m^q) - (e_p^{qms} + e_m^{ks} \delta p^q),
\]
\[
6e_m^{sp}q + e_p^{qms} - 2e_m^{sp}q = 2e_p^t \delta m^q - e_m^{ks} \delta p^q.
\]
(483)

The contraction of \((483)\) with \(\delta_q^m\) gives
\[
6e_k^{sp}k + e_p^{ks} = 8e_p^t s - e_p^{ks}, \quad e_p^t q = e_p^t q.
\]
(484)

The contraction of \((483)\) with \(\delta_s^m\) gives
\[
10\bar{e} := e_t^k k, -2e_k^p k = 2e_p^t q - e_t^k k \delta q, \quad e_p^t q = \frac{5\bar{e}}{2} q.
\]
(485)

The contraction of \((481)\) with \(\delta_s^p\) gives
\[
2e_m^{kq} \delta_r^n + 2e_r^{nq} - e_r^{kq} \delta m^n - e_m^{nr} q = 2e_m^{q} + 2e_k^{nq} - e_k^{kq} \delta m^n - e_m^{nr} q, \quad e_r^n = e_m^{nr}.
\]
(486)

Then from \((483), (481)\), it follows
\[
7e_m^{sp}q - 2e_m^{qsp} = 5\bar{e} \delta m^{ps} - \frac{5\bar{e}}{2} \delta m^{ps} \delta p^s, \quad 9e_m^{[sp]} = \frac{15\bar{e}}{2} \delta m^{[ps]},
\]
\[
5e_m^{ps}q + 4e_m^{[ps]} = 5\bar{e} \delta m^{ps} - \frac{5\bar{e}}{2} \delta m^{ps} \delta p^s, \quad 6e_m^{ps}q = \bar{e}(4\delta m^{ps} - \delta_m^{ps} \delta p^s),
\]
\[
e_m^{nq} = \bar{e}(2((4\delta p^n \delta m^q - \delta_p^{nq} \delta m^q)\delta m^s - (4\delta m^{ps} - \delta_p^{nq} \delta m^s)\delta m^r) -
\]
\[
-(4\delta m^{ps} - \delta_p^{nq} \delta m^s)\delta m^r + (4\delta m^{ps} - \delta_p^{nq} \delta m^s)\delta m^r).
\]
(487)

Calculate \(\bar{e}\)
\[
720 = e^\alpha \beta \gamma \delta \mu \nu e^\alpha \beta \gamma \delta \mu \nu = A^\alpha \beta a^1 A_{\alpha \beta b} A^\gamma \delta d c^1 A_d \gamma \delta c^1 A^{\mu \nu} n m A_{\mu \nu} m n,
\]
\[
e_{a \beta} \gamma c m \epsilon_{a_1 \beta_1 c_1 m_1} = 8(\frac{1}{2} \delta_{a_1} a_1 \delta_{b_1} b_1 - \delta_{b_1} a_1 \delta_{a_1} a_1)(\frac{1}{4} \delta_{d_1} d_1 \delta_{c_1} c_1 - \delta_{d_1} \delta_{c_1} c_1).
\]
\[
\bar{e} = -8e_2(8\delta_m^{b c} \delta_n^{a d} - 4\delta_m^{b c} \delta_n^{a d} - 4\delta_m^{b d} \delta_n^{a c} - 4\delta_m^{b d} \delta_n^{a c} - 4\delta_n^{b c} \delta_d^{a c} - 4\delta_n^{b c} \delta_d^{a c} + 2\delta_n^{b c} \delta_d^{a c} - 4\delta_n^{b c} \delta_d^{a c} =
\]
\[
-720 \cdot 64\bar{e}^2.
\]
(488)

Whence,
\[
\bar{e} = \frac{1}{8i}.
\]
(489)

6.1.4 Proof of the equation containing the operator \(N_a^f\)

Let
\[
N_a^b N_a^c \delta^d = \delta_{[a} \delta_{c]} \delta^d
\]
(490)
then the contraction with \(\delta^a_b\) will give
\[
N_a^b N_a^c \delta^d - N_a^d N_a^c a = 3\delta^c_d,
\]
\[
N_a^d N_a^c = N_a^d N_a^c - 3\delta^c_d.
\]
(491)

Multiply \((490)\) by \(N_a^f\)
\[
N_a^b N_a^c \delta^d N_a^f = \delta_{[a}^b \delta_{c]}^f.
\]
(492)
Substitute (491) into (492)
\[N[a, b, c] f N[r] = 3 N[a, b, c] f = \delta[a, b, c] f. \] (493)

The equation (493) contracts with \(\delta_f^c \) substituting (491) then
\[3 \delta[a, b] r = N[r] \delta[a, b] + 8 N[a, b], \] (494)

Therefore,
\[N[a, b] = n \delta[a, b], \quad n^2 = 1. \] (495)

6.2 Proof of the forth chapter equations

6.2.1 Proof the Bianchi identity

The Bianchi identity have the form
\[R_{\alpha \beta \gamma \delta} + R_{\alpha \gamma \delta \beta} + R_{\alpha \delta \beta \gamma} = 0, \] (496)
\[(A_{\alpha \beta} c A_{\gamma \delta} s + A_{\alpha \gamma} c A_{\delta \beta} s + A_{\alpha \delta} c A_{\beta \gamma} s) R_{c d s r} = 0. \]

Let’s contract it with \(A_{\alpha \beta}^t A_{\gamma \delta}^m n \)
\[\left| \begin{array}{c} A_{\alpha \beta}^t A_{\gamma \delta}^m n R_{c d s r} = \frac{1}{2} \delta_d^i \delta_r^t - 2 \delta_d^i \delta_r^t (\frac{1}{2} \delta_r^s \delta_m^n - 2 \delta_r^s \delta_m^n) R_{c d s r} = 4 R_{t m}^i n \end{array} \right| \]
\[(A_{\alpha \gamma} c A_{\delta \beta} s + A_{\alpha \delta} c A_{\beta \gamma} s) R_{c d s r} = \frac{1}{2} \delta_d^i \delta_r^t - 2 \delta_d^i \delta_r^t (\frac{1}{2} \delta_r^s \delta_m^n - 2 \delta_r^s \delta_m^n) R_{c d s r} = 4 R_{t m}^i n \]
\[4 R_{t m}^i n + 4 R_{k m}^i n + 2 R_{k m}^i n + 2 R_{k m}^i n - 2 R_{k m}^i n \]
\[0. \] (497)

The contraction with \(\delta_n^t \) gives
\[16 R_{k m}^k + 4 R_{k m}^k = 0, \]
\[R_{k m}^k = \frac{1}{2} R_{k m}^k \delta^m_l + \frac{1}{8} R \delta_{m l} = 0, \] (498)
that finishes the proof of (294).
6.2.2 Proof of the identities related to the Weyl tensor

The following relation

\[
R_{[\alpha \gamma \beta \delta]} = A_{\alpha \beta \gamma \delta} A^{\gamma \delta} s^{1/4} (P_{k\delta r} \epsilon_{k\delta s} - P_{k\delta r} \epsilon_{k\delta s} - P_{k\delta r} \epsilon_{k\delta s} - P_{k\delta r} \epsilon_{k\delta s}) = \]

\[
= A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (P_{\delta k} \epsilon_{\delta r} - P_{\delta k} \epsilon_{\delta r} + P_{\delta k} \epsilon_{\delta r} - P_{\delta k} \epsilon_{\delta r}) = \]

\[
= A_{\alpha \beta \gamma \delta} A^{\gamma \delta} s^{1/4} (P_{\delta s} - 1/2 P_{\delta s} + 1/2 P_{\delta s} - 1/2 P_{\delta s}) = \]

\[
= A_{\alpha \beta \gamma \delta} A^{\gamma \delta} s^{1/4} (1/2 \delta s - 1/2 \delta s - 1/2 \delta s - 1/2 \delta s) = \]

will be true. Similarly,

\[
g_{[\alpha \gamma \beta \delta]} = A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (\epsilon_{s c} - 1/2 \epsilon_{s c} + 1/2 \epsilon_{s c} - 1/2 \epsilon_{s c}) = \]

\[
= A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (1/2 \delta s - 1/2 \delta s - 1/2 \delta s - 1/2 \delta s) = \]

Thus, from

\[
C_{\alpha \beta \gamma \delta} := R_{[\alpha \gamma \beta \delta]} - R_{[\alpha \gamma \beta \delta]} + 1/10 R g_{[\alpha \gamma \beta \delta]}, \]

it follows

\[
C_{\alpha \beta \gamma \delta} = A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (P_{s r} - 1/2 P_{s r} + 1/2 P_{s r} - 1/2 P_{s r}) = \]

\[
= A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (1/2 \delta s - 1/2 \delta s - 1/2 \delta s - 1/2 \delta s) = \]

Then

\[
C_{\alpha \beta \gamma \delta} = A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (R_{s s} r) + 1/80 R \delta s d \delta r. \]

Contract it with \(A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} \)

\[
4C_{\alpha \beta \gamma \delta} = A_{\alpha \beta \gamma \delta} A^{\gamma \delta} r^{1/4} (R_{s s} r) + 1/80 R \delta s d \delta r. \]

as finishes the proof of (292).

6.2.3 The proof of the Ricci identity

By definition,

\[
\Box_a := 1/2 (\nabla_a \nabla_k \nabla \delta^k - \nabla_k \nabla^a \nabla_k), \quad \Box_{\alpha \beta} := 2 \nabla_{[\alpha \beta \gamma \delta]}, \quad \Box_{\alpha \beta} = A_{\alpha \beta \gamma \delta} \Box_a. \]

In addition, by the natural way, the covariant constancy of the following values

\[
\nabla_a \eta_{ab} = 0, \quad \nabla_a A_{\beta \gamma} = 0, \quad \nabla_a g_{\alpha \beta} = 0, \quad \nabla_a \varepsilon_{abcd} = 0 \]

(506)
is assumed. The Ricci identity has the form

\[\square_{\alpha\beta}k^{\gamma\delta} = R_{\alpha\beta\lambda}^{\gamma\lambda}k^{\delta\lambda} + R_{\alpha\beta\lambda}^{\delta\lambda}k^{\gamma\lambda}. \]

(507)

Then

\[A_{\alpha\beta\gamma}A_{\gamma\delta}^{\varepsilon} \Box_{\beta}k_{\delta}^{\varepsilon} = A_{\alpha\beta\gamma}^2 A_{\alpha\beta\gamma}^{\delta\lambda} r_{\alpha} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta}. \]

(508)

Whence, taking into account (473), we obtain

\[A_{\alpha\beta\gamma}^{\delta\lambda} r_{\alpha} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} = -2R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} + \eta^{\delta\lambda}\eta_{\lambda\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda}. \]

(509)

Multiply the both sides by \(\frac{1}{2} \eta^{\gamma\delta} A_{\beta\alpha}^{\gamma\delta} \)

\[\Box_{\alpha}k_{\beta}^{\gamma\delta} = \eta^{\gamma\delta} A_{\beta\alpha}^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} = \eta^{\gamma\delta} A_{\beta\alpha}^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} = \eta^{\gamma\delta} A_{\beta\alpha}^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta}. \]

(510)

On the other hand,

\[\Box_{\alpha\beta\gamma} = R_{\alpha\beta\gamma}. \]

(511)

So, let \(\kappa_{\alpha\beta} \) be a simple isotropic bivector that, according to Corollary 1 of the third chapter, we have the traceless image \(\kappa_{\alpha\beta}^{\gamma\delta} \) of the form

\[\kappa_{\alpha\beta}^{\gamma\delta} = P^{\gamma\delta}Q_{\alpha} - P^{\alpha\gamma}Q_{\delta} = 0. \]

(512)

Let’s substitute (512) in (509) then

\[P^{\gamma\delta} \Box_{\alpha}k_{\beta}^{\gamma\delta} + Q_{\delta}^2 \Box_{\alpha}k_{\beta}^{\gamma\delta} = -R_{\alpha\beta\lambda}^{\gamma\delta} k_{\beta} k_{\delta} + R_{\alpha\beta\lambda}^{\gamma\delta} k_{\beta} k_{\delta}. \]

(513)

Contract (513) with any covector \(S_{\beta} \), that \(S_{\beta} P^{\gamma\delta} = 0 \), then

\[S_{\beta} \Box_{\alpha}k_{\beta}^{\gamma\delta} = R_{\alpha\beta\lambda}^{\gamma\delta} k_{\beta} k_{\delta}. \]

(514)

Let’s consider an isotropic vector \(r^{\gamma} \) such that

\[r^{\gamma} = \frac{1}{2} \eta^{\gamma\delta} r_{\delta} := \eta^{\gamma\delta} X_{\delta} Y_{\gamma}. \]

(515)

Then from (511), the equation

\[X_{\alpha}^{\gamma\delta} \Box_{\beta}k_{\delta}^{\gamma\delta} = X_{\alpha}^{\gamma\delta} \eta^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} = X_{\alpha}^{\gamma\delta} \eta^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta}. \]

(516)

will follow. Contract this equation with \(Z_{\gamma} \), that \(X \gamma Z_{\gamma} = 0 \) and \(X \gamma Z_{\gamma} \neq 0 \), then, taking into account (514) (this means that \(Y_{\alpha}^{\gamma\delta} Z_{\gamma} = R_{\alpha\beta\lambda} Z_{\gamma} Y_{\gamma} X_{\alpha}^{\gamma\delta} \)), we obtain the equality

\[-Z_{\gamma} X_{\alpha}^{\gamma\delta} \Box_{\beta}k_{\delta}^{\gamma\delta} = -Z_{\gamma} X_{\alpha}^{\gamma\delta} \eta^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta} = -Z_{\gamma} X_{\alpha}^{\gamma\delta} \eta^{\gamma\delta} R_{\alpha\beta\lambda} R_{\alpha\beta\lambda}^{\delta\lambda} k_{\beta} k_{\delta}. \]

(517)
For any T_d, the spinors X^m, Y^m and Z_m can always be chosen, that $X^mT_m = 0, Y^mT_m = 0, X^mZ_m = 0, Y^mZ_m \neq 0$. Multiply (517) by T_d and obtain

$$-Z_mX^mT_d \square_a bY^m - Z_mY^mT_d \square_a bX^m =$$

$$= -Z_mX^m \square_a b(T_dY^m) + Z_mX^mY^m \square_a bT_d - Z_mY^m \square_a b(X^mT_d) + Z_mY^mX^m \square_a bT_d =$$

$$= -X^mR_a b_mY^k Z_mT_d - Z_mY^mR_a b_mX^kT_d.$$ (518)

Let’s subtract from (518) the following identities obtained from (513)

$$-Z_mX^m \square_a b(T_dY^m) = Z_mX^mY^mR_{ab} b_k T_k - Z_mX^mT_d R_{ab} b_m Y^k,$$

$$-Z_mY^m \square_a b(X^mT_d) = Z_mX^mY^mR_{ab} b_k T_k - Z_mY^mT_d R_{ab} b_m X^k.$$ (519)

Whence,

$$Z_mX^m \square_a bT_d = -X^mZ_mY^mR_{ab} b_k T_k,$$

$$\square_a bT_d = -R_{ab} b_k T_k.$$ (520)

Thus,

$$\square_a bT_d = -R_{ab} b_r T_r, \quad \square_a b^r T^r = R_{ab} b_r T^r.$$ (521)

6.2.4 The proof of the differential Bianchi identity

The differential Bianchi identity has the form

$$\nabla_{[\alpha R_{\beta \gamma}]\delta \lambda} = 0.$$ (522)

From this, the equation

$$A_{[\beta \gamma]\alpha} b^{aa_1} \nabla_{aa_1} R_b c r s = 0$$ (523)

will follow. Contract it with $A^{\beta \gamma} m n$ and obtain

$$A^{\beta \gamma} m n A_{[\beta \gamma]\alpha} b^{aa_1} \nabla_{aa_1} R_b c r s =$$

$$= A^{\beta \gamma} m n A_{[\beta \gamma]\alpha} b^{aa_1} \nabla_{aa_1} R_b c r s =$$

$$= (524)

$$= (525)$$

Contract this equation with η^α_{tp} then

$$-2\varepsilon_{tp}^{aa_1} \nabla_{aa_1} R_b c r s + 4\varepsilon_{tp}^{bn} \nabla_{cm} R_b c r s - 4\varepsilon_{tp}^{ba} \nabla_{am} R_b c r s - 2\varepsilon_{tp}^{ba} \nabla_{cm} R_b c r s =$$

$$= -4\varepsilon_{tp}^{aa_1} \nabla_{aa_1} R_b c r s + 4\varepsilon_{tp}^{bn} \nabla_{cm} R_b c r s - 4\varepsilon_{tp}^{ba} \nabla_{am} R_b c r s - 2\varepsilon_{tp}^{ba} \nabla_{cm} R_b c r s =$$

$$= -4\varepsilon_{tp}^{aa_1} \nabla_{aa_1} R_b c r s + 4\varepsilon_{tp}^{bn} \nabla_{cm} R_b c r s - 4\varepsilon_{tp}^{ba} \nabla_{am} R_b c r s - 2\varepsilon_{tp}^{ba} \nabla_{cm} R_b c r s =$$

$$= -4\varepsilon_{tp}^{aa_1} \nabla_{aa_1} R_b c r s + 4\varepsilon_{tp}^{bn} \nabla_{cm} R_b c r s - 4\varepsilon_{tp}^{ba} \nabla_{am} R_b c r s - 2\varepsilon_{tp}^{ba} \nabla_{cm} R_b c r s =$$

$$= 12\nabla_{[\alpha R_{\beta \gamma}]} c r s - 8\delta_{[\alpha}^{\beta} \nabla_{[cm]R_{\beta \gamma}]} c r s - 4\varepsilon_{[\alpha}^{\beta} \nabla_{[cm]R_{\beta \gamma}]} c r s = 0.$$ (525)
Contract this equation with δ_n^m then obtain the identity
\begin{equation}
4\nabla_{tk}R_{pk}^s - 4\nabla_{pk}R_{tk}^s + 4\nabla_{cp}R_{ct}^s -
-4\nabla_{ct}R_{cp}^s - 8\nabla_{cp}R_{ct}^s + 8\nabla_{ct}R_{cp}^s = 0.
\end{equation}

Contract (525) with δ_n^t then
\begin{equation}
-4\nabla_{np}R_{nm}^s + 4\nabla_{lm}R_{lp}^s + 4\nabla_{cm}R_{cm}^s - 16\nabla_{cm}R_{cm}^s - 2\nabla_{cp}R_{cm}^s + 2\nabla_{cm}R_{cp}^s = 0,
\end{equation}

Then the Bianchi identity takes the form
\begin{equation}
\nabla_{[tm}R_{np]}^n = \delta_n^m\nabla_{[cm}R_{mp]}^s.
\end{equation}
The contraction of (527) with δ_s^m gives the equation
\begin{equation}
\nabla_{cp}R_{cm}^m + \nabla_{cm}R_{cp}^m = 0, \quad \nabla_{cm}R_{cp}^m = \frac{1}{8}\nabla_{rp}R.
\end{equation}

6.2.5 Proof of the formulas associated with the metric induced in the cross-section of the cone K_6

Let the section of the cone K_6
\begin{equation}
T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2 = 0
\end{equation}
by the plane $V+W=1$ be set. We make the stereographic projection of the resulting hyperboloid onto the plane $(V = 0, W = 1)$
\begin{equation}
\frac{t}{T} = \frac{x}{X} = \frac{y}{Y} = \frac{z}{Z} = -\frac{1}{\sqrt{2}V-1}, \quad x^2 + y^2 + z^2 - t^2 = \frac{1}{2V-1},
\end{equation}

Then
\begin{equation}
dS^2 = dT^2 + dV^2 - dW^2 - dX^2 - dY^2 - dZ^2 = |dV = -dW| =
= dT^2 - dX^2 - dY^2 - dZ^2 = (dt^2 - dx^2 - dy^2 - dz^2)(2V-1)^2 +
+4(tdt - xdx - ydy - zdz)dV(2V-1) + 4(t^2 - x^2 - y^2 - z^2)dV^2 =
= |tdt - xdx - ydy - zdz| = \frac{1}{2}d|\frac{2V-1}{2V-1}| = \frac{dt^2 - dx^2 - dy^2 - dz^2}{(t^2 - x^2 - y^2 - z^2)^2}.
\end{equation}

We make the substitution
\begin{equation}
\zeta = \frac{-iT + Z}{2V-1} = -y + ix, \quad \omega = -\frac{i(T+Z)}{2V-1} = i(t + z), \quad \eta = \frac{i(Z-T)}{2V-1} = i(t - z),
\end{equation}

\begin{align*}
d\zeta &= \left(\frac{dY}{2V-1} - \frac{2YdV}{(2V-1)^2} \right) - i\left(\frac{dX}{2V-1} - \frac{2XdV}{(2V-1)^2} \right), \quad d\zeta = \left(\frac{dY}{2V-1} - \frac{2YdV}{(2V-1)^2} \right) + i\left(\frac{dX}{2V-1} - \frac{2XdV}{(2V-1)^2} \right),

d\omega &= -i\left(\frac{dT}{2V-1} - \frac{2TdV}{(2V-1)^2} + \frac{dZ}{2V-1} - \frac{2ZdV}{(2V-1)^2} \right), \quad d\eta = -i\left(\frac{dT}{2V-1} - \frac{2TdV}{(2V-1)^2} - \frac{dZ}{2V-1} + \frac{2ZdV}{(2V-1)^2} \right),

d\zeta d\zeta + d\omega d\eta = \left(\frac{dX^2 + dY^2 + dZ^2 - dT^2}{(2V-1)^2} \right) - 4\left(\frac{dV}{(2V-1)^2} \right)(XdX + YdY + ZdZ - TdT) +
\quad + 4\left(\frac{dV}{(2V-1)^2} \right)(X^2 + Y^2 + Z^2 - T^2) = -\frac{dV}{(2V-1)^2} \left(\frac{dX^2 - dY^2 - dZ^2}{t^2 - x^2 - y^2 - z^2} \right),
\end{align*}

\begin{equation}
ds^2 := dT^2 - dX^2 - dY^2 - dZ^2 = -\frac{d\zeta d\zeta + d\omega d\eta}{(t^2 - x^2 - y^2 - z^2)^2}, \quad x^2 + y^2 + z^2 - t^2 = \frac{1}{2V-1}.
\end{equation}
Therefore, there is a reason to put
\[X := \begin{pmatrix} \omega & \zeta \\ -\zeta & \eta \end{pmatrix}, \quad dX := \begin{pmatrix} d\omega & d\zeta \\ -d\zeta & d\eta \end{pmatrix}, \quad \frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial \omega} & \frac{\partial}{\partial \zeta} \\ -\frac{\partial}{\partial \zeta} & \frac{\partial}{\partial \eta} \end{pmatrix}. \] (534)

Then
\[ds^2 = -\frac{det(dX)}{(det(X))^2}, \quad \tilde{X}^T + X = 0. \] (535)

6.2.6 Proof of the first invariant formulas

Consider the fractional linear transformation group L
\[\tilde{X} = (AX + B)(CX + D)^{-1}, \quad S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad detS = 1. \] (536)

Then there are two consecutive transformations
\[\tilde{X} = (AX + B)(CX + D)^{-1}, \quad \tilde{X} = (\tilde{A}\tilde{X} + \tilde{B})(\tilde{C}\tilde{X} + \tilde{D})^{-1} \] (537)
\[= (\tilde{A}(AX + B) + \tilde{B}(CX + D))((\tilde{C}(AX + B) + \tilde{D}(CX + D))^{-1} =
\]
\[= ((\tilde{A}A + \tilde{B}C)X + \tilde{A}B + \tilde{B}D)((\tilde{C}A + \tilde{D}C)X + \tilde{C}B + \tilde{D}D)^{-1}, \] (538)
\[S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \tilde{S} := \begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix}, \quad \tilde{\tilde{S}} = \tilde{S}S. \]

For unitary fractional-linear transformations, we have
\[X^* + X \equiv \tilde{X}^* + \tilde{X} = 0, \]
\[0 = (AX + B)(CX + D)^{-1} + (CX + D)^{-1}(AX + B)^*, \]
\[0 = (AX + B)^*(AX + B) + (AX + B)^*(CX + D) =
\]
\[X^*(A^*C + C^*A)X + X^*(A^*D + C^*B) + (B^*C + D^*A)X + D^*B + B^*D \equiv
\]
\[\equiv X^* + X. \] (539)

Whence,
\[A^*C + C^*A = 0, \quad B^*D + D^*B = 0, \quad A^*D + C^*B = E, \quad S^*\tilde{E}S = \tilde{E}, \]
\[\tilde{E} := \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}. \] (540)

Let
\[X = YZ^{-1}, \quad \tilde{Y} = AY + BZ, \quad \tilde{Z} = CY + DZ. \] (541)

Put
\[X := \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}, \quad \tilde{X} := \begin{pmatrix} \tilde{x}_1 & \tilde{x}_2 \\ \tilde{x}_3 & \tilde{x}_4 \end{pmatrix}, \quad dX := \begin{pmatrix} dx_1 & dx_2 \\ dx_3 & dx_4 \end{pmatrix}, \quad d\tilde{X} := \begin{pmatrix} d\tilde{x}_1 & d\tilde{x}_2 \\ d\tilde{x}_3 & d\tilde{x}_4 \end{pmatrix}, \]
\[
\frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_4} \end{pmatrix}, \quad \frac{\partial}{\partial \tilde{X}} := \begin{pmatrix} \frac{\partial}{\partial \tilde{x}_1} & \frac{\partial}{\partial \tilde{x}_2} \\ \frac{\partial}{\partial \tilde{x}_3} & \frac{\partial}{\partial \tilde{x}_4} \end{pmatrix}.
\] (542)
Then
\[
dX + d\hat{X} = d(X + \hat{X}),
\]
\[
d(X\hat{X}) = d\left(\begin{array}{cccc}
x_1\hat{x}_1 + x_2\hat{x}_3 & x_1\hat{x}_2 + x_2\hat{x}_1 \\
x_3\hat{x}_1 + x_4\hat{x}_3 & x_3\hat{x}_2 + x_4\hat{x}_4
\end{array}\right) =
\]
\[
= \left(\begin{array}{cccc}
dx_1\hat{x}_1 + dx_2\hat{x}_3 & dx_1\hat{x}_2 + dx_2\hat{x}_1 \\
dx_3\hat{x}_1 + dx_4\hat{x}_3 & dx_3\hat{x}_2 + dx_4\hat{x}_4
\end{array}\right) + \left(\begin{array}{cccc}
x_1d\hat{x}_1 + x_2d\hat{x}_3 & x_1d\hat{x}_2 + x_2d\hat{x}_1 \\
x_3d\hat{x}_1 + x_4d\hat{x}_3 & x_3d\hat{x}_2 + x_4d\hat{x}_4
\end{array}\right) =
\]
\[
= (dX) \hat{X} + X (d\hat{X}).
\]

Therefore, the identities
\[
\hat{X} = AX + B \Rightarrow d\hat{X} = AdX, \quad \hat{X} = X^{-1} \Rightarrow d\hat{X} = -X^{-1} dX X^{-1}
\]
are true. The proof of the second is that
\[
\hat{X} X = 1, \quad (d\hat{X}) X + \hat{X} (dX) = 0,
\]
\[
(d\hat{X}) X + X^{-1} (dX) = 0, \quad d\hat{X} = -X^{-1} (dX) X^{-1}.
\]
Then we will obtain the identities
\[
\hat{X}^* + \hat{X} = 0, \quad -\hat{X}^* = \hat{X},
\]
\[
-(CX + D)^{*-1}(AX + B)^* = (AX + B)(CX + D)^{-1},
\]
\[
-(AX + B)^* = (CX + D)^*(AX + B)(CX + D)^{-1}.
\]

Multiply the both parts on \(CdX\)
\[
(-X^*A^* - B^*)CdX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX,
\]
\[
(-X^*A^*C - B^*C)dX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX.
\]

We use (540)
\[
(X^*C^*A + D^*A - E)dX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX,
\]
\[
(CX + D)^*AdX - (CX + D)^*(AX + B)(CX + D)^{-1}CdX = dX,
\]
\[
A(dX)(CX + D)^{-1} - (AX + B)(CX + D)^{-1}C(dX)(CX + D)^{-1} =
\]
\[
= (CX + D)^{-1}(dX)(CX + D)^{-1}.
\]

We use (541)
\[
(d(AX + B)) (CX + D)^{-1} + (AX + B)d((CX + D)^{-1}) =
\]
\[
= (CY + DZ)^{-1}Z^*(dX)Z(CY + DZ)^{-1},
\]
\[
\hat{Z}^* d\hat{X} \hat{Z} = Z^* dXZ.
\]

Thus, the first invariant is obtained.

6.2.7 Proof of the second invariant formulas

Let
\[
\hat{X} = AX + B,
\]
(550)
or in the componentwise record,
\begin{align*}
\dot{x}_1 &= a_1x_1 + a_2x_3 + b_1, \quad \dot{x}_2 = a_1x_2 + a_2x_4 + b_2, \\
\dot{x}_3 &= a_3x_1 + a_4x_3 + b_3, \quad \dot{x}_4 = a_3x_2 + a_4x_4 + b_4.
\end{align*} \tag{551}

Then
\begin{align*}
\frac{\partial}{\partial x_1} &= a_1 \frac{\partial}{\partial x_1} + a_3 \frac{\partial}{\partial x_3}, \quad \frac{\partial}{\partial x_2} = a_1 \frac{\partial}{\partial x_2} + a_3 \frac{\partial}{\partial x_4}, \\
\frac{\partial}{\partial x_3} &= a_2 \frac{\partial}{\partial x_1} + a_4 \frac{\partial}{\partial x_2}, \quad \frac{\partial}{\partial x_4} = a_2 \frac{\partial}{\partial x_2} + a_4 \frac{\partial}{\partial x_4},
\end{align*} \tag{552}

or in the abbreviated form,
\[
\frac{\partial}{\partial X} = A^T \frac{\partial}{\partial X} \implies \frac{\partial}{\partial X^T} = \frac{\partial}{\partial X^T} A^{-1} \text{ (} \det(A) \neq 0 \text{)}.
\] \tag{553}

Now let
\[
\dot{X} = X^{-1},
\] \tag{554}

or in the componentwise record,
\begin{align*}
\dot{x}_1 &= \frac{x_4}{x_1x_4 - x_2x_3}, \quad \dot{x}_2 = -\frac{x_2}{x_1x_4 - x_2x_3}, \quad \dot{x}_3 = -\frac{x_3}{x_1x_4 - x_2x_3}, \quad \dot{x}_4 = \frac{x_1}{x_1x_4 - x_2x_3}.
\end{align*} \tag{555}

Then
\begin{align*}
\frac{\partial}{\partial x_1} &= -\frac{x_4x_1}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_1} + \frac{x_4x_4}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_2} + \frac{x_4x_3}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_3} - \frac{x_4x_2}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_4}, \\
\frac{\partial}{\partial x_2} &= -\frac{x_2x_1}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_1} - \frac{x_2x_4}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_2} - \frac{x_2x_3}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_3} + \frac{x_2x_2}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_4}, \\
\frac{\partial}{\partial x_3} &= \frac{x_3x_1}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_1} - \frac{x_3x_4}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_2} - \frac{x_3x_3}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_3} + \frac{x_3x_2}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_4}, \\
\frac{\partial}{\partial x_4} &= -\frac{x_4x_1}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_1} + \frac{x_4x_4}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_2} + \frac{x_4x_3}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_3} - \frac{x_4x_2}{(x_1x_4 - x_2x_3)^2} \frac{\partial}{\partial x_4},
\end{align*} \tag{556}

or in the abbreviated form,
\[
\frac{\partial}{\partial X} = -X^{-1} \frac{\partial}{\partial X} X^{-1} \iff \frac{\partial}{\partial X^T} = -X \frac{\partial}{\partial X^T} X.
\] \tag{557}

Assume that \(\det(C) \neq 0 \) then
\[
\dot{X} = (AX + B)(CX + D)^{-1} = AC^{-1} + (B - AC^{-1}D)(CX + D)^{-1}.
\] \tag{558}

Therefor,
\[
\frac{\partial}{\partial X^T} = \frac{\partial}{\partial (CX + D)^{-1}} (B - AC^{-1}D)^{-1} = \]
\[
= -(CX + D)^{-1} \frac{\partial}{\partial (CX + D)^{-1}} (CX + D)^{-1} = \]
\[
= -(CX + D)^{-1} \frac{\partial}{\partial X^T} (CX + D)^{-1} = \]
\[
= -(CX + D)^{-1} (BC^* + AC^{-1}DC^*)^{-1} = \]
\[
= (CX + D)^{-1} (BC^* + AD^*)^{-1} = (CX + D)^{-1} (CX + D)^*.
\] \tag{559}

Whence,
\[
\dot{Z}^{-1} \frac{\partial}{\partial X^T} \dot{Z}^{-1} = Z^{-1} \frac{\partial}{\partial X^T} Z^{-1}.
\] \tag{560}
If now \(\det(C) = 0 \) then put
\[
\tilde{X} = \tilde{X}^{-1} = (CX + D)(AX + B)^{-1}, \quad \tilde{Z} = AY + BZ, \quad \tilde{C} = A, \quad \det(\tilde{C}) \neq 0.
\]

If \(\det(A) \neq 0 \) then
\[
Z^{-1} \frac{\partial}{\partial X^T} Z^{*^{-1}} = \tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^{*^{-1}} = -(AY + BZ)^{-1} \tilde{X} \frac{\partial}{\partial \tilde{X}^T} \tilde{X}(AY + BZ)^{*^{-1}} = |\tilde{X}^* - \tilde{X}| = (AY + BZ)^{-1}(AY + BZ)(CY + DZ)^{-1} \frac{\partial}{\partial X^T} \times
\]
\[
\times (CY + DZ)^{*^{-1}}(AY + BZ) (AY + BZ)^{*^{-1}} = \tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^{*^{-1}}.
\]

If \(\det(A) = 0 \) then put
\[
\tilde{X} = \tilde{X} + \tilde{D}, \quad \tilde{X} = \tilde{X}^{-1}, \quad \tilde{X} = (\tilde{X} + \tilde{B})(\tilde{C}X + \tilde{D})^{-1}, \quad \tilde{C} = A + \tilde{D}C, \quad \det(\tilde{C}) \neq 0.
\]

It is obvious that \(\tilde{D} \) can always be chosen, that \(\det(\tilde{C}) \neq 0 \). So
\[
Z^{-1} \frac{\partial}{\partial X^T} Z^{*^{-1}} = \tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^{*^{-1}} = \tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^{*^{-1}} = \tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^{*^{-1}}
\]
that will give the second invariant.

6.3 Proof of the fifth chapter equations

6.3.1 The proof of the integrability conditions of the bitwistor equation

By the definition,
\[
\square_au = \frac{1}{2} (\nabla_{ak} \nabla^{dk} - \nabla^{dk} \nabla_{ak}) = \frac{1}{4} \varepsilon_{akmn} (\nabla^m \nabla^{dk} + \nabla^md \nabla^{nk}) = \frac{1}{2} \varepsilon_{akmn} \nabla^m (n \nabla^{dk})
\]

Therefor,
\[
\square_au^d X^c = R_{a \ k} X^d + \frac{1}{2} \varepsilon_{akmn} (\nabla^m (n \nabla^{dk}) X^c).
\]

If \(\nabla^a b c X^c \) = 0 then the integrability conditions of this equation have the form
\[
\frac{1}{2} \varepsilon_{akmn} (\nabla^m (n \nabla^{dk}) X^c) = \frac{1}{6} \varepsilon_{akmn} (\nabla^m (n \nabla^{dk}) X^c + \nabla^m (n \nabla^{ck}) X^d + \nabla^m (c \nabla^{dk}) X^n) = \frac{2}{3} R_{a (d ^c X^r + \frac{1}{12} \varepsilon_{akmn} (\nabla^m \nabla^{dk} + \nabla^md \nabla^{ck}) X^n}.
\]

\[
\varepsilon_{akmn} (\nabla^m \nabla^{dk} + \nabla^md \nabla^{ck}) X^n = \frac{1}{6} \varepsilon_{akmn} (\nabla^m (n \nabla^{dk}) X^c + \nabla^m (n \nabla^{ck}) X^d + \nabla^m (c \nabla^{dk}) X^n)
\]

where \(C_{a}^{c \ i} \) is the Weyl tensor analogue.
References

[1] A.L. Besse: Einstein Manifolds. Ergeb. Math. Grenzgeb. (3), Vol. 10. Springer-Verlag, Berlin, 1987. Reprinted: Classics in Mathematics. Springer-Verlag, Berlin, 2008. Russian translation by Д. В. Алексеевский [D.V. Alekseevskij]. The list of isomorphisms between classical Lie algebras for \(n \leq 6 \) is given on the pages 200-201, item 7.101.

[2] В.А. Дубровин [V.A. Dubrovin], С.П. Новиков [S.P. Novikov], А.Т. Фоменко [A.T. Fomenko]: Современная геометрия [Sovremennaya geometriya]. Наука [Nauka], Москва [Moskva], 1986. English translation: V.A. Dubrovin, S.P. Novikov, A.T. Fomenko: Modern Geometry. Grad. Texts Math., Part 1: Vol. 93, Part 2: Vol. 104. Springer, New York, Part 1: 1984, Part 2: 1985.

[3] ´E. Cartan: Le¸ cons sur la Th´ eorie des Spineurs, 2 Vols.. Vol. I: Les Spineurs de l’Espace a Trois Dimensions. Actual. Sci. Ind., Vol. 643, Expos´ es G´ eom., Vol. 9. Vol. II: Les Spineurs de l’Espace a n > 3 dimensions. Les Spineurs en G´ eom´ etrie Riemanienne. Actual. Sci. Ind., Vol. 701, Expos´ es G´ eom., Vol. 11. Hermann, Paris, 1938. English translation: The Theory of Spinors. Hermann, Paris, 1966. Reprinted: Dover Publications, Inc., New York, 1981. Russian translation: Э. Кардан [E Kartan]: Теория спиноров [Teoriya spinorov]. Платон [Platon], Москва [Moskva], 1997. Russian translation by П. А. Широков [P.A. Shirokov].

[4] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry. Volume 2. Interscience Tracts Pure Appl. Math., Vol. 15.2. Interscience, New York, 1969. Reprinted: Wiley Classics Library. Wiley-Interscience, New York, 1996. Russian translation: И. Кобаяси [Sh. Kobayasi], К. Номидзу [K. Nomizu]: Основы дифференциальной геометрии [Osnovy differentsial’no˘ı geometrii]. т. 2 [Tom 2]. Наука [Nauka], Москва [Moskva], 1981. Russian translation by Л.В. Сабинин [L.V. Sabinin]. Almost complex manifolds are studied on the pages 114-141. However, as real manifolds are considered Hermitian manifolds unlike this thesis.

[5] S. Kobayashi: Transformation Groups in Differential Geometry. Ergeb. Math. Grenzgeb. (2), Vol. 70. Springer-Verlag, Berlin, 1972. Russian translation: Ш. Кобаяси [Sh. Kobayasi]: Группы преобразований в дифференциальной геометрии [Gruppy preobrazovani˘ı v differentsial’no˘ı geometrii]. Наука [Nauka], Москва [Moskva], 1986. Russian translation by Л.В. Сабинин [L.V. Sabinin]. A piece of the information on the Riemannian space and complex manifolds is given on pages 1-119.

[6] А.П. Котельников [А.П. Kotel’nikov]: Винтовое счисление и некоторые приложения его к геометрии и механике [Vintovoe schislenie i nekotorye prilozheniya ego k geometrii i mekhanike]. С.п., Казань [Kazan’], 1895. [in Russian: Screw Calculus and Some of Its Applications to Geometry and Mechanics]

[7] A. Lichnerowicz: Théorie globale des connexions et des groupes d’holonomie. Travaux Rech. Math.. Dunod, Paris, 1955. Consiglio Naz. Rich., Monogr. Mat., Vol. 2. Edizioni Cremonese, Rome, 1955, 1962. English translation: Global Theory of Connections and Holonomy Groups. Noordhoff, Leyden, 1976. Russian translation: А. Лихтерович [A. Likhnerovich]: Теория связности в целом и группы голономий [Teoriya svyaznostei v tselom i gruppy golonomii], ИЛ [IL], Москва [Moskva], 1960. Russian translation by С.П. Фиников [S.P. Finikov] under edition В.В. Рыжкова [V.V. Ryzhkova]. Almost complex manifolds and connections on them are studied. However, as real manifolds are considered Hermitian manifolds unlike this thesis.

[8] Ю.И. Манин [Yu.I. Manin]: Калибровочные поля и комплексная геометрия [Kalibrovchanye polya i kompleksnaya geometriya]. Москва [Moskva], Наука [Nauka], 1996. English translation: Yu.I. Manin: Gauge Field Theory and Complex Geometry. Grundlehren Math. Wiss., Vol. 289. Springer-Verlag, Berlin, 1988. The Minkowski space is studied as the manifold of real points of the big cell of the Grassmannian of complex planes in the twistor space on the pages 15-72.

[9] Л.Д. Ландау [L.D. Landau], Е.М. Лишнит [E.M. Livshits]: Теория поля [Teoriya polya], Наука [Nauka], Москва [Moskva], 1988. English translation: L.D. Landau, E.M. Lifshitz: The Classical Theory of Fields. Pergamon Press, Oxford, 1961.
10. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: Об инволюциях в комплексных пространствах [Ob involyutsiyakh v kompleksnykh prostranstvakh]. Тр. Геом. Семин. [Tr. Geom. Semin.], Казанский университет [Kazanskii universitet] (Выпуск [Vypusk]) 19(1989)71-82 (Mathnet URL: http://mi.mathnet.ru/eng/kutgs98). [in Russian: Involutions in complex spaces]

11. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: Геометрия поверхности в проективном пространстве над алгеброй [Geometriya poverkhnosti v proektivnom prostranstve nad algebro˘ı]. In: Ю.А. Яфаров [Yu.A. Yafarov] (Ed.): Геометрия обобщенных пространств [Geometriya obobshchennykh prostranstv]. Башкирский Государственный Педагогический Институт [Bashkirski˘ı Gosudarstvenny˘ı Pedagogicheskiı Institut], Уфа [Ufa], 1982, pp. 32-51. [in Russian: Geometry of a surface in the projective space over an algebra]

12. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: О внутренних геометриях поляризованных комплексных граассманианов [O vnutrennikh geometriyakh polyarizovannykh kompleksnykh grassmanianov]. Изв. Высш. Учебн. Завед., Матем. [Izv.Vyssh. Uchebn. Zaved., Mat.] (1995) No. 5 (396), 51-54 (Mathnet URL: http://mi.mathnet.ru/eng/ivm1741). English translation: E.G. Ne˘ıfel’d: On the intrinsic geometries of polarized complex Grassmannians. Russian Math. (Iz. VUZ) 39(1995) No. 5, 46-49.

13. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: Нормализация комплексных граассманианов и квадрик [Normalizatsiya kompleksnykh grassmanianov i kvadrik]. Тр. Геом. Семин. [Tr. Geom. Semin.], Казанский университет [Kazanskii universitet] (Выпуск [Vypusk]) 20(1990)58-69 (Mathnet URL: http://mi.mathnet.ru/kutgs82). [in Russian: Normalization of complex Grassmannians and quadrics]

14. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: О внутренних геометриях нормализованного пеенроузiana [O vnutrennikh geometriyakh normalizovannogo penrouziana]. Тр. Геом. Семин. [Tr. Geom. Semin.], Казанский университет [Kazanskii universitet] (Выпуск [Vypusk]) 20(1990)70-73 (Mathnet URL: http://mi.mathnet.ru/kutgs83). [in Russian: Intrinsic geometries of a normalized Penrosian]

15. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: Аффинные связи на нормализованном многообразии плоскостей проективного пространства [Affinnye svyaznosti na normalizovannom mnogoobrazii ploskoste˘ı proektivnogo prostranstva]. Изв. Высш. Учебн. Завед., Матем. [Izv. Vyssh. Uchebn. Zaved., Mat.] (1976) No. 11 (174) 48-55 (Mathnet URL: http://mi.mathnet.ru/eng/ivm8577). English translation: E.G. Ne˘ıfel’d: Affine connections on the normalized manifold of planes in a projective space. Sov. Math. (Iz. VUZ) 20(1978) No. 11, 42–48.

16. Э.Г. Нейфельд [E.G. Ne˘ıfel’d]: О внутренних геометриях нуль-плоскостей максимальной размерности комплексных многообразий второго порядка [O vnutrennikh geometriyakh null’-ploskoste˘ı maksimal’no˘ı razmernosti komplexnykh mnogoobrazij vtorogo porядka]. Тр. Геом. Семин. [Tr. Geom. Semin.], Казанский университет [Kazanskii universitet] (Выпуск [Vypusk]) 14(1982)50-55 (Mathnet URL: http://mi.mathnet.ru/kutgs178). [in Russian: Intrinsic geometries of manifolds of zero-planes of maximal dimension of second-order polarities]

17. А.П. Норден [A.P. Norden]: О комплексном представлении тензоров пространства Лоренца [O kompleksnom predstavlenii tenzorov prostranstva Lorentsa]. Изв. Высш. Учебн. Завед., Матем. [Izv. Vyssh. Uchebn. Zaved., Mat.] (1959) No. 1 (8), 156-164 (Mathnet URL: http://mi.mathnet.ru/eng/ivm2415). [in Russian: On a complex representation of the tensors of Lorentz space]

18. А.П. Норден [A.P. Norden]: Обобщение основной теоремы теории нормализации. [Obobshchenie osnovno˘ı teoremy normalizatsii]. Изв. Высш. Учебн. Завед., Матем. [Izv. Vyssh. Uchebn. Zaved., Mat.] (1966) No. 2 (51), 78-82 (Mathnet URL: http://mi.mathnet.ru/eng/ivm2690). [in Russian: A generalization of the fundamental theorem of the theory of normalization]

19. А.П. Норден [A.P. Norden]: О структуре связности на многообразии прямых неевклидового пространства. [O strukturse svyaznosti na mnogoobrazii pryamykh neevklibidovogo prostranstva]. Изв. Высш. Учебн. Завед., Матем. [Izv. Vyssh. Uchebn. Zaved., Mat.] (1972) No. 12 (127), 84-94 (Mathnet URL: http://mi.mathnet.ru/eng/ivm4158). [in Russian: The structure of the connection on a manifold of lines in a non-Euclidean space]
[20] A.P. Norden [A.P. Norden]: Affine connection on the surfaces of a projective space.

[21] A.P. Norden [A.P. Norden]: Normalization theory and vector bundles.

[22] A.P. Norden [A.P. Norden]: Affinely Connected Spaces.

[23] R. Penrose, W. Rindler: Spinors and Space-Time. Vol. 1: Two-Spinor Calculus and Relativistic Fields. Vol. 2: Spinor and Twistor Methods in Space-Time Geometry. Cambridge Monogr. Math. Phys. Cambridge University Press, Cambridge, Vol. 1: 1984, Vol. 2: 1986. Russian translation: Р. Пенроуз [R. Penrouz], В. Риндлер [V. Rindler]: Спиноры и пространство-время [Spinory i prostranstvo-vremya]. Мир [Mir], Москва [Moskva], т. 1 [Tom 1]: 1987, т. 2 [Tom 2]: 1988.

[24] R. Penrose: The twistor programme. Rep. Math. Phys. 12(1977)65-76 (DOI: 10.1016/0034-4877(77)90047-7).

[25] R. Penrose: Structure of space-time. In: C.M. DeWitt, J.A. Wheeler (Eds.): Battelles Rencontres. 1967 Lectures in Mathematics and Physics. W.A. Benjamin Inc., New York, 1968, Chap. VII, pp. 121-235. Russian translation: Р. Пенроуз [R. Penrouz]: Структура пространства-времени [Struktura prostranstva-vremen]. Мир [Mir], Москва [Moskva], 1972 (EqWorld URL: http://eqworld.ipmnet.ru/ru/library/books/Penrouz1972ru.djvu).

[26] A.Z. Petrov [A.Z. Petrov]: The classification of spaces defined by gravitational fields. The book is dedicated to the memory of Aleksey Zinovievich Petrov. Наукова Думка [Naukova Dumka], Киев [Kiev], 1972, pp. 203-215.

[27] A.Z. Petrov [A.Z. Petrov]: Klassifikatsiya prostorov, opredelyaemykh polya tyagoteniya. Уч. Зап. Казан. Гос. Унiv. [Uch. Zap. Kazan. Gos. Univ.] 114(1954) No. 8, 55-69 (Mathnet URL: http://mi.mathnet.ru/uzku344). English translation: A.Z. Petrov: The classification of spaces defined by gravitational fields. Gen. Rel. Grav. 22(2000)1665-1685 (DOI: 10.1023/A:1001910908054).

[28] A.Z. Petrov [A.Z. Petrov]: Prostranstva Eynshteina [Prostranstva Einshteyna]. Физматгиз [Fizmatgiz], Москва [Moskva], 1961 (EqWorld URL: http://eqworld.ipmnet.ru/ru/library/books/Petrov1961ru.djvu). English translation: A.Z. Petrov: Einstein Spaces. Pergamon Press, Oxford, 1969.

[29] C. Chevalley: Theory of Lie Groups. I. Princeton Math. Ser., Vol. 8. Princeton University Press, Princeton, 1946. C. Chevalley: Théorie des groupes de Lie. Tome II: Groupes algébriques. Actual. Sci. Ind., Vol. 1152. Hermann, Paris, 1951. [in French: Theory of Lie Groups. Volume II: Algebraic Groups] C. Chevalley: Théorie des groupes de Lie. Tome III: Théorèmes généraux sur les algèbres de Lie. Actual. Sci. Ind., Vol. 1226. Hermann, Paris, 1955. [in French: Theory of Lie Groups. Russian edition: К. Шевалле [K. Shevalle]: Теория групп Ли [Teoriya grupp Li]. ИЛ [IL], Москва [Moskva], Т. 1 [Tom 1]: 1948 (EqWorld URL: http://eqworld.ipmnet.ru/ru/library/books/Shevalle_t1_1948ru.djvu).
[30] М.М. Постников. [M.M. Postnikov] Группы и алгебры Ли [Gruppy i algebry Li]. Наука [Nauka], Москва [Moskva], 1986. English translation: M. Postnikov: Lie Groups and Lie Algebras. Lectures in Geometry, Semester 5. Mir, Moscow, 1986; URSS Publishing, Moscow, 1994. The main ideas of the hypercomplex number construction on the base of the Bott periodicity are given in the lectures 13-16.

[31] Б.А. Розенфельд [B.A. Rozenfel'd]: Невыклицы геометрии [Neevklidovy geometrii]. ГИТТО [GITTO], Москва [Moskva], 1955. [in Russian: Non-Euclidean Geometries]. The Cartan triality principle is given on the page 534.

[32] Б.А. Розенфельд [B.A. Rozenfel'd]: Многомерные пространства [Mnogomerntsye prostranstva]. Наука [Nauka], Москва [Moskva], 1966. [in Russian: Multidimensional Spaces]. The m-pair definition is given on the page 384. For this thesis, m=0.

[33] Хуа Ло-ген [Khua Lo-g` en], Б.А. Розенфельд [B.A. Rozenfel'd]: Геометрия прямоугольных матриц и ее применение к вещественной проективной и неевклидовой геометрии. [Geometriya pryamougol’nykh matrits i ee primenenie k veschestvennoj proektivnoj i neevklidovoj geometrii]. Изв. Высш. Учебн. Завед., Матем. [Izv. Vyssh. Uchebn. Zaved., Matem.] (1957) No. 1, 233-247 (Mathnet URL: http://mi.mathnet.ru/ivm3038). English translation: Hua Loo-geng (Hua Loo-keng), B.A. Rozenfel’d: The geometry of rectangular matrices and its application to real-projective and non-euclidean geometry. Chin. Math. 8(1966)726-737.

[34] Д.М.Синцов [D.M. Sintsov]: Теория коннексов в пространстве в связи с теорией дифференциальных уравнений в частных производных первого порядка. [Teoriya konneksov v prostranstve v svyazi s teoriей differentsial’nnych uravnenii v chastnykh proizvodnykh pervogo porjadka]. Сн., Казань [Kazan’], 1894. [in Russian: Theory of connexes in space in relation to the theory of first order partial differential equations]

[35] Д.К. Фаддеев [D.K. Faddeev]: Лекции по алгебре [Lektsii po algebre]. Наука [Nauka], Москва [Moskva], 1984. [in Russian: Lectures on Algebra]

[36] F. Hirzebruch: Neue topologische Methoden in der algebraischen Geometrie. Ergeb. Math. Grenzgeb. (2), Vol. 9. Springer-Verlag, Berlin, 1. ed.: 1956, 2. ext. ed.: 1962. English translation of the 2. ext. ed.: Topological Methods in Algebraic Geometry. Grundlehren Math. Wiss., Vol. 131. Springer-Verlag, Berlin, 1966. Russian translation: Ф. Хирцебрух [F. Khirtsebrukh]: Топологические методы в алгебраической геометрии [Topologicheskie metody v algebraicheskoj geometrii]. Мир [Mir], Москва [Moskva], 1973. Russian translation by Б.Б. Венков [B.B. Venkov].

[37] W.V.D. Hodge, D. Pedoe: Methods of Algebraic Geometry, Vol. 2. Cambridge University Press, Cambridge, 1952. Russian edition: В.Д. Ходж [V. D. Khodzh], Д. Пидо [D. Pido]: Методы алгебраической геометрии [Metody algebraicheskoj geometrii]. Т. 2 [Tom 2]. ИЛ [IL], Москва [Moskva], 1954. Russian translation by А.И. Узков [A.I. Uzkov].

[38] J. Stachel (Ed.): The Collected Papers of Albert Einstein. Volume 2: The Swiss Years: Writings, 1900-1909. Princeton University Press, Princeton, 1987. Russian equivalent: А. Эйнштейн [A. `E˘ınshte˘ın]: Сборник научных трудов [Sbornik nauchnykh trudov]. Т.1 [Tom 1]. Наука [Nauka], Москва [Moskva], 1966 (EqWorld URL: http://eqworld.ipmnet.ru/library/books/Einstein_t1_1965ru.djvu).

[39] J.F. Adams: Spin(8), triality, F_4 and all that. In: S.W. Hawking, M. Roček (Eds.): Superspace and Supergravity. Cambridge University Press, Cambridge, 1981, pp. 435-445.

[40] R. Brauer H. Weyl: Spinors in n dimensions. Am. J. Math. 57(1935)425-449 (stable JSTOR URL: http://www.jstor.org/stable/2371218).

[41] C. Chevalley: The Algebraic Theory of Spinors. Columbia University Press, New York, 1954.
[42] F.W. Warner: Foundation of Differentiable Manifolds and Lie Groups. Grad. Texts Math., Vol. 94. Springer, New York, 1983.

[43] L.P. Hughston: Applications of SO(8) spinors. In: W. Rindler, A. Trautman (Eds.): Gravitation and Geometry, a Volume in Honour of Ivor Robinson. Monogr. Textbook Phys. Sci., Vol. 4. Bibliopolis, Naples, 1987, pp. 253-287.

[44] C.R. LeBrun: Ambi-twistors and Einstein’s equations. Class. Quantum Grav. 2(1985)555-563 (DOI: 10.1088/0264-9381/2/4/020).

[45] R. Penrose: Twistor algebra. J. Math. Phys. 8(1967)345-366 (DOI: 10.1063/1.1705200).

[46] R. Penrose: Twistor theory: its aims and achievements. In: C.J. Isham, R. Penrose, D.W. Sciama (Eds.): Quantum Gravity: An Oxford Symposium held at the Rutherford Laboratory, Chilton, February 15-16, 1974. Clarendon Press, Oxford, 1975, pp. 268-407.

[47] R. Penrose: On the origins of twistor theory. In: W. Rindler, A. Trautman (Eds.): Gravitation and Geometry, a Volume in Honour of Ivor Robinson. Monogr. Textbook Phys. Sci., Vol. 4. Bibliopolis, Naples, 1987, pp. 341-361.

[48] R. Penrose: Relativistic symmetry groups. In: A.O. Barut (Ed.): Group Theory in Non-Linear Problems: Lectures presented at the NATO Advanced Study Institute on Mathematical Physics, held in Istanbul, Turkey, August 7-18, 1972. NATO Adv. Study Inst. Ser., Ser. C, Math. Phys. Sci., Vol. 7. Reidel, Dordrecht, 1974, pp. 1-58.

[49] G. Hochschild: The Structure of Lie Groups. Holden-Day Ser. Math., Holden-Day, San Francisco, 1965.

[50] P.A. Dirac: Wave equations in conformal space. Ann. of Math. (2) 37(1936)429-442 (stable JSTOR URL: http://www.jstor.org/stable/1968455).

[51] P.A. Dirac: Relativistic wave equations. Proc. Roy. Soc. London A 155(1936)447-459 (DOI: 10.1098/rspa.1936.0111, stable JSTOR URL: http://www.jstor.org/stable/96758).

[52] F. Klein: Zur Theorie der Liniencomplexe des ersten und zweiten Grades. Math. Ann. 2(1870)198-226 (DOI: 10.1007/BF01444020, Digitzeitschriften URL: http://resolver.sub.uni-goettingen.de/purl?GDZPPN002240505) [in German: On the theory of first and second degree line complexes]

[53] F. Klein: Vorlesungen über höhere Geometrie. Grundlehren Math. Wiss., Vol. 22. Springer-Verlag, Berlin, 1926, pp. 80, 262. Reprinted: Chelsea, New York, 1949, 1957. [in German: Lectures on Higher Geometry]
АНДРЕЕВ Константин Васильевич

СПИНОРНЫЙ ФОРМАЛИЗМ И ГЕОМЕТРИЯ
ШЕСТИМЕРНЫХ РИМАНОВЫХ ПРОСТРАНСТВ

01.01.04 - дифференциальная геометрия и топология

Диссертация на соискание ученой степени
кандидата физико-математических наук

Научный руководитель:
kандидат физико - математических наук,
доцент Э.Г.Нейфельд.

УФА - 1997 г.
Русская редакция

Содержание

1 Введение
 1.1 Основные определения .. 94(5)
 1.2 Вторая глава ... 98(9)
 1.3 Третья глава ... 99(10)
 1.4 Четвертая глава .. 101(12)
 1.5 Пятая глава ... 102(13)
 1.6 Заключение ... 104(15)

2 Основные тождества и формулы 105(16)
 2.1 Бивектора пространства $\Lambda^2 \mathbb{C}^4 (\Lambda^2 \mathbb{R}^4)$. . 106(16)
 2.1.1 Операторы Нордена ... 106(16)
 2.1.2 Сопряжение в расслоении \mathbb{A} 109(20)
 2.2 Спинорное представление тензоров специального вида. Накрытия, соответствующие этому разложению 110(21)
 2.2.1 Теорема о двулистности накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$... 110(21)
 2.2.2 Вещественная реализация двулистного накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$ в присутствии инволюции $S_{\alpha\beta}$.. 121(32)
 2.2.3 Вложение $\mathbb{R}^6_{(2,4)} \subset \mathbb{C} \mathbb{R}^6$ в специальном базисе 124(34)
 2.2.4 Инфинитезимальные преобразования 129(40)
 2.3 Обобщенные операторы Нордена 131(42)

3 Связности в расслоении A^C и базой CV^6 133(44)
 3.1 Связность в расслоении ... 134(45)
 3.1.1 Нормализация (спинорная) квадрики CQ_6 в $\mathbb{C}P_7$. 136(46)
 3.1.2 Операторы Нейфельда .. 137(48)
 3.1.3 Вещественная и комплексная реализации связности 139(50)
 3.1.4 Иниволюция в $\mathbb{C}P_7$ 144(55)
 3.1.5 Риманова связность, согласованная с инволюцией 145(56)
 3.1.6 Битвисторное уравнение 147(58)

4 Теоремы о тензоре кривизны. Каноническая форма бивекторов 6-мерных (псевдо-) евклидовых пространств $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q 149(60)
4.1 Теорема о битензорах 6-мерных пространств 150(61)

4.1.1 Следствия теоремы ... 153(64)

4.2 Основные свойства и тождества тензора кривизны 156(67)

4.3 Каноническая форма бивекторов 6-мерных (псевдо-) евклидовых пространств $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q 157(68)

4.4 Геометрическое представление твистора в $\mathbb{R}^6_{(2,4)}$ 159(70)

4.4.1 Стереографическая проекция .. 159(70)

4.4.2 Геометрическое изображение твистора в 6-мерном пространстве 164(75)

5 Теорема о двух квадриках .. 167(78)

5.1 Решения битвисторного уравнения ... 167(78)

5.2 Нули-пары Розенфельда ... 169(79)

5.3 Построение квадрик CQ_6 и $\tilde{C}Q_6$... 170(81)

5.4 Соответствие $CQ_6 \rightarrow \tilde{C}Q_6$.. 172(82)

5.5 Связующие операторы η^{KL} .. 174(84)

5.6 Соответствие $\tilde{C}Q_6 \rightarrow CQ_6$... 181(92)

5.7 Теорема о двух квадриках .. 183(94)

5.8 Заключение ... 185(96)

6 ПРИЛОЖЕНИЕ .. 186(97)

6.1 Доказательство формул второй главы ... 186(97)

6.1.1 Доказательство формул, содержащих оператор $A_{\alpha\beta}^{ab}$ 186(97)

6.1.2 Доказательство формула о 4-векторе $e_{\alpha\beta\gamma\delta}$ 187(98)

6.1.3 Доказательство формула о 6-векторе $e_{\alpha\beta\gamma\delta\rho\sigma}$ 189(100)

6.1.4 Доказательство формула, содержащих оператор N_{a}^{f} 191(102)

6.2 Доказательство формул четвертой главы .. 192(103)

6.2.1 Доказательство тождества Бианки ... 192(103)

6.2.2 Доказательство тождеств, касающихся тензора Вейля 193(104)

6.2.3 Доказательство тождеств Риччи ... 195(106)

6.2.4 Доказательство дифференциальных тождеств Бианки 197(108)

6.3 Доказательство формул, связанных с метрикой, индуцированной в сечении конуса K_6 .. 199(110)

6.3.1 Доказательство формула о первом инварианте 201(112)

6.3.2 Доказательство формула о втором инварианте 204(115)

6.4 Доказательство формул пятой главы .. 207(118)

6.4.1 Доказательство условий интегрируемости битвисторного уравнения 207(118)
Список таблиц

1 Вид матрицы тензора s для действительных вложений.................. 129(40)
1 Введение

Предлагаемая диссертационная работа является теоретическим исследованием по геометрии 6-мерных римановых пространств и посвящена вопросам, связанным с этой геометрией.

Изучение 6-мерных римановых пространств производится с помощью соответствующего 6-мерного спинорного формализма [3], [40], [23] и теории нормализации Нордена-Нейфельда [10]-[16], [17]-[22], что позволяет упростить важные соотношения, записанные в тензорном виде, и приводит к оригинальным результатам.

Выбор темы обусловлен возросшим в последнее время интересом к таким пространствам. Они естественным образом появляются, например, в спинорно-твисторном формализме Пенроуза [23]-[26], [45]-[48]. Здесь важную роль играет псевдоевклидово пространство $\mathbb{R}^6_{(2,4)}$, изотропный конус которого позволяет определить конформно-псевдоевклидово пространство Минковского. Более того, твисторы в теории Пенроуза будут представлять спиноры, согласованные с пространством $\mathbb{R}^6_{(2,4)}$. Однако, если в монографии [23] твисторы образуют 4-мерное комплексное векторное расслоение с базой - 4-мерным действительным многообразием, то в данной работе базой служит 6-мерное аналитическое комплексное риманово пространство $\mathbb{C}V^6$. Это приводит к новым результатам в твисторной теории. Конформно-(псевдо-)евклидово (псевдо-)риманово пространство в этом случае связывается с комплексной аналитической квадрикой $\mathbb{C}Q_6$ [36], [37], что приводит к изучению свойств группы $SO(8, \mathbb{C})$ [39], [43], а следовательно и к принципу тройственности Э. Картана [3]. Указанные комплексно-евклидовы геометрии в данном случае появляются как внутренние геометрии этой нормализованной квадрики. Выписывая деривационные уравнения для такой квадрики [13], можно определить инвариантное при конформных преобразованиях, а следовательно и при замене нормализации, уравнение, которое по аналогии с твисторным уравнением Пенроуза назовем битвисторным уравнением. Решения этого уравнения образуют пары, которые можно интерпретировать как нуль-пары Розенфельда [32], что приводит к 6-мерной квадрике и принципу тройственности Э. Картана. Целесообразно рассматривать следующие три диффеоморфных между собой многообразия:

1. многообразие точек квадрики $\mathbb{C}Q_6$;
2. многообразие плоских образующих \(\mathbb{CP}_3\) квадрики \(CQ_6\) максимальной размерности I семейства;

3. многообразие плоских образующих \(\mathbb{CP}_3\) квадрики \(CQ_6\) максимальной размерности II семейства.

Нормализация этих многообразий позволяет рассматривать конформно-(псевдо-)евклидовы связности на этих многообразиях, которые будут вейлевыми. Это приводит к обобщению принципа тройственности на B-пространства в терминологии Нордена.

Итак, 6-мерный спинорный формализм основан на работах Э. Картана [3] и Брауера [40]. 4-мерный спинорный формализм и твисторная алгебра описаны в работах Пенроуза [23]-[26], [45]-[48]. Связанные с этими формализмами изоморфизмы групп и алгебр Ли рассмотрены в работах [1], [29], [30], [49]. Кроме того, сведения по киффардовым алгебрам и октавам взяты из [30] и [23]. Сведения о квадриках и их плоских образующих приведены в работах [36] и [37]. Нормализация многообразия плоских образующих происходит также, как описано в работах [13]-[15], [18], [20], [22]. Связности в расслоениях вводятся согласно [15], [19], [21], [22]. Вложения действительных пространств в комплексное рассмотрены в работе [10]. Действительное и комплексное представления римановых пространств проводится согласно [4], [5] и [7]. Нуль-пары Розенфельда взяты из работы [32]. Соответствие Кляйна приведено в [52] и [53]. О физических приложениях твисторов можно посмотреть в работах [23], [50] и [51].

Рассмотрим основное содержание по главам. Для этого необходимо предварительно сделать некоторые определения.

1.1 Основные определения

Эти определения введены согласно работам [10]-[16]. Отметим, что все функции, участвующие в построениях предполагаются достаточно гладкими. Все определения, утверждения и построения носят локальный характер. Под комплексным аналитическим римановым пространством \(CV^n\) в дальнейшем будем понимать аналитическое комплексное многообразие, снабженное аналитической квадратичной метрикой, т.е. метрикой, определенной с помощью симметрического невырожденного тензора \(g_{\alpha\beta}\), координаты которого - ана-
литические функции координат точки. Этому тензору соответствует комплексная риманова связность без кручения, коэффициенты которой определяются символами Кристофеля и поэтому являются аналитическими функциями.

Касательное расслоение этого многообразия $\tau^x_C(CV^n)$ имеет слои $\tau^x_C \cong CR^n$, то есть слои, изоморфные n-мерному комплексному евклидовому пространству, метрика которого определяется значением евклидового метрического тензора в данной точке x. Пусть n=6. Обозначим через Λ^2C^4 пространство бивекторов пространства C^4, а через $\Lambda -$ соответствующее расслоение с базой CV^6 и слоями, которые изоморфны CR^6 ($CR^6 \cong \Lambda^2C^4$). Отсюда следует, что в 6-мерном случае комплексное риманово пространство CV^6 будет базой расслоения $A^C = C^4(CV^6)$. При этом каноническая проекция $p : C^4_x \mapsto \tau^x_C \in CV^6$ отображает слой C^4_x в точку x базы.

Вещественное (псевдо-)риманово пространство $V^n_{(p,q)}$ будем рассматривать как поверхность вещественной размерности n в пространстве CV^n, т.е. локально определять с помощью параметрического уравнения

$$z^\alpha = z^\alpha(u^i(t)) \quad (\alpha, \beta, ..., i, j, g, h = 1, n), \quad (1)$$

где z^α - комплексные координаты точки x базы, а u^i - параметры: локальные координаты точки пространства $V^n_{(p,q)}$. Частные производные ($\partial_i z^\alpha =: H^i_\alpha$) определяют вложение вещественного касательного пространства $\tau^x_R(V^n_{(p,q)}) \cong \mathbb{R}^n_{(p,q)}$ поверхности (1) в комплексное касательное пространство τ^x_C следующим образом

$$H : \tau^x_R \mapsto \tau^x_C, \quad (2)$$

$$H^i_\alpha = H^i_\alpha(\bar{u}^i(t)), \quad V^\alpha := \frac{dz^\alpha}{dt} = H^i_\alpha \frac{du^i}{dt} =: H^i_\alpha \bar{u}^i, \quad (3)$$

где дифференцирование ведется вдоль вещественной кривой $\gamma(t)$ поверхности [1]. Так как матрица $\| H^i_\alpha \|$ есть невырожденная якобиева матрица, то существует оператор H^i_α такой, что

$$\begin{cases}
 H^i_\alpha H^j_\beta = \delta^i_\beta, \\
 H^i_\alpha H^j_\alpha = \delta^i_j.
\end{cases} \quad (4)$$

Отсюда следует, что оператор H^i_α определяет в комплексном пространстве инволюцию

$$S^\alpha_{\beta'} = H^i_\alpha \bar{H}^i_{\beta'} , \quad (5)$$
где координаты $\tilde{H}_{i\beta'}$ комплексно сопряжены координатам $H_{i\beta}$ [10]. Поэтому

$$v^i = H^i_\alpha V^\alpha = \overline{H^i_\alpha V^\alpha} \Rightarrow S^\beta_\alpha' V^\alpha = V^\beta'. \quad (6)$$

Это есть необходимое и достаточное условие того, что вектор $V^\alpha \in \tau^C_x$ будет вещественным. При этом

$$S^\beta_\alpha' \bar{S}^\gamma_\beta' = \delta^\gamma_\alpha. \quad (7)$$

Метрику в $\tau^R_x(V^n_{(p,q)})$ определим условием

$$g_{\alpha\beta} V^\alpha V^\beta = \overline{g_{\alpha\beta} V^\alpha \overline{V}^\beta}, \quad \forall \overline{V}^\beta' = S^\beta_\alpha' V^\alpha. \quad (8)$$

Это означает, что вещественный тензор пространства $\tau^R_x(V^n_{(p,q)})$ определяется как тензор, самосопряженный относительно указанной эрмитовой инволюции

$$g_{\alpha\beta} = S^\gamma_\alpha' S^\delta_\beta' \bar{g}^\gamma_\delta'. \quad (9)$$

Поэтому, тензор

$$g_{ij} := H^\alpha_i H^\beta_j g_{\alpha\beta} = \overline{H^\alpha_i H^\beta_j g_{\alpha\beta}} \quad (10)$$

будет метрическим тензором $\tau^R_x(V^n_{(p,q)}) \subset \tau^C_x(\mathbb{C}V^n)$. Вид метрики g_{ij} существенно зависит от структуры оператора H^α_i и следовательно от тензора инволюции S^β_α'. Комплексная риманова связность пространства $\mathbb{C}V^n$ будет индуцировать на вещественной поверхности связность вида

$$\nabla_i := H^\alpha_i \nabla_\alpha \quad (11)$$

такую, что

$$\nabla_i H^\alpha_j = i b^g_{ij} H^\alpha_g, \quad \nabla_i g_{jj} = 2ib_{(ij)}, \quad b^g_{ij} := b^h_{ij} g_{hg}. \quad (12)$$

Потребуем, чтобы индуцированная связность была римановой, тогда

$$b^g_{ijh} = b_{jih}, \quad b^g_{ijh} = -b^h_{ihj} \Rightarrow b^g_{ijh} = 0 \quad (13)$$

и следовательно

$$\nabla_i S^\beta_\alpha' = 0 \Rightarrow \nabla_\gamma S^\beta_\alpha' = 0. \quad (14)$$
При \(n=6 \) сужение базы \(\mathbb{C}V^6 \hookrightarrow V^6_{(p,q)} \) позволяет определить расслоение \(A^C(S) = \mathbb{C}^4(S)(V^6_{(p,q)}) \), слои которого должны быть снабжены некоторой дополнительной структурой \(s \). Ниже будет показано, что эта структура в случае метрики четного индекса (т.е. количество минусов четно) определяется эрмитово-симметричным тензором, а в случае метрики нечетного индекса структура будет определена эрмитовой инволюцией. Для псевдориманова пространства четного индекса 4 расслоение \(A^C(S) \) назовем твисторным, так как его слои будут изоморфны векторному пространству \(\mathbb{T} \) [23].

1.2 Вторая глава

Эта часть основана на работах [23]-[26], где развит 4-мерный спинорный формализм. В [17] введены связующие операторы \(\eta_{\alpha}^{ab} \). Даннные по группам Ли взяты из работ [1], [29], [30]. 6-мерный спинорный формализм, построенный в этой главе, основан на следующих 3 изоморфизмах:

1. изоморфизм пространств \(\mathbb{C}R^6 \cong \Lambda^2\mathbb{C}^4 \);
2. изоморфизм групп \(SO(6,\mathbb{C}) \cong SL(4,\mathbb{C})/\{\pm 1\} \);
3. изоморфизм алгебр Ли \(so(6,\mathbb{C}) \cong sl(4,\mathbb{C}) \).

В явном виде эти изоморфизмы описываются так:

1. \(r^\alpha = \frac{1}{2} \eta_{\alpha}^{ab} R^{ab} \), где \(r^\alpha \) - координаты вектора в \(\mathbb{C}R^6 \), \(R^{ab} \) - координаты бивектора в \(\Lambda^2\mathbb{C}^4 \), а \(\eta_{\alpha}^{ab} \) - координаты связующих операторов Нордена;
2. \(K_{\alpha}^{\beta} = \frac{1}{4} \eta_{\alpha}^{ab} \eta_{\beta}^{cd} \cdot 2S_{ab}^c S_{ab}^d \), где \(K_{\alpha}^{\beta} \) - координаты преобразования из группы \(SO(6,\mathbb{C}) \), а \(S_{ab}^c \) - координаты преобразования из группы \(SL(4,\mathbb{C}) \);
3. \(T^{\alpha\beta} = A_{a}^{\alpha\beta} b T_{a}^{\alpha} \), где \(T^{\alpha\beta} \) - координаты бивектора пространства \(\Lambda^2\mathbb{C}R^6 \), а \(T_{a}^{\alpha} \) - координаты бесследного оператора пространства \(\mathbb{C}^4 \).

При этом связующие операторы удовлетворяют соотношениям

\[
g^{\alpha\beta} = 1/4 \cdot \eta_{\alpha a_1}^{\alpha a_1} \eta_{bb_1}^{\beta b_1} \varepsilon^{aa_1 bb_1}, \quad \varepsilon^{aa_1 bb_1} = \eta_{\alpha a_1}^{\alpha a_1} \eta_{bb_1}^{\beta b_1} g^{\alpha\beta}, \quad (15)
\]
где \((\alpha, \beta, ..., = 1, 2, 3, 4, 5, 6; a_1, b_1, a, b, e, f, k, l, m, n, ..., = 1, 2, 3, 4; i, j, g, h = 1, 2, 3, 4, 5, 6)\). Из этого следует, что операторы Нордена удовлетворяют уравнению Клиффорда и определяют некоторую полную клиффордову алгебру, которая реализуется с помощью алгебры матриц размерности \(8 \times 8\).

Рассматривая далее вложение \(\mathbb{R}^6_{(p,q)} \subset \mathbb{C}\mathbb{R}^6\), можно получить разложения и для тензора эрмитовой инволюции \(S_\alpha^\beta = \frac{1}{4} \eta_\alpha^{aa_1} \eta^\beta_{bb_1} s_{aa_1}^{bb_1}\)

\[
s_{aa_1}^{bb_1} = s^{bb} c^{1}_{bb} \varepsilon_{cc_1aa_1}, \quad \bar{s}_{a'b} = \pm s_{ba'}
\]
(16)

в случае метрики четного индекса инерции q и

\[
s_{aa_1}^{bb_1} = 2s_{[a}^{b'} s_{a_1]^{b'}} \varepsilon_{cc_1aa_1}, \quad s_{ab'} \bar{s}_{b'}^c = \pm \delta_a^c
\]
(17)

в случае метрики нечетного индекса. В качестве показательного примера в специальном базисе рассматривается вложение \(\mathbb{R}^6_{(2,4)} \subset \mathbb{C}\mathbb{R}^6\). В последнем параграфе данной главы вводятся обобщенные операторы Нордена, как аналитические функции координат точки \(z^\gamma\) так, что выполнено

\[
g^{\alpha\beta}(z^\gamma) = 1/4 \cdot \eta_\alpha^{aa_1}(z^\gamma) \eta^\beta_{bb_1}(z^\gamma) \varepsilon_{aa_1bb_1}(z^\gamma).
\]
(18)

На этом заканчивается построение необходимого спинорного формализма для пространства \(\mathbb{C}V^6\).

Следует отметить, что указанный спинорный формализм во многом сходен с 4-мерным спинорным формализмом Пенроуза, при котором риманово пространство \(V^4\) есть база расслоений \(\mathbb{C}^2(V^4_{(1,3)})\) и \(\mathbb{C}^4(V^4_{(1,3)})\). Векторы пространства \(\mathbb{C}^2(V^4_{(1,3)})\) называются у Пенроуза спинорами, а векторы \(\mathbb{C}^4(V^4_{(1,3)})\) - твисторами. Основной отличительной чертой твисторов данной диссертации и является то, что твистором называется вектор расслоения \(\mathbb{C}^4(V^6_{(2,4)})\), и такое истолкование помогает получить новые результаты. Это может привести к новой трактовке физической интерпретации твисторов, изложенной в монографии [23].

1.3 Третья глава

Третья глава посвящена введению связности в расслоениях с комплексной базой \(\mathbb{C}V^6\). Введение связности осуществляется согласно [15], [19], [23]. Комплексное и действительное представления взяты из [4], [7]. В качестве базы задается комплексно-аналитическое
риманово пространство \(\mathbb{C}V^6 \). Для этого рассматривается комплексная аналитическая квадрика \(\mathbb{C}Q_6 \), вложенная в проективное пространство \(\mathbb{C}P_7 \)

\[
G_{AB}X^A X^B = 0, \quad (19)
\]

gде \((A, B, ... = 1,8)\). Многообразие плоских образующих максимального ранга \(\mathbb{C}P_3 \) какого-нибудь семейства (их как известно два) - комплексно шестимерно. Далее рассматривается гармоническая нормализация такого семейства, которая в локальных координатах имеет вид

\[
X^a = X^a(u^A), \quad Y_b = Y_b(u^A), \quad (20)
\]

gде \(u^A \) - двенадцать вещественных параметров \((\Lambda, \Psi, ... = 1,12)\). Первые деривационные уравнения этого нормализованного семейства имеют вид

\[
\nabla_{\Lambda} X_a = Y^b M_{\Lambda ab}, \quad M_{\Lambda ab} = -M_{\Lambda ba}. \quad (21)
\]

Для переброски парных индексов используется квадривектор \(\varepsilon_{abcd} \), кососимметричный по всем своим индексам

\[
M^a_{\Lambda} = \frac{1}{2} M_{abcd} \varepsilon^{abcd}. \quad (22)
\]

Кроме того, операторы \(M^{ab}_{\Lambda} \) каждому вектору базы ставит в соответствие бивектор из \(\Lambda^2 \mathbb{C}^4 \)

\[
V^{ab} = M^{ab}_{\Lambda} V^{\Lambda}. \quad (23)
\]

Это определит метрический тензор в касательном расслоении

\[
G_{\Lambda \Psi} = \frac{1}{4}(M^{ab}_{\Lambda} M^{cd}_{\Psi} \varepsilon_{abcd} + \bar{M}^{ab\Psi}_{\Psi} \bar{M}^{cd\Psi}_{\Psi} \varepsilon_{a'b'c'd'}). \quad (24)
\]

Таким образом, база - многообразие плоских образующих - превращается в 12-мерное риманово пространство \(V^{12}_{(6,6)} \) с метрическим тензором \(G_{\Lambda \Psi} \) c заданной на нем комплексной структурой \(f_{\Lambda \Psi} \), удовлетворяющей следующему соотношению

\[
\triangle_{\Lambda}^{\Psi} = \frac{1}{2}(\delta^{\Psi} + i f_{\Lambda}^{\Psi}) = \frac{1}{2} M_{\Lambda ab} M^{\Psi ab}. \quad (25)
\]

В качестве слоев расслоения \(A^C \) рассматривается пространство \(\mathbb{C}^4 \), определенное 4 базисными точками \(X^a \) плоской образующей. Комплексной реализацией пространства \(V^{12}_{(6,6)} \) является пространство \(\mathbb{C}V^6 \)
так, что отображение касательных пространств происходит с помо-
щью операторов Нейфельда \(m_\alpha^\Lambda \). Коэффициенты связности опре-
деляются в этом случае через уравнения

\[
\nabla_\alpha m_\alpha^\Lambda = 0, \quad \bar{\nabla}_\alpha \bar{m}_\alpha^\Lambda = 0.
\]

При этом за комплексную ковариантную производную можно принять производную такого вида

\[
\nabla_\alpha = m_\alpha^\Lambda \nabla_\Lambda, \quad \bar{\nabla}_\alpha' = \bar{m}_\alpha'^\Lambda \nabla_\Lambda.
\]

Затем в этой главе устанавливаются свойства римановой связности без кручения, продолженной на слои расслоения \(A^C \). Оказывается, это продолжение единственно и задается требованием ковариантно-
го постоянства квадrivектора \(\varepsilon_{abcd} \). После этого с помощью опера-
торов вложения удаётся перейти к вещественной связности, но при этом необходимо потребовать ковариантное постоянство эрмитовой инволюции.

Все это позволяет рассмотреть конформно-инвариантное битви-
сторное уравнение

\[
\nabla^{(d} X^{a)} = 0.
\]

Его решения связываются с нуль парами Розенфельда, которые иг-
рают важную роль в дальнейших исследованиях.

1.4 Четвертая глава

Четвертая глава посвящена проблеме классификации тензора кривизны 6-мерных (псевдо-)римановых пространств и свойствам его бивекторов.

Показывается, как, пользуясь определенным в первой главе спи-
норным формализмом, упростить тензорную запись основных тождес-
тв для тензора кривизны. Утверждается, что классификацию тако-
го тензора можно свести к классификации тензора пространства \(\mathbb{C}^4 \) таким, что

\[
R_{\alpha\beta\gamma\delta} = A_{\alpha\beta a}^b A_{\gamma\delta c}^d R_{\delta a}^{b c} \cdot
\]

При этом тождество Бианки, которым удовлетворяет тензор кри-
визны

\[
R_{\alpha\beta\gamma\delta} + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0,
\]

(29)
будет иметь вид
\[R^d_{\ell s} = -\frac{1}{8} R\delta^d_s. \] (31)

Как видно, вместо 105 уравнений из \((30)\) можно рассматривать всего 16 уравнений из \((31)\), из которых 15 будут существенными. Можно построить таким же образом спинорный аналог тензора Вейля
\[C_{\alpha\beta\gamma\delta} = A_{\alpha\beta a} A_{\gamma\delta c} C_{b a d c}. \] (32)

Интересен, в качестве следствия из данной теоремы, следующий факт. Произвольный простой изотропный бивектор пространства \(\Lambda^2\mathbb{C}^6\) определит с точностью до множителя вектор пространства \(\mathbb{C}^4\). Это даёт возможность в пространстве \(\mathbb{R}^6_{(2,4)}\) построить геометрическую интерпретацию твистора, во многом схожую с интерпретацией спинора Пенроуза в пространстве \(\mathbb{R}^4_{(1,3)}\) - флаг, составленный из флагштока и полотнища флага.

И, наконец, утверждается, что в пространстве \(\mathbb{R}^6_{(p,q)}\) четного индекса \(q\) любой бивектор может быть приведен к каноническому виду в некотором базисе
\[\frac{1}{2} R_{\alpha\beta} X^\alpha Y^\beta = R_{16} X^{[1} Y^{6]} + R_{23} X^{[2} Y^{3]} + R_{45} X^{[4} Y^{5]}. \] (33)

1.5 Пятая глава

В последней главе, используя вектор \(X^a\) и ковектор \(Y_b\) из слоев расслоения \(A^C\) и ему дуального \(A^C^*\), строится 8-мерное комплексное пространство \(T^2\) как прямая сумма \(\mathbb{C}^4 \oplus \mathbb{C}^4\)
\[X^A := (X^a, Y_b), \] (34)
и \(X^A \in T^2\). При этом \(X^a\) и \(Y_b\) удовлетворяют следующей системе
\[\begin{cases} X^a = \dot{X}^a - i r^{ab} Y_b, \\ Y_b = \dot{Y}_b, \end{cases} \] (35)
где \(r^{ab}\) - координаты бивектора пространства \(\mathbb{C}^6\), а \(\dot{X}^a, \dot{Y}_b\) - значения \(X^a, Y_b\) в некоторой точке \(O\). На самом деле, систему \((35)\) можно рассматривать как решения битвисторного уравнения, а \(\dot{X}^a, \dot{Y}_b\) будут его частными решениями. Рассматривая г.м.т., для которых \(X^a = 0\), можно прийти к нуль-парам Розенфельда и сформулировать следующее утверждение.
Теорема 1. (Принцип тройственности для двух В- цилиндров). В проективном пространстве \mathbb{CP}_7 существуют две квадрики (два В- цилиндра), обладающие следующими общими свойствами:

1. Плоская образующая \mathbb{CP}_3 одной квадрики взаимооднозначно определяет точку R другой.

2. Плоская образующая \mathbb{CP}_2 одной квадрики однозначно определяет точку R другой. Но точке R можно сопоставить множество плоских образующих \mathbb{CP}_2, принадлежащих одной плоской образующей \mathbb{CP}_3 второй квадрики.

3. Прямолинейная образующая \mathbb{CP}_1 одной квадрики взаимооднозначно определяет прямолинейную образующую \mathbb{CP}_1 из другой. Причем все прямолинейные образующие, принадлежащие одной плоской образующей \mathbb{CP}_3 первой квадрики, определят пучок с центром в точке R, принадлежащий второй квадрике.

Это позволяет ввести операторы η^A_{KL} такие, что

$$r^A = \frac{1}{4} \eta^A_{KL} R^{KL}; \quad (36)$$

где r^A - координаты вектора пространства \mathbb{CR}^8, а R^{KL} - координаты некоторого тензора пространства \mathbb{CR}^8. При этом связующие операторы η^A_{KL} определяют некоторую полную алгебру Клиффорда, поскольку будут удовлетворять клиффордову уравнению

$$G_{AB} \delta^K_L = \eta^A_{KL} \eta^B_{LR} + \eta^B_{KL} \eta^A_{LR} + \eta^K_{BJ} \eta^R_{LA}.$$ \quad (37)

В этом случае у нас будет пара метрических тензоров

$$\varepsilon_{KLMN} = \eta^A_{KL} \eta^M_{AN}; \quad (38)$$

$$G_{AB} = \frac{1}{4} \eta^A_{KL} \eta^MN_{B \varepsilon_{KM}} \varepsilon_{LN}, \quad \varepsilon_{(KL)(MN)} = \frac{1}{2} \varepsilon_{KL} \varepsilon_{MN}.$$ С помощью первого тензора можно поднимать и опускать парные индексы, а с помощью второго проделывать указанную операцию с одиночными индексами. Это накладывает жесткие условия на связующие операторы, например

$$\eta^A_{(MN)} = \frac{1}{8} \eta^A_{KL} \varepsilon^{KL} \varepsilon_{MN}.$$ \quad (39)
Такие связующие операторы будут определять структурные константы алгебры октав и приведут к двулистному накрытию \(Spin(8, \mathbb{C})/\{\pm 1\} \cong SO(8, \mathbb{C}) \). Поэтому операторы \(\eta^{A}_{KL} \) во многом схожи с операторами Нордена \(\eta^{a}_{kl} \) по своим свойствам.

1.6 Заключение

Следует отметить, что в конце диссертации имеется Приложение, в котором приведены все необходимые алгебраические выкладки. Основные результаты диссертации опубликованы в открытой печати:

1. "О бивекторах 6-мерных римановых пространств". УТИС, Уфа, 1996, с. 59-61;
2. "О структуре тензора кривизны 6-мерных римановых пространств". Вестник БГУ, Уфа, N2(I), 1996, с. 44-47;
3. "О твисторных расслоениях с 6-мерной базой". МГС, Казань, 1997, с. 13;
4. "О геометрии битвисторов". РКСА, Уфа, 1997, с. 85-87.

и докладывались на конференциях:

1. "Ленинские горы - 95 г. Москва;
2. "Чебышевские чтения - 96 г. Москва;
3. "Лобачевские чтения - 97 г. Казань;
4. многочисленные конференции в г. Уфе и семинары, проходившие в г. Казани (кафедра геометрии КГУ).

Автор выражает благодарность за помощь в подготовке диссертации своему научному руководителю доц. Э.Г. Нейфельду и кафедре геометрии КГУ (зав.кафедрой проф. Б.Н. Шапуков).
2 Основные тождества и формулы

Эта глава посвящена изучению алгебраических свойств накрытия

\[SO(6, \mathbb{C}) \cong SL(4, \mathbb{C})/\{\pm 1\}. \]

На основе этого изоморфизма строится элементарная алгебраическая база, необходимая для дальнейших построений. Для этого рассматриваются различные векторные расслоения с базой \(CV^6(\mathbb{C}R^6) \). Касательное расслоение \(\tau^C(CV^6) \), содержащее слои, изоморфные \(\mathbb{C}R^6 \), будет изоморфно расслоению \(\Lambda \) со слоями, изоморфными \(\Lambda^2\mathbb{C}^4 \), что следует из существования связующих операторов Нордена

\[r^\alpha = \frac{1}{2} \eta^{\alpha a_1}_{a a_1} R^{a a_1}, \]

где \((\alpha, \beta, ... = 1, 2, 3, 4, 5, 6; a_1, b_1, a, b, ... = 1, 2, 3, 4) \). Кроме того, рассматривается расслоение \(A^C \) со слоями, изоморфными \(\mathbb{C}^4 \), и базой \(CV^6(\mathbb{C}R^6) \). Отсюда будет следовать существование таких операторов \(A_{\alpha \beta a}^b \), что

\[T_{\alpha \beta} = A_{\alpha \beta d}^c T_{c}^d, \quad T_{a}^a = 0, \quad T_{\alpha \beta} = -T_{\alpha \beta}. \]

Как следует из результатов предпоследнего пункта этой главы, рассматривающего инфинитизимальные преобразования, построенные операторы являются алгебраической реализацией изоморфизма алгебр Ли

\[so(6, \mathbb{C}) \cong sl(4, \mathbb{C}). \]

Затем исследуются вещественные вложения для указанных изоморфизмов с помощью оператора вложения \(H_t^\alpha \) и инволюции \(S_{\alpha}^{\beta} \). При этом операция сопряжения, индуктируемая в расслоении \(A^C \), разбивается на два класса. В первом случае (пространство \(V^6_{(p,q)}(\mathbb{R}^6_{(p,q)}) \) имеет метрику четного индекса q) сопряжение осуществляется с помощью тензора эрмитового поляритета \(s^{aa'} \)

\[\tilde{X}^{a'} := s^{aa'} X_a. \]

Во втором случае, когда q - нечетно, - с помощью тензора эрмитовой инволюции \(s_{a}^{a'} \)

\[\tilde{X}^{a'} := s_{a}^{a'} X^a. \]

Второй пункт как раз и посвящен выяснению этого факта, который доказывается с использованием теорем из монографии [23].
2.1 Бивектора пространства $\Lambda^2 \mathbb{C}^4$ ($\Lambda^2 \mathbb{R}^4$)

2.1.1 Операторы Нордена

Известно, что можно установить изоморфизм между комплексным евклидовым пространством $\mathbb{C} \mathbb{R}^6$ ($\mathbb{R}^{6,3}$) и пространством бивекторов $\Lambda^2 \mathbb{C}^4$ ($\Lambda^2 \mathbb{R}^4$). Этот изоморфизм определяется связующими операторами Нордена [17], удовлетворяющими следующим условиям

\[\frac{1}{2} \eta^\alpha_{aa_1} \eta^\beta_{bb_1} = \delta^\alpha_\beta, \quad \eta^\alpha_{aa_1} \eta^\beta_{bb_1} = \delta_{aa_1}^{bb_1} := 2 \delta_{[a}^b \delta_{a_1]}^b, \]

так, что выполняется

\[r^\alpha = 1/2 \cdot \eta^\alpha_{aa_1} R^{aa_1}, \quad R^{aa_1} = \eta^\alpha_{aa_1} r^\alpha, \]

где $(\alpha, \beta, ... = 1, 2, 3, 4, 5, 6; \ a_1, b_1, a, b, e, f, k, l, m, n, ... = 1, 2, 3, 4; \ i, j, g, h = 1, 2, 3, 4, 5, 6)$, причем

\[g^\alpha_\beta = 1/4 \cdot \eta^\alpha_{aa_1} \eta^\beta_{bb_1} \varepsilon^{aa_1 bb_1}, \quad \varepsilon^{aa_1 bb_1} = \eta^\alpha_{aa_1} \eta^\beta_{bb_1} g^\alpha_\beta, \]

\[g_{\alpha\beta} = 1/4 \cdot \eta^{aa_1} \eta^{bb_1} \varepsilon_{aa_1 bb_1} = \eta^{aa_1} \eta^{bb_1} g_{\alpha\beta}. \]

При этом R^{aa_1} - координаты бивектора из пространства $\Lambda^2 \mathbb{C}^4$, а r^α - координаты его образа в $\mathbb{C} \mathbb{R}^6$, g^α_β - метрический тензор пространства $\mathbb{C} \mathbb{R}^6$, а его образ - тензор $\varepsilon_{aa_1 bb_1}$, кососимметричный по всем индексам.

Замечание 1. Отметим, что с помощью метрического тензора $g_{\alpha\beta}$, заданного на пространстве $\mathbb{C} \mathbb{R}^6$, мы можем поднимать и опускать одиночные индексы, в то время как с помощью метрического 4-вектора $\varepsilon_{aa_1 bb_1}$, заданного в расслоении Λ, мы можем поднимать и опускать только парные кососимметричные индексы, и нет такого метрического тензора, с помощью которого можно было бы проделать подобную операцию с одиночными индексами.

Отсюда следует, что существуют операторы $A_{\alpha\beta d}^c$ такие, что

\[T_{\alpha\beta} = A_{\alpha\beta d}^c T_c^d, \quad T_k^k = 0, \quad T_{\alpha\beta} = -T_{\alpha\beta}. \]

106
Приведем доказательство этого факта.

Доказательство. Для символов Леви-Чивита имеем

\[\varepsilon^{abcd} \varepsilon_{klmn} = 24 \delta_{[k}^a \delta_{l}^b \delta_{m}^c \delta_{n]}^d, \]

\[\varepsilon^{abcd} \varepsilon_{klmd} = 6 \delta_{[k}^a \delta_{l}^b \delta_{m}^c \delta_{n]}, \]

\[\varepsilon^{abcd} \varepsilon_{klcd} = 4 \delta_{[k}^a \delta_{l}^b \delta_{c]}, \]

\[\varepsilon^{abcd} \varepsilon_{abcd} = 24, \]

\[\delta^{ab} := 2 \delta_{[k}^a \delta_{l]}^b. \]

Кроме того, поскольку \(\varepsilon^{abcd} \) - метрический, следует, что ([23, т. 2, стр. 83, (6.2.19)])

\[R_{ab} = \frac{1}{2} \varepsilon_{abcd} R^{cd}. \] (45)

Тогда с учетом формул (41) и (42) для некоторого тензора \(T_{[\alpha\beta]} \) имеем

\[T_{[\alpha\beta]} = \frac{1}{4} \cdot \eta_{[\alpha}^{a_1} \eta_{\beta]}^{b_1} \cdot 3/2(T_{[a_1b_1]} - T_{[b_1a_1]}), \]

\[= \frac{1}{4} \eta_{[\alpha}^{a_1} \eta_{\beta]}^{b_1} \cdot 1/2(T_{ak}^{-kd} \varepsilon_{a_1d_{b_1}} - T_{kd}^{-ka_1} \varepsilon_{a_{d_1}b_1}) = \frac{1}{2} \eta_{[\alpha}^{ca} \eta_{\beta]}^{b_1} \varepsilon_{ad_{b_1}}. \]

\[1/4(T_{kd}^{-kc} - T_{kc}^{-kd}) = -\frac{1}{2} \eta_{[\alpha}^{bk_1} \eta_{\beta]}^{ca} \varepsilon_{ad_{b_1}} \cdot T_{[a_1b_1]} = -\frac{1}{4}(T_{kd}^{-kc} - T_{kc}^{-kd}). \] (46)

Поэтому, чтобы получить формулу (43), следует положить

\[A_{[\alpha\beta]} := \frac{1}{2} \eta_{[\alpha}^{ca} \eta_{\beta]}^{b_1} \varepsilon_{d_{b_1}}, \quad T_{d} := \frac{1}{4}(T_{kd}^{k_1} - T_{kd}^{k_1}), \]

\[T_{aa_{1}b_{1}} - T_{bb_{1}a_{1}} = 4 \varepsilon_{a_{1}b_{1}c} T_{[a]}^{c}, \]

\[T_{m}^{n} = \frac{1}{2} A_{m}^{\alpha} n T_{[\alpha}^{\beta}, \quad T_{\beta} = -T_{[\alpha}^{\beta}. \]
Доказательство этих формул довольно громоздко и, поэтому, вынесено в приложение (472)-(476).

Следует отметить, что операторы Нордена определяют некоторую Клиффордовую алгебру.

Доказательство. Рассмотрим тождество

\[
\eta(\alpha [ab] \eta_\beta)_{cd} = -\eta(\alpha [cb] \eta_\beta)_{a[d]} = \eta(\alpha [ab] \eta_\beta)_{cd},
\]

свертка которого с \(\varepsilon_{bcda}\) даст цепочку тождеств

\[
\eta(\alpha ab \eta_\beta)_{cd} \varepsilon_{bcda} = \frac{1}{24} \eta(\alpha kl \eta_\beta)_{mn} \varepsilon_{klmn} \varepsilon_{abcd} \varepsilon_{bcda},
\]

\[
2\eta(\alpha ab \eta_\beta)_{bn} = -\frac{1}{4} \eta(\alpha kl \eta_\beta)_{mn} \varepsilon_{klmn} \delta_n^a,
\]

\[
\eta(\alpha ab \eta_\beta)_{nb} = \frac{1}{2} g_{\alpha \beta} \delta_n^a,
\]

где \(g_{\alpha \beta}\) тот же, что и в формуле (42). Определим

\[
\eta_\alpha := \| \eta_\alpha^{aa} \|, \quad \sigma_\alpha := \| -\eta_\alpha aa_1 \|, \quad \gamma_\alpha := \sqrt{2} \begin{pmatrix} 0 & \sigma_\alpha \\ \eta_\alpha & 0 \end{pmatrix},
\]

где \(\lambda, \psi, \ldots = \overline{1, 6}\). Тогда операторы \(\gamma_\lambda\) удовлетворяют следующему тождеству

\[
\gamma_\lambda \gamma_\psi + \gamma_\psi \gamma_\lambda = 2g_{\lambda \psi} I,
\]

что следует из уравнения (49). Это уравнение является уравнением Клиффорда ([23, т. 2, стр. 519, (B.1)]), так, что \(\gamma_1, \gamma_2, \gamma_3, \gamma_4, \gamma_5, \gamma_6\) - операторы с комплексными матрицами размерности \(8 \times 8\), \(g_{\alpha \beta}\) - метрический тензор (42), а I - единичный оператор.

Верно обратное. Пусть мы имеем уравнение (51). Тогда мы можем построить элемент \(\gamma_7\)

\[
\gamma_7 := \gamma_1 \gamma_2 \gamma_3 \gamma_4 \gamma_5 \gamma_6, \quad (\gamma_7)^2 = I,
\]

В этом случае, поскольку \(n=6\) (четно), \(\gamma_7\) антикоммутирует с любым элементом \(\gamma_\alpha, (\alpha = \overline{1, 6})\). Это означает, что для \(\gamma_\alpha\) возможно представление (50), и следовательно верны тождества (48).
Отсюда следует, что операторы Нордена определяют полную Клиффордову алгебру, которая образована конечными суммами

\[AI + B^\lambda \gamma_\lambda + C^\lambda \mu \gamma_\lambda \gamma_\mu + \ldots \]

(53)

Размерность этой алгебры равна \(2^6 = 64\). Такая алгебра может быть представлена полной матричной алгеброй, элементы которой имеют размерность \(8 \times 8\) ([23] т. 2, стр. 518-546).

2.1.2 Сопряжение в расслоении \(A^C(S)\)

В этом параграфе формулируется некоторое утверждение, касающееся вложения вещественных пространств в комплексные, доказательство приводится же в следующем пункте.

Рассмотрим 6-мерное (псевдо-)евклидово пространство \(\mathbb{R}^6_{(p,q)}\), вложенное в \(\mathbb{C}\mathbb{R}^6\), с метрикой произвольного индекса q, касательное пространство \(\tau^\mathbb{R}R^6_{(p,q)}\) которого будем рассматривать как вещественное подпространство пространства \(\mathbb{C}^4\). Это приведет к векторному расслоению \(A^C(S)\) со слоями, изоморфными \(\mathbb{C}^4\), и некоторой структурой s. Нам необходимо выяснить природу этой структуры. Для этого рассмотрим простой бивектор из \(\tau^C\mathbb{R}^6\). Необходимое и достаточное условие простоты выражается формулой

\[R^{ab} = X^a Y^b - X^b Y^a, \quad X^a Y^a \in \mathbb{C}^4, \]

(54)

gде \(i, j = 1, 6; a, b, c, d, k, l, m, n, \ldots = 1, 4\).

Замечание 2. На основании формулы (41) простому бивектору из пространства \(\Lambda^2\mathbb{C}^4\) ставится в соответствие изотропный вектор пространства \(\mathbb{C}\mathbb{R}^6\). Это следует из соотношения

\[0 = \varepsilon_{abcd}X^a Y^b X^c Y^d = \frac{1}{4} \varepsilon_{abcd} R^{ab} R^{cd} = \frac{1}{2} \eta^{\alpha \beta} r^\alpha r^\beta = \rho^\alpha r^\alpha = 0. \]

(55)

Далее, любой бивектор должен быть самосопряжен относительно тензора \(s_{aa',bb'}\) (обозначения введены согласно [23])

\[s_{aa',bb'} = g_{ij} \eta^i_{bb'} \eta^j_{aa'}, \quad g_{ij} = 1/4 \cdot \eta^{bb'} \eta^{aa'} s_{aa',bb'}, \]

(56)

\[\bar{s}_{bb',aa} = s_{aa',bb'}. \]
где g_{ij} - метрический тензор [10]. Последнее уравнение выражает эрмитову симметрию тензора s. Такой тензор был введен в работе [10]. В случае метрики четного индекса тензор $s_{aa_1}b_1^b$ (поднятие и спуск двойных индексов осуществляется с помощью метрического 4-вектора $\varepsilon_{aa_1bb_1}$) имеет вид

$$s_{aa_1}b_1^b = s^{cb'}s_{c_1b_1}^a\varepsilon_{cc_1aa_1}, \quad \bar{s}_a^b = \pm s_{ba'},$$

а в случае нечетного, получим

$$s_{aa_1}b_1^b = 2s_{[a}^b s_{a_1]}^{b_1}, \quad s_a^b \bar{s}_b^c = \pm \delta_a^c.$$

Если R^{ab} прост и принадлежит касательному пространству τ^R, то для составляющих его векторов выполнено (сравн. [23, т. 2, стр. 80, (6.2.13)]) в случае метрики четного индекса

$$X_a X_a' s^{aa'} = 0, \quad Y_a Y_a' s^{aa'} = 0, \quad X_a Y_a' s^{aa'} = 0,$$

а для нечетного

$$X_a' X^a s_{aa'} = 0, \quad X_a' Y^a s_{aa'} = 0, \quad Y_a' Y^a s_{aa'} = 0.$$

Таким образом определяется структура s расслоения $A^C(S)$. При этом тензор $s_{kk'}$ в случае метрики четного индекса выполняет роль метрического тензора, с помощью которого можно поднимать и опускать одночный индекс; а в случае метрики нечетного индекса с помощью тензора $s_{k}^{k'}$ происходит отождествление штрихованных (комплексно-сопряженных) и нештрихованных пространств. Доказательству этого утверждения как раз и посвящен следующий параграф.

2.2 Спинорное представление тензоров специального вида. Накрытия, соответствующие этому разложению

2.2.1 Теорема о двулистности накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$

Прежде чем приступать к указанному доказательству, нам необходимо более тщательно разобраться с двулистным накрытием $SO(6, \mathbb{C})/\{\pm 1\} \cong SL(4, \mathbb{C})$. Ниже будет получено явное представление этого накрытия с помощью связующих операторов Нордена η_{α}^{ab}. Используя это представление, легко разобраться в том, как происходит вещественное вложение $\mathbb{R}_{(2,4)}^6 \subset \mathbb{C}\mathbb{R}^6$, и, соответственно, как
построить явное представление оператора инволюции в спинорном виде. Кроме того, результаты этого пункта пригодятся в исследовании структуры бивекторов пространства \mathbb{CR}_6.

Обозначим через $K^{\alpha\beta}_{\alpha\beta}$ преобразования из группы $SO(6, \mathbb{C})$, а через S^{ab}_{ab} - преобразования из группы $SL(4, \mathbb{C})$. Тогда будет верна следующая теорема.

Теорема 1. Всякому преобразованию $K^{\alpha\beta}_{\alpha\beta}$ соответствует два и только два преобразования $\pm S^{ab}_{ab}$ (таких, что $\det \parallel S^{ab}_{ab} \parallel = 1$ ($\det \parallel S^{cd}_{cd} \parallel = 1$). И наоборот, любым преобразованиям $\pm S^{ab}_{ab}$ соответствует одно и только одно преобразование $K^{\alpha\beta}_{\alpha\beta}$.

Доказательство. Пусть имеется некоторое преобразование $\pm S^{ab}_{ab}$ (такое, что $\varepsilon := \varepsilon^{1234}$,

$$
S^{a}_{a1}S^{b}_{b1}S^{c}_{c1}d_{1}e_{b_{1}d_{1}} = \varepsilon_{aa_{1}cc_{1}} (S^{ab}_{ab}S^{a_{1}b_{1}}S^{c_{1}d_{1}}e^{b_{1}d_{1}} = \varepsilon^{-2}\varepsilon_{aa_{1}cc_{1}}).
$$

(61)

Последнее означает, что $\det \parallel S^{ab}_{ab} \parallel = 1$ ($\det \parallel S^{cd}_{cd} \parallel = 1$). Положим

$$
K^{\alpha\beta}_{\alpha\beta} := \frac{1}{4} \eta^{ab}_{\alpha} \eta^{cd}_{\beta} \cdot 2\beta S^{a}_{a}S^{b}_{b}d^{d} \cdot \varepsilon_{\beta}S^{ak}_{a}S^{bl}_{b}e^{kl}_{cd},
$$

(62)

$\beta := \pm 1$.

Тогда на основании (61) и (62) получим

$$
K^{\alpha\beta}_{\alpha\beta}K^{\gamma\delta}_{\gamma\delta}g^{\beta\delta} = g^{\alpha\gamma}.
$$

(63)

Таким образом из (61) следует (63).

Если теперь, наоборот, задано $K^{\alpha\beta}_{\alpha\beta}$ вида (63). Положим

$$
K^{ab}_{a_{1}b_{1}} := \eta^{\alpha}_{aa_{1}}\eta^{\beta}_{bb_{1}}K^{\alpha\beta}_{\alpha\beta}.
$$

(64)

При этом (63) перепишется как

$$
\frac{1}{4}K^{ab}_{a_{1}b_{1}}K^{dd}_{cc_{1}}e_{bb_{1}d_{1}} = \varepsilon_{aa_{1}cc_{1}}.
$$

(65)
Формула (65) означает, что преобразование $K_{aa_1}^{bb_1}$ должно быть регулярным, т.е. $\forall r^{aa_1} \neq 0 \Rightarrow K_{aa_1}^{bb_1}r^{aa_1}
eq 0$, $K_{aa_1}^{bb_1}r_{bb_1}
eq 0$.

Доказательство. Действительно, предположим обратное: $\exists r^{aa_1} \neq 0$ так, что $K_{aa_1}^{bb_1}r_{bb_1} = 0$. Это будет означать, что преобразование $K_{aa_1}^{bb_1}$ сингулярно

$$0 = r_{bb_1} \cdot \frac{1}{4} K_{aa_1}^{bb_1} K_{cc_1}^{dd_1} \varepsilon_{bb_1dd_1} = \varepsilon_{aa_1cc_1} r^{aa_1}. \quad (66)$$

Из этого следует, что $r^{aa_1} = 0$. Противоречие. □

Для дальнейших выкладок нам потребуется следующая лемма.

Лемма 1. Выберем два ненулевых вектора $r_1^\alpha, r_2^\beta \in \tau^C_x$, где x - произвольная точка базы: комплексного евклидового пространства \mathbb{CR}^6, снабженного метрическим тензором $g_{\alpha\beta}$. Тогда следующие три условия эквивалентны:

1. $r_1^\alpha(r_1)_\alpha = 0$, $r_2^\alpha(r_2)_\alpha = 0$, $r_1^\alpha(r_2)_\alpha = 0$;

2. $r_1^\alpha = \frac{1}{2} \eta_{aa_1} X^a Y^{a_1}$, $r_2^\alpha = \frac{1}{2} \eta_{aa_1} X^a Z^{a_1}$;

3. $(r_1)_\alpha = \frac{1}{2} \eta_{aa_1} \tilde{X}_a Y^{a_1}$, $(r_2)_\alpha = \frac{1}{2} \eta_{aa_1} \tilde{X}_a Z^{a_1}$;

где векторы X^a, Y^a, Z^a принадлежат слою \mathbb{C}^4_x расслоения A^C, а $\tilde{X}_a, \tilde{Y}_a, \tilde{Z}_a$ - ковекторы двойственного слоя.

Доказательство. 1) \Rightarrow 2). Рассмотрим первое уравнение условия 1). и положим

$$r_1^{aa_1} := \eta_{aa_1} r_1^\alpha, \quad (67)$$
тогда на основании (42) получим

\[r_1^\alpha (r_1)_\alpha = g_{\alpha \beta} r_1^\alpha r_1^\beta = \frac{1}{4} \eta_\alpha^{aa_1} \eta_\beta^{cc_1} \varepsilon_{aa_1cc_1} \frac{1}{2} r_1^{\alpha dd_1} r_1^{dd_1 \beta kk_1} r_1^{kk_1} = \]

\[= \frac{1}{4} r_1^{dd_1} \delta_\alpha^{a} \delta_\beta^{d_1} a_1 r_1^{kk_1} \delta_\alpha^{c} \delta_\beta^{k_1} c_1 \varepsilon_{aa_1cc_1} = \frac{1}{2} r_1^{\alpha a_1}(r_1)_{a_1} = 0. \]

(68)

Определим

\[p_f (r) := r^\alpha r_\alpha = \frac{1}{2} r^{\alpha a_1} r_{a_1}. \]

(69)

Тогда из (49) следует

\[r^{ab} r_{bc} = -p_f (r) \delta_c^d \iff 3r^{a[b} r^{cd]} = pf (r) \varepsilon^{abcd}. \]

(70)

Отсюда для вектора \(r_1^\alpha \) получаем

\[r_1^{ab} r_1^{cd} = r_1^{ac} r_1^{bd} - r_1^{bc} r_1^{ad}. \]

(71)

Поскольку \(r_1^{cd} \) ненулевой бивектор, то существуют такие ковекторы \(A_c, B_d \), что \(r_1^{cd} A_c B_d \neq 0 \) и вещественно. Положим

\[P^a := \sqrt{2} r_1^{ak} A_k / \sqrt{(r_1^{cd} A_c B_d)}, \quad Q^a := \sqrt{2} r_1^{bk} B_k / \sqrt{(r_1^{cd} A_c B_d)}, \]

тогда из (71) следует

\[r_1^{ab} = P^{[a} Q^{b]}. \]

(73)

При этом \(P^a, Q^a \) - линейно независимы. Таким же образом можно получить разложение и для \(r_2^{ab} \)

\[r_2^{ab} = R^{[a} S^{b]} \]

(74)

из второго условия 1), так, что вектора \(R^a, S^a \) будут также линейно независимы. Из третьего уравнения условия 1), вытекает следующее соотношение

\[0 = r_1^\alpha (r_2)_\alpha = \frac{1}{4} \varepsilon_{abcd} r_1^{ab} r_2^{cd} = \frac{1}{4} \varepsilon_{abcd} P^a Q^b R^c S^d = 0. \]

(75)

Это означает, что вектора \(P^a, Q^b, R^c, S^d \) - линейно зависимости

\[\alpha P^a + \beta Q^a + \gamma R^a + \delta S^a = 0, \quad |\alpha| + |\beta| + |\gamma| + |\delta| \neq 0. \]

(76)

При этом либо \(\alpha \neq 0 \), либо \(\beta \neq 0 \). В ином случае (\(\alpha = \beta = 0 \)) векторы \(R^c, S^c \) были бы линейно зависимы. Пусть для определенности
\[\alpha \neq 0. \text{ Тогда опять либо } \gamma \neq 0, \text{ либо } \delta \neq 0. \text{ Положим} \]
\[X^a := P^a + (\beta/\alpha)Q^a = -((\gamma/\alpha)R^a + (\delta/\alpha)S^a), \quad Y^a := Q^a, \]
\[Z^a := \begin{cases} (\alpha/\delta)R^a, \delta \neq 0, \gamma = 0, \\ -(\alpha/\gamma)S^a, \gamma \neq 0. \end{cases} \quad (77) \]

Таким образом из (77) следует условие 2). леммы.

2). \implies 1).

Проверяется непосредственно, например
\[r_1^\alpha (r_2)_\alpha = \frac{1}{4} \varepsilon_{aa_1bb_1} X^a Y^{a_1} X^b Z^{b_1} = 0. \quad (78) \]

Таким же образом доказывается и эквивалентность 1). \implies 3). и 3). \implies 1). Эти импликации возможны из-за наличия метрического тензора в касательном расслоении и метрического 4-вектора в расслоении \(A^C \).

Возьмем два изотропных ненулевых вектора
\[r_1^\alpha = \frac{1}{2} \eta^\alpha_{aa_1} M^a N^{a_1}, \quad r_2^\alpha = \frac{1}{2} \eta^\alpha_{aa_1} M^a L^{a_1} \quad (79) \]

и два ненулевых изотропных ковектора
\[(\tilde{r}_1)_\alpha = \frac{1}{2} \eta^\alpha_{aa_1} \tilde{M}_a \tilde{N}_{a_1}, \quad (\tilde{r}_2)_\alpha = \frac{1}{2} \eta^\alpha_{aa_1} \tilde{M}_a \tilde{L}_{a_1}, \quad (80) \]

удовлетворяющих соответственно условиям 2). и 3). леммы. Подействуем на (79), (80) ортогональным преобразованием \(K_{\alpha\beta} \) и получим
\[r_3^\alpha := K_{\beta}^\alpha r_1^\beta, \quad r_4^\alpha := K_{\beta}^\alpha r_2^\beta, \quad (\tilde{r}_3)_\alpha := K_{\alpha\beta}^\beta (\tilde{r}_1)_\beta, \quad (\tilde{r}_4)_\alpha := K_{\alpha\beta}^\beta (\tilde{r}_2)_\beta. \quad (81) \]

Тогда из условия 1). леммы следует с учетом (63) и (65)
\[r_3^\alpha (r_3)_\alpha = K_{\alpha\beta} K_{\gamma}^\delta g_{\beta\delta} r_1^\alpha r_1^\gamma = r_1^\alpha (r_1)_\alpha = 0, \]
\[r_4^\alpha (r_3)_\alpha = r_2^\alpha (r_1)_\alpha = 0, \quad r_4^\alpha (r_4)_\alpha = r_2^\alpha (r_2)_\alpha = 0, \quad \tilde{r}_4^\alpha (\tilde{r}_3)_\alpha = \tilde{r}_2^\alpha (\tilde{r}_1)_\alpha = 0, \quad \tilde{r}_4^\alpha (\tilde{r}_4)_\alpha = \tilde{r}_2^\alpha (\tilde{r}_2)_\alpha = 0, \quad \tilde{r}_3^\alpha (\tilde{r}_3)_\alpha = \tilde{r}_1^\alpha \tilde{r}_1^\alpha = 0. \quad (82) \]
Поскольку преобразование $K_{a_1}^{b_1}$ регулярно, то векторы и ковекторы (81) будут ненулевыми, следовательно, из условий 2). и 3). леммы 1 получим

$$
\begin{align*}
r_3^\alpha &= \frac{1}{2} \eta^a_{a_1} X^a Y^{a_1}, & r_4^\alpha &= \frac{1}{2} \eta^a_{a_1} X^a Z^{a_1} \\
(\tilde{r}_3)_\alpha &= \frac{1}{2} \eta^{a_1} \tilde{X}_a \tilde{Y}_{a_1}, & (\tilde{r}_4)_\alpha &= \frac{1}{2} \eta^{a_1} \tilde{X}_a \tilde{Z}_{a_1}.
\end{align*}
$$

(83)

Рассмотрим теперь тождество

$$
r_3^{[\alpha} r_4^{\beta]} = K_{[\gamma}^{[\alpha} K_{\delta]}^{\beta]} r_1^{[\gamma} r_2^{\delta]}. $$

(84)

Распишем его с помощью формул (43) и (47)

$$
A_{a_1}^{\alpha \beta} \cdot 1^4_{a_1} X^a Y^b X^c Z^{c_1} \varepsilon_{cc_1.bb_1} = \\
\frac{1}{4} A_{a}^{\gamma \delta} r^s M^r N^{k_1} M^l L^l \varepsilon_{ll_{1}l_{1}c} A_{a_1}^{\alpha \beta} \cdot \frac{1}{8} (K_{dm}^{ak} K^{cm} r_{bk} - K^{cmak} K_{dmbk}),
$$

$$
X^a Y^b X^c Z^{c_1} \varepsilon_{cc_1.bb_1} = \\
2 \delta^d r^s M^r N^{k_1} M^l L^l \varepsilon_{ll_{1}l_{1}c} \cdot \frac{1}{8} (K_{dm}^{ak} K^{cm} r_{bk} - K^{cmak} K_{dmbk}),
$$

$$
X^a (Y^b X^c Z^{c_1} \varepsilon_{cc_1.bb_1}) = \\
M^d (N^{k_1} M^l L^l \varepsilon_{ll_{1}l_{1}c}) \cdot \frac{1}{4} (K_{dm}^{ak} K^{cm} r_{bk} - K^{cmak} K_{dmbk}).
$$

(85)

Определим

$$
T_b := Y^b X^c Z^{c_1} \varepsilon_{cc_1.bb_1}, \quad P_c := N^{k_1} M^l L^l \varepsilon_{ll_{1}l_{1}c}, \quad \tilde{K}^c_{d} = \frac{1}{8} (K^{cmak} K_{dmbk} - K_{dm}^{ak} K^{cm} r_{bk})
$$

(86)

так, что выполнено

$$
X^c T_c = 0, \quad M^c P_c = 0, \quad \tilde{K}^c_{d} = 0, \quad \tilde{K}^c_{d} = 0,
$$

$$
K_{a_1}^{b_1} K_{cc_1}^{dd_1} - K_{a_1}^{dd_1} K_{cc_1}^{b_1} = 8 \varepsilon_{cc_1} K_{[a_1}^{r} \tilde{K}_{b_1]}^{k} r^{[b_1} \varepsilon_{b_1]} r^{dd_1}.
$$

(87)

Откуда

$$
X^a T_b = -2 M^d P_c \tilde{K}^c_{d}.
$$

(89)

Таким же образом из тождества

$$
(\tilde{r}_3)_{[\gamma} (\tilde{r}_4)_{\delta]} = K_{[\gamma}^{[\alpha} K_{\delta]}^{\beta]} (\tilde{r}_1)_{[\alpha} (\tilde{r}_2)_{\beta]},
$$

(90)

определяя

$$
\tilde{T}^b := \tilde{Y}_b \tilde{X}_c \tilde{Z}_{c_1} \varepsilon_{cc_1.bb_1}, \quad \tilde{P}_b := \tilde{N}_{k_1} \tilde{M}_l \tilde{Z}_{l_1} \varepsilon_{l_1l_1b},
$$

(91)
можно получить
\[\tilde{X}_d\tilde{T}^c = -2\tilde{M}_a\tilde{P}^b\tilde{K}_d^{\ b\ c\ a}. \quad (92) \]

Найдем теперь однородное решение, удовлетворяющее уравнениям (89) и (92)
\[\begin{cases} \tilde{K}\odнородное d\ c\ b\ a\ M^dP_c = 0, \\
\tilde{K}\odнородное d\ c\ b\ a\ \tilde{M}_a\tilde{P}^b = 0, \end{cases} \quad \Leftrightarrow \quad \begin{cases} M^dP_d = 0, \\
\tilde{M}_a\tilde{P}^a = 0. \end{cases} \quad (93) \]

Эти две системы должны совпадать тождественно, поскольку левая система верна для любых \(M^a, \tilde{M}_a, P^a, \tilde{P}^a \), удовлетворяющих правой системе. Это возможно только при
\[(\tilde{K}\однородное d\ c\ b\ a\ M^dP_c = 0 = \alpha\delta^{d\ c\ \delta^b\ a}, \quad \alpha \in \mathbb{C}. \quad (94) \]

Рассмотрим далее частное решение, например, уравнения (89). Это решение должно быть регулярным, что означает невозможность выполнения условия
\[\exists M^d \neq 0, P_c \neq 0, \quad \text{что} \quad (\tilde{K}\частное d\ c\ b\ a\ M^dP_c = 0 \quad (95) \]
(выполнение условия (95) равносильно (формула (88)) сингулярности преобразования \(K_{aa\ b\ b} \)). Для решения (89) нам потребуется следующая лемма.

Лемма 2. Пусть \(A, B, C, \ldots \) - собирательные индексы. Тогда следующие 3 условия на \(\lambda_{AB}^Q \) эквивалентны:

1. \(\lambda_{AB}^Q\xi_Q \) имеет вид \(\rho_A\xi_B \) для всякого \(\xi_Q \);
2. \(\lambda_{A_1[B_1}^{(Q_1}\lambda_{|A_2|B_2}^{Q_1)} = 0; \)
3. \(\lambda_{AB}^Q \) можно представить как \(\alpha_A\varphi_B^Q \), либо как \(\theta_A^Q\beta_B \).

Доказательство. Оно приведено на стр. 205 монографии [23, т. 1]. Поскольку в ее доказательстве метрический тензор участия не принимал, то эта лемма справедлива для любого расположения индексов: сверху или снизу. \(\square \)
Применим лемму 2 к уравнению (89), тогда получим 2 варианта:
a). \((\tilde{K} \text{частное})d^c_b a P_c = A^a B_{bd},\)
b). \((\tilde{K} \text{частное})d^c_b a P_c = A_d^a B_b\)
(96)

Во-первых. Предположим, что условия a). и b). выполняются одновременно. Воспользуемся еще одной леммой.

Лемма 3. Из \(\psi_{AB} \phi_c = \chi_A \theta_{BC}\) следует выполнение \(\psi_{AB} = \chi_A \xi_B,\)
\(\theta_{BC} = \xi_B \phi_c\) для некоторого \(\xi_B\).

Доказательство. Оно приведено на стр. 205 монографии [23, т. 1]. И так же, как и в предыдущей лемме, расположение индексов не существенно.

Применим эту лемму к уравнению (96), что даст
\[(\tilde{K} \text{частное})d^c_b a P_c = A_d^a B^a C_b.\]
(97)

Но существует такой вектор \(M^d \neq 0,\) что \(M^d P_d = 0\) и \(M^d A_d = 0,\) поэтому из (97) следует (95), что невозможно. Из этого заключаем, что a). и b). из (96) одновременно выполнять не могут.

Во-вторых. Применим лемму 2 теперь уже к уравнению (96). Это даст 4 варианта:
I). a). \((\tilde{K} \text{частное})d^c_b a = A^a c B_{db},\)
b). \((\tilde{K} \text{частное})d^c_b a = C^a D_{db},\)
II). a). \((\tilde{K} \text{частное})d^c_b a = S_d^a E_b c,\)
b). \((\tilde{K} \text{частное})d^c_b a = U_d^a c V_b.\)
(98)

Варианты б). в обоих случаях отпадают, поскольку приводят к сингулярным преобразованиям (смотрите пояснения после формулы (97)).
Для определенности рассмотрим случай II).a). Свернем общее решение уравнения (89)

$$\tilde{K}^c_d b^a = S^a_d E_b^c + \alpha \delta_d^c \delta_b^a$$ \hspace{1cm} (99)

с δ_c^d и, используя (87), получим

$$0 = S^a_k E_b^k + 4 \alpha \delta_b^a \Rightarrow E_b^k = -4 \alpha (S^{-1})_b^k$$ \hspace{1cm} (100)

(преобразование S_d^a невырождено, т.к. в ином случае преобразование $\tilde{K}^c_d b^a$ будет сингулярным, что повлечет за собой сингулярность преобразования $K_{aa_1b^1}$). Поэтому

$$\tilde{K}^c_d b^a = (-\alpha)(4S_d^a(S^{-1})_b^c - \delta_d^c \delta_b^a).$$ \hspace{1cm} (101)

Свернем (88) с $\varepsilon_{dd_1pp_1}K_{ss_1}^{pp_1}$, что даст с учетом (65)

$$K_{aa_1}^{bb_1} \varepsilon_{ss_1cc_1} - K_{cc_1}^{bb_1} \varepsilon_{ss_1aa_1} = 8 \varepsilon_{cc_1k[a_1} \tilde{K}_{a]r}^k [b^1 K_{ss_1}^{k b_1}]r.$$ \hspace{1cm} (102)

Свернем (102) с $\varepsilon_{ss_1cc_1}$, используя формулы (44),

$$5K_{aa_1}^{bb_1} = 8\tilde{K}_{a}^k [r [b^1 K_{k|a_1}^k r]}.$$ \hspace{1cm} (103)

и подставим (101) в (103)

$$5K_{aa_1}^{bb_1} = (-8\alpha)K_{k[a_1}^{[b_1]|r} (4S_{a}^b(S^{-1})_{r}^k - \delta_{a}^{[k}\delta_{r}^{b]}),$$ \hspace{1cm} (104)

$$K_{aa_1}^{bb_1} = \frac{32\alpha}{5+8\alpha} K_{k[a_1}^{r[b_1] S_{a}^b(S^{-1})_{r}^k}$$

($\alpha \neq 0, \alpha \neq \pm 5/8, в ином случае преобразование $\tilde{K}^k_a b^b$ будет сингулярным). Положим

$$K_{aa_1}^{bb_1} := 2M_{[a_1}^{[b_1] S_{a}^b]}$$ \hspace{1cm} (105)

и получим

$$K_{aa_1}^{bb_1} := \frac{32\alpha}{5+8\alpha} S_{a}^b (M_{a_1}^b + \frac{1}{2} S_{a_1}^b) M_r^k (S^{-1})_{r}^k = 2M_{[a_1}^{[b_1] S_{a}^b]}.$$ \hspace{1cm} (106)

Положим

$$M_r^k := \beta S_{k r} \Rightarrow \beta = \frac{8\alpha}{5 - 8\alpha} M_r^k (S^{-1})_{r}^k \Rightarrow \alpha = \frac{1}{8}.$$ \hspace{1cm} (107)

Тогда из (106) следует

$$K_{aa_1}^{bb_1} := 2\beta S_{[a_1}^{[b_1] S_{a}^b]}. \hspace{1cm} (108)$$
Подстановкой (108) в (65) находим, что \(\beta = \pm 1 \).
Подобным же образом рассматривается и пункт I).a). В этом случае преобразование \(K_{aa_1}^{bb_1} \) имеет вид

\[
K_{aa_1}^{bb_1} := \beta S_{ac} S_{a_1 c_1} \varepsilon^{cc_1} b_{b_1}.
\]

(109)

Заметим, что множитель \(\varepsilon \) можно включить в определение \(S_{ac} \).
Таким образом от (63) можно действительно прийти к (61), чем и закончено доказательство обратной части теоремы. Поэтому преобразованию \(S_{ab} (S_{ab}) \) будет соответствовать одно и только одно преобразование \(K_{\alpha \beta} \), и, наоборот, любому преобразованию \(K_{\alpha \beta} \) будет соответствовать два и только два преобразования \(\pm S_{ab} (\pm S_{ab}) \) таких, что \(det || S_{cd} || = 1 \) (для \(S_{cd} \)).

Выясним, какое из преобразований соответствует собственным преобразованиям \(K_{\alpha \beta} \). Для этого рассмотрим следующее тождество

\[
K_{\alpha \beta} K_{\gamma \delta} K_{\lambda \mu} K_{\pi \omega} K_{\sigma \xi} e_{\beta \delta \mu \chi \omega \xi} = \pm e_{\alpha \gamma \lambda \nu \pi \sigma},
\]

\[
e_{\beta \delta \mu \chi \omega \xi} = e_{[\beta \delta \mu \chi \omega \xi]}, \quad \hat{e} := e_{123456}.
\]

(110)

При этом под \(e_{\beta \delta \mu \chi \omega \xi} \) понимается 6-вектор, кососимметричный по всем индексам. Следовательно, мы можем получить эквивалентную запись

\[
K_1^{\beta} K_2^{\delta} K_3^{\mu} K_4^{\chi} K_5^{\omega} K_6^{\xi} e_{\beta \delta \mu \chi \omega \xi} = \pm e_{123456} \iff det || K_{\alpha \beta} || = \pm 1.
\]

(111)

Если \(K_{\alpha \beta} \) - собственное преобразование, то в (110) выбирается знак "+". Это означает, что \(det || K_{\alpha \beta} || = 1 \), в ином случае (несобственные преобразования) выбирается знак "+". Поскольку для 4-вектора имеются тождества, следующие из формулы (43)

\[
e_{\alpha \beta \gamma \delta} = e_{[\alpha \beta \gamma \delta]},
\]

\[
e_{\alpha \beta \gamma \delta} = A_{\alpha \beta} a A_{\gamma \delta} c e_{a b c},
\]

(112)

\[
e_a b := \frac{1}{3} e_a k b,
\]

то, воспользовавшись его симметриями, можно получить разложение

\[
B_{\alpha \beta \gamma \delta} r^k := A_{\alpha \beta} d A_{\gamma \delta} k + A_{\alpha \beta} c A_{\gamma \delta} c,
\]

\[
e_{\alpha \beta \gamma \delta} := B_{\alpha \beta \gamma \delta} k e_k r,
\]

(113)
\(e^k_k = 0 \)

(доказательство в приложении (477) - (479)). В свою очередь с помощью этих формул можно получить разложение и для 6-вектора

\[
e_{\alpha\beta\gamma\delta\lambda\mu} = A_{\alpha\beta}b^a A_{\gamma\delta}^c A_{\lambda\mu}^d A_{\nu\kappa}^e e_{a\, c\, b\, d\, k,}
\]

\[
e_{a\, c\, b\, d\, l} = \frac{i}{8} \left(2((4\delta_k^b \delta_c^l - \delta_k^l \delta_c^b)\delta_a^d + (4\delta_k^d \delta_a^l - \delta_k^l \delta_a^d)\delta_c^b) - (4\delta_k^b \delta_a^l - \delta_k^l \delta_a^b)\delta_c^d - (4\delta_k^d \delta_a^l - \delta_k^l \delta_a^d)\delta_c^b \right)
\]

(доказательство в приложении (480) - (489)). Из (114) вытекает тождество

\[
e_{\alpha\gamma\lambda\nu\pi\sigma} = 2\eta^{\alpha\beta\gamma\delta\lambda\mu} \eta_{\nu\xi\sigma\tau\rho\lambda} A_{\alpha\beta}b^a A_{\gamma\delta}^c A_{\lambda\mu}^d A_{\nu\xi}^e A_{\sigma\tau}^f A_{\lambda\mu}^d A_{\nu\xi}^e A_{\sigma\tau}^f A_{\lambda\mu}^d A_{\nu\xi}^e A_{\sigma\tau}^f =
\]

(115)

Применяя определение (110) к собственным (несобственным) преобразованиям, получим из (114) и (115)

\[
S_{a\, b} S_{a_1\, b_1} S_{c\, d} S_{c_1\, d_1} \varepsilon_{b\, b_1\, d\, d_1} = \varepsilon_{a\, a_1\, c\, c_1} \left(S_{a\, b} S_{a_1\, b_1} S_{c\, d} S_{c_1\, d_1} \varepsilon_{b\, b_1\, d\, d_1} = \varepsilon^{-2} \varepsilon_{a\, a_1\, c\, c_1} \right),
\]

(116)

что даст тождество (61). Отсюда следует, что (108) соответствует собственным, а (109) соответствует несобственным преобразованиям \(K^{\alpha\beta} \).

И наконец, преобразования \(S_{a\, b} \) и \(iS_{a\, b} \) принадлежат одной и той же группе \(SL(4, \mathbb{C}) \). Это означает, что можно в формуле (108) рассматривать только случай, когда \(\beta = +1 \). Поэтому группа \(SL(4, \mathbb{C}) \) двулистно накрывает связную компоненту единицы группы \(SO(6, \mathbb{C}) \) (ее мы обозначим через \(SO^e(6, \mathbb{C}) \)).

\(\square \)
2.2.2 Вещественная реализация двулистного накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$ в присутствии инволюции S_{α}^{β}

Теорема 2. Пусть в 6-мерном комплексном евклидовом пространстве \mathbb{CR}_6 задана инволюция вида

$$S_{\alpha}^{\beta} \bar{S}_{\beta}^{\gamma} = \delta_{\alpha}^{\gamma}, \quad S_{\alpha}^{\beta} S_{\gamma}^{\delta} \bar{g}_{\beta}^{\delta} = g_{\alpha \gamma}. \tag{117}$$

Определим

$$s_{aba'b'} = \bar{\eta}_{\beta'}^{\gamma} \eta_{ab}^{\alpha} S_{\alpha}^{\beta'}, \tag{118}$$

тогда будут выполнены следующие соотношения

$$s_{aba'b'} = \bar{s}_{a'b'}^{a'b}, \quad s_{ab}^{a'b'} \bar{S}_{ab}'^{c} = 2 \delta_{ab}^{cd}, \tag{119}$$

и будет существовать два и только два разложения

$$I). \quad s_{ab}^{a'b'} = 2s_{[a'}^{a'} s_{b]}^{b'}, \quad s_{a}^{b'} \bar{S}_{b'}^{c} = \pm \delta_{ac}, \tag{120}$$

$$II). \quad s_{aba'b'} = 2s_{[a'a|s_{b}]b'}, \quad s_{ab'} = \pm \bar{s}_{b'a}. $$

Кроме того, для вещественного случая будут верны следующие тождества

$$I). \quad \bar{\eta}_{i}^{a'b'} = \eta_{jcd} s_{c}^{d} s_{d}^{b'}, \quad A_{i}^{a'b'} = A_{ijc}^{d} s_{a}^{c} s_{d}^{b'}, \quad \bar{A}_{i}^{a'b'} = - A_{i}^{d} s_{da}^{c} s_{c}^{b'}, \tag{121}$$

Доказательство. Доказательство разложения [120] проводится также как и в предыдущей теореме. Все изменения сводятся только к замене преобразования K_{α}^{β} на преобразование $S_{\alpha}^{\beta'}$ так, что аналогом (63) служит

$$S_{\alpha}^{\beta} S_{\gamma}^{\delta} \bar{g}_{\beta}^{\delta} = g_{\alpha \gamma}, \tag{122}$$

что даст уравнение аналогичное (61) (соответствующий множитель включен в определение спин-тензора s)

$$s_{ab}^{a'b'} s_{a_{1}}^{a_{1}} s_{c}^{d'} s_{c_{1}}^{d'} \bar{\epsilon}_{b_{1}}^{b_{1}} d_{1} d_{1} = \varepsilon_{aa_{1}cc_{1}}, \tag{123}$$

$$(s_{ab}^{a'b'} s_{a_{1}}^{a_{1}} s_{cd}^{c} s_{c_{1}}^{c} d_{1}^{d'} \bar{\epsilon}_{b_{1}}^{b_{1}} d_{1}^{d'} = \varepsilon_{aa_{1}cc_{1}}).$$

Из (117) и (122) можно получить

$$S_{\alpha}^{\beta'} = \bar{S}_{\alpha}^{\beta'}. \tag{124}$$
Из этого следует

\[\bar{s}_{a'b'ab} = \bar{\eta}'_{a'b'\alpha} \eta_{\beta ab} \bar{S}^\alpha_{\beta} = \bar{\eta}_{\beta a'b'} \eta'^\alpha_{ab} \bar{S}^{\beta'}_{\alpha} = s_{ab'a'b'}. \]

(125)

Отметим, что в касательном расслоении \(\tau^C(\tau^R) \) существует метрический тензор \(g_{\alpha\beta}(g_{ij}) \), с помощью которого осуществляется спуск и подъем одиночных индексов. В расслоении \(A^C(S) \) аналогичную роль выполняет тензор \(\varepsilon_{abcd} \). За тензор \(\bar{g}_{\alpha'\beta'}(\bar{\varepsilon}_{a'b'c'd'}) \) принимается тензор, координаты которого сопряжены координатам тензора \(g_{\alpha\beta}(\varepsilon_{abcd}) \).

Рассмотрим цепочку тождеств, следующих из (117)

\[S_\alpha^{\beta'} \bar{S}_{\beta'}^{\gamma} = \delta_\alpha^\gamma, \]

\[\frac{1}{4} \eta_{\alpha}^{a a 1} \bar{\eta}_{b' b' 1} \bar{s}_{aa 1} b'b' 1 \frac{1}{4} \bar{\eta}_{d'd' 1} \eta_{cc 1} \bar{s}_{d'd' 1} = \frac{1}{4} \eta_{\alpha}^{a a 1} \eta_{cc 1} 2 \delta_{a a 1} \]

(126)

Исследуем теперь случай II). Из последнего тождества (126) получим

\[s_{ac'} s_{a 1 c' 1} \bar{\varepsilon}^c c' 1 b'b' 1 \cdot \bar{s}_{b'd} \bar{s}_{b' 1 d_1} \bar{\varepsilon}^{d d f 1} = 2 \delta_{f f 1}, \]

(127)

\[s_{ac'} s_{a 1 c' 1} \bar{s}_{b'd} \bar{s}_{b' 1 d_1} \bar{\varepsilon}^c c' 1 b'b' 1 = \varepsilon_{a a 1 d d_1}. \]

Определим \(s^{kl'} \) следующим образом

\[s^{kl'} s_{km'} = \delta_{m'l'} \]

(128)

tак, что

\[s^{kl'} s^{k 1 l' 1} s_{mn'} s^{m 1 n' 1} \varepsilon_{k 1 k 1 m m} = \varepsilon^{l l' 1 n' 1}. \]

(129)

Домножим (127) на \(s^{ak'} s^{a 1 k' 1} s_{dn'} s^{d 1 n' 1} \) и с учетом (129) получим

\[s^{dn'} \bar{s}_{b'd} s^{d 1 n' 1} \bar{s}_{b' 1 d_1} \bar{\varepsilon}^{k' k' 1 b'b' 1} = \varepsilon^{k' k' 1 n' 1}. \]

(130)

Положим

\[\bar{N}_{b' \ n'} := s^{dn'} \bar{s}_{b'd}, \]

(131)

tогда (130) перепишется так

\[\bar{N}_{b' \ n'} \bar{N}_{b' 1} \ n' 1 = \delta_{b' \ n'} \delta_{b' 1 \ n' 1}. \]

(132)

Отсюда следует (доказательство в приложении (490) - (495))

\[\bar{N}_{b' \ n'} = s^{dn'} \bar{s}_{b'd} = n \delta_{b' \ n'} = n s^{dn'} \bar{s}_{db'}, \quad n^2 = 1. \]

(133)
Поэтому из \((128)\) вытекает
\[\bar{s}_{b'd} = \pm s_{db'}. \] \((134)\)
Подобным же образом разбирается случай I). Из тождества \((126)\) следует
\[s_{[a' b'} \bar{\delta}_{a_1]} b'_i \bar{s}_{b} s_{b_1} c_1 = \delta_{[a} \delta_{a_1]} c_1. \] \((135)\)
Положим
\[N_{a}^c := s_{a'} \bar{s}_{b'}, \] \((136)\)
то получим
\[\bar{N}_{[a} N_{a_1]}^c = \delta_{[a} \delta_{a_1]} c_1. \] \((137)\)
Откуда и следует
\[N_{a}^c = n \delta_{a}^c = s_{a'} \bar{s}_{b'}, \quad n^2 = 1, \] \((138)\)
opределяя окончательно следующее соотношение
\[s_{a'} \bar{s}_{b'}^c = \pm \delta_{a}^c. \] \((139)\)
И нам останется доказать только \((121)\). Воспользуемся оператором вложения \(H_i^\alpha\) и инволюцией \(S_{\alpha}^\beta\), определенными по формуле \((5)\). Для случая II). имеем
\[\bar{\eta}_{i} a'b' = \bar{\eta}_{i} \bar{\eta}_{\alpha'} a'b' = \bar{H}_i^\alpha \bar{S}_{\alpha}^\beta \eta_{\beta cd}^s s_c^a s_d^{b'}, \]
\[= H_i^\beta \delta_{\beta cd} s_c^a s_d^{b'}, \] \((140)\)
\[\bar{\eta}_{i} a'b' = \bar{\eta}_{i} k' \bar{\eta}_{j} a' k' = H_i^\gamma H_j^\delta \eta_{\gamma bk} \eta_{\delta}^a k s_{aa'} s_{bb'} = -A_{ij} a s_{aa'} s_{bb'}. \] \((141)\)
В случае I). доказательство такое
\[\eta_{i} a'b' = \bar{H}_i^\alpha \bar{\eta}_{\alpha'} a'b' = H_i^\alpha \bar{S}_{\alpha}^\beta \eta_{\beta cd} s_{c}^a s_{d}^{b'}, \]
\[= H_i^\beta \delta_{\beta cd} s_{c}^a s_{d}^{b'}, \] \((142)\)
\[\bar{\eta}_{i} a'b' = \bar{\eta}_{i} k' \bar{\eta}_{j} a' k' = H_i^\gamma H_j^\delta \eta_{\gamma bk} \eta_{\delta}^c s_{a}^c \bar{s}_{a'}^d = \]
\[= \eta_{i} c \bar{\eta}_{j} d s_{c}^b \bar{s}_{a'}^d = A_{ij} c s_{c}^b \bar{s}_{a'}^d. \] \((143)\)

\[\square \]
2.2.3 Вложение $\mathbb{R}^6_{(2,4)} \subset \mathbb{C}^6$ в специальном базисе

Рассмотрим теперь в качестве примера вложение вещественного пространства $\mathbb{R}^6_{(2,4)}$ в комплексное пространство \mathbb{C}^6. В этом случае у нас появится возможность с помощью тензора $s_{aa'}$ осуществить отождествление верхних штрихованных с нижними нештрихованными индексами. Рассмотрим цепочку тождеств

$$K_i^j = \tilde{K}_i^j, \quad K_i^j := H_i^\alpha H_j^\beta K_{\alpha\beta},$$

$$\eta_{j}^{ab} K_i^j \eta_{cd}^i = \eta_j^{ab} \tilde{K}_i^j \eta_{cd}^i,$$

$$2S_{[c}^a S_{d]}^b = \frac{1}{4} \eta_j^{ab} \bar{\eta}^j m'n' 2\tilde{S}_{m'}^k \tilde{S}_{n'}^l \bar{\eta}_{ik'l'} \eta_{cd}^i,$$

$$S_{[c}^a S_{d]}^b = \frac{1}{4} s_{bmn'} \tilde{S}_{[m'}^k \tilde{S}_{n']}^l s_{cdk'l'},$$

$$S_{[c}^a S_{d]}^b = s_{a'm'} \tilde{S}_{[m'}^k \tilde{S}_{n']}^l s_{cdk'l'},$$

$$s_{lk'} \tilde{S}_{k'}^m s_{a'm'} S_{[c}^a S_{d]}^b s_{bn'} \tilde{S}_{r'}^n s_{s'l'} = \delta_{[c} \delta_{d]}^b.$$ \hspace{1cm} (144)

Определим

$$N_c^l := s_{lk'} \tilde{S}_{k'}^m s_{a'm'} S_{c}^a,$$

и получим

$$N_{[c}^a N_{d]}^b = \delta_{[c}^a \delta_{d]}^b.$$ \hspace{1cm} (145)

Откуда будет следовать выражение (доказательство в приложении (490) - (495))

$$N_c^l = s_{lk'} \tilde{S}_{k'}^m s_{a'm'} S_{c}^a = n \delta_c^l, \quad n = \pm 1.$$ \hspace{1cm} (146)

Выбирая знак “+” в (148), мы получаем преобразования из группы, изоморфной группе $SU(2, 2)$, которая будет, как видно из вышесказанного, двулистно накрывает связную компоненту единицы группы $SO^e(2, 4)$. Эта компонента определяется следующими условиями

1). $det ||K_\alpha^\beta|| = 1 \quad \alpha, \beta = 1, 6,$
2). $det ||K_\alpha^\beta|| > 0 \quad \alpha, \beta = 1, 2.$

Если в (148) выбрать “-”, то знак в 2). из (149) изменится на противоположный. Далее, чтобы лучше уяснить как это происходит на практике, воспользуемся представлением полученных результатов в специальном базисе. Для этого определим базис пространства \mathbb{C}^6.
следующим образом

\[t^\alpha = (1, 0, 0, 0, 0, 0), \quad \nu^\alpha = (0, 1, 0, 0, 0, 0), \quad \nu^\alpha = (0, 0, 0, i, 0, 0), \quad z^\alpha = (0, 0, 0, 0, i). \quad (150) \]

Пусть в этом базисе матрица метрического тензора \(g_{\alpha\beta} \) имеет вид

\[
\| g_{\alpha\beta} \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}.
\quad (151)
\]

Определим вещественную реализацию вложения \(\mathbb{R}^6_{(2,4)} \subset \mathbb{C} \mathbb{R}^6 \) оператором \(H_i^\alpha \)

\[
\| H_i^\alpha \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & i & 0 & 0 & 0 \\
0 & 0 & 0 & i & 0 & 0 \\
0 & 0 & 0 & 0 & i & 0 \\
0 & 0 & 0 & 0 & 0 & i
\end{pmatrix}, \quad \| H_i^{\alpha'} \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -i & 0 & 0 & 0 \\
0 & 0 & 0 & -i & 0 & 0 \\
0 & 0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & 0 & -i
\end{pmatrix}.
\quad (152)
\]

Тогда базис (150) будет самосопряжен относительно инволюции \(S_{\alpha}^{\beta'} \) вида

\[
\| S_{\alpha}^{\beta'} \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & -1
\end{pmatrix}.
\quad (153)
Поэтому в пространстве $\mathbb{R}_{(2,4)}^6$ индуцируемый метрический тензор g_{ij} будет иметь матрицу

\[
\| g_{ij} \| = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 \\
\end{pmatrix} = \| H_i^\alpha H_j^\beta g_{\alpha\beta} \| \quad (154)
\]

в базисе

\[
t^i = H_i^\alpha t^\alpha = (1, 0, 0, 0, 0), \quad v^i = H_i^\alpha v^\alpha = (0, 1, 0, 0, 0), \\
w^i = H_i^\alpha w^\alpha = (0, 0, 1, 0, 0), \quad x^i = H_i^\alpha x^\alpha = (0, 0, 0, 1, 0), \\
y^i = H_i^\alpha y^\alpha = (0, 0, 0, 1, 0), \quad z^i = H_i^\alpha z^\alpha = (0, 0, 0, 0, 1). \quad (155)
\]

Определим векторный базис в расслоении $A^c(S)$ так

\[
X^a = (1, 0, 0, 0), \quad Y^a = (0, 1, 0, 0),
\]

\[
Z^a = (0, 0, 1, 0), \quad T^a = (0, 0, 0, 1), \quad (156)
\]

\[
\varepsilon_{abcd}X^a Y^b Z^c T^d = 1, \quad \varepsilon = 1.
\]

Тогда в базисах (154) и (156) имеет место разложение

\[
R^{ab} = 2(R^{12} X^[a] Y^[b]) + R^{13} X^[a] Z^[b] + R^{14} X^[a] T^[b] +
\]
\[+ R^{23} Y^{[a} Z^{b]} + R^{24} Y^{[a} T^{b]} + R^{34} Z^{[a} T^{b]} \]
\[= \frac{1}{\sqrt{2}} (R^{12} + R^{34}) \cdot \sqrt{2} (X^{[a} Y^{b]} + Z^{[a} T^{b]}) + \]
\[+ \frac{1}{\sqrt{2}} (R^{12} - R^{34}) \cdot \sqrt{2} (X^{[a} Y^{b]} - Z^{[a} T^{b]}) + \]
\[+ \frac{1}{\sqrt{2}} (R^{13} + R^{24}) \cdot \sqrt{2} (X^{[a} Z^{b]} + Y^{[a} T^{b]}) + \]
\[+ \frac{i}{\sqrt{2}} (R^{13} - R^{24}) \cdot (-i \sqrt{2}) (X^{[a} Z^{b]} - Y^{[a} T^{b]}) + \]
\[+ \frac{-i}{\sqrt{2}} (R^{14} + R^{23}) \cdot i \sqrt{2} (X^{[a} T^{b]} + Y^{[a} Z^{b]}) + \]
\[+ \frac{-i}{\sqrt{2}} (R^{14} - R^{23}) \cdot i \sqrt{2} (X^{[a} T^{b]} - Y^{[a} Z^{b]}) = \]
\[= (T t^i + V v^i + W w^i + X x^i + Y y^i + Z z^i) \cdot \eta_{i}^{ab} = r^i \eta_{i}^{ab}. \]

Поэтому мы можем положить

\[v^i \eta_{i}^{ab} := \sqrt{2} (X^{[a} Y^{b]} + Z^{[a} T^{b]}) , \quad w^i \eta_{i}^{ab} := \sqrt{2} (X^{[a} Y^{b]} - Z^{[a} T^{b]}) , \]
\[y^i \eta_{i}^{ab} := \sqrt{2} (X^{[a} Z^{b]} + Y^{[a} T^{b]}) , \quad x^i \eta_{i}^{ab} := -i \sqrt{2} (X^{[a} Z^{b]} - Y^{[a} T^{b]}) , \]
\[z^i \eta_{i}^{ab} := \sqrt{2} i (X^{[a} T^{b]} + Y^{[a} Z^{b]}) , \quad t^i \eta_{i}^{ab} := \sqrt{2} i (X^{[a} T^{b]} - Y^{[a} Z^{b]}) , \]

что определяет операторы Нордена \(\eta_{i}^{aa} \) в этих базисах как

\[\eta_{12}^{12} = \frac{1}{\sqrt{2}}; \quad \eta_{23}^{34} = \frac{1}{\sqrt{2}}; \quad \eta_{31}^{12} = \frac{1}{\sqrt{2}}; \quad \eta_{34}^{34} = -\frac{1}{\sqrt{2}}; \]
\[\eta_{14}^{14} = \frac{i}{\sqrt{2}}; \quad \eta_{23}^{23} = -\frac{i}{\sqrt{2}}; \quad \eta_{41}^{14} = \frac{i}{\sqrt{2}}; \quad \eta_{62}^{23} = \frac{i}{\sqrt{2}}; \]
\[\eta_{51}^{13} = \frac{1}{\sqrt{2}}; \quad \eta_{53}^{24} = \frac{1}{\sqrt{2}}; \quad \eta_{41}^{13} = -\frac{i}{\sqrt{2}}; \quad \eta_{45}^{24} = \frac{i}{\sqrt{2}}. \]
Из (158) вытекают следующие тождества

\[T = \frac{i}{\sqrt{2}}(R^{23} - R^{14}), \quad V = \frac{1}{\sqrt{2}}(R^{12} + R^{34}), \]
\[W = \frac{1}{\sqrt{2}}(R^{12} - R^{34}), \quad X = \frac{i}{\sqrt{2}}(R^{13} - R^{24}), \]
\[Y = \frac{1}{\sqrt{2}}(R^{13} + R^{24}), \quad Z = \frac{-i}{\sqrt{2}}(R^{14} + R^{23}), \]

(160)

\[R^{12} = \frac{1}{\sqrt{2}}(V + W), \quad R^{13} = \frac{1}{\sqrt{2}}(Y - iX), \]
\[R^{14} = \frac{i}{\sqrt{2}}(T + Z), \quad R^{23} = \frac{i}{\sqrt{2}}(Z - T), \]
\[R^{24} = \frac{1}{\sqrt{2}}(Y + iX), \quad R^{34} = \frac{1}{\sqrt{2}}(V - W), \]

tак, что обратные величины \(\eta^i_{a\alpha} \) имеют вид

\[\eta^{12} = \frac{1}{\sqrt{2}}, \quad \eta^{23} = \frac{1}{\sqrt{2}}, \quad \eta^{34} = \frac{1}{\sqrt{2}}, \quad \eta^{14} = \frac{-1}{\sqrt{2}}, \quad \eta^{24} = \frac{-1}{\sqrt{2}}, \]
\[\eta^{513} = \frac{1}{\sqrt{2}}, \quad \eta^{524} = \frac{1}{\sqrt{2}}, \quad \eta^{413} = \frac{-i}{\sqrt{2}}, \quad \eta^{424} = \frac{-i}{\sqrt{2}}. \]

(161)

И, кроме того, будут верны равенства

\[\overline{R^{23}} = -R^{23} = R_{41}, \quad \overline{R^{34}} = R^{34} = R_{12}, \]
\[\overline{R^{12}} = R^{12} = R_{34}, \quad \overline{R^{13}} = R^{24} = R_{31}. \]

(162)

Выберем ковекторный базис, согласуя его с базисом (156) при выполнении (162), следующим образом

\[X_a = s_{aa'} \bar{X}^{a'} = (0, 0, 1, 0), \quad Y_a = s_{aa'} \bar{Y}^{a'} = (0, 0, 0, 1), \]
\[Z_a = s_{aa'} \bar{Z}^{a'} = (1, 0, 0, 0), \quad T_a = s_{aa'} \bar{T}^{a'} = (0, 1, 0, 0). \]

(163)

Этим определяется эрмитовый поляритет, которым наделено расслоение \(A^C(S) \) (его база - \(\mathbb{C}^6(2,4) \)), с матрицей

\[
\| s_{aa'} \| = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{pmatrix}.
\]

(164)
Таблица 1: Вид матрицы тензора s для действительных вложений.

П-п	Пространство	s	s в спец. базисе	Изоморфизм
1	$R^6_{(6,1)}$	$s_{kk'}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$SU(4)/\{\pm 1\} \cong SO^e(6)$
2	$R^6_{(1,6)}$	$s_{kk'}$	$\begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$	$SL(2,H)/\{\pm 1\} \cong SO^e(1,5)$
3	$R^6_{(2,4)}$	$s_{kk'}$	$\begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$	$SU(2,2)/\{\pm 1\} \cong SO^e(2,4)$
4	$R^6_{(3,3)}$	$s_{kk'}$	$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	$SL(4,R)/\{\pm 1\} \cong SO^e(3,3)$

Отсюда следует, что циклопафил циклопектора R^{ab} имеет вид

$$pf(R) := \frac{1}{2} R^{ab} R_{ab} = 2(R^{12} R^{34} - R^{13} R^{24} + R^{14} R^{23}) = T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2.$$ (165)

Вид матрицы тензора s в некотором специальном базисе для остальных случаев вложения приведен в таблице [1]

2.2.4 Инфинитезимальные преобразования

Пусть имеется $K^{\alpha \beta}(\lambda)$ - одноопараметрическое семейство, удовлетворяющее условию

$$g_{\alpha \delta} = K^{\alpha \beta}(\lambda) K^{\gamma \beta}(\lambda) g_{\beta \gamma}, \quad K^{\alpha \beta}(0) = \delta^{\alpha \beta}.$$ (166)
Инфинитезимальные преобразования, ему соответствующие, определям так

\[T^\gamma_\delta = \left. \frac{d}{d\lambda} K^\gamma_\delta(\lambda) \right|_{\lambda=0}. \] (167)

Тогда из (166) следует

\[T_{\alpha\beta} = -T_{\beta\alpha}. \] (168)

Согласно [23, т. 1, стр. 224] из (166) всегда следует (168), а из (168)

\[\exp(\lambda T^\gamma_\delta) \]

можно получить (166).

Пусть, кроме того задано однопараметрическое семейство \(S^b_a(\lambda) \)

такое, что

\[S^b_a(\lambda)S^d_c(\lambda)S^b_1(\lambda)S^d_1(\lambda)\varepsilon_{bb_1dd_1} = \varepsilon_{aa_1cc_1}, \quad S^b_a(0) = \delta^b_a. \] (170)

Продифференцируем его, предварительно полагая

\[T^b_a := \left. \frac{d}{d\lambda} S^b_a(\lambda) \right|_{\lambda=0}, \] (171)

и получим

\[\varepsilon_{b[a_1cc_1]T^b_a} = 0 \quad \Leftrightarrow \quad T^a_a = 0. \] (172)

Верно обратное. Пусть

\[S^b_a(\lambda) := \exp(\lambda T^b_a), \] (173)

тогда будет выполнено следующее тождество

\[S^b_a(\lambda)S^d_c(\lambda)S^b_1(\lambda)S^d_1(\lambda)\varepsilon_{bb_1dd_1} = \]

\[= \exp(\lambda T^b_a)\exp(\lambda T^d_c)\exp(\lambda T^b_1)\exp(\lambda T^d_1)\varepsilon_{bb_1dd_1} = \] (174)

\[= \det(\exp(\lambda T^b_a))\varepsilon_{aa_1cc_1} = \exp(\lambda tr(T^b_a))\varepsilon_{aa_1cc_1} = \varepsilon_{aa_1cc_1}. \]

Поскольку

\[K^\alpha_\beta(\lambda) = \frac{1}{4} \eta^a_{\alpha a_1} \eta^b_{\beta bb_1} 2S^b_a(\lambda)S^b_1(\lambda), \] (175)
то дифференцируя по λ, полагая $\lambda = 0$ и опуская верхний индекс с помощью метрического тензора $g_{\alpha\beta}$, получим
\[T_{\alpha\beta} = \frac{1}{2} \eta^a_{\alpha a_1} \eta_{\beta b_1} (T^b_a \delta_{a_1}^{b_1} + T_{a_1}^{b_1} \delta_a^b) = A_{\alpha\beta}^a T_a^b. \tag{176} \]

Теперь видна и цель этого пункта. На самом деле (176) есть алгебраическая интерпретация изоморфизма алгебр Ли $so(6, \mathbb{C}) \cong sl(4, \mathbb{C}), \tag{177}$ и определение (43) в начале этой главы вполне оправдано.

2.3 Обобщенные операторы Нордена

Если задано аналитическое комплексное риманово пространство $\mathbb{C}V^6$, которое будет являться базой касательного расслоения τ^C и расслоения Λ, то существует тензор $g_{\alpha\beta}(z^\gamma)$, который на этом пространстве является метрическим и аналитичен по z^γ (z^γ - координаты точки базы). Обозначим через $\tilde{g}_{\alpha\beta}$ значение этого тензора в некоторой точке $O(z_o^\gamma)$

\[\tilde{g}_{\alpha\beta} := g_{\alpha\beta}(z_o^\gamma). \tag{178} \]

Поскольку тензор $\tilde{g}_{\alpha\beta}$ имеет симметрическую матрицу, то она может быть приведена к диагональному виду в некотором базисе с помощью невырожденного преобразования $\hat{P}_{\alpha}^{\gamma}$

\[\hat{g}_{\alpha\beta} = \hat{P}_{\alpha}^{\gamma} \hat{\hat{g}}_{\gamma \delta} \hat{P}_{\beta}^{\delta}, \quad \hat{P}_{\alpha}^{\gamma} := P_{\alpha}^{\gamma}(z_o^\delta), \tag{179} \]

где $P_{\alpha}^{\gamma}(z^\delta)$ - аналитические функции координат точки. Но для тензора $\hat{g}_{\alpha\beta}$ будут справедливы следующие соотношения

\[\hat{g}_{\alpha\beta} = 1/4 \cdot \hat{\eta}^a_{\alpha a_1} \hat{\eta}_{\beta b_1} \varepsilon^{aa_1 bb_1}, \quad \varepsilon^{aa_1 bb_1} = \hat{\eta}^a_{\alpha a_1} \eta_{\beta b_1}^b \hat{g}_{\alpha\beta}, \tag{180} \]

где $\hat{\eta}^a_{\alpha a_1}$ - связующие операторы Нордена, удовлетворяющие соотношению (40). Тогда из (179) следует

\[g_{\alpha\beta}(z_o^\gamma) := \hat{g}_{\alpha\beta}(\hat{P}^{-1})^\gamma_\alpha (\hat{P}^{-1})^\delta_\beta = (\hat{P}^{-1})^\gamma_\alpha (\hat{P}^{-1})^\delta_\beta \hat{\eta}^a_{\alpha a_1} \hat{\eta}_{\beta b_1}^b \varepsilon_{aa_1 bb_1}, \tag{181} \]
Определим обобщенные операторы Нордена как

\[\eta^{aa_1}(z_0^\delta) := (\dot{P}^{-1})^\gamma_\alpha^a \dot{\eta}^{aa_1} \sqrt{\varepsilon^{-1}(z_0^\delta)}, \]

(182)

\[\varepsilon_{abcd}(z_0^\delta) = \varepsilon(z_0^\delta)\varepsilon_{abcd}, \quad \varepsilon_{1234}(z_0^\delta) = \varepsilon(z_0^\delta). \]

В качестве корня можно взять любой из 2 вариантов. Вообще говоря, далее «нолик» можно будет опустить, поскольку все выкладки справедливы для произвольной точки О, и при этом функции \(P^\gamma(z^\delta), \varepsilon(z_0^\delta) \) - аналитичны. Тогда из (180) будет следовать

\[g^{\alpha\beta}(z^\delta) = 1/4 \cdot \eta^{aa_1}(z^\delta)\eta^{bb_1}(z^\delta)\varepsilon^{aa_1bb_1}(z^\delta), \]

(183)

\[\varepsilon^{aa_1bb_1}(z^\delta) = \eta^{aa_1}(z^\delta)\eta^{bb_1}(z^\delta)g^{\alpha\beta}(z^\delta). \]

В дальнейшем мы будем пользоваться обобщенными операторами Нордена.
3 Связности в расслоении A^C и базой CV^6

В этой главе рассматривается два подхода к введению связности в расслоении A^C. Первый описан в монографии [23], а второй следует из теории нормализации Нордена-Нейфельда. В первом пункте как раз и рассматривается определение связности в расслоениях согласно этим теориям.

Во втором пункте рассматривается нормализация многообразия одного из двух семейств плоских образующих квадрики CQ_6, вложенной в проективное пространство CP_7. Это многообразие диффеоморфно многообразию точек самой квадрики. Рассматривая деривационные уравнения нормализованного семейства плоских образующих мы приходим к определению операторов Нордена через операторы Нейфельда. Если в расслоении A^C рассматривать в качестве метрического тензора квадривектор ε_{abcd}, кососимметричный по всем индексам, то на базе индуцируется метрический тензор $G_{\Lambda \Psi}$, что превращает многообразие плоских образующих в вещественное риманово пространство $V_{(6,6)}^{12}$ с комплексной структурой $f_{\Lambda \Psi}$. Можно перейти к комплексной реализации нашего многообразия с базой CV^6. Поставив каждой 4-мерной образующей конуса 8-мерного пространства CR^8 (т.e в проективной геометрии это как раз и будет 3-мерная образующая квадрики $CQ_6 \subset CP_7$) соответствующий слой из расслоения A^C с базой CV^6, получим, что риманова связность, введенная по формулам

$$\nabla_\alpha g_{\beta \gamma} = 0, \quad \bar{\nabla}_{\alpha'} \bar{g}_{\beta' \gamma'} = 0,$$

где $(\alpha, \beta, \ldots = 1, 2, 3, 4, 5, 6)$, единственным образом продолжается до эквиаффинной связности в расслоении $A^C(CV^6)$ вида

$$\nabla_\alpha \varepsilon_{abcd} = 0, \quad \bar{\nabla}_{\alpha'} \varepsilon_{a'b'c'd'} = 0.$$

Существование и единственность такой связности и доказывается в данной главе.

Далее рассматривается вещественная связность, индуцируемая вложением $V_{(p,q)}^6 \subset CV^6$. Такая связность должна быть согласована с инволюцией, т.e. должно быть выполнено следующее соотношение

$$\nabla_\alpha S_{\beta \gamma'} = 0, \quad \bar{\nabla}_{\alpha'} S_{\beta} \gamma' = 0.$$
Затем, используя результаты первой главы, вводится либо эрмитов поляритет, либо эрмитова инволюция в расслоении A^C. При этом указанная структура должна быть ковариантно постоянна. Из результатов этих пунктов получается битвисторное уравнение

$$\nabla^{a(b} X^{c)} = 0,$$

которое конформно-инвариантно и инвариантно при преобразованиях нормализации. Решения этого уравнения будут рассмотрены в следующей главе.

3.1 Связность в расслоении

Пусть задано расслоение R с базой $V^{2n}_{(n,n)}$ и слоями, изоморфными C^k. Определим оператор ковариантной производной, действующий в расслоении R вдоль векторного поля X как отображение двух гладких сечений слоя C^k_x

$$\nabla X s : x \mapsto \nabla X s(x),$$

где $s(x)$ - сечение. При $X = \frac{\partial}{\partial x^i}$ это даст разложение

$$\nabla \frac{\partial}{\partial x^i} s = \nabla_i s$$

$(i, j, k, ... = 1, 2n)$. При этом оператор ∇_i должен удовлетворять следующим соотношениям (которые, кстати говоря, можно положить в его определение)

$$\nabla_i (X^a + Y^a) = \nabla_i X^a + \nabla_i Y^a,$$

$$\nabla_i (fX^a) = f\nabla_i X^a + X^a \nabla_i f,$$

$$\nabla_i (X^a Y^b) = Y^a \nabla_i X^a + X^a \nabla_i Y^b,$$

$$\nabla_i X^a + \nabla_i Y^b = \nabla_i X^a, \quad \nabla_i X^b = \nabla_i X^a,$$

$$\nabla_i k = 0,$$

$$\nabla_i (g + h) = \nabla_i g + \nabla_i h,$$

$$\nabla_i (gh) + g\nabla_i h + h\nabla_i g$$

$(a, b, c, ..., f = 1, n)$. При этом k, g, h - аналитические функции, $k = const$; X^a, Y^a - векторы слоя C^k_x, а X^a, Y^a - ковекторы двойственного пространства C^{*k}_x. Сечение $s(x)$ может быть разложено по базису $s_a(x)$ слоя C^k_x

$$s = s^a s_a$$

(187)
так, что коэффициенты связности определяются из следующего уравнения
\[\nabla_i s_a = \Gamma_{ia}^c s_c. \] (188)
Тогда дифференцирование можно осуществить следующим образом
\[\nabla_i X^a = \partial_i X^a + \Gamma_{ic}^a X^c, \] (189)
при этом повторная ковариантная производная запишется в следующем виде
\[\nabla_i \nabla_j X^a = \partial_i \nabla_j X^a - \Gamma_{ij}^k \nabla_k X^a + \Gamma_{ic}^a X_j^c, \] (190)
где \(\Gamma_{ij}^k \) определяют связность в касательном расслоении.

Тензором кручения назовем тензор \(T_{ij}^k \), удовлетворяющий соотношению
\[2\nabla_i \nabla_j f = T_{ij}^k \nabla_k f. \] (191)
Тензором кривизны назовем тензор \(R_{ijkl} \), удовлетворяющий следующему соотношению
\[(2\nabla_i \nabla_j f - T_{ij}^k \nabla_k f)X^i = R_{ijkl}X^j. \] (192)
Если кручение нулевое, то соответствующий оператор \(\nabla_i \) назовем симметричным. Пусть \(\nabla_i \) - симметричный оператор, а \(\tilde{\nabla}_i \) - произвольный. Тогда
\[(\tilde{\nabla}_i - \nabla_i) f = 0, \] (193)
и можно определить такой тензор \(Q_{ib}^a \), называемый тензором деформации, что
\[(\tilde{\nabla}_i - \nabla_i) X^a = Q_{ib}^a X^b; \quad (\tilde{\nabla}_i - \nabla_i) X_a = -Q_{ia}^b X_b; \quad (\tilde{\nabla}_i - \nabla_i) X^a' = Q_{ib'}^a X^{b'}; \quad (\tilde{\nabla}_i - \nabla_i) X'_a = -Q_{ia'}^b X'_b. \] (194)
Если теперь \(R = \tau^\mathbb{R}(V^{2n}_{(n,n)}) \) есть касательное расслоение, то кручение оператора \(\tilde{\nabla}_i \) будет иметь вид
\[\tilde{T}_{ij}^k = 2Q_{[ij]}^k, \] (195)
где \(Q_{ij}^k \) - тензор деформации в касательном расслоении.
3.1.1 Нормализация (спинорная) квадрики \(\mathbb{C}Q_6 \) в \(\mathbb{C}P_7 \)

Рассмотрим невырожденную квадрику \(\mathbb{C}Q_6 \), вложенную в проективное пространство \(\mathbb{C}P_7 \). Она может быть описана уравнением

\[G_{AB}X^A X^B = 0 \iff (X, X) = 0 \ (A, B, ... = \overline{1, 8}). \] (196)

На основании принципа тройственности Картана [3, стр. 175] многообразие точек квадрики диффеоморфно многообразию трехмерных плоских образующих, составляющих 2 семейства (таким образом мы имеем 3 изоморфных друг другу многообразия). Базисные точки этих образующих

\[X_a = (X_a^A) \quad (a, b, ..., i, j, ..., p, q, ... = \overline{1, 4}) \] (197)

определяют уравнения

\[(X_a, X_b) = 0. \] (198)

Определим плоскую образующую ее матричной координатой \(Z = (Z_a^p) \) [33]

\[X_a := A_a + B_p Z_a^p, \quad (A_a, B_p) := d_{ap}, \quad B^a := d^{ap} B_p, \] (199)

тогда из (198) следует

\[Z_{ab} = -Z_{ba}, \quad Z_{ab} := d_{ap} Z_a^p. \] (200)

Это означает, что \(X_a \) зависят от 6 комплексных параметров. Как известно [11], нормализация многообразия плоских образующих квадрики определяется заданием такого вещественного дифференциального соответствия между ее плоскими образующими максимальной размерности

\[f : \mathbb{C}P_3(X_a) \to \mathbb{C}P_3(Y_p), \] (201)

что образующей \(\mathbb{C}P_3(X_a) \) соответствует плоскость \(\mathbb{C}P_3(Y_p) \), не пересекающая первую. Для 6-мерной квадрики эти плоские образующие необходимо принадлежать одному семейству. Мы будем требовать, чтобы нормализация была гармонической [22, стр. 209]. В локальных координатах нормализация определяется параметрическими уравнениями

\[X_a = X_a(u^\Lambda), \quad Y_a = Y_a(u^\Lambda) \ (\Lambda, \Psi, ... = \overline{1, 12}). \] (202)
При этом выполнены соотношения
\[(X_a, X_b) = 0, \quad (Y_p, Y_q) = 0, \quad (X_a, Y_p) = c_{ap}.\] (203)

Ввиду невырожденности \(c_{ap}\) мы можем определить
\[Y^a := c^{ap}Y_p, \quad c^{ap}c_{pb} = \delta^{a}_b, \quad (X_a, Y^b) = \delta^{a}_b.\] (204)

3.1.2 Операторы Нейфельда

Деривационные уравнения нормализованного семейства плоских образующих имеют вид \[Ω\]
\[\begin{cases} \nabla_\Lambda X_a = Y^b M_{\Lambda ab}, \\ \nabla_\Lambda Y^b = X_a N_\Lambda^{\ ab}. \end{cases}\] (205)

Далее, из (203) вытекает
\[M_{\Lambda(ab)} = 0, \quad N_\Lambda^{\ (ab)} = 0, \quad \Gamma_\Lambda^a = \tilde{\Gamma}_\Lambda^a,\] (206)

где \(\Gamma_\Lambda^a\) - коэффициенты конформно-псевдоевклидовой связиности в комплексном векторном расслоении, база которого есть многообразие плоских образующих. Отметим, что комплексное векторное расслоение метризуемо в том смысле, что в нем можно задать поле метрического 4-вектора \(\varepsilon_{abcd}\), и поскольку нормализация гармоническая, то определенная выше связность - эквиаффинна, а 4-вектор \(\varepsilon_{abcd}\) ковариантно постоянен. Это позволяет использовать его для переброски индексов. Операторы \(M^a_{\Lambda b}\) есть связующие операторы, которые каждому бивектору слоя ставят в соответствие вещественный вектор касательного расслоения
\[V^{ab} := M^a_{\Lambda b} V^\Lambda.\] (207)

Это соответствие будет взаимнооднозначно. Отсюда следует, что можно определить
\[\begin{cases} M^a_{\Lambda b} M^b_{\Lambda c} = \delta^a_{\ cd}, \\ \det \left| \begin{array}{c} M^a_{\Lambda b} \end{array} \right| \neq 0. \end{cases}\] (208)

Тогда оператор
\[\triangle_\Lambda^\Psi = \frac{1}{2} (\delta_\Lambda^\Psi + if_\Lambda^\Psi) = \frac{1}{2} M_{\Lambda ab} M_{\Psi ab}.\] (209)
есть единичный аффинор Нордена [17] такой, что

$$f^\Lambda_\Psi M^{\Lambda cd} = -iM^{\Psi cd}, \quad (210)$$

gде f^Λ_Ψ есть оператор комплексной структуры

$$f^2 = -E. \quad (211)$$

Определим согласно работе [10] операторы m^Λ_α таким образом, что

$$\begin{cases} m^\Lambda_\alpha m^\beta_\alpha = \delta^\alpha_\beta, \\
m^\Lambda_\alpha \overline{m}^\beta_\alpha = 0, \\
det \left| m^\alpha_\Lambda \right| \neq 0, \end{cases} \quad (212)$$

и тогда

$$\Delta^\Lambda_\Psi = \frac{1}{2}(\delta^\Lambda_\Psi + if^\Lambda_\Psi) = m^\alpha_\Lambda m^\Psi_\alpha \quad (\alpha, \beta, \ldots = 1, 6) \quad (213)$$

есть все тот же единичный аффинор Нордена [17]. При этом

$$f^\Lambda_\Psi m^\Lambda_\alpha = -im^\Psi_\alpha. \quad (214)$$

Это означает, что верно следующее разложение

$$m^\Lambda_\alpha = \frac{1}{2}\eta^{ab}_\alpha M^\Lambda_{ab}. \quad (215)$$

dля некоторых $\eta^{ab}_\alpha = -\eta^{ba}_\alpha$. Для произвольного тензора A^Λ_Ψ будет иметь место следующее разложение

$$\begin{cases} a_\alpha^\beta = m^\Lambda_\alpha m^\Psi_\beta A^\Lambda_\Psi, \\
a^\Lambda_\alpha^\beta = \overline{m}^\Lambda_\alpha m^\Psi_\beta A^\Lambda_\Psi, \\
a^{abcd} = M^\Lambda_{ab} M^\Psi_{cd} A^\Lambda_\Psi, \\
a^{a'b'cd} = \overline{M}^\Lambda_{a'b'} M^\Psi_{cd} A^\Lambda_\Psi. \end{cases} \quad (216)$$

При этом метрическому 4-вектору будет соответствовать метрический тензор G^Λ_Ψ так, что

$$\begin{cases} g_\alpha^\beta = m^\Lambda_\alpha m^\Psi_\beta G^\Lambda_\Psi, \\
g^\Lambda_\alpha^\beta = 0, \\
e^{abcd} = M^\Lambda_{ab} M^\Psi_{cd} G^\Lambda_\Psi, \\
e^{a'b'cd} = 0. \end{cases} \quad (217)$$

Обратные соотношения имеют вид

$$G^\Lambda_\Psi = \frac{1}{4}(M^\Lambda_{ab} m^{cd}_\Psi \varepsilon_{abcd} + \overline{M}^\Lambda_{a'b'} \overline{M}^{c'd'}_\Psi \varepsilon^{a'b'c'd'}),$$

$$\eta^{a'b'}_\alpha = m^\alpha_\Lambda M^\Lambda_{ab}, \quad \overline{\eta}^{a'b'}_\alpha = \overline{m}^\alpha_\Lambda \overline{M}^\Lambda_{a'b'}, \quad (218)$$

$$\eta^\alpha_\Lambda = \overline{m}^\alpha_\Lambda M^\Lambda_{ab} \equiv 0, \quad \overline{\eta}^\alpha_\Lambda = m^\alpha_\Lambda \overline{M}^\Lambda_{a'b'} \equiv 0.$$
Последняя пара уравнений появляется ввиду аналитичности M^Λ_{ab}. Отсюда с учетом (208), (212), (215) будет следовать

$$\eta^\alpha_{ab} \eta_{cd} = M^\Lambda_{ab} M^\Lambda_{cd} = \delta^\Lambda_{ab}, \quad \frac{1}{4} \eta^\alpha_{ab} \eta_{cd} \delta^\Lambda_{ab} = \delta^\alpha_{ab}. \quad (219)$$

Таким образом многообразие плоских образующих квадрики $\mathbb{C}Q_6$ снабжено метрическим тензором G_Λ и поэтому диффеоморфно псевдориманову вещественному пространству V_{12}^{12} с комплексной структурой $f_\Lambda \Psi$.

3.1.3 Вещественная и комплексная реализации связности

Перейдем к построению более общей связности. Назовем две связности эквивалентными, если они определяют один и тот же параллельный перенос вдоль любой кривой базы. Вещественная и комплексная реализации даны согласно [7, с. 169-178].

Теорема 1. Пусть $V_{(n,n)}^{2n}$ - вещественное псевдориманово пространство с комплексной структурой, а $\mathbb{C}V^n$ - комплексное аналитическое риманово пространство: комплексная реализация $V_{(n,n)}^{2n}$. Тогда следующие два определения эквивалентны (определяют одну и ту же связность)

1. В касательном расслоении $\tau^R(V_{(n,n)}^{2n})$ существует риманова связность без кручения такая, что тензор m^Λ_{α} ковариантно постоянен

$$\nabla_\Lambda G_{\Theta\Psi} = 0, \quad \nabla_\Lambda m^\Psi_{\alpha} = 0, \quad \nabla_\Lambda \bar{m}^\Psi_{\alpha'} = 0. \quad (220)$$

2. В касательном расслоении $\tau^C(\mathbb{C}V^n)$ существует риманова связность без кручения такая, что тензор m^Ψ_{α} ковариантно постоянен

$$\begin{align*}
\begin{cases}
\nabla_\alpha g_{\beta\gamma} = 0, \\
\bar{\nabla}_\alpha g_{\beta\gamma} = 0,
\end{cases}
\quad \begin{cases}
\nabla_\alpha \bar{g}_{\beta'\gamma'} = 0, \\
\bar{\nabla}_\alpha \bar{g}_{\beta'\gamma'} = 0,
\end{cases}
\quad \begin{cases}
\nabla_\beta m^\Psi_{\alpha} = 0, \\
\bar{\nabla}_\beta m^\Psi_{\alpha} = 0,
\end{cases}
\quad (222)
\end{align*}$$

и сделано определение

$$\nabla_\alpha := m^\Lambda_{\alpha} \nabla_\Lambda, \quad \nabla_\alpha' := \bar{m}^\Lambda_{\alpha} \nabla_\Lambda. \quad (224)$$
Доказательство.
Во-первых. Пусть связность 1). существует, тогда домножим (221) на \(m_\beta^\Lambda \), то с учетом определения (223) получим
\[
\nabla_\Lambda m_\alpha \Psi = 0,
\]
\[
0 = m_\beta^\Lambda \nabla_\Lambda m_\alpha \Psi = \nabla_\beta m_\alpha \Psi,
\]
\[
0 = \bar{m}_\beta^\Lambda \nabla_\Lambda m_\alpha \Psi = \nabla_\beta m_\alpha \Psi.
\]
Обратно. Пусть выполнено (223), тогда с учетом определений (212) и (213)
\[
\nabla_\alpha := m_\alpha^\Lambda \nabla_\Lambda,
\]
\[
m^\alpha_\Psi \nabla_\alpha = \Delta_\Psi^\Lambda \nabla_\Lambda \iff \bar{m}^\alpha_\Psi \bar{\nabla}_\alpha = \bar{\Delta}^\Lambda_\Psi \nabla_\Lambda.
\]
Сложим два последних уравнения и получим
\[
\nabla_\Lambda = (\Delta_\Psi^\Lambda + \bar{\Delta}^\Lambda_\Psi) \nabla_\Lambda = m^\alpha_\Lambda \nabla_\alpha + \bar{m}^\alpha_\Lambda \bar{\nabla}_\alpha.
\]
Тогда из условий (223) следует
\[
\nabla_\Lambda m^\beta_\Psi = m^\alpha_\Lambda \nabla_\alpha m^\beta_\Psi + \bar{m}^\alpha_\Lambda \bar{\nabla}_\alpha m^\beta_\Psi = 0.
\]
Во-вторых. Поскольку из (221) или из (223) следует ковариантное постоянство оператора комплексной структуры из-за выполнения (214), то согласно [4, т. 2, с. 135-139] из этого вытекает существование аффинной связности в касательном расслоении \(\tau^C(CV_n) \).
Рассматривая риманову связность без кручения получим, что если известна связность вида 1)., то можно определить символы связности вида 2)., расписав условие (221)
\[
\Gamma_\Lambda^\beta_\alpha := \Gamma_\Lambda^\theta \Psi m_\alpha^\theta \Psi m^\beta_\Psi + m^\beta_\Psi \partial_\Lambda m_\alpha \Psi,
\]
\[
\bar{\Gamma}_\Lambda^\beta_\alpha := \bar{\Gamma}_\Lambda^\theta \Psi \bar{m}_\alpha^\theta \Psi \bar{m}^\beta_\Psi + \bar{m}^\beta_\Psi \partial_\Lambda \bar{m}_\alpha \Psi.
\]
А если известна связность вида 2)., то можно определить символы связности вида 1)., расписав условие (223)
\[
\Gamma_\beta^\theta \Psi := \Gamma_\beta^\alpha \gamma m^\alpha_\theta m_\gamma \Psi + \bar{\Gamma}_\beta^\alpha \gamma_\theta \bar{m}^\alpha_\theta \bar{m}_\gamma \Psi - m^\alpha_\theta \partial_\beta m_\alpha \Psi - \bar{m}^\alpha_\theta \partial_\beta \bar{m}_\alpha \Psi,
\]
\[
\bar{\Gamma}_\beta^\theta \Psi := \Gamma_\beta^\alpha \gamma m^\alpha_\theta m_\gamma \Psi + \bar{\Gamma}_\beta^\alpha \gamma_\theta \bar{m}^\alpha_\theta \bar{m}_\gamma \Psi - m^\alpha_\theta \partial_\beta m_\alpha \Psi - \bar{m}^\alpha_\theta \partial_\beta \bar{m}_\alpha \Psi.
\]
При этом выполнено

\[\Gamma_\Lambda \Psi := \Gamma_\beta \Theta \Psi m_\beta^\Lambda + \Gamma_\beta' \Theta \Psi \bar{m}_\beta'^\Lambda, \quad \Gamma_\beta \Theta = \Gamma_\Lambda \Theta m_\beta^\Lambda, \quad \Gamma_\beta' \Theta = \Gamma_\Lambda \Theta \bar{m}_\beta'^\Lambda, \]
\[\partial_\beta = m_\beta \Psi \partial_\Psi, \quad \bar{\partial}_\beta' = \bar{m}_\beta' \Psi \partial_\Psi, \quad \partial_\Lambda = m_\beta \Lambda \partial_\beta + \bar{m}_\beta' \Lambda \bar{\partial}_\beta'. \]

(231)

В-третьих. Из (212) и (213) следует

\[g_{\alpha \beta} = \Theta G_{\Psi \Lambda} m_\alpha \Psi m_\beta^\Lambda, \]
\[G_{\Theta \Psi} \Delta_\Lambda \Theta \Delta_\Psi \gamma = m_\alpha \Lambda m_\beta^\Psi g_{\alpha \beta}, \]
\[\frac{1}{2} (G_{\Lambda \Psi} + iG_{\Theta (\Lambda f_\Psi)} \Theta) = m_\alpha \Lambda m_\beta^\Psi g_{\alpha \beta}, \]
\[\frac{1}{2} (G_{\Lambda \Psi} - iG_{\Theta (\Lambda f_\Psi)} \Theta) = \bar{m}_\alpha' \Lambda \bar{m}_\beta' \Psi g_{\alpha' \beta'}. \]

(232)

Поскольку риманова связность без кручения усло-вия 1). единственна, то и единственна связность условия 2).

Теорема 2. Пусть в качестве базы расслоения задано вещественное псевдориманово пространство \(V_{12}^{(6,6)} \). Тогда две связности без кручения, заданные в расслоениях \(\tau^R(V_{12}^{(6,6)}) \) и \(A^C \) эквивалентны:

1. Риманова связность, заданная в расслоении \(\tau^R(V_{12}^{(6,6)}) \) условием

\[\nabla_\Lambda G_{\Psi \Theta} = 0. \]

(234)

2. Риманова связность, заданная в расслоении \(A^C \) условиями

\[\nabla_\Lambda \varepsilon_{abcd} = 0, \quad \nabla_\Lambda \bar{\varepsilon}_{a'b'c'd'} = 0. \]

(235)

При этом коэффициенты связиности 2). однозначно определяются из условия

\[\nabla_\Lambda M_\Psi^{ab} = 0, \quad \nabla_\Lambda M_\Psi^{a'b'} = 0. \]

(236)

Доказательство. Риманова связность без кручения, заданная условию (234) в касательном расслоении всегда существует и единственна. Распишем первое условие (236)

\[\nabla_\Lambda M_\Psi^{aa} = \partial_\Lambda M_\Psi^{aa} - \Gamma_{\Lambda \Psi}^{\theta} M_\Theta^{aa} + \Gamma_{\Lambda c}^{a} M_\Psi^{ca} + \Gamma_{\Lambda a}^{c1} M_\Psi^{ac} = 0. \]

(237)
Домножим это уравнение на \(M_\Psi^{a_1} \)

\[
\Gamma_{\Lambda c}^{a_1} = -\frac{1}{2} (M_\Psi^{a_1} \partial_\Lambda M_\Psi^{a_1} - \Gamma_{\Lambda c}^{a_1} M_\Theta^{a_1} M_\Psi^{a_1} + \Gamma_{\Lambda c}^{a_1} \delta_{c_1}^{a_1}).
\] (238)

Кроме того, из условий (235) и (208) следует

\[
\frac{1}{24} M_\Psi^{ab} M_\Psi^{cd} \partial_{(\Lambda} (M_\Theta^{ab} M_\Theta^{cd}) = \frac{1}{24} \varepsilon^{abcd} \partial_{\Lambda} \varepsilon_{abcd} = \\
= \frac{1}{24} \varepsilon^{abcd} (\nabla_\Lambda \varepsilon_{abcd} + 4 \Gamma_{\Lambda \{a} \varepsilon_{b|k|bcd\}) = \frac{1}{6} \varepsilon^{abcd} \Gamma_{\Lambda c}^{k} \varepsilon_{k|b|cd} = \Gamma_{\Lambda k}^{k}
\] (239)

Исходя из этого, можно положить уравнение (238) в определение символов связности 2).

Пусть в расслоении \(A^C \) существует еще один оператор симметричной ковариантной производной \(\tilde{\nabla}_\Lambda \) такой, что

\[
\tilde{\nabla}_\Lambda \varepsilon_{abcd} = 0 \Rightarrow (\tilde{\nabla}_\Lambda - \nabla_\Lambda) \varepsilon_{abcd} = 0 \Leftrightarrow Q_{\Lambda k}^{k} = 0,
\] (240)

где тензор \(Q_{\Lambda a}^{b} \) - тензор деформации, определенный в расслоении \(A^C \). Пусть тензор \(Q_{\Lambda \Psi}^{\Theta} \) - тензор деформации в касательном расслоении \(\tau^\mathbb{R} (V_{12}^{(6,6)}) \). Рассмотрим действие таких операторов на бивекторах \(R^{ab} = M_\Psi^{ab} r_\Psi \)

\[
(\tilde{\nabla}_\Lambda - \nabla_\Lambda) R^{ab} = (Q_{\Lambda k}^{a} \delta_t^{b} - Q_{\Lambda k}^{b} \delta_t^{a}) R^{kt} = \\
= M_\Psi^{ab} (\tilde{\nabla}_\Lambda - \nabla_\Lambda) r_\Psi = M_\Psi^{ab} Q_{\Lambda \Theta}^{\Psi} r_\Psi,
\] (241)

Отсюда следует цепочка тождеств

\[
M_\Psi^{ab} Q_{\Lambda \Theta}^{\Psi} r_\Psi = 2 Q_{\Lambda [k}^{a} \delta_t^{b]} R^{kt},
\]
\[
M_\Psi^{ab} Q_{\Lambda \Theta}^{\Psi} r_\Psi = 2 Q_{\Lambda [k}^{a} \delta_t^{b]} M_\Theta^{k|t} r_\Psi,
\]
\[
M_\Psi^{ab} Q_{\Lambda \Theta}^{\Psi} = M_\Theta^{k|t} 2 Q_{\Lambda [k}^{a} \delta_t^{b]} = 2 M_\Theta^{k|b} Q_{\Lambda k}^{a},
\] (242)

\[
Q_{\Lambda \Theta}^{\Psi} = M_\Theta^{k|b} M_\Psi^{ab} Q_{\Lambda k}^{a} + M_\Theta^{k|b'} M_\Psi^{a|b'} Q_{\Lambda k'}^{a'} = \\
= - M_\Psi^{k|b} M_\Theta^{ab} Q_{\Lambda k}^{a} - M_\Psi^{k|b'} M_\Theta^{a|b'} Q_{\Lambda k'}^{a'}.
\]
Откуда получаем
\[Q_{ΛΨ} = -Q_{ΛΨ}. \] (243)
В отсутствии кручения имеем
\[Q_{ΛΨ} = Q_{ΘΛΨ}, \] (244)
поэтому
\[Q_{ΛΨ} = 0, \] (245)
и это означает единственность связности 2).

Следствие 1. Пусть в качестве базы расслоения задано комплексное аналитическое риманово пространство \(CV^6 \). Тогда две связности без кручения, заданные в расслоениях \(\tau^C(CV^6) \) и \(A^C \) эквивалентны:

1. Риманова аналитическая связность, заданная в расслоении \(\tau^C(CV^6) \) условиями
 \[\nabla_α g_{βγ} = 0, \quad \bar{\nabla}_{α'} g_{β'γ'} = 0. \] (246)

2. Риманова аналитическая связность, заданная в расслоении \(A^C \) условиями
 \[\nabla_α \bar{ε}_{abcd} = 0, \quad \bar{\nabla}_{α'} \bar{ε}_{d'b'c'd'} = 0. \] (247)

При этом коэффициенты связности 2) однозначно определяются из условия

\[\nabla_α \eta_{β}^{ab} = 0, \quad \bar{\nabla}_{α'} \bar{η}_{β'}^{d'b'} = 0. \] (248)

Доказательство. Доказательство следует из теорем 1 и 2, аналитичности (218) и уравнения (214). В частности, аналитичность \(η_{β}^{ab} \) означает \(\partial_{α'} η_{β}^{ab} ≡ 0 \), а из уравнения (214) следует \(Γ_{α'β}^{γ} ≡ 0 \) \(\square \)
3.1.4 Инволюция в \mathbb{CP}_7

Пусть теперь в \mathbb{CP}_7 нам задана инволюция в смысле [10]

$$\bar{S}_{A'}^B S_B^{D'} = \delta_{A'}^{D'}, \tag{249}$$

тогда условие действительности точки X^A примет вид

$$S_A^{B'} \bar{X}^A = X^{B'}. \tag{250}$$

Потребуем, чтобы эта инволюция определяла вложение действительной квадрики в комплексную, что равносильно тому, что определяющий ее тензор также будет самосопряжен относительно этой инволюции. Тогда плоские образующие максимальной размерности вещественной квадрики должны удовлетворять условиям

1) $\bar{S}_{A'}^B \bar{X}^{A'} s_{a'}^a = X_a^B$, 2) $\bar{S}_{A'}^{B'} \bar{X}^{A'} s_{aa'} = X^{aB}$. \tag{251}

Здесь тензоры $s_{a'}^a$ и $s^{a'a}$ определяют в комплексном расслоении соответственно эрмитову инволюцию и эрмитов поляритет соответственно. Эти два случая возникают из-за того, что у нас в расслоении со слоями, изоморфными \mathbb{C}^4, нет тензора, с помощью которого можно поднимать и опускать одиночные индексы. Первый случай означает, что сама образующая и сопряженная ей принадлежат одному семейству; во-втором же случае указанные образующие представляют два различных семейства. На основании результатов второй главы этим исчерпываются все возможные случаи вещественного вложения. Из (120), (249) - (251) следует

1) $s_{a'}^a \bar{s}_{a}^b = \pm \delta_{a}^b$, 2) $s_{aa'} \bar{s}_{a'b} = \pm \delta_{a'b}$. \tag{252}

Далее, будем рассматривать только случай 2), как наиболее интересный с точки зрения физики [23, т. 2, с. 86]. Случай 1) рассматривается аналогично, и его мы опустим. Тогда

$$\bar{X}^{b'} = \bar{s}^{b'a} X_a. \tag{253}$$

Поэтому мы можем написать эквивалентные (203), (204) выражения

$$(X_a, \bar{X}^{b'}) = 0, \quad (Y_p, \bar{Y}^{q'}) = 0, \quad (X_a, \bar{Y}_{b'}) = s_{ab'}. \tag{254}$$
Положим
\[
\begin{align*}
\nabla_\Lambda \bar{x}^{a'} & = \bar{y}^{b'} \bar{M}^a_{\Lambda b'}, \\
\nabla_\Lambda \bar{y}_{b'} & = \bar{x}^{a'} \bar{N}_{\Lambda a'b'},
\end{align*}
\]
(255)
точка из (254) будут следовать тождества
\[
\bar{M}_{\Lambda a'b'} = -\frac{1}{2} s_{ca'} s_{db'} \varepsilon^{cdab} M_{\Lambda ab}, \quad \nabla_\Lambda s_{ab'} = 0.
\]
(256)
Поэтому равенством
\[
S^\Theta_\Lambda S^\Psi_\Theta = \frac{1}{2} (M_{\Lambda ab} M^\Theta_{\Psi c'd'} s^{c'a} s^{d'b} + \bar{M}_{\Lambda a'b'} M^\Theta_{cd} s^{ca'} s^{db'})
\]
(257)
мы определяем вещественную инволюцию вида
\[
S^\Theta_\Lambda S^\Psi_\Psi = \delta^\Lambda_\Psi, \quad \bar{M}_{\Lambda a'b'} = -S^\Psi_\Lambda \bar{M}_{\Psi a'b'}, \quad S^\Theta_\Lambda f^\Theta_\Lambda = -f^\Lambda_\Theta S^\Lambda_\Theta.
\]
(258)
Кроме того можно определить еще одну инволюцию (согласно [10])
\[
\begin{align*}
S^\beta_\alpha &= 0, \quad S^\gamma_\beta = m^\Lambda_\alpha \bar{m}^{\beta'}_\Psi S^\Psi_\Lambda, \\
S^\gamma_\beta' &= \delta^\gamma_\alpha.
\end{align*}
\]
(259)
3.1.5 Риманова связность, согласованная с инволюцией
Следствие 2. Пусть в качестве базы расслоения задано комплексное аналитическое риманово пространство \(CV^6\). Тогда две вещественные связности без кручения, заданные в расслоениях \(\tau^C(CV^6)\) и \(A^C(S)\) эквивалентны

1. Риманова вещественная связность, заданная в расслоении \(\tau^C(CV^6)\) условиями
\[
\nabla_\alpha g_{\beta\gamma} = 0, \quad \nabla_\alpha S^\beta_\gamma = 0
\]
(260)
(такую риманову связность назовем согласованной с инволюцией).

2. Риманова вещественная связность, заданная в расслоении \(A^C(S)\) условиями
\[
\nabla_\alpha \varepsilon_{abcd} = 0, \quad \nabla_\alpha s_{ab'd'} = 0.
\]
(261)
При этом коэффициенты связности 2), однозначно определяются из условия
\[
\nabla_\alpha \eta^a_\beta = 0.
\]
(262)
Доказательство. В условиях следствия 1 рассмотрим связность 1), заданную условиями (248), тогда из условий вещественности следует

\[S_\beta \gamma \partial_\gamma' = \partial_\beta, \quad (263) \]

посому из ковариантного постоянства тензора инволюции получим

\[\nabla_\gamma = S_\gamma \beta' \nabla_{\beta'}, \quad (264) \]

что определит вещественную связность. Если положить

\[s_{\alpha \beta \gamma'} := \eta_{\alpha \beta} \eta_{\beta \gamma} S_{\alpha \beta'}, \quad (265) \]

то из (262) и (260) вытекает

\[\nabla_\alpha s_{\alpha \beta \gamma'} = 0. \quad (266) \]

Следствие 3. Пусть в качестве базы расслоения задано вещественное риманово пространство \(V_{(2,4)}^6 \). Тогда две вещественные связности без кручения, заданные в расслоениях \(\tau^R(V_{(2,4)}^6) \) и \(A^C(S) \) эквивалентны

1. Риманова вещественная связность, заданная в расслоении \(\tau^R(V_{(2,4)}^6) \) условиями

\[\nabla_i g_{jk} = 0. \quad (267) \]

2. Риманова вещественная связность, заданная в расслоении \(A^C(S) \) условиями

\[\nabla_i \varepsilon_{abcd} = 0, \quad \nabla_i s_{\alpha \beta'} = 0. \quad (268) \]

При этом коэффициенты связи 2) однозначно определяются из условия

\[\nabla_i \eta_{ij}^{\alpha \beta} = 0. \quad (269) \]
Доказательство. Это следствие вытекает из предыдущего следствия при условии ковариантного постоянства оператора вложения \(H_{i}^{\alpha} \), что определит соответствующие коэффициенты связности. Нам остается только доказать ковариантное постоянство тензора эрмитово-го поляритета. Поскольку

\[
\nabla_{\alpha} s_{abc} d^{e} = \nabla_{\alpha} s_{[a|c|} s_{b]d^{e}} = 0, \quad (270)
\]

развертывая его по правилу Лейбница и свертывая с \(s^{ac'} \), получим

\[
\nabla_{\alpha} s_{bd^{e}} = -\frac{1}{2} s_{bd^{e}} s^{ac'} \nabla_{\alpha} s_{ac'}. \quad (271)
\]

После свертки с \(s^{bd^{e}} \) этого уравнения окончательно имеем

\[
 s^{ac'} \nabla_{\alpha} s_{ac'} = 0, \quad \nabla_{\alpha} s_{ac'} = 0. \quad (272)
\]

3.1.6 Битвисторное уравнение

Из выполнения (205), (208), (215), полагая

\[
\nabla_{ab} := \eta^{\alpha}_{ab} \nabla_{\alpha}, \quad (273)
\]

получим

\[
\nabla_{\alpha} X_{a} = Y^{b} \eta_{aab} \iff \nabla_{cd} X_{a} = Y^{b} \epsilon_{cdab} \quad (274)
\]

tак, что будут выполнены уравнения

\[
\nabla_{c(d} X_{a)} = 0, \quad \nabla^{c(d} X^{a)} = 0, \quad (275)
\]

последнее из которых мы назовем битвисторным уравнением. С помощью этого уравнения можно исследовать конформную структуру пространств вида \(\mathbb{CR}^{6} \). Следует отметить, что битвисторное уравнение не меняется при конформных преобразованиях метрики и инвариантно при преобразованиях нормализации в смысле [11], [13].

Доказательство. Действительно, положим, что конформное преобразование метрики имеет вид

\[
g_{\alpha\beta} \mapsto \hat{g}_{\alpha\beta} = \Omega^{2} g_{\alpha\beta}. \quad (276)
\]
Тогда из формулы
\[\hat{\nabla}_\alpha \hat{\varepsilon}_{abcd} = \nabla_\alpha \varepsilon_{abcd} = 0 \] (277)
следует
\[0 = \hat{\nabla}_\alpha (\Omega^2 \varepsilon_{abcd}) = \varepsilon_{abcd} (2\Omega \nabla_\alpha \Omega - \Omega^2 \Theta_{\alpha k}^k) = 0. \] (278)
Положим
\[B_\alpha := \frac{1}{2} \Theta_{\alpha k}^k. \] (279)
Поскольку \(\nabla_\alpha \) и \(\hat{\nabla}_\alpha \) симметричны, то выполнено
\[Q_{\alpha\beta\gamma} = Q_{\beta\alpha\gamma} \] (280)
в касательном расслоении \(\tau^C(CV^6) \). Тогда в расслоении \(A^C \) выполнено
\[\Theta_{c_1 a}^b = B_{ca} \delta_{c_1}^b - B_{c_1 a} \delta_c^b, \quad B_{ab} = -B_{ba}. \] (281)
Откуда
\[B_\alpha = \frac{1}{2} \eta_{\alpha}^{ab} B_{ab} = \Omega^{-1} \nabla_\alpha \Omega. \] (282)
Положим
\[\hat{X}^c = X^c. \] (283)
Тогда с учетом
\[\hat{\nabla}_{ab} X^c = \nabla_{ab} X^c + 2B_{[a|k|} \delta_{b]}^c X^k \] (284)
получим
\[\hat{\nabla}^{a(b} \hat{X}^{c)} = \Omega^{-2} \nabla^{a(b} X^{c). \] (285)
Это значит, что битвисторное уравнение конформно-инвариантно. \(\square \)
4 Теоремы о тензоре кривизны. Каноническая форма бивекторов 6-мерных (псевдо-) евклидовых пространств $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q

Так как введенная в касательном расслоении к CV_6 связность удовлетворяет условию

$$\nabla_\alpha g_{\gamma\delta} = 0, \quad \bar{\nabla}_\alpha \bar{g}_{\gamma\delta} = 0,$$

а связность в расслоении A^C определяется из уравнений

$$\nabla_\alpha \eta_{\beta}^{ab} = 0, \quad \bar{\nabla}_\alpha \bar{\eta}_{\beta}^{a'b'} = 0,$$

то можно выбрать некоторый неголономный специальный базис такой, что метрика $g_{\gamma\delta}$ будет иметь в нем диагональный вид с $\ll +1\gg$ на главной диагонали, а обобщенные операторы Нордена будут иметь постоянные существенные координаты наподобие формул (159) - (161). Из этого следует, что операторы $A_{\alpha\beta}^{ab}$ в этом базисе тоже имеют в качестве координат константы. Тогда тензор кривизны с помощью операторов $A_{\alpha\beta}^{ab}$ можно представить в следующем виде

$$R_{\alpha\beta\gamma\delta} = A_{\alpha\beta}^{ab} A_{\gamma\delta}^{cd} R^{a}_{b} R^{c}_{d}.$$

При этом, зная структуру тензора $R_{b}^{a}_{d} R^{c}_{c}$, можно восстановить структуру тензора кривизны. Но исследование структуры тензора $R_{b}^{a}_{d} R^{c}_{c}$ облегчается тем, что он почти не содержит несущественных компонент. В 4-мерном случае подобные $R_{b}^{a}_{d} R^{c}_{c}$ тензоры, названные спинорами кривизны [23], сильно упрощают классификацию тензора кривизны 4-мерного пространства, впервые осуществленную Петровым прямым тензорным методами. Поэтому следует ожидать, что легче классифицировать будет тензор $R_{b}^{a}_{d} R^{c}_{c}$ нежели заниматься классификацией тензора $R_{\alpha\beta\gamma\delta}$ 6-мерного пространства. Первая часть этой главы и посвящена связи таких тензоров.

В третьем пункте рассматривается вопрос о каноническом виде кососимметричной билинейной форме для метрики четного индекса q в пространстве $\mathbb{R}^6_{(p,q)}$. Указанная форма в некотором базисе имеет вид

$$\frac{1}{2} R_{\alpha\beta} X^{\alpha} Y^{\beta} = R_{16} X^{[1} Y^{6]} + R_{23} X^{[2} Y^{3]} + R_{45} X^{[4} Y^{5]}.$$
Кроме того, устанавливается такой факт, как соответствие вектора из слоя расслоения A^C с базой $C\mathbb{V}^6$ и изотропного простого бивектора, принадлежащего изотропному конусу K_6 слоя касательного расслоения над одной и той же точкой x. Это соответствие с точностью до множителя $re^{i\Theta} \in \mathbb{C}$ определит указанный вектор слоя. На основании этого соответствия мы можем говорить о геометрической интерпретации изотропного (в смысле $s_{aa'}X^aX^{a'} = 0$) твистора из \mathbb{C}^4 в пространстве $R^6_{(2,4)}$. Для ее осуществления нам необходимо научиться сравнивать изотропные векторы, принадлежащие конусу K_6. Поэтому с помощью стереографической проекции мы инвариантным (координатно-независимым) образом определяем некоторый касательный к K_6 вектор, приложенный к точке P. Его норма, взятая со знаком ",", сопоставляется изотропному вектору K с началом в вершине конуса, а концом в точке P и называется протяженностью вектора K. Тогда можно выбрать вектор k единичной протяженности и все изотропные вектора сравнивать с этим вектором. При этом неоднозначность соответствия устраняется так: r - есть протяженность любого изотропного вектора, определенного указаным изотропным простым бивектором, принадлежащим конусу K_6 (флагшток), а Θ есть угол поворота 3-полуплоскости Π (полотнище флага), натянутой на бивектор и некоторый вектор, ортогональный плоскости Π_1, определяемой бивектором, вокруг этой плоскости Π_1. Полученная интерпретация аналогична соответствию спиноров и изотропных векторов пространства Минковского, рассмотренного в монографии [23].

4.1 Теорема о битензорах 6-мерных пространств

Прежде чем перейти к свойствам тензора кривизны пространства $C\mathbb{V}^6$, рассмотрим следующую теорему.

Теорема 1. Классификацию битензора, обладающего свойствами

$$R_{\alpha\beta\gamma}\delta = R_{[\alpha\beta][\gamma\delta]}, \quad R_{\alpha\beta\gamma}\delta = R_{\gamma\delta\alpha\beta}, \quad R_{\alpha\beta\gamma}\delta + R_{\alpha\delta\beta\gamma} + R_{\alpha\gamma\delta\beta} = 0 \quad (286)$$

и принадлежащего касательному расслоению $\tau^C(C\mathbb{V}^6)$ над шестимерным аналитическим римановым пространством $C\mathbb{V}^6$, можно...
свести к классификации тензора $R_{\alpha\beta\gamma\delta}$ 4-мерного комплексного векторного пространства \mathbb{C}^4 таким, что

$$R_{\alpha\beta\gamma\delta} = A_{\alpha\beta\gamma\delta} R_{c\ s\ d\ r}.$$ (287)

Кроме того, выполнены следующие соотношения

$$R_k^k s^r = R_s^r k^k = 0, \quad R_c^d s^r = R_s^r c^d.$$ (288)

Разложение

$$R_c^d s^r = C_c^d s^r - P_{cs}^d r - \frac{1}{40} \cdot R(3\delta_s^d \delta_c^r - 2\delta_s^r \delta_c^d)$$ (289)

соответствует разложению тензора $R_{\alpha\beta\gamma\delta}$

$$R_{\alpha\beta\gamma\delta} = C_{\alpha\beta\gamma\delta} + R_{[\alpha\beta\gamma\delta]} - 1/10 Rg[\alpha\beta\gamma\delta]$$ (290)

на неприводимые ортогональными преобразованиями компоненты, которые будут удовлетворять следующим соотношениям

$$P_{cs}^r d = -4(R_{[c}^r s^d] + R_{k}^r s^d], R_{\beta\gamma} = 1/4 \cdot \eta_{\beta\gamma} c s^r d, P_{kd}^{r d} = 1/2 \cdot R\delta_{c d}^r,$$ (291)

$$C_{c s}^d r = R_{c}^r s^d[r] + \frac{1}{40} \cdot R\delta_{s}^d r\delta_{c}^r, \quad C_{c s}^d s = C_{c}^r s^d[r],$$ (292)

$$R = R_{\beta\gamma} = -2 \cdot R_{k}^r s^d[r], \quad P_{kd}^{r d} = 1/2 \cdot R\delta_{c d}^r,$$ (293)

$$R_l^d s = -\frac{1}{8} \cdot R\delta_{s}^d,$$ (294)

последние из которых является эквивалентом тождества Бианки (286).

Доказательство. На основании (41) верно следующее равенство

$$R_{\alpha\beta\gamma\delta} = 1/16 \cdot \eta_{\alpha a^1} \eta_{\beta b^1} \eta_{\gamma c^1} \eta_{\delta d^1} R_{aa^1 bb^1 cc^1 dd^1}.$$ (295)

Положим

$$R_c^d s^r := \frac{1}{4} R_{c k}^d s^r t^r, \quad R_{\beta\gamma} = \frac{1}{4} \cdot \eta_{\beta c s} \eta_{\gamma r d} \cdot P_{cs}^d r.$$ (296)

Из этого с учетом (43) вытекает формула (287)

$$R_{\alpha\beta\gamma\delta} = A_{\alpha\beta\gamma\delta} R_{c\ s\ d\ r}.$$ (297)
Отсюда следует, что

\[R_{\beta\delta} = R_{\alpha\beta}^{\alpha} = A_{\alpha\beta} c A_{\gamma} d r s R_{c d s}^r = (\eta_{\beta} c s \eta_{d r d} + \eta_{\delta} \eta_{k t} \delta_{d} s) R_{c d s}^r = \]

\[= \frac{1}{4} \eta_{\beta} c s \eta_{d r d} \cdot 4(R_{[r] s}^d) - R_{[k] |k|}^{r \delta} s d]. \] (298)

Положим

\[P_{cs}^{rd} := -4(R_{[r] s}^d) - R_{[k] |k|}^{r \delta} s d], \] (299)

tогда

\[R_{\beta\delta} = \frac{1}{4} \eta_{\beta} c s \eta_{d r d} P_{cs}^{rd}, \] (300)

чем и доказана формула (291). Поскольку скалярная кривизна имеет вид

\[R = R_{\beta} \beta = \frac{1}{4} \eta_{\beta} c c \eta_{a} a_{1} P_{cc}^a a_{1} = \frac{1}{4} \varepsilon_{a a} c c_{1} P_{cc}^a a_{1} = \frac{1}{2} P_{a} a a_{1} = -2 R_{k} r k, \] (301)

и, кроме того, выполнено

\[P_{ks}^{kd} = -4(R_{[k] s}^r) + R_{[r] |k|}^{r \delta} s d)] = \]

\[= -4(\frac{1}{2} R_{k} d s k + \frac{1}{4} (R_{k} r k \delta s d + 4 R_{k} d s k - 2 R_{k} d s k)) = -R_{k} r k \delta s d = \frac{1}{2} R \delta s d, \] (302)

tо формулы (293) действительно будут верны.

Тождества Бианки (286) можно переписать следующим образом

\[(A_{\alpha\beta} c A_{\gamma} d s + A_{\alpha\gamma} c A_{\beta} r s + A_{\alpha\delta} c A_{\beta} r s) \cdot R_{c d s}^r = 0. \] (303)

Свернув это уравнение с \(A_{\alpha} a_{1} d^l A_{\gamma} m n, \) получим, принимая во внимание (47),

\[4 R_{k} l m k \delta n + 4 R_{k} r n r \delta_{m} l - 2 R_{k} l k m n - 2 R_{k} m k l \delta_{t} l - \]

\[- 2 R_{k} r k m n \delta_{t} l + R_{r} k r \delta_{m} n \delta_{t} l = 0. \] (304)

Свертка этого уравнения с \(\delta_{n} t \) и приведет нас к формуле (294). При этом все 15 существенных уравнений сохранены. (Все выкладки выполнены в приложении - формулы (496) - (498)).
Положим
\[
C_{\alpha \beta}^{\gamma \delta} := A_{\alpha \beta \delta} C_{\gamma r}^{\delta} C_{s}^{d} r ,
\]
\[
C_{\alpha \beta}^{\gamma \delta} := R_{\alpha \beta}^{\gamma \delta} - R_{[\alpha}^{[\gamma} g_{\beta]}^{\delta]} + 1/10 R g_{[\alpha}^{[\gamma} g_{\beta]}^{\delta]} .
\] (305)

Из (43), (291), (293) следует
\[
R_{[\alpha}^{[\gamma} g_{\beta]}^{\delta]} = A_{\alpha \beta \delta} C_{\gamma r}^{\delta} s \cdot \frac{1}{4} (P_{sc}^{dr} - 1/2 R^{s d} C_{sc}^{r} + 1/4 R^{s d} C_{sc}^{r}),
\]
\[
g_{[\alpha}^{[\gamma} g_{\beta]}^{\delta]} = A_{\alpha \beta \delta} C_{\gamma r}^{\delta} s \cdot \frac{1}{4} (1/2 R^{s d} C_{sc}^{r} - 2 R^{s d} C_{sc}^{r}) ,
\] (306)
откуда получим разложения (289), (292). (Выкладки находятся в приложении - формулы (499) - (504)).

4.1.1 Следствия теоремы

Следствие 1. 1. Условия простоты бивектора бивектора 6-мерного пространства СР6 записываются в следующем виде
\[
p^{[\alpha \beta} p^{\gamma \delta]} = 0.
\] (307)

Координатам такого бивектора можно сопоставить бесследовую комплексную матрицу 4 × 4 с нулевым следом такую, что выполнено следующее условие
\[
p^{d}_{i} p^{s}_{l} - 1/4 (p^{k}_{i} p^{l}_{k}) \delta^{d}_{s} = 0.
\] (308)

2. Простому (выполнен пункт 1), этого следствия) изотропному (p^{\alpha \beta} a^{\alpha} = 0) бивектору пространства СР6 можно сопоставить вырожденную нуль-пару Розенфельда: ковектор и вектор пространства С4, свертка которых есть нуль. При этом указанные вектор и ковектор определятся с точностью до комплексного множителя.
Доказательство. 1). Бивектор прост тогда и только тогда, когда имеет место разложение

$$p^\alpha\beta = X^\alpha Y^\beta - Y^\alpha X^\beta. \quad (309)$$

Поэтому, если выполнено (309), то будет верна формула (307).

Обратно, если выполнены условия (307), то их можно расписать следующим образом

$$p^\alpha\beta p^\gamma\delta - p^\alpha\gamma p^\beta\delta + p^\beta\gamma p^\alpha\delta = 0. \quad (310)$$

Свернем это уравнение с такими ненулевыми ковекторами T_δ и Z_γ, что $p^\gamma\delta Z_\gamma T_\delta \neq 0$

$$p^\alpha\beta = \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} (p^\alpha\gamma Z_\gamma p^\beta\delta T_\delta - p^\beta\gamma Z_\gamma p^\alpha\delta T_\delta). \quad (311)$$

Положим

$$X^\alpha := \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} p^\alpha\gamma Z_\gamma, \quad Y^\beta := \frac{1}{p^{\lambda\mu} Z_\lambda T_\mu} p^\beta\delta T_\delta, \quad (312)$$

откуда и будут следовать условия (309). Поскольку тензор $R_{\alpha\beta\gamma\delta} = p_{\alpha\beta} p_{\gamma\delta}$ удовлетворяет условиям теоремы 1, то формула (308) есть прямое следствие тождеств Бианки (294).

2). В условиях первого пункта добавится условие изотропности

$$p^\alpha\beta p_{\alpha\beta} = 0, \quad (313)$$

которое ввиду формул (47) примет вид

$$A^{\alpha\beta}_{\ a} A_{\alpha\beta\ c} d^a p_b p^d = 0, \quad (314)$$

$$p_b^n p^b = 0.$$

Отсюда следует, что существуют такие ненулевые X^a и Y_b, что

$$p_a^b = X^a Y_b, \quad X^a Y_a = 0. \quad (315)$$

Эту формулу можно рассматривать и как следствие леммы 1 второй главы (для этого достаточно рассмотреть бивектор $p^{\alpha\beta} = r_1^{\alpha} r_2^{\beta}$),
где \(r_1^\alpha \) и \(r_2^\alpha \) те же, что и в условии леммы). При этом \(X^a \) и \(Y_b \) определены с точностью до преобразования

\[
X^a \mapsto e^\phi X^a, \quad Y_b \mapsto e^{-\phi} Y_b.
\] (316)

Отметим, что пара \((X^a, Y_b)\) будет являться нуль-паарой Розенфельда. В пространстве \(\mathbb{C}P^4 = ' \mathbb{C}^4 / ' \mathbb{C} \) (где \(' \mathbb{C}^s = \mathbb{C}^s / 0 \)) \(X^a \) определяет точку, а \(Y_b - \) плоскость c условием инцидентности

\[
X^a Y_a = 0.
\] (317)

Поэтому можно определить пространство \(\mathbb{C}P^4 = ' \mathbb{C}^*^4 / ' \mathbb{C}, двойственное пространству \(\mathbb{C}P^4 \). Тогда пространство \(\mathbb{C}P^4 \times \mathbb{C}P^4 \) будет пространством нуль-пар Розенфельда. Следует отметить, что такие пространства изучались впервые Синцовым [34] и Котельниковым [6].

Следствие 2. В случае действительности битензора из теоремы 1 на соответствующий тензор накладывается условие

\[
R_{ab'cd'} = \bar{R}_{b'ad'c}
\] (318)

для метрики четного индекса и

\[
R_a ^{b'} _{c'} ^{d'} = \bar{R}_a ^{b'} _{c'} ^{d'}
\] (319)

для метрики нечетного индекса.

Доказательство. Оно основано на свойствах тензора вложения \(s_{...} \). □
4.2 Основные свойства и тождества тензора кривизны

В качестве примера рассмотрим основные свойства тензора кривизны риманова пространства CV^6. Поскольку в некотором неголомном базисе операторы $A_{\alpha \beta}^a$ являются константами, то все свойства тензора кривизны мы можем получить, рассматривая тензор $R_{\alpha \beta}^b_c d$. Тензор кривизны пространства CV_6 в некоторой окрестности U удовлетворяет соотношениям теоремы [1]. Положим

$$\square_a^d := \frac{1}{2} (\nabla_{ak} \nabla^{dk} - \nabla^{dk} \nabla_{ak}),$$

$$\square_{\alpha \beta} := 2\nabla_{[\alpha} \nabla_{\beta]}.$$

Ввиду ковариантного постоянства обобщенных операторов Нордена будем иметь

$$\nabla_{[\alpha} \nabla_{\beta]} = \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \nabla_{aa_1} \nabla_{bb_1} =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \cdot \frac{3}{2} (\nabla_{a[a_1} \nabla_{bb_1]} - \nabla_{[bb_1} \nabla_{a]a_1}) =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \cdot \frac{3}{2} (\delta_{[a_1}^k \delta_{b}^n \delta_{b_1}^n \nabla_{ak} \nabla_{nn_1} - \delta_{[b_1}^n \delta_{b_1}^n \delta_a^k \nabla_{nn_1} \nabla_{ka_1}) =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \cdot \frac{1}{4} (\varepsilon_{a_1 b_1 d} \varepsilon^{knn_1 d} \nabla_{ak} \nabla_{nn_1} - \varepsilon_{bb_1 ad} \varepsilon^{mn_1kd} \nabla_{nn_1} \nabla_{ka_1}) =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \cdot \frac{1}{4} \varepsilon_{a_1 b_1 d} (2\delta_{[n}^k \delta_{n_1}^d \nabla_{ak} \nabla_{nn_1} + 2\varepsilon_{bb_1 ad} \nabla^{kd} \nabla_{ka}) =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta \beta_1}^{bb_1} \cdot \frac{1}{4} \varepsilon_{a_1 b_1 d} (2\delta_{[n}^k \delta_{n_1}^d \nabla_{ak} \nabla^{nn_1} + 2\nabla^{kd} \nabla_{ka}) =$$

$$= \frac{1}{4} \eta_{\alpha \alpha_1} \eta_{\beta_1 d} (\nabla_{an} \nabla^{nd} + \nabla^{kd} \nabla_{ka}) = A_{\alpha \beta}^a \cdot \frac{1}{4} (\nabla_{ak} \nabla^{dk} - \nabla^{dk} \nabla_{ak}).$$

(321)

Поэтому

$$\square_{\alpha \beta} = A_{\alpha \beta}^a \square_a^d.$$

(322)

Сформулируем несколько основных утверждений, касающихся оператора \square_a^d.

1. Из тождества Риччи

$$\square_{\alpha \beta} k^{\gamma \delta} = R_{\alpha \beta}^{\alpha \lambda} k^{\lambda \delta} + R_{\alpha \beta}^{\delta} k^{\gamma \lambda}, \quad \square_{\alpha \beta} r^{\gamma} = R_{\alpha \beta}^{\gamma} r^{\lambda},$$

(323)
будут следовать тождества \((k^\alpha\beta = -k^{\beta\alpha})\)

\[\Box_a k_d^c = R^b_m c k_d^m - R^b_d n k_n^c, \quad \Box_a r^c_{c1} = R^b_m c r^{mc1} + R^b_m c_1 r^{cm}. \] (324)

А уже из них окончательно получим

\[\Box_a X^c = R^b_m c X^m, \quad \Box_a X_c = -R^b_m c X_m \] (325)

(доказательство в приложении: (507) - (521)).

2. Дифференциальные тождества Бианки

\[\nabla_{[\alpha} R_{\beta\gamma]} \delta^\lambda = 0 \] (326)

примут вид

\[\nabla_{[cm} R_{t]} c^k s = \delta^k_m \nabla_{c[n]} R_{t]} n c^r s \] (327)

(Доказательство в приложении: (522) - (529)).

3. Свернем (327) с \(\delta_k^c\) и получим

\[\nabla_{c(m} R_{t)} c^s r = 0, \] (328)

а свертка последнего с \(\delta_s^m\) даст

\[\nabla_{cm} R_{t} c^m r = 1/8 \nabla_{rt} R, \] (329)

что эквивалентно известному уравнению

\[\nabla^\alpha (R_{\alpha\beta} - 1/2 R g_{\alpha\beta}) = 0. \] (330)

4.3 Каноническая форма бивекторов 6-мерных (псевдо-) евклидовых пространств \(\mathbb{R}^6_{(p,q)}\) с метрикой четного индекса \(q\)

Теорема 2. (О канонической форме бивектора).

Для пространства \(\mathbb{R}^6_{(p,q)}\) с метрикой четного индекса \(q=0,6\) невырожденная кососимметрическая билинейная форма может быть приведена в некотором базисе к каноническому виду

\[\frac{1}{2} R_{\alpha\beta} X^\alpha Y^\beta = R_{16} X^1 Y^6 + R_{23} X^2 Y^3 + R_{45} X^4 Y^5. \] (331)
Доказательство. Поскольку в случае пространства $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q верно

$$R_{\alpha\beta} = A_{\alpha\beta a}R^a_b, \quad R^a_b = -\bar{R}^a_b, \quad R^a_a = 0,$$ \hspace{1cm} (332)

что означает эрмитову симметрию iR^a_b в случае $q = 0, 6$. Ввиду этого матрица тензора R^a_b приводится к диагональному виду с помощью преобразований из некоторой группы, изоморфной $SU(4)$. Этим преобразованиям соответствуют преобразования из ортогональной группы $SO^e(6, \mathbb{R})$. Отсюда следует, что матрица тензора R^a_b в специальном базисе имеет вид

$$R^a_b = \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \lambda_3 & 0 \\ 0 & 0 & 0 & \lambda_4 \end{pmatrix},$$ \hspace{1cm} (333)

$$q = 0, 6, \quad \lambda_1, \lambda_2, \lambda_3, \lambda_4 \in i\mathbb{R}, \quad \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0.$$

При этом выполнены 2 равенства

$$\tilde{R}^a_b = S^e_b R^d_c \bar{S}^a_d, \quad S^a_b \bar{S}^c_b = \delta^a_c.$$ \hspace{1cm} (334)

Доказательство. Будем рассматривать преобразования $K_{\alpha \beta}$ из связанной компоненты $SO^e(6, \mathbb{R})$ и его соответствующее спинорное представление из группы $SU(4)$ вида S^a_b

$$K_{\alpha \beta}K_{\gamma \delta}R_{\beta \delta} = -A^{\beta \delta}_{\alpha a}K\{}_{\alpha a}^b K_{\beta b}K_{\gamma \delta}^d A^{\beta \delta}_{\gamma c} R^{d c} =$$

$$= -\frac{1}{2}(1/2\delta^b_a \delta^d_c - 2\delta^d_a \delta^b_c)K\{}_{\alpha a}^b K_{\beta b}R^{d c} =$$

$$= K\{}_{\alpha a}^b K_{\beta b}R^{d c} = \frac{1}{2}A^{\beta \gamma}_{\alpha a c}K^{\gamma \delta}_{\alpha a c}R^{d c} =$$

$$= \frac{1}{8}K^d_{\alpha a c} K_{mn}^{st} \varepsilon_{slb} \varepsilon^{nmc} R^{d c} A_{\alpha a c} = \tilde{R}_{\alpha \beta} = A_{\alpha a c}^{d} \tilde{R}^{d c}.$$ \hspace{1cm} (335)
Умножим обе части (335) на $A^{\alpha\beta}_{\mu\nu}$ и получим

$$\frac{1}{8} K_{\mu\nu}^{\alpha k} K_{\mu\nu}^{\beta l} \varepsilon_{sibk} \varepsilon_{mntr} R_a^b = \tilde{R}_p^t,$$

$$\frac{1}{2} S_{[p}^a S_{r]}^k S_{[m}^s S_{n]}^l \varepsilon_{sibk} \varepsilon_{mntr} R_a^b = \frac{1}{2} S_{[p}^a (S_{r]}^k S_{m}^s S_{n}^l \varepsilon_{kslb}) \varepsilon_{mntr} R_a^b =$$

$$= \frac{1}{2} S_{[p}^a ((S^{-1})_{[b]q} \varepsilon_{r]}_{mnq}) \varepsilon_{mntr} R_a^b =$$

$$= \frac{1}{4} (6 S_p^a (S^{-1})_b^t - 4 S_r^a (S^{-1})_b^q \delta_{[q}^t \delta_{p]}^r R_a^b) =$$

$$= S_p^a R_a^b (S^{-1})_b^t = S_p^a R_a^b \bar{S}_b^t = \tilde{R}_p^t. \quad (336)$$

Используя специальный базис, найдем в случае q=0,6 соответствующие координаты кобивектора из $\mathbb{R}_6^{6(2,4)}$

$$R_{16} = A_{16a}^b R_b^a = -R_{61},$$

$$R_{23} = A_{23a}^b R_b^a = -R_{32},$$

$$R_{45} = A_{45a}^b R_b^a = -R_{54}. \quad (337)$$

Отметим, что похожее утверждение можно было бы сформулировать и для случая q=2,4. Однако здесь возникнут некоторые сложности, связанные с проблемой диагонализации, поскольку в этом случае матрица тензора эрмитового поляритета в специальном базисе будет отлична от единичной.

4.4 Геометрическое представление твистора в $\mathbb{R}_6^{6(2,4)}$

4.4.1 Стереографическая проекция

В этой части определяется понятие протяженности изотропного вектора пространства $\mathbb{R}_6^{6(2,4)}$ с метрикой индекса 4. Ниже будет показано как выбрать вектор единичной протяженности. Тогда векторы, коллинеарные такому вектору, будут отличаться от последнего на некоторый действительный множитель γ - "протяженность флагштока".

159
Метрика пространства $\mathbb{R}^6_{(2,4)}$ имеет вид

$$dS^2 = dT^2 + dV^2 - dW^2 - dX^2 - dY^2 - dZ^2. \quad (338)$$

Пусть, кроме того, задано сечение светового конуса K_6

$$T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2 = 0 \quad (339)$$

плоскостью $V + W = 1$. Рассмотрим стереографическую проекцию этого сечения на плоскость $V = 0, W = 1$ так, что точке $P(T, V, W, X, Y, Z)$ соответствует $p(t, 0, 1, x, y, z)$ на плоскости $V = 0$. Тогда выполнено

$$T/t = X/x = Y/y = Z/z = -\left(\frac{V - \frac{1}{2}}{\frac{1}{2}}\right). \quad (340)$$

Сделаем замену

$$\varsigma = -ix + y, \quad \omega = -i(t + z), \quad \eta = i(z - t) \quad (341)$$

и получим

$$\varsigma = \frac{-iX + Y}{2V - 1}, \quad \eta = \frac{-i(T + Z)}{2V - 1}, \quad \omega = \frac{i(Z - T)}{2V - 1}. \quad (342)$$

Поэтому индуцированная метрика имеет вид

$$ds^2 := dT^2 - dX^2 - dY^2 - dZ^2 = -\frac{d\varsigma d\bar{\varsigma} + d\omega d\eta}{(\varsigma \bar{\varsigma} + \eta \omega)^2} \quad (343)$$

(Доказательство этого факта вынесено в приложение $(530) - (535)$.)

Положим

$$X := \begin{pmatrix} \omega & \varsigma \\ -\bar{\varsigma} & \eta \end{pmatrix}, \quad dX := \begin{pmatrix} d\omega & d\varsigma \\ -d\bar{\varsigma} & d\eta \end{pmatrix}, \quad \frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial \omega} & \frac{\partial}{\partial \varsigma} \\ -\frac{\partial}{\partial \bar{\varsigma}} & \frac{\partial}{\partial \eta} \end{pmatrix} \quad (344)$$

Тогда (343) примет вид

$$ds^2 = -\frac{det(dX)}{(det(X))^2}, \quad \bar{X}^T + X = 0. \quad (345)$$
Рассмотрим группу дробно-линейных преобразований L

$$\tilde{X} = (AX + B)(CX + D)^{-1}, \quad S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \det S = 1. \quad (346)$$

Условие действительности, накладываемое на X ($X^* + X = 0$), даст подгруппу унитарных дробно-линейных преобразований $LU(2,2)$ так, что матрица S из (346) удовлетворяет условию

$$S^* \hat{E} S = \hat{E}, \quad \hat{E} := \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}. \quad (347)$$

Определим далее в специальном базисе согласно (160) \cite[т. 2, с. 83, (6.2.18), c. 361, (9.3.7)]{23}

$$R_{12} = 1 / \sqrt{2} (V + W) = \omega^0 \xi^1 - \omega^1 \xi^0,$$

$$R_{34} = 1 / \sqrt{2} (V - W) = \bar{\pi}^0 \bar{\eta}^1 - \bar{\pi}^1 \bar{\eta}^0,$$

$$R_{14} = i / \sqrt{2} (T + Z) = \omega^0 \bar{\eta}^0 - \bar{\pi}^0 \bar{\eta}^0,$$

$$R_{13} = i / \sqrt{2} (T - Z) = \xi^1 \bar{\pi}^1 - \omega^1 \bar{\eta}^1,$$

$$R_{23} = 1 / \sqrt{2} (Y + iX) = \omega^1 \xi^0 - \xi^1 \bar{\pi}^0,$$

$$R_{24} = 1 / \sqrt{2} (Y - iX) = \bar{\pi}^1 \xi^0 - \omega^0 \bar{\eta}^1. \quad (348)$$

Эта формула примечательна тем, что в ней показано выражение бивектора R_{ab} через его спинорные компоненты. Положим

$$X := YZ^{-1}, \quad \tilde{Y} = AY + BZ, \quad \tilde{Z} = CY + DZ,$$

$$Y = \begin{pmatrix} \omega^0 & \xi^0 \\ \omega^1 & \xi^1 \end{pmatrix}, \quad Z = \begin{pmatrix} \bar{\pi}^0 & \bar{\eta}^0 \\ \bar{\pi}^1 & \bar{\eta}^1 \end{pmatrix}, \quad (349)$$

тогда из (348) будет следовать

$$R := \| R_{ab} \| = \begin{pmatrix} (\det Y) J & YZ^{-1}(\det Z) J \\ -(YZ^{-1}(\det Z) J)^T & (\det Z) J \end{pmatrix} =$$

$$= \begin{pmatrix} Y \end{pmatrix} J \begin{pmatrix} Y^T & Z^T \end{pmatrix}, \quad (350)$$

$$J := \begin{pmatrix} 0 & E \\ -E & 0 \end{pmatrix}, \quad \tilde{R} = SRS^T.$$
Положим
\[\tilde{S} := \tilde{I} S \tilde{I}^{-1}, \quad \tilde{I} := \frac{1}{\sqrt{2}} \begin{pmatrix} E & -E \\ -E & E \end{pmatrix}, \tag{351} \]
tогда получим
\[\tilde{S}^* \tilde{E} \tilde{S} = \tilde{E}. \tag{352} \]
Матрицы S образуют группу $SU(2, 2)$, поэтому из (352) следует, что матрицы \tilde{S} образуют группу $SU(2, 2)$ и (351) устанавливает изоморфизм этих групп. Назовем преобразования из группы $LU(2, 2)$ твисторными преобразованиями. Ввиду двулистности накрытия связной компоненты единицы группы $SO(2, 4)$ (которая обозначается через $SO^c(2, 4)$) группой $SU(2, 2)$ и двулистности накрытия группы конформных преобразований $C^4_+(1, 3)$ ([23 т. 2, с. 359, (9.2.10)]) группой $SO^c(2, 4)$, следует существование цепочки изоморфизмов
\[SU(2, 2)/\{\pm 1; \pm i\} \cong LU(2, 2) \cong C^4_+(1, 3) \cong SO^c(2, 4)/\{\pm 1\}. \tag{353} \]
Это означает, что группа $LU(2, 2)$ исчерпывает все конформные преобразования из группы $C^4_+(1, 3)$. При этом матрица S из (346) восстанавливается с точностью до множителя λ такого, что $\lambda^4 = 1$ ($\det(S)=1$), откуда и появляется указанная неоднозначность. На основании того, что верны тождества
\[Y = AX + B \Rightarrow dX = AdY, \quad Y = X^{-1} \Rightarrow dX = -X^{-1}dXX^{-1}, \tag{354} \]
ge где A и B - некоторые постоянные матрицы, и используя условия (345) - (350), имеем
\[\tilde{Z}^* d\tilde{X} \tilde{Z} = Z^* dX Z. \tag{355} \]
Это уравнение инвариантно относительно преобразований из группы $LU(2, 2)$. (Доказательство этого факта рассмотрено в приложении (536) - (549)). Другой инвариант можно получить, рассматривая тождества
\[Y = AX + B \Rightarrow \frac{\partial}{\partial X} = A^T \frac{\partial}{\partial Y}, \quad Y = X^{-1} \Rightarrow \frac{\partial}{\partial X} = -Y^T \frac{\partial}{\partial Y} Y^T, \tag{356} \]
ge где A и B - тоже некоторые постоянные матрицы. Он будет иметь вид
\[\tilde{Z}^{-1} \frac{\partial}{\partial \tilde{X}^T} \tilde{Z}^*^{-1} = Z^{-1} \frac{\partial}{\partial X^T} Z^*^{-1} \tag{357} \]
(Доказательство можно найти в приложении (550) - (564)). Это означает, что существует действительный касательный вектор \(\tilde{L} \) к гиперболоиду, полученному сечением конуса \(K_6 \) плоскостью \(V+W=1 \), инвариантный относительно преобразований базиса из группы \(LU(2,2) \) (т.е. координатно-независимый на касательном пространстве к данному гиперболоиду) и однозначно определенный матрицей

\[
\hat{L} := \frac{1}{\sqrt{2}} (Z^{-1} \frac{\partial}{\partial X} Z^* - 1 - \tilde{Z}^{-1} \frac{\partial}{\partial X} \tilde{Z}^T - 1) =
\]

\[
= \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix}
\left(\frac{\partial}{\partial \omega} (-\tilde{\eta}^0 \pi^0 + \eta^0 \tilde{\pi}^0) + \frac{\partial}{\partial \eta} (-\tilde{\eta}^1 \pi^1 + \eta^1 \tilde{\pi}^1) +
\right.

\left. + \frac{\partial}{\partial \xi} (-\tilde{\eta}^1 \pi^0 + \eta^0 \tilde{\pi}^1) + \frac{\partial}{\partial \bar{\xi}} (\tilde{\eta}^0 \pi^1 - \eta^1 \tilde{\pi}^0) \right) \cdot \frac{1}{(\det(Z))^2 \sqrt{2}} := \begin{pmatrix}
0 & 1 \\
-1 & 0
\end{pmatrix} \tilde{L}.
\]

Норма этого вектора в метрике (345) будет такой

\[
\| \tilde{L} \| = -\frac{1}{2(\det(Y))^2} = -\frac{1}{(V + W)^2}.
\]

(358)

Назовем изотропный вектор \(k \) вектором, имеющим единичную протяженность первого типа (сравн. [23, т. 1, с. 57, (1.4.16)]), в том случае, когда \(k \) будет задавать точку на изотропном конусе, принадлежащую сечению плоскостью \(V+W=1 \). Тогда \(\| \tilde{L} \| = -1 \) и любой изотропной вектор \(K \), коллинеарный \(k \), определяется как

\[
K = (- \| \tilde{L} \|)^{\frac{1}{2}} k.
\]

(360)

Однако, при \(V=-W \) получаются вектора с бесконечной протяженностью первого типа. Чтобы научиться их различать можно задавать сечение \(K_6 \) не плоскостью \(V+W=1 \), а \(T+Z=1 \) и ввести подобным образом некоторый вектор \(\hat{L} \) с нормой

\[
\| \hat{L} \| = -\frac{1}{(T + Z)^2}.
\]

(361)

Назовем изотропный вектор \(k \) вектором, имеющим единичную протяженность второго типа в том случае, когда \(k \) будет задавать точку на изотропном конусе, принадлежащую сечению плоскостью \(T+Z=1 \) и протяженность первого типа не будет конечной. Определим протяженность вектора \(K \) как конечную протяженность первого типа,
а если такой не существует, то как протяженность второго типа. Отметим, что вектор \tilde{L} не является координатно-независимым в пространстве $\mathbb{R}^{6}_{(2,4)}$, хотя является инвариантом касательного пространства к гиперболоиду, полученному сечением конуса K_6 плоскостью $V+W=1$. Следующей нашей задачей и будет нахождение инварианта пространства $\mathbb{R}^{6}_{(2,4)}$.

4.4.2 Геометрическое изображение твистора в 6-мерном пространстве

Теперь появилась возможность наглядно изобразить твистор в пространстве $\mathbb{R}^{6}_{(2,4)}$. Рассмотрим пару векторов из $\mathbb{R}^{6}_{(2,4)}$ равной протяженности

$$K^\alpha = \eta^\alpha_{\ ab} iT^[[a X^b]], \quad N^\alpha = \eta^\alpha_{\ ab} T^[[a Z^b]]. \quad (362)$$

Из леммы [1] второй главы следует, что

$$K^\alpha K_\alpha = 0, \quad N^\alpha K_\alpha = 0, \quad N^\alpha N_\alpha = 0. \quad (363)$$

Выберем вектор Y^a таким образом, чтобы были выполнены условия

$$Y^a Y_a = 0, \quad Y^a X_a = 0, \quad Y^a Z_a = 0, \quad (364)$$

$$\varepsilon^{abcd} X_a Y_b Z_c T_d = X^c Z_c Y^d T_d = 1, \quad \varepsilon^{abcd} = 24 X^[[a Y^b Z^c T^d]]. \quad (365)$$

Таким образом получится базис из векторов X^a, Y^a, Z^a, T^a следующего вида (напомним $Y_a = s_{aa'} Y^{a'}$)

$$Y^a Y_a = 0, \quad Y^a X_a = 0, \quad Y^a Z_a = 0, \quad X^a X_a = 0, \quad X^a T_a = 0,$$

$$Z^a Z_a = 0, \quad Z^a T_a = 0, \quad T^a T_a = 0. \quad (366)$$

Откуда

$$\varepsilon^{abcd} T^[[c Y^d] = -2X_{[a Z_b]}. \quad (367)$$

Поэтому векторы

$$L^\alpha = \eta^\alpha_{\ ab} (-T^[[a Y^b] + X^[[a Z^b]), \quad M^\alpha = \eta^\alpha_{\ ab} (-i)(T^[[a Y^b] + X^[[a Z^b]) \quad (368)$$

удовлетворяют следующим соотношениям

$$L^\alpha = \bar{L}^\alpha, \quad M^\alpha = \bar{M}^\alpha,$$
\[L^\alpha K_\alpha = 0, \quad L^\alpha M_\alpha = 0, \quad M^\alpha K_\alpha = 0, \quad L^\alpha N_\alpha = 0, \quad M^\alpha N_\alpha = 0, \]
\[L^\alpha L_\alpha = -2, \quad M^\alpha M_\alpha = -2. \quad (369) \]

Вот теперь мы можем построить тривектор

\[P^{\alpha\beta\gamma} = 6K^{[\alpha} N^{\beta} L^{\gamma]}. \quad (370) \]

Зная \(K^\alpha \), мы знаем \(T^a \) и \(X^a \) с точностью до

\[X^a \mapsto \lambda_1 X^a + \mu_1 T^a, \quad T^a \mapsto \nu_1 X^a + \xi_1 T^a, \quad \det \begin{pmatrix} \lambda_1 & \mu_1 \\ \nu_1 & \xi_1 \end{pmatrix} = 1. \quad (371) \]

А если нам известен \(N^\alpha \), то произвол в выборе \(T^a \) и \(Z^a \) таков

\[Z^a \mapsto \lambda_2 Z^a + \mu_2 T^a, \quad T^a \mapsto \nu_2 Z^a + \xi_2 T^a, \quad \det \begin{pmatrix} \lambda_2 & \mu_2 \\ \nu_2 & \xi_2 \end{pmatrix} = 1. \quad (372) \]

Поэтому \(\nu_1 = \nu_2 = 0 \) и \(\xi_2 = \xi_1 \). Для \(Y^a \) получим

\[Y^a \mapsto \alpha X^a + \beta Y^a + \gamma Z^a + \delta T^a. \quad (373) \]

Если теперь потребовать сохранение (366) (сохранение базиса вида (366) на самом деле означает, что два таких базиса связаны преобразованием из группы \(LU(2,2) \)), то получим

\[
\begin{align*}
X^a &\mapsto \tau^{-1} X^a + \mu T^a, \quad T^a \mapsto \tau T^a, \\
Z^a &\mapsto \tau^{-1} Z^a + \chi T^a, \quad Y^a \mapsto -\bar{\chi} X^a + \tau Y^a - \bar{\mu} Z^a + \delta T^a, \\
\bar{\chi} \mu + \bar{\mu} \chi + \tau \bar{\delta} + \bar{\tau} \delta &= 0, \quad \tau \bar{\tau} = 1. \quad (374)
\end{align*}
\]

Откуда

\[
\begin{align*}
X^{[a} T^{b]} &\mapsto X^{[a} T^{b]}, \quad K^\alpha &\mapsto K^\alpha, \\
Z^{[a} T^{b]} &\mapsto Z^{[a} T^{b]}, \quad N^\alpha &\mapsto N^\alpha, \\
T^{[a} Y^{b]} &\mapsto -\tau \bar{\chi} T^{[a} X^{b]} + \tau^2 T^{[a} Y^{b]} - \bar{\mu} \tau T^{[a} Z^{b]}, \\
X^{[a} Z^{b]} &\mapsto \tau^{-2} X^{[a} Z^{b]} + \tau^{-1} \chi X^{[a} T^{b]} + \tau^{-1} \mu T^{[a} Z^{b]}. \\
\end{align*}
\]

Положим

\[\tau =: e^{i\Theta}, \quad (376) \]

тогда

\[
\begin{align*}
L^\alpha &\mapsto L^\alpha \cos(2\Theta) + M^\alpha \sin(2\Theta) - \\
&-i(\bar{\chi} \tau - \bar{\tau} \chi) K^\alpha + (\mu \bar{\tau} + \tau \bar{\mu}) N^\alpha,
\end{align*}
\]
\[M^\alpha \mapsto M^\alpha \cos(2\Theta) - L^\alpha \sin(2\Theta) + \\
+ (\bar{\chi}\tau + \bar{\tau}\chi)K^\alpha - i(\mu\bar{\tau} - \tau\bar{\mu})N^\alpha. \] (377)

Таким образом 3-полуплоскость натянутая на вектора \(K^\alpha, N^\alpha, L^\alpha \) будет координатно-независима в пространстве \(\mathbb{R}^6_{(2,4)} \). Итак, нашу конструкцию можно представить в следующем виде. Протяженность векторов \(K^\alpha \) и \(N^\alpha \) должна быть одинакова. \(K^\alpha \) и \(N^\alpha \) определяют 2-плоскость, множество векторов которой с протяженностью, равной протяженности вектора \(K^\alpha \) и началом, совпадающим с началом вектора \(K^\alpha \), назовем флагштоком. \(K^\alpha, N^\alpha, L^\alpha \) определят 3-полуплоскость, которую назовем полотнищем флага. Таким образом, зная \(K^\alpha \) и \(N^\alpha \), мы знаем твистор \(T^a \) с точностью до фазы \(\Theta \). В свою очередь 2\(\Theta \) - это угол поворота полотнища флага - 3-полуплоскости \(P^{\alpha\beta\gamma} \) - в 2-плоскости \((L^\alpha, M^\alpha) \) вокруг флагштока - 2-плоскости \((N^\alpha, K^\alpha) \). Поэтому, поворот флага на 2\(\pi \) приведет к твистору \(-T^a\), и только поворот на 4\(\pi \) вернет нашу конструкцию к исходному состоянию. Кроме того, коллинеарные твисторы различаются протяженностью вектора \(K^\alpha \) так, что при преобразовании \(T^a \mapsto rT^a \), \(Y^a \mapsto r^{-1}Y^a \) (\(r \in \mathbb{R}\setminus\{0\} \)) флагшток умножается на \(r \), а полотнище остается неизменным. Следует, наконец, отметить тот факт, что указанная геометрическая структура однозначно восстанавливается по твистору \(T^a \).
5 Теорема о двух квадриках

В этой главе исследуются решения битвисторного уравнения

\[
\begin{cases}
X^a = \dot{X}^a - i r^{ab} Y^b, \\
Y^b = \dot{Y}^b,
\end{cases}
\]

приводящие к нуль-парам Розенфельда

\[X^A := (X^a, Y^b).\]

За \(\dot{X}^a, \dot{Y}^b\) принимаются некоторые частные решения битвисторного уравнения (275). Нас будет интересовать геометрическое место точек, определенное уравнением

\[X^a = 0.\]

Показывается, что решения такого уравнения приводят к 2 квадрикам, для которых справедлив модифицированный принцип тройственности. Доказано, что модифицированный принцип тройственности является обобщением принципа тройственности Картана и соотношения Кляйна, что позволяет реализовать его в явном виде с помощью некоторых операторов \(\eta_{A}^{KL}\), которые являются обобщением операторов Нордена \(\eta_{ab}\) и удовлетворяют уравнению Клиффорда, что приводит к числам Кэли. Доказательство этой теоремы является примером приложения 6-мерного спинорного формализма, развитого выше, и тесно связано с 4-мерным спинорным формализмом [23].

5.1 Решения битвисторного уравнения

Рассмотрим расслоение \(A^C\) со слоями, изоморфными \(C^4\), и базой \(C(V^6)\) - аналитическим комплексным пространством с квадратичной метрикой. Уравнение

\[\nabla^{(a(b} X^{c)} = 0 \quad (a, b, \ldots = 1, 4) \quad (378)\]

назовано нами битвисторным уравнением \((X^c\) - аналитичны). По доказанному выше битвисторное уравнение будет конформно-инвариантным. Кроме того, условие интегрируемости уравнения (378) имеет вид

\[\frac{1}{2} \varepsilon_{akmn} \nabla^{m(n} \nabla^{d[k]} X^c = \frac{5}{6} C_{a}^{c} e^{e} X^{l} = 0 \quad (379)\]
(доказательство в приложении (565) - (568)). Ограничемся случаем конформно-плоского пространства (смотри (305))

\[C_a e^d = 0. \] (380)

Это означает, что пространство \(\mathbb{C}V^6 \) конформно пространству \(\mathbb{C}R^6 \), которое, не ограничивая общности, будем рассматривать далее. Если \(X^c \) - решение (378), то величина \(\nabla^{ab}\nabla^{cd}X^r \) антисимметрична по \(rd \), она же антисимметрична по \(br \) ввиду того, что пространство плоское и производные коммутируют. Кроме того, имеется антисимметрия по параметрам \(ab, cd, rc, ra \). Это означает, что \(\nabla^{ab}\nabla^{cd}X^r \) антисимметрична по \(abcd \) и, следовательно, равна нулю. Фиксируем в \(\mathbb{C}R^6 \) точку \(O \) - начало координат. Все остальные точки опишем векторами \(r^a \) с началом в точке \(O \), тогда для \(r^a \neq 0 \) имеем

\[\nabla_\alpha r^\beta = \delta_\alpha^\beta. \] (381)

Поэтому \(\nabla^{ab}X^c \) есть постоянная величина, антисимметричная по \(abc \), что следует из (379). Положим

\[\nabla^{cd}X^a = -i \varepsilon^{cdab}Y_b. \] (382)

Проинтегрируем это уравнение, что даст решение

\[\begin{cases} X^a = \dot{X}^a - i r^{ab}\dot{Y}_b, \\ Y_b = \dot{Y}_b. \end{cases} \] (383)

Здесь \(r^{ab} \) - бивектор из формулы (41), причем множитель \(i \) выбран для удобства (это выяснится при рассмотрении вещественного случая). За \(\dot{X}^a \) принимается постоянное векторное поле, значение которого совпадает со значением поля \(X^a \) в начале координат \(O \). При этом, в случае пространства \(\mathbb{R}^6_{(2,4)} \), например

\[Y'_k = s_{km'}\bar{Y}^{m'}, \quad \bar{Y}^{m'} = \bar{Y}^{m}. \] (384)

Кроме того, радиус-вектор \(r^\gamma(= \frac{1}{2} \eta_{\gamma ab}R^{ab}) \) удовлетворяет следующим соотношениям

\[\frac{1}{2} r^{ab}r_{ab} = pf(r), \quad r^{ab}r_{bc} = -\frac{1}{2} pf(r)\delta^a_c. \] (385)
5.2 Нуль-пары Розенфельда

Обозначим через A^*C пространство, двойственное A^C и образуем 8-мерное комплексное пространство \mathbb{C}^2 как прямую сумму $A^C \oplus A^{*C}$. То есть, если X^a - координаты вектора в A^C, а Y_b - координаты ковектора в A^{*C}, то

$$X^A := (X^a, Y_b) \quad (A, B, ... = 1, 8) \quad (386)$$

будут координатами вектора из \mathbb{C}^2. Преобразование (383) является линейным преобразованием, однако, не сохраняющим структуру упомянутой прямой суммы. Будем рассматривать координаты бивектора r^{ab} как координаты точки аффинного пространства CA^6. Нас будет интересовать множество точек, заданных уравнением

$$X^a = 0 \quad \Leftrightarrow \quad \dot{X}^a = ir^{ab}\dot{Y}_b. \quad (387)$$

Это есть система из 4 линейных уравнений с 6 неизвестными. Для выяснения ее ранга рассмотрим однородное уравнение

$$r^{ab}\dot{Y}_b = 0, \quad (388)$$

которое имеет ненулевые решения тогда и только тогда, когда бивектор простой

$$\varepsilon_{abc}r^{ab}r^{cd} = -pf(r)\delta_f^d = 0 \quad (389)$$

и, следовательно, представим в виде

$$r^{ab}_{однородное} = \dot{P}^a\dot{Q}^b - \dot{P}^b\dot{Q}^a, \quad (390)$$

причем \dot{P}^a и \dot{Q}^a определены с точностью до их линейных комбинаций. Из этого следует, что

$$\dot{P}^a\dot{Y}_a = 0, \quad \dot{Q}^a\dot{Y}_a = 0. \quad (391)$$

Обозначим через $\dot{X}^a, \dot{S}^a, \dot{Z}^a$ все решения уравнения

$$\dot{X}^a\dot{Y}_a = 0, \quad (392)$$

которые образуют базис пространства, определенного (392). Тогда уравнение (390) примет вид

$$r^{ab}_{однородное} = \lambda_1\dot{S}^{(a}\dot{X}^{b]} + \lambda_2\dot{X}^{(a}\dot{Z}^{b]} + \lambda_3\dot{S}^{(a}\dot{Z}^{b]} \quad (393)$$
и, следовательно, определит в пространстве бивекторов 3-мерное подпространство. Отсюда получается общее решение уравнения (387) в виде
\[r^{ab} = r^{ab}_{\text{частное}} + \lambda_1 \dot{S}^a \dot{X}^b + \lambda_2 \dot{X}^a \dot{Z}^b + \lambda_3 \dot{S}^a \dot{Z}^b, \] (394)
где \(r^{ab}_{\text{частное}} \) — произвольный бивектор, являющийся частным решением (387).

5.3 Построение квадрик \(CQ_6 \) и \(\tilde{CQ}_6 \)

Определенное ранее пространство \(T^2 \) является комплексным евклидовым пространством, в котором скалярный квадрат вектора определяется квадратичной формой
\[\varepsilon_{AB} X^A X^B = 2 X^a Y_a \] (395)
в смысле определения (386) так, что матрица тензора \(\varepsilon_{AB} \) имеет вид
\[||\varepsilon_{AB}|| = \begin{pmatrix} 0 & \delta_a^c \\ \delta^b_d & 0 \end{pmatrix}. \] (396)
Форма (395) будет инвариантна по отношению к преобразованию (383)
\[X^a Y_a = (\dot{X}^a - i r^{ab} \dot{Y}_b) \dot{Y}_a = \dot{X}^a \dot{Y}_a. \] (397)
При фиксированном \(r^{ab} \) уравнение (387) определяет в \(T^2 \) 4-мерное пространство, которое будет являться 4-мерной плоской образующей конуса
\[\varepsilon_{AB} X^A X^B = 0. \] (398)
Таким образом мы можем рассматривать квадрику \(CQ_6 \), задаваемую уравнением (398), в проективном пространстве \(CP_7 \). Ее 4 базисные точки будут удовлетворять условию
\[\varepsilon_{AB} X^A_i X^B_j = 0 \quad (i, j, ... = 1, 4). \] (399)
Положим
\[X^A_1 := (\dot{X}^a, \dot{Y}_b), \quad X^A_2 := (\dot{Z}^a, \dot{T}_b), \quad X^A_3 := (\dot{L}^a, \dot{N}_b), \quad X^A_4 := (\dot{K}^a, \dot{M}_b). \] (400)
На основании (394) каждой точке квадрики CQ_6 мы можем поставить в соответствие 3-мерную изотропную плоскость пространства CA_6. Точку пространства CA_6 (t,v,w,x,y,z) можно представить прямой $(\lambda T, \lambda V, \lambda U, \lambda S, \lambda W, \lambda X, \lambda Y, \lambda Z)$ пространства CR^8, обладающего метрикой

$$dL^2 = dT^2 + dV^2 + dU^2 + dS^2 + dW^2 + dX^2 + dY^2 + dZ^2. \quad (401)$$

Эти прямые будут образующими изотропного конуса CK_8

$$T^2 + V^2 + U^2 + S^2 + W^2 + X^2 + Y^2 + Z^2 = 0. \quad (402)$$

Далее, пересечение 7-плоскости

$$U - iS = 1 \quad (403)$$

с указанным конусом CK_8 обладает индуцированной метрикой

$$d\tilde{L}^2 = dT^2 + dV^2 + dW^2 + dX^2 + dY^2 + dZ^2. \quad (404)$$

Это пространство имеет вид параболоида на CK_8 и тождественно пространству CR^6

$$U = 1 + iS = \frac{1}{2}(1 - T^2 - V^2 - W^2 - X^2 - Y^2 - Z^2). \quad (405)$$

Всякая образующая этого конуса (множество точек, принадлежащих CK_8 с постоянным отношением $T : V : U : S : W : X : Y : Z$), не лежащая на гиперплоскости $U = iS$, пересекает параболоид в единственной точке. Образующим конуса, лежащим на гиперплоскости $U = iS$, соответствуют точки, принадлежащие бесконечности пространства CR^6. Таким образом, прямым CR^8, проходящим через начало CR^8, соответствуют точки проективного пространства CP_7. Стереографическая проекция указанного сечения на плоскость $U = 0$ с полюсом $N(0,0,\frac{1}{2},0,0,0,0,0)$ отображает точку $P(T,V,U,S,W,X,Y,Z)$ гиперболоида на точку $p(t,v,1,0,w,x,y,z)$ плоскости $U = 1, S = 0$

$$\lambda T = t, \quad \lambda V = v, \quad \lambda W = w, \quad \lambda X = x, \quad \lambda Y = y, \quad \lambda Z = z,$$

$$\lambda = \frac{1}{U+iS}, \quad \lambda U = \frac{1}{2}(1 - t^2 - v^2 - w^2 - x^2 - y^2 - z^2) = -\lambda iS + 1,$$

$$pf(r) = \frac{-U+is}{U+is}. \quad (406)$$

Образующим же конуса CK_8 соответствует квадрика $C\tilde{Q}_6$ в проективном пространстве CP_7

$$G_{AB}R^A R^B = 0. \quad (407)$$
5.4 Соответствие $\mathbb{C}Q_6 \mapsto \mathbb{C}\tilde{Q}_6$

На основании (394)

$$r^{ab} = r^{ab}_{\text{частное}} + r^{ab}_{\text{однородное}} = r^{ab}_{\text{частное}} + \lambda_1 \dot{S}^a \dot{X}^b + \lambda_2 \dot{X}^a \dot{\tilde{Z}}^b + \lambda_3 \dot{S}^a \dot{\tilde{Z}}^b,$$

посому (394) определит 4-мерную плоскую образующую конуса $\mathbb{C}K_8$. Уравнения (399), (400) определяют систему

$$\begin{cases}
ir^{ab} \dot{Y}_b = \dot{X}^a,
ir^{ab} \dot{T}_b = \dot{Z}^a,
ir^{ab} \dot{N}_b = \dot{L}^a,
ir^{ab} \dot{M}_b = \dot{K}^a
\end{cases}$$

с условиями

$$
\begin{align*}
\dot{X}^a \dot{Y}_a &= 0, & \dot{Z}^a \dot{T}_a &= 0, & \dot{L}^a \dot{N}_a &= 0, & \dot{K}^a \dot{M}_a &= 0, \\
\dot{X}^a \dot{T}_a &= -\dot{Z}^a \dot{Y}_a, & \dot{X}^a \dot{N}_a &= -\dot{L}^a \dot{Y}_a, & \dot{X}^a \dot{M}_a &= -\dot{K}^a \dot{Y}_a, \\
\dot{Z}^a \dot{N}_a &= -\dot{L}^a \dot{T}_a, & \dot{Z}^a \dot{M}_a &= -\dot{K}^a \dot{T}_a, & \dot{K}^a \dot{N}_a &= -\dot{L}^a \dot{M}_a.
\end{align*}
$$

Таким образом из 16 уравнений с 6 неизвестными r^{ab} существенными будут только 6 уравнений (10 условий связи (410)), что определит точку $\mathbb{C}A_6$, а значит и точку квадрики $\mathbb{C}\tilde{Q}_6$.

Если из системы (409) нам известно одно уравнение

$$ir^{ab} \dot{Y}_b = \dot{X}^a$$

с условием

$$\dot{X}^a \dot{Y}_a = 0,$$

то из 4 уравнений существенными будут лишь 3 (одно условие связи). Это означает, что точке квадрики $\mathbb{C}Q_6$ будет соответствовать плоская 3-мерная образующая $\mathbb{C}P_3$, принадлежащая квадрике $\mathbb{C}\tilde{Q}_6$. Это следует из (394).

Если из системы (409) нам известны два уравнения

$$\begin{cases}
ir^{ab} \dot{Y}_b = \dot{X}^a, \\
ir^{ab} \dot{T}_b = \dot{Z}^a
\end{cases}$$

то из 2 уравнений существенными будут лишь 1 (одно условие связи). Это означает, что точке квадрики $\mathbb{C}Q_6$ будет соответствовать плоская 2-мерная образующая $\mathbb{C}P_2$, принадлежащая квадрике $\mathbb{C}\tilde{Q}_6$. Это следует из (394).
с условиями

\[\dot{X}^a Y_a = 0, \quad \dot{Z}^a T_a = 0, \quad \dot{X}^a T_a = -\dot{Z}^a Y_a, \quad (414) \]

то из 8 уравнений существенными будут лишь 5 (неизвестных же 6 и 3 условия связи). Это означает, что прямолинейной образующей \(\mathbb{CP}_1 \) квадрики \(\mathbb{CQ}_6 \) будет соответствовать прямолинейная образующая \(\mathbb{CP}_1 \), принадлежащая квадрике \(\mathbb{CQ}_6 \). При этом многообразие образующих \(\mathbb{CP}_1(\mathbb{CQ}_6) \), принадлежащих одной и той же образующей \(\mathbb{CP}_3(\mathbb{CQ}_6) \), определит пучок образующих \(\mathbb{CP}_1(\mathbb{CQ}_6) \), принадлежащий квадрике \(\mathbb{CQ}_6 \) (этот пучок является на самом деле конусом). Центр пучка определится системой (409).

Если из системы (409) нам известны три уравнения

\[
\begin{align*}
 \dot{Y}_b^{(ab)} & = \dot{X}^a, \\
 \dot{T}_b^{(ab)} & = \dot{Z}^a, \\
 \dot{N}_b^{(ab)} & = \dot{L}^a
\end{align*}
\]

с условиями

\[\dot{X}^a Y_a = 0, \quad \dot{Z}^a T_a = 0, \quad \dot{L}^a N_a = 0, \quad \dot{X}^a T_a = -\dot{Z}^a Y_a, \quad \dot{X}^a N_a = -\dot{L}^a Y_a, \quad \dot{Z}^a N_a = -\dot{L}^a T_a, \quad (416) \]

то из 12 уравнений существенными будут лишь 6 (и неизвестных 6 с 6 условиями связи). Это означает, что 2-мерной образующей \(\mathbb{CP}_2 \) квадрики \(\mathbb{CQ}_6 \) будет соответствовать точка квадрики \(\mathbb{CQ}_6 \). При этом многообразие образующих \(\mathbb{CP}_2(\mathbb{CQ}_6) \), принадлежащих одной и той же образующей \(\mathbb{CP}_3(\mathbb{CQ}_6) \), определит единственную точку квадрики \(\mathbb{CQ}_6 \). Эта точка определяется системой (409).
5.5 Связующие операторы $\eta^A_{\ K}\ L$

Исходя из вышесказанного, рассмотрим прямолинейную образующую квадрики CQ_6, определенную бивектором

$$
\hat{R}^{AB} = X_1^{A} X_2^{B} = \begin{pmatrix}
X^a \dot{Z}^b - X^b \dot{Z}^a & X^a \dot{T}_d - Y_d \dot{Z}^a \\
Y_c \dot{Z}^b - \dot{T}_c \dot{X}^b & Y_c \dot{T}_d - Y_d \dot{T}_c
\end{pmatrix} =

= \begin{pmatrix}
-2r^{[a[k]}r^{b]}r \dot{Y}_k \dot{T}_r & 2i r^{ar} \dot{Y}_r \dot{T}_b \\
i\varepsilon^{kmbn}r_{ck} \dot{Y}_{[m} \dot{T}_{n]} + \delta^{b}_{c} \dot{X}^k \dot{T}_k & 2Y_{[r} \dot{T}_{d]}
\end{pmatrix} = \begin{pmatrix}
\frac{-1}{2}i \delta^a_k r^\gamma r_\gamma & r^{ar} \\
r_{ck} & -i \delta^c_r
\end{pmatrix},

= \begin{pmatrix}
\frac{i}{2} \delta^a_k r^\gamma r_\gamma & r^{ar} \\
\frac{i}{2} \delta^c_r & -i \delta^a_k r^\gamma r_\gamma
\end{pmatrix} := R^A_K P^K_B. \tag{417}

Положим

$$
\begin{align*}
R^{AB} & := \varepsilon^{BC} R^A_C = \hat{T}_l \dot{X}^l \begin{pmatrix}
r^{an} & -\frac{1}{2}i \delta^a_k r^\gamma r_\gamma \\
-i \delta^c_n & r_{ck}
\end{pmatrix}, \tag{418} \\
R_{AB} & := \varepsilon_{AC} R^C_B = \hat{T}_l \dot{X}^l \begin{pmatrix}
r_{ck} & -i \delta^c_n \\
\frac{1}{2} i \delta^a_k r^\gamma r_\gamma & r^{an}
\end{pmatrix}. \tag{419}
\end{align*}
$$

При этом будет верно уравнение

$$
R^C_A \hat{R}^{AB} = 0. \tag{420}
$$

Очевидно, что любой тензор (417), представляющий образующую $\mathbb{CP}_1(CQ_6)$, будет содержать один и тот же тензор R^A_K в своем разложении, при этом второй тензор разложения P^K_B будет отвечать за положение \mathbb{CP}_1 в \mathbb{CP}_3. Поэтому есть резон поставить в соответствие точке квадрики $\hat{C}Q_6$ матрицу (418), которой она определится однозначно. При переходе к пространству \mathbb{CR}^8, исходя из

$$
\begin{align*}
r^{12} & = \frac{1}{\sqrt{2}}(v + iw), & r^{13} & = \frac{1}{\sqrt{2}}(x + iy), & r^{14} & = \frac{i}{\sqrt{2}}(t + iz), \\
r^{23} & = \frac{1}{\sqrt{2}}(iz - t), & r^{24} & = \frac{1}{\sqrt{2}}(-x + iy), & r^{34} & = \frac{1}{\sqrt{2}}(v - iw), \tag{421}
\end{align*}
$$

определим однородные координаты \mathbb{CR}^8 следующим образом

$$
\lambda = \left\{ \begin{array}{cccccccc}
R^{12} & : & R^{13} & : & R^{14} & : & R^{23} & : & R^{24} & : & R^{34} & : & R^{15} & : & R^{51}, \\
r^{12} & : & r^{13} & : & r^{14} & : & r^{23} & : & r^{24} & : & r^{34} & : & -\frac{1}{2}i r^\gamma r_\gamma & : & -i
\end{array} \right\}. \tag{422}
$$
\[R^{12} = \frac{1}{\sqrt{2}}(V + iW), \quad R^{13} = \frac{1}{\sqrt{2}}(iY + X), \quad R^{14} = \frac{1}{\sqrt{2}}(iT - Z), \quad R^{23} = \frac{1}{\sqrt{2}}(-Z - iT), \quad R^{24} = \frac{1}{\sqrt{2}}(-X + iY), \quad R^{34} = \frac{1}{\sqrt{2}}(V - iW), \quad R^{51} = \frac{1}{\sqrt{2}}(S - iU), \quad R^{15} = \frac{1}{\sqrt{2}}(iU + S),\] (423)

\[R^{12} = -R^{21} = R^{78} = -R^{87}, \quad R^{13} = -R^{31} = R^{86} = -R^{68}, \quad R^{14} = -R^{41} = R^{76} = -R^{67}, \quad R^{23} = -R^{32} = R^{85} = -R^{58}, \quad R^{24} = -R^{42} = R^{75} = -R^{57}, \quad R^{34} = -R^{43} = R^{56} = -R^{65}, \quad R^{15} = R^{26} = R^{37} = R^{48}, \quad R^{51} = R^{62} = R^{73} = R^{84}, \]

\[R^{AB} R_{AB} = 8(R^{12} R^{34} - R^{13} R^{24} + R^{14} R^{23} + R^{15} R^{51}) = 4(T^2 + V^2 + U^2 + W^2 + X^2 + Y^2 + Z^2) := 4nf(R) \] (424)

\[R^{AB} R_{CB} = \frac{1}{2} nf(R) \delta^{A}_{C} \Rightarrow R^{AB} R_{AB} = 4nf(R). \]

Для того, чтобы \((R_i)^A\) определяли образующую квадрику \(\mathbb{C}Q_6\) необходимо и достаточно выполнение условий

\[G_{AB} R^A_i R^B_j = 0. \] (425)

Определим некоторые связующие операторы \(\eta^{ABC}\) так, чтобы выполнялись условия

\[R_A = \frac{1}{4} \eta^{ABC} R_{BC}, \quad R^A = \frac{1}{4} \eta^{A}_{BC} R^{BC} \] (426)

и было верно тождество

\[G_{AB} \delta^K_L = \eta_{AK} R^R_B L^R + \eta_{BK} R^R_A L^R. \] (427)

Потому можно определить некоторые операторы \(\gamma^A\)

\[\gamma^A := \sqrt{2} \begin{pmatrix} 0 & \sigma_A \\ \eta_A & 0 \end{pmatrix}, \quad \eta_A := \eta^A_{KR}, \quad \sigma_A := (\eta_A)^T_{RL}. \] (428)
Тогда γ_A будут удовлетворять уравнению Клиффорда

$$\gamma_A \gamma_B + \gamma_B \gamma_A = 2G_{AB} I. \quad (429)$$

При этом спуск и подъем одиночных индексов производится с помощью метрического тензора ε_{AB}, определенного выше. Определим

$$\varepsilon_{PQRT} := \eta^A_{PQ} \eta^B_{RT} G_{AB}, \quad \varepsilon_{PQRT} = \varepsilon_{RTPQ}, \quad (430)$$

что даст еще один метрический тензор ε_{PQRT}, с помощью которого можно поднимать и опускать парные индексы. Действительно, если (427) свернуть δ^K_L, то получим

$$G_{AB} = \frac{1}{4} \eta^P_{AP} \eta^Q_{BP}. \quad (431)$$

Свернем (430) с $\eta^P_{C PQ}$, то

$$\eta_{C RT} = \frac{1}{4} \eta^C_{PQ} \varepsilon_{PQRT}. \quad (432)$$

Теперь тождество (427) можно переписать в виде (свернув с $\eta^A_{ST} \eta^P_{R PQ}$)

$$\varepsilon_{STPQ} \delta^K_L = \varepsilon_{STK}^P \varepsilon_{PQ^L R} + \varepsilon_{PQQ^R} \varepsilon_{ST^L R}. \quad (433)$$

Свертка же (433) с δ^K_L даст

$$\varepsilon_{STPQ} = \frac{1}{4} \varepsilon_{ST}^K \varepsilon_{RK}^P \varepsilon_{PQ R}. \quad (434)$$

При этом результат применения двух метрических тензоров должен быть одинаков

$$\varepsilon_{PQ} = \frac{1}{4} \varepsilon_{PQRT} \varepsilon_{RT}. \quad (435)$$

Таким образом, при наличии 3 метрических тензоров $G_{AB}, \varepsilon_{PQRT}, \varepsilon_{RT}$, можно от уравнения Клиффорда (429) прийти к уравнению (427), и η^A_{BC} являются образующими соответствующей алгебры Клиффорда. Опустим теперь индекс L в (433) и свернем его с ε_{ST}, то получим

$$\varepsilon_{PQ(KL)} = \frac{1}{2} \varepsilon_{PQ} \varepsilon_{KL}, \quad \varepsilon_{[PQ](KL)} = 0, \quad (436)$$
что приведет к тождеству

\[\eta_A^{(MN)} = \frac{1}{8} \eta_A^{KL} \varepsilon_{KL} \varepsilon^{MN}. \] (437)

Если же тензоры \(G_{AB} \) и \(\varepsilon_{KL} \) имеют вид

\[
\|
\begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[(438) \]

то существенные координаты операторов \(\eta^A_{KL} \) в некотором базисе будут такими:

\[
\begin{align*}
\eta_{12}^2 &= \frac{1}{\sqrt{2}}, & \eta_{34}^2 &= \frac{1}{\sqrt{2}}, & \eta_{12}^5 &= \frac{-i}{\sqrt{2}}, & \eta_{34}^5 &= \frac{i}{\sqrt{2}}, \\
\eta_{78}^2 &= \frac{1}{\sqrt{2}}, & \eta_{56}^2 &= \frac{1}{\sqrt{2}}, & \eta_{78}^5 &= \frac{-i}{\sqrt{2}}, & \eta_{56}^5 &= \frac{i}{\sqrt{2}}, \\
\eta_{14}^1 &= -\frac{i}{\sqrt{2}}, & \eta_{23}^1 &= \frac{i}{\sqrt{2}}, & \eta_{14}^8 &= \frac{-1}{\sqrt{2}}, & \eta_{23}^8 &= \frac{-1}{\sqrt{2}}, \\
\eta_{67}^1 &= -\frac{i}{\sqrt{2}}, & \eta_{58}^1 &= \frac{i}{\sqrt{2}}, & \eta_{67}^8 &= \frac{-1}{\sqrt{2}}, & \eta_{58}^8 &= \frac{-1}{\sqrt{2}}, \\
\eta_{13}^7 &= -\frac{i}{\sqrt{2}}, & \eta_{24}^7 &= \frac{-i}{\sqrt{2}}, & \eta_{13}^6 &= \frac{1}{\sqrt{2}}, & \eta_{24}^6 &= \frac{-1}{\sqrt{2}}, \\
\eta_{68}^7 &= \frac{i}{\sqrt{2}}, & \eta_{57}^7 &= \frac{i}{\sqrt{2}}, & \eta_{68}^6 &= \frac{-1}{\sqrt{2}}, & \eta_{57}^6 &= \frac{1}{\sqrt{2}}, \\
\eta_{15}^4 &= \frac{1}{\sqrt{2}}, & \eta_{51}^4 &= \frac{1}{\sqrt{2}}, & \eta_{15}^3 &= -\frac{i}{\sqrt{2}}, & \eta_{51}^3 &= \frac{i}{\sqrt{2}}, \\
\eta_{26}^4 &= \frac{1}{\sqrt{2}}, & \eta_{62}^4 &= \frac{1}{\sqrt{2}}, & \eta_{26}^3 &= -\frac{i}{\sqrt{2}}, & \eta_{62}^3 &= \frac{i}{\sqrt{2}}, \\
\eta_{37}^4 &= \frac{1}{\sqrt{2}}, & \eta_{73}^4 &= \frac{1}{\sqrt{2}}, & \eta_{37}^3 &= -\frac{i}{\sqrt{2}}, & \eta_{73}^3 &= \frac{i}{\sqrt{2}}, \\
\eta_{48}^4 &= \frac{1}{\sqrt{2}}, & \eta_{84}^4 &= \frac{1}{\sqrt{2}}, & \eta_{48}^3 &= \frac{-i}{\sqrt{2}}, & \eta_{84}^3 &= \frac{i}{\sqrt{2}}.
\end{align*}
\] (439)
так, что в сокращенном виде можно записать

\[\eta_A^{MN} = \left(\frac{\eta_{ab}}{\mu} \right) \left(\lambda \delta_d^a \right), \quad \eta_{abcd} = \frac{1}{2} \varepsilon_{abcd} \eta_{ab}, \] (440)

где \(\varepsilon_{abcd} \) - квадравектор из (42). По сути, здесь использован тот же базис, что и в формуле (423).

Рассмотрим далее бивектор \(\hat{R}^{AB} \) вида (417) такой, что его составляющие вектора \(X_1^A, X_2^A \), определенные формулой (400), будут удовлетворять системе (409). Этим определяется цепочка тождеств

\[ir^{ab} \dot{Y}_b = \dot{X}_a, \quad ir_{ab} \dot{Z}^b = pf(r) \dot{T}_a, \]
\[\frac{1}{2} ir_{cd} \varepsilon^{abcd} \dot{Y}_b \varepsilon_{aklm} = \dot{X}_a \varepsilon_{aklm}, \]
\[3ir_{[kl} \dot{Y}_{m]} = \dot{X}_a \varepsilon_{aklm}, \]
\[ir_{kl} \dot{Y}_m + 2ir_{m[k} \dot{Y}_{l]} = \dot{X}_a \varepsilon_{aklm}. \] (441)

Свернем последнее тождество с \(\dot{Z}^m \) и будем иметь

\[ir_{kl} \dot{Y}_m \dot{Z}^m = \dot{X}_a \dot{Z}^a \varepsilon_{klmn} + pf(r) \cdot 2 \dot{T}_i \dot{Y}_l. \] (442)

Таким образом, бивектор \(\hat{R}^{AB} \) определит прямолинейную образующую \(CP_1(Q_6) \), принадлежащую некоторой плоской образующей \(CP_3(Q_6) \), которая определяет некоторую точку с координатами \(r^{ab} \), принадлежащую квадрике \(Q_6 \). Мы можем определить некоторый тензор \(\hat{R}^{AB} \)

\[\hat{R}^{AB} := \hat{R}^{AK} \hat{P}_K^B, \quad \hat{P}_K^B := \begin{pmatrix} 2 \delta_m^k & 0 \\ 0 & -2pf(r) i \delta^n_r \end{pmatrix}. \] (443)

Тензор \(\hat{R}^{AB} \) по прежнему будет представлять прямолинейную образующую \(CP_1(Q_6) \), принадлежащую некоторой плоской образующей \(CP_3(Q_6) \). Применим операторы \(\eta^A_{KL} \) к тензору \(\hat{R}^{AB} \) и получим тождество

\[\eta^A_{KL} \hat{R}^{KL} = \eta^A_{KL} \dot{Y}_m \dot{Z}^m \left(\begin{array}{cc} r_{an} & -\frac{1}{2}i \delta_a \eta^a r^n \\ -i \delta_c n & r_{ek} \end{array} \right) = \eta^A_{KL} \hat{R}^{KL}, \] (444)
где $\dot{Y}_m \dot{Z}^m$ нормировано так, что выполнено (423), а тензор R^{KL} удовлетворяет выражению (418). Таким образом, операторы η^{AKL} осуществляют факторизацию прямолинейных образующих $\mathbb{CP}_1(\mathbb{C}Q_6)$ по принадлежности к одной плоской образующей $\mathbb{CP}_3(\mathbb{C}Q_6)$, и это определит точку квадрики $\mathbb{C}Q_6$. В однородных же координатах тензор R^{KL} определит координаты точки R пространства $\mathbb{C}R^8$.

Свернем с δ_L^B тождество (427)

$$G^{AK} = S^M_A \varepsilon_{KM}, \quad S^M_A := \eta^{AMR} \eta^L_R + \eta^L_A R \eta^{LMR}. \quad (445)$$

Поскольку G^{AB}, ε_{KL} имеют вид (438), то $\| S^M_A \|$ будет такой

$$\| S^M_A \| = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix}. \quad (446)$$

Поэтому S^M_A будет тензором инволюции, а квадрики - В-цилиндрами.

Выясним, какому семейству принадлежат рассматриваемые выше образующие $\mathbb{CP}_3(\mathbb{C}Q_6)$. Для этого рассмотрим условия

$$\varepsilon_{AB} X^A_i X^B_j = 0,$$

$$X^{ABCD} := \varepsilon^{ijkl} X^A_i X^B_j X^C_k X^D_l, \quad (447)$$

где ε^{ijkl} - квадривектор, кососимметричный по всем индексам. Кроме того, рассмотрим 8-вектор $e_{ABCDKLNM}$, тоже кососимметричный по всем индексам. Тогда, если в условии

$$\frac{1}{24} e_{ABCDKLNM} X^{ABCD} = \rho \varepsilon_{KR} \varepsilon_{LT} \varepsilon_{MU} \varepsilon_{NV} X^{RTUV}, \quad \rho^2 = 1 \quad (448)$$

$\rho = 1$, то будем говорить, что плоские образующие $\mathbb{CP}_3(\mathbb{C}Q_6)$ принадлежат I семейству, а если $\rho = -1$, то - II семейству. В нашем случае

$$X^A_i = (\dot{X}^a_i, \dot{Y}^b_i), \quad (449)$$
и (448) даст такое, например, выражение
\[\varepsilon^{ijkl} X_i^1 X_j^2 X_k^3 X_l^4 = \rho \varepsilon^{ijkl} X_i^1 X_j^2 X_k^3 X_l^4. \] (450)
При этом тензор \(\varepsilon_{KL} \) имеет вид (438). Откуда \(\rho = 1 \). Это означает, что наши образующие необходимо принадлежат I семейству.
Кроме того, существует тензор \(\tilde{S}_K^L \)

\[\| \tilde{S}_K^L \| = \frac{1}{\sqrt{2}} \begin{pmatrix} i & 0 & 0 & 0 & -i & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 & -i & 0 & 0 \\ 0 & 0 & i & 0 & 0 & 0 & -i & 0 \\ 0 & 0 & 0 & i & 0 & 0 & 0 & -i \\ 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}, \quad \text{det} \| \tilde{S}_K^L \| = 1. \] (451)
такой, что выполнено
\[\varepsilon_{AB} \tilde{S}_K^A \tilde{S}_L^B = G_{KL}. \] (452)
Поэтому можно положить
\[X_i^A = \tilde{S}_K^A R_i^K, \] (453)
и (447) перепишется так
\[G_{AB} R_i^A R_i^K = 0, \] (454)
Поскольку \(\rho = 1 \), то будем иметь цепочку тождеств
\[\frac{1}{24} \varepsilon_{ABCDKLMN} X^{ABCD} = \varepsilon_{KL} \varepsilon_{MN} X^{RTUV}, \]
\[\frac{1}{24} \varepsilon_{ABCDKLMN} \tilde{S}_U^A \tilde{S}_S^B \tilde{S}_T^C \tilde{S}_V^D \tilde{S}_P^K \tilde{S}_Q^L \tilde{S}_X^M S_{Y}^{N} R^{USTV} = \]
\[= \varepsilon_{KP} \varepsilon_{LQ} \varepsilon_{MX} \varepsilon_{NY} \tilde{S}_G^P \tilde{S}_H^Q \tilde{S}_Z^X \tilde{S}_W^Y R^{GHZW}, \]
\[\frac{1}{24} \varepsilon_{ABCDKLMN} \tilde{S}_U^A \tilde{S}_S^B \tilde{S}_T^C \tilde{S}_X^D \tilde{S}_P^K \tilde{S}_Q^L \tilde{S}_X^M \tilde{S}_Y^{N} R^{USTV} = \]
\[= G_{PC} G_{QM} G_{XZ} G_{YW} R^{GHZW}, \]
\[\frac{1}{24} \text{det} \| S_P^A \| e_{PQXYUSTV} R^{USTV} = G_{PC} G_{QM} G_{XZ} G_{YW} R^{GHZW}, \]
\[\frac{1}{24} e_{PQXYUSTV} R^{USTV} = G_{PC} G_{QM} G_{XZ} G_{YW} R^{GHZW}. \] (455)
Отсюда видно, что и образующие $\mathbb{C}P_3(\mathbb{C}\tilde{Q}_6)$ необходимо принадлежать I семейству. Для того, чтобы получить такой же результат для образующих II семейства, в качестве метрического тензора, с помощью которого поднимаются и опускаются одиночные индексы, следовало бы выбрать тензор

$$\tilde{\varepsilon}_{KL} := \sqrt{i\varepsilon_{KL}}.$$

(456)

5.6 Соответствие $\mathbb{C}\tilde{Q}_6 \rightarrow \mathbb{C}Q_6$

Применяя операторы η_A^{KL} к (425) получим

$$ R^A_i R^A_i = 0 \iff (R^A_i)^A_i - (R^A_j)^A_j) = 0 \iff (r^a) - (r^b) = 0.$$

(457)

Здесь i,j, как обычно, номера базисных точек. Этим определяется система

$$
\begin{align*}
&i(r_1)^a Y_b = X^a, \\
&i(r_2)^a Y_b = X^a, \\
&i(r_3)^a Y_b = X^a, \\
&i(r_4)^a Y_b = X^a,
\end{align*}
\iff
\begin{align*}
&i((r_1)^a - (r_2)^a) Y_b = 0, \\
&i((r_1)^a - (r_3)^a) Y_b = 0, \\
&i((r_3)^a - (r_4)^a) Y_b = 0, \\
&i(r_1)^a Y_b = X^a.
\end{align*}
$$

(458)

Далее мы будем рассматривать только правую систему. Она строится следующим образом. Всегда существует такой ковектор Y_a, который обнуляет 3 различных простых бивектора. Это утверждение сводится к существованию ковектора, ортогонального данным трем векторам, поскольку каждый из простых бивекторов раскладывается по формуле $r^{ab} = 2P^{[a}Q^{b]}$. По четвертому же уравнению определяется некоторый вектор X^a. Поэтому такая система всегда определена. С другой стороны, на основании того, что все r_i^{ab} имеют вид (394) (при фиксированных $\lambda_1, \lambda_2, \lambda_3$), верно равенство

$$((r_i)^a - (r_j)^a)((r_k)_b - (r_l)_b) = 0.$$

(459)

Итак, пусть нам известно последнее уравнение системы (458)

$$i r_1^{ab} Y_b = X^a,$$

(460)

тогда мы имеем 4 уравнения, которые все будут существенными. Поскольку у нас 8 неизвестных (X^a, Y_b) при фиксированных $(r_i)^a$, 181
то точка квадрики $\mathbb{C}\tilde{Q}_6$ определит 3-мерную плоскую образующую $\mathbb{C}P_3(\mathbb{C}\tilde{Q}_6)$.

Если нам известны все уравнения системы (458) с условиями

\begin{align*}
((r_1)^{ab} - (r_2)^{ab})((r_1)^{ab} - (r_2)^{ab}) &= 0, \\
((r_3)^{ab} - (r_4)^{ab})((r_3)^{ab} - (r_4)^{ab}) &= 0, \\
(r_1)^{ab}(r_2)^{ab} &= 0, \\
(r_1)^{ab}(r_3)^{ab} &= 0, \\
(r_1)^{ab}(r_4)^{ab} &= 0,
\end{align*}

то из 16 уравнений существенными будут 7 (8 неизвестных и 9 условий связи). Поэтому образующей $\mathbb{C}P_3(\mathbb{C}\tilde{Q}_6)$ будет соответствовать точка квадрики $\mathbb{C}\tilde{Q}_6$.

Если нам известны 3 уравнения системы (458)

\begin{align*}
i((r_1)^{ab} - (r_2)^{ab})\dot{Y}_b &= 0, \\
i((r_1)^{ab} - (r_3)^{ab})\dot{Y}_b &= 0, \\
i(r_1)^{ab}\dot{Y}_b &= \dot{X}^a
\end{align*}

с условиями

\begin{align*}
((r_1)^{ab} - (r_2)^{ab})((r_1)^{ab} - (r_2)^{ab}) &= 0, \\
((r_3)^{ab} - (r_4)^{ab})((r_3)^{ab} - (r_4)^{ab}) &= 0, \\
(r_1)^{ab}(r_2)^{ab} &= 0, \\
(r_1)^{ab}(r_3)^{ab} &= 0, \\
(r_1)^{ab}(r_4)^{ab} &= 0,
\end{align*}

то из 12 уравнений существенными будут тоже 7 уравнений (8 неизвестных и 5 условий связи). Это означает, что образующей $\mathbb{C}P_2(\mathbb{C}\tilde{Q}_6)$ будет соответствовать точка квадрики $\mathbb{C}Q_6$. При этом многообразие образующих $\mathbb{C}P_2(\mathbb{C}\tilde{Q}_6)$, принадлежащих одной образующей $\mathbb{C}P_3(\mathbb{C}\tilde{Q}_6)$, определит единственную точку квадрики $\mathbb{C}Q_6$.

Если нам известны только 2 уравнения системы (458)

\begin{align*}
i((r_1)^{ab} - (r_2)^{ab})\dot{Y}_b &= 0, \\
i(r_1)^{ab}\dot{Y}_b &= \dot{X}^a
\end{align*}

с условиями

\begin{align*}
((r_1)^{ab} - (r_2)^{ab})((r_1)^{ab} - (r_2)^{ab}) &= 0, \\
(r_1)^{ab}(r_2)^{ab} &= 0,
\end{align*}

то из 16 уравнений существенными будут 7 (8 неизвестных и 9 условий связи). Поэтому образующей $\mathbb{C}P_3(\mathbb{C}\tilde{Q}_6)$ будет соответствовать точка квадрики $\mathbb{C}Q_6$.
то из 8 уравнений существенными будет только 6 уравнений (8 неизвестных и 2 условия связи). Поэтому образующей \(\mathbb{CP}_1(\mathbb{C}Q_6) \) будет соответствовать прямолинейная образующая \(\mathbb{CP}_1(\mathbb{C}Q_6) \). При этом многообразие образующих \(\mathbb{CP}_1(\mathbb{C}Q_6) \), принадлежащих одной образующей \(\mathbb{CP}_3(\mathbb{C}Q_6) \), определит пучок прямых \(\mathbb{CP}_1(\mathbb{C}Q_6) \), принадлежащий квадрике \(\mathbb{C}Q_6 \). Центр пучка определится системой (458).

5.7 Теорема о двух квадриках

Таким образом доказана теорема:

Теорема 1. (Принцип тройственности для двух \(B \)-цилиндров). В проективном пространстве \(\mathbb{CP}_7 \) существуют две квадрики (два \(B \)-цилиндра), обладающие следующими общими свойствами:

1. Плоская образующая \(\mathbb{CP}_3 \) одной квадрики взаимооднозначно определит точку \(R \) другой.

2. Плоская образующая \(\mathbb{CP}_2 \) одной квадрики однозначно определит точку \(R \) другой. Но точке \(R \) можно сопоставить многообразие плоских образующих \(\mathbb{CP}_2 \), принадлежащих одной плоской образующей \(\mathbb{CP}_3 \) второй квадрики.

3. Прямолинейная образующая \(\mathbb{CP}_1 \) одной квадрики взаимооднозначно определит прямолинейную образующую \(\mathbb{CP}_1 \) из другой. Причем все прямолинейные образующие, принадлежащие одной плоской образующей \(\mathbb{CP}_3 \) первой квадрики, определят пучок с центром в точке \(R \), принадлежащий второй квадрике.

Эта теорема на самом деле является обобщением соответствия Кляйна. Докажем это.

Доказательство. Рассмотрим на квадрике \(\mathbb{C}Q_6 \) только те образующие, которые имеют вид

\[
X^4 = (0, Y_b).
\]

Многообразие таких образующих диффеоморфно \(\mathbb{CP}_3 \). При этом каждой такой образующей можно поставить в соответствие точку
квадрики $CQ_4 \subset C\tilde{Q}_6$. Согласно системе (409) первое ее уравнение будет иметь вид

$$r^{ab}\dot{Y}_b = 0.$$ \hspace{1cm} (467)

До конца доказательства положим $A, B, A', B', ... = \tilde{1}, \tilde{2}$. Кроме того, рассмотрим спинорное представление твисторов согласно [23, т.2, с.63, (6.1.24) и с. 83, (6.2.18)]

$$\dot{Y}_b = (\dot{\pi}_B, \dot{\omega}^{B'})$$

$$r^{ab} = \text{const} \begin{pmatrix} -\frac{1}{2}\varepsilon^{AB}r_cr^e & i r^{A}_{B'} \\ -i\tilde{r}^{A'}_B & \tilde{\varepsilon}^{A'B'} \end{pmatrix}.$$ \hspace{1cm} (468)

Поэтому первое уравнение перепишется в виде

$$\begin{cases} -\frac{1}{2}\varepsilon^{AB}r_cr^c\dot{\pi}_B + ir^{A}_{B'}\dot{\omega}^{B'} = 0, \\
-ir^{A'}_{B}\tilde{\pi}_B + \tilde{\varepsilon}^{A'B'}\dot{\omega}^{B'} = 0,
\end{cases}$$ \hspace{1cm} (469)

из которых будет существенным только одно

$$ir^{AA'}\dot{\pi}_{A'} = \dot{\omega}^A.$$ \hspace{1cm} (470)

(Здесь мы воспользовались операцией сопряжения и метрическими спинорами $\varepsilon^{A'B'}, \varepsilon^{AB}$, с помощью которых поднимаются и опускаются спинорные индексы и которые при сопряжении переходят друг в друга.) Поэтому система (409) определит систему

$$\begin{cases} ir^{AA'}\dot{\pi}_{A'} = \dot{\omega}^A, \\
ir^{AA'}\dot{\eta}_{A'} = \dot{\xi}^A, \\
\dot{Y}_b = (\dot{\pi}_B, \dot{\omega}^{B'}), \quad \dot{T}_b = (\dot{\eta}_B, \dot{\xi}^{B'}).
\end{cases}$$ \hspace{1cm} (471)

Эта система совпадает с системой (6.2.14), которая, в свою очередь, приводит к соответствию Кляйна согласно [23].

Следует в заключение отметить, что из этой теоремы следует принцип тройственности Картана: существует 3 диффеоморфных многообразия - многообразие точек квадрики и 2 многообразия плоских образующих I и II семейств. Это действительно так, поскольку две построенные квадрики можно отождествить, например, с помощью тензора \tilde{S}_{K}^L. При этом многообразие точек квадрики будет диффеоморфно многообразию плоских образующих I семейства.

Кроме того, поскольку принцип тройственности Картана выполнен, то операторы η^A_{KL} определят алгебру октав, поскольку они
удовлетворяют уравнению Клиффорда. Это утверждение основано на результатах, приведенных в монографии [23, т.2, с.543-544], где рассматриваются структурные константы этой алгебры.

5.8 Заключение

На защиту выносятся следующие основные положения:

1. Вложение $\mathbb{R}^6_{(p,q)} \subset \mathbb{C}\mathbb{R}^6$ осуществляется с помощью операторов H_i^α таким образом, что спинорное представление инволюции имеет вид

$$S_{\alpha}^{\beta'} = \frac{1}{4} \eta_{\alpha}^{ab} \overline{\eta}^{\beta'}_{\epsilon' \delta'} \cdot 2s_{a}^{\epsilon'} s_{b}^{d'} , \quad s_{a}^{\epsilon'} s_{c}^{d'} = \pm \delta_{a}^{d}$$

при q - нечетном и

$$S_{\alpha}^{\beta'} = \frac{1}{4} \eta_{\alpha}^{ab} \eta_{\beta'}^{\epsilon' \delta'} \cdot s^{kc'} s^{nd'} \varepsilon_{knab}, \quad s_{ac'} = \pm \overline{s}_{c'a}$$

при q - четном.

2. Найдены в явном виде операторы $A_{\alpha \beta a}^{b}$, с помощью которых определяется соответствие между бивекторами пространства $\mathbb{C}\mathbb{R}^6$ и бессследовыми операторами пространства \mathbb{C}^4. Это позволяет изучать алгебраическую структуру тензора кривизны пространства $\mathbb{C}\mathbb{R}^6 R_{\alpha \beta \gamma \delta}$ по его спинорному образу - тензору $R_{a}^{b} c^{d}$.

3. Доказано, что простой изотропный бивектор пространства $\Lambda^2 \mathbb{C}^6$ определит вырожденную нуль-пару Розенфельда - вектор и ковектор пространства \mathbb{C}^4, свертка которых есть нуль - с точностью до комплексного множителя.

4. Утверждается, что бивектор пространства $\Lambda^2 \mathbb{R}^6_{(p,q)}$ при четном q может быть приведен в некотором базисе к каноническому виду.

5. Доказан обобщенный принцип тройственности для пары В-цилиндров.

6. Определены операторы η_{A}^{KL}, удовлетворяющие уравнению Клиффорда и отвечающие за соответствие между прямолинейными образующими указанных В-цилиндров. Кроме того, эти операторы определяют структурные константы алгебры октав.
6 ПРИЛОЖЕНИЕ

6.1 Доказательство формул второй главы

6.1.1 Доказательство формул, содержащих оператор $A_{\alpha\beta}^b$

Определим $(\alpha, \beta, ... = 1, 2, 3, 4, 5, 6; a_1, b_1, a, b, e, f, k, l, m, n, ... = 1, 2, 3, 4)$. Поскольку

$$A_{\alpha\beta}^c = \eta[\alpha^ca]^{\eta\beta]da},$$

(472)

то

$$A_{\alpha\beta}^c A_{\gamma}^r s = \frac{1}{4}(\eta_{\alpha}^{ca} \eta_{\beta}^{ad} - \eta_{\alpha ad} \eta_{\beta}^{ca})(\eta_{\gamma}^{sa1} \eta_{a1 r}^{\beta} - \eta_{\gamma a1 r}^{\beta s a1}) =$$

$$= \frac{1}{4}(\frac{1}{2}\eta_{\alpha}^{ca} \eta_{\gamma}^{kl}^{klsa1} \varepsilon_{a1 rad} - \eta_{\alpha ad} \eta_{\gamma}^{sa1} \varepsilon_{a1 r ad} - \eta_{\alpha ad} \eta_{\gamma}^{sa1} (\delta_{a1 c}^{c} \delta_{a1}^{a} - \delta_{a1}^{a} \delta_{a1}^{c}) - $$

$$- \eta_{\alpha ad} \eta_{\gamma a1 r} (\delta_{a}^{s} \delta_{d}^{a1} - \delta_{a1}^{a} \delta_{d}^{s}) + \frac{1}{2}\eta_{\alpha}^{kl} \eta_{\gamma a1 r} \varepsilon_{klad} \varepsilon_{cas1}) =$$

$$= \frac{1}{4}(-3\eta_{\alpha}^{ca} \eta_{\gamma [ra}^{s} \delta_{d]}^{d} - \eta_{\alpha ad} \eta_{\gamma}^{sa} \delta_{c}^{r} -$$

$$- \eta_{\alpha ad} \eta_{\gamma dr} + \eta_{\alpha}^{ca} \eta_{\gamma ar} \delta_{d}^{s} - 3\eta_{\alpha}^{[cs} \delta_{a1]} \eta_{\gamma a1 r} =$$

$$= \frac{1}{4}(-\eta_{\alpha}^{ck} \eta_{\gamma r k} \delta_{d}^{s} + \eta_{\alpha}^{cs} \eta_{\gamma rd} - \eta_{\alpha}^{ck} \eta_{\gamma kd} \delta_{r}^{s} - \eta_{\alpha ad} \eta_{\gamma}^{sc} + \eta_{\alpha ad} \eta_{\gamma}^{sa} \delta_{r}^{c} -$$

$$- \eta_{\alpha}^{cs} \eta_{\gamma dr} + \eta_{\alpha}^{ca} \eta_{\gamma ar} \delta_{d}^{s} - \eta_{\alpha}^{cs} \eta_{\gamma dr} + \eta_{\alpha}^{ck} \eta_{\gamma kr} \delta_{d}^{s} - \eta_{\alpha}^{sk} \eta_{\gamma kr} \delta_{d}^{c}) =$$

$$= \frac{1}{4}(3\eta_{\alpha}^{cs} \eta_{\gamma r d} + 3\eta_{\alpha}^{ck} \eta_{\gamma k r} \delta_{d}^{s} + \eta_{\alpha}^{ck} \eta_{\gamma d k} \delta_{r}^{s} +$$

$$+ \eta_{\alpha dr} \eta_{\gamma}^{sc} + \eta_{\alpha ad} \eta_{\gamma}^{sk} \delta_{d}^{c} + \eta_{\alpha}^{sk} \eta_{\gamma r k} \delta_{d}^{c}) =$$

(473)

$$\eta_{\alpha dr} \eta_{\gamma}^{sc} + \eta_{\alpha ad} \eta_{\gamma}^{sk} \delta_{d}^{c} =$$

$$= \frac{1}{4}(\eta_{\alpha}^{mm1} \eta_{\gamma l i}^{l} \varepsilon_{mm1 d r} \varepsilon_{ll1 s c} + \eta_{\alpha}^{mm1} \eta_{\gamma l i}^{l} \varepsilon_{mm1 d k} \varepsilon_{ll1 s k} \delta_{r}^{c}) =$$

$$= 6\eta_{\alpha}^{mm1} \eta_{\gamma l i}^{l} \delta_{[m}^{l} \delta_{m1}^{l} \delta_{d}^{r} \delta_{d}^{s} \delta_{r}^{c} + \frac{3}{2}\eta_{\alpha}^{mm1} \eta_{\gamma l i}^{l} \delta_{[m}^{l} \delta_{m1}^{l} \delta_{d}^{r} \delta_{r}^{c} =$$

$$= -g_{\alpha r} \eta_{\gamma}^{s} \delta_{d}^{c} + \eta_{\alpha}^{k c} \eta_{\gamma k d} \delta_{r}^{s} + \eta_{\alpha}^{k c} \eta_{\gamma k r} \delta_{d}^{s} + \eta_{\alpha}^{k s} \eta_{\gamma k r} \delta_{d}^{c} + \eta_{\alpha}^{s c} \eta_{\gamma d r}. $$

$$= \eta_{\alpha}^{cs} \eta_{\gamma r d} + \eta_{\alpha}^{ck} \eta_{\gamma k r} \delta_{d}^{s} + \frac{1}{2}(\eta_{\alpha}^{ck} \eta_{\gamma d k} \delta_{r}^{s} + \eta_{\alpha}^{sk} \eta_{\gamma r k} \delta_{d}^{c}) - \frac{1}{4}g_{\alpha r} \eta_{\gamma}^{s} \delta_{d}^{c}. $$
Свернем ее с \(g^{\alpha\gamma} \)

\[
A_{\alpha\beta d}{}^c A^{\alpha\beta r}{}^s = \\
e_{rd}{}^c s + e_{kr}{}^{ck} d s + \frac{1}{2} (e_{dk}{}^{ck} d r + e_{rk}{}^{sk} d c) - \frac{3}{2} \delta^r_s \delta^d_c = \\
= \delta^r_c d s - \delta^r_s d c - 3\delta^r_c d s + \frac{3}{2} \delta^d_c d r + \frac{3}{2} \delta^c d r s - \frac{3}{2} \delta^r_s d c = \\
= \frac{1}{2} \delta^r_s d d_c - 2\delta^r c d d s.
\]

Кроме того

\[
A_{\alpha\beta d}{}^c A^{\lambda\mu}{}^c d = \\
= \frac{1}{2} \eta^{\alpha a c} \eta^{\beta b d} \eta^{\gamma m n} \varepsilon_{a b c d} a_{b} c \eta^{d a} l l_1 = \\
= \frac{1}{4} \eta^{\alpha a c} \eta^{\beta b d} \eta^{\gamma m n} \varepsilon_{a b c d} a_{b} c \cdot (-6\delta^a_{a 1} \delta^b_{b 1} \delta^c_{c 1}) = \\
= -\frac{1}{2} \eta^{\alpha a c} \eta^{\beta b d} \eta^{\gamma m n} \varepsilon_{a b c d} a_{b} c \cdot \eta^{\gamma a c} \eta^{\beta b d} \eta^{\gamma m n} \varepsilon_{a b c d} a_{b} c = \\
= -2\delta^a_{a 1} \delta^b_{b 1} \delta^c_{c 1} = 2\delta^a_{a 1} \delta^b_{b 1} \delta^c_{c 1}.
\]

И, наконец

\[
A_{\alpha\beta m}^{n T_{\alpha\beta}} = A_{\alpha\beta m}^{n A_{\alpha\beta k} l T_{l}^{k} =} \\
= (\frac{1}{2} \delta^m_{m 1} \delta^k_{k 1} - 2\delta^m_{m 1} \delta^k_{k 1}) T_{l}^{k} = -2T_{m}^n, \ T_{\alpha\beta} = -T_{\beta\alpha}.
\]

6.1.2 Доказательство формул о 4-векторе \(e_{\alpha\beta\gamma\delta} \)

Пусть

\[
e_{\alpha\beta\gamma\delta} = e_{[\alpha\beta\gamma\delta]} = A_{\alpha\beta b} a A_{\gamma d} c e_{a b} c d, \ e_k{}^{k} d = e_a{}^{b k} = 0, \\
e_{a b} c d = e_{c d} a b, \ e_k{}^{t k} = 0.
\]
Свертка с \(A^{αβ}_m A^{γδ}_r \) даст

\[
A^{αβ}_m A^{γδ}_r A^{αβ}_m A^{γδ}_r =
\]

\[
= (\frac{1}{2} δ_ρ^c δ_δ^c - 2 δ_ρ^c δ_δ^c)(\frac{1}{2} δ_δ^m δ_π^m - 2 δ_δ^m δ_π^m) e_α^b e_δ^c = 4 e_π^m r^s =
\]

(478)

\[
= - A^{αβ}_m A^{γδ}_r A^{αβ}_m A^{γδ}_r =
\]

\[
= -(η_γ^α \eta_π^α + η_γ^α \eta_κ^κδ_m δ_κ^m + \frac{1}{2} η_γ^α \eta_κ^κ δ_κ^m) =
\]

\[
= (η_β^ε \eta_π^ε + η_β^ε \eta_κ^κ δ_κ^s + \frac{1}{2} η_β^ε \eta_κ^κ δ_κ^s) e_α^b e_δ^c =
\]

\[
= -(ε_ρ^α \epsilon_κ^κ δ_κ^s + \frac{1}{2} ε_ρ^α \epsilon_κ^κ δ_κ^s + \frac{1}{4} ε_ρ^α \epsilon_κ^κ δ_κ^s) e_α^b e_δ^c =
\]

\[
= (δ_ρ^α δ_κ^κ δ_κ^s - δ_δ^α δ_κ^κ δ_κ^s + δ_δ^α δ_κ^κ δ_κ^s - δ_δ^α δ_κ^κ δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s +
\]

\[
+ δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s - δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s - δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s +
\]

\[
+ δ_κ^κ δ_κ^s δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s - δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s - δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s + δ_κ^κ δ_κ^s δ_κ^s δ_κ^s +
\]

\[
= -(ε_ρ^α \epsilon_κ^κ δ_κ^s + \frac{1}{2} ε_ρ^α \epsilon_κ^κ δ_κ^s + \frac{1}{4} ε_ρ^α \epsilon_κ^κ δ_κ^s) e_α^b e_δ^c =
\]

(478)
Откуда

\[e_m^s := \frac{1}{3} e_m^t^s \Rightarrow 2 e_m^n r^s = 2 (e_m^s \delta_r^n + e_r^n \delta_m^s) - (e_r^s \delta_m^n + e_m^n \delta_r^s). \]

(479)

6.1.3 Доказательство формул о 6-векторе \(e_{\alpha \beta \gamma \delta \rho \sigma} \)

Пусть

\[e_{\alpha \beta \gamma \delta \rho \sigma} = e_{[\alpha \beta \gamma \delta \rho \sigma]} = A^a_{\alpha \beta \gamma} A^c_{\delta \rho \sigma} e_a^b e_c^d e_r^s. \]

(480)

Воспользуемся (478) и получим (\(e_m^s p^q := e_m^k p^k q^m \))

\[6 e_m^n p^r^s = 2 (e_m^s p^q \delta_r^n + e_r^n p^q \delta_m^s) - (e_r^s p^q \delta_m^n + e_m^n p^q \delta_r^s) = \]

\[= 2 (e_m^q r^s \delta_p^n + e_p^n r^s \delta_m^q) - (e_p^n r^s \delta_m^n + e_m^n r^s \delta_p^q). \]

(481)

Свернем (481) с \(\delta_q^p \) и получим

\[0 = 6 e_m^n r^s p^p = \]

\[= 2 (e_m^n r^s + e_m^n r^s) - (e_p^p r^s \delta_m^n + 4 e_m^n r^s) = -(e_p^p r^s) \cdot \delta_m^n = 0, \]

\[e_p^p r^s = e_r^s p^p = 0. \]

(482)

Свернем (481) с \(\delta_n^r \) и получим

\[8 e_m^s p^q + 2 e_t^t p^q \delta_m^s - e_m^s p^q - e_m^s p^q = \]

\[= 2 (e_m^q p^s + e_p^k r^q \delta_m^s) - (e_p^q m^s + e_m^k r^s \delta_p^q), \]

(483)

\[6 e_m^s p^q + e_p^q m^s - 2 e_m^q p^s = 2 e_p^t t^s \delta_m^q - e_m^k r^s \delta_p^q. \]

Свернем (483) с \(\delta_q^m \) и получим

\[6 e_k^s p^k + e_p^k k^s = 8 e_t^t s - e_p^k k^s, \]

(484)

\[e_p^t t^q = e_t^q p^t. \]
Свернем (483) с δ_s^m и получим

$$10\tilde{e} := e_t^k k^t,$$

$$-2e_k^q q^k = 2e_q^t t^q - e_t^k k^t \delta_p^q,$$

$$e_p^t t^q = \frac{5\tilde{e}}{2} \delta_p^q. \tag{485}$$

Свернем (481) с δ_s^p и получим

$$2e_m^k q^k \delta_r^n + 2e_r^n m^q - e_r^k k^q \delta_m^n - e_m^n r^q =$$

$$= 2e_m^k q^n + 2e_r^n k^q \delta_m^n - e_r^k r^q - e_m^n r^q, \tag{486}$$

$$e_r^n m^q = e_m^n r^q.$$

Тогда из (483), (481) следует

$$7e_m^s p^q - 2e_m^s q^p = 5\tilde{e} \delta_m^s \delta_p^q - \frac{5\tilde{e}}{2} \delta_m^s \delta_p^q,$$

$$9e_m^s [p^q] = \frac{15\tilde{e}}{2} \delta_m^s [q \delta_p^q];$$

$$5e_m^s p^q + 4e_m^s [p^q] = 5\tilde{e} \delta_m^s \delta_p^q - \frac{5\tilde{e}}{2} \delta_m^s \delta_p^q;$$

$$6e_m^s p^q = \tilde{e}(4\delta_m^s \delta_p^s - \delta_m^s \delta_p^s),$$

$$e_m^n [r^s p^q] = \tilde{e}(2((4\delta_p^n \delta_r^s - \delta_p^n \delta_r^s)\delta_m^s + (4\delta_p^n \delta_m^s - \delta_p^n \delta_m^s))\delta_r^n) -$$

$$-((4\delta_p^n \delta_m^s - \delta_p^n \delta_m^s)\delta_r^s + (4\delta_p^s \delta_r^s - \delta_p^s \delta_r^s)\delta_m^n)). \tag{487}$$

Вычислим \tilde{e}

$$720 = e_a^\alpha \delta_{\mu \nu} e_{\alpha \beta \gamma \delta \mu \nu} =$$

$$= A_{\alpha \beta} A_{\alpha \beta} A_{\mu \nu} A_{\gamma \delta} A_{\mu \nu} A_{\gamma \delta} A_{\mu \nu} A_{\mu \nu} m_1 A_{\mu \nu} m_1,$$

$$e_a^b d^c m e_a^b d^c m = 8(\frac{1}{4} \delta a^b c^d - \delta a^b c^d) (\frac{1}{4} \delta a^c d^c - \delta a^c d^c),$$

$$\cdot (\frac{1}{4} \delta a^m m^c - \delta a^m m^c) e_a^b d^c m = -8 e_a^b d^c m e_a^b d^c m = \tag{488}$$
\[= -8\tilde{e}^2 (8\delta_m^b \delta_c^d \delta_a^d - 4\delta_m^b \delta_c^d \delta_a^d + 8\delta_m^d \delta_a^b \delta_c^d - 4\delta_m^b \delta_a^b \delta_c^d + \]
\[+ 2\delta_m^b \delta_c^d - 4\delta_m^d \delta_c^d \delta_a^b) \cdot \]
\[= -720 \cdot 64\tilde{e}^2. \]

Откуда
\[\tilde{e} = \frac{1}{8}i. \] (489)

6.1.4 Доказательство формул, содержащих оператор \(N_a^f \)

Пусть теперь
\[N_{[a}^b N_c]^d = \delta_{[a}^b \delta_c^d, \] (490)
тогда свертка этого тождества с \(\delta_b^a \) даёт
\[N_a^a N_c^d - N_a^d N_c^a = 3\delta_c^d; \]
\[N_a^d N_c^a = N_a^a N_c^d - 3\delta_c^d. \] (491)

Домножим (490) на \(N_d^f \)
\[N_{[a}^b N_c]^d N_d^f = \delta_{[a}^b N_c]^f. \] (492)

Подставим (491) в (492)
\[N_{[a}^b N_c]^f N_r^r - 3N_{[a}^b \delta_c^f = \delta_{[a}^b N_c]^f. \] (493)

Свернем (493) с \(\delta_f^c \), то
\[3\delta_a^b N_r^r = N_r^r \delta_a^b + 8N_a^b, \]
\[N_a^b = \frac{1}{4}N_r^r \delta_a^b. \] (494)

Поэтому
\[N_a^b = n\delta_a^b, \quad n^2 = 1. \] (495)
6.2 Доказательство формул четвертой главы

6.2.1 Доказательство тождества Бианки

Тождество Бианки имеет вид

\[R_{\alpha\beta\gamma\delta} + R_{\alpha\gamma\delta\beta} + R_{\alpha\delta\beta\gamma} = 0, \]

(496)

\[(A_{\alpha\beta d} c A_{\gamma\delta r} s + A_{\alpha\gamma d} c A_{\delta\beta r} s + A_{\alpha\delta d} c A_{\beta\gamma r} s) R_{c d} s^r = 0. \]

Свернем его с \(A_{\alpha\beta l} l A_{c} c_{m n} \)

\[A_{\alpha\beta d} c A_{\gamma\delta r} s R_{c d} s^r A_{\alpha\beta l} l A_{c} c_{m n} R_{c d} s^r = \]

\[= (\frac{1}{2} \delta_d^c \delta_l^l - 2 \delta_d^c \delta_l^c)(\frac{1}{2} R_s^d \delta_m^n - 2 \delta_r^n \delta_m s) R_{c d} s^r = 4 R_{l m} l. \]

\[(A_{\alpha\gamma d} c A_{\delta\beta r} s + A_{\alpha\delta d} c A_{\gamma\beta r} s) R_{c d} s^r A_{\alpha\beta l} l A_{c} c_{m n} = \]

\[= -2 A_{\delta\beta r} s A_{c} c_{m n} A_{\alpha\gamma d} c A_{\alpha\beta l} l R_{c d} s^r = \]

\[= -2(\eta_{s n} \gamma_{m r} + \eta_{s k} \eta_{c m} \gamma_{k n} \delta_r^n + \frac{1}{2} \delta_{s k} \gamma_{r k} \delta_m^n). \]

\[\cdot (\eta_{l t} \gamma_{d l} \beta_{c l} + \eta_{l t} \gamma_{t l} \beta_{d l} + \frac{1}{2} \eta_{l t} \gamma_{t l} \beta_{c l} \delta_l^l) R_{c d} s^r = \]

\[= 2(\varepsilon_{t d} \varepsilon_{m r} \eta_{l t} + \varepsilon_{m t} \varepsilon_{k t} \delta_{l d} + \frac{1}{2} \varepsilon_{m r} \varepsilon_{l t} \delta_{l n} + \)

\[+ \varepsilon_{t d} \varepsilon_{m k} \delta_r^c + \varepsilon_{t d} \varepsilon_{l t} \varepsilon_{d c} \delta_{l n} + \frac{1}{2} \varepsilon_{c l} \varepsilon_{k t} \delta_r^c \delta_{l n} + \]

\[+ \frac{1}{2} \varepsilon_{c k} \varepsilon_{k t} \delta_r^c \delta_{l n} + \frac{1}{2} (\varepsilon_{l t} \varepsilon_{t d} \varepsilon_{d c} \delta_r^c \delta_{l n} + \]

\[+ \frac{1}{2} (\varepsilon_{l t} \varepsilon_{d c} \delta_r^c \delta_{l n} + \frac{1}{2} \varepsilon_{l t} \varepsilon_{d c} \delta_r^c \delta_{l n} - \]

\[- R_{m l} l + R_{k l} k \delta_t^n + R_{l k} l \delta_m n + \]

\[+ \frac{1}{2} (R_{m l} l + R_{k l} k \delta_t^n + R_{l k} l \delta_m n) \]

\[- R_{m l} l + R_{k l} k \delta_t^n + R_{l k} l \delta_m n - \frac{1}{2} \cdot 2 R_{m l} l \delta_t^n + \]
\[+\frac{1}{2}(R_t^k r^l \delta_{m}^n + R_t^l k^k \delta_{m}^n - R_t^r r^k \delta_{m}^n \delta_{l}^r) - R_t^k k^l \delta_{m}^n + \frac{1}{2} R_t^r r^k \delta_{l}^r \delta_{m}^n = \]
\[= -2(2R_t^m t^l - 2R_t k^l m^t \delta_{m}^n - 2R_t^r k^n \delta_{m}^l + R_t^l k^l \delta_{m}^n + \]
\[+ R_t^l k^n \delta_{l}^t + R_t^r r^k \delta_{l}^t \delta_{m}^n - \frac{1}{2} R_t^r r^k \delta_{m}^n \delta_{l}^t) \]

\[4R_t^t k^l \delta_{m}^n + 4R_t^l k^n \delta_{m}^l - 2R_t^l k^l \delta_{m}^n - \]
\[-2R_t^l k^n \delta_{l}^t - 2R_t^r r^k \delta_{m}^l + R_t^r r^k \delta_{m}^n \delta_{l}^t = 0. \] (497)

Свертка с \(\delta_{n}^t \) даст

\[16R_t^m k^k + 4R_t^l k^l \delta_{m}^l - 2R_t^l k^l m^k - 2R_t^r k^k \delta_{m}^l + 8R_t^r r^k \delta_{m}^l + R_t^r r^k \delta_{m}^l = 0, \]
\[R_t^m k^k = \frac{1}{4} R_t^r r^k \delta_{m}^l = -\frac{1}{8} R_k \delta_{m}^l \] (498)

чем доказана формула (294).

6.2.2 Доказательство тождеств, касающихся тензора Вейля

Верно следующее соотношение

\[R_{\alpha [\gamma g \beta]}^\delta = \]
\[A_{\alpha \beta d} c A^{\gamma \delta} r^s \frac{1}{16}(P_t^{k i n r} \varepsilon_k c n s - P_k c n r \varepsilon^{c k} n s + P_k c n s \varepsilon^{k d n r} - P_k d n s \varepsilon c n r) = \]
\[= A_{\alpha \beta d} c A^{\gamma \delta} r^s \frac{1}{16}(P_t^{k d m m i} \frac{1}{2} \varepsilon^m c m i n r \varepsilon_k c n s + P_k c m m i \frac{1}{2} \varepsilon^m c m i s \varepsilon^{k d n r} - \]
\[-P_k c n r (\delta_n c d s^r - \delta_n c d s^k) - P_k d n s (\delta_n c d s^r - \delta_k c d s^u)) = \]
\[= A_{\alpha \beta d} c A^{\gamma \delta} r^s \frac{1}{16}(P_t^{k d} c d s^r - P_k d k s c d r + P^{d r} c s + \]
\[+ P_k c d s^r - P_k d k s c d r + P s c d r - P_k c d s^r + P s c d r - P k d k s c d r + P^{d r} c s) = \]
\[= A_{\alpha \beta d} c A^{\gamma \delta} r^s \frac{1}{4}(P s c d r - \frac{1}{2} P_k c d s^r + \frac{1}{2} P_k c d s^r - \frac{1}{2} P_k c d s^r) = \]
\[= A_{\alpha \beta d} c A^{\gamma \delta} r^s \frac{1}{4}(P s c d r - \frac{1}{2} R k d s^r c d r + \frac{1}{4} R d s c d r). \] (499)
Аналогично
\[g[\alpha^{\gamma} g_{\beta}^{\delta}] = A_{\alpha \beta d} c A^{\gamma} r s \frac{1}{4} (\varepsilon_{sc}^{dr} - \frac{1}{2} \varepsilon_{kd}^{ks} \delta_c^r + \frac{1}{2} \varepsilon_{kd}^{kc} \delta_s^r - \frac{1}{2} \varepsilon_{kc}^{kr} \delta_s^d) = \]
\[= A_{\alpha \beta d} c A^{\gamma} r s \frac{1}{4} (\frac{1}{2} \delta_s^r \delta_c^d - 2 \delta_s^d \delta_c^r). \]

(500)

Таким образом, из
\[C_{\alpha \beta}^{\gamma \delta} := R_{\alpha \beta}^{\gamma \delta} - R_{[\alpha}^{\gamma} g_{\beta]}^{\delta] } + 1/10 R g_{[\alpha}^{\gamma} g_{\beta]}^{\delta]} \]
(501)

следует
\[C_{\alpha \beta}^{\gamma \delta} = A_{\alpha \beta d} c A^{\gamma} r s (R_{c}^{d}^{r} s - \frac{1}{4} P_{sc}^{dr} + \frac{1}{8} R_{\delta_s}^{d} \delta_c^r - \frac{1}{16} R_{\delta_s}^{r} \delta_c^d + \frac{1}{40} R(\frac{1}{2} \delta_s^r \delta_c^d - 2 \delta_s^d \delta_c^r)) = A_{\alpha \beta d} c A^{\gamma} r s (R_{c}^{d}^{r} s + R_{[c}^{k} | r | [s]^{d]} + \frac{1}{40} R(3 \delta_s^d \delta_c^r - 2 \delta_s^r \delta_c^d)). \]
(502)

Тогда
\[C_{\alpha \beta}^{\gamma \delta} = A_{\alpha \beta d} c A^{\gamma} r s (R_{c}^{d}^{r} s + \frac{1}{80} R_{\delta_s}^{d} \delta_c^r). \]
(503)

Свернем его с \(A^{\alpha \beta l}_{k} A_{\gamma \delta t}^{n}\)
\[4C_{k}^{l} t^{n} := \]
\[= A^{\alpha \beta l}_{k} A_{\gamma \delta t}^{n} C_{\alpha \beta}^{\gamma \delta} = A^{\alpha \beta l}_{k} A_{\alpha \beta d} A^{\gamma} r s A_{\gamma \delta t}^{n} (R_{c}^{d}^{r} s + \frac{1}{80} R_{\delta_s}^{d} \delta_c^r) = \]
\[= (\frac{1}{2} \delta_k^l \delta_c^r - 2 \delta_k^c \delta_d^l)(\frac{1}{2} \delta_r^s \delta_t^n - 2 \delta_r^n \delta_t^s)(\frac{1}{2} R_{c}^{d}^{r} s + \frac{1}{2} R_{s}^{d} r + \frac{1}{80} R_{\delta_s}^{d} \delta_c^r) = \]
\[= (2R_{k}^{l} t^{n} + \frac{1}{8} R_{k_1}^{r_1} k_1^{l} \delta_k^l \delta_t^n - \frac{1}{2} R_{k_1}^{l} k_1^{k} \delta_t^n + \frac{1}{2} R_{t}^{l} k_1^{n} \delta_k^l + \]
\[+ 2R_{k}^{l} t^{n} + \frac{1}{80} R(\delta_t^n \delta_k^l - \delta_t^n \delta_k^l - \delta_t^n \delta_k^l + 4 \delta_t^l \delta_k^n) = \]
\[= (4R_{(k}^{l} t^{n}) - \frac{1}{16} R\delta_k^l \delta_t^n + \frac{1}{16} R\delta_t^n \delta_k^l + \frac{1}{16} R\delta_t^n \delta_k^l + \frac{1}{80} R(4 \delta_t^l \delta_k^n - \delta_t^n \delta_k^l)) = \]
\[= 4(R_{(k}^{l} t^{n}) + \frac{1}{40} R\delta_t^n \delta_k^l), \]
(504)
что завершает доказательство формул (292).
6.2.3 Доказательство тождеств Риччи

По определению

\[\Box_a^d := \frac{1}{2}(\nabla_{ak} \nabla^d k - \nabla^d k \nabla_{ak}), \]

\[\Box_{\alpha \beta} := 2\nabla_{[\alpha} \nabla_{\beta]}, \quad \Box_{\alpha \beta} = A_{\alpha \beta d}^a \Box_a^d. \]

Естественным образом предполагается ковариантно постоянство следующих величин

\[\nabla_\alpha \eta^{ab}_\gamma = 0, \quad \nabla_\alpha A_{\beta \gamma d}^a = 0, \]

\[\nabla_\alpha g_{\alpha \beta} = 0, \quad \nabla_\alpha \varepsilon_{abcd} = 0. \]

Тождество Риччи имеет вид

\[\Box_{\alpha \beta} k^\gamma{}^\delta = R_{\alpha \beta \lambda} k^\lambda{}^\delta + R_{\alpha \beta \delta} k^\lambda{}^\gamma. \]

Тогда

\[A_{\alpha \beta b}^a A_{\gamma d}^c \Box_a^b k_d^c = A_{\alpha \beta b}^a 2 \Lambda_{\lambda \gamma}^c [\delta | \kappa] A_{\gamma}^\lambda R_{a l}^b k_l^r k_k^r. \]

Откуда с учетом (473)

\[A_{\gamma d}^c \Box_a^b k_d^c = \]

\[= -2 R_{a l}^b c k_d^r \cdot (\eta_{[\delta | l d]} \eta_{\gamma \kappa})_{r c} - \eta_{[\delta | l k]} \eta_{\gamma \kappa} r k_{\delta c d} = \]

\[= (\eta^{l d} \eta_{r c} - \eta^{\gamma \kappa} r k_{\delta c d}) (R_{a l}^b c k_d^r - R_{a l}^b k_l^r k_k^r \delta_{c d}) = \]

\[= \eta^{l d} \eta_{r c} (R_{a l}^b c k_d^r - R_{a l}^b k_l^r k_k^r \delta_{c d} - 6 \delta_{l r} r \delta_{c d} l \delta_{c 1} d_1 R_{a l}^1 c_1 k_{d_1} r_1 + \]

\[+ \frac{3}{2} \delta_{l r} r \delta_{c d} l \delta_{c 1} d_1 R_{a l}^1 c_1 k_{d_1} r_1) = \]

\[= \eta^{l d} \eta_{r c} (-R_{a l}^b k_d^r \delta_{c d} - R_{a k}^b k_d^r \delta_{c l}^d) = A_{\gamma d}^c \eta_{r \gamma} \cdot (-R_{a l}^b k_d^r + R_{a k}^b k_l^r k_k^r), \]

\[\Box_a^b k_l^r = -R_{a l}^b k_d^r + R_{a k}^b k_l^r k_k^r. \]

С другой стороны,

\[\Box_{\alpha \beta} \gamma \gamma = R_{\alpha \beta \gamma} \gamma \gamma. \]
Умножим обе части на $\frac{1}{2} \eta^{mm_1}_\gamma A^{b\alpha}_a$

\[
\Box_a b^{mm_1} = \eta^{mm_1}_\gamma A^{b\alpha}_c l R^b_c r^{\gamma} = \eta^{mm_1}_\gamma \eta^{\gamma}_{ck} l R^b_c r^{\delta} = 2 \delta_{[c}^m \delta_{k]}^l m_1 R^b_{a l m_1} + R^b_{a m_1 m_1}, \tag{511}
\]

\[
\Box_a b^{mm_1} = R^b_{a l m_1} + R^b_{a m_1 l}.
\]

Итак, пусть $k^{\alpha\beta}$ - простой изотропный бивектор, то согласно следствию 1 из третьей главы он имеет бесследовый образ k_a^b вида

\[
k_a^b = P^b Q_a, \quad P^a Q_a = 0. \tag{512}
\]

Подставим (512) в (509)

\[
P^c \Box_a b^{cQ_d} + Q_d \Box_a b^{P^c} = -R^b_{a k} P^{Q_k} P^c + R^b_{a k} Q^d P^k. \tag{513}
\]

Если (513) свернуть с произвольным ковектором S_c таким, что $S_c P^c = 0$, то будет верно следующее равенство

\[
S_c \Box_a b^{P^c} = R^b_{a k} c P^k S_c. \tag{514}
\]

Рассмотрим теперь изотропный вектор r^{γ} такой, что он имеет вид

\[
r^{\gamma} = \frac{1}{2} \eta^{\gamma}_{ab} r^{ab} := \eta^{\gamma}_{ab} X^a Y^b. \tag{515}
\]

То из (511) следует, что

\[
X^m \Box_a b^{Y^m} + Y^m \Box_a b^{X^m} = X^m \Box_a b^{Y^m} - Y^m \Box_a b^{X^m} = X^m R^b_{a k} m_1 Y^k + Y^m R^b_{a k} m_1 X^k - X^m R^b_{a k} m_1 X^k - Y^m R^b_{a k} m_1 X^k. \tag{516}
\]

Свернем это уравнение с Z_m таким, что $X^m Z_m = 0$ и $Y^m Z_m \neq 0$, то с учетом (514) (это значит, что $Y^m Z_m \Box_a b^{X^m} = R^b_{a k} m_1 Z_m X^k Y^m_1$) получим

\[
-Z_m X^m \Box_a b^{Y^m} - Z_m Y^m \Box_a b^{X^m} = -X^m R^b_{a k} m_1 Y^k Z_m - Z_m Y^m R^b_{a k} m_1 X^k. \tag{517}
\]
Для произвольного T_d, спиноры X^m, Y^m и Z_m всегда можно выбрать так, что $X^mT_m = 0$, $Y^mT_m = 0$, $X^mZ_m = 0$, $Y^mZ_m \neq 0$. Домножим (517) на T_d и получим

$$-Z_mX^mT_d\Box_a^bY^m - Z_mY^mT_d\Box_a^bX^m =$$
$$= -Z_mX^m\Box_a^b(T_dY^m) + Z_mX^mY^m\Box_a^bT_d -$$
$$-Z_mY^m\Box_a^b(X^mT_d) + Z_mY^mX^m\Box_a^bT_d =$$
$$= -X^mR_a^bY^kZ_mT_d - Z_mY^mR_a^bY^kZ_mX^mT_d.$$

(518)

Вычтем из (518) следующие 2 тождества, полученные из (513),

$$-Z_mX^m\Box_a^b(T_dY^m) = Z_mX^mY^mR_a^bY^kX^mT_d - Z_mX^mT_dR_a^bY^k,$$
$$-Z_mY^m\Box_a^b(X^mT_d) = Z_mX^mY^mR_a^bY^kX^mT_d - Z_mY^mT_dR_a^bY^kX^m.$$

(519)

Откуда

$$Z_mY^mX^m\Box_a^bT_d = -X^mZ_mY^mR_a^bY^kT_d,$$
$$\Box_a^bT_d = -R_a^bY^kT_d.$$

(520)

Таким образом

$$\Box_a^bT_d = -R_a^bY^kT_d, \quad \Box_a^bT^d = R_a^bY^kT_d.$$

(521)

6.2.4 Доказательство дифференциальных тождеств Бианки

Дифференциальные тождества Бианки имеют вид

$$\nabla_{[\alpha}R_{\beta\gamma]\delta\lambda} = 0.$$

(522)

Из них следует

$$A_{[\beta\gamma|c}^b\eta_{\alpha]}^aa1\nabla_{aa1}R_{b\ r\ s} = 0.$$

(523)

Свернем его с $A_{\beta\gamma}^m n$

$$A_{\beta\gamma}^m n A_{[\beta\gamma|c}^b\eta_{\alpha]}^aa1\nabla_{aa1}R_{b\ r\ s} =$$

$$= A_{\beta\gamma}^m n A_{[\beta\gamma|c}^b\eta_{\alpha]}^aa1 \eta_{\gamma}^aa1(\eta_{\alpha}^bn\eta_{\gamma}^mc + \eta_{\alpha}^bk\eta_{\gamma}^k\eta_{\gamma}^m\delta_{c}^n + \frac{1}{2}\eta_{\alpha}^bk\eta_{\gamma}^c\eta_{\gamma}^k\delta_{m}^n) =$$

$$= (\eta_{\alpha}^bn\delta_{[m}^a\delta_{c]}^1 + \eta_{\alpha}^bk\delta_{[k}^a\delta_{m]}^1\delta_{c}^n + \frac{1}{2}\eta_{\alpha}^bk\delta_{c}^a\delta_{k}^1\delta_{m}^n)$$

(524)
Свернем это уравнение с $\eta_{a tp}^{\alpha}$

$$-2\varepsilon_{tp}^{aa1} \nabla_{aa1} R_{m n r s}^{n r} + 4\varepsilon_{tp}^{bn} \nabla_{cm} R_{b r s}^{c s} -$$

$$-4\varepsilon_{tp}^{ba} \nabla_{am} R_{b n r s}^{n r} - 2\varepsilon_{tp}^{ba} \nabla_{ca} R_{b r s}^{c s} =$$

$$= -4\nabla_{tp} R_{m n r s}^{n r} + 4\delta_{p n}^{m} \nabla_{cm} R_{t r s}^{c s} - 4\delta_{t n}^{m} \nabla_{cm} R_{p r s}^{c s} -$$

$$-4\nabla_{tp} R_{m n r s}^{n r} + 4\nabla_{tm} R_{p n r s}^{n r} - 2\delta_{m n}^{m} \nabla_{cp} R_{t r s}^{c s} + 2\delta_{m n}^{m} \nabla_{ct} R_{p r s}^{c s} =$$

$$= -4\nabla_{tp} R_{m n r s}^{n r} + 4\nabla_{tm} R_{p n r s}^{n r} - 4\nabla_{pm} R_{t r s}^{c s} + 4\delta_{p n}^{m} \nabla_{cm} R_{t r s}^{c s} -$$

$$-4\delta_{t n}^{m} \nabla_{cm} R_{p r s}^{c s} - 2\delta_{m n}^{m} \nabla_{cp} R_{t r s}^{c s} + 2\delta_{m n}^{m} \nabla_{ct} R_{p r s}^{c s} =$$

$$= 12\nabla_{tm} R_{p r s}^{n r} - 8\delta_{t n}^{m} \nabla_{cm} R_{p r s}^{c s} - 4\delta_{m n}^{m} \nabla_{cp} R_{p r s}^{c s} - 8\delta_{m n}^{m} \nabla_{ct} R_{p r s}^{c s}$$

Свернем это уравнение с $\delta_{n m}$

$$4\nabla_{tk} R_{p k r s}^{k r} - 4\nabla_{pk} R_{t k r s}^{k r} + 4\nabla_{cp} R_{t r s}^{c s} -$$

$$-4\nabla_{ct} R_{p c r s}^{c r} - 8\nabla_{cp} R_{t r s}^{c s} + 8\nabla_{ct} R_{p r s}^{c s} = 0.$$
Свернем \((525) \) с \(\delta_n^t \)

\[
-4\nabla_{np} R_m^{\ n\ r} = 4\nabla_{tm} R_p^{\ t\ r} + 4\nabla_{cm} R_p^{\ c\ r} -

-16\nabla_{cm} R_p^{\ c\ r} - 2\nabla_{cp} R_m^{\ c\ r} + 2\nabla_{cm} R_p^{\ c\ r} = 0, \quad (527)
\]

\[
\nabla_{c(p R_m)^{c\ r}} = 0.
\]

Тогда тождество Бианки примет вид

\[
\nabla_{[tm R_p]^{n\ r}} = \delta_{[t}^n \nabla_{|c|m R_p]}^{r\ s}. \quad (528)
\]

Свертка \((527) \) с \(\delta_s^m \) даст

\[
\nabla_{c p} R_m^{c\ r} + \nabla_{cm} R_p^{c\ r} = 0, \quad \nabla_{cm} R_p^{c\ r} = \frac{1}{8}\nabla_{rp} R. \quad (529)
\]

6.3 Доказательство формул, связанных с метрикой, индуцированной в сечении конуса \(K_6 \)

Пусть задано сечение конуса \(K_6 \)

\[
T^2 + V^2 - W^2 - X^2 - Y^2 - Z^2 = 0 \quad (530)
\]

плоскостью \(V+W=1 \). Сделаем стереографическую проекцию полученного гиперболоида на плоскость \(V=0 \)

\[
\frac{t}{T} = \frac{x}{X} = \frac{y}{Y} = \frac{z}{Z} = -\frac{1}{2V-1},
\]

\[
x^2 + y^2 + z^2 - t^2 = \frac{1}{2V-1},
\]

\[
T = -t(2V - 1), \quad X = -x(2V - 1),
\]

\[
Y = -y(2V - 1), \quad Z = -z(2V - 1),
\]

\[
dT = -(dt \ (2V - 1) + 2tdV), \quad dX = -(dx \ (2V - 1) + 2xdV),
\]

\[
dY = -(dy \ (2V - 1) + 2ydV), \quad dZ = -(dz \ (2V - 1) + 2zdV). \quad (531)
\]
Тогда
\[dS^2 = dT^2 + dV^2 - dW^2 - dX^2 - dY^2 - dZ^2 = \]
\[= |dV = -dW| = dT^2 - dX^2 - dY^2 - dZ^2 = \]
\[= (dt^2 - dx^2 - dy^2 - dz^2)(2V - 1)^2 + \]
\[+ 4(tdt - xdx - ydy - zdz)dV(2V - 1) + 4(t^2 - x^2 - y^2 - z^2)dV^2 = \]
\[= |tdt - xdx - ydy - zdz = -\frac{1}{2}d(\frac{1}{2V - 1})| = \]
\[= \frac{dt^2 - dx^2 - dy^2 - dz^2}{(t^2 - x^2 - y^2 - z^2)^2}. \quad (532) \]

Сделаем замену
\[\varsigma = \frac{-iX + Y}{2V - 1} = -y + ix, \quad \omega = \frac{-i(T + Z)}{2V - 1} = i(t + z), \quad \eta = \frac{i(Z - T)}{2V - 1} = i(t - z), \]
\[\varsigma \bar{\varsigma} + \eta \omega = \frac{1}{2V - 1}, \]
\[d\varsigma = (\frac{dY}{2V - 1} - \frac{2YdV}{(2V - 1)^2}) - i(\frac{dX}{2V - 1} - \frac{2XdV}{(2V - 1)^2}), \]
\[d\bar{\varsigma} = (\frac{dY}{2V - 1} - \frac{2YdV}{(2V - 1)^2}) + i(\frac{dX}{2V - 1} - \frac{2XdV}{(2V - 1)^2}), \]
\[d\omega = -i(\frac{dT}{2V - 1} - \frac{2TdV}{(2V - 1)^2}) + \frac{dZ}{2V - 1} - \frac{2ZdV}{(2V - 1)^2}, \]
\[d\eta = -i(\frac{dT}{2V - 1} - \frac{2TdV}{(2V - 1)^2}) - \frac{dZ}{2V - 1} + \frac{2ZdV}{(2V - 1)^2}, \]
\[d\varsigma d\bar{\varsigma} + d\omega d\eta = \frac{(dX^2 + dY^2 + dZ^2 - dT^2)}{(2V - 1)^2} - 4\frac{dV}{(2V - 1)^3}(XdX + YdY + ZdZ - TdT) + \]
\[+ 4\frac{dV^2}{(2V - 1)^4}(X^2 + Y^2 + Z^2 - T^2) = -\frac{dT^2 - dX^2 - dY^2 - dZ^2}{(T^2 - X^2 - Y^2 - Z^2)^2}, \]
\[ds^2 := dT^2 - dX^2 - dY^2 - dZ^2 = -\frac{d\varsigma d\bar{\varsigma} + d\omega d\eta}{(\varsigma \bar{\varsigma} + \eta \omega)^2}, \quad x^2 + y^2 + z^2 - t^2 = \frac{1}{2V - 1}. \quad (533) \]

Поэтому есть резон положить
\[X := \begin{pmatrix} \omega & \varsigma \\ -\varsigma & \eta \end{pmatrix}, \quad dX := \begin{pmatrix} d\omega & d\varsigma \\ -d\varsigma & d\eta \end{pmatrix}, \]
\[\frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial \omega} & \frac{\partial}{\partial \xi} \\ -\frac{\partial}{\partial \xi} & \frac{\partial}{\partial \eta} \end{pmatrix} . \quad (534) \]

Откуда
\[ds^2 = -\frac{\det(dX)}{(\det(X))^2}, \quad \tilde{X}^T + X = 0. \quad (535) \]

6.3.1 Доказательство формул о первом инварианте

Рассмотрим группу дробно-линейных преобразований \(L \)
\[\tilde{X} = (AX + B)(CX + D)^{-1}, \quad S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \det S = 1. \quad (536) \]

Пусть имеется два последовательных преобразования
\[\tilde{X} = (AX + B)(CX + D)^{-1}, \quad \tilde{\tilde{X}} = (\tilde{A}\tilde{X} + \tilde{B})(\tilde{C}\tilde{X} + \tilde{D})^{-1}, \quad (537) \]
то
\[\tilde{X} = (\tilde{A}\tilde{X} + \tilde{B})(\tilde{C}\tilde{X} + \tilde{D})^{-1} = \]
\[= (\tilde{A}(AX + B) + \tilde{B}(CX + D))(\tilde{C}(AX + B) + \tilde{D}(CX + D))^{-1} = \]
\[= ((\tilde{A}A + \tilde{B}C)X + \tilde{A}B + \tilde{B}D)((\tilde{C}A + \tilde{D}C)X + \tilde{C}B + \tilde{D}D)^{-1}, \]
\[S := \begin{pmatrix} A & B \\ C & D \end{pmatrix}, \quad \tilde{S} := \begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix}, \quad \tilde{\tilde{S}} := \begin{pmatrix} \tilde{A} & \tilde{B} \\ \tilde{C} & \tilde{D} \end{pmatrix}, \quad \tilde{\tilde{S}} = \tilde{S}S. \quad (538) \]

Далее, для унитарных дробно-линейных преобразований имеем
\[X^* + X \equiv \tilde{X}^* + \tilde{X} = 0, \]
\[0 = (AX + B)(CX + D)^{-1} + (CX + D)^{-1}(AX + B)^*, \quad (539) \]
\[0 = (CX + D)^*(AX + B) + (AX + B)^*(CX + D) =
\]
\[= X^*(A^*C + C^*A)X + X^*(A^*D + C^*B) +
\]
\[+ (B^*C + D^*A)X + D^*B + B^*D \equiv \]
\[\equiv X^* + X.\]

Откуда

\[A^*C + C^*A = 0, \quad B^*D + D^*B = 0, \quad A^*D + C^*B = E,\]

\[S^* \hat{E} S = \hat{E}, \quad (540)\]

\[\hat{E} := \begin{pmatrix} 0 & E \\ E & 0 \end{pmatrix}.\]

Пусть

\[X = YZ^{-1}, \quad \tilde{Y} = AY + BZ, \quad \tilde{Z} = CY + DZ. \quad (541)\]

Положим

\[X := \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}, \quad \hat{X} := \begin{pmatrix} \hat{x}_1 & \hat{x}_2 \\ \hat{x}_3 & \hat{x}_4 \end{pmatrix},\]

\[dX := \begin{pmatrix} dx_1 & dx_2 \\ dx_3 & dx_4 \end{pmatrix}, \quad d\hat{X} := \begin{pmatrix} d\hat{x}_1 & d\hat{x}_2 \\ d\hat{x}_3 & d\hat{x}_4 \end{pmatrix}, \quad (542)\]

\[\begin{split}
\frac{\partial}{\partial X} := \begin{pmatrix} \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} \\ \frac{\partial}{\partial x_3} & \frac{\partial}{\partial x_4} \end{pmatrix}, \\
\frac{\partial}{\partial \hat{X}} := \begin{pmatrix} \frac{\partial}{\partial \hat{x}_1} & \frac{\partial}{\partial \hat{x}_2} \\ \frac{\partial}{\partial \hat{x}_3} & \frac{\partial}{\partial \hat{x}_4} \end{pmatrix}.
\end{split}\]
Тогда

\[dX + d\hat{X} = d(X + \hat{X}), \]

\[d(X\hat{X}) = d\left(x_1\hat{x}_1 + x_2\hat{x}_3 \ x_1\hat{x}_2 + x_2\hat{x}_1 \right) = \]

\[\left(dx_1\hat{x}_1 + dx_2\hat{x}_3 \ dx_1\hat{x}_2 + dx_2\hat{x}_1 \right) + \]

\[\left(x_1d\hat{x}_1 + x_2d\hat{x}_3 \ x_1d\hat{x}_2 + x_2d\hat{x}_1 \right) = \]

\[(dX) \hat{X} + X (d\hat{X}). \tag{543} \]

Поэтому верны тождества

\[\hat{X} = AX + B \Rightarrow d\hat{X} = AdX, \]

\[\hat{X} = X^{-1} \Rightarrow d\hat{X} = -X^{-1} dX X^{-1}. \tag{544} \]

Доказательство второго таково

\[\hat{XX} = 1, \]

\[(d\hat{X}) X + \hat{X} (dX) = 0, \tag{545} \]

\[(d\hat{X}) X + X^{-1} (dX) = 0, \]

\[d\hat{X} = -X^{-1} (dX) X^{-1}. \]

Поэтому получим цепочку тождеств

\[\tilde{X}^* + \tilde{X} = 0, \]

\[-\tilde{X}^* = \tilde{X}, \tag{546} \]

\[-(CX + D)^{-1}(AX + B)^* = (AX + B)(CX + D)^{-1}, \]

\[-(AX + B)^* = (CX + D)^*(AX + B)(CX + D)^{-1}. \]
Домножим обе части на CdX

$(-X^*A^* - B^*)CdX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX,$

$(-X^*A^*C + B^*)dX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX.$

(547)

Воспользуемся (540)

$(X^*C^*A + D^*A - E)dX = (CX + D)^*(AX + B)(CX + D)^{-1}CdX,$

$(CX + D)^*AdX - (CX + D)^*(AX + B)(CX + D)^{-1}CdX = dX,$

$A(dX)(CX + D)^{-1} - (AX + B)(CX + D)^{-1}C(dX)(CX + D)^{-1} =

= (CX + D)^{-1}(dX)(CX + D)^{-1}.$

(548)

Используя (541), получим

$((d(AX + B))(CX + D)^{-1} + (AX + B)d((CX + D)^{-1}) =

= (CY + DZ)^{-1}Z^*(dX)Z(CY + DZ)^{-1},

(549)

$\tilde{Z}^* d\tilde{X} \tilde{Z} = Z^* dXZ.$

Таким образом получается первый инвариант.

6.3.2 Доказательство формул о втором инварианте

Пусть

$\hat{X} = AX + B,$

(550)

или в покомпонентной записи

$\hat{x}_1 = a_1x_1 + a_2x_3 + b_1, \quad \hat{x}_2 = a_1x_2 + a_2x_4 + b_2,$

$\hat{x}_3 = a_3x_1 + a_4x_3 + b_3, \quad \hat{x}_4 = a_3x_2 + a_4x_4 + b_4.$

(551)

Тогда

$\frac{\partial}{\partial x_1} = a_1 \frac{\partial}{\partial \hat{x}_1} + a_3 \frac{\partial}{\partial \hat{x}_3}, \quad \frac{\partial}{\partial x_2} = a_1 \frac{\partial}{\partial \hat{x}_2} + a_3 \frac{\partial}{\partial \hat{x}_4},$

$\frac{\partial}{\partial x_3} = a_2 \frac{\partial}{\partial \hat{x}_1} + a_4 \frac{\partial}{\partial \hat{x}_3}, \quad \frac{\partial}{\partial x_4} = a_2 \frac{\partial}{\partial \hat{x}_2} + a_4 \frac{\partial}{\partial \hat{x}_4}.$

(552)
или в сокращенной записи

\[
\frac{\partial}{\partial X} = A^T \frac{\partial}{\partial X} \Rightarrow \frac{\partial}{\partial X^T} = \frac{\partial}{\partial X^T} A^{-1} \ (det(A) \neq 0).
\] (553)

Пусть теперь

\[
\dot{X} = X^{-1},
\] (554)

или в покомпонентной записи

\[
\dot{x}_1 = \frac{x_4}{x_1 x_4 - x_2 x_3}, \quad \dot{x}_2 = -\frac{x_2}{x_1 x_4 - x_2 x_3},
\]

\[
\dot{x}_3 = -\frac{x_3}{x_1 x_4 - x_2 x_3}, \quad \dot{x}_4 = \frac{x_1}{x_1 x_4 - x_2 x_3}.
\] (555)

Тогда

\[
\frac{\partial}{\partial x_1} = -\frac{x_4 x_4}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_1} + \frac{x_2 x_4}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_2} + \frac{x_3 x_4}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_3} - \frac{x_2 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_4},
\]

\[
\frac{\partial}{\partial x_2} = \frac{x_4 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_1} - \frac{x_1 x_4}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_2} - \frac{x_3 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_3} + \frac{x_1 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_4},
\]

\[
\frac{\partial}{\partial x_3} = \frac{x_4 x_2}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_1} - \frac{x_2 x_2}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_2} - \frac{x_1 x_4}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_3} + \frac{x_2 x_1}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_4},
\]

\[
\frac{\partial}{\partial x_4} = -\frac{x_2 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_1} + \frac{x_1 x_2}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_2} + \frac{x_3 x_3}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_3} - \frac{x_1 x_1}{(x_1 x_4 - x_2 x_3)^2} \frac{\partial}{\partial x_4},
\] (556)

или в сокращенной записи

\[
\frac{\partial}{\partial X} = -X^{-1T} \frac{\partial}{\partial X} X^{-1T} \iff \frac{\partial}{\partial X^T} = -X \frac{\partial}{\partial X} X.
\] (557)

Предположим, что \(det(C) \neq 0\), то

\[
\tilde{X} = (AX + B)(CX + D)^{-1} = AC^{-1} + (B - AC^{-1}D)(CX + D)^{-1}.
\] (558)

Поэтому

\[
\frac{\partial}{\partial X^T} = \frac{\partial}{\partial (CX + D)^{-1}} (B - AC^{-1}D)^{-1} = \]

\[
= -(CX + D) \frac{\partial}{\partial (CX + D)^{-1}} (CX + D)(B - AC^{-1}D)^{-1} = \] (559)

\[
= -(CX + D) \frac{\partial}{\partial X^T} C^{-1}(CX + D)(B - AC^{-1}D)^{-1} =
\]
\[-(CX + D) \frac{\partial}{\partial X^T} (XC^* + C^{-1}DC^*)(BC^* - AC^{-1}DC^*)^{-1} = \]
\[= (CX + D) \frac{\partial}{\partial X^T} (CX + D)^* (BC^* + AD^*)^{-1} = \]
\[= (CX + D) \frac{\partial}{\partial X^T} (CX + D)^*. \]

Откуда
\[\tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1} = Z^{-1} \frac{\partial}{\partial X^T} Z^{*-1}. \quad (560)\]

Если, теперь, \(\det(C) = 0\). Положим
\[\tilde{X} = \tilde{X}^{-1} = (CX + D)(AX + B)^{-1}, \quad \tilde{Z} = AY + BZ, \]
\[\tilde{C} = A, \quad \text{det}(\tilde{C}) \neq 0. \quad (561)\]

Если \(\det(A) \neq 0\), то
\[Z^{-1} \frac{\partial}{\partial X^T} Z^{*-1} = \tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1} = \]
\[-(AY + BZ)^{-1} \tilde{X} \frac{\partial}{\partial X^T} \tilde{X}(AY + BZ)^{*-1} = |\tilde{X}^* = -\tilde{X}| = \]
\[= (AY + BZ)^{-1}(AY + BZ)(CY + DZ)^{-1} \frac{\partial}{\partial X^T} \times \]
\[\times (CY + DZ)^{*-1}(AY + BZ)^*(AY + BZ)^{*-1} = \tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1}. \quad (562)\]

Если все-таки \(\det(A) = 0\), то можно положить
\[\tilde{X} = \tilde{X} + \tilde{D}, \quad \tilde{X} = \tilde{X}^{-1}, \quad \tilde{X} = (\tilde{A}X + \tilde{B})(\tilde{C}X + \tilde{D})^{-1}, \]
\[\tilde{C} = A + \tilde{D}C, \quad \text{det}(\tilde{C}) \neq 0. \quad (563)\]

Очевидно, что \(\tilde{D}\) всегда можно выбрать так, что \(\text{det}(\tilde{C}) \neq 0\). Поэтому
\[Z^{-1} \frac{\partial}{\partial X^T} Z^{*-1} = \tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1} = \tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1} = \tilde{Z}^{-1} \frac{\partial}{\partial X^T} \tilde{Z}^{*-1}, \quad (564)\]
что и даст второй инвариант.
6.4 Доказательство формул пятой главы.

6.4.1 Доказательство условий интегрируемости битвисторного уравнения

По определению
\[\Box_d = \frac{1}{2} (\nabla_{ak} \nabla^{dk} - \nabla^{dk} \nabla_{ak}) = \]
\[= \frac{1}{4} \varepsilon_{akmn} (\nabla^{mn} \nabla^{dk} + \nabla^{md} \nabla^{nk}) = \]
\[= \frac{1}{2} \varepsilon_{akmn} \nabla^{m(n \nabla d)k}. \] (565)

Поэтому
\[\Box_d X^c = R^d_{\quad c} X^r = \frac{1}{2} \varepsilon_{akmn} \nabla^{m(n \nabla d)k} X^c. \] (566)

Если \(\nabla^{a(b)c} = 0 \), то условия интегрируемости этого уравнения примут вид
\[\frac{1}{2} \varepsilon_{akmn} \nabla^{m(n \nabla d)k} X^c = \]
\[= \frac{1}{6} \varepsilon_{akmn} \nabla^{m(n \nabla d)k} X^c + \nabla^{m(n \nabla c)k} X^d + \nabla^{m(c \nabla d)k} X^n = \] (567)
\[= \frac{2}{3} R^d_{\quad c} X^l + \frac{1}{12} \varepsilon_{akmn} (\nabla^{mc} \nabla^{dk} + \nabla^{md} \nabla^{ck}) X^n = \]
\[= \varepsilon_{akmn} (\nabla^{mc} \nabla^{dk} + \nabla^{md} \nabla^{ck}) X^n = \]
\[= \varepsilon_{akmn} (\varepsilon^{cdkr} \frac{1}{2} (\nabla_{sr} \nabla^{ms} - \nabla_{sr} \nabla^{ms}) - \]
\[- \varepsilon^{mrdk} \frac{1}{2} (\nabla_{sr} \nabla^{sc} - \nabla^{sc} \nabla_{sr})) X^n = \]
\[= 6 \delta_a^{[c} \varepsilon_m^r \delta_n^{d]} \frac{1}{2} (\nabla_{sr} \nabla^{sm} - \nabla^{sm} \nabla_{sr}) X^n + \]
\[+ 4 \delta_a^r \delta_n^d \frac{1}{2} (\nabla_{sr} \nabla^{sc} - \nabla^{sc} \nabla_{sr}) X^n = \]
\[= 6 \delta_a^{[c} \varepsilon_m^r \delta_n^{d]} R_{r \quad l}^m n X^l + 4 \delta_a^r \delta_n^d R_{r \quad l}^c n X^l = \]
\[= 2 R_{r \quad l}^c n X^l + \frac{1}{4} \delta_a^{(c} \delta_l^d) RX^l \]
\[= 5 \delta_a^{[c} \delta_d^l X^l + \frac{1}{48} \delta_a^{(c} \delta_l^d) RX^l = \frac{5}{6} C_{c \quad l}^d X^l, \] (568)

где \(C_{a \quad l}^d \) - аналог тензора Вейля.
Литература

[1] Бессе А. Многообразия Эйнштейна. т. 1. Москва, Мир, 1990. На с. 269 дан перечень основных изоморфизмов алгебр Ли для \(n \leq 6 \).

[2] Дубровин В.А., Новиков С.П., Фоменко А.Т. Современная геометрия. Москва, Наука, 1986.

[3] Картан Э. Теория спиноров. Платон, Москва, 1997.

[4] Кобояси Щ., Номидзу К. Основы дифференциальной геометрии. Т. 2, Москва, Наука, 1981. На с. 110-139 исследуются комплексные многообразия. Однако, в качестве вещественных вложений используются эрмитовые многообразия в отличие от данной диссертации.

[5] Кобояси Щ. Группы преобразований в дифференциальной геометрии. Т. 2, Москва, Наука, 1981. На с. 6-55 рассказао об автоморфизмах G-структур, на с. 56-104 рассказано об изометриях римановых пространств, на с. 105-159 рассказао об автоморфизмах комплексных многообразий.

[6] Котельников А.П. Винтовое счисление и некоторые приложения его к геометрии механики. Казань, 1895 г.

[7] Лихнерович А. Теория связностей в целом и группы голономий. ИЛ, 1960. На с. 169-200 исследуются почти комплексные многообразия и связности на них. Однако, в качестве вещественных многообразий используются эрмитовые многообразия в отличие от данной диссертации.

[8] Манин Ю.И. Калибровочные поля и комплексная геометрия. Москва, Наука, 1996. На с. 15-72 исследуется пространство Минковского как многообразие вещественных точек большой клетки граассманана комплексных плоскостей в пространстве твисторов.

[9] Ландау Л.Д., Лишиц Е.М. Теория поля. Москва, Наука, 1988.

[10] Нейфельд Э.Г. Об инволюциях в комплексных пространствах. ТГС, Казань, 1989. Выпуск 19, с. 71-82.

[11] Нейфельд Э.Г. Геометрия поверхности в проективном пространстве над алгеброй. Геометрия обобщенных пространств, Уфа, 1982, с. 32-51.

[12] Нейфельд Э.Г. О внутренних геометриях поляризованных комплексных граассмананов. Известия ВУЗов, Казань, 1995, №5(396), с. 51-54.

[13] Нейфельд Э.Г. Нормализация комплексных граассмананов и квадрик. ТГС, Казань, 1990. Выпуск 20, с. 58-69.

[14] Нейфельд Э.Г. О внутренних геометриях нормализованного непроузианы. ТГС, Казань, 1990. Выпуск 20, с. 70-73.

[15] Нейфельд Э.Г. Аффинные связности на нормализованном многообразии плоскостей проективного пространства. Известия ВУЗов, Казань 1976, №11(174), с. 48-55.

[16] Нейфельд Э.Г. О внутренних геометриях нуль-плоскостей максимальной размерности поляризов второго порядка. ТГС, Казань, 1982. Выпуск 14, с. 50-55.

[17] Норден А.П. О комплексном представлении тензоров пространства Лоренца. Известия ВУЗов, Казань 1959, т. 8 №1, с. 156-164.
[18] Норден А.П. Обобщение основной теоремы теории нормализации. Известия ВУЗов, Казань, 1966, №2(51), с. 78-82.

[19] Норден А.П. О структуре связности на многообразии прямых неевклидового пространства. Известия ВУЗов, Казань, 1972, №12(127), с. 84-94.

[20] Норден А.П. Аффинная связность на поверхностях проективного пространства. Математический Сборник, Москва, 1947, №20(62), с. 263-286

[21] Норден А.П. Теория нормализации и векторные расслоения. ТГС, Казань, 1976. Выпуск 9, с. 68-77.

[22] Норден А.П. Пространства аффинной связности. Москва, Наука, 1976.

[23] Пенроуз Р. Риндлер В. Спиноры и пространство-время. Т. 1, Москва, Мир, 1987, Т. 2, Москва, Мир, 1988.

[24] Пенроуз Р. Твисторная программа // Твисторы и калибровочные поля. Москва, Мир, 1983. Дано определение пеноузана на с. 13-24.

[25] Пенроуз Р. Структура пространства-времени. Москва, Мир, 1972.

[26] Пенроуз Р. Спинорная классификация тензора энергии. В книге: Гравитация. Проблемы и перспективы, Киев, Наука Думка, 1972, с. 203.

[27] Петров А.З. Классификация пространств, определяемых гравитационными полями. Уч.зап. КГУ, 114:55(1954).

[28] Петров А.З. Пространства Эйнштейна. Москва, Физматгиз, 1961.

[29] Шевале К. Теория групп Ли. Т.1-3, Москва, ИЛ, 1948-58.

[30] Постников М.М. Группы и алгебры Ли. Москва, Наука, 1982. В лекциях 13-16 изложены основные идеи построения гиперкомплексных чисел на основании периодичности Ботта.

[31] Розенфельд Б.А. Неевклидовы геометрии. Москва, ГИТО, 1955. На с. 534 рассмотрен принцип тройственности Картана.

[32] Розенфельд Б.А. Многомерные пространства. Москва, Наука, 1966. Дано определение m-пар на с. 384. В нашем случае m=0.

[33] Хуа Ло-ген Розенфельд Б.А. Геометрия прямоугольных матриц и ее применение к вещественной проективной и неевклидовой геометрии. Известия ВУЗов, Казань, 1957, №1, с. 233-247.

[34] Д.М. Синцов Теория коннексов в пространстве в связи с теорией дифференциальных уравнений в частных производных первого порядка. Казань, 1894.

[35] Фаддеев Д.К. Лекции по алгебре. Москва, Наука, 1984.

[36] Хирцебурх Ф. Топологические методы алгебраической геометрии. Мир, Москва, 1973.

[37] Ходж В.Д., Пидо Д. Методы алгебраической геометрии. Москва, ИЛ, 1954.

[38] Эйнштейн А. Сборник научных трудов. Т.1, Наука, 1966.
[39] Adams J.F. Spin(8),triality,F_4 and all that in : Superspace and Supergravity, Cambridge University Press, Cambridge, 1981.

[40] Brauer R. Weye H. Spinors in n dimensions Amer J. Math 57, 425(1935).

[41] Chevalley C. The Algebraic Theory of Spinors. Columbia University Press, New York, 1954.

[42] Frank W. Warner Foundation off Differentiable Manifolds and Lie Groups. New York, Berlin, Heidelberg, Tokyo, Springer-verlag, 1983.

[43] Hughston L.P. Applications of SO(8) spinors in : Gravitation and Geometry. Robinson Festschrift volume, 1986.

[44] Le Brun C.R. ambitwistors and Einstein’s equations. Class. and Quantum Grav, 1985.

[45] Penrose R. Twistor algebra. J.Math.Phys, 354:8(1967)345-366.

[46] Penrose R. Twistor theory : its aims and achievements in : Quantum Gravity an Oxford Symposium. Oxford University Press, Oxford, 1975.

[47] Penrose R. On the origins of twistor theory in: Gravitation and Geometry. Robinson Festschrift volume, 1986.

[48] Penrose R. Relativistic symmetry groups in : Group Theory in Non-linear Problems. 1974.

[49] Hochschild G. The Structure of Lie Groups. Holden-Day, San Francisco, 1965.

[50] Dirac P.A. Wave equations in conformal space. Ann. of Math. 37, 429(1936).

[51] Dirac P.A. Relativistic wave equations. Proc. Roy. Soc. (London), 447(1936).

[52] Klein F. Zur theorie der Liniercomplexe des ersten und zweiten Grades, Math. Ann. 2, 198(1870).

[53] Klein F. Vorlesungen über höhere Geometrie. Berlin, Springer-Verlag, 1926, S. 80, 262.
Contents/Содержание

I English edition

1 Introduction .. 5
 1.1 Basic definitions 6
 1.2 Second chapter 8
 1.3 Third chapter ... 9
 1.4 Fourth chapter10
 1.5 Fifth chapter11
 1.6 Conclusion ...12
 1.7 Introduction for the English edition13

2 Basic identities and formulas14
 2.1 Bivectors of the space $\Lambda^2\mathbb{C}^4(\Lambda^2\mathbb{R}^4)$14
 2.1.1 Norden operators14
 2.1.2 Conjugation in the bundle \mathbb{A}16
 2.2 Spinor representation of special form tensors. The covering corresponding
 to this decomposition18
 2.2.1 Theorem on the double covering $SL(4,\mathbb{C})/\{\pm 1\} \cong SO(6,\mathbb{C})$..18
 2.2.2 Real representation of the double covering $SL(4,\mathbb{C})/\{\pm 1\} \cong
 SO(6,\mathbb{C})$ in the presence of the involution $S_{\alpha\beta'}$25
 2.2.3 Inclusion $\mathbb{R}^{6}(2,4) \subset \mathbb{C}\mathbb{R}^{6}$ in the special basis27
 2.2.4 Infinitesimal transformation31
 2.3 Generalized Norden operators32

3 Connections in the bundle \mathbb{A}^{C} with the base $\mathbb{C}V^{6}$33
 3.1 Connection in a bundle34
 3.1.1 Normalization (spinor normalization) of the quadric $\mathbb{C}Q_{6}$ in
 $\mathbb{C}P_{7}$...35
 3.1.2 Neifeld operators36
 3.1.3 Real and complex representations of the connection38
 3.1.4 Involuition in $\mathbb{C}P_{7}$39
 3.1.5 Riemannian connection compatible with the involution42
 3.1.6 Bitwistor equation44

4 Theorems on the curvature tensor. The canonical form of bivectors
 of 6-dimensional (pseudo-) Euclidean spaces $\mathbb{R}^{6}_{(p,q)}$ with the even
 index q ..45
 4.1 Theorem on bitensors of the 6-dimensional space46
 4.1.1 Corollaries from the theorem48
 4.2 Basic properties and identities of the curvature tensor49
 4.3 The canonical form of bivectors of the 6-dimensional (pseudo-) Euclidean
 space $\mathbb{R}^{6}_{(p,q)}$ with the metric of the even index q50
 4.4 Geometric representation of a twistor in $\mathbb{R}^{6}_{(2,4)}$52
 4.4.1 Stereographic projection52
 4.4.2 The geometric twistor picture in the 6-dimensional space55
5 The theorem on two quadrics

5.1 Solutions of the bitwistor equation ... 57
5.2 Rosenfeld null-pairs ... 58
5.3 Construction of the quadrics CQ_6 and \tilde{CQ}_6 59
5.4 Correspondence $CQ_6 \mapsto \tilde{CQ}_6$... 61
5.5 The connection operators $\eta^A_{\alpha KL}$ 63
5.6 Correspondence $\tilde{CQ}_6 \mapsto CQ_6$... 68
5.7 Theorem on two quadrics .. 70
5.8 Summary ... 72

6 Appendix

6.1 Proof of the second chapter equations .. 73
6.1.1 Proof of the equations containing the operator $A_{\alpha \beta a}^b$ 73
6.1.2 Proof of the equation of the 4-vector $e_{\alpha \beta \gamma \delta}$ 74
6.1.3 Proof of the equation of the 6-vector $e_{\alpha \beta \gamma \delta \rho \sigma}$ 74
6.1.4 Proof of the equation containing the operator N_a^f 75
6.2 Proof of the forth chapter equations ... 76
6.2.1 Proof the Bianchi identity ... 76
6.2.2 Proof of the identities related to the Weyl tensor 77
6.2.3 The proof of the Ricci identity ... 77
6.2.4 The proof of the differential Bianchi identity 79
6.2.5 Proof of the formulas associated with the metric induced in the cross-section of the cone K_6 .. 80
6.2.6 Proof of the first invariant formulas .. 81
6.2.7 Proof of the second invariant formulas 82
6.3 Proof of the fifth chapter equations ... 84
6.3.1 The proof of the integrability conditions of the bitwistor equation 84

II Русская редакция

1 Введение

1.1 Основные определения ... 95(6)
1.2 Вторая глава ... 98(9)
1.3 Третья глава ... 99(10)
1.4 Четвертая глава ... 101(12)
1.5 Пятая глава ... 102(13)
1.6 Заключение ... 104(15)

2 Основные тождества и формулы

2.1 Бивектора пространства $\Lambda^2\mathbb{C}^4(\Lambda^2\mathbb{R}^4)$ 106(16)
2.1.1 Операторы Нордена .. 106(16)
2.1.2 Сопряжение в расслоении A ... 109(20)
2.2 Спинорное представление тензоров специального вида. Накрытия, соответствующие этому разложению 110(21)
2.2.1 Теорема о двулистности накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$... 110(21)
2.2.2 Вещественная реализация двулистного накрытия группы $SO(6, \mathbb{C})$ группой $SL(4, \mathbb{C})$ в присутствии инволюции $S_{\alpha \beta}$. 121(32)

2.2.3 Вложение $\mathbb{R}^6_{(2,4)} \subset \mathbb{C} \mathbb{R}^6$ в специальном базисе 124(34)

2.2.4 Инфинитезимальные преобразования 129(40)

2.3 Обобщенные операторы Нордена 131(42)

3 Связности в расслоении A^C и базой CV^6

3.1 Связность в расслоении 134(45)
3.1.1 Нормализация (спинорная) квадрики $\mathbb{C}Q_6$ в $\mathbb{C}P_7$ 136(46)
3.1.2 Операторы Нейфельда 137(48)
3.1.3 Вещественная и комплексная реализации связности 139(50)
3.1.4 Инволюция в $\mathbb{C}P_7$ 144(55)
3.1.5 Риманова связность, согласованная с инволюцией 145(56)
3.1.6 Битвисторное уравнение 147(58)

4 Теоремы о тензоре кривизны. Каноническая форма бивекторов 6-мерных (псевдо-) евклидов пространств $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q

4.1 Теорема о битензорах 6-мерных пространств 150(61)
4.1.1 Следствия теоремы 153(64)
4.2 Основные свойства и тождества тензора кривизны 156(67)
4.3 Каноническая форма бивекторов 6-мерных (псевдо-) евклидов пространств $\mathbb{R}^6_{(p,q)}$ с метрикой четного индекса q 157(68)
4.4 Геометрическое представление твистора в $\mathbb{R}^6_{(2,4)}$ 159(70)
4.4.1 Стереографическая проекция 159(70)
4.4.2 Геометрическое изображение твистора в 6-мерном пространстве 164(75)

5 Теорема о двух квадриках

5.1 Решения битвисторного уравнения 167(78)
5.2 Нуль-пары Розенфельда 169(79)
5.3 Построение квадрик $\mathbb{C}Q_6$ и $\mathbb{C}Q_6$ 170(81)
5.4 Соответствие $\mathbb{C}Q_6 \mapsto \mathbb{C}Q_6$ 172(82)
5.5 Связующие операторы η^A_{KLM} 174(84)
5.6 Соответствие $\mathbb{C}Q_6 \mapsto \mathbb{C}Q_6$ 181(92)
5.7 Теорема о двух квадриках 183(94)
5.8 Заключение 185(96)

6 ПРИЛОЖЕНИЕ

6.1 Доказательство формул второй главы 186(97)
6.1.1 Доказательство формул, содержащих оператор $A_{\alpha \beta \gamma \delta}^a$ 186(97)
6.1.2 Доказательство формулу о 4-векторе $e_{\alpha \beta \gamma \delta}$ 187(98)
6.1.3 Доказательство формулу о 6-векторе $e_{\alpha \beta \gamma \delta \rho \sigma}$ 189(100)
6.1.4 Доказательство формулу, содержащих оператор $N_{a \beta}^f$ 191(102)
6.2 Доказательство формулу четвертой главы 192(103)
6.2.1 Доказательство тождества Бианки 192(103)
6.2.2 Доказательство тождеств, касающихся тензора Вейля 193(104)
6.2.3 Доказательство тождеств Риччи 195(106)
6.2.4 Доказательство дифференциальных тождеств Бианки ... 197(108)
6.3 Доказательство формул, связанных с метрикой, индуцированной в сечении конуса K_6 .. 199(110)
6.3.1 Доказательство формул о первом инварианте 201(112)
6.3.2 Доказательство формул о втором инварианте 204(115)
6.4 Доказательство формул пятой главы 207(118)
6.4.1 Доказательство условий интегрируемости битвисторного уравнения ... 207(118)

Tables/Список таблиц

1 Matrix form of the spin-tensor s for the real inclusions. 30
1 Вид матрицы тензора s для действительных вложений. 129(40)

Figures/Список рисунков

1 Correspondence $\forall CP_2 \subset CP_3 \leftrightarrow R$ 62
2 Correspondence $CP_3 \supset CP_1 \leftrightarrow CP_1 \subset K_6$ 62