ISOLATION AND ANALYSIS OF A NON-PROTEIN LOW MOLECULAR WEIGHT THIOL-MERCURIAL ADDUCT FROM HUMAN PROSTATE LYMPH NODE CELLS (LNCaP)

Michael Gronow PhD
Cambridge Cancer Research Fund Laboratory
7 The Maltings, Cottenham,
Cambridge, England, UK CB24 8RE
e-mail: michael@gronow-cambridge.co.uk

ABSTRACT
Thiol compounds present in human malignant prostate cells (LNCaP) were investigated after reaction with a mercurial blocking reagent. After extracting the cellular glutathione and some other low molecular weight thiols using trichloroacetic acid the resulting protein precipitate was extracted with buffered 8M urea containing 2-chloromercuri-4-nitrophenol in an equimolar amount to that of the thiol present. After removing the insoluble chromatin fraction the urea soluble labelled adducts formed were chromatographed on G15 Sephadex. Three yellow coloured (A410nm) fractions were obtained; firstly, the excluded protein fraction containing 16.0± 4.1% of the applied label followed by an intermediate fraction containing 5.9±1.2%. Finally a low molecular weight fraction emerged which contained 77.2±3.7% of the total label applied and this was further analysed by column chromatography, firstly on an anion exchange column and then on a PhenylSepharose 6 column to give what appeared to be a single component. LC-MS analysis of this component gave a pattern of mercuri-clusters, formed on MS ionization showing possible parent ions at 704 or 588m/z, the former indicating that a thiol fragment of molecular weight around 467 could be present. No fragments with a single sulphur adduct (a 369m/z fragment) were observed The adduct was analysed for cysteine and other amino acids, nucleic acid bases, ribose and deoxyribose sugars, selenium and phosphorus; all were negative leading to the conclusion that a new class of unknown low molecular weight thiol is present concealed in the protein matrices of these cells.

Key words: thiols; low molecular weight thiols; LNCaP cells; thiol adduct chromatography and analysis

INTRODUCTION
Thiols play pivotal roles in cellular metabolism and are particularly important in the maintenance of the cellular redox balance and the control of oxidative stress. In the case of cancer cells and
tissues they have been shown to be important in radio-sensitization and protection, also in resistance to chemotherapeutic drugs.

Although many cellular thiol functions have been shown to be mediated via the cysteine groups found in enzyme or protein structures the main players in cellular metabolism are thought to be the mobile low molecular weight thiols, often known as nonprotein thiols (NPSH). In normal cells it is widely believed that the tripeptide glutathione is the most abundant low molecular weight thiol present within these cells. However, it has also been reported that other reducing sulfur moieties, such as sulfides, sulfones (S\(^0\)) and persulfides, play important roles in thiol metabolism [e.g.1,2]. In addition, it has been mooted that H\(_2\)S is a major signaling messenger molecule in cells and tissues [3]. It has also been reported that modified protein cysteine residues play an important role in redox stress signaling (e.g. [4]).

Recent work on a human prostate cancer cells, a lymph node line known as LNCaP, has shown that thiols other than GSH are present in the deproteinized extract (acid soluble fraction - ASF) of these cells [5,6]. Following up this work, investigations have focused on the protein thiol content of the chromatin cellular pellet left after removal of the ASF which was found to contain 76.7% of the cellular thiol (43.2 ± 2.9 femtomoles per cell). After extracting with a powerful chaotropc solvent (buffered 8M urea solution) containing excess Ellman reagent and removal of the labelled chromatin/DNA pellet it was shown by gel filtration chromatography that only 17.9% of the measured thiol could be found in the protein itself; 56.5% of the total cellular thiol appeared to be low molecular weight material which did not give an identifiable Ellman adduct [7]. Therefore, in order to identify these thiol compounds a fresh analytical technique had to be developed.

It is essential when isolating thiols for analysis that the group is blocked with a satisfactory agent to prevent oxidation artefacts. The use of most chromophoric or fluorescent thiol reagents as blocking agents is limited by their insolubility in aqueous media which can be a problem for their use in cell studies other bioanalytical systems. To this end some water soluble organomercurial labels offer many advantages for use in thiol analysis; they react quantitatively with thiols under appropriate conditions, are highly specific and can be easily detected using various UV/visible chromophores [8]. In the present study 2-chloromercuri-4-nitrophenol [9] has been used which reacts with thiols to give chromophoric adducts with a \(\lambda_{\text{max}}\) at neutral pH of 410nm.

![Diagram](image)

Using this reagent, the yellow adduct(s) of low molecular weight thiols concealed in the protein matrix of human prostate cancer cells (LNCaP) were isolated and examined by various chromatographic and other analytical techniques.

MATERIALS AND METHODS :-
All reagents and chemicals were of analytical or higher grade. Ellman reagent, (5,5’-dithio-bis-(2-nitrobenzoic acid), Whatman D52 cellulose anion exchanger and other chemicals used were obtained from Sigma-Aldrich (Merck), VWR Chemicals (BDH Prolab). G15 Sephadex and PhenylSepharose 6 Fast Flow (high substitution) were supplied by GE Healthcare.

The chromophoric organomercurial, 2-chloromercuri-4-nitrophenol (ClMNP) was prepared by the method of McMurray and Trentham (1969) [9]. This reagent was dissolved in acetone at a concentration of 5µmoles per ml just prior to its use in the labelling of cellular thiols in buffered 8M urea solutions.

Glass chromatography columns were supplied by Soham Scientific, Fordham, Ely, Cambs., UK LC-MS work was carried out by BioCity Group, Pennyfoot St, Nottingham NG1 1GF, UK. This analysis was performed using a Waters Acquity H-class QDA-PDA system.

The sulphur, selenium and phosphorus contents of adducts were determined by Inductively Coupled Plasma Mass-Spectrometry (ICP-MS) using a Thermo Finnigan Element 2 Magnetic-Sector ICP-MS via Oxford University Innovation Services by Philip Holdship at the Department of Earth Sciences, University of Oxford.

Full cysteine and other amino acid assays were carried on an ion exchange auto analyser by the Protein & Nucleic Acid chemistry facility of the Department of Biochemistry at the University of Cambridge.

LNCaP (androgen-sensitive human prostate adenocarcinoma cells, clone FGC-ECACC no. 89110211) were purchased from the Public Health England Laboratories (ECACC – HPA) at Porton Down, Salisbury, England. Cells were grown to confluence in cell factories in a medium consisting of RPMI 1640 + 2mM glutamine + 1mM sodium pyruvate containing 10% Zone 2 FBS. The confluent cells were harvested by trypsinization (Tryple Express) and cell counts were performed on a Nucleocounter NC3000. Aliquots containing 5 x 10^8 cells were collected by centrifugation, snap frozen and stored at minus 80°C until required.

METHODOLOGY EMPLOYED

Figure 1 Scheme of analysis that evolved during this investigation.
CELLS
SONICATED, EXTRACTED 10% w/v TCA, CENTRIFUGED

SUPERNATANT/ASF CONTAINING GLUTATHIONE

CELL PELLET RESUSPENDED IN WATER THIOL CONTENT MEASURED

REACTION WITH 2 CHLOROMERCURY -4 - NITROPHENOL IN 8M UREA 50mM PHOSPHATE pH 7.6

STIRRED FOR 20 MINS THEN CENTRIFUGED

PELLET OF CHROMATIN AND MEMBRANES

YELLOW SUPERNATANT CONTAINING MERCURY ADDUCTS (RS MNP)

FRACTIONATION ON G15 SEPHADEX

EXCLUDED PROTEIN FRACTION M₆>1500

ADSORPTION AND ELUTION OF LOW MOLECULAR WEIGHT FRACTION ON AN ANION EXCHANGE COLUMN FOLLOWED BY FURTHER FRACTIONATION ON A PHENYL SEPHADEX COLUMN

UREA AND SALTS

MERCURIAL ADDUCTS - (RSMNP)

ANALYSIS - TLC, LC-MS, etc
Cell Extraction Technique - Procedure used for 5 x 10⁸ cells

The cell pellet was re-suspended in water at 0-4°C to a volume of 20ml and briefly sonicated for 1min. (2 x 30sec bursts). 2ml of 100% TCA was added to give a final concentration of 10%w/v. and well mixed, then sonicated for a further 1 min and left for 15 min in ice. The mixture was then centrifuged at 3,200 x g for 4mins. After aspiration of the supernatant the cell residue was extracted with a further 10ml of 10%TCA. The two TCA extracts were combined to give the acid soluble fraction (ASF) (ca 32ml) which contained the cellular glutathione.

The cell residue was then re-suspended in 20 ml of water and the thiol content determined on three to four aliquots as follows:-

Triplicate samples consisting of 40µl of cell suspension added to 2960µl of 8M urea 0.5M Na phosphate buffer pH 7.6 containing 0.25mg/ml of the Ellman reagent, (5,5'-dithio-bis-(2-nitrobenzoic acid – ESSE) were prepared. The A₄₁₂ was read against the appropriate blank reagent and the number of optical units per ml (in a 1cm cell) calculated. From this value protein thiol content was ascertained by dividing by 13.7 (the millimolar extinction coefficient of the yellow anion (ES) in buffered 8M urea solutions, see Riddles et al.1983 [10]).

The cell residue mixture was then centrifuged as before and the pellet re-suspended in 10mls of water. This was then added dropwise, with rapid mixing, into 60 ml of 8M urea 50mM phosphate pH 7.5 (at room temperature) containing the calculated quantity of 2-chloromercuri-4-nitrophenoïd dissolved in acetone at a 1:1molar ratio to the thiol present. (If the cell residue suspension is added to the buffered urea without the labelling agent the thiol groups present rapidly disappear).

After 20 mins stirring, the resultant yellow mixture was then centrifuged at 3500rpm for 8-10 mins to sediment the chromatin (DNA-histone) complex [11] and the supernatant processed by gel filtration chromatography.

Chromatographic separation of the mercuri-4-nitrophenoïd thiol adducts (RSMNP):

i) Gel Filtration on G15 Sephadex

2.93g of NaCl was added to 50mls of the supernatant (to give a 1M NaCl concentration) and the mixture was applied to an 8 x 6cm column of Sephadex G-15(bead size 40-120µm. exclusion limit 1500 daltons) made up in 8M urea 50mM phosphate pH 7.8. The column was initially eluted in this solvent containing 1M NaCl, collecting 10ml fractions. The excluded protein fraction was eluted in the first 60-70mls, after which the low molecular weight (LMW) fraction, the movement of which was retarded, was eluted in 8M urea 10mM ammonium bicarbonate.

The optical density at 410nm of the fractions (McMurray and Trentham (1969)[9]) was determined manually in a 1cm cuvette using a Jenway 7315 spectrophotometer.

(ii) Anion exchange chromatography on DE52 cellulose.
The low molecular weight fractions obtained from the G15 column were pooled and applied to a 10 x 3cms column of Whatman DE52 in the Cl⁻ form. After an exhaustive water wash to remove any remaining urea the yellow RSMNP was eluted in 0.2M NaCl.

(iii) Hydrophobic Interaction Chromatography

Further purification and removal of salts from the DE52 0.2M NaCl fraction was achieved by applying the RSMNP to a 20 x 3 cms column of PhenylSepharose 6 in water. Up to 100 ml was applied and after a brief wash with 0.5M NaCl the yellow adduct was eluted slowly with water. A tight yellow band is slowly formed finally eluting in about one tenth of the sample volume applied.

Analysis of the low molecular weight RSMNP

a) Thin Layer Chromatography (TLC)

Concentrated RSMNP samples were run on silica or cellulose TLC plates at neutral pH in a variety of solvents.

b) Reversed Phase Ultra Performance Liquid Chromatography and Mass Spectral Analysis:

As mercury has seven stable naturally occurring isotopes it produces a very distinctive pattern when ionized using ESI mass spectrometry, making it very easy to spot Hg adducts. Samples were analyzed on single quadrupole QDA systems in full scan mode with analyte specificity attained by using the UV λ max of 323nm of mercuri-nitrophenol ion (at acid pH) to determine peaks of interest.

The LC Column used was a Charged Surface Hybrid (CSH) C18 2.1 x 100mm, 1.7µm @ 50°C using the following elution program in which the mobile phases were water (A) / acetonitrile (B) both with 0.1% (v/v) formic Acid. The flow rate was 0.6ml/min, programme:

Time (min)	Initial	0.5	6.5	7.5	7.6	8.0
%A	98	98	2	2	98	98
%B	2	2	98	98	2	2

c) Further analytical tests:

Full cysteine and other amino acid assays were carried on an ion exchange auto analyser by the Protein & Nucleic Acid chemistry facility of the Department of Biochemistry at the University of Cambridge.

The compound was checked for ribose/pentoses using the Bial’s Orcinol method and for deoxyribose (2’-deoxypentose sugars) using the Dische Diphenylamine reagent.
RESULTS

Thiol contents of cellular fractions

The thiol contents determined using the Ellman reagent on the cellular fractions obtained in this (as shown in figure 1) and previous studies [6,7] are given in table 1 below. In earlier studies the G15 protein thiol concentration was calculated from the adduct obtained from the Ellman reagent. Subtraction of the value and that obtained from the chromatin pellet gives the LMW thiol content present in the protein precipitate.

Table 1 Thiol contents of LNCaP cellular fractions

Thiol fraction	femtomoles of thiol/cell	Percentage of total thiol
Total cellular thiol	56.3 ± 3.6	100.0
*Glutathione	8.3 ± 0.7	14.7
Minor ASF LMW components	3.5	6.4
Protein fraction-gel filtration	11.4 ± 0.3	20.2
Chromatin pellet	1.3 ± 0.2	2.3
Protein matrix- release -LMW	31.8 ± 2.2	56.4

Gel Chromatography of Buffered 8M urea extract of cells

Fig.2 shows the pattern obtained from chromatography of the 8M urea extract containing the thiol adducts after the addition of NaCl to 1M concentration on an 10 x 6 cms G15 column (made up in 8M urea 50mM phosphate pH7.8). The first peak, the protein fraction, is eluted with this solvent and appears in the void volume in just over the initial volume applied. After the protein had been eluted the elution of the LMW adducts appeared to be retarded in the initial eluent. After some experimentation it was found that the best way to elute this fraction was with 8M urea 10mM ammonium bicarbonate after the protein had been eluted.
Fig 2 Gel filtration chromatography of cellular thiol adducts on G15 Sephadex.

Ordinate: OD at 410nm; Abscissa: tube no. (10ml fractions)

The amounts of A$_{410}$ eluted in the G15 fractions obtained are shown in table 2. 90+% recovery of the applied A410 was achieved.

Protein	“Intermediate”	LMW
16.0±4.1 %	5.9±1.2 %	77.2±3.7

*Average 4 runs (±SD)

[Note that it has not been possible to accurately quantify the thiol content of the protein or the low molecular weight fraction as the extinction coefficients of these RSMNP derivatives have yet to be determined.]
UV-VISIBLE spectrum of low molecular weight RS-MNP adduct at pH 7.5

The spectrum of the RMNP isolated on a PhenylSepharose column is given in figure 3. The major peak observed at neutral pH is at 404nm, at acid pH this shifts to 323nm.

Fig.3 UV-VIS spectrum of low molecular weight RS-MNP adduct at pH 7.5
Ordinate: absorbance (mAU); Abscissa wavelength(nm)

LC-MS chromatography of RSMNP
LC analysis was carried out using an acetonitrile formic acid gradient as described above in the methods section. It can be seen from the UV trace at 323nm (λ_{max} in acid solution) in fig 4 that only one significant component is present.

Fig. 4 LC trace of LNCaP-RSMNP at 323nm; Ord.-AU 323nm; Abs.-Time of elution(mins)

The MS obtained from the ion trace obtained from this peak revealed a complex pattern as shown in figure 5.
Interpretation of this MS trace is difficult as mercurial compounds often form dimers or trimers in an ionization beam. Taking the 706m/z peak and subtracting the label mass of 338 daltons (2-mercuri-4- nitrophenol minus chlorine) indicates a thiol mass of 467 could be present, if it contains only one Hg atom. However, the 588m/z peak could contain thiol with a mass of 251 assuming only one Hg is present.

The formula weight of the label 2-mercuri-4- nitrophenol plus sulphur, should be 370 daltons but no ions of this size were found.

Further MS-MS analysis will be required to resolve this issue, but this data strongly indicates that this matrix thiol is not a simple sulphide, persulphide or some form of sulphane (S²) sulphur.

The glutathione adduct was prepared and analysed in this system. A single peak was observed which produced the expected negative ion of 645m/z (339 +306) (see supplementary material)

Other Investigations

The following other investigations were carried out: -

TLC investigations on silica and cellulose plates using a number of different solvents gave a single visible yellow spot (example given in supplementary material).

The quantitative content of sulphur, selenium, and phosphorus content of the adduct was investigated by inductively coupled plasma mass-spectrometer (ICP-MS) (linear working range from ug/g levels down to pg/g levels). While the sulphur content agreed closely with the thiol values determined by the Ellman reagent, selenium was not detected in the adduct. Only traces
of phosphorus were found, for example, in one sample containing 860 nanomoles of sulphur only 3 nanomoles of phosphorus were detected indicating that the latter was only a contaminant.

Tests for cysteine other amino acids by (automated analysis) were negative.

Quantitative tests for ribose/pentoses and deoxyribose (2’-deoxypentose sugars) were negative.

A low absorption in UV at 260nm of the RSMNP adduct, allowing for that due to the nitrophenol component, indicated the absence of any nucleic acid bases.

The adduct is very soluble in water and seems to have amphoteric properties as it can easily be adsorbed onto either anion or cation exchange columns.

DISCUSSION AND CONCLUSION

These results obtained using 2-mercuri-4-nitrophenol to label the cellular low molecular weight thiols confirm the findings of previous experiments on LNCaP cells using the Ellman reagent. In fact, the results presented here mirror those obtained with the latter reagent [7] in that the main bulk of the measured protein thiol can be dissociated from the cellular matrices in a strongly chaotropic solvent. Using buffered 8M urea it has been shown that only about one fifth of the detected thiol is firmly within the protein peptide structure, it seems as if the bulk of the cellular low molecular weight thiol material, ca 56-61%, is “concealed” in the protein matrices; trapped in the trichloroacetic acid precipitate.

In this context it is interesting that, in previous studies by the author on the thiols of isolated nuclei from rat liver and rat hepatoma 223 ascites cells labelled with the Ellman reagent, similar results were obtained [12] Here the non-histone proteins, which contain the bulk of the nuclear thiol material, were shown to form low molecular weight thiol adducts with 35S labelled Ellman reagent, but these were not identified. However, it was established that they did not contain either cysteine or glutathione; furthermore only 30% of the 35S labelled adducts formed were found to be bound to the protein cysteine residues.

In later work by the author it was found that traces of unknown thiol moieties were detected in the ASF/glutathione fraction isolated from LNCaP and other cells [5,13].

The current study shows that the reducing sulphur entity entrapped in the protein matrices of LNCaP cells is not a simple divalent sulphur moiety and does not contain the amino acids, cysteine, or glutathione.

The amount of the unknown thiol present in LNCaP cells is approximately four times greater than the glutathione present indicating that it must play an important role in the control of oxidative stress and other well-known thiol functions. At a concentration of 31.8 femtomoles per cell it could represent an important element in energy metabolism, in contrast, for example, the amount of ATP present in a cell is only 1 to 2 femtomoles [14].
This concealed or “conthiol” reducing sulphur entity is not any of the known cellular constituents. In order to identify it fully new analytical methods need to be developed.

Elucidating the role of these “conthiols” in oxidative stress, hypoxia, redox regulation, signalling and cellular respiratory processes poses a major challenge in future research programs and studies. However, from the current knowledge of thiol metabolism it is evident that they must be important in relation to tumour cell response to ionizing radiation, drug resistance and oxidative stress generally. Elucidation of their chemistry and biochemistry would seem to hold some promise for helping to improve the design of more effective radiosensitizers and cancer chemotherapeutic drugs.

ACKNOWLEDGEMENT
This work was carried out on a voluntary basis and I thank the Cambridge Cancer Research Fund (UK Charity no.328087) for its generous financial support in purchasing materials, services etc. when required for this work.

DECLARATION OF CONFLICTING INTEREST
The author has no conflicts of interest (political, personal, religious, ideological, academic, intellectual, commercial or any other) to declare in relation to this manuscript.

ABREVIATIONS:
ASF acid soluble fraction
ClMNP 2-chloromercuri-4-nitrophenol
LC-MS liquid chromatography-mass spectrographic analysis
LMW low molecular weight
LNCaP lymph node androgen-sensitive human prostate adenocarcinoma cells (clone)
RSMNP mercuri-4-nitrophenol thiol adduct
TLC thin layer chromatography
REFERENCES

1) Iciek M. and Włodek, L. (2001) “Biosynthesis and biological properties of compounds containing highly reactive, reduced sulfane sulfur,” *Polish Journal of Pharmacology*, 53, (3) 215–225,

2) Toohey J.I and Cooper A.J. (2014) Thiosulfoxide (Sulfane) Sulfur: New Chemistry and New Regulatory Roles in Biology. *Molecules*, 19, 12789-12813; doi:10.3390/molecules19012789

3) Cadenas E. and Packer L.(eds) (2015) Methods in Enzymology, Hydrogen Sulfide in Redox Biology, 554, Part A Elsevier ISBN 978-0-12-801512-4

4) Rahuel-Clarmont S. and Toledano M.B (2018) Redox regulation: parsing protein sulfenic acid switches Nature Chemical Biology 14, 991-993

5) Gronow M., (2010) Studies on the Non-Protein Thiols of a Human Prostatic Cancer Cell Line: Glutathione Content, Cancers, 2(2), 1092-1106

6) Childs S., Haroune N., Williams L. and Gronow M. (2017) Investigation of the Low Molecular Weight Thiol Composition in a Metastatic Prostate Cancer Cell Line (LNCaP) by LC-UV-MS and NMR after labelling with the Ellman Reagent. American Journal of Analytical Chemistry, 8, 1-18. http://dx.doi.org/10.4236/ajac.2017.81001

7) Gronow M. (2018) Cellular protein thiols: studies on human prostate cell lines; a lymph node cancer line (LNCaP) and a virally transformed normal cell line (PNT2). Oncol.Res.Rev.1(3),1-6 http://dx.doi.10.15761/ORR.1000116

8) Ashworth, M.R.F., (1976) in “Analysis of Organic Materials” ed. Belcher R. and Anderson D.M.W., vol.2 “Analytical Methods for Thiol Groups” Academic Press [ISBN:0-12-065002-9] p65-93

9) McMurray C.H. and Trentham D.R. (1969) A new class of chromophoric organomercurials and their reactions with D-Glyceraldehyde 3-Phosphate Dehydrogenase. Biochem J. 115, 913-921

10) Riddles P.W., Blakeley R.L and Zerner B. (1983) Reassessment of Ellman’s reagent: in Methods in Enzymology; 91: 49-60

11) Gronow M. (1969) Solublization and partial fractionation of the sulphur-containing nuclear proteins of hepatoma 223 ascites cells. Europ. J. Cancer, 5, 497-508.

12) Gronow M. and Lewis F.A. (1975) Thiols attached to rat liver non-histone nuclear proteins. Experimental Cell Research 93, 225-229
13) Gronow M. (2012) Studies on the low molecular weight thiols present in a human prostate cancer cell line (LNCaP) using 4-dimethylaminoazobenzene-4’-maleimide (DABMA) as a labelling agent: apparent glutathione content. Int.J.Sciences. 1, 1-17

14) Sigma-Aldrich Technical Bulletin FLASC (ATP bioluminescence somatic cell assay kit)

SUPPLEMENTARY MATERIAL

1) THIN LAYER CHROMATOGRAPHY OF THE ADDUCT

TLC analysis of the 2-mercuri-4-nitrophenol adducts on various silica, RP C18 or cellulose plates at neutral pH showed only one major yellow component to be present.

An example of a TLC separation on a silica plate (Al): solvent 30% EtOH, is shown below.

![TLC plate of labelling compound ClMNP (LHS) and adduct RSMNP (RHS)](image)

2) GLUTATHIONE ADDUCT

LC analysis of glutathione -2 mercuri-4-nitrophenol adduct

a) LC-MS - UV trace
b) Negative ion MS analysis of above 323nm peak eluting at 2.54 mins
