Probing flow fluctuations through factorization breaking of harmonic flows in heavy-ion collision

PIOTR BOŻEK, RUPAM SAMANTA

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, aleja Mickiewicza 30, 30-059 Cracow, Poland

We study factorization-breaking coefficients between the momentum dependent and momentum averaged flow vectors to probe flow fluctuations caused by initial-state fluctuations in heavy-ion collision. The coefficients for the flow vector squared and flow magnitude squared could be used for the extraction of flow angle decorrelations. We compare our model results with preliminary experimental data. We also present the predictions for the momentum dependent correlation between mixed flow harmonics.

1. Introduction

The dense matter created in the interaction region of a heavy-ion collision, expands rapidly. Due to the asymmetry of the initial source distribution, the collective expansion leads to an azimuthal momentum anisotropy of the spectra of particles,

\[\frac{dN}{d\phi} = \frac{dN}{2\pi dp}(1 + 2 \sum_{n=1}^{\infty} V_n(p)e^{in\phi}) \]

where the Fourier coefficients \(V_n(p) \)'s are called the harmonic flow coefficients.

The initial source fluctuates event-by-event (ebe), leading to the ebe fluctuation of the harmonic flow coefficients in the final state [1,2]. These flow fluctuations can be probed by studying the correlation coefficient between the harmonic flow vectors in two different transverse momentum bins [3], the factorization-breaking coefficients. The fluctuations result in the decorrelation (deviation of the correlation coefficients from 1) between these flow fluctuations.

Presented at Quark Matter 2022 : XXIXth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
vectors, which manifests the combined effect of flow magnitude decorrelation as well as the flow angle decorrelation\[4, 5\]. These two effects can be separated by constructing four particle correlators between two transverse momentum bins. However, to avoid the experimental difficulty due to the low statistics at higher momenta, the coefficients are constructed keeping two particles fixed at transverse momentum bins (differential flow) and the other two are momentum averaged (integrated flow)\[6\]. We compare our model results with the preliminary results by ALICE collaboration. We also study the similar factorization coefficients between the mixed flow harmonics e.g. $V_2^2 - V_4(p)$ or $V_2 V_3 - V_5(p)$, which serve as measures of the non-linear hydrodynamic response of the medium.

2. Factorization Breaking for harmonic flow vector, magnitude and angle

The complex flow vector $V_n(p) = v_n(p) e^{i n \Psi_n(p)}$ in Eq. 1 denotes the harmonic flow vector of order n for particles emitted at the transverse momentum p; v_n and Ψ_n are the corresponding flow magnitude and angle. In general, one can construct the four-particle correlators, measuring the factorization breaking coefficients between two flow vectors squared at two different transverse momentum bins as \[3\],

$$r_{n;2}(p_1, p_2) = \frac{\langle V_n^2(p_1)V_n^*(p_2)^2 \rangle}{\sqrt{\langle v_n^4(p_1) \rangle \langle v_n^4(p_2) \rangle}}$$

and similarly for the flow magnitude squared, the factorization-breaking coefficient can be constructed as \[7\],

$$r_{n;2}^v(p_1, p_2) = \frac{\langle |V_n(p_1)|^2 |V_n(p_2)|^2 \rangle}{\sqrt{\langle v_n^4(p_1) \rangle \langle v_n^4(p_2) \rangle}}$$

However, in practice, the above formulas are difficult to use in experiment due to the low statistics in higher momentum bins.

To ease this difficulty, an alternative approach proposed by the ALICE collaboration, would be to keep only one of the flow in a transverse momentum bin and the other flow averaged over the momentum range. Following this, we construct the factorization-breaking coefficient using the four-particle correlator for the flow vector squared and flow magnitude squared as \[6\],

$$r_{n;2}(p) = \frac{\langle V_n^2(p) V_n^*(p)^2 \rangle}{\sqrt{\langle v_n^4(p) \rangle \langle v_n^4(p) \rangle}} \quad \text{and} \quad r_{n;2}^v(p) = \frac{\langle v_n^2(p) v_n^2(p)^2 \rangle}{\sqrt{\langle v_n^4(p) \rangle \langle v_n^4(p) \rangle}} .$$

Fig. 1: The factorization breaking coefficient between flow vectors squared $V_2(p)^2$ and V_2^2 (left) and for the flow magnitudes squared $v_2(p)^2$ and v_2^2 (right) for the elliptic flow. The red squares and black triangles denote the results obtained with the Glauber model and the TRENTO model initial conditions respectively. The experimental data of the ALICE Collaboration are represented using blue dots. (Fig. from [8])

Fig. 2: The flow angle correlation estimated as the ratio of the flow vector and the flow magnitude factorization breaking coefficients (Eq. 5). The symbols with the dashed lines denote the angle correlations calculated directly from the simulated events (Eq. 7). The green squares represent the simple average of the decorrelation angle (Eq. 8).

We use the boost invariant version of the hydrodynamic model MUSIC [9] for Pb+Pb collisions at 5.02 TeV. For the initial state, two models are used: a two-component Glauber Monte Carlo model [10] and the TRENTO model [11]. We use a constant shear viscosity to entropy density ratio $\eta/s = 0.08$, unless otherwise specified. In Fig. 1 are shown the factorization breaking coefficients between the flow vectors squared (left) and flow magnitudes squared (right) for the elliptic flow. For 0-5% centrality our model result corroborate the ALICE preliminary data. However, for semi-central collision (30-40%), our model results do not fully describe the data. Also one can see that the decorrelation for the magnitudes $r_v^{v_2^2}(p)$, is approximately one half of the decorrelation for the vectors $r_2^{v_2^2}(p)$ in 1, which manifest the fact that the total flow vector decorrelation involves equal contribution from the flow magnitude and the flow angle decorrelation: $[1 - r_n^{v_2^2}(p)] \simeq 2[1 - r_n^{v_2^2}(p)]$.

Once we have the flow vector and flow magnitude factorization-breaking
coefficients separately, we can estimate the flow angle decorrelation by constructing the correlator for flow angle, taking the ratio of the four-particle flow vector correlator and flow magnitude correlator Eq. 4.

\[
F_n(p) = \frac{\langle V_n^2 V_n^*(p) \rangle}{\langle v_n^2 v_n^*(p) \rangle}.
\] (5)

The above correlator is an experimental measure of the flow angle decorrelation:

\[
F_n(p) = \frac{\langle v_n^2 v_n(p) \rangle \cos [2n (\Psi_n(p) - \Psi_n)]}{\langle v_n^2 v_n(p)^2 \rangle}.
\] (6)

However, the actual angle decorrelation could be defined as [7],

\[
\langle v_n^4 \cos [2n (\Psi_n(p) - \Psi_n)] \rangle,
\] (7)

The results presented in Fig. 2 indicate that the two formulas give similar results, suggesting that the experimental measure [5] could be used to estimate the weighted flow angle decorrelation. Our model results describe the experimental angle decorrelation. On the other hand, the simple average of the decorrelation angle

\[
\langle \cos [2n (\Psi_n(p) - \Psi_n)] \rangle
\] (8)

is very different and cannot be estimated directly from the data.

3. Mixed flow correlations

Similar correlations coefficients can be constructed between mixed flow harmonics, as a measure of non-linear coupling between the flow harmonics. Such correlation coefficients are sensitive to the non-linear response of the hot dense medium [12]. For example, one can construct the correlation coefficients between \(V_2^4 \) and \(V_4(p) \) or between \(V_2V_3^2 \) and \(V_5(p) \). However, to extract the angle decorrelation between these mixed flow, one needs to construct the correlation coefficient (or factorization-breaking coefficients) between the squares of the harmonics used. The mixed flow vector-vector, magnitude-magnitude and angle decorrelation are given by,

\[
\frac{\langle V_2^4 V_4^*(p)^2 \rangle}{\sqrt{\langle v_2^4 \rangle \langle v_4^*(p) \rangle}}, \quad \frac{\langle v_2^4 v_4(p)^2 \rangle}{\sqrt{\langle v_2^4 \rangle \langle v_4^2(p) \rangle}} \quad \text{and} \quad \frac{\langle V_2^4 V_4^*(p)^2 \rangle}{\langle v_4^4 \rangle}.
\] (9)

In Figs. [3] and [4] are shown the results predicted in the model for the mixed flow factorization-breaking coefficients between \(V_2^4 \) and \(V_4^2 \) for
Fig. 3: The flow vector (left) and flow magnitude correlation (right) between V_2^4 and $V_4(p)^2$. For the TRENTO model initial conditions, the solid, dashed and dotted lines represent results with $\eta/s = 0.08$, 0.12, 0.16 respectively. The horizontal lines represent the corresponding correlation coefficients for momentum averaged flow vectors V_2^4 and V_4^4. (Fig. from [8])

Fig. 4: The flow angle correlation between V_2^4 and $V_4(p)^2$. (Fig. from [8])

flow vector, magnitude and angle decorrelations. Again, we notice that the flow magnitude decorrelation is approximately one half of the flow vector decorrelation. The horizontal lines denote the baseline for the correlations between the momentum averaged flow harmonics.

4. Summary and outlook

We study the factorization-breaking coefficients between the harmonic flow coefficient in a fixed transverse momentum bin and the average flow harmonic. Such factorization coefficients show significant decorrelations which is a direct consequence of initial state fluctuation. The separate measurement of the flow vector and magnitude decorrelation lead to the extraction of flow angle decorrelation, where the magnitude and the flow angle decorrelations constitute approximately equal parts of the total flow vector decorrelation. Our model results well reproduce the ALICE preliminary data in central collisions, but deviate in case of semi-central collisions. We
also present predictions for the momentum dependent mixed flow correlations, which measure the non-linear response of the hydro response and put additional constrain on the models. Our results could be verified in experiments.

Acknowledgments

This research was partly supported by the Polish National Science Centre grant: 2019/35/O/ST2/00357.

REFERENCES

[1] B. Alver et al., “Importance of correlations and fluctuations on the initial source eccentricity in high-energy nucleus-nucleus collisions,” Phys. Rev. C, vol. 77, p. 014906, 2008.
[2] B. Alver and G. Roland, “Collision geometry fluctuations and triangular flow in heavy-ion collisions,” Phys. Rev., vol. C81, p. 054905, 2010.
[3] F. G. Gardim, F. Grassi, M. Luzum, and J.-Y. Ollitrault, “Breaking of factorization of two-particle correlations in hydrodynamics,” Phys.Rev., vol. C87, no. 3, p. 031901, 2013.
[4] J. Jia and P. Huo, “Forward-backward eccentricity and participant-plane angle fluctuations and their influences on longitudinal dynamics of collective flow,” Phys.Rev., vol. C90, p. 034915, 2014.
[5] P. Bożek and W. Broniowski, “Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions,” Phys. Rev., vol. C97, no. 3, p. 034913, 2018.
[6] E. Nielsen talk presented at 6th International Conference on the Initial Stages in High-Energy Nuclear Collisions. Rehovot, 10-15 January, 2021.
[7] P. Bożek, “Angle and magnitude decorrelation in the factorization breaking of collective flow,” Phys. Rev., vol. C98, no. 6, p. 064906, 2018.
[8] P. Bozek and R. Samanta, “Factorization breaking for higher moments of harmonic flow,” Phys. Rev. C, vol. 105, no. 3, p. 034904, 2022.
[9] B. Schenke, S. Jeon, and C. Gale, “(3+1)D hydrodynamic simulation of relativistic heavy-ion collisions,” Phys. Rev. C, vol. 82, p. 014903, 2010.
[10] P. Bożek, W. Broniowski, M. Rybczynski, and G. Stefanek, “GLISSANDO 3: GLauber Initial-State Simulation AND mOre..., ver. 3,” Comput. Phys. Commun., vol. 245, p. 106850, 2019.
[11] J. S. Moreland, J. E. Bernhard, and S. A. Bass, “Alternative ansatz to wounded nucleon and binary collision scaling in high-energy nuclear collisions,” Phys. Rev. C, vol. 92, no. 1, p. 011901(R), 2015.
[12] R. S. Bhalerao, J.-Y. Ollitrault, and S. Pal, “Event-plane correlators,” Phys. Rev., vol. C88, p. 024909, 2013.