Efeito de intervenção interdisciplinar com abordagem motivacional na capacidade de exercício em adolescentes obesos: ensaio clínico controlado randomizado

Letiane Bueno Zanatta¹, João Paulo Heinzmann-Filho¹, Fernanda Maria Vendrusculo¹, Natália Evangelista Campos¹, Margareth da Silva Oliveira¹, Ana Maria Pandolfo Feoli¹, Andréia da Silva Gustavo¹, Márcio Vinícius Fagundes Donadio¹

¹ Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brasil.

RESUMO

Objetivo: Avaliar o efeito de uma intervenção interdisciplinar com abordagem motivacional na capacidade de exercício e no nível de atividade física habitual em adolescentes com sobrepeso e obesidade. Métodos: Trata-se de ensaio clínico controlado, randomizado, com cegamento único dos indivíduos. Foram incluídos adolescentes com idade entre 15 e 18 anos, com sobrepeso e obesidade (índice de massa corporal ≥ percentil 85). Os adolescentes foram randomizados em dois grupos: intervenção interdisciplinar motivacional ou controle — abordagem tradicional, visando à modificação do estilo de vida. Foram realizadas as avaliações iniciais incluindo o teste de exercício cardiopulmonar e a aferição do nível de atividade física por meio do International Physical Activity Questionnaire e do pedômetro. As avaliações foram realizadas em dois momentos, no tempo zero (inclusão no estudo) e após 3 meses (termo da intervenção). Foram realizadas 12 sessões com encontros semanais. Resultados: Foram incluídos 37 participantes, sendo 19 no Grupo Intervenção. Não houve diferenças significativas nos dados basais de características demográficas, antropométricas e de atividade física entre os grupos, e a média de idade foi de 17,3±1,0 anos no Grupo Controle e 16,8±0,9 anos no Intervenção (p=0,14). A intervenção motivacional não provocou diferenças significativas (p>0,05) na comparação das variáveis de capacidade de exercício e atividade física habitual (questionário e pedômetro) entre os grupos. Conclusão: A intervenção com abordagem motivacional não alterou a capacidade de exercício e os níveis de atividade física habitual em adolescentes com sobrepeso e obesidade.

Descritores: Obesidade; Sobrepeço; Adolescente; Entrevista motivacional; Exercício físico; Motivação

ABSTRACT

Objective: To evaluate the effect of an interdisciplinary intervention with a motivational approach on exercise capacity and usual physical activity levels in overweight and obese adolescents. Methods: This is a randomized, controlled clinical trial with single blinding of subjects. Adolescents aged 15 to 18 years with overweight and obesity (body mass index ≥ 85 percentile) were included. The adolescents were randomized into two groups: interdisciplinary intervention or control — traditional approach aiming at lifestyle modifications. The initial evaluations were carried...
Um dos fatores que pode interferir no desempenho do tratamento é a motivação.(13) Assim, a utilização da entrevista motivacional (EM), em conjunto com o MTT, pode contribuir neste sentido, considerando que se trata de um tipo de atendimento que evoca dos pacientes as motivações para fazer mudanças comportamentais no interesse de sua própria saúde.(14)

A EM aliada ao MTT configura terapêutica alternativa para abordar a mudança de comportamento, que estimula uma relação construtiva entre profissional da saúde e paciente, visando propiciar melhores resultados ao tratamento. Considerando que adolescentes apresentam tendência a despender muito tempo em atividades sedentárias e que a prática regular de atividade física reduz o risco de doenças crônicas, justifica-se o estudo de uma intervenção interdisciplinar com abordagem motivacional para adolescentes com sobrepeso e obesidade.

I OBJETIVO
Avaliar o efeito de uma intervenção interdisciplinar com abordagem motivacional sobre a capacidade de exercício e o nível de atividade física diária em adolescentes com sobrepeso e obesidade.

I MÉTODOS
Trata-se de ensaio clínico controlado, randomizado, com cegamento único dos indivíduos, registrado em ambos REBEC (RBR-234nb5) e Clinical Trials (NCT02455973), que seguiram as recomendações CONSORT.(15) Foram incluídos adolescentes com idade entre 15 e 18 anos e índice de massa corporal (IMC) compatível com sobrepeso ou obesidade (≥ percentil 85). Foram excluídos os indivíduos que apresentassem alguma contraindicação absoluta para a prática de atividade física (problemas musculoesqueléticos, neurológicos, vasculares, pulmonares ou cardíacos), diagnóstico de transtornos psiquiátricos graves e/ou presença de prejuízos cognitivos significativos, gestação, diagnóstico de diabetes mellitus tipo 1 e dificuldade de retorno nas avaliações.

O recrutamento dos participantes ocorreu por mídia digital, televisão e rádio. Após o interesse inicial, os adolescentes foram contatados por telefone para participarem de uma triagem. Nesse momento, foram explicados os objetivos do estudo e avaliados os critérios de inclusão e exclusão, por meio da avaliação antropométrica e das informações referentes aos dados clínicos. Após a verificação dos critérios de elegibilidade e obtenção do consentimento escrito dos pais e/ou responsáveis, os adolescentes foram randomizados por meio do software Research Randomizer, versão 4.0, para participar do grupo com abordagem tradicional (Controle − GC) ou intervenção interdisciplinar (Intervenção − GI), visando...
à modificação do estilo de vida. Um membro da equipe de pesquisa foi responsável pela atribuição cega de cada participante a um dos dois grupos experimentais.

Posteriormente, foram agendadas as avaliações iniciais de todos os participantes com a equipe de pesquisa. As avaliações incluíram o teste de exercício cardíopulmonar (TECP) e a aferição do nível de atividade física habitual, por meio de questionário e de uma medida objetiva (pedômetro). As avaliações foram realizadas no Laboratório de Atividade Física em Pediatría, em dois momentos para ambos os grupos: no tempo zero (momento da inclusão no estudo) e após 3 meses de intervenção (término da intervenção).

As intervenções foram realizadas conforme protocolo publicado no International Journal of Clinical Trials, em número de 12 sessões para cada grupo, descritas resumidamente a seguir.

No GC, o foco das sessões foi o desenvolvimento de habilidades, por meio de ações educativas em saúde, utilizando a pedagogia da transmissão, na qual os adolescentes receberam apenas orientação sobre o que eles deveriam fazer para modificar os hábitos alimentares e a prática de atividade física. O grupo foi guiado por uma equipe composta por um membro de enfermagem, fisioterapia, nutrição e psicologia, e seguiu um cronograma de palestras que abordava os fatores de risco cardiovascular e a prevenção dos mesmos. Os encontros foram semanais com duração de 1 hora, durante 3 meses.

No GI, o foco das sessões foi o desenvolvimento de habilidades, por meio de ações educativas em saúde que proporcionassem o desenvolvimento da autonomia e do empoderamento para a mudança do comportamento alimentar e da prática de atividade física, com base em estratégias motivacionais interdisciplinares. Os encontros foram realizados na presença de um membro da equipe de enfermagem, fisioterapia, nutrição e psicologia, com encontros semanais, com duração de 1 hora e 30 minutos, durante 3 meses. Nos primeiros 60 minutos, foram abordados temas em saúde, utilizando os fundamentos da técnica da EM. Ao final, foram utilizados 30 minutos para que os participantes, em conjunto com a equipe de pesquisa, tivessem uma experiência de prática de atividade física orientada, utilizando o videogame interativo Xbox. A inclusão desse momento de exercício visou motivar o participante a incluir outras sessões durante a semana. A intervenção nesse grupo permitiu maior interação entre os profissionais da saúde e os adolescentes, além de incentivar a participação ativa dos jovens.

Em ambos os grupos, foram realizados dois encontros somente com os pais ou responsáveis legais dos adolescentes. Esses encontros aconteceram no início e no final da intervenção, com o objetivo de envolver a família no processo de mudança do estilo de vida dos adolescentes. Mais informações sobre as sessões podem ser encontradas no protocolo do estudo.

O desfecho primário do estudo foi o consumo de oxigênio de pico (VO₂pico) e o desfecho secundário foi o nível de atividade física diária. Além disso, foi utilizado um questionário que contemplava dados sociodemográficos (idade, sexo, classe social e cor) e foi realizada avaliação antropométrica.

As aferições da massa corporal e da estatura foram realizadas em triplicata ou até a obtenção de dois valores idênticos. A massa corporal foi obtida com os indivíduos em posição ortostática, descalços, com o mínimo de roupa, por meio de uma balança digital (G-Tech, Glass 1 FW, Rio de Janeiro, Brasil) com precisão de 100g, previamente calibrada. A altura foi mensurada por meio de um estádiodímetro portátil (AlturaExata, TBW, São Paulo, Brasil) com precisão de um milímetro, em ortostase, com os pés descalços em posição paralela e braços estendidos ao longo do corpo.

O TECP foi realizado de acordo com as recomendações da American Thoracic Society (ATS) e American College of Chest Physicians (CHEST). Todos os exames foram realizados com temperatura da sala entre 22 e 24°C e umidade relativa do ar em torno de 60%. A aferição foi realizada em um sistema computadorizado (Aerograph, AeroSport®, EUA), acoplado a um analisador de gases (VO₂max MedGraphics®, EUA) e utilizando uma esteira rolante (KT-10400, Inbramed®, Brasil). As variáveis coletadas durante o teste incluíram o consumo máximo de oxigênio (VO₂pico), a produção de dióxido de carbono (VCO₂), a ventilação mi­nuto (V E), o coeficiente de troca respiratória (RO), os equivalentes ventilatórios para o consumo de oxigênio (V E/VO₂pico) e para produção de dióxido de carbono (V E/VCO₂) e a frequência cardíaca máxima (FCmáx). O teste foi realizado com protocolo de rampa, adaptado de acordo com estudo prévio. Os participantes foram orientados caminhar por 2 minutos para se adaptar à esteira, com velocidade de 3km/hora e sem inclinação. Após, ocorreram incrementos na velocidade de 0,5km/hora a cada minuto, com inclinação fixa em 3% até a finalização do teste. Todos foram encorajados a manter o ritmo até a exaustão ou surgimento de sinais e/ou sintomas limitantes (dispneia, dor nas pernas e/ou ton- tura). Para se considerar o teste como máximo, pelo menos três dos seguintes critérios deveriam ser observados: exaustão do participante, coeficiente de troca respiratória >1,0, FCmáx >85% da FC estimada (fórmula: 220 - idade) e a presença de platô no VO₂pico. No início e no final do teste, foram coletados os dados de FC e saturação periférica de oxigênio (SpO₂), por meio de um oxímetro de pulso (Nonin®, Mineápolis, EUA),
pressão arterial (esfignomanômetro BIC, Itupeva, Brasil), e percepção subjetiva de dispneia e fadiga de membros inferiores, avaliada pela escala modificada de Borg.²⁴ A FC e a SpO₂ foram monitoradas durante todo o protocolo do TECP.

Para avaliar o nível de atividade física diária dos adolescentes, foi utilizado o International Physical Activity Questionnaire (IPAQ)²² na versão curta. Esse questionário validado aborda questões sobre os últimos 7 dias, avaliando a frequência e o tempo gasto em atividades moderadas, vigorosas e caminhadães, além do tempo em atividades sentadas. O desfecho desse instrumento se baseia no tempo gasto (minutos) em cada uma das atividades, sendo classificados como ativos os indivíduos que praticam pelo menos 150 minutos de atividade física de intensidade moderada.²² Com o objetivo de avaliar as atividades realizadas no dia a dia de forma objetiva, os adolescentes também utilizaram, no início e final da intervenção, um pedômetro (DIGI-WALWER Electronic Pedometer SW700/701). Assim, durante 7 dias de uso, o aparelho registrou a quantidade de passos, a distância percorrida e as calorias gastas pelos indivíduos. Os participantes foram orientados a usar o aparelho na cinta por 7 dias, do lado direito, próximo à crista-ilíaca, tirando apenas para dormir, tomar banho ou algum exercício físico de contato. Estes instrumentos foram entregues juntamente das instruções orais e escritas sobre os mesmos. Após, os aparelhos foram recolhidos para a análise dos dados e comparação com os dados obtidos pelos questionários.

O cálculo do tamanho de amostra baseou-se na variabilidade do VO₂pico, por ser esta a principal variável de desfecho. Foram utilizados dados oriundos de avaliações de adolescentes do próprio laboratório. Considerando média de VO₂ de 30,55mL.kg⁻¹.min⁻¹, desvio padrão de 4,09mL.kg⁻¹.min⁻¹, diferença mínima a ser detectada de 2,7mL.kg⁻¹.min⁻¹ e poder de 80% (1-β), estimou-se tamanho amostral de 17 participantes por grupo. Para fins estatísticos, a normalidade dos dados foi avaliada por meio do teste de Shapiro-Wilk. As variáveis contínuas, com distribuição simétrica, foram apresentadas em média e desvio padrão, enquanto os dados assimétricos foram apresentados em mediana e intervalo interquartílico. Os dados categóricos foram expressos como frequência absoluta e relativa. O teste t de Student independente ou o teste de Mann Whitney foram utilizados para comparar as características entre os grupos, de acordo com a simetria dos dados. As comparações entre os momentos antes e após a intervenção em ambos os grupos foram realizadas pelo teste t de Student pareado ou pelo teste de Wilcoxon. Todas as análises e o processamento dos dados foram realizados com o programa (SPSS) versão 18,0 (SPSS Inc., EUA). O nível de significância adotado foi de p≤0,05.

O estudo foi aprovado pelo Comitê de Ética em Pesquisa da Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), número do parecer: 2.012.173, CAAE: 65233516.5.0000.5336, e todos os pais e/ou responsáveis assinaram o Termo de Consentimento Livre e Esclarecido (TCLE) e os adolescentes o Termo de Assentimento (TA).

RESULTADOS
De um total de 30 sujeitos alocados em cada grupo, 18 adolescentes completaram o estudo no GC e 19 no GI. A figura 1 apresenta o fluxogramo do estudo com dados da seleção dos sujeitos e os motivos de exclusão.

A média de idade dos participantes foi 17,3±1,0 anos no GC e 16,8±0,9 anos no GI, com predomínio do sexo feminino nos dois grupos. A média do IMC (Escore Z) foi cerca de 2, sendo 17 (45,95%) adolescentes classificados com sobrepeso e 20 (54,05%) com obesidade. A mediana do tempo gasto em atividade física moderada e vigorosa foi menor que 300 minutos/semana, e o tempo sentando/deitado esteve acima de 800 minutos/semana, indicando comportamento de inatividade. A média de passos por dia foi de 5.148,1±1.691,2 no GC e 4.009,2±1.381,5 no GI. Não foram encontradas diferenças basais significativas (p>0,05) na comparação das características demográficas, antropométricas e de atividade física diária entre o GC e o GI (Tabela 1).

Figura 1. Fluxograma dos participantes do estudo
A tabela 2 apresenta a comparação das variáveis do TECP entre o GC e o GI no momento inicial do estudo. A média da FC no GC foi de 186,0±10,1bpm e, no GI, de 187,7±10,3bpm. A média do VO₂ no pico do exercício no GC foi de 25,4±5,0mL.kg⁻¹.min⁻¹ e, no GI, 27,9±5,6mL.kg⁻¹.min⁻¹, enquanto o VO₂ no limiar

Tabela 1. Comparação das características demográficas, antropométricas e do nível de atividade física diária entre os Grupo Controle e Intervenção no momento inicial do estudo

Variáveis avaliadas	GC (n=18)	GI (n=19)	Valor de p
Características demográficas			
Idade, anos	17,3±1,0	16,8±0,9	0,139
Sexo feminino	14 (77,8)	14 (73,7)	1,000
Antropometria			
Massa corporal, kg	94,1±24,4	96,6±17,9	0,728
Estatura, cm	163,2±8,4	167,0±9,5	0,214
IMC, absoluto	34,9±6,1	34,4±4,4	0,805
IMC, escore Z	2,0±0,5	2,1±0,4	0,829
IMC, percentil	96,5±3,7	97,5±2,4	0,377
Nível de atividade física			
Questionário, minutos/semana			
Atividades vigorosas	70,0 (0,0-141,2)	89,5 (60,0-300,0)	0,233
Atividade moderadas	125,0 (60,0-240,0)	90,0 (60,0-150,0)	0,658
Caminhada	87,4 (45,0-232,5)	75,0 (50,0-100,0)	0,461
Sentado/deitado	870,0 (630,0-1.680,0)	1.140,0 (720,0-1.320,0)	0,893
Pedômetro, total de passos/dia	5.148,1±1.691,2	4.009,2±1.381,5	0,100

Resultados expressos em média±desvio padrão, n (%) ou mediana e intervalo interquartil.
GC: Grupo Controle; GI: Grupo Intervenção; IMC: índice de massa corporal.

Tabela 2. Comparação das variáveis do teste de exercício cardiopulmonar entre os Grupo Controle e Intervenção, no momento inicial do estudo

Variáveis avaliadas	GC (n=18)	GI (n=19)	Valor de p
Cardiovasculares			
FC, bpm	186,0±10,1	187,7±10,3	0,608
VO₂/FC, L/batimentos	12,5±12,6	14,3±3,9	0,096
PAS, mmHg	148,5±19,9	150,8±21,1	0,775
PAD, mmHg	79,2±9,5	75,0±13,1	0,364
SpO₂, %	95,3±3,4	96,3±1,8	0,277
Metabólicas			
RQ	1,1±0,1	1,2±0,1	0,204
VO₂/VO₂	21,9±2,8	21,6±2,2	0,700
VO₂/VE	21,2±2,8	21,1±2,1	0,888
Ventilatórias			
Vₚ, L.min⁻¹	59,3±9,0	74,6±15,6	0,001
VO₂pico, L.min⁻¹	2,3±0,4	2,7±0,8	0,088
VO₂pico, mL.kg⁻¹.min⁻¹	25,4±5,0	27,9±5,6	0,165
VO₂ no LA, L.min⁻¹	2,0±0,5	2,1±0,8	0,550
VO₂ no LA, mL.kg⁻¹.min⁻¹	21,9±4,9	22,1±5,9	0,921
Subjetivas			
Borg cansaço pernas, pontuação	4,9±2,0	5,4±2,6	0,585
Borg dispneia, pontuação	4,3±2,0	5,1±2,4	0,267

Resultados expressos como média±desvio padrão.
GC: Grupo Controle; GI: Grupo Intervenção; FC: frequência cardíaca; VO₂: consumo de oxigênio; PAS: pressão arterial sistólica; PAD: pressão arterial diastólica; SpO₂: saturação de oxigênio; RQ: coeficiente de troca respiratória; VO₂/VO₂: equivalente ventilatório para o consumo de oxigênio; VO₂/VE: equivalente ventilatório para a produção de dióxido de carbono; VO₂pico: máxima capacidade cardíaca; VO₂ no LA: limiar anaeróbico.
anaeróbio (LA) no GC foi de 21,9±4,9mL.kg⁻¹.min⁻¹ e, no GI, de 22,1±5,9mL.kg⁻¹.min⁻¹. Os níveis subjetivos de cansaço em membros inferiores/dispneia ficaram abaixo dos 6 pontos em ambos os grupos. Todas as variáveis cardiovasculares, metabólicas, ventilatórias e subjetivas no pico do exercício foram semelhantes em ambos os grupos, com exceção da VE, que foi significativamente maior (p=0,001) no GI em comparação ao GC.

As comparações das principais variáveis do TECP e do nível de atividade física diária antes e após o final da intervenção em cada grupo são apresentadas na tabela 3. O GC apresentou aumento significativo na VE e no VE/VCO₂ ao término da intervenção. Já no GI, ocorreram diminuição significativa na VE e aumento no tempo de caminhada avaliado pelo questionário de atividade física.

Quando foram avaliados os efeitos dos 3 meses de intervenção, não houve alterações significativas entre o GC e GI sobre a capacidade de exercício avaliada pelo TECP (VO₂pico, VO₂ no LA e equivalentes ventilatórios), com exceção da VE (L.min⁻¹), em que a variação foi de 4,9±20,7, no GC, e -5,9±10,3, no GI (p=0,048). Da mesma forma, quando se testou o efeito da intervenção nas comparações das variações dos níveis de atividade física diária obtidos pelo questionário autor-relatado e pelo uso dos pedômetros, novamente não foram encontradas alterações significativas entre o GC e GI. Os dados são apresentados na tabela 4.

Tabela 3. Comparação do teste de exercício cardiopulmonar e do nível de atividade física diária antes e após o final da intervenção

Variáveis avaliadas	GC inicial	GC final	Valor de p	GI inicial	GI final	Valor de p
TECP						
VE, L.min⁻¹	58,4±9,0	68,3±14,4	0,024	74,6±15,6	64,9±18,5	0,005
VO₂pico, mL.kg⁻¹.min⁻¹	25,4±5,1	27,6±4,9	0,071	27,9±5,6	25,4±6,3	0,061
VO₂ no LA, mL.kg⁻¹.min⁻¹	21,9±4,9	22,8±6,3	0,595	22,1±5,9	20,5±6,9	0,376
VE/VO₂	21,9±2,9	22,6±2,8	0,073	21,6±2,2	22,6±1,9	0,086
VE/VCO₂	21,3±2,8	22,2±2,8	0,007	21,1±2,1	22,2±1,9	0,006
Nível de atividade física						
Questionário, minutos/semana						
Atividades vigorosas	70,0 (0,0-141,2)	127,5 (64,9-292,5)	0,132	89,5 (60,0-300,0)	140,0 (60,0-270)	0,407
Atividade moderadas	125,0 (60,0-240,0)	150,9 (7,5-262,5)	1,000	90,0 (60,0-150,0)	140,0 (60,0-270)	0,407
Caminhada	87,4 (45,0-232,5)	95,0 (45,0-232,5)	0,737	75,0 (60,0-100,0)	180,0 (79,0-300,0)	0,003
Sentado/deitado	870,0 (630,0-1.680,0)	870,0 (45,0-232,5)	0,111	720,0 (600,0-1.200)	1.140,0 (720,0-1.320,0)	0,074
Pedômetro, passos/dia	4.710,1±1.663,3	3.499,6±1.884,8	0,200	4.290,2±1.232,9	4.098,5±1.444,9	0,713

C: Grupo Controle; GI: Grupo Intervenção; TECP: teste de exercício cardiopulmonar; VE: ventilação minuto; VO₂: consumo de oxigênio; VE/VO₂: equivalente ventilatório para o consumo de oxigênio; VE/VCO₂: equivalente ventilatório para a produção de dióxido de carbono.

Tabela 4. Comparação da variação antes e depois (delta) do teste de exercício cardiopulmonar e do nível de atividade física diária entre os Grupos Controle e Intervenção

Variáveis avaliadas	GC	GI	Diferença entre médias	Valor de p	IC95%
TECP					
ΔVE, L.min⁻¹	4,9±20,7	-5,9±10,3	-10,9	0,048	-21,7-0,1
ΔVO₂pico, mL.kg⁻¹.min⁻¹	0,7±6,9	-0,9±4,2	-1,7	0,376	-1,7-1,9
ΔVO₂ no LA, mL.kg⁻¹.min⁻¹	-1,1±7,9	0,2±6,9	1,4	0,582	-3,6-6,3
ΔVE/VO₂	1,2±1,7	0,4±2,1	-0,7	0,231	-2,0-0,5
ΔVE/VCO₂	1,3±1,5	0,7±2,2	-0,7	0,280	-1,9-0,6

Nível de atividade física

Questionário, minutos/semana

Variáveis	Delta	Valor de p	IC95%		
Atividades vigorosas	55,6±221,1	-35,6±227,8	-91,1	0,239	-245,6-63,4
Atividade moderadas	7,8±123,7	92,4±190,3	84,7	0,113	-21,2-190,5
Caminhada	86,5±247,5	109,2±151,0	22,7	0,738	-114,5-159,9
Sentado/deitado	-204,2±482,2	-157,6±359,6	46,5	0,740	-236,3-329,4
Pedômetro, passos/dia	-1.210,5±2.237,9	-191,7±1.586,4	1.018,7	0,289	-866,6-2.993,9

Resultados expressos como média ± desvio padrão.

GC: Grupo Controle; GI: Grupo Intervenção; IC95%: intervalo de confiança de 95%; TECP: teste de exercício cardiopulmonar; Δ: variação dos resultados (pós - pré-intervenção); VE: ventilação minuto; VO₂: consumo de oxigênio; VE/VO₂: equivalente ventilatório para o consumo de oxigênio; VE/VCO₂: equivalente ventilatório para a produção de dióxido de carbono.
Efeito de intervenção interdisciplinar com abordagem motivacional na mudança de comportamento. (10) Evidências demons-
tando estrutura que visa compreender, medir e intervir
meses em 65% dos estudos incluídos. (8) Embora nosso
que o tempo médio das intervenções foi superior a 3
欅

O MTT foi criado inicialmente na década de 1980
para utilização com indivíduos tabagistas (9) apresen-
tando estrutura que visa compreender, medir e intervir
na mudança de comportamento. (10) Evidências demons-
tram que esse modelo pode ser considerado instru-
mento promissor no auxílio à compreensão da mu-
dança comportamental relacionada à saúde. (11) Em
estudo feito com crianças obesas avaliando os efeitos
de 6 meses de intervenção de exercício, utilizando
 o MTT, houve manutenção dos níveis de açúcar no
sangue e do IMC no GI e aumento no controle. (28)

Outro estudo relatou que intervenções de atividade
física com base no MTT foram eficazes na promoção
dos níveis de atividade física entre adultos jovens. (29)
Nossos achados demonstraram que não houve altera-
çoes significativas nas variáveis estudadas após a inter-
venção com o MTT, incluindo a capacidade de exercício
e os níveis de atividade física diária. Apesar disso, ao
comparar os dados antes e após o período do estudo,
houve aumento da V˙E, que não foi associado a um in-
cremento na eliminação de CO 2 no GC, o que poderia
indicar menor eficiência ventilatória. Embora esses estu-
dos (28,29) tenham usado o mesmo modelo MTT, as inter-
venções foram distintas em sua essência, além do tem-
po de intervenção e dos temas abordados nas sessões,
dificultando a comparação com os resultados obtidos
no presente estudo.

O padrão de atividade física da adolescência pode
determinar parte dos níveis de atividade na idade adul-
ta. (30) Adolescentes têm tendência a despender muito
tempo em atividades de baixa intensidade, como jo-
gar videogame, usar computador e assistir televisão,
o que contribuiu para o ganho de peso. (31,32) Por
outro lado, evidências mostram que adolescentes que
praticam atividade física têm menor risco de doenças
-crônicas — dentre elas a obesidade. (23) No presente es-
tudo, apesar de não termos encontrado efeitos da inter-
venção em comparação ao GC nos níveis de atividade
física diária, ao compararmos os dados antes e após
 o final da intervenção, o GI apresentou aumento signifi-
cativo no tempo de caminhada. Uma revisão sistemática
demonstrou que os estudos utilizando o MTT visando à
perda de peso em adultos apresentam qualidade meto-

dológica baixa, limitando a conclusão de que essa inter-
venção poderia levar a melhores hábitos alimentares
e de atividade física. (34) No entanto, recentemente, em es-
tudo feito com mulheres obesas, a utilização do MTT por
3 meses induziu uma maior perda de peso no GI em com-
paração ao controle. (35) É possível que a aplicação deste
modelo de intervenção em adolescentes seja fator limita-
dor adicional quando comparado à faixa etária adulta, o
que também poderia ter contribuído para explicar nossos
resultados. Uma metanálise realizada em 2006 identifi-
cou 64 programas de prevenção da obesidade para crian-
cas e adolescentes, dos quais somente 21% produziram
efeitos significativos. (30)

Este estudo apresenta algumas limitações, incluin-
do a baixa frequência de encontros semanais (uma vez
por semana) com os adolescentes, bem como a neces-
sidade de um maior envolvimento da família ao longo
da intervenção com o MTT, já que se realizaram apenas
dois encontros com os pais e/ou responsáveis ao longo
do estudo. No entanto, a escolha dessa frequência se-

DISCUSSÃO

O MTT é uma ferramenta baseada nas mudanças de
comportamento, sendo composto por estágios que
possibilitam uma reflexão sobre o comportamento, a
atitude a ser tomada e o momento de agir. (23) Os acha-
dos do presente estudo não evidenciaram mudanças
significativas na capacidade de exercício avaliada pelo
TECP, incluindo o VO2pico, em adolescentes com sob-
brepeso e obesidade. Além disso, os níveis de atividade

física habituais, avaliados tanto por meio de questioná-
rrio, como de pedômetros, permaneceram semelhantes
durante o período estudado.

A obesidade é um importante problema de saúde
pública, já que, nas últimas décadas, sua prevalência
veem aumentando e acometendo países em desenvolvi-

mento. (35) Estudos têm mostrado a relação do aumento
no IMC da população com o crescimento na incidên-
cia de doenças crônicas, como doenças coronarianas,
diabetes mellitus tipo 2 e diminuição do tempo de vida
livre de doenças. (25) Umas das formas de tratamento da
obesidade baseia-se na modificação do estilo de vida,
sendo sua implementação precoce recomendada como
abordagem de primeira linha para reduzir o risco car-
diometabólico. (26) Duas metanálises de estudos de in-
tervenção em estilo de vida em adolescen
tes com excesso de peso e obesidade. (8,27) É importante ressaltar
que o tempo médio das intervenções foi superior a 3
meses em 65% dos estudos incluídos. (8) Embora nosso
estudo tenha testado uma intervenção que visava à mo-
dificação do estilo de vida, a baixa frequência de encontros semanais (uma vez por semana) com os
adolescentes estejam em estágio de

apadacação ao controle.(35) É possível que a aplicação deste
modelo de intervenção em adolescentes seja fator limita-
dor adicional quando comparado à faixa etária adulta, o
que também poderia ter contribuído para explicar nossos
resultados. Uma metanálise realizada em 2006 identifi-
cou 64 programas de prevenção da obesidade para crian-
cas e adolescentes, dos quais somente 21% produziram
efeitos significativos. (30)

Este estudo apresenta algumas limitações, incluin-
do a baixa frequência de encontros semanais (uma vez
por semana) com os adolescentes, bem como a neces-
sidade de um maior envolvimento da família ao longo
da intervenção com o MTT, já que se realizaram apenas
dois encontros com os pais e/ou responsáveis ao longo
do estudo. No entanto, a escolha dessa frequência se-

Efeito de intervenção interdisciplinar com abordagem motivacional
manal se deu pela dificuldade de reunir os participantes em mais dias na semana, devido aos compromissos com atividades escolares e por ser uma fase de transição das atividades e compromissos sociais. Além disso, cabe ressaltar que o objetivo do estudo não era realizar sessões diárias com regras fechadas, e sim, estimular o processo da mudança.

CONCLUSÃO

Nossos dados não evidenciaram alterações nas variáveis de capacidade de exercício avaliadas pelo teste de esforço máximo, incluindo o consumo de oxigênio de pico, em adolescentes com sobrepeso e obesidade. Somando-se a isso, os níveis de atividade física diária permaneceram semelhantes durante o período estudado na amostra. A avaliação de uma intervenção por um período maior de tempo e/ou com maior frequência pode ser objeto de futuros estudos abordando a obesidade na adolescência.

AGRADECIMENTOS

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Edital Universal 14/2013, e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), código de financiamento 001.

INFORMAÇÃO DOS AUTORES

Zanatta LB: http://orcid.org/0000-0002-4570-5165
Heinzmann-Filho JP: http://orcid.org/0000-0002-8426-0250
Vendrusculo FM: http://orcid.org/0000-0001-8208-3476
Campos NE: http://orcid.org/0000-0002-2530-6669
Oliveira MS: http://orcid.org/0000-0002-6490-5170
Feoli AM: http://orcid.org/0000-0001-7685-8431
Gustavo AS: http://orcid.org/0000-0002-1128-2192
Donadio MV: http://orcid.org/0000-0001-8836-9109

REFERÊNCIAS

1. Güngörg NK. Overweight and obesity in children and adolescents. J Clin Res Pediatric Endocrinol. 2014;6(3):129-43. Review.
2. Flynn MA, McNeil DA, Maloff B, Mutasingwa D, Wu M, Ford C, et al. Reducing obesity and related chronic disease risk in children and youth: a synthesis of evidence with ‘best practice’recommendations. Obes Rev. 2006;7(Suppl 1): 7-66. Review.
3. Komal W, Jaipanesh K, Seemal M. Association of leisure time physical activity, watching television, obesity & lipid profile among sedentary low-income south Indian population. East Afr J Public Health. 2010;7(3):225-8.
4. Dumith SC, Hallal PC, Menezes AM, Araújo CL. Sedentary behavior in adolescents: the 11-year follow-up of the 1993 Pelotas (Brazil) birth cohort study. Cad Saude Publica. 2010;26(10):1928-36.
5. Kumar S, Kelly AS. Review of Childhood Obesity: From Epidemiology, Etiology, and Comorbidities to Clinical Assessment and Treatment. Mayo Clin Proc. 2017;92(2):251-65. Review.
6. Sociedade Brasileira de Cardiologia; Sociedade Brasileira de Hipertensão; Sociedade Brasileira de Nefrologia. [VI Brazilian guidelines on hypertension]. Arq Bras Cardiol. 2010;95(1 Suppl):1-51. Portuguese. Erratum in: Arq Bras Cardiol. 2010;95(4):553.
7. Sola K, Brekke N, Brekke M. An activity-based intervention for obese and physically inactive children organized in primary care: feasibility and impact on fitness and BMI: A one-year follow-up study. Scand J Prim Health Care. 2010;28(4):199-204.
8. Ho M, Garnett SP, Baur L, Burrows T, Stewart L, Neve M, et al. Effectiveness of lifestyle interventions in child obesity: systematic review with meta-analysis. Pediatrics. 2012;130(6):e1647-71. Review.
9. Prochaska JO, Wright JA, Velicer WF. Evaluating theories of health behavior change: A hierarchy of criteria applied to the transtheoretical model. Appl Psychol. 2008;57(4):561-89.
10. Vellasqueze MM, Crouch C, Stephens NS, DiClemente CC. Group treatment for substance abuse: a stages-of-change therapy manual. 2th ed. Guilford Publications; 2015.
11. Resnicow K, McMaster F, Bocian A, Harris D, Zhou Y, Snetselaar L, et al. Motivational interviewing and dietary counseling for obesity in primary care: an RCT. Pediatrics. 2015;135(4):649-57.
12. Mostafavi F, Ghofranipour F, Feizi A, Pirzadeh A. Improving physical activity and metabolic syndrome indicators in women: a transtheoretical model-based intervention. Int J Prev Med. 2015;6:28.
13. Gourlan M, Sarrazin P, Trouilloud D. Motivational interviewing as a way to promote physical activity in obese adolescents: a randomised-controlled trial using self-determination theory as an explanatory framework. Psychol Health. 2013;28(11):1265-86.
14. Miller WR, Rollnick S. Entrevista motivacional: preparando as pessoas para a mudança de comportamentos adictivos. Porto Alegre: Artmed; 2001.
15. Schulz KF, Altman DG, Moher D; CONSORT Group. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMC Med. 2010;8:18.
16. Ribeiro FA, Boff RM, Feoli AM, Gustavo AS, Donadio MV, Oliveira MS. Randomized clinical trial of a motivational interdisciplinary intervention based on the transtheoretical model of change for lifestyle modification in overweight/obese adolescents: MERC study protocol. Internat J Clin Trials. 2016;3(4):225-32.
17. American Thoracic Society; American College of Chest Physicians. ATS/ACCP Statement on cardipulmonary exercise testing. Am J Respir Crit Care Med. 2003;167(2):211-77. Review. Erratum in: Am J Respir Crit Care Med. 2003;15:1451-2.
18. Borel B, Fabre C, Saison S, Bart F, Grosbois JM. An original field evaluation test for chronic obstructive pulmonary disease population: the six-minute stepper test. Clin Rehabil. 2010;24(1):82-93.
19. Rodrigues AN, Perez AJ, Carletti L, Bissoli NS, Abreu GR. Maximum oxygen uptake in adolescents as measured by cardipulmonary exercise testing: a classification proposal. J Pediatr (Rio J.). 2006;82(6):426-30.
20. Karla C, de Blin J, Waensmessycle S, Benoist MR, Scheinnmann P. Cardipulmonary exercise testing in children: an individualized protocol for workload increase. Chest. 2001;120(1):81-7.
21. Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.
22. Crocker PR, Bailey DA, Faulkner RA, Kowalski KC, McGrath R. Measuring general levels of physical activity: preliminary evidence for the Physical Activity Questionnaire for Older Children. Med Sci Sports Exerc. 1997;29(10):1344-9.
23. Han H, Gabriel KP, Kohl HW. Evaluations of Validity and Reliability of a Transtheoretical Model for Sedentary Behavior among College Students. Am J Health Behav. 2015;39(5):601-9.
24. Mameli C, Krakauer JC, Krakauer NY, Bosetti A, Ferrari CM, Schneider L, et al. Effects of a multidisciplinary weight loss intervention in overweight and obese children and adolescents: 11 years of experience. PloS One. 2017;12(7):e0181095.
25. van Vliet M, Heymans MW, von Rosenstiel IA, Brandjes DP, Beijnen JH, Diamant M. Cardiometabolic risk variables in overweight and obese children: a worldwide comparison. Cardiovasc Diabetol. 2011;10:106. Review.

26. Magge SN, Goodman E, Armstrong SC; COMMITTEE ON NUTRITION; SECTION ON ENDOCRINOLOGY; SECTION ON OBESITY. The metabolic syndrome in children and adolescents: shifting the focus to cardiometabolic risk factor clustering. Pediatrics. 2017;140(2):e20171603.

27. Willfley DE, Tibbs TL, Van Buren D, Reach KP, Walker MS, Epstein LH. Lifestyle interventions in the treatment of childhood overweight: a meta-analytic review of randomized controlled trials. Health Psychol. 2007;26(5):521-32.

28. Ham OK, Sung KM, Lee BG, Choi HW, Im ED. Transtheoretical model based exercise counseling combined with music skipping rope exercise on childhood obesity. Asian Nurs Res (Korean Soc Nurs Sci). 2016;10(2):116-22.

29. Woods C, Mutrie N, Scott M. Physical activity intervention: a transtheoretical model-based intervention designed to help sedentary young adults become active. Health Educ Res. 2002;17(4):451-60. Review.

30. Hayes G, Dowd KP, MacDonncha C, Donnelly AE. Tracking of Physical Activity and Sedentary Behavior From Adolescence to Young Adulthood: A Systematic Literature Review. J Adolesc Health. 2019;65(4):446-54.

31. Greca JP, Silva DA, Loch M R. Physical activity and screen time in children and adolescents in a medium size town in the South of Brazil. Rev Paul Pediatr. 2016;34(3):316-22.

32. Robinson TN, Banda JA, Hale L, Lu AS, Fleming-Milici F, Calvert SL, et al. Screen Media Exposure and Obesity in Children and Adolescents. Pediatrics. 2017;140(Suppl 2):S97-S101. Review.

33. Enes CC, Slater B. Obesidade na adolescência e seus principais fatores determinantes. Rev Bras Epidemiol. 2010;13(1):163-71.

34. Mastellos N, Gunn LH, Felix LM, Car J, Majeed A. Transtheoretical model stages of change for dietary and physical exercise modification in weight loss management for overweight and obese adults. Cochrane Database Syst Rev. 2014;5(2):CD008066. Review.

35. Karintrakul S, Angkatavanich J. A randomized controlled trial of an individualized nutrition counseling program matched with a transtheoretical model for overweight and obese females in Thailand. Nutr Res Pract. 2017;11(4):319-26.

36. Stice E, Shaw H, Marti CN. A meta-analytic review of obesity prevention programs for children and adolescents: the skinny on interventions that work. Psychol Bull. 2006;132(5):667-91.