Phosphorylation of Mcm2 modulates Mcm2–7 activity and affects the cell’s response to DNA damage

Brent E. Stead, Christopher J. Brandl and Megan J. Davey*

Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada, N6A 5C1

Received November 16, 2010; Revised April 27, 2011; Accepted April 28, 2011

ABSTRACT

The S-phase kinase, DDK controls DNA replication through phosphorylation of the replicative helicase, Mcm2–7. We show that phosphorylation of Mcm2 at S164 and S170 is not essential for viability. However, the relevance of Mcm2 phosphorylation is demonstrated by the sensitivity of a strain containing alanine at these positions (mcm2AA) to methyl methanesulfonate (MMS) and caffeine. Consistent with a role for Mcm2 phosphorylation in response to DNA damage, the mcm2AA strain accumulates more RPA foci than wild type. An allele with the phosphomimetic mutations S164E and S170E (mcm2EE) suppresses the MMS and caffeine sensitivity caused by deficiencies in DDK function. In vitro, phosphorylation of Mcm2 or Mcm2EE reduces the helicase activity of Mcm2–7 while increasing DNA binding. The reduced helicase activity likely results from the increased DNA binding since relaxing DNA binding with salt restores helicase activity. The finding that the ATP site mutant mcm2K549R has higher DNA binding and less ATPase than mcm2EE, but like mcm2AA results in drug sensitivity, supports a model whereby a specific range of Mcm2–7 activity is required in response to MMS and caffeine. We propose that phosphorylation of Mcm2 fine-tunes the activity of Mcm2–7, which in turn modulates DNA replication in response to DNA damage.

INTRODUCTION

DNA replication is a tightly regulated process that occurs once and only once per cell division cycle. In addition, the cell must respond to impediments to replication, including DNA damage. One of the targets for regulation is the replicative helicase, comprised of minichromosome maintenance proteins 2 through 7 (Mcm2–7). Unlike other replicative helicases, which contain six identical subunits, Mcm2–7 is comprised of six distinct, but related subunits. The requirement for six subunits, with distinct sequences is thought to reflect individual roles for each subunit. Notably, the contribution of subunits to adenosine triphosphate (ATP) hydrolysis by the intact complex varies widely (2–4). For example, mutations that severely affect ATP hydrolysis by Mcm2 do not strongly affect DNA unwinding by Mcm2–7 or viability of Saccharomyces cerevisiae (5,6). We have proposed that ATP hydrolysis by Mcm2 regulates DNA binding by Mcm2–7 since mutations that decrease ATP hydrolysis by Mcm2 increase binding to single-stranded DNA (6).

Mcm2–7 is targeted by several different kinases including CK2, cyclin-dependent kinases (CDK) and Mec1 (7–12). Importantly, Mcm2–7 is the principal target of the essential S-phase kinase, DDK (12,13). DDK, which is comprised of Dbf4 and Cdc7 subunits, activates DNA unwinding by Mcm2–7 in vivo, thereby triggering origin firing throughout S phase (12,14,15). Several of the Mcm subunits are phosphorylated by DDK, including Mcm2 (11,13,16–26). Multiple roles for the phosphorylation of Mcm2 by DDK have been postulated (21,22,24,25). Here, we examined the effects of DDK phosphorylation of Mcm2 on the activity and function of Mcm2–7 in vitro and in vivo. Our results suggest that DDK phosphorylation of Mcm2 is not required for viability, but is important for the cell’s response to DNA damage, possibly through regulating DNA binding and/or DNA unwinding by Mcm2–7.

MATERIALS AND METHODS

Materials

Caffeine, hydroxyurea, methyl methanesulfonate (MMS), calcafluor white and ATP were from Sigma Aldrich

*To whom correspondence should be addressed. Tel: +(519) 661 2111 ext. 81414; Fax +(519) 661 3175; Email: mdavey5@uwo.ca

© The Author(s) 2011. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded from https://academic.oup.com/nar/article-abstract/39/16/6998/2411459 by guest on 29 July 2018
mcm2 alleles into BY4743 (29) using NotI and SacI (blunted). pMD449 contains pCDF-Duet (Novagen) and pET16b (Novagen), respectively. pMD429 and pMD422 were generated by inserting the BsrGI–BamHI fragment of pET24a- mcm2AA into the NdeI/BamHI sites of pET16b, pET24a and/or pMD240. pMD429 and pMD422 were generated by inserting the BsrGI–BamHI fragment of pET24a-mcm2K549R and/or pMD240. pMD423 and pMD422 were generated by inserting the BsrGI–BamHI fragment of pET24a-mcm2EE into the NdeI/BamHI sites of pET16b, pET24a and CDC7 amplifying from the yeast genome, fused in-frame to green fluorescent protein (GFP) in YCpDed-GFP (29) using NotI and SacI (blunted).

Yeast strains

Two-step gene replacement (30) was employed to insert mcm2 alleles into BY4743 (MATa/α his3Δ1/Δ1 leu2Δ0/Δ0 ura3Δ0/Δ0 MET15/Δ15 LYS2/lea2Δ0; (31)). Briefly, pMD367 (mcm2AA) or pMD371 (mcm2EE) digested with BsrGI or PstI, respectively, was transformed into BY4743, then Ura+ transformants were streaked on media containing 5-FOA. Colonies from 5-FOA were screened by sequencing, generating MDY104 (MCM2/mcm2AA) and MDY106 (MCM2/mcm2EE). MDY139 and MDY159 are spore colonies derived from MDY104 or MDY106 containing mcm2AA or mcm2EE, respectively. The URA3 gene was integrated downstream of mcm2 by transforming YCplac211 containing MCM2 (nucleotides 2023–2607; pMD408) digested with MscI into MDY139 and MDY159 to generate MDY167 and MDY191, respectively. A Ura+ strain wild type for MCM2 (BY4741) was similarly generated (MDY167). Two-step gene replacement was used to generate a cdc7Δbob1 strain. BY23713 [MATa/α ura3Δ0/Δ0 leu2Δ0/Δ0 his3Δ1/Δ1 lys2Δ0/Δ0 LYS2 met15Δ0/Δ0 MET15 can1Δ::LEU2+::MFA1pr-HIS3/CAN1 CDC7/cdc7::kanMX; (32)] was transformed with YCplac211-bob1 linearized with MseI. A MATa cdc7Δbob1 haploid (MDY210) was generated using ‘Magic Marker’ technology (32) and resistance to G418.

Proteins

Mcm2-7 containing PKA-tagged Mcm3 was reconstituted from purified subunits as previously described (3,6). Purified proteins and complexes are shown in Supplementary Figure S1. DDK was purified from cells co-expressing Cdc7 (pMD295) and 6xHis-tagged Dbf4 (pMD281). lysates, prepared as described (3), were applied to a 20 mL Ni-Sepharose column equilibrated in buffer C (20 mM Tris–HCl pH 7.9, 500 mM NaCl, 10% glycerol) with 5 mM imidazole and washed with the same buffer followed by buffer C with 30 mM imidazole. Bound proteins were eluted with a 200 mL, 30 mM–1 M imidazole gradient in buffer C. DDK-containing fractions were dialyzed against 20 mM Tris–HCl pH 7.5, 0.1 mM ethylenediaminetraacetic acid (EDTA), 10% glycerol and 50 mM NaCl. After dialysis, DTT was added to a final concentration of 2 mM and the dialysate applied to a 1-ml Mono Q column equilibrated in buffer A (20 mM Tris–HCl pH 7.5, 0.1 mM EDTA, 2 mM DTT and 10% glycerol) containing 50 mM NaCl. After washing with the same buffer, retained proteins were eluted with 50–500 mM NaCl in buffer A. Dbf4 and Cdc7 in peak fractions were verified by western blotting with anti-Dbf4 and anti-Cdc7 antibodies (Santa Cruz Biotechnology) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (London Regional Functional Proteomics Facility).

Fluorescence-activated cell sorting

Cells (7 × 10⁶), fixed in 70% ethanol, were prepared for fluorescence-activated cell sorting (FACS) by incubation with 200 μg RNase A per milliliter for 3 h at 37°C followed by 2 mg Proteinase K per milliliter for 30 min at 30°C. After staining with Sytox Green (Invitrogen), cell sorting was performed on a FACSCalibur (BD Biosciences) by the London Regional Flow Cytometry Facility.

ATP hydrolysis and DNA unwinding assays

ATPase and helicase assays were performed as described (6), except that for DNA unwinding PEG 3350 was added to 5%. For reactions containing DDK, the indicated amounts of DDK were incubated with 200 nM Mcm2–7 and 5 mM ATP for 30 min at 30°C with 50 mM creatine phosphate and 2 μg/ml creatine phosphokinase and started by addition of oligonucleotide substrate. Statistical analyses were performed using analysis of variance (ANOVA) with Tukey’s Multiple Comparison test.

DNA binding

The gel filtration-based assay has been described previously (6). For DNA binding by electrophoretic mobility shift assays (EMSAs), 1 nM of 5'-end 32P-labeled poly(dT)₆₀ was incubated with Mcm2–7 complex for 10 min at 37°C in 6 μl of reaction buffer. Glycerol was added to a final concentration of 5% (v/v) and the reaction then applied to a 5% native (Tris–borate–EDTA) polyacrylamide gel (19:1 acrylamide:Bis–acrylamide; BioShop Canada) containing 5% glycerol, 0.1% NP-40 and 10 mM Mg(CH₃COO)₂. The gel was resolved at 30 mA for 3 h, dried and exposed to a PhosphorStorage screen and imaged on a Storm 860 scanner (GE Healthcare).
RESULTS

Serines 164 and 170 of Mcm2 are not essential for normal growth

We mapped DDK’s target sites in *S. cerevisiae* Mcm2 to serines 164 and 170 using *in vitro* kinase assays on N-terminal deletions and point mutations of Mcm2 (Supplementary Figure S2A–D). S164 and S170 were identified as DDK sites by another group while this study was ongoing (21). We tested whether loss of the potential DDK phosphorylation sites in Mcm2 affected growth using plasmid shuffling. The strain MDY054, containing wild-type MCM2 on a *URA3*-plasmid, was transformed with a *LEU2* plasmid encoding *mcm2*_{S164A}, *mcm2*_{S170A}, *mcm2*_{S164A,S170A} (*mcm2*_{AA}) or wild-type MCM2 under control of the *MCM6* promoter. The resulting strains were plated on 5-FOA, which is metabolized to a toxic product by Ura3, thus testing whether the *mcm2* allele encoded on the *LEU2*-containing plasmid supports viability. All of the alleles including *mcm2*_{AA} supported viability with growth being comparable to that of cells with wild-type *MCM2* at 30°C and 37°C (Figure 1A). A slight reduction in growth was observed with *mcm2*_{AA} at 16°C, whereas strains with the single mutations grew comparably to strains with wild-type MCM2 (Figure 1A). Similar results were observed when *mcm2*_{AA} was integrated at the *MCM2* locus (data not shown). We concluded that S164 and S170 are not essential for yeast viability under normal growth conditions. To further test the effects of mutating S164 and S170 on cell growth, we compared *MCM2* and *mcm2*_{AA} strains by FACS. Comparison of asynchronously growing cultures indicated the same ratio of cells with 1C and 2C DNA content (Figure 1B). As shown in Figure 1C, the strains also had similar profiles after arrest in G1 with α factor mating pheromone followed by release. Together, these results indicate that there are no gross abnormalities in S phase nor DNA replication initiation when S164 and S170 are substituted with Ala.

In addition to its essential role in the initiation of DNA replication, DDK participates in the S-phase checkpoint response (12,33–39). Notably, mutations in *S. cerevisiae* or *Schizosaccharomyces pombe* Dbf4/Dfp1 result in sensitivity to drugs that induce the S-phase checkpoint, such as hydroxyurea (HU) and MMS (37,38,40,41). To determine whether phosphorylation of Mcm2 by DDK plays a role in the checkpoint response, we subjected cells supported for growth by a plasmid-encoded copy of *mcm2* to HU or MMS. Strains containing *mcm2*_{AA} are more sensitive than wild-type MCM2 strains to a short-term exposure of MMS but not HU (Figure 2A). When the strain containing *mcm2*_{AA} was grown on YPD containing caffeine, its growth was also reduced (Figure 2B). Caffeine is a purine analog that inhibits phosphatidylinositol 3 kinase (PI3K)-like kinases, including those involved in the S-phase checkpoint (Tel1 and Mec1) and cell growth [TOR; (42–45)]. The doses of caffeine used here likely cause DNA damage (42). The sensitivity to caffeine was only observed with alanine mutations at both S164 and S170 (*mcm2*_{AA}): single mutations did not affect growth (Figure 2B), suggesting that, at least with respect to caffeine sensitivity, S164 and S170 are functionally redundant. Caffeine also affects the cell wall integrity pathway (46); however, the *mcm2*_{AA} strain was not sensitive to calcofluor white (Figure 2C) indicating that phosphorylation at S164 and S170 is not required for the cell wall integrity pathway.

Phosphomimetic mutations at S164 and S170

We asked whether substitution of glutamic acid for serine at positions 164 and/or 170 provided a phosphomimetic effect by examining the drug sensitivity of cells bearing these mutations. Strains with the single (*mcm2*_{S164E}; *mcm2*_{S170E}) or the double mutant (*mcm2*_{EE}) alleles on
LEU2 plasmids grew to the same extent as cells containing wild-type MCM2 on YPD media at all temperatures tested (Figure 3A). Importantly, strains bearing the Glu substitutions at S164 and/or S170 were not sensitive to caffeine, even at the highest concentration of caffeine supplied (20 mM; Figure 3B). mcm2EE cells were also resistant to MMS (Figure 3C). Thus, we concluded that the Glu substitutions at S164 and S170 of Mcm2 were phosphomimetic.

We next addressed whether the putative phosphorylation of S164 and S170 is the result of DDK activity in vivo. CDC7 is essential, but viability of a cdc7D strain can be restored by the bob1 mutation in mcm5 (47). The cdc7A bob1 strain is sensitive to HU (47,48). If Mcm2 is the key target of DDK leading to the HU sensitivity of the cdc7D bob1 strain, then the introduction of mcm2EE should suppress the HU sensitivity. As seen in Figure 3D, mcm2EE does suppress the HU sensitivity as well as the caffeine sensitivity of the cdc7A bob1 strain. The difference in growth is dependent on the presence of the HU or caffeine since cdc7A bob1 grows similarly on YPD, regardless of whether the mcm2 allele is wild type or phosphomimic (Figure 3D). This result supports the idea that DDK phosphorylates Mcm2 at S164 and S170; however, it is possible that interaction between mcm5-bob1 and mcm2EE accounts for the suppression of HU and caffeine sensitivity since MCM2 and MCM5 interact genetically (49). A recent study in our lab (Davey, M.J., Andrighetti, H., Ma, X., and Brandl, C.J., manuscript in preparation) has shown that human DDK supports the essential functions of DDK in yeast, but that yeast with human DDK are sensitive to HU and caffeine (Figure 3E).
The simplest explanation for these observations is that, unlike yeast DDK, human DDK fails to efficiently phosphorylate Mcm2 causing sensitivity to genotoxic agents, and that this defect is rescued by the phosphomimetic nature of Mcm2EE. Together, these findings implicate phosphorylation of Mcm2 at S164 and S170 by DDK in response to DNA damage and support the in vitro mapping of DDK sites in Mcm2.

mcm2AA results in accumulation of Rpa1 foci

In response to treatment with MMS or other replicative stresses, RPA relocates from diffuse staining of the nucleus into discrete foci (50,51). Since RPA is a single-stranded DNA (ssDNA)-binding protein, the RPA foci indicate the accumulation of ssDNA. In normal cells responding to DNA damage, ssDNA is likely generated by repair processes (50,52). Using strains containing Rpa1 tagged with green fluorescent protein (GFP), we compared the RPA foci in mcm2AA, mcm2EE and wild-type strains before and after exposure to MMS. For comparison we also examined a mec2-1 strain that is deficient in the S phase checkpoint (53). In untreated MCM2 cells, GFP-Rpa1 localized to the nucleus with a diffuse signal that transitions into discrete foci after exposure to MMS in 14.9 ± 4.0% of cells (Figure 4). With mcm2AA, significantly more cells contained foci after MMS treatment (44.3 ± 3.9%), and like the mec2-1 strain foci were seen without MMS treatment. The mcm2EE strain had a similar percentage of cells with foci as MCM2 (11.9 ± 1.0%). These results are consistent with an inability of the mcm2AA strain to appropriately modulate DNA replication in response to DNA damage.

Biochemical activities of the phosphomimetic Mcm2-7 complex

To determine mechanisms by which DDK phosphorylation of Mcm2 exerts its control, we examined the effect of phosphorylation of S164 and S170 on Mcm2 activity in vitro through use of the phosphomimetic mutations in Mcm2. We reconstituted Mcm2–7 with Mcm2 containing glutamic acid residue substitutions at S164 and S170 (Mcm2EE). Note that Mcm proteins are purified from *Escherichia coli* expression strains and thus not phosphorylated. The final step in the reconstitution is a gel filtration column that separates excess free subunits from the complex. Additionally, the gel filtration column allows us to verify that Mcm2WT–7 and Mcm2EE–7 elute as hexamers (Figure 5A). The peak elution for both complexes occurred around fraction 23, corresponding to a size of ~610 kDa, close to the predicted size of 608 kDa. Analysis of the peak fractions by quantitative western blotting and densitometry of the Coomassie Blue R250-stained gels indicated equal ratios of Mcm2–7 (within ~20%).

We next measured DNA unwinding by Mcm2WT–7 and Mcm2EE–7 on short oligonucleotide forks whereby DNA unwinding is measured as displacement of a labeled oligonucleotide from its complementary strand. We detected robust unwinding by unphosphorylated Mcm2WT–7 (Figure 5B and C). In contrast, DNA unwinding by Mcm2EE–7 was reduced to about 40–50% of wild-type levels (Figure 5B and C). This suggests that DDK-dependent modification of Mcm2 at S164 and S170 inhibits DNA unwinding by Mcm2–7. Consistent with this idea, treatment of wild-type Mcm2–7 with DDK and ATP under conditions in which Mcm2 is highly phosphorylated and the principal substrate for DDK (Supplementary Figure S2E and F), also decreased DNA unwinding (Figure 5D).

Models for DNA unwinding by hexameric helicases include binding to single- and/or double-stranded DNA followed by translocation (54–61). Thus, we examined
DNA binding by Mcm2–7 containing different versions of Mcm2. We first used a gel filtration-based approach (6), in which binding is measured as the amount of Mcm2–7 that co-elutes with ssDNA. Radiolabeled Mcm2–7 or Mcm2EE–7 was incubated with increasing concentrations of M13mp19 circular ssDNA and bound protein separated from free protein via gel filtration. Using this assay we found that Mcm2EE–7 binds DNA with higher affinity than Mcm2–7 (Figure 6A). At the lowest concentration of ssDNA supplied (0.5 nM) there was a >3-fold increase of Mcm2EE–7 bound to DNA compared to Mcm2WT–7. The increased DNA binding with Mcm2EE–7 was similar to Mcm2–7 complexes containing ATP site mutations in Mcm2, including Mcm2K549R in which the conserved P-loop lysine is replaced with an arginine residue [Figure 6A and (6)]. These initial experiments indicated that Mcm2–7 complexes containing Mcm2EE or Mcm2K549R have higher affinity for ssDNA than complexes containing wild-type Mcm2. To confirm that Mcm2EE mimics the effects of phosphorylation, we treated Mcm2WT–7 with DDK and ATP before measuring DNA binding. An increase of ~2.5–5-fold was observed when Mcm2–7 was phosphorylated by DDK compared to mock-treated (no DDK) Mcm2–7 (Figure 6B).

DNA binding was also measured by EMSAs, which allow a wider range of concentrations. Increasing amounts of Mcm2WT–7, Mcm2EE–7 or Mcm2K549R–7 were incubated with 1 nM poly-dT60. Binding of Mcm2–7 shifted the DNA to a point near the top of the gel that coincided with the migration of Mcm2–7 as visualized by staining (Figure 6C and D) or western blotting (data not shown). Mcm2WT–7 shifted up to 30 fmol of the ssDNA supplied. This binding is similar to previous reports using this approach (62) and approximates the affinity observed by gel filtration. In contrast, Mcm2EE–7 shifted 8- to 10-fold more poly-dT60 (Figure 6C and D). Mcm2K549R–7 shifted even more ssDNA at levels 15- to 18-fold over Mcm2–7 (Figure 6C and D). Overall, these results demonstrate that the phosphomimetic mutations in Mcm2 enhance ssDNA binding by Mcm2–7.

At first glance, our data seem contradictory. Mcm2–7 containing the Mcm2EE mutant binds DNA better than wild type, but unwinds DNA less well, an activity that requires DNA binding. However, we reasoned that Mcm2EE–7 may bind DNA too tightly, impairing the ability of Mcm2–7 to translocate along DNA. To test this, we examined whether adding NaCl to the

Figure 5. Reconstitution of Mcm2WT–7 and Mcm2EE–7 complexes. (A) Mcm2–7 complexes containing wild-type Mcm2 (‘Mcm2WT–7’) or Mcm2EE (‘Mcm2EE–7’) were reconstituted from individual subunits. Shown are Coomassie Blue-stained sodium dodecyl sulfate (SDS) poly-acrylamide (6%) gels of the fractions from the final gel filtration step.

DNA binding is measured as the amount of Mcm2–7 that co-elutes with ssDNA. Radiolabeled Mcm2–7 or Mcm2EE–7 was incubated with increasing concentrations of M13mp19 circular ssDNA and bound protein separated from free protein via gel filtration. Using this assay we found that Mcm2EE–7 binds DNA with higher affinity than Mcm2–7 (Figure 6A). At the lowest concentration of ssDNA supplied (0.5 nM) there was a >3-fold increase of Mcm2EE–7 bound to DNA compared to Mcm2WT–7. The increased DNA binding with Mcm2EE–7 was similar to Mcm2–7 complexes containing ATP site mutations in Mcm2, including Mcm2K549R in which the conserved P-loop lysine is replaced with an arginine residue [Figure 6A and (6)]. These initial experiments indicated that Mcm2–7 complexes containing Mcm2EE or Mcm2K549R have higher affinity for ssDNA than complexes containing wild-type Mcm2. To confirm that Mcm2EE mimics the effects of phosphorylation, we treated Mcm2WT–7 with DDK and ATP before measuring DNA binding. An increase of ~2.5–5-fold was observed when Mcm2–7 was phosphorylated by DDK compared to mock-treated (no DDK) Mcm2–7 (Figure 6B).

DNA binding was also measured by EMSAs, which allow a wider range of concentrations. Increasing amounts of Mcm2WT–7, Mcm2EE–7 or Mcm2K549R–7 were incubated with 1 nM poly-dT60. Binding of Mcm2–7 shifted the DNA to a point near the top of the gel that coincided with the migration of Mcm2–7 as visualized by staining (Figure 6C and D) or western blotting (data not shown). Mcm2WT–7 shifted up to 30 fmol of the ssDNA supplied. This binding is similar to previous reports using this approach (62) and approximates the affinity observed by gel filtration. In contrast, Mcm2EE–7 shifted 8- to 10-fold more poly-dT60 (Figure 6C and D). Mcm2K549R–7 shifted even more ssDNA at levels 15- to 18-fold over Mcm2–7 (Figure 6C and D). Overall, these results demonstrate that the phosphomimetic mutations in Mcm2 enhance ssDNA binding by Mcm2–7.

At first glance, our data seem contradictory. Mcm2–7 containing the Mcm2EE mutant binds DNA better than wild type, but unwinds DNA less well, an activity that requires DNA binding. However, we reasoned that Mcm2EE–7 may bind DNA too tightly, impairing the ability of Mcm2–7 to translocate along DNA. To test this, we examined whether adding NaCl to the
DNA-binding assay would reduce the Mcm2EE–7–DNA interaction. Indeed, when NaCl was present at 100 mM, Mcm2EE–7 binding to DNA decreased to a level observed with Mcm2WT–7 (Figure 7A). Moreover, when NaCl was added to Mcm2EE–7 in a DNA-unwinding assay, the amount of unwound substrate increased to a level comparable to Mcm2WT–7 (Figure 7B). These observations suggested that the defect in DNA unwinding by Mcm2EE–7 results from enhanced DNA binding.

Since the mcm2K549R mutation decreases ATP hydrolysis by Mcm2 (6) and like Mcm2EE increases binding to ssDNA by Mcm2–7, we examined whether phosphorylation of Mcm2 affects ATP hydrolysis by Mcm2. The ATP sites of Mcm2–7 are found at subunit interfaces and residues from two subunits are required to form a functional ATP site [Figure 8A; (3,4)]. Accordingly, ATP hydrolysis by Mcm2 is dependent on Mcm6 (3,4). The Mcm2/6 ATP site makes only a small contribution to the total ATP hydrolysis by Mcm2–7 (2) and even a large change in Mcm2 activity has only a modest effect on the intact complex. Thus, we initially measured ATP hydrolysis by the Mcm2/6 pair rather than the intact Mcm2–7 complex. Wild-type, unphosphorylated Mcm2 with Mcm6 hydrolyzed ATP at a rate of 4.9 ± 0.1 min⁻¹ (Figure 8B). When Mcm2EE was mixed with Mcm6, ATP hydrolysis was reduced to 0.24 of wild-type Mcm2/6 (3.6 ± 0.6 min⁻¹). For comparison, ATP hydrolysis by Mcm2K549R was 0.9 ± 0.0 min⁻¹. Mcm2AA had activity similar to wild-type Mcm2 (4.7 ± 0.1 min⁻¹) as would be expected since the proteins are purified from E. coli and hence not phosphorylated (Figure 8B). We also measured the effects of the Mcm2EE mutation on the ATPase activity of the intact complex. There was no significant difference in the rates of Mcm2EE–7 (18.0 ± 0.2 min⁻¹, P > 0.05, n = 3) and Mcm2WT–7 (21.0 ± 1.6 min⁻¹; Figure 8C). For comparison, we also show ATP hydrolysis by Mcm2KR–7 (17.4 ± 0.4 min⁻¹; Figure 8C). The lack of significant difference is not surprising considering the small contribution of Mcm2/6 to the ATPase of intact Mcm2–7.

Mcm2 phosphorylation affects Mcm2–7 activity in vivo

As shown in Figure 8D, cells bearing mcm2K549R are sensitive to caffeine similar to mcm2AA even though some of the biochemical properties of Mcm2K549R are more similar to Mcm2EE, which does not lead to caffeine sensitivity. To examine the relationship between the changes observed in vitro and the sensitivity to caffeine, we made mcm2 alleles mutated at both the ATP site (K549R) and the DNA-binding site. Indeed, when NaCl was present at 100 mM, Mcm2EE–7 binding to DNA decreased to a level observed with Mcm2WT–7 (Figure 7A). Moreover, when NaCl was added to Mcm2EE–7 in a DNA-unwinding assay, the amount of unwound substrate increased to a level comparable to Mcm2WT–7 (Figure 7B). These observations suggested that the defect in DNA unwinding by Mcm2EE–7 results from enhanced DNA binding.

Since the mcm2K549R mutation decreases ATP hydrolysis by Mcm2 (6) and like Mcm2EE increases binding to ssDNA by Mcm2–7, we examined whether phosphorylation of Mcm2 affects ATP hydrolysis by Mcm2. The ATP sites of Mcm2–7 are found at subunit interfaces and residues from two subunits are required to form a functional ATP site [Figure 8A; (3,4)]. Accordingly, ATP hydrolysis by Mcm2 is dependent on Mcm6 (3,4). The Mcm2/6 ATP site makes only a small contribution to the total ATP hydrolysis by Mcm2–7 (2) and even a large change in Mcm2 activity has only a modest effect on the intact complex. Thus, we initially measured ATP hydrolysis by the Mcm2/6 pair rather than the intact Mcm2–7 complex. Wild-type, unphosphorylated Mcm2 with Mcm6 hydrolyzed ATP at a rate of 4.9 ± 0.1 min⁻¹ (Figure 8B). When Mcm2EE was mixed with Mcm6, ATP hydrolysis was reduced to 0.24 of wild-type Mcm2/6 (3.6 ± 0.6 min⁻¹). For comparison, ATP hydrolysis by Mcm2K549R was 0.9 ± 0.0 min⁻¹. Mcm2AA had activity similar to wild-type Mcm2 (4.7 ± 0.1 min⁻¹) as would be expected since the proteins are purified from E. coli and hence not phosphorylated (Figure 8B). We also measured the effects of the Mcm2EE mutation on the ATPase activity of the intact complex. There was no significant difference in the rates of Mcm2EE–7 (18.0 ± 0.2 min⁻¹, P > 0.05, n = 3) and Mcm2WT–7 (21.0 ± 1.6 min⁻¹; Figure 8C). For comparison, we also show ATP hydrolysis by Mcm2KR–7 (17.4 ± 0.4 min⁻¹; Figure 8C). The lack of significant difference is not surprising considering the small contribution of Mcm2/6 to the ATPase of intact Mcm2–7.

Mcm2 phosphorylation affects Mcm2–7 activity in vivo

As shown in Figure 8D, cells bearing mcm2K549R are sensitive to caffeine similar to mcm2AA even though some of the biochemical properties of Mcm2K549R are more similar to Mcm2EE, which does not lead to caffeine sensitivity. To examine the relationship between the changes observed in vitro and the sensitivity to caffeine, we made mcm2 alleles mutated at both the ATP site (K549R) and the DNA-binding site. Indeed, when NaCl was present at 100 mM, Mcm2EE–7 binding to DNA decreased to a level observed with Mcm2WT–7 (Figure 7A). Moreover, when NaCl was added to Mcm2EE–7 in a DNA-unwinding assay, the amount of unwound substrate increased to a level comparable to Mcm2WT–7 (Figure 7B). These observations suggested that the defect in DNA unwinding by Mcm2EE–7 results from enhanced DNA binding.

Since the mcm2K549R mutation decreases ATP hydrolysis by Mcm2 (6) and like Mcm2EE increases binding to ssDNA by Mcm2–7, we examined whether phosphorylation of Mcm2 affects ATP hydrolysis by Mcm2. The ATP sites of Mcm2–7 are found at subunit interfaces and residues from two subunits are required to form a functional ATP site [Figure 8A; (3,4)]. Accordingly, ATP hydrolysis by Mcm2 is dependent on Mcm6 (3,4). The Mcm2/6 ATP site makes only a small contribution to the total ATP hydrolysis by Mcm2–7 (2) and even a large change in Mcm2 activity has only a modest effect on the intact complex. Thus, we initially measured ATP hydrolysis by the Mcm2/6 pair rather than the intact Mcm2–7 complex. Wild-type, unphosphorylated Mcm2 with Mcm6 hydrolyzed ATP at a rate of 4.9 ± 0.1 min⁻¹ (Figure 8B). When Mcm2EE was mixed with Mcm6, ATP hydrolysis was reduced to 0.24 of wild-type Mcm2/6 (3.6 ± 0.6 min⁻¹). For comparison, ATP hydrolysis by Mcm2K549R was 0.9 ± 0.0 min⁻¹. Mcm2AA had activity similar to wild-type Mcm2 (4.7 ± 0.1 min⁻¹) as would be expected since the proteins are purified from E. coli and hence not phosphorylated (Figure 8B). We also measured the effects of the Mcm2EE mutation on the ATPase activity of the intact complex. There was no significant difference in the rates of Mcm2EE–7 (18.0 ± 0.2 min⁻¹, P > 0.05, n = 3) and Mcm2WT–7 (21.0 ± 1.6 min⁻¹; Figure 8C). For comparison, we also show ATP hydrolysis by Mcm2KR–7 (17.4 ± 0.4 min⁻¹; Figure 8C). The lack of significant difference is not surprising considering the small contribution of Mcm2/6 to the ATPase of intact Mcm2–7.

Figure 6. ssDNA binding by Mcm2–7. (A) DNA binding was measured using a gel filtration-based assay (6). Binding of Mcm2WT–7 (open triangle), Mcm2EE–7 (filled square) and Mcm2KR–7 (open circle) was determined in triplicate experiments and the mean plotted. Representative elution profiles for each point are shown in Supplementary Figure S3. (B) Mcm2–7 (200 fmol) was incubated in assay buffer with 100 mM ATP with or without DDK for 30 min at 30°C before addition of 50 fmol ssDNA and ATP to 5 mM. After incubation for 10 min at 37°C, the samples were analyzed by gel filtration. The mean amount of Mcm2–7 that co-eluted with DNA in triplicate experiments was determined. (C) A Phosphor screen image of a representative EMSA. The migration of free DNA and protein–DNA complex is indicated on the left. A portion of a gel containing free protein and protein–DNA complex was removed and stained with GelCode Blue (Pierce) and is shown on the right. (D) The mean amount of DNA shifted was calculated and plotted with SEM from three replicate experiments.

Figure 6. Continued
DDK phosphorylation sites (EE or AA). Cells containing mcm2K549R,EE and mcm2K549R,AA as the sole copy of mcm2 grew similarly to wild-type cells on YPD (Figure 8D). Interestingly, when spotted onto YPD containing caffeine, the growth of the mcm2K549R,EE strain was markedly reduced relative to both wild-type cells and cells containing the individual mutations (Figure 8D). In contrast, strains with a non-phosphorylatable Mcm2 containing the ATP site mutation (mcm2K549R, AA) were not sensitive to caffeine. These results suggest that a precise range of Mcm2–7 activity is required for cells to respond to DNA damage.

DISCUSSION

Phosphorylation of Mcm2 and cell viability

Here, we show that *S. cerevisiae* containing Mcm2 that lacks the phosphorylation sites, S164 and/or S170, are viable and progress normally through S phase when Mcm2 is expressed at endogenous levels. Our results are consistent with the recent finding that normal growth is unaffected by deletion of the N-terminal region of Mcm2.
sensitivity of the S170 is important in response to DNA damage. The sen-

We propose that phosphorylation of Mcm2 at S164 and Phosphorylation of Mcm2 normally functioning cells, but requires phosphorylation of Mcm2 causes genomic instability that is dealt with in (Supplementary Figure S4). It may be that overexpression of Mcm2 may be required in response to DNA damage to slow replication forks and allow time for repair of damaged DNA.

It is possible that the effects on DNA binding and unwinding are mediated through the Mcm2 ATP site since the ATP hydrolysis by the Mcm2/6 site is decreased with the phosphomimetic mutation in Mcm2. Consistent with this idea, the effect of Mcm2EE on DNA binding by Mcm–7 is similar to what is observed for a mutation that affects ATP hydrolysis by the Mcm2/6 site, Mcm2K549R. Additional studies will be required to determine the exact relationship between ATP hydrolysis by Mcm2/6 and the different phenotypes of $MC M_2$, $m cm2AA$, $m cm2EE$ and $m cm2K549R$. In this regard, we cannot exclude that it is the differences in DNA unwinding or an as yet unexam-

ined activity of Mcm2–7 that accounts for the different phenotypes.

Regardless of which activity results in the caffeine sen-

sitivity, relatively small changes detected in vitro result in significant changes in sensitivity to caffeine in vivo. This level of sensitivity to modest changes detected in vitro is not without precedence. An ATP site mutation in the Pl plasmid partition protein, ParA, results in a decrease to about 1/3 of wild-type activity, but has a >20-fold effect on the autorepressor activity of ParA in vivo (71).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR online.

ACKNOWLEDGEMENTS

The authors are grateful to Dave Edgell for his comments on the manuscript and to Xiaoli Ma for expert technical assistance. We also thank Heather Andrigletti for construction of the yeast strain with human DDK and Bernard Duncker for the nec2-I strain.

FUNDING

The Canadian Institutes of Health Research (MOP 68926 to M.J.D.); a Natural Science and Engineering Research Council Doctoral Award and Schulich Graduate Awards (to B.E.S.). M.J.D. is a Research Scientist of the Canadian Cancer Society Research Institute. Funding for open access charge: Canadian Institutes of Health Research/University of Western Ontario.

Conflict of interest statement. None declared.
13. Sheu, Y.J. and Stillman, B. (2006) Cdc7-Dbf4 phosphorylates
14. Zou, L. and Stillman, B. (2000) Assembly of a complex containing
21. Bruck, I. and Kaplan, D. (2009) Dbf4-Cdc7 phosphorylation of
20. Francis, L.I., Randell, J.C., Takara, T.J., Uchima, T. and Bell, S.P.
19. Snaith, H.A., Brown, G.W. and Forsburg, S.L. (2000) Chromatin
18. Brown, G.W. and Kelly, T.J. (1998) Purification of Hsk1, a
53. Bochman, M.L. and Schwacha, A. (2008) The Mcm2-7 Complex
52. Weinreich, M. and Stillman, B. (1999) Cdc7p-Dbf4 kinase binds
to chromatin during S phase and is regulated by both the APC and the RAD53 checkpoint pathway. *EMBO J.*, 18, 5334–5346.
51. Ke, S.H. and Madison, E.L. (1997) Rapid and efficient site-directed
50. Gietz, R.D. and Sugino, A. (1988) New yeast-*Escherichia coli*
49. Hoke, S.M., Guzzo, J., Andrews, B. and Brandl, C.J. (2008) Resistance to genotoxic agents.
48. Brachmann, C.B., Davies, A., Cost, G.J., Caputo, E., Li, J., Hieter, P. and Boeke, J.D. (1998) Designer deletion strains derived from *Saccharomyces cerevisiae* S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. *Yeast*, 14, 115–132.
47. Pan, X., Yuan, D.S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J.S., Hieter, P., Spencer, F. and Boeke, J.D. (2004) A robust toolkit for functional profiling of the yeast genome. *Mol. Cell.*, 16, 487–496.
46. Costanzo, V., Shechter, D., Lupardus, P.J., Cimprich, K.A., Gottesman, M. and Gautier, J. (2003) An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. *Mol. Cell.*, 11, 203–213.
45. Duncker, B.P. and Brown, G.W. (2003) Cdc7 phosphorylation of MCM subunits by a putative human Dbf4 motif C zinc finger promotes DNA replication and mediates resistance to genotoxic stress. *Nucleic Acids Research*, 2011, Vol. 39, No. 16 7007.
7008 Nucleic Acids Research, 2011, Vol. 39, No. 16

between TOR, PKC and Ras/cAMP signalling pathways.
 Mol. Microbiol., 61, 1147–1166.

43. Moser,B.A., Brondello,J.M., Barber-Furnari,B. and Russell,P. (2000) Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol., 20, 4288–4294.

44. Reink,J.C., Chen,J.C., Aronova,S. and Powers,T. (2006) Caffeine targets TOR complex 1 and provides evidence for a regulatory link between the FRB and kinase domains of Tor1p. J. Biol. Chem., 281, 31616–31626.

45. Saiardi,A., Resnick,A.C., Snowman,A.M., Wendland,B. and Snyder,S.H. (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl Acad. Sci. USA, 102, 1911–1914.

46. Levin,D.E. (2005) Cell wall integrity signaling in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev., 69, 282–291.

47. Hardy,C.F., Dryga,O., Seematter,S., Pahl,P.M. and Sclafani,R.A. (1997) mcm5/cdc46-bob1 bypasses the requirement for the S phase activator Cdc7p. Proc. Natl Acad. Sci. USA, 94, 3151–3155.

48. Dohrmann,P.R., Oshima,G., Tecklenburg,M. and Sclafani,R.A. (1999) RAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae. Genetics, 151, 965–977.

49. Bochman,M.L. and Schwacha,A. (2007) The Saccharomyces cerevisiae Mcm6/2 and Mcm5/3 ATPase active sites contribute to the function of the putative Mcm2-7 'gate'. Nucleic Acids Res., 36, 6078–6088.

50. Bernstein,K.A., Shor,E., Sunjevaric,I., Fumasoni,M., Oehlmann,M., Ge,X., Snyder,S.H. (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc. Natl Acad. Sci. USA, 102, 1911–1914.

51. Liu,W., Pucci,B., Rossi,M., Pisani,F.M. and Ladenstein,R. (2008) Functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics, 167, 1597–1610.

52. Burgess,R.C., Foiani,M., Branzei,D. and Rothstein,R. (2009) Sgs1 functions in the repair of DNA replication intermediates is separable from its role in homologous recombination repair. EMBO J., 28, 915–925.

53. Ochsenbein,F. and Marsolier-Kergoat,M.-C. (2007) Mechanisms for yeast checkpoint death. S. cerevisiae, 4901–4911.

54. Ochsenbein,F. and Marsolier-Kergoat,M.-C. (2007) Mechanisms for yeast checkpoint death. S. cerevisiae, 4901–4911.

55. Wu,X., Shell,S.M. and Zhou,Y. (2005) Interaction and colocalization of Rad9-Rad1-Has1 checkpoint complex with replication protein A in human cells. Oncogene, 24, 4728–4735.

56. Bochman,M.L. and Schwacha,A. (2007) Differences in the function of the putative Mcm2-7 'gate'. Nucleic Acids Res., 36, 6078–6088.

57. Yabuta,N., Nojima,H. and Ishimi,Y. (2000) Electron microscopic analysis of DNA replication intermediates in Escherichia coli. EMBO J., 19, 4288–4294.

58. Sato,M., Gotow,T., You,Z., Komamura-Kohno,Y., Uchiyama,Y., Yabuta,N., Nojima,H. and Ishimi,Y. (2000) Electron microscopic observation and single-stranded DNA binding activity of the Mcm4,6,7 complex. J. Mol. Biol., 300, 421–431.

59. VanLooock,M.S., Alexandrov,A., Yu.X., Cozzarelli,N.R. and Egeland,E.H. (2002) SV40 large T antigen hexamer structure: domain organization and DNA-induced conformational changes. Curr. Biol., 12, 472–476.

60. Hacker,K.J. and Johnson,K.A. (1997) A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry, 36, 14080–14087.

61. Ulbricht,C., Sperr,A., Rauach,M. and Gartner,A., Jackson,D.A. and Blow,J.J. (2006) Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol., 173, 673–683.

62. Fung,E., Bouet,J.Y. and Funnell,B.E. (2001) Probing the Cdc7p function of the putative Mcm2-7 'gate'. Nucleic Acids Res., 29, 1123–1133.

63. Fung,E., Bouet,J.Y. and Funnell,B.E. (2001) Probing the Cdc7p function of the putative Mcm2-7 'gate'. Nucleic Acids Res., 29, 1123–1133.