Pharmacokinetics of Zidovudine Dosed Twice Daily According to World Health Organization Weight Bands in Ugandan HIV-infected Children

Quirine Fillekes, MSc,* Lindsay Kendall, MSc,† Sabrina Kitaka, MB ChB,‡ Peter Mugyenyi, MD, FCRP,§ Philippa Musoke, PhD,‡ Milly Ndigendawani, MB ChB,§ Mutsha Bwakura-Dangarembizi, MB ChB,¶ Diana M. Gibb, MB ChB, MSc, MD,¶ David Burger, PharmD, PhD, * and Ann Sarah Walker, PhD,† on behalf of the ARROW Trial Team

Abstract: Data on zidovudine pharmacokinetics in children dosed using World Health Organization weight bands are limited. About 45 HIV-infected, Ugandan children, 3.4 (2.6–6.2) years, had intensive pharmacokinetic sampling. Geometric mean zidovudine AUC₀–₁₂h was 3.0 h.mg/L, which is higher than previously observed in adults, and was independently higher in those receiving higher doses, younger and underweight children. Higher exposure was also marginally associated with lower hemoglobin.

Key Words: zidovudine, pharmacokinetics, HIV, children, Africa

(C)urrent World Health Organization (WHO) 2010 guidelines for the treatment of HIV-infected children recommend 2 nucleoside reverse transcriptase inhibitors as part of first-line antiretroviral therapy (ART). For infants/children, the preferred nucleoside reverse transcriptase inhibitor backbone is twice-daily lamivudine + zidovudine, which is effective, inexpensive and available as fixed-dose combination scored adult tablets (Combivir, GlaxoSmithKline, London, United Kingdom), which can be split for pediatric dosing, or as generic dual or triple (with nevirapine) pediatric FDCs. However, although studies have investigated the pharmacokinetics of the current lamivudine doses, surprisingly most zidovudine pharmacokinetic data are based on old 6–8 hourly and/or higher dosing. Data on zidovudine pharmacokinetics and pharmacodynamics at currently recommended lower/less frequent doses in children remain sparse, particularly in African children. Pharmacokinetic-pharmacodynamic studies are particularly important as anemia is a common, plausibly dose-related, toxicity.

As ~90% HIV-infected children needing ART are in Africa, we investigated zidovudine exposure in Ugandan, HIV-infected children receiving WHO-recommended twice-daily, weight band-based dosing (not studied to date).

METHODS

ARROW was an open randomized trial comparing monitoring and first-line ART strategies in HIV-infected Ugandan/Zimbabwean children eligible for and initiating ART. Allocation to zidovudine-containing regimens or not was part of the first-line ART strategy randomization. Once stable on ART (>24 weeks after initiation) children from 2 Ugandan ARROW centers (Joint Clinical Research Centre, Kampala and Paediatric Infectious Disease Centre, Mulago, Kampala) were approached for additional consent to participate in 2 intensive crossover pharmacokinetic substudies. The first compared twice-versus once-daily lamivudine and abacavir in children 3–12 years of age, before and 4 weeks after move to once-daily dosing, 36 weeks after ART initiation. All children were taking efavirenz; some were also taking zidovudine as a 4th drug at the first (36-week) pharmacokinetic sampling day. The second substudy compared twice-daily zidovudine, lamivudine and abacavir as syrups versus tablets in children 1–4 years of age, at and 4 weeks after moving from syrups to tablets [median interquartile range (IQR) 56 (40–70) weeks on ART].

This analysis included all available zidovudine pharmacokinetic data from both substudies. Children on concomitant medication which could interfere with ART or who had illnesses that could influence ART pharmacokinetics were excluded, as were children who reported missing any ART dose in the previous 3 days. All caretakers provided fully informed written consent. The pharmacokinetic substudies were approved by the Ethics Committee from each centre.

Zidovudine was dosed twice daily as syrups or halved or whole 300 mg solid formulation and scored fixed-dose combination tablets (provided by GlaxoSmithKline; Table, Supplemental Digital Content, http://links.lww.com/INF/B733). Doses followed WHO 2006 recommendations, except that children weighing 12–15 kg received 240 mg zidovudine syrup daily instead of 220 mg, children weighing 20–21 kg on lamivudine/zidovudine FDCs received 300 mg zidovudine rather than 450 mg and children 21 to <25 kg received 450 mg zidovudine to harmonize with the lamivudine weight band. Blood samples of 1.5 mL were taken at t = 0, 1, 2, 4, 6, 8 and 12 hours after observed ART intake. Breakfast (mostly milk/milky tea with somosas/bread/chapati) was provided 2 hours post morning dose. Plasma concentrations were assayed by a validated high-performance liquid chromatography-tandem mass spectrometry method, with lower limit of quantification 0.0025 mg/L, by Worldwide Bioanalysis, GlaxoSmithKline, Research Triangle Park, North Carolina. Zidovudine pharmacokinetic
parameters \([C_{12h}, C_{\text{max}}, \text{AUC}_{0-12h}, t_{1/2}, \text{oral clearance (CLF)}]\) were calculated using WinNonlin version 5.2 (Pharsight Corporation, Mountain View, CA). To explore predictors of zidovudine exposure using WHO weight band dosing, associations between zidovudine \(\text{AUC}_{0-12h}\) and sex, age, dose (mg/m\(^2\)), weight- and height-for-age and formulation were investigated using multivariable mixed models including a child-level random effect (STATA version 11.1, STATA Corp, College Station, TX).

**RESULTS**

Zidovudine pharmacokinetic data were included from 45 children (17 (38%) male). Twenty-eight (62%) children 1–4 years of age had 2 pharmacokinetic profiles (1 each on syrup and tablets) and 17 (38%) children 3–12 years of age had 1 profile on tablets. One child had \(C_{0h} > 3C_{12h}\) and was excluded, leaving 72 pharmacokinetic profiles available for analyses. Median (IQG) age and weight at the first pharmacokinetic day were 3.4 (2.6–6.2) years and 12.6 (12.3–18.0) kg, respectively. Median (IQG) weight-for-age and height-for-age z-scores were \(-1.09\) (−1.62 to −0.56) and \(-1.85\) (−2.68 to −1.20), indicating moderate wasting and stunting. Of the 72 evaluable profiles, median (IQR) zidovudine morning and total daily doses were 242 (218–278) and 466 (432–546) mg/m\(^2\), respectively [10 (9.4–12.2) and 20 (18.5–23.9) mg/kg respectively]. Eight (11%), 20 (27%) and 36 (50%) profiles were from children on 100 mg syrup, 120 mg syrup and 150 mg lamivudine/zidovudine fixed-dose combination tablets twice daily, respectively; and 8 (11%) were on 300 mg morning and 150 mg evening tablets.

The geometric mean (GM; 95% confidence interval) \(\text{AUC}_{0-12h}, C_{\text{max}}, \text{AUC}_{12h}, t_{1/2}\), and CLF, and CLF/kg was 3.0 (2.7–3.3) h.mg/L, 1.8 (1.6–1.9) mg/L and 0.009 (0.007–0.010) mg/L, 2.3 (2.1–2.5) h, 48.6 (43.1–54.6) L/h and 3.5 (3.2–3.8) L/h.kg, respectively (Fig. 1A) with CV% of 40%, 42%, 70%, 18%, 54% and 44%, respectively. Zidovudine \(\text{AUC}_{0-12h}\) was 27–150% higher than previously reported in adults.\(^2,11\) GM \(C_{\text{max}}\) were 1.84 mg/L and 1.58 mg/L in children less than and greater than 4 years \((P = 0.12, \text{rank sum})\).

In multivariable models, higher zidovudine exposure \((\text{AUC}_{0-12h})\) was independently associated with higher dose, younger age and lower weight-for-age, with the latter 2 factors independently associated with CLF. \(\text{AUC}_{0-12h}\) was 0.43 h.mg/L higher for every 50 mg/m\(^2\) higher zidovudine dose (95% confidence interval: 0.01, 0.86).

**FIGURE 1.** Mean zidovudine concentrations, exposure, age and hemoglobin at pharmacokinetic sampling. A) Mean zidovudine plasma concentrations. B) Relationship between zidovudine exposure [area under the concentration–time curve 0–12 hours postdose (\(\text{AUC}_{0-12h}\))] and age (years) at pharmacokinetic sampling. C) Relationship between zidovudine clearance (CLF/kg) and age (years) at pharmacokinetic sampling. D) Relationship between hemoglobin and zidovudine exposure (\(\text{AUC}_{0-12h}\)) at pharmacokinetic sampling.
0.15–0.71; \( P = 0.003 \)). Associations between age and zidovudine exposure varied across the age range (test for nonlinearity \( P = 0.001 \)). Independent of the dose effect, zidovudine exposure was 1.06 (0.48–1.63) h.mg/L lower and clearance 1.44 (0.67–2.22) L/h.kg higher for every year up to 4 years of age \(( P < 0.001 \)), but there was no association for >4 years (exposure \( P = 0.72 \), CLF/kg; \( P = 0.14 \); Fig. 1BC). Thus, for the same dose in mg/m\(^2\), lower clearance meant that youngest children had higher plasma zidovudine exposure. Exposure was 0.72 (0.30–1.13) h.mg/L lower and clearance 0.80 (0.24–1.36) L/h.kg higher for each unit higher weight-for-age (\( P = 0.001 \) and \( P = 0.005 \), respectively). Adjusted for these factors, there was no independent effect on exposure/clearance of sex (\( P = 0.56/0.32 \), height-for-age (\( P = 0.57/0.57 \)) or formulation (syrups/tablets; \( P = 0.75/0.76 \); \( P = 0.30/0.86 \) in children under 4 years of age). There was a trend toward higher \( \text{C}_{\text{max}} \) in children <4 years \([ \text{GM} = 1.9 \text{mg/L} \text{(95% confidence interval: [1.7–2.1])} \) vs. >4 years \([ \text{GM} = 1.5 \text{mg/L} \text{(1.3–1.9)} \) \( P = 0.096 \)]. Thirty-seven children had viral load (VL) measured within 4 weeks of pharmacokinetic sampling day. Thirty-two (86%) had VL <80 c/mL; only 1 (3%) had VL >400 c/mL (17,174 c/mL). This suggests that zidovudine clearance increased most rapidly during the first weeks of life, reaching adult levels at 2 years of age,\(^8\) a finding that may impact the pediatric pharmacokinetics and potential cofactors that may impact the pediatric pharmacokinetics of zidovudine.

Another limitation is that the true \( \text{C}_{\text{max}} \) \( (\text{T}_{\text{max}} \approx 0.5 \text{hours}) \) could have been missed and consequently AUC\( _{0-12h} \) might be underestimated. Lastly, because of challenges in sampling relatively young children over 24 h, we were unable to directly estimate the impact of unequal morning and evening dosing in those weighing 20–30 kg.

In summary, zidovudine is a common component of first-line pediatric ART, especially in resource-limited countries and only limited data are available on the widely applied twice-daily dosing regimen. Children dosed following WHO 2010 guidelines, younger children and those with low weight-for-age are likely to have even higher zidovudine exposure than that observed here and substantially higher than previously reported in adults. Our findings suggest that this higher exposure could be associated with greater suppression of hemoglobin levels within the normal range and probably with no change in efficacy, because viral load suppression was already very good using WHO 2006 dosing. The impact on severe anemia warrants further investigation, particularly with regards to current WHO 2010 dosing.

**ACKNOWLEDGMENTS**

We thank the children, carers and staff from all the centers participating in the ARROW trial, and the ARROW Trial Steering Committee for access to data. MRC/UVRI Uganda Research Unit on AIDS, Entebbe, Uganda: P. Munderi, P. Nahirya-Ntege, R. Katrunu, J. Lutaakome, F. Nanyonga, G. Nabulime, S. Kisaunde, J. Kyarimpa, A. Kekitiinwa, P. Mugyenyi, P. Mubi, R. Kibenge, M. Ndigendawani, S.O. Nyirongo, R. Kisanji, B. Nankya, G. Nabulime, I. Sekamatte, C. Karungi, H. Kizito, W.S. Namala, J. Namusanje, R. Nandugwa, T.K. Najjuko, E. Natukunda, M. Bakyende, N. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon. Baylor College of Medicine Children’s Foundation Uganda, Mulago Hospital Uganda: A. Kekitiinwa, P. Mubi, M. Ssenyonga, M. Kasango, E. Lutalo and P. Oronon.
REFERENCES

1. World Health Organisation. Antiretroviral therapy of HIV infection in infants and children: towards universal access. Recommendations for a public health approach: 2010 revision. Geneva, World Health Organisation; 2010. Available at: http://www.who.int/hiv/pub/paediatric/infants2010/en/index.html. Accessed: December 15, 2011.

2. EMA. Combivir tablet; Summary of product characteristics. Available at: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/000190/WC500032326.pdf. Accessed February 12, 2012.

3. Musiime V, Kendall L, Bakeera-Kitaka S, et al.; ARROW Trial team. Pharmacokinetics and acceptability of once- versus twice-daily lamivudine and abacavir in HIV type-1-infected Ugandan children in the ARROW Trial. Antivir Ther. 2010;15:1115–1124.

4. Balis FM, Pizzo PA, Eddy J, et al. Pharmacokinetics of zidovudine administered intravenously and orally in children with human immunodeficiency virus infection. J Pediatr. 1989;114:880–884.

5. Bergshoeff AS, Fraaij PL, Verweij C, et al. Plasma levels of zidovudine twice daily compared with three times daily in six HIV-1-infected children. J Antimicrob Chemother. 2004;54:1152–1154.

6. Kasirye P, Kendall L, Adkison KK, et al.; ARROW Trial Team. Pharmacokinetics of antiretroviral drug varies with formulation in the target population of children with HIV-1. Clin Pharmacol Ther. 2012;91:272–280.

7. Moodley D, Pillay K, Naidoo K, et al. Pharmacokinetics of zidovudine and lamivudine in neonates following coadministration of oral doses every 12 hours. J Clin Pharmacol. 2001;41:732–741.

8. Capparelli EV, Englund JA, Connor JD, et al. Population pharmacokinetics and pharmacodynamics of zidovudine in HIV-infected infants and children. J Clin Pharmacol. 2003;43:133–140.

9. ARROW Trial Team. Routine versus clinically driven laboratory monitoring and first-line antiretroviral therapy strategies in African children with HIV (ARROW): a 5-year open-label randomised factorial trial. Lancet. 2013;381:1391–1403.

10. Kenney KB, Wring SA, Carr RM, et al. Simultaneous determination of zidovudine and lamivudine in human serum using HPLC with tandem mass spectrometry. J Pharm Biomed Anal. 2000;22:967–983.

11. Crémiieux AC, Katlama C, Gillotin C, et al.; AZI10002 Study Group. A comparison of the steady-state pharmacokinetics and safety of abacavir, lamivudine, and zidovudine taken as a triple combination tablet and as abacavir plus a lamivudine-zidovudine double combination tablet by HIV-1-infected adults. Pharmacotherapy. 2001;21:424–430.

12. Chokephaibulkit K, Cressey TR, Capparelli E, et al.; IMPAACT P1069 Team. Pharmacokinetics and safety of a new paediatric fixed-dose combination of zidovudine/lamivudine/nevirapine in HIV-infected children. Antivir Ther. 2011;16:1287–1295.