Chronic HIV Infection and Aging: Application of a Geroscience-Guided Approach

Mary C. Masters, MD,a Alan L. Landay, PhD,b Paul D. Robbins, PhD,c Tamar Tchkonia, PhD,d,e James L. Kirkland, MD, PhD,d George A. Kuchel, MD,f Laura J. Niedernhofer, MD, PhD,c and Frank J. Palella, MDa

Abstract: The ability of virally suppressive antiretroviral therapy use to extend the life span of people with HIV (PWH) implies that the age of PWH will also increase. Among PWH, extended survival comes at a cost of earlier onset and increased rates of age-associated comorbidities and geriatric syndromes, with persistent inflammation and immune dysregulation consequent to chronic HIV infection and to antiretroviral therapy use contributing to an overall decrease in health span. The geroscience hypothesis proposes that the root causes of most age-related chronic diseases and conditions is the aging process itself. Hence, therapeutically targeting fundamental aging processes could have a greater impact on alleviating or delaying aging-associated comorbidities than addressing each disease individually. Extending the geroscience hypothesis to PWH, we speculate that targeting basic mechanisms of aging will improve overall health with age. Clinical features and pathophysiologic mechanisms of chronic diseases in PWH qualitatively resemble those seen in older adults without HIV. Therefore, drugs that target any of the pillars of aging, including metformin, rapamycin, and nicotinamide adenine dinucleotide precursors, may also slow the rate of onset of age-associated comorbidities and geriatric syndromes in PWH. Drugs that selectively induce apoptosis of senescent cells, termed senolytics, may also improve health span among PWH. Preliminary evidence suggests that senescent cell burden is increased in PWH, implying that senescent cells are an excellent therapeutic target for extending health span. Recently initiated clinical trials evaluating senolytics in age-related diseases offer insights into the design and potential implementation of similar trials for PWH.

Key Words: geroscience, hallmarks of aging, senotherapeutics, chronic HIV infection, HIV and aging

INTRODUCTION

Routine use of virally suppressive antiretroviral therapy (ART) has extended the life span of people with HIV (PWH) so that it now approaches that of the general population. The Centers for Disease Control and Prevention estimates that more than 50% of Americans living with HIV in 2018 were aged 50 years or older.1 With rising ART access throughout the world, the global number of older PWH will continue to increase.2,3 Improvements in life span have been accompanied by changing patterns of morbidity among PWH. Although deaths and illness from AIDS and opportunistic infections have declined, older PWH experience both earlier onset and increased rates of certain age-associated comorbidities, including cardiovascular disease (CVD), neurocognitive disorders, diabetes, kidney disease, liver disease, reduced bone mineral density, and non–AIDS-defining malignancies.4–6 PWH also exhibit geriatric syndromes, such as frailty, declines in physical function, and functional disabilities at younger ages than people without HIV.7 The disproportionately greater prevalence of aging-related comorbidities in PWH extends across both resource-rich and limited care settings.8,9 Thus, despite improvements in life span, older PWH face significantly reduced health span (ie, the period of life free from aging-related chronic diseases and disabilities) compared with the general population.

Although the pathophysiologic mechanisms that underlie excess burden of age-associated diseases among PWH remain incompletely understood, qualitative parallels with biological aging processes are noted. Debate exists as to whether excess burden of age-associated diseases among PWH represents accentuated aging in which chronic viral infection, HIV disease processes, and/or ART therapy exacerbate chronic non-HIV age-associated conditions and thereby increase their prevalence at every age or rather

Received for publication September 23, 2021; accepted September 27, 2021.
From the aDepartment of Medicine, Division of Infectious Diseases, Northwestern University, Chicago, IL; bDepartment of Internal Medicine, Section of Geriatric Medicine Rush University Medical Center, Chicago, IL; cInstitute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN; dRobert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN; and eDepartment of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN; and fUConn Center on Aging, UConn Health, Farmington, CT.
Supported, in part, by the National Institutes of Health’s National Institute on Aging Grants R01AG072301 (J.L.K., G.A.K., L.J.N.), R33AG61456 (Translational Geroscience Network; J.L.K., T.T., G.A.K.—MPIs), R37AG013925 (J.L.K., T.T.), R01AG062413 (J.L.K., T.T., P.D.R., L.J.N.), P30AG067988 (G.A.K.), P30AG059988 (M.C.M.), and 5R03AG067980 (PI: M.C.M.), R01AG063543 (L.J.N., P.D.R.), U19AG056278 (P.D.R., L.J.N.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. In addition, this work was supported by the Connor Fund (J.L.K., T.T.), Robert P. and Arlene R. Kogod (J.L.K.), Robert J. and Theresa W. Ryan (J.L.K., T.T.), and the Noaber Foundation (J.L.K., T.T.). The authors have no conflicts of interest to disclose.
Correspondence to: Mary C. Masters, MD, Department of Medicine, Division of Infectious Diseases, Northwestern University, 645 North Michigan Avenue, Suite 900, Chicago, IL 60611 (e-mail: mary.masters@northwestern.edu).

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.
represents a form of accelerated aging through shared underlying fundamental aging mechanisms. Accented and accelerated aging may be organ- and disease-specific among PWH. Current approaches to alleviate age-related conditions in HIV have met with limited success, so that novel approaches are needed. The geroscience hypothesis postulates that targeting fundamental aging processes will delay the onset and progression of multiple age-related disorders with a single intervention. Herein, we propose that current studies in geroscience conducted among older adults without HIV could help guide the evolution of a novel and potentially transformational paradigm for preventing, delaying, and/or attenuating age-related phenotypes seen in PWH.

INFLAMMAGING

In the general population, inflammaging, or the chronic low-grade, sterile inflammation that occurs with advancing age, represents one common feature of biological aging and has been linked to various chronic diseases of aging. Chronic inflammation and immune activation are also linked to increases in age-related comorbidities among PWH. Even with long-term ART use, systemic levels of immune activation and inflammation remain elevated in PWH compared with people without HIV. Elevations in levels of biomarkers of inflammation, such as interleukin-6 (IL-6), C-reactive protein (CRP), soluble tumor necrosis factor-α, soluble CD163, and sCD14, have been associated with onset of age-associated diseases in PWH.

Both common aging pathways and processes specific to HIV and its treatment contribute to excess chronic inflammation in PWH. Some known drivers of chronic inflammation in the general population are enriched among PWH. For example, rates of tobacco smoking, recreational drug use, sedentary lifestyle, poor diet, and chronic coinfections, such as cytomegalovirus (CMV) and hepatitis B and C virus, are increased among PWH. Microbial dysbiosis is also associated with heightened inflammation and age-associated diseases in the general population and is increased among PWH. Early in HIV infection, there is a loss of gastrointestinal tract integrity that persists even after ART initiation. As a result, ongoing dysbiosis and microbial translocation contribute to persistent inflammation even among virally suppressed PWH. The contribution of the HIV reservoir (ie, HIV persistence despite ART use) to chronic inflammation and immune activation is not well understood. Although HIV T-cell reservoir size does not correlate with systemic inflammatory markers, monocytes and macrophages are also viral targets and have an HIV-induced proinflammatory profile that ART does not completely abrogate. Although ART initiation reduces systemic inflammation through HIV suppression, certain antiretroviral therapies may contribute to inflammation. Older generations of nucleoside reverse transcriptase inhibitors (NRTIs) and protease inhibitors were associated with untoward alterations in metabolic and lipid profiles as well as with mitochondrial toxicity. Abacavir use has also been associated with increased CVR risk and platelet activation. More recently, integrase strand transfer inhibitors use has been linked to weight gain. Although ascertainment of metabolic ramifications of integrase strand transfer inhibitor–associated weight gain comprise areas of active investigation, obesity in general contributes to chronic inflammation regardless of HIV serostatus as well as to increased senescent cell burden. Although inflammaging is a phenomenon common to PWH and HIV-uninfected people who has been linked to age-associated disease, comparisons of inflammatory pathways and potential mediators by HIV serostatus are an area of ongoing study.

Targeting inflammatory pathways to attenuate age-related disease among PWH has met with limited success to date. Clinical trials of both aspirin and low-dose methotrexate failed to demonstrate lower biomarkers of inflammation levels among PWH. However, a 10-person pilot study of canakinumab, an IL-1β antagonist, did demonstrate reductions in biomarkers of inflammation and monocyte activation. A larger trial to evaluate effects of canakinumab on markers of inflammation and CVD is underway (NCT02272946), although the agent’s high cost and potential for immunosuppression remain a concern. Statin use has had some beneficial effects on markers of inflammation, REPRIEVE (NCT02344290), an ongoing, large, randomized clinical trial, will examine the effects of pitavastatin use on CVD and inflammation in PWH who are without clinical indications for statin use. Because the Janus kinase (JAK) signal transducer and activator of transcription pathway is implicated in the proliferation of the HIV reservoir, there has been considerable interest in using JAK inhibitors to modulate levels of inflammation as part of a functional cure strategy among PWH. However, in a clinical trial among PWH, ruxolitinib only led to a modest decrease of sCD14 and a nonsignificant change in IL-6 levels. Interestingly, JAK inhibitors can inhibit the proinflammatory secretary phenotype of senescent cells in vitro and in vivo. In aged mice, ruxolitinib treatment reduced inflammation and improved metabolic function. For none of these investigative interventions have reductions in adverse clinical events been observed.

Efforts to target drivers of chronic inflammation in PWH have also only met with modest success. Interventions targeting microbial translocation with the use of probiotics, sevelamer, and rifaximin failed to reduce levels of markers of inflammation. Treatment of chronic CMV coinfection with valganciclovir in PWH reduced markers of T-cell activation, although long-term toxicity is a limitation of this approach. A new trial will assess the effect of the antiviral lertromivir, which is better tolerated, on levels of chronic inflammation in PWH who also have asymptomatic CMV infection (NCT04840199). Although several studies evaluating anti-inflammatory interventions among PWH are ongoing, a broader approach targeting more fundamental biological mechanisms of aging may provide new insights into and therapeutic strategies to address age-related phenotypes observed in this population.

THE GEROSCIENCE APPROACH

The geroscience hypothesis posits that therapeutically targeting fundamental mechanisms of aging will have a
significantly greater impact on overall human disease burden than successfully curing any one individual disease. Research into the biology of aging has led to the identification of hallmarks or “pillars” of aging that represent the varied mechanistic drivers of aging physiology. These include impaired adaptation to stress, increased burden of damaged macromolecules and organelles, epigenetic alterations, mitochondrial dysfunction, inflammation, impaired proteostasis, loss of stem/progenitor cell function, altered metabolism, and increased senescent cell burden. Although historically viewed as distinct types of biological processes, growing evidence demonstrates that these aging hallmarks are intricately linked to one another, suggesting that improving one hallmark will improve the others. The overarching premise of adapting the geroscience approach to PWH is that interventions targeting biological aging processes, postulated to delay the onset and progression of pathologies attributable to biological aging (Fig. 1A), will similarly impact aspects of age-associated morbidities that can be attributed to HIV (dark green arrow in Fig. 1B) as well as those attributable to both HIV and aging in PWH (light green arrow in Fig. 1B).

Several studies have begun to describe the hallmarks of aging in PWH. Epigenetic alterations in DNA methylation patterns, histone modification, and chromatin remodeling accompany aging and have been associated with age-associated diseases in the general population. Studies measuring the “epigenetic clock” among PWH revealed that untreated HIV infection increases (hastens) DNA methylation age. ART treatment only moderately improves epigenetic age so as to diminish the latter’s differences with chronologic age in PWH. However, whether epigenetic changes serve as accurate biomarkers of age-related disease or treatment efficacy in PWH remains uncertain.

In the general aging population, telomere attrition has also been associated with aging and multiple age-related disease conditions. Shorter telomere length has been observed in PWH compared with age-matched people without HIV. Shorter leukocyte telomere length is also associated with CVD in PWH. Some studies indicate that NRTIs inhibit telomerase activity, although this has not been a consistent finding. Further work is needed to understand how the dynamics of telomere attrition across tissue types differ by HIV serostatus among older adults, and how telomere attrition is linked to age-related diseases in PWH.

A progressive decline in mitochondrial function accompanies aging. Mitochondrial dysfunction is linked to reduced muscle function, cardiorespiratory fitness, and cognitive function in PWH. Use of early NRTIs were associated with mitochondrial alterations; use of more recent NRTIs, such as abacavir and tenofovir, also can have mitochondrial effects. Further research is needed to examine contemporary ART’s effect on mitochondrial function and age-related disease in PWH.

Growing interest exists in characterizing cellular senescence among PWH as a promoter of inflammation and assessing whether it can be therapeutically targeted as it has been in non-HIV aging populations. Cellular senescence is a state of essentially irreversible proliferative arrest driven by excessive replication, oncogene activation, and different types of stresses, including telomere shortening, DNA damage, high serum glucose, increased reactive oxygen species, infections, and protein aggregation. Senescence is mediated by upregulation of the cell cycle regulators, p16INK4a/Rb and/or p53/p21CIP1, and it can be amplified by a number of mediators and pathways, including ataxia-telangiectasia–mutated kinase, IκB kinase/nuclear factor-κB, JAK/SAT, GATA binding protein 4, and mechanistic target of rapamycin (mTOR). A significant percent of senescent cells (SnCs) demonstrate increased secretion of proinflammatory ILs, chemokines, growth factors, proteases, receptors, metabolites, lipids, noncoding nucleotides, extracellular vesicles, and certain extracellular matrix components and modifiers, which collectively have been termed the senescence-associated secretory phenotype (SASP). In younger mammals, the SASP serves to stimulate the immune system to fight infections.
system to clear SnCs. However, if SnCs are not cleared, they can exert deleterious paracrine and systemic effects through proinflammatory SASP. Some SnCs also demonstrate increased cytoplasmic mitochondrial DNA, cytoplasmic chromatin fragments, and/or increased expression of the Line-1 retrotransponson, which can activate cytoplasmic DNA sensing cyclic-GMP-AMP synthase/stimulator of interferon gene (cGAS/Sting) and/or Toll-like receptor 9 (TLR9) pathways to induce senescence and thereby exacerbate the SASP.57 Because the cGAS/Sting and TLR9 pathways have evolved to sense viral double-stranded RNA and DNA, it is possible that senescence can represent a cell fate mechanism to limit viral replication and spread.

SnCs accumulate with age in different tissues and at sites of pathology in multiple age-related diseases and conditions, including pulmonary fibrosis, osteoarthritis, osteoporosis, atherosclerosis, Alzheimer disease, and even pre eclampsia.54 The genetic depletion of SnCs in conjunction with transplantation of SnCs has established that SnCs not only accumulate with aging in numerous mammalian models but also can drive aging phenotypes and disease.58–60 In addition to aging and disease, the SASP of SnCs, including senescent immune cells, can contribute to loss of resilience to pathogen exposure.61 Importantly, SnCs-induced SASP is further exacerbated by pathogen-associated molecular patterns and damage-associated molecule patterns through the stimulation of TLRs, leading to the spread of senescence and tissue damage.62 In aged mice, the SASP following pathogen exposure leads to an increased risk of cytokine storm, with increased morbidity and mortality. Increases in the SASP with age and disease can also impede immune function, further reducing resilience to pathogen exposure and the ability of the immune system to clear SnCs. We have termed this the “Threshold Theory of SnC Burden,” which hypothesizes that once SnC burden reaches a certain point, SnCs are not cleared by the immune system fast enough to keep pace with the rate of formation of new SnCs.

There is growing evidence linking cellular senescence, accelerated aging, and chronic HIV infection. HIV infection and ART therapy are associated with increased cellular senescence both in vitro and in human studies.15,62,63 Chronic HIV infection and certain ART regimens are postulated to lead to oxidative stress, mitochondrial dysfunction, and inflammation, thus generating physiologic stress that drives cellular senescence. In addition, levels of SASP biomarkers are associated with multimorbidity in PWH.64 However, better characterization of SnCs and SASP profiles that contribute to and are associated with age-related conditions in PWH is needed to identify mechanisms and potential biomarkers for therapeutic interventions.

PHARMACOLOGIC GEROPROTECTORS

Geroprotectors are drugs that target fundamental mechanisms of aging. Table 1 provides a list of current geroscience-guided clinical trials that use geroprotectors. Figure 2 illustrates these compounds’ target pillars of aging. Recently, multiple types of senotherapeutics have been identified; these are geroprotectors that target SnCs. They include senolytics, which selectively kill SnCs, and senomorphics, which attenuate the pathological SASP and/or improve organelle function. The first senolytics identified were the combination of dasatinib and quercetin (D + Q), followed by fisetin, heat shock protein 90 inhibitors, and B-cell lymphoma 2 (BCL-2) family inhibitors. Senolytic use has positive effects on health span and life span in numerous mouse models of disease, frailty, and old age. An advantage of senolytics is that they can be administered intermittently, every few weeks or months, to yield a therapeutic impact, thus limiting toxicity.

Several senolytics are Food and Drug Administration-approved anticancer drugs or natural products, lending themselves to rapid translation to exploit their senolytic properties in noncancer populations. D + Q, fisetin, UBX0101, an inhibitor of the p53-MDM2 interaction, and the BCL-XL inhibitor UBX1325, are currently being studied in more than a dozen clinical trials. In an open-label, phase-1, pilot study of participants with diabetic kidney disease (NCT02848131), D + Q reduced expression of senescence markers in adipose tissue, and SASP factors in the blood.65 In an open-label study of intermittent D + Q treatment in people with idiopathic pulmonary fibrosis (NCT02874989), there was an improvement in physical function and a trend toward reduction in certain serum SASP proteins.66 D + Q is being studied in clinical trials targeting Alzheimer disease (NCT04063124; NCT04785300; NCT04685590), skeletal health (NCT04313634), and treatment of adult survivors of childhood cancers (NCT04733534). The senolytic natural flavonoid fisetin is currently being evaluated in clinical trials as a treatment for chronic kidney disease (NCT03235522), skeletal health (NCT04313634), frailty (NCT03675724), and osteoarthritis (NCT04210986), whereas the BCL-2 family inhibitor UBX1325 is being evaluated for macular edema (NCT04537884). Although findings from these clinical trials have not yet been reported extensively, taken together, preliminary results suggest target engagement with limited toxicity in humans.65,66

To date, no clinical trials employing senotherapeutics to target age-related diseases have been undertaken in PWH. Several senolytics have been explored as part of investigational HIV cure strategies because some senotherapeutic agents have an impact on the HIV viral reservoir.15 The Bcl-2 inhibitor venetoclax reduces the HIV reservoir in vitro following reactivation and homeostatic proliferation.67 In a small study of men with HIV and chronic myeloid leukemia, dasatinib decreased HIV reservoir size and proviral reactivation.68 These early clinical data provide additional support for investigation of senotherapeutic agent use in PWH.

Diverse compounds have been evaluated for potential geroprotective effects. These include metformin, which is a senomorphic69 possessing other pleiotropic effects relevant to the hallmarks of aging including reducing oxidative stress, mTOR signaling, and DNA damage, impacting mitochondrial energetics, and it potentially possesses some senolytic activity.70–72 The Targeting Aging through Metformin (TAME) clinical trial is being developed to test the hypothesis that metformin can delay the development or progression of age-related chronic diseases—such as heart disease, cancer, and dementia.73 Rapamycin and rapalogues, such as everolimus,
Candidate Geroprotector	Trial	Indices	1 Outcome	2 (3) Outcomes	Sponsor
Metformin Antihyperglycemic	TAME	Age-related comorbidities	Incidence of age-related disease	Physical and cognitive function; geriatric syndromes	U NM
	NCT03309007	Prediabetes	LC3 autophagy score		AE CoM
	NCT02432287	≥60 yrs old	Transcriptome SKM and adipose tissue	Insulin sensitivity and secretion	
	NCT02308228	≥65 yrs old	Type 2 myofiber diameter	CT-SKM hypertrophy; strength, DXA lean mass; insulin sensitivity	UAB
	NCT04264897	40–75 yrs old	Insulin sensitivity; complex 1 activity	Glucose monitoring; HbA1c	OMRF, NIA
	NCT03451066	≥60 yrs old	Frailty, balance, standing from chair, gait speed	Serum IL-6, MMP, PAI, MCP-1, Activin	Mayo Clinic
	NC03861767	Surgery patients	Hospital-free days		UPMC
	NCT03713801	63–90 yrs old	Antibody response to PCV13	Immunophenotypes	UTHSCSA
	NCT03072485	≥55 yrs old	Transcriptome skin		Stanford U
	NCT03996538	≥65 yrs old	Granzyme B and IFNγ in PBMC after flu vaccine	Antibody titer, T-cell GLUT expression and O2 consumption, frailty	UConn
	NC03818802	65–80 yrs old	VO₂ max; 6 min walk, SPPB, CTX SKM respiration and gene/protein expression	Serum glucose, insulin, cholesterol, HbA1c; OGTT	Mayo clinic
	NCT04907110	65–80 yrs old	Myofiber O2 consumption	VO₂ max, 6-min walk; SKM NAD⁺, p-MRS, MRI; DXA, PRO quality of life; CMP, cycling energy expenditure, indirect calorimetry during sleep, exercise efficiency	Maastricht U (NL)
	NCT04990869	≥60 yrs old	Sputum IL-8	Blood NAD⁺, IL-6, IL-10, TNF-α, CRP, MMP-9 (metabolomics PBMCs; RNAseq nasal epithelium; DNAme PBMC)	U Copenhagen (DK)
	NCT04407390	≥70 yrs old	Need for O₂	Mortality, sepsis, circulatory failure, days in hospital, blood NAD⁺	U Copenhagen (DK)
Candidate Geroprotector	Trial	Indices	1 Outcome	2 (3) Outcomes	Sponsor
------------------------	-------	---------	-----------	----------------	---------
NMN NAD⁺ source	NCT04228640	40–65 yrs old	Blood NAD⁺; 6 min walk; BP; pulse pressure; PRO;	Adverse events, CMP, lipid profile (BMI, HOMA)	EffePharm LTD
	NCT04823260	40–65 yrs old	Blood NAD⁺/NADH, 6 min walk, PR health, telomere length	Safety, tolerability (BMI; HOMA, biologic age Ai 3.0 calculator)	Abinopharm, Inc.
	NCT04685096	40–65 yrs old	Wrinkles, eye bags, dark circles, relaxed features	PRO on skin	Seneque SA
	NCT05040321	55–85 yrs old	AD	CSF (NMM)	Brigham and Women’s
Rapamycin mTOR inh.	NCT03151239	Cardiometabolic function 55–75 yrs old	SKM insulin sensitivity	Liver and adipose insulin sensitivity, fat mass; triglycerides, BP, plasma glucose, FFA, NAD⁺	Washington U
	NCT04571008	Glucose metabolism disorders; 45–75 yrs old	SKM insulin sensitivity	Glucose tolerance	Washington U
	NCT04903210	HTN 18–65 yrs old	Flow-mediated dilation, baPWV	BP, PBMC NAD⁺, sleep quality, adverse events	Sun Yat-Sen U (China)
	NCT04488601	50–85 yrs old	DXA–visceral fat	Bone density, lean mass, adverse events, CBC, COMP, serum IGF-1, HbA1c	AgelessRx UCLA
+metformin, D+Q, fisetin, glucosamine, NR, resveratrol	NCT04994561	Aging	Adverse events: DXA, BP, MMP-9; HOMA-IR; epigenetic clock	PRO quality of life, mitochondrial DNA copy #; senescent preadipocytes	Vitality in Aging Research Group, Inc.
	NCT01649960	≥60 yrs old	Frailty	Physical performance, cognitive function, ECG, MRI diastolic filling	Mayo Clinic
	NCT02874924	70–90 yrs old	T-cell number	Physical performance, cognitive function, ECG, MRI diastolic filling	UTHSCSA
RTB101	NCT0458710	≥60 yrs old	Time from positive SARS-CoV-2 test or exposure to first treatment	eDiary to measure compliance and symptoms, safety, tolerability, infection, hospitalization, death	Restorbio Inc; NIA
D+Q Senolytic D targets: BCR/Abl Src c-Kit Ephrin-R	NCT00891696	Sarcopenia	SKM protein synthesis	p-mTOR levels	UT Galveston
	NCT02874989	IPF	Inflammatory makers in skin, BP, BW, HR, CBC, lipid panel, HbA1c, COMP, CRP, IL-6, SASP, p16	UT Galveston	
vs. fisetin	NCT02652052	BMT survivors	Frailty	Safety, tolerability	Mayo Clinic
	NCT04733534	Cancer survivors	Walking speed, p16⁺ CD3⁺ PBMC	Walking speed, p16⁺ CD3⁺ PBMC	St. Jude’s

(continued on next page)
TABLE 1. (Continued) Current Clinical Trials Implementing the Geroscience Approach

Candidate Geroprotector	Trial	Indices	1 Outcome	2 (3) Outcomes	Sponsor
CKD vs. fisetin	NCT04313634	Skeletal health	CTX-I, P1NP	CSF Tau, Aβ, IL-6, p16, gait, MoCA	Mayo Clinic
	NCT04063124	AD	≥70 yrs old	CSF (D+Q)	UTHSCSA; Mayo Clinic
	NCT04785300	AD	Safety and tolerability	Adverse events	Mayo Clinic
	NCT04685590	AD		SASP, CD3 SnC, CDR-SB, ADAS-Cog, PET	Wake Forest U, Mayo Clinic
	NCT04946383	≥40 yrs old	Epigenetic age	DNAme Illumina 850K epic array	TruDiagnostic
Quercetin	NCT0398927	COPD	8-Isoprostan	(Quercetin) in blood and lungs	Temple U
Senolytic Q targets:	NCT01708278	COPD	Cerebral blood flow	FEV1%, CBC, CMP	U Michigan
PI3K Serpines	NCT01376011	18–75 yrs old	Blood HIF-1, VEGF, EPI, NOS, MCA blood flow	Cognition	Brigham and Women’s Hospital
Other Kinases	NCT01752868	40–60 yrs old	Carotid-femoral pulse wave		Washington U
Plus fish oil, cinnamon, pomegranate; green and black tea; lipic acid, resveratrol; curcumin; sesamin; acetyl-L-carnitine	NCT0437779	COVID-19	PR COVID, death	Morbidity	Orbiiteratec (Turkey)
	NCT04861298	COVID-19	PCR test for SARS-COV-2; PR symptoms	Hospitalization, CRP, LDH, ferritin, CBC	University (Pakistan)
	NCT04853199	COVID-19	Efficacy in treating	Death, hospitalization	Hospital (Tunisia)
	NCT05037240	COVID-19	Prevention of infection	Endothelial relaxation, scRNAseq and bulkSeq to measure SnC in endothelium	Montreal Heart Institute
	NCT04907253	CAD	CRP, ANGPTL2 at surgery		
	NCT03943459	CAD progression	Serum SIRT-1 and end-glycation products		
	NCT01839344	Type II diabetes	GTT	AUC, RHI	Bastyr U
	NCT00065676	Type II diabetes; obesity	Glucose absorption		NIDDK
TABLE 1. (Continued) Current Clinical Trials Implementing the Geroscience Approach

Candidate Geroprotector	Trial	Indices	1 Outcome	2 (3) Outcomes	Sponsor
Fisetin	NCT0472884	Open angle glaucoma	Visual field	PR quality of life	Wills Eye
Senolytic	NCT04857996	DME, neovascular age-related macular degeneration	Ocular and systemic safety and tolerability	Plasma [UBX1325]	Unity Biotechnology Inc
Neuroprotective					
Antihyperglycemic					
Inflammatory Disease					
Cancer					
Parasitic					
Viral					
Bacterial					
Neovascularization	NCT03252322	Diabetics and CKD	Serum SASP, CRP, MSC function including migration	Fried frailty, GFR, proteinuria, adverse events	Mayo Clinic
Provasodilator	NCT0675724	Frailty ≥70 yrs old	Decrease in serum SASP	Blood SASP and CTX-II, PBMC SnC, 6 min walk, timed up-and-go, fast 40-m walk; kinematics, stair climbing, isokinetic dynamometry, PRO pain, knee function, MRI cartilage, need steroids, time to alternative Rx	Mayo Clinic
Immune stim.	NCT04210986	Knee OA 40–80 yrs old	Adverse events, CMP		Steadman Philippson Research Inst
Proteostasis					

Targets:
- MTR
- Wnt
- ERK
- IKB
- PI3K
- TSC1-TSC2

Note:
- Column 1 indicates the therapeutic intervention and its mechanism of action. Column 2 indicates the ClinicalTrials.gov identifier. Bold font indicates the trial identified searching the clinical trials database by disease outcome-aging and the name of the therapeutic. Data collected September 11, 2021.
- EXP: Amyloid beta; AD, Alzheimer disease; ADAS-Cog, Alzheimer Disease Assessment Scale-Cognitive subscale; ADL, activities of daily living; AMPK, AMP-activated protein kinase; ANGPTL2, angiopoietin like 2 protein; AUC, area under the curve; BAL, bronchoalveolar lavage; baPWV, brachial-ankle pulse wave velocity; BMAC, bone marrow aspirate concentrate; BMI, body mass index; BP, blood pressure; BW, body weight; CAD, coronary artery disease; cAMP, cyclic adenosine monophosphate; CK, complete blood count; CDR-SB, clinical dementia rating scale sum of boxes; CKD, chronic kidney disease; CMP, complete metabolic profile including serum electrolytes; liver function tests, renal function tests; CTX, C-terminal telopeptide of type I collagen; CTX, C-terminal crosslinking telopeptide of type I collagen; CRP, C-reactive protein; CVD, cardiovascular disease; DXA, dual-energy x-ray absorptiometry; EBV, Epstein-Barr virus; ESR, erythrocyte sedimentation rate; ERK, extracellular-signal-regulated kinase; et al, et al.; mTOR, mammalian target of rapamycin; NOS, nitric oxidase synthase; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NOS, nitric oxide synthase; OATP, organic anion transporting polypeptide; OA, osteoarthritis; OATP, organic anion transporting protein; PAI, plasminogen activator inhibitor-1; PBMC, peripheral blood mononuclear cells; PCV13, pneumococcal conjugated vaccine; PE, pulmonary embolism; PI3K, phosphoinositide 3-kinase; PET, positron emission tomography; PI3K-Akt, phosphoinositide 3-kinase-Akt; PPI, proteasome activator peptide; PRO, patient reported outcomes; PT, phosphatidylserine; PB, platelet; PPAR, peroxisome proliferator-activated receptor; PSC, pulmonary fibrosis; PTSD, post-traumatic stress disorder; PRO, patient reported outcomes; RB, Retinoblastoma; ROS, reactive oxygen species; SASP, secretory activator of senescence; SCID, severe combined immunodeficiency disease; SD-OCT, spectral domain optical coherence tomography; Serum SASP, CRP, MSC function including migration; SIM, systemic inflammatory response; SNP, single nucleotide polymorphism; SNPs, single nucleotide polymorphisms; SOFA, sequential organ failure assessment; SpO2, oxygen saturation; SP-D, surfactant protein; SPECT, single photon emission computed tomography; SRS, solitary right syndrome; T cell, T lymphocytes; TGF, transforming growth factor; TIC, total intracranial volume; TIMP, tissue inhibitor of metalloproteinase; TRPV1, transient receptor potential vanilloid 1; TNF, tumor necrosis factor; VEGF, vascular endothelial growth factor.

Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.

j AIDS 2022; 36: S41

HIV and Geroscience
sirolimus, or tacrolimus, which inhibit mTOR, are also senomorphic SASP inhibitors. NAD+ can be decreased by cationic nicotinamide adenine dinucleotide (NAD+) can lead to increased oxidative stress and metabolic dysfunction. The NAD+ precursors, nicotinamide mononucleotide, and nicotinamide riboside, may offset the decline of NAD+ with aging, and their use appears to alleviate some age-related phenotypes. SnCs can promote accumulation of the leukocyte ectoenzyme, CD38, which degrades NAD+ and is may be the key driver of age-related declines in NAD+. consistent with this, senolysis leads to reduction in CD38 activity. NAD+ is overexpressed among PWH and is associated with CD4+ and NAD+ depletion in HIV. 17a-estradiol is a nonfeminizing estrogen that is present in mammals of both genders and tumor suppressor (Sirtuin) agonists, such as resveratrol, have antioxidant and anti-inflammatory properties. Ketogenic diets and ketone bodies can reduce adipose mass and obesity and might hold promise for alleviating age- and infection-induced morbidities.

Dietary modifications, such as caloric restriction (CR), compressed eating, or intermittent fasting (IF), may be effective against some age-related diseases and syndromes. IF consists of alternating feeding schedules, whereas CR limits caloric intake without malnutrition. Both reduce oxidative stress and inflammation. IF and CR inhibit the mTOR pathway and promote autophagy, both of which are linked to inflammation and aging. Whether combining these interventions and thereby targeting different but interlinked hallmarks of aging can exert salutary effects that are less than additive, additive, or synergistic remains to be ascertained.

Several histone deacetylase inhibitors have been tested for their impact on the HIV reservoir without substantial success. However, the histone deacetylase inhibitor panobinostat reduces CRP and IL-6 in PWH on suppressive ART. The mTOR inhibitor, sirolimus, reduces markers of T-cell cycling, and in one clinical trial, it somewhat reduced the HIV reservoir in PWH. In a small study of metformin in PWH, there was a reduction in mTOR activation/phosphorylation as well as colonic CD4+ T-cell infiltration. Such preliminary results involving diverse investigative interventions provide support for exploring whether geroscience approaches can be of benefit among PWH.

CONSIDERATIONS FOR GEROSCIENCE-GUIDED CLINICAL TRIALS IN PWH

Advances in geroscience-based approaches and therapeutics offer a novel paradigm for addressing age-related disease in chronic HIV infection. The growing population of older PWH requires a new focus upon evaluating interventions aimed at reducing multimorbidity, improving health span, and promoting resilience. Because many of the same clinical features and pathophysiologic mechanisms of chronic diseases that are operative in older adults without HIV are also observed and have an accelerated rate among PWH, we speculate that geroscience-based interventions can promote healthy aging in PWH. Ongoing geroscience-based trials in the general aging population like TAME can guide the approach to such studies, but it must also be informed by unique challenges that chronic HIV infection presents. In this section, we will use the classic 5 Ws (Who, What, When, Where, and Why) to provide a framework for key considerations in designing geroscience-guided trials for PWH (summarized in Table 2).

First, we must consider why we assume that geroscience-guided approaches should work in PWH. Common chronic diseases associated with aging and geriatric syndromes have multifactorial etiologies, including lifestyle, behavioral, social, and economic factors. Biological aging is a major and modifiable risk factor for such chronic diseases and for geriatric syndromes. Therefore, the presence of multiple chronic diseases can amplify the impact of biological aging. PWH exhibit an earlier onset of many of these chronic conditions and an excess burden of multimorbidity. As we have described, HIV-infection and ART can directly impact pillars of aging. Other known drivers of biological aging are also enriched in PWH, including tobacco.

FIGURE 2. Geroprotector effects on the pillars of aging. The hallmarks or “pillars” of aging represent fundamental mechanisms of biologic aging. Geroprotectors are drugs that target these aging processes. This figure depicts geroprotectors that are currently being studied in ongoing geroscience-guided clinical trials and each agent’s target pillars of aging. Bold arrows indicate the geroprotector’s primary target; thin arrows indicate secondary targets and effects. NR, nicotinamide riboside; NMN, nicotinamide mononucleotide.
use, recreational drug use, depression, socioeconomic disparities, and chronic coinfections. As a result, geroscience-based approaches have the potential to mitigate the risk of both common and HIV-specific drivers of aging. Additional studies are needed to further characterize biological aging processes in PWH and how they may differ across age-associated morbidities and may be distinct from observations in older populations without HIV. To avoid further delays in design and initiation of geroscience-guided clinical trials in PWH, biomarker studies offer a starting point for this process. For example, measuring the SnC burden in PWH compared with age-matched older adults without HIV or with matching comorbidity burden will further characterize cellular senescence in PWH and also enable power analyses to estimate sample size for future interventional clinical trials.

Who might benefit most? PWH have earlier onset of comorbidities associated with aging. Whether an intervention is aimed at preventing or treating age-related disease will affect its timing and effectiveness.

What interventions are the most promising? Targeting upstream pillars of aging on biological aging pathways may have the greatest impact. Senotherapeutics represent a promising approach to reduce or delay age-related comorbidities among PWH. Lifestyle interventions are a promising nonpharmacologic intervention. Selection of outcomes is key and dependent on trial goals.

Where will such studies take place? Multidisciplinary collaborations between teams with expertise in HIV and geriatric medicine are essential.

The 5 Ws	Considerations in PWH	Areas for Further Research
Why assume that geroscience-guided approaches would work?	Geroscience interventions target biological aging processes to delay the onset and progression of pathologies attributable to biological aging. PWH have earlier onset and excess burden of age-related morbidities. HIV infection and ART are linked to biological aging. Known drivers of biological aging are also accentuated among PWH.	How do biological aging processes in PWH differ across age-associated morbidities and from observations in older populations without HIV? How do biomarkers of aging correlate with chronic disease of aging and geriatric syndromes among PWH?
Who might benefit most?	Risk stratification using demographic characteristics, lifestyle factors, comorbidities, and functional status can guide participant selection depending on outcome of interest.	Can biomarkers of aging risk stratify PWH for adverse outcomes?
When during a PWH’s life to intervene?	PWH have earlier onset of comorbidities associated with aging. Whether an intervention is aimed at preventing or treating age-related disease will affect its timing and effectiveness.	How does the onset and time course of risk factors associated age-related disease compare between PWH and people without HIV?
What interventions are the most promising?	Targeting upstream pillars of aging on biological aging pathways may have the greatest impact. Senotherapeutics represent a promising approach to reduce or delay age-related comorbidities among PWH. Lifestyle interventions are a promising nonpharmacologic intervention. Selection of outcomes is key and dependent on trial goals.	How do particular pillars of aging relate to specific age-related diseases? What is the safety profile of geroprotectors in PWH? Are there drug–drug interactions between geroprotectors and ART? What is role for combination therapies and/or multimodal interventions?
Where will such studies take place?	Multidisciplinary collaborations between teams with expertise in HIV and geriatric medicine are essential.	How can these interventions be adapted for and implemented in resource limited settings?
Such improved ascertainment can also guide selection from among available geroprotective agents. The success and favorable safety profiles of senolytics evaluated in recent clinical trials among people without HIV as well as evidence that SnC burden plays a role in age-related disease in PWH support the contention that senotherapeutics represent a promising approach to reduce or delay age-related comorbidities among PWH. Combinations of geroprotectors that target multiple pillars of aging might also be considered. However, it is paramount to assess HIV-specific adverse events and potential drug–drug interactions with ART for any selected geroprotector regimen. Clinical interventions that involve persistent viral reactivation or additional immunocompromise, regardless of other geroprotective effects, would be unacceptable. Because lifestyle factors are also associated with hallmarks of aging, nonpharmacologic strategies, such as exercise-based or dietary interventions, might also be considered. Multimodal interventions combining a geroprotector with lifestyle interventions may have benefits.

Appropriate selection of outcome measures is also key in clinical trials guided by a geroscience approach. To demonstrate that an intervention has an effect on aging, end points should include measures of time to occurrence of one of the collection of possible disease end points rather than focusing on a specific mechanistic pathway. Targeted disease end points should share few risk factors other than age, avoiding overlapping pathogenic mechanisms. A possible approach is to group primary clinical outcomes into distinct causative or risk factor pathways, such as atherosclerosis and CVD, cancers, dementias, diabetes, and all-cause mortality. Secondary outcomes could include functional aging outcomes or disability. For example, the TAME trial includes a primary clinical outcome of time to incidence of age-related disease (myocardial infarction, stroke, congestive heart failure, cancer, dementia/cognitive impairment, or death) with secondary functional aging outcomes of decline in mobility or cognitive function. Factors related to overall resilience and intrinsic recovery or repair capacity, such as vaccine responses or time needed to recover from acute stressors like surgery, might also be considered. Given that gero-supervised therapeutic trials usually require several years of follow-up for adequate numbers of clinical end points to be observed, levels of carefully selected biomarkers can provide intermediate evidence that an intervention is impacting aging biology. The Biomarkers Workgroup from the TAME trial recently outlined a conceptual framework for selection of blood-based biomarkers in gero-supervised clinical trials. This group posited that biomarkers selected must be feasible and reliably measurable in a clinical trial setting, represent biologic aging processes, have robust and consistent associations with mortality risk and trial clinical/functional end points, and be responsive to interventions that affect aging biology. Based on these criteria, they selected IL-6, tumor necrosis factor-α receptor I or II, high-sensitivity CRP, growth-differentiating factor 15, insulin, insulin-like growth factor 1, cystatin C, N-terminal B-type natriuretic peptides, and hemoglobin A1C. Similarly, before initiating a gero-supervised trial clinically involving PWH, further research is needed to identify and validate appropriate aging biomarkers for this population. Clinical researchers must be cognizant that certain biomarkers and many disease risk prediction tools underperform in PWH. Furthermore, additional necessary considerations for trials involving PWH include assessing relationships between selected biomarker levels on HIV viral reservoir, circulating viral load, and immune function.

Finally, we must consider where will these studies will be done and who will lead them. Efforts to design, implement, and analyze findings of gero-supervised studies will require multidisciplinary investigative efforts that bring together expertise from gero-supience, HIV clinicians and clinical trialists, virologists, immunologists, and pharmacologists. As the population of PWH continues to age globally, it will also be essential to understand how to adapt and implement successful gero-supervised interventions in resource-limited settings.

In conclusion, although modern virally suppressive ART has dramatically extended the life span of PWH, novel approaches are urgently needed to address significant gaps in health span by HIV serostatus that persist globally. The gero-supience hypothesis offers a framework to conceptualize mechanisms contributing to and therapeutic targets for age-related comorbidities in PWH. We offer considerations for rapid development of gero-supervised clinical research trials in PWH. The time has come to refocus HIV care beyond longevity and comorbidity management to include the goals of successful healthy aging.

REFERENCES
1. Centers for Disease Control and Prevention. HIV surveillance report. Available at: https://www.cdc.gov/hiv/pdf/library/reports/surveillance/cdc-hiv-surveillance-supplemental-report-vol-26-1.pdf. Accessed September 11, 2021.
2. Autenrieth CS, Beck EJ, Stelze D, et al. Global and regional trends of people living with HIV aged 50 and over: estimates and projections for 2000-2020. PLoS One. 2018;13:e0207005.
3. Weinstein ER, Lee JS, Mendez NA, et al. HIV/AIDS and aging: the new frontier for HIV/AIDS research and care. AIDS. 2021;35:2043-2045.
4. Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med. 2011;62:141–155.
5. Hasse B, Ledergerber B, Furrer H, et al. Morbidity and aging in HIV-infected persons: the Swiss HIV cohort study. Clin Infect Dis. 2011;53:1130–1139.
6. Guaraldi G, Orlando G, Zona S, et al. Premature age-related comorbidities among HIV-infected persons compared with the general population. Clin Infect Dis. 2011;53:1120–1126.
7. Greene M, Covinsky KE, Valeur V, et al. Geriatric syndromes in older HIV-infected adults. J Acquir Immune Defic Syndr. 2015;69:161–167.
8. Maciel RA, Kilic HM, Durand M, et al. Comorbidity is more common and occurs earlier in persons living with HIV than in HIV-uninfected matched controls, aged 50 years and older: a cross-sectional study. Int J Infect Dis. 2018;70:30–35.
9. Woldeyesmaya EM. Chronic diseases multimorbidity among adult people living with HIV at Hawassa University Comprehensive Specialized Hospital, Southern Ethiopia. Int J Chronic Dis. 2020;2020:2190395.
10. Pathai S, Bagillan H, Landay AL, et al. Is HIV a model of accelerated or accentuated aging? J Gerontol A Biol Sci Med Sci. 2014;69:833–842.
11. Gabuzda D, Jamierson BD, Collman CG, et al. Pathogenesis of aging and age-related comorbidities in people with HIV: highlights from the HIV ACTION workshop. Pathog Immun. 2020;5:143–174.
12. Lerner AM, Eisinger RW, Fauci AS. Comorbidities in persons with HIV: the lingering challenge. JAMA. 2020;323:19–20.
63. Henrich TJ, Bosch R, Godfrey C, et al. Sirolimus reduces T-cell cycling in overweight adults with moderate asthma. *Ageing Res Rev.* 2013;12:131–139.

64. Schultz MB, Sinclair DA. Why NAD(+) declines during aging: it’s destroyed. *Cell Metab.* 2016;23:965–966.

65. Chini CCS, Peclat TR, Warner GM, et al. CD38 ecto-enzyme in immune cells is induced during aging and regulates NAD(+) and NMN levels. *Nat Metab.* 2020;2:1284–1304.

66. Lu L, Wang J, Yang Q, et al. The role of CD38 in HIV infection. *AIDS Res Ther.* 2021;18:11.

67. Rodriguez-Alba JC, Abrego-Pereado A, Gallardo-Hernandez C, et al. HIV disease progression: overexpression of the ectoenzyme CD38 as a contributory factor? *Bioessays.* 2019;41:e1800128.

68. Gonzalez-Freire M, Diaz-Ruiz A, deCabo R. 17α-Estradiol: a novel therapeutic intervention to target age-related chronic inflammation. *J Gerontol A Biol Sci Med Sci.* 2017;72:1–2.

69. Courant F, Akglaede L, Antignac JP, et al. Assessment of circulating sex steroid levels in prepubertal and pubertal boys and girls by a novel ultrasensitive gas chromatography-tandem mass spectrometry method. *J Clin Endocrinol Metab.* 2010;95:82–92.

70. Toran-Allard CD, Tinnikov AA, Singh RJ, et al. 17α-Estradiol: a brain-active estrogen? *Endocrinol Exp.* 2005;44:3834–3859.

71. Mann SN, Hadad N, Nelson Holte M, et al. Health benefits attributed to 17α-Estradiol, a lifespan-extending compound, are mediated through estrogen receptor alpha. *Elife.* 2020;9:e59616.

72. Johnson JB, Summer W, Cutler RG, et al. Alternate day calorie restriction improves clinical findings and reduces markers of oxidative stress and inflammation in overweight adults with moderate asthma. *Free Radic Biol Med.* 2007;42:665–674.

73. Henrich TJ Bosch R, Godfrey C, et al. Sirolimus reduces T-cell cycling and immune checkpoint marker expression ACTG A5337. Conference on Retroviruses and Opportunistic Infections, Seattle, WA, 4–7 March 2019.

74. Planas D, Pagliuca A, Ponte R, et al. LILAC pilot study: effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy. *EBioMedicine.* 2021;65:103270.

75. Inouye SK, Studenski S, Tinetti ME, et al. Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. *J Am Geriatr Soc.* 2007;55:780–791.

76. Erlandson KM, Karris MY. HIV and aging: reconsidering the approach to management of comorbidities. *Infect Dis Clin North Am.* 2019;33:769–786.

77. Espeland MA, Crimmins EM, Grossardt BR, et al. Clinical trials targeting aging and age-related multimorbidity. *J Gerontol A Biol Sci Med Sci.* 2017;72:355–361.

78. Montano M. Pressing questions and challenges in the HIV-1 and SARS-CoV-2 syndemic. *AIDS Res Hum Retroviruses.* 2021;37:589–600.

79. Justice JN, Gubbi S, Kulkarni AS, et al. A geroscience perspective on immune resilience and infectious diseases: a potential case for metformin. *Geroscience.* 2021;43:1093–1112.

80. Justice JN, Ferrucci L, Newman AB, et al. A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. *Geroscience.* 2018;40:419–436.

81. Kim PS, Woods C, Georgoff P, et al. A1C underestimates glycemia in HIV infection. *Diabetes Care.* 2009;32:1591–1593.