Alon – Tarsi numbers of direct products

Fedor Petrov∗ Alexey Gordeev†

February 8, 2021

Abstract

We provide a general framework on the coefficients of the graph polynomials of graphs which are Cartesian products. As a corollary, we prove that if $G = (V, E)$ is a graph with degrees of vertices $2d(v), v \in V$, and the graph polynomial $\prod_{(i,j) \in E}(x_j - x_i)$ contains an “almost central” monomial (that means a monomial $\prod v x^c_v$, where $|c_v - d(v)| \leq 1$ for all $v \in V$), then the Cartesian product $G \square C_{2n}$ is $(d(\cdot) + 2)$-choosable.

1 Introduction

Let F be a field, $x = (x_1, \ldots, x_n)$ a set of variables. For $A \subset F$ and $a \in A$ denote

$$D(A, a) := \prod_{b \in A \setminus a} (a - b).$$

For a multi-index $d = (d_1, \ldots, d_n) \in \mathbb{Z}_{>0}^n$ denote $|d| = d_1 + \ldots + d_n$, $x^d = \prod_{i=1}^n x_i^{d_i}$. For a polynomial $f \in F[x]$ denote by $[x^d]f$ the coefficient of monomial x^d in polynomial f.

Theorem 1 (Combinatorial Nullstellensatz [1]). Choose arbitrary subsets $A_i \subset F$, $|A_i| = d_i + 1$ for $i = 1, \ldots, n$. Denote $A = A_1 \times A_2 \times \ldots \times A_n$. For any polynomial $f \in F[x]$ such that $\deg f \leq |d|$, if $[x^d]f \neq 0$, then there exists $a \in A$ for which $f(a) \neq 0$.

Alon and Tarsi [2] suggested to use Combinatorial Nullstellensatz for list graph colorings. Namely, if $G = (V, E)$ is a non-directed graph with the vertex set $V = \{v_1, \ldots, v_n\}$ and the edge set E, we define its graph polynomial in n variables x_1, \ldots, x_n as

$$F_G(x) = \prod_{(i,j) \in E} (x_j - x_i).$$

∗St. Petersburg State University, St. Petersburg, Russia f.v.petrov@spbu.ru.
†The Euler International Mathematical Institute, St. Petersburg, Russia gordaiserg@gmail.com .
Here each edge corresponds to one linear factor $x_j - x_i$, so the whole F_G is defined up to a sign. Assume that each vertex v_i has a list A_i consisting of $d_i + 1$ colors, which are real numbers. A proper list coloring of G subordinate to lists \(\{ A_i \} \) is a choice of colors \(a = (a_1, \ldots, a_n) \in A_1 \times \cdots \times A_n = A \) for which neighboring vertices have different colors: \(a_i \neq a_j \) whenever \((i, j) \in E \).

In other words, a proper list coloring is a choice of $a \in A$ for which $F_G(a) \neq 0$. If \(|d| = |E| \), the existence of a proper list coloring follows from \(|x^d| F_G \neq 0 \).

Define the chromatic number \(\chi(G) \) of the graph G as the minimal m such that there exists a proper list coloring of G subordinate to equal lists of size m: \(A_i = \{1, \ldots, m\} \). Define the list chromatic number $\text{ch}(G)$ of the graph G as the minimal m such that for arbitrary lists A_i, \(|A_i| \geq m \), there exists a proper list coloring of G subordinate to these lists. Define the Alon–Tarsi number $\text{AT}(G)$ of the graph G as the minimal k for which there exists a monomial \(x^d \) such that \(\max(d_1, \ldots, d_n) = k - 1 \) and \(|x^d| F_G \neq 0 \).

From above we see that the list chromatic number does not exceed the Alon–Tarsi number:

\[
\text{ch}(G) \leq \text{AT}(G).
\]

Further we consider the Alon–Tarsi numbers for the graphs which are direct products $G_1 \square G_2$ of simpler graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$. Recall that the vertex set of $G_1 \square G_2$ is $V_1 \times V_2$ and two pairs (v_1, v_2) and (u_1, u_2) are joined by an edge if and only if either $v_1 = u_1$ and $(v_2, u_2) \in E_2$ or $v_2 = u_2$ and $(v_1, u_1) \in E_1$.

It is well known (Lemma 2.6 in [9]) that \(\chi(G_1 \square G_2) = \max(\chi(G_1), \chi(G_2)) \). Much less is known about the list chromatic number (and the Alon–Tarsi number) of the Cartesian product of graphs. Borowiecki, Jendrol, Král, and Miškuf [3] gave the following bound:

Theorem 2 ([3]). For any two graphs G and H,

\[
\text{ch}(G \square H) \leq \min(\text{ch}(G) + \text{col}(H), \text{col}(G) + \text{ch}(H)) - 1.
\]

Here $\text{col}(G)$ is the coloring number of G, i.e. the smallest integer k for which there exists an ordering of vertices v_1, \ldots, v_n of G such that each vertex v_i is adjacent to at most $k - 1$ vertices among v_1, \ldots, v_{i-1}.

Here we continue the previous work [6] where the toroidal grid $C_n \square C_m$ (here C_n is a simple cycle with n edges) was considered and it was proved that $\text{AT}(C_n \square C_{2k}) = 3$.

An explicit form of Combinatorial Nullstellensatz (the coefficient formula) was used in [6], such approach does not seem to work in the more general setting of the present paper.

We call a coefficient \([x^d] F_G(x) \) of the graph polynomial F_G central, if $\xi_i = \deg_G(v_i)/2$ for all i, and almost central, if $|\xi_i - \deg_G(v_i)/2| \leq 1$ for all i.

Our main result is the following

Theorem 3. Let G be a graph, all vertices in which have even degree. Suppose that the graph polynomial F_G has at least one non-zero almost central coefficient.
Then for $H = G \square C_{2k}$ the central coefficient is non-zero. In particular, H is $(\deg H/2 + 1)$-choosable and

$$
\text{ch}(H) \leq \text{AT}(H) \leq \frac{\Delta(H)}{2} + 1 = \frac{\Delta(G)}{2} + 2.
$$

Note that Theorem 2 gives the bound $\text{ch}(H) \leq \min(\text{ch}(G) + 2, \text{col}(G) + 1)$ under the same conditions. When $\text{ch}(G)$ (or $\text{col}(G)$) is small, this bound is stronger. But it can also be weaker when $\text{ch}(G)$ and $\text{col}(G)$ are close to $\Delta(G)$. For example, if $G = C_{2l+1}$ is an odd cycle, then F_G obviously has a non-zero almost central coefficient, so, by Theorem 3, $\text{ch}(C_{2l+1} \square C_{2k}) \leq 3$ (this was also proved in [6] by a different argument). On the other hand, Theorem 2 gives only $\text{ch}(C_{2l+1} \square C_{2k}) \leq 4$.

2 Coefficients as traces

Let $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n) \in \mathbb{Z}_{\geq 0}^n$, denote $a_1 + \cdots + a_n = |a|$. Consider a polynomial

$$
P(x, y) = Q(x)R(x, y) \in F[x, y]
$$

in variables $x = (x_1, \ldots, x_n)$, $y = (y_1, \ldots, y_n)$, where Q is of degree at most $|a|$, R is homogeneous of degree $|b|$.

Consider nk variables (x^1, x^2, \ldots, x^k), $x^i = (x_1^i, \ldots, x_n^i)$: for convenience, denote $x^{k+1} = x^i$. Define

$$
P_k(x^1, x^2, \ldots, x^k) = \prod_{1 \leq j \leq k} P(x^j, x^{j+1}).
$$

We are interested in the coefficient

$$
M_k := \left[\prod_{j=1}^{k} (x^j)^{a+b} \right] P_k.
$$

It is easy to see that this coefficient is equal to

$$
\sum \prod_{j=1}^{k} \left[(x^j)^{p^j} (x^{j+1})^{q^j} \right] R(x^j, x^{j+1}) \cdot \left[(x^j)^{a+b-p^j-q^{j-1}} \right] Q(x^j) = \text{tr} \Phi^k,
$$

where the sum is over all (p^1, \ldots, p^k), (q^1, \ldots, q^k) such that

$$
p^j = (p_1^j, \ldots, p_n^j), q^j = (q_1^j, \ldots, q_n^j) \in \mathbb{Z}_{\geq 0}^n, \quad |p^j| + |q^j| = |b|;
$$

for $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2); \alpha^i, \beta^i \in \mathbb{Z}_{\geq 0}^n; |\alpha^1| + |\alpha^2| = |\beta^1| + |\beta^2| = |b|,$

$$
\Phi(\alpha, \beta) = \left[(x)^{\alpha^1} (y)^{\alpha^2} \right] R(x, y) \cdot \left[(x)^{a+b-\alpha^1-\beta^2} \right] Q(x).
$$

If Q is homogeneous, then $\Phi(\alpha, \beta) \neq 0$ only if $|\alpha^1| + |\beta^2| = |b|$, i.e. if $|\alpha^1| = |\beta^1|, |\alpha^2| = |\beta^2|$; the same is true for $\Phi(\beta, \alpha).$
3 Cartesian product of a graph and an even cycle

Let G be a graph, all vertices in which have even degree. Denoting $V(G) = \{v_1, \ldots, v_n\}$, we take $a_i = \deg(v_i)/2$, $Q(x) = F_G(x)$, $R(x, y) = \prod_j (y_j - x_j)$, $b_i = 1$, and let k be even.

Then $\Phi(\alpha, \beta) \neq 0$ only if $\alpha_j^1 = 1 - \alpha_j^2 \leq 1, \beta_j^1 = 1 - \beta_j^2 \leq 1$ for all j, $|\alpha^1| = |\beta^1|; \text{if this is the case, then}$

$$
\Phi(\alpha, \beta) = (-1)^{|\alpha^1|} \left[(x)^{a+b-a^1-(b-\beta^1)} \right] F_G(x) = (-1)^{|\alpha^1|} \left[(x)^{a+\beta^1-a^1} \right] F_G(x).
$$

Note that

$$
\left[x^{a+\beta^1-a^1} \right] F_G(x) = (-1)^{|E(G)|} \left[x^{a+\beta^1-a^1} \right] F_G(x), \quad (2)
$$

since simultaneously changing the choice in each linear factor $x_i - x_j$ of F_G we get one of these monomials from the other. Thus, matrix Φ is (skew-)symmetric; therefore all eigenvalues of the matrix are real (or all are imaginary). Then the k-th powers of all non-zero eigenvalues are real and have the same sign. It follows that $\text{tr } \Phi^k \neq 0$ if at least one of the coefficients of the form

$$
\left[x^{a+\beta^1-a^1} \right] F_G(x)
$$

is non-zero; in other words, if there is at least one non-zero coefficient $[x^\xi] F_G(x)$ with $|\xi_i - \deg(v_i)/2| \leq 1$ for all i. Theorem 3 is proved.

Remark 1. Define a generalized graph polynomial Q for a graph or multigraph $G = (V, E)$ with even degrees, $V = \{v_1, \ldots, v_n\}$, as a product of factors $x_i \pm x_j$ for all edges $v_i v_j \in E$ (one multiple for each edge). Note that it satisfies the symmetry or antisymmetry property (2), with some multiple ± 1 on the place of $(-1)^{|E(G)|}$. Therefore the same argument shows that if Q has a non-zero almost central coefficient, then the polynomial

$$
\prod_{i=1}^{2k} Q(x^i, x^{i+1}) \prod_{i=1}^n \prod_{j=1}^n (x_j^i - x_j^{i+1}), \quad \text{where } x^{2k+1} \equiv x^1,
$$

has a non-zero central coefficient (that is, a coefficient of $\prod_{i,j} (x_j^i)^{\deg(v_i)/2+1}$).

4 Applications

4.1 Cartesian product of several cycles

Consider a Cartesian product of odd cycles $G = C_{2k_1+1} \square \ldots \square C_{2k_n+1}$, such that

$$
\frac{1}{k_1} + \ldots + \frac{1}{k_n} \leq 1.
$$

Our goal is to show that the graph polynomial F_G has a non-zero almost central coefficient. We employ the Alon-Tarsi method:
Theorem 4 (see Corollary 1.2, Corollary 2.3 in [2]). Let G be a non-directed graph on vertices v_1, \ldots, v_n. Suppose G has an orientation D with outdegrees $d_{out}(v_i) = d_i$, and there are no odd directed cycles in D. Then the coefficient $[x^d]F_G$ (where $d = (d_1, \ldots, d_n)$) is non-zero.

We are going to build an orientation of G, such that the outdegree of any vertex lies in $\{n - 1, n, n + 1\}$, and there are no odd directed cycles. We are going to denote vertices of G by $v = (v_1, \ldots, v_n)$, $0 \leq v_i \leq 2k_i$.

We divide G into 2^n boxes H_i, $0 \leq i < 2^n$: if the binary notation of i is $b_i, 1, \ldots, b_i, n$, then

$$H_i = \{(v_1, \ldots, v_n) \mid 0 \leq v_j \leq k, \text{ if } b_{i,j} = 0; \ k < v_j \leq 2k \text{ otherwise}\}.$$

These boxes may be colored alternately white and black (in a chess board). We direct all edges sticking out of black boxes outward, and from white boxes inward. Note that any directed cycle is contained in some box H_i and has therefore even length.

The remaining task is to obtain the orientation of the box of dimension n with outdegree of any vertex lying in $\{n - 1, n\}$. We will use this orientation for all white boxes H_i’s, for the black boxes use the reversed orientation. This guarantees that in white boxes all outdegrees are in $\{n - 1, n\}$; in black boxes the indegrees are in $\{n - 1, n\}$, therefore the outdegrees are in $\{n, n + 1\}$.

To prove the existence of such orientation we are going to use the following theorem (see, for example, Theorem 3 in [4]):

Theorem 5. There exists an orientation of $G = (V, E)$ with $l_v \leq d_{out}(v) \leq u_v$ for any v, if and only if for any $W \subset V$ the following two conditions hold:

1. $|E(W)| \leq \sum_{v \in W} u_v$;
2. $|\overline{E}(W)| \geq \sum_{v \in W} l_v$,

where $\overline{E}(W) = E(V) \setminus E(V \setminus W)$ is the set of edges incident to at least one vertex of W.

Proposition 6. Let $H = P_{k_1} \square \ldots \square P_{k_n}$ (P_i is a path of length i). There exists an orientation of H with outdegrees of all vertices lying in $\{n - 1, n\}$ if and only if

$$\frac{1}{k_1} + \cdots + \frac{1}{k_n} \leq 1. \quad (4)$$

Proof. First of all, note that the condition (4) is necessary: the sum of outdegrees of all vertices does not exceed the number of edges in a graph, so

$$(n - 1) \prod_{i=1}^{n} k_i \leq \sum_{i=1}^{n} (k_i - 1) \prod_{1 \leq j \leq n, j \neq i}^{n} k_i = \prod_{i=1}^{n} k_i \cdot \sum_{i=1}^{n} \left(1 - \frac{1}{k_i}\right), \quad (5)$$
which is equivalent to (4). To show that the condition (4) is sufficient, we are going to verify two conditions from Theorem 5 with \(l(v) = n - 1, u(v) = n \) for each \(v \). The first condition holds:

\[
|E(W)| \leq \frac{1}{2} \sum_{v \in W} d(v) \leq n|W|.
\]

The second condition looks like

\[
|E(V)| - |E(V \setminus W)| \geq (n - 1)|W|.
\]

Denoting \(U = V \setminus W \), it is equivalent to

\[
|E(U)| - (n - 1)|U| \leq |E(V)| - (n - 1)|V|
\]

for each \(U \subset V \). Thus, to prove that the second condition holds, it is sufficient to show that the function

\[
f(U) = |E(U)| - (n - 1)|U|
\]

reaches its maximum value at \(U = V \).

For \(1 \leq i \leq n \), \(p = (p_1, \ldots, p_{i-1}, p_{i+1}, \ldots, p_n) \), \(1 \leq p_j \leq k_j \), denote

\[
U(i, p) = \{ v \in U \mid v_j = p_j \text{ for any } j \neq i \}.
\]

Then

\[
|E(U)| \leq n|U| - \sum_{i,p} \chi(|U(i, p)| > 0).
\]

Denote \(l = 1 - \sum_{i=1}^{n} \frac{1}{k_i} \geq 0; \) then

\[
|U| = \left(\sum_{i=1}^{n} \frac{1}{k_i} + l \right) |U| = l|U| + \sum_{i,p} \frac{|U(i, p)|}{k_i}.
\]

It follows that

\[
f(U) \leq l|U| + \sum_{i,p} g(U, i, p),
\]

where

\[
g(U, i, p) = \begin{cases}
0, & \text{if } |U(i, p)| = 0, \\
\frac{|U(i, p)|}{k_i} - 1, & \text{otherwise}.
\end{cases}
\]

In conclusion, note that

\[
f(U) \leq l|U| + \sum_{i,p} g(U, i, p) \leq l|U| \leq l|V| = f(V).
\]

\(\square \)
Corollary 7. Let \(G = C_{2k_1+1} \square \ldots \square C_{2k_m+1} \square C_{2k_{m+1}} \square \ldots \square C_{2k_n} \), \(0 \leq m < n \), and, additionally,
\[
\frac{1}{k_1} + \cdots + \frac{1}{k_m} \leq 1.
\]
Then \(\ch(G) \leq \AT(G) = n + 1 \).

Proof. The upper bound follows from the construction described above; the lower bound is obvious: in each monomial of the graph polynomial \(F_G \) there is a variable of degree at least \(n \).

Note that even though the result is sharp for the Alon–Tarsi number, it is far from sharp for the list chromatic number when \(n \) is large enough. For example, if \(k_i \geq 2 \) for all \(i = 1, \ldots, m \) (it is so for sure if \(m \geq 2 \) and \(\sum 1/k_i \leq 1 \)), then graph \(G \) is triangle free and has maximum degree \(2n \), which yields \(\ch(G) \leq (2 + o(1)) \frac{n}{\log n} \) by a result of Molloy [7], a recent improvement of the \(O\left(\frac{n}{\log n}\right) \) bound first given by Johansson [5].

4.2 Powers of cycles

Proposition 8. Let \(C_n^p \) be the \(p \)-th power of a cycle \(C_n \), i.e. a graph on the vertex set \(\{v_1, \ldots, v_n\} \), in which \(v_i \) and \(v_j \) are adjacent if and only if \(j \in \{i-p, \ldots, i-1, i+1, \ldots, i+p\} \) (the indices are modulo \(n \)). Suppose \(p+1 \) divides \(n \) or \(n \geq p(p+1) \). Then
\[
\ch(C_n^p \square C_{2k}) \leq \AT(C_n^p \square C_{2k}) \leq p + 2.
\]

Proof. In [8] the Alon–Tarsi number \(\AT \) for powers of cycles is estimated. If \(p+1 \) divides \(n \), it is shown that the central coefficient of \(F_{C_n^p} \) is non-zero; if \(p+1 \) does not divide \(n \), but \(n \geq p(p+1) \), then it is shown that for a graph \(H_n^p \), obtained by adding some matching to the graph \(C_n^p \), there is a non-zero coefficient of \(F_{H_n^p} \) with degree of each variable in \(\{p, p+1\} \). This coefficient is a linear combination of almost central coefficients of \(F_{C_n^p} \), so at least one of them is also non-zero.

4.3 Multigraphs

Note that Theorem 3 can be applied to multigraphs. In particular, non-trivial bounds can be obtained for graphs with large choice number by adding multiple edges to them. To give an example, we prove the following proposition:

Proposition 9. Let \(G \) be a graph, all vertices of maximum degree in which may be covered by some vertex-disjoint cycles. Then
\[
\AT(G \square C_{2k}) \leq \Delta(G) + 1 = \Delta(G \square C_{2k}) - 1.
\]

Proof. Denote the set of edges contained in these cycles as \(F \). Consider a graph \(G' \), which can be obtained from \(G \) by adding a multiple edge to every edge from
the set $E(G) \setminus F$. Obviously, $\AT(G \square C_{2k}) \leq \AT(G' \square C_{2k})$. If we show that $F_{G'}$ has a non-zero almost central coefficient, then

$$\AT(G' \square C_{2k}) \leq \frac{\Delta(G')}{2} + 2 = \Delta(G) + 1.$$

Consider another graph G'', which can be obtained from G by adding a multiple edge to every edge. Note that the central coefficient of $F_{G''} = F_G^2$ is non-zero: the central coefficient of $F_{G''}$ is the sum of products of “opposite” coefficients of F_G, each summand in this sum has the same sign (which depends on the parity of the number of edges in G, cf. (2)). But the central coefficient of $F_{G''}$ is a linear combination of almost central coefficients of $F_{G'}$; it follows that at least one of them is also non-zero.

Corollary 10.

$$\AT(K_n \square C_{2k}) = \ch(K_n \square C_{2k}) = n.$$

Proof. We have

$$n \geq \AT(K_n \square C_{2k}) \geq \ch(K_n \square C_{2k}) \geq \ch(K_n) \geq n,$$

where the first inequality follows from Proposition 9, the second from (1), the third and fourth are clear. So all inequalities turn into equalities. □

Next proposition is a generalization of Theorem 3 for arbitrary graphs (not necessarily with even degrees, not necessarily with a non-zero almost central coefficient.) Roughly speaking, it bounds the choosability in dependence on how not-so-far-from-central coefficient does the graph polynomial have. It also gives Corollary 10 (we skip the details).

Proposition 11. Let $G = (V,E)$ be a graph; denote $V = \{v_1, \ldots, v_n\}$. For any $\eta = (\eta_1, \ldots, \eta_n)$ denote $l_G(\eta, i) = |\eta_i - \deg_G(v_i)/2|$. Consider a non-zero coefficient $[x^l]F_G(x)$ of the graph polynomial F_G. Partition the set $\{1, \ldots, n\}$ onto sets

$$N = \{i : \tau_i = \deg_G(v_i)/2\},$$

$$A_1 = \{i : \tau_i \leq \deg_G(v_i)/2 - 1\},$$

$$A_2 = \{i : \tau_i = \deg_G(v_i)/2 - 1/2\},$$

$$B_1 = \{i : \tau_i \geq \deg_G(v_i)/2 + 1\},$$

$$B_2 = \{i : \tau_i = \deg_G(v_i)/2 + 1/2\}.$$

Additionally, let A_3 be an arbitrary subset of A_1 of size $\max(0, |A_1| - |B_1|)$; let B_3 be an arbitrary subset of B_1 of size $\max(0, |B_1| - |A_1|)$. Then $G \square C_{2k}$ is f-choosable, where

$$f(v_i) = \begin{cases}
\deg_G(v_i)/2 + 2, & \text{if } i \in N, \\
\deg_G(v_i)/2 + l_G(\tau, i) + 1, & \text{if } i \in A_1 \cup B_1 \setminus A_3 \setminus B_3, \\
\deg_G(v_i)/2 + l_G(\tau, i) + 2, & \text{if } i \in A_2 \cup B_2 \cup A_3 \cup B_3.
\end{cases}$$
Proof. Define a multiset A as follows:

- each $i \in A_1 \setminus A_3$ occurs $2(l_G(\tau, i) - 1)$ times in A;
- each $i \in A_2 \cup A_3$ occurs $2l_G(\tau, i)$ times in A.

Multiset B is defined similarly. Note that

$$|A| = \sum_{i \in A_1 \cup A_2} 2l_G(\tau, i) - 2 \min(|A_1|, |B_1|).$$

Similarly,

$$|B| = \sum_{i \in B_1 \cup B_2} 2l_G(\tau, i) - 2 \min(|A_1|, |B_1|).$$

It follows that $|A| = |B| =: m$. Let $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_m\}$.

Consider 2^m polynomials

$$Q_\varepsilon(x) = F_G(x) \cdot \prod_{j=1}^{m} (x_{a_j} \pm x_{b_j})$$

indexed by the choice ε of m signs. Using the relation $x_{a_j} = \frac{1}{2}((x_{a_j} + x_{b_j}) + (x_{a_j} - x_{b_j}))$ we see that the polynomial $Q := F_G(x) \cdot \prod x_{a_i}$ is a linear combination of Q_ε’s. Note that

$$\left[x^\tau \cdot \prod x_{a_i} \right] Q = [x^\tau] F_G \neq 0,$$

therefore there exists ε such that

$$\left[x^\tau \cdot \prod x_{a_i} \right] Q_\varepsilon \neq 0.$$

Note that Q_ε is a generalized graph polynomial of a certain multigraph on the ground set V with degree function $2f(v_i) - 4$. The coefficient of $x^\tau \cdot \prod x_{a_i}$ is almost central for Q_ε.

Now it follows from the Remark 1 that the polynomial (3) (for $Q = Q_\varepsilon$) has a non-zero central coefficient.

Finally, since the graph polynomial $F_G \square C_{2k}$ divides this polynomial, graph $G \square C_{2k}$ is f-choosable. \hfill \Box

We are grateful to Noga Alon for bringing the papers [5, 7] to our attention.

The study was funded by Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS” (general Sections 2 and 3) and by by RFBR, project number 19-31-90081 (applications in Section 4).

References

[1] N. Alon. Combinatorial Nullstellensatz. *Combinatorics, Probability and Computing*, 8(1-2):7–29, 1999.
[2] N. Alon and M. Tarsi. Colorings and orientations of graphs. *Combinatorica*, 12(2):125–134, 1992.

[3] M. Borowiecki, S. Jendrol, D. Král, and J. Miškuf. List coloring of Cartesian products of graphs. *Discrete Mathematics*, 306(16):1955–1958, 2006.

[4] A.U. Frank and A. Gyárfás. How to orient the edges of a graph? *Colloq. Math. Soc. János Bolyai*, 18:353–364, 1976.

[5] A. Johansson. Asymptotic choice number for triangle free graphs. *DIMACS Technical Report 91–5*, 1996.

[6] Z. Li, Z. Shao, F. Petrov, and A. Gordeev. The Alon–Tarsi Number of A Toroidal Grid. *arXiv preprint arXiv:1912.12466*, 2019.

[7] M. Molloy. The list chromatic number of graphs with small clique number. *Journal of Combinatorial Theory, Series B*, 134:264–284, 2019.

[8] A. Prowse and D.R. Woodall. Choosability of Powers of Circuits. *Graphs and Combinatorics*, 19:137–144, 2003.

[9] G. Sabidussi. Graphs with given group and given graph-theoretical properties. *Canadian Journal of Mathematics*, 9:515–525, 1957.