Novel phthalide derivatives identified from *Ligusticum chuanxiong* (Chuanxiong)

Jun Yang††, Xiao-Lin Feng††, Yang Yu††, Qi Wang†, Jian Zou†, Chuan-Xi Wang†, Zhen-Qiang Mu†, Xin-Sheng Yao† and Hao Gao††

Abstract

Background: *Ligusticum chuanxiong* Hort. (*Chuanxiong*) is a well-known Chinese medicine, and studies on its chemical constituents are important for explaining its mechanism of action and quality control. This study aims to investigate the chemical constituents of the dried rhizome of *L. chuanxiong*.

Methods: The dried rhizome of *L. chuanxiong* was extracted with 60% ethanol, and the concentrated extract was isolated by silica gel, octadecyl silane, and Sephadex LH-20 columns, followed by preparative/semipreparative high-performance liquid chromatography (HPLC) to obtain the pure chemical constituents. The structures of the constituents were elucidated by HR-ESI-MS, UV, IR, 1D NMR, and 2D NMR methods. Enantiomeric separation was achieved by a chiral HPLC method. The absolute configuration was determined by the modified Mosher’s method.

Results: Six novel phthalide derivatives, (+)/(-)-chuanxiongins A–F (1–6), together with four known phthalides (7–10) were isolated from *Chuanxiong*. All of the new compounds (1–6) were present as pairs of enantiomers. Enantiomeric separation of 1 was successfully achieved by HPLC on a chiral column. The absolute configuration of (-)-1 was determined by a modified Mosher’s method.

Conclusion: The six novel phthalide derivatives (1–6) isolated from *Chuanxiong* were phthalide fatty acid esters that were structurally analogous and characterized by fatty acid acylation at 6-OH or 7-OH.

Keywords: *Ligusticum chuanxiong*, Chuanxiong, Phthalide fatty acid esters, New subtype of phthalides, Chuanxiongins

Background

The dried rhizome of *Ligusticum chuanxiong* Hort. (*Chuanxiong*) has been used for the treatment of menstrual disorders in Chinese medicine [1]. *Chuanxiong* has the functions of activating blood flow, expelling wind, and relieving pain associated with blood (xue) and qi stagnation [2]. Previous phytochemical studies on *Chuanxiong* isolated some phthalides (monomeric and dimeric phthalides) [3–6], alkaloids [7], phenolic acids [8], ceramides, and cerebrosides [9]. Among them, phthalides as the characteristic constituents had bioactivities including vasodilatation [10], decreased platelet aggregation [11], analgesia [12], anti-inflammation [13, 14], and butyrylcholine esterase inhibition [15]. The chemical studies on the constituents of *Chuanxiong* and identification of new constituents are beneficial for explaining how it exerts its effects and form the foundation for its quality control. This study aims to investigate the chemical constituents of *Chuanxiong* and identify new constituents.

Methods

General experimental procedures

Optical rotations were obtained on a JASCO P-1020 digital polarimeter (JASCO Corporation, Tokyo, Japan). UV spectra were recorded with a JASCO V-550 UV/Vis spectrometer (JASCO Corporation, Tokyo, Japan). IR spectra were acquired using a JASCO FT/IR-480 plus spectrometer (JASCO Corporation, Tokyo, Japan). CD spectra were obtained on a JASCO J-810 spectropolarimeter at...
room temperature. 1D and 2D spectra were measured with a Bruker AV300/400 spectrometer in CDCl₃ (δH = 7.26 ppm, δC = 77.2 ppm) or CD₃D₂N (tetramethylsilane (TMS) as internal standard) solution. ESI-MS spectra were acquired on a FINNIGAN LCQ Advantage MAX mass spectrometer. HR-ESI-MS spectra were taken on a Waters Snapt G2 mass spectrometer. Analytical HPLC was performed on a Waters 2695 HPLC system equipped with a UV detector and a reversed-phase column (5 µm; i.d. 250 × 4.6 mm; Cosmosil). HPLC separations were performed using a Waters 1515 system equipped with a UV detector and a reversed-phase semipreparative column (5 µm; i.d. 250 × 10 mm; Cosmosil) or preparative column (5 µm; i.d. 250 × 20 mm; Cosmosil). Chiral separation was achieved by HPLC on a Dionex 3000 series pump equipped with a UV detector and a Lux TF Cellulose-2 column (3 µm; i.d. 250 × 4.6 mm; Phenomenex). Silica gel (200–300 mesh; Qingdao Marine Chemical Ltd., China), octadecyl silane (ODS) (YMC Ltd., Japan), and Sephadex LH-20 (Amersham Pharmacia Biotech, Sweden) were used for column chromatography. Mosher’s reagent was purchased from Alfa Aesar (England).

Plant material

The dried rhizome of *L. chuanxiong* Hort. was supplied by Sichuan Neautus Traditional Chinese Medicine Co. Ltd. (China) in 2012, and identified by Yue-Cheng Li (Sichuan Institute for Food and Drug Control) by characteristic identification, microscopic identification, and the physics and chemistry identification according to Chinese pharamcopeia [1]. A voucher specimen (LICH-2012-SC) was deposited in the Institute of Traditional Chinese Medicine and Natural Products, Jinan University (China).

Extraction and isolation

The dried rhizome of *L. chuanxiong* Hort. (18.0 kg) was cut into small pieces and extracted with 60 % ethanol (70 L × 2 h × 2). The concentrated extract (5.69 kg) was suspended in H₂O (13 L) and successively partitioned with EtOAc and n-BuOH (each 10 L × 4). The EtOAc layer (480 g) was loaded onto a silica gel column (8 × 75 cm) and eluted with a cyclohexane–EtOAc gradient (100:0, 99:1, 98:2, 95:5, 90:10, 80:20, 70:30, 60:40, 0:100, v/v, each 35 L) to produce 13 fractions (Fr.1–Fr.13). Fr.2 (20.0 g) was loaded onto an ODS column (4 × 35 cm) and eluted with a MeOH–H₂O gradient (40:60, 50:50, 60:40, 70:30, 80:20, 100:0, v/v, each 1 l) to give 7 subfractions (Fr.8.1–8.17). Fr.8.6 (10.9 g) was separated on a Sephadex LH-20 column (2 × 90 cm) by elution with a MeOH–H₂O gradient (50:50, 60:40, 100:0, v/v, each 0.5 L) to yield 8 subfractions. Subfraction Fr.8.6.6 was purified by semipreparative HPLC (50 % MeOH–H₂O, 4 mL/min) to yield compounds 9 (tR = 18.6 min; 9.8 mg) and 10 (tR = 22.1 min; 17.3 mg). Fr.8.17 (0.98 g) was separated on a Sephadex LH-20 column (3 × 120 cm) using MeOH to yield 6 subfractions. Subfraction Fr.8.17.3 (899.0 mg) was further purified by preparative HPLC (87 % MeOH–H₂O, 8 mL/min) to yield compounds 1 (tR = 156 min; 36.0 mg), 2 (tR = 147 min; 10.7 mg), 3 (tR = 173 min; 19.1 mg), 4 (tR = 164 min; 4.0 mg), 5 (tR = 114 min; 137.0 mg), and 6 (tR = 107 min; 33.6 mg). Chiral analyses of compounds 1–6 (95 % MeOH–H₂O, 0.7 mL/min) and 7–8 (75 % MeOH–H₂O, 0.5 mL/min) were conducted on a Lux TF Cellulose-2 column. For compound 1, chiral separation was performed on the same chiral column (95 % MeOH–H₂O, 0.7 mL/min) to yield (+)-1 (tR = 11.8 min; 1.0 mg) and (-)-1 (tR = 16.2 min; 1.0 mg).

Results

Six novel phthalide derivatives, (+)/(-)-chuanxiongins A–F (1–6), a new natural product (9), and three known phthalides (7, 8, and 10) were isolated from the 60 % ethanol extract of Chuanxiong (Fig. 1). Compounds 1–8 were obtained as pairs of enantiomers. Compound 1 was successfully resolved by chiral HPLC to afford (+)-1 and (-)-1. Their structures and absolute configuration were elucidated on the basis of spectroscopic data, circular dichroism (CD) analyses, and the modified Mosher’s method.

Physicochemical data of new compounds

Chuanxiong A (1). Colorless oil; UV (MeOH) λmax (log e) 204 (4.03), 275 (4.09) nm; IR (KBr) νmax 3446, 2955, 2920, 2858, 1742, 1458 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see Tables 1 and 2; HR-ESI-MS m/z 463.3421 [M + H]+ (calcd for C₂₉H₄₇O₅ 463.3423).

(+)-Chuanxiong A [(+)-1] [α]D₂₀ = 35.5 (c 0.40, MeOH); CD (MeOH) λmax (Δε) 249.2 (-0.12), 220.6 (+0.72) nm.

(-)-Chuanxiong A [(-)-1] [α]D₂₀ = 31.6 (c 0.35, MeOH); CD (MeOH) λmax (Δε) 251.3 (-0.13), 221.5 (+0.63) nm.

(S)-MTPA ester of (-)-1 [(-)-1-a] ¹H NMR (CD₂D₂N, 400 MHz): δH 2.6001 (2H, m, H-4), 2.2082 (2H, overlapped, H-5), 5.7335 (1H, m, H-6), 6.2526 (1H, d, J = 5.5 Hz, H-7).
Table 1 1H and 13C NMR data for the phthalide nucleus of 1–8 (CDCl₃, δ in ppm, J in Hz)*

Position	1/3/5	2/4/6	7	8				
	δ_C	δ_H	δ_C	δ_H	δ_C	δ_H	δ_C	δ_H
1	167.7	168.9	169.6	169.4	169.6	169.4	169.6	169.4
3	148.2	148.3	148.3	148.1	148.3	148.1	148.3	148.1
3a	155.2	152.9	153.7	153.3	153.7	153.3	153.7	153.3
4	17.8	2.48	18.3	2.51	18.9	2.41	26.5	2.51
5	25.8	1.99	23.1	2.00	25.5	1.82	26.5	1.88
6	68.5	5.10	72.3	5.10	72.3	5.10	71.7	3.93
7	67.5	5.53	63.4	4.56	63.0	4.59	67.6	4.44
7a	122.3	125.6	125.6	125.7	125.7	125.7	125.7	125.7
8	114.3	5.31	114.5	5.31	114.7	5.30	114.6	5.28
9	28.2	2.36	28.3	2.37	28.2	2.34	28.2	2.33
10	22.4	1.50	22.4	1.51	22.4	1.49	22.4	1.47
11	13.9	0.95	13.9	0.96	13.9	0.94	13.9	0.93

*Indiscernible signals owing to overlapping or having complex multiplicity are reported without designating multiplicity.

(R)-MTPA ester of (−)-1 [(−)-1-b]** 1H NMR (CDCl₃, δ in ppm, J in Hz): δ_H_1 2.5415 (1H, overlapped, H-4), 2.3910 (1H, dt, J = 18.5, 6.1 Hz, H-4), 2.1479 (2H, overlapped, H-5), 5.7616 (1H, m, H-6), 6.3017 (1H, d, J = 5.1 Hz, H-7).

Chuanxiongin B (2) Colorless oil; UV (MeOH) λ_max (log ε) 205 (4.00), 275 (3.96) nm; IR (KBr) ν_max 2946, 2957, 2925, 2854, 1771, 1741, 1457 cm⁻¹; 1H NMR (CDCl₃, 300 MHz) and 13C NMR (CDCl₃, 75 MHz), see Tables 1
and 2; HR-ESI-MS m/z 463.3435 [M + H]⁺ (calcd for C₂₈H₄₇O₅, 463.3423).

Chuanxiongin C (3) Colorless oil; UV (MeOH) λ_{max} (log e) 205 (3.83), 275 (3.81) nm; IR (KBr) ν_{max} 3422, 2956, 2926, 2854, 1774, 1741, 1459, 724 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see Tables 1 and 2; HR-ESI-MS m/z 511.3394 [M + Na]⁺ (calcd for C₃₀H₄₈O₅Na, 511.3399).

Chuanxiongin D (4) Colorless oil; UV (MeOH) λ_{max} (log e) 204 (3.96), 275 (4.00) nm; IR (KBr) ν_{max} 3422, 2956, 2926, 2855, 1771, 1742, 1457 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz) and ¹³C NMR (CDCl₃, 100 MHz), see Tables 1 and 2; HR-ESI-MS m/z 489.3579 [M + H]⁺ (calcd for C₃₀H₄₉O₅Na, 489.3580).

Chuanxiongin E (5) Colorless oil; UV (MeOH) λ_{max} (log e) 205 (3.91), 274 (3.45) nm; IR (KBr) ν_{max} 3421, 2956, 2929, 2857, 1732, 1716, 1457 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see Tables 1 and 2; HR-ESI-MS m/z 509.3250 [M + Na]⁺ (calcd for C₃₀H₄₆O₅Na, 509.3243).

Chuanxiongin F (6) Colorless oil; UV (MeOH) λ_{max} (log e) 205 (4.04), 273 (3.53) nm; IR (KBr) ν_{max} 3446, 2956, 2927, 2856, 1733, 1718, 1457 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see Tables 1 and 2; HR-ESI-MS m/z 509.3243 [M + Na]⁺ (calcd for C₃₀H₄₆O₅Na, 509.3243).

Discussion

Structure elucidation of compounds

Chuanxiongin A (1), obtained as a colorless oil, was assigned the molecular formula C₂₈H₄₆O₅ according to its HR-ESI-MS at m/z 463.3421 [M + H]⁺ (calcd for 463.3423). The ¹H-NMR spectral data (Tables 1, 2) of 1 are similar to those of senkyunolide H (7) [5], expect for the appearance of typical fatty acid signals (δ_H 1.22–2.32 and δ_C 22.8–34.4). Indeed, the presence of the senkyunolide H moiety was further confirmed by detailed analyses in ¹H-¹H COSY, HSQC, and HMBC experiments (Fig. 2). On the basis of the mass spectral information, the fatty acid moiety was deduced as palmitic acid. The above spectral data suggested that 1 might be the product of 7 acylated at 6-OH or 7-OH with a long-chain fatty acid.

Table 2 ¹H and ¹³C NMR data for the fatty acid moieties of 1–6 (CDCl₃, δ in ppm, J in Hz)*

Position	Palmitoyl for 1 and 2	Oleoyl for 3 and 4	Linoleoyl for 5 and 6			
δ_C	δ_H	δ_C	δ_H	δ_C	δ_H	
1[′]	174.0 for 1	12.3 for 1	174.0 for 3	12.3 for 3	174.0 for 5	12.3 for 5
2[′]	34.4	2.32 for 1	34.4	2.32 for 3	34.4	2.32 for 5
3[′]	25.0	1.62 for 1	25.0	1.62 for 3	25.0	1.62 for 5
4[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	29.2–29.7	1.24–1.37
5[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	29.2–29.7	1.24–1.37
6[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	29.2–29.7	1.24–1.37
7[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	29.2–29.7	1.24–1.37
8[′]	29.2–29.8	1.22–1.32	27.4	2.01	27.3	2.04
9[′]	29.2–29.8	1.22–1.32	129.9	5.35	130.2	5.36
10[′]	29.2–29.8	1.22–1.32	130.1	5.35	128.2	5.33
11[′]	29.2–29.8	1.22–1.32	27.3	2.01	25.8	2.76 (t, 6.0)
12[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	128.1	5.33
13[′]	29.2–29.8	1.22–1.32	29.2–29.9	1.24–1.37	130.4	5.36
14[′]	32.1	1.24	29.2–29.9	1.24–1.37	27.3	2.04
15[′]	22.8	1.27	29.2–29.9	1.24–1.37	29.2–29.7	1.24–1.37
16[′]	14.3	0.87 (t, 6.7)	32.0	1.25	31.7	1.28
17[′]	22.8	1.27	129.9	5.35	130.2	5.36
18[′]	14.2	0.87 (t, 6.7)	25.8	2.76 (t, 6.0)	14.2	0.88 (t, 6.8)

*Indiscernible signals owing to overlapping or having complex multiplicity are reported without designating multiplicity.
acyl moiety. Furthermore, from the significant downfield shift $[\delta_H 5.53 (d, J = 3.9 \text{ Hz}, \text{H-7})]$ in comparison with 7, the palmitoyl group was assigned to 7-OH via an ester bond. This was supported by the key HMBC correlation from H-7 to the ester carbonyl at $\delta_C 174.0$ of the palmitoyl group. The relative stereochemistry of 1 was found to be the same as 7 (cis-oriented) owing to the small $J_{6,7}$ value of 3.9 Hz, as well as the carbon chemical shifts of C-6 and C-7 [16]. Thus, the structure of 1 was elucidated as $(4R^*,5S^*,Z)$-1-butylidene-5-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-4-yl palmitate, and designated chuanxiongin A.

The optical rotation value of 1 was almost zero, indicating a racemic nature, which was in accordance with the appearance of two peaks in the chiral HPLC analysis (Fig. 3). The chiral resolution of 1 by chiral HPLC afforded a pair of anticipated enantiomers, (+)-1 and (−)-1, which were opposite in terms of their optical values and CD curves (Fig. 4). The absolute configuration of the enantiomer (−)-1 was established by the modified Mosher’s method [17]. A solution of (−)-1 (0.5 mg) in C$_5$D$_5$N (0.5 mL) was treated with

![Fig. 2](image.png)

Fig. 2 Key HMBC and 1H-1H COSY correlations of 1

![Fig. 3](image.png)

Fig. 3 Chiral HPLC analytical chromatograms of compounds 1–8. The retention times (min) for the two peaks of compounds 1–6 (95 % MeOH-H$_2$O, 0.7 mL/min; 276 nm) and 7–8 (75 % MeOH-H$_2$O, 0.5 mL/min; 276 nm) are marked on each chromatogram. The letters a–h successively stand for the profiles of 1–8.
NMR data (Tables 1 and 2) to those of C_{28}H_{46}O_{5} as kyunolide H 6-palmitate, with the systematic name of HMBC correlation from H-6 to the ester carbonyl at 7-OH. This deduction was further confirmed by the key cating the position of esterification at 6-OH instead of 7-OH and 6R, respectively. Therefore, the absolute configurations of (+)-1 and (−)-1 were respectively established as 6S, 7R, and 6R, 7S.

Chuanxiongin B (2) had the same molecular formula of C_{28}H_{46}O_{5} as 1, obtained from its HR-ESI-MS at m/z 463.3435 [M + H]^{+}, and exhibited similar physical and NMR data (Tables 1 and 2) to those of 1, except for the large upfield shift of H-7 and downfield shift of H-6, indicating the position of esterification at 6-OH instead of 7-OH. This deduction was further confirmed by the key HMBC correlation from H-6 to the ester carbonyl at δC 173.3. Therefore, the structure of 2 was deduced as senkyunolide H 6-palmitate, with the systematic name of (4R*,5S*,Z)-1-butylidene-4-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-5-yl palmitate. It was designated with the common name chuanxiongin B.

Chuanxiongin C (3), a colorless oil, was assigned with the molecular formula C_{30}H_{48}O_{5} by HR-ESI-MS (m/z 511.3394 [M + Na]^{+}). The 1H- and 13C-NMR data of the phthalide moiety in 3 were essentially identical to those of 1 (Table 1). The only difference was an oleoyl group in 3 instead of a palmitoyl group in 1. The presence of the oleoyl group was further confirmed on the basis of the mass and NMR spectral data [18]. Accordingly, compound 3 was determined as (4R*,5S*,Z)-1-butylidene-5-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-4-yl oleate, and designated chuanxiongin C.

Chuanxiongin D (4) was determined to have the same molecular formula as 3 on the basis of the HR-ESI-MS (m/z 489.3579 [M + H]^{+}) and NMR spectra. The 1H- and 13C-NMR spectral data of 4 showed the signals for oleoyl and senkyunolide H moieties. In the HMBC spectrum, the proton H-6 showed a long-range correlation with the ester carbonyl, indicating that the fatty acid chain was linked to 6-OH. Thus, 4 was determined as (4R*,5S*,Z)-1-butylidene-4-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-5-yl oleate, and designated chuanxiongin D.

On the basis of the HR-ESI-MS (m/z 509.3250 [M + Na]^{+}) for 5; 509.3243 [M + Na]^{+} for 6) and NMR spectra, the molecular formula of chuanxiongin E (5) and chuanxiongin F (6) was determined to be C_{30}H_{46}O_{5}; According to the NMR evidence, 5 and 6 were also fatty acid-acylated derivatives of senkyunolide H (7). Moreover, the acylating fatty acid moiety was deduced to be a linoleoyl group from the mass spectral data, as well as a comparison of the 13C NMR data with previous literature [18]. Similarly, the HMBC correlations and considerable acylation shifts implied that in the cases of 5 and 6, a linoleoyl group was attached at the 7-OH and 6-OH positions, respectively. Thus, 5 and 6 were determined as (4R*,5S*,Z)-1-butylidene-5-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-4-yl linoleate (5) and (4R*,5S*,Z)-1-butylidene-4-hydroxy-3-oxo-1,3,4,5,6,7-hexahydroisobenzofuran-5-yl linoleate (6), and designated chuanxiongin E (5) and chuanxiongin F (6), respectively.

Compounds 7 and 8 were identified as senkyunolide H (7) [5] and senkyunolide I (8) [5] by comparisons of their physiochemical properties and spectral data with those reported in the literature.

Similarly, the optical rotation values of compounds 2–8 were almost zero, suggesting that they were also present as pairs of enantiomers, as further confirmed by the observations of two separated peaks in the chiral chromatographic analysis experiment (Fig. 3).
Compounds 9 and 10 were elucidated as 6-hydroxy-senkyunolide B (9) [19, 20] and senkyunolide C (10) [21] based on comparisons with published spectroscopic data.

Chuanxiongins A–F (1–6) comprise a new subtype of phthalides and represent a new class of chemical constituents in Chuanxiong. The discovery of them warranted further research on their mechanism of action and use for quality control.

Conclusions

Six novel phthalide derivatives (1–6) isolated from Chuanxiong were phthalide fatty acid esters that were structurally analogous and characterized by fatty acid acylation at 6-OH or 7-OH.

Authors’ contributions

HG conceived the study. HG, YY and XSY designed the study. JY and ZQM performed the isolation and structural elucidation. QW preformed the extraction. CXW preformed the chiral analysis and separation experiment. XLF, YY and HG wrote the manuscript. All authors read and approved the final manuscript.

Author details

1 Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China. 2 Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China.

Acknowledgements

This work was financially supported by Grants from the National Natural Science Foundation of China (81422054), the Guangdong Natural Science Funds for Distinguished Young Scholar (S2013050014287), Guangdong Special Support Program (2014TQ01R420), Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme (Hao Gao, 2014).

Competing interests

The authors declare that they have no competing interests.

Received: 9 November 2014 Accepted: 22 February 2016 Published online: 08 March 2016

References

1. Committee CP, editor. Chinese pharmacopoeia (2010), Part 1. Beijing: Chemical Industry. 2011.
2. Ran X, Ma L, Peng C, Zhang H, Qin LP. Ligusticum chuanxiong Hort: a review of chemistry and pharmacology. Pharm Biol. 2011;49:1180–9.
3. Masaru K, Hiroshi M. Structures of three new ligustilide derivatives from Ligusticum wallichii. Chem Pharm Bull. 1987;35:4789–92.
4. Naito T, Katsuhara T, Nitsu K, Ikeya Y, Okada M, Mitsuhashi H. Phthalide dimers from Ligusticum chuanxiong Hort. Heterocycles. 1991;32:2433–42.
5. Naito T, Katsuhara T, Nitsu K, Ikeya Y, Okada M, Mitsuhashi H. Two phthalides from Ligusticum chuanxiong. Phytochemistry. 1992;31:1787–91.
6. Li WW, Tang YP, Chen Y, Duan JA. Advances in the chemical analysis and biological activities of Chuanxiong. Molecules. 2012;17:10614–51.
7. Goncalves J, Mendes B, Silva CL, Camara JS. Development of a novel micro extraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. J Chromatogr A. 2012;1229:13–23.
8. Ji SG, Chai YF, Wu YT, Yin XP, Liang DS, Xu ZX, Xiao L. Determination of ferulic acid in Angelica sinensis and Chuanxiong by capillary zone electrophoresis. Biomed Chromatogr. 1999;13:333–4.
9. Yang NY, Ren DC, Duan JA, Xu XH, Xie N, Tian LJ. Ceramides and cerebrosides from Ligusticum chuanxiong Hort. Helv Chim Acta. 2009;92:291–7.
10. Chan SS, Ching TY, Lin G. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta. J Ethnopharmacol. 2007;112:677–80.
11. Zhang L, Du JR, Wang Y, Ju DK, Chen YS, He Y, Wang CY. 2-Ligustilide extracted from radix Angelica sinensis decreased platelet aggregation induced by adp ex vivo and arterio-venous shunt thrombosis in vivo in rats. Yakugaku Zasshi. 2009;129:955–9.
12. Du JR, Yu Y, Ke Y, Wang CY, Zhu L, Qian ZM. Ligustilide attenuates pain behavior induced by acetic acid or formalin. J Ethnopharmacol. 2007;112:211–4.
13. Huang J, Lu XQ, Zhang C, Lu J, Li GY, Lin RC, Wang JH. Anti-inflammatory ligustilides from Ligusticum chuanxiong Hort. Fitoterapia. 2013;91:21–7.
14. Shao M, Qu K, Liu K, Zhang Y, Zhang L, Lian ZQ, Chen TT, Liu JF, Wu AL, Tang Y, Zhu HB. Effects of ligustilide on lipopolysaccharide-induced endotoxic shock in rabbits. Planta Med. 2011;77:809–16.
15. Huang J, Lu XQ, Lu J, Li GY, Wang HY, Li LH, Lin RC, Wang JH. Two new phthalides with BuChE inhibitory activity from Ligusticum chuanxiong. J Asian Nat Prod Res. 2013;15:1237–42.
16. Naito T, Nitsu K, Ikeya Y, Okada M, Mitsuhashi H. A phthalide and 2-farnesyl-6-methyl benzoquinone from Ligusticum chuanxiong. Phytochemistry. 1992;31:1787–91.
17. Ohtani I, Kusumi T, Kashman Y, Kakisawa H. The absolute configuration of Chuanxiong ligustilides from Ligusticum chuanxiong Hort. Helv Chim Acta. 2009;92:1787–91.
18. Ohtani I, Kusumi T, Kashman Y, Kakisawa H. The absolute configuration of marine terpenoids. J Am Chem Soc. 1991;113:4092–6.
19. Gunstone FD, Pollard MR, Scrimgour CM, Vedanayagam HS. 13C nuclear magnetic resonance studies of olefinc fatty acids and esters. Chem Phys Lipids. 1977;18:115–29.
20. Ogawa Y, Hosaka K, Chik M, Mitsuhashi H. Synthesis of (Z)-3-butylidene-6,7-dihydrophthalide. Heterocycles. 1991;32:1737–44.
21. Mourad K, Corinne P. Additional phthalide derivatives from meum athamanticum. J Nat Prod. 1986;49:184–5.
22. Ding CG, Sheng YX, Zhang YH, Zhang JL, Du GH. Identification and comparison of metabolites after oral administration of essential oil of Ligusticum chuanxiong or its major constituent ligustilide in rats. Planta Med. 2008;74:1684–92.