Long-term disease-free survival of an undifferentiated pleomorphic sarcoma of the spleen
A case report and literature review

Atsushi Tomioka, MD, PhD, Mitsuhiro Asakuma, MD, PhD, Nao Kawaguchi, MD, PhD, Koji Komeda, MD, PhD, Tetsunosuke Shimizu, MD, PhD, Kazuhisa Uchiyama, MD, PhD, Sang-Woong Lee, MD, PhD

Abstract

Introduction: Undifferentiated pleomorphic sarcoma (UPS) primarily occurs in the soft tissues of the extremities, trunk, and retroperitoneum. As the primary UPS of the spleen (splenic UPS) is extremely rare, to the best of our knowledge, only 19 cases have been reported in English literature. No cases of long-term survival without a local or distant recurrence have been reported.

Patient concerns: We report the case of a 37-year-old man who was referred to our hospital for a splenic tumor. He had no past medical or relevant familial history. On abdominal computed tomography (CT), a low attenuation solid mass and cystic component with mural calcifications were present at the lower pole of his spleen. The fluorodeoxyglucose-positron emission tomography (CT) indicated it as malignant tumor of the spleen.

Diagnoses: The patient’s provisional diagnosis was deduced to be angiosarcoma, which was the most common malignant tumor of the spleen.

Interventions: An elective laparoscopic splenectomy was performed, and the histology of the tumor was consistent with UPS (pT1, pN0, cM0, and AJCC8th). No adjuvant therapy was administered.

Outcomes: Ten years have passed since the patient’s splenectomy, and he continues to do well, without evidence of local or distant recurrence.

Lessons: To the best of our knowledge, this is the first case of long-term recurrence-free survival after surgical management of a splenic UPS. It is probable that radical splenectomy during the disease played the most important role in the patient’s long-term survival. Understanding the characteristic findings of a splenic UPS in an abdominal CT may help to diagnose properly.

Abbreviations: AJCC = American Joint Committee on Cancer, CT = computed tomography, MFH = malignant fibrous histiocytoma, UPS = undifferentiated pleomorphic sarcoma.

Keywords: case report, long-term survival, MFH, spleen, UPS

1. Introduction

Primary undifferentiated pleomorphic sarcoma (UPS) is the most prevalent type of soft tissue sarcoma. It is usually encountered in the extremities and sometimes in retroperitoneum. The 5-year overall survival rate is 42% to 60%. However, UPS originated in the visceral organs is extremely rare and only a limited number of cases have been reported. Due to lack of appropriate follow-up data, its prognosis has still been unsure. UPS of spleen origin (splenic UPS) is also extremely rare and long-term survival case has never been reported. Herein, we report the case of a patient with a splenic UPS who is alive without a local or distant recurrence over 10 years after surgery, and survey of the literature for important points on this disease.

2. Case report

A 37-year-old man was referred for evaluation of a splenic tumor that was detected on ultrasonography at an outside hospital a month before during a workup for chest pain. Although the cause of the patient’s chest pain remained unclear, it was self-limited. He did not have any past medical history, any drug...
allergy or relevant familial history. He had no history of alcohol intake and smoking. His abdomen was soft, nondistended, and nontender, without a palpable mass. His vital signs were normal. Clinical laboratory data were unremarkable: white blood cell count $5.49 \times 10^3/\mu L$, hemoglobin $15.8\, g/dL$, platelet count $232 \times 10^3/\mu L$, LDH $141 U/L$, CRP $0.25\, mg/dL$, CEA

Figure 1. Preoperative CT and FDG-PET CT picture. (A) Computed tomography (CT) demonstrated a low attenuation solid mass protruding from the lower pole of the spleen (white arrow). (B) A cystic component with mural calcifications adjacent to the mass was shown. (arrow head). (C and D) The tumor was FDG avid on FDG-PET/CT. FDG-PET/CT = fluorodeoxyglucose-positron emission tomography.

Figure 2. Specimen examination. (A and B) The tumor size was $5 \times 5 \times 4.5\, cm$ and the large cystic component of the tumor contained necrotic and degenerative tissue. The tumor did not expose to splenic capsule and the surgical margin was negative. (C and D) Histologic examination of resected tissue samples. Hematoxylin and eosin (H&E) staining, original magnification ×40 (C), ×200 (D). It showed spindle-shaped cells arranged in a storiform pattern and accompanied by fibrous tissue.
Table 1
Summary of reported cases of splenic undifferentiated pleomorphic sarcoma.

Case no	Literature studies	Age/Gender	Tumor size (cm)	T and M value (AJCC 8th)	Synchronous metastasis	Clinical manifestation	CT findings	IHC staining (positive)	Treatment	Survival (after surgery)
1	1982, Govoni[12]	51/F	21 × 25 × 10	N/A	None	Abdominal pain, weight loss	N/A	N/A	Splenectomy	Alive at 7 months
2	1982, Wick[13]	54/M	N/A	N/A	N/A	None	N/A	N/A	N/A	Alive at 3 months
3		48/M	8	M1	Liver	N/A	N/A	N/A	N/A	Alive at 18 months
4	1988, Bruneton[14]	51/F	N/A	T1 (stomach, pancreas)	None	N/A	N/A	N/A	Splenectomy	Alive at 17 months
5	1990, Siebert[15]	41/M	N/A	M1	Omentum, Peritoneum	N/A	Cystic component Calcification	N/A	Splenectomy	Died at 6 months
6	1993, Lieu[16]	71/M	N/A	M1	Liver	N/A	N/A	N/A	Vimentin, CD68	Died after surgery
7	1994, Bornilla[17]	42/F	N/A	M1	Bone marrow	N/A	N/A	N/A	Splenectomy	Died at 8 months
8	1998, Mallpudi[18]	73/M	10	T3 (retroperitoneum)	None	Fever, Night sweat Weight loss	N/A	N/A	Splenectomy	Died at 18th months
9	2001, Colovic[19]	45/F	11 × 10 × 7	T1/T2	T1/T2	Abdominal pain, Weight loss Fever, Night sweat	N/A	Vimentin, CD68, HLA-DR, lysozyme, S-100	Splenectomy	Died at 15 months
10	2003, Gaaraas[20]	51/F	12 × 11 × 10	T1/2	None	Abdominal pain, Weight loss Fever, Night sweat	N/A	Cystic component Mural calcification	Splenectomy	Not written
11	2006, Katsura[21]	82/M	2.5 × 3	T2	None	Abdominal pain, Weight loss Fever	Low density mass	N/A	Splenectomy	Alive at 18 months
12	2010, Hashmi[22]	76/M	7.1 × 5.3	T1/T2	None	Abdominal pain	Cystic component	N/A	Splenectomy	Not reported
13	2011, He[23]	35/M	5 × 5	T1/T2 (rupture)	None	Abdominal pain	N/A	Vimentin, αSMA, α1-antichymotrypsin	Splenectomy	Died at 7 months
14	2011, Ji-Feng[24]	48/M	5.2 × 4.6	T1/T2	None	Abdominal pain	Low density mass	Vimentin, CD68, α1-antichymotrypsin	Splenectomy	Alive at 13 months
15	2011, Amatya BM[25]	77/M	N/A	T3 M1 (rupture)	Renal hilum Adrenal grand Femoral bone marrow	Hemorrhagic shock	N/A	Vimentin, CD68	Splenectomy	Died without surgery
16	2012, Dawsonson[26]	30/M	N/A	T1/T2	None	Abdominal pain	Solid mass Cystic component	N/A	Vimentin, CD68	Not followed
17	2017, Makis[27]	63/M	7.5 × 7.3 × 7	M1	Liver	Fever, Night sweat	Solid mass Peripheral enhancement	EBER, Fascin	Splenectomy	Died at 16 months without surgery
18	2020, Ashmore[28]	56/F	15	T3 (diaphragm)	None	Abdominal pain, anemia	Cystic component Mural calcification	CD31	Splenectomy	Died at few months
19	2022, Tomioka[29]	37/M	5 × 5 × 4.5	T1	None	Chest pain	Solid mass Cystic component Mural calcification	Vimentin, CD68, α1-antichymotrypsin	Lap-Splenectomy	Alive at 10 years

IHC = immunohistochemistry, N/A = information not available.
Tomioka et al. • Medicine (2022) 101:47

The purpose of adjuvant radiotherapy is to inactivate the microscopic extensions of tumor and histologically positive margins. In the case, the tumor hadn’t extended beyond the splenic capsule, and pathological R0 resection was performed. This was the reason why adjuvant radiotherapy was not performed. In 15 cases, including this case, a splenectomy was performed and a laparoscopic splenectomy was reported in 2 cases. In 2 cases, surgical treatment was not selected, because the diseases were too progressed. In the other 3 cases, we could not find descriptions about the way of treatment. Although the actual recurrence-free survival of surgically managed splenic UPS has not been reported, the longest individual recurrence-free survival of the cases currently available in the literature was 18 months. More than 10 years of long-term postoperative survival has never been reported. It may indicate that splenic UPS has an aggressive malignancy with a high potential for local recurrence and distant metastases. We reviewed all reported cases of splenic UPS to measure the primary tumor (T) category of each tumor if possible using the American Joint Committee on Cancer (AJCC) 8th Edition (Table 2).[9,10] Distinct metastases at presentation were classified as M1. Prognostic staging has never been defined because there are limited data on UPS of the peritoneal cavity, including the spleen. We could evaluate the tumor status in 16 of 20 cases (80%). Three patients were T3 or T4 and M0 (18.8%) and 6 were M1 (37.5%); in 2 cases (No.14 and No.16), the tumor was ruptured (12.5%). Among them, 9 patients died within 19 months of surgery or diagnosis and 1 patient was alive with liver metastases 18 months after surgery (Case No. 3). The other 6 cases (37.5%) that were T1 or T2 and M0 were alive without recurrence at the time that their cases were published. These results may indicate that the reasons why splenic UPS is thought to have an extremely poor prognosis are that the majority of patients with splenic UPS have evidence of adjacent organ invasion or distant metastasis or that the tumor is ruptured when it is discovered. Conversely, if a splenic UPS is discovered early during the disease and resected radically, long-term survival might be expected. Unfortunately, in most cases, splenic tumors

3. Discussion

This case is, to our knowledge, the first of a long-term recurrence-free survival after a splenectomy for a splenic UPS. UPS, previously known as malignant fibrous histiocytoma (MFH), represents a heterogeneous group of sarcomas without a specific known line of differentiation. It is most frequently encountered as a malignant soft tissue tumor of the extremities, and primary UPS of the spleen is extremely rare.[1,2] The first reported case of splenic UPS was termed a splenic MFH by Govoni in 1982. Only 19 total cases have been reported in English literature.[12-28] Details of previous studies on splenic UPS, including the present work, are shown (Table 1). Fourteen of the (70.0%) patients were male, and 6 (30.0%) were female. The mean age was 54.3 years (range: 30–82 years). The most common symptoms of a splenic UPS were abdominal pain, weight loss, fever, and night sweats. The splenomegaly was seen in 5 cases (No.1,9,10,11,19). Splenic UPS is histologically highly cellular, has marked nuclear pleomorphism and abundant mitotic activity (including atypical forms and necrosis), and has areas of spindle cell morphology.[29] Immunohistochemistry is often required to diagnose UPS. Although a specific antibody for UPS has not been identified, vimentin, CD68, α-SMA and α-antichymotrypsin were often positive in the previous studies (Table 1).[12-28] Immunohistochemistry may be useful for ruling out specific known lines of differentiation. Splenectomy is the most radical therapy. Although adjuvant radiotherapy had been well established to the UPS of soft tissue, unfortunately there was no strong evidence to splenic UPS. The principal purpose of adjuvant radiotherapy is to inactivate the microscopic

Table 2

T category	T criteria	N category	N criteria	M category	M criteria
TX	Primary tumor cannot be assessed	N0	No regional lymph node metastasis or unknown lymph node status	M0	No distant metastasis
T1	Organ confined	N1	Regional lymph node metastasis	M1	Distant metastasis
T2	Tumor extension into tissue beyond organ	N2	Regional lymph node metastasis	M2	Distant metastasis
T2a	Involves serosa or visceral peritoneum	N2	Regional lymph node metastasis	M2	Distant metastasis
T2b	Extension beyond serosa (mesentery)	N2	Regional lymph node metastasis	M2	Distant metastasis
T3	Involves another organ	N2	Regional lymph node metastasis	M2	Distant metastasis
T4	Multifocal involvement	N2	Regional lymph node metastasis	M2	Distant metastasis
T4a	Multifocal (2 sites)	N2	Regional lymph node metastasis	M2	Distant metastasis
T4b	Multifocal (3-5 sites)	N2	Regional lymph node metastasis	M2	Distant metastasis
T4c	Multifocal (>5 sites)	N2	Regional lymph node metastasis	M2	Distant metastasis

AJCC = American Joint Committee on Cancer.
without symptoms tend to be discovered too late. Even if the tumor is discovered accidentally, judging whether the tumor is malignant or not is difficult. The specific CT characteristics of splenic UPS have not been well established. In this work, some characteristic CT findings were extracted. These were a low attenuation solid mass and a cystic component with mural calcifications adjacent to the mass, all of which were seen in 3 cases (7.0%) (Table 1). Pseudocysts that contain hemorrhage and debris make up 80% of all splenic cystic lesions, and 50% of pseudocysts have mural calcification.[11] As the histopathologic examination in this study revealed that the cystic component of this patient's splenic UPS contained necrotic tissue, this cystic lesion resembles a splenic pseudocyst. In other words, splenic UPS might accompanies pseudocysts in the result of necrosis of tumor. Calcifications on CT have also been noted in the setting of an abdominal UPS in another literature.[16] Of the 43 abdominal UPS discussed, 7 (16%) had intrasplenic calcifications on a preoperative abdominal CT, and ring like calcifications were seen in 3 cases (7.0%). The co-existence of a low attenuation solid mass and a cystic component with mural calcification may be an important hint to consider splenic UPS. Prior literature showed that UPS is FDG avid on FDG-PET/CT,[33–35] which appears to apply to splenic UPS as well.[27] CT, MRI, and FDG-PET/CT as well as fine needle biopsy might be useful. The prognostic feature and characteristic CT findings extracted in this work do not present strong evidence due to the small-size case series, which is a limitation of this work; however, we think these findings are worth the suggestion. This is the first case report of long-term recurrence-free survival following surgical treatment of a splenic UPS.

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review.

Author contributions

Conceptualization: Tetsunosuke Shimizu.
Data curation: Koji Komeda.
Investigation: Nao Kawaguchi.
Methodology: Tetsunosuke Shimizu.
Supervision: Kazuhisa Uchiyama, Sang-Woong Lee.
Visualization: Nao Kawaguchi.

Writing – original draft: Atsushi Tomioka.
Writing – review & editing: Mitsuhiro Asakuma.

References

[1] Mankin HJ, Hornick FJ, DeLaney TF, et al. Pleomorphic spindle cell sarcoma (PSCS) formerly known as malignant fibrous histiocytoma (MFH): a complex malignant soft-tissue tumor. Musculoskelet Surg. 2012;96:171–7.
[2] Nascimento AF, Raut CP. Diagnosis and management of pleomorphic sarcomas (so-called “MFH”) in adults. J Surg Oncol. 2008;97:330–9.
[3] Vodanovich DA, Spelman T, May D, et al. Predicting the prognosis of undifferentiated pleomorphic soft tissue sarcoma: a 20-year experience of 266 cases. ANZ J Surg. 2019;89:1045–50.
[4] Perez EA, Gutierrez JC, Moffat FL, Jr, et al. Retropertitoneal and truncal sarcomas: prognosis depends upon type not location. Ann Surg Oncol. 2007;14:1114–22.
[5] Sanei B, Kefayat A, Samadi M, et al. Undifferentiated pleomorphic sarcoma of the colon: a case report and review of the literature. Clin Colorectal Cancer. 2012;11:293–8.
[6] Xian B, Kefayat A, Samadi M, et al. Undifferentiated pleomorphic sarcoma of the colon: a case report and review of the literature. Clin Colorectal Cancer. 2012;11:293–8.
[7] Tomioka et al. Medicine (2022) 101:47 www.md-journal.com
[32] Ko SF, Wan YL, Lee TY, et al. CT features of calcifications in abdominal malignant fibrous histiocytoma. Clin Imaging. 1998;22:408–13.

[33] Mass JB, Talmon G. Undifferentiated pleomorphic sarcoma of liver: case report and review of the literature. Case Rep Pathol. 2018;2018:8031253.

[34] Choi BH, Yoon SH, Lee S, et al. Primary malignant fibrous histiocytoma in mediastinum: imaging with (18)F-FDG PET/CT. Nucl Med Mol Imaging. 2012;46:304–7.

[35] Hwang SS, Park SY, Park YH. The CT and F-FDG PET/CT appearance of primary renal malignant fibrous histiocytoma. J Med Imaging Radiat Oncol. 2010;54:365–7.

[36] McInnes MD, Kieler AZ, Macdonald DB. Percutaneous image-guided biopsy of the spleen: systematic review and meta-analysis of the complication rate and diagnostic accuracy. Radiology. 2011;260:699–708.