Resistivity minimum emerges in Anderson impurity model modified with Sachdev–Ye–Kitaev interaction

Lan Zhang(张澜) 1, Yin Zhong(钟寅) 1,2, and Hong-Gang Luo(罗洪刚) 1,2,‡

1 School of Physical Science and Technology & Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
2 Beijing Computational Science Research Center, Beijing 100084, China

(Received 9 October 2020; revised manuscript received 20 January 2021; accepted manuscript online 18 March 2021)

We investigate a modified Anderson model at the large-N limit, where the Coulomb interaction is replaced by the Sachdev–Ye–Kitaev random interaction. The resistivity of conduction electron ρc has a minimum value around temperature T∗, which is similar to the Kondo system, but the impurity electron’s density of state A(q,α) demonstrates no sharp-peak like the Kondo resonance around the Fermi surface. This provides a counterintuitive example where resistivity minimum exists without Kondo resonance. The impurity electron’s entropy S and specific heat capacity C show a crossover from Fermi liquid to a non-Fermi liquid behavior dependent on temperature. The system is a Fermi liquid at $T < T^*$, and becomes a non-Fermi liquid at $T > T^*$, and then becomes a Fermi gas at sufficiently high temperatures $T ≫ T^*$. The non-Fermi liquid at the intermediate-T regime does not occur in the standard Anderson model. We also make a renormalization group analysis, which confirms the crossover from Fermi liquid to the non-Fermi behavior. It is emphasized that the resistivity minimum emerges in our model when the system behaves as a non-Fermi liquid rather than Fermi liquid, which provides an alternative example showing resistivity minimum in condensed matter physics.

Keywords: Anderson model, Sachdev–Ye–Kitaev interaction, non-Fermi liquid

PACS: 71.27.+a, 71.10.–w

DOI: 10.1088/1674-1056/abefcb

1. Introduction

The Anderson model is at the heart position to understand Kondo physics and heavy fermion compounds. [1–7] As the first microscopic model for magnetic moments formation in metals, it implies that local moments form once the Coulomb interaction between d-electrons becomes large. [8] A low-energy effective Hamiltonian of the Anderson model is the Kondo model, which is derived from the Anderson model via the Schrieffer–Wolff transformation, [9] and it demonstrates that resistivity ultimately rises as temperature is lowered. This leads to the conduction electron’s resistivity emerges minimum versus temperature, which is one of the characteristics of the Kondo effect. [10] Correspondingly, there presents a sharp-peak of the impurity electron’s spectral function at the Fermi surface, i.e., a Kondo resonance, when the Kondo screening appears to quench the local moments. [6] The evolution from localized magnetic moment state to the non-magnetic state, i.e., from Landau Fermi liquid to the localized Landau Fermi liquid, is a crossover among some rare-earth alloy and actinide compounds. [5,6]

The Landau Fermi liquid theory has been the workhorse of the physics of interacting electrons for over 60 years. [11] However, some heavy-fermion quantum critical compounds such as CeCu$_{6-x}$Au$_x$, YbRh$_2$Si$_2$ and β-YbAlB$_4$ display the non-Fermi liquid (NFL) behavior in which the transport properties and specific heat capacity cannot be derived from the Fermi liquid (FL) theory. [12–14] This attracts much attention to the NFL behavior, and many theories have been proposed to interpret this phenomenon. [15–21] The lack of controlled theoretical techniques hinders the understanding of the strong electron correlation in the NFL; nevertheless, the invention of the Sachdev–Ye–Kitaev (SYK) model provides a chance to understand the correlation physics in related systems accurately since its solvable nature. [22–25]

The SYK model is a quantum many-body model with random all-to-all interactions for fermions, which was studied in the 1990s and later as models for novel NFL or spin-glass states. [26–32] It provides a solvable example in zero dimension and has been extended to higher dimensions. [33–39] In recent years, many exotic physical phenomena have been found in SYK models, e.g., supersymmetry, [40] quantum chaos, [34,41–43] many-body localization, [44,45] strongly correlated metal, [46,47] and quantum phase transition. [24,25,48–51]

In a recent work [52] with an aim to provide a solvable model for a heavy-fermion system, the standard periodic Anderson model was modified with the SYK random interaction. This modified model was found to have a low temperature FL, and more interestingly, an NFL solution at elevated temperature and the rising of resistivity at high temperature can
be attributed to the single SYK quantum impurity. In the present paper, we consider the distinction between the impurity and the lattice models and study the SYK quantum impurity problem, modeled by the Anderson model with SYK random interaction. We call it Sachdev–Ye–Kitaev Anderson model (SYKAM). Importantly, SYKAM provides an interesting and counterintuitive example where resistivity minimum exists in the absence of Kondo resonance. In a conventional picture, the resistivity minimum is due to the formation of Kondo resonance.

![Fig. 1. Schematic phase diagram of the SYKAM. Our system has an FL behavior at \(T < T^* \) and behaves like the NFL at \(T > T^* \), while it is FG at \(T \gg T^* \).](image)

Under the large-N limit, the qualitative analysis of the conduction electron resistivity \(\rho_c \) elucidates that the SYKAM behaves as an FL when temperature \(T < T^* \) and is an NFL at temperature \(T > T^* \), when \(T^* \) is a scaling temperature. The quantitative calculation gives a phase diagram as shown in Fig. 1, where \(\rho_c \) exists a minimum at temperature \(T^* \), demonstrating SYKAM behaves as an FL when \(T < T^* \) and the NFL at low temperature \(T > T^* \), and at high temperature \(T \gg T^* \), a free Fermi gas (FG) forms in SYKAM. It is emphasized that the NFL does not display in the standard Anderson model. From impurity electron’s entropy \(S_d \) and specific heat capacity \(C_v \), a crossover, not a phase transition, exists between FL and the NFL. This is confirmed by a renormalization group (RG) analysis, whose flow equation is similar to the Kondo problem.

![Fig. 2. (a) Schematic crystal lattice of SYKAM, where the red dots are the conduction electrons, and the black dots are the impurity electron pseudospin states. (b) The SYK random interaction \(U_{ijkl} \) between different impurity electron pseudospin states 1, 2, \ldots, 16, \ldots, N.](image)

2. Model and method

The Hamiltonian of SYKAM can be written as

\[
\hat{H} = \sum_{ij} E_{ij} \hat{c}_{i}^{\dagger} \hat{c}_{j} + \sum_{ij} V_{k} \left(\hat{c}_{i}^{\dagger} \hat{d}_{j} + \hat{d}_{i} \hat{c}_{j} \right) + E_{0} \sum_{i} \hat{d}_{i}^{\dagger} \hat{d}_{i} + \frac{1}{(2N)^{3/2}} \sum_{ijklm} U_{ijklm} \hat{d}_{i}^{\dagger} \hat{d}_{j} \hat{d}_{m} \hat{d}_{l},
\]

(1)

Here \(\hat{c}_{ij} \) (\(\hat{d}_{j} \)) denote the creation (annihilation) operator of conduction and impurity electrons with pseudospin \(j = 1, 2, \ldots, N \), respectively. In Eq. (1), conduction electrons have energy dispersion \(E_{ij} \) and hybridize with impurity electron via strength \(V_{k} \). For simplicity, we assume \(V_{k} = V \) for all momentum. The impurity electron has degenerated energy level \(E_{0} \). In contrast to the usual Anderson impurity model with the on-site Hubbard interaction, there exists the SYK-like random all-to-all interaction \(U_{ijklm} \) between different pseudospin states of impurity electron, wherein \(U_{ijklm} \) satisfies a standard Gaussian random distribution \(P(x) = \frac{1}{\sqrt{2\pi U}} e^{-\frac{x^2}{2U}} \) with \(\bar{U}_{ijklm} = \frac{1}{2} \sum_{q} dU_{ij(q)l}P(U_{ijkl})U_{ijkl} = 0 \) and \(\bar{U}^{2}_{ijklm} = \sum_{q} dU_{ij(q)l}P(U_{ijkl})U_{ijkl}^2 = U^2 \), as shown in Fig. 2.
To solve the mentioned model Eq. (1), we consider the large-N limit as done in the SYK model, which means that the number of the component of pseudospin $j = 1, 2, \ldots, N$ is artificially enlarged to infinity. As a result, the partition function of our system can be approximated by its saddle point value (see the appendix). Equivalently, the large-N limit means that after the disorder average over U_{ij}, the self-energy of impurity electron $\Sigma(i\omega_n)$ is dominated by the watermelon diagram as shown in Fig. 3.

$$\Sigma(\omega) = U^2 [G_d(-\omega)]^2 G_d(\omega).$$

Therefore, via the Dyson equation, the resulting Green’s function for the impurity electron reads

$$G_d(i\omega_n) = \frac{1}{i\omega_n - E_d - \sum_k V^2_{ik} - \Sigma(i\omega_n)},$$

where $\omega_n = (2n + 1)\pi T$ denotes the fermionic Matsubara frequency with $n = 0, \pm 1, \pm 2, \ldots, \pm \infty$.

For conduction electron, its Green’s function $G_c(k, i\omega_n)$ is derived from the equation of motion and reads

$$G_c(k, i\omega_n) = \frac{1}{i\omega_n - E_d - k^2/2m - \Sigma(i\omega_n)},$$

Consequently, $G_d(i\omega_n)$ and $G_c(k, i\omega_n)$ can be found by solving Eqs. (2)–(4) self-consistently.

For simplicity, the DOS of conduction electrons is assumed to be $N(\epsilon) = \frac{1}{2\pi} \theta(D - |\epsilon|)$, with $\theta(x)$ being a step function, and $2D$ is the band-width of conduction electrons. Under the above assumption, the hybridization contribution to the impurity electron is

$$\sum_k \frac{V^2_{ik}}{i\omega_n - \epsilon_k} = -V^2 N(0) \ln \left[\frac{D - i\omega_n}{D - i\omega_n} \right].$$

When $D \gg |\omega_n|$, we get

$$G_d(i\omega_n) = \frac{1}{i\omega_n - E_d - i\Delta \text{sgn}(i\omega_n) - \Sigma(i\omega_n)},$$

where $\Delta = \pi V^2 N(0)$, and $N(0) = \frac{1}{2\pi}$ is the DOS of the conduction electron at Fermi energy.[55]

According to the Feynman diagrams, we can get the impurity electron self-energy

$$\Sigma(i\omega_n) = U^2 \int d\omega_1 \int d\omega_2 \int d\omega_3 \left[A_d(\omega_1)A_d(\omega_2)A_d(\omega_3) \times \frac{f(\omega_1) - f(-\omega_2) - f(-\omega_1) + f(-\omega_2)}{i\omega_n + \omega_1 - \omega_2 - \omega_3} \right],$$

where $f(x)$ is the Fermi–Dirac distribution function.

Therefore, we can obtain $G_d(i\omega_n)$ and $G_c(k, i\omega_n)$ by solving Eqs. (4), (6), and (7) self-consistently. Before presenting the numerical results, one can inspect two limiting cases (weak and strong coupling) and extract useful analytic formulas.

2.1. Weak coupling limit

In the weak coupling limit, the self-energy correction $\Sigma(i\omega_n)$ is assumed to be small compared with the free part $i\omega_n - E_d + i\Delta$ in $G_d(i\omega_n)$. At zero temperature, one can use non-interacting impurity electron Green’s function

$$G^0_d(\omega) = \frac{1}{\omega - E_d + i\Delta},$$

and we use the analytic continuation $i\omega_n \rightarrow \omega + i\delta$ to get the zero temperature impurity electron self-energy

$$\Sigma(\omega) = U^2 \int d\omega_1 \int d\omega_2 \int d\omega_3 \left[A^0_d(\omega_1)A^0_d(\omega_2) \times \frac{\theta(-\omega_1)\theta(\omega_2)\theta(\omega_3) + \theta(\omega_1)\theta(-\omega_2)\theta(-\omega_3)}{\omega + i\delta + \omega_1 - \omega_2 - \omega_3} \right],$$

with $A^0_d(\omega) = \frac{1}{\pi} \frac{\Delta}{(\omega - E_d)^2 + \Delta^2}$, where Δ denotes the infinitesimal positive parameter. To proceed, we set $E_d = 0$ and consider the low-energy limit with $|\omega| \ll \Delta, A^0_d(\omega) \approx 1/\pi\Delta$. Thus, the imaginary part of self-energy is approximated to be

$$\text{Im} \Sigma(\omega) = -\frac{U^2 \pi}{2(\pi\Delta)^2} \omega^2 + O(\omega^4) \propto \omega^2,$$

which indicates a local FL behavior.[56] Via the Kramers– Kronig relation, its real part is $\text{Re} \Sigma(\omega) \propto \omega$.[6]

As a matter of fact, we can go beyond perturbation theory analysis by showing that FL-like Green’s function $G_d(\omega) = \frac{Z}{\omega + iBS}$ is the self-consistent solution if one inserts it into Eq. (9). As a result, one finds the quasiparticle weight $Z = 1/[1 + (\frac{U^2}{\pi^2})^2]$ and $B = Z$.

We conclude that the system behaves like a local FL in the weak coupling limit, which is similar to the ground state of the standard Anderson impurity model.[5]

2.2. Strong coupling limit

In the strong coupling limit, the self-energy correction $\Sigma(i\omega_n)$ seems to be large. If $\Sigma(i\omega_n) \gg \Delta$, one can approximate impurity electron Green’s function as

$$G_d(i\omega_n) = \frac{1}{\Sigma(i\omega_n)},$$

Fig. 3. The leading impurity electron self-energy Feynman diagrams for SYKAM under the large-N limit. (a) is the bare interaction vertex before average over random interaction U_{ij}; (b) illustrates the self-energy after average.
which is identical to the cases in the SYK models. Thus, analytic continuation, the self-energy is found to be
\[
\Sigma_{\text{SYK}}(\omega) = -\frac{1}{\sqrt{2\pi}} \frac{\sqrt{\pi}}{\sqrt{|\omega|}} \theta(-\omega) - i \frac{1}{\sqrt{2\pi}} \sqrt{\pi} \theta(\omega),
\]
the quasiparticle weight is defined as
\[
Z = \frac{1}{1 - \delta_{0} \text{Re} \Sigma} \bigg|_{\omega \to 0} \propto \sqrt{\frac{|\omega|}{U}} \bigg|_{\omega \to 0} \to 0,
\]
which corresponds to the NFL behavior.\[^{[38]}\]

However, when comparing the SYK self-energy \(\Sigma_{\text{SYK}}(\omega)\) with the remaining hybridization term \(\lambda \Delta\) in our model, we find the SYK physics dominates at high-energy regime \(\omega > E^*\) while the FL-like behavior works if \(\omega < E^*\). Here, \(E^* \sim \Delta^2/U\) is obtained via \(\Sigma_{\text{SYK}} \sim \sqrt{U/|\omega|} \sim \Delta\).

Therefore, at strong coupling, the self-energy should be approximated a mixture of FL and SYK form as
\[
\Sigma_{\text{SYK}}(\omega) \sim \theta(E^* - |\omega|) \Sigma_{\text{FL}}(\omega) + \theta(|\omega| - E^*)\Sigma_{\text{SYK}}(\omega),
\]
where \(\Sigma_{\text{FL}}(\omega)\) has an FL-like form.

Combining the results from weak and strong coupling analysis, one finds that our system is always an (local) FL at low-temperature or low energy below a characteristic energy scale \(E^*\). When elevating temperature or jumping into high energy regime above \(E^*\), the NFL behavior is driven by the SYK interaction.

3. Transport properties

Before performing calculations of transport quantities, we inspect the behavior of the single-particle Green’s functions,
\[
E^* = k_B T^* \sim \frac{\Delta^2}{U},
\]
and here we set Boltzmann’s constant \(k_B = 1\), we have
\[
T^* \sim \frac{\Delta^2}{U}.
\]

At \(|\omega| \gg E^*\), the impurity electron Green’s function is dominated by the self-energy term and has an NFL feature. When \(|\omega| \ll E^*\), it shows FL-like behavior, the detailed formulas of Green’s function of the impurity electron and the conduction electron are given in the appendix.

Since the static resistivity is inversely proportional to the static limit of optical conductivity, we can compute the latter quantitatively via the Kubo formula\[^{[6]}\]
\[
\sigma_{xx}(\omega) = \frac{1}{\omega} \Pi^{(1)}(\omega + i\delta),
\]
and
\[
\Pi^{(1)}(\omega) = -i \int_0^\infty e^{i\omega \tau} \langle [\hat{J}_x(t), \hat{J}_x(0)] \rangle,
\]
denotes the current–current response function. Here, the \(x\)-component of current operator \(\hat{J}_x\) is given by\[^{[57]}\]
\[
\hat{J}_x = \frac{e}{\hbar} \sum_{kj} \frac{\delta_{kj}}{\delta k} \hat{c}_{kj} \hat{c}_{kj},
\]
where the conduction electron dispersion is \(\epsilon_k = 2\Delta \cos(k_xa)\) with \(t\) the nearest-neighbor hopping, and \(a\) is the crystal constant. Inserting \(G_c(k, \omega)\) into \(\sigma_{xx}(\omega)\), the static conductivity is
\[
\sigma_{xx}(\omega = 0) = \frac{e^2 \pi}{\hbar^2} \sum_k d\epsilon_k \left[-\frac{d}{d\epsilon_k} \left(\frac{\delta \epsilon_k}{\delta k} \right)^2 \right] [A_c(k, \epsilon_k)]^2,
\]
where the spectral function of conduction electrons is given in the appendix.

At zero temperature, the term \([-d\epsilon_k/d\epsilon]\) becomes the delta function \(\delta(\epsilon_1)\), and the impurity electron DOS is
\[
A_d(\epsilon_1) = -\frac{1}{\pi} \text{Im} G_d(\epsilon_1 + i\delta) \propto \left\{ \begin{array}{ll} \frac{1}{\sqrt{\epsilon_1}}, & |\epsilon_1| \ll E^*, \\ |\epsilon_1| \gg E^*. & \end{array} \right.
\]
Thus, the resistivity is constant at zero temperature.

At finite temperature, we use Sommerfeld expansion to Eq. (16).\[^{[59]}\] At low temperature, \(f(\epsilon_1) \sim 1/T^2\). At high temperature, we give the basic linear fitting as shown in Fig. 4. Thus, we have
\[
\rho_c(T) \propto \left\{ \begin{array}{ll} \frac{d^2\epsilon^2}{T^4} - T^2, & T \ll T^*, \\ T \gg T^*. & \end{array} \right.
\]
It means that our system behaves as FL at low temperature and has the NFL behavior at high temperature.
and the impurity electrons. Because the system has just one impurity electron with N pseudospins, we take the chemical potential as μ_c in our work. When we fixed the impurity electron occupation n_d, $A_d(\omega)$ and $f(\omega)$ change versus temperature T, and the conduction electron spectral function $A_c(k, \omega)$ also change according to Eq. (A4). From Eq. (16), we plot the conduction electron resistivity ρ_c versus T at the impurity electron occupation $n_d = 0.4, 0.5, 0.6, 0.7$, as shown in Fig. 4. For the case of the fixed conduction electron occupation, the detailed discussion is given in the appendix.

In Fig. 4, the conduction electron resistivity ρ_c has a minimum at T^*, which is similar to the Kondo effect. When temperature $T > T^*$, the line of $n_d = 0.4$ coincides with $n_d = 0.7$, which is similar to $n_d = 0.5$ and $n_d = 0.6$. At low temperature $T < T^*$, ρ_c is proportional to the square of temperature, which behaves as FL. However, four lines have linear resistivity at high temperature $T > T^*$, where the system behaves as the NFL. In Fig. 4(b), it demonstrates that the line of $V/U = 1/3$ with $D = 12$ has a higher T^* than $V/U = 1$ with $D = 4$, where the wide bandwidth $2D$ and the large random interaction U also induces a high T^*, which coincides with Eq. (12). The red solid line of Fig. 4(b) has the constant resistivity at low temperature as shown in the inset, which also demonstrates that our system has FL behavior at $T < T^*$, and behaves like the NFL at $T > T^*$ because of linear resistivity, when $T \gg T^*$ the system has the FG behavior as shown in Fig. 1.

We also have shown the conduction electron resistivity ρ_c versus temperature T for $E_d = 0, U/2$ at different impurity concentrations $n_d = 0.4, 0.5, 0.6, 0.7$ in Fig. 5. Compared with Fig. 4, both resistivity lines have the minimum and the larger E_d induces the smaller T^*. It demonstrates that SYKAM is not symmetric around $n_d = 0.5$. Our model is different from the single-impurity Anderson model; the symmetric Anderson model $E_d = -U/2$ has the particle-hole symmetry around $n_d = 0.5$. However, our model has the four-body SYK random all-to-all interaction, in contrast to the onsite two-body Coulomb interaction, which is not satisfied with the particle-hole symmetry except for the case $U_{\text{ijkl}} = 0$.

Since the resistivity has the similarity as the Kondo effect, we also compute the DOS of the impurity electron

$$
A_d(\omega) = -\frac{1}{\pi} \text{Im} G_d(\omega + i\delta) = -\frac{1}{\pi} \text{Im} \left[\frac{1}{\omega + i\delta - E_d + i\Delta - \Sigma(\omega + i\delta)} \right].
$$
which is shown in Fig. 6. At the fixed impurity electron concentrations, peaks of the impurity electron DOS decrease versus temperature, and lines of $A_q(\omega)$ become broad, as shown in Figs. 6(a)–6(d). The black solid lines of Figs. 6(a)–6(d) and 6(f) are the case that the system behaves as FL, the red dotted lines of Figs. 6(a)–6(d) and 6(f) are the case of $T = T^*$, while blue dashed lines of Figs. 6(a)–6(d) and 6(f) are the case that the system behaves as the NFL. When $T = T^*$, peaks of $A_q(\omega)$ decrease versus n_d, as shown in Fig. 6(e). In Fig. 6(f), both lines are similar to Figs. 6(a)–6(d), but $A_q(\omega)$ has a smaller peak than Fig. 6(d) at T^* on account of the smaller conduction electron bandwidth.

Compared with the SYK model, our model has the hybridization between the conduction electrons and the impurity electron, while the standard SYK model does not have the hybridization, but the Lorentz lineshape of the impurity electron DOS is similar to the SYK model. Compared with the single-impurity Anderson model, our model has the random four-body SYK interaction between different pseudospin states of the impurity electron not the onsite Coulomb interaction between different impurity spins (spin up and spin down), which does not induce the sharp-peak like the Kondo resonance around the Fermi surface, while the single-impurity Anderson model has the Kondo resonance around the Fermi surface.

4. Thermodynamics

The impurity electron contributes a free-energy as

\[
\frac{F_d}{N} = -T \ln 2 - \frac{3}{4} T \sum_n \Sigma(i\omega_n) G_d(i\omega_n) + T \sum_n \left\{ \ln(-\beta G_d(i\omega_n)) - \ln(-\beta i\omega_n) \right\},
\]

while the conduction electron has an FG result $F_c = -T \sum_n \ln(1 + e^{-\beta\omega_n})$. In this way, the system’s total free-energy F can be obtained by $F = F_c + F_d = -T \ln Z$. The detailed derivation of the free-energy is given in the appendix.

Because conduction electrons only contribute trivial FG result, we focus on the thermodynamics of the impurity electron. Therefore, the impurity electron’s entropy S_d and specific heat capacity C_v are given by

\[
S_d = -\frac{\partial F_d}{\partial T}, \quad C_v = T \frac{\partial S_d}{\partial T} = -T \frac{\partial^2 F_d}{\partial T^2}.
\]

According to Eq. (18), the system behaves as an FL at low temperature, while at high temperature it is an NFL. Due to Refs. [24] and [48], there may exist a quantum phase transition in our model. We have got its entropy S_d and specific heat capacity C_v versus temperature by Eq. (22), which is shown in Fig. 7. For intermediate-T, S_d increases with n_d. All S_d gradually approach saturation at high-T limit with $\ln T \rightarrow S_d \rightarrow \ln 2$, as shown in Fig. 7(a). [39, 61] C_v has a maximum at intermediate-T, which is similar to the SYK model. [39, 62] C_v increases with n_d at low temperature, while it decreases for high temperature.

Since entropy and specific heat capacity are continuous and smooth, we expect a crossover, instead of phase transition, between FL and the NFL. Interestingly, similar transport properties also display in Kondo physics, and dilute magnetic alloy systems undergo a crossover from free local moment state to the non-magnetic FL state.

5. Renormalization group analysis

To proceed, we apply the RG theory to further confirm our results obtained above. We begin with the effective action Eq. (A9) by Fourier transformations, $d_i^\dagger (\tau) = \frac{1}{\sqrt{\beta}} \sum_s e^{-i\omega_s \tau} d_i(i\omega_s)$ and $d_i(\tau) = \frac{1}{\sqrt{\beta}} \sum_s e^{i\omega_s \tau} d_i(i\omega_s)$. We can get

\[
S_d \simeq -\frac{U^2}{4N^3(\sqrt{\beta})^8} \int \frac{dt}{t^2} \sum_{i m n l=1}^8 \left\{ d_i(i\omega_m) d_j(i\omega_n) d_m(i\omega_l) d_l(i\omega_i) \right\} \times e^{-i(\omega_m + \omega_n - \omega_l - \omega_i) t + i(\omega_m + \omega_n - \omega_l - \omega_i) \omega_i t}.
\]

In order to renormalize our model, we have a parameter λ ($\lambda > 1$) to cut off the fermionic Matsubara frequency ω_i and divide our model into the low energy part and the high energy
part as follows:

\[d_1'(\tau) = \frac{1}{\sqrt{\beta}} \sum_n e^{-i\omega_n \tau} \left(d_{L1}(i\omega_n) + d_{R1}(i\omega_n) \right), \quad (24) \]

\[d_i(\tau) = \frac{1}{\sqrt{\beta}} \sum_n e^{i\omega_n \tau} \left(d_{L1}(i\omega_n) + d_{R1}(i\omega_n) \right), \quad (25) \]

where \(d_{L1}(i\omega_n) \) (\(d_{R1}(i\omega_n) \)) denotes the low energy component of the system, \(d_{L1}'(i\omega_n) \) (\(d_{R1}'(i\omega_n) \)) is the system’s high energy component. On the basis of the analytic continuation, it alludes to a cutoff energy \(\omega_c/\lambda (\lambda > 1) \), the system is divided into the low energy component \((0 < |\omega| < \omega_c/\lambda) \) and the high energy component \((\omega_c/\lambda < |\omega| < \omega_c) \), and \(\omega_c \) is the Fermi energy. We rescale the energy as

\[\omega' = \lambda \omega \quad (\lambda > 1). \quad (26) \]

The effective action is given by

\[S_{\text{int}} \approx S_L + S_H + \mathcal{V}(L, H), \quad (27) \]

where \(S_L \) defines the low energy part of the effective action, \(S_H \) is the effective action for high energy component, and \(\mathcal{V}(L, H) \) describes the coupling of the low and high energy components. Hence, the partition function of the system is

\[Z = Z_L Z_t, \quad Z_t \text{ can read as} \]

\[Z_t \approx \left[\int \mathcal{D}d \prod_{s=1}^8 \frac{d\omega_s e^{S_0}}{2\pi} \right]^{\frac{4}{2}} \left(\prod_{s=1}^8 \int \frac{d\omega_s e^{S_H}}{2\pi} \right)^{\frac{4}{2}}
\times \left[\prod_{s=1}^8 \int \frac{d\omega_s e^{\mathcal{V}(L, H)}}{2\pi} \right]^{\frac{4}{2}} \]

\[= \left[\int \mathcal{D}d \prod_{s=1}^8 \frac{d\omega_s e^{S_0}}{2\pi} \right]^{\frac{4}{2}} \left(\prod_{s=1}^8 \int \frac{d\omega_s e^{S_H}}{2\pi} \right)^{\frac{4}{2}} \mathcal{V}(\omega), \quad (28) \]

where

\[e^{(V)} = e^{(V)+i\frac{1}{2}(V^2)+O(V^3)} \quad (29) \]

\[\mathcal{V}(\omega) = \prod_{s=1}^8 \frac{1}{2\pi} \int \frac{d\omega_s e^{S_H}}{2\pi} \mathcal{V}, \quad (30) \]

In the light of the first-order and second-order correction, the detailed calculations are shown in the appendix, and the RG transformation relation can be written as

\[(U')^2 = U^2 \left[1 + \frac{2U^2 \omega_0^4}{2\Delta^4} \left(1 - \frac{1}{\lambda} \right)^4 \right]. \quad (31) \]

We set \(\lambda = e' \), and its flow equation is

\[\frac{dU^2}{d\ell} = \frac{2U^4 \omega_0^4}{\Delta^4}. \quad (32) \]

In the fixed points, the scaling invariance has a consequence \(dU^2/d\ell = 0 \); it demonstrates that SYKAM has two fixed points \(U^2 = 0 \) and \(U^2 = \infty \), as shown in Fig. 8. For \(U^2 = 0 \), it scales to a weak coupling repulsive fixed point, forming FG. \(U^2 = \infty \) is a strong coupling attractive fixed point of FL. Scaling proceeds from a repulsive fixed point via a crossover to an attractive fixed point, in which exists an NFL at finite \(U^2 \).

6. Summary and perspective

We have computed the transport and thermodynamics of SYKAM, which demonstrates that the NFL exists at temperature \(T > T^* \). The RG analysis shows a crossover between FG \((U^2 = 0) \) and FL \((U^2 = \infty) \), which presents the NFL at finite \(U^2 \). The impurity electron’s entropy \(S_d \) and the specific heat capacity \(C_v \) exhibit the similarity to the SYK model and the Kondo system.[5,39,62] The resistivity of SYKAM has a minimum at temperature \(T^* \), similar to Kondo temperature, but the impurity electron DOS of SYKAM does not have the sharp Kondo resonance peak around the Fermi surface.[5,6]

Our model is an extension of the single-impurity Anderson model and the SYK model. Comparing with the single-impurity Anderson model, the SYK random interaction can not provide the localized interaction to the onsite different impurity spin states, so our system does not form local moments. Compared to the SYK model, our system has the hybridization between the conduction electrons and impurity electron, which is present in the Kondo systems, but does not exist in the SYK model. The resistivity minimum emerges in SYKAM when it behaves like an NFL, where the impurity electron has the SYK interaction without Coulomb interaction. Anderson model and our model both have the scattering between the conduction electrons and the impurity electron because of the hybridization, and except that the DOS of the impurity electron does not display the sharp-peak as the Kondo resonance and not have the localized magnetic moments in SYKAM.

Finally, it may be helpful to lead to a new route to realize the Kondo systems (heavy-fermion compounds, various quantum dot devices, and novel material Kondo systems) and the SYK physics. With the development of ultracold atom technique for realizing the Kondo lattice model,[63-65] our results may be protocollled in near-future experiments.

Appendix A: Transport properties

When \(|\omega| \ll E^* \), it shows FL-like behavior, Green’s function of the impurity electron and the conduction electron, i.e., \(T = 0 \)

\[G_d(\omega) = \begin{cases} \frac{1}{\omega + i\Delta + \left(\frac{U}{\pi \Delta} \right)^2 \omega + i \pi^2 \Delta^2 \omega^2} & |\omega| \ll E^*, \\
\frac{\pi^{1/4}}{\sqrt{2U}} \frac{1}{\sqrt{\sqrt{\omega}}}, & |\omega| \gg E^*.
\end{cases} \quad (A1) \]
The spectral function of conduction electrons is

$$A_c(k, \varepsilon_1) = -\frac{1}{\pi} \text{Im} G_c(k, \varepsilon_1 + i\delta)$$

$$= -\frac{1}{\pi} \text{Im} \left[\frac{1}{\varepsilon_1 + i\delta - \varepsilon_k} G_d(\varepsilon_1 + i\delta) \right]$$

$$= \frac{V^2}{(\varepsilon_1 - \varepsilon_k)^2} \left[-\frac{1}{\pi} \text{Im} G_d(\varepsilon_1 + i\delta) \right]$$

$$+ \frac{(\varepsilon_1 - \varepsilon_k)(\varepsilon_1 - \Sigma(\varepsilon_1))}{(\varepsilon_1 - \varepsilon_k)(\varepsilon_1 - \Sigma(\varepsilon_1)) - V^2}$$

$$\simeq \frac{V^2}{(\varepsilon_1 - \varepsilon_k)^2} A_d(\varepsilon_1), \quad (A3)$$

where we omit the term $\frac{(\varepsilon_1 - \varepsilon_k)(\varepsilon_1 - \Sigma(\varepsilon_1))}{(\varepsilon_1 - \varepsilon_k)(\varepsilon_1 - \Sigma(\varepsilon_1)) - V^2}$ because of small contribution of $A_d(k, \varepsilon).^{[60]}$

We assume that $(\partial \varepsilon_k/\partial \varepsilon_1)^2 = v_F^2$, at the low energy scale, where v_F is the Fermi velocity. Thus, we can just compute the integral $\sum_{kj} |A_c(k, \varepsilon_1)|^2$. We have

$$\sum_{kj} |A_c(k, \varepsilon_1)|^2 = \sum_{kj} \int_D d\varepsilon \delta(E - \varepsilon_k) |A_c(k, \varepsilon_1)|^2$$

$$= \int_{-\Delta}^{\Delta} dE N(E) \frac{V^4}{(\varepsilon_1 - E)^2} A_d^2(\varepsilon_1)$$

$$\simeq \int_{-\Delta}^{\Delta} dE N(0) \frac{V^4}{3} A_d^2(\varepsilon_1)$$

$$= \frac{V^4}{3} A_d^2(\varepsilon_1) N(0) \left[\frac{1}{(\varepsilon_1 - D)^3} - \frac{1}{(\varepsilon_1 + D)^3} \right]. \quad (A4)$$

Thus, the conduction electron concentration is given by

$$n_c = \sum_{\varepsilon} \int d\omega A_c(k, \omega) f(\omega), \quad (A5)$$

where $f(x) = 1/[e^{(x - \mu)/T} + 1]$ is the Fermi–Dirac distribution function, μ is the total system’s chemical potential since our system has two types of electrons (conduction and the impurity electrons), and we approximate it by conduction electron chemical potential μ_c in our work.

According to Eq. (16), we have presented the conduction electron resistivity ρ_c versus temperature T with fixed n_4 (tuning the chemical potential), as shown in Figs. 4 and 5. However, when we fix n_c by tuning the chemical potential, the conduction electron resistivity ρ_c is changed versus temperature T. We have plot conduction electron resistivity ρ_c as a function of temperature T at the conduction electron concentration $n_c = 0.4$, as shown in Fig. A1. It shows that the conduction electron resistivity ρ_c emerges a minimum versus temperature T when fixed the conduction electron occupation n_c, which behaves like that in the Kondo effect.$^{[5,6,60]}

Appendix B: Thermodynamics

Thermodynamics of our model is determined by the partition function Z, whose functional integral formalism is

$$Z = \int Dc^\dagger Dc Dd^\dagger Dd e^{-S_0 - S_{\text{int}}}. \quad (A6)$$

Here the non-interacting action is

$$S_0 = \int d\tau \left[\sum_{kj} c^\dagger_k \langle \partial \tau + \varepsilon_k \rangle c_k + V \sum_{kj} c^\dagger_k d_j \right.$$

$$+ \left. V \sum_{kj} c_k d^\dagger_j + V \sum_{j} d^\dagger_j \langle \partial \tau + E_d \rangle d_j \right], \quad (A7)$$

with imaginary time $\tau \in [0, \beta] (\beta = 1/T)$ and c_k, d_j are the anticommuting Grassman fields. The SYK interaction reads

$$S_{\text{int}} = -\frac{1}{(2N)^3/2} \int d\tau \sum_{ijklm} U_{ijkl} d^\dagger_i d^\dagger_j d_m d_l. \quad (A8)$$

After performing the standard Gaussian random average over each independent U_{ijklm} and focusing on one replica realization,$^{[46]}$ we obtain

$$S_{\text{int}} = -\frac{U^2}{4N^3} \int d\tau \int d\tau' \sum_{ijklm} [d^\dagger_i(\tau)d_i(\tau')$$

$$\times d^\dagger_j(\tau)d^\dagger_j(\tau')d_m(\tau)d_l(\tau)] . \quad (A9)$$
Now we introduce $G_d(\tau', \tau) = \frac{1}{N} \sum_{j} d_j^\dagger(\tau) d_j(\tau')$ and a Lagrange multiplier $\Sigma(\tau, \tau')$ into the action S_{int} with adding the following constraint term into the partition function

$$1 = \int \mathcal{D}G \delta \left(G_d(\tau', \tau) - \frac{1}{N} \sum_{j} d_j^\dagger(\tau) d_j(\tau') \right)$$

$$= \int \mathcal{D}\Sigma \int \mathcal{D}G e^{\int d\tau \Sigma(\tau, \tau') \left[N G_d(\tau', \tau) - \Sigma(\tau, \tau') \right]}.$$

Therefore, we can rewrite S_{int} as

$$S_d = \int d\tau \int d\tau' \left\{ \sum_{j} d_j^\dagger(\tau') \left[\Delta \Sigma(\tau', \tau) + (\partial_\tau + E_d) \right] d_j(\tau') \right\}$$

$$= N \mathcal{D} \mathcal{F} \left[\int d\tau \int d\tau' \right] \delta(\tau - \tau') + \Sigma(\tau, \tau')$$

$$= -N \int d\tau \int d\tau' \left[\left(\partial_\tau + E_d - \sum_{k} \frac{V^2}{\tau_+ + \tau_k} \right) \delta(\tau - \tau') + \Sigma(\tau, \tau') \right].$$

According to Eq. (2), we can get the effective action

$$S_d = -N \int d\tau \int d\tau' \left(\partial_\tau + E_d - \sum_{k} \frac{V^2}{\tau_+ + \tau_k} \right) \delta(\tau - \tau') + \Sigma(\tau, \tau')$$

The first order $\langle \mathcal{V} \rangle_0$ have two terms: $\langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0$, $\langle d_L^\dagger(\omega_0) d_H(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0$, $\langle d_L^\dagger(\omega_0) d_H(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0$. The low energy part is a constant. The second order $\langle \mathcal{V} \rangle_0$ have four terms: $\langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0$, $\langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0 \langle d_L^\dagger(\omega_0) d_L(\omega_0) \rangle_0$.

The leading Feynman diagrams of our model to compute the RG transformation relation Eq. (31). (a) is the first order and (b) is the second order.
$$d_{lL}(iω_{101})d_{lL}^†(iω_{09})d_{ML}(iω_{112})d_{lL}^†(iω_{01})d_{ML}(iω_{114})d_{ML}^†(iω_{013})d_{ML}(iω_{116})d_{ML}^†(iω_{015})$$

$$\simeq \int Dd \int_0^{ω_3/λ} dω_2 \int_0^{ω_3/λ} dω_2 \int_0^{ω_3/λ} dω_5 \int_0^{ω_3/λ} dω_7 \left[\frac{1}{ω_1 - E_d + iΔ} \right]$$

$$\left(\frac{1}{ω_3 - E_d + iΔ} \right) \left(\frac{1}{ω_5 - E_d + iΔ} \right) \left(\frac{1}{ω_7 - E_d + iΔ} \right) d_{ML}(iω_{101})$$

$$d_{lL}^†(iω_{09})d_{ML}(iω_{112})d_{ML}^†(iω_{01})d_{ML}(iω_{114})d_{ML}^†(iω_{013})d_{ML}(iω_{116})d_{ML}^†(iω_{015})$$

$$\simeq \int Dd \left[\frac{ω_2 - ω_5}{(Δ - E_d)^4} \right] d_{lL}(iω_{101})d_{lL}^†(iω_{09})d_{lL}(iω_{112})d_{lL}^†(iω_{01})d_{lL}(iω_{114})d_{lL}^†(iω_{013})d_{lL}(iω_{116})d_{lL}^†(iω_{015}) \right] . \quad (A15)$$

Here, \(\frac{1}{ω_3 - E_d + iΔ} \approx \frac{1}{E_d + iΔ} \), and \(s = 1, 3, 5, 7 \).

References

[1] Wilson K G 1975 Rev. Mod. Phys. 47 773
[2] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1003
[3] Krishna-murthy H R, Wilkins J W and Wilson K G 1980 Phys. Rev. B 21 1044
[4] Krishna-murthy H R, Wilson K G and Wilkins J W 1975 Phys. Rev. Lett. 35 1101
[5] Hewson A C 1997 The Kondo Problem to Heavy Fermions (Cambridge University Press)
[6] Coleman P 2015 Introduction to Many-Body Physics (Cambridge University Press)
[7] Coleman P 2006 arXiv:cond-mat/061206v3
[8] Anderson P W 1961 Phys. Rev. 124 41
[9] Schrieffer J R and Wolff P A 1966 Phys. Rev. 149 491
[10] Kondo J 1964 Prog. Theor. Phys. 32 37
[11] Chubukov A V 1964 Physics 3 70
[12] Schroder A, Aeppli G, Coldea R, Adams M, Stockert O, Lohneysen H, Bucher E, Ramazashvili R and Coleman P 2000 Nature 407 351
[13] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Troyavchenko O, Geibel C, Steglich F, Pepin C and Coleman P 2003 Nature 424 524
[14] Matsumoto Y, Nakatsuji S, Kuga K, Karaki Y, Horie N, Shimura Y, Sakakibara T, Nevidomskyy A H and Coleman P 2011 Science 331 316
[15] Cubrovic M, Zaenon J and Schalm K 2009 Science 325 439
[16] Si Q, Rabello S, Ingersent K and J L 2001 Nature 413 804
[17] Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[18] Pepin C 2005 Phys. Rev. Lett. 94 066402
[19] Senthil T, Sachdev S and Vojta M 2003 Phys. Rev. Lett. 90 216403
[20] Senthil T, Sachdev S and Vojta M 2004 Phys. Rev. B 69 035111
[21] Senthil Y F and Pines D 2014 Proc. Natl. Acad. Sci. 111 8398
[22] Chowdhury D, Worman Y, Berg E and Senthil T 2018 Phys. Rev. X 8 031024
[23] Haldar A, Banerjee S and Shenoy V B 2018 Phys. Rev. B 97 241106
[24] Bi Z, Jian C M, You Y Z, Pawlik A K and Xu C 2017 Phys. Rev. B 95 205105
[25] Ben-Zion D and McGreevy J 2018 Phys. Rev. B 97 155117
[26] Sachdev S and Ye J 1993 Phys. Rev. Lett. 70 3539
[27] Parcollet O and Georges A 1999 Phys. Rev. B 59 5341
[28] Georges A, Parcollet O and Sachdev S 2000 Phys. Rev. Lett. 85 840
[29] Georges A, Parcollet O and Sachdev S 2001 Phys. Rev. B 63 134406
[30] Cavagnaro A and Rozenberg M J 2005 Phys. Rev. A 72 017902
[31] Kitaev A 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/10
[32] Kitaev A 2015 http://online.kitp.ucsb.edu/online/entangled15/kitaev/2/