MBM classes and contraction loci on low-dimensional hyperkähler manifolds of $K3^{[n]}$ type

Ekaterina Amerik1, Misha Verbitsky2

Abstract
An MBM locus on a hyperkähler manifold is the union of all deformations of a minimal rational curve with negative self-intersection. MBM loci can be equivalently defined as centers of bimeromorphic contractions. In [AV3], it was shown that the MBM loci on deformation equivalent hyperkähler manifolds are diffeomorphic. We determine the MBM loci on a hyperkähler manifold of $K3^{[n]}$-type for small n using a deformation to a Hilbert scheme of a non-algebraic K3 surface.

Contents

1 Introduction

2 Hyperkähler manifolds
 2.1 Holomorphically symplectic manifolds
 2.2 The Bogomolov-Beauville-Fujiki form
 2.3 Extremal curves
 2.4 MBM classes

3 Teichmüller spaces, Torelli theorem and monodromy
 3.1 Teichmüller space
 3.2 Global Torelli theorem
 3.3 The space $Teich_{\alpha}^{\text{min}}$
 3.4 Monodromy for manifolds of $K3^{[n]}$ type

4 Birational contractions and invariance by deformation
 4.1 Birational contractions
 4.2 Invariance by deformation

1Partially supported by the Russian Academic Excellence Project '5-100'.
2Partially supported by the Russian Academic Excellence Project '5-100', FAPERJ E-26/202.912/2018 and CNPq - Process 313608/2017-2.

Keywords: hyperkähler manifold, Kähler cone, birational maps

2010 Mathematics Subject Classification: 53C26, 32G13
1 Introduction

In the last twenty years or so, a considerable effort has been made to understand the Mori cone, or, dually, the ample (or Kähler in the non-projective case) cone of irreducible holomorphic symplectic (IHS) manifolds. For K3 surfaces it has been known for a long time that the extremal rays correspond to \((-2)\)-curves (that is, irreducible curves of square \(-2\), automatically smooth and rational), so that the ample (or Kähler) classes are characterized, among positive classes, as those which are positive on all \((-2)\)-curves. In higher dimension, though, until recently the only general result, due to Huybrechts and Boucksom, was that one could still test the Kähler property on rational curves. However, no boundedness statement for such curves was available. A boundedness statement (equivalent to the Morrison-Kawamata cone conjecture) was obtained in [AV2].

In [HT1] Hassett and Tschinkel conjectured a description of the Mori cone for projective IHS manifolds which are deformation equivalent to the Hilbert square of a K3 surface. Such manifolds are also called holomorphic symplectic fourfolds of K3\(^{[n]}\) type. The conjecture by Hassett and Tschinkel (Conjecture 3.1 of [HT1]) stated that the extremal rays are generated by the classes with some particular numerical properties. For the Hilbert square of a K3 surface containing a smooth rational curve \(C\), these numerics are either those of the rational curves contracted by the Hilbert-Chow morphism, or of the rational curves arising from \(C\), or of the line in the projective plane which is the symmetric square of such a \(C\). Hassett and Tschinkel have subsequently proved this conjecture in [HT2] (in the projective case).

For high-dimensional holomorphic symplectic manifolds of K3\(^{[n]}\) type the analogous initial conjecture by Hassett and Tschinkel (Conjecture 1.2 of [HT3] turned out to be false. The description of the Mori cone was provided by Bayer and Macri [BM] using advanced technology around Bridgeland’s stability conditions.

Another conjecture by Hassett and Tschinkel (Conjecture 3.6 of [HT1], and still a conjecture 24 in [HT2]) was concerned with the geometry of the loci covered by the minimal rational curves according to the numerical properties of the corresponding extremal rays (by Kawamata base-point-free theorem, one can interpret those loci as exceptional sets of birational
contractions). As it is natural, one expects that such a locus is either a
lagrangian plane or a \mathbb{P}^1-bundle over a K3 surface, the former covered by
curves with Beauville-Bogomolov square $-5/2$, the latter either $-1/2$ (the
type of the exceptional divisor of the Hilbert-Chow map) or -2 (the type
of the divisor of subschemes with some support on a -2-curve C on the
K3-surface). One can also expect a similar description in higher dimension.
Hassett and Tschinkel have given lists of possible types of extremal rays and
corresponding contraction loci in [HT3] and then completed a few missing
types following Bayer and Macri in [HT4].

Bayer and Macri’s technology allows, in principle, to describe contrac-
tion loci as fibrations in projective spaces over K3-related manifolds (up to
birational equivalence). Those manifolds arise as moduli spaces of sheaves
on a K3 surface in question, and the projective spaces are projectivisations
of Ext-groups between the sheaves. But this approach is not very explicit,
whereas at list in low dimension it seems possible and useful to describe the
extremal rays and the subvarieties covered by the corresponding curves “by
hand”.

The purpose of this note is to provide a particularly simple description
of possible extremal rays and contraction loci for holomorphic symplectic
manifolds of K3$[n]$ type in low dimension, particularly four and six (i.e. for
manifolds which are deformation equivalent to the Hilbert square or the
Hilbert cube of a K3 surface). Rather than studying extremal rays, we work
with a slightly different notion of MBM classes. This notion was introduced
in [AV1] to put things in the deformation-invariant context, and indeed the
crucial point in our argument is the deformation to the Hilbert scheme of a
non-projective K3 surface.

The MBM classes are the classes which correspond to extremal rays of the
Mori cone on some deformation of X, or, equivalently, the classes of extremal
rays up to monodromy and birational equivalence (the name derives from
“monodromy birationally minimal”). From a uniruled subvariety Z of an
IHS X we obtain an MBM class as follows: let C be a rational curve which
is minimal among the rational curves in Z (in the sense that C does not
bend-and-break). If its class is Beauville-Bogomolov negative, then it is
MBM.

The parameter space $\mathcal{T}eich_{\alpha}^{\text{min}}$ for complex structures where an MBM
class α is represented by a minimal rational curve coincides with the whole
space where α stays of type $(1,1)$ up to inseparability issues. Such curves
can always be contracted ([AV3, Corollary 5.3]).

In [AV3] we proved some deformation-invariance statements about the
corresponding contraction loci (i.e. exceptional sets of morphisms contract-
ing the class α). We have, in particular, shown that the diffeomorphism type of such a contraction locus is constant over $\text{Teich}_{\alpha}^{\text{min}}$. Moreover, so is the biholomorphism type of the fibers of the rational quotient fibration of the exceptional locus, with a possible exception of the points of $\text{Teich}_{\alpha}^{\text{min}}$ corresponding to the complex structures with maximal Picard number.

The idea now is as follows. Let α be a negative integral $(1,1)$-class on a hyperkähler fourfold X of $\text{K3}^{[n]}$ type. Using Markman’s description of the monodromy group, we prove that X can be deformed to a non-projective manifold $X' \cong \text{Hilb}^2(S')$ where S' is a K3 surface with cyclic Picard group generated by a negative class, and in such a way that α stays of type $(1,1)$. Since rational curves on X' are easy to describe, we obtain the classification of subvarieties which can be covered by rational curves in the class α, by deformation-invariance.

If X is an IHS of $\text{K3}^{[n]}$ type of dimension six, it turns out that X still deforms to the Hilbert cube of a non-projective K3 surface S, but its Picard group can now be generated by an element with negative or zero Beauville-Bogomolov square. The geometry in this last case is also well-understood. Namely, S is an elliptic $K3$ surface with singular fibers which are nodal rational curves, and there is no other curve at all. All rational curves (up to deformation) on the symmetric cube of S are obtained from linear systems g^1_k, $k \leq 3$ on the fibers, so again easy to describe. We obtain a table of five types of MBM classes, their squares and the types of the corresponding contraction loci, which agrees with the data by Hassett and Tschinkel (one may notice here that the MBM class initially overlooked in HT3 and exhibited in HT4 while working out Bayer and Macri’s formulae on this example, comes in our picture from the Hilbert cube of a surface with zero intersection form on the Picard group).

The same calculation works in fact for eightfolds (again bringing into the picture a class originally overlooked in HT3) and tenfolds, but not for higher-dimensional IHS of $\text{K3}^{[n]}$ type. It would be interesting to see whether the present elementary method could be adapted to give a reasonable classification in all dimensions.

2 Hyperkähler manifolds

In this section we recall some definitions concerning IHS manifolds and rational curves. For more details see [Bea] and [AV1].

\footnote{As defined in [Har] §IV.5, g^d_k denotes a linear system of dimension d and degree k on a curve. In particular, g^1_k correspond to k-sheeted maps to \mathbb{P}^1.}
2.1 Holomorphically symplectic manifolds

Definition 2.1: A holomorphically symplectic manifold is a complex manifold equipped with a nowhere degenerate holomorphic two-form.

Definition 2.2: For the rest of this paper, a hyperkähler manifold is a compact, Kähler, holomorphically symplectic manifold.

Definition 2.3: A hyperkähler manifold M is called simple, or IHS, or of maximal holonomy if $\pi_1(M) = 0$, $H^{2,0}(M) = \mathbb{C}$.

The terminology originates from Bogomolov’s decomposition theorem stating that any hyperkähler manifold admits a finite covering which is a product of a torus and several IHS, [Bo1]. This decomposition also corresponds the de Rham-Berger local decomposition of a Riemannian manifold into a product of manifolds with irreducible Riemannian holonomy. Then, the IHS manifolds correspond to the hyperkähler manifolds which have irreducible holonomy. Further on, all hyperkähler manifolds are assumed to be of maximal holonomy.

Example 2.4: The basic series of examples is that of punctual Hilbert schemes of K3 surfaces. As observed by Beauville in [Bea], for any K3 surface S, the Hilbert scheme $S^{[n]}$ of ideal sheaves of colength n on S is an IHS. An IHS which is a deformation of $S^{[n]}$ for a K3 surface S is said to be of K3$^{[n]}$ type. There is one more series (generalized Kummer manifolds) and two sporadic families (O’Grady’s examples) known, and we don’t know whether there is anything else.

2.2 The Bogomolov-Beauville-Fujiki form

Theorem 2.5: (Fujiki, [F]) Let $\eta \in H^2(M)$, and dim $M = 2n$, where M is hyperkähler. Then $\int_M \eta^{2n} = c q(\eta, \eta)^n$, for some primitive integral quadratic form q on $H^2(M, \mathbb{Z})$, and $c > 0$ a rational number.

Definition 2.6: This form is called Bogomolov-Beauville-Fujiki form. It is defined by the Fujiki’s relation uniquely, up to a sign. The sign is found from an explicit formula due to Beauville and Bogomolov, using integration against exterior powers of the holomorphic symplectic form Ω and its conjugate, see e.g. [Bea].
Remark 2.7: The form q has signature $(3, b_2 - 3)$. It is negative definite on primitive forms, and positive definite on (Ω, Ω, ω), where ω is a Kähler form.

Remark 2.8: The BBF form is in general not unimodular. We shall use it to embed $H_2(M, \mathbb{Z})$ into $H^2(M, \mathbb{Q})$ as an overlattice of $H^2(M, \mathbb{Z})$. This allows us to view the classes of curves on M as rational $(1, 1)$-classes and compute the BBF square of a curve which is a rational number (cf. [HT1]).

Example 2.9: If M is a K3 surface, the BBF form is just the intersection form. If $M = S^{[n]}$ for a K3 surface S, we have an orthogonal direct sum decomposition of lattices $H^2(M, \mathbb{Z}) = H^2(S, \mathbb{Z}) \oplus \mathbb{Z}e$, where $H^2(S, \mathbb{Z})$ is equipped with the intersection form and $e^2 = -2(n-1)$. In fact e is one half of the class of the diagonal, that is, the divisor of non-reduced subschemes of length n in S (this divisor is also the exceptional set of the Hilbert-Chow morphism for $S^{[n]}$. This decomposition holds for IHS of K3$^{[n]}$ type (but the class e may cease to be algebraic).

2.3 Extremal curves

Let $Z \subset M$ be an irreducible uniruled subvariety of a compact Kähler manifold (M, ω). We call a rational curve $C \subset Z$ minimal if it is of minimal degree with respect to the Kähler form, i.e. $\int_C \omega$ is minimal, among the curves passing through a general point of Z.

Remark 2.10: Thanks to Mori’s bend-and-break lemma, there is the following necessary condition for minimality: for general $x, y \in Z$, the space of deformations $Z_{x,y}$ of C passing through x, y is 0-dimensional. Indeed, if $\dim Z_{x,y} > 0$, we can use Mori lemma to deform C to a reducible curve which contains x, y. The area $\int_{C'} \omega$ of each component of this union is strictly smaller than that of C.

If X is IHS, minimal rational curves on X have the following remarkable properties (see for instance [AV1]).

Proposition 2.11: Let X be IHS of dimension $2n$, then a minimal rational curve C (with respect to some maximal uniruled subvariety Z) deforms together with X whenever its cohomology class remains of type $(1, 1)$. The space of deformations of C within X is of dimension $2n - 2$. The subvariety Z is coisotropic and can be of any dimension between n and $2n - 1$. Its
codimension in X is equal to the relative dimension of its rational quotient fibration.

Definition 2.12: A rational curve is called MBM if it is minimal and its cohomology class has negative self-intersection.

One reason why we are especially interested in negative self-intersection rational curves is that they determine the Kähler cone $\text{Kah}(M)$ (or the ample cone in the projective case) inside the **positive cone**. The latter is defined as the connected component of the set

$$\{ \eta \in H^{1,1}(M, \mathbb{R}) \mid (\eta, \eta) > 0 \} \quad (2.1)$$

which contains the Kähler cone $\text{Kah}(M)$. Note that the BBF form on $H^{1,1}(M, \mathbb{R})$ has signature $(1, b_2 - 3)$ and therefore the set (2.1) has two connected components.

Theorem 2.13: (Huybrechts, Boucksom, see [Bou]) The Kähler cone of M is the set of all $\eta \in \text{Pos}(M)$ such that $(\eta, C) > 0$ for all rational curves C.

Clearly we may consider only negative rational curves, as by the Hodge index theorem the positive classes never have zero intersection with curves of positive square. If moreover the class of such a curve cannot be written as a sum of two other such classes, it is called an **extremal** rational curve. The Kähler cone is locally polyhedral (with some round pieces in the boundary), and its faces are orthogonal complements to the classes of extremal curves. Note that an MBM curve as in Proposition 2.11 is extremal on a generic deformation, as only its class, up to proportionality, survives as a $(1,1)$-class there.

2.4 MBM classes

A minimal rational curve may split, and thus cease to be minimal, under a deformation. To put the things into a deformation-invariant context, we have introduced the notion of **MBM classes** in [AV1]. These are, up to a rational multiple, monodromy transforms (see next subsection for the definition of the monodromy) of the classes of extremal rational curves on IHS birational models of M. Note that if M and M' are two birational IHS, or, more generally, two birational manifolds with trivial canonical bundle, then $H^2(M)$ is naturally identified with $H^2(M')$. The following is a reformulation of [AV1] Theorem 1.17.
Theorem 2.14: Let η be the cohomology class of an extremal curve on a hyperkähler manifold, and (M_1, η) be obtained as a deformation of (M, η) in a family such that η remains of type $(1,1)$ for all fibers of this family. Then M_1 is birational to a hyperkähler manifold M'_1 such that $\gamma(\eta)$ is a class of an extremal curve on M'_1 for some γ in the monodromy group.

Remark 2.15: Birational hyperkähler manifolds are deformation equivalent by a result of Huybrechts. In fact, a more precise version of the theorem above (see [AV3]) states that an extremal rational curve remains extremal on an M'_1 unseparable from M_1 in the Teichmüller space (see next section for preliminaries on Teichmüller space and more details).

MBM classes can be defined in several equivalent ways. The simplest one to formulate is as follows.

Definition 2.16: A class $\eta \in H^2(M, \mathbb{Z})$ which, up to a rational multiple, can be represented by an extremal curve on a deformation on M is called an MBM class.

Remark 2.17: Another equivalent definition ([AV1]): An MBM class $\eta \in H^2(M)$ is a Beauville-Bogomolov negative class such that $\lambda \eta$ can be represented by a rational curve in some (M, I) when (M, I) is a non-algebraic deformation of M with $\text{Pic}(M, I)_\mathbb{Q} = \langle \eta \rangle$. In that case it can be represented by a rational curve in all such (M, I).

The set of MBM classes is thus the same for a given deformation type. If a complex structure I is fixed, some of them are of type $(1,1)$, and among those, some correspond to extremal curves (that is, determine the Kähler cone), others correspond to extremal curves on birational models and their monodromy transforms. The following result further explains the connection between MBM classes and the Kähler cone.

Theorem 2.18: ([AVT]) Let (M, I) be a hyperkähler manifold and S the set of all MBM classes of type $(1,1)$ on (M, I). Let S^\perp the union of all orthogonal complement to all $s \in S$. Then $\text{Kah}(M, I)$ is a connected component of $\text{Pos}(M) \setminus S^\perp$.

Following E. Markman, we call these connected components the Kähler-Weil chambers.
3 Teichmüller spaces, Torelli theorem and monodromy

3.1 Teichmüller space

This subsection and the next one follow [V1].

Definition 3.1: Let M be a hyperkähler manifold, and $\text{Diff}_0(M)$ a connected component of its diffeomorphism group (the group of isotopies). Denote by Comp the space of complex structures of Kähler type on M, and let $\text{Teich} := \text{Comp}/\text{Diff}_0(M)$. We call it the Teichmüller space.

Remark 3.2: The space Teich is a finite-dimensional complex manifold ([Cat]), not necessarily Hausdorff.

Definition 3.3: Let $\text{Diff}(M)$ be the group of diffeomorphisms of M. We call $\Gamma := \text{Diff}(M)/\text{Diff}_0(M)$ the mapping class group.

The quotient Teich/Γ is identified with the set of equivalence classes of complex structures. However the notion of the moduli space usually does not make sense as the action of Γ on Teich is “too bad”.

By a result of Huybrechts, the quotient $\text{Comp}/\text{Diff}_0(M)$ has only finitely many connected components. To simplify notations we denote by Teich the one which contains our given complex structure, that is, a parameter space for the deformations of M. The group Γ shall mean the subgroup of the mapping class group which preserves Teich.

Definition 3.4: The monodromy group Mon is the image of the representation of Γ on $H^2(M, \mathbb{Z})$.

Definition 3.5: Let $\text{Per} : \text{Teich} \rightarrow \mathbb{P}H^2(M, \mathbb{C})$ map a complex structure J to the line $H^{2,0}(M,J) \in \mathbb{P}H^2(M, \mathbb{C})$. The map $\text{Per} : \text{Teich} \rightarrow \mathbb{P}H^2(M, \mathbb{C})$ is called the period map. The map Per maps Teich to an open subset of a quadric $\mathbb{P} \setminus \{l \in \mathbb{P}H^2(M, \mathbb{C}) \mid q(l,l) = 0, q(l,\overline{l}) > 0\}$. It is called the period space of M.

Remark 3.6: The space $\mathbb{P}\text{er}$ can be naturally identified with $SO(b_2 - 3, 3)/SO(2) \times SO(b_2 - 3, 1) = \text{Gr}_{++}(H^2(M, \mathbb{R}))$.
(the Grassmannian of Beauville-Bogomolov positive, oriented planes in $H^2(M, \mathbb{R})$).

Indeed, the group $SO(H^2(M, \mathbb{R}), q) = SO(b_2 - 3, 3)$ acts transitively on Per, and $SO(2) \times SO(b_2 - 3, 1)$ is the stabilizer of a point. More explicitly, we can associate to each complex line a real plane generated by its real and imaginary part.

3.2 Global Torelli theorem

Definition 3.7: Let M be a topological space. We say that $x, y \in M$ are non-separable (denoted by $x \sim y$) if for any open sets $V \ni x, U \ni y$, $U \cap V \neq \emptyset$.

Definition 3.8: The space $\text{Teich}_b := \text{Teich} / \sim$ is called the birational Teichmüller space of M. Since Teich_b is obtained by gluing together all non-separable points, it is also called the Hausdorff reduction of Teich.

Theorem 3.9: (Global Torelli theorem for hyperkähler manifolds)

The period map $\text{Teich}_b \xrightarrow{\text{Per}} \text{Per}$ is a diffeomorphism, for each connected component of Teich_b.

Huybrechts in [H1] observed that unseparable points of Teich correspond to birational IHS, up to the action of the mapping class group. The following precise description of unseparable points is due to Markman.

Theorem 3.10: The points in $\text{Per}^{-1}(\text{Per} I)$ correspond to the Kähler-Weil chambers (that is, to the connected components of $\text{Pos}(M) \cup z^\perp$ where z runs through the MBM classes of type $(1, 1)$). Each chamber is the Kähler cone of the corresponding point in $\text{Per}^{-1}(\text{Per} I)$.

In particular, as a general hyperkähler manifold has no curves (the ones which have curves belong to a countable union of divisors in Teich), Teich is generically Hausdorff.

3.3 The space $\text{Teich}^{\text{min}}_\alpha$

Let now α be an MBM class, we are interested in the complex structures I from Teich such that α is of type $(1, 1)$ in I. Denote the subspace of such structures in Teich by Teich_α. Clearly, $\text{Teich}_\alpha = \text{Per}^{-1}(\alpha^\perp)$. From [Theorem 3.10] it is clear that Teich_α is not Hausdorff even generically (indeed each complex structure I in Teich_α has at least two Kähler-Weil chambers in...
which $\alpha^\perp \subset H^{1,1}(I)$ divides the positive cone). On the other hand, Teich_α is naturally divided in two halves, according to whether α is negative or positive on the Kähler classes. In the “positive” half Teich_α^+ take the part formed by the complex structures whose Kähler cones are adjacent to α^\perp.

Definition 3.11: The space thus defined is called $\text{Teich}_\alpha^{\min}$. In other words $\text{Teich}_\alpha^{\min}$ parameterizes the complex structures such that α is the class of a minimal rational curve, up to a positive multiple.

Remark 3.12: It is clear from this description that $\text{Teich}_\alpha^{\min}$ is generically Hausdorff and that Per is an isomorphism from $\text{Teich}_\alpha^{\min}$ to $\alpha^\perp \subset \text{Per}$.

3.4 Monodromy for manifolds of $K3^{[n]}$ type

The monodromy group is very important for understanding the geometry of IHS manifolds, but in the general (“classification-free”) case its structure remains somewhat mysterious. One knows, thanks to Markman [Ma2], that the reflections in the classes of uniruled divisors are in Mon, and this already has nontrivial consequences. But it is not clear how to decide whether a given MBM class is “divisorial” or not (that is, whether the corresponding rational curves cover a divisor or a subvariety of higher codimension).

A lot of work has been done on the known examples of IHS. For manifolds of $K3^{[n]}$ type, Markman proved the following.

Theorem 3.13: ([Ma3, Theorem 1.2]) The monodromy group Mon is the subgroup of $O(H^2(M, \mathbb{Z}))$ generated by the reflections in the classes of square -2 and and the antireflections in those of square 2, that is, by the transformations $\rho_u(x) = -\frac{2u}{q(u)} + q(x, u)u$, where the Beauville-Bogomolov square $q(u) = \pm 2$, and the same notation q is used for the bilinear form associated to q. Up to \pm sign, it also coincides with the **stable orthogonal group** $\tilde{O}(H^2(M, \mathbb{Z}))$ of isometries acting trivially on the discriminant group.

Here the **discriminant group** of a lattice L is the quotient L^*/L where L^* is the dual lattice and L is naturally embedded into L^*. If L is $H^2(M, \mathbb{Z})$ for M a $2n$-dimensional IHS of $K3^{[n]}$ type, the discriminant group is cyclic of order $2n - 2$ (see Example 2.9). We shall often view it as a subgroup of \mathbb{Q}/\mathbb{Z}, like in Theorem 3.15 just below.

Remark 3.14: When $n - 1$ is a power of a prime number, one can show that Mon coincides with the orientation-preserving part of the orthogonal...
group itself ([Ma3], lemma 4.2). We shall not need this as the group \tilde{O} has also been studied. Notably we shall use the following.

Theorem 3.15: (see e.g. [GHS], Lemma 3.5) Let (L, q) be a lattice containing two orthogonal isotropic planes. The orbit of $l \in L$ under $\tilde{O}(L)$ is determined by $q(l)$ and the image of $l/d(l)$ in the discriminant group. Here we view the dual lattice as an overlattice of L in $L \otimes \mathbb{Q}$, and $d(l)$ is the *divisibility* of l, that is, the pairing of l with L gives the ideal $d(l)\mathbb{Z}$.

4 Birational contractions and invariance by deformation

4.1 Birational contractions

In this section we recall the Kawamata base point free theorem which implies that extremal rational curves on projective IHS manifolds are contractible, as well as a more recent observation by Bakker and Lehn concerning the nonprojective case.

Definition 4.1: A line bundle L on a compact complex k-fold M is **nef** if $c_1(L)$ lies in the closure of the Kähler cone, **big** if $H^0(M, L^\otimes N) = O(k^N)$ for N sufficiently big and sufficiently divisible, and **semiample** if $L^\otimes N$ is generated by its global sections for such N.

Theorem 4.2: (Kawamata base point free theorem, [K1, Theorem 4.3]) Let L be a nef line bundle on a projective M such that $L^\otimes N \otimes O(-K_M)$ is nef and big for some N. Then L is semiample.

For manifolds with trivial canonical bundle this just means that big and nef bundles are semiample.

It follows that the sections of a suitable power of a big and nef bundle L on such manifolds define a birational contraction (that is, a birational morphism with connected fibers) $\varphi : M \to Y$.

Suppose now that M is a projective IHS manifold, α is an MBM class and the given complex structure I on M is such that $I \in \text{Teich}_0^{\text{min}}$, so that α is in fact the class of an extremal curve: the hyperplane α^\perp in $H^{1,1}(M, \mathbb{R})$ contains a wall of the Kähler cone. Since M is projective, the interior of this wall contains an integral $(1,1)$-class which by Lefschetz theorem is $c_1(L)$ for a line bundle L. This line bundle is nef, and also big. Indeed its BBF
square is positive, and hence so is $c_1(L)^{2n}$. Therefore a power of L defines a birational morphism contracting exactly the curves of class proportional to α.

It turns out that extremal curves can be contracted also in the non-projective case. This is essentially due to Bakker and Lehn in [BL]. More precisely, putting together some results in [AV1], [BL] and [AV3] gives the following.

Theorem 4.3: ([BL, Proposition 4.10], [AV3, Corollary 5.3])

Let M be an IHS manifold and α the class of an extremal rational curve on M. Then there exists a birational contraction $\varphi : M \to Y$ contracting to points the curves whose class is proportional to α. Moreover, for every component Z of the exceptional set, the fibers of $\varphi|_Z$ are rationally connected, and $\varphi|_Z$ is the rational quotient fibration of Z.

In particular the uniruled subvarieties of M covered by deformations of an extremal rational curve are irreducible components of the exceptional sets of birational contractions. We sometimes refer to these as MBM loci.

4.2 Invariance by deformation

The following is the main result of [AV3].

Theorem 4.4: Let α be an MBM class of type $(1,1)$ on a hyperkähler manifold M with $b_2(M) > 5$. Assume that M and its deformation M' are both in $\text{Teich}^{\text{min}}_\alpha$, so that α is a class of an extremal rational curve on both. Then the corresponding contraction centers on M and M' are sent one to another by a diffeomorphism $\Psi : M \to M'$ preserving the fibers of the contraction. If moreover neither M nor M' has maximal Picard rank, Ψ can be chosen identifying the contracted extremal curves and thus induces the biholomorphism of the fibers provided that they are normal.

Remark 4.5: Clearly, $H^{1,1}(M)$ is obtained as orthogonal complement to the 2-dimensional space $\langle \text{Re} \Omega, \text{Im} \Omega \rangle$, where Ω is the cohomology class of the holomorphic symplectic form. Then $\text{Pic}(M) = H^{1,1}(M) \cap H^2(M, \mathbb{Z})$ has maximal rank only if the plane $\langle \text{Re} \Omega, \text{Im} \Omega \rangle$ is rational. There is at most countable number of such M.

Remark 4.6: Existence of Ψ follows from ergodicity of mapping class group action, global Torelli theorem, Bakker-Lehn contractibility result, and
Thom-Mathers stratification of proper real analytic maps.

5 MBM loci for low-dimensional manifolds of $K3^{[n]}$ type

The diffeomorphism theorem allows one to give an explicit description of birational contraction centers and MBM loci in terms of the period spaces and lattices. The easiest illustration is the (well-known, cf. Hassett and Tschinkel’s works, but seemingly with no direct proof ever written) description of the MBM loci on an IHS fourfold of $K3^{[2]}$ type.

Theorem 5.1: On an IHS fourfold of $K3^{[2]}$ type, there are only three types of extremal rational curves l (notation: $\alpha = [l]$; Z is the MBM locus of l):

(a) $q(\alpha) = -5/2$, 2α is integral, $Z \cong \mathbb{P}^2$

(b) $q(\alpha) = -2$, α is integral, Z is a \mathbb{P}^1-bundle over a K3 surface;

(c) $q(\alpha) = -1/2$, 2α is integral, Z is a \mathbb{P}^1-bundle over a K3 surface.

Taking into account [Theorem 4.4] this is a consequence of the following precision:

Theorem 5.2: Let α be the class of an extremal rational curve on an IHS fourfold M of $K3^{[2]}$ type and Z the corresponding MBM locus. Then there exists a deformation M' of M within Teich_α, isomorphic to the Hilbert square of a non-projective K3 surface S with cyclic Picard group generated by a negative class z, such that one of the following holds:

(a) S contains a smooth rational curve C and Z deforms to its Hilbert square, isomorphic to \mathbb{P}^2; α is a line in this \mathbb{P}^2;

(b) S contains a smooth rational curve C and Z deforms to $Z_C \subset M'$, the divisor of all length-two subschemes of S with support intersecting C; Z_C is a ruled divisor singular along $C^{[2]} \cong \mathbb{P}^2$ and α is the class of the ruling.

(c) Z deforms to the exceptional divisor of the Hilbert-Chow map $S^{[2]} \to \text{Sym}^2(S)$, and α is the class of the ruling.
Remark 5.3: In the second case α is clearly not a class of an extremal rational curve, that is, M' is not in $\text{Teich}^\text{min}_\alpha$. As we know, this means that some complex structure unseparable from M is in $\text{Teich}^\text{min}_\alpha$. In fact, to render α extremal, one performs a flop in $C^{[2]}$, which also resolves the singularities of Z_C and makes it a \mathbb{P}^1-bundle.

Once the existence of a deformation $M' \cong S^{[2]}$, $\text{Pic}(S) = \langle z \rangle$, $q(z) < 0$, is shown, the rest is easy. Indeed one has the following description of rational curves on M'.

Proposition 5.4: Let S be a K3 surface with the Picard group $\text{Pic}(S)$ of rank 1 generated by a vector $z \in H^{1,1}(S,\mathbb{Z})$ with negative square, and Z an MBM locus on $M^{[2]}$. Then Z is described by (a), (b) or (c) of Theorem 5.2.

Proof: If S has no curves, the symmetric square $\text{Sym}^2 S$ also has no curves, and the bimeromorphic contraction $S^{[2]} \longrightarrow \text{Sym}^2 S$ contracts the exceptional divisor E to the singular set of $\text{Sym}^2 S$. This means that $E = Z$, case (b) of Theorem 5.2.

If S has a curve, it is a smooth (-2)-curve C which is necessarily unique. Indeed, any curve with negative self-intersection is a smooth rational curve with square -2 by adjunction, and there cannot be two different curves in the proportional classes, again because $(z, z) < 0$. Then the (-2)-curve C can be blown down to an ordinary double point. Let S_1 be the result of this blow-down. Then $\text{Sym}^2(S_1)$ has no curves, and the natural map $S^{[2]} \longrightarrow \text{Sym}^2(S_1)$ blows down all curves in $S^{[2]}$. The corresponding exceptional set V is a union of two divisors, the exceptional divisor E and the set $W \subset S^{[2]}$ of all ideal sheaves of colength two $I \subset O_S$ with support of I intersecting C. Clearly, these two divisors intersect in $P^2 = C^{[2]}$, and outside of $C^{[2]}$ each of these divisors is covered by a unique family of rational curves, hence the classification. \blacksquare

As for Beauville-Bogomolov squares, we recall the computations by Hassett and Tschinkel and others for convenience. We have the decomposition into the orthogonal direct sum $H^2(M,\mathbb{Z}) = H^2(S,\mathbb{Z}) \oplus Ze$ where e is half of the class of the diagonal E, and $e^2 = -2$.

- If α is the class of the ruling of the exceptional divisor, $q(e, \alpha) = -1$ since the exceptional divisor restricts as $O(-2)$ to the ruling. Hence $\alpha = e/2$.

- 15 – version 1.0, July 30, 2019
• If α is the class of the ruling of Z_C, then α is the class of C.

• If α is the class of the line in the Lagrangian plane $C^{[2]}$, then $\alpha = [C] - e/2$ ([HT3], Example 4.11; for $S^{[n]}$ this would be the same, indeed $q(e, \alpha) = n - 1$)

We postpone the existence of M' until the next section and deal with the next example of an IHS sixfold of $K3^{[3]}$ type. There are five types of extremal rational curves/MBM classes/contraction loci. Four of them appear in the tables of [HT3] and are described geometrically exactly in the same way as those on a fourfold: on such an M which is the Hilbert cube of a $K3$ surface S containing a (-2)-curve C, we have four natural subvarieties covered by deformations of rational curves in BBF-negative classes, that is, the exceptional divisor of the Hilbert-Chow map (ruled over the big diagonal), the ruled divisor of subschemes with some support on C (ruled over the symmetric square of S), the fourfold of subschemes with at least length-two part supported on C (birational to a \mathbb{P}^2-bundle over S), and $\mathbb{P}^3 = C^{[3]}$.

After Bayer and Macri have given their description of the Mori cone in [BM], Hassett and Tschinkel observed in [HT4] that one case was actually missing from their table in dimension 6. The cohomology class of the extremal curve in question is half-integer and has square -1. We would like to present the following simple way to find this MBM class.

Theorem 5.5: Let α be a class of an extremal rational curve on an IHS M of $K3^{[n]}$ type of dimension at most ten and let Z be the corresponding MBM locus. Then there exists a deformation M' of M within Teich_α, isomorphic to the Hilbert scheme of a non-projective $K3$ surface S with cyclic Picard group (thus generated by a non-positive class z).

Again, let us describe the geometry we get in dimension six before going to the proof.

First case: If $\text{Pic} S$ is generated by a negative class, the rational curves on M' are described as in Proposition 5.4; one has the four types listed above.

Second case: If $\text{Pic} S$ is generated by a class of square zero, then one deduces from Riemann-Roch theorem that S carries an elliptic pencil with some degenerate fibers which are rational curves with a singularity, and no other curves. For Hilbert cube this means that the extremal rational curves arise from linear systems of degree $k \leq 3$ on the (eventually normalized) curves from the elliptic pencil: one fixes $3 - k$ points on S and lets the
remaining \(k \)-uplet run through a pencil in the system. Of course, not all curves arising in this way are extremal, and some of them are already on the list obtained in the negative case.

Note that the computation of the BBF square is particularly easy since only the intersection with \(e \) counts. Indeed the intersection form is zero on its orthogonal complement (which is naturally identified with \(\text{Pic} S \)).

For instance, the curve obtained by fixing two points and letting the third one run through the singular fiber is of BBF square zero, so not extremal. Considering a rational curve \(R \) coming from a \(g^1_3 \) on a smooth elliptic curve, we see that \(q(R) = -9/4 \) and \(R \) is quarter-integer (\(e \) comes with coefficient \(-3/4\)), by the following well-known lemma (see [CK] for a version which also applies to singular curves).

Lemma 5.6: The class of a rational curve coming from a \(g^1_3 \) on a curve \(C \) of genus \(g \) is
\[
C - \frac{g+k-1}{2(n-1)} e.
\]

The idea is that the intersection with the diagonal is computed by the Hurwitz formula, as this is roughly speaking the ramification of the morphism to the projective line defined by the \(g^1_3 \).

Such an extremal class (quarter-integer with square \(-9/4\)) is already obtained by Hassett-Tschinkel’s computation when \(S \) contains a \((-2)\)-curve \(C \). It appears as the class of a line in the projective plane \(C^{[2]} \). By the description of monodromy orbits, the two classes are conjugate by a monodromy transform, so we get no new geometry here.

On the contrary, fixing one point on \(S \) and considering a \(g^1_3 \) on an elliptic curve, one gets a half-integer class of square \(-1\), exactly the one omitted in the table of [HT3].

The following corollary results from the above computations.

Corollary 5.7: There are 5 types of MBM classes on an IHS sixfold of K3\(^{[3]}\) type:

(a) \(q(\alpha) = -3 \), \(2\alpha \) is integral, \(Z \cong \mathbb{P}^3 \)

(b) \(q(\alpha) = -9/4 \), \(4\alpha \) is integral, \(Z \) is birationally a \(\mathbb{P}^2 \)-bundle over a K3 surface;

(c) \(q(\alpha) = -2 \), \(\alpha \) is integral, \(Z \) is birationally a \(\mathbb{P}^1 \)-bundle over the Hilbert square of a K3 surface;
(d) $q(\alpha) = -1/4$, 4α is integral, Z is birationally a \mathbb{P}^1-bundle over a product of two K3 surfaces;

(e) $q(\alpha) = -1$, 2α is integral, Z is birationally a \mathbb{P}^1-bundle over a product of two K3 surfaces.

It could be interesting to see whether one can make this more precise with the help of flops, as in the fourfold case, though there is no hope that one could suppress the word “birationally” altogether. Indeed the diagonal divisor (case (d)) is a contraction locus but not a \mathbb{P}^1-bundle, the fibers over the small diagonal are more complicated (cones over twisted cubics, $[T]$).

In the next section we perform a monodromy computation and use it to prove theorems [Theorem 5.5] and [Theorem 5.2]. In dimension 8 and 10, one derives a similar description of MBM classes and their loci. [Theorem 5.5] does not hold beyond dimension ten. Nevertheless one can pursue the explicit description of extremal curves along these lines.

6 Monodromy computations

Theorem 6.1: Let S be a K3 surface and let Λ be the lattice $H^2(S^{[k]}, \mathbb{Z}) = H^2(S, \mathbb{Z}) \oplus \mathbb{Z} e$ with its BBF form. If $k = 2$, then for any primitive $z \in \Lambda$ with $q(z, z) < 0$, there exists $\gamma \in \tilde{O}(\Lambda)$ such that the rank 2 lattice $\langle \gamma(z), e \rangle$ is negative definite, unless z and e belong to the same $\tilde{O}(\Lambda)$-orbit. If $3 \leq k \leq 5$, there exists $\gamma \in \text{Mon}$ such that the rank 2 lattice $\langle \gamma(z), e \rangle$ is negative semidefinite.

Remark 6.2: In this statement $\tilde{O}(\Lambda)$ can be replaced by “monodromy”, we just want to stress that the statement is about lattices.

This implies [Theorem 5.5] and [Theorem 5.2] because of the following proposition.

Proposition 6.3: Let $Z \subset X$ be a birational contraction center on a deformation X of the n-th Hilbert scheme of a K3 surface. Suppose that [Theorem 6.1] holds for its second cohomology lattice. Then the pair (X, Z) can be deformed to $(S^{[n]}, Z')$, where S is a non-algebraic K3 surface with (necessarily BBF nonpositive) cyclic Picard group.
Proof: Let η be the MBM class associated with Z and Teich_η the Teichmüller space of deformations of X such that η remains of type $(1,1)$. From the global Torelli theorem it follows that any lattice $\Lambda_1 \subset \Lambda$ with Λ^+_1 containing a positive 2-plane and $\Lambda_1 \supset \eta$ can be realized as a Picard lattice of $I \in \text{Teich}_\eta$. Moreover all structures unseparables from I (the points of $\text{Per}^{-1}(\text{Per}(I))$) have this Picard lattice, and the corresponding manifolds are all birational. Applying this to the lattice $\langle \eta, \gamma^{-1}e \rangle$ from [Theorem 6.1], we obtain deformations of (X, Z) with Picard lattice $\langle \eta, \gamma^{-1}e \rangle$. On such deformations, η remains of type $(1,1)$. Finally, some of them are Hilbert schemes of K3 surfaces: indeed the period points of Hilbert schemes of K3 surfaces in \mathbb{P} form the union of the orthogonal hyperplanes to the monodromy transforms of e (each point of this union is a period point by Torelli theorem for K3 surfaces). ■

We denote by $\delta(z)$ the image of $\frac{z}{d(z)}$ in the discriminant group, where $d(z)$ denotes the divisibility of z (see [Theorem 3.15]). Recall from [Theorem 3.15] that $z, z' \in \Lambda = (H^2(S[n], \mathbb{Z}), q)$ belong to the same orbit of $O(\Lambda)$ if and only if $q(z) = q(z')$ and $\delta(z) = \delta(z')$.

Example 6.4: Let S be a K3 surface, and $\Lambda = (H^2(S[2], \mathbb{Z}), q)$, so that $\Lambda = H^2(S, \mathbb{Z}) \oplus \mathbb{Z}e$, where $q(e) = -2$, and the discriminant group of Λ is $\mathbb{Z}/2\mathbb{Z}$. The primitive vectors $z \in \Lambda$ are $ax + be$, where $x \in H^2(S, \mathbb{Z})$ is primitive and $a, b \in \mathbb{Z}$ relatively prime. Since the lattice $H^2(S, \mathbb{Z})$ is unimodular, $d(x) = 1$ for any primitive $x \in H^2(S, \mathbb{Z})$. Therefore, $d(z) = 2$ if and only if a is even, and $\delta(z) \neq 0$ if and only if a is even and b odd. For such z, one has $q(z) = a^2q(x) - 2b^2$. More generally, if $\Lambda = (H^2(S[n], \mathbb{Z}), q)$ and e denotes half the diagonal class, then the divisibility of $ax + be$, $x \in H^2(S, \mathbb{Z})$ primitive, is equal to $\gcd (a, 2(n-1)b)$.

Proof of Theorem 6.1 in the case $k = 2$: We consider two subcases, $\delta(z) = 0$ and $\delta(z) \neq 0$. If $\delta(z) = 0$, we can find $z' \in H^2(S, \mathbb{Z}) \subset H^2(S[2], \mathbb{Z})$ with $q(z) = q(z')$, and [Theorem 3.15] implies that $z' = \gamma(z)$ for some $\gamma \in \tilde{O}(\Lambda)$. Clearly, the lattice $\langle z', e \rangle$ is negative definite.

Now, let $\delta(z) \neq 0$. Then $q(z) = a^2q(x) - 2b^2$, where $a = 2a_1$ is even, and $q(z, z) = 4a_1^2q(x) - 2b^2$ is equal to -2 modulo 8. Moreover, any number $r = -2 \mod 8$ can be realized as $q(z') = 4q(x) - 2$ for $z' = 2x' - e$, because any even number can be realized as a square of $x' \in H^2(S, \mathbb{Z})$. Since $q(z) < 0$, we have $q(z) \leq -10$ unless $q(z) = -2$. In the latter case z belongs to the same $\tilde{O}(\Lambda)$-orbit as e. In the first case z belongs to the same $\tilde{O}(\Lambda)$-orbit as
$z' = 2x' - e$, with $q(x') \leq -2$. In this case, the determinant of the lattice $\langle z',e \rangle$ is equal to $q(z')q(e) - q(z',e)^2 = -2q(z') - 4 \geq 16$, hence the lattice $\langle z',e \rangle$ is also negative definite.

Proof of Theorem 6.1 in the case $k = 3$: Now $e^2 = -4$ and the discriminant group of the lattice is the cyclic group of order 4 which we view as a subgroup of \mathbb{Q}/\mathbb{Z}, and we have three possible subcases.

The first one $\delta(z) = 0$ is the same as above.

If $\delta(z) = \pm 1/4$, z is conjugate to e when $q(z) = -4$. Otherwise we write z as $4x + be$ where $x \in H^2(S,\mathbb{Z})$ and b is odd. Since $q(z) = 16q(x) - 4b^2$ is equal to -4 modulo 16 and is negative, we have $q(z) \leq -20$. Moreover, z is conjugate to some element of the form $z' = 4x' \pm e$, as $b^2 - 1$ is divisible by 8, and hence $16q(x) - 4b^2 + 4$ is divisible by 32. Now the lattice generated by e and z' is negative definite.

Some novelty appears when $\delta(z) = 1/2$. Then one still finds a negative definite lattice whenever $q(z) \neq -4$, but when $q(z) = -4$ then z is conjugate to z' of the form $2x' + e$ and the determinant of the lattice $\langle z',e \rangle$ is zero.

Proof of Theorem 6.1 in the case of greater k: We set $t = 2(k - 1)$ so that $q(e) = -t$, and we eventually replace z by a multiple in order to write uniformly $z = tx + be$, $b \in \mathbb{Z}$, x primitive. We first remark that one may suppose that $\mid b \mid \leq t/2$. Indeed $tx + be$ has the same square as $tx' + (b \pm t)e$ for some $x' \in H^2(S,\mathbb{Z})$ (the equation $t^2q(x) - 4b^2 = t^2q(x') - t(b^2 \pm 2tb + t^2)$ on $q(x')$ has a solution since the terms $2b^2$ cancel and the other ones are divisible by $2t^2$), and when x' is primitive the two have the same divisibility: indeed by Example 6.4 this divisibility is g.c.d. (t, bt) resp. g.c.d. $(t, (b \pm t)t)$, and the two are clearly equal. Therefore $tx + be$ and $tx' + (b \pm t)e$ are in the same monodromy orbit.

We know that $q(z)$ is negative. For small t it means that $q(z) \leq -tb^2$: indeed this is the case when $q(x)$ is non-positive, and when $t \leq 8$ (that is, $k \leq 5$), already for $q(x) = 2$ one has $2t^2 - b^2t \geq 0$ provided $\mid b \mid \leq t/2$. Therefore the matrix of q on (z,e) is negative semidefinite, and one concludes in the same way as before.

Starting from $k = 6$, the statement fails. Indeed, let $k = 6$, so $t = 10$, and $z = 2x - e$ where x is primitive of square 2, then $z^2 = -2$ but the determinant of q on (z,e) is negative and will remain negative when we replace z by a conjugate.

Remark 6.5: In the last case mentioned, that is, $k = 6$, the computation above shows that the only case when the pair (M, z) cannot be deformed
to the Hilbert scheme of a nonprojective surface with cyclic Picard group is exactly as described: $z^2 = -2$, $z = 2x - e$ with x orthogonal to e, x of square 2. On a generic deformation where e becomes a Hodge class, M becomes the Hilbert scheme of a K3 surface S with Picard group generated by x of square 2. Such an S is a double covering of \mathbb{P}^2 and the MBM curve has class $z/2$. Up to monodromy, by [Lemma 5.6] and the unicity statement [Theorem 3.15], it comes from a g^1_4 on a curve of genus 2 (the inverse image of a line under the covering map is of genus 2). Its MBM locus is birational to a \mathbb{P}^2-bundle over a product of a K3 surface with the symmetric square of a K3 surface.

This evokes the paper [KLM] where many rational curves on Hilbert schemes of a K3 surface and on generalized Kummer varieties are constructed from special linear systems on (possibly nodal) curves via Brill-Noether theory. Notice that in this particular case no Brill-Noether theory is needed, since obviously any curve of genus 2 carries a g^1_4. It seems likely and could be interesting to verify that such a description can be given in general.

Acknowledgements: We are grateful to Brendan Hassett, Ljudmila Kamenova, Emanuele Macri and Yuri Tschinkel for useful discussions.

References

[AV1] Amerik, E., Verbitsky, M. Rational curves on hyperkähler manifolds, Int. Math. Res. Notices 2015, no.23, 13009 – 13045

[AV2] Amerik, E., Verbitsky, M. Morrison-Kawamata cone conjecture for hyperkähler manifolds, Ann. Sci. ENS 50 (2017), no. 4, 973–993.

[AV3] Amerik, E., Verbitsky, M. Contraction centers in families of hyperkahler manifolds, [arXiv:1903.04884](https://arxiv.org/abs/1903.04884)

[BL] B. Bakker, C. Leh, A global Torelli theorem for singular symplectic varieties, [arXiv:1612.07894](https://arxiv.org/abs/1612.07894)

[BM] A. Bayer, E. Macri: MMP for moduli of sheaves on K3s via wall-crossing: nef and movable cones, Lagrangian fibrations. Invent. Math. 198 (2014), no. 3, 505 – 590.

[Bea] Beauville, A. Variétés Kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom. 18, pp. 755-782 (1983).

[Bo1] Bogomolov, F. A., On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR-Sb. 22 (1974), 580-583.
[Bou] Boucksom, S., *Le cône kählérien d’une variété hyperkählérienne*, C. R. Acad. Sci. Paris Ser. I Math. 333 (2001), no. 10, 935–938.

[Cat] Catanese, F., *A Superficial Working Guide to Deformations and Moduli*, in *Handbook of moduli, Vol. I*, 161-215, Int. Press, Somerville, MA, 2013.

[CK] C. Ciliberto, A. L. Knutsen: On k-gonal loci in Severi varieties on general K3 surfaces and rational curves on hyperkähler manifolds. J. Math. Pures Appl. (9) 101 (2014), no. 4, 473–494.

[F] Fujiki, A. *On the de Rham Cohomology Group of a Compact Kähler Symplectic Manifold*, Adv. Stud. Pure Math. 10 (1987), 105-165.

[GHS] Gritsenko, V. A., Hulek, K., Sankaran, G. K., *Moduli Spaces of Irreducible Symplectic Manifolds*, Compositio Math. 146 (2010) 404 - 434.

[Har] R. Hartshorne, *Algebraic Geometry*, GTM 52, Springer, 1977.

[HT1] B. Hassett, Y. Tschinkel: Rational curves on holomorphic symplectic fourfolds. Geom. Funct. Anal. 11 (2001), no. 6, 1201–1228

[HT2] B. Hassett, Y. Tschinkel: Moving and ample cones of holomorphic symplectic fourfolds. Geom. Funct. Anal. 19 (2009), no. 4, 1065–1080

[HT3] B. Hassett, Y. Tschinkel: Intersection numbers of extremal rays on holomorphic symplectic varieties. Asian J. Math. 14 (2010), no. 3, 303–322

[HT4] B. Hassett, Y. Tschinkel: Extremal rays and automorphisms of holomorphic symplectic varieties. K3 surfaces and their moduli, 73–95, Progr. Math., 315, Birkhuser/Springer, [Cham], 2016.

[H1] Huybrechts, D., *Compact hyperkähler manifolds: Basic results*, Invent. Math. 135 (1999), 63-113, [alg-geom/9705025]

[K1] Y. Kawamata, *Pluricanonical systems on minimal algebraic varieties*, Invent. Math., 79, (1985), no. 3, 567-588.

[KLM] A.L.Knutsen, M. Lelli-Chiesa, G. Mongardi: Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds. Trans. Amer. Math. Soc. 371 (2019), no. 2, 1403–1438.

[Ma1] Markman, E. *A survey of Torelli and monodromy results for holomorphic-symplectic varieties*, Proceedings of the conference ”Complex and Differential Geometry”, Springer Proceedings in Mathematics, 2011, Volume 8, 257–322, [arXiv:math/0601304]

[Ma2] Markman, E., *Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections*, Kyoto J. Math. 53 (2013), no. 2, 345–403.

[Ma3] Markman, E. *Integral constraints on the monodromy group of the hyperkähler resolution of a symmetric product of a K3 surface*, International Journal of Mathematics Vol. 21, No. 2 (2010) 169-223, [arXiv:math/0601304]
[T] A. Tikhomirov, A smooth model of punctual Hilbert schemes of a surface. (in Russian) Trudy Mat. Inst. Steklov. 208 (1995), Teor. Chisel, Algebra i Algebr. Geom., 318–334.

[V1] Verbitsky, M., *A global Torelli theorem for hyperkähler manifolds*, Duke Math. J. Volume 162, Number 15 (2013), 2929-2986.