NON-LINEAR GRASSMANNIANS AS COADJOINT ORBITS

STEFAN HALLER AND CORNELIA VIZMAN

Abstract. For a given manifold M we consider the non-linear Grassmann manifold $\text{Gr}_n(M)$ of n-dimensional submanifolds in M. A closed $(n+2)$-form on M gives rise to a closed 2-form on $\text{Gr}_n(M)$. If the original form was integral, the 2-form will be the curvature of a principal S^1-bundle over $\text{Gr}_n(M)$. Using this S^1-bundle one obtains central extensions for certain groups of diffeomorphisms of M. We can realize $\text{Gr}_{m-2}(M)$ as coadjoint orbits of the extended group of exact volume preserving diffeomorphisms and the symplectic Grassmannians $\text{SGr}_{2k}(M)$ as coadjoint orbits in the group of Hamiltonian diffeomorphisms. We also generalize the vortex filament equation as a Hamiltonian equation on $\text{Gr}_{m-2}(M)$.

1. Introduction

Let M be a smooth connected closed manifold of dimension m. We are interested in the space of closed submanifolds of M. More precisely we fix a dimension n and let $\text{Gr}_n(M)$ denote the space of all n-dimensional oriented compact boundaryless submanifolds of M. This is easily seen to be a Fréchet manifold in a natural way. We consider this as a non-linear analogue of the classical Grassmann manifolds.

Every closed differential form α of degree $n+2$ on M gives rise to a closed 2-form $\tilde{\alpha}$ on $\text{Gr}_n(M)$. If α was integral, our first theorem says that there is a principal S^1-bundle $P \to \text{Gr}_n(M)$ with principal connection, whose curvature form is $\tilde{\alpha}$. The group of equivariant connection preserving diffeomorphisms of P then is a central extension of the group of Hamiltonian diffeomorphisms on $\text{Gr}_n(M)$. The latter makes sense, even if $\tilde{\alpha}$ is degenerate. Restricting everything to a connected component of $\text{Gr}_n(M)$, the extension becomes 1-dimensional with fiber S^1.

Now the group of diffeomorphisms of M which preserve α acts symplectically on $\text{Gr}_n(M)$. In some cases there are interesting subgroups G, which actually act in a Hamiltonian way. In such a situation the pull back of the central extension described above gives a central extension $1 \to S^1 \to \tilde{G} \to G \to 1$.

Let us describe two cases in more detail. Suppose α was an integral volume form and let $\text{Gr}_{m-2}(M)$ denote the space of codimension 2 submanifolds. As mentioned above, the volume form gives a closed 2-form on $\text{Gr}_{m-2}(M)$, which turns out to be (weakly) non-degenerate. Then the group of exact volume preserving diffeomorphisms acts in a Hamiltonian way on $\text{Gr}_{m-2}(M)$. So the pull back gives central extensions \tilde{G} of the group of exact volume preserving diffeomorphisms by S^1. This is Ismagilov’s way of constructing these extensions, see [190]. Using the moment map we will then realize the symplectic manifold $\text{Gr}_{m-2}(M)$ as a coadjoint orbit.
of the group \hat{G}. We even get Lie group structure on the extensions \hat{G} of the group of exact volume preserving diffeomorphisms.

For the second situation we have in mind we start with a symplectic manifold (M, ω). Taking $\alpha := \omega^{k+1}$ we get a closed 2–form $\tilde{\alpha}$ on $\text{Gr}_2k(M)$. This form is no longer symplectic. However, when restricted to the open subset $S\text{Gr}_2k(M)$ of symplectic submanifolds it will become non-degenerate. We will refer to $S\text{Gr}_2k(M)$ as a non-linear symplectic Grassmannian. The group of Hamiltonian diffeomorphisms of M now acts in a Hamiltonian way on $S\text{Gr}_2k(M)$. So the procedure above yields central extensions of $\text{Ham}(M, \omega)$ by S^1. These extensions are not very interesting, since the associated extensions of Lie algebras turn out to be trivial. However, it permits us to realize the symplectic manifold $S\text{Gr}_2k(M)$ as a coadjoint orbit of $\text{Ham}(M, \omega)$.

For a Riemannian manifold (M, g) the non-linear Grassmannian $\text{Gr}_{m−2}(M)$ of codimension two submanifolds has a canonical almost Kähler structure. The g–volume of the submanifold gives a smooth function on $\text{Gr}_{m−2}(M)$ and its Hamiltonian equation generalizes the vortex filament equation.

Finally, let us remark that everything generalizes to non-compact M in a straightforward way. The diffeomorphism groups then have to be replaced by the compactly supported ones.

2. Non-linear Grassmannians

Throughout the whole paper M will be a smooth closed connected m–dimensional manifold. Let $\text{Gr}_n(M)$ denote the space of all oriented compact n–dimensional not necessarily connected submanifolds without boundary. This is easily seen to be a Fréchet manifold in a natural way, see [KM97]. Note that there is a natural action of the group $\text{Diff}(M)$ on $\text{Gr}_n(M)$. A classical theorem due to R. Thom implies that $\text{Diff}(M)_0$, the connected component in the group of diffeomorphisms, acts transitively on every connected component of $\text{Gr}_n(M)$.

Suppose $N \in \text{Gr}_n(M)$. Then the tangent space of $\text{Gr}_n(M)$ at N can naturally be identified with the space of smooth sections of the normal bundle $TN^\perp := TM|_N/TN$. Any $\alpha \in \Omega^k(M)$ gives rise to $\tilde{\alpha} \in \Omega^{k−n}(\text{Gr}_n(M))$ via:

$$(\tilde{\alpha})_N(Y_1, \ldots, Y_{k−n}) := \int_N i_{Y_1} \cdots i_{Y_n} \alpha.$$

Here $N \in \text{Gr}_n(M)$ and Y_j are tangent vectors at N, i.e. sections of TN^\perp. Then $i_{Y_1} \cdots i_{Y_n} \alpha \in \Omega^n(N)$ does not depend on representatives Y_j and integration is well defined, for $N \in \text{Gr}_n(M)$ comes with an orientation.

Let ζ denote the infinitesimal $\text{Diff}(M)$–action on $\text{Gr}_n(M)$, that is for every vector field $X \in \mathfrak{x}(M)$ on M we have a fundamental vector field ζX on $\text{Gr}_n(M)$. One easily verifies the following

Lemma 1. For every $X \in \mathfrak{x}(M)$, $N \in \text{Gr}_n(M)$, $k \in \mathbb{N}$, $\alpha \in \Omega^k(M)$ and every $\varphi \in \text{Diff}(M)$ we have:

(i) $\zeta_X(N) = X|_N$.
(ii) $d\alpha = d\tilde{\alpha}$.
(iii) $i_{\zeta_X} \tilde{\alpha} = \tilde{i}_X \alpha$.
(iv) $L_{\zeta_X} \tilde{\alpha} = \tilde{L}_X \alpha$.
(v) $\varphi^* \tilde{\alpha} = \varphi^* \alpha$.

Suppose α is a closed k–form on M. Then we get a closed 2–form α on $\text{Gr}_k - 2(M)$. Our first theorem states that if $[\alpha] \in H^k(M; \mathbb{R})$ is integral then α will be the curvature form of a principal S^1–bundle over $\text{Gr}_k - 2(M)$.

Theorem 1. Let M be a closed connected manifold and let α be a closed k–form representing an integral cohomology class of M. Then there exist a principal S^1–bundle $\mathcal{P} \to \text{Gr}_k - 2(M)$ and a principal connection $\eta \in \Omega^1(\mathcal{P})$ whose curvature form is α.

Proof. Note that it suffices to prove this for one representative of $[\alpha] \in H^k(M; \mathbb{R})$. For if η is a principal connection with curvature $\tilde{\alpha}$ then $\eta + \pi^*\tilde{\beta}$ is a principal connection with curvature form $\alpha + d\beta$.

Pick a smooth triangulation Δ^v of M and let Δ^{m-k} denote its $(m-k)$–skeleton. Choose an open neighborhood U of Δ^{m-k} which deformation retracts onto Δ^{m-k}. Moreover set $A := M \setminus U$ and $V := A^0 = M \setminus \overline{U}$. One easily checks the following properties:

(i) $H^j(A; \mathbb{Z}) = 0$ for all $j \geq k$. We will actually only use $H^k(A; \mathbb{Z}) = 0$.

(ii) For all compact $K \subseteq M \setminus \Delta^{m-k}$ there exists $g \in \text{Diff}(M)_0$ with $g(K) \subseteq V$.

If moreover $K^1 \subseteq V$ compact, then g and the diffeotopy connecting it to the identity can be chosen to fix the points in K^1.

Using (i) and considering

$$
\begin{array}{ccc}
H^k(M, A; \mathbb{Z}) & \longrightarrow & H^k(M; \mathbb{R}) \\
\uparrow & & \uparrow \\
H^k(M, A; \mathbb{Z}) & \longrightarrow & H^k(M; \mathbb{Z}) & \longrightarrow & H^k(A; \mathbb{Z})
\end{array}
$$

we see that $[\alpha] \in H^k(M; \mathbb{R})$ has a representative which vanishes on V and which represents an integral class in $H^k(M, A; \mathbb{R})$, i.e. lies in the image of $H^k(M, A; \mathbb{Z}) \to H^k(M, A; \mathbb{R})$. Since it suffices to construct the bundle and the connection for some representative we may assume from now on

(iii) α vanishes on V.

(iv) α represents an integral class in $H^k(M, A; \mathbb{R})$.

Lemma 2. Suppose L is a compact manifold of dimension $l < k$, which might have a boundary (even corners) and suppose $f : L \to M$ smooth. Then there exists $g \in \text{Diff}(M)_0$, such that $g(f(L)) \subseteq V$. Moreover if $f(\partial L) \subseteq V$ then g and the diffeotopy connecting it with the identity can be chosen to fix the points in $f(\partial L)$.

Proof of Lemma 2. A well known transversality argument shows that there exists $g_1 \in \text{Diff}(M)_0$ with $g_1 \circ f$ transversal to Δ^{m-k}. Since $l < k$ we thus must have $g_1(f(L)) \cap \Delta^{m-k} = \emptyset$. From (ii) we get $g_2 \in \text{Diff}(M)_0$ with $g_2(g_1(f(L))) \subseteq V$. The second part is proved similarly.

Let us continue with the proof of Theorem 1. Let $I = [0, 1]$ denote the unit interval. For $\varphi \in C^\infty(I, \text{Diff}(M))$ with $\varphi_0 = \text{id}$ we define $U_\varphi := \{ N \in \text{Gr}_{k-2}(M) : \varphi_1(N) \subseteq V \}$. Lemma 2 implies that U_φ is an open covering of $\text{Gr}_{k-2}(M)$. Moreover we set

$$
\lambda_\varphi := -\int_0^1 \varphi_1^* \alpha dt \in \Omega^k(M).
$$
A one line computation shows $d\lambda_x = \alpha - \varphi^1 \alpha$. Because of (11) we particularly have $d\lambda_x = \alpha$ on $\varphi^1(V)$ and thus $d\tilde{\lambda}_x = \tilde{\alpha}$ on U_x. The $\tilde{\lambda}_x$ will be the connection forms, we are going to define the transition cocycle defining the S^1–bundle.

Fix $\varphi, \psi \in C^{\infty}(I, \text{Diff}(M))$ with $\varphi_0 = \psi_0 = \text{id}$ and consider homotopies $\Phi \in C^{\infty}(I \times I, \text{Diff}(M))$ with $\Phi_{0,t} = \varphi_t$, $\Phi_{1,t} = \psi_t$ and $\Phi_{s,0} = \text{id}$ for all $s \in I$. For such a Φ we set

$$U_\Phi := \{ N \in \text{Gr}_{k-2}(M) : \Phi_{s,1}(N) \subseteq V \text{ for all } s \in I \}.$$

Clearly U_Φ are open subsets of $U_\varphi \cap U_\psi$. Lemma 2 shows that for every $N \in U_\varphi \cap U_\psi$ there exists a homotopy Φ with ends φ and ψ, such that $N \in U_\Phi$. In other words U_Φ constitute an open covering of $U_\varphi \cap U_\psi$, as Φ varies with fixed ends φ and ψ. For such a Φ we define

$$\tau_\Phi := \int_0^1 \int_0^1 \Phi_{s,t}^* \delta \Phi(\partial_s)i_{\delta \Phi(\partial_t)} \alpha \, ds \, dt \in \Omega^{k-2}(M).$$

Using the Maurer–Cartan equation for the left logarithmic derivative, cf. [KM97],

$$[\delta \Phi(\partial_s), \delta \Phi(\partial_t)] = \frac{\partial}{\partial s} \delta \Phi(\partial_s) - \frac{\partial}{\partial t} \delta \Phi(\partial_t),$$

an easy computation yields

$$d\tau_\Phi = \lambda_\psi - \lambda_\varphi + \int_0^1 \Phi_{s,1}^* i_{\delta \Phi(\partial_s)} \alpha \, ds.$$

Particularly $\tilde{\lambda}_\psi - \tilde{\lambda}_\varphi = d\tilde{\tau}_\Phi$ on U_Φ. Note that $\tilde{\tau}_\Phi$ is a function on $\text{Gr}_{k-2}(M)$ and obviously $\tilde{\tau}_\Phi(N) = \int_{I \times I \times N} \Phi_N^* \alpha$ with $\Phi_N(s,t,x) = \Phi_{s,t}(x)$, $x \in N$. If Ψ is another homotopy with ends φ and ψ and $N \in U_\varphi \cap U_\Psi$ then

$$\tilde{\tau}_\Psi(N) - \tilde{\tau}_\Phi(N) \in \mathbb{Z}.$$

Indeed, $\tilde{\Psi}_N - \tilde{\Phi}_N$ represents a class in $H_k(M,A;\mathbb{Z})$ and $\tilde{\tau}_\Psi(N) - \tilde{\tau}_\Phi(N)$ is the pairing of this class with $[\alpha] \in H^k(M,A;\mathbb{R})$. From (17) we see that the result must be integral as well.

So when considered as functions $U_\Phi \to S^1 := \mathbb{R}/\mathbb{Z}$ the $\tilde{\tau}_\Phi$ fit together and define well defined smooth $f_{\varphi,\psi} : U_\varphi \cap U_\psi \to S^1$ satisfying $df_{\varphi,\psi} = \tilde{\lambda}_\psi - \tilde{\lambda}_\varphi$. A similar argument shows that they satisfy the cocycle condition $f_{\varphi,\psi} + f_{\psi,\rho} - f_{\varphi,\rho} = 0$ as functions $U_\varphi \cap U_\psi \cap U_\rho \to S^1$, where S^1 is written additively.

Now define P to be the principal S^1–bundle one obtains when gluing $U_\varphi \times S^1$ with the help of $f_{\varphi,\psi}$. On $U_\varphi \times S^1$ we define $\eta_\varphi := \lambda_\varphi + d\theta$, where $d\theta$ denotes the standard volume form on S^1. These locally defined η_φ define a global principal connection $\eta \in \Omega^1(P)$, for we have $df_{\varphi,\psi} = \tilde{\lambda}_\psi - \tilde{\lambda}_\varphi$ on $U_\varphi \cap U_\psi$. Since $d\tilde{\lambda}_\varphi = \tilde{\alpha}$ on U_φ its curvature form is $\tilde{\alpha}$. This finishes the proof of the theorem.

Example 1. Let us consider the case $k = 2$. So α is a closed integral 2–form and $\text{Gr}_{k-2}(M)$ is the space of oriented points in M. Let \mathcal{M} denote the connected component of $\text{Gr}_{k-2}(M)$ where the submanifolds consist of a single positively oriented point. Certainly $\mathcal{M} = M$ and $\tilde{\alpha} = \alpha$. So in this case the restriction of the bundle $\mathcal{P} \to \text{Gr}_{k-2}(M)$ to \mathcal{M} gives the classical circle bundle with connection corresponding to the closed integral 2–form α.

Remark 1. A Theorem of R. Thom implies that the action of $\text{Diff}(M)_0$ on connected components of $\text{Gr}_n(M)$ is transitive. Hence connected components of $\text{Gr}_n(M)$ are
homogeneous spaces of $\text{Diff}(M)_0$. Actually Thom’s theorem shows that $\text{Diff}(M)_0$ acts transitively on connected components of $\text{Emb}(N,M)$, the space of smooth embeddings of N in M. So connected components of $\text{Emb}(N,M)$ are homogeneous spaces of $\text{Diff}(M)_0$ too. Below we will see that similar statements hold for the group of volume preserving diffeomorphisms.

Moreover the connected components of $\text{Emb}(N,M)$ are principal bundles over corresponding connected components of $\text{Gr}_n(M)$, see [KM97]. The structure group is the group of orientation preserving diffeomorphisms of N.

3. Universal construction

Suppose we have a principal S^1–bundle $\pi : (\mathcal{P}, \eta) \to (\mathcal{M}, \Omega)$ with connection η and curvature Ω. We assume \mathcal{M} connected but it may very well be infinite dimensional. We associate Kostant’s exact sequence of groups, see [K70]:

$$1 \to S^1 \to \text{Aut}(\mathcal{P}, \eta) \to \text{Ham}(\mathcal{M}, \Omega) \to 1.$$

Here $\text{Aut}(\mathcal{P}, \eta)$ is the connected component of the group of equivariant connection preserving diffeomorphisms of \mathcal{P} and $\text{Ham}(\mathcal{M}, \Omega)$ is the group of Hamiltonian diffeomorphisms of \mathcal{M}. The latter can either be described as the connected component of holonomy preserving diffeomorphisms, or as the kernel of a flux homomorphism [NV].

The group $\text{Aut}(\mathcal{P}, \eta)$ acts on \mathcal{M} in a Hamiltonian way with equivariant moment map

$$\hat{\mu} : \mathcal{M} \to \text{aut}(\mathcal{P}, \eta)^*, \quad \hat{\mu}(x)(\xi) = -(i\xi\eta)(\pi^{-1}(x)).$$

This moment map is universal in the following sense: Whenever we have a Hamiltonian action of a Lie group G on \mathcal{M}, we can pull back Kostant’s extension and get a 1–dimensional central group extension:

$$\begin{array}{ccc}
S^1 & \longrightarrow & \text{Aut}(\mathcal{P}, \eta) \\
\downarrow & & \downarrow \\
S^1 & \longrightarrow & \tilde{G} \\
\downarrow & & \downarrow \\
G & \longrightarrow & G
\end{array}$$

This is a Lie group extension, even if Kostant’s extension is only a group extension in this infinite dimensional setting, see [NV]. Moreover the pull back $\tilde{\mu} : \mathcal{M} \to \tilde{g}^*$ of $\hat{\mu}$ is a smooth equivariant moment map for the \tilde{G}–action on \mathcal{M}. Consider the corresponding central extension of Lie algebras:

$$\begin{array}{ccc}
\mathbb{R} & \longrightarrow & \text{aut}(\mathcal{P}, \eta) \\
\downarrow & & \downarrow \\
\mathbb{R} & \longrightarrow & \hat{\mathfrak{g}} \\
\downarrow & & \downarrow p \\
\mathfrak{g} & \longrightarrow & \mathfrak{g}
\end{array}$$

Proposition 1. In the situation above suppose moreover that \mathcal{G} acts transitively on \mathcal{M} and admits an injective but not necessarily equivariant moment map $\mu : \mathcal{M} \to \mathfrak{g}^*$. Then the equivariant moment map $\tilde{\mu} : \mathcal{M} \to \tilde{\mathfrak{g}}^*$ is one-to-one onto a coadjoint orbit of $\tilde{\mathcal{G}}$. Moreover it pulls back the Kirillov–Kostant–Souriau symplectic form to Ω.

Proof. Note first, that $p^* \circ \mu : \mathcal{M} \to \tilde{\mathfrak{g}}^*$ is an injective but not necessarily equivariant moment map for the \tilde{G}–action on \mathcal{M}. Since \mathcal{M} is connected, two moment maps differ by a constant in $\tilde{\mathfrak{g}}^*$. Thus every moment map for the \tilde{G}–action on \mathcal{M} is
injective, particularly $\hat{\mu}$. Next, \hat{G} acts transitively, for G does. So the equivariance of $\hat{\mu}$ implies that $\hat{\mu}$ is onto a single coadjoint orbit. A straight forward calculation shows that the pull back of the Kirillov–Kostant–Souriau symplectic form is Ω. \hfill \square

Till the end of the section we will denote all the left G–actions by a dot. Suppose we have a not necessarily equivariant moment map $\mu : \mathcal{M} \rightarrow \mathfrak{g}^*$. Let $\hat{h} : \hat{g} \rightarrow C^\infty(\mathcal{M}, \mathbb{R})$ denote the dual map, that is $h_X(x) = \mu(x)(X)$, for $x \in \mathcal{M}$ and $X \in \mathfrak{g}$. The universal property of the pull back implies that there is a unique section $\sigma : \mathcal{M} \rightarrow \hat{g}$ with $i_{\sigma(X)}\eta = -\pi^*h_X$. Conversely every section is obtained in this way. So we have a one-to-one correspondence of not necessarily equivariant moment maps $\mu : \mathcal{M} \rightarrow \mathfrak{g}^*$ and sections of $p : \hat{g} \rightarrow g$. Every such choice gives a linear isomorphism

$$\mathbb{R} \oplus \mathfrak{g} \rightarrow \hat{g}, \quad (a, X) \mapsto a + \sigma(X). \quad \quad (1)$$

Via (1) the equivariant moment map $\hat{\mu} : \mathcal{M} \rightarrow \mathfrak{g}^*$ we constructed above is

$$\hat{\mu} : \mathcal{M} \rightarrow (\mathbb{R} \oplus \mathfrak{g})^* = \mathbb{R}^* \oplus \mathfrak{g}^*, \quad \hat{\mu} = (-1^*, \mu).$$

Here 1^* is the dual base to 1 considered as base of \mathbb{R}. Equivalently $\hat{\mu}(x)(a, X) = \mu(x)(X) - a$, for $x \in \mathcal{M}$, $X \in \mathfrak{g}$ and $a \in \mathbb{R}$.

Define $\kappa : G \rightarrow \mathfrak{g}^*$ by $-\kappa(g^{-1})(X) = g \cdot \sigma(X) - \sigma(g \cdot X)$. So κ is the failure of σ to be G–equivariant. Then via (1) the adjoint action is

$$g \cdot (a, X) = (a - \kappa(g^{-1})(X), g \cdot X), \quad \text{for } g \in G.$$

The function κ satisfies $\kappa(g_1g_2) = \kappa(g_1) + g_1 \cdot \kappa(g_2)$, hence it is a 1–cocycle (derivation) on G with values in \mathfrak{g}^*. For $g \in G$ and $X \in \mathfrak{g}$ the function $h_{g^{-1}}X - g \cdot h_X$ is locally constant, hence constant since \mathcal{M} is connected. So we get a function $G \rightarrow \mathfrak{g}^*$ which measures the failure of the moment map to be G–equivariant. One readily checks $-\kappa(g^{-1})(X) = h_{g^{-1}}X - g \cdot h_X$, equivalently $\kappa(g) = \mu(g \cdot x_0) - g \cdot \mu(x_0)$, for every $x_0 \in \mathcal{M}$. So the section σ is G–equivariant iff the corresponding moment map is G–equivariant.

Via (1) we can express the Lie bracket as

$$[(a, X), (b, Y)] = (c(X, Y), [X, Y]),$$

where $c \in \Lambda^2\mathfrak{g}^*$ is the cocycle $c(X, Y) = [\sigma(X), \sigma(Y)] - \sigma([X, Y])$. Note that c also is a measure for the failure of σ to be g–equivariant. By choosing different sections σ we obtain all 2–cocycles c in one cohomology class, but different sections could define the same 2–cocycle. Moreover the differential of $\kappa : G \rightarrow \mathfrak{g}^*$ at the identity satisfies $(T_e\kappa \cdot X)(Y) = c(X, Y)$. Since we had $-\kappa(g^{-1})(X) = h_{g^{-1}}X - g \cdot h_X$, we get

$$c(X, Y) = h_{[X,Y]} + L_{\xi_X}h_Y = h_{[X,Y]} + \{h_X, h_Y\} = h_{[X,Y]} - \Omega(\xi_X, \xi_Y). \quad \quad (2)$$

The unexpected signs of the second summands stem from the convention for the Lie derivative of functions, which is an infinitesimal right action and quite confusing. Thus c also is a measure for the failure of the moment map to be g–equivariant. Particularly the moment map μ is g–equivariant iff the corresponding section σ is g–equivariant. Finally for every point $x_0 \in \mathcal{M}$ we have $c(X, Y) = h_{[X,Y]}(x_0) - \Omega(\xi_X, \xi_Y)(x_0)$. So we see that $c(X, Y) = -\Omega(\xi_X, \xi_Y)(x_0)$ is a cocycle describing the extension $0 \rightarrow \mathbb{R} \rightarrow \hat{g} \rightarrow g \rightarrow 0$ and corresponds to moment maps satisfying $\mu(x_0) = 0$.

4. Codimension two Grassmannians

Let M be a closed m–dimensional manifold with integral volume form ν, that is $\int_M \nu \in \mathbb{Z}$. From Theorem 1 we get a principal S^1–bundle $P \to \text{Gr}_{m-2}(M)$ and a principal connection η whose curvature form is $\Omega := \tilde{\nu}$. Recall that $\Omega_N(Y_1, Y_2) = \int_N Y_1 Y_2 \nu$ for tangent vectors Y_1 and Y_2 at N, i.e. sections of TN^\perp. Note that Ω is symplectic, i.e. (weakly) non-degenerate. The action of the group of volume preserving diffeomorphisms $\text{Diff}(M, \nu)$ on $\text{Gr}_{m-2}(M)$ preserves the symplectic form Ω. In dimension $m = 3$ the symplectic form Ω is known as the Marsden–Weinstein symplectic form on the space of unparameterized oriented links, see [MWS83].

Let $\text{Ham}(M, \nu)$ denote the group of exact volume preserving diffeomorphisms with Lie algebra

$$\text{ham}(M, \nu) = \{ X \in \mathfrak{X}(M) : i_X \nu \text{ exact differential form} \}.$$

The action of $\text{Ham}(M, \nu)$ on $\text{Gr}_{m-2}(M)$ is Hamiltonian. Indeed, this follows from $[\text{ham}(M, \nu), \text{ham}(M, \nu)] = \text{ham}(M, \nu)$, see [L74], the fact that $\text{ham}(M, \nu)$ acts symplectically and the fact that the Lie bracket of two symplectic vector fields (on $\text{Gr}_{m-2}(M)$) will be Hamiltonian. In our special situation we do not actually need this general argument, for we have the following

Lemma 3. Let M be a connected component of $\text{Gr}_{m-2}(M)$ and choose $N_0 \in M$. Then

$$\mu : M \to \text{ham}(M, \nu)^*, \quad \mu(N)(X) = \int_N X - \int_{N_0} X, \quad \text{where } i_X \nu = d\alpha$$

is a well defined and injective moment map for the $\text{Ham}(M, \nu)$–action on M. Particularly $\text{Ham}(M, \nu)$ acts in a Hamiltonian way on M.

Proof. The definition is meaningful since $\mu(N)(X) = \int_T i_X \nu$ for any bordism τ in M with boundary $N - N_0$, and this expression does not depend on the choice of τ, for $i_X \nu$ is exact.

The fundamental vector field of $X \in \text{ham}(M, \nu)$ is $\zeta_X(N) = X|_N$. To show that μ is a moment map, we verify that the function $h(N) := \mu(N)(X)$ is a Hamiltonian function for the vector field ζ_X. Indeed, up to a constant, h equals $\tilde{\alpha}$, and thus

$$dh = d\tilde{\alpha} = d\alpha = i_{\zeta_X} \nu = i_{\zeta_X} \nu = i_{\zeta_X} \Omega.$$

The injectivity of this moment map is easily seen choosing α with appropriate support. \qed

Proposition 2. The action of $\text{Ham}(M, \nu)$ on connected components of $\text{Gr}_n(M)$ is transitive, provided $m - n \geq 2$.

Proof. We will show more. Namely we will prove that $\text{Ham}(M, \nu)$ acts transitively on every connected component of $\text{Emb}(N, M)$, the space of embeddings of N in M.

First we show that the action of $\text{Ham}(M, \nu)$ on $\text{Emb}(N, M)$ is infinitesimal transitive, i.e. every vector field along a closed submanifold N in M of codimension at least two, can be extended to an exact divergence free vector field on M. We start with an arbitrary extension $Y \in \mathfrak{X}(M)$ of the given vector field $X \in \Gamma(TM|_N)$. By the relative Poincaré lemma for the m–form $\beta = L_Y \nu$, there exists an $(m-1)$–form λ on a tubular neighborhood U of N in M, such that $d\lambda = \beta$ on U and $\lambda|_N = 0$. The relation $i_Z \nu = \lambda$ defines a vector field $Z \in \mathfrak{X}(U)$ with properties: $Z|_N = 0$ and $L_Z \nu = \beta$. Then $Y - Z$ is a divergence free vector field on U extending X. Since
If $m - 1 > n$ we have $H^{m-1}(U) = 0$, in particular $Y - Z$ is an exact divergence free vector field. It can be extended to an exact divergence free vector field $\tilde{X} \in \mathfrak{X}(M)$ with $\tilde{X}|_N = X$.

Next we show that every isotopy of N in M extends to an exact volume preserving diffeotopy of M. Indeed, an isotopy $h_t : N \to M$ determines a smooth family of vector fields X_t on M along $N_t = h_t(N) \subset M$. By the infinitesimal transitivity we can extend each X_t to an exact divergence free vector field \tilde{X}_t. Looking closer at the construction above, we see that the extension can be chosen smoothly depending on t. The diffeotopy ϕ_t determined by \tilde{X}_t is exact volume preserving and extends the isotopy h_t, i.e. $h_t = \phi_t \circ h_0$. So $\text{Ham}(M, \nu)$ acts transitively on connected components of $\text{Emb}(N, M)$.

Remark 2. The connected components of $\text{Gr}_n(M)$ and $\text{Emb}(N, M)$ can be written as homogeneous spaces of $\text{Ham}(M, \mu)$. In the first case the isotropy group is the subgroup of exact volume preserving diffeomorphisms leaving $N \in \text{Gr}_n(M)$ invariant, in the second case it is the subgroup of exact volume preserving diffeomorphisms fixing N pointwise.

Proposition 1, Lemma 3, Proposition 2 and Theorem 1 prove the following

Theorem 2. Let M be a closed m–dimensional manifold with integral volume form ν and let \mathcal{M} be a connected component of $\text{Gr}_{m-2}(M)$ equipped with the symplectic form $\Omega = \tilde{\nu}$. Then there exists a central extension of $\text{Ham}(M, \nu)$ by S^1 such that \mathcal{M} is a coadjoint orbit of this extension. Particularly this coadjoint orbit is prequantizable.

Remark 3. Recall that the central extension in Theorem 2 is the pull-back of Kostant’s extension by the Hamiltonian action of $\text{Ham}(M, \nu)$ on \mathcal{M}. Choose an element N_0 in \mathcal{M}. The moment map μ from Lemma 3 vanishes at N_0, so by 2 the corresponding Lie algebra cocycle on $\text{ham}(M, \nu)$ is $c_{N_0} = -\Omega(\zeta_\nu(N_0)) = -\int_{N_0} i\zeta_i X \nu$. The failure of the moment map μ to be equivariant is $\kappa(\mu)(X) = \int_{\phi(N_0)} \alpha - \int_{N_0} \alpha$, with $i\zeta_i \nu = d\alpha$.

Remark 4. A result of Roger [95] says that the second Lie algebra cohomology group of $\text{ham}(M, \nu)$ is isomorphic to $H_{m-2}(M; \mathbb{R})$, the 2–cocycle on $\text{ham}(M, \nu)$ defined by the $(m - 2)$–cycle σ on M being $c_\sigma(X, Y) = \int_{\sigma} i\zeta_i X \nu$. Every homology class σ in $H_{m-2}(M; \mathbb{Z})$ has a representative which is a closed submanifold of codimension 2 in M. The representative N_0 can be taken to be the zero set of a section transversal to the zero section in a rank two vector bundle with Euler class the Poincaré dual of σ. It follows that all 1–dimensional central extensions of $\text{ham}(M, \nu)$ corresponding to $\sigma \in H_{m-2}(M; \mathbb{Z})$ can be integrated to group extensions. The original construction is due to Ismagilov [96]. However, we even get the Lie group structure on the extensions by using a result in [NV].

Remark 5. Suppose \mathcal{M} and \mathcal{M}' are two connected components of $\text{Gr}_{m-2}(M)$ corresponding to homologous submanifolds of M. Choose $N_0 \in \mathcal{M}$ and $N'_0 \in \mathcal{M}'$. Since N_0 and N'_0 are homologous we can choose a smooth $(m - 1)$–chain B_0 in M with $\partial B_0 = N'_0 - N_0$. Denote $g := \text{ham}(M, \nu)$, $G := \text{Ham}(M, \nu)$ and define

$$\lambda_0 \in g^*, \quad \lambda_0(X) := -\int_{B_0} iX \nu.$$
This does not depend on the choice of B_0, for $i_X \nu$ is exact. Via Lemma N_0 and N'_0 give rise to moment maps $\mu_0 : M \to g^*$ and $\mu'_0 : M' \to g^*$ with corresponding cocycles c_0 and c'_0 and $\kappa_0 : G \to g^*$ and $\kappa'_0 : G \to g^*$, respectively, see Remark $c_0(X, Y) - c_0(X, Y) = \lambda_0(-[X, Y])$ and $\kappa'_0(\varphi) - \kappa_0(\varphi) = \lambda_0 - \varphi \cdot \lambda_0$ (3)

An easy calculation shows

\begin{align*}
X \cdot Y & = \mathcal{L}_X Y - [X, Y] \\
R &\text{ action, whereas on Lie groups the Lie bracket } [X, Y] \text{ is an infinitesimal left action.}
\end{align*}

Moreover the moment maps give rise to Lie algebra isomorphisms $\mathbb{R} \oplus_{c_0} \mathfrak{g} \to \mathfrak{g}$ and $\mathbb{R} \oplus c'_0 \mathfrak{g} \to \mathfrak{g}'$. Using these identifications and λ_0 from above we can define a mapping

$$\Phi_0 : \mathfrak{g} \simeq \mathbb{R} \oplus c_0 \mathfrak{g} \to \mathbb{R} \oplus c'_0 \mathfrak{g} \simeq \mathfrak{g}'$$

by $\Phi_0(a, X) = (a + \lambda_0(X), X)$. This is an isomorphism of Lie algebras and G–equivariant for we have (3). Particularly the Lie algebra extensions $0 \to \mathbb{R} \to \mathfrak{g} \to g \to 0$ and $0 \to \mathbb{R} \to \mathfrak{g}' \to g' \to 0$ are isomorphic, as expected.

When defining $\Phi_0 : \mathfrak{g} \to \mathfrak{g}'$ we made two choices, namely N_0 and N'_0. We claim that Φ_0 is independent of them. Indeed, suppose $N_1 \in \mathcal{M}$ and $N'_1 \in \mathcal{M}'$, choose B_{01} and B'_{01} such that $\partial B_{01} = N_1 - N_0$ and $\partial B'_{01} = N'_1 - N'_0$ and define $\rho_0 \in \mathfrak{g}^*$ by $\rho_0(X) = -\int_{B_{01}} i_X \nu$ and $\rho_0 \in \mathfrak{g}^*$ by $\rho'_0(X) = -\int_{B'_{01}} i_X \nu$, respectively. Again this does not depend on the choice of B_{01} or B'_{01}. Moreover choose B_1, such that $\partial B_1 = N'_1 - N_1$ and define $\lambda_1(X) := -\int_{B_1} i_X \nu$. One easily checks that the composition

$$\mathbb{R} \oplus_{c_0} \mathfrak{g} \to \mathfrak{g} \to \mathbb{R} \oplus_{c_1} \mathfrak{g} \simeq \mathfrak{g}'$$

and similarly for $c'_0, c'_1, \mu'_0, \mu'_1$ and ρ'_{01}. Thus $\Phi_0 = \Phi_1$ is equivalent to $\rho_0 + \lambda_1 = \lambda_0 + \rho'_{01}$ which is equivalent to

$$-\int_{B_{01}} i_X \nu - \int_{B_1} i_X \nu = -\int_{B_0} i_X \nu - \int_{B'_{01}} i_X \nu,$$

but this follows since $i_X \nu$ is exact and the integral is over a cycle.

Summarizing we have seen that whenever the components \mathcal{M} and \mathcal{M}' consist of homologous submanifolds, there is a canonic G–equivariant isomorphism of Lie algebras $\Phi : \mathfrak{g} \to \mathfrak{g}'$. Particularly the coadjoint orbits of \mathcal{G} and \mathcal{G}' coincide. We are not aware of a more intrinsic definition of Φ, and we don’t know if the corresponding group extensions are isomorphic in this situation.

Finally, suppose \mathcal{M} is a component of $\text{Gr}_{m-2}(M)$ which consists of 0–homologous submanifolds. Then

$$\mu : \mathcal{M} \to g^*, \quad \mu(N)(X) := \int_N \alpha, \quad \text{with } d\alpha = i_X \nu$$

is a G–equivariant moment map. So we get a canonic G–equivariant isomorphism of Lie algebras $\mathfrak{g} \simeq \mathbb{R} \oplus \mathfrak{g}$. Moreover \mathcal{M} is a coadjoint orbit of G, canonically.

5. Generalized vortex filament equation

For a Riemannian metric g on M with induced volume form $\nu(g) = \nu$, we identify the normal bundle TN^\perp with the Riemannian orthonormal bundle $TN^{\perp\prime}$.
and denote by g the induced metric on it. We endow the symplectic manifold $(\text{Gr}_{m-2}(M), \Omega)$ with a Riemannian metric

$$\tilde{g}(Y_1, Y_2) = \int_N g(Y_1, Y_2) \nu(g|_{N}) \quad \text{for} \quad Y_1, Y_2 \in \Gamma(TN^{\perp}).$$

For $N \in \text{Gr}_{m-2}(M)$, the vector bundle TN^{\perp} is oriented, 2–dimensional and has a metric, so we can define a fiber wise complex structure J on TN^{\perp} by rotation with +90 degrees. It induces an almost complex structure \tilde{J} on $\text{Gr}_{m-2}(M)$ which is compatible with Ω and \tilde{g}, that is $\Omega(Y_1, Y_2) = \tilde{g}(\tilde{J}Y_1, Y_2)$.

The g–volume of the submanifold gives a smooth function on $\text{Gr}_{m-2}(M)$$

$$h : \text{Gr}_{m-2}(M) \to \mathbb{R}, \quad h(N) = \int_N \nu(g|_{N}). \quad (4)$$

Lemma 4. For the \tilde{g}–gradient of h we have $(\text{grad } h)(N) = -\text{tr } II_N$, where $II_N \in \Gamma(S^2T^*N \otimes TN^{\perp})$ denotes the second fundamental form of the submanifold N.

Proof. For $Y \in \Gamma(TN^{\perp})$ we have

$$dh(Y) = \frac{1}{2} \int_N \text{tr}(L_Y g) \nu(g|_{N})$$

$$= \int_N \text{tr}(\nabla Y) \nu(g|_{N})$$

$$= -\int_N \text{tr} g(II_N, Y) \nu(g|_{N})$$

$$= -\tilde{g}(\text{tr } II_N, Y).$$

Since \tilde{g} is weakly non-degenerated we conclude $\text{grad } h = -\text{tr } II$. \hfill \Box

Since \tilde{J}, Ω and \tilde{g} are compatible, the Hamiltonian vector field of h is $X_h = \tilde{J}(\text{grad } h) = J\text{tr } II$ and this proves the following

Proposition 3. The Hamiltonian equation for the Hamiltonian function (4) is

$$\frac{\partial}{\partial t} N_t = J\text{tr } II(t).$$

In dimension $m = 3$ this equation is known as the vorticity filament equation, see [MW83].

Remark 6. Let N be a closed oriented manifold of dimension $m-2$. The expression $J\text{tr } II$ can also be considered as a vector field on $\text{Emb}(N, M)$. Suppose t_t is a curve of embeddings solving

$$\frac{\partial}{\partial t} t_t = J\text{tr } II(t_t)$$

and let f be an orientation preserving diffeomorphism of N. Then $t_t \circ f$ will again be a solution of (5). The geometric interpretation of this fact is the following. When restricting to suitable connected components, the space of embeddings becomes a principal $\text{Diff}(N)$–bundle over the non-linear Grassmannian. Here $\text{Diff}(N)$ denotes the group of orientation preserving diffeomorphisms. Using the Riemannian metric we can write down a connection of this bundle, known as a mechanical connection. For an embedding $\iota : N \to M$, the vertical tangent space is the space of vector fields along ι tangent to $\iota(N)$. So the space of vector fields along ι having values in the Riemannian orthogonal complement of $\iota(N)$ is a complement to the vertical
tangent space. This complements define a connection, which is obviously a principal connection. Regarding the expression $J\text{tr} II$ as a vector field on the space of embeddings, just means considering the horizontal lift of $J\text{tr} II$. Since the connection is principal, parallel transport will be $\text{Diff}(N)$–equivariant. This translates to $\iota_t \circ f$ is a solution of \([5]\) iff ι_t was.

Remark 7. Let ι_t be a curve of embeddings in M. Then we get a curve of Riemannian metrics $\iota_t^* g$ on N. This gives rise to a curve of volume forms $\nu(\iota_t^* g)$ on N. If ι_t is a solution of \([5]\) this curve will be constant. Indeed, for every horizontal ι_t one shows $\frac{\partial}{\partial t} \nu(\iota_t^* g) = -g(\text{tr} II, \frac{\partial}{\partial t} \iota_t)$ as in the proof of Lemma 4. If ι_t solves \([5]\) this implies $\frac{\partial}{\partial t} \nu(\iota_t^* g) = -g(\text{tr} II, \frac{\partial}{\partial t} \iota_t) = g(J \frac{\partial}{\partial t} \iota_t, \frac{\partial}{\partial t} \iota_t) = 0$. In the case of oriented knots in a 3–dimensional M, this implies that a solution of \([5]\), parameterized by arc length at time t_0, will have the same property for every time t.

6. **Symplectic Grassmannians**

Suppose (M, ω) is a closed connected symplectic manifold. Let $\text{SGr}_{2k}(M) \subseteq \text{Gr}_{2k}(M)$ denote the open subset of oriented submanifolds which are symplectic. We don’t assume the elements in $\text{SGr}_{2k}(M)$ to be oriented by their symplectic form. Note that $\text{SGr}_{2k}(M)$ is invariant under the action of the group of symplectic diffeomorphisms $\text{Diff}(M, \omega)$. Set $\alpha := \omega^{k+1}$. Then $\Omega := \alpha$ is a closed 2–form on $\text{Gr}_{2k}(M)$. Note that $\text{SGr}_{2k}(M) \subseteq \text{Gr}_{2k}(M)$ is an open subset on which Ω is (weakly) non-degenerate, hence a symplectic manifold. Indeed, for an almost complex structure J on M tamed by ω and $Y \in \Gamma(TN^{2k})$ we have $\Omega_N(Y, J^k Y) = (k + 1) \int_N \omega(Y, J^k Y) \omega^k$, vanishing iff $Y = 0$.

Let $\text{Ham}(M, \omega)$ denote the Lie group of Hamiltonian diffeomorphisms with Lie algebra $\text{ham}(M, \omega)$ of Hamiltonian vector fields on M. The action of $\text{Ham}(M, \omega)$ on $\text{SGr}_{2k}(M)$ is Hamiltonian. Indeed we already know that the action is symplectic and since $[\text{ham}(M, \omega), \text{ham}(M, \omega)] = \text{ham}(M, \omega)$, see \cite{C70}, the action must be Hamiltonian. In our special situation one does not have to use this general argument, for one can write down Hamilton functions.

Lemma 5. The mapping

$$\mu : \text{SGr}_{2k}(M) \to \text{ham}(M, \omega)^*, \quad \mu(N)(X) := (k + 1) \int_N f \omega^k,$$

is an injective equivariant moment map for the $\text{Ham}(M, \omega)$–action on $\text{SGr}_{2k}(M)$. Here f is the unique Hamilton function of X with zero integral. Particularly the action is Hamiltonian.

Proof. First we show that $h(N) := (k + 1) \int_N f \omega^k$ is a Hamiltonian function for the fundamental vector field ζ_X of $X \in \text{ham}(M, \omega)$. Note that $h = (k + 1) f \omega^k$ and $(k + 1) df \wedge \omega^k = i_X \omega^{k+1}$. Thus

$$dh = (k + 1) df \omega^k = (k + 1) d(f \omega^k) = i_X \omega^{k+1} = i_{\zeta_X} \omega^{k+1} = i_{\zeta_X} \Omega.$$

So μ is a moment map. The injectivity is obvious. Finally for every $\varphi \in \text{Ham}(M, \omega)$ we have

$$\mu(\varphi(N))(X) = (k + 1) \int_{\varphi(N)} f \omega^k = (k + 1) \int_{N} (\varphi^* f) \omega^k = \mu(N)(\varphi^* X).$$

and thus μ is equivariant. \qed
Proposition 4. The group $\text{Ham}(M, \omega)$ acts transitively on every connected component of $\text{SGr}_{2k}(M)$.

Proof. We first show that the action is infinitesimal transitive. So suppose $N \in \text{SGr}_{2k}(M)$ and let X be a tangent vector at N, i.e. a section of the normal bundle TN^\perp. Since N is a symplectic submanifold we can identify the normal bundle with the ω-orthogonal complement TN^\perp_ω of TN. So we may assume that X is a section of TN^\perp_ω. Consider $i_X \omega$ as a function, say λ, on the total space E of TN^\perp_ω which happens to be linear along the fibers. One easily shows that $d\lambda = i_X \omega$ along $N \subseteq E$. Considering E as a tubular neighborhood of N one easily gets a function λ' on M such that $d\lambda' = i_X \omega$ along $N \subseteq M$. So the Hamiltonian vector field to λ' will be an extension of X. Thus $\text{Ham}(M, \omega)$ acts infinitesimally transitive on $\text{SGr}_{2k}(M)$.

Suppose N_t is a curve in $\text{SGr}_{2k}(M)$ and set $X_t := \frac{\partial}{\partial t}N_t$, a section of TN^\perp_t. For every fixed time t the section X_t can be extended to a vector field in $\text{ham}(M, \omega)$ as shown above. Moreover it is clear that this extension can be chosen smoothly with respect to the parameter t. Now the flow of this extension clearly gives a curve in $\text{Ham}(M, \omega)$ transporting, say, N_0 to N_1. □

Proposition 4, Lemma 5, Proposition 3 and Theorem 3 prove the following

Theorem 3. Let (M, ω) be a symplectic manifold, such that $[\omega]^{k+1} \in H^{2k+2}(M; \mathbb{R})$ is integral and let M denote a connected component of $\text{SGr}_{2k}(M)$ endowed with the symplectic form $\Omega = \omega^{k+1}$. Then M is a coadjoint orbit of $\text{Ham}(M, \omega)$. Particularly this coadjoint orbit is prequantizable.

Remark 8. Since we have an equivariant moment map the Lie algebra extension $0 \to \mathfrak{e} \to \tilde{\mathfrak{g}} \to \mathfrak{g} \to 0$ from section 3 with $\mathfrak{g} = \text{ham}(M, \omega)$ is trivial. This is the reason why $\text{SGr}_{2k}(M)$ can be considered as coadjoint orbit of $\text{Ham}(M, \omega)$ rather than as coadjoint orbit of a central extension. However, the group extension

$$1 \to S^1 \to \tilde{G} \to G \to 1$$

(6)

from section 3 with $G = \text{Ham}(M, \omega)$ may very well be non-trivial as the following example shows.

Example 2. Let $M = S^2$, ω the standard symplectic form of mass 1 and let $k = 0$. Then $M = S^2$ is a connected component of $\text{SGr}_{2k}(M)$ and $\Omega = \omega$, cf. Example 3.

The bundle $\mathcal{P} \to \mathcal{M}$ is the Hopf fibration $S^3 \to S^2$ and η is the standard contact structure on S^3. Since $M = \mathcal{M}$, the group extension (6) is trivial iff Kostant’s extension

$$1 \to S^1 \to \text{Aut}(S^3, \eta) \to \text{Ham}(S^2, \omega) \to 1$$

is trivial. The equivariant moment map from Lemma 5 provides a Lie algebra homomorphism $\sigma : \text{ham}(S^2, \omega) \to \text{aut}(S^3, \eta)$, right inverse to the projection. So Kostant’s group extension is trivial iff this Lie algebra homomorphism integrates to a group homomorphism. However this is not the case. Indeed, the loop in $\text{Ham}(S^2, \omega)$ given by rotation around an axis does not integrate to a closed curve in $\text{Aut}(S^3, \eta)$. To see this, note first that the Hamilton function generating the rotation vanishes along the equator, for it has zero integral. So σ maps the Hamilton vector field to an element of $\text{aut}(S^3, \eta)$ which is horizontal over the equator of S^3. So integrating our loop of rotation gives a curve in $\text{Aut}(S^3, \eta)$ whose flow lines over
the equator of S^2 are horizontal. Such a flow line has holonomy $1/2$, for this is the total curvature of a hemisphere. Thus it is not closed.

Alternatively one can use the fact that the Hamilton function generating the rotation has values $\pm 1/2$ at the poles.

References

[C70] E. Calabi, On the group of automorphisms of a symplectic manifold, Problems in Analysis, Symp. in honor of S. Bochner, 1–26, Princeton University Press, 1970.
[I96] R. S. Ismagilov, Representations of infinite-dimensional groups, Translations of Mathematical Monographs 152, American Mathematical Society, Providence, RI, 1996.
[K70] B. Kostant, Quantization and unitary representations, Lectures in modern analysis and applications III, 87–208, Lecture Notes in Math. 170, Springer, Berlin, 1970.
[KM97] A. Kriegl and P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Monographs 53, American Mathematical Society, Providence, RI, 1997.
[L74] A. Lichnerowicz, Algèbre de Lie des automorphismes infinitésimaux d’une structure unimodulaire, Ann. Inst. Fourier 24(1974), 219–266.
[MW83] J. Marsden and A. Weinstein, Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids, Phys. D 7(1983), 305–323.
[NV] K.–H. Neeb and C. Vizman, Flux homomorphisms and principal bundles over infinite dimensional manifolds, to appear in Monatsh. Math.
[R95] C. Roger, Extensions centrales d’algèbres et de groupes de Lie de dimension infinie, algèbre de Virasoro et généralisations, Rep. Math. Phys. 35(1995), 225–266.