SYNDETIC SUBMEASURES AND PARTITIONS OF G-SPACES AND GROUPS

TARAS BANAKH, IGOR PROTASOV, SERGIY SLOBODIANIUK

Abstract. We prove that for every $k \in \mathbb{N}$ each countable infinite group G admits a partition $G = A \cup B$ into two sets which are k-meager in the sense that for every k-element subset $K \subset G$ the sets KA and KB are not thick. The proof is based on the fact that G possesses a syndetic submeasure, i.e., a left-invariant submeasure $\mu : \mathcal{P}(G) \to [0,1]$ such that for each $\varepsilon > \frac{1}{|G|}$ and subset $A \subset G$ with $\mu(A) < 1$ there is a set $B \subset G \setminus A$ such that $\mu(B) < \varepsilon$ and $FB = G$ for some finite subset $F \subset G$.

In this paper we continue the studies [11]–[13] of combinatorial properties of partitions of G-spaces and groups.

By a G-space we understand a non-empty set X endowed with a left action of a group G. The image of a point $x \in X$ under the action of an element $g \in G$ is denoted by gx. For two subsets $F \subset G$ and $A \subset X$ we put $FA = \{fa : f \in F, a \in A\} \subset X$.

1. Prethick sets in partitions of G-spaces

A subset A of a G-space X is called

- large if $FA = X$ for some finite subset $F \subset G$;
- thick if for each finite subset $F \subset G$ there is a point $x \in X$ with $Fx \subset A$;
- prethick if KA is thick for some finite set $K \subset G$.

Now we insert number parameters in these definitions. Let $k, m \in \mathbb{N}$. A subset A of a G-space X is called

- m-large if $FA = X$ for some subset $F \subset G$ of cardinality $|F| \leq m$;
- m-thick if for each finite subset $F \subset G$ of cardinality $|F| \leq m$ there is a point $x \in X$ with $Fx \subset A$;
- (k,m)-prethick if KA is m-thick for some set $K \subset G$ of cardinality $|K| \leq k$;
- k-prethick if KA is thick for some set $K \subset G$ of cardinality $|K| \leq k$;
- k-meager if A is not k-prethick (i.e., KA is not thick for any subset $K \subset G$ of cardinality $|K| \leq k$).

In the dynamical terminology [6, 4.38], large subsets are called syndetic and prethick subsets are called piecewise syndetic. We note also that these notions can be defined in much more general context of balleans [11], [13].

The following proposition is well-known [6, 4.41], [9, 1.3], [11, 11.2].

Proposition 1.1. For any finite partition $X = A_1 \cup \cdots \cup A_n$ of a G-space X one of the cells A_i is prethick and hence k-prethick for some $k \in \mathbb{N}$.

For finite groups the number k in this proposition can be bounded from above by $n(\ln(\frac{|G|}{n})+1)$. We consider each group G as a G-space endowed the natural left action of G.

Proposition 1.2. Let G be a finite group and $n, k \in \mathbb{N}$ be numbers such that $k \geq n \cdot \left(\ln(\frac{|G|}{n}) + 1\right)$. For any n-partition $G = A_1 \cup \cdots \cup A_n$ of G one of the cells A_i is k-large and hence k-prethick.

Proof. One of the cells A_i of the partition has cardinality $|A_i| \geq \frac{|G|}{n}$. Then by [15] or [2, 3.2], there is a subset $B \subset G$ of cardinality $|B| \leq \frac{|G|}{|A_i|}(\ln |A_i| + 1) \leq n(\ln(\frac{|G|}{n}) + 1) \leq k$ such that $G = BA_i$. It follows that the set A_i is k-large and hence k-prethick. \hfill \Box

For G-spaces we have the following quantitative version of Proposition 1.1.
Proposition 1.3. Let \(m, n \in \mathbb{N} \). For any \(n \)-partition \(X = A_1 \cup \cdots \cup A_n \) of a \(G \)-space \(X \) one of the cells \(A_i \) is \((m^{n-1}, m)\)-prethick in \(X \).

Proof. For \(n = 1 \) the proposition is trivial. Assume that it has been proved for some \(n \) and take any partition \(X = A_0 \cup \cdots \cup A_n \) of \(X \) into \((n + 1)\) pieces. If the cell \(A_0 \) is \((1, m)\)-prethick, then we are done. If not, then there is a set \(F \subseteq X \) of cardinality \(|F| \leq m \) such that \(Fx \not\subseteq A_0 \) for all \(x \in X \). This implies that \(x \in F^{-1}(A_0 \cup \cdots \cup A_n) \) and then by the inductive assumption, there is an index \(1 \leq i \leq n \) such that the set \(F^{-1}A_i \) is \((m^{n-1}, m)\)-prethick. The latter means that there is a subset \(E \subseteq G \) of cardinality \(|E| \leq m^{n-1} \) such that \(EF^{-1}A_i \) is \(m \)-thick. Since \(|EF^{-1}| \leq |E| \cdot |F| \leq m^{n-1}m = m^n \), the set \(A_i \) is \((m^n, m)\)-prethick. \(\square \)

Looking at Proposition 1.3 it is natural to ask what happens for \(n = \omega \). Is there any hope to find for every \(n \in \mathbb{N} \) a finite number \(k_n \) such that for each \(n \)-partition \(X = A_1 \cup \cdots \cup A_n \) some cell \(A_i \) of the partition is \(k_n\)-prethick? In fact, \(G \)-spaces with this property do exist.

Example 1.4. Let \(X \) be an infinite set endowed with the natural action of the group \(G = S_X \) of all bijections of \(X \). Then each subset \(A \subseteq X \) of cardinality \(|A| = |X| \) is 2-large, which implies that for each finite partition \(X = A_1 \cup \cdots \cup A_n \) one of the cells \(A_i \) has cardinality \(|A_i| = |X| \) and hence is 2-large and 2-prethick.

The action of the normal subgroup \(FS_X \subseteq S_X \) consisting of all bijections \(f : X \to X \) with finite support \(\text{supp}(f) = \{ x \in X : f(x) \neq x \} \) has a similar property.

Example 1.5. Let \(X \) be an infinite set endowed with the natural action of the group \(G = FS_X \) of all finitely supported bijections of \(X \). Then each infinite subset \(A \subseteq X \) is thick, which implies that for each finite partition \(X = A_1 \cup \cdots \cup A_n \) one of the cells \(A_i \) is infinite and hence is thick and 1-prethick.

However the \(G \)-spaces described in Examples 1.3 and 1.4 are rather pathological. In the next section we shall show that each \(G \)-space admitting a syndetic submeasure for every \(k \in \mathbb{N} \) can be covered by two \(k \)-meager (and hence not \(k \)-prethick) subsets. In Section 2, using syndetic submeasures we shall prove that each countable infinite group admits a partition into two \(k \)-meager subsets for every \(k \in \mathbb{N} \).

2. Syndetic submeasures on \(G \)-spaces

A function \(\mu : \mathcal{P}(X) \to [0, 1] \) defined on the family of all subsets of a \(G \)-space \(X \) is called

- \(G \)-invariant if \(\mu(gA) = \mu(A) \) for each \(g \in G \) and a subset \(A \subseteq X \);
- monotone if \(\mu(A) \leq \mu(B) \) for any subsets \(A \subseteq B \subseteq X \);
- subadditive if \(\mu(A \cup B) \leq \mu(A) + \mu(B) \) for any sets \(A, B \subseteq X \);
- additive if \(\mu(A \cup B) = \mu(A) + \mu(B) \) for any disjoint sets \(A, B \subseteq X \);
- a submeasure if \(\mu \) is monotone, subadditive, and \(\mu(\emptyset) = 0, \mu(X) = 1 \);
- a measure if \(\mu \) is an additive submeasure;
- a syndetic submeasure if \(\mu \) is a \(G \)-invariant submeasure such that for each subset \(A \subseteq X \) with \(\mu(A) < 1 \) and each \(\varepsilon > 1/|X| \) there is a large subset \(L \subseteq X \setminus A \) of submeasure \(\mu(L) < \varepsilon \).

In this definition we assume that \(1/|X| = 0 \) if the \(G \)-space \(X \) is infinite.

Proposition 2.1. A finite \(G \)-space \(X \) possesses a syndetic submeasure if and only if \(X \) is transitive.

Proof. If \(X \) is transitive, then the counting measure \(\mu : \mathcal{P}(X) \to [0, 1], \mu : A \mapsto |A|/|X| \), is syndetic.

Now assume conversely that a finite \(G \)-space \(X \) admits a syndetic submeasure \(\mu : \mathcal{P}(X) \to [0, 1] \). If \(X \) is a singleton, then \(X \) is transitive. So, we assume that \(X \) contains more than one point. Since the empty set \(A = \emptyset \) has submeasure \(\mu(A) = 0 < 1 \), for the number \(\varepsilon = \frac{|X|}{|X| - 1} = \frac{1}{|X| - 1} \) there is a large subset \(L \subseteq X \setminus A \subseteq X \) of submeasure \(\mu(L) < \varepsilon \). It follows that \(L \), being large in \(X \), has non-empty intersection with each orbit \(Gx \), \(x \in X \). Replacing \(L \) by a smaller subset we can assume that \(L \) meets each orbit in exactly one point. For every point \(x \in L \) we can find a finite subset \(F_x \subseteq G \) of cardinality \(|Gx| - 1 \) such that \(F_x x = Gx \setminus \{ x \} \). Then the set \(F = \{ 1 \} \cup \bigcup_{x \in L} F_x \) has cardinality \(|F| = 1 + \sum_{x \in L} |Gx| - 1 = 1 - |L| + \sum_{x \in L} |Gx| = 1 - |L| + |X| \) and \(FL = X \). By the subadditivity and the \(G \)-invariance of the submeasure \(\mu \), we get

\[
1 = \mu(FL) \leq |F| \cdot \mu(L) < |F| \cdot \varepsilon = \frac{|F|}{|X| - 1} = \frac{1 - |L| + X}{|X| - 1},
\]

which implies \(|L| = 1\). This means that \(X \) has exactly one orbit and hence is transitive. \(\square \)
For G-spaces admitting a syndetic submeasure we have the following result completing Propositions 1.1–1.3.

Theorem 2.2. Let G be a countable group and X be an infinite G-space possessing a syndetic submeasure $\mu : \mathcal{P}(X) \to [0, 1]$. Then for every $k \in \mathbb{N}$ there is a partition $X = A \cup B$ of X into two k-meager subsets.

Proof. Fix any $k \in \mathbb{N}$ and choose an enumeration $(K_n)_{n=1}^\infty$ of all k-element subsets of G.

Using the definition of a syndetic submeasure, we can inductively construct two sequences $(A_n)_{n=1}^\infty$ and $(B_n)_{n=1}^\infty$ of large subsets of X satisfying the following conditions for every $n \in \mathbb{N}$:

1. $A_n \subset X \setminus \bigcup_{i<n} K^{-1}_i B_i$;
2. $\mu(A_n) < \frac{1}{k^2}$;
3. $B_n \subset X \setminus \bigcup_{1 \leq i \leq n} K^{-1}_i A_i$;
4. $\mu(B_n) < \frac{1}{k^2}$.

At each step the choice of the set A_n is possible as

$$\mu(\bigcup_{i<n} K^{-1}_i B_i) \leq \sum_{i<n} \sum_{x \in K^{-1}_i} \mu(xB_i) = \sum_{i<n} |K^{-1}_i| \cdot \mu(B_i) \leq \sum_{i<n} k^2 \frac{1}{k^2} < 1$$

by the subadditivity of μ. By the same reason, the set B_n can be chosen.

After completing the inductive construction, we get the disjoint sets $A = \bigcup_{n=1}^\infty K_n A_n$ and $B = \bigcup_{n=1}^\infty K_n B_n$.

It remains to check that the sets A and $X \setminus A$ are k-meager. Given any k-element subset $K \subset G$ we need to prove that the sets $K \cap A$ and $K \setminus A$ are not thick. Find $n \in \mathbb{N}$ such that $K_n = K^{-1}$.

Since the set $K_n B_n$ is disjoint with A, the large set B_n is disjoint with $K_n^{-1} A = KA$, which implies that $X \setminus KA$ is large and KA is not thick.

Next, we show that the set $K(X \setminus A) = K^{-1}(X \setminus A)$ is not thick. We claim that $A_n \subset X \setminus K^{-1}_n(X \setminus A)$. Assuming the converse, we can find a point $a \in A_n \cap K^{-1}_n(X \setminus A)$. Then $K_n a$ intersects $X \setminus A$, which is not possible as $K_n a \subset K_n A_n \subset A$. So, the set $X \setminus K(X \setminus A) \supset A_n$ is large, which implies that $K(X \setminus A)$ is not thick. \hfill \square

3. Toposyndetic submeasures on G-spaces

In light of Theorem 2.2, it is important to detect G-spaces possessing a syndetic submeasure. We shall find such spaces among G-spaces possessing a toposyndetic submeasure. To define such submeasures, we need to recall some information from Measure Theory.

Let $\mu : \mathcal{P}(X) \to [0, 1]$ be a submeasure on a set X. A subset $A \subset X$ is called μ-measurable if $\mu(B) = \mu(B \cap A) + \mu(B \setminus A)$ for each subset $B \subset X$. By (the proof of) [4, 2.1.3], the family \mathcal{A}_μ of all μ-measurable subsets of X is an algebra (called the measure algebra of μ) and the restriction $\mu|_{\mathcal{A}_\mu}$ is additive in the sense that $\mu(A \cup B) = \mu(A) + \mu(B)$ for any disjoint μ-measurable sets $A, B \in \mathcal{A}_\mu$.

A G-invariant submeasure $\mu : \mathcal{P}(X) \to [0, 1]$ on a G-space X will be called toposyndetic if $\mathcal{A}_\mu \cap \tau$ is a base of some G-bounded G-invariant regular topology τ on X. The G-boundedness of the topology τ means that each non-empty open set $U \in \tau$ is large in X. The G-boundedness of τ implies the density of all orbits Gx, $x \in X$, in the topology τ.

Theorem 3.1. If a G-space X admits a toposyndetic submeasure, then each non-empty G-invariant subspace $Y \subset X$ possesses a syndetic submeasure.

Proof. Let $\mu : \mathcal{P}(X) \to [0, 1]$ be a toposyndetic submeasure on X and τ be a G-bounded G-invariant Tychonoff topology on X such that $\mathcal{A}_\mu \cap \tau$ is a base of the topology τ.

Fix any non-empty G-invariant subspace $Y \subset X$. The G-boundedness of the topology τ implies that Y is dense in the topological space (X, τ). If the regular topological space (X, τ) has an isolated point x, then by the G-boundedness of the topology τ for the open set $U = \{x\}$ there is a finite set $F \subset G$ with $X = FU \subset Gx$, which means that X is a finite transitive space. By the density of Y in X, $Y = X$ and by Proposition 2.1 Y possesses a syndetic submeasure.

So, we assume that the topological space (X, τ) has no isolated points. The G-invariant submeasure μ induces a G-invariant submeasure $\lambda : \mathcal{P}(Y) \to [0, 1]$ defined by $\lambda(A) = \mu(\bar{A})$ for every subset $A \subset Y$, where \bar{A} is the closure of A in the topological space (X, τ). To see that the submeasure λ is syndetic, fix any $\varepsilon < \frac{1}{|Y|} = 0$ and any subset $A \subset Y$ with $\lambda(A) < 1$. Then $\mu(\bar{A}) = \lambda(A) < 1$, which implies that $X \setminus \bar{A}$ is an
open non-empty subset of \(X \). Since \(\mathcal{A}_\mu \cap \tau \) is a base of the topology \(\tau \), there is a non-empty \(\mu \)-measurable open set \(U \subset X \setminus A \subset X \setminus A \). Since the topological space \((X, \tau) \) has no isolated points, we can fix pairwise disjoint non-empty open sets \(U_1, \ldots, U_n \subset U \) for some integer number \(n > 1/\varepsilon \). Since \(\mathcal{A}_\mu \cap \tau \) is a base of the topology \(\tau \), we can additionally assume that these open sets \(U_1, \ldots, U_n \) are \(\mu \)-measurable, which implies that \(\sum_{i=1}^n \mu(U_i) \leq 1 \) and hence \(\mu(U_i) \leq \frac{1}{n} < \varepsilon \) for some \(i \leq n \). By the regularity of the topological space \((X, \tau) \), the open set \(U_i \) contains the closure \(\overline{V} \) of some non-empty open set \(V \subset X \). The \(G \)-boundedness of \(X \) guarantees that \(V \) is large in \(X \) and hence \(V \cap Y \) is large in \(Y \). Also \(\lambda(V \cap Y) = \mu(V \cap Y) \leq \mu(V) \subset \mu(U_i) < \varepsilon \). This means that the submeasure \(\lambda \) on \(Y \) is syndetic. \(\square \)

Many examples of \(G \)-spaces having a toposyndetic submeasure occur among subspaces of minimal compact measure \(G \)-spaces. By a compact (measure) \(G \)-space we understand a \(G \)-space \(X \) endowed with a compact Hausdorff \(G \)-invariant topology \(\tau_X \) (and a \(G \)-invariant probability Borel \(\sigma \)-additive measure \(\lambda_X : \mathcal{B}(X) \rightarrow [0,1] \) defined on the \(\sigma \)-algebra \(\mathcal{B}(X) \) of Borel subsets of \(X \)). A compact \(G \)-space \(X \) is called minimal if each orbit \(Gx, x \in X \), is dense in \(X \).

Theorem 3.2. If \((X, \tau_X, \lambda_X)\) is a minimal compact measure \(G \)-space, then each non-empty \(G \)-invariant subspace \(Y \) of \(X \) possesses a (topo)syndetic submeasure.

Proof. By the minimality of \(X \), the \(G \)-invariant subspace \(Y \) is dense in \(X \). Let \(\tau = \{U \cap Y : U \in \tau_X\} \) be the induced topology on \(Y \). The \(G \)-invariant measure \(\lambda_X : \mathcal{B}(X) \rightarrow [0,1] \) induces a \(G \)-invariant submeasure \(\mu : \mathcal{P}(Y) \rightarrow [0,1] \) defined by the formula \(\mu(A) = \lambda_X(\overline{A}) \) for \(A \subset Y \), where \(\overline{A} \) denotes the closure of \(A \) in the compact space \((X, \tau_X) \). To prove that the submeasure \(\mu \) is toposyndetic, it remains to prove that the topology \(\tau \) is \(G \)-bounded and \(\mathcal{A}_\mu \cap \tau \) is a base of the topology \(\tau \).

Consider the algebra \(\mathcal{A}_X = \{A \subset X : \lambda_X(\partial A) = 0\} \) consisting of subsets \(A \subset X \) whose boundary \(\partial A \) in \(X \) have measure \(\lambda_X(\partial A) = 0 \), and let \(\mathcal{A}_Y = \{A \cap Y : A \in \mathcal{A}_X\} \). It can be shown that each set \(A \subset \mathcal{A}_Y \) is \(\mu \)-measurable and \(\mathcal{A}_Y \cap \tau \subset \mathcal{A}_\mu \cap \tau \) is a base of the topology \(\tau \). The \(G \)-boundedness of the topology \(\tau \) on \(Y \) is proved in the following lemma. Therefore, \(\mu \) is a toposyndetic submeasure on \(X \). By the proof of Theorem 3.2, the submeasure \(\mu \) is syndetic. \(\square \)

Lemma 3.3. For each minimal compact \(G \)-space \(X \), the induced topology on each \(G \)-invariant subspace \(Y \subset X \) is \(G \)-bounded.

Proof. To show that the induced topology on \(Y \) is \(G \)-bounded, fix any non-empty open subset \(U \subset Y \). Find an open set \(\tilde{U} \subset X \) such that \(\tilde{U} \cap Y = U \). By the regularity of the compact Hausdorff space \(X \), there is a non-empty open subset \(V \subset X \) with \(\overline{V} \subset \tilde{U} \).

By a classical Birkhoff theorem in Topological Dynamics (see e.g. Theorem 19.26 [6]), the minimal compact \(G \)-space \(X \) contains a uniformly recurrent point \(y \in X \). The uniform recurrence of \(y \) means that for each open neighborhood \(O_y \subset X \) of \(y \) the set \(\{g \in G : gy \in O_y\} \) is large in \(G \). By the density of the orbit \(G \) there is \(s \in G \) with \(sy \in V \). Then \(s^{-1}V \) is a neighborhood of \(y \) and by the uniform recurrence of \(y \), the set \(L = \{g \in G : gy \in s^{-1}V\} \) is large in \(G \). Consequently, we can find a finite subset \(F \subset G \) such that \(G = FL \). Then \(G \subset FS^{-1}V \subset FS^{-1} \) which implies that the open set \(FS^{-1}V \) is dense in \(X \). Consequently, \(X = FS^{-1}V \subset FS^{-1} \) and \(Y = FS^{-1}(Y \cap U) \subset FS^{-1}U \), witnessing that the topology of \(Y \) is \(G \)-bounded. \(\square \)

4. Groups possessing a toposyndetic submeasure

In this section we shall detect groups possessing a toposyndetic submeasure. Each group \(G \) will be considered as a \(G \)-space endowed with the natural left action of the group \(G \). A group \(G \) is called amenable if it admits an \(G \)-invariant additive measure \(\mu : \mathcal{P}(G) \rightarrow [0,1] \).

We shall say that a \(G \)-space \(X \) has a free orbit if for some \(x \in X \) the map \(\alpha_x : G \rightarrow X, \alpha_x : g \mapsto gx \), is injective.

Theorem 4.1. A group \(G \) admits a toposyndetic submeasure if one of the following conditions holds:

1. there is a minimal compact measure \(G \)-space \(X \) with a free orbit;
2. \(G \) is a subgroup of a compact topological group;
3. \(G \) is countable;
4. \(G \) is amenable.
Proof. 1. Assume that \((X, \tau_X, \lambda_X)\) is a minimal compact measure G-space with a free orbit. In this case there is a point \(x \in X\) for which the map \(\alpha_x : G \to Gx \subset X, \alpha_x : g \mapsto gx\), is injective. This map allows us to define a Tychonoff G-invariant topology
\[
\tau = \{\alpha_x^{-1}(U) : U \in \tau_X\}
\]
on the group \(G\). By Lemma 3.3 the topology \(\tau\) is G-bounded.

Since the orbit \(Gx\) is dense in \(X\) (which follows from the minimality of \(X\)), the formula
\[
\mu(A) = \lambda(\overline{Ax}) \quad \text{for} \quad A \subset G
\]
determines a G-invariant submeasure on \(G\). Observe that \(B = \{U \in \tau_X : \lambda(U) = \lambda(\overline{U})\}\) is a base of the topology \(\tau_X\) on \(X\) and \(A = \{\alpha_x^{-1}(U) : U \in B\}\) is a base of the topology \(\tau\) on \(G\). It can be verified that each set \(A \in \mathcal{A}\) is \(\mu\)-measurable, which implies that \(\mathcal{A}_\mu \cap \tau \supset A\) is a base of the topology \(\tau\). This means that the submeasure \(\mu\) is toposyndetic.

2. The second statement follows immediately from the first statement and the well-known fact [5, §449] stating that for each countable group \(G\) there is a compact minimal measure G-space with a free orbit.

3. The third statement follows from the first one and a recent deep result of B. Weiss [16] stating that for any amenable group \(G\), each compact G-space \(X\) possesses a G-invariant probability Borel measure. \(\square\)

Problem 4.2. Is the class of groups admitting a toposyndetic submeasure hereditary with respect to taking subgroups?

Problem 4.3. Has every group a toposyndetic submeasure?

Problem 4.4. Has the group \(S_X\) of all bijections of an infinite set \(X\) a toposyndetic submeasure?

5. Groups possessing a syndetic submeasure

In this section we shall detect groups possessing a syndetic submeasure. By Theorem 3.1 the class of such groups contains all groups possessing a toposyndetic submeasure, in particular, all countable groups.

Theorem 5.1. A group \(G\) possesses a syndetic submeasure if one of the following conditions is satisfied:

1. there is an infinite transitive G-space possessing a syndetic submeasure;
2. there is an infinite minimal compact measure G-space;
3. \(G\) admits a homomorphism onto an infinite group possessing a (topo)syndetic submeasure;
4. \(G\) admits a homomorphism onto a countable infinite group;
5. \(G\) contains an amenable infinite normal subgroup.

Proof. 1. Assume that \(X\) is an infinite transitive G-space possessing a syndetic submeasure \(\lambda : \mathcal{P}(X) \to [0,1]\). Fix any point \(x \in X\) and consider the map \(\alpha_x : G \to X, \alpha_x : g \mapsto gx\), which is surjective (by the transitivity of the G-space \(X\)). One can check that the syndetic submeasure \(\lambda\) on \(X\) induces a syndetic submeasure \(\mu : \mathcal{P}(G) \to [0,1]\) defined by \(\mu(A) = \lambda(\alpha_x(A)) = \lambda_X(Ax)\) for \(A \subset G\).

2. Let \((X, \tau_X, \mu_X)\) be an infinite minimal compact measure G-space. By the minimality, the orbit \(Gx\) of any point \(x \in X\) is dense in \((X, \tau_X)\). Then the formula \(\mu(A) = \mu_X(\overline{Ax})\), \(A \subset X\), determines a G-invariant submeasure \(\mu : \mathcal{P}(G) \to [0,1]\) on the group \(G\). We claim that the submeasure \(\mu\) is syndetic. Given any \(\varepsilon > \frac{1}{|X|}\) and a set \(A \subset G\) with \(\mu(A) < 1\), we should find a large set \(L \subset G\setminus A\) with \(\mu(L) < \varepsilon\). Since \(\mu_X(\overline{Ax}) = \mu(A) < 1\), the closed subset \(\overline{Ax}\) is not equal to \(X\). By the minimality, the infinite compact G-space \((X, \tau_X)\) has no isolated points, which allows us to find an open non-empty set \(U \subset X\setminus \overline{Ax}\) such that \(\mu_X(\overline{U}) < \varepsilon\). By Lemma 3.3 the topology \(\tau_X\) is G-bounded, which implies that the set \(U \subset X\) is large in \(X\) and hence \(V = \alpha_x^{-1}(U) \subset X\setminus A\) is large in \(G\) and has submeasure \(\mu(V) \leq \mu_X(\overline{U}) < \varepsilon\).

3. The third statement follows from the first statement and Theorem 3.1.

4. The fourth statement follows from the third statement and Theorem 4.1(3).

5. Suppose that the group \(G\) contains a normal infinite amenable subgroup \(H\). Denote by \(P_\omega(H)\) the set of finitely supported probability measures on \(H\). Each measure \(\mu \in P_\omega(H)\) can be written as a convex
combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures concentrated at points x_i of H. This allows us to identify $P_\omega(H)$ with a convex subset of the Banach space $\ell_1(H)$ endowed with the norm $\|f\| = \sum_{x \in H} |f(x)|$.

We claim that the function

$$\sigma_H : \mathcal{P}(G) \to [0, 1], \quad \sigma_H : A \mapsto \inf_{\mu \in P_\omega(H)} \sup_{y \in G} \mu(Ay),$$

is a syndetic left-invariant submeasure on G.

First we prove that σ_H is left-invariant. Given any $x \in G$ and $A \subset G$, it suffices to check that $\sigma_H(xA) \leq \sigma_H(A) + \varepsilon$ for every $\varepsilon > 0$. The definition of σ_H guarantees that σ_H is right-invariant. Consequently, $\sigma_H(xA) = \sigma_H(xAx^{-1})$. By the definition of $\sigma_H(A)$, there is a finitely supported probability measure $\mu \in P_\omega(H)$ such that $\sup_{y \in G} \mu(Ay) < \sigma_H(A) + \varepsilon$. Write μ as a convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures concentrated at points $a_1, \ldots, a_n \in H$. Since H is a normal subgroup of G, the probability measure $\mu' = \sum_{i=1}^{n} \alpha_i \delta_{xa_i x^{-1}}$ belongs to $P_\omega(H)$. Taking into account that for every $y \in G$

$$\mu'(xAx^{-1}y) = \mu'(xAx^{-1}yx^{-1}) = \mu(Ax^{-1}yx),$$

we conclude that

$$\sigma_H(xAx^{-1}) \leq \sup_{y \in G} \mu'(xAx^{-1}y) \leq \sup_{y \in G} \mu(Ax^{-1}yx) < \sigma_H(A) + \varepsilon.$$

So, σ_H is left-invariant.

Next, we prove that σ_H is subadditive. Given two subsets $A, B \subset G$, it suffices to check that $\sigma_H(A \cup B) \leq \sigma_H(A) + \sigma_H(B) + 3\varepsilon$ for every $\varepsilon > 0$. By the definition of the numbers $\sigma_H(A)$ and $\sigma_H(B)$, there are finitely supported probability measures $\mu_A, \mu_B \in P_\omega(H)$ such that $\sup_{y \in G} \mu_A(Ay) < \sigma_H(A) + \varepsilon$ and $\sup_{y \in G} \mu_B(By) < \sigma_H(By) + \varepsilon$. By Emerson's characterization of amenability [3, 1.7], for the probability measures μ_A and μ_B there are probability measures $\mu'_A, \mu'_B \in P_\omega(H)$ such that

$$\sup_{C \subset H} |\mu_A * \mu'_A(C) - \mu_B * \mu'_B(C)| \leq \|\mu_A * \mu'_A - \mu_B * \mu'_B\| < \varepsilon. $$

Write the measures μ_A, μ_B, μ'_A and μ'_B as convex combinations of Dirac measures:

$$\mu_A = \sum_i \alpha_i \delta_{x_i}, \quad \mu'_A = \sum_j \alpha'_i \delta_{x'_i}, \quad \mu_B = \sum_i \beta_i \delta_{y_i}, \quad \mu'_B = \sum_j \beta'_i \delta_{y'_i}. $$

Then $\mu_A * \mu'_A = \sum_{i,j} \alpha_i \alpha'_j \delta_{x_i x'_j}$ and $\mu_B * \mu'_B = \sum_{i,j} \beta_i \beta'_j \delta_{y_i y'_j}$. For every $y \in G$ we get

$$\mu_A * \mu'_A(Ay) = \sum_{i,j} \alpha_i \alpha'_j \delta_{x_i x'_j}(Ay) = \sum_j \alpha'_j \sum_i \alpha_i \delta_{x_i}(Ay(x'_j)^{-1}) =$$

$$= \sum_j \alpha'_j \mu_A(Ay(x'_j)^{-1}) \leq \sum_j \alpha'_j \sup_{z \in G} \mu_A(Az) = \sup_{z \in G} \mu_A(Az) < \sigma_H(A) + \varepsilon. $$

By analogy we can prove that $\mu_B * \mu'_B(By) \leq \sigma_H(B) + \varepsilon$. Now consider the measure $\nu = \mu_A * \mu'_A$ and observe that for every $y \in B$ we get

$$\nu(By) = \mu_A * \mu'_A(By) \leq \mu_B * \mu'_B(By) + \|\mu_A * \mu'_A - \mu_B * \mu'_B\| < \sigma_H(B) + \varepsilon + \varepsilon. $$

Then

$$\sigma_H(A \cup B) \leq \sup_{y \in G} \nu(A \cup B)y \leq \sup_{y \in G} \nu(Ay) + \sup_{y \in G} \nu(By) < \sigma_H(A) + \varepsilon + \sigma_H(B) + 2\varepsilon = \sigma_H(A) + \sigma_H(B) + 3\varepsilon,$$

which proves the subadditivity of σ_H.

Finally we prove that the left-invariant submeasure σ_H on G is syndetic. Fix a subset $A \subset G$ of submeasure $\sigma_H(A) < 1$ and take an arbitrary $\varepsilon > 0$. Since $\sigma_H(A) < 1$, there is a finitely supported measure $\mu \in P_\omega(H)$ such that $\sup_{y \in G} \mu(Ay) < 1$. Write μ as the convex combination $\mu = \sum_{i=1}^{n} \alpha_i \delta_{x_i}$ of Dirac measures. We can assume that each coefficient α_i is positive. Then the finite set $F = \{x_1, \ldots, x_n\}$ coincides with the support $\text{supp}(\mu)$ of the measure μ.

It follows that for every $y \in G$ we get $\mu(Ay) < 1$ and hence $F = \text{supp}(\mu) \nsubseteq Ay$. This ensures that the set Fy^{-1} meets the complement $X \setminus A$ and hence $y^{-1} \in F^{-1}(G \setminus A)$. So, $G = F^{-1}(G \setminus A)$ and the set $X \setminus A$ is large in G. Now take any finite subset $E \subset H$ of cardinality $|E| > 1/\varepsilon$. Using Zorn's Lemma, choose a maximal subset $B \subset G \setminus A$ which is E-separated in the sense that $Ex \cap Ey = \emptyset$ for any distinct points $x, y \in B$.
The maximality of the set B guarantees that for each $x \in G \setminus A$ the set Ex meets EB, which implies that $G \setminus A \subset E^{-1}EB$ and $G = F^{-1}(G \setminus A) = F^{-1}E^{-1}EB$. This means that the set B is large in G. We claim that $|E^{-1} \cap By| \leq 1$ for each $y \in G$. Assume conversely that $E^{-1} \cap By$ contains two distinct points b and b' with $b, b' \in B$. Then $b'b^{-1} = b'y(by)^{-1} \in E^{-1}E$ and hence $Eb' \cap Eb \neq \emptyset$, which is not possible as B is E-separated. Now consider the uniformly distributed probability measure $\nu = \frac{1}{|E|} \sum_{x \in E^{-1}} \delta_x \in P(\omega(H))$ and observe that $\sigma_H(B) \leq \sup_{y \in G} \nu(By) \leq \frac{|E^{-1} \cap By|}{|E|} \leq \frac{1}{|E|} < \varepsilon$, which means that the submeasure σ_H is syndetic.

Remark 5.2. For an infinite amenable group G and the subgroup $H = G$ the syndetic submeasure σ_H (used in the proof of Theorem 5.1(5)) coincides with the right Solecki submeasure R introduced in [14] and studied in [1].

Theorem 5.1(5) implies:

Corollary 5.3. The group S_X of bijections of any set X possesses a syndetic submeasure.

Proof. If X is finite, then the finite group S_X has a syndetic submeasure according to proposition 2.1. So, we assume that the set X is infinite. Observe that the subgroup FS_X of finitely supported permutations of X is locally finite and hence amenable. By Theorem 5.1(5) the group S_X admits a syndetic submeasure as it contains the infinite amenable normal subgroup FS_X.

Problem 5.4. Has every group a syndetic submeasure?

Problem 5.5. Has the quotient group $S_\omega/\text{FS}_\omega$ a syndetic submeasure?

6. **Partitions of groups into k-meager pieces**

Now we return to the problem of partitioning groups into k-meager pieces, which was posed and partly resolved in [12]. Combining Theorems 2.2 and 5.1(5), we get:

Theorem 6.1. Each countable infinite group G for every $k \in \mathbb{N}$ admits a partition into two k-meager subsets.

This theorem admits a self-generalization.

Corollary 6.2. If a group G has a countable infinite quotient group, then for every $k \in \mathbb{N}$ the group G admits a partition into two k-meager subsets.

Proof. Let $h : G \to H$ be a homomorphism of G onto a countable infinite group H. By Theorem 6.1 for every $k \in \mathbb{N}$ the countable group H admits a partition $H = A \cup B$ into two k-meager subsets. Then $G = h^{-1}(A) \cup h^{-1}(B)$ is a partition of the group G into two k-meager subsets.

Problem 6.3. Is it true that each infinite group G for every $k \in \mathbb{N}$ admits a partition into two k-meager sets?

7. **Acknowledgement**

The authors would like to express their sincere thanks to an anonymous referee who turned our attention to minimal measure-preserving actions of countable groups, which allowed us to prove the existence of toposyndetic submeasures on countable groups and construct partitions of such groups into k-meager sets.
References

[1] T. Banakh, The Solecki submeasures and densities on groups, preprint (http://arxiv.org/abs/1211.0717).
[2] B. Bollobás, S. Janson, O. Riordan, On covering by translates of a set, Random Structures Algorithms 38:1-2 (2011), 33–67.
[3] W. Emerson, Characterizations of amenable groups, Trans. Amer. Math. Soc. 241 (1978), 183–194.
[4] H. Federer, Geometric Measure Theory, Springer-Verlag, New York, 1969.
[5] D. Fremlin, Measure Theory, V.4, Torres Fremlin, Colchester, 2006.
[6] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification: Theory and Applications, Walter de Grueter, Berlin, New York, 2011.
[7] I. Protasov, Partition of groups into large subsets, Math. Notes, 73 (2003), 271–281.
[8] I. Protasov, Small systems of generators of groups, Math. Notes, 76 (2004), 420–426.
[9] I. Protasov, Selective survey on Subset Combinatorics of Groups, Ukr. Math. Bull., 7(2010), 220-257.
[10] I. Protasov, Partition of groups into thin subsets, Algebra Disc. Math., 11(2011), 88–92.
[11] I. Protasov, T. Banakh, Ball Structures and Colorings of Groups and Graphs, Math. Stud. Monogr. Ser., Vol. 11, VNTL Publishers, Lviv, 2003.
[12] I. Protasov, S. Slobodyanuk, Prethick subsets in partitions of groups, Algebra Discr. Math. 14:2 (2012), 267–275.
[13] I. Protasov, M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL Publishers, Lviv, 2007
[14] S. Solecki, Size of subsets of groups and Haar null sets, Geom. Funct. Anal. 15 (2005), 246–273.
[15] G. Weinstein, Minimal complementary sets, Trans. Amer. Math. Soc., 212 (1975), 131–137.
[16] B. Weiss, Minimal models for free actions, in: Dynamical Systems and Group Actions (L. Bowen, R. Grigorchuk, Ya. Vorobets eds.), Contemp. Math. 567, Amer. Math. Soc. Providence, RI, (2012), 249–264.

T. Banakh: Ivan Franko National University of Lviv, Ukraine and Jan Kochanowski University in Kielce, Poland.

I. Protasov and S. Slobodianiuk: Taras Shevchenko National University, Kyiv, Ukraine

E-mail address: t.o.banakh@gmail.com, i.v.protasov@gmail.com, slobodianiuk@yandex.ru