Cerebellar developmental deficits underlie neurodegenerative disorder spinocerebellar ataxia type 23

Cleo JLM Smeets
Max-Planck-Institut fur Psycholinguistik https://orcid.org/0000-0002-9332-1553

Kai Y Ma
Universitair Medisch Centrum Groningen

Simon E Fisher
Max-Planck-Institut fur Psycholinguistik

Dineke S Verbeek (✉ d.s.verbeek@umcg.nl)
https://orcid.org/0000-0002-4759-7006

Research article

Keywords: prodynorphin, development, climbing fibres, GABAergic transmission, ataxia

DOI: https://doi.org/10.21203/rs.3.rs-26966/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

Spinocerebellar ataxia type 23 (SCA23) is a late-onset neurodegenerative disorder characterized by slowly progressive gait and limb ataxia, for which there is no therapy available. It is caused by mutations in PDYN, which encodes the opioid precursor protein prodynorphin (PDYN). PDYN is processed into the opioid peptides α-neoendorphin, and dynorphins (Dyn) A and B; inhibitory neurotransmitters that function in pain signalling, stress-induced responses, and addiction. Mutations causing SCA23 mostly affect Dyn A, leading to loss of secondary structure and increased peptide stability. PDYNR212W mice express human PDYN containing the SCA23 p.R212W mutation. These mice show gait deficits and progressive loss of motor function from 3 months of age. The cerebella of PDYNR212W mice show climbing fibre (CF) deficits from 3 months of age and Purkinje cell (PC) loss from 12 months of age. A mouse model for SCA1 showed similar CF deficits, and a recent study found additional developmental abnormalities, namely hyperproliferation of stem cells leading to increased GABAergic interneuron connectivity and non-cell autonomous disruption of PC function. As SCA23 mice show a similar pathology to SCA1 mice in adulthood, we hypothesized that SCA23 may also follow SCA1 pathology during development.

Methods

In the present study, we examined the cerebella of PDYNR212W mice during cerebellar development, from 2 to 8 weeks of age, using immunohistochemistry, protein, and RNA analysis.

Results

We uncovered developmental deficits from 2 weeks of age, namely a reduced number of GABAergic synapses on PC soma in PDYNR212W mice, possibly leading to the observed delay in early phase CF elimination between 2 and 3 weeks of age. Furthermore, CFs did not reach terminal height leaving proximal PC dendrites open to be occupied by parallel fibres (PFs). The observed increase in vGlut1 protein -a marker for PF-PC synapses- indicates that PFs indeed take over CF territory and have increased connectivity with PCs. Additionally, we detected altered expression of several critical Ca2+ channel subunits, potentially contributing to altered Ca2+ transients in PDYNR212W cerebella.

Conclusions

These findings indicate that developmental abnormalities contribute to the SCA23 pathology and uncover a developmental role for PDYN in the cerebellum.

Background
Spinocerebellar ataxia type 23 (SCA23) is a late-onset, slowly progressive neurodegenerative disorder for which there is no available therapy. It is caused by missense mutations in PDYN and characterized by loss of neurons in the Purkinje cell (PC) layer, dentate nuclei, and inferior olivary nuclei (1, 2). Patients suffer from gait ataxia, dysarthria, slowed saccades, ocular dysmetria, Babinski’s sign, and hyperreflexia. PDYN encodes the opioid precursor protein prodynorphin (PDYN), which is processed into the opioid peptides α-neoendorphin and dynorphins (Dyn) A and B. These peptides normally function as inhibitory neurotransmitters in pain processing, stress-induced responses, and addiction (3–6). Dyn A is also known to elicit non-opioid-mediated neurotoxic effects including allodynia, neuronal loss and paralysis (3, 7, 8). It can cause cell death via the NMDA (N-methyl-D-aspartate) receptor (9), and elicit neurotoxic effects via the AMPA (α-amino-hydroxy-5-methylisoxazole-4-propionate) receptor and acid-sensing ion 1a channels (10, 11). Additionally, we have shown that mutations causing SCA23 affect the secondary structure of Dyn A, reducing its affinity with its natural κ-opioid receptor and peptide stability, leading to peptide aggregation (12).

We previously generated PDYN^{R212W} mice, expressing human PDYN containing the p.R212W mutation, and showed that they recapitulate features of SCA23 pathology, showing progressive gait deficits from 3 months of age and loss of motor coordination and balance at 12 months of age (13). Examination of the cerebella of these mice revealed a loss in climbing fibre (CF) height from 3 months of age, PC loss at 12 months of age, and pathologically elevated levels of Dyn A peptide (13).

CFs form a crucial component in synaptic plasticity, a process of great importance to the functioning of the cerebellum; it has long been thought to be the molecular mechanism underlying motor functioning and learning (14–17). CFs and parallel fibres (PFs) are the excitatory inputs of the cerebellum, and synapse upon the singular output of the cerebellum, the PC (18, 19). CFs form a crucial part of the cerebellar machinery, as they exert enormous control over the synaptic plasticity of the PFs (14, 15, 20, 21). In order to maintain the delicate balance of synaptic plasticity, both CFs and PFs have their own PC dendrite territories. CFs populate the proximal PC dendritic tree, whereas the PFs synapse upon the distal PC dendritic tree (18, 19). CFs and PFs compete for PC territory throughout life, and loss of one of these types of fibres leads to an increase in the other (22, 23). Alterations in components of this process lead to synaptic deficits in several mouse models suffering from ataxia and absence seizures (24, 25). The observed CF deficits in SCA23 are particularly interesting, as similar effects have been observed in other SCA types, including SCA1 (26–29).

A recent publication demonstrated that in SCA1, stem cells hyperproliferate and preferably differentiate into GABAergic interneurons leading to increased inhibitory connections with PCs and non-cell autonomous PC dysfunction (30). As the CF deficits of SCA23 match those of SCA1, we hypothesized that SCA23 may also follow this newly identified SCA1 pathology. Therefore, we studied PDYN^{R212W} cerebella around the time of cerebellar circuit maturation, from 2 to 8 weeks of age. Interestingly, we found that in SCA23, GABAergic innervation shows reduced synapse connectivity. Here, we report the molecular changes observed in the developing PDYN^{R212W} cerebellum, and propose an alternative disease model for SCA23.
Materials And Methods

Animals

All animal experiments were performed according to the ethical guidelines of the Animal Welfare Committee of the University of Groningen, the Netherlands. The experimental protocols were approved by the Animal Welfare Committee of the University of Groningen. All efforts were made to reduce the number of animals and minimize their suffering. Transgenic mice were bred and genotyped as previously described (13), and housed with same-sex litter mates under standard conditions including environmental enrichment, with ad libitum access to food and water. Twelve animals were assigned to each group based on genotype, aged to 2, 3, 4, or 8 weeks of age and sacrificed humanely. Cerebellar vermes were dissected and snap-frozen in liquid nitrogen. In preparation for immunohistochemical stainings, mice were perfused with 4% PFA, post-fixed for up to 24 h in PFA, cryopreserved in 20% and 30% sucrose solutions until saturated, and then frozen on dry ice. Researchers were blind to genotypes during collection of tissue and data collection.

Immunohistochemistry

Sectioning and staining were performed as described previously (13). The primary antibodies used were vesicular glutamate transporter 2 (vGlut2, rabbit, 1:1000, Synaptic Systems, Göttingen, Germany), vesicular GABA transporter (vGAT, rabbit, 1:1000, Synaptic Systems, Göttingen, Germany), glutamate decarboxylase 67 (GAD67, rabbit, 1:1000, Abcam, Cambridge, UK), and Calbindin (mouse, 1:500, Abcam, Cambridge, UK). The secondary anti-rabbit antibody was conjugated with Alexa Fluor 488, the anti-mouse antibody with Cy3 (both: donkey, 1:250, Jackson ImmunoResearch Laboratories, Suffolk, UK). Sections were imaged using an AxioObserver Z1 fluorescence microscope (Zeiss, Oberkochen, Germany), an AxioScan Z1 scanning microscope (Zeiss, Oberkochen, Germany), and a TCS SP8 confocal microscope (Leica, Wetzlar, Germany), and the images were analyzed using Fiji software (National Institutes of Health, http://fiji.sc/). vGAT and vGlut2 vesicles on PC soma were quantified using a custom-made pipeline. First, PC soma were identified by creating masks using Calbindin stained images. These masks were subsequently used in the vGAT or vGlut2 stained images to count puncta by determining local maxima in each PC soma. Per lobule, 4–7 images were collected and at least 5 PC soma were analysed per image. CF height was analysed by measuring both Calbindin and vGlut2 staining height from the tip of the PC soma, and calculating the ratio. Per lobule 4–7 images were collected and analysed. GAD67 stainings were performed without Calbindin co-staining. Here, fluorescence intensity was measured in the PC layer. Per lobule, 4–7 images were collected and analysed.

Reverse transcription PCR and quantitative real-time PCR

Reverse transcription PCR and quantitative real-time PCR were performed as described previously (13). A full list of primers can be found in the Additional File 1.

Protein extraction and Western blotting
Proteins were isolated from snap-frozen mouse vermis. Organs were homogenized in ice-cold Ripa buffer supplemented with a complete protease inhibitor cocktail (Roche, Basel, Switzerland) and PMSF (Sigma-Aldrich, Saint Louis, MO, USA). Samples were centrifuged for 15 min at 10,000 rpm, and protein concentrations were determined using the Pierce BCA Protein Assay Kit (Thermo Scientific, Waltham, MA, USA). Equal amounts were loaded onto SDS-PAGE gels. After electrophoresis, the proteins were transferred to nitrocellulose membranes (Life Technologies, Carlsbad, CA, USA) and blocked with 5% non-fat milk in Tris-buffered saline (TBS)-Tween. Blots were probed with primary antibodies against vGlut1 (rabbit, 1:1000, Synaptic Systems, Göttingen, Germany), vGlut2 (rabbit, 1:1000, Synaptic Systems, Göttingen, Germany), and actin (mouse, 1:5000, MP Biomedicals, Irvine, CA, USA). Secondary antibodies were conjugated with horseradish peroxidase (goat, 1:10 000, Jackson ImmunoResearch Laboratories, Suffolk, UK). Densitometric analysis was performed using ImageLab software (BioRad Laboratories, Hercules, CA, USA).

Statistical analysis

All data were normalized against 3-week-old control data and expressed as means ± SEM. Two-way ANOVA was used to determine the significance of the observed differences between the genotypes, and over time (p < 0.05 was considered statistically significant).

Results

PDYN R212W cerebella show alterations in GABAergic connectivity

Mice expressing human PDYN containing the p.R212W SCA23 mutation (PDYN^{R212W} mice) suffer from loss of motor function and balance, coinciding with loss of CF height compared to control mice, as well as to mice expressing wild type human PDYN (PDYN^{WT} mice) (13). This pattern of findings for SCA23 is reminiscent of that seen for SCA1 (26, 28). Therefore, we hypothesized that SCA23 may also mirror other aspects of SCA1 pathology. Edamakanti et al. found alterations in GABAergic signalling in SCA1 mice (30), leading us to investigate GABAergic signalling in PDYN^{R212W} mice. We examined the inhibitory synapses from basket cells (BCs) on PC soma in the vermal lobules at 2, 3, 4, and 8 weeks of age, using the vesicular inhibitory amino acid transporter (vGAT) as a marker for inhibitory synapses and Calbindin as a marker for PCs (Fig. 1A). PDYN^{R212W} mice showed a reduced number of somatic inhibitory synapses at 2 weeks of age in lobules II, III, IV/V, IX, and X as compared to PDYN^{WT} and control mice, as well as in lobule I as compared to PDYN^{WT} mice (Fig. 1B). At 3 weeks of age, PDYN^{R212W} lobule IV/V showed fewer synapses as compared to both PDYN^{WT} and control, as well as PDYN^{R212W} lobules VI and X as compared to control mice (Fig. 1B). Lobules II, IV/V, and X showed a decreased number of inhibitory synapses in PDYN^{R212W} mice as compared to PDYN^{WT} and control mice, as well as lobule I as compared to PDYN^{WT} mice at 4 weeks of age (Fig. 1C). At 8 weeks of age, PDYN^{R212W} mice showed fewer somatic synapses in lobules IV/V and VI as compared to both PDYN^{WT} and control mice, in lobule II as compared to control mice, and in lobules I and IX as compared to PDYN^{WT} mice (Fig. 1C). Taken together, these data indicate
that SCA23 shows an opposite pathology to SCA1, as inhibitory synapses are lost on PDYN^{R212W} PC soma.

CF development is disrupted in PDYN^{R212W} mice

As inhibitory connectivity plays a role in the early phase of CF synapse elimination by BC collaterals taking over somatic spines from weak CFs on the PCs, we next investigated CF-PC somatic synapses using vGlut2 as a marker for the CF-PC synapse and Calbindin as a marker for PCs (Fig. 2A). Control and PDYN^{WT} mice demonstrated normal early phase CF synapse elimination as demonstrated by significant reduction of vGlut2⁺ somatic puncta over time from 2 to 4 weeks of age (Fig. 2B and C). PDYN^{R212W} mice, however, do not show a significant reduction of these puncta between 2 and 3 weeks of age in lobules II, III, IV/V, VI, and IX (Fig. 2D). Additionally, in PDYN^{R212W} mice, lobule VI does not show significantly fewer vGlut2⁺ synapses from 3 weeks of age on and lobule X does not demonstrate any loss of CF somatic synapses (Fig. 2D). While these data suggest that PDYN^{R212W} mice do not start out with fewer somatic CF synapses, they point towards a disruption of early phase CF synapse elimination.

As CF development is a finely tuned process, these findings suggested that further CF development could also be affected. Using the same markers, we analysed the reach of CFs by examining the CF-PC synapses along the PC dendrites (Fig. 3A). The PC dendrites of PDYN^{R212W} mice showed a significantly reduced CF reach in vermal lobules I, II, III, VI/V, VI, and IX at 2 weeks of age in comparison to those of PDYN^{WT} and control mice (Fig. 3B). The deficit persisted in these lobules and included lobule X at 3, 4, and 8 weeks of age (Fig. 3B and C). At 8 weeks of age, significance was lost in lobule IX (Fig. 3C). CF reach did not decline between 2 and 8 weeks of age, but does eventually decrease by 12 months of age, as observed previously (Smeets et al., 2015). Altogether, these data indicate disruption of normal CF development in PDYN^{R212W} mice, specifically a delay in early phase CF synapse elimination and discontinued CF translocation, leading to a loss of the CF monopoly of the PC proximal dendrites.

PDYN^{R212W} mice display increased PF-PC connectivity

On the distal PC dendritic tree, CFs and PFs are under intense competition for PC dendritic territory, and loss of CF synapses allows for an increase in PF synapses. This process, known as heterosynaptic competition, is employed during development and synaptic plasticity (22, 23). Given the striking loss of CF-PC synapses, we hypothesized that the number of PF-PC synapses may have increased. However, there is currently no suitable antibody available for a detailed histological quantification of vGlut1, the marker for PF-PC synapses. Therefore, we compared the protein levels of vGlut1 in the vermis of PDYN^{R212W} mice to that of PDYN^{WT} and control mice. Since vGlut1 and −2 are highly expressed in the cerebellar granule layer, we first ascertained whether we could see a change in vGlut2 protein levels representing the loss of CF-PC synapses by determining vGlut2 protein levels in whole vermis protein lysate. At 8 weeks of age, we observed the expected reduction of overall vGlut2 levels in PDYN^{R212W} cerebella (Fig. 4A). Although this reduction was only significant at 8 weeks of age, we were able to
observe changes in overall vGlut2 protein level, indicating that changes in vGlut1 protein levels point to changes in PF-PC synapse count. The vGlut1 protein levels in PDYNR212W vermis were significantly increased at 2, 3, and 4 weeks of age compared to control vermis, and at 8 weeks of age compared to PDYNWT vermis (Fig. 4B). The elevated levels of vGlut1 suggest that PFs have increased their synapse numbers in the vermis of PDYNR212W mice, as CFs cannot reach terminal height to populate their natural PC dendritic territory.

Reduced GAD67 expression could indicate internal changes in PDYNR212W PCs

As both GABAergic and glutamatergic inputs are altered in PDYNR212W mice, we hypothesized that perhaps PCs adapted internal changes to counteract these alterations. Therefore, we determined the expression of glutamate decarboxylase 67 (GAD67), the main enzyme used by PCs to convert glutamate to GABA. Using GAD67 immunostaining, we determined expression levels by measuring fluorescence intensity in the PC layer of control, PDYNWT, and PDYNR212W mice (Fig. 5A). We observed a loss of GAD67 in PDYNR212W PCs at 2, 3, and 4 weeks of age as compared to control mice, and at 4 weeks as compared to PDYNWT mice (Fig. 5B). These data suggest that PDYNR212W PCs produce less GABA, which could be a reaction to the lost input from basket cells and/or CFs, possibly to normalise their impact on cerebellar nuclei neurons.

Changes in NMDA receptor subunits suggest altered Ca2+ signalling

Loss of vGlut2 has been shown to impair glutamatergic transmission (31), and we have previously demonstrated changes in NMDA receptor Grin2a subunit expression in PDYNR212W mice at 3 months of age (13). Therefore, we determined the mRNA expression levels of the Grin2 NMDA receptor subunits in the vermis of 2-, 3-, 4-, and 8-week-old PDYNWT, PDYNR212W and control mice. The expression levels of these subunits were relatively low and no significant alterations were detected in PDYNR212W mice (Additional File 2A). We also determined the mRNA expression levels of the remaining NMDA receptors subunits Grin1, Grin3a and -b. No alterations in Grin1, Grin3a and -b subunit expression were observed in 2-, 3-, and 8-week-old PDYNR212W mice (Fig. 6A). However, the expression of Grin1 was significantly increased at 4 weeks of age in PDYNR212W mice as compared to control and PDYNWT mice (Fig. 6A), while the inhibitory subunits Grin3a and -b displayed significantly decreased expression (Fig. 6A). Since Grin1 is the essential subunit for surface expression of NMDA receptors (Low and Wee, 2010), it is possible that at 4 weeks of age, PDYNR212W mice have increased surface expression of NMDA receptors. Taken together, in 4-week-old PDYNR212W mice, when NMDA receptors are expressed at PF- and CF-PC synapses in wild type mice (Watanabe and Kano, 2011), the expression of crucial NMDA receptor subunits is altered, potentially causing altered Ca2+ signalling.
VGCC dysregulation may be evidence of a compensatory mechanism for PDYN-R212W expression

As PDYN_{R212W} mice display alterations in the development of crucial PC inputs and NMDA receptor subunit expression is affected, we hypothesized that the expression of voltage-gated Ca²⁺ channels (VGCCs) may also be affected. Cav2.1, a VGCC encoded by Cacna1a, the SCA6 disease gene (32), is crucial for proper CF maturation and regulates the expression of several genes involved in PC development (22, 33–35). Based on these prior findings, dysregulation of Cacna1a could potentially underlie the observed CF and PC deficits (24, 25), and ultimately ataxia (24, 36–39). To investigate whether PDYN^{R212W} mice exhibit altered Ca²⁺ signalling via VGCCs, we assessed the mRNA expression levels of the cerebellar VGCC subunits Cacna1a and −c, Cacna2d2 and − 3, Cacnb2 and − 4, and Cacng2 and − 7 in the vermis of PDYN^{WT}, PDYN^{R212W}, and control mice. The mRNA level of Cacna1a was significantly increased at 3, 4, and 8 weeks of age in PDYN^{R212W} mice (Fig. 6B). A similar effect was observed for Cacna1c; its expression was increased at 2, 4, and 8 weeks of age in PDYN^{R212W} mice (Fig. 6B). At 8 weeks of age, the expression of both Cacna2d2 and − 3 was upregulated in PDYN^{R212W} vermis (Fig. 6B), which was also observed for Cacnb2 and − 4 (Fig. 6C). Additionally, Cacnb2 expression was also increased at 2 weeks of age, and Cacnb4 at 4 weeks of age (Fig. 6C). As these last four subunits are auxiliary subunits, regulating the function of Cacna1a and Cacna1c, the observed increases could be a response to the increased Cacna1a and Cacna1c mRNA levels. Cacng2 and Cacng7 mRNA expression was increased at 8 and 4 weeks of age, respectively (Fig. 6C). Since γ2 and γ7 primarily regulate trafficking, localization and biophysical properties of AMPA receptors (Buraei and Yang, 2010; Yamazaki et al., 2015), we also studied the mRNA levels of Gria1-4. However, we found no correlation with the expression levels of Cacng2 and Cacng7 (Additional file 2B). These data demonstrate that Cav2.1, a key player in CF maturation, is markedly upregulated in PDYN^{R212W} vermis around the time of CF maturation. We therefore suggest that dysregulated expression of crucial VGCCs and their auxiliary subunits contributes to the CF maturation deficits and loss of CF-PC connectivity in PDYN^{R212W} cerebella.

Conclusions

Our data are the first to demonstrate a neurodevelopmental role for PDYN, as we observed cerebellar developmental deficits in PDYN^{R212W} mice that include loss of GABAergic connectivity, disrupted CF development, increased PF-PC connectivity, and dysregulation of key VGCC subunits that are involved in CF maturation between 2 and 8 weeks of age. Moreover, the loss of CF-PC synapses persisted up to 12 months of age, and likely contributes to PC degeneration (13). The alterations in the maturation and number of CF-PC synapses, the number of BC-PC synapses, and the expression of vGlut2 and vGlut1 support our hypothesis that developmental deficits in synaptic wiring contribute to motor dysfunction and ataxia. While one study found development of the brain was not affected in Pdyn knockdown mice, the cerebellum was not studied in detail (40). Our evidence leads us to propose that PDYN has different
functions in the cerebrum versus the cerebellum, and that, in the cerebellum, it plays key roles in development.

BCs innervate the PC soma and form the pinceau on the PC initial axonal segment, inhibiting PC firing. A recent publication demonstrated that the loss of stellate and basket cell GABAergic transmission does not affect PC dendritic tree development and maintenance (41). However, Brown et al. also demonstrated that stellate and basket cells cooperate to establish the correct rate and pattern of simple and complex spike firing of PCs in vivo, and that loss of BC inhibition increased PC simple spike firing, while it decreased the PC complex firing rate (41). The loss of vGAT+ somatic synapses in PDYNR212W vermis suggests that SCA23 PCs suffer from reduced inhibition leading to changes in simple and complex spike firing rates as well as reduced synchronous firing of PC zones, altering cerebellar output and leading to motor function and ataxia (42–44). The observed loss of GAD67 likely contributes to this altered cerebellar output. Notably, reduced levels of GAD67 mRNA in PCs have been observed in the cerebella of people with autism (45). Additionally, BC-PC synapse formation is critical for early phase CF synapse elimination, as BC collaterals take over PC somatic spines from CFs (35). Therefore, the absence of BC-PC synapses may underlie the observed delay in early CF synapse elimination. Nakayama et al. have shown that diazepam, a GABA_A receptor sensitizer, can restore impaired CF maturation due to altered GABAergic transmission (46). Hence, we put forward the malformation of GABAergic innervation as a possible therapeutic target for SCA23.

Loss of vGlut2 in the vermis of PDYNR212W mice supports a developmental deficit in the cerebellum, in line with findings showing developmental roles for vGlut2 in the hippocampus (31). A vGlut2 conditional knockout mouse displayed increased open-field exploratory behavior and impaired spatial learning and memory, a phenotype similar to that of NMDA-R knockdown mice (31, 47). Deficiency of vGlut2 led to reductions of evoked glutamate transmission, neurotransmitter release probability, and long-term depression at hippocampal CA3-CA1 synapses during postnatal development. This led to a loss of arborization of the dendritic tree and reductions in the number of dendritic spines in adult mice, suggesting widespread alterations in synaptic connectivity (31). We hypothesize that vGlut2 serves a similar purpose in the cerebellum, with deficiency leading to reduced glutamatergic transmission and, consequently, disturbed Ca^{2+} signaling and malformation of PC dendrites. This hypothesis is strengthened by our previous observation that cultured neurons of PDYNR212W cerebella show reduced neuronal excitability (13), which could be caused by the loss of vGlut2 expression.

PDYNR212W mice displayed elevated vGlut1 levels at 2, 3, and 4 weeks of age, which suggests that PFs in these animals extended their innervation territory on PCs to include more proximal dendrites. The timing of increased vGlut1 expression coincides with late phase CF synapse elimination, a process critically dependent on normal PF-PC synapse formation (35), suggesting that aberrant PF-PC synapse formation supports the malformation of CFs. A cause of aberrant PF-PC synapse formation could be the increased expression levels of Cacna1a, which encodes Cav2.1, at 3, 4, and 8 weeks of age. Increased expression of this subunit may affect heterosynaptic competition between PFs and CFs and distal extension of CFs.
(22). However, as Cacna1a is elevated from 3 weeks of age, the increase in vGlut1 at 2 weeks of age could be caused by the loss of vGlut2 at that time. Cacna1a dysregulation may also disrupt CF maturation, distal CF extension, and Ca$^{2+}$ signaling, as Cav2.1 plays crucial roles in these processes (22, 48, 49). Moreover, the C-terminal tail of the channel functions as a transcription factor, coordinating the expression of genes involved in PC development (34). PC loss has not been observed until 12 months of age (13), therefore altered cerebellar development may lead to PC dysfunction before 12 months of age. Increased expression of Cacna1c, encoding Cav1.2, very likely contributes to the SCA23 pathology, as it plays significant roles in neuronal activity and survival, dendritic development, synaptic plasticity, memory formation, and learning (50–54). Additionally, an intronic variant in CACNA1C was recently proposed to be disease-causing in a Chinese family with autosomal dominant cerebellar ataxia (55), suggesting a role for Cacna1c in the pathology of ataxias. Furthermore, as a loss of vGlut2 could lead to reduced glutamatergic transmission, and consequently, disturbed Ca$^{2+}$ signaling, the increases in expression of these VGCCs and their auxiliary subunits could be a compensatory mechanism for these changes. Altered expression of other Ca$^{2+}$ channel subunits including Cacng2, Cacng7, Grin1, Grin3a, and Grin3b further hint towards dysregulation of Ca$^{2+}$ signalling, however, due to the absence of consistent changes, we cannot draw strong conclusions from these data.

It has long been established that the loss of CF input causes PCs to malfunction, as CFs play a dual role in cerebellar functioning; 1) control of synaptic plasticity at dendritic PC synapses, and 2) generating the distinct complex spike output in the PC axon, and motor learning and performance crucially depend on them (Smeets and Verbeek, 2016). Additionally, CF deficits have been observed in other SCA types as well, including SCA1 (26, 28, 29, 56). The arrested development of CFs in PDYNR212W mice therefore likely underlies the ataxic phenotype (13). Interestingly, while the SCA23 pathology may mirror that of SCA1 in adulthood, the underlying developmental deficits oppose each other. In SCA1, Edamakanti et al. found hyperproliferation of stem cells that preferentially differentiated into GABAergic interneurons, leading to increased GABAergic interneuron connectivity and non-cell autonomous disruption of PC function (30). As discussed above, there could be several explanations as to why CFs develop abnormally in SCA23. We believe that the most likely culprit is the loss of GABAergic connectivity that should be provided to PCs by the BCs, as this is the earliest disruption in normal cerebellar development that we have detected. How expression of PDYN-R212W leads to dysfunction of BCs should be studied further.

In conclusion, the early loss of BC-PC and, consequently, CF-PC synapses plays a crucial role in the neuropathology of SCA23. We previously hypothesized that an increase in intracellular Ca$^{2+}$ underlies the SCA23 pathology (13); with the evidence presented here, it now appears more likely that the disturbance in Ca$^{2+}$ signalling lies on the other end of the scale, with decreased intracellular Ca$^{2+}$ disrupting normal cellular functioning. This fits the SCA23 pathology more closely, as increased intracellular Ca$^{2+}$ would lead to PC loss more quickly than previously observed (13). We demonstrate a developmental role for PDYN in the cerebellum and show that developmental abnormalities in neuronal wiring and disturbance in the PC simple/complex spike balance underlie SCA23. In addition, we propose that diazepam should
be explored as a potential therapy, as it could sensitize remaining GABA_A receptors and thereby alleviate SCA23 symptoms.

Abbreviations

AMPA = α-amino-hydroxy-5-methylisoxazole-4-propionate, BC = basket cell, CF = climbing fibre, Dyn = Dynorphin, GAD67 = glutamate decarboxylase 67, NMDA = N-methyl-D-aspartate, PC = Purkinje cell, PDYN = prodynorphin, PF = parallel fibre, SCA = spinocerebellar ataxia, vGAT = vesicular GABA transporter, VGCC = voltage-gated calcium channel, vGlut = vesicular glutamate transporter

Declarations

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.

Data availability

The data from this study will be made available upon request.

Funding

This work was supported by a Rosalind Franklin Fellowship from the University of Groningen, the Jan Kornelis de Cock-Stichting, the U4 PhD program of the Behavioral and Cognitive Neuroscience graduate school of the University of Groningen, and the Max Planck Society. Part of this work was performed at the University Medical Centre Groningen Microscopy and Imaging Centre, which is sponsored by the Netherlands Organization for Scientific Research (NWO grants 40-00506-98-9021 and 175-010-2009-023). None of the funding bodies were involved in the collection, analysis, and interpretation of data, nor in the writing of the manuscript.

Authors’ contributions

CJLMS and DSV designed the project. CJLMS collected samples and performed immunohistochemistry, Western blotting, and qPCR experiments and analysis, and wrote the manuscript. KYM performed Western blotting experiments and analysis and immunohistochemistry analysis. CJLMS, KYM, SEF, and DSV interpreted data and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
We would like to thank Harm H Kampinga for critically reading this manuscript, and Jackie Senior and Kate Mc Intyre for editing this manuscript.

Additional files

The additional files includes one figure and one table that can be found online.

References

1. Verbeek DS, van de Warrenburg BP, Wesseling P, Pearson PL, Kremer HP, Sinke RJ. Mapping of the SCA23 locus involved in autosomal dominant cerebellar ataxia to chromosome region 20p13-12.3. Brain: a journal of neurology. 2004 Nov;127(Pt 11):2551–7.

2. Bakalkin G, Watanabe H, Jezierska J, Depoorter C, Verschuuren-Bemelmans C, Bazov I, et al. Prodynorphin mutations cause the neurodegenerative disorder spinocerebellar ataxia type 23. American journal of human genetics. 2010 Nov 12;87(5):593–603.

3. Hauser KF, Aldrich JV, Anderson KJ, Bakalkin G, Christie MJ, Hall ED, et al. Pathobiology of dynorphins in trauma and disease. Frontiers in bioscience: a journal and virtual library. Jan. 2005;1:10:216–35.

4. Altier C, Zamponi GW. Opioid, cheating on its receptors, exacerbates pain. Nature neuroscience. 2006 Dec;9(12):1465–7.

5. Schwarzer C. 30 Years of Dynorphins–New Insights on Their Functions in Neuropsychiatric Diseases. Pharmacology & therapeutics. 2009 Sep;123(3):353–70.

6. Chavkin C. Dynorphin–still an extraordinarily potent opioid peptide. Mol Pharmacol. 2013 Apr;83(4):729–36.

7. Herman BH, Leslie F, Goldstein A. Behavioral effects and in vivo degradation of intraventricularly administered dynorphin-(1–13) and D-Ala2-dynorphin-(1–11) in rats. Life Sci. 1980 Sep;27(10):883–92.

8. Walker JM, Moises HC, Coy DH, Baldrighi G, Akil H. Nonopiate effects of dynorphin and des-Tyr-dynorphin. Science (New York). 1982 Dec 10;218(4577):pp. 1136–8.

9. Tan-No K, Cebers G, Yakovleva T, Hoon Goh B, Gileva I, Reznikov K, et al. Cytotoxic effects of dynorphins through nonopioid intracellular mechanisms. Experimental cell research. 2001 Sep 10;269(1):54–63.

10. Singh IN, Goody RJ, Goebel SM, Martin KM, Knapp PE, Marinova Z, et al. Dynorphin A (1–17) induces apoptosis in striatal neurons in vitro through α-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor-mediated cytochrome C release and caspase-3 activation. Neuroscience. 2003 Jan;122(4):1013–23.

11. Sherwood TW, Askwith CC. Dynorphin opioid peptides enhance acid-sensing ion channel 1a activity and acidosis-induced neuronal death. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2009 Nov;11(45):14371–80. 29.
12. Smeets CJLM, Zmorzyńska J, Melo MN, Stargardt A, Dooley C, Bakalkin G, et al. Altered secondary structure of Dynorphin A associates with loss of opioid signalling and NMDA-mediated excitotoxicity in SCA23. Human Molecular Genetics. 2016 Jun 3;6(13):ddw130.

13. Smeets CJLM, Jezierska J, Watanabe H, Duarri A, Fokkens MR, Meijer M, et al. Elevated mutant dynorphin A causes Purkinje cell loss and motor dysfunction in spinocerebellar ataxia type 23. Brain. 2015 Sep;138(9):2537–52.

14. Ito M. Cerebellar control of the vestibulo-ocular reflex—around the flocculus hypothesis. Annu Rev Neurosci. 1982 Jan;5:275–96.

15. Hansel C, Linden DJ, D’Angelo E. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nature neuroscience. 2001;4(5):467–75.

16. Hirano T. Long-term depression and other synaptic plasticity in the cerebellum. Proceedings of the Japan Academy, Series B. 2013;89(5):183–95.

17. Wang W, Nakadate K, Masugi-Tokita M, Shutoh F, Aziz W, Tarusawa E, et al. Distinct cerebellar engrams in short-term and long-term motor learning. Proceedings of the National Academy of Sciences of the United States of America. 2013;1–6.

18. 10.1007/978-3-662-13147-3
Eccles JC, Ito M, Szentágothai J. The Cerebellum as a Neuronal Machine [Internet]. Berlin, Heidelberg: Springer Berlin Heidelberg; 1967 [cited 2015 Jun 11]. Available from: http://link.springer.com/10.1007/978-3-662-13147-3.

19. Ito M. Cerebellar circuitry as a neuronal machine. Progress in neurobiology. 2006 Jan;78(3–5):272–303.

20. Wang SS, Denk W, Häusser M. Coincidence detection in single dendritic spines mediated by calcium release. Nature neuroscience. 2000 Dec;3(12):1266–73.

21. Linden DJ. Neuroscience. From molecules to memory in the cerebellum. Science (New York. 2003 Sep 19;301(5640):pp. 1682–5.

22. Miyazaki T, Hashimoto K, Shin H-S, Kano M, Watanabe M. P/Q-type Ca2+ channel alpha1A regulates synaptic competition on developing cerebellar Purkinje cells. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2004 Mar;18(7):1734–43. 24.

23. Miyazaki T, Yamasaki M, Takeuchi T, Sakimura K, Mishina M, Watanabe M. Ablation of glutamate receptor GluRδ2 in adult Purkinje cells causes multiple innervation of climbing fibers by inducing aberrant invasion to parallel fiber innervation territory. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010 Nov 10;30(45):15196–209.

24. Leitch B, Shevtsova O, Guévremont D, Williams J. Loss of calcium channels in the cerebellum of the ataxic and epileptic stargazer mutant mouse. Brain research. 2009 Jul 7;1279:156–67.

25. Oda S-I, Lee KJ, Arii T, Imoto K, Hyun B-H, Park IS, et al. Differential regulation of Purkinje cell dendritic spines in rolling mouse Nagoya (tg/tg), P/Q type calcium channel (α1(A)/Ca(v)2.1) mutant. Anatomy & cell biology. 2010 Sep;43(3):211–7.
26. Duvick L, Barnes J, Ebner B, Agrawal S, Andresen M, Lim J, et al. SCA1-like disease in mice expressing wild-type ataxin-1 with a serine to aspartic acid replacement at residue 776. Neuron. 2010 Sep 23;67(6):929–35.

27. Perkins EM, Clarkson YL, Sabatier N, Longhurst DM, Millward CP, Jack J, et al. Loss of beta-III spectrin leads to Purkinje cell dysfunction recapitulating the behavior and neuropathology of spinocerebellar ataxia type 5 in humans. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2010 Apr 7;30(14):4857–67.

28. Ebner B, Ingram M, Barnes J, Duvick L, Frisch JL, Clark HB, et al. Purkinje cell ataxin-1 modulates climbing fiber synaptic input in developing and adult mouse cerebellum. Journal of Neuroscience. 2013 Mar 27;33(13):5806–20.

29. Furrer SA, Waldherr SM, Mohanachandran MS, Baughn TD, Nguyen K-T, Sopher BL, et al. Reduction of mutant ataxin-7 expression restores motor function and prevents cerebellar synaptic reorganization in a conditional mouse model of SCA7. Human molecular genetics. 2013 Mar 1;22(5):890–903.

30. Edamakanti CR, Do J, Didonna A, Martina M, Opal P. Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1. J Clin Invest. 2018 Jun 1;128(6):2252–65.

31. He H, Mahnke AH, Doyle S, Fan N, Wang C-C, Hall BJ, et al. Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2012 Nov 7;32(45):15886–901.

32. Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet. 1997 Jan;15(1):62–9.

33. Nakayama H, Miyazaki T, Kitamura K, Hashimoto K, Yanagawa Y, Obata K, et al. GABAergic Inhibition Regulates Developmental Synapse Elimination in the Cerebellum. Neuron. 2012 Apr 26;74(2):384–96.

34. Du X, Wang J, Zhu H, Rinaldo L, Lamar K-M, Palmenberg AC, et al. Second cistron in CACNA1A gene encodes a transcription factor mediating cerebellar development and SCA6. Cell. 2013 Jul;3(1):118–33. 154(.

35. Kano M, Watanabe T, Uesaka N, Watanabe M. Multiple Phases of Climbing Fiber Synapse Elimination in the Developing Cerebellum. Cerebellum. 2018 Jul 16;1–13.

36. Fletcher CF, Lutz CM, O'Sullivan TN, Shaughnessy JD, Hawkes R, Frankel WN, et al. Absence Epilepsy in Tottering Mutant Mice Is Associated with Calcium Channel Defects. Cell. 1996 Nov 15;87(4):607–17.

37. Burgess DL, Jones JM, Meisler MH, Noebels JL. Mutation of the Ca2 + Channel β Subunit Gene Cchb4 Is Associated with Ataxia and Seizures in the Lethargic (lh) Mouse. Cell. 1997 Feb 7;88(3):385–92.

38. Letts VA, Felix R, Biddlecome GH, Arikath J, Mahaffey CL, Valenzuela A, et al. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet. 1998 Aug;19(4):340–7.
39. Barclay J, Balaguero N, Mione M, Ackerman SL, Letts VA, Brodbeck J, et al. Ducky Mouse Phenotype of Epilepsy and Ataxia Is Associated with Mutations in the Cacna2d2 Gene and Decreased Calcium Channel Current in Cerebellar Purkinje Cells. J Neurosci. 2001 Aug;15(16):6095–104.

40. Ménard C, Tse YC, Cavanagh C, Chabot J-G, Herzog H, Schwarzer C, et al. Knockdown of prodynorphin gene prevents cognitive decline, reduces anxiety, and rescues loss of group 1 metabotropic glutamate receptor function in aging. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2013 Jul;31(31):12792–804.

41. Brown AM, Arancillo M, Lin T, Catt DR, Zhou J, Lackey EP, et al. Molecular layer interneurons shape the spike activity of cerebellar Purkinje cells. Sci Rep [Internet]. 2019 Feb 11 [cited 2020 Mar 17];9. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6370775/.

42. Heiney SA, Kim J, Augustine GJ, Medina JF. Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity. J Neurosci. 2014 Feb;5(6):2321–30.

43. Lee KH, Mathews PJ, Reeves AMB, Choe KY, Jami SA, Serrano RE, et al. Circuit Mechanisms Underlying Motor Memory Formation in the Cerebellum. Neuron. 2015 Apr 22;86(2):529–40.

44. Ramirez JE, Stell BM. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells. Cell Reports. 2016 Dec;17(12):3125–32.

45. Yip J, Soghomonian J-J, Blatt GJ. Decreased GAD67 mRNA levels in cerebellar Purkinje cells in autism: pathophysiological implications. Acta Neuropathol. 2007 May;113(5):559–68.

46. Nakayama H, Abe M, Morimoto C, Iida T, Okabe S, Sakimura K, et al. Microglia permit climbing fiber elimination by promoting GABAergic inhibition in the developing cerebellum. Nature Communications [Internet]. 2018 Dec [cited 2018 Jul 24];9(1). Available from: http://www.nature.com/articles/s41467-018-05100-z.

47. Sakimura K, Kutsuwada T, Ito I, Manabe T, Takayama C, Kushiya E, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature. 1995 Jan 12;373(6510):151–5.

48. Catterall WA. Structure and regulation of voltage-gated Ca2 + channels. Annual review of cell and developmental biology. 2000 Jan 28;16:521–55.

49. Watanabe M, Kano M. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur J Neurosci. 2011 Nov;34(10):1697–710.

50. Moosmang S, Lenhardt P, Haider N, Hofmann F, Wegener JW. Mouse models to study L-type calcium channel function. Pharmacology therapeutics. 2005 Jun;106(3):347–55.

51. Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Müller J, et al. Role of hippocampal Cav1.2 Ca2 + channels in NMDA receptor-independent synaptic plasticity and spatial memory. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2005 Oct;26(43):9883–92.

52. Striessnig J, Koschak A, Sinnegger-Brauns MJ, Hetzenauer A, Nguyen NK, Busquet P, et al. Role of voltage-gated L-type Ca2 + channel isoforms for brain function. Biochemical Society transactions. 2006 Nov 1;34(Pt 5):903–9.
53. White JA, McKinney BC, John MC, Powers PA, Kamp TJ, Murphy GG. Conditional forebrain deletion of the L-type calcium channel Ca V 1.2 disrupts remote spatial memories in mice. Learning & memory (Cold Spring Harbor, NY). 2008 Jan;15(1):1–5.

54. Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Progress in Neurobiology. 2012 Oct;99(1):1–14.

55. Chen J, Sun Y, Liu X, Li J. Identification of a novel mutation in the CACNA1C gene in a Chinese family with autosomal dominant cerebellar ataxia. BMC Neurology. 2019 Jul;10(1):157.

56. Shuvaev AN, Horiuchi H, Seki T, Goenawan H, Irie T, Iizuka A, et al. Mutant PKCγ in spinocerebellar ataxia type 14 disrupts synapse elimination and long-term depression in Purkinje cells in vivo. The Journal of neuroscience: the official journal of the Society for Neuroscience. 2011 Oct 5;31(40):14324–34. Altier C, Zamponi GW. Opioid, cheating on its receptors, exacerbates pain. Nature neuroscience 2006; 9: 1465–7.

Supplementary File Caption

Cerebellar developmental abnormalities underlie SCA23. Under normal conditions, cerebellar development progresses in highly regulated, clear phases (left panels). In SCA23 cerebella, we have observed several disruptions of cerebellar development. First, basket cells (in green) form fewer somatic synapses in SCA23 cerebella. Second, climbing fibres (CFs, in pink) display a delay in CF synapse elimination, as well as a failure to reach terminal height to innervate the proximal Purkinje cell (PC) dendrites. These deficits likely lead to the third disruption, an increase in parallel fibre–PC synapses (in blue). These developmental abnormalities, combined with our other findings, very likely lead to altered Ca2+ signalling and, consequently, impaired motor output and ataxia.

Figures
Figure 1

A 3 weeks

	Calb	vGAT	Merge
control	![Control](image)	![vGAT](image)	![Merge](image)
PDYNWT	![PDYNWT](image)	![vGAT](image)	![Merge](image)
PDYNT25N	![PDYNT25N](image)	![vGAT](image)	![Merge](image)

B

![Graph showing changes in vGAT puncta and PC soma relative to 3w control](image)

C

![Graph showing changes in vGAT puncta and PC soma relative to 3w control](image)
Figure 1

GABAergic innervation of Purkinje cells is reduced in PDYNR212W mice. GABAergic presynaptic innervation of Purkinje cell (PC) soma in the vermis was determined by vGAT and calbindin immunostaining, respectively. (A) Representative fluorescence images of vermal lobule IV/V of control, PDYNWT and PDYNR212W mice at 3 weeks of age stained with anti-calbindin antibody and anti-vGAT antibody. Scale bar = 20 μm. (B-C) Quantification of vGAT vesicles on PC somas, relative to control mice of 3 weeks of age, in vermal lobules I, II, III, IV/V, VI, IX and X of control, PDYNWT and PDYNR212W mice of 2, 3, 4, and 8 weeks of age (n = 5 cells per section per lobe [minimum 20 cells] per genotype). PDYNR212W mice show reduced amounts of somatic vGAT vesicles early in development. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
Climbing fibre synapse elimination is impaired in PDYNR212W mice. The presynaptic innervation of Purkinje cells (PC) by climbing fibres (CF) in the vermis during development was assessed by calbindin and vGlut2 immunostaining, respectively (A) Representative fluorescence images of vermal lobule X of control, PDYNWT and PDYNR212W mice at 2 and 3 weeks of age stained with anti-calbindin antibody.
and anti-vGlut2 antibody. Scale bar = 20 μm (B-D) Quantification of the vGlut2 puncta per PC soma in vermal lobules II, III, IV/V, VI, IX and X of control (B), PDYNWT (C), and PDYNR212W (D) mice at 2, 3, 4 and 8 weeks of age (n = 5 cells per section per lobule, minimum 20 cells). Control and PDYNWT mice show a marked reduction of vGlut2 synapses over time in all lobules. In contrast, PDYNR212W mice display a delay in reduction of vGlut2 synapses over time in all lobules except lobule X, which shows no decline of vGlut2 synapses (n = 5 cells per section per lobule [minimum 20 cells] per genotype). * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
Figure 3

A

3 weeks

Control	PDYNWT	PDYN^{R212W}
Calb	vGlut2	Merge
Calb	vGlut2	Merge
Calb	vGlut2	Merge

B

![Graph showing VGlut2/calbindin ratio over time for different conditions.]

C

![Graph showing another set of data points for different conditions.]

Page 21/26
PDYNR212W mice show developmental climbing fibre deficits. The distribution of climbing fibres (CF) over the Purkinje cell (PC) dendritic tree in the vermis was assessed by vGlut2 and calbindin immunostaining, respectively. (A) Representative confocal images of vermal lobule IV/V of control, PDYNWT and PDYNR212W mice at 3 weeks of age stained with anti-calbindin antibody and anti-vGlut2 antibody. (B-C) Quantification of the relative height of vGlut2 compared to calbindin staining in vermal lobules I, II, III, IV/V, VI, IX, and X of control, PDYNWT and PDYNR212W mice of 2 and 3 weeks of age (n = 4–7, per genotype). At 2 weeks of age, PDYNR212W mice show significant loss of CF-PC synapses in all lobules except lobule X. At 3 weeks of age, lobule X also displayed reduced CF-PC synapses in PDYNR212W mice. All lobules showed reduced CF-PC synapses in PDYNR212W mice at 4 weeks of age, while at 8 weeks of age, significance in lobule IX was lost. * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001
Figure 4

Altered vGlut1 protein levels indicate developmental abnormalities in the vermis of PDYNR212W mice. The left panel shows representative immunoblots of control, PDYNWT, and PDYNR212W vermal protein lysates, stained for vGlut1 and actin. The right panel shows quantification of these immunoblots using ImageLab software. vGlut1 protein levels were increased in PDYNR212W at 2, 3, and 4 weeks compared with control mice and at 2, 4, and 8 weeks of age compared with PDYNWT mice (n = 3 per genotype). # 0.10 > p > 0.05, * p < 0.05, ** p < 0.01
Figure 5

PDYNR212W mice show reduced GABAergic transmission. The GABAergic inhibitory transmission by interneurons in the vermis was assessed with GAD67 immunostaining. (A) Representative fluorescence images of vermal lobule IV/V of control, PDYNWT and PDYNR212W mice at 3 weeks of age stained with anti-GAD67 antibody. Scale bar = 20 μm (B) Quantification of the relative fluorescence intensity of GAD67 in the total vermis of control, PDYNWT and PDYNR212W mice of 2, 3, 4 and 8 weeks of age (n = 20-30 images per genotype, minimum 24 measurements). PDYNR212W vermis shows reduced GAD67 fluorescence intensity as compared to control mice at 2, 3, and 4 weeks of age. * p < 0.05, ** p < 0.01, and **** p < 0.0001
Altered expression of Ca2+ channel subunits suggests a compensatory mechanism in PDYNR212W mice. Quantification of RT-PCR data from 2, 3, 4, and 8-week-old cerebella from control, PDYNWT and PDYNR212W mice (n = 6, per genotype). (A) At 4 weeks of age, Grin1 showed elevated expression in PDYNR212W as compared to PDYNWT and control mice. Simultaneously, Grin3a and –b expression was significantly reduced in these mice as compared to control and PDYNWT mice, respectively. For Grin3a, expression was increased in PDYNWT compared with control and PDYNR212W mice, but this was likely due to expression of PDYN-WT. (B) Cacna1a expression was elevated at 3, 4, and 8 weeks of age in PDYNR212W as compared to control and PDYNWT mice, while Cacna1c expression was increased at 2, 4, and 8 weeks of age. In 3, 4, and 8-week-old PDYNR212W mice, Cacna2d2 was elevated, and at 8 weeks of age, Cacna2a3 expression was elevated in PDYNR212W mice as well compared with control and PDYNWT mice. (C) Cacnb2 expression was increased at 2 and 8 weeks of age in PDYNR212W mice compared to both control and PDYNWT mice, while Cacnb4 expression was enhanced at 4 weeks of age. For Cacng2 and Cacng7, expression was elevated at 8 and 4 weeks of age, respectively. # 0.10 > p > 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- AddFile2.tif
- AddFile1.docx