Measuring the online tax service system with development of success models

Beki Subaeki¹, Aedah Binti Abd Rahman², Syopiansyah Jaya Putra³, Khaerul Manaf⁴ and Faiz M Kaffah⁵

¹Department of Informatics Engineering, Sangga Buana YPKP University Bandung, Indonesia
²Department of Information Communication Technology AEU, Malaysia
³Department of Information System, Syarif Hidayatullah State Islamic University Jakarta, Indonesia
⁴Department of Information System, Sangga Buana YPKP University Bandung, Indonesia
⁵Department of Information System, Informatics and Business Indonesia University Bandung, Indonesia

¹beki.subaeki@usbypkp.ac.id, ²aedah.abdrahman@aeu.edu.my, ³syopian@uinjkt.ac.id, ⁴khaerul.manaf@usbypkp.ac.id, ⁵faizmk@aeu.ac.id

Abstract. Based on the regulations of the Directorate General of Taxation 243/PMK.03/2014 related to the modernization and simplification of tax administration, the reporting of the tax format can no longer be submitted to the tax office. In other words, the taxpayer must do tax reporting online. Thus must understand how the use of online reporting system. Because not a few users of the system feel difficult in its use. The purpose of this study is to build models in the measurement of online tax services. The model developed is the model of Delone and Mclean where this model is very suitable to measure the success of the system. There are 8 variables and 44 Indicators used to measure the system. The indicator is divided into three parts, the input consists of culture, tax content. The process consists of information quality, system quality, service quality, trust, user satisfaction. The output consists of tax system success. Then from each indicator is made a question with the aim to assess the success of the system used.

Keyword: Delone and McLean, Success model, Tax online, Variable, Indicator.

1. Introduction

To achieve the target of inclusion in national income tax. This is done as a form of evaluation of tax targets that have a thigh gap. This is a strategy in information systems in encouraging business units because it uses a system that is used to improve or improve an existing system. At present, the information system is very important because its function is not only as an optimization of an institution that functions as a communicator. To support these matters, the government will include several applications in the e-registration process such as e-SPT. e-SPT is a form of reporting carried out by taxpayers, both individuals and entities. But in its application, the system used as a tax reporting tool is still a bug. So in terms of users, there are still many who are reluctant to use the system, because of the complicated, complicated and difficult taxes. And this is the basis for how the implementation of the system does not run smoothly. This study aims to determine the implementation of online tax by using the development of the Delone and McLean model as a measuring tool in the effort to implement the
online tax. This development variable is the adoption, combination and adaptation. In order to be used as materials for the online tax information money system. Based on the introduction at the time of making a question, which was carried out as a guide in the implementation of this research:

Q1. How to understand the relationship between the technology readiness constructs towards the IS success ones?

Q2. How to combine the technology readiness model within the IS success model in the context of IS integration performance?

2. Literature Review

The information system becomes a threat that is vital for the organization, it is related to the business processes of the organization. Why is that? Because the information system becomes a non-negotiable need because it will bring benefits to the owner. The problem is how successful is the use of IS for the organization? because there are not a few investments incurred in terms of IS. Of course, it will benefit the organization if the implementation of IS successful, but it will bring huge losses if the implementation of IS fails. One thing that will be felt by the organization if the failure of IS is financial loss then the continuity of the business process will also be stalled [1]. The failure of the application of information systems can indeed occur by several things but the point is where the system applied does not meet the expectations of users or the inability to create a working or functioning system [2, 3]. Some categories of failures in the application of IS are divided into four categories: processes, people, products and technology [3, 4]. Based on previous research [5, 6] the most important thing to assess the success criteria for IS can be seen from the efficiency, effectiveness, user satisfaction, fulfilment of needs. [7] explained that to assess the success of the application of IS information systems is to create a model and one of the results of the study stated that the success rate of IS projects was influenced by the performance of project management. In the previous study [8] stated that to measure success was by measuring variables with the Delone and McLean model approach [9]. The results show that the influence of information quality, system quality, and service quality affect the benefits received by users, in this case, the taxpayer.

List of Model Theories	References
Information System Theory	[1-4, 10-18]
IS Success Model	[5-7, 19-22]
Model Development	[23-28]
Tax System Success	[8]

3. Research Methodology

The development model in the application of IS, the researchers carried out evolution as a reference, namely: The first stage (S1) is a literature study, namely by doing successful learning with a successful model, model development, taxation system, information system. The second stage (S2) is the stage of assumption, adoption, combination and model adaptation. The third stage (S3) is the model making the stage of the development of an existing model. At this stage, the researcher added several variables based on assumptions and in accordance with the case studied. The fourth stage (S4) is a report that is being poured in the form of a model development report.
4. Result and Discuss

Model development is based on previous research [5, 7, 9, 12, 13, 21][29] where the development of this model as a proposal is the Tax System Success (TSS). The results of the development of the model are the results of adoption, combination and adaptation. Figure 1 is a model development of the Delone and McLean model [9] where the variability used is system quality (SYQ), information quality (INQ), service quality (SVQ), user satisfaction (USF), then variables added based on adoption, combination and adaptation namely culture, tax content (TXC), trust (TRS), tax system success (TSS). So the number of proposals for developing models is eight variables.

Figure 2. The Proposed IS Success Model

Based on previous studies [5, 7, 9, 20, 21, 29] the researcher assume to add variable culture [26] and tax content [30] to the input section. For the process part based on the Delone and McLean model is divided into two dimensions, namely the system creation dimension consisting of INQ, SYQ, and SVQ. While the second dimension is a use dimension system consisting of TRS and USF. Then the output part is a successful dimension, namely the tax system success. This section refers to the impact of the performance of the system used or can be said as important as the implementation of the system used for the organization.

The addition of variable culture in this input section is based on previous research that the integrity, needly, trusted, needly future. The author assumes that the addition of variable culture has a very large influence on information systems. Where the classification of cultural quadrants in the organization has an important role in determining the direction of policy in the use of IS. Then the variable tax content contains regulations related to taxes. The result of this modelling is the output of the success of the online tax system and the author assumes that the input variable (CLTR), (TXC) is an IS factor success [5, 6, 21]. Then the variable is demanded to be an indicator based on each variable. Table 2 shows the definition of each variable, table 3 shows the definition of each indicator, and table 4 shows the related questions.

Variable	Definition
CLTR	How to measure cultural relationships against IS usage
TXC	The degree to which online tax reporting will yield positive results.
INQ	The level of consistency of output information is the user's expectations
SYQ	Level to measure IS fermentation qualities that improve on the hardware, software, policy
SVQ	Procedures of IS that provide user requirements
TRS	Level of hope quality issued by users from IS
USF	Level to measure the extent to which the user's trust in the system implementation is used

Table 2. List of Variable [9, 26, 28, 31]
Table 3. List of Indicators [7, 9, 32]

Indicators	Definition
Integrity (CLTR 1)	The level of use of IS together is mutually connected
Needly (CLTR 2)	Level of use of appropriate resources for IS usage
Trusted (CLTR 3)	the cultural level of trust in using IS will bring better change
Needly Future (CLTR 4)	the degree to which IS use in organizations can meet future needs
Functionality (TXC 1)	The degree to which online tax reporting will yield positive results.
Usefulness (TXC 2)	the level of measuring IS activity will have a good impact on users
Efficiency (TXC 3)	The level that IS matches the right content
Effectiveness (TXC 4)	the level that the IS content will bring good results for users

Table 3. List of Indicators Continued [7, 9, 32]

Indicators	Definition
Security (TXC 5)	the level that the contents of IS are free from attacks that cause damage
Timeliness (INQ 1)	Timeliness level in the process of delivery information system
Usefulness (INQ 2)	the level to measure that user believes in using the system
Consistency (INQ 3)	the level of information is as good as the quality and information services
Relevance (INQ 4)	the level of information produced has benefits according to the topic
Accuracy (INQ 5)	Information level is in accordance with data accuracy.
Easy to Use (SYQ 1)	The level of users entering the use of the system
Response Time (SYQ 2)	The level of time generated by the system in executing commands
Flexibility (SYQ 3)	The level of the system to the process changes made by the user
Functionality (SYQ 4)	The level that the system suits the needs of the user
Safety (SYQ 5)	The level of the system against destructive attacks
Responsiveness (SVQ 1)	The level of accuracy of IS in providing services to users
Flexibility (SVQ 2)	The level of IS in relation to the wishes of users
Security (SVQ 3)	Level of IS in the face of attacks that lead to the system
Functionality (SVQ 4)	IS level of activity felt by users in accordance with its function
Extension (SVQ 5)	service levels from IS that exceed the IS's own functionality standards
Ability (TRS 1)	Level to assess the ability of the system
Availability (TRS 2)	Levels for information from IS offered
Privacy (TRS 3)	Level of concern regarding individual rights related to his access rights
Security (TRS 4)	the level of trust that IS is immune to attacks
Efficiency (USF 1)	The level of user satisfaction is related to the output accuracy
Effectiveness (USF 2)	Level of user satisfaction towards planned IS achievement
Flexibility (USF 3)	The level of user satisfaction with IS relating to changes
Enjoyment (USF 4)	The level of comfort received by users from the IS used
Effectiveness (TSS 1)	Levels of IS that relate to the needs of users
Efficiency (TSS 2)	the level of accuracy of the output results.
User Satisfaction (TSS 3)	level of achievement IS helps users in terms of business processes
advantage (TSS 4)	the level of IS usage will benefit the organization

Table 4. List of Questionnaire Statement

Question	Description
(CLTR 1)	The system can be connected easily
(CLTR 2)	the system displays information as needed
(CLTR 3)	system can be trusted
(CLTR 4)	the system can be trusted for future needs
(TXC 1)	system functions in accordance with standards
(TXC 2)	the system can help user needs
(TXC 3)	the system displays contents according to content
(TXC 4)	the system helps the job properly
(TXC 5)	the system is safe from attack
(INQ 1)	display information in a timely manner
(INQ 2) information is useful for users
(INQ 3) the information displayed is consistent
(INQ 4) information displays information according to user needs
(INQ 5) information is displayed accurately
(SYQ 1) the system can be used easily
(SYQ 2) the system can respond quickly
(SYQ 3) the system can make changes from the command entered by calling
(SYQ 4) the system can function according to standards
(SYQ 5) the system can be used safely without interference
(SVQ 1) the system can feedback users related to services
(SVQ 2) the system can make changes related to services performed by users
(SVQ 3) the system can protect against attacks
(SVQ 4) the service system functions correctly
(SVQ 5) the system can provide services that are more than standard
(TRS 1) The system can be trusted for its ability
(TRS 2) the system is trusted to provide reliable information
(TRS 3) the system is believed to be able to store data that cannot be accessed by other
(TRS 4) the system is trusted to be safe from attacks
(USF 1) users are satisfied with the accuracy of the system output
(USF 2) the user is satisfied with the performance given by the system
(USF 3) users are satisfied with the changes provided by the system
(USF 4) the user is satisfied with the convenience provided by the system
(TSS 1) the system can work effectively
(TSS 2) the system can work efficiently
(TSS 3) the system provides user satisfaction
(TSS 4) the system can provide benefits for the organization

Based on the variables, indicators and questions that have been compiled, it can be proposed:
First, develop the above model according to the output process input (IPO) model [5]. Variables based on Delone and McLean models [9] namely SVQ, INQ, SYQ. Then the author adds the variables that result from adoption, combination and adaptation such as previous studies [5, 7, 10, 16]. The addition of these variables is CLTR, TXC.

Both of these variables are then broken into each indicator, then the indicator is broken down again into question questions. The three outputs of the process are the result of developing a model to measure the implementation of the online tax. The modelling results are announcements.

5. Conclusion
Research on information systems is a very interesting issue to study because this topic is very broad. Considering the author assumes that the development model as a mission to measure the success of IS is felt necessary. The results of the model are the results of the adoption, the combination and adaptation of the existing model. The model is based on IPO [5] which consists of 8 variables and 36 indicators. From the results of the development, researchers assume that based on the existing studies, there is an understanding that might be different from the others. Both in a study, method, then different presentation. That is, measurements can be made in subsequent studies related to data validity, process development models or literature studies.

References
1. Xu, X., W. Zhang, and R. Barkhi, IT infrastructure capabilities and IT project success: a development team perspective. Information Technology and Management, 2010. 11(3): p. 123-142.
2. Ewusi-Mensah, K., Software development failures: anatomy of abandoned projects. Vol. Cambridge. 2003: The MIT Press.
3. Dwivedi, Y.K., et al. Research on information systems failures and successes: Status update and future directions. in Information Systems Frontiers. 2015.
4. Nelson, R.R., *IT Project Management: Infamous Failures, Classic Mistakes, and Best Practices*. MIS Quarterly Executive, 2007. 6(2).

5. Subiyakto, A.a. and A.R. Ahlan, *Implementation of Input-Process-Output Model for Measuring Information System Project Success*. Vol. 12. 2014. 4893 – 4899.

6. Ahlan, A.R. and H.T. Sukmana, *An alternative method for determining critical success factors of information system project*. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2014. 12(3): p. 665-674.

7. Subiyakto, A.a., et al., *Measurement of the information system project success of the higher education institutions in Indonesia: a pilot study*. International Journal of Business Information Systems, 2016. 23(2): p. 229-247.

8. Farizi, M.A., *MODEL KESUKESENAN SISTEM INFORMASI DELOANE DAN MCLEAN UNTUK MENGUKUR KESUKESENAN SISTEM MODERNISASI PERPAJAKAN E-BILLING MENURUT WAJIB PAJAK BADAN KOTA SEMARANG*. MONEX 2018. 7 Nomor 1.

9. DeLone, W.H. and E.R. McLean, *The DeLone and McLean Model of Information Systems Success: A Ten-Year Update*. J. of Management Information Systems, 2003. 19(4): p. 9-30.

10. Jacob, D.W., et al. *Modelling end-user of electronic-government service: the role of information quality, system quality and trust*. in IOP Conference Series: Materials Science and Engineering. 2017. IOP Publishing.

11. Septiana, I., et al., *Sistem Pendukung Keputusan Penentu Dosen Penguji Dan Pembimbing Tugas Akhir Menggunakan Fuzzy Multiple Attribute Decision Making dengan Simple Additive Weighting (Studi Kasus: Jurusan Teknik Informatika Uin Sgd Bandung)*. Jurnal Online Informatika, 2016. 1(1): p. 43-50.

12. Subueki, B., F. Gunawan, and A.R. Atmadja, *Penggunaan Metode Fuzzy Logic untuk Pemantauan Sentimen Brand pada Media Sosial*. Query: Journal of Information Systems, 2017. 1(2).

13. Wangsanegara, N.K. and B. Subueki, *IMPLEMENTASI NATURAL LANGUAGE PROCESSING DALAM PENGUKURAN KETEPATAN EJAAN YANG DISEMPURNAKAN (EYD) PADA ABSTRAK SKRIPSI MENGGUNAKAN ALGORITMA FUZZY LOGIC*. Jurnal Teknik Informatika, 2015. 8(2).

14. Subueki, B., *Perancangan Arsitektur Sistem Informasi Menggunakan Metode Enterprise Architecture Planning (Studi Kasus: Universitas Purwakarta-Purwakarta)*. Jurnal Informatika, 2014. 1(1).

15. Subueki, B. and D. Ardiansyah, *IMPLEMENTASI ALGORITMA FISHER-YATES SHUFFLE PADA APLIKASI MULTIMEDIA INTERAKTIF UNTUK PEMBELAJARAN TENSES BAHASA INGGRIS*. Jurnal Teknologi Informasi dan Elektronika (INFOTRONIK), 2017. 2(1).

16. Maylawati, D.S.a., B. Subueki, and T. Ridwan. *Opinion mining on Twitter microblogging using Support Vector Machine: Public opinion about State Islamic University of Bandung, in Cyber and IT Service Management, International Conference on*. 2016. IEEE.

17. Mohamad Irfan, S.J.P., Cecep Nurul Alam, *E-Readiness for ICT Implementation of the Higher Education Institutions in the Indonesian in The 6th International Conference on Cyber and IT Service Management (CITSM 2018)*. 2018: Medan.

18. Irfan, M. and W.B. Zulfikar. *Implementation of Fuzzy C-Means algorithm and TF-IDF on English journal summary*. in Informatics and Computing (ICIC), 2017 Second International Conference on. 2017. IEEE.

19. Subiyakto, A. and A.R.b. Ahlan. *A coherent framework for understanding critical success factors of ICT project environment*. in 2013 International Conference on Research and Innovation in Information Systems (ICRIIS). 2013.

20. Putra, S.J., et al., *A Coherent Framework for Understanding the Success of an Information System Project*. TELKOMNIKA (Telecommunication Computing Electronics and Control), 2016. 14(1): p. 302.

21. Subiyakto, A.a., et al., *Influences of the Input Factors towards Success of An Information System Project*. Vol. 13. 2015.

22. Subiyakto, A.a., et al., *Validation of Information System Project Success Model: A Focus Group Study*. SAGE Open, 2015. 5(2): p. 2158244015581650.
23. Romi Ismail, M., *Organizational Culture Impact on Information Systems Success*. Computer Science and Software Techniques in 2011, 2011. 42.

24. Kim, Y.J., M. Eom, and J.H. Ahn, *Measuring IS service quality in the context of the service quality-user satisfaction relationship*. Journal of Information Technology Theory and Application (JITTA), 2005. 7(2): p. 6.

25. Poku, K. and R.P. Vlosky, *A model of the impact of corporate culture on Information Technology adoption*. Louisiana Forest Products Laboratory, Working Paper# 57, Retreived, 2002.

26. Carter, L. and F. Bélanger, *The utilization of e-government services: citizen trust, innovation and acceptance factors*. Information systems journal, 2005. 15(1): p. 5-25.

27. Morgeson III, F.V., D. VanAmburg, and S. Mithas, *Misplaced trust? Exploring the structure of the e-government-citizen trust relationship*. Journal of Public Administration Research and Theory, 2010. 21(2): p. 257-283.

28. Crowston, K., J. Howison, and H. Annabi, *Information systems success in free and open source software development: theory and measures*. Software Process: Improvement and Practice, 2006. 11(2): p. 123-148.

29. Irfan, M., et al. *Readiness factors for information system strategic planning among universities in developing countries: a systematic review*. in *Journal of Physics: Conference Series*. 2018. IOP Publishing.

30. Indonesia, M.K.R., *PERUBAHAN ATAS PERATURAN MENTERI KEUANGAN NOMOR 243/PMK.03/2014 TENTANG SURAT PEMBERITAHUAN (SPT)* in *9/PMK.03/2018* 2018, Menteri Keuagn Republik Indonesia.

31. Cameron, K.S. and R.E. Quinn, *Diagnosing and changing organizational culture: Based on the competing values framework*. 2011: John Wiley & Sons.

32. Rivard, S. and S.L. Huff, *An empirical study of users as application developers*. Information & Management, 1985. 8(2): p. 89-102.