Fine motor skills in adult Tourette patients are task-dependent

Irene Neuner1,2,4,6*, Jorge Arrubla2, Corinna Ehlen1, Hildegard Janouschek1, Carlos Nordt3, Bruno Fimm5, Frank Schneider1,4, N Jon Shah2,4,5 and Wolfram Kawohl3

Abstract

Background: Tourette syndrome is a neuropsychiatric disorder characterized by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. Despite severe motor tics, different personalities who suffer from Tourette perform successfully as neurosurgeon, pilot or professional basketball player.

Methods: For the investigation of fine motor skills we conducted a motor performance test battery in an adult Tourette sample and an age matched group of healthy controls.

Results: The Tourette patients showed a significant lower performance in the categories steadiness of both hands and aiming of the right hand in comparison to the healthy controls. A comparison of patients’ subgroup without comorbidities or medication and healthy controls revealed a significant difference in the category steadiness of the right hand.

Conclusions: Our results show that steadiness and visuomotor integration of fine motor skills are altered in our adult sample but not precision and speed of movements. This alteration pattern might be the clinical vignette of complex adaptations in the excitability of the motor system on the basis of altered cortical and subcortical components. The structurally and functionally altered neuronal components could encompass orbitofrontal, ventrolateral prefrontal and parietal cortices, the anterior cingulate, amygdala, primary motor and sensorimotor areas including altered corticospinal projections, the corpus callosum and the basal ganglia.

Background

Tourette syndrome (TS) is a neuropsychiatric disorder characterised by motor and phonic tics. Deficient motor inhibition underlying tics is one of the main hypotheses in its pathophysiology. Therefore the question arises whether this supposed deficient motor inhibition affects also voluntary movements. The severity of tics waxes and wanes over time. Patients often report that stress and teasing by others worsen tics, whereas focused activity such as reading or voluntary motor activities such as playing basketball reduces the occurrence of tics [1-4].

TS is often accompanied by comorbidities such as obsessive-compulsive disorder (OCD), depression and attention-deficit-hyperactivity disorder (ADHD) [5,6]. The cortico-striato-thalamo-cortical circuit plays an important role in the pathophysiology of TS. Tics respond to treatment with D2-receptor blocking agents with high striatal affinity [7-9]. Therefore, the neuroanatomy of tics has received particular attention in neuroimaging research on Tourette syndrome [10,11], highlighting a network of frontal areas, basal ganglia, insula and cerebellum, compatible with the notion that TS is the result of a failure in network maturation, particularly of the fronto-striatal-thalamic-cortical loop [12-14]. Structural changes have been described in Tourette patients, such as grey matter reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices [15]. Alterations in amygdala structure and its functional connectivity are also reported [16-18].
Recent imaging studies in TS report an involvement of the corticospinal tract and of the underlying white matter under the supplementary motor area, the pre- and postcentral gyrus and the ventral-posterolateral nucleus of the right thalamus [19,20]. There are reports of reduced volumes of the caudate nucleus across the life span and thinning of sensorimotor cortices in proportion to tic severity in children suffering from Tourette syndrome [21]. Hypertrophy of limbic and prefrontal cortices and a smaller corpus callosum are associated with less pronounced tics in children with TS [22,23]. For the different clinical phenotypes of Tourette syndrome (e.g. simple tics, simple and complex tics, tics and OCD) Worbe and colleagues reported cortical thinning in primary motor regions in patients with simple tics. In patients suffering from simple and complex tics the cortical thinning was spread to larger premotor, prefrontal and parietal regions, and a trend for reduced cortical thickness in the anterior cingulated cortex and hippocampal morphology was reported in patients with comorbid obsessive-compulsive disorder [24].

Given the feature of tics as motor symptoms the question arises whether fine motor skills are affected in Tourette syndrome. There is a limited number of studies in children and adults to this end. In 1990 Bornstein published the results of a comprehensive neuropsychological test battery for 100 children and adolescents with Tourette syndrome [25]. T-values of the finger tapping task for the dominant and non-dominant hand were within normal limits. Performance for the grooved pegboard was normal for the dominant hand and impaired for the non-dominant hand (t=34.6). In a recent behavioural study in 11 adult Tourette patients Jonas and colleagues reported behavioural results on simple finger movements in adult Tourette patients with focus on echophenomena [4]. They described no significant difference in the reaction time of simple motor tasks between patients and a healthy controls group. However, when confronted with the task of copying a single finger movement following an incongruent biological stimulus Tourette patients showed a marked decline in performance with increased reaction times.

The clear affection of primary motor structures in recent neuroimaging studies would suggest that fine motor skills are impaired in Tourette patients [10,11,18,19,26-28]. On the other hand, clinical observations show that patients are able to suppress their tics at a certain degree of focused attention and also at some movements accomplishment, e.g. tics are often reported to be reduced in sports. Tourette patients are found among top athletes, professional piano players and neurosurgeons.

For the investigation of fine motor skills we conducted a motor performance test battery [Motorische Leistungsserie (MLS), Wiener Testsystem] in an adult Tourette sample. We aimed to address the following questions by our study:

a) Are fine motor skills in Tourette patients altered as possibly indicated by neuroimaging studies showing changes in the motor system?
b) What differences in task performance can be observed between TS patients and healthy controls?

Methods
21 adult out-patients (4 female, 17 male, aged 18–48 years, mean age 30.9 ± 10.09 SD years) fulfilling the DSM-IV-TR criteria for Tourette syndrome and an age matched group of healthy controls (n=21, 4 female, 17 male, aged 18–48 years, mean 32 ± 9.7 SD years) participated in the study. In the Tourette patients group five patients suffered from obsessive-compulsive disorder (OCD), and two patients from attention-deficit-hyperactivity disorder (ADHD) according to DSM-IV guidelines. 13 out of 21 patients were currently under medication. Details of medication (current and lifetime) are listed in Table 1. A subgroup of the Tourette sample consisting of patients without comorbidities and without neuropsychiatric medication (n=10, 1 female, 9 male, aged mean 32.1 ± 11.6 years) was compared to the healthy controls to control for potentially confounding factors.

Assessment
The study protocol included a standardized clinical interview according to AMDP (Association for Methodology and Documentation in Psychiatry) guidelines and detailed neurological evaluation by a board certified (neurology and psychiatry) physician (I.N.), physical examination, and an assessment with the Yale Global Tic Severity Scale (YGTSS) [29]. Psychiatric evaluation included assessment of comorbidities such as ADHD, OCD and depression according to DSM-IV-TR criteria. All patients were right handed according to the Edinburgh Handedness Test [30]. Control subjects were recruited from employees of the Research Centre Juelich and students from the RWTH Aachen University. In controls, intake of any medication, current psychiatric or neurological disorders or a history of any of them were exclusion criteria.

Clinical characteristics including Yale Global Tics Severity Scale (YGTSS), comorbidity and medication are listed in Table 1. The study was approved by the ethics committee of the RWTH Aachen University Clinic, and performed in accordance to the Declaration of Helsinki. All participants gave written informed consent.

All subjects performed the S2-subform of the motor performance test battery (i.e. Motorische Leistungsserie, Wiener Testsystem) as described by Sturm and Buessen.
In short, it consists of 8 subtests, 4 for each hand. On a standardized pegboard the parameters steadiness, contour copying, aiming and tapping are assessed for both hands separately. For the subtests steadiness and contour copying the pegboard is presented in an upright position, for the subtests aiming and tapping in a horizontal position. Scoring for the subtests depends on accuracy as well as on speed with the exception of the steadiness subtest. Figure 1 shows a photograph of the standardized pegboard. For the subtest steadiness the participants inserted a stick in a hole (5.8 mm diameter, 32 seconds duration, top row, second one from centre) and were required to keep it there without touching by accident the lateral wall or back wall of the hole. The number of accidental contacts and duration of contacts (sec) were measured. This task tests for arm-head-steadiness.

The subtest contour copying requires the copying of a given trace without touching the lateral or back walls of the milled out trace (please see Figure 1 third row from top). It is assumed to test for the precision of arm and hand movements.

The subtest aiming requires the volunteer to tap as fast and exact as possible along a line of 20 small circles (diameter 5 mm, distance between circles 4 mm) without touching the pegboard itself (fourth row of the pegboard in Figure 1). It assesses the coordination between eye and hand within small distances.

The subtest tapping consists of the instruction to tap on a rectangular plate (40mm one side) as fast and often as possible (quadratic area in the sixth row of the pegboard in Figure 1). It measures the wrist-finger-speed.

Statistical analysis was performed to control for normal distribution of the data. Data of the whole Tourrette sample were compared to the data of the control group by means of a Mann–Whitney-U-test since no normal distribution had been revealed by the Kolmogorov–Smirnov-test. For statistical analysis a Bonferroni-Correction was performed. This conservative procedure has been chosen due to the large number of variables in a
small sample size. The corrected p-level was $p^\text{Bonf} \leq 0.00625$ because of the application of 8 subtests. YGTSS scores were correlated with the motor subtests using Pearson’s correlation coefficient. For evaluation of potential confounding influences by medication and comorbidities the subsample of Tourette patients without medication and without comorbidities was compared to the control group by Mann–Whitney-U-test. Additionally, the medicated and non medicated subsamples of the Tourette-group were compared by Mann–Whitney-U-test.

Results
Results (t-values mean ± standard deviation) for the whole Tourette sample (n=21)
The steadiness in the whole Tourette sample was 44.2 ± 8.5 for the right hand and 41.2 ± 7 for the left hand (See Figure 2). Copy of contours was 41.5 ± 7.5 for the right hand and 49.2 ± 11.3 for the left hand. Aiming was 45.7 ± 14.3 for the right hand (See Figure 2) and 50.4 ± 11.3 for the left hand. Tapping in the Tourette sample was 54.8 ± 8.6 for the right hand and 56.8 ± 11.4 for the left hand.

Results (t-values mean ± standard deviation) for the control sample (n=21)
The steadiness in the control group was 53.9 ± 7.8 for the right hand and 50.8 ± 8 for the left hand (See Figure 2). Copy of contours was 45.9 ± 9.2 for the right hand and 53.9 ± 12.3 for the left hand. Aiming was 59.4 ± 10.4 for the right hand (See Figure 2) and 57.9 ± 12.9 for the left hand.
Results (t-values mean ± standard deviation) for the Tourette subsample without comorbidity and without medication (n=10)

The steadiness in the Tourette subsample without comorbidity and without medication (n=10) was 42.7 ± 7.8 for the right hand and 42.1 ± 7.1 for the left hand. Contour copying was 42.9 ± 6.2 for the right hand and 53.6 ± 12.2 for the left hand. Aiming was 50.3 ± 15.6 for the right hand and 52.2 ± 12.1 for the left hand. Tapping was 57.9 ± 8.8 for the right hand and 62.4 ± 9.1 for the left hand.

Comparison of the whole Tourette sample (n=21) vs. controls (n=21)

After Bonferroni-correction, the performance in the subtests steadiness of the right hand (p=0.002), aiming of the right hand (p=0.002), and steadiness of the left (p=0.000) showed significant differences (pBonf ≤ 0.00625) between the patients and controls. Results are summarized in Table 2 for the whole Tourette sample versus age and sex matched controls.

There was no significant correlation between the YGTSS total score or subscales.

Subtest Steadiness

The subtest steadiness requires keeping the stick very stable in a small hole without touching the inner walls. It is supposed to test for arm-head-steadiness and proved to be a very challenging task for Tourette patients. Its key characteristic is the static position and the requirement not to modify the position once taken in any way. This finding is in good agreement with work reported by Heise and colleagues on altered modulation of intracortical excitability in movement preparation in TS [1]. They investigated motorcortical excitability at rest and during the preparation of a simple motor task via transcranial magnetic stimulation (TMS). The study showed motorcortical disinhibition in TS at rest. This is in good agreement with the hypothesis from Donald Cohen stating that Tourette is due to a deficit in inhibition [32]. In our fine motor skill assessment no open motor deficit was recognized during the performance of a task such as the contour copying. This clinical observation mirrors the results from Heise and colleagues, which showed that TS patients who are to perform a voluntary motor task start from an abnormally disinhibited level of short-interval intracortical inhibition early during movement preparation with subsequent modulation of the inhibitory activity input similar to healthy volunteers [1]. Thus, one could hypothesize that ongoing movements requiring continuous moving and online adaptation, e.g. contour copying or tapping, reduce the level of motor inhibition and permit in this subtest a performance within the normal range. The task steadiness however lacks this continuous moving and online adaptation of movement and therefore proved to be a harder task for Tourette patients.

Table 2 Fine motor skills in Tourette patients and controls, t-values

Fine motor skills	t-values: mean ± SD	t-values: mean ± SD	p-values
	TS-patients (n=21)	Controls (n=21)	
Steadiness R*	44.2 ± 8.5	53.9 ± 7.8	.002
Contacts by error			
Copy contours R	41.5 ± 7.5	45.9 ± 9.2	.057
Contacts by error			
Aiming R*	45.7 ± 14.3	59.4 ± 10.4	.002
Contacts outside target area			
Tapping R	54.8 ± 8.6	59.8 ± 10.2	.127
Hits in target area			
Steadiness L*	41.2 ± 7	50.8 ± 8	.000
Contacts by error			
Copy contours L	49.2 ± 11.3	53.9 ± 12.3	.158
Contacts by error			
Aiming L	50.4 ± 11.3	57 ± 12.9	.051
Contacts outside target area			
Tapping L	56.8 ± 11.4	59 ± 13.5	.351
Hits in target area			

Higher t-values indicate better performance. (R = right, L = left, *significant difference between Tourette patients and healthy volunteers (pBonf < 0.00625), pBonf: significant p-values in bold).
Subtest Aiming
The subtest aiming analyses the coordination between eye and hand when working in small distances. This is impaired in Tourette patients with insufficient control over the dominant hand. The task requires precision and speed at the same time which puts Tourette patients under high pressure. Pressure in turn is known to increase the frequency of tics [2,3,16]. This finding is also in line with prior publications. They reported impairment on Tourette patients, particularly in tasks that require visuomotor integration [33,34]. Furthermore, it was described that motor ability in Tourette patients deteriorates with increasing difficulty [4,35,36]. This is in line with our findings of the subtest aiming.

Subtest Tapping
In the subtest tapping, the tested wrist-finger speed was not impaired in Tourette patients. They performed as well as controls. There was no difference in speed. Also for this subtest the adaptation of motor inhibition towards a physiological level during movements as described by Heise and colleagues provides a good model for our finding [1].

Pathophysiology
Given the four different types of motor tasks in our study the following two pathophysiological components within the motor system could be the source of the circumscribed deficits:

a) disinhibition at rest and in static tasks such as steadiness
b) deficits in visuomotor integration.

Starting from a status of disinhibition at rest, net inhibition is subsequently increased in order to achieve an adequate motor action [1]. Heise and colleagues discuss this as a compensatory mechanism where the motor cortex acts as a “relay station”, i.e. increasing inhibitory activation and thereby down-regulation neuronal excitability. So by performing e.g. the task contour copying or in daily life piano playing or dribbling a basket ball the abnormal high neuronal excitability at rest in Tourette patients normalizes during the movement due to the increasing inhibitory signals from the motor cortex.

Neuroimaging results point on a pathophysiological level also to an influence of the frontal cortex. The analysis of the neuronal pattern of sequential finger tapping in an video-controlled fMRI task showed different neuronal activation patterns for the same resulting behavioural performance. One main finding was that with increasing task difficulty the influence of frontal areas increased. This would be a good explanation of why Tourette patients perform within the normal limit in the fine motor skill tasks that demand constant motor adaptation and fine-tuning, in opposition to the task steadiness, in which no change in movement is required and therefore no change in the excitability of the system is demanded, as described by Heise and colleagues.

In our Tourette sample there was no correlation between the YGTSS subscores and the fine motor control. Thus, patients with a medium and a high tic score showed comparably fine motor skills. Therefore, an additional factor is assumed that is not mirrored by the YGTSS score and has a significant influence on motor performance. We hypothesize that this could be the degree to which patients are able to suppress their tics and to what degree focused attention decreases tic frequency. During the test battery, Tourette patients were focused on the tasks set and not distracted by other factors. On a pathophysiological level this would imply that via prefrontal input in the cortico-striato-thalamo-cortical circuit voluntary movements are modified. In an fMRI study investigating suppression of tics, Peterson and colleagues described recruitment of prefrontal areas and the anterior cingulate [26]. Kawohl and colleagues described activation in the anterior cingulate for tic suppression in a single-case study [37]. However, the different pathomechanisms compensate only partially since Tourette patients show clear deficits.

Another interesting point is the well-described abnormality of the structure and motor function of corpus callosum in Tourette patients [38]. The corpus callosum is a structure essential for bimanual coordination and unimanual lateralization, and both functions appeared to be impaired in Tourette patients [39]. These alterations found in Tourette patients, resulting from anomalous functional interhemispheric connectivity, might be reflected by the abnormality of the subtests steadiness bilaterally and aiming of the right hand.

Clinical implications
Bloch and colleagues reported in a sample of children with TS a predictive role of the motor deficits with regard to glocal social functioning and tic severity (34). They investigated a cohort of 32 children twice, once 8–14 years old and a second time in average 7.5 years later. In this cohort poor performance with the dominant hand on the Purdue Pegboard test was associated with worse adulthood tic severity. Negative results of the Beery Visual-Motor Integration test and the Purdue Pegboard test also predicted worse adulthood gocal functioning (Bloch et al. 2006 (is listed already as reference 34). Our sample differs in two important aspects from Bloch’s cohort. One point is that we investigated adult Tourette patients and the other that we performed the study at one time point. However, our adult Tourette patients – so Tourette patients in whom tics persisted
motor and sensorimotor areas and their altered corticospinal projections, the corpus callosum and the basal ganglia [15,17,19,20,24,38,39,41–43].

Competing interests
Dr. Janouschek, Mrs. Ehlen, Dr. Nordt, Dr. Neuner, Dr. Fimm, Mr. Arrubla have no conflict of interest to declare. Prof. Schneider received compensation as a consultant for Janssen-Cilag, AstraZeneca, and Otsouka. Prof. Schneider received compensation for scientific talks or contributions in a prize jury by Janssen-Cilag, Wyeth, and AstraZeneca. Prof. Schneider received funding for investigator initiated projects from AstraZeneca, Lilly and Pfizer. Prof. Shah acknowledges funding from the BMBF Germany and Siemens, Germany for the 9.4T project. Prof. Kowohl received compensation as a consultant for Janssen-Cilag. Prof. Kowohl received compensation for scientific talks by Eli Lilly, Bristol-Myers Squib and Vifor.

Authors’ contributions
1) Research project: Conception: IN, FS, Organization and Execution: IN, CE, BF, NJS 2) Statistical Analysis: CN, WK, HJ 3) Manuscript IN, JA, HJ, FS, WK, N.S. All authors read and approved the final manuscript.

Acknowledgements
The study was supported by the German Tourette Association. We thank the Board of Directors as well as all members of the German Tourette Association and particularly the participating Tourette patients for their commitment.

Author details
1 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen 52074, Germany. 2 Institute of Neuroscience and Cognition Sciences, University of Greifswald, Greifswald 17489, Germany. 3 Department of Psychology and Neuroscience, Aachen University, Aachen 52074, Germany. 4 Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen 52074, Germany. 5 Department of Neurology, Section Neuropsychology, RWTH Aachen University, Aachen 52074, Germany. 6 Department of Psychology, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse 30, Aachen 52074, Germany.

Received: 18 May 2012 Accepted: 10 October 2012
Published: 11 October 2012

References
1. Heise KF, Steven B, Liuzzi G, Thomalla G, Jonas M, Müller-Vahl K, Sauseng P, München A, Gerloff C, Hummel FC: Altered modulation of intracortical excitability during movement preparation in Gilles de la Tourette syndrome. Brain 2010, 133:580–590.
2. Neuner I, Ludolph A: Tic and Tourette's syndrome throughout the life span. Nervenarzt 2009, 80:1377–1387.
3. Neuner I, Ludolph A: Neurobiology, Clinical Characteristics and Therapy in Tourette's Syndrome. Fortschr Neurol Psychiatr 2011, 79:724–752.
4. Jonas M, Thomalla G, Biermann-Ruben K, Siebner HR, Müller-Vahl K, Blümer T, Gerloff C, Schnitzler A, Orth M, Münchau A: Imitation in Patients with Gilles de la Tourette Syndrome – A behavioral Study. Mov Disord 2010, 25:991–999.
5. Freeman RD, Fast DK, Burd L, Kebabshian J, Robertson MM, Sandor P: An international perspective on Tourette syndrome: selected findings from 3,500 individuals in 22 countries. Dev Med Child Neurol 2000, 42:436–447.
6. Khalifa N, von Knorring AL: Tourette syndrome and other tic disorders in a total population of children: clinical assessment and background. Acta Paediatr 2005, 94:1608–1614.
7. Shapiro E, Shapiro AK, Fulop G, Hubbard M, Mandell J, Nordlie J, Phillips RA: Controlled study of haloperidol, pimozide and placebo for the treatment of Gilles de la Tourette's syndrome. Arch Gen Psychiatry 1989, 46:722–730.
8. Kowohl W, Schneider F, Vernaklen I, Neuner I: Aripiprazole in the pharmacotherapy of Gilles de la Tourette syndrome in adult patients. World J Biol Psychiatry 2009, 10(4 Pt 3):827–831.
9. Kowohl W, Schneider F, Vernaklen I, Neuner I: Chronic motor tic disorder and aripiprazole. J Neuropsychiatry Clin Neurosci 2009, 21:224.
10. Böhlhalter S, Goldfine A, Mattsson S, Garraw A, Hanakawa T, Kansaku K, Wurzman R, Hallett M: Neural correlates of tic generation in Tourette syndrome.
syndrome: an event-related functional MRI study. Brain 2006, 129:2029–2037.

11. Hampson M, Tokoglu F, King RA, Constable RT, Leckman JF: Brain areas coactivating with motor cortex during chronic motor tics and intentional movements. Biol Psychiatry 2009, 65:594–599.

12. Albin RL, Mink JW: Recent advances in Tourette syndrome research. Trends Neurosci 2006, 29:175–182.

13. Bloch MH, Leckman JF, Zhu H, Peterson BS: Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology 2005, 65:1253–1258.

14. Peterson BS, Thomas P, Kane MJ, Scwhill L, Zhang H, Bironen R, King RA, Leckman JF, Stalb L: Basal Ganglia volumes in patients with Gilles de la Tourette syndrome. Arch Gen Psychiatry 2003, 60:415–424.

15. Dioganski B, Martino D, Cavanna AE, Hurton C, Orth M, Robertson MM, Critchley HD, Frackowiak RS: Multispectral brain morphometry in Tourette syndrome extend in adulthood. Brain 2010, 133:3661–3675.

16. Neuner J, Kellermann T, Stöcker T, Kircher T, Habel U, Shah NJ, Schneider F: Amygdala hypersensitivity in response to emotional faces in Tourette's patients. World J Biol Psychiatry 2010, 11:858–872.

17. Werner CJ, Stöcker T, Kellermann T, Wegener HP, Schneider F, Shah NJ, Neuner J: Altered amygdala functional connectivity in adult Tourette syndrome. Eur Arch Psychiatry Clin Neurosci 2010, 360(Suppl):299–95.

18. Neuner I, Kupriyanova Y, Stöcker T, Huang R, Posnansky O, Schneider F, Shah NJ: Microstructure assessment of grey matter nuclei in adult tourette patients by diffusion tensor imaging. Neurosci Lett 2011, 487:22–26.

19. Neuner I, Kupriyanova Y, Stöcker T, Huang R, Posnansky O, Schneider F, Tittgemeyer M, Shah NJ: White-matter abnormalities in Tourette syndrome extend beyond motor pathways. NeuroImage 2010, 51:1184–1193.

20. Thomalla G, Siebner HR, Jonas M, Bäumer T, Biermann-Ruben K, Hummel F, Gerloff C, Müller-Vahl K, Schnitzler A, Orth M, Münchau A: Structural changes in the somatosensory system correlate with tic severity in Gilles de la Tourette syndrome. Brain 2009, 132:765–777.

21. Plessen KJ, Bandal R, Peterson BS: Imaging evidence for anatomical disturbances and neuropsychological compensation in persons with Tourette syndrome. J Psychosom Res 2009, 67:559–573.

22. Plessen KJ, Günter R, Lundervold A, Hirsch JS, Xu D, Bansal R, Hammar A, Lundervold AJ, Wentzel-Larsen T, Lie SA, Gass A, Peterson BS, Hugdahl K: Reduced white matter connectivity in the corpus callosum of children with Tourette syndrome. J Child Psychol Psychiatr 2006, 47:1013–1022.

23. Plessen KJ, Wentzel-Larsen T, Hugdahl K, Feineigel P, Klein J, Stalb LH, Leckman JF, Bansal R, Peterson BS: Altered interhemispheric connectivity in individuals with Tourette’s disorder. Am J Psychiatry 2004, 161:2028–2037.

24. Wobbe Y, Gerardin E, Hartmann A, Valabrégue R, Chupin M, Tremblay L, Vidailhet M, Collot O, Lehécy S: Distinct structural changes underpin clinical phenotypes in patients with Gilles de la Tourette syndrome. Brain 2010, 133:3649–3660.

25. Borstein RA: Neuropsychological performance in children with Tourette's syndrome. Psychiatry Res 1990, 33:73–81.

26. Peterson BS, Skudlarski P, Anderson AW, Zhang H, Gatenby JC, Lacadie CM, Leckman JF, Gore JC: A functional magnetic resonance imaging study of tic suppression in Tourette Syndrome. Arch Gen Psychiatry 1998, 55:326–333.

27. Stern E, Silberweig DA, Chee KY, Holmes A, Robertson MM, Trimmie M, Frith CD, Frackowiak RS, Dolen RJ: A functional neuroanatomy of tics in Tourette syndrome. Arch Gen Psychiatry 2000, 57:741–748.

28. Werner CJ, Stöcker T, Kellermann T, Bath J, Beldoch M, Schneider F, Wegener HP, Shah NJ, Neuner J: Altered motor network activation and functional connectivity in adult tourette’s syndrome. Hum Brain Mapp 2011, 32:2014–2026.

29. Leckman JF, Ridde MA, Hardin MT, Ort S, Swartz KL, Stevenson J, Cohen DJ: The Yale Global Tic Severity Scale: Initial testing of a clinician-rated scale of tic severity. J Am Acad Child Adolesc Psychiatry 1989, 28:566–573.

30. Oldfield RC: The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 1971, 9:97–113.

31. Sturm W, Buessing A: Ergänzende Normierungsdaten und Reetest-Reliabilitäts-Koeffizienten der Motorischen Leistungsserie (MLS) nach Schoppe. Diagnostica 1985, 32:24–245.