The exceptional set in a generalized Goldbach’s problem

Dongho Byeon* and Keunyoung Jeong

Abstract

In this paper, we compute the size of the exceptional set in a generalized Goldbach problem and show that for a given polynomial \(f(x) \in \mathbb{Z}[x] \) with a positive leading coefficient, positive integers \(A, B, g, i, j \) with \(0 < i, j < g \), there are infinitely many positive integers \(n \) which satisfy \(2f(n) = Ap_1 + Bp_2 \) for primes \(p_1 \equiv i, p_2 \equiv j \) (mod \(g \)) under a mild condition.

1 Introduction

Brüdern, Kawada and Wooley [BKW] computed the size of the exceptional set of a polynomial-type generalization of Goldbach problem.

Theorem 1. [BKW, Theorem 1] Let \(f(x) \in \mathbb{Z}[x] \) be a polynomial which has a positive leading coefficient with degree \(k \) and \(\mathcal{E}_k(N, f) \) be the number of positive integers \(n \) with \(1 \leq n \leq N \) for which the equation \(2f(n) = p_1 + p_2 \) has no solution in primes \(p_1, p_2 \). Then there is an absolute constant \(c > 0 \) such that

\[
\mathcal{E}_k(N, f) \ll f^{-\frac{c}{k}} N^{1-\frac{c}{k}}.
\]

This theorem implies that there are infinitely many positive integers \(n \) which satisfy \(2f(n) = p_1 + p_2 \) for primes \(p_1, p_2 \). Similarly, one can ask if for given positive integers

*The first author was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2013R1A1A2007694).
A, B, g, i, j with 0 < i, j < g, there are infinitely many positive integers n which satisfy $2f(n) = A p_1 + B p_2$ for primes $p_1 \equiv i$, $p_2 \equiv j \pmod{g}$.

To answer this question, we will prove the following theorem.

Theorem 2. Let $f(x) \in \mathbb{Z}[x]$ be a polynomial which has a positive leading coefficient with degree k. Let A, B be positive odd integers and g, i, j positive integers with $0 < i, j < g < N^{24k}$ for a sufficiently small positive real number δ to be chosen later and $(i, g) = (j, g) = 1$. Suppose that there is at least one integer m such that

$$2f(m) \equiv Ai + Bj \pmod{g}.$$

Let $\Gamma = \{A, B, g, i, j\}$ and let $E_{k, \Gamma}(N, f)$ be the number of positive integers $n \in [1, N]$ with $2f(n) \equiv Ai + Bj \pmod{g}$ for which the equation $2f(n) = A p_1 + B p_2$ has no solution in primes $p_1 \equiv i, p_2 \equiv j \pmod{g}$. Then there is an absolute constant $c > 0$ such that

$$E_{k, \Gamma}(N, f) \ll k, \Gamma N^{1 - c/k}.$$

This immediately implies the positive answer of the above question.

Corollary 3. Let $f(x) \in \mathbb{Z}(x)$ be a polynomial which has a positive leading coefficient.

Let A, B be positive odd integers and g, i, j positive integers with $0 < i, j < g$ and $(i, g) = (j, g) = 1$. If there is at least one integer m such that

$$2f(m) \equiv Ai + Bj \pmod{g},$$

then there are infinitely many positive integers n which satisfy

$$2f(n) = A p_1 + B p_2$$

for primes $p_1 \equiv i$, $p_2 \equiv j \pmod{g}$.

Let N be a large positive integer, δ a sufficiently small positive real number to be chosen later, $X := 2f(N)$, $P := X^{6\delta}$, $Q := X/P$ and $\kappa := 2^{-\frac{1}{4}}$. Let A, B be positive odd integers and g, i, j positive integers with $0 < i, j < g < P^4$ and $(i, g) = (j, g) = 1$. Let $\Gamma = \{A, B, g, i, j\}$. We define the exponential sum $S_i(\alpha)$ by

$$S_i(\alpha) := \sum_{\substack{P < p \leq X \\ p \equiv i \pmod{g}}} (\log p)e(a p),$$
where \(e(ap) := e^{2\pi ap} \) and the summation is over primes \(p \) with \(P < p \leq X \) and \(p \equiv i \pmod{g} \). When \(T \subseteq [0,1] \), we write

\[
\Gamma(n; T) := \int_T S_i(Aa)S_j(Ba)e(-an)d\alpha
\]

and \(\Gamma(n) := \Gamma(n;[0,1]) \). Then \(\Gamma(2f(n)) \) counts the number of solutions of the equation \(2f(n) = Ap_1 + Bp_2 \) in primes \(p_1 \equiv i, p_2 \equiv j \pmod{g} \) with weight \(\log p_1 \log p_2 \).

Let \(\mathfrak{M} \subset [0,1] \) be the major arc defined by

\[
\mathfrak{M} = \bigcup_{0 \leq a \leq q \leq P, (a,q) = 1} \mathfrak{M}(q,a),
\]

where

\[
\mathfrak{M}(q,a) = \{ \alpha \in [0,1] : \left| \alpha - \frac{a}{q} \right| \leq \frac{P}{qX} \},
\]

and \(m \subset [0,1] \) be the minor arc defined by

\[
m = [0,1] \setminus \mathfrak{M}.
\]

In Section 2 we compute \(\Gamma(2f(n);m) \), in Section 3 we compute \(\Gamma(2f(n);\mathfrak{M}) \), and in Section 4 combining these, we prove Theorem 2. Basically we follow [BKW] and [MV].

Finally we mention that some special forms of Corollary 3 are applied to the arithmetic of elliptic curves. See [BJ] and [BJK]. One of the aims of this paper is to give a full proof of a full generalization of the special forms for future applications.

2 Minor Arc

In [BKW, Lemma 1], the authors proved that there exists a positive real number \(a = a(\delta) \) depending on \(\delta \) such that

\[
\sum_{\kappa N \leq n \leq N} |r(2f(n);m)| \ll XN^{1-\delta},
\]

where \(r(2f(n);m) = \int_m S(\alpha)^2 e(-\alpha \cdot 2f(n))d\alpha \) and \(S(\alpha) = \sum_{p \leq X} \log p e(ap) \).

In this section, we show that the same result holds for \(\Gamma(2f(n);m) \). To do this, we need the following lemma which concerns the residue class condition; \(i, j \pmod{g} \) and the coefficient condition; \(A, B \). For the proof of the lemma, we follow the proof
of [IK, Theorem 13.6]. A new ingredient in our proof is the orthogonality relations of Dirichlet characters.

Lemma 4. Suppose that there exist integers \(a \) and \(q \) such that \((a, q) = 1 \) and \(\left| a - \frac{a}{q} \right| \leq \frac{1}{q} \). Then for \(x \geq 2 \) we have

\[
\sum_{p \leq x \atop p \equiv i \pmod{g}} (\log p) e(aAp) \ll (x^\frac{2}{5} + xq^{-\frac{1}{2}} + x^\frac{1}{2} q^\frac{1}{2})(\log x)^3,
\]

where the summation is over primes \(p \) with \(p \leq x \) and \(p \equiv i \pmod{g} \).

Proof. Let \(\chi \) be a Dirichlet character modulo \(g \). The orthogonality relations of Dirichlet characters imply that

\[
\sum_{p \leq x \atop p \equiv i \pmod{g}} (\log p) e(aAp) = \sum_{p \leq x} \frac{1}{\varphi(g)} \sum_{\chi} \chi(i)(\log p) e(aAp)
\]

\[
\ll \sum_{\chi} \left| \sum_{p \leq x} \chi(p)(\log p) e(aAp) \right|.
\]

Thus it is enough to show that

\[
\sum_{p \leq x} \chi(p)(\log p) e(aAp) \ll (x^\frac{2}{5} + xq^{-\frac{1}{2}} + x^\frac{1}{2} q^\frac{1}{2})(\log x)^3.
\]

Let \(\Lambda(n) \) be the von Mangoldt function which defined as follows:

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n = p^k, \\
0 & \text{otherwise.}
\end{cases}
\]

By the fact \(\sum_{p \leq x} \log p \ll x \),

\[
\left| \sum_{p^k \leq x} \chi(p^k)(\log p) e(aAp^k) \right| \leq \sum_{p^k \leq x} \log p = \sum_{p \leq x^\frac{1}{k}} \log p \ll x^\frac{1}{k}.
\]

Hence

\[
\sum_{p \leq x} \chi(p)(\log p) e(aAp) = \sum_{n \leq x} \chi(n) \Lambda(n)e(aAn) + O(x^\frac{1}{k}).
\]

Thus it is enough to show that

\[
\sum_{n \leq x} \chi(n) \Lambda(n)e(aAn) = \sum_{n \leq Ax \atop \Lambda|n} \chi\left(\frac{n}{\Lambda}\right) \Lambda\left(\frac{n}{\Lambda}\right)e(an) \ll (x^\frac{4}{5} + xq^{-\frac{1}{2}} + x^\frac{1}{2} q^\frac{1}{2})(\log x)^3.
\]

From the Vaughan’s identity, we have that for \(y, z \geq 1 \) and \(n \) such that \(A|n \) and \(\frac{n}{A} > z \),

\[
\Lambda\left(\frac{n}{A}\right) = \sum_{b | \frac{n}{A}} \mu(b) \log \frac{n}{Ab} - \sum_{b | \frac{n}{A}} \mu(b) \Lambda(c) + \sum_{b | \frac{n}{A}} \mu(b) \Lambda(c).
\]
Then
\[
\sum_{\substack{n \leq Ax \atop A/n}} \chi(n) \Lambda(n) e(an) = \sum_{lm \leq Ax} \sum_{m \leq M} \chi(l/m) \mu(m) (\log \frac{l}{A}) e(alm) - \sum_{lmn \leq Ax} \sum_{m \leq M, n \leq N} \chi(l/mn) \mu(m) \Lambda(n) e(almn) + O(N).
\]

We need
\[
\sum_{m \leq M} \left| \sum_{mn \leq Ax} \chi(n/m) e(amn) \right| \ll (M + xq^{-1} + q) \log 2q x.
\] (1)

It is derived as follow:
\[
\sum_{m \leq M} \left| \sum_{mn \leq Ax} \chi(n/m) e(amn) \right| = \sum_{m \leq M} \left| \sum_{i=0}^{g-1} \chi(i) \sum_{mn \leq x} e(amn') \right|
\leq g \sum_{m \leq M} \min\left(\frac{x}{mA}, 2\|mA\|\right) \leq g \sum_{m \leq AM} \min\left(\frac{x}{m}, \frac{1}{2\|m\|}\right)
\ll (AM + xq^{-1} + q) \cdot \log 2q Ax \ll (M + xq^{-1} + q) \cdot \log 2q x,
\]

where \(\|a\| = \min_{u \in \mathbb{Z}} |a - u|\). It is known [IK, Theorem 13.6] that
\[
\sum_{n \leq x} \Lambda(n) e(an) \ll (x^\frac{2}{3} + xq^{-\frac{1}{2}} + x^\frac{1}{2} q^{\frac{1}{2}})(\log x)^3.
\]

If we use (1) instead of (13.46) in the proof of [IK, Theorem 13.6] and take \(M = N = x^\frac{2}{3}\), then by the same argument in the proof of [IK, Theorem 13.6], we get
\[
\sum_{lm \leq Ax} \sum_{m \leq M} \chi(l/m) \mu(m) (\log \frac{l}{A}) e(alm) \ll (x^\frac{2}{3} + xq^{-1} + q) \log qx \cdot \log x,
\]
\[
\sum_{lmn \leq Ax} \sum_{m \leq M, n \leq N} \chi(l/mn) \mu(m) \Lambda(n) e(almn) \ll (x^\frac{4}{3} + xq^{-1} + q) \log qx \cdot \log x,
\]
\[
\sum_{lmn \leq Ax} \sum_{m \leq M, n \leq N} \chi(l/mn) \mu(m) \Lambda(n) e(almn) \ll (x^\frac{4}{3} + xq^{-\frac{1}{2}} + x^\frac{1}{2} q^{\frac{1}{2}})(\log x)^3,
\]
which prove the lemma.

Now we can prove the following analogue of [BKW, Lemma 1]. For the proof, we follow the proof of [BKW, Lemma 1]. A new ingredient in our proof is the bound of \(S_f(Aa)\) in Lemma [4].
Proposition 5. There is a positive real number \(a = a(\delta) \) such that

\[
\sum_{\kappa N < n \leq N} |r_\Gamma(2f(n); m)| \ll XN^{1-\frac{\delta}{2}}.
\]

Proof. By the Hölder inequality, we have

\[
\sum_{\kappa N < n \leq N} |r_\Gamma(2f(n); m)| \leq \sup_{a \in m} |S_i(Aa)S_j(Ba)|^{\frac{1}{t}} \left(\int_0^1 |S_i(Aa)S_j(Ba)|da \right)^{\frac{1}{t-1}} \left(\int_0^1 |K(-a)|^t da \right)^{\frac{1}{t}}.
\]

where

\[
K(a) = \sum_{\kappa N < n \leq N} \eta(2f(n))e(2f(n)a) \quad \text{and} \quad \eta(u) = \begin{cases} 1 & \text{if } r_\Gamma(u, m) \geq 0, \\ -1 & \text{otherwise}. \end{cases}
\]

By Lemma 4, we get for \(a \in m \),

\[
S_i(Aa) = \sum_{P < p \leq X \pmod{g}} (log p)e(aAp) \ll (X^\delta + Xq^{-\frac{1}{2}} + X^\frac{1}{2}q^\frac{1}{2})(log X)^{3} \ll X^{1-3\delta}(log X)^3.
\]

This implies that

\[
\sup_{a \in m} |S_i(Aa)S_j(Ba)| \ll [X^{1-3\delta}(log X)^3]^2.
\]

From the proof of [BKW, Lemma 1], we know that

\[
\int_0^1 |S_i(Aa)S_j(Ba)| da \ll XlogX \quad \text{and} \quad \int_0^1 |K(-a)|^t da \ll N^{t-k(1-\delta)}.
\]

By combining these bounds, we have

\[
\sum_{\kappa N < n \leq N} |r_\Gamma(2f(n); m)| \ll (XlogX)^{1-\frac{1}{t}N^{1-\frac{(1-\delta)k}{2}}(X^{1-3\delta}(log X)^3)^{\frac{1}{t}}}
\]

\[
\ll NX^{1-\frac{\delta}{2}}(log X)^2,
\]

which proves the lemma. \(\square \)

3 Major Arc

Let \(Y \) be a real number with \(1 \leq Y \leq X^{\frac{\delta}{2}}. \) In [BKW, Lemma 2], the authors proved that for all \(n \) satisfying \(\kappa N < n \leq N \), with the possible exception of \(O(N^{1+\epsilon}Y^{-1}) \) values of \(n \)

\[
r(2f(n); \mathfrak{m}) \gg XY^{-\frac{1}{2}}(log X)^{-1},
\]
where \(r(2f(n); \mathfrak{M}) = \int_{\mathfrak{M}} S(a)^2 e(-a \cdot 2f(n)) \, da \) and \(S(a) = \sum_{p < p \leq X} (\log p) e(ap) \).

In this section, we show that the same result holds for \(r_\Gamma(2f(n); \mathfrak{M}) \). To do this, we need some lemmas which concern the residue class condition; \(i, j \mod g \) and the coefficient condition; \(A, B \).

First we state the basic properties of exceptional characters, which are established by Davenport [Dav].

Lemma 6. There is a constant \(c_1 > 0 \) such that \(L(\sigma, \chi) \neq 0 \) whenever

\[
\sigma \geq 1 - \frac{c_1}{\log P},
\]

for all primitive Dirichlet characters \(\chi \) of modulus \(q \leq P \), with the possible exception of at most one primitive character \(\tilde{\chi} \mod \tilde{r} \). If it exists, \(\tilde{\chi} \) is quadratic, and the unique exceptional real zero \(\tilde{\beta} \) of \(L(s, \tilde{\chi}) \) satisfies

\[
\frac{c_2}{r^2 \log^2 r} \leq 1 - \tilde{\beta} \leq \frac{c_1}{\log P},
\]

for a constant \(c_2 > 0 \).

The following lemma is a modification of [Gal, Theorem 7]. For the proof of the lemma, we follow the proof of [Gal, Theorem 7]. A new ingredient in our proof is the orthogonality relations of Dirichlet characters.

Lemma 7. Suppose that \(\frac{x}{P} \leq h \leq x \) and \(\exp(\log^{\frac{1}{2}} x) \leq P \leq x^b \). If there is no exceptional character, we have

\[
\sum_{q \leq P} \sum_{\chi \neq 1}^{\ast} \sum_{p \equiv i \mod g}^{x+h} \chi(p) \log p \ll h \exp(-c_3 \frac{\log x}{\log P})
\]

for a constant \(c_3 \), where \(\sum^\ast \) denotes that the sum is taken over all primitive Dirichlet characters of modulus \(q \) and if there is the exceptional character, the right hand side may be replaced by \(h(1 - \tilde{\beta}) \log P \exp(-c_3 \frac{\log x}{\log P}) \). Here the term with \(q = 1 \) is read as follows: if there is no exceptional character, it is

\[
\sum_{p \equiv i \mod g}^{x+h} \log p - \sum_{n \equiv i \mod g}^{x < n \leq x + h} 1
\]

and if there is the exceptional character, it is

\[
\sum_{p \equiv i \mod g}^{x+h} \tilde{\chi}(p) \log p + \sum_{n \equiv i \mod g}^{x < n \leq x + h} n^{\tilde{\beta} - 1}.
\]
Proof. Let
\[
\psi(x) := \sum_{n \leq x} \Lambda(n), \quad \psi(x, \chi) := \sum_{n \leq x} \chi(n) \Lambda(n), \quad \text{and} \quad \psi(x, \chi; i, g) := \sum_{n \leq x} \chi(n) \Lambda(n) \mod g.
\]
Using the orthogonality relations of Dirichlet characters, we have
\[
\psi(x, \chi; i, g) = \frac{1}{\varphi(g)} \sum_{n \leq x} (\sum_{\chi} \overline{\chi}(i) \chi(n)) \chi(n) \Lambda(n) = \frac{1}{\varphi(g)} \sum_{\chi} \overline{\chi}(i) \psi(x, \chi \cdot \chi'),
\]
where \(\chi'\) varies in the set of Dirichlet characters of modulus \(g\) and \(\chi \cdot \chi'(n) := \chi(n) \chi'(n)\).

For \(q \leq T \leq x^\frac{1}{2}\)
\[
\psi(x, \chi) = \delta_\chi x - \sum_{\rho} \frac{x^\rho}{\rho} + O\left(\frac{x \log^2 x}{T}\right),
\]
where \(\delta_\chi = 1\) or 0 according to whether \(\chi = \chi_0\) or not, and the sum on the right is over the zeros \(\rho\) of \(L(s, \chi)\) in \(0 \leq \text{Re}(\rho) \leq 1, |\text{Im}(\rho)| \leq T\). By (2)
\[
\psi(x, \chi; i, g) = \frac{1}{\varphi(g)} \sum_{\chi} \overline{\chi}(i) (\delta_\chi x - \sum_{\rho} \frac{x^\rho}{\rho}) + O\left(\frac{x \log^2 x}{T}\right),
\]
where the second sum is over the zeros \(\rho\) of \(L(s, \chi \cdot \chi')\) in \(0 \leq \text{Re}(\rho) \leq 1, |\text{Im}(\rho)| \leq T\).

Since
\[
\psi(x + h, \chi; i, g) - \psi(x, \chi; i, g) = \sum_{p \equiv i \pmod{g}} \chi(p) \log p + O(x^{\frac{1}{2}}),
\]
by (3)
\[
\sum_{p \equiv i \pmod{g}} \chi(p) \log p = \frac{1}{\varphi(g)} \left(\sum_{\chi} \overline{\chi}(i) (\delta_\chi x - h - \sum_{\rho} \frac{(x + h)^\rho - x^\rho}{\rho})\right) + O\left(\frac{x \log^2 x}{T}\right).
\]
Thus
\[
\sum_{q \leq P} \sum_{\chi}^* \sum_{p \equiv i \pmod{g}}^{x+h} \chi(p) \log p \ll \sum_{q \leq P} \sum_{\chi}^* \sum_{\chi}^* h \sum_{\rho} \frac{x^{\rho-1} + P^2}{T},
\]
where the fourth sum of the right hand side is over the zeros \(\rho = \beta + \gamma i\) of \(L(s, \chi \cdot \chi')\) in \(0 \leq \text{Re}(\rho) \leq 1, |\text{Im}(\rho)| \leq T\). Let \(N_x(\alpha, T)\) be the number of zeros \(\rho\) of \(L(s, \chi)\) in the rectangle
\[
\{\rho \in \mathbb{C} : \alpha \leq \text{Re}(\rho) \leq 1, |\text{Im}(\rho)| \leq T\}.
\]
Then the quadruple sum on the right hand side of (4) is
\[
- \int_0^1 x^{\alpha-1} \frac{\partial}{\partial \alpha} (\sum_{q \leq P} \sum_{\chi}^* \sum_{\chi}^* N_{\chi}(\alpha, T)) d\alpha
= \int_0^1 x^{\alpha-1} \log x \sum_{q \leq P} \sum_{\chi}^* \sum_{\chi}^* N_{\chi}(\alpha, T) d\alpha + \frac{1}{x} \sum_{q \leq P} \sum_{\chi}^* \sum_{\chi}^* N_{\chi}(0, T).
\]
Consider the decomposition of a character χ of modulus $q = \prod_p p^{a_p}$

$$\chi = \prod_p \chi_{p^{a_p}},$$

where $\chi_{p^{a_p}}$ is a character of modulus p^{a_p}. Assume g is a prime and $g|q$. Then the conductor of $\chi' \cdot \chi$ is q except the case that $u_g(q) = 1$ and the p-parts of decompositions of χ and χ' are inverse each other, in this case the conductor of $\chi' \cdot \chi$ is $\frac{q}{g}$. Therefore,

$$\sum_{\chi}^* \sum_{\chi'}^* N_{\chi' \chi}(a,T) = (\varphi(g) - 1)(\sum_{\chi} N_{\chi,1}(a,T) + \sum_{\chi} N_{\chi,2}(a,T)),$$

where the first sum on the right hand side varies in the set of non-primitive characters of modulus q which are induced by a primitive character of modulus $\frac{q}{g}$ and the second one on the right hand side varies in the set of primitive characters of modulus q. Let χ be a Dirichlet character of modulus q induced by primitive character χ^* of modulus q^*. Then,

$$L(s, \chi) \prod_{p|q^*} \frac{1}{1 - \chi^*(p)p^{-s}} = L(s, \chi^*).$$

Each factor $\frac{1}{1 - \chi^*(p)p^{-s}}$ has a pole at

$$s = \frac{2\pi i}{\log p} (l + \frac{m_p}{\varphi(q^*)}),$$

where m_p be the smallest positive integer satisfying $\chi^*(p) = e^{\frac{m_p}{\varphi(q^*)}}$ and l be an integer such that $\frac{2\pi i}{\log p} (l + \frac{m_p}{\varphi(q^*)}) < T$. Therefore

$$N_{\chi}(a,T) = N_{\chi^*}(a,T) + c_{a,q,q^*,T},$$

where $c_{a,q,q^*,T} = 0$ if $a > 0$ and $c_{0,q,q^*,T} = \sum_{p|q} (\frac{\varphi(p)}{p}) + 1$. Hence, for a prime g

$$\sum_{\frac{q}{g} \leq P}^{*} \sum_{\chi} N_{\chi'}(a,T) = (\varphi(g) - 1)(\sum_{q \leq \frac{P}{g}} \sum_{\chi} c_{a,q,q^*,T} + \sum_{q \leq \frac{P}{g}} \sum_{\chi} N_{\chi}(a,T))$$

$$< 2\varphi(g) \sum_{q \leq \frac{P}{g}} \sum_{\chi} N_{\chi}(a,T) + \varphi(g) \sum_{q \leq \frac{P}{g}} \sum_{\chi} c_{a,q,q^*,T}.$$
where $d(m)$ be the number of divisors of m. Therefore if $a > 0$,

$$
\sum_{q \leq P} \sum_{\chi}^{*} N_{T} \chi'(a, T) = \sum_{q \leq P} \sum_{\chi}^{*} N_{T} \chi'(a, T) + \sum_{q \leq gP} \sum_{\chi}^{*} N_{T} \chi'(a, T) \\
\leq \sum_{q \leq gP} \sum_{\chi}^{*} N_{T} \chi(a, T) + d(g)^2 \varphi(g) \sum_{q \leq gP} \sum_{\chi}^{*} N_{T} \chi(a, T) \\
\ll \sum_{q \leq gP} \sum_{\chi}^{*} N_{T} \chi(a, T),
$$

and if $a = 0$ since $c_{0, q, \frac{P}{\pi}} \leq \frac{T \log m}{\pi} + d(m)$,

$$
\sum_{q \leq P} \sum_{\chi}^{*} N_{T} \chi'(0, T) \ll \sum_{q \leq gP} \sum_{\chi}^{*} N_{T}(0, T) + \sum_{q \leq gP} \sum_{\chi}^{*} \left(\varphi(g) \sum_{q \leq gP} \sum_{\chi}^{*} N_{T}(0, T) \right) + \sum_{q \leq gP} \sum_{\chi}^{*} N_{T}(0, T) + \frac{P^2 T}{x}.
$$

Thus (5) is

$$
\ll \int_{0}^{1} x^{a-1} \log x \sum_{q \leq gP} \sum_{\chi}^{*} N_{T} \chi(a, T) d\alpha + \frac{1}{x} \sum_{q \leq gP} \sum_{\chi}^{*} N_{T}(0, T) + \frac{1}{x} \sum_{q \leq gP} \sum_{\chi}^{*} N_{T}(0, T) + \frac{gP^2 T}{x}
$$

$$
\ll x^{-\theta(T)} + \frac{P^2 T}{x},
$$

where

$$
\theta(T) = \begin{cases}
\frac{1}{\log T} & \text{if there is no exceptional character,} \\
\frac{c_2}{\log T} \log \frac{e \cdot c_1}{(1 - \beta) \log T} & \text{otherwise.}
\end{cases}
$$

For (6), we used [Gal, Theorem 6];

$$
\sum_{q \leq T} \sum_{\chi}^{*} N_{T} \chi(a, T) \ll T^{c(1 - a)}
$$

and assumed $T^c \leq x^{\frac{1}{2}}$ and $T > gP$. If we choose $T = P^5$ and $b = \frac{1}{10c}$, then $\frac{P^2 T}{x} \ll x^{-\frac{1}{2}}$ and the lemma follows.

From Lemma 7 and the argument below [MV, Lemma 4.3], we have the following modification of [MV, Lemma 4.3].

Lemma 8. If the exceptional character does not occur, there are positive absolute constants c_4, c_5 which satisfy

$$
\sum_{q \leq P} \sum_{\chi}^{*} \max \left(h + \frac{N}{P} \right)^{-1} \left| \sum_{x \leq \chi(p) \log p} \chi(p) \right| \ll \exp(-c_4 \frac{\log N}{\log P})
$$

10
for \(\exp(\log^{\frac{1}{2}} N) \leq P \leq N^{c_3} \) and if the exceptional character occurs, the right hand side may be replaced by \((1 - \tilde{\beta}) \log P \exp(-c_6 \frac{\log N}{\log P})\). Here the term with \(q = 1 \) is read as follows: if there is no exceptional character, it is

\[
\sum_{x-h \leq p \leq x} \log p - \sum_{x - h < n \leq x \atop n \equiv i \pmod{g}} 1
\]

and if there is the exceptional character, it is

\[
\sum_{x-h \leq p \leq x} \tilde{\chi}(p) \log p + \sum_{x - h < n \leq x \atop n \equiv i \pmod{g}} n^{\tilde{\beta} - 1}.
\]

For a Dirichlet character \(\chi \) modulo \(q \), define

\[
S_i(\chi, \eta) := \sum_{P < p \leq X \atop p \equiv i \pmod{g}} (\log p) \chi(p) e(p\eta),
\]

and

\[
T_i(\eta) := \sum_{n \equiv i \pmod{g} \atop n \leq X} e(n\eta), \quad \tilde{T}_i(\eta) := - \sum_{P < n \leq X \atop n \equiv i \pmod{g}} n^{\tilde{\beta} - 1} e(n\eta),
\]

where the last one is defined only if there is an exceptional character.

Let \(\chi_0 \) be the principal character modulo \(q \). Define

\[
W_i(\chi, \eta) := \begin{cases}
S_i(\chi, \eta) - T_i(\eta) & \text{if } \chi = \chi_0, \\
S_i(\chi, \eta) - \tilde{T}_i(\eta) & \text{if } \chi = \tilde{\chi}\chi_0, \\
S_i(\chi, \eta) & \text{otherwise.}
\end{cases}
\]

Suppose that a Dirichlet character \(\chi \pmod{q} \) is induced by a primitive character \(\chi^* \pmod{r} \). Put

\[
W_i^A(\chi) = \left(\int_{-\frac{1}{2}}^{\frac{1}{2}} |W_i(\chi, A\eta)|^2 \, d\eta \right)^{\frac{1}{2}} \quad \text{and} \quad W_i^A = \sum_{q \leq P} \sum_{\chi} W_i^A(\chi).
\]

We note that \(W_i^A(\chi) = W_i^A(\chi^*) \). Then we have the following lemma which is a modification of [MV] (7.1).

Lemma 9. If the exceptional character does not occur, there is an absolute constant \(c_6 \) which satisfies

\[
W_i^A \ll X^{\frac{1}{2}} \exp(-c_6 \frac{\log X}{\log P}),
\]

and if the exceptional character occurs, the right hand side may be replaced by \(X^{\frac{1}{2}}(1 - \tilde{\beta}) \log P \exp(-c_6 \frac{\log X}{\log P}) \).
Proof. First assume that χ be a primitive character which is not equal to χ_0 nor $\tilde{\chi}\chi_0$.

Then

$$W_i^A(\chi)^2 = \int_{\frac{1}{q^2}}^{\frac{1}{q}} \left| \sum_{\substack{P < p \leq X \atop p \equiv i \mod g}} \chi(p) \log p \cdot e(Ap\eta) \right|^2 d\eta.$$

Applying [MV, Lemma 4.2] to the real numbers

$$u_n := \begin{cases}
\chi(p) \log p & \text{if } n = Ap, P < p \leq X, p \equiv i \mod g, \\
0 & \text{otherwise,}
\end{cases}$$

we get

$$W_i^A(\chi)^2 \ll \int_{0}^{2AX} \left| \frac{1}{qQ} \sum_{\substack{x - \frac{qQ}{2} \leq Ap \leq x \atop p \equiv i \mod g}} \chi(p) \log p \right|^2 dx.$$

Thus

$$W_i^A(\chi) \ll \left(2AX\right)^{\frac{1}{2}} \max_{x \leq 2AX} \left| \frac{1}{qQ} \sum_{x - \frac{qQ}{2} \leq Ap \leq x \atop p \equiv i \mod g} \chi(p) \log p \right|$$

$$\ll X^{\frac{1}{2}} \max_{x \leq 2AX} \left(\frac{Q}{2} \right)^{-1} \left| \sum_{x - \frac{qQ}{2} \leq Ap \leq x \atop p \equiv i \mod g} \chi(p) \log p \right|$$

$$\leq X^{\frac{1}{2}} \max_{x \leq 2AX} \max_{h \leq X} (Q + h)^{-1} \left| \sum_{x - h \leq Ap \leq x \atop p \equiv i \mod g} \chi(p) \log p \right| \quad (\because \frac{qQ}{2} \leq X)$$

$$\leq X^{\frac{1}{2}} \max_{x \leq 2AX} \max_{h \leq 2X} (2Q + h)^{-1} \left| \sum_{x - h \leq Ap \leq x \atop p \equiv i \mod g} \chi(p) \log p \right|.$$

When $\chi = \chi_0$ or $\tilde{\chi}\chi_0$, $W_i(\chi, \eta)$ is exactly the term of the case of $q = 1$ in Lemma \[8\].

Hence

$$W_i^A = \sum_{q \leq P} \sum_{\chi}^* W_i^A(\chi)$$

$$\ll X^{\frac{1}{2}} \sum_{q \leq P} \sum_{\chi}^* \max_{x \leq 2X} \max_{h \leq 2X} \left(\frac{2X}{P} \right)^{-1} \left| \sum_{x - h \leq Ap \leq x \atop p \equiv i \mod g} \chi(p) \log p \right|.$$

So the lemma is proved by Lemma \[8\].

Now we can prove the following analogue of [BKW, Lemma 2]. For the proof, we follow the proof of [BKW, Lemma 2]. New ingredients in our proof are the estimations of the bounds of new terms which do not appear in the proof of [BKW, Lemma 2], using Lemma 9 if needed.
Proposition 10. Suppose that \(Y \) is a real number with \(1 \leq Y \leq X^{\frac{1}{2}} \). If there is at least one integer \(m \) such that

\[
2f(m) = Ai + Bj \pmod{g},
\]

then

\[
r_T(2f(n);\mathfrak{M}) \gg XY^{-\frac{1}{2}}(\log X)^{-1}
\]

for all \(n \in (\kappa N, N] \) with \(2f(n) \equiv Ai + Bj \pmod{g} \) except at most \(O(N^{1+\epsilon}Y^{-1}) \) numbers.

Proof. Let \(n \in (\kappa N, N] \) be an integer with \(2f(n) \equiv Ai + Bj \pmod{g} \). The proof is divided into three steps. In the first step, we will prove that if there is no exceptional character, then \(r_T(2f(n);\mathfrak{M}) \gg X \). Next we will show that even if there is the exceptional character, the same lower bound holds when \((2f(n), \tilde{r}) = 1 \). Finally we will show that the number of integers \(n \) for which

\[
(2f(n), \tilde{r}) > 1 \text{ and } r_T(2f(n);\mathfrak{M}) \ll XY^{-\frac{1}{2}}(\log X)^{-1}
\]

is at most \(O(N^{1+\epsilon}Y^{-1}) \).

First we assume that there is no exceptional character. For \(\alpha \in \mathfrak{M}(q, a) \) we write \(\alpha = \frac{a}{q} + \eta \) for \((a, q) = 1, \ 0 \leq \eta < 1 \) and \(q < P \). Let \(\chi \) be a Dirichlet character of modulus \(q \) and \(\tau(\chi) = \sum_{n=1}^{q} \chi(n)e(\frac{n}{q}) \) the Gaussian sum. Since \(e(\frac{a}{q}) = \frac{1}{\varphi(q)} \sum_{\chi} \bar{\chi}(a)\tau(\chi) \), we have

\[
S_i(Aa) = \frac{\mu(q)}{\varphi(q)} T_i(A\eta) + \frac{1}{\varphi(q)} \sum_{\chi} \chi(Aa)\tau(\chi)W_i(\chi, A\eta).
\]

Thus

\[
r_T(2f(n);\mathfrak{M}) = \sum_{q \leq P} \frac{\mu(q)^2}{\varphi(q)^2} c_q(-2f(n)) \left[\int_{\frac{1}{q}}^{\frac{1}{2}} T_i(A\eta)T_j(B\eta)e(-2f(n)\eta) d\eta \right] (7)
\]

\[
+ \sum_{q \leq P} \frac{\mu(q)^2}{\varphi(q)^2} \sum_{\chi} \chi'(B)c_{\chi'}(-2f(n))\tau(\bar{\chi}') \left[\int_{\frac{1}{q}}^{\frac{1}{2}} T_i(A\eta)W_j(\chi', B\eta)e(-2f(n)\eta) d\eta \right] (8)
\]

\[
+ \sum_{q \leq P} \frac{\mu(q)^2}{\varphi(q)^2} \sum_{\chi} \chi(A)c_{\chi}(-2f(n))\tau(\bar{\chi}) \left[\int_{\frac{1}{q}}^{\frac{1}{2}} T_j(B\eta)W_i(\chi, A\eta)e(-2f(n)\eta) d\eta \right] (9)
\]

\[
+ \sum_{q \leq P} \left[\frac{1}{\varphi(q)^2} \sum_{\chi, \chi'} \chi(A)\chi'(B)c_{\chi, \chi'}(-2f(n))\tau(\bar{\chi})\tau(\bar{\chi}') \right.
\]

\[
\left. \times \left[\int_{\frac{1}{q}}^{\frac{1}{2}} W_i(\chi, A\eta)W_j(\chi', B\eta)e(-2f(n)\eta) d\eta \right] \right] (10)
\]

13
Thus condition \(q \gg 0 \) and by some elementary computations, we have

\[\sum_{h=1}^{q} \chi(h) e \left(\frac{hm}{q} \right) \quad \text{and} \quad \sum_{h=1}^{q} \chi(h) e \left(\frac{hm}{q} \right). \]

Using \([MV, \text{Lemma 5.5}]\) and the same argument in \([MV, \text{Section 6}]\), we have

\[\left(\sum_{h=1}^{q} \chi(h) e \left(\frac{hm}{q} \right) \right) W^A X_i^j \quad \text{and} \quad \left(\sum_{h=1}^{q} \chi(h) e \left(\frac{hm}{q} \right) \right) W^B X_j^i. \]

Let us compute the bound of (7). Since \(T_i(A\eta) \ll \frac{1}{\|gA\eta\|} \), by assuming the harmless condition \(qQ > 2gA \) and \(A \geq B \), we have

\[\int_{1/\| g \|}^{1/\| gA \|} T_i(A\eta)T_j(B\eta)e(-2f(n)\eta)d\eta \ll \int_{1/\| g \|}^{1/\| gA \|} \int_{1/\| gB \|}^{1/\| gA \|} d\eta \ll \int_{1/\| g \|}^{1/\| gA \|} \frac{1}{g^2AB\eta^2}d\eta \ll qQ. \]

By some elementary computations, we have

\[\int_{1/\| g \|}^{1/\| gA \|} T_i(A\eta)T_j(B\eta)e(-2f(n)\eta)d\eta - \sum_{1 \leq t \leq gA} \left(\sum_{P \leq k, l \leq X} \frac{1}{Ak + Bl - 2f(n)} [e(Ak + Bl - 2f(n)) - e(Ak + Bl - 2f(n))] \right) \]

\[= \sum_{1 \leq t \leq gA} \left(\sum_{P \leq k, l \leq X} \frac{1}{Ak + Bl - 2f(n)} - \sum_{P \leq k, l \leq X} 1 \right) \]

\[= O(\log X), \]

and

\[\int_{1/\| g \|}^{1/\| gA \|} T_i(A\eta)T_j(B\eta)e(-2f(n)\eta)d\eta = \int_{1/\| g \|}^{1/\| gA \|} e((Ak + Bl - 2f(n))\eta)d\eta \]

\[= \sum_{1 \leq t \leq gA} \frac{1}{g} = \frac{2f(n)}{g^2AB} + O(1). \]

Together with these three estimations, we have

\[\int_{1/\| g \|}^{1/\| gA \|} T_i(A\eta)T_j(B\eta)e(-2f(n)\eta)d\eta = \frac{2f(n)}{g^2AB} + O(qQ). \]

Thus

\[(7) = \sum_{q \neq p} \frac{\mu(q)^2}{q^2} c_q(-2f(n)) \left(\frac{2f(n)}{g^2AB} + O(qQ) \right). \]
Note that the last term appears when

\[r_T(2f(n); \mathfrak{N}) = \mathcal{S}(2f(n)) \frac{2f(n)}{g^2 AB} + O(X^{1+\delta} P^{-1}) + O\left(\frac{2f(n)}{\varphi(2f(n))} (W_i X^{1/2} + W_j X^{1/2} + W_i W_j) \right), \]

where

\[\mathcal{S}(n) = \sum_{q=1}^{\infty} \frac{\mu(q)^2}{\varphi(q)^2} c_q(-n) = \prod_{p|n} (1 - \frac{1}{(p-1)^2}) \prod_{p|n} (1 + \frac{1}{p-1}). \]

In this equation, the first error term \(X^{1+\delta} P^{-1} \) is negligible. Also from Lemma 9, the second error term is less than \(\frac{6f(n)}{\varphi(2f(n))} X e^{-\frac{\alpha}{\log n}} \). If we choose a sufficiently small positive real number \(\delta \), then \(r_T(2f(n); \mathfrak{N}) \geq (1 - c_7) \mathcal{S}(2f(n)) f(n) \). These imply that \(r_T(2f(n); \mathfrak{N}) \gg X \), which is the conclusion of the first step.

Next, assume that there is the exceptional character. In this case, we have

\[S_1(A\alpha) = \frac{\mu(q)}{\varphi(q)} T_i(A\eta) + \frac{1}{\varphi(q)} \sum_{\chi} \chi(A) \tau(\xi) W_i(\chi, A\eta) + \frac{\chi(A) \tau(\xi) \chi(0)}{\varphi(q)} T_i(A\eta). \]

Note that the last term appears when \(q \) divides \(\tilde{r} \), the modulus of the exceptional character. This makes additional terms in \(r_T(2f(n); \mathfrak{N}) \) which are

\[
\begin{align*}
\sum_{q \equiv P \mod{\tilde{r}}} & \frac{\tau(\xi) \chi(0)^2}{\varphi(q)} \tilde{r}(AB) c_q(-2f(n)) \int_{-1/\tilde{q}}^{1/\tilde{q}} \tilde{T}_i(A\eta) \tilde{T}_j(B\eta) e(-2f(n)\eta) d\eta \\
+ & \sum_{q \equiv P \mod{\tilde{r}}} \frac{\mu(q) \tau(\xi) \chi(0)}{\varphi(q)^2} \tilde{r}(B) c_{\tilde{r}}(\tilde{r}(0) - 2f(n)) \int_{-1/\tilde{q}}^{1/\tilde{q}} T_i(A\eta) \tilde{T}_j(B\eta) e(-2f(n)\eta) d\eta \\
+ & \sum_{q \equiv P \mod{\tilde{r}}} \frac{\mu(q) \tau(\xi) \chi(0)}{\varphi(q)^2} \tilde{r}(A) c_{\tilde{r}}(\tilde{r}(0) - 2f(n)) \int_{-1/\tilde{q}}^{1/\tilde{q}} T_j(B\eta) \tilde{T}_i(A\eta) e(-2f(n)\eta) d\eta \\
+ & \sum_{q \equiv P \mod{\tilde{r}}} \frac{\tilde{r}(B) \tau(\xi) \chi(0)}{\varphi(q)^2} \sum_{\chi} \chi(\tilde{r}(-2f(n)) \tau(\xi) \chi(A)) \int_{-1/\tilde{q}}^{1/\tilde{q}} W_i(\chi, A\eta) \tilde{T}_j(B\eta) e(-2f(n)\eta) d\eta \\
+ & \sum_{q \equiv P \mod{\tilde{r}}} \frac{\tilde{r}(A) \tau(\xi) \chi(0)}{\varphi(q)^2} \sum_{\chi} \chi(\tilde{r}(-2f(n)) \tau(\xi) \chi(B)) \int_{-1/\tilde{q}}^{1/\tilde{q}} W_j(\chi, B\eta) \tilde{T}_i(A\eta) e(-2f(n)\eta) d\eta. \tag{11}
\end{align*}
\]

By the same argument in the previous step, the last two terms of (11) are bounded by

\[
2X^{1/2} \sum_{q \equiv P \mod{\tilde{r}}} \frac{1}{\varphi(q)^2} \sum_{\chi} c_{\tilde{r}}(-2f(n)) \tau(\xi) \chi(0) |W_k^C\chi| \ll \frac{2f(n)}{\varphi(2f(n))} X^{1/2} W_k^C,
\]
where \(C = A \) or \(B \) and \(k = i \) or \(j \). And the first three terms in (11) turn out to be

\[
\begin{align*}
\sum_{q \equiv P \atop \pi q} \frac{\tau(\tilde{\chi}_0)^2}{q(q^2)} \tilde{\chi}(ABa^2)c_q(-2f(n))(\tilde{T}_{ij}^{AB}(2f(n)) + O(qQ)) \\
+ \sum_{q \equiv P \atop \pi q} \frac{\mu(q)r(\tilde{\chi}_0)}{q(q^2)} \tilde{\chi}(B)c_{\tilde{\chi}_0}(-2f(n))(\tilde{J}_{ji}^{BA}(2f(n)) + O(qQ)) \\
+ \sum_{q \equiv P \atop \pi q} \frac{\mu(q)r(\tilde{\chi}_0)}{q(q^2)} \tilde{\chi}(A)c_{\tilde{\chi}_0}(-2f(n))(\tilde{J}_{ij}^{AB}(2f(n)) + O(qQ)),
\end{align*}
\]

where

\[
\tilde{T}_{ij}^{AB}(n) := \int_0^1 \tilde{T}(An)\tilde{T}(B\eta)e(-n\eta)d\eta \\
\tilde{J}_{ij}^{AB}(n) := \int_0^1 \tilde{T}(An)\tilde{T}(B\eta)e(-n\eta)d\eta.
\]

Let \(\tilde{S}(n) := \sum_{q \equiv P \atop \pi q} \frac{\tau(\tilde{\chi}_0)^2}{q(q^2)}c_q(-n) \). Then we can prove

\[
\begin{align*}
r_{1}(2f(n); \mathfrak{M}) & = \tilde{S}(2f(n))\frac{2f(n)}{g^2AB} + \tilde{\chi}(ABa^2)\tilde{S}(2f(n))\tilde{T}_{ij}^{AB}(2f(n)) \\
& + O(\tilde{\chi}(2f(n))^2\tilde{\chi}(2f(n))X_{\tilde{\chi}^{2}}) + O(X_{1+\delta}P^{-1}(2f(n), \tilde{\phi})) \\
& + O(\frac{2f(n)}{\tilde{\chi}(2f(n))}(X_{\tilde{\chi}}^{2}(W_{i}^{A} + W_{j}^{B}) + W_{i}^{A}W_{j}^{B})).
\end{align*}
\]

(12)

by just following [MV, p.364]. Our assumption \((2f(n), \tilde{\phi}) = 1\) means that the fourth term of (12) is less than \(X^{1-5\delta} \). Using the same method in [MV, section 8], we have

\[
\tilde{S}(n) \ll o(1) \quad \text{and} \quad \tilde{T}_{ij}^{AB}(n) = \sum_{P < k < n - P \atop k \equiv i, \frac{n - Ak}{B} \in \mathbb{Z}} (k\frac{n - Ak}{B})^{\beta - 1} \leq \sum_{P < k < n - P \atop \frac{n - Ak}{B} \in \mathbb{Z}} (k\frac{n - Ak}{B})^{\beta - 1} \leq n^\beta.
\]

These facts and Lemma 9 imply that

\[
r_{1}(2f(n); \mathfrak{M}) \gg X \quad \text{if} \quad (2f(n), \tilde{\phi}) = 1,
\]

which is the conclusion of the second step.

Finally we assume \((2f(n), \tilde{\phi}) > 1\), so we have \(\tilde{\chi}(2f(n)) = 0 \). Then by Lemma 9 and (12) there is a constant \(c_{7} \) satisfying

\[
|r_{1}(2f(n); \mathfrak{M}) - \tilde{S}(2f(n))\frac{2f(n)}{g^2AB} - \tilde{S}(2f(n))\tilde{T}_{ij}^{AB}(-2f(n))| \leq c_{7}(T_{1} + T_{2}),
\]

(13)

where

\[
T_{1} = X^{1+\delta}P^{-1}(2f(n), \tilde{\phi}) \quad \text{and} \quad T_{2} = \frac{2f(n)}{\tilde{\phi}(2f(n))}(1 - \tilde{\beta})Xe^{-\tilde{\phi}} \log P.
\]

16
All the arguments in [BKW, p.122–123] can be used for $r_\Gamma(2f(n);m)$ since we know that $\tilde{I}_{ij}^{AB}(2f(n)) \leq n^{\tilde{\alpha}}$. As a consequence, we conclude that if $1 < (2f(n), \tilde{r}) < Y$, then

$$r_\Gamma(2f(n);m) \gg XY^{-1}(\log X)^{-1}$$

and there are at most $O(N^{1+\epsilon}Y^{-1})$–exceptions which are n with $(2f(n), \tilde{r}) > Y$. This completes the proof of the proposition. \hfill \Box

4 Proof of Theorem 2

We note that if there is at least one integer m such that $2f(m) \equiv Ai + Bj \pmod{g}$, the set of $n \in (\kappa N, N]$ with $2f(n) \equiv Ai + Bj \pmod{g}$ has a positive density in the set of $n \in (\kappa N, N]$. Then the proof of Theorem 2 is exactly same as the proof of [BKW, Theorem 1] since Proposition 5 and Proposition 10 give the same results for $r_\Gamma(2f(n);m)$ and $r_\Gamma(2f(n);m)$ as [BKW, Lemma 1] and [BKW, Lemma 2].

Acknowledgment. The authors thank Professor Trevor Wooley for useful discussions and comments.

References

[BJ] D. Byeon and K. Jeong, Sums of two rational cubes with many prime factors, preprint.

[BJK] D. Byeon, D. Jeon and C. Kim, Rank one quadratic twists of an infinite family of elliptic curves, J. Reine und Angew. Math., 633 (2009), 67–76.

[BKW] J. Brüdern, K. Kawada and T. D. Wooley, Additive representation in thin sequences, II: The binary Goldbach problem, Mathematika 47, (2000), 117–125.

[Dav] H. Davenport, Multiplicative number theory, Springer-Verlag, Second Edition, (1980).

[Gal] P. X. Gallagher, A large sieve density estimate near $\sigma = 1$, Invent. Math. 11, (1970), 329–339.
[IK] H. Iwaniec and E. Kowalski, *Analytic number theory*, American Mathematical Society, (2004).

[MV] H. L. Montgomery and R. C. Vaughan, *The exceptional set in Goldbach's problem*, Acta Arith. **27.1** (1975), 353–370.

Department of Mathematics, Seoul National University, Seoul, Korea
E-mail: dhbyeon@snu.ac.kr

Department of Mathematics, Seoul National University, Seoul, Korea
E-mail: kyjeongg@gmail.com