Matrix integrals as Borel sums of Schur function expansions

J. Harnd

Department of Mathematics and Statistics, Concordia University
7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6, and
Centre de recherches mathématiques, Université de Montréal
C.P. 6128, succ. centre Ville, Montreal, Quebec, Canada H3C 3J7
e-mail: harnd@crm.umontreal.ca

A.Yu. Orlov

Nonlinear Wave Processes Laboratory,
Oceanology Institute, 36 Nakhimovskii Prospect
Moscow 117851, Russia
e-mail: orlovs@wave.sinr.ru

Abstract

The partition function for unitary two matrix models is known to be a double
K P \{ function, as well as providing solutions to the 2-dimensional Toda hierarchy.
It is shown how it may also be viewed as a Borel sum regularization of divergent
sums over products of Schur functions in the two sequences of associated KP ow
variables.

1. Introduction. {functions related to Schur functions.

We recall here a method for constructing a large class of double KP \{functions in terms
of infinite sums over Schur functions, in which the two sets of ow variables appear on a
symmetrical footing. (See O, O S for further details of such constructions, and additional
applications.)

1a. Schur function expansion of functions.

Suppose we are given:
(ii) A partition \(n_1 \cdots n_p \) of \(n = \sum_{i=1}^{p} n_i \).

Define, for each integer \(M \), the quantity
\[
\sum_{i<j} \prod_{i \neq j} \frac{r(M + j - i)}{8i j 2}
\]

where the product is over all pairs \((i; j)\) that lie within a cell in the corresponding Young
diagram (labelled like the entries of a matrix).

\footnote{Based on a talk given by J. Harnd at the workshop: Symmetry and Perturbation theory 2002, Sardinia (Cala Gonone), May 19-26, 2002.}
Using the quantities \(\{M\} \) as coefficients, we may define an infinite sum over partitions (without, for the moment, considering the question of domain of convergence):

\[
\sum_{\{M; t; \bar{t}\}} = \{M\} s(t) \bar{s}(t); \tag{1.2}
\]

where \(t = (t_1; t_2; \cdots) \) and \(\bar{t} = (t_1; t_2; \cdots) \) are two infinite sequences of \(\bar{t} \) variables, and the Schur function \(s(t) \) is defined by

\[
s(t) = \det(\delta_{n\bar{t}} + j_{1\bar{t}}(t)) \tag{1.3}
\]

in terms of the elementary Schur functions (complete symmetric functions) \(f_{j_1} \langle t \rangle g_{j_2} e \), which are determined by:

\[
\exp \left(\sum_{m=0}^{\infty} t_m z^m \right) = \sum_{m=0}^{\infty} \frac{z^m h_m(t)}{m!}; \tag{1.4}
\]

Whenever the sum (1.2) is convergent, it may be shown to be a double KP (function D, O S). An indication of how this is done, using the fermionic Fock space construction, is given in the next subsection.

1b. Free fermion construction of the function.

Introduce, on a suitably defined fermionic Fock space, the free fermion creation and annihilation operators \(f_j; g_j e \), which satisfy the usual anti-commutation relations

\[
\{ j; k \} = 0; \quad \{ j; k \} = 0; \tag{1.5a}
\]

\[
\{ j; k \} = j_k; \quad \{ j; k \} = 0 \in 2. \tag{1.5b}
\]

Then for any given sequence \(\{m\} \in \{0, \infty\} \), we have the following fermionic formula for the associated function:

\[
\sum_{\{M; t; \bar{t}\}} = \langle M \mid f^{H}(t) e^{A(t)} \rangle \tag{1.6}
\]

where

\[
H(t) = \sum_{m=0}^{\infty} t_m H_m; \quad A(t) = \sum_{m=0}^{\infty} t_m A_m; \tag{1.7a}
\]

\[
H_n = \sum_{k=1}^{\infty} r(k) r(k+1) \cdots r(k+n-1) k_n k; \tag{1.7b}
\]

\[
A_n = \sum_{k=1}^{\infty} r(k) r(k+1) \cdots r(k+n-1) k_n k; \tag{1.7c}
\]

2
Matrix integrals as Borel sums of Schur function expansions

and $M >$ is the charge M vacuum state defined by

\begin{align}
M > &= \begin{pmatrix} M_1 & 1 & 0 \end{pmatrix} D >; \quad M > 0; \\
M > &= \begin{pmatrix} M_2 & 2 & 1 \end{pmatrix} D >; \quad M < 0;
\end{align}

(1.8)

Here, the operator $e^{A(t)}$ may be seen as preparing the initial state, for fixed values of the parameters t, while the operators $e^{H(t)}$ generate the abelian group action determining the KP equations. (All the H_n's commute amongst themselves, as do the A_n's.) In this sense, the parameters t are just viewed as distinguishing the elements of an infinite family of KP equations in the t variables. However, the roles of the two sets of parameters t and τ may be interchanged and $r(M; \tau; t)$ may also be interpreted as a KP -function in the τ ow variables for fixed values of t, thereby defining a double KP -function. Moreover, the whole sequence of $r(M; \tau; t)$'s for successive values of M may be shown to define solutions of the 2-dimensional Toda hierarchy $\{ D, \bar{O}, S \}$.

In what follows, we restrict to the particular choice

\begin{equation}
r(n) = n;
\end{equation}

(1.9)

which gives

\begin{equation}
r(M) = (M) = \prod_{j-1}^{N} (M - j)_{n_j};
\end{equation}

(1.10)

where

\begin{equation}
(N)_{m} = N \cdot (N + 1) \cdot \ldots \cdot (N + m - 1);
\end{equation}

(1.11)

is the Pochhammer symbol, and denote the corresponding \{function

\begin{equation}
F(M; \tau; t) = r(M; \tau; t) = F_{m}^{n_1, \ldots, n_p} (M; \tau; t) = (M)_{n_1, \ldots, n_p} s(t)_m t;
\end{equation}

(1.12)

It is easy to see that for most values of the parameters t this is actually a divergent sum, and hence needs some interpretation. This will be given in the next section. For the present, we just note that there do exist finite dimensional subregions in the parameter space in which the sum converges; in fact, there are regions where only a finite number of terms do not vanish, and hence $F(M; \tau; t)$ is actually a polynomial in each of the τ ow variables. Namely, if we choose one of the finite sets of deformation parameters, say t, to be given in terms of a finite set of quantities x_1, \ldots, x_p by:

\begin{equation}
t_j = \frac{1}{x_{m-1}^{j}} x_{m}^{j},
\end{equation}

(1.13)
the elementary Schur functions $s_m(t)$ vanish identically for $m > P$. Therefore the sum $s(1.12)$ becomes finite, and $F^M(t; t)$ is just a polynomial in the parameters $(t_1; t_2; \ldots ; t_i; t_j; \ldots)$.

For $M = 1$, (1.12) takes a particularly simple form, since we then have $r_m(1) = n_1$, and the only partition entering is $\lambda = (n)$, so (1.12) reduces to the expression

$$F^1(t; t) = \sum_{n=0}^{\lambda} n \frac{h_n(t) h_n(t)}{n} \quad (1.14)$$

1c. Determinant expression for $F^M(t; t)$ in terms of $F^1(t; t)$.

It is possible to deduce a simple expression for $F^M(t; t)$ as a finite determinant in terms of $F^1(t; t)$ and its derivatives.

Proposition 1.1. In any region where the sum (1.12) is uniformly convergent with respect to the parameters t_1 and t_2 the function $F^M(t; t)$ may be expressed in terms of $F^1(t; t)$ through the following formula:

$$F^M(t; t) = \frac{1}{M} \det \frac{\partial^{a+b} F^1(t; t)}{\partial t_1^a \partial t_2^b} \quad (1.15)$$

This result, and another one similar to it, discussed in the next section, may be obtained as a consequence of the following well-known lemma:

Lemma 1.2. For any measure $d(x; y)$ (real or complex) and any two sets of functions $f_i(x); i(y)g_{i=1; \ldots M}$, if the following integrals exist along suitably chosen contours x and e_y in the complex x- and y-planes, they satisfy the identity

$$\int x \cdot e_y \cdot d(x_1; y_1; \ldots ; x_M; y_M) \cdot \det (\lambda_i(x_j)) \cdot \det (\lambda_k(y_j)) = M \det \frac{\partial \lambda_{a+b}^m(t; t)}{\partial t_1^a \partial t_2^b} \quad (1.16)$$

The validity of eq. (1.15) may also be shown for more general parameter values, either as equalities between formal series or in the sense of asymptotic expansions about a Gaussian point ($t_2 \neq 0, t_3 = 0; 8j > 2$).

Proof of Proposition 1.1. Use

$$\frac{\partial h_m}{\partial t_1^a} = h_{m-a} \quad (1.17)$$

(where h_j is understood to vanish for negative j) to deduce

$$\frac{\partial^{a+b} F^1(t; t)}{\partial t_1^a \partial t_2^b} = \sum_{m=0}^{\lambda} m \frac{h_m(t) h_m(t)}{m} \quad (1.18)$$
Matrix integrals as Borel sums of Schur function expansions

and apply the discrete measure version of Lemma 1.2 with:

\[i(m) = h_m \, i + 1(t); \quad j(m) = h_m \, j + 1(t); \quad (1.19) \]

using (1.3).

2. Relation between \(F^M(t; t) \) and matrix integrals

2a. The 2-matrix partition function \(Z^M_{2P} \).

The unitary 2-matrix model partition function for \(M \) hermitian matrices \([IZ, DKK, MS, BEH]\), after integrating out the angular variables, is given, up to a proportionality constant, by the following multiple integral over the eigenvalues.

\[
Z^M_{2P}(t; t) = \prod_{x_1, y_1, \ldots, x_n, y_n} \Psi(x) \, \psi(y) \, e^{P_{j=1}^n (t_j x_j + t_j y_j + a_j y_j)} \, dx_j dy_j; \quad (2.1)
\]

where

\[\Psi(x) = \prod_j (x_j \, x_{j+1}); \quad \psi(y) = \prod_j (y_j \, y_{j+1}); \]

(Athough for the case of Hermitian matrices, the integration is along the real axes, we retain here the possibility of integration over more general contours \(x \) and \(y \) in the \(x \) and \(y \) planes.)

This may also be expressed as a determinant in terms of derivatives of \(Z^M_{2P}(t; t) \):

Proposition 2.1: We have the following expression for the 2-matrix partition function in terms of the \(M = 1 \) case, valid in any region where the integral (2.1) is uniformly convergent with respect to the parameters \(t_j \) and \(t_{j+1} \).

\[
Z^M_{2P}(t; t) = M \, \text{det} \left[\frac{\partial a + b}{\partial t_j} \frac{Z^M_{2P}(t; t)}{t_j b^a b_j}; \quad M = 1; \quad (2.2) \right]
\]

The proof of this result is also a straightforward application of Lemma 1.2.

2b. Schur function expansion of \(Z^M_{2P} \).

We now state the main result, relating the tau function \(F^M(t; t) \) to the 2-matrix partition function \(Z^M_{2P}(t; t) \).

Theorem 2.2: In any region where both the integral (2.1) defining the partition function \(Z^M_{2P}(t; t) \) and the sum (1.12) defining the function \(F^M(t; t) \) are uniformly convergent, we have the equality:

\[
Z^M_{2P}(t; t) = 2 \sum_{j=1}^\Psi j! F^M(t; t); \quad (2.3)
\]

5
J.Harnad and A.Yu.Orlov

Moreover, when the integral (2.1) defining $Z_{2p}^M (t; t)$ is convergent, whether the sum (1.12) is convergent or not, the former may be viewed as a multi-variable Borel sum of the series (1.12) defining $F^M (t; t)$. Moreover, even when the integral is not convergent, it may be expanded in a perturbation series about a Gaussian point where $t_2 \in 0, t_n = 0; 8n > 2$, and the resulting asymptotic series is given by the sum (1.12). A proof of these result is given in [H0]. Here, we just give a sketch of how the identication as a Borel sum may be derived for the case $M = 1$, and conclude, from Props. 1.2 and 2.1 that this implies the analogous result in the multiple integral case. We also indicate a purely formal approach directly for arbitrary M, which does not address the question of convergence.

2c. Formal expansions for $M = 1$.

We first show how the relation (2.3) may be derived formally, without considerations of convergence, for the case $M = 1$.

Proposition 2.3: Choosing the integration contours x and e_y to be orthogonal lines in the complex plane, the following identity holds:

$$Z_{2p}^1 (t; t) = 2 i F^1 (t; t):$$

as formal expansions in powers of the variables $t = (t_1; t_2; \ldots)$ and $t = (t_1; t_2; \ldots)$.

Proof: Substituting the series (1.4) generating the elementary Schur functions into Z_{2p}^1 gives:

$$Z_{2p}^1 (t; t) = \begin{vmatrix} dx \frac{\partial}{\partial x} h_m (t) \exp (t_j y_j) e^{xy} \\ dy \frac{\partial}{\partial y} h_m (t) \exp (t_j y_j) (1)^m \frac{d^m}{dy^m} e^{xy} \end{vmatrix}_{x,y}$$

Taking the derivatives with respect to y outside the x integral, and evaluating the x integral along the imaginary axis, we obtain a $\frac{\partial}{\partial y} F^1 (t; t)$ integral, giving

$$Z_{2p}^1 (t; t) = 2 i \begin{vmatrix} dy \frac{\partial}{\partial y} (1)^m h_m (t) \frac{d^m}{dy^m} \exp (t_j y_j) \end{vmatrix}_{y=0}$$

$$= 2 i \begin{vmatrix} x \frac{\partial}{\partial y} h_m (t) \frac{d^m}{dy^m} h_j (t) y_j A \\ y=0 \end{vmatrix}_{y=0}$$

$$= 2 i \begin{vmatrix} m h_m (t) h_m (t) \end{vmatrix}_{m=1} = 2 i F^1 (t; t):$$

6
2d. Borel sum interpretation of eq. (2.3) for $M = 1$.

We now show, for the case $M = 1$, how $Z_{2p}^{1/2} (t; t^{-1})$ may be interpreted as a Borel sum for (1.14) even when the sum diverges.

To do this, we reinterpret the integrals denning $Z_{2p}^{1/2} (t; t^{-1})$ in such a way that the variables x and y are replace instead by a pair of complex conjugate variables z and z^* in the complex plane, with the integral viewed simply as a double integral in the plane.

We then have, using the expansion (1.4):

\[
Z_{p}^{1/2} (t; t^{-1}) = \int_{1}^{z} dz \int_{z}^{z^*} dz^* \prod_{j=1}^{m} (t z_j t_j z_j^*) \frac{x^j}{x^j + x^* j} \int_{0}^{x} dx z^j (t) z^j (t)^* e^{-x} \]

and this is just the Borel sum formula for the series (1.14).

2e. Sketch of a formal proof of Theorem 2.2 using the generating expansion.

The following identity [Ma] gives a generating function expansion for Schur functions:

\[
\exp \left(\sum_{n=0}^{\infty} \frac{t^n}{n!} x^n \right) = \prod_{n=0}^{\infty} \left(1 + ts (t) \right) \]

Applying this identity to the cases where:

\[
t = [x] = \left(\frac{x^*}{2}, \ldots, \frac{x^*}{2} \right) ; \quad x = (x_1; \ldots; x_M) ; \quad (2.9a)
\]

\[
t = [y] = \left(\frac{y^*}{2}, \ldots, \frac{y^*}{2} \right) ; \quad y = (y_1; \ldots; y_M) ; \quad (2.9b)
\]

gives the expansions

\[
\exp \left(\frac{t_m x_i^m}{x_i} \right) = \prod_{n=0}^{\infty} \left(1 + ts \left([x] \right) \right) \]

\[
\exp \left(\frac{t_m y_j^m}{y_j} \right) = \prod_{n=0}^{\infty} \left(1 + ts \left([y] \right) \right) \]

Substituting these into the expression for the 2-matrix partition function, using the relations

\[
s \left([x] \right) (x) = \det (x_{i}^{j+M} ; x) ; \quad s \left([y] \right) (y) = \det (y_{j}^{i+M} ; y) ; \quad (2.11)
\]
and once again applying Lemma 2.2, the integrals may be evaluated along suitably chosen contours (as in the formal proof above for \(M = 1 \)), to obtain the stated result:

\[
Z_{2p}^M (t; t) = \sum_{j=0}^{\infty} \frac{M^j}{j!} s(t) s(t) : \quad (2.12)
\]

The detailed proof, and a further discussion of the interpretation of the sum (1.12) as an asymptotic series about the Gaussian point may be found in \[HO\].

Acknowledgments. The authors thank M. Bertola and B. Eynard for helpful discussions. This research was supported in part by the Natural Sciences and Engineering Research Council of Canada.

References

- [B E H] M. Bertola, B. Eynard and J. Hamad, "Duality, Biorthogonal Polynomials and Multi-Matrix Models", Commun. Math. Phys. 229, 57-71 (2002), [hep-th/0108049].
- [D K K] J.M. Dau, V. Kazakov, I.K. Kostov, "Rational Theories of 2D Gravity from the Two-Matrix Model", Nucl. Phys. B 409, 311-338 (1993), [hep-th/9303093].
- [H O] J. Hamad and A. Yu. Orlov "Schur function expansions of matrix integrals", preprint CRM (2002), in preparation.
- [IZ] C. Itzykson and J.B. Zuber, "The planar approximation (II)", J. Math. Phys. 21, 411 (1980).
- [M S] M. L. Mehta and P. Shukla, "Two coupled matrices: Eigenvalue correlations and spacing functions", J. Phys. A: Math. Gen. 27, 7793-7803 (1994).
- [Ma] Macdonald, M. L., Symmetric polynomials, 2nd edition
- [O] Orlov, A. Yu. "Soliton theory, symmetric function and matrix integrals", [hep-th/0207036] (2002).
- [O S] Orlov, A. Yu. and Schechlin, M. D., "Whith's hypergeometric functions in terms of free fermions", J. Phys. A: Math. Gen. 34 2295-2310, (2001).