A predictive model involving serum uric acid, C-reactive protein, diabetes, hypercholesteremia, multiple lesions for restenosis risk in everolimus-eluting stent-treated coronary heart disease patients

Qiang Feng1*, Ying Zhao2, Haiyan Wang1, Jiayu Zhao2, Xun Wang2 and Jianping Shi1

1Department of Cardiology, Handan Central Hospital, Handan, China, 2Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang, China

Purpose: As a second-generation drug-eluting stent, the restenosis risk factors of the everolimus-eluting stent (EES) lack sufficient evidence. Therefore, the study investigated the in-stent restenosis occurrence and its predictive factors among patients with coronary heart disease (CHD) who underwent percutaneous coronary intervention (PCI) with EES.

Materials and methods: Totally, 235 patients with CHD who underwent PCI with EES were included. At 1 year post PCI with EES (or earlier if clinically indicated), coronary angiography was performed to evaluate the in-stent restenosis status.

Results: Within 1 year post-operation, 20 patients developed in-stent restenosis while 215 patients did not develop in-stent restenosis, resulting in a 1-year in-stent restenosis rate of 8.5%. Diabetes mellitus, hypercholesteremia, hyperuricemia, fasting blood glucose, serum uric acid (SUA), high-sensitivity C-reactive protein (HsCRP), target lesions in the left circumflex artery, patients with two target lesions, length of target lesions and length of stent positively correlated with in-stent restenosis risk, while high-density lipoprotein cholesterol negatively associated with in-stent restenosis risk. Notably, diabetes mellitus, hypercholesteremia, SUA, HsCRP levels, and patients with two target lesions were independent predictive factors for in-stent restenosis risk by multivariate logistic regression analysis. Then, the in-stent restenosis risk prediction model was established based on these independent predictive factors, which exhibited an excellent value in...
predicting in-stent restenosis risk (area under the curve: 0.863; 95% CI: 0.779–0.848) by receiver operating characteristic analysis.

Conclusion: In-stent restenosis risk prediction model, consisting of diabetes mellitus, hypercholesteremia, SUA, HsCRP, and patients with two target lesions, may predict in-stent restenosis risk in patients with CHD who underwent post-PCI with EES.

KEYWORDS
coronary heart disease, in-stent restenosis, percutaneous coronary intervention, everolimus-eluting stent, predictive factors

Introduction

Coronary heart disease (CHD), the leading cause of mortality worldwide, refers to the build-up of atherosclerotic plaque in the epicardial coronary arteries, which narrows the coronary artery lumen and impairs the antegrade myocardial blood flow (1, 2). The impaired blood flow eventually results in angina, myocardial infarction, heart failure, arrhythmia, and sudden death (3). Percutaneous coronary intervention (PCI) utilizing stents has been widely adopted as the standard therapy in patients with CHD, and drug eluting-stent is the preferred method in comparison with the traditional bare-metal stents over the last decade (4, 5). Everolimus-eluting stent (EES), the second-generation DES, is introduced with more biocompatible stent polymers than those on first-generation DES [e.g., the sirolimus-eluting stent (SES) and paclitaxel-eluting stent (PES)], which improves arterial healing and decreases the risk of late adverse events (6–10). Nerveless, in-stent restenosis after EES implantation, as the result of arterial damage with subsequent neo-intima hyperplasia, remains the primary clinical problem in treating CHD, which is not negligible (11, 12). Therefore, exploring predictive factors for in-stent restenosis is necessary for guiding the management and improving prognosis in patients with CHD who underwent PCI with EES.

Accumulated studies have illustrated that various clinical and angiographic characteristics, including chronic complications (e.g., diabetes mellitus), abnormal biochemical indexes [e.g., higher serum uric acid (SUA) concentration] and angiographic information (e.g., bifurcation lesions), hold the potential to predict in-stent restenosis risk in patients with CHD who underwent PCI with DES (13–17). While most previously related studies focus on exploring the predictive factors of in-stent restenosis in patients with CHD who underwent PCI with a zotarolimus-eluting stent, PES, or SES, a relevant report regarding EES is limited. Therefore, this study investigated the in-stent restenosis occurrence and its predictive factors in patients with CHD who underwent PCI with EES, aiming to provide insights for better management of in-stent restenosis in these patients with CHD.

Materials and methods

Patients

This retrospective study reviewed 235 patients with CHD who underwent PCI with EES in our hospital from January 2016 to December 2018. The patients were eligible for analysis if they had (i) confirmed diagnosis of CHD, (ii) age ≥18 years, (iii) received PCI with EES, (iv) underwent assessment of in-stent restenosis status within 1 year after PCI with EES, (v) medical records and follow-up records were complete (at least included baseline characteristics, operation procedures, and post-procedure management), (vi) no previous PCI, coronary artery bypass grafting, or other cardiovascular major surgery before undergoing PCI with EES, and (vii) no history of malignancies. This study was approved by the Institutional Review Board of our hospital, and written informed consent was collected from all patients or their family members.

Data collection

By reviewing the medical records, following clinical data of patients were collected: (i) demographic characteristics [such as age, gender, and body mass index (BMI)]; (ii) cardiovascular risk factors [such as current smoke status, hypertension, diabetes mellitus, hypercholesteremia, hyperuricemia, and family history of coronary artery disease (CAD)]; (iii) blood pressure index [mean arterial pressure (MAP)]; (iv) biochemical index [such as fasting blood-glucose (FBG), glycated hemoglobin, triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), high-sensitivity C-reactive protein (Hs-CRP), erythrocyte sedimentation rate (ESR), white
blood cell (WBC), neutrophil, serum creatinine (Scr), and SUA]; (v) cardiac function index [such as left ventricular ejection fraction (LVEF), cardiac troponin I (cTnl), and N-terminal probrain natriuretic peptide (NT-proBNP)]; (vi) angiographic information (such as multivessel artery lesions, location of target lesion, two target lesions, stenosis degree of target lesion and length of target lesion); (vii) operation procedures (such as length of stent, diameter of stent, time of stent dilation and balloon dilation pre stent); (viii) medication used after surgery [such as aspirin, nitrates, statins, β receptor blockers, angiotensin converting enzymes inhibitors (ACEIs), angiotensin receptor blockers (ARBs), and calcium channel blockers].

In-stent restenosis assessment

The PCI and EES implantation procedures were performed by PCI guidelines (18). Immediately after PCI with EES, coronary angiography was performed for all patients to evaluate the diameter of coronary stenosis. After discharge, if the patients had a clinical indication of in-stent restenosis, coronary angiography was performed to assess the in-stent restenosis status; for the patients without clinical presentation of in-stent restenosis, coronary angiography was required to complete at the 12th month after PCI with EES. The assessment of in-stent restenosis was based on the coronary angiograms by the quantitative coronary angiography (QCA) analysis as previous studies described (19, 20), and the percentage diameter stenosis (PDS) was automatically calculated by the computer-based system Cardiovascular Angiographic Analysis System (CAAS) II (Pie Medical Imaging, Maastricht, Netherlands). The in-stent restenosis was defined as the PDS of the stent-implanted segment at 12th-month follow-up exceeding 50% compared with lumen assessed immediately after PCI with EES (17). Patients were divided into restenosis and non-restenosis groups according to whether they had in-stent restenosis within 1-year follow-up.

Statistical analysis

Statistical analyses were performed using the SPSS 22 statistical software (SPSS Inc., Chicago, IL, United States), and figure plotting were carried out using the GraphPad Prism 7.01 software (GraphPad Software Inc., San Diego, CA, United States). The continuous data were displayed as mean ± SD, or median and interquartile range (IQR) according to the normality determined by the Kolmogorov–Smirnov test. The categorical data were expressed as count (percentage). Comparison of continuous data between two groups was determined by Student’s t-test or the Wilcoxon rank-sum test, and comparison of categorical data between two groups was determined by the chi-square test. Factors predicting in-stent

Items	CHD patients (N = 235)
Demographic characteristics	
Age (years), mean ± SD	63.6 ± 9.0
Gender (male/female)	192/43
BMI (kg/m²), mean ± SD	24.7 ± 3.7
Cardiovascular risk factors	
Current smoke, No. (%)	62 (26.4)
Hypertension, No. (%)	163 (69.4)
Diabetes mellitus, No. (%)	64 (27.2)
Hypercholesteremia, No. (%)	140 (59.6)
Hyperuricemia, No. (%)	82 (34.9)
Family history of CAD, No. (%)	49 (20.9)
Blood pressure index	
MAP (mmHg), mean ± SD	106.0 ± 18.4
Biochemical index	
FBG (mmol/L), mean ± SD	5.9 ± 1.2
Glycated hemoglobin (%, median (IQR))	6.0 (5.0–7.1)
Scr (µmol/L), median (IQR)	82.1 (70.0–92.9)
SUA (µmol/L), median (IQR)	333.0 (280.7–408.9)
TG (mmol/L), median (IQR)	1.8 (0.9–2.5)
TC (mmol/L), mean ± SD	4.5 ± 1.0
LDL-C (mmol/L), mean ± SD	2.7 ± 0.6
HDL-C (mmol/L), mean ± SD	1.0 ± 0.3
HsCRP (mg/L), median (IQR)	4.6 (1.8–8.3)
ESR (mm/L), median (IQR)	12.1 (6.3–20.6)
WBC (×10⁹/L), mean ± SD	6.1 ± 1.5
Neutrophil (×10⁹/L), mean ± SD	3.4 ± 1.0
Cardiac function index	
LVEF (%), mean ± SD	64.5 ± 6.9
cTnl (gg/mL), median (IQR)	29.6 (17.4–47.0)
NT-proBNP (pg/mL), median (IQR)	75.9 (44.7–125.4)
Angiographic information	
Multivessel artery lesions, No. (%)	169 (71.9)
Target lesion at LAD, No. (%)	137 (58.3)
Target lesion at LCX, No. (%)	87 (37.0)
Target lesion at RCA, No. (%)	92 (39.1)
Patients with two target lesions, No. (%)	81 (34.5)
Stenosis degree of target lesion (%), median (IQR)	85.0 (82.0–89.0)
Length of target lesion (mm), median (IQR)	34.0 (26.0–40.0)
Operation procedures	
Length of stent (mm), median (IQR)	37.0 (30.0–43.0)
Diameter of stent (mm), median (IQR)	3.3 (3.0–3.4)
Time of stent dilation (s), median (IQR)	15.0 (13.0–18.0)
Balloon dilation pre stent, No. (%)	73 (31.1)
Medication used after surgery	
Aspirin, No. (%)	235 (100.0)
Nitrates, No. (%)	235 (100.0)
Statins, No. (%)	235 (100.0)
β receptor blockers, No. (%)	204 (86.8)

(Continued)
The occurrence of in-stent restenosis in everolimus-eluting stent-percutaneous coronary intervention treated patients with coronary heart disease

There were 20 patients with CHD who developed in-stent restenosis and 215 patients with CHD who did not develop in-stent restenosis at 1-year post PCI with EES, resulting in a 1-year in-stent restenosis rate of 8.5% (Figure 1).

Association of clinical features with in-stent restenosis in everolimus-eluting stent-percutaneous coronary intervention treated patients with coronary heart disease

Diabetes mellitus ($P = 0.017$), hypercholesteremia ($P = 0.015$), hyperuricemia ($P = 0.049$), FBG ($P = 0.036$), SUA ($P = 0.043$), HsCRP ($P < 0.001$) levels, target lesion at LCX ($P = 0.026$), patients with two target lesions ($P = 0.012$), length of target lesions ($P = 0.024$), and length of stent ($P = 0.022$) were positively associated with in-stent restenosis risk, while HDL-C ($P = 0.024$) was negatively associated with in-stent restenosis risk in patients with CHD who underwent PCI with EES (Table 2).

Analysis of factors predicting in-stent restenosis in everolimus-eluting stent-percutaneous coronary intervention treated patients with coronary heart disease

Univariate logistic regression analysis displayed that diabetes mellitus ($P = 0.021$; OR = 2.981), hypercholesteremia ($P = 0.024$; OR = 4.238), FBG ($P = 0.037$; OR = 1.489), SUA

Results

Clinical features

The mean age of patients with CHD was 63.6 ± 9 years, and there were 192 men/43 women. The mean BMI was 24.7 ± 3.7 kg/m². As for cardiovascular risk factors, 62 (26.4%), 163 (69.4%), 64 (27.2%), 140 (59.6%), 82 (34.9%), and 49 (20.9%) patients with CHD had current smoke, hypertension, diabetes mellitus, hypercholesteremia, hyperuricemia, and family history of CAD, respectively. Regarding cardia function index, the mean LVEF, median cTnl, and median NT-proBNP were 64.5 ± 6.9%, 29.6 (17.4–47) pg/ml, and 75.9 (44.7–125.4) pg/ml, respectively. The detailed information about blood pressure index, biochemical index, angiographic information, operation procedures, and medication used after surgery is shown in Table 1.
Items	Restenosis patients (\(n = 20\))	Non-restenosis patients (\(n = 215\))	\(P\)-value
Demographic characteristics			
Age (years), mean ± SD	66.7 ± 10.5	63.3 ± 8.9	0.107
Gender, No. (%)			0.316
Female	2 (10.0)	41 (19.1)	
Male	18 (90.0)	174 (80.9)	
BMI (kg/m\(^2\)), mean ± SD	25.2 ± 3.2	24.6 ± 3.8	0.488
Cardiovascular risk factors			
Current smoke, No. (%)	7 (35.0)	55 (25.6)	0.361
Hypertension, No. (%)	17 (85.0)	146 (67.9)	0.113
Diabetes mellitus, No. (%)	10 (50.0)	54 (25.1)	
Hypercholesteremia, No. (%)	17 (85.0)	123 (57.2)	
Hyperuricemia, No. (%)	11 (55.0)	71 (33.0)	
Family history of CAD, No. (%)	6 (30.0)	43 (20.0)	
Blood pressure index			
MAP (mmHg), mean ± SD	107.2 ± 14.4	105.9 ± 18.7	0.779
Biochemical index			
FBG (mmol/L), mean ± SD	6.4 ± 1.0	5.8 ± 1.2	0.036
Glycated hemoglobin, median (IQR)	5.4 (5.0–7.5)	6.1 (4.9–7.1)	0.799
Scr (\(\mu\)mol/L), median (IQR)	87.3 (71.6–96.2)	82.0 (70.0–92.6)	0.259
SUA (\(\mu\)mol/L), median (IQR)	418.6 (287.8–483.8)	332.7 (280.4–400.1)	
TG (mmol/L), median (IQR)	1.7 (1.0–2.9)	1.8 (0.9–2.5)	
TC (mmol/L), mean ± SD	4.6 ± 0.8	4.5 ± 1.0	
LDL-C (mmol/L), mean ± SD	2.9 ± 0.6	2.7 ± 0.6	0.919
HDL-C (mmol/L), mean ± SD	0.9 ± 0.2	1.0 ± 0.3	
HsCRP (mg/L), median (IQR)	7.4 (5.9–10.1)	4.1 (1.5–8.0)	
ESR (mm/L), median (IQR)	14.2 (8.6–25.2)	12.0 (5.2–20.4)	
WBC \((10^9/L)\), mean ± SD	6.4 ± 1.4	6.1 ± 1.5	
Neutrophil \((10^9/L)\), mean ± SD	3.6 ± 1.2	3.4 ± 0.9	
Cardiac function index			
LVEF (%), mean ± SD	62.4 ± 6.8	64.7 ± 6.8	0.156
cTnI (pg/mL), median (IQR)	36.4 (23.2–50.7)	29.6 (16.6–46.6)	0.126
NT-proBNP (pg/mL), median (IQR)	76.9 (58.3–145.0)	75.9 (42.4–124.2)	0.299
Angiographic information			
Multivessel artery lesions, No. (%)	18 (90.0)	151 (70.2)	0.060
Target lesion at LAD, No. (%)	13 (65.0)	124 (57.7)	0.525
Target lesion at LCX, No. (%)	12 (60.0)	75 (34.9)	
Target lesion at RCA, No. (%)	7 (35.0)	85 (39.5)	0.691
Patients with two target lesions, No. (%)	12 (60.0)	69 (32.1)	
Stenosis degree of target lesion (%), median (IQR)	85.5 (83.0–91.0)	85.0 (82.0–88.0)	0.258
Length of target lesion (mm), median (IQR)	39.0 (29.0–46.0)	33.0 (26.0–39.0)	
Operation procedures			
Length of stent (mm), median (IQR)	42.5 (34.0–49.0)	37.0 (29.0–43.0)	
Diameter of stent (mm), median (IQR)	3.1 (3.0–3.3)	3.3 (3.0–3.4)	
Time of stent dilation (s), median (IQR)	15.0 (12.0–19.8)	15.0 (13.0–18.0)	
Balloon dilation pre stent, No. (%)	20 (100.0)	215 (100.0)	
Medication used after surgery			
Aspirin, No. (%)	20 (100.0)	215 (100.0)	
Nitrates, No. (%)	20 (100.0)	215 (100.0)	

(Continued)
The current study mainly observed that the 1-year in-stent restenosis rate of EES was 8.5%, meanwhile, diabetes mellitus, hypercholesteremia, SUA, HsCRP, and two target lesions were independent factors for increased restenosis risk, their combination showed a good predictive value for in-stent restenosis risk with AUC of 0.863.

The introduction of EES represents a great leap forward in decreasing in-stent restenosis risk and target lesion revascularization rates after PCI (22). Nerveless EES is not immune to in-stent restenosis, and in-stent restenosis still occurs in 3–9.2% of patients who underwent PCI with EES (23–28). A study reports an 18-month restenosis rate of 9.2% in patients with left central coronary artery disease after EES implantation (24). Another study illustrates that 8.7% of hemodialysis patients occurred restenosis at an 8-month follow-up after receiving EES for coronary intervention (25). This study observed that the 1-year in-stent restenosis rate was 8.5% in patients with CHD after PCI with EES, which was within the

Table 2 (Continued)

Items	Restenosis patients \((n = 20)\)	Non-restenosis patients \((n = 215)\)	\(P\)-value
Statins, No. (%)	20 (100.0)	215 (100.0)	--
β receptor blockers, No. (%)	16 (80.0)	188 (87.4)	0.347
ACEIs/ARBs, No. (%)	10 (50.0)	139 (64.7)	0.193
Calcium channel blockers, No. (%)	6 (30.0)	68 (31.6)	0.881

Comparison was determined by Student’s \(t\) test, Wilcoxon rank sum test or Chi-square test. Boldface represented \(P\) value < 0.05. SD, standard deviation; BMI, body mass index; CAD, coronary artery disease; MAP, mean arterial pressure; FBG, fasting blood-glucose; IQR, interquartile range; Scr, serum creatinine; SUA, serum uric acid; TG, triglyceride; TC, total cholesterol; LDL-C, low density lipoprotein cholesterol; HDL-C, high density lipoprotein cholesterol; HsCRP, high-sensitivity C-reactive protein; ESR, erythrocyte sedimentation rate; WBC, white blood cell; LVFE, left ventricular ejection fraction; cTnI, cardiac troponin I; NT-proBNP, N-terminal-proB-type natriuretic peptide; LAD, left anterior descending branch; LCX, left circumflex artery; RCA, right coronary artery; ACEIs, angiotensin converting enzymes inhibitors; ARBs, angiotensin receptor blockers.

Discussion

Independent predictive factors for in-stent stenosis risk were used to create in-stent restenosis risk prediction model by forward stepwise multivariate logistic regression analysis and the formula was as follow: \(P = e^{\left(-10.322 + 1.728 \text{ (diabetes mellitus)} + 1.874 \text{ (hypercholesteremia)} + 0.01 \text{ (SUA)} + 0.229 \text{ (HsCRP)} + 1.554 \text{ (patients with two target lesions)}\right)}\) + 1.257, target lesion at LCX \((P = 0.016; OR = 3.174)\), length of target lesion \((P = 0.016; OR = 1.064)\), and length of stent \((P = 0.023; OR = 1.062)\) correlated with inclined in-stent restenosis risk, while HDL-C level \((P = 0.027; OR = 0.992)\) correlated with declined in-stent restenosis risk in patients with CHD who underwent PCI with EES (Table 3).
Calcium channel blockers 0.881 0.926 0.341 2.515
ACEIs/ARBs 0.198 0.547 0.218 1.372
β
Time of stent dilation 0.753 0.981 0.873 1.103
Diameter of stent 0.686 0.755 0.194 2.944
Length of stent 0.023 0.981 0.873 1.103
Length of target lesion 0.020 1.064 0.966 1.181
Stenosis degree of target lesion 0.199 1.068 0.966 1.181
Patients with two target lesions 0.005 4.731 1.589 14.084

Factors predicting in-stent restenosis were analyzed by univariate logistic regression model. Boldface represented \(P \)-value < 0.05 in univariate logistic regression model were included in this forward stepwise multivariate logistic regression model to screen independent predictors. The predictive model of in-stent restenosis was as follows:

\[
P = e^{\left[-10.322 + 1.728 \times (\text{diabetes mellitus}) + 1.874 \times (\text{hypercholesteremia}) + 0.010 \times (\text{SUA}) + 0.229 \times (\text{HsCRP}) + 1.554 \times (\text{patients with two target lesions}) \right]} / \left(1 + e^{\left[-10.322 + 1.728 \times (\text{diabetes mellitus}) + 1.874 \times (\text{hypercholesteremia}) + 0.010 \times (\text{SUA}) + 0.229 \times (\text{HsCRP}) + 1.554 \times (\text{patients with two target lesions}) \right]} \right)
\]

Factors with \(P \)-value < 0.05 in univariate logistic regression model were included in this forward stepwise multivariate logistic regression model to screen independent predictors. The predictive model of in-stent restenosis was as follows:

\[
P = e^{\left[-10.322 + 1.728 \times (\text{diabetes mellitus}) + 1.874 \times (\text{hypercholesteremia}) + 0.010 \times (\text{SUA}) + 0.229 \times (\text{HsCRP}) + 1.554 \times (\text{patients with two target lesions}) \right]} / \left(1 + e^{\left[-10.322 + 1.728 \times (\text{diabetes mellitus}) + 1.874 \times (\text{hypercholesteremia}) + 0.010 \times (\text{SUA}) + 0.229 \times (\text{HsCRP}) + 1.554 \times (\text{patients with two target lesions}) \right]} \right)
\]
The in-stent restenosis in patients undergoing percutaneous coronary intervention (29). Another study discloses that after adjustment by multivariate logistic regression analyses older age, current smoking, and CKD4-5 are considered independent risk factors for in-stent restenosis in triple-vessel disease after second-generation drug-eluting stent implantation (30). Additionally, this study disclosed that diabetes mellitus, hypercholesteremia, SUA, HsCRP, and patients with two target lesions were independent predictive factors for increased restenosis risk in patients with CHD who underwent PCI with EES by multivariate logistic regression analysis. Then, the in-stent restenosis risk prediction model was constructed based on these independent predictive factors, and a ROC curve analysis was conducted. It was revealed that this prediction model exhibited a good value in predicting inclined in-stent restenosis risk in patients with CHD who underwent PCI with EES (AUC: 0.863; 95% CI: 0.779–0.848), which might help with the management of in-stent restenosis in patients with CHD who underwent post-PCI with EES in clinical practice.

Several limitations of this study need to be stated. Firstly, sample size (N = 235) was a major limitation, and a multi-center registry including a large number of patients could allow more supported conclusions. Secondly, patients with CHD were only followed up for a relatively short period (12 months), thus correlation of candidate factors with long-term restenosis risk needed further investigation. Thirdly, as this study was a retrospective study, thereby further prospective study is needed to validate our findings.

In conclusion, the in-stent restenosis risk prediction model, consisting of diabetes mellitus, hypercholesteremia, SUA, HsCRP, and patients with two target lesions, exhibits the potential as a good marker for in-stent restenosis risk in patients with CHD who underwent PCI with EES.

Data availability statement

The original contributions presented in this study are included in the article-supplementary material, further inquiries can be directed to the corresponding author.
Ethics statement

The studies involving human participants were reviewed and approved by the Handan Central Hospital. The patients/participants provided their written informed consent to participate in this study.

Author contributions

QF and HW contributed to conception and design and revised the article critically for important intellectual content. QF, HW, and JS contributed to the acquisition of data. QF, YZ, JZ, and XW contributed to the analysis of data. All authors drafted and revised the article and approved the final version to be published.

References

1. Shahiehan RD, Bhutta BS. Coronary Artery Disease. Treasure Island, FL: StatPearls Publishing (2022).
2. Shao C, Wang J, Tian J, Tang YD. Coronary artery disease: from mechanism to clinical practice. Adv Exp Med Biol. (2020) 1177:1–36. doi: 10.1007/978-981-15-2517-9_1
3. Simoons ML, Windecker S. Controversies in cardiovascular medicine: chronic stable coronary artery disease: drugs vs. revascularization. Eur Heart J. (2010) 31:530–41. doi: 10.1093/eurheartj/ehp505
4. Ahmad M, Mehta P, Reddivari AKR, Munger S. Percutaneous Coronary Intervention. Treasure Island, FL: StatPearls (2022).
5. Hoole SP, Bambrough P. Recent advances in percutaneous coronary intervention. Heart. (2020) 106:1380–6. doi: 10.1136/heartjnl-2019-315707
6. Xiu WJ, Yang HT, Zheng YJ, Ma YT, Xie X. Drug-eluting balloons versus second-generation drug-eluting stents for treating in-stent restenosis in coronary heart disease after PCI: a meta-analysis. Cardiol Res Pract. (2018) 2018:7658145. doi: 10.1155/2018/7658145
7. Nikolaus E, Lansky AJ, Sudhir K, Dostozadl J, Cutlip DE, Piana R, et al. Second-generation everolimus-eluting and paclitaxel-eluting stents in real-life practice (COMPARE): a randomised trial. Lancet. (2010) 375:201–9. doi: 10.1016/S0140-6736(09)62127-9
8. Mailey JA, Ahmed M, Hogg M, Cosgrove C, Murphy JC, McNeice AH, et al. Initial experiences of percutaneous coronary intervention using a new generation everolimus-eluting stent platform. J Invasive Cardiol. (2021) 33:784–90.
9. Matsuda H, Suzuki Y. Long-term (beyond 5 years) clinical impact ofience everolimus-eluting stent implantation. Health Sci Rep. (2021) 4:e365. doi: 10.1002/hr2.365
10. Yoshikawa S, Ashikaga T, Miyazaki T, Kurihara K, Hirao K. Long-term efficacy and safety of everolimus-eluting stents in Japanese patients with acute coronary syndrome: five year real-world data from the Tokyo-MD PCI study. J Interv Cardiol. (2019) 2019:3146848. doi: 10.1155/2019/3146848
11. Bakhtashian M, Safar Soflaei S, Kosiari N, Salehi M, Khosravi A, Ahmadiannejad M, et al. Association of high level of hs-CRP with in-stent restenosis: a case-control study. Cardiovasc Revs Med. (2020) 20:583–7. doi: 10.1016/j.carres.2018.08.015
12. Kastrati A, Dihr A, Mehilli J, Mayer S, Pinieck S, Pach J, et al. Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation. (2006) 113:2293–300. doi: 10.1161/CIRCULATIONAHA.105.601823
13. Zhao LP, Xu WT, Wang L, Li H, Shao CL, Gu HB, et al. Influence of insulin resistance on in-stent restenosis in patients undergoing coronary drug-eluting stent implantation after long-term angiographic follow-up. Coron Artery Dis. (2015) 26:5–10. doi: 10.1097/MCA.0000000000000170
14. Chatani K, Muramatsu T, Tsukahara R, Ito Y, Ishimori H, Hirano K, et al. Predictive factors of re-restenosis after repeated sirolimus-eluting stent implantation for SES restenosis and clinical outcomes after percutaneous coronary intervention for SES-restenosis. J Interv Cardiol. (2009) 22:354–61. doi: 10.1111/j.1540-8183.2009.00482.x
15. Lee CW, Sub J, Lee SW, Park DW, Lee SH, Kim YH, et al. Factors predictive of cardiac events and restenosis after sirolimus-eluting stent implantation in small coronary arteries. Catheter Cardiovasc Interv. (2007) 69:821–5. doi: 10.1002/cdi.21019
16. Wu Y, Fu X. Comprehensive analysis of predictive factors for rapid angiographic stenotic progression and restenosis risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents implantation. J Clin Lab Anal. (2019) 33:e22666. doi: 10.1002/jcla.22666
17. Levine GN, Bates ER, Blankenship JC, Bailey SR, Bittl JA, Cerneck B, et al. 2011 ACCFAHA/SCAI guideline for percutaneous coronary intervention: a report of the American college of cardiology foundation/American heart association task force on practice guidelines and the society for cardiovascular angiography and interventions. Catheter Cardiovasc Interv. (2013) 82:E266–355. doi: 10.1002/ccd.23390
18. Bruining N, Sabate M, de Feyter PJ, Kay IP, Lighart J, Disco C, et al. Quantitative measurements of in-stent restenosis: a comparison between quantitative coronary ultrasound and quantitative coronary angiography. Catheter Cardiovasc Interv. (1999) 48:133–42. doi: 10.1002/sits.100482.x
19. Kim YH, Park DW, Ahn JM, Yun SC, Song HG, Lee JY, et al. Everolimus-eluting stent implantation for unprotected left main coronary artery stenosis. The PRECOMBAT-2 (premier of randomized comparison of bypass surgery versus angioplasty using sirolimus-eluting stent in patients with left main coronary artery disease) study. JACC Cardiovasc Interv. (2012) 5:708–17. doi: 10.1016/j.jcin.2012.05.002

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
25. Sakakibara T, Ishii H, Toriyama T, Aoyama T, Takahashi H, Kamoi D, et al. Sirolimus-eluting stent vs. everolimus-eluting stent for coronary intervention in patients on chronic hemodialysis. *Circ J.* (2012) 76:351–5. doi: 10.1253/circj.cj-11-0814

26. Ino Y, Kubo T, Tanaka A, Liu Y, Tanimoto T, Kitabata H, et al. Comparison of vascular response between everolimus-eluting stent and bare metal stent implantation in ST-segment elevation myocardial infarction assessed by optical coherence tomography. *Eur Heart J Cardiovasc Imaging.* (2015) 16:513–20. doi: 10.1093/ehjci/jeu227

27. Kang DY, Lee CH, Lee PH, Ahn JM, Lee SW, Kim YH, et al. Comparison of Resolute zotarolimus-eluting and Xience everolimus-eluting stents in patients with de novo long coronary artery lesions: a randomized LONG-DES VI trial. *Coron Artery Dis.* (2019) 30:59–66. doi: 10.1097/MCA.0000000000000680

28. Moreno R, Garcia E, Teles R, Rumoroso JR, Cyrne Carvalho H, Goicolea FJ, et al. Randomized comparison of sirolimus-eluting and everolimus-eluting coronary stents in the treatment of total coronary occlusions: results from the chronic coronary occlusion treated by everolimus-eluting stent randomized trial. *Circ Cardiovasc Interv.* (2013) 6:21–8. doi: 10.1161/CIRCINTERVENTIONS.112.000076

29. He W, Xu C, Wang X, Lei J, Qiu Q, Hu Y, et al. Development and validation of a risk prediction nomogram for in-stent restenosis in patients undergoing percutaneous coronary intervention. *BMC Cardiovasc Disord.* (2021) 21:435. doi: 10.1186/s12872-021-02255-4

30. Zeng M, Yan X, Wu W. Risk factors for revascularization and in-stent restenosis in patients with triple-vessel disease after second generation drug-eluting stent implantation: a retrospective analysis. *BMC Cardiovasc Disord.* (2021) 21:446. doi: 10.1186/s12872-021-02259-0

31. Kozuma K, Kozuma K, Shinozaki T, Kashiwabara K, Oba K, Xience PMSG, et al. Multivariable prediction model to estimate the probability of restenosis at proximal edge after 2nd generation drug-eluting-stent implantation: development and internal validation using a quantitative coronary angiography from the post-marketing surveillance studies of everolimus-eluting stent in Japan. *Cardiovasc Interv Ther.* (2021) 36:190–7. doi: 10.1007/s12928-020-00666-2