A Information content of maximally efficient algorithms

Consider an IB problem where we are interested in an information efficient representation of \(Y \) that is predictive of \(W \) (Fig 1a). When \(Y \) and \(W \) are Gaussian correlated, the central object in constructing an IB solution is the normalized regression matrix \(\Sigma_{Y|W}^{-1} \); in particular, its eigenvalues \(\nu_i[\Sigma_{Y|W}^{-1}] \) completely characterize the information content of the IB optimal representation \(\tilde{T} \) via (see Ref [1] for a derivation)

\[
I(\tilde{T}; W) = \frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln \frac{1 - \gamma^{-1}}{\nu_i[\Sigma_{Y|W}^{-1}]} \right) \quad (1)
\]

\[
I(\tilde{T}; Y | W) = \frac{1}{2} \sum_{i=1}^{N} \max \left(0, \ln (1 - \nu_i[\Sigma_{Y|W}^{-1}]) \right), \quad (2)
\]

where \(N \) is the dimension of \(Y \) and \(\gamma \) parametrizes the IB trade-off [Eq (1)].

Our work focuses on the following generative model for \(W \) and \(Y \) (see Sec 1.1)

\[
W \sim N(0, \omega^2 P) \quad \text{and} \quad Y \mid W \sim N(X^T W, \sigma^2 I_N). \quad (3)
\]

Marginalizing out \(W \) yields

\[
Y \sim N(0, \sigma^2 I_N + \frac{1}{N} X^T X). \quad (4)
\]

As a result, the normalized regression matrix reads

\[
\Sigma_{Y|W}^{-1} = \sigma^2 I_N + \frac{1}{\sigma^2 I_N + \frac{1}{\lambda^* N} X^T X} = \left(I_N + \frac{1}{\lambda^*} \frac{X^T X}{N} \right)^{-1} \quad \text{where} \quad \lambda^* = \frac{P \sigma^2}{N \omega^2}. \quad (5)
\]

Substituting Eq (5) into Eqs (1-2) gives

\[
I(\tilde{T}; W) = \frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln \left((1 - \gamma^{-1})(1 + \phi_i[X^T X/N]/\lambda^*) \right) \right) \quad (6)
\]

\[
I(\tilde{T}; Y | W) = \frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln \frac{\gamma \phi_i[X^T X/N]}{\lambda^* + \phi_i[X^T X/N]} \right), \quad (7)
\]

where \(\phi_i[X^T X/N] \) denote the eigenvalues of \(X^T X/N \). Since the eigenvalues of \(X^T X/N \) and the sample covariance \(\Psi = XX^T/N \) are identical except for the zero modes which do not contribute to information, we can recast the above equations as

\[
I(\tilde{T}; W) = \frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln(1 - \gamma^{-1})(1 + \psi_i/\lambda^*) \right) \quad (8)
\]

\[
I(\tilde{T}; Y | W) = \frac{1}{2} \sum_{i=1}^{P} \max \left(0, \ln \frac{\gamma \psi_i}{\lambda^* + \psi_i} \right), \quad (9)
\]

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
where ψ_i are the eigenvalues of Ψ and the summation limits change to P, the number of eigenvalues of Ψ. Introducing the cumulative spectral distribution F^Ψ and replacing the summations with integrals results in

$$I(\tilde{T};W) = \frac{P}{2} \int dF^\Psi(\psi) \max \left(0, \ln \left(1 - \gamma^{-1} \left(1 + \psi/\lambda^*\right)\right)\right) \quad (10)$$

$$I(\tilde{T};Y \mid W) = \frac{P}{2} \int dF^\Psi(\psi) \max \left(0, \ln \frac{\gamma \psi}{\lambda^* + \psi}\right). \quad (11)$$

We see that the contributions to the integrals come from the logarithms but only when they are positive. This condition can be recast into integration limits (note that $\gamma > 0$ and $\lambda^* > 0$)

$$\ln \left(1 - \gamma^{-1} \left(1 + \psi/\lambda^*\right)\right) > 0 \implies \psi > \lambda^*/(\gamma - 1) \quad (12)$$

$$\ln \frac{\gamma \psi}{\lambda^* + \psi} > 0 \implies \psi > \lambda^*/(\gamma - 1). \quad (13)$$

Finally we define the lower cutoff $\psi_c \equiv \lambda^*/(\gamma - 1)$ and use the above limits to rewrite the expressions for relevant and residual informations,

$$I(\tilde{T};W) = \frac{P}{2} \int_{\psi > \psi_c} dF^\Psi(\psi) \ln \frac{\psi + \lambda^*}{\psi_c + \lambda^*} = \frac{P}{2} \int_{\psi > \psi_c} dF^\Psi(\psi) \ln \left(1 + \frac{\psi - \psi_c}{\psi_c + \lambda^*}\right) \quad (14)$$

$$I(\tilde{T};Y \mid W) = \frac{P}{2} \int_{\psi > \psi_c} dF^\Psi(\psi) \ln \frac{\psi_c + \lambda^*}{\psi_c} = \frac{P}{2} \int_{\psi > \psi_c} dF^\Psi(\psi) \ln \frac{\psi_c - \lambda^*}{\psi_c} - I(\tilde{T};W). \quad (15)$$

These equations are identical to Eqs (8-9) in the main text.

B Information content of Gibbs-posterior regression

To compute the information content of Gibbs regression [Eq (14)], we first recall that the mutual information between two Gaussian correlated variables, A and B, is given by

$$I(A; B) = \frac{1}{2} \ln \det \Sigma_A \Sigma^{-1}_{A \mid B}, \quad (16)$$

where Σ_A is the covariance of A, and $\Sigma_{A \mid B}$ of $A \mid B$.

We now write down the relevant information, using the covariances $\Sigma_{T \mid W}$ and Σ_T from Eqs (17-18),

$$I(T; W) = \frac{1}{2} \ln \det \left(\Sigma_T \Sigma^{-1}_{T \mid W}\right) \quad (17)$$

$$= \frac{1}{2} \ln \det \left(\frac{1}{2\beta} \Psi + \frac{1}{N} \frac{\Psi^2}{(\Psi + \lambda I_p)\lambda^*} + \frac{\sigma^2}{2\beta} \frac{\Psi^2}{(\Psi + \lambda I_p)^2}\right) \quad (18)$$

$$= \frac{1}{2} \ln \det \left(I_p + \frac{\Psi^2}{\Psi + \frac{N}{2\beta \sigma^2} (\Psi + \lambda I_p)}\right) \quad (19)$$

$$= \frac{1}{2} \text{tr} \ln \left(I_p + \frac{\Psi^2}{\Psi + \frac{N}{2\beta \sigma^2} (\Psi + \lambda I_p)}\right) \quad (20)$$

$$= \frac{1}{2} \sum_{i=1}^P \ln \left(1 + \frac{\psi^2}{2\beta \sigma^2} \frac{\psi_i^2}{(\psi_i + \lambda)}\right) \quad (21)$$

$$= \frac{P}{2} \int_{\psi > 0} dF^\Psi(\psi) \ln \left(1 + \frac{\psi^2}{\psi + \frac{N}{2\beta \sigma^2} (\psi + \lambda)}\right) \quad (22)$$

where $\lambda^* = P \sigma^2 / N \omega^2$. In the above, we use the identity $\ln \det H = \text{tr} \ln H$ which holds for any positive-definite Hermitian matrix H, let ψ_i denote the eigenvalues of the sample covariance Ψ and introduce F^Ψ, the cumulative distribution of eigenvalues. We also assume that λ and β are finite.
and positive. Note that the integral is limited to positive real numbers because the eigenvalues of a covariance matrix is non-negative and the integrand vanishes for $\psi = 0$.

Following the same logical steps as above and noting that the Markov constraint $W \leftrightarrow Y \leftrightarrow T$ implies $\Sigma_{T|Y,W} = \Sigma_{T|Y}$, we write down the residual information,

$$I(T; Y | W) = \frac{1}{2} \ln \det \left(\Sigma_{T|W} \Sigma_{T|Y,W}^{-1} \right)$$

$$= \frac{1}{2} \ln \det \left(\Sigma_{T|W} \Sigma_{T|Y}^{-1} \right)$$

$$= \frac{1}{2} \ln \det \left(\frac{1}{2\beta} \Psi + \frac{1}{N} \frac{\Psi}{(\Psi \psi + \lambda)} \right)$$

$$= \frac{P}{2} \int_{\psi > 0} dF_{\Psi}(\psi) \ln \left(1 + 2\beta \sigma^2 \frac{\psi}{N} \frac{\psi + \lambda}{\psi + i0} \right)$$

where we use the covariance matrices $\Sigma_{T|W}$ and $\Sigma_{T|Y}$ from Eqs (17) & (14).

C Marchenko-Pastur law

Consider $X = \Sigma^{1/2} Z$ where $Z \in \mathbb{R}^{P \times N}$ is a matrix with iid entries drawn from a distribution with zero mean and unit variance, and $\Sigma \in \mathbb{R}^{P \times P}$ is a covariance matrix. In addition we take the asymptotic limit $N \to \infty, N \to \infty$ and $P/N \to \alpha \in (0, \infty)$. If the population spectral distribution F_Σ converges to a limiting distribution, the spectral distribution of the sample covariance $\Psi = XX^T/N$ becomes deterministic [2]. The density, $f_\Psi(\psi) = dF_\Psi(\psi)/d\psi$, is related to its Stieltjes transform $m(z)$ via

$$f_\Psi(\psi) = \frac{1}{\pi} \operatorname{Im} m(\psi + i0^+), \quad \psi \in \mathbb{R}.$$

We can obtain f_Ψ by solving the Silverstein equation for the companion Stieltjes transform $v(z)$ [3],

$$-\frac{1}{v(z)} = z - \alpha \int_{\mathbb{R}^+} dE(s) \frac{s}{1 + sv(z)}, \quad z \in \mathbb{C}^+,$$

and using the relation

$$m(z) = \alpha^{-1} (v(z) + z^{-1}) - z^{-1}.$$

Here \mathbb{C}^+ denotes the upper half of the complex plane.
D Supplementary figure

Figure 1: Gibbs ridge regression is least information efficient around $N/P = 1$. a Residual information $I(T; Y | W)$ of the IB optimal algorithm over a range of sample densities N/P (horizontal axis) and given extracted relevant bits $I(T; W)$ (vertical axis). The extracted relevant bits are bounded by the available relevant bits in the data (black curve), i.e., the data processing inequality implies $I(T; W) \leq I(Y; W)$. b Same as (a) but for Gibbs regression with $\lambda = 10^{-6}$. Holding other things equal, Gibbs regression estimators encode more residual bits than optimal representations. c Information efficiency, the ratio between residual bits in optimal representations (a) and Gibbs estimator (b), is minimum around $N/P = 1$. Here we set $\omega^2 / \sigma^2 = 1$ and let $P, N \rightarrow \infty$ at the same rate such that the ratio N/P remains fixed and finite. The eigenvalues of the sample covariance follow the standard Marchenko-Pastur law (see Sec 4).

References

[1] G. Chechik, A. Globerson, N. Tishby, and Y. Weiss, Information bottleneck for Gaussian variables, Journal of Machine Learning Research 6, 165 (2005).

[2] V. A. Marčenko and L. A. Pastur, Distribution of eigenvalues for some sets of random matrices, Mathematics of the USSR–Sbornik 1, 457 (1967).

[3] J. Silverstein and S. Choi, Analysis of the Limiting Spectral Distribution of Large Dimensional Random Matrices, Journal of Multivariate Analysis 54, 295 (1995).