Quality of Life in chronic musculoskeletal symptomatic Chilean population: Secondary analysis of National Health Survey 2009-2010

CURRENT STATUS: UNDER REVISION

BMC Musculoskeletal Disorders • BMC series

Maria Jesus Mena-Iturriaga
Universidad del Desarrollo

Manuel Vicente Mauri-Stecca
Universidad del Desarrollo

Phillip S. Sizer
Texas Tech University Health Sciences Center

Jaime Leppe
Universidad del Desarrollo

✉ jleppe@udd.cl Corresponding Author
ORCiD: https://orcid.org/0000-0002-8663-1182

DOI: 10.21203/rs.2.18121/v1

SUBJECT AREAS
Orthopedics

KEYWORDS
Health-related quality of life, SF-12 questionnaire, Population study, Musculoskeletal symptoms
Abstract
Background: Health-related quality of life (HRQoL) is defined as the patient's perception of their health status. The HRQoL can be modified by illnesses, treatments or social and health policies. Chronic pain is a modifying factor of HRQoL that leads to lower quality of life, elevated suffering and disability. Understanding potential quality of life variations in subjects with chronic musculoskeletal symptoms (cMSS) will provide information to health teams and organizations engaged in the Chilean health system. This study aim was to determine the relationship between HRQoL and musculoskeletal symptoms measured in three difference Chilean groups: (1) without symptoms; (2) with acute symptoms; and (3) with cMSS. Results were interpreted according to age, sex, educational level and residence area. Methods: This was accomplished using a secondary analysis of SF-12 data from the 2009-10 Chilean National Health Survey (NHS) using a multivariate logistic regression model to study the relationship between cMSS and HRQoL scores, adjusted for control variables. A 5% level of significance was considered. The STATA 15 was used for statistical analyses. Results: Out of 5,293 participants in the NHS 2009-10, 5,276 subjects were included for analysis. The median age was 46 years (IQR 31-60), 59.4% women, a median of 10 years formal education (IQR 7-12) and an urban residence in 85.2% of the population of the NHS 2009-10. The observed population prevalence of people with cMSS was 42.6% (95% CI 40.4 - 44.9). Presence of cMSS is a risk factor for low HRQoL, exhibited both in the physical (OR 3.1 95% CI 2.7-3.5) and mental (OR 1.9 95% CI 1.6-2,) HRQoL dimensions, independent of control variables. Conclusions: Physical and mental HRQoL are affected in people with cMSS, low educational level and advanced age. This is especially seen in women. This information will facilitate assessment and treatment of cMSS as a prevalent and multidimensional health problem.

Background
Health-related quality of life (HRQoL) can be defined as the patient's perception of their level of well-being, health status and length of life. A person's HRQoL can be modified by factors such as impairments, functional states, perceptions and social opportunities. Such HRQoL can be altered by diseases, injuries, treatments or social and health policies. Chronic pain is a modifying factor of
HRQoL, impacting individuals in different degrees and leading to suffering, disability, and reduced quality of life.\(^{(4,5)}\)

Chronic pain is a pain experience that persists beyond the normal time that is commonly required for tissue healing, or approximately 3 months ("Classification of Chronic Pain", IASP 1994).\(^{(6)}\) Chronic pain is a global health problem present in 19\% of adult European population\(^{(4)}\), versus the 40\% found in Latin America (Colombia 33.9\%, Brazil 42.3\%),\(^{(7,8)}\) and 34\% in medium-to-low income countries.\(^{(9)}\) In Chile, as well as in other countries,\(^{(9,5,11)}\) pain-provoking pathologies of musculoskeletal origin are prevalent in 10\% to 50\% of the population, especially in women and elderly. This produces high rates of work absenteeism, as well as temporary work stoppage and permanent disabilities needing early pension.\(^{(10,16)}\) Chronic pain constitutes the second cause of disease burden both to those who suffer and to the health systems where they are immersed.\(^{(13)}\) It has been estimated that 1 in 10 adults are diagnosed with chronic pain each year, with a median time of exposure of 7 years.\(^{(14)}\)

These troublesome outcomes justify the need for tools necessary for the health system to evaluate musculoskeletal pain from both epidemiological and clinical points of view.\(^{(15)}\) One such tool is a person’s self-report of Musculoskeletal Disorders (MSD) that allows the identification of pain or discomfort that has been present in the last 7 days.

The National Health Survey conducted between 2009 and 2010 in Chile (NHS 2009-10) identified MSS through the "COPCORD Questionnaire CCQ-ILAR" adapted version.\(^{(16)}\) This questionnaire showed that 37.6\% of Chilean population, aged 15 years and older, reported the presence of non-traumatic MSS in the previous 7 days, regardless of the pain intensity. Prevalence was significantly higher in women (46.4\%) and in subjects with low educational level (less than 8 years of formal study).\(^{(17)}\) The "12-Item Short Form Health Survey" (SF-12) used in the NHS 2009-10 in its 2.0 version allowed to descriptively report the HRQoL of Chilean population. The results from SF-12 showed that 17.8\% of the population reported experiencing pain during the previous 4 weeks, which interfered "fairly" or "a lot" with their activities, presenting 8.6\% in the young population and 31.6\% in the elderly.\(^{(17)}\)
The NHS 2009-10 final descriptive analysis did not present any of the following data: a) cMSS (chronic musculoskeletal symptoms) prevalence; b) specific score analysis of SF-12 physical and/or mental domains, as it has been suggested in the literature;\(^{(17)}\) and c) the relationship between HRQoL and cMSS at the population level. It is relevant to know the relationship between these constructs, considering that the assessment of HRQoL allows the evaluation to deepen the subjective dimension of pain within a specific population,\(^{(1)}\) monitor that population’s health\(^{(2)}\), and evaluate the effect of social and health policies on that population\(^{(3)}\).

Methods

The objective of this study was to determine the relationship between HRQoL in terms of physical and mental dimensions within the Chilean population without musculoskeletal symptoms (woMSS), with acute musculoskeletal symptoms (aMSS) and with cMSS taken from a secondary analysis of the NHS 2009-10.

Processes and participants

A secondary analysis of the Chilean NHS 2009-10 database was carried out. The former primary study was conducted in households with a national, probabilistic, stratified and multistage sample of 5,293 participants aged 15-year-old and older. It was carried out between October 2009 and September 2010. The sample was representative at the national, urban-rural and regional levels, and it was calculated with 20% relative error for national prevalence estimation of over 4%.\(^{(17)}\) In the present secondary analysis, the entire sample was considered (census sampling) in order to respect the regional and national representativeness of the original study (NHS 2009-10). The MSS and HRQoL information from the NHS 2009-10 database were measured through the CCQ-ILAR and SF-12, respectively.

Health related quality of life (HRQoL)

The SF-12 questionnaire v2.0 is a compact version of the SF-36 Health Questionnaire used in the NHS 2009-10, consisting of 12 questions that are grouped into 8 dimensions (physical functioning, functioning of the physical role, body pain, general health, vitality, social functioning, emotional...
functioning and mental health). The dimensions are gathered in two domains or indexes (physical health and mental health). Each index includes a score ranging from 0 to 100, where higher scores indicate better perceived health status. This questionnaire exhibits a validity that ranges between 0.43 and 0.93 (median = 0.67).\(^{(18,19)}\) To calculate the HRQoL scores, both in terms of physical composite scores (PCS) and mental composite scores (MCS), the questionnaire questions were graded and normalized using the Software QualityMetrics Health Outcomes® Scoring Software 5.0 (license QM044465, Universidad del Desarrollo). This analysis delivered a PCS and MCS for each individual and further categorized the scores by standard deviations below the general population at “well below” (>1 standard deviation), “below” (between <1 and >0.5 standard deviation) and “equal or better” (<0.5 standard deviations) PCS or MCS in relation to the general population\(^{(20)}\). Subsequently, categorization was deduced by standard deviations of HRQoL in: “low HRQoL” for subjects classified “far below” or “below”, and “high HRQoL” for subjects classified as “equal or better”, in both dimensions (PCS and MCS).

Musculoskeletal symptoms

The COPCORD Questionnaire CCQ-ILAR adapted and validated in Spanish was used in the NHS 2009-10 with a 76% specificity, 92% sensitivity and 0.8 internal validity measured with Cronbach's alpha.\(^{(16,17)}\) The questionnaire considered the following basic indicators: (a) MSS1-musculoskeletal symptoms of non-traumatic origin in the last 7 days, independent of the intensity of pain; and (b) MSS2-musculoskeletal symptoms of non-traumatic origin in the last 7 days with intensity greater than or equal to 4 (of a maximum of 10) on the verbal scale of pain. From variable MMS1, the variables were defined as: acute MSS (aMSS) when the presence of MMS1 was less than 90 days; Chronic MSS (cMSS) when the presence of MSS1 was 90 days or more; and without MSS (woMMS) in the absence of reported MSS1.

Data Analysis

The variable “age in years” was described using median scores (interquartile range), due to a nonparametric distribution. The PCS and MCS scores of HRQoL were presented on average (95% CI). Sex, area of residence, age range, educational level, without MSS, aMSS, cMSS, and the dichotomized
HRQoL variables were presented in absolute and relative frequencies. Expansion factors (reported in the NHS) and 95% CIs were considered for prevalence calculations. A one-way ANOVA was used to establish main effects for scores obtained in the HRQoL (in their PCS and MCS indices) in subjects without MSS, with aMSS and with cMSS, with Bonferroni post hoc analysis to identify location of significant differences. Comparison of these scores with cMSS, according to the control variables: sex, age in range, educational level and area of residence, was performed using t-Test and one-way ANOVA, as appropriate. A correlation between both the PCS and MCS indexes of HRQoL with both age and years of study was performed using the Spearman Rho correlation coefficient. Univariate logistic regression was performed to explain low HRQoL in its physical and mental dimensions, independently considering the cMSS variables (compared to the non-presence of cMSS), female sex (compared to male), age in the age range (compared to age of 15-24 years), educational level (compared to high educational level) and rural residence (compared to urban).

In a multivariate logistic regression model, the presence of cMSS was considered as exposure to low HRQoL in its physical and mental dimensions, adjusted to the aforementioned control variables.

When there were missing values in the variables to be related, they were analyzed only with the n of the population that had valid data in both variables. For all analyses, the statistical package STATA 15.0 was used, considering a level of significance of 5%.

Results

Out of 5,293 participants in the NHS 2009-10, 17 subjects who did not present data on HRQoL were excluded, leaving a total of 5,276 subjects for analysis. We observed a median age of 46 years (IQR 31-60), 59.4% women, a median of 10 years of study (IQR 7-12) and an urban residence in 85.2% of the population of the NHS 2009-10. The subjects reported in 41.2% the presence of MSS independent of its intensity, and 37.6% of MSS with intensity greater than or equal to 4 (Table 1).

The HRQoL presented an average of 48.9 (95% CI 48.5 - 49.3) and 49.5 (95% CI 49.1 - 50.0) points in their physical and mental dimensions, respectively. For the physical health dimension, the subject prevalence with "low HRQoL" was 28.9% (95% CI 27.0-30.9); and 29.3% (95% CI 27.3-31.5) for the mental health dimension.
The observed population prevalence of people without MSS was 45.4% (95% CI 43.1 - 47.7), with aMSS was 11.9% (95% CI 19.3 - 13.7) and with cMSS was 42.6% (95% CI 40.4 - 44.9).

The HRQoL score values in their PCS and MCS showed statistically significant differences in the three MSS groups (p <0.001). The scores of PCS and MCS were lower in cMSS versus aMSS, and the scores of both dimensions were lower in the two groups mentioned above when compared with those without MSS. Additionally, findings showed that in subjects with cMSS, the prevalence of "Low HRQoL" in its physical dimension was 50.5% and in the mental dimension was 39.7%. (Table 2).

When comparing HRQoL scores in people with cMSS according to control variables, the prevalence of "Low HRQoL" in their physical health dimension in women (53.7%) and men (44.5%) stands out. Conversely women (46.2%) differ from their "Low HRQoL" from men (27.4%) in the mental health dimension. The prevalence of "Low HRQoL" in its physical dimension exceeded 50% in people over 44 years of age. Moreover, 70.4% of people with high educational demonstrated "High HRQoL" in the physical health dimension, while 70.2% of the population with chronic musculoskeletal symptoms with low educational level exhibited "Low HRQoL". Finally, 62.8% of the population from a rural residence presented with a "Low HRQoL" in its physical health dimension. These comparisons were statistically significant, unlike the mental health dimension, in which no statistical significance was observed (Table 3; additional file).

The results showed that the HRQoL in its physical composite score demonstrated an inverse relationship with age in the population woMSS (rho -0.32), aMSS (rho -0.39) and cMSS (rho -0.39); and a direct relationship with the years of study in the population woMSS (rho 0.27), aMSS (0.34), and cMSS (rho 0.35), where all relationships were statistically significant (value p <0.05). This analysis carried out in the mental composite score shows results of low correlation values (<0.04) that were not statistically significant.

The univariate logistic regression model performed to explain the low HRQoL in its physical and mental composite scores yielded significant values for both cMSS and control variables (Table 4). According to the multivariate logistic regression model, the presence of cMSS as an explanation for the low HRQoL in its physical composite score, yielded an OR 3.1 (2.7-3.5 IC 95%), as well as an OR
1.9 (1, 6-2.1 CI 95%) in its mental composite score independent of the control variables (sex, age, educational level and area of residence). In the mental composite score arena, low correlation scores and a lack of statistical significance were observed in the variables age in ranges and area of residence. Therefore, the cMSS is constituted as a statistically significant risk factor to have a low HRQoL. (Table 5).

Discussion
This study clarifies the level of involvement for HRQoL in people with cMSS, compared to those with aMSS and those with woMSS. This study found that the following are risk factors for low HRQoL: the female sex, age over 44 years and rural area of residence. On the other hand, high educational level was found to be a protective factor.

The literature indicates that, in the context of a chronic disease, it is necessary to consider the subjective HRQoL assessment based on psychological functioning (mental health) and the degree of physical functioning damage (physical health)\(^1\). Along with this, it is proposed that single subject or population normality or abnormality HRQoL values should be according to a reference group, due to the marked effect of culture on health and disease \(^1\). The present study provides HRQoL scores (in its physical and mental composite scores) in the Chilean population that suffers cMSS as compared to the general population.

In relation to chronic pain, cMSS worldwide prevalence demonstrate wide ranges (12 to 41%) \(^{21}\), which would be explained by the different definitions for chronic pain, types of studies, data collection methodology and measurement instruments. The present study reports a higher prevalence than the upper limit of the previously reported range. The foregoing could be explained as similar prevalence is presented in studies with the same cut-off points of chronic pain (3 months duration) and similar methodologies of data collection (population surveys type face-to-face interviews) \(^{22}\). Additionally, the present study results resemble similar outcomes across Latin America; In Colombia, a cross-sectional descriptive population study in urban areas reported a chronic pain prevalence of 33.9% \(^7\) and in Brazil, a cross-sectional population study in São Luís exhibited a 42.3% prevalence \(^8\).
A study conducted in Ireland obtained a 62.6% cMSS prevalence, which is greater than that found in the present study. This could be explained because the population from which the data were obtained, which was a sample drawn from current pain patients (23). Subjects who were interviewed through a national telephone survey generated a low response rate (16.6%) (24).

Another factor that could create disparity in reported chronic pain prevalence centers on the high heterogeneity in chronic pain definitions and the different methodologies used for evaluating population studies worldwide. These disparities make difficult the ability to relate global epidemiological chronic pain findings with consistency in healthcare policy across countries (11, 25).

Musculoskeletal morbidities occur across the life cycle, where their pathophysiology is generally independent of age. Moreover, they share a scarce association with mortality, which could cause delay in a person’s healthcare-seeking behavior. These factors, coupled with Chilean healthcare access limitations, lend to cMSS prevalence (42.6%) being higher than the national prevalence for dyslipidemia (38.5%), hypertension (26.9%), respiratory symptoms (24.5%). %, depressive symptoms (17.2%) and type 2 diabetes (9.4%) (17). This cMSS tendency is furthered by lower HRQoL scores in both mental and physical dimensions.

This is consistent with research assessing HRQoL measured through SF-12, which suggests that quality of life is reduced in chronic pain sufferers, even when cMSS intensity is low (23). A cross-sectional survey study developed in Japan, showed that when using SF-12 to measure HRQoL in cMSS patients and comparing those data with asymptomatic individuals, both physical (PCS 44.23 vs 47.48; p <0.05) and mental (MCS 44.26 vs 51.14, p<0.05) scores demonstrated differences that exceeded the established clinically relevant cut-off points, emphasizing the dramatic effect of chronic pain in the patient's health experience (26).

In a study carried out in Brazil, people with chronic pain presented with significantly lower (P<0.001) health-related quality of life scores (measured through EuroQol), (22). In Ireland, chronic pain patients reported lower physical and mental HRQoL scores compared to the normal population (23). The mental
Composite scores (MCS) were lower versus physical composite scores, which confirms that the HRQoL should be treated as a multidimensional construct \(^{(2)}\).

The multiple logistic regression analysis shows that the cMSS variable is independent of the control variables (sex, age, educational level and residence area) in its ability to explain the presence of "low HRQoL", both in PCS as in MCS. However, this study’s findings show that the female sex and the increase in age are risk factors and that the high educational level is protective factor of presenting "low HRQoL". These considerations should be incorporated into national health program planning, especially in the following groups: women, elderly and people with medium and low educational level.

In women’s health care programs, such as "Chile Crece Contigo", MSS management strategies should be identified. A consideration for cMSS could help avoid chronicity of these, and therefore increase the HRQoL in them.

The national program "MAS adultos mayores autovalentes", which seeks to address the functional impairment of older adults and improve their functional independence, should be addressed with MSS screening, since such ailments in its chronic stage could affect the functionality in elderly persons.

In relation to the approach in groups of medium and low educational levels, it is necessary to establish dissemination strategies to health professionals in primary health care, especially in vulnerable sectors. The aim of investigating subjects that, considering their educational level, could be considered more chronic in MSS added to a social context of minimum health priorities in many unsolved cases. This could be due to greater physical labor demand, ignorance of the need for early management and consultation in case of musculoskeletal diseases.

The research results illustrate the evolution of HRQoL results in MSS between the National Health Surveys 2009-2010 and NHS 2016-2017, whose data will soon be available. In Chile, the best approach to MSS management has not been determined \(^{(27)}\). Before concluding the best approach, biomedical and biopsychosocial factors must be further considered. The biopsychosocial approach emphasizes the patient's self-management and their HRQoL. This explains the existing training gap that health professionals face within this epidemiological problem. This study’s findings support the
need to establish standardized management policies and practices for treating chronic MSS(27).

This study was strengthened by performing the analysis on population data, which allows a generalized application and reflects Chile’s state of health. One study limitation centers on study methodology. Since the study used an analytical cross-sectional approach, the methodology does not imply a cause-effect relationship.

Conclusion
Based on data from the 2009-10 National Health Survey, the scope and impact of chronic pain on the quality of life related to health in the Chilean population could be determined.

A cMSS prevalence of 42.6% (95% CI 40.4 - 44.9) was found in the Chilean population. The HRQoL is apparently affected in those suffering, both aMSS and cMSS, where the latter group exhibits the highest frequencies of "low HRQoL", both in their physical health and mental composite scores.
People who, in addition to presenting cMSS, belong to rural areas, are female and have an age of over 44 years, have a greater impact on their quality of life related to health, with emphasis on the physical composite score.

It is necessary to incorporate these considerations into specific nationwide health programs that aim to reduce not only the prevalence of chronic musculoskeletal pain, but also its economic and social consequences, and the existing relationship with decreased quality of life currently existing in Chile.

Abbreviations
HRQoL: Health related quality of life; cMSS: Chronic musculoskeletal symptoms; SF-12: Short Form (12) Health Survey; NHS: National health survey; IQR: Interquartile range; OR: Odds ratio; CI: Confidence interval;
IASP: International Association for the Study of Pain; MSD: Musculoskeletal disorders; CCQ-ILAR: Community Oriented Program for the Control of Rheumatic Disease (COPCORD) Core Questionnaire (CCQ) International League Against Rheumatism; MSS: Musculoskeletal symptoms; woMSS: Without musculoskeletal symptoms; aMSS: Acute musculoskeletal symptoms; SF-36: Short Form (36) Health Survey; PCS: physical composite scores; MCS: mental composite scores
MSS1: musculoskeletal symptoms of non-traumatic origin in the last 7 days, independent of the
intensity of pain; MSS2: musculoskeletal symptoms of non-traumatic origin in the last 7 days with intensity greater than or equal to 4 (of a maximum of 10) on the verbal scale of pain; Ref: reference value; MAS: Mas Adultos mayores autovalentes.

Declarations

AVAILABILITY OF DATA AND MATERIALS

The dataset analysed during the present study is available from Zenodo for researchers who meet the criteria for access doi: 10.5281/zenodo.3530819

FUNDING

Not applicable

AUTHORS’ CONTRIBUTIONS

MJM, VM and JL conceived of the study, and participated in its design and coordination. MJM, VM, JL and PS drafted the manuscript. MJM and JL participated in formulating the analysis strategy.

All authors read and approved the final manuscript.

CONSENT FOR PUBLICATION

Not applicable

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Ethics approval and participant consent was not necessary, since the secondary database is available by the Chilean Ministry of Health for research purposes.

COMPETING INTERESTS

The author(s) declare that they have no competing interests.

ACKNOWLEDGEMENTS

Not applicable

References

1. Urzúa M A. Calidad de vida relacionada con la salud: Elementos conceptuales. Rev Med Chil. 2010;138(3):358–65.

2. Patrick, Donald L. and Erickson P. Health Status and Health Policy: Quality of Life in
Health Care Evaluation and Resource Allocation. *Oxford Uni.* New York; 1993. 478 p.

3. Ebrahim S. Clinical and public health perspectives and applications of health-related quality of life measurement. *Soc Sci Med* [Internet]. 1995;41(10):1383-94.

4. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. *Eur J Pain.* 2006;10(4):287-333.

5. Andersen LN, Kohberg M, Juul-Kristensen B, Herborg LG, Søgaard K, Roessler KK. Psychosocial aspects of everyday life with chronic musculoskeletal pain: A systematic review. *Scand J Pain* [Internet]. 2014;5(2):131-48.

6. Task Force on Taxonomy of the International Association for the Study of Pain. Classification of Chronic Pain. IASP Pain Terminology. 1994.

7. Díaz R, Marulanda F. Dolor crónico nociceptivo y neuropático en población adulta de Manizales (Colombia). *Acta Med Colomb* [Internet]. 2011;36(1):10–7.

8. Vieira ÉB de M, Garcia JBS, Silva AAM da, Araújo RLTM, Jansen RCS, Bertrand ALX. Chronic pain, associated factors, and impact on daily life: are there differences between the sexes? *Cad Saude Publica* [Internet]. 2012;28(8):1459–67.

9. Jackson T, Thomas S, Stabile V, Shotwell M, Han X, McQueen K. A Systematic Review and Meta-Analysis of the Global Burden of Chronic Pain Without Clear Etiology in Low- and Middle-Income Countries: Trends in Heterogeneous Data and a Proposal for New Assessment Methods. *Anesth Analg.* 2016;123(3):739–48.

10. Miranda JP, Quezada P, Caballero P.; Jiménez L., Morales A., Bilbeny N, Vega JC, Resumen. Originales. *Rev El Dolor.* 2013;10–7.

11. Johnson MI. The prevalence of chronic pain in developing countries. *PAIN Manag.* 2013;3 (2):83–6.

12. Croft, P., Blyth, F. M., & van der Windt D. Chronic pain epidemiology: from aetiology
to public health. OU, editor. 2010.

13. Brooks PM. The burden of musculoskeletal disease - A global perspective. *Clin Rheumatol*. 2006;25(6):778-81.

14. Goldberg DS, McGee SJ. Pain as a global public health priority. *BMC Public Health* [Internet]. 2011;11(1):770.

15. Solis-Soto MT, Schön A, Solis-Soto A, Parra M, Radon K. Prevalence of musculoskeletal disorders among school teachers from urban and rural areas in Chuquisaca, Bolivia: a cross-sectional study. *BMC Musculoskelet Disord*. 2017;18(1):425.

16. Bennett K, Cardiel MH, Ferraz MB, Riedemann P, Goldsmith CH TP. Community screening for rheumatic disorder: cross cultural adaptation and screening characteristics of the COPCORD Core Questionnaire in Brazil, Chile, and Mexico. The PANLAR-COPCORD Working Group. Pan American League of Associations for Rheumatology. *J Rheumatol* 1997 Jan;24(1):160-8. 1997;24(1):2–3.

17. Ministerio de Salud de Chile. Encuesta nacional de salud ENS Chile 2009-2010 [Online]. Available from: http://web.minsal.cl/portal/url/item/bcb03d7bc28b64dfe040010165012d23.pdf

18. Encuesta de Calidad de Vida y Salud (ENCAVI) 2015-2016. 2016;2015–6. Available from: http://web.minsal.cl/wp-content/uploads/2017/02/PRESENTACION-ENCAVI-2016-11.02.2017.pdf

19. Aguilera X, González C, Guerrero A, Hoffmeister L, Cárdenas P, Burgos A, et al. II Encuesta de Calidad de Vida y Salud. Informe de Resultados, Total Nacional. [Online]. 2006. Available from: http://www.crececontigo.gob.cl/wp-content/uploads/2015/11/ENCAVI-2006.pdf

20. Ware J. E., Kosinski M., & Keller SD. How to score the SF-12 physical and mental
health summary scales. Second Edi. The Health Institute NEMC, editor. Lincoln, RI: Quality Metric. Boston, Massachusetts; 1995.

21. Toblin R. L., Mack K. A., Perveen G., & Paulozzi L. J. (2011). A population-based survey of chronic pain and its treatment with prescription drugs. *Pain, 152*(6), 1249-1255.

22. Cabral D., M. C. Bracher E., S. B. Depintor, J. D. P., & Eluf-Neto, J. (2014). Chronic pain prevalence and associated factors in a segment of the population of São Paulo City. *The Journal of Pain, 15*(11), 1081-1091.

23. Raftery M. N., Sarma K., Murphy A. W., De la Harpe D., Normand C., & McGuire B. E. (2011). Chronic pain in the Republic of Ireland—community prevalence, psychosocial profile and predictors of pain-related disability: results from the Prevalence, Impact and Cost of Chronic Pain (PRIME) study, part 1. *Pain, 152*(5), 1096-1103.

24. Dueñas M., Salazar A., Ojeda B., Fernández-Palacín F., Micó J. A., Torres L. M., & Failde I. (2015). A nationwide study of chronic pain prevalence in the general Spanish population: identifying clinical subgroups through cluster analysis. *Pain Medicine, 16*(4), 811-822.

25. Inoue S, Kobayashi F, Nishihara M, Arai Y-CP, Ikemoto T, Kawai T, et al. Chronic Pain in the Japanese Community-Prevalence, Characteristics and Impact on Quality of Life. Vol. 10, *PloS one*. 2015. p. 1-14.

26. Takura T., Ushida T., Kanchiku T., Ebata N., Fujii K., daCosta DiBonaventura M., & Taguchi T. (2015). The societal burden of chronic pain in Japan: an internet survey. *Journal of Orthopaedic Science, 20*(4), 750-760.

27. Espinoza M., Repetto P., Cabieses B., Vargas C., Zitko P. Propuesta de política pública para el manejo del dolor crónico músculo-esquelético en Chile. Propuestas para Chile. Concurso Políticas Públicas UC 2017. [Online] Available from:
Table 1: Sociodemographic characteristics of the study population; according to NHS 2 009-10 (n = 5 293)

Age (years)	46 (31-60)
Age (age groups)	
15 - 24	803 (15.2)
25 - 44	1 734 (32.8)
45 - 64	1 743 (32.9)
≥ 65	1 013 (19.1)

Sex	
Female	3 143 (59.4)
Male	2 150 (40.6)

Years of Study	10 (7-12)

Educational Level	
Low (<8 years)	1 408 (26.7)
Middle (8-12 years)	2 882 (54.7)
High (≥ 12 years)	983 (18.6)

Residence area	
Rural	784 (14.8)
Urban	4 507 (85.2)

MSS independent of its intensity	
No	3 068 (58.8)
Yes	2 148 (41.2)

MMS with intensity more than 4	
No	3 254 (62.4)
Yes	1 964 (37.6)

Data presented in median (P25-P75) and n (%) as appropriate
NHS: National Health Survey; MSS: musculoskeletal symptoms
Table 2: HRQoL scores in MSS groups, according to NHS 2009-10 (n = 5 276).

	woMMS n=310	aMSS n=562	cMSS n=2 404	p-value
PCS (physical composite score)	51.4 ± 7.5	48.7 ± 8.77	43.8 ± 10.1	<0.001
“High HRQoL” in PCS	1 893 (81.9)	391 (69.6)	1 190 (49.5)	<0.001
“Low HRQoL” in PCS	417 (18.1)	171 (30.4)	1 214 (50.5)	<0.001
MCS (mental composite score)	51.5 ± 9.1	49.7 ± 9.9	47.7 ± 10.6	<0.001
“High HRQoL” in MCS	1 803 (78.1)	395 (70.3)	1 450 (60.3)	<0.001
“Low HRQoL” in MCS	507 (21.9)	167 (29.7)	954 (39.7)	<0.001

Health related quality of life, in physical and mental composite scores, in population without musculoskeletal symptoms (woMSS), with acute musculoskeletal symptoms (aMSS) and chronic musculoskeletal symptoms (cMSS). Data presented on mean ± standard deviation, and n (%), as appropriate.

HRQoL: health related quality of life; MSS: musculoskeletal symptoms; NHS: National Health Survey; PCS: physical composite score; MCS: mental composite score.

Table 3: HRQoL according to control variables, according to NHS 2009-10. (n= 2 404)

	PCS	P-value	“High HRQoL” PCS	P-value	“Low HRQoL” PCS	P-value
Sex						
Female	45.3 ± 9.8	p<0.001	462 (55.5)	p<0.001	370 (44.5)	p<0.001
Male	43.1 ± 10.1		728 (46.3)		844 (53.7)	
Age						
15-24	50.2 ± 7.7	p<0.001	149 (73.8)	p<0.001	53 (26.2)	p<0.001
25-44	47.4 ± 8.8		426 (63.4)		246 (36.6)	
45-64	43.2 ± 9.7		454 (48)		492 (52)	
≥ 65	38.8 ± 9.9		161 (27.6)		423 (72.4)	
Educational level						
High	48.1 ± 9.3	p<0.001	238 (70.4)	p<0.001	100 (29.6)	p<0.001
Middle	45.7 ± 9.4		711 (56.7)		542 (43.3)	
Low	39.4 ± 9.6		241 (29.8)		568 (70.2)	
Residence area						
Urban	44.4 ± 10.1	p<0.001	1 030 (52.2)	p<0.001	942 (47.8)	p<0.001
Rural	41.5 ± 9.3		160 (37.2)		270 (62.8)	

Comparison of health related quality of life, in its physical and mental composite scores, in population with chronic musculoskeletal symptoms (CMSS). Data presented on mean ± standard deviation an frequency (%), as appropriate.

HRQoL: health related quality of life; NHS: National Health Survey; HRQoL: health related quality of life; PCS: physical composite score; MCS: mental composite score.

T test or ANOVA were used with Bonferroni (*) post-hoc analysis, when appropriate.
Table 4: Univariate logistic regression analysis, according to NHS 2009-10. (n=2404)

	Physical composite score	Mental composite score				
	OR	95% CI	p-value	OR	95% CI	p-value
Chronic musculoskeletal symptoms	3.9	3.5 - 4.4	<0.001	2.1	1.9 - 2.4	<0.001
Female	1.6	1.4 - 1.8	<0.001	2.3	2.0 - 2.6	<0.001
Age range 15-24	1	ref	1	ref		
Age range 25-44	1.9	1.5 - 2.4	<0.001	1.2	1.0 - 1.5	<0.001
Age range 45-64	4.3	3.4 - 5.4	<0.001	1.5	1.2 - 1.8	<0.001
Age range > 65	10.3	8.1 - 13.1	<0.001	1.4	1.1 - 1.7	<0.001
High Educational Level	1	ref	1	ref		
Middle Educational Level	0.2	0.2 - 0.3	<0.001	0.6	0.6 - 0.7	<0.001
Low Educational Level	0.1	0.1 - 0.1	<0.001	0.4	0.3 - 0.5	<0.001
Urban Area	1	ref	1	ref		
Rural Area	1.8	1.6 - 2.1	<0.001	1.1	1.0 - 1.4	<0.001

Univariate logistic regression analysis to explain the low health related quality of life in its physical and mental composite according to chronic musculoskeletal symptoms and control variables. NHS: National Health Survey; HRQoL: health related quality of life; 95% CI: 95% confidence intervals cMSS: chronic musculoskeletal symptoms; OR: odds ratio; Ref: corresponds to the reference level on which the analysis was performed.