Measurement of the Radon Concentration in Dust for Some Small side areas of Diwaniyah City by using Nuclear Impact detector CR-39

Kawthar Hassan Obayes
Department of Physics ,College of Education , University of Al-Qadisiyah , Qadisiyah Governorate , Iraq, kawthar.aljelehawy@qu.edu.iq

Abstract
In this research , the radon concentrations were measured in the rising dust samples as a result of the movement of trucks and vehicles to some small side areas of the city of Diwaniyah - Qadisiyah Governorate in the advanced nuclear laboratory in the Department of Physics / College of Education for Pure Sciences - Ibn Al-Haytham / University of Baghdad with the technique of nuclear impact detector CR-39, whereas the reagents were exposed for period of 30 - day dust samples, results were recorded for radon concentration of dust samples have values ranging from (287.42 ±38.5 – 743.21± 83.6) Bq / m3 where the results were higher than the internationally accepted limit recorded by (ICRP) which was (200-300) Bq / m3, also it has been calculated the radiation indicators which represented by the annual effective dose (AED) and potential Alpha Energy Concentration (PAEC) whereas the rate of radiation indicators was higher than the internationally accepted limit .

Key word : Radon , Dust , nuclear impact detector CR-39 .

1. Introduction.
The radiation is a natural part of the environment in which we live and everyone is exposed to this radiation through soil, water, air and food. Humans are always exposed to radiation rushes from sources existing in their surroundings like radioactive metals such as uranium and thorium and other elements that are present in the rocks of the earth's crust where the rate of radiation dose is estimated at an altitude of one meter above the limestone rock, which is in the range of 20 millimeters per year, for granite rocks it rises to 150 millimeters per year [1].

The radioactive elements can be found in the human body by inhaling radioactive gases or enter the radioactive elements into the body with food or drink which leads to their participation in the composition of the body and become a permanent source of radiation to the body, the most important of these elements is the element potassium, which causes a dose of 20 millimeters per year in the human gonads [2]. Humans are also exposed to radiation coming of the outer space in the form of cosmic rays is related to the amount the dose of cosmic rays to which a person is exposed on the Earth's surface and the amount of height from the surface of the earth where the dose increases as the height increases [3].
On the other hand, the industrial sources of radiation created by man have grown after the Second World War, where the number of nuclear reactors has increased very significantly as well as the fission residues of radioactive elements used in nuclear tests, as well as the use of radiation in the treatment and diagnosis of many diseases, development of production of petroleum industries and the accompanying NORM the dust accompanying nuclear tests due to the widespread spread of radiation in the universe and the increase in the amount of radiation dose received by the human being, attention has been given to its prevention because it poses a serious threat to human life [4].

So that, it was necessary to take the necessary measures to protect man and the environment from the dangers of radioactive contamination, it was the first effort in this area by the Runken Society of 1916 ICRU followed and was founded in 1928 as well as the International Agency for Prevention of Radiation (ICRP) and then the International Atomic Energy Agency (IAEA). It is a United Nations agency with interests in the peaceful use of atomic energy and prevention of radiation contamination, in addition to National Societies in all countries of the world to protect their citizens [2], so several studies have emerged and research to estimate the level radioactivity in soil, water, air and plants and their impact on living things.

2. Experimental.

The study was conducted by selecting (15) samples from different locations of Diwaniyah city - Qadisiyah governorate, rising dust patterns were collected as a result of vehicle movement by using a suitable device to draw air (vacuum cleaner) at a distance of 150 cm, Its surface is used for measurement as the duration for a single sample collection, it did not exceed 30 minutes for all models where the weight of each sample was (10g). The nuclear trace detector CR-39 was of British origin with an approximate area (1 × 1cm²) and a thickness (250 µm) that these reagents are pieces of plastic materials, in this study were exposed to the reagent for the studied models for 30 days through place the sample in small plastic containers and place the reagent inside a cylindrical container size information the sample was covered with a container to expose the reagent to the chemical reagents of the plastic reagents were carried out with NaOH (6.25 N) at (60 ° C) for (6) hours. the radon concentration was calculated from the following relationship [5]:

\[C_{RH} = \frac{E_R}{\rho_x} \left(\frac{\rho}{T} \right) \] ...

\[C_{RH} : \text{Radon concentration in units (Bq/m}^3) \]

\[E_R : \text{Radon exposure from standard source in units (Bq day/m}^3) \]

\[\rho : \text{Effects intensity from exposure to standard radium source in mm}^2 \text{ units.} \]

\[t : \text{exposure time in units of day.} \]

Or by the following relationship after calibration of the system [5]:

\[C_{RH} (\text{Bq m}^{-3}) = \frac{1}{k} \left(\frac{\rho}{t} \right) \] ...

Whereas k is the calibration factor, the slope of the straight line in Fig. 2, calculated from the linear relationship between radon exposure and the density of traces, is equal to (0.2568Track m³/Bq day mm²). The calibration element used the radium Ra²²⁶ half-life (1600 year) effectively (5µCi) of the radon emitter Ra²²² by exposing it directly to reagent CR-39 inside a cylindrical container of known size and for different periods of time.
Fig. 1 Map of the districts of (Diwaniyah province).
3. Results and discussion.

After exposing CR-39 solid state nuclear trace detectors for mounting dust samples due to the movement of wheels and cars for most small side areas of the city of Diwaniyah - Qadisiyah province for 30 days were collected reagents to obtain the density of effects per unit area and then calculate the concentrations of radon gas by comparing with the standard models (calibration) using the relationship between effects intensity the radon was exposed to the standard source where the relationship was linear as in Figure (2). From the slope of the graph, the concentrations of radon for unknown samples were calculated using the two relationships (1) and (2), Radiation indicators were calculated as annual effective dose (AED) and potential Alpha Energy Concentration (PAEC) calculated by the two following relationships [6][7]:

\[
\text{AED} = C_{\text{RN}} \times F \times H \times T \times D \quad \ldots \ldots \quad (3)
\]

\[
\text{AED} = C_{\text{RN}} \times 0.4 \times 0.8 \times 8760 \times 0.9 \times 10^{-6}
\]

\[
\text{PAEC} = \frac{F \times C_{\text{RN}}}{3700} \quad \ldots \ldots \quad (4)
\]

Whereas the results of radon concentrations and the intensity of effects and radiation indicators of the dust samples are listed in Table (1), the lowest value of the radon concentration in the air was recorded with the effects and radiation indicators of the dust samples in the sample (S3) and were within the limits (287.42 ±38.5 Bq/m³) It is within the universally accepted and amounting (200 – 300 Bq/m³) [8], The highest value of radon concentration in the air with the intensity of the effects and radiation indicators of the studied samples was recorded in the sample (S5) and was (743.21 ±83.6 Bq / m³), which is higher than the internationally accepted limit. Figure (3) shows the radon concentration levels for dust samples using a CR-39 reagent and Figure 4 shows the annual effective dose for the studied samples.
Table (1) Radon concentration, intensity of effects and radiation indicators using CR-39 detector for dust samples of some small side areas of Diwaniyah city - Qadisiyah governorate.

Sample	Location	Track number (track/mm²)	CRn (Bq/m³)	AED (msv/y)	PAEC (WL)
S1	University Site / first Location	2422.85	314.49± 46.4	7.93	0.0339
S2	University Site / Second Location	2464.28	319.87± 36.6	8.06	0.0345
S3	Professors Site / first Location	2214.28	287.42± 38.5	7.25	0.0310
S4	Towards Shami Site / first Location	3967.14	514.94± 91.1	12.99	0.0556
S5	Towards Shami Site / Second Location	5725.71	743.21± 83.6	18.75	0.0803
S6	Karar Site / first Location	4847.14	629.17± 105.1	15.87	0.0680
S7	Karar Site / Second Location	4865.71	631.58± 91.5	15.93	0.0682
S8	Green Site / first Location	4065.71	527.74± 32.2	13.31	0.0570
S9	Green Site / Second Location	2860.00	371.23± 28.1	9.36	0.0401
S10	Industrial Site / first Location	5158.57	669.59± 82.9	16.89	0.0723
S11	Industrial Site / Second Location	3628.57	470.99± 47.3	11.88	0.0509
S12	Ramadan Site / first Location	4217.14	547.39± 37.5	13.81	0.0591
S13	Teachers Site / first location	3968.57	515.13± 40.3	12.99	0.0556
S14	Teachers Site / Second Location	4102.85	532.56± 56.3	13.43	0.0575
S15	Virginity Site / first Location	4414.28	572.98± 59.3	14.45	0.0619
	the average		509.88 ±40.0	12.86	0.0550
	World average		200-300	3-10 [8]	0.0533 [8]

Fig. 3 concentration of radon for dust samples of some small side areas of Diwaniyah city - Qadisiyah governorate.
Fig. 4 The annual effective dose (AED) of dust samples

Through the results obtained for radon concentrations recorded by using CR-39 solid state nuclear detector we conclude that these results were higher than the internationally accepted limit (ICRP 2010) which is equal to (200 - 300 Bq / m³) except the values of sample (S3) It is within the universally accepted limit, but in high concentrations due to the fact that some of these sites were a military base in 2003 and some of them have military sites so far and some of them represent the industrial places to repair cars and weapons, as well as that most of these areas are close to the main street of the city of Najaf, and the dust can be transferred as the cause and as indicated by the study of the reference[9] Therefore we suggest conducting the process of cladding the streets or at least spraying them with water to minimize their environmental damage while conducting periodic monitoring of the aerosol pollutants of the area.

4. Reference

[1] A. H. Al-Mashhadani, H. S. Ali, and K. S. Ali, “Study of Radiation Pollution of Groundwater in Al-Tuz, Salah Al-Din Governorate, Iraq,” World J. Appl. Phys., vol. 2, no. 3, p. 85, 2017.

[2] D. Nikezić, C. Baixeras, and D. Kostić, “Sensitivity determination and optimisation of a cylindrical diffusion chamber, for radon measurements, with a CR39 detector,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 373, no. 2, pp. 290–298, 1996.

[3] J. Kemski, R. Klingel, A. Siehl, and M. Valdivia-Manchego, “From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany,” Environ. Geol., vol. 56, no. 7, pp. 1269–1279, 2009.

[4] G. Cinelli, F. Tondeur, and B. Dehandschutter, “Development of an indoor radon risk map of the Walloon region of Belgium, integrating geological information,” Environ. earth Sci., vol. 62, no. 4, pp. 809–819, 2011.
[5] M. M. Al-Kofahi, B. R. Khader, A. D. Lehlooh, M. K. Kullab, K. M. Abumurad, and B. A. Al-Bataina, “Measurement of radon 222 in Jordanian dwellings,” *Int. J. Radiat. Appl. Instrumentation. Part D. Nucl. Tracks Radiat. Meas.*, vol. 20, no. 2, pp. 377–382, 1992.

[6] A. A. Mowlavi, M. R. Fornasier, A. Binesh, and M. De Denaro, “Indoor radon measurement and effective dose assessment of 150 apartments in Mashhad, Iran,” *Environ. Monit. Assess.*, vol. 184, no. 2, pp. 1085–1088, 2012.

[7] A. H. Ismail and M. S. Jaafar, “Indoor radon concentration and its health risks in selected locations in Iraqi Kurdistan using CR-39 NTDs,” in *2010 4th International Conference on Bioinformatics and Biomedical Engineering*, 2010, pp. 1–8.

[8] I. Ursulean, L. Corețchi, I. Chiruță, and S. Vîrlan, “Estimation of indoor radon concentrations in the air of residential houses and mines in the Republic of Moldova,” in *first east european radon symposium-feras*, 2012.

[9] Khalid H. Mahdi, Soaad A. Eeesa, Zina J. Rahim, “Natural radioactivity measurement of soil samples from the Abu Sakhir -Najaf (Iraq) by using gamma spectroscopy , Proceedings of the 21st Specialized Scientific Conference for the period 22-23 / 4/2015 , 2015.” pp. 1–9.