Effect of Some Fungal and Bacterial Organisms on the Growth of Cowpea (*Vigna unguiculata* (L.) Walp) Seedlings

N. G. Ogbuji a,b* and O. F. Isalar c

a Department of Plant Science and Biotechnology, University of Port Harcourt, Port Harcourt, Nigeria.
b Regional Center for Biotechnology and Bio-resources Research, University of Port Harcourt,
Port Harcourt, Nigeria.
c Department of Biological Sciences, Edwin Clark University, Kiagbodo, Delta State, Nigeria.

Authors’ contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JALSI/2021/v24i1230274

Open Peer Review History:

This journal follows the Advanced Open Peer Review policy. Identity of the Reviewers, Editor(s) and additional Reviewers, peer review comments, different versions of the manuscript, comments of the editors, etc are available here: https://www.sdiarticle5.com/review-history/84701

ABSTRACT

Aims: Cowpea (*Vigna unguiculata* (L.) Walp) is a legume widely consumed in Africa. The effect of eight organisms viz: *Fusarium oxysporum*, *Aspergillus niger*, *Botryodiplodia theobromae*, *Rhizopus stolonifer*, *Pseudomonas* sp., *Corynebacterium* sp., *Micrococcus* sp. and *Xanthomonas* sp. on the growth of *Vigna unguiculata* seedlings was determined.

Methodology: Spore suspension of each fungal organism was prepared from pure cultures grown on Potato Dextrose Agar (PDA) plates and the bacteria used were obtained from slants. Fungal spores were standardized with the help of a haemocytometer slide and gelatine (0.1%) was used as a sticker. Using serial dilution method, 0.1ml of each of the isolated bacteria was collected from the 10⁻³ dilution and sprayed on the young seedlings using the run-off method. The cowpea seedlings were separately inoculated with each organism at the three leaf stage, three weeks after planting. Seedlings were artificially inoculated by spraying the adaxial surface of the leaves until water-soaked spots were obtained. The experiment was allowed to stand for 2 months and the leaf number, root length, shoot length and total seedling height of the cowpea seedlings were determined.

Results: Symptoms observed on seedlings were: stunted growth, drying of leaves, few fibrous roots, yellowing of leaves, wilting, necrotic lesions, leaf spot, darkening of leaf veins and blight.

*Corresponding author: E-mail: nkechi.iyanyi@gmail.com;
Most of the test organisms were pathogenic to \emph{V. unguiculata} causing varying degrees of damage. \emph{Fusarium oxysporum} caused the most deterioration on cowpea seedlings when compared to the other treatments.

Conclusion: This study has demonstrated the ability of culture filtrates of pathogenic microorganisms to express symptoms in seedlings and transmit diseases to healthy seedlings.

Keywords: Bacteria; fungi; inoculation; pathogens; symptoms; Vigna unguiculata.

1. **INTRODUCTION**

\emph{Vigna unguiculata} (L.) Walp. (cowpea) is an annual herbaceous legume cultivated for its edible seeds or for animal feed. The crop serves as both vegetable and pulse crop. It is a major source of proteins, essential vitamins, minerals and amino acids in most tropical third world countries [1,2]. They are mostly grown for grain but a small proportion (about 10%) are grown as fresh pods in eastern Asia or as green leafy vegetables, fodder or fresh pods in Africa [3]. Cowpeas are annual herbaceous crops that are erect, climbing or prostrate with a strong principal root and many spreading lateral roots in surface soil [4]. \emph{V. unguiculata} has a well-developed root system and can grow up to 80 cm for the erect varieties, and up to 2 m for the climbing cultivars. Germination in cowpea is epigeal. The first pair of true leaves are simple and opposite while subsequent leaves are trifoliate with oval leaflets. Pods occur in pairs, mostly vertical and pending, but they can also be erect. They contain 8-20 seeds and are cylindrical in shape, 2-6 cm long and 3-12 mm broad. Seeds can be black, white or pink brown [5]. Cowpeas are adapted to warm season and are grown in the tropical and subtropical zones, in sub-Saharan Africa and in Asia, the Caribbean, Central America, South America, around the Mediterranean Sea and the United States of America. Temperatures are suitable for cowpea all year round in the tropical zones while in the subtropical zones, temperatures are just suitable in the summer. Over 95% of the world’s cowpea production takes place in Sub-Saharan Africa, with about 12.5 million hectares of land under cowpea cultivation globally in 2014 [6]. The Sudan savannah zone of Nigeria is the centre of maximum diversity of cultivated cowpeas. Nigeria (4 million ha) has the largest area of cowpea cultivation according to FAOSTAT [6]. The second largest producing continent is Asia and it represents less than 3% of cowpea production worldwide from 1993 to 2014. Over this period of time, most of the cultivation in Asia was done in Myanmar [6]. In Africa, \emph{V. unguiculata} is mostly grown on lowlands but can be cultivated at an altitude of up to 1800 m.

Cowpea is prone to its natural enemies. Although cowpea is used as bio-fertilizer in agriculture and it’s a good source of amino acids for humans, however, commercial production of the legume is highly affected by pests (especially arthropods) and pathogenic organisms [7]. Insects of various types cause devastating losses on cowpea, but nematodes, bacterial, fungal and viral diseases also cause losses. Several fungal and bacterial pathogens have been reported to infect crop plants which lead to decrease in their yield and consequently reduce profit. The main objective of plant pathology is to prevent diseases and widespread outbreak of destructive diseases. Microorganisms can be transmitted into healthy young seedlings through inoculation, dispersal of spores etc. Dormant fungal spores that overwintered from one farming season to another can spread to healthy plants in the field thereby causing destruction. Poor storage of seeds may create a favourable environment for the growth of pathogens and infected seeds from a previous harvest may lead to disease spread. Therefore, the aim of this study is to ascertain the effect of some fungal and bacterial organisms on the growth of \emph{V. unguiculata} seedlings and also to determine the symptoms caused by these organisms on cowpea.

2. **MATERIAL AND METHODS**

2.1 **Source of Microorganisms**

\emph{Botryodiplodia theobromae}, \emph{Fusarium oxysporum}, \emph{Rhizopus stolonifer}, \emph{Aspergillus niger}, \emph{Pseudomonas} sp., \emph{Corynebacterium} sp., \emph{Micrococcus} sp. and \emph{Xanthomonas} sp. were isolated from diseased \emph{Vigna unguiculata} seeds [8] using Standard Blotter Method [9] and Agar Method described by Klement and Voros [10]. Whatman’s filter papers were soaked in sterile distilled water and placed on Petri dishes. Sterilized cowpea seeds were plated on the filter papers and then incubated for 7 days at room...
temperature (28°C). Fungal growth was observed on the filter papers and the resulting fungi were sub-cultured on Potato Dextrose Agar (PDA) medium. Isolated fungi were identified according to the guidelines issued by Umehuruba and Elenwo [11] and Ataga et al. [12]. Pure culture of each fungus was used as inoculum.

2.2 Inoculation of Healthy Cowpea Seedlings with Culture Filtrates of Test Fungi and Bacteria

Five healthy cowpea seeds were planted in polythene bags containing fine grained sterile sandy loam soil obtained from the back of Faculty of Science (Ofirma Hall), University of Port Harcourt, Rivers State. Nine treatments were used and each treatment was replicated five times. A total of 45 bags were used in this experiment for the eight test organisms (fungi and bacteria) and the control. Completely Randomized Design (CRD) was used as the experimental layout. The plants were irrigated at 24 hours interval.

The test organisms used in this study were: F. oxysporum, A. niger, B. theobromae, R. stolonifer, Pseudomonas sp., Corynebacterium sp., Micrococcus sp. and Xanthomonas sp. Spore suspension of each fungus was prepared from culture in Petri-dishes and the bacteria from the slants. For the bacterial organisms, serial dilution method was used from the 10⁻³ dilution where 0.1ml of each of the isolated bacteria was sprayed using the run-off method. Mycelia suspensions of the fungal isolates were prepared by punching 7 day old fungal cultures in agar plates using 5mm cork borer. The agar pieces of each test fungus were separately lodged into 10ml of distilled water and then sieved through double layer muslin cloth to remove the hyphae, agar lumps and other impurities. The spore suspension of each fungus was standardized at 10,000 spores per ml, in gelatine water. The spore suspension was standardized with the help of a haemocytometer slide. Gelatine (0.1%) was used as a sticker.

After three weeks, the cowpea seedlings were separately inoculated with each test organism at the three leaf stage. Test seedlings were artificially inoculated by spraying the abaxial surface of the leaves until water-soaked spots were obtained using a hand operated sprayer. After spraying, each plant was covered with a sterile polythene bag for 24 hours to maintain about 100% relative humidity. The control plants were sprayed to run-off with sterile distilled water only and covered with polythene bags for 24hours. The plants were water sprinkled at 24hours interval and examined for signs of infection.

2.3 Data Collection and Data Analysis

The experiment was studied for two months. The leaf number, root length, shoot length and total seedling height of the cowpea seedlings were determined at the end of the experiment. The number of emerged leaves was recorded daily for two months. The length of the shoot was measured from the root-collar to the terminal bud with a meter rule. The length of the longest root was measured with a meter rule. Total seedling height was obtained by measuring from the tip of the longest root to the shoot terminal bud with a meter rule.

Analysis of variance (ANOVA) was carried out on all data collected. Duncan’s Multiple Range Test (DMRT) was used to determine whether three or more means differ significantly. Bar graphs were plotted and the standard error bars noted at 95% confidence limit.

3. RESULTS AND DISCUSSION

3.1 Effect of Microorganisms on Cowpea Seedlings

The effect of F. oxysporum, A. niger, B. theobromae, R. stolonifer, Pseudomonas sp., Corynebacterium sp., Micrococcus sp. and Xanthomonas sp. on the seedling growth of cowpea are presented in Figs. 1 to 3. The test organisms reduced the seedling growth of cowpea (P< 0.05) infected three weeks after planting.

The mean number of infected leaves (disease incidence) 2months after planting showed that F. oxysporum (7.1) had the highest mean number of infected leaves followed by A. niger (6.8), Pseudomonas sp. (6.2), Xanthomonas sp. (6.1), R. stolonifer (5.1), B. theobromae (4.6), Corynebacterium sp. (3.3) and Micrococcus sp. (3.1) respectively. The control had no infected leaves (Fig. 1).

F. oxysporum (34.3%) caused the highest reduction in leaf mean number of cowpea seedlings followed by A. niger (27.1%), B. theobromae (21.0%), Pseudomonas sp. (18.6%), Xanthomonas sp. (17.6%), R. stolonifer (16.7%),
Corynebacterium sp. (14.3%) and *Microccus* sp. (11.0%) when compared with the control (Fig. 2).

F. oxysporum (31.6%) caused the highest reduction in the mean root length of cowpea seedlings followed by *A. niger* (28.7%), *R. stolonifer* (24.3%) and *Pseudomonas* sp. (24.3%), *B. theobromae* (22.8%), *Corynebacterium* sp. (18.4%) and *Micrococcus* sp. (16.2%) when compared with the control (Fig. 3).

F. oxysporum (45.7%) caused the highest reduction in mean shoot length of cowpea seedlings followed by *A. niger* (38.2%), *B. theobromae* (34.7%), *R. stolonifer* (30.7%), *Pseudomonas* sp. (23.6%), *Corynebacterium* sp. (8.5%), *Xanthomonas* sp. (5.1%) and *Micrococcus* sp. (5.0%) when compared with the control (Fig. 3).

Fig. 1. Effect of microorganisms on number of infected leaves (disease incidence) of *Vigna unguiculata* seedlings two months after planting

I= Standard error (*P*≤0.05)

Fig. 2. Effect of microorganisms on leaf number of *Vigna unguiculata* seedlings two months after planting

I= Standard error (*P*≤0.05)
F. oxysporum (40%) caused the highest reduction in the total seedling height of cowpea followed by A. niger (34.6%), B. theobromae (29.9%), R. stolonifer (27.8%), Pseudomonas sp. (23.9%), Xanthomonas sp. (17.9%) Corynebacterium sp. (12.5%) and Micrococcus sp. (9.3%) when compared with the control (Fig. 3).

Fungal culture filtrate of F. oxysporum, A. niger, B. theobromae and R. stolonifer reduced the growth of cowpea seedlings (P<0.05). The results showed that F. oxysporum caused the highest reduction in both shoot and root length of cowpea seedlings. Reduction in seedling growth may be due to the amount of metabolites induced by this fungus which interferes with the normal metabolic and physiological processes of the seedlings. Fusarium wilt is caused by F. oxysporum [13]. F. oxysporum is responsible for limitation in cowpea production in different parts of the world.

Bacterial culture filtrates of Pseudomonas sp., Xanthomonas sp., Corynebacterium sp. and Micrococcus sp. significantly reduced the growth of cowpea seedlings (P<0.05). Adebayo et al. [14] reported Pseudomonas sp., Xanthomonas sp. and Corynebacterium sp. infestation on cowpea and maize grains. Pseudomonas sp. has been reported as a growth-promoting and antagonistic microrganism by many authors [15,16]. Venkatachalam et al. [17] reported the reduction in shoot length and root length in maize and raddish respectively caused by culture filtrates of Streptomyces viridochromogenes and S. clavifer. Pectinases, cellulases and hydrolytic enzymes, are involved in the mechanisms used by bacteria to penetrate into and persist in host plants. The cell wall of plants consists of cellulose, while the middle lamella between cell walls is made up of mainly pectin. Hydrolysis of methyl-ester groups of cell wall pectins is catalyzed by pectinases. The ability of endophytes to degrade pectate could be an important factor in the colonization of the interspatial region between plant cells [18].

3.2 Disease Symptoms Observed on Inoculated Cowpea Seedlings

Cowpea seedlings infected with the different test organisms were observed for two months. Different symptoms manifested as a result of the effect of the organisms on the seedlings.

![Fig. 3. Effect of microorganisms on root length, shoot length and total seedling height of Vigna unguiculata seedlings two months after planting](image-url)
Nine types of disease symptoms were observed to be associated with the seedlings. Seedlings stunted (S₁), few fibrous roots (S₂), yellowing of leaves (S₃), drying of leaves/defoliation (S₄), wilting (S₅), blight (S₆), leaf spot (S₇), necrotic lesions (S₈) and darkening of leaf veins (S₉). Cowpea seedlings infected with A. niger showed stunted growth, yellowing and drying of leaves. Those infected with F. oxysporum all showed stunted growth, yellowing, wilting and drying of leaves. Seedlings infected with R. stolonifer showed darkening of veins, necrotic lesions and wilting. Pseudomonas infected seedlings resulted in wilting and yellow to light brown spots on leaves. Xanthomonas infected seedlings were subjected to defoliation and leaf blight. Defoliation also occurred with Corynebacterium infected seedlings with yellow necrotic leaf lesions and small dark brown lesions. Seedlings inoculated with Micrococcus sp. had dried leaves. The control plants showed no symptoms. The symptoms are represented in Table 1.

Oluymesi et al. [19] reported that seed inoculation with some seed mycorrhiza induced disease symptoms in cowpea seedlings. The organisms caused chlorosis and necrotic spots on the leaves, stems and roots. The cell wall-degrading enzymes (pectinases and cellulases) produced by these organisms must have facilitated the penetration of the fungi. Kritzinger et al. [20] observed the effect of fumonisin (a mycotoxin produced by Fusarium sp.) on cowpea. Some of the contents of the cytoplasm passed through the plasma membrane as it separated from the cell wall. Irregular sized vacuoles were formed due to the contraction of the protoplasm. The destructive effects seen in the ultra structure of the cell might play a role in the significant reduction in germination, root and shoot. F. oxysporum is one of the important and diverse plant pathogenic fungi infecting nearly 150 plant species. The pathogen of each plant is specific and referred to as formae specials [21]. One of the important cowpea diseases is F. oxysporum and this species possess risk to production of wheat, banana, tomato, beans, peas, palm, onions, sorghum, cowpea, potatoes, garlic and maize etc [22]. The genus Fusarium consists of several species that produce mycotoxins responsible for various animal diseases.

The genus Aspergillus is widely distributed in various habitats and can grow on a wide range of substrates. A. niger is usually found as a saprophyte growing on stored grain, dead leaves, compost piles and other decaying vegetation. The conidiophores have smooth walls and are hyaline or dark near the vesicle. Hussain et al. [23] reported the pathogenecity of species belonging to the genera, Fusarium and Aspergillus to be highly infective by producing mycotoxins that are involved in retarding seedlings growth of maize. B. theobromae has been reported to be able to colonize many plants as both a pathogen and an endophyte [24,25]. B. theobromae is a common rot fungus that causes great economic losses in the cultivation of various crops such as banana, cocoa, yam and mango [26]. B. theobromae has also been reported to cause bark canker and die-back of pear trees in India [27].

R. stolonifer is usually considered as the most important species of the genus Rhizopus. R. stolonifer is a plant pathogen and in most plant hosts, it is a weak parasite. Plant disease symptoms associated with R. stolonifer are watery areas that are rapidly covered by coarse, copious gray cottony colony with black globules (sporangia) at the tips [28].

Fungal organisms contain cell wall degrading enzyme (CWDE) which consists of laccases and peroxidases. These enzymes are used for the degradation of glycoside hydrolases and lignin. Fungi secrete pectinases, cellulases and hemicellulases for the degradation of pectin, cellulose and hemicellulose respectively [29]. Plant immune responses are deactivated by effector proteins and this facilitates the colonization of the plant host by the pathogen [30]. Fungal effector proteins are of two types: those secreted in between the plant cells (apoplastic) and those accumulated inside the plant cells where the membranes are situated (cytoplasmic) [31].

Reddish leaf spots on cowpea seedlings infected by Xanthomonas phaseoli was earlier reported by Manyangarirwa et al. [32]. Claudius-Cole et al. [33] reported bacteria blight caused by Xanthomonas axonopodis pv. vigniocola on cowpea. Xanthomonas campestris pv. vigniocola was reported by Okechukwu et al. [34] to be responsible for bacterial blight disease and post-emergence seedling mortality in cowpea. Xanthomonas is a well-known genus of bacterial plant pathogens whose members cause a variety of diseases in economically important crops worldwide [35]. Many strains of Xanthomonas produce the extracellular polysaccharide, xanthan which is used in the pharmaceutical and food industries. This polymer is also believed to be involved in a number of phases involved in the bacterial disease cycle.
Table 1. Disease symptoms associated with cowpea seedlings

S/N	Microorganism	Disease symptoms types	% of diseased seedlings of cowpea
1	*Fusarium oxysporum*	S₁, S₂, S₃, S₄, S₅	19, 17, 20, 17, 22
2	*Aspergillus niger*	S₁, S₂, S₃	9, 10, 13
3	*Rhizopus stolonifer*	S₅, S₆, S₇	5, 6, 4
4	*Botryodiplodia theobromae*	S₄, S₇	6, 4
5	*Pseudomonas sp.*	S₄, S₇	14, 18
6	*Corynebacterium sp.*	S₄, S₆	6, 4
7	*Micrococcus sp.*	S₄	4
8	*Xanthomonas sp.*	S₄	10
9	Control	No disease symptoms	

V. unguiculata is a very good and cheap source of plant protein. Infection of seedlings could be as a result of poor storage of seeds or seedling infections by spores, agricultural implements in the field etc. Seed testing and seed treatment are important measures that growers can take in order to produce healthy plant products and also help maintain sustainable production of cowpea for the teeming population of Africa and the world at large. Though most of the chemicals and fungicides used in the treatment of seeds before planting and in the control of these organisms are not affordable by most subsistence farmers, use of plant ash (potash) in dusting these seeds before planting and use of pepper (*Capsicum annuum*) in storing seeds goes a long way in protecting them from pathogens infestation. Farmers are advised to employ different strategies such as cultural practices, application of bio-control agents, sowing pathogen-free seeds and planting of cowpea genotypes with resistance to the pathogen among others in order to control these pathogens and the diseases they incite.

4. CONCLUSION

The test organisms caused various degrees of deterioration in the inoculated *V. unguiculata* seedlings with *F. oxysporum* causing the highest damage. This means that all the organisms were pathogenic on *V. unguiculata* seedlings. Symptoms observed on seedlings include: stunting, few fibrous roots, yellowing of leaves, drying of leaves/defoliation, wilting, blight, leaf spot, necrotic lesions and darkening of leaf veins. These symptoms are known to be associated with fungal and bacterial diseases of plants.

DISCLAIMER

The products used for this research are commonly and predominantly used products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Enyiukwu DN, Amadioha AC, Ononuju CC. Significance of cowpea leaves for human
consumption. Greener Trends in Food Science and Nutrition. 2018;1(1):1-10.
2. Falade MJ, Enikuomehin OA, Borisade OA, Aluko M. Control of cowpea (Vigna unguiculata L. Walp.) diseases with intercropping of maize (Zea mays L.) and spray of plant extracts. Journal of Advances in Microbiology. 2018;7(4):1-10.
3. Boukar O, FatokunCA, Roberts PA, Abberton M, Huynh BL, Close TJ, Boaheen SK, Higgins TJV, Ehlers JD. Cowpea In: De Ron, A.M. (ed.), Grain legumes, series handbook of plant breeding, Springer-Verlag, New York; 2015.
4. Sheahan CM. Plant guide for cowpea (Vigna unguiculata). USDA-Natural Resources Conservation Service, Cape May Plant Materials Center, Cape May, NJ; 2012.
5. Heuzé V, Tran G, Nozière P, Bastianelli D, Lebas F. Cowpea (Vigna unguiculata) forage. Feedepedia, a programme by INRAE, CIRAD, AFZ and FAO. 2015;16:20. Available:https://www.feedipedia.org/node/233
6. FAOSTAT. FAO Statistics online database, “Production/crops – ‘Cowpeas, dry’, year 2014”. Food and Agriculture Organization, Rome.http://faostat3.fao.org/home/E; 2014. (Accessed 10 September, 2021)
7. Enyiukwu DN, Amadioha Aand Ononuju CC. Histological aberrations and mode of damage of cowpea (Vigna unguiculata) by Colletotrichum destructivum. Nusantara Bioscience. 2021;13(1):16-23.
8. Iyanyi NG, Ataga AE. Fungal species associated with Vigna unguiculata (L.) Walp (cowpea) seed from parts of Enugu State, Nigeria. Scientia Africana. 2014;13(1):103-108.
9. ISTA (International Seed Testing Association). International rules for seed testing - rules amendments. Seed Science Technology. 2016;29:1-127.
10. Klement ZK, Voros IC. Methods in Pathology. Elsevier Scientific Publishing Company, Amsterdam, London; 1974.
11. Umehuruwa C, Elenwo EN. Diagnostic techniques in mycology with practical exercise. Belk Publisher; 1997.
12. Ataga AE, Elenwo EN, Nwachukwu EO. Laboratory exercises and series in mycology. ACOTEC Technologies, Port Harcourt, Nigeria; 2010.
13. Kannan K, Kannan VR, Shibinaya N, Umamaheswari M. Control of Fusarium wilt disease in cowpea plant (Vigna unguiculata L.). using secondary metabolites produced in Bradyrhizobium japonicum. KongunaduResearch Journal. 2019;6(2):28-36.
14. Adebayo RA, Adegbenro TA, Hassan GF. Occurrence of pathogens on grains of cowpea (Vigna unguiculata Walpers) and Maize (Zea mays L.) infested by Callosobruchus maculatus (F.) and Sitophilus zeamais Mots. Acta Scientific Agriculture. 2019;4(1):15-22.
15. Mukherjee A, Sinha-Babu SP. Pseudomonas fluorescens mediated suppression of Melolontha incognita infection of cowpea and tomato. Archives of Phytopathology and Plant Protection. 2013;46(5):607-616.
16. Manaf HH, Zayed MS. Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Annals of Agricultural Sciences. 2015;60(2):219-226.
17. Venkatachalam P, Ronald J, Sambath K. Effect of Streptomyces on seed germination. International Journal of Pharmacy and Biological Sciences. 2010;1(4):145-154.
18. Schaller M, Borelli C, Korting HC, Hube B. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses. 2005;48: 365-377.
19. Oluemisi BF, Oladimeji A, Olusegun SB. Pathogenicity and cell wall-degrading enzyme activities of some fungal isolates from cowpea (Vigna unguiculata (L.) Walp), Biokemistri. 2006;181(1):7-20.
20. Kritzinger Q, Aveling TAS, Van Der Merwe CF. Phytotoxic effects of fumonisin B1 on cowpea seed. Phytoparasitica. 2006;34(2):178-186.
21. Rana A, Sahgal M, Johr BN. Fusarium oxysporum: genomics, diversity and plant–host interaction In: T. Satyanarayana et al. (eds.), Developments in Fungal Biology and Applied Mycology. Springer Nature Pte Ltd Singapore; 2017.
22. Wamalwa EN, Muoma J, Muyekho FN, Wekesa C, Ajanga S. Genetic diversity of Fusarium oxysporum races associated with cowpea fields in Kakamega County. Journal of Fungal Genomics and Biology. 2018;8(2):156-162. DOI:10.4172/2165-8056.1000156
23. Hussain N, Hussain A, Ishtiaq M, Azam S, Hussain T. Pathogenicity of two seed-borne fungi commonly involved in maize seeds of eight districts of Azad Jammu and Kashmir, Pakistan. African Journal of Biotechnology. 2013;12(12):1363-1370.

24. Mehl J, Wingfield MJ, Roux J, Slippers B. Invasive everywhere? Phylogeographic analysis of the globally distributed tree pathogen *Lasiodiplodia theobromae*. Forests. 2017;8:145-166.

25. Salvatore MM, Andolfi A, Nicoletti R. The thin line between pathogenicity and endophytism: the case of *Lasiodiplodia theobromae*. Agriculture. 2020;10:488-509.

26. Twumasi P, Ohene-Mensah G, Moses E. The rot fungus *Botryodiplodia theobromae* strains cross infect cocoa, mango, banana and yam with significant tissue damage and economic losses. African Journal of Agricultural Research. 2014;9(6):613-619.

27. Shah MD, Verma KS, Singh K, Kau, R. Morphological, pathological and molecular variability in *Botryodiplodia theobromae* (Botryosphaeriaceae) isolates associated with die-back and bark canker of pear trees in Punjab, India. Genetics and Molecular Research. 2010;9(2):1217-1228.

28. Bautista-Baños S, Bosquez-Molina E, Barrera-Necha LL. *Rhizopus stolonifer* (soft rot) - postharvest decay. Academic Press, San Diego; 2014. DOI: 10.1016/b978-0-12-411552-1

29. Kubicek CP. Fungi and Lignocellulosic Biomass. Wiley, New York; 2013.

30. Rovenich H, Boshoven BP, Thomma JC. Filamentous pathogen effector functions: of pathogens, hosts and microbiomes. Current Opinion in Plant Biology. 2014;20C:96-103.

31. Giraldo MC, Dagdas YF, Gupta YK, Mentliak TA, Yi M, Martinez-Rocha AL, Saitoh H, Terauchi R, Talbot NJ, Valent B. Two distinct secretion systems facilitate tissue invasion by the rice blast fungus *Magnaporthe oryzae*. Nature Communications. 2013;4:1996. Available: https://doi:10.1038/ncomms2996

32. Manyangarirwa W, Bwerazuva T, Mortensen CN. Seed-borne fungal and bacterial pathogens on farm-retained cowpea seeds from Zimbabwe. African Crop Science Society. 2009;9:595-599.

33. Claudius-Cole AO, Ekpo EJA, Schilder AMC. Evaluation of detection methods for cowpea bacterial blight caused by *Xanthomonas axonopodis pv. vignicola* in Nigeria. Tropical Agricultural Research & Extension. 2014;17(2):77-85.

34. Okechukwu RU, Ekpo EJA, Okechukwu OC. Seed to plant transmission of *Xanthomonas campestris pv. vignicola* isolates in cowpea. African Journal of Agricultural Research. 2010;5(6):431-435.

35. An S, Potnis N, Dow M, Vorholter F, He Y, Becker A, Teper D, Li Y, Wang N, Bleris L, Tang J. Mechanistic insights into host adaptation, virulence and epidemiology of the phytopathogen *Xanthomonas*. FEMS Microbiology Reviews. 2020;44(1):1–32.