Evaluation of Diuretic and Antihypertensive Activity of Leaf Extracts of *Thymus schimperi* in Rats

Abstract

Background: *Thymus schimperi* leaves are used for treatment of urinary retention and hypertension in Ethiopian traditional medicine. It is among commonly used herbal remedy in Ethiopia in addition to its use for spicing a food and as infusion in tea. Hence in present study, the diuretic activity of aqueous and essential oil extract and antihypertensive activity of the aqueous extract against salt-sucrose induced hypertension was investigated in rats.

Methods: Aqueous extract of *T. schimperi* at the doses of 250, 500, 750 and 1000 mg/kg and the essential oil at 1.0 and 1.5 ml/kg were administered orally with normal saline to normal wistar rats. Normal saline and hydrochlorothiazide were used as negative and positive control, respectively. Urine volume and its Na⁺, K⁺ and Cl⁻ contents were measured. Hypertension was induced by allowing rats freely to drinking solution composed of 2% salt (NaCl) and 10% sucrose solution and body weight, blood pressure, serum lipid profile and enzymes were measured.

Results: The oral administration of aqueous extract of *T. schimperi* leaves (500 mg/Kg/day) for six weeks in salt-sucrose induced hypertension produced significant (p<0.05) reduction in systolic blood pressure raise at the end of the sixth week. The oral administration of aqueous extract of *T. schimperi* (250, 500, 750 and 1000 mg/Kg) showed positive diuretic activity at 5 hours. The aqueous extract of *T. schimperi* (750 and 10000 mg/Kg, orally) significantly increased Na⁺, K⁺ and Cl⁻ content of urine in 5 hours urine and additionally essential oil of *T. schimperi* (1 and 1.5 ml/kg) showed significant kaliuretic effect.

Conclusion: The present study revealed the antihypertensive and diuretic activity of aqueous extract of *T. schimperi*. These effects might be attributed to the presence of the potassium or phenolic components of the thymus leaves.

Keywords: *T. schimperi*, Diuretic, Salt-sucrose, Anthypertensive

Abbreviations: EPHI: Ethiopian Public Health Institute; TC: Total Cholesterol; BG: Blood glucose; TG: Triglycerides; ALT: Alanine Transaminase; ALP: Alkaline Phosphatase; AST: Aspartate Transaminase; LD: Lactate Dehydrogenase; LDL: Low Density Lipoprotein; HDL: High Density Lipoprotein; SBP: Systolic Blood Pressure; HCTZ: Hydrochlorothiazide ; TS250: 250 mg/kg of aqueous extracts of *T. schimperi*; TS500: 500 mg/kg of aqueous extracts of *T. schimperi*; TS750: 750 mg/kg of aqueous extracts of *T. schimperi*; TS1000: 1000 mg/kg of aqueous extracts of *T. schimperi*; TS1: 1 ml/kg of essential oil extracts of *T. schimperi*; TS1.5: 1.5 ml/kg of essential oil extracts of *T. schimperi*
and mortality [2]. Risks of stroke, heart failure, kidney failure, coronary heart disease, or cerebrovascular disease or early death from a cardiovascular cause are directly correlated with BP [3].

Hypertension in patients with diabetes causes a significant increase in risk of cerebrovascular disease, coronary heart disease, stroke, heart failure, renal disease, retinopathy and sexual dysfunction. The association with co-morbidities such as dyslipidemia, prothrombotic state and autonomic dysfunction contributes to an increase in morbidity and mortality [4].

Hypertension affects about 1 billion people globally and accounts for approximately 7.1 million deaths annually. It is prevalent not only among developed nations but also in developing countries [5]. It is 1.5 to 2.0 times more common in patients with diabetes than without diabetes, and more so in females than males [6]. Clinically, various antihypertensive drugs have been used to manage hypertension and to alleviate symptoms. However, the efficacy of these drugs is only 40-60% and usually two or more antihypertensive drugs from different categories are needed to be combined to achieve the optimal results and thus, this ultimately increases the cost of treatment and side effects. The frequent side effects of synthetic antihypertensive drugs includes dry mouth, dizziness, visual disorders, headache, cough, emotional distress, gastrointestinal disturbance, peripheral circulatory symptoms like cold hands, feet, and swollen ankles. These distressing side effects can lead to non-compliance and adversely affects health-related quality of life [1]. Hence, newer antihypertensive agents are needed to expand therapeutic options, increase treatment efficacy, decrease side effects, and enhance patient adherence [7]. Thus there is a need to explore alternative therapies particularly from herbal sources as these are cost effective and possess minimal side effects.

Even though, there are several allopathic antihypertensive medications are available, most people living in developing countries rely on traditional medicine. Various herbal preparations have been used and claimed to have benefit for hypertension. The diuretic, hypotensive, antihypertensive and in vitro vasodilatory effects of some of the plants such as Thymus serrulatus [8], Moringa stenopetala [9], Syzygium guineense [10], Tetrapleura tetraptera [11] and Colocasia esculenta [1] have been validated and others disproved.

One of the plants used for hypertension in Ethiopia is Thymus schimperi Ronniger. T. schimperi Ronniger locally known as ‘Tossign’ (Amharic) is endemic to the Ethiopian highlands, growing on edges of roads, in open grassland, on bare rocks and on slopes, between 2200-4000 m altitudes. It is perennial herb, woody at the base and 5- 40 cm high [12-13]. The studies shows that the in vitro vasodilatory effect of T. serrulatus [8], antihypertensive activity of T. vulgaris [14], and T. serpyllum [15] which has similar genus with T. schimperi.

The volatile oils from T. schimperi have been examined by means of gas chromatography and gas chromatography -mass spectrophotometry and the main constituents of the essential oils of T. schimperi from four regions such as Bale, Gonder, Shewa, and Wollo were identified as p-cymene (9-23%), y-terpinene (8-17%), thymol (6-38%) and carvacrol (5-63%) [12].

As to my knowledge since the diuretic and antihypertensive activity of this plant has not been scientifically evaluated, the present study was undertaken to investigate the possible diuretic and antihypertensive activity of aqueous extract of T. schimperi leaves in different experimental models taking the community claim and the diuretic and antihypertensive activity of Thymus genius in consideration. This study may helps to investigate diuretic and antihypertensive agents with greater efficacy and lower adverse effects than the existing drugs.

Materials and Methods

Experimental animals

Both sexes of Wistar rats, bred in the animal house of the EPHI, age of 6 to 8 weeks and weighing 250 g to 300 g were used for the experiment. They were kept for a week in a controlled environment (25 ± 1°C and 12 h/12 h light/dark cycle) with 6 rats per cage. The animals were allowed free access to tap water and standard laboratory animal food. The care and handling of the animals were in accordance with the internationally accepted standard guidelines for use of animals [16]. The study was submitted to, and approved by, EPHI ethics committee.

Plant material collection

Fresh plant leaves of T. schimperi were collected from Chilalo Mountain, Ars, 175 km South East of Addis Ababa in September 2013. The plant was identified and authenticated by Dr. Getachew Addis; a botanist at the Directorate of Modern and Traditional Medicine Research of EPHI and a voucher number (HH001) was given.

Extraction of the Plant Material

Isolation of essential oil

About 440 g of fresh leaves and 571 g of semi-dried leaves of T. schimperi were put for hydro-distillation in a clevenger-type apparatus for 3 hours, in a reduced pressured and at a temperature of 70°C. The essential oils obtained were separated from water and stored in refrigerator until needed for use. The percent yield was 1.48% (v/w) for fresh leaves and 1.02% (v/w) for semidried leaves.

Aqueous extraction

About 1600 g of dried leaves of the T. schimperi were extracted by heating at 70°C for 15 minutes (infusion method). The extract was filtered through Whatman filter paper No. 1 and freeze dried using Lyophilizer (12 L Console Freeze Dry 230v-60 (7754040) Freeze Dry System, Labconco, USA). A brownish dried extract was collected, weighed and kept in a desiccator until used for the experiment. The percent yield was 8.4% (w/w).

Phytochemical screening

Phytochemical analysis of the major secondary metabolites such as alkaloids, saponins, flavonoids, tannins, and polyphenols of the plant extracts was undertaken using standard qualitative color tests [17].
Evaluation for diuretic activity

The assessment of diuretic activity was employed with slight modification of methods used by Vogel et al. [18]. In this method, male albino rats weighing between 230-280 g deprived of food and water for 15 hours prior to the experiment, were divided in eight groups (n=6). The first group of animals, serving as control, received normal saline (25 ml/kg, orally); the 2nd group received hydrochlorothiazide (10 mg/kg, orally) in saline; the 3rd, 4th, 5th and 6th groups were given crude aqueous extracts orally at a dose of 250 mg/kg, 500 mg/kg, 750 mg/kg and 1000 mg/kg was administered orally in a volume of 1 ml/100 g, respectively. Group VII and VIII received essential oil orally at a dose of 1 ml/kg and 1.5 ml/kg, respectively. Immediately after oral administration, the animals were placed individually in metabolic cages kept at 20°C ± 0.5°C. The volume of urine output after 5 hours was measured and finally conserved at -20°C for further analysis. During this period, no food and water were made available to animals. The concentrations of Na+, K+ and Cl- in the urine and K+ in water (distilled and deionized) dissolved aqueous extract of T. schimperi were determined using methods described by the manufacturer (Roche diagnostics, Germany) using ROCHE 9180 electrolyte analyzer. Diuretic index, diuretic activity, saluretic index and Na+/K+ were calculated in order to compare the effects of the test substances and hydrochlorothiazide on urine excretion.

Induction of hypertension in rats

Male Wistar rats were randomly divided into five groups (n=6). Normal control rats (Group 1) received tap water and other groups (2-5) were given 2% NaCl and 10% sucrose solution for drinking daily for six weeks; salt-sucrose treated animals (Groups 3, 4 and 5) were given orally 250 mg/kg aqueous extract of T. schimperi, 500 mg/kg aqueous extract of T. schimperi and 20 mg/kg of captopril, respectively daily for six weeks.

Blood pressure measurement

The BP was measured from the tail of rats using non-invasive BP monitoring apparatus (Model 179, ITTC Inc, USA) before induction (basal BP) and weekly for six weeks. For testing, the animals were placed in the pre-warmed holder and appropriate cuff with sensor (photoelectric) was then mounted on their tails and warmed to about 32-35.4°C of tail temperature. When they were relaxed and became calm the tail cuff was inflated to a pressure well above the expected SBP (200 mmHg) and slowly released during which the pulse was recorded by the BP analyser. The SBP was read from the pulse tracings. Every time the measurements were made in triplicate and the average values were reported [10].

At end 6th week, the blood was collected in vacutainer tube by cardiac puncture from night fasted cervical dislocated rats. The serum was separated after centrifugation at 3000 rpm for 10 minutes. The serum lipid profile (TC, BG and TG), liver function indicators (ALT and ALP) were assayed using methods described by the manufacturer (Roche diagnostics, Germany) using COBAS-e 411 clinical chemistry analyzer instrument.

Acute oral toxicity

The aqueous extract of T. schimperi leaves was evaluated for possible toxic effect in female Wistar rats orally at a dose of 5 g/kg body weight according to OECD guidelines No. 425 [19]. Animals were observed individually after dosing at least once during the first 30 minutes, periodically during the first 24 hours, with special attention given during the first 4 hours and daily thereafter, for a total of 14 days. The changes in skin, fur, eyes, respiratory and behavioral patterns were noted.

Statistical analysis

All data were expressed as mean±SEM. The statistical significance was evaluated by using SPSS version 16. The difference between the groups was compared using repeated measures of ANOVA. A value of p<0.05 was considered statistically significant.

Results

Phytochemical screening

The leaf crude aqueous extract of T. schimperi and powdered leaves phytochemical screening by chemical methods (Table 1) showed the presence of phenols, tannins and saponins. Both the crude extract and powdered leaves, however, did not reveal the presence of alkaloids, phytosterols and glycosides.

Diuretic activity

Administration of T. schimperi aqueous extract (250, 500, 750 and 1000 mg/kg) showed significant (p<0.05) increase in urine volume as compared to control (normal saline). However, the diuretic effect was not linearly related to dose. The diuretic effect observed by the extract was less than that of the standard drug and highest diuretic index of the extract was observed at 500 mg/kg (Table 2). Essential oil, however, did not show significant diuresis (P>0.05) at either of the doses (1.0 ml/kg or 1.5 ml/kg).

Effect on urinary electrolyte

The effects of different doses of aqueous extract and essential oil of the leaves of T. schimperi on urinary electrolyte (Na+, K+ and Cl-) excretion in normal rats are presented in Table 3. The aqueous extract increased urinary Na+, K+ and Cl- excretion in a dose dependent manner. The two higher doses of the aqueous extract significantly(p<0.05) elevated urinary excretion of Na+, K+ and Cl- as compared to the control. The urinary excretion of Na+ produced by the higher dose (1000 mg/kg) of the extract was significantly (p<0.01) higher than the standard. The urinary excretion of K+ produced by the extract (500, 750 and 1000 mg/kg) and that of Cl (750 and 1000 mg/kg) was higher (p<0.01) than that of the standard. The essential oil did not cause significant urinary Na+...
Table 2 Effect of aqueous extracts and essential oils of the leaves of T. schimperi on urine volume.

Group	Cumulative urine volume (ml)	Diuretic index	Diuretic activity
Normal saline	0.42 ± 0.26	1.0	-
TS250	1.50 ± 0.44*	3.57	0.29
TS500	2.46 ± 0.38*	5.86	0.48
TS750	1.83 ± 0.49*	4.36	0.35
TS1000	1.63 ± 0.19*	3.88	0.32
TS1	0.88 ± 0.31	2.1	0.17
TS1.5	1.29 ± 0.2	3.07	0.25

Results are expressed as mean±SEM, (n=6); *p<0.05, **p<0.001 compared with control group.

Diuretic index = volume treated group / volume control group; Diuretic activity = volume treated group / volume standard group.

and Cl− excretion at any of the doses though it increased urinary excretion of K+ significantly (P<0.05) at both doses compared to the control.

Effect on serum enzymes and lipid profiles

The changes in serum enzymes activities and lipid profiles with the extract and essential oil are shown in Table 4. ALP and ALT levels were not significantly (p>0.05) different in salt-sucrose group, T. schimperi (250 and 500 mg/kg) and standard compared to the control group. There was no significant (P>0.05) differences in TC, TG and HDL levels of salt-sucrose, T. schimperi (250 and 500 mg/kg) and standard group compared to control. However, the level of HDL was significantly (p<0.05) decreased in T. schimperi (250 and 500 mg/kg) compared to salt-sucrose group. The level of LDL is significantly (p<0.05) increased in T. schimperi (250 and 500 mg/kg) groups compared to control.

Effects on blood pressure

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.

Acute toxicity study

The animals showed no clinical signs of toxicity and any behavioral change at oral limit dose of 5 g/Kg and all survived during the observation period.

Discussion

Diuretics are drugs that act on the kidney and are able to increase the volume of urine excreted and that is why they are used in cardiac failure, acute oedema of the lung, nephritic oedema syndrome, arterial hypertension and diseases related with the retention of fluids [20]. These effects may be produced by stimulation of regional blood flow or initial vasodilatation, or by producing inhibition of tubular reabsorption of water and ions and Cl− excretion.

and Cl− excretion at any of the doses though it increased urinary excretion of K+ significantly (P<0.05) at both doses compared to the control.

Effect on serum enzymes and lipid profiles

The changes in serum enzymes activities and lipid profiles with the extract and essential oil are shown in Table 4. ALP and ALT levels were not significantly (p>0.05) different in salt-sucrose group, T. schimperi (250 and 500 mg/kg) and standard compared to the control group. There was no significant (P>0.05) differences in TC, TG and HDL levels of salt-sucrose, T. schimperi (250 and 500 mg/kg) and standard group compared to control. However, the level of HDL was significantly (p<0.05) decreased in T. schimperi (250 and 500 mg/kg) compared to salt-sucrose group. The level of LDL is significantly (p<0.05) increased in T. schimperi (250 and 500 mg/kg) groups compared to control.

Effects on blood pressure

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.

The diuretic effect of the extract was not dose dependent which might be explained in terms of interaction of co-extracted substance(s) of the extract which might get high enough concentration to interfere with the diuretic activity of responsible component(s) at higher doses of the extract. The essential oil of the plant did not produce diuresis perhaps due to absence of active component(s) responsible for diuresis.
Results are expressed as mean±SEM, (n = 6); *p<0.05, **=p<0.01 compared to control group.

Parameters	Control	Salt-sucrose	TS250	TS500	Captopril
BW (%)	12.07 ± 1.99*	-15.96±1.68	-19.98±1.68*	-21.02±1.92*	-26.55 ± 3.06*
ALP (U/L)	277.3 ± 15.21	264.2±13.05	261.5±19.29	267.67±19.07	220.2 ± 16.4
ALT (U/L)	88.27 ± 9.17	70.68±10.03	65.30±13.85	81.75±12.56	63.11+9.94
TC (mg/dl)	112.2+9.59	105.75+8.72	132±8.6	128.42+16.06	143.67+12.37
TG (mg/dl)	121.32+14.95	84.93+6.54	122.53±15.3	134.07+19.85	139.8+10.33
HDL (mg/dl)	28.32+1.46	34.5+1.73	26.38±1.26***	26.98±2.19***	33.77+0.99
LDL (mg/dl)	9.89+0.25	19.53+1.84	22.53+1.78*	24.2+4.82**	20.4+1.51
BG (mg/dl)	107.93±5.55	129.3+4.93*	112.87±3.07	101.77+6.28	116.12±4.96

Results are expressed as mean±SEM, (n = 6); *p<0.05, **p<0.01 compared to control (tap water), ***p<0.05 compared to salt-sucrose group.
Serum glucose level of salt-sucrose feeding rats was significantly increased compared to control group. However, there was no significant differences observed in serum glucose level of *T. schimperi* and captopril treated groups compared to salt-sucrose groups. This might be due to lack of glucose lowering activity of the extract.

Na⁺ and K⁺ have been implicated in the etiology of hypertension [29]. The consequences of an excess of Na⁺ and K⁺ deficit in the body could be largely responsible for the hypertension and associated tissue injury.

Physiologically, normal kidney has the ability to excrete easily the daily salt load without allowing a marked rise in extracellular volume. Excess salt intake produces hypertension in rats, which mimics human hypertension. High salt intake hypertension has been produced in rats, rabbits and chicks by replacing drinking water with 1-2% NaCl for 9-12 months [30].

Addition of high salt to high sucrose causes marked elevation of BP in wistar rats. High sucrose intake appears also to elevate BP only with normal or high dietary salt intake [11]. In this study the rise in SBP in salt-sugar treated groups compared to water treated groups might be due to salt.

A high-potassium diet and increases in serum K+, even within the physiologic range, cause endothelium-dependent vasodilatation by hyperpolarizing the endothelial cell through stimulation of the Na⁺ pump and opening K⁺ channels. Endothelial hyperpolarization is transmitted to the vascular smooth-muscle cells, resulting in decreased cytosolic Ca²⁺, which in turn promotes vasodilation [31].

High K⁺ may reduce the risk of stroke; lowers BP; inhibits free radical formation, vascular smooth muscle proliferation, and arterial thrombosis. It has also been shown experimentally that K⁺ may reduce macrophage adherence to the vascular wall (an important factor in the development of arterial lesions, oxidative stress of the endothelium, or vascular eicosanoid production) [32]. In this study leaves extract of *T. schimperi* contains higher concentration of K⁺ which might be responsible for antihypertensive and diuretic activity of the extract.

Conclusion

The aqueous extract of the dried leaves of *T. schimperi* has diuretic activity while the essential oil did not produce diuresis at the dose employed. The aqueous extract of dried leaves *T. schimperi* was found to possess inhibitory activity in salt-sucrose raise in SBP.

Further studies are necessary to be performed for the antihypertensive activity of the extract against other hypertension models and effect of the extract on liver. Purification, isolation and characterization of the phytoconstituents responsible for the antihypertensive and diuretic effect and exploring the exact mechanism of action are needed.

Author Contributions

HH: Study design, experimental and laboratory work, data analysis, manuscript writing

EM: Study design, advising throughout the study, editing the manuscript writing

AD: Study design, advising throughout the study, editing the manuscript writing

BG: Study design, Experimental and laboratory work, manuscript writing

Acknowledgement

The authors are grateful for financial support of this study which was provided by the Ministry of Finance and Economic Development (project number O8N6.34/2006) through Ethiopian Public Health Institute and the School of Graduate Studies, Addis Ababa University. We also like to appreciate technical assistance of Mr. Abiy Abebe and Mr. Feyissa Challa during laboratory work. Staffs of the Traditional and Modern Medicine Research Directorate, and Finance, plan and monitoring sincerely appreciated for their direct and indirect contribution during the work.
References

1 Vasant OK, Vijay BG, Virbhadrappa SR, Dilip NT, Ramahari MV, et al. (2012). Antihypertensive and diuretic effects of the aqueous extract of Colocasia esculenta leaves in experimental paradigms. Iran J Pharm Res 11: 621-34.

2 Gavras H (2009) Pathogenesis of Hypertension: A Review. Journal of Medical Sciences 2: 25-28.

3 Foex P, Sear JW (2004) Hypertension: pathophysiology and treatment. Continuing Education in Anaesthesia, Critical Care and Pain 4: 71–75.

4 López-Jaramillo P, Sánchez RA, Díaz M, Cobos L, Bryce A, et al. (2013) Latin American consensus on hypertension in patients with diabetes type 2 and metabolic syndrome. Journal of Hypertension 31: 223–238.

5 Kumar BP, Jothy K, Sravya N, Rajveersingh, Swamy MK, et al. (2012) Evaluation of risk factors in hypertensive patients visiting to rural tertiary care teaching hospital. J Pharm Sci 2: 57-61.

6 Tashko G, Gabbay RA (2010) Evidence-based approach for managing hypertension in type 2 diabetes. Blood Pressure Control 3: 31–43.

7 Patel P, Vaghasiya J, Thakor A, Jariwala J (2012) Antihypertensive effect of rhizome part of Acorus calamus on renal artery occlusion induced hypertension in rats. Asian Pacific Journal of Tropical Disease 2: 6-10.

8 Geleta B, Eyasu M, Kebamo S, Debella A, Makonnen E, et al. (2015) In vitro vasodilatory effect of aqueous leaf extract of Thymus serratulaceus on thoracic aorta of Guinea pigs. Asian Pac J Trop Biomed 5: 15-18.

9 Mengistu M, Abebe Y, Mekonnen Y, Tolesa T (2012) In vivo and in vitro hypotensive effect of aqueous extract of Moringa stenopetala. African Health Sciences 12: 545-551.

10 Ayele Y, Urga K, Engidawork E (2010) Evaluation of in vivo antihypertensive and in vitro vasodepressor activities of the leaf extract of Syzygium guineense (Wild) D.C. Phytother Res 24: 1457–1462.

11 Thierry BN, Esther NL, Farouck AO, Emery TD, Theophile D (2012) Aqueous extract of Tetrapleura tetraptera prevents hypertension, Dyslipidemia and oxidative stress in high salt-sucrose induced hypertensive rats. Pharmacologia 141-146.

12 Asfaw N, Storensud HJ, Skattebol L, Tonnesen F, Asen AJ (2000) Volatile oil constituents of two thymus species from Ethiopia. Flavour and Fragrance Journal 15: 123-125.

13 Dagne E, Hailu S, Bisrat D, Worku T (1998) Constituents of essential oil of Thymus schimperi. Bull.Chem. Soc Ethiop 12: 79-82.

14 Kensa OA, ElSawy NA, El-Shemi AG, Header EA (2013) Thymus vulgaris supplementation attenuates blood pressure and aorta damage in hypertensive rats. Journal of Medicinal Plants Research 7: 669-676.

15 Mihailovic-Stanojevic N, Belščak-Cvitanović A, Grujić-Milanović J, Ivanov M, Jovović D, et al. (2013) Antioxidant and antihypertensive activity of extract from Thymus serpyllum L. in experimental hypertension. Plant Foods Hum Nutr 68:235-240.

16 National Research Council (2011) Guide for the care and use of laboratory animals. (8th edn), National Academic Press: Washington, D.C.

17 Trease GE, Evans WC (1989) Pharmacognosy (13th edn), Bailliere Tindall: London.

18 Vogel HG, Vogel WH, Scholken BA, Sandow J, Muller G, et al. (2008) Drug Discovery and Evaluation: Pharmacological Assays. (2nd edn), Johann Wolfgang Goethe Universität: Frankfurt am Main, Germany.

19 OECD (2008) Guidelines for testing of chemicals 425: Acute Oral Toxicity-Up and Down procedure. (1st adoption), Paris, France.

20 Devi S (2011). Acute toxicity and diuretic activity of Mangifera indica bark extracts. International Journal of Pharma and Bio Sciences 2: 141-146.

21 Katzung BG, Ives HE, Masters SB, Trevor AJ (2012) Diuretic Agents in Basic and Clinical pharmacology (12th edn), the McGraw-Hill Companies.

22 Sweaeea KL, Lekic M, Walker BR (2010) Comparison of mechanisms involved in impaired vascular reactivity between high sucrose and high fat diets in rats. Nutrition and Metabolism 7: 48.

23 Claudea BD, Désirée AMY, Désirée DDP, Blaise AA, Pierrea K, et al. (2013) Methanol extract of Allanblackia gabonensis (Guttiferaceae) prevents hypertension and oxidative stress induced by chronic sucrose consumption in rat. Pharmacologyonline, 1: 194-200.

24 Johnson RJ, Segal MS, Sautin Y, Nakagawa T, Feig DI, et al (2007) Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 86: 899–906.

25 Bharti D, Jagtap P, Undale Y, Bhosale A (2012) Aerial parts of aqueous extract of Cynodon dactylon shows hypotensive effect in high fructose treated Wistar rats. International Journal of Research in Pharmaceutical and Biomedical Sciences 3: 585-591.

26 Fariba B, Hassan S, Shahin G, Yavar R (2013) Effects of Dietary Fructose, Sucrose and Lactose in Induction of Nonalcoholic Fatty Liver in Rat. World Applied Sciences Journal 22: 368-373.

27 Whitehouse CR, Boullata J, McCauley LA (2008) The Potential Toxicity of Artificial Sweeteners. AAOHN Journal 56: 251-259.

28 Arneson W, Brickell J (2007) Clinical chemistry: a laboratory perspective. FA. Davis company, Philadelphia.

29 Geleijnse JM, Kok FJ, Grobbee DE (2003) Blood pressure response to changes in sodium and potassium intake: a meta-regression analysis of randomised trials. Journal of Human Hypertension 17: 471–480.

30. Adrogue HJ, Madias NE (2000) Mechanisms of disease: Sodium and Potassium in the Pathogenesis of Hypertension. N Engl J Med 356: 1966-1978.

31 Kaur M, Rana AC, Kumar S (2011) Induction of hypertension by various animal models. International Journal of Pharmacy and Biological Sciences 1: 335-340.

32 Cohn JN, Kowey PR, Whelton PK, Prisant LM (2000) New Guidelines for Potassium Replacement in Clinical Practice. Arch Intern Med 160: 2429-2436.