Effect of freeze–thaw cycles on the nutritional quality of some selected Nigerian soups

Akeem Olayemi Raji1, Rahman Akinoso2 & Monsurat Oyewale Raji2

1Department of Food Agric and Biological Engineering, College of Engineering and Technology, Kwara State University, Malete, Ilorin, Nigeria
2Department of Food Technology, University of Ibadan, Ibadan, Oyo State, Nigeria

Abstract

Freezing and thawing are heat transfer processes, involving chemical changes which may greatly affect product quality. Due to sparse literature on freeze–thawed cycles and its effects on soups quality, the effect of freeze–thaw cycles on the nutritional quality of selected Nigerian soups has to be investigated. Soups (Ila, Ewedu, Ogbono, and Kuka) were prepared using standard recipes. The soups were packaged in plastic and aluminum containers, frozen at −20°C, and thawed with microwave oven, hot water (100°C), and at ambient condition for four cycles of 5-day interval. After each cycle, chemical compositions of the samples were determined using AOAC methods. Data were analyzed using ANOVA at $P = 0.05$. Moisture, protein, fat, crude fiber, ash, and carbohydrate contents of the freeze–thawed soups were 63.6–88.6%, 3.6–8.8%, 1.0–6.1%, 0.8–1.2%, 1.8–4.6%, and 0.9–15.6%, respectively. Mineral contents were iron (5.0–6.8 mg/100 g), calcium (68.1–190.8 mg/100 g), sodium (144.4–231.7 mg/100 g), potassium (200.4–302.1 mg/100 g), and phosphorus (228.0–337.2 mg/100 g). Vitamins were vitamin A (29.5–59.9 mg/100 g), vitamin B (10.1–36.4 mg/100 g), and vitamin E (28.4–90.2 mg/100 g). Microwave-thawed plastic soups had limited nutritional losses when compared with other thawing methods, and should not be extended beyond the third cycle because of increasing reduction in fat and protein, indicating deterioration.

Introduction

Leafy vegetables are important in many Nigerian diets. Apart from the variety which they add to the menu, they are valuable sources of mineral, vitamins, fiber, and other nutrients which are usually in short supply in daily diets (Mepba et al. 2007). Also, they contribute to the flavor, taste, color, and esthetic appeal to what would otherwise be a monotonous diet.

Nutrients are essential for physical growth, maintenance of normal body function, and good health. Nutrition is a basic prerequisite for life sustenance (Soundarapandian et al. 2013). Minerals constitute the micronutrients and they are necessary for physiological and biochemical processes by which the human body acquires, assimilates, and utilized food to maintain health and activity (Mohapatra et al. 2009). Minerals do not only promote proper physical growth and development, but also ensure adequate immune competence and cognitive development (Soundarapandian et al. 2013). Although vegetables are highly nutritious, yet they are perishable (Hart et al. 2005). Preservation of vegetables and vegetable-related products by freezing to prevent nutritional losses is important.

The use of the freezing process to increase the length of food has gained widespread attention since the reduction in available water due to the formation of ice crystals and subzero temperatures provides an environment which favors reduced chemical reactions leading to increased storage stability (Zaritzky 2006). However, freezing is not a perfect method of preservation since even at low temperatures food quality deterioration may still occur. The formation of ice can result in textural changes and disruption of cell...
compartments causing the release of chemically reactive components (Lim et al. 2004). Thawing is in fact a temperature abuse, and has to be considered a critical operation in terms of quality and safety. Food safety has been addressed for several thawing methods (Yamamoto and Harris 2001), whereas quality losses are not generally tackled by the scientific community. Nutritional losses that occur during thawing decrease the health benefits of frozen green vegetables included into a diet.

Traditionally, soups are generally reheated several times in the day to prevent spoilage. This method of vegetable utilization has been shown to result in losses of vitamins (Hart et al. 2005). Such a situation calls for proper preservation and utilization of vegetables for maximum nutritional benefits. In modern homes, most soups are kept under frozen condition to preserve them and to avoid nutritional losses which may arise as a result of periodical heating after use (Hart et al. 2005). These freeze–thaw cycles may be repeated several times and it is very important to determine the quality changes that occur during multiple freezing–thawing treatments. The changes induced by the freezing–thawing cycle are mainly due to three phenomena that are often closely related: mechanical damage, denaturation of proteins, and loss of water-holding capacity (Hallier et al. 2007).

The standard methods of preparing various Nigerian soups and stews had been established by FIIRO (2006), but little has been done about their preservation and on various preservation techniques that they are subjected to. Freezing and thawing processes are complex, involving heat transfer and possibilities of a series of physical and chemical changes which may greatly affect product quality. From quality point of view, the effect of freeze–thaw cycles on the nutritional quality of selected Nigerian soups has to be investigated.

Material and Methods

Materials

The ingredients used for the preparation of the above soups were purchased from local markets at Ipata and Ago in Ilorin, Kwara State, Nigeria.

Methods

Preparation of soups

Selected Nigerian soups (Ewedu, Ila, Ogbono, and Kuka) were prepared using facilities of the Department of Food, Agricultural, and Biological Engineering, Kwara State University, Nigeria. The preparation methods used for the selected soups were those earlier established by recipe book of the Federal Institute of Industrial Research, Oshodi (FIIRO, 2006). The recipes used for the soups were presented in Table 1 and the methods of preparation were described later.

Freezing and thawing of soups

A laboratory scale chest freezer (Scanfrost chest; Model SPL-111, Hangzhou, China) with natural convection at –20°C was used to freeze and store the soup samples. The frozen soups were stored at –20°C for 5 days before being thawed. Three different thawing methods were employed.

1. Thawing in a microwave oven (LG, MS2024W, using defrost program, 450 W max. power)
2. Thawing in hot water (100°C) using water bath
3. Thawing at ambient temperature (28–32°C)

However, the products were thawed until the temperature at the center of the soups reached 0°C and this was ensured.

Table 1. Recipes used for preparation of soups.

Ogbono	Ewedu	Ila	Kuka
Bitter leaf (20 g)	leaves (120 g)	okro (fruit – 640 g)	meat (1000 g)
Ogbono (ground – 240 g)	egusi (ground – 40 g)	pepper (14 g)	onion (75 g)
Palm oil (80 mL)	water (500 mL)	uguvu (200 g)	dry fish (50 g)
Water (2000 mL)	crayfish (40 g)	meat (1000 g)	stockfish (500 g)
Maggi (8 g)	potash (1 g)	crayfish (40 g)	kuka (powder 150 g)
Onion (3400 g)	iru (5 g)	onion (300 g)	maggi (10 g)
Iru (locust beans – 10 g)	salt (5 g)	salt (14 g)	salt (8 g)
Fish (smoked – 310 g)		palm oil (40 mL)	curry (3 g)
Meat (1000 g)		water (2000 mL)	thyme (1.4 g)
Crayfish (ground – 40 g)		maggie cube (8 g)	crayfish (30 g)
Periwinkle (deshelled – 94 g)		iru (locust beans – 10 g)	water (2000 mL)
Salt (10 g)			palm oil (100 mL)
Pepper (ground – 14 g)			

Adapted from FIIRO (2006) methods.
Effect of Freeze–Thaw Cycles on Soups

A. O. Raji et al.

using a digital thermometer. Parts of the thawed packed soups were placed immediately on ice for analyses (cycle 1). In order to imitate thawing and refreezing that frozen soups experienced when some portions are consumed in modern homes, the other packed soups were frozen in a still freezer at −20°C for 5 days and thawed using the thawing methods stated earlier. Parts of the thawed soups were also placed on ice for analysis (cycle 2), while the rest were frozen. The freeze–thaw step (5 days storage at −20°C and then thawed) were repeated for four cycles.

Analyses

The proximate composition (moisture, protein, ash, crude fiber, and carbohydrate), mineral (iron, calcium, sodium, potassium, and phosphorus), and vitamin contents (vitamin A [retinol], vitamin B [thiamine], and vitamin E) of the soup samples were evaluated using the standard AOAC procedure (AOAC, 2005). Data were expressed as mean ± SD and were analyzed by one-way ANOVA test using SPSS statistical programme.

Results and Discussion

Effect of freezing and thawing conditions on proximate composition of some selected Nigerian soups

Tables 2–5 present the effect of freezing and thawing conditions on proximate composition of Ogbono, Ewedu, Ila, and Kuka soups subjected to frozen storage. There were significant differences (P < 0.05) in the proximate composition of Ogbono, Ewedu, Ila, and Kuka soups when subjected to the above frozen and thawing conditions as compared to the freshly prepared Ogbono, Ewedu, Ila, and Kuka soups, except for the moisture content of Ewedu soup samples and crude fiber of Ewedu and Ogbono soup samples that were not significantly different.

Table 2. Effect of freezing and thawing conditions on proximate composition of Ewedu soups.

Samples	%Moisture	%Protein	%Fat	%Ash	%Crude fiber	%Carbohydrate
Cycle 0						
E	88.60 ± 0.14a	6.00 ± 0.01a	1.05 ± 0.05j	1.81 ± 0.01j	1.04 ± 0.60a	7.41 ± 0.20n
Cycle 1						
AH	88.07 ± 0.03a	5.77 ± 0.15a–c	1.04 ± 0.04g–j	1.84 ± 0.02h–j	1.02 ± 0.60a	8.25 ± 0.06t
AR	87.46 ± 0.05a	4.78 ± 0.24d	1.03 ± 0.04g–j	1.96 ± 0.05a	1.00 ± 0.60a	9.78 ± 0.42b
AM	87.35 ± 0.14a	5.84 ± 0.12ab	1.04 ± 0.03b	1.83 ± 0.02h	1.02 ± 0.60a	8.61 ± 0.07j
PH	87.66 ± 0.05a	5.87 ± 0.12ab	1.05 ± 0.03a	1.83 ± 0.02f	1.03 ± 0.59a	7.85 ± 0.12b
PR	87.78 ± 0.08a	4.60 ± 0.10gj	1.03 ± 0.03a	1.99 ± 0.01i	0.98 ± 0.61a	9.06 ± 0.03c
PM	88.48 ± 0.03a	5.92 ± 0.07ab	1.05 ± 0.05a	1.81 ± 0.01i	1.03 ± 0.61a	9.60 ± 0.10j
Cycle 2						
AH	87.46 ± 0.05a	5.50 ± 0.10e–e	1.00 ± 0.09a	1.86 ± 0.02f–j	1.01 ± 0.60a	9.05 ± 0.12j
AR	86.78 ± 0.71a	4.37 ± 0.31gh	0.95 ± 0.13a	1.99 ± 0.01el	1.01 ± 0.60a	11.49 ± 0.09k
AM	85.79 ± 0.09a	5.60 ± 0.10d–d	1.02 ± 0.07b	1.85 ± 0.02j	1.01 ± 0.60a	9.66 ± 0.12a
PH	86.72 ± 0.03a	5.60 ± 0.10d–d	1.03 ± 0.07a	1.84 ± 0.10m	1.02 ± 0.59a	8.33 ± 0.10j
PR	87.06 ± 0.09a	4.27 ± 0.31j	0.95 ± 0.13a	2.04 ± 0.05c	0.98 ± 0.61a	10.51 ± 0.10l
PM	88.40 ± 0.05a	5.80 ± 0.05ab	1.05 ± 0.05a	1.82 ± 0.02l	1.02 ± 0.62a	9.77 ± 0.09n
Cycle 3						
AH	86.90 ± 0.11a	5.20 ± 0.20a	1.00 ± 0.09a	1.89 ± 0.03f	0.99 ± 0.60a	9.83 ± 0.12j
AR	85.31 ± 0.09a	3.90 ± 0.20i	1.00 ± 0.01a	2.00 ± 0.02g–e	0.99 ± 0.60a	13.52 ± 0.09e
AM	84.54 ± 0.05a	5.37 ± 0.12de	1.03 ± 0.04a	1.88 ± 0.03h	1.01 ± 0.60a	10.74 ± 0.12c
PH	85.81 ± 0.10a	5.27 ± 0.15e	1.04 ± 0.04a	1.86 ± 0.04j	1.02 ± 0.59a	8.78 ± 0.11i
PR	86.39 ± 0.06a	3.77 ± 0.25j	0.99 ± 0.04a	2.07 ± 0.04ab	1.01 ± 0.59a	11.91 ± 0.18f
PM	88.32 ± 0.08a	5.84 ± 0.03ac	1.04 ± 0.05a	1.83 ± 0.01l	1.00 ± 0.60a	9.45 ± 0.11h
Cycle 4						
AH	88.34 ± 0.09a	4.77 ± 0.21f	0.99 ± 0.08h	1.91 ± 0.03f	1.00 ± 0.60a	10.65 ± 0.07e
AR	84.14 ± 0.15a	3.70 ± 0.17i	1.00 ± 0.02a	2.03 ± 0.04d–e	0.99 ± 0.59a	15.56 ± 0.12k
AM	83.00 ± 0.16a	4.87 ± 0.02f	1.89 ± 0.02e	1.89 ± 0.04g	0.98 ± 0.59a	11.77 ± 0.04a
PH	84.89 ± 0.08a	4.87 ± 0.21f	1.01 ± 0.02a	1.88 ± 0.05h	1.00 ± 0.59a	9.18 ± 0.13c
PR	85.64 ± 0.06a	3.63 ± 0.15i	0.99 ± 0.01a	2.09 ± 0.03a	0.97 ± 0.60a	13.52 ± 0.06b
PM	88.18 ± 0.05a	5.78 ± 0.03ac	1.04 ± 0.04a	1.83 ± 0.01h	1.03 ± 0.61a	10.09 ± 0.04j

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.

© 2015 The Authors. Food Science & Nutrition published by Wiley Periodicals, Inc.
The moisture contents obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions are presented in Tables 2–5. The freshly prepared soups had the moisture value of 68.70 ± 0.14% (*Ogbono*), 88.60 ± 0.14% (*Ewedu*), 77.25 ± 0.35% (*Ila*), and 78.54 ± 0.06% (*Kuka*). While the moisture values of the selected soup samples subjected to different frozen and thawing conditions ranged from 63.55 ± 0.03% to 68.54 ± 0.05% (*Ogbono*), 83.00 ± 0.16% to 88.48 ± 0.03% (*Ewedu*), 70.87 ± 0.29% to 77.15 ± 0.13% (*Ila*), and 70.82 ± 0.04% to 77.90 ± 0.04% (*Kuka*). The moisture content of the soups determines their susceptibility to microbial attack and hence spoilage (Olusanya 2008). The moisture content of freshly prepared “*Ogbono*” (68.70 ± 0.14%) was lower than those of freshly prepared “*Ila*,” “*Ewedu*,” and “*Kuka*.” This indicated that freshly prepared *Ogbono* with lower moisture content might have storage advantage over others. Soups that were packaged in plastic but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.

Table 3. Effect of freezing and thawing conditions on proximate composition of *Ila* soups.

Samples	%Moisture	%Protein	%Fat	%Ash	%Crude fiber	%Carbohydrate
Cycle 0						
I	77.25 ± 0.35a	15.94 ± 0.08a	2.13 ± 0.04a	1.90 ± 0.14l	1.15 ± 0.07a	1.64 ± 0.60p
Cycle 1						
AH	77.32 ± 0.11a	14.15 ± 0.17d-f	2.08 ± 0.01a-e	2.03 ± 0.04h-i	1.12 ± 0.01a-c	3.23 ± 0.33n
AR	75.48 ± 0.20g	13.96 ± 0.06f	2.09 ± 0.03ab	2.05 ± 0.02b-i	1.12 ± 0.01a-c	5.30 ± 0.23h-j
AM	76.26 ± 0.25cd	14.86 ± 0.42c	2.06 ± 0.03d-f	2.03 ± 0.02b-i	1.11 ± 0.01a-c	3.68 ± 0.64mm
PH	76.55 ± 0.22c	14.55 ± 0.39gf	2.08 ± 0.06c-f	1.94 ± 0.01f-i	1.13 ± 0.01ab	3.74 ± 0.34mm
PR	76.60 ± 0.40c	14.67 ± 0.11f	2.10 ± 0.01a-f	2.03 ± 0.07f-i	1.10 ± 0.01ab	3.49 ± 0.26mn
PM	77.15 ± 0.13a	15.44 ± 0.40f	2.08 ± 0.03d-f	1.92 ± 0.04f-i	1.14 ± 0.01ab	2.28 ± 0.49p
Cycle 2						
AH	76.74 ± 0.21b	14.04 ± 0.07ef	2.02 ± 0.02b-g	2.08 ± 0.04i-j	1.12 ± 0.02c	4.00 ± 0.26mn
AR	74.24 ± 0.09b	14.00 ± 0.04ef	2.01 ± 0.01b-g	2.11 ± 0.02b-h	1.11 ± 0.01a-c	6.53 ± 0.09d-f
AM	75.58 ± 0.08gf	14.10 ± 0.13d-f	2.01 ± 0.02b-g	2.10 ± 0.01b-h	1.11 ± 0.01a-c	5.10 ± 0.13k
PH	75.96 ± 0.14de	13.82 ± 0.71f	1.99 ± 0.01f-h	2.13 ± 0.03b-h	1.13 ± 0.03ab	4.99 ± 0.67k
PR	75.78 ± 0.29ef	13.77 ± 0.21i	2.02 ± 0.02b-g	2.14 ± 0.06d-g	1.05 ± 0.13h	5.25 ± 0.51i
PM	76.75 ± 0.18b	14.45 ± 0.13e-d	2.00 ± 0.02d-g	2.00 ± 0.11i-k	1.13 ± 0.01ab	3.67 ± 0.21mn
Cycle 3						
AH	76.62 ± 0.11bc	13.71 ± 0.17f	2.01 ± 0.01c-g	2.11 ± 0.06b-h	1.12 ± 0.01a-c	4.44 ± 0.12kl
AR	72.53 ± 0.10i	12.63 ± 0.33i	1.99 ± 0.01g	2.18 ± 0.02b-e	1.08 ± 0.07a-c	9.58 ± 0.68b
AM	74.90 ± 0.10h	13.04 ± 0.61f	1.99 ± 0.01f-g	2.19 ± 0.03e-f	1.11 ± 0.01a-c	6.76 ± 0.23d
PH	75.56 ± 0.13gf	13.10 ± 0.19b	2.00 ± 0.01c-g	2.23 ± 0.01b-c	1.12 ± 0.01a-c	5.99 ± 0.67e-g
PR	75.41 ± 0.23g	13.07 ± 0.46gh	1.99 ± 0.01fg	2.48 ± 0.07a	1.13 ± 0.01ab	5.91 ± 0.67f-h
PM	76.64 ± 0.11b	13.65 ± 0.12i	2.01 ± 0.01c-g	2.11 ± 0.02b-h	1.11 ± 0.02a-c	4.48 ± 0.09f
Cycle 4						
AH	76.46 ± 0.12c	12.67 ± 0.20f	1.82 ± 0.07k	2.17 ± 0.07f	1.11 ± 0.01a-c	5.77 ± 0.09a
AR	70.87 ± 0.29k	12.26 ± 0.12i	1.84 ± 0.05k	2.19 ± 0.01b-e	1.11 ± 0.01a-c	11.72 ± 0.21a
AM	74.11 ± 0.11i	12.41 ± 0.12h	1.84 ± 0.06k	2.24 ± 0.05b	1.11 ± 0.01a-c	8.30 ± 0.07c
PH	75.33 ± 0.08g	12.84 ± 0.12ph	1.90 ± 0.12i	2.27 ± 0.02bc	1.07 ± 0.06e	6.62 ± 0.14de
PR	74.67 ± 0.07h	11.92 ± 0.07f	1.91 ± 0.09h-j	2.52 ± 0.06a	1.10 ± 0.06c-a	7.84 ± 0.05c
PM	76.51 ± 0.21c	13.86 ± 0.07f	1.96 ± 0.06h-j	2.13 ± 0.03f	1.13 ± 0.01ab	6.62 ± 0.14de

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (*P* < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
unfrozen phase and a non-uniform distribution of food components. These components differ greatly in their ability to absorb radiofrequency energy and this tends to cause localized area to overheat before other areas are thawed (Boonsumrej et al. 2007). Therefore, this resulted into considerable moisture loss in all the soup samples packaged in both plastic and aluminum containers and thawed in microwave oven at every freeze–thaw cycle. Plastic containers absorbed heat and retained it to thaw the soups packed in them at a considerable rate in hot water and microwave-thawing conditions, while aluminum containers conducted heat away from the soups they contained, creating less effective thawing rate in hot water and microwave-thawing conditions, this might be due to high heat transfer coefficient of the aluminum containers (Singh and Heldman 2000). Although microwave thawing produced rapid thawing in plastic containers, and much more uniform than heating by conduction (Karel and Lund 2003), little amount of moisture was lost compared to other conditions stated earlier where considerable losses were observed.

Protein

Tables 2–5 show the protein content obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had protein values of 18.70 ± 0.42% (Ogbono), 6.00 ± 0.01% (Ewedu), 15.94 ± 0.08% (Ila), and 8.80 ± 0.14% (Kuka). While the protein values of the selected soup samples subjected to different frozen and thawing conditions ranged from 16.15 ± 0.14% to 18.70 ± 0.42% (Ogbono), 3.63 ± 0.15% to 5.92 ± 0.07% (Ewedu), 11.92 ± 0.07% to 15.44 ± 0.40% (Ila), and 8.44 ± 0.08% to 8.74 ± 0.13% (Kuka).

Proteins are important in the body due to their numerous roles (Uwakwe and Ayalogu 1998; Duru Majesty
et al. 2012). Of the four soups under investigation, freshly prepared Ogbono had the highest protein content. Freshly prepared Ewedu and Kuka with lower protein contents might not be able to contribute significantly to the daily protein requirements of 22–56 g (NRC 1975). During freezing and thawing of soups, it was observed that soups that were packaged in plastic and aluminum containers and thawed at 5 days interval for four freeze–thaw cycles at room temperature had the lowest protein content retention (Tables 2–5). While soups that were packaged in plastic and thawed in microwave oven had the highest protein content retention when compared with the freshly prepared soup (Tables 2–5). Considerable amount of losses in the protein contents of soups subjected to freezing and thawing conditions were observed as the freeze–thaw cycles (1–4) increased. Protein denaturation can be defined as functionality caused by changes in the protein structure due to the disruption of chemical bonds and by secondary interactions with other constituents (Alizadeh et al. 2009). The reduction in crude protein of the soups during ice storage could be attributed to the gradual degradation of the initial crude protein to more volatile products as total volatile bases (TVB), trimethyl amine (TMA) hydrogen sulfide, and ammonia and the changes in protein and lipid content might be associated with the leaching out to ice of some of the lipid fractions (Obemeata and Christopher 2012). The reduction in crude protein content of the frozen soups might also have been due to a decrease in salt-soluble protein and water-soluble protein (Chomnawang et al. 2007) or due to autolytic deterioration associated with the actions of endogenous enzymes and bacteria (Hultman and Rustard 2004). Losses in protein during thawing might be due to heat disruption (Alizadeh et al. 2007b) (hot water thawing), energy disruption (microwave thawing) (Boonsumrej et al. 2007), and microbial activities (room temperature thawing) (Leygonie et al. 2012).

Samples	%Moisture	%Protein	%Fat	%Ash	%Crude fiber	%Carbohydrate
Cycle 0						
K	78.54 ± 0.06a	8.80 ± 0.14a	2.29 ± 0.01a	2.09 ± 0.01i	0.88 ± 0.02a	7.41 ± 0.20c
Cycle 1						
AH	77.80 ± 0.03c	8.70 ± 0.07a–c	2.25 ± 0.01X	2.13 ± 0.01h	0.86 ± 0.01b–c	8.25 ± 0.06d
AR	76.35 ± 0.48g	8.66 ± 0.07a–d	2.23 ± 0.01g	2.15 ± 0.01g–i	0.83 ± 0.01i	9.78 ± 0.42g
AM	77.50 ± 0.05d	8.67 ± 0.06a–c	2.24 ± 0.01b–e	2.14 ± 0.01g–i	0.84 ± 0.01f–g	8.61 ± 0.07
PH	78.17 ± 0.04b	8.74 ± 1.00a	2.27 ± 0.01ab	2.12 ± 0.01h–i	0.87 ± 0.01ab	7.85 ± 0.12b
PR	77.12 ± 0.02a	8.64 ± 0.08a–d	2.19 ± 0.06b–e	2.17 ± 0.01h–i	0.82 ± 0.01h–i	9.06 ± 0.03
PM	77.90 ± 0.04c	8.74 ± 1.03a	2.26 ± 0.01a	2.10 ± 0.01	0.88 ± 0.01a–b	8.10 ± 0.10
Cycle 2						
AH	77.08 ± 0.04a	8.64 ± 1.03a	2.25 ± 0.02b–e	2.13 ± 0.02g–i	0.85 ± 0.01c–e	9.05 ± 0.12
AR	74.72 ± 0.04k	8.59 ± 1.02a	2.21 ± 0.01f	2.16 ± 0.01g–i	0.83 ± 0.01f–g	11.49 ± 0.09g
AM	76.50 ± 0.05g	8.62 ± 1.02a	2.22 ± 0.01g–h	2.15 ± 0.02h–i	0.84 ± 0.01d–g	9.68 ± 0.12g
PH	77.78 ± 0.03c	8.66 ± 1.03a	2.24 ± 0.01b–e	2.13 ± 0.01h–i	0.85 ± 0.01c–e	8.33 ± 0.10
PR	75.71 ± 0.03i	8.60 ± 1.02a–d	2.19 ± 0.01h–k	2.18 ± 0.01b–e	0.81 ± 0.01d–f	10.51 ± 0.10a
PM	77.31 ± 0.03d	8.67 ± 1.03a	2.27 ± 0.01ab	2.12 ± 0.15b–h	0.87 ± 0.01ab	8.76 ± 0.09
Cycle 3						
AH	76.38 ± 0.03g	8.58 ± 1.04a	2.23 ± 0.01c–g	2.14 ± 0.15d–h	0.84 ± 0.01c–f	9.83 ± 0.12
AR	72.75 ± 0.15m	8.54 ± 1.05a	2.18 ± 0.01k	2.18 ± 0.15m–n	0.82 ± 0.01m–n	13.53 ± 0.09g
AM	75.50 ± 0.03l	8.56 ± 1.04a	2.21 ± 0.01f	2.16 ± 0.03f–g	0.83 ± 0.01e–h	10.74 ± 0.12a
PH	77.38 ± 0.09d	8.61 ± 1.05a–d	2.24 ± 0.01c–f	2.14 ± 0.01h–i	0.85 ± 0.01c–e	8.78 ± 0.11
PR	74.37 ± 0.04l	8.54 ± 1.05a–d	2.17 ± 0.01k	2.20 ± 0.02m	0.81 ± 0.01d–f	11.91 ± 0.18a
PM	76.70 ± 0.05f	8.61 ± 1.03a	2.25 ± 0.01b–d	2.13 ± 0.01e–h	0.86 ± 0.01ab	9.45 ± 0.11h
Cycle 4						
AH	75.63 ± 0.07j	8.53 ± 0.08b–d	2.21 ± 0.01g–i	2.15 ± 0.01d–h	0.83 ± 0.01f–e	9.95 ± 0.07
AR	70.82 ± 0.15n	8.45 ± 0.07d	2.18 ± 0.01k	2.19 ± 0.01b	0.81 ± 0.01j	15.56 ± 0.12a
AM	74.56 ± 0.03k	8.49 ± 0.09d	2.19 ± 0.01h–k	2.17 ± 0.02b–d	0.82 ± 0.01b–d	11.77 ± 0.04c
PH	77.07 ± 0.03e	8.55 ± 0.09b–d	2.22 ± 0.01d–g	2.14 ± 0.01h–i	0.84 ± 0.01e–h	9.18 ± 0.13
PR	72.91 ± 0.04m	8.44 ± 0.08d	2.15 ± 0.01l	2.18 ± 0.05e–f	0.79 ± 0.01k	13.53 ± 0.06b
PM	76.17 ± 0.04h	8.53 ± 0.05a	2.24 ± 0.01b–f	2.12 ± 0.06–h	0.85 ± 0.06c–e	10.09 ± 0.04d

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
Fat

Presented in Tables 2–5 are the fat content obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the fat value of 6.12 ± 0.11% (Ogbono), 1.05 ± 0.05% (Ewedu), 2.13 ± 0.04% (Ila), and 2.29 ± 0.01% (Kuka). While the fat values of the selected soup samples subjected to different frozen and thawing conditions ranged from 5.15 ± 0.03% to 6.12 ± 0.11% (Ogbono), 1.00 ± 0.02% to 1.05 ± 0.05% (Ewedu), 1.82 ± 0.07% to 2.08 ± 0.03% (Ila), and 2.15 ± 0.01% to 2.28 ± 0.01% (Kuka).

However, soups packaged in plastic and aluminum containers and thawed at 5 days interval for four freeze–thaw cycles at room temperature had the lowest fat retention (Tables 2–5). While soups that were packaged in plastic and thawed in microwave oven had the highest fat content retention when compared with the freshly prepared soup (Tables 2–5). Fats are saturated lipids at room temperature (Kritchevsky 1996; DuruMajesty et al. 2012) which are known to play protective roles in the body (Obidoa et al. 2010). The crude fat content of soups subjected to freeze–thaw cycles under different freezing and thawing conditions ranged from 0.92 ± 0.60% to 6.12 ± 0.11%. Decrease in the fat contents of soups subjected to freezing and thawing conditions varies considerably as the freeze–thaw cycle increases (1–4). Variation in the fat contents might be as a result of different quantities of palm oil added to the soups as stated in the recipe book. For all the conditions that the selected soups were subjected to, the fat content reduced during the freeze–thaw cycles. The reduction in fat content indicates an increase in lipid oxidation. This could be due to the release of oxidative enzymes and pro-oxidants from various rupture cellular organelles (Boonsumrej et al. 2007).

Crude fiber

The results of crude fiber content obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions are shown in Tables 2–5. The freshly prepared soups had the crude fiber value of 1.04 ± 0.60% (Ogbono), 1.04 ± 0.60% (Ewedu), 1.15 ± 0.07% (Ila), and 0.88 ± 0.02% (Kuka). While the crude fiber values of the selected soup samples subjected to different frozen and thawing conditions ranged from 0.92 ± 0.60% to 1.03 ± 0.60% (Ogbono), 1.00 ± 0.59% to 1.03 ± 0.61% (Ewedu), 1.07 ± 0.06% to 1.14 ± 0.01% (Ila), and 0.79 ± 0.01% to 0.88 ± 0.01% (Kuka).

Adequate intake of dietary fiber can lower the level of serum cholesterol and reduce the risk of developing hypertension, constipation, diabetes, colon cancer, and coronary heart disease (Ishida et al. 2000). The fiber content of the freshly prepared soups ranged between 0.875 ± 0.02% and 1.47 ± 0.02%, with Ila having the highest fiber content. The lowest crude fiber retention was obtained at every freeze–thaw cycle in soups packaged in plastic and aluminum containers but thawed at room temperature. While soups that were packaged in plastic and thawed in microwave oven had the highest crude fiber content retention when compared with the freshly prepared soup (Tables 2–5). An increase in the number of freeze–thaw cycles (1–4) resulted to the considerable amount of loss in the crude fiber content of soups subjected to freezing and thawing conditions. Losses in crude fiber from all these soups were most probably dominated by enzyme-induced degradation. The variation in the percentage loss of crude fiber demonstrated the differences in vulnerabilities of the selected soup to spoilage at every freeze–thaw cycle. This might be due to mechanical stress caused by freezing and thawing, surface area, and their differing enzymatic activities (Martinez-Romero et al. 2004). Minimal losses in crude fiber of soup samples packaged in plastic and thawed in microwave oven was attributed to the short thawing time which limited enzymatic activities.

Ash

Tables 2–5 present the ash content obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the ash value of 4.55 ± 0.21% (Ogbono), 1.81 ± 0.01% (Ewedu), 1.90 ± 0.14% (Ila), and 2.09 ± 0.01% (Kuka). While the ash values of the selected soup samples subjected to different frozen and thawing conditions ranged from 4.55 ± 0.11% to 5.14 ± 0.09% (Ogbono), 1.81 ± 0.01% to 2.03 ± 0.04% (Ewedu), 1.90 ± 0.04% to 2.52 ± 0.06% (Ila), and 2.09 ± 0.01% to 2.18 ± 0.05% (Kuka). The ash content was moderate in all the soups samples subjected to freezing and thawing conditions. Ash content is an index of mineral contents in biota (Akubugwo et al. 2007). The observed ash content from the freshly prepared soups ranged between 1.81 ± 0.01% and 4.55 ± 0.21%, with freshly prepared Ogbono having the highest ash content. This could mean that the minerals in freshly prepared Ogbono are higher than that of others. Accordingly, reductions in other chemical components might result into corresponding increase in ash contents due to concentration of soluble solids with relatively chemically stable products.
Carbohydrate

Tables 2–5 show the carbohydrate values obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the carbohydrate values of 0.89 ± 0.64% (Ogbono), 7.41 ± 0.20% (Ewedu), 1.64 ± 0.60% (Ila), and 7.41 ± 0.20% (Kuka). While the carbohydrate values of the selected soup samples subjected to different frozen and thawing conditions ranged from 1.23 ± 0.55% to 8.49 ± 0.63% (Ogbono), 7.85 ± 0.12% to 13.53 ± 0.06% (Ewedu), 2.28 ± 0.49% to 11.72 ± 0.21% (Ila), and 7.85 ± 0.12% to 15.56 ± 0.12% (Kuka).

During freezing and thawing of soups, it was observed that soups that were packaged in plastic and aluminum containers and thawed at 5 days interval for four freeze–thaw cycles at room temperature had the lowest carbohydrate retention when compared with microwave and hot water–thawed soups packaged in plastic containers (Tables 2–5). While soups that were packaged in plastic and thawed in microwave oven had the lowest carbohydrate content when compared with the freshly prepared soup (Tables 2–5). An increase in the number of freeze–thaw cycles (1–4) resulted to the considerable increase in the carbohydrate content of soups subjected to freezing and thawing conditions. Increase in carbohydrate content at every freeze–thaw cycle might be as a result of loss of moisture which causes redistribution of chemical composition within the food. The recommended dietary allowance (RDA) values of carbohydrate for adults and pregnant and lactating mothers are 130, 175, and 210 g, respectively (DuruMajesty et al. 2012). The carbohydrate contents of the soups were very low, but this is not a concern since they are been consumed along with starch-based dietary staples (Kayode et al. 2010).

Effect of freezing and thawing conditions on mineral composition of some selected soups

The effect of freezing and thawing conditions on the mineral composition of Ogbono, Ewedu, Ila, and Kuka soups subjected to frozen storage were presented in Tables 6–9. There were significant differences (P < 0.05) in the mineral composition of Ogbono, Ewedu, Ila, and Kuka soups when subjected to the above frozen and thawing conditions as compared to the freshly prepared Ogbono, Ewedu, Ila, and Kuka soups. Iron

The freshly prepared soups had the iron values of 6.34 ± 0.10 mg/100 g (Ogbono), 6.75 ± 0.08 mg/100 g (Ewedu), 5.30 ± 0.04 mg/100 g (Ila), and 6.28 ± 0.02 mg/100 g (Kuka). The range of iron contents of the selected soup samples subjected to different frozen and thawing conditions were as follows: 6.08 ± 0.00–6.23 ± 0.10 mg/100 g (Ogbono), 6.21 ± 0.03–6.71 ± 0.07 mg/100 g (Ewedu), 4.97 ± 0.03–5.28 ± 0.02 mg/100 g (Ila), and 6.16 ± 0.02–6.24 ± 0.02 mg/100 g (Kuka). Freshly prepared Ewedu was observed to have the highest concentration of iron, with freshly prepared Ila having the lowest concentration.

Different minerals perform important body functions including oxygen transport, nerve-muscle function, enzyme activity, energy metabolism, and formation of some hormones, water balance, acid–base balance, and growth tissues (Hegarty 1995; Sanni et al. 2010). Inadequate mineral intake may become a problem, most especially for the vulnerable groups such as the infants and young children, teenage girls, premenopausal women, and the elderly (Hegarty 1995; Sanni et al. 2010). Deficiencies of some minerals may have serious implications on physical, psychological, and/or economic well-being of humans (Hegarty 1995; Sanni et al. 2010). Soups selected had appreciable levels of iron content. The adult RDA for iron is 10 mg/day for men and 15 mg/day for women indicating that the selected soups will be able to meet the daily dietary iron requirements (Wardlaw 1999; Kayode et al. 2010). This higher amount of iron in these soup samples might be due to combinations of meats, fish, and other ingredients added to the soups. This corresponds to earlier reports that most Nigerian natural foods are rich in iron (Latunde-Dada 1997). Openheimer (2000) reported that iron deficiency was extremely common in the developing world, with <50% of the world’s population having some degree of deficient iron status based on a wide variety of tests. This corresponds to studies by Elemo et al. (2010b) on the iron status of premenopausal women in a Nigerian university. They reported that these women were at a very high risk of nutritional anemia. This could be attributed to their irregular diet, socioeconomic status, and consumption pattern. However, the presence of antinutrients such as phytate in food could reduce iron absorption and utilization in humans (Kayode et al. 2010).

Calcium

The results of calcium contents obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions are revealed in Tables 6–9. The freshly prepared soups had calcium values of 73.71 ± 0.04 mg/100 g (Ogbono), 147.53 ± 0.25 mg/100 g (Ewedu), 73.57 ± 0.18 mg/100 g (Ila), and 190.83 ± 0.08 mg/100 g (Kuka). The range of iron contents of the selected soup samples subjected to different frozen and thawing conditions were as follows: 73.28 ± 0.02–73.62 ± 0.05 mg/100 g (Ogbono),
Effect of Freeze–Thaw Cycles on Soups

A. O. Raji et al.

Iron (mg/100 g) Calcium (mg/100 g) Sodium (mg/100 g) Potassium (mg/100 g) Phosphorus (mg/100 g)

Cycle 0	O	6.34 ± 0.10	73.71 ± 0.04	160.21 ± 0.26	260.50 ± 0.50	337.19 ± 0.07
Cycle 1	AH	6.14 ± 0.03	73.45 ± 0.06	159.66 ± 0.03	259.81 ± 0.11	336.97 ± 0.07
	AR	6.11 ± 0.03	73.32 ± 0.02	159.35 ± 0.10	259.63 ± 0.07	336.80 ± 0.08
	AM	6.11 ± 0.01	73.34 ± 0.06	159.55 ± 0.07	259.74 ± 0.08	336.86 ± 0.08
	PH	6.18 ± 0.05	73.51 ± 0.04	159.76 ± 0.10	259.93 ± 0.07	337.08 ± 0.07
	PR	6.09 ± 0.02	73.31 ± 0.06	159.44 ± 0.10	259.63 ± 0.06	336.81 ± 0.07
	PM	6.23 ± 0.10	73.62 ± 0.05	159.93 ± 0.16	260.03 ± 0.05	337.13 ± 0.12
Cycle 2	AH	6.10 ± 0.02	73.38 ± 0.07	159.50 ± 0.09	259.46 ± 0.12	336.79 ± 0.11
	AR	6.09 ± 0.01	73.30 ± 0.07	159.40 ± 0.06	259.33 ± 0.04	336.72 ± 0.08
	AM	6.09 ± 0.02	73.32 ± 0.09	159.44 ± 0.07	259.39 ± 0.07	336.73 ± 0.10
	PH	6.13 ± 0.02	73.43 ± 0.10	159.56 ± 0.11	259.51 ± 0.07	336.90 ± 0.10
	PR	6.08 ± 0.01	73.29 ± 0.08	159.37 ± 0.06	259.34 ± 0.04	336.72 ± 0.12
	PM	6.19 ± 0.01	73.49 ± 0.04	159.71 ± 0.17	259.75 ± 0.15	337.06 ± 0.09
Cycle 3	AH	6.12 ± 0.10	73.38 ± 0.03	159.27 ± 0.07	259.41 ± 0.04	336.66 ± 0.08
	AR	6.08 ± 0.01	73.32 ± 0.03	159.19 ± 0.07	259.34 ± 0.03	336.29 ± 0.07
	AM	6.09 ± 0.02	73.35 ± 0.03	159.23 ± 0.06	259.37 ± 0.04	336.60 ± 0.08
	PH	6.14 ± 0.01	73.42 ± 0.04	159.31 ± 0.09	259.43 ± 0.12	336.76 ± 0.08
	PR	6.07 ± 0.02	73.31 ± 0.03	159.20 ± 0.06	259.33 ± 0.03	336.33 ± 0.11
	PM	6.16 ± 0.02	73.44 ± 0.04	159.45 ± 0.09	259.57 ± 0.09	336.97 ± 0.07
Cycle 4	AH	6.10 ± 0.01	73.30 ± 0.02	159.27 ± 0.02	259.24 ± 0.04	336.77 ± 0.28
	AR	6.08 ± 0.00	73.29 ± 0.01	159.18 ± 0.03	259.27 ± 0.05	336.49 ± 0.07
	AM	6.09 ± 0.03	73.29 ± 0.02	159.22 ± 0.03	259.21 ± 0.04	336.65 ± 0.06
	PH	6.11 ± 0.01	73.34 ± 0.02	159.31 ± 0.06	259.29 ± 0.04	336.69 ± 0.15
	PR	6.08 ± 0.02	73.28 ± 0.02	159.21 ± 0.03	259.26 ± 0.04	336.50 ± 0.05
	PM	6.13 ± 0.02	73.38 ± 0.02	159.37 ± 0.07	259.46 ± 0.05	336.82 ± 0.07

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.

141.51 ± 0.24–147.12 ± 0.24 mg/100 g (Ewedu), 68.11 ± 0.32–72.60 ± 0.37 mg/100 g (Ila), and 189.60 ± 0.39–190.79 ± 0.10 mg/100 g (Kuka). Freshly prepared Kuka soup was observed to have the highest concentration of calcium with freshly prepared Ogbono having the lowest concentration. Calcium is one of the macro minerals needed in highest amounts for proper body functions (Sanni et al. 2010). Calcium helps in regulating muscle contraction. It is also required by children and pregnant and lactating women for bones and teeth development (Olusanya 2008). The selected soups had relatively high levels but not sufficient to meet the adequate intake (AI) of calcium for adults (1000–1200 mg/day) and adolescence (1300 mg/day). Calcium deficiency is certainly a risk factor for osteoporosis in later life (Allen 2001). This makes supplementation very important. Flesh and sea foods are often included in these soups and also consumed with tuber or cereal-based dishes such as cooked cassava, yam, plantain, rice, or maize-based dishes thus improving the calcium level.

Sodium

Tables 6–9 present the sodium contents obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the sodium values of 160.21 ± 0.26 mg/100 g (Ogbono), 150.29 ± 0.05 mg/100 g (Ewedu), 152.48 ± 1.24 mg/100 g (Ila), and 231.72 ± 0.03 mg/100 g (Kuka). The range sodium contents of the selected soup samples subjected to different frozen and thawing conditions were as follows: 159.18 ± 0.03–159.93 ± 0.16 mg/100 g (Ogbono), 148.12 ± 0.08–149.90 ± 0.43 mg/100 g (Ewedu), 144.39 ± 0.14–152.24 ± 1.26 mg/100 g (Ila), and 230.83 ± 0.06–231.64 ± 0.07 mg/100 g (Kuka). Freshly prepared Kuka soup was observed to have the highest concentration of calcium with freshly prepared Ogbono having the lowest concentration. Calcium is one of the macro minerals needed in highest amounts for proper body functions (Sanni et al. 2010). Calcium helps in regulating muscle contraction. It is also required by children and pregnant and lactating women for bones and teeth development (Olusanya 2008). The selected soups had relatively high levels but not sufficient to meet the adequate intake (AI) of calcium for adults (1000–1200 mg/day) and adolescence (1300 mg/day). Calcium deficiency is certainly a risk factor for osteoporosis in later life (Allen 2001). This makes supplementation very important. Flesh and sea foods are often included in these soups and also consumed with tuber or cereal-based dishes such as cooked cassava, yam, plantain, rice, or maize-based dishes thus improving the calcium level.
prepared Kuka was observed to have a very high concentration of sodium while freshly prepared Ewedu had the lowest. It had been established that sodium is needed in highest amount for proper functioning of the body system (Sanni et al. 2010). Sodium is the major positive ion in the extracellular fluid and a key factor in retaining body water. All the soups analyzed had values within the RDA. Under the FDA food-label ingredients, the daily value for sodium is 2400 mg (Greely 1997). High sodium content has been shown to contribute to hypertension in susceptible individuals, leading to increased calcium loss in urine (Wardlaw 1999). The ratio of sodium to potassium (Na/K) in the body is of great concern for prevention of high blood pressure. Na/K ratio <1 is recommended (FND, 2002). Hence, consumption of Oghono, Ewedu, Ila, and Kuka soups may not be connected with high blood pressure disease since their Na/K ratio is <1.

Table 7. Effect of freezing and thawing conditions on mineral composition of Ewedu soups.

Samples	Iron (mg/100 g)	Calcium (mg/100 g)	Sodium (mg/100 g)	Potassium (mg/100 g)	Phosphorus (mg/100 g)
Cycle 0					
E	6.75 ± 0.08a	147.53 ± 0.25a	150.29 ± 0.05a	206.30 ± 0.05a	312.43 ± 0.08a
Cycle 1					
AH	6.65 ± 0.06bc	146.30 ± 0.17c	149.45 ± 0.12c-e	205.75 ± 0.12c-f	311.60 ± 0.17cd
AR	6.59 ± 0.05c-e	144.79 ± 0.10d	149.32 ± 0.14c-f	205.47 ± 0.08g-9	311.27 ± 0.10h
AM	6.62 ± 0.07c-d	145.67 ± 0.11e	149.37 ± 0.14c-f	205.56 ± 0.11f-g	311.43 ± 0.21f-g
PH	6.71 ± 0.03bc	147.12 ± 0.07f	149.61 ± 0.23bc	205.97 ± 0.17e-c	311.89 ± 0.11h
PR	6.60 ± 0.02c-e	144.18 ± 0.05h	149.24 ± 0.10e-g	205.41 ± 0.08f-h	311.19 ± 0.08i
PM	6.71 ± 0.07bc	147.12 ± 0.24b	149.90 ± 0.43b	206.16 ± 0.15b	312.29 ± 0.05a
Cycle 2					
AH	6.48 ± 0.02g	144.97 ± 0.17f	149.14 ± 0.12e-h	205.41 ± 0.17f-h	311.33 ± 0.12e-g
AR	6.56 ± 0.04f	144.13 ± 0.04h	148.71 ± 0.62f-i	205.29 ± 0.46f-i	311.23 ± 0.13h
AM	6.43 ± 0.03h	144.68 ± 0.13g	149.09 ± 0.03e-h	205.36 ± 0.07f-h	311.29 ± 0.13g
PH	6.53 ± 0.02f	145.35 ± 0.11f	149.43 ± 0.09c-e	205.83 ± 0.29g-e	311.77 ± 0.19c
PR	6.54 ± 0.04f	143.19 ± 0.03o	148.63 ± 0.64h-k	205.22 ± 0.08i	311.15 ± 0.13i
PM	6.65 ± 0.06bc	146.34 ± 0.11f	149.58 ± 0.26b-d	205.93 ± 0.29d	312.02 ± 0.02b
Cycle 3					
AH	6.40 ± 0.02h	144.19 ± 0.08h	148.83 ± 0.05k	205.00 ± 0.10i-j	311.36 ± 0.17d-g
AR	6.33 ± 0.02i	143.07 ± 0.50k	148.45 ± 0.06m	204.80 ± 0.40o	311.14 ± 0.09i
AM	6.36 ± 0.03m	143.23 ± 0.07c	148.57 ± 0.09h-i	204.92 ± 0.16i	311.22 ± 0.13h
PH	6.54 ± 0.36f	144.89 ± 0.22f	148.86 ± 0.26g-j	205.41 ± 0.23h-j	311.55 ± 0.22c-e
PR	6.29 ± 0.03i	142.33 ± 0.14d	148.40 ± 0.06m	204.72 ± 0.37i	311.10 ± 0.10j
PM	6.59 ± 0.04e	146.25 ± 0.08e	149.17 ± 0.07g-d	205.48 ± 0.48i	311.89 ± 0.10b
Cycle 4					
AH	6.34 ± 0.01i-k	143.67 ± 0.29j	148.30 ± 0.09m	204.80 ± 0.25	311.94 ± 0.13i
AR	6.26 ± 0.04m	142.48 ± 0.07l	148.16 ± 0.07m	204.90 ± 0.20l	311.00 ± 0.12j
AM	6.28 ± 0.04m-m	142.84 ± 0.05j	148.18 ± 0.08m	204.74 ± 0.28	310.87 ± 0.27
PH	6.49 ± 0.03g	144.43 ± 0.16k	148.62 ± 0.05h-k	205.02 ± 0.07j-i	311.27 ± 0.08h
PR	6.21 ± 0.03m	141.51 ± 0.24h	148.12 ± 0.08m	204.90 ± 0.20l	310.93 ± 0.21i
PM	6.50 ± 0.06f	145.68 ± 0.18d	148.96 ± 0.2l-i	205.47 ± 0.18g-9	311.56 ± 0.11e

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.

Potassium

Tables 6–9 show the potassium contents obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the potassium value of 260.50 ± 0.50 mg/100 g (Oghono), 206.30 ± 0.05 mg/100 g (Ewedu), 210.24 ± 0.27 mg/100 g (Ila), and 302.07 ± 0.06 mg/100 g (Kuka). The range of potassium contents of the selected soup samples subjected to different frozen and thawing conditions were as follows: 259.21 ± 0.04–260.03 ± 0.05 mg/100 g (Oghono), 204.74 ± 0.28–206.16 ± 0.15 mg/100 g (Ewedu), 200.38 ± 0.97–210.04 ± 0.36 mg/100 g (Ila), and 301.16 ± 0.13–301.97 ± 0.07 mg/100 g (Kuka). A high concentration of potassium was observed in freshly prepared Kuka soups, with freshly prepared Ewedu having the lowest concentration.
Potassium is also among the macrominerals needed in highest amounts for proper body functions (Sanni et al. 2010). High amounts of potassium were observed in this study and the soups are expected to contribute to proper functioning of the body systems. High amount of potassium in the body was reported to increase iron utilization and it is beneficial to people taking diuretic to control hypertension and excessive excretion of potassium through the body fluid (HMSO, 1994, DuruMajesty et al. 2012). Deficiency in potassium leads to an irregular heartbeat, loss of appetite, and muscle cramps, but as stated earlier, these soups are often not consumed alone but with other food types which could improve the potassium level (Kayode et al. 2010).

Phosphorus

The phosphorus contents obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions are presented in Tables 6–9. The freshly prepared soups had the phosphorus values of 337.19 ± 0.07 mg/100 g (Ogbono), 312.43 ± 0.08 mg/100 g (Ewedu), 238.84 ± 0.12 mg/100 g (Ila), and 323.52 ± 0.50 mg/100 g (Kuka). Phosphorus was observed to be low in freshly prepared Ila compared to freshly prepared Ogbono which had a rather very high concentration.

Table 8. Effect of freezing and thawing conditions on mineral composition of Ila soups.

Sample	Iron (mg/100 g)	Calcium (mg/100 g)	Sodium (mg/100 g)	Potassium (mg/100 g)	Phosphorus (mg/100 g)
Cycle 0					
I	5.30 ± 0.04a	73.57 ± 0.18a	152.48 ± 1.24a	210.24 ± 0.27a	238.84 ± 1.15a
Cycle 1					
AH	5.27 ± 0.01a	72.88 ± 0.34b	150.21 ± 0.15c	209.20 ± 0.12a	234.91 ± 0.79c
AR	5.24 ± 0.02c	71.62 ± 0.12d	148.37 ± 0.07i	208.61 ± 0.95g	232.72 ± 0.74g
AM	5.24 ± 0.02d	71.88 ± 0.11e	149.01 ± 0.10h	208.57 ± 0.76d	234.04 ± 0.65f
PH	5.28 ± 0.04e	72.49 ± 0.26f	151.48 ± 0.34g	209.55 ± 0.11j	235.95 ± 0.61c
PR	5.14 ± 0.03f	71.48 ± 0.04g	147.82 ± 0.12k	206.12 ± 0.34l	232.00 ± 0.58h
PM	5.28 ± 0.02g	72.60 ± 0.37h	152.24 ± 1.26m	210.04 ± 0.36n	237.37 ± 0.88i
Cycle 2					
AH	5.26 ± 0.02h	71.38 ± 0.21i	149.46 ± 0.91l	207.46 ± 1.00o	233.36 ± 0.37j
AR	5.22 ± 0.01i	70.71 ± 0.32j	147.54 ± 0.31k	204.52 ± 0.84l	231.69 ± 0.38h
AM	5.24 ± 0.01j	70.87 ± 0.40l	148.75 ± 0.09m	205.59 ± 0.56m	232.40 ± 0.52g
PH	5.23 ± 0.03m	71.48 ± 0.21n	151.26 ± 0.07o	208.30 ± 0.22p	234.71 ± 0.59de
PR	5.11 ± 0.01n	70.72 ± 0.11p	146.59 ± 0.18q	204.53 ± 0.52r	230.67 ± 0.48i
PM	5.26 ± 0.03p	71.80 ± 0.30r	151.71 ± 0.28s	209.57 ± 0.10t	235.72 ± 0.52ud
Cycle 3					
AH	5.21 ± 0.01e	71.04 ± 0.09s	148.76 ± 0.09t	206.04 ± 0.34u	235.72 ± 0.57h
AR	5.15 ± 0.01d	69.85 ± 0.20u	146.21 ± 0.21v	202.93 ± 1.14w	229.91 ± 0.58x
AM	5.18 ± 0.02c	70.14 ± 0.23w	147.75 ± 0.12x	203.67 ± 0.62y	230.78 ± 0.62z
PH	5.22 ± 0.01b	71.16 ± 0.10z	150.05 ± 0.04aa	207.26 ± 0.06b	233.37 ± 0.42c
PR	5.05 ± 0.02a	69.05 ± 0.53bc	145.28 ± 0.07cd	202.39 ± 0.04e	228.89 ± 0.45f
PM	5.23 ± 0.01b	71.33 ± 0.20ef	151.06 ± 0.06fg	208.68 ± 0.12gh	234.23 ± 0.26i
Cycle 4					
AH	5.16 ± 0.01d	70.43 ± 0.18hi	146.79 ± 0.17i	204.24 ± 0.75j	230.69 ± 0.08k
AR	5.15 ± 0.02f	69.22 ± 0.14lm	145.67 ± 0.21mn	201.06 ± 0.74l	228.97 ± 0.46i
AM	5.16 ± 0.02g	69.49 ± 0.11lj	146.67 ± 0.20lo	202.66 ± 0.61m	229.66 ± 0.50n
PH	5.18 ± 0.02h	70.51 ± 0.21ni	149.66 ± 0.09ij	206.30 ± 0.12k	231.56 ± 0.78l
PR	4.97 ± 0.03j	68.11 ± 0.32jk	144.39 ± 0.14kl	200.38 ± 0.97m	227.99 ± 0.30i
PM	5.22 ± 0.03k	70.74 ± 0.23km	150.73 ± 0.28ln	208.36 ± 0.58o	233.41 ± 0.73p

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
Although no disease is currently associated with an inadequate phosphorus intake, its deficiency may contribute to bone loss in elderly women (Wardlaw 1999). The selected soups had a very high level of phosphorus. This indicates that the soups can meet the daily requirements of phosphorus (RDA for adults is >700 mg/day) (Kayode et al. 2010). There were slight changes in all the minerals evaluated with respect to freeze–thaw cycles, packaging materials, and thawing conditions. This could be attributed to drip loss and dehydration that are associated with frozen storage (Sikorski and Kolakowski 2000). Similar result was reported by Arannilewa et al. (2005) for the effect of freezing periods on the mineral composition of tilapia fish. However, soups packaged in plastic containers and thawed under microwave-thawing condition had the least mineral losses at every freeze–thaw cycle, when compared with others. This could be attributed to the nature of the packaging material and the rapid thawing effect of microwave as mentioned earlier.

Effect of freezing and thawing conditions on the vitamin contents of some selected Nigerian soups

Tables 10–13 present the effect of freezing and thawing conditions on the vitamins A, B, and E contents of Ogbono, Ewedu, Ila, and Kuka soups subjected to frozen storage. The freezing and thawing conditions significantly influenced all the determined properties at 95% confidence level when compared with freshly prepared soups. Vitamins are potent organic compounds found in certain foods and perform specific and vital functions in body chemistry (Paul and Pearson 2005). These vitamins differ from each other in physiological function, chemical structure, and their distribution in food. They are broadly...

Table 9. Effect of freezing and thawing conditions on mineral composition of Kuka soups.

Samples	Iron (mg/100 g)	Calcium (mg/100 g)	Sodium (mg/100 g)	Potassium (mg/100 g)	Phosphorus (mg/100 g)
Cycle 0					
K	6.28 ± 0.02a	190.83 ± 0.08a	231.72 ± 0.03b	302.07 ± 0.06a	323.52 ± 0.50a
Cycle 1					
AH	6.23 ± 0.03bc	190.66 ± 0.05a–f	231.56 ± 0.07b	301.82 ± 0.01h–f	323.17 ± 0.01h–c
AR	6.19 ± 0.03g	190.47 ± 0.10d–i	231.38 ± 0.10b	301.74 ± 0.03f–h	323.11 ± 0.01d–d
AM	6.21 ± 0.02e–f	190.59 ± 0.13b–h	261.44 ± 0.09a	301.80 ± 0.32e–c	323.14 ± 0.02c
PH	6.23 ± 0.02c	190.76 ± 0.10c–c	231.59 ± 0.05b	301.89 ± 0.02b–c	323.21 ± 0.03c–c
PR	6.18 ± 0.02f–h	190.41 ± 0.03i–c	261.19 ± 0.05a	301.51 ± 0.04g–i	323.09 ± 0.01d–c
PM	6.24 ± 0.02d	190.79 ± 0.10b	231.64 ± 0.07b	301.97 ± 0.07ab	323.37 ± 0.07ab–b
Cycle 2					
AH	6.21 ± 0.01b–e	190.71 ± 0.11a–d	231.34 ± 0.11b	301.63 ± 0.06f–g	322.89 ± 0.11c–e
AR	6.19 ± 0.01g–h	190.44 ± 0.12i–l	231.38 ± 0.16b	301.58 ± 0.06f–h	322.66 ± 0.20g–h
AM	6.21 ± 0.01f–h	190.61 ± 0.16b–g	231.31 ± 0.08b	301.59 ± 0.13e–f	322.81 ± 0.12f–f
PH	6.22 ± 0.01b–d	190.59 ± 0.03a–h	231.49 ± 0.07b	301.82 ± 0.07d–f	323.06 ± 0.04d–e
PR	6.15 ± 0.02h	190.37 ± 0.07j–i	231.16 ± 0.03b	301.40 ± 0.03f–i	322.55 ± 0.12g–f
PM	6.23 ± 0.01c	190.67 ± 0.05b–c	231.56 ± 0.06b	301.88 ± 0.08bc	323.10 ± 0.02d–d
Cycle 3					
AH	6.20 ± 0.10c–f	190.52 ± 0.02c–i	231.43 ± 0.08b	301.75 ± 0.07f–c	322.51 ± 0.04g–s
AR	6.11 ± 0.02k	190.33 ± 0.23i	231.48 ± 0.11b	301.45 ± 0.22h–j	322.26 ± 0.17i–j
AM	6.19 ± 0.01g–h	190.33 ± 0.21h–i	231.35 ± 0.06b	301.50 ± 0.23j–l	323.28 ± 0.27h–l
PH	6.21 ± 0.01f–h	190.50 ± 0.09i–l	231.47 ± 0.05b	301.72 ± 0.03f–i	322.67 ± 0.29g–f
PR	6.10 ± 0.02h	190.08 ± 0.13l	231.13 ± 0.02b	301.32 ± 0.03f–i	322.25 ± 0.15i–j
PM	6.22 ± 0.01b–e	190.56 ± 0.11b–i	231.48 ± 0.06b	301.80 ± 0.05c–e	322.89 ± 0.21c–e
Cycle 4					
AH	6.18 ± 0.01c–h	190.50 ± 0.10c–i	231.36 ± 0.06b	301.65 ± 0.10g–g	321.94 ± 0.24i–i
AR	6.14 ± 0.03l	190.31 ± 0.03i–l	231.40 ± 0.07b	301.58 ± 0.06f–h	321.85 ± 0.17f–i
AM	6.16 ± 0.02i–k	190.36 ± 0.05p–i	231.31 ± 0.05b	301.58 ± 0.07f–h	321.97 ± 0.09j–k
PH	6.19 ± 0.01g–h	190.46 ± 0.10p–i	231.39 ± 0.06b	301.70 ± 0.07f–h	322.86 ± 0.55e–g
PR	6.10 ± 0.02k	189.60 ± 0.39K	230.83 ± 0.06b	301.16 ± 0.13i–k	321.76 ± 0.13i–k
PM	6.20 ± 0.01f–k	190.50 ± 0.13c–i	231.43 ± 0.08b	301.74 ± 0.06f–h	322.91 ± 0.51j–l

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
divided into two categories: water-soluble and fat-soluble vitamins (Julie, 2003).

Vitamin A

Tables 10–13 present the vitamin A values obtained for both freshly prepared soups and soups samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had vitamin A values of 39.92 ± 0.08 mg/100 g (Ogbono), 31.54 ± 0.05 mg/100 g (Ewedu), 59.88 ± 0.27 mg/100 g (Ila), and 43.11 ± 0.03 mg/100 g (Kuka). While the vitamin A values of the selected soup samples subjected to different frozen and thawing conditions ranged from 36.93 ± 0.02 to 39.83 ± 0.03 mg/100 g (Ogbono), 29.54 ± 0.06 to 31.49 ± 0.01 mg/100 g (Ewedu), 54.93 ± 0.23 to 59.30 ± 0.16 mg/100 g (Ila), and 38.87 ± 0.08 to 42.91 ± 0.02 mg/100 g (Kuka). It was generally observed that the vitamin A (retinol) content of the soups slightly decreased during freeze storage as they were significantly influenced by the nature of the packaging materials and thawing conditions. Retention of the vitamin A contents under frozen storage might be due to absence of light and air that could cause oxidation which could lead to a considerable depletion of the vitamin A (Eze and Akubor 2012). Slight decrease in the vitamin A contents might be as a result of heat application and thawing duration. Vitamin A (retinol) are known as endogenous antioxidants that can act as scavengers of free radicals, so that protection against the very early stages of lipid oxidation would be favored (Jensen et al. 1998). It is needed for maintenance of skin, mucus membrane, bones, teeth, hair, vision, and reproduction (DuruMajesty et al. 2005). The protective effects of carotenoids (vitamin A precursors) against serious disorders such as heart disease, cancer, and degenerative eye disease had been recognized (Ejoh et al. 2007).

Sample	Vitamin A (mg/100 g)	Vitamin B (mg/100 g)	Vitamin E (mg/100 g)
Cycle 0			
O	39.92 ± 0.08^a	36.42 ± 0.07^a	74.00 ± 0.15^a
Cycle 1			
AH	39.74 ± 0.01cd	36.25 ± 0.01cd	73.67 ± 0.03cd
AR	39.16 ± 0.01k	35.73 ± 0.01k	72.60 ± 0.02k
AM	39.58 ± 0.02g	36.11 ± 0.02g	73.37 ± 0.03g
PH	39.80 ± 0.01b	36.31 ± 0.01b	73.78 ± 0.02b
PR	39.58 ± 0.01g	36.11 ± 0.01g	73.37 ± 0.02g
PM	39.83 ± 0.03b	36.33 ± 0.02b	73.83 ± 0.05b
Cycle 2			
AH	39.56 ± 0.03g	36.09 ± 0.03g	73.33 ± 0.06g
AR	38.41 ± 0.02n	35.04 ± 0.02n	71.20 ± 0.04n
AM	39.24 ± 0.04i	35.80 ± 0.04i	72.74 ± 0.08i
PH	39.71 ± 0.02de	36.22 ± 0.02de	73.61 ± 0.03de
PR	39.24 ± 0.02i	35.80 ± 0.02i	72.74 ± 0.03i
PM	39.75 ± 0.02c	36.27 ± 0.02c	73.69 ± 0.04c
Cycle 3			
AH	39.41 ± 0.02j	35.95 ± 0.02j	73.05 ± 0.04j
AR	37.65 ± 0.02o	34.35 ± 0.02o	69.80 ± 0.04o
AM	38.93 ± 0.03l	35.52 ± 0.03l	72.17 ± 0.05l
PH	39.60 ± 0.02f	36.13 ± 0.02f	73.42 ± 0.04f
PR	38.90 ± 0.03l	35.49 ± 0.02l	72.11 ± 0.05l
PM	39.69 ± 0.02o	36.21 ± 0.02o	73.58 ± 0.03e
Cycle 4			
AH	39.24 ± 0.02l	35.80 ± 0.02l	72.75 ± 0.04l
AR	36.93 ± 0.02p	33.69 ± 0.02p	68.45 ± 0.03p
AM	38.61 ± 0.03m	35.22 ± 0.03m	71.58 ± 0.05m
PH	39.49 ± 0.03h	36.33 ± 0.02b	73.20 ± 0.06h
PR	38.58 ± 0.02m	35.19 ± 0.02m	71.51 ± 0.04m
PM	39.63 ± 0.01f	36.15 ± 0.01f	73.46 ± 0.02f

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
The consequences of vitamin A deficiency (VAD) include night blindness, Bitot’s spot, corneal xerosis, and corneal scars or ulcers. Other serious consequences have been shown to include increased morbidity and mortality of infants, children, and pregnant women, poor growth of children, and susceptibility to anemia through interface with iron transport and utilization for hemoglobin synthesis (Hart et al. 2005). High amounts of vitamin A were obtained in this study. The observed β-carotene content of the soups was able to meet the RDA for β-carotene estimated at 6 mg/day (10,000 IU/day) (Wardlaw 1999; Okeke and Eze 2006) and they are expected to contribute to proper functioning of the body systems. Carotenoids are susceptible to oxidation when they are exposed to light, oxygen, warm temperature, enzyme, and moisture. The conditions encountered with thawing such as exposure to light, temperature, air, and loss of moisture might have been involved in the destruction of carotenoid. During thawing process, catalytic enzyme such as lipoxygenase might be activated in the soups (Park 1987; Paul and Pearson 2005). Lipoxygenase is relatively thermostable with pH optimum of 6.5. It is capable of forming reactive radicals which can oxidize carotenoid, chlorophyll, and other substances (Park 1987; Paul and Pearson 2005). Microwave thawing of soups in plastic containers retained more vitamin A than other thawing methods. This might be due to shorter thawing time and other conditions mentioned above. The reduction in β-carotene content of soups after thawing corresponds to various reports. Anjum et al. (2008) reported a pronounced reduction in β-carotene content of selected Indian vegetables during processing. Elemo et al. (2011) established that processing methods caused significant decrease ($P < 0.05$) in the β-carotene of the green leafy vegetables and combination of the leafy vegetables with other foodstuffs was recommended to satisfactorily meet the RDA.

Table 11. Effect of freezing and thawing conditions on the vitamin contents of Ewedu soup.

Sample	Vitamin A (mg/100 g)	Vitamin B (mg/100 g)	Vitamin E (mg/100 g)
Cycle 0			
E	31.54 ± 0.05a	10.75 ± 0.02a	30.36 ± 0.05a
Cycle 1			
AH	31.35 ± 0.01c	10.69 ± 0.00c	30.18 ± 0.01c
AR	31.13 ± 0.02ef	10.61 ± 0.01ef	29.97 ± 0.02ef
AM	31.09 ± 0.05f	10.60 ± 0.02f	29.93 ± 0.05f
PH	31.20 ± 0.02de	10.64 ± 0.01de	30.04 ± 0.02de
PR	31.24 ± 0.03d	10.65 ± 0.01a	30.08 ± 0.03a
PM	31.49 ± 0.01a	10.74 ± 0.00a	30.32 ± 0.01a
Cycle 2			
AH	31.13 ± 0.02ef	10.61 ± 0.01ef	29.97 ± 0.02ef
AR	30.89 ± 0.25p	10.53 ± 0.09p	29.74 ± 0.24p
AM	30.54 ± 0.03l	10.41 ± 0.01l	29.40 ± 0.03l
PH	30.87 ± 0.01h	10.52 ± 0.00h	29.72 ± 0.01h
PR	30.99 ± 0.03g	10.56 ± 0.01g	29.83 ± 0.03g
PM	31.47 ± 0.02ab	10.73 ± 0.01ab	30.29 ± 0.02ab
Cycle 3			
AH	30.93 ± 0.04ph	10.54 ± 0.01ph	29.78 ± 0.04ph
AR	30.37 ± 0.03k	10.35 ± 0.01k	29.23 ± 0.03k
AM	30.09 ± 0.02m	10.26 ± 0.01m	28.97 ± 0.02m
PH	30.55 ± 0.04i	10.41 ± 0.01i	29.41 ± 0.04i
PR	30.75 ± 0.02l	10.48 ± 0.01l	29.60 ± 0.02l
PM	31.44 ± 0.03abc	10.72 ± 0.01abc	30.26 ± 0.03abc
Cycle 4			
AH	30.74 ± 0.01l	10.48 ± 0.00l	29.60 ± 0.01l
AR	29.95 ± 0.05n	10.21 ± 0.02n	28.83 ± 0.05n
AM	29.54 ± 0.06o	10.07 ± 0.02o	28.44 ± 0.05o
PH	30.22 ± 0.03l	10.30 ± 0.01l	29.09 ± 0.03l
PR	30.48 ± 0.02l	10.39 ± 0.01l	29.35 ± 0.02l
PM	31.39 ± 0.02bc	10.70 ± 0.01bc	30.22 ± 0.02bc

Values are means of three replicates. Mean values having different superscripts within a column are significantly different ($P < 0.05$). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
Table 12. Effect of freezing and thawing conditions on the vitamin contents of Ila soup.

Sample	Vitamin A (mg/100 g)	Vitamin B (mg/100 g)	Vitamin E (mg/100 g)
Cycle 0			
I	59.88 ± 0.27a	14.08 ± 0.06a	90.24 ± 0.40a
Cycle 1			
AH	59.93 ± 0.08a	14.10 ± 0.02a	90.62 ± 0.12a
AR	58.51 ± 0.16g	13.76 ± 0.04g	88.17 ± 0.24g
AM	59.11 ± 0.19cd	13.90 ± 0.04cd	89.08 ± 0.29cd
PH	59.34 ± 0.17bc	13.96 ± 0.04bc	89.42 ± 0.25bc
PR	59.38 ± 0.31bc	13.96 ± 0.07bc	89.48 ± 0.47bc
PM	59.80 ± 0.10a	14.07 ± 0.02a	90.12 ± 0.15a
Cycle 2			
AH	59.49 ± 0.16b	13.99 ± 0.04b	89.65 ± 0.25b
AR	57.55 ± 0.07i	13.53 ± 0.01i	86.72 ± 0.10i
AM	58.58 ± 0.06g	13.78 ± 0.01g	88.29 ± 0.09g
PH	58.88 ± 0.11de	13.85 ± 0.03de	88.73 ± 0.16de
PR	58.74 ± 0.22ef	13.81 ± 0.05ef	88.52 ± 0.33ef
PM	59.49 ± 0.14b	13.99 ± 0.03b	89.66 ± 0.21b
Cycle 3			
AH	59.39 ± 0.08bc	13.97 ± 0.02bc	89.50 ± 0.12bc
AR	56.22 ± 0.07i	13.22 ± 0.02i	84.73 ± 0.11i
AM	58.06 ± 0.08h	13.66 ± 0.02h	87.50 ± 0.12h
PH	58.57 ± 0.10g	13.78 ± 0.02g	88.27 ± 0.15g
PR	58.45 ± 0.18q	13.75 ± 0.04q	88.09 ± 0.27q
PM	59.41 ± 0.09bc	13.97 ± 0.02bc	89.53 ± 0.13bc
Cycle 4			
AH	59.27 ± 0.09bc	13.94 ± 0.02bc	89.31 ± 0.14bc
AR	54.93 ± 0.23k	12.92 ± 0.05k	82.79 ± 0.34k
AM	57.45 ± 0.08l	13.51 ± 0.02l	86.57 ± 0.12l
PH	58.39 ± 0.06g	13.73 ± 0.01g	88.00 ± 0.10g
PR	57.89 ± 0.05h	13.61 ± 0.01h	87.23 ± 0.08h
PM	59.30 ± 0.16bc	13.95 ± 0.04bc	89.37 ± 0.24bc

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.

Vitamin B

Tables 10–13 present the vitamin B values obtained for both freshly prepared soups and soups samples subjected to freeze–thaw cycles under different freezing and thawing conditions. The freshly prepared soups had the vitamin B values of 36.42 ± 0.07 mg/100 g (Ogbono), 10.75 ± 0.02 mg/100 g (Ewedu), 14.08 ± 0.06 mg/100 g (Ila), and 24.08 ± 0.02 mg/100 g (Kuka). While the vitamin B values of the selected soup samples subjected to different frozen and thawing conditions ranged from 36.33 ± 0.02 to 36.33 ± 0.02 mg/100 g (Ogbono), 10.07 ± 0.02 to 10.74 ± 0.00 mg/100 g (Ewedu), 12.92 ± 0.05 to 14.10 ± 0.02 mg/100 g (Ila), and 21.72 ± 0.05 to 23.97 ± 0.01 mg/100 g (Kuka). Freshly prepared Ogbono soup was observed to have the highest concentration of vitamin B with freshly prepared Ewedu having the lowest concentration. Vitamin B1 (thiamine) is needed for nervous system and helps in releasing energy from carbohydrate (Paul and Pearson 2005). There was slight reduction in the vitamin B evaluated with respect to freeze–thaw cycles, packaging materials, and thawing conditions. Factors influencing the vitamin B stability of frozen foods include the temperature of the freezing unit and its range of fluctuation, the length of storage, the size of the cut, the thawing method, and the packaging method. Ideally, a temperature of at least −18°C should be used to store both animal and vegetable foods (Severi et al. 1997). Fluctuations in the freezing temperature might be responsible for significant losses of vitamins in soups (Severi et al. 1997). The length of storage affects significantly the retention of vitamins and losses of thiamine tends to increase as the freeze–thaw cycle increased. The thawing duration significantly influence the vitamin B content of the soups, soups with shorter thawing time had high vitamin B retention ability. This might be due to vitamin B susceptibility to heat damage (Aubourg 2001). The selected soups had a high level of vitamin B. This
indicates that the soups can meet the daily requirements of vitamin B (RDA for adults is >63 μg/day) (Okeke and Eze 2006).

Vitamin E

The results of vitamin E content obtained for both freshly prepared and selected soup samples subjected to freeze–thaw cycles under different freezing and thawing conditions are revealed in Tables 10–13. The freshly prepared soups had the vitamin E values of 74.00 ± 0.15 mg/100 g (Ogbono), 30.36 ± 0.05 mg/100 g (Ewedu), 90.24 ± 0.40 mg/100 g (Ila), and 40.12 ± 0.03 mg/100 g (Kuka). While the vitamin B values of the selected soup samples subjected to different freezing and thawing conditions ranged from 68.45 ± 0.03 to 73.83 ± 0.05 mg/100 g (Ogbono), 28.44 ± 0.03 to 30.32 ± 0.01 mg/100 g (Ewedu), 82.79 ± 0.34 to 90.32 ± 0.12 mg/100 g (Ila), and 36.17 ± 0.08 to 39.79 ± 0.02 mg/100 g (Kuka). It was observed that the soups contained vitamin E in moderate concentrations and the variation in the loss of vitamin E of the soups under investigation demonstrated the differences in vulnerabilities of the selected soup to spoilage at every freeze–thaw cycle. Vitamins become important when their functions are considered in the body. Vitamin E (Tocopherol) acts as antioxidants that protect cell wall and aids in reproduction (Julie, 2003; Wardlaw and Kessel 2002). The observed tocopherol content of the soups would be able to meet the RDA for tocopherol estimated at 15 mg/day (Okeke and Eze 2006). The vitamin E can act as an anticoagulant and may increase the risk of bleeding problems and many agencies have set an upper tolerable intake level (UL) for vitamin E at 1000 mg/day (DuruMajesty et al. 2012). Also, the European Food Safety Authority by its Scientific Committee on Food (SCF) has set a tolerable upper intake level (UL) of vitamin E for adults at 300 mg/day (Okeke and Eze 2006). However, the vitamin E reported

Sample	Vitamin A (mg/100 g)	Vitamin B (mg/100 g)	Vitamin E (mg/100 g)
Cycle 0	K		
	43.11 ± 0.03	24.08 ± 0.02	40.12 ± 0.03
Cycle 1			
AH	42.71 ± 0.01	23.86 ± 0.01	39.74 ± 0.01
AR	41.91 ± 0.26	23.41 ± 0.15	39.00 ± 0.24
AM	42.54 ± 0.03	23.76 ± 0.01	39.59 ± 0.02
PH	42.91 ± 0.02	23.97 ± 0.01	39.93 ± 0.02
PR	42.33 ± 0.01	23.65 ± 0.01	39.39 ± 0.01
PM	42.76 ± 0.02	23.89 ± 0.01	39.79 ± 0.02
Cycle 2			
AH	42.31 ± 0.02	23.64 ± 0.01	39.38 ± 0.02
AR	41.02 ± 0.02	22.91 ± 0.01	38.17 ± 0.02
AM	41.99 ± 0.03	23.46 ± 0.01	39.08 ± 0.02
PH	42.70 ± 0.02	23.85 ± 0.01	39.73 ± 0.02
PR	41.56 ± 0.02	23.22 ± 0.01	38.67 ± 0.02
PM	42.44 ± 0.02	23.71 ± 0.01	39.49 ± 0.02
Cycle 3			
AH	41.93 ± 0.02	23.42 ± 0.01	39.02 ± 0.02
AR	39.94 ± 0.08	22.31 ± 0.04	37.16 ± 0.07
AM	41.45 ± 0.02	23.15 ± 0.01	38.57 ± 0.02
PH	42.48 ± 0.05	23.73 ± 0.03	39.53 ± 0.05
PR	40.83 ± 0.02	22.81 ± 0.01	37.99 ± 0.02
PM	42.10 ± 0.03	23.52 ± 0.01	39.18 ± 0.02
Cycle 4			
AH	41.52 ± 0.04	23.19 ± 0.02	38.64 ± 0.03
AR	38.87 ± 0.08	21.72 ± 0.05	36.17 ± 0.08
AM	40.93 ± 0.01	22.86 ± 0.01	38.09 ± 0.01
PH	42.31 ± 0.02	23.63 ± 0.01	39.37 ± 0.02
PR	40.02 ± 0.02	22.36 ± 0.01	37.24 ± 0.02
PM	41.81 ± 0.02	23.36 ± 0.01	38.91 ± 0.02

Values are means of three replicates. Mean values having different superscripts within a column are significantly different (P < 0.05). PH, packaged in plastics but thawed with hot water; AH, packaged in aluminum but thawed with hot water; PM, packaged in plastics but thawed with microwave; AM, packaged in aluminum but thawed with microwave; AR, packaged in aluminum but thawed at room temperature; PR, packaged in plastics but thawed at room temperature.
in this study was within the safe limit and will not constitute any health hazard.

Conclusions

The result of the investigation shows that Ila, Ewedu, Ogbono, and Kuka soups are good sources of vitamins and minerals. Deterioration increased as freeze–thaw cycle increased and that the nutritional quality of the soups was best before subject to freeze–thaw cycles. The nutritional quality of Ila, Ewedu, Ogbono, and Kuka soups depends on container type, freeze–thaw cycles, and thawing methods. Microwave-thawed plastic soups had limited nutritional losses when compared with other thawing methods, and should not be extended beyond the third cycle because of increasing reduction in fat and protein, indicating deterioration.

Conflict of Interest

None declared.

References

Akubugwo, I. E., N. A. Obasi, G. C. Chinyere, and A. E. Ugboagu. 2007. Nutritional and chemical value of Amaranthus hybridus L. leaves from Afikpo, Nigeria. Afr. J. Biotechnol. 6:2833–2839.

Alizadeh, E., N. Chapleau, M. De lamballerie, and A. Le Bail. 2007b. Effects of different freezing and thawing processes on the quality of Atlantic salmon (Salmo salar) fillets. Food Eng. Phys. Prop., 72:E279–E284.

Alizadeh, E., N. Chapleau, M. De lamballerie, and A. Le Bail (2009). Effect of Freezing and Cooking Processes on the Texture of Atlantic Salmon (Salmo Salar) Fillets. Proceedings of the 5th CIGR Section VI International Symposium on Food Processing, Monitoring Technology in Bioproceses and Food Quality Management (pp: 262-269), Potsdam, Germany, 31 August - 02 September 2009.

Allen, L. H., 2001. Micronutrients. 2020 Focus 5 (Health and Nutrition Emerging and Reemerging Issues in Developing Countries), Brief 10 of 11, February 2001.

Anjum, F., B. A. Khan, N. Noreen, T. Masood, and S. Faisal. 2008. Effect of boiling and storage on beta-carotene content of different vegetables. Pak. J. Life Soc. Sci. 6:63–69.

AOAC. 2005. Official methods of analysis of the association of official analytical chemistry. AOAC, Washington, DC.

Arannilewa, S. T., S. O. Salawu, A. A. Sorungbe, and B. B. Ola-Salawu. 2005. Effect of frozen period on the chemical, microbiological and sensory quality of frozen tilapia fish (Sarotherodon galiaenus). Afr. J. Biotechnol. 4:852–855.

Aubourg, S. G.. 2001. Review: loss of quality during the manufacture of canned fish products. Food Sci. Technol. Int. 7:199 pp.

Boonsumrej, S., S. Chaiwanichsiri, and S. Tantranit. 2007. Effect of freezing and thawing on the quality changes of tiger shrimp (Penaeus monodon) frozen by air-blast and cryogenic freezing. J. Food Eng. 80:292–299.

Chomnawang, C., K. Nantachai, J. Yongswatdigul, S. Thawornchinsombut, and S. Tungkwa-chara. 2007. Chemical and biochemical changes in hybrid catfish fillet stored at 4°C and its gel properties. Food Chem. 103:420–427.

Dosunmu, M. I. 1997. Chemical composition of the fruit of Tetraple uratetrepraatnd the physico-chemical properties of its oil. Glob. J. Pure Appl. Sci. 3:61–67.

DuruMajesty, K. C., E. A. Agomuoh, and B. A. Amadi. 2012. Nutrient composition of “Nduduagworagwo”, a traditional food of Akokwa people in Ideato North L.G.A of Imo State, Nigeria. Cont. J. Food Sci. Technol. 6:27–32.

Ejoh, R. A., V. N. Djuikwo, I. Gouado, and C. M. Mbounf. 2007. Nutritional components of some non-conventional leafy vegetables consumed in Cameroon. Pak. J. Nutr. 6:712–717.

Elemo, G. N., F. F. Lamidi, S. A. Shittu, Y. C. Pikuda, and O. L. Ereukainure. 2010b. Iron status of premenopausal women in a Nigerian University Community. Asian J. Clin. Nutr. 2:101–107.

Elemo, B. O., N. Gloria, G. N. Elemo, A. O. Senaike, and O. L. Ereukainure. 2011. Effect of various processing methods on beta-carotene and ascorbic acid contents of some green leafy vegetables. Cont. J. Food Sci. Technol. 5:12–16.

Eze, J. I., and P. I. Akubor. 2012. Effect of drying methods and storage on the physicochemical properties of Okra. J. Food Process Technol. 3:177. doi:10.4172/2157-7110.1000177.

FIIRO. 2006. Soup recipe book. Federal Institute of Industrial Research, Oshodi, Nigeria.

FND (2002): Food and nutrition board; Dietary reference intake for Energy, Carbohydrate, Fibre, Fat, Fatty Acids, Cholesterol, Protein and Amino acid (micro-nutrient). Institute of Medicine, National Academy of Sciences, The National Academies Press, Washington, DC, pp. 107–967.

Greely, A. (1997). A pinch of controversy shakes up dietary salt. FDA consumer.

Hallier, A., S. Chevallier, T. Serot, and C. Proost. 2007. Freezing-thawing effects on the colour and texture of European catfish flesh. Int. J. Food Sci. Technol. 43:1253–1262.

Hart, A. D., C. U. Azubuike, I. S. Barimalaa, and S. C. Achinehwhu. 2005. Vegetable consumption pattern of households in selected areas of the old Rivers State in Nigeria. Afr. J. Food Agric. Nutr. Dev. 5:1–19.

Hegarty, J. F. 1995. Anaemia, renal insufficiency and cardiovascular outcome. Arterio-scler. Thromb. Vasc. Biol. 15:1114–1120.
Effect of Freeze–Thaw Cycles on Soups

A. O. Raji et al.

HMSO, U. K. 1994. Department of health nutritional aspects of cardiovascular disease, London. Rep. Health Soc. Subj. 46:37–46.

Hultman, L., and T. Rustard. 2004. Iced storage of Atlantic salmon (Salmo salar) effects on endogenous enzymes and their impact on muscle proteins and texture. Food Chem. 87:31–34.

Ishida, H., H. Suzuno, N. Sugiyama, S. Innami, T. Todoro, and A. Maekawa. 2000. Nutritional evaluation of chemical components of leaves, stalks and stem of sweet potatoes (Ipomoea betatas poir). Food Chem. 68:359–367.

Jensen, C., E. Birk, A. Jokumsen, L. Skibsted, and G. Bertelsen. 1998. Effect of dietary levels of fat, a-tocopherol and astaxanthin on colour and lipid oxidation during storage of frozen rainbow trout (Oncorhynchus mykiss) and during chill storage of smoked trout. Z. Lebensm. Unters. Forsch. 207:189–196.

Julie, B. 2003. The importance of vitamin and their role in our body. Enzime Article. Pp. 1–5.

Karel, M., and D. B. Lund. 2003. Physical principles of food preservation. Marcel Dekker, New York.

Kayode, F. O., A. U. Ozumba, S. Ojeniyi, D. O. Adetunji, and O. L. Erukainure. 2010. Micronutrient content of selected indigenous soups in Nigeria. Pak. J. Nutr. 9:962–965.

Kritchevsky, D. 1996. Pp. 18–24. Food lipids and artherosclerosis. Food lipids and health. Dekker, New York.

Latunde-Dada, G. 1997. Sources and forms of iron in Nigerian foods and effects of processing on availability. Food Nutr. Bull. 18:84–89.

Leygonie, C., T. J. Britz, and C. L. Hofman. 2012. Impact of freezing and thawing on the quality of meat: review. Meat Sci. 91:93–98.

Lim, M. H., J. E. MeFetridge, and J. Liesebach. 2004. Frozen food components and chemical reactions. Pp. 67–81 in Y. H. Hui, P. Cormillon, I. G. Legaretta, M. H. Lim, K. D. Murrell and W. K. Nip, eds. Hand-book of frozen foods. Marcel Dekker, New York.

Martinez-Romero, D., S. Castillo, and D. Valero. 2004. Quality control in frozen vegetables. University Miguel Hernandez, Orihuela, Alicante, Spain.

Mepha, H. D., L. Eboh, and D. E. B. Banigo. 2007. Effects of processing treatments on the nutritive composition and consumer acceptance of some Nigerian edible leafy vegetables. Afr. J. Agric. Nutr. Dev. 7:1–18.

Mohapatra, A., T. R. Rautray, A. K. Patra, V. Vijaayan, and R. K. Mohanty. 2009. Elemental composition in mud crab Scylla serrata from Mahanadi estuary, India: in situ irradiation analysis by external PIXE. Food Chem. Toxicol. 47:119–123.

National Research Council. 1975. Recommended daily dietary allowance. Nutr. Rev. 31:373–395.

Obemeata, O., and N. Christopher. 2012. Organoletic assessment and proximate analysis of stored Tilapia guineensis. Annu. Rev. Res. Biol. 2:46–52.

Obidoa, O., P. E. Joshua, and N. J. Eze. 2010. Phytochemical analysis of Cocos nucifera L. J. Pharm. Res. 3:280–296.

Okeke, E. C., and C. Eze. 2006. Nutrient composition and nutritive cost of igbo traditional Vendor foods and recipes commonly eaten in Nsukka. J. Agric. Food Environ. Ext. 5:36–44.

Olusanya, J. O. 2008. Essential of food and nutrition. 1st ed. Apex Book Limited, Lagos, Nigeria. Pp. 36–76.

Openheimer, S. J. 2000. Iron and its relation to immunity and infectious disease. J. Nutr. 131:616–633.

Park, Y. W. 1987. Effect of freezing, thawing, drying, cooking on carotene retention in carrot, brocoli and spinach. J. Food Sci. 52, 1022–1025.

Paul, G., and S. Pearson (2005): The vitamin. 2nd ed. Academic Press, New York, Pp. 31–34.

Sanni, S. A., C. R. B. Oguntona, and B. Maziya-Dixon. 2010. Nutritional composition and sensory properties of iron fortified fufu flour. J. Nat. Sci. Eng. Technol. 9:40–57.

Severi, S., G. Bedogni, A. M. Manzieri, M. Foli, and N. Battistini. 1997. Effects of cooking and storage methods on the micronutrient content of foods. Eur. J. Cancer Prev. 6:S21–S24.

Sikorski, Z., and E. Kolakowski. 2000. Endogenous enzyme activity and seafood quality: influence of chilling, freezing, and other environmental factors. Pp. 451–487 in N. Haard and B. Simpson, eds. Seafood enzymes. Utilization and influence on postharvest seafood quality. Marcel Dekker, New York.

Singh, R. P., and D. R. Heldman. 2000. Introduction to food engineering, 3rd ed. Academic Press, London, UK.

Soundarapandian, P., D. Varadharajan, and C. Sivasubramanian. 2013. Mineral composition of edible crab, Charybdis NatatorHerbst (Crustacea: Decapoda). J. Bioanal. Biomed. 5:99–101. doi:10.4172/1948-593X.1000088.

Turan, M., S. Kordali, H. Zengin, A. Dursun, and Y. Sezen. 2003. Macro and micro- mineral content of some wild edible leaves consumed in Eastern Anatolia. Acta Agric. Scand. Sec. B Plant Soil Sci. 53:129–137.

Uwakwe, A. A., and A. O. Ayalogu (1998). Proteins: In Biochemistry (A tropical approach), Vol. 2. FIUS Publishers, Port Harcourt, Nigeria. Pp. 44–45.

Wardlaw, G. N. 1999. Perspective in nutrition. 4th ed. McGraw-Hills, Boston, Pp. 472–500.

Wardlaw, G. M., and M. W. Kessel (2002). Minerals: dietary needs, absorption, transport and excretion. In: Perspectives in nutrition, 5th ed. Mc Graw-Hil Companies, Boston, New york. Pp. 418–464.

Yamamoto, S. A., and L. J. Harris. 2001. Phosphate buffer increases recovery of Escherichia coli O157: H7 from frozen apple juice. J. Food Prot., 64:1315–1319.

Zaritzky, N. 2006. Physical-chemical principles in freezing. Pp. 1–5.