Phytoremediation as a method for cleaning sludge beds of biological treatment plants from heavy metals

I V Zykova and V A Isakov

Yaroslavl-the-Wise Novgorod State University, 41, ul. B. St. Petersburgskaya, Veliky Novgorod, Russian Federation

E-mail: Irina_Zikova@novsu.ru

Abstract. The aim of this study is to select a phytoremediation plant for cleaning sludge beds of biological treatment plants from heavy metals. The study was conducted on sludge beds of biological treatment facilities of Veliky Novgorod with a sludge retention time of 1 year and 15 years. It is established that the forms of metals in the sludges and wastewater sludge depend on the nature of the metal. Manganese (II) predominantly binds to compounds that make up sludge and wastewater sludge by the ion exchange mechanism, copper (II) – by the complex formation mechanism, zinc (II) – is codeposited with calcium and magnesium carbonates, manganese (IV) and iron hydroxides (III). Six selected plants were analyzed (bedstraw, cow vetch, field daisy, silverweed cinquefoil, base vervain, winter cress), those growing on sludge beds with a sludge retention time of 15 years, for the content of copper (II), zinc (II) and manganese (II) in different parts of plants. The phytoremediation plant was selected according to the indicators of the coefficient of biological accumulation (coefficient of biological accumulation) and translocation factor. It has been established that the bedstraw can be called a universal phytoremediation plant, in the absence of significant sludge contamination with copper (II), it is most preferable to use base vervain. Selected phytoremediation plants can be used for artificial planting on sludge beds in order to further use these beds as fertile lands.

1. Introduction

Currently, disposal at landfills remains the main method for neutralization of sludges and wastewater sludge of biological treatment facilities (table 1) [1, 2]. Landfills (sludge beds) are environmentally hazardous objects due to pollution of soils, surface and ground waters, and of the atmosphere.

Many countries of the world are striving to reduce the proportion of wastewater sludge disposed of at landfills (sludge beds), but to increase the proportion of thermal and other methods of neutralization and disposal of sludge. The widespread use of thermal methods for disposal of wastewater sludge is due to the high content of heavy metals in them, as well as in the absence of approaches to the neutralization of heavy metals from quasi-solid technogenic formations.

| Table 1. Application of methods for neutralization and disposal of wastewater sludge from biological treatment plants in different countries. |
|----------------------------------|---------------------------------|-----------------|-----------------|------------------|
Country	The share of the use of methods, % of the mass of sludge	Disposal at landfills (sludge beds)	Thermal methods	Biological methods	Other methods

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Russia & 97.0 & 1.7 & 1.0 & 0.3 \\
Austria & 69.5 & 9.0 & 18.5 & 3.0 \\
Great Britain & 89.0 & 9.5 & 1.4 & 0.1 \\
Belgium & 60.0 & 28.0 & 9.5 & 2.5 \\
Denmark & 27.5 & 70.0 & 0.5 & 2.0 \\
Italy & 58.5 & 24.0 & 10.5 & 7.0 \\
Canada & 80.0 & 19.0 & 1.0 & 0.0 \\
Poland & 95.0 & 1.0 & 2.5 & 1.5 \\
USA & 85.0 & 14.0 & 0.1 & 0.9 \\
France & 45.4 & 40.0 & 12.5 & 2.1 \\
Switzerland & 14.0 & 70.0 & 10.0 & 6.0 \\
Sweden & 43.5 & 44.0 & 10.5 & 2.0 \\
Japan & 27.0 & 70.0 & 0.3 & 2.7 \\

With the use of thermal method of disposal of wastewater sludge, atmospheric pollution occurs, which requires additional costs for a system for cleaning gas emissions from pollutants. The resulting ash contains high concentrations of heavy metals, which also requires well-thought-out systems for its disposal. With the use of the thermal method of sludge disposal, destruction of organic substances that make up their composition, which could be used to replenish soil humus, occurs [3, 4].

2. Materials and methods

The study was conducted on sludge beds of biological treatment facilities of Veliky Novgorod with a sludge retention time of 1 year and 15 years.

Excessive active sludges and sludge from biological treatment facilities are a complex multicomponent hydrophilic heterophase system. Heavy metals interact with compounds that are part of the excess active sludges and sludge formed in biological treatment plants, according to various mechanisms, among which the main ones can be distinguished [5, 6]:

1) adsorption: physical, chemical, ion exchange;
2) chemical interaction with organic and inorganic ligands by the complexation mechanism;
3) destructive and oxidative energy-chemical processes;
4) biological processes;
5) codeposition with Fe(OH)₃, MnO₂, CaCO₃ and MgCO₃.

The forms of presence of heavy metals in the sludges and wastewater sludge of biological treatment plants, due to the mechanisms mentioned above vary depending on the nature of the metals.

To find forms of binding of heavy metals with compounds that make up the sludges and wastewater sludge, the method of rational analysis was used. The metal concentration was determined by atomic absorption spectroscopy in the extract after each sequential extraction according to the scheme proposed by W. Miller (table 2) [7].

Form of metal	Extraitant
Water-soluble form	H₂O
Ion-exchange form	0.1 H.Ca(NO₃)₂
Chemical interaction according to the complexation	0.1 M NaOH
mechanism	0.1 M NaOH, pH = 7
Codeposited with CaCO₃ and MgCO₃	0.1 M NH₃OH·HCl in 0.01 M HNO₃
Codeposited with MnO₂	0.3 M sodium citrate in 1 M NaHCO₃

Table 2. The scheme of rational analysis of sludges and wastewater sludge proposed by W. Miller.
Table 3. Share (in % of gross content) of various forms of heavy metals in sludge.

Form of metal	Mass fraction of metals (in % of the total content)		
	Cu	Mn	Zn
Water-soluble form	3.2	7.1	3.5
Ion-exchange form	15.2	57.1	20.8
Chemical interaction according to the complexation mechanism	39.7	18.1	14.1
Codeposited with CaCO$_3$ and MgCO$_3$	16.6	4.8	28.5
Codeposited with MnO$_2$	10.8	2.8	20.8
Codeposited with Fe(OH)$_3$	3.4	3.6	3.8
Non-dissolved residue	11.1	6.5	8.5

3. Results and discussion

The results show (table 3) that the forms of metals in the sludges and wastewater sludge depend on the nature of the metals. So, for example, manganese (II) predominantly binds to compounds that make up the sludges and wastewater sludge by the ion exchange mechanism. The mass fraction of the ion-exchange form of manganese (II) is about 57%. Copper (II) is predominantly bound to the above mentioned compounds by the complexation mechanism. The mass fraction of copper (II) bound by the complexation mechanism is about 40%. Zinc (II) is more characteristic of codeposition with calcium and magnesium carbonates, manganese (IV) and iron (III) hydroxides. The mass fraction of zinc (II), codeposited with these components is about 50%.

Phytoremediation can be one of the effective methods for cleansing sludge beds from heavy metals. Using this method, it is possible to achieve maximum permissible values for the content of heavy metals in the soil, allowing for the use of sludge beds as fertile lands, given the low cost of work and the practical absence of negative environmental impacts.

Two directions for the use of phytoremediation plants can be proposed:

1. at high concentrations of heavy metals – plants can be burned, and the ash can be used to separate metals in pure form;
2. at low concentrations of heavy metals - use biomass of phytoremediation plants as fertilizers containing trace elements which are biologically important for plants [8, 9].

On the sludge beds of biological treatment plants, there are various types of plants. Sludge beds with retention time of 15 years are of great scientific interest. The concentrations of copper (II), manganese (II), and zinc (II) were determined in sludge beds and plants. In order to select phytoremediation plants, concentrations of heavy metals in sludge of sludge beds with retention time of 15 years, as well as in plants growing on these sludge beds, were determined. For comparison, data on the concentration of heavy metals in the sludge of sludge beds with retention time of 1 year are presented (table 4).

Table 4. Gross metal content in sludge of sludge beds.

Object	Cu, mg/kg a.d.m.	Zn, mg/kg a.d.m.	Mn, mg/kg a.d.m.
Sludge of 1 year of retention	740	1860	1214
Sludge of 15 years of retention	55	220	110

Concentrations of heavy metals in various parts of plants (roots, leafage, culms, fruits) differ, and differ significantly (500-800 times) exceed the concentrations in the same parts of plants growing on soils not contaminated with heavy metals (tables 5, 6, 7).
Table 5. Concentrations of Cu_{total} (mg/kg of absolute dry matter) in the roots, culms, leafage and fruits of plants growing on sludge beds with a sludge with a retention time of 15 years.

Plant species	Root	Culm	Leafage	Fruits
Bedstraw	120	20	130	145
Cow vetch	750	160	160	–
Field daisy	65	20	15	50
Silverweed cinquefoil	80	120	120	–
Base vervain	1240	70	70	–
Winter cress	150	100	100	–

Table 6. Concentrations of Zn_{total} (mg/kg of absolute dry matter) in various parts of the plants of sludge beds with a sludge with a retention time of 15 years.

Plant species	Root	Culm	Leafage	Fruits
Bedstraw	2420	420	2681	3052
Cow vetch	2175	110	110	–
Field daisy	1070	40	1240	35
Silverweed cinquefoil	70	110	110	–
Base vervain	1320	7230	7230	–
Winter cress	295	40	40	–

Table 7. Concentrations of Mn_{total} (mg/kg of absolutely dry residue) in various parts of the plants of sludge beds with a sludge with a retention time of 15 years.

Plant species	Root	Culm	Leafage	Fruits
Bedstraw	195	80	160	–
Cow vetch	1000	375	375	–
Field daisy	550	22	610	21
Silverweed cinquefoil	675	200	200	–
Base vervain	80	600	600	–
Winter cress	50	155	155	–

To identify phytoremediation plants, the coefficient of biological accumulation and translocation factor were calculated.

The coefficient of biological accumulation (CBN) was calculated by the formula:

\[
\text{CBN} = \frac{C_{\text{plant}}}{C_{\text{soil}}} \quad (1)
\]

where: \(C_{\text{plant}} \) is the concentration of heavy metal accumulated by the plant, mg/kg of absolute dry matter; \(C_{\text{soil}} \) is the concentration of heavy metal determined in the soil, mg/kg of absolute dry matter.

Translocation factor (TF), calculated by the formula:

\[
\text{TF} = \frac{C_{\text{terr.}}}{C_{\text{root}}} \quad (2)
\]

where: \(C_{\text{terr.}} \) is the concentration of heavy metal in the terrestrial part of the plant, mg/kg of absolute dry matter; \(C_{\text{root}} \) is the concentration of heavy metal in the root system, mg/kg of absolute dry matter [10].

For all studied plants, the coefficients are presented in table 8.
Table 8. Coefficients of biological accumulation and translocation factors for the studied plants.

Plant species	Cu CBN	Cu TF	Zn CBN	Zn TF	Mn CBN	Mn TF
Bedstraw	7.5	2.5	39.0	2.5	4.0	1.2
Cow vetch	19.5	0.4	9.9	0.1	15.9	0.8
Field daisy	2.7	1.3	10.8	1.2	10.9	1.2
Silverweed cinquefoil	5.8	3.0	1.3	3.1	9.8	0.6
Base vervain	25.1	0.1	71.7	11.0	11.6	15.0
Winter cress	6.4	1.3	1.7	0.3	3.3	6.2

According to [10], if the coefficient of biological accumulation is greater than 10, then this type of plant can be attributed to a strong accumulator of this metal. If the coefficient of biological accumulation is in the range from 1 to 10, then this type of plant can be attributed to the average accumulator of this metal, if the coefficient of biological accumulation is less than 1, then this type of plant can be attributed to a weak accumulator of this metal.

4. Conclusion

Based on the obtained experimental data, we can conclude that of all the studied plants for the studied metals, only the bedstraw can be called a universal phytoremediation plant, although it has a relatively low coefficient of biological accumulation in copper and manganese. However, the values of the translocation factor for all metals exceeding one, allow for the use of the biomass of this plant as micronutrient fertilizers for soils that lack in copper, zinc and manganese.

In the absence of significant sludge contamination with copper, it is most preferable to use base vervain, which has the highest biological accumulation coefficient and translocation factor.

Thus, it is possible to select plants for artificial planting on sludge beds in order to further use these sludge beds as fertile lands.

References

[1] Turlej T and Banas M 2018 Sustainable management of sewage sludge E3S Web of Conferences 49 00120
[2] Kacprzaka M, Neczaja E, Fijalkowskia K, Grobelaka A, Grossera A, Worwaga M, Rorata A, Brattebob H, Almasc A and Ramsinghc B 2017 Sewage sludge disposal strategies for sustainable development Environmental Research 156 39–46
[3] Bajpai P 2012 Management/utilization of wastewater treatment sludges Biotechnology for Pulp and Paper Processing (Boston: Springer) 349–73
[4] Bajpai P 2014 Options for utilization of waste In: Management of pulp and paper mill waste Biotechnology for Pulp and Paper Processing (Cham: Springer) 79–180
[5] Lamastra L, Suciu N A and Trevisan M 2018 Sewage sludge for sustainable agriculture: contaminants’ contents and potential use as fertilizer Chemical and Biological Technologies in Agriculture 5 (10)
[6] Fijalkowski K, Rorat A, Grobelak A and Kacprzak M J 2017 The presence of contaminations in sewage sludge – The current situation Journal of Environmental Management 203 (3) 1126–36
[7] Miller W, McFee N W and Kelly I M 1983 Mobility and retention of heavy-metals in sandy soils Journal Environmen Quality 12 579–84
[8] Tianfen X, Fangwen W, Zebin Z, Shucai Wu and Tang Q 2014 Phytoremediation of sewage sludge and use of its leachate for crop production Environmental technology 36 (23)
[9] Chang J H, Cheng S F, Timofeeva S S and Shen S Y 2019 Removal of heavy metals from sewage sludge by electrokinetics Human Life Safety 4 (3) 306–15
[10] Magaji Y, Ajibade G A, Yilwa V M Y, Appah J, Haroun A A, Alhaji I, Namadi M M and Sodimu A I 2018 Concentration of heavy metals in the soil and translocation with phytoremediation potential by plant species in military shooting range *World Scientific News* **92** (2) 260–71