An Amyloid Agnostic Reformulation of the Alzheimer’s Disease:
the Long Gene Vulnerability Hypothesis

Sourena Soheili-Nezhad¹

¹Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands

email: sourena.soheili-nezhad@donders.ru.nl
Abstract

Alzheimer’s disease (AD) is a genetically complex senile neurodegeneration with unknown etiology. The first gene discovered to be mutated in early-onset AD, the amyloid precursor protein (APP), has been widely assumed as a causal factor in the disease cascade due to its generation of Aβ species. APP has an evolutionarily conserved biological role and activates a signaling program with notable similarities to integrin—a cell adhesion receptor with a wide array of functions. Intriguingly, several AD genome-wide association study (GWAS) candidate genes, including the SHARPIN locus recently reported by us and others, influence signaling of the integrin pathway. Integrins are focal adhesion regulators and serve in nervous system development, synaptic plasticity, and Tau phosphorylation. These observations suggest that the function of APP probably goes beyond Aβ generation in AD.

Aging—the strongest risk factor for AD—is associated with various clock-like events in cells. For instance, neurons are continuously impacted by stochastic ‘hits’ to their genomes in aging, in the forms of DNA damage, insertion-deletions, copy-number variations (CNVs) and other types of somatic mutations. DNA damage and somatic mutations can result in neoplastic changes and cancer in mitotically active cells. However, their consequences in post-mitotic cells such as aging neurons are less defined.

The current hypothesis holds that the stochastic loss of DNA sequence data at random loci in aging affects longer genes by chance more frequently. As a result, the biological processes coordinated by long genes may be more vulnerable to such random aging effects. Curiously, as shown by us and others, long genes are strongly enriched for synapse- and cell adhesion-related ontologies, more than any other biological process or cellular compartment. In addition, among various cell types, neurons possess the highest levels of long gene expression and are therefore more vulnerable to such harmful effects. The long gene vulnerability hypothesis provides a simple link between aging and the genetic landscape of AD and warrants new strategies for disease modification.

Keywords: Alzheimer’s disease, DNA damage, somatic mutation, integrin, synaptic adhesion
Introduction

The Aβ fragment of the APP protein\(^1\) has been the centerpiece of AD pathogenesis research and drug design following the amyloid cascade theory\(^2\). However, more than three decades after the successful cloning of the APP gene\(^3\), the biological function of its encoded protein remains speculative in the brain and elsewhere. Mounting evidence indicates that APP acts as a cell surface receptor and activates an intracellular signaling program\(^4,5\) for synaptic function and plasticity\(^6\). Still, this essential biological function has received less attention in the field.

Sporadic late-onset AD is a genetically complex disease with a heritability of 60-80%\(^7\). GWAS and next-generation sequencing have identified multiple risk loci for late-onset AD in the last decade\(^8-11\). These loci provide a hypothesis-free glimpse of the underlying molecular pathways in AD and bring opportunities for revising disease models in a data-driven way. APP, presenilins (PSENs), and Tau variants have shown small contributions to the total heritability of late-onset AD\(^10,12\), whereas the APOE locus explains approximately a quarter of the disease heritability\(^13\). The GWAS loci have been suggested to highlight several pathways in AD pathogenesis, spanning microglial activation, lipid metabolism, focal adhesion, and Aβ turnover\(^14-17\). Nevertheless, the causal significance of Aβ in AD is a matter of ongoing debate\(^18-20\). The correlation between Aβ and brain atrophy seems to be weak, absent, and in recent reports paradoxically negative\(^21\).

It is argued here that the model of AD pathogenesis can be surprisingly simplified by reimagining Aβ deposition and Tau phosphorylation as potential consequences of the disease process rather than causal factors. Several testable predictions are proposed together with new disease modification strategies.

APP may be a synaptic adhesion molecule: the evolutionarily-conserved NPxY motif

Three APP family genes are present in the human genome, including APP, APLP1, and APLP2. The common function of this gene family, biological adhesion\(^22\), has been highly conserved in evolution. As a receptor-like protein, transmembrane APP transfers extracellular signals to the internal actin cytoskeleton and affects focal adhesion stability\(^4,23\). Specifically, APP interacts with many extracellular molecules that are classical ligands for integrins, such as heparan sulfate, laminin, and fibronectin\(^24-27\). Similar to the integrin pathway, APP moderates neuronal growth cone adhesion and movement\(^28,29\). For example, the APP protein directly interacts with β1 integrin at cell membranes and influences focal adhesion\(^30,31\), cell motility\(^32\), and hippocampal neurite outgrowth\(^33,34\). In addition to direct interaction with integrin, APP also binds to two extracellular adhesion molecules that act as integrin-activating ligands\(^34,35\), including reelin\(^31\) and netrin\(^36,37\). This biological convergence with integrin suggests that APP may take part in the integrin adhesion complex and modulate its downstream signaling effects on the cytoskeleton.
The intracellular domain of APP attracts adaptor molecules with signaling activity. Specifically, the APP intracellular domain constitutes an NPxY amino acid motif that has been super-conserved from roundworms to humans for more than 900 million years of evolution. NPxY is a consensus motif for receptor sorting and intracellular signaling. For instance, integrins recruit their cytoplasmic adaptors (e.g., kindlin and talin) via a cytoplasmic NPxY motif, and this event ultimately affects the remodeling of the actin cytoskeleton. Similarly, the NPxY-binding APP intracellular adaptors converge to the same cytoskeletal actin pathway (table 1). Notably, APOE lipoprotein receptors also recruit the same NPxY motif for signaling (as shall be discussed in the next sections).

Several lines of evidence suggest that APP may be a synaptic protein. At the postsynapse, APP interacts with AIDA1, a synaptic plasticity regulator, via its NPxY site. The APP family proteins form trans-synaptic adhesion dimers, stabilize synaptic connections and coordinate neurotransmitter receptor function. Taken together, the signaling function of APP seems to overlap with that of integrin cell adhesion and its influence on synaptic plasticity. This amyloid-independent role of APP dovetails with the body of GWAS evidence and the genetic architecture of AD.

Table 1. Extracellular and intracellular APP binding molecules

Protein	Binding site	Function	Integrin modulation
FE65/TIP60	AICD	Cell adhesion and migration, cytoskeletal remodeling	β1 integrin
KAI1	AICD	Cell migration, cytoskeletal assembly	β1 integrin
DISC1	AICD	Neuronal migration and cytoskeletal remodeling	β1 integrin
DAB1	AICD	Neuronal migration and cytoskeletal remodeling	β1 integrin
MINT1	AICD	Cell migration	Unknown
GRB2	AICD	Cell migration	β1 integrin
SHC	AICD	Cell adhesion and migration	β1 integrin
GRB7	AICD	Cell adhesion and migration	(β1-)integrin
CRK	AICD	Cell migration and cytoskeletal remodeling	β1 integrin
PIN1	AICD	Cell migration	β1 integrin
Lingo1	Extracellular	Cell migration	β1 integrin
Pancortin	Extracellular	Cell migration	Unknown
Reelin	Extracellular	Cell migration	β1 integrin
Netrin1	Extracellular	Cell migration and synaptic actin remodeling	β1 integrin
F-spondin	Extracellular	Cell adhesion and migration	β3 integrin

AICD: APP intracellular domain

Γ-secretase may be a synaptic adhesion modulator

Although γ-secretase dysfunction has been primarily researched in the context of Aβ generation, the function of this transmembrane protease is not limited to APP cleavage. Several receptors such as notch, which is a novel familial AD candidate gene, rely on γ-cleavage for normal signaling. Other γ-secretase substrates associated with AD include the APOE lipoprotein receptors (LRPs) and the ephrin synaptic adhesion receptors, both of which regulate...
neurotransmission86,88 and interact with the integrin adhesion complex89,90. Synaptic maturation is accompanied by an increased expression of γ-secretase at the postsynaptic membranes91, where this enzyme is anchored to various cell adhesion molecules91-93. Loss of γ-secretase activity disrupts membrane adhesion force generation94 and causes erroneous axonal pathfinding95. Taken together, γ-secretase is essential to the signaling of multiple synaptic adhesion receptors other than APP, a physiological cleavage process that has been hardly explored in AD pathogenesis.

The genome-wide landscape of AD and synaptic adhesion

Pioneered by Lambert et al., multiple GWAS risk loci have been discovered for late-onset AD in the last decade12,96. Curiously, GWAS candidate genes seem to strongly converge to the integrin cell adhesion pathway—a mecha

\textit{Preprints} (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2021
doi:10.20944/preprints202108.0454.v1
Table 2. AD risk genes and their implication of the integrin cell adhesion pathway

Gene	Cell adhesion function	Interaction with integrin and focal adhesion	Actin cytoskeleton reorganization
EPHA1	Cancer cell invasion[^110]	β1 integrin[^111,112]	RhoA, ROCK pathway[^112]
FRMD4A	Cell adhesion and invasion[^113]	FAK[^114,115]	Arf[^116]
FERMT2	Cell invasion[^117]	FAK[^114,115]	Unknown
GAB2	Cell adhesion and migration[^118]	β1 integrin[^118]	Rho pathway[^119]
CASS4	Axon guidance[^120], cell migration[^121]	Integrin[^120] and FAK[^121]	Rho, Rac1, Rap1 pathway[^122]
CD2AP	Podocyte focal adhesion[^123]	α3 integrin[^123]	Direct actin binding[^124]
PTX28	Cell migration[^125]	FAK, SRC[^126]	Actin reorganization[^126]
INPP5D	Cell movement[^127]	β3 integrin[^127,128]	TREM2-mediated cytoskeletal rearrangement[^129]
NYAP1	Neuronal migration[^130]	Fyn[^130]	PI3K/WAVE1 pathway[^131]
BIN1	Clathrin-mediated endocytosis, focal adhesion[^132], AMPH (71% sequence similarity) affects hippocampal neurite outgrowth[^133]	β1 integrin[^132], α-integrin[^134], FAK[^135]	Tau-mediated actin dynamics[^136]
PICALM	Unknown; Clathrin-mediated endocytosis[^137,138]	Unknown, β1 integrin endocytosis through clathrin[^119,140]	Genetic interaction with the actin regulator DOCK1[^141]
ABCA7	Unknown; Clathrin-mediated endocytosis[^142]	Unknown	Unknown
UNC5C	Axon repulsion[^143]	α6 integrin[^144]	Unknown
TPBG	Cell adhesion and movement[^145-147]	Focal adhesion[^148]	Rho pathway[^148]
HBEGF	Integrin-dependent cell adhesion[^149]	α5β1 Integrin[^149], FAK[^150]	Erbb-1[^150]
USP6NL	Cell migration[^151]	β1 integrin endocytosis[^151]	Rab5[^151]
TREM2	Unknown	β1 and β3 integrin[^152]	DAP12-mediated cytoskeletal reorganization[^153]
TTC3	Unknown	β1 integrin/FAK[^153]	RhoA, ROCK[^154]
PLCG2	Cell migration[^155]	β1 and β2 integrin, SFK[^155,156]	Unknown
ABI3	Cell migration[^157]	ABI3 binding protein activates β1 integrin and FAK[^158,159]	WAVE[^160]
CLU	Cell adhesion[^161] and migration[^162]	Unknown	LIMK1[^161] and PI3K/AKT pathways[^162]
SHARPIN	Cell adhesion and migration[^163,164]	β1 integrin[^165]	Postsynaptic actin[^166], Rap1, Rho GTPase[^164]
ADAM10	Cell migration[^167]	β1 integrin[^167]	Unknown
HLA-DRB1	Cell adhesion and movement[^168]	β1 integrin, FAK, Src[^169,170]	Rho GTPase[^171], Src, FAK and Erk[^170]
NCK2	Cell adhesion and movement[^172]	Integrin linked kinase[^173] and FAK[^174]	Cdc42, Rac[^175], PINCH and N-WASP[^176]
ACE	Unknown	β1 and αS integrin[^176]	Unknown

Long synaptic adhesion genes implicate DNA damage as the cause of AD

Cell adhesion enlightens new mechanisms of AD pathogenesis. Curiously, among all pathways and cell compartments documented in the gene ontology (GO) database, cell adhesion- and synapse-related ontologies show the strongest enrichment of long genes[^177]. In addition, gene
expression data shows that neurons highly express long genes, more than any other cell type178. While the reason for this statistical overrepresentation is elusive, it may be speculated that long genes may have increased the complexity of cell signaling pathways in evolution, such as those of brain development and synaptic connectivity. Long genes often possess long introns and more transcription factor binding sites. Also, long genes usually code for larger proteins with larger surface areas and more interaction sites. Elements of the neurodevelopmental program, such as axon guidance, neural migration and synapse formation, may rely on signaling complexities enabled by long gene products. Importantly, these large molecules also contribute to the post-developmental plasticity of the synapse179.

Several independent groups have recently reported that somatic mutations and insertion-deletions (indels) accumulate in aging brain neurons at a more or less linear rate180-183. A long synaptic gene may be more vulnerable to such DNA damage events and somatic mutations (genosenium) that emerge in aging cells. Also, long neuronal genes often reside in chromosomal fragile sites and hot-spots of genome instability184,185, a feature that may render them more vulnerable to DNA damage in aging. Loss of long neuronal genes due to DNA damage accumulation may be more or less similar to the mutational loss of long tumor suppressor genes in cancers186, albeit with some distinctive features due to the post-mitotic state of neurons.

The biological pathways coordinated by long genes, synapse and cell adhesion, compile the genome-wide landscape of AD with APP, \(\gamma\)-secretase and APOE. A\(\beta\) generation and Tau phosphorylation may be downstream consequences of this causal mechanism (please see the next sections).

Testing the hypothesis: LRP1b, DAB1 and CSMD1 under the spotlight

The medial temporal lobe neurons express certain synaptic genes such as the NMDA receptor subunits for regulating plasticity and memory formation. NMDA receptors are coupled with synaptic adhesion molecules and cytoskeletal actin (Fig. 1). Due to such proteomic diversity in different brain regions and cells, some neurons may be more vulnerable to aging and DNA damage, for example if they incorporate multiple genes that are mutationally fragile in aging. While an extensive and exploratory search of long and fragile genes in AD may be helpful, three genes have interesting features warranting focused research (table 3):

- **LRP1b** codes for a receptor of the APOE molecule. LRP1b is the ninth-longest gene in the human genome and is selectively expressed in the hippocampal formation187,188 (Fig. 2). This giant receptor maps to the chromosomal fragile site FRA2F and is among the top-ten genes frequently deleted in cancers189. Considering its interaction with the postsynaptic density protein PSD95190, the synaptic plasticity regulator PICK1191, and the APP protein192, LRP1b may have postsynaptic roles. The biological functions of its closest homolog, LRP1 (with 59\% sequence similarity), may help speculate potential synaptic roles of LRP1b. LRP1 regulates postsynaptic glutamate receptor trafficking, long-term potentiation193 and integrin signaling194. Both of these receptors have two NPxY motifs.
- **DAB1** is a mandatory signaling adaptor of the APOE/RELN signaling axis, an essential biological pathway in the perforant synaptic path of the medial temporal lobes\(^{195,196}\). DAB1 is coded by the 13\(^{th}\) longest gene in the human genome and maps to the chromosomal fragile site FRA1B.

- **CSMD1** is another long synaptic gene with tumor-suppressor-like fragility\(^{197}\). This gene, which is the sixth-longest gene in the human genome, resides at the chromosomal fragile site FRA8B and prevents activation of the complement system\(^{198}\). As a giant synaptic membrane adhesion molecule, CSMD1 is strongly expressed in the hippocampal formation\(^{188}\). These features warrant research into the potential loss of CSMD1 in the aging brain and its possible influence on complement activation, synaptic pruning\(^{199}\) and integrin signaling\(^{200}\). Notably, the C3b-4b complement complex—a cognate ligand for the AD risk locus CR1 receptor—is degraded by CSMD1\(^{198}\).
Figure 1. The postsynaptic adhesion pathway. The integrin cell adhesion pathway interacts with several candidate AD risk gene products. A number of aging-vulnerable neuronal genes in this molecular interactome (red) may be affected by DNA damage in aging, causing other genes to appear as disease risk loci. PAX: paxillin, RELN: reelin, RTK: receptor tyrosine kinase, PTPR: protein tyrosine phosphatase receptor, MMP: matrix metalloproteinase, FN: fibronectin, LN: laminin, TSP: thrombospondin. Ig-SF CAM: immunoglobulin-superfamily cell adhesion molecule.
Figure 2. The lipoprotein receptor family. All protein-coding human genes are shown in the frequency density plot (n=20,006 genes, Ensembl v99). The lengths of all APOE receptor genes (LRPs) are indicated (A). Expression of LRPs in single entorhinal cortical neurons of non-demented and AD subjects (RNA-seq data; retrieved from http://adsn.ddnetbio.com201) (B). Single-cell expression of LRPs in subtypes of human cortical neurons (RNA-seq data; retrieved from https://portal.brain-map.org) (C). LRP1b is a positive outlier in all three plots.

Long gene vulnerability and the DNA damage theory of aging

In the 1950s, Failla and Szilard attributed aging to the ‘accumulation of spontaneous somatic mutations in all body cells202’, and the buildup of random events that ‘destroy chromosomes203’. DNA damage has been suspected as a mechanism of neurodegeneration and AD for some time18,204-206. Single-cell sequencing has recently revealed an accumulation of somatic mutations in human brain neurons181-183,207,208, a process termed genosenium. A number of preliminary works have surveyed somatic mutations in AD and non-demented brain neurons with inconsistent results183. It is noteworthy that the survivorship bias probably confounds single-cell mutational readouts, since different subtypes of neurons show variable degrees of vulnerability to
AD. As much as 90% of vulnerable neurons may be lost in severe AD209. In support of this notion, healthy brains seem to lose a substantial proportion of neurons with higher mutational loads in aging210. Compared to non-demented brains, AD brains show a reduced number of somatic mutations. While inconclusive, this observation may suggest that neurons with higher mutational loads are generally more vulnerable in the aging brain and are (more) easily depleted in AD. In addition to single nucleotide variant (sSNV), further studies are needed to quantify copy number variations (CNVs) and indels in AD neurons, since these less-explored types of somatic mutations frequently impair long genes at fragile sites, some of which have neuronal roles211. Considering the post-mitotic state of neurons, an interesting question is whether DNA strand break and repair cycles in neurons affect fragile site genes similar to the effect of cell division cycles in cancer pathogenesis212.

The current hypothesis brings new elements to the DNA damage theory of aging. Long genes are postulated to be more susceptible to DNA damage and its consequences, such as somatic CNVs and SNVs. This phenomenon is predicted to disable long genes and affect essential synaptic processes, such as the postsynaptic adhesion complex and fragile site genes (table 3).
Long gene vulnerability and the amyloid cascade theory

The APP molecule is probably one member of a large synaptic adhesion interactome, rather than a central disease factor (Fig. 1). Some members of this interactome may be vulnerable to DNA damage in aging, causing others to appear as disease risk loci. For example, mutational loss of

Table 3. The top 40 longest genes and common fragile sites

Rank	Gene	Transcript length (bp)	Exon count	Total exon length (bp)	Fragile site	Disease/pathway
1	RBFOX1	2,471,657	20	3,651		
2	CNTNAP2	2,304,198	24	9,454	FRA7I	Autism
3	DLG2	2,169,352	28	7,959	FRA11F	Schizophrenia, Parkinson’s disease
4	DMD	2,092,292	79	1,3992	FRA5C	
5	PTPRD	2,084,572	17	1,697		
6	CSMD1†	2,059,554	70	1,4417	FRA8B	Schizophrenia, cognitive function
7	MACROD2	2,057,829	17	4,994		
8	DMD	2,092,292	79	1,3992	FRA5C	
9	LRP1B‡‡	1,900,279	91	15,850		
10	PTPRD	1,878,247	43	10,590		
11	CSMD1†	1,878,247	43	10,590		
12	CSMD1†	1,878,247	43	10,590		
13	DAB1*	1,548,836	15	5,301	FRA1B	APOE/RELN signaling
14	PDE4D	1,513,420	17	2,478		
15	FHIT	1,504,176	10	3,116	FRA3B	
16	AGBL4	1,491,101	14	2,899		
17	CCE5R1	1,474,329	11	8,847		
18	GRID2	1,470,601	16	5,783	FRA4G	Glutamate receptor
19	GCPS	1,468,617	8	2,943	FRA13D	
20	CTNNA2	1,463,549	22	4,349	FRA2E	
21	MAGI2	1,436,613	22	6,975		
22	RBM53	1,427,860	17	1,973		
23	AC098650.1	1,418,360	14	3,355		
24	DPP10	1,403,454	26	5,964		
25	PRKN	1,380,350	12	4,178	FRA6E	Parkinson’s disease
26	I1R4AP1†	1,369,273	11	3,615	FRA10D	
27	LRRC4C	1,345,481	5	2,669		
28	AF241726.2	1,338,345	9	954		
29	CNTN5	1,337,937	25	6,499		
30	PRKG1	1,307,463	18	6,957	FRA10C	
31	TBC1D5	1,284,446	22	7,854		
32	PCDH15	1,249,127	28	9,366		
33	ANKS1B	1,248,816	17	6,874		
34	GALNTL6	1,228,156	9	2,370		
35	KAZN	1,225,252	71	1,3052		
36	KCNIP4	1,220,167	11	3,101		
37	NRG1‡	1,215,008	12	5,931		
38	CSMD3	1,214,012	19	7,469		
39	IL1R4AP2†	1,201,631	9	7,121		
40	DCC‡‡	1,195,703	19	10,181	FRA18B	

*APOE/LRP signaling
†Integrin signaling
‡ APP/Netrin-1 signaling
the LRP1b gene, whose protein product binds APP and affects its cleavage, may increase Aβ generation as an indirect effect of DNA damage. As noted for its closest homolog LRP1, another potential consequence of this event is β1 integrin dysfunction, with Tau phosphorylation taking place in this cascade. Taken together, neuropathology and the proteinopathy in AD may represent consequences of altered signaling events, rather than causal factors. Following this assumption, the current hypothesis is incompatible with the amyloid cascade theory.

Glial cells, innate and adaptive immunity and the complement system

As a part of the innate immune system, the complement cascade controls synaptic pruning in the developing brain and in psychiatric disorders by tagging unwanted synapses for removal. Microglia cells recognize activated complement proteins deposited on the synapse via a ligand-receptor interaction. The genetic architecture of AD seems to implicate some degree of overlap between glial-specific genes and neurodegeneration. In support of the complement system and its potential role in AD, the extremely long and fragile synapses gene, CSMD1, prevents complement activation (please see above). Nevertheless, it remains unknown whether neuroinflammation is a cause or a consequence of the disease pathogenesis mechanisms. Notably, somatic mutations in cancer cells result in the generation of novel peptides (neoantigens) that are unknown to the immune system and elicit an immune response. Whether somatic mutations in synaptic genes may cause immune activation remains an open and interesting question.

Conclusion

Aging is associated with an accumulation of random ‘hits’ to the DNA base sequence in the form of DNA damage, CNVs, SNVs and other types of somatic mutations. This process can result in carcinogenesis in mitotically active cells, but its effects have yet to be understood in post-mitotic neurons. Long synaptic genes may be more vulnerable to this random process and form a bottleneck in healthy brain aging, since they contain more ‘information’ (lower entropy) that is more probable to be lost in time. In addition, long genes often map to chromosomal fragile sites and mutational hotspots. Compared to healthy individuals, the pace of the mutational accumulation may be higher in AD patients, and/or the resistance threshold of neurons to such harmful effects of aging may be lower, causing earlier cell death or dysfunction. Long gene vulnerability warrants new disease modification strategies for the treatment of AD.

Acknowledgements

I am thankful to Tristan Looden, Saige Rutherford and Christienne Damatac for their help with this manuscript.
References

1. Glenner, G. G. & Wong, C. W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. *Biochemical and biophysical research communications* **120**, 885-890 (1984).

2. Hardy, J. A. & Higgins, G. A. Alzheimer’s disease: the amyloid cascade hypothesis. *Science (New York, N.Y.*) **256**, 184-185 (1992).

3. Kang, J. et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. *Nature* **325**, 733-736 (1987).

4. Müller, T. et al. Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). *Molecular biology of the cell* **18**, 201-210 (2007).

5. Deyts, C., Thinakaran, G. & Parent, A. T. APP Receptor? To Be or Not To Be. *Trends Pharmacol Sci* **37**, 390-411, doi:10.1016/j.tips.2016.01.005 (2016).

6. Steubler, V. et al. Loss of all three APP family members during development impairs synaptic function and plasticity, disrupts learning, and causes an autism-like phenotype. e107471 (2021).

7. Gatz, M. et al. Role of genes and environments for explaining Alzheimer disease. *Archives of general psychiatry* **63**, 168-174, doi:10.1001/archpsyc.63.2.168 (2006).

8. Reiman, E. M. et al. GAB2 Alleles Modify Alzheimer’s Risk in APOE e4 Carriers. *Neuron* **54**, 713-720, doi:10.1016/j.neuron.2007.05.022 (2007).

9. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. *Nature genetics* **45**, 1452-1458, doi:10.1038/ng.2802 (2013).

10. Jansen, I. E. et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. (2019).

11. Soheili-Nezhad, S. et al. Imaging genomics discovery of a new risk variant for Alzheimer’s disease in the postsynaptic SHARPIN gene. *Human Brain Mapping* (2020).

12. de Rojas, I., Moreno-Grau, S., Tesi, N. & Grenier-Boley, B. Common variants in Alzheimer’s disease: Novel association of six genetic variants with AD and risk stratification by polygenic risk scores. medRxiv (2019).

13. Strittmatter, W. J. et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. *Proc Natl Acad Sci U S A* **90**, 1977-1981, doi:10.1073/pnas.90.5.1977 (1993).

14. Tosto, G. & Reitz, C. Genome-wide association studies in Alzheimer’s disease: a review. *Curr Neurol Neurosci Rep* **13**, 381-381, doi:10.1007/s11910-013-0381-0 (2013).

15. Doutrlen, P., Kilinc, D., Malmanche, N., Chapuis, J. & Lambert, J. C. The new genetic landscape of Alzheimer’s disease: from amyloid cascade to genetically driven synaptic failure hypothesis? *Acta Neuropathol* **138**, 221-236, doi:10.1007/s00401-019-02004-0 (2019).

16. Sims, R., Hill, M. & Williams, J. The multiplex model of the genetics of Alzheimer’s disease. *Nat Neurosci* **23**, 311-322, doi:10.1038/s41593-020-0599-5 (2020).

17. Krishnan, D., Menon, R. N. & Gopala, S. SHARPIN: Role in Finding NEMO and in Amyloid-Beta Clearance and Degradation (ABCD) Pathway in Alzheimer’s Disease? *Cellular and Molecular Neurobiology*, 1-15 (2021).

18. Tse, K. H. & Herrup, K. Re-imagining Alzheimer’s disease—the diminishing importance of amyloid and a glimpse of what lies ahead. *Journal of neurochemistry* **143**, 432-444 (2017).

19. Ricciarelli, R. & Fedele, E. The Amyloid Cascade Hypothesis in Alzheimer’s Disease: It’s Time to Change Our Mind. *Curr Neuropharmacol* **15**, 926-935, doi:10.2174/1570159X15666170116143743 (2017).
Joseph, J. et al. Copernicus revisited: amyloid beta in Alzheimer’s disease. *Neurobiol Aging* **22**, 131-146, doi:10.1016/s0197-4580(00)00211-6 (2001).

Frigerio, I. et al. Amyloid-β, p-tau, and reactive microglia load are correlates of MRI cortical atrophy in Alzheimer’s disease. 2021.2006.2016.448650, doi:10.1101/2021.06.16.448650 %J bioRxiv (2021).

Coulson, E. J., Paliga, K., Beyreuther, K. & Masters, C. L. What the evolution of the amyloid protein precursor supergene family tells us about its function. *Neurochem Int* **36**, 175-184, doi:10.1016/s0197-0186(99)00125-4 (2000).

Ristori, E. et al. Amyloid-B Precursor Protein APP Down-Regulation Alters Actin Cytoskeleton-Interacting Proteins in Endothelial Cells. *Cells* **9**, doi:10.3390/cells9112506 (2020).

Kibbey, M. C. et al. beta-Amyloid precursor protein binds to the neurite-promoting IKVAV site of laminin. *Proc Natl Acad Sci U S A* **90**, 10150-10153 (1993).

Breen, K. C. APP-collagen interaction is mediated by a heparin bridge mechanism. *Molecular and chemical neuropathology* **16**, 109-121 (1992).

Li, X.-F., Thinakaran, G., Sisodia, S. S. & Fu-Shin, X. Y. Amyloid precursor-like protein 2 promotes cell migration toward fibronectin and collagen IV. *Journal of Biological Chemistry* **274**, 27249-27256 (1999).

Small, D. H. et al. A heparin-binding domain in the amyloid protein precursor of Alzheimer’s disease is involved in the regulation of neurite outgrowth. *Journal of Neuroscience* **14**, 2117-2127 (1994).

Sosa, L. J. et al. Amyloid precursor protein is an autonomous growth cone adhesion molecule engaged in contact guidance. *PloS one* **8**, e64521, doi:10.1371/journal.pone.0064521 (2013).

McKerracher, L., Chamoux, M. & Arregui, C. O. Role of laminin and integrin interactions in growth cone guidance. *Mol Neurobiol* **12**, 95-116, doi:10.1007/bf02740648 (1996).

Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C. & Selkoe, D. J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. *Neural development* **3**, 15, doi:10.1186/1749-8104-3-15 (2008).

Yamazaki, T., Koo, E. H. & Selkoe, D. J. Cell surface amyloid β-protein precursor colocalizes with β1 integrins at substrate contact sites in neural cells. *The Journal of neuroscience* **17**, 1004-1010 (1997).

Young-Pearse, T. L., Chen, A. C., Chang, R., Marquez, C. & Selkoe, D. J. Secreted APP regulates the function of full-length APP in neurite outgrowth through interaction with integrin beta1. *Neural Development* **3**, 15-15, doi:10.1186/1749-8104-3-15 (2008).

Sabo, S. L., Ikin, A. F., Buxbaum, J. D. & Greengard, P. The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. *The Journal of cell biology* **153**, 1403-1414, doi:10.1083/jcb.153.7.1403 (2001).

Hoe, H. S. et al. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **29**, 7459-7473, doi:10.1523/jneurosci.4872-08.2009 (2009).

Stanco, A. et al. Netrin-1–α3β1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. *Proceedings of the National Academy of Sciences* **106**, 7595-7600, doi:10.1073/pnas.0811343106 (2009).

Rama, N. et al. Amyloid precursor protein regulates netrin-1-mediated commissural axon outgrowth. *The Journal of biological chemistry* **287**, 30014-30023, doi:10.1074/jbc.M111.324780 (2012).

Lourenco, F. C. et al. Netrin-1 interacts with amyloid precursor protein and regulates amyloid-beta production. *Cell death and differentiation* **16**, 655-663, doi:10.1038/cdd.2008.191 (2009).
38 Matos, M. F. et al. Autoinhibition of Mint1 adaptor protein regulates amyloid precursor protein binding and processing. *Proc Natl Acad Sci U S A* 109, 3802-3807, doi:10.1073/pnas.1119075109 (2012).

39 Young-Pearse, T. L. et al. A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 27, 14459-14469, doi:10.1523/jneurosci.4701-07.2007 (2007).

40 Minami, S. S., Hoe, H.-S. & Rebeck, G. W. Fyn kinase regulates the association between amyloid precursor protein and Dab1 by promoting their localization to detergent-resistant membranes. *Journal of neurochemistry* 118, 879-890, doi:10.1111/j.1471-4159.2011.07296.x (2011).

41 Shariati, S. A. M. & De Strooper, B. Redundancy and divergence in the amyloid precursor protein family. *FEBS letters* 587, 2036-2045 (2013).

42 Li, H. et al. Structural basis of kindlin-mediated integrin recognition and activation. *Proceedings of the National Academy of Sciences* 114, 8495-8506, doi:10.1074/jbc.M900141200 (2009).

43 Hoe, H.-S. et al. The Effects of Amyloid Precursor Protein on Postsynaptic Composition and Activity. *The Journal of biological chemistry* 284, 8495-8506, doi:10.1074/jbc.M90014200 (2009).

44 McGeachie, A. B., Cingolani, L. A. & Goda, Y. Stabilising influence: integrins in regulation of synaptic plasticity. *Neurosci Res* 70, 24-29, doi:10.1016/j.neures.2011.02.006 (2011).

45 Chan, C.-S. et al. Beta 1-integrins are required for hippocampal AMPA receptor-dependent synaptic transmission, synaptic plasticity, and working memory. *The Journal of neuroscience : the official journal of the Society for Neuroscience* 26, 223-232, doi:10.1523/JNEUROSCI.4110-05.2006 (2006).

46 Sun, Y. et al. Fe65 Suppresses Breast Cancer Cell Migration and Invasion through Tip60 Mediated Cortactin Acetylation. *Scientific reports* 5 (2015).

47 Bakshi, K. et al. Novel complex of HAT protein TIP60 and nuclear receptor PXR promotes cell migration and adhesion. *Scientific reports* 7, 3635 (2017).

48 Sabo, S. L., Ikin, A. F., Buxbaum, J. D. & Greengard, P. The Alzheimer amyloid precursor protein (APP) and FE65, an APP-binding protein, regulate cell movement. *J Cell Biol* 153, 1403-1414, doi:10.1083/jcb.153.7.1403 (2001).

49 Zhou, B., Liu, L., Reddivari, M. & Zhang, X. A. The Palmitoylation of Metastasis Suppressor KAI1/CD82 Is Important for Its Motility- and Invasiveness-Inhibitory Activity. *Cancer Research* 64, 7455-7463, doi:10.1158/0008-5472.can-04-1574 (2004).

50 Liu, W. M. et al. Tetraspanin CD82 inhibits protrusion and retraction in cell movement by attenuating the plasma membrane-dependent actin organization. *PloS one* 7, e51797, doi:10.1371/journal.pone.0051797 (2012).
17

Jee, B. K., Lee, J. Y., Lim, Y., Lee, K. H. & Jo, Y. H. Effect of KAI1/CD82 on the beta1 integrin maturation in highly migratory carcinoma cells. Biochem Biophys Res Commun 359, 703-708, doi:10.1016/j.bbrc.2007.05.159 (2007).

Steinecke, A., Gampe, C., Nitzsche, F. & Bolz, J. DISC1 knockdown impairs the tangential migration of cortical interneurons by affecting the actin cytoskeleton. Front Cell Neurosci 8, 190, doi:10.3389/fncel.2014.00190 (2014).

Young-Pearse, T. L., Suth, S., Luth, E. S., Sawa, A. & Selkoe, D. J. Biochemical and functional interaction of DISC1 and APP regulates neuronal migration during mammalian cortical development. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 10431-10440, doi:10.1523/JNEUROSCI.1445-10.2010 (2010).

Minami, S. S. et al. The cytoplasmic adaptor protein X11α and extracellular matrix protein Reelin regulate ApoE receptor 2 trafficking and cell movement. The FASEB Journal 24, 58-69, doi:10.1096/fj.09-138123 (2010).

Schmid, R. S., Jo, R., Shelton, S., Kreidberg, J. A. & Anton, E. S. Reelin, integrin and DAB1 interactions during embryonic cerebral cortical development. Cereb Cortex 15, 1632-1636, doi:10.1093/cercor/bhi041 (2005).

Han, D. C. & Guan, J. L. Association of focal adhesion kinase with Grb7 and its role in cell migration. The Journal of biological chemistry 275, 28911-28917 (2000).

Chuang, H.-H. et al. Pin1 Is Involved in HDAC6-mediated Cancer Cell Motility. International journal of medical sciences 15, 1573 (2018).

Lee, K.-J. et al. CD99-Derived Agonist Ligands Inhibit Fibronectin-Induced Activation of β1 Integrin through the Protein Kinase A/SHP2/Extracellular Signal-Regulated Kinase/PTPN12/Focal Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2021 doi:10.20944/preprints202108.0454.v1
Adhesion Kinase Signaling Pathway. Mol Cell Biol 37, e00675-00616, doi:10.1128/mcb.00675-16 (2017).

Mathis, C., Schröter, A., Thallmair, M. & Schwab, M. E. Nogo-a regulates neural precursor migration in the embryonic mouse cortex. Cerebral cortex 20, 2380-2390 (2010).

Ilobbi, C., Korte, M. & Zagrebelsky, M. Nogo-66 Restricts Synaptic Strengthening via Lingo1 and the ROCK2–Cofilin Pathway to Control Actin Dynamics. Cerebral Cortex 27, 2779-2792, doi:10.1093/cercor/bhw122 (2016).

Mi, S., Huang, G., Lee, X. & Shao, Z. LINGO-1 Negatively Regulates Oligodendrocyte Differentiation by Blocking the β-integrin Signaling Pathway (P5.298). Neurology 86, P5.298 (2016).

Rice, H. C. et al. Pancortins interact with amyloid precursor protein and modulate cortical cell migration. Development 139, 3986-3996, doi:10.1242/dev.082909 (2012).

Dulabon, L. et al. Reelin binds α3β1 integrin and inhibits neuronal migration. Neuron 27, 33-44 (2000).

Yebra, M. et al. Recognition of the neural chemoattractant Netrin-1 by integrins α6β4 and α3β1 regulates epithelial cell adhesion and migration. Developmental cell 5, 695-707 (2003).

Kang, D. S. et al. Netrin-1/DCC-mediated PLCγ1 activation is required for axon guidance and brain structure development. EMBO reports 19, e46250 (2018).

Stanco, A. et al. Netrin-1–α3β1 integrin interactions regulate the migration of interneurons through the cortical marginal zone. Proceedings of the National Academy of Sciences 106, 7595-7600 (2009).

Klar, A., Baldassare, M. & Jessell, T. M. F-spondin: a gene expressed at high levels in the floor plate encodes a secreted protein that promotes neural cell adhesion and neurite extension. Cell 69, 95-110 (1992).

Oka, H., Mori, M. & Kihara, H. F-spondin inhibits migration and differentiation of osteoclastic precursors. Journal of periodontology 82, 1776-1783 (2011).

Terai, Y. et al. Vascular smooth muscle cell growth-promoting factor/F-spondin inhibits angiogenesis via the blockade of integrin αvβ3 on vascular endothelial cells. Journal of cellular physiology 188, 394-402 (2001).

Hemming, M. L., Elias, J. E., Gygi, S. P. & Selkoe, D. J. Proteomic profiling of γ-secretase substrates and mapping of substrate requirements. PLoS Biol 6, e257 (2008).

De Strooper, B. et al. A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain. Nature 398, 518-522 (1999).

Guerreiro, R. J. et al. Exome sequencing reveals an unexpected genetic cause of disease: NOTCH3 mutation in a Turkish family with Alzheimer's disease. Neurobiol Aging 33, 1008.e1017-1023, doi:10.1016/j.neurobiolaging.2011.10.009 (2012).

Liu, C.-X., Ranganathan, S., Robinson, S. & Strickland, D. K. gamma-Secretase-mediated release of the low density lipoprotein receptor-related protein 1B intracellular domain suppresses anchorage-independent growth of neuroglioma cells. The Journal of biological chemistry 282, 7504-7511, doi:10.1074/jbc.m608088200 (2007).

Atapattu, L., Lackmann, M. & Janes, P. W. The role of proteases in regulating Eph/ephrin signaling. Cell adhesion & migration 8, 294-307 (2014).

Yoon, Y. et al. PS1 FAD mutants decrease ephrinB2-regulated angiogenic functions, ischemia-induced brain neovascularization and neuronal survival. Molecular Psychiatry, doi:10.1038/s41380-020-0812-7 (2020).

Meyer, S., Orsó, E., Schmitz, G., Landthaler, M. & Vogt, T. Lubrol-RAFTs in Melanoma Cells: A Molecular Platform for Tumor-Promoting Ephrin-B2–Integrin-β1 Interaction. Journal of investigative dermatology 127, 1615-1621 (2007).
Hoe, H.-S. et al. Interaction of reelin with amyloid precursor protein promotes neurite outgrowth. *Journal of Neuroscience* **29**, 7459-7473 (2009).

Schedin-Weiss, S., Caesar, I., Winblad, B., Blom, H. & Tjernberg, L. O. Super-resolution microscopy reveals y-secretase at both sides of the neuronal synapse. *Acta Neuropathologica Communications* **4**, 29, doi:10.1186/s40478-016-0296-5 (2016).

Restituito, S. et al. Synaptic Autoregulation by Metalloproteases and y-Secretase. *The Journal of neuroscience: the official journal of the Society for Neuroscience* **31**, 12083-12093, doi:10.1523/JNEUROSCI.2513-11.2011 (2011).

Saura, C. A., Servián-Morilla, E. & Scholl, F. G. Presenilin/y-Secretase Regulates Neurexin Processing at Synapses. *PloS one* **6**, e19430, doi:10.1371/journal.pone.0019430 (2011).

Waschbüsch, D. et al. Presenilin 1 affects focal adhesion site formation and cell force generation via c-Src transcriptional and posttranslational regulation. *J Biol Chem* **284**, 10138-10149, doi:10.1074/jbc.M806825200 (2009).

Bai, G. et al. Presenilin-Dependent Receptor Processing Is Required for Axon Guidance. *Cell* **144**, 106-118, doi:http://dx.doi.org/10.1016/j.cell.2010.11.053 (2011).

Mills, J. et al. Role of integrin-linked kinase in nerve growth factor-stimulated neurite outgrowth. *Journal of Neuroscience* **23**, 1638-1648 (2003).

Ishii, T., Furuoka, H., Muroi, Y. & Nishimura, M. Inactivation of integrin-linked kinase induces aberrant tau phosphorylation via sustained activation of glycogen synthase kinase 3β in N1E-115 neuroblastoma cells. *Journal of Biological Chemistry* **278**, 26970-26975 (2003).

Elie, A. et al. Tau co-organizes dynamic microtubule and actin networks. *Scientific Reports* **5**, 9964, doi:10.1038/srep09964 (2015).

Biswas, S. & Kalil, K. The Microtubule-Associated Protein Tau Mediates the Organization of Microtubules and Their Dynamic Exploration of Actin-Rich Lamellipodia and Filopodia of Cortical Growth Cones. *The Journal of Neuroscience* **38**, 291-307, doi:10.1523/jneurosci.2281-17.2017 (2018).

Cabrales Fontela, Y. et al. Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau. *Nature Communications* **8**, 1981, doi:10.1038/s41467-017-02230-8 (2017).

Bellenguez, C. et al. New insights on the genetic etiology of Alzheimer's and related dementia. *medRxiv*, 2020.10.2001.20200659, doi:10.1101/2020.10.01.20200659 (2020).

Jehle, A. W. et al. ATP-binding cassette transporter A7 enhances phagocytosis of apoptotic cells and associated ERK signaling in macrophages. *The Journal of cell biology* **174**, 547-556 (2006).

Man, H.-Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. **25**, 649-662 (2000).

Gao, J. et al. The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. **6**, e29178 (2017).

May, P. et al. Neuronal LRP1 functionally associates with postsynaptic proteins and is required for normal motor function in mice. *Mol Cell Biol* **24**, 8872-8883, doi:10.1128/MCB.24.20.8872-8883.2004 (2004).

Beffert, U. et al. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. *Neuron* **47**, 567-579, doi:10.1016/j.neuron.2005.07.007 (2005).

Maginnis, M. S. et al. NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. *J Virol* **82**, 3181-3191, doi:10.1128/JVI.01612-07 (2008).
Wujak, L. et al. Low density lipoprotein receptor-related protein 1 couples β1 integrin activation to degradation. Cell Mol Life Sci 75, 1671-1685, doi:10.1007/s00018-017-2707-6 (2018).

Dong, Y. et al. Downregulation of EphA1 in colorectal carcinomas correlates with invasion and metastasis. Modern Pathology 22, 151-160 (2009).

Carter, N., Nakamoto, T., Hirai, H. & Hunter, T. EphrinA1-induced cytoskeletal re-organization requires FAK and p130cas. Nature cell biology 4, 565-573 (2002).

Yamazaki, T. et al. EphA1 interacts with integrin-linked kinase and regulates cell morphology and motility. Journal of cell science 122, 243-255, doi:10.1242/jcs.036467 (2009).

Goldie, S. J. et al. FRMD4A upregulation in human squamous cell carcinoma promotes tumor growth and metastasis and is associated with poor prognosis. Cancer research 72, 3424-3436 (2012).

Moleirinho, S., Tilston-Lunel, A., Angus, L., Gunn-Moore, F. & Reynolds, Paul A. The expanding family of FERM proteins. Biochemical Journal 452, 183-193, doi:10.1042/bj20121642 (2013).

Frame, M. C., Patel, H., Serrels, B., Lietha, D. & Eck, M. J. The FERM domain: organizing the family of FERM proteins. Biochemical Journal 452, 183-193, doi:10.1042/bj20121642 (2013).

Ikenouchi, J. & Umeda, M. FRMD4A regulates epithelial polarity by connecting Arf6 activation with the PAR complex. Proc Natl Acad Sci U S A 107, 748-753, doi:10.1073/pnas.0908423107 (2010).

Shen, Z. et al. Kindlin-2: a novel adhesion protein related to tumor invasion, lymph node metastasis, and patient outcome in gastric cancer. The American Journal of Surgery 203, 222-229 (2012).

Yu, W. M., Hawley, T. S., Hawley, R. G. & Qu, C. K. Role of the docking protein Gab2 in beta(1)-integrin signaling pathway-mediated hematopoietic cell adhesion and migration. Blood 99, 2351-2359, doi:10.1182/blood.v99.7.2351 (2002).

Herrera Abreu, M. T. et al. Gab2 regulates cytoskeletal organization and migration of mammary epithelial cells by modulating RhoA activation. Molecular biology of the cell 22, 105-116, doi:10.1091/mbc.E10-03-0185 (2011).

Huang, Z., Yazdani, U., Thompson-Peer, K. L., Kolodkin, A. L. & Terman, J. R. Crk-associated substrate (Cas) signaling protein functions with integrins to specify axon guidance during development. Development 134, 2337-2347, doi:10.1242/dev.004242 (2007).

Singh, M. K. et al. A novel Cas family member, HEPL, regulates FAK and cell spreading. Mol Biol Cell 19, 1627-1636, doi:10.1091/mbc.E07-09-0953 (2008).

Guerrero, M. S., Parsons, J. T. & Bouton, A. H. Cas and NEDD9 contribute to tumor progression through dynamic regulation of the cytoskeleton. Genes & cancer 3, 371-381 (2012).

Reiser, J. et al. Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. The Journal of biological chemistry 279, 34827-34832, doi:10.1074/jbc.M401973200 (2004).

van Duijn, T. J., Anthony, E. C., Hensbergen, P. J., Deelder, A. M. & Hordijk, P. L. Rac1 Recruits the Adapter Protein CMS/CD2AP to Cell-Cell Contacts. The Journal of biological chemistry 285, 20137-20146, doi:10.1074/jbc.M109.099481 (2010).

Lipinski, C. A. et al. The tyrosine kinase pyk2 promotes migration and invasion of glioma cells. Neoplasia 7, 435-445 (2005).

Taniyama, Y. et al. Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol 23, 8019-8029, doi:10.1128/mcb.23.22.8019-8029.2003 (2003).

Mondal, S., Subramanian, K. K., Sakai, J., Bajrami, B. & Luo, H. R. Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion. Mol Biol Cell 23, 1219-1230, doi:10.1091/mbc.E11-10-0889 (2012).
Maxwell, M. J. et al. SHIP1 and Lyn Kinase Negatively Regulate Integrin alpha IIb beta 3 signaling in platelets. *The Journal of biological chemistry* **279**, 32196-32204, doi:10.1074/jbc.M400746200 (2004).

Peng, Q. et al. TREM2- and DAP12-Dependent Activation of PI3K Requires DAP10 and Is Inhibited by SHIP1. *Science Signaling* **3**, ra38-ra38, doi:10.1126/scisignal.2000500 (2010).

Wang, S. et al. Nyap1 regulates multipolar - bipolar transition and morphology of migrating neurons by Fyn phosphorylation during corticogenesis. doi:10.1093/cercor/bhz137 (2019).

Yokoyama, K. et al. NYAP: a phosphoprotein family that links PI3K to WAVE1 signalling in neurons. *EMBO J* **30**, 4739-4754, doi:10.1038/emboj.2011.348 (2011).

Lionello, V. M. et al. Amphiphysin 2 modulation rescues myotubular myopathy and prevents focal adhesion defects in mice. *Science Translational Medicine* **11**, eaav1866, doi:10.1126/scitranslmed.aav1866 (2019).

Mundigl, O. et al. Amphiphysin I antisense oligonucleotides inhibit neurite outgrowth in cultured hippocampal neurons. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **18**, 93-103 (1998).

Wixler, V. et al. Identification of novel interaction partners for the conserved membrane proximal region of alpha-integrin cytoplasmic domains. *FEBS Lett* **445**, 351-355, doi:10.1016/s0014-5793(99)00151-9 (1999).

Messina, S. et al. Specific interactions of neuronal focal adhesion kinase isoforms with Src kinases and amphiphysin. *J Neurochem* **84**, 253-265, doi:10.1046/j.1471-4159.2003.01519.x (2003).

Drager, N. M. et al. Bin1 directly remodels actin dynamics through its BAR domain. *EMBO Rep* **18**, 2051-2066, doi:10.15252/embr.201744137 (2017).

Tebar, F., Bohlander, S. K. & Sorkin, A. Clathrin assembly lymphoid myeloid leukemia (CALM) protein: localization in endocytic-coated pits, interactions with clathrin, and the impact of overexpression on clathrin-mediated traffic. *Molecular biology of the cell* **10**, 2687-2702 (1999).

Man, H. Y. et al. Regulation of AMPA receptor-mediated synaptic transmission by clathrin-dependent receptor internalization. *Neuron* **25**, 649-662 (2000).

Hines, J. H., Abu-Rub, M. & Henley, J. R. Asymmetric endocytosis and remodeling of beta1-integrin adhesions during growth cone chemorepulsion by MAG. *Nature neuroscience* **13**, 829-837, doi:10.1038/nn.2554 (2010).

Caswell, P. & Norman, J. Endocytic transport of integrins during cell migration and invasion. *Trends Cell Biol* **18**, 257-263, doi:10.1016/j.tcb.2008.03.004 (2008).

Becker, T. et al. COMPREHENSIVE GENE-GENE INTERACTION META-ANALYSIS OF IGAP GWA STUDIES. *Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association* **10**, P245, doi:10.1016/j.jalz.2014.04.375.

Royle, S. J. & Lagnado, L. Clathrin-mediated endocytosis at the synaptic terminal: bridging the gap between physiology and molecules. *Traffic* **11**, 1489-1497 (2010).

Hashimoto, Y., Toyama, Y., Kusakari, S., Nawa, M. & Matsuoka, M. An Alzheimer Disease-linked Rare Mutation Potentiates Netrin Receptor Uncoordinated-5C-induced Signaling That Merges with Amyloid β Precursor Protein Signaling. *The Journal of biological chemistry* **291**, 12282-12293, doi:10.1074/jbc.M115.698092 (2016).

Yuan, M. et al. UNCSC-knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. *International Journal of Oncology* **56**, 139-150 (2020).

Carsberg, C. J., Myers, K. A. & Stern, P. L. Metastasis-associated ST4 antigen disrupts cell-cell contacts and induces cellular motility in epithelial cells. *International journal of cancer* **68**, 84-92, doi:10.1002/(sici)1097-0215(19960927)68:1<84::aid-ijc15>3.0.co;2-6 (1996).
He, P. et al. Trophoblast glycoprotein promotes pancreatic ductal adenocarcinoma cell metastasis through Wnt/planar cell polarity signaling. *Molecular medicine reports* 12, 503-509 (2015).

Spencer, H. L. et al. E-Cadherin Inhibits Cell Surface Localization of the Pro-Migratory ST4 Oncofetal Antigen in Mouse Embryonic Stem Cells. *Molecular Biology of the Cell* 18, 2838-2851, doi:10.1091/mbc.E06-09-0875 (2007).

Murakami, T. et al. Trophoblast glycoprotein: possible candidate mediating podocyte injuries in glomerulonephritis. *American journal of nephrology* 32, 505-521 (2010).

Su, Y., Yang, J. & Besner, G. E. HB-EGF promotes intestinal restitution by affecting integrin–extracellular matrix interactions and intercellular adhesions. *Growth Factors* 31, 39-55 (2013).

Kisseleva, T.; Kisselev, A. et al. The GTPase activating protein RHAMM controls focal adhesion turnover and cell migration. *Mol Cancer* 14, 300 (2015).

Nagai, A.; Tsuji, H. et al. The GTPase activating protein RHAMM controls focal adhesion turnover and cell migration. *Mol Cancer* 14, 300 (2015).

Berto, G. E. et al. The DCR Protein TCC3 Affects Differentiation and Golgi Compactness in Neurons through Specific Actin-Regulating Pathways. *PloS one* 9, e93721, doi:10.1371/journal.pone.0093721 (2014).

Dey-Guha, I. et al. A mechanism for asymmetric cell division resulting in proliferative asynchronicity. *Mol Cancer Res* 13, 223-230, doi:10.1158/1541-7786.Mcr-14-0474 (2015).

Berto, G. E. et al. The DCR Protein TCC3 Affects Differentiation and Golgi Compactness in Neurons through Specific Actin-Regulating Pathways. *PloS one* 9, e93721, doi:10.1371/journal.pone.0093721 (2014).

Tvorogov, D., Wang, X.-J., Zent, R. & Carpenter, G. Integrin-dependent PLC-γ1 phosphorylation mediates fibronectin-dependent adhesion. *Journal of cell science* 118, 601-610 (2005).

Mueller, H. et al. Tyrosine kinase Btk regulates E-selectin–mediated integrin activation and neutrophil recruitment by controlling phospholipase C (PLC) γ2 and PI3Kγ pathways. *Blood* 115, 3118-3127 (2010).

Ichigotani, Y., Yokozaki, S., Fukuda, Y., Hamaguchi, M. & Matsuda, S. Forced expression of NESH suppresses motility and metastatic dissemination of malignant cells. *Cancer Res* 62, 2215-2219 (2002).

Hodgkinson, C. P. et al. Abi3bp is a multifunctional autocrine/paracrine factor that regulates mesenchymal stem cell biology. *Stem Cells* 31, 1669-1682, doi:10.1002/stem.1416 (2013).

Hodgkinson, C. P. et al. Abi3bp regulates cardiac progenitor cell proliferation and differentiation. *Circ Res* 115, 1007-1016, doi:10.1161/circresaha.115.304216 (2014).

Sekino, S. et al. The NESH/Abi-3-based WAVE2 complex is functionally distinct from the Abi-1-based WAVE2 complex. *Cell Commun Signal* 13, 41-41, doi:10.1186/s12964-015-0119-5 (2015).

Moretti, R. M. et al. Molecular mechanisms of the antimetastatic activity of nuclear clusterin in prostate cancer cells. *Int J Oncol* 39, 225-234, doi:10.3892/ijo.2011.1030 (2011).

Leeb, C., Eresheim, C. & Nimpf, J. Clusterin is a ligand for apolipoprotein E receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR) and signals via the Reelin-signaling pathway. *The Journal of biological chemistry* 289, 4161-4172, doi:10.1074/jbc.M113.529271 (2014).

Pouwels, J. et al. SHARPIN regulates uropod detachment in migrating lymphocytes. *Cell Rep* 5, 619-628, doi:10.1016/j.celrep.2013.10.011 (2013).

Zhou, S. et al. SHARPIN promotes melanoma progression via Rap1 signaling pathway. *Journal of Investigative Dermatology* 140, 395-403. e396 (2020).

Rantala, J. K. et al. SHARPIN is an endogenous inhibitor of beta1-integrin activation. *Nat Cell Biol* 13, 1315-1324, doi:10.1038/ncb2340 (2011).

Lim, S. et al. Sharpin, a novel postsynaptic density protein that directly interacts with the Shank family of proteins. *Molecular and Cellular Neuroscience* 17, 385-397 (2001).
167 Siney, E. J. et al. Metalloproteinases ADAM10 and ADAM17 Mediate Migration and Differentiation in Glioblastoma Sphere-Forming Cells. Molecular neurobiology 54, 3893-3905, doi:10.1007/s12035-016-0053-6 (2017).

168 Rubinstein, E. et al. CD9, CD63, CD81, and CD82 are components of a surface tetraspan network connected to HLA-DR and VLA integrins. Eur J Immunol 26, 2657–2665, doi:10.1002/eji.1830261117 (1996).

169 Altomonte, M., Fonsatti, E., Visintin, A. & Maio, M. Targeted therapy of solid malignancies via HLA class II antigens: a new biotherapeutic approach? Oncogene 22, 6564-6569 (2003).

170 Li, F., Zhang, X. & Reed, E. F. 44-OR: HLA CLASS II (HLA II) LIGATION BY ANTIBODIES (Ab) INDUCES SIGNAL TRANSDUCTION AND CYTOSKELETON REORGANIZATION IN ENDOTHELIAL CELLS (EC). Human Immunology 73, 36 (2012).

171 Aljabri, A. et al. HLA class II antibodies induce necrotic cell death in human endothelial cells via a lysosomal membrane permeabilization-mediated pathway. Cell death & disease 10, 1-15 (2019).

172 Chaki, S. P. et al. Nck enables directional cell migration through the coordination of polarized membrane protrusion with adhesion dynamics. Journal of cell science 126, 1637–1649 (2013).

173 Tu, Y., Li, F. & Wu, C. Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways. Molecular biology of the cell 9, 3367-3382 (1998).

174 Goicoechea, S. M. et al. Nck-2 interacts with focal adhesion kinase and modulates cell motility. The international journal of biochemistry & cell biology 34, 791-805 (2002).

175 Wu, C. PINCH, N (i) ck and the ILK: network wiring at cell–matrix adhesions. Trends in cell biology 15, 460-466 (2005).

176 Clarke, N. E., Fisher, M. J., Porter, K. E., Lambert, D. W. & Turner, A. J. Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling. PloS one 7, e34747 (2012).

177 Hong, M.-G., Pawitan, Y., Magnusson, P. K. & Prince, J. A. Strategies and issues in the detection of pathway enrichment in genome-wide association studies. Human genetics 126, 289-301 (2009).

178 Zylka, M. J., Simon, J. M. & Philpot, B. D. Gene length matters in neurons. Neuron 86, 353-355, doi:10.1016/j.neuron.2015.03.059 (2015).

179 Jang, S., Lee, H. & Kim, E. Synaptic adhesion molecules and excitatory synaptic transmission. Current Opinion in Neurobiology 45, 45-50, doi:https://doi.org/10.1016/j.conb.2017.03.005 (2017).

180 Hoang, M. L. et al. Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. 113, 9846-9851 (2016).

181 Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. 359, 555-559 (2018).

182 Luquette, L. J. et al. Ultraspecific somatic SNV and indel detection in single neurons using primary template-directed amplification. 2021.2004.2030.442032, doi:10.1101/2021.04.30.442032 %J bioRxiv (2021).

183 Abascal, F. et al. Somatic mutation landscapes at single-molecule resolution. Nature 593, 405-410, doi:10.1038/s41586-021-03477-4 (2021).

184 Wei, P.-C. et al. Long Neural Genes Harbor Recurrent DNA Break Clusters in Neural Stem/Progenitor Cells. Cell 164, 644-655, doi:https://doi.org/10.1016/j.cell.2015.12.039 (2016).

185 Smith, D. I., Zhu, Y., McAvoy, S. & Kuhn, R. Common fragile sites, extremely large genes, neural development and cancer. Cancer Lett 232, 48-57, doi:10.1016/j.canlet.2005.06.049 (2006).

186 Gao, G. et al. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes, chromosomes & cancer 56, 59-74, doi:10.1002/gcc.22415 (2017).
Haas, J. et al. LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE—carrying lipoproteins. Atherosclerosis 216, 342-347, doi:10.1016/j.atherosclerosis.2011.02.030 (2011).

Hawrylycz, M. J. et al. An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391 (2012).

Beroukhim, R. et al. The landscape of somatic copy-number alteration across human cancers. Nature 463, 899-905, doi:http://www.nature.com/nature/journal/v463/n7283/suppinfo/nature08822_S1.html (2010).

Marschang, P. et al. Normal development and fertility of knockout mice lacking the tumor suppressor gene LRP1b suggest functional compensation by LRP1. Mol Cell Biol 24, 3782-3793, doi:10.1128/mcb.24.9.3782-3793.2004 (2004).

Shiroshima, T., Oka, C. & Kawaichi, M. Identification of LRP1B-interacting proteins and inhibition of protein kinase Cα-phosphorylation of LRP1B by association with PICK1. FEBS letters 583, 43-48 (2009).

Cam, J. A. et al. The low density lipoprotein receptor-related protein 1B retains beta-amyloid precursor protein at the cell surface and reduces amyloid-beta peptide production. J Biol Chem 279, 29639-29646, doi:10.1074/jbc.M313893200 (2004).

Gan, M., Jiang, P., McLean, P., Kanekiyo, T. & Bu, G. Low-density lipoprotein receptor-related protein 1 (LRP1) regulates the stability and function of GluA1 α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor in neurons. PloS one 9, e113237, doi:10.1371/journal.pone.0113237 (2014).

Wu, P., Li, M. S., Yu, D. M. & Deng, J. B. Reelin, a guidance signal for the regeneration of the entorhino-hippocampal path. Brain research 1208, 1-7, doi:10.1016/j.brainres.2008.02.092 (2008).

Stranahan, A. M., Haberman, R. P. & Gallagher, M. Cognitive Decline Is Associated with Reduced Reelin Expression in the Entorhinal Cortex of Aged Rats. Cerebral Cortex 21, 392-400, doi:10.1093/cercor/bhq106 %Cerebral Cortex (2010).

Gao, G. et al. Common fragile sites (CFS) and extremely large CFS genes are targets for human papillomavirus integrations and chromosome rearrangements in oropharyngeal squamous cell carcinoma. Genes, Chromosomes and Cancer 56, 59-74 (2017).

Escudero-Esparza, A., Kalchishkova, N., Kurbasic, E., Jiang, W. G. & Blom, A. M. The novel complement inhibitor human CUB and Sushi multiple domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b and C3b and inhibits the membrane attack complex assembly. Faseb j 27, 5083-5093, doi:10.1096/fj.13-230706 (2013).

Baum, M. L. et al. CUB and Sushi Multiple Domains 1 (CSMD1) opposes the complement cascade in neural tissues. bioRxiv, 2020.2009.2011.291427, doi:10.1101/2020.09.11.291427 (2020).

Kraus, D. M., Pfennninger, K. H., Sanford, S. D. & Holers, V. M. CSMD1 is expressed as a membrane protein on neuronal growth cones that colocalizes with F-actin and alpha-3 integrin. Molecular Immunology 1, 198 (2007).

Grubman, A. et al. A single-cell atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-type-specific gene expression regulation. Nature neuroscience 22, 2087-2097 (2019).

Failla, G. THE AGING PROCESS AND CANCEROGENESIS. Annals of the New York Academy of Sciences 71, 1124-1140, doi:10.1111/j.1749-6632.1958.tb54674.x (1958).
Szilard, L. ON THE NATURE OF THE AGING PROCESS. *Proc Natl Acad Sci U S A* **45**, 30-45, doi:10.1073/pnas.45.1.30 (1959).

Wilson, D. M., 3rd, Bohr, V. A. & McKinnon, P. J. DNA damage, DNA repair, ageing and age-related disease. *Mech Ageing Dev* **129**, 349-352, doi:10.1016/j.mad.2008.02.013 (2008).

Coppedè, F. & Migliore, L. DNA damage and repair in Alzheimer’s disease. *Curr Alzheimer Res* **6**, 36-47, doi:10.2174/156720509787313970 (2009).

Maynard, S., Fang, E. F., Scheibye-Knudsen, M., Croteau, D. L. & Bohr, V. A. DNA Damage, DNA Repair, Aging, and Neurodegeneration. *Cold Spring Harb Perspect Med* **5**, a025130, doi:10.1101/cshperspect.a025130 (2015).

Hoang, M. L. *et al.* Genome-wide quantification of rare somatic mutations in normal human tissues using massively parallel sequencing. *Proceedings of the National Academy of Sciences* **113**, 9846-9851 (2016).

Xing, D., Tan, L., Chang, C.-H., Li, H. & Xie, X. S. Accurate SNV detection in single cells by transposon-based whole-genome amplification of complementary strands. *Proceedings of the National Academy of Sciences* **118**, e2013106118, doi:10.1073/pnas.2013106118 (2021).

Gómez-Isla, T. *et al.* Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. *The Journal of neuroscience : the official journal of the Society for Neuroscience* **16**, 4491-4500, doi:10.1523/jneurosci.16-14-04491.1996 (1996).

Chronister, W. D. *et al.* Neurons with complex karyotypes are rare in aged human neocortex. **26**, 825-835. e827 (2019).

Wilson, T. E. *et al.* Large transcription units unify copy number variants and common fragile sites arising under replication stress. **25**, 189-200 (2015).

Shanbhag, N. M. *et al.* Early neuronal accumulation of DNA double strand breaks in Alzheimer’s disease. *Acta Neuropathologica Communications* **7**, 77, doi:10.1186/s40478-019-0723-5 (2019).

Rama, N. *et al.* Amyloid precursor protein regulates netrin-1-mediated commissural axon outgrowth. *The Journal of biological chemistry* **287**, 30014-30023, doi:10.1074/jbc.M111.324780 (2012).

Schartz, N. D. & Tenner, A. J. The good, the bad, and the opportunities of the complement system in neurodegenerative disease. *J Neuroinflammation* **17**, 354-354, doi:10.1186/s12974-020-02024-8 (2020).

Schafer, D. P. *et al.* Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. *Neuron* **74**, 691-705, doi:10.1016/j.neuron.2012.03.026 (2012).

Ren, Y. *et al.* HLA class-I and class-II restricted neoantigen loads predict overall survival in breast cancer. *Oncoimmunology* **9**, 1744947-1744947, doi:10.1080/2162402X.2020.1744947 (2020).