Construction of a Microsatellites-Based Linkage Map for the White Grouper (Epinephelus aeneus)

Lior Dor*, Andrey Shirak†, Sergei Gorshkov‡, Mark R. Band§, Abraham Korol**, Yefim Ronin**, Arie Curzon*, Gideon Hulata*, Eyal Seroussi† and Micha Ron*1

*Institute of Animal Science, Agricultural Research Organization, Bet Dagan 50250, Israel
†Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot 76100, Israel
‡National Center for Mariculture, Israel Oceanographic and Limnological Research, Eilat 88112, Israel
§The Carver Biotechnology Center, University of Illinois, Urbana, IL 61801, USA
**University Haifa, Faculty of Science, Institute of Evolution, Haifa 31905, Israel
1Corresponding author

Raw sequencing data of White grouper from this article was deposited under GenBank accession number PRJEB5936

Corresponding author details: Micha Ron; Institute of Animal Science, Agricultural Research Organization, Bet Dagan 50250, Israel; +97289484442 micha.ron@mail.huji.ac.il

DOI: 10.1534/g3.114.011387
Figure S1 Genotyping by fragment analysis is illustrated for D078 microsatellite marker; heterozygous sire (188/196) and dam (188/192), and the four possible genetic combinations resulting in their progeny. Automatic genotyping is based on fixed positions of three bins (grey fields) representing the three alleles.
Exclusion of parenthood by N. of markers

Figure S2 Exclusion of parenthood by number of markers.
Table S1 Markers used for construction of tilapia linkage maps.

Available for download as an Excel file at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.114.011387/-/DC1
Table S2 Number of offspring of two males and two females in two subsequent spawns as verified by parenthood identification using 34 microsatellite markers.

Female	Male	M2	M4		
	Spawn	1st	2nd	1st	2nd
F9		37	15	5	0
F11		6	14	0	3
Table S3 Origin of microsatellite markers used for linkage map construction.

Origin of microsatellite markers	No.
Heterologous¹	40
Next generation sequencing	
Largest scaffolds	177
TERRA containing scaffolds²	11
Total	**228**

¹Dor et al. (2014)

²Telomeric repeat-containing RNA (TERRA) (Lejnine et al. 1995).