Supporting Information (SI)

Fast adsorption of methylene blue, basic fuchsin, and malachite green by a novel sulfonic-grafted triptycene-based porous organic polymer

Cheng Li, a Yan He,* a,b Li Zhou, a Ting Xu, a Jun Hu, a Changjun Peng,** Honglai Liu a

a: Key Laboratory for Advanced Materials and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, China
b: Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, People's Republic of China

Fig. S1 XRD of TPP-SO\textsubscript{3}H.

Fig. S2 TGA of TPP-SO\textsubscript{3}H.

Fig. S3 FT-IR for TPPs and TPP-SO\textsubscript{3}H.

Fig. S4 XPS survey spectra of TPP and TPP-SO\textsubscript{3}H.

Fig. S5 13C CP/MAS NMR spectrum of TPPs and TPP-SO\textsubscript{3}H.

Fig. S6 The plots of the pseudo-first-order kinetics for the adsorption of MEB, BF, and MG.

Fig. S7 The ESP surfaces of TPP-SO\textsubscript{3}H and dyes MEB, BF, and MG.

Fig. S8 Optimized structures for the complexes.

Fig. S9 Adsorption isotherms of MEB, BF, and MG on TPP and TPP-SO\textsubscript{3}H based on Freundlich isotherm model.

Table S1 The porosity properties of TPP-SO\textsubscript{3}H and TPP.

Table S2 Comparison of MEB, BF and MG equilibrium rate constants among different adsorbents.

Table S3 Adsorption kinetic model parameters for MEB, BF, and MG.

Table S4 Parameters of Langmuir's equation and Freundlich model's equation base on TPP-SO\textsubscript{3}H.
Fig. S1 XRD of TPP-SO$_3$H
Fig. S2

Fig. S2 TGA of TPP-SO$_3$H
Fig. S3

Fig. S3 FT-IR spectra of TPP (Black), TPP-SO$_3$H (red)
Fig. S4 XPS survey spectra of (a) TPP and TPP-SO$_3$H; (b) S2p spectra of TPP-SO$_3$H
Fig. S5

Fig. S5 13C CP/MAS NMR spectrum of TPP and TPP-SO$_3$H
Fig. S6

Fig. S6 The plots of the pseudo-first-order kinetics for the adsorption of MEB, BF and MG.
It is well-known that in the diagrams of ESP surfaces, red represents negative ESP which has an ability to absorb cations. On the contrary, blue means positive ESP to absorb anions.
Fig. S8 Optimized structures for the complexes (unit is Å)
Fig. S9 Adsorption isotherms of MEB, BF and MG on TPP and TPP-SO$_3$H based on Freundlich isotherm model
Table S1

Table S1 The porosity properties of TPP-SO$_3$H

Polymer	SA$_{BET}$(m2.g$^{-1}$)	V_b(cm3.g$^{-1}$)	V_m (cm3.g$^{-1}$)	$\% V_m/V_t$
TTP-SO$_3$H	573.3	0.3084	0.2299	70.5
TTP	1220.1	0.9633	0.1941	20.2

a: surface area calculated by the BET equation; b: pore volume at $p/p_0 = 0.99$; c: micropore volume obtained by t-plot.
Adsorbents	equilibrium rate constants K_2 (g·mg$^{-1}$·min$^{-1}$)	Ref.
MEB	MEB: 1×10^{-3}, BF: 4.6×10^{-4}, MG: 3.25×10^{-4}	1
BF	BF: 4.11×10^{-4}, MG: 9.515×10^{-5}	2
MG	MG: 7.5×10^{-4}, BF: 2×10^{-3}	3
CMt porous carbon	CMt: 1×10^{-3}, BF: 4.6×10^{-4}, MG: 3.25×10^{-4}	4
MIL-100-SO$_2$H	MIL-100-SO$_2$H: 4.11×10^{-4}, BF: 3.25×10^{-4}	5
calcium alginate membrane	calcium alginate membrane: 9.515×10^{-5}, BF: 1.4×10^{-3}	6
Fe$_3$O$_4$@ AMCA-MIL-53(Al)	Fe$_3$O$_4$@ AMCA-MIL-53(Al): 7.5×10^{-4}, BF: 1.4×10^{-3}	7
TSF-HMMS	TSF-HMMS: 2×10^{-3}, BF: 9.79×10^{-4}	8
bottom ash	bottom ash: 9.79×10^{-4}, BF: 9.3×10^{-3}	9
TPP-SO$_3$H	TPP-SO$_3$H: 2.6×10^{-3}, BF: 1.49×10^{-2}, MG: 9.3×10^{-3}	This work

Table S2

Comparison of MEB, BF and MG equilibrium rate constants among different adsorbents.
Table S3 Adsorption kinetic model parameters for MEB, BF, and MG

Dyes	$q_{eq}^{(exp)}$ (mg·g$^{-1}$)	Pseudo-first-order kinetic model	Pseudo-second-order kinetic model				
	$q_{e}^{(cal)}$ (mg·g$^{-1}$)	K_1(min$^{-1}$)	R^2	$q_{e}^{(cal)}$ (mg·g$^{-1}$)	K_2(g·mg$^{-1}$·min$^{-1}$)	R^2	
MEB	199.44	27.47	0.0158	0.907	199.60	0.0026	0.997
BF	198.36	24.84	0.0173	0.698	198.02	0.0149	0.999
MG	596.77	14.71	0.0135	0.628	591.72	0.0093	0.999
Dyes	$q_{eq}^{(exp)}$ (mg·g⁻¹)	$q_{eq}^{(cal)}$ (mg·g⁻¹)	K_L (g·mg⁻¹)	R^2	$1/n_F$	K_F (mg·g⁻¹)	R^2
----------	---------------------------	---------------------------	-----------------	-------	---------	----------------	-------
TPP							
MEB	177.99	178.89	0.079	0.998	0.485	20.994	0.946
BF	197.01	196.08	0.103	0.997	0.070	81.280	0.861
MG	1077.04	1079.42	0.515	0.999	0.250	302.348	0.887
TPP-SO₃H							
MEB	981.81	983.43	0.308	0.999	0.070	626.714	0.840
BF	586.16	588.24	0.224	0.999	0.113	265.316	0.937
MG	1942.50	1947.02	0.162	0.999	0.101	1003.702	0.887

References:
1 D. S. Tong, C. W. Wu, M. O. Adebajo, J. C. Jin, W. H. Yu, S. F. Ji, C. H. Zhou, Applied Clay Science, 2018, 161, 256–264.
2 B. Chen, Z. Yang, G. Ma, D. Kong, W. Xiong, J. Wang, Y. Zhu, Y. Xia, Microporous Mesoporous Mater., 2018, 257, 1–8.
3 X. P. Luo, S. Y. Fu, Y. M. Du, J. Z. Guo, B. Li, Microporous Mesoporous Mater., 2017, 237, 268–274.
4 Q. Li, Y. Li, X. Ma, Q. Du, K. Sui, D. Wang, C. Wang, H. Li, Y Xia, Chem. Eng. J., 2017, 316, 623–630.
5 A. A. Alqadami, M. Naushad, Z. A. Aloothman, T. Ahamad, J. Environ. Manage., 2018, 223, 29–36.
6 H. Zhang, X. Li, G. He, J. Zhan, and D. Liu. Ind. Eng. Chem. Res., 2013, 52, 16902–16910.
7 V. K. Gupta, A. Mittal, V. Gajbe, J. Mittal, J. Colloid Interf. Sci., 2008, 319, 30–39.