Motivic Decomposition of Projective Pseudo-Homogeneous Varieties

Srimathy Srinivasan

IAS
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote the set of simple roots of G
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.
- \{Nodes of \mathcal{D}\}
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.
- $\{\text{Nodes of } \mathcal{D}\} \leftrightarrow \{\Delta_G\}$
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.
- $\{\text{Nodes of } \mathcal{D}\} \leftrightarrow \{\Delta_G\} \leftrightarrow \{\text{Conjugacy class of Max’l Parabolics}\}$
G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$

$\Delta_G = \{ \alpha_1, \alpha_2, \ldots, \alpha_n \}$ denote the set of simple roots of G

Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.

$\{ \text{Nodes of } \mathcal{D} \} \leftrightarrow \{ \Delta_G \} \leftrightarrow \{ \text{Conjugacy class of Max’l Parabolics} \}$

$\{ \text{Subsets of nodes of } \mathcal{D} \}$
Notations

- G - semisimple linear algebraic group over a perfect field k of characteristic $p > 0$
- $\Delta_G = \{\alpha_1, \alpha_2, \cdots, \alpha_n\}$ denote the set of simple roots of G
- Associate an oriented graph to G called the Dynkin diagram \mathcal{D}.
- \{Nodes of \mathcal{D}\} \leftrightarrow \{\Δ_G\} \leftrightarrow \{Conjugacy class of Max’l Parabolics\}
- \{Subsets of nodes of \mathcal{D}\} \leftrightarrow \{Conjugacy class of Parabolics\}
The \ast-action

- The Galois group $\Gamma = \text{Gal}(k_{\text{sep}}/k)$ acts on the maximal parabolics

Therefore we get an action on the nodes of D called the \ast-action. If the \ast-action is trivial, then G is said to be of inner type over k. Else it is of outer type over k.
The \ast-action

- The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics.
- Therefore we get an action on the nodes of \mathcal{D} called the \ast-action.
The ∗-action

- The Galois group $\Gamma = Gal(k_{\text{sep}}/k)$ acts on the maximal parabolics.
- Therefore we get an action on the nodes of \mathcal{O} called the ∗-action.
- If the ∗-action is trivial, then G is said to be of inner type over k.
The \ast-action

- The Galois group $\Gamma = Gal(k_{sep}/k)$ acts on the maximal parabolics.
- Therefore we get an action on the nodes of \mathcal{D} called the \ast-action.
- If the \ast-action is trivial, then G is said to be of inner type over k.
- Else it is of outer type over k.
Flag varieties are varieties of the form G/P for some parabolic subgroup P.
Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)
Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^n, Grassmannians, quadrics
Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)
Examples: \mathbb{P}^n, Grassmannians, quadrics

X over k is a projective homogeneous variety for G if $X_k \simeq G/P$ for some parabolic subgroup P
Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced)

Examples: \mathbb{P}^n, Grassmannians, quadrics

X over k is a projective homogeneous variety for G if $X_k \simeq G/P$ for some parabolic subgroup P

These are twisted forms of flag varieties
Flag varieties are varieties of the form G/P for some parabolic subgroup P (by defn they are reduced). Examples: \mathbb{P}^n, Grassmannians, quadrics.

X over k is a projective homogeneous variety for G if $X^-_k \simeq G/P$ for some parabolic subgroup P.

These are twisted forms of flag varieties. Examples: Severi-Brauer Varieties $SB_n(A)$ corresponding to a central simple algebra A.
The category of Chow Motives

- The category \(\text{Chow}(k, \Lambda) \) where \(k \) - field, \(\Lambda \) - coefficient ring
The category of Chow Motives

- The category $\text{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $= (X, n, p)$ where
 - X - variety over k, $n \in \mathbb{Z}$ and $p \in \text{End} (X)$ a projector or idempotent, i.e, $p^2 = p$
The category of Chow Motives

- The category $\text{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $= (X, n, p)$ where
 - X - variety over k, $n \in \mathbb{Z}$ and $p \in \text{End}(X)$ a projector or idempotent, i.e, $p^2 = p$
- What are Hom sets?
The category of Chow Motives

- The category $\text{Chow}(k, \Lambda)$ where k - field, Λ - coefficient ring
- Objects $= (X, n, p)$ where
 - X - variety over k, $n \in \mathbb{Z}$ and $p \in \text{End}(X)$ a projector or idempotent, i.e., $p^2 = p$
- What are Hom sets? If X is irreducible,
 \[\text{Hom}_{\text{Chow}(k, \Lambda)}((X, n, p), (Y, m, q)) = q \circ [CH_{\text{dim} X+n-m}X \times Y \otimes_{\mathbb{Z}} \Lambda] \circ p \]
Composition of Morphisms

- How to compose morphisms
 \[\alpha \in \text{Hom}((X, n, p), (Y, m, q)) \text{ and } \beta \in \text{Hom}((Y, m, q), (Z, r, s)). \]
Composition of Morphisms

How to compose morphisms

\[\alpha \in \text{Hom}((X, n, p), (Y, m, q)) \] and \[\beta \in \text{Hom}((Y, m, q), (Z, r, s)). \]

Then \[\beta \circ \alpha = p_{13*}(p_{12}^* \alpha \cdot p_{23}^* \beta) \]
Composition of Morphisms

How to compose morphisms
\(\alpha \in \text{Hom}((X, n, p), (Y, m, q)) \) and \(\beta \in \text{Hom}((Y, m, q), (Z, r, s)) \).
Then \(\beta \circ \alpha = p_{13}^*(p_{12}^* \alpha \cdot p_{23}^* \beta) \)

\[
\begin{array}{c}
\alpha \in X \times Y \\
p_{12} \downarrow \quad \downarrow \quad p_{23} \\
X \times Y \times Z \\
p_{13}^{-1} \downarrow \\
\alpha \in X \times Y \\
\beta \in Y \times Z \\
\beta \circ \alpha \in X \times Z
\end{array}
\]
Properties of $\text{Chow}(k, \Lambda)$

- $\text{Chow}(k, \Lambda)$ admits tensor product:
 $$(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$$
Properties of $Chow(k, \Lambda)$

- $Chow(k, \Lambda)$ admits tensor product:
 \[(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)\]

- Notation: $\mathcal{M}(X) = (X, 0, \Delta_X)$ - the motive of X
Properties of $Chow(k, \Lambda)$

- $Chow(k, \Lambda)$ admits tensor product:
 \[(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)\]

- **Notation:** $\mathcal{M}(X) = (X, 0, \Delta_X)$ - the motive of X

 Tate motive $\Lambda = (\text{Spec } k, 0, \Delta)$, $\Lambda(i) = (\text{Spec } k, i, \Delta)$
Properties of $Chow(k, \Lambda)$

- $Chow(k, \Lambda)$ admits tensor product:
 $$(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$$

- **Notation:** $\mathcal{M}(X) = (X, 0, \Delta_X)$ - the motive of X
 Tate motive $\Lambda = (\text{Spec } k, 0, \Delta)$, $\Lambda(i) = (\text{Spec } k, i, \Delta)$
 Twisting a motive: $M(i) = M \otimes \Lambda(i)$ i.e., $(X, n, p)(i) = (X, n + i, p)$
Properties of \(\text{Chow}(k, \Lambda) \)

- \(\text{Chow}(k, \Lambda) \) admits tensor product:
 \[
 (X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)
 \]

- **Notation:** \(\mathcal{M}(X) = (X, 0, \Delta_X) \) - the motive of \(X \)

 Tate motive \(\Lambda = (\text{Spec } k, 0, \Delta) \), \(\Lambda(i) = (\text{Spec } k, i, \Delta) \)

 Twisting a motive: \(M(i) = M \otimes \Lambda(i) \) i.e., \((X, n, p)(i) = (X, n + i, p) \)

- \(\text{Chow}(k, \Lambda) \) admits direct sum:
 \[
 (X, n, p) \oplus (Y, m, q) = (X \bigsqcup (Y \times \mathbb{P}^{m-n}), n, p + (q \times \alpha_{m-n}))
 \]
Properties of $Chow(k, \Lambda)$

- $Chow(k, \Lambda)$ admits tensor product:
 $$(X, n, p) \otimes (Y, m, q) = (X \times Y, n + m, p \times q)$$

- **Notation:** $\mathcal{M}(X) = (X, 0, \Delta_X)$ - the motive of X

 Tate motive $\Lambda = (\text{Spec } k, 0, \Delta)$, $\Lambda(i) = (\text{Spec } k, i, \Delta)$

 Twisting a motive: $M(i) = M \otimes \Lambda(i)$ i.e., $(X, n, p)(i) = (X, n + i, p)$

- $Chow(k, \Lambda)$ admits direct sum:

 $$(X, n, p) \oplus (Y, m, q) = (X \bigsqcup (Y \times \mathbb{P}^{m-n}), n, p + (q \times \alpha_{m-n}))$$

 where $\alpha_{m-n} = [pt \times \mathbb{P}^{m-n}] \in \text{End } \mathcal{M}(\mathbb{P}^{m-n})$
How to decompose a motive?

- Find a non-trivial projector:
Find a non-trivial projector:

If \(p \in \text{End } \mathcal{M}(X) \) is a non-trivial projector, then

\[
\mathcal{M}(X) \simeq (X, 0, p) \oplus (X, 0, 1 - p)
\]
How to decompose a motive?

- Find a non-trivial projector:
 If $p \in \text{End } \mathcal{M}(X)$ is a non-trivial projector, then

 $$\mathcal{M}(X) \cong (X, 0, p) \oplus (X, 0, 1 - p)$$

- Example: $p = [pt \times \mathbb{P}^1] \in \text{End } \mathcal{M}(\mathbb{P}^1)$ is a projector. So get

 $$\mathcal{M}(\mathbb{P}^1) \cong (\mathbb{P}^1, 0, p) \oplus (\mathbb{P}^1, 0, 1 - p) \cong \Lambda \oplus \Lambda(1)$$
How to decompose a motive?

- Find a non-trivial projector:
 If \(p \in \text{End } \mathcal{M}(X) \) is a non-trivial projector, then
 \[
 \mathcal{M}(X) \simeq (X, 0, p) \oplus (X, 0, 1 - p)
 \]

- Example: \(p = [pt \times \mathbb{P}^1] \in \text{End } \mathcal{M}(\mathbb{P}^1) \) is a projector. So get
 \[
 \mathcal{M}(\mathbb{P}^1) \simeq (\mathbb{P}^1, 0, p) \oplus (\mathbb{P}^1, 0, 1 - p) \simeq \Lambda \oplus \Lambda(1)
 \]

- In general,
 \[
 \mathcal{M}(\mathbb{P}^n) \simeq \Lambda \oplus \Lambda(1) \oplus \cdots \oplus \Lambda(n)
 \]
How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
How do we find projectors?

- Useful technique: **Rost Nilpotence** (RN)
- We say that **Rost Nilpotence** holds for a variety X over F if for every field extension E/F the kernel of the base change map

$$\text{End}_F(\mathcal{M}(X)) \to \text{End}_E(\mathcal{M}(X_E))$$

$$\alpha \to \alpha_E$$

consists of nilpotents. That is, if $\alpha \in \text{End}_F(\mathcal{M}(X))$ is such that $\alpha_E = 0$, then $\alpha^N = 0$ for some $N > 0$.
How do we find projectors?

- Useful technique: Rost Nilpotence (RN)
- We say that Rost Nilpotence holds for a variety X over F if for every field extension E/F the kernel of the base change map

$$\text{End}_F(\mathcal{M}(X)) \rightarrow \text{End}_E(\mathcal{M}(X_E))$$

$$\alpha \rightarrow \alpha_E$$

consists of nilpotents. That is, if $\alpha \in \text{End}_F(\mathcal{M}(X))$ is such that $\alpha_E = 0$, then $\alpha^N = 0$ for some $N > 0$.

- Many interesting consequences. One of them - finding projectors
What is known?

- RN holds for projective homogeneous varieties, surfaces in characteristic 0
What is known?

- RN holds for projective homogeneous varieties, surfaces in characteristic 0
- Not known if RN holds in general
Motivic Decomposition of PHVs

- Fix $\text{Chow}(k, \Lambda)$, Λ = finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$.
Fix $Chow(k, \Lambda)$, $\Lambda = \text{finite connected coefficient ring}$. Eg: $\Lambda = \mathbb{F}_q$

- Let G be of inner type over k. X - projective homogeneous variety for G.
Fix $Chow(k, \Lambda)$, Λ = finite connected coefficient ring. Eg: $\Lambda = \mathbb{F}_q$

Let G be of inner type over k. X - projective homogeneous variety for G.
Goal: Decompose $\mathcal{M}(X)$ if possible.
Motivic Decomposition of PHVs

- Fix $\text{Chow}(k, \Lambda)$, $\Lambda = \text{finite connected coefficient ring}$. Eg: $\Lambda = \mathbb{F}_q$

- Let G be of inner type over k. X - projective homogeneous variety for G.
 Goal: Decompose $\mathcal{M}(X)$ if possible.

- Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
Fix $Chow(k, \Lambda)$, $\Lambda = \text{finite connected coefficient ring}$. Eg: $\Lambda = \mathbb{F}_q$

Let G be of inner type over k. X - projective homogeneous variety for G.
Goal: Decompose $\mathcal{M}(X)$ if possible.
Can we describe the indecomposable summands appearing in the decomposition of $\mathcal{M}(X)$?
Is the complete decomposition unique?
Fix $Chow(k, \Lambda)$, $\Lambda = \text{finite connected coefficient ring}$. Eg: $\Lambda = \mathbb{F}_q$

Let G be of inner type over k. X - projective homogeneous variety for G.

Goal: Decompose $M(X)$ if possible.

Can we describe the indecomposable summands appearing in the decomposition of $M(X)$?

Is the complete decomposition unique?

Yes - Krull-Schmidt
Upper Indecomposable summand

One special summand in complete decomposition of $\mathcal{M}(X)$ - Upper Indecomposable Summand
Upper Indecomposable summand

- One special summand in complete decomposition of $\mathcal{M}(X)$ - **Upper Indecomposable Summand**
- $M \hookrightarrow \mathcal{M}(X)$ is upper if $CH^0(M) := Hom(M, \Lambda) \neq 0$
One special summand in complete decomposition of $\mathcal{M}(X)$ - **Upper Indecomposable Summand**

- $M \hookrightarrow \mathcal{M}(X)$ is **upper** if $CH^0(M) := Hom(M, \Lambda) \neq 0$
- Unique as a consequence of KS. Denoted by U_X
One special summand in complete decomposition of $\mathcal{M}(X)$ - **Upper Indecomposable Summand**

- $M \hookrightarrow \mathcal{M}(X)$ is **upper** if $CH^0(M) := Hom(M, \Lambda) \neq 0$
- Unique as a consequence of KS. Denoted by U_X
- Contains lot of information
Suppose $G = SL_3$. Consider

$$\tilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & y & z \\ * & * & * \end{pmatrix} \mid x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \tilde{P} is not reduced.
Suppose $G = SL_3$. Consider

$$\tilde{\mathcal{P}} = \left\{ \begin{pmatrix} \ast & \ast & \ast \\ x & y & z \\ \ast & \ast & \ast \end{pmatrix} | x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then $\tilde{\mathcal{P}}$ is not reduced.
Underlying reduced scheme is the standard Borel.
Suppose $G = SL_3$. Consider

$$\tilde{P} = \left\{ \begin{pmatrix} * & * & * \\ x & y & z \\ * & * & * \end{pmatrix} \mid x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \tilde{P} is not reduced. Underlying reduced scheme is the standard Borel.

In char p, subgroups schemes of G need not be reduced.
Parabolic Subgroup Schemes

- Suppose $G = SL_3$. Consider

$$\tilde{P} = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ y & z & * \end{pmatrix} \middle| x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \tilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

- In char p, subgroups schemes of G need not be reduced

- A **parabolic subgroup scheme** is a subgroup containing Borel that is not necessarily reduced.
Suppose $G = SL_3$. Consider

$$\tilde{P} = \left\{ \begin{pmatrix} \ast & \ast & \ast \\ x y z & \ast \end{pmatrix} | x^{p^3} = 0, y^{p^3} = 0, z^{p^4} = 0 \right\}$$

Then \tilde{P} is not reduced.
Underlying reduced scheme is the standard Borel.

In char p, subgroups schemes of G need not be reduced

A parabolic subgroup scheme is a subgroup containing Borel that is not necessarily reduced.

Notation: \tilde{P} - parabolic subgroup scheme, P - underlying reduced subscheme of \tilde{P}
Variety of Unseparated Flags- VUFs

- VUFs are quotients G/\tilde{P} where \tilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = \text{SL}_3$. Consider the variety $\tilde{\mathcal{X}}$ in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=2}^{2} x_i p_i y_i = 0$ where $g \cdot \rightarrow x = g \cdot p_3 \rightarrow x$ and $g \cdot \rightarrow y = (g - t) \cdot p_4 \rightarrow y$. Then $\tilde{\mathcal{P}} = \text{Stab} ([1:0:0] \times [0:0:1]) = \{x^* y^* z^*/x p_3 = 0, y p_3 = 0, z p_4 = 0\}$

$\tilde{\mathcal{X}} = G/\tilde{\mathcal{P}}$ is a VUF
Variety of Unseparated Flags- VUFs

- VUFs are quotients G/\tilde{P} where \tilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \tilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^{2} x_i^p y_i = 0$ where
Variety of Unseparated Flags- VUFs

- VUFs are quotients G/\tilde{P} where \tilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \tilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^{2} x_i^p y_i = 0$ where

$g. \vec{x} = g^{p^3} \vec{x}$ and $g. \vec{y} = (g^{-t})^{p^4} \vec{y}$
Variety of Unseparated Flags - VUFs

- VUFs are quotients G/\widetilde{P} where \widetilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \widetilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^{2} x_i^p y_i = 0$ where

$g.\overrightarrow{x} = g^p \overrightarrow{x}$ and $g.\overrightarrow{y} = (g^{-t})^p \overrightarrow{y}$

Then

$\widetilde{P} = Stab([1:0:0] \times [0:0:1]) = \left\{ \begin{pmatrix} x & * & * \\ y & * & * \\ z & * & * \end{pmatrix} | x^p = 0, y^p = 0, z^p = 0 \right\}$
Variety of Unseparated Flags- VUFs

- VUFs are quotients G/\tilde{P} where \tilde{P} is a parabolic subgroup scheme (not necessarily reduced)

Example: $G = SL_3$. Consider the variety \tilde{X} in $\mathbb{P}^2 \times \mathbb{P}^2$ given by the equation $\sum_{i=0}^{2} x_i^p y_i = 0$ where

$g.\vec{x} = g^{p^3} \vec{x}$ and $g.\vec{y} = (g^{-t})^{p^4} \vec{y}$

Then

$\tilde{P} = Stab([1:0:0] \times [0:0:1]) = \{(x^{p^3}=0, y^{p^3}=0, z^{p^4}=0)\}$

$\tilde{X} = G/\tilde{P}$ is a VUF
What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties.
What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties
What is known about VUFs?

- VUFs are not in general isomorphic to flag varieties
- VUFs behave very differently from flag varieties
- Nothing much known for their twisted forms over non-algebraically closed fields
Are they related?

Question: Is there any relation between them at all?
Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?
Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?
Answer: Yes
Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Answer: Yes & Yes
Are they related?

Question: Is there any relation between them at all? More generally is there any relation between their twisted forms?

Answer: Yes & Yes

I show that their motives are isomorphic in $\text{Chow}(k, \Lambda)$.
A variety \tilde{X} over k is a **projective pseudo-homogeneous variety** for G, if $\tilde{X}_k \simeq G/\tilde{P}$, \tilde{P} not necessarily reduced.
A variety \tilde{X} over k is a **projective pseudo-homogeneous variety** for G, if $\tilde{X}_k \simeq G/\tilde{P}$, \tilde{P} not necessarily reduced

Twisted forms of VUFs
A variety \(\tilde{X} \) over \(k \) is a **projective pseudo-homogeneous variety** for \(G \), if \(\tilde{X}_k \cong G/\tilde{P} \), \(\tilde{P} \) not necessarily reduced.

Twisted forms of VUFs

Denote by \(X \) the \(G \)-variety such that \(X_k \cong G/P \) where \(P \) is the underlying reduced scheme of \(\tilde{P} \).
A variety \tilde{X} over k is a \textit{projective pseudo-homogeneous variety} for G, if $\tilde{X}_k \simeq G/\tilde{P}$, \tilde{P} not necessarily reduced.

Twisted forms of VUFs

Denote by X the G-variety such that $X_k \simeq G/P$ where P is the underlying reduced scheme of \tilde{P}.

Call X the \textit{projective homogeneous variety} corresponding to \tilde{X}.
A variety \tilde{X} over k is a projective pseudo-homogeneous variety for G, if $\tilde{X}_k \simeq G/\tilde{P}$, \tilde{P} not necessarily reduced

Twisted forms of VUFs

Denote by X the G-variety such that $X_k \simeq G/P$ where P is the underlying reduced scheme of \tilde{P}.

Call X the projective homogeneous variety corresponding to \tilde{X}

Theorem: $\mathcal{M}(X) \simeq \mathcal{M}(\tilde{X})$
I also show the following

Theorem
Rost nilpotence holds for projective pseudo-homogeneous varieties for \(G \)

Corollary
Krull-Schmidt holds for projective pseudo-homogeneous varieties for \(G \)
To prove the main theorem first I prove the following

Theorem

Let X be projective G-homogeneous variety any field k of any characteristic. Let Z be any geometrically split projective k-variety satisfying RN such that the following holds in Chow(k, Λ):

1. $U_X \simeq U_Z$
2. $\mathcal{M}(X_L) \simeq \mathcal{M}(Z_L)$ where $L = k(X)$

Then $\mathcal{M}(X) \simeq \mathcal{M}(Z)$.
Proof of main result

Theorem

\[M(X) \cong M(\tilde{X}) \]
Proof of main result

Theorem

\[\mathcal{M}(X) \cong \mathcal{M}(\tilde{X}) \]

Proof.

- By induction on \(n = \text{rank}(G) \). Trivially true for \(n = 0 \). Assume true for all groups with rank less than \(n \).
- Let \(\text{rank}(G) = n \). Let \(L = k(X) \) and \(G' \) the anisotropic kernel of \(G_L \). Then \(\text{rank}(G') < \text{rank}(G) \).
- \(\mathcal{M}(\tilde{X}_L) = \bigcup_i \mathcal{M}(\tilde{Z}_i)(a_i) \) and \(\mathcal{M}(X_L) = \bigcup_i \mathcal{M}(Z_i)(a_i) \).
- By induction hypothesis, \(\mathcal{M}(\tilde{Z}_i) \cong \mathcal{M}(Z_i) \)
- \(\mathcal{M}(\tilde{X}_L) \cong \mathcal{M}(X_L) \).
- Moreover, \(U_X \cong U_{\tilde{X}} \).
- Applying generic criterion for isomorphic motives, we are done.
Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^\otimes p$. Then in the category $\text{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X(d_1, d_2, \cdots, d_m, A)$ and $X(d_1, d_2, \cdots, d_m, B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1, d_2, \cdots, d_m, A)) \cong \mathcal{M}(X(d_1, d_2, \cdots, d_m, B))$$

Taking $m = 1$, we get $\mathcal{M}(\text{SB} d(A)) \cong \mathcal{M}(\text{SB} d(B))$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(\text{SB} d(A)) \cong \mathcal{M}(\text{SB} d(B)).$
Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^\otimes p$. Then in the category $\text{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X(d_1, d_2, \ldots, d_m, A)$ and $X(d_1, d_2, \ldots, d_m, B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1, d_2, \ldots, d_m, A)) \simeq \mathcal{M}(X(d_1, d_2, \ldots, d_m, B))$$

Taking $m = 1$, we get $\mathcal{M}(SB_d(A)) \simeq \mathcal{M}(SB_d(B))$ for twisted Grassmannians.
Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^\otimes p$. Then in the category $\text{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X(d_1, d_2, \cdots, d_m, A)$ and $X(d_1, d_2, \cdots, d_m, B)$ are isomorphic. That is,

$$M(X(d_1, d_2, \cdots, d_m, A)) \simeq M(X(d_1, d_2, \cdots, d_m, B))$$

Taking $m = 1$, we get $M(SB_d(A)) \simeq M(SB_d(B))$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $M(SB(A)) \simeq M(SB(B))$.
Examples and Applications

Corollary

Let A be a CSA over k of degree n and let B denote the CSA of degree n that is Brauer equivalent to $A^\otimes p$. Then in the category $\text{Chow}(k, \Lambda)$, the motives of twisted flag varieties $X(d_1, d_2, \ldots, d_m, A)$ and $X(d_1, d_2, \ldots, d_m, B)$ are isomorphic. That is,

$$\mathcal{M}(X(d_1, d_2, \ldots, d_m, A)) \simeq \mathcal{M}(X(d_1, d_2, \ldots, d_m, B))$$

Taking $m = 1$, we get $\mathcal{M}(SB_d(A)) \simeq \mathcal{M}(SB_d(B))$ for twisted Grassmannians. In particular, for the case of Severi-Brauer varieties we have $\mathcal{M}(SB(A)) \simeq \mathcal{M}(SB(B))$.

Corollary

There exists examples of varieties whose motives are isomorphic when Λ is any finite field but not when $\Lambda = \mathbb{Z}$.
Some open questions

- Are the motives of \tilde{X} and X isomorphic even when G is outer?
Some open questions

- Are the motives of \tilde{X} and X isomorphic even when G is outer?
- Does the Generic criterion for isomorphic motives hold in general i.e., when X and Z are arbitrary varieties?
Thank You