Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Reports of COVID-19-associated mucormycosis have been increasing in frequency since early 2021, particularly among patients with uncontrolled diabetes. Patients with diabetes and hyperglycaemia often have an inflammatory state that could be potentiated by the activation of antiviral immunity to SARS-CoV2, which might favour secondary infections. In this Review, we analysed 80 published and unpublished cases of COVID-19-associated mucormycosis. Uncontrolled diabetes, as well as systemic corticosteroid treatment, were present in most patients with COVID-19-associated mucormycosis, and rhino-orbital cerebral mucormycosis was the most frequent disease. Mortality was high at 49%, which was particularly due to patients with pulmonary or disseminated mucormycosis or cerebral involvement. Furthermore, a substantial proportion of patients who survived had life-changing morbidities (eg, loss of vision in 46% of survivors). Our Review indicates that COVID-19-associated mucormycosis is associated with high morbidity and mortality. Diagnosis of pulmonary mucormycosis is particularly challenging, and might be frequently missed in India.

Introduction

The world is facing a devastating pandemic, caused by SARS-CoV-2. Systemic corticosteroid treatment can reduce mortality in people with the most severe courses of disease but, together with immunological and other clinical factors,1 this treatment can also predispose patients to secondary fungal disease. Although COVID-19-associated pulmonary aspergillosis has been the primary focus in the literature of COVID-19 secondary infections,2,3 other fungal superinfections, including Candida infections,4 rare mould infections (fusariosis),5,6 and COVID-19-associated mucormycosis7–9 are likely to be under-reported.

The risk factors predisposing patients to mucormycosis are uncontrolled diabetes, neutropenia, haematological malignancies, organ transplantation, trauma and burn, and use of immunosuppressants such as corticosteroids.7,8,10,11 Furthermore, diabetes is also a particularly important comorbidity complicating COVID-19 management.12 Although dexamethasone has proven beneficial in some groups of patients with COVID-19 who have been hospitalised, it could increase the risk of developing invasive mould infections.13 Hyperglycaemia occurs in people with undiagnosed or uncontrolled diabetes, but it can also be induced by corticosteroids. Patients with diabetes and hyperglycaemia often have an inflammatory state that elicits constant recruitment and local activation of immune cells, including macrophages and neutrophils, which secrete proinflammatory cytokines and generate persistent inflammation.14 In these patients, the activation of antiviral immunity to SARS-CoV2 could potentiate this inflammatory phenotype, which could favour secondary infections.15

Diagnosis of COVID-19-associated mucormycosis is challenging as the clinical and radiological features of pulmonary and disseminated mucormycosis are non-specific and could overlap with findings thought to be associated with COVID-19, which results in missed or late diagnoses.16 Detailed guidance on how to diagnose mucormycosis17 and when to suspect COVID-19-associated mucormycosis in patients have been published.18 COVID-19-associated mucormycosis can also be mistaken for other angioinvasive fungal infections, particularly with COVID-19-associated pulmonary aspergillosis being the predominant mould disease in COVID-19-associated acute respiratory distress syndrome. The reversed halo sign, predominantly in the peripheral locations of the lung, has been considered to be suggestive of pulmonary mucormycosis in patients with immunodeficiency and useful for the initiation of pre-emptive antifungal therapy;19 however, in patients with COVID-19, it is less specific as it has also been described as one of the potential radiological features of COVID-19.20 Although cavity lung lesions might be more specific for mould disease in COVID-19 than the reversed halo sign, these lesions are frequently observed in both COVID-19-associated pulmonary aspergillosis and pulmonary COVID-19-associated mucormycosis.21 In the absence of serum antigenic biomarkers and because the availability of PCR testing is low, particularly in low-income and middle-income countries, COVID-19-associated mucormycosis diagnosis is also challenging, with conventional culture and histopathological demonstration of Mucorales being the mainstay of diagnosis, albeit with low sensitivity.

Although case reports on COVID-19-associated mucormycosis continue to emerge, there are still too few reviews and analyses of large case series that compare the disease in different areas of the world.22 The objective of this Review was to describe the epidemiology, risk factors, treatment, and outcome of COVID-19-associated mucormycosis by analysing published and unpublished cases of COVID-19-associated mucormycosis.
The analysis was initiated by leadership of the European Confederation of Medical Mycology and International Society of Human and Animal Mycoses. We searched PubMed using the search terms: “zygomycota OR mucormycota OR Mucorales) AND (COVID-19 OR corona OR SARS-CoV-2 OR pandemic)” for articles published between Oct 1, 2019 and April 12, 2021. We also searched the reference lists of all relevant publications for additional case reports. Information on epidemiology (age at diagnosis, sex, and country), underlying conditions, COVID-19 on admission or previously, intensive care unit procedures, corticosteroid use, diagnosis of mucormycosis (radiological findings and mycological evidence), sites of infection (rhino-orbital, pulmonary, and CNS involvement), coinfections, time between COVID-19 and mucormycosis, clinical management (systemic antifungal therapy and surgical procedures), and outcome (overall response, survival, causes of death [where applicable], and follow-up times) were extracted from the literature by DS or PLW and verified in a second review of the articles by the other reviewer. Reports of new cases were provided via secure data transfer or through documentation in the FungiScope registry (a global emerging fungal infection registry). Cases were reviewed by the FungiScope team and questions were resolved with the respective contributor.

We identified patients with mucormycosis during or within 12 weeks after diagnosis of SARS-CoV-2 infection from the literature and through a global reach-out via email and social media within FungiScope, European Confederation of Medical Mycology, and International Society for Human and Animal Mycology networks.

Methods

Search strategy and selection criteria

The analysis was initiated by leadership of the European Confederation of Medical Mycology and International Society of Human and Animal Mycoses. We searched PubMed using the search terms: “zygomycota OR mucormycota OR Mucorales) AND (COVID-19 OR corona OR SARS-CoV-2 OR pandemic)” for articles published between Oct 1, 2019 and April 12, 2021. We also searched the reference lists of all relevant publications for additional case reports. Information on epidemiology (age at diagnosis, sex, and country), underlying conditions, COVID-19 on admission or previously, intensive care unit procedures, corticosteroid use, diagnosis of mucormycosis (radiological findings and mycological evidence), sites of infection (rhino-orbital, pulmonary, and CNS involvement), coinfections, time between COVID-19 and mucormycosis, clinical management (systemic antifungal therapy and surgical procedures), and outcome (overall response, survival, causes of death [where applicable], and follow-up times) were extracted from the literature by DS or PLW and verified in a second review of the articles by the other reviewer. Reports of new cases were provided via secure data transfer or through documentation in the FungiScope registry (a global emerging fungal infection registry). Cases were reviewed by the FungiScope team and questions were resolved with the respective contributor.

We identified patients with mucormycosis during or within 12 weeks after diagnosis of SARS-CoV-2 infection from the literature and through a global reach-out via email and social media within FungiScope, European Confederation of Medical Mycology, and International Society for Human and Animal Mycology networks.

Results

Case descriptions

We identified 80 cases of COVID-19-associated mucormycosis (63 [79%] proven and 17 [21%] probable), including 29 (36%) unpublished cases. Cases were reported from 18 countries, the majority from India (42, ten of which were unpublished), the USA (eight), Pakistan (five unpublished from a single centre), France (four, three of which were unpublished from two centres), Iran (four, one of which was unpublished), and Mexico (four, three of which were unpublished from a single centre), Russia (two unpublished from two centres; figure 1). Single cases were reported from Austria, Bangladesh (unpublished), Brazil, Chile, Czech Republic (unpublished), Germany (unpublished), Italy, Kuwait (unpublished), Lebanon (unpublished), Turkey, and the UK.

Prevalence of mucormycosis among people with COVID-19 who had been admitted to an ICU was reported from four centres (in France, Germany, Mexico, and Turkey) and ranged between 0.3% and 0.8%.

Demographics, underlying diseases, and COVID-19 treatments

The majority of patients were male (62 [78%] of 80) and the median age was 55 years (range 10–86). The table provides a summary of clinical characteristics and outcomes of COVID-19-associated mucormycosis in 80 patients and separates data of patients with rhino-orbital cerebral disease from data of those with pulmonary disease. At the time of COVID-19-associated mucormycosis diagnosis, 74 (93%) patients were
hospitalised with ongoing COVID-19 infection, and six (8%) patients had COVID-19 infection before hospitalisation for mucormycosis-associated symptoms, four of whom were hospitalised for treatment of COVID-19 1–3 months before mucormycosis diagnosis. Most patients (76 [95%] of 80) had additional risk factors. Diabetes was the most prevalent condition overall (66 [83%] of 80), with type 2 diabetes being more common than type 1 diabetes (59 [89%] of 66 patients with diabetes had type 2 and 6 [9%] had type 1). Most of the 66 patients

COVID-19-associated mucormycosis (n=80)*	Rhino-orbital cerebral disease (n=59)	Pulmonary disease† (n=20)	
Median age, range, years	55 (10–86)	54 (10–79)	57 (22–86)
Male-to-female-patient ratio	62:18 (78%:23%)	43:16 (73%:27%)	18:2 (90%:10%)
Country of case origin	India (42 [53%]), USA (8 [10%]), Pakistan (5 [6%]), France (4 [5%]), Mexico (4 [5%]), Iran (4 [5%]), Russia (2 [1%]), Austria (1 [1%]), Bangladesh (1 [1%]), Brazil (1 [1%]), Chile (1 [1%]), Czech Republic (1 [1%]), Germany (1 [1%]), Italy (1 [1%]), Kuwait (1 [1%]), Lebanon (1 [1%]), Turkey (1 [1%]), UK (1 [1%])	India (41 [69%]), USA (4 [7%]), Pakistan (1 [2%]), France (2 [3%]), Mexico (2 [3%]), Iran (4 [7%]), Russia (2 [3%]), Bangladesh (1 [2%]), Turkey (1 [2%])	India (1 [5%]), USA (4 [20%]), Pakistan (4 [20%]), France (2 [10%]), Mexico (1 [5%]), Austria (1 [5%]), Chile (1 [5%]), Czech Republic (1 [5%]), Germany (1 [1%]), Italy (1 [1%]), Kuwait (1 [1%]), Lebanon (1 [1%]), Turkey (1 [1%]), UK (1 [1%])
Underlying conditions	Diabetes (66 [83%]), SS (83%) of which had uncontrolled diabetes), haematological malignancy (5 [6%]), lymphopenia (2 [3%]), hypertension (1 [1%]), chronic kidney disease (1 [1%]), severe obesity (21%), no known risk factor (4 [5%])	Diabetes (55 [93%], 48 [87%] of which had uncontrolled diabetes), haematological malignancy (1 [2%]), hypertension (1 [2%]), no known risk factor (2 [3%])	Diabetes (11 [55%], 7 [64%] of which had uncontrolled diabetes), haematological malignancy (4 [20%]), lymphopenia (1 [5%]), chronic kidney disease (1 [5%]), severe obesity (1 [5%], no known risk factor (2 [10%])
Comorbidities§	Hypertension (54 [18%]), kidney disease (6 [8%]), obesity (3 [4%]), cardiac disease (5 [6%]), asthma (2 [3%]), hyperlipidaemia (2 [3%])	Hypertension (7 [12%]), kidney disease (4 [7%]), obesity (1 [2%]), cardiac disease (2 [3%]), asthma (2 [3%]), hyperlipidaemia (2 [3%])	Hypertension (6 [30%]), kidney disease (2 [10%]), cardiac disease (2 [15%]), hyperthyroidism (1 [5%]), pancreatitis (1 [5%]), obesity (1 [5%])
COVID-19 diagnosis	On admission (58 [68%]), previous (10 [13%]), during admission (1 [1%]), unknown (14 [18%])	On admission (37 [63%]), previous (9 [15%]), unknown (13 [22%])	On admission (17 [85%]), previous (1 [5%]), during admission (1 [1%]), unknown (1 [1%])
COVID-19 severity	Severe or critical (36 [45%]), mild or moderate (36 [45%]), asymptomatic (2 [3%]), unknown (6 [8%])	Severe or critical (19 [32%]), mild or moderate (33 [56%]), asymptomatic (2 [3%]), unknown (5 [8%])	Severe or critical (16 [80%]), mild or moderate (4 [20%])
Intensive care unit admission	Yes (38 [48%]), no (34 [43%]), unknown (8 [10%])	Yes (19 [32%]), no (13 [56%]), unknown (7 [12%])	Yes (18 [90%]), no (1 [5%]), unknown (1 [5%])
Corticosteroids administered	Yes (65 [79%]), no (14 [18%]), unknown (3 [4%])	Yes (47 [80%]), no (10 [17%]), unknown (2 [3%])	Yes (45 [75%]), no (4 [20%]), unknown (1 [5%])
Causative Mucorales spp	Rhizopus spp (16 [20%]), Mucor spp (6 [8%]),*; R rhizopus (11 [14%]), R microsporus (7 [9%]), Lichtleiteomyces spp (2 [1%]), Rhizomucor pusillus (1 [1%], not specified (29 [49%])	Rhizopus spp (10 [17%]), Mucor spp (6 [10%]),*; R rhizopus (8 [14%]), Lichtleiteomyces spp (1 [2%]), R microsporus (2 [1%], not specified (34 [58%])	Rhizopus spp (6 [30%]), R microsporus (6 [30%]), R rhizopus (3 [15%]), R pusillus (1 [5%], not specified (4 [20%])
Antifungal therapy	Liposomal amphotericin B (54 [68%], conventional amphotericin B (8 [11%], unknown amphotericin B formulation (7 [9%]), amphotericin lipid complex (2 [3%]), voriconazole (5 [6%]), isavuconazole (5 [6%]), posaconazole (6 [8%]), caspofungin (2 [2%]), micafungin (1 [1%]), antifungal combination (ie, drugs simultaneously; 14 [18%]), none (2 [3%], unknown (1 [1%])	Liposomal amphotericin B (44 [75%]), conventional amphotericin B (5 [8%], unknown amphotericin B formulation (6 [10%]), amphotericin lipid complex (2 [3%]), voriconazole (2 [3%]), isavuconazole (2 [3%]), posaconazole (6 [10%]), caspofungin (1 [2%]), antifungal combination (ie, drugs simultaneously; 10 [17%]), none (1 [2%], unknown (1 [2%])	Liposomal amphotericin B (10 [50%], conventional amphotericin B (4 [20%], unknown amphotericin B formulation (1 [5%]), voriconazole (3 [15%]), isavuconazole (3 [15%]), caspofungin (1 [5%]), micafungin (1 [5%]), antifungal combination (ie, drugs simultaneously; 4 [20%]), none (1 [5%])
Surgical intervention	Yes (45 [56%]), no (29 [36%]), deferred or unknown (6 [8%])	Yes (43 [72%]), no (12 [20%]), deferred or unknown (4 [7%])	Yes (2 [10%]), no (16 [80%]), deferred or unknown (2 [10%])
Therapeutic strategy	Systemic antifungals plus surgery (44 [55%]), systemic antifungals only (22 [40%]), surgery only (1 [1%]), none (2 [2%]), unknown (3 [4%])	Systemic antifungals plus surgery (42 [71%]), systemic antifungals only (15 [25%]), surgery only (1 [2%]), unknown (1 [2%])	Systemic antifungals plus surgery (2 [10%]), systemic antifungals only (17 [85%]), none (1 [5%])
Fungal confections	Aspergillus (9 [11%], none (71 [89%])	Aspergillus (3 [5%]), none (56 [95%])	Aspergillus (6 [10%]), none (14 [70%])
Outcome	Survived (37 [46%]), died (39 [49%]), unknown (4 [5%])	Survived (33 [56%]), died (22 [37%]), unknown (4 [7%])	Survived (4 [20%]), died (16 [80%])
Life-changing morbidities in survivors	Loss of vision (19 [24%])	Loss of vision (19 [32%])..	Loss of vision (19 [32%])..

Data are n (%) unless otherwise specified; n is the number of patients and the percentage is the proportion of patients out of the total indicated at the top of the column. *Includes 59 patients with rhino-orbital cerebral disease, 20 patients with pulmonary disease (three of whom had disseminated pulmonary disease), and one patient with gastrointestinal disease. †Includes 17 patients with pulmonary disease only and three patients with pulmonary disease and disseminated disease. ‡Well-controlled diabetes was reported in eight (12%) of 66 patients; the diabetes status of patients was unknown in three of 66 patients. §Two patients had lymphoma, two patients had acute myeloid leukaemia, and one patient had acute lymphoblastic leukaemia. ¶Numbers are super-additive. ‖Details available from 40 patients: 28 patients were given dexamethasone 6 mg for 10 days, and 12 were given methylprednisolone (40–120 mg for 5–28 days after hospital admission). *Rhizopus and Mucor spp were identified in one patient.
with diabetes had uncontrolled or poorly controlled diabetes (reported in 55 [83%] of 66), as characterised by diabetic ketoacidosis (27 [49%] of 55), hyperglycaemia (23 [42%] of 55), elevated HbA1c levels (available in 23 [77%] of 30 patients in whom HbA1c levels were available; median 11.0% [range 7.2–15.5%] and median 14.9 mmol/L [8.9–22.1 mmol/L]), or end-stage renal disease (6 [9%] of 66). Specifically, diabetes was a more predominant risk factor in patients from India than in patients from other countries (40 [95%] of 42 patients in India vs 26 [68%] of 38 from other countries, p=0.0024).

Hypertension was the second most common underlying condition, identified in 15 (19%) of 80 patients, followed by chronic kidney diseases (five [6%]), and haematological malignancies (five [6%]). No apparent risk factor, aside from COVID-19, was noted in only four (5%) of 80 patients.

Treatment with systemic corticosteroids was reported in 63 (79%) of 80 cases, and 51 (81%) of 63 patients given systemic corticosteroids started treatment before the diagnosis of mucormycosis. Tocilizumab was given to six patients in addition to corticosteroids.

Clinical presentation and diagnosis

Patients with mucormycosis most commonly had rhino-orbital cerebral infection (59 [74%] of 80), with extension into the CNS confirmed in 22 (37%) of 59 patients. Rhino-orbital cerebral infection was particularly common in patients from India, where 41 (98%) of 42 patients had rhino-orbital cerebral infection (proof of cerebral involvement in 11 [27%] of 41 patients). Pulmonary disease was reported in 20 (25%) patients, three of whom had disseminated mucormycosis with sinus (one patient) or CNS (two patients) involvement, and one patient had gastrointestinal mucormycosis. Among patients with pulmonary disease, 18 (90%) of 20 patients were admitted to the ICU, mostly with severe or critical COVID-19 (15 [83%] of 18). Rhino-orbital cerebral mucormycosis was mostly seen in patients with diabetes (55 [93%] of 59 patients with rhino-orbital cerebral disease had diabetes, only four of whom had well-controlled blood sugar concentrations), whereas patients with other clinical manifestations of mucormycosis (20 with pulmonary and one with gastrointestinal COVID-19-associated mucormycosis) were less likely to have diabetes (11 [52%] of 21, four of whom had well-controlled blood sugar concentrations) than those with rhino-orbital cerebral mucormycosis (p<0.0001). Four of the five patients with haematological malignancy had pulmonary mucormycosis during management of severe COVID-19 in the ICU and one patient had rhino-orbital cerebral infection 3 months after diagnosis of severe COVID-19. In the patients with pulmonary, gastrointestinal, or disseminated mucormycosis, the majority (17 [81%] of 21) had severe or critical COVID-19, whereas in the patients with rhino-orbital cerebral infection, COVID-19 was mainly mild or moderate (in 35 [59%] of 59). Mucormycosis was diagnosed at a median of 10 days (range 0–90 days) after diagnosis of COVID-19; 19 patients hospitalised with COVID-19 had clinical signs of mucormycosis at the time of admission (18 had rhino-orbital cerebral mucormycosis and 16 of these 18 had poorly controlled diabetes, and one patient with haematological malignancy presented with pulmonary infection). In the 61 patients who did not show signs of mucormycosis at the time of hospital admission, diagnosis was made at a median of 14.5 days (1–90 days) after admission. In the 55 patients with uncontrolled diabetes, COVID-19-associated mucormycosis was diagnosed in a median of 3.5 days (0–50 days) after COVID-19 (48 [87%] of 55 had rhino-orbital cerebral infection), versus a median of 20 days (0–60 days) in the 11 patients with controlled diabetes (7 [64%] of 11 had rhino-orbital cerebral infection). 25 (31%) patients required advanced critical care for at least 1 day before the onset of mucormycosis. In these patients, mucormycosis was diagnosed a median of 8.0 days (1–35 days) after admission to the ICU.

Proven diagnosis of mucormycosis, based on histology or culture of tissue or other samples from sterile sites, was obtained in 63 (79%) patients (five of those were obtained post mortem), with radiological abnormalities (e.g., sinusitis, necrosis in patients with rhino-orbital cerebral mucormycosis, and nodules or cavities in patients with pulmonary disease) described in 40 (64%) of 63 patients. Probable pulmonary mucormycosis was confirmed by radiological findings and a positive culture or PCR from respiratory samples in 14 (82%) of 17 patients with rhino-orbital cerebral disease and by positive culture from swab or scraping samples in the other three (18%) patients with rhino-orbital cerebral disease.

Identification to the genus level was described in 25 (42%) of 59 patients with rhino-orbital cerebral infection and in 16 (76%) of 21 with pulmonary, gastrointestinal, or disseminated disease, and 19 of these infections were described to the species level. Rhizopus spp were the most common species identified, identified in 19 (32%) of 59 patients with rhino-orbital cerebral infection and 15 (71%) of 21 patients with pulmonary, gastrointestinal, or disseminated disease. Mucor spp were identified only in patients with rhino-orbital cerebral disease (six of 59 patients). Nine patients had mixed infection with Aspergillus spp, six of whom had pulmonary disease, and two of the three patients with rhino-orbital cerebral disease had proven cerebral involvement.

Treatment and outcome of COVID-19-associated mucormycosis

Systemic antifungal agents targeted against mucormycosis were used in all but three patients. Amphotericin B formulations were used in the vast majority of patients (71 [89%] of 80), and posaconazole was used in addition to amphotericin B in six patients with rhino-orbital cerebral mucormycosis. Isavuconazole was used in five
patients, either in combination with amphotericin B (two patients), as salvage therapy (two patients), or as monotherapy (one patient). In addition, 45 (58%) patients underwent surgical resection (43 [96%] of 45 had rhino-orbital cerebral mucormycosis, of whom 16 had orbital exenteration).

All-cause mortality occurred in 39 (49%) of 80 patients. Mortality was reported in 22 (37%) of 59 patients who had rhino-orbital cerebral mucormycosis and in 17 (81%) of 21 patients who had pulmonary, gastrointestinal, or disseminated mucormycosis (p=0·0008). Mortality in patients with rhino-orbital cerebral disease with confirmed CNS involvement was higher (13 [59%] of 22 patients) than in those without signs of progression to the CNS (nine [24%] of 37 patients; p=0·012). Among survivors, loss of vision was reported in 19 (46%) of 41 patients (all with rhino-orbital cerebral mucormycosis).

Surgery was associated with improved outcomes in rhino-orbital cerebral mucormycosis in patients without proven CNS involvement, in whom mortality was higher in those who received systemic antifungals alone (five [63%] of eight) than in those who also had surgery (four [14%] of 29, of whom one had only surgery; p=0·012). Surgery did not significantly affect survival for patients with rhino-orbital cerebral mucormycosis who had proven CNS involvement (mortality in five [71%] of seven patients who were given systemic antifungals alone vs eight [57%] of 14 who also had surgery; p=0·66).

14 (18%) patients required ICU treatment after the diagnosis of mucormycosis was made, 11 of whom were admitted with COVID-19 and clinical signs of rhino-orbital cerebral mucormycosis. Patients with severe or critical COVID-19 were more frequently treated in the ICU (30 [86%] of 36) than were patients with mild or moderate COVID-19 (seven [26%] of 37; p=0·0001). Overall, admission to the ICU was associated with worse outcomes, with overall mortality in 27 (71%) of 38 patients treated in the ICU versus 11 (32%) of 34 patients not treated in the ICU (p=0·0019).

For patients with a fatal outcome, median survival time from the day of diagnosis of mucormycosis was 106 days (95% CI 9·4–202·3) for patients with rhino-orbital cerebral disease versus 9 days (2·4–15·6) for patients with pulmonary mucormycosis. Kaplan-Meier survival analysis showed a higher survival probability in patients with rhino-orbital cerebral disease without proven CNS infection than in those with other forms of the disease (17 with pulmonary disease, three with disseminated disease [including pulmonary mucormycosis], and one with gastrointestinal disease; log-rank p=0·0019; hazard ratio 4·210 [95% CI 1·54–11·48]; figure 2). Median survival time for patients with proven CNS involvement during rhino-orbital cerebral disease was 26 days (17·4–34·6), and survival over the disease course did not significantly differ from that in patients without proven CNS involvement and those with other forms of COVID-19-associated mucormycosis disease (compared with rhino-orbital cerebral diseases without proven CNS involvement [p=0·11], and compared with other forms of the disease [p=0·071]).

Discussion

In this Review, we describe 80 cases of COVID-19-associated mucormycosis, with a predominance (42 of 80) of cases from India. There were three major findings: uncontrolled diabetes and systemic corticosteroid treatment were present in large proportions of patients; rhino-orbital cerebral mucormycosis was the most frequent presentation of disease (74%) and was present in 41 of 42 patients from India, whereas pulmonary disease almost exclusively occurred in the ICU setting and was present in 50% of patients reported from outside India; and amphotericin B formulations and surgery were the predominant treatment strategies, but mortality was high at 49%, mostly because of the high mortality of patients with pulmonary or disseminated mucormycosis and those with cerebral involvement. Furthermore, a substantial proportion of surviving patients had life-changing morbidities (eg, loss of vision in 46% of survivors).

Uncontrolled diabetes, and specifically ketoacidosis (in 27 [49%] of 55 patients) and systemic corticosteroid treatment (in 79% of patients), was present in a large proportion of our COVID-19-associated mucormycosis cohort, suggesting that patients with diabetes and COVID-19 receiving corticosteroids might be particularly susceptible to the development of COVID-19-associated mucormycosis. In particular, diabetes was almost ubiquitous in patients from India (present in 95% of
patients). However, in pulmonary cases, most of which were reported in patients from Europe and the USA, diabetes was observed in 55% of patients with COVID-19-associated mucormycosis, which was higher than in a previous multinational cohort of patients in ICUs with COVID-19 acute respiratory failure without COVID-19-associated mucormycosis (27% of patients had diabetes). Although diabetes was frequently observed as an underlying disease, poor glycaemic control might be a specific predictor of rhino-orbital cerebral COVID-19-associated mucormycosis. Patients with uncontrolled diabetes developed mucormycosis (87% had rhino-orbital cerebral) a median of 2–3 weeks earlier after diagnosis of COVID-19 than patients with well-controlled diabetes, in whom 64% had COVID-19-associated mucormycosis that was rhino-orbital cerebral. The most probable mechanism behind this observation is the hyperglycaemia-induced inflammatory state that might be potentiated once antiviral immunity to SARS-CoV-2 activates. Moreover, Mucorales induce an augmented secretion of proinflammatory cytokines by immune cells. Therefore, even in the absence of immunosuppressive therapies, several divergent inflammatory pathways in patients with COVID-19 might act together to establish an inflammatory environment that is highly permissive to the development of COVID-19-associated mucormycosis, potentiating the expression of specific virulence factors and associated host damages. In a large randomised controlled trial in patients who were critically ill with COVID-19, treatment with IL-6 receptor antagonists improved outcomes, including survival. However, it is not known whether this therapeutic strategy of dampening an important cytokine in antifungal immunity could predispose patients to COVID-19-associated mucormycosis. 78% of COVID-19-associated mucormycosis cases reported in this Review occurred in male patients. Whether this gender imbalance might be the result of differing susceptibility—confirming what was recently observed in a diabetic ketoacidosis mouse model (in which female mice were more resistant to Mucorales infection than male mice)—needs to be investigated in future studies.

The invasion of host cells during mucormycosis is elicited by the spore coat protein homologue, CotH3, which has been shown to mediate the interaction between spores and GRP78 on nasal epithelial cells to promote invasion and damage. GRP78 can also be upregulated in patients with COVID-19, and experimental studies have shown that GRP78 can form a complex with the spike protein and ACE2 to act as a host auxiliary factor for SARS-CoV2 entry and infection. The relevance of these mechanisms to human disease is supported by the induction of GRP78 by host factors characteristic of diabetic ketoacidosis, namely high glucose concentration, high iron concentration, and ketone bodies. Additionally, Mucorales produce the toxin mucoricin, which displays structural and functional features of the plant toxin ricin, and is endowed with the ability to induce inflammation, vascular permeability in vitro, and hypovolaemic shock and organ necrosis in mouse models of mucormycosis. Therefore, vascular endothelial injury, potentiated by COVID-19-associated inflammation, might also represent an important susceptibility feature of mucormycosis. On a cellular level, COVID-19 and its management might augment development of COVID-19-associated mucormycosis. First, the ability to restrict intracellular iron availability and inhibit fungal persistence and growth is an essential mechanism required to counter infection with Mucorales. With increased free iron concentrations observed in most patients with COVID-19 and the Mucorales species’ need for free iron for their biological processes, iron availability might represent a crucial mechanism involved in the pathogenesis of COVID-19-associated mucormycosis. Serum concentration of free iron is also increased in people with COVID-19 and ketoacidosis due to the release of iron from binding proteins during acidosis. In this context, the renal tropism of SARS-CoV2 might also become relevant to COVID-19-associated mucormycosis, as patients with renal failure undergoing deferoxamine chelation have increased concentrations of circulating free iron (since deferoxamine acts as a siderophore for Mucorales), and are more likely to develop mucormycosis than are patients not undergoing deferoxamine chelation. Second, the impairment of neutrophil migration, ingestion, and phagolysosome fusion caused by corticosteroids (reported in 79% of patients in this Review) might amplify the risk for mucormycosis. Third, the dysbiosis exerted by the intensive use of antibiotic treatment, along with the severe injuries of the epithelium, provide a permissive environment for developing invasive fungal infections, including mucormycosis. Fourth, severe lymphocytopenia and lymphocyte dysfunction might also influence the development of COVID-19-associated mucormycosis as the decreased naive T-cell responses in patients with COVID-19 are aggravated with diabetes. Mucorales-specific T cells are detected in patients with mucormycosis and display important direct fungicidal activity.

There might be several explanations for the observed differences between COVID-19-associated mucormycosis cases in India, where rhino-orbital cerebral disease was present in 41 of 42 patients compared with 18 of 38 patients from outside India. First, the distribution of Mucorales species varies between geographical regions, with Rhizopus arrhizus being the most common species in India and Cunninghamella spp being the most common species in Spain. Second, there might be differences in environmental exposure of pathogens, as ecological studies from India indicate the presence of many species of Mucorales in the soil and a large number of spores in indoor environments, such as air conditioning filters and hospital air, and in outdoor air. 16 (80%) of 20 patients with pulmonary involvement had severe or critical COVID-19, and 18 (90%) required
treatment in an ICU for acute respiratory failure, whereas only 19 (32%) of 59 patients with rhino-orbital cerebral mucormycosis had severe COVID-19 and 20 (34%) of 59 patients were admitted to an ICU. This finding might support the notion that the rhino-orbital cerebral form of COVID-19-associated mucormycosis occurs more frequently outside the ICU setting and, possibly, in patients with less severe COVID-19, than other forms of COVID-19-associated mucormycosis.

Only 6% of cases were diagnosed at autopsy, highlighting the challenges of diagnosing mucormycosis and indicating that the prevalence of COVID-19-associated mucormycosis might be underestimated, considering the rareness of autopsies, particularly among patients dying with COVID-19 in high numbers in resource-limited countries. Although bronchoalveolar lavage and biopsy samples can be difficult to obtain in patients with COVID-19, there is hope for more specific diagnostic tests. Several studies have shown that Mucorales PCR on blood samples, and in other matrices such as bronchoalveolar lavage or tissue specimens, is an early, sensitive, and specific non-invasive tool for diagnosis and monitoring of treatment efficacy. In-house assays are designed to detect the most relevant Mucorales, including Rhizopus spp, Lichtheimia spp, and Cunninghamella spp, and Rhizomucor spp. A Mucorales multiplex real-time PCR assay (MucorGenius, Pathonostics, Maastricht, Netherlands) that is easy to use adds Cunninghamella spp to the main Mucorales and was shown to be effective both in bronchoalveolar lavage and serum. Molecular techniques to detect Mucorales are now considered new pivotal strategies for the diagnosis of mucormycosis and should be more broadly used in patients with COVID-19-associated mucormycosis (PCR results were only reported in one patient in this Review). Although PCR can provide species-level identification, a positive culture is required for in-vitro susceptibility testing. Indeed, a decrease in susceptibility to lipid-based amphotericin B or isavuconazole has been reported for some genera; therefore, species-level identification might be helpful to the clinician.

The treatment of mucormycosis in patients with COVID-19 is similar to the treatment of patients with this invasive mycosis in other risk groups. However, treatment of mucormycosis in patients with COVID-19 is generally associated with fewer issues regarding neutropenia management than in patients with haematological malignancies, for example, but it is more focused on diabetes and corticosteroid exposure than in other risk groups. The three pivotal treatment principles of mucormycosis are control of the underlying disease or risk factor, surgical debridement of necrotic infected tissue, and specific antifungal therapy. First, it is important to carefully control glucose intolerance and rapidly treat any ketoacidosis. The reduction and elimination of long-term high-dose corticosteroids should be considered. Second, necrotic tissue resulting from major invasive mould infection should be carefully debrided to control the infection. This strategy needs to be done at the bedside by skilled surgeons in cooperation with the medical team. A common mistake is to delay crucial surgical debridement and assume antifungal agents alone will successfully treat the infection. In this group of patients with COVID-19-associated mucormycosis, we did see a positive outcome with surgery for rhino-orbital disease without proven CNS disease. Although surgical intervention is often essential in the successful management of mucormycosis, specific robust guidelines are difficult to develop that allow precision and the correct technical outcomes. Third, the use of antifungal agents is an essential feature of treatment. Initial antifungal therapy of serious life-threatening mucormycosis is generally centred around the most potent and broad-spectrum class of drugs, the polyenes, including amphotericin B. If available, lipid formulations of amphotericin B treatment are favoured because they have less nephrotoxicity than other formulations, especially when given in high daily doses. Two extended-spectrum azoles, isavuconazole and posaconazole, have emerged as viable alternatives to liposomal amphotericin B in the treatment of mucormycosis, particularly in patients with impaired renal function. However, it is important to recognise that mucormycosis is caused by various genera and species, and some of the Mucorales respond poorly to liposomal amphotericin B. The observed all-cause mortality of 49%, which was highest for patients with pulmonary or disseminated mucormycosis and for patients with cerebral involvement, suggests that the prognosis of mucormycosis with SARS-CoV-2 is dismal, even with amphotericin B treatment and surgery. In this Review, the mortality rate was higher than it was in a large review of patients with diabetes and mucormycosis (44%).

The currently available therapeutic interventions are not sufficient in reducing the high mortality associated with mucormycosis. Fortunately, genetic studies have identified new genes and widespread genome duplications in mucormycetes, allowing researchers to characterise virulence factors, such as versatility, robust growth, and multidrug resistance. These new insights might expose promising targets for future antifungal therapies. Many antifungal agents are less effective for the treatment of mucormycosis than for the treatment of aspergillosis. At present, new antifungal drugs in development have some in-vitro activity against Mucorales, but robust clinical studies are difficult and are not likely to be done in the short-term. Treatment of mucormycosis will generally be empirical for the near future. Other alternative strategies against mucormycosis should be considered in serious cases.
Panel: Current challenges in diagnosis and management of COVID-19-associated mucormycosis

Little awareness of COVID-19-associated mucormycosis

The countries with a high incidence of diabetes and COVID-19 (eg, Bangladesh, India, Pakistan, Iran, Mexico, China, Russia, Indonesia, and the USA) should monitor patients closely for a month after recovery from COVID-19, as most cases of COVID-19-associated mucormycosis are detected within this time period. COVID-19-induced immune dysregulation is seen late in the COVID-19 clinical course. Patients can be advised on discharge from hospital after COVID-19 recovery to look for nasal blockage, increased nasal discharge, and eye swelling and to seek urgent medical attention if these symptoms occur. This advice can help in the early diagnosis of cases. Mucormycosis is a rare disease: the literature contains only case reports without much knowledge of the prevalence of COVID-19-associated mucormycosis. There is a need for a multicentre epidemiology study to understand the impact of the disease.

Diagnosis of COVID-19-associated mucormycosis

Diagnosis of pulmonary mucormycosis is a major challenge in patients with COVID-19 due to avoidance of respiratory samples or bronchoscopy. Pulmonary mucormycosis should be suspected not only in patients in classical risk groups (eg, haematological malignancy, solid organ transplantation, and autoimmune diseases) but also in other patient groups, including those with COVID-19. Pulmonary cavities or multiple nodules on chest CT would suggest that a closer assessment is needed of other characteristic imaging signs (including bronchoscopy, biopsy, and molecular testing from obtained respiratory specimens), not to be confused with COVID-19 lesions. Other than rhino-orbital cerebral sites, diagnosis of mucormycosis at other sites is a challenge, potentially explaining the near absence of pulmonary COVID-19-associated mucormycosis diagnoses in India. Broader global availability of standardised molecular diagnostics of mucormycosis in the blood of patients are needed.

Treatment of COVID-19-associated mucormycosis

Steroids are given indiscriminately in patients who are in hospital with COVID-19. Simultaneously, close glycaemic control is required in patients with diabetes as uncontrolled diabetes is the major risk factor for rhino-orbital cerebral mucormycosis. COVID-19 can damage β cells of the pancreas, resulting in metabolic derangement and eventually diabetes. The cost of treating mucormycosis is a serious challenge in low-income and middle-income countries, and a considerable number of patients cannot afford therapy. Knowledge of managing mucormycosis is also a challenge among clinicians in low-income and middle-income countries.

Current challenges in diagnosis and management of COVID-19-associated mucormycosis are outlined in the panel.

Limitations of our study include that not all data were available for all cases; the absence of a control cohort did not allow us to draw firm conclusions regarding risk factors for COVID-19-associated mucormycosis; and underlying conditions and risk factors might have been under-reported, particularly at resource-limited centres.

Conclusion

COVID-19-associated mucormycosis can be a serious complication of severe COVID-19, particularly in patients with uncontrolled diabetes. The complex relationship between COVID-19 and mucormycosis is still mostly unknown. Diagnosis of pulmonary and gastrointestinal mucormycosis is challenging and might frequently be missed, particularly in India and other low-income and middle-income countries. Despite its reputation as a difficult-to-treat mould infection and its high mortality in patients with COVID-19, particularly those with pulmonary disease, a careful management plan can be successful for rhino-orbital cerebral disease if there is early diagnosis of infection and control of COVID-19.

Contributors

MH and ACa coordinated the work of the authors and guided the development of the Review. Literature review and data extraction were done by PLW and DS. The manuscript was drafted by MH, DS, PIW, MH, and ACh. Other authors critically revised the draft and added important intellectual content.

European Confederation of Medical Mycology and International Society for Human and Animal Mycology networks. ACh contributed to the immunology sections. Statistical analysis was done by DS. MH, DS, ACh, SMR, AA, J-PG, KL, JFM, OAC, JRP, PLW, and ACh wrote the initial manuscript draft. NN, AB, JA, NK, and AS contributed unpublished cases, critically revised the draft, and contributed important intellectual content. All authors participated in review and revisions, approved the final manuscript, and are accountable for all aspects of the work and for ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. All authors had access to and verified the data presented here.

European Confederation of Medical Mycology and International Society for Human and Animal Mycology collaborators

Souha S Kanji (Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon), Hossein Zarrinfar (Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran), Abdolmajid Fata (Department of Parasitology and Mycology, School of Medicine, University of Medical Sciences, Mashhad, Iran), Khaled Alobaid (Mubarak Al-Kabeer Hospital, Kuwait City, Kuwait), Philipp Enghard (Department of Nephrology and Medical Intensive Care, Charite University Medicine Berlin, Berlin, Germany), Pavlina lyskova (Public Health Institute in Usti na labere, Prague, Czech Republic), Ariful Bashar (Critical Care Medicine, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh), Anne-Lise Munier (Department of Infectious Diseases, St-Louis Lariboisiere Hospital, ECMC Excellence Center for Medical Mycology, University of Paris, Paris, France), Blandine Denis (Department of Infectious Diseases, St-Louis Lariboisiere Hospital, ECMC Excellence Center for Medical Mycology, University of Paris, Paris, France), Kausar Jabher (Department of Pathology and Laboratory Medicine, Section of Microbiology, Aga Khan University Karachi, Karachi, Pakistan), Jovera Faroogi (Department of Pathology and Laboratory Medicine, Section of Microbiology, Aga Khan University Karachi, Karachi, Pakistan), Syed Faisal Mahmood (Department of Medicine, Section of Adult Infectious Diseases, Aga Khan University Karachi, Karachi, Pakistan), Sofia Khostelidi (Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University named after II Mechnikov, St Petersburg, Russia).

Declaration of interests

MH received research funding from Gilead, Pfizer, Astellas, Symbexis, and US National Institutes of Health. J-PG received speaker and expert advice fees from Pfizer and Gilead. NK has received research grants or honoraria as a speaker or advisor from Astellas, Gilead, MSD, and Pfizer. Outside the submitted work, KL received consultancy fees from SMB Laboratories Brussels, MSD, and Gilead; travel support from Pfizer; speaker fees from FUJIFILM Wako, Pfizer, and Gilead; and a service fee from Thermo Fisher Scientific. OAC reports grants or contracts from Amplyx, Basleia, BMBF, Cidara, DZIF, EU-DG RTD (101037867), F2G, Gilead, Matinas, Medpace, MSD, Mundipharma, and US National Institutes of Health.
References

1. Arastehfar A, Carvalho A, van de Venendael FL, et al. COVID-19 associated pulmonary Aspergillosis (CAPA)—from immunology to treatment. J Fungi (Basel) 2020; 6: 91.

2. Koehler P, Bassetti M, Chakrabarti A, et al. Defining and managing COVID-19-associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect Dis 2020; 21: e169–62.

3. Pratte J, Wauters J, Giacobbe DR, et al. Diagnosis and treatment of COVID-19 associated pulmonary aspergillosis in critically ill patients: results from a European confederation of medical mycology registry. Intensive Care Med 2021; 47: 1138–40.

4. Arastehfar A, Carvalho A, Nguyen MH, et al. COVID-19 associated candidiasis (CAC): an underestimated complication in the absence of immunological predispositions? J Fungi (Basel) 2020; 6: e211.

5. Poignon C, Blaise M, Vezeau C, Lampros A, Mounsel A, Fekkar A. Invasive pulmonary fusariosis in an immunocompetent critically ill patient with severe COVID-19. Clin Microbiol Infect 2020; 26: 1582–84.

6. Hoennig M, Salamont-Garcia J, Walsh TJ, et al. Global guideline for the diagnosis and management of rare mould infections: an initiative of the European Confederation of Medical Mycology in cooperation with the International Society for Human and Animal Mycology and the American Society for Microbiology. Lancet Infect Dis 2021; 21: e46–57.

7. Cormelly OA, Aalst-van-Izquierdo A, Arenz D, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis 2019; 19: e405–21.

8. Zurl C, Hoennig M, Schulz E, et al. Autopsy proven pulmonary mucormycosis due to Rhizopus microsporus in a critically ill COVID-19 patient with underlying hematological malignancy. J Fungi (Basel) 2021; 7: 88.

9. Rudramurthy SM, Hoennig M, Meis JF, et al. ECMM/ISHAM recommendations for clinical management of COVID-19 associated mucormycosis in low- and middle-income countries. Mycoses 2021; 64: 1028–37.

10. Lamothe F, Chung SJ, Damonti L, Alexander BD. Changing epidemiology of invasive mold infections in patients receiving azole prophylaxis. Clin Infect Dis 2017; 64: 1819–21.

11. Jenks JD, Reed SL, Seidel D, et al. Rare mould infections caused by Mucorales, Lomentospora prolifica and Fusarium, in San Diego, CA: the role of antifungal combination therapy. Int J Antimicrob Agents 2018; 52: 706–12.

12. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in china: summary of a report of 72 314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020; 323: 1239.

13. Horby P, Lim WS, Emberson JR, et al. Dexamethasone in hospitalized patients with COVID-19. N Engl J Med 2021; 384: 693–704.

14. Morales-Franco B, Nava-Vilallonga M, Medina-Guerrero EO, et al. Host-pathogen molecular factors contribute to the pathogenesis of Rhizopus spp in diabetes mellitus. Curr Trop Med Rep 2021; published online Jan 22. https://doi.org/10.1007/s40475-020-00222-1.

15. Tay MZ, Poh CM, Renia L, MacAry PA, Ng LPF. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20: 363–74.

16. Georgiadou SP, Sipsas NV, Marom EM, Kontoyiannis DP. The diagnostic value of halo and reversed halo signs for invasive mold infections in compromised hosts. Clin Infect Dis 2011; 52: 3144–55.

17. Alexander BD, Lamothe F, Heusser CP, et al. Guidance on imaging for invasive pulmonary aspergillosis and mucormycosis: from the imaging working group for the revision and update of the Consensus Definitions of Fungal Disease from the EORTC/MSGERC. Clin Infect Dis 2021; 72 (suppl 2): S79–88.

18. John TM, Jacob CN, Kontoyiannis DP. When uncontrolled diabetes mellitus and severe covid-19 converge: the perfect storm for mucormycosis. J Fungi (Basel) 2021; 7: 298.

19. Donnelly JP, Chen SC, Kauuffman CA, et al. Revision and update of the consensus definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer and the Mycoses Study Group Education and Research Consortium. Clin Infect Dis 2019; 71: 1367–76.

20. Bassetti M, Azoulay E, Kullberg BJ, et al. EORTC/MSGERC definitions of invasive fungal diseases: summary of activities of the Intensive Care Unit Working Group. Clin Infect Dis 2021; 72 (supp 2): S123–27.

21. Alekseyev K, Didenko L, Chauhy B. Rhinocerebral mucormycosis and COVID-19 pneumonia. J Med Cases 2021; 12: 85–89.

22. Karimi-Galougahi M, Arastou S, Haseli S, Fulminiul mucormycosis complicating coronavirus disease 2019 (COVID-19). Int Forum Allergy Rhinol 2021; 11: 3029–30.

23. Khan NGC, Martinez DV, Proud KC. A case report of COVID-19 associated pulmonary mucormycosis. Arch Clin Cases. 2020; 7: 46–51.

24. Rahaghiati R, Rodriguez N, Núñez C, Huerta A, Bravo S, Garcia P. COVID-19-associated mold infection in critically ill patients, Chile. Emerg Infect Dis 2021; 27: 1454–56.

25. Sargin F, Akbulut M, Karaduman S, Sungurtekin H. Severe rhinocerebral mucormycosis case developed after COVID-19. J Bacteriol Parasitol 2021; 12.

26. Vesti A, Bagheri A, Esghahi M, Rikhtegar MH, Rezaei Kanavi M, Farjad R. Rhino-orbital mucormycosis during steroid therapy in COVID-19 patients: a case report. Eur J Ophthalmol 2021; published online April 10. https://doi.org/10.1177/11206721211009450.

27. Waizel-Haiat S, Guerrero-Paz JA, Sanchez-Hurtado L, Calleja-Alarcon S, Romero-Gutierrez L. A case of fatal rhino-orbital mucormycosis due to Mucor circinelloides during high-dose corticosteriods treatment. Cureus 2021; 13: e7204.

28. Sae M, Lahane T, Lahane TP, Parekh R, Honavar SG. Mucoin a viral land: a tale of two pathogens. Indian J Ophthalmol 2021; 69: 244–52.

29. Khatri A, Chang KM, Berliner I, Wallach F. Mucormycosis after coronavirus disease 2019 infection in a heart transplant recipient—case report and review of literature. J Mycol Med 2021; 31: 10125.
30 Kanwar A, Jordan A, Olieveler S, Weilberg K, Cortes M, Jackson BR. A fatal case of Rhizopus aspergillus pneumonia following COVID-19. J Fungi (Basel) 2021; 7: 174.

31 Bellanger AP, Navello JC, Lepiller Q, et al. Mixed mold infection with Aspergillus fumigatus and Rhizopus microsporus in a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patient. Infect Dis Nov 2021; 51: 633–15.

32 Werthman-Ehrenreich A. Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am J Emerg Med 2021; 42: 264.

33 Mekonnen ZK, Ashraf DC, Jankowski T, et al. Acute invasive rhino- orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthal Plast Reconstr Surg 2021; 37: e40-80.

34 Garg D, Muthu V, Selgals IS, et al. Coronavirus disease (Covid-19) associated mucormycosis (CAM): case report and systematic review of literature. Mycopathologia 2021; 186: 289–98.

35 Dallalzadeh LO, Ozzello DJ, Liu CY, Kikkawa DO, Korn BS. Secondary infection with rhino-orbital cerebral mucormycosis associated with COVID-19. Orbiti 2021; 12: e19726.

36 Johnson AK, Ghazarian Z, Cendrowski KD, Persichino JG. Pulmonary aspergillosis and mucormycosis in a patient with COVID-19. Med Mycol Case Rep 2021; 32: 64–67.

37 Pasero D, Sanna S, Liperi C, et al. A challenging complication following SARS-CoV-2 infection: a case of pulmonary mucormycosis. Infection 2020; 49: 1055–60.

38 Plack DA, Taylor WL, Wnuk NM. Bronchopleural fistula development in the setting of novel therapies for acute respiratory distress syndrome in SARS-CoV-2 pneumonia. Respiraion 2020; 52: 378–81.

39 Mehta S, Pandey A. Rhino-orbital mucormycosis associated with COVID-19. Currus 2020; 12: e07266.

40 Monte Junior ESD, Santos MELD, Ribeiro IB, et al. Rare and fatal gastrointestinal mucormycosis (zygomycosis) in a COVID-19 patient: a case report. Clin Endoc 2020; 53: 746–49.

41 Hanley B, Naresh KN, Roufosse C, et al. Histopathological findings and viral tropism in UK patients with severe fatal COVID-19: a post-mortem study. Lancer Microbe 2020; 1: e245–53.

42 Moorhly A, Gaikwad R, Krishna S, et al. SARS-CoV-2, uncontrolled diabetes and corticosteroids—an un holy trinity in invasive fungal infections of the maxillofacial region? A retrospective, multi-centric analysis. J Maxillofac Oral Surg 2021; 20: 1–8.

43 Sarker S, Gokhale T, Choudhury SS, Deb AK. COVID-19 and orbital mucormycosis. Indian J Ophthalmeicl 2021; 69: 3002–04.

44 Bhavani P PS, Patil SD. Imaging findings of rhino-orbital cerebral mucormycosis in a COVID-19 patient. Eurorad. https://www. eurorad.org/issue/7205 (accessed April 30, 2021).

45 Deshmukh RUK, Patwadkar R, Patil S. Mucor mycosis in COVID-19: case reports. J Adv Res Med 2020; 7: 20–23.

46 Wurster S, Thielen W, Weiss P, et al. Mucorales spores induce a proinflammatory cytokine response in human monocellular phagocytes and harbor no rodlet hydrophobins. Virulence 2017; 8: 1208–18.

47 Gordon AC, Mouncey PR, Al-Beidi F, et al. Interleukin-6 receptor antagonists in critically ill patients with covid-19. N Engl J Med 2021; 384: 1491–302.

48 Gebremariam T, Alkhazzazi S, Alqarashi A, et al. Evaluation of sex differences in murine diabetic ketoacidosis and neutrophilic models of invasive mucormycosis. J Fungi (Basel) 2021; 7: 313.

49 Alqarashi A, Gebremariam T, Gu Y, et al. GRP78 and integrins play different roles in host cell invasion during mucormycosis. MBio 2020; 10: e00870–20.

50 Carlos AJ, Ha DP, Yeh DW, et al. The chaperone GRP78 is inside macrophages regulates pulmonary host defense against Rhizopus species. Nat Commun 2018; 9: 3133.

51 Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 307–13.

52 Reid G, Lynch JP 3rd, Fishbein MC, Clark NM. Mucormycosis. Semin Respir Crit Care Med 2020; 41: 99–114.

53 Schell WA. Unusual fungal pathogens in fungal rhinosinusitis. Otolarngol Clin North Am 2000; 33: 367–73.

54 Schwartz MD, Emerson SG, Punt J, Goff WD. Decreased naive T-cell production leading to cytokine storm as cause of increased COVID-19 severity with comorbidities. Aging 2020; 12: 742–45.

55 Potenza L, Valeritiii D, Barozzi P, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood 2011; 118: 5416–19.

56 Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi (Basel) 2019; 5: e26.

57 Gupta J, Escribano P, Vena A, et al. Increasing incidence of mucormycosis in a large Spanish hospital from 2007 to 2015; epidemiology and microbiological characterization of the isolates. PLoS One 2017; 12: e079136.

58 Prakash H, Singh S, Rudramurthy SM, et al. An aero mycological analysis of Mucoromycetes in outdoor and indoor environments of northern India. Med Mycol 2020; 58: 118–23.

59 Salerno M, Sesia F, Piscopo A, et al. No autopirs on COVID-19 deaths: a missed opportunity and the lockdown of science. J Clin Med 2020; 9: 1672.

60 Millon L, Scherer E, Rocchi S, Bellanger AP. Molecular strategies to diagnose mucormycosis. J Fungi (Basel) 2019; 5: e24.

61 Millon L, Herbrecht R, Grenouillet F, et al. Early diagnosis and monitoring of mucormycosis by detection of circulating DNA in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin Microbiol Infect 2016; 22: 810.

62 Guegan H, Iriart X, Bougonou ME, Berry A, Robert-Gangneux F, Gangneux JP. Evaluation of MucorGenius® mucorales PCR assay for the diagnosis of pulmonary mucormycosis. J Infect 2020; 81: 311–17.

63 Ther Tey Reynolds M, Beuvelink K, Guldenbos E, Maertens J, Lagrou K. Serial detection of circulating murales DNA in invasive mucormycosis: a retrospective multicenter evaluation. J Fungi (Basel) 2019; 5: E113.

64 Roden MM, Zaatits TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 2005; 41: 64–53.

65 Lanternier F, Lortholary O. AMBIGZYGO: phase II study of high dose liposomal amphotericon B (AnBisome) (10 mg/kg) efficacy against zygomycosis. Med Mal Infec 2008; 38 (suppl 2): 590–91.

66 Perfect JR, Cornely OA, Hoom P, et al. Itsavunamazole treatment for rare fungal diseases and for invasive aspergillosis in patients with renal impairment: challenges and lessons of the VITAL trial. Mycenes 2018; 41: 620–29.

67 Prieto TA, Navarro-Medrano MI, Pérez-Arques C, et al. RNAi-Based functional genomics identifies new virulence determinants in mucormycosis. PLoS Pathog 2017; 13: e006150.

68 Dannaoui E, Schwarz P, Lortholary O. In vitro interactions between antifungals and immunosuppressive drugs against zygomycetes. Antimicrob Agents Chemother 2009; 53: 3549–51.

69 Tan BH, Chakrabarti A, Patel A, et al. Clinicians’ challenges in managing patients with invasive fungal diseases in seven Asian countries: an Asia Fungal Working Group (AFWG) survey. Int J Infect Dis 2020; 95: 471–80.

70 Rocchi S, Scherer E, Mengoli C, et al. Interlaboratory evaluation of Mucorales PCR assays for testing serum specimens: a study by the fungal PCR Initiative and the Modimucor Study Group. Med Mycol 2021; 59: 126–38.

71 Müller JA, Gröz R, Conzelmann C, et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3: 149–65.

72 Accilli D. Can COVID-19 cause diabetes? Nat Metab 2021; 3: 123–25.

73 Patel A, Kaur H, Xess I, et al. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin Microbiol Infect 2020; 26: 944.