Technological aspects of thin film formation on the rotor of spherical gyroscopes

M.A. Tit¹, A.G. Scherbak²

¹PhD Student, Research Assistant of Concern CSRI Elektropribor, JSC
²Doctor of Technical Sciences, Chief of the department of Concern CSRI Elektropribor, JSC

E-mail: rita93.07.93.07@gmail.com

Abstract. A scheme of fixation in a technological device during thin film deposition process is considered for the spherical rotor of electrostatic and cryogenic gyroscopes. Calculations of the fixing scheme parameters, based on the contrast image zone location are presented. The influence of the fixing scheme on the rotor imbalance is evaluated. The dependence of the difference between the initial and post-deposition imbalance on rotor and thin film parameters is obtained. Comparison of the dependencies obtained for electrostatic and cryogenic gyroscope rotor is shown.

Introduction

Accuracy parameters of spherical gyroscopes, either electrostatic or cryogenic ones, substantially depend on production process of sensitive elements and especially rotors. The requirements for shape and imbalance deviations of rotors amount to tenths and hundredths of micrometer. The technology of rotor production consists of mechanical processing followed by forming thin films of titanium nitride or niobium for electrostatic or cryogenic gyroscopes, respectively. The last stage of technology is laser marking of the film surface to form contrast images for the read-out system functioning [1–3]. Obviously, the scheme of rotor fixing and positioning during the thin film deposition has influence on rotor parameters. Considering the fact that the contrast images are located along the equatorial line and limited by latitude angle, the fixing points should be placed in a zone free from images. The purpose of this research is to study the fixing scheme and its influence on the spherical rotor imbalance after the deposition process.

1. Calculation of rotor fixing scheme parameters

The thin film for spherical rotors is formed by cathodic arc deposition using a special technological device [4]. Since a fixing scheme in two diametrical supports is insecure [5], in the proposed scheme the rotor is fixed with four spring-loaded needle supports (Fig.1).

The fixing points a, b, c and d correspond to the tops of a regular pyramid. As it was mentioned before, the fixing points should be located in a zone free from images and limited by the angle a and the circle 4. The distance between the fixing points is defined by the length of the chord ab which is equal to bc and ac. In an ideal case, when the axes of couplings 10 and 11 and the rotor axis O*O* coincide, the fixing points a, b and c are located on the circle 4. Accordingly, it is possible to calculate the maximal distance between the fixing points:
where R is the radius of the rotor. Taking into account the couplings position error defined by the angle β, the radius $r = O_a a$ of the circle circumscribed around the triangle formed by the fixing points a, b, and c is:

$$ r = \frac{\sqrt{3}}{3} l_{\alpha_{\max}}^\beta, $$

where $l_{\alpha_{\max}}^\beta$ is the maximal distance between the fixing points, taking into account the position error angle β. On the other hand,

$$ O_a a = (R \cos \alpha - R \sin \alpha \cdot \tan \beta) \cos \beta. $$

By substituting the expression (3) into (2), we obtain the following formula of the maximal distance between the fixing points:

$$ l_{\alpha_{\max}}^\beta = \sqrt{3}(R \cos \alpha - R \sin \alpha \cdot \tan \beta) \cos \beta $$

Assuming that angle β is small, the formula (4) will be as follows:

$$ l_{\alpha_{\max}}^\beta \approx \sqrt{3}R \cos \alpha - \sqrt{3}R \cos \alpha \sin \alpha \approx l_{\alpha_{\max}}^\beta - \sqrt{3}R \sin \alpha. $$

The expressions (4) and (5) show the dependence of the technological device parameter (the maximal distance between the fixing points) on the rotor characteristic (latitude angle of image location). For example, for the rotor radius of 5 mm, the image location latitude angle of 57° (which correspond to electrostatic and cryogenic gyroscope rotors), and the couplings position error of 5°, the maximal distance between the fixing points is 4.1 mm. Thus, using the presented calculations, it is possible to exclude the location of the fixing points from the image zone by varying the distance between the needle supports.

2. Influence of fixing scheme on rotor imbalance

Considering the fixing scheme, the position of the supports is asymmetrical relative to the rotor. The coupling with three needle supports has a shielding effect during the deposition process in the area of its location. This area can be represented as a spherical segment described by the angle θ_{\max}, where the coating thickness deviates from the nominal value (Fig. 2).

The radius of the rotor with thin film can be presented by following relationship:

$$ R(\theta) = \begin{cases} R_p + h - \Delta h \cos^2 (\theta - \theta_{\max}) \theta < \theta_{\max} \\ R_p + h, \theta > \theta_{\max}. \end{cases} $$

Fig.1. Rotor fixing scheme. 1 – rotor; 2 – contrast image zone limited by angle α; 3 – spherical segment free from contrast images; 4 – limiting circles of contrast image zone; β – angle of couplings position error; 5 – zone of fixing points location (taking into account the error β); 6, 7, 8, 9 – needle supports; 10, 11 – couplings.

Fig.2. Rotor with coating thickness deviation caused by shielding effect. 1 – rotor with a radius R_p before deposition; 2 – thin film.
where R_p is the radius of the rotor after mechanical processing; h is the film thickness (in the zone free from shielding effect); Δh is thickness deviation.

The shielding effect leads to mass center displacement. The expression describing the post-deposition imbalance caused by the mass center z displacement is as follows:

$$
\varepsilon_k = \frac{1}{M_0} \int_{V_z} z \rho dV = \frac{1}{M_0} \left(\int_{V_{sphere}} z \rho_{rot} dV - \int_{V_{film}} z \rho_{film} dV \right)
$$

where V_z is the volume of the rotor with thin film; M_0 is the mass of the rotor; ρ_{rot} is the density of the rotor material; and ρ_{film} is the density of the thin film material.

The first integral from (6) is solved as $M_0 \varepsilon_0$, where ε_0 is the initial imbalance of the rotor after mechanical processing. Neglecting the elements with Δh being to the power higher than the first, the expression (6) has the form:

$$
\varepsilon_k \approx \varepsilon_0 - \frac{1}{M_0} \rho_{film} 2\pi (R_p + h) \Delta h \frac{\pi^2 - \pi^2 \cos(\theta_{max}) - 2\theta_{max}^2}{8(\pi^2 - \theta_{max}^2)}
$$

(7)

Upon introducing the function Q depending on the angle θ_{max}:

$$
Q(\theta_{max}) = \frac{\pi^2 - \pi^2 \cos(\theta_{max}) - 2\theta_{max}^2}{2(\pi^2 - \theta_{max}^2)}
$$

the expression (7) is:

$$
\varepsilon_k \approx \varepsilon_0 - \frac{1}{M_0} \rho_{film} \frac{\pi}{2} (R_p + h) \Delta h \cdot Q'(\theta_{max}),
$$

(8)

where M_0 is the mass of the rotor, defined as $\rho_{rot} V_z$.

In the expression (8), the angle function $Q(\theta_{max})$ and the densities of the rotor and film materials have a significant influence on the difference between the initial and post-deposition imbalance. In case of rotors in electrostatic and cryogenic gyroscopes, where the densities of the beryllium and carbon substrates are approximately equal (1.85 g/cm3 [6] and 1.8-2.1 g/cm3 [7], respectively), the densities of the film material have higher influence. For the electrostatic gyroscope rotor, the film material is titanium nitride with the density of 5.44 g/cm3, and for the cryogenic gyroscope rotor, it is niobium with the density of 8.5 g/cm3 [8]. The requirement for final imbalance for electrostatic and cryogenic gyroscope rotors is not more than 0.02 μm [9] and 0.05 μm [10], respectively. The dependence of the difference between the initial and post-deposition imbalance on the thickness deviation for different angles θ_{max} for electrostatic and cryogenic gyroscope rotors is presented in the Fig.3.

Fig.3. Dependence of the difference between the initial and post-deposition imbalance on the thickness deviation and different angles θ_{max}.

3
As can be seen in the Fig. 3, the value of imbalance difference increases with the growth of the angle θ_{max} defining the shielding effect. Thus, the reduction of the distance l_β between the fixing points will provide lower shielding effect and, therefore, less change of imbalance during the deposition. Also, higher density of niobium material leads to increased imbalance, so the shielding effect has a more significant impact on cryogenic gyroscope rotor parameters.

However, this effect can be used as a method of imbalance correction after the mechanical processing in a range where thickness deviation Δh does not cause the shape deviation above the required value. In this case, the rotor imbalance vector is orientated towards the coupling with three needle supports.

Conclusions
The fixing scheme of spherical rotors during the deposition process has been considered. The calculation of position of fixing points located in the zone free from contrast images has been presented. The dependence of the technological device parameters on the rotor characteristics has been obtained. The suggested calculations and scheme make it possible to minimize the rotor position alignment error and thus, to eliminate local defects during laser marking process.

The shielding effect of the fixing scheme on the spherical rotor imbalance has been studied. The dependence of the rotor post-deposition imbalance variation on the density of the rotor and film material and on the angle defined by the fixing elements position has been shown. The obtained results increase the technological possibilities due to the use of the revealed dependence in decreasing the imbalance variation and correcting the imbalance after previous mechanical processing operation.

REFERENCES

[1] Egorov, A.V, Landau, B.E., Levin, S.L. and Romanenko, S.G., Rotor motion in a strapdown electrostatic gyro onboard an orbiting spacecraft, Gyroscopy and Navigation, 2012, no. 3, pp. 144–151.
[2] Yulmetova, O.S. and Tumanova, M.A., Laser marking of contrast images for optical read-out systems, Journal of Physics: Conference Series, 2017, no. 917
[3] Levin, S.L., Mashichev, V.A., Svyaty, V.V., Stepchenko, M.V., Tsvetkov, V.N., Chesnokov, P.A. and Scherbak A.G., Results of development of the construction and technology of cryogenic gyroscope element production, Proceedings of the 30th Conference on Gyroscopic Devices in Memory of N.N. Ostryakov, 2016, pp. 99–106 (in Russian).
[4] Fomichev, A.M., Yulmetova, O.S., Belyaev, S.N. and Scherbak A.G., Patent RU 2555699, 2015.
[5] Yulmetova, O.S., Scherbak, A.G., Filippov, A.Yu., Landau, B.E., Belyaev, S.N., Fomichev, A.M. and Leonova, G.G., Patent RU 2591748, 2016.
[6] Naboychenko, S., Yefimof, N.A., Handbook on Non-Ferrous Metal Powders, 2018.
[7] Tatarinov, V.F., Patent RU 2263488, 2002.
[8] Gasik, M., Handbook on Ferroalloys, 2013.
[9] Yulmetova, O.S., Tumanova, M.A. and Scherbak, A.G., Investigation on correcting process on spherical rotor imbalance at thin film deposition stage, Scientific and Technical Journal of Information Technologies, Mechanics, and Optics, 2017, vol.17, no. 6, pp.1045 – 1051.
[10] Mahaev, E.A., Chesnokov, P.A., Ryabova, L.P, Scherbak, A.G., Kuznetsov, S.A. and Martushov, G.G., Development of construction and production technology of cryogenic gyroscope rotor, Proceedings of the 30th Conference on Gyroscopic Devices in Memory of N.N. Ostryakov, 2016, pp.116–123 (in Russian).