Optimizing Resource Allocation and VNF Embedding in RAN Slicing

Tu N. NguyenQ, Senior Member, IEEE, Thinh V. LeQ, Manh V. NguyenQ, Hoa N. NguyenQ, and Son Vu

Abstract—5G radio access network (RAN) with network slicing methodology plays a key role in the development of the next-generation network system. RAN slicing focuses on splitting the substrate’s resources into a set of self-contained programmable RAN slices. Leveraged by network function virtualization (NFV), a RAN slice is constituted by various virtual network functions (VNFs) and virtual links that are embedded as instances on substrate nodes. In this work, we focus on the following fundamental tasks: i) establishing the theoretical foundation for constructing a VNF mapping plan for RAN slice recovery optimization and ii) developing algorithms needed to map/embed VNFs efficiently. Specifically, we propose four efficient algorithms, including Resource-based Algorithm (RBA), Connectivity-based Algorithm (CBA), Group-based Algorithm (GBA), and Group-Connectivity-based Algorithm (GCBA) to solve the resource allocation and VNF mapping problem. Extensive experiments are also conducted to validate the robustness of RAN slicing via the proposed algorithms.

Index Terms—RAN slicing, VNF embedding, resource allocation.

I. INTRODUCTION

In recent years, Radio Access Network (RAN) slicing has become one of the most promising architectural technologies for the forthcoming 5G era [1], [2]. RAN slicing completely overturns the traditional model of a single ownership of all network resources and brings a new vision where the physical infrastructure resources are shared across many RAN slices. Each slice built on top of the underlying physical RAN (substrate) is a separate logical mobile network, which delivers a set of services with similar characteristics and is isolated from others [3], [4], [5]. Leveraged by network function virtualization (NFV), a RAN slice is constituted by various virtual network functions (VNFs) and virtual links that are embedded as instances on substrate nodes [6], [7]. RAN enforcement mechanisms enable a highly efficient resource management service and maximizes the resources configured [8]. Efficient resource allocation and VNF embedding serve as one of the critical aspects in RAN slicing technologies [9], [10]. The resource allocation and VNF embedding problem is considered under a variety of constraints [8], [11].

Motivation: Due to the complexity of the RAN slicing, existing configuration schemes1 in RAN slicing just focus on resource allocation [12], [13], [14]. However, a RAN enforcement problem, in fact, cannot be addressed by only considering the resource allocation but also needs to consider the relation between the substrate nodes. The relations between VNFs decide the ways in which the VNFs will be mapped into the substrate nodes. In addition, because of the connection between VNFs, then bandwidth requirement of the virtual links between VNFs [15], [16] needs to be considered as well. None of existing work fully considers above factors nor do they attempt to consider the interdependency property to mitigate the impact of the configuration process on the entire network.

Contributions: In this work we propose a new RAN enforcement, namely RAN slicing-configuration (RS-configuration) that overcomes the drawbacks of the existing works to provide an optimal mapping plan for VNFs onto the substrate network. In particular, the RS-configuration will provide an ordered set of mappings of VNFs onto substrate nodes. The RS-configuration will consider not only availability of substrate’s resources but also the interdependence between all possible mappings. Specifically, this paper focuses on the following aspects: i) we propose to develop the theoretical model for constructing a RS-configuration for VNF mapping; ii) designing algorithms needed for mapping VNFs efficiently; and iii) conducting extensive experiments to validate the performance of the proposed model and algorithms.

Organization: We organize the paper as follows. In Section II, we introduce the background of RAN Slicing. In Section III, the network model as well as the research problem are presented. Details of the proposed resource allocation algorithms are shown in Section IV. In Section VI, we discuss the experiment results. Finally, we make key concluding remarks in Section VII.

II. RAN SLICING AND CURRENT CHALLENGES

In order to focus on discussing the involved algorithmic problems, we present a generic architecture that is depicted in Fig. 1. The architecture in the figure shows the interactions

1Some other works refer to them as RAN enforcement.

Manuscript received 28 December 2022; revised 28 May 2023; accepted 11 September 2023. Date of publication 26 September 2023; date of current version 15 April 2024. This research was supported in part by U.S. NSF grants CNS-2103405 and AMPS-2229073. A short version of the paper has been accepted for publication at the 2021 IEEE GLOBECOM [DOI: 10.1109/GLOBECOM46510.2021.9685958]. The associate editor coordinating the review of this article and approving it for publication was Z. Zhu.

(Corresponding author: Tu N. Nguyen.)

Tu N. Nguyen, Thinh V. Le, and Manh V. Nguyen are with the Department of Computer Science, Kennesaw State University, Marietta, GA 30060 USA (e-mail: tu.nguyen@kennesaw.edu).

Hoa N. Nguyen is with the Department of Information Systems, VNU University of Engineering and Technology, Hanoi 100000, Vietnam.

Son Vu is with the Department of Computer Science, Iowa State University, Ames, IA 50011 USA.

Digital Object Identifier 10.1109/TNSM.2023.3319309

1932-4537 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
of one (or more) mobile network operator(s) (MNOs) with multiple enterprises. The key aspect of RAN slicing is that the role of the MNO is to coordinate and allocate resources of the substrate network to ensure the harmonic coexistence of multiple RAN slices, while the role of the enterprise is to place slice requests and then manage the provided slices [6], [17], [18], [19]. In particular, to prepare for a new slice initialization, the enterprise must first determine the required slice functionality and resources needed for VNFs of the requested slice. It is envisioned that slice templates will be available for the most common types of services [20], [21], [22]. Thus, the enterprise may select the slice template that fits its purpose and parameterize it according to its needs. More specifically, a RAN slice that is independent from others consists of a set of VNFs. Upon receiving requests from the enterprise, the MNO works with the “RS-configuration” (RAN enforcement) to allocate the substrate network resources (e.g., resource blocks in long-term evolution (LTE)) to VNFs and virtual links between VNFs, and provide an appropriate mapping plan, according to the proffered demand, RAN policy, connectivity, and available spectral resources of the substrate nodes, also called resource blocks (RBs).

Efforts have been deployed to address the RAN resource allocation problem, which can primarily be classified into two categories. The first category is represented by conventional methodologies, which are expounded in various studies such as those by [23], [24], [25], [26], [27]. These traditional strategies typically propose heuristic algorithms (e.g., D-ViNE [14]). The second category encompasses machine learning (ML) approaches [28], [29], [30]. Reinforcement learning (RL) has gained considerable attention due to the limitations of traditional methods in managing the inherent complexity of the problem. However, these approaches tend to consider only the available resources of the substrate network to design a mapping plan and disregard the VNF connectivity and bandwidth requirements. Again, a mapping plan for VNFs will not only hinge on substrate nodes resource allocation but also rely on the VNF connectivity requirement and bandwidth requirements of the VNF links [15], [16], [31], [32]. In order to be able to support novel services in a large-scale system, a more flexible and comprehensive RAN configuration scheme is needed to embed VNFs in the substrate nodes.

Unfortunately, existing works [12], [13], [14], [33] consider constructing mapping plans for VNFs by considering only available resources, and this may cause an internal fragmentation in the available resources of the substrate network. In other words, available resources are sufficient but not eligible for mapping more VNFs onto the substrate nodes due to not meeting the bandwidth and connectivity requirements [34], [35]. This step requires considerations of the interdependency property in the RAN slicing and efficient algorithms for mapping VNFs onto the substrate nodes. The algorithmic considerations of this step are described in the following sections of this paper. Based on the solution to this problem, the MNO can embed more VNFs in the substrate network using SDN and NFV technology [6], [36].

III. NETWORK MODEL AND RESEARCH PROBLEM

In the following sections, the basic mathematical notations are initially introduced and simple examples are used to present the key ideas behind the proposed RS-configuration paradigm and illustrate its advantages over the conventional resource allocation-based enforcement algorithm in Section III-A. We then provide a general problem formulation and highlight the major objectives of the proposed paradigm in Section III-B.

A. Network Model: Basic Notations and Illustration

Given a substrate network $G^S = (N^S, E^S)$, let N^S and E^S denote the set of substrate nodes and links, respectively. Considering a node $s \in N^S$, the total available resources at node s is defined as R_s. Namely, any node $s \in N^S$ can allocate a maximum amount R_s of resources to VNFs. A VNF in a specific slice is not available and accessible by other network slices for the isolation purpose [37], [38], [39].

Let G^V be the set of RAN slices running over the substrate network G^S, where $G^V = \{ G^V_1, G^V_2, \ldots, G^V_\ell \}$. For emphasis, we will denote a single RAN slice as G^V_i (1 $\leq i \leq \ell$) and drop i when the context is clear. We define a RAN slice $G^V_i = (N^V_i, E^V_i) \in G^V$, where N^V_i and E^V_i are the set of VNFs and the set of virtual links between VNFs, respectively.

For any VNF $u \in N^V$, it needs an amount R_u of available resources at a substrate node to be embedded. For any virtual link $(u, v) \in E^V$, it requires a bandwidth $b_{(u,v)}$ for data flows between VNF u and VNF v. Likewise, instead of making the entire substrate network G^S available for routing traffic of all data flows, we consider a more general case: we are restricted to the substrate network G^S with an available capacity constraint matrix C for all substrate links $(s, t) \in E^S$, which specifies the maximum bandwidth $C_{(s,t)}$ that can be
allocated to all virtual links mapped onto \((s, t)\) \(s\). We introduce a binary variable \(\phi\). If \(\phi_{u}^{s} = 1\), we say that the VNF \(v\) is currently embedded at the substrate node \(t\), and \(\phi_{u}^{s} = 0\) otherwise. Furthermore, we also use a binary mapping variable \(M_{s}^{u}\) to indicate the decision that the VNF \(u\) is mapped onto the substrate node \(s\) when \(M_{s}^{u} = 1\), and \(M_{s}^{u} = 0\) otherwise.

In the first place of setting up the network, all VNFs must be mapped (embedded) onto substrate nodes. To ensure that all VNFs will be embedded, the value of the binary mapping variable can be obtained as follows:

\[
\sum_{s \in N^{S}} M_{s}^{u} = 1, \quad \forall u \in \bigcup_{i=1}^{\ell} N^{V_{i}} \tag{1}
\]

However, due to the limited capacity at substrate nodes (available resources) and links (maximum bandwidth), a VNF \(u\) can actually be mapped onto a substrate node \(s\) if the available resources at \(s\) are sufficient \((R_{u} \leq R_{s})\) and meet bandwidth and connectivity conditions such that \(b_{j(u,v)} \leq C_{(s,t)}\), \((s, t) \in E^{S}\) for all \(s, t \in N^{S}\), \(v \in N_{u}\), and \(\phi_{u}^{v} = 1\), where \(N_{u}\) is the set of VNF \(u\)'s neighbors. In addition, we use a variable \(\psi_{(x,v)}\) to represent a simultaneous mapping of two VNFs \(u \) and \(v\) onto two substrate nodes \(x \) and \(t\), respectively. If both VNFs \(u \) and \(v\) are mapped to nodes \(s \) and \(t\) respectively \(i.e., M_{s}^{u} = M_{t}^{v} = 1\) then \(\psi_{(u,v)}^{(s,t)}\) should be equal to 1. On the other hand, if either VNF \(u\) is not mapped to node \(s\) or VNF \(v\) is not mapped to node \(t\), then \(\psi_{(u,v)}^{(s,t)}\) should be 0. In particular, \(M_{s}^{u} + M_{t}^{v} - \psi_{(u,v)}^{(s,t)} \leq 1\).

Fig. 2(a) shows an example of VNFs embedded in substrate nodes of the RAN slicing. The substrate network consists of five base stations (BSs). Each BS provides four resource blocks (RBs) (two frequency units during two-time slots) to RAN slices. In the figure, there are also two RAN slices, and each consists of various VNFs. Both slices utilize the same substrate cellular network resources. We consider the VNF’s resource requirement, as each needs a certain amount of resources at a substrate node to be embedded, where \(R_{u1} = 2\) RBs, \(R_{u1} = R_{p2} = R_{p3}\) and \(R_{p2} = 1\) RB (25% resources of a substrate node). In other words, if a VNF requires 25% of the spectrum resources, the substrate node should make 25% of the RBs to the VNF. In the figure, the solid link between any two VNFs in a slice indicates that they are neighbors \(e.g., (u_{1}, u_{2}), (p_{1}, p_{2}), (p_{1}, p_{3})\) and \((p_{2}, p_{3})\). Such a relation as above implies that for any VNF \(u \in \bigcup_{i=1}^{\ell} N^{V_{i}}\), the substrate nodes that the VNFs can be embedded in must be the substrate nodes or one of the neighbors of the substrate nodes on which the VNFs’ neighbors are embedded. This connectivity constrain make the VNF \(u_{1}\) cannot be embedded in the substrate node \(s_{1}\) even though there are sufficient resources.

As illustrated by the simple example above, existing works [40], [41], [42] that focus on mapping VNFs by considering only the available resource of substrate nodes may fail to fully embed all VNFs. Moreover, they cannot leverage the maximum number of VNFs embedded, resulting in malfunction in RAN slices. Therefore, it is vital to come up with efficient algorithms to handle this resources allocation and embedding processes. The resources allocation algorithms will allow us to attain higher flexibility and embedding performance simultaneously, without needing further resources. To illustrate how resources allocation are handled in this case, consider again the simple example in Fig. 2(b) with a mapping plan to embed VNFs following a strict order. The result is that all VNFs are successfully embedded in the substrate network. We remark that the embedding algorithm should guarantee that all mapped VNFs meet the bandwidth and connectivity requirements.

B. RS-Configuration: Research Problem

Clearly embedding VNF strategy will not only hinge on substrate nodes resource allocation but also rely on the substrate connection set \(E^{S}\) of the substrate network and the bandwidth requirement of the virtual links between VNFs. This is a key research challenge we will tackle in this paper. In particular, for an RS-configuration in a cellular network, we would like to explicitly account for the mapping plan of VNFs, with the goal of providing a high performance for RAN slicing-based applications in terms of resources allocation for embedding VNFs in substrate node. A high performance in this stage is reflected through the number of successfully embedded VNFs. This is in contrast to many existing studies where no recoverable and stable performance is assured under failures for RAN slicing-based applications, nor is any attempt made to mitigate the impact of the RAN configuration process on the entire network. We observe that, in general, the enhanced embedding performance is achieved at the expense of increased configuration units (more mappings) of the substrate network resources for all RAN slices.

INSTANCE: Suppose we are given a substrate network \(G^{S} = (N^{S}, E^{S})\) with a set of substrate nodes and links, respectively. Each substrate node \(s \in N^{S}\) can allocate to VNFs an amount \(R_{s}\) of resources. We consider a general case: we are restricted to the substrate network \(G^{S}\) with an available capacity constraint matrix \(C\) for all \((s, t) \in E^{S}\), which specifies the maximum bandwidth \(C_{(s,t)}\) that can be allocated to all virtual links mapped onto \((s, t)\). Also, a set of RAN slices \(G^{V} = \{G^{V_{1}}, G^{V_{2}}, \ldots, G^{V_{\ell}}\}\) is running over the substrate network \(G^{S}\). For any VNF, \(u \in N^{V_{i}}\) requires an amount \(R_{u}\).
of available resources at a substrate node to be embedded. For any virtual link \((u, v) \in E^V\), it requires a bandwidth \(b_{(u, v)}\) for data flows between two VNFs \(u\) and \(v\).

QUESTION: Does a mapping plan \((\mathcal{MP})\) for all VNFs exist in the RAN slicing, such that the number of successfully embedded VNFs is not less than \(k\)? Mathematically, we formulate the following RS-configuration optimization problem:

\[
\max_{\mathcal{MP}} \sum_{s \in S^N} \sum_{u \in U^s} M^u_s
\]

(2)

Here, the set of variables \(\mathcal{MP} = \{M^u_s\}\) represents one possible mapping/embedding plan solution for VNFs in the RAN slicing. The objective function is to maximize the total number of mappings of VNFs, which means that the number of VNFs embedded is maximized. In addition, to ensure that one VNF can only be mapped onto at most one substrate node, they must meet the mapping convergence constraint at the first end \(s\), the other end \(t\), and both ends simultaneously with the corresponding constraints:

\[
\sum_{t} \sum_{v} \psi_{(s, t)}^{(u, v)} = M^u_s
\]

(3)

\[
\sum_{s} \sum_{u} \psi_{(s, t)}^{(u, v)} = M^v_t
\]

(4)

\[
M^u_s + M^v_t - \psi_{(s, t)}^{(u, v)} \leq 1
\]

(5)

where \(s, t \in N^S\), \(u, v \in N^V\), and \(M^u_s, M^v_t, \psi_{(s, t)}^{(u, v)} \in \{0, 1\}\). Apart from enhancing the embedding performance, we believe that latency is another key performance metric that must be accounted for in the design of the mapping plan for the RS-configuration. For example, delayed packets can cause the TCP timeout, resulting in unnecessary packet retransmissions, thus reducing overall application throughput. We, therefore, desire to bound the bandwidth variability in the mappings of VNFs as follows:

\[
\sum_{u, v \in G^V} \mathcal{M}^2_{(u, v)} = 1
\]

\(6\)

Namely, the total allocated bandwidth on a substrate link does not exceed its link capacity. Likewise, the available resources at any substrate node \(s\) must be sufficient, that is:

\[
\sum_{u \in G^V} \mathcal{R}_u \leq \mathcal{R}_s, \forall s \in N^S
\]

(7)

On the other hand, to conserve the virtual connection between VNFs, the mapping must also meet the connectivity constraint in which for any mapping of a VNF \(u\) onto a substrate node \(s\) and the other VNF \(v\) onto the other substrate node \(t\), for all \((u, v) \in E^V\), \(s\) and \(t\) must be physically connected in the substrate network, that is, \((s, t) \in E^S\). Thus, the mapping plan achieves the goal of providing a good embedding performance for RAN slicing.

C. The Hardness of the RS-Configuration Problem

In this section, we show the hardness of the RS-configuration problem by first showing that a sub-problem of the RS-configuration, referred to as the Reduced RS-configuration (RRS-configuration) problem, is NP-hard. The RRS-configuration is the RS-configuration with \(\ell = 1\) that is there is only one network slice in the network, and \([N^S] = 1\) that is there is only one substrate node in the network. The problem is illustrated as follows:

INSTANCE: Given a substrate node \(s\) that can allocate to VNFs an amount \(R_s\) of resources. Also, a RAN slice \(G^V_s\) is running over the substrate node \(s\). For any VNF, u \(\in N^V_s\), requires an amount \(R_u\) of available resources at a substrate node to be embedded.

QUESTION: Does a mapping plan \((\mathcal{MP})\) for all VNFs exist in the RAN slicing, such that the number of successfully embedded VNFs is not less than \(k\)?

In order to address aforementioned question, we first use the knapsack problem [43] to show the hardness of the RRS-configuration problem. Then, the hardness of the RS-configuration problem is provided in Theorem 1.

Lemma 1: The RRS-configuration problem is NP-hard.

Proof: In the knapsack problem, each item \(i\) can be treated as a VNF \(u \in N^V_s\); the value \(c_i\) of each item \(i\) can be considered as the value \(R_u\) of each VNF; the knapsack with a capacity \(b\) is treated as the substrate node \(s\) with the capacity \(R_s\) in the network; and if we consider each item \(i\) has a weight \(a_i = 1\), the knapsack problem is also a RRS-configuration problem.

We have that the knapsack problem is a sub-problem of the RRS-configuration problem. Because the knapsack problem is NP-hard [43], the RRS-configuration is also NP-hard. This completes the proof.

Theorem 1: The RS-configuration problem is NP-complete.

Proof: By Lemma 1, because the RRS-configuration problem, which is a sub-problem of the RS-configuration problem, is NP-hard, the RS-configuration problem is, therefore, NP-hard. In addition, it is clear that the RS-configuration problem belongs to the NP class. We therefore have that the RS-configuration problem is NP-complete.

IV. RESOURCE ALLOCATION ALGORITHMS

Equation (2) lays out the RS-configuration optimization problem thereby giving a better understanding of the design of the resource allocation algorithms which achieve the given optimization. Since the RS-configuration optimization problem is NP-complete (shown in Section III-C), we propose two heuristic frameworks to solve the investigated problem: 1) we focus on leveraging a good embedding efficiency while maintaining the lowest possible time complexity, and 2) we consider the embedding efficiency as the vital requirement, and then try to maximize the number of embedded VNFs regardless the time complexity. In the following sections, the first two algorithms (i.e., the Resource-based Algorithm (RBA) and Connectivity-based Algorithm (CBA)) follow the first heuristic frameworks to solve the investigated problem: 1) we consider the embedding efficiency as the vital requirement, and then try to maximize the number of embedded VNFs regardless the time complexity. Thus, the mapping plan achieves the goal of providing a good embedding performance for RAN slicing.
Algorithm 1 Resource-Based Algorithm

Input: G^S, G^V
Output: \mathcal{MP}
1: Initializing an empty set of mappings: $\mathcal{MP} = \emptyset$.
2: Constructing a descending-order set \mathcal{L}^V of substrate nodes based on the available resource value $\mathcal{R}_t \forall t \in N^S$.
3: Construct a descending-order set \mathcal{L}^V of VNFs on the basis of Resources $\mathcal{R}_u \forall u \in N^V$.
4: while $\mathcal{L}^V \neq \emptyset$ do
5: Let u be an element in \mathcal{L}^V with highest value \mathcal{R}_u
6: EmbeddingVNF(u, \mathcal{L}^S, \mathcal{MP})
7: $\mathcal{L}^V = \mathcal{L}^V - \{u\}$
8: end while
9: return \mathcal{MP}

The motivation behind the separation of the embedding process into different cases is due to the different embedding constraints imposed upon a VNF in both cases. In the case one, the VNF u is only subject to the resource constraint $\mathcal{R}_t \geq \mathcal{R}_u$. This is because there are no existing neighbors embedded onto the substrate network for the VNF u to ensure connectivity and bandwidth constraints for. Upon checking for the satisfaction of the resource constraint in line 4, the embedding process is completed and the mapping variable \mathcal{M}^u_i is added to the mapping plan set \mathcal{MP} (lines 5–6). In case two, i.e., when u has at least one neighbor embedded onto a substrate node, the connectivity and bandwidth constraints need to also be satisfied to embed a VNF onto a substrate node. Firstly, the connectivity is achieved by constructing the descending-order set $\mathcal{L}^S_{N_u}$, containing the substrate nodes onto which the neighbors of u (\mathcal{N}_u), and the common neighbors of nodes in \mathcal{N}_u are hosted (line 9). The representation of the set $\mathcal{L}^S_{N_u}$ is expressed by the following mathematical relation:

$$\mathcal{L}^S_{N_u} = \{s_i, \ldots, s_j\} \bigcup \{N_{s_i}, \ldots, N_{s_j}\} \bigcap \mathcal{M}^u_{s_p} = 1 \tag{8}$$

where $\mathcal{R}_{s_i} \geq \mathcal{R}_{s_q}$ for all $u_p \in \mathcal{N}_u$ and $s_q \in \{s_i, \ldots, s_j\}$. Once the set $\mathcal{L}^S_{N_u}$ has been constructed, we select the first substrate node t_i in $\mathcal{L}^S_{N_u}$, which satisfies the resource and bandwidth constraint to host the VNF u (line 10). If the substrate node t_i exists, VNF u is embedded onto t_i and $\mathcal{M}^u_{t_i}$ is added to \mathcal{MP} (lines 11–13). Hence, VNFs within RAN slices are embedded onto the substrate network and the mapping plan \mathcal{MP} is determined.

B. Connectivity-Based Algorithm (CBA)

While the set \mathcal{MP} is obtained by RBA, we consider a second algorithm, Connectivity-based Algorithm (CBA) that can be done with the same computational complexity as well as can provide a better embedding performance. The essential idea behind CBA is to consider the set of VNF \mathcal{L}^V based on the degree value $|\mathcal{N}_v|$ of all VNF $v \in N^V$. This allows us to embed v with the highest degree value $|\mathcal{N}_v|$ to be embedded onto the substrate node s which has the highest available remaining resources \mathcal{R}_s. The newly ordered set \mathcal{L}^V would increase the possibility of VNFs in the set $\mathcal{L}^S_{N_v}$ to be embedded onto the substrate node set \mathcal{N}_s, where $\mathcal{N}_s = s \cup \mathcal{N}_v$.

In Algorithm 2, to obtain the mapping plan \mathcal{MP} the process is still hinged on the three main steps we presented in the previous section. However, we try to improve the performance of the matching of the VNFs and substrate nodes by using a different metric. Specifically, we construct the descending-order set \mathcal{L}^V based on the degree value $|\mathcal{N}_v|$ of every VNF $v \in N^V$ rather than the resource value \mathcal{R}_v (line 3 in the pseudocode of Algorithm 2). The following steps are similar to Algorithm 1, the construction of the descending-order set of substrate nodes \mathcal{L}^S is executed in line 2 while the procedure EmbeddingVNF determines the mapping plan set \mathcal{MP}.

C. Group-Connectivity-Based Algorithm (GCBA)

In the later section (Section VI) we test the performance of all proposed algorithms and it will be verified that
Algorithms 1 and 2 provide a good embedding efficiency within a fair time complexity. However, the RS-configuration’s objective function is not completely optimized due to the heuristic for the RBA and CBA being subject to the constraint of a low computational complexity. In this section we propose a high performance algorithm, referred to as Group-Connectivity-based Algorithm (GCBA) to attain the highest number of embedded VNFs, without being subject to the computational complexity constraint. GCBA achieves a good performance by considering VNFs in a specific list of clusters, namely L^V. We then find the best matching substrate group for a cluster set N_{u+} (refer to Section IV-B) $\forall N_{u+} \subseteq L^V$.

To embed the VNFs in a given cluster set (N_{u+}) onto the appropriate substrate node, GCBA performs the three step MP set generation process as follows:

1) Firstly, we construct the descending-order list of VNF cluster sets L^V based on the size of each cluster set.

2) We then construct the ordered-set of substrate nodes L^S per VNF u such that $R_t \geq R_u \forall t \in L^S$ and $u \in L^V$.

3) Finally, we embed the mutually exclusive cluster sets in L^V to the substrate network.

As specified in Algorithm 3, we construct the list of VNF cluster sets in line 2. This process is carried out by the iterative addition of the VNF cluster head v followed by its respective neighbor set N_v. The representation of the set L^V is expressed by the following mathematical relation:

$$L^V = \left[\{v_1 \cup v'_1\}, \{v_2 \cup v'_2\}, \ldots, \{v_k \cup v'_k\} \right]$$

where $|N_{v_i}| \geq |N_{v'_i}| \geq |N_{v_{i+1}}| \forall v'_i \in N_{v_i}, v'_j \in N_{v_j}$, and $v'_k \in N_{v_{k+1}}$. We construct the set of substrate nodes L^S, containing the substrate nodes which satisfy the resource constraint $R_t \geq R_u \forall t \in L^S$ and $u \in L^V$. To optimize the embedding performance, we define the neighborhood resource cumulative property $x(T)$ for all VNFs and substrate nodes in order to improve the selection process of the best possible substrate node. Given a VNF v and a substrate node $s \forall v \in L^V$ and $s \in L^S$, the $x(T)$ property for v and s is computed as follows:

$$v(T_R) = R_u + \sum_{v' \in N_v} R_{v'}$$

$$s(T_R) = R_s + \sum_{s' \in N_s} R_{s'}$$

In equation (10), the replacement of x in $x(T)$ with v and s along with addition of R and R as subscripts to T, allows for greater clarity while determining which element the $x(T)$ property is being computed for. In procedure EmbeddingGroup, we evaluate the $x(T)$ property (lines 3–4) after the embedding process is separated into two cases. For each case, the substrate node is picked based on $x(T)$.

Specifically, we first compute the difference $s(T_R) - v(T_R)$ (lines 6 and 11), after that the substrate node s, with the positive difference value closest to 0 is selected. In the case of only negative differences, the substrate node with the smallest negative difference is selected for embedding. The idea behind this metric (computing the difference) is to find the
substrate node s with the highest probability of supporting the VNF u as well as the neighbor set N_u. We select the substrate node with the difference value closest to 0 to minimize the possibility of the available resources being wasted. In addition, prioritizing the positive difference ensures maximum embedding (based on the resource constraint) of all the VNFs u' in $N_{u'} +$, for all $N_{u'} + \subseteq \mathcal{L}^V$. Finally, if \mathcal{L}^V consists of substrate nodes producing solely negative differences, the substrate node with the smallest difference is chosen so as to increase the probability of the maximum number of VNFs being embedded. The three steps to obtain the optimal $\mathcal{M}P$ set are therefore completed, thereby determining $\mathcal{M}P$.

D. Group-Based Algorithm (GBA)

Similar to Algorithm 2’s improvement in the embedding efficiency as compared to Algorithm 1, can we achieve a greater optimization over the objective function in the RS-configuration (equation (2)) in comparison to Algorithm 3? We propose the Group-based Algorithm (GBA) to further enhance the optimization. To achieve the enhanced optimization, we chance the basis of ordering the set of VNFs \mathcal{L}^V. Instead of ordering the VNF cluster sets based on the basis of the degree of cluster heads, descending-order cluster sets are constructed, based on the neighborhood resource cumulative value $(s(T))$ of the cluster heads. In doing so, the cluster sets with the greatest isolation of resources are embedded onto the substrate layer first.

As shown in Algorithm 4, the step one (line 2) shows the improvement of GBA comparing to GCBA. Steps two and three, similar to Algorithm 3, are carried out with the help of the procedure EmbeddingGroup. The following steps are strictly followed the three steps of the embedding process. Hence, the $\mathcal{M}P$ set is obtained.

V. TIME COMPLEXITY

Theorem 2: The time complexity of the procedure EmbeddingVNF is bounded in $O(|\mathcal{N}V| \times |\mathcal{N}^S|) + O(|E| \times |\mathcal{E}^S|)$.

Procedure 2 EmbeddingGroup $u, \mathcal{M}P$

1: Construct a set \mathcal{L}^S of substrate nodes such that $\mathcal{R}_u \geq \mathcal{R}_u \forall v' \in N^S$.
2: Evaluate the value $s(T_R)$ for all substrate nodes s in \mathcal{L}^S.
3: Evaluate the value $u(T_R)$
4: if $\mathcal{M}_u = 0 \forall v' \in N_u, t' \in N^S$ then
5: Let t be a substrate node in \mathcal{L}^S with the minimum difference $s(T_R) - u(T_R) \forall s \in \mathcal{L}^S$.
6: $\mathcal{R}_t = \mathcal{R}_t - \mathcal{R}_u$
7: $\mathcal{M}P = \mathcal{M}P \cup \{\mathcal{M}_u\}$
8: else
9: Construct the set of $\mathcal{L}_{u +}$ substrate nodes in \mathcal{L}^S and their common neighbors, onto which substrate nodes are hosting $v' \forall v' \in N_u$.
10: Let t_i be a substrate node in $\mathcal{L}^S_{u +}$ with minimum difference $s''(T_R) - v(T_R)$ and $b_{u,v} \leq \mathcal{C}(t_i, t_j) \forall v'' \in \mathcal{L}^S_{u +}, v \in N_u, v' \in N_u, t_j \in N_{t^+_i}$, where $N_{t^+_i}$ denotes set of t_i’s neighbors and itself.
11: if $\exists t_i$ then
12: $\mathcal{R}_t = \mathcal{R}_t - \mathcal{R}_u$
13: $\mathcal{M}P = \mathcal{M}P \cup \{\mathcal{M}_u\}$
14: end if
15: end if
16: return $\mathcal{M}P$;
17: end procedure

Proof: In the procedure EmbeddingVNF, the maximum number of VNF u’s neighbors is $|\mathcal{N}V| - 1$, so that it requires $O(|\mathcal{N}V|)$ to determine if the VNF u has a neighbor already embedded onto a substrate node. If the VNF u has at least one already embedded neighbor, the maximum number of substrate nodes we have to check for satisfaction of the connectivity constraint is $|\mathcal{N}^S|$. Therefore, obtaining the substrate nodes in the set $\mathcal{L}^S_{u +}$ requires $O(|\mathcal{N}V| \times |\mathcal{N}^S|)$, since we consider each of the neighbors of the VNF u ($|\mathcal{N}V| - 1$), the links between the VNF u and the neighbors of u ($|\mathcal{N}V| - 1$), and the substrate nodes which satisfy the connectivity constraint for the VNF u and its neighbors ($|\mathcal{N}^S|$). To achieve the descending-order sorting of the set $\mathcal{L}^S_{u +}$, we utilize the MergeSort mechanism that requires $O(|\mathcal{N}^S| \times \log |\mathcal{N}^S|)$ (best-worst case) to construct the set $\mathcal{L}^S_{u +}$. Likewise, it requires $O(|E| \times |\mathcal{E}^S|)$ for checking the satisfaction of the bandwidth constraint. Finally, for determining the substrate node which satisfies the resource requirement, $O(|\mathcal{N}^S|)$ is required. Hence the time complexity of the procedure is given as $O(|\mathcal{N}V| \times |\mathcal{N}^S|) + O(|E| \times |\mathcal{E}^S|)$.

Theorem 3: The time complexity of the RBA is bounded in $O(|\mathcal{N}V| \times (|\mathcal{N}V| \times |\mathcal{N}^S|) + O(|E| \times |\mathcal{E}^S|))$.

Proof: In the RBA, the descending-order sorting of the set of substrate nodes \mathcal{L}^S requires $O(|\mathcal{N}^S| \times \log |\mathcal{N}V|)$. Similarly, to construct the descending-order set of VNFs \mathcal{L}^V, requires $O(|\mathcal{N}V| \times \log |\mathcal{N}V|)$. Finally, the while loop iterates over the VNFs in \mathcal{L}^V, and for each iteration, the
procedure EmbeddingVNF is executed. Considering that the number of VNFs in \(L^V \) is \(|N^{V_i}|\), the while loop requires \(O(|N^{V_i}| \times (|N^{V_i}| \times |N^S|) + |E^{V_i}| \times |E^S|)) \) to determine the mapping plan. Hence, the time complexity of the RBA is given as \(O(|N^{V_i}| \times (|N^{V_i}|^2 \times |N^S|) + |E^{V_i}| \times |E^S|)) \).

Theorem 3: The time complexity of the CBA is bounded in \(O(|N^{V_i}| \times (|N^{V_i}| \times |N^S|) + |E^{V_i}| \times |E^S|)) \).

Proof: In the procedure EmbeddingGroup, we first construct the set \(\{i \in N^S \mid x \} \) which has a neighbor already embedded. Computing the \(s(T_R) \) property for the VNF \(u \), we require \(O(N^{V_i}) \). As shown in Theorem 2, we require \(O(|N^{V_i}|) \) to determine whether the VNF \(u \) has a neighbor already embedded. Computing the differences of the \(x(T) \) property’s of the substrate nodes in \(L^S \) and the VNF \(u \) along with finding the substrate node \(t \) with the minimum difference would require \(O(|N^S|) \). To construct the set \(L^S_{N^S + 1} \), \(|N^{V_i}| \times |N^S| \) would be required (similar to 2). Lastly, we consider the substrate node \(t_i \) in \(L^S_{N^S + 1} \), with the minimum difference of the \(x(T) \) property’s of the substrate nodes (in \(L^S_{N^S + 1} \) and the VNF \(u \), and satisfies the bandwidth constraint. To obtain the substrate node \(t_i \), we require \(O(|E^{V_i}| \times |E^S|) + O(|N^S|) \). Hence the time complexity of the procedure is given as \(O(|N^{V_i}|^2 \times |N^S|) + |E^{V_i}| \times |E^S|)) \).

Theorem 4: The time complexity of the GCBA is bounded in \(O(|N^{V_i}|^2 \times (|N^{V_i}|^2 \times |N^S|) + |E^{V_i}| \times |E^S|)) \).

Proof: In the GCBA, to construct the set of VNF cluster sets \(L^V \), requires \(O(|N^{V_i}| \times \log |N^{V_i}| + O(|N^{V_i}|^2) \). The while loop iterates over the VNF cluster sets in \(L^V \), and each iteration executes the for loop which iterates through the cluster sets \(N_{y_i} \). The procedure EmbeddingGroup is called within each iteration of the for loop, thereby resulting in the requirement of \(O(|N^{V_i}|^2 \times (|N^{V_i}|^2 \times |N^S|) + |E^{V_i}| \times |E^S|)) \). Therefore, the time complexity of the GCBA is given as \(O(|N^{V_i}|^2 \times (|N^{V_i}|^2 \times |N^S|) + |E^{V_i}| \times |E^S|)) \).

Theorem 5: The time complexity of the procedure EmbeddingGroup is bounded in \(O(|N^{V_i}|^2 \times |N^S|) + O(|E^{V_i}| \times |E^S|)) \).

Proof: In the procedure EmbeddingGroup, we first construct the set of substrate nodes \(L^S \) which satisfy the resource constraint, requiring \(O(|N^S|) \). To evaluate the \(s(T_R) \) property, we require to traverse through a maximum of \(|N^S| \) substrate nodes, and for each substrate node the cumulative of \(|N^S| \) substrate nodes (at maximum) requires to be computed. Therefore, we require \(O(|N^S|^2) \) to compute the \(s(T_R) \) property for each substrate node in \(L^S \). Likewise, to evaluate the \(u(T_R) \) property for the VNF \(u \), we require \(O(N^{V_i}) \). In this case, network resources are constrained by the resource shortage condition, referred to as the **shortage case**. In this case, network resources are controlled as follows: for the number of substrate nodes, from the interval \([60, 100]\); for the number of resources for each substrate node, from the interval \([2, 10]\); for the number of network slices, from the interval \([2, 10]\); and for the number of VNFs on each slice, from the interval \([1, 10]\). In the following sections, Fig. 3 and Fig. 5 show the results in the “normal case” test, and Fig. 4 and Fig. 6 show the results in the “shortage case” test.

VI. Performance Evaluation

In this section, we present simulations to demonstrate our approaches’ efficiency by firstly implementing the proposed algorithms for constructing a embedding plan for RS-configuration through simulations. It is expected that the advantage of the algorithms will be manifested when the number of successfully embedded VNFs is significant high.

We consider the RAN slicing consisting of one substrate network and a variety of network slices. The number of network slices and the number of VNFs on each slice are randomly generated depending on the test case (we will present the details of setting in the following sections). The substrate network is composed of a random number of substrate nodes representing the number of data centers. Each is initialized with an amount of resources. It is feasible to create different embedding scenarios in the simulations and validate the simulation results. The first case is to test the feasibility of the proposed algorithms under the normal network condition that can provide reasonable resources for embedding VNFs into the substrate network, referred to as the **normal case**. In this case, we generate the number of substrate nodes from the interval \([60, 100]\), each is initialized with an amount of resources selected from the interval \([4, 8]\). In terms of the network slice, the number of network slices is randomly generated from the interval \([2, 10]\) and the number of VNFs on each slice is also randomly chosen based on the number of network slices from the interval \([10, 100]\).

In the second case, we generate the network topology with limited resources that can test the performance of the proposed algorithms under the resource shortage condition, referred to as the **shortage case**. In this case, network resources are controlled as follows: for the number of substrate nodes, from the interval \([60, 100]\); for the number of resources for each substrate node, from the interval \([2, 4]\); for the number of network slices, from the interval \([2, 10]\); and for the number of VNFs on each slice, from the interval \([1, 10]\). In the following sections, Fig. 3 and Fig. 5 show the results in the “normal case” test, and Fig. 4 and Fig. 6 show the results in the “shortage case” test.

A. Embedding Performance

We first test the embedding performance of the proposed algorithms by comparing the results in both normal and shortage case. Fig. 3 and Fig. 4 show the performance of the proposed algorithms in terms of number of embedded VNFs in the normal and shortage case, respectively.

Fig. 3(a) shows comparisons of the number of embedded VNFs when the number of substrate nodes ranges from 60 to 140. In the figure, GBA and GCBA provide the best
Fig. 3. Normal Case: total number of embedded VNFs when a) the number of substrate nodes ranging from 60 to 140, b) number of VNFs ranging from 160 to 240, c) k-connected substrate network with degree (k) ranging from 2 to 10 per substrate node, and d) k'-connected RAN slice with degree (k') ranging from 2 to 10 per VNF.

Fig. 4. Shortage Case: total number of embedded VNFs when a) the number of substrate nodes ranging from 60 to 140, b) number of VNFs ranging from 160 to 240, c) k-connected substrate network with degree (k) ranging from 2 to 10 per substrate node, and d) k'-connected RAN slice with degree (k') ranging from 2 to 10 per VNF.

The concept of cluster (interdependency) makes the GBA and GCBA to be the best in performing embedding VNFs. The differences are reflected through the neighborhood resource cumulative property $x(T)$ considered in both GBA and GCBA.

In Fig. 3(b) we test the performance of the proposed algorithms when the number of VNFs ranging from 160 to 240. The results are similar to Fig. 3(a) as GBA and GCBA still demonstrate a better performance than the CBA and RBA in terms of the total number of embedded VNFs. We realize that the higher the VNFs in the substrate network, the higher the number of VNFs is successfully embedded into the substrate network. It indicates that the algorithms perform more efficiently when having more resources in the network (higher number of VNFs).

In Fig. 3(c) shows comparisons of the test performance of the algorithms proposed for k, where k denotes the degree of every substrate node in the substrate network, which ranges from 2 to 10. In the figure, GBA and GCBA demonstrate a better performance with a higher total number of embedded VNFs when comparing to CBA and RBA. We also observe that the higher the degree of substrate nodes, the higher the number of VNFs embedded in the substrate network. In addition, there is higher efficiency in performance when the degree of substrate nodes is increased.

In Fig. 3(d) we analyze comparisons of the proposed algorithms with different k', in which k' denotes the degree of VNFs in RAN slices ranging from 2 to 10. GBA and GCBA continue to perform better when comparing CBA and RBA with the total embedded VNFs. We can evaluate that the lower the degree of VNFs in a RAN slice, the higher the number of VNFs successfully embedded in the substrate network. If the VNFs have a higher degree of VNFs, they demonstrate a lower embedding performance. In summary, the results in Fig. 3 show the performance of all algorithms in the “normal case” test. We test the proposed algorithms using different metrics, including varying the number of substrate nodes, changing the number of VNFs, adjusting the degree of substrate nodes (k) and the degree of VNF (k').

In Fig. 4 we test the performance of the proposed algorithms in the “shortage case” test to see how the shortage resource condition impacts to the number of VNF embedded in the network. Specifically, in Fig. 4(a) we compare the embedding performance of the proposed algorithms to that the number of substrate nodes ranging from 60 to 140. As shown in the figure, GBA and GCBA have the best efficiency performance with a higher total number of embedded VNFs. As mentioned in the previous analysis, both GBA and GCBA consider the neighborhood resource cumulative property $x(T)$. In addition, in GBA we evaluate the $x(T)$ for both virtual networks and substrate network while only the substrate network is evaluated with the $x(T)$ in GCBA. These metrics make GBA and GCBA perform better than CBA and RBA. In contrast, using CBA and RBA, the embedding performance is lower with a lower number of embedded VNFs. Note that for CBA and RBA, all VNFs are scheduled to be embedded by considering only the embedding status of the individual VNFs resource or connectivity constraint.

performance with a higher total number of embedded VNFs. During the embedding process, GBA and GCBA consider not only the required resources of a single VNF but also we take into account of the required resources of a cluster of VNFs. In addition, in the GCBA, we also consider the degree of VNFs (number of neighbors) when determining the mapping plan.
Fig. 5. **Normal Case**: total amount of available resources in the substrate network when (a) the number of substrate nodes ranging from 60 to 140, (b) number of VNFs ranging from 160 to 240, (c) \(k \)-connected substrate network with degree \((k) \) ranging from 2 to 10 per substrate node, and (d) \(k' \)-connected RAN slice with degree \((k') \) ranging from 2 to 10 per VNF.

Fig. 6. **Shortage Case**: total amount of available resources in the substrate network when (a) the number of substrate nodes ranging from 60 to 140, (b) number of VNFs ranging from 160 to 240, (c) \(k \)-connected substrate network with degree \((k) \) ranging from 2 to 10 per substrate node, and (d) \(k' \)-connected RAN slice with degree \((k') \) ranging from 2 to 10 per VNF.

Fig. 4(b) shows the impact of the number of embedded VNFs with respect to the number of VNFs ranging from 160 to 240. The total number of VNFs embedded in the substrate network is higher in GBA and GCBA. Therefore, the efficiency of RBA and CBA is lower as the total number of embedded VNFs is lower in the substrate network. As the algorithms demonstrate a greater efficiency performance when number of VNFs is increased. In Fig. 4(c) we analyze comparisons of the algorithms of number of embedded VNFs capability to \(k \), where \(k \) denotes the degree of each substrate node, which ranges from 2 to 10. GBA and GCBA exhibits a greater efficiency performance with a higher total number of VNFs embedded in the substrate network whereas, RBA and CBA have a lower total number of VNFs embedded in the substrate network. We observe that the greater the degree of substrate nodes, the better the number of VNFs embedded in the substrate network. It indicates that there is a greater efficiency performance when the degree of substrate nodes is greater. Fig. 4(d) shows comparisons of the total number of embedded VNFs to each \((k') \). The number of VNFs connected per RAN slice is denoted by \(k' \), ranging from 2 to 10. GBA and GCBA show a higher total number of embedded VNFs in the substrate network. In contrast, RBA and CBA have a fewer total number of embedded VNFs as they have a lower embedding efficiency. In addition, the proposed algorithms demonstrate a lower embedding performance when the degree of VNF is higher.

B. Resource Utilization Efficiency

In this section we conduct simulations to evaluate the algorithms in terms of the resource utilization efficiency in both scenarios (normal case in Fig. 5 and shortage case in Fig. 6). Fig. 5(a) shows comparisons of the amount of remaining resources of the substrate network \((G^S) \) after finishing the embedding process when the number of substrate nodes increasing from 60 to 140. The figure illustrates that GBA and GCBA have a lower amount of remaining resources while committing a higher embedding performance as demonstrated in Fig. 3. As explained in Fig. 3 and Fig. 4, both GBA and GCBA consider the cluster of VNFs and substrate nodes during the embedding process that helps leverage of not only embedding performance but also resource utilization performance. In addition, CBA and RBA provide a fair performance in terms of resource utilization with a lower time complexity.

Fig. 5(b) shows the impact of remaining resources of the substrate node \((G^S) \) with respect to the number of VNFs ranging from 160 to 240. As expected, GBA and GCBA continue to show better embedding performance as seen in Fig. 3 while still consuming minimal amount of resources. In contrast to, CBA and RBA, which have a slight decrease in the embedding efficiency even though, both algorithms utilize high resources to embed VNFs to the substrate network.

Fig. 5(c) shows comparison of the remaining resources of the substrate node \((G^S) \) with respect to \(k \) where \(k \) denotes the degree of each substrate node in the substrate network, ranging between 2 to 10. In the figure, GBA and GCBA still show superior performance invariably compare to CBA and RBA. Moreover, Fig. 5(c) illustrates that as the degree of substrate node increases, the number of embedded VNFs increases in the algorithms GBA and GCBA, with still having a high amount of resources remaining, on the other hand RBA and CBA consume high amount of resources, but still result in lower performance efficiently.

Fig. 5(d) we analyze the comparisons of the proposed algorithms with different \(k' \) with respect to the remaining resources...
of each substrate node, which \(k' \) denotes the degree of VNFs in RAN slices ranging from 2 to 10. GBA and GCBA continue to perform better when comparing with CBA and RBA. As shown in Fig. 5(d) when the degree per substrate node is 2 GBA and GCBA embed VNFs with as lower as 204 remaining resources, but this not the case with RBA and CBA as both algorithms even after having to consume 254 total resources still embed VNFs at a lower efficiency with comparison to GBA and GCBA.

Fig. 5 shows comparisons of the amount of remaining resources of the substrate network \((G^S)\) after finishing the embedding process when the number of substrate nodes increasing from 60 to 140. The figure illustrates that GBA and GCBA have a higher amount of remaining resources while committing a higher embedding performance as demonstrated in Fig. 3. As explained in the Fig. 3 and Fig. 4, both GBA and GCBA consider the cluster of VNFs and substrate nodes during the embedding process that helps leverage of not only embedding performance but also resource utilization performance. In addition, CBA and RBA provide a fair performance in terms of resource utilization with a lower time complexity.

Fig. 6(a) illustrates comparisons of the amount of remaining resources of the substrate network \((G^S)\) after completing the embedding process when the number of substrate nodes are increased from 60 to 140. The figure demonstrates that GBA and GCBA have a higher amount of remaining resources while committing a higher embedding performance efficiency as shown in Fig. 6(a). As described in Fig. 3 and Fig. 4, both GBA and GCBA during the embedding process consider not only the required resources of a single VNF but also take into consideration of the required resources of a cluster of VNFs. GBA and GCBA, therefore, provide a better performance in terms of resource utilization with a fair time complexity.

In Fig. 6(b) we analyze comparisons of the algorithms capability in terms of the remaining resources in the substrate node \((G^S)\) with respect to the number of VNFs ranging from 160 to 240. As expected both GBA and GCBA still continue to show better performance efficiency while embedding the VNFs with high remaining resources. In contrast to CBA and RBA performing slightly towards the lower end in terms of the embedded VNFs, on the other hand consuming high resources to embed the VNFs.

Fig. 6(c) shows the performance of the proposed algorithms when varying the amount of remaining resources in the substrates \((G^S)\) with respect to \(k \) which denotes the degree of the substrate node in the substrate network from 60 to 140. The performance of GBA and GCBA still shows a higher result, when compare to both CBA and RBA having a lower performance efficiency. Moreover, we can see that the higher the amount of remaining resources in the substrate network, higher is the embedding performance of GBA and GCBA while having the amount of remaining resources high.

Fig. 6(d) shows comparisons of the remaining resources in the substrate network \((G^S)\) with respect to \(k' \), which denotes the degree of VNFs in an RAN slice, ranging from 2 to 10. GBA and GCBA show a higher total number of embedded VNFs in the substrate network. In contrast, RBA and CBA have a lower number of total embedded VNFs. As expected by this mechanism, GBA and GCBA embed more VNFs with still having high remaining resources, on the other hand CBA and RBA while taking more resources to embed have a lower embedding efficiency. In summary, Fig. 6 evaluations show that the comparisons of shortage case in Fig. 6(a) – Fig. 6(d) in terms of amount of remaining resources in the substrate network \((G^S)\) when varying the substrate nodes, VNFs, \(k \), and \(k' \). GBA and GCBA consistently provide a better performance in terms of amount of resource utilization than RBA and CBA.

C. Runtime Comparisons

The evaluation of computational efficiency is performed utilizing the Apple M1 Pro chip with 10-core CPU [44]. Fig. 7(a) and Fig. 7(b) offer the insight into the running time of the proposed algorithms when the number of substrate nodes elevates from 60 to 140 and the number of VNFs ranging from 160 to 240, respectively. In both figures, it is evident that with the increase in the number of substrate nodes and VNFs, the running time of algorithms proportionately increases. As predicted, in both cases, GBA and GCBA demonstrate a relatively longer runtime in comparison to RBA and CBA. Among all, RBA exhibits the lowest runtime while GBA and GCBA are somewhat higher.

Fig. 7(c) and 7(d) present a comparative analysis of the runtime in relation to \(k \) and \(k' \). Analogous to the simulations setup in Sections VI-A and VI-B, \(k \) symbolizes the degree of each substrate node within the substrate network, varying from 2 to 10, and \(k' \) denotes the degree of VNFs in RAN slices, which also fluctuates between 2 to 10. The observed trend mirrors that of Fig. 7(a) and Fig. 7(b), GBA and GCBA still exhibit a higher runtime in comparison to CBA and RBA. Furthermore, in both scenarios, GBA and GCBA display an
almost identical runtime. As mentioned, both GBA and GCBA assess not only the required resources of a single VNF but also take into account the required resources of a cluster of VNFS. Therefore, while GBA and GCBA demonstrate superior performance in terms of resource optimization, they do so at an acceptable runtime expenditure.

VII. CONCLUSION

In this paper we have established the theoretical foundation for using RS-configuration to construct a VNF embedding plan for the RAN slicing. We have formulated the efficient resource allocation as an essential problem with the objective to maximize the total number of embedded VNFS. To solve the RS-configuration problem, we have introduced four efficient algorithms (RBA, CBA, GCBA and GBA) and show theoretical analyses to demonstrate the efficacy of the algorithms. Extensive simulation results have been provided to evaluate the performance of the proposed algorithms using different metrics in terms of the embedding performance and resource utilization performance. We have created different scenarios to test the algorithms, including considering the network under the normal condition (normal case) and under the resource shortage condition (shortage case). Through the results of the simulations, GBA and GCBA consistently demonstrate a better performance for both embedding VNFS and utilizing the network’s resources when comparing to RBA and CBA. However, in terms of the time complexity RBA and CBA demonstrate as faster algorithms with lower time complexity while remaining fair resource utilization performances.

REFERENCES

[1] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-Perez, “How should i slice my network? a multi-service empirical evaluation of resource sharing efficiency,” in Proc. 24th Annu. Int. Conf. Mobile Comput. Netw., 2018, pp. 191–206.
[2] X. Foukas, M. K. Marina, and K. Kontovasilis, “Orion: RAN slicing for a flexible and cost-effective multi-service mobile network architecture,” in Proc. 23rd Annu. Int. Conf. Mobile Comput. Netw., New York, NY, USA, 2017, pp. 127–140. [Online]. Available: https://doi.org/10.1145/3117811.3117831
[3] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina, “Network slicing in 5G: Survey and challenges,” IEEE Commun. Mag., vol. 55, no. 5, pp. 94–100, May 2017.
[4] T. Taleb, B. Mada, M. Corici, A. Nakao, and H. Flink, “PERMIT: Network slicing for personalized 5G mobile telecommunication,” IEEE Commun. Mag., vol. 55, no. 5, pp. 88–93, May 2017.
[5] P. L. Vo, M. N. H. Nguyen, T. A. Le, and N. H. Tran, “Slicing the edge: Resource allocation for RAN network slicing,” IEEE Wireless Commun. Lett., vol. 7, no. 6, pp. 970–973, Dec. 2018.
[6] H. Zhang, N. Liu, X. Chu, K. Long, A. Aghvami, and V. C. M. Leung, “Network slicing based 5G and future mobile networks: Mobility, resource management, and challenges,” IEEE Commun. Mag., vol. 55, no. 8, pp. 138–145, Aug. 2017.
[7] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “NFV: Enabling network function parallelism in NFV,” in Proc. Conf. ACM Special Interest Group Data Commun., 2017, pp. 43–56.
[8] D. Mascarenas, E. Flynn, C. Farrar, G. Park, and M. Todd, “A mobile host approach for wireless power and interrogation of structural health monitoring sensor networks,” IEEE Sensors J., vol. 9, no. 12, pp. 1719–1726, Dec. 2009.
[9] W.-C. Ke, B.-H. Liu, and M.-J. Tsai, “Efficient algorithm for constructing minimum size wireless sensor networks to fully cover critical square grids,” IEEE Trans. Wireless Commun., vol. 10, no. 4, pp. 1154–1164, Apr. 2011.
[10] S.-R. Qi, “The solution of problem about format point in application of the modern pipeline design,” in Proc. Int. Conf. Electron. Eng. Inf. Technol. (EMET), vol. 7, Aug. 2011, pp. 3785–3788.
[11] R. Mittal and M. P. S. Bhatia, “Wireless sensor networks for monitoring the environmental activities,” in Proc. IEEE Int. Conf. Comput. Intell. Comput. Res. (ICIC), Dec. 2010, pp. 1–5.
[12] H. Halabian, “Optimal distributed resource allocation in 5G virtualized networks,” in Proc. IFIP/IIEEE Symp. Integr. Netw. Service Manag. (IM), 2019, pp. 28–35.
[13] A. Ksentini and N. Nikaein, “Toward enforcing network slicing on RAN: Flexibility and resources abstraction,” IEEE Commun. Mag., vol. 55, no. 6, pp. 102–108, Jun. 2017.
[14] M. R. Rahman and R. Boutaba, “SVNE: Survivable virtual network embedding algorithms for network Virtualization,” IEEE Trans. Netw. Service Manag., vol. 10, no. 2, pp. 105–118, Jun. 2013.
[15] T. Kao, B. Liou, K. C. Lin, and M. Tsai, “Deploying chains of virtual network functions: On the relation between link and server usage,” in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., 2016, pp. 1–9.
[16] F. Wang, R. Ling, J. Zhu, and D. Li, “Bandwidth guaranteed virtual network function placement and scaling in datacenter networks,” in Proc. IEEE 34th Int. Perform. Comput. Commun. Conf. (IPCCC), 2015, pp. 1–8.
[17] P. Rost et al., “Network slicing to enable scalability and flexibility in 5G mobile networks,” IEEE Commun. Mag., vol. 55, no. 5, pp. 72–79, May 2017.
[18] S. Vassilaras et al., “The algorithmic aspects of network slicing,” IEEE Commun. Mag., vol. 55, no. 5, pp. 112–119, Aug. 2017.
[19] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia, and A. Banchs, “Mobile traffic forecasting for maximizing 5G network slicing resource utilization,” in Proc. IEEE Conf. Comput. Commun., 2017, pp. 1–9.
[20] N. Nikaein et al., “Network store: Exploring slicing in future 5G networks,” in Proc. 10th Int. Workshop Mobil. Evol. Internet. Architecture, 2015, pp. 8–13. [Online]. Available: https://doi.org/10.1145/2795381.2795390
[21] X. Zhou, R. Li, T. Chen, and H. Zhang, “Network slicing as a service: Enabling enterprises’ own software-defined cellular networks,” IEEE Commun. Mag., vol. 54, no. 7, pp. 146–153, Jul. 2016.
[22] B. Chatras, U. S. Tsang Kwong, and N. Bihanine, “NFV enabling network slicing for 5G,” in Proc. 26th Conf. Innovat. Clouds Internet Netw. (ICIN), 2017, pp. 219–225.
[23] S. D’Oro, F. Restuccia, and T. Melodia, “Toward operator-to-waveform 5G radio access network slicing,” IEEE Commun. Mag., vol. 58, no. 4, pp. 18–23, Apr. 2020.
[24] M. Richart, J. Baliosian, J. Serrat, and J. Gorricho, “Resource slicing in virtual wireless networks: A survey,” IEEE Trans. Netw. Service Manag., vol. 13, no. 3, pp. 462–476, Sep. 2016.
[25] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and A. Frimpong, “Network resource management and QoS in SDN-enabled 5G systems,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2015, pp. 1–7.
[26] Y. Jia, H. Tian, S. Fan, P. Zhao, and K. Zhao, “Bankruptcy game based resource allocation algorithm for 5G cloud-RAN slicing,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1–6.
[27] M. Karbalaei Motalleh, V. Shah-Mansouri, S. Parsaeefard, and O. L. Alcaraz López, “Resource allocation in an open RAN system using network slicing,” IEEE Trans. Netw. Service Manag., vol. 20, no. 1, pp. 471–485, Mar. 2023.
[28] M. Zangooei, N. Saha, M. Golkarifard, and R. Boutaba, “Reinforcement learning for radio resource management in RAN slicing: A survey,” IEEE Commun. Mag., vol. 56, no. 2, pp. 118–124, Feb. 2018.
[29] I. Vilà, J. Pérez-Romero, O. Sallent, and A. Umbert, “Impact analysis of training in deep reinforcement learning-based radio access network slicing,” in Proc. IEEE 19th Annu. Consum. Commun. Netw. Conf. (CCNC), 2022, pp. 280–283.
[30] H. Zhou, M. Erol-Kantarci, and V. Poor, “Knowledge transfer and reuse: A case study of AI-enabled resource management in RAN slicing,” IEEE Wireless Commun., early access, Dec. 26, 2022, doi: 10.1109/MWC.004.2200025.
[31] S. Schneider, M. Peuster, and H. Karl, “A generic emulation framework for reusing and evaluating VNF placement algorithms,” in Proc. IEEE Conf. Netw. Funkt. Virtualisat. Softw. Defined Netw. (NFV-SDN), 2018, pp. 1–6.
[32] W. Fang, M. Zeng, X. Liu, W. Lu, and Z. Zhu, “Joint spectrum and IT resource allocation for efficient VNF service chaining in inter-Datacenter elastic optical networks,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1539–1542, Aug. 2016.
Tu N. Nguyen (Senior Member, IEEE) received the Ph.D. degree in electronic engineering from the National Kaohsiung University of Science and Technology (formerly, National Kaohsiung University of Applied Sciences) in 2016. He is currently an Assistant Professor of Computer Science with Kennesaw State University (KSU), USA. Prior to joining KSU, he was an Assistant Professor of Computer Science with Purdue University Fort Wayne. He was a Postdoctoral Associate with the Department of Computer Science and Engineering, University of Minnesota—Twin Cities in 2017. Prior to joining the University of Minnesota, he worked with the Intelligent Systems Center, Missouri University of Science and Technology as a Postdoctoral Researcher in 2016. His research has resulted in more than 100 publications in leading academic journals as well as conferences. His research interests include computer networks, cyber–physical systems, quantum networks, and quantum computing. He has engaged in many professional activities, including serving as an Editor/Guest Editor for more than 30 international journals, such as an Associate Editor for IEEE SYSTEMS JOURNAL, an Associate Editor for Journal of Combinatorial Optimization and IEEE ACCESS, and a Technical Editor for Computer Communication as well as serving as a Lead Guest Editor for IEEE TRANSACTIONS ON BIG DATA, IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, IEEE Internet of Things Magazine, and IEEE Systems, Man, and Cybernetics Magazine. He is the Co-Editor-in-Chief of the book series Advances in Distributed Computing and Blockchain Technologies (IET). He has been in different Organizing Committees, such as being a technical program committee (TPC)-chair and a general chair for several IEEE/ACM/Springer flagship conferences. He has also served as a TPC Member for several international conferences, including IEEE INFOCOM, IEEE GLOBECOM, IEEE LCN, IEEE RFID, IEEE ICC, and IEEE WCNC. He is a member of ACM.

Hoa N. Nguyen received the Engineering degree in computer science from the Hanoi University of Science and Technology in 1999, the M.Sc. degree in computer science from Informatics Francophone Institute, Vietnam, and the Ph.D. degree in computer science from Joseph Fourier University, France, in 2005. He is currently an Associate Professor with the Department of Information Systems, VNU University of Engineering and Technology, Hanoi, Vietnam. Prior to joining the VNU University of Engineering and Technology, he worked with the Computer Department, University of Tours, Blois, France, as an Assistant Professor. His research interests focus on cybersecurity, big data management, and smart systems.

Son Vu received the bachelor’s degree in mathematics from Truman State University. He is currently pursuing the Ph.D. degree with the Department of Computer Science, Iowa State University. He is currently working with Bioinformatics and Computational Biology Laboratory. His research focus is on bioinformatics and computational biology with emphasis on species trees measurements and optimization algorithms. He is working on implementing algorithms and software with phylogenetic (gene) trees that have applications to genetics research.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.