SIMULTANEOUS MEASUREMENTS OF X-RAY LUMINOSITY AND KILOHERTZ QUASI-PERIODIC OSCILLATIONS IN LOW-MASS X-RAY BINARIES

ERIC C. FORD,¹ MICHEIL VAN DER KLIS,¹ MARIANO MÉNDEZ,¹,² RUDY WINANDS,¹,³ JEROEN HOMAN,¹
PETER G. JONKER,¹ AND JAN VAN PARADIS¹,⁴

Received 1999 December 14; accepted 2000 February 8

ABSTRACT

We measure simultaneously the properties of the energy spectra and the frequencies of the kilohertz quasi-periodic oscillations (QPOs) in 15 low-mass X-ray binaries covering a wide range of X-ray luminosities. In each source, the QPO frequencies cover the same range of approximately 300–1300 Hz, although the sources differ by 2 orders of magnitude in their X-ray luminosities (as measured from the unabsorbed 2–50 keV flux). So the X-ray luminosity does not uniquely determine the QPO frequency. This is difficult to understand since the evidence from individual sources indicates that the frequency and luminosity are very well correlated at least over short timescales. Perhaps beaming effects or bolometric corrections change the observed luminosities, or perhaps part of the energy in mass accretion is used to power outflows, thus reducing the energy emitted in X-rays. It is also possible that the parameters of a QPO model are tuned in such a way that the same range of frequencies appears in all sources. Different modes of accretion may be involved (for example, disk and radial), or multiple parameters may conspire to yield the same frequencies.

Subject headings: accretion, accretion disks — binaries: close — black hole physics — stars: neutron — X-rays: stars

1. INTRODUCTION

Many low-mass X-ray binaries exhibit quasi-periodic oscillations (QPOs) in their persistent X-ray flux in the kilohertz range as revealed by the Rossi X-Ray Timing Explorer (RXTE). There are currently 18 such sources with published results. Generally two kilohertz QPOs are observed simultaneously from a given system. In all cases, the QPOs are separated in frequency by about 250–350 Hz. The QPOs vary over a wide range in frequency. In 4U 0614+09, for example, the higher frequency QPO has been measured at frequencies between 449 ± 20 Hz and 1329 ± 4 Hz (van Straaten et al. 2000). For reviews and references see van der Klis (1998) and http://www.astro.uva.nl/~ecford/qpos.html.

The low-mass X-ray binaries (LMXBs) that exhibit QPOs come in a wide variety. Most are persistent sources, but some transients are known with kilohertz QPOs: 4U 1608–52 (Berger et al. 1996; Méndez et al. 1998), Aql X-1 (Zhang et al. 1998a), and XTE J2123–058 (Homan et al. 1999; Tomskich et al. 1999). The two traditional classes of LMXBs, Z and atoll sources (Hasinger & van der Klis 1989), have very similar QPOs, though the QPOs in Z sources tend to have larger widths and smaller rms fractions. The X-ray dipper 4U 1915–05 (Boirin et al. 2000) also has shown kilohertz QPOs. In all these systems, the kilohertz QPO frequencies are very similar, even though the inferred mass accretion rates differ by orders of magnitude (van der Klis 1997, 1998).

Here we quantify these comparisons by considering the ensemble of sources. The main tool is a measurement of the X-ray luminosity in each system simultaneous with a determination of its kilohertz QPO frequencies. This approach is inspired by the strong correlation of QPO frequency and count rate in individual sources. This correlation is very strict on short timescales (e.g., 4U 1728–34; Strohmayer et al. 1996), though on longer timescales of days to weeks in some sources a single correlation no longer holds (e.g., 4U 0614+09, Ford et al. 1997a; 4U 1608–52, Méndez et al. 1999). The same correlations are present if one considers X-ray flux instead of count rate (Ford et al. 1997b; Zhang et al. 1998a). The QPO frequencies are clearly influenced to some extent by the X-ray luminosity.

Correlations of luminosity and kilohertz QPO frequency provide a rather direct connection to QPO models. In most current models, the frequency of one of the QPOs is set by the orbital frequency of matter in the inner disk (Miller, Lamb, & Psaltis 1998; Lai 1998; Stella & Vietri 1999; Osherovich & Titarchuk 1999). Higher QPO frequencies are the result of faster orbital frequencies, which, in turn, are coupled to higher mass accretion rates.

In what follows we present simultaneous measurements of kilohertz QPOs and energy spectra in LMXBs. Section 2 details the analysis procedure and results with special notes on each source. Section 3 discusses these results in context with current QPO models.

2. ANALYSIS AND RESULTS

In this analysis we use data from the RXTE Proportional Counter Array (PCA; Zhang et al. 1993). We consider 15 sources with kilohertz QPOs, which includes all sources reported to date except XTE J2123–058, 4U 1915–05, and GX 349+2. These latter three sources have relatively few observations with kilohertz QPOs. For timing analysis, we construct Fourier power spectra from the high-time resolution modes of the PCA with Nyquist frequencies of typically 4096 Hz. We fit these power spectra for QPO features in roughly the 200–2000 Hz range. For intervals where a QPO is detected, we perform spectral fitting using the 16 s resolution “Standard 2” mode PCA data.
In the sources where the QPOs are strong (e.g., 4U 1608–52), the QPO features are significantly detected in a time interval of 64 s or less. In these cases, we have chosen representative intervals and performed the spectral fitting on the identical time interval where the QPOs are detected. In other sources (e.g., 4U 1705–44), many power spectra from short time windows must be added before the signal-to-noise ratio improves to the level where the QPOs are detected. In such cases, the spectra are well measured on much shorter timescales and we select an interval (typically 64 s duration) in the middle of the interval where the QPOs are detected. There are no large count rate or color variations within these intervals, so this procedure is accurate. In the case of Z sources, the QPO frequencies have been measured as a function of S_x, the position along a track in the X-ray color-color diagram or hardness-intensity diagram (e.g., GX 17+2, Wijnands et al. 1997). In these cases, we perform spectral fitting on matching intervals of S_x, using the same observations where the timing analysis was performed.

In spectral fitting, we use only the top of the three xenon/methane layers of the proportional counter units (PCUs) to reduce systematic effects. We also do not include events in the uppermost anticoincidence propane layer. We use all of the five PCUs when available, though in a few cases one or more PCUs were off, and we performed spectral fitting on the subset of detectors that was on. We use the background estimation tool pccabest v2.1b, response matrix generator pcrsp v2.38, and the standard XSPEC v10.0 fitting routines. Since the response is not well calibrated at low energy, we ignore standard mode 2 PCA channels 1–3 (<2.4 keV for gain epoch three: 1996 April 15 to 1999 March 22). We also ignore channels above 55 (>22.4 keV, gain epoch three) since the background dominates there even in the brighter sources. We have ignored the HEXTE data, since this provides no constraints on the spectral fit for the short intervals we consider here.

We have chosen to describe the continuum spectra in terms of the following model components: a power law, a blackbody, and a Gaussian line at roughly 6.4 keV, all absorbed with an equivalent hydrogen column density. This model, which is purely phenomenological, is often used in the literature (e.g., Christian & Swank 1997; White, Stella, & Parmar 1988) but is not intended as a physically self-consistent representation of the physical processes at work. All the parameters of the models are allowed to float (though in some cases the width of the Gaussian line is fixed). The reduced χ^2 values are close to one in all cases. There is no evidence for a rollover at high energies, indicating that a power law is a sufficient description at least up to our cutoff energy of ~ 22 keV.

From the model fits we calculate several parameters, the most important here being the total flux from 2 to 50 keV. We report the unabsorbed flux, which is corrected for the effect of absorption at low energies by the interstellar medium and represents the actual flux emitted by the source. We take the unabsorbed 2–50 keV flux as some indication of the bolometric flux of the source, though it is an obviously flawed indicator since the spectra are unmeasured below 2 keV and above ~ 22 keV. Observations with the BeppoSAX instruments, however, have good statistics over a much wider energy range (0.1–200 keV). BeppoSAX observations of 4U 0614+09 (Piraino et al. 1999) and X1724–308 (Guainazzi et al. 1998) indicate that the model we employ here provides an accurate description of the spectra. In the 4U 0614+09 observations, Piraino et al. (1999) find an accurate fit to the spectrum with a blackbody at $kT = 1.45$ keV, a power law with photon index 2.33 and a line at 0.71 keV that carries 1% of the total flux, all absorbed by an equivalent neutral hydrogen column of 3.3×10^{21} cm$^{-2}$. This spectral description is similar to the one used here.

In reporting here the unabsorbed 2–50 keV flux, we tend to underestimate the actual flux because of the truncation in energy. By truncating at 2 keV, we underestimate the flux that would have been in the blackbody by roughly 2%–20% in these spectra. By stopping the integration at 50 keV, we also underestimate the flux at high energy, which in principle can be a large amount because of the hard tails in some sources (Barret & Vedrenne 1994). The observations considered here, however, did not find any source in an extremely hard state. We estimate that we typically loose about 2% of the flux in the power law by stopping the integration at 50 keV. In the hardest spectra (4U 0614+09 at low flux), we miss about 15% of the flux. There is likely a break in the power law at high energy (not included here) which makes the missing flux somewhat less than that. In the BeppoSAX spectrum mentioned above, the flux from 0.1 to 2 keV is 25% of the total flux and that above 50 keV is 7% of the total. Finally, the bolometric flux may be larger than our estimate if the power law extends to very low energies (though this is physically not so likely) or if different components are present in the extreme ultraviolet or soft X-ray band.

To calculate a luminosity, L_x, from the total unabsorbed 2–50 keV flux, we need to know the source distances. The distances we use here are quoted in Table 1 along with references. Distances can be determined in a variety of ways (see van Paradijs & McClintock [1994] for a description). In the sources showing type I X-ray bursts, the distance can be determined from radius expansion bursts where the luminosity is thought to reach the Eddington limit (Lewin, van Paradijs, & Taam 1993). In some bursters, no radius expansion bursts have been observed, and one derives only an upper limit by assuming the flux is less than the Eddington limit. We use the upper limits as the actual distances (see Table 1) so that the derived L_x are upper limits in these cases. One source, 4U 1820–30, is in the globular cluster NGC 6624 and therefore has a relatively well-determined distance. The distances to the Z sources, most of which do not show bursts, are more uncertain. Most of these sources are likely near the Galactic center (Penninx 1989). A VLBA parallax measurement of Sco X-1 puts it at 2.8 ± 0.3 kpc (Bradshaw, Fomalont, & Geldzahler 1999). A radius expansion burst was observed recently from Cyg X-2, yielding a distance of 11.6 ± 0.3 kpc (Smale 1998), although results from optical light curves put it substantially closer (see Orosz & Kuulkers 1999). The Cyg X-2 fluxes we measure are consistent with the data from the Einstein Observatory (Christian & Swank 1997) and EXOSAT (Schulz 1999).

The spectral analysis of Sco X-1 requires a special treatment that deserves note. In this source, detector deadtime effects are important since its count rate exceeds 25,000 c s$^{-1}$ PCU$^{-1}$. We apply a correction for nonparalyzable deadtime, which amounts to simply multiplying the effective exposure time by a factor of about 0.7 (Zhang et al. 1995). We calculate this factor from the measured rates, a 10 μs deadtime appropriate for “Good Xe Events,” and a 150
Given the distance, d, and the flux, F_x, we calculate the luminosity as $L_x = 4\pi d^2 F_x$. Note that this assumes the emission is isotropic. In quoting luminosities, we normalize to an Eddington luminosity of 2.5×10^{38} ergs s$^{-1}$. Mis-estimates of distance, like the misestimates of flux discussed above, contribute to a spread in L_x among sources. However, the observed range of L_x covers 2 orders of magnitude and this large of a range cannot be explained by these effects alone.

The results of the simultaneous spectral and timing measurements are shown in Figure 1 as a function of L_x. Both of the double kilohertz QPOs are shown; circled bullets are used to indicate the higher frequency QPO. The lines connect points in time order, or in the case of Z sources, in order along the Z track.

In each case, we must identify which of the double QPOs is observed. In some observations, only one QPO is detected. As reported in the current literature, all sources (except Aql X-1) are known to have two QPOs. Both QPOs, however, are not always present in a given observation. In 4U 1608$-$52, the lower frequency QPO peak is generally the stronger and narrower of the two (see Méndez et al. 1998), thereby providing the identification. In 4U 0614$+$09, there is a robust correlation between the position in the X-ray color diagram and the frequency that allows us to determine which QPO is present (van Straaten et al. 2000). Similarly, in other sources the relative properties of the energy spectra or rms values generally allow a firm identification of the peak.

The correlation of QPO frequency, v_{kHz}, with L_x can be parameterized as $v_{kHz} = A L_x^\alpha$. Taking the data of the upper frequency QPO in Figure 1 for 4U 1735$-$44 and 4U 1702$-$42, we find $\alpha = 0.2$ and 0.5, respectively. We note, however, that these data on the upper frequency QPO come from observations widely separated in time. Over long time scales, the v_{kHz}-L_x correlation shifts around and parallel lines are observed (see below). This data may therefore include several tracks of the parallel-line correlations. In the data of 4U 1608$-$52, we can separate out the parallel lines (Méndez et al. 1999) and measure α within each stretch of correlated data. We find values of α between 0.5 and 1.6

TABLE 1

Distances

Source	D (kpc)	References
4U 0614$+$09	3.0*	1
Aql X-1	3.4	2, 3
4U 1702$-$42	6.7*	4
4U 1608$-$52	3.6	5, 6
4U 1728$-$34	4.3	7
4U 1636$-$53	5.5	2, 8
4U 1735$-$44	7.1*	9
KS 1731$-$260	8.5	10
4U 1820$-$30	7.5	NGC 6624; 11
4U 1705$-$44	11.0*	9, 12

Z Sources

Source	D (kpc)	References
Cyg X-2	11.6	13
GX 17$+$2	7.5	9, 12
GX 340$+$0	9.5	2
GX 5$-$1	7.4	2
Sco X-1	2.8	14

NOTE.—The sources and their distances used in this paper. References for the distances are shown.

* This is an upper limit based on burst fluxes. We use it as the distance in calculating L_x.

REFERENCES.—(1) Brandt et al. 1992; (2) van Paradijs & White 1995; (3) Thorne, Luminet, Charles, & Bowyer 1978; (4) Oosterbroek et al. 1991; (5) Nakamura et al. 1989; (6) Ebisuzaki 1987; (7) Foster, Fabian, & Ross 1986; (8) van Paradijs et al. 1986; (9) Ebisuzaki, Sugimoto, & Hanawa 1984; (10) Sunyaev 1990; (11) Rich, Minniti, & Liebert 1993; (12) Christian & Swank 1997; (13) Smale 1998; (14) Bradshaw, Fomalont, & Geldzahler 1999.

μs deadtime appropriate for events registered as "Very Large Events" in the instrument modes used. This deadtime treatment is approximate and does not take into account, for example, gain shifts caused by the high count rates. We compare the flux we derive for Sco X-1 with that from Einstein observations (Christian & Swank 1997). Relative to GX 17$+$2, these fluxes are the same.

Fig. 1

QPO frequency vs. luminosity, L_x, in the 2–50 keV band. L_x is calculated from the distance (Table 1) and the flux in the model fit for each observation corrected for absorption and normalized to an Eddington luminosity of 2.5×10^{38} ergs s$^{-1}$. Circled bullets are QPOs identified as the higher frequency of the two QPOs; uncircled bullets are the lower frequency QPO.
with typical errors of 0.2, using the absorbed 2–10 keV flux instead of L_x. Note that although these correlations are measured over a relatively small range in flux, this measurement does not mix up different tracks.

Of special note in Figure 1 are the LMXBs that do not appear because they do not exhibit kilohertz QPOs: the atoll-type sources GX 3+1, GX 9+9, GX 9+1, and GX 13+1. The upper limits to the rms fractions of QPOs in these sources are 1%–3% (Strohmayer 1998; Wijnands, van der Klis, & van Paradijs 1998b; Homan et al. 1998). The luminosities of these sources lie between the Z sources and other atoll sources (Christian & Swank 1997) and they are an important intermediate class of sources in some models (see Miller et al. 1998).

We note that only observations in which the LMXBs exhibit QPOs are reported here. The total range of L_x that a source covers is generally larger than that in Figure 1 since kilohertz QPOs are present preferentially at intermediate fluxes (Méndez et al. 1999; Méndez 1999). The only known exceptions to this so far are 4U 0614−09 (van Straaten et al. 2000) and 4U 1728–34 (Di Salvo et al. 2000).

Some selected parameters from the spectral fitting are shown in Figure 2. These parameters are similar to those previously measured for such sources and show that the Z sources can be fit by roughly the same spectral model as the atoll sources (see Schulz 1999; Christian & Swank 1997; White et al. 1988). The ratio of power-law to blackbody flux is 2 to 3 in most cases, i.e., the blackbody is roughly 25%–35% of the total flux (e.g., White et al. 1988). There is an overall trend toward harder spectra at lower luminosities, which is reflected in our fits. This same trend is seen in previous studies of atoll sources (e.g., van Paradijs & van der Klis 1994; Barret & Grindlay 1995) and occurs in the emission even up to 100 keV (Ford et al. 1996). It is also manifest in the patterns in X-ray color diagrams. The softening at higher fluxes is often attributed to the effects of thermal Comptonization.

3. DISCUSSION

Within a given low-mass X-ray binary, the frequency of the kilohertz QPOs, v_{kHz}, is well correlated with the X-ray flux (Ford et al. 1997b; Zhang et al. 1998a) or count rate (Strohmayer et al. 1996; Wijnands et al. 1998a; Méndez et al. 1999; Méndez & van der Klis 1999; Méndez 1999), at least on the timescale of about a day. Considering all the binaries as a group, however, such a correlation does not hold. This is a very clear feature of Figure 1, where v_{kHz} covers roughly the same range of frequencies for sources of widely different X-ray luminosities, L_x. All sources have maximum frequencies at roughly 1000–1300 Hz, a fact that Zhang, Strohmayer, & Swank (1997) have used to argue that the maximum v_{kHz} is set by the orbital frequency at the marginally stable orbit. In addition to the similar maximum v_{kHz}, all the sources have roughly the same minimum v_{kHz} and slope of their v_{kHz}–L_x relation. This is the central mystery presented here. How is it that L_x and v_{kHz} are decoupled in the ensemble of systems?

This decoupling has an apparent analog within individual sources. In a given system, v_{kHz} and L_x (or flux, or count rate) are uniquely correlated within single observations spanning less than roughly a day. Between observations more widely separated in time, however, the correlation

Fig. 2.— Spectral parameters vs. luminosity. Luminosity is calculated as in Fig. 1. The panels show the index of the power-law component (top), the temperature of the blackbody component (middle) and the ratio of the absorbed 2–20 keV flux in these two components (bottom).
shifts and parallel lines appear in the v_{kHz} versus L_x diagram similar to those in Figure 1. Note, however, that these parallel lines in individual sources cover a much narrower range; flux shifts are a factor of a few at most in individual sources. 4U 0614+09 was first seen to have such parallel lines (Ford et al. 1997a; Ford et al. 1997b), and the same effect is observed in Aql X-1 (Zhang et al. 1998a), 4U lines (Ford et al. 1997a; Ford et al. 1997b), and the same sources. 4U 0614+09 was first seen to have such parallel lines (Ford et al. 1997a; Ford et al. 1997b), and the same effect is observed in Aql X-1 (Zhang et al. 1998a), 4U 1608–52 (Méndez et al. 1999), 4U 1728–34 (Méndez & van der Klis 1999), and 4U 1636–53 (Méndez 1999). There is a similar effect in Z sources, where v_{kHz} is correlated to the position on the instantaneous Z track in the X-ray color diagram (e.g., Wijnands et al. 1998a; Jonker et al. 2000) while the tracks themselves shift around in intensity.

One possible solution to the mystery of decoupled L_x and v_{kHz} is that the parameters of the mechanism producing the QPOs are tuned in such a way that v_{kHz} is the same in all systems. As an example, consider the magnetospheric beat-frequency model. A simple version of the theory predicts that the QPO frequency is set by M/B^2, where M is the mass accretion rate and B is the surface magnetic field strength (Alpar & Shaham 1985). The frequencies could then be the same if B scaled in such a way that M/B^2 is constant in all systems (White & Zhang 1997). Such a connection between M and B was suggested previously on other grounds (Hasinger & van der Klis 1989; Psaltis & Lamb 1997). Other parameters, such as the neutron star spin, mass or temperature, might be involved as well, although it is not clear how these would fit into a detailed model.

The observational data do suggest that M has a role in setting the QPO frequency. The correlations of v_{kHz} and L_x suggest this, in as much as L_x and M are related (see below). The timing properties point to a similar conclusion as well. The Fourier power spectra often show a noise component, the power of which decreases with frequency above a break frequency of roughly 10 Hz. The break frequency is strongly correlated with v_{kHz} (Ford & van der Klis 1998; van Straaten et al. 2000; Reig et al. 2000; Di Salvo et al. 2000). That the break frequency is thought to be a good indicator of M (van der Klis 1994) suggests that the frequency of the kilohertz QPO is also correlated with M. Another timing signal is the QPO at 10–50 Hz (e.g., van der Klis et al. 1996; Ford & van der Klis 1998; Psaltis, Belloni, & van der Klis 1999), which also correlates with v_{kHz}. Thus there are several timing features, all correlated one with another (see also Wijnands & van der Klis 1999; Psaltis et al. 1999). In addition, v_{kHz} also depends strongly on the energy spectra, sometimes parameterized as the distance along a track in the X-ray color diagram (e.g., van der Klis et al. 1996; Wijnands et al. 1997; Zhang et al. 1998b; Méndez et al. 1999; Méndez & Kaaret 1999). The implication is that a single parameter underlies these correlations, and that parameter is likely M.

If there is a connection between v_{kHz} and M, one might also expect a correlation of v_{kHz} and L_x, since L_x is some measure of M. Why then is the range of v_{kHz} similar for very different L_x in Figure 1? In the following we consider one logical possibility: that L_x and M do not track one another.

Perhaps L_x simply is not a good indicator of the bolometric luminosity and, in fact, the bolometric luminosity is similar in all systems. In principle, L_x could misrepresent the bolometric luminosity just because of the limited 2–25 keV energy range of the RXTE/PCA. It is unlikely, however, that this is a large effect since BeppoSAX measurements from 0.1–200 keV indicate that not much energy is radiated outside the PCA band for these sources and our spectral models are applicable (Piraino et al. 1999). Of course, there could also be strong emission in the unobserved extreme ultraviolet band.

If the emission is not isotropic, the measured L_x will also be an inaccurate indicator of the total emission. Inclination effects are one possibility: the lower L_x sources may be viewed at a higher (more edge-on) inclination, making L_x smaller. This effect is well known in the dipping X-ray systems where the inclination is extremely edge-on and L_x is low (Parmar et al. 1986). An added attraction of this scenario is that it may explain the fact that Z sources are strong radio emitters while the atoll sources are not (Fender & Hendry 2000). In this scenario, the less inclined, higher L_x, Z sources show strong radio emission because the radio jet is beamed into the line of sight, while atoll sources at higher inclination and lower L_x are usually not detected in the radio because the radio jet is more in the plane of the sky. This may not be the full story, however, since the beaming would have to be narrow and a search for effects of inclination in the X-ray spectra with EXOSAT uncovered no evidence that inclination is important (White et al. 1988).

A general problem with preserving the same M in all the systems while changing the observed L_x through anisotropy or bolometric corrections is that, if all the sources had the same M, they should all show the same X-ray burst properties. They do not; the Z sources, for example, hardly burst at all (Lewin et al. 1993). In the low-L_x sources, M is likely also lower because the persistent emission is at least 10 times weaker than in the bursts, some of which are at the Eddington limit. Assuming the anisotropy is about the same in the burst and persistent emission, M in these sources is then likely lower than in the sources near the Eddington limit, such as the Z sources.

Outflows are another way to decouple L_x and M and are a well-known feature of X-ray binaries, as seen, for example, in the collimated radio jets (Hjellming & Han 1995; Fender 2000). One might expect that the outflows in the low-L_x systems are stronger than those in the high-L_x systems to preserve a similar accreted rate in the various systems. Radio observations, however, suggest that the opposite is true; the atoll sources are less luminous in radio than the Z sources (Fender & Hendry 2000).

Another alternative is that part of the M may be ineffective in determining v_{kHz} while not being lost from the system. This could happen if the mass accretion rate occurs in a two-component flow, radially and through a disk (e.g., Ghosh & Lamb 1979; Fortner, Lamb, & Miller 1989; Wijnands et al. 1996). The accretion rate through the disk is primarily responsible for setting v_{kHz} while the radial flow does not affect v_{kHz} but does change L_x (see Kaaret et al. 1998). Miller et al. 1998 suggest that the disk accretion rate is similar in all sources. Matter is “scooped off” into a radial flow at the magnetospheric radius, and this process is more efficient in the higher L_x sources because the fields are stronger. Under this scenario, the QPOs at higher L_x should have a much smaller rms fraction because of the addition of unmodulated flux. This represents a problem for this scenario since the rms fraction apparently does not decrease enough with L_x (E. Ford et al., 2000, in preparation).

All of the above effects may act to decouple L_x and M. As outlined above, however, no single effect can account for the
decoupling and each has problems. If L_\times and \dot{M} are unrelated, \dot{M} can set the frequency of the QPOs while L_\times assumes any value, as observed.

This work was supported by NWO Spinoza grant 08-0 to E. P. J. van den Heuvel by the Netherlands Organization for Scientific Research (NWO) under contract number 614-51-002 and by the Netherlands Research School for Astronomy (NOVA). This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. M. M. is a fellow at the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina.

REFERENCES

Alpar, M., & Shaham, J. 1985, Nature, 316, 239
Barret, D., & Grindlay, J. E. 1995, ApJ, 440, 841
Barret, D., & Vedrenne, G. 1994, ApJS, 92, 505
Berger, M., et al. 1996, ApJ, 469, L13
Boirin, L., Barret, D., Olive, J. F., Grindlay, J. E., & Bloser, P. F. 2000, Adv. Space Res., 25, 387
Bradshaw, C. F., Fomalont, E. B., & Geldzahler, B. J. 1999, ApJ, 512, L121
Brandt, S., Castro-Tirado, A. J., Lund, N., Dremin, V., Lapshov, I., & Syunyaev, R. 1992, A&A, 262, L15
Christian, D. J., & Swank, J. H. 1997, ApJS, 109, 177
Di Salvo, T., et al. 2000, ApJ, submitted
Ebisuzaki, T. 1987, PASJ, 39, 287
Ebisuzaki, T., Sugimoto, D., & Hanawa, T. 1984, PASJ, 36, 551
Fender, R. 2000, Relativistic Jets from X-Ray Binaries, astro-ph/9907050 (Springer Lecture Notes in Physics)
Fender, R., & Hendry, M. 2000, MNRRS, accepted; preprint (astro-ph/0001502)
Ford, E., Kaaret, P., Tavani, M., Barret, D., Bloser, P., Grindlay, J., Harmon, B. A., Paciesas, W. S., & Zhang, S. N. 1997a, ApJ, 475, L123
Ford, E., Kaaret, P., Tavani, M., Harmon, B. A., Zhang, S. N., Barret, D., Grindlay, J., Bloser, P., & Remillard, R. A. 1996, ApJ, 469, L37
Ford, E. C., Kaaret, P., Chen, K., Tavani, M., Barret, D., Bloser, P., Grindlay, J., Harmon, B. A., Paciesas, W. S., & Zhang, S. N. 1997b, ApJ, 486, L47
Ford, E. C., & van der Klis, M. 1998, ApJ, 506, L39
Fortner, B., Lamb, F. K., & Miller, G. S. 1989, Nature, 342, 775
Ghosh, P., & Lamb, F. K. 1979, ApJ, 234, 296
Grindlay, J., Bloser, P., & Remillard, R. A. 1996, ApJ, 469, L37
Harmon, M., van der Klis, M., Ford, E. C., & Swank, J. H. 1999, in Proc. 19th Texas Symp. on Relativistic Astrophysics
Homan, J., Mendez, M., Wijnands, R., van der Klis, M., & van Paradijs, J. 1999, ApJ, 513, L119
Hoare, P., van der Klis, M., & van Paradijs, J. 1998, A&A, 250, 389
Kueker, W. L., & Lamb, F. K. 1991, ApJ, 377, 347
Kuulkers, E., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., van der Klis, M., Ford, E. C., Wijnands, R., & van Paradijs, J. 1999, ApJ, 511, L49
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Mendez, M., & van der Klis, M. 1999, ApJ, 517, L51
Miller, M. C., Lamb, F. K., & Psaltis, D. 1998, ApJ, 508, 791
Nakamura, N., Dotani, T., Inoue, H., Mitsuda, K., Tanaka, Y., & Matsumoto, M. 1989, PASJ, 41, 617
Oosterbroek, T., Penninx, W., van der Klis, M., van Paradijs, J., & Lewin, W. H. G. 1999, A&A, 250, 389
Orosz, J. A., & Kuulkers, E. 1999, MNRRS, 305, 132