Measurements of ϕ_s at the LHCb experiment

Greig A. Cowan∗†
University of Edinburgh, UK
E-mail: g.cowan@ed.ac.uk

These proceedings present the current status of measurements of the CP-violating phase ϕ_s by the LHCb collaboration, reviewing the measurements in channels such as $B_s^0 \rightarrow J/\psi \phi$, $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ and $B_s^0 \rightarrow \psi(2S)\phi$. The observation of the $B_s^0 \rightarrow \eta_c \phi$ decay mode is presented for the first time, which can be used to measure ϕ_s with larger data samples that will be collected over the coming years by the LHCb experiment. Finally, the expected increase in precision from LHCb measurements of ϕ_s over the next decade is presented.

9th International Workshop on the CKM Unitarity Triangle
28 November - 3 December 2016
Tata Institute for Fundamental Research (TIFR), Mumbai, India

∗Speaker.
†On behalf of the LHCb collaboration
1. Introduction and motivation

A key observable to be measured in the B^0_s meson system is the CP-violating phase, ϕ_s, which arises due to the interference between B^0_s meson mixing and decay processes. It is defined as $\phi_s \equiv -\arg(\bar{\lambda}_f) \equiv -\arg\left(\frac{2A_f}{p_{\lambda / \rho}}\right)$, where q, p are complex eigenvalues related to B^0_s mixing and A_f (\bar{A}_f) are the complex amplitudes for B^0_s (\bar{B}^0_s) meson decay to final state f. Global fits to experimental data give a precise prediction for ϕ_s in the Standard Model of $-0.0376 \pm 0.0008 \text{rad}$ [1]. Any deviation from this prediction would be a clear sign for non-Standard Model physics, strongly motivating the need for precise experimental measurements of this quantity. In this article I will review the measurements of this observable from the LHCb collaboration and discuss new measurements of B^0_s meson decay channels that can be used to measure ϕ_s in the future. All measurements shown here use 3 fb$^{-1}$ of data collected by the LHCb experiment [2] in pp collisions at the LHC during 2011 and 2012.

2. State-of-the-art of ϕ_s measurements

2.1 ϕ_s from $B^0_s \to J/\psi \phi$ and $B^0_s \to J/\psi \pi^+\pi^-$

The so-called “golden mode” for measuring ϕ_s is using a flavour-tagged time-dependent angular analysis of the $B^0_s \to J/\psi \phi$ decay, where $J/\psi \to \mu^+\mu^-$ and $\phi \to K^+K^-$. This $b \to c\bar{c}s$ mediated decay has a high branching fraction and the presence of two muons in the final state leads to a high trigger efficiency. The angular analysis is necessary to disentangle the interfering CP-odd and CP-even components in the final state, which arise due to the relative angular momentum between the two vector resonances. In addition, there is a small ($\sim 2\%$) CP-odd $K^+K^- S$-wave contribution that must be accounted for. The LHCb detector has excellent time resolution (~ 45 fs [3]) and tagging power ($\sim 4\%$ [4]), both of which are crucial to the measurement. In Run 1, the LHCb collaboration used a sample of ~ 96000 $B^0_s \to J/\psi \phi$ decays to measure ϕ_s, the width difference between the light and heavy B^0_s mass eigensates ($\Delta \Gamma_s$), the average decay time (Γ_s), mixing frequency (Δm_s) and direct CP violation parameter ($|\lambda|$). Figure 1 shows the results of this analysis, which gave $\phi_s = -0.058 \pm 0.049 \pm 0.006$ rad, $\Delta \Gamma_s = 0.0805 \pm 0.0091 \pm 0.0032$ ps$^{-1}$ and $\Gamma_s = 0.6603 \pm 0.0027 \pm 0.0015$ ps$^{-1}$ [5]. These are the most precise determinations of these parameters to date and are consistent with SM predictions [1, 6]. The dominant systematic uncertainties in these measurement arise from knowledge about the decay time and angular efficiencies.
It is possible that due to unknown hadronic effects or beyond the SM physics, the values of ϕ_s and $|\lambda|$ could be different for each of the four polarisation states [7,8]. For the first time, the LHCb collaboration relaxed this assumption in the analysis, finding that no polarisation dependence was visible within the available statistical precision.

The LHCb collaboration has also used a similar analysis of $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ decays to measure ϕ_s [9]. Here, the full $\pi^+ \pi^-$ mass spectrum is used in the measurement, which has previously been studied and found to be $>97.7\%$ completely CP-odd [10], dominated by the $f_0(980)$ component. With this time-dependent amplitude analysis, ϕ_s was measured to be $0.070 \pm 0.068 \pm 0.008$ rad, the dominant systematic uncertainty coming from knowledge about the composition of resonances in the $\pi^+ \pi^-$ spectrum. Since the final state is almost all CP-odd, a simplified tagged fit to only the B_s^0 decay time distribution yields compatible results. Combining the $B_s^0 \rightarrow J/\psi \phi$ and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ results gives $\phi_s = -0.010 \pm 0.039$ rad.

2.2 ϕ_s from $B_s^0 \rightarrow \psi(2S)\phi$

Other B_s^0 decay modes with $b \rightarrow c \bar{c} s$ transitions can be used to measure ϕ_s. In Ref. [11], LHCb studied the $B_s^0 \rightarrow \psi(2S)\phi$ (with $\psi(2S) \rightarrow \mu^+ \mu^-$) decays for the first time using the same analysis techniques as Ref. [5]. Figure 2 shows ~ 4500 signal decays in Run 1 data, selected using a boosted decision tree that has been trained using simulated signal events and a background sample from the high-mass sideband. Figure 2 also shows the projections of the data and fit onto the decay time and helicity angles, demonstrating a good fit to the data. In addition to $\Delta \Gamma_s$ and Γ_s, ϕ_s was measured to be $0.23^{+0.29}_{-0.28} \pm 0.02$ rad. For the first time the magnitude of the transversity amplitudes and their phases were measured for this decay, which are different to those in $B_s^0 \rightarrow J/\psi \phi$ as expected [12].

2.3 Global combination

The global combination of ϕ_s and $\Delta \Gamma_s$ measurements from the Heavy Flavour Averaging Group [13] is shown in Figure 3, using measurements from the LHCb collaboration discussed here along with those from the CDF [14], D0 [15], ATLAS [16] and CMS [17] collaborations. They
Measurements of ϕ_s at LHCb

Greig A. Cowan

Figure 3: HFAG combination [13] of ϕ_s and $\Delta \Gamma_s$ from several experiments.

find $\Delta \Gamma_s = 0.085 \pm 0.006 \text{ps}^{-1}$ and $\phi_s = -0.030 \pm 0.033 \text{rad}$. The results are dominated by those from the LHCb collaboration and are consistent with the SM predictions. There remains space for new physics contributions at the $\sim 20\%$ level, however, as the experimental precision improves, it is essential that there is good control over hadronic effects (so-called "penguin pollution") that could mimic the effect from beyond-the-SM physics.

2.4 $\phi_s^{s\bar{s}}$ from $B_0^s \rightarrow \phi \phi$

A related CP-violating phase, $\phi_s^{s\bar{s}}$, can be measured by applying similar methods as above to B_0^s meson decays that go via a $b \rightarrow s\bar{s}t$ transition. The LHCb collaboration has performed such an analysis using $B_0^s \rightarrow \phi \phi$ [18], measuring $\phi_s = -0.17 \pm 0.15 \pm 0.03 \text{rad}$, which is consistent with the Standard Model predictions, all of which are very close to zero [19–21]. An upcoming study of $B_0^s \rightarrow K^+ \pi^- K^+ \pi^-$ decays will provide another avenue for measuring this quantity [22].

3. Future prospects for measuring ϕ_s

The measurement of ϕ_s using $B_0^s \rightarrow J/\psi \phi$ decays has so far restricted to using the region of $K^+ K^-$ phase space near the $\phi(1020)$ resonance. A full amplitude analysis of the $B_0^s \rightarrow J/\psi K^+ K^-$ system was performed in Ref. [23], indicating a significant contribution from other $K^+ K^-$ resonances such as the $f_2^0(1525)$ that can be used when measuring ϕ_s to increase the statistical precision. This approach will require the application of the same analysis formalism as in Ref [9]. Similarly, the recently observed $B_0^s \rightarrow \phi \pi^+ \pi^-$ decay [23] could be used with future data samples from Run 2 and beyond to measure $\phi_s^{s\bar{s}}$, again with a flavour-tagged, decay-time dependent amplitude analysis, including all appropriate $\pi^+ \pi^-$ resonances.

3.1 Observation of $B_0^s \rightarrow \eta_c \phi$

At this conference the LHCb collaboration announced a preliminary observation of the $B_0^s \rightarrow \eta_c \phi$ decay mode, with $\eta_c \rightarrow K^+ K^- \pi^+ \pi^- \pi^+ \pi^- \pi^+ \pi^-$, $K^+ K^- K^+ K^- p\bar{p}$ [24]. This decay is another $b \rightarrow c\bar{s}s$ transition that could be used to measure ϕ_s. Figure 4 shows the invariant mass of the B_0^s system in the $p\bar{p}$ mode along with the $p\bar{p}$ spectrum, with the η_c and J/ψ charmonium resonances clearly visible. A simultaneous amplitude fit is performed using all modes and including contributions from interfering non-resonant components. The branching fraction is extracted relative to the J/ψ channel and found to be $\mathcal{B}(B_0^s \rightarrow \eta_c \phi) = (5.01 \pm 0.53(\text{stat}) \pm 0.27(\text{syst}) \pm 0.63(\mathcal{B})) \times 10^{-4}$. First evidence of the $B_0^s \rightarrow \eta_c \pi^+ \pi^-$ decay was also presented.
shows how the precision on $\Delta \Gamma$ non-Standard Model physics [30].

improves it will be essential to control hadronic effects that can hide small contributions from non-Standard Model physics [30].

3.2 $B_s^0 \to J/\psi \eta$ effective lifetime

The LHCb collaboration has recently observed the $B_s^0 \to J/\psi \eta(\to \gamma \gamma)$ decay [25] and used it to measure the B_s^0 effective lifetime. As this mode is a CP-even eigenstate the effective lifetime gives a measurement of Γ_L. The final state is challenging, containing only two charged tracks and the invariant mass resolution is ~ 48 MeV/c^2 (see Figure 5), compared to ~ 8 MeV/c^2 for $B^0 \to J/\psi \phi$ decays. Using ~ 3000 signal candidates, the lifetime was measured to be $\tau = 1.479 \pm 0.034 \pm 0.011$ ps, consistent with other measurements of the CP-even lifetime [26, 27]. In the future the $B_s^0 \to J/\psi \eta$ mode can be used to measure ϕ_s from a flavour-tagged fit to the decay time distribution.

An update of the HFAG averages of $\Delta \Gamma_s$ and Γ_s was presented, showing good consistency between all measurements and the SM predictions [6]. The $\Delta \Gamma_s$ prediction has an uncertainty more than three times larger than the experimental average.

4. Summary

The LHCb collaboration has made leading measurements of the CP-violating phase ϕ_s and B_s^0 meson lifetimes using Run-1 data. So far all measurements are consistent with predictions from the Standard Model. New $b \to c \eta s$ decay modes have been investigated and measurements performed to either measure CP violating effects or make preparations for such measurements in the future. Figure 6 shows how the precision on ϕ_s and $\phi_{s\tau}$ will reduce as a function of time for key decay channels discussed in these proceedings. The precision is expected to reach ~ 0.01 rad at end of Run 3 [28] (the LHCb upgrade era) which is further discussed in Ref. [29]. As the precision improves it will be essential to control hadronic effects that can hide small contributions from non-Standard Model physics [30].
Measurements of ϕ_s at LHCb

Greig A. Cowan

Year

2020
2030

[rad]

stat

σ

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14

Figure 6: Projection of how precision on ϕ_s from LHCb measurements will scale as a function of time for different decay modes. Information taken from Ref. [28].

5. Acknowledgements

The author thanks the organisers of the CKM2016 meeting and acknowledges the support of the Science and Technology Facilities Council (UK) grant ST/K004646/1.

References

[1] J. Charles et al., Current status of the Standard Model CKM fit and constraints on $\Delta F = 2$ New Physics, Phys. Rev. D91 (2015), no.~7 073007, arXiv:1501.05013.

[2] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.

[3] LHCb collaboration, R. Aaij et al., Measurement of CP violation and the B_s^0 meson decay width difference with $B_s^0 \to J/\psi K^+ K^-$ and $B_s^0 \to J/\psi \pi^+ \pi^-$ decays, Phys. Rev. D87 (2013) 112010, arXiv:1304.2600.

[4] LHCb collaboration, R. Aaij et al., Neural-network-based same side kaon tagging algorithm calibrated with $B_s^0 \to D_s^- \pi^+$ and $B^*_s(5840)^0 \to B^+ K^-$ decays, JINST 11 (2015) P05010, arXiv:1602.07252.

[5] LHCb collaboration, R. Aaij et al., Precision measurement of CP violation in $B_s^0 \to J/\psi K^+ K^-$ decays, Phys. Rev. Lett. 114 (2015) 041801, arXiv:1411.3104.

[6] M. Artuso, G. Borissov, and A. Lenz, CP violation in the B_s^0 system, Rev. Mod. Phys. 88 (2016), no.~4 045002, arXiv:1511.09466.

[7] S. Faller, R. Fleischer, and T. Mannel, Precision Physics with $B_s^0 \to J/\psi \phi$ at the LHC: The Quest for New Physics, Phys. Rev. D79 (2009) 014005, arXiv:0810.4248.

[8] B. Bhattacharya, A. Datta, and D. London, Reducing Penguin Pollution, Int. J. Mod. Phys. A28 (2013) 1350063, arXiv:1209.1413.

[9] LHCb collaboration, R. Aaij et al., Measurement of the CP-violating phase ϕ_s in $B_s^0 \to J/\psi \pi^+ \pi^-$ decays, Phys. Lett. B736 (2014) 186, arXiv:1405.4140.

[10] LHCb collaboration, R. Aaij et al., Analysis of the resonant components in $B_s^0 \to J/\psi \pi^+ \pi^-$, Phys. Rev. D86 (2012) 052006, arXiv:1204.5643.

[11] LHCb collaboration, R. Aaij et al., First study of the CP-violating phase and decay-width difference in $B_s^0 \to \psi(2S)\phi$ decays, Phys. Lett. B762 (2016) 253, arXiv:1608.04855.
Measurements of ϕ_s at LHCb

Greig A. Cowan

[12] G. Hiller and R. Zwicky, (A)symmetries of weak decays at and near the kinematic endpoint, JHEP 03 (2014) 042, arXiv:1312.1923.

[13] Y. Amhis et al., Averages of b-hadron, c-hadron, and τ-lepton properties as of summer 2016, arXiv:1612.07233.

[14] CDF collaboration, T. Aaltonen et al., Measurement of the Bottom-Strange Meson Mixing Phase in the Full CDF Data Set, Phys. Rev. Lett. 109 (2012) 171802, arXiv:1208.2967.

[15] D0 collaboration, V. M. Abazov et al., Measurement of the CP-violating phase $\phi_{J/\psi}$ using the flavor-tagged decay $B_s^0 \to J/\psi \phi$ in 8 fb$^{-1}$ of $p\bar{p}$ collisions, Phys. Rev. D85 (2012) 032006, arXiv:1109.3166.

[16] ATLAS collaboration, G. Aad et al., Measurement of the CP-violating phase ϕ_s and the B_s^0 meson decay width difference with $B_s^0 \to J/\psi \phi$ in 8 fb^{-1} of $p\bar{p}$ collisions, JHEP 08 (2016) 147, arXiv:1601.03297.

[17] CMS collaboration, V. Khachatryan et al., Measurement of the CP-violating weak phase ϕ_s and the decay width difference $\Delta \Gamma_s$ using the $B_s^0 \to J/\psi \phi(1020)$ decay channel in pp collisions at $\sqrt{s} = 8$ TeV, Phys. Lett. B757 (2016) 97, arXiv:1507.07527.

[18] LHCb collaboration, R. Aaij et al., Measurement of CP violation in $B_s^0 \to \phi \phi$ decays, Phys. Rev. D90 (2014) 052011, arXiv:1407.2222.

[19] M. Beneke, J. Rohrer, and D. Yang, Branching fractions, polarisation and asymmetries of $B \to VV$ decays, Nucl. Phys. B774 (2007) 64, arXiv:hep-ph/0612290.

[20] M. Bartsch, G. Buchalla, and C. Kraus, $B \to V(L) V(L)$ Decays at Next-to-Leading Order in QCD, arXiv:0810.0249.

[21] H.-Y. Cheng and C.-K. Chua, QCD Factorization for Charmless Hadronic B_s Decays Revisited, Phys. Rev. D80 (2009) 114026, arXiv:0910.5237.

[22] J. Garcia Pardinas, CPV results from time-dependent analysis of $B_s \to (K^+ \pi^-)(K^- \pi^+)$, these proceedings (2016).

[23] LHCb collaboration, R. Aaij et al., Observation of the decay $B_s^0 \to \phi \pi^+ \pi^-$ and evidence for $B^0 \to \phi \pi^+ \pi^-$, Phys. Rev. D95 (2017), no.~1 012006, arXiv:1610.05187.

[24] LHCb collaboration, R. Aaij et al., First observation of $B^0 \to \eta_\rho h^+ h^-$, LHCB-PAPER-2016-028, in preparation.

[25] LHCb collaboration, R. Aaij et al., Measurement of the effective lifetime in $B^0_s \to J/\psi \eta$ decays, LHCb-PAPER-2016-017, in preparation.

[26] LHCb collaboration, R. Aaij et al., Measurement of the $B_s^0 \to D_s^- D_s^+$ and $B_s^0 \to D^- D_s^+$ effective lifetimes, Phys. Rev. Lett. 112 (2014) 111802, arXiv:1312.1217.

[27] LHCb collaboration, R. Aaij et al., Effective lifetime measurements in the $B^0_s \to K^+ K^-$, $B^0 \to K^+ \pi^-$ and $B_s^0 \to \pi^+ K^-$ decays, Phys. Lett. B736 (2014) 446, arXiv:1406.7204.

[28] LHCb collaboration, Impact of the LHCb upgrade detector design choices on physics and trigger performance, Tech. Rep. LHCb-PUB-2014-040. CERN-LHCb-PUB-2014-040., CERN, Geneva, Aug, 2014.

[29] C. Veronika, Mid- and long-term prospects of measurements of mixing and mixing induced CP violation at LHCb (B system), these proceedings (2016).

[30] S. Akar, Measurements of penguin pollution effects, these proceedings (2016).