Clinical–pathologic significance of cancer stem cell marker expression in familial breast cancers

Anita Bane · Alicia Viloria-Petit · Dushanthi Pinnaduwage · Anna Marie Mulligan · Frances P. O’Malley · Irene L. Andrulis

Received: 11 January 2013 / Accepted: 29 May 2013 / Published online: 28 June 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract Human breast cancer cells with a CD44+/CD24−/low or ALDH1+ phenotype have been demonstrated to be enriched for cancer stem cells (CSCs) using in vitro and in vivo techniques. The aim of this study was to determine the association between CD44+/CD24−/low and ALDH1 expression with clinical–pathologic tumor characteristics, tumor molecular subtype, and survival in a well characterized collection of familial breast cancer cases. 364 familial breast cancers from the Ontario Familial Breast Cancer Registry (58 BRCA1-associated, 64 BRCA2-associated, and 242 familial non-BRCA1/2 cancers) were studied. Each tumor had a centralized pathology review performed. TMA sections of all tumors were analyzed for the expression of ER, PR, HER2, CK5, CK14, EGFR, CD44, CD24, and ALDH1. The Chi square test or Fisher’s exact test was used to analyze the marker associations with clinical–pathologic tumor variables, molecular subtype and genetic subtype. Analyses of the association of overall survival (OS) with marker status were conducted using Kaplan–Meier plots and log-rank tests. The CD44+/CD24−/low and ALDH1+ phenotypes were identified in 16% and 15% of the familial breast cancer cases, respectively, and associated with high-tumor grade, a high-mitotic count, and component features of the medullary type of breast cancer. CD44+/CD24−/low and ALDH1 expression in this series were further associated with the basal-like molecular subtype and the CD44+/CD24−/low phenotype was independently associated with BRCA1 mutational status. The currently accepted breast CSCs markers are present in a minority of familial breast cancers. Whereas the presence of these markers is correlated with several poor prognostic features and the basal-like subtype of breast cancer, they do not predict OS.

Keywords Cancer stem cell markers · Familial breast cancer · Immunohistochemistry

Abbreviations
ALDH1 Aldehyde dehydrogenase 1
BRCA1 Breast cancer 1, early onset
BRCA2 Breast cancer 2, early onset
CSC Cancer stem cell
CD Cluster designation
CK Cytokeratin
DNA Deoxyribonucleic acid
EGFR Epidermal growth factor receptor
ER Estrogen receptor
Breast cancer is a highly heterogenous disease at the morphologic and molecular level, with at least four main molecular subtypes described, including luminal (divided into luminal A and B), HER2 over-expressing, and basal-like [1–3]. More recently additional molecular subtypes have been indentified including claudin-low and molecular apocrine [4–6]. Each of these subtypes has characteristic morphologic, immunophenotypic, and prognostic features. BRCA1-associated breast cancers have been shown to be enriched with tumors of the basal-like subtype, whereas BRCA2-associated tumors and familial non-BRCA1-2 tumors are more likely to be of the luminal subtypes [7–11].

The normal epithelium of the breast has been demonstrated to be organized in a cellular hierarchy with an ER-negative (−) stem cell giving rise to ER-positive (+) and ER-negative progenitors, which ultimately give rise to fully differentiated functional luminal and myoepithelial/basal epithelium [12, 13]. It has been suggested that the different molecular subtypes of breast cancer arise from the transformation of different stem or progenitor cell populations which retain, or acquire as a consequence of the transformation process some or all of functional characteristics of normal stem cells [14]. These characteristics include limitless self-renewal capabilities, which drives tumorigenesis, and the ability to differentiate (albeit aberrantly) leading to morphologic tumor heterogeneity. There is also evidence to suggest that it is the CSC population that mediates metastases and can evade the effects of chemotherapy and radiation therapy thus promoting recurrence and relapse [15–22].

A number of markers have been proposed that enrich for the identification of breast CSCs including CD44 in combination with low or absent expression of CD24 (known as the CD44+/CD24−/low phenotype) [23, 24] and Aldehyde dehydrogenase 1 (ALDH1) [25]. CD44 and CD24 are both adhesion molecules that play major roles in cell–cell and cell–extracellular matrix (ECM) interactions. CD44 is a Class I transmembrane glycoprotein that serves as the primary receptor for hyaluronan [26] and binds other ECM components, such as collagen, laminin, and fibronectin. CD44 exists in different splicing variants; some of these variants have been reported to promote growth, survival, invasion, and metastatic properties in breast cancer cells [27–30]. However, other studies on the role of CD44 in breast cancer have shown opposite effects, suggesting that CD44’s function in breast cancer is context-dependent (reviewed [31]). CD24 is a small cell-surface glycoprotein that binds P-selectin, an adhesion receptor on platelets and endothelial cells [32]. In addition, CD24 promotes binding to fibronectin, collagen, and laminin and in agreement with these functions has been shown to promote adhesion, migration, and metastasis, and to associate with markers of poor prognosis in breast cancer [32–34]. ALDH1 is a detoxifying enzyme responsible for the oxidation of intracellular aldehydes [35] that plays a role in early differentiation of stem cells by promoting the formation of retinoic acid [36]. In addition to preferential expression of ALDH1 in breast cancer cells with tumor initiating properties [25], retinoid signaling has been directly implicated in modulating breast cancer stem cell (CSC) differentiation [37].

In the present study, we examine the expression of the proposed breast CSC markers in a well-characterized collection of familial breast cancer cases. In addition, we investigated whether the expression of these markers is associated with any known clinical–pathologic tumor variables, molecular subtype or with patient survival.

Materials and methods

Study population

The study population included 58 BRCA1-associated, 64 BRCA2-associated, and 242 familial non-BRCA1/BRCA2 tumors from the Ontario Familial Breast Cancer Registry. All familial non-BRCA1/BRCA2 breast cancers were obtained from probands within the Breast Cancer Family Registry who met any of the following criteria for being at possible genetic risk of breast cancer; at least 1 first-degree relative with breast or ovarian cancer, at least 2 second-degree relatives with breast or ovarian cancer, diagnosis before age 26, male, multiple primaries or breast and ovarian cancer, at least 1 second-degree or third-degree relative with male breast cancer, multiple breast, or breast and ovarian primaries, or breast cancer before 26 years of age, or ovarian cancer before 60 years of age, Ashkenazi Jewish, or 3 first degree relatives in the family with breast, ovarian, colon, prostate or pancreatic cancer or sarcoma (with one diagnosed before age 50) but who tested negative
for germline BRCA1 or BRCA2 mutations. Sporadic breast cancer cases from the registry were not available on TMAs.

Mutational analysis of BRCA1 and BRCA2

Testing for germline mutations in BRCA1 and BRCA2 was performed using an RNA/DNA-based protein truncation test with complementary 5' sequencing, as previously described [38, 39], or by complete gene sequencing by Myriad Genetics. All mutations were confirmed by DNA sequencing. Mutations were classified as deleterious if they were protein-truncating, missense mutations (rare), or splice-site mutations as defined by the Breast Informatics Consortium (http://research.nhgri.nih.gov/bic/).

Pathology review

All tumors from the familial breast cancer cohort had a centralized pathology review performed by an expert breast pathologist using a standardized checklist form. The reviewing pathologist was unaware of the mutational status of the tumor at the time of review. Tumors were classified according to the WHO histologic classification of breast tumors and graded using the Nottingham histologic grading system [40, 41].

TMA construction

A suitable paraffin-embedded block of invasive tumor was chosen at the time of pathology review and the area of invasive tumor encircled for TMA construction. Two 0.6 mm cores of tissue were taken from the paraffin tumor block and used for TMA construction (Beecher Instruments, Sun Prairie, WI) as previously described [7, 8]. Four μm sections were cut and immunohistochemical staining for ER, PR, HER2, CK5, CK14, EGFR, ALDH1, CD44, and CD24 was performed using methods as listed in Table 1. Microwave antigen retrieval was carried out in a Micromed T/T Mega Microwave Processing Lab Station (ESBE Scientific, Markham, Ontario, Canada). Sections were developed with diaminobenzidine tetrahydrochloride (DAB) and counterstained in Mayer’s hematoxylin.

Interpretation and scoring of immunohistochemistry

Each of the immunohistochemical TMA-stained sections was scored using Allred’s scoring method [42], which adds scores for the intensity of staining (absent: 0, weak: 1, moderate: 2, and strong: 3 to the percentage of cells stained (none: 0, <1%: 1, 1–10%: 2, 11–33%: 3, 34–66%: 4, and 67–100%: 5 to yield a “raw” score of 0 or 2–8. Previously validated cut-offs for ER and PR were used (0, 2 = negative, 3–8 = positive) [43, 44]. Strong complete membranous staining was assessed for HER2 and the cut-off of ≥5 was used to indicate positivity [45]. For CK5, CK14, EGFR, CD44, and CD24 a score of ≥4 was considered positive, for ALDH1 a score of ≥5 was considered positive. The raw score data were reformatted using a TMA deconvoluter software program into a format suitable for statistical analysis [46]. The highest score from each TMA tumor pair was entered into the statistical analysis. Only the epithelial component of each TMA spot was scored for the markers indicated. Immunohistochemical results were recorded as unavailable when the tissue sections were washed off the slide, TMA cores contained no invasive tumor cells or when sections were uninterpretable due to tissue artifact.

Tumors were classified as luminal if they expressed ER or PR and were negative for HER2. Any tumor with a score of ≥5 for HER2, irrespective of the ER status was considered a HER2 over-expressing tumor and basal-like tumors were defined as ER, PR, and HER2 negative (triple negative) and positive for CK5 and/or CK14 and/or EGFR as previously described [7, 8, 47].

Antibody against	Clone	Source	Dilution	Pretreatment
ER	6F11	Vector	1/100	Microwave at 115 °C for 12 min in modified Tris–HCl buffer (pH 9)
PR	PgR1294	Dako	1/2000	Microwave at 115 °C for 12 min in modified Tris–HCl buffer (pH 9)
HER2	A0485	Dako	1/600	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
CK5	XM26	Vector	1/400	Microwave at 115 °C for 12 min in modified citrate buffer (pH 9)
CK14	LL002	Vector	1/40	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
EGFR	31G7	Invitrogen	1/55	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
Ki67	MIB1	Dako	1/300	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
ALDH1	44ALDH (ALDH1A1)	BD Biosciences	1/200	Microwave at 115 °C for 12 min in modified Tris–HCl buffer (pH 9)
CD44	DF1485	Dako	1/250	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
CD24	SN3b	Neomarkers	1/45	Microwave at 115 °C for 12 min in modified citrate buffer (pH 6)
Statistical analysis

The Chi square test or Fisher’s exact test was used to analyze the marker associations with clinical–pathologic tumor variables, molecular subtype and genetic subtype. Analyses of the association of OS (overall survival) with marker status were conducted using Kaplan–Meier plots and log-rank tests. The follow up data were to the end of November 24, 2011. Excluding the patients lost to follow-up and those with deaths, the minimum follow-up time was 12 months after surgery and the median follow-up time was 148 months. Patient status on November 24, 2011, determined OS time and censoring status. All tests were two-sided. A test with a P-value ≤ 0.05 was considered statistically significant. P-values were not adjusted for multiple testing. Statistical analysis of associations was performed using SAS 9.1 software (SAS Institute, Inc.). Survival curves were plotted using R statistical software, version 2.15.0 (http://www.r-project.org/).

Results

CD44$^+$/CD24$^{-}$/low

Two hundred and sixty two (262) cases had results for both CD44 and CD24, of which 41 (16%) had a CD44$^+$/CD24$^{-}$/low phenotype (Table 2; Fig. 1a–d). When compared with all other combinations of CD44 and CD24 expression, the CD44$^+$/CD24$^{-}$/low phenotype was positively associated with high-tumor grade ($p = 0.03$), a high-mitotic score ($p = 0.003$), margin circumscription ($p = 0.0009$), a moderate tumor lymphocytic infiltrate ($p = 0.01$), and absent lympho-vascular space invasion ($p = 0.008$). In addition there was a statistically non-significant trend in association between the CD44$^+$/CD24$^{-}$/low phenotype and the lack of lymph-node metastases ($p = 0.09$), syncytial tumor growth pattern ($p = 0.06$) and young age at diagnosis ($p = 0.06$). No association was detected between the CD44$^+$/CD24$^{-}$/low phenotype and tumor size, or tumor type.

In the 41 CD44$^+$/CD24$^{-}$/low cases a molecular phenotype was assignable for 33 tumors (Table 3), 16 (48.5%) of which were basal, 1 (3%) was HER2 overexpressing and 16 (48.5%) were luminal. In comparison to all other combinations of CD44 and CD24 expression, tumors with a CD44$^+$/CD24$^{-}$/low phenotype were more likely to belong to the basal-like molecular subtype (48.5 vs. 22.2%; $p = 0.0034$).

Of the 41 CD44$^+$/CD24$^{-}$/low cases, 11 (27%) were BRCA1-associated tumors, 7 (17%) were BRCA2-associated tumors, and the remainder 23 (56%) were from non-BRCA1/BRCA2 tumors (Table 4). When compared to all other combinations of CD44 and CD24 expression, a CD44$^+$/CD24$^{-}$/low phenotype was more likely to be associated with tumors arising in BRCA1 germline mutation.

Table 2 Association between the CD44$^+$/CD24$^{-}$/low phenotype and tumor morphologic characteristics

Tumor characteristic	CD44$^+$/CD24$^{-}$/low ($n = 41$)	Other combinations of CD44 and CD24 ($n = 221$)	p value
Grade			
III	31 75.6 118 53.6 0.03		
II	6 14.6 73 33.2		
I	4 9.8 29 13.2		
Size (mm)			
0–20	24 58.5 124 56.6 0.97		
20–50	15 36.6 83 37.9		
>50	2 4.9 12 5.5		
Type			
Invasive ductal	40 97.6 204 92.7 0.22		
Invasive lobular	1 2.4 13 5.9		
Other	0 0.0 3 1.4		
Lympho-vascular space invasion	9 22.5 99 45.0 0.008		
Positive	9 22.5 99 45.0 0.008		
Negative	31 77.5 121 55.0		
Mitotic score			
1	9 22.0 82 37.3 0.003		
2	3 7.3 46 20.9		
3	29 70.7 92 41.8		
Number of LN positive			
0	26 68.4 109 52.9 0.09		
1–3	11 29.0 59 28.6		
4–9	1 2.6 30 14.6		
≥10	0 0.0 8 3.9		
Margin circumscription			
Positive	19 47.5 49 22.4 0.0009		
Negative	21 52.5 170 77.6		
Syncytial growth			
Positive	7 17.5 16 73 0.06		
Negative	33 82.5 203 92.7		
Age at diagnosis (years)			
<40	21 51.2 72 32.6 0.06		
40–50	12 29.3 103 46.6		
>50	8 19.5 46 20.8		
Lymphocytic infiltrate			
Absent (0)	3 7.5 68 31.1 0.01		
Weak (1)	6 15.0 17 7.8		
Mild (4)	19 47.5 91 41.5		
Moderate (5)	12 30.0 43 19.6		

LN lymph node
carriers than non-BRCA1 mutation carriers (26.8 vs. 12.7%; \(p = 0.02 \)). However, when the analysis was restricted to basal tumors only (Table 5), there was no statistical difference in the incidence of CD44\(^+\)/CD24\(^-\)low expression in BRCA1-associated basal tumors and non-BRCA1-associated basal tumors.

ALDH1

ALDH1 was expressed in 39 of 255 (15%) tumors (Table 6; Fig. 2a, b). The expression of ALDH1 was positively associated with high-tumor grade (\(p = 0.003 \)), large tumor size (\(p = 0.009 \)), high-mitotic score (\(p = 0.05 \)), a syncytial growth pattern (\(p < 0.0001 \)), a moderate tumor lymphocytic infiltrate (\(p = 0.002 \)) and younger age at diagnosis (\(p = 0.02 \)). No statistically significant association was detected between ALDH1 expression and tumor type, lympho-vascular space invasion, or lymph-node status.

A molecular subtype was assignable in 33 of 39 ALDH1 positive tumors, 16 (48.5%) of which were basal, 3 (9%) were HER2 overexpressing and 14 (42.5%) were luminal (Table 7). When compared to tumors lacking ALDH1 expression, ALDH1 positive tumors were more commonly basal-like (48.5 vs. 22.3%; \(p = 0.007 \)).

Of the 39 ALDH1 expressing tumors, 9 (23%) were from BRCA1 germline mutation carriers, 9 (23%) were from BRCA2 germline mutation carriers, and 21 (54%) were from non-BRCA1/BRCA2 patients (Table 8). There was no statistically significant association between ALDH1 expression and BRCA1 mutational status (23.1 vs. 14.3%; \(p = 0.17 \)), even when the analysis was restricted to BRCA1 basal-like tumors only (data not shown).

CD44\(^+\)/CD24\(^-\)low/ALDH1\(^+\)

For the familial breast cancer series the combined CD44\(^+\)/CD24\(^-\)low/ALDH1\(^+\) phenotype was expressed in 6 of 230 tumors (data not shown) and associated with a high-mitotic score (\(p = 0.04 \)), high-mitotic count (\(p = 0.03 \)), and a syncytial growth pattern (\(p = 0.01 \)). There was a non-statistically significant trend toward an association with tumor size (\(p = 0.09 \)), lympho-vascular space invasion (\(p = 0.08 \)), young age at diagnosis (\(p = 0.08 \)), and tumor

Table 3

Association between the CD44\(^+\)/CD24\(^-\)low phenotype and tumor molecular subtype

CD44/CD24 status	Molecular subtype	\(p \) value				
CD44\(^+\)/CD24\(^-\)low	Basal	HER-2	Luminal			
16	48.5	1	3.0	16	48.5	0.0034
Other combinations of CD44 and CD24	44	22.2	28	14.1	126	63.7

Table 4

Association between the CD44\(^+\)/CD24\(^-\)low phenotype and tumor genetic subgroup

CD44/CD24 status	Tumor subgroup	\(p \) value				
CD44\(^+\)/CD24\(^-\)low	BRCA1	BRCA2	Familial non-BRCA1/2			
11	26.8	7	17.1	23	56.1	0.0044
Other	28	12.7	47	21.3	146	66.0

Table 5

Association between the CD44\(^+\)/CD24\(^-\)low phenotype and tumor genetic subgroup within the basal-like molecular subtype

CD44/CD24 status	Tumor subgroup	\(p \) value		
CD44\(^+\)/CD24\(^-\)low	BRCA1-basal	Non-BRCA1-basal		
6	37.5	10	62.5	0.69
Other combinations of CD44 and CD24	19	43.2	25	56.8

Fig. 1 a BRCA1-associated breast cancer TMA section exhibiting strong membranous staining for CD44 in the majority of invasive tumor cells. b BRCA1-associated breast cancer TMA section negative for CD24 staining
Only 6 cases expressed a combined CD44^+/CD24^-/low/ALDH1^+ phenotype and while this number of tumors is too few to perform a robust analysis we did observe that 2 (33%) were basal-like tumors and the remaining 4 (67%) were luminal tumors. In these 6 tumors, 3 (50%) were from BRCA1 germline mutation carriers, none (0%) were from BRCA2 germline mutation carriers and the remaining 3 (50%) were from non-BRCA1/BRCA2 mutation carriers. When compared to all other combinations of CD44, CD24, and ALDH1 expression, tumors with a CD44^+/CD24^-/low/ALDH1^+ phenotype were more likely to be associated with BRCA1 germline mutation carriers than non-mutation carriers (data not shown). On analysis of the tumors with a basal-like molecular subtype only (data not shown), there was no significant difference in CD44^+/CD24^-/low expression between those tumors with and without a BRCA1 germline mutation.

Survival

There was a non-significant trend toward better survival for the group with CD44^+/CD24^-/low compared to the group with other combinations of CD44 and CD24 (Fig. 3). There was no difference in survival between patients with tumors positive for ALDH1 and tumors negative for this marker (Fig. 4).

Discussion

There is an increasing evidence that many tumors including breast cancers may be driven by a subpopulation of cells that display stem cell properties, so called CSCs or tumor initiating cells. Markers have been identified that when used alone or in combination enrich for functional CSCs, as defined by their ability to selectively initiate tumors in immunocompromised mice upon serial passage, a demonstration of self renewal, together with the ability to form tumors that are heterogeneous at the cellular level similar to the originating tumor, illustrative of the CSC’s ability to differentiate [48]. These markers include CD44^+/CD24^-/low and ALDH1, originally identified by the sorting of cells from fresh tumors or effusions using flow cytometry or an enzymatic assay [23, 25]. Unfortunately fresh tumor samples are not routinely available for all breast cancer patients and tumor effusions manifest at a relatively late stage of the disease process and may not be representative of the primary tumor. In order to investigate whether CSCs could represent either prognostic or predictive biomarkers an alternative approach to their identification must be sought, preferably in formalin fixed paraffin embedded (FFPE) tumor material which represents the bulk of patient tumor samples and clinical trial archives. In this study we have

| Table 6 Association between ALDH1 expression and tumor morphologic characteristics |
|---------------------------------|-----------------|-----------------|
| Tumor characteristic | ALDH1+ (n = 39) | ALDH1- (n = 216) |
| | n | % | n | % | p value |
| Grade | | | | | |
| III | 30 | 79.0 | 112 | 52.1 | 0.0033 |
| II | 8 | 21.0 | 69 | 32.1 | |
| I | 0 | 0.0 | 34 | 15.8 | |
| Size (mm) | | | | | |
| 0–20 | 14 | 36.9 | 133 | 62.2 | 0.0099 |
| 20–50 | 20 | 52.6 | 72 | 33.6 | |
| >50 | 4 | 10.5 | 9 | 4.2 | |
| Type | | | | | |
| Invasive ductal | 36 | 94.8 | 198 | 92.1 | 1.0000 |
| Invasive lobular | 1 | 2.6 | 11 | 5.1 | |
| Other | 1 | 2.6 | 6 | 2.8 | |
| Lympho-vascular space invasion | | | | | |
| Positive | 16 | 42.1 | 87 | 40.7 | 0.8668 |
| Negative | 22 | 57.9 | 127 | 59.3 | |
| Mitotic score | | | | | |
| 1 | 8 | 21.0 | 85 | 39.5 | 0.0549 |
| 2 | 6 | 15.8 | 37 | 17.2 | |
| 3 | 24 | 63.2 | 93 | 43.3 | |
| Number of LN positive | | | | | |
| 0 | 20 | 57.1 | 118 | 59.0 | 0.7104 |
| 1–3 | 8 | 22.9 | 53 | 26.5 | |
| 4–9 | 6 | 17.1 | 21 | 10.5 | |
| ≥10 | 1 | 2.9 | 8 | 4.0 | |
| Margin circumscription | | | | | |
| Positive | 15 | 39.5 | 53 | 24.9 | 0.0623 |
| Negative | 23 | 60.5 | 160 | 75.1 | |
| Syncytial growth | | | | | |
| Positive | 10 | 26.3 | 13 | 6.1 | <0.0001 |
| Negative | 28 | 73.7 | 200 | 93.9 | |
| Age at diagnosis (years) | | | | | |
| <40 | 21 | 53.9 | 69 | 32.0 | 0.0214 |
| 40–50 | 10 | 25.6 | 99 | 45.8 | |
| >50 | 8 | 20.5 | 48 | 22.2 | |
| Lymphocytic infiltrate | | | | | |
| Absent | 4 | 10.5 | 64 | 30.0 | 0.0025 |
| Weak | 7 | 18.4 | 16 | 7.5 | |
| Mild | 13 | 34.2 | 93 | 43.7 | |
| Moderate | 14 | 36.9 | 40 | 18.8 | |

LN lymph node

lymphocytic infiltrate (p = 0.08). No association was found between the expression of these combined markers and tumor grade (p = 0.21), tumor type (p = 1.0), lymph-node involvement (p = 0.42) or margin circumscription (p = 0.36).
used immunohistochemical (IHC) expression of CD44+/CD24− and ALDH1 as surrogate markers for breast CSCs and sought to correlate their expression alone and in combination with clinical–pathologic tumor features, breast cancer molecular subtypes, germline gene mutations, and ultimately patient outcome.

Our observations suggest that only a minority of the tumors examined contained cells expressing the breast CSC phenotypes CD44+/CD24−/low (15%), ALDH1 (16%) or both combined CD44+/CD24−/low/ALDH1+ (<1%). Other investigators employing IHC methods to identify these phenotypes have reported a wide variance in the percentage of primary breast tumors that express these phenotypes: 20–60% of tumors exhibit some cells with a CD44+/CD24−/low phenotype [49–55], whereas 7–70% of tumors examined expressed ALDH1 [22, 25, 52, 54, 56–61]. These differences may reflect differences in the antibodies employed, or the tumor populations examined e.g., familial vs sporadic, or the scoring cut points applied (for example, some studies considered tumors with as few as one cell positive for the markers to be positive [50, 59] whereas others like this study have required a minimum of 10% of tumor cells to express the marker in question for the tumor to be considered positive [52, 54]). Alternatively,
perhaps CSCs are phenotypically more diverse and the two phenotypes we have examined may not capture all possible breast CSCs. Wright et al. [62] in an examination of CSCs from transgenic mice engineered to be deficient in BRCA1 demonstrated that some tumors contained CSCs with a CD44+/CD24−/low phenotype, whereas other tumors contained CSC characterized by CD133 expression. Other markers identified as putative breast CSC markers include CK5, EGFR, EpCAM, and CD49f [63, 64].

Traditionally in breast cancer a number of clinical–pathologic tumor characteristics are associated with poor prognosis and include; younger age at diagnosis, large tumor size, lymph-node involvement, high-tumor grade, lymphovascular space invasion (LVSI), negative hormonal receptor status, and HER2 over-expression [65, 66]. Patients with tumors displaying some or all of these features are considered at increased risk for relapse and death from breast cancer when compared to patients with tumors lacking these features. In this study, we demonstrated a positive association between the presence of cells with a CSC phenotype (CD44+/CD24−/low or ALDH1 positive or both) and many of these adverse prognostic features including high-tumor grade, large tumor size, and younger age at diagnosis. A number of other studies have reported similar associations between the presence of CSCs and adverse prognostic features [49, 52, 53]. Interestingly, despite the association with some adverse prognostic factors we were unable to demonstrate an association between CD44+/CD24−/low or ALDH1 expression and breast cancer outcome. We are not alone in this observation, in 2 of 4 other studies where the expression of CD44+/CD24−/low was analyzed in relation to outcome no association was observed [51, 54], in the third study an association between CD44+/CD24−/low and outcome was significant on univariate analyses only [53], whereas in the fourth an inverse relationship between CD44+/CD24−/low expression and survival was reported [55]. The expression of ALDH1 has been correlated with poor patient prognosis in some but not all studies [25, 54, 57, 58, 61, 67]. In two studies the expression of ALDH1 was found to be an independent prognostic variable after multivariate analyses [25, 57]. However, similar to our study Ricardo et al. [54] and Resetkova et al. [61] failed to demonstrate an association between ALDH1 expression and outcome. The lack of an association between these markers and patient survival in a number of studies may suggest that the presence of cells with a stem cell phenotype is not a prognostic marker or alternatively that the identification of these markers by immunohistochemistry may not accurately identify the functional CSC population within a tumor.

In our study, the CD44+/CD24−/low and ALDH1 phenotypes were positively associated with the component features of medullary-type breast cancer; namely prominent lymphocytic infiltrate, pushing tumor margins and syncytial growth pattern [68]. Medullary cancer is a special subtype of breast cancer that occurs in 1–5% of all cases, these cancers are ER, PR, and HER2 negative and characteristically high grade [40, 69]. Furthermore, they have been demonstrated to cluster with either basal-like or claudin-low molecular subtypes of breast cancer and to be more commonly represented in tumors of BRCA1 mutation carriers [3, 5, 70, 71]. Despite these seemingly adverse morphologic and molecular associations medullary-type cancers are associated with a better prognosis than non-medullary grade III tumors a fact that may result from the prominent host lymphocytic response that characterizes these tumors [69]. A prominent tumor lymphocytic infiltrate has been demonstrated to be a good prognostic factor in ER-negative breast cancer and basal-like breast cancers specifically [72–74]. It is plausible that the presence of an “anti-tumor” immune response in the tumor stroma may mitigate the effects of the increase in CSCs present in these tumor types.

The basal-like subtype of breast cancer is a molecular subtype that was originally discovered through gene expression profiling studies [1–3, 75]. This subtype if predominantly triple negative (ER, PR, and HER2 negative) and associated, at least in the short-term, with a worse prognosis than ER-positive luminal-type tumors [76–78]. Breast tumors from patients with BRCA1 germline mutations are enriched for this subtype [3, 7, 9]. In this study, we demonstrate that both CSCs expressing either the CD44+/CD24−/low or ALDH1 positive phenotype are more commonly found in basal-like tumors than any other molecular subtype examined. Furthermore, we demonstrated a positive association between BRCA1 mutational status and the CD44+/CD24−/low phenotype. BRCA1 is believed to be a regulator of breast stem cell fate and is required for mammary epithelial cell differentiation [79, 80]. Specifically, BRCA1 is required for the differentiation of ER− luminal progenitor cells and in its absence, such as in the epithelium of BRCA1 mutation carriers, the transformed luminal progenitors are “driven” toward a basal cell fate (expressing CK5), hence the predominance of the basal-like tumor phenotype among BRCA1 mutation carriers [64, 81, 82]. Sporadic basal-like breast cancer arising in patients without germline BRCA1 mutations are often deficient in functional BRCA1 protein resulting in a similar pathway for the development of sporadic and BRCA1-associated basal-like breast cancer and hence a similar phenotype and CSC expression [83]. Honeth et al. [50] profiled 17 BRCA1-associated breast cancers for the CD44+/CD24−/low phenotype and found that 94% of their BRCA1-associated tumors expressed this phenotype as did 63% of the sporadic basal-like breast cancer included in the study. Heerma van Voss et al. [56] demonstrated that ALDH1 was an independent predictor of BRCA1
mammary carcinoma models and human breast tumors. Genome Biol 8:R76
5. Prat A, Parker JS, Karginova O et al (2010) Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 12:R68
6. Farmer P, Bonnefoi H, Becette V et al (2005) Identification of molecular apocrine breast tumors by microarray analysis. Oncogene 24:4660–4671
7. Mulligan AM, Pinnaduwage D, Bane AL et al (2010) CK8/18 expression, the basal phenotype, and family history in identifying BRCA1-associated breast cancer in the Ontario site of the Breast Cancer Family Registry. Cancer 117(7):1350–1359
8. Bane AL, Beck JC, Bleiweiss I et al (2007) BRCA2 mutation-associated breast cancers exhibit a distinguishing phenotype based on morphology and molecular profiles from tissue microarrays. Am J Surg Pathol 31:121–128
9. Lakhani SR, Reis-Filho JS, Fulford L et al (2005) Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 11:5175–5180
10. Palacios J, Honrado E, Osorio A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90:5–14
11. Palacios J, Honrado E, Osorio A et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9:3606–3614
12. Booth BW, Smith GH (2006) Estrogen receptor-alpha and progesterone receptor are expressed in label-retaining mammary epithelial cells that divide asymmetrically and retain their template DNA strands. Breast Cancer Res 8:R49
13. Sleeman KE, Kendrick H, Robertson D et al (2007) Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 176:19–26
14. Dontu G, Al-Hajj M, Abdallah WM et al (2003) Stem cells in normal breast development and breast cancer. Cell Prolif 36(Suppl 1):S9–72
15. Theodoropoulos PA, Polioudaki H, Agekali S et al (2009) Circulating tumor cells with a putative stem cell phenotype in peripheral blood of patients with breast cancer. Cancer Lett 288(1):99–106
16. Aktas B, Tewes M, Fehm T et al (2009) Stem cell and epithelial-mesenchymal transition markers are frequently overexpressed in circulating tumor cells of metastatic breast cancer patients. Breast Cancer Res 11:R46
17. Lu J, Fan T, Zhao Q et al (2009) Isolation of circulating epithelial and tumor progenitor cells with an invasive phenotype from breast cancer patients. Int J Cancer 126(3):669–683
18. Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621
19. Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−)/CD44− breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785
20. Diehn M, Cho RW, Lobo NA et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458:780–783
21. Li X, Lewis MT, Huang J et al (2008) Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. J Natl Cancer Inst 100:672–679
22. Tanei T, Morimoto K, Shimazu K et al (2009) Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-
based chemotherapy for breast cancers. Clin Cancer Res 15:4234–4241

23. Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100:3983–3988

24. Ponti D, Costa A, Zaffaroni N et al (2005) Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res 65:5506–5511

25. Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

26. Aruffo A, Stamenkovic I, Melnick M et al (1990) CD44 is the principal cell surface receptor for hyaluronan. Cell 61:1303–1313

27. Gumbert U, Hofmann M, Rudy W et al (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

28. Herrlich P, Morrison H, Sleeman J et al (2000) CD44 acts both as a growth- and invasiveness-promoting molecule and as a tumor-suppressing cofactor. Ann N Y Acad Sci 910:106–118 discussion 118-20

29. Bourguignon LY, Wong G, Earle C et al (2010) Hyaluronan–CD44 interaction promotes c-Src-mediated twist signaling, microRNA-10b expression, and RhoA/RhoC up-regulation, leading to Rho-kinase-associated cytoskeleton activation and breast tumor cell invasion. J Biol Chem 285:36721–36735

30. Brown RL, Reinke LM, Dameron MS et al (2011) CD44 splice isoform switching in human and mouse epithelium is essential for epithelial–mesenchymal transition and breast cancer progression. J Clin Invest 121:1064–1074

31. Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9:1573–1586

32. Fogel M, Friederichs J, Zeller Y et al (2009) CD44 is a marker for human breast carcinoma. Cancer Lett 265:87–94

33. Baumann P, Cremers N, Kroese F et al (2005) CD24 expression causes the acquisition of multiple cellular properties associated with tumor growth and metastasis. Cancer Res 65:10783–10793

34. Athanassiadou P, Grapsa D, Gonidi M et al (2009) CD24 expression has a prognostic impact in breast carcinoma. Pathol Res Pract 205:524–533

35. Sophos NA, Vasilou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22

36. Chute JP, Muramoto GG, Whitesides J et al (2006) Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 103:11707–11712

37. Ginestier C, Wicinski J, Cervera N et al (2009) Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle 8:3297–3302

38. Andrilis IL, Anton-Culver H, Beck J et al (2002) Comparison of DNA- and RNA-based methods for detection of truncating BRCA1 mutations. Hum Mutat 20:65–73

39. Youil R, Kemper BW, Cotton RG (1995) Screening for mutations by enzyme mismatch cleavage with T4 endonuclease VII. Proc Natl Acad Sci U S A 92:87–91

40. Tavassoli T, Deeviie P (2003) Pathology and genetics. Tumours of the breast and female genital organs. IARC Press, Lyon

41. Elston CW, Ellis IO (1991) Pathological prognostic factors in breast cancer: a study of 9500 cases. Br J Cancer 60:755–765

42. Allred DC, Harvey JM, Berardo M et al (1998) Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol 11:155–168

43. Harvey JM, Clark GM, Osborne CK et al (1999) Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. J Clin Oncol 17:1474–1481

44. Mohsin SK, Weiss H, Hawighurst T et al (2004) Progesterone receptor by immunohistochemistry and clinical outcome in breast cancer: a validation study. Mod Pathol 17:1545–1554

45. Wolff AC, Hammond ME, Schwartz JN et al (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. Arch Pathol Lab Med 131:18–43

46. Liu CL, Montgomery KD, Natkunam Y et al (2005) TMA-Combiner, a simple software tool to permit analysis of replicate cores on tissue microarrays. Mod Pathol 18:1641–1648

47. Nielsen TO, Hsu FD, Jensen K et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10:5367–5374

48. Wicha MS, Liu S, Dontu G (2006) Cancer stem cells: an old idea—a paradigm shift. Cancer Res 66:1883–1890 discussion 1895-6

49. Guler G, Balci S, Costinean S et al (2012) Stem cell-related markers in primary breast cancers and associated metastatic lesions. Mod Pathol 25:949–955

50. Hoeath G, Bendahl PO, Ringner M et al (2008) The CD44+/CD24− phenotype is enriched in basal-like breast tumors. Breast Cancer Res 10:R53

51. Abraham BK, Fritz P, McClellan M et al (2005) Prevalence of CD44+/CD24−/low cells in breast cancer may not be associated with clinical outcome but may favor distant metastasis. Clin Cancer Res 11:1154–1159

52. Park SY, Lee HE, Li H et al (2010) Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. Clin Cancer Res 16:876–887

53. Giatromanolaki A, Sivridis E, Fiska A et al (2011) The CD44+/CD24− phenotype relates to ‘triple-negative’ state and unfavorable prognosis in breast cancer patients. Med Oncol 28:745–752

54. Ricardo S, Vieira AF, Gerhard R et al (2011) Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. J Clin Pathol 64:937–946

55. Mylona E, Giannopoulou I, Fasomytakis E et al (2008) The clinicopathologic and prognostic significance of CD44+/CD24−/low and CD44−/CD24+ tumor cells in invasive breast carcinomas. Hum Pathol 39:1096–1102

56. Herema van Voss MR, van der Groep P, Bart J et al (2011) Expression of the stem cell marker ALDH1 in BRCA1 related breast cancer. Cell Oncol (Dordr) 34:3–10

57. Charafe-Jauffret E, Ginestier C, Iovino F et al (2010) Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res 16:45–55

58. Morimoto K, Kim SJ, Tanei T et al (2009) Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Sci 100:1062–1068

59. Nalwoga H, Arnes JB, Wabinga H et al (2010) Expression of aldehyde dehydrogenase 1 (ALDH1) is associated with basal-like markers and features of aggressive tumours in African breast cancer. Br J Cancer 102:369–375

60. Madjz Z, Ramezani B, Molanae S et al (2012) High expression of stem cell marker ALDH1 in BRCA1 related invasive breast carcinomas. Asian Pac J Cancer Prev 13:2973–2978

61. Ressetkova E, Reis-Filho JS, Jain RK et al (2010) Prognostic impact of ALDH1 in breast cancer: a story of stem cells and tumor microenvironment. Breast Cancer Res Treat 123:97–108

62. Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24− and CD133+/ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10
63. Boecker W, Buerger H (2003) Evidence of progenitor cells of glandular and myoepithelial cell lineages in the human adult female breast epithelium: a new progenitor (adult stem) cell concept. Cell Prolif 36(Suppl 1):73–84

64. Lim E, Vaillant F, Wu D et al (2009) Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15:907–913

65. Slamon DJ, Godolphin W, Jones LA et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

66. Goldhirsch A, Wood WC, Gelber RD et al (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18:1133–1144

67. Neumeister V, Agarwal S, Bordeaux J et al (2010) In situ identification of putative cancer stem cells by multiplexing ALDH1, CD44, and cytokeratin identifies breast cancer patients with poor prognosis. Am J Pathol 176:2131–2138

68. Ridolfi RL, Rosen PP, Port A et al (1977) Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow-up. Cancer 40:1365–1385

69. Marginean F, Rakha EA, Ho BC et al (2010) Histological features of medullary carcinoma and prognosis in triple-negative basal-like carcinomas of the breast. Mod Pathol 23:1357–1363

70. Quenneville LA, Phillips KA, Ozcelik H et al (2002) HER-2/neu status and tumor morphology of invasive breast carcinomas in Ashkenazi women with known BRCA1 mutation status in the Ontario Familial Breast Cancer Registry. Cancer 95:2068–2075

71. Lakhani SR, Van De Vijver MJ, Jacquemier J et al (2002) The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J Clin Oncol 20:2310–2318

72. Liu S, Lachapelle J, Leung S et al (2012) CD8+ lymphocyte infiltration is an independent favorable prognostic indicator in basal-like breast cancer. Breast Cancer Res 14:R48

73. West NR, Milne K, Truong PT et al (2011) Tumor-infiltrating lymphocytes predict response to anthracycline-based chemotherapy in estrogen receptor-negative breast cancer. Breast Cancer Res 13:R126

74. Rody A, Holtrich U, Pusztai L et al (2009) T-cell metagene predicts a favorable prognosis in estrogen receptor-negative and HER2-positive breast cancers. Breast Cancer Res 11:R15

75. van de Rijn M, Perou CM, Tibshirani R et al (2002) Expression of cytokeratins 17 and 5 identifies a group of breast carcinomas with poor clinical outcome. Am J Pathol 161:1991–1996

76. Mulligan AM, Pinnaduwage D, Bull SB et al (2008) Prognostic effect of basal-like breast cancers is time dependent: evidence from tissue microarray studies on a lymph node-negative cohort. Clin Cancer Res 14:4168–4174

77. Dent R, Hanna WM, Trudeau M et al (2009) Time to disease recurrence in basal-type breast cancers: effects of tumor size and lymph node status. Cancer 115:4917–4923

78. Blows FM, Driver KE, Schmidt MK et al (2010) Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 7:e1000279

79. Kubista M, Rosner M, Kubista E et al (2002) Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene 21:4747–4756

80. Furuta S, Jiang X, Gu B et al (2005) Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci U S A 102:9176–9181

81. Liu S, Ginestier C, Charafte-Jauffret E et al (2008) BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci U S A 105:1680–1685

82. Molyneux G, Geyer FC, Magnay FA et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 7:403–417

83. Turner NC, Reis-Filho JS, Russell AM et al (2007) BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene 26:2126–2132