Gluon mass at finite temperature in Landau gauge

Pedro Bicudo
CFTP, Instituto Superior Técnico, CFTP, Universidade de Lisboa, 1049-001, Lisboa, Portugal
E-mail: bicudo@tecnico.ulisboa.pt

Orlando Oliveira
CFC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra, Portugal
E-mail: orlando@fis.uc.pt

Paulo Silva
CFC, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, 3004-516 Coimbra, Portugal
E-mail: psilva@teor.fis.uc.pt

Nuno Cardoso
CFTP, Instituto Superior Técnico, CFTP, Universidade de Lisboa, 1049-001, Lisboa, Portugal
E-mail: nunocardoso@cftp.ist.utl.pt

Using lattice results for the Landau gauge gluon propagator at finite temperature, we investigate its interpretation as a massive type bosonic propagator. In particular, we estimate a gluon mass from Yukawa-like fits to the lattice data and study its temperature dependence.

31st International Symposium on Lattice Field Theory - LATTICE 2013
July 29 - August 3, 2013
Mainz, Germany

*Speaker.
1. Introduction

Lattice QCD not only is quite important to compare QCD with experiment, but also is ideal to test theories, approximations and models. Here we address pure gauge theory in the phase transition region.

At $T = 0$ pure gauge SU(3) QCD exhibits color screening and flux tubes \([1, 2, 3]\), while at large T Debye screening occurs \([4]\). At $T = T_c \sim 270$ MeV, there is evidence of a finite a gluon mass scale in the π and K multiplicities in heavy ions \([5]\).

Here we complement the outstanding study \([6]\) of the gluon masses in SU(2) for $2T_c < T < 15000T_c$. We study \([7]\) the finite temperature range $T < 2T_c$ in pure gauge SU(3).

The study of the gluon propagator and gluon mass require gauge fixing, and we resort to Landau gauge fixing.

2. Gluon propagator with Landau gauge fixing at $T=0$

On the lattice, the Landau gauge fixing is applied to a configuration $U_\mu(x)$ by maximizing the function,

$$F_U[g] = C_F \sum_{x,\mu} \text{Re}\{\text{Tr}[g(x)U_\mu(x)g^+(x+\hat{\mu})]\} c ,$$

where $g(x)$ is a gauge transformation. The maximum leads to,

$$\partial_\mu A_\mu = 0 .$$

We apply a (Fourier accelerated) Steepest Descent method. We have tested this method both in CPU’s and GPU’s \([8, 9]\).
Gluon mass at finite temperature in Landau gauge
Pedro Bicudo

Temp. (MeV)	β	L_x	L_y	a [fm]	$1/a$ (GeV)
121	6.0000	64	16	0.1016	1.9426
162	6.0000	64	12	0.1016	1.9426
194	6.0000	64	10	0.1016	1.9426
243	6.0000	64	8	0.1016	1.9426
260	6.0347	68	8	0.09502	2.0767
265	5.8876	52	6	0.1243	1.5881
275	6.0684	72	8	0.08974	2.1989
285	5.9266	56	6	0.1154	1.7103
290	6.1009	76	8	0.08502	2.3211
305	6.1326	80	8	0.08077	2.4432
324	6.0000	64	6	0.1016	1.9426
366	6.0684	72	6	0.08974	2.1989
397	5.8876	52	4	0.1243	1.5881
428	5.9266	56	4	0.1154	1.7103
458	5.9640	60	4	0.1077	1.8324
486	6.0000	64	4	0.1016	1.9426
397	5.8876	52	4	0.1243	1.5881
428	5.9266	56	4	0.1154	1.7103
458	5.9640	60	4	0.1077	1.8324
486	6.0000	64	4	0.1016	1.9426

Table 1: Lattice setup used for the computation of the gluon propagator at finite temperature. The β was adjusted to have $Lsa \simeq 6.5 \text{ fm}$.

We compute the $D(p^2)$, shown in Fig. 1, with pure gauge lattice simulations, utilizing the Wilson action for pure gluons, and the expectation value,

$$\langle A^a_\mu(p)A^b_\nu(p) \rangle = V \delta(p-k) \delta^{ab} \left(\delta_{\mu\nu} - \frac{p_\mu p_\nu}{p^2} \right) D(p^2)$$ \hspace{1cm} (2.3)

We utilize sufficiently large volumes $V = L^3$, since a larger volume implies we can reach smaller infrared (IR) momenta for the computation of $D(p^2)$. We also use small lattice spacing, to reduce the $\mathcal{O}(a^2)$ corrections effects, relevant both in the IR and medium range momenta [10].

In the ultraviolet (UV), we find the propagator is massless and similar to the 1-loop predictions.

In the IR the propagator is compatible with a massive denominator and the simplest fit is a Yukawa [3] up to $p \approx 600 \text{ MeV}$

$$M_g = 648(7) \text{MeV} \hspace{1cm} ,$$ \hspace{1cm} (2.4)

or a rational function with complex conjugate poles

$$M_g = 626 \pm i362 \text{ MeV} . \hspace{1cm} (2.5)$$

Moreover we also apply a the more elaborate fit of a running gluon mass, [2]

$$D(p^2) = \frac{Z(p^2)}{p^2 + M^2(p^2)} .$$ \hspace{1cm} (2.6)

The running gluon mass is fitted with a parameter $m_0 = 723(11) \text{ MeV}$

$$M^2(p^2) = \frac{m_0^4}{p^2 + m_0^2} , \hspace{1cm} Z(p^2) = \frac{z_0}{\log \left(\frac{p^2 + rm_0^2}{m_0^2} \right)} ,$$ \hspace{1cm} (2.7)
3. Gluon propagator at $T > 0$

At finite T, we project the Lorentz structure of the propagator $D_{ab}^{\mu\nu}(\vec{q})$ with two independent form factors,

$$D_{\mu\nu}^{ab}(\vec{q}) = \delta_{\mu\nu} \left(P_{\mu\nu}^T D_T(q^2,\vec{q}) + P_{\mu\nu}^L D_L(q^2,\vec{q}) \right)$$

(3.1)

using transverse and longitudinal projectors in the Landau gauge [12, 13], similar to magnetic and electric projectors respectively,

$$P_{\mu\nu}^T = (1 - \delta_{\mu4})(1 - \delta_{\nu4}) \left(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right)$$

(3.2)

$$P_{\mu\nu}^L = \left(\delta_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2} \right) - P_{\mu\nu}^T$$

(3.3)

Finite temperature $T = \frac{1}{aL}$ is simply introduced by reducing the extent of temporal direction $L_t << L_s$. Moreover all lattice data is renormalized fitting the momenta in the UV region to the 1-loop inspired propagator,

$$D_{\text{lattice}}(q^2) = \frac{K}{q^2} \left(\ln \frac{q^2}{\Lambda^2} \right)^{-13/22}.$$

(3.4)

We set $D(q^2) = Z_R D_{\text{lattice}}(q^2)$ where $D(\mu^2) = 1/\mu^2$ with $\mu = 4$ GeV, in order to remove the lattice spacing effects. D_T and D_L are renormalised independently but we observe Z_L and Z_T differ by less than 2%. We utilize the same large volume with $L_s \sim 6.5$ fm for all T. Our configurations were generated at the Milipeia and Centaurus clusters of Coimbra University (Chroma and PFFT libraries).
4. Gluon mass at finite T

We plot the finite T inverse of the propagators in Fig. 3. For IR momenta, they are again compatible with a massive denominator. Notice D^{-1}_L is linear in the infrared, while D_T^{-1} bends. In the UV the propagators have a logarithmic behavior, $D^{-1} \sim \log$.

The simplest ansatz for a massive propagator is,

$$D(p) = \frac{1}{p^2 + M^2}, \quad \Rightarrow \quad M = \frac{1}{\sqrt{D(0)}}. \quad (4.1)$$

The resulting fit is shown in Fig. 4. Close to T_c, D_L clearly signals the transition, while D_T is apparently flat. At $T \sim 2T_c$, the two masses cross, $M_L \sim M_T$.

Moreover we apply a better ansatz, adequate for IR momenta, we fit D_i to a Yukawa with mass M and dressing function Z,

$$D_i(p^2) = \frac{Z}{p^2 + m^2} \quad (4.2)$$

and look for the largest fitting range p_{max}. While this fits quite well D_L, the Yukawa ansatz does not fit D_T. In Fig. 5 we show the fit of the mass m and of the factor Z. While Z peaks at the transition, the mass m is minimum but clearly finite.

5. Conclusion

We compute the gluon propagator in Landau gauge Lattice QCD at finite $0 < T < 2T_c$. The
Table 2: Mass M_L and factor Z_L parameters of the Yukawa fits to the longitudinal propagators at finite T.

![Table 2: Mass M_L and factor Z_L parameters of the Yukawa fits to the longitudinal propagators at finite T.](image)

Figure 4: Longitudinal and transverse masses fitted with the simplest ansatz at finite temperatures T.

The longitudinal component D_L is peaked at $T = T_c$. In the infrared, we fit D_L with massive Yukawa ansatze, the fit to D_L is more stable than the fit to D_T. The fitted longitudinal gluon mass M_L is compatible with confinement screening at $T \sim 0$. M_L is also consistent with debye screening at $T \gg 0$. We observe M_L is minimum at $T \sim T_c$, but finite $[7]$ as suggested by multiplicites of π and k production in heavy ion collisions.
Figure 5: Mass and factor parameters fitted with the Yukawa ansatz at finite temperatures T.

References

[1] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[2] O. Oliveira and P. Bicudo, J. Phys. G 38, 045003 (2011) [arXiv:1002.4151 [hep-lat]].
[3] N. Cardoso, M. Cardoso and P. Bicudo, Phys. Rev. D 88, 054504 (2013) [arXiv:1302.3633 [hep-lat]].
[4] M. Doring, K. Huebner, O. Kaczmarek and F. Karsch, Phys. Rev. D 75, 054504 (2007) [hep-lat/0702009 [HEP-LAT]].
[5] P. Bicudo, F. Giacosa and E. Seel, Phys. Rev. C 86, 034907 (2012) [arXiv:1202.1640 [hep-ph]].
[6] U. M. Heller, F. Karsch and J. Rank, Phys. Rev. D 57, 1438 (1998) [hep-lat/9710033].
[7] P. J. Silva, O. Oliveira, P. Bicudo and N. Cardoso, arXiv:1310.5629 [hep-lat].
[8] N. Cardoso, P. J. Silva, P. Bicudo and O. Oliveira, Comput. Phys. Commun. 184, 124 (2013) [arXiv:1206.0675 [hep-lat]].
[9] M. Schröck and H. Vogt, Comput. Phys. Commun. 184, 1907 (2013) [arXiv:1212.5221 [hep-lat]].
[10] O. Oliveira and P. J. Silva, Phys. Rev. D 86, 114513 (2012) [arXiv:1207.3029 [hep-lat]].
[11] D. Dudal, O. Oliveira and N. Vandersickel, Phys. Rev. D 81, 074505 (2010) [arXiv:1002.2374 [hep-lat]].
[12] A. Maas, J. M. Pawlowski, L. von Smekal and D. Spielmann, Phys. Rev. D 85, 034037 (2012) [arXiv:1110.6340 [hep-lat]].
[13] R. Aouane, V. G. Bornyakov, E. M. Ilgenfritz, V. K. Mitrjushkin, M. Muller-Preussker and A. Sternbeck, Phys. Rev. D 85, 034501 (2012) [arXiv:1108.1735 [hep-lat]].