Traditional Uses and Sustainable Collection of Ethnobotanicals by Aboriginal Communities of the Achanakmaar Amarkantak Biosphere Reserve of India

Tarun Kumar Thakur¹,*, Yogesh Kumar¹, Arvind Bijalwan², Manmohan J Dobriyal³

¹Department of environmental Science, IG National Tribal University, Amarkantak, India
²Indian Institute of Forest Management (IIFM), Bhopal, India
³College of Forestry (ACHF), Navsari Agricultural University, Navsari, India

Email address:
tarun_2711@yahoo.co.in (T. K. Thakur)
*Corresponding author

To cite this article:
Tarun Kumar Thakur, Yogesh Kumar, Arvind Bijalwan, Manmohan J Dobriyal. Traditional Uses and Sustainable Collection of Ethnobotanicals by Aboriginal Communities of the Achanakmaar Amarkantak Biosphere Reserve of India. Frontiers in Environmental Microbiology. Vol. 3, No. 3, 2017, pp. 39-49. doi: 10.11648/j.fem.20170303.11

Received: February 27, 2017; Accepted: March 9, 2017; Published: June 16, 2017

Abstract: In the due course of study, focus was prearranged on the traditional use of trees, herbs and shrubs (ethnobotanicals) which are little or unknown to modern societies. Through questionnaire and interviews, the present study was attempted to collect the information about the people who still live in traditional world. A total 40 tree species, 94 herbs including tubers, grasses, climbers and 13 shrubs utilize by aboriginal communities of Achanakmaar Amarkantak Biosphere Reserve (AABR), were renowned/ explored for different utilization pattern. The most important tree species collected from the forests and nearby village areas by the local people are Madhuca indica, Buchanania lanzan, Diospyrus melanoxylon, Mangifera indica, Shorea robusta and Terminalia tomentosa etc. Similarly, herbs collected are Eclipta alba, Panicum antidotale, Smithia conferta, Phyla nodiflora, Dioscorea bulbifera, Curculigo orchioides, Oxalis corniculata, Portulaca oleracea, Solanum nodiflorum, Achyranthus aspera, Leucas aspera, Corchorus trilobularis, Cassia tora etc. The most common reported shrubs of these areas are Phoenix sylvestris, Randia dumetorum, Ziziphus zilopyrus and Lantana camara. The reported botanicals have variety of uses like vegetable, fruit, furniture, religious use, rituals use, and for handloom preparation. Besides the consumption value, forest also source of subsistence for this hidden and marginalized society of the world. The current study confirmed that there is a vital necessity for documentation of traditional knowledge associated to the Bagia aboriginals and others insubstantial cultural inheritance regarding traditional plant uses. Further, it can provide a baseline ethnobotanicals utilization pattern data that may be guiding parameter for the prioritization and conservation of these natural resources along with bio-prospecting indigenous traditional knowledge.

Keywords: Aboriginals, Forests, Sustainable, Aabr, Ethnobotanicals

1. Introduction

The human beings are closely associated with forest for their existence and civilization. The relationship between human being and forest has been important for the development of society (Riter et al. 2013). The development of society is based on various function of forest like productive, ecological, social and cultural etc.

The aboriginals /indigenous people continuously (generation to generation) associated with forest and often possess a broad knowledge base about the complex ecological behavior of forest in their own localities (Gadgil et al. 1993). Most of people live in and around forest belongs to tribal communities. These forest dwellers collect different type of forest produce from forest either for their own consumption or for sale in the market. The collection intensity of forest produces mainly dependent
on availability, knowledge and easily accessibility of it (Kala, 2009). Millions of people, particularly tribal and rural communities in many developing countries still collect and consumed a wide variety of wild plant resources to meet their food requirements (FAO, 2004; Balemie et al. 2006; Bharucha et al. 2010, Dobriyal, et al, 2015). Forest is an important source of highly nutritious value food for tribes. Intensive studies concerning its nutritional role have also been highlighted in many surveys around the world (Tanji et al. 1995; Ogle et al. 2001; Bonet et al. 2002; Guerrera et al. 2003; Ogoye-Ndegwa et al. 2003; Ertug, 2004; Tardio et al. 2005; Javier et al. 2006). These wild plants provide balance diet by supplementing essential nutrients and minerals for human being. The wild plants have been recognized as potential source of nutrition than conventionally eaten crops (Grivetti et al. 2000). Due to modernization in society (advanced communication, transportation and technology) there is a mixing of culture and customs of these forest dwellers, but still they have endowed with many traditional rituals, beliefs, norms and practices which are highly associated with forest. Tribal communities have strong cultural, spiritual and livelihood link with forest. The Achanakmaar Amarkantak Biosphere reserve (AABR) in Central India is known to home of several Non Timber Forest Produce (NTFPs), rare and endangered medicinal aromatic plant and different type of forest ranging from subtropical to dry deciduous, which greatly contribute to livelihoods of inhabited tribal communities. The inhabited tribes in AABR are mostly belonging to Baiga, Gond, Kol, Kanwar, Pradhan and Panka communities. Every plant on earth has utility but bio-prospecting this resource is a big task. These forest dwellers have vast knowledge about appropriate uses of forest products. They are very well aware that plants play very important role in generating the ecological services and natural resources on which they depend. They consider every part of environment from trees to rivers as very important part of their life as they are the only means of human survival as per their understanding (Pandey, 1997). Forest dependent communities are usually located far from cities and fertile agriculture areas, so these communities fulfill their almost day to day need from forest (Yeo-Chang, 2009). Most of the basic needs of these tribe’s like food (leafy vegetables, fruit, and kodo, kutki, sama grains), shelter (Bamboo, grasses and leafs) and income (by selling leaf of bahunia, mushroom and mahua flowers etc.) are fulfilled through forest. Tribal communities have symbiotic relation with forest they (forest and tribe) depend on each others. The tribal communities have extensive knowledge about the traditional uses of these natural resources which are little or unknown to modern societies. The knowledge remained just with the people who are acquainted with these uses and has rarely been documented otherwise (Burgi et al. 2013). There is a real need for field-level research, synthesis and collection of information on tribal-forest association. With this background, a need was felt to collect in-depth information on the tree species growing in AABR and used by tribal groups in view of documenting the knowledge which may be under threat due to the influence of modernization. This paper thus aims to highlight and record in detail the traditional knowledge of tribal groups on the use of various tree species growing in AABR.

2. Methodology

2.1. Study Area

The AABR lays between21° 15' to 22° 58' N latitude and 81°25' to 82° 5' E longitude. The Achanakmar Amarkantak Biosphere Reserve is spread over an area of 383551.0 ha in Deccan Peninsula bio-geographic zone of Chhattisgarh and Madhya Pradesh and comprises of tropical moist deciduous to tropical dry deciduous forests. The total geographical area of AABR is 383551.0 ha of which 55155.0 ha is under the core zone and remaining 28396.889 ha comprises the buffer zone. The zonation in AABR makes clear the ecological and socio-economical independence between each zone of AABR. The core region of the AABR is situated in Chhattisgarh state whereas the buffer and transition zones lie partly both in Madhya Pradesh and Chhattisgarh. The AABR possessed rich plant and animal diversity. It is similarly known for its cultural diversity, as it is colonized by number of tribal and non-tribal group of people.

2.2. Survey Methods

The present study was carried out in buffer zone and core zone’s villages of AABR. A total of 7 villages in buffer zone namely Amadoab, Kewanchi, Piper Khuti, Kachhra tola, Roopan dan, Pattar coni, Madna dipo and 5 villages of core zone namely Lannin, Birar pani, Chhiriitta, Ataryaa and Ranchaki were selected for intensive study of traditional knowledge on the use of flora of AABR (Table 1). The location map of study area is depicted in Fig 1. The selected villages of core zone were dominated by tribal communities while buffer zone has both tribal and non tribal communities. The randomly selected tribals hamlets and families from different communities were questionnaire survey in the selected villages of AABR. The important part of the questionnaire were discussed with 60 to 70 years villagers because they have great experience regarding the use of forest products. The females provided the information mainly regarding the wild vegetables. Through questionnaire survey and interviews the information was collected on the indigenous uses of tree species, their processing techniques, consumption pattern, plant part use, local name of tree species and their occurrence in AABR. The questions were also asked on the role of forest products on the economy of tribal community and non tribal communities reside in and around the biosphere reserve. Apart from questionnaire
survey, the local people were encouraged to give their ideas and perceptions on various uses of herbs, shrubs and tree species. Information was collected on ethnobotanicals by participating in various cultural activities of the local tribal people. Efforts were made to scrutinize the tree species used in various socio-cultural practices of the local people including childbirth, death and marriage ceremony. The related cultural practices and norms for collection of a variety of forest produce and parts of particular tree species were also documented through group discussion. The experienced local people were also requested to escort during the forest survey for identification of tree species and related indigenous knowledge.

![Study area and location of field study of achanakmaar amarkantak biosphere reserve.](image)

Figure 1. Study area and location of field study of achanakmaar amarkantak biosphere reserve.

Table 1. List of villages, surveyed in aabr.

S. N	Village Name	GPS Location	Elevation MSL (m)	Informants	Localities	Population (2011 census)
1.	Lamni	N-22°32'32.53" E-81°44'37.20"	569	18	4	634
2.	Birar pani	N-22°32'36.30" E-81°38'36.70"	781	13	3	75
3.	Chirhatta	N-22°31'23.50" E-81°41'46.60"	446	11	3	94
4.	Atariya	N-22°34'08.07" E-81°45'12.71"	598	17	5	668
5.	Ranchaki	N-22°34'.445" E-81°41'.553"	701	15	3	342

S. N	Village Name	GPS Location	Elevation MSL (m)	Informants	Localities	Population (2011 census)
1.	Aamadob	N-22°37'17.68" E-81°44'10.77"	656	21	4	1208
2.	Kewanchhi	N-22°37'17.73" E-81°46'44.82"	578	23	6	846
3.	Pipar Khuti	N-22°39'36.33" E-81°52'08.80"	596	27	8	786
4.	Kachra tola	N-22°40'47.45" E-81°52'59.82"	600	11	2	332
5.	Roopan dand	N-22°41'52.17" E-81°53'31.51"	591	13	3	1003
6.	Paterkoni	N-22°42'55.83" E-81°53'48.02"	594	09	2	787
7.	Madana	N-22°43'42.82" E-81°54'07.54"	604	23	5	861

Parts used by local people were cross-checked with other people and evaluate the result from personal interview and discussions in group with local people provide much valuable and specific information regarding the traditional uses of plants.
3. Results and Discussion

The present study brought it in to the light that there are many traditional uses of forest which are well known by indigenous communities meanwhile the modern society have very limited or insufficient knowledge on these uses. In the same way various plants used by the local people of AABR are such type of distinctive uses of the plants. A total 40 tree species, 94 herbs including tubers, grasses, climbers and 10 shrubs utilize by local people of AABR, were renowned during the present study (Table 2, 3 and 4). The most important tree species collected from the forests and nearby village areas by the local people are Madhuca indica, Buchanania lanzan, Diospyrus melanoxylon, Mengifera indica, Phyllanthus emblica, Syzygium cumini, Terminalia chebula, Terminalia bellirica, Shorea robusta and Terminalia tomentosa. The local people have multiple uses of ethnobotanical plants, of these 13 uses are recognized during the present study (Figure 2) and The informants revealed that different morphological plant parts were used by local people (Figure 3) and their distribution of recorded ethnobotanical plants into families are depicted in figure 4. The most common herbs collected from forest or nearby village areas by the local people are Eclipta alba, Panicum antidotale, Smithia conferta, Euphorbia heterophylla, Phyla nodiflora, Dioscorea bulbifera, Curculigo orchoides, Oxalis corniculata, Portulaca oleracea, Echinochloa colona, Solanum nodiflorum, Aegyrianthus aspera, Leucas aspera, Corchorus trilobularis, Cassia tora etc. These herbs mostly used for vegetable and medicinal purpose and some time also used for fruit and grain. The most common reported shrubs of these areas are Phoenix sylvestris, Randia dumetorum, Ziziphus ziloplyrus and Lantana camara. The reported shrubs have variety of uses like vegetable, fruit and for handloom preparation. Most of species are used as food (38%), 5% and medicine (54%). Besides, the plant species are used to execute cultural practices (1.9%), for fuel wood (5.5%), house construction (6.9%), making agriculture tools and instruments (4.1%), furniture (3.5%), as fish poison (1.3%), fodder, oil making, liquor preparation, rope, cup and plate making, and bio-fencing. Seed, dye, leaf, tubers, mushrooms, gum, resin, root, fruit, flower and twig of plants are also used and collected from the forests. The gum mainly collected from Shorea robusta, Anogeissus latifolia, Boswellia serrata and Sterculia urens. The species which used for day to day needs like house construction, making agricultural implements, fuel wood, fodder purpose, and manufacturing boundary wall are cut down around the year as per needs. However, there are a few tree species, such as, Ficus religiosa, Aegle marmelos, Syzygium cumini, Madhuca indica and Shorea robusta, having socio-cultural importance to local people are harvested/felled after some local rituals or prayer practices.

Table 2. Herbaceous flora of aabr with local name, scientific name and family name along with their uses.

S. No	common name	Scientific name	Family	Habit	uses	
1.	Katua shak	Alternanthera philoxeroides (Mart.) Griseb.	Amaranthaceae	H	V	
2.	Kubbi	Ageratum conyzoides (L.) L.	Asteraceae	H	M	
3.	Kurie	Bidens pilosa L.	Asteraceae	H	M	
4.	Safed murga	Celosia argentea L.	Amaranthaceae	H	M & V	
5.	Bhirangraj	Eclipta alba (L.) Hassk.	Asteraceae	H	M	
6.	Kutki	Panicum antidotale Retz.	Poaceae	G	F	
7.	Grass lily	Ipomgenia indica (L.) A.Gray ex Kunth	Poaceae	G	Fo	
8.	Meethi buti	Scoparia dulcis L.	Plantaginaceae	H	M	
9.	Naichbi bhaqi	Smithia conferta Sm.	Fabaceae	H	V	
10.	Kanghi	Blainvillea acemila (L.) Philipson	Asteraceae	H	M	
11.	Khal muriya	Trixis procumbens (L.) L.	Asteraceae	H	M	
12.	Duddhali	Sopubia delphinifola G.Don	Scrophulariaceae	H	M	
13.	Akarkara	Spianthis panicalata Wall. ex DC.	Asteraceae	H	M	
14.	Chaulli	Alysicarpus monilfer (L.) DC.	Fabaceae	H	M	
15.	Doodhi	Euphorbia heterophylla DesF.	Euphorbiaceae	H	M	
16.	Pulpuli grass	Arthropax hispidus (Thunb.) Makino	Poaceae	G	Fo	
17.	Babui	Eualliosis binata (Retz.) C.E.Hub.	Poaceae	G	Fo	
18.	Sauri	Alysicarpus vaginalis (L.) DC.	Fabaceae	H	M	
19.	Ghugunha	Crotalaria retusa L.	Fabaceae	H	M	
20.	Pihri chara	Meceardina procumbens (Mill.) Small	Scrophulariaceae	H	F	
21.	Ratolia	Phyla nodiflora (L.) Greene	Verbenaceae	H	V	
22.	Khadraati	Sida acuta Burm.f.	Malvaceae	H	M	
23.	Kangni	Sotaria pumilia (Poir.) Roem. & Schult.	Poaceae	G	Fo	
24.	Bharbhushi	Eragrostis tenella (L.) P.Beau. ex Roem. & Schult.	Poaceae	G	Fo	
25.	Soli	Aeschynome americana L.	Leguminosae	H	Gm	
26.	Patthar choor	Plectranthus mollis (Aiton) Spreng.	Lamiaceae	H	M	
27.	Bariyari	Sida cordata (Burm.f) Borss.Waalk.	Malvaceae	H	M	
28.	Hirankhuri	Emilia sonchifolia (L.) DC. ex DC.	Asteraceae	H	M	
29.	Badrajan boya	Nepea cataria L.	Lamiaceae	H	M	
30.	Kevkand	Dioscorea bulbifera L.	Dioscoreaceae	C	M	
31.	Kali muslhi	Curculigo orchoides Gaertn	Agavaceae	T	M	
S. No	common name	Scientific name	Family	Habit	uses	
-------	---------------------------	--	-------------------------	-------	------	
32.	Tinpaniya	Oxalis corniculata L.	Oxalidaceae	H	M & V	
33.	Maskani	Evolvulus nummularius (L.)	Convolvulaceae	H	M	
34.	Chanchu	Corchorus fascicularis Lam.	Tiliaceae	H	Fi	
35.	Kena	Commelina diffusa Lam.	Commelinaceae	H	M	
36.	Kharmor	Rungia pecinata (L.) Nees	Acanthaceae	H	M	
37.	Ghueen	Fimbriyale littorales Gaudich.	Cyperaceae	H	M	
38.	Nagar motha	Cyperus gracilis R.Br.	Poaceae	G	Fo	
39.	Bufalo grass	Passalum conjugatum P.J.Bergius	Poaceae	G	Fo	
40.	Baiga sikyab	Digitaria divaricatissima (R.Br.) Hughes	Poaceae	G	Fo	
41.	Jangli marua	Eleusine indica (L.) Gaertn.	Poaceae	G	Fo	
42.	Dokar bel	Vitis carnosa (Lam.) Wall.	Vitaceae	H	M	
43.	Chui mui	Mimosa pudica L.	Fabaceae	H	M	
44.	Nuniya bhaji	Portulaca oleracea L.	Portulacaceae	H	V	
45.	Kanthkari	Solanum xanthocarpum Schrad. & H. Wendl.	Solanaceae	H	M	
46.	Jangli sama	Echinochloa colona (L.) Link	Poaceae	G	Ge	
47.	Amti	Solanum nodiflorum Jacq.	Solanaceae	H	V	
48.	Chirchita	Achyranthes aspera L.	Amaranthaceae	H	M	
49.	Ghooma	Leucas aspera (Willd.) Link	Lamiaceae	H	V	
50.	Kaniya kanda	Dioscorea oppositifolia L.	Dioscoreaceae	C	M	
51.	Chench	Corchorus trilocularis L.	Tiliaceae	H	V	
52.	Chanahur	Marsdenia tenacissima (Roxb.) Moon	Asclepiadaceae	H	V	
53.	Van rai	Blumeopsis flava (DC.) Gagnep.	Asteraceae	H	M	
54.	Tikhur	Curcuma angustifolia Roxb.	Zingiberaceae	T	M	
55.	Bhui amla	Phyllanthus niruri L.	Euphorbiaceae	H	M	
56.	Salparni	Desmodium gangeticum (L.) DC.	Fabaceae	H	M	
57.	Satawar	Asparagus racemosus Willd.	Liliaceae	H	M	
58.	Haldi mushli	Chlorophyllum borivilianum Santapau & R.R.Fern.	Asparagusaceae	T	M	
59.	Datura	Datura metel L.	Solanaceae	H	M, Ru	
60.	Gajar ghas	Parthenium hysterophorus L.	Asteraceae	H	M	
61.	Badi dudhi	Euphorbia hirta L.	Euphorbiaceae	H	M	
62.	Chhoti dudhi	Euphorbia macrophylla Pax	Euphorbiaceae	H	M	
63.	Bara	Flemingia chappar Benth.	Fabaceae	H	Lac	
64.	Bedarikand	Coccinia grandis (L.) Voigt	Cucurbitaceae	C	E	
65.	Jungli san	Crotalaria spectabilis Roth	Fabaceae	H	M	
66.	Kalihari	Gloriosa superba L.	Colchicaceae	C	M	
67.	Kheksa	Monomorcia dioica Roxb.	Cucurbitaceae	C	V	
68.	Karnata	Ipomoea aquatica Forsk.	Convolvulaceae	H	V	
69.	Jungle kevanch	Mucuna pruriens (L.) DC.	Papilionaceae	H	M	
70.	Jangli pyaj	Urginea indica (Roxb.) Kunth	Liliaceae	H	M	
71.	Chirlula	Aerva lanata (L.) Juss.	Amaranthaceae	H	M	
72.	Chirinya	Peristrope roxburghiana (Roem. & Schult.)	Bremek.	Acanthaceae	H	M
73.	Garundi	Alternanthera sessilis (L.) R.Br. ex DC.	Amaranthaceae	H	M	
74.	Jungli rye	Sisymbrium nigram (L.) Prantl	Cruciferae	H	V	
75.	Jangli Tulsi	Ocimum gratissimum L.	Lamiaceae	H	M	
76.	Charpoti	Phyllis minima L.	Solanaceae	H	Fe	
77.	Sargpandha	Ravoulia serpentina (L.) Benth. ex Kurz	Apocynaceae	H	M	
78.	Sadabahar	Catharanthus roseus (L.) G.Don	Apocynaceae	H	M	
79.	Brahmi	Bacopa monnieri (L.) Wettst.	Plantaginaceae	H	M	
80.	Tulsi	Ocimum sanctum L.	Lamiaceae	H	M, Ru	
81.	Chiraita	Swertia alba T.N. Ho & S.W. Liu	Gentianaceae	H	M	
82.	Aswagandha	Withania somnifera (L.) Dunal	Solanaceae	T	M	
83.	Chand kal	Macaranga peltata (Roxb.) Müll.Arg.	Euphorbiaceae	H	M	
84.	Chaulai	Amaranthus spinosus L.	Amaranthaceae	H	M	
85.	Tiger lily	Belamcanda chinensis (L.) DC.	Iridaceae	H	M	
86.	Bisakhpara	Boerhavia procumbens Banks ex Roxb.	Nyctaginaceae	H	V	
87.	Mandukpurni	Centella asiatica (L.) Urb.	Apiaceae	H	M	
88.	Ghuia	Colocasia esculenta (L.) Schott.	Araceae	H	V	
89.	Kev kand	Costus speciosus (J.Koenig) Sm.	Zingiberaceae	T	M	
90.	Amahaldhi	Curcuma amada Roxb.	Zingiberaceae	T	M	
91.	Jungli dhania	Eryngium foetidum L.	Apiaceae	H	V	
92.	Sitap	Ruta graveolens L.	Rutaceae	H	M	
93.	Mameera	Thalictrum foliolosum DC.	Ranunculaceae	H	M	
94.	Bathua bhaaji	Chenopodium album L.	Chenopodiaceae	H	V	

Legends: F: Food, H: Herb, T: Tuber, C: Climber, G: Grass, M: Medicinal use, V: Vegetable, Fo: Fodder, Fe: Fruit edible, Ru: Religious use, E: Edible, Ge: Grain edible and Gm: Grain edible
Table 3. Traditionally used tree species by local people in AABR.

S. No.	Common name	Scientific name	Family	Parts used	Uses
1.	Bel	Aegle marmelos	Rutaceae	Fruit, Leaf	Edible, Medicinal, Religious purpose
2.	Dhabda	Anogeissus latifolia	Combretaceae	Stem, Resin	Agriculture implement, Selling
3.	Mohline	Bauhinia purpurea	Caesalpiniaeae	Leaf, Flower	House construction, Fuel wood
4.	Semel	Bombax ceiba	Malvaceae	Fruit, Flower	Cup and plate making, Medicinal
5.	Talei	Boswellia serrata Roxb.	Burseraceae	Resin	Medicine
6.	Chironji	Buchanania lanzan	Anacardiaceae	Fruit, Seed	Edible, Edible
7.	Khakra	Butea monosperma	Fabaceae	Leaf	Cup and plate making
8.	Kumbhi	Careya arborea	Lecythidaceae	Bark	Fish poisoning
9.	Amaltash	Casia fistula	Caesalpiniaeae	Fruit	Medicinal
10.	Mahalimb	Cedrela toona Roxb.	Meliaceae	Stem, Wood	Furniture
11.	Ghihriha	Chloroxylon swietenia	Rutaceae	Stem, Bark	House Construction, Agricultural implements, Fuel wood
12.	Karra	Cleistanthus collinus	Euphorbiaceae	Stem	Furniture
13.	Sita phal	Custard apple	Annonaceae	Fruit, Stem	Edible, House Construction, Agricultural implements, Fuel wood
14.	Shisham	Dalbergia stoo	Leguminosae	Stem, Leaf	House Construction, Agricultural implements, Fuel wood, Medicinal
15.	Guhnohar	Delonix regia	Leguminosae	Stem	Fuel wood
16.	Dhohen	Dillenia pentagyna Roxb.	Dilleniaceae	Root	Medicinal
17.	Tendu	Diospyros melanoxylon Roxb.	Ebenaceae	Fruit, Leaf	Edible (When ripe), Selling
18.	Bargad	Ficus benghalensis	Moraceae	Fruit	Edible
19.	Peepal	Ficus religiosa	Moraceae	Whole tree, Fruit, Leaf	Religious, Edible, Fodder
20.	Kekad	Garagapinnata Roxb.	Burseraceae	Stem	Agricultural implements
21.	Lenda	Lagerstroemia parviflora Roxb.	Lythraceae	Stem	Firewood, Boundary wall making
22.	Maida	Lutea sebifera	Lauraceae	Bark	Medicinal
23.	Mahua/Guli	Madhuca indica	Sapotaceae	Flower, Fruit, Leaf	Edible after cooking, Liquor preparation, Oil Religious
24.	Aam	Mangifera indica	Anacardiaceae	Fruit, Seed	Edible, Edible, medicinal
25.	Kem	Mitragyna parviflora	Rubiaceae	Leafy branch	Cultural uses
26.	Munga	Moringa pterygosperma Gaertn.	Moringaceae	Leaf, Fruit	Edible, Edible
27.	Anma	Phyllanthus emblica	Euphorbiaceae	Leaf, Branch	Cultural uses
28.	Kanji	Pongamia pinnata	Fabaceae	Fruit, Leaf	Edible, Medicinal, Cultural and medicinal
29.	Bijasa	Pterocarpus marsupium Roxb.	Fabaceae	Stem	House construction, Furniture
30.	Kusum	Schleichera trijuga Willd.	Sapindaceae	Fruit	Edible
31.	Bhelwa	Semecarpus anacardium	Anacardiaceae	Fruit	Edible, Medicinal
32.	Sarei	Shorea robusta Gaertn.	Dipterocarpaceae	Stem	House construction, Furniture, Fuel wood
33.	Guhlar/kullu	Sterculia urens	Sterculiaceae	Resin, Bark	Medicinal, Rope making
34.	Jamun	Syzygium cumini	Myrtaceae	Stem, Fruit	Cultural, Edible, Cultural and medicinal
35.	Emli	Tamarindus indica	Caesalpiniaeae	Fruit	Edible, Pickle preparation, Medicinal, Selling
36.	Sagarah	Tectona grandis	Lamiaceae	Stem, Leaf	House construction, Furniture, Cultural, Dona making
37.	Arjan	Terminalia arjuna	Combretaceae	Stem	Firewood, House construction
38.	Beheda	Terminalia bellirica	Combretaceae	Fruit	Medicinal (Digestive)
39.	Harra	Terminalia chebula	Combretaceae	Fruit	Medicinal (Digestive)
40.	Saja	Terminalia tomentosa	Combretaceae	Stem	House construction, Fuel wood

Table 4. Traditionally used Shrub species by local people in AABR.

S. No.	Common name	Scientific name	Family	Parts used	Uses
1.	Ghughch	Abrus precatorius	Fabaceae	Leaves	Mouth freshener
2.	Bans	Bambusa bamboo	Poaceae	Seeds	mix into flour
3.	Chako	Cassia tora	Caesalpiniaeae	Pod and seed	Vegetable
4.	Ratan jor	Jatropha curcus	Euphorbiaceae	Seed, Whole plant	Substitute of candle, Bio-fencing
5.	Lantana	Lantana camara	Verbenaceae	Ripe fruits, Whole plant	Edible, Bio-fencing
6.	Khajuri	Phoenix sylvestris	Areaceae	Ripe fruits	Edible
7.	Mainhar	Randia dumerorum	Rubiaceae	Leaf, Root	Vegetable, Medicinal
8.	Aranda	Ricinthus communis	Euphorbiaceae	Seed	Oil
9.	Nirandia	Vitex nigundo	Verbenaceae	Leaf	Medicinal
10.	Ber	Zizipus zilopryus	Rhamnaceae	Fruit	Edible
11.	Aak	Calotropia gigantia	Musaceae	Leaf & flower	Offer to god
S. No.	Common name	Scientific name	Family	Parts used	Uses
-------	-------------	-----------------	-----------	------------	-----------------
12.	Banana	Musa paradisca	Family	Whole tree	Religious use
13.	Mehandi	Lawsonia irnemis	Lythraceae	Leaf	Dye

Figure 2. Traditionally used flora of AABR for diverse usufructs by local people.

Figure 3. The utilization pattern of plant part used by local people of AABR.

Figure 4. Distribution of recorded ethnobotanical plants into different families.
Of the reported growth form of flora used by local people of AABR, tree & herbs make up the highest ratio of locally consumed species comprising 27.2% and 48.9% respectively (Figure 5). The present study on the traditional use of flora support by many earlier workers in India and elsewhere in world (Dlamini et al. 2011; Upretay et al. 2012; Panda, 2014; Dutta, 2015). Some of the studied floras are also used in Pachmarhi Biosphere Reserve and other parts of country (Sinha et al. 2005; Rout, 2007; Kala, 2009). Similar findings were laid by Bharucha et al. 2010, Dobriyal, et al, 2015. During the study we have observed that the products (forest) consumed or sold by these communities also have same use worldwide however, some of them are unique here, according to their (tribal’s) indigenous knowledge and traditional uses like religious use, use of plant according to food habit and medicinal use. During the survey it was also observed that the Baiga is most primitive tribal’s group of AABR and have enormous knowledge about the use of forest products. Due to modernization, like agriculture settlement (Pei et al. 2009), less interest of young generation (Panda, 2014) a drastic change in food styles (Negi et al. 2015) and very few documentation, the traditional knowledge remain in collective memory of the old faces and disappearing after the death of them.

S.N	Local name	Scientific name	Culturally uses
1	Datura	Datura metel	Flower offer to god
2	Tulsi	Ocimum sanctum	Treated Prosperity of home
3	Bel	Aegle marmelos	Leaf offer to god

Figure 5. Reported growth forms of flora used by local people of AABR.

3.1. Aboriginals Assist to Biodiversity Conservation and Climate Protection

Tribal communities play leading role in conservation of biodiversity through their vast knowledge about the use of concerned flora and also association of flora with their culture. The conservation specially in-situ addressed to climate protection everywhere in the world. Recently IPCC quoted that these are the communities which are in frontline of climate variability but due to their conservation tactics they easily takeoff from these variability. There are plenty of species which are conserved by them through their ritual association, due to their food habit and traditional value or commercial value of plants and principles of ethnoforestry among these communities (Table 6).
The forest products collected form forest or nearby village are sale in local or regional market by the local people of AABR (Table 7). The forest products play important role in the viability and survival of tribal and non-tribal communities of AABR. Forest dwellers of AABR collected these products from forest or nearby village area for household consumption and also for sale in the local market. Many wild edible plant species are found to be sold in the local markets particularly by poor and economically marginalized families, thereby generating a supplementary income to their household economy (Panda, 2014). Many earlier workers, worldwide also reported that forest is a source of subsistence of these isolated communities (Chittaranjan, 2005; Colchester et al. 2006; Muhammed et al. 2010; Khera, 2016). The important role of forest products is not only in meeting the subsistence needs but also in poverty alleviation (FAO, 1995). The forest products are very economically important in point of view of subsistence of local people of BR. In case of these indigenous communities, the major factor of economics such as production, consumption and distribution are closely associated with forest (Chittaranjan, 2005). These hidden societies of the word have great assumption that the natural resources have only means of survival of our lives. Utilization of forest resources is a prerequisite for the

Table 6. List of species conserved on the name of god/goddess, on scared grooves and for edible purpose by tribal communities.

S.No.	Local Name	Scientific name	Family Name	Remark
1	Aam	Mangifera indica	Anacardiaceae	Lord Vedhyadhara
2	Arjun	Terminalia arjuna	Combretaceae	Lord Brhma
3	Nibh	Citrus medica	Rutaceae	Lord Brahaspati
4	Bilva	Aegle marmelos	Rutaceae	Lord Shiva
5	Nimba	Azadiracta indica	Meliaceae	Goddess Sheetla mata
6	Basil	Ocimum sanctum	Lamiaceae	Goddess Lakshmi
7	Baka	Seshania grandiflora	Fabaceae	Lord Narayan
8	Karavira	Nerium indicum	Apocynaceae	Lord Ganesh
9	Nilapadma	Nelumbi nucifera	Nymphaeaceae	Goddess Ambika
10	Madar	Calotropis gigantean	Asclepiadaceae	Lord Shiva
11	Chirchita	Acharanthas aspera	Amaranthaceae	Tender shoots as vegetable
12	Mohian leaf	Bauhinia purpurea	Ceasalpiniaceae	Leaves, flower, seeds as vegetable
13	Dudhia aru	Dioscorea alta	Dioscoreaceae	Tubers used as vegetable
14	Pulas	Butea monosperma	Fabaceae	Conserved on scared grooves
15	Slai	Boswellia serrata	Burseraceae	Conserved on scared grooves
16	Madar	Calotropis gigantean	Asclepiadaceae	Conserved on scared grooves
17	Bamboo	Bambusa arundinacea	Poaceae	Conserved on scared grooves
18	Sargangnda	Ravnolafa serpentina	Apocynaceae	Conserved on scared grooves
19	Aam	Mangifera indica	Anacardiaceae	Conserved on scared grooves
20	Peepal	Ficus religiosa	Moraceae	Conserved on scared grooves

Source: Jain, S.K. 1996. Ethnobiology in Human Welfare, Deep Publication, New Delhi.

Table 7. Forest products sale locally or in regional market by local people of AABR.

S No	Forest products	Season of collection	Duration (month)	Importance	Market value (in Rs.)	Multiple use of the product	Remark
1	Sal leaf	All season except leaf fall duration	8	Rs.15/1000 plates	X	5	
2	Sal seed	May-June	2	Rs. 12/Kg		4	
3	Fuel wood mushroom	All season	12	Rs. 90/ bundle (4 Kg)	3		
4	Mahua flower	July- September	3	Rs. 150-200/ kg	1		
5	Bamboo kareel	May-June	2	Rs. 30- 40/ kg	2		
6	Van karela	Rainy season	3	Rs. 70-80/ kg	2		
7	(Momordica charantia)	Rainy season	3	Rs. 15-20/kg	3		
8	mainah	Rainy season	2	Rs. 10-15/ kg	3		
9	Uhar kuhar bhaji	All season	12	Rs.15-20/ kg	3		
10	Munga marina oliefera	Late summer to rainy season	3-4	Rs.10-15	3		
11	Murayya koenigii	All season	8-12	Rs. 5-7/kg	5		
12	Sal dhupa	Rainy season	1-2	Rs. 90-100/ kg	1		
13	Bahania leaf	Rainy season	3-4	Rs. 12/ kg	3		
14	Aonla fruit	Late rainy season	2-3	Rs. 30-40/ kg	2		
15	Cassia tora	Summer to late rainy season	6-8	Rs.15-20/ kg	2		

Data Source: Based on Questionnaire Survey of forest villagers of AABR.

Rank: 1-Highly important, 2- Important 3-Moderately important, 4- Less important, 5- Very less important, according to market price
livelhood of remote villagers who do not have many other alternative source of income (Yeo-Chang, 2009). Forest and forest resources, predominantly minor forest products (vegetables, fruit, medicinal, gum, fuel wood, seeds, grasses, and even soil) occupy an important role in continued existence of tribal’s life (Aboriginal communities) in AABR or elsewhere in world.

4. Conclusion

The results of this study has revealed that indigenous traditional knowledge on the use of flora like edible food, vegetables and cure to certain diseases is still practiced by the local communities of AABR. Beside, these uses the forest is also source of income, they sale some products in local or regional market. The local communities very well known to the uses of ethnobotanicals which are little known and unexplored to modern societies. So there is a strong need of documentation and conservation of these floras for as a source of food, medicine, and sustained income at a time of scarcity.

Acknowledgement

The authors express deep sense of gratitude to the members of tribal communities for providing useful information in favor of indigenous knowledge of local flora and also extended help in identification of rare flora of the study area.

References

[1] Anderson, P. J. and Putz, F. E., 2002. Harvesting and conservation: are both possible for the palm, Friarieta deltoidea? Forest Ecol. Manage. 170, 271–283.
[2] Balemic, K. and Kebebew, F. 2006. Ethnobotanical study of wild edible plants in Derashe and Kucha Districts, South Ethiopia. J Ethnobiol Ethnomed, 2:53-61. http://dx.doi.org/10.1186/1746-4269-2-53.
[3] Bharucha, Z. and Pretty, J. 2010. The roles and values of wild foods in agricultural systems. Phil Trans Royal Soc B., 365: 2913-2926. http://dx.doi.org/10.1098/rstb.2010.0123.
[4] Bonet, M. A. and Valles, J. 2002. Use of non-crop food vascular plants in Montseny biosphere reserve (Catalonia, Iberian Peninsula). Inter J, Food Sci Nutr, 53: 225-248.
[5] Burgi, M., Gimmi, U. and Stuber, M. 2013. Assessing traditional knowledge on forest uses to understand forest ecosystem dynamics. Forest Ecology and Management. 289, 115–122.
[6] Chittaranjan, K. P. 2005. Food and agriculture organization (FAO) report. A text book “Forest government and tribe.”
[7] Colchester, M. 2006. Justice in the forest: Rural lively hoods and forest law enfo: fores perspectives, CIFOR, Indonesia.
[8] Cunningham, A. B. 2001. Applied ethnobotany, people wild plant use and conservation. Sterling, VA, London, Earth Scan Publication Ltd.
[9] Dlamini, C. S. and Geldenhuys, C. J. 2011. A resource survey for medicinal and edible plant species in the four ecological zones of rural Swaziland. Journal of Geography and Regional Planning, 4(9): 557-555.
[10] Dobriyal, Mammoohan J. R. and Dobriyal, Ranjana (2015) Non wood forest produce: an option for ethnic food and nutritional security in India. International Journal of Forest Usufructs Management, 15 (1): 17-37.
[11] Dutta, B. 2015. Food and medicinal values of certain species of Dioscorea with special reference to Assam. Journal of Pharmacognosy and Phytochemistry, 3(4): 15-18.
[12] Ertug, F. 2004. Wild edible plants of the Bodrum Area (Mugla, Turkey). Turk J Bot, 28: 161-174.
[13] Food and Agriculture Organization of the United Nations (FAO) 2004. Annual Report: The state of food insecurity in the world, monitoring the progress towards the world food summit and millennium development goals, Rome.
[14] Gadgil, M., Berkes, F. and Folke, C. (1993). Indigenous knowledge for biodiversity conservation. Ambio, 22: 151–156.
[15] Grivetti, L. E. and Ogle, B. M. 2000. Value of traditional foods in meeting macro and micronutrient needs: the wild plant connection, Nutrition Research Reviews, 13,31-46.
[16] Guerra, P. M. 2003. Food medicine and minor nourishment in the folk traditions of Central Italy (Marche, Abruzzo and Latium). Fitoterapia, 74: 515-544. http://dx.doi.org/10.1016/S0367-326X(03)00122-9.
[17] Gunatilleke, I. A. U. N., Gunatilleke, C. V. S. and Abeygunawardena, P., 1993. Interdisciplinary research towards management of non-timber forest resources in lowland rain forests of Sri Lanka. Econ. Bot. 47 (3), 282–290.
[18] Jain, S. K. 1996. Ethnobiology in Human Welfare, Deep Publication, New Delhi. Pp:519-520.
[19] Javier, T., Manuel, P. S. A. and Ramón, M. 2006. Ethnobotanical review of wild edible plants in Spain. Bot J Linn Soc, 152:27-71. http://dx.doi.org/10.1111/j.1095-8339.2006.00549.x.
[20] Khera, A. 2016. Poverty alleviation through non wood forest products in Madhya Pradesh. Journal of tropical forestry, 32 (II).
[21] Liu, A., Pei, S. and Chen, S., 2000a. Yi nationality’s sacred groves and biodiversity conservation in Chuxiong, Yunnan. Chin. J. Appl. Ecol. 11 (4), 489–492.
[22] Muhammed, N. V. D. and Sheeladitya, R. C. 2010. Livelihood pattern and forest dependence of the major tribes in Rangamati Bangladesh. Shinshu University International symposium 20-02-2010.
[23] Negi, P. S. and Subramani, S. P. 2015. Wild edible plant genetic resources for sustainable food security and livelihood of Kinnaur district, Himachal Pradesh, India. Int J Conserv Sci, 6 (4): 657-668.
[24] Ogle, B. M., Dung, N. N. X., Do, T.T.and Hambraeus, L. 2001. The contribution of wild vegetables to micronutrient intakes among women. An example from the Mekong Delta, Vietnam. Ecol Food Nutr, 40: 159-184.http://dx.doi.org/10.1080/03670244.2001.9991646.
[25] Ogoye-Ndegwa, C. and Aagaard-Hansen, J. 2003. Traditional gathering of wild vegetables among the Luo of Western Kenya - a nutritional anthropology project. Ecol Food Nutr, 42: 69-89. http://dx.doi.org/10.1080/036702403031144.

[26] Panda, T. 2014. Traditional knowledge on wild edible plants as livelihood food in Odisha, India. Journal of Biology and Earth Sciences, 4 (2): B144-B159

[27] Pandey, A. K. 1997. Tribal Society in India, Mannak Publication, New Delhi.

[28] Pei, S. and Huai, H. 2007. Ethnobotany, Shanghai Science and Technology Press, Shanghai, China.

[29] Pei, S., Zhang, G. and Huai, H. 2009. Application of traditional knowledge in forest management: Ethnobotanical indicators of sustainable forest use. Forest Ecology and Management. 257, 2017-2021.

[30] Rist, L., Shaanker, R. U., Milner-Gulland, E. J. and Ghazoul, J., 2008. Managing mistletoes: the value of local practices for a non-timber forest resource. Forest Ecol Manage. 255, 1684–1691.

[31] Riter, E. and Dauksta, D. (2013). Human- forest relationship: Ancient values in modern perspectives. Environment development and sustainability, 15, 645-662.

[32] Rout, S. D. 2007. Ethnobotany of diversified wild edible fruit plants in Similipal Biosphere Reserve. Ethnobotany, 19: 137-139.

[33] Sinha, R. and Larka, V. 2005. Wild tribal food plants of Orissa. Ind J Trad Know, 4(3): 246-252.

[34] Tanji, A. and Nassif F. 1995. Edible weeds in Morocco. Weed Technol, 9: 617-620.

[35] Tardío, J., Pascual, H. and Morales, R. 2005. Wild food plants traditionally used in the province of Madrid. Econ Bot,59: 122-136.

[36] Uprety, Y., Poudel, R. C., Shrestha, K. K., Rajbhandary, S., Tiwari, N. N., Shrestha, U.B. and Asselin, H. 2012. Diversity of use and local knowledge of wild edible plant resources in Nepal. Journal of Ethnobiology and Ethnomedicine, 8:16

[37] Xu, J., 2003. Role of indigenous people in biodiversity conservation and utilization in Jinping divide Nature Reserve: an ethnoecological perspective. Chin J Ecol. 22 (2), 86–91.

[38] Yeo-Chang, Y. 2009. Use of forest resources, traditional forest-related knowledge and livelihood of forest dependent communities: Case in South Korea. Forest Ecology and Management 257, 2027-2034.