Timescale of Mass Accretion in Pre-Main-Sequence Stars

D. Fedele¹, M. E. van den Ancker², Th. Henning¹ R. Jayawardhana³ and J. M. Oliveira⁴,*

¹ Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
e-mail: dfedele@mpia.de
² European Southern Observatory, Karl Schwarzschild Strasse 2, D-85748 Garching bei München, Germany
³ Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H4, Canada
⁴ Lennard-Jones Laboratories, School of Physical & Geographical Sciences, Keele University, Staffordshire ST5 5BG, UK

Received ...; accepted ...

ABSTRACT

We present initial result of a large spectroscopic survey aimed at measuring the timescale of mass accretion in young, pre-main-sequence stars in the spectral type range K0 – M5. Using multi-object spectroscopy with VIMOS at the VLT we identified the fraction of accreting stars in a number of young stellar clusters and associations of ages between 1 – 50 Myr. The fraction of accreting stars decreases from ~ 60 % at 1.5 – 2 Myr to ~ 2 % at 10 Myr. No accreting stars are found after 10 Myr at a sensitivity limit of 10⁻¹¹ M☉yr⁻¹. We compared the fraction of stars showing ongoing accretion (facc) to the fraction of stars with near-to-mid infrared excess (fIRAC). In most cases we find facc < fIRAC, i.e., mass accretion appears to cease (or drop below detectable level) earlier than the dust is dissipated in the inner disk. At 5 Myr, 95 % of the stellar population has stopped accreting material at a rate of ≥ 10⁻¹¹ M☉yr⁻¹, while ~ 20 % of the stars show near-infrared excess emission. Assuming an exponential decay, we measure a mass accretion timescale (τacc) of 2.3 Myr, compared to a near-to-mid infrared excess timescale (τIRAC) of 2.9 Myr. Planet formation, and/or migration, in the inner disk might be a viable mechanism to halt further accretion onto the central star on such a short timescale.

Key words. Accretion disks – Stars : pre-main-sequence – Planetary systems: protoplanetary disks

1. Introduction

Circumstellar disks around young, pre-main-sequence stars are the natural loci of planet formation (e.g. Henning 2008). Such a protoplanetary disk is formed during the collapse of the molecular cloud to conserve the initial angular momentum. It is made of interstellar gas and dust. The conventional planet formation model is the so-called core-accretion model (e.g. Pollack et al. 1996; Mordasini et al. 2008). In the simulations of Pollack et al. (1996), the formation of solar-system like planets takes up to 16 Myr. Giant planet formation is much faster (~ 3 Myr) if planet migration is included (Alibert et al. 2004, 2005). Gravitational instability in the disk was also proposed as a viable scenario to form planets, especially in the outer disk (Bos 1997, 1998; Durisen 2007). If gravitational instabilities occur, the disk may fragment and form dense self-gravitating clumps which are the precursor of gas giant planets. In this model planet formation is very fast (~ 1 Myr).

Planet formation models face the fast evolution of protoplanetary disks. Star forming regions show a steady decline with time in the fraction of stars having infrared excess emission (e.g. Haisch et al. 2001, 2005; Bouwman et al. 2006; Hillenbrand 2008). This is thought to be caused by gradual clearing of dust in the inner disk. The growing consensus is that the warm small dust grains disappear within the first 5 ± 9 Myr (τdust). The quantity τdust is sometimes adopted as the disk lifetime. Although dust is essential to form a planet, in terms of disk mass, and hence dynamics and evolution, it accounts only for a small percentage. The bulk of the disk mass is thought to be gaseous. At present, it is unclear whether the gas dissipation timescale (τgas) is similar to τdust.

In this paper we report on a study aimed at determining the timescale for mass accretion (τacc) in protoplanetary disks. The timescale τacc, i.e. the time at which the disk accretion phase ceases, provides a strong constraint on τgas. Gas may still be present after τacc, however, the amount of remaining gas, and hence of disk mass, may be too low to be able to form giant planet(s). Our observational strategy, observations and data reduction are presented in section 2. Analysis and results are presented in section 3 and 4 respectively. In section 5 we compare our result with literature data. Conclusions are drawn in section 6.

2. Method

In order to measure τacc in a secure way, we performed an optical spectroscopic survey of a large number of stars towards seven young stellar clusters (Table I). Multi-object spectroscopy was performed with VIMOS (LeFevre et al. 2003) at the VLT. No a priori target selection was made, but instead we optimized the position of the slits in the multi-object masks in order to get the spectrum of as many stars as possible in the proximity of the cluster center. We did not aim at taking the spectrum of each (known) cluster member, but rather at building an unbiased inventory of the stellar population in a sub-region of the cluster down to a limiting magnitude of V = 21 mag. For each cluster we estimated the fraction of stars with ongoing mass accretion by analyzing the Hα line profile. Finally, the fraction of accreting stars is plotted against the age of the clusters. In this paper

* Based on observations collected at the European Southern Observatory, Paranal, Chile (Proposal ID: 078.C-0282; 081.C-0208)

1 http://www.eso.org/sci/facilities/paranal/instruments/vimos/
we present the analysis of the mass accretion evolution. Results on individual clusters will be presented in a forthcoming paper.

The following criteria were adopted for the sample selection:

Age: the clusters have ages covering the interval 2 – 30 Myr;
Distance and extinction: nearby and optically visible systems were selected to ensure detection of low mass stars down to spectral type M3 (at least);
Stellar density profile: to avoid any bias introduced by, e.g., mass segregation, we only selected clusters known to have a spherical density profile;
Angular radius: (also linked to previous point) only clusters with angular size comparable to the field of view (FOV) of VIMOS were considered in order to minimize the number of contaminants.

For each cluster an area of 16′×18′ was investigated acquiring spectra of ~200 - 600 representative objects in the central region of the cluster. Multiple dithered exposures were taken. Details about observations are given in Table 1.

Data reduction was performed with IRAF and specific IDL routines. The spectra were reduced using a long-slit approach, i.e., extracting each spectrum separately. Due to distortion of the instrument night time wavelength calibration exposures were taken. No night flat field images were taken. For this reason we preferred to not correct the MOS spectra for flat field to not introduce further source of noise. The following scheme was applied: bias subtraction, wavelength calibration, background removal and spectrum extraction using the Horne optimal extraction method (Horne 1986). Multiple dithered spectra were combine afterwards using a specific IDL routine: before combining the spectra, a scaling factor was applied to take into account slit losses in different exposures.

Fig. 1 shows some examples of VIMOS spectra of our program stars.

3. Analysis

3.1. Spectral type

The spectral type of the objects classified as cluster members was derived. For this purpose we used the TiO index defined as:

\[
 TiO(7140\AA) = \frac{C(7020 – 7050\AA)}{TiO(7125 – 7155\AA)}
\]

where \(C(7020 – 7050\AA)\) is the spectral continuum computed between 7020 – 7050 Å and TiO(7125 – 7155 Å) is the intensity of the TiO molecular band absorption between 7125 – 7155 Å (Allen & Strom 1995; Briceño et al. 1998; Oliveira et al. 2003). The TiO molecule is very sensitive to the stellar gravity and correlates very well with the spectral type in the range K5 – M6. We computed the spectral type of the VIMOS spectra, following the scheme of Jeffries et al. (2007). For earlier spectral types (K0 – K5) we directly compared the VIMOS spectra with a set of standard stars spectra covering the same spectral range and having similar spectral resolution. The uncertainty on spectral type derived with these techniques is one sub-class.

In the following analysis we consider only stars having spectral type between K0 and M5.

3.2. Membership

The cluster membership was established on the basis of the presence of two spectral features: emission of the H\(\alpha\) line at 6563 Å and absorption of the Li 6708 Å line. H\(\alpha\) emission in young stars is either produced by mass accretion or by chromospheric activity. The presence of Li is also widely used as youth indicator (e.g. Basri et al. 1991); Li is depleted very fast once the thermonuclear reactions begin in the core of the star. The abundance of Li in the stellar atmosphere is inversely proportional to the age of the star (Jeffries et al. 2007; Mentuch et al. 2008). This youth indicator is best suited for K- and M-type stars younger than ~30 Myr (Jeffries et al. 2007). Some stars have strong Li absorption in their spectrum but no H\(\alpha\) emission. These might be cluster members with no, or reduced, chromospheric activity. We measured the EW of Li 6708 Å of these sources and compared this with the typical Li 6708 Å EW measured for the certain members of the cluster (0.2 Å < EW [Li] < 0.6 Å). We note that the lower limit of EW Li measured here (0.2 Å) is an intermediate value assumed as Li indicator applied by other authors (e.g. Jeffries et al. 2007; EW > 0.3 Å; Winston et al. 2009, EW > 0.1 Å). In most of the cases the spectra show either a tiny (EW ≤ 0.1 Å) H\(\alpha\) emission or small absorption. In the latter case, the absorption is much smaller than the typical photospheric absorption for the same spectral type. The “reduced” H\(\alpha\) absorption might result from line veiling caused by the chromospheric activity. These stars are classified as cluster members.

3.3. Signature of mass accretion

To distinguish between chromospheric and accretion origin of the H\(\alpha\) emission, White & Basri (2003) suggest a different threshold in EW for different spectral types. Barrado y Navascués & Martín (2003) have defined an empirical criteron based on the saturation limit of the chromospheric activity. Another tool of investigation is the width of H\(\alpha\) at...
10% (Hα10%) of the line peak. As shown in Fig. 7 of [White & Basri 2003; Natta et al. 2004; Jayawardhana et al. 2006; Flaherty & Muzerolle 2008], accretion objects have systematically larger value of Hα10% compared to non-accreting objects. Stars with Hα10% > 270 km s⁻¹ are accreting material from a circumstellar disk. This criterion is valid down to a mass accretion rate of 10⁻¹⁰ to 10⁻₁² M⊙yr⁻¹ (Natta et al. 2004). The actual limit on detectable accretion rate depends on the stellar mass and age. As a conservative value we adopt 10⁻¹¹ M⊙yr⁻¹. In this work we used both EW [Hα] and Hα10% criterion to distinguish between accretion and chromospheric activity. This method is solid to find signature of accretion whenever EW [Hα] and Hα10% are above, or close to the thresholds (Jayawardhana et al. 2006). However, stars with values lower than the cutoff values may still be accreting at low rate (< 10⁻¹¹ M⊙yr⁻¹) and cannot be distinguished from pure chromospheric activity.

The spectral resolution of VIMOS is enough to measure the widening of the Hα line due to accretion. At 6563 Å the minimum velocity resolvable with VIMOS is 140 km s⁻¹. We measured the EW and the 10% width of the Hα emission. The spectral continuum was computed using two spectral windows at both sides of the Hα line. The continuum level in correspondence of the emission line was interpolated using a first order polynomial. The spectra were then continuum-normalized and subtracted. Hα10% was measured as the width of the Hα line at the height corresponding to 10% of the line peak. In the case of narrow emission line and low signal-to-noise spectrum, the 10% level might be confused with the neighbor continuum fluctuations. To avoid this, the result was visually inspected. The major source of uncertainty for the measurements of EW [Hα] and Hα10% is the determination of the underlying spectral continuum. The errors on Hα EW and Hα10% were computed by taking the continuum error into account. For most of the spectra the signal-to-noise ratio close the Hα line is > 10 - 20. This translate in a precision of ~ 0.1 Å and 5 km s⁻¹ for equivalent width and Hα10%, respectively. A further contribution of uncertainty is given by the instrument’s spectral precision. We determined this by computing the full width half maximum and standard deviation for a number of arc lines in proximity of the Hα line. The standard deviation is of the order of 5 – 7 km s⁻¹. We therefore assume 0.2Å and 10 km s⁻¹ as a (conservative) lower limit to the uncertainty of EW [Hα] and Hα10%, respectively.

4. Result

None of the stars in regions older than 10 Myr in our survey (ASCC 58, Collinder 65, NGC 2353 and NGC 6664) shows evidence of ongoing accretion (Table 2). Results for the youngest (< 10 Myr) regions are described below. In Fig. 2 we plot EW [Hα] versus Hα10% for three different spectral ranges. Vertical and horizontal dashed lines represent the thresholds for accreting stars. The different symbols refer to different clusters: dots – σ Ori, triangles – NGC 6531, stars – NGC 6231.

As shown in Fig. 2 there are a number of sources with EW [Hα] below the accretion threshold but with Hα10% > 270 km s⁻¹. If the line broadening is caused by mass accretion at a rate > 10⁻¹¹ M⊙yr⁻¹, we would expect to measure a large EW as well. Besides accretion, stellar binarity and fast rotation might also be responsible for the line broadening. In order to decipher the nature of these sources we also investigated the presence of other emission lines which are associated with mass accretion (e.g. He1 5876Å, 6678Å; e.g. Beristain et al. 2001; Herczeg & Hillenbrand 2008). In the presence of these accretion diagnostics, we can safely state that the star is accreting.

σ Ori

10 out of the 216 sources with spectra taken with VIMOS are classified as members of the σOri cluster. All of them show emission in the Hα line as well as presence of Li. 2 out of 10 objects are clearly accreting stars according to the method mentioned above. A further object (σ Ori # 1: RA = 84.584154, DEC = -2.633792, Sp. Type M5) has a broad Hα10% (350 km s⁻¹) but an Hα EW value (15 Å) below the accretion threshold. The presence of Hα emission lines (5876 Å EW = -0.75, 6678 Å EW = -0.2) suggests the presence of hot gas in the vicinity of the star and hence signature of ongoing accretion (Beristain et al. 2001). The fraction of accreting objects in σ Ori derived here is 3/10 or 30% ± 17%. This is in agreement with previous result of Zapatero Osorio et al. (2002, 30 – 40%), Barrado y Navascués & Martín (2003, 27 ± 7%), Oliveira et al. (2006, 30%). The good agreement with previous results validates our observational strategy despite the low number statistics.

NGC6231

Out of 573 sources in the region of NGC 6231 we identified 78 objects as cluster members. The majority of these sources have spectral type in the range K0 – M5 (there are 3 sources of earlier spectral type) and show both Hα emission and strong Li absorption. 11 out of 78 objects (all late K type) were identified based only on the presence of Li. Each of these spectra was compared with a standard star of equal spectral type. All these spectra show either a tiny (EW ~ 0.1 Å) Hα emission or small absorption. In the latter case, the absorption is much smaller than the typical photospheric absorption for the same spectral type. Further 3 objects have no Hα and the presence of Li 6707.8 absorption is not clear. 7 out of the 75 K0 – M5 sources in NGC 6231 are consistent with ongoing mass accretion with both diagnostics. Further 2 sources have EW [Hα] close to the accretion threshold but large (> 270 km s⁻¹) Hα10% (panel K0 – K5 in Fig. 2). Many stars with spectral type in the range K6 – M2.5 have large Hα10% but small EW [Hα]. We inspected all of them and found 2 objects with spectral type K7 showing He1 5876Å in emission (EW = -0.5Å, -0.6Å respectively). The evidence of large Hα10% together with the He1 emission is most likely due to ongoing mass accretion and these two stars are classified as accreting stars. We estimate a fraction of accreting stars in NGC 6231 of 11/75 or 15 ± 5%. We warn the reader that this might be a lower limit to the actual fraction of accreting stars; further investigation is needed to disentagle the nature (accretion vs binarity/rapid rotation) of the systems with large Hα10% (> 300 km s⁻¹) but low EW [Hα].

NGC6531

We identified 26 cluster members in NGC 6531 based on the presence of Hα emission and presence of Li. Further 13 sources show presence of Li 6708 Å, but have Hα in absorption. As in the case of NGC 6231, these might be cluster members with no, or reduced, chromospheric activity. We measured the EW of Li 6708 Å of these 13 sources and compared with the typical
Fig. 1. Some examples of VIMOS spectra

EW of the 26 stars in NGC 6531 showing also Hα emission (0.2 Å < EW Li < 0.6 Å). 10 of the 13 sources have similar EW and are likely cluster members. The remaining 3 sources have EW between 0.1 – 0.2 Å. Moreover, these are characterized by strong absorption lines at 5778, 5796, 6284, 6614 Å which are produced by diffuse interstellar absorption bands (DIBs). These are likely located in the background of the cluster and are classified as non-members. Out of the 36 identified members, 3 objects show broad and strong Hα emission consistent with mass accretion. One further object is classified as uncertain accreting star. The fraction of accreting stars is then 8 ± 5%. Given the large Hα_{10%} (> 300 km s^{-1}) of 2 objects in the spectral range M3 – M5, the fraction of accreting stars computed here might be a lower limit. Follow up observations are needed for these two sources.

5. Discussion

The fraction of accreting stars (f_{acc}) for each cluster is listed in Table 2 and plotted in Fig. 3 together with literature data.

The aim of this paper is to trace the evolution of mass accretion with time. A critical point is the age of the clusters. We adopted the most recent age measurements (Table 2). For NGC 6231 Sana et al. (2007) find that the bulk of the CTTS has an age between 2 – 4 Myr, although with a large age spread. The most recent study of σ Ori suggests an age of 3 Myr (e.g. Caballero 2008). For NGC 6531 Park et al. (2001) measure an age of 7.5 ± 2 Myr in agreement with Forbes (1996) who measure 8 ± 3 Myr. For the remaining clusters we adopt the age provided by WEBDA.

3 http://www.univie.ac.at/webda/ operated at the Institute for Astronomy of the University of Vienna
the zero-age-main-sequence (ZAMS) to the brightest stars of the cluster. We take an accuracy of 30% as a conservative assumption.

In Fig. 2 the fraction of accreting stars as function of cluster age is shown. The results obtained with VIMOS are shown as filled circles. Measurements of f_{acc} exist in literature for some clusters. These are shown as filled squares in Fig. 3 and are listed in Table 2. We considered only determinations of f_{acc}, using the method of White & Basri (2003) and/or Barrado y Navascués & Martín (2003). The fraction of accreting stars may vary with spectral type. In the case of Upper Sco Mohanty et al. (2005) e.g., found an increase from 7% (± 2%) for spectral type earlier than M4 to 20% (± 10%) for later spectral types. For the youngest regions, ρ Oph, Taurus, Cha I and IC 348, Mohanty et al. (2005) find no appreciable variation, within errors, in the fraction of accreting sources between the two mass ranges. For consistency with our survey we include here only the results for spectral types between K0 – M5.

5.1. Evolution of f_{acc}

The fraction of accreting stars decreases quickly with time within the first 10 Myr. There is a clear trend from the 1.5 – 2 Myr old regions ($f_{\text{acc}} = 60\%$) down to the 10 Myr old clusters (mean $f_{\text{acc}} = 2\%$). At the age of 5 Myr the mean f_{acc} is ~ 5% drastically lower than the 3–4 Myr old regions of σ Ori, NGC 6231 and Trumpler 37 (average 28%). No accreting stars are found beyond 10 Myr. This is in good agreement with previous measurements of mass accretion timescale by Mohanty et al. (e.g. 2005); Jayawardhana et al. (e.g. 2006). There are some outliers. The η Cha cluster shows a higher frequency of accretors compared to clusters of equal age (e.g. Sicilia-Aguilar et al. 2009). This particular association shows a similar behavior in the disk frequency (from near-infrared excess). Age and distance are unlikely to be wrong for this well know system. Moraux et al. (2007) suggest that most of the low-mass members of the association have been dispersed by dynamical evolution. The current list of members of η Cha might be biased towards infrared-excess/Hα emitting sources. Inversely the very young region of ρ Oph lies below the trend. The statistics in this region are limited by extinction which may obscure part of the stellar population (e.g. Mohanty et al. 2005). Moreover, the result of Mohanty et al. (2005) might be contaminated by an older population of stars; objects in the periphery of ρ Oph core appear older than stars in the core itself (Wilking et al. 2005). In the following analysis we will not include ρ Oph and η Cha.

NGC 6231 (2 – 4 Myr) also appears to have a low f_{acc} for its age. Interestingly, this region hosts many O and B stars. External photoevaporation (by means of the O, B stars) may accelerate disk dissipation.

5.2. f_{acc} vs f_{IRAC}

In this section we compare the fraction of accreting stars to the fraction of stars with near-to-mid infrared excess (f_{IRAC}). The latter is measured as the fraction of stars having infrared excess in the Spitzer/IRAC [3.6] – [8.0] bands over the total fraction of stars in the cluster. The definition of an excess source is based on the slope (α) of the infrared spectral energy distribution determined from the IRAC [3.6] – [8.0] bands (Lada et al. 2006):

$$\alpha_{\text{IRAC}} = \frac{d(\log(AF_{\lambda}))}{d(\log(\lambda))}; \quad 3.6\mu m < \lambda < 8.0\mu m$$

(2)

Stars with $-1.8 < \alpha < 0$ are classified as class II (e.g. Hernández et al. 2007). In order to coherently compare f_{IRAC} with f_{acc} we refers only to stars of spectral type between K0 – M5. Whenever f_{IRAC} was measured as function of stellar mass rather than spectral type we only consider stars of mass between 0.1 – 1.2 M_\odot. By applying these selection criteria we find the following results for

![Fig. 2. EW [Hα] vs Hα10%.](image-url)
Table 2. Adopted age, spectral type range, f_{acc} and f_{IRAC} (when available) in Fig. 3 and 4. References: Schmidt (1982, S82), Park et al. (2001, P01), Hartmann et al. (2005, Ha05), Kharchenko et al. (2005, K05), Mohanty et al. (2005, M05), Sicilia-Aguilar et al. (2005, SA05), Carpenter et al. (2006, C06), Lada et al. (2006, L06), Jayawardhana et al. (2006, JA06), Sicilia-Aguilar et al. (2006, SA06), Dahm & Hillenbrand (2007, D07), Briceño et al. (2007, B07), Jeffries et al. (2007, JE07), Hernández et al. (2007, He07), Sana et al. (2007, S07), Caballero (2008, C08), Flaherty & Muzerolle (2008, FM08), Luhman et al. (2008, L08), Sicilia-Aguilar et al. (2009, SA09), Zuckerman & Song (2004, ZS04).

Cluster	Age [Myr]	Sp. T range	f_{acc} [%]	f_{IRAC} [%]	Age ref.	f_{acc} ref.	f_{IRAC} ref.
rho Oph	1	K0 – M4	50 ± 16		M05	M05	Ha05
Taurus	1.5	K0 – M4	59 ± 9	62	M05	M05	Ha05
NGC 2068/71	2	K1 – M5	61 ± 9	70	FM08	FM08	FM08
Cha I	2	K0 – M4	44 ± 8	52 – 64	Lu08	M05	Lu08
IC348	2.5	K0 – M4	33 ± 6	47	L06	M05	L06
NGC 6231	3	K0 – M3	15 ± 5		S07	this work	
σ Ori	3	K4 – M5	30 ± 17	35	C08	this work	He07
Trumpler 37	3.5	K0 – M3	40 ± 5	47	SA06	SA06	SA06
Upper Sco	5	K0 – M4	7 ± 2	19	C06	M05	C06
NGC 2362	5	K1 – M4	5 ± 5	19	D07	D07	D07
NGC 6531	7.5	K4 – M4	8 ± 5	50	S09	JA06	S09
η Cha	8	K4 – M4	27 ± 19	50	S09	JA06	S09
TWA	8	K3 – M5	6 ± 6		D06	JA06	
NGC 2169	9	K5 – M6	0°3		JE07	JE07	
25 Ori	10	K2 – M5	6 ± 2		B07	B07	
NGC 7160	10	K0 – M1	2 ± 2	4	SA06	SA05	SA06
ASCC 58	10	K0 – M5	0°5		K05	this work	
β Pic	12	K6 – M4	0°13		ZS04	JA06	
NGC 2353	12	K0 – M4	0°6		K05	this work	
Collinder 65	25	K0 – M5	0°7		K05	this work	
Tuc-Hor	27	K1 – M3	0°8		ZS04	JA06	
NGC 6664	46	K0 – M1	0°4		S82	this work	

Interestingly for some clusters we find a lower fractional value of stars with evidence of ongoing accretion compared to stars with near-to-mid infrared excess. For example among the 64 K0 – M5 stars identified by Flaherty & Muzerolle (2008) in NGC 2068/71, 39 (61%) of these show clear signature of mass accretion while 45 (70%) stars have IRAC excess. We note that 2 of the non accreting stars in their sample are identified by strong IRAC excess (ID 416, 843 in Flaherty & Muzerolle 2008), while one transitional object (ID 281) is a strong accretor. Similarly, for σ Ori we measure an f_{acc} = 30% while f_{IRAC} = 35%. This is consistent with the result of Damjanov et al. (2007) in Chameleon I. They find a small population of non-accreting objects bearing a dusty inner disk.

5.3. Inner disk dissipation and planet formation

Mass accretion and dust dispersion in the inner disk appear to have different timescales. At an age of 5 Myr, 95% of the total stellar population has stopped accreting material at a rate $\gtrsim 10^{-11} M_\odot$yr$^{-1}$ while $\sim 20\%$ of the disks still retain enough
are the main results: (1) the fraction of stars with ongoing mass accretion decreases fast with time, going from \(\sim 60\% \) at 1.5 – 2 Myr down to \(\sim 2\% \) at 10 Myr; (2) this fraction is systematically lower than the fraction of stars showing near-to-mid infrared excess; (3) mass accretion and dust dissipation in the inner disk appear to have different characteristic timescales, 2.3 and 2.9 Myr respectively; (4) within 5 Myr the mass accretion rate of 95% of the stellar population drops below our detection limit of \(10^{-11} \text{M}_\odot \text{yr}^{-1} \). While viscous evolution and photoevaporation might be unable to slow down accretion (and leave a substantial dust mass) on such a short timescale, planet formation, and/or migration, in the inner disk (few AU) might be a viable mechanism to halt further accretion onto the central star.

Acknowledgements. We thank the ESO staff for performing the VIMOS observations in service mode. This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France. We are grateful to the anonymous referee for his comments and suggestions.

References

Alibert, Y., Mordasini, C., & Benz, W. 2004, A&A, 417, L25
Alibert, Y., Mordasini, C., Benz, W., & Winisdoerffer, C. 2005, A&A, 434, 343
Allen, L. E. & Strom, K. M. 1998, AJ, 109, 1379
Barrado y Navascués, D. & Martín, E. L. 2003, AJ, 126, 2997
Basi, G., Martin, E. L., & Bertout, C. 1991, A&A, 252, 625
Beristain, G., Edwards, S., & Kwan, J. 2001, ApJ, 551, 1037
Boss, A. P. 1997, Science, 276, 1836
Boss, A. P. 1998, ApJ, 503, 923
Bouwman, J., Lawson, W. A., Dominik, C., et al. 2006, ApJ, 653, L57
Briciolo, C., Hartmann, L., Hernandez, J., et al. 2007, ApJ, 661, 1119
Briciolo, C., Hartmann, L., Stauffer, J., & Martin, E. 1998, AJ, 115, 2074
Caballero, J. A. 2008, MNRAS, 383, 375
Carpenter, J. M., Mamajek, E. E., Hillenbrand, L. A., & Meyer, M. R. 2006, ApJ, 651, L49
Clarke, C. J., Gendrin, A., & Somoto, M. 2001, MNRAS, 328, 485
Dahn, S. E. & Hillenbrand, L. A. 2007, AJ, 133, 2072
Daminjanov, I., Jayawardhana, R., Scholz, A., et al. 2007, ApJ, 670, 1337
Durisen, R. H. e. a. 2007, in PPV, ed. B. Reipurth, D. Jewitt, & K. Keil, 607–622
Flaherty, K. M. & Muzerolle, J. 2008, AJ, 135, 966
Forbes, D. 1996, AJ, 112, 1073
Haisch, Jr, K. E., Jayawardhana, R., & Alves, J. 2005, ApJ, 627, L57
Haisch, Jr., K. E., Lada, E. A., & Lada, C. J. 2001, ApJ, 553, L153
Hartmann, L., Calvet, N., Gullbring, E., & D’Alessio, P. 1998, ApJ, 495, 385
Hartmann, L., Megeath, S. T., Allen, L., et al. 2005, ApJ, 629, 881
Henning, T. 2008, Physica Scripta Volume T, 130, 014019
Herczeg, G. J. & Hillenbrand, L. A. 2008, ApJ, 681, 594
Hernández, J., Hartmann, L., Megeath, T., et al. 2007, ApJ, 662, 1067
Hillenbrand, L. A. 2008, Physica Scripta Volume T, 130, 014024
Horne, K. 1986, PASP, 98, 609
Jayawardhana, R., Coffey, J., Scholz, A., Brandeker, A., & van Kerkwijk, M. H. 2006, ApJ, 648, 1206
Jeffries, R. D., Oliveira, J. M., Naylor, T., Mayne, N. J., & Littlefair, S. P. 2007, MNRAS, 376, 580
Kharchenko, N. V., Piskunov, A. E., Ro ner, S., Schilbach, E., & Scholz, R.-D. 2005, A&A, 438, 1163
Lada, C. J., Muench, A. A., Luhan, K. L., et al. 2006, AJ, 131, 1574
LeFevre, O., Saisse, M., Mancini, D., et al. 2003, in SPIE Conference Series, ed. M. Iye & A. F. M. Moorwood, Vol. 4841, 1670–1681
Luhman, K. L., Allen, L. E., Allen, R. F., et al. 2008, ApJ, 675, 1375
Mentuch, E., Brandeker, A., van Kerkwijk, M. H., Jayawardhana, R., & Hauschildt, P. H. 2008, ApJ, 689, 1127
Mohanty, S., Jayawardhana, R., & Basri, G. 2005, ApJ, 626, 498
Moraux, E., Lawson, W. A., & Clarke, C. 2007, A&A, 473, 163
Mordasini, C., Alibert, Y., Benz, W., & Naef, D. 2008, in ASPCS Series, ed. D. Fischer, F. A. Rasio, S. E. Thorsett, & A. Wolszczan, Vol. 398, 235–242
Natta, A., Testi, L., Muzerolle, J., et al. 2004, A&A, 424, 603
Oliveira, J. M., Jeffries, R. D., Devey, C. R., et al. 2003, MNRAS, 342, 651
Oliveira, J. M., Jeffries, R. D., van Loon, J. T., & Rushton, M. T. 2006, MNRAS, 369, 272
Park, B.-G., Sung, H., & Kang, Y. H. 2001, Journal of Korean Astronomical Society, 34, 149
Pollack, J. B., Hubickyj, O., Bodenheimer, P., et al. 1996, Icarus, 124, 62
Sana, H., Rauw, G., Sung, H., Gosset, E., & Vreux, J.-M. 2007, MNRAS, 377, 945
Schmidt, E. G. 1982, AJ, 87, 1197
Sicilia-Aguilar, A., Bouwman, J., Juhasz, A., et al. 2009, ArXiv e-prints
Sicilia-Aguilar, A., Hartmann, L. W., Fürsz, G., et al. 2006, AJ, 132, 2135
Sicilia-Aguilar, A., Hartmann, L. W., Hernández, J., Briceño, C., & Calvet, N.
2005, AJ, 130, 188
Thommes, E. W., Matsumura, S., & Rasio, F. A. 2008, Science, 321, 814
White, R. J. & Basri, G. 2003, ApJ, 582, 1109
Wilking, B. A., Meyer, M. R., Robinson, J. G., & Greene, T. P. 2005, AJ, 130, 1733
Winston, E., Megeath, S. T., Wolk, S. J., et al. 2009, AJ, 137, 4777
Zapatero Osorio, M. R., Béjar, V. J. S., Pavlenko, Y., et al. 2002, A&A, 384, 937
Zuckerman, B. & Song, I. 2004, ARA&A, 42, 685