A direct test of time-reversal symmetry in the neutral K meson system with $K_S \rightarrow \pi \ell \nu$ and $K_L \rightarrow 3\pi^0$ at KLOE-2

Aleksander Gajos1,a
on behalf of the KLOE-2 Collaboration

1Institute of Physics, Jagiellonian University,
ul. Reymonta 4, 30-059 Cracow, Poland

Abstract. Quantum entanglement of K and B mesons allows for a direct experimental test of time-reversal symmetry independent of CP violation. The T symmetry can be probed by exchange of initial and final states in the reversible transitions between flavor and CP-definite states of the mesons which are only connected by the T conjugation. While such a test was successfully performed by the BaBar experiment with neutral B mesons, the KLOE-2 detector can probe T-violation in the neutral kaons system by investigating the process with $K_S \rightarrow \pi^\pm \ell^\mp \nu$ and $K_L \rightarrow 3\pi^0$ decays. Analysis of the latter is facilitated by a novel reconstruction method for the vertex of $K_L \rightarrow 3\pi^0$ decay which only involves neutral particles. Details of this new vertex reconstruction technique are presented as well as prospects for conducting the direct T symmetry test at the KLOE-2 experiment.

1 Introduction

Among possible experimental ways to study the T symmetry violation, it is of special interest to test the symmetry directly, i.e. by comparing amplitudes for a process and its time inverse. For spin 0 particles such as neutral mesons the inverse process is obtained simply by the exchange of initial and final states. To date, the only evidence of T violation in the neutral kaon system was found by the CPLEAR experiment through measurement of the Kabir asymmetry [1]. However, use of the CPT-even $K^0 \leftrightarrow \bar{K}^0$ process raised some controversy due to possible influence of CP violation on the result. Quantum entanglement of neutral kaons produced at the ϕ factory allows to obtain and compare kaon transitions between flavour-definite and CP-definite states and their time inverses which are only connected by time reversal conjugation [2]. This allows for a direct test of the T symmetry independent of CP and CPT. A similar idea was recently used by the BaBar experiment to directly observe T violation in the neutral B meson system [3, 4]. In turn, KLOE-2 is capable of performing the first direct T symmetry test with neutral kaons.

2 Principle of the test

For a direct T symmetry test with neutral kaons, a set of transitions must be chosen such that their T-inverses can be observed as well and their in and out states may be unambiguously identified by

\[a\text{-e-mail: aleksander.gajos@uj.edu.pl} \]
observation of kaon decay final states. These conditions are met by states with definite strangeness \(\{ K^0, \bar{K}^0 \} \) and \(CP \)-eigenstates \(\{ K_+, K_- \} \). The former are identified by semileptonic decays \(K^0 \to \pi^- \ell^+ \nu_\ell \) and \(\bar{K}^0 \to \pi^\ell^- \bar{\nu}_\ell \) (with assumption of the \(\Delta Q = \Delta S \) rule) whereas the latter must decay hadronically into two pions \((\pi^+, \pi^-)\) for \(CP^\text{=}+1 \) or \(3\pi^0 \) for \(CP^\text{=}0 \). These two bases are connected by four possible transitions, listed in Table 1. Independence of the measured asymmetry of \(CP \)-violating effects is guaranteed by the fact that for any transition its time inverse is not identical with its \(CP \)-conjugate, by contrast with e.g. the Kabir asymmetry in \(K^0 \to \bar{K}^0 \). Probability of each transition can be compared with its time-reversal conjugate in search of a discrepancy which would signal \(\mathcal{T} \)-violation. Experimentally, final states of kaons in the transitions would be identified directly by the KLOE detector located at the DA\(\Phi \)NE \(e^+e^- \) collider, a \(\Phi \)-factory operating at \(\sqrt{s} \approx 1020 \text{ MeV} \). In the years 1999–2006 KLOE has collected 2.5 fb\(^{-1}\) of data. KLOE is a barrel-shaped detector whose

Table 1. Transitions between flavour-definite and \(CP \)-definite states of neutral kaons and their time-reversal conjugates. Each of the transitions is experimentally identified by a time-ordered pair of kaon decays.

Transition Identified by	\(\mathcal{T} \)-conj. Identified by
1 \(K^0 \to K_+ (\ell^-, \pi\pi) \)	\(K_+ \to K^0 (3\pi^0, \ell^+) \)
2 \(K^0 \to K_- (\ell^-, 3\pi^0) \)	\(K_- \to K^0 (\pi\pi, \ell^+) \)
3 \(\bar{K}^0 \to K_+ (\ell^+, \pi\pi) \)	\(K_+ \to \bar{K}^0 (3\pi^0, \ell^-) \)
4 \(\bar{K}^0 \to K_- (\ell^+, 3\pi^0) \)	\(K_- \to \bar{K}^0 (\pi\pi, \ell^-) \)

Among the above ratios, \(R_2 \) and \(R_4 \) concern processes for which statistics sufficient for a significant test is expected by KLOE-2 [2]. These experimental observables are related to ratios of amplitudes by the following proportionality [5]:

\[
R_2(\Delta t) = P[K^0(0) \to K_-(\Delta t)] / P[K_-(0) \to K^0(\Delta t)] = R_2^{\text{exp}}(\Delta t)/C, \tag{5}
\]

\[
R_4(\Delta t) = P[\bar{K}^0(0) \to K_-(\Delta t)] / P[K_-(0) \to \bar{K}^0(\Delta t)] = R_4^{\text{exp}}(\Delta t)/C, \tag{6}
\]

where the constant \(C = \frac{BR(K_+ \to 3\pi^0) \Gamma_4}{BR(K^0 \to \pi\pi) \Gamma_2} \) involves kaon parameters well determined i.a. by the KLOE experiment.

After extraction of the \(R_2 \) and \(R_4 \) probability ratios from (2) and (4), their asymptotic behaviour for \(\Delta t \gg \tau_\lambda \) can be compared with the theoretical expectation:

\[
R_2(\Delta t \gg \tau_\lambda) \approx 1 - 4\Re \epsilon, \quad R_4(\Delta t \gg \tau_\lambda) \approx 1 + 4\Re \epsilon, \tag{7}
\]

in order to measure the \(\mathcal{T} \)-violating parameter \(\Re \epsilon \) [2].

3 Reconstruction of events for the test at KLOE

The KLOE detector is located at the DA\(\Phi \)NE \(e^+e^- \) collider, a \(\Phi \)-factory operating at \(\sqrt{s} \approx 1020 \text{ MeV} \). In the years 1999–2006 KLOE has collected 2.5 fb\(^{-1}\) of data. KLOE is a barrel-shaped detector whose
basic components are large drift chamber (DC) and electromagnetic calorimeter (EMC) immersed in magnetic field of 0.52 T. Recently the detector was upgraded to KLOE-2 [6] with addition of new calorimeters at small angles around the beam pipe [7] and a new Cylindrical-GEM inner tracker [8].

Processes required for the T test include semileptonic decays of neutral kaons with the partner kaon decaying into 2 or 3 pions. While for the 2-pion final state $\pi^+\pi^-$ can be chosen and well reconstructed from DC tracks, the $K_L \rightarrow 3\pi^0$ decay requires special treatment as it only includes neutral particles and the $K_S \rightarrow \pi^0\ell\nu$ decay does not provide full kinematic information on the event due to a missing neutrino. Therefore a special reconstruction method for $K_L \rightarrow 3\pi^0 \rightarrow 6\gamma$ decay was prepared which uses only information on γ hits in the EMC. The decay point and time are reconstructed using a technique similar to GPS positioning. More details can be found in Ref. [9].

Acknowledgements

This work was supported in part by the EU Integrated Infrastructure Initiative Hadron Physics Project under contract number RII3-CT- 2004-506078; by the European Commission under the 7th Framework Programme through the Research Infrastructures action of the Capacities Programme, Call: FP7-INFRASTRUCTURES-2008-1, Grant Agreement No. 227431; by the Polish National Science Centre through the Grants No. 0469/B/H03/2009/37, 0309/B/H03/2011/40, 2011/03/N/ST2/02641, 2011/01/D/ST2/00748, 2011/03/N/ST2/02652, 2013/08/M/ST2/00323 and by the Foundation for Polish Science through the MPD programme and the project HOMING PLUS BIS/2011-4/3.

References

[1] A. Angelopoulos et al. [CPLEAR Collaboration], Phys. Lett. B 444, 43 (1998)
[2] J. Bernabeu, A. Di Domenico and P. Villanueva-Perez, Nucl. Phys. B 868, 102 (2013)
[3] J. Bernabeu, F. Martinez-Vidal and P. Villanueva-Perez, JHEP 1208, 64 (2012)
[4] J. P. Lees et al. [BaBar Collaboration], Phys. Rev. Lett. 109, 211801 (2012)
[5] K. R. Schubert, L. L. Gioi, A. J. Bevan and A. Di Domenico, arXiv:1401.6938 [hep-ex].
[6] D. Moricciani [KLOE-2 Collaboration], PoS EPS -HEP2011, 198 (2011)
[7] D. Domenici, PoS EPS -HEP2013, 495 (2014)
[8] A. Balla, G. Bencivenni, P. Branchini et al., Nucl. Instrum. Meth. A 732, 221 (2013)
[9] A. Gajos, arXiv:1409.2132 [hep-ex]