Effector candidates in the secretome of *Piriformospora indica*, a ubiquitous plant-associated fungus

Maryam Rafiqi1, Lukas Jelonek2, Ndifor F. Akum1, Feng Zhang1 and Karl-Heinz Kogel1,*

1 Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University, Giessen, Germany
2 CeBiT ec, Bielefeld University, Bielefeld, Germany

*Correspondence: Maryam Rafiqi and Karl-Heinz Kogel, Institute of Phytopathology and Applied Zoology, Research Centre for BioSystems, Land use, and Nutrition (IFZ), Justus Liebig University, Giessen, Germany; e-mail: maryam.rafiqi@agrar.uni-giessen.de; karl-heinz.kogel@agrar.uni-giessen.de

MINI REVIEW ARTICLE

Plant roots interact constantly with rhizosphere-resident microorganisms. These interactions, which can be either pathogenic or mutualistic, influence plant growth, immunity, and tolerance to abiotic stress (Richardson et al., 2009; Zamioudis and Pieterse, 2012). Beneficial symbioses that supply plants with growth-limiting nutrients, such as nitrogen and phosphorus, are of a particular interest to agriculture because they minimize crops requirement for fertilizers. *Piriformospora indica* is a ubiquitous soil-borne fungus that associates with roots of a wide range of plant species, including important crops, such as barley and wheat, medicinal plants as well as the model plants Arabidopsis and tobacco (Verma et al., 1998; Varma et al., 1999; Rai et al., 2001; Peskan-Beirghofer et al., 2004). *P. indica* was initially investigated for its beneficial effects on plant growth and resistance to pathogenic infections. Earlier reports have shown that fungal culture filtrates as well as infection by *P. indica* spores promote shoots growth and increase root branching of plants grown on sterile nutrient-rich media (Barazani et al., 2005; Waller et al., 2009; Deshmukh and Kogel, 2007; Harrach et al., 2007; Selring et al., 2007), suggesting possible induction of long distance hormonal signals rather than nutrients supply by the fungus. Indeed many microorganisms produce phytohormones or their analogs that induce plants growth and modify root structures (Gruenewald et al., 2009). However, recent studies report that while *P. indica* indeed produces auxin during association with Arabidopsis and barley roots, fungal auxin production was not found to be required for triggering plant’s growth (Vadassery et al., 2008; Hibbert et al., 2012; Nongbi et al., 2012). More studies are needed to specify the role of hormonal signals mediating the interaction between *P. indica* and plants. While accumulated evidence supports a mutualistic association between plants and *P. indica*, and suggests the use of this fungus as a biocontrol agent, the exact molecular process underlying the antagonistic effect of *P. indica* on pathogenic infections is unknown.

Piriformospora indica is a facultative saprophyte that grows on dead plant material and colonizes living root cells, mostly biotrophically, though a switch to a late cell death–associated stage has been described (Deshmukh et al., 2006; Qiang et al., 2012). This late growth stage is symptomless and poorly characterized. Whether this transition in the lifestyle affects mutualistic interactions with plants is as yet unknown. In general, biotrophic fungal pathogens have a narrow host range. *P. indica* forms associations with roots of a large range of plant species. Although it is still unclear if these interactions are mutualistic or more parasitic, an intriguing question is what are the cellular and molecular mechanisms developed by this fungus to ensure biotrophic growth and to undermine host defense strategies in different plant species? One scenario is that *P. indica* deploys an effector repertoire targeting conserved cellular processes in many plant species.

Key feature of the virulence of many biotrophic and hemibiotrophic fungal pathogens is the ability to deliver virulence proteins called effectors into their host cells. These effector proteins manipulate the host immunity, physiology, and metabolism, in favor of fungal growth and disease development. Some secreted fungal effectors exert their action extracellularly, in the plant apoplastic space. Many others have their molecular targets inside the plant cell, in the cytoplasm, the nucleus or other host subcellular compartments (Rafiqi et al., 2012). During biotrophic growth on barley root cells, *P. indica* intercellular hyphae extend differentiated branched hyphal structures into infected cells of root tissue (Figure 1). These structures are morphologically analogous...
FIGURE 1 | Piriformospora indica biotrophic hyphal structures. During biotrophic growth on barley root cells, *P. indica* spores attach to the root surface, as seen (A) germinate and extend intercellular hyphae (arrows) on root tissue within 10 h (B-C). Differentiated swollen hyphal structures (arrowheads) are extended into colonized living cells of root tissue (D). These structures are morphologically analogous and may share similar functions to haustoria and arbuscules formed by pathogenic and mycorrhizal fungi, respectively, suggesting possible roles in acquisition of nutrients and secretion of effectors into host tissue. Image (A) was taken using scanning electron microscope (SEM), images (B–D) were taken using a light microscope. Bars =20 μm.

and may share similar functions to haustoria and arbuscules formed by pathogenic and mycorrhizal fungi, respectively. *P. indica* biotrophic hyphal structures penetrate the cell wall and invaginate the plasma membrane of infected barley root cells, suggesting possible roles in acquisition of nutrients and secretion of effectors in host tissue, similar to haustoria and arbuscules (Vieigle and Mendgen, 2001; Catanzariti et al., 2006; O’Connell and Panstruga, 2006; Corrada and Bonfante, 2012). In this review, we use the whole genome sequence of *P. indica* (Zuccaro et al., 2011) to generate a refined list of effector candidates in the secretome of this endophytic fungus.

IDENTIFYING EFFECTOR CANDIDATES OF *P. indica*

Recent work on predicting effector candidates from fungal genomes has relied on selecting fungal genes up-regulated during *in planta* growth and coding for predicted small secreted proteins (SSPs) with a size cut-off of 300 amino acids (aa) that do not code for known functions (Martin et al., 2008; Hacquard et al., 2012; Zuccaro et al., 2011). However, more recent research has shown that fungal and oomycete effectors can exceed the size of 300 aa (Rafiqi et al., 2010; van Damme et al., 2012), and that despite being under high selective pressure, some effectors can still carry recognizable Pfam domains, which would help predict their biological function. Examples of these effectors are CRN8 of *Phytophthora infestans* and AvrM of *Melampsora lini*. CRN8 is 600 aa in size and carries a serine/threonine Rd kinase domain that has been shown to function in the plant nucleus. AvrM is a 343 aa avirulence protein that is intercepted by the tonoplast-resident flax resistance protein M (Catanzariti et al., 2006; Takemoto et al., 2012; van Damme et al., 2012). Similarly, Ecp6 of *Cladosporium fulvum* and Slp1 of *Magnaporthe oryzae* carry LysM domains (de Jonge et al., 2010; Mentlak et al., 2012). Thus, for identification of *P. indica* effector protein candidates, we established an in silico pipeline that does not take in account protein size and that includes Pfam domain-containing proteins (Figure 2).

Using SignalP (Petersen et al., 2011), 976 genes were predicted to code for proteins with signal peptide. Sequence similarity search was run using BlastP. Secreted proteins with predicted apoplastic...
functions, such as cell wall hydrolysis, were excluded from this set based on their function and not on their size, and proteins with Pfam domains suggesting possible intracellular functions were retained. This resulted in a reduced set of 543 secreted proteins that are considered effector candidates (Figure 2). The majority, 389 proteins, are with unknown functions, a feature that characterizes many predicted fungal effectors. 154 proteins carry predicted Pfam domains, of which 64 are predicted to have protease activity and 23 carry the carbohydrate-binding protein domain LysM. Effector protein families with LysM domains are expanded in many fungal species and are predicted to contribute to fungal virulence through binding to chitin oligosaccharides, and subsequently preventing their hydrolysis by plant chitinases (de Jonge and Thomma, 2009; Gan et al., 2012; Mentlak et al., 2012) and/or their recognition by membrane-anchored pattern recognition receptors (PRRs) such as Arabidopsis chitin elicitor receptor kinase (ArCERK1) that binds chitin directly through its extracellular LysM-containing domain (Liu et al., 2012).

Piriformospora indica EFFECTOR CANDIDATES WITH NO Pfam DOMAIN ARE ENRICHED FOR CYSTEINE RESIDUES AND INTERNAL REPEAT-RICH SEQUENCES BUT SHOW NO EVIDENCE FOR CLUSTERING

132 of the 389 SSPs lacking Pfam domains are enriched for cysteine residues, of which 65 are predicted by Disulfind algorithm (Ceroni et al., 2006) to have three or more disulphide bonds. 14 SSPs showed similarity to predicted proteins in the secretome of Laccaria bicolor. Using T-REKS program (Jorda and Kajava, 2009), 110 SSPs lacking Pfam domains were found to contain internal repeat-rich sequences. Search for conserved motifs (RxLR, [L/I]xAR, [R/K][Cxx][Cx12H], [Y/F/W][xL/YL][xR], and [G/L/F/Y][xS/L][xR]) showed no evidence for the presence of conserved motifs identified in SSPs of other fungal and oomycete species. Some of these motifs were present in one or a few sequences. However, because of their low frequency and their short sequences when compared to the more complex SSPs sequences, we consider their presence to occur by random chance. Using the Markov-Cluster-Algorithm (MCL; http://micans.org/mcl/) and MCL-Tribe (Enright et al., 2002), 215 SSPs could be clustered into tribes with five or more proteins (Figure 2). The remaining 328 sequences were split into 212 smaller clusters, including 138 singletons, and showed no evidence for gene clustering. Among SSPs rich in small repeats, 25 effector candidates carry the conserved C-terminal motif RSIDELD (Zuccaro et al., 2011). The function of this motif is as yet unknown. One new DELD gene (deposited to NCBI GenBank under the accession number KC342232.1) that was missing in the P. indica genome database, likely due to the presence of repetitive sequences, was amplified by PCR, indicating that DELD protein family might be more expanded than ab initio deduced from the assembled genome. Homologs of DELD proteins are also conserved in the closely related sebacinalean fungus Piriformospora williamsii (Rafiqi, unpublished). Proteins of this family have related sequences enriched for alanine and histidine residues and may have expanded from a single ancestral sequence. With the exception of DELD proteins and 14 other SSPs showing similarity to predicted secreted proteins of L. bicolor, the majority of P. indica SSPs are novel sequences showing no significant homology to known sequences in other organisms, which is in accord with previous studies highlighting the evolutionary diverse nature of fungal effectors (Saunders et al., 2012).

FAMILIES OF EFFECTOR CANDIDATES WITH PREDICTED INTRACELLULAR FUNCTIONS

Among Pfam-containing effector candidates, 35 indicate intracellular regulatory functions, suggesting that they perform these functions after translocation into plant root cells. Examples of these predicted intracellular effectors are translation activators,
RNA-binding proteins, RING fingers and F-box-containing proteins that are involved in protein ubiquitination. In addition, 14 SSFs with no PLAM domains carry predicted nuclear localization signals (NLSs). In planta expression of three green fluorescent protein (GFP)-tagged NLS-harboring proteins lacking the signal peptide resulted in nuclear localization of GFP fusion proteins, confirming the functionality of the NLS in plant cells and presenting indirect evidence for the intracellular function of these effector candidates (Rafiqi, unpublished). Effectors with predicted intracellular functions constitute a high priority list for further analysis of the biological role as well as the translocation mechanism of fungal effectors in plant cells. Preliminary yeast two hybrid screen results indicate interaction of one of P. indica effector candidates with CSN5a and CSN5b components of the COP9 signalosome in Arabidopsis and tobacco, and with a member of Arabidopsis stress-associated protein family (ASAP) that act as E3 ligases (Boerrke and Rafiqi, unpublished). CSN is an evolutionary conserved protein complex comprised of eight subunits, named CSN1-8, where CSN5 is the only catalytic subunit described so far. CSN5 is an isopeptidase that interferes with the ubiquitin-proteasome pathway and plays critical developmental roles in plants (Wos et al., 2008). Targeting both CSN5 and ASAP gives molecular insights into how P. indica could manipulate protein ubiquitination in different plant species by targeting conserved molecular processes in plants.

Unlike pathogenic cytoplasmic effectors, which can be revealed through a screen for avirulence functions in resistant plants, mutualistic cytoplasmic effectors are more challenging to identify. In a recent study, Kloppholz et al. (2011) have used yeast secreted protein trap system to identify a cytoplasmic effector, SP7, of Glomus intraradices, a root endophytic fungus that colonizes plants, at the molecular level. This work was supported by the German research funding organization “Deutsche Forschungsgemeinschaft” (DFG, Research unit 666). We thank Alexander Goessmann of CebiTec, University of Bielefeld for provision of valuable bioinformatics support.

REFERENCES

Arcamone, A., Benabdelhak, M., Grotan, K., Kahlmier, C., and Baldwin, L. T. (2005). Performe–spore indica and fuscumterulae increase growth performance at the expense of herbivorous resistance in Nicotiana attenuata. Oecologia 143, 257–264. doi: 10.1007/s00442-005-0193-8

Catarinoz, A. M., Dodda, P. N., Laurenza, S. J., Aridilo, M. A., and Ellis, J. G. (2006). Haem–totally expressed secreted proteins from P. fum is are highly enriched for avirulence correlates. Plant Cell 18, 243–256. doi: 10.1105/tpc.1 055988

Cerni, A., Panzera, A., Valla, A., and Frauste, P. (2006). DUSLIFIND: a dually binding state and cystine connectivity prediction server. Nucleic Acids Res. 34, W717–W718. doi: 10.1093/nar/gkl160

Corral, N., and Hofste, P. (2012). The arbuscular mycorrhizal symbiosis: origins and evolution of a beneficial plant infection. Plant Cell 24, 11902–11920. doi: 10.1105/ tp0105200

de Jonge, R., and Thomsen, B. H. (2009). Fungal LysM effectors outman–euvers of host immunity? Trends Microbiol. 17, 315–317. doi: 10.1016/ j.tim.2009.01.002

de Jonge, R., van Eeuw, H. F., Bom– bretzke, A., Sharma, T., Doskoc, F., Beers, R., et al. (2010). Conserved fungal LysM effectors Egpt prevent plant–triggered immunity in plants. Science 329, 953–955. doi: 10.1126/sci– ence.1190859

Deshmukh, S., Hucklebron, R., Schaefer, F., Imani, I., Sharma, M., Voss, M., et al. (2008). The root endophytic fungus Performe–spore indica requires host cell death for proliferation during mutualistic symbiosis with barley. Proc. Natl. Acad. Sci. USA 105, 18430–18435. doi: 10.1073/pnas.0809070103

Deshmukh, S., and Kepl, K. H. (2007). Performe–spore indica pro–duces basidi from root necrosis caused by Fusarium graminearum. J. Plant Dis. Prot.114, 265–268

Fanghe, A. J., Van Dongen, S., and Oumounni, A. (2012). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res. 30, 1575–1584. doi: 10.1093/nar/gnr17.7.1575

Gar, P., Reda, K., Sridha, H., Narusawa, M., O’Connell, R. J., Narusawa, N., et al. (2012). Comparative genomic and transcriptomic analyses reveal the haematothrix path of Cal– lonectria fungi. New Phytol. 197, 1236–1249. doi: 10.1111/nph.12085

Granewald, W., van Niselen, G., Van Inderij, G., Beuckman, T., Gheysen, G., and Mathieu, L. (2009). Manipulation of auxin trans–port in plant roots during Rhizo–biotic symbiosis and nematicode para–site. Plant Cell 21, 2553–2562. doi: 10.1105/tpc.108.069427

Hayward, S., Joly, D. L., Lee, Y. C., Timera, E., Fan, H., Dikman, C., et al. (2012). A comprehensive
analysis of genes encoding small secreted proteins identifies candi-
date effectors in Medicago truncatula.

Rafiqi, M., Voll, L. M., Ding, Y., Harrach, B. D., Fodor, J., Barna, B., Jorda, J., and Kajava, A. V. (2009). T-REKS: identification of tandem repeats in sequences with a K-meanS signature by beneficial microbes. Front. Plant Physiol. 23, 2632–2638. doi: 10.1093/bioinformatics/btp482

Kale, S. D., Gu, B., Capelluto, D. G., Dou, X., Feldman, E., Bearman, A., et al. (2010). External lipid mediators of enteric pathogen effectors into plant and anim-
imal cells. Cell 142, 284–295. doi: 10.1016/j.cell.2010.08.009

Klephehoeh, S., Kuhn, H., and Requena, N. (2011). A secreted fungal effec-
tor of rice blast disease. Nature 474, 269–274. doi: 10.1038/nature10029

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential con-
flict of interest.

Received: 01 March 2013; accepted: 10 June 2013; published online: 11 July 2013.

Citation: Rafiqi M, Jönsøe L, Alborn MF, Zheng F and Engel KH (2013) Effec-
tor candidates in the secretome of Piriformospora indica. Front. Plant Sci. 4:228. doi: 10.3389/fpls.2013.00228

This article was submitted to Frontiers in Plant-Microbe Interaction, a specialty of Frontiers in Plant Science. Copyright © 2013 Rafiqi, Jönsøe, Alborn, Zheng and Engel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in other forums, pro-
vided the original authors and source are credited and subject to any copy-
right notices concerning any third-party graphics or.