Novel recombinant human thyroid-stimulating hormone in aiding postoperative assessment of patients with differentiated thyroid cancer—phase I/II study

Yan-Song Lin1,10,11 · Hui Yang2 · Xiao-Yi Li3 · Li-Qing Wu4 · Jin-Guo Xu5 · Ai-Min Yang6 · Zai-Rong Gao7,12,13 · Yong Ding8 · Ying-Qiang Zhang1,10,11 · Kai Chen2 · Zhan-Zhuang Mu1,10,11 · Jian-Min Jia2 · Na Niu1,10,11 · Di Sun1,10,11 · Xin Zhang1,10,11 · Shao-Qiang Zhang14 · Qian-Qian Geng6 · Ya-Jing Zhang7,12,13 · Fang-Ni Chen8 · Bao-Xia He9

Received: 8 February 2022 / Accepted: 5 June 2022 / Published online: 4 July 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Purpose Thyroid hormone withdrawal (THW) inevitably induced hypothyroidism in patients with differentiated thyroid cancer (DTC), and we aimed to evaluate the safety and efficacy of a novel recombinant human thyroid-stimulating hormone (rhTSH, ZGrhTSH) as an alternative of THW in China.

Methods Totally, 64 DTC patients were enrolled with 24 in the dose-escalation cohort equally grouped into 0.9 mg ×1 day, 0.9 mg ×2 day, 1.8 mg ×1 day, and 1.8 mg ×2 day dosage, and 40 further enrolled into 0.9 mg ×2 day dose-expansion cohort. All patients underwent both ZGrhTSH phase and levothyroxine (L-T4) withdrawal phase for self-comparison in terms of TSH levels, the radioactive iodine (RAI) uptake, stimulated thyroglobulin level, and the quality of life (QoL).

Results In ZGrhTSH phase, no major serious adverse events were observed, and mild symptoms of headache were observed in 6.3%, lethargy in 4.7%, and asthenia in 3.1% of the patients, and mostly resolved spontaneously within 2 days. Concordant RAI uptake was noticed in 89.1% (57/64) of the patients between ZGrhTSH and L-T4 withdrawal phases. The concordant thyroglobulin level with a cut-off of 1 μg/L was noticed in 84.7% (50/59) of the patients without the interference of anti-thyroglobulin antibody. The QoL was far better during ZGrhTSH phase than L-T4 withdrawal phase, with lower Billewicz (−51.30 ± 4.70 vs. −39.10 ± 16.61, P < 0.001) and POMS (91.70 ± 16.70 vs. 100.40 ± 22.11, P = 0.011) scores which indicate the lower the better. Serum TSH level rose from basal 0.11 ± 0.12 mU/L to a peak of 122.11 ± 42.44 mU/L 24 h after the last dose of ZGrhTSH. In L-T4 withdrawal phase, a median of 23 days after L-T4 withdrawal was needed, with the mean TSH level of 82.20 ± 31.37 mU/L. The half-life for ZGrhTSH clearance was about 20 h.

Conclusion The ZGrhTSH held the promise to be a safe and effective modality in facilitating RAI uptake and serum thyroglobulin stimulation, with better QoL of patients with DTC compared with L-T4 withdrawal.

Keywords Differentiated thyroid cancer · Thyroid-stimulating hormone · rhTSH · Whole-body scan · Quality of life

Introduction

According to the data of the International Agency for Research on Cancer (IARC) in 2020, the new cases of thyroid cancer in China (221,093) accounted for more than one-third of the global number, indicating the relatively high thyroid cancer burden in terms of incidence in China [1, 2]. Differentiated thyroid cancer (DTC) accounts for over 94% of thyroid cancer [3]. Successful management of DTC is based on total thyroidectomy followed by selective radioactive iodine (RAI) therapy and thyroxine therapy for thyroid-stimulating hormone (TSH) suppression [4, 5]. RAI therapy of DTC is based on the sodium iodide symporter (NIS) expressing in DTC cells to some extent, allowing its ability of trapping circulating RAI. Notably, though a more than 98% of 5-year survival rate revealed by Surveillance, Epidemiology and End Results (SEER) database [6], it was only 84.3% for Chinese patients, indicating the less favorable survival status in China [7], and urging the need...
of strengthening thyroid cancer management, particularly a more comprehensive assessment in active surveillance of recurrence and more accurate subsequent therapeutic tailoring such as RAI therapy. During the pre-RAI assessment and active surveillance, diagnostic 131I-whole body scan (Dx-WBS) and serum stimulated thyroglobulin (s-Tg) commonly require TSH stimulation by means such as temporary thyroid hormone withdrawal (THW) for better detection of residual or functional DTC lesions [8–10]. However, during THW period, patients would inevitably experience symptomatic hypothyroidism; of note, in those with the high tumor burden, an adequate TSH stimulation might not be reached due to the extrathyroidal tumorigenic thyroid hormone excretion, or even risk to stimulate the tumor growth and cause disease progression, which all may prevent the patients from optimal assessment.

Thyrogen®, a kind of recombinant human TSH (rhTSH), has been approved by Food and Drug Administration (FDA) in 1998, is an exogenous TSH, which can stimulate thyroid cells without THW and has been recommended as an alternative for the preparation of RAI ablation for over 20 years. As a replacement of THW prior to 131I-WBS or s-Tg examination, rhTSH utilization greatly maintains quality of life during RAI ablation or assessment [11–13]. However, so far rhTSH remains unavailable in China where THW is the only modality for TSH stimulation. The preclinical studies showed that ZGrhTSH, a Chinese rhTSH analog, could bind to TSHR on the cell surface and result in rising of intracellular second messenger cyclic adenosine monophosphate (cAMP), which indicated its biological activity was similar to Thyrogen®. The current phase I and II self-control study was designed to assess the safety, tolerance, and efficacy of ZGrhTSH in diagnostic evaluation and its impact on patient’s quality of life (QoL) in comparison with levothyroxine (L-T$_4$) withdrawal.

Materials and methods

The study was registered at ClinicalTrials.gov (NCT04137185) and approved by the ethical board of each participating clinical institution. All patients were fully informed and provided written informed consent before enrollment.

Study participants

From May, 2019 to April, 2021, patients who underwent total thyroidectomy and pathologically diagnosed as DTC were enrolled. All the following inclusion criteria should be met: (i) aged 18–75 years; (ii) Dx-WBS planned for the disease status evaluation postoperatively or after initial therapy; (iii) the serum TSH level was controlled below 0.5 mU/L before enrollment; (iv) low-iodine preparation for more than 4 weeks before enrollment. Patients who were pregnant, lactating, or not suitable for L-T$_4$ withdrawal were excluded.

rhTSH

ZGrhTSH was produced by Suzhou Zelgen Biopharmaceutical Co., Ltd., with a specification of 1.1 mg per piece. The storage condition should be 2–8 °C. ZGrhTSH is a hTSH produced by recombinant DNA technology. rhTSH freeze-dried is made from Chinese hamster ovary (CHO) cells that efficiently express hTSH α and β subunit genes, after cell culture, isolation, and high purification.

Study design

In this phase I/II, open-label, multicenter self-control study, we evaluated the safety and efficacy of ZGrhTSH in patients with DTC who were referred for postoperative assessment including primarily Dx-WBS and s-Tg. The study consisted of the following I and II parts: dose-escalation (phase I) and dose-expansion (phase II). A total of 64 eligible patients were enrolled with 24 for phase I and followed by 40 for phase II study (Fig. 1). Patients in phase I (n = 24) were equally grouped into 0.9 mg × 1 day, 0.9 mg × 2 day, 1.8 mg × 1 day, and 1.8 mg × 2 day dose regimen sequentially. During phase I study, the dose escalation allowed to initiate only after the safety was confirmed in the prior lower dose regimen. Similar as Thyrogen®, based upon the results of phase I study, 0.9 mg × 2 day was selected for further phase II study. Pharmacokinetic analysis was performed in all patients of phase I and first 10 patients of phase II.

Each enrolled patient received ZGrhTSH injection firstly, then followed by L-T$_4$ withdrawal. The sequence throughout the trial was always the same, which was consistent with the design of Thyrogen® [14]. The reason for this sequential design is to avoid the possibly delayed therapy for those a therapeutic dose of RAI was indicated, who would experience L-T$_4$ withdrawal again for another 4–6 weeks if the patient underwent a L-T$_4$ withdrawal scan firstly, followed by ZGrhTSH scan. Two phases of ZGrhTSH and L-T$_4$ withdrawal were successively undertaken to compare the influence on elevated TSH level, RAI uptake, Tg secretion, and QoL. In ZGrhTSH phase, ZGrhTSH was injected intramuscularly with dosage of the corresponding dose group. In L-T$_4$ withdrawal phase, the L-T$_4$ withdrawal was conducted to raise TSH above 30 mU/L.

Anti-TSH antibody testing

The presence of antibodies against rhTSH in human serum samples is detected by the typical bridging assay on the MESO Scale Discovery (MSD) platform. Briefly speaking,
biotinylated-rhTSH (Bio-rhTSH) and ruthenylated-rhTSH (Ru-rhTSH) are added to human serum samples to form an antibody–drug complex with ADA in the samples during incubation. The complex is then captured and detected on the MSD plate with Streptavidin pre-coated.

Safety assessment

Adverse events (AEs) were observed and documented for all patients during the study. Common terminology criteria for adverse events (CTCAE) version 4.03 were used to evaluate the severity of AEs.

Dx-WBS imaging and interpretation

Each patient was instructed to oral 131I (74–148 MBq) for Dx-WBS after 24 h of the last ZGrhTSH injection and after at least 2 weeks of discontinuation of L-T$_4$ for ZGrhTSH and L-T$_4$ withdrawal phase respectively. The interval between the two scans was at least 4 weeks. TSH level \geq 30 mU/L and low-iodine diet for more than 4 weeks were required in all patients before oral 131I administration. Dx-WBS was performed after 48 h of 131I administration.

Each Dx-WBS was interpreted independently by two nuclear medicine physicians who were unaware of the patient’s informations such as the center, sequence of the scans, the Tg levels, or the surgical management. The scans were defined as either positive when showing the 131I concentration in the thyroid bed or abnormal uptake in the neck, the lungs, or other extrathyroidal sites, or negative when no 131I uptake in the thyroid bed or extrathyroidal sites. The locations of the 131I uptake were compared within each pair of scans to assess whether the two scans were concordant.

Serum measurements

Serum TSH, Tg, and anti-Tg antibody (TgAb) levels were measured upon baseline (TSH \leq 0.5 mU/L) and prior to each Dx-WBS (TSH \geq 30 mU/L). For pharmacokinetic analysis, serum samples were obtained at 30 min before and 1 h, 2 h, 3 h, 4 h, 6 h, 8 h, 12 h, 24 h, 36 h, 48 h, 72 h, and 96 h, 120 h after ZGrhTSH administration. TSH was tested by laboratories of local sites using standard method. Tg and TgAb were tested by central laboratory using electrochemiluminescence method. The measurable range of Tg and TgAb was 0.1–5000.00 μg/L and 10.00–4000 kU/L, respectively, and a reference range of TgAb for normal value was <115 kU/L.

Hypothyroid symptoms and QoL measurements

Hypothyroid symptoms were assessed with the Billewicz Scale (score range: -53 to 72), which is an international
standard for hypothyroidism evaluation, with higher score indicates more obvious hypothyroid symptoms. The QoL was evaluated by the short-form Profile of Mood States (POMS) (score range: 56 ~ 216). Similarly, the higher POMS score suggests the more negative emotional state. The Billewicz Scale and POMS were tested in all patients at the baseline, 1 day before 131I administration, and 3 days after 131I administration for both ZGrhTSH and L-T4 withdrawal phases.

Statistical analysis

All efficacy outcomes were assessed in the intention-to-treat population. Proportions were presented with a two-sided 95% CI using Clopper-Pearson method. Comparison of the concordant rate of RAI uptake between ZGrhTSH and L-T4 withdrawal phases was performed using the McNemar chi-square test. The differences of serum TSH, Tg levels, and hypothyroid symptoms on the Billewicz Scale and QoL on the short-form POMS were analyzed by the Wilcoxon signed-rank test. All statistical analysis was performed in two-side model using SAS 9.4. All safety analyses were made in the population received any dose of ZGrhTSH.

Results

Patient characteristics

Between Apr. 10, 2019, and Nov. 15, 2020, 64 patients (intention-to-treat) were enrolled (Table 1; Fig. 1). There were 18 males (28.1%) and 46 females (71.9%). The median age was 40.0 years (range: 20 to 66 years). Ethnic groups were all Asian (64 cases, 100.0%) and Han. The pathology of all these patients was papillary thyroid cancer.

Table 1 Characteristics of patients enrolled in this study

	0.9 mg × 1d (N=6)	0.9 mg*2d (N=46)	1.8 mg*1d (N=6)	1.8 mg*2d (N=6)	Total (N=64)
Gender					
Male	1	15	1	1	18 (28.1)
Female	5	31	5	5	46 (71.9)
Age, years					
Median	46.5	38.5	41	39.5	40
Range	36.56	20.66	31.54	32.53	20.66
T stage					
T1	3	28	5	4	40 (62.5)
T2	0	6	0	1	7 (10.9)
T3	1	4	0	1	6 (9.4)
T4	2	7	1	0	10 (15.6)
Unknown	0	1	0	0	1 (1.6)
N stage					
N0	1	8	2	0	11 (17.2)
N1	5	37	4	6	52 (81.3)
Unknown	0	1	0	0	1 (1.6)
M stage					
M0	6	45	6	6	63 (98.4)
M1	0	0	0	0	0 (0)
Unknown	0	1	0	0	1 (1.6)
Stage					
I	4	43	6	6	59 (92.2)
II	2	2	0	0	4 (6.3)
Unknown	0	1	0	0	1 (1.6)
Risk stratification					
Low	2	4	1	2	9 (14.1)
Intermediate	1	31	4	4	40 (62.5)
High	3	10	1	0	14 (21.9)
Unknown	0	1	0	0	1 (1.6)
Immunogenicity

With available samples in 39 patients, none of them had detectable serum anti-ZGrhTSH antibodies (ADA).

Adverse events

Of the 64 patients enrolled in the study, AEs were observed in 36 (56.3%) patients during ZGrhTSH phase, of which 13 were identified to be related to ZGrhTSH, but usually mild and resolved within 2 days. The most common AE related to ZGrhTSH was headache, which occurred in 4 patients (6.3%). Other AEs included lethargy (4.7%) and asthenia (3.1%). ZGrhTSH-related AEs are listed in Table 2. No grade 2 and above AEs were observed in ZGrhTSH phase.

Dx-WBS during ZGrhTSH and L-T4 withdrawal phases

No distant 131I uptake lesion revealed by Dx-WBS during ZGrhTSH and L-T$_4$ withdrawal phases. Among all 64 patients, there were 57 patients (89.1%) showing the concordant scans during the two phases. Of the concordant cases, 8 patients (12.5%) had negative scans, 47 (73.4%) showed thyroidal 131I uptake, and 2 (3.1%) with both thyroidal and extrathyroidal 131I uptake. Seven patients (10.9%) displayed discordant 131I uptake, five of which showed positive thyroidal 131I uptake during ZGrhTSH phase while negative during L-T$_4$ withdrawal phase, 1 patient had both thyroidal and extrathyroidal 131I uptake during L-T$_4$ withdrawal phase, but only thyroidal 131I uptake presented during ZGrhTSH phase, while the other 1 patient had thyroidal 131I uptake during L-T$_4$ withdrawal phase, but negative during ZGrhTSH phase. The same consistency rate of 89.1% was achieved among the 46 patients in 0.9 mg×2 day group, and the details are presented in Fig. 2. The images of concordant and discordant Dx-WBS findings are provided in Fig. 3.

Serum Tg response during ZGrhTSH and L-T$_4$ withdrawal phases

The mean Tg level was $0.40 \pm 0.68 \mu g/L$, and the median was $0.10 (0.10–2.99) \mu g/L$ at baseline. After the last dose of ZGrhTSH, Tg rose rapidly to $2.58 \pm 5.45 \mu g/L$ at 48 h, with the maximum of $2.61 \pm 5.27 \mu g/L$ at 72 h. After a median L-T$_4$ withdrawal of 23 days, Tg reached to a stable level of $4.81 \pm 10.42 \mu g/L$. Serum Tg rose higher after L-T$_4$ withdrawal than those after last dose of ZGrhTSH ($P < 0.001$) (Figs. 4 and 5). By excluding 5 patients with positive TgAb, and using a cut-off Tg level as 1 μg/L, the concordance was 84.7% (50/59), and the 100% of concordance were observed in cohorts of 0.9 mg×1 day, 1.8 mg×1 day, and 1.8 mg×2 days.

Quality of life during ZGrhTSH and L-T$_4$ withdrawal phases

No patient experienced hypothyroidism during ZGrhTSH phase while 3 of 49 available cases showed suspicious hypothyroidism during L-T$_4$ withdrawal phase. The Billewicz Scales score after ZGrhTSH administration was significantly lower than that after L-T$_4$ withdrawal (-51.30 ± 4.70 vs -39.10 ± 16.61, $P < 0.001$).

Table 2 Adverse events related to ZGrhTSH in the study

Adverse events	0.9 mg×1 d (N=6)	0.9 mg×2 d (N=46)	1.8 mg×1 d (N=6)	1.8 mg×2 d (N=6)	Total (N=64)
Nervous system disorders	3 (50.0)	5 (10.9)	1 (16.7)	0	9 (14.1)
Headache	3 (50.0)	0	1 (16.7)	0	4 (6.3)
Lethargy	0	3 (6.5)	0	0	3 (4.7)
Dizziness	0	1 (2.2)	0	0	1 (1.6)
Somnolence	0	1 (2.2)	0	0	1 (1.6)
Gastrointestinal disorders	0	2 (4.3)	1 (16.7)	0	3 (4.7)
Abdominal pain	0	0	1 (16.7)	0	1 (1.6)
Diarrhea	0	1 (2.2)	0	0	1 (1.6)
Nausea	0	1 (2.2)	0	0	1 (1.6)
General disorders and administration site conditions	0	3 (6.5)	0	0	3 (4.7)
Asthenia	0	2 (4.3)	0	0	2 (3.1)
Feeling hot	0	1 (2.2)	0	0	1 (1.6)
Skin and subcutaneous tissue disorders	0	2 (4.3)	0	0	2 (3.1)
Hyperhidrosis	0	1 (2.2)	0	0	1 (1.6)
Pruritus	0	1 (2.2)	0	0	1 (1.6)
The top three symptoms are periorbital puffiness (30/64), weight increase (28/64), and chills (16/64) during L-T4 withdrawal. For all patients, the POMS score was 90.10 ± 14.95 at baseline and 91.70 ± 16.70 in ZGrhTSH phase, with the change value of 1.50 ± 12.58. In L-T4 withdrawal phase, the POMS score rose to 100.40 ± 22.11, with the change value of 10.30 ± 21.77 compared with baseline. The POMS score significantly differed between ZGrhTSH and L-T4 withdrawal phases (P = 0.002), indicating the mood state of patients after ZGrhTSH administration was significantly better than after L-T4 withdrawal.

Serum TSH level change during ZGrhTSH and L-T4 withdrawal phases

The changes of serum TSH had similar trends in all dose groups over time. For all 64 patients, the average level was 0.11 ± 0.12 mU/L at baseline, then reached to the maximum level of 122.11 ± 42.44 mU/L based on 24-h interval with feasible clinical monitoring sampling time and dropped to near baseline level (0.25 ± 0.28 mU/L) on 14th day after the last dose of ZGrhTSH. During L-T4 withdrawal phase, serum TSH level reached to the peak (82.20 ± 31.37 mU/L) with a median of 23 days, and maintain stable thereafter, which was significantly lower than that on 24 h after last dose of ZGrhTSH (P < 0.001) (Fig. 7).

Pharmacokinetics of ZGrhTSH

The mean peak TSH concentrations for 0.9 mg × 1 day, 0.9 mg × 2 day, 1.8 mg × 1 day, and 1.8 mg × 2 day groups were 7.49 ± 1.64, 11.94 ± 5.37, 24.09 ± 9.14, and 26.42 ± 9.54 ng/mL, respectively, with approximately 12 h for single dose groups and approximately 8–9 h for double doses groups after the last dose of ZGrhTSH (Fig. 8). The half-life of ZGrhTSH clearance from circulation was similar among four regimens with about 20 h after last dose of ZGrhTSH.

Discussion

In this self-control phase I/II clinical study, a rapid rise of serum TSH is observed after ZGrhTSH administration, with a mean peak concentration much higher than that after an average of 23 days of L-T4 withdrawal, indicating ZGrhTSH could effectively increase serum TSH level instead of the modality of THW. No one developed ZGrhTSH antibodies, suggesting the applicability of multiple ZGrhTSH administration.

The pharmacokinetics of ZGrhTSH were characterized by the durable elevation of TSH levels (> 30 mU/L) for at least 72 h after the last dose administration, indicated a relatively slow clearance which is quite similar as it reported in studies of Thyrogen® when comparing with the endogenous TSH [13]. Theoretically, the slow
clearance pharmacokinetics feature of rhTSH might be more favorable in aiding the adequate stimulation for RAI uptake and Tg secretion. Of note, serum TSH level could still maintain at about 80% of the peak concentration 24 h after the last dose with an average of 109.1 mU/L and 186.7 mU/L for 0.9 mg and 1.8 mg 2-day regimen, which allow an adequate TSH stimulation in terms of both duration and high concentration, and also well met clinical routine practice of TSH examination. Though we noticed that the blood concentration of ZGrhTSH increased in a dose-dependent manner, with TSH levels in 1.8 mg groups almost onefold higher than that in 0.9 mg groups, the current clinical need for TSH level is indicated as only 30 mU/L and above [15]. One of our prior studies showed that TSH level of 90–120 mU/L was enough in aiding RAI remnant ablation [16]. Hence, an average of 100 mU/L for 0.9 mg × 2 day regimen would be appropriate for both elevation of TSH, and also with a consideration of reducing the potential risk induced by higher TSH level. Thus, the 0.9 mg × 2 day regimen was selected for phase II and subsequent phase III study.

All 64 patients experienced both ZGrhTSH administration and L-T₄ withdrawal for TSH stimulation. Only 13 of the 64 patients suffered ZGrhTSH-related AEs, which were generally mild and 11/13 recovered within 1–2 days. The most common AE was headache, with an incidence of 6.3%, and the incidence of other AEs was less than 2%. There was no grade 2 and above ZGrhTSH-related AEs, demonstrating the great safety and tolerance of ZGrhTSH. Meanwhile, the Billewicz Scales and POMS score of patients was remarkably higher during L-T₄ withdrawal phase than ZGrhTSH phase, indicating the more hypothyroidism symptoms and dysphoric mood states after THW than ZGrhTSH administration and ZGrhTSH greatly improved the quality of life.

The efficacy of ZGrhTSH has been well demonstrated in terms of promoting RAI uptake and Tg stimulation in this study. A high consistency rate (89.1%) of Dx-WBS findings between ZGrhTSH or L-T₄ withdrawal phases was observed, suggesting ZGrhTSH could effectively enhance NIS expression and corresponding function, thereby improve the iodine uptake. Furthermore, ZGrhTSH seems to be more advantageous in the detection of residual

Fig. 3 Dx-WBS findings in patients with DTC after ZGrhTSH administration and THW. Dx-WBS, diagnostic ¹³¹I-whole body scan; DTC, differentiated thyroid cancer; ZGrhTSH, Zelgen recombinant human thyroid-stimulating hormone; THW, thyroid hormone withdrawal. A ZGrhTSH phase and B THW phase show paired concordant thyroidal ¹³¹I uptake in a patient. C ZGrhTSH phase and D THW phase show paired discordant Dx-WBS of thyroid in a patient. Positive thyroidal ¹³¹I uptake is present during ZGrhTSH phase while negative during THW phase. E ZGrhTSH phase and F THW phase show paired discordant of thyroid Dx-WBS in another patient. Positive thyroidal ¹³¹I uptake is present during THW phase while negative during ZGrhTSH phase.
thyroid tissue, with the fact that 5 patients showed positive thyroidal 131I uptake in ZGrhTSH phase while negative in L-T$_4$ withdrawal phase. Similar phenomenon was also found in Thyrogen® [13]. With regard to stimulate Tg secretion, the modality of L-T$_4$ withdrawal appears to be more efficient than ZGrhTSH. Serum Tg levels after L-T$_4$ withdrawal increased almost twofold to that after last dose of ZGrhTSH, which is similar to the findings of Thyrogen®. One reason is that the extended period of TSH stimulation following L-T$_4$ withdrawal lead to more adequate Tg secretion from thyroid follicular cells or DTC cells than an acute rise of TSH following rhTSH injection [17]. Another speculated reason is that the radiation effect of 131I administration at the activity of 3 mCi during
ZGrhTSH phase may exert partial ablation effect and cause the damage of follicular cells, which leads to the destructive release of Tg and manifested as higher level in L-T4 withdrawal phase. The latter could be further evidenced by the mismatch of Dx-WBS finding among patients showed the positive thyroidal 131I uptake during ZGrhTSH phase.
while negative during L-T₄ withdrawal phase, while the diverse interpretation of such clinical manifestation indicates the need for further exploration and evidence [12, 18].

In conclusion, ZGrhTSH was well tolerated and showed the comparable potential to increase TSH level, improve iodine uptake, and stimulate Tg secretion in DTC patients comparing with the L-T₄ withdrawal. Together with the demonstrated better quality of life, ZGrhTSH could be a safe and effective alternative in aiding postoperative evaluation and active surveillance in DTC patients.

Acknowledgements The authors thank the patients and the investigators who participated in this study.

Author contribution Study concept and design: Yan-Song Lin, Li-Qing Wu. Acquisition, analysis, or interpretation of data: Yan-Song Lin, Hui Yang, Xiao-Yi Li, Li-Qing Wu, Jin-Guo Xu, Ai-Min Yang, Zai-Rong Gao, Yong Ding, Ying-Qiang Zhang, Zhuhan-Zhuang, Kai Chen, Jian-Min Jia, Na Niu, Di Sun, Xin Zhang, Shao-Qiang Zhang, Qian-Qian Geng, Ya-Jing Zhang, Fang-Ni Chen, Bao-Xia He. Drafting of the manuscript: Yan-Song Lin, Zhuhan-Zhuang. Critical revision of the manuscript for important intellectual content: Yan-Song Lin, Hui Yang, Xiao-Yi Li, Li-Qing Wu, Jin-Guo Xu, Ai-Min Yang, Zai-Rong Gao, Yong Ding. Statistical analysis: Li-Qing Wu. Obtained funding: Yan-Song Lin, Hui Yang, Xiao-Yi Li, Ai-Min Yang, Zai-Rong Gao, Yong Ding. Administrative, technical, or material support: Yan-Song Lin, Hui Yang, Xiao-Yi Li, Ai-Min Yang, Zai-Rong Gao, Yong Ding. Study supervision: Yan-Song Lin, Li-Qing Wu.

Funding This study was funded by the Project on Inter-Governmental International Scientific and Technological Innovation Cooperation in the National Key Projects of Research and Development Plan (No. 2019YFE0106400), the Nonprofit Central Research Institute Fund of Chinese Academy of Medical Sciences (No. 2019XK320009), and the Suzhou Zelgen Biopharmaceuticals Co., Ltd.

Declarations

Ethics approval This study was approved by the ethical board of each participating clinical institution. The research was performed with adherence to the guidelines of the Declaration of Helsinki.

Consent to participate Patients gave informed consent, which included the use of pseudoanonymized data and samples for the purpose of research and publication.

Consent for publication All authors have read the manuscript and agree with its publication.

Conflict of interest The authors declare no competing interests.

References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2021;71:209–49. https://doi.org/10.3322/caac.21660.
2. https://gco.iarc.fr/today/data/factsheets/populations/160-china-fact-sheets.pdf
3. Sherman SI. Thyroid carcinoma. Lancet (London, England). 2003;361:501–11.
4. Van Nostrand D. Selected controversies of radiiodine imaging and therapy in differentiated thyroid cancer. Endocrinol Metab Clin North Am. 2017;46:783–93. https://doi.org/10.1016/j.ecl.2017.04.007.
5. Tuttle RM, Ahuja S, Avram AM, Bernet VJ, Bourguet P, Daniels GH, et al. Controversies, consensus, and collaboration in the use of I therapy in differentiated thyroid cancer: a joint statement from the American Thyroid Association, the European Association of Nuclear Medicine, the Society of Nuclear Medicine.
and Molecular Imaging, and the European Thyroid Association. Thyroid: official journal of the American Thyroid Association. 2019;29:461–70. https://doi.org/10.1089/thy.2018.0597.
6. Surveillance, Epidemiology, and End Results (SEER) Program. Cancer stat facts: thyroid cancer. 2022. National Cancer Institute. https://seer.cancer.gov/statfacts/html/thyro.html. Accessed 9 Feb 2022
7. Zeng H, Chen W, Zheng R, Zhang S, Ji JS, Zou X, et al. Changing cancer survival in China during 2003–15: a pooled analysis of 17 population-based cancer registries. Lancet Glob Health. 2018;6:e555–67. https://doi.org/10.1016/S2214-109X(18)30127-X.
8. Maxon HR 3rd, Smith HS. Radiiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am. 1990;19:685–718.
9. Goldman JM, Line BR, Aamodt RL, Robbins J. Influence of tri-iodothyronine withdrawal time on 131I uptake postthyroidectomy for thyroid cancer. J Clin Endocrinol Metab. 1980;50:734–9. https://doi.org/10.1210/jcem-50-4-734.
10. Ozata M, Suzuki S, Miyamoto T, Liu RT, Fierro-Renoy F, DeGroot LJ. Serum thyroglobulin in the follow-up of patients with treated differentiated thyroid cancer. J Clin Endocrinol Metab. 1994;79:98–105. https://doi.org/10.1210/jcem.79.1.8027262.
11. Mallick U, Harner C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med. 2012;366:1674–85. https://doi.org/10.1056/NEJMoA1109589.
12. Haugen BR, Pacini F, Reiners C, Schlumberger M, Ladenson PW, Sherman SI, et al. A comparison of recombinant human thyrotropin and thyroid hormone withdrawal for the detection of thyroid remnant or cancer. J Clin Endocrinol Metab. 1999;84:3877–85. https://doi.org/10.1210/jcem.84.11.6094.
13. Meier CA, Braverman LE, Ebner SA, Veronikis I, Daniels GH, Ross DS, et al. Diagnostic use of recombinant human thyrotropin in patients with thyroid carcinoma (phase I/II study). J Clin Endocrinol Metab. 1994;78:188–96. https://doi.org/10.1210/jcem.78.1.828703.
14. Ladenson PW, Braverman LE, Mazzaferri EL, Brucker-Davis F, Cooper DS, Garber JR, et al. Comparison of administration of recombinant human thyrotropin with withdrawal of thyroid hormone for radioactive iodine scanning in patients with thyroid carcinoma. N Engl J Med. 1997;337:888–96. https://doi.org/10.1056/NEJM199709253371304.
15. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.
16. Zhao T, Liang J, Guo Z, Li T, Lin Y. In patients with low- to intermediate-risk thyroid cancer, a preablative thyrotropin level of 30 μIU/mL is not adequate to achieve better response to 13I therapy. Clin Nucl Med. 2016;41:454–8. https://doi.org/10.1097/RLU.0000000000001167.
17. Thyrogen medical review, FDA. 1998. https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20898_Thyrogen.cfm. Accessed 9 May 2022
18. Gu Y, Xu H, Yang Y, Xiu Y, Hu P, Liu M, et al. Evaluation of SNA001, a novel recombinant human thyroid stimulating hormone injection, in patients with differentiated thyroid carcinoma. Front Endocrinol. 2020;11: 615883. https://doi.org/10.3389/fendo.2020.615883.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Yan-Song Lin1,10,11 - Hui Yang2 - Xiao-Yi Li3 - Li-Qing Wu4 - Jin-Guo Xu5 - Ai-Min Yang6 - Zai-Rong Gao7,12,13 - Yong Ding8 - Ying-Qiang Zhang1,10,11 - Kai Chen2 - Zhuan-Zhuang Mu1,10,11 - Jia-De Li2 - Na Niu1,10,11 - Di Sun1,10,11 - Xin Zhang1,10,11 - Shao-Qiang Zhang14 - Qian-Qian Geng6 - Ya-Jing Zhang7,12,13 - Fang-Ni Chen8 - Bao-Xia He9

1 Department of Nuclear Medicine, Dongcheng District, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, No.1 Shuaifuyuan, Wangfujing St, Beijing 100730, China
2 Department of Nuclear Medicine, The Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
3 Department of General Surgery, Peking Union Medical College (PUMC) Hospital, Chinese Academy of Medical Sciences & PUMC, Beijing, China
4 Clinical Research Department, Suzhou Zelgen Biopharmaceuticals Co., Ltd, Suzhou, China
5 Biological R&D Department, Suzhou Zelgen Biopharmaceuticals Co., Ltd, Suzhou, China
6 Department of Nuclear Medicine, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China
7 Department of Nuclear Medicine, Union Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
8 Department of Nuclear Medicine, The Fifth Medical Center of Chinese People’s Liberation Army General Hospital, Beijing, China
9 Phase I Clinical Research Center, Zhengzhou University Affiliated Cancer Hospital, Zhengzhou, China
10 State Key Laboratory of Complex Severe and Rare Diseases, Beijing, China
11 Beijing Key Laboratory of Molecular Targeted Diagnosis and Therapy in Nuclear Medicine, Beijing, China
12 Hubei Province Key Laboratory of Molecular Imaging, Wuhan, China
13 Key Laboratory of Biological Targeted Therapy, the Ministry of Education, Wuhan, China
14 Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi’an Jiao Tong University, Xi’an, China

a Springer