Academic performance in adolescents born to mothers with gestational diabetes - a national Danish cohort study

Heldarskard, Gerda Ferja; Spangmose, Anne Lærke; Henningsen, Anna-Karina Aaris; Wiingreen, Rikke; Mortensen, Erik Lykke; Gundersen, Tina Wullum; Jensen, Rikke Beck; Knorr, Sine; Damm, Peter; Forman, Julie Lyng; Pinborg, Anja; Clausen, Tine Dalsgaard

Published in:
The Journal of clinical endocrinology and metabolism

DOI:
10.1210/clinem/dgab451

Publication date:
2021

Document version
Publisher's PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Heldarskard, G. F., Spangmose, A. L., Henningsen, A-K. A., Wiingreen, R., Mortensen, E. L., Gundersen, T. W., Jensen, R. B., Knorr, S., Damm, P., Forman, J. L., Pinborg, A., & Clausen, T. D. (2021). Academic performance in adolescents born to mothers with gestational diabetes - a national Danish cohort study. The Journal of clinical endocrinology and metabolism, 106(11), e4554–e4564. https://doi.org/10.1210/clinem/dgab451
Academic Performance in Adolescents Born to Mothers With Gestational Diabetes—A National Danish Cohort Study

Gerda Ferja Heldarskard,1,2,* Anne Lærke Spangmose,1,3,* Anna-Karina Aaris Henningsen,1,3 Rikke Wiingreen3,4,5 Erik Lykke Mortensen,6 Tina Wullum Gundersen,2,3 Rikke Beck Jensen,3,7 Sine Knorr,8 Peter Damm,3,9 Julie Lyng Forman,10 Anja Pinborg,1,3 and Tine Dalsgaard Clausen2,3

1The Fertility Clinic, Rigshospitalet, Copenhagen, Denmark; 2Department of Gynecology and Obstetrics, Nordsjællands Hospital, Hillerød, Denmark; 3University of Copenhagen, Copenhagen, Denmark; 4Department of Neonatology, Rigshospitalet, Copenhagen, Denmark; 5Department of Pediatrics, Nordsjællands Hospital, Hillerød, Denmark; 6Department of Public Health, University of Copenhagen, Copenhagen, Denmark; 7Department of Growth and Reproduction, Rigshospitalet, Copenhagen, Denmark; 8Steno Diabetes Center Aarhus, Aarhus University Hospital, Denmark; 9Center for Pregnant Women with Diabetes, Department of Obstetrics, Rigshospitalet and Department of Clinical Medicine, Copenhagen, Denmark; and 10Section of Biostatistics, Department of Public Health, University of Copenhagen, Copenhagen, Denmark

ORCID numbers: 0000-0001-8650-9227 (G. F. Heldarskard); 0000-0002-4522-672X (R. B. Jensen); 0000-0002-8340-104X (A. Pinborg).

*G.F. H. and A.L.S. share co-first authorship of this work.

Abbreviations: AGA, appropriate for gestational age; aOR, adjusted odds ratio; GDM, gestational diabetes mellitus; GPA, grade point average; ICD-10, International Classification of Diseases and Related Health Problems 10th revision; LGA, large for gestational age; O-BP, offspring from background population; O-GDM, offspring exposed to gestational diabetes mellitus; OGTT, oral glucose tolerance test; SGA, small for gestational age.

Received: 5 March 2021; Editorial Decision: 16 June 2021; First Published Online: 22 June 2021; Corrected and Typeset: 3 August 2021.

Abstract

Context: The prevalence of gestational diabetes mellitus (GDM) is increasing, and intrauterine hyperglycemia is suspected to affect offspring cognitive function.

Objective: We assessed academic performance by grade point average (GPA) in children aged 15 to 16 years at compulsory school graduation, comparing offspring exposed to GDM (O-GDM) with offspring from the background population (O-BP).

Methods: This register-based, cohort study comprised all singletons born in Denmark between 1994 and 2001 (O-GDM: n = 4286; O-BP: n = 501 045). Standardized and
Internationally comparable GPAs were compared in univariate and multivariable linear models. Main outcome measures included the adjusted mean difference in GPA. We also analyzed the probability of having a high GPA, a GPA below passing, and no GPA registered.

Results: O-GDM had a GPA of 6.29 (SD 2.52), whereas O-BP had a GPA of 6.78 (SD 2.50). The adjusted mean difference was –0.36 (95% CI, –0.44 to –0.29), corresponding to a Cohen's D of 0.14. O-GDM had a lower probability of obtaining a high GPA (adjusted odds ratio [aOR] 0.68; 95% CI, 0.59 to 0.79), while their risk of obtaining a GPA below passing was similar to O-BP (aOR 1.20; 95% CI, 0.96 to 1.50). O-GDM had a higher risk of not having a GPA registered (aOR 1.38; 95% CI, 1.24 to 1.53).

Conclusion: Academic performance in O-GDM was marginally lower than in O-BP. However, this difference is unlikely to be of clinical importance.

Key Words: academic performance, cognitive development, diabetes in pregnancy, gestational diabetes mellitus, long-term outcomes in offspring

Globally, the prevalence of gestational diabetes mellitus (GDM) is rapidly increasing. In 2017 the International Diabetes Federation estimated that 14% of all children worldwide were born to mothers with GDM; in Denmark the corresponding number was 4.9% in 2018 (1, 2).

As glucose passes the placenta, maternal hyperglycemia leads to intrauterine hyperglycemia, and subsequently hyperinsulinemia, which affects fetal growth (3). This leads to adverse perinatal outcomes including preterm birth and macrosomia (4, 5). Long-term implications include increased risk of offspring developing obesity and type 2 diabetes (6, 7). Additionally, diabetes during pregnancy is suspected to affect offspring cognition (8, 9). In animal studies, diabetes during pregnancy has been linked to morphological changes in the limbic system (10, 11) and impaired dendritic development—possibly through altered insulin-like growth factor-I/insulin receptor expression (12). Also, one animal study found maternal diabetes to negatively affect performance during functional tasks in offspring (13).

To try to assess whether diabetes during pregnancy affects the development of the human brain, some studies have examined electrophysical changes (electroencephalography) (14, 15), while others have focused on IQ tests and academic performance. Results have been diverging, with some studies showing adverse outcomes (16-19), whereas others have found no such association (20-23). One study even found GDM to be positively associated with IQ in offspring (24).

In Denmark basic education is mandatory by law, and public and private educational institutions both are obligated to report grade points from compulsory school graduation to a national register. This provides a unique opportunity to assess academic performance as an expression of cognitive development in a large population of offspring exposed to GDM.

The aim of this paper was to assess academic performance in adolescents aged 15 to 16 years comparing grade points at compulsory school graduation in offspring exposed to gestational diabetes mellitus (O-GDM) with offspring from the background population (O-BP), while adjusting for relevant confounders and exploring into potential effect modification and mediating factors.

Materials and Methods

Study Population and Data Sources

This study was a national register-based cohort study including all children born in Denmark from January 1, 1994 to December 31, 2001. The cohort was established based on the Danish Medical Birth Registry, the Danish Patient Registry, and sociodemographic registries from Statistics Denmark. Based on a personal identification number, we were able to crosslink information on maternal, fetal, and neonatal health with sociodemographic covariates. The cohort consisted of 4286 O-GDM and 501 045 O-BP. We excluded all twins ($n = 19 497$) and offspring that died ($n = 3159$) or emigrated ($n = 12 306$) between birth and the estimated time of graduation. Data on grade points were extracted in 2017 to ensure that the offspring were at least age 15 to 16 years and the majority thereby had graduated compulsory school.

In Denmark registry-based studies, in which individuals cannot be identified, do not require approval form a scientific ethics committee. This study was approved by the Danish Data Protection Agency (DT-journal No. 2012-58-0004; local journal No. AHH-2016-033; I-suite No. 04790).

Identification of Offspring Exposed to Gestational Diabetes Mellitus

O-GDM were identified through their mothers. Mothers with GDM were identified in the Danish Patient Register.
as patients assigned with the International Classification of Diseases and Related Health Problems 10th revision (ICD-10) code O244 for GDM between 280 days before the day of birth until 30 days after the day of birth. GDM was diagnosed following a 75-g oral glucose tolerance test (OGTT). During our study period both 2- and 3-hour OGTTs were used. The 2-hour test was diagnostic for GDM if capillary or venous plasma glucose was greater than or equal to 9 mmol/L after 2 hours. For venous plasma the 3-hour OGTT was considered abnormal if 2 or more glucose values exceeded the following: 6.2 mmol/L at 0 minutes, 10.9 mmol/L at 30 minutes, 11.1 mmol/L at 60 minutes, 9.2 mmol/L at 90 minutes, 8.9 mmol/L at 120 minutes, 8.2 mmol/L at 150 minutes, and 7.3 mmol/L at 180 minutes. GDM screening was based on anamnestic risk factors, urine analyses, and capillary/venous plasma fasting glucose levels (25).

Academic Performance

Data on academic performance were extracted from Statistics Denmark. In Denmark 10 years of education is compulsory by law. Compulsory school starts at age 6 years when children enter preschool followed by 9 years of primary and secondary school. Public and private schools are similarly structured and are completed with a final test when the children are age 15 to 16 years. Only around 2% of schools do not have this test (26). The final test includes the following mandatory school courses: Danish (oral and written), mathematics (written), English (oral), and physics/chemistry (oral). The written tests are the same nationally, while the topic of examination varies for oral tests. Based on the tests, grade points are given for each course. Furthermore, the teacher gives an additional grade point for each course reflecting the general academic level throughout the year.

Outcomes

Grade points are marked by a 7-point grading scale (–3, 00, 02, 4, 7, 10, 12) with the average grade point being 7 (corresponding to the average score C on the European Credit Transfer System scale). We report course-specific grade points as well as grade point average (GPA) based both on the final test and the corresponding grades from the academic level throughout the year. If offspring did not have all grade points registered, the remaining grade points were used to calculate the GPA.

Our primary outcome was the difference in GPA between O-GDM and O-BP. Secondary outcomes included the probability of having a high GPA (≥ 10) and the risk of having a GPA below passing level (< 2) as well as the risk of not having a GPA registered. For offspring not registered with a GPA, we investigated if they had a higher prevalence of cerebral palsy. We additionally explored the impact of potential mediating factors and effect modification.

Covariates

Potential confounders and mediators were chosen based on the current literature on factors influencing school grades (27, 28).

Maternal covariates included maternal age coded as a continuous variable, parity as a 2-category variable (nulliparous, multiparous), mode of conception as a 2-category variable (assisted reproductive technologies, spontaneous), hypertensive disorders in pregnancy as a 2-category variable (yes, no), mode of delivery as a 2-category variable (cesarean delivery, vaginally), maternal smoking during pregnancy as a 2-category variable (yes, no), and maternal nationality as a 2-category variable (mother not born in Denmark, mother born in Denmark). Mothers diagnosed with hypertensive disorders in pregnancy were defined as women assigned with the ICD-10 codes O10 to O16.

Sociodemographic covariates included area of residence coded as a 5-category variable (central and south Zealand, Copenhagen and north Zealand, southern of Jutland and Funen, central Jutland, north of Jutland [reference]), co-habitating parents at the time of graduation as a 2-category variable (yes, no), and maternal educational level as a 4-category variable (low [reference], middle, high, highest).

Offspring covariates included year of graduation coded as a continuous variable, birth weight as a 3-category variable (low [< 2500 g], normal [2500 g-4000 g] [reference], high [≥ 4000 g]), gestational age as a 3-category variable (very preterm birth [≤ 33 + 6 weeks], preterm birth [34 + 0 to 36 + 6 weeks], term birth [≥ 37 + 0 weeks] [reference]), weight according to gestational age as a 3-category variable (small for gestational age [SGA], appropriate for gestational age [AGA] [reference], large for gestational age [LGA]), offspring sex as a 2-category variable (male, female), and cerebral palsy as a 2-category variable (yes, no).

SGA was defined as less than –2 SD and LGA as greater than +2 SD from the expected sex-specific birth weight for the given gestational age (29). Until 1996 the Danish medical birth registry registered gestational age in weeks only. From 1997 and onward gestational age was registered in days. To maintain accurate analyses only offspring born during 1997 to 2001 were included in analyses stratifying according to SGA/AGA/LGA. Offspring diagnosed with cerebral palsy were identified as offspring assigned with the ICD-10 codes G80 to G83 between birth and age 10 years.
Statistics

Descriptive statistics of maternal and offspring characteristics are presented as means and SD or absolute numbers and percentages. GPA and course-specific grade points were compared using linear mixed model analyses to account for correlation in GPA within siblings. This was performed both in univariate and multivariable models. Multivariable models were created in a 2-step manner: model 1 was adjusted for maternal age, parity, mode of conception, year of graduation, and offspring sex. Model 2 was adjusted for the same variables as model 1 as well as variables associated with socioeconomic status: maternal smoking during pregnancy, maternal nationality, area of residence, cohabiting parents, and maternal educational level at the time of graduation. To assess the clinical impact of the effect of GDM on academic performance, we calculated Cohen’s D by dividing the fully adjusted mean difference in GPA with the SD.

We considered hypertensive disorders in pregnancy, mode of delivery, birth weight, and gestational age as potential mediators on the causal pathway between GDM and academic performance, which we explored in separate analyses by adding them one by one to model 2. Additionally, maternal-, sociodemographic-, and offspring-related covariates were explored as potential effect modifiers in stratified analyses comparing GPA in O-GDM and O-BP both in univariate and multivariable linear mixed model analyses for each stratum. Furthermore, potential effect modifiers were subsequently added one by one in interaction analyses. Secondary outcomes (probability of having a high GPA (≥ 10), risk of having a GPA below passing level (< 2), risk of not having a GPA registered) were analyzed in logistic regression models using generalized estimating equations to account for correlation in GPA within siblings. All analyses were adjusted according to models 1 and 2.

To account for typing errors in the registries, recordings were excluded if not in the following intervals: gestational age 140-308 days, birth weight 200-6500g, and maternal parity 0-20.

All analyses were conducted using RStudio, version 3.6.1. The lme4 and MASS packages were used for linear mixed models and logistic regression analyses, respectively (30, 31).

Results

In this study, 4286 O-GDM and 501 045 O-BP were eligible. For the total cohort (birth year 1994-2001) GPA at compulsory school graduation was registered in 3777 O-GDM (88.1%) and 459 055 O-BP (91.6%). Of offspring registered with a GPA, 5.7% of O-GDM and 4.4% of O-BP missed a grade point in at least one course.

Maternal, Sociodemographic, and Offspring Background Characteristics

Mothers with GDM were older, more likely to be multiparous, and had a higher prevalence of hypertensive disorders in pregnancy. They additionally were more likely to have a cesarean delivery but were less likely to smoke during pregnancy. Mothers with GDM were more often born outside Denmark and area of residence in Denmark varied between the 2 groups. Furthermore, mothers with GDM had a lower educational level at the time of offspring graduation from compulsory school (Table 1). O-GDM had a higher mean birth weight and were more likely to be born preterm. O-GDM were less likely to be born SGA, and more likely to be born LGA (see Table 1).

Missing data on covariates reduced sample size by 0.9% (n = 4084) in model 1 and 20.5% (n = 95 032) in model 2. If smoking during pregnancy was excluded, the sample size was reduced by only 1.7%. Removing smoking during pregnancy did not change the main outcome. No attempt was made to impute missing data.

Primary Outcome

GPA was 6.29 (2.52 SD) for O-GDM and 6.78 (2.50 SD) for O-BP with a crude mean difference of −0.38 (95% CI, −0.45 to −0.30). When adjusting according to model 1 the mean difference increased to −0.57 (95% CI, −0.64 to−0.50), while the fully adjusted mean difference (model 2) was −0.36 (95% CI, −0.44 to−0.29) (Table 2). We calculated Cohen’s D and found the effect size of GDM on the adjusted mean difference in GPA to be 0.14. The adjusted mean difference in course specific grade points is listed in Table 2.

Potential Mediators

Adding potential mediators to model 1 did not change the adjusted mean difference in GPA when comparing O-GDM and O-BP (data not shown).

Potential Effect Modification

Stratified analyses showed little difference regarding the effect of GDM on offspring GPA when comparing different strata (Table 3). However, among offspring born with low birth weight (< 2500 g) the adverse effect of...
GDM on offspring GPA seemed more pronounced than in other birth weight strata (see Table 3).

In interaction analyses we confirmed that the negative effect of GDM on offspring GPA was increased in offspring born with low birth weight. When looking at offspring born with low birth weight, the difference between GDM and O-GDM increased by –0.55 (95% CI, –0.99 to –0.11) compared to offspring born with normal birth weight. There were no significant interactions between the effect of GDM on offspring GPA and other maternal-, sociodemographic-, or offspring-related covariates (Table 4).

Secondary Outcomes

O-GDM had a lower probability of receiving a high GPA compared with O-BP (adjusted odds ratio [aOR] 0.68; 95% CI, 0.59-0.79), while the risk of obtaining a GPA below passing level was not significantly different (aOR 1.20; 95% CI, 0.96-1.50) (Table 5). In total, 509 (11.9%) O-GDM and 41 990 (8.4%) O-BP did not have any grade point registered at compulsory school graduation, corresponding to an aOR of 1.38 (95% CI, 1.24-1.53). Maternal, sociodemographic-, and offspring characteristics of O-GDM and O-BP not registered with a grade at compulsory school graduation are shown in Table 6. There was no significant difference in the prevalence of cerebral palsy in the 2 groups (aOR 1.09; 95% CI, 0.61-1.94).

Discussion

In this national register-based cohort study including all singletons born during 1994 to 2001, we found crude and adjusted GPA to be slightly lower in O-GDM compared to O-BP. The lower GPA in O-GDM did not seem to be mediated through more prevalent adverse obstetric- or offspring-related outcomes following GDM pregnancies. However, there was a significant interaction between GDM exposure and birth weight below 2500 g as the difference in GPA between the 2 groups increased when looking at offspring born with low birth weight compared to offspring born with normal birth weight. There was no significant interaction with either
prematurity or SGA. However, there was a trend suggesting that an increased degree of prematurity could affect the effect of GDM on academic performance, and this interaction might have been significant if more very preterm O-GDM were included. According to the estimates it seems likely that low birth weight indicates some degree of prematurity and impaired fetal growth, which has previously been found to be associated with impaired cognitive function (32).

Furthermore, O-GDM were less likely to achieve a high GPA, but were not at increased risk of achieving a GPA below passing level. O-GDM were more likely not to have a GPA registered, meaning they did not have any grades or test scores registered in any course at compulsory school graduation, indicating that they did not complete compulsory school. As mentioned earlier, there were differences in background characteristics when comparing O-GDM to O-BP (see Table 1); this also applied to offspring not registered with a GPA (Table 6). Generally, it was the same parameters that differed as in the total study population. The risk of cerebral palsy was similar in O-BP and O-GDM.

Strengths and Limitations

A strength of this study is its national cohort design including complete birth cohorts for 8 years. Furthermore, data from the Danish registries are prospectively collected, hold important information on confounders, and are generally of high validity (33, 34). Large register-based studies minimize the risk of selection bias and missing data. Only 0.9% of the cases were excluded for missing information in analyses including covariates from model 1. Overall, 20.5% of cases were excluded when adding variables related to sociodemographic status to our analyses (model 2). This was mainly due to missing information on smoking during pregnancy. We were able to adjust for multiple parameters related to sociodemographic status. However, residual confounding is possible, and inadequate adjustments related to sociodemographic status might have led us to overestimate the negative effect of GDM on academic performance. This is supported by a study from India that found GDM to be associated with higher IQ in offspring (24). In India GDM is associated with high socioeconomic status, whereas the opposite applies in Denmark. Furthermore, we were not able to adjust for maternal body mass index, paternal educational level, or parental IQ.

We did not have information on the severity of GDM such as insulin dependence or glycated hemoglobin A1c levels. Thus we were not able to confirm previous findings suggesting a dose-dependent effect of maternal hyperglycemia on offspring cognitive function (23, 35).

In Denmark it is estimated that around 68% of all GDM pregnancies are treated with diet only and do not have a need for insulin treatment (36). Because of this, we expect the level of intrauterine hyperglycemia to be relatively mild in our population, which would tend to underestimate the true effect of GDM on offspring cognitive development.

Table 2. Grade point average and course-specific grade points at compulsory school graduation. Given as means as well as crude and adjusted mean differences

Course-specific grade points	Grade point average (SD)	O-GDM vs O-BP				
	O-GDM (n = 3777)	O-BP (n = 459,055)				
	Crude mean difference (95% CI)	Adjusted mean difference (95% CI)	Adjusted mean difference (95% CI)			
Grade point average	6.29 (2.5)	6.78 (2.5)	-0.38 (-0.45 to -0.30)	-0.57 (-0.64 to -0.50)	-0.36 (-0.44 to -0.29)	
Course-specific grade points	Danish	6.25 (2.5)	6.74 (2.5)	-0.39 (-0.47 to -0.31)	-0.58 (-0.65 to -0.50)	-0.39 (-0.47 to -0.31)
	Mathematics	6.26 (3.0)	6.83 (3.0)	-0.48 (-0.57 to -0.39)	-0.63 (-0.72 to -0.54)	-0.37 (-0.47 to -0.27)
	English	6.76 (3.2)	7.13 (3.1)	-0.26 (-0.36 to -0.16)	-0.54 (-0.63 to -0.44)	-0.34 (-0.44 to -0.23)
	Physics/Chemistry	6.17 (3.1)	6.56 (3.1)	-0.32 (-0.42 to -0.22)	-0.53 (-0.63 to -0.43)	-0.30 (-0.41 to -0.19)

Grade point average was compared using linear mixed model analyses to account for correlations in grade point average within siblings. Model 1 adjusted for maternal age, parity, mode of conception, year of graduation, and offspring sex. Model 2 adjusted for covariates in Model 1 as well as maternal smoking during pregnancy, maternal nationality, area of residence, cohabiting parents at time of graduation, and maternal educational level.

Abbreviations: GDM, gestational diabetes mellitus; O-BP, offspring from background population; O-GDM, offspring of women with gestational diabetes mellitus.
Previous Studies

Several studies have investigated cognitive function in O-GDM. The vast majority of the studies have looked at offspring aged 4 months to 8 years (19, 24, 37-39). Results have been diverging and generally, studies are small. To our knowledge only a few studies have looked at academic
Table 4. Interaction analyses. The first column shows the effect of gestational diabetes mellitus (GDM) on grade point average in the part of the population with and without the potential effect modifier, while the second column shows the interaction between GDM and the potential effect modifier.

Potential effect modifier	Effect of GDM on adjusted mean difference with effect modifier (95% CI)	Interaction (95% CI)
Parity		
Nulliparous	–0.33 (–0.46 to –0.19)	0.05 (–0.11 to –0.22)
Multiparous	–0.38 (–0.48 to –0.29)	Reference
Hypertensive disorders in pregnancy		
Yes	–0.36 (–0.44 to –0.28)	–0.02 (–0.30 to 0.26)
No	–0.36 (–0.61 to –0.07)	Reference
Mode of delivery		
Cesarean	–0.23 (–0.39 to –0.08)	–0.17 (–0.34 to 0.01)
Vaginal	–0.07 (–0.49 to –0.31)	Reference
Maternal educational level		
Low	–0.43 (–0.64 to –0.22)	Reference
Middle	–0.35 (–0.46 to –0.24)	0.08 (–0.15 to 0.32)
High	–0.30 (–0.46 to –0.14)	0.13 (–0.14 to 0.39)
Highest	–0.53 (–0.79 to –0.27)	–0.10 (–0.43 to 0.24)
Birth wt, g		
Low (< 2500)	–0.90 (–1.33 to –0.47)	–0.55 (–0.99 to –0.11)
Normal (2500-4000)	–0.35 (–0.44 to –0.25)	Reference
High (> 4000)	–0.36 (–0.51 to –0.20)	–0.01 (–0.19 to 0.17)
Gestational age, wk		
Very preterm birth (≤ 33 + 6)	–0.82 (–1.46 to –0.19)	–0.49 (–1.13 to 0.16)
Preterm birth (34 + 0 to 36 + 6)	–0.56 (–0.83 to –0.29)	–0.22 (–0.51 to 0.06)
Term birth (≥ 37 + 0)	–0.34 (–0.42 to –0.25)	Reference
Birth wt according to gestational age		
Small (< –2 SD)	–0.67 (–1.19; –0.15)	–0.28 (–0.81; 0.25)
Appropriate (± 2 SD)	–0.39 (–0.48 to –0.30)	Reference
Large (> +2 SD)	–0.28 (–0.45 to –0.10)	0.12 (–0.08 to 0.31)

Abbreviations: GDM, gestational diabetes mellitus.

*Adjusted for maternal age, parity, mode of conception, year of graduation, offspring sex, maternal smoking during pregnancy, maternal nationality, area of residence, cohabiting parents at time of graduation, and maternal educational level.

Table 5. Distribution of high grade point average (≥ 10), grade point average below passing level (< 2) as well as no grade points registered at compulsory school graduation. Given as proportions (%) and odds ratios (OR, 95% CI)

	O-GDM (95% CI)	O-BP (95% CI)	GDM vs No GDM		
			Crude	Model 1	Model 2
Grade point average ≥ 10	276/3777 (7.3%)	48 639/459 055 (10.6%)	0.67 (0.59 to 0.75)	0.55 (0.48 to 0.62)	0.68 (0.59 to 0.79)
Grade point average < 2	128/3777 (3.4%)	11 438/459 055 (2.5%)	1.37 (1.15 to 1.64)	1.62 (1.35 to 1.94)	1.20 (0.96 to 1.50)
No grade points registered	509/4286 (11.9%)	41 990/501 045 (8.4%)	1.47 (1.34 to 1.62)	1.51 (1.37 to 1.66)	1.38 (1.24 to 1.53)

Odds were compared using generalized estimating equations to account for correlations within siblings. Model 1 adjusted for maternal age, parity, mode of conception, year of graduation, and offspring sex. Model 2 adjusted for covariates in Model 1 as well as maternal smoking during pregnancy, maternal nationality, area of residence, cohabiting parents at time of graduation, and maternal educational level.

Abbreviations: GDM, gestational diabetes mellitus; O-BP, offspring from background population; O-GDM, offspring of women with gestational diabetes mellitus.
The Journal of Clinical Endocrinology & Metabolism, 2021, Vol. 106, No. 1

performance or IQ in adolescents (age > 12 years) or young adults exposed to GDM in utero (18-21, 39).

A Swedish cohort study assessed academic performance in 16-year-olds born during 1973 to 1986. This study included 6390 offspring exposed to diabetes during pregnancy but was not able to segregate GDM from preexisting diabetes mellitus (18). Similar to our findings, this study found that diabetes-exposed offspring were at increased risk of not completing compulsory school and obtaining lower grades. A smaller British study (39) on offspring born during 1991 to 1992 found O-GDM (aged 16; n = 31) to be more likely to obtain low test scores and less likely to obtain high test scores compared to O-BP; however, these results were insignificant. In contrast to our findings, 2 Danish cohort studies found no difference in intelligence (20) and global cognitive scores (21) between offspring exposed to diabetes during pregnancy and O-BP when aged 16 (n = 227) and 18-27 years (n = 153), respectively. The study by Nielsen et al (20) was limited to male offspring and did not differentiate between GDM and preexisting diabetes.

All studies except the study by Nielsen and colleagues (20) adjusted for factors related to socioeconomic status. Hence very few studies have assessed the long-term effect of GDM on academic performance or IQ in adolescents or young adults, and only 2 of these studies were able to differentiate between GDM and preexisting diabetes (21, 39).

Importance of Academic Performance, Effect Size, and Future Studies

As mentioned earlier, several confounders are significantly associated with GPA. In accordance with previous studies, we found that maternal educational level was the strongest predictor (data not shown), while GDM in this relation was a weaker predictor. The estimated effect size (Cohen’s D) of GDM on adjusted GPA was 0.14, which is considered small and unlikely to be of clinical importance on an individual level. In comparison, we estimated the effect size of highest maternal educational level to be 1.14. However, because academic performance in adolescents is correlated

Table 6. Maternal, sociodemographic, and offspring characteristics of the study population with no grade point average registered at compulsory school graduation

Singletons	O-GDM n = 509	O-BP GDM n = 41990
Maternal age, mean (SD), y	31.1 (5.3)	28.9 (5.2)
Nulliparous, n (%)	167 (33.1)	16980 (40.9)
Assisted reproductive technologies, n (%)	16 (3.1)	554 (1.3)
Hypertensive disorders in pregnancy, n (%)	52 (10.2)	1652 (3.9)
Cesarean delivery, n (%)	149 (29.3)	6522 (15.5)
Maternal smoking during pregnancy, n (%)	128 (30.3)	11830 (33.6)
Mother not born in Denmark, n (%)	113 (22.2)	6043 (14.4)
Area of residence, n (%)	Central and South Zealand 75 (14.7)	7474 (17.8)
Copenhagen and North Zealand 144 (28.3)	11299 (26.9)	
Southern of Jutland and Funen 117 (23.0)	9205 (21.9)	
Central Jutland 105 (20.6)	9539 (22.7)	
North of Jutland 68 (13.4)	4431 (10.6)	
Cohabiting parents at time of graduation, n (%)	294 (57.9)	23727 (56.6)
Maternal educational level n (%)	Low 162 (32.4)	11006 (26.6)
Middle 232 (46.4)	19108 (46.2)	
High 81 (16.2)	7287 (17.6)	
Highest 25 (5.0)	3945 (9.5)	
Birth wt, mean (SD), g	3573 (694)	3421 (633)
Low birth wt (< 2500), n (%), g	24 (4.8)	2624 (6.4)
High birth wt (> 4000), n (%), g	127 (25.0)	6203 (14.8)
Gestational age, mean (SD), d	270 (15.1)	277 (15.0)
Very preterm birth (< 33 + 6), n (%), wk	14 (2.8)	985 (2.4)
Preterm birth (34 + 0 to 36 + 6), n (%), wk	49 (9.7)	1917 (4.7)
Small for gestational age (< –2 SD), n (%)	16 (4.4)	1923 (7.2)
Large for gestational age (> +2 SD), n (%)	73 (20.3)	1149 (4.3)
Male sex, n (%)	319 (62.7)	26038 (62.0)
Cerebral palsy	17 (3.3)	1081 (2.6)

Abbreviations: GDM, gestational diabetes mellitus; O-BP, offspring from background population; O-GDM, offspring of women with gestational diabetes mellitus.
to future education and income (40, 41) the decrease in GPA may be of significant importance at the population level. Adding to this point is the increasing prevalence of GDM. In our study period (1994-2001), 0.85% of Danish pregnancies were affected by GDM. In 2018 the estimated Danish prevalence had increased to approximately 5% (2). Our study was not able to stratify results according to the severity of GDM, and an interesting focus of future studies would be to investigate if the effect of GDM on academic performance is modulated by degrees of glycemic disturbance. Additionally, our finding that the effect of GDM on GPA might be modified by factors such as low birth weight, needs further investigation.

Conclusion

In this Danish national register-based cohort study, we found that 15- to 16-year-old O-GDM had a marginally lower GPA at compulsory school graduation compared to O-BP. The effect was not explained by known confounders or mediators, although low birth weight increased the adverse effect of GDM on GPA. O-GDM were less likely to obtain a high GPA and more likely not to have a GPA registered, while their risk of obtaining a GPA below passing level was similar to O-BP. Overall, differences between O-GDM and O-BP were marginal and unlikely to be of clinical importance.

Acknowledgments

The data from this article were presented at the Diabetes in Pregnancy Study Group 52th annual meeting held online September 4, 2020.

Financial Support: This work was supported by The Research Fund of Rigshospitalet, Copenhagen University Hospital, Denmark and NORDFORSK (project No. 71450). The funding sources had no role in the design or the conducting of this study.

Author Contributions: G.F.H., A.L.S., J.L.F., A.P., and T.D.C. were the initiators of this study. G.F.H. and A.L.S. analyzed the data and wrote the first draft. All authors contributed to the conception and design of this study and critically reviewed the manuscript. All authors approved the final version for submission.

Additional Information

Correspondence: Gerda Ferja Heldarskard, BA, Fertility Clinic, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark. Email: gheldarskard@gmail.com.

Disclosures: The authors have nothing to disclose.

Data Availability: Restrictions apply to the availability of some or all data generated or analyzed during this study to preserve patient confidentiality or because they were used under license. The corresponding author will on request detail the restrictions and any conditions under which access to some data may be provided.

References

1. International Diabetes Federation. IDF Diabetes Atlas. 8th ed. International Diabetes Federation; 2017.
2. Sundhedsdatastyrelsen, Det medicinske foedselsregister. Accessed March 1, 2021. https://www.esundhed.dk/Registre/Det-medicinske-foedselsregister/Foedte-og-foedsler-1997-og-frem#tabpanel61119A72216248AC66DB508579760DED
3. Pedersen J. Diabetes and Pregnancy: Blood Sugar of Newborn Infants. Danish Science Press; 1952:22-23.
4. Billionnet C, Mitanchez D, Weill A, et al. Gestational diabetes and adverse perinatal outcomes from 716,152 births in France in 2012. Diabetologia. 2017;60(4):636-644.
5. Catalano PM, McIntyre HD, Cruickshank JK, et al; HAPO Study Cooperative Research Group. The Hyperglycemia and Adverse Pregnancy Outcome Study: associations of GDM and obesity with pregnancy outcomes. Diabetes Care. 2012;35(4):780-786.
6. Clausen TD, Mathiesen ER, Hansen T, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340-346.
7. Perng W, Oken E, Dabelea D. Developmental overnutrition and obesity and type 2 diabetes in offspring. Diabetologia. 2019;62(10):1779-1788.
8. Adane AA, Mishra GD, Tooth LR. Diabetes in pregnancy and childhood cognitive development: a systematic review. Pediatrics. 2016;137(5):e20154234.
9. Camprubi Robles M, Campoy C, Garcia Fernandez L, Lopez-Pedrosa JM, Rueda R, Martin MJ. Maternal diabetes and cognitive performance in the offspring: a systematic review and meta-analysis. PLoS One. 2015;10(11):e0142583.
10. Harder T, Aerts L, Franke K, Van Bree R, Van Assche FA, Plagemann A. Pancreatic islet transplantation in diabetic pregnant rats prevents acquired malformation of the ventromedial hypothalamic nucleus in their offspring. Neurosci Lett. 2001;299(1-2):85-88.
11. Vuong B, Odero G, Rozbacher S, et al. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring. J Neuroinflammation. 2017;14(1):80.
12. Jing YH, Song YF, Yao YM, Yin J, Wang DG, Gao LP. Retardation of fetal denticul development induced by gestational hyperglycemia is associated with brain insulin/IGF-I signals. Int J Dev Neurosci. 2014;37:15-20.
13. Zhao J, Del Bigio MR, Weiler HA. Maternal arachidonic acid supplementation improves neurodevelopment in young adult offspring from rat dams with and without diabetes. Prostaglandins Leukot Essent Fatty Acids. 2011;84(2-3):63-70.
14. Brincoli M, Mattricardi M, Colatrella A, Torcia F, Fallucca F, Napoli A. Visual evoked potentials in infants of diabetic mothers: relations to clinical and metabolic status during pregnancy and delivery. Clin Neurophysiol. 2009;120(3):563-568.
15. Cai S, Qiu A, Broekman BF, et al; GUSTO study group. The influence of gestational diabetes on neurodevelopment of children in the first two years of life: a prospective study. PloS One. 2016;11(9):e0162113.
16. Rizzo T, Metzger BE, Burns WJ, Burns K. Correlations between antepartum maternal metabolism and intelligence of offspring. N Engl J Med. 1991;325(13):911-916.
17. Bytoft B, Knorr S, Vlachova Z, et al. Long-term cognitive implications of intrauterine hyperglycaemia in adolescent offspring of women with type 1 diabetes (the EPICOM study). *Diabetes Care*. 2016;39(8):1356-1363.

18. Dahlquist G, Källén B. School marks for Swedish children whose mothers had diabetes during pregnancy: a population-based study. *Diabetologia*. 2007;50(9):1826-1831.

19. Dionne G, Boivin M, Séguin JR, Pérusse D, Tremblay RE. Gestational diabetes hinders language development in offspring. *Pediatrics*. 2008;122(5):e1073-e1079.

20. Nielsen GL, Dethlefsen C, Sørensen HT, Pedersen JF, Molsted-Pedersen L. Cognitive function and army rejection rate in young adult male offspring of women with diabetes: a Danish population-based cohort study. *Diabetes Care*. 2007;30(11):2827-2831.

21. Clausen TD, Mortensen EL, Schmidt L, et al. Cognitive function in adult offspring of women with gestational diabetes—the role of glucose and other factors. *PloS One*. 2013;8(6):e67107.

22. Clausen TD, Mortensen EL, Schmidt L, et al. Cognitive function in adult offspring of women with type 1 diabetes. *Diabet Med*. 2011;28(7):838-844.

23. Knorr S, Clausen TD, Vlachova Z, et al. Academic achievement in primary school in offspring born to mothers with type 1 diabetes (the EPICOM study): a register-based prospective cohort study. *Diabetes Care*. 2015;38(7):1218-1244.

24. Veena SR, Krishnaveni GV, Srinivasan K, et al. Childhood cognitive ability: relationship to gestational diabetes mellitus in India. *Diabetologia*. 2010;53(10):2134-2138.

25. Olsen SF, Houishment-Oeregaard A, Granström C, et al. Diagnosing gestational diabetes mellitus in the Danish National Birth Cohort. *Acta Obstet Gynecol Scand*. 2017;96(5):563-569.

26. Dansk Friskoleforening, fakta og myter om friskoler. Accessed March 1, 2021. https://www.friskolerne.dk/hvad-er-en-friskole/fakta-og-myter-om-friskoler/

27. Spangmose AI, Malchau SS, Schmidt L, et al. Academic performance in adolescents born after ART—a nationwide registry-based cohort study. *Hum Reprod*. 2017;32(2):447-456.

28. Eriksen HL, Kesmodel US, Underbjerg M, Kilburn TR, Bertrand J, Mortensen EL. Predictors of intelligence at the age of 5: family, pregnancy and birth characteristics, postnatal influences, and postnatal growth. *PloS One*. 2013;8(11):e79200.

29. Marsál K, Persson PH, Larsen T, Lilja H, Selbing A, Sultan B. Intrauterine growth curves based on ultrasonically estimated foetal weights. *Acta Paediatr*. 1996;85(7):843-848.

30. Bates D, Maechler M, Bolker B, Walker S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.1-7. 2014a. Accessed June 1, 2021. http://CRAN.R-project.org/package=lme4

31. Venables WN, Ripley BD. *Modern Applied Statistics With S*. 4th ed. Springer; 2002.

32. Hedderich DM, Bäuml JM, Menegaux A, et al. An analysis of MRI derived cortical complexity in premature-born adults: regional patterns, risk factors, and potential significance. *Neuroimage*. 2020;208:116438.

33. Schmidt M, Schmidt SJ, Sandegaard JL, Ehrenstein V, Pedersen L, Sørensen HT. The Danish National Patient Registry: a review of content, data quality, and research potential. *Clin Epidemiol*. 2015;7:449-490.

34. Knudsen LB, Olsen J. The Danish Medical Birth Registry. *Dan Med Bull*. 1998;45(3):320-323.

35. Silverman BL, Rizzo T, Green OC, et al. Long-term prospective evaluation of offspring of diabetic mothers. *Diabetes*. 1991;40(Suppl 2):121-125.

36. Kurtzhals LL, Norgaard SK, Secher AL, et al. The impact of restricted gestational weight gain by dietary intervention on fetal growth in women with gestational diabetes mellitus. *Diabetologia*. 2018;61(12):2528-2538.

37. Daraki V, Roumeliotaki T, Koutra K, et al. Effect of parental obesity and gestational diabetes on child neuropsychological and behavioral development at 4 years of age: the Rhea mother-child cohort, Crete, Greece. *Eur Child Adolesc Psychiatry*. 2017;26(6):703-714.

38. Torres-Espinola FJ, Berglund SK, García-Valdés LM, et al; PREOBE team. Maternal obesity, overweight and gestational diabetes mellitus and behavioral development at 6 and 18 months of age—a follow up from the PREOBE cohort. *PloS One*. 2015;10(7):e0133010.

39. Fraser A, Nelson SM, Macdonald-Wallis C, Lawlor DA. Associations of existing diabetes, gestational diabetes, and glycosuria with offspring IQ and educational attainment: the Avon Longitudinal Study of Parents and Children. *Exp Diabetes Res*. 2012;2012:963735.

40. French MT, Homer JF, Popovici I, Robins PK. What you do in high school matters: high school GPA, educational attainment, and labor market earnings as a young adult. *East Econ J*. 2015;41(3):370-386.

41. Pihl MD. *Mange unge har ikke afsluttet folkeskolen*. Arbejderbevægelsens erhvervsråd; 2013.