Supplementary Information

Table of Contents

1. Supplementary Methods

 I. General techniques
 a. General manipulations
 b. Synthesis of \([\text{Ru}(\text{OT})](\mu-\text{H})(\text{Me}_2(\text{dad}))(\text{dbcot})_2\) (2)
 c. Synthesis of \([\text{Ru}(\text{OH}_2)(\mu-\text{H})(\text{Me}_2(\text{dad}))(\text{dbcot})_2]\text{X (3a)}
 d. Synthesis of \(\text{IrO}_2\)
 e. Crystallographic structures
 f. DFT calculations
 g. XPS

 II. Complex impregnation on carbon back.

 III. Experimental apparatus used in the catalyst electrochemical characterization in half cell.
 a. General techniques
 b. Polarization experiments
 c. Chronoamperometric experiments
 d. Electrochemical Impedance Spectroscopy (EIS)
 e. Ink preparation

 IV. Experimental apparatus used in electrolysis experiments.
 a. General techniques
 b. MEA fabrication

 V. Hydrogen and energy consumption quantification

 VI. Model reactions
 a. In situ catalytic turnover
 b. Verification of Stoichiometric \(\text{H}_2\) Production by GC-TCD
 c. Recovery of the \(2@\text{C}^k\) cathode after electrolysis experiments.
2. Supplementary Figures

Figures S1-S4: NMR Spectra of compounds 3a and 3c

I. Figure S1: 1H and 13C-NMR spectra of [Ru(NCCH$_3$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]OTf-2NCCH$_3$ (3c from 2).

II. Figure S2: 1H and 13C-NMR spectra of [Ru(OH)$_2$(µ-H)(Me$_2$(dad))(dbcot)$_2$]BF$_4$ (3a).

III. Figure S3: 1H and 13C-NMR spectra of [Ru(OH)$_2$(µ-H)(Me$_2$(dad))(dbcot)$_2$]$_3$(HSO$_4$)(SO$_4$)·0.34 THF·H$_2$SO$_4$ (3a).

IV. Figure S3: 1H and 13C-NMR spectra of [Ru(NCCH$_3$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]$_3$PF$_6$ (3c).

Figures S5-S7: Thermal Gravimetric Analysis

V. Figure S6: Thermal gravimetric analysis and differential scanning calorimetry of [Ru(NCCH$_3$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]OTf-2NCCH$_3$ (3c).

VI. Figure S7: Thermal gravimetric analysis and differential scanning calorimetry of [Ru(OH)$_2$(µ-H)(Me$_2$(dad))(dbcot)$_2$]$_3$(HSO$_4$)(SO$_4$) (3a)

VII. Figure S8: Thermal gravimetric analysis and differential scanning calorimetry of [Ru(OH)$_2$(µ-H)(Me$_2$(dad))(dbcot)$_2$]BF$_4$ (3a)

Figures S8: EIS data

VIII. Figure S8: EIS data

Figures S9: Electrolysis cell set up

IX. Figure S9: Electrolysis cell set up

Figures S10-S18: Other figures

X. Figure S10: High magnification HAADF-STEM and EDX analysis of 2@C$_k$ exhaust cathode.

XI. Figure S11: 1H-NMR spectra of complex (2) extracted from the exhaust 2@C$_k$ cathode.

XII. Figure S12: XPS spectra of compound 2 and [K(dme)$_2$][Ru(H)(trop$_2$dad)].

XIII. Figure S13: Overlaid 1H-NMR spectra of [Ru$_2$(µ-H)H(Me$_2$(dad))(dbcot)$_2$] 1 and [Ru$_2$(µ-H)D(Me$_2$(dad))(dbcot)$_2$] 1[D].

XIV. Figure S14: Mechanism of hydrogen evolution in neutral solution calculated by DFT.
XV. Figure S15: Electrochemical characterization of a glassy carbon electrode coated with 2@Ck and 3a@Ck.

XVI. Figure S16 Electrochemical characterization of 2@Ck for the OER.

XVII. Figure S17: Activity of [K(dme)\textsubscript{2}][Ru(H)(trop\textsubscript{2}dad)] in PEM electrolysis.

XVIII. Figure S18: Electrochemical characterization of 2@Ck for HER in homogeneous media.

3. Supplementary Tables
 I. Table S1: Crystal data and structure refinement for [Ru\textsubscript{2}(OH\textsubscript{2})(\mu-H)(Me\textsubscript{2}(dad))(dbcot)\textsubscript{2}]BF\textsubscript{4} (3a)
 II. Table S2: Crystal data and structure refinement for [Ru\textsubscript{2}(NCCH\textsubscript{3})(\mu-H)(Me\textsubscript{2}(dad))(dbcot)\textsubscript{2}]PF\textsubscript{6} (3c)
 III. Table S3: EIS data
 IV. Table S4: DFT Cartesian coordinates of optimized molecular structures
 V. Table S5: Complex impregnation on Ck, 1mg\textsubscript{Ru} cm-2 catalyst loading (3.06% wt.Ru).
 VI. Table S6: Complex impregnation on Ck, 0.04 mg\textsubscript{Ru} cm-2 catalyst loading (0.44% wt.Ru).
 VII. Table S7: Ink preparation
 VIII. Table S8: Surface composition of catalyst by XPS analysis

4. Supplementary References
1. Supplementary Methods

I. General Techniques

a. General manipulations

All experiments were performed under an inert atmosphere of argon using standard Schlenk and vacuum-line techniques or in an MBraun glove box. Glassware was flame dried under high vacuum or dried at 120 °C overnight and cooled under HV prior to use. All reagents were used as received from commercial suppliers unless stated otherwise. N,N'-dimethylethylenediamine was purified by vacuum distillation. Dry solvents were obtained from an Innovative Technology solvent purification system and stored under argon. Deuterated solvents were purchased from Eurisotope and Cambridge Isotope Laboratories Inc., distilled with the proper drying agent and stored under argon with 3 Å (acetonitrile, ethanol[D6]) 4 Å (other solvents) molecular sieves.

Solution NMR spectra were recorded on Bruker Avance 500, 400, and 300 spectrometers. The chemical shifts (δ) are expressed in ppm relative to TMS for 1H and 13C. Coupling constants J are given in Hz as absolute values. Where a first order analysis is appropriate, the multiplicity of the signals is indicated as s, d, t, q, or m for singlets, doublets, triplets, quartets, or multiplets. The abbreviation br. is given for broadened signals. Aromatic units are indicated as Har or Car when not noted otherwise. Quaternary 13C are indicated as Cquat. The olefinic protons and 13C atoms of the two coordinated C=C moieties in dbcot (dibenzo[a,e]cyclooctatetraene) are indicated as Holef and Colef, respectively. The protons and carbon atoms of the diazabutadiene moiety are denoted as Hadad and Cadad, respectively. [Ru2 H(µ-H)(Me2(dad))(dbcot)2], [Ru(µ-H)(Me2(dad))(dbcot)2]PF6, and [Ru(OTf)(µ-H)(Me2(dad))(dbcot)2] were synthesized as reported elsewhere.\[^{[S1]}\]

The ICP-OES analysis was performed using a Varian 720 ES ICP-OES with SPS-3 Autosampler. Exhaust solutions were directly injected in the instrument. For calculating the ruthenium content in the 2@C\(^k\) catalyst, 5 mg of the sample were dissolved in a PTFE vessel in 8 mL of aqua regia (6 mL of HCl 37% a and 2 mL of HNO\(_3\) conc.). The resulting mixture was then digested in a microwave oven and diluted to 50 mL adding bidistilled water.

GC-TCD was measured on an Agilent Technology 7890A GC System on a HP-Molsieve (19091P) column.
The scanning transmission electron microscopy (STEM) investigations were performed on the aberration-corrected HD-2700CS (Hitachi; cold-field emitter) or a Jeol F200 equipped with a cold field emission gun and a 16 MPixel camera, both operated at an acceleration potential of 200 kV. On the HD-2700CS, a probe corrector (CEOS) is incorporated in the microscope column between the condenser lens and the probe-forming objective lens providing excellent high-resolution capability (beam diameter ca. 0.1 nm in the selected ultra-high resolution mode). Images (1024 x 1024 pixels) were recorded with a high-angle annular dark field (HAADF) detector with frame times of ca 15 s. These imaging conditions give rise to atomic number (Z) contrast, a highly sensitive method to detect even atoms of strongly scattering elements (high Z) on light supports.

b. Synthesis of \([\text{Ru}(\text{OTf})(\mu-\text{H})(\text{Me}_2(\text{dad}))(\text{dbcot})_2]\) (2)

Route 1 (adapted from ref. [S1]): \([\text{RuH}(\mu-\text{H})(\text{Me}_2(\text{dad}))(\text{dbcot})_2]\) 1 (200 mg, 287 µmol) was mixed with tetrahydrofuran (10 mL). A solution of ferrocenium triflate (106 mg in 6 mL THF, 315 µmol) was added dropwise which caused a color change from a yellow dispersion to a brown solution. The mixture was stirred at room temperature for 30 minutes before the solvent was evaporated at reduced pressure. The obtained brown solid was washed with diethylether:dimethoxyethane 9:1 (3x 3 mL). The leftover solid was dissolved in acetonitrile, filtered through a syringe filter (pore size 0.2 µM) and precipitated by layering with diisopropyl ether to obtain a red-brown powder.

Route 2: \([\text{RuH}(\mu-\text{H})(\text{Me}_2(\text{dad}))(\text{dbcot})_2]\) 1 (100 mg, 143 µmol) was mixed with 1,2-difluorobenzene (20 mL). At -10 °C, triflic acid (1.43 mL of a 0.1 M solution in 1,2-difluorobenzene, 143 µmol) was added dropwise over 30 minutes which caused a color change from a yellow to an orange dispersion. The mixture was stirred for additional 15 minutes allowing it to warm to room temperature which caused a further color change to a red-brown solution, before the solvent was evaporated at reduced pressure. The obtained red-brown solid was washed with toluene (3x 2 mL) and 1,2-difluorobenzene (1x 2 mL). Subsequently, the solid was dissolved in acetonitrile and layered with diisopropyl ether. After 24 hours, the product was obtained as a red-brown powder. Yield: 167 mg, 69 %.

1H NMR (400 MHz, Acetonitrile-\(d_3\)) δ 7.45 (s, 2H, CH\(^{\text{dad}}\)), 7.08 – 7.04 (m, 2H, H\(^{\text{ar}}\)), 7.04 – 6.99 (m, 2H, H\(^{\text{ar}}\)), 6.88 (dddd, \(J = 16.7, 6.2, 5.3, 3.3\) Hz, 6H, H\(^{\text{ar}}\)), 6.81 – 6.73 (m, 6H, H\(^{\text{ar}}\)), 4.84 (d, \(J = 9.1\) Hz, 2H, CH\(^{\text{olef}}\)), 4.47 (d, \(J = 9.1\) Hz, 2H, CH\(^{\text{olef}}\)), 4.06 (d, \(J = 8.6\) Hz, 2H, CH\(^{\text{olef}}\)), 4.00 (d, \(J = 8.6\) Hz, 2H, CH\(^{\text{olef}}\)), 2.02 (d, \(J = 0.9\) Hz, 6H, CH\(^{\text{dad}}\)), -7.39 (s, 1H). 13C NMR (101 MHz, CD\(_3\)CN) δ 147.9 (s, 2C, C\(^{\text{quat}}\)), 147.5 (s, 2C, C\(^{\text{quat}}\)), 145.6 (s, 2C, C\(^{\text{quat}}\)), 143.5 (s, 2C, C\(^{\text{quat}}\)), 128.6 (2 CH, C\(^{\text{ar}}\)), 128.3 (2 CH, C\(^{\text{ar}}\)), 127.3 (2 CH, C\(^{\text{ar}}\)), 127.3 (2 CH, C\(^{\text{ar}}\)), 127.0 (2 CH, C\(^{\text{ar}}\)), 126.8 (2 CH, C\(^{\text{ar}}\)), 126.7 (2 CH, C\(^{\text{ar}}\)), 126.2 (2 CH, C\(^{\text{ar}}\)), 121.0 (s, 2C, CH\(^{\text{dad}}\)), 84.8 (s, 2C, CH\(^{\text{olef}}\)), 81.2 (s, 2C, CH\(^{\text{olef}}\), 75.9
(s, 2C, CH$_{2}^{olef}$), 69.2 (s, 2C, CH$_{2}^{olef}$), 40.6 (2 CH$_{3}$, CH$_{3}^{lad}$). 19F NMR (376 MHz, CD$_{3}$CN) δ -79.2 (s, OTf). MALDI HRMS (m/z): [Ru$_{2}$(Me$_{2}$(dad))(dbcot)$_{2}$H]$^{+}$ calcd. For C$_{36}$H$_{33}$N$_{2}$Ru$_{2}$ 697.0725; found: 697.0732.

c. **Synthesis of [Ru(OH$_{2})$(µ-H)(Me$_{2}$(dad))(dbcot)$_{2}$]$^{+}$**

A 50% solution of sulfuric acid in water was degassed by bubbling argon through for 2 minutes. The acid solution (52 µl, 373 µmol) was dropwise added to a stirred dispersion of [RuH(µ-H)(Me$_{2}$(dad))(dbcot)$_{2}$] (130 mg, 187 µmol) in THF (5 mL, 35 mM). The mixture was heated to 60 $^\circ$C for 1 hour whereby it turned deeply red. The mixture was cooled to r.t. overnight whereby a red solid precipitated. The solid was washed with THF (3x1 mL) and hexanes (3x1 mL). After drying at HV overnight, a brightly red solid of the composition [Ru(OH$_{2})$(µ-H)(Me$_{2}$(dad))(dbcot)$_{2}$]HSO$_{4}$·0.34 THF·1.25 H$_{2}$SO$_{4}$ was obtained. Yield: 110 mg, 62 %.

1H NMR (500 MHz, Acetonitrile-d_{3}) δ 7.48 (s, 2H, NCH), 7.46 – 7.32 (s (br), 4H, H$_{2}$O/H$_{3}$O$^{+}$), 7.06 (dd, $J_{HH} = 5.6$, 3.4 Hz, 2H, H$^{a'}$), 7.04 – 6.98 (m, 2H, H$^{a''}$), 6.94 – 6.84 (m, 6H, Hab), 6.84 – 6.72 (m, 6H, Habc), 4.84 (d, $J_{HH} = 9.1$ Hz, 2H, Holef), 4.47 (d, $J_{HH} = 9.1$ Hz, 2H, Holef), 4.06 (d, $J_{HH} = 8.6$ Hz, 2H, Holef), 4.00 (dd, $J_{HH} = 8.6$, 1.0 Hz, 2H, Holef), 2.02 (d, $J_{HH} = 0.9$ Hz, 6H, CH$_{3}$), -7.39 (s, 1H, H$_{b}$).

13C NMR (126 MHz, CD$_{3}$CN) δ 147.9 (s, 2C, Cquat), 147.5 (s, 2C, Cquat), 145.6 (s, 2C, Cquat), 143.5 (s, 2C, Cquat), 128.6 (s, 2C, Car), 128.3 (s, 2C, Car), 127.3 (s, 2C, Car), 127.3 (s, 2C, Car), 127.0 (s, 2C, Car), 126.8 (s, 2C, Car), 126.7 (s, 2C, Car), 126.2 (s, 2C, Car), 120.9 (s, 2C, NCH), 84.8 (s, 2C, Colef), 81.2 (s, 2C, Colef), 75.9 (s, 2C, Colef), 69.2 (s, 2C, Colef), 40.6 (2, 2C, CH$_{3}^{lad}$). IR (ATR-IR): 3171 (br, H$_{acidic}$), 2966 (m, C-H), 1580 (w, C=C), 1489 (m, C-H), 1406 (m, O-H), 1139 (s, br, Ru-O), 1028 (s, S-O). MALDI HRMS (m/z): [Ru$_{2}$(Me$_{2}$(dad))(dbcot)$_{2}$H]$^{+}$ calcd. For C$_{36}$H$_{33}$N$_{2}$Ru$_{2}$ 697.0725; found: 697.0729. Elemental analysis calcd for C$_{36}$H$_{36}$N$_{2}$O$_{5}$Ru$_{2}$S·0.34 C$_{4}$H$_{8}$O·1.25 H$_{2}$SO$_{4}$ was: C 46.84, H 4.34, found: C 46.85, H 4.43.

Crystals suitable for qualitative X-ray diffraction experiments were obtained by heating a 50 mM THF solution to boiling and slowly cooling it down to room temperature over the course of 4 hours. The crystals revealed a composition of three [Ru(µ-H)(OH$_{2})$(Me$_{2}$(dad))(dbcot)$_{2}$] molecules and two SO$_{4}$ molecules, but the crystal quality was not sufficient to assign a proton to HSO$_{4}$. Hence, tetrafluoroborate was chosen as a counterion for crystallization (**vide infra**).
d. Synthesis of [Ru(OH)(µ-H)(Me₂(dad))(dbcot)]⁺BF₄⁻

A 50% solution of HBF₄ in water was degassed by bubbling argon through for 2 minutes. The acid solution (36 µl, 287 µmol) was dropwise added to a stirred solution of [RuH(µ-H)(Me₂(dad))(dbcot)] (100 mg, 144 µmol) in 1,2-difluorobenzene (2.9 mL, 50 mM). The mixture was heated to 65 °C for 10 minutes whereby it turned deeply red and a red solid started precipitating from the solution. (Note that the reaction with HBF₄ proceeds faster than with H₂SO₄.) The mixture was left at room temperature overnight which caused more solid to precipitate. The mother liquors were removed by aspiration and the obtained solid was dried at HV overnight at 80 °C.

The obtained crude product (119 mg, 104 %) was washed with 1,2-difluorobenzene (2x2 mL) and diethyl ether (2x2 mL), before being dried at HV overnight. A brightly red solid of the composition [Ru(OH)(µ-H)(Me₂(dad))(dbcot)]BF₄ was obtained. Yield: 73 mg, 64 %.

Crystals suitable for X-ray diffraction experiments were obtained by heating a 50 mM THF solution to boiling and slowly cooling it down to room temperature over the course of 4 hours. The title compound precipitated as red crystals from a yellow solution.

1H NMR (400 MHz, Acetonitrile-d₃) δ 7.45 (s, 2H, NCH), 7.09 – 7.03 (m, 2H, Hₜₕ), 7.05 – 6.98 (m, 2H, Hₜₕ), 6.93 – 6.84 (m, 6H, Hₜₕ), 6.81 – 6.73 (m, 6H, Hₜₕ), 4.84 (d, Jₜₕ = 9.1 Hz, 2H, Hₜₖ), 4.47 (d, Jₜₕ = 9.1 Hz, 2H, Hₜₖ), 4.06 (d, Jₜₕ = 8.6 Hz, 2H, Hₜₖ), 4.00 (dd, Jₜₕ = 8.6, 1.0 Hz, 2H, Hₜₖ), 2.84 (s, br, 2H, H₂O) 2.02 (d, Jₜₕ = 0.9 Hz, 6H, CH₃), -7.40 (s, 1H, Hₕ).

13C NMR (126 MHz, CD₃CN) δ 147.9 (s, 2C, C^quat), 147.5 (s, 2C, C^quat), 145.6 (s, 2C, C^quat), 143.5 (s, 2C, C^quat), 128.6 (s, 2C, C^ar), 128.3 (s, 2C, C^ar), 127.3 (s, 2C, C^ar), 127.3 (s, 2C, C^ar), 127.0 (s, 2C, C^ar), 126.8 (s, 2C, C^ar), 126.7 (s, 2C, C^ar), 126.2 (s, 2C, C^ar), 120.9 (s, 2C, NCH), 84.8 (s, 2C, C^olef), 81.2 (s, 2C, C^olef), 75.9 (s, 2C, C^olef), 69.2 (s, 2C, C^olef), 40.6 (2, 2C, CH₃dad). Elemental analysis calcd (%) for C₃₆H₃₅BF₄N₂ORu₂ was: C 54.01, H 4.41, N 3.50 found: C 53.90, H 4.44, N 3.53.

e. Synthesis of IrO₂

The IrO₂ anode for the complete electrolysis cell was synthetized as described in [S2]. In brief, 247 mg of IrCl₃*3H₂O (0.7 mmol) were dissolved in 50 mL of ethylene glycol in presence of 700 mg of polyvinyl-pirrolidone (PVP). The solution was heated at 120°C for one hour to evaporate residual water and then was refluxed for 60 minutes under magnetic stirring. The solution was concentrated, cooled down and poured in a crucible, which was placed in a muffle furnace heated at 400°C for one hour (heating ramp: 7°C min⁻¹). The resulting solid was milled in an agate mortar.
f. Crystallographic structures

X-ray diffraction experiments were performed on a XtaLAB SynergyDualflex diffractometer, equipped with a Pilatus 300K hybrid pixel detector and a copper (1.5406 Å) microfocus tube and a Bruker D8 Venture Dual source diffractometer equipped with a PhotonII detector, respectively. Suitable crystals were selected, protected by polybutene oil and mounted under a cold nitrogen stream. The crystals were kept at 100 K during data collection. The data reduction was performed using CrysAlisPro and Apex3, respectively. Using Olex2, the structures were solved with SHELXT, followed by least-squares refinement against full matrix (versus F2) with SHELXL. All non-hydrogen atoms were refined anisotropically. The crystal structures of [Ru(OH₂)(μ-H) (Me₂(dad))(dbcot)]₂BF₄ and [Ru(NCCH₃)(μ-H) (Me₂(dad))(dbcot)]₂PF₆ are reported in figure 1 in the main text, crystal data and further crystallographic details are reported in table S1 and S2.

g. DFT calculations

All calculations were carried out with ORCA 4.2.0. Geometry optimizations were performed at the PBE0-D3BJ/def2-SVP/def2-TZVP(Ru) level of theory. Solvent effects were taken into account implicitly by using the cpcm model with water as solvent and a gaussian charge scheme. Numerical frequency calculations were carried out to confirm the nature of stationary points found by geometry optimizations. The RIJCOSX approximation was used for density functional theory (DFT) calculations. Approximate transition states were generated using the nudged elastic band (NEB) method implemented in ORCA, followed by a saddle-point optimization. Cartesian coordinates of optimized molecular structures are reported in table S4.

h. XPS

XPS experiments were carried out in an UHV chamber with a base pressure lower than 10⁻¹⁰ mbar. The chamber was equipped with non-monochromatized Al (hv = 1486.6 eV) radiation and with a hemispherical electron/ion energy analyser (VSW mounting a 16-channel detector). The operating power of the X-ray source was 150 W (15 kV and 10 mA). Photoelectrons were collected normal to the sample surface and the analyser maintaining as well the angle between the analyser axis and the X-ray source fixed at 54.5°. All the samples were drop cats on gold on mica and all the XPS spectra were measured in fixed analyser transmission mode with pass energy of 44 eV. The binding energy (BE) was calibrated setting the Au4f7/2 peak at 83.9 eV.
II. Complex impregnation on carbon black

The impregnation procedure was adapted from previous works.\(^{[S18-S20]}\) In a 100 mL Schlenk round bottom flask purged with N\(_2\) and vacuum, 36.0 mg (0.04 mmol) of [Ru\(_2\)(OTf)(µ-H)(Me\(_2\)dad)(dbcot)]\(_2\) were dissolved at room temperature in 15 mL of distilled acetonitrile. 214 mg of carbon black Ketjen Black EC-600-JD (C\(_k\)) (Akzo-Nobel) were milled in an agate mortar and suspended at room temperature in 60 mL of acetonitrile in a 100 mL round bottom Schlenk tube by 30 min of magnetic stirring. The two solutions were mixed together under nitrogen flow and the resulting suspension was homogenized at room temperature by 1 hour of magnetic stirring.

The solvent was slowly evaporated under vacuum at 50 °C keeping on the magnetic stirring, in order to obtain homogeneous complex dispersion on carbon. The so obtained catalytic powder was then vacuum dried at 50 °C for 1 hour. Table S5 summarizes the reagent amounts used in the synthesis.

The dry catalyst has a 12.4 wt% complex content (3.06 wt% Ru) and was stored under nitrogen atmosphere prior to use in electrochemical experiments.

A diluted catalyst was synthetized with the same impregnation procedure just adapting the reactants amounts, as described in table S6. The dry catalyst has a 1.86 wt% complex content (0.44 wt% Ru content) with a dilution of seven time respect the concentrated one.

III. Experimental apparatus used in the catalyst electrochemical characterization in half cell

a. General techniques

All the glassware was cleaned with a H\(_2\)O\(_2\)/H\(_2\)SO\(_4\) conc. solution overnight and rinsed several times with Milli-Q water prior to use. The working electrode, a glassy carbon disk (0.1963 cm\(^2\)) embedded in a PTFE jacket (PINETM) was cleaned by stirring overnight in a 0.05 µm alumina aqueous suspension. After the treatment, the electrode was washed in sequence, in acetone, 2-propanol and Milli-Q water. All the solutions were prepared with Milli-Q water (18.5 MΩ*cm at 25°C) provided with a Millipore Milli-Q3 apparatus (Nihon Millipore Ltd.). Chemicals were used as purchased from Sigma-Aldrich/Merk unless as differently mentioned. All electrochemical studies were carried out at room temperature (20-25°C) using a Parstat 2273 potentiostat–galvanostat (Princeton Applied Research) equipped with a Model 616 Rotating Disk Electrode (PAR/Ametek).

Polarization and chronoamperometric experiements in aqueous environment were acquired in a standard pyrex® three-electrode cell experiments (Princeton Applied Research). The reference electrode was a commercial Ag/AgCl/KCl\(_{sat}\) (Princeton Applied Research) and the counter electrode was a gold gauze enclosed in a glass tube with porous bottom. The working electrode WE was coated
with a drop of the catalyst ink (c.a. 9 µL) by means of a micropipette. The catalyst layer was then dried under air and the final catalyst amount in the deposit was determined using an analytical balance; the resulting metal loading onto the WE spans from 6.3 to 7.5 µgRu cm⁻². All the potentials were reported versus the Reference Hydrogen Electrode RHE without compensating the resistance.

b. **Polarization experiments**

Polarization (LSV) experiments were performed in a 1 M H₂PO₄/HPO₄²⁻ buffer solution (pH 7.4) or 0.25 M HClO₄ aqueous solution (pH 0.6) saturated with hydrogen (30 minutes of pure hydrogen bubbling) with 1 mV s⁻¹ scan rate, rotating the WE at 1600 rpm. The hydrogen evolution reaction was investigated performing the scans between 0.1 and -0.5 V vs RHE.

c. **Chronoamperometric experiments**

Chronoamperometries (potentiostatic experiments) were carried out in a 1 M H₂PO₄/HPO₄²⁻ buffer solution (pH 7.4) or 0.25 M HClO₄ aqueous solution (pH 0.6) purged with nitrogen. The experiments were performed at the constant potential of 300 mV vs RHE rotating the working electrode at 1600 rpm for one hour.

d. **Electrochemical Impedance Spectroscopy (EIS)**

Electrochemical impedance spectroscopy (EIS) measures were carried out in a 0.25 M H₂SO₄ solution, under N₂ atmosphere (30 minutes of pure nitrogen bubbling), with frequency range spanning from 100 KHz to 0.01 Hz. Measures were acquired at OCP condition and at – 300 mV vs RHE, with a DC amplitude of 10 mV. Data were analyzed with Z-view software.

e. **Ink preparation**

The ink was prepared in a 5 mL glass vial suspending the milled catalyst in 600 mg of Milli-Q water, 600 mg of ethanol (purity 99%) and 12 mg of a 5% wt Nafion® solution in 2-propanol. The mixture was treated for 30 minutes with ultrasounds (59 Hz, 100 W) and then was stored under magnetic stirring. A fresh ink was prepared before each set of measurements. Table S7 describe the [Ru₂(OTf)(µ-H)(Me₂dad)(dbcot)₂]/Cink preparation; catalysts concentration in the ink is c.a. 0.53 wt%.

IV. Experimental apparatus used in electrolysis experiments.

a. **General techniques**

Electrolysis experiments were performed in a Scribner cell (Scribner ass.) modified in our laboratory with stainless steel collector plates stable in acidic environment at potentials higher than 1.2 V. Cell
temperature was controlled with a Scribner 850c testing station (Scribenr ass.) and the anodic and cathodic compartments were fed respectively with 50 mL of Milli-Q water and 50 mL of a 0.1 M H₂SO₄ solution or H₂O by means of a multichannel peristaltic pump (Gilson minipulse 3) with 1 mL min⁻¹ flow rate; exhaust fuels were collected in a closed vessel and recirculated in the cell. The cathodic vessel head was equipped with a flow meter to quantify the hydrogen produced during the electrolysis experiments. The electrochemical measurements were performed with an Arbin LBT21084 multichannel potentiostat-galvanostat and the hydrogen amount produced during electrolysis was quantified with a Brockhorst El-Flow (3 mL min⁻¹ or 1 L min⁻¹) flow meter.

b. MEA (Membrane Electrode Assembly) fabrication

The Membrane Electrode Assembly was obtained sandwiching a Nafion 117 membrane between the anode and the cathode in a 5 cm² Scribner cell fixture using a 4 Nm screwing torque. The anode was realized mixing in an agate mortar 40 mg of IrO₂ with 20 mg of Cₖ and 100 mg of a Nafion 5%wt ionomer solution in low aliphatic alcohols; the resulting paste was spread onto a woven-non-woven titanium web conductive support (5 cm², Beakert). The electrode has the 66.6% wt IrO₂ loading (c.a. 7 mgₖₐ₉ₐ₈ₙ cm⁻²) and the 3% wt of pure Nafion amount.

Cathodes were obtained mixing 200 mg of the Nafion 5% wt. ionomer with 60 mg of [Ru₂(OTf)(μ-H)(Me₂dad)(dbcot)₂] /Cₖ catalyst (3.06% wt. Ru or 0.445% wt. Ru); the so obtained dense paste was spread onto a 5 cm² carbon cloth gas diffusion layer (CeTech). The resulting cathode has a total Nafion content of ca. 3.9 wt% and a Ru content of ca. 1 mgRu cm⁻² 2@Cₖ or 0.04 mgRu cm⁻² for the seven time diluted catalyst 2₃₉₈@Cₖ.

V. Hydrogen and energy consumption quantification

The electrolysis efficiency in hydrogen production was calculated evaluating the hydrogen evolution reaction faradic efficiency FE as described in Eq.1.

\[
FE \text{ (\%)} = \frac{\text{mol}_{H_2}^{\text{real}}}{\text{mol}_{H_2}^{\text{theoretic}}} * 100 \quad \text{Eq.1}
\]

The real hydrogen amount produced during the electrolysis was calculated with the flow meter placed at the cell outlet while the theoretic amount was calculated electrochemically applying the Faraday’s law (Eq.2) assuming 100% of coulombic efficiency for hydrogen evolution reaction (HER): I is the
current load applied to the cell during the experiment, \(F \) is the Faraday’s constant (96485.3 C mol\(^{-1}\)) and 2 is the number of electrons moles involved in HER.

\[
mol_{H_2}^{\text{theoretic}} = 2F \int I(t) \, d(t) \quad \text{Eq.2}
\]

The cell energy consumption required for electrolysis was calculated integrating over time the charging energy and dividing this value with the total hydrogen amount produced (expressed in kg\(_{H_2}\)) as described in Eq.3.

\[
\text{Energy consuption (kWh kg}_{H_2}^{-1}) = \frac{\int V(t)I(t) \, d(t)}{kg_{H_2}^{\text{real}}} \quad \text{Eq.3}
\]

VI. Model reactions

a. In situ catalytic turnover

In a J-Young NMR tube with a Teflon screw-cap, [Ru(µ-H)(Me\(_2\)(dad))(dbcot)\(_2\)]PF\(_6\) (6 mg, 7.1 µmol, 1 eq.) was mixed with THF-d8 (0.4 mL). After recording a \(^1\)H-NMR spectrum, KC\(_8\) (1.9 mg, 14 µmol, 2.0 eq.) was added to the top of the tube, which was closed and shaken. A \(^1\)H-NMR spectrum was acquired and D\(_2\)O (0.15 µL, 7.5 µmol, 1.1 eq.) was added to the tube. After measuring \(^1\)H-NMR, H\(_2\)SO\(_4\) (50%, 1 drop) was added and the tube heated to 80 °C for 2 hours during which red crystals formed. NMR shows the formation of a new complex and the crystals were found to be of composition [Ru(OH\(_2\))(µ-H)(Me\(_2\)(dad))(dbcot)\(_2\)]\(_3\)(SO\(_4^2-\))(HSO\(_4\)).

b. Verification of Stoichiometric \(H_2\) Production by GC-TCD

In a 10 mL Schlenk tube capped with a rubber septum, [RuH(µ-H)(Me\(_2\)(dad))(dbcot)\(_2\)] (30 mg, 43 µmol, 1 eq.) was dissolved in THF (3 mL). Degassed sulfuric acid (50%, 0.2 mL, 10 eq.) was added and the stopcock closed. The mixture was heated to 80 °C for 1 hour, before a sample was taken from the headspace via syringe. The sample was subjected to GC-TCD, which allowed the identification of H\(_2\) by its retention time.

c. Recovery of the exhaust cathode after electrolysis experiments

The exhaust catalyst 2@\(\text{C}^k\) was recovered after the electrolysis experiments scratching the catalytic powder with a spatula from the electrode; the recovered amount was washed three times with
bidistilled water and dried under vacuum at room temperature. The powder was suspended in dry CD$_3$CN (c.a. 2 mL) by one hour of magnetic stirring under nitrogen atmosphere and the suspension was filtered over a celite plug. The brown filtrate was collected into a 5 mm NMR tube (under nitrogen) and subjected to 1H-NMR analysis (figure S2). The spectrum shows the characteristic (3c) signals: (δ 7.46 (s, 2H, CH$^{\text{dad}}$), 7.35-7.18 (m, 2H, CH$^{\text{ar}}$), 7.13-7.02 (m, 2H, CH$^{\text{ar}}$), 6.92-6.85 (m, 8H, CH$^{\text{ar}}$), 6.84-6.74 (m, 2H, CH$^{\text{ar}}$), 6.75-6.61 (m, 2H, CH$^{\text{ar}}$), 4.86 (d, $J_{\text{HH}} = 9.1$ Hz, 2H, CH$^{\text{olef}}$), 4.78 (d, $J_{\text{HH}} = 9.3$ Hz, 2H, CH$^{\text{olef}}$), 4.08 (d, $J_{\text{HH}} = 8.7$ Hz, 2H, CH$^{\text{olef}}$), 4.02 (d, $J_{\text{HH}} = 8.5$ Hz, 2H, CH$^{\text{olef}}$), 2.07 (s, 6H, CH$_3$), -7.37 (s, 1H, Ru-H)).
Supplementary figures

Figures S1-S3: NMR spectra of compounds 3a and 3c

In less coordinating solvents like THF, the terminal coordination site is partially occupied by solvent and partially by triflate (2 and 3b in equilibrium) or water (3a and 3b in equilibrium), as described in the literature for 3b.\[^{[S1]}\] Acetonitrile replaces the triflat anion or water molecule from the terminal coordination site. The NMR spectra in acetonitrile show only one species which is the same for 2, 3a and 3b and thus is assumed to be [Ru(µ-H)(NCCD₃)(Me₂(dad))(dbcot)₂]⁺ (3c).
Figure S1: 1H- (top) and 13C- (bottom) NMR spectra of [Ru(NCCH$_3$)(µ-H)Me$_2$(dad))(dbcot)$_2$]OTf·2CH$_3$CN (3e, formed from 2 recrystallized in CH$_3$CN).
Figure S2: 1H- (top) and 13C- (bottom) NMR spectra of [Ru(OH)$_2$(μ-H)(Me$_2$(dad))(dbcot)$_2$]$_3$BF$_4$ (3a) in CD$_3$CN (in-situ forms 3c and free H$_2$O).
Figure S3: 1H- (top) and 13C- (bottom) NMR spectra of [Ru(OH$_2$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]$_3$(HSO$_4$)(SO$_4$) -0.34 THF·H$_2$SO$_4$ (3a).
Figure S4: 1H- (top) and 13C- (bottom) NMR spectra of [Ru(OH)$_2$(μ-H)(Me$_2$(dad))(dbcot)$_2$](HSO$_4$)(SO$_4$)·0.34 THF·H$_2$SO$_4$ (3a).
The TGA data suggest that in the solid, H$_2$O is indeed coordinated to the complex and not just co-crystallised (vide infra).

Figure S5: Thermal gravimetric analysis (green) and differential scanning calorimetry (deep blue) experiment of [Ru(NCCH$_3$)(µ-H)Me$_2$(dad))(dbcot)$_2$]OTf·NCCH$_3$ (3c) at a heating rate of 7 K/min. Mass trace of acetonitrile (m/z = 41, light blue). At an onset temperature of 87.5 °C, the co-precipitate acetonitrile evaporates. At an onset temperature of 262 °C, the coordinated acetonitrile is lost and the complex decomposes.
Figure S6: Thermal gravimetric analysis (green) and differential scanning calorimetry (blue) experiment of [Ru(OH₂)(µ-H)(Me₂(dad))(dbcot)₂]₃(HSO₄)(SO₄) (3a) at a heating rate of 7 K/min. Mass trace of water (m/z = 18, pink). At an onset temperature of 271 °C, the coordinated water is lost and the complex decomposes.
Figure S7: Thermal gravimetric analysis (green) and differential scanning calorimetry (blue) experiment of [Ru(OH$_2$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]BF$_4$ (3a) at a heating rate of 7 K/min. Mass trace of water (m/z = 18, pink). At an onset temperature of 237 °C, the coordinated water is lost and the complex decomposes.
Figures S8: EIS measurements

Figure S8: Nyquist plot of (a) $2@C^k$ and (b) C^k t -300 mV vs RHE. (c) Nyquist plot of $2@C^k$ and (d) of C^k at open circuit potential.
Figures S9: Cell set up

(a) Scheme of the electrolysis test cell experimental set up.

(b) Picture of the electrolysis test station.

Figure S9: (a) Scheme of the electrolysis test cell experimental set up. (b) Picture of the electrolysis test station.
Figure S10: High magnification HAADF-STEM (Z contrast) image of \(\text{2@C} \) exhaust cathode, 0.04 mg Ru cm\(^{-2} \). The insert shows the EDXS analysis of the marked spot (red cross) ascribable to the presence of Ru complex molecules.
Figure S11: 1H-NMR spectra in CD$_3$CN of complex (2) extracted from the fresh 2@Ck cathode (top) and the exhaust 2@Ck cathode (bottom) after 24 hours of electrolysis at pH 1 (0.1M H$_2$SO$_4$ feeding solution). Regions that do not show any signals of interest are not indicated for clarity.
Figure S12: High resolution XPS spectra (a) C1s,Ru 3d and (b) N 1s of pristine 2 and (c) C1s Ru 3d and (d) N1s of the [K(dme)₂][Ru(H)(trop₂dad)] benchmark compound.
Figure S13: Overlaid 1H-NMR spectra of [Ru$_2$(µ-H)H(Me$_2$(dad))(dbcot)$_2$] 1 (red) and [Ru$_2$(µ-H)D(Me$_2$(dad))(dbcot)$_2$] 1[D] (blue). Regions that do not show any signals of interest are not indicated for clarity.
Figure S14: Mechanism of hydrogen evolution in neutral solution calculated by DFT (Orca 4.2.0, PBE0-D3BJ/def2-SVP/def2-TZVP(Ru), cpcm water (surfacetype vdw_gaussian)).
Figure S15: Electrochemical characterization of a glassy carbon electrode coated with (a) $2@C^k$ and (b) $3a@C^k$. LSVs in 0.25 M HClO$_4$ (black line) and 1 M H$_2$PO$_4$/HPO$_4^{2-}$ buffer (red line).

Figure S16: Electrochemical characterization of $2@C^k$ for the OER in 0.25 M HClO$_4$.
Figure S17: Activity of [K(dme)$_2$][Ru(H)(trop$_2$dad)] monomer in PEM electrolysis. (a) Potentiodynamic curves recorded at 80°C with acidic feed (black) and standard water (red line) with a 10 mV s$^{-1}$ scan rate. (b) Chronopotentiometric experiments recorded at 80°C applying a 400 mA cm$^{-2}$ current load performed with acidic feed (black line) and water (red line).
Figure S18: Linear Sweep Voltammetry (LSV) in CH$_3$CN of 10$^{-3}$ M complex 2 in 20 ml of 0.1M Bu$_4$NPF$_6$ buffer solution (blue line) or in 20 ml of a 0.1M Bu$_4$NPF$_6$ 5M Milli-Q water solution (red line) or in 20 ml of a 0.1M Bu$_4$NPF$_6$ 0.25M H$_2$SO$_4$ - 5M H$_2$O solution (black line).
3. Supplementary tables

Table S1: Crystal data and structure refinement for [Ru$_2$(OH)$_2$(μ-H)(Me$_2$(dad))(dbcot)$_2$]BF$_4$

Property	Value
Empirical formula	C$_{36}$H$_{35}$BF$_4$N$_2$ORu$_2$
Formula weight	800.10
Temperature/K	100.01(11)
Crystal system	triclinic
Space group	P-1
a/Å	9.54690(10)
b/Å	10.1082(2)
c/Å	17.4002(3)
α/°	78.9600(10)
β/°	76.8190(10)
γ/°	85.7730(10)
Volume/Å³	1603.87(5)
Z	2
ρ_{calc}/g/cm3	1.657
μ/mm$^{-1}$	8.098
F(000)	803.0
Crystal size/mm3	0.042 \times 0.036 \times 0.02
Radiation	CuKα (λ = 1.54184)
2Θ range for data collection/°	5.302 to 159.796
Index ranges	-12 \leq h \leq 12, -12 \leq k \leq 12, -22 \leq l \leq 22
Reflections collected	40297
Independent reflections	6799 [R$_{int}$ = 0.0421, R$_{sigma}$ = 0.0262]
Data/restraints/parameters	6799/1/432
Goodness-of-fit on F2	1.076
Final R indexes [I$>$$\sigma$(I)]	R$_1$ = 0.0434, wR$_2$ = 0.0954
Final R indexes [all data]	R$_1$ = 0.0465, wR$_2$ = 0.0971
Largest diff. peak/hole / e Å$^{-3}$	2.47/-1.67
Table S2: Crystal data and structure refinement for [Ru$_2$(NCCH$_3$)(µ-H)(Me$_2$(dad))(dbcot)$_2$]PF$_6$

Property	Value
Empirical formula	C$_{44}$H$_{45}$F$_6$N$_6$PRu$_2$
Formula weight	1004.97
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	12.6141(2)
b/Å	12.2041(2)
c/Å	27.4630(5)
α/°	90
β/°	98.846(2)
γ/°	90
Volume/Å3	4177.47(12)
Z	4
ρ_{calc}/g/cm3	1.598
μ/mm$^{-1}$	0.828
F(000)	2032.0
Crystal size/mm3	0.49 \times 0.16 \times 0.11
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/°	3.38 to 58.552
Index ranges	-17 \leq h \leq 17, -16 \leq k \leq 16, -37 \leq l \leq 37
Reflections collected	105366
Independent reflections	10726 [R$_{\text{int}} = 0.0602$, R$_{\text{sigma}} = 0.0383$]
Data/restraints/parameters	10726/0/542
Goodness-of-fit on F2	1.233
Final R indexes [I$>2\sigma$(I)]	R$_1$ = 0.0462, wR$_2$ = 0.0982
Final R indexes [all data]	R$_1$ = 0.0621, wR$_2$ = 0.1033
Largest diff. peak/hole / e Å$^{-3}$	1.03/-1.00
Table S3: EIS data

Rs (Ω)	8.3	
R1 (Ω)	0.35	
R2 (Ω)	596.4	

Table S4: DFT Cartesian coordinates of optimized molecular structures

\[
\text{[Ru}_2\text{H}_2(\text{Me}_2(\text{dad})(\text{dbcot})_2] + \text{H}_3\text{O}^+ \quad (1-\text{H}_3\text{O}^+)\]

Atom	X	Y	Z
Ru	8.13813165218872	10.64682124564211	17.22672015943617
Ru	10.48919618588997	11.90568054402451	17.24016377057114
N	9.95516452606099	9.963905270728	18.0187161850304
N	9.50106584141107	10.82065621069377	15.64379253813145
C	7.31864584086485	11.26690530336746	19.1097070722285
H	8.08358269092886	11.28668093184408	19.89292904503773
C	6.78229260062793	10.00173055688789	18.7633604260544
H	7.16461209845646	9.1332127234202	19.31147354024827
C	10.32869449167464	13.8726740939388	16.49577718268875
H	9.54567603014170	13.97628095174508	15.73506263567726
C	6.11887500438998	13.27334489833331	20.07496811052821
H	6.3283368237949	12.91054325928870	21.08514520274414
C	6.5493592992757	12.53301232958027	18.97154848528290
C	6.3020618633629	13.00428825572757	17.67557071983042
C	13.82475946209939	14.47703212683597	16.07436643543642
H	13.64634966396172	14.83749746012517	15.05740919526479
C	10.78993472089475	12.92895902607090	19.0568768175509
H	10.29938995667542	12.43825846439385	19.90569040844403
C	12.86234548301280	13.68772814504168	16.70912059723813
C	10.70586125376688	10.19877193726618	15.81581368764316
H	11.42030467012431	10.09941481062563	14.99489704910482
C	11.57196083254662	13.30120137666859	16.07049796044257
H	11.64281840218916	13.01163958935003	15.01498113853734
C	12.0303375038959	12.36556834433601	18.61438893207802
H	12.39125582481782	11.48585349993030	19.16099399651979
Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
------	--------------	--------------	--------------
C	6.8231132266174	12.19878175094902	16.53784951641325
H	7.28948748546959	12.78535260291236	15.73914954947003
C	10.95863374720234	9.73454500734205	17.11447614244102
H	11.88617465134086	9.23474874599001	17.40402111459551
C	10.25742529986308	14.85983737487156	17.6105931985454
C	10.16552322020402	9.46189097686559	19.36609773525907
H	9.62738138659398	10.08196630198199	20.09209805765485
H	11.23365108392435	9.45471817968724	19.62994846062462
H	9.77863095208869	8.4332085927640	19.43797315271789
C	6.27862158562520	10.94090621165616	16.18191539103130
H	6.35027740822886	10.64861252015972	15.12831108729926
C	9.19364091826810	11.28347066595331	14.30166518395634
H	8.67546577706058	10.48426027772074	13.74978662157281
H	10.10674204919265	11.55660123297318	13.75189262436005
H	8.53255392297452	12.15696091910682	14.34174298904708
C	5.39624572066288	9.86816752439702	18.23427959196403
C	9.93757576147169	16.20548224810981	17.41479288460677
H	9.74188223211953	16.57316845689403	16.40349561701219
C	5.62711715443943	14.21304140903833	17.49145630474462
H	5.45263674656887	14.58626134288227	16.47848231378012
C	13.09473120327361	13.21196373735394	18.00580399973393
C	10.39857825775648	15.25021568465570	19.99846847647712
H	10.56326170186747	14.86864663841171	21.01020717283730
C	5.14261634297825	10.3429956739174	16.93833812190081
C	10.48983436491876	14.38073322271449	18.90922213182160
C	5.44477439983423	14.48178393967099	19.88774266700153
H	5.12126185513823	15.06462656134737	20.75379048450928
C	15.01801320998874	14.78711375674664	16.73097471110930
H	15.77559022659261	15.39301263657670	16.22725159686810
C	5.19932150996733	14.95150154204218	18.59673377541168
H	4.68286233216220	15.90318490938674	18.44868370610135
C	9.84555168558748	17.07128856673858	18.50703146174354
H	9.58156345835152	18.1201831949073	18.34984196301983
C	10.07612989176976	16.59419383699542	19.79812520309585
\[
\text{[Ru}_2\text{H}_3(\text{Me}_2\text{dad})(\text{dbcot})_2]^+ + \text{H}_2\text{O} \quad (6-\text{H}_2\text{O})
\]

- Ru 8.25735657259835 10.53667280217311 17.37335222934727
- Ru 10.55869133249081 11.85653458484832 17.37061979550706
- N 10.06620982655199 9.95758600444678 18.23980835676889
- N 9.63822236957772 10.69569063933003 15.82065274358832
- C 7.38042555811288 11.29068278933373 19.23584867374333
- H 8.15418826775703 11.34483617079554 20.00729231676285
- C 6.82487985199616 10.02658234311671 18.98032832468531
- H 7.19800868004438 9.19016266761795 19.58146453828324
- C 10.34141305105486 13.77578917348353 16.52151257397736
- H 9.57089470731075 13.80699811329104 15.74196960059050
- C 6.26831922623711 13.40303849391080 20.03774195191358
- H 6.46674442488885 13.10529066495137 21.07076730345247
- C 6.66097881751267 12.56892183714372 18.98913822787904
| | | | | |
|-----|------|------|------|------|
| H | 10.42187086672494 | 14.99599655973280 | 20.98731083252762 |
| C | 5.23931917368234 | 10.23697784718629 | 17.07620296624281 |
| C | 10.42589350578159 | 14.40464000798121 | 18.91188263283373 |
| C | 5.64781534099663 | 14.62281922442740 | 19.76342999430351 |
| H | 5.35313307345301 | 15.27960288763662 | 20.58539208473628 |
| C | 14.99314671553400 | 14.8969124585715 | 16.77980863210577 |
| H | 15.7387388366810 | 15.47264236457203 | 16.25515478528986 |
| C | 5.42129303121158 | 15.01014357167087 | 18.44206192421016 |
| H | 4.94871451012145 | 15.97132902486977 | 18.22596857605194 |
| C | 9.63627865583577 | 17.03010042898637 | 18.36462444300412 |
| H | 9.31461270139542 | 18.05243624998795 | 18.15056969000076 |
| C | 9.86437990850738 | 16.62968817564206 | 19.68197874400158 |
| H | 9.72143229240299 | 17.33745492336500 | 20.5024444816890 |
| C | 3.9755092252778 | 10.05949396007522 | 16.50713762895331 |
| H | 3.80954426275753 | 10.34081589930771 | 15.4639370437828 |
| C | 14.27285605365125 | 13.69041805174037 | 18.76534171259762 |
| H | 14.45060182026774 | 13.36742586849560 | 19.79490756893398 |
| C | 15.21819559996064 | 14.4732023239032 | 18.09933018065831 |
| H | 16.13956884639999 | 14.76544618040288 | 18.60954369366325 |
| C | 4.41951861839793 | 9.30654931770121 | 19.15824275940149 |
| H | 4.60229371568344 | 8.99966520900183 | 20.19146632493317 |
| C | 2.93616659645322 | 9.51458104885759 | 17.26184178069387 |
| H | 1.95175106804736 | 9.37235840684731 | 16.80911353732701 |
| C | 3.15739897341266 | 9.13983970779862 | 18.58782952821709 |
| H | 2.34719911164419 | 8.70409658028811 | 19.1775435679106 |
| H | 8.92765109422214 | 12.18121267793133 | 17.75372085914649 |
| H | 7.86148929715220 | 9.03607348011290 | 16.54645240965710 |
| O | 7.87986077192512 | 8.0900936933812 | 14.79181034681085 |
| H | 7.80029629944006 | 8.88605113492411 | 17.40176002131593 |
| H | 6.95337804971629 | 8.0406925028301 | 14.52070974101978 |
| H | 8.07923932148336 | 7.18760635667948 | 15.07481818191654 |
$$[\text{Ru}_2\text{H(Me}_2\text{dad})(\text{dbcot})_2]^* + \text{H}_2\text{O} + \text{H}_2 \quad (\text{TS1}) $$

Ru	-0.73592461283115	-1.60962536662603	-0.34172249026855	
Ru	1.65606432939943	-0.34287147683925	-0.35162634542282	
N	1.12883720936822	-2.23544000023307	0.53797618422866	
N	0.7033433274748	-1.45062495389621	-1.9380287314342	
C	-1.54304517731891	-0.83154579192123	1.51682378875456	
H	-0.77844940032497	-0.80168480668338	2.31247916780014	
C	-2.12342282240125	-2.10659251938466	1.24342009391625	
H	-1.75109545854699	-2.94564209855001	1.85884088551737	
C	1.43194386038064	1.59291247119417	-1.18768268155478	
H	0.66312012766517	1.62976784938624	-1.98086720902811	
C	-2.56954901996207	1.33255330728775	2.35019251629452	
H	-2.35829571403672	1.02766520261693	3.38708133040860	
C	-2.23342545929335	0.47060830176838	1.29008442106000	
C	-2.46661770739757	0.87245269108492	-0.04418364681773	
C	4.92431954658460	2.35828088394159	-1.57760696119184	
H	4.74367444947284	2.67101826711049	-2.6182425523564	
C	1.89750323430713	0.76131043445354	1.44332887370184	
H	1.42997019576834	0.27253110192887	2.31759225538447	
C	3.98553711791426	1.54229513557859	-0.92065459494095	
C	1.85584037686783	-2.15253781201277	-1.71497760564685	
H	2.57822648434052	-2.34475814334513	-2.52515459283979	
C	2.72399250316153	1.06212649729118	-1.56042393583485	
H	2.82730494760237	0.71532103747695	-2.60567109123396	
C	3.18227889654127	0.24571613437252	1.02520229479029	
H	3.57583579069873	-0.61235072432004	1.60162376910082	
C	-2.00464396902390	-0.03364461682519	-1.13331982689566	
H	-1.52081410450322	0.48259717440168	-1.97996583994821	
C	2.08763712874732	-2.57465318048666	-0.37821262765237	
H	2.99998452201762	-3.11752238426798	-0.08125892043934	
C	1.25669178352300	2.60563170518568	-0.1008920051415	
C	1.30929702897751	-2.69407312364257	1.91338685038245	
H	0.80962525769384	-1.99970784224767	2.61157295497177	
H	2.38384084171635	-2.76540766881611	2.1756922936101	
\[\text{[Ru}_2\text{H(OH)}_2\text{(Me}_2\text{dad)}\text{(dbcot)}_2]^{+} + \text{H}_2 \quad (3a-\text{H}_2) \]

\[
\begin{align*}
\text{Ru} & \quad 8.15691933379512 & \quad 10.63342892971193 & \quad 17.19955174596576 \\
\text{Ru} & \quad 10.50484401486477 & \quad 11.86990533465470 & \quad 17.27395046575617 \\
\text{N} & \quad 9.95451970786443 & \quad 9.96465807011599 & \quad 18.06220613347282 \\
\text{N} & \quad 9.57879778351387 & \quad 10.82648080684096 & \quad 15.65320300614214 \\
\text{C} & \quad 7.30318411138939 & \quad 11.32986260423496 & \quad 19.05964119757783 \\
\text{H} & \quad 8.05881401491356 & \quad 11.35473982707915 & \quad 19.85071680443080 \\
\text{C} & \quad 6.76199141297012 & \quad 10.06892351118563 & \quad 18.73047537136772 \\
\text{C} & \quad 7.14065210177334 & \quad 9.20604201144443 & \quad 19.29178549430474 \\
\text{C} & \quad 10.35814688465208 & \quad 13.83464633679056 & \quad 16.52318173584584 \\
\text{H} & \quad 9.59601638481791 & \quad 13.93054996221221 & \quad 15.7405980429782 \\
\text{C} & \quad 6.13061002399299 & \quad 13.3792163710800 & \quad 19.95424711008095 \\
\text{C} & \quad 6.31157238191186 & \quad 13.03367430375069 & \quad 20.97568911661009 \\
\text{C} & \quad 6.56450593866260 & \quad 12.60610909374267 & \quad 18.8749361714148 \\
\text{C} & \quad 6.35634789079076 & \quad 13.05415142270449 & \quad 17.56547753589881 \\
\text{C} & \quad 13.85775009531831 & \quad 14.46912693928245 & \quad 16.19773905958742 \\
\text{H} & \quad 13.70274745470889 & \quad 14.83085866396771 & \quad 15.17750790783735 \\
\text{C} & \quad 10.76064485280162 & \quad 12.88560244166753 & \quad 19.10093518551988 \\
\text{H} & \quad 10.25825123264738 & \quad 12.38555845956732 & \quad 19.93740555260326 \\
\text{C} & \quad 12.88614743299822 & \quad 13.67089507874318 & \quad 16.80658367732824 \\
\text{C} & \quad 10.73537961637896 & \quad 10.14248174930213 & \quad 15.85972983196789 \\
\text{H} & \quad 11.46646185501012 & \quad 9.99830697183184 & \quad 15.05957709165941 \\
\end{align*}
\]
C	11.61674750877322	13.27399598097682	16.13571305334214	
H	11.71681192492862	12.97559180522561	15.08481995570241	
C	12.01511684225820	12.33785890634847	18.68357465466369	
H	12.36707811541414	11.45263586132850	19.22747237690650	
C	6.84417837730828	12.21778917253448	16.45633270464208	
H	7.39054531227056	12.77652536243415	15.66331952440839	
C	10.94232427252305	9.67504994970158	17.17023062224576	
H	11.84503604857916	9.13689439380005	17.47169328351089	
C	10.23148008117620	14.81060382123199	17.64258163299908	
C	10.11072782053966	9.45230779933197	19.41274272680489	
H	9.60105381133874	10.10687770864527	20.12872484792219	
H	10.2128125831200	9.37672905194898	19.69129937449000	
C	9.65665741042167	8.45115608794310	19.47440234231100	
C	6.33918935707986	10.96512143473023	16.10425584874512	
H	6.46624961893476	10.64881214223230	15.06171013129348	
C	9.31030966440633	11.27723187974019	14.29931180306463	
H	8.70848951358897	10.51700166186804	13.77801462899255	
H	10.24360504039626	11.43476768546360	13.73889588891178	
C	8.74367423252359	12.21559910865202	14.31362404186916	
C	5.40405266575095	9.90631815676887	18.14514978649308	
C	9.87590822804688	16.14688093492428	17.4435860924416	
H	9.70222258011393	16.51442359713791	16.42833753266873	
C	5.71781878905927	14.27550331767118	17.33940900297602	
H	5.57653019083977	14.63171124576659	16.31547904112428	
C	13.08835850080552	13.19383337690616	18.10695302377669	
C	10.27522674464895	15.18833382829102	20.03641750533428	
H	10.41403252327924	14.80422288308187	21.05096408414946	
C	5.19446615967692	10.34821081695578	16.82902804174379	
C	10.3291313850851	14.32990996074706	18.94594685388881	
C	5.48978447038484	14.59739519946961	19.72566681612331	
H	5.16202155553593	15.20652988829753	20.57155715238641	
C	15.03075537798729	14.78613869433454	16.88618728448440	
H	15.79642077566298	15.39932472454811	16.40408359044024	
C	5.28459715461393	15.04555750267855	18.41960302891109	
[Ru₂H(OH)(Me₂(dad))(dbcot)]^+

Ru 8.19198930273976 10.54760799314640 17.0330471897671
Ru 10.52809739933618 11.80604701014733 17.08894411257244
N 10.02930719818105 9.85702383782355 17.79718318386743
N 9.55142746116078 10.83287946417659 15.45173468102280
C 7.39658489121309 11.12209198558409 18.96416831976540
H 8.18303857306579 11.10541574860149 19.72463908586499
C 6.85406330102868 9.87907872776298 18.57823145489758
H 7.26359168032247 8.98834212299816 19.07011661886581
C 10.32045286814715 13.80526682439632 16.45165601479158
Atom	X	Y	Z
H	9.53084640372152	13.92979526423471	15.70106867896552
C	6.25554116575873	13.11146165953666	20.02004177949162
H	6.47292308306607	12.70672477377163	21.01215733663829
C	6.64882365604312	12.4040445445832	18.88171420505138
C	6.39527559182627	12.92962680697844	17.60965722140230
C	13.7896443814106	14.53557995961931	16.04468825997530
H	13.59010179540421	14.95069414460436	15.05292747976627
C	10.83655106971636	12.7297766702043	18.95828000950267
H	10.3750324767252	12.1704602018353	19.7839462920889
C	12.85927247275633	13.67910293454578	16.63864103738666
C	10.72588164039061	10.15652823228327	15.58111106203783
H	11.42743547407055	10.06340301664714	14.74775340680452
C	11.57465996902136	13.29146597863005	15.99140296572689
H	11.64299041968817	13.0532059596193	14.92276881711679
C	12.08365501427325	12.22505475143588	18.46591169518036
H	12.47120267310642	11.31863009344628	18.94705012029613
C	6.88667211445015	12.16410666429591	16.43474545114209
H	7.35496744409731	12.77718165229024	15.65855680714328
C	10.98328665821819	9.62185530479435	16.8564062777759
H	11.90158065712754	9.07806894098228	17.09435271939055
C	10.21320805567996	14.71437685691839	17.62776172914246
C	10.23459951908145	9.27121920901978	19.10969883195562
H	9.74141085331564	9.87691034935330	19.8785837608166
H	11.30521754823541	9.19262610642717	19.35076546338964
H	9.79262374410419	8.2630287334961	19.1270390093664
C	6.33595393311640	10.93006539773748	16.02734149556733
H	6.42177798489448	10.68083903653434	14.96264966606852
C	9.23081182987267	11.3522866773087	14.13339828601009
H	8.64989910387826	10.59912293582775	13.57891614033690
H	10.14318911513156	11.58415335120876	13.5647403113292
H	8.62515004005942	12.2617134460146	14.21871894894567
C	5.47814186742432	9.73911194259607	18.02851752050612
C	9.81722599859230	16.04938468514155	17.51649119796789
H	9.59584435608390	16.46684848619879	16.5302694764258
	x	y	z
-----	------	------	------
C	5.75110247901828	14.16198924499533	17.47963577072985
H	5.57441414005629	14.57853231845554	16.48436384848162
C	13.11801972794067	13.13521014236257	17.90192585775499
C	10.33714384668743	19.61715298006115	20.03560160693937
H	10.52243004438251	14.52655511935981	21.02167808070339
C	5.21863223584477	20.26642170848173	16.7531886165622
C	10.47443208860610	14.16818173644561	18.89445059353470
C	5.61033307164188	19.3417404294600	19.88735365162035
H	5.31544017132393	14.90009566220167	20.77917845947109
C	14.97736580656295	19.84444371789955	16.71123158785061
H	15.71047186167743	15.50438641183205	16.24039029558830
C	5.35926999441569	18.8667922057639	18.61855296482327
H	4.86727373866996	15.83694980808911	18.5150748677968
C	9.67984229346910	16.83853557470202	18.66040450071220
H	9.35601995788968	17.87828410681637	18.56873178012570
C	9.94020272371732	16.29530795707835	19.91926152750122
H	9.82104270752346	16.90831032571165	20.81622833147410
C	3.94698394940073	10.12324784827804	16.19014877118292
H	3.75263015549580	10.51988119336760	15.19013348740233
C	14.30417847590245	13.44928569474415	18.56914798757351
H	14.50564889421949	13.01392053695412	19.55194390847830
C	15.23442006468161	14.30221916534238	17.97182530289225
H	16.16835721755962	14.53694442138871	18.48881506449610
C	4.46456168293761	9.07490365279436	18.7261540284554
H	4.67656370899553	8.65223235425747	19.71189297501410
C	2.93697293222658	9.46874145615029	16.89497950856549
H	1.94614608772775	9.35656404199741	16.44772660373129
C	3.19548034354741	8.94430013079461	18.16295320354550
H	2.40791650243597	8.42066297381933	18.71043806726093
H	8.85331110974183	12.07498376672718	17.53532690285336
O	7.87089106735635	8.53252874905635	16.31791212385602
H	7.95309345133972	8.47551238178145	15.35295317410492
H	6.99086250778879	8.17374200024329	16.51332808962570
\[
[Ru_2H_2(Me_2(dad))(dbcot)]_2 + H_2O \quad (1-H_2O)
\]

Element	X	Y	Z
Ru	8.13	10.75	17.14
Ru	10.50	12.00	17.17
N	9.49	10.03	17.88
N	9.47	11.23	15.55
C	7.28	12.23	19.03
H	8.03	11.23	19.83
C	6.80	9.96	18.60
H	7.02	9.08	19.12
C	10.39	14.01	16.52
H	9.59	14.17	15.78
C	5.96	13.10	20.10
H	6.16	12.69	21.09
C	6.45	12.46	18.97
H	6.91	12.46	18.97
C	13.89	14.51	16.20
H	13.70	14.92	15.03
C	10.82	12.94	19.02
H	10.39	12.44	19.86
C	6.77	12.70	16.53
H	7.21	12.97	15.77
C	10.94	9.83	16.95
H	11.87	10.05	17.92
C	10.39	14.95	17.67
H	9.63	10.57	19.95
H	11.24	9.48	19.46

46
H	9.81238034745436	8.44470898896148	19.21485307275593		
C	6.29209822536443	11.01627963681167	16.08986661082355		
H	6.37240049077567	10.79904891523416	15.01844477677581		
C	9.16356015255217	11.5432124854430	14.24000193365164		
H	8.65272812282378	10.77699407852221	13.63664002146523		
H	10.07448640473718	11.85779322405386	13.70820335042550		
C	8.49556189658055	12.40748979940370	14.33400073205436		
C	5.42722121778042	9.80169488036080	18.06322284398447		
C	10.13906946559034	16.32036025329654	17.53580699136697		
H	9.93333916352509	16.73680671556351	16.54553632392003		
C	5.44148032485294	14.16540323388285	17.57505322302990		
H	5.25311312959540	14.58577346795296	16.58297578386667		
C	13.1693199349382	13.19689872370854	17.92639976414784		
C	10.62950190883029	15.2440401284023	20.06547014696296		
H	10.8083280722487	14.81678906036679	21.05625987129038		
C	5.16684144780151	10.33638108700208	16.79195617514939		
C	10.64117346216513	14.41340101257557	18.94269373566797		
C	5.21364189930839	14.27938950941363	19.97960719225924		
H	4.84300016756284	14.78787281977628	20.87341163796746		
C	15.1096351099028	14.76587968700675	16.6681711807351		
H	15.87298335616533	15.36976010036739	16.17072491003707		
C	4.95448461571313	14.80932610281934	18.71480979967222		
H	4.38017604509213	15.73396837463961	18.61495264813911		
C	10.12563706208221	17.14735229890011	18.66163073224784		
H	9.91283124132221	18.21386219429877	18.55191662906067		
C	10.37066022563884	16.60974279699766	19.92602817873799		
H	10.35067030951670	17.25373577066447	20.80905407036956		
C	3.89235485140387	10.20781569705498	16.23394768411610		
H	3.69479976242327	10.61658842951388	15.23888592196320		
C	14.38514688341956	13.45187235513293	18.56523204365212		
H	14.57846371816057	13.02384900937807	19.55308499602170		
C	15.35612655329806	14.23320917500618	17.93461300102907		
H	16.31242906005722	14.41902128305308	18.43041906540050		
C	4.41139014217077	9.14374583093389	18.76111260704354		
[Ru$_2$H(Me$_2$(dad))(dbcot)$_2$]$^+$ + OH$^-$ + H$_2$ (TS2)

TS2

H 4.62143011681967 8.71955158858806 19.74719431729937
C 2.88068275455502 9.54665885077585 16.93389742159381
H 1.88875511901305 9.43957420811843 16.4871341183788
C 3.14025956576002 9.01400989694693 18.1975964369747
H 2.35258134304963 8.4881528561762 18.7435144344220
H 8.97277838470021 12.43384706224727 17.66523322895097
H 7.71382872543917 9.34238115462934 16.55288590821097
O 8.50370506287507 7.05939656066248 17.58548474080994
H 8.0177856308563 6.8988348972212 18.40366783351231
H 8.29702643640045 7.98835024934880 17.38104565437352

[Ru$_2$H(Me$_2$(dad))(dbcot)$_2$]$^+$ + OH$^-$ + H$_2$ (TS2)

TS2

Ru -0.78177238627358 -1.70313239882021 -0.5266337300332
Ru 1.59558637429004 -0.40423399491270 -0.48628761885007
N 1.12325912995653 -2.37454874703361 0.26779403846749
N 0.63926638352300 -1.44657032085979 -2.13736786973643
C -1.49351379973142 -1.03034064992256 1.39873367562763
H -0.70914975770844 -1.07990132291680 2.17367645575272
C -2.13431212822976 -2.26569427716287 1.06688702442907
H -1.77312280947310 -3.16004167548993 1.59999584350207
C 1.35107407719866 1.58072297458997 -1.18819667327545
H 0.57628372446754 1.67328674705634 -1.97121821559999
C -2.47211158562742 1.07948885900388 2.43576807072259
H -2.24193495619757 0.69421008566649 3.44183308622752
C -2.16821439810339 0.29917310165610 1.3060358409376
C -2.42964842791709 0.80153322333376 0.01304582782136
C 4.84056758300473 2.3738033921488 -1.55949405344273
H 4.65196552656866 2.75659137512471 -2.5768800619145
C 1.83443074391390 0.59260386992313 1.36790812169690
H 1.37259785365721 0.05694202297372 2.2176486005638
C 3.90786879687498 1.51897838244599 -0.95077771323995
C 1.83298203089574 -2.09734124852561 -1.97323723489191
H 2.55232761331584 -2.20105110339695 -2.80160894823811
C 2.64164380574104 1.07532667829616 -1.61069217992405

48
\[
[Ru_2H(OH)(Me_2(dad))(dbcot)_2] + H_2 \quad (5-H_2)
\]

\[
\begin{align*}
C & \quad 0.58526283320468 & \quad 4.69240582727003 & \quad 0.90950331880306 \\
H & \quad 0.23294912608014 & \quad 5.72675970533231 & \quad 0.77490518539032 \\
C & \quad 0.82951016917088 & \quad 4.19352638640111 & \quad 2.2030369631662 \\
H & \quad 0.668996674257347 & \quad 4.83579049156790 & \quad 3.0799402308383 \\
C & \quad -5.10595827601425 & \quad -1.93570006659600 & \quad -1.25513659781284 \\
H & \quad -5.30635463589613 & \quad -1.55812034836202 & \quad -2.27056121836281 \\
C & \quad 5.32932513998686 & \quad 1.37979139688123 & \quad 1.02720065308615 \\
H & \quad 5.52336686374794 & \quad 0.97649022552781 & \quad 2.03392204401471 \\
C & \quad 6.26118460851474 & \quad 2.23683683344826 & \quad 0.41477405936467 \\
H & \quad 5.67231166670446 & \quad -2.94356892614331 & \quad 1.31287052516734 \\
C & \quad -4.573290824128298 & \quad -3.35552411470804 & \quad 2.31105076363636 \\
H & \quad -6.13755040388021 & \quad -2.52415533117888 & \quad -0.50363192125847 \\
H & \quad -7.15062813094261 & \quad -2.6014405906309 & \quad -0.92788278056505 \\
C & \quad -5.87051737554096 & \quad 3.02859675757170 & \quad 0.78121146665003 \\
H & \quad -6.67370905684021 & \quad -3.50236998918446 & \quad 1.36663121924867 \\
H & \quad -0.10325956675999 & \quad -0.17536384801026 & \quad -0.0945334627528 \\
H & \quad -1.15351787018442 & \quad -3.2718786707060 & \quad -2.52676524481140 \\
O & \quad -0.93763861052850 & \quad -4.27971389433848 & \quad -0.52961568053949 \\
H & \quad -1.03708321173904 & \quad -3.8952361770744 & \quad -1.53979848475502 \\
H & \quad -0.01355563103122 & \quad -4.60351757908980 & \quad -0.50663417579533
\end{align*}
\]
Atom	X	Y	Z
H	2.35564577624493	4.18834873499492	3.02090487280738
C	0.60123489861879	2.93155979855907	3.04540541562776
C	-0.79883320337365	2.89076275464037	3.03417956519470
C	-1.38037886706126	0.26719742866922	-4.14056256804864
H	-2.47341238923971	0.22493394901216	-4.1424420899172
C	1.35189951963709	1.43539372214975	-0.72864685256345
H	2.21853840342125	1.57914967078959	-0.07224910672162
C	-0.68979235475735	0.26254499804549	-2.9262235660391
C	-0.64123073452658	-2.06539179016286	0.63366779312618
H	-1.20561885418284	-2.81081072442034	0.06649768945445
C	-1.36740926854091	0.20882593213244	-1.60026089583599
H	-2.21445809528264	-0.48522944744427	-1.53599165354435
C	1.37594471819627	0.28765930824333	-1.5862299970307
H	2.26060557758839	-0.35687635481619	-1.51314736023772
C	-1.43595081287552	1.54738927888283	2.99248574500466
H	-2.28606736661201	1.47520895074033	2.30640086452734
C	0.76342132538542	-2.02374960256760	0.64188628996048
H	1.37761017044267	-2.73312915432034	0.08037527559466
C	-0.76947151454689	2.64970928881419	-1.09647079746808
C	2.76672873152214	-0.96877212115931	1.42395450755311
H	3.11555234628510	0.06462424400916	1.53485010831397
H	3.22531795631048	-1.40085702630613	0.52143763551201
H	3.1106743968502	-1.53988613373450	2.30061858093294
C	-1.42861067874703	0.65613478464598	4.09913265887978
H	-2.27587163548473	-0.03565625436714	4.17720349275417
C	-2.71263082600150	-1.13663043234869	1.39638286733045
H	-3.02708180401088	-1.74786529751663	2.25690981336688
H	-3.13603356730314	-1.57599366530115	0.48024476677698
H	-3.12574033218866	-0.12962298546573	1.52674154399003
C	0.64022553840257	1.04293519921141	5.39413794602337
C	-1.49566660577517	3.81224785397629	-1.36514984482367
H	-2.58888319191917	3.78200701156808	-1.34916281044410
C	-1.53035435226667	4.08002577444325	3.00762393105025
H	-2.62306040029208	4.04286521395612	2.98003910368227
[Ru$_2$H(OH)(Me$_2$dad))(dbcot)$_2$]

| |
|-----|---|
| Ru | 8.20947488789152 10.52637427092874 17.00667579178967
| Ru | 10.54841101177366 11.81542822372808 17.08219803123842
| N | 10.05510935094558 9.85157130062550 17.77495667688575
| N | 9.58502191931337 10.83861092937375 15.43282485905182
| C | 7.43549482803677 11.09700289582656 18.91684183337684
| H | 8.20552475952298 11.07829548645250 19.69483626927733
| C | 6.89322618146058 9.84414439242459 18.52486310164681
| H | 7.29216462272765 8.95730661120393 19.03148840223971
| C | 10.33406004330155 13.81378313684751 16.45195770289589
| H | 9.54838820670318 13.94121922692262 15.69764366377931
| C | 6.24986370304496 13.06128314910995 19.99364579357775
| H | 6.64817951567182 12.65502030752226 20.98502748784428
| C | 6.66490872108003 12.36755327910990 18.85432766508064
| C | 6.40725956987343 12.89464558588237 17.58268086805478
| C | 13.80798492548427 14.54920035319574 16.06514275723282
| H | 13.61509175082398 14.96478839484386 15.07211213385963
| C | 10.83252129675649 12.73450442058599 18.95338878813117
| H | 10.3652335709753 12.18205362956882 19.77737565791325
| C | 12.87290762036454 13.69237852885802 16.65144442529918
| C | 10.76424065105075 10.17260807238358 15.56603649498824
| C | 11.47698192114074 10.09588876074573 14.74014051652730
| C | 11.59302295787406 13.30287792749295 15.99417726896572
| H | 11.66850894429374 13.07852644175987 14.92301796826114
| C | 12.08668320857347 12.23979508927721 18.47299391630355
| H | 12.47465335724432 11.33463487172297 18.96693840693500
| C | 6.92395953699463 12.13091068622049 16.41620017970160
| H | 7.37304502955689 12.75293256116422 15.63476373773613
| C | 11.01979964080376 9.63500556396107 16.83901902987537
| H | 11.94615147094172 9.10635822952611 17.08038028026900
| C | 10.22764505374354 14.72797341952363 17.62422891751292
| C | 10.26948614736549 9.27232138599505 19.08640707658572
| H | 9.74849388140670 9.85848025725909 19.85258208539755
| H | 11.33944516813467 9.22711031707827 19.34168926952630

The structure of the complex is shown on page 53.
C	6.37362211536339	10.88764793880688	16.0053524207798
H	9.2663648743613	11.36826148670141	14.11921659323526
C	8.2736068474436	10.60828677681632	13.54138335733639
H	10.18932993034812	11.63782584127692	13.56612074268175
C	8.4026222099763	12.25690879462833	14.2046783892496
C	5.50707586679097	9.71282402377724	18.00188701707863
C	9.84490752486497	16.06669900139500	17.51088318678671
C	5.73750022442389	14.11361847113117	17.45590119157768
H	5.55521666811556	14.53056419748368	16.46143734486950
C	13.12362585730640	13.14757212429343	17.91719211656825
C	10.34779628567632	14.97704988928248	20.0320032849888
H	10.52742718669426	14.54180072009631	21.0192354775590
C	5.24382667231558	10.24141114401354	16.72734612566906
C	10.48048585523989	14.18048529888171	18.89233076256546
C	5.8365568420216	14.28181754738281	19.86403488731742
H	5.27469496279075	14.83102607208794	20.75703629484453
C	14.99256786390711	14.85728607289038	16.73833773360628
H	15.72912421362803	15.5164821005993	16.27168141065288
C	5.32824847343603	14.80772438366829	18.59647393728286
C	4.81872064591662	15.76927464367352	18.4951248634688
C	9.71032071339056	16.85850519551058	18.653693082590718
H	9.39583050917249	17.90104268622858	18.56011513034101
C	9.96223851108584	16.31416748776079	19.91372956364177
H	9.84587341959373	16.92909300422811	20.80985153409337
C	3.96423129729197	10.11801935687815	16.17795762588758
H	3.76585194109219	10.51734910170555	15.1793927240639
C	14.30573534485876	13.46275262991418	18.59131905411151
H	14.50092560438921	13.02729182854011	19.5755075372539
C	15.24129347118378	14.31484078910377	18.00029465497197
H	16.17229701509177	14.54838671170677	18.52325008497430
C	4.48857512416625	9.06902701933999	18.71058090470675
Table S5: Complex impregnation on C^k, 1mg_{Ru} cm^{-2} catalyst loading (3.06% wt.\textsubscript{Ru}).

Reactants	Expected Quantity
[Ru\textsubscript{2}(µ-H)(Me\textsubscript{2}dad)(dbcot)]\textsubscript{2}OTf	36.0 mg (0.04 mmol\textsubscript{complex})
C\textsubscript{k}	214.0 mg
CH\textsubscript{3}CN for complex dissolution	15 mL
CH\textsubscript{3}CN for C\textsubscript{k} suspension	20 mL

Table S6: Complex impregnation on C\textsubscript{k}, 0.04 mg_{Ru} cm^{-2} catalyst loading (0.44% wt.\textsubscript{Ru}).

Reactants	Expected Quantity
[Ru\textsubscript{2}(µ-H)(Me\textsubscript{2}dad)(dbcot)]\textsubscript{2}OTf	3.6 mg (0.005 mmol\textsubscript{complex})
C\textsubscript{k}	214.0 mg
CH\textsubscript{3}CN for complex dissolution	5 mL
CH\textsubscript{3}CN for C\textsubscript{k} suspension	20 mL

Table S7: Ink preparation.

Reactants	Quantity
[Ru\textsubscript{2}(µ-H)(Me\textsubscript{2}dad)(dbcot)]\textsubscript{2}OTf / C\textsubscript{k} (3.06% wt.\textsubscript{Ru})	7.0 mg (0.008 mmol\textsubscript{complex})
Milli-Q water	600 mg
Component	Quantity
---------------	----------
EtOH	600 mg
Nafion 5%wt.	12 mg
Table S8: Surface composition determined by XPS analysis.

	CIs	NiS	Ru3d	N/Ru
Theoretical	89%	7%	5%	1.5
Pristine 2	87.2%	7.3%	5.5%	1.3
Pristine 2 after 7 days electrolysis	87.8%	7.8%	4.5%	1.7
4. Supplementary References

[S1] X. Yang, T. L. Gianetti, M. D. Wörle, N. P. van Leest, B. de Bruin, H. Grützmacher, *Chem. Sci.* 2019, 10, 1117.

[S2] T. D. Nguyen, G. G. Scherer, Z. J. Xu, *Electrocatalysis* 2016, 7, 420.

[S3] O. V. Dolomanov, L. J. Bourhis; R. J. Gildea, J. A. K. Howard, H. Puschmann *J. Appl. Crystallogr.* 2009, 42, 339.

[S4] G. Sheldrick *Acta Cryst. A* 2015, 71, 3.

[S5] G. Sheldrick *Acta Cryst. A* 2008, 64, 112.

[S6] Neese, F.“The ORCA program system” *Wiley interdisciplinary Reviews – Computational Molecular Science,* 2012, Vol 2., Issue 1, Pages 73.

[S7] Neese, F. WIREs *Comput Mol Sci* 2018, 8: e1327.

[S8] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, *J. Chem. Phys.* 2010, 132, 154104.

[S9] S. Grimme, S. Ehrlich, L. Goerigk *J. Comput. Chem.* 2011, 32, 1456.

[S10] J. Tao, J. P. Perdew, V. N. Staroverov, G. E. Scuseria *Phys. Rev. Lett.* 2003, 91, 146401.

[S11] F. Weigend, R. Ahlrichs *Phys. Chem. Chem. Phys.* 2005, 7, 3297.

[S12] F. Weigend *Phys. Chem. Chem. Phys.* 2006, 8, 1057.

[S13] C. Adamo, V. Barone *J. Chem. Phys.* 1999, 110, 6158.

[S14] V. Barone, M. Cossi *J. Phys. Chem. A* 1998, 102, 1995.

[S15] D. M. York, M. Karplus *J. Phys. Chem. A* 1999, 103, 11060.

[S16] J. L. Whitten *J. Chem. Phys.* 1973, 58, 4496.

[S17] F. Neese, F. Wennmohs, A. Hansen, U. Becker *Chem. Phys.* 2009, 356, 98.

[S18] S. P. Annen, V. Bambagioni, M. Bevilacqua, J. Filippi, A. Marchionni, W. Oberhauser, H. Schönberg, F. Vizza, C. Bianchini, H. Grützmacher, *Angew. Chemie Int. Ed.* 2010, 49, 7229.
[S19] M. Bellini, M. Bevilacqua, J. Filippi, A. Lavacchi, A. Marchionni, H. A. Miller, W. Oberhauser, F. Vizza, S. P. Annen, H. Grützmacher, ChemSusChem 2014, 7, 2432.

[S20] M. Bellini, J. Filippi, H. A. Miller, W. Oberhauser, F. Vizza, Q. He, H. Grützmacher, ChemCatChem 2017, 9, 746.