特集 転倒予防の新しい視点

6 転倒の自己認知は身体的危機関連の脳領域を活性化する
Self-recognition of One’s Own Fall Recruits the Genuine Bodily Crisis-related Brain Activity

菊池吉晃
Yoshiaki Kikuchi

Key words: 身体不安定性／自己特異性／頭頂島前頭皮質（PIVC）／島皮質（insula）／傍小脳巣核（parabrichial nucleus）

はじめに

ヒトは、直立二足歩行によって外界への適応能力を飛躍的に向上させることに成功した。すなわち、大脳皮質を含む奇妙な神経系のコントロールによって、常在する地球重力に抗しつつ高さに重心を置く身体を安定かつ自在に操る能力を獲得してきた。一方で、高齢者の身体は、他の動物とは異なり、常に転倒の危機に晒されることとなった。転倒による死亡やQOLの低下は今日の高齢化社会における深刻な問題であり、転倒予防は喫緊の社会的課題となっている。その基礎となる身体バランス・コントロールのための神経機構を解明することはきわめて重要であるが、いまだに健常者における神経機構においてさえ、その多くが未知のままだ。今日脳活動を非侵襲かつ精緻に計測するのに最も有効な方法として、機能的磁気共鳴画像法（functional magnetic resonance imaging：fMRI）がある。しかしながら、この方法は、通常横臥位で不動という条件下で測定しなければならないことから、被験者の身体を不安定な状態に置き、直接そのときの脳活動を計測することは不可能である。本稿では、fMRIを用いて、人の身体不安定性に関与する脳活動計測を可能とする、自他認知研究のパラダイムに基づく新しい方法を提案し、そこから得られる結果について、実際の身体不安定性に関与する脳領域との比較によって、この方法論の妥当性を検証した1-3）。

自己認知と脳内共有表現

私たちも、相手の身体動作からその情動状態を読み取ることができる。Darwinは、自著 「The
Expression of the Emotions in Man and Animals41において、精神を観測可能な情動表出である表情を着目することで、身体進化のみならず精神進化についても論じており、情動は動物が外界に適応的に生きていくうえでできわめて重要であると述べている。ヒトの身体表現も重要な情動表出の1つであり、脳内にその固有に存在する身体/運動図式は、同時に相互理解のための脳内共有表現（shared representation）の基盤でもあり5。コミュニケーションにおける重要な神経機構でもある。このように、そもそも自己固有的身体/運動図式が脳内に存在することから、外界から自己関連の情報や手がかりが入力されると、それは自己非関連情報に比して圧倒的に優先的かつ自動的に処理される。すなわち、自己関連の情報は、内在する自己特異的神経機構を自動的に活性化するが、特に自己生命にとっての危急情報は、自律神経系を含む内受容性情報処理系の活動を即時的かつ自動的に誘発することになる。

自己認知パラダイムに基づく方法

fMRI実験の約1カ月前に、被験者に、図1のようなバランスボード上でバランスをとるよう指示し、その様子を撮影した観動を編集し実験に用いた。特に、2つの動的状態に着目した。それは、動的安定状態（ゆっくりした一定速度で左右を往復するボード上でバランスをとる）と動的不安定状態（1本しかいない円柱上に設置したバランスボード上でバランスをとる）である。fMRI実験では、被験者自身の動画と4人の見知らぬ他者の動画をランダムに提示し、それを観ているときの脳活動を計測した。そして、被験者自身の動画には、図1のように右上に○を入れ、自己と他者とが区別できるようにした。得られた脳活動データをもとに、自己の動的安定状態に対して自己の動的不安定状態を観たときに有意に活動する脳領域（[自己身体不安定性認知に関与する脳領域]）、他者の動的安定状態に対して他者の動的不安定状態を観たときに有意に活動する脳領域（[他者身体不安定性認知に関与する脳領域]）さらに、後者に対して前者で有意な活動を示す脳領域（[自己身体不安定性認知における自己特異的脳活動]）について検討した。加えて、自己それぞれの動物に対する主観評価（不安、安心、危険、安全、焦り、平穏など）も実施した。その結果、興味深いことに、刺激動物に対する主観評価では自己の有意差は認められなかったが、脳活動では、以下に示すように、顕著な自己差が認められた。

自己身体不安定性認知に関与する脳領域

自己身体不安定性認知に関与する脳領域は、右背側運動前野（dorsal premotor cortex：PMd）、右の頭頂島前庭皮質（parieto-insular vestibular cortex：PIVC）/側頭-頭頂接続部（temporo-parietal junction：TPJ）、右下頭頂葉（inferior parietal lobe：IPL）、左縦上回、紡錘状回、被殻、尾状核であった（図1）。

PIVCはいわゆる前庭皮質であり6,7、前庭神経核からの線維が視床を経由して投射する脳領域である。右利きの人では、特に右半球が優位である8。実際に、本研究においても、被験者は全員右手利きであったが、右PIVCで有意な活動が認められた。さらに、同領域には視床下部からも豊富な神経投射があり9。自己身体不安定性認知に関する視覚情報は即時的かつ直接 PIVC に送られる神経構造でもある。右TPJは、右PIVCの領域と重なる部分もあり、体性感覚・視覚・前庭情報など複数モダリティーの情報が束縛し統合処理がなされ得る構造となっている。同領域は自己の身体的意識に関与しており10。身体不安定性という危機情
報によって自動的に活性化したものと考えられる。本実験系における自己身体不安定性の情報は、最初 allocentric（他者中心）な視空間座標系の情報として視覚系を通じて入力されるが、その情報は脳内に存在する自己の身体・運動空間に基づいて egocentric（自己中心）な自己身体・運動空間座標に自動的に時的に変換されると考えられる。そして、体幹から下肢に対応する右 PMd、尾状核、被殻、左観上回の有意な活動は、このような処理過程を反映するものと思われる。

これらの結果から、自己の身体不安定性認知に関与する神経機構は、以下の主に3つの処理過程からなると考えられる（図2）。

①提示された自己身体運動パターンの視覚情報から、視空間情報と
図2 他者身体不安定性と自己身体不安定性の認知における情報処理の比較
後者に比較して前者で有意な活動を示した脳領域は、有線外皮質身体領域（EBA）と上頭頂領域（SPL）であった。これに対して、前者に比較して後者で有意な活動を示した脳領域は、視覚情報処理に関与する前頭部や下頭頂領域であった。さらに、ここで処理された視覚空間座標情報を、自己の身体/運動機能に基づき実体的な自己の身体/運動座標情報に変換と考えられる大脳基底核（basal ganglia）、前部線条上回（aSMG）および前皮運動前野（PMD）の活動が認められた。また、頚頭間庭皮質（PTIC）においては、自己身体不安定性の評価がなされると考えられる。

しての「自己身体不安定性」に関する情報が抽出される（紡錘状回、IPL）。抽出された「自己身体不安定性」に関する視覚情報から自己身体/運動情報に変換（eccentric → egocentric）されることによって、実体的な「身体的不安定性」として処理される（PMD、SMG、被殻、尾状核）。実体的な「自己身体の不安定性」に伴う不安定感や危機の強度が評価される（PTIC）。

自己身体不安定性認知に
及ぼす脳活顕

自己身体不安定性の認知における自己特異的脳活動「(自己自の不安定 vs. 自己自的安定) vs. (他者動的不安定 vs. 他者動的安定)」は、右半球では、島皮質後部、腹側運動前野（ventral premotor cortex：PMv）、後小脳脚核（parabrachial nucleus：PBN）/下前頭を統合（inferior frontal junction：IFJ）および唾外側前頭前野（rostral-lateral prefrontal cortex；RLPFC）、左半球では、紡錘状回、舌状回および海馬傍で認められた。このうち、前3領域は、実際に自己の身体が不安定な状態に置かれた際に活動する脳領域である（図3）。特に、右PBNが有意な活動を示したことの大変興味深い結果であった。PBNは前庭神経核と双方向性に連絡があり、身体の回転や位置変化に応答するニューロンが豊富に存在する[3]。同領域には前庭・体性情報や内臓状態などの身体内外からのさまざまな情報が送られ、転倒に伴う恐怖や
不安などの情動反応や回避行動において重要な役割を果たしている。また、PBN のニューロンは頭部の空間的偏倚に対して鋭敏に応答し、転倒の危機を検出し身体バランスを保つうえできわめて重要である。さらに、PBN からは下行性に前庭神経核・橋・脊髄への神経連絡があり、身体不安定性の検知のみならず、身体・姿勢コントロールに必要な交感神経系の活性化を促進する。この PBN は同側性に島皮質に連絡するが、島皮質においては前方から前方にかけて機能的な階層性が認められ、体性・前庭・内臓情報などはまず島皮質後部に送られて、島皮質前部へ向かうにつれてより高次の情報処理がなされていく。特に、右島皮質は交感神経系の活性化と関連する。PMv/IFJ は、自己にとっての潜在的な危険認知に関与しており、例えば、自分に襲いかかろうとする相手の動きを注視することで右 PMv/IFJ は高い活動性を示すことが知られている。また、PMv 内の背側多感覚モダリティ領域を電気刺激すると、回避や防衛などの防御反応が誘発される。RLPFC については高次のメタ認知に関与することから、同領域の活動は、被験者が自分自身の身体の動きを客観的に観るという実験条件を反映したものと考えられる。

これらの結果から、自己身体不安定性認知における自己特異的な情報処理過程は、以下と考えられる。すなわち、①自己身体の不安定な動きを自分自身がみてというメタ認知処理（右 RLPFC）、②前庭系を中心とした実体的な身体不安定性に関する情報処理とそれに伴う交感神経活性化や不安・恐怖などの情動に関する情報処理（右 PBN、右島皮質）、③身体の危機に対する防衛のための運動反応準備（右 PMv/IFJ）である。

以上の結果から、本研究の結果から得られた、PBN → 島 → PIVC → PMv/IFJ の神経ネットワークは、実際に身体不安定性に関与する神経ネットワークに包含される（図 4）ことから、自他認知研究のパラダイムに基づく本方法論は、人の身体
不安定性に関する研究において有効であることが示された。

文献
1) Kikuchi Y, Noriuchi M : The selfish brain : what matters is my body, not yours? Emotional Engineering Vol 5 (ed by Fukuda S). Springer Nature, London, 2017; pp 49-61, Hardcover (ISBN 978-3-319-70801-0). eBook (ISBN 978-3-319-70802-7)
2) Kikuchi Y : Does self-recognition of one’s own fall recruits the genuine bodily crisis-related brain activity? J Phys Fit Sports Med 2015; 4: 299-306
3) Atomi T, Noriuchi M, Oba K, Atomi Y, Kikuchi Y : Self-recognition of one’s own fall recruits the genuine bodily crisis-related brain activity. PLoS ONE 2014; 7: e37901
4) Darwin C : The Expression of the Emotion in Man and Animals, John Murray, London, 1872
5) Gallese V, Keysers C, Rizzolatti G : A unifying view of the basis of social cognition. Trends Cogn Sci 2004; 8: 396-403
6) Chen A, DeAngelis GC, Angelaki DE : Macaque parieto-insular vestibular cortex : responses to self-motion and optic flow. J Neurosci 2010; 30: 3022-3042
7) Lopez C, Blanke O, Mast FW : The human vestibular organ revealed by coordinate-based activation likelihood estimation meta-analysis. Neuroscience 2012; 212: 159-179
8) Dieterich M, Brandt T : Functional brain imaging of peripheral and central vestibular disorders. Brain 2008; 131: 2538-2552
9) Indovina I, Maffei V, Bosco G, Zago M, Macaluso E, Lacquaniti F : Representation of visual gravitational motion in the human vestibular cortex. Science 2005; 308: 416-419
10) Pfeiffer C, Serino A, Blanke O : The vestibular system : a spatial reference for bodily self-consciousness. Front Integr Neurosci 2014; 8: 31
11) Peelen MV, Downing PE : The neural basis of visual body perception. Nat Rev Neurosci 2007; 8: 636-648
12) Saxe R, Jamal N, Powell L : My body or yours? The effect of visual perspective on cortical body representations. Cereb Cortex 2006; 16: 178-182
13) McCandless CH, Balaban CD : Parabrachial nucleus neuronal responses to off-vertical axis rotation in macaques. Exp Brain Res 2010; 202: 271-290
14) Balaban CD : Neural substrates linking balance control and anxiety. Physiol Behavior 2002; 77: 469-475
15) Chamberlin NL, Saper CB : Topographic organization of cardiovascular responses to electrical and glutamate microstimulation of the parabrachial nucleus in the rat. J Comp Neur 1992; 326: 245-262
16) Critchley HD, Taggart P, Sutton PM, Holdright DR, Batchvarov V, Hmatkova K, Malik M, Dolan RJ : Mental stress and sudden cardiac death : asymmetric midbrain activity as a linking mechanism. Brain 2005; 128: 75-85
17) Craig AD : How do you feel—now? The anterior insula and human awareness. Nat Rev Neurosci 2009; 10 : 59-70
18) Craig AD : How do you feel? Interception : the sense of the physiological condition of the body. Nat Rev Neurosci 2002; 3: 655-666
19) Levy BJ, Wagner AD : Cognitive control and right ventrolateral prefrontal cortex : reflexive reorienting, motor inhibition, and action updating. Ann N Y Acad Sci 2011; 1224: 40-62
20) Fuji N, Mushiaka H, Tani J : An oculomotor representation area within the ventral premotor cortex. Proc Natl Acad Sci U S A 1998; 95: 12034-12037
21) Fleming SM, Kny J, Golfinos JG, Blackmon KE : Domain-specific impairment in metacognitive accuracy following anterior prefrontal lesions. Brain 2014; 137: 2811-2822