Transformer with Adjustable Path-Core Type Inductance for Use in GaN-HEMT LLC Resonant Converter

Tengfei Ou* Non-member, Mostafa Noah∗ Non-member
Mamoru Tsuruya** Non-member, Seiji Namiki** Non-member
Koichi Morita** Member, Jun Imaoka* Member
Masayoshi Yamamoto* Member

(Manuscript received March 2, 2021, revised May 25, 2021)
J-STAGE Advance published date: July 23, 2021

A novel magnetic structure for use in LLC resonant converters is proposed in this paper. It is known as a Path-core type Resonant Inductance Adjustable (PRIA) transformer, which is a type of transformer with adjustable resonant inductance. In the proposed transformer, the resonant inductance and magnetizing inductance can be designed separately; therefore, it becomes less challenging to realize the required resonant frequency. Moreover, the magnetizing inductance is not affected by any variation in the resonant inductance. The proposed PRIA transformer is found to improve the efficiency of the LLC converters. In this paper, the design of a resonant inductance of a PRIA transformer is presented. In addition, the application of PRIA transformers to a 1-MHz LLC resonant converter and 1 kW 1.4-MHz LLC resonant converter is presented.

Keywords: transformer, resonant converter, leakage inductance

1. Nomenclature

All the symbols which are used in this paper are listed below.

- R_m: the magnetic reluctance of the core
- R_{cl}: the magnetic reluctance of the main core’s center leg
- R_{gm}: the magnetic reluctance of the main core’s air gap
- R_{path}: the magnetic reluctance of the path-core
- R_{lk}: the leakage magnetic reluctance of the integrated transformer’s primary side
- N_p: the numbers of primary side coils
- N_s: the numbers of secondary side coils on the main core
- N_{s2}: the numbers of the secondary side coils on the path-core
- L_{rp}: the resonant inductance on the primary side
- L_{rs}: the resonant inductance on the secondary side
- l_e: the length of the effective magnetic path
- l_{path}: the length of the path-core
- l_{gm}: the length of the air gap on the main core’s center leg
- l_{path}: the length of the air gap between the main core and the path-core
- l_{gpath}: the length of the air gap between the main core’s side leg and the path-core
- k: coupling coefficient

* Correspondence to: Tengfei Ou. E-mail: ou.tengfei@e.mbox.nagoya-u.ac.jp
* Department of Electrical Engineering, Graduate School of Engineering, Nagoya University
** Engineering Department, Power Assist Technology (Ltd.)
Nagoya 464-8601, Japan

2. Introduction

Power supplies have become smaller and smaller since Si transistors appeared in the 1970s. The next generation, the High-electron-mobility Gallium Nitride (GaN HEMT) power transistors, allow high frequency operations from kHz-levels up to several MHz-levels. Normally, there are switching losses on power switching devices when they turn on or turn off. The switching losses will increase if the switching frequency increases in hard-switching models. After decades of improvement, however, LLC resonant converters have been proved to have the beneficial capability of soft switching operations. Moreover, high efficiency can be attained over the entire load range at high frequencies.(12) Also, some studies in (3), (4) have proved that LLC converters absolutely have the capability to handle high power output and wide output power range. LLC resonant converters have been adopted in many applications, such as ac-LED drive circuits(13), Advanced Technology Extended (ATX) power supplies(14) and onboard battery chargers for plug-in hybrid electric vehicles (PHEV)(15,16). It is not difficult to imagine that LLC resonant converters will eventually be applied in electric aircraft too.

Leakage inductance is playing an incredibly significant role in LLC resonant converters. For instance, many studies in the literature proposed topologies to utilize the transformer leakage inductance as a resonant inductance instead of using an external reactor coil in both single-phase(19) and three-phase topologies(15). Therefore, in many designs, the external resonant inductance, which is a reactor coil, becomes...
Path-Core Type Resonant Inductance Adjustable (PRIA) Transformer (Tengfei Ou et al.)

no longer necessary to allow for a further miniaturization of LLC resonant converters. However, the transformer leakage inductance, which acts as a resonant inductance in the circuit, may create excessive losses if it is not effectively used. Due to the above problem, there are studies that have proposed to design an optimized transformer adopted in LLC resonant converters. In (16), a custom transformer has been designed for LLC resonant converters by using a magnetic shunt to maximize the leakage inductance and be suitable in a 1-MHz LLC resonant converter. It has been successfully proved that a 280 V–380 V and 20 W–100 W half bridge LLC resonant converter was working with the new magnetic structure transformer which has a magnetic shunt. The magnetic shunt in the transformer was making a new magnetic flux path so that the leakage inductance of the transformer can be maximized. However, the leakage inductance, which is the resonant inductance, was not able to be adjusted easily with the magnetic structure in (16). Once the design is decided, it could be expensive and time consuming to redesign it again if a new value of resonant inductance is required. Inventing integrated transformers to be used in LLC resonant converters is an issue that many researchers have tried to give an answer in (17)–(20).

Those works inspired the idea to have an original magnetic structure which can adjust resonant inductance with the numbers of coils on a simple I-core as the path for the fluxes of resonant inductance, and without any effect on the value of the magnetizing inductance. The above idea has been proved successful in (21), and it has been proved that the PRIA structure can easily obtain higher values of resonant inductance in the integrated transformer with much fewer eddy current losses than traditional transformers, because the fluxes for creating resonant inductance are in the I-core. The value of the fluxes for creating resonant inductance can be controlled by adjusting the dimensions of the I-core.

The proposed PRIA structure can be used in a solar panel system which is shown in Fig. 1 to increase the efficiency of the isolated DC/DC converter, downsizing and reducing costs.

LLC resonant converters can handle high power output since there is an inductor L_r resonant with a capacitor C_r to achieve fewer switching losses. The topology of the prototype LLC resonant converter is shown in Fig. 2.

The magnetizing inductance L_m is a component of transformer, L_r is a component of coil in conventional LLC resonant converters. A lot of studies have achieved in integrating L_r and L_m as a transformer with using leakage inductance of transformer as L_r. The proposed magnetic structure is also one of them. The PRIA transformer can downsize the system, and the size difference is shown in Fig. 3.

There is much less space between the FET devices and transformers than in conventional LLC resonant converters and more costs could be saved compared with conventional LLC resonant converters using PRIA transformers.

The aforementioned reasons explain why integrated transformers are in the spotlight now, and integrated transformers have been adopted in many applications. However, the leakage fluxes between the primary side coils and secondary side coils were generated with conventional integrated transformers so that a lot of eddy current losses were generated. The proposed structure solve this problem and improve the efficiency of the transformer with LLC resonant converters.

2.1 Characteristics of Transformers for LLC Converters in Pervious Research

In the relevant literature, several design approaches were proposed for integrated transformers used in LLC resonant converters. The integrated transformers in (16), (19), (20) are shown in Table 1 to provide a comparison between the transformers. Each characteristic of the transformer is described as below.

(16): The leakage inductance can be adjusted with the magnetic shunt sheet. However, the magnetizing inductance will change when the leakage inductance is adjusted. Planer coils and a planer transformer were used, which also means that it could cost a lot of money and time to redesign when a new specification for the transformer is required.

(19): Two reactor coils for resonant inductance were combined with the transformer. The values for resonant inductance can be adjusted. Therefore, it can have a high-power output, but more core losses should be created than with an integrated transformer if they have the same power output. Moreover, the volume of the transformer should be the biggest one and the resonant frequency should be the lowest in (17)–(21).

(20): The leakage inductance can be adjusted with the
Table 1. Comparing characteristics of transformers that were used in LLC resonant converters (The number in [*] is the reference paper)

Reference	Transformer Sharp	Magnetic Structure	Characteristics
[16]	Magnetic sheet	Magnetic shunt (Planar core)	L_r can be set with a magnetic shunt sheet
[19]	2 sets of EE core (Customize core)	L_r is generated with air gap	
[20]	EE sharp transformer (Standard core)	L_r cannot be designed	

Reference	Transformer Sharp	Magnetic Structure	Characteristics
[21]	EE & I cores	PRIA transformer (Standard core)	L_r can be set
	From A Side	Easy calculation	L_r, L_m, Independent
	From B Side		
	From C Side		
	From D Side		

where L_r, C_r are the parameters of the resonant tank, L_r is the resonant inductance and C_r is the resonant capacitor. The values of L_rC_r have to be decreased if a higher resonant frequency is desired. However, the values of C_r are decided by the components which have standard values. In other words, it is not easy to exactly achieve the required capacitance value. In this case, L_r is the only value that can be customized in the resonant tank.

In a normal transformer structure, the values of L_r are affected by the self-inductance L_p. It can be expressed as follows:

$$L_r = L_p - L_m = L_p - kL_p = (1 - k) \cdot L_p \cdots \cd - 43 IEEJ Journal IA, Vol.11, No.1, 2022
where the I is input current and S is the cross-section respectively.

The impedance of the primary side’s coils and secondary side’s coils has the relationship,

$$Z_p = n^2 \cdot Z_s. \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (5)$$

where n is the ratio of N_p to N_s.

In this case, the input voltage is fixed, which means if the values of N_p were decreased, since the input current will increase as a power multiple of 2, the values of B will increase. It means there is a higher value of flux density B in the transformer material.

Technically, when a smaller value of resonant inductance L_r is designed to achieve a higher resonant frequency, more core losses should be produced normally.

3.2 Proposing Magnetic Structure

The PRIA magnetic structure transformer, which is proposed in this paper, can effectively improve the above situation. In terms of results, the values of resonant inductance are determined by the numbers of N_p on the path-core and will not affect flux density B which is designed in the main core.

A path-core (I core shape) was added between the primary side and the secondary side to allow the resonant transformer fluxes to flow in, from the main core. The PRIA transformer structure is shown in Fig. 4. The proposing structure combines with a EER28L-core and a I-core. Figure 4(a) is a 3D model created by FEMTET. And the Fig. 4(b) is the prototype made for experiments. In this case, the magnetic circuit of the PRIA transformer is shown in Fig. 5.

In order to design a resonant inductance with a PRIA transformer, the following equations have been used.

The magnetic reluctance of core R_{gm}, R_{path}, and air gap magnetic reluctance R_{gpath} are,

$$R_{gm} = \frac{I_r}{\mu_0 \mu_i A_c}, \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (6)$$

$$R_{path} = \frac{I_{path}}{\mu_0 \mu_i A_{path}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (7)$$

where the A_c is the cross-sectional area of the main core and the A_{path} is the cross-sectional area of the path-core.

$$R_{gpath} = \frac{I_{gpath}}{\mu_0 A_c} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (9)$$

3.3 Magnetizing Inductance

The primary side coils have two relationships with the secondary coils in the PRIA structure. These two relationships are shown in Fig. 6.

Therefore, when magnitude of R_{gm} is ignored, then the magnetizing inductance can be approximately calculated as,

$$L_m = \frac{N_p^2}{R_m+R_{gm}+\frac{N_s^2}{2}+R_{gpath}+R_{path}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (10)$$

The first term expresses the magnetizing inductance which is generated in the main core, and the second term expresses the magnetizing inductance which is generated between the center leg of main core and the path-core.

3.4 Resonant Inductance

The influence of the side legs with the PRIA structure to calculate the resonant inductance on the secondary side is ignored for the following reasons.

3.4.1 Reason one

It is assumed that the inner windings (primary & secondary) are highly coupled, with no leakage, as the distance between the two windings is exceedingly small. The number of coils which wound the I-core influences $L_{r,\omega}$ due to the flux originating from these coils crossing in the I-core. The structure of the coils on the main core is shown in Fig. 7.

3.4.2 Reason two

The large majority of fluxes which create resonant inductance are crossing into the I-core and the center legs of the main core. The length of the air gap between the main core and the path-core is shown in Fig. 8. The I_{gpath} especially has less distance than $I_{r,\omega}$ in this case.

The resonant inductance which was designed exits on the secondary side in the PRIA structure so there is a relationship only between the secondary coils which are on the path-core and the main core when there is output current. The resonant fluxes are crossing the path-core to the side-legs of the EER core. This relationship is shown in Fig. 10.

Since they have the relationship in Fig. 9, the magnitude of $L_{r,\omega}$ can be calculated easily with equation (11). The resonant inductance was generated with the secondary coils and it only exists on the secondary side when there is output current with the PRIA structure.

$$L_{r,\omega} = \frac{(N_p+N_s)^2}{R_m+R_{gm}+R_{gpath}+R_{path}} \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots (11)$$

The magnitude of $L_{r,\omega}$ can be adjusted by the number of coils on the path-core and the magnitude of the R_{path} or the R_{gpath}. The R_{path} and the R_{gpath} are expressed by (7) and (9). Then there are the relationships between the R_{gpath}, the R_{path}
The relationship of the primary coils with the secondary coils which are on the EER core.

The relationship of the primary coils with the secondary coils which are on the I-core.

(a) The relationship of the primary coils with the secondary coils which are on the EER core.

(b) The relationship of the primary coils with the secondary coils which are on the I-core.

Fig. 6. The relationships of the primary side with the secondary side

Fig. 7. Coil distribution on the main core

Fig. 9. The relationship of the secondary coils with the path-core

Fig. 10. The proposed transformer structure with adjustable $L_{r,\omega}$

and the I-core which is shown in Fig. 10.

Resonant inductance L_r in the resonant tank should be transferred from $L_{r,\omega}$,

$$L_{r,\omega} = L_{r,\omega} \cdot \left(\frac{N_2}{N_s} \right)^2 \cdot \cdots \cdOTS

Mainly N_p determines L_m and B. The value of L_r can be set by N_{s2}, which is the number of coils on the path-core. Fine adjustments for resonant inductance that could also be achieved by adjusting the values of the R_{path} or R_{gpath} could be the best option.

4. Design Theory Evaluation

The specifications of the transformer which were used for designing the PRIA transformer are shown in Table 2.

In this section, the method of measurement is discussed and theoretical results and measurement results are confirmed.

An equivalent circuit of transformers is shown in Fig. 11. The magnitudes of magnetizing inductance and resonant inductance are measured with this equivalence during industrial
Table 2. The specifications of the transformer

Simple	Value
Initial permeability μ_r	1100
A_c [mm²]	81.4
A_{path} [mm²]	37.45
L_c [mm]	33.8
l_{path} [mm]	28.8
L_{ps} [mm]	6.4
L_{spath} [mm]	5.8
N_p	7
N_s	6

Fig. 11. Equivalent circuit of transformers

Process normally.

This method should be adapted when the magnitude of leakage inductance is much lower than the magnitude of magnetizing inductance as the condition. And consequently, when the magnitude of magnetizing inductance is not much larger than leakage inductance, the volume of leakage inductance is less than the real volume which exists on the transformer. One of the benefits of the proposing structure is that the leakage inductance exists on the secondary side, therefore, the volume of magnetizing inductance will not influence the magnitude of leakage inductance. The magnetizing inductance and leakage inductance were measured by the method which is shown in Fig. 11.

The yellow line is determined by equation (10). The red points are measurement results. The measurement results between the magnetizing inductance and N_p’s values are confirmed and shown in Fig. 12.

The magnetizing inductance can be set separately with resonant inductance with the PRIA structure. Theoretical results and measurement results between the resonant inductance and N_s’s values are confirmed and shown in Fig. 13. The yellow line is determined by equation (12). The red points are measurement results.

Since the resonant inductance could be calculated with equation (11), the resonant inductance could be calibrated by adjusting the distance between the main core and the path-core. At the beginning, when the transformer was designed, the distance which was between the main core and the path-core was kept as small as possible. However, it is impossible for the distance to be smaller than 5.8 mm because of the shape of the bobbin, which is shown in Fig. 4(b). Furthermore, the relationship between the resonant inductance and the distance has been confirmed and shown in Fig. 14.

The magnetizing inductance can be calculated with (10) and the resonant inductance can be calculated with (11) and (12). It is confirmed that the resonant inductance can be set with N_s’s values and the distance which was between the main core and the path-core in Fig. 13 and Fig. 14.

5. Experimental Evaluation

In this section, a 1-MHz resonant LLC converter and a 1.4-MHz resonant converter were designed to confirm the theory which was described in section 4 with experiments. The theoretical parameters which requested to be realized are shown in Table 3.

The experiment results of LLC resonant converters with the PRIA transformer are presented in Table 4.

Considering that some parasitic inductance exists on the PBC circuit board, the resonant inductance that were set with PRIA transformers were fewer than the requested values in
The theoretical values of L_m and L_r, which were calculated from (10)–(12), were confirmed with experimental values. The advantages of the proposed magnetic structure, which is that the resonant inductance L_r can be set by N_{r2} and the magnetizing inductance L_m can be set separately with L_r, were confirmed in this paper.

A 1-MHz LLC resonant converter and a design with a 1.4-MHz LLC resonant converter successfully worked with the proposed magnetic structure. The experiments proved that it is efficient to realize the required value of resonant frequency with the PRIA structure.

The analysis of the transformer losses results are being worked on at the moment. The core losses and the copper losses will be analyzed to show the advantages of the PRIA structure in the future soon.

References

1. I. Batarseh: “Resonant converter topologies with three and four energy storage elements”, in IEEE Transactions on Power Electronics, Vol.9, No.1, pp.64–73 (1994)
2. T. Jiang, Q. Lin, J. Zhang, and Y. Wang: “A novel ZVS and ZCS three-port LLC resonant converter for renewable energy systems”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), Pittsburgh, PA, pp.2296–2302 (2014)
3. A. Amirrahmati, M. Domh, and E. Persson: “High power density high efficiency wide input voltage range LLC resonant converter utilizing E-mode GaN switches”, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, pp.350–354 (2017)
4. A. Vasicek: “1 kW LLC Resonant Converter With HV GaN Switches”, Proceedings of PCIM Europe 2015; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, pp.1–7 (2015)
5. B.G. Kang, Y. Choi, and S.K. Chung: “Design of integrated balancing transformer for high frequency AC-LED drive circuit”, in Electronics Letters, Vol.52, No.12, pp.1054–1056, 9 6 (2016)
6. Z. Nan, M. Xiu, J. Sun, W. Han, and Y. Yao: “Novel DC-DC architecture for high efficiency SMPS with multiple outputs”, 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, pp.3719–3726 (2010)
7. J. Deng, S. Li, S. Hu, C.C. Mi, and R. Ma: “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers”, in IEEE Transactions on Vehicular Technology, Vol.63, No.4, pp.1581–1592 (2014)
8. S. Hu, J. Deng, C. Mi, and M. Zhang: “Optimal design of line level control resonant converters in plug-in hybrid electric vehicle battery chargers”, in IET Electrical Systems in Transportation, Vol.4, No.1, pp.21–28 (2014)
9. M.C. Smit, J.A. Ferreira, J.D. Van Wyk, and M. Elsah: “An ultrasonic series resonant converter with integrated L-C-T”, in IEEE Transactions on Power Electronics, Vol.10, No.1, pp.25–31 (1995)
10. W. Liu and J.D. Van Wyk: “Design of integrated LLC resonant converter”, Twentieth Annual IEEE Applied Power Electronics Conference and Exposition, 2005. APEC 2005., Austin, TX, Vol.1, pp.362–368 (2005)
11. M. Noah, et al.: “Magnetic Design and Experimental Evaluation of a Commercially Available Single Integrated Transformer in Three-Phase LLC Resonant Converter”, in IEEE Transactions on Industry Applications, Vol.54, No.6, pp.6190–6204 (2018)
12. M. Noah, K. Umetani, S. Endo, H. Ishibashi, J. Imaoka, and M. Yamamoto: “A Lagrangian dynamics model of integrated transformer incorporated in a multi-phase LLC converter”, 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, pp.3781–3787 (2017)
13. M. Noah, K. Umetani, J. Imaoka, and M. Yamamoto: “Lagrangian dynamics model and practical implementation of an integrated transformer in multi-phase LLC resonant converter”, in IET Power Electronics, Vol.11, No.2, pp.339–347, 20 2 (2018)
14. M. Noah, et al.: “A Current Sharing Method Utilizing Single Balancing Transformer for a Multiphase LLC Resonant Converter With Integrated Magnetics”, in IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol.6, No.2, pp.977–992 (2018)
15. M. Noah, et al.: “A novel three-phase LLC resonant converter with integrated magnets for lower turn-off losses and higher power density”, 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Tampa, FL, pp.322–329 (2017)
16. M. Li, Z. Ouyang, and M.A.E. Andersen: “High frequency LLC resonant converter with magnetic shunt integrated planar transformer”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, pp.2678–2685 (2018)
17. R. Chen and S. Yu: “A high-efficiency high-power-density 1 MHz LLC converter with GaN devices and integrated transformer”, 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, pp.791–796 (2018)
18. S. Guo, P. Liu, L. Zhang, and A.Q. Huang: “Design and optimization of the high frequency transformer for a 800 V/1.2 MHz SiC LLC resonant converter”, 2017 IEEE Energy Conversion Congress and Exposition (ECCE), Cincinnati, OH, pp.5317–5323 (2017)
19. C. Worek and S. Ligenza: “Integrated magnetic element for improving efficiency of LLC resonant converter”, 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), Warsaw,
Path-Core Type Resonant Inductance Adjustable (PRIA) Transformer (Tengfei Ou et al.)

pp.P.1–P.7 (2017)

(20) J. Jung: “Bifilar Winding of a Center-Tapped Transformer Including Integrated Resonant Inductance for LLC Resonant Converters”, in IEEE Transactions on Power Electronics, Vol.28, No.2, pp.615–620 (2013)

(21) T. Ou, et al.: “A Novel Transformer Structure Used in a 1.4 MHz LLC Resonant Converter with GaNFTETs”, 2018 IEEE International Power Electronics and Application Conference and Exposition (PEAC), Shenzhen, pp.1–5 (2018)

(22) S. Vavilapalli, U. Subramaniam, S. Padmanaban, and V.K. Ramachandaramurthy: “Design and Real-Time Simulation of an AC Voltage Regulator Based Battery Charger for Large-Scale PV-Grid Energy Storage Systems”, in IEEE Access, Vol.5, pp.25158–25170 (2017)

Tengfei Ou (Non-member) received the B.S. and M.S. degrees in Electrical Engineering from Shimane University, Japan, in 2015 and 2017, respectively. From 2018, he is currently pursuing the Ph.D. degree in Power Electronics Laboratory, Department Electrical Engineering in Nagoya University, Nagoya, Japan. And he is with ON Semiconductor, Japan, from 2021. His research interests include a novel magnetic structure transformer for LLC converter.

Mostafa Noah (Non-member) received his M.Sc. and Ph.D. degrees in Electrical Engineering from Cairo University, Egypt, and Nagoya University, Japan in 2014 and 2019, respectively. In 2018 he was an intern at Panasonic, Osaka, Japan. In 2019 he was a researcher with Advanced Technology R&D Center, Mitsubishi Electric Corporation, Hyogo, Japan. Dr. Noah is currently with Mitsubishi Electric B.V., Ratingen, Germany. Furthermore, in April 2020, he was appointed as a Visiting Associate Professor with the Center for Integrated Research of Future Electronics (CIRFE), Institute of Materials and Systems for Sustainability (IaMS), Nagoya University, Japan. His research interests focus on magnetics design, power converters, high-efficiency gate drivers.

Mamoru Tsuruya (Non-member) received the B.S. degrees in Electrical Engineering from Kogakuin University, Japan, in 1974. He worked with Sanken Electric Co., Ltd. for development of switching power supplies. Currently he is a manager of development department in Power Assistant Technology, Ltd.

Seiji Namiki (Non-member) graduated Omiya Technical High School in 1967. He worked in TAMURA CORPORATION for designing transformer and developed of switching power supplies from 2011. He was a manager of development department of subsidiaries in Taiwan and China for 20 years before he retired. He worked as a technical advisor for KOHA Co., Ltd. from 2011 to 2013. Currently he is an electrical engineer in Power Assistant Technology, Ltd.

Koichi Morita (Member) received the B.S. in Electrical Engineering from Waseda University, Japan, in 1965 and Ph.D degrees in Electrical Engineering from Kumamoto Institute of Technology (Sojo University now), Japan, in 2000, respectively. From 1965, he engaged in designing and development of the high-power supplies with Sanken Electric Co., Ltd. Currently, he is a consultant of switching power supplies.

Jun Imaoka (Member) received his M.S. and Ph.D. degrees in Electronic Function and System Engineering from Shimane University, Matsue, Japan, in 2013 and 2015, respectively. From October 2015 to March 2018, he worked at Kyushu University, Fukuoka, Japan as an Assistant Professor. From April 2018 to March 2021, he was an Assistant Professor at Nagoya University, Nagoya, Japan. He is currently an Associate Professor at the Institute of Materials and Systems for Sustainability (IaMS), Nagoya University. His research interests include the design of integrated magnetic components, modeling for high-power-density power converters, thermal management for power converters, magnetic material application, and EMI of switching power supply.

Masayoshi Yamamoto (Member) received the M.S. and Ph.D. degrees in science and engineering from Yamaguchi University, Yamaguchi, Japan in 2000 and 2004, respectively. From 2004, he was with Sanken Electric Co., Ltd., Saitama, Japan. Since 2006, he has been with Shimane University, Matsue, Japan. His research interests include power supplies for HEV (boost converter, back-converter, three-phase inverter, digital control), charging systems for EVs, LED illumination systems for tunnels, EMI of switching power supplies, and wireless power transfer.

48 IEEJ Journal IA, Vol.11, No.1, 2022