Reaction-rate formula in out of equilibrium quantum field theory

A. Niégawa, K. Okano, and H. Ozaki

Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, JAPAN∗

(Received today)

Abstract

A complete derivation, from first principles, of the reaction-rate formula for a generic reaction taking place in an out of equilibrium quantum-field system is given. It is shown that the formula involves no finite-volume correction. Each term of the reaction-rate formula represents a set of physical processes that contribute to the reaction under consideration.

11.10.Wx, 12.38.Mh, 12.38.Bx
I. INTRODUCTION

Ultrarelativistic heavy-ion-collision experiments at the BNL Relativistic Heavy Ion Collider (RHIC) and at the CERN Large Hadron Collider (LHC) will soon start in anticipation of producing quark-gluon plasma (QGP). Confirmation of the QGP formation is done through analyzing rates of various reactions taking place in a QGP. So far, the reaction-rate formula is derived for reactions taking place in the system in thermal and chemical equilibrium [1–4]. The actual QGP is, however, not in equilibrium but is an expanding nonequilibrium system.

In this paper, as a generalization of [1–4], we present a first-principles derivation of the reaction-probability formula for reactions occurring in a nonequilibrium system. We find that the formula involves no finite-volume corrections. We also find from the procedure of derivation that different contributions to the reaction-probability formula have clear physical interpretation, which is summarized as “out-of-equilibrium cutting rules.”

In Sec. II, we derive from first principles the formula for the transition probability of a generic reaction taking place in a nonequilibrium system. In Sec. III, specializing to quasi-uniform systems near equilibrium or nonequilibrium quasistationary systems, we further deduce the formula, finding that the formula is written in terms of the closed-time-path formalism of real-time thermal field theory [5]. In Sec. IV, we present a calculational procedure of a generic reaction-probability formula obtained in Sec. III.

II. NONEQUILIBRIUM REACTION-PROBABILITY FORMULA

A. Preliminaries

The formalism presented in this paper can be applied to a broad class of theories including QCD (cf. the end of Sec. III), but, for simplicity of presentation, we take a system of self-

\[\text{Framework for dealing with such systems is comprehensively discussed in [5].} \]
interacting, neutral scalars ϕ's with mass m and $\lambda\phi^4$ interaction. The system is inside a cube with volume $V = L^3$. Employing the periodic boundary conditions, we label the single-particle basis by its momentum $p_k = 2\pi k/L$, $k_j = 0, \pm 1, \pm 2, \cdots, \pm \infty$ ($j = 1, 2, 3$).

Physically interesting reactions are of the following generic type,

$$\{A\} + \text{nonequilibrium system} \rightarrow \{B\} + \text{anything}.$$ \hspace{1cm} (2.1)

Here $\{A\}$ and $\{B\}$ designate group of particles, which are different from ϕ. Examples are highly virtual particles, heavy particles, and particles interacting weakly with ϕ's. Generalization to more general process, where among $\{A\}$ and/or $\{B\}$ are ϕ's, is straightforward (cf., [4]). For definiteness, let us assume that $\{A\}$ consists of $l\Phi$'s and $\{B\}$ consists of $l'\Phi$'s. Here Φ is a heavy neutral scalar of mass M, so that Φ is absent in the system. For simplicity of presentation, we assume a $\Phi-\phi$ coupling to be of the form $-g\Phi\phi^n/n!$ ($n \geq 2$).

The transition or reaction probability P of the process (2.1) is written as

$$P = \frac{N}{D}, \hspace{1cm} (2.2a)$$

$$N \equiv \sum_{\{k\}} \sum_{\{n_k\}} \sum_{\{m_k\}} \sum_{\{n'_k\}} \langle \{A\}; \{m_k\} | S^\dagger | \{n'_k\}; \{B\} \rangle$$

$$\times \langle \{B\}; \{n'_k\} | S | \{n_k\}; \{A\} \rangle \langle \{n_k\} | \rho | \{m_k\} \rangle \mathbf{S}, \hspace{1cm} (2.2b)$$

$$D \equiv \sum_{\{k\}} \sum_{\{n_k\}} \sum_{\{m_k\}} \sum_{\{n'_k\}} \langle \{m_k\} | S^\dagger | \{n'_k\} \rangle$$

$$\times \langle \{n'_k\} | S | \{n_k\} \rangle \langle \{n_k\} | \rho | \{m_k\} \rangle \mathbf{S}. \hspace{1cm} (2.2c)$$

Here \mathbf{S} is the symmetry factor [3], ρ is the density matrix, and $\langle \{B\}; \{n'_k\} | S | \{n_k\}; \{A\} \rangle$ is a S-matrix element of the vacuum-theory process,

$$\{A\} + \{n_k\} \rightarrow \{B\} + \{n'_k\},$$

where $\{n_k\}$ denotes the group of ϕ's, which consists of the number n_k of ϕ_k (ϕ in a mode k).

In Eqs. (2.2), $\sum_{\{k\}}$ denotes summation over momentum/momenta of ϕ/ϕ's in the final state $|\{n'_k\}; \{B\}\rangle$, and of ϕ/ϕ's in the "two" initial states $|\{m_k\}; \{A\}\rangle$ and $|\{n_k\}; \{A\}\rangle$. (Among
the final states $|\{n'_k\}; \{B\}\rangle$ is $|0; \{B\}\rangle$. This is also the case for "two" initial states.) Note that the perturbation series for D starts from 1,

$$D = 1 + \cdots .$$

It is to be noted that $\{A\}$ and $\{B\}$ in $\langle S \rangle$, which we write $\{A, B\}_S$, are not necessarily involved in one connected part of $\langle S \rangle$. This is also the case for $\{A, B\}_S^\dagger$. We assume that, in $W \equiv \langle S^\dagger \rangle \langle S \rangle$, $\{A, B\}_S$ and $\{A, B\}_S^\dagger$ are involved in one connected part $W_c (\in W)$. Then, W consists, in general, of W_c and other parts which are disconnected with W_c and include only ϕ's. Generalization to other cases is straightforward [4]. It should be remarked on the form of ρ in Eqs. (2.2). Let us recall the following two facts. On the one hand, the statistical ensemble is defined by the density matrix at the very initial time $t_i (\sim -\infty)$. On the other hand, in constructing perturbative framework, an adiabatic switching off of the interaction is required [7,3]. Then, ρ in Eqs. (2.2) is a functional of the in-field $\phi_{in}(t_i, x)$ that constitutes the basis of perturbation theory.

As will be seen below, diagrammatic analysis shows that N, Eq. (2.2b), takes the form,

$$N = N_{\text{con}} D ,$$

where N_{con} corresponds to a connected diagram and D is as in Eq. (2.2c). Then, we have

$$P = N_{\text{con}} .$$

The S-matrix element in vacuum theory is obtained through an application of the reduction formula [2,4]:

$$\langle \{B\}; \{n'_k\} | S | \{n_k\}; \{A\}\rangle = \prod_{j=1}^{l'} (iK_{j, \phi_j}) \prod_{m=1}^{l'} (iK^*_{m, \phi_m}) \langle 0 | \prod_k T \left\{ \begin{array}{c} n_k \sum_{i_k=0}^{n_k} \delta(n_k - i_k) \sum_{n'_k=0}^{i_k} n'_k \delta(n'_k - i'_k) N_{i_k, n'_k} \\ \prod_{n'=1}^{i'_k} (iK^*_{k, n'}) \prod_{n=1}^{i_k} (iK_{k, n}) \prod_{n'=1}^{i'_k} \phi_{n'} \prod_{n=1}^{i_k} \phi_n \end{array} \right\} \prod_{j=1}^{l} \Phi_j \prod_{m=1}^{l'} \Phi_m \rangle | 0 \rangle ,$$

where T is the time-ordering symbol and
\[
N_{ik,\,i_k'}^{nk,n_k'} \equiv \left(\frac{\binom{n_k'}{i_{ik}'}}{\binom{n_k}{i_{ik}}} \frac{1}{i'_{ik}! \, i_{ik}!} \right)^{1/2} ,
\]

(2.5)

In Eq. (2.4) \(\delta(\cdots; \cdots)\) denotes the Kronecker’s \(\delta\)-symbol and

\[
K_{k,n} \cdots \phi_n \equiv \frac{1}{\sqrt{Z_\phi}} \int d^4x \, f_{p_k}(x) (\Box + m^2) \cdots \phi(x) ,
\]

\[
K_{j,\, \Phi_j} \cdots \Phi_j \equiv \frac{1}{\sqrt{Z_\Phi}} \int d^4x \, F_j(x)(\Box + M^2) \cdots \Phi(x) ,
\]

\[
K_{m,\, \Phi_m}^* \cdots \Phi_m \equiv \frac{1}{\sqrt{Z_\Phi}} \int d^4x \, G_m^*(x)(\Box + M^2) \cdots \Phi(x) .
\]

(2.6)

Here

\[
f_{p_k}(x) = \frac{1}{\sqrt{2E_k}} e^{-iP_k \cdot x} , \quad (E_k = \sqrt{P_k^2 + m^2}) ,
\]

with \(P_k^\mu \equiv (E_k, \, p_k)\) and \(F_j(x) \, [G_m^*(x)]\) the wave function of \(j\)th \(\Phi \, (\in \{ A \})\) \(m\)th \(\Phi \, (\in \{ B \})\). \(Z\)'s in Eq. (2.6) are the wave-function renormalization constants. It is to be noted that, in Eq. (2.4), among \(n_k \, (n'_k)\) of \(\phi_k\)'s in the initial (final) state, \(i_k \, (i'_k)\) of \(\phi_k\)'s are absorbed in (emitted from) the \(i_k \, (i'_k)\) vertices in \(S\). Remaining \(n_k - i_k \, (= n'_k - i'_k)\) of \(\phi_k\)'s are merely spectators, which reflects only on the statistical factor in \(\mathcal{F}_i\) in Eq. (3.13) below.

\(\langle S \rangle\) in \(\mathcal{D}\) in Eq. (2.24) is given by a similar expression to Eq. (2.4), where factors related to the \(\Phi\) fields are deleted.

\(\langle S \rangle\) in \(\mathcal{D}\) in Eq. (2.4), we see that the permutation of \(\phi_n \, (n = 1, \cdots, i_k)\) and the permutation of \(\phi_n' \, (n' = 1, \cdots, i'_k)\) give the same Feynman diagram (in vacuum theory), and then \(i_k! \, i'_k!\) same diagrams emerge. Taking this fact into account, we may write (2.4) in the form,

\[
\langle \{ B \}; \{ n'_k \}; S | \{ n_k \}; \{ A \} \rangle = \left(\prod_{j=1}^{\nu} \int d^4x_j F_j(x_j) \right) \left(\prod_{m=1}^{\nu'} \int d^4y_m G_m^*(y_m) \right)
\]

\[
\times \sum_{\{i_k\}} \left[\prod_{k} N_{ik,\,i_k'}^{nk,n_k'} i_k! i'_k! \left(\prod_{j=1}^{\nu} \int d^4\xi_j \, f_{p_k}(\xi_j) \right) \left(\prod_{j=1}^{\nu'} \int d^4\zeta_j \, f_{p_k}(\zeta_j) \right) \right]
\]

\[
\times A(\{ y \}; \{ \xi \}; \{ \zeta \}; \{ x \}) ,
\]

(2.7)
where \(i'_k = n'_k - n_k + i_k \) and \(\mathcal{A} \) is the truncated Green function in configuration space (in vacuum theory), and, e.g., \(\{ y \} \) collectively denotes \(y_1, y_2, \cdots, y_y \).

Among the Feynman diagrams for \(\mathcal{A} \), are some diagrams, in which some \(\xi \)'s (in \(\xi \)’s) \(\zeta \)'s (in \(\zeta \)’s) coincide with \(x \)'s (in \(x \)’s) and/or \(y \)'s (in \(y \)’s) and/or \(\zeta \)'s (in \(\zeta \)’s) \(\xi \)'s (in \(\xi \)’s). In such cases, \(\mathcal{A} \) is understood to include corresponding \(\delta \)-functions, e.g., \(\delta^4(\xi_{kj} - x_i) \).

The expression for \(\langle S^\dagger \rangle \), the complex conjugate of \(\langle S \rangle \), is obtained by taking the complex conjugate of Eq. (2.4) or Eq. (2.7), where we make the substitution (cf. Eqs. (2.2b) and (2.2c)),

\[
\begin{align*}
 n_k &\rightarrow m_k, \\
 n'_k &\rightarrow m'_k (= n'_k) \\
 i_k &\rightarrow j_k, \\
 i'_k &\rightarrow j'_k.
\end{align*}
\]

This applies also to the expression for \(\langle S^\dagger \rangle \) in Eq. (2.2d).

Substitution of \(W = \langle S^\dagger \rangle \langle S \rangle \) into Eq. (2.2d) yields, with obvious notation,

\[
\mathcal{N} = \left(\prod_{j=1}^{l} \int d^4x_j \right) \left(\prod_{j'=1}^{l'} \int d^4y_{j'} \right) \left(\prod_{m=1}^{p} \int d^4y_m \right) \left(\prod_{m'=1}^{p'} \int d^4y_{m'} \right) \frac{G}{\mathcal{A}^* \mathcal{A}} \\
\times \sum_{\{ k \}} \sum_{\{ i_k \}} \sum_{\{ j_k \}} \sum_{\{ i'_k \}} \sum_{\{ j'_k \}} \left[\prod_{k} \left(\prod_{j=1}^{i_k} \int d^4\xi_{kj} f_{pk}(\xi_{kj}) \right) \left(\prod_{j'=1}^{i'_k} \int d^4\xi_{kj} f_{pk}'(\xi_{kj}) \right) \right] \\
\times \mathcal{S} \mathcal{W}(\{ x \}, \{ \xi \}, \{ \xi' \}, \{ y \}) \mathcal{S}^* \mathcal{A}^* \mathcal{A}, \quad (2.8)
\]

Here \(i'_k = n'_k - n_k + i_k, \) \(j'_k = n'_k - m_k + j_k \), \(\mathcal{W} = \mathcal{A}^* \mathcal{A} \), and

\[
\mathcal{S} \equiv \sum_{\{ n_k \}} \left(\prod_{k} \mathcal{N} \mathcal{N} \right) \langle n_k \rangle \langle \rho | \{ m_k \} \rangle. \quad (2.9)
\]

B. Statistical factor \(\mathcal{S} \)

Here, it is convenient to introduce creation and annihilation operators, \(a_{pk}^\dagger \) and \(a_{pk} \), which satisfy \([a_{pk}, a_{pk}'] = \delta_{k,k'} \) and \([a_{pk}, a_{pk}'] = 0 \). A Fock space \(\mathcal{F} \) is constructed on \(|0\rangle \), which is defined by \(a_{pk}|0\rangle = 0 \). For the vector \(| \rangle \) (in \(\mathcal{F} \)) that satisfies \(a_{pk}^\dagger a_{pk} | \rangle = n_{pk} | \rangle \) \((n_{pk} = 0, 1, 2, \cdots) \), we use the same notation as in Eq. (2.3), \(| \{ n_k \} \rangle \), since no confusion
arises. A key observation here is that, using the form (2.5), one can easily show that \(S \), Eq. (2.9), may be represented as

\[
S = \sum_{\{n_k\}} \langle \{m_k\} | \left(\prod_{l=1}^{j} a_{p_l}' \right) \left(\prod_{l=1}^{j'} a_{q_l}' \right) \left(\prod_{l=1}^{i} a_{p_l} \right) | \{n_k\} \rangle \langle \{n_k\} | \rho | \{m_k\} \rangle
\]

\begin{equation}
\equiv \left\langle \left(\prod_{l=1}^{j} a_{p_l}' \right) \left(\prod_{l=1}^{j'} a_{q_l}' \right) \left(\prod_{l=1}^{i} a_{p_l} \right) \right\rangle ,
\end{equation}

(2.10)

where we write

\[
\{P_1, \cdots, P_i\} = \{ \underbrace{\cdots, \underbrace{P_k, \cdots, P_k, \cdots}_{i_k}, \cdots} \}
\]

and then \(i = \sum_k i_k \). Similarly, \(i' = \sum_k i'_k \), \(j = \sum_k j_k \), and \(j' = \sum_k j'_k \). Note that \(\langle \{n_k\} | \rho | \{m_k\} \rangle \), in between which \(\rho \) is sandwiched, are as in Eqs. (2.2) and (2.9).

Let us write \(S \), for short, as

\[
S(b_1 b_2 \cdots b_N) = (N = i + j + i' + j').
\]

Let \(l_1, \cdots, l_m \) be a solution in positive integers of

\[
\sum_{j=1}^{m} l_j = N \quad (1 \leq m \leq N).
\]

(2.11)

Pick out \(l_1 \) b’s out of \(b_1, b_2, \cdots, b_N \) and pick out \(l_2 \) b’s out of remaining b’s, and so on, to make \(m \) groups,

\[
\{b_1 \cdots b_{i_1}\} \{b_{i_1+1} \cdots b_{i_1+l_2}\} \cdots \{b_{i_N-l_m+1} \cdots b_N\},
\]

(2.12)

where \(1 < i_{1+1} < i_{1+l_2+1} < \cdots < i_{N-l_m+1} \leq N \). In Eq. (2.12), let \(b_l \) and \(b_{l'} \) are in between one set of curly brackets. Then, if \(l < l' \), \(b_l \) is located at the left of \(b_{l'} \) and vice versa. We are now in a position to write

\[
S(b_1 \cdots b_N)
= \sum_{m=1}^{N} \sum_{l_1 \cdots} \sum_{l_2 \cdots} S_c(b_1 \cdots b_{i_1})
\times S_c(b_{i_{1+1}} \cdots b_{i_{1+l_2}}) \cdots S_c(b_{i_{N-l_m+1}} \cdots b_N).
\]

(2.13)
Here, the second summation $\sum_{l_s'}$ runs over all solutions in integers of Eq. (2.11) and the third summation \sum_{gr} runs over all ways of making m groups as in Eq. (2.12). From Eq. (2.13), S_c is determined iteratively. For example,

$$S_c(b_1b_2) = S(b_1b_2) - S(b_1)S(b_2)$$

$$S_c(b_1b_2b_3) = S(b_1b_2b_3) - S_c(b_1b_2)S(b_3) - S_c(b_1b_3)S(b_2) - S(b_1)S_c(b_2b_3) - S(b_1b_3)S(b_2).$$

Thus, we have, with obvious notation,

$$S = \sum_{m=1}^{i+j+i'+j'} \sum_{l_s'} \sum_{gr} S_c(\cdots)S_c(\cdots) \cdots S_c(\cdots). \quad (2.14)$$

In the case of equilibrium system, all but $\langle a_p^\dagger a_p^\dagger \rangle$ and $\langle a_q^\dagger a_p \rangle$ vanish. From the definition of S_c, it is not difficult to show that, for $N \geq 3$,

$$S_c(b_1b_2 \cdots b_{ji}) = S_c(\vdots b_1b_2 \cdots b_{ji} \vdots), \quad (2.15)$$

where $\vdots \cdots \vdots$ indicates to take the normal ordering with respect to the creation and annihilation operators.

C. Reaction-probability formula

Now, N in Eq. (2.8) may be written as

$$N = \left(\prod_{j=1}^{l} \int d^4 x_j d^4 x'_j F_j(x_j) F_j^*(x'_j) \right) \left(\prod_{j=1}^{\nu} \int d^4 y_j d^4 y'_j G_j(y_j) G_j(y'_j) \right)$$

$$\times \sum_{i, j, j', j''} \left(\prod_{j=1}^{i} \int d^4 \xi_j \sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} e^{-ip_j\xi_j} \right) \left(\prod_{j=1}^{j'} \int d^4 \xi_j \sum_{q_j} \frac{1}{\sqrt{2E_{q_j}V}} e^{iq_j\xi_j} \right)$$

$$\times \left(\prod_{l=1}^{j} \int d^4 \xi'_{l} \sum_{p'_{l}} \frac{1}{\sqrt{2E_{p'_{l}}V}} e^{ip'_{l}\xi'_{l}} \right) \left(\prod_{l=1}^{j'} \int d^4 \xi'_{l} \sum_{q'_{l}} \frac{1}{\sqrt{2E_{q'_{l}}V}} e^{-iq'_{l}\xi'_{l}} \right)$$

$$\times S \mathcal{W}(\{x'\}, \{\xi'\}; \{\xi''\}, \{y'\}; \{y\}, \{\xi\}; \{\xi\}, \{x\}) S. \quad (2.16)$$

Carrying out the integration over ξ's, ζ's, ξ'''s, ζ''s and the internal spacetime vertex points, which are included in \mathcal{W}, we obtain, with obvious notation,
\[N = \left(\prod_{j=1}^{\ell} \int d^4 x_j d^4 x'_j F_j(x_j) F_j^*(x'_j) \right) \left(\prod_{j=1}^{\ell'} \int d^4 y_j d^4 y'_j G_j(y_j) G_j(y'_j) \right) \times \sum_{i,j,i',j'} \left(\prod_{j=1}^{i} \sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} \right) \left(\prod_{j=1}^{i'} \sum_{q_j} \frac{1}{\sqrt{2E_{q_j}V}} \right) \left(\prod_{l=1}^{j} \sum_{p'_l} \frac{1}{\sqrt{2E_{p'_l}V}} \right) \left(\prod_{l=1}^{j'} \sum_{q'_l} \frac{1}{\sqrt{2E_{q'_l}V}} \right) \times S \mathcal{W}(\{x\}, \{p\}; \{q\}, \{y\}, \{s\}; \{r\}) \] (2.17)

Let us Fourier transform the wave functions \(F_j(x) \), \(G_j(x) \)

\[F_j(x) = \int \mathcal{D}r_j e^{-iR_j \cdot (x - X_c)} \tilde{F}_j(r_j), \]
\[G_j(x) = \int \mathcal{D}r_j e^{-iR_j \cdot (x - X_c)} \tilde{G}_j(r_j), \] (2.18)

where \(R_j^\mu = (E_j, r_j) \) with \(E_j = \sqrt{r_j^2 + M^2} \). In Eq. (2.18), \(X_c \) of \(X^\mu_c = (X_c^\alpha, X_c) \) is the space point, around which \(\Phi \)'s are localized and \(X_c^\alpha \) is the time, around which the reaction takes place. In general, \(\tilde{F}_j \) and \(\tilde{G}_j \) also depend on \(X_c \).

Substituting (2.18) into Eq. (2.17) and carrying out the integration over \(x_j \), \(x'_j \), \(y_j \) and \(y'_j \), we obtain

\[N = \left(\prod_{j=1}^{\ell} \int \mathcal{D}r_j \mathcal{D}r'_j \tilde{F}_j(r_j) \tilde{F}_j^*(r'_j) \right) \left(\prod_{j=1}^{\ell'} \int \mathcal{D}s_j \mathcal{D}s'_j \tilde{G}_j(s_j) \tilde{G}_j(s'_j) \right) \times \sum_{i,j,i',j'} \left(\prod_{j=1}^{i} \sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} \right) \left(\prod_{j=1}^{i'} \sum_{q_j} \frac{1}{\sqrt{2E_{q_j}V}} \right) \left(\prod_{l=1}^{j} \sum_{p'_l} \frac{1}{\sqrt{2E_{p'_l}V}} \right) \left(\prod_{l=1}^{j'} \sum_{q'_l} \frac{1}{\sqrt{2E_{q'_l}V}} \right) \times 2\pi\delta[\sum r_{j0} - \sum s_{j0} + \sum p_0 - \sum q_0] \times 2\pi\delta[\sum s_{j0}' - \sum r_{j0}' - \sum p_0' + \sum q_0] \times V\delta(\sum r_j - \sum s_j; \sum q - \sum p) V\delta(\sum s_j' - \sum r_j'; \sum p' - \sum q') \times S \mathcal{W}(\{r\}, \{p\}; \{q\}, \{s\}; \{r\}) \] (2.19)

Note that, when \(\langle S \rangle \) (\(\in W \)) or \(\langle S^\dagger \rangle \) consists of several disconnected parts, corresponding (momentum-conservation) \(\delta \)-function above becomes product of several \(\delta \)-functions.

The form for \(D \), Eq. (2.24), is given by Eq. (2.18) or Eq. (2.19), in which factors related to the \(\Phi \) fields are deleted.

In general, \(N \) consists of several graphically disconnected parts. As assumed in Sec. IIA, all \(\Phi \)'s are included in one connected parts \(N_{con} \). Other parts, which we write \(D \), include
only the constituent particles φ’ of the system. Then, it is obvious that \(N \) takes the form \(N = N_{\text{con}}D \) (cf. Eq. (2.3)). It is also obvious that \(D \) is a contribution to \(D \) in Eqs. (2.2). Then, such contribution does contribute to the reaction-probability \(P \), Eq. (2.2a), as \(N_{\text{con}} \), which has already been dealt with in a lower-order level. Thus, computation of \(N \)’s, which consist of one connected part, is sufficient.

III. OUT-OF-EQUILIBRIUM REACTION-PROBABILITY FORMULA

A. Preliminaries

In this section, we restrict our concern to quasiuniform systems near equilibrium and nonequilibrium quasistationary systems, which we simply refer to as out-of-equilibrium systems. Such systems are characterized \(^3\) by weak dependence of the reaction probabilities on \(X_c \) (cf. above after Eq. (2.18)). More precisely, there exists a spacetime scale \(L^\mu \), such that the reaction probabilities do not appreciably depend on \(X_c \), when \(X_c \) is in the spacetime region \(|X_c^\mu - X_{c0}^\mu| \lesssim L^\mu \) with \(X_{c0}^\mu \) an arbitrary spacetime point. For such systems, the reactions are regarded as taking place in the region \(|X_c^\mu - X_{c0}^\mu| \lesssim L^\mu \). Going to the momentum space, this means that the contribution (to the reaction probability \(N \)) from the state that includes “very soft” momentum \(|P^\mu| \lesssim 1/L^\mu \) should be small. More precisely, the contribution from the summation-region in Eq. (2.16), in which at least one momentum (out of \(\{ p_j, q_j, p'_j, q'_j \} \)) is “very soft” is negligibly small. \(^2\)

\(^2\)This is the case for most practical cases, which can be seen as follows. Let \(\mathcal{T} \) be a typical scale(s) of the system under consideration. In the case of thermal-equilibrium system, \(\mathcal{T} \) is the temperature of the system. Due to interactions, an effective mass is induced and the vacuum-theory mass \(m \) turns out to the effective mass \(M_{\text{eff}}(X_c) \). In the case of \(m >> \sqrt{xT} \), \(M_{\text{eff}}(X_c) \) is not much different from \(m \) and, for \(m \lesssim \sqrt{xT} \), a tadpole diagram induces mass of \(O(\sqrt{xT}) \), so that \(M_{\text{eff}}(X_c) = O(\sqrt{xT}) \). \(\sqrt{xT} \) (or even \(\lambda T \)) is the scale that characterizes reactions. We assume
Let us pick out $\langle a_p \rangle$ from \mathcal{S} in (2.14), which appears in \mathcal{N}, Eq. (2.16), in the form

$$\sum_p \frac{1}{\sqrt{2E_p V}} \langle a_p \rangle e^{-iP_\omega},$$

where ω stands for ξ_j or ζ_j'. The above observation shows that the quantity (3.1) does not appreciably depend on ω^μ, when $|\omega^\mu - X^\mu_0| \lesssim L^\mu$. This means that $\langle a_p \rangle \simeq 0$ for $|p^i| \gtrsim 1/L^i$ and $p^0 = E_p \gtrsim 1/L^0$. Then, the argument at the end of the above paragraph shows that the contribution to \mathcal{N} that include $\langle a \rangle$ can be ignored. Same reasoning shows that the contribution including $\langle a^\dagger \rangle$ and/or $\mathcal{S}_c(aa \cdots a)$ and/or $\mathcal{S}_c(a^\dagger a^\dagger \cdots a^\dagger)$ may also be ignored.

Recalling the identity (2.15), we pick out from Eq. (2.14) one $\mathcal{S}_c(a^\dagger_{p_1} \cdots a^\dagger_{p_j} a_{p_{j+1}} \cdots a_{p_n})$ ($n \geq 3$). In \mathcal{N} in Eq. (2.16), this factor appears in the form

$$\sum_{\{p\}} \left(\prod_{l=1}^{n} \frac{1}{\sqrt{2E_{p_l} V}} \right) \mathcal{S}_c \left(\left(\prod_{l=1}^{j} a^\dagger_{p_l} \right) \left(\prod_{l'=j+1}^{n} a_{p_{l'}} \right) \right) \times \exp \left[i \left(\sum_{l=1}^{j} P_l \cdot z_l - \sum_{l'=j+1}^{n} P_{l'} \cdot z_{l'} \right) \right],$$

where $p_{l0} = E_p$ ($l = 1, \cdots, n$). It is not difficult to show that among the contributions to \mathcal{N}, there are contributions, whose counterparts of Eq. (3.2), together with Eq. (3.2), can be united into the form

$$\mathcal{C}(\{z\}) \equiv i^{n-1} \mathcal{S}_c (: \phi(z_1) \cdots \phi(z_n) :) .$$

Here

$$\phi(z) = \sum_p \frac{1}{\sqrt{2E_p V}} \left[a_p e^{-iP \cdot z} + a^\dagger_p e^{iP \cdot z} \right],$$

that this scale is much larger than the “very soft” momentum scale, $1/L^\mu \ll \sqrt{\lambda T}$ (or λT). Most amplitudes, when computed in perturbation theory (to be deduced below), are insensitive to the region $|P^\mu| \lesssim O(\sqrt{\lambda T})$. Then, the contribution from the region $|P^\mu| \lesssim 1/L^\mu$ is small, since the phase-space volume is small. Incidentally, in the case of equilibrium thermal QED or QCD ($m = 0$), there are some quantities that diverge at infrared limits to leading order in hard-thermal-loop resummation scheme [8,9]. For such cases, more elaborate analysis is required.
where \(p_0 = E_p \) and ‘: \(\cdot \cdot \cdot \) ’ in Eq. (3.3) indicates to take the normal ordering. As discussed at the beginning of this subsection, for the system under consideration, the function (3.2) does not change appreciably in the region \(|\Delta Z^\mu| \lesssim L^\mu \) \((Z = \sum_{l=1}^n z_l/n)\). This leads to an approximate momentum conservation for the function (3.2):

\[
\left| \sum_{l=1}^j P_l^\mu - \sum_{l'=j+1}^n P_{l'}^\mu \right| \lesssim 1/L^\mu.
\]

(3.4)

This is also the case for \(C(\{z\}) \) in Eq. (3.3). The conditions under which the initial correlations may be ignored are discussed in [10]. In the following, we ignore the initial correlations, inclusion of which into the formula obtained below is straightforward.

After all this, in \(S \) in Eq. (2.16), we keep only \(\langle a^\dagger a \rangle \)'s:

\[
S = \sum_{m,n} \sum_{gr} \langle a^\dagger_{p^j_{i'}} a_{q^j_{i'}} \rangle \cdots \langle a^\dagger_{p^j_{i-m+1}} a_{q^j_{i-m+1}} \rangle \\
\times \left(\delta_{q_{k'_{i}}, q'_{l_{m}}} + \langle a_{q_{k'}_{i}} a_{q'_{l_{m}}} \rangle \right) \cdots \left(\delta_{q_{k_{l-n+1}}, q'_{l'l_{1}}} + \langle a_{q_{k_{l-n+1}}}, a_{q'_{l'l_{1}}} \rangle \right) \\
\times \langle a_{q_{i-n}} a_{p_{i}} \rangle \cdots \langle a_{q_{i1}} a_{p_{i1}} \rangle \langle a_{p'_{i1}} a_{p_{i1}} \rangle \cdots \langle a_{p'_{i'}} a_{p_{i'}} \rangle,
\]

(3.5)

where \(j - n = j' - m \) and \(i' - m = i - n \), which leads to \(i + j' = j + i' \).

Referring to (2.16), we use the following set-symbols throughout in the sequel:

\[
\mathcal{V}_{\Phi} = \mathcal{V}_{\Phi}^S \cup \mathcal{V}_{\Phi}^{St} ; \quad \mathcal{V}_{\Phi}^S = \{x\} \cup \{y\} ; \quad \mathcal{V}_{\Phi}^{St} = \{x'\} \cup \{y'\},
\]

\[
\mathcal{V}_{e} = \mathcal{V}_{e}^S \cup \mathcal{V}_{e}^{St} ; \quad \mathcal{V}_{e}^S = \{\xi\} \cup \{\zeta\} ; \quad \mathcal{V}_{e}^{St} = \{\xi'\} \cup \{\zeta'\},
\]

and \(\mathcal{V}_{i} = \mathcal{V}_{i}^S \cup \mathcal{V}_{i}^{St} \) with \(\mathcal{V}_{i}^S \) [\(\mathcal{V}_{i}^{St} \)] the set of internal-vertex points in \(\langle S \rangle [\langle S^\dagger \rangle] \) \((\in \mathcal{W})\). When the vertex point \(\xi_{j} \) (\(\xi'_{j} \)) or \(\zeta_{i} \) (\(\zeta'_{i} \)) coincides with one of the vertex points in \(\mathcal{V}_{\Phi}^S \) (\(\mathcal{V}_{\Phi}^{St} \)), we include it in \(\mathcal{V}_{\Phi}^S \) (\(\mathcal{V}_{\Phi}^{St} \)). At the final stage, \(\mathcal{V}_{\Phi} \) (\(\mathcal{V}_{e} \cup \mathcal{V}_{i} \)) turns out to the set of external-vertex (internal-vertex) points of the out-of-equilibrium amplitude (3.19) representing \(\mathcal{P} \).

B. Two-point function

\[\langle i \tilde{\Delta}(\rho, \sigma) \rangle \equiv \sum_{p,p'} \frac{1}{\sqrt{2E_p \sqrt{2E_{p'}}}} \langle a^\dagger_{p'} a_p \rangle e^{-i(p \cdot \rho - p' \cdot \sigma)}, \]

\[1 \]
where \(p_0 = E_p, \ p'_0 = E_p' \), and \(p \in \{p\} \cup \{q'\} \), \(p' \in \{p'\} \cup \{q\} \), \(\rho \in \{\xi\} \cup \{\xi'\} \) and \(\sigma \in \{\xi'\} \cup \{\zeta\} \). Changing \(p \) and \(p' \) to

\[
\begin{align*}
p_+ &= (p + p')/2, \\
p_- &= p - p',
\end{align*}
\]

we get

\[
i\tilde{\Delta}(\rho, \sigma) = \sum_{p, p'} \frac{1}{\sqrt{E_+ V} \sqrt{E_- V}} e^{-i(p,(\rho - \sigma))} \\
& \quad \times \tilde{N}(X; p_+), \tag{3.6}
\]

\[
\tilde{N}(X; p_+) = \sum_{p_-} e^{-i(E_+ - E_-)X_0 e^{i\rho} \cdot X} \\
& \quad \times \langle a_{p_-}^+ a_{p_+ + p_-/2} \rangle, \tag{3.7}
\]

where \(X = (\rho + \sigma)/2 \), \(E_\pm = E_{|p_+ + i\nabla X/2|} \) and \(p_+^0 = (E_+ + E_-)/2 \). It is worth mentioning in passing that one can easily derive from Eq. (3.7) \(P \cdot \partial X \tilde{N} = 0 \).

Now, Eq. (3.8) may be written as

\[
i\tilde{\Delta}(\rho, \sigma) = \sum_{p} D^4 P e^{-iP,(\rho - \sigma)} \frac{p_0}{\sqrt{E_+ E_-}} \frac{2\pi\theta(p_0)}{2\pi} \\
& \quad \times \delta \left(p_0^2 - \frac{(E_+ + E_-)}{2} \right) \tilde{N}(X; p), \tag{3.8}
\]

where

\[
\sum_{p} D^4 P \equiv \int \frac{dp_0}{2\pi} \sum_p \frac{1}{V}.
\]

As usual, we rewrite \(p = |p| \) in terms of \(p_0 \) by using \(\delta_+ (p_0^2 - \cdots) \) in Eq. (3.8). In doing so we obtain

\[
\frac{p_0}{\sqrt{E_+ E_-}} \tilde{N}(X; p) \rightarrow \left[1 + \frac{(p \cdot \nabla X)^2}{4p_0^4} \right]^{-1/2} \tilde{N}(X; p_0, \hat{p}),
\]

where \(\hat{p} \equiv p/p \). Carrying out the derivative expansion (expansion with respect to \(\partial X_\mu \)) and keeping up to the second-order \(X \)-derivative terms, we obtain

\[
i\tilde{\Delta}(\rho, \sigma) = \sum_{p} D^4 P e^{-iP,(\rho - \sigma)} \\
& \quad \times 2\pi\delta_+ (P^2 - m^2) N(X; p_0, \hat{p}), \tag{3.9}
\]
where $\delta_+(P^2 - m^2) = \theta(p_0)\delta(P^2 - m^2)$ and

$$N(X; p_0, \hat{p}) = \left[1 - \frac{1}{4\partial m^2} \left(\nabla_x^2 - (v \cdot \nabla x)^2 \right) \right.$$

$$. \left. \frac{(v \cdot \nabla x)^2}{\delta p_0^2} + \cdots \right] \tilde{N}(X; p_0, \hat{p}).$$

(3.10)

Here $\frac{\partial}{\partial m^2}$ acts on $\delta_+(P^2 - m^2)$ in Eq. (3.9) and $v = \frac{p}{p_0}$.

In case of the system in which translation invariance holds, $\langle a_{\hat{p}}^\dagger a_q \rangle \propto \delta_{p, q}$. Eq. (3.7) tells us that $N(p_0, \hat{p}) = \tilde{N}(p_0, \hat{p})$ is the number density of a particle with momentum p. This allows us to interpret $N(X; p_0, \hat{p})$ as the “bare” number density of a quasiparticle with p at the spacetime point X^μ. (For more details, see [10].)

C. Construction of out-of-equilibrium propagators

So far, for simplicity of presentation, we have dealt with real-scalar-field systems. Physical meaning of the propagators to be deduced below can be determined more transparent manner by employing a complex-scalar-field systems, which we deal with in the sequel of this section. Let a_p ($a_{\hat{p}}^\dagger$) be an annihilation [a creation] operator for a particle of momentum p. The antiparticle counterpart of a_p ($a_{\hat{p}}^\dagger$) is b_p ($b_{\hat{p}}^\dagger$). For simplicity, we assume that the density-matrix operator ρ commutes with charge operator Q, $[\rho, Q] = 0$. Then, all but $\langle a_{\hat{p}}^\dagger a_q \rangle$, $\langle b_{\hat{p}}^\dagger b_q \rangle$, $\langle a_{\hat{p}}^\dagger b_q \rangle$, $\langle a_p b_q \rangle$ vanish. Same reasoning as at the beginning of this section shows that $\langle a_{\hat{p}}^\dagger b_q \rangle$ and $\langle a_p b_q \rangle$ are negligibly small. Thus, we are left with $\langle a_{\hat{p}}^\dagger a_q \rangle$’s and $\langle b_{\hat{p}}^\dagger b_q \rangle$’s.

A) Let us take a Feynman diagram \mathcal{F} for \mathcal{N} (cf. Eq. (2.16)), and pick out from \mathcal{F} a vacuum-theory propagator $i\Delta^{(0)}(z_1 - z_2) = \langle 0 | T \phi(z_1)\phi(z_2) | 0 \rangle \in \langle S \rangle (\in \mathcal{N})$. Then, we pick up the following two diagrams for \mathcal{N}. The first one is the same as \mathcal{F}, except that $i\Delta^{(0)}(z_1 - z_2)$ is replaced by

$$\sum_p \frac{1}{\sqrt{2EpV}} e^{-iP \cdot z_1} \sum_q \frac{1}{\sqrt{2EqV}} e^{iQ \cdot z_2} \langle a_{\hat{p}}^\dagger a_q \rangle,$$
which is involved in Eq. (2.16). The second one is the same as \(F \), except that \(i \Delta^{(0)}(z_1 - z_2) \) is replaced by

\[
\sum_q \frac{1}{\sqrt{2E_qV}} e^{-iQz_2} \sum_p \frac{1}{\sqrt{2E_pV}} e^{iPz_1} \langle b_{p_q} b_{-q} \rangle,
\]

with \(P \equiv (E_p, -p) \), etc. Adding the above two contributions to the original contribution, and Fourier transforming on \(z_1 - z_2 \), we obtain for the relevant part,

\[
i \Delta_{11} \left(\frac{z_1 + z_2}{2}; P \right) \equiv \frac{i}{P^2 - m^2 + i0^+} + 2\pi\delta(P^2 - m^2)N \left(\frac{z_1 + z_2}{2}; p_0, \hat{p} \right).
\]

(3.11)

Here, \(N \) with \(p_0 > 0 \) is as in Eq. (3.10) with (3.7), while, for \(p_0 < 0 \), \(N \) takes the same form (3.10) where \(\tilde{N} \) is defined, with obvious notation, as

\[
\tilde{N} \left(\frac{z_1 + z_2}{2}; p_0, \hat{p} \right) = \sum_{p_+} e^{i(E_+ + E_-)(z_{10} + z_{20})/2} \times e^{-i\hat{p}_- \cdot (z_1 + z_2)/2} \langle b_{p_+ + \hat{p}_-/2} b_{-\hat{p}_-/2} \rangle
\]

with, as before, \(E_{\pm} = E_{|p_+ \mp i\nabla_X/2|} \).

As discussed at the end of the last subsection, \(N(X; p_0, \hat{p}) \) with \(p_0 > 0 \) is the “bare” number density of a quasiparticle with momentum \(p \) at the point \(X^\mu \). Similarly, \(N(X; p_0, \hat{p}) \) with \(p_0 < 0 \) is the “bare” number density of an anti-quasiparticle with momentum \(-p \) at \(X^\mu \).

B) Starting from \(\langle S^\dagger \rangle (\in \mathcal{N}) \) that includes a vacuum-theory propagator \([i \Delta^{(0)}(z_1 - z_2)]^\ast \) and proceeding as above A), we obtain

\[
i \Delta_{22}(X; P) \equiv [i \Delta_{11}(X; P)]^\ast
\]

\[
= \frac{-i}{P^2 - m^2 - i0^+} + 2\pi\delta(P^2 - m^2)N \left(\frac{z_1 + z_2}{2}; p_0, \hat{p} \right).
\]

(3.12)
C) Let us take a set of Feynman diagrams \mathcal{F}_1 and \mathcal{F}_2. \mathcal{F}_1 contains (cf. Eq. (3.3))

$$
\sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} e^{-iP_{j} \cdot z_1} \sum_{q_k} \frac{1}{\sqrt{2E_{q_k}V}} e^{iQ_{k} \cdot z_2} \\
\times \left(\delta_{q_k, p_j} + \langle a_{q_k}^\dagger a_{p_j} \rangle \right)
$$

(3.13)

with $z_1 \in \{\zeta\}' (\in \langle S^\dagger \rangle)$ and $z_2 \in \{\zeta\} (\in \langle S \rangle)$. \mathcal{F}_2 is same as \mathcal{F}_1 except that (3.13) is replaced by

$$
\sum_{q_k} \frac{1}{\sqrt{2E_{q_k}V}} e^{-iQ_{k} \cdot z_2} \sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} e^{iP_{j} \cdot z_1} \langle b_{-p_j}^\dagger b_{-q_k} \rangle
$$

with $z_1 \in \{\zeta\}' (\in \langle S^\dagger \rangle)$ and $z_2 \in \{\zeta\} (\in \langle S \rangle)$. Adding the contributions from \mathcal{F}_1 and from \mathcal{F}_2, we extract the relevant part, of which the Fourier transformation on $z_1 - z_2$ is

$$
i \Delta_{21}(X; P) \equiv 2\pi \delta(P^2 - m^2) \\
\times \left[\theta(p_0) + N \left(\frac{z_1 + z_2}{2}; p_0, \hat{P} \right) \right].
$$

(3.14)

D) Let us take a set of Feynman diagrams \mathcal{F}'_1 and \mathcal{F}'_2. \mathcal{F}'_1 contains

$$
\sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} e^{-iP_{j} \cdot z_1} \sum_{q_k} \frac{1}{\sqrt{2E_{q_k}V}} e^{iQ_{k} \cdot z_2} \langle a_{q_k}^\dagger a_{p_j} \rangle
$$

(3.15)

with $z_1 \in \{\zeta\} (\in \langle S \rangle)$ and $z_2 \in \{\zeta\}' (\in \langle S^\dagger \rangle)$. \mathcal{F}'_2 is same as \mathcal{F}'_1 except that (3.13) is replaced by

$$
\sum_{q_k} \frac{1}{\sqrt{2E_{q_k}V}} e^{-iQ_{k} \cdot z_2} \sum_{p_j} \frac{1}{\sqrt{2E_{p_j}V}} e^{iP_{j} \cdot z_1} \\
\times \left(\delta_{p_j, q_k} + \langle b_{-p_j}^\dagger b_{-q_k} \rangle \right)
$$

with $z_1 \in \{\zeta\} (\in \langle S \rangle)$ and $z_2 \in \{\zeta\}' (\in \langle S^\dagger \rangle)$. Adding the contributions from \mathcal{F}'_1 and from \mathcal{F}'_2, we extract the relevant part, of which the Fourier transformation on $z_1 - z_2$ is

$$
i \Delta_{12}(X; P) \equiv 2\pi \delta(P^2 - m^2) \\
\times \left[\theta(-p_0) + N \left(\frac{z_1 + z_2}{2}; p_0, \hat{P} \right) \right].
$$

(3.16)

Above derivation of $i \Delta_{ij}$ ($i, j = 1, 2$) is self explanatory for their physical meaning or interpretation. The physical interpretation is summarized as generalized cutting rules, which is a generalization of Cutkosky’s cutting rules in vacuum theory. (For more details, see [4].)
D. Closed-time-path formalism

\[i\Delta_{ij} \ (i, j = 1, 2) \] obtained above are nothing but the propagators in the closed-time-path (CTP) formalism of out-of-equilibrium quantum field theory. The CTP formalism is constructed on the directed time-path \(C = C_1 \oplus C_2 \) in a complex-time plane, where \(C_1 = (-\infty \rightarrow +\infty) \) and \(C_2 = (+\infty \rightarrow -\infty) \). A field \(\phi(x_0, x) \) with \(x_0 \in C_1 \ [x_0 \in C_2] \) is denoted by \(\phi_1(x_0, x) [\phi_2(x_0, x)] \) and is called a type-1 [type-2] field. The interaction Lagrangian density is of the form,

\[L_{\text{int}} = L^{(1)}_{\text{int}} - L^{(2)}_{\text{int}}, \]

\[L^{(i)}_{\text{int}} = -\frac{\lambda}{4} (\phi_i^\dagger \phi_i)^2 - \frac{g}{(n!)^2} \Phi_i (\phi_i^\dagger \phi_i)^n, \quad (i = 1, 2). \]

Then, the vertex factor for the “type-1 vertex” that comes from \(L^{(1)}_{\text{int}} \) is the same as in vacuum theory, while the vertex factor for the “type-2 vertex” is minus the corresponding “type-1 vertex factor.” The CTP propagators are defined by the statistical average of the time-path-ordered product of fields, which are written as

\[i\Delta_{11}(x, y) = \langle T\phi_1(x)\phi_1^\dagger(y) \rangle_c, \]

\[i\Delta_{22}(x, y) = \langle T\phi_2(x)\phi_2^\dagger(y) \rangle_c = [i\Delta_{11}(y, x)]^*, \]

\[i\Delta_{12}(x, y) = \langle \phi_2^\dagger(y)\phi_1(x) \rangle_c, \]

\[i\Delta_{21}(x, y) = \langle \phi_2(x)\phi_1^\dagger(y) \rangle_c, \]

(3.17)

where \(T \ (\overline{T}) \) is the time-ordering (anti-time-ordering) symbol. In computing (3.17), one identifies \(\phi_2 \) with \(\phi_1 \). Comparing Eq. (3.17) with the above deduction of \(\Delta_{ij} \ (i, j = 1, 2) \), Eqs. (3.11), (3.12), (3.14), and (3.16), we see that \(x \) of \(\phi_1(x) \) in Eq. (3.17) corresponds to a vertex-point in \(\langle S \rangle \ (\in W) \) and \(x \) of \(\phi_2(x) \) corresponds to a vertex-point in \(\langle S^\dagger \rangle \). The vertex factors in \(\langle S \rangle \ (\in W) \) are \(-i\lambda \) for \(-\lambda (\phi^\dagger \phi)^2/4 \) interaction and \(-ig \) for \(-g\Phi (\phi^\dagger \phi)^n/(n!)^2 \) interaction. Then, the vertex factors in \(\langle S^\dagger \rangle \ (\in W) \) are, in corresponding order to the above, \(i\lambda \) and \(ig \). This is in accord with the above-mentioned vertex factors in the CTP formalism.
E. Reaction-probability formula

Observation made so far shows that N in Eq. (2.16) with Eq. (3.5) corresponds to an amplitude in the CTP formalism of the “process,”

$$\sum_{j=1}^{l} \Phi_{1j} + \sum_{j=1}^{l'} \Phi_{2j} \rightarrow \sum_{j=1}^{l} \Phi_{2j} + \sum_{j=1}^{l'} \Phi_{1j} .$$ \hspace{1cm} (3.18)

As mentioned at the end of Sec. II, only connected N’s contribute to the reaction-probability \mathcal{P}. Thus, we finally obtain

$$\mathcal{P} = \left(\prod_{j=1}^{l} \int d^{4}x_{j} d^{4}x'_{j} F_{j}(x_{j}) F^{*}(x'_{j}) \right) \times \left(\prod_{j=1}^{l'} \int d^{4}y_{j} d^{4}y'_{j} G^{*}_{j}(y_{j}) G_{j}(y'_{j}) \right) \times \sum_{\text{diagrams}} \int d^{4}\omega_{1} \cdots \omega_{N_{d}} \mathcal{F}_{i}(X; \{ (\omega_{k} - \omega_{k'}) \}) ,$$ \hspace{1cm} (3.19)

where \mathcal{F}_{i} is a connected amplitude in the CTP formalism which includes all Φ’s. In Eq. (3.19), we have used $\{ \omega \}$ for collectively denoting all the (external and internal) vertex-points and the summation runs over diagrams. A pair of ω’s, ω_{k} and $\omega_{k'}$, in a pair of brackets (\cdots) in \mathcal{F}_{i} denotes the vertex-points that are connected by $i \Delta_{kl}(\omega_{k(k')}, \omega_{k'(k)})$.

Here some remarks are in order.

1) As mentioned at the beginning of section, inclusion of the initial correlations (3.2) or (3.3) is straightforward.

2) Taking the infinite-volume limit $V \rightarrow \infty$ goes as follows:

$$\sum_{\mathbf{p}} \rightarrow \frac{V}{(2\pi)^{3}} \int d^{3}p ,$$

$$a_{\mathbf{p}} \rightarrow \sqrt{\frac{(2\pi)^{3}}{V}} a(\mathbf{p}) ,$$ \hspace{1cm} etc.

Above deduction shows that there is no finite-volume correction, in the sense that there do not exist extra contributions to \mathcal{N}, which disappear in the limit $V \rightarrow \infty$. It should be stressed that this statement holds for periodic boundary conditions.
3) It is clear from the above deduction (cf. Subsecs. B and C) that the CTP formalism here is formulated in terms of the “bare” number density of quasiparticles. A canonical CTP formalism is formulated in terms of the physical or observed number density of quasiparticles. How to translate the former into the latter is discussed in [10].

Finally, we make a comment on gauge theories. If we choose a physical gauge like the Coulomb gauge or the Landshoff-Rebhan variant [11] of a covariant gauge, the gauge boson may be dealt with in a similar manner to the above scalar-field case. If we adopt a traditional covariant gauge, a straightforward modification is necessary.

IV. COMPUTATIONAL PROCEDURE

In this section, we present a concrete procedure of computing the reaction probability P up to nth-order terms with respect to the X_μ derivatives.

1) From \mathcal{F}_i in Eq. (3.19), we pick out $i\Delta_{ij}(\rho, \sigma)$,

$$\Delta_{ij}(\rho, \sigma) = \sum_{\rho, \sigma} \mathcal{D}^4P e^{-iP \cdot (\rho - \sigma)} \Delta_{ij} \left(\frac{\rho + \sigma}{2}; P \right).$$

Since \mathcal{F}_i includes Φ’s, the vertex-point ρ [σ] is connected with a vertex-point v [v'] $\in \mathcal{V}_\Phi$ (cf. Fig. 1):

$$\frac{\rho + \sigma}{2} = \frac{1}{2} \left[-\sum_{j=0}^k (\omega_{j+1} - \omega_j) + \sum_{j=0}^{k'} (\omega_j' - \omega_{j+1}') + v + v' \right],$$

where $\omega_0 = \rho$, $\omega_0' = \sigma$, $\omega_{k+1} = v$, $\omega_{k'+1} = v'$, with $v, v' \in \mathcal{V}_\Phi$. In Eq. (4.2), each pair of spacetime points in a pair of brackets, ω_{j+1} and ω_j [ω_j' and ω_{j+1}'], is connected by one or

3Note that, in general, the vertex-points v and v' are not uniquely singled out. (v can coincides with v'.) However, different choices of v and v' leads to the same reaction probability P within the accuracy under consideration.
several $i\Delta_{kl}(\omega_{j+1}, \omega_j)$ [$i\Delta_{k'l'}(\omega_{j'}, \omega_{j'+1})$] in F_i (cf. Fig. 1). Here, we note that v and v' may be written as

$$v = X + \tilde{v}, \quad v' = X + \tilde{v}'$$

where X is the mid-point of the external-vertex points, around which the reaction is taking place:

$$X = \frac{1}{2(l + l')} \left[\sum_{j=1}^{l}(x_j + x'_j) + \sum_{j=1}^{l'}(y_j + y'_j) \right].$$

2) Using Eqs. (4.2) and (4.3), we expand $\Delta_{ij}((\rho + \sigma)/2; P)$ in Eq. (4.1) as

$$\Delta_{ij} \left(\frac{\rho + \sigma}{2}; P \right) = \Delta_{ij}(X; P) + \frac{1}{2} \sum_{j=0}^{k} (\omega_{j+1} - \omega_j) + \sum_{j=0}^{k'} (\omega'_{j+1} - \omega'_j) \cdot \frac{\partial}{\partial X} \Delta_{ij}(X; P) + \cdots,$$

where '⋯' stands for terms with higher-order derivative with respect to X. The series (4.4) is truncated at the nth-order terms with respect to the X^μ derivatives. The approximation in which '⋯' is ignored is called the gradient approximation.

3) Let us deal with the term with $(\omega_{j+1} - \omega_j)$ in Eq. (4.4). It can easily be shown that

$$(\omega_{j+1} - \omega_j) i\Delta_{kl}(\omega_{j+1}, \omega_j)$$

becomes

$$\begin{align*}
(\omega_{j+1} - \omega_j)^\mu \sum \mathcal{D}^4 P^' e^{-i(P+P') \cdot (\omega_{j+1}-\omega_j)} & i\Delta_{kl} \left(\frac{\omega_{j+1} + \omega_j}{2} ; P + P' \right) \\
= \sum \mathcal{D}^4 P^' e^{-i(P+P') \cdot (\omega_{j+1}-\omega_j)} & \frac{\partial}{\partial P^\mu} i\Delta_{kl} \left(\frac{\omega_j + \omega_{j+1}}{2} ; P + P' \right).
\end{align*}$$

Other terms and higher X^μ-derivative terms '⋯' in Eq. (4.4) may be dealt with similarly.

All other parts of F_i, Eq. (3.19), than the one (4.1) may be dealt with similarly.

4 As in the case of some self-energy-type subdiagram, there are several $i\Delta_{kl}(\omega_{j+1}, \omega_j)$'s [$i\Delta_{k'l'}(\omega_{j'}, \omega_{j'+1})$'s] (cf. Fig. 1). In such a case, one chooses any one of them.
4) Carrying out the integrations over all vertex-points except those in \mathcal{V}_Φ, we have momentum-conservation δ-functions at each internal vertex point.

As discussed at the beginning of Sec. III, the wave functions of Φ’s should be localized within the space region $\lesssim L^i$ ($i = 1, 2, 3$). However, for simplicity, we assume in the sequel that the wave functions of Φ’s are of plane-wave form:

$$F_j(x) = e^{-iR_j \cdot x} / \left(2V \sqrt{r_j^2 + M^2}\right)^{1/2},$$
$$G_j(y) = e^{-iR_j' \cdot y} / \left(2V \sqrt{r_j'^2 + M^2}\right)^{1/2}. \tag{4.5}$$

5) We carry out the integrations over all vertex-points in \mathcal{V}_Φ to yield momentum-conservation δ-functions at those vertex points and we are left with integrations over the independent or loop momenta. Keeping the terms up to the nth-order terms with respect to the X_μ derivatives, we obtain the final formula, which may be written in the form,

$$\mathcal{P} = \int d^4X A(X; R'_1, \cdots, R'_l; R_1, \cdots, R_l). \tag{4.6}$$

Note that A depends weakly on X through $N(X; Q_k)$’s. From Eq. (4.6), we see that A is the reaction rate per unit volume. Incidentally, were it not for this X-dependence, integration over X in Eq. (4.6) would yield VT, where V is the volume of the system and $T = t_f - t_i$ is the time interval during which the reaction takes place. In the limit $V, T \to \infty$, the VT becomes

$$\lim_{V, T \to \infty} V T = (2\pi)^4 \delta^4(0).$$

Example

Here, for the purpose of illustration, we deal with the heavy-Φ production process,

5It is to be noted that, if we use the the plane-wave form \[4.5\] in Eq. (2.13), X-dependence disappears. In the procedure presented here, X-dependence of \mathcal{N} is already (partially) taken into account before arriving at 4).
The system is composed of real scalar ϕ with $L_{\text{int}} = -\lambda \phi^3 / 3!$, and Φ interacts with ϕ through $L_{\phi\Phi} = -g \Phi \phi^2 / 2$. We analyze the contribution from Fig. 2 for P in Eqs. (2.2). Using Eq. (2.16), we have

$$
N = g^2 \lambda^2 \int d^4x' G^*(x') \int d^4y' G(y') \int d^4\xi \int d^4\xi' \sum_{\mathbf{p}_1} \frac{1}{\sqrt{2E_{\mathbf{p}_1}V}} e^{-i\mathbf{P}_1 \cdot \mathbf{x}'} \sum_{\mathbf{p}_2} \frac{1}{\sqrt{2E_{\mathbf{p}_2}V}} e^{-i\mathbf{P}_2 \cdot \xi} \sum_{\mathbf{q}} \frac{1}{\sqrt{2E_{\mathbf{q}'}V}} e^{i\mathbf{P}_2' \cdot \mathbf{x}'} \sum_{\mathbf{p}_1'} \frac{1}{\sqrt{2E_{\mathbf{p}_1'}V}} e^{i\mathbf{P}_1' \cdot \mathbf{y}'} \sum_{\mathbf{q}'} \frac{1}{\sqrt{2E_{\mathbf{q}'}V}} e^{-i\mathbf{P}_2' \cdot \xi'} \sum_{\mathbf{p}_1''} \frac{1}{\sqrt{2E_{\mathbf{p}_1''}V}} e^{i\mathbf{P}_1'' \cdot \mathbf{x}'} \sum_{\mathbf{q}''} \frac{1}{\sqrt{2E_{\mathbf{q}''}V}} e^{i\mathbf{P}_2'' \cdot \mathbf{y}'} \sum_{\mathbf{q}'''} \frac{1}{\sqrt{2E_{\mathbf{q'''}}V}} e^{-i\mathbf{P}_2'' \cdot \xi'} S \Delta^{(0)} (\xi - x') (i\Delta^{(0)} (\xi' - y'))^*,
$$

where $\Delta^{(0)}$ is the vacuum-theory propagator of ϕ and S (cf. Eq. (2.10)) takes the form

$$
S = \langle a_{\mathbf{p}_1}^{\dagger} a_{\mathbf{p}_2}^{\dagger} a_{\mathbf{q}} a_{\mathbf{q}'} a_{\mathbf{p}_2} a_{\mathbf{p}_1} \rangle = \langle a_{\mathbf{p}_1}^{\dagger} a_{\mathbf{p}_2}^{\dagger} (\delta_{\mathbf{q}', \mathbf{q}} + a_{\mathbf{q}'}^{\dagger} a_{\mathbf{q}}) a_{\mathbf{p}_1} a_{\mathbf{p}_2} \rangle.
$$

We compute the contributions that include only two-point functions. If necessary, the contributions including initial correlations may be written down in a straightforward manner. Keeping the terms that do not vanish kinematically, we have

$$
S = S_1 + S_2,
$$

$$
S_1 = \langle a_{\mathbf{p}_1}^{\dagger} a_{\mathbf{p}_2}^{\dagger} a_{\mathbf{q}} a_{\mathbf{q}'} a_{\mathbf{p}_2} a_{\mathbf{p}_1} \rangle [\delta_{\mathbf{q}', \mathbf{q}} + \langle a_{\mathbf{q}'}^{\dagger} a_{\mathbf{q}} \rangle],
$$

$$
S_2 = S_1 \bigg|_{\mathbf{p}_1 \leftrightarrow \mathbf{p}_2}.
$$

We compute the contribution N_1 from S_1. The contribution from S_2 may be computed similarly. Following the procedure presented above, we obtain

$$
N_1 = g^2 \lambda^2 \int d^4x' G^*(x') \int d^4y' G(y') \int d^4\xi \int d^4\xi' \sum_{\mathbf{p}_1} D^4P_1 e^{-i\mathbf{P}_1 \cdot (x' - y')} 2\pi \delta_+(P_1^2 - m^2) N \left(\frac{x' + y'}{2} ; P_1 \right)
$$

22
\[
\times \sum \int D^4 P_2 e^{-iP_2 \cdot (\xi - \xi')} 2\pi \delta_+(P_2^2 - m^2) N\left(\frac{\xi + \xi'}{2}; P_2\right) \\
\times \sum \int D^4 Q e^{-iQ \cdot (\xi' - \xi)} 2\pi \delta_+(Q^2 - m^2) \left\{1 + N\left(\frac{\xi + \xi'}{2}; Q\right)\right\} \\
\times \sum \int D^4 P' e^{-iP' \cdot (\xi - x')} \frac{i}{P'^2 - m^2 + i0^+} \sum \int D^4 Q' e^{-iQ' \cdot (y' - \xi')} \frac{-i}{Q'^2 - m^2 - i0^+}.
\]

Here we observe that
\[
\frac{\xi + \xi'}{2} - \frac{x' + y'}{2} = \frac{1}{2} [\xi - x' + \xi' - y'] \rightarrow -\frac{i}{2} \left(\frac{\partial}{\partial P'} - \frac{\partial}{\partial Q'}\right),
\]
where the partial derivatives are understood to act on the “propagators” in momentum representation.

Making the plane-wave approximation for \(G(x)\),
\[
G(x) = \frac{e^{-iR \cdot x}}{\sqrt{2E_\Phi V}} \quad (E_\Phi = \sqrt{r^2 + M^2}),
\]
we finally obtain, within the gradient approximation,
\[
\mathcal{N}_1 \simeq \frac{g^2 \lambda^2}{2E_\Phi V} \int d^4 X \sum \int D^4 P_1 \sum \int D^4 P_2 \left[2\pi \delta_+(P_1^2 - m^2) \tilde{N}(X; P_1)\right] \\
\times \left[2\pi \delta_+(P_2^2 - m^2) \tilde{N}(X_2; P_2)\right] \left[2\pi \delta_+(Q^2 - m^2)\{1 + \tilde{N}(X_1; Q)\}\right] \\
\times \left[1 - \frac{i}{2} \left(\frac{\partial}{\partial x_2} + \frac{\partial}{\partial x_1}\right) \cdot \left(\frac{\partial}{\partial P'} - \frac{\partial}{\partial Q'}\right)\right] \frac{1}{P'^2 - m^2 + i0^+} \\
\times \frac{1}{Q'^2 - m^2 - i0^+} \bigg|_{X_1 = x_2 = x, Q' = P'},
\]
where \(X = (x' + y')/2\) and \(P' = Q' = P_1 - R\) and \(Q = P_2 + P_1 - R\).

Eq. (4.8) corresponds to a contribution to the amplitude in the CTP formalism of the “process” (cf. Eq. (3.18)), \(\Phi_2(R) \rightarrow \Phi_1(R)\), and constitutes a part of the diagram as depicted in Fig. 3 in the CTP formalism. As a matter of fact, Eq. (4.8) represents Fig. 3 with \((p_{10} > 0, p_{20} > 0, q_0 > 0)\) plus Fig. 3 with \((p_{10} > 0, p_{20} < 0, q_0 < 0)\).
REFERENCES

[1] H. A. Weldon, Phys. Rev. D 28, 2007 (1983).

[2] A. Niégawa, Phys. Lett. B 247, 351 (1990); N. Ashida, H. Nakkagawa, A. Niégawa, and H. Yokota, Ann. Phys. (N.Y.) 215, 315 (1992); 230, 161(E) (1994); Phys. Rev. D 45, 2066 (1992); N. Asida, Int. J. Mod. Phys. A 8, 1729 (1993); *ibid.*, 3829(E) (1993); A. Niégawa and K. Takashiba, Ann. Phys. (N.Y.) 226, 293 (1993); 230, 162(E) (1994).

[3] M. Jacob and P. V. Landshoff, Phys. Lett. B 281, 114 (1992); P. V. Landshoff, Phys. Lett. B 386, 291 (1996).

[4] A. Niégawa, Phys. Rev. D 57, 1379 (1998).

[5] K.-C. Chou, Z.-B. Su, B.-L. Hao, and L. Yu, Phys. Rep. 118, 1 (1985).

[6] J. D. Bjorken and S. D. Drell, *Relativistic Quantum Fields* (Mc Graw-Hill, New York, 1965).

[7] A. J. Niemi and G. W. Semenoff, Ann. Phys. (N.Y.) 152, 105 (1984).

[8] R. D. Pisarski, Phys. Rev. Lett. 63, 1129 (1989); E. Braaten and R. D. Pisarski, Nucl. Phys. B337, 569 (1990); B339, 310 (1990); J. Frenkel and J. C. Taylor, *ibid.*, B334, 199 (1990). For an out-of-equilibrium generalization, see, e.g., M. E. Carrington, H. Defu, and M. H. Thoma, Eur. Phys. J. C7, 347 (1999).

[9] M. Le Bellac, *Thermal Field Theory* (Cambridge Univ. Press, Cambridge, 1996).

[10] A. Niégawa, Prog. Theor. Phys. 102, 1 (1999).

[11] P. V. Landshoff and A. Rebhan, Nucl. Phys. B383, 607 (1992).
FIGURES

FIG. 1. A diagram for F_i in Eq. (3.19). i, j, k, and l are the vertex-type. Each Φ is either type-1 or type-2.

FIG. 2. A diagram representing N, Eq. (2.24), for the process (4.7). The spacetime points ξ and x' (ξ' and y') are connected by a vacuum-theory propagator. The dot-dashed line stands for the final-state-cut line. The group of particles on top of the figure represents the spectator particles.

FIG. 3. An amplitude for the “process” $\Phi_2(R) \to \Phi_1(R)$ in the CTP formalism, a part of which represents the contribution (4.8).
FIG. 1
FIG. 2
FIG. 3