Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
INTRODUCTION

Distance learning has been available for more than a century through printed manuals, and subsequently, at the beginning of the 20th century, through radio, audio, and video tapes. However, only at the end of the 20th century did the educational modality spread with the advent of the world wide web (WWW) (1). Several models of online educational activities are available, with varied purposes: massive open online courses (MOOCs) (2), recorded classes, online live interaction, tutorials, short communications, and conferences. However, some students and teachers still resist adopting online teaching/learning modalities as a daily practice.

The COVID-19 pandemic demanded a quick shift from presentential to e-learning processes. Unlike planned e-learning programs, medical schools have had to quickly deliver the entire medical curriculum using remote strategies. This study aimed to perform a meta-synthesis of previous pandemic situations and describe the experience of the São Paulo University School of Medicine.

We searched the Cochrane Central Register of Controlled Trials, Medline, EMBASE, Lilacs, Scopus, Web of Science, and ERIC, using the following keywords: (“SARS” OR “severe acute respiratory syndrome” OR “severe acute respiratory syndrome” OR “Middle East Respiratory Syndrome Coronavirus” OR “middle east respiratory syndrome” OR “MERS-CoV” OR “Mers” OR “Middle Eastern Respiratory Syndrome” OR “MERS-CoV” OR “coronavirus” OR “Coronavirus Infections” OR “coronavirus” OR “COVID-19” OR “2019-nCoV” OR “SARS-CoV-2”) AND (“online education” OR “Education, Distance” OR “e-learning” OR “course online” OR “flipped classroom”) AND (“lockdown” OR “social distance” OR “quarantine”). The endpoints were the online platforms used for online learning, the model of class, recorded versus online interaction, duration of online lectures, and students’ and teachers’ perceptions of online learning.

We retrieved 38 records; only seven articles studied online education methods related to the pandemic and social distancing rules. The most frequently used online platform was Zoom®. The studies examined both synchronous and asynchronous approaches. There was no evidence regarding duration and students’ and teachers’ attitude.

This study suggests that the online learning shift was feasible; however, because of the nature of the education shift (pandemic), future studies must further analyze the educational structure.

KEYWORDS: SARS-CoV-2; E-learning; Lockdown; Education; Medical.
RESULTS

We retrieved 38 records, and only seven articles studied online education methods related to pandemic and social distancing rules.

Online platforms used for online learning

Three studies used more than one platform toll (7,8,9). One study did not show any information (2). Three studies used only one platform (10,11,12). All interaction platforms allowed the use of different devices (personal computers (PCs), smartphones, tablets).

Model of class

Several studies recommended to use Google Meet and Zoom platforms for recorded or live interaction (13,14,15) (Table 2).

Duration of online lectures

Only one study showed lecture durations (9). In this study, the average lecture duration was about one hour.

Students’ and teachers’ perception of the online learning process

Regarding students’ perceptions, some articles showed a turning point in attitude toward student-centered learning (8). Solec et al. created a student task force to develop an organization that would optimize students’ ability to help in the COVID-19 response (clinic, community, and serve as a liaison with the administration and hospital leaders to identify evolving needs and rapidly engage students in those efforts) (16).

Chinelatto et al. described the students’ perception of a medical program’s adaptation to remote learning (7). The graduation committee decided to interrupt educational activities for two weeks to give teachers time to reorganize their activities, outcomes, and educational strategies for the virtual environment. During this time, it was possible to train teachers to use digital tools and platforms, and search for students with difficulties connecting to online activities and offer computers and Internet access to them. In this period, the Center for Development of Medical Educational Development Center (CEDEM) promoted several meetings to discuss students’ expectations and the emotional impact of quarantine. Meanwhile, the clerkship was responsible for first to fifth-year students and recorded their lectures at the University with professional support. The CEDEM implemented an online education schedule with synchronous and asynchronous interaction from the first to the fourth year of medical graduation. Many students were anxious about what they were missing out on because of the social distancing measures initiated as a result of COVID-19, while
others understood this time as an opportunity to develop new competences.

DISCUSSION

Our review searched through similar past endemic and epidemic situations to answer some questions about the educational process that has arisen in the present pandemic. The impact of agility and leadership capacity on implementing remote learning was clear.

Regarding the online platform, this systematic review showed Zoom and Google platforms as the most used online learning platforms. We adopted both at the São Paulo University.

Another important decision was the choice of recorded lectures and live interaction. As previously suggested, we adopted a mixed model (13,14,15). Live interaction is more dynamic than recorded lectures; however, sometimes we have to rely on recorded classes due to Internet connectivity problems and to avoid clerkship and student overload (14). The recorded model allows a pause and an adaptation in daily activities, which are strengths of online learning. Recorded lectures make flexible attendance possible. Some students reported that they prefer recorded lectures over live interaction, because it allows them the freedom to choose the best time to study (7).

There was not enough information in the literature about lecture duration. We observed some lectures divided into mini-lectures (20 minutes) to keep students focused, with one-minute questions or exercises between them. Case discussions, forums, projects, and portfolios were also used.

Students’ and teachers’ perceptions could be influenced by generational differences and personal technological abilities, and these perceptions can influence their satisfaction with the effectiveness of e-learning programs.

COVID-19 has had a catalytic effect in the shift to remote educational activities in medical training, breaking down some barriers and resistance from both teachers and students (17).

Nevertheless, online education is a convoluted endeavor in terms of a realistic understanding of compelling educational content delivery and participants’ expectations. Online learning showed the advantage of using a student-centered model to facilitate educational access. On the other hand, in medical and other health professional courses, the main drawback is the impossibility to practice. In the future, we believe that a mixed model will be the most popular model for teaching in health professional undergraduate programs.

CONCLUSION

The COVID-19 pandemic situation is more serious and has lasted more than the previous epidemic situations. For this reason, we did not have any previous experience of using it as a background. In conclusion, the e-learning shift is feasible. The pandemic situation requires a well-integrated trained team to detect students’ and teachers’ needs and provide prompt answers and support with digital tools. We are all surfing the virtual environment, with greater or less difficulty, and we have the firm conviction that education must not stop.

AUTHOR CONTRIBUTIONS

Camargo CP worked in substantial contributions to the conception or design of the work; acquisition, analysis and interpretation of data for the work. Tempski PZ, Martins MA worked in substantial contributions to the conception or design of the work, critical review. Busnardo FF, Gremperi R contributed in interpretation of data for the work, and critical review.

REFERENCES

1. Merrell RC. Education and distance learning: changing the trends. Stud Health Technol Inform. 2004;104:141-6. Available from: PMID: 15747972

2. Zhou T, Huang S, Cheng J, Xiao Y. The Distance Teaching Practice of Combined Mode of Massive Open Online Course Micro-Video for Interns in Emergency Department During the COVID-19 Epidemic Period. Telemed J E Health. 2020;26(5):584-588. Available from: http://1089/tmj.2020.00079.

3. Taylor D, Grant J, Hamdy H, Grant L, Marei H and Venkatramana. Transferring learning from a distance. MedEdPublish [Internet]. 2020 April 23 [cited June 21]; 9 (1). Available from: http://10.15694/mep.2020.00076.1

4. Rose S. Medical student education in the time of covid-19. JAMA. 2020;323(21):2131-2132. Available from: http://10.1001/jama.2020.5227

5. Unesco Covid-19 disruption and response [Internet]. [Cited May 1]. Available from: https://en.unesco.org/news/covid-19-educational-disruption-and-response#:~:text=UNESCO%20is%20providing%20immediate,especially%20for%20the%20most%20vulnerable.

6. Ministério da Saúde. Saude regulamenta condições de isolamento e quarentena. [cited June 5] Available from: https://www.saude.gov.br/noticias/agencia-saude/46356-saude-regulamenta-condicoes-de-isolamento-e-quarentena

7. Chinelatto LA, Costa TRD, Medeiros VMB, Boog GHP, Hojaj FC, Tempski PZ, et al. What you gain and what you lose in COVID-19: Perception of Medical Students on their Education. Clinics (Sao Paulo). 2020;75:e2133. Available from: http://10.6061/clinics/2020/e2133

8. Chick RC, Clifton GT, Peace KM, Propper BW, Hale DF, Alseedi AA, et al. Using Technology to Maintain the Education of Residents During the COVID-19 Pandemic. J Surg Educ. 2020;77(4):729-732. Available from: http://10.1016/j.jsurg.2020.03.018

9. Gonzales-Zamora JA, Alave J, De Lima-Corvino DF, Fernandez A. Videoconferences of Infectious Diseases: An educational tool that transcends borders. A useful tool also for the current COVID-19 pandemic. Infect Med. 2020 Ahead of print;28(2):135-138. Available from: PMID: 32275254

Table 2 - Description of online platform, model of class, accessibility and educational methods.

Study ID	Online platform	Online classes	Accessibility	Education methods
Park 2016	Skype	live	PCs/smartphones/tablets	Problem-based Learning
Chick 2020	Facebook (BSITE Daily)/GoToMeeting (LogMeln Inc., Boston, MA)	pre-recorded	PCs/smartphones/tablets	Flipped classroom and conferences
Pather 2020	Zoom	pre-recorded	PCs/smartphones/tablets	Conferences
Regier 2020	Zoom	pre-recorded	PCs/smartphones/tablets	Case method
Zhou 2020b	no information	pre-recorded	Micro-videos and questionnaires	
Gonzales-Zamora 2020	Facebook/Zoom/Skype	live pre-record	Lectures and discussions	Lectures, discussions in forum, texts, articles, and case discussions
Chinelatto 2020	Google Meet/Zoom	live	PCs/smartphones/tablets	Lectures, discussions in forum, texts, articles, and case discussions
10. Park SW, Jang HW, Choe YH, Lee KS, Ahn YC, Chung MJ, et al. Avoiding student infection during a Middle East respiratory syndrome (MERS) outbreak: a single medical school experience. Korean J Med Educ. 2016;28(2):209-17. Available from: http://10.3946/kjme.2016.30

11. Pather N, Blyth P, Chapman JA, Dayal MR, Flack NAMS, Fogg QA, et al. Forced Disruption of Anatomy Education in Australia and New Zealand: An Acute Response to the Covid-19 Pandemic. Anat Sci Educ. 2020;13(3):284-300. Available from: http://10.1002/ase.1968

12. Regier DS, Smith WE, Byers HM. Medical genetics education in the midst of the COVID-19 pandemic: Shared resources. Am J Med Genet A. 2020;182(6):1302-1308. Available from: http://10.1002/ajmg.a.61595

13. Newman NA, Lattouf OM. Coalition for medical education-A call to action: A proposition to adapt clinical medical education to meet the needs of students and other healthcare learners during COVID-19. J Card Surg. 2020;35(6):1174-1175. Available from: http://10.1111/jocs.14590

14. Gewin V: Five tips for moving teaching online as COVID-19 takes hold. Nature. 2020;580(7802):295-296. Available from: http://10.1038/d41586-020-00896-7

15. Evans DJR, Bay BH, Wilson TD, Smith CF, Lachman N, Pawlina W. Going Virtual to Support Anatomy Education: A STOPGAP in the Midst of the Covid-19 Pandemic. Anat Sci Educ. 2020;13(3):279-283. Available from: http://10.1002/ase.1963

16. Soled D, Goel S, Barry D, Erfani P, Joseph N, Kochis M, et al. Medical Student Mobilization During A Crisis: Lessons From A COVID-19 Medical Student Response Team. Acad Med 2020;95(9):1384-1387. Available from: http://10.1097/ACM.0000000000003401

17. Goldhamer MEJ, Pusic MV, Co JPT and Weinstein DF. Can Covid Catalyze an Educational Transformation? Competency-Based Advancement in a Crisis. N Engl J Med. 2020;383(11):1003-1005. Available from: http://10.1056/NEJMtp2018570