SCHRÖDINGER MEANS IN HIGHER DIMENSIONS

PER SJÖLIN AND JAN-OLOV STRÖMBERG

Abstract. Maximal estimates for Schrödinger means and convergence almost everywhere of sequences of Schrödinger means are studied.

1. Introduction

For \(f \in L^2(\mathbb{R}^n) \), \(n \geq 1 \) and \(a > 0 \) we set

\[
\hat{f}(\xi) = \int_{\mathbb{R}^n} e^{-i\xi \cdot x} f(x) \, dx, \xi \in \mathbb{R}^n,
\]

and

\[
S_t f(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{i\xi \cdot x} e^{it|\xi|^a} \hat{f}(\xi) \, d\xi, \quad x \in \mathbb{R}^n, \quad t \geq 0.
\]

We introduce Sobolev spaces \(H_s = H_s(\mathbb{R}^n) \) by setting

\[
H_s = \{ f \in \mathcal{S}'; \| f \|_{H_s} < \infty \}, \quad s \in \mathbb{R},
\]

where

\[
\| f \|_{H_s} = \left(\int_{\mathbb{R}^n} (1 + |\xi|^2)^{s} |\hat{f}(\xi)|^2 \, d\xi \right)^{1/2}
\]

and \(\mathcal{S} = \mathcal{S}(\mathbb{R}^n) \) denotes the Schwartz class. We let the sequence \(\{ t_m \}_1^\infty \) have the properties that

\[
1 > t_1 > t_2 > t_3 > \cdots > 0 \quad \text{and} \quad \lim_{m \to \infty} t_m = 0.
\]

We shall study the problem of deciding for which sequences \(\{ t_m \}_1^\infty \) and functions \(f \) one has

\[
\lim_{m \to \infty} S_{t_m} f(x) = f(x) \quad \text{almost everywhere.}
\]

For \(r > 0 \) we say that \(\{ t_m \}_1^\infty \in l^r \) if \(\sum_{m=1}^\infty t_m^r < \infty \), and that \(\{ t_m \}_1^\infty \in l^{r,\infty} \) if \(\# \{ m; t_m > b \} \lesssim b^{-r} \) for \(b > 0 \).

In Sjölin and Strömbäck [2] we proved that if \(a > 0, n \geq 1, 0 < s < a/2 \), and \(\{ t_m \}_1^\infty \in l^r \) for some \(r < 2s/(a-2s) \), then (3) holds if \(f \in H_s(\mathbb{R}^n) \).

In the case \(n = 1 \) Dimou and Seeger [1] have proved that if \(a > 0, a \neq 1, 0 < s < a/4 \) and \(\{ t_m \}_1^\infty \in l^r \), where \(r = 2s/(a-4s) \), then (3) holds if \(f \in H_s(\mathbb{R}) \). They also proved that here \(r \) cannot be replaced by \(r_1 \) if \(r_1 > r \).

In Section 3 of this paper we shall improve the result from [2] mentioned above in the case \(n \geq 2 \). We shall prove that (3) holds for \(f \in H_s(\mathbb{R}^n) \) if \(a > 0, a \neq 1, n \geq 2, 0 < s < a/2 \),

Mathematics Subject Classification (2010):42B99.

Key Words and phrases: Schrödinger equation, convergence, Sobolev spaces
and \(\{t_m\}_1^\infty \in l^{r,\infty} \) where \(r = 2s/(a-2s) \). In the proof of this result we shall use the following theorem.

Theorem 1. Assume \(a > 0, n \geq 1, \lambda \geq 1, \) and let the interval \(J \subset [0,1] \). Assume also that \(f \in L^2(\mathbb{R}^n) \) and \(\text{supp} \hat{f} \subset B(0;\lambda) = \{ \xi \in \mathbb{R}^n; |\xi| \leq \lambda \} \). Then one has

\[
\| \sup_{t \in J} |S_t f| \|_2 \leq (1 + C|J|^{1/2} \lambda^{a/2}) \|f\|_2.
\]

Let the ball \(B \) be a subset of \(\mathbb{R}^n \) and let the interval \(J \subset [0,1] \). Set \(E = B \times J \). In Section 2 we shall also study maximal functions of the type

\[
S_E^* f(x) = \sup_{(y,t) \in E} |S_t f(x+y)|, \ x \in \mathbb{R}^n, f \in \mathcal{S}(\mathbb{R}^n).
\]

In Section 4 we study relations between maximal estimates in one variable and maximal estimates in dimension \(n \geq 2 \).

In Section 5 finally we give a counter-example which shows that in the case \(n \geq 2, 0 < s < a/4, r = 2s/(a-4s), \{t_m\}_1^\infty \in l^{r,\infty}, \{t_n-t_{n+1}\}_1^\infty \) decreasing, there is no estimate

\[
\| \sup_m |S_{t_m} f| \|_2 \lesssim \|f\|_{H^s}
\]

for all radial functions \(f \in \mathcal{S}(\mathbb{R}^n) \).

We write \(A \lesssim B \) if there is a positive constant \(C \) such that \(A \leq CB \), and we write \(A \sim B \) if \(A \lesssim B \) and \(B \lesssim A \).

2. **Maximal estimates**

The following theorem was proved in Sjölin and Strömberg [2]. We shall here give a new proof which is simpler than the proof in [2].

Theorem A. (Sjölin-Strömberg) Assume \(a > 0, n \geq 1, \lambda \geq 1 \), and \(J \) interval in \(\mathbb{R} \). Assume also that \(f \in L^2(\mathbb{R}^n) \) and \(\text{supp} \hat{f} \subset B(0;\lambda) \).

Then one has

\[
\| \sup_{t \in J} |S_t f| \|_2 \leq (1 + C|J|^{1/2} \lambda^a) \|f\|_2.
\]

Proof. We can write

\[
S_t f(x) = c \int e^{i\xi \cdot x} e^{it|\xi|^a} \hat{f}(\xi) \, d\xi
\]

and \(J = [t_0, t_0 + r] \) where \(r = |J| \).

We have

\[
e^{it|\xi|^a} = \Delta + e^{it_0|\xi|^a}
\]

where \(\Delta = e^{it|\xi|^a} - e^{it_0|\xi|^a} \). It follows that

\[
\Delta = i|\xi|^a \int_{t_0}^t e^{i|\xi|^a s} \, ds,
\]
and
\[S_1 f(x) = c \int_{\mathbb{R}^n} \int_{t_0}^t e^{i\xi \cdot x} |\xi|^a \xi^a \hat{f}(\xi) \, d\xi \, ds \]
\[+ c \int_{\mathbb{R}^n} e^{i\xi \cdot x} e^{i t_0 |\xi|^a} \hat{f}(\xi) \, d\xi \]
\[= S_1(x, t) + S_2(x, t). \]

Hence
\[|S_1(x, t)| \lesssim \int_{t_0}^t \left| \int_{\mathbb{R}^n} e^{i\xi \cdot x} |\xi|^a \xi^a \hat{f}(\xi) \, d\xi \right| \, ds \]
and
\[\sup_{t \in J} |S_1(x, t)| \lesssim \int_{t_0}^{t_0 + r} \left| \int_{\mathbb{R}^n} e^{i\xi \cdot x} |\xi|^a \xi^a \hat{f}(\xi) \, d\xi \right| \, ds. \]

Using Minkovski’s inequality and Plancherel’s theorem we obtain
\[\left(\int \sup_{t \in J} |S_1(x, t)|^2 \, dx \right)^{1/2} \lesssim \int_{t_0}^{t_0 + r} \|\xi|^a \hat{f}(\xi)\|_2 \, ds \]
\[\leq r \lambda^a \left(\int_{\mathcal{B}(0, \lambda)} |\hat{f}(\xi)|^2 \right)^{1/2} \lesssim r \lambda^a \|f\|_2. \]

Also
\[\left(\int \sup_{t \in J} |S_2(x, t)|^2 \, dx \right)^{1/2} = \left(\int |S_2(x, t_0)|^2 \, dx \right)^{1/2} = \|f\|_2, \]
and we obtain
\[\|\sup_{t \in J} |S_1 f|\|_2 \leq (1 + Cr \lambda^a) \|f\|_2, \]
which proves the theorem. \(\square \)

In the following theorems let \(J \) denote an interval. In the one-dimensional case Dimou and Seeger obtained the following result.

Theorem B. (Dimou-Seeger) Assume \(a > 0, a \neq 1, n = 1, \lambda \geq 1 \). and \(J \subset [0, 1] \). Assume also that \(f \in L^2(\mathbb{R}) \) and \(\text{supp} \hat{f} \subset \{ \xi; \lambda/2 \leq |\xi| \leq \lambda \} \). Then one has
\[\|\sup_{t \in J} |S_1 f|\|_2 \lesssim \left(1 + |J|^{1/4} \lambda^{a/4} \right) \|f\|_2. \]

We have the following result.

Theorem 1. Assume \(a > 0, n \geq 1, \lambda \geq 1 \), and let the interval \(J \subset [0, 1] \). Assume also that \(f \in L^2(\mathbb{R}^n) \) and \(\text{supp} \hat{f} \subset B(0; \lambda) = \{ \xi \in \mathbb{R}^n; |\xi| \leq \lambda \} \). Then one has
\[\|\sup_{t \in J} |S_1 f|\|_2 \leq (1 + C|J|^{1/2} \lambda^{a/2}) \|f\|_2. \]

Proof. First we study the case \(|J| \lambda^a \leq 1 \). Then \((1 + C|J| \lambda^a) \leq (1 + C|J|^{1/2} \lambda^{a/2}).\) Applying Theorem A we get
\[\|\sup_{t \in J} |S_1 f|\|_2 \leq (1 + C|J| \lambda^a) \|f\|_2 \leq (1 + C|J|^{1/2} \lambda^{a/2}) \|f\|_2. \]
It remains to study the case $|J|\lambda^a > 1$.
Cover J with intervals $J_i, i = 1, 2, \ldots, N$, of length λ^{-a}. We may take $N \leq |J|\lambda^a + 1$.
Using Theorem A we obtain

$$
\| \sup_{t \in J} |S_t f| \|_2 \leq \sum_{i=1}^N \| \sup_{t \in J_i} |S_t |f| \|_2 \leq \sum_{i=1}^N (1 + |J_i|\lambda^a) \| f \|_2 \lesssim N \| f \|_2 \leq (|J|\lambda^a + 1) \| f \|_2
$$

and the inequality in the theorem follows.

We have the following extension of Theorem B.

Theorem 2. Assume $a > 0, a \neq 1, \lambda \geq 1$ and $J \subset [0, 1]$. Assume also that $f \in L^2(\mathbb{R})$ with supp $\hat{f} \subset B(0, \lambda)$. Then one has

$$
\| \sup_{t \in J} |S_t f| \|_2 \lesssim C \left(|J|^{1/4} \lambda^{a/4} + 1 \right) \| f \|_2.
$$

Proof. First we study the case $|J|\lambda^a \leq 1$. From Theorem A we obtain

$$
\| \sup_{t \in J} |S_t f| \|_2 \lesssim \| f \|_2.
$$

which proves the theorem in this case.

We then consider the case $|J|\lambda^a > 1$, i.e. $\lambda > |J|^{-1/a}$.

We choose k such that $2^{-k-1}\lambda < |J|^{-1/a} \leq 2^{-k}\lambda$ and then write $f = \sum_{j=0}^k f_j + g$ where supp $\hat{f}_j \subset \{ \xi; 2^{-j-1}\lambda \leq |\xi| \leq 2^{-j}\lambda \}$ for $j = 0, 1, \ldots, k$, and supp $\hat{g} \subset B(0, 2^{-k-1}\lambda)$.
From Theorem A we conclude that

$$
\| \sup_{t \in J} |S_t g| \|_2 \lesssim (1 + |J||J|^{-1}) \| g \|_2 \lesssim \| f \|_2
$$

and it follows from Theorem B that

$$
\| \sup_{t \in J} |S_t f_j| \|_2 \lesssim \left(1 + |J|^{1/4}2^{-ja/4}\lambda^{a/4} \right) \| f \|_2 \lesssim |J|^{1/4}2^{-ja/4}\lambda^{a/4} \| f \|_2,
$$

since $|J|2^{-ja/4}\lambda^a \geq 1$. Hence we have

$$
\sum_{j=0}^k \| \sup_{t \in J} |S_t f_j| \|_2 \lesssim |J|^{1/4}\lambda^{a/4} \| f \|_2
$$

and the theorem follows from the above estimates.

The method of Dimou and Seeger to prove Theorem B can be extended to all dimensions n an gives the following result.

Lemma 1. Assume $n \geq 1, a > 0$ and $\lambda \geq 1$. Let the interval $J \subset [0, 1]$, let $f \in L^2(\mathbb{R}^n)$ with supp $\hat{f} \subset \{ \lambda/2 \leq |\xi| \leq \lambda \}$.

Then one has

$$
\| \sup_{t \in J} |S_t f| \|_2 \leq C \left(|J|^{n/4}\lambda^{na/4} + 1 \right) \| f \|_2 \text{when } a \neq 1
$$
First we have the trivial estimate
\[\| S_t f \|_2 \leq C \left(|J|^{(n+1)/4} \lambda^{(n+1)/4} + 1 \right) \| f \|_2 \text{ when } a = 1 \]
We shall then study a more general problem. Let \(E \) denote a bounded set in \(\mathbb{R}^{n+1} \). For \(f \in \mathcal{S}(\mathbb{R}^n) \) we introduce the maximal function
\[S_E^* f(x) = \sup_{(y,t) \in E} |S_t f(x + y)|, \quad x \in \mathbb{R}^n. \]
The method used to prove Lemma 1 can also be used to prove the following result.

Lemma 2. Assume \(a > 0, n \geq 1 \) and \(\lambda \geq 1 \). Let the interval \(J \subset [0,1] \). Let \(B \) be a ball in \(\mathbb{R}^n \) with radius \(r \), let \(E = B \times J = \{(x,t); x \in B, t \in J\} \) and let \(f \in L^2(\mathbb{R}^n) \) with \(\text{supp } \hat{f} \subset \{ \lambda/2 \leq |\xi| \leq \lambda \} \).

Then one has
\[\| S^*_E f \|_2 \leq C \left(|J|^{n/4} \lambda^{n/4} + r^{n/2} \lambda^{n/2} + 1 \right) \| f \|_2 \text{ when } a \neq 1, \]
and
\[\| S^*_E f \|_2 \leq C \left(|J|^{(n+1)/4} \lambda^{(n+1)/4} + r^{n/2} \lambda^{n/2} + 1 \right) \| f \|_2 \text{ when } a = 1. \]

We observe that Lemma 1 is a special case of Lemma 2 by taking \(B = B(0, \epsilon) \) with \(\epsilon > 0 \) small enough.

Proof of Lemma 2. We let \(\chi \) denote a smooth non-negative function on \(\mathbb{R} \) supported on \([1/3, 4/3]\) and identically 1 on \([1/2, 1]\). We also use the same notation for the radial function on \(\mathbb{R}^n \) with \(\chi(\xi) = \chi(|\xi|) \).

We set
\[S_{t} f(x,t) = \int_{\mathbb{R}^n} e^{i(x+\xi)} \hat{f}(\xi) \chi(\xi/\lambda) d\xi \quad x \in \mathbb{R}^n, t \in \mathbb{R}. \]

We introduce measurable functions \(t : \mathbb{R}^n \to J \) and \(b : \mathbb{R}^n \to B \) and then have
\[S_{t} f(x + b(x), t(x)) = \int_{\mathbb{R}^n} e^{i(x+b(x)\cdot \xi + t(x))} \hat{f}(\xi) \chi(\xi/\lambda) d\xi \]
\[= |\eta = \xi/\lambda| = \int_{\mathbb{R}^n} e^{i(\lambda(x+b(\eta) - \eta + t(x)\lambda^n |\eta|))} \hat{f}(\lambda \eta) \chi(\eta) d\eta \lambda^n \]
\[= \lambda^n T_{\lambda}(\hat{f}(\cdot))(x) \]
where
\[T_{\lambda} g(x) = \int_{\mathbb{R}^n} e^{i(\lambda(x+b(\eta) - \eta + t(x))\chi(\xi/\lambda))} g(\xi) d\xi. \]
We have \(\| \hat{f}(\cdot) \|_2 = c\lambda^{-n/2} \| f \|_2 \) and \(T_{\lambda} T^\ast_{\lambda} \) has kernel
\[K_{\lambda}(x, y) = \int_{\mathbb{R}^n} e^{i(\lambda(x-y+b(\eta) - b(y)) - \xi + \lambda^n(t(x)-t(y))\xi)} \chi(\xi) d\xi. \]
We will majorize the kernel \(K_{\lambda} \) by a convolution kernel \(G_{\lambda} \), that is \(|K_{\lambda}(x,y)| \lesssim G(x-y) \).

One then has the \(L^2 \)-operator norm \(\| T_{\lambda} T^\ast_{\lambda} \| \lesssim \| G \|_1 \).

First we have the trivial estimate
\[|K_{\lambda}(x,y)| \lesssim 1 \]
holds for all \(x\) and \(y\). We shall use this estimate when \(\lambda|x - y| \leq C_0 + 2\lambda d\) where \(d = 2r\).

For \(\lambda|x - y| > C_0 + 2\lambda d\) we have

\[
|x - y| \left(1 - \frac{d}{|x - y|}\right) = |x - y| - d < |x - y + b(x) - b(y)| < |x - y| + d = |x - y| \left(1 + \frac{d}{|x - y|}\right)
\]

and

\[
(1/2)|x - y| < |x - y + b(x) - b(y)| < (3/2)|x - y|.
\]

Introducing polar coordinates we have

\[
K_{\lambda}(x, y) = \int_0^\infty e^{i\lambda(x - y)t} r a \chi(r)^2 \left(\sum_{n=1}^\infty e^{i\lambda x - b(x) - b(y)} \int_{\mathbb{R}^{n-1}} e^{i\lambda x - b(x) - b(y)} j_{\lambda} d\sigma(\xi)\right) dr (5)
\]

We observe that inner integral is \(\hat{\sigma}(\lambda|x - y + b(x) - b(y)|r)\). According to Stein ([4], p. 347) one has

\[
\hat{\sigma}(\xi) = c|\xi|^{1-n/2} J_{(n-2)/2}(|\xi|).
\]

We take \(C_0\) large so that

\[
J_{(n-2)/2}(r) = a_0 \frac{e^{ir}}{r^{1/2}} + a_1 \frac{e^{ir}}{r^{3/2}} + \ldots + a_N \frac{e^{ir}}{r^{N+1/2}} + b_0 \frac{e^{-ir}}{r^{1/2}} + b_1 \frac{e^{-ir}}{r^{3/2}} + \ldots + b_N \frac{e^{-ir}}{r^{N+1/2}} + R(r) \text{ for } r \geq C_0,
\]

where \(|R(r)| \lesssim \frac{1}{r^{N+3/2}}\) for \(r \geq C_0\) (See [4] p. 338).

From this we get

\[
K_{\lambda}(x, y) = \int_0^\infty e^{i\lambda x - b(x) - b(y)} r a \chi(r)^2 r^{n-1} \left(a_0 \frac{e^{i|\lambda x - b(x) - b(y)|r}}{(\lambda|x - y + b(x) - b(y)|r)^{n+1/2}} + \ldots + b_N \frac{e^{i|\lambda x - b(x) - b(y)|r}}{(\lambda|x - y + b(x) - b(y)|r)^{N+1/2}} + R_1(\lambda|x - y + b(x) - b(y)|r) \right) dr (5)
\]

where \(R_1(r) = r^{1-n/2} R(r)\). It follows from ([4]) that

\[
R_1(\lambda|x - y + b(x) - b(y)|r) \lesssim \frac{1}{(\lambda|x - y + b(x) - b(y)|r)^{N+1/2}} \leq \frac{1}{(\lambda|x - y|/2)^{N+1/2}}.
\]

The remainder term contribute with a remainder part of the kernel

\[
K_{\lambda, \text{rem}}(x, y) \lesssim (\lambda|x - y|)^{-N-n/2-1/2}
\]

Set \(\Phi_{\lambda}(r) = \lambda^a (t(x) - t(y)) r^a + |\lambda x - y + b(x) - b(y)| r\)

The main term in ([5]) gives the following contribution to \(K_{\lambda}(x - y)\):

\[
K_{\lambda, \text{rem}}(x, y) = \int_0^\infty e^{i\Phi_{\lambda}(r)} \chi(r)^2 r^{n-1} r^{1/2} dr (5)
\]

We consider two cases:

Case 1: \(|x - y| >> \lambda^{-1}|t(x) - t(y)|\) gives \(\Psi_{\lambda} \gtrsim |\lambda x - y|\) and integrations by parts gives \(|K_{\lambda, \text{rem}}(x, y)| \lesssim (\lambda|x - y|)^{-N}\) for any large \(N\).

Case 2: \(|x - y| \lesssim \lambda^{-1}|t(x) - t(y)|\). In this case we have

\[
\Phi_{\lambda}'(r) = \lambda^a (t(x) - t(y)) a(a - 1)r^{a-2}
\]
and in the case \(a \neq 1\) van der Corput gives
\[
|K_{\lambda,0}(x, y)| \lesssim \lambda^{-a/2} |t(x) - t(y)|^{-1/2} (\lambda|x - y|)^{1/2 - 2a} \lesssim (\lambda|x - y|)^{-n/2}.
\]
In Case 2a with \(a = 1\) we have the trivial estimate estimate
\[
|K_{\lambda,0}(x, y)| \lesssim (\lambda|x - y|)^{(1-n)/2}
\]
and the other terms in \([5]\) can be estimated in the same way.

We note that Case 2 is contained in the set \(|x - y| \lesssim \lambda^{a-1}|J|\)

The other terms in \([2]\) can be estimated in the same way.

To summarize the estimates we see that \(|K_{\lambda}(x, y)| \lesssim G_{\lambda}(x - y)\) where
when \(a \neq 1\):
\[
G_{\lambda}(x) = \chi_{\{|x| < C_0 \lambda^{a-1+2d}\}}(x) + \chi_{\{|x| \geq \lambda^{-1}\}}(\lambda^{-N}|x|^N + \chi_{\{|x| \leq C\lambda^{a-1}|J|\}}(\lambda^{-n/2}|x|^{-n/2})
\]
and when \(a = 1\):
\[
G_{\lambda}(x) = \chi_{\{|x| < C_0 \lambda^{a-1+2d}\}}(x) + \chi_{\{|x| \geq \lambda^{-1}\}}(\lambda^{-N}|x|^N + \chi_{\{|x| \leq C|J|\}}(\lambda^{1-n/2}|x|^{1-n/2})
\]
In the case when \(a \neq 1\) we have
\[
\|G\|_1 \lesssim (\lambda^{-1} + d^n + \lambda^{-n} + \int_{|x| \leq C\lambda^{a-1}|J|} \lambda^{-n/2}|x|^{-n/2} d\lambda
\]
and the above integral is majorized by
\[
\lambda^{-n/2} \int_0^{C\lambda^{a-1}|J|} r^{n/2-1} dr \lesssim \lambda^{-n/2}(a-1)n/2|J|^{n/2} = \lambda^{\frac{a}{2}(a-2)}|J|^{n/2},
\]
Hence
\[
\|G\|_1 \lesssim \lambda^{-n} + d^n + \lambda^{\frac{a}{2}(a-2)}|J|^{n/2}
\]
in the case \(a \neq 1\). In the case \(a = 1\) we get
\[
\|G\|_1 \lesssim \lambda^{-n} + d^n + \lambda^{(1-n)/2} \int_0^{C|J|} r^{1/2+n/2} dr \lesssim \lambda^{-n} + d^n + \lambda^{(1-n)/2}|J|^{(n+1)/2}.
\]
In the case \(a \neq 1\) we obtain
\[
\|T_\lambda T_\lambda^*\| \lesssim \lambda^{-n} + d^n + \lambda^{\frac{a}{2}(a-2)}|J|^{n/2},
\]
and
\[
\|T_\lambda\| \lesssim \lambda^{-n/2} + d^{n/2} + \lambda^{\frac{a}{2}(a-2)}|J|^{n/4}.
\]
From this we get
\[
\|S_\lambda f(x + b(x), t(x))\|_2 \leq \lambda^n \|T_\lambda [\hat{f}(\lambda \cdot)]\|_2 \leq \lambda^n \|T_\lambda \| \|\hat{f}(\lambda \cdot)\|_2
\]
\[
\lesssim \lambda^n \left(\lambda^{-n/2} + d^{n/2} + \lambda^{\frac{a}{2}(a-2)}|J|^{n/4} \right)^{\lambda^{-n/2} \|f\|_2}
\]
\[
= \left(1 + d^{n/2} \lambda^{n/2} + \lambda^{na/4}|J|^{n/4} \right) \|f\|_2.
\]
Finally in the case \(a = 1\) we obtain
\[
\|T_\lambda T_\lambda^*\| \lesssim \lambda^{-n} + d^n + \lambda^{(1-n)/2}|J|^{(n+1)/2},
\]
\[
\|T_\lambda\| \lesssim \lambda^{-n/2} + d^{n/2} + \lambda^{(1-n)/4}|J|^{(n+1)/4},
\]
and
\[
\|S_\lambda f(x + b(x), t(x))\|_2 \leq \lambda^n \|T_\lambda [\hat{f}(\lambda)]\|_2 \leq \lambda^n \|T_\lambda \cdot \|\hat{f}(\lambda)\|_2
\]
\[
\lesssim \lambda^n \left(\lambda^{-n/2} + a^{n/2} + \lambda^{(1-n)/4} |J|^{(n+1)/4} \right) \lambda^{-n/2} \|f\|_2
\]
\[
= \left(1 + a^{n/2} \lambda^{n/2} + \lambda^{(n+1)/4} |J|^{(n+1)/4} \right) \|f\|_2.
\]

This completes the proof of Lemma 2. \qed

We shall then extend Lemma 2.

Lemma 3. In Lemma 1 and Lemma 2 above the condition \(\text{supp } \hat{f} \subset \{\xi; \lambda/2 \leq |\xi| \leq \lambda\} \) can be replaced by the weaker condition \(\text{supp } \hat{f} \subset \{\xi; |\xi| \leq \lambda\} \).

In the proof of Lemma 3 we shall use a result in Sjölin and Strömberg [3]. Let \(y_0 \in \mathbb{R}^n, t_0 \in \mathbb{R}^n, 0 < r \leq 1\), and let \(f \in L^2(\mathbb{R}^n) \) with \(\text{supp } \hat{f} \subset B(0; \lambda)\) and \(\lambda > 1\). Set \(F = \{(y, t); y_{0,j} \leq y_j \leq y_{0,j} + r \text{ for } 1 \leq j \leq n\}, t_0 \leq t \leq t_0 + r^a\} \).

It is proved that
\[
\|S^*_E f\|_2 \lesssim (1 + r^a \lambda^n)(1 + r \lambda)^n \|f\|_2,
\]
and the method in [3] can be used to prove that
\[
\|S^*_E f\|_2 \lesssim (1 + |J|\lambda^a)(1 + r \lambda)^n \tag{6}
\]
if \(E = B \times J\) with \(B\) and \(J\) as in Lemma 2.

The method to prove this is a generalisation of the method we used to prove Theorem A.

Proof of Lemma 3. Let \(N\) be the smallest integer such that \(|J|2^{-aN} \lambda^a + r^{2-N} \lambda < 2\).

We write \(f = \sum_{j=0}^N f_j\) where \(\text{supp } \hat{f}_j \subset \{2^{-j-1} \lambda \leq |\xi| \leq 2^{-j} \lambda\} \) for \(0 \leq j < N\) and \(\text{supp } \hat{f}_N \subset B(0; 2^{-N} \lambda)\). It follows from (3) that
\[
\|S^*_E f_N\|_2 \lesssim (1 + |J|2^{-aN} \lambda^a)(1 + r^{2-N} \lambda)^n \|f_N\|_2 \lesssim \|f\|_2.
\]

Also
\[
\|S^*_E f\|_2 \leq \sum_{j=0}^N \|S^*_E f_j\|_2.
\]

and according to Lemma 2 we have for \(a \neq 1\)
\[
\|S^*_E f_j\|_2 \leq C(2^{-j+1/4}|J|^{n/4} \lambda^{na/4} + r^{n/2} \lambda^{n/2-jn/2}) \|f_j\|_2.
\]

for \(0 \leq j < N\) It follows that
\[
\left\| S^*_E \left(\sum_{j=0}^{N-1} f_j \right) \right\|_2 \lesssim (|J|^{n/4} \lambda^{na/4} + r^{n/2} \lambda^{n/2}) \|f\|_2.
\]

and we obtain
\[
\|S^*_E f\|_2 \lesssim (|J|^{n/4} \lambda^{na/4} + r^{n/2} \lambda^{n/2} + 1) \|f\|_2
\]
for \(a \neq 1\).

The same proof works also for \(a = 1\) and this completes the proof of Lemma 3. \qed

We shall then prove the following theorem.
Theorem 3. Assume $a > 0, n \geq 1$ and $\lambda \geq 1$. Let the interval $J \subset [0,1]$, let B be a ball in \mathbb{R}^n with radius r and set $E = B \times J$. Let f be an function in $L^2(\mathbb{R}^n)$ with supp $\hat{f} \subset B(0;\lambda)$.

Then the following holds when $n = 1$ and $a \neq 1$:

$$
\|S^n_E f\|_2 \leq \left(|J|^{1/4} \lambda^{a/2} + r^{1/2} \lambda^{1/2} + 1 \right) \|f\|_2,
$$

when $n = 1$ and $a = 1$:

$$
\|S^n_E f\|_2 \leq \left(|J|^{1/2} \lambda^{a/2} + r^{1/2} \lambda^{1/2} + 1 \right) \|f\|_2,
$$

when $n \geq 2$ and $a \neq 1$:

$$
\|S^n_E f\|_2 \leq \left(|J|^{1/2} \lambda^{a/2} + r \lambda + 1 \right) (r \lambda + 1)^{(n-2)/2} \|f\|_2,
$$

when $n \geq 2$ and $a = 1$:

$$
\|S^n_E f\|_2 \leq \left(|J|^{1/2} \lambda^{a/2} + r^{n/(n+1)} \lambda^{n/(n+1)} + 1 \right) (r^{n/(n+1)} \lambda^{n/(n+1)} + 1)^{(n-1)/2} \|f\|_2.
$$

Proof. The cases with $n = 1$ in Theorem 3 follow directly from Lemma 3.

In the cases with $n \geq 2$ we shall use an argument similar to the proof of Theorem 1 by covering the Interval J with intervals J_i of equal length.

In the case $a \neq 1$ we have by Lemma 3 the estimate

$$
\|S^n_E f\|_2 \leq C \left(|J|^{n/2} \lambda^{na/2} + r^n \lambda^n + 1 \right) \|f\|_2^2.
$$

We have

$$
|J|^{n/2} \lambda^{na/2} + r^n \lambda^n + 1 \sim (|J| \lambda^a)^{n/2} + (r^2 \lambda^2 + 1)^{n/2}.
$$

Cover J with intervals $J_i, i = 1, 2, \ldots, N$, of intervals of length $|J_i|$ such that $|J_i| \lambda^a = r^2 \lambda^2 + 1$ with $N \leq |J|/|J_i| + 1 = |J| \lambda^a (r^2 \lambda^2 + 1)^{-1} + 1$ Set $E_i = B \times J_i$ then we have

$$
\|S^n_{E_i} f\|_2 \leq \left((|J_i| \lambda^a)^{n/2} + (r^2 \lambda^2 + 1)^{n/2} \right) \|f\|_2^2 = 2 \left(r^2 \lambda^2 + 1 \right)^{n/2} \|f\|_2^2
$$

and

$$
\|S^n_E f\|_2 \leq \sum_{i=1}^N \|S^n_{E_i} f\|_2 \lesssim N \left(r^2 \lambda^2 + 1 \right)^{n/2} \|f\|_2^2
$$

$$
\leq \left(|J| \lambda^a \left(r^2 \lambda^2 + 1 \right)^{-1} + 1 \right) \left(r^2 \lambda^2 + 1 \right)^{n/2} \|f\|_2^2
$$

$$
= \left(|J| \lambda^a + r^2 \lambda^2 + 1 \right) \left(r^2 \lambda^2 + 1 \right)^{(n-2)/2} \|f\|_2^2
$$

$$
\leq \left(|J|^{1/2} \lambda^{a/2} + r^{n-1} \lambda^{n-1} + 1 \right) \left(r^{n-1} \lambda^{n-1} + 1 \right)^{n-2} \|f\|_2^2,
$$

which gives the desired estimate in this case.

In the case $a = 1$ we have by Lemma 3 the estimate

$$
\|S^n_E f\|_2 \leq C \left(|J|^{(n+1)/2} \lambda^{(n+1)a/2} + r^n \lambda^n + 1 \right) \|f\|_2^2.
$$

We have

$$
|J|^{(n+1)/2} \lambda^{(n+1)a/2} + r^n \lambda^n + 1 \sim (|J| \lambda^a)^{(n+1)/2} + \left(r^{2n/(n+1)} \lambda^{2n/(n+1)} + 1 \right)^{(n+1)/2}.
$$
Cover J with intervals $J_i, i = 1, 2, \ldots, N$, of intervals of length $|J_i|$ such that $|J_i|\lambda^a = r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1$ and $N \leq |J|/|J_i| + 1 = |J|\lambda^a (r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1)^{-1} + 1$ Set $E_i = B \times J_i$ then we have

$$\|S_{E_i}^*f\|_2^2 \lesssim \left((|J_i|\lambda^a)^{(n+1)/2} + \left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{(n+1)/2}\right) \|f\|_2^2$$

$$= 2\left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{(n+1)/2} \|f\|_2^2,$$

and

$$\|S_{E_i}^*f\|_2^2 \leq \sum_{i=1}^N \|S_{E_i}^*f\|_2^2 \lesssim N \left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{(n+1)/2} \|f\|_2^2$$

$$\leq (|J|\lambda^a \left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{-1} + 1) \left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{(n+1)/2} \|f\|_2^2$$

$$= \left(|J|\lambda^a + r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right) \left(r^{2n/(n+1)}\lambda^{2n/(n+1)} + 1\right)^{(n+1)/2} \|f\|_2^2$$

$$\leq \left(|J|^{1/2}\lambda^{a/2} + r^{n/(n+1)}\lambda^{n/(n+1)} + 1\right)^2 \left(r^{n/(n+1)}\lambda^{n/(n+1)} + 1\right)^{n-1} \|f\|_2^2,$$

which gives the desired estimate in this case.

\[\square \]

3. A Convergence Result

We shall here prove a convergence result for function in $H_\delta(\mathbb{R}^n), n \geq 2$, and begin with two lemmas.

Lemma 4. Assume $a > 0, a \neq 1, n \geq 2, \lambda \geq 1$ and $0 < s < a/2$. Also let $(t_m)_\infty \in l^{r,\infty}$, where $r = 2s/(a - 2s)$ Then one has

$$\|\sup_m |S_{t_m}f|\|_2 \lesssim \lambda^s \|f\|_2,$$

if $f \in L^2(\mathbb{R}^n)$ and supp $\hat{f} \subset \{\xi; \lambda/2 \leq |\xi| \leq \lambda\}$.

Proof. Let $0 < b < 1$. We have

$$\|\sup_m |S_{t_m}f|\|_2 \leq \|\sup_{t_m \leq b} |S_{t_m}f|\|_2 + \|\sup_{t_m > b} |S_{t_m}f|\|_2 = T_1 + T_2.$$

Theorem 1 gives the estimate

$$T_1 \lesssim \left(b^{1/2}\lambda^{a/2} + 1\right) \|f\|_2.$$

We also have $\#\{m; t_m > b\} \lesssim b^{-r}$ and it follows that

$$T_2 \lesssim b^{-r/2} \|f\|_2.$$

We then choose b such that

$$b^{1/2}\lambda^{a/2} = b^{-r/2}.$$

One gets

$$b^{1/2 + r/2} = \lambda^{-a/2},$$
and \[b = \lambda^{-a/(1+r)} < 1. \]

Hence \(b^{-r/2} \geq 1 \) and \[T_1 \lesssim b^{1/2+r/2} \|f\|_2 = b^{-r/2} \|f\|_2. \]

We have shown that \[\|\sup_m |S_m f|\|_2 \lesssim b^{-r/2} \|f\|_2, \]

where \(b^{-r/2} = \lambda^{ra/2(1+r)} = \lambda^s. \)

This completes the proof of the lemma. \(\square \)

We shall then improve Lemma 4 by proving the following lemma

Lemma 5. Let \(a, n, s, r, \) and \((t_m)^\infty_1\) have the same properties as in Lemma 4, and assume that \(f \in H_s(\mathbb{R}^n). \) Then

\[\|\sup_m S_m f\|_2 \lesssim \|f\|_{H^s} \text{ for } f \in S(\mathbb{R}^n). \]

Before proving Lemma 5 we remark that the following theorem follows from Lemma 5 (see proof of Corollary 4 in Sjölin and Strömberg [2])

Theorem 4. Let \(a, n, s, r, \) and \((t_m)^\infty_1\) have the same properties as in Lemma 4 and assume that \(f \in H_s(\mathbb{R}^n). \) Then

\[\lim_{m \to \infty} S_{t_m} f(x) = f(x) \text{ for almost every } x. \]

Proof of Lemma 5. It follows from the theorem on monotone convergence that instead of estimating \(\sup_m |S_m f| \) it is sufficient to estimate \(\sup_{m \leq M} |S_m f| \) for large integers \(M \) (as long as the estimates do not depend on \(M \)). We can find a measurable function \(t(x) \) such that

\[\sup_{m \leq M} |S_m f| = |S_{t(x)} f(x)|, \]

and \(t(x) \) takes only finitely many values. We then define intervals \(I_k = (2^{-k-1}, 2^{-k}], \)

\(k = 0, 1, \ldots, \) and sets \(F_k = \{ x \in \mathbb{R}^n, t(x) \in I_k \}. \) The Sets \(F_k \) are disjoint and \(\mathbb{R}^n = \bigcup_{k \geq 0} F_k. \) We let \(X_k \) denote the characteristic function of \(F_k \) and then have \(\sum_{k \geq 0} \chi_k = 1 \) and

\[S_{t(x)} f(x) = \sum_{k \geq 0} X_k(x) S_{t(x)} f(x). \] (7)

We write a function \(f = \sum_{j \geq 0} f_j \) by splitting its Fourier transform \(\hat{f} = \sum_{j \geq 0} \hat{f}_j \),

where \(\hat{f}_j \) is supported in \(\Omega_j \) where \(\Omega_0 = \{ |\xi| \leq 1 \} \) and \(\Omega_j = \{ 2^{-j-1} |\xi| \leq 2^j \} \) for \(j > 0. \)

We shall then split the sum (7) into three parts. For \(j \geq 0 \) set

\[k(j) = (a - 2s) j = j 2s/r, \]

\[b(j) = 2^{-k(j)}, \]

\[b_1(j) = 2^{-k(j) - \epsilon_1 j} \]

and

\[b_2(j) = 2^{-k(j) + \epsilon_2 j}, \]

where \(\epsilon_1 = 2\epsilon \) and \(\epsilon_2 = 2\epsilon/r \) and \(\epsilon \) is a small positive number.
We have

\[S(t(x))f(x) = \sum_{k \geq 0} \sum_{j \geq 0} X_k(x)S^0_{t(x)}f_j(x) = S^1_{t(x)}f(x) + S^2_{t(x)}f(x) + S^3_{t(x)}f(x), \]

where

\[S^1_{t(x)}f(x) = \sum_{j \geq 0} \sum_{k \geq 0} X_k(x)S_{t(x)}f_j(x), \]
\[S^2_{t(x)}f(x) = \sum_{j \geq 0} \sum_{k \geq k(j) - \epsilon_j} X_k(x)S_{t(x)}f_j(x), \]
\[S^3_{t(x)}f(x) = \sum_{j \geq 0} \sum_{k \geq k(j) - \epsilon_j} X_k(x)S_{t(x)}f_j(x). \]

Invoking Theorem 1 we obtain

\[|S^1_{t(x)}f(x)| \leq \sum_{j \geq 0} \sum_{k \geq k(j) + \epsilon_j} X_k(x)|S_{t(x)}f_j(x)| \leq \sum_{j \geq 0} \sup_{t_m \leq b_1(j)} |S_{t_m}f_j(x)|, \]
and

\[\|S^1_{t(x)}f\|_2 \leq \sum_{j \geq 0} \| \sup_{t_m \leq b_1(j)} |S_{t_m}f_j(x)| \|_2 \lesssim \sum_{j \geq 0} (1 + b_1(j)^{1/2}2^{aj/2}) \|f_j\|_2. \]

We have

\[b_1(j)^{1/2}2^{aj/2} = 2^{-1/2}k(j) - \frac{1}{4}j2^{aj/2} = 2^{-1/2}(a - 2s + \epsilon_j - a)j = 2^{j(s - \epsilon)}, \]
and it follows that

\[\|S^1_{t(x)}f\|_2 \lesssim \sum_{j \geq 0} 2^{j(s - \epsilon)} \|f_j\|_2 \leq \|f\|_{H_s}. \]

We shall then estimate \(S^2_{t(x)}f(x) \). One has

\[|S^2_{t(x)}f(x)| \leq \sum_{j \geq 0} \sum_{k \leq k(j) - \epsilon_j} X_k(x)|S_{t(x)}f_j(x)| \leq \sum_{j \geq 0} \sup_{t_m \geq b_2(j)} |S_{t_m}f_j(x)|, \]
and we obtain

\[\| \sup_{t_m \geq b_2(j)} |S_{t_m}f_j(x)| \|_2 \lesssim \sum_{t_m > b_2(j)/2} \|f_j\|_2^2 = \# \{m; t_m > b_2(j)/2\} \|f_j\|_2^2 \lesssim b_2(j)^{-r} \|f_j\|_2^2 \]

We also have

\[b_2(j)^{-r} = 2^{rk(j) - \epsilon_2rj}, \]
and

\[rk(j) - \epsilon_2rj = 2j(s - \epsilon). \]

It follows that

\[\|S^2_{t(x)}f\|_2 \lesssim \sum_{j \geq 0} 2^{j(s - \epsilon)} \|f_j\|_2 \leq \|f\|_{H_s}. \]
It remains to study $S_{t(x)}^3 f(x)$. We let $[k(j)]$ denote the integral part of $k(j)$. and setting $l = k - [k(j)]$ we obtain

$$|S_{t(x)}^3 f(x)| \leq \sum_{j \geq 0} \sum_{k \geq 0} X_k(x)|S_{t(x)} f_j(x)|$$

$$= \sum_{l=-\infty}^{\infty} j > \max \{(l-1)/\epsilon_1, -1/l_2\} X_{k(j)]+l}(x)|S_{t(x)} f_j(x)|.$$

Using the fact that $X_k = X_k^2$ and applying Cauchy-Schwarz inequality one obtains

$$\left(\sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} X_{k(j)]+l}(x)|S_{t(x)} f_j(x)| \right)^2 \leq \left(\sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} X_{k(j)]+l}(x) \left(\sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} X_{k(j)]+l}(x)|S_{t(x)} f_j(x)|^2 \right) \right) .$$

The first sum on the second line is majorized by

$$C_0 \max_k \# \{ j; |k(j)| = k \} \leq 1,$$

and it follows that

$$\| \sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} X_{k(j)]+l}(x)|S_{t(x)} f_j(x)| \|^2 \leq \sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} \int X_{k(j)]+l}(x)|S_{t(x)} f_j(x)|^2 dx$$

$$\leq \sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} \int_{t_m \in I_{k(j)]+l}} \sup_{t_m \in I_{k(j)]+l}} |S_t f_j(x)|^2 dx.$$

Invoking Minkovski’s inequality we then obtain

$$\|S_{t(x)}^3 f\|_2 \leq \sum_{l=-\infty}^{\infty} \left(\sum_{j > \max \{(l-1)/\epsilon_1, -1/l_2\}} \| \sup_{t_m \in I_{k(j)]+l}} |S_{t_m} f_j\|_2 \right)^{1/2} .$$

Furthermore for $l \geq 0$ we have by Theorem 1.

$$\| \sup_{t_m \in I_{k(j)]+l}} |S_{t_m} f_j\|_2^2 \leq (1 + 2^{-(k(j)]-l+2\phi_j}) \|f_j\|_2^2 \leq (1 + 2^{-(k(j)]-l+2\phi_j}) \|f_j\|_2^2$$

$$\leq (1 + 2^{2\phi_j} 2^{-l}) \|f_j\|_2^2 \leq 2^{l} 2^{2\phi_j} \|f_j\|_2^2 .$$

For $l \leq 0$ we have

$$\| \sup_{t_m \in I_{k(j)]+l}} |S_{t_m} f_j\|_2^2 \leq (\{ m; t_m \in I_{k(j)]+l} \}) \|f_j\|_2^2 \leq 2^{-r-(k(j)]-l)} \|f_j\|_2^2 \leq 2^{r} 2^{2\phi_j} \|f_j\|_2^2 .$$
We conclude that
\[
\|S^3_{(x)} f\|_2 \lesssim \sum_{l=-\infty}^{0} \left(\sum_{j=-l/\epsilon_2}^{0} 2^l 2^{2s_j} \|f_j\|_2^2 \right)^{1/2} + \sum_{l=1}^{\infty} \left(\sum_{j>(l-1)/\epsilon_1} \sum_{j>(l-1)/\epsilon_1} 2^{-l/2} 2^{2s_j} \|f_j\|_2^2 \right)^{1/2}
\]
\[
\leq \left(\sum_{l=-\infty}^{0} 2^{l/2} + \sum_{l=1}^{\infty} 2^{-l/2} \right)^{1/2} \left(\sum_{j>0} 2^{2s_j} \|f_j\|_2^2 \right)^{1/2} \lesssim \|f\|_{H_s}.
\]
This completes the proof of Lemma 5.

4. Relations between maximal estimates in one variable and maximal estimates in dimension $n \geq 2$.

Next we shall consider the Schrödinger equation on radial or symmetric functions on \mathbb{R}^n and will see how it can be reduced to a one-dimensional problem.

Remark. In this paper we have the Fourier transform \hat{f} of a function on \mathbb{R}^n defined by (1), and then yields $\|\hat{f}\|_{L(\mathbb{R}^n)} = (2\pi)^{n/2} \|f\|_{L(\mathbb{R}^n)}$. We set
\[
\alpha_n = (2\pi)^{n/2}, \text{ for } n \geq 1
\]
in this section.

Let $S^{(k)}_{(x)}$ denote the k-dimensional Schrödinger operator (with a given $a > 0$ in its definition) and let
\[
S^{(k)}_{E}(x) = \sup_{t \in E} \|S^{(k)}_{(x)} f(x)\|
\]
where f is a function on \mathbb{R}^k and the supremum is taken over a set $E \subset [0,1]$.

Remark. We may in this section replace the Fourier multiplier functions $\{e^{i|\xi|^a}\}_t$ with any family of radial Fourier multiplier functions $\{\hat{k}_t(|\xi|)\}_t$ satisfying $|\hat{k}_t(|\xi|)| \leq 1$.

We shall prove the following theorem.

Theorem 5. Let $s \geq 0$, let $n \geq 2$ and let E be a given subset of the interval $[0,1]$.

If
\[
\|S^{(1)}_{E}(x) f\|_2 \leq C \|f\|_{H_s}
\]
for all functions f in $\mathcal{S}(\mathbb{R})$,

then
\[
\|S^{(n)}_{E}(x) f\|_2 \leq C_{n,k} \|f\|_{H_s}
\]
for all functions f in $\mathcal{S}(\mathbb{R}^n)$ of the form $f(x) = f_0(x)P(x)$, where $f_0 \in \mathcal{S}(\mathbb{R})$ and is radial and P is a solid spherical harmonic on \mathbb{R}^n of degree $k \geq 0$.

Theorem 5 will follow with some approximation arguments from the following theorems.
When k_2, It $f\in L^2(\mathbb{R}^n)$ with surfaces, where the f is a solid spherical harmonic on \mathbb{R}^n of degree k_2 and normalised so that $\|P\|_{L^2(\mathbb{S}^{n-1})} = 1$.

Let f_P be the symmetric function on \mathbb{R}^n defined by its Fourier transform
\[
\hat{f}_P(\xi) = P(\xi')f_1(|\xi|)|\xi|^{1/2-n/2} \quad \text{for } \xi = \xi'|\xi| \in \mathbb{R}^n.
\]

Let \hat{f}_1 be the inverse Fourier transform of f_1 on \mathbb{R}. Note that $\alpha_1\|\hat{f}\|_{L^2(\mathbb{R}^n)} = \|f_1\|_{L^2(\mathbb{R}^n)}$.

Assume that E is subset of the interval $[0, 1]$. Then there is a constant $C_{n,k}$ dependent only on n, k but independent of $a > 0, E$ and f_1 such that
\[
\alpha_n\|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} \leq \alpha_1\sqrt{2}\|S^{(1)}_E \hat{f}_1\|_{L^2(\mathbb{R})} + C_{n,k}\|f_1\|_{L^2(\mathbb{R}^+)}.
\]

Remark. Most of the results in this section can also be formulated with norms on spheres, where the $L^2(\mathbb{R}^n)$ is replaced by the norms $L^2(\mathbb{S}^{n-1}(r))$ for $r > 0$.

Theorem 6. Let the functions f_1, P, f_P and the set E be as in Theorem 6 and let Q be a solid spherical harmonic on \mathbb{R}^n of degree k_1 and normalised so that $\|Q\|_{L^2(\mathbb{S}^{n-1})} = 1$ and define f_Q by its Fourier transform
\[
\hat{f}_Q(\xi) = Q(\xi')f_1(|\xi|)|\xi|^{1/2-n/2} \quad \text{for } \xi = \xi'|\xi| \in \mathbb{R}^n.
\]

Set $v = k + n/2 - 1$ and $v_1 = k_1 + n_1/2 - 1$.

If $v = v_1$ then
\[
\alpha_n\|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} = \alpha_n\|S^{(n)}_E f_Q\|_{L^2(\mathbb{R}^n)}.
\]

If $2v_1 = 2v \mod (4)$ then
\[
\left|\alpha_n\|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} - \alpha_n\|S^{(n)}_E f_Q\|_{L^2(\mathbb{R}^n)}\right| \leq (C_{n,k} + C_{n_1,k_1})\|f_1\|_{L^2(\mathbb{R}^+)}.
\]

Remark. In the special case $n = 1$ we have $k = 0, 1$ and use a special definition of f_P.

When $k = 0$ the even function $f_e = f_P$ is defined by
\[
\hat{f}_e(\xi) = \begin{cases} \frac{1}{\sqrt{2}}f_1(\xi) & \text{for } \xi \geq 0, \\ \frac{1}{\sqrt{2}}f_1(-\xi) & \text{for } \xi < 0, \end{cases}
\]

and when $k = 1$ the odd function $f_o = f_P$ is defined by
\[
\hat{f}_o(\xi) = \begin{cases} \frac{1}{\sqrt{2}}f_1(\xi) & \text{for } \xi \geq 0, \\ \frac{1}{\sqrt{2}}f_1(-\xi) & \text{for } \xi < 0. \end{cases}
\]

Estimates in the opposite direction of (8) in Theorem 6 are somewhat more complicated.
We will state the key estimate in this section. First let us define the complex unit vectors

\[\gamma(v) = e^{-i \frac{\bar{v} + \bar{\bar{v}}}{2}}. \]

We have the following

Proposition 1. Let \(f \) be a function in \(L^2(\mathbb{R}) \) whose Fourier transform \(\hat{f} \) is equal to a function in \(\mathcal{F}(\mathbb{R}) \) on \((-\infty, -1]\) and on \([1, \infty)\).

Let \(n \geq 1, k \geq 0, v = n/2 + k - 1 \) and \(\gamma(v) \) as above. Assume that \(\hat{f} \) satisfies the symmetry

\[\gamma(v) \hat{f}(-r) = \gamma(v) \hat{f}(r), \text{ for all } r > 0. \]

Let \(P \) be a solid spherical harmonic on \(\mathbb{R}^n \) of degree \(k \) normalised so that \(\|P\|_{L^2(\mathbb{R}^n)} = 1. \)

Let \(f_P \) be the symmetric function on \(\mathbb{R}^n \) defined by its Fourier transform

\[\hat{f}_P(\xi) = P(\xi) \hat{f}(|\xi|^{1/2-n/2}) \text{ for } \xi = \xi'|\xi| \in \mathbb{R}^n. \]

Let \(E \) be any subset of the interval \([0, 1]\) containing 0. Then there is a constant \(C_v \) dependent only on \(v \) but independent of \(a > 0, E \) and \(f \) such that

\[\alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} = \alpha_1 \left(\int_0^\infty |S^{(1)}_E f(x)|^2 \, dx \right)^{1/2} + R(f, v) \]

where the restterm

\[|R(f, v)| \leq C_v \|f\|_{L^2(\mathbb{R})}. \]

The restterm \(R(f, v) \) depend on the parameter \(a > 0 \) in the definition of \(S_t \) and the set \(E. \)

Proposition 1 follows directly from Proposition 2 with Corollary 3 and Proposition 3 which are stated and proved at the end of this section.

Using Proposition 1 it is easy to prove Theorems 6 and 7.

Proofs of Theorem 6 and Theorem 7. When \(2v_1 = 2v \) mod \(4 \) then \(\gamma(v_1) = \pm \gamma v. \) Define the function \(f \) by its Fourier transform

\[c \hat{f}(\xi) = \left\{ \begin{array}{ll} f_1(\xi), & \xi > 0, \\
(\gamma(v))^2 f_1(-\xi) = (\gamma(v_1))^2 f_1(-\xi), & \xi < 0. \end{array} \right. \quad (9) \]

By Proposition 1

\[\alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} = \alpha_1 \left(\int_0^\infty |S^{(1)}_E f(x)|^2 \, dx \right)^{1/2} + R(f, v) \]

\[\alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^{n+1})} = \alpha_1 \left(\int_0^\infty |S^{(1)}_E f(x)|^2 \, dx \right)^{1/2} + R(f, v_1) \]

we conclude that

\[\left| \alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} - \alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^{n+1})} \right| = |R(f, v) - R(f, v_1)| \]

\[\leq |R(f, v)| + |R(f, v_1)| \leq (C_v + C_{v_1}) \|f_1\|_{L^2(\mathbb{R}^n)}. \]

In the special case \(v = v_1 \) we get

\[\alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^n)} = \alpha_n \|S^{(n)}_E f_P\|_{L^2(\mathbb{R}^{n+1})}. \]
This completes the proof of Theorem 7.

For the proof of Theorem 6 we let \(f \) be defined by (3). We will use following property of the Fourier transform on \(L^2(\mathbb{R}^n) \) Let the operator \(g \to g_\cdot \) is defined by \(g_\cdot (x) = g(-x) \). This operator commutes with the Fourier transform and also with the inverse Fourier transform. We have

\[
(g_\cdot \hat{g})_\cdot = \alpha_n \hat{g} \quad \text{and} \quad (g_\cdot \hat{g})_\cdot = (\alpha_n)^{-1} \hat{g}.
\]

From this we get

\[
|S^f(x)|^2 = |S_f^f(x) + \nabla \cdot S^f(x) - e^{x} S^f(x) - \nabla \cdot S^f(x)|^2 \leq 2(|S_f^f(x)|^2 + |S^f(x)|^2) \quad \text{for} \quad x > 0
\]

and hence

\[
|S^f(x)|^2 \leq 2(|S_f^f(x)|^2 + |S^f(x)|^2) \quad \text{for} \quad x > 0.
\]

Integrating over the positive interval we get

\[
\int_0^\infty |S^f(x)|^2 \, dx \leq 2\|S^f\|_{L^2(\mathbb{R})}^2.
\]

From this and Proposition 1 we get the desired estimate in Theorem 6. \(\square \)

Now we consider estimates in the opposite direction of the estimate in Theorem 6. First a lemma which follows directly from Proposition 1

Lemma 6. Let \(f \) be a function in \(L^2(\mathbb{R}) \) equal to a function in \(\mathcal{S}(\mathbb{R}) \) on \((-\infty, -1)\) and on \([1, \infty)\). Let \(\hat{f} \) be the Fourier transform of \(f \). Let \(f_P \) be the symmetric function on \(\mathbb{R}^n \) defined by its Fourier transform

\[
\hat{f}_P(\xi) = P(\xi') \hat{f}(\xi)|\xi|^{1/2-n/2} \quad \text{for} \quad \xi = \xi' |\xi| \in \mathbb{R}^n.
\]

If \(\hat{f} \) satisfy the symmetry \(\gamma(v) \hat{f}(-r) = \gamma(v) \hat{f}(r) \) for all \(r > 0 \), then

\[
\alpha_1 \left(\int_0^\infty |S^f(x)|^2 \, dx \right)^{1/2} \leq \alpha_n \|S_E^f\|_{L^2(\mathbb{R})} + C_{n,k} \|f\|_{L^2(\mathbb{R})}^2,
\]

Proof of Lemma 6. From Proposition 1 we get

\[
\alpha_1 \left(\int_0^\infty |S^f(x)|^2 \, dx \right)^{1/2} = \alpha_n \|S_E^f\|_{L^2(\mathbb{R})} - R(f, v)
\]

with the restterm satisfying \(|R(f, v)| \leq C_v \|f\|_{L^2(\mathbb{R})} \). This completes the proof of the lemma. \(\square \)

Next we will see how we can combine several estimates like those in Lemma 7. We have

Lemma 7. Let \(f \) be a function in \(L^2(\mathbb{R}) \) equal to a function in \(\mathcal{S}(\mathbb{R}) \) on \((-\infty, -1)\) and on \([1, \infty)\). Let \(\hat{f} \) be the Fourier transform of \(f \). Let \(n \geq 1, k \geq 0 \) and \(n_1 \geq 1, k_1 \geq 0 \) and let \(P \) be a solid spherical harmonic on \(\mathbb{R}^n \) of degree \(k \) and \(Q \) be a solid spherical harmonic on \(\mathbb{R}^k \) of degree \(k_1 \) and normalised so that \(\|P\|_{L^2(S^{n-1})} = \|Q\|_{L^2(S^{k_1-1})} = 1 \). Let \(f_P \) be the symmetric function on \(\mathbb{R}^n \) defined by its Fourier transform

\[
\hat{f}_P(\xi) = P(\xi') \left(-\gamma(v_1) \hat{f}(\xi') + \gamma(v_1) \hat{f}(-\xi')\right)|\xi|^{1/2-n/2} \quad \text{for} \quad \xi = \xi' |\xi| \in \mathbb{R}^n,
\]
and let f_Q be the symmetric function on \mathbb{R}^{n_1} defined by its Fourier transform

$$\hat{f}_Q(\xi) = Q(\xi') \left(\overline{\gamma(v)} \hat{f}(|\xi|) - \gamma(v) \hat{f}(-|\xi|) \right)|\xi|^{1/2-n_1/2} \text{ for } \xi = \xi'|\xi| \in \mathbb{R}^{n_1},$$

where $v = k + n/2 - 1$ and $v_1 = k_1 + n_1/2 - 1$ and assume that $2v_1 \neq 2v \text{ mod } (4)$, i.e. $\gamma(v_1) \neq \gamma(v)$.

Let E be any subset of the interval $[0,1)$. Then there is a constant $C_{n,k}$ and a constant C_{n_1,k_1} not dependent of $a > 0$, E and f such that

$$c\alpha_1 \left(\int_0^\infty |S_E^{(1)} f(x)|^2 dx \right)^{1/2} \leq \alpha_n \|S_E^{(n)} f_P\|_{L^2(\mathbb{R}^n)} + \alpha_n \|S_E^{(n)} f_Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k} + C_{n_1,k_1}) \|f\|_{L^2(\mathbb{R})},$$

where $c = 2|\sin \frac{\pi(v-v_1)}{2}| \in \{2, \sqrt{2}\}$.

As a special case of Lemma 6 we have

Corollary 1. Assume f satisfy the symmetry

$$\hat{f}(\xi) = \begin{cases} c_1 g(\xi) & \text{for } \xi > 0, \\ c_2 g(-\xi) & \text{for } \xi < 0, \end{cases} \text{ with } (c_1, c_2) \in \mathbb{C}^2, (c_1, c_2) \neq 0,$$

and set $c = 2|\sin \frac{\pi(v-v_1)}{2}| \in \{2, \sqrt{2}\}$, $c'_1 = c_1 \gamma(v_1) - c_2 \gamma(v_1)$ and $c'_2 = c_1 \gamma(v) - c_2 \gamma(v)$.

Then

$$c\alpha_1 \left(\int_0^\infty |S_E^{(1)} f(x)|^2 dx \right)^{1/2} \leq |c'_1| \alpha_n \|S_E^{(n)} f_P\|_{L^2(\mathbb{R}^n)} + |c'_2| \alpha_n \|S_E^{(n)} f_Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k} + C_{n_1,k_1}) \|f\|_{L^2(\mathbb{R})},$$

where

$$\hat{f}_P(\xi) = P(\xi') g(|\xi|)|\xi|^{1/2-n/2} \text{ for } \xi = \xi'|\xi| \in \mathbb{R}^n,$$

and

$$\hat{f}_Q(\xi) = Q(\xi') g(|\xi|)|\xi|^{1/2-n_1/2} \text{ for } \xi = \xi'|x| \in \mathbb{R}^{n_1}.$$

We are mostly interested in the cases when (c_1, c_2) is $(1,1)$, $(1,-1)$, $(1,0)$ or $(0,1)$ which corresponds to even or odd functions or functions with Fourier transform supported on the positive or negative half-axis.

Proof of Corollary 1. The functions f_P and f_Q defined in the Lemma 7 have Fourier transforms

$$\hat{f}_P(\xi) = c'_1 P(\xi') g(|\xi|)|\xi|^{1/2-n/2} \text{ for } \xi = \xi'|\xi| \in \mathbb{R}^n,$$

and

$$\hat{f}_Q(\xi) = c'_2 Q(\xi') g(|\xi|)|\xi|^{1/2-n_1/2} \text{ for } \xi = \xi'|x| \in \mathbb{R}^{n_1},$$

for $c'_1 = c_1 \gamma(v_1) - c_2 \gamma(v_1)$ and $c'_2 = c_1 \gamma(v) - c_2 \gamma(v)$. The desired estimates follows directly from Lemma 7. \square
Proof of Lemma 7. We will essentially only do elementary calculation in \mathbb{C}^2, and use the triangle inequality for L^2 norms. Some details are left to the reader.

Set
\[f_{P,1}(r) = -\gamma(v_1)\hat{f}(r) + \gamma(v_1)\hat{f}(-r) \text{ for } r > 0, \]
and
\[f_{Q,1}(r) = \gamma(v)\hat{f}(r) - \gamma(v)\hat{f}(-r) \text{ for } r > 0. \]

Then
\[\| \sup_{t \in E} \tilde{S}_t f_{P,1} \|_{L^2(\mathbb{R}^+)} = \alpha_n \| S^{(n)}_{E} f_P \|_{L^2(\mathbb{R}^n)} \]
and
\[\| \sup_{t \in E} \tilde{S}_t f_{Q,1} \|_{L^2(\mathbb{R}^+)} = \alpha_{n_1} \| S^{(n_1)}_{E} f_Q \|_{L^2(\mathbb{R}^{n_1})}, \]
where \tilde{S}_t is defined as in (10). Let the functions $f_{P,2}$ and $f_{Q,2}$ on \mathbb{R} be defined by
\[f_{P,2}(r) = \begin{cases} \gamma(v)f_{P,1}(r) & \text{for } r \geq 0, \\ \gamma(v)f_{P,1}(-r) & \text{for } r < 0, \end{cases} \]
and
\[f_{Q,2}(r) = \begin{cases} \gamma(v_1)f_{Q,1}(r) & \text{for } r \geq 0, \\ \gamma(v_1)f_{Q,1}(-r) & \text{for } r < 0. \end{cases} \]

We have
\[f_{P,2} + f_{Q,2} = \begin{cases} (-\gamma(v_1)\gamma(v) + \gamma(v)\gamma(v_1))f(r) + (\gamma(v_1)\gamma(v) - \gamma(v)\gamma(v_1))f(-r) & \text{for } r \geq 0, \\ (-\gamma(v_1)\gamma(v) + \gamma(v)\gamma(v_1))f(r) + (\gamma(v_1)\gamma(v) - \gamma(v)\gamma(v_1))f(-r) & \text{for } r < 0, \end{cases} \]
\[= (\gamma(v_1)\gamma(v) - \gamma(v)\gamma(v_1))\hat{f}(r) \text{ for } r \in \mathbb{R}. \]

By the assumption $2v_1 \neq 2v \mod (4)$, we have
\[|\gamma(v_1)\gamma(v) - \gamma(v)\gamma(v_1)| = |e^{-i\frac{\pi}{2} + \frac{\pi}{4}}e^{i\frac{\pi}{2} + \frac{\pi}{4}} - e^{-i\frac{\pi}{2} + \frac{\pi}{4}}e^{i\frac{\pi}{2} + \frac{\pi}{4}}| \\
= |e^{-i\frac{\pi}{2}(v_1-v)} - e^{i\frac{\pi}{2}(v_1-v)}| = |2\sin(\pi(v_1-v)/2)| = c \in \{2, \sqrt{2}\} \]

Lemma 7 now follows from Lemma 6 and Proposition 3. \hfill \square

Next we observe that $S^{(1)}_t f(-x) = S^{(1)}_t f_-(x)$, where $\hat{f}_-(\xi) = \hat{f}(-\xi)$. Thus if f is an even or an odd function on $L^2(\mathbb{R}^n)$ then $S^{(1)}_{E} f$ is even and we obtain
\[\| S^{(1)}_{E} f \|_{L^2(\mathbb{R})} = \sqrt{2} \left(\int_0^\infty |S^{(1)}_{E} f(x)|^2 dx \right)^{1/2}. \]

We also observe that any function f on \mathbb{R} can be written as a sum of an even and an odd function $f = f_e + f_o$. Then also the Fourier transforms \hat{f}_e and \hat{f}_o are even respective odd and we have $\hat{f} = \hat{f}_e + \hat{f}_o$, and that $\|f\|^2 = \|f_e\|^2 + \|f_o\|^2$.

Using Corollary 1 of Lemma 7 we get the following estimates in different cases.
Theorem 8. Let f be a function in $L^2(\mathbb{R})$ equal to a function in $\mathcal{S}(\mathbb{R})$ on $(-\infty, -1)$ and on $[1, \infty)$. Decompose f into even and odd functions $f = f_e + f_o$ with Fourier transforms \hat{f}_e and \hat{f}_o. Let $n \geq 1, k \geq 0$ and $n_1 \geq 1, k_1 \geq 0$ and let P be a solid spherical harmonic on \mathbb{R}^n of degree k and and Q be a solid spherical harmonic on \mathbb{R}^{n_1} of degree k_1 and normalised so that $\|P\|_{L^2(S^{n-1})} = \|Q\|_{L^2(S^{n_1-1})} = 1$. Define the symmetric functions

$$
\hat{f}_e, P(\xi) = \hat{f}_e(|\xi|) P(|\xi'|)|\xi|^{1/2-n/2} \text{ for } \xi = \xi' |\xi| \in \mathbb{R}^n,
$$

$$
\hat{f}_e, Q(\xi) = \hat{f}_e(|\xi|) Q(|\xi'|)|\xi|^{1/2-n_1/2} \text{ for } \xi = \xi' |\xi| \in \mathbb{R}^{n_1},
$$

$$
\hat{f}_o, P(\xi) = \hat{f}_o(|\xi|) P(|\xi'|)|\xi|^{1/2-n/2} \text{ for } \xi = \xi' |\xi| \in \mathbb{R}^n,
$$

$$
\hat{f}_o, Q(\xi) = \hat{f}_o(|\xi|) Q(|\xi'|)|\xi|^{1/2-n_1/2} \text{ for } \xi = \xi' |\xi| \in \mathbb{R}^{n_1}.
$$

Let $\gamma(v) = e^{-i\frac{2\pi}{v} + \frac{\pi}{4}}$, $v = k + n/2 - 1$ and $v_1 = k_1 + n_1/2 - 1$ and assume that $2v_1 \neq 2v$ mod (4).

Then we have in different cases.

Case 1. Assume $\gamma(v)/\gamma(v) = 1$ and $\gamma(v_1)/\gamma(v_1) = -1$.

Then

$$
\alpha_1 \|S_E^{(n)} f_e\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{(n)} f_e, P\|_{L^2(\mathbb{R}^n)} + C_{n,k}' \|f_e\|
$$

$$
\alpha_1 \|S_E^{(n)} f_o\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{(n)} f_o, Q\|_{L^2(\mathbb{R}^{n_1})} + C_{n,k}' \|f_o\|
$$

and

$$
\alpha_1 \|S_E^{(n)} f\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{(n)} f_e, P\|_{L^2(\mathbb{R}^n)} + \alpha_n \sqrt{2} \|S_E^{(n)} f_o, Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k}' + C_{n_1,k_1}') \|f\|_{L^2(\mathbb{R})}.
$$

Case 2. Assume that $\gamma(v)/\gamma(v) = i$ and $\gamma(v_1)/\gamma(v_1) = -i$.

Then

$$
\alpha_1 \|S_E^{(n)} f_e\|_{L^2(\mathbb{R})} \leq \alpha_n \|S_E^{(n)} f_e, P\|_{L^2(\mathbb{R}^n)} + \alpha_n \|S_E^{(n)} f_e, Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k}' + C_{n_1,k_1}') \|f_e\|_{L^2(\mathbb{R})},
$$

$$
\alpha_1 \|S_E^{(n)} f_o\|_{L^2(\mathbb{R})} \leq \alpha_n \|S_E^{(n)} f_o, P\|_{L^2(\mathbb{R}^n)} + \alpha_n \|S_E^{(n)} f_o, Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k}' + C_{n_1,k_1}') \|f_o\|_{L^2(\mathbb{R})},
$$

and

$$
\alpha_1 \|S_E^{(n)} f\|_{L^2(\mathbb{R})} \leq \alpha_n \|S_E^{(n)} f_e, P\|_{L^2(\mathbb{R}^n)} + \alpha_n \|S_E^{(n)} f_e, Q\|_{L^2(\mathbb{R}^{n_1})} + (C_{n,k}' + C_{n_1,k_1}') \|f\|_{L^2(\mathbb{R})}.
$$
Case 3: Assume $\gamma(v)/\gamma(v) = 1$ and $\gamma(v_1)/\gamma(v_1) = i$.

Then

\[
\|S_E^{s(n)} f\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)} + C_{n,k} \|f\|_{L^2(\mathbb{R})},
\]

\[
\|S_E^{s(n)} f\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)} + 2\alpha_n \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)}
\]

\[+(C_{n,k} + C_{n_1,k}) \|f\|_{L^2(\mathbb{R})}\]

and

\[
\|S_E^{s(n)} f\|_{L^2(\mathbb{R})} \leq \alpha_n \sqrt{2} \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)} + \alpha_n \sqrt{2} \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)}
\]

\[+(\alpha_n + 2\alpha_n) \|S_E^{s(n)} f\|_{L^2(\mathbb{R}^n)} + (C_{n,k} + C_{n_1,k}) \|f\|_{L^2(\mathbb{R})}\]

We have similar statements with $\gamma(v)/\gamma(v) = -1$ and $\gamma(v_1)/\gamma(v_1) = -i$.

It remains to prove Proposition 1. For this we will use Proposition 2 and Proposition 3 below.

First we define the operator \tilde{S}_t for $t > 0$ by

\[
\tilde{S}_t g(r) = \int_0^\infty J_m(rs)(rs)^{1/2}g(s)e^{its} ds
\]

(10)

for $g \in L^2(\mathbb{R}^+)$. Here J_m is the Bessel function of order m with integer or half-integer $m > -1$. Then we have

Proposition 2. Let f_1 be a function in $L^2(\mathbb{R}^+)$. Let P be a solid spherical harmonic on \mathbb{R}^n of degree k normalised so that $\|P\|_{L^2(\mathbb{S}^{n-1})} = 1$. Let \tilde{f} be the Fourier transform of f and Let f_P be the symmetric function on \mathbb{R}^n defined by its Fourier transform

\[
\tilde{f}_P(\xi) = f_1(\xi)|P(\xi^\prime)|\xi^{1/2-n/2} \text{ for } \xi = \xi^\prime|\xi| \in \mathbb{R}^n
\]

Let \tilde{S}_t defined as in (10) with $v = n/2 + k - 1$. Then

\[
\tilde{S}_t^{(n)} f_P(x) = c_{k,n} \alpha_n^{-1} |x|^{1/2-n/2} \tilde{S}_t f_1(|x|)P(-x') \text{ for } x = x'|x| \in \mathbb{R}^n,
\]

with $|c_{k,n}| = 1$.

We get the corollaries.

Corollary 2. \tilde{S}_t has norm 1 on $L^2(\mathbb{R}^n)$.

Corollary 3. We have

\[
\tilde{S}_t^{(n)} f_P(x) = \alpha_n^{-1} r^{1/2-n/2} \tilde{S}_t^{(n)} f_1(r)|P(-x')| \text{ for } x = x'|x| \in \mathbb{R}^n
\]

and

\[
\alpha_n \|S_E^{s(n)} f_P\|_{L^2(\mathbb{R}^n)} = \|\tilde{S}_t f_P\|_{L^2(\mathbb{R}^n)}.
\]

Proof of Corollary 2. We have

\[
\|\tilde{S}_t f_1\|_{L^2(\mathbb{R}^n)} = \alpha_n \|S_E^{s(n)} f_P\|_{L^2(\mathbb{R}^n)} = \|e^{it\xi}|\xi|^n \tilde{f}_P\|_{L^2(\mathbb{R}^n)} = \||\tilde{f}_P\|_{L^2(\mathbb{R}^n)} = \|f_1\|_{L^2(\mathbb{R}^n)}.
\]

Proof of Corollary 3. First part follows directly, as we may take out the factor $\alpha_n^{-1} r^{1/2-n/2} |P(-x')|$, from the the supremum on the left hand side. Second part is obtained by integration over \mathbb{R}^n. □
We will use the following estimate for the operator \tilde{S}_t

Proposition 3. Let \tilde{S}_t be defined as in (10) with $v = n/2 + k - 1$ the and let f be a function in $L^2(\mathbb{R})$ Let f_1 be a function in $L^2(\mathbb{R}^n)$ and let f be the function in $L^2(\mathbb{R})$ with Fourier transform

$$f(\xi) = \begin{cases} \gamma(v)f_1(\xi) & \text{for } \xi > 0, \\ \overline{\gamma(v)}f_1(-\xi) & \text{for } \xi < 0. \end{cases}$$

Then

$$\tilde{S}_tf_1(x) = \alpha_1S^{(1)}_t f(x) + R_{t,v}f_1(x)$$

where the remainder terms satisfy

$$\left(\int_0^\infty \sup_{t \in E} |R_{t,v}f_1(x)|^2 \, dx\right)^{1/2} \leq C_2 \|f_1\|_{L^2(\mathbb{R}^n)}.$$

It remains to prove the propositions in the section. Proposition 1 follows directly from Proposition 2 with Corollary 3 and Proposition 3

Proof of Proposition 2. Assume $f_1(\xi) = \overline{\gamma(v)f(\xi)}$ for $\xi > 0$. We have

$$\alpha_1 \|S^{(n)}_E f\|_{L^2(\mathbb{R}^n)} = \|S^{(1)}_E f_1\|_{L^2(\mathbb{R}^n)} \leq \alpha_1 \|S^{(1)}_E f\|_{L^2(\mathbb{R}^n)} + \|R_{t,v}f_1\|_{L^2(\mathbb{R}^n)}$$

Set $R(f,v) = \int_0^\infty \sup_{t \in E} |R_{t,v}f_1(x)|^2 \, dx$. Then

$$R(f,v) = \left(\int_0^\infty \sup_{t \in E} |R_{t,v}f_1(x)|^2 \, dx\right)^{1/2} \leq C_2 \|f_1\|_{L^2(\mathbb{R}^n)} = \frac{\alpha_1}{\sqrt{2}} C_0 \|f\|_{L^2(\mathbb{R})}.$$

and we obtain the desired estimate. This completes the proof of Proposition 1. □

Proof of Proposition 2. Assume $f = f_0P$ as in the above theorem. It follows from Stein and Weiss [5], p. 158 that (when $\tilde{f}(x) = F_0(x)P(x)$ where

$$F_0(x) = c_{n,k} \alpha_1 r^{1-n/2-k} \int_0^\infty f_0(s) J_{n/2+k-1}(rs) s^{n/2+k} \, ds$$

for $r = |x|$. Here J_m denotes Bessel functions of order m and $c_{n,k}$ is a constant with $|c_{n,k}| = 1$. (The one-dimensional cases follow elementary as $J_{1/2}(r) = \sqrt{2} \cos(r)/\sqrt{\pi r}$ and $J_{1/2}(r) = \sqrt{2} \sin(r)/\sqrt{\pi r}$.)

Also

$$S_t f(x) = \alpha_1^{-1} c_{n,k} r^{1-n/2-k} \left(\int_0^\infty J_{n/2+k-1}(rs) F_0(s) e^{its} s^{1/2+k} \, ds\right) P(-x),$$

where $r = |x| > 0$. We set

$$f_1(\xi) = F_0(|\xi|)|\xi|^{-1/2+n/2+k},$$

then $\|f_1\|_{L^2(\mathbb{R}^n)} = \|\tilde{f}_p\|_{L^2(\mathbb{R}^n)}$.

We obtain

$$S_t f_p(x) = \alpha_1^{-1} c_{n,k} r^{1-n/2-k} \left(\int_0^\infty J_{n/2+k-1}(rs) f_1(s)(rs)^{1/2} e^{its} \, ds\right) P(-x/r).$$

We have

$$S_t f_1(x) = \alpha_1^{-1} c_{n,k} r^{1-n/2-k} \tilde{S}_t f_1(r) P(-x/r),$$
where the operator \tilde{S}_t is defined by (10).
This completes the proof of Proposition 2.

For proof of Proposition 3 we need the following

Lemma 8. Let $K(r)$ be a non-negative function on $(0, \infty)$ satisfying

$$\int_0^\infty \frac{K(r)}{\sqrt{r}} \, dr = A < \infty,$$

and let

$$Tf(s) = \int_0^\infty K(rs)f(r) \, dr$$

for $f \in L^2(0, \infty)$.

Then we have

$$\|Tf\|_{L^2(\mathbb{R}_+)} \leq A \|f\|_{L^2(\mathbb{R}_+)}.$$

Proof of Proposition 3. We have the Bessel function

$$J_v(r) = \sqrt{2\pi r} \cos(r - \pi v/2 - \pi/4) + O(r^{-3/2}) \text{ as } r \to \infty.$$

See Stein and Weiss [5], p. 158. It follows that

$$r^{1/2} J_v(r) = \gamma_v e^{ir} + \bar{\gamma}_v e^{-ir} + K_v(r)$$

for $r > 0$, where

$$\gamma_v = \frac{1}{\sqrt{2\pi}} e^{-i(\pi v/2 + \pi/4)} = \alpha_1 \gamma(v) \frac{1}{2\pi}$$

and

$$|K_v(r)| \leq C_v \frac{1}{1 + r}.$$

We get

$$\tilde{S}_t f_1(r) = \gamma(v) \alpha_1 \frac{1}{2\pi} \int_0^\infty e^{irs} e^{its} f_1(s) \, ds + \bar{\gamma}(v) \alpha_1 \frac{1}{2\pi} \int_0^\infty e^{-irs} e^{its} f_1(s) \, ds$$

$$+ \int_0^\infty K_v(rs) e^{its} f_1(s) \, ds$$

$$= \alpha_1 \frac{1}{2\pi} \int_0^\infty e^{irs} e^{it|s|^a} \gamma(v) f_1(s) \, ds + \alpha_1 \frac{1}{2\pi} \int_{-\infty}^0 e^{irs} e^{it|s|^a} \bar{\gamma}(v) f_1(-s) \, ds + R_{t,v} f_1(r)$$

$$= \alpha_1 \frac{1}{2\pi} \int_{-\infty}^\infty e^{irs} e^{it|s|^a} \tilde{f}(s) \, ds = \alpha_1 S_t^{(1)} f(r) + R_{v,t} f_1(r)$$

for $r > 0$.

Let \tilde{R}_v be the sublinear operator on $L^2[0, \infty)$ defined by

$$\tilde{R}_v g(r) = \int_0^\infty |K_v(rs)| |g(s)| \, ds.$$

Then

$$\sup_{t \geq 0} |R_{v,t} f_1(r)| \leq \tilde{R}_v f_1(r).$$
Since \(\int_0^\infty |K_v(r)|r^{-1/2} \, dr \leq C_v \int_0^\infty r^{-1/2}(1+r)^{-1/2} \, dr < \infty \) we obtain by Lemma 8
\[
\left(\int_0^\infty \sup_{t>0} |R_{v,t}f_1(r)|^2 \, dr \right)^{1/2} \leq \left(\int_0^\infty (\tilde{R}_v\hat{f}_1(r))^2 \, dr \right)^{1/2} \leq C_v \|f_1\|_2.
\]
which completes the proof of the Proposition 3.

In this section it remains only to prove Lemma 8.

Proof of Lemma 8. We have
\[
Tf(s) = \int_0^\infty K(u)f\left(\frac{u}{s}\right)\frac{1}{s} \, du, \quad s > 0,
\]
and we set
\[
h(s) = f\left(\frac{1}{s}\right)\frac{1}{s} \quad \text{and} \quad h_r(s) = h\left(\frac{s}{r}\right)\frac{1}{\sqrt{r}} \quad \text{for } r > 0 \text{ and } s > 0.
\]
It then follows that
\[
f\left(\frac{T}{s}\right)\frac{1}{s} = f\left(\frac{1}{s/r}\right)\frac{1}{s/r} = h\left(\frac{s}{r}\right)\frac{1}{\sqrt{r}} = h_r(s)\frac{1}{\sqrt{r}}.
\]
We have
\[
Tf(s) = \int_0^\infty K(r)h_r(s)\frac{1}{\sqrt{r}} \, dr,
\]
and an application of Minkovski’s inequality gives
\[
\|Tf\|_2 \leq \int_0^\infty K(r)\frac{1}{\sqrt{r}} \|h_r\|_2 \, dr.
\]
We observe that
\[
\|h_r\|_{L^2(\mathbb{R}^+)} = \|h\|_2 = \|f\|_{L^2(\mathbb{R}^+)},
\]
and get
\[
\|Tf\|_{L^2(\mathbb{R}^+)} \leq \int_0^\infty K(r)\frac{1}{\sqrt{r}} \|f\|_{L^2(\mathbb{R}^+)} = A\|f\|_{L^2(\mathbb{R}^+)},
\]
This completes the proof of Lemma 8. \(\square\)

5. A COUNTER-EXAMPLE

We shall give a counter-example in dimension \(n \geq 2\).

Theorem 9. Assume that \((t_k)_{k=1}^\infty \) is decreasing and \((t_k - t_{k+1})_{k=1}^\infty \) is decreasing and lim \(t_k \to 0 \). Assume \(a > 0, a \neq 1, \) and \(0 < s < a/4, \) and \(n \geq 2, \) Set \(r(s) = 2s/(a - 4s) \) and assume that \((t_k)_{k=1}^\infty \notin \mathcal{D}(s,\infty) \).

Then there is no estimate
\[
\|\sup_k |S_{t_k}f|\|_2 \lesssim \|f\|_{H_s}
\]
for all radial function \(f \in \mathcal{S}(\mathbb{R}^n) \).
Proof. In the case \(n = 1 \) this theorem is proved in Dimou and Seeger \([1]\) (with the exception that their counter-example is not radial) and we shall modify their proof. Assuming that \((t_k)_{k=1}^\infty \notin \ell^n(\infty) \) Dimou and Seeger first construct sequences \((b_j)_{j=1}^\infty\) and \((M_j)_{j=1}^\infty\) of positive numbers such that \(\lim_{j \to \infty} b_j = 0 \) and \(\lim_{j \to \infty} M_j = \infty \). Taking \(\epsilon < 10^{-1}(a + 2)^{-1} \) they then set
\[
\lambda_j = M_j^2 b_j^{\frac{1}{a-4s}} \quad \text{and} \quad \rho_j = \epsilon b_j^{-1/2} \lambda_j^{1-a/2} = \epsilon M_j^{\frac{2-a}{a-4s}} b_j^{\frac{1-2s}{a-4s}}
\]
for \(j = 1, 2, 3, \ldots \). We shall consider these numbers for \(j \) large and observe that \(\rho_j / \lambda_j = \epsilon M_j^{1-2a/4s} \leq \epsilon \).

In \([\] the function
\[
\Phi_{\lambda, \rho}(\xi, x, t) = x(\rho \xi - \lambda) + t(\lambda - \rho \xi)^{a, n}, |\xi| \leq 1/2, x \in \mathbb{R}, t > 0,
\]
is studied and it is proved that for \(x \in I_j = [0, a \lambda_j^{a-1} b_j/2] \) there exists \(t_k(x, j) \) such that
\[
\max_{|\xi| \leq 1/2} |e^{i \Phi_{\lambda, \rho}(\xi, x, t_k(x, j))} - 1| \leq 1/2. \tag{11}
\]
We shall use the inequality \((11)\) in our proof and shall also use that
\[
\rho_j \lambda_j^{a-1} b_j \to \infty \quad \text{as} \quad j \to \infty \quad \tag{12}
\]
To prove \((12)\) observe that
\[
\rho_j \lambda_j^{a-1} b_j = \epsilon M_j^{\frac{2-a}{a-4s}} b_j^{\frac{1-2s}{a-4s}} M_j^{\frac{2(a-1)}{a}} b_j^{\frac{a-1}{a-4s}} b_j = \epsilon M_j^{\frac{2-a}{a-4s}} b_j^{\frac{1-2s}{a-4s}} = \epsilon M_j b_j^{-\frac{2a}{4s}}
\]
which implies \((12)\).

Then set \(J_j = [a \lambda_j^{a-1} b_j/4, a \lambda_j^{a-1} b_j/2] \) and let \(C_1 \) be a large constant. It follows from \((12)\) that \(\lambda_j^{a-1} b_j \to \infty \) as \(j \to \infty \) and hence
\[
2C_1 \leq a \lambda_j \lambda_j^{a-1} b_j / 4
\]
and
\[
\frac{2C_1}{\lambda_j} \leq a \lambda_j^{a-1} b_j / 4
\]
for large \(j \). We conclude that
\[
|x| \in J_j \text{ implies } \lambda_j |x| \geq 2C_1. \tag{13}
\]
Now let \(\sigma \) denote the surface measure on the unit sphere in \(\mathbb{R}^n \). We have
\[
\hat{\sigma}(y) = c_1 \frac{e^{i|y|}}{|y|^{n/2-1/2}} + c_2 \frac{e^{-i|y|}}{|y|^{n/2-1/2}} + R(y), \tag{14}
\]
where
\[
|R(y)| \leq \frac{1}{|y|^{n/2+1/2}} \leq \frac{\delta}{|y|^{n-2-1/2}} \text{ for } |y| \geq C_1 \tag{15}
\]
and \(\delta \) is small. (See Stein [1], p. 347).
Then assume that \(g \in C_0^\infty(\mathbb{R}) \), supp \(g \subset [-1/2, 1/2] \), \(g \geq 0 \), \(\int g \, dx = 1 \), and \(g \) even. We define a function \(f \in \mathcal{S}(\mathbb{R}^n) \) by setting
\[
\hat{f}(\xi) = \frac{1}{\rho} g \left(\frac{\lambda - \lambda}{\rho} \right) \quad \text{for} \quad \xi \in \mathbb{R}^n.
\]
Here \(\lambda = \lambda_j \), \(\rho = \rho_j \) and \(f = f_j \).
It is easy to see that \(\hat{f}(\xi) \neq 0 \) implies \(\lambda - \rho/2 \leq |\xi| \leq \lambda + \rho/2 \). We also have
\[
\int |\hat{f}(\xi)|^2 \lambda^{2s} \, d\xi \lesssim \int \rho^{-2} \lambda^{2s} r^{n-1} \, dr \lesssim \rho^{-1} \lambda^{2s+n-1}
\]
and
\[
\|f\|_{H_s} \lesssim \rho^{-1/2} \lambda^{s+n/2-1/2}
\]
Using polar coordinates we have
\[
S_t f(x) = c \int \hat{f}(\xi) e^{it|\xi|^2} \, d\xi = c \int e^{it|\xi|^2} \hat{f}(\xi) \, d\xi
\]
\[
= c \int_0^\infty \frac{1}{\rho} g \left(\frac{r - \lambda}{\rho} \right) e^{itr^2} \left(\int \left| e^{itr} \hat{\sigma}(\xi') \right| r^{n-1} \, dr \right) \, d\xi
\]
\[
= c \int_0^\infty \frac{1}{\rho} g \left(\frac{r - \lambda}{\rho} \right) e^{itr^2} \hat{\sigma}(r)x r^{n-1} \, dr
\]
where by (13)
\[
\hat{\sigma}(r)x = c_1 \frac{e^{ir|x|}}{(r|x|)^{n/2-1/2}} + c_2 \frac{e^{-ir|x|}}{(r|x|)^{n/2-1/2}} + R(rx).
\]
We assume \(|x| \in J \) and (13) gives \(\lambda |x| \geq 2C_1 \) and \(r |x| \geq C_1 \) in the above integral. Hence by (15)
\[
|R(rx)| \leq \delta(r|x|)^{-n/2+1/2}.
\]
It follows that
\[
S_t f(x) = c_1 \int_0^\infty \frac{1}{\rho} g \left(\frac{r - \lambda}{\rho} \right) e^{itr^2} \frac{e^{ir|x|}}{(r|x|)^{n/2-1/2}} r^{n-1} \, dr
\]
\[
+ c_2 \int_0^\infty \frac{1}{\rho} g \left(\frac{r - \lambda}{\rho} \right) e^{itr^2} \frac{e^{-ir|x|}}{(r|x|)^{n/2-1/2}} r^{n-1} \, dr + c_3 \int_0^\infty \frac{1}{\rho} g \left(\frac{r - \lambda}{\rho} \right) e^{itr^2} R(rx) r^{n-1} \, dr
\]
Setting \(\xi = (r - \lambda)/\rho \) so that \(r = \lambda + \rho \xi \) we obtain
\[
S_t f(x) = c_1 S^1_t f(x) + c_2 S^2_t f(x) + S^3_t f(x)
\]
where
\[
S^1_t f(x) = \left(c \int g(\xi) e^{it(\lambda + \rho \xi)^n + |x| (\lambda + \rho \xi)} (\lambda + \rho \xi)^{n/2-1/2} \, d\xi \right) |x|^{1/2-n/2},
\]
\[S^2_t f(x) = \left(c \int g(\xi) e^{i[(\lambda + \rho \xi)^n - |x|(\lambda + \rho \xi)]} (\lambda + \rho \xi)^{n/2 - 1/2} \, d\xi \right) |x|^{1/2 - n/2}, \]

and

\[|S^2_t f(x)| \lesssim \delta \int (\lambda + \rho \xi)^{n/2 - 1/2} g(\xi) \, d\xi \, |x|^{1/2 - n/2} \leq C\delta \lambda^{n/2 - 1/2} |x|^{1/2 - n/2} \]

In \(S^2_t f(x) \) and \(S^2_j f(x) \) we can replace \(\xi \) by \(-\xi\). We use that \(g \) is even and get the phase functions

\[\Phi_1(\xi) = |x|(\lambda - \rho \xi) + t(\lambda - \rho \xi)^a \]

and

\[\Phi_2(\xi) = -|x|(\lambda - \rho \xi) + t(\lambda - \rho \xi)^a \]

and replace \((\lambda + \rho \xi)^{n/2 + 1/2}\) by \((\lambda - \rho \xi)^{n/2 - 1/2}\).

We have

\[\Phi_2(\xi) = |x|((\rho \xi - \lambda)) + t(\lambda - \rho \xi)^a = \Phi_{\lambda, \rho}(\xi, |x|, t) = \Phi(\xi) \]

and we also have

\[S^2_t f(x) = \left(\int e^{i\Phi(\xi) \Lambda(\xi) g(\xi) \, d\xi} \right) |x|^{1/2 - n/2} \]

where \(\Lambda(\xi) = c(\lambda - \rho \xi)^{n/2 - 1/2} \). Choosing \(t = t_k(|x|, j) \) we obtain

\[|x|^{n/2 - 1/2} |S^2_{tk(|x|, j)} f(x)| \geq \int g \Lambda \, d\xi - \int |e^{i\Phi} - 1| g \Lambda \, d\xi \]

\[\geq \int g \Lambda \, d\xi - \max_{|\xi| \leq 1/2} |e^{i\Phi(\xi)} - 1| \int g \Lambda \, d\xi \geq \frac{1}{2} \int g \Lambda \, d\xi \]

for \(|x| \in J_j\) since \(\max_{|\xi| \leq 1/2} |e^{i\Phi(\xi)} - 1| \leq \frac{1}{2} \) according to inequality (11).

It follows that

\[\sup_k |S^2_{tk} f(x)| \geq \frac{1}{2} \int g \Lambda \, d\xi |x|^{1/2 - n/2} \geq c\lambda^{n/2 - 1/2} |x|^{1/2 - n/2} \]

for \(|x| \in J_j\). It remains to study \(S^1_t f(x) \). We set \(h = g\Lambda \) an then have \(h \lesssim \lambda^{n/2 - 1/2} \) and \(|h'| \lesssim (\lambda + \rho)^{n/2 - 3/2} \leq 2\lambda^{n/2 - 1/2} \). Integrating by parts we obtain

\[|x|^{n/2 - 1/2} S^1_t f(x) = \int e^{i\Phi_1} h \, d\xi = \int e^{i\Phi_1} i\Phi' h \, d\xi \]

\[= - \int e^{i\Phi_1} \left(\frac{1}{\Phi'} h' + \frac{\Phi''}{2\Phi'} h \right) d\xi \]

We have

\[\Phi_1' = -|x|\rho - \rho\alpha t(\lambda - \rho \xi)^{a-1} \]

and

\[\Phi_1'' = \rho(a - 1)\rho^2(\lambda - \rho \xi)^{a-2} \]

and it follows that \(|\Phi_1'| \geq \rho|x| \) and \(|\Phi_1'| \geq \rho\alpha(\lambda - \rho \xi)^{a-1} \). We have

\[\frac{1}{|\Phi_1'|} \leq \frac{1}{\rho|x|} \]
and
\[\frac{|\Phi''|}{|\Phi'|^2} = \frac{1}{|\Phi'| |\Phi''|} \leq \frac{1}{\rho|x|} \frac{a|a-1|t_{\rho}^2(\lambda - \rho \xi)^{a-2}}{a(t(\lambda - \rho \xi)^{a-1})} \lesssim \frac{1}{\rho|x|} \frac{\rho}{\lambda - \rho \xi} \lesssim \frac{1}{\rho|x|}. \]

It follows that
\[|x|^{n/2-1/2} |S^1 f(x)| \lesssim \frac{1}{\rho|x|} \int (|h| + |h'|) d\xi \lesssim \frac{1}{\rho|x|} \lambda^{n/2-1/2}. \]

and if \(|x| \in J_j \) we get
\[|S^1 f(x)| \lesssim |x|^{1/2-n/2} \frac{1}{\rho_j \lambda_j^{-1}} b_j \lambda_j^{n/2-1/2} \lesssim \delta \lambda_j^{n/2-1/2} |x|^{1/2-n/2}, \]

where we have used (12). Hence we have
\[S^1 f(x) = \sup_k |S_k f(x)| \geq c \lambda_j^{n/2-1/2} |x|^{1/2-n/2} \]

for \(|x| \in J_j \).

The theorem will follow if we show that with \(f = f_j \) we have
\[\frac{\|S^1 f_j\|_2}{\|f_j\|_{H^s}} \to \infty \text{ as } j \to \infty. \]

We have
\[\int_{|x| \in J_j} |S^1 f(x)|^2 dx \geq \int_{|x| \in J_j} |S^1 f(x)|^2 dx \gtrsim \int_{|x| \in J_j} \lambda_j^{n-1} |x|^{1-n} dx \geq |I_j| \lambda_j^{n-1} \]

and
\[\|f\|_{H^s}^2 \lesssim \rho^{-1} \lambda_j^{2s+n-1}. \]

With \(f = f_j \) we get
\[\left(\frac{\|S^1 f_j\|_2}{\|f_j\|_{H^s}} \right)^2 \gtrsim \frac{\lambda_j^{n-1} |I_j|}{\rho_j^{-1} \lambda_j^{2s+n-1}} = \rho_j \lambda_j^{-2s} |I_j|. \]

We have \(|I_j| = a \lambda_j^{-1} b_j / 2 \) and obtain
\[\left(\frac{\|S^1 f_j\|_2}{\|f_j\|_{H^s}} \right)^2 \gtrsim \rho_j \lambda_j^{-2s} \lambda_j^{-1} b_j = \rho_j \lambda_j^{-1-2s} b_j \]
\[= \epsilon M_j^{\frac{2-a}{a}} b_j \left(M_j^{\frac{2}{a}} b_j - \frac{1}{a-4} \right) \]
\[= \epsilon M_j^{\frac{2-a}{a}} b_j \left(a+1+2s(a+4) \right) \]
\[= \epsilon M_j^{\frac{2-a}{a}}. \]

Since \(a - 4s > 0 \) and \(M_j \to \infty \) as \(j \to \infty \) we conclude that
\[\frac{\|S^1 f_j\|_2}{\|f_j\|_{H^s}} \to \infty \text{ as } j \to \infty, \]

This completes the proof of theorem. \(\square \)
Now let \(a > 0, a \neq 1, 0 < s < a/4 \) and \(r = 2s/(a - 4s) \). Also let \((t_m)_{m}^{\infty}\) satisfy (2) and let \((t_m - t_{m+1})_{m}^{\infty}\) be decreasing.

It is proved in Dimou and Seeger [1] that in the case \(n = 1 \) one has

\[
\| \sup |S_{t_m}f| \|_2 \lesssim \| f \|_{H^s}, \quad f \in \mathcal{S}(\mathbb{R})
\]

if \((t_m)_{m}^{\infty} \in l^{r,\infty}\).

It then follows from Theorems 5 and 9 that in the case \(n \geq 2 \) one has

\[
\| \sup |S_{t_m}f| \|_2 \lesssim \| f \|_{H^s}
\]

for all radial functions \(f \) in \(\mathcal{S}(\mathbb{R}^n) \), if and only if \((t_m)_{m}^{\infty} \in l^{r,\infty}\).

References

[1] Dimou, E., and Seeger, A., On pointwise convergence of Schrödinger means Mathemacta 66(2), 356-372, 2020
[2] Sjölin, P., and Strömberg, J.-O., Convergence of sequences of Schrödinger means. J. Math. Anal. Appl. 483 (2020), no. 1, 123580, 23 pp.
[3] Sjölin, P., and Strömberg, J.-O., Analysis of Schrödinger means. arXive:1906.01893v1 [math.AP] 5 Jun 2019. To be published in Ann. Acad. Sci. Fenn. Math.
[4] Stein, E., Harmonic analysis. Real-variable methods, orthogonality, and oscillatory integrals. Princeton Univ. Press, 1993.
[5] Stein, E., and Weiss, G. Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, 1971.

Department of Mathematics, KTH Royal Institute of Technology, Stockholm, Sweden
E-mail addresses: persj@kth.se, jostromb@kth.se