Salmonella Typhimurium Strain ATCC14028 Requires H₂-Hydrogenases for Growth in the Gut, but Not at Systemic Sites

Lisa Maier¹, Manja Barthel¹, Bärbel Stecher²,³, Robert J. Maier⁴, John S. Gunn⁵, Wolf-Dietrich Hardt¹∗

¹ Institute of Microbiology, ETH Zürich, Zurich, Switzerland, ² Max von Pettenkofer-Institut, München, Germany, ³ German Center for Infection Research (DZIF), partner site LMU Munich, Munich, Germany, ⁴ Department of Microbiology, University of Georgia, Athens, Georgia, United States of America, ⁵ Department of Microbial Infection and Immunity, Center for Microbial Interface Biology, Biomedical Research Tower, The Ohio State University, Columbus, Ohio, United States of America

Abstract
Salmonella enterica is a common cause of diarrhea. For eliciting disease, the pathogen has to colonize the gut lumen, a site colonized by the microbiota. This process/initial stage is incompletely understood. Recent work established that one particular strain, Salmonella enterica subspecies 1 serovar Typhimurium strain SL1344, employs the hyd H₂-hydrogenase for consumption of microbiota-derived H₂ to support gut luminal pathogen growth: Protons from the H₂-splitting reaction contribute to the proton gradient across the outer bacterial membrane which can be harvested for ATP production or for import of carbon sources. However, it remained unclear, if other Salmonella strains would use the same strategy. In particular, earlier work had left unanswered if strain ATCC14028 might use H₂ for growth at systemic sites. To clarify the role of the hydrogenases, it seems important to establish if H₂ is used at systemic sites or in the gut and if Salmonella strains may differ with respect to the host sites where they require H₂ in vivo. In order to resolve this, we constructed a strain lacking all three H₂-hydrogenases of ATCC14028 (14028hyd3) and performed competitive infection experiments. Upon intragastric inoculation, 14028hyd3 was present at 100-fold lower numbers than 14028WT in the stool and at systemic sites. In contrast, i.v. inoculation led to equivalent systemic loads of 14028 WT and 14028hyd3 and the wild type strain. However, the pathogen population spreading to the gut lumen featured again up to 100-fold attenuation of 14028hyd3. Therefore, ATCC14028 requires H₂-hydrogenases for growth in the gut lumen and not at systemic sites. This extends previous work on ATCC14028 and supports the notion that H₂-utilization might be a general feature of S. Typhimurium gut colonization.

Introduction
The gut lumen is colonized by a dense microbial community called the microbiota. The microbiota performs numerous important functions which have been the topic of intense recent research (reviewed in [1]). One prominent function is the consumption of complex carbohydrates which the host is not able to digest. This is facilitated by primary fermenters which break down dietary and mucus-derived polymers and ferment the monomers into short chain fatty acids, lactate, CO₂, formate and H₂ [2]. These primary fermentation products are subsequently absorbed by the host, consumed by secondary fermenters or released into the atmosphere. Importantly, the metabolic activity of the microbiota limits gut luminal nutrient availability for incoming bacteria and thereby helps to prevent infection (“colonization resistance”); [2–4]. Enteric pathogens must have the ability to overcome colonization resistance in order to cause infection. However, these strategies are still not well understood.

Salmonella enterica is a Gram-negative bacterial species eliciting enteric infections in a wide range of hosts [5,6]. In warm-blooded animals, most infections are caused by S. enterica subspecies 1, e.g. serovar Typhimurium. Using the S. Typhimurium strain SL1344, we have recently begun to investigate how the pathogen can establish in the host’s gut in the face of an intact microbial community [7–9]. In this initial phase of colonization, the mucosa does not yet show any overt symptoms of disease and microbiota metabolism is thought to function normally. Here, SL1344 was found to capitalize on molecular hydrogen (H₂), a central product of microbiota metabolism [8]. Specifically, H₂ serves as an electron donor consumed by H₂-hydrogenases, i.e. the hyd-hydrogenase. This is a well-characterized cytoplasmic membrane enzyme complex which abstracts the electrons from H₂ and channels them into the ubiquinone pool [10–17]. During SL1344 growth in the mouse gut, about 90% of these electrons are transferred to fumarate, a step catalyzed by the fumarate reductase (frd; [8]). Overall, this anaerobic H₂-consumption fuels SL1344 growth to such an extent that hydrogenase mutants are 100-fold attenuated in competitive gut colonization assays. This is true for the hyd mutant of SL1344 and for a SL1344 mutants lacking all three H₂-hydrogenases. However, it had remained unclear, if this also holds for other Salmonella strains.
In many cases, mechanisms discovered in one strain are equally relevant for other strains of the serovar Typhimurium and often even for the entire _S. enterica_ species. However, there is accumulating evidence that this is not always the case. Strain-specific differences in virulence, growth or other phenotypes can arise from sequence variations or differences in gene content [see below]. While, _S. enterica_ strains can differ by as much as 65 to 99% of their genetic content [18–22], many strains from the serovar Typhimurium are much more similar to each other [23,24]. The _S. Typhimurium_ strain ATCC14028 employed in this study differs from strain SL1344 by just 2.6% of its genome [24,25]. These differences comprise the prophage SopEϕ (present in SL1344 [26,27], not ATCC14028), the prophage Gifsy-3 (present in ATCC14028, not SL1344; [28]), different plasmid contents, a histidine auxotrophy (in SL1344, not ATCC14028) [29], as well as numerous sequence polymorphisms distributed throughout the genomes (e.g. one T→C change in a H₂-hydrogenase operon, resulting in an R138→G138 amino acid exchange in HyaB2). In many cases (including the H₂-hydrogenase operon), the functional consequences of the presence, the absence or the mutation of a particular gene have remained unclear. SopEϕ is a notable exception. This prophage encodes a gene cassette (“moron”) in its tail-fiber region which encodes SopE [30–32], a RhoGTPase activating effector protein which is injected into host cells via the SPI-1 type III secretion system [33,34]. SopE dramatically enhances the capacity of _S. Typhimurium_ strains to trigger membrane ruffling and elicits mucosal infection in cows and mice [33–36]. Moreover, the absence of SopE (or SopEϕ) was found to explain why ATCC14028 (but not SL1344) utilizes the terminal electron acceptor tetrathionate for anaerobic respiration in the lumen of the inflamed gut [37]. This was of particular interest, as both strains encode for the genes required for anaerobic tetrathionate utilization. Thus, genetic comparison alone seems insufficient to predict the utilization of metabolic pathways _in vivo_, as genetic differences in unrelated genes (e.g. the virulence factor SopE) can substantially affect metabolic preferences in complex environments such as the mouse intestine. Therefore, experimental verification is indispensable to address the question whether a particular anaerobic pathway is used by a given _Salmonella_ strain.

Indeed, earlier work on _S. Typhimurium_ strain ATCC14028 suggested that differences in H₂ metabolism might exist [14]. H₂-hydrogenase mutants of this strain were found to be strongly attenuated at colonizing systemic sites. This was taken as evidence that ATCC14028 uses H₂ to fuel growth, but it had remained unclear if this was attributable to H₂-dependent growth in these organs or in the intestinal tract. In fact, this H₂-fuelled growth of ATCC14028 at systemic sites seemed plausible, as microbiota-derived H₂ is well known to diffuse even to distant sites in the body (an average of 40 µM of microbiota-derived H₂ are found in the mouse liver/spleen [14]) and significant amounts of H₂ are exhaled via the lungs [38,39]. This left us with the possibility that different _S. Typhimurium_ strains may use microbiota-derived H₂ at different sites i.e. the gut lumen (strain SL1344) or at systemic organs (strain ATCC14028). However, it could not be excluded, that this was simply attributable to slight differences in the experimental design and the subsequent interpretation of the data. It is important to note that the ATCC14028 experiments had been performed in the porphyd fever model of _Salmonella_ infection [14,40]. In this type of experiment, the mice are inoculated via the oral route and the pathogen traverses the intestinal mucosa before disseminating to systemic sites. This left room for an alternative interpretation of the ATCC14028 data: the systemic colonization defect of ATCC14028 hydrogenase mutants might be attributable to a brief phase of gut luminal pathogen growth. A gut luminal growth defect of the ATCC14028 hydrogenase mutant could have skewed the ratio of wild type vs mutant bacteria before systemic colonization was initiated. However, gut luminal growth had not been monitored in the previous study, and it remained unresolved if H₂-fuelled growth in the gut lumen may have contributed to the phenotype. Therefore, it remained to be established whether ATCC14028 uses microbiota-derived H₂ for colonizing the gut lumen, or for growth at systemic sites.

**Results and Discussion**

**H₂-hydrogenases are required for efficient gut colonization by ATCC14028**

ATCC14028 is known to encode three H₂-hydrogenases which are largely identical to the operons in SL1344. In order to generate an isogenic H₂-hydrogenase deficient mutant, we disrupted all hydrogenases of SL1344 [26,27] and obtained a H₂-hydrogenase mutant, we disrupted all hydrogenases of SL1344 [26,27] and obtained a H₂-hydrogenase mutant, which we termed ATCC14028hyd3.

In the cecum lumen, 14028hyd3 had a similar colonization defect to the _Salmonella_ SL1344 mutant [8]. Therefore, the LCM mice allow studying how _S. Typhimurium_ establishes gut luminal colonization in the face of an intact microbiota. Indeed, earlier work on _S. Typhimurium_ strain ATCC14028 suggested that differences in H₂ metabolism might exist [14]. H₂-hydrogenase mutants of this strain were found to be strongly attenuated at colonizing systemic sites. This was taken as evidence that ATCC14028 uses H₂ to fuel growth, but it had remained unclear if this was attributable to H₂-dependent growth in these organs or in the intestinal tract. In fact, this H₂-fuelled growth of ATCC14028 at systemic sites seemed plausible, as microbiota-derived H₂ is well known to diffuse even to distant sites in the body (an average of 40 µM of microbiota-derived H₂ are found in the mouse liver/spleen [14]) and significant amounts of H₂ are exhaled via the lungs [38,39]. This left us with the possibility that different _S. Typhimurium_ strains may use microbiota-derived H₂ at different sites i.e. the gut lumen (strain SL1344) or at systemic organs (strain ATCC14028). However, it could not be excluded, that this was simply attributable to slight differences in the experimental design and the subsequent interpretation of the data. It is important to note that the ATCC14028 experiments had been performed in the porphyd fever model of _Salmonella_ infection [14,40]. In this type of experiment, the mice are inoculated via the oral route and the pathogen traverses the intestinal mucosa before disseminating to systemic sites. This left room for an alternative interpretation of the ATCC14028 data: the systemic colonization defect of ATCC14028 hydrogenase mutants might be attributable to a brief phase of gut luminal pathogen growth. A gut luminal growth defect of the ATCC14028 hydrogenase mutant could have skewed the ratio of wild type vs mutant bacteria before systemic colonization was initiated. However, gut luminal growth had not been monitored in the previous study, and it remained unresolved if H₂-fuelled growth in the gut lumen may have contributed to the phenotype. Therefore, it remained to be established whether ATCC14028 uses microbiota-derived H₂ for colonizing the gut lumen, or for growth at systemic sites.

**Results and Discussion**

**H₂-hydrogenases are required for efficient gut colonization by ATCC14028**

ATCC14028 is known to encode three H₂-hydrogenases which are largely identical to the operons in SL1344. In order to generate an isogenic H₂-hydrogenase deficient mutant, we disrupted all hydrogenases of SL1344 [26,27] and obtained a H₂-hydrogenase mutant, we termed ATCC14028hyd3.

In the cecum lumen, 14028hyd3 had a similar colonization defect to the _Salmonella_ SL1344 mutant [8]. Therefore, the LCM mice allow studying how _S. Typhimurium_ establishes gut luminal colonization in the face of an intact microbiota. Indeed, earlier work on _S. Typhimurium_ strain ATCC14028 suggested that differences in H₂ metabolism might exist [14]. H₂-hydrogenase mutants of this strain were found to be strongly attenuated at colonizing systemic sites. This was taken as evidence that ATCC14028 uses H₂ to fuel growth, but it had remained unclear if this was attributable to H₂-dependent growth in these organs or in the intestinal tract. In fact, this H₂-fuelled growth of ATCC14028 at systemic sites seemed plausible, as microbiota-derived H₂ is well known to diffuse even to distant sites in the body (an average of 40 µM of microbiota-derived H₂ are found in the mouse liver/spleen [14]) and significant amounts of H₂ are exhaled via the lungs [38,39]. This left us with the possibility that different _S. Typhimurium_ strains may use microbiota-derived H₂ at different sites i.e. the gut lumen (strain SL1344) or at systemic organs (strain ATCC14028). However, it could not be excluded, that this was simply attributable to slight differences in the experimental design and the subsequent interpretation of the data. It is important to note that the ATCC14028 experiments had been performed in the porphyd fever model of _Salmonella_ infection [14,40]. In this type of experiment, the mice are inoculated via the oral route and the pathogen traverses the intestinal mucosa before disseminating to systemic sites. This left room for an alternative interpretation of the ATCC14028 data: the systemic colonization defect of ATCC14028 hydrogenase mutants might be attributable to a brief phase of gut luminal pathogen growth. A gut luminal growth defect of the ATCC14028 hydrogenase mutant could have skewed the ratio of wild type vs mutant bacteria before systemic colonization was initiated. However, gut luminal growth had not been monitored in the previous study, and it remained unresolved if H₂-fuelled growth in the gut lumen may have contributed to the phenotype. Therefore, it remained to be established whether ATCC14028 uses microbiota-derived H₂ for colonizing the gut lumen, or for growth at systemic sites.
detected a significant colonization defect of 14028\textsuperscript{hyd3} in the mLN, the spleens and the livers of the LCM mice (Fig. 2A, B). However, the attenuation appeared to be slightly less pronounced than in the cecum lumen and in the feces. However, these data could not unequivocally settle whether H\textsubscript{2}-hydrogenase dependent growth might contribute to some extent to systemic colonization.

\textbf{H\textsubscript{2}-hydrogenases do not contribute to systemic growth of ATCC14028}

In a second approach, we specifically addressed whether H\textsubscript{2}-hydrogenases contribute to systemic colonization. To this end, we infected LCM-mice via the intravenous route with a 1:1 mixture (5 \times 10\textsuperscript{7} cfu in total, i.v.) of 14028\textsuperscript{hyd3} and the isogenic background strain (14028\textsuperscript{WT}). Fecal loads of both strains were determined by selective plating. (A) Competitive infection indices were determined over 4 days. Ns = not significant (P \geq 0.05), ** P < 0.01, Mann-Whitney U test. (B) Bacterial loads of both competing strains (14028\textsuperscript{WT} and 14028\textsuperscript{hyd3}) are depicted Ns = not significant (P \geq 0.05), * P < 0.05; one-tailed Wilcoxon matched pairs signed rank test on paired data (dashed lines).

doi:10.1371/journal.pone.0110187.g001

Figure 2. Oral infection experiments revealed that in ATCC14028, hydrogenases fuel pathogen growth in the intestine. (A) LCM mice from Figure 1 were sacrificed at day 4 post infection and competitive indices in the cecum and at systemic sites were determined. ** P < 0.01, Mann-Whitney U test. (B) Bacterial loads in the cecum and at systemic sites of both competing strains are plotted. Ns = not significant (P \geq 0.05), * P < 0.05; one-tailed Wilcoxon matched pairs signed rank test on paired data (dashed lines). (C) Cecal tissue sections were HE-stained and scored for intestinal inflammation.

doi:10.1371/journal.pone.0110187.g002

These data established that ATCC14028 does not require H\textsubscript{2}-hydrogenases for growth at systemic sites if the gut is bypassed during the infection procedure. In the typhoid fever model [14] or oral infections of LCM mice, gut luminal growth of the bacteria seems to precede the spread to systemic sites. This gut luminal growth most likely explains why H\textsubscript{2}-hydrogenase mutants are found in lower numbers in the mLN, livers and spleens of the animals than the isogenic wild type strain.

Microbiota H\textsubscript{2} fuels \textit{S. Typhimurium} 14028 Growth in Gut

PLOS ONE | www.plosone.org 3 October 2014 | Volume 9 | Issue 10 | e110187
lacked all the three uptake-type H2-hydrogenases. Thus, formally ATCC14028 that have been analyzed in the past had featured as none of the H2-hydrogenase mutants of SL1344 or opposed effects will be compensated. However, this seems unlikely, Tm fitness. By analyzing both deletions in combination, the two fitness, while deletion of another hydrogenase might decrease masked by the absence of the other two hydrogenases. For example, deletion of one hydrogenase might increase S. Typhimurium strains.

In conclusion, our data establish that ATCC14028 is strikingly similar to SL1344 in requiring H2-hydrogenases for growth in the gut, not at systemic sites. This may suggest that the use of H2 for gut luminal colonization is a general feature of Salmonella Typhimurium strains.

Materials and Methods

Bacterial strains

All strains used in this study are derivates of the Salmonella enterica serovar Typhimurium ATCC14028 (IR715), in which a streptomycin resistance was added by P22 phage transduction of the adaA gene from S. Ty SL1344 [35]. Deletions in the hydrogenase genes were constructed by lambda/red homologous recombination [56] as described previously [8] (Table 1).

Mouse infection experiments

All mice used in this study are C57BL/6 background and bred at the Rodent Center HCI (RCHCI) (ETH Zurich, Switzerland). Low complex microbiota (LCM) mice are ex-germfree mice which were colonized with the Altered Schaedler flora-cocktail in 2007 [9] and ever since bred under strict hygienic isolation. Co-infection experiments were performed as described previously [41] in 0 to 10 week old mice. Pre-treatment with 20 mg streptomycin was only performed if indicated (Figure 1). For infection, both bacterial strain (14028WT to 14028hyb3) were grown for 12 h in 0.3 M NaCl supplemented LB medium, diluted 1:20 and sub-cultured for 4 h in the same medium and mixed in a 1:1 ratio. For oral infections, mice were infected with 5 x 10^7 cfu bacteria by gavage. For intravenous infections, 5 x 10^5 cfu bacteria were injected into the tail vein. Mice were sacrificed on day 1 p.i., day 3 p.i or day 4 p.i. by cervical dislocation. Freshly collected fecal pellets, cecum content and organs were homogenized in PBS (0.5% tergitol, 0.5% bovine serum albumin). Differential plating on MacConkey agar (Oxoid) supplemented with the appropriate antibiotics (50 μg/mL streptomycin, 50 μg/mL kanamycin and 30 μg/mL chloramphenicol) was performed to determine bacterial population sizes. The competitive index was calculated by division of the population size of 14028hyd3 by the population size of 14028WT. This ratio as corrected for the ratio of both strains in the inoculum. Parts of the cecal tissue were embedded in OCT (Sakura), cryosections were prepared and stained with hematoxilin/eosine. HE-stained sections were evaluated by scoring for submucosal edema, PMN higher virulence than the isogenic wild type strain [8,14]. Nevertheless, mutants lacking just one of the H2-hydrogenases at a time would have to be studied in detail to address this in a systematic fashion. In addition, differential expression of the three H2-hydrogenases [15,17], strain-specific differences in the expression patterns and microbiota/environment-specific cues (e.g. different H2 availability) might play a role. Indeed, the three different hydrogenases have different hydrogenase activities [16]. Moreover, in typhoid fever model infections of SPF mice, ATCC14028 may utilize several different H2-hydrogenases [14]. In contrast, SL1344 growth in the gut lumen of LCM mice relied exclusively on hyb, not the other H2-hydrogenases [8]. The environmental cues steering the differential hydrogenase expression in vivo remain to be established. Nevertheless, it seems quite safe to assume that the gut lumen is the site where H2-utilization by S. Typhimurium is most prominent. Still, H2 could represent an auxiliary reductant for Salmonella at systemic sites under otherwise poor nutrient conditions, or when the microbiota is especially active in fermentative metabolism (e.g. high H2 production).

Figure 3. Intravenous infection experiments verified that in ATCC14028, hydrogenases are not required for growth at systemic sites. (A) LCM mice were intravenously infected with a 1:1 mixture of the 14028hyd3 and the isogenic background strain (14028WT) (5 x 10^3 cfu). Animals were sacrificed at day 3 p.i. and competitive indices in the cecum and at systemic sites were determined. Ns = not significant (P > 0.05), Mann-Whitney U test. (B) Bacterial loads in the cecum and at systemic sites of both competing strains are plotted. Ns = not significant (P > 0.05); one-tailed Wilcoxon matched pairs signed rank test on paired data (dashed lines). (C) Cecal tissue sections were HE-stained and scored for intestinal inflammation. doi:10.1371/journal.pone.0110187.g003

It should be noted that the 14028hyd3 mutant used in our study lacked all the three uptake-type H2-hydrogenases. Thus, formally we cannot rule out that the requirement of a single hydrogenase is masked by the absence of the other two hydrogenases. For example, deletion of one hydrogenase might increase S. Ty fitness, while deletion of another hydrogenase might decrease S. Ty fitness. By analyzing both deletions in combination, the two opposed effects will be compensated. However, this seems unlikely, as none of the H2-hydrogenase mutants of SL1344 or ATCC14028 that have been analyzed in the past had featured

Microbiota H2 fuels S. Typhimurium 14028 Growth in Gut

Materials and Methods

Bacterial strains

All strains used in this study are derivates of the Salmonella enterica serovar Typhimurium ATCC14028 (IR715), in which a streptomycin resistance was added by P22 phage transduction of the adaA gene from S. Ty SL1344 [35]. Deletions in the hydrogenase genes were constructed by lambda/red homologous recombination [56] as described previously [8] (Table 1).

Mouse infection experiments

All mice used in this study are C57BL/6 background and bred at the Rodent Center HCI (RCHCI) (ETH Zurich, Switzerland). Low complex microbiota (LCM) mice are ex-germfree mice which were colonized with the Altered Schaedler flora-cocktail in 2007 [9] and ever since bred under strict hygienic isolation. Co-infection experiments were performed as described previously [41] in 0 to 10 week old mice. Pre-treatment with 20 mg streptomycin was only performed if indicated (Figure 1). For infection, both bacterial strain (14028WT to 14028hyd3) were grown for 12 h in 0.3 M NaCl supplemented LB medium, diluted 1:20 and sub-cultured for 4 h in the same medium and mixed in a 1:1 ratio. For oral infections, mice were infected with 5 x 10^7 cfu bacteria by gavage. For intravenous infections, 5 x 10^5 cfu bacteria were injected into the tail vein. Mice were sacrificed on day 1 p.i., day 3 p.i or day 4 p.i. by cervical dislocation. Freshly collected fecal pellets, cecum content and organs were homogenized in PBS (0.5% tergitol, 0.5% bovine serum albumin). Differential plating on MacConkey agar (Oxoid) supplemented with the appropriate antibiotics (50 μg/mL streptomycin, 50 μg/mL kanamycin and 30 μg/mL chloramphenicol) was performed to determine bacterial population sizes. The competitive index was calculated by division of the population size of 14028hyd3 by the population size of 14028WT. This ratio as corrected for the ratio of both strains in the inoculum. Parts of the cecal tissue were embedded in OCT (Sakura), cryosections were prepared and stained with hematoxilin/eosine. HE-stained sections were evaluated by scoring for submucosal edema, PMN

higher virulence than the isogenic wild type strain [8,14]. Nevertheless, mutants lacking just one of the H2-hydrogenases at a time would have to be studied in detail to address this in a systematic fashion. In addition, differential expression of the three H2-hydrogenases [15,17], strain-specific differences in the expression patterns and microbiota/environment-specific cues (e.g. different H2 availability) might play a role. Indeed, the three different hydrogenases have different hydrogenase activities [16]. Moreover, in typhoid fever model infections of SPF mice, ATCC14028 may utilize several different H2-hydrogenases [14]. In contrast, SL1344 growth in the gut lumen of LCM mice relied exclusively on hyb, not the other H2-hydrogenases [8]. The environmental cues steering the differential hydrogenase expression in vivo remain to be established. Nevertheless, it seems quite safe to assume that the gut lumen is the site where H2-utilization by S. Typhimurium is most prominent. Still, H2 could represent an auxiliary reductant for Salmonella at systemic sites under otherwise poor nutrient conditions, or when the microbiota is especially active in fermentative metabolism (e.g. high H2 production).

In conclusion, our data establish that ATCC14028 is strikingly similar to SL1344 in requiring H2-hydrogenases for growth in the gut, not at systemic sites. This may suggest that the use of H2 for gut luminal colonization is a general feature of Salmonella Typhimurium strains.
infiltration, presence of goblet cells and epithelial damage with a maximum score of 13 [57].

Statistical analysis

The one-sided Wilcoxon matched-pairs signed rank test and the exact Mann-Whitney U test were performed using the software Graphpad Prism Version 6.0 for Windows (GraphPad Software, La Jolla California USA, www.graphpad.com). P values of less than 0.05 were considered as statistically significant. To compare C.I.s to C.I. of inoculi, ratios of 14028HYD3 and 14028WT were compared to the ratio of both strains in the inoculum using an exact Mann-Whitney U test.

Table 1. Bacterial strains used in this study.

| Strain         | Genotype | Reference |
|----------------|----------|-----------|
| 14028HYD3      | Streptomycin-resistant derivative of IR715 (constructed by P22-transduction of aadA gene from S. Typhimurium SL1344 into the ATCC14028 derivative IR715) | [35] |
| 14028WT        | STM1347-3150, STM1786-87::aphT, STM1538-1539::cat | This study |

doi:10.1371/journal.pone.0110187.t001

Ethical statement

All animal experiments were reviewed and approved by the Kantonales Veterinäramt, Zürich (license 223/2010 & 222/2013) and are subject to the Swiss animal protection law (TschG).

Acknowledgments

We are grateful to the members of the RCHCI staff for excellent support of our animal work, to Boas Felmy for help with i.v. injections and to Rebekka Bauer for experimental assistance.

Author Contributions

Conceived and designed the experiments: LM BS WDH. Performed the experiments: LM MB BS. Analyzed the data: LM BS WDH. Wrote the paper: WDH. Interpretation and critical revision of data for this work: RJM JSG.

References

1. Sommer F, Backhed F (2013) The gut microbiota – masters of host development and physiology. Nat Rev Microbiol 11: 227–238.
2. Stecher B, Hardt WD (2008) The role of microbiota in infectious disease. Trends Microbiol 16: 107–114.
3. van der Waaig D, Berghuis-de Vries YM, Leikkerkerk-Lev (1971) Colonization resistance of the digestive tract in conventional and antibiotic-treated mice. J Hvy (Leid) 69: 405–411.
4. Ng KM, Ferreyra JA, Higginbottom SK, Lynch JB, Kashyap PC, et al. (2013) Hydrogen-stimulated carbon acquisition and conservation in Salmonella. PLoS ONE 8: e59243.
5. Santos RL, Zhang S, Tools RM, Kingsley RA, Adams LG, et al. (2001) Animal models of Salmonella infections: enteritis versus typhoid fever. Microbes Infect 3: 1333–1344.
6. Wallis TS, Galayev EE (2000) Molecular basis of Salmonella-induced enteritis. Mol Microbiol 36: 997–1005.
7. Endt K, Stecher B, Chaffron S, Slack E, Tchitchek N, et al. (2010) The SopEphi phage integrates into the Salmonella Typhimurium invasion of the gut ecosystem. Cell Host Microbe 14: 641–651.
8. Stecher B, Chaffron S, Kappel R, Hapfelmeier S, Freedrich S, et al. (2010) Like to live: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6: e1000771.
9. Lamichhane-Khadka R, Benoit SL, Maier SE, Maier RJ (2013) A link between gut community metabolism and pathogenesis: molecular hydrogen-stimulated glucarate catabolism aids Salmonella virulence. Open Biol 3: 130146.
10. Lamichhane-Khadka R, Faye JG, Porwollik S, McClelland M, Maier RJ (2011) Hydrogen-stimulated carbon acquisition and conservation in Salmonella enterica serovar Typhimurium. J Bacteriol 193: 5824–5832.
11. Lamichhane-Khadka R, Kowaloksonki A, Maier RJ (2010) The Hy hydrogenase permits hydrogen-dependent respiratory growth of Salmonella enterica serovar Typhimurium. MBio 1.
12. Lamichhane-Khadka R, Benoit SL, Maier SE, Maier RJ (2005) Use of molecular hydrogen as an energy substrate by human pathogenic bacteria. Biochem Soc Trans 33: 83–85.
13. Maier RJ (2005) Use of molecular hydrogen as an energy substrate by human pathogens. J Bacteriol 187: 5602–5607.
14. Zbell AL, Benoit SL, Maier RJ (2007) Differential expression of NiFe uptake-type hydrogenase genes in Salmonella enterica serovar Typhimurium. Microbiology 153: 3508–3516.
15. Zbell AL, Benoit SL, Maier RJ (2009) Role of the Hya hydrogenase in recycling of anaerobically produced H2 in Salmonella enterica serovar Typhimurium. Appl Environ Microbiol 75: 1456–1459.
31. Hardt WD, Urlaub H, Galan JE (1998) A substrate of the centrosome 63 type III protein secretion system of Salmonella typhimurium is encoded by a cryptic bacteriophage. Proc Natl Acad Sci U S A 95: 2574–2579.

32. Mirold S, Rabesch W, Tischke H, Hardt WD (2001) Transfer of the Salmonella type III effector spolIb between unrelated phage families. J Mol Biol 312: 7–16.

33. Hardt WD, Chen LM, Schuebel KE, Bustelo XR, Galan JE (1998) S. typhimurium encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 813–826.

34. Wood MW, Rosqvist R, Mullan PB, Edwards MH, Galyov EE (1996) SopE, a secreted protein of Salmonella dublin, is translated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol 22: 327–338.

35. Hapfelmeier S, Elbar K, Stecher B, Barthel M, Kremer M, et al. (2004) Role of the Salmonella pathogenicity island 1 effector proteins SipA, SopB, SopE, and SopE2 in Salmonella enterica subspecies 1 serovar Typhimurium colitis in streptomycin-pretreated mice. Infect Immun 72: 795–809.

36. Zhang S, Santos RL, Tschape H, Hardt WD, et al. (2002) Phage-mediated horizontal transfer of the sopE1 gene increases enteropathogenicity of Salmonella enterica serotype Typhimurium for calves. FEMS Microbiol Lett 217: 243–247.

37. Lopez CA, Winter SE, Rivera-Chavez F, Xavier MN, Poon V, et al. (2012) Phage-mediated horizontal transfer of the sipA gene encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. Cell 93: 813–826.

38. Meynell GG, Subbaiah TV (1963) Antibiogenic mechanisms of the mouse gut. I. Kinetics of infection by Salmonella typhimurium in normal and streptomycin-treated mice studied with abortive transductants. Br J Exp Pathol 44: 197–206.

39. Murray RA, Lee CA (2000) Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun 68: 3050–3055.

40. Que JU, Hentges DJ (1985) Effect of streptomycin administration on colonization resistance to Salmonella typhimurium in mice. Infect Immun 43: 169–174.

41. Pie S, Matsiota-Bernard P, Truffie-Bachi P, Nauciel C (1996) Gamma interferon and interleukin-10 gene expression in innately susceptible and resistant mice during the early phase of Salmonella typhimurium infection. Infect Immun 64: 849–854.

42. Crawford RW, Rosales-Reyes R, Ramirez-Aguilar Mde L, Chapa-Azuela O, Alpuce-Axanda C, et al. (2010) Gallstones play a significant role in Salmonella spp. gallbladder colonization and carriage. Proc Natl Acad Sci U S A 107: 4353–4358.

43. Kingsley RA, Msefula CL, Thomson NR, Karinski S, Holt KE, et al. (2009) Epidemic multiple drug-resistant Salmonella Typhimurium causing invasive disease in sub-Saharan Africa have a distinct genotype. Genome Res 19: 2279–2287.

44. Knoedler LA, Vallance BA, Celli J, Winfree S, Hansen B, et al. (2010) Dissemination of invasive Salmonella via bacterial-induced extrusion of mucosal epithelia. Proc Natl Acad Sci U S A 107: 17733–17738.

45. Brown KJ, Tannock GW, Eyres RA, Elliott RB, Lines DR (1979) Colonization by Salmonella typhimurium and Shigella flexneri III of the gastrointestinal tract of mice treated with beta-2-thiophenalanine and streptomycin. Antonie Van Leeuwenhoek 45: 331–346.

46. Kaiser P, Duart M, Stecher B, Hardt WD (2012) The streptomycin model for Salmonella diarrhea: functional analysis of the microbiota, the pathogen’s virulence factors, and the host’s mucosal immune response. Immunol Rev 245: 56–63.

47. Meynell GG (1955) Some factors affecting the resistance of mice to oral infection by Salmonella typhimurium. Proc R Soc Med.

48. Meynell GG, Subbaiah TV (1963) Antibiogenic mechanisms of the mouse gut. I. Kinetics of infection by Salmonella typhimurium in normal and streptomycin-treated mice studied with abortive transductants. Br J Exp Pathol 44: 197–206.

49. Murray RA, Lee CA (2000) Invasion genes are not required for Salmonella enterica serovar typhimurium to breach the intestinal epithelium: evidence that salmonella pathogenicity island 1 has alternative functions during infection. Infect Immun 68: 3050–3055.