Korean Atrial Fibrillation (AF) Network: Genetic Variants for AF Do Not Predict Ablation Success

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters.

Citation
Choi, E., J. H. Park, J. Lee, C. M. Nam, M. K. Hwang, J. Uhm, B. Joung, et al. 2015. “Korean Atrial Fibrillation [AF] Network: Genetic Variants for AF Do Not Predict Ablation Success.” Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease 4 (8): e002046. doi:10.1161/JAHA.115.002046. http://dx.doi.org/10.1161/JAHA.115.002046.

Published Version
doi:10.1161/JAHA.115.002046

Citable link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:23473876

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Korean Atrial Fibrillation (AF) Network: Genetic Variants for AF Do Not Predict Ablation Success

Eue-Keun Choi, MD, PhD;* Jae Hyung Park, PhD;* Ji-Young Lee, PhD; Chung Mo Nam, PhD; Min Ki Hwang, PhD; Jae-Sun Uhm, MD; Boyoung Joung, MD, PhD; Young-Guk Ko, MD; Moon-Hyoung Lee, MD, PhD; Steven A. Lubitz, MD, MPH; Patrick T. Ellinor, MD, PhD; Hui-Nam Pak, MD, PhD

Background—Genomewide association studies have identified several loci associated with atrial fibrillation (AF) and have been reportedly associated with response to catheter ablation for AF in patients of European ancestry; however, associations between top susceptibility loci and AF recurrence after ablation have not been examined in Asian populations. We examined whether the top single nucleotide polymorphisms (SNPs) at chromosomes 4q25 (PITX2), 16q22 (ZFHX3), and 1q21 (KCNN3) were associated with AF in a Korean population and whether these SNPs were associated with clinical outcomes after catheter ablation for AF.

Methods and Results—We determined the association between 4 SNPs and AF in 1068 AF patients who underwent catheter ablation (74.6% male, aged 57.5±10.9 years, 67.9% paroxysmal AF) and 1068 age- and sex-matched controls. The SNPs at the PITX2 and ZFHX3 loci, but not the KCNN3 locus, were significantly associated with AF (PITX2/rs6843082_G: odds ratio 3.41, 95% CI 2.55 to 4.55, P=1.32×10−16; ZFHX3/rs2200733_T: odds ratio 2.05, 95% CI 1.66 to 2.53, P=2.20×10−11; KCNN3/rs2106261_A: odds ratio 2.33, 95% CI 1.87 to 2.91, P=3.75×10−14; KCNN3/rs13376333_T: odds ratio 1.74, 95% CI 0.93 to 3.25, P=0.085). Among those patients who underwent catheter ablation for AF, none of the top AF-associated SNPs were associated with long-term clinical recurrence of AF after catheter ablation.

Conclusions—SNPs at the PITX2 and ZFHX3 loci were strongly associated with AF in Korean patients. In contrast to prior reports, none of the 4 top AF-susceptibility SNPs predicted clinical recurrence after catheter ablation. (J Am Heart Assoc. 2015;4:e002046 doi: 10.1161/JAHA.115.002046)

Key Words: atrial fibrillation • catheter ablation • genetic polymorphism • phenotype • recurrence

Atrial fibrillation (AF) is the most commonly found sustained arrhythmia, with a lifetime risk of 25%. Risk factors include advancing age, hypertension, structural heart disease, and congestive heart failure, yet a subset of younger persons develop AF in the absence of established risk factors. Genetic factors play an important role in the pathogenesis of AF. Parental history of AF increases risk of AF by 1.4 to 1.9 times. Familial cases of AF underscore a genetic basis for disease, and research has implicated mutations and polymorphisms in the development of AF.

Recently, several common genetic variants have been shown to be associated with AF in genomewide association studies performed in populations of European ancestry, however, ethnic differences exist in the frequency of AF-related single nucleotide polymorphisms (SNPs) between European and Asian populations, and thus the relationship between these SNPs and AF in non-European populations remains unclear. Furthermore, despite the identification of these AF-associated loci, data regarding the association between variants at these loci and clinical outcomes remain limited. Some reports suggested that these variants were associated with an increased risk of AF recurrence after a radiofrequency catheter ablation (RFCA), a common therapy in symptomatic patients with lone AF. These reports, however, were conducted in patients of European ancestry, and the associations between...
genetic variants and responses to RFCA in other ancestral groups remain unclear.

The goal of the current study was 2-fold. First, we sought to determine whether the top 4 AF SNPs identified in European patients were also associated with AF in Korean patients. These SNPs reside on chromosomes 4q25 (PITX2 locus), 16q22 (ZFHX3 locus), and 1q21 (KCNN3 locus). Second, we examined whether these AF SNPs were associated with AF recurrence after RFCA.

Methods

Patient Inclusion

The study protocol was approved by the institutional review board of Severance Cardiovascular Hospital, Yonsei University Health System, and adhered to the Declaration of Helsinki. This study is registered at ClinicalTrials.gov (identifier NCT02138695). All 2136 subjects (1068 with AF patients and 1068 with age- and sex-matched control subjects) provided written informed consent. All AF patients who underwent RFCA were included in the Yonsei AF Ablation Cohort registry. The exclusion criteria of this study were as follows: (1) permanent AF refractory to electrical cardioversion, (2) AF with valvular disease, (3) structural heart disease other than left ventricular hypertrophy, and (4) prior AF ablation. Age- and sex-matched control DNA was obtained from the Korea Centers for Disease Control and Prevention, National Biobank of Korea (KOBB-2012-00).16,17 All control subjects had a 12-lead electrocardiogram to exclude the presence of AF.

SNP Selection and Genotyping

We evaluated selected SNPs from the top 3 AF-associated genetic loci in European patients from the meta-analysis of genomewide association studies reported by Ellinor and colleagues in 2012 and in other previous papers. Specifically, we selected the top variant or a proxy SNP at each locus. For the locus at PITX2, the top SNP reported was rs6817105,6 and the SNP rs2200733 is a perfect proxy for this SNP ($r^2=1.0$). Because SNP rs6843082 has also been reported to be strongly associated with AF10 and is in only modest linkage disequilibrium with rs6817105, we included this SNP in our analyses ($r^2=0.434$). For the locus at ZFHX3 on chromosome 16q22, the top SNP selected was rs2106261. At the KCNN3 locus on chromosome 1q21, the top SNP reported was rs6666258,5 and we selected a perfect proxy for genotyping: SNP rs1337633 ($r^2=1.0$).

We used whole blood samples for DNA extraction and genetic analyses. The SNPs were genotyped using validated TaqMan assays (Applied Biosystems, Life Technologies). Polymerase chain reaction product was amplified using 0.9 µm each of the forward and reverse primers, 0.2 µm each of the fluorescent amidite and VIC minor groove binder sequence–specific probes, 3 ng DNA, 5.0 mmol/L MgCl2, and 1× TaqMan Universal PCR Master Mix containing AmpliTaq gold DNA polymerase in a 5.5-µL reaction volume. All SNPs had a call rate of >99%.

Radiofrequency Catheter Ablation

During the procedure, intracardiac electrograms were recorded using a Prucka Cardiolab electrophysiology system (General Electric Health Care System Inc). Ablation was guided by 3-dimensional electroanatomical mapping (NavX system; St. Jude Medical Inc). An open irrigation 3.5-mm-tip deflectable catheter (Celsius, Johnson & Johnson Inc; Cool Flex, St. Jude Medical Inc; 30 to 35 W; 47°C) was used for RFCA (Stockert generator; Biosense Webster Inc). All patients initially underwent circumferential pulmonary vein (PV) isolation and cavo-tricuspid isthmus ablation. For patients with persistent AF, we added a roof line, posterior inferior line, and anterior line19 as a standard lesion set. At the operator’s discretion, additional ablations were delivered to the superior vena cava, non-PV foci, or regions of complex fractionated electrograms. We confirmed the PV isolation by both entrance and exit block and rechecked it under an isoproterenol infusion before finishing the procedure. In addition, we attempted to reinduce AF by isoproterenol infusion with rapid atrial pacing before finishing the procedure. The end point of our procedure was defined as no immediate recurrence of AF after cardioversion while receiving an isoproterenol infusion (5 to 10 µg/min). If there was immediate recurrence of AF after cardioversion, we then ablated these non-PV foci.

Postablation Management and Follow-up

Patients were seen in the outpatient clinic at 1, 3, 6, and 12 months and then every 6 months thereafter or whenever symptoms occurred after RFCA. An electrocardiogram was performed on every visit. A 24- or 48-hour Holter recording and/or event recorder was obtained at the 3- and 6-month visits as well as every 6 months afterward in accordance with the 2012 Heart Rhythm Society, European Heart Rhythm Association, and European Cardiac Arrhythmia Society expert consensus statement guidelines.20 Whenever patients reported symptoms of palpitations, Holter monitor or event monitor recordings were obtained and evaluated for possible arrhythmia recurrences. We defined recurrence of AF as any episode of AF or atrial tachycardia of at least 30 seconds in duration.21 Early recurrence was defined as having a documented AF electrocardiogram within 3 months after ablation. Clinical recurrence was defined as (1) any documented
Table 1. Baseline Characteristics of the Study Population

	AF (n=1068)	Controls (n=1068)
Age, y	57.5±10.9	57.5±11.5
Male sex, %	74.6	74.6
PAF, %	67.9	—
Body mass index, kg/m²	24.7±3.2	23.6±3.1*
Hypertension	510 (47.8)	19 (1.8%)*
Diabetes mellitus	139 (13.0)	14 (1.3%)*
Congestive heart failure	70 (6.6)	1 (0.1%)*
Stroke	106 (9.9)	0 (0%)*
CHADS₂ score	136 (12.7)	0 (0%)*
CHARGE score	0.95±1.09	—

Echocardiography

Parameter	AF (n=1068)	Controls (n=1068)
LA dimension, mm	41.6±6.5	—
LA volume index	35.0±12.3	—
LVEF, %	63.1±9.0	—
E/Em	9.7±5.1	—
LVEDD, mm	49.3±6.6	—
LVESD, mm	33.2±5.8	—
LVMI, g/m²	75.3±41.2	—
Early recurrence, %	28.5	—
Clinical recurrence, %	19.0	—

Results

Baseline characteristics of the study population are summarized in Table 1. We studied 1068 patients who underwent an AF ablation and 1068 controls who were matched on the basis of age and sex. The mean age of our study population was 57.5±11.2 years, and 74.6% of participants were male. As expected, the AF group had a higher prevalence of hypertension, diabetes mellitus, congestive heart failure, stroke, and coronary artery disease than the control group. To exclude the possible confounding effects caused by the imbalance of disease prevalence between cases and controls, we sequentially performed subgroup analyses excluding patients with the following risk factors: (1) hypertension; (2) diabetes mellitus; (3) congestive heart failure; and (4) strokes.

Table 2. Association Between AF and SNPs From 3 Known AF Loci

Nearest Gene	SNP	Chr	Position	Minor Allele/Major Allele	MAF	AF Associated Allele	OR	95% CI	P Value*
PITX2	rs6843082	4	111937516	A/G	0.204	G	3.41	2.55 to 4.55	1.32×10⁻¹⁶
PITX2	rs2200733	4	111929618	C/T	0.394	T	2.05	1.66 to 2.53	2.20×10⁻¹¹
ZFHX3	rs2106261	16	71609121	A/G	0.395	A	2.33	1.87 to 2.91	3.75×10⁻¹⁴
KCNQ1	rs1337633	1	153080977	T/C	0.019	T	1.74	0.93 to 3.25	0.085

AF indicates atrial fibrillation; Chr, chromosome; MAF, minor allele frequency; OR, odds ratio; SNPs, single nucleotide polymorphisms.

*P value was calculated by using conditional logistic regression after adjusting for body mass index, hypertension, diabetes mellitus, and congestive heart failure.
Table 3. Comparisons of Phenotypes and Clinical Outcomes According to SNPs From 3 Known AF Loci

rs6843082 (PITX2)	m2200733 (PITX2)	rs2106261 (ZFHX3)	m1337633 (KCNN3)								
	AA (n=17)	GA (n=215)	GG (n=836)	CC (n=947)	CT (n=527)	TT (n=297)	GA (n=520)	AA (n=251)	CC (n=1020)	CT (n=48)	TT (n=0)
Age, y	50.8±15.3	59.0±11.1*	57.2±10.7	56.7±12.7	58.1±10.7	57.1±10.8	58.2±11.8	57.6±10.5	56.4±10.7	57.5±11.0	56.2±9.4
Male sex, %	58.8	71.2	75.8	71.4	72.0	77.2	72.4	75.6	75.3	74.4	79.2
PAF, %	70.6	67.4	67.9	70.2	66.7	68.3	64.3	67.9	72.1	67.5	77.1
Body mass index, kg/m²	26.0±3.5	24.6±2.8	24.9±2.8	24.8±2.8	24.7±2.9	25.0±2.7	24.7±2.8	24.8±2.8	24.9±2.6	24.8±2.8	25.5±2.5
CHADS₂ score	0.88±0.78	1.06±1.14	0.93±1.08	0.95±1.04	0.95±1.10	0.97±1.09	0.98±1.09	0.97±1.12	0.88±1.01	0.86±1.09	0.73±0.94
Hypertension	9 (52.9%)	108 (50.2%)	393 (47.0%)	44 (52.4%)	202 (45.2%)	261 (49.5%)	147 (49.5%)	256 (49.2%)	107 (42.6%)	493 (48.3%)	17 (35.4%)
Diabetes mellitus	0 (0%)	26 (12.1%)	113 (13.5%)	6 (7.1%)	62 (13.9%)	71 (13.5%)	31 (10.4%)	75 (14.4%)	33 (13.1%)	134 (13.1%)	5 (10.4%)
Congestive heart failure	2 (11.8%)	21 (9.8%)	47 (5.6%)	7 (8.3%)	31 (6.9%)	32 (6.1%)	20 (6.7%)	34 (6.5%)	16 (6.4%)	67 (6.6%)	3 (6.3%)
Stroke	2 (11.8%)	24 (11.2%)	80 (9.6%)	6 (7.1%)	43 (9.6%)	56 (10.6%)	29 (8.8%)	52 (10.0%)	25 (10.0%)	101 (9.9%)	5 (10.4%)
Coronary artery disease	1 (5.9%)	28 (13.0%)	107 (12.8%)	8 (9.5%)	67 (15.0%)	60 (11.4%)	35 (11.5%)	69 (13.3%)	32 (12.7%)	130 (12.7%)	6 (12.5%)
Echocardiography											
LA dimension, mm	40.2±7.1	41.6±6.5	41.7±6.0	41.1±6.6	41.5±6.1	41.9±6.0	41.4±6.3	41.8±6.4	41.0±5.7	41.7±6.1	41.5±5.8
LA volume index	38.3±18.9	35.5±13.1	35.0±11.9	34.4±12.5	35.2±12.6	34.9±11.9	35.2±12.4	35.5±12.5	33.7±11.5	35.1±12.3	32.8±10.6
LVEF, %	62.8±11.3	63.4±8.2	63.3±8.3	62.8±9.0	63.5±8.5	63.1±8.1	64.0±7.6	63.5±8.0	62.7±9.0	63.3±8.4	62.7±7.7
E/Em	9.8±3.4	10.8±5.4	10.3±4.3	10.5±4.4	10.5±4.9	10.3±4.2	9.8±3.8	10.7±4.4	9.5±3.4	10.4±4.6	9.9±3.5
LVESD, mm	50.1±3.7	49.8±4.6	49.9±4.2	50.7±4.7	49.6±4.5	50.0±4.1	49.6±4.3	49.9±4.3	50.0±4.6	49.8±4.3	50.4±4.7
LVESD, mm	33.8±4.7	33.8±5.1	33.6±4.6	34.4±5.1	33.4±4.7	33.7±4.6	33.3±4.6	33.5±4.4	33.8±5.0	33.6±4.7	34.1±4.9
LVMI, g/m²	93.4±16.8	95.9±22.8	92.3±20.9	97.3±24.3	92.8±20.3	92.8±21.7	93.5±23.0	93.8±20.2	91.3±20.4	93.3±21.4	67.4±18.4
Early recurrence, %	0	28.8	28.9	25.0	28.2	29.4	29.6	28.1	27.9	27.7	45.8

CHADS₂ score, 1 point is given for cardiac heart failure, hypertension, age ≥75 years, and diabetes mellitus; 2 points are given for previous stroke and transient ischemic attack. AF indicates atrial fibrillation; LA, left atrium; LVESD, left ventricular end-systolic dimension; LVEF, left ventricular ejection fraction; LVESD, left ventricular end-systolic dimension; LVMI, left ventricular mass index; PAF, paroxysmal atrial fibrillation; SNPs, single nucleotide polymorphisms.

*p<0.05 compared between AA and GA.
coronary artery disease, and congestive heart failure simultaneously. All subgroup analyses were performed by using multivariable logistic regression, adjusting for age, sex, body mass index, hypertension, diabetic mellitus, and congestive heart failure, as appropriate, and the results were consistent (Table S1).

PITX2 and ZFHX3 Were Strongly Associated With AF in Korean Patients

We found that 2 of the 3 known AF-associated loci were strongly associated with AF in Korean patients (Table 2). Two variants at the *PITX2* locus and 1 at the *ZFHX3* locus were significantly associated with AF (rs6843082_G: OR 3.41, 95% CI 2.55 to 4.55, \(P=1.32\times10^{-16}\); rs2200733_T: OR 2.05, 95% CI 1.66 to 2.53, \(P=2.20\times10^{-11}\); rs2106261_A: OR 2.33, 95% CI 1.87 to 2.91, \(P=3.75\times10^{-14}\)) In contrast, genetic variants at the *KCNN3* locus were not associated with AF in Korean patients (rs13376333_T: OR 1.74, 95% CI 0.93 to 3.25, \(P=0.085\)). Interestingly, the frequency of the AF risk allele at this locus (rs13376333_T) was very low in the Korean population, at only 1.9% compared with 29.5% in European patients.\(^{10}\)

Relationship Between AF-Risk SNPs and Baseline Clinical Characteristics of Patients Undergoing AF Ablation

Next we sought to determine whether any baseline differences existed in an extensive set of clinical and echocardiographic parameters based on AF genotype (Table 3). Among the 1068 AF ablation patients, the only notable difference was that carriers of the AF-associated risk allele for SNP rs6843082 on chromosome 4q25 were younger (50.8±15.3 versus 59.0±11.1, \(P=0.005\)).

![Figure](https://example.com/figure.png)

Figure. Kaplan–Meier curve showing relationship among recurrence and risk alleles of rs6843082 in *PITX2* (A), rs2200733 in *PITX2* (B), rs2106261 in *ZFHX3* (C), and rs13376333 in *KCNN3* (D). AF indicates atrial fibrillation.
Relationship Between AF Genotype and Outcomes After AF Ablation

After ablation, 304 patients (28.5%) had early recurrence during the 3-month blanking period. We did not observe any significant associations between AF-risk SNPs and early AF recurrence. During 18.3±13.9 months (range 0 to 55 months) of follow-up, 203 patients (19.0%) had a clinical recurrence >3 months from RFCA. Figure displays the freedom from AF recurrence for each of the 4 SNPs. None of the 4 SNPs were associated with a long-term clinical recurrence after RFCA (Table 4).

Table 4. Association Between Candidate Genes (SNPs) and Clinical Recurrence of AF Using Cox Regression Model

Gene/SNP	Adjusted*	HR	95% CI	P Value
PITX2/rs6843082_G	0.84	0.61	1.15	0.280
PITX2/rs2200733_T	1.01	0.80	1.26	0.963
ZFHX3/rs2106261_A	0.86	0.71	1.04	0.128
KCNN3/rs13376333_T	0.72	0.38	1.36	0.308

AF indicates atrial fibrillation; HR, hazard ratio; SNPs, single nucleotide polymorphisms. *Adjusted for sex, age, left atrium size, AF subtype (persistent AF), and early recurrence (≤3 months).

Discussion

In a well-characterized cohort of >1000 Korean patients with nonvalvular AF, we observed that 2 of the 3 main AF susceptibility signals discovered in European patients (chromosomes 4q25 [PITX2] and 16q22 [ZFHX3]) were similarly associated with AF, supporting a shared genetic basis for AF that transcends ancestry. Second, and in contrast to prior reports,13,14 we did not observe any significant associations between these top 4 AF susceptibility loci and AF recurrence following catheter ablation.

Interestingly, the AF risk allele at 1q21 was not associated with AF; however, the frequency of this variant in the Korean population was rare. Large-scale genomewide association studies showed the association of SNPs in PITX2, ZFHX3, and KCNN3 with AF in patients of European ancestry, and the results were replicated in a Japanese study.6 In Table 5, we summarized the published results of these 4 AF variants in patients of Asian descent. We noted that most published studies were smaller and studied only 1 or 2 of the top AF variants. Although SNPs at PITX2 and ZFHX3 were consistently associated with AF, there was less consistency among the studies at the KCNN3 locus. The lack of replication of the association at the KCNN3 locus may be due to the rarity of this risk allele among those of Asian descent. In Korean patients, the risk allele was quite rare, with a minor

Table 5. Summary of Association Results for the 3 AF Loci

Ethnicity	European6	Japanese6	Hong Kong6	Chinese11	Taiwanese12	Hong Kong22	Chinese23	Chinese24	Korean
Total Number (AF Patients)	59 (6707)	4193 (843)	3048 (285)	2097 (650)	428 (214)	3169 (333)	1234 (383)	1593 (597)	2136 (1068)
PITX2									
OR	1.64	1.84	1.42	1.81	3.06				
95% CI	1.55 to 1.73	1.59 to 2.13	1.16 to 1.73	1.21 to 3.20	2.59 to 3.61				
P value	1.8×10⁻⁷⁴	3.7×10⁻¹⁷	0.00064	3.7×10⁻¹¹	4.3×10⁻¹⁴				
SNP	rs6817105	rs2634073	rs2200733	rs2200733	rs6843082				
ZFHX3									
OR	1.24	0.8	1.05	1.32	1.71	2.03			
95% CI	1.17 to 1.30	0.71 to 0.91	0.87 to 1.26	1.15 to 1.51	1.46 to 2.00	1.79 to 2.31			
P value	3.2×10⁻¹⁶	6.8×10⁻⁴	0.63	1.9×10⁻⁴	5.3×10⁻¹⁴				
SNP	rs2106261	rs12932445	rs7193343	rs2106261	rs2106261				
KCNN3									
OR	1.18	1.46	1.24	3.02	1.38				
95% CI	1.13 to 1.23	0.85 to 2.51	0.88 to 1.75	1.54 to 6.29	0.89 to 2.14				
P value	2.0×10⁻¹⁴	0.17	0.333	<0.001	0.152				
SNP	rs6666258	rs7514452	rs13376333	rs13376333	rs13376333				

AF indicates atrial fibrillation; OR, odds ratio; SNP, single nucleotide polymorphism.
allele frequency of only 1.9%. Similarly, in Japanese and Chinese studies, this variant had a minor allele frequency of 1.5% and 4%, respectively. In contrast, European and Taiwanese populations had high prevalence of the AF risk allele (29.6% and 8.6%, respectively). Our findings highlight the variability in this KCNN3 AF risk allele, even among those of Asian descent. Our results also demonstrate the need for large-scale genetic studies in specific Asian subgroups to identify this and other regions uniquely associated with AF.

The first identification of common genetic variants dates to 2007, yet data on the clinical utility of these variants remains relatively limited. Investigators have examined the risk of AF after cardioversion, the initiation of antiarrhythmic medication, and PV isolation ablation procedures. In our study of >1000 Korean patients who underwent PV ablation, we did not observe any significant associations between the AF risk alleles on chromosomes 4q25, 16q22, or 1q21 and recurrent AF after catheter ablation. Our findings are in contrast to the recent observations in 2 studies of patients with Europeans ancestry (Table 6). Many potential causes could underlie the discordant results observed between Asian and European populations. First, our results may point to a specific racial difference in the associations between AF genetic data and clinical recurrence after RFCA. It is possible that the genetic variants that we considered in Korean patients are only proxies rather than the truly causative SNPs at these loci. Second, because our study is nearly 3 times larger than the prior studies, it is possible that the findings in European patients reflected a relatively smaller sample size. Finally, the differences may also be due to technical variability of RFCA, surveillance for AF, or the length of the follow-up period among the studies. Ultimately, further large-scale multicenter studies will help resolve each of these issues.

Strengths of our study include the largest cohort of patients of Asian descent described to date, a well-characterized ablation population with detailed phenotypic data, and a standardized clinical protocol for follow-up after ablation. Our study was also subject to a number of potential limitations. First, we excluded patients with significant structural heart disease. Second, because we studied a Korean population, our results may not be generalizable to other races and ethnicities. This observational study included a highly selected group of patients referred for Yonsei AF Ablation Cohort; therefore, the results cannot be generalized to the entire AF population or to other ethnicities. The lack of association of the polymorphism to the recurrence of AF after ablation might be related to the low frequency of the variant in the selected population, a small effect of polymorphisms, heterogeneity of the population with varying underlying substrate, variable ablative techniques used, and follow-up, despite the relatively consistent protocols for inclusion, ablation, and follow-up.

Conclusions

Genetic variants at the PITX2 and ZFHX3 loci were strongly associated with AF among Korean patients, whereas there
was no association at the KCNN3 locus. The clinical outcomes after a catheter ablation for AF could not be predicted by genetic variants in Korean patients.

Acknowledgment

We appreciate National Biobank of Korea (KOB2-2012-00) for kindly providing control DNA.

Sources of Funding

Dr Pak is supported by a grant (A085136) from the Korea Health 21 R&D Project, Ministry of Health and Welfare, and a grant (7-2013-0362) from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP). Dr Choi is supported by grant no 2520140060 from the SNUH Research Fund and a Korea National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

Disclosures

None.

References

1. Lloyd-Jones DM, Wang TJ, Leip EP, Larson MG, Levy D, Vasan RS, D'Agostino RB, Massaro JM, Beiser A, Wolf PA, Benjamin EJ. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation. 2004;110:1042–1046.

2. Fox CS, Prasse H, D'Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ, Levy D, Wolf PA, Benjamin EJ. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA. 2004;291:2851–2855.

3. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, Villalon ML, Vasan RS, Pencina MJ, Levy D, Larson MG, Ellinor PT, Benjamin EJ. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. JAMA. 2010;304:2263–2269.

4. Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh BJ, Shen WK, Hammill SC, Packard DL, Olson TM. Familial atrial fibrillation is a genetically heterogeneous disorder. J Am Coll Cardiol. 2003;41:185–219.

5. Sabe H, MacRae CA. The genetics of atrial fibrillation. Cur Opin Cardiol. 2010;25:186–191.

6. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Smith AV, Vasan RS, Arking DE, Benjamin EJ, Heckbert SR, Benjamin EJ, Ellinor PT. Large scale replication and meta-analysis of variants on chromosome 4q25 associated with atrial fibrillation. Eur Heart J. 2009;30:813–819.

7. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV, Schnabel RB, Bis JC, Boerwinkle E, Sin

8. Benjamin EJ, Rice KM, Arking DE, Pae

9. Gudbjartsson DF, Holm H, Gretarsdottir S, Thorleifsson G, Walters GB, Thorgerisson G, Gulcher J, Mathiesen EK, Njølstad I, Nymes S, Wilsaard T, Hall EM, Hveem K, Hveem KG, Fratiglioni L, Stolberg S, Cucurca G, Steffelbeke T, Carter S, Rienstra M, Ng MC, Lauras I, Yuan S, Wang W, Wu X, Zhao H, Liu M, Zhang H, Gao L, Yu Q, Weir BS, Heeringa J, Metspalu A, Topol EJ, Chakravarti A, Vasan RS, Nothen MM, MacRae CA, Roberts R, Massaro JM, Beiser A, Wolf PA, Benjamin EJ. Lifetime risk for development of atrial fibrillation in a Taiwanese population. Circ. J. 2012;76:184–188.

10. Ellinor PT, Lunetta KL, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sin

11. Li C, Wang F, Yang Y, Fu F, Xu C, Shi L, Li S, Xia Y, Wu G, Cheng X, Liu H, Wang C, Wang P, Hao J, Ke Y, Zhao Y, Liu M, Zhang R, Gao L, Gu Y, Bao Z, Liao Y, Yang B, Tu X, Wang OK. Significant association of SNP rs2100261 in the ZFHX3 gene with atrial fibrillation in a Chinese Han GenED population. Hum Genet. 2011;129:239–246.

12. Chang SH, Chang SN, Huang JJ, Chang FT, Tseng CD, Lee JK, Lai LP, Lin JL, Wu CK, Tsai CT. Significant association of rs13573633 in KCNQ1 on chromosome 17q21 with atrial fibrillation in a Taiwanese population. Circ. J. 2013;77:184–188.

13. Benjamin Shoemaker M, Mardem M, Varboz B, White B, Streur M, Song Y, Stubblebeke T, Kucera G, Bligh M, Rytleskis J, Parvathaneni S, Gudnason V, Psaty BM, Roden DM, AMC RA, Stricker BH, Hofman A, Rienstra M, Glazer NL, Pfeufer A, Alonso A, Chung MK, Sin

14. Huss M, Adams V, Piorowski C, Hindricks G, Bollmann A. Common variants in KCNQ3 and KCNE3 are associated with lone atrial fibrillation. Nat Genet. 2010;42:240–244.

15. Cho YS, Go MJ, Kim YJ, Jeon Y, Oh JH, Song J, Lee OH, Park J, Cho K, Kim J, Park M, Chai SH, Kim HW, Han BG, Min H, Ahn Y, Park MS, Han HR, Hwang CH, Cho HY, Cho EY, Lee JE, Cho NH, Shin C, Park T, Park Y, Lee JY, Park HW, Kim HD. A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nat Genet. 2009;41:527–534.

16. Bai L, Kim J, Abbott RD, Joo S, Jung K, Lee S, Shin J, Kwang K, Yoo S, Shin C. Association of chronic kidney disease with chronic kidney disease. Intern Med. 2009;48:167–173.

17. Lubitz SA, Ozcan C, Magnani JW, Kaab S, Benjamin EJ, Ellinor PT. Genetics of atrial fibrillation: implications for future research directions and personalized medicine. Circ Arrhythm Electrophysiol. 2010;3:291–299.
19. Pak HN, Oh YS, Lim HE, Kim YH, Hwang C. Comparison of voltage map-guided left atrial anterior wall ablation versus left lateral mitral isthmus ablation in patients with persistent atrial fibrillation. *Heart Rhythm*. 2011;8:199–206.

20. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, Crijns HJ, Damiano RJ Jr, Davies DW, DiMarco J, Edgerton J, Ellenbogen K, Ezekowitz MD, Haines DE, Haissaguerre M, Hindricks G, Iesaka Y, Jackman W, Jais P, Kalman J, Keane D, Kim YH, Kirchhof P, Klein G, Kottkamp H, Kumagai K, Lindsay BD, Mansour M, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Nakagawa H, Natale A, Nattel S, Packer DL, Prystowsky E, Raviele A, Reddy V, Ruskin JN, Shemin RJ, Tsao HM, Wilber D. 2012 HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design: a report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. Developed in partnership with the European Society of Cardiology (ESC) and the European Cardiac Arrhythmia Society (ECAS); and in collaboration with the American College of Cardiology (ACC), American Heart Association (AHA), the Asia Pacific Heart Rhythm Society (APHRS), and the Society of Thoracic Surgeons (STS). Endorsed by the governing bodies of the American College of Cardiology Foundation, the American Heart Association, the European Cardiac Arrhythmia Society, the Asia Pacific Heart Rhythm Society, and the Heart Rhythm Society. *Heart Rhythm*. 2012;9:632–696.e621.

21. Calkins H, Brugada J, Packer DL, Cappato R, Chen SA, Crijns HJ, Damiano RJ Jr, Davies DW, Haines DE, Haissaguerre M, Iesaka Y, Jackman W, Jais P, Kottkamp H, Kuck KH, Lindsay BD, Marchlinski FE, McCarthy PM, Mont JL, Morady F, Nademanee K, Natale A, Pappone C, Prystowsky E, Raviele A, Ruskin JN, Shemin RJ. HRS/EHRA/ECAS expert consensus statement on catheter and surgical ablation of atrial fibrillation: recommendations for personnel, policy, procedures and follow-up. A report of the Heart Rhythm Society (HRS) Task Force on catheter and surgical ablation of atrial fibrillation. *Heart Rhythm*. 2007;4:816–861.

22. Gudbjartsson DF, Arnar DO, Helgadottir A, Gretarsdottir S, Holm H, Sigurdsson A, Jonasdottir A, Baker A, Thorleifsson G, Kristjansson K, Palsson A, Blondal T, Sulem P, Backman VM, Hardarson GA, Palsson E, Helgason A, Sigurjonsdottir R, Sverrisson JT, Kostulas K, Ng MC, Baum L, So WY, Wong KS, Chan JC, Furie KL, Greenberg SM, Sale M, Kelly P, MacRae CA, Smith EE, Rosand J, Hillert J, Ma RC, Ellinor PT, Thorsteinsdottir U, Stefansson K. Variants conferring risk of atrial fibrillation on chromosome 4q25. *Nature*. 2007;448:353–357.

23. Shi L, Li C, Wang C, Xia Y, Wu G, Wang F, Xu C, Wang P, Li X, Wang D, Xiong X, Bai Y, Liu M, Liu J, Ren X, Gao L, Wang B, Zeng Q, Yang B, Ma X, Yang Y, Tu X, Wang QK. Assessment of association of rs2200733 on chromosome 4q25 with atrial fibrillation and ischemic stroke in a Chinese Han population. *Hum Genet*. 2009;126:843–849.

24. Liu Y, Ni B, Lin Y, Chen XG, Fang Z, Zhao L, Hu Z, Zhang F. Genetic polymorphisms in ZFHX3 are associated with atrial fibrillation in a Chinese Han population. *PLoS One*. 2014;9:e101318.

25. Darbar D, Roden DM. Genetic mechanisms of atrial fibrillation: impact on response to treatment. *Nat Rev Cardiol*. 2013;10:317–329.

26. Parvez B, Shoemaker MB, Muhammad R, Richardson R, Jiang L, Blair MA, Roden DM, Darbar D. Common genetic polymorphism at 4q25 locus predicts atrial fibrillation recurrence after successful cardioversion. *Heart Rhythm*. 2013;10:849–855.

27. Parvez B, Vaglio J, Rowan S, Muhammad R, Kucera G, Stubblefield T, Carter S, Roden D, Darbar D. Symptomatic response to antiarrhythmic drug therapy is modulated by a common single nucleotide polymorphism in atrial fibrillation. *J Am Coll Cardiol*. 2012;60:539–545.