A HUBBLE SPACE TELESCOPE CATALOG OF 449 GALAXIES
SEEN THROUGH THE DISK OF M31

Paul Hodge
(Astronomy Department, University of Washington, Seattle, WA, 98195, USA, hodge@astro.washington.edu)

and

Karl Krienke (Seattle Pacific University, Seattle, WA98119, okk@spu.edu)

ABSTRACT

From inspection of 30 Hubble Space Telescope ACS images of M31, we provide a catalog of 449 galaxies seen through the spiral disk. Measurements of the positions of the galaxies, their integrated magnitudes in two colors and their sizes, determined from isophotometry, are included in the catalog. We discuss the many difficulties of interpreting these data in terms of the effects of intervening extinction by dust in the disk.

1. INTRODUCTION

Ever since the era in which it was recognized that galaxies contain dust that causes extinction of light, it has been tempting to measure this dust by examination of more distant galaxies seen in the background. The first published account of this technique that we are aware of was made by Shapley and Nail (1951), who used galaxy counts made in the direction of the Small Magellanic Cloud to conclude that it is essentially transparent. As an intimation of this technique’s troubled future, their result was wrong, apparently because of an unfortunate accident. As related by Hodge (1974), more recent evidence showed that Shapely and Nail used number counts of non-stellar objects detected by their assistants on plates taken by the Boyden Observatory’s 1.5 m telescope. Apparently they didn’t examine these plates themselves, as a repeat of this experiment showed that inside the boundaries of the SMC, most of the non-stellar objects marked in ink on the plates were either emission nebulae or star clusters. The number of such objects approximately equaled the number of galaxies not seen behind the SMC. The story does not end there, however. In recent experiments, cited below, it has been shown that the crowding of stellar images in a galaxy’s disk can obscure background galaxies to a considerable extent. (Incidentally, Hubble (1934) worried about this problem in his study of the Milky Way’s dust in the Zone of Avoidance). It is therefore likely that Shapley and Nail’s result was approximately correct, after all, because of two opposing mistakes.

More recent attempts to use this technique have been more successful. Among others, the pioneering work of Gonzalez et al. (1998), which has continued in a series of important papers (see Holwerda et al. 2007), has demonstrated that information on
the opacity of galaxy disks can be obtained from background galaxy counts, when careful measurements of the various systematic effects are carried out. They say, however, that the technique should not be used for galaxies in the Local Group, where the resolved stellar foreground interferes. Somewhat contrary results were published by us (Krienke and Hodge 2001), who showed that rather weak results could be obtained for three Local Group galaxies, but, among other things, the distances to the individual background galaxies were required to be able to make reliable K corrections to their colors. Another example is the work of Dutra et al. (2001), who found that the use of background galaxy colors combined with redshifts gave some useful values for the reddening in parts of the Large and Small Magellanic Clouds.

One can argue that it does not seem to make sense that a procedure that gives information for distant galaxies does not work for nearby galaxies, where the total obtainable information is orders of magnitude greater. This is not an uncommon problem in astronomy, where we are always near the limit of the impossible. For distant objects the difficulties are smoothed out, permitting the anomalous signals to be recognized and measured more easily. For the case of the highly-resolved Local Group galaxies, the same data are available, but their completeness makes the task of extracting anything from it more complicated and the uncertainties involved are more obvious and thus more daunting.

One can conceive of using three different sets of data to detect the effects of extinction by dust in a nearby galaxy’s disk using background galaxies:

a. An excess reddening of the colors,
b. Decreased integrated magnitudes, and
c. A decreased number of galaxies detected

An even larger list can be developed for the difficulties involved in using these data:

d. to measure an excess color, one must know the intrinsic color, which requires knowing the Hubble type of the galaxy and keeping in mind the intrinsic spread in the type-color relation.
e. Also one must know the distance and/or radial velocity of the galaxy in order to apply the K corrections due to the redshift of the galaxies’ SEDs. This must be known also to correct the effective characteristics of the galaxies because of relativistic fading at larger values of z.
f. to detect a decrease in the magnitudes of background galaxies, one must know the distribution of magnitudes of galaxies external to M31 and its dispersion, which is large, even not including effects of clustering
g. to use the number of galaxies per area behind M31, one must establish a uniformity of sample, corrected for detection limits and distance (including relativistic effects)
h. All of the methods are complicated by the presence of a variable and often dense field star population, which affects the detection limits as well as the measurements, in a number of ways.

Because of these many difficulties, the problem is daunting one, but not completely impossible. We report here a possible method of measuring the extinction of
background galaxy light by the disk of M31, one of the worst environments in the Local Group in which to use this technique. We were tempted to do this by noting the wealth of galaxies detected in the M31 fields with which we worked on M31’s open clusters (Krienke and Hodge 2007, 2008). Perhaps, with the availability of hundreds of background galaxies, it might be worthwhile to make this attempt. As we point out below, the problem probably can be solved, but only with additional data, especially radial velocity data.

Please note that this paper deals only with the galaxy count problem; alternate measurements of the dust content of M31 are coming from infrared Spitzer data (Gordon et al., 2004)

2. OBSERVATIONAL MATERIAL

From the Hubble Space Telescope Archives, we have chosen 28 ACS pointings that cover a variety of positions in the main disk of M31, for which the archives include at least two colors that can be transformed into standard responses, Johnson-Cousins B, V and I. In addition we chose two pointings that are near but not in the main disk of the galaxy. The pointings and their positions are given in Krienke and Hodge (2008). We chose ACS data and not WFPC2 data because we felt that the increased resolution and depth of ACS would be important.

We chose to select galaxies by eye. This is defensible in the case of M31, which has densely-packed field stars, nebulae and star clusters on most of the selected pointings. We argue that using one of the available automatic selection extractors would produce so many false candidates that we would have to pick them over by eye in any case, re-introducing any selection effect that was there before the extractor process.

3. GALAXY PROPERTIES

Tables 1 and 2 (at end of this paper) provide catalogs of 449 galaxies found on the 30 pointings examined. We give measures of the magnitudes and colors (B, V, and I, transformed from the HST filters), their uncertainties, the J2000 positions of the centers of the galaxy images and an approximate size parameter, which is the maximum value of the distance between the center and the largest distance from the center found on a limiting isophote. The galaxy photometry was carried out with a program that one of us wrote in IDL that makes special allowance for variable “sky” values caused by the variable stellar density in the field. It was adapted from that described in our work on open clusters (Krienke and Hodge 2007).

Galaxy magnitudes ranged from V = 16 to 25, with the majority fainter than V = 19. Figures 1a and 1b show color-magnitude diagrams for the set with V and I colors and with B and V colors, respectively. The distribution of points in these diagrams resembles that found for galaxy surveys in general.
Fig. 1a. The V, I color-magnitude diagram

Fig. 1b. The B, V color-magnitude diagram.

The quoted errors are primarily dominated by the variable background. Figure 2 shows the distribution of errors in the V measurements. Average values of the errors are $B(\text{error}) = 0.18$, $V(\text{error}) = 0.14$, $I(\text{error}) = 0.11$.
We also scanned three ACS pointings that lie outside of but near the M31 disk. One of these includes a distant cluster of galaxies and the other two were obtained to study two outer globular clusters. Figure 3 shows a portion of one the outer fields, including several galaxies plus the M31 globular cluster Bol 409.

In Figure 4 we have plotted the distribution in color of the galaxies in our M31 sample, for the full sample and for the bright and faint galaxies separately. From this
figure it is clear that the color distribution of galaxies is relatively insensitive to changes in magnitude, except for an excess of faint galaxies among the redder colors.

![Figure 4. The distribution of galaxy colors. The fainter galaxies show an excess of red colors.](image)

Two causes can be considered to explain this effect: (1) statistically the fainter clusters will have greater red-shifts and thus redder colors and (2) galaxies reddened by M31’s interstellar dust will tend to be fainter because of absorption. Without a measure of each galaxy’s redshift, it is very difficult to determine how much of the reddening is due to each of these effects.

4. CLASS A GALAXIES

We have selected 42 galaxies that are bright enough and well enough resolved to determine approximate Hubble types for them. These are listed in Table 3, together with their properties, which were determined from repeated measurements, made after the main photometric program (Tables 1 and 2) was competed. These galaxies are the best samples for eventual analysis, as knowing their Hubble types narrows down the possible values of their intrinsic properties.

TABLE 3. CLASS A GALAXIES

No.	V	V err	I	I err	RA	Dec	a arcsec	class
1	20.93	0.06	19.36	0.05	9.88307	40.76366	0.8	Sa
2	17.92	0.03	16.44	0.02	9.89667	40.80440	0.5	Sc
3	20.24	0.06	18.95	0.05	10.46134	41.41127	0.4	Scp
4	17.96	0.06	16.51	0.04	10.46558	41.41164	0.3	Sc
---	-----	----	---	-----	-----	-----	-----	---
5	21.23	0.1	19.69	0.04	10.47878	41.44724	0.4	Sc/Irr
6	19.46	0.07	17.76	0.05	10.48474	41.42366	0.2	Sa
7	17.80	0.07	16.46	0.02	10.50661	41.41751	0.5	Sbc
8	18.84	0.02	17.32	0.02	10.52896	41.05360	0.5	Sbc
9	22.49	0.09	20.76	0.13	10.53237	41.01934	0.1	S0
10	20.44	0.04	19.01	0.06	10.54467	41.05218	0.2	Sc
11	21.30	0.12	19.43	0.07	10.55152	41.50057	0.2	Sbc
12	21.67	0.12	19.82	0.09	10.55680	40.92756	0.4	E
13	20.98	0.1	19.56	0.1	10.56445	40.95871	0.3	Sc
14	24.66	0.52	22.72	0.25	10.56994	41.42375	0.4	Sc?
15	22.46	0.1	20.45	0.08	10.57412	41.5530	0.1	Sc
16	20.52	0.07	18.59	0.03	10.58587	40.95334	0.9	Sc
17	20.70	0.07	19.49	0.05	10.58954	41.50013	0.1	Sc
18	20.01	0.06	18.15	0.03	10.59522	40.95309	0.2	Sc
19	21.22	0.09	19.42	0.06	10.63844	41.59062	0.0	E
20	24.55	0.31	21.79	0.13	10.66056	41.06394	0.2	E2
21	18.45	0.04	16.90	0.04	10.66994	41.47275	0.2	Sbc
22	21.09	0.13	19.43	0.05	10.67934	41.60216	0.1	Sb
23	21.24	0.09	19.79	0.12	10.68106	41.59905	0.2	Sc
24	23.06	0.21	21.15	0.18	10.68244	41.60091	0.2	Sb
25	19.63	0.07	18.31	0.04	10.72812	41.69887	0.1	Sc
26	22.31	0.15	20.46	0.09	10.72963	41.52676	0.1	E0
27	20.83	0.13	18.89	0.05	10.73232	41.68054	0.1	E3
28	20.54	0.09	19.62	0.05	10.73407	41.15078	0.3	Sb?
29	25.89	0.83	24.45	0.4	10.74074	40.96886	0.2	Sc?
30	21.09	0.12	19.77	0.05	10.74235	41.70736	0.2	Sc/Irr
31	22.60	0.15	21.45	0.15	10.75560	41.70253	0.2	E5
32	22.07	0.24	21.28	0.19	10.75873	40.95387	0.0	E2
33	24.62	0.38	23.58	0.48	10.75873	40.95387	0.1	?
34	19.06	0.12	18.71	0.15	10.76691	40.96826	0.0	Irr
35	18.94	0.1	16.91	0.04	10.82526	41.67233	0.0	Sc
36	18.92	0.04	17.41	0.04	10.84596	41.04025	0.1	Sb
37	19.65	0.06	18.30	0.07	10.86144	41.06189	0.2	Sc
38	21.11	0.09	19.18	0.05	10.88520	41.07125	0.1	Sb
39	19.28	0.06	17.39	0.04	10.92486	41.73431	0.0	Scp
40	19.63	0.06	17.96	0.03	10.95549	41.18157	0.0	Sb
41	19.48	0.04	17.62	0.03	10.97143	41.74332	0.1	Sc
42	21.73	0.1	19.70	0.06	10.98047	41.73055	0.0	Sc

Figure 4 shows an apparent group of Class A galaxies seen through a relatively low density section of the M31 near the minor axis on the western, farther and dustier side of M31 (Figure 5). The galaxies are well-resolved and even show fainter outer structure including an apparent tidal tail.
Figure 4. The Trio, an apparent group of three galaxies seen through the outer arms of M31. The galaxies are (from left to right) Nos. 109, 108 and 110. This is a V image printed to show the outer parts of the galaxies, including a tidal arm.
Figure 5. An isophotal map of the Trio that shows the outer probable tidal arm from Galaxy 110 towards Galaxy 108. This figure also shows the inner structure of the galaxies better than in Figure 4. The highly mottled background characterizes the rich field of M31’s disk stars.
5. FURTHER ANALYSIS

We are making this data set available for persons who might be interested in using the galaxies for analysis of the optical properties of the disk. For the brighter galaxies, this might be possible using multi-aperture spectroscopy. There are a number of ways to use these kinds of data (Section 1), but we have found that, except for gross statistical results, it is not possible to do much detailed analysis without measuring the radial velocities of the galaxies. We do not have the facilities or the fortitude to carry out such an observational program at this time.

We are grateful to the Space Telescope Science Institute for making the Hubble images publically available.

REFERENCES

Gordon, K. and nineteen others, BAAS, 36, 1579
Hodge, P. W. 1975, ApJ, 192, 21
Shapley, H. and Nail, V. McK. 1951, PNAS, 37, 133
Holwerda, B. W. et al. 2007, AJ, 134, 1655
Gonzalez, R. A. 1998, ApJ, 506, 152
Krienke, O. K. and Hodge, P. W. 2001, PASP, 113, 1115
Dutra, C. M. et al. 2001, A&A, 371, 895
No.	V	V err	I	I err	RA	Dec	a arcsec
1	22.79	0.08	20.55	0.05	9.49127	39.64722	0.15
2	25.15	0.22	22.85	0.13	9.49198	39.64924	
3	23.67	0.26	21.93	0.33	9.49201	39.64727	0.24
4	24.78	0.16	22.63	0.11	9.49225	39.63477	0.23
5	24.1	0.17	22.44	0.16	9.49254	39.61357	
6	24.38	0.17	23.76	0.21	9.49257	39.62200	
7	26.51	0.37	24.54	0.28	9.49273	39.65116	0.15
8	22.97	0.08	20.77	0.06	9.49301	39.63475	0.16
9	26.39	0.34	24.65	0.29	9.49308	39.64287	0.11
10	26.52	0.52	26.44	0.62	9.49332	39.62490	
11	22.69	0.08	20.65	0.06	9.49336	39.63174	0.26
12	24.34	0.18	22.94	0.16	9.49340	39.61217	
13	26.06	0.31	24.97	0.32	9.49359	39.65572	
14	25.42	0.37	24.15	0.5	9.49374	39.60584	0.32
15	25.63	0.28	25.12	0.34	9.49379	39.65267	0.20
16	26.44	0.53	28.03	0.85	9.49380	39.61921	0.18
17	26.97	0.6	25.52	0.45	9.49381	39.62432	0.34
18	24.05	0.16	22.83	0.16	9.49450	39.64689	0.79
19	25.92	0.72	23.88	0.59	9.49456	39.64189	0.24
20	24.39	0.18	23.87	0.24	9.49510	39.61738	0.28
21	24.79	0.18	22.91	0.13	9.49525	39.60694	0.22
22	23.75	0.14	22.69	0.14	9.49542	39.62426	0.69
23	25.98	0.69	26.12	0.75	9.49570	39.62978	0.25
24	23.72	0.1	21.55	0.07	9.49573	39.63664	0.11
25	25.16	0.22	23.77	0.2	9.49575	39.63187	
26	21.2	0.06	20.04	0.07	9.49582	39.64659	0.20
27	24.91	0.21	23.22	0.16	9.49587	39.63926	0.31
28	25.67	0.27	23.24	0.15	9.49598	39.62532	0.23
29	23.89	0.18	22.32	0.15	9.49630	39.64972	0.00
30	24.32	0.17	23.79	0.22	9.49723	39.61545	0.00
31	24.73	0.23	23.49	0.38	9.49726	39.65341	0.19
32	29.69	1.48	25.16	0.31	9.49760	39.60546	0.65
33	26.15	0.34	25.55	0.41	9.49762	39.65326	0.23
34	23.59	0.1	21.29	0.07	9.49780	39.63905	0.31
35	24.98	0.19	23.46	0.17	9.49784	39.61272	0.31
36	26.86	0.42	24.64	0.3	9.49793	39.63754	0.78
37	23.69	0.13	22.59	0.12	9.49794	39.61634	0.59
38	24.55	0.14	23.18	0.14	9.49851	39.60584	0.36
39	26.57	0.4	25.26	0.36	9.49910	39.65506	0.27
40	25.62	0.33	25.54	0.37	9.49935	39.65662	0.26
41	27.29	0.84	25.82	0.57	9.49964	39.60562	0.41
42	25.07	0.27	23.01	0.17	9.49984	39.64438	0.62
43	25.31	0.31	24.33	0.29	9.50000	39.63400	0.31
44	25.48	0.32	22.87	0.18	9.50039	39.61159	0.24
45	25.32	0.28	24.78	0.33	9.50050	39.60906	0.26
46	24.3	0.16	23.53	0.19	9.50071	39.61298	1.56
---	---	---	---	---	---	---	---
47	25.31	0.24	24.8	0.3	9.50073	39.65555	0.00
48	26.16	0.34	24.75	0.29	9.50106	39.63440	0.00
49	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15
50	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
51	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
52	25.35	0.24	24.49	0.27	9.50106	39.61634	0.18
53	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
54	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
55	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
56	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
57	25.75	0.37	24.55	0.29	9.50172	39.61759	0.37
58	24.81	0.17	22.99	0.13	9.50206	39.65227	0.09
59	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
60	24.81	0.2	23.5	0.19	9.50281	39.64698	0.23
61	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
62	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15
63	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
64	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
65	25.35	0.24	24.49	0.27	9.50106	39.61634	0.18
66	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
67	25.75	0.37	24.55	0.29	9.50172	39.61759	0.37
68	24.81	0.17	22.99	0.13	9.50206	39.65227	0.09
69	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
70	24.81	0.2	23.5	0.19	9.50281	39.64698	0.23
71	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
72	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15
73	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
74	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
75	25.35	0.24	24.49	0.27	9.50106	39.61634	0.18
76	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
77	25.75	0.37	24.55	0.29	9.50172	39.61759	0.37
78	24.81	0.17	22.99	0.13	9.50206	39.65227	0.09
79	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
80	24.81	0.2	23.5	0.19	9.50281	39.64698	0.23
81	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
82	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15
83	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
84	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
85	25.35	0.24	24.49	0.27	9.50106	39.61634	0.18
86	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
87	25.75	0.37	24.55	0.29	9.50172	39.61759	0.37
88	24.81	0.17	22.99	0.13	9.50206	39.65227	0.09
89	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
90	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15
91	25.27	0.35	24.21	0.38	9.50114	39.64664	0.26
92	25.4	0.24	24.42	0.27	9.50119	39.63718	0.33
93	25.35	0.24	24.49	0.27	9.50106	39.61634	0.18
94	26.45	0.38	25.71	0.43	9.50166	39.61634	0.33
95	25.75	0.37	24.55	0.29	9.50172	39.61759	0.37
96	24.81	0.17	22.99	0.13	9.50206	39.65227	0.09
97	23.27	0.13	22.35	0.13	9.50269	39.60491	0.32
98	24.11	0.14	23.09	0.14	9.50113	39.62278	0.15

The table above displays the values for each column, with the first column representing the number, followed by numerical values in subsequent columns.
						10.62015	41.40231	0.29
203	22.35	0.16	20.42	0.14	10.63509	41.50249	0.10	
204	23.18	0.17	21.37	0.08	10.63800	41.50897	0.12	
205	21.76	0.09	19.87	0.07	10.64370	41.04803	0.81	
206	20.45	0.05	20.26	0.09	10.64798	41.62654	0.38	
207	22.32	0.17	19.92	0.08	10.64730	41.62962	0.13	
208	23.18	0.17	22.72	0.14	10.64743	41.59663	1.76	
209	21.76	0.09	19.87	0.07	10.65130	41.59089	0.22	
210	20.45	0.05	20.26	0.09	10.65398	41.04803	0.81	
211	22.32	0.17	19.92	0.08	10.65770	41.59286	0.00	
212	23.18	0.17	22.72	0.14	10.65791	41.59642	0.21	
213	21.76	0.09	19.87	0.07	10.65930	41.58808	0.60	
214	20.45	0.05	20.26	0.09	10.66370	41.04803	0.81	
215	22.32	0.17	19.92	0.08	10.66398	41.62962	0.13	
216	23.18	0.17	22.72	0.14	10.66398	41.59663	1.76	
217	21.76	0.09	19.87	0.07	10.66530	41.59089	0.22	
218	20.45	0.05	20.26	0.09	10.66798	41.04803	0.81	
---	---	---	---	---	---	---	---	
307	24.02	0.17	21.92	0.1	10.85304	41.06125	0.00	
308	23.62	0.2	21.84	0.13	10.85799	41.64690	0.29	
309	19.02	0.01	18.74	0.02	10.85934	41.08577	0.26	
310	20.19	0.05	18.82	0.06	10.86153	41.06192	0.28	
311	22.29	0.13	20.47	0.09	10.86965	41.65402	0.43	
312	24.93	0.18	22.06	0.12	10.86986	41.04089	0.22	
313	23.26	0.16	22.09	0.23	10.87045	41.07315	0.82	
314	20.19	0.05	18.82	0.11	10.88062	41.05875	0.35	
315	22.51	0.1	21.01	0.11	10.88165	41.04110	0.36	
316	24.09	0.21	23.12	0.25	10.89103	41.07518	0.89	
317	21.79	0.09	20.5	0.11	10.89501	41.04226	0.28	
318	22.98	0.07	21.14	0.05	10.89568	41.16647	0.69	
319	22.98	0.07	21.14	0.05	10.89568	41.16647	0.69	
320	23.36	0.15	21.98	0.13	10.89568	41.16727	0.26	
321	22.26	0.09	20.26	0.06	10.89802	41.04224	0.89	
322	24.88	0.4	22.34	0.22	10.91003	41.73290	0.26	
323	21.34	0.07	19.86	0.06	10.91004	41.71885	0.28	
324	27.17	0.81	22.9	0.18	10.91140	41.73496	0.20	
325	20.97	0.07	20.61	0.15	10.91433	41.16636	0.69	
326	24.12	0.3	21.49	0.12	10.91714	41.15956	0.62	
327	21.3	0.11	20.43	0.11	10.91936	41.19837	0.22	
328	21.3	0.2	20.92	0.17	10.92185	41.75065	0.18	
329	22.6	0.13	20.66	0.17	10.92246	41.75607	0.35	
330	20.79	0.06	18.53	0.03	10.92485	41.73431	0.36	
331	22.63	0.11	20.46	0.04	10.92563	41.20472	0.19	
332	22.67	0.14	20.08	0.06	10.92858	41.14825	0.23	
333	21.17	0.08	20.44	0.11	10.93049	41.15043	0.88	
334	21.39	0.08	20.4	0.06	10.93083	41.73758	0.68	
335	22.99	0.19	22.37	0.47	10.93135	41.13977	0.91	
336	24.44	0.08	20.12	0.1	10.93299	41.19345	0.30	
337	27.7	0.72	23.15	0.64	10.93858	41.13349	0.26	
338	20.58	0.07	19.44	0.07	10.93947	41.14906	0.35	
339	22.31	0.13	21.21	0.15	10.94166	41.19177	0.34	
340	21.18	0.06	19.59	0.04	10.94246	41.17854	0.19	
341	22.82	0.19	21.95	0.27	10.94565	41.17265	0.33	
342	20.8	0.06	20.67	0.06	10.94888	41.16538	0.32	
343	21.12	0.09	19.66	0.05	10.94979	41.15118	0.36	
344	20.93	0.07	19.71	0.07	10.95036	41.19248	0.47	
345	24.22	0.33	21.19	0.08	10.95137	41.74909	0.41	
346	22.96	0.15	21.21	0.13	10.95504	41.71183	0.61	
347	19.9	0.04	18.2	0.04	10.95546	41.18159	0.49	
348	24.03	0.25	22.3	0.17	10.96394	41.70918	0.28	
349	19.86	0.06	18	0.05	10.96992	41.73792	0.40	
350	22.28	0.12	20.65	0.11	10.97108	41.73510	0.47	
351	23.43	0.21	22.05	0.16	10.97116	41.72493	0.89	
352	20	0.04	18.13	0.04	10.97144	41.74330	0.33	
353	22.88	0.17	21.45	0.19	10.97157	41.74482	0.35	
354	23.45	0.16	22.36	0.17	10.97563	41.72822	0.38	
TABLE 2. GALAXY CANDIDATES WITH B, V PHOTOMETRY

No.	V	V err	B	B err	B-V	RA	Dec	a (arcsec)																																																
365	24.08	0.27	25.06	0.33	0.98	10.08748	41.26338	0.23																																																
366	19.31	0.03	20.72	0.05	1.40	10.09793	41.26547	0.00																																																
367	21.93	0.06	23.31	0.14	1.38	10.09801	41.26438	0.00																																																
368	25.47	0.27	25.76	0.40	0.29	10.10895	41.25651	0.17																																																
369	20.78	0.05	21.90	0.08	1.12	10.10969	41.23380	0.23																																																
370	22.89	0.11	23.42	0.15	0.53	10.11046	41.26419	0.17																																																
371	25.25	0.23	26.31	0.51	1.05	10.11108	41.25463	0.00																																																
372	22.23	0.06	23.44	0.14	1.22	10.11703	41.22663	0.17																																																
373	22.18	0.07	23.25	0.13	1.07	10.11920	41.24162	0.00																																																
374	23.53	0.14	25.58	0.40	2.05	10.12172	41.26733	0.00																																																
375	21.82	0.18	22.99	0.17	1.17	10.12807	41.28544	0.17																																																
376	23.01	0.10	24.96	0.30	1.95	10.12808	41.24554	0.00																																																
377	22.42	0.09	23.36	0.15	0.93	10.13124	41.25818	0.00																																																
378	21.08	0.07	22.17	0.09	1.09	10.13197	41.27652	0.59																																																
379	20.83	0.06	21.85	0.08	1.03	10.13455	41.23253	1.10																																																
380	21.59	0.07	22.88	0.12	1.29	10.13552	41.23755	0.50																																																
381	23.60	0.13	24.61	0.25	1.01	10.13682	41.23067	0.28																																																
382	22.54	0.09	24.37	0.24	1.83	10.13761	41.26707	0.55																																																
383	24.19	0.17	24.95	0.28	0.77	10.13934	41.24491	0.35																																																
384	24.16	0.18	25.32	0.35	1.17	10.14064	41.26888	0.54																																																
385	24.05	0.16	24.94	0.29	0.89	10.14274	41.28557	0.21																																																
386	22.90	0.11	24.08	0.20	1.18	10.14636	41.25893	0.21																																																
387	23.89	0.13	24.77	0.26	0.89	10.14736	41.28109	0.71																																																
388	23.44	0.12	24.50	0.23	1.06	10.14793	41.24043	0.21																																																
389	21.44	0.06	22.80	0.11	1.36	10.14897	41.24136	0.40																																																
390	22.70	0.10	23.60	0.15	0.90	10.14995	41.23875	0.71																																																
391	23.27	0.12	25.05	0.33	1.78	10.15219	41.27464	0.33																																																
392	24.66	0.16	25.77	0.41	1.11	10.15268	41.23524	0.46																																																
393	23.23	0.09	25.05	0.31	1.82	10.15531	41.24890	0.33																																																
394	22.48	0.07	23.79	0.17	1.32	10.15542	41.27092	0.46																																																
395	23.13	0.10	23.78	0.17	0.65	10.16072	41.26174	0.00																																																
396	22.23	0.09	23.38	0.15	1.15	10.16558	41.24778	0.00																																																
397	24.25	0.17	25.58	0.37	1.34	10.16936	41.25050	1.44																																																
398	22.41	0.09	23.46	0.15	1.05	10.17199	41.24591	0.35																																																
399	21.17	0.07	22.07	0.08	0.89	10.29630	40.64710	0.57																																																
400	21.08	0.08	21.64	0.08	0.56	10.29919	40.63044	0.23																																																
	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	425	426	427	428	429	430	431	432	433	434	435	436	437	438	439	440	441	442	443	444	445	446	447	448	449							
---	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----
	22.67	20.68	23.53	21.76	21.08	21.32	21.56	22.57	22.72	21.26	23.00	20.77	21.96	20.94	19.67	23.33	21.72	20.60	25.22	21.80	21.95	23.52	22.23	22.75	21.03	21.00	22.60	23.16	20.60	22.53	22.72	23.57	20.17	18.41	20.67	20.99	20.62	21.00	19.86	22.11	20.74	20.99	21.94	22.50	22.41	21.87	23.72	21.42	20.21							
	0.10	0.05	0.30	0.07	0.07	0.07	0.08	0.08	0.07	0.06	0.10	0.05	0.09	0.06	0.04	0.14	0.06	0.06	0.32	0.06	0.10	0.10	0.06	0.10	0.13	0.04	0.05	0.06	0.10	0.06	0.06	0.10	0.10	0.12	0.15	0.15	0.15	0.10	0.07	0.20	0.08	0.05	0.08	0.05												
	23.08	21.16	23.79	21.94	21.58	22.43	23.14	24.11	23.62	22.77	23.16	23.11	21.65	22.02	21.22	25.68	23.11	21.65	26.09	23.09	23.14	25.00	23.72	23.81	21.34	22.31	23.71	24.27	21.44	23.44	23.96	24.72	21.44	21.44	21.91	22.53	20.64	22.81	21.56	21.95	23.61															
	0.12	0.06	0.34	0.08	0.07	0.10	0.15	0.21	0.16	0.11	0.19	0.14	0.07	0.20	0.07	0.46	0.14	0.07	0.47	0.14	0.16	0.48	0.17	0.22	0.06	0.06	0.06	0.10	0.06	0.19	0.12	0.15	0.06	0.14	0.19	0.27	0.10	0.10	0.18	0.22	0.08	0.18	0.08													
	0.41	0.48	0.26	0.18	0.50	1.11	1.58	1.54	0.90	1.51	1.15	1.38	1.05	1.09	1.56	2.35	1.38	1.05	0.88	1.30	1.19	1.48	1.49	1.06	0.31	1.32	0.84	1.32	1.27	1.11	0.84	0.91	1.24	1.12	1.11	1.15	1.15	0.71	0.52	1.54	0.50	0.71	0.81													
	10.3014	10.3046	10.31218	10.31224	10.31224	10.34090	10.43011	10.46514	10.47787	10.97938	11.08698	11.09352	11.10729	11.10951	11.10960	11.11778	11.15990	11.16386	11.16592	11.16831	11.17229	11.17350	11.17438	11.17456	11.17619	11.17736	11.17750	11.17861	11.18106	11.18122	11.18566	11.18699	11.18733	11.19729	11.20045	11.20338	11.21286	11.21331	11.21629	11.22120	11.22975	11.23333	11.25088	11.27479	11.29061	11.29356	11.29637	11.30843	11.30843							
	40.66572	40.64761	40.63349	40.62340	40.62340	40.65846	40.82936	40.84981	40.87130	41.50411	41.47984	41.48563	41.47571	41.52378	41.52484	41.52934	42.09064	42.09337	42.08580	42.09802	42.06877	42.07820	42.07658	41.49476	42.07935	42.06692	42.07386	42.09037	42.10286	41.46541	42.05368	41.47802	41.46392	41.46833	42.08489	42.10345	42.09805	41.49002	42.11021	42.10682	42.09623	42.08410	41.64896	41.63987	41.62598	41.62171	41.61253	41.63929	41.63929							