DeepVARwT: Deep Learning for a VAR Model with Trend

Xixi Li and Jingsong Yuan

Department of Mathematics, University of Manchester, UK

ARTICLE HISTORY
Compiled April 23, 2024

ABSTRACT
Time series modelling and prediction is useful in many fields of application such as economics, finance and engineering. The vector autoregressive (VAR) model has been used to describe the dependence within and across multiple time series. This is a model for stationary time series, which can be extended to allow the presence of a deterministic trend in each series. In this paper, we demonstrate a new approach that employs deep learning methodology for maximum likelihood estimation of the trend and the dependence structure at the same time. A Long Short-Term Memory (LSTM) network is used for this purpose. We provide a simulation study and applications to real data. In the simulation study, we use realistic trend functions generated from real data and compare the estimates with true function/parameter values. In the real data applications, we compare the prediction performance of this model with state-of-the-art models in the literature.

KEYWORDS
Dependence modeling, VAR, Causality condition, Trend, Deep learning

1. Introduction

In practice, many time series exhibit nonstationary characteristics in the mean. For example, Fig. 1 shows three quarterly US macroeconomic series, namely GDP gap, inflation, and federal funds rate, as analyzed by [13]. Each series is nonstationary as the mean is apparently not constant. More examples of time series with trends will be given in Sections 4.2 and 4.3.

![Figure 1. US macroeconomic series spanning 1955Q1 to 2003Q1.](image-url)
A simple approach to detrending a time series is to difference it until it appears to be stationary. This is effective when the trend is a low order polynomial. However, the trend itself may be of interest, and modeling it together with the dependence structure can be preferable. The former can be estimated by smoothing the data, using methods such as Kernel Smoothing [26], Locally Weighted Scatterplot Smoothing (Lowess), or Smoothing Splines, to name just a few. The series after removing the trend in each component can then be analyzed by fitting a stationary model. Inference on model parameters will have to ignore errors in estimating the trend in this semi-parametric approach in two stages.

The vector autoregressive VAR(p) model

$$y_t = A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + \epsilon_t, \quad t = 0, \pm 1, \pm 2, \ldots, \tag{1}$$

is for stationary time series $\{y_t\}$, where A_1, \ldots, A_p are constant coefficient matrices, and $\{\epsilon_t\}$ is multivariate white noise. It can be extended to accommodate a polynomial trend in each series. If we assume the mean μ_t of y_t consists of k-th order polynomials, and $\{y_t - \mu_t\}$ satisfies the VAR model (1), then a VAR with trend (VARwT) model can be written as

$$y_t = A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p} + Cx_t + \epsilon_t, \quad t = 0, \pm 1, \pm 2, \ldots, \tag{2}$$

where $x_t = (1, t, t^2, \ldots, t^k)'$ and C is a matrix of constants. Both the trend and the dependence parameters can be estimated simultaneously using ordinary least squares [21].

Fig. 2 shows polynomial trends estimated together with VAR(4) coefficients for the series in Fig. 1. We can see that even with a relatively high order $k = 9$, the trend functions missed a few peaks and troughs in the data. In other words, there appears to be over smoothing.

Figure 2. US macroeconomic series and estimated polynomial trends (red lines).
An alternative to fitting polynomial trends is to use B-splines and the results can often get better. A practitioner will face a choice of trend models, while remembering not to ignore dependence in the errors, especially when they have prediction in mind.

Recent advances in machine learning have made available to the statistics community a wealth of network structures and the associated training methodologies for finding patterns in vast quantities of data. There have been attempts at deep learning based statistical forecasting, see [28][25][23]. All these methods require the time series to be independent so that the loss function can be written in a simple additive form, thus leaving out dependence information across the series.

In this paper, we model the mean \(\mu_t \) by a recurrent neural network of the LSTM (Long Short-Term Memory) type, with input \(x_t \) at time \(t \) to be defined later, and simultaneously \(\{ y_t - \mu_t \} \) by the VAR model (1). All the model parameters are estimated at the same time. The exact Gaussian log-likelihood is used, and no assumption is made on the independence between the component series. We enforce the causality condition on the VAR parameters to ensure the stability of the model. This is often overlooked in the literature.

The rest of the paper is organized as follows: Section 2 defines the model and discusses trend generation, VAR parameterization, the Gaussian log-likelihood function, and its use in network training. Section 3 is a simulation study using trends generated from real data. Section 4 shows results of model fitting to three data sets and comparisons with alternative models in terms of forecasting accuracy. Section 5 offers concluding remarks.

2. Model fitting and prediction

The Deep VAR with trend (DeepVARwT) model is given by

\[
y_t - \mu_t = A_1(y_{t-1} - \mu_{t-1}) + A_2(y_{t-2} - \mu_{t-2}) + \cdots + A_p(y_{t-p} - \mu_{t-p}) + \epsilon_t, \quad t = 0, \pm 1, \pm 2, \ldots, (3)
\]

where \(\{ \epsilon_t \} \) is i.i.d. Gaussian vector white noise with mean vector 0 and variance-covariance matrix \(\Sigma \). It is also assumed that as a result of causality, \(\epsilon_t \) is uncorrelated with \(y_{t-1}, y_{t-2}, \ldots \), so that the RHS of (3) consists of the best linear predictor \(\hat{y}_t - \mu_t \) of \(y_t - \mu_t \) in terms of \(y_{t-1}, y_{t-2}, \ldots \) (infinite past) and the prediction error \(\epsilon_t \). The trend \(\mu_t \) as well as \(A_1, \ldots, A_p \) and \(\Sigma \) will all come from an LSTM network which is described below.

The difference between this model and the VARwT model (2) is in the formulation of \(\mu_t \). If we leave \(\mu_t \) unspecified, we have a semi-parametric model.

2.1. Long Short-Term Memory (LSTM)

A neural network takes input \(x_t \) at time \(t \), passes it through layers of neurons (processing units) to produce an output. A weighted average of all the input received at each neuron goes into an activation function to produce output for the next stage. A recurrent network also uses output at time \(t-1 \) as input for time \(t \). An LSTM network has special cells and gates to control information flow. At time \(t \), the memory cell \(c_t \) puts information from the last memory cell \(c_{t-1} \) through the forget gate \(f_t \) and information from the candidate memory cell \(c_t \) through the input gate \(i_t \). The output gate \(o_t \) decides how much information from the memory cell \(c_t \) should contribute to the hidden state \(h_t \). Fig. 3 shows the computation unit for the hidden state \(h_t \) in an LSTM network and the corresponding calculations are as follows [5].
Input gate: $i_t = \sigma \left(W_{xi} x_t + W_{hi} h_{t-1} + b_i \right)$,
Forget gate: $f_t = \sigma \left(W_{xf} x_t + W_{hf} h_{t-1} + b_f \right)$,
Output gate: $o_t = \sigma \left(W_{xo} x_t + W_{ho} h_{t-1} + b_o \right)$,
Candidate memory cell: $c_t = \tanh \left(W_{xc} x_t + W_{hc} h_{t-1} + b_c \right)$,
Memory cell: $c_t = f_t \odot c_{t-1} + i_t \odot c_t$,
Hidden state: $h_t = o_t \odot \tanh (c_t)$,

where $W_{xi}, W_{xf}, W_{xo}, W_{hi}, W_{hf}, W_{ho}, W_{xc}$ and W_{hc} are weight parameters, b_i, b_f, b_o and b_c are bias parameters, $\sigma(\cdot)$ is the sigmoid function and the operator \odot denotes the element-wise product.

2.2. Time-dependent trend generation using LSTM

The hidden state

$$h_t = \text{LSTM}(h_{t-1}, x_t; \phi),$$

is mapped to the trend term

$$\mu_t = W_{\mu} h_t + b_\mu,$$

where x_t is the input, $= (t, t^2, t^3)'$ (say, with t suitably scaled), ϕ contains the weight and bias parameters in (4), W_{μ} and b_μ are additional weight and bias parameters respectively.

2.3. VAR parameter generation

Let m be the dimension of y_t and p the order of the VAR model for $\{y_t - \mu_t\}$. We allocate $m^2 p$ parameters in the neural network to form candidates for the coefficient matrices A_1, \ldots, A_p, and another $m(m + 1)/2$ parameters to form a lower triangular matrix L. The latter is used to
construct $\Sigma = LL'$ for the variance-covariance matrix of ε_t. These parameters are initialized and updated by the network together with other network parameters. The candidate coefficient matrices A_1, \ldots, A_p go through the next step of reparameterization.

2.4. Reparameterizing VAR(p) to enforce causality

It is usually assumed that model (1) is causal in the sense that y_t can be expressed linearly in terms of ε_t, ε_{t-1}, ..., so that ε_t is the innovation or one-step-ahead prediction error corresponding to the best linear predictor $\hat{y}_t = A_1 y_{t-1} + A_2 y_{t-2} + \cdots + A_p y_{t-p}$ of y_t in terms of y_{t-1}, y_{t-2}, \ldots. The causality condition is that all the roots of $\text{det}(I - A_1 z - A_2 z^2 - \cdots - A_p z^p)$ lie outside the unit circle [7]. It also ensures that the linear system given by (1) is stable in the sense that bounded input leads to bounded output.

The parameter space of a causal VAR model is highly complicated. In the univariate case it can be mapped to $(-1, 1)$ in each dimension using partial autocorrelations, see [2]. Work on the multivariate case include [18], [1], [24] and [9].

Given a set of candidate VAR coefficient matrices A_1, \ldots, A_p, we transform them using the Ansley-Kohn transform [1] in the following two steps, so that the causality condition is satisfied.

- **Partial autocorrelation matrix construction.** For $j = 1, \ldots, p$, find the Cholesky factorization $I + A_j A_j' = B_j B_j'$, then compute $P_j = B_j^{-1} A_j$ as partial autocorrelation matrices [1].

- **Causal VAR coefficient generation.** The partial autocorrelation matrices $\{P_j\}$ are mapped into the coefficient matrices $\{A_{sj}\}$ and $\{A_{sj}^*\}$ for forward and backward predictions using s past/future values, with prediction error variance-covariance matrices Σ_s and Σ_s^* respectively. The answers for $s = p$ are used to calculate new A_1, \ldots, A_p.

 Initialization: Make $\Sigma_0 = \Sigma_0^* = I$, and $L_0 = L_0^* = I$, I being the identity matrix.

 Recursion: For $s = 0, \ldots, p - 1$,

 - Compute

 $$A_{s+1,s+1} = L_s P_{s+1} (L_s')^{-1}, \quad A_{s+1,s+1}^* = L_s^* P_{s+1} L_s^{-1}. \quad (8)$$

 - For $i = 1, \ldots, s$ ($s > 0$), compute

 $$A_{s+1,i} = A_{si} - A_{s+1,s+1} A_{s,s-i+1}^*, \quad A_{s+1,i}^* = A_{si}^* - A_{s+1,s+1} A_{s,s-i+1}. \quad (9)$$

 - Compute

 $$\Sigma_{s+1} = \Sigma_s - A_{s+1,s+1} \Sigma_s^* A_{s+1,s+1}^*, \quad (10)$$

 $$\Sigma_{s+1}^* = \Sigma_s^* - A_{s+1,s+1}^* \Sigma_s (A_{s+1,s+1})'. \quad (11)$$

and obtain their Cholesky factorizations $L_{s+1} L_{s+1}'$ and $L_{s+1}^* L_{s+1}''$ respectively.
Causal VAR coefficients: Compute new

\[A_i = (LL_p^{-1})A_p(LL_p^{-1})^{-1}, \quad i = 1, \ldots, p \]

(12)

to use as casual VAR\((p)\) coefficient matrices.

2.5. The Gaussian log-likelihood

Given that the time series \(\{y_t\}\) has a Gaussian structure and AR\((p)\) dependence, the likelihood of \(y = (y'_1, \ldots, y'_T)'\) can be written as

\[
L(\theta; y) = f(y_1, \ldots, y_p) \prod_{t=p+1}^T f(y_t|y_{t-1}, \ldots, y_{t-p}),
\]

(13)

using the joint normal density \(f(y_1, \ldots, y_p)\) and the conditional Gaussian densities \(f(y_t|y_{t-1}, \ldots, y_{t-p})\), \(t = p + 1, \ldots, T\), where \(\theta\) consists of the parameters \(\psi_1 = \{\phi, W, b\}\) for trend generation and \(\psi_2\) for the VAR coefficient matrices \(A_1, \ldots, A_p\) and the \(\Sigma\) matrix. The log-likelihood is

\[
\ell(\theta; y) = -\frac{1}{2} \left[n \log(2\pi) + \log|R_p| + (y_{1:p} - \mu_{1:p})'R_p^{-1}(y_{1:p} - \mu_{1:p}) + (T-p)\log|\Sigma| + \sum_{t=p+1}^T \varepsilon_t'\Sigma^{-1}\varepsilon_t \right],
\]

(14)

where \(n = mT\) \((m\) being the dimension of \(y_i)\), \(R_p\) is the variance-covariance matrix of \(y_{1:p} = (y'_1, \ldots, y'_p)'\) obtained using standard results \([17]\), \(\mu_{p+1}, \ldots, \mu_T\) from the output of the neural network and the VAR coefficient matrices \(A_1, \ldots, A_p\) are used for the recursive calculation of \(\varepsilon_{p+1}, \ldots, \varepsilon_T\) according to (3).

2.6. Network training

We employ the popular tool PyTorch \([20]\) for network training, after setting up its structure. The parameters of the neural network are updated by a modified gradient descent (GD) algorithm AdaGrad (Adaptive Gradient) \([3]\). The basic idea of gradient descent is to follow the opposite direction of the gradient of the loss function at the current point. Compared with conventional gradient descent algorithms, AdaGrad provides individual adaptive learning rates for different parameters. At iteration \(k\), the learning rate is modified by the diagonal elements of \(G = \sum_{\tau=1}^k g^{(\tau)}g^{(\tau)'}\), where \(g^{(\tau)}\) is the gradient of the loss function at iteration \(\tau\).

Details of the GD based training procedure are presented in Algorithm 1, where the initial values \(\psi_1^{(0)}\) for the trend part are obtained by minimizing the sum of squares of differences between \(y_t\) and \(\mu_t\) (nonlinear least squares), and \(\psi_2^{(0)} = \{A_1^{(0)}, \ldots, A_p^{(0)}, L^{(0)}\}\) by fitting \(\text{VAR}(p)\) to the detrended data using OLS and Cholesky factorization. The initial state \(h_0\) and the initial candidate memory cell \(c_0\) are both set to 0. The loss function then becomes minus the log-likelihood for network training. The trend parameters are fine-tuned with a smaller learning rate so that the trend terms get updated in small steps to avoid large changes that affect the estimation of the VAR parameters.
Algorithm 1 GD based network training for VAR with trend

Input:
- Time series observations \(y_1, \ldots, y_T \);
- Values of input to the network \(x_1, \ldots, x_T \);
- Learning rates \(\eta_1 \) and \(\eta_2 \);
- Number of iterations \(K \);
- Precision value \(\text{prec} \) for the stopping criteria.

Output:
- Optimal network parameter values \((\psi_1^{(k)}, \psi_2^{(k)}) \).

1. Set \(k = 0, rc_1 = rc_2 = \text{prec} + 1 \).
2. **while** \(k \leq K \) and \((rc_1 > \text{prec} \text{ or } rc_2 > \text{prec}) \) **do**
 - Iterations for MLE/network optimization.
 3. **for** \(t \leftarrow 1 \) to \(T \) **do**
 4. Compute hidden state \(h_t^{(k)} = \text{LSTM}(h_{t-1}^{(k)}, x_t; \phi^{(k)}) \).
 5. Compute trend term \(\mu_t^{(k)} = W^{(k)}_{\mu} h_t^{(k)} + b^{(k)}_{\mu} \).
 6. **end for**
 7. Compute \(P_1^{(k)}, \ldots, P_p^{(k)} \) from \(A_1^{(k)}, \ldots, A_p^{(k)} \) using (7).
 8. Transform \(P_1^{(k)}, \ldots, P_p^{(k)} \) into new \(A_1^{(k)}, \ldots, A_p^{(k)} \) using (8) to (12).
 9. Compute \(\Sigma^{(k)} = L^{(k)}L^{(k)\prime} \).
 10. Evaluate loss function \(-\ell(\theta^{(k)}, y) \) at \(\theta^{(k)} = (\psi_1^{(k)}, \psi_2^{(k)}) \) using (14).
 11. Compute relative change of log-likelihood \((k \geq 2) \):
 \[
 rc_1 = \left| \frac{\ell(\theta^{(k-1)}, y) - \ell(\theta^{(k-2)}, y)}{\ell(\theta^{(k-2)}, y)} \right|.
 \]
 12. Compute relative change of log-likelihood \((k \geq 1) \):
 \[
 rc_2 = \left| \frac{\ell(\theta^{(k)}, y) - \ell(\theta^{(k-1)}, y)}{\ell(\theta^{(k-1)}, y)} \right|.
 \]
 13. Compute gradient of loss function
 \[
 \mathbf{g}_1^{(k)} = \frac{\partial}{\partial \psi_1}(-\ell(\theta; y))\big|_{\theta = \theta^{(k)}} \quad \mathbf{g}_2^{(k)} = \frac{\partial}{\partial \psi_2}(-\ell(\theta; y))\big|_{\theta = \theta^{(k)}}.
 \]
 14. Compute \(G_1 = \sum_{t=0}^k \mathbf{g}_1^{(t)} \mathbf{g}_1^{(t)\prime}, G_2 = \sum_{t=0}^k \mathbf{g}_2^{(t)} \mathbf{g}_2^{(t)\prime} \).
 15. Update trend parameters \(\psi_1^{(k+1)} = \psi_1^{(k)} - \eta_1 \text{diag}(G_1)^{-\frac{1}{2}} \otimes \mathbf{g}_1^{(k)} \).
 16. Update VAR parameters \(\psi_2^{(k+1)} = \psi_2^{(k)} - \eta_2 \text{diag}(G_2)^{-\frac{1}{2}} \otimes \mathbf{g}_2^{(k)} \).
 17. \(k \leftarrow k + 1 \)** end while**

2.7. Prediction from trained network

We continue to run the trained network for \(t = T + 1, T + 2 \) etc to generate future trend values \(\mu_t \) and produce point forecasts using the formula (A9) in the Appendix.

Approximate 95% prediction intervals can be obtained by adding or subtracting 1.96 times the standard deviations of prediction errors using results in the Appendix.
3. Simulation study

To assess the finite sample performance of the deep learning based maximum likelihood estimation method, we simulated 100 samples each of size $T = 800$ from the semi-parametric VAR(2) model

$$y_t - \mu_t = A_1(y_{t-1} - \mu_{t-1}) + A_2(y_{t-2} - \mu_{t-2}) + \epsilon_t,$$

(15)

where

$$A_1 = \begin{pmatrix} -1.0842 & -0.1245 & 0.3137 \\ -0.7008 & -0.3754 & -0.2064 \\ 0.3166 & 0.3251 & 0.2135 \end{pmatrix}, \quad A_2 = \begin{pmatrix} -0.5449 & -0.3052 & -0.1952 \\ -0.4057 & 0.5129 & 0.3655 \\ 0.0054 & -0.2911 & 0.2066 \end{pmatrix},$$

and

$$\Sigma = \begin{pmatrix} 0.4834 & -0.2707 & 0.1368 \\ -0.2707 & 0.4079 & -0.0221 \\ 0.1368 & -0.0221 & 0.4103 \end{pmatrix},$$

is the variance-covariance matrix of ϵ_t. Values of the trend term μ_t were obtained by kernel smoothing from daily closing prices of three US stocks from 3rd October 2016 to 5th December 2019.

An example of the simulated multiple series is shown in Fig. 4, each having clearly a trend that looks more realistic than artificial functions.

![Figure 4. Simulated series from VAR(2) model with trend.](image)

We used an LSTM network with one hidden layer of 20 units. The input at time t was $x_t = (t, t^2, t^3, 1/t, 1/t^2, 1/t^3)'$. The learning rates were $\eta_1 = 0.001$ and $\eta_2 = 0.01$, with $K = 600$ iterations and precision $\text{prec} = 10^{-5}$. The computation time for each set of parameter estimates was about 1 hour on an Intel Core i9 2.3 GHz processor with eight cores.
3.1. Simulation results

Following [4], we use mean absolute deviation

$$\text{MAD}_i = \frac{1}{3 \times 800} \sum_{k=1}^{3} \sum_{t=1}^{800} |\hat{\mu}_{kt}^{(i)} - \mu_{kt}|$$

to evaluate the accuracy of trend estimation in the ith simulation run, $i = 1, \ldots, 100$. Fig. 5 shows estimated trends from DeepVARwT (left panel) and VARwT (right panel) with MAD at the first quartile (short dashed, black), the median (dotted, red), and the third quartile (long dashed, black) respectively among the 100 simulation runs. The estimated trends from our model follow the true trends very closely while those from VARwT show over-smoothing of local changes.

![Series1](image1)

![Series2](image2)

![Series3](image3)

Figure 5. True (solid, blue) and estimated trends from DeepVARwT (left pane) and VARwT (right pane) with MAD at first quartile (short dashed, black), third quartile (long dashed, black), and median (dotted, red).
Table 1 reports summary statistics of 100 estimates of each parameter from our model and VARwT, where $a^{(i)}_{jk}$ refers to the (j,k)-th entry of the coefficient matrix A_i and σ_{jk} is the (j,k)-th entry of the variance-covariance matrix Σ. We can observe that compared with VARwT, the DeepVARwT model gives rise to reduced biases at the expense of standard deviations (SDs). The parameter estimates are more accurate with smaller mean squared errors (MSEs) than those obtained from the VARwT model.

Table 1. Estimation results of DeepVARwT and VARwT: true value above sample mean, standard deviation, mean squared error of 100 estimates of each parameter and sample bias.

	$a^{(1)}_{11}$	$a^{(1)}_{12}$	$a^{(1)}_{13}$	$a^{(1)}_{21}$	$a^{(1)}_{22}$	$a^{(1)}_{23}$	$a^{(1)}_{31}$	$a^{(1)}_{32}$	$a^{(1)}_{33}$
DeepVARwT									
True value	-1.0842	-0.1245	0.3137	-0.7008	-0.3754	-0.2064	0.3166	0.3251	0.2135
Mean	-1.0103	-0.1199	0.2671	-0.6802	-0.3410	-0.2240	0.2900	0.3601	0.2891
Bias	0.0739	0.0046	-0.0466	0.0206	0.0344	-0.0176	-0.0266	0.0353	0.0756
SD	0.1776	0.0816	0.0861	0.0784	0.0813	0.0622	0.0421	0.0465	0.0945
MSE	0.0367	0.0066	0.0095	0.0065	0.0077	0.0041	0.0025	0.0034	0.0146
VARwT									
True value	-0.5449	-0.3052	-0.1952	-0.4057	0.5129	0.3635	0.0034	-0.2911	0.2086
Mean	0.7127	-0.2808	-0.1122	0.2335	0.8189	0.4848	-0.1662	-0.2880	0.3966
Bias	0.2086	0.0645	0.0528	0.1039	0.0801	0.0460	0.0566	0.0368	0.0833
SD	0.0499	0.0045	0.0034	0.0121	0.0073	0.0022	0.0041	0.0021	0.0108
MSE									
$\sigma^{(2)}_{11}$	-0.4674	-0.3246	-0.2213	-0.3677	0.5431	0.3756	-0.0245	-0.2643	0.2692
DeepVARwT									
True value	0.4834	-0.2707	0.4079	0.1368	-0.0221	0.4103			
Mean	0.5357	-0.2652	0.4283	0.1175	-0.0285	0.4347			
Bias	0.0523	0.0055	0.0204	-0.0193	-0.0064	0.0244			
SD	0.1321	0.0597	0.0575	0.0275	0.0196	0.0424			
MSE	0.0200	0.0036	0.0037	0.0011	0.0004	0.0024			
$\sigma^{(2)}_{21}$	1.2291	-0.0039	0.6636	0.0714	-0.0625	0.5114			
VARwT									
True value	1.2291	-0.0039	0.6636	0.0714	-0.0625	0.5114			
Mean	1.2291	-0.0039	0.6636	0.0714	-0.0625	0.5114			
Bias	0.7457	0.2668	0.2557	-0.0654	-0.0404	0.1011			
SD	0.0811	0.0267	0.0352	0.0312	0.0206	0.0265			
MSE	0.5626	0.0719	0.0666	0.0052	0.0020	0.0109			
4. Real data applications

4.1. US macroeconomics series 1

For the US macroeconomic series (Fig. 1), we fit a model and make forecasts 20 times, each time using a training sample of size \(T = 166 \). The training samples are \(y_{i:T}^{(i)} = \{y_i, y_{i+1}, \ldots, y_{i+T-1}\} \), \(i = 1, \ldots, 20 \), and we forecast \(h = 1, 2, \ldots, 8 \) quarters ahead.

The order \(p = 4 \) for a VAR model is a common choice in the analysis of quarterly macroeconomic series, for example, [14], [15] and [10]. The first model we fitted was DeepVARwT(4). The number of input \(t \) functions and the hidden state size were the two most crucial hyperparameters. A grid search was conducted to find a set of values with maximum likelihood, among 2, 3 or 4 \(t \) functions and 5, 10 or 15 hidden states. For efficiency, we relied on our experience to set values for the other hyperparameters. The learning rates were \(\eta_1 = 0.0005 \) and \(\eta_2 = 0.01 \), with \(K = 500 \) iterations and precision \(\text{prec} = 10^{-7} \).

The estimated trends (red) are shown in Fig. 6 for the first training sample \((i = 1) \), which can be seen to follow the observations (black) smoothly.

Figure 6. The first training sample (black lines) from 1955Q1 to 1996Q2 and the corresponding estimated trends (red lines).
The sample autocorrelations of residuals are shown in Fig. 7. The results are good for the GDP gap series, reasonable for the federal funds rate series, and a little concerning for the inflation series in terms of the number of values outside the boundaries.

![Figure 7. Sample autocorrelations of residuals.](image)

Fig. 8 contains normal QQ plots of the residuals. There is slight deviation from normality for all the series at both ends.

![Figure 8. Normal QQ plots of residuals.](image)

For comparison, we also fitted a VARwT(4) model, a DeepAR and a DeepState model using default hyperparameter values. The input at time t was $x_t = (t, t^2, t^3, t^4, t^5, t^6, t^7, t^8, t^9)'$ for the VARwT model to account for the number of turning points in the trend. Table 2 gives a summary of these models and the software packages used.

Model	Description	Available software
VARwT	Vector autoregressive model with trend [21]	vars::VAR(exogen=x)
DeepAR	Deep learning based autoregressive model [25]	gluonts.DeepAREstimator()
DeepState	Deep learning based state space model [23]	gluonts.DeepStateEstimator()

To evaluate the accuracy of point forecasts, we computed the h-step-ahead Absolute Percentage Error averaged over 20 forecasts

$$APE(h) = \frac{1}{20} \sum_{i=1}^{20} \left| \frac{\hat{y}_{T+h}^{(i)} - y_{T+h}^{(i)}}{\hat{y}_{T+h}^{(i)}} \right| \times 100$$

for each component series $\{y_t^{(i)}\}$ in the ith training sample, where $\hat{y}_{T+h}^{(i)}$ is the h-step-ahead
All the experiments were conducted on an Intel Core i9 2.3 GHz processor with eight cores. The DeepV ARwT model outperformed the other models for federal funds rate. It gave the best accuracy. Its performance is similar for inflation with a slight drop to second place in terms of prediction intervals for GDP gap over \(h = 1:4 \) and \(h = 1:8 \), while in second place for prediction intervals at all the forecasting horizons for all the series (except \(h = 1 \) for GDP gap and \(h = 1, 2 \) for inflation). Our model also gave more accurate prediction intervals in the long term (\(h = 4, 8 \)) and overall (\(h = 1:4 \) and \(h = 1:6 \)) for all the series.

- **DeepVARwT vs VARwT.** Compared with VARwT, DeepVARwT produced superior point forecasts at almost all the forecasting horizons for all the series (except \(h = 1 \) for GDP gap and \(h = 1, 2 \) for inflation). Our model also gave more accurate prediction intervals in the long term (\(h = 4, 8 \)) and overall (\(h = 1:4 \) and \(h = 1:6 \)) for all the series.

- **DeepVARwT vs other deep learning based models.** Compared with DeepAR and DeepState, our model resulted in better point forecasts and prediction intervals at all the forecasting horizons for federal funds rate. It also gave more precise prediction intervals at all the forecasting horizons for GDP gap.

Table 3. Performance of DeepVARwT against other models according to APE and SIS.

	GDP gap	Inflation	Federal funds rate									
	Absolute Percentage Error	Scaled Interval Score										
\(h = 1 \)	\(h = 2 \)	\(h = 4 \)	\(h = 8 \)	\(h = 1 \)	\(h = 2 \)	\(h = 4 \)	\(h = 8 \)					
VARwT	665.927	2982.609	293.199	1124.228	1042.088	897.853	1.592	4.114	34.332	244.788	13.157	81.907
DeepAR	333.063	389.993	173.499	260.860	258.932	240.882	8.280	15.304	35.105	65.816	21.020	39.587
DeepState	1023.302	1070.784	178.982	200.245	612.331	403.614	7.903	16.995	22.545	34.583	16.800	24.950
DeepVARwT	671.569	877.267	162.329	202.388	466.350	326.924	8.487	8.961	14.509	29.158	10.201	17.008

The DeepVARwT model outperformed the other models for federal funds rate. It gave the best prediction intervals for GDP gap over \(h = 1:4 \) and \(h = 1:8 \), while in second place for prediction accuracy. Its performance is similar for inflation with a slight drop to second place in terms of SIS over \(h = 1:4 \).

All the experiments were conducted on an Intel Core i9 2.3 GHz processor with eight cores. The number of weight parameters in the LSTM network for the 20 fitted DeepVARwT models ranged from 715 to 1350. The computation time of 20 predictions from VARwT, DeepAR, DeepState and DeepVARwT was approximately 1, 42, 210, and 55 minutes, respectively.

	Absolute Percentage Error	Scaled Interval Score										
\(h = 1 \)	\(h = 2 \)	\(h = 4 \)	\(h = 8 \)	\(h = 1 \)	\(h = 2 \)	\(h = 4 \)	\(h = 8 \)					
VARwT	10.521	25.868	90.407	424.838	44.681	157.662	2.226	7.145	31.160	137.790	14.374	53.498
DeepAR	9.685	19.915	55.689	119.189	30.633	62.829	4.759	11.914	33.627	53.807	18.122	32.993
DeepState	33.190	36.782	59.985	128.743	44.186	70.322	6.962	10.260	13.660	22.901	10.862	15.458
DeepVARwT	7.834	14.032	33.676	80.449	19.659	39.916	1.473	3.946	8.095	17.381	5.262	9.541

The Scaled Interval Score [6] is averaged as follows:

\[
SIS(h) = \frac{1}{20} \sum_{i=1}^{20} \left(\frac{1}{\alpha} (y_{T+h}-\hat{y}_i^{(i)}(T+h)) + \frac{1}{\alpha} (\hat{y}_i^{(i)}(T+h)-y_{T+h}) \right) + \frac{2}{\alpha} (\hat{y}_i^{(i)}(T+h)-y_{T+h}) \mathbb{1}_{\hat{y}_i^{(i)}(T+h)<y_{T+h}} + \frac{2}{\alpha} (y_{T+h}-\hat{y}_i^{(i)}(T+h)) \mathbb{1}_{\hat{y}_i^{(i)}(T+h)>y_{T+h}},
\]

to measure the overall accuracy of the \((1 - \alpha) \times 100\%\) prediction intervals \((l_i^{(i)}(T+h), u_i^{(i)}(T+h))\) for the \(i\)th training sample, \(i = 1, \ldots, 20\), where \(\mathbb{1}_A\) is the indicator function for the condition \(A\), \(s\) is the seasonality of the time series (\(s = 4\) for quarterly data).

Table 5 shows the forecasting performances of different models at several horizons \(h = 1, 2, 4, 8 \) and averages over \(h = 1, \ldots, 4 \) and \(h = 1, \ldots, 8 \). When a model performs best, the corresponding number in the table will be bold.

The DeepVARwT model outperformed the other models for federal funds rate. It gave the best prediction intervals for GDP gap over \(h = 1:4 \) and \(h = 1:8 \), while in second place for prediction accuracy. Its performance is similar for inflation with a slight drop to second place in terms of SIS over \(h = 1:4 \).
4.2. Global temperatures

Global warming has attracted significant attention in recent research, as demonstrated by studies such as [8], [12], and [11]. Fig. 9 shows three annual temperature anomaly series from distinct regions: the Northern Hemisphere, the Southern Hemisphere and the Tropics from 1850 to 2021, which are described in detail in [19]. The data are temperature anomalies relative to a reference period of 1961-1990 [19]. Each series consists of 172 yearly observations.

From Fig. 9, we can observe obvious trends in the three series. [11] assumed that the trends in the Northern and Southern Hemispheres series are deterministic and modelled the local changes in data using a vector shifting-mean autoregressive model with order $p = 3$. We continue to fit a DeepVARwT(3) model to the three series and make predictions $h = 1, 2, ..., 6$ steps ahead of $T = 147$. As with our first real data application, this is repeated 19 times, each time moving the training sample forward by one time point. The search ranges for the number of t functions and hidden state size were $2, 3, 4$ and $3, 5, 8$, respectively. The learning rates were $\eta_1 = 0.0005$ and $\eta_2 = 0.01$, with $K = 500$ iterations and precision $\text{prec} = 10^{-7}$.

The forecasts will be compared with those from VARwT(3), DeepAR, and DeepState models with default hyperparameters. The exogenous variables for VARwT are $x_t = (t, t^2, t^3, t^4, t^5)'$ to account for the number of turning points in the series.

From Fig. 10, we can see that the estimated trends (red) for the first training sample ($i = 1$) follow the observations (black) smoothly.

![Temperature anomaly series for the Northern Hemisphere, the Southern Hemisphere and the Tropics from 1850 to 2021.](image-url)
The first training sample (black lines) from 1850 to 1996 and the corresponding estimated trends (red lines).

The sample autocorrelations of residuals are shown in Fig. 11. The results are very good for all the series with all the values within boundaries.

Fig. 12 contains normal QQ plots of the residuals. The results are very good for all the series showing clearly straight line patterns.
Table 4 shows the APE and SIS values of different models at several horizons $h = 1, 2, 4, 6$ and averaged over $h = 1 : 3$ and $h = 1 : 6$.

- **DeepVARwT vs VARwT.** Compared with the time-invariant VAR with trend, our model produced better point forecasts at all forecasting horizons for all the series. It gave better prediction intervals in the long term ($h = 4, 6$) and overall ($h = 1 : 6$) for all the series.

- **DeepTVARwT vs other deep learning based models.** Compared with DeepAR and DeepState, our model produced more accurate point forecasts at almost all forecasting horizons for all the series (except $h = 4$ for Tropics). Our model resulted in better prediction intervals at all forecasting horizons for all the series.

Overall, the DeepVARwT model gave better forecasts and prediction intervals than other models, especially for the Northern and Southern Hemisphere series.

The number of weight parameters in the network for the 20 fitted DeepVARwT models varied between 444 and 508. The computation time for generating 20 predictions using VARwT, DeepAR, DeepState and DeepVARwT was about 1, 45, 80, and 30 minutes, respectively.
4.3. *US macroeconomics series 2*

We continue to apply our model to another set of US macroeconomic data (Fig.13) including inflation rate (year-over-year log growth rate of the GDP price index), unemployment rate and treasury interest rate from 1953Q1 to 2001Q3, as analysed by [22]. The inflation rate differs from the first real data example where it is defined as “the percentage change in the GDP, chain-weighted price index at annual rate” [13]. Each series consists of 195 observations and exhibits a clear trend. We fitted a DeepVARwT(4) model to these series and forecast \(h = 1, 2, \ldots, 8 \) steps ahead of \(T = 168 \). Consistent with our previous real data applications, we repeated 19 times, each time moving the training sample forward by one time point.

The search ranges for the number of \(t \) functions and hidden state size were 2, 3, 4 and 10, 12, 15, respectively. We employed the learning rates \(\eta_1 = 0.0005 \) and \(\eta_2 = 0.01 \), with \(K = 500 \) iterations and precision \(prec = 10^{-7} \). The number of weight parameters in the network for the 20 fitted DeepVARwT models varied between 635 and 2,185.

The forecasts will be compared with those from a VARwT(4) model using \(x_t = (t, t^2, t^3, t^4, t^5, t^6, t^7, t^8, t^9)^\prime \) to account for the number of turning points in the series, DeepAR, [25], and DeepState models with default hyperparameters. The computation time to generate 20 predictions using VARwT, DeepAR, DeepState and DeepVARwT was about 1, 45, 80, and 35 minutes, respectively.

![Inflation rate](image1)

![Unemployment rate](image2)

![Treasury bill interest rate](image3)

Figure 13. Inflation rate, unemployment rate and treasury bill interest rate for the US from 1953Q1 to 2001Q3

From Fig. 14, we can see that the estimated trends (red) for the first training sample \((i = 1)\)
follow the observations (black) smoothly.

The sample autocorrelations of residuals are shown in Fig. 15. The results are reasonably good for the inflation rate and treasury bill interest series, and a little concerning for the unemployment rate series in terms of the number of values outside the boundaries.

Fig. 12 contains normal QQ plots of the residuals. There is some deviation from normality for all the series at both ends.
Table 4 shows the APE and SIS values of different models at several horizons $h = 1, 2, 4, 8$ and averaged over $h = 1:4$ and $h = 1:8$.

- **DeepVARwT vs VARwT.** Compared with the time-invariant VAR with trend, DeepT-VARwT produced better point forecasts at almost all forecasting horizons for all the series (except $h = 1$ for inflation rate and $h = 1, 2$ for treasury bill interest rate). It also gave more accurate prediction intervals at almost all forecasting horizons for all the series (except $h = 1, 2$ for inflation rate).

- **DeepTVARwT vs other deep learning based models.** Compared with DeepAR and DeepState, our model produced more accurate point forecasts at almost all forecasting horizons for unemployment rate (except $h = 1$) and treasury bill interest rate (except $h = 1, 2$). Our model resulted in better prediction intervals at all forecasting horizons for unemployment rate and treasury bill interest rate.

Table 5. Performance of DeepVARwT against other models according to APE and SIS.

	Absolute Percentage Error	Scaled Interval Score				
Inflation rate						
$h=1$	$h=2$	$h=4$	$h=8$	$h=1:4$	$h=1:8$	
VARwT	9.961	24.991	76.114	259.015	39.129	111.141
DeepAR	7.763	15.281	28.017	52.398	18.497	31.416
DeepState	18.373	22.375	29.036	40.723	24.191	31.294
DeepVARwT	13.707	24.019	34.797	34.283	25.646	29.747
Unemployment rate						
$h=1$	$h=2$	$h=4$	$h=8$	$h=1:4$	$h=1:8$	
VARwT	3.514	8.960	25.229	93.339	13.425	38.390
DeepAR	3.250	6.524	13.014	31.405	8.099	16.310
DeepState	15.144	15.941	19.629	25.726	17.515	20.596
DeepVARwT	3.447	5.845	9.833	17.266	6.788	10.656
Treasury bill interest rate						
$h=1$	$h=2$	$h=4$	$h=8$	$h=1:4$	$h=1:8$	
VARwT	5.390	10.537	20.041	75.861	12.581	30.385
DeepAR	4.868	10.073	18.693	24.993	12.340	18.016
DeepState	13.149	13.452	14.818	22.711	13.881	16.394
DeepVARwT	7.024	11.045	11.688	16.699	10.130	12.626

Over $h = 1:4$ and $h = 1:8$, the DeepVARwT model outperformed other models in providing better forecasts and prediction intervals, except for the inflation rate over $h=1:4$ where DeepAR did better.

The number of weight parameters in the network for the 20 fitted DeepVARwT models varied between 849 and 1350. The computation time for generating 20 predictions using VARwT, DeepAR, DeepState and DeepVARwT was about 1, 45, 80, and 59 minutes, respectively.
5. Summary and further discussion

In this work, we proposed a new approach to VAR modeling and forecasting by generating trends as well as model parameters using an LSTM network and the associated deep learning methodology for exact maximum likelihood estimation. A simulation study demonstrated the effectiveness of the proposed approach. Three examples with real data are provided to show that it competes well with existing models in terms of prediction performance.

Default values of the hyper-parameters for the DeepAR and DeepState models were used, which worked reasonably well but can be tweaked for better performance. The python code and data to reproduce forecasting results is available at https://github.com/lixixibj/DeepVARwT-data-code.

The computation becomes more challenging as the number/length of the component series increases. With high dimensional time series, a potential avenue for future research involves incorporating regularization and low-rank structure into the model fitting. One approach is to impose a low-rank assumption on A_1, \ldots, A_p combined into a single matrix. This enables a reduction along one specific direction [27]. Building on this concept, [27] further rearranged $A_i, i = 1, \ldots, p$ into a tensor to reduce the dimension along three directions, allowing each direction to have a different low-rank structure. Incorporating a tensor structure into our DeepVARwT model could be a potential future direction.

The model that has been explored so far rely on the assumption of Gaussianity. However, in practical applications such as demand forecasting, series may exhibit sporadic occurrences with periods of no activity at all. This intermittent behaviour of demand calls for the relaxation of the Gaussian assumption to accommodate discrete data. It might be possible to generalise the digitised Gaussian ARMA model of [16] to the multivariate case.

Acknowledgements

The first author’s work was supported by The University of Manchester under a Dean’s Doctoral Scholarship Award.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] C.F. Ansley and R. Kohn, *A note on reparameterizing a vector autoregressive moving average model to enforce stationarity*, Journal of Statistical Computation and Simulation 24 (1986), pp. 99–106.
[2] O. Barndorff-Nielsen and G. Schou, *On the parametrization of autoregressive models by partial autocorrelations*, Journal of Multivariate Analysis 3 (1973), pp. 408–419.
[3] J. Duchi, E. Hazan, and Y. Singer, *Adaptive subgradient methods for online learning and stochastic optimization*, Journal of Machine Learning Research 12 (2011).
[4] J. Fan, Q. Yao, and Z. Cai, *Adaptive varying-coefficient linear models*, Journal of the Royal Statistical Society: Series B (Statistical Methodology) 65 (2003), pp. 57–80.
[5] F.A. Gers, J. Schmidhuber, and F. Cummins, *Learning to forget: Continual prediction with LSTM*, Neural Computation 12 (2000), pp. 2451–2471.
[6] T. Gneiting and A.E. Raftery, *Strictly proper scoring rules, prediction, and estimation*, Journal of the American Statistical Association 102 (2007), pp. 359–378.
[7] E.J. Hannan, *Multiple time series*, Vol. 38, John Wiley & Sons, 1970.
[8] D.I. Harvey and T.C. Mills, *Modelling global temperature trends using cointegration and smooth transitions*, Statistical Modelling 1 (2001), pp. 143–159.
[9] S.E. Heaps, *Enforcing stationarity through the prior in vector autoregressions*, Journal of Computational and Graphical Statistics (2022), pp. 1–24.
[10] S.E. Heaps, *Enforcing stationarity through the prior in vector autoregressions*, Journal of Computational and Graphical Statistics 32 (2023), pp. 74–83.
[11] M.T. Holt and T. Teräsvirta, *Global hemispheric temperatures and co-shifting: A vector shifting-mean autoregressive analysis*, Journal of Econometrics 214 (2020), pp. 198–215.
[12] M.A. Ivanov and S.N. Evtimov, 1963: The break point of the northern hemisphere temperature trend during the twentieth century, International Journal of Climatology 30 (2010), pp. 1738–1746.
[13] Ö. Jordà, *Estimation and inference of impulse responses by local projections*, American Economic Review 95 (2005), pp. 161–182.
[14] G. Koop, D. Korobilis, *et al.*, *Bayesian multivariate time series methods for empirical macroeconomics*, Foundations and Trends® in Econometrics 3 (2010), pp. 267–358.
[15] G.M. Koop, *Forecasting with medium and large Bayesian VARs*, Journal of Applied Econometrics 28 (2013), pp. 177–203.
[16] H. Lennon and J. Yuan, *Estimation of a digitised Gaussian ARMA model by Monte Carlo expectation maximisation*, Computational Statistics & Data Analysis 133 (2019), pp. 277–284.
[17] H. Lütkepohl, *New introduction to multiple time series analysis*, Springer Science & Business Media, 2005.
[18] M. Morf, A. Vieira, T. Kailath, *et al.*, *Covariance characterization by partial autocorrelation matrices*, The Annals of Statistics 6 (1978), pp. 643–648.
[19] C.P. Morice, J.J. Kennedy, N.A. Rayner, and P.D. Jones, *Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set*, Journal of Geophysical Research: Atmospheres 117 (2012).
[20] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, *Pytorch: An imperative style, high-performance deep learning library*, in Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett, eds., Curran Associates, Inc., 2019, pp. 8024–8035. Available at http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.
[21] B. Pff and M. Stigler, *vars: VAR Modelling* (2018). Available at https://cran.r-project.org/web/packages/vars/index.html, R package version 1.5-3.
[22] G.E. Primiceri, *Time varying structural vector autoregressions and monetary policy*, The Review of Economic Studies 72 (2005), pp. 821–852.
[23] S.S. Rangapuram, M.W. Seeger, J. Gasthaus, L. Stella, Y. Wang, and T. Januschowski, *Deep state space models for time series forecasting*, in Advances in Neural Information Processing Systems. 2018, pp. 7785–7794.
[24] A. Roy, T.S. McElroy, and P. Linton, *Constrained estimation of causal invertible VARMA*, Statistica Sinica 29 (2019), pp. 455–478.
[25] D. Salinas, V. Flunkert, J. Gasthaus, and T. Januschowski, *DeepAR: Probabilistic forecasting with autoregressive recurrent networks*, International Journal of Forecasting 36 (2020), pp. 1181–1191.
[26] M.P. Wand and M.C. Jones, *Kernel smoothing*, CRC Press, 1994.
[27] D. Wang, Y. Zheng, H. Lian, and G. Li, *High-dimensional vector autoregressive time series modeling via tensor decomposition*, Journal of the American Statistical Association 117 (2022), pp. 1338–1356.
[28] Y. Wang, A. Smola, D. Maddix, J. Gasthaus, D. Foster, and T. Januschowski, *Deep factors for forecasting*, in *International Conference on Machine Learning*, PMLR, 2019, pp. 6607–6617.
Appendix A. Prediction error variances and covariances

First consider the model for \(\{y_t\} \) to be VAR(1) with trend:

\[
y_t - \mu_t = A(y_{t-1} - \mu_{t-1}) + \epsilon_t,
\]

where \(\{\epsilon_t\} \) is white noise, \(\epsilon_t \sim N(0, \Sigma) \) and \(\epsilon_t \) is uncorrelated with \(y_{t-1}, y_{t-2}, \ldots \).

Then, we can decompose \(y_{T+\ell} \) starting with \(y_T \) for \(\ell = 1, \ldots, h \):

\[
\begin{align*}
y_{T+1} - \mu_{T+1} &= A(y_T - \mu_T) + \epsilon_{T+1}, \\
y_{T+2} - \mu_{T+2} &= A(y_{T+1} - \mu_{T+1}) + \epsilon_{T+2} = A^2(y_T - \mu_T) + A\epsilon_{T+1} + \epsilon_{T+2}, \\
y_{T+3} - \mu_{T+3} &= A^3(y_T - \mu_T) + A^2\epsilon_{T+1} + A\epsilon_{T+2} + \epsilon_{T+3}, \\
&\vdots \\
y_{T+h} - \mu_{T+h} &= A^h(y_T - \mu_T) + \sum_{i=0}^{h-1} A^i \epsilon_{T+h-i},
\end{align*}
\]

where \(A^i \) is understood to be the identity matrix when \(i = 0 \).

From (A2), the best linear predictor for \(y_{T+\ell} \) given \(y_T, y_{T-1}, \ldots \) is

\[
\hat{y}_{T+\ell} = E[y_{T+\ell} | y_T, y_{T-1}, \ldots] = A^\ell(y_T - \mu_T) + \mu_{T+\ell},
\]

and the associated prediction error variance-covariance matrix is

\[
\text{Var}(y_{T+\ell} - \hat{y}_{T+\ell}) = \sum_{i=0}^{\ell-1} A^i \Sigma (A^i)',
\]

When \(\{y_t\} \) follows the VAR(\(p \)) model (3) with trend, we use its VAR(1) form

\[
y_t^* - \mu_t^* = A^*(y_{t-1}^* - \mu_{t-1}^*) + \epsilon_t^*,
\]

where \(y_t^* = (y_t', y_{t-1}', \ldots, y_{t-p+1}')' \), \(\mu_t^* = (\mu_t', \mu_{t-1}', \ldots, \mu_{t-p+1}')' \),

\[
A^* = \begin{bmatrix}
A_1 & A_2 & \cdots & \cdots & A_p \\
I & O & \cdots & \cdots & O \\
o & I & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
o & \cdots & O & I & O
\end{bmatrix},
\]

and

\[
y_t = [I, O, \cdots, O]y_t^*.
\]
The variance-covariance matrix of \(\varepsilon_t^* = (\varepsilon_t', 0', ..., 0')' \) is

\[
\Sigma^* = \begin{bmatrix}
\Sigma & \mathbf{0} \\
\mathbf{0} & \mathbf{0}
\end{bmatrix}.
\]

(A8)

Using (A3), the best linear predictor for \(y_{t+h}^* \) given \(y_t^*, y_{t-1}^*, ... \) is

\[
\hat{y}_{t+h}^* = (A^*)^h(y_t^* - \mu_t^*) + \mu_{t+h}^*.
\]

(A9)

Using (A4), the variance-covariance matrix of the prediction error for \(\hat{y}_{t+h}^* \) is

\[
\sum_{i=0}^{h-1} (A^*)^i \Sigma^*((A^*)^i)'.
\]

(A10)

The prediction for \(y_{t+h} \) can be extracted from that for \(y_{t+h}^* \). The prediction error variance-covariance matrix for \(\hat{y}_{t+h} \) is in the top-left corner of the above.