FINITE MUTATION CLASSES OF COLOURED QUIVERS

HERMUND ANDRÈ TORKILDSEN

Abstract. We consider the general notion of coloured quiver mutation and show that the mutation class of a coloured quiver \(Q \), arising from an \(m \)-cluster tilting object associated with \(H \), is finite if and only if \(H \) is of finite or tame representation type, or it has at most 2 simples. This generalizes a result known for 1-cluster categories.

Introduction

Mutation of skew-symmetric matrices, or equivalently quiver mutation, is very central in the topic of cluster algebras [FZ]. Quiver mutation induces an equivalence relation on the set of quivers. The mutation class of a quiver \(Q \) consists of all quivers mutation equivalent to \(Q \). In [BR] it was shown that the mutation class of an acyclic quiver \(Q \) is finite if and only if the underlying graph of \(Q \) is either Dynkin, extended Dynkin or has at most two vertices.

Cluster categories were defined in [BMRRT] in the general case and in [CCS] in the \(A_n \)-case as a categorical model of the combinatorics of cluster algebras. Some cluster categories have a nice geometric description in terms of triangulations of certain polygons, see [CCS [S]]. This was used in [BR, BTO] to count the number of quivers in the mutation classes of quivers of Dynkin type \(A \) and \(D \). In [BRS] they used different methods to count the number of quivers in the mutation classes of quivers of type \(\tilde{A} \).

A generalization of cluster categories, the \(m \)-cluster categories, have been investigated by several authors. See for example [BM1, BM2, BT, IY, K, W, ZZ]. In [BT] mutation on coloured quivers was defined, and we can define mutation classes of coloured quivers. It is a natural question to ask when the mutation classes of coloured quivers are finite. In this paper we want to show the following theorem, analogous to the main theorem in [BR].

Theorem. Let \(k \) be an algebraically closed field and \(Q \) a connected finite quiver without oriented cycles. The following are equivalent for \(H = kQ \).

1. There are only a finite number of basic \(m \)-cluster tilted algebras associated with \(H \), up to isomorphism.
2. There are only a finite number of Gabriel quivers occurring for \(m \)-cluster tilted algebras associated with \(H \), up to isomorphism.
3. \(H \) is of finite or tame representation type, or has at most two non-isomorphic simple modules.
4. There are only a finite number of \(\tau \)-orbits of cluster tilting objects associated with \(H \).
5. There are only a finite number of coloured quivers occurring for \(m \)-cluster tilting objects associated with \(H \), up to isomorphism.
6. The mutation class of a coloured quiver \(Q \), arising from an \(m \)-cluster tilting object associated with \(H \), is finite.
1. Background

Let $H = kQ$ be a finite dimensional hereditary algebra over an algebraically closed field k, with Q a quiver with n vertices. The cluster category was defined in \[BMRR\] and independently in \[CCS\] in the A_n case. Consider the bounded derived category $D^b(H)$ of $\text{mod } H$. Then the cluster category is defined as the orbit category $\mathcal{C}_H = D^b(H)/\tau^{-1}[1]$, where τ is the Auslander-Reiten translation and $[1]$ is the shift functor.

As a generalization of cluster categories, we can consider the m-cluster categories defined as $\mathcal{C}_H^m = D^b(H)/\tau^{-1}[m]$. The m-cluster category was shown in \[KR\] to be triangulated. The m-cluster category is a Krull-Schmidt category, an $(m+1)$-Calabi-Yau category, and it has an AR-translate $\tau = [m]$. The indecomposable objects in \mathcal{C}_H^m are of the form $X[i]$, with $0 \leq i < m$, where X is an indecomposable H-module, and of the form $P[m]$, where P is a projective H-module.

An m-cluster tilting object is an object T in \mathcal{C}_H^m with the property that X is in $\text{add } T$ if and only if $\text{Ext}^i_{\mathcal{C}_H^m}(T, X) = 0$ for all $i \in \{1, 2, \ldots, m\}$. It was shown in \[W, ZZ\] that an object which is maximal m-rigid, i.e. it has the property that $X \in \text{add } T$ if and only if $\text{Ext}^i_{\mathcal{C}_H^m}(T \oplus X, T \oplus X) = 0$ for all $i \in \{1, 2, \ldots, m\}$, is also an m-cluster tilting object. They also showed that an m-cluster tilting object T always has n non-isomorphic indecomposable summands.

An almost complete m-cluster tilting object \bar{T} is an object with $n-1$ non-isomorphic indecomposable direct summands such that $\text{Ext}^i_{\mathcal{C}_H^m}(\bar{T}, \bar{T}) = 0$ for $i \in \{1, 2, \ldots, m\}$. It is known from \[W, ZZ\] that any almost complete m-cluster tilting object has exactly $m+1$ complements, i.e. there exist $m+1$ non-isomorphic indecomposable objects T' such that $\bar{T} \oplus T'$ is an m-cluster tilting object.

Let \bar{T} be an almost complete m-cluster tilting object and denote by $T^{(c)}_k$, where $c \in \{0, 1, 2, \ldots, m\}$, the complements of \bar{T}. In \[IY\] it is shown that the complements are connected by $m+1$ exchange triangles

$$T^{(c)}_k \to B^{(c)}_k \to T^{(c+1)}_k \to,$$

where $B^{(c)}_k$ are in $\text{add } \bar{T}$.

An m-cluster tilted algebra is an algebra of the form $\text{End}_{H^m}(\bar{T})$, where T is an m-cluster tilting object in \mathcal{C}_H^m.

2. Coloured quiver mutation

In the case when $m = 1$ there is a well-known procedure for the exchange of indecomposable direct summands of a cluster-tilting object. Given an almost complete cluster-tilting object, there exist exactly two complements, and the corresponding quivers are given by quiver mutation. For an arbitrary $m \geq 1$, the procedure is a little more complicated. Since an almost complete m-cluster tilting object has, up to isomorphism, exactly $m+1$ complements, the Gabriel quiver does not give enough information to keep track of the exchange procedure. Buan and Thomas therefore defined a class of coloured quivers in \[BT\], and they define a mutation procedure on such quivers to model the exchange on m-cluster tilting objects. In this section we recall some results from this paper.

To an m-cluster tilting object \bar{T}, Buan and Thomas associate a coloured quiver $Q_{\bar{T}}$, with arrows of colours chosen from the set $\{0, 1, 2, \ldots, m\}$. For each indecomposable summand of T there is a vertex in $Q_{\bar{T}}$. If T_i and T_j are two indecomposable summands of T corresponding to vertex i and j in $Q_{\bar{T}}$, there are r arrows from i to j of colour c, where r is the multiplicity of T_j in $B^{(c)}_i$.

They show that such quivers have the following properties.
(1) The quiver has no loops.
(2) If there is an arrow from i to j with colour c, then there exist no arrow from i to j with colour $c' \neq c$.
(3) If there are r arrows from i to j of colour c, then there are r arrows from j to i of colour $m - c$.

They also define coloured quiver mutation, and they give an algorithm for the procedure. Let $Q = Q_T$, for an m-cluster tilting object T, be a coloured quiver and let j be a vertex in Q. The mutation of Q at vertex j is a quiver $\mu_j(Q)$ obtained as follows.

(1) For each pair of arrows

$$i \xrightarrow{c} j \xrightarrow{0} k$$

where $i \neq k$ and $c \in \{0, 1, ..., m\}$, add an arrow from i to k of colour c and an arrow from k to i of colour $m - c$.

(2) If there exist arrows of different colours from a vertex i to a vertex k, cancel the same number of arrows of each colour until there are only arrows of the same colour from i to k.

(3) Add one to the colour of all arrows that goes into j, and subtract one from the colour of all arrows going out of j.

See Figure 1 for an example.

![Figure 1](image)

Figure 1. Examples of mutation of coloured quivers for Dynkin type A and $m = 2$.

In [BT] the following theorem is proved.

Theorem 2.1. Let $T = \oplus_{i=1}^{n} T_i$ be an m-cluster tilting object in \mathcal{C}_m. Let $T' = T/T_j \oplus T_j^{(1)}$ be an m-cluster tilting object where there is an exchange triangle

$$T_j \rightarrow B_j^{(0)} \rightarrow T_j^{(1)} \rightarrow .$$

Then $Q_{T'} = \mu_j(Q_T)$.

The quiver obtained from Q_T by removing all arrows of colour different from 0 is the Gabriel quiver of the m-cluster tilted algebra $\text{End}_{\mathcal{C}_m}(T)$. Quivers of m-cluster tilted algebras can be reached by repeated coloured quiver mutation [ZZ] (see also [BT]).

Proposition 2.2. Any m-cluster tilting object can be reached from any other m-cluster tilting object via iterated mutation.

They obtain the following corollary.

Corollary 2.3. For an m-cluster category \mathcal{C}_m of the acyclic quiver Q, all quivers of m-cluster tilted algebras are given by repeated mutation of Q.

Let us always denote by Q_G the Gabriel quiver of the coloured quiver Q. In this paper we are only interested in coloured quivers which arises from an m-cluster tilting object. Let Q_G be an acyclic quiver and Q the coloured quiver obtained from Q_G by adding the necessary arrows of colour m, i.e. if there exist r arrows from i to j of colour 0, then add r arrows from j to i of colour m. Then the
quivers which arises from \(m \)-cluster tilting objects are exactly the quivers mutation equivalent to \(Q \).

Let \(Q \) be a coloured quiver with arrows only of colour 0 and \(m \), as above, and where the underlying graph of the Gabriel quiver \(Q_G \) is of Dynkin type \(\Delta \). Then certainly \(Q_G \) is a quiver of an \(m \)-cluster tilted algebra. Let us call the set of quivers mutation equivalent to \(Q \) the mutation class of type \(\Delta \). Certainly, all orientations of \(\Delta \) (as a Gabriel quiver) is in the mutation class of type \(\Delta \).

Figure 2 shows all non-isomorphic coloured quivers in the mutation class of type \(A_3 \) for \(m = 2 \).

\[
\begin{array}{ccc}
1 & 2 & 3 \\
(0) & (2) & (0) \\
(1) & (0) & (2) \\
(0) & (2) & (0) \\
(2) & (0) & (2) \\
(1) & (1) & (1) \\
(0) & (0) & (0) \\
(1) & (1) & (1) \\
(2) & (0) & (2) \\
(1) & (1) & (1) \\
(0) & (0) & (0) \\
\end{array}
\]

Figure 2. All non-isomorphic coloured quivers in the mutation class of \(A_3 \) for \(m = 2 \).

We note that in a mutation class, there can be several non-isomorphic coloured quivers with the same underlying Gabriel quiver, and that the Gabriel quiver of an \(m \)-cluster tilted algebra might be disconnected.

To any \(m \)-cluster tilting object \(T \) there exist a coloured quiver \(Q_T \), but we also have the following.

Lemma 2.4. Suppose \(Q \) is a coloured quiver in some mutation class of a quiver of an \(m \)-cluster tilted algebra. Then there exist an \(m \)-cluster tilting object \(T \) such that \(Q = Q_T \).

Proof. This follows directly from the corollary, since mutation of \(m \)-cluster tilting objects corresponds to mutation of coloured quivers.

We know that \([i]\) is an equivalence on the \(m \)-cluster category for all integers \(i \). In particular, \(\tau = [m] \) is an equivalence.

Proposition 2.5. If \(T \) is an \(m \)-cluster tilting object, then \(Q_T \) is isomorphic to \(Q_T[i] \) for all \(i \).

Proof. It is enough to prove that \(Q_T \) is isomorphic to \(Q_T[i] \). Suppose there are \(r \) arrows in \(Q_T \) from \(i \) to \(j \) with colour \(c \). Let \(T_i \) and \(T_j \) be the indecomposable direct summands of \(T \) corresponding to vertex \(i \) and \(j \) in \(Q_T \) respectively. Let \(T = T/T_i \).
be the almost complete \(m \)-cluster tilting object obtained from \(T \) by removing \(T_i \).

Then there exist an exchange triangle
\[
T_i^{(c)} \rightarrow B_i^{(c)} \rightarrow T_i^{(c+1)} \rightarrow
\]
with \(B_i^{(c)} \) in \(\text{add}(T) \). There are \(r \) arrows from \(i \) to \(j \), with colour \(c \), so hence \(T_j \) has multiplicity \(r \) in \(B_i^{(c)} \). Clearly \(T_j[1] \) and \(T_j[1] \) are indecomposable direct summands of \(T[1] \) and we have the exchange triangle
\[
T_i^{(c)}[1] \rightarrow B_i^{(c)}[1] \rightarrow T_i^{(c+1)}[1] \rightarrow .
\]

Since \(T_j \) has multiplicity \(r \) in \(B_i^{(c)} \), \(T_j[1] \) has multiplicity \(r \) in \(B_i^{(c)}[1] \). It follows that there are \(r \) arrows in \(Q_T[1] \) from \(i \) to \(j \) with colour \(c \). The same proof holds for \([-1]\), and so hence the claim follows. \(\square \)

3. Finiteness of the number of non-isomorphic \(m \)-cluster tilted algebras

In [BR] the authors showed that if \(Q \) is a finite quiver with no oriented cycles, then there is only a finite number of quivers in the mutation class of \(Q \) if and only if the underlying graph of \(Q \) is Dynkin, extended Dynkin or has at most two vertices. In these cases there are only a finite number of non-isomorphic cluster-tilted algebras of some fixed type. In this section we want to prove an analogous result for coloured quivers by generalizing the results and proofs in [BR].

Let \(H = kQ \) be a finite dimensional hereditary algebra. We know that \(H \) is of finite representation type if and only if the underlying graph of \(Q \) is Dynkin, extended Dynkin or has at most two vertices. In the case when \(H \) has at most two vertices, the regular components of the AR-quiver are disjoint tubes of the form \(\mathbb{Z}A_{\infty} / \langle \tau^i \rangle \) for some \(i \), and in the wild case they are of the form \(\mathbb{Z}A_{\infty} \).

If \(X \) is a preprojective or preinjective \(H \)-module, it is known that \(X \) is rigid, i.e. \(\text{Ext}^1_H(X, X) = 0 \). The following is a well-known result, see for example [R].

Lemma 3.1. Let \(H = kQ \) be a finite dimensional hereditary algebra of infinite representation type, then if \(H \) has exactly two simples, no indecomposable regular object is rigid.

In [W] it was shown that if \(T \) is an \(m \)-cluster tilting object in \(\mathcal{C}_H^m \), then it is induced from a tilting object in \(\text{mod} \, H_0 \oplus \text{mod} \, H_0[1] \oplus \ldots \oplus \text{mod} \, H_0[m-1] \), where \(H_0 \) is derived equivalent to \(H \). If \(H \) is of finite or tame representation type, it was shown in [BR] that for each indecomposable projective \(H \)-module \(P \), there are only a finite number of indecomposable objects \(X \) such that \(\text{Ext}^1_{H}(X, P) \).

Lemma 3.2. Let \(P[i] \) be a shift of an indecomposable projective \(H \)-module, where \(H \) is of finite or tame representation type. Then there is only a finite set of objects \(X \) in \(\mathcal{C}_H^m \) with \(\text{Ext}^k_{\mathcal{C}_H^m}(X, P[i]) = 0 \) for all \(k \in \{1, 2, \ldots, m\} \).

Proof. We can assume that an \(m \)-cluster tilting object is induced from a tilting object in \(\text{mod} \, H \oplus \text{mod} \, H[1] \oplus \ldots \oplus \text{mod} \, H[m-1] \).

It is enough to show that there are a finite number of indecomposable objects \(X \) such that \(\text{Ext}^1_{\mathcal{C}_H^m}(X, P) = 0 \), where \(P \) is a projective \(H \)-module, since the shift functor is an equivalence on the \(m \)-cluster category. It follows from [BR] that there are only a finite number of indecomposable objects \(X \) lying inside \(\text{mod} \, H[i] \), with \(\text{Ext}^1_{\mathcal{C}_H^m}(X, P[i]) = 0 \) for all \(i \).
We have $\text{Ext}_{C_H^m}^{i+1}(X, P) = \text{Ext}_{C_H}^i(X, P[j])$, so there are only finitely many indecomposable objects X in mod $H[j]$ such that $\text{Ext}_{C_H^m}^{i+1}(X, P) = 0$. Consequently there are only a finite number of indecomposable objects X such that $\text{Ext}_{C_H^m}^k(X, P) = 0$ for all $k \in \{1, 2, ..., m\}$, and we are finished. \[\square\]

It is known from \cite{BKL} that in the tame case, a collection of one or more tubes is triangulated. We give the proof of the following for the convenience of the reader.

Proposition 3.3. Let H be a finite dimensional tame hereditary algebra over a field k, and C_H^m the corresponding m-cluster category. Let

$$X \rightarrow Y \rightarrow Z \rightarrow$$

be a triangle in C_H^m, where two of the terms are shifts of regular modules. Then all terms are shifts of regular modules.

Proof. It is enough to show that if X and Z are shifts of regular modules, then Y is a shift of a regular module. There exist a homogeneous tube \mathcal{T}, i.e. $\tau M = M$ for all $M \in \mathcal{T}$, such that no direct summands of X or Z are in \mathcal{T}. Let W be a quasi-simple object in \mathcal{T}. We have that W is sincere (see \cite{DR}). We get the exact sequence

$$\text{Hom}(Z, W) \rightarrow \text{Hom}(Y, W) \rightarrow \text{Hom}(X, W).$$

We have that $\text{Hom}(Z, W) = \text{Hom}(X, W) = 0$, since there are no maps between disjoint tubes. It follows that $\text{Hom}(Y, W) = 0$. Since W is sincere, we have that $\text{Hom}(U, W) \neq 0$ for any projective U, hence for any preprojective since $\tau W = W$. We can do similarly for preinjectives. It follows that all direct summands of Y are shifts of regulars. \[\square\]

Proposition 3.4. Let C_H^m be an m-cluster category, where H is of tame representation type. Let T be an m-cluster tilting object in C_H^m. Then T has, up to τ, at least one direct summand which is a shift of a projective or injective.

Proof. It is clearly enough to prove that there are no m-cluster tilting objects in C_H^m with only shifts of regular H-modules as direct summands. So suppose, for a contradiction, that such a T exists.

We can decompose T into indecomposable summands, where $T = T_1 \oplus T_2 \oplus ... \oplus T_n$ and n is the number of simple H-modules. If all direct summands are of the same degree, we already have a contradiction, since a tilting module has at least one direct summand which is preprojective or preinjective (see \cite{R}).

Assume that T_k is a direct summand of degree $k \leq m$. Let $\tilde{T} = T_1 \oplus T_2 \oplus ... \oplus T_{n-1}$ be the almost complete m-cluster tilting object obtained from T by removing the direct summand T_n. Then we know that the complements of \tilde{T} are connected by $m + 1$ AR-triangles,

$$M_{i+1} \rightarrow X_i \rightarrow M_i \rightarrow,$$ where $i \in \{0, 1, 2, ..., m\}$ and $X_i \in \text{add} \tilde{T}$.

The direct summands of X_i are by assumption shifts of regular modules. We also have that T_n is a shift of a regular module and that it is equal to M_j for some j, since it is a complement of \tilde{T}. It follows that M_i is a shift of a regular module for all i by Proposition 3.3, since these are connected by the exchange triangles. So all m-cluster tilting objects that can be reached from T by a finite number of mutations, have only regular direct summands.

This leads to a contradiction, because we know from Proposition 2.2 that all m-cluster tilting objects can be reached from T by a finite number of mutations, and a tilting module in H induces an m-cluster tilting object in C_H^m with at least one direct summand preprojective or preinjective. \[\square\]
From this it follows that we can assume that an m-cluster tilting object has at least one direct summand which is a shift of a projective up to τ.

We also need a lemma proven in [BR].

Lemma 3.5. Let H be wild with at least 3 non-isomorphic simples. Let t be a positive integer. Then there is a tilting module T in H with indecomposable direct summands T_1 and T_2, such that $\dim \text{Hom}_H(T_1, T_2) \geq t$.

To prove the next lemma, which was observed in [BR] for 1-cluster tilted algebras, we use the following fact from [W]. Let $F = \tau^{-1}[m]$. If X and Y are two objects in some chosen fundamental domain in $\mathcal{D}^b(H)$, then $\text{Hom}_{\mathcal{D}^b(H)}(X, F^3Y) = 0$ for all $i \neq 0, 1$.

Lemma 3.6. If a path in the quiver of an m-cluster tilted algebra goes through two oriented cycles, then it is zero.

Proof. We have that

$$\text{Hom}_{c_n}(X, Y) = \bigoplus_{i \in \mathbb{Z}} \text{Hom}_{\mathcal{D}^b(H)}(X, F^iY).$$

Let X and Y be two indecomposable m-rigid objects in a chosen fundamental domain. It is well known that since $\text{Ext}^1_{\mathcal{D}^b(H)}(X, X) = 0$, we have that $\text{End}_{\mathcal{D}^b(H)}(X) = k$. It follows that in an oriented cycle, one of the maps lifts to a map of the form $X \to FY$ in $\mathcal{D}^b(H)$. If there is a path that goes through two oriented cycles, we have a map of the form $X \to FY \to F^2Z$, and this is 0 by the above. □

The following theorem generalizes the main theorem in [BR].

Theorem 3.7. Let k be an algebraically closed field and Q a connected finite quiver without oriented cycles. The following are equivalent for $H = kQ$.

1. There are only a finite number of basic m-cluster tilted algebras associated with H, up to isomorphism.
2. There are only a finite number of Gabriel quivers occurring for m-cluster tilted algebras associated with H, up to isomorphism.
3. H is of finite or tame representation type, or has at most two non-isomorphic simple modules.
4. There are only a finite number of τ-orbits of cluster tilting objects associated with H.
5. There are only a finite number of coloured quivers occurring for m-cluster tilting objects associated with H, up to isomorphism.
6. The mutation class of a coloured quiver Q, arising from an m-cluster tilting object associated with H, is finite.

Proof. (1) implies (2) and (4) implies (5) is clear.

(2) implies (3): Suppose there are only a finite number of quivers occurring for m-cluster tilted algebras associated with H, and let u be the maximal number of arrows between to vertices in the quiver. Then by Lemma 3.6, for any two indecomposable summands T_1 and T_2 of an m-cluster tilting object T, $\dim \text{Hom}_{c_n}(T_1, T_2) < u^{2n}$, where n is the number of simple H-modules. Then it follows from Lemma 3.5 that H is not wild with more than 3 simples.

(3) implies (4): If H is of finite representation type this is clear, since we only have a finite number of indecomposables.

Next, suppose H has at most two non-isomorphic simple modules. If there is only one simple module we have $H \simeq k$, so we can assume there are two simples. Suppose R is a regular indecomposable H-module. Then it follows from Lemma 3.1 that R is not rigid, i.e. $\text{Ext}_{c_R}^1(R, R) \neq 0$. Then we also have that $\text{Ext}_{c_R}^{1}(R[i], R[i]) \neq 0$ for any $i \in \{1, 2, ..., m-1\}$. Up to τ in c_R^m we can assume that an m-cluster tilting
object has a direct summand which is a shift of a projective H-module, say $P[j]$. Then $P[j]$ has $m + 1$ indecomposable complements. It follows that there are only a finite number of m-cluster tilting objects up to τ, since there are only a finite number of choices for $P[j]$.

Suppose H is tame. By Proposition 3.4, an m-cluster tilting object has at least one direct summand which is a shift of a projective or injective, and hence up to τ we can assume it has an indecomposable direct summand which is a shift of a projective. From Lemma 3.2 we have that there is only a finite number of m-cluster tilting objects with a shift of an indecomposable projective H-module as a direct summand.

(5) implies (6): This is clear, since mutation of m-cluster tilting objects corresponds to mutation of coloured quivers.

We have that (4) implies (1) by using Lemma 2.5. (6) implies (2) is trivial, and so we are done. □

We get the following corollary.

Corollary 3.8. A coloured quiver Q corresponding to an m-cluster tilting object, has finite mutation class if and only if Q is mutation equivalent to a quiver Q', where $Q'_{\mathcal{G}}$ has underlying graph Dynkin or extended Dynkin, or it has at most two vertices, and there are only arrows of colour 0 and m in Q'.

Acknowledgements: The author would like to thank Aslak Bakke Buan for valuable discussions and comments.

References

[BKL] Barot M., Kussin D., Lenzing H. *The Grothendieck group of a cluster category*, J. Pure Appl. Algebra 212 (1) (2008), 33-46.

[BR] Bastian J., Rubey M., Stump C. *Counting the number of elements in the mutation classes of quivers of type A_n*, arXiv:0906.0487.

[BMJ] Baur K., Marsh R. J. *A Geometric Description of the m-cluster categories of type D_n*, International Mathematics Research Notices (2007) Vol. 2007 : article ID rnm011.

[BMRRT] Buan A. B., Marsh R. J., Reineke M., Reiten I., Todorov G. *Tilting theory and cluster combinatorics*, Adv. Math. 204 (2) (2006), 572-618.

[BRS] Buan A. B., Reiten I. *Acyclic quivers of finite mutation type*, International Mathematics Research Notices, Article ID 12804 (2006), 1-10.

[BM] Buan A., Thomas H. *Defining an m-cluster category*, J. Algebra 318 (1) (2007), 37-46.

[BT] Buan A., Thomas H. *A geometric model for cluster categories of type D_n*, Adv. Math. Volume 222 (3) (2009), 971-995.

[To] Buan A. B., Torkildsen H. A. *The number of elements in the mutation class of a quiver of type D_n*, Electronic Journal of Combinatorics, Volume 16 (1) (2009), R49.

[DR] Dlab V., Ringel C. M. *Representations of graphs and algebras*, Department of Mathematics, Carleton University, Ottawa, Ont., 1974, Carleton Mathematical Lecture Notes, No. 8.

[FZ] Fomin S., Zelevinsky A. *Cluster Algebras I: Foundations*, J. Amer. Math. Soc. 15, no. 2 (2002), 497-529.

[IY] Iyama O., Yoshino Y. *Mutation in triangulated categories and rigid Cohen-Macaulay modules*, Invent. Math. 172 (1) (2008), 117-168.

[K] Keller B. *On triangulated orbit categories*, Doc. Math. 10 (2005), 551-581.

[R] Ringel C. M. *The regular components of the Auslander-Reiten quiver of a tilted algebra*, Chinese Ann. Math. B. 9 (1988), 1-18.

[S] Schiffler R. *A geometric model for cluster categories of type D_n*, J. Alg. Comb. 27, no. 1 (2008), 1-21.

[T] Thomas H. *Defining an m-cluster category*, J. Algebra 318 (1) (2007), 37-46.

[W] Wraalsen A. *Rigid objects in higher cluster categories*, J. Algebra 321 (2) (2009), 532-547.
[Z] Zhu B. Generalized cluster complexes via quiver representations, J. Algebra 321 (2) (2009), 532-547.

[ZZ] Zhou Y., Zhu B. Cluster combinatorics of d- cluster categories, J. Algebra 321 (10) (2009), 2898-2915.