Analysis of the Strain Energy Release Rate for a Delamination Crack in a Multilayered Beam with Material Non-Linearity

V Rizov

1Professor, Department of Technical Mechanics, University of Architecture, Civil Engineering and Geodesy, 1046 - Sofia, Bulgaria

Abstract. The strain energy release rate for a delamination crack in a multilayered cantilever beam which exhibits material non-linearity is derived by considering the energy balance. The material non-linearity is described by the Ramberg-Osgood stress-strain relation. A cantilever beam made of adhesively bonded lengthwise vertical layers is studied. Each layer has individual widths and material properties. Besides, the delamination is located arbitrary between layers. The strain energy release rate is derived also by differentiating the complementary strain energy with respect to the crack area for verification. It is shown that the solution derived is useful for parametric investigations of delamination in multilayered beams.

1. Introduction
Multilayered materials and structures made of adhesively bonded layers of dissimilar materials have certain advantages such as high strength to weight and stiffness to weight ratios over the homogeneous materials. Therefore, multilayered materials are extensively used in many structural applications where a high performance is required. However, due to the low interlaminar strength, delamination fracture is the predominant failure mode [1-5].

The main goal of the present paper is to develop a strain energy release rate analysis for a delamination crack in a multilayered beam with considering the material non-linearity. A multilayered cantilever beam made by adhesively bonded vertical layers is analyzed. The Ramberg-Osgood stress-strain relation is applied for describing the non-linear mechanical behaviour of the material in contrast to previous works of the author in which delamination in multilayered beams of vertical layers is investigated by using power law stress-strain relations [6, 7].

2. Determination of the strain energy release rate
The delamination crack in the multilayered cantilever beam configuration shown in figure 1 is studied in the present paper. The beam is made of adhesively bonded lengthwise vertical layers of different widths and material properties. The number of layers is arbitrary. It is assumed that in each layer the material exhibits non-linear mechanical behaviour which is treated by the Ramberg-Osgood stress-strain relation. A delamination crack of length, \(a \), is located arbitrary between layers (the widths of the right-hand and left-hand crack arms are \(b_1 \) and \(b_2 \), respectively. The external loading consists of one moment, \(M \), applied at the free end of right-hand crack arm. Thus, the left hand crack arm is free of stresses. The cross-section of the beam is a rectangle of width, \(b \), and height, \(h \). The beam length is \(l \).

The fracture is investigated in terms of the strain energy release rate, \(G \), by considering the energy balance. By assuming a small increase, \(\Delta a \), of the crack length, the energy balance is written as
\[M\delta \phi = \frac{\partial U}{\partial \alpha} \delta \alpha + Gh \delta a \]

(1)

where \(\delta \phi \) is the increase of the angle of rotation of the free end of the right-hand crack arm, \(U \) is the strain energy. From (1), \(G \) is expressed as

\[G = \frac{M}{h} \frac{\partial \phi}{\partial a} - \frac{1}{h} \frac{\partial U}{\partial a} \]

(2)

\[\text{Figure 1. Geometry and loading of the multilayered cantilever beam.} \]

The angle of rotation of the free end of the right-hand crack arm is written as

\[\phi = a \kappa_1 + (l - a) \kappa_2 \]

(3)

where \(\kappa_1 \) and \(\kappa_2 \) are, respectively, the curvatures of the right-hand crack arm and the un-cracked beam portion, \(a \leq x_1 \leq l \), (figure 1).

The strain energy in the beam is written as

\[U = a \sum_{i=1}^{n_R} \int_A u_{0i} \, dA + (l - a) \sum_{i=1}^{n} \int_A u_{0Ri} \, dA \]

(4)

where \(n_R \) and \(n \) are, respectively, the numbers of layers in the right-hand crack arm and the un-cracked beam portion, \(u_{0i} \) and \(u_{0Ri} \) are the strain energy densities in the \(i \)-th layer, respectively, of the right-hand crack arm and the un-cracked beam portion, \(A_i \) is the area of the cross-section of the \(i \)-th layer.
The Ramberg-Osgood stress-strain relation for the material in the \(i \)-th layer is written as

\[
\varepsilon = \frac{\sigma_i}{E_i} + \left(\frac{\sigma_i}{H_i} \right)^{\frac{1}{n_i}}
\]

(5)

where \(\varepsilon \) is the lengthwise strain, \(\sigma_i \) is the distribution of the normal stresses in the \(i \)-th layer, \(E_i \) is the modulus of elasticity in the \(i \)-th layer, \(H_i \) and \(n_i \) are material properties in the same layer.

The distribution of lengthwise strains in the beam cross-section is analyzed by applying the Bernoulli’s hypothesis for plane sections since the length to height ratio of the beam under consideration is large. Besides, since the beam is loaded in pure bending, the lengthwise strains are the only non-zero strains. Thus, according to the small strain compatibility equations, the lengthwise strains in the cross-section of the right-hand crack arm are distributed linearly

\[
\varepsilon = \kappa_1 z_1
\]

(6)

where \(z_1 \)-axis is shown in figure 2.

The curvature of the right-hand crack arm is determined from the following equation of equilibrium of the cross-section:

\[
M = \sum_{i=n}^{i=1} \int \sigma_i z_i dA
\]

(7)

Equation (7) can be used also to determine \(\kappa_2 \). For this purpose, \(n, \sigma, \) and \(z \) have to replaced, respectively, with \(n, \sigma_R, \) and \(z_2 \) where \(\sigma_R \) is the distribution of the normal stresses in the \(i \)-th layer of the un-cracked beam portion, \(z_2 \) is the vertical centroidal axis of the cross-section of the un-cracked beam portion.

The strain energy density in the \(i \)-th layer of the right-hand crack arm can be obtained by the following formula [8]:

\[
u_{ij} = \frac{\sigma_i^2}{2E_i} + \frac{\sigma_i^{n_i}}{(1 + n_i)H_i^{n_i}}
\]

(8)
Formula (8) can be applied also to calculate the strain energy density in the i-th layer of the un-cracked beam portion. For this purpose, σ_i has to be replaced with σ_{R_i}.

By substituting of (3) and (4) in (2), one arrives at

$$G = \frac{M}{h} \left(\kappa_1 - \kappa_2 \right) - \frac{1}{h} \sum_{i=1}^{i=n_x} \int_{A_i} u_{0i} dA + \frac{1}{h} \sum_{i=1}^{i=n_x} \int_{A_i} u_{0Ri} dA$$

(9)

The integration in (9) should be carried-out by using the MatLab program.

In order to verify (9), the strain energy release rate is determined also by using the following formula [6]:

$$G = \frac{dU^*}{hda}$$

(10)

where dU^* is the change of the complementary strain energy, da is an elementary increase of the delamination crack length. The complementary strain energy is obtained by (4). For this purpose, u_{0i} and u_{0Ri} are replaced, respectively, with u_{0i}^* and u_{0Ri}^* where u_{0i}^* and u_{0Ri}^* are the complementary strain energy densities in the i-th layer of the right-hand crack arm and the un-cracked beam portion, respectively. The strain energy release rate obtained by (10) is exact match of the result obtained by (9) which is a verification of the delamination fracture analysis developed in the present paper.

A parametric analysis of delamination fracture is performed by applying the solution to strain energy release rate (9).

Figure 3. Two three-layered cantilever beam configurations.

The strain energy release rate is presented in non-dimensional form by using the following formula $G_N = G/(Eb)$. Two three-layered cantilever beam configurations are considered in order to investigate the influence if the crack location on the strain energy release rate (figure 3).
Figure 4. The strain energy release rate plotted against H_3/H_1 ratio
(curve 1 – for the beam configuration shown in figure 3a,
curve 2 – for the beam configuration shown in figure 3b).

In the configuration shown in figure 3a, a delamination crack is located between layers 2 and 3. A three-layered cantilever beam configuration with a delamination crack between layers 1 and 2 is also analyzed (figure 3b). It is assumed that the width of each layer is $t = 0.005$ m. Besides, it is assumed that $h = 0.020$ m and $M = 40$ Nm. The strain energy release rate in non-dimensional form is presented as a function of H_3/H_1 in figure 4 at $E_2/E_1 = 0.6$, $E_3/E_1 = 0.5$, $H_1/E_1 = 0.7$, $H_2/H_1 = 1.2$ and $n_1 = n_2 = n_3 = 0.75$ for the two three-layered beams shown in figure 3. The curves in figure 4 indicate that the strain energy release rate decreases with increasing of H_3/H_1 ratio. One can observe also in figure 4 that the strain energy release rate is lower when the delamination is between layers 1 and 2. This is due to the fact that the stiffness of the right-hand crack arm is higher when the delamination is between layers 1 and 2 (figure 3a). The strain energy release rate in non-dimensional form is presented as a function of E_3/E_1 ratio in figure 5 for the beam configuration shown in figure 3a.

Figure 5. The strain energy release rate plotted against E_3/E_1 ratio
(curve 1 – at non-linear material behaviour, curve 2 – at linear-elastic behaviour).

It can be observed that the strain energy release rate decreases with increasing of E_3/E_1 ratio (figure 5). This finding is attributed to the increase of the beam stiffness with increase of E_3/E_1 ratio.
The strain energy release rate obtained assuming linear-elastic behaviour of the material in each layer is also plotted in figure 5 for comparison with the non-linear solution. It should be noted that the linear-elastic solution to the strain energy release rate is derived by substituting of $H_i \rightarrow \infty$ in (9) because at $H_i \rightarrow \infty$ the non-linear stress-strain relation (5) transforms into the Hooke’s law. One can observe that the material non-linearity leads to increase of the strain energy release rate (figure 5). This finding indicates that neglecting the material non-linearity causes underestimation of the strain energy release rate. Therefore, the material non-linearity has to be taken into account in delamination fracture analyses of multilayered structural members and components.

3. Conclusions

Delamination fracture behaviour of a multilayered cantilever beam configuration is analyzed in terms of the strain energy release rate. Non-linear mechanical behaviour of the material is assumed in each layer. The beam is made of adhesively bonded lengthwise vertical layers. The beam is loaded in bending by one external moment applied at the free end of the right-hand crack arm. The Ramberg-Osgood stress-strain relation is applied to describe the non-linear mechanical behaviour of the material. A solution to the strain energy release rate is derived by considering the energy balance. The solution holds for a cantilever beam made of an arbitrary number of lengthwise vertical layers which have individual widths and material properties. Besides, the delamination crack is located arbitrary between layers (thus, the two crack arms have different widths). The strain energy release rate is obtained also by considering the complementary strain energy for verification. The solution derived is very useful for parametric analyses of delamination fracture in multilayered beams exhibiting non-linear mechanical behaviour of the material. It is found that the strain energy release rate decreases with increasing of H_3/H_1 and E_3/E_1 ratios. The investigation reveals also that the strain energy release rate decreases with increasing of the width of the right-hand crack arm cross-section. Concerning the influence of the material non-linearity on the delamination behaviour, the analysis shows that the material non-linearity leads to increase of the strain energy release rate. The results obtained in the present paper can be used in fracture mechanics based structural design of multilayered beams.

Acknowledgments

The present study was carried-out with the financial support of the Research and Design Centre (CNIP) of the University of Architecture, Civil Engineering and Geodesy (UACEG), Sofia (Contract BN – 3/2018).

References

[1] Dolgov N A 2005 Str. Mater. 37 422-31.
[2] Dolgov NA 2016 Str. Mater. 48 658-67.
[3] Szekrenyes A 2016 European J. Mech. A/Sol. 55 73-99.
[4] Szekrenyes A 2016 Appl. Math. Model. 40 1344–1371
[5] Rizov V 2017 Arch. Appl. Mech. 87 1037-48.
[6] Rizov V 2017 Multidiscipl. Model. Mater. Struct. 13 434-47.
[7] Rizov V 2017 Int. J. Struct. Stabil. Dyn. doi.org/10.1142/S0219455418500517
[8] Rizov V 2017 Int. J. Struct. Integr. 8 516-29.