Release of Inorganic Phosphate into the Tumor Environment: Possible Roles of Ecto-Nucleotidases and Ecto-Phosphatases

Marco Antonio Lacerda-Abreu1,2* and José Roberto Meyer-Fernandes1,2*

1Institute of Medical Biochemistry Leopoldo de Meis, Brazil
2National Institute of Science and Technology in Structural Biology and Bioimaging, Brazil

Abstract

Inorganic phosphate (Pi) is essential for several biochemical reactions. Serum Pi is maintained at relatively narrow range concentrations, between 0.7 and 1.55mM. Tumor microenvironment presents a high Pi concentration (1.8±0.2mM Pi) and this could be associated with the rapid growth in the “Growth Rate Hypothesis”. Several studies have identified high expression of Pi transporters in various tumor tissues. Similarly, ecto-enzymes (like ecto-nucleotidases or ecto-phosphatases) act by dephosphorylating phospho-substrates in the extracellular environment, and its high expression has been observed in various types of cancer. Little is known about the function of these ecto-enzymes on Pi releasing and accumulation in the tumor environment. Therefore, the purpose of this study is to correlate a possible contribution of the Pi release in the tumor microenvironment by ecto-nucleotidases and ecto-phosphatases, concomitant to the regulation of Pi extracellular pool by specific Pi transporters, associating it to the tumorigenesis.

Keywords: Ecto-nucleotidases; Ecto-phosphatases; Pi transporters; Pi release; Cancer

Introduction

Inorganic phosphate is an essential nutrient for the maintenance of cell life, by comprise phospholipids and nucleotides that compose DNA and RNA. Pi plays central role on signaling pathways by protein phosphorylation and dephosphorylation and it participates on energy metabolism in the form of ATP or metabolic intermediates substrates [1,2]. In healthy humans, steady state serum Pi concentrations generally range from 0.70 to 1.55mM [3]. The Pi is absorbed by intestinal cells by Na+-dependent Pi transporter (SLC34A2) [4]. About 60-70% of the total Pi in food intake is present as organic phosphate compound, thus, ecto-nucleotidase and ecto-phosphatase enzymes are required to provide it from hydrolysis of phosphorylated compounds such as glucose 1-phosphate, ATP, ADP and 5' AMP [5].

Extracellular nucleosides and nucleotides derived from purine (as adenosine, ADP and ATP) or pyrimidine (as UDP and UTP) moiety, not only acts as energy source for living organism, but also performs signaling role, once nucleotide release to extracellular environment, through panexin and connexin junctions, controls various pathological and physiological conditions [6,7]. These signaling molecules modulate a variety of physiological functions such as blood clotting, inflammation and immune reactions and cell proliferation [8]. Those functions are controlled by specific activation of purinergic receptors; those are activated by extracellular nucleotides, like purinergic receptor subtypes: P2 (ATP) and P1 (Adenosine) [6-7]. Activation of purinergic receptors can be controlled by extracellular nucleotide hydrolysis; whereas ecto-nucleotidases are responsible for ATP hydrolysis generating ADP, AMP, adenosine and Pi [6-8]. Another class of enzymes that can hydrolyze phosphorylated compounds are acid ecto-phosphatases, like the transmembrane acid phosphate phosphatase (TM-PaCP), recently discovered as variant of a secreted phosphatase used in the diagnosis of prostate cancer [9,10].

However, it is currently scarce studies on the role of ecto-nucleotidase and ecto-phosphatases to release Pi towards the extracellular environment. In mouse skin and lung cancer models, a high tumorigenic rate was observed in diets supplemented with Pi, sustaining the Growth Rate Hypothesis (GRH), requiring relatively more phosphate due to their rapid growth rates [2,3,11,12]. In mouse breast tumor cells, a high Pi concentration was identified in...
the tumor microenvironment (1.8±0.2mM Pi) compared to normal mammary gland (0.84±0.07mM Pi), suggesting it as a marker for body cancer [12]. Elevated extracellular Pi (3 and 5mM Pi) also stimulates metastatic capacity in lung (A549) and breast (MDA-MB-231) cancer cells, once it increases FOXC2, OPN and Vegfa mRNA levels, trigging a high migration capacity [13]. Recently, a high affinity Na− dependent Pi transporter was characterized in breast cancer cells (MDA-MB-231), and it is related to adhesion and migration capacity [14]. Also, in MDA-MB-231 cells, a low affinity H− dependent Pi transporter is related to cell migration process, especially in high Pi concentrations [15]. Several tumor tissues present high levels of ecto-nucleotidase, ecto-phosphatase and Pi transporters expression [2,16-18]. However, no study has sought to integrate these enzymes by focusing on Pi release towards the tumor environment and its possible functions for tumor progression so far.

Ecto-Nucleotidases

Ecto-nucleotidases are a set of enzymes that hydrolyze extracellular phosphorylated nucleotides derived from purine or pyrimidine. The four main classes of ecto-nucleotidase are:

a) Ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase): generating ADP and AMP from ATP hydrolysis [19-21];

b) Ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs): generating ADP and AMP from ATP hydrolysis [8];

c) Ecto-5′-nucleotidase (e5NT): generating adenosine from 5′AMP hydrolysis [8]. The E-NTPDase family comprises eight enzymes, which differ in cell location and substrate specificity, whereas four presents extracellular catalytic site: NTPDase1 (CD39), NTPDase2 (CD39L1), NTPDase3 (CD39L3) and NTPDase8 (CD39L4) [6-7]. Other enzymes are NaPi-IIa (SLC34A1), NaPi-IIb (SLC34A2) and NaPi-IIc (SLC34A3), expressed in kidney [2,4]. Specifically, in relation to the expression of (PAcP). Both forms of PAcP are transcribed from the same gene but follow different post-transcriptional modifications [9]. Recently, a new splice variant PAcP mRNA encoding a transmembrane type 1 protein with extracellular phosphate activity (TM-PAcP) was identified in various tissues such as melanomas [28], Walker 256[22], bladder cancer [23] and breast cancer [24].

Regarding the family of E-NPPs, has been reported seven class of enzymes (E-NPP1 - E-NPP7), however, four are able to hydrolyze a variety of nucleotides: E-NPP1 (PC-1), NPP2 (autotaxin), NPP3 (CD203c) and NPP4 [8,17]. Regarding the expression of these enzymes in tumor tissues, NPP1 is widely identified in neural brain tumors [25], rat C6 glioma cell membranes [26], human astrocytic brain tumors [27], and human glioblastoma stem cells [17,28]. NPP2 has been closely associated with the migration phenotype in melanomas [29] and various tumors such as hepatocellular carcinoma [30], neuroblastoma [31], prostate carcinoma [32] and non-small cell lung cancer [33,34]. Moreover, NPP3 has been related to tumor development and transformation, showing that its expression in fibroblast and glioma cells induced enhanced invasive properties [34,35].

Ecto-5′-nucleotidase (Ecto-5′-NT; CD73) is a transmembrane enzyme found in vertebrates, plants and even bacteria. Ecto-5′-nucleotidase hydrolyzes AMP into adenosine, which is a major source of adenosine for adenosine (P1) receptors [7]. Ecto-5′-NT is anchored to the plasma membrane by a GPI anchor. Ecto-5′-NT catalyses the hydrolysis of 5′ carbon esterified phosphate from ribose or deoxyribose [6]. CD73 overexpression is well established in the literature for various cancers including walker 256 tumor bladder Buffon [20], [23], leukemia [36], glioma [37], glioblastoma [38], melanoma[39], ovarian cancer [40], thyroid cancer [41], esophageal cancer [42], gastric cancer [43], colon cancer [44], prostate cancer [45], breast cancer [18,22,24,46], pancreatic cancer [47], hepatocarcinoma [48] and salivary gland tumors [49]. Another type of enzymes able to hydrodize nucleotides are the Alkaline phosphatases. Alkaline phosphatases (ALP) are ubiquitous metalloenzymes and represent a protein family of phosphomonoesterases. These enzymes can be divided into two groups, tissue nonspecific alkaline phosphatase (TNALP) and tissue specific ALPs including placental ALP (PALP), intestinal ALP (IALP) and ALP germ cells (GCALP) [8]. All these isoforms present high levels of expression in cancer cells: TNALP was identified in osteoblastic bone metastases [50]; PALP was identified in ovarian, testicular, lung, breast, gastrointestinal tract and chorionicarcinoma cancer [51-53]; IALP was identified in hepatocellular carcinoma [54] and GCALP was identified in carcinoma testis [55-57].

Acid Ecto Phosphatases

Acid phosphatases are enzymes that hydrolyze phosphorylated substrates in acidic environments; five class of enzymes have been reported in human tissues [58]. In human prostate, a prostatic acid phosphatase (PACP) is reported intracellularly. However, in patients with advanced prostate cancer, an elevation of serum acid phosphatase (sPACP) was identified, accompanied by a decrease in expression of (PACP). Both forms of PACP are transcribed from the same gene but follow different post-transcriptional modifications [9]. Recently, a new spliced variant PACP mRNA encoding a transmembrane type 1 protein with extracellular phosphate activity (TM-PACP) was identified in various tissues such as brain, kidney, liver, lung, muscle, placenta, salivary gland, spleen, thyroid, thymus. TM-PACP expression was also observed in human prostate cancer tissue samples [10].

Pi Transporters

Pi enters the cells via Pi cotransporters. These cotransporters constitute two large families of inorganic phosphate transporters that have been characterized in mammals, namely, SLC20:expressed almost exclusively in the kidney and SLC34 (consists of three members, NaPi-IIa (SLC34A1): expressed in kidney, osteoclasts, neurons; NaPi-IIb (SLC34A2); expressed in small intestine, lung, testis, liver, secreting mammary gland; and NaPi-IIe (SLC34A3), expressed in kidney [2,4]. Specifically, in relation to cancer, several studies have identified increased expression of Pi transporters in tumor tissues compared to normal tissues such as ovarian [59], thyroid [60], breast [61], lung [62] and kidney [2,63]. Considering Pi another class of transporter has been recently studied, an H− dependent Pi transporter in Caco2BBE human intestinal cells [64], osteoclasts-like cells [65] and recently in MDA-MB-231, breast cancer cells [15].
Co-Relation of Ecto-Nucleotidases, Ecto-Phosphatases and Pi Transport

Decades ago, many studies sought to relate the importance of ecto-nucleotidases and ecto-phosphatases for the absorption of their generated products. Knowing that there was a high expression of non-specific alkaline phosphatase in rat small intestine epithelial cells, Rothstein et al. [5] identify the importance of ALPs for 1-phosphate-glucose hydrolysis generating glucose to be transported into the cells. Regarding the absorption of Pi, in microorganisms like Escherichia coli, extracellular low Pi concentration induces an increased expression of ecto-phosphatases, strongly suggesting a function for these enzymes in Pi pool availability [66]. Years later, it has been demonstrated an increase in intracellular Pi in cell intestines of chickens and rats when is added a phosphorylated compound (β-glycerophosphate), suggesting a relation between alkaline phosphatase activity and Pi absorption [67,68]. However, once inhibiting alkaline phosphatase, no regulation of intracellular Pi levels was observed; but the presence of other ecto-phosphatase activities cannot be excluded Valinietse et al. [68]; Shirazi, 1981 and Moog F [67]. In the last twenty years, studies relating ecto-nucleotides and/or ecto-phosphatases and Pi transporters have become scarce. After the elucidation of the homeostatic system of Pi in humans, new studies focused to solve the structure of the carrier and relationship to pathophysiology [4].

Increasing expression of ecto-nucleotidases and ecto-phosphatases in tumor tissues have mostly been associated with the release of extracellular adenosine, as an adenosine receptor agonist (P1 receptor) triggering signaling involved with proliferation and metastasis processes [18]. Little is discussed about the contribution of Pi released from hydrolysis to these tumor tissues. Bobko et al. [12] showed that the concentration of interstitial Pi in the tumor to approximately 2mM may be a direct consequence of the high hydrolysis of ATP by tumor cells. We recently suggested that the high level of Pi in the tumor environment would be inducing a downregulation expression of a high affinity Pi Na+ dependent transporter and consequently increasing the activity level of a low affinity Pi H+ dependent transporter, acting as a compensatory mechanism to obtain more inorganic phosphate [15]. Further studies need to be done to relate the importance of ecto-nucleotidases and ecto-phosphatases for Pi release in the tumor environment and the possible regulation of these enzymes according to extracellular Pi concentration.

Conclusion

In general, high levels of expression of ecto-enzymes were observed in tumor tissues. In this review, we suggest a possible contribution of these overexpressed enzymes to a high amount of Pi been released in the tumor environment. Due to the Growth Rate Hypothesis (GRH), tumor cells require more Pi to fuel high energy rate tumor processes such as proliferation and metastasis. At high Pi levels, tumor cells would increase the activity of the low affinity H+ dependent Pi transporter and may represent a biological advantage for tumors in providing the cells with the incorporation of extra Pi even under those conditions where Na+ dependent Pi transport is saturated by a high extracellular Pi (approx. 2mM). The importance of accumulating and transporting more Pi would be to promote cell transformation and tumorigenesis via specific molecular mechanisms and increase ATP production through oxidative phosphorylation.

Funding

This work was supported by grants from the Brazilian Agencies Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq -305077/2013-9), Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES - 23038.002352/2017-24) and Fundação Carlos Chagas Filho de Amanpura à Pesquisa do Estado do Rio de Janeiro (FAPERJ -E-26/201.300/2014).

Conflict of Interest

None declared.

References

1. Brown RB, Razzaque MS (2018) Phosphate toxicity and tumorigenesis. Biochim Biophys Acta Rev Cancer 1869(2): 303-309.
2. Lacerda-Abreu, Russo-Abrahão T, Monteiro RQ, Ramjanek FD, Meyer-Fernandes JR (2018) Inorganic phosphate transporters in cancer: Functions, molecular mechanisms and possible clinical applications. Biochim Biophys Acta Rev Cancer 1870(2): 291-298.
3. Camalier, Camalier CE, Young MR, Bobe G, Perella CM, et al. (2010) Elevated phosphate activates N-ras and promotes cell transformation and skin tumorigenesis. Cancer Prev Res (Phila) 3(3): 359-370.
4. IC, Hernando N, Biber J, Murer H (2013) Phosphate transporters of the SCL20 and SLC34 families. Mol Aspects Med 34(2-3): 386-395.
5. Rothstein A, Meier RC, Scharf TG (1953) Relationship of cell surface to metabolism. IX. Digestion of phosphorylated compounds by enzymes located on surface of intestinal cell. Am J Physiol 173(1): 41-46.
6. Baqi Y (2015) Ecto-nucleotidase inhibitors: Recent developments in drug discovery. Mini Rev Med Chem 15(1): 21-33.
7. Iqbal M (2019) Ectonucleotidases: Potential target in drug discovery and development. Mini Rev Med Chem 19(11): 866-869.
8. Rashida M, Iqbal J (2014) Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto- nucleotide pyrophosphatase/ phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphate inhibitors. Med Res Rev 34(4): 703-743.
9. Munijyan S, Chaturvedi NK, Dwyer JG, Lagrange CA, Chaney WG, et al. (2013) Human prostatic acid phosphatase: Structure, function and regulation. Int J Mol Sci 14(5): 10438-10464.
10. Quintero IB, Araujo CL, Pulikka AE, Wirkkala RS, Herrala AM, et al. (2017) Prostatic acid phosphatase is not a prostate specific target. Cancer Res 67(14): 6549-6554.
11. Jin H, Xu CX, Lim HT, Park SJ, Shin JY, et al. (2009) High dietary inorganic phosphate increases lung tumorigenesis and alters Akt signaling. Am J Respir Crit Care Med 179(1): 59-68.
12. Bobko AA, Eubank TD, Drieschaert B, Dhimitruka I, Evans J, et al. (2017) Intestinal inorganic phosphate as a tumor microenvironment marker for tumor progression. Sci Rep 7: 41233.
13. Lin Y, McKinnon KE, Ha SW, Beck GR (2015) Inorganic phosphate induces cancer cell mediated angiogenesis dependent on forkhead box protein C2 (FOXC2) regulated osteopontin expression. Mol Carcinog 54(9): 926-934.
14. Russo-Abrahão T, Lacerda-Abreu MA, Gomes T, Cosentino-Gomes D, Carvalho-de-Araújo AD, et al. (2018) Characterization of inorganic phosphate transport in the triple-negative breast cancer cell line, MDA-MB-231. PLoS One 13(2): e0191270.

15. Lacerda-Abreu MA, Russo-Abrahão T, Cosentino-Gomes D, Nascimento MTC, Carvalho-Kelly LF, et al. (2019) H2-dependent inorganic phosphate transporter in breast cancer cells: Possible functions in the tumor microenvironment. Biochim Biophys Acta Mol Basis Dis 1865(9): 2180-2188.

16. Schettering MR, Morsch VM, Bonan CD, Wyse AT (2007) NTPDase and 5'-nucleotidase activities in physiological and disease conditions: New perspectives for human health. Biofactors 31(2): 77-98.

17. Lee SY, Müller CE (2017) Nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) and its inhibitors. Medchemcomm 8(5): 823-840.

18. Stagg J, Smyth MJ (2010) Extracellular adenosine triphosphate and adenosine in cancer. Oncogene29(39): 5346-5358.

19. Dzhandzhugazyan KN, Kirkén AE, thor Straten PG, Zeuthen J (1998) Ecto-ATP diphosphohydrolase/CD39 is overexpressed in differentiated human melanomas. FEBS Lett 430(3): 227-230.

20. Buffon A, Wink MR, Ribeiro BV, Casali EA, Libermann TA, et al. (2007) NTPDase and 5'-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor. Biochim Biophys Acta 1770(8): 1259-1265.

21. Zanini D, Schmatz R, Pimentel VC, Gutierrez JM, Maldonado PA, et al. (2012) Lung cancer alters the hydrolysis of nucleotides and nucleosides in platelets. Biomed Pharmacother 66(1): 40-45.

22. Gardani CF, Cappellari AR, de Souza JB, da Silva RT, Engmoff P, et al. (2019) Hydrolysis of ATP, ADP, and AMP is increased in blood plasma of prostate cancer patients. Purinergic Signal 15(1): 95-105.

23. Stella J, Bavaresco L, Braganhol E, Rockenbach L, Farias PF, et al. (2010) Differential ecto-nucleotidase expression in human bladder cancer cell lines. Urol Oncol 28(3): 260-267.

24. do Carmo Araújo M, Rocha JB, Morsch VM, Antonio RF, Bauchspies R, et al. (2005) Enzymes that hydrolyze adenine nucleotides in platelets from breast cancer patients. Biochim Biophys Acta 1740(1): 421-426.

25. Aerts I, Martin JJ, De Deyn PP, Van Ginneken C, Van Ostade X, et al. (2011) The expression of ecto-5'-nucleotide pyrophosphatase/phosphodiesterase 1 (E-NPP1) is correlated with astrocytic tumor grade. Clin Neurol Neurosurg 113(3): 224-229.

26. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model for the study of glioblastoma growth and invasion. Cell Tissue Res 310(3): 257-270.

27. Gómez-Villafuertes R, Pintor J, Miras-Portugal MT, Gualix C (2014) Ectonucleotide pyrophosphatase/phosphodiesterase activity in Neuro-2a neuroblastoma cells: Changes associated with neuronal differentiation. J Neurochem 131(3): 290-302.

28. Bageritz J, Puccio L, Pires RM, Hovestadt V, Phillips E, et al. (2014) Stem cell characteristics in glioblastoma cells are maintained by the ecto-nucleotidase E-NPP1. Cell Death Differ 21(6): 929-940.

29. Stracke ML, Krutzsch HC, Unsworth EJ, Arestad A, Ciocca VE, et al. (1992) Identification, purification, and partial sequence analysis of autotaxin, a novel motility-stimulating protein. J Biol Chem 267(4): 2524-2529.

30. Zhang G, Zhao Z, Xu S, Ni, Wang K (1999) Expression of autotaxin mRNA in human hepatocellular carcinoma. Chin Med J (Engl) 112(4): 330-332.

31. Kawagoe H, Stracke ML, Nakamura H, Sano K (1997) Expression and transcriptional regulation of the PD-L1/autotaxin gene in neuroblastoma. Cancer Res 57(12): 2515-2521.

32. Mulvaney PT, Stracke ML, Nam SW, Woodhouse E, O’Keefe M, et al. (1998) Cyclcreatine inhibits stimulated motility in tumor cells possessing creatine kinase. Int J Cancer 78(1): 46-52.

33. Yang Y, Mou LJ, Liu N, Tsao MS (1999) Autotaxin expression in non-small-cell lung cancer. Am J Respir Cell Mol Biol 21(2): 216-222.

34. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638(1): 1-19.

35. Deissler H, Blas-s-Kampmann S, Bruyneel E, Mareel M, Rajewsky MF (1999) Neural cell surface differentiation antigen gp130(β13-6) induces fibroblasts and glia to express astroglial proteins and invasive properties. PASEB 15(6): 657-666.

36. Milhalkov A, Sokolovskaya A, Yegutkin GA, Amadhil H, West A, et al. (2008) CD73 participates in cellular multisresistance program and protects against TRAIL-induced apoptosis. J Immunol 181(1): 464-475.

37. Bavaresco L, Bernardi A, Braganhol E, Cappellari AR, Rockenbach L, et al. (2008) The role of ecto-5'-nucleotidase/CD73 in glioma cell line proliferation. Mol Cell Biochem 319(1-2): 61-68.

38. Ludwig HC, Rausch S, Schalock K, Markakis E (1999) Expression of CD73 (ecto-5'-nucleotidase) in 165 glioblastomas by immunohistochemistry and electronmicroscopic histochemistry. Anticancer Res 19(3A): 1747-1752.

39. Sadej R, Spychala J, Skladanowski AC (2006) Expression of ecto-5'-nucleotidase (eN, CD73) in 73 cell lines from various stages of human melanoma. Melanoma Res 16(3): 213-222.

40. Jin D, Fan J, Wang L, Thompson LF, Liu A, et al. (2010) CD73 on tumor cells impairs antitumor T-cell responses: a novel mechanism of tumor-induced immune suppression. Cancer Res 70(6): 2245-2255.

41. Kondo T, Nakazawa T, Murata SI, Katoh R (2006) Expression of CD73 and its ecto-5'-nucleotidase activity are elevated in papillary thyroid carcinomas. Histopathology 48(5): 612-614.

42. Fukuda K, Sakaoka C, Miyagawa K, Kuriy K, Kin S, et al. (2004) Differential gene expression profiles of radioresistant oesophageal cancer cell lines established by continuous fractionated irradiation. Br J Cancer 91(8): 1543-1550.

43. Durak I, Cetin R, Canbolat O, Cetin D, Uyurtasli Z, Unal A (1994) Adenosine deaminase, 5'-nucleotidase, guanase and cytidine deaminase activities in gastric tissues from patients with gastric cancer. Cancer Lett 84(2): 199-202.

44. Eroglu A, Canbolat O, Demirci S, Kocaoglu H, Eryavuz Y, (2000) Activities of adenosine deaminase and 5'- nucleotidase in cancerous and noncancerous human colorectal tissues. Med Oncol 17(4): 319-324.

45. Spychala J, Kitajewski J (2004) Wnt and beta-catenin signaling target the expression of eN (ecto-5-nucleotidase) and induce extracellular adenosine generation. Exp Cell Res 296(2): 99-108.

46. Spychala J, Lazaro-rosi E, Ostapko-wicz A, Ayscue LH, Jin A, et al. (2004) Role of CD73 on tumor cells in regulating the hydrolysis of nucleotides in extracellular fluid. Int J Cancer 61(2): 123-127.

47. Zhou L, Jia S, Chen Y, Wang W, Wu Z, et al. (2019) The distinct role of CD73 in the progression of pancreatic cancer. J Mol Med (Berl) 97(6): 803-815.

48. Ma XL, Shen MN, Hu B, Wang BL, Yang WJ, et al. (2019) CD73 promotes hematopoietic cell carcinoma progression and metastasis via activating PI3K/AKT signaling by inducing Rap1-mediated membrane localization of PI106 and predicts poor prognosis. J Hematol Oncol 12(1): 37.

49. Ranjbar MA, Ranjbar Z, Zahed M, Nikoo-kar N (2019) CD73 is a novel marker for the diagnosis of benign and malignant salivary gland tumors. Clin Exp Dent 11(3): e213-e218.

50. Demers LM, Costa L, Chinchilli VM, Gaydos L, Curley E, et al. (1995) Biochemical markers of bone turnover in patients with metastatic breast disease. Clin Chem 41(10): 1489-1494.
51. Nathanson L, Fishman WH (1971) New observations on the Regan isoenzyme of alkaline phosphatase in cancer patients. Cancer 27(6): 1388-1397.

52. Jacoby B, Bagshawe KD (1971) Placental-type alkaline phosphatase from human tumour tissue. Clin Chim Acta 35(2): 473-481.

53. Loose JH, Damjanov I, Harris H (1984) Identity of the neoplastic alkaline phosphatase as revealed with monoclonal antibodies to the placental form of the enzyme. Am J Clin Pathol 82(2): 175-177.

54. Higashino K, Otani R, Kudo S, Hashinostume M, Hada T (1975) Hepatocellular carcinoma and a variant alkaline phosphatase. Ann Intern Med 83(1): 74-78.

55. Wahren B, Holmgren PA, Stigbrand T (1979) Placental alkaline phosphatase, alphafeto protein and carinoembryonic antigen in testicular tumors. Tissue typing by means of cytologic smears. Int J Cancer 24(6): 749-753.

56. Jeppsson A, Wahren B, Brehmer-Andersson E, Silfversward C, Stigbrand T, et al. (1984) Eutopic expression of placental-like alkaline phosphatase in testicular tumors. Int J Cancer 34(6): 757-761.

57. Roelofs H, Manes T, Janssen T, Millan JL, Oosterhuis JW, et al. (1999) Heterogeneity in alkaline phosphatase isozyme expression in human testicular germ cell tumours: An enzyme-/immunohistochemical and molecular analysis. J Pathol 189(2): 236-244.

58. Moss DW, Raymond FD, Wile DB (1995) Clinical and biological aspects of acid phosphatase. Crit Rev Clin Lab Sci 32(4): 431-467.

59. Rangel LB, Sherman-Baust CA, Wernyj RP, Schwartz DR, Cho KR, et al. (2003) Characterization of novel human ovarian cancer-specific transcripts (HOSTs) identified by serial analysis of gene expression. Oncogene 22(46): 7225-7232.

60. Jarzab B, Wiench M, Fujawrwick K, Simek K, Jarzab M, et al. (2005) Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic implications. Cancer Res 65(4): 1587-1597.

61. Chen DR, Chen SY, Kuo SJ, Teng YH, Tsai HT, et al. (2010) SLC34A2 as a novel marker for diagnosis and targeted therapy of breast cancer. Anticancer Res 30(10): 4135-4140.

62. Jiang Z, Hao Y, Ding X, Zhang Z, Liu P, et al. (2016) The effects and mechanisms of SLC34A2 on tumorigenicity in human non-small cell lung cancer stem cells. Tumour Biol 37(8): 10383-10392.

63. Soares IC, Simoes K, de Souza JE, Okamoto OK, Wakamatsu A, et al. (2012) In silico analysis and immunohistochemical characterization of NaPi2b protein expression in ovarian carcinoma with monoclonal antibody Mx35. Appl Immunohistochem Mol Morphol 20(2): 165-172.

64. Candeal E, Caldas YA, Guillen N, Levi M, Sorribas V (2014) Na+- independent phosphate transport in Caco2BEC cells. Am J Physiol Cell Physiol 307(12): C1113-1122.

65. Ito M, Matsuka N, Izuka M, Haito S, Sakai Y, et al. (2005) Characterization of inorganic phosphate transport in osteoclast-like cells. Am J Physiol Cell Physiol 288(4): C921-931.

66. Torriani A (1960) Influence of inorganic phosphate in the formation of phosphatases by Escherichia coli. Biochim Biophys Acta 38: 460-469.

67. Moog F, Glazier HS (1972) Phosphate absorption and alkaline phosphatase activity in the small intestine of the adult mouse and of the chick embryo and hatched chick. Comp Biochem Physiol A Comp Physiol 42(2): 321-336.

68. Valinietze MY, Bauman VK, Galiunovsky YY (1985) Absence of alkaline phosphatase-linked inorganic phosphate transport in the chick jejunum. Digestion 31(4): 182-188.

For possible submissions Click below:

Submit Article