Gut microbiota composition is associated with environmental landscape in honey bees

Julia C Jones1 | Carmelo Fruciano2 | Falk Hildebrand3 | Hasan Al Toufalilia1 | Nicholas J Balfour1 | Peer Bork3,4,5 | Philipp Engel6 | Francis LW Ratnieks1 | William OH Hughes1

1School of Life Sciences, University of Sussex, Brighton, UK
2School of Earth, Environment and Biological Sciences, Queensland University of Technology, Brisbane, QLD, Australia
3European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
4Max Delbrück Centre for Molecular Medicine, Berlin, Germany
5Department of Bioinformatics, University of Würzburg, Würzburg, Germany
6Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland

Correspondence
Julia C Jones, School of Life Sciences, University of Sussex, Brighton, UK.
Email: julia.jones@sussex.ac.uk

Funding information
Marie Curie IEF; C.B. Dennis British Beekeepers’ Research Trust

Abstract
There is growing recognition that the gut microbial community regulates a wide variety of important functions in its animal hosts, including host health. However, the complex interactions between gut microbes and environment are still unclear. Honey bees are ecologically and economically important pollinators that host a core gut microbial community that is thought to be constant across populations. Here, we examined whether the composition of the gut microbial community of honey bees is affected by the environmental landscape the bees are exposed to. We placed honey bee colonies reared under identical conditions in two main landscape types for 6 weeks: either oilseed rape farmland or agricultural farmland distant to fields of flowering oilseed rape. The gut bacterial communities of adult bees from the colonies were then characterized and compared based on amplicon sequencing of the 16S rRNA gene. While previous studies have delineated a characteristic core set of bacteria inhabiting the honey bee gut, our results suggest that the broad environment that bees are exposed to has some influence on the relative abundance of some members of that microbial community. This includes known dominant taxa thought to have functions in nutrition and health. Our results provide evidence for an influence of landscape exposure on honey bee microbial community and highlight the potential effect of exposure to different environmental parameters, such as forage type and neonicotinoid pesticides, on key honey bee gut bacteria. This work emphasizes the complexity of the relationship between the host, its gut bacteria, and the environment and identifies target microbial taxa for functional analyses.

Keywords
amplicon sequencing, bacterial microbiota, honey bee, landscape exposure, oilseed rape
1 | INTRODUCTION

Individual animals are often considered discrete entities; however, the microbial symbionts they host are increasingly recognized as key components in their evolutionary and ecological success (Bosch & McFall-Ngai, 2011; Brucker & Bordenstein, 2012; Franchini, Fruciano, Frickey, Jones, & Meyer, 2014; Gibson & Hunter, 2010; Hildebrand et al., 2012; Moran, McCutcheon, & Nakabayashi, 2008; Moya, Peretó, Gil, & Latorre, 2008). Insects harbor bacteria with diverse roles ranging from nutrition to defense, and with influences on reproduction and speciation (e.g., Brucker & Bordenstein, 2013; Feldhaar, 2011; Jaenike, Unckless, Cockburn, Boelio, & Perlman, 2010). Many of these symbionts are part of the gut bacterial community and in social insects in general, the gut microbial community has been reported to be associated with a range of traits including invasive behaviors, nest sanitation, longevity, fecundity, and health (Cox-Foster et al., 2007; Engel et al., 2016; Ishak et al., 2011; Martinson et al., 2011; Rosengaus, Zecher, Schultheis, Brucker, & Bordenstein, 2011).

Social insects, and specifically honey bees, are important models for further determining the extraordinary range of influences of microbial communities on their hosts. Recent honey bee colony losses worldwide call for a more in-depth understanding of the pathogenic and mutualistic components of the microbial communities of this ecologically and economically important pollinator (Gallai, Salles, Settele, & Vaissière, 2009; Ollerton, Winfree, & Tarrant, 2011), and specifically the association between the environment and microbial community (Engel et al., 2016). Importantly, the ecological and evolutionary processes shaping the microbial community and host associations, ranging along a spectrum from tightly coevolved obligate relationships to facultative relationships, are as yet not well understood.

Losses of honey bees and other pollinators are thought to be due to exposure to multiple interacting stressors, including disease, pesticide exposure, flower availability, and the importation of nonnative bees (Goulson, Nicholls, Botías, & Rotheray, 2015). One factor that is likely shaped by these different stressors, and is critical to the health and success of colonies, is the composition and function of their microbial community (e.g., Engel, Martinson, & Moran, 2012; Koch & Schmid-Hempel, 2011b; Moran, 2015). In recent surveys, adult honey bees and bumblebees have been shown to harbor a relatively simple and unique gut microbiota that is not present in solitary bees (Cox-Foster et al., 2007; Jeyaprakash, Hoy, & Allsopp, 2003; Koch & Schmid-Hempel, 2011a; Martinson et al., 2011; Mohr & Tebbe, 2006). Sociality has therefore been suggested to facilitate the vertical transmission of gut bacteria and allow for the coevolution of the host and gut bacteria that may be critical to bee health (Koch & Schmid-Hempel, 2011b; Kwong et al., 2017; Martinson et al., 2011; Moran, 2015; Olofsson & Vásquez, 2008). Genomic and metagenomic analyses suggest that different taxa within this core microbial community are likely involved in different functions (Ellegaard et al., 2015; Engel, Bartlett, & Moran, 2015; Engel, Stepanauskas, & Moran, 2014; Engel et al., 2012; Kwong, Engel, Koch, & Moran, 2014; Lee, Rusch, Stewart, Mattila, & Newton, 2015), and therefore host exposure to different ecological pressures may select for flexibility in the abundance of the different gut microbial taxa. Specifically, a combination of 16S rRNA community surveys and metagenomics studies has shown that the gut community of worker honey bees is dominated by nine bacterial species clusters that make up 95%–98% of the community (Babendreier, Joller, Romeis, Bigler, & Widmer, 2006; Corby-Harris, Maes, & Anderson, 2014; Jeyaprakash et al., 2003; Martinson et al., 2011; Moran, Hansen, Powell, & Sabree, 2012; Sabree, Hansen, & Moran, 2012). These include five core species clusters, two abundant and ubiquitous gram-negative species clusters from the Proteobacteria phylum, Sodgrassella alvi and Gilliamella apicola (Kwong & Moran, 2013), two abundant and ubiquitous gram-positive species clusters in the Firmicutes Phylum referred to as Lactobacillus Firm-4, and Lactobacillus Firm-5 clades (Babendreier et al., 2006; Martinson et al., 2011), and the species cluster Bifidobacterium asteroides from the Actinobacterium phylum (Bottacini et al., 2012; Scardovi & Trovatelli, 1969). Four additional species clusters that are prevalent but can occur at lower frequencies are the proteobacteria – Frischella perrara, Bartonella apis, and two Acetobacteraceae, Alpha2.1, and Alpha 2.2 (Parasaccharibacter apium) (Corby-Harris, Synder, et al., 2014; Engel, Kwong, & Moran, 2013; Kešnerová, Moritz, & Engel, 2016; Martinson et al., 2011). These four species clusters have been found to be either restricted in their niches in the bee gut, or are more generalists that are also found in the hive environment, as in Alpha 2.2 in particular (Corby-Harris, Synder, et al., 2014; Kwong & Moran, 2016).

Importantly, the current paradigm is that the core bacterial community of honey bees is relatively constant across populations and geographical areas (Cox-Foster et al., 2007; Jeyaprakash et al., 2003; Martinson et al., 2011; Mohr & Tebbe, 2006; Moran et al., 2012; Sabree et al., 2012). Here, we test this by comparing the gut microbial communities of honey bees in two landscapes using 16S rRNA gene profiling. We focus on exposure to the mass-flowering crop oilseed rape (OSR, also known as canola). OSR is one of the most important crops worldwide occupying 3% of the land area in the United Kingdom (DEFRA 2013), and often dominating the local landscape. It has also been a focus of recent debate over the application of neonicotinoid pesticides that have been implicated in pollinator declines (Suryanarayanan, 2015). We therefore compared the gut bacterial communities of honey bees exposed to OSR farms with those from agricultural environments distant to fields of flowering OSR.

2 | MATERIALS AND METHODS

2.1 | Sites and sampling

Thirty-six honey bee colonies were maintained using standard beekeeping methods by the same beekeeper at the University of Sussex for 1 year prior to the experiment. As detailed in Balfour et al. (2017), colonies were equalized on 31 March and 1 April 2014 during unfavorable foraging conditions to ensure that the vast majority of foragers were within the hive and worker population could be assessed. Each colony had a marked laying queen, four frames of brood, six frames of adult worker bees, two–three frames of honey, 0.5–1 frames of pollen, and two frames of empty wax foundation comb. Visual inspection
suggested all colonies were disease free. Colonies differed in genetic background but were randomly allocated to landscapes so differences in genetic background would not confound results. The honey bee colonies were then placed at six different locations in two landscape types in the southern UK (on 2–4 April 2014; Figure 1): (i) farmland areas immediately adjacent to (<5 m) large (≥0.38 km²) oilseed rape (OSR) fields that were in flower and had been seed-treated with thiamethoxam (Cruiser, Syngenta Ltd.); (ii) agricultural land distant to OSR (Distant) with the nearest OSR field boundaries being located ≥1.25 km from hives, and therefore little visited as average foraging distances are short; <1.1 km, during the OSR blooming period (April–May) (Couvillon, Schürch, & Ratnieks, 2014). All study sites were selected to be as similar as possible in other landscape factors, including elevation, soil type, exposure, and land use. Information on pesticide usage was supplied by local agronomists and farm owners. Adult forager bees found on the exterior of the colony were sampled from each apiary just after peak OSR flowering time when workers at the OSR farms had been foraging and storing nectar and pollen from the OSR. Adult forager bee samples were immediately frozen and stored for extraction and sequencing after collection (each of the samples analyses is a pool of three bees per colony, see Table S1 for sampling details). Pollen pellets, collected from returning foragers during early and full OSR bloom using a trap fitted to each hive, were identified to determine the average amount of OSR pollen per apiary. This was conducted for both landscape categories. The average neonicotinoid residues (thiamethoxam + clothianidin) were quantified in pollen and honey samples for both landscape types in order to determine residues in each landscape (OSR; Distant). Stored honey samples were taken from each hive on May 15, near the end of OSR bloom to reflect foraging during the bloom, and pooled across colonies per apiary. Specifically, sealed honey was collected from multiple previously empty frames and locations within each colony to provide a representative sample from the OSR bloom period.

As outlined in Balfour et al. (2017), samples were analyzed for neonicotinoid concentrations (thiamethoxam and its metabolite clothianidin) by SAL (Scientific Analysis Laboratory Ltd., Cambridge), an accredited (UK Accreditation Service) contract analytical laboratory. SAL’s extraction method is based on the QuEChERS extraction technique which uses water and acidified acetonitrile as an extraction solvent (Kamel, 2010). Magnesium sulfate and ammonium acetate (as a buffer) were added to induce solvent partitioning. Quantitation was assessed against a series of known calibration standards dissolved in a methanol:water solution. Deuterated clothianidin (Clothianidin-d3) was used as an internal standard preextraction, to correct for losses during extraction and to compensate for matrix effects (suppression or enhancement) during analysis. The limit of quantification (LOQ) and detection (LOD) were 0.1 μg/kg for both thiamethoxam and clothianidin and for both pollen and honey.

2.2 | DNA extraction, amplification, and sequencing

After thawing for 1–2 min, the gut of each individual, from the midgut to the hindgut, and not including the crop, was dissected under sterile conditions. DNA extractions of individual guts were performed immediately after dissection using the Zymo Research Tissue and Insect DNA MiniPrep (Cambridge Biosciences, Cambridge, UK) following the manufacturer’s protocol. Illumina libraries were prepared following the method outlined by Caporaso et al., 2012 (Caporaso et al., 2012). Briefly, the bacterial V4 region of the 16S ribosomal gene was amplified from each DNA template in triplicate using the universal primers 515F and 806R tagged with Illumina barcoded adapters using the PCR conditions 95°C for 10 min, 35 cycles of 95°C for 30 s, 59°C for 30 s, 72°C for 1 min, and a final extension of 72°C for 7 min. PCR products were sent to the Plateforme d’Analyses Génomiques of the Institut de Biologie Intégrative et des Systèmes (IBIS, Université Laval, Quebec City, Canada, http://www.ibis.ulaval.ca/?pg=sequencage). The amplicons were purified using the Axygen Axyprep Mag PCR clean-up kit (Corning). The quality of the products was assessed using a DNA7500 chip on a Bioanalyser 2100 (Agilent Technologies), quantified using a nanodrop (Thermo Scientific) and then pooled in an equimolar ratio. The quality of the final amplicon pool was rechecked as previously described, quantified using Quant-IT picogreen dsDNA Assay (Thermo Scientific) and sequenced on an Illumina MiSeq (Illumina) using a v3 600 cycle kit. All sequences have been deposited in NCBI’s Sequence Read Archive (SRA PRJEB23223).

2.3 | Sequence processing and characterization of microbial communities

The LotuS pipeline was used for amplicon sequence processing (Hildebrand, Tadeo, Voigt, Bork, & Raes, 2014) using the following optional LotuS command line options: “p miSeq derepMin 8:1:4:2:3:3 –simBasedTaxo 2 –refDB SLV thr 8.” The pipeline was used to de-multiplex reads with modified quality filtering to accommodate for the increased MiSeq sequence length, trimming reads to 220 bp, and rejecting reads with an accumulated error <1, requiring unique reads to be present at least eight times in one sample, four times in two, or three times in three separate samples.
In total, 11,636,723 reads were clustered at sequence level with UPARSE (Edgar, 2013), creating a set of de novo OTUs that can later be compared to databases of known sequences. Chimeric OTUs were removed against a specialized database of high-quality reference sequences (http://drive5.com/uchime/rdp_gold.fa) using uchime (Edgar, Haas, Clemente, Quince, & Knight, 2011). High-quality paired seed sequences were subsequently extracted for each OTU, merged with FLASH (Magoc & Salzberg, 2011), and aligned with Lambda (Hauswedell, Singer, & Reineert, 2014) against a custom 16S rRNA database that included representatives of all major known bacterial taxa associated with honey bees (developed by P. Engel, publicly available online on the LotuS website). Additionally, all sequences were aligned against the Greengenes and Silva SSU databases using Lambda (Hauswedell et al., 2014) as well as classified with RDP classifier (Wang, Garrity, & Tiedje, 2007) in order to detect and exclude any chloroplast or mitochondrial sequences in downstream analyses. The LotuS least common ancestor algorithm was used to assign a taxonomic identity based on the alignments to known bee taxa. OTUs were summed to genus, family, class, and phylum level per sample, according to their taxonomic classification.

2.4 | Statistical analyses and comparisons of microbial communities

All analyses, unless otherwise specified, were conducted using the LotuS outputs in R with the packages vegan, phyloseq, phangorn, and ggplot2 (Castro-Conde & de Uña Álvarez, 2014; McMurdie & Holmes, 2013; Oksanen et al., 2016; Paradis, Claude, & Strimmer, 2004; Schliep, 2011; Wickham, 2009). To reduce errors in estimation and false positives due to different numbers of sequences per individual, samples were rarefied to the smallest number of sequences per individual observed. To test for the consistency of the rarefaction, samples for each dataset were rarefied five times. For each of the rarefied matrices, pairwise sample dissimilarity matrices (Bray-Curtis, UniFrac distances) among individuals were computed. Finally, the dissimilarity matrix obtained from the first rarefied dataset was compared with each of the dissimilarity matrices obtained from the other rarefied datasets by computing their correlation and testing its significance with a Mantel test (Mantel, 1967). Both the exploratory analyses and the tests of hypotheses described below were also performed on all the rarefied samples and inspected for consistency. Comparisons between rarefied samples using pairwise distances were found to be globally concordant (correlation 0.69–1; Mantel test significant in all cases). The results of the analyses were also always consistent across different rarefactions. For these reasons, only the results based on the first rarefied sample will be presented here.

To investigate patterns of microbial community diversity, we computed dissimilarity matrices using Bray-Curtis dissimilarity and UniFrac weighted and unweighted distances. Bray-Curtis dissimilarity reflects community composition, while UniFrac distances take into account the phylogenetic relationships among members of the bacterial communities (Lozupone & Knight, 2005). UniFrac distances are then either weighted by OTU abundance or unweighted, where only the presence/absence of taxa/OTUs is considered. These dissimilarity matrices were used to produce exploratory ordinations using nonmetric multidimensional scaling (nMDS) (Kruskal, 1964a,b). Hypothesis testing was carried out using permutational MANOVA (PERMANOVA) (Anderson, 2001). This approach is analogous to multivariate analysis of variance (MANOVA) but uses a dissimilarity matrix as the dependent variable (as opposed to a set of continuous variables as in MANOVA). Being analogous to a MANOVA, in PERMANOVA variation in distances is partitioned in terms (two factors – landscape type and site in our case, with site nested in landscape type) and tested for significance using a permutational procedure (1,000 permutations). In addition, we calculated the Shannon diversity index, a commonly used metric where both taxon richness and evenness of OTUs in each sample is accounted for, for each individual with the “diversity” function in vegan and tested for differences between groups using ANOVA.

To identify variation in bacterial taxa in honey bees exposed to different landscapes, we used the raw counts of the number of sequences that were assigned to the different OTUs. To test which OTUs were differentially represented between the two groups, we used two different procedures (Weiss et al., 2017). First, we used the procedure suggested by McMurdie & Holmes, (2014) on a dataset of nonrarefied samples where taxa with <500 reads were excluded. This procedure overcomes the need for rarefaction and uses the method implemented in the software DESeq2 (Love, Huber, & Anders, 2014), which is normally used to detect differential gene expression in RNAseq data. The DESeq2 method fits a model based on negative binomial distribution to test for differences in gene expression (in this case read counts) between two a priori defined groups. We then controlled for false discovery rate using the Benjamini and Hochberg procedure (Benjamini & Hochberg, 1995). It has recently been shown that the procedure based on DESeq2 has the advantage of increased sensitivity on smaller data sets (<20 samples per group) but tends toward a higher false discovery rate with more samples, very uneven (>10×) library sizes and or compositional effects (Weiss et al., 2017). Because of these potential limitations, we also used the analysis of composition of microbiomes (ANCOM) (Mandal, Van Treuren, & White, 2015). This procedure has recently been found to appropriately control for false discovery rate (Weiss et al., 2017). ANCOM compares the log ratio of the abundance of each taxon to the abundance of all the remaining taxa one at a time, and the Mann–Whitney U test is then calculated on each log ratio (Mandal et al., 2015; Weiss et al., 2017). Here, we used the R implementation of the procedure (version 1.1-3).

3 | RESULTS

3.1 | Bacterial sequences and classification

We obtained a total of 11,636,723 16S rRNA V4 region sequences from the 108 sampled bees from the two landscape exposure conditions. After quality filtering, the number of sequences obtained per sample ranged from 236,463 to 400,075 reads which clustered in a total of 449 different OTUs. Unsurprisingly, the major bacterial taxa previously
found to dominate the gut community of honey bees were represented in high proportions in the samples studied here (Figure 2). Using a custom honey bee bacterial database of currently available genomes of bee gut bacteria, we were able to assign 92% of the sequence reads to species level (99.93% to phylum level, 98% to family, and 95% to genus level) and verify that the major previously identified taxa or strains were present in our data (Neisseriaceae, *S. alvi*; Orbaceae, *G. apicola* and *F. perrara*; Lactobacillaceae, Firm-4 and Firm-5 species groups (genus *Lactobacillus* and *Lactobacillus kunkeei*); *Bifidobacteriaceae*; *Rhizobiales*; *Bartonellaceae* (Alpha 1; including *B. apis*); *Acetobacteraceae* (Alpha 2.1 and 2.2); *Bifidobacteriaceae* *Lactobacillus*; *Frischella perrara*; *Snodgrassella alvi*; *Gilliamella apicola*; *Firm 4* and *Firm 5* species groups (genus *Lactobacillus* and *Lactobacillus kunkeei*); *Bifidobacteriaceae*; *Rhizobiales*; *Bartonellaceae* (Alpha 1; including *B. apis*); *Acetobacteraceae* (Alpha 2.1 and 2.2), see also (Moran, 2015) and Figure 2).

3.2 Landscape exposure and microbiomes

In honey bee colonies placed on OSR farms, 49% of the pollen collected was oilseed rape. Colonies located distant from OSR farms collected significantly less oilseed rape pollen than colonies adjacent to OSR farms (9%; ANOVA, *F*$_{1,5}$ = 14.1, *p* = .020; see also Balfour et al., 2017). Further, pollen analysis also showed that the main alternative forage source across all six study sites were *Prunus spinosa* (~15%) and *Salix* spp. (~15%). Other less common species (<5% across study sites) included as follows: *Allium ursinum* (site D3), *Crocus* spp. (A1), *Endymion nonscriptus* (A1, D1, D2), *Taraxacum officinale* (ubiquitous), *Malus domestica* (A2), *Pyrus communis* (A1), and *Vicia faba* (A3, D2). The average neonicotinoid residues (thiamethoxam + clothianidin) of the stored pollen and honey samples in the colonies during OSR bloom were on the low side of the range previously reported (Botías et al., 2015; Cutler & Scott-Dupree, 2014; Pilling, Campbell, Coulson, Ruddle, & Tornier, 2013; Rolke, Fuchs, Grünewald, Gao, & Blenau, 2016; Thompson & Harrington, 2013). The average residues from colonies maintained on OSR farms was 0.76 ppb, significantly greater than residues found at apiaries distant to OSR farms where the majority of samples collected were below detection levels (<0.1 ppb) with an average of 0.21 ppb (ANOVA, *F*$_{1,5}$ = 8.1, *p* = .048; see also Balfour et al., 2017).

Honey bees from the two landscape types showed significant differences in their gut microbial communities using two comparisons (PERMANOVA: *p* = .004 using Bray–Curtis dissimilarity indices, *p* = .042 using unweighted UniFrac distances, Table 1), the PERMANOVA comparison using weighted UniFrac distances was not significant (*p* = .642). We also find substantial – and significant – variation among sites and a substantial proportion of residual variance (Table 1). In fact differences between landscape types accounted for 1%–6% of total variance, depending on the dissimilarity used, while differences between individual sites accounted for a higher percentage of the total variance (17%–27%; Table 1). The nonmetric multidimensional scaling (nMDS) plot shows a degree of separation, but also overlap, in the microbial communities of bees exposed to OSR farms and regions distant from OSR farms (Figure 3). Gut microbiome diversity was not significantly different in bees exposed to the different landscape types (ANOVA: *F*$_{1,34}$ = 0.07, *p* = .79).

![FIGURE 2 Taxonomic composition of the gut microbiome of honey bees exposed to different landscapes. The proportion of each taxa in the total microbiome is represented as the proportion of the colored bar. OSR, oilseed rape (OSR) farmland; Distant, areas distant from OSR farms. Individual apiaries are indicated with a gray bar and label](image-url)
TABLE 1 Comparison of variation in taxa/OTUs diversity among different landscape types and sites (as a factor nested in landscape type; PERMANOVA based on Bray–Curtis dissimilarity indices and UniFrac weighted and unweighted distances)

PERMANOVA	df	SS	MS	F	R^2	p
Landscape (Bray–Curtis)	4	1.30	0.30	0.74	1.00	
Site	30	0.03	0.26	0.06	0.20	.001
Residuals	35	1.00				
Total	35	1.30				
Landscape (Unifrac, unweighted)	4	0.08	0.08	2.19	0.06	.042
Site	30	0.04	0.04	0.04	0.04	.042
Residuals	35	1.00				
Total	35	1.00				
Landscape (Unifrac, weighted)	4	0.01	0.01	0.53	0.01	.642
Site	30	0.04	0.04	0.04	0.04	.016
Residuals	35	0.43				
Total	35	0.43				

FIGURE 3 Nonmetric multidimensional scaling plot (based on Bray–Curtis distances) of OTU frequency for the gut microbial communities of honey bees in oilseed rape farmland (triangles) or farmland distant from oilseed rape (circles)

3.3 | Which gut bacteria differ in bees exposed to different landscapes?

To identify which gut bacterial taxa differed between bees exposed to the two different landscape types focussed on in this study, we used the test implemented in DESeq2 (Table S2, Figure 2) and the ANCOM procedure. Notably, bacterial taxa belonging to the phylum Proteobacteria (the recently described species B. apis (Kešnerová et al., 2016), were found to be significantly different between bees foraging on OSR farms and those from areas distant to OSR farms under both ANCOM- and the DESeq2-based procedure. Specifically, one of the nine dominant species clusters of the bee gut microbiota, B. apis, (Kwong & Moran, 2016) was higher in relative abundance in bees exposed to agricultural landscapes distant to OSR (Distant) than bees exposed to OSR farms (OSR; Table S2, Figure 2). In contrast, taxa assigned to the same Class (Alphaproteobacteria) as B. apis were found at higher relative abundance in bees exposed to OSR farms using the DESeq2 test only (although we note that very few sequence reads were assigned to the Alphaproteobacteria, ≪0.05%).

Under the DESeq2 test, taxa belonging to the Acetobacteraceae, Alpha 2.1, were also found at a higher relative abundance in bees foraging on OSR. Acetobacteraceae, Alpha 2.2, were in contrast higher in relative abundance in bees foraging in agricultural landscapes distant to OSR farms, and much lower in abundance overall compared to Alpha 2.1 (Table S2). Again using DESeq2, bacteria belonging to the Lactobacillaceae Family, Phylum Firmicutes (L. kunkeei), known to be a dominant crop (foregut) bacteria, also common in hive materials and nectar (Corby-Harris, Maes, et al., 2014; Kwong & Moran, 2016) were also found to be higher in relative abundance in bees exposed to agricultural landscapes distant to OSR compared to bees exposed to OSR farms. However, although included in our more stringent dataset (where taxa with <500 reads were excluded), very few sequence reads were assigned to L. kunkeei (≪0.05%) with the exception of one sample (~10%; LS30, Distant). In contrast, taxa belonging to the recently described bee associated species Apibacter adventoris were found at higher relative abundance in bees exposed to OSR farms. However, we note that similar to what was found in L. kunkeei, A. adventoris read numbers were zero or very low in most bee samples (≪0.05% total reads), only a very small number of samples had read numbers in the hundreds (>0.05% total reads), and one single sample had over 2,000 reads (≫0.5% of total reads). Under the ANCOM test, bacteria assigned to the Lactobacillales Order (Phylum Firmicutes) were found to be higher in bees exposed to OSR farms. However, again read numbers in this taxa were very low (under 10) in almost all bee samples and show a severely skewed distributions and a few outliers.

4 | DISCUSSION

In this study, we investigate the association between the gut microbiome and environmental landscape. We find that bees exposed to different landscape types and apiary sites exhibit significant differences in their gut microbial communities, although the variance explained by landscape type is relatively low. Specifically, we find that some taxa belonging to dominant members of the bee gut microbiota are differentially represented in bees foraging on the mass-flowering crop oilseed rape, compared to those not foraging on this crop.

Our results lend further support to the presence of a core gut microbial community in honey bees with the main taxa previously
characterized also being found in our samples (Moran, 2015). High consistency in the honey bee microbiome suggests that mutualistic relationships exist between the host and at least some members of the community, and comparative analysis of gene contents conducted in previous studies suggest beneficial roles in nutrition and digestion, while experiments with bumblebees have shown gut bacterial taxa offer protection from pathogens (Engel et al., 2012; Koch & Schmid-Hempel, 2011b, 2012; Martinson et al., 2011; Moran, 2015). This may then imply that factors causing deviations from the normal microbial community in social bees are detrimental.

4.1 | Microbial association with landscape exposure

We found that some members of the dominant microbial community of honey bee workers differ in relative abundance according to landscape exposure. These results are concordant across two different metrics (Bray–Curtis dissimilarities, Unifrac unweighted distances). We also find no difference in microbial community diversity (Shannon diversity index) between landscape types. Further, we also find differences in honey bee microbial diversity depending on site differences. Overall these results suggest that the environment that bees are exposed to, including environmental differences between individual sites, may affect their microbial community, particularly the relative abundance of some key taxa.

Specifically, here, we focus on reporting taxa found to be different in abundance between bees foraging on landscape types where landscape differences are known (i.e. OSR vs. not foraging on OSR), rather than between individual sites. Both tests of abundance we used show that honey bee workers foraging on OSR farms had a lower relative abundance of a dominant member of the bee gut community, an Alphaproteobacteria species B. apis, than bees not foraging on OSR. Bartonella apis shares >95% 16S rRNA sequence similarity with other species of the genus Bartonella which are a group of mammalian pathogens transmitted by bloodsucking arthropods (Kešnerová et al., 2016). Further, potentially key in the context of different environments, it has recently been shown that B. apis encodes genes which may be involved in the degradation of secondary plant metabolites (Segers et al. 2017). By contrast, taxa assigned to the same Class as B. apis (Alphaproteobacteria) were higher in relative abundance in bees foraging on OSR than those not foraging on OSR (supported singly by DESeq2 and therefore reported more cautiously). Also under the DESeq2 analysis only, taxa assigned to the Acetobacteraceae, Alpha 2.1, (also class Alphaproteobacteria) were also found at higher relative abundances in bees foraging on OSR. The Alpha 2.1 group are predominantly found in the adult gut of several bee species, but also in nectar, pollen, hive materials, and larvae (reviewed in (Kwong & Moran, 2016). Alpha 2.2 (Acetobacteraceae) on the other hand were found in higher relative abundance in bees exposed to agricultural landscapes distant to OSR farms. Unsurprisingly, Alpha 2.2 were low in abundance overall in the foraging worker gut communities studied here as this taxa has been designated as a core hive bacterium that is specific to bees that feed the brood with royal jelly secreted from nurse hypopharyngeal glands (Corby-Harris, Synder, et al., 2014).
aromatic compounds. In a recent comparative genomics study of Bartonella, it was shown that B. apis possess pathways for the degradation of aromatic compounds and that these pathways may facilitate the breakdown of specific pollen components (Segers et al. 2017). It is therefore plausible that some of the differences found here between gut bacterial communities of bees exposed to different landscapes, and between individual apiary sites, relate to differences in diet and pesticide exposure, however direct experimental tests are required to confirm this. Also noteworthy, is that the taxa represented in different relative abundances in the different landscape types in the current study do not overlap with taxa suggested to trend toward increased prevalence and diversity in more productive colonies (e.g. Lactobacillus species such as Firm-4) (Horton, Oliver, & Newton, 2015). Interestingly, Horton et al., (2015) also suggest that overall colony productivity is not consistently correlated with forager gut microbial community.

Mass-flowering crops such as OSR have been shown to enhance pollinator abundance because they provide additional pollen and nectar resources (Holzschuh, Dormann, Tscharntke, & Steffan-Dewenter, 2013; Riedinger, Renner, Rundlöf, Steffan-Dewenter, & Holzschuh, 2014; Schürch, Couvillon, & Rati nei k s, 2016; Westphal, Steffan-Dewenter, & Tscharntke, 2003). Therefore, greater abundance of forage and of a specific forage type may drive microbial community composition. The nutritional quality of pollen, also including the alternative pollen resources detected for different sites, may also affect community composition. For example, if bees need to consume more pollen to acquire sufficient nutrients, more pollen may potentially accumulate in the rectum and in turn more bacteria may be able to colonize the rectum. In addition, higher stress levels have been found to cause a reduction in microbial community diversity in other systems (Stothart et al., 2016) and could potentially cause a reduction in the ability of worker bees to combat infections. Honey bees exposed to the neonicotinoid imidacloprid, for example, have been reported to show an increase in infection of Nosema spp gut parasites (Pettis, vanEngelsdorp, Johnson, & Dively, 2012). We found no difference in microbial community diversity between the different environments, but it is important to note that the interaction between infection and microbial community is complex and can operate in both directions.

To date, host environmental habitat and the ecological conditions shaping the microbial community in the field (as opposed to lab reared hosts) has received comparatively little attention. However, habitat type (seminal type vs. cranberry farm agricultural sites in the USA) was found to have little effect on bumblebee gut microbiota (Cariveau, Powell, Koch, Winfree, & Mor an, 2014). By comparison, in a recent characterization of a large number of insects and their associated gut bacteria, relative bacterial abundances in the gut were found to vary according to the environmental habitats of the insects (Yun et al., 2014). This variation was suggested to be most likely associated with the levels of oxygen available in the habitat of the insects (Yun et al., 2014).

We provide evidence for some influence of environmental exposure, broad landscape type, and also different individual apiary sites, on honey bee microbial community. Our results underscore the possibility that different landscape parameters, such as forage type and neonicotinoid pesticide exposure, may influence dominant honey bee gut bacteria and that future laboratory-based studies are imperative for understanding what is driving these differences. This work highlights the complex interplay of the host, its gut bacteria, and the environment, and identifies focal bacteria taxa as targets for functional analyses.

ACKNOWLEDGMENTS

We thank Luciano Scandian for beekeeping assistance. We are grateful to Thierry Gosselin for bioinformatics support in the initial stages of this project. This work was funded by a Marie Curie IEF (SoDoLS - 626555) (UCJ) and the C.B. Dennis British Beekeepers’ Research Trust (JCJ, WOHH).

CONFLICT OF INTEREST

None declared.

AUTHOR CONTRIBUTION

JJC conducted study design, fieldwork, laboratory work, analyses, and wrote the paper. CF conducted analyses and wrote the paper. FH conducted analyses and wrote the paper. HAT conducted fieldwork and analyses. NJB conducted fieldwork and analyses. PB contributed to writing and editing the paper. PE developed the custom honey bee bacterial database and contributed to writing the paper. FLWR conducted study design. WOHH conducted study design and wrote the paper.

ORCID

Julia C Jones http://orcid.org/0000-0002-3557-1941
Carmelo Fruciano http://orcid.org/0000-0002-1659-9746

REFERENCES

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology, 26, 32–46. https://doi.org/10.1111/1442-9993.2001.01070.pp.x
Babendreier, D., Joller, D., Romeis, J. R., Bigler, F., & Widmer, F. (2006). Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology Ecology, 59, 600–610. https://doi.org/10.1111/j.1574-6941.2006.00249.x
Balfour, N. J., Al Toufailia, H., Scandian, L., Blanchard, H. E., Jesse, M. P., Carreck, N. L., & Ratnieks, F. L. W. (2017). Landscape scale study of the net effect of proximity to a neonicotinoid-treated crop on bee colony health. Environmental Science & Technology, 51, 10825–10833. https://doi.org/10.1021/acs.est.7b02236
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B, 57, 289–300. http://www.jstor.org/stable/2346101
Bosch, T. C. G., & McFall-Ngai, M. J. (2011). Metaorganisms as the new frontier. Zoology, 114, 185–190. https://doi.org/10.1016/j.zool.2011.04.001
Botías, C., David, A., Horwood, J., Abdul-Sada, A., Nicholls, E., Hill, E., & Goulson, D. (2015). Neonicotinoid residues in wildflowers, a potential
route of chronic exposure for bees. *Environmental Science & Technology*, 49, 12731–12740. https://doi.org/10.1021/acs.est.5b03459
Bottaciní, F., Milani, C., Turrini, F., Sánchez, B., Foroni, E., Duranti, S., ... Ventura, M. (2012). *Bifidobacterium asteroides PRL2011* genome analysis reveals clues for colonization of the insect gut. *PLoS ONE*, 7, e44229. https://doi.org/10.1371/journal.pone.0044229
Brucker, R. M., & Bordenstein, S. R. (2012). Speciation by symbiosis. *Trends in Ecology & Evolution*, 27, 443–451. https://doi.org/10.1016/j.tree.2012.03.011
Brucker, R. M., & Bordenstein, S. R. (2013). The holobionic genesis of speciation: Gut bacteria cause hybrid lethality in the genus Nasonia. *Science*, 341, 667–669. https://doi.org/10.1126/science.1240659
Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., ... Knight, R. (2012). Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. *The ISME Journal*, 6, 1621–1624. https://doi.org/10.1038/ismej.2012.8
Cariveau, D. P., Powell, J. E., Koch, H., Winfree, R., & Moran, N. A. (2014). Variation in gut microbial communities and their association with pathogen infection in wild bumble bees (*Bombus*). *The ISME Journal*, 8, 2369–2379. https://doi.org/10.1038/ismej.2014.68
Castro-Conde, I., & de Uña Álvarez, J. (2014). sgof: Multiple hypothesis testing. *R* package version 2.1.1. https://cran.r-project.org/packages/sgof/
Corby-Harris, V., Maes, P., & Anderson, K. E. (2014). Bacterial community response does not predict the overall health of honeybee colonies. *PLoS ONE*, 9, e95056. https://doi.org/10.1371/journal.pone.0095056
Corby-Harris, V., Snyder, L. A., Schwan, M. R., Maes, P., McFrederick, Q. S., & Moran, N. A. (2014). Frischella perrara causes scab formation in the gut of its honeybee host. *PLoS Genetics*, 10, e1004596. https://doi.org/10.1371/journal.pgen.1004596
Delfs, H. (2011). Bacterial symbionts as mediators of ecologically important traits of insect hosts. *Ecological Entomology*, 36, 533–543. https://doi.org/10.1111/j.1365-2312.2010.01307.x
Franchini, P., Fruciano, C., Frickey, T., Jones, J. C., & Meyer, A. (2014). The gut microbial community of midas cichlid fish in repeatedly evolved limnetic-benthic species pairs. *PLoS ONE*, 9, e95027-7. https://doi.org/10.1371/journal.pone.0095027
Gallai, N., Salles, J.-M., Settele, J., & Vaisseière, B. E. (2009). Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. *Economic Entomology*, 68, 810–821. https://doi.org/10.1016/j.econoent.2008.06.014
Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. *Ecology Letters*, 13, 223–234. https://doi.org/10.1111/j.1461-0248.2009.01360.x
Hildebrand, F., Ebersbach, T., Nielsen, H. B., Li, X., Sonne, S. B., Bertalan, M., ... Licht, T. R. (2012). A comparative analysis of the intestinal metagenomes present in guinea pigs (*Cavia porcellus*) and humans (*Homo sapiens*). *BM C Genomics*, 13, 514. https://doi.org/10.1186/1471-2164-13-514
Hildebrand, F., Tadeo, R., Voigt, A. Y., Bork, P., & Raes, J. (2014). Lotus: An efficient and user-friendly OTU processing pipeline. *Microbiome*, 2, 30. https://doi.org/10.1186/2049-2618-2-30
Holzschuh, A., Dommann, C. F., Tscharntke, T., & Steffan-Dewenter, I. (2011). Mass-flowering crops enhance wild bee abundance. *Oecologia*, 165, 477–484. https://doi.org/10.1007/s00442-011-2515-5
Horton, M. A., Oliver, R., & Newton, I. L. (2015). No apparent correlation between honey bee forager gut microbiota and honey production. *PeerJ*, 3, e1329-4. https://doi.org/10.7717/peerj.1329
Ishik, H. D., Plowes, R., Sen, R., Kellner, K., Meyer, E., Estrada, D. A., ... Mueller, U. G. (2011). Bacterial diversity in *Solenopsis invicta* and *Solenopsis geminata* ant colonies characterized by 16S amplicon 454 pyrosequencing. *Microbial Ecology*, 61, 821–831. https://doi.org/10.1007/s00248-010-9793-4
Jaenike, J., Unckless, R., Cockburn, S. N., Boelio, L. M., & Perlman, S. J. (2010). Adaptation via symbiosis: Recent spread of a *Drosophila* defensive symbiont. *Science*, 329, 212–215. https://doi.org/10.1126/science.1188235
Jeyaprakash, A., Hoy, M. A., & Allsopp, M. H. (2003). Bacterial diversity in worker adults of *Apis mellifera capensis* and *Apis mellifera scutellata* (Insecta: Hymenoptera) assessed using 16S rRNA sequences. *Journal of Invertebrate Pathology*, 84, 96–103. https://doi.org/10.1016/j.jip.2003.08.007
Kakumanu, M. L., Reeves, A. M., Anderson, T. D., Rodrigues, R. R., & Williams, M. A. (2016). Honey bee gut microbiome is altered by inhive pesticide exposures. *Frontiers in Microbiology*, 7, 1255. https://doi.org/10.3389/fmicb.2016.01255
Kamel, A. (2010). Refined methodology for the determination of neonicotinoid pesticides and their metabolites in honey bees and bee products by liquid chromatography–tandem mass spectrometry (LC-MS/MS).
dominating gut communities of honey bees. PLoS ONE, 7, e41250. https://doi.org/10.1371/journal.pone.0041250

Scardovi, V., & Trovatielli, L. D. (1969). New species of bifidobacteria from Apis mellifica L. and Apis indica F. A contribution to the taxonomy and biochemistry of the genus Bifidobacterium. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskrankheiten und Hygiene, 123, 64–88.

Schliep, K. P. (2011). phangorn: Phylogenetic analysis in R. Bioinformatics, 27, 592–593. https://doi.org/10.1093/bioinformatics/btr706

Schürch, R., Couvillon, M. J., & Ratnieks, F. L. W. (2016). Determining the foraging potential of oilseed rape to honey bees using aerial surveys and simulations. Journal of Apicultural Research, 54, 238–245. https://doi.org/10.1080/00218839.2015.1108144

Segers, F.H.I.D, Kesnerova, L., Kosoy M., & Engel, P. (2017). Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen. The ISME journal, 11, 1232–1244.

Stothart, M. R., Bobbie, C. B., Schulte-Hostedde, A. I., Boonstra, R., Palme, R., Mykytczuk, N. C. S., & Newman, A. E. M. (2016). Stress and the microbiome: Linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biology Letters, 12, 20150875. https://doi.org/10.1098/rsbl.2015.0875

Sur, R., & Stork, A. (2003). Uptake, translocation and metabolism of imidacloprid in plants. Bulletin of Insectology, 56, 35–40.

Suryanarayanan, S. (2015). Pesticides and pollinators: A context-sensitive policy approach. Current Opinion in Insect Science, 10, 149–155. https://doi.org/10.1016/j.cois.2015.05.009

Thompson, H., & Harrington, P. (2013). Effects of neonicotinoid seed treatments on bumble bee colonies under field conditions. Retrieved from https://pdfs.semanticscholar.org/c278/06708d41b0fc8e30166d-2959994d821ab3ca.pdf.

Wang, Q., Garrity, G. M., & Tiedje, J. M. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and Environmental Microbiology, 73, 5261–5267. https://doi.org/10.1128/AEM.00662-07

Weiss, S., Xu, Z. Z., Peddada, S., Amir, A., Bittinger, K., Gonzalez, A., … Knight, R. (2017). Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome, 5, 27. https://doi.org/10.1186/s40168-017-0237-y

Westphal, C., Steffen-Dewenter, I., & Tscharntke, T. (2003). Mass flowering crops enhance pollinator densities at a landscape scale. Ecology Letters, 6, 961–965. https://doi.org/10.1046/j.1461-0248.2003.00523.x

Wickham, H. (2009). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag. https://doi.org/10.1007/978-0-387-98141-3

Wilson, W. S., Ball, A. S., & Hinton, R. H., Eds. (1999). Managing risks of nitrates to humans and the environment. UK: Cambridge. https://doi.org/10.1533/9781845693206

Yun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., … Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80, 5254–5264. https://doi.org/10.1128/AEM.01226-14

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supporting information tab for this article.

How to cite this article: Jones JC, Fruciano C, Hildebrand F, et al. Gut microbiota composition is associated with environmental landscape in honey bees. Ecol Evol. 2018;8: 441–451. https://doi.org/10.1002/ece3.3597