Vaginal Microbiocenosis Features in HIV-positive Women of Fertile Age

Anait Yuryevna Marianian¹*, Maria Alexandrovna Rashidova¹ and Lyubov Ilinichna Kolesnikova¹

¹Federal State Public Scientific Institution, Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia.

Authors’ contributions

This work was carried out in collaboration among all authors. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JPRI/2020/v32i2330792

Review Article

ABSTRACT

Aim and Objective of Our Study: The aim and objective of our study is to analyze the research data that has been studying the effect of HIV infection on vaginal microbiocenosis and further, to determine the differences in dysbiotic disorders in seronegative and seropositive women. We have also assessed the effect of vaginal microbiota on pre-exposure prophylaxis of HIV.

Materials and Methods: Evaluation of the Russian and other countries results on the microbiota of HIV-positive women studies, published in international databases.

Results: The analysis of the research data aimed at studying the effect of HIV infection on the vaginal microbiocenosis indicates that dysbiotic disorders in HIV-infected patients are significantly more frequent. It has been revealed that the atypical clinical picture of changes in the vaginal microbiocenosis prevails. It has been noted that there is a correlation of vaginal microbiocenosis in HIV-positive women and indicators of systemic immunity, CD4 + cell levels.

Conclusion: Based on analysis of published in international databases Russian and other countries studies results on the HIV-positive women microbiota, it was found that there is a need for additional studies of the qualitative and quantitative composition of the microbiota of HIV-positive women. It is need to assess the of the vaginalmicrobiotaand other possible connected factors ability to change the concentration of antiretroviral drugs.

*Corresponding author: E-mail: anait_24@mail.ru;
1. INTRODUCTION

HIV remains a major problem for public health services. According to the AIDS Center of the Irkutsk region, the number of HIV-positive women who are sexually infected increases every year. In 2018, the incidence rate was 141.7 cases per 100 thousand people in the Irkutsk region, among which 44.8% were women, mostly of reproductive age [1,2,3]. The aim and objective of our study is to analyze the research data that has been studying the effect of HIV infection on vaginal microbiocenosis and further, to determine the differences in dysbiotic disorders in seronegative and seropositive women. We have also assessed the effect of vaginal microbiota on pre-exposure prophylaxis of HIV. The Evaluation of the Russian and other countries results on the microbiota of HIV-positive women studies, published in international databases has been performed.

2. REVIEW OF LITERATURE

2.1 The Interrelation between Bacterial Vaginosis and the Risk of HIV Transmission

The vaginal microflora includes more than 300 species of micro-organisms that are closely related to the structural components of the vagina. The vaginal epithelium is covered with a multi-layer flat non-corneal epithelium, which changes in response to the action of body hormones. Under the influence of estrogens, epithelial cells are saturated with glycogen, which saturates microorganisms [4]. *Lactobacillus* participates in maintaining the homeostasis of the microbiocenosis of the vagina, performing a barrier function, limiting the reproduction of the transitory microflora. The microflora also contains microorganisms that can produce lactic acid; these include opportunistic agents (*Megasphaera spp.*, *Prevotellabivia*, *Leptotrichia spp.*) and some agents that indicate a violation of the vaginal microbiota (*Atopobium vaginae*) [5,6,7,8].

One of the main factors that increase the risk of sexual infection with HIV is a violation of the vaginal microflora and the presence of sexually transmitted diseases. When bacterial vaginosis occurs, *Gardnerella vaginalis* is present in 95% of cases. The formation of *Gardnerella vaginalis* bio-film on the vaginal epithelium is accompanied by the release of cytokines that contribute to the destruction of epithelial cells. Reduced growth of *Lactobacillus* leads to the increase in the concentration of enzymes (mucinase, sialidase, collagenase, protease, phospholipase A2 and C), organic acids, di-and polyamines. Damage of the vagina protective epithelium increases the possibility of rapid attachment of bacteria to epithelial cells [9].

In bacterial vaginosis, the environment is leached and targets for HIVCD4 + lymphocytes are activated, which consequently increases the risk of infection of partners of HIV-positive women [10,11]. Long-term excessive formation of active forms of oxygen leads to oxidative stress and, as a result, to a number of pathological changes [12,13]. Immunodeficiency is associated with the progression of HIV infection, which can lead to changes in the vaginal microbiocenosis and the addition of opportunistic infections [14]. Due to the disturbances in the quantitative and qualitative composition of the microbiota, and the antioxidant defense system, the antioxidant enzyme activity decreases [15]. The hyperperoxidation process with a decrease in the adaptive capabilities of the antioxidant defense system leads to the oxidative stress increasing [16,17].

Most studies related to the black race Africa HIV-positive women vaginal microbiota investigations. To evaluate the data, microscopic methods have mainly been used, which create an incomplete picture of the micro-biota of the vagina.

C. Christel et al. (2017) published the results of the study conducted in two Chicago (USA) hospitals. Scientists evaluated the impact of HIV infection on the vaginal microbiota and its interrelation with treatment and demographic factors; compared samples of vaginal micro-biota taken from HIV-positive and HIV-negative women. The authors used 16 s ribosomal RNA gene sequencing to characterize the types of bacterial communities. C. Christel et al. have found that HIV infection can contribute to the violations of the vaginal microflora, despite effective anti-retroviral therapy. The high incidence of bacterial vaginosis is a marker of socio-economic, genetic, or other factors that are also positively associated with HIV infection but are not correlated with it [18]. C. Christel et al. confirmed the link between vaginal dysbiotic disorders and an increased risk of HIV infection. Authors found that if woman has an aerobes...
Nugent score of 4 vaginalis dysbacteriosis. It was noted that determine the likelihood of Jeppers et al. low molecular weight peptides [2] vaginalis positive women. The authors noted that bacterial cervical canal and 
In 2015, C. R. Eadeet al. published data obtained HIV infection noted that there is a direct correlation between clinical manifestations. E.M. Mbizvo et al. have conducted in Zimbabwe revealed links between is very important fact. The evaluation of dat consideration the rapid spread of HIV infection it 
Vaginosis is predominated by Gardnerella, Prevotella, Atopobium vaginae, and Sneathia have been associated with increased inflammation in the cervical canal. Cervical epithelial cells produced higher concentrations of IL-6 and IL-8 when co-cultured with Gardnerella vaginalis, Prevotella bivia, and Prevotella amambienii compared to Lactobacillus crispatus. Prevotella melanog enica, Veillonell amontpellierensis, Mycoplasma spp., prevotella bivia and Neathiasanguinegens are associated with increased inflammation of the genitals and are also associated with the acquisition of HIV. That is, the presence of bacterial vaginosis increases the risk of HIV infection, causing favorable conditions for the creation of target cells for HIV infection [19]. Other scientists have come to the same conclusion [20,21,22,23].

J. S. Coleman et al. have noted that with a reduced number of Lactobacillus, women have an increase in HIV-1 RNA in the cervical channel compared to women with normocenosis [24]. The study in Kenya has shown that impaired vaginal microbiocenosis contributes to HIV infection and gonorrhea [25]. Other studies have shown that HIV-positive women with bacterial vaginosis have a higher concentration of the pathogen in the vaginal contents [26]. Taking into consideration the rapid spread of HIV infection it is very important fact. The evaluation of data conducted in Zimbabwe revealed links between the prevalence of HIV and various infections of the reproductive tract in women in the absence of clinical manifestations. E.M. Mbizvo et al. have noted that there is a direct correlation between HIV infection and bacterial vaginosis [27].

In 2015, C. R. Eadeet al. published data obtained during the co-cultivation of epithelium of the cervical canal and Atopobium vaginae in HIV-positive women. The authors noted that bacterial vaginosis contributes to the transmission of HIV infection by increasing the activity of secreted low molecular weight peptides [28]. In the same year 426 African women were examined by V. Jespers et al. used polymerase chain reaction to determine the likelihood of developing dysbacteriosis. It was noted that Gardnerella vaginalis (p = 0.204) and Atopobium vaginae (p = 0.001) were widely represented in women with a Nugent score of 4-6 points (intermediate smear type) and a score of 7-10 points (presence of bacterial vaginosis) compared to women with a score of 0-3 points (normal flora) [29].

2.2 Features of Vaginal Microbiocenosis in Highly Active Anti-retroviral Therapy and the Localuse of Drugs

Nowadays the drugs for pre-exposure prophylaxis of HIV has been widely studied [30,31]. Daily oral administration of tenofovir-based drugs is very effective for reducing the incidence of HIV; this type of prevention applies to population groups with a high risk of HIV infection [32,33]. The drugs containing, for example, dapivirin, tenofovir afenamide, maraviroc, etc., are also at various stages of research and can become promising options for HIV prevention with prolonged action [34,35,36]. However, in 2017 N. R. Klat et al. suggested that the effectiveness of locally applied drugs for pre-exposure prophylaxis of HIV may decrease their activity if the vaginal microflora is disturbed [37]. This is a serious health problem, given the wide spread of bacterial vaginosis in women in the areas most involved in the epidemic process [38].

The secondary analysis from the CAPRISA-004 cohort has shown that the effect of a 1% tenofovir-based gel in the presence of a vaginal microbiota dominated by Gardnerella vaginalis and other anaerobic bacteria is absent [39]. In 2017, a data analysis was published comparing the effectiveness of oral and topical tenofovir-based drugs for pre-exposure prophylaxis of HIV for women with and without bacterial vaginosis. It has been found that the effectiveness of oral drugs for pre-exposure prophylaxis of HIV does not change in the presence of bacterial vaginosis. Gardnerella vaginalis can rapidly metabolize tenofovir, especially when it is only applied locally, and prevent the medicine from entering cells. Vaginal dysbiosis associated with Gardnerella vaginalis disrupts metabolism and reduces the effectiveness of 1% tenofovir gel, but not of oral tenofovir-based drugs for pre-exposure prophylaxis of HIV. There were no significant differences in the efficiency between oral drugs for pre-exposure prophylaxis of HIV in the period when a woman does not have a microbiota disorder (Nugent score 0-3 points), in the intermediate smear type (4-6 points) and bacterial vaginosis (score 7-10 points) [40]. All this lead to suggestion, that vaginal dysbiotic disorders may not significantly reduce the effectiveness of oral drugs for pre-exposure
prophylaxis of HIV. Active metabolites of tenofovir are systemically distributed and are found in higher concentrations in blood plasma when used orally than when used locally [40,41].

Tenofovir metabolism can occur fairly quickly; studies have shown a decrease in the level of tenofovir diphosphate (the active form of tenofovir) in the cervical tissue within two hours and a decrease in its concentration in the cervicovaginal fluid and plasma after one week in the presence of an excess amount of *Gardnerella vaginalis* [42].

The use of highly active antiretroviral therapy (HAART) has significantly increased the life expectancy of HIV-positive patients. However, one of the important problems for such patients is the addition of opportunistic infections [43]. In 2015, M. Lallar et al. published data on the prevalence of bacterial vaginosis, candidiasis, and trichomoniasis in HIV-seropositive women. The authors have evaluated the interrelation between the use of HAART and CD4+. The study involved 200 HIV-positive women aged from 18 to 45 years. Bacterial vaginosis was detected in 47.7% of cases, candidiasis in 43.2% and trichomoniasis in 8.8% of cases among them. Reproductive tract infection has been found in 30% of cases in women with the number of CD4+ lymphocytes <200 cells/ml and in 17% of cases in women with the level of CD4+ >200 cells/ml. Reproductive tract infection was detected in 23% of cases while receiving HAART, and in 18.6% of cases when there was no antiretroviral therapy. At low CD4+ levels in HIV-positive women, the detection of reproductive tract infection is higher, but the use of HAART does not reduce the prevalence of it [44]. The main goal of HAART is to interrupt virus replication in the body and increase the number of CD4 + lymphocytes to restore a normal immune response. In HIV-positive pregnant women, when taking HAART, there was an increase in cases of normocenosis, a decrease in cases of violation of vaginal microbiocenosis associated with *Mycoplasma spp.* [45,46,47,48]. The restoration of local immunity, namely the presence of a stable vaginal microbiocenosis, is possible due to the implementation of the clinical effect of antiretroviral therapy.

3. CONCLUSION

Most studies reflecting the high prevalence of vaginal microflora disorders in HIV-positive women, compared to seronegative women, have been conducted among the African women.

The data on the study of the microbiota of HIV-positive women of European and Asian race are not available. It is necessary to assess the qualitative and quantitative composition of HIV-positive women in our country.

The results of the research have indicated that vaginal dysbacteriosis can reduce the effectiveness of local drugs for pre-exposure prophylaxis of HIV based on tenofovir by changing the drug concentration.

When developing new and relevant HIV prevention strategies, it is necessary to clarify the factors that influence the changes in the bioavailability and effectiveness of drugs. This problem remains important to achieve the reduction of the infection rate of the population.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. AIDS center. Irkutsk region. Express Information; 2019. Available: http://aids38.ru/special/stat/

2. Leshchenko O, Marianian A, Timofeeva E, Atalyan A, Balochova T, Plotnicova Y, Suturina L. HIV infection in men and women of reproductive age. Alcoholism: Clinical and Experimental Research. 2017; 41(6):150.

3. Marianian A, Timofeeva E, Atalyan A, Leshchenko O, Suturina L, Balachova T. Alcohol use, pregnancy planning, and reproductive health concerns in people living with HIV/AIDS in Russia. Alcoholism: Clinical and Experimental Research. 2018; 42(6):76-79.

4. Yankovsky DS, Dyment GS. Use of probiotics to improve women's reproductive health. Women's Health. 2008;2:161-170.
5. Plakhova KI, Gomberg MA, Atroshkina ME. The role of *Atopobium vaginae* in bacterial vaginosis recurrence. Bulletin of Dermatology and Venereology. 2007;5:10-13.

6. Rakhmatulina MR, Blahovec I. Bacterial vaginosis, associated with *Atopobium vaginae*: Modern principles of diagnosis and therapy. Obstetrics and Gynecology. 2012;3:88–92.

7. Ferris MJ, Masztal A, Aldridge KE, Fortenberry JD, Fidel PL, Jr., Martin DH. Association of *Atopobium vaginae*, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infectious Diseases. 2004;4:5–8.

8. Verhelst R, Verstraeten H, Claes G, Temmerman M, Vaneeschouthe M. Culture-independent analysis of vaginal microflora: The unrecognized association of *Atopobium vaginae* with bacterial vaginosis. American Journal of Obstetrics and Gynecology. 2004;191(4):1130–1132.

9. McGregor J, French L. Bacterial vaginosis in pregnancy. Obstetrical and Gynecology Survey. 2000;55:1–19.

10. Nunn KL, Wang YY, Harit D, Humphrys MS, Ma B, Cone R, et al. Enhanced trapping of HIV-1 by human cervicovaginal mucus is associated with *Lactobacillus crispatus*-dominant microbiota. mBio. 2015;6(5):01084–01015.

11. Hill JE, Goh SH, Money DM, Doyle M, Li A, Crosby WL, Links M, et al. Characterization of vaginal microflora of healthy, nonpregnant nant women by haperonin-60 sequence-based methods. American Journal of Obstetrics and Gynecology. 2005;193:682–692.

12. Kolesnikova LI, Darenkaya MA, Rashidova MA, Sholokhov LF, Grebkenkina LA, Leshchenko OYA, Timofeeva EV. Evaluation of oxidative stress indicators in women with HIV mono-and co-infection. Infectious diseases. 2016;14(1):138.

13. Kolesnikova L, Darenkaya M, Grebenkina L, Timofeeva E, Leshenko O, Semenova N, Kurashova N, Vanteeva O. Oxidative stress parame-ters in women with HIV and HIV/hepatitis B and/or C co-infection. Journal of AIDS and Clinical Research. 2014;5(11):5–11.

14. Monaco CL, Gootenber DB, Zhao G, Handley SA, Ghebremini-chael MS, Lim ES, et al. Altered virome and bacterial microbiome in human immunodeficiency virus-associated acquired immunodeficiency syndrome. Cell Host & Microbe. 2016;19(3):311-322.

15. Medvedeva OA, Korolev VA, Avdeeva YuA. State of colon microbiocenosis and pro-oxidant-antioxidant balance of colonocytes in experimental dysbiosis and prevention with medixol. Scientific Bulletin of the Belgorod state University. Series: Medicine. Pharmacy. 2017;5(254):134–140.

16. Kolesnikova LI, Kolesnikov SI, Darenkaya MA, Grebenkina LA, Nikitina OA, Lazareva LM, Suturina LV, Danusevich IN, Druzhinina EB, Semendyaev AA. Activity of LPO processes in women with polycystic ovarian syndrome and infertility. Bulletin of Experimental Biology and Medicine. 2017;162:320–322.

17. Kolesnikova LI, Darenkaya MA, Kolesnikov SI. free radical oxidation: A pathophysiological’s view. Bulletin of Siberian Medicine. 2017;16(4):16-29.

18. Christel C, Daniel JS, Aubrey GB, Alice LL, Shannon AA, Kerrie L, Mc C. et al. Associations of the vaginal microbiota with HIV-infection, bacterial vaginosis and demographic factors. AIDS. 2017;31(7):895–904.

19. Christina G, Melis NA, Scott AH. *Lactobacillus*-deficient cervicovaginal bacterial communities are associated with increased HIV acqui-sition in young south african women published in final edited form as: AIDS. 2017;31(7):895–904. DOI: 10.1097/QAD.0000000000001421

20. Atashili J, Poole C, Ndumbe PM, Adimora AA, Smith JS. Bacterial vaginosis and HIV acquisition: A meta-analysis of published studies. AIDS. 2008;22(12):1493–1501. DOI: 10.1097/QAD.0b13e3282a31a37

21. Passmore JAS, Jaspan HB, Masson L. Genital inflammation, im-mune activation and risk of sexual HIV acquisition. Curr Opin HIV AIDS. 2016;11(2):156–62. DOI: 10.1097/COH.0000000000000232

22. Masese L, Baeten JM, Richardson BA, Bukusi E, John-Stewart G, Graham Sm. et al. Changes in the contribution of genital tract infec-tions to HIV acquisition among Kenyan high-risk women from 1993 to 2012. AIDS. 2015;29(9):1077–85. DOI: 10.1097/QAD.0000000000006846

23. Gosmann C, Anahtar MN, Handley SA, Farcasanu M, Abu-Ali G, Bowman BA. et al. *Lactobacillus*-deficient cervicovaginal bacterial communities are associated with...
increased HIV acquisition in young South African women. Immunity. 2017;46(1):29–37.
DOI: 10.1016/j.immuni.2016.12.013

24. Coleman JS, Hitti J, Bukusi EA, Mwachari C, Muliro A, Nguti R, et al. Infectious correlates of HIV-1 shedding in the female upper and lower genital tracts. AIDS. 2007;21:755–759.

25. Martin D. The microbiota of the vagina and its influence on women's health and disease. American Journal of the Medical Sciences. 2012;343(1):2–9.

26. Mirmonef P, Krass L, Landay A. The role of bacterial vaginosis and trichomonas in HIV transmission across the female genital tract. Curr. HIV Res. 2012;10:202–210.

27. Mbizvo EM, Msuya SE, Stray-Pedersen B. HIV seroprevalence and its associations with the other reproductive tract infections in asympto-matic women in Harare, Zimbabwe. Int J STD AIDS. 2001;12:524–531.

28. Eade CR, Diaz C, Chen S, Cole AL, Cole AM. HIV-enhancing factors are secreted by reproductive epithelia upon inoculation with bacterial vaginosisc-associated bacteria. Protein PeptLett. 2015;22:672–680.

29. Jespers V, Crucitti T, van de Wijgert J, Vaneechoutte M, Delany-Moretlwe S, Mwaura MA. DNA tool for early detection of vaginal dysbiosis in African women. Res Microbiol. 2015;11:180–181.

30. Adimora AA, Ramirez C, Auerbach JD, Aral SO, Hodder S, Wingood G. et al. Preventing HIV infection in women. J AcquirIm-mune Defic Syndr. 2013;63(02):168–173.
DOI: 10.1097/QAI.0b013e318298a166

31. Caceres CF, O'Reilly KR, Mayer KH, Baggaley R. PrePimplemen-tation: Moving from trials to policy and practice. Jint AIDS Soc. 2015;18(4):202–222.
DOI: 10.7448/IAS.18.4.20222

32. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, Wangisi J, et al. Antiretroviral prophylaxis for HIV prevention in het-erosexual men and women. N Engl J Med. 2012;367(5):399–410.
DOI: 10.1056/NEJMoa1105824

33. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, Segolodi TM. et al. Antiretroviral preexposure prophylaxis for heter-osexual HIV transmission in Botswana. NEngl J Med. 2012;367(5):423–434.
DOI: 10.1056/NEJMoa1110711

34. Baeten JM, Palanee-Phillips T, Brown ER, Schwartz K, Soto-Torres LE, Govender V. et al. Use of a vaginal ring containing dapivirine for HIV-1 prevention in women. N Engl J Med. 2016;375:2121–2132.
DOI: 10.1056/NEJMoa1506110

35. Nel A, Van Niekerk N, Kapiga S, Bekker LG, Gama C, Gill K, et al. Safety and efficacy of a dapivirine vaginal ring for HIV prevention in women. N Engl J Med. 2016;375(22):2133–2143.
DOI: 10.1056/NEJMoa1602046

36. Schlesinger E, Johengen D, Luecke E, Rothrock G, McGowan I, Van der Straten A, et al. A tunable, biodegradable, thin-film polymer device as a long-acting implant delivering tenofoviralfenamide for HIV pre-exposure prophylaxis. Pharm Res. 2016;33(7):1649–1656.
DOI: 10.1007/s11095-016-1904-6

37. Klatt NR, Cheu R, Birse K, Zevin AS, Perner M, Noel-Romas L, et al. Vaginal bacteria modify HIV tenofovirimmunoefficacy in African women. Science. 2017;356:938–945.
DOI: 10.1126/science.aai9383

38. Anahtar MN, Byrne EH, Doherty KE, Bowman BA, Yamamoto HS, Soumillon M, et al. Cervicovaginal bacteria are a major modula-tor of host inflammatory responses in the female genital tract. Immunity. 2015;42(5):965–976.
DOI: 10.1016/j.immuni.2015.04.019

39. Akl A, Agashe H, Dezzutti CS, Moncla BJ, Hillier SL, Devlin B, et al. Formulation and characterization of polymeric films containing combinations of antiretrovirals (ARVs) for HIV prevention. Pharm Res. 2015;32(2):458–468.
DOI: 10.1007/s11095-014-1474-4

40. Heffron RA. Oral PrEP is efficacious for HIV prevention among wom-en with abnormal vaginal microbiota. Lancet HIV. 2017;4(10):449-456.

41. Hendrix CW, Chen BA, Guddera V, Hoesly C, Justman J, Naka-biito C, et al. MTN-001: Randomized pharmacokinetic cross-over study comparing tenofovir vaginal gel and oral tablets in vaginal tissue and other compartments. PloS One. 2013;8(1):550–613.
DOI: 10.1371/journal.pone.0055013
42. Hillier SL, Meyn L, Bunge K, Austin M, Moncla BJ, Dezzutti C, et al. Impact of vaginal microbiota on genital tissue and plasma concentrations of tenofovir. CROL; 2017.

43. Oliveira P, Mascarenhas R, Lacroix C, Ferrer SR, C Oliverira RP, Cravo EA, et al. Braz J infect dis Candida species isolated from the vaginal mucosa of HIV-infected women in Salvador, Bahia, Brazil. 2011;15:239–244.

44. Lallar M, Nanda S, Nandal R. Lower genital tract infections in HIV-infected women: Can We Afford to Miss? J. Obstet. Gynaecol. 2015;65(1):45–49.

45. Sax P, Cohen C, Kuritzkes D. HIV essentials. Jones and Bartlett Learning. 2012;18–64.

46. Hall J, Hall B, Cockerell C. HIV/AIDS in the post-HAART era: Manifestations, treatment, and epidemiology. USA: People's Medical Publishing House. 2011; 389–403.

47. Greene W, Lange J. Sande's HIV/AIDS medicine: Medical management of AIDS. 2013;133–191.

48. Saag M, Chambers H, Eliopoulos G. The Sanford guide to HIV/AIDS therapy. Antimicrobial Therapy Inc. 2012; 214.