A Proof of Radford’s Biproduct Theorem by Using Braided Diagrams

Tao Zhang

Abstract. We give a proof of Radford’s Biproduct Theorem in S. Montgomery’s book [Hopf Algebras and Their Actions on Rings, CBMS 82, AMS, 1993.] by using Majid’s braided diagram method and Yu. Bespalov and V. Lyubashenko’s ”t-angles.sty” package.

1 Introduction

There is an important construction in the theory of quantum groups and Hopf algebras, which is called biproduct by Radford in [3] and bosonization by Majid in [4]. Through this construction, one can get an ordinary Hopf algebra $B \star H$ from a braided Hopf algebras B and a Hopf algebras H, see Theorem 1.1 below. This construction can be used to give classification of pointed Hopf algebras through braided Hopf algebras, see [1].

Theorem 1.1. Let H be a bialgebra, and B is an algebra in $H\mathcal{M}$ and a coalgebra in $H\mathcal{M}$. Then $B \star H$ becomes a bialgebra $\iff B$ is a coalgebra in $H\mathcal{M}$, an algebra in $H\mathcal{M}$, ε_B is an algebra map, $\delta(1_B) = 1_B \otimes 1_B$, and the following identities hold:

$$
\begin{align*}
(1) & \quad \delta_B(ab) = \sum a_1(a_{2(-1)} \cdot b_1) \otimes a_{2(0)} b_2, \\
(2) & \quad \sum h_1 b_{(-1)} \otimes h_2 \cdot b_{(0)} = \sum (h_1 \cdot b)_{(-1)} h_2 \otimes (h_1 \cdot b)_{(0)}.
\end{align*}
$$

If also B has an antipode S_B and H is a Hopf algebra with antipode S_H, then $B \star H$ is a Hopf algebra with antipode $S(b \star h) = \sum (1_B \star S_H(b_{-1} h))(S_B b_0 \star 1_H) = \sum (S_H(a_{-1} h))_1 \cdot S_B(a_{(0)}) \otimes (S_H(a_{-1} h))_2$.

This theorem appeared in Remark 10.6.6 in Montgomery’s book [5]. After this remark, she said that ”Although this formulation may be more natural, and has the advantage of using H and not H^{cop}, the computations are more tiresome because of the notation”.

We use braided diagrams to overcome this difficulty. This method was used by Majid in [4] Theorem 2.4, but in that paper he assume H to be cocommutative. We find that this condition is not necessary and the same method can also be applied.
Throughout the paper we freely use the notations and conventions of [3, 5] with slightly differences. In particular all vector spaces will be over a field k. For an algebra A with multiplication $m : A \otimes A \to A$, we write $m(a \otimes b) = ab$ for simplicity. For a coalgebra C with comultiplication $\Delta : C \to C \otimes C$, we write $\Delta(c) = \sum c_1 \otimes c_2$ using Sweedler’s notation.

2 Preliminaries

Let (H, m) be an associative algebra and (H, Δ) be a coassociative coalgebra over field k. Then H is called a Hopf algebra if there is an antipode $S : H \to H$ such that

$$\Delta(hg) = \Delta(h)\Delta(g), \quad \Delta(1_H) = 1_H \otimes 1_H, \quad \varepsilon(1_H) = 1_H. \quad (1)$$

It is called a Hopf algebra if there is an antipode $S : H \to H$ such that

$$(\text{id} \otimes S)\Delta(h) = \varepsilon(h)1_H = (S \otimes \text{id})\Delta(h). \quad (2)$$

A left H-module is a k-vector space M with a k-linear map $\alpha : H \otimes M \to M : \alpha(h \otimes m) = h \cdot m$ such that $(gh) \cdot m = h \cdot (g \cdot m)$. A left H-comodule is a k-vector space M with a k-linear map $\rho : M \to H \otimes M : \rho(m) = \sum m_{(-1)} \otimes m_{(0)}$ such that

$$\sum m_{(-1)} \otimes m_{(0)}(-1) \otimes m_{(0)(0)} = \sum m_{(-1)1} \otimes m_{(-1)2} \otimes m_{(0)}. \quad (3)$$

Here we review some basic facts about algebras and coalgebras in the category $\mathcal{H}M$ of left H-modules and in the category $\mathcal{H}M$ of left H-comodules. First of all recall that if M and N are left H-modules, then the left $H \otimes H$-modules $M \otimes N$ is also a left H-modules by pull-back along Δ, i.e., $h \cdot (m \otimes n) = \sum h_1 \cdot m \otimes h_2 \cdot n$.

An algebra B in $\mathcal{H}M$ is an left H-module algebra, that is, B is a left H-module and also a k-algebra (B, m, η) such that m and η are module maps, i.e.

$$h \cdot (ab) = \sum (h_1 \cdot a)(h_2 \cdot b), \quad h \cdot 1_B = \varepsilon_H(h)1_B, \quad \forall h \in H, a, b \in B. \quad (4)$$

An coalgebra B in $\mathcal{H}M$ is an H-module coalgebra, that is, B is a left H-module and also a k-coalgebra (B, Δ, ε) such that Δ and ε are module maps, i.e.

$$\Delta(h \cdot b) = \sum (h_1 \cdot b_1) \otimes (h_2 \cdot b_2), \quad \varepsilon_B(h \cdot b) = \varepsilon_H(h)\varepsilon_B(b), \quad \forall h \in H, b \in B. \quad (5)$$

An algebra B in $\mathcal{H}M$ is an H-comodule algebra, that is, B is a left H-comodule and also a k-algebra (B, m, η) such that m and η are module maps, i.e.

$$\rho(ab) = \sum a_{(-1)}b_{(-1)} \otimes a_{(0)}b_{(0)}, \quad \rho(1_H) = 1_H \otimes 1_B, \quad \forall a, b \in B. \quad (6)$$

An coalgebra B in $\mathcal{H}M$ is an H-comodule coalgebra, that is, B is a left H-comodule and also a k-coalgebra (B, Δ, ε) such that Δ and ε are comodule maps, i.e.

$$\sum b_{(-1)} \otimes b_{(0)1} \otimes b_{(0)2} = \sum b_{1(-1)}b_{2(-1)} \otimes b_{1(0)}b_{2(0)}, \quad \sum \varepsilon_B(b_{(0)})b_{(-1)} = \varepsilon_B(b)1_H, \quad \forall b \in B. \quad (7)$$
3 The Proof

In this section, we give a detailed proof of Theorem 1.1. First, we review some facts about the product and coproduct in $B \star H$.

Let B be an left H-module algebra. Then the smash product algebra $B\#H$ is defined as follows: $B\#H := B \otimes H$ as a vector space, with multiplication given by

$$(a\#g)(b\#h) = \sum a(h_1 \cdot b)\#h_2g,$$

and unit $1_{B\#H} = 1_B \otimes 1_H$, for all $a, b \in B, h, g \in H$.

Let H be a bialgebra and B a coalgebra in $\mathcal{H}\mathcal{M}$. The smash coproduct $B\sharp H$ is defined to be $B \otimes H$ as a vector space, with comultiplication given by

$$\Delta(b\sharp h) = \sum b_1\sharp b_2(-1)h_1 \otimes b_1(0)\sharp h_2,$$

and counit $\varepsilon_{B\sharp H}(b\sharp h) = \varepsilon_B(b)\varepsilon_H(h)$, for all $b \in B, h \in H$.

Lemma 3.1. $B\sharp H$ is a coalgebra with the above comultiplication.

Proof. We check that Δ is coassociative. Now for all $b \in B, h \in H$,

$$(\Delta \otimes \text{id})\Delta(b\sharp h)) = \sum b_1\sharp b_1(0)\sharp b_2(-1)h_1 \otimes b_1(0)\sharp b_2(-1)h_2 \otimes b_2(0)\sharp h_3$$

by equation (3) applied to b_3

$$= \sum b_1\sharp b_2(-1)b_3(-1)h_1 \otimes b_2(0)\sharp b_3(-1)h_2 \otimes b_3(0)\sharp h_3$$

by equation (4) applied to b_2

$$= \sum b_1\sharp b_2(-1)h_1 \otimes b_2(0)\sharp b_2(-1)h_2 \otimes b_2(0)\sharp h_3$$

$$(\text{id} \otimes \Delta)\Delta(b\sharp h)).$$

Thus we get that the comultiplication is coassociative. □

Proof of Theorem 1.1 We will show that $B \star H$ is a bialgebra. First, $B \star H$ is an algebra by smash product, and it is a coalgebra by Lemma 3.1. We now check the compatible condition:

$$\Delta((a \star g)(b \star h)) = \Delta(a(g_1b) \star g_2h)$$

by condition (1) in Theorem 1.1 applied to $a(g_1b)$

$$= \sum (a(g_1b))_1 \star (a(g_1b))_2(-1)(g_1h)_1 \otimes (a(g_1b))_2(0) \star (g_2h)_2$$

by condition (1) in Theorem 1.1 applied to $a(g_1b)$

$$= \sum a_1(a_2(-1)(g_1b)_1) \star (a_2(-1)(g_1b)_2(-1)(g_2h)_1 \otimes (a_2(-1)(g_1b)_2(0) \star g_2h_2$$
The proof is completed.

The fact that the given S make $B \star H$ into a Hopf algebra is checked below:

\[(S \otimes \text{id})\Delta(b \ast h) = S(b \ast h)_1(b \ast h)_2\]
\[= (S_H(b_{(-1)}h_1)_1 \cdot S_B(b_{(0)})) (S_H(b_{(-1)}b_{(2)}h_1)_2 \cdot b_{(0)}) \otimes S_H(b_{(-1)}b_{(2)}h_1)_3 h_2\]
\[= (S_H(b_{(-1)}h_1)_1 \cdot S_B(b_{(0)})) (S_H(b_{(-1)}h_1)_2 \cdot b_{(0)}) \otimes S_H(b_{(-1)}h_1)_3 h_2\]

by B is an H-comodule coalgebra

\[= (S_H(b_{(-1)}h_1)_1 \cdot (S_B(b_{(0)})) b_{(2)} \otimes S_H(b_{(-1)}h_1)_2 h_2\]

by B is an H-module algebra applied to $S_H(b_{(-1)}h_1)_1 \otimes S_B(b_{(0)} \otimes b_{(-1)})$

\[= \varepsilon_B(b_{(0)})(S_H(b_{(-1)}h_1)_1 \cdot 1_H) \otimes S_H(b_{(-1)}h_1)_2 h_2\]

by antipode of B applied to $b_{(0)}$

\[= \varepsilon_B(b)\varepsilon_B((S_H(1_H h_1))_1) 1_B \otimes S_H(1_H h_1)_2 h_2\]
\[= \varepsilon_B(b)\varepsilon_B(S_H(1_H h_1))_1 1_H \otimes S_H(1_H h_1)_2 h_2\]
\[= \varepsilon_B(b) 1_B \otimes S(h_1)_2 h_2\]
\[= \varepsilon_B(b) \varepsilon(h) 1_B \otimes 1_H.\]

\[(\text{id} \otimes S)\Delta(b \ast h) = (b \ast h)_1 S(b \ast h)_2\]
\[= b_1((b_{(2)}h_1)_1 \cdot (S_H(a_{(2)}h_2)_1 \cdot S_B(a_{(2)})) \otimes (b_{(2)}h_1)_2 S_H(a_{(2)}h_2)_2\]
\[= b_1((b_{(2)}h_1)_1 S_H(b_{(2)}h_1)_2 \cdot b_{(2)}_1) \otimes (b_{(2)}h_1)_1 S_H(b_{(2)}h_1)_2\]
\[= b_1((b_{(2)}h_1)_1 S_H(b_{(2)}h_1)_2) \otimes (b_{(2)}h_1)_1 S_H(b_{(2)}h_1)_2\]
\[= \varepsilon_B(b_{(2)}h_1)_1 b_1(1_H \cdot S_B(b_{(2)})) \otimes 1_H\]
\[= \varepsilon_B(b_{(2)}h_1)_1 (1_H \cdot S(b_{(2)})) \otimes \varepsilon_H(h) 1_H\]
\[= b_1 S(b_{(2)}_1) \otimes \varepsilon_H(h) 1_H\]
\[= \varepsilon_B(b) \varepsilon(h) 1_B \otimes 1_H.\]
When we apply the biproduct construction to the category of quasitriangular Hopf algebras, we get the following result. It is due to Majid [4] which is called "bosonization".

Proposition 3.2. If \((H, R)\) be a quasitriangular bialgebra and let \(B\) be a bialgebra in \(\mathcal{H}M\). Then \(B\) is also a left \(H\)-comodule algebra by defining \(\rho: B \to H \otimes B\) via \(\rho(b) = R^{-1}(1 \otimes b)\) for all \(b \in B\). Then the biproduct \(B \ast H\) is a bialgebra. If also \(H\) is a Hopf algebra and \(B\) is a Hopf algebra in \(\mathcal{H}M\), then \(B \ast H\) is a Hopf algebra.

4 Braided diagrams: the method we use

In this section, we give an introduction to the method of braided diagrams in Hopf algebras from which we obtained the above results. This method was introduced by D. N. Yetter in [6] where he found that the category of Yetter-Drinfeld modules form a braided monoidal category. There he call it crossed bimodules which in fact is condition (2) of Theorem [1,1]. Braided diagram was used by many authors such as S.Majid [4], Y.Bespalov and B. Drabant [2], S.C. Zhang and H.X. Chen [7], etc. Here we use Yu. Bespalov and V. Lyubashenko’s "t-angles.sty" package as in [2] to draw the diagrams.

First, all maps are written downwards from top to bottom. The maps \(m, \Delta, \alpha, \rho, \varepsilon, \eta\) are graphically written as

\[
m_H = \begin{array}{c}
H \\
H
\end{array}, \quad \delta_H = \begin{array}{c}
H \\
H
\end{array}, \quad m_B = \begin{array}{c}
B \quad B \\
B
\end{array}, \quad \delta_B = \begin{array}{c}
B \\
B
\end{array}, \quad \alpha = \begin{array}{c}
H \\
B \quad B
\end{array}, \quad \rho = \begin{array}{c}
B \\
H \quad B
\end{array}, \quad \varepsilon_H = \begin{array}{c}
H \\
B \quad B
\end{array}, \quad \eta_H = \begin{array}{c}
H \\
B \quad B
\end{array}.
\]

Secondly, we can picture the conditions of module algebra, module coalgebra, comodule algebra, comodule coalgebra, algebra-coalgebra, Yetter-Drinfel’d module as follows:
Finally, we give the diagrammatic proof of Lemma 3.1 and Theorem 1.1.
Figure 3: Proof of antipode of $B \star H$
References

[1] N. Andruskiewitsch and H.-J. Schneider, Lifting of Quantum Linear Spaces and Pointed Hopf Algebras of order p^3, J. Algebra 209 (1998), 658–691.

[2] Y. Bespalov, B. Drabant. Cross product bialgebras - Part I, J. Algebra, 219(1999), 466–505.

[3] D. E. Radford, The Structure of Hopf Algebras with a Projection, J. Algebra 92(1985), 322–374.

[4] S. Majid, Cross Products by Braided Groups and Bosonization, J. Algebra 163 (1994), 165–190.

[5] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS 82, American Math Society, Providence, RI, 1993.

[6] D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge Phil. Soc., 108 (1990), 261-290.

[7] S.C. Zhang, H.X. Chen, The double bicrossproducts in braided tensor categories, Comm. in Algebra 29(2001), 31–66.

College of Mathematics, Henan Normal University, Xinxiang 453007, China
E-mail address: zhangtao@htu.cn