Abstract.

CP-odd invariants are useful for studying the CP properties of Lagrangians in any basis. We explain how to build basis invariants for the scalar sector, and how to distinguish CP-odd invariants from CP-even invariants. Up to a certain order, we use these methods to systematically build all the CP-odd invariants. The CP-odd invariants signal either explicit or spontaneous violation of CP. Making use of the CP-odd invariants, we determine the CP properties of potentials with 3 and with 6 Higgs fields arranged as triplets of specific discrete symmetries in the $\Delta(3n^2)$ or $\Delta(6n^2)$ series (including A_4, S_4, $\Delta(27)$ and $\Delta(54)$ as well as the cases for $n > 3$).

1. Introduction

This contribution to the proceedings of DISCRETE 2016 is based on [1].

CP violation (CPV) is present in the Standard Model (SM) in the Yukawa sector, due to the replication of fermion in 3 generations. Physics does not depend on choice of basis, and indeed the amount of CPV in the SM can be calculated in a weak basis invariant which can be expressed in terms of the quark mass matrices [2, 3]. In the SM scalar sector, with a single Higgs doublet, the possibility of CPV does not exist. CPV is enabled in the scalar sector of the 2 (or more) Higgs Doublet Model (HDM) [4]. The extension of the scalar content of the SM is well motivated, as additional CPV sources are required to account for the baryon asymmetry of the Universe [5, 6]. In the scalar sector, CPV can appear explicitly or through the vacuum expectation values (VEVs), the latter case consisting in Spontaneous CPV (SCPV).

There is often some subtlety to the CP properties of theories (e.g. it is possible to have complex parameters in a Lagrangian and for it to conserve CP), which increases the appeal of an invariant approach, and the generalisation of the powerful invariant approach to CP [3] to theories with discrete symmetries recently lead to other relevant CP-odd invariants (CPIs) for the respective Yukawa sector [7, 8]. The invariant approach to CP as applied to scalar potentials in [9, 10, 11, 12, 13, 14] was further developed in [1].

In order to find CPIs for arbitrary potentials, we use either the kind of diagrams introduced for the 2HDM in [13] or a new method based on “contraction matrices”, and catalogued several new CPIs. We then apply them to several potentials with 3 or 6 Higgs fields with a discrete symmetry from the $\Delta(3n^2)$ and $\Delta(6n^2)$ series. These symmetries are considered frequently in the context of flavour and CP models [15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

Ivo de Medeiros Varzielas
CFTP, Departamento de Física, Instituto Superior Técnico,
Universidade de Lisboa, Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
E-mail: ivo.de@udo.edu

Reference:
[1] Ivo de Medeiros Varzielas, arXiv:1703.05750v1 [hep-ph] 16 Mar 2017
In particular, the 3HDM [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55] and the 6HDM [56, 57, 58, 59, 60, 61, 62] where the 3 or 6 Higgses are related by a discrete symmetry as one or two (flavour) triplets have been extensively studied. Nevertheless, our systematic study through the new CPIs revealed several novel results.

2. CP-odd invariants for potentials

In our notation, we write scalar potentials in a standard form. This is similar to the notation in [12, 13] but with some important differences. An even potential of N scalar fields φ_i, where $\phi = (\varphi_1, \ldots, \varphi_N)$ and $\phi^* = (\varphi_1^*, \ldots, \varphi_N^*)$, can be rewritten as

$$V = \phi^{sa} Y^a_b \phi_b + \phi^{sa} \phi^{*sc} Z^{bd}_{ac} \phi_b \phi_d.$$

(1)

The lower indices on Y and Z are contracted with ϕ^* and upper indices with ϕ. The tensors Y and Z contain the couplings from the potential (the formalism can be extended to account also for tri-linear terms). Z^{bd}_{ac} is by definition unchanged if $a \leftrightarrow c$ or $b \leftrightarrow d$.

In particular, potentials of Higgs doublets are rewritten in the standard form with their components: n Higgs doublets $H_{ia} = (h_{i1}, h_{i2})$, with $i = 1, 2$ for $SU(2)_L$ index and i identifies the doublet from 1 to n, are recast as

$$\phi = (\varphi_1, \varphi_2, \ldots, \varphi_{2n-1}, \varphi_{2n}) = (h_{11}, h_{12}, \ldots, h_{n1}, h_{n2}),$$

(2)

The invariance of the potential under whatever symmetries it is invariant under (e.g. $SU(2)_L \times U(1)_Y$) will be manifest in the structure of the tensors Y and Z: if under G, ϕ transforms in some representation $\rho(g)$, $g \in G$,

$$\phi_a \mapsto [\rho(g)]^a_{a'} \phi_{a'},$$

(3)

$$\phi^{sa} \mapsto \phi^{sa'} [\rho^1(g)]^a_{a'},$$

(4)

then

$$Y^b_a = \rho^b_a Y^a_{a'},$$

(5)

$$Z^{bd}_{ac} = \rho^d_c \rho^b_a Z_a^{bd}_{a'c'},$$

(6)

where we denote $\rho^a_{a'} = [\rho(g)]^a_{a'}$.

An arbitrary basis transformation acts on the fields by a unitary $N \times N$ matrix

$$\phi_a \mapsto V^a_{a'} \phi_{a'},$$

(7)

$$\phi^{sa} \mapsto \phi^{sa'} V^{ta}_{a'},$$

(8)

which changes tensor components accordingly:

$$Y^b_a \mapsto V^a_{a'} Y^{b'}_{b'},$$

(9)

$$Z^{bd}_{ac} \mapsto V^a_{a'} V^{c'}_{c'} Z_{a'c'}^{bd} V^{b'}_{b'} V^{d'}_{d'},$$

(10)

In our notation, complex conjugation changes indices of a field:

$$\phi_a \mapsto (\phi_a)^* \equiv \phi^{*a},$$

(11)

$$\phi^{*a} \mapsto (\phi^*)^* \equiv \phi_a,$$

(12)

therefore,

$$\phi^{*a} Y^b_a \phi_b \mapsto \phi_a (Y^b_a)^* \phi^* b = \phi^{*b} (Y^b_a)^* \phi_a = \phi^{*a} (Y^b_a)^* \phi_b,$$

(13)
and we obtain (because $V^* = V$):

\[(Y^a_b)^* = Y^b_a.\]

(14)

Similarly, for the Z tensor we have

\[(Z^{ac}_{bd})^* = Z^{bd}_{ac}.\]

(15)

A general CP transformation acts with a unitary matrix U:

\[
\phi_a \mapsto \phi^{*a} U^a_a,
\phi^{*a} \mapsto U^a_a \phi_a,
\]

(16)

(17)

and thus

\[
\phi^{*a} Y^b_a \phi_b \mapsto U^a_a \phi^{*a} Y^b_a \phi_b = U^a_a \phi^{*a} (Y^b_a)^* \phi^{*b} U^b_b
= \phi^{*b} U^b_b (Y^a_a)^* U^a_a \phi_a
= \phi^{*a} U^a_a (Y^b_b)^* U^b_b \phi_b.
\]

(18)

(19)

(20)

A comparison of this with the original term, and the respective exercise for Z, reveals how the general CP transformation acts on the tensors:

\[
Y^b_a \mapsto U^a_a \phi_a Y^b_b U^b_b,
Z^{bd}_{ac} \mapsto U^a_a U^c_c (Z^{bd}_{ac})^* U^b_b U^d_d.
\]

(21)

(22)

This allows us to recast the condition for the potential to be CP invariant: if there is any U such that the left- and right-hand sides of Eqs. (21) and (22) are identical. The trivial CP:

\[
U^a_a = \delta^a_{a'}.
\]

(23)

obeys the condition for real Y and Z tensors. We refer to this trivial CP throughout as CP_0.

When considering SCPV, we build spontaneous CPIs (SCPIs) by using also VEVs to form basis invariants. It is therefore useful to note they transform under basis change as:

\[
v_a \mapsto V^{a'}_a v_a',
v^{*a} \mapsto v^{*a'} V^{a'}_{a'}.
\]

(24)

(25)

where $v \equiv (v_1, \ldots)$, $v_i = \langle \phi_i \rangle$. Under general CP transformations:

\[
v_a \mapsto v^{*a'} U^{a'}_a,
\]

(26)

(27)

2.1. Simplest basis invariants

If one has a combination of Y and Z tensors with all indices contracted, it forms a basis invariant. Thus, the simplest invariant is the Trace of Y:

\[
Y^a_a.
\]

(28)

The possibilities with two Y tensors are:

\[
Y^a_a Y^b_b,
Y^a_b Y^b_a.
\]

(29)
We note that these contractions can be mapped to elements of the permutation group by identifying the permutation that takes the ordering in the upper indices to the ordering in the lower indices:

\[Y_a^a Y_b^b \Leftrightarrow a \mapsto a , \ b \mapsto b \ , \]

and

\[Y_a^a Y_b^b \Leftrightarrow a \mapsto b , \ b \mapsto a \ . \]

We write thus:

\[Y_{\sigma(a)}^a Y_{\sigma(b)}^b \ , \ \sigma \in S_2 \ , \]

where \(\sigma \) is an element of the group \(S_2 \). Out of the two basis invariants with two \(Y \) tensors, one is simply the square of the Trace of \(Y \), i.e. it can be expressed in terms of smaller basis invariants.

Similarly for \(Z \) tensors, the simplest invariants are:

\[Z_{\sigma(a)\sigma(b)}^{ab} \ , \ \sigma \in S_2 \ , \]

or explicitly:

\[Z_{ab}^a , \ Z_{ba}^b . \]

Due to the inherent symmetry \(Z \) tensors have under exchange of upper (or lower) indices, these two basis invariants are the same. With two \(Z \) tensors, the possible contractions are 24:

\[Z_{\sigma(a)\sigma(b)}^{ab} Z_{\sigma(c)\sigma(d)}^{cd} \ , \ \sigma \in S_4 , \]

but there are only two new irreducible basis invariants, which can be taken to be

\[Z_{ac}^{ab} Z_{bd}^{cd} , \ Z_{cd}^{ab} Z_{ab}^{cd} . \]

In general, a basis invariant \(I_{\sigma}^{(n_Z,m_Y)} \) with \(m_Y \ Y \) tensors and \(n_Z \ Z \) tensors is

\[I_{\sigma}^{(n_Z,m_Y)} \equiv Y_{\sigma(a_1)}^{a_1} ... Y_{\sigma(a_{m_Y})}^{a_{m_Y}} Z_{\sigma(b_1)\sigma(b_2)}^{b_1 b_2} ... Z_{\sigma(b_{2n_Z-1})\sigma(b_{2n_Z})}^{b_{2n_Z-1} b_{2n_Z}} , \ \sigma \in S_{m_Y+2n_Z} . \]

Many basis invariants are not CP-odd. Under a general CP transformation, a coupling tensor goes to its complex conjugate and is acted on by unitary transformations \(U \). Being basis invariant means the \(U \) matrices drop out, so within a basis invariant, a general CP transformation reduces to converting tensors into their complex conjugates (by exchanging upper and lower indices). For example, the Trace of \(Y \):

\[Y_a^a \to CP(Y_a^{a'})^* U_{a'}^a U_{a'}^{a''} = (Y_a^{a'})^* \delta_a^{a''} = (Y_a^a)^* = Y_a^a . \]

Likewise:

\[I_{\sigma}^{(n_Z,m_Y)} \equiv Y_{\sigma(a_1)}^{a_1} ... Y_{\sigma(a_{m_Y})}^{a_{m_Y}} Z_{\sigma(a_1)\sigma(a_2)}^{b_1 b_2} ... Z_{\sigma(a_{2n_Z-1})\sigma(a_{2n_Z})}^{b_{2n_Z-1} b_{2n_Z}} \]

\[\to CP Y_{a_1}^{a_1} ... Y_{a_{m_Y}}^{a_{m_Y}} Z_{b_1 b_2}^{a_1 a_2} ... Z_{b_{2n_Z-1} b_{2n_Z}}^{a_{2n_Z-1} a_{2n_Z}} = [I_{\sigma}^{(n_Z,m_Y)}]^* . \]

From a basis invariant \(I \) differing from its CP conjugate \(I^* \), we can build a CPI \(\mathcal{I} \):

\[\mathcal{I} = I - I^* . \]

In order to better find useful CPIs we employ diagrams and in particular contraction matrices that reveal which basis invariants can form CPIs.
For the diagrams, the rules are as follows

\[X^a_., X^a_., = \bullet \rightarrow \bullet \] \hspace{1cm} (41)

Lines don’t need to be distinguished:

\[Z^{ab}_., Z^{ab}_., = \bullet \rightarrow \bullet \] \hspace{1cm} (42)

Contracting indices on same tensor:

\[X^a_a. = \circ \] \hspace{1cm} (43)

For the contraction matrices, we list all the \(Y \) tensors, then all the \(Z \) tensors as rows and columns and have 0, 1, 2... if there are 0, 1, 2... lines connecting from upper indices of that row’s tensor to the lower index of that column’s tensor. Some examples are:

\[Y^a_a. = \circ \Rightarrow (1) \] \hspace{1cm} (44)

\[Y^a_., Y^b_b. = \circ \circ \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] \hspace{1cm} (45)

\[Y^a_b. Y^b_a. = \circ \circ \Rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \] \hspace{1cm} (46)

\[Z^{ab}_a. Z^{ab}_b. = \circ \circ \Rightarrow (2) \] \hspace{1cm} (47)

\[Z^{ac}_b. Y^b_a. = \circ \circ \Rightarrow \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \] \hspace{1cm} (48)

\[Z^{ab}_c. Z^{cd}_a. = \circ \circ \Rightarrow \begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} \] \hspace{1cm} (49)

\[Z^{ab}_a. Z^{cd}_b. = \circ \circ \Rightarrow \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \] \hspace{1cm} (50)

A CPI can be built from a basis invariant that changes if all upper indices are exchanged with the lower indices, which, up to rearranging the tensors, corresponds to diagrams that are distinct when the arrows are reversed and to contraction matrices that not symmetric (i.e. are
distinct by exchanging rows and columns). The smallest CPI can be built from the following basis invariant:

\[
I_1 \equiv Z_{ae}^{ab} Z_{bf}^{cd} Y_e^f Y_d^c = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
\end{pmatrix}
\] (51)

and its distinct CP conjugate

\[
I_1^* \equiv Z_{ab}^{ae} Z_{cd}^{bf} Y_e^c Y_d^f = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
\end{pmatrix}
\] (52)

where in the matrix the \(Y \) tensors are the first rows and columns (even though they are ordered differently in the expressions and diagrams).

For the purpose of the potentials considered, the useful CPIs are order 6 in \(Z \) tensors:

\[
I_2^{(6)} = \begin{pmatrix}
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
\end{pmatrix}
\] (53)

\[
I_4^{(6)} = \begin{pmatrix}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
\end{pmatrix}
\] (54)

A full list of CPIs up to order 6 in \(Z \) tensors can be found in the appendix of [1].

In addition, SCPIs can be built by contracting in a similar fashion VEVs (which transform under basis changes and general CP transformations as the respective field does). The SCPI that is relevant for the potentials considered is:

\[
J_{(3,2)}^{(3,2)} \equiv Z_{a_1 a_2}^{a_3 a_4} Z_{a_5 a_6}^{a_7 a_8} v_{a_1} v_{a_2} v^{a_7} v^{a_8} = \begin{pmatrix}
\end{pmatrix}
\] (55)

3. Explicit CP violation
The potential of one triplet of \(\Delta(27) \) has interesting CP properties. We write

\[
V_0(\varphi) = -m_{\varphi}^2 \sum_i \varphi_i \varphi^{*i} + r \left(\sum_i \varphi_i \varphi^{*i} \right)^2 + s \sum_i (\varphi_i \varphi^{*i})^2
\] (56)
of explicit CPV. Imposing one of the CP symmetries identified in [63], which naturally eliminates the possibility of solutions of $SU(2)$ singlets and $\Delta(27)$.

For $SU(2)_L$ singlet scalars, where we consider an additional $U(1)$ flavour symmetry charging the triplet to exclude tri-linear terms, making the potential similar to the respective potentials for $SU(2)_L$ doublets

$$V_0(H) = -m_h^2 \sum_{i,\alpha} h_{i\alpha} h^{*i\alpha} + \sum_{i,j,\alpha,\beta} \left[r_1 (h_{i\alpha} h^{*i\alpha})(h_{j\beta} h^{*j\beta}) + r_2 (h_{i\alpha} h^{*j\alpha})(h_{j\beta} h^{*i\alpha}) \right]$$

$+$ $s \sum_{i,\alpha,\beta} (h_{i\alpha} h^{*i\alpha})(h_{j\beta} h^{*i\beta})$

$$V_{\Delta(27)}(H) = V_0(H) + \sum_{\alpha,\beta} \left[d \left(h_{1\alpha} h_{1\beta} h^{*2\alpha} h^{*3\beta} + \text{cycl.} \right) + \text{h.c.} \right]$$

We consider also the potential with two triplets of $\Delta(3n^2)$ for $n > 3$. We write:

$$V_1(\varphi, \varphi') = + \tilde{r}_1 \left(\sum_i \varphi_i \varphi'^* \right) \left(\sum_j \varphi'_j \varphi'^* \right) + \tilde{r}_2 \left(\sum_i \varphi_i \varphi'^* \right) \left(\sum_j \varphi'_j \varphi'^* \right)$$

$+$ $\tilde{s}_1 \sum_i (\varphi_i \varphi'^* \varphi'_i \varphi'^* i)$

$+$ $\tilde{s}_2 \left(\varphi_1 \varphi'^* 1 \varphi'^* 2 + 2 \varphi_2 \varphi'^* 2 \varphi'^* 3 + \varphi_3 \varphi'^* 3 \varphi'_1 \varphi'^* i \right)$

$+$ $i \tilde{s}_3 \left(\varphi_1 \varphi'^* 1 \varphi'^* 2 + \text{cycl.} \right) - \left(\varphi_1 \varphi'^* 1 \varphi'^* 2 \varphi_2 + \text{cycl.} \right)$.

$$V_{\Delta(3n^2)}(\varphi, \varphi') = V_0(\varphi) + V'_0(\varphi') + V_1(\varphi, \varphi').$$

Explicit CPV is confirmed for these potentials as at least one CPI is non-zero. For $SU(2)_L$ singlets and $\Delta(27)$:

$$I_4^{(6)} = -\frac{3}{32} \left(d^3 - d'^3 \right) \left(d^3 + 6dd^* s + d'^3 - 8s^3 \right)$$

and for $SU(2)_L$ doublets the expression is the same apart from a different fraction. The 6 solutions of $I_4^{(6)} = 0$ in terms of d and s (parameters of the $\Delta(27)$ potential) correspond to imposing one of the CP symmetries identified in [63], which naturally eliminates the possibility of explicit CPV.

For $\Delta(3n^2)$ we calculate:

$$I_2^{(6)} = \frac{3}{512} \left[i \tilde{s}_2 \tilde{s}_3 (-3\tilde{r}_2^2 + \tilde{s}_3^2) - \tilde{s}_2^2 + \tilde{s}_1 \tilde{s}_2 + \tilde{r}_2 (-2\tilde{s}_1 + \tilde{s}_2) + \tilde{s}_2^2 \right]$$

The solutions for $I_2^{(6)} = 0$ match CP symmetries that can be imposed on the potential: e.g. trivial CP_0 forces $\tilde{s}_3 = 0$; another CP symmetry forces $\tilde{s}_2 = 0$ and after finding $(-3\tilde{r}_2^2 + \tilde{s}_3^2)$ in other CPIs, we suspected there was a CP symmetry CP forcing that combination of parameters to vanish and indeed found it.

A summary table with our results for explicit CPV can be found in [1].
4. Spontaneous CP violation
The $\Delta(27)$ invariant potentials have interesting SCPV properties, as its SCPV can be geometric. We analysed it with a SCPI and obtained

$$J^{(3,2)} = \frac{1}{4}(d^{*3} - d^3)Q(|v_i|)$$

$$+ \frac{1}{2}(dd^{*2} - 2d^{*}s^2 + d^2s)(v_2v_3v_1^2 + v_1v_3v_2^2 + v_1v_2v_3^2)$$

$$- \frac{1}{2}(d^2d^{*} - 2ds^2 + d^2s)(v_2v_3v_1^2 + v_1v_3v_2^2 + v_1v_2v_3^2).$$

As the potential has explicit CPV, SCPV only applies after imposing a CP symmetry, which simplifies the expression. E.g., for CP_0 (forces $Arg(d) = 0$):

$$J^{(3,2)} = \frac{1}{2}(d^3 - 2d^{*}s^2 + 2d^2s)$$

$$[(v_2v_3v_1^2 + v_1v_3v_2^2 + v_1v_2v_3^2) - (v_1^*v_3^*v_2^2 + v_1^*v_3v_2^2 + v_1^*v_2v_3^2)]$$

The results obtained through the SCPI matched the known results. For example, for CP_0, it can be checked from the dependence on the VEVs that $\langle \varphi \rangle = (1, \omega, \omega^2)$ makes the SCPI vanish (and indeed this VEV preserves a CP symmetry present in the potential when CP_0 is imposed). Conversely, it confirms the VEV $\langle \varphi \rangle = (\omega, 1, 1)$ has SCPV, as the SCPI is non-vanishing.

5. Conclusion
In summary, we developed the formalism for finding CP-odd basis invariants for scalar potentials, and performed a systematic search finding several new such invariants (up to 6 Z tensors). These methods for studying explicit and spontaneous CP violation are valid for any potential when brought to standard form, for any $SU(2)_L$ assignments of the scalars, and are therefore very useful in studying the CP properties of potentials in multi-Higgs models. We exemplified the use of the CP-odd invariants by considering 3 and 6 Higgs doublet models symmetric under $\Delta(3n^2)$ and $\Delta(6n^2)$ groups and identifying their CP properties.

Acknowledgments
IdMV has received funding from Fundação para a Ciência e a Tecnologia (FCT) through the contract IF/00816/2015. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no PIEF-GA-2012-327195 SIFT.

References
[1] de Medeiros Varzielas I, King S F, Luhn C and Neder T 2016 Phys. Rev. D94 056007 (Preprint [hep-ph/1505.06165])
[2] Jarlskog C 1985 Phys. Rev. Lett. 55 1039
[3] Bernabeu J, Branco G C and Gronau M 1986 Phys. Lett. 169B 243–247
[4] Lee T D 1973 Phys. Rev. D8 1226–1239 [516(1973)]
[5] Sakharov A D 1967 Pisma Zh. Eksp. Teor. Fiz. 5 32–35 [Usp. Fiz. Nauk161,61(1991)]
[6] Kuzmin V A, Rubakov V A and Shaposhnikov M E 1985 Phys. Lett. B155 36
[7] Branco G C, de Medeiros Varzielas I and King S F 2015 Phys. Rev. D92 036007 (Preprint [hep-ph/1502.03105])
[8] Branco G C, de Medeiros Varzielas I and King S F 2015 Nucl. Phys. B899 14–36 (Preprint [hep-ph/1505.06165])
[9] Mendez A and Pomarol A 1991 Phys. Lett. B272 313–318
[10] Lavoura L and Silva J P 1994 Phys. Rev. D50 4619–4624 (Preprint [hep-ph/9404276])
[11] Botella F J and Silva J P 1995 Phys. Rev. D51 3870–3875 (Preprint [hep-ph/9411288])
[12] Branco G C, Rebelo M N and Silva-Marcos J I 2005 Phys. Lett. B614 187–194 (Preprint [hep-ph/0502118])
[13] Davidson S and Haber H E 2005 Phys. Rev. D72 035004 [Erratum: Phys. Rev.D72,099902(2005)] (Preprint [hep-ph/0504050])
14) Gunion J F and Haber H E 2005 Phys. Rev. D72 095002 (Preprint hep-ph/0506227)
15) Feruglio F, Hagedorn C and Ziegler R 2013 JHEP 07 027 (Preprint 1211.5560)
16) Ding G J, King S F, Luhn C and Stuart A J 2013 JHEP 05 084 (Preprint 1303.6180)
17) Feruglio F, Hagedorn C and Ziegler R 2014 Eur. Phys. J. C74 2753 (Preprint 1303.7318)
18) King S F, Neder T and Stuart A J 2013 Phys. Lett. B726 312–315 (Preprint 1305.3200)
19) Luhn C 2013 Nucl. Phys. B875 80–100 (Preprint 1306.2358)
20) Ding G J, King S F and Stuart A J 2013 JHEP 12 006 (Preprint 1307.4212)
21) Li C C and Ding G J 2014 Nucl. Phys. B881 206–232 (Preprint 1312.4401)
22) Ding G J and Zhou Y L 2015 Chin. Phys. C39 021001 (Preprint 1312.5222)
23) King S F and Neder T 2014 Phys. Lett. B736 308–316 (Preprint 1403.1758)
24) Ding G J and King S F 2014 Phys. Rev. D89 093020 (Preprint 1403.5846)
25) Ding G J and Zhou Y L 2014 JHEP 06 023 (Preprint 1404.0592)
26) Neder T 2015 J. Phys. Conf. Ser. 598 012025 (Preprint 1405.0019)
27) Li C C and Ding G J 2015 JHEP 08 017 (Preprint 1408.0785)
28) Hagedorn C, Meroni A and Molinaro E 2015 Nucl. Phys. B891 409–557 (Preprint 1408.7118)
29) Ding G J, King S F and Neder T 2014 JHEP 12 007 (Preprint 1409.8005)
30) Bjorkeroth F, de Anda F J, de Medeiros Varzielas I and King S F 2015 JHEP 06 141 (Preprint 1503.03306)
31) Li C C and Ding G J 2015 JHEP 05 100 (Preprint 1503.03711)
32) Di Iura A, Hagedorn C and Meloni D 2015 JHEP 08 037 (Preprint 1503.04140)
33) Balaji P, Pascoli S and Turner J 2015 Phys. Rev. D92 093008 (Preprint 1503.07543)
34) Neder T 2015 J. Phys. Conf. Ser. 631 012019 (Preprint 1503.09041)
35) Turner J 2015 Phys. Rev. D92 116007 (Preprint 1507.06224)
36) Ding G J and King S F 2016 Phys. Rev. D93 025013 (Preprint 1510.03188)
37) Bjorkeroth F, de Anda F J, de Medeiros Varzielas I and King S F 2016 Phys. Rev. D94 016006 (Preprint 1512.00860)
38) Li C C, Yao C Y and Ding G J 2016 JHEP 05 007 (Preprint 1601.05393)
39) Branco G C, Gerard J M and Grimus W 1984 Phys. Lett. B136 383–386
40) de Adelhart Toorop R, Bazzocchi F, Merlo L and Paris A 2011 JHEP 03 035 [Erratum: JHEP01,098(2013)] (Preprint 1012.1791)
41) de Adelhart Toorop R, Bazzocchi F, Merlo L and Paris A 2011 JHEP 03 040 (Preprint 1012.2091)
42) de Medeiros Varzielas I and Emmanuel-Costa D 2011 Phys. Rev. D84 117901 (Preprint 1106.5477)
43) de Medeiros Varzielas I, Emmanuel-Costa D and Leser P 2012 Phys. Lett. B716 193–196 (Preprint 1204.3633)
44) Bhattacharyya G, de Medeiros Varzielas I and Leser P 2012 Phys. Rev. Lett. 109 241603 (Preprint 1210.0545)
45) Ivanov I P and Vdovin E 2013 Eur. Phys. J. C73 2390 (Preprint 1210.6553)
46) Ivanov I P and Vdovin E 2012 Phys. Rev. D86 095030 (Preprint 1206.7108)
47) de Medeiros Varzielas I and Pidt D 2014 J. Phys. G41 025004 (Preprint 1307.0711)
48) de Medeiros Varzielas I and Pidt D 2013 JHEP 11 206 (Preprint 1307.6545)
49) Keus V, King S F and Moretti S 2014 JHEP 01 052 (Preprint 1310.8253)
50) Keus V, King S F, Moretti S and Sokolowska D 2014 JHEP 11 016 (Preprint 1407.7859)
51) Ivanov I P and Nishi C C 2015 JHEP 01 021 (Preprint 1410.6139)
52) Keus V, King S F, Moretti S and Sokolowska D 2015 JHEP 11 003 (Preprint 1507.08433)
53) Fallbacher M and Trautner A 2015 Nucl. Phys. B894 136–160 (Preprint 1502.01829)
54) Ivanov I P and Silva J P 2016 Phys. Rev. D93 095014 (Preprint 1512.09276)
55) Emmanuel-Costa D, Ogred O M, Ondal P and Rebelo M N 2016 JHEP 02 154 [Erratum: JHEP08,169(2016)] (Preprint 1601.04654)
56) Ivanov I P and Lavoura L 2013 Eur. Phys. J. C73 2416 (Preprint 1302.3856)
57) Ivanov I P and Nishi C C 2010 Phys. Rev. D82 015014 (Preprint 1004.1799)
58) Ivanov I P 2010 JHEP 07 020 (Preprint 1004.1802)
59) Carcamo Hernandez A E, de Medeiros Varzielas I, Kovalenko S G, Ps H and Schmidt I 2013 Phys. Rev. D88 076014 (Preprint 1307.6499)
60) Keus V, King S F and Moretti S 2014 Phys. Rev. D90 075015 (Preprint 1408.0796)
61) Nishi C C 2015 JHEP 03 034 (Preprint 1411.4909)
62) de Medeiros Varzielas I, Fischer O and Maurer V 2015 JHEP 08 080 (Preprint 1504.03955)
63) Nishi C C 2013 Phys. Rev. D88 033010 (Preprint 1306.0877)