Cloning of human 15ku selenoprotein gene from H9 T cells

Ke-Jun Nan, Chun-Li Li, Yong-Chang Wei, Chen-Guang Sui, Zhao Jing, Hai-Xia Qin, Li-Jun Zhao, Bo-Rong Pan

Abstract

AIM: To clone human 15ku selenoprotein gene.

METHODS: H9 human T cells were cultured in RPMI1640 medium supplemented with 100 mL/L fetal calf serum. mRNA was isolated from the cells. cDNA library was constructed by RT-PCR. The human 15ku selenoprotein gene was obtained by PCR and cloned into T vector and sequenced.

RESULTS: A unique cDNA fragment about 1 244 bp was obtained. Sequence analysis identified an open reading frame within the cDNA. The gene had an in-frame TGA, which encoded selenocysteine (Sec), and a 3'-UTR SECIS element, which was required for synthesis of selenoprotein. The predicted protein molecular mass was about 15ku (162 residues). The result was identical with human liver 15ku selenoprotein gene published in Genbank.

CONCLUSION: Human 15ku selenoprotein gene can be successfully obtained from T cell line.

Nan KJ, Li CL, Wei YC, Sui CG, Jing Z, Qin HX, Zhao LJ, Pan BR. Cloning of human 15ku selenoprotein gene from H9 T cells. World J Gastroenterol 2003; 9(8): 1777-1780

http://www.wjgnet.com/1007-9327/9/1777.asp

INTRODUCTION

The trace element selenium (Se) is an essential human nutrient[1]. It has been shown to prevent cancers, especially liver and stomach cancers[2] in both epidemiological studies and clinical supplementation trials[3]. However, the mechanism by which Se suppresses tumor development remains unknown. Se is present in known human selenoproteins as amino acid selenocysteine (Sec)[4]. Sec is the active form of Se in selenoproteins and has important biological functions. Recently, a human 15ku selenoprotein (Sep15) containing Se in the form of Sec was identified. It was an acid protein with a PI value of 4.5. It was recently identified in human T cells[5,6] and was present in various human tissues, such as liver, kidney, testis and brain, but it was highly expressed in epithelial cells of the prostate gland[6] and thyroid[5]. The level of this selenoprotein was reduced substantially in hepatocellular carcinoma[2] and in a malignant prostate cell line[8]. Furthermore, epidemiological data have indicated a statistically significant inverse correlation between Se in the diet and occurrence of liver cancer. These facts have provoked our interest to study Sep15. The recent finding that the gene of Sep15 was located on human chromosome 1p31, often affected in human cancer[9], also supports the hypothesis that this protein might play a role in the development of cancers[5]. To get a better understanding of the relationship between Sep15 and tumor, and the mechanism by which it suppresses the tumor, we firstly cloned the gene of this selenoprotein.

MATERIALS AND METHODS

Materials

H9 T cell line was purchased from ATCC. RPMI1640 was purchased from Gibco. Fetal bovine serum was from Hangzhou Sijiqing Company. Main biochemical reagents of T vector, T4 DNA ligase, Taq DNA polymerase and Trizol reagent were from Promega. Small amount plasmid extraction kit and PCR products purification kit were from Huashun Shengwu Engineering Company. Bacteria species JM109 was from the Department of Biochemistry of the Fourth Military Medical University. Agarose was from Huaimei Shengwu Engineering Company. The restrictionendonuclease Not I was from Takara. RNA extraction kit was from Promega. RT-PCR kit was from American Bio r’s Company. The primers were synthesized by Georgia University of America. The forward primer was 5’-AAGCGATGCGGCTGGCGGAG-3’. The backward primer was 5’-GATTGTGAAAATTTTTATTATA-3’.

Methods

mRNA extraction of H9 T cells H9 T cells were cultured in the RPMI1640 containing new born bovine serum under the condition of 50 mL/L CO2 at 37 °C in a CO2 incubator. About 107 H9 T cells were absolutely split with trizol reagent. Total RNA was extracted with chloroform, deposited with isopropanol, then dried at 37 °C. mRNA was isolated with a mRNA purification kit from Promega[10]. The procedure in details was performed according to the instructions of the kit. RT-PCR[11]. By using the reverse transcription system from Promega[12], cDNA synthesis was performed according to the following instructions. mRNA previously extracted and random hexamers were used to synthesize first strand of cDNA[13], which was used to synthesize the double-strand DNA in the latter PCR[14]. PCR was performed as follows[15, 16]. The total volume of the PCR amplification system was 100 µL. First, 10 µL reverse transcription reaction liquid, 4 µL 20 pmol/L primers (each 2 µL), 8 µL 10 mmol/L dNTP, 10 µL 10xPCR reaction liquid, and 100 U TaqDNA were added consecutively, then water was added to a total volume of 100 µL. The PCR was performed by incubating at 94 °C for 2 min, at 94 °C for 1 min, at 55 °C for 1 min, at 72 °C for 1 min, totally 35 cycles. The reaction mixture was incubated at 72 °C for 7 min. Finally all the PCR products were used for 10 g/L agarose gel electrophoresis to purify the products. Purification was performed according to the instructions of the gel extraction kit from Huashun Company.

Linkage and conversion 5 µL T vector, 1 µL T.DNA ligase,
1 μL 100xbuffer were added into previously purified PCR products, incubated at 16 °C overnight. 5 μL linkage products was picked up to infect competence bacteria of JM109. The conversion products were spread on a LB agarose plate containing ampicillin at 37 °C overnight.

Restriction endonuclease digestion and evaluation

First, 3 monoclonal colonies were randomly chosen, and put into 10 g/L LB containing ampicillin, the culture was shaken at 37 °C overnight in air bath, then the plasmid of PGE-M-T-15ku-selenoprotein was extracted. The procedure was performed according to the instructions of the low-dose plasmid extraction kit from Huashun Company. 5 μL previously extracted plasmid was digested with Not I. The reaction system containing 5 μL plasmid, 1 μL Not I, 2 μL 10xBSA buffer, 2 μL 10xH buffer, 2 μL 10xTritionX-100, and 8 μL sterilized water was performed at 37 °C for 3 hours. Finally 5 μL reaction mixture was used for 10 g/L agarose gel electrophoresis for 45 minutes. At the same time, the plasmid DNA was sent to the laboratory of Georgia University in America to sequence the DNA.

RESULTS

Sep15 gene amplification

After 35 cycles of RT-PCR, 5 μL PCR products were used for 10 g/L agarose gel electrophoresis. When compared with the DNA marker, cDNA fragment was between 1 000 bp and 2 000 bp. It was coincident with the length of purposed gene (Figure 1).

![Figure 1](image1.png)

Figure 1 Agarose gel electrophoresis of RT-PCR amplified Sep15 gene fragment.

Sep15 gene cloning and its digestion and evaluation

After 3 monoclonal colonies were randomly chosen, the plasmid was extracted and digested with Not I. Then, 5 μL was used for 10 g/L agarose gel electrophoresis, the straps were found to be coincident with the length of purposed gene (Figure 2).

![Figure 2](image2.png)

Figure 2 Not I cut plasmid of PGE-M-T-15ku-selenoprotein.

DNA sequencing

The sequencing of PGE-M-T-15ku-selenoprotein showed that the Sep15 gene was cloned completely coincident with the sequence in GenBank. It was 100 % homology with the human Sep15 gene. The sequences were as follows.

```plaintext
1 agcgagttcgc ggtggccgtg ggtggcagcg tgtgggtgtct gggtgccggc tttgggctac ggttgttgtt ggcgactgtg
2 cttcaagatcc tacagtaaga gtgaaacatt cacaaagatt tgcgttaatg aagactacac agaaaacctt
3 tctagggatt tgtgtggatc agatacatac ttggcaaatt tttgagtttt acattcttac agaaaagtcc
4 attctcaaat ggaacacaga cagtgtagaa gaattcctga gtgaaaagtt ggaacgcata
5 ataatttagtt ttgcttgctt ccattgatca gtcttttact tgaggcatta aatatctaat taaatcgtga
6 tcttgtca caaactaat aagcgtcttg acagctagta ctcgagactt gatcagacat ctcgagactt
7 taagcagacat ctcgagactt cgggcttcac tcatcagaat cagcagcagt ctcgagactt
8 gagaagaagtc cagcagcagt ctcgagactt cgggcttcac tcatcagaat cagcagcagt ctcgagactt
9 taaatttagtt ttgcttgctt ccattgatca gtcttttact tgaggcatta aatatctaat taaatcgtga
```

DISCUSSION

Se was recognized as an essential trace element in human and animal’s life by WHO in 1978. The relationship between Se and many kinds of disease including cancer is a hot point of medical research[17, 18]. Usually, Se is incorporated into proteins in the forms of selenocysteine (Sec) and selenomethionine (SeMet). The term “selenoprotein” is restricted to the proteins which contain Se in the form of selenocysteine[19]. Selenoproteins are distinguished from proteins which nonspecifically incorporate selenomethionine not contributing to the biological function of the Se. About 21 specific selenoproteins have been identified in mammals and bacteria, and 18 of them could have biological functions attributed to them. Mammalian Se-containing proteins can be divided into three groups: proteins containing nonspecifically incorporated Se, specific Se-binding proteins, and specific selenocysteine-containing selenoproteins[20]. Selenoproteins with a known function identified so far include five glutathione peroxidases, two deiodinases, several thioredoxin reductases, and selenophosphate synthetase 2. Sep15, selenoprotein P, selenoprotein W, an 18-ku selenoprotein and several selenoproteins identified in silico from nucleotide sequence databases have been found to contain selenocysteine, but their functions are not known. Gel electrophoretic separation of tissue samples from rats labeled with 75Se showed the existence of further Se-containing proteins[21]. It has been shown that Se could prevent cancer in a variety of animal model systems[20, 21]. Both epidemiological studies and supplementation trial supported its efficacy in humans[22]. However, the mechanism by which Se suppresses tumor development remains unknown[23]. Se is present in known human selenoproteins as selenocysteine. Selenocysteine represents the 21st amino acid and is encoded by UGA triplet in selenoprotein mRNA[24, 25]. Although UGA most often functions as a stop codon, UGA-encoded incorporation of selenocysteine into the growing polypeptide is determined by the presence of a specific stem-loop secondary structure within the 3' -untranslated region of the selenoprotein mRNA[26]. Sep15 was firstly found in human T cells, and it contains a selenocysteine residue encoded by TGA. Its coding sequence has no homology to known protein-encoding genes. Computer analysis of transcript map databases indicated that this gene included five exons and four introns[27]. Recent findings indicate that the chromosome, in which the gene of Sep15 is located, is a genetic locus commonly mutated or deleted in human...
cancers. One in-frame TGA codon and two stem loop structures resembling selenocysteine insertion sequence (SECIS) elements were identified in the 3'-untranslated region of the gene, and only one of them was functional[26]. Examination of the available cDNA sequence of this protein revealed that two polymorphisms were located at position 811(C/T) and 1 125 (G/A)[26] within the 3'-untranslated region. They were organized into two alleles, C811/G1125 and T811/A1125 in the 68 %/32 % frequency distribution. These 3'-untranslated region polymorphisms resulted in changes in selenocysteine incorporation into protein and different responses. To Se supplementation[27]. Human epidemiological studies have revealed that Se has a negative correlation with the occurrence of prostate cancer[29,30] and lung cancer[31]. Moreover, recent investigations have shown that Se supplementation may be effective on the reduction of common human cancers, including prostate cancer[32], colon[33] cancer and lung cancer. Northern blot analysis of the human Sep15 mRNA demonstrated that the expression of Sep15 was significantly decreased in malignant prostate cancer cell line and in hepatocellular carcinoma cell line. The Sep15 protein levels in liver tumors, adjacent tissues, and normal hepatic tissue were significantly different. The Sep15 level was significantly decreased in tumors compared with that in the normal control. It was consistent with the observation that Sep15 protein was not detectable in mouse prostate adenocarcinoma cells, while normal mouse prostate showed a strong signal with Sep15 protein-specific antibodies.

Different expression patterns of the Sep15 protein in normal and malignant tissues, the occurrence of polymorphism associated with protein expression, the role of Se in differential protein-specific antibodies.

REFERENCES

1. Yu MW, Horng IS, Hsu KH, Chiang YC, Liaw YF, Chen CJ. Plasma selenium levels and risk of hepatocellular carcinoma among men with chronic hepatitis virus infection. Am J Epidemiol 1999; 150: 367-374
2. Trobs M, Renner T, Scherer G, Heller WD, Geiss HC, Wolfram G, Haas GM, Schwandt P. Nutrition, antioxidants, and risk factor profile of nonsmokers, passive smokers and smokers of the Prevention Education Program (PEP) in Nuremberg, Germany. Prev Med 2002; 34: 600-607
3. Popova NV. Perinatal selenium exposure decreases spontaneous liver tumorgenesis in CBA mice. Cancer Lett 2002; 179: 39-42
4. Leblondel G, Maura Y, Cailleux A, Allain P. Transport measurements across Caco-2 monolayers of different organic and inorganic selenium: influence of sulfur compounds. Biol Trace Elem Res 2001; 83: 191-206
5. Behne D, Kyriakopoulos A. Mammalian selenium-containing proteins. Annu Rev Nutr 2001; 21: 453-473
6. Korotkov KV, Kumasawamy E, Zhou Y, Hatfield DL, Gladyshev VN. Association between the 15-kDa selenoprotein and UDP-glucoseglycoprotein glucosyltransferase in the endoplasmic reticulum of mammalian cells. J Biol Chem 2001; 276: 15330-15336
7. Chin-Thin W, Wei-Tun C, Tzu-Ming P, Ren-Tse W. Blood concentrations of selenium, zinc, iron, copper and calcium in patients with hepato-cellular carcinoma. Clin Chem Lab Med 2002; 40: 1138-1122
8. Klein EA, Thompson IM, Lippman SM, Goodman PJ, Albanes D, Taylor PR, Coltman C. SELECT: the selenium and vitamin E cancer prevention trial: rationale and design. Prostate Cancer Prostatic Dis 2000; 3: 145-151
9. Kumasawamy E, Malych A, Gorotkov KV, Kozyavkin S, Hu Y, Kwon SY, Mostafa ME, Carlson BA, Berry MJ, Lee BJ, Hatfield DL, Diamond AM, Gladyshev VN. Structure-expression relationships of the 15-kDa selenoprotein gene. Possible role of the protein in cancer etiology. J Biol Chem 2000; 275: 35540-35547
10. Li SW, Gong J, Wu CX, Shi YJ, Liu CA. Lipopolysaccharide-induced synthesis of CD14 proteins and its gene expression in hepatocytes during endotoxemia. World J Gastroenterol 2002; 8: 124-127
11. Liu LX, Jiang HC, Liu ZH, Zhou J, Zhang WH, Zhu AL, Wang XQ, Wu M. Integrin gene expression profiles of human hepatocellular carcinoma. World J Gastroenterol 2002; 8: 631-637
12. Jiang RL, Lu QS, Luo KX. Cloning and expression of core gene cDNA of Chinese hepatitis C virus in cosmid pTM3. World J Gastroenterol 2000; 6: 220-222
13. Li Y, Yang L, Cui JT, Li WM, Guo RF, Lu YY. Construction of cDNA representation of Film analysis based on two cDNA libraries and identification of garlic inducible expression genes in human gastric cancer cells. World J Gastroenterol 2002; 8: 782-786
14. Xue YW, Zhang QF, Zhu ZB, Wang Q, Fu SB. Expression of cyclooxygenase-2 and clinicopathologic features in human gastric adenocarcinoma. World J Gastroenterol 2003; 9: 250-253
15. Ujilie S, Kikuchi H. The relation between serum selenium value and cancer in Miyagi, Japan: 5-year follow up study. Tohoku J Exp Med 2002; 196: 99-109
16. Haras S, Shoji Y, Sakurai A, Yusa K, Himeno I, Imura N. Effects of selenium deficiency on expression of selenoproteins in bovine arterial endothelial cells. Biol Pharm Bull 2001; 24: 754-759
17. Mostert V. Selenoprotein P: properties, functions, and regulation. Arch Biochem Biophys 2000; 376: 433-438
18. Riondel J, Wong HK, Glise D, Duroc F, Bavier A. The effect of a water-dispersible beta-carotene formulation on the prevention of age-related lymphoid neoplasms in mice. Anticancer Res 2002; 22: 883-888
19. Popova NV. Perinatal selenium exposure decreases spontaneous liver tumorgenesis in CBA mice. Cancer Lett 2002; 179: 39-42
20. Nakaji S, Fukuda S, Sakamoto J, Sugawara K, Shimoyama T, Umeda T, Baxter D. Relationship between mineral and trace element concentrations in drinking water and gastric cancer mortality in Japan. Nutr Cancer 2001; 40: 99-102
21. Calvo A, Xiao N, Kang J, Best CJ, Leiva I, Emmert-Buck MR, Jackson C, Green JL. Alterations in gene expression profiles during prostate cancer progression: functional correlations to tumorigenesis and down-regulation of seloprotein-P in mouse and human tumors. Cancer Res 2002; 62: 5325-5335
22. Korotkov KV, Nsoselov KV, Hatfield DL, Gladyshev VN. Mammalian selenoprotein in which selenocysteine (Sec) incorporation is supported by a new form of Sec insertion sequence element. Cancer Res 2002; 62: 3565-3576
23. Mansur DB, Hao H, Gladyshev VN, Korotkov KV, Hu Y, Mosuata ME, El-Saadani MA, Carlson BA, Hatfield DL, Diamond AM. Multiple levels of regulation of selenoprotein biosynthesis revealed from the analysis of human glioma cell lines. Biochem Pharmacol 2000; 60: 489-497
24. Hatfield DL, Gladyshev VN. How selenium has altered our understanding of the genetic code. Mol Cell Biol 2002; 22: 1402-1411
25. Zhang W, Cox AG, Taylor EW. Hepatitis C virus encodes a selenium-dependent glutathione peroxidase gene. Implications for oxidative stress as a risk factor in progression to hepatocellular carcinoma. Molec and Cell Biol 1999; 94 (Suppl 3): 2-6
26. Brookes JD, Metter EJ, Chan DW, Sokoll LJ, Lands P, Nelson WG, Muller D, Andres R, Carter HB. Plasma selenium level before diagnosis and the risk of prostate cancer development. J Urol 2001;
30 Gasparian AV, Yao YJ, Lu J, Yemelyanov AY, Lyakh LA, Slaga TJ, Budunova IV. Selenium compounds inhibit I kappa B kinase (IKK) and nuclear factor-kappa B (NF-kappa B) in prostate cancer cells. Mol Cancer Ther 2002; 1: 1079-1087
31 Trobs M, Renner T, Scherer G, Heller WD, Geiss HC, Wolfram G, Haas GM, Schwandt P. Nutrition, antioxidants, and risk factor profile of nonsmokers, passive smokers and smokers of the Prevention Education Program (PEP) in Nuremberg, Germany. Prev Med 2002; 34: 600-607
32 Casimiro C. Etiopathogenic factors in colorectal cancer. Nutritional and life-style aspects. 2. Nutr Hosp 2002; 17: 128-138
33 Sun XW, Shen BZ, Shi MS, Dai XD. Relationship between CD44v6 expression and risk factors in gastric carcinoma patients. Shijie Huaren Xiaohua Zazhi 2002; 10: 1129-1132
34 Zhou HB, Zhang JM, Yan Y. Inactivation of DPC4 gene in colorectal carcinoma. Shijie Huaren Xiaohua Zazhi 2002; 10: 1140-1142
35 Zhou XD, Yu JP, Ran ZX, Luo HS, Yu BP. Expression of cFLIP and p53 mutation in adenocarcinoma of colon. Shijie Huaren Xiaohua Zazhi 2002; 10: 536-539
36 Dong K, Li B, Qin Y, Li CZ, Lui JY, Sun ZL, Sun ZF. Methylation pattern analysis in CpG islands of p15 and p16 tumor suppressor genes in pancreatic carcinoma tissue. Shijie Huaren Xiaohua Zazhi 2002; 10: 1264-1267
37 Cui M, Zhang HJ, An LG. Tumor growth inhibition by polysaccharide from Coprinus comatus. Shijie Huaren Xiaohua Zazhi 2002; 10: 287-290
38 Gong JQ, Fang CH. Relationship between the oval cells and development of hepatocellular carcinoma in rats. Shijie Huaren Xiaohua Zazhi 2002; 10: 1133-1139
39 Yang L, Wang YP, Wu DY, Zhang SM, Li JY, Zhang YC, Xin Y. Pathological behaviors and molecular mechanisms of signet-ring cell carcinoma and mucinous adenocarcinoma of stomach: a comparative study. Shijie Huaren Xiaohua Zazhi 2002; 10: 516-524
40 Zhu JS, Zhu L, Wang L, Zhuang QX, Hu B, Da W, Chen WX, Chen GQ, Ma JQ. Autologous peripheral blood stem cell combined with high-dose arterial chemotherapy for advanced gastric cancer. Shijie Huaren Xiaohua Zazhi 2002; 10: 1408-1411