Specific Interaction of the Transcription Elongation Regulator TCERG1 with RNA Polymerase II Requires Simultaneous Phosphorylation at Ser2, Ser5, and Ser7 within the Carboxyl-terminal Domain Repeat*

Received for publication, February 7, 2013, and in revised form, February 15, 2013. Published, JBC Papers in Press, February 22, 2013, DOI 10.1074/jbc.M113.460238

Jiangxin Liu¹, Shiling Fan¹, Chul-Jin Lee¹, Arno L. Greenleaf², and Pei Zhou¹†

From the ¹Department of Biochemistry, Duke University Medical Center, Durham, North Carolina 27710 and ²Laboratory of Molecular Biology, Medical Research Council (MRC) Centre, Cambridge CB2 0QH, United Kingdom

Background: TCERG1 interacts with hyperphosphorylated RNA pol II CTD through FF domains.

Results: We determined the structure of TCERG1 FF4–6 domain and its specific binding requirement of the CTD phosphoepitope.

Conclusion: FF4–6 forms a rigid structure of tandem FF repeats and requires simultaneous Ser2, Ser5, and Ser7 phosphorylation of the CTD for high affinity binding.

Significance: This study provides molecular insights into Ser7P-mediated co-transcriptional splicing events.

The human transcription elongation regulator TCERG1 physically couples transcription elongation and splicing events by interacting with splicing factors through its N-terminal WW domains and the hyperphosphorylated C-terminal domain (CTD) of RNA pol II through its C-terminal FF domains. Here, we report biochemical and structural characterization of the C-terminal three FF domains (FF4–6) of TCERG1, revealing a rigid integral domain structure of the tandem FF repeat that interacts with the hyperphosphorylated CTD (PCTD). Although FF4 and FF5 adopt a classical FF domain fold containing three orthogonally packed α helices and a 3₁₀ helix, FF6 contains an additional insertion helix between α1 and α2. The formation of the integral tandem FF4–6 repeat is achieved by merging the last helix of the preceding FF domain and the first helix of the following FF domain and by direct interactions between neighboring FF domains. Using peptide column binding assays and NMR titrations, we show that binding of the FF4–6 tandem repeat to the PCTD requires simultaneous phosphorylation at Ser2, Ser5, and Ser7 positions within two consecutive Y₁S$_2$P$_3$T$_4$S$_5$P$_6$S$_7$ heptad repeats. Such a sequence-specific PCTD recognition is achieved through CTD-docking sites on FF4 and FF5 of TCERG1 but not FF6. Our study presents the first example of a nuclear factor requiring all three phosphorylation sites on FF4 and FF5 of TCERG1 but not FF6. Our study presents the first example of a nuclear factor requiring all three phosphorylation sites on FF4 and FF5 of TCERG1 but not FF6.

RNA pol II (RNA pol II)2 carries an intrinsically unstructured, flexible domain at the C terminus of its largest subunit, Rpb1 (1, 2). This C-terminal domain (CTD) consists of multiple repeats of a consensus heptamer, Y₁S$_2$P$_3$T$_4$S$_5$P$_6$S$_7$ (3, 4). During each transcription cycle, the CTD undergoes waves of phosphorylation and dephosphorylation events at the Ser positions (Ser2, Ser5, and Ser7) within the heptad repeats, producing a large number of phosphorylation states (5, 6). Ser5 of the CTD is strongly phosphorylated upon formation of the pre-initiation complex followed by an increase of Ser2 phosphorylation during the elongation phase (7–9). Although Ser7 phosphorylation was first implicated in snRNA processing (10), recent studies have revealed high levels of Ser7 phosphorylation in the CTD throughout protein-coding genes, hinting at a broader function of Ser7 phosphorylation beyond snRNA processing (11–13). These serine phosphorylation states, together with phosphorylation of Tyr1 (14) and Thr4 (15) and glycosylation (16), and the distinct configurations of the Pro (Pro$_3$ and Pro$_5$) residues (17–19) form a “CTD code” that is recognized by a myriad of RNA processing factors and other nuclear proteins participating in co-transcriptional events (20, 21).

The human transcription elongation regulator TCERG1 (CA150) is one of the first few identified nuclear proteins that specifically bind to the hyperphosphorylated CTD (PCTD). TCERG1 is involved in trans-activator protein (Tat)-mediated transcriptional regulation of human immunodeficiency virus type 1 gene expression (22). Early lines of experimentation also implicated TCERG1 in transcription elongation via association with elongation factors, such as Tat-SF1 and positive transcription elongation factor b (23, 24). TCERG1 has been detected in highly purified native spliceosomes, suggesting that it partici-

* This work was supported, in whole or in part, by National Institutes of Health Grants GM079376 (to P. Z.) and GM040505 (to A. L. G.). The atomic coordinates and structure factors (code 4FQG) have been deposited in the Protein Data Bank (http://wwpdb.org/).

† To whom correspondence should be addressed. Tel.: 919-668-6409; Fax: 919-684-8885; E-mail: peizhou@biochem.duke.edu.

2 The abbreviations used are: RNA pol II, RNA polymerase II; CTD, C-terminal domain; Ser2P, Ser2 phosphorylation; Ser5P, Ser5 phosphorylation; Ser7P, Ser7 phosphorylation; PCTD, hyperphosphorylated CTD; Tat, trans-activator protein; HSQC, heteronuclear single quantum correlation; RDC, residual dipolar coupling; HYPE, huntingtin yeast partner A; SRI, Set2-Rpb1 interacting.
FF1 domain to the crooked necklike factor 1 has been mapped (37). For example, the binding of the splicing factor Prp40 to the FF domains, their ligand-binding surfaces share little similarity (33–36). Despite the structural similarity of the FF domains, revealing a highly conserved fold of three orthogonal helices (31). FF domains are primarily found in two protein families, p190 family of Rho GTPase-activating proteins and N-terminal WW domains are primarily found in two protein families, p190 family of Rho GTPase-activating proteins and N-terminal WW domain-containing proteins, such as yeast pre-mRNA processing factor (Prp40) and human TCERG1 (31). Although proteins containing isolated FF domains have been identified (32), most FF domains are found as a tandem array of two to six FF repeats resulting in a tandem FF4–6 repeat with an N-terminal His10 tag were over-expressed in Escherichia coli BL21(DE3)STAR cells. Cultures were grown in LB medium in the presence of 100 μg/ml ampicillin at 37 °C until A600 reached 0.6. Cells were induced with 0.25 mM isopropyl β-D-thiogalactopyranoside at 20 °C for 2 h. After harvest by centrifugation, cells were resuspended in the lysis buffer containing 50 mM NaH2PO4 (pH 8), 300 mM NaCl, and 0.1% β-mercaptoethanol (v/v) and lysed by passing through a French pressure cell at 20,000 p.s.i. Cellular debris was pelleted by centrifugation at 66,800 × g for 1 h, and the supernatant was loaded onto a Ni2+–nitrilotriacetic acid column. The column was extensively washed with the lysis buffer, and then the protein was eluted with a buffer containing 50 mM NaH2PO4 (pH 8), 300 mM NaCl, and 0.1% β-mercaptoethanol (v/v) and digested with tobacco etch virus protease at room temperature overnight. The digested sample was exchanged into the lysis buffer and passed through a second Ni2+–nitrilotriacetic acid column to remove the cleaved His10 tag. The final purification was achieved using size exclusion chromatography (Superdex 75, GE Healthcare). Fractions containing purified protein were pooled and exchanged into crystallization buffer containing 25 mM HEPES (pH 7), 100 mM KCl, and 0.1% β-mercaptoethanol (v/v) and digested with tobacco etch virus protease at room temperature overnight. The digested sample was exchanged into the lysis buffer and passed through a second Ni2+–nitrilotriacetic acid column to remove the cleaved His10 tag. The final purification was achieved using size exclusion chromatography (Superdex 75, GE Healthcare). Fractions containing purified protein were pooled and exchanged into crystallization buffer containing 25 mM HEPES (pH 7), 100 mM KCl, and 0.1% β-mercaptoethanol (v/v). The purified protein contained an N-terminal overhang of three additional residues (SHM) as a result of tobacco etch virus cleavage and primer design.

Experimental Procedures

Molecular Cloning—The DNA fragments encoding FF2 (residues 728–784), FF5–6 (residues 952–1081), and FF4–6 (residues 895–1081) of human TCERG1 were PCR-amplified and cloned into a PET15b vector between the Ndel and BamHI sites (EMD Biosciences). A series of TCERG1 FF4–6 point mutants (W918F, R922A, R922E, R923A, R926A, W931F, K942A, L953M, W977F, K981A, K982A, K985A, K1000A, and K1000E) were generated according to the QuikChange mutagenesis protocol (Stratagene) using the FF4–6-containing PET15b plasmid as the template. The presence of the correct mutation was verified by DNA sequencing.

Protein Expression and Purification—The F2, F5–6, and FF4–6 tandem repeat with an N-terminal His10 tag were overexpressed in Saccharomyces cerevisiae strain BY4741. Yeast strains with 14 repeats of CTD, and they are referred to as WT CTD14 and S7A CTD14, respectively, in this study. WT Rpb1 were generously provided by Prof. Beate Schwer (39). The growth of these two strains is identical to that of strains with a full-length S. cerevisiae CTD and, they are referred to as WT CTD14 and S7A CTD14, respectively, in this study. WT CTD14 and S7A CTD14 strains were grown in dropout medium minus histidine at 30 °C until A600 reached 1.0. The cells were harvested at 4 °C. The cell pellet was washed twice with the PBS buffer and then transferred to a syringe with a spatula and scoop. The cells were slowly extruded into liquid nitrogen and frozen into small pieces. The frozen yeast cells were ground using a Retsch Mixer Mill MM 400 in liquid nitrogen to a fine powder and then stored at ~80 °C. Aliquots of cell powder were suspended in a buffer containing 25 mM HEPES (pH 7.0), 100 mM KCl, and 0.1% β-mercaptoethanol (v/v). The purified protein contained an N-terminal overhang of three additional residues (SHM) as a result of tobacco etch virus cleavage and primer design.

Yeast Whole-cell Extracts—Yeast strains with 14 repeats of consensus sequence (YSPTPS)14 or all-S7A mutant CTD (YSPTSPA)14 fused to residue Gly1541 in Saccharomyces cerevisiae Rpb1 were generously provided by Prof. Beate Schwer (39). The growth of these two strains is identical to that of strains with a full-length S. cerevisiae CTD, and they are referred to as WT CTD14 and S7A CTD14, respectively, in this study. WT CTD14 and S7A CTD14 strains were grown in dropout medium minus histidine at 30 °C until A600 reached 1.0. The cells were harvested at 4 °C. The cell pellet was washed twice with the PBS buffer and then transferred to a syringe with a spatula and scoop. The cells were slowly extruded into liquid nitrogen and frozen into small pieces. The frozen yeast cells were ground using a Retsch Mixer Mill MM 400 in liquid nitrogen to a fine powder and then stored at ~80 °C. Aliquots of cell powder were suspended in a buffer containing 25 mM HEPES (pH 7.0), 100 mM KCl, and 0.1% β-mercaptoethanol (v/v) and digested with tobacco etch virus protease at room temperature overnight. The digested sample was exchanged into the lysis buffer and passed through a second Ni2+–nitrilotriacetic acid column to remove the cleaved His10 tag. The final purification was achieved using size exclusion chromatography (Superdex 75, GE Healthcare). Fractions containing purified protein were pooled and exchanged into crystallization buffer containing 25 mM HEPES (pH 7), 100 mM KCl, and 0.1% β-mercaptoethanol (v/v). The purified protein contained an N-terminal overhang of three additional residues (SHM) as a result of tobacco etch virus cleavage and primer design.
Structure of TCERG1 FF4–6 and Its PCTD Binding Specificity

mm NaCl, 1 mM PMSF, and a Complete Mini protease inhibitor mixture tablet (Roche Applied Science) and centrifuged at 15,000 rpm for 30 min to remove the debris.

Whole-cell Extract Pulldown Assay and Western Blot—Purified His-tagged FF4–6 was applied repeatedly onto a column containing 200 μl of TALON cobalt resin (Clontech), and unbound FF4–6 was removed by extensive wash. About 1 mg of WT or S7A CTD cell extract was loaded onto the column followed by extensive wash with a buffer containing 25 mM HEPES (pH 7.0), 0.15 M NaCl, and 12 mM imidazole to eliminate nonspecific binding. A high salt buffer containing 25 mM HEPES (pH 7) and 1 M NaCl was then used to disrupt the interaction between the PCTD and FF4–6 and elute the PCTD. WT CTD cell extract loaded onto a blank cobalt resin column served as a negative control. The input and elution fractions were analyzed by SDS-PAGE followed by Western blotting with Ser5-specific CTD antibody 3E8. Peroxidase-conjugated anti-rat IgG (heavy + light) antibody was used as the secondary antibody and was visualized using an enhanced chemiluminescence system (PerkinElmer Life Sciences).

Far-Western Blot Analysis—Duplicate protein samples were loaded into two precast SDS gels (4–20%; Bio-Rad). One was stained with Coomassie Blue, whereas the other one was transferred to a nitrocellulose membrane at 0.75 A for 2 h at 4 °C. The membrane was incubated overnight at 4 °C in the blocking/renaturation buffer containing 1× PBS (10 mM Na$_2$PO$_4$/NaH$_2$PO$_4$ (pH 7.2), and 150 mM NaCl), 3% nonfat dry milk, 0.2% Tween 20, 5 mM NaF, 0.1% PMSF, and 5 mM DTT. GST, GST-tagged yeast CTD containing 26 heptad repeats (GST-CTD$_{26}$), and GST-tagged CTD containing three heptad repeats (GST-CTD$_{3}$) were hyperphosphorylated with yeast CTD kinase I for 6 h in vitro (40). The nitrocellulose membrane was extensively washed with PBS buffer containing 0.2% Tween 20 and then probed with hyperphosphorylated GST-CTD fusion protein for 2 h at 4 °C. The probe was washed four times and detected with rabbit anti-GST antibody (Sigma) and then with the IRDye 680 donkey anti-rabbit IgG (heavy + light) (LI-COR Biosciences) antibody. The blots were scanned with an Odyssey scanner (LI-COR Biosciences).

Immobilized CTD Peptide Binding Assay—The PCTD peptides (Table 1) were dissolved in a buffer containing 25 mM HEPES (pH 7) and 100 mM KCl and loaded repetitively onto a blank column containing 200 μl of TetraLink tetrameric avidin resins (Invitrogen) to generate the PCTD peptide column. Unbound PCTD peptides were removed by an extensive buffer wash (15 ml). 50–100 μg of TCERG1 in a buffer containing 25 mM HEPES (pH 7), 100 mM KCl, and 0.1% β-mercaptoethanol was loaded onto the peptide column. The flow-through was collected, and the column was washed twice with 200 μl of the loading buffer followed by 15-ml buffer wash. Proteins bound to the PCTD peptide column were eluted in three fractions of 200 μl each with an elution buffer containing 25 mM HEPES (pH 7.0), 8% glycerol, and 0.3 mM NaCl. All of the fractions were analyzed by SDS-PAGE.

X-ray Crystallography—Crystallization was performed using the hanging drop vapor diffusion method at 4 °C. The crystallization buffer contained 0.016 M NiCl$_2$, 0.1 M Tris-HCl (pH 9), 16% polyethylene glycol monomethyl ether 2000, and 0.13 mM glycine. Selenomethionine-labeled FF4–6 containing an L953M mutation was expressed by incorporation of selenomethionine into the SelenoMet Medium Base containing SelenoMet Nutrient Mix (Molecular Dimensions Ltd., UK) and purified as described above. The extent of selenomethionine incorporation was determined by mass spectrometry. Harvested native and selenomethionine-labeled protein crystals were cryoprotected with a reservoir solution containing 30% (v/v) of ethylene glycol and with perfluoropolyether (PFOS-X175/08) oil, respectively, and flash frozen with liquid nitrogen.

Diffraction data of native and selenomethionine-labeled crystals were collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-BM beamline at the Advanced Photon Source, Argonne National Laboratory. Diffraction data were processed with HKL2000 (41). The experimental phases were determined by the multiwavelength anomalous dispersion method using data sets collected on a selenomethionine-labeled crystal of the FF4–6 L953M mutant. Programs SOLVE and RESOLVE were used to locate the selenomethionine sites, calculate the initial multiwavelength anomalous dispersion phases, and modify the density map (42–44). Initial automated model building gave excellent electron density for regions containing FF4 and FF5 (residues 895–1010) but poor density for the region containing FF6 (residues 1011–1081). Successive rounds of model building using Coot (45) and refinement using PHENIX (42) were used to build the complete model, which was validated with MolProbity (46). Data collection, phasing, and refinement statistics are summarized in Table 2.

NMR Spectroscopy—Isotopically enriched proteins were overexpressed in M9 minimal medium using [15N]NH$_4$Cl and [13C]glucose as the sole nitrogen and carbon sources (Cambridge Isotope Laboratories). Protein deuteration was achieved by growing cells in 100% D$_2$O M9 minimal medium. NMR spectra were acquired with Agilent INOVA 600- or 800-MHz spectrometers at 25 °C. Backbone resonance assignments were obtained using standard triple resonance experiments (47). Spectra were processed by NMRPipe (48) and analyzed using Sparky (49). T_1 and T_2 experiments were conducted to measure the rotational correlation time, τ_c. A series of 1H-15N HSQCs on the FF4–6 sample was collected. The delays used for data collection were $10, 200, 400, 600, 800, 1000, and 1400$ ms for longitudinal relaxation (T_1) and 10, 20, 30, 40, 50, 60, and 70 ms for transverse relaxation (T_2). T_1 and T_2 values were determined by fitting peak intensities to an exponential delay function using the rate analysis tool in NMRView (50), and rotational correlational time was calculated as described previously (51).

An HNCO-based experiment for measurement of residual dipolar coupling (RDC) was performed on a sample of 0.8 mM deuterated and uniformly 13C/15N-labeled FF4–6 (52). 1D$_{NH}$ RDC data were obtained by taking the difference in 1NH couplings in aligned 9 mg/ml Pf1 phage medium (ASLA Biotech Ltd.) and isotropic (water) medium. Errors of RDC measurements were estimated on the basis of duplicate experiments. RDC values from residues within secondary structural regions were analyzed by the MODULE program (53) using the crystal structure of FF4–6 as the input coordinate.
RESULTS

TCERG1 FF4–6 Tandem Repeat Forms a Rigid Integral Domain Structure—Previous biochemical studies on TCERG1-PCTD interaction have revealed a high affinity interaction between the hyperphosphorylated CTD and FF1–6 and have mapped such an interaction to the C-terminal FF domains (30). It is important to note that although the structures of individual FF domains of TCERG1 have been determined by solution NMR (34, 35) (also see Protein Data Bank codes 2DOD, 2DOE, 2DOF, and 2E7I deposited by the RIKEN Structural Genomics/Proteomics Initiative), a recent crystallography study has shown that the three N-terminal FF domains (FF1–3) fold into a rigid integral structure with neighboring FF domains connected by a long helix (38). A close examination of the FF domain sequences of TCERG1 reveals a long disordered linker between FF3 and FF4, whereas FF4, FF5, and FF6 are only separated by a single residue (Ala592 between FF4 and FF5 and Asp1010 between FF5 and FF6). Thus, there is a strong likelihood for FF4, FF5, and FF6 to form an integral tandem domain structure. To examine this possibility, we expressed and purified 15N-labeled FF2, FF5–6, and FF4–6 domains of TCERG1. All three proteins display high quality 1H,15N HSQC spectra (data not shown). Measurements of rotational correlation times using T_1 and T_2 experiments for FF2, FF5–6, and FF4–6 revealed distinct values of 4.9, 10.5, and 14.1 ns for FF2, FF5–6, and FF4–6, respectively. These highly different values of the NMR-determined rotational correlation times suggest that FF4, FF5, and FF6 do not behave as isolated FF domains and that they fold into a rigid integral domain. Thus, the FF4–6 tandem repeat domain, but not shorter peptides, is the minimal functional unit for interacting with the hyperphosphorylated CTD in solution.

FF4–6 Tandem Repeat Domain Binds Hyperphosphorylated CTD Containing Three Heptad Repeats—Because the previously mapped minimal PCTD-binding module of FF5 (30) is inconsistent with the notion that FF4–6 represents the minimal functional unit of C-terminal FF domains of TCERG1 in solution, we evaluated whether FF4–6 can similarly bind to the PCTD using far-Western blotting assays. Briefly, purified FF4–6 and FF1–6 (as a positive control) were used as input for SDS-PAGE, transferred to a nitrocellulose membrane, and probed with CTD kinase I-treated, hyperphosphorylated GST-yeast CTD containing 26 heptad repeats (GST-PCTD$_{26}$) and hyperphosphorylated GST-CTD containing three heptad repeats (GST-PCTD$_{3}$). Interactions were detected with rabbit anti-GST antibody and IRDye 680 donkey anti-rabbit IgG (heavy + light).

NMR Titration—NMR samples contained 0.2 mM 15N-labeled TCERG1 FF4–6 domain in a buffer containing 25 mM HEPES (pH 7), 100 mM KCl, and 10 mM DTT. Synthetic three-heptad-repeat 2,5,2,5,2,5-Ser(P) and 2,5,7,2,5,7-Ser(P) CTD peptides were dissolved in the NMR buffer and titrated into the 15N-labeled FF4–6 sample. HSQC spectra were analyzed, and the chemical shift perturbation was calculated by $\delta = \sqrt{\delta_{\text{max}}^2 + (0.17 \times \delta_0)^2}$, where δ_0 and δ_{max} are chemical shift changes in the 1H and 15N dimensions, respectively. The dissociation constant K_d was deduced from the Morrison equation, $\delta = \frac{\delta_{\text{max}}}{2L} (L + K_d + P) - \frac{\sqrt{(L + K_d + P)^2 - 4PL}}{2L}$ where δ_{max} refers to the maximum chemical shift change between bound and free states, P refers to the protein concentration, and L refers to the ligand concentration, respectively.

Specific CTD Recognition by the FF4–6 Tandem Repeat Requires Simultaneous Phosphorylation at Ser2, Ser3, and Ser5—After elucidating that a three-repeat hyperphosphorylated CTD peptide is sufficient for high affinity interaction with the FF4–6 tandem repeat, we investigated its specific CTD phosphopeptide requirement using PCTD peptide column binding assays and NMR titration experiments. Because CTD kinase I has been shown to phosphorylate Ser2 within the heptad repeat of the CTD already containing Ser5 phosphorylation and generate Ser2/Ser5 doubly phosphorylated heptads starting from unphosphorylated heptad repeats in vitro (54, 55), we anticipated that the TCERG1 FF4–6 tandem repeat binds to a three-heptad-repeat CTD phosphorylated at Ser2 and Ser5 positions. To test this hypothesis, we synthesized a three-heptad-repeat CTD peptide containing Ser2P and Ser5P (Y1pS2P3T4pS5P6S7Y1pS2P3T4pS5P6S7), referred to as 2,5,2,5,2,5-Ser(P) CTD peptide in the column binding assay after an extensive wash with buffer containing 100 mM NaCl (Fig. 2A, left panel). In contrast, consistent with previous observations (56), the SRI domain of the histone methyltransferase SET2 displayed specific and high affinity binding to the 2,5,2,5,2,5-Ser(P) CTD peptide under identical conditions (Fig. 2A, right panel), verifying that 2,5,2,5,2,5-Ser(P) CTD peptide was functionally active. We also tested two other CTD peptides containing three heptad repeats and Ser phosphorylation at the
In Vivo Phosphorylation on Ser7 of PCTD Is Required for TCERG1 FF4–6 Interaction—We next evaluated whether TCERG1 FF4–6 is able to bind in vivo modified RNAPII CTD in the absence of Ser7 phosphorylation. Pulldown assays were carried out using lysates from yeast cells expressing 14 repeats of consensus CTD sequence (YSPTSPS)_14 (WT CTD14) or S7A mutant sequence (YSPTSPA)_14 (S7A CTD14) (39). Western blotting of cell lysates revealed Ser2P, Ser5P, and Ser7P marks of the CTD in the WT CTD14 cell lysates, whereas only Ser2P and Ser5P marks can be detected in the S7A CTD14 cell lysates (data not shown), confirming that all of the Ser7 residues in the CTD have been replaced with Ala. Importantly, when His10-tagged TCERG1 FF4–6 was immobilized on a cobalt column, it was able to selectively pull down the hyperphosphorylated CTD from the WT CTD14 whole-cell lysate but not from the S7A CTD14 whole-cell lysate (Fig. 4), suggesting that Ser7 phosphorylation is required for the specific interaction of TCERG1 FF4–6 with hyperphosphorylated CTD.

Structure of the Tandem FF4–6 Repeat—Having characterized the specific CTD phosphopeptidome requirement of FF4–6, we went on to determine its structure, which is composed of residues 895–1081 of TCERG1, to further characterize the molecular basis of the FF4–6 tandem repeat-PCTD interaction. The structure of FF4–6 was solved by x-ray crystallography and refined to 2.0 Å. Two molecules, protomer A and protomer B, are observed in one asymmetric unit. Except for the C-terminal four residues of protomer A, clear electron density can be observed for all the residues, including the entirety of protomer B. Structural superimposition shows excellent agreement between the two protomers with an all-atom root mean square deviation of 0.6 Å, indicating a high degree of structural consistency. Because of its completeness in electron density, protomer B was selected as the representative monomer structure of FF4–6 in the following discussion. Final statistics are reported in Table 2.

The overall architecture of FF4–6 adopts an inverted V shape with FF5 centering at the vertex and FF4 and FF6 occupying the ends (Fig. 5A). Among the three FF domains, FF4 and FF5 adopt a canonical FF domain fold (33). Each domain consists of three α helices arranged in an orthogonal bundle with a 3_10 helix in the loop connecting the α2 and α3 helices. The N-terminal helix (α1) and C-terminal helix (α3) are pointing in opposite directions with a cross-angle of ~120°. FF6 deviates from such a canonical FF domain fold. It contains an 18-residue linker between helices α1 and α2 in comparison with a linker of six to nine residues in other FF domains (Fig. 5B). These extra residues in the linker region adopt a helical conformation (α1’) in FF6, whereas the shorter linker in the canonical FF domain fold adopts a loop conformation. The formation of such an insertion α1’ helix in FF6 does not disrupt the relative orienta-
tion of other helices as all canonical helices, including α1, α2, 3₁₀ and α3, superimpose very well in FF4, FF5, and FF6 (Fig. 5B).

The integral domain structure of the FF4-6 tandem repeat is forged by merging the C-terminal helix of the preceding FF domain with the N-terminal helix of the following FF domain into a single, continuous α helix that sequentially connects FF4 and FF5 and FF5 and FF6, respectively. The connecting helices do not show elevated B-factors compared with individual FF domain residues (data not shown), consistent with the notion that FF4-6 forms a rigid domain structure. The rigidity of the tandem FF4-6 repeat is buttressed by hydrogen bonds and van der Waals interactions between neighboring FF domains. In particular, side chains of Ser914 and Asp915 in the /H9251 helix of FF4 form three hydrogen bonds with the backbone of Phe993 and Ser995 and the side chain of Ser994 from the loop connecting the 3₁₀ helix and the /H9251 helix in FF5 (Fig. 5C). This hydrogen bond network is strengthened by the formation of an additional interdomain hydrogen bond between the side chain of Lys957 of FF5 and the backbone of Phe912 of FF4 as well as an intradomain hydrogen bond involving the side chain of Lys957 and backbone carbonyl of Lys992 within FF5. In contrast, hydrophobic interactions dominate the FF5-FF6 interface. Residues Thr972 and Thr974 located in the α1-α2 loop of FF5 and residues Leu₁⁰⁰₆, 1096.
Cys1062, and Val1063 from the loop connecting the 3_{10} helix and the $a3$ helix of FF6 form extensive interdomain van der Waals contacts (Fig. 5D). This hydrophobic interface is additionally supported by interdomain contacts between Tyr1012 of FF6 and Leu973 of FF5 and intradomain interactions involving Tyr1012 and Leu1060 of FF6.

To evaluate whether the rigid tandem domain structure of FF4–6 is also preserved in solution, we assigned the backbone resonances of FF4–6 using transverse relaxation optimized spectroscopy-based triple resonance experiments and a $^{2}H/^{13}C/^{15}N$-labeled protein sample (47). TALOS$^+$ analysis of the backbone resonances predicted a nearly uniform distribution of order parameters derived from the random coil index (RCI-S^2) (58, 59), including the two linker helices connecting the backbone resonances predicted a nearly uniform distribution of order parameters derived from the random coil index (RCI-S^2) (58, 59), including the two linker helices connecting the backbone resonances predicted a nearly uniform distribution of order parameters derived from the random coil index (RCI-S^2) (58, 59).

Furthermore, the experimentally measured $^{1}D_{HN}$ residual dipolar couplings showed good correlation with calculated values from the crystal structure (Fig. 6) with an RDC quality factor (Q-factor; Ref. 60) of 0.29, suggesting that the solution state conformation of the FF4–6 is consistent with that observed in the crystal structure.

Tandem FF4–6 Repeat Domain Binds PCTD through FF4 and FF5—To determine the PCTD-binding surface of the TCERG1 FF4–6 tandem repeat domain, we analyzed the chemical shift perturbation of the backbone resonances and Trp side chain resonances based on known assignments. Our analysis showed that titration of the 2,5,7,2,5,7-$Ser(P)$ CTD peptide resulted in noticeable chemical shift perturbations ($\delta_{cc} > 0.05$ ppm) for the resonances of the following residues: Ser919, Arg923, Arg926, Trp931, Gly934, Thr972, Thr976, Lys981, Lys982, Lys985, and Glu986 and side chains of Trp918, Trp931, and Trp977 (Fig. 7A). The side chain HeNe resonance of the Trp931 in particular undergoes a large scale chemical shift perturbation ($\delta_{cc} > 0.5$ ppm; Fig. 3A), indicating that the Trp931 side chain is likely involved directly in the PCTD interaction. These perturbed residues are located within FF4 and FF5 but not in FF6 of TCERG1 (Fig. 7A), arguing that FF4 and FF5 are the main PCTD-interacting modules. Furthermore, these residues cluster in the middle of $a2$ helices of FF4 (Ser919, Arg923, and Arg926) and FF5 (Thr972, Thr976, Lys981, and Lys982) and the following 310 helices of FF4 (Trp931 and Gly934), and they define two neighboring CTD-docking sites enriched with basic residues that are ideally suited for interacting with hyperphosphorylated CTD peptides (Fig. 7B).

To verify that the CTD-docking sites defined by the NMR titration experiment are the bona fide binding interface of TCERG1 to the 2,5,7,2,5,7-$Ser(P)$ CTD peptide, we selectively mutated positively charged Arg and Lys residues within these two sites that are most likely to be directly involved in the binding of the phospho-Ser of the CTD and evaluated their effects on the FF4–6-PCTD interaction. ^{15}N HSQC spectra of mutated proteins were collected to verify the structural integrity of the FF4–6 point mutations (data not shown). Well folded mutant proteins were probed for their ability to interact with the 2,5,7,2,5,7-$Ser(P)$ peptide using peptide column binding assays. Under the same washing condition used for the FF4–6 tandem repeat domain of the wild-type TCERG1 protein (Fig. 2B, left panel), point mutations R922E, R923A, and R926A...
R926A of H9251 and K942A of H9251 within FF4 completely eliminated the TCERG1 interaction with the 2,5,7,2,5,7-Ser(P) CTD peptide, and the R922A mutation weakened the interaction. Similarly, point mutations K981A, K982A, and K985A of H9251 and K1000A or K1000E of H9251 in FF5 either completely eliminated or severely diminished the TCERG1 interaction with the 2,5,7,2,5,7-Ser(P) CTD peptide (Fig. 7C). Taken together, these data define the H9251, the following 310 helix, and the N terminus of H9251 of FF4 and FF5 as the primary CTD-docking sites of TERG1 FF4–6. Interestingly, these CTD-docking sites of the TCERG1 FF4–6 tandem repeat are distinct from that of the PCTD-binding FF domain of HYPA/FBP11 that shows perturbation on residues at the N terminus of H9251 and N terminus of H9251 (33), but they are similar to the binding surface of Prp40 FF1 that interacts with crooked necklike factor 1, a peptide unrelated to the PCTD.

DISCUSSION

PCTD Binding Specificity of FF4–6—Modern structural biology is based on a reductionist approach in that the minimal functional unit of a target protein is isolated and probed at the atomic level. In the case of TCERG1, the structures of individual FF domains have been studied in detail (34, 35) (also see Protein Data Bank codes 2DOD, 2DOE, 2DOF, and 2E71.

FIGURE 5. Structure of the TCERG1 FF4–6 tandem repeat. A, ribbon diagram of the FF4–6 tandem repeat revealing a rigid integral domain. Individual FF domains are color-coded with FF4 in cyan, FF5 in orange, and FF6 in pink. B, superimposition of FF4, FF5, and FF6. C and D depict residues involved in interdomain interactions between FF4 and FF5 and between FF5 and FF6, respectively. E, sequence-specific order parameters derived from the random coil index (RCI-S²) (58). Secondary structures are labeled on the top, and regions of individual FF domains are color-coded as in A.
deposited by the RIKEN Structural Genomics/Proteomics Initiative). In contrast to the notion of individual FF domains as functional units, our NMR study of FF4–6 has revealed an integral tandem repeat domain in solution with a rotational correlation time far exceeding that of isolated FF domains, and our crystallographic study has further revealed a rigid FF4–6 tandem repeat fold. The FF4–6 tandem repeat is topologically similar to the previously reported tandem repeat structure of FF1–3 (38), but it is much less flexible than FF1–3 as the assembly of the FF4–6 is held together not only by an undisrupted helix connecting neighboring FF domains but also by direct domain-domain interactions between FF4 and FF5 and between FF5 and FF6. Taken together, these observations argue that the minimal function units of TCERG1 are not individual FF domains but rather tandem FF repeats of FF1–3 and FF4–6, suggesting that functional studies utilizing individual FF domains or double FF domains may need to be re-evaluated.

Except for FF6, which contains an insert helix (α1′), all of the remaining FF domains of TCERG1 adopt a canonical FF domain fold consisting of three orthogonal helices and a short 3_10 helix. Among the six FF domains of TCERG1, FF1, FF2, FF5, and FF6 are highly basic with pI values exceeding 9.0, whereas FF3 and FF4 have pI values slightly less than 7.0. Gasch et al. (36) argue that the pI values dictate whether individual FF domains are involved in PCTD binding. Contradictory to this
TCERG1 FF4–6 with PCTD peptides requires the simultaneous interaction of the CTD domain and the SRI domain, for specific PCTD-interacting domain and the SRI domain, for specific PCTD recognition (56, 57, 62). Taken together, these results suggest that TCERG1 FF4–6 is the first example of a PCTD-associating protein specifically recognizing Ser2P, Ser5P, and Ser7P of the heptad repeat for high affinity CTD binding.

Implication of the Distinct 2,5,7-Ser(P) CTD-binding Epitope of TCERG1—CTD has been implicated in a wide range of transcription-associated functions. Different forms of CTD predominate at each stage of the transcription cycle and act as recognition sites for recruiting various mRNA processing factors, therefore coupling transcription with mRNA processing (7, 63). The most extensively studied aspect of CTD modification has been the phosphorylation of Ser2 and Ser5 within the consensus heptad repeat. For example, Ser5 phosphorylation is primarily detected at the 5′-end of the genes, and its recognition by mRNA-capping enzymes enhances the activity of capping enzymes (63, 64). In contrast, Ser2 phosphorylation is enriched at the 3′-end of the genes, recruiting transcription termination factors, such as Rtt103 and Pcf11, and coordinating the 3′-end processing (65, 66).

Besides Ser2 and Ser5 phosphorylation, Ser7P has recently been discovered in both mammalian and yeast cells (10, 57, 67). Although Ser7P has initially been implicated in snRNA gene expression (10), recent high resolution genome-wide occupancy profiling has revealed widespread marks of Ser7P in the RNAPII CTD for coding genes, indicating that the function of Ser7P goes beyond snRNA processing (11–13). The profiles of Ser2P, Ser5P, and Ser7P overlap in coding genes, hinting at the possibility of simultaneous phosphorylation at Ser2, Ser5, and Ser7 positions. Importantly, Ser7P is specifically enriched over introns (12), suggesting a role for Ser7P in the regulation of co-transcriptional splicing events. How Ser7P mediates the assembly of the splicing complex remains a mystery.

Our results presented here provide a structural interpretation for the connection between the Ser7P enrichment at intron and co-transcriptional splicing events. We show that TCERG1, a transcription elongation regulator that interacts with the splicing factors and the transcribing RNAPII, specifically recognizes the hyperphosphorylated CTD containing Ser2P,
Ser5P, and Ser7P marks. Therefore, Ser7P enrichment at introns may likely serve as a signaling post for recruiting adaptor proteins, such as TCERG1, to couple transcribing RNAPII with spliceosomes to regulate co-transcriptional splicing events.

Acknowledgments—Crystal screening was performed at the Duke University Medical Center X-ray Crystallography Shared Resource. X-ray diffraction data were collected at the Southeast Regional Collaborative Access Team (SER-CAT) 22-BM beamline at the Advanced Photon Source, Argonne National Laboratory. Yeast Collaborative Access Team (SER-CAT) 22-BM beamline at the University Medical Center X-ray Crystallography Shared Resource.

REFERENCES
1. Cramer, P., Bushnell, D. A., and Kornberg, R. D. (2001) Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292, 1863–1876
2. Meinhart, A., Kamenski, T., Hoepner, S., Bauml, S., and Cramer, P. (2005) A structural perspective of CTD function. Genes Dev. 19, 1401–1415
3. Allison, L. A., Wong, J. K., Fitzpatrick, V. D., Moyle, M., and Ingles, C. J. (1988) The C-terminal domain of the largest subunit of RNA polymerase II of Saccharomyces cerevisiae, Drosophila melanogaster, and mammals: a conserved structure with an essential function. Mol. Cell. Biol. 8, 321–329
4. Corden, J. L. (1990) Tails of RNA polymerase II. Trends Biochem. Sci. 15, 383–387
5. Pfatnani, H. P., and Greenleaf, A. L. (2006) Phosphorylation and functions of the RNA polymerase II CTD. Genes Dev. 20, 2922–2936
6. Egloff, S., Dienstbier, M., and Murphy, S. (2012) Updating the RNA polymerase CTD code: adding gene-specific layers. Trends Genet. 28, 333–341
7. Komarnitsky, P., Cho, E. J., and Buratowski, S. (2000) Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14, 2452–2460
8. Cho, E. J., Kobor, M. S., Kim, M., Greenblatt, J., and Buratowski, S. (2001) Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15, 3319–3329
9. Bartkowiak, B., Mackellar, A. D., and Greenleaf, A. L. (2011) Updating the CTD story: From tail to epic. Genet. Res. Res. 2011, 623718
10. Egloff, S., O'Reilly, D., Chapman, R. D., Taylor, A., Tanzhaus, K., Pitts, L., Eick, D., and Murphy, S. (2007) Serine-7 of the RNA polymerase II CTD is specifically required for snRNA gene expression. Nature 438, 1777–1779
11. Tietjen, J. R., Zhang, D. W., Rodríguez-Molina, J. I., White, B. E., Akhtar, M. S., Heidemann, M., Li, X., Chapman, R. D., Shokat, K., Keles, S., Eick, D., and Ansari, A. Z. (2010) Chemical-genomic dissection of the CTD code. Nat. Struct. Mol. Biol. 17, 1154–1161
12. Kim, H., Erickson, B., Luo, W., Seward, D., Graber, J. H., Pollock, D. D., Megee, P. C., and Bentley, D. L. (2010) Gene-specific RNA polymerase II phosphorylation and the CTD code. Nat. Struct. Mol. Biol. 17, 1279–1286
13. Mayer, A., Lidschreiber, M., Siebert, M., Leike, K., Söding, J., and Cramer, P. (2010) Uniform transitions of the general RNA polymerase II transcription complex. Nat. Struct. Mol. Biol. 17, 1272–1278
14. Baskaran, R., Dahmus, M. E., and Wang, J. Y. (1993) Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl. Acad. Sci. USA 90, 11167–11171
15. Zhang, J., and Corden, J. L. (1991) Identification of phosphorylation sites in the repetitive carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem. 266, 2290–2296
16. Kelly, W. G., Dahmus, M. E., and Hart, G. W. (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268, 10416–10424
17. Shaw, P. E. (2007) Peptidyl-prolyl cis/trans isomerases and transcription: is there a twist in the tail? EMBO Rep. 8, 40–45
18. Werner-Allen, J. W., Lee, C. J., Liu, P., Nicely, N. L., Wang, S., Greenleaf, A. L., and Zhou, P. (2011) cis-Proline-mediated Ser(P)5 dephosphorylation by the RNA polymerase II C-terminal domain phosphatase Ssu72. J. Biol. Chem. 286, 5717–5726
19. Xiang, K., Nagaiko, T., Xiang, S., Kilic, T., Beh, M. M., Manley, J. L., and Tong, L. (2010) Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 467, 729–733
20. Buratowski, S. (2003) The CTD code. Nat. Struct. Biol. 10, 679–680
21. Egloff, S., Murphy, S. (2008) Cracking the RNA polymerase II CTD code. Trends Genet. 24, 280–284
22. Suñé, C., Hayashi, T., Liu, Y., Lane, W. S., Young, R. A., and Garcia-Blanco, M. A. (1997) CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription. Mol. Cell. Biol. 17, 6029–6039
23. Sánchez-Alvarez, M., Goldstrohm, A. C., Garcia-Blanco, M. A., and Suñé, C. (2006) Human transcription elongation factor CA150 localizes to splicing-factor-rich nuclear speckles and assembles transcription and splicing components into complexes through its amino and carboxyl regions. Mol. Cell. Biol. 26, 4998–5014
24. Smith, M. J., Kulkarni, S., and Pawson, T. (2004) FF domains of CA150 bind transcription and splicing factors through multiple weak interactions. Mol. Cell. Biol. 24, 9274–9285
25. Jurica, M. S., Wickler, L., Gygi, S. R., Grigorieff, N., and Moore, M. J. (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8, 426–439
26. Goldstrohm, A. C., Albrecht, T. R., Suñé, C., Bedford, M. T., and Garcia-Blanco, M. A. (2001) The transcription elongation factor CA150 interacts with RNA polymerase II and the pre-mRNA splicing factor SFI. Mol. Cell. Biol. 21, 7617–7628
27. Zhou, Z., Wickler, L., Gygi, S. P., and Reed, R. (2002) Comprehensive proteomic analysis of the human spliceosome. Nature 419, 182–185
28. Lin, K. T., Lu, R. M., and Tarn, W. Y. (2004) The WW domain-containing proteins interact with the early spliceosome and participate in pre-mRNA splicing in vivo. Mol. Cell. Biol. 24, 9176–9185
29. Pearson, J. L., Robinson, T. J., Muñoz, M. J., Kornblihtt, A. R., and García-Blanco, M. A. (2008) Identification of the cellular targets of the transcription factor TCERG1 reveals a prevalent role in mRNA processing. J. Biol. Chem. 283, 7949–7961
30. Carty, S. M., Goldstrohm, A. C., Suñé, C., Garcia-Blanco, M. A., and Greenleaf, A. L. (2000) Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc. Natl. Acad. Sci. USA 97, 9015–9020
31. Bedford, M. T., and Leder, P. (1999) The FF domain: a novel motif that often accompanies WW domains. Trends Biochem. Sci. 24, 264–265
32. Botet, R., Ramirez-Espain, X., and Macías, M. J. (2008) Solution structure of the yeast URF1 splicing factor FF domain: comparative analysis of charge distributions in FF domain structures-FFs and SURPs, two domains with a similar fold. Proteins 73, 1001–1009
33. Allen, M., Friedler, A., Schon, O., and Bycroft, M. (2002) The structure of an FF domain from human HYPAC/PBP11. J. Mol. Biol. 323, 411–416
34. Zeng, J., Boyles, J., Tripathy, C., Wang, L., Yang, A., Zhou, P., and Donald, B. R. (2009) High-resolution protein structure determination starting with a global fold calculated from exact solutions to the RDC equations. J. Biol. Chem. 1045, 265–281
35. Murphy, J. M., Hansen, D. F., Wiesner, S., Muhandiram, D. R., Borg, M., Smith, M. J., Sicheri, F., Kay, L. E., Forman-Kay, J. D., and Pawson, T. (2009) Structural studies of FF domains of the transcription factor CA150 provide insights into the organization of FF domain tandem arrays. J. Mol. Biol. 393, 409–424
36. Gasch, A., Wiesner, S., Martin-Malpartida, P., Ramirez-Espain, X., Ruiz, L., and Macías, M. J. (2006) The structure of Prp40 FF domain and its
interaction with the crn-TPR1 motif of Clf1 gives a new insight into the binding mode of FF domains. *J. Biol. Chem.* **281**, 356–364
37. Ester, C., and Uetz, P. (2008) The FF domains of yeast U1 snRNP protein Prp40 mediate interactions with Luc7 and Snu71. *BMC Biochem.* **9**, 29
38. Lu, M., Yang, J., Ren, Z., Sabui, S., Espejo, A., Bedford, M. T., Jacobson, R. H., Jeruzalmi, D., McMurray, J. S., and Chen, X. (2009) Crystal structure of the three tandem FF domains of the transcription elongation regulator CA150. *J. Mol. Biol.* **393**, 397–408
39. Schwer, B., and Shuman, S. (2011) Deciphering the RNA polymerase II CTD code in fission yeast. *Mol. Cell* **43**, 311–318
40. Phatnani, H. P., and Greenleaf, A. L. (2004) Identifying phosphoCTD-associating proteins. *Methods Mol. Biol.* **257**, 17–28
41. Otwinowski, Z., and Minor, W. (1997) Processing of x-ray diffraction data collected in oscillation mode. *Methods Enzymol.* **276**, 307–326
42. Adams, P. D., Grosse-Kunstleve, R. W., Hung, L. W., Ioerger, T. R., McCoy, A. J., Moriarty, N. W., Read, R. J., Sacchettini, J. C., Sauter, N. K., and Terwilliger, T. C. (2002) PHENIX: building new software for automated crystallographic structure determination. *Acta Crystallogr. D: Biol. Crystallogr.* **58**, 1948–1954
43. Terwilliger, T. C., and Berendzen, J. (1999) Automated MAD and MIR structure solution. *Acta Crystallogr. D: Biol. Crystallogr.* **55**, 849–861
44. Terwilliger, T. C. (2000) Maximum-likelihood density modification. *Acta Crystallogr. D: Biol. Crystallogr.* **56**, 965–972
45. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D: Biol. Crystallogr.* **60**, 2126–2132
46. Chen, V. B., Arendall, W. B., 3rd, Headd, J. J., Keedy, D. A., Immormino, M., (2007) *Protein NMR Spectroscopy: Principles and Practice*, 2nd Ed., Elsevier Academic Press, Burlington, MA
47. Delaglio, F., Grzesiek, S., Vuister, G. W., Zhu, G., Pfeifer, J., and Bax, A. (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. *J. Biomol. NMR* **6**, 277–293
48. Goddard, T. D., and Kneller, D. G. (2008) Sparky 3, University of California, San Francisco
49. Johnson, B. A., and Blevins, R. A. (1994) NMRView: a computer program for the visualization and analysis of NMR data. *J. Biomol. NMR* **4**, 603–614
50. Kay, L. E., Torchia, D. A., and Bax, A. (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR spectroscopy: application to staphylococcal nuclease. *Biochemistry* **28**, 8972–8979
51. Yang, D., Venter, R. A., Mueller, G. A., Choy, W. Y., and Kay, L. E. (1999) TROSY-based HNCO pulse sequences for the measurement of 1H-N, 14N-13CO, 1H-13CO, 13CO-13C and 1H-13C dipolar couplings in 15N, 13C, 2H-labeled proteins. *J. Biomol. NMR* **14**, 333–343
52. Dossot, P., Hus, J. C., Marion, D., and Blackledge, M. (2001) A novel interactive tool for rigid-body modeling of multi-domain macromolecules using residual dipolar couplings. *J. Biomol. NMR* **20**, 223–231
53. Jones, J. C., Phatnani, H. P., Haystead, T. A., MacDonald, J. A., Alam, S. M., and Greenleaf, A. L. (2004) C-terminal repeat domain kinase I phosphorylates Ser2 and Ser5 of RNA polymerase II C-terminal domain repeats. *J. Biol. Chem.* **279**, 24957–24964
54. Phatnani, H. P., Jones, J. C., and Greenleaf, A. L. (2004) Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD-associating proteins in the yeast proteome. *Biochemistry* **43**, 15702–15719
55. Li, M., Phatnani, H. P., Guan, Z., Sage, H., Greenleaf, A. L., and Zhou, P. (2005) Solution structure of the Set2-Rpb1 interacting domain of human Set2 and its interaction with the hyperphosphorylated C-terminal domain of Rpb1. *Proc. Natl. Acad. Sci. U.S.A.* **102**, 17636–17641
56. Kim, M., Suh, H., Cho, E. J., and Buratowski, S. (2009) Phosphorylation of the yeast Rpb1 C-terminal domain at serines 2, 5, and 7. *J. Biol. Chem.* **284**, 26421–26426
57. Berjanskii, M. V., and Wishart, D. S. (2005) A simple method to predict protein flexibility using secondary chemical shifts. *J. Am. Chem. Soc.* **127**, 14970–14971
58. Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. *J. Biomol. NMR* **44**, 213–223
59. Lipsitz, R. S., and Tjandra, N. (2004) Residual dipolar couplings in NMR structure analysis. *Annu. Rev. Biophys. Biomol. Struct.* **33**, 387–413
60. Zhang, D. W., Rodriguez-Molina, J. B., Tietjen, J. R., Nemic, C. M., and Ansari, A. Z. (2012) Emerging views on the CTD code. *Genet. Res. Int.* **2012**, 347214
61. Kubicek, K., Cerna, H., Holub, P., Pasulka, J., Hrossova, D., Loehr, F., Hofr, C., Vanacova, S., and Stefl, R. (2012) Serine phosphorylation and proline isomerization in RNAPII CTD control recruitment of Nrd1. *Genes Dev.* **26**, 1891–1896
62. Schroeder, S. C., Schwer, B., Shuman, S., and Bentley, D. (2000) Dynamic association of capping enzymes with transcribing RNA polymerase II. *Genes Dev.* **14**, 2435–2440
63. Ghosh, A., Shuman, S., and Lima, C. D. (2011) Structural insights to how mammalian capping enzyme reads the CTD code. *Mol. Cell* **43**, 299–310
64. McCracken, S., Fong, N., Yankulov, K., Ballantyne, S., Pan, G., Greenblatt, J., Patterson, S. D., Dickens, M., and Bentley, D. L. (1997) The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. *Nature* **385**, 357–361
65. Lunde, B. M., Reichow, S. L., Kim, M., Suh, H., Leeper, T. C., Yang, F., Mutschler, H., Buratowski, S., Meinhart, A., and Varani, G. (2010) Cooperative interaction of transcription termination factors with the RNA polymerase II C-terminal domain. *Nat. Struct. Mol. Biol.* **17**, 1195–1201
66. Chapman, R. D., Heidemann, M., Albert, T. K., Mailhammer, R., Flatley, A., Meisterernst, M., Kremmer, E., and Eick, D. (2007) Transcribing RNA polymerase II is phosphorylated at CTD residue serine-7. *Science* **318**, 1780–1782