The role of echocardiography in SARS-CoV-2 pandemic: a compromise among appropriateness, safety and clinical impact

Mario Pacileo1, Francesco Giullaria2, Cristina Savarese1, Teresa Cirillo1, Fabio Crescibene3, Anna Di Lorenzo2, Mariacarla Ferrillo1, Maria Grazia Calabrese1, Carlo Vigorito2, Antonello D’Andrea1,4

1Division of Cardiology, Hospital Umberto I, Nocera Inferiore (SA); 2Department of Translational Medical Sciences, Federico II University of Naples; 3Division of Cardiology, COVID Hospital M. Scarlato, Scafati (SA); 4Division of Cardiology, University of Campania L. Vanvitelli, Naples, Italy

Abstract

SARS-CoV-2 infection, responsible for COVID-19, can determine cardiac events, which require a quick diagnosis and management, and should not be overlooked due to the presence of COVID-19 infection. In some cases, cardiovascular symptoms can also be the first and only manifestation of SARS-CoV-2 infection. In patients with COVID-19, the full cardiovascular disease diagnostic algorithm can be hindered by logistic restrain mainly derived from the difficulty of transporting patients in critical conditions to Radiology or Hemodynamics wards. The echocardiography in SARS-CoV-2 pandemic can help for differential diagnosis of cardiac events, which can be related or unrelated by the infection and can likely impact on short-term prognosis. Indeed, transthoracic echocardiography plays a key role in the screen for CV complications of COVID-19 infection: it must be focused cardiac ultrasound study (FoCUS) performed at bedside. All transthoracic, transesophageal and stress echocardiograms in patients in which test results are unlikely to change the management strategy should be postponed.

In these weeks of great national emergency we have learned that SARS-CoV-2, the virus responsible for COVID-19, can determine cardiac events, which can be related to the infection including acute coronary syndromes (STEMI and NSTEMI), acute heart failure, arrhythmias, myocarditis, pericarditis, thromboembolic events, cardiogenic shock, and cardiac arrest. Those syndromes require a quick diagnosis and management, and should not be overlooked due to the presence of COVID-19.

Cough, fever, tiredness and difficulty breathing compose the “classic” COVID-19 symptoms; some SARS-CoV-2 positive patients have anosmia and dysgeusia and gastrointestinal disturbances. Moreover, these patients often show symptoms mimicking cardiovascular events, including chest pain, dyspnea, and shock, even in the absence of cardiac injury. In some cases, cardiovascular symptoms can also be the first and only manifestation of SARS-CoV-2 infection [1,2].

Some positive patients are admitted to the emergency room with palpitations and tachycardia, chest tightness or pain, and drop attack or syncope. These disorders are caused by arrhythmias, acute myocardial infarction, acute heart failure, myocarditis and pericarditis. Indeed, associated profound hypoxemia related underlying pneumonia together with tachycardia might result in chest pain and electrocardiographic changes suggestive of myocardial ischemia. The prevalence of cardiac injury is estimated up to 20% of cases. The severity of cardiac involvement is closely related to the severity of clinical scenario and mortality in these patients [3-7].

The appearance of acute myocardial injury is not early but it usually occurs at least 10 days after the appearance of fever [5,8]. Cardiomyocyte injury, as quantified by cardiac troponin T/I concentrations, and hemodynamic stress, as quantified by B-type natriuretic peptide (BNP) and N-terminal B type natriuretic peptide (NT-proBNP) concentrations, may occur in as in COVID-19 infections as in other pneumonias. The level of those biomarkers...
Correlated with disease severity and mortality [5,6]. Concentrations of these biomarkers remained within the normal range in the majority of survivors; however, in non-survivors, troponin levels progressively increased in parallel with the severity of COVID-19 and ARDS development [6,9,10].

During the acute phase, the occurrence of overall reduction of systolic function of the left ventricle can be assessed by echocardiography, in the absence of previous history of systolic dysfunction cardiomyopathy, especially in patients with clinical signs of cardiogenic shock admitted to Intensive Care Unit [11]. These features are usually seen in other conditions characterized by cytokine-mediated responses such as septic shock, where the release of cytokines can determine reduction of the ejection fraction and increase in the volume of the chambers ventricles [12]; and in acute myocardial infarction, where the cytokine response contributes to the mechanisms of cardiogenic shock [13]. Therefore, studies aiming at clarifying the peculiarity of this type of cardiac impairment during COVID-19 are eagerly encouraged.

Myocarditis and pericarditis are other manifestations of cardiac involvement from SARS-CoV-2 occurring sometimes before the onset of pulmonary symptoms shock [14-16]. In addition, myocardial injury with ST-segment elevation on electrocardiography has been observed in patients with Covid-19. These patients have variability in presentation, a high prevalence of non-obstructive disease, and a poor prognosis shock [16-18]. It has been reported the presence of SARS-CoV-2 in the pericardial fluid of a patient with COVID19 and cardiac tamponade subjected to pericardiocentesis shock [19].

Table 1. Schematic representation of echocardiographic parameters for the assessment of COVID-19 patients and suspected cardiovascular involvement.

Cardiac chamber	Clinical question	What to analyze
Left ventricle	Septic shock	Increased LV size (diameters or volumes)
	Significant troponin increase	Reduced LV ejection fraction
	Suspected myocarditis	Impaired LV Segmental contractile function
		LV diastolic dysfunction (E/e’).
Left atrium	Supraventricular arrhythmias	Increased LA size (diameter or volume)
Right ventricle	Pulmonary embolism invasive or non invasive ventilation with unstable hemodynamics	Increased RV size (diameters)
	Dilated RV with basal RV/LV ratio >1.0, and McConnell sign	Dilated RV size with basal RV/LV ratio >1.0, and McConnell sign
	Decreased tricuspid annular plane systolic excursion (TAPSE)	Decreased tricuspid annular plane systolic excursion (TAPSE)
	Pulmonary hypertension (increased PAP)	Pulmonary hypertension (increased PAP)
Inferior vena cava	Hemodynamic impairment	Distended IVC with reduced inspiratory collapsibility
Pericardium	Pericarditis	Pericardial effusion
	Suspected cardiac tamponade	Right heart chamber collapse
		Doppler signs of tamponade

LV, left ventricle; RV, right ventricle; PASP, pulmonary artery systolic pressure; IVC, inferior vena cava.
Particular attention should be paid to the execution of transesophageal echocardiogram (TEE). TEE carries increased risks of spread of COVID-19 due to exposure to aerosol of large viral load and it should not be performed if an alternative imaging modality is available. TEE must be carried out with complete personal protective equipment (i.e., mask at least N95 according to American classification or FFP2 according to the European classification).

To date, studies focused on Doppler-echocardiography parameters conducted specifically in cohorts of COVID-19 patients are lacking. However, the role of echocardiography in monitoring biventricular function during sepsis and septic shock is well known. Most studies on acute myocardial dysfunction during sepsis have been conducted in patients admitted to intensive care and subjected to mechanical ventilation, using TT and TEE echocardiography [24,25]. These studies show that about 30-40% of septic patients develop reduction of the ejection fraction of the left ventricle, impaired diastolic function of the left ventricle and possible impairment of the function of the right sections in particular during ARDS [26,27].

Another aspect that should be underlined is the hemodynamic effect of ventilation on cardiac performance [29,29]. Positive end-expiratory pressure (PEEP), increasing lung size, can cause an increase in pulmonary vascular resistance (RVP), due to the compression of alveolar and extra-alveolar capillaries; as a consequence, there is increase in post-load and right ventricle volume (VD), shift of the interventricular septum to the left and reduction of compliance and filling of the left ventricle. However, since the increase in RVP is countered by the elimination of hypoxia-induced vasoconstriction, increase in RVP becomes relevant only for high PEEP values. In addition, the increase in intrathoracic pressure determines a subsequential increase in intrathoracic veins resistance, that represents a mechanism reducing the gradient and venous return for VD, especially in conditions of true (anemia, dehydration, etc., in a healthy heart) or relative (severe right ventricular dysfunction) hypovolemia. This phenomenon, however, is counterbalanced by the increase in abdominal pressure due to the diaphragm lowering with the effect of live and spleen “squeezing”. Therefore, in clinical practice, the potential negative hemodynamic effects of PEEP (hypotension secondary to reduced preload and increased VD afterload) are mainly confined to patients highly dependent on preload, and can be partially balanced by carrying out a preventive volemic filling (Figure 2) [29-31].

Therefore, in this particular period, we have to be careful to possible cardiological symptoms of COVID-19. The echocardiography in SARS-CoV-2 pandemic can help for differential diagnosis of cardiac events, that can be related or unrelated by the infection but can be determinants for the short-term prognosis.

Figure 1. 65-year-old male patient, affected by COVID pneumonia, intubated, increased levels of troponin and D-Dimers, and negative CUS. Normal size of the left ventricle and normal ejection fraction, mild dilation of the right ventricle (A), mild tricuspid regurgitation (B), increased PAPs (C) and severe contractile dysfunction of the right ventricle, with reduced tricuspid annular plane systolic excursion (TAPSE) (D).
References

1. Xiong T-Y, Redwood S, Prendergast B, et al. Coronaviruses and the cardiovascular system: acute and long-term implications. Eur Heart J 2020. doi:10.1093/eurheartj/ehaa231.

2. Madjid M, Safavi-Naeini P, Solomon SD, et al. Potential Effects of Coronaviruses on the Cardiovascular System. A Review. JAMA Cardiol 2020. doi:10.1001/jamacardio.2020.1286.

3. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020;395:497-506.

4. Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA 2020. doi:10.1001/jama.2020.1585.

5. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020;395:1054-1062.

6. Shi S, Qin M, Shen B, et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020. doi:10.1001/jamacardio.2020.0950.

7. Bonow RO, Fonarow GC, O’Gara PT, Yancy CW. Association of Coronavirus Disease 2019 (COVID-19) With Myocardial Injury and Mortality. JAMA Cardiol 2020. doi:10.1001/jamacardio.2020.1105.

8. Deng Q, Hu B, Zhang Y, et al. Suspected myocardial injury in patients with COVID-19: Evidence from front-line clinical observation in Wuhan, China. Int J Cardiol 2020. doi: 10.1016/j.ijcard.2020.03.087.

9. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Rev Cardiol 2020;17:259-60. doi: 10.1038/s41569-020-0360-5.

10. Chapman AR, Bularga A, Mills NL. High-sensitivity cardiac troponin can be an ally in the fight against COVID-1. Circulation 2020. doi: 10.1161/CIRCULATIONAHA.120.047008.

11. Arentz M, Yim E, Klaft L, et al. Characteristics and outcomes of 21 critically ill patients with COVID-19 in Washington State. JAMA 2020. doi:10.1001/jama.2020.4326.

12. Parrillo JE. Pathogenetic mechanism of septic shock. N Engl J Med 1993;328:1471-7.

13. Van Diepen S, Katz JN, Albert NM, et al. Contemporary management of cardiogenic shock: A scientific statement from the American Heart Association. Circulation 2017;136: e232-e68.

14. Hua A, O’Gallagher K, Sado D, Byrne J. Life-threatening cardiac tamponade complicating myo-pericarditis in COVID-19. Eur Heart J 2020. doi:10.1093/eurheartj/ehaa253.

15. Zeng J-H, Liu Y-X, Yuan J, et al. First case of COVID-19 complicated with fulminant myocarditis: a case report and insights. Infection 2020. doi: 10.1007/s15100-020-01424-5.

16. Inciardi RM, Lupi L, Zacccone G, et al. Cardiac involvement 1 with coronavirus 2019 (COVID-19) infection. JAMA Cardiol 2020. doi:10.1001/jamacardio.2020.1096.

17. Bangalore S, Sharma A, Slotwiner A, et al. ST-segment elevation in patients with Covid-19 - A case series. N Engl J Med 2020. doi: 10.1056/NEJMoa2009020.

18. Skulstad H, Cosyns B, Popescu BA, et al. COVID-19 pandemic and cardiac imaging. EACVI recommendations on precautions, indications, prioritisation and protection for patients and health professionals. Eur Heart J Cardiovasc Imaging 2020;21:407-415.
healthcare personnel. Eur Heart J Cardiovasc Imaging 2020. doi: 10.1093/ehjci/jeaa072.
19. Farina A, Uccello G, Spreaftico M, et al. SARS-CoV-2 detection in the pericardial fluid of a patient with cardiac tamponade. Eur J Intern Med 2020 doi.org/10.1016/j.ejim.2020.04.045.
20. D’Andrea A, Di Giannuario G, Marrazzo G, et al. The role of multimodality imaging in COVID-19 patients: from diagnosis to clinical monitoring and prognosis. G Ital Cardiol 2020;21:345-53. doi: 10.1714/3343.33132.
21. Kirkpatrick J, Mitchell C, Taub C, et al. ASE statement on protection of patients and echocardiography service providers during the 2019 novel coronavirus outbreak. J Am Coll Cardiol 2020;S0735-1097(20)34815-4. doi: 10.1016/j.jacc.2020.04.002.
22. Tavazzi G, Pellegrini C, Maurelli M, et al. Myocardial localization of coronavirus in COVID-19 cardiogenic shock. Eur J Heart Fail 2020. doi: 10.1002/ejhf.1828.
23. Shi S, Quin M, Shen Bo et al. Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan, China. JAMA Cardiol 2020. doi:10.1001/jamacardio.2020.0950.
24. Bouhemad B, Nicolas-Rebin A, Arbelot C, et al. Acute left ventricular dilatation and shock-induced myocardial dysfunction. Crit Care Med 2009;37:441-7.
25. Vieillard-Baron A, Caille V, Charron C, et al. Actual incidence of global left ventricular hypokinesia in adult septic shock. Crit Care Med 2008;36:1701-6.
26. Furian T, Aguiar C, Prado K, et al. Ventricular dysfunction and dilation in severe sepsis and septic shock: Relation to endothelial function and mortality. J Crit Care 2012;27:319.e9-15. doi: 10.1016/j.jcrc.2011.06.017.
27. Parker MM, McCarthy KE, Ogniben FP, Parrillo JE. Right ventricular dysfunction and dilatation, similar to left ventricular changes, characterize the cardiac depression of septic shock in humans. Chest 1990;97:126-31.
28. Vagnarelli F, Marini M, Caretta G. [Ventilazione non invasiva: caratteri generali, indicazioni e revisione della letteratura]. [Article in Italian]. G Ital Cardiol 2017;18:496-504.
29. Luchetti M, Moretti C. [La ventilazione non invasiva e le sue implicazioni emodinamiche]. [Article in Italian]. Acta Anesthesiologica Italica 2008;59:227-241.
30. D’Andrea A, Martone F, Liccardo B, et al. Acute and chronic effects of noninvasive ventilation on left and right myocardial function in patients with obstructive sleep apnea syndrome: A speckle tracking echocardiographic study. Echocardiography 2016;33:1144-55. doi: 10.1111/echo.13225.
31. Guarracino F. [Ecocardiografia in Area Critica]. [Book in Italian]. Elsevier Srl, Milan.