Synthetic bio/techno/logy and its application

Alemu Tebeje a, Henok Tadesse b and Yizengaw Mengesha a

aDepartment of Agricultural Biotechnology, Biotechnology Institute, University of Gondar, Gondar, Ethiopia; bDepartment of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia

ABSTRACT
Synthetic Biology, which began in the 1970s, is a rapidly growing, multidisciplinary field that aims at improving our capacity to design, assemble or develop biological molecules. Nowadays, instead of mapping a particular gene and transferring it to a deficient cell, scientists are building life from scratch in the absence of societal debate and regulatory oversight. This mini-review outlines the explanations and principles, genome minimization techniques, application and ethical considerations.

Introduction
Synthetic biology (SB) is a scientific area that uses science and technology to build or redesign existing biological systems or new organisms, such as enzymes, genetic circuits and cells [1]. It emerges from various fields of science including biology, engineering and computer science. SB differs from conventional genetic engineering in terms of the complexity of organisms or systems created by researchers. The aim is to design and build biological systems at each level of organization through genetic networks and entire organism cooperation rather than focusing on the expression of individual genes or gene components [1]. Modification of an organism’s genome can cause unpredictable effects and increase the complexity of the genome.

SB aims to build or reform new organisms in human services [2]; produce highly sought products in medicine, energy, the environment and agriculture. It also has a high potential for creating new jobs, boosting the global economy [3] and offering solutions to environmental challenges. This paper provides brief information about the advantages, risks, applications and ethical concerns in SB.

Historical origins
Synthetic biotechnology recently emerged in the 1970s [2], and it has a long-standing history of genome-scale engineering (Figure 1). The emergence of recombinant DNA technology has created a new biotechnology era [3], known as SB, which was developed at the beginning of the twenty first century. Synthetic genomics merged with advanced methods for synthesizing DNA sequences and allowing scientists to build genetic material, which was impossible with previous biotechnological approaches [5]. Nowadays, the entire genome of an organism can be synthesized [6].

Principle and methods
Synthetic biologists might use synthetic genomics to partially or wholly synthesize genes of restructured or completely novel life forms (Figure 2) with the aims to create life forms that are substantially different from those that already exist [8,9]. To achieve their goal, synthetic biologists pursue several visible projects, like building the library for the biological parts and devices with known functions or features. In addition, synthetic biologists have attempted to develop microbial pathways for the production of chemical compounds. These areas aim to produce biological systems as biochemical plants using energy, industry and medicine [10].

Genome minimization
Genome minimization is a method and tool for maximizing the efficiency of biotechnology. This helps to understand the basic evolutionary processes. Genome
minimization combines genetic design with genetic engineering to change and construct biological systems and then evaluate the effects of genetic modifications [11,12]. Instead of establishing a lower life from the beginning, genomes may contain many non-essential genes with little or no importance to the organism [13]. Any organism genome can be reduced by top-down or bottom-up frameworks, which cover several genetic, metabolic or protein synthesis mechanisms [14]. Genome minimization also provides insights into the metabolism of more complex organisms by better understanding how a single genome encodes different types of cells. Minimization can be used to identify genes essential in all cell types as well as genes essential for specific cell types only [15,16]. Several approaches can be used to identify minimum genomes. It includes comparing different old lines of the minimal genome in silico (in vivo and in vitro) or large-scale gene inactivation. In recent times, scientists have developed a mathematical model for the hypothetical cell with the lowest gene quantity necessary to grow and divide in optimal conditions [17]. Reports have shown 20% genome reduction achieved for Escherichia coli (reviewed in 18), Bacillus subtilis and Mycoplasma genitalium [19].
approaches for the design and construction of artificial cells in SB, the top-down and bottom-up approaches, are illustrated in Figure 3.

The top-down approach (Figure 3) aims to shorten the genome by identifying the lowest number of genes needed in laboratory conditions to survive [21]. It develops a genetically stable, metabolically robust platform with low energy to carry out tasks and generate less unwanted waste products. In this approach researchers identify and isolate specific chemical processes performed easily by metabolically active bacteria. The genes responsible for this chemical process are sequenced or synthesized and inserted into yeast cell. Then, highly productive modified yeast cells will be produced and these modified yeast cells perform new or enhanced chemical processes and functions [22]. This is done either by stripping or replacing the genomes as shown in Figure 3 [20]. Thus, only a small number of cells is enough to fulfill a limited set of physiological functions. However, most of these cells will have low environmental persistence and will only survive under specific laboratory conditions [23,24].

The bottom-up method (Figure 3) is to create new kinds of self-reproducing minimal cellular life. It increases the complexity of the biological system by assembling various non-living components [20]. In other words, a bottom-up approach can cause the engineering of novel minimal biological systems with desired properties [25]. It uses raw materials, which are not necessarily natural (non-living) but mimic the properties of natural molecules [26]. Based on biological knowledge, life can be chemically constructed with suitable intermediate organisms. Recent advances have resulted in reforming the organisms with entire synthetic genomes with DNA synthesis and computation. Technical improvements in the assemblage of large pieces of DNA have also led to several milestones. These included de novo DNA virus synthesis, the re-assembly into the bacterial genome of chemical-based DNA segments and mail-order DNA poliovirus regeneration [27].

The protocell is the final bottom-up creation, which mimics certain functions of cells. It is a polypeptide-like or membrane-like structure that separates the inner and the outer world [28]. Protocell systems are chemical systems which are designed to imitate cell behaviour and emerging properties via their component interactions [29]. Protocells have potential biotechnological applications. Protocells could be used for synthesis and processing of biotechnological products with high efficiency in mass scale and reduced cost of production [29].

Application of synthetic bio/techno/logy

SB is a technology applied in all sectors, such as agriculture, food, health, chemical and industrial production [30]. It is used widely in nearly all science areas (Figure 4).

Health applications

Synthetic biology techniques based on rapid design, with iterative prototyping of the gene circuits, have enabled the creation of several innovative diagnostic approaches. Many of these solutions are ongoing and show the growing maturation of the field for critical biomedical issues [32]. SB offers potential benefits for immunoassay development, diagnosis, drug screening, new antibiotics generation, drug production and sensor-effector therapeutic development [33]. Diagnosis of communicable and non-communicable diseases including cancer, coronary artery disease, Ebola, Zika, tuberculosis, malaria, HIV, SARS-CoV-2, routine blood test quantification, and water quality monitoring has been successfully performed using SB [32, 34]. Recent work in animal models for human diseases has shown that the use of sensor effectors and mammalian cell reprogramming may soon pave the way for genetic and cellular therapies [35].
Agricultural applications

Synthetic biology also delivers major outcomes for agriculture [36]. It can increase crop-based sustainable fuel production [37,38]. Producing plant hormones with SB will provide opportunities to manipulate crop nutrient uptake and reduce nutrients applied as fertilizers [39]. This technology has an important role in bringing long term agricultural transformation through biosensors, synthetic speciation, microbial metabolic engineering, multiplexed mammalian CRISPR and new anti-microbial substances production [36]. SB will generate products to reduce farm waste and provide methods to convert them into methane and other economically significant products [40]. Specifically, synthetic biology promises to deliver benefits that increase productivity and sustainability across primary industries, underpinning the industry’s prosperity in the face of global challenges [36, 39]. The SB technology introduces organisms, processes and products that were thought not possible a decade ago [41]. Some research institutes and companies work on microbes to optimize their synthetic metabolic pathways, biofuel production, enzyme production and the development of engineered microbes. Engineered cyanobacterial organisms and eukaryotic alga could be used for making valuable industrial compounds like biofuels and other chemicals [42].

Environmental applications

SB’s contributions to environmental protection include biosensing systems that convert environmental signals into unique cellular events [43]. Other research efforts have concentrated on the engineering of micro-organisms to remediate a few of the most hazardous environmental pollutants [44]. Heavy metals and pesticides could be remediated by natural
bio-degradative pathways [45]. Engineering several networking microbial communities ignited the curiosity of remediation and other environmental protection [46]. Synthetically designed microbial groups have been developed to investigate their potential in health, environment, industry and evolution. A synthetic ecosystem between mammalian and bacterial cells could facilitate the study and mimic fundamental coevolution forms in nature. Symbiosis, parasitism, and predator-prey relationships are examples of these [33].

Ethical considerations

SB offers significant benefits to humanity. All responsible governments and a socially conscious industry are very interested in using these new technologies, in a way that does not transform products into hazardous substances [47]. However, it also raises some significant concerns. These include, for instance, worries about laboratory biological safety, the worsening of inequities, and challenges to existing intellectual property law systems [48]. Despite their benefits, the advances in synthetic genomics have led to an ethical debate on the synthesis of naturally dangerous pathogens to improve their virulent properties [9, 49]. After the first Obama Presidential Commission report in bioethics, the ethical value of SB became clear [3]. An issue in SB is that it can lead to the creation of organisms between the living and the machinery [50]. The other concern about SB was the possibility of intentional misuse of its knowledge [51]. The de novo synthesis of human pathogens poliovirus and Spanish influenza virus has been reported as a ground breaking study in the last decade [52]. Engineered organisms can be made from several structures which are artificially simulated and synthesized into one organism. SB raises problems relating to the scope and efficiency of patent law [53, 54].

Data access statements

Data sharing does not apply to this article as no new data were created or analyzed in this study.

Disclosure statement

The authors declare that there are no conflicts of interest.

Ethical declarations

No need for an ethical declaration.

Funding

The authors received no direct funding for this research.

References

[1] Alphey L, Bennet E, Delborne J, et al. Genetic frontiers for conservation: an assessment of synthetic biology and biodiversity conservation. 2019. Technical assessment. Gland, Switzerland: IUCN. xiv + 166. pp.
[2] Morton O. The engineering of living organisms could soon start changing everything. *The Economist*. 2019. Accessed: https://www.economist.com/technologyquarterly/2019/04/04/.
[3] Gutmann A, Wagner JW. Moral science and the presidential commission for the study of bioethical issues. *The Lancet*. 2012;379(9813):e20-1–e21.
[4] Esvelt KM, Wang HH. Genome-scale engineering for systems and synthetic biology. *Mol Syst Biol*. 2013;9(1):641
[5] Garfinkel MS, Endy D, Epstein GL, et al. Synthetic genomics: options for governance. *Ind Biotechnol*. 2007;3(4):333–365.
[6] Hughes RA, Ellington AD. Synthetic DNA synthesis and assembly: putting the synthetic in synthetic biology. *Cold Spring Harbor Perspect Biol*. 2017;19(1):a023812.
[7] Callaway E, Coghlan A. Synthetic life: where next? *New Sci*. 2010;206(2762):6–8.
[8] Schummer J. Are you playing god?: Synthetic biology and the chemical ambition to create artificial life. *Ethics of Chemistry: From Poison Gas to Climate Engineering*. 2021;431–458.
[9] Selgelid MJ, Evans N. Synthetic biology. In: ten Have H, editors. Encyclopedia of global bioethics. Springer, Cham; 2015.

[10] DeLoache WC, Russ ZN, Narcoss L, et al. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nat Chem Biol. 2015;11(7):465–471.

[11] Brautaset T. Synthetic biology: Science, experimental approaches and applications in biotechnology. In: Wikmark O-G, editor. Synthetic biology – biosafety and contribution to addressing societal challenges. Biosafety Report 2016/02. Tromso, Norway: GenØk – Centre for Biosafety; 2016. p. 4–12.

[12] Yang, J., Kim, B., Kim, G.Y. et al. Synthetic biology for evolutionary engineering: from perturbation of genotype to acquisition of desired phenotype. *Biotechnol Biofuels* 12, 113 (2019). doi:10.1186/s13068-019-1460-5.

[13] Sandberg TE, Salazar MJ, Weng LL, et al. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab Eng. 2019;56:1–16. doi: 10.1016/j.ymben.2019.08.004.

[14] Singh D, Lercher MJ. Network reduction methods for genome-scale metabolic models. *Cell Mol Life Sci.* 2020;77(3):481–488.

[15] Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: Avenues and challenges. *Synth Syst Biotechnol.* 2018;13(3):163–178. doi:10.1016/j.synbio.2018.09.001. Erratum in: Synth Syst Biotechnol. 2020 Oct 12;5(4):328.

[16] Coradini AL, Hull CB, Ehrenreich IM. Building genomes to understand evolution. *Nat Commun.* 2020; Dec 211(1):1–1.

[17] Shuler ML, Foley P, Atlas J. Modeling a minimal cell. In *Microbial systems biology*. 2012. (pp. 573–610). Humana Press, Totowa, NJ.

[18] Kurasawa H, Ohno T, Arai R, et al. A guideline and challenges toward the minimization of bacterial and eukaryotic genomes. *Curr Opin Syst Biol.* 2020;24:127–134.

[19] Fredens J, Wang K, de La Torre D, Funke LF, et al. Total synthesis of Escherichia coli with a recoded genome. *Nature*. 2019;569(7757):514–518.

[20] Xu C, Hu S, Chen X. Artificial cells: from basic science to applications. *Mater Today*. 2016;19(9):516–532.

[21] Elani Y. Interfacing living and synthetic cells as an emerging frontier in synthetic biology. *Angew Chem Int Ed Engl.* 2021;60(11):5602–5611.

[22] Kuiken T, Dana G, Oye K, et al. Shaping ecological risk research for synthetic biology. *J Environ Stud Sci.* 2014;4(3):191–199.

[23] Broeders SR, De Keersmaecker SC, Roosens NH. How to deal with the upcoming challenges in GMO detection in food and feed. *J Biomed Biotechnol.* 2012;2012:Article ID 402418, 11 pages. doi:10.1155/2012/402418.

[24] Pauwels K, Willemarck N, Breyer D, et al. Synthetic biology: Latest developments, biosafety considerations, and regulatory challenges. *Brussels (Belgium): Institut Scientifique De Sante Publique*; 2012. Available from: https://www.bioveiligheid.be/sites/

[25] Göpfrich K, Platzman I, Spatz JP. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. *Trends Biotechnol.* 2018;36(9):938–951.

[26] Walpe P. Building artificial cells and protocell models: experimental approaches with lipid vesicles. *Bioessays.* 2010;32(4):296–303.

[27] Firestone J. The need for soft law to regulate synthetic biology. *Jurimetrics.* 2020;60(2):139–173.

[28] Mason AF, Buddingh’ BC, Williams DS, et al. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. *J Am Chem Soc.* 2017;139(48):17309–17312.

[29] Wieczorek R, Wamberg MC, Albertsen AN, et al. Bottom-up protocell design: gaining insights in the emergence of complex functions. In *Evolutionary biology: Exobiology and evolutionary mechanisms*. 2013. (pp. 81–94). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-38212-3_6

[30] Nxumalo Z, Raj DB. Application and challenges of synthetic biology. *Advances in synthetic biology*. 2020. (pp. 307–320). Singapore: Springer.

[31] Chow mk N, Thakur K, Purohit A, et al. Chapter 16 – Applications and future perspectives of synthetic biology systems. Editor(s): Sudhir P. Singh, Ashok Pandey, Guocheng Du, Sudeesh Kumar. Current developments in biotechnology and bioengineering, Elsevier, 2019. Pages 393–412. ISBN 9780444460857.

[32] Tan X, Letendre JH, Collins JJ, et al. Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. *Cell*. 2021;184(4):881–898.

[33] Weber W, Fussenegger M. Emerging biomedical applications of synthetic biology. *Nat Rev Genet.* 2013;13(1):21–35.

[34] Pant N, Chauhan RS. A pandemic of infectious diseases due to new etiological agents predisposing factors, case study of COVID-19 and control measures. *Int J Curr Microbiol App Sci.* 2020;9(6):3424–3457.

[35] Chaterji S, Ahn EH, Kim DH. CRISPR genome engineering for human pluripotent stem cell research. *THERANOSTICS*. 2017;7(18):4445–4469.

[36] Goold H, Wright P, Hailstones D. Emerging opportunities for synthetic biology in agriculture. *Genes*. 2018;9(7):341. [Internet]. http://dx.doi.org/10.3390/genes9070341

[37] Erickson B, Winters P. Perspective on opportunities in industrial biotechnology in renewable chemicals. *Biotechnol J.* 2013;2(2):176–185.

[38] Mortimer JC. Plant synthetic biology could drive a revolution in biofuels and medicine. *Exp Biol Med* (Maywood). 2019;244(4):323–331. https://doi.org/10.1177/2153570218793890

[39] Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. *Curr Opin Biotechnol.* 2020;61:102–109.

[40] Ke J, Wang B, Yoshikuni Y. Microbiome engineering: synthetic biology of plant-associated microbiomes in sustainable agriculture. *Trends Biotechnol.* 2020.

[41] Zurbriggen MD, Moor A, Weber W. Plant and bacterial systems biology as platform for plant synthetic bio(techno)logy. *J Biotechnol.* 2012;160(1–2):80–90.

[42] Ducat DC, Avelar-Rivas JA, Way JC, et al. Rerouting carbon flux to enhance photosynthetic productivity. *Appl Environ Microbiol.* 2012;78(8):2660–2668.

[43] Delisi C, Patrinos A, MacCracken M, et al. The role of synthetic biology in atmospheric greenhouse gas reduction: prospects and challenges. *Biodis Res.* 2020;2020:1–8. Article ID 1016207, 8 pages.
[44] Rylott EL, Bruce NC. How synthetic biology can help bioremediation. Curr Opin Chem Biol. 2020;58:86–95.
[45] Oyetibo GO, Miyachi K, Huang Y, et al. Biotechnological remedies for the estuarine environment polluted with heavy metals and persistent organic pollutants. Int Biodeterior Biodegrad. 2017;119:614–625.
[46] McCarty NS, Ledesma-Amaro R. Synthetic biology tools to engineer microbial communities for biotechnology. Trends Biotechnol. 2019;137(2):181–197.
[47] Douglas T, Savulescu J. Synthetic biology and the ethics of knowledge. J Med Ethics. 2010;136(11):687–693. http://dx.doi.org/10.1136/jme.2010.038232
[48] Wang F, Zhang W. Synthetic biology: recent progress, biosafety and biosecurity concerns, and possible solutions. J Biosaf Biosecur. 2019;1(1):22–30.
[49] Li J, Zhao H, Zheng L, et al. Advances in synthetic biology and biosafety Governance. Front Bioeng Biotechnol. 2021;9:598087
[50] Deplazes A, Huppenbauer M. Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and non-living matter. Syst Synth Biol. 2009;3(1–4):55–63.
[51] Marinković T, Samardžić V, Pajić A, et al. The misuses of knowledge: bioethics and security issues related to synthetic biology. Materia Medica. 2018;34(3):1634–1640.
[52] Jefferson C, Lentzos F, Marris C. Synthetic biology and biosecurity: challenging the "myths". Front Public Health. 2014;2(2):115
[53] El Karoui M, Hoyos-Flight M, Fletcher L. Future trends in synthetic biology-A report. Front Bioeng Biotechnol. 2019;77:175.
[54] Saukshmya T, Chugh A. Commercializing synthetic biology: Socio-ethical concerns and challenges under intellectual property regime. J Commer Biotechnol. 2010;16(2):135–158.