Recent Development in Nanoconfined Hydrides for Energy Storage

Cezar Comanescu

Abstract: Hydrogen is the ultimate vector for a carbon-free, sustainable green-energy. While being the most promising candidate to serve this purpose, hydrogen inherits a series of characteristics making it particularly difficult to handle, store, transport and use in a safe manner. The researchers’ attention has thus shifted to storing hydrogen in its more manageable forms: the light metal hydrides and related derivatives (ammonia-borane, tetrahydridoborates/borohydrides, tetrahydridoaluminates/alanates or reactive hydride composites). Even then, the thermodynamic and kinetic behavior faces either too high energy barriers or sluggish kinetics (or both), and an efficient tool to overcome these issues is through nanoconfinements. Nanoconfined energy storage materials are the current state-of-the-art approach regarding hydrogen storage field, and the current review aims to summarize the most recent progress in this intriguing field. The latest reviews concerning \(H_2 \) production and storage are discussed, and the shift from bulk to nanomaterials is described in the context of physical and chemical aspects of nanoconfinement effects in the obtained nanocomposites. The types of hosts used for hydrogen materials are divided in classes of substances, the mean of hydride inclusion in said hosts and the classes of hydrogen storage materials are presented with their most recent trends and future prospects.

Keywords: hydrogen; energy storage; hydride; nanoconfinement; thermodynamic destabilization; kinetic destabilization; recyclability; MOF; nanomaterials; nanocatalyst

1. Introduction

The 21st century has been marked by tremendously important technological breakthroughs, yet the massive expansion of industrialization has led to a deepening scarcity and skyrocketing prices of fossil fuels and energy raw materials, concomitant with a continual atmospheric pollution [1]. In the context of ever-increasing energy demands and the serious downsides of using fossil fuels, hydrogen has emerged over the past decades as a true and relevant promise of a carbon-free, green energy source for the world. However, hydrogen has a very low boiling point (20.4 K) at 1 atm, which severely restricts its use in the native form, except in some high pressure, cryogenic tanks that pose themselves additional energetic costs and safety risks regarding charging, transport and storing [1]. To circumvent the downfalls of using molecular dihydrogen (\(H_2 \)), scientists have turned their attention and research focus on hydrogen-containing compounds, in the form of metal hydrides and related materials, which in turn feature higher thermal stability, safer handling, no fuel loss upon storage and overall produce the cleanest energy known today. The fuel of the future should ideally produce no carbon-containing by-products, exhibiting time- and property-related endurance over 1500 dehydrogenation-rehydrogenation cycles, and most importantly, all of this while featuring a gravimetric weight percentage of at least 5.5 wt.% (DOE’s target set for 2025) [1–6]. The use of fossil fuels will eventually be phased-out and an
energy-friendly alternative with no carbon emissions must be brought forward. Hydrogen
can generate roughly three times more energy than gasoline (33.3 vs. 11.1 kWh/kg), and
can be produced by thermochemical, electrolytic, solar splitting of water or by means of
biological reactions involving bacteria and algae microorganisms [1]. The near-future (2025)
targets for hydrogen storage systems require a system gravimetric capacity of 5.5 wt.%, vol-
umetric capacity 0.04 kg H\textsubscript{2}/L, a hydrogen delivery temperature range of −40 . . . +85 °C,
a delivery pressure of five bar, a very fast refill time (3–5 min) and a high purity hydrogen
production of 99.97% [4–6]. Broadly speaking, the hydrogen storage methods are divided in
physisorption-based (fast kinetics, storage capacity dependent on support surface area and
pore volume, weak Van der Waals interatomic forces) and chemisorption-based (somewhat
slower kinetics of desorption/absorption, storage depends on chemical composition of the
material, strong chemical bonds) [7,8]. The chemisorption method is the preferred one of
the two, as it binds hydrogen through chemical bonds rather than weaker interatomic forces
therefore ensuring a reliable hydrogen storage capacity and comprise of metal hydrides,
tetrahydridoborates, tetrahydridoaluminates and metal amides.

The topic of hydrogen storage materials has been recently reviewed by a series of
articles. Lai et al., have summed up the characteristics of potential hydrogen storage
materials and established guidelines that new storage materials should obey for viable
applicability in storage tanks [9]. An overview of hydrogen economy and appropriate
recommendations was discussed by Abe et al. [10]. The state-of-the-art of boron-nitrogen
compounds for energy storage was reviewed by Kumar et al. [11] and Hagemann [12]. The
solid-state materials used for hydrogen storage have been addressed by Lee et al. [13], Had-
jixenophontos et al. [14], Broom and Hirscher [15], Comanescu [16], Kharbachi et al. [17],
Zheng et al. [18] and He et al. [19], among others. The role of highly dispersed catalysts
on hydrogen storage materials [20] and the topologically engineered materials serving
for energy conversion and storage [21] have also been very recently reviewed, while the
critical issue of accurately describing hydrogen sorption properties of materials has been
highlighted by Broom et al. [15].

Among hydrogen storage materials, metal hydrides have gained increased popular-
ity [5–8,22–26] and channeled many research groups to corroborate hydrogen sorption data
to formulate general design principles for these materials [27,28], or to tackle the imminent
need to expand current knowledge to production of large-scale hydrogen storage facili-
ties [29]. While many advances have been made in the field of metal hydrides for hydrogen
storage applications, the high thermal stability, sluggish kinetics and poor reversibility of
hydrogen release/uptake have shifted researchers’ attention towards nanoconfined hy-
drides that seem to alleviate some of these drawbacks, affording reversible, high gravimetric
and volumetric hydrogen content at moderate temperatures [8,24,25].

The current review aims to tackle the current trend of employing nanoconfinements
as a reliable tool to tune kinetic and thermodynamic behavior of hydride materials used for
energy storage applications, and covers roughly the past five years.

2. Characterization Methods: Old, New, and Their Pitfalls

Traditionally, hydrogen storage materials follow a typical characterization proto-
col involving structural (XRD), elemental (XPS), morphological (SEM, TEM, N\textsubscript{2} sorption
isotherms) and recording of hydrogenation data (PCI curves) [8]. Recently, a fundamental
issue regarding elucidation of local environment of hydrogen in energy materials has re-
vealed fast sample spinning 1H NMR high-resolution spectroscopy as an appropriate tool to
quantitatively characterize hydrogenated TiZrNi quasicrystals [30]. Kweon et al., showed
by employing fast-spinning NMR spectroscopy that neutral hydrogen is surrounded by
metal atoms shifting gradually from Zr to Ti and then Ni with increasing hydrogen con-
tent [30]. 1H magic-angle spinning (MAS) NMR spectra has shown real promise for tuning
electronic characteristics in a Ba-Ti oxyhydride, and could become a tool to investigate
hydrogen occupation in the vicinity of the nuclei (negative Knight shift, indicative of
interaction of conduction band electrons and probe nucleus) [31]. A potential downside
of using this technique is the high sensitivity to sample temperature, which was shown to increase due to fast rotor spinning (10–35 Hz), with a direct effect on main peak width change. Thus, additional precautions need to be undertaken to account for the effect of sample temperature increase when using fast spinning NMR spectroscopy [31].

Correct understanding of interfacial phenomena occurring during hydrogen storage is now termed as hydrogen spillover effect (HSPE). First discovered in 1964, it describes the migration of hydrogen atoms produced by H₂ decomposition on an active site, and it allows for a more insightful view on the dynamic behavior of hydrogen in energy storage materials [7]. While molecular orbital energy computations showed unfavorable energy for H atom spillover on non-reducible supports, recent studies have shown that HSPE is indeed possible on inert supports such as siloxanic materials (SiO₂) [7]. This bears a direct effect on hydrogen storage materials such as metal hydrides confined in mesoporous silica supports, where the spillover distance is limited to very short distances of ~10 nm [7].

Interestingly, developing tools to characterize metal hydrides during hydrogenation cycles has led to a summary of soft (X-ray absorption, XAS; X-ray emission spectroscopy, XES; resonant inelastic soft X-ray scattering, RIXS, X-ray photoelectron spectroscopy, XPS) and hard (X-ray diffraction, XRD) X-ray techniques used to this end (Figure 1) [32]. Soft X-ray techniques (100–5000 eV) are particularly appealing for tracking mechanistic behavior and intermediate product formation during hydrogenation studies, with direct influence over hydrogen storage capacity. XAS measurements for instance are bulk or surface-sensitive, and show 3d transition metal (TM) L-edges corresponding to transition of a 2p electron to an unoccupied 3d orbital, hence enabling monitoring of oxidation state changes during hydrogen release (+n...0) and uptake (0...+n) [32]. Similarly, TM-catalyzed alanates (2 mol%-catalyzed NaAlH₄) showed in XAS measurements the Al and Na K-edge and Ti L-edge consistent with a Ti-like state throughout the hydrogen release/uptake cycles, but with clear differences in Al state, which may undergo various intermediate states (Al/NaAlH₄/Na₃AlH₆) [32]. Quasi-elastic neutron scattering (QENS) studies have been undertaken to establish hydrogen dynamics in nanoscale sodium alanate NaAlH₄ and showed that fitting QENS to a Lorentzian function can yield two dynamic states of hydrogen and concluded that even at 77 °C there is a high percentage (18%) of mobile hydrogen atoms in the nano-NaAlH₄ [33].

![Figure 1. Main investigation methods used for characterization of hydrogen storage materials.](image)

As an alternative method to the conventional pressure-composition-temperature (PCT) method typically used to characterize thermodynamic parameters for hydride-based sys-
tems, a less complex investigation method has been described for MgH$_2$-based materials: thermogravimetric analysis (TGA) [34]. This method relies on cycling the hydride under a flowing gas of constant hydrogen partial pressure, and the TGA curves are further analyzed using the van’t Hoff equation to obtain the absorption/desorption enthalpies, which in the case of VTiCr-catalyzed Mg/MgH$_2$ materials, showed good agreement with traditional PCT results [34]. Other recent research established a nano-Pd patched surface of Pd$_{80}$Co$_{20}$ to afford one of the most sensitive optical hydrogen sensors (fast response of <3 s, high accuracy of <5%, and very low limit of detection of 2.5 ppm) [35]. Employing interpretable machine learning could also help formulate general design principles for intermetallic hydride-based systems being used to validate limited data from the HydPARK experimental metal hydride database and stressing the recommendation for experimental groups to report ΔH, ΔS, P_{eq}, T and V_{cell} [27].

Valero-Pedraza et al., have characterized the hydrogen release form ammonia borane nanoconfined in mesoporous silica by means of Raman-mass spectroscopy, which confirmed hydrogen release from AB at lower temperatures, fewer BNHz gaseous fragments in nanoconfined samples and a lack of polyiminoborane formation during thermolysis [36]. The study also pointed out to silica-hydride interactions, which were identifiable based on modifications in the Raman spectra [36].

However, analysis of the literature data also points out to several weaknesses in applying traditional characterization methods that have not yet been tuned for current nanosized materials [15,34,37,38]. For instance, AB (ammonia borane) hydrogenation studies showed many inconsistencies [38]. By assessing TGA data in the literature, Petit and Demirci urge caution when evaluating ammonia borane weight loss (and consequently hydrogen release), as this was found to be highly dependent on the operation conditions (semi-closed/open reactor) and were shown to erroneously indicate a different hydrogen release temperature onset and hydrogen wt.% [38].

Surrey et al., conducted a critical review of a paper discussing electron microscopy observation of elementary steps in MgH$_2$ release mechanisms [37]. In this work, they debunked the general assumption that TEM microscopy can be used, as such, without further testing methodology adjustment in the case of hydrogen storage materials such as MgH$_2$. The issue was serious, as it led initial authors to misinterpret TEM observations, by disregarding the key aspect of electron beam induced dehydrogenation of MgH$_2$ [37]. In a cascade chain of errors, the beam-induced heat producing dehydrogenation also led to a false interpretation of SAD (selected area diffraction) data, which only showed hollow MgO shells deprived of Mg-core, an effect actually ascribed to the nanoscale Kirkendall effect. As a result, it was apparent that the sample actually measured did not even contain MgH$_2$ any longer [37].

In line with the issues raised above, Broom and Hirscher discussed the necessary steps for reproducible results in hydrogen storage research [15].

3. Bulk vs. Nanomaterials

After its first inclusion on the research outlook of scientists worldwide in 1996, nano-sized hydrides have known a wide expansion, mainly due to several important kinetic and thermodynamic improvements of nanoconfinement over their bulk counterparts [4,8,14,16,18,21–23,27,28,39–64]. Over time, nanoconfinement has emerged as a reliable tool for tuning not only thermodynamic and kinetic behavior at nanoscale, but also for altering reaction pathways, lowering or even suppressing side-reactions and side-products, while also affording better size control of the particles over several hydrogen release/uptake cycles (Figure 2).
Nanoconfinement of active hydride species inside a porous host bears a number of physical and chemical implications [1,7,8,22,25,27,41,52–56,59–62,66–86].

3.2. Nanocomposites

The proper term for describing the materials resulting from the nanoconfinement of active hydride source into a nanoporous matrix is nanocomposite [4,41,52,54,60,66–70,77,78].

4. Types of Hosts Used as Hydride Matrix

4.1. Siloxanic Materials (MCM-41, SBA-15, SBA-48, etc.)

Although some complex hydride materials (e.g., complex metal borohydrides) are plagued by an undesirable reaction with the porous host above the hydride melting temperature with formation of silicates [16], mesoporous silica is still used in several studies concerning nanoconfinement effects in hydrogen storage materials [74,87–90] (Table 1).

Table 1. Recent progress in silica-based supports for nanoconfined hydrogen storage.

Silica Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
MSU-H	LiBH₄	solvent infiltration	[16]
MCM-41	NaBH₄	melt impregnation	[74]
MCM-41, SBA-15	LiBH₄	melt impregnation	[87]
poly(acrylamide)-grafted mesoporous silica nanoparticles (PAM-MSN)	NH₃BH₃ (AB)	melt impregnation	[88]
SBA-15	Li₂(BH₄)(NH₃)	melt impregnation	[89]
silica aerogel	NH₃BH₃ (AB)	aerogel drying and AB gas antisolvent precipitation	[90]
MCM-41, SBA-15	LiBH₄-LiNH₂	melt infiltration	[91]

When LiBH₄ was used as borohydride source in a mesoporous silica host, the reaction occurring during borohydride melting is a two-step process yielding lithium metasilicate, Li₂SiO₃, and ultimately lithium orthosilicate, Li₄SiO₄ (Equation (1)) [16]. This reaction is a
downside of using nanoporous siloxanic supports for borohydride nanoconfinement, as it consumes the hydride material in an irreversible side-reaction (Equation (1)).

\[4\text{LiBH}_4 + 3\text{SiO}_2 \xrightarrow{\Delta} 2\text{Li}_2\text{SiO}_3 + \text{Si} + 4\text{B} + 8\text{H}_2 \quad \text{2 LiBH}_4 \xrightarrow{\Delta} \frac{3}{2}\text{Li}_2\text{SiO}_4 + \frac{1}{2}\text{Si} + 2\text{B} + 4\text{H}_2 \uparrow \quad (1) \]

Confining LiBH\(_4\) by a melt impregnation technique in nanoporous silica MCM-41 (1D, \(d_{\text{pore}} < 2 \text{ nm}\)) or SBA-15 (2D-ordered pore structure, \(d_{\text{pore}} = 5, 7 \) and 8 nm) of different pore sizes reveals an interesting interfacial effect governing Li\(^+\) and BH\(_4^-\) ion mobility [87]. Using solid-state NMR (\(^1\text{H}, ^6\text{Li}, ^7\text{Li} \) and \(^11\text{B}\)) Lambregts et al., showed that, as a result of nanoconfinement, two distinct fractions of LiBH\(_4\) coexist and this is a temperature-dependent equilibrium (Equation (2)):

\[
\text{LiBH}_4(\text{bulk-like}) \xrightarrow{T} \text{LiBH}_4(\text{highly dynamic}) \xrightarrow{T} \text{LiBH}_4(\text{lower mobility}) \quad (2)
\]

The high mobility LiBH\(_4\) is located near silica pore walls, whereas LiBH\(_4\) of lower mobility is located towards the pore’s core; the theoretical wall thickness was estimated based on a core-shell model LiBH\(_4@\text{SBA-15}\), as \(t = r_p(1 - \sqrt{\frac{\text{lower mobility}}{\text{higher mobility}}})\). The dynamic layer thickness is temperature-dependent, and increases from 0.5 nm (30 °C) to 1.2 nm (110 °C). Here again the results of calorimetric data were found to overestimate the highly-mobile LiBH\(_4\) layer thickness (1.9 nm), pointing out the need for care when deriving the same parameter from different techniques [87]. While \(^6,7\text{Li}\) NMR spectra was too complex for unequivocal deconvolution, \(^1\text{H}\) and \(^11\text{B}\) NMR spectra clearly show two components throughout the investigated temperature range (30–130 °C), consistent with the two LiBH\(_4\) fractions of different ion mobility [87].

Melt impregnation of NaBH\(_4\) in MCM-41 at 560 °C led to a drastic surface area decrease from 1110.9 m\(^2\) g\(^{-1}\) (pristine MCM-41) to 3.5 m\(^2\) g\(^{-1}\) (nanocomposite NaBH\(_4@\text{MCM-41}\)), and to a 78% pore filling attested by pore volume decrease (1.02 cm\(^3\) g\(^{-1}\) to 0.02 cm\(^3\) g\(^{-1}\)) [74]. Interestingly, some amount of sodium perborate NaBO\(_4\) resulting from unavoidable oxidation of the borohydride with silanol (Si-OH) groups is the main additional phase detected by XRD, confirming no significant additional phases due to melt impregnation at >500 °C. The dehydrogenation onset peak for NaBH\(_4\) was reduced by nanoconfinement from 550 °C (bulk) to 520 °C (nanocomposite) [74]. Due to the insulating nature of boron oxide phase (NaBO\(_4\)), the ionic conductivity did not improve the same way it does for LiBH\(_4\), and remained largely the same (7.4 × 10\(^{-10}\) S cm\(^{-1}\)). This 10-fold increase in ionic conductivity that only lasts up to 70 °C for the nanocomposite is attributed to the presence of larger dodecaborate ions B\(_{12}H_{12}^2^-\) whose distinct presence was signaled in \(^11\text{B}\) NMR spectra by an additional sharp peak at −15.58 ppm (NaBH\(_4@\text{MCM-41}\)) vs. −41.95 ppm (for pristine BH\(_4^+\)) (Figure 3) [74].

![Figure 3. Possible decomposition pathways for bulk NaBH\(_4\) (a,b) and for melt-impregnated, nanoconfined NaBH\(_4\) (c).](image-url)
The organic-inorganic hybrid poly(acrylamide)-grafted mesoporous silica nanoparticles (PAM-MSN) have been evaluated as functionalized nanoporous hosts for tuning hydrogen release/uptake behavior in ammonia borane (AB), which started to desorb hydrogen in the said nanocomposite at a lower temperature with respect to pristine AB, which was further enhanced by functionalization of the mesoporous silica shell with carboxylic -COOH groups [88].

2D-ordered mesoporous silica of cylindrical pores (SBA-15) was successfully used by Yang et al., for enhancing the ionic conductivity of a mixed-anion borohydride, Li$_2$(BH$_4$)(NH$_2$)$_2$. By following a melt infiltration procedure, the Li-ion conductivity was increased in Li$_2$(BH$_4$)(NH$_2$)$_2$@SBA-15 to 5×10^{-3} S cm$^{-1}$ at 55 °C [89]. A marked kinetic improvement of hydrogen release ($\Delta T = 70$ °C) was recently reported by Rueda et al., by confinement of ammonia borane (AB) in silica aerogel by simultaneous aerogel drying and AB gas antisolvent precipitation using compressed CO$_2$, and achieving a weight AB loading of up to 60 wt.% [90].

4.2. Carbonaceous Materials (C-Replica of Mesoporous Silica, C-NTs, C-FOam, C-Spheres, Graphene, Graphene Oxide GO, Reduced Graphene Oxide r-GO)

Given the chemically-sensitive interaction between silanol (Si-OH) and borohydride (BH$_4^-$) groups and the subsequent oxidation reaction, the election of mesoporous silica as a host for loading borohydride materials seems less feasible. Therefore, many research studies have shifted their focus towards carbon-based materials, which do not exhibit such a drawback. Many forms of carbonaceous matrix have been employed: C-replica of mesoporous silica, C-NTs, C-foam, C-spheres, graphene, graphene oxide GO, reduced graphene oxide r-GO etc. (Table 2) [40,42,53,65,69,70,92–146].

Carbon Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
MOFs incorporating activated carbon (AC) and aluminum doping	AlH$_3$	solution impregnation method	[40]
Hollow carbon spheres (HCNs)	M(BH$_4$)$_x$ (M = Li, Na, Mg, Ca)	solvent impregnation (best results, lower T_d), melt infiltration	[42]
Carbon aerogels with different porosities	Mg/MgH$_2$	direct solvent-based synthesis of MgH$_2$ from MgBu$_2$	[53]
Core-shell CoNi@C	MgH$_2$ obtained by hydriding combustion synthesis (HCS)	high energy ball milling under Ar atmosphere	[65]
Graphene	NaAlH$_4$	solvent infiltration (THF; bottom-up strategy (90% loading)	[69]
Porous hollow carbon nanospheres	LiBH$_4$-Mg(BH$_4$)$_2$ eutectic (LMBH)	melt-infiltration	[70]
xNi-CMK-3; N-CMK-3 (x = 1 and 5 wt.%)	MgH$_2$	in situ generated from MgBu$_2$ soln. in heptane	[92]
Double-Layered Carbon Nanobowl	LiBH$_4$	melt infiltration	[93]
Carbon shell (2–3 nm thick)	Mg/MgH$_2$	reactive gas evaporation	[94]
TiO$_2$-decorated amorphous carbon (AC)	MgH$_2$	ball milling	[95]
High Surface Area Graphite (HSAG)	LiAlH$_4$	solvent infiltration/incipient wetness method	[96]
Porous carbon, High Surface Area Graphite (HSAG-500)	Mg$_2$CoH$_5$	bottom-up approach (Co$^{2+}$ salt reduction, MgBu$_2$ hydrogenation and solid-gas reaction Co + 2MgH$_2$ + 0.5H$_2$)	[97]
Carbon Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
-------------	--------------------------	------------------------	-----
Graphene	MgH₂	solvent-free, MgBu₂ thermal decomposition	[98]
Resorcinol-formaldehyde carbon aerogel (RFC)	2LiBH₄-LiAlH₄	two-step melt-infiltration	[99]
Activated charcoal (AC)	LiBH₄	melt-infiltration	[100]
NiCo₂O₄-anchored reduced graphene oxide (NiCo₂O₄@rGO)	LiAlH₄	low-temperature solution method coupled with annealing treatment; to yield NiCo₂O₄@rGO nanocomposites	[101]
Nickel@nitrogen-doped carbon spheres (Ni@NCS)	MgH₂	hydriding combustion and subsequent high-energy ball milling	[102]
Ultrathin, flexible Graphene (GR)	MgH₂	bottom-up self-assembly strategy (from MgBu₂ in C₆H₁₂)	[103]
Porous Hollow Carbon Nanospheres (PHCNSs)	LiBH₄	mortar grounded, then melt infiltration (300 °C, 30 min, 100 bar H₂)	[104]
Electrochemically synthesized reduced graphene oxide (erGO)	Mg₈-B	ball milling	[105]
Fe₃O₄@C, Multifunctional porous scaffold of carbon wrapped ultrafine Fe₃O₄	LiBH₄	melting infiltration (300 °C, 30 min, 100 bar H₂)	[106]
Activated carbon nanofibers (ACNF) impregnated with TiO₂	LiBH₄	mortar grinding (1:1, wt.), melt infiltration (310 °C at 5 °C/min rate under 60 bar H₂, dwelling at 310 °C for 45 min, cooling to rt)	[108]
Carbon nanotube (CNT)	xMgH₂/AlH₃ (x = 1–4)	ball milling (200 rpm, 1 h, under H₂ atmosphere) for xMgH₂/AlH₃; ball milling in steel container (1 h, under H₂ atmosphere) for MgH₂/AlH₃@CNTs	[109]
Carbon nanoscaffolds (Graphite, CMK-3, Graphene, CNT)	MgH₂	solvent, melt infiltration	[110]
N-doped CMK-3 carbon (NCMK-3)	LiAlH₄	solution infiltration of LiAlH₄ freshly recrystallized from diethyl ether	[111]
N-doped graphene hydrogels (resorcinol-formaldehyde)	LiBH₄	ball milling (300 min, 400 rpm), melt impregnation (30 min, 300 °C, 60 bar H₂)	[112]
N-Doped Graphene-Rich Aerogels Decorated with Ni and Co Nanoparticles	LiBH₄	pre-mixing (mortar, pestle; 30 min), then melt impregnation (30 min, 300 °C, 60 bar H₂).	[113]
Graphene sheets (G)	LiH (LiBH₄, LiNH₂BH₃)	one-step solvothermal reaction of butyllithium supported by graphene in cyclohexane under a H₂ pressure of 50 atm.	[114]
Graphene Nanosheet (G)	MgH₂	solid-state reaction (metathesis MgCl₂, LiH), ball milling (30 h, 0.5 MPa H₂, 500 rpm)	[115]
Activated mesoporous carbon (MC-a)	Ca(BH₄)₂	incipient wetness method (0.1 M Ca(BH₄)₂, MTBE methyl tert-butyl ether, anhydrous)	[116]
Edge-Functionalized Graphene Nanoribbon (GNRs): unfunctionalized cGNR, nitrogen edge-doped N₂-cGNR and N₄-cGNR, and fluorenone GNR (f-cGNR)	Mg/(MgH₂)	Rieke-like reaction (up to 98% Mg wt.%)	[117]
Table 2. Cont.

Carbon Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres (PHCNs)	MgH₂(Mg₂Ni/Mg₂NiH₄)	ball-milling (50 bar H₂, 24 h, planetary ball mill QM-3SP4, Nanjing, 500 rpm, ball-to-sample weight ratio of 120:1)	[118]
Hydrogenated graphene (HG)	N/A	Li-reduction in graphene(G), then CH₃OH hydrogenation	[119]
Graphene decorated with Ni nanocrystals	LiBH₄	solvothermal reaction (50 bar H₂ at 100 °C, 24 h, continuous stirring); "BuLi hydrogenation (to LiH) and C₆H₁₅NBH₃ reaction (to LiBH₄-C₆H₁₅N); Cp₂Ni (for Ni)	[120]
Defected graphene oxide (GO) or reduced graphene oxide (rGO)	Mg/MgH₂	in situ generation of Mg from a THF soln. of Cp₂Mg	[121]
Reduced graphene oxide (rGO)/Li foil	Mg/MgH₂	direct solvent-based synthesis of MgH₂ from MgCP₂	[122]
Carbon Matrix	LiBH₄	melt-impregnation	[123]
1D Carbon Matrix (Fishbone Shaped): CNF, GNF	Mg/MgH₂	direct solvent-based synthesis of MgH₂ from sonicated, solvent(THF)-impregnated MgCP₂-CNFGNF	[124]
Nickel-Containing Porous Carbon Sheets (Ni-PCSs)	LiAlH₄, NaAlH₄, and Mg(AlH₄)₂	pre-mixing in mortar (15 min.), high energy ball-milling (SPEX M8000 mixer/mill, 15 min.) w/ball-to-powder weight ratio 40:1.	[125]
Reduced graphene oxide (rGO)	Mg(BH₄)₂	in situ generation of rGO/Mg(BH₄)₂: rGO slurry with 1 M MgBu₂ in heptane, added over BH₃-S(CH₃)₂	[126]
MWCNT (w/TiO₂ 2 mol% relative to NaAlH₄)	NaAlH₄	physical mixture; PEIS/MWCNT/NaAlH₄; polyaniline (Pani) or sulfonated polyetherimide (PEIS) as polymer matrices	[127]
Nitrogen-Doped Nanoporous Carbon Frameworks (N-doped NPC)	NaAlH₄	pre-mixing (mortar/pestle, 10 min), melt infiltration (Sievert apparatus, 190 bar H₂, 45 min, 200 °C)	[128]
Graphene oxide (GO) framework	NaAlH₄	incipient wetness impregnation	[129]
Activated carbon (AC)	2LiBH₄-MgH₂	milling 2LiBH₄:Mg in stainless-steel vial planetary ball mill; 20:1 ball-to-powder weight ratio (BPR), 10 h milling time, 580 rpm	[130]
Ordered mesoporous carbon structures (CMK)	N/A (Ni NP)	Ni NPs inserting by wetting the CMK structures	[131]
Ultrafine Ni nanoparticles in a mesoporous carbon matrix (MC-Niinsitu)	Mg(BH₄)₂	Mg(BH₄)₂ (45 wt.%) solution (THF, Et₂O) slowly impregnated into the MC variant	[132]
High surface area graphite (HSAG)	LiH	catalytic hydrogenation of lithium naphthalenide (for LiH), stirring at 400 rpm, 0.35 MPa H₂, 40 °C, aged overnight.	[133]
Fe-benzenetricarboxylate (Fe-BTC)	NaAlH₄	solution infiltration using tetrahydrofuran (THF)	[134]
Activated carbon nanofibers (ACNF)	LiBH₄-LiAlH₄	solution impregnation of LiAlH₄ (Et₂O) then melt infiltration of LiBH₄ (310 °C, 110 bar H₂, 45 min.)	[135]
Carbon aerogel (CA) by resorcinol (R) and formaldehyde (F) process	N/A	triethylamine (as catalyst)	[136]
3-D activated carbon (M-3D C)	MgH₂	solvent-reduction (NH₂NH₂) of a slurry MgBu₂ (1 M, heptane) in M-3D C	[137]
Table 2. Cont.

Carbon Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Reduced graphene oxide (rGO)/metal nanocrystal multilaminates	Mg/MgH₂	solution-based co-reduction method of MgCp₂/GO with lithium naphthalenide solution (2 h stirring, then 20 min centrifuged @10,000 rpm)	[138]
ZIF-67-Derived Co@Porous Carbon	NH₃BH₃ (AB, Ammonia Borane)	infiltration	[139]
Carbon nanotube arrays (CMK-5)	AlH₃ and NH₃BH₃	pre-mixed (mortar, hand-milling); solvent (THF) infiltration into CMK-5.	[140]
carbon nanomaterials MDC (based on calcined MOF-5)	NH₃BH₃	solvent infiltration	[141]
Ice templating sheets of graphene oxide (GO) or partially reduced graphene oxide (rGO)	NH₃BH₃	solvent infiltration (AB infiltrated to a solvent suspension of GO)	[142]
Bio-derived micro/mesoporous carbon with well-organized pores (TiO₂/B co-catalysts)	NH₃BH₃	solvent immersion (AB methanol solution into C-TiO₂(B)), then vaporization	[143]
Microporous carbon (ECMC, narrow PSD, obtained by CVD from ethylene-filled Zeolite EMC-2)	NH₃BH₃	solvent infiltration (of AB methanol solution to ECMC)	[144]
V₂O₃-supported cubic C-nanoboxes	MgH₂	ball milling (500 rpm, 24 h, BPR:120:1, 50 bar H₂).	[146]

4.3. Metal-Organic Frameworks (MOFs) and Functionalized-MOFs

Metal-organic frameworks (MOFs) have recently been utilized as hosts for metal hydrides, due to their tunable porosity, stability and enhancement of kinetic and thermodynamic properties of hydrogen storage materials (Table 3). Their functionalization with appropriate groups/molecules opens new doors in energy storage field, being able to bypass side-reactions, alter significantly the reaction pathway, and afford a better reversible material in hydrogen release/uptake studies [39,40,68,86,147–157].

Table 3. Recent progress in MOF-based nanoconfined hydrogen storage systems.

MOF Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Cu-BDC(DMF) (BDC = benzenedicarboxylate; DMF-dimethylformamide, used as removal/capping solvent)	AB (NH₃BH₃)	hand grinding (5 min, under Ar); AB: Cu-BDC(DMF) weight ration: 1:20, based on pore filling estimation	[39]
MIL-101-NORIT-RB3 decorated (an activated carbon AC added in situ during synthesis of MOF)	AlH₃	solvent impregnation (THF, under Ar)	[40]
Various MOFs (of type MOF-5, MIL, UiO, ZIF, IRMOF etc.)	Pg/PdH₂	Various: Liquid impregnation, Metal-Organic Chemical Vapour Deposition; Sol-Gel; Double Solvent Method	[68]
HKUST-1, IRMOF-1, IRMOF-10, UiO-66, UiO-67, and MIL-53(Al), MIL-101, MOF-74(Mg)	AB (NH₃BH₃), NaAlH₄, MHₓ (M = Li, Na, Mg, Ca, Al)	solvent- and melt infiltration	[86]
Nb₂O₅@MOF (Zn-based MOF, ZIF-8 (Zn(2-methylimidazole)₂))	MgH₂	ball milling (400 rpm, 4 h, ball to powder ratio 40:1) yielding MgH₂@7 wt.% Nb₂O₅@MOF	[147]
Table 3. Cont.

MOF Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
MOF-5, MOF-177, HKUST-1, NOTT-100, Mg-IRMOF-74-I, NiIRMOF-74-I, Mg-IRMOF-74-II and Ni2(mdobdc)	Mg/MgH2; Ni/NiH2	Hydrogen release/uptake in Ni-based MOFs	[148]
Ni-MOF scaffold (Ni2(TMA), TMA-trimasic acid)	MgH2	in-situ synthesis; infiltration of MgBu2 (1 M in heptane) in Ni-MOF porosity, hydrogenation (453 K, 4.8 MPa H2, 20 h) to yield MgH2@Ni-MOF	[149]
UiO-66 (Zr6O4(BDC)6, BDC = 1,4-benzenedicarboxylate)	Ti(BH4)3	gas adsorption of Ti(BH4)3 at dry-ice conditions (N2-carrier gas) into UiO-66	[150]
UiO-67bpy (Zr6O4(OH)4(bpydc)6 with bpydc2– = 2,2′-bipyridine-5,5′-dicarboxylate)	Mg(BH4)2	solvent impregnation	[151]
Various (High-throughput molecular simulations)	N/A	theoretical study (machine learning)	[152]
IRMOF-1, IRMOF-10, UiO-66, UiO-67, and MIL-53(Al)	AB (NH3BH3)	solvent infiltration (CH3OH)	[153]
MIL-53	AB (NH3BH3)	solvothermal impregnation method (CH3OH saturated solution)	[154]
MIL-101-NH2 (Al)	Al/AlH3	solvothermal treatment involving N,N-dimethylformamide (DMF) as solvent	[155]
MOF-5	M/MHx	post-confinement, in-situ confinement, double-solvent method (better efficiency)	[156]
MOF = ZIF-8, ZIF-67, MOF-74	Mg/MgH2	in-situ reduction in Mg2+decorated MOFs by NpLi solution in THF	[157]

4.4. Main Group and TM (Transition Metal)-Oxides, Sulfides and Nitrides

Various metal oxides and nitrides of metals (main group and TM) have been employed as hosts for hydrogen storage materials [91,95,101,106,147,158–172]. Embedding active hydrogen-storage systems into inert nanoscaffolds has been used in the past, but reports on shells of the sulfide type are rare in the scientific literature [80]. In fact, the only recent report is that of MgH2 nanoconfined in chemically-inert shells of CoS nano-boxes [80] (Table 4).

Table 4. Recent progress in oxides, sulfides and nitrides-based hosts for nanoconfined hydrogen storage systems.

Metal Oxide/Sulfide/Nitride	Hydrogen Storage Material	Nanoconfinement Method	Ref.
CoS nano-boxes (ZIF-67-derived)	MgH2	infiltration MgBu2 (1 M in heptane; 1000 rpm, 48 h), followed by hydrogenation (453 K, 4.8 MPa H2, 24 h)	[80]
Al-SBA-15, γ-Al2O3	LiBH4-LiNH2	melt infiltration	[91]
Metal oxide nanoparticles (TiO2) anchored on amorphous carbon (SCNPs/AC)	MgH2	in-situ pyrolysis assisted with quickly cooling	[95]
NiCo2O4-anchored reduced graphene oxide (rGO)	LiAlH4	low-temperature solution method coupled with annealing treatment; to yield NiCo2O4@rGO nanocomposites	[101]
Table 4. Cont.

Metal Oxide/Sulfide/Nitride Hydrogen Storage Material	Nanoconfinement Method/Obs.	Ref.	
Fe$_3$O$_4$@C, Multifunctional porous scaffold of carbon wrapped ultrafine Fe$_3$O$_4$	melting infiltration (300 °C, 30 min, 100 bar H$_2$)	[106]	
Nb$_2$O$_5$@MOF (Zn-based MOF, ZIF-8 (Zn(2-methylimidazole)$_2$))	ball milling (400 rpm, 4 h, ball to powder ratio BPR 40:1) yielding MgH$_2$@7 wt.% Nb$_2$O$_5$@MOF	[147]	
Ni/CoMoO$_4$ nanorods	ball milling (400 rpm, BPR: 60:1, 6 h); MgH$_2$ is the host for NiCoO$_4$/NiMoO$_4$ nanorods to yield MgH$_2$-10 wt.% Ni/CoMoO$_4$	[158]	
Al$_2$O$_3$	γ-Mg(BH$_4$)$_2$	Atomic Layer Deposition (ALD)	[159]
B$_2$O (Metal-Decorated Honeycomb Borophene Oxide)	Li/LiH; Na/NaH and K/KH. Theoretical study: dispersion corrected density functional theory (DFT-D2)	[160]	
Al$_2$O$_3$	LiBH$_4$-LiI	melt infiltration (50 bar H$_2$, 295 °C, 3 °C min$^{-1}$, 30 min); 4LiBH$_4$:LiI-manual grinding in mortar, added to Al$_2$O$_3$ (130% pore filling)	[161]
(3D) boron nitride (BN)	AB (NH$_3$BH$_3$)	solvent impregnation of AB (6.92 M in THF) into mBN1000 and mBN1450	[162]
TiO$_2$ (anatase)	MgH$_2$	crystal-facet-dependent catalysis ([001] and [101])	[172]

4.5. Metal Component/Host

Several reports have been published where the host is an actual metal matrix, usually one that is highly active in hydrogenation studies (Table 5) [40,68,94,112,121,122,138,139–171].

Table 5. Recent progress in oxides, sulfides and nitrides-based hosts for nanoconfined hydrogen storage systems.

Metal as Host or Component	Hydrogen Storage Material	Nanoconfinement Method/Obs.	Ref.
Al	Al/AI$_3$@MIL-101-NORIT-RB3 decorated	solvent impregnation	[40]
Pd	Pd@MOF	Various: Liquid impregnation, Metal-Organic Chemical Vapour Deposition; Sol-Gel; Double Solvent Method	[68]
TiC$_x$/Mg	Mg/MgH$_2$	reactive gas evaporation	[94]
N-doped graphene	LiBH$_4$	ball milling	[112]
Mg nanocrystals	Mg/MgH$_2$@GO; Mg/MgH$_2$rGO	LiNP reduction in Cp$_2$Mg/(r)GO slurry in THF. Various degrees of GO reduction to fine tune H$_2$ storage properties by morphology modification of Mg confined in xGO/(1-x)rGO matrix	[121]
Mg	Mg/rGO	One-step growth of Mg particles; chemical reduction in Cp$_2$Mg by Li-methyl-naphthalenide (LiNPMe) in THF, followed by addition of the reactive mixture over single layer GO (30 min sonication). Mg w/high-index [2T6] crystal surface exhibits increased hydrogen absorption up to 6.2 wt %	[122]
Table 5. Cont.

Metal as Host or Component	Hydrogen Storage Material	Nanoconfinement Method/Obs.	Ref.
Mg	GO/Mg/MgH multilaminates	solution-based co-reduction method of MgCp$_2$/GO with NpLi	[138]
Mg@rGO/Ni	Mg/MgH$_2$	in situ reduction in (Cp$_2$Mg and Cp$_2$Ni)@GO, THF-sonicated slurry, with a THF sol. of LiN; 6.5 H$_2$ wt.% of total composite; H$_2$ uptake under 1 bar H$_2$.	[163]
Pd	Pd-Based Alloy Nanoparticles *RhPd-H NPs; PdH$_{0.43}$ NPs (when np Pd used, control experiment)	one-pot solvothermal method-reduction of acetylacetonates Pd(acac)$_2$ and Rh(acac)$_3$ in mixed benzyl alcohol /acetaldehyde solvents with polyvinylpyrrolidone (PVP), at 180 °C in 30 min. RhPd confirmed by EDX. (111) diffraction peak outside that of either Rh/Pd, implying an expanded structure due to interstitial H atoms.	[164]
Mg as matrix	Mg/MgH$_2$	(review) of solid-state processing: physical vapor deposition, powder blending and consolidation, and additive manufacturing.	[165]
Raney Ni (3 nm pore size) as host	NaAlH$_4$ to form NaAlH$_4$/Raney Ni	wet impregnation	[166]
Al/Ti (Ti-based doped porous Al scaffold)	NaAlH$_4$/Al	melt-infiltrated	[167]
Co	2MgH$_2$-Co (Mg$_2$CoH$_3$ and Mg$_6$Co$_2$H$_{11}$)	compression to pellets (4.43 wt.% hydrogen storage vs. powder (2.32 wt.% capacity)	[168]
Mg	MgH$_2$ and ETM hydrides (ScH$_2$, YH$_3$, TiH$_2$, ZrH$_2$, VH and NbH)	mechanochemistry under hydrogen gas; 5 mol% of Early Transition Metals (ETM = Sc, Y, Ti, Zr, V, and Nb) as hydrogenation catalysts	[169]
Mg–Ti	Mg–Ti–H nanoparticle,(MgH$_2$ andTiH$_2$ crystalline phases)	gas-phase condensation of Mg and Ti vapors under He/H$_2$ atmosphere	[170]
Ni	AB/ Ni matrix	NiCl$_2$ reduction to Ni(0) on the surface of AB nanoparticles (1–7 nm)	[171]

4.6. Gas Selective-Permeable Polymers

Attempts to restrict oxygen and moisture exposure of active hydrogenation sites in hydride materials have been made through the engineered approach of covering the hydride materials with a layer of H$_2$-permeable polymer [88,127,156,173–175]. This approach proved to be very successful, provided that the hydride coverage was indeed complete (Table 6).

Table 6. Examples of gas-selective H$_2$-permeable polymers used as covering shells for hydrogen storage systems.

H$_2$-Permeable Polymers	Hydrogen Storage Material	Nanoconfinement Details	Ref.
poly(acrylamide) (PAM)-grafted mesoporous silica nanoparticles (MSNs)	ammonia borane (AB)	solution infiltration (stirring of THF solution of AB and polymer for 2 h), to produce AB-PAM-COOH-MSNs and AB-PAM-COOHMSNs	[88]
polyaniline (Pani) or sulfonated polyetherimide (PEIS) as polymer matrices	NaAlH$_4$	PEIS/NaAlH$_4$ (70/30 wt.%): solution infiltration of NaAlH$_4$ added over dispersed MWCNTs in NMP-solubilized PEIS (30 min, 40 °C). Pani/NaAlH$_4$: dispersion of components (50 wt.%), w/2 mol.% TiO$_2$ as catalyst	[127]
Table 6. Cont.

H₂-Permeable Polymers	Hydrogen Storage Material	Nanoconfinement Details	Ref.
mesoporous polystyrene	various metal hosts	post-confinement strategy	[156]
Adaptive TPX™ Polymer Scaffold	Li-RHC (2LiH + MgB₂ + 7.5(3TiCl₃·AlCl₃))	ball milling of 2LiH + MgB₂ + 7.5 (3TiCl₃·AlCl₃) and a solution of TPX™ in cyclohexane	[173]
PTFE polytetrafluoroethylene; PMMA poly(methyl-methacrylate)	Pd or Pd₇₀Au₃₀ alloy	Pd@PTFe, Pd₇₀Au₃₀@PTFe, (Pd@PTFE@PMMA) acting as (tandem) sensors	[174]
short-chain polyethylene oxide (PEO or PEG)	AB (NH₃BH₃)	slow interaction of AB and PEO powders (microscope slide, 10 months. rt) forms ammonia borane–polyethylene oxide cocrystal (5 PEO monomers per AB molecule)	[175]

4.7. MXene

Ongoing recent trends in developing novel systems for energy storage have incorporated MXene materials with a 2D structure, as promising hydride hosts [94,156,176–194]. While only few examples are currently available, it is foreseeable that MXenes will grow to become a mainstream storage matrix for nanoconfined hydride-based materials (Table 7).

Table 7. Examples of MXenes used as hosts for hydrogen storage systems.

MXene Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
TiCₓ	Mg/MgH₂	reactive gas evaporation method	[94]
Ti₃C₂Tₓ (T = surface termination: OH, O or F)	Ni@C spheres	in situ confinement strategy	[156]
Ti₃C₂Tₓ (T = F)	N/A	hydrogen trapping (physisorption, chemisorption, and Kubas type particle interaction)	[176]
Multilayer Ti₃C₂ (ML-Ti₃C₂)	MgH₂	ball milling MgH₂ + ML – Ti₃C₂	[177]
Ti₃C₂	LiAlH₄	ball milling LiBH₄–Ti₃C₂ (1 wt.% ,3 wt.% , 5 wt.% , 10 wt.%, and 15 wt.%); (planetary ball mill Retsch PM 400, under Ar, 250 rpm, 10 h, BPR 250:1); doping strategy to LiAlH₄, yielding LiAlH₄ + 5 wt.% Ti₃C₂	[178]
Ti₃C₂	4MgH₂-LiAlH₄	mechanical milling 4MgH₂-LiAlH₄ with additive Ti₃C₂ (10 wt.%) in planetary ball mill (24 h, 450 rpm, BPR 40:1, under Ar), forming 4MgH₂-LiAlH₄-Ti₃C₂ nanocomposites	[179]
Ti₃C₂	LiH + MgB₂	ball milling	[180]
Nb₄C₃Tₓ	MgH₂	ball milling MgH₂-5 wt.%Nb₄C₃Tₓ; chemical exfoliation of Nb₄C₃Tₓ	[181]
Cr₂C	N/A	First-principles studies (7.6 wt.% H₂)	[182]
Ti₃C₂	NaAlH₄	NaAlH₄-7 wt.% Ti₃C₂	[183]
(T₁₀V₀₅)ₓC₂	MgH₂	MgH₂-10 wt.% (T₁₀V₀₅)ₓC₂	[184]
Ti₃C₂	LiBH₄	40% Ti₃C₂ composite	[185]
Ti₃C₂	NaH/Al (Ti-doped NaAlH₄)	NaH/Al-Ti₃C₂	[186]
Ti₃C₂	Mg(BH₄)₂	Mg(BH₄)₂-40 wt.% Ti₃C₂ composite	[187]
C@TiO₂/Ti₃C₂	NaAlH₄	annealing Ti₃C₂ MXene under C₂H₂ atmosphere; 10 wt.% C@TiO₂/Ti₃C₂ catalyzing NaAlH₄	[188]
Ti₃C₂	Mg(BH₄)₂	ball-milling method; Mg(BH₄)₂–40Ti₃C₂	[189]
NbTiC solid-solution MXene	MgH₂	MgH₂-9 wt.% NbTiC	[190]
Table 7. Cont.

MXene Type	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Ti₃C₂	2LiH + MgB₂/2LiBH₄ + MgH₂ (RHC-system)	ball milling	[191]
Ti₃C₂/TiO₂(A)-C	MgH₂	ball milling; sandwich-like Ti₃C₂/TiO₂(A)-C prepared by gas–solid method	[192]
Ti₃C₂	Mg/MgH₂	ball milling (50 bar H₂, 24 h) producing MgH₂-x wt.% Ti₃C₂ nanocomposites (x = 0, 1, 3, 5 and 7)	[193]
Ti₂N	N/A	first-principles calculations; 2.656–3.422 wt.% hydrogen storage capacity, ambient conditions	[194]

4.8. Catalytic Effects of Doping the Host and/or Substitution of the Hydride Species

Improvements on hydrogen release/uptake cycles have often been explored in conjunction with utilization of catalysts used to either dope the host, or the hydride material. This strategy is based on formation of active sites for hydrogenation reaction to occur, or is sometimes ascribed to the formation of a reactive intermediate species [19, 68, 92, 111–113, 117, 125, 128, 151, 160, 161, 163, 195–197]. In addition, cation substitution or anion substitution in complex hydrides has been employed to reduce energy barriers and improve overall recyclability of the hydride materials (Table 8).

Table 8. Examples of host decoration/doping and hydride substitution in nanosized systems.

Host Doping/Hydride Substitution	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Alkali/Alkaline Earth Metals (AM)	hydrides of lightweight elements (HLEs)	development of AM amide-hydride composites	[19]
Pd	Pd/PdHₓ@MOF complex interaction Pd \ldots H		[68]
metal (Ni) or non-metal (N)-doping of carbon scaffold	MgH₂	xNi-CMK-3; N-CMK-3 (x = 1 and 5 wt.%)	[92]
Ni@N-doped carbon spheres	MgH₂	hydriding combustion and subsequent high-energy ball milling	[102]
Nitrogen-Doped Carbon Host	LiAlH₄	solution infiltration	[111]
N-doped graphene in resorcinol-formaldehyde	LiBH₄	ball milling, melt impregnation	[112]
N-Doped Graphene-Rich Aerogels Decorated with Nickel and Cobalt Nanoparticles	LiBH₄	melt impregnation	[113]
Edge-Functionalized Graphene Nanoribbon N₂-cGNR, N₄-cGNR, and fluorenone GNR (f-cGNR)	Mg/(MgH₂)	Rieke-like reaction (up to 98% Mg wt.%)	[117]
Ni-Containing Porous Carbon Sheets	LiAlH₄, NaAlH₄, and Mg(AlH₄)₂	high energy ball-milling	[125]
Nitrogen-Doped Nanoporous Carbon Frameworks	NaAlH₄	melt infiltration	[128]
Bipyridine-Functionalized MOF (UiO-67bpy)	Mg(BH₄)₂	solution infiltration, stirring (DMS dimethyl sulfide solution of Mg(BH₄)₂, RT, 2 h)	[151]
Li, Na, and K decorations on 2D honeycomb B₂O	N/A	theoretical study: dispersion corrected density functional theory (DFT-D2)	[160]
Al₂O₃	LiBH₄·LiI	partial anion substitution in the complex borohydride	[161]
Table 8. Cont.

Host Doping/Hydride Substitution	Hydrogen Storage Material	Nanoconfinement Method	Ref.
Ni, Cr and Mn/GO	Mg	in-situ reduction Cp₂Mg, and each transition metal precursor (Cp₂Ni) dissolved in THF (22.5 mL) added into GO solution, stirred for 30 min. Hydrogen absorption (125 °C, 15 bar H₂)/desorption (300 °C, 0 bar) Ni-doped rGO-Mg	[163]
Nitrogen doping	Nb	Suppression of nano-hydride growth on Nb(100)	[195]
Pd	Mg NPs; Pd@Mg NPs	Rieke method–co-reduction/precipitation of a Pd²⁺:Mg²⁺ = 1:9 wt. ration (chloride source) in THF, using LiNp as reductant to form Pd@Mg NPs	[196]
Pd/Halloysite Nanotubes (HNTs)	AB (NH₃BH₃)	AB encapsulation and thin layer coating of the scaffold Pd/HNTs by solvent infiltration and solvent evaporation (THF) to yield AB@Pd/HNTs. Strong electrostatic adsorption (SEA) of ([Pd(NH₃)₄]²⁺) is onto the external surface of HNTs, precursor reduction (H₂, 250 °C) to form (Pd/HNTs).	[197]

4.9. (Nano)Catalyst Addition

The overall enhancement of kinetic and thermodynamic parameters can be tuned by utilization of catalysts. This is usually implemented to improve behavior of systems that already show promising results including recyclability (Table 9) [19,20,34,43,57,65,68,77,82,92,102,108,113,118,120,125,131,132,134,136,139,143,147,158,160,166–168,172,183–192,194,196–212]. Due to the greater applicability of this approach in the past few years, the Table 9 summarizes them based on classes of substances and their corresponding characteristics.

Table 9. Examples of recent advances using nanocatalysts to improve kinetic and thermodynamic properties of hydride-based systems in hydrogenation studies.

Hydrogen Storage Class	Hydrogen Storage Material	(Nano)Catalyst Utilized	Ref.
Li-based	LiBH₄	TiO₂ (activated carbon nanofibers); N-Doped Graphene-Rich Aerogels Decorated with Ni and Co NPs; Nano-synergy catalyst; Ti₃C₂	[108,113,120,185]
LiAlH₄	Nickel-Containing Porous Carbon Sheets		[125]
Na-based	NaAlH₄	Ti; Nickel-Containing Porous Carbon Sheets; Raney Ni; Al; 2D titanium carbide; Ti-based 2D MXene; Two-dimensional C@TiO₂/Ti₃C₂	[82,125,166,167,183,186,188]
Mg NPs, films	Pd; Ti	VTIr; catalysts (review); nanocatalysts; anatase TiO₂; core-shell CoNi@C; TiMn₂; Carbon scaffold modified by metal (Ni) or non-metal (N); nickel@nitrogen-doped carbon spheres; ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres; Nb₂O₅ NPs @MOF; Ni/CoMoO₄ nanorods; Co₉ (Ti₀.₅V₀.₅)₃C₂; ultrafine NbTi nanocrystals, from NbTiC solid-solution MXene; sandwich-like Ti₃C₂/TiO₂(A)-C; FeCo nanosheets; flake Ni nano-catalyst composite; Transition metal (Co, Ni) nanoparticles wrapped with carbon; TiH₂ thin layer; MgCo₀.₅Ni₁.₅; MgCNi₃; supported Co–Ni Nanocatalysts	[34,43,57,60,65,77,92,102,118,147,158,168,184,190,192,201,202,204,205,208–210]
Mg-based	MgH₂		[196,211,212]
Table 9. Cont.

Hydrogen Storage Class	Hydrogen Storage Material	(Nano)Catalyst Utilized	Ref.
Mg-based	MgB₂	LiH + TiH₂	[198]
	Mg(BH₄)₂	ultrafine Ni NPs; Ti₃C₂; various additives	[132,187,189,207]
	Mg(AlH₄)₂	Ni-Containing Porous Carbon Sheets	[125]
Al-based	α-AlH₃	TiF₃; Li₃N	[203,206]
RCH	2LiH + MgB₂	Ti₃C₂	[191]
	2LiBH₄ − MgH₂	ZrCl₄	[134,191]
AB	NH₃BH₃	ZIF-67-Derived Co@Porous Carbon; TiO₂(B) NPs; Pd/Halloysite Nanotubes;	[139,143,197]
	Pd	Pd@MOF	[68,200]
	B₂O	Li, Na, and K-Decorated	[160]
Misc.	Various hydrides	Alkali/Alkaline Earth Metals; Highly Dispersed Supported Transition Metal; metallic NPs supported on carbon substrates; Heterostructures	[19,20,131,199]
Carbon aerogel	N-Doped Graphene-Rich Aerogels Decorated with Ni and Co NPs; ZrCl₄; NEt₃	[113,134,136]	
Ti₂N MXene	Pristine (DFT)	[194]	

5. Inclusion Methods of Hydride Materials into Appropriate Host—State-of-the-Art and Limitations

5.1. Direct Synthesis

Starting from a commercially-available borohydride (such as LiBH₄, NaBH₄ etc.) and the corresponding salt of the metal (MClₓ), various novel borohydrides have been synthesized via the metathesis reaction (double exchange) (Equation (3)) [8,16].

\[
\text{MCl}_x + x \text{LiBH}_4 \rightarrow \text{M(BH}_4)_x + x \text{LiCl}
\]

(3)

Other approaches start from the organometallic precursor of the metal, which undergoes reduction (with H₂ or another reductant, such as LiNp) typically after impregnation into the porous host. (Equation (4))

\[
\text{Mg(C}_4\text{H}_9)_2 + 2 \text{H}_2 \xrightarrow{\Delta} \text{MgH}_2 + 2 \text{C}_4\text{H}_{10}
\]

(4)

5.2. Infiltration Methods

5.2.1. Melt Infiltration

Melt infiltration of complex hydrides has widely been used to introduce the active hydride material into nanoporous hosts. This technique has the advantage of requiring no solvent (so it consists of less steps), but the hydride material must have a lower melting temperature, and the infiltration is carried out under H₂ pressure in order to avoid the onset of dehydrogenation reaction.

5.2.2. Solvent Infiltration

Solvent infiltration has become the method of choice as it achieves pore filling of the porous scaffold at temperatures that are near ambient, provided that a suitable solvent for the material has been identified. This is typically an issue, as solubility data on complex hydrides are rather scarce, and usually their solubility in ether-like solvents is limited [16].
5.2.3. Solvent-Assisted Ball-Milling

Nanoconfinement of hydride-based materials in nanoporous hosts has the potential advantage of bypassing the slow kinetics of their bulk counterparts, thus enabling a shorter refueling time, in pursuit of the DOE’s current targets [5,6]. Very high surface area supports (MOFs, activated carbons) afford good hydrogen sorption capacities, but since the adsorption is mainly governed by physisorption, it is only relevant at 77 K. At this low temperature, a rough estimation (Chahine’s rule) is that for pressures that would occupy all adsorption sites (exceeding 20 bar), the expected storage capacity is ~1 wt.%/500 m² g⁻¹ and scales proportional to the specific surface area [8]. Ball milling (with or without a solvent) can introduce the hydride material into the porosity of the employed scaffold. The process is energy-intensive and can proceed with an important increase in the local sample temperature, and therefore the process is carried out in steps (for instance, 20 min milling followed by a 10 min pause allowing controlled cooling).

6. Metal Hydrides and Their Recent Nanoconfinement Studies

Pristine metal hydrides have recently been comprehensively reviewed, and the results show promising trends upon nanoconfinement [213].

6.1. LiH

Alkali metal hydrides have been used for catalytic reactions, but have attracted attention due to their lightweight characteristics, as well as the high hydrogen gravimetric content. However, their high thermal stability makes them less attractive in their pure form; LiH, for instance, melts at 689 °C and decomposes at 720 °C into Li and H₂ (Equation (5)). Alkali metal hydrides have unusually high decomposition temperatures due to their salt-like nature (LiH, mp = 698 °C; NaH, mp = 638 °C; KH, mp ~ 400 °C with K vaporizing in H₂ current). Given their high decomposition temperature, alkali metal hydrides require kinetic and thermodynamic destabilization (Table 10).

\[
\text{LiH} \xrightarrow{720\,^\circ\text{C}} \text{Li} + \frac{1}{2} \text{H}_2
\] (5)

Additive Used	Other H-Storing Source	H-Storing Composite	wt.% H₂	Obs.	Ref.
G(graphene)	(LiBH₄ and LiNH₂BH₄ after B₂H₆ and BH₃NH₃ reaction)	LiH@G (LiH nanospheres, 2 nm thick)	6.8 wt.% (50 wt.% LiH in LiH@G); 12.8 wt.% (91.1 wt.% LiBH₄@G)	LiH@G \(T_{\text{onset}} = 445\,^\circ\text{C}, T_{d} = 500\,^\circ\text{C} (6.8\,\text{wt}.)\). LiNH₂BH₄@G \(T_{\text{onset}} = 53\,^\circ\text{C}\), 15 °C lower than for bulk LiNH₂BH₄; \(T_{d} = 79\,^\circ\text{C}\).	[114]
TiCl₄2THF	HSAG	LiH@HSAG	1.9 wt.% (340 °C, one step)	Hydrogenation of LiNp(THF) under 0.35 MPa H₂, 400 rpm, 40 °C, 12 h (cat.:TiCl₄2THF)	[133]
N/A (TiH₂)	MgB₂	LiH/MgB₂	not investigated	different “top” and “bottom” fractions present in vial. At 700 bar H₂, 280 °C, 24 h, borohydride formation.	[198]
Activator: hv (light) to Au NPs	N/A (Au)	Au/LiH	11.1 wt.% (as-synthesized); 8.2 wt.% (heat desorption); 3.4 wt.% (light desorption)	plasmonic heating effect of Au NPs (100 °C), under Xe lamp radiation	[214]
LiNH₂	(LiN)	LiNH₂ + 2LiH	10.5 wt.%	Li₃N + 2H₂ = Li₂NH + LiH + H₂ = LiNH₂ + 2LiH. 2LiNH₂ = Li₂NH + NH₃	[215]
-	-	LiH	12.6 wt.%	LiH = Li + 1/2 H₂; \(T_{\text{onset}} = 689\,^\circ\text{C}\); \(T_{d} = 720\,^\circ\text{C}\)	[216]
Si	-	LiH	5 wt.%	LiSi = 2.35; \(T_{d} = 490\,^\circ\text{C}\)	[216]
Co(OH)₂	-	Li₆SiO₂@Co(OH)₂	N/A	\(\alpha\text{LiOH} + 2\alpha\text{Li}^+ + 2\alpha\text{e}^- = \alpha\text{Li}_2\text{O} + \alpha\text{LiH (0 < }\alpha < 1)\), High \text{Li}^+ storage in anode	[217]

Recently, a series of strategies have been utilized to produce nanosized LiH, but not all attempts dealt with hydrogen storage applications [114,133,198,214–216], and some utilizing LiH-containing nanocomposites for their Li-storage capacity in a Co(OH)₂-LiH novel anode material [217]. Even when dealing with potential hydrogen storage materials
like LiH + MgB$_2$, studies have focused on the phase-evolution process and XPS tracking thereof, rather than collection of hydrogen storage data [198]. Still, XPS data pointed to presence of LiBH$_4$, Mg$_{(3-x)/2}$Li$_x$(BH$_4$)$_x$ or Li-borate species present on account of multiple LiH-containing peaks identified [198]. At near-surface regions, LiBH$_4$ or mixed Li-Mg borohydrides can form at 100 °C below the threshold for hydrogenation of MgB$_2$; expectedly, LiBH$_4$ production scales with the LiH in the starting composite (Equation (6)) [198].

\[
\text{LiH} + \frac{1}{2}\text{MgB}_2 + 2\text{H}_2 \xrightarrow{\Delta} \text{LiBH}_4 + \text{MgH}_2
\]

Sun et al., have shown that harnessing the plasmonic thermal heating effect of Au nanoparticles could lead to light-induced dehydrogenation of nanocomposites Au@LiH, which showed a 3.4 wt.% loss ascribed to dehydrogenation content [214]. The Au NPs dispersed on the surface of LiH, Mg or NaAlH$_4$ all showed marked improvements in hydrogenation studies. The preparation of Au/LiH composites involved LiH suspension in THF under sonication and overnight stirring at 500 rpm, after which a THF solution of HAuCl$_4$ was added and stirring continued for an additional 24 h, leading to the Au/LiH material after centrifugation and overnight drying by Schlenk line technique. Hydrogen absorption was carried out under 14.8 atm H$_2$, while desorption was conducted under 0.2 atm pressure, utilizing Xe lamp illumination affording 100 °C local temperature [214].

Overcoming kinetic and thermodynamic barriers in the complex Li-N-H system (Equation (7)) led White et al., to study the Li$_3$N effect on the LiNH$_2$ + 2LiH composite behavior [215]. On this occasion, a kinetic analysis showed the rate-limiting step is the formation of H$_2$ (g) at the surface of the core-shell structure Li$_2$NH@Li$_3$N [215]. Again, the use of TEM measurements was shown to be inappropriate for LiNH$_2$ materials, due to decomposition upon prolonged electron beam exposure. The equilibria shown in Equation (7) already occur upon the exposure of Li$_3$N to 10 bar H$_2$ (200 °C, 2 h), but not at one bar H$_2$, which only altered the α-to-β ratio of Li$_3$N [215].

\[
\text{Li}_3\text{N} + 2\text{H}_2 \xrightarrow{\Delta} \text{Li}_2\text{NH} + \text{LiH} + \text{H}_2 \xrightarrow{\Delta} \text{LiNH}_2 + 2\text{LiH} \xrightarrow{\Delta} \frac{1}{2}\text{Li}_2\text{NH} + \frac{1}{2}\text{NH}_3 \uparrow
\]

Considering the gravimetric hydrogen densities required by DOE standards, LiH, MgH$_2$ and AlH$_3$ are the main binary systems proposed to date [216]. Silicon doping of LiH has shown a drastic reduction in decomposition temperature (ΔT = 230 K), and could store up to 5 wt.% H$_2$ with release at 490 °C [216]. A nanostructured electrode of Co(OH)$_2$ and silica was recently employed in Li-conductivity studies and showed the formation of active LiH species, although the material was not investigated for its hydrogen storage properties [217].

A series of Li-based materials was investigated by Xia et al., who grafted on graphene LiH by in situ reduction in nBuLi with H$_2$ (110 °C, 50 atm), producing LiH@G. This nanocomposite LiH@G was further treated with B$_2$H$_6$ or AB/THF, and novel LiBH$_4$@G and LiNH$_2$BH$_3$@G nanocomposites were thus obtained (Equation (8)) [114].

\[
\text{G} \xrightarrow{\text{BuLi}} \text{LiH@G} \xrightarrow{\text{B}_2\text{H}_6} \text{LiBH}_4@\text{G} ; \text{G} \xrightarrow{\text{BuLi}} \text{LiH@G} \xrightarrow{\text{B}_2\text{H}_6\text{NH}_3} \text{LiNH}_2\text{BH}_3@\text{G}
\]

The 2D LiH nanosheets were about 2 nm thick and afforded a 6.8 wt.% H$_2$ storage when loaded at 50 wt.% in the said graphene-based nanocomposite, which withstood structural integrity upon further hydride-to-borohydride transformation (Figure 4) [114].
Using HSAG (high surface area graphite) as scaffold, Wang et al., showed a 1.9 wt.% hydrogen storage at 200 °C for the composite LiH@HSAG, with reversible behavior at 300 °C and 60 bar H₂ (Equation (9)) [133].

\[
\text{HSAG} \xrightarrow{\text{LiNp, TiCl}_3\text{THF}_2} \text{LiH@HSAG}
\]

The morphology was tracked by SEM analysis and XRD diffraction, while hydrogenation data confirmed the modest 1.9 wt.% hydrogen storage by TGA (Figure 5).

This nanoconfinement approach in high surface area carbon (HSAG) of pore size 2–20 nm showed a high thermodynamic improvement, allowing for hydrogen release at 340 °C in LiH@HSAG rather than at the high 680 °C for pristine LiH [133].

6.2. MgH₂

Due to its wide availability in nature, low cost, high gravimetric (7.6 wt.%) and volumetric (110 g/L) hydrogen storage capacities, the binary hydride, MgH₂, is arguably the most studied metal hydride and Mg-based materials have been investigated exhaustively by a variety of research groups (Table 11) [34,43,47,53,55,61,65,77,78,80,92,94,95,98,102,103,109,110,115,118,121,122,124,130,134,137,146,147,149,158,168–170,172,177,196,198,201,202,204,205,208–212,214,216,218–225]. Synergistic effects of additives have been reviewed in the recent past: effect of nano-sized TMs (Ni, Cu, Fe, Co); salt addition in composites like MgH₂ + 10 wt.% LaCl₃; alloy formation Mg-La, Mg-Ni; incorporation in Fe₃O₄ nanospheres; dispersion effect of Nb₂O₅ catalysis; TiF₅/TiO₂/TiN/TiMn₂ or Ti₅C₂ superior catalytic effects; Ni-based materials Mg@Ni binary nanocomposite; Mg₂Ni alloy; Mg₂NiH₄; Ni@MgH₂; NiB₂/NiS/NiS/C/NiO/Ni₃N/NiP₁₀; or carbon-based support influence (1D, 2D, 3D, graphene G, graphene oxide GO, MWCNT, etc.) (Table 11) [43,57,61,198,218–220,224].
The supporting role of a variety of carbonaceous hosts for MgH₂ storage properties has been reviewed by Han et al., who underlined the added structural stability, catalytic effect and nanosizing structuring on metal hydrides, and magnesium hydride in particular [110]. Le et al., have recently viewed (2021) the nanoconfinement effects on H₂-storage characteristics of MgH₂ (and LiBH₄) [47]. While conventional pressure-composition-temperature (PCT) data is time-consuming, an easier thermogravimetric analysis (TGA) was introduced by Zhou et al., to reliably determine abs./des. equilibrium temperature, and by using van’t Hoff equation to deduce reaction enthalpies and entropies: ΔHₐbs = 79.8 kJ mol⁻¹, ΔSₐbs = 141.1 J mol⁻¹K⁻¹, and ΔH₈₈ = 76.5 kJ mol⁻¹, ΔS₈₈ = 142.2 J mol⁻¹K⁻¹ for 5 at% VTiCr-catalyzed MgH₂ [34]. Some research produced nano-assemblies MgH₂@G (G = graphene) that was investigated as a material for high-performance Li-ion batteries (GMH composite with 50% MgH₂ has reversible 946 mAhg⁻¹ at 100 mAh⁻¹ after 100 cycles) [103]. The necessity to better predict the behavior of Mg-containing clusters (MgₖHₙₖ) that emerge as the Mg/MgH₂ (m < 2n) system matures, has led to a machine-learning (M-L) interatomic potential evaluation for Mg-H systems [223]. Wang and Huang have shown that the ML approach is able to accurately describe the diffusion coefficients and the Arrhenius type temperature dependence for 128 < t < 427 °C, a temperature range relevant for the Mg/MgH₂ system in both pristine and nanoconfined conditions [223]. The diffusivity of H₂ through Pd NPs deposited on Mg film has revealed that unlike the H₂-impermeable MgO protective native film, the Pd-Mg interface can act as portals for hydrogenation of the Mg film [212].

Table 11. Hydrogen storage features of nanosized MgH₂-based materials.

Additive/Host Used	Other H-Storing Source	H-Storing Nano Composite	wt.% H₂	Obs.	Ref.	
4 carbon aerogels, 15 < Ωₐ < 26 nm,	Mg/MgH₂	MgH₂@C (MgH₂ loading: 17–20 vol%, 24–40 wt.%)	3.06 (Mg₁CX₁); degrades to 1.9 (Mg₂CX₁, 4th cycle, stable);	Mg(C₁H₂)n(s) + 2H₂(g)¹	[53]	
area 800 < Sₐ < 2100 m²/g,				MgH₂(s) + 2C₁H₄(g)		
and total pore volume, 1.3 < Vₐ < 2.5 cm³/g				5 cycles des./abs. at 355 °C, 15 h (vacuum/des., 50 bar H₂/abs.)	[53]	
Mg-B	MgB/MgH₂/Mg₂H₂/	Mg-B (MgBₓ twenty)	N/A (abs., 280 °C, 700 bar H₂, MgBₓ twenty); N/A (abs., 380 °C, 700 bar H₂, MgBₓ two);	nanoscale Mg-B material (MgBₓ twenty) made by surfactant ball milling MgB₂ in a mixture of heptane, oleic acid, and oleylamine	[55]	
core-shell CoNi@C		Mg₂H₂-8 wt.% CoNi@C	5.83 (275 °C, 1800 s); 6.17 (300 °C, 1800 s); 6 (150 °C, 200 s)	173 °C dehydrogenation onset for MgH₂; 8 wt.% CoNi@C. Excellent thermal conductivity of the nanocomposite due to C-shell. E₂₉₈₉₈ = 78.5kJ mol⁻¹.	[65]	
TiMn₂	Mg/MgH₂	MgH₂/10 wt.% TiMn₂	5.1 (reversible, 225 °C, 100 s, 10 bar H₂/abs.; 400 s, 0.2 bar H₂/des.)	cold pressing technique; potential for PEM fuel cell applications. E₂₉₈₉₈ = 82.9 kJ mol⁻¹; E₈₈₉₈ = 19.3 k J mol⁻¹; 414 cycles within 600 h continuously without degradations (hydrogen flow at an average rate of 150 mL/min)	[77]	
Ni	NiₓBₙ intermediate	Ni-doped-2LiBH₄ =	0.47 (0.48 theoretical)	ball milling 2LiBH₄-MgH₂-Ni/C (x = 0, 5, 10, 15). Heterogeneous nucleation of MgNiₓBₙ. X-ray absorption near-edge structure (XRNES) used to probe intermediate NiₓBₙ 3LiBH₄ + 4Ni = 3LiH + NiₓBₙ + 4.5H₂	[76]	
confirmed by XRNES		MgH₂ in graphene				
CoS nano-boxes scaffold	Mg/MgH₂; MgS-catalytic effect	MgH₂@CoS-NBs	3.17 (100 °C); 3.37 (400 °C)	hydriding and dehydriding enthalpies (~65 ± 1.1 and 68.1 ± 1.4 kJ mol⁻¹ H₂); hydriding and dehydriding (57.4 ± 2.2 and 120.8 ± 3.2 kJ mol⁻¹ H₂)	[80]	
Additive/Host Used	Other H-Storing Source	H-Storing Nanocomposite	wt.% H₂	Obs.	Ref.	
-------------------	------------------------	-------------------------	---------	------	------	
Ni- or N-doped C scaffold: xNi-CMK-3 (x = 1 and 5 wt.%) and N-CMK-3	Ni	MgH₂@xNi-CMK-3, MgH₂@N-CMK-3	7.5 (MgH₂@xNi-CMK-3); 6.5 (MgH₂@N-CMK-3)	Hydrogenation is faster at 300 °C, MgH₂@SN-CN=CMK-3, MgH₂@1Ni-CMK-3 and MgH₂@N-CMK-3 absorb 6 wt.% H₂ in 10 min (6.5 wt.%, 2 h). Enhanced kinetics, Ea: MgH₂@CMK-3 (125.3 ± 2.1 kJ mol⁻¹), MgH₂@Ni-CMK-3 (116.2 ± 1.8 kJ mol⁻¹), MgH₂@1Ni-CMK-3 (109.2 ± 1.3 kJ mol⁻¹), MgH₂@SN-CN=CMK-3 (107.6 ± 1.2 kJ mol⁻¹).	[92]	
Mg TiS₂@C	TiS₂	Mg-TiS₂@C	4.5 (des., 60 min, 300 °C); 5.5 (abs., 25 min, 250 °C)	TiC₂-decorated Mg nanoparticles (NPs) in 2-3 nm carbon shells through a reactive gas evaporation method. MgTiS₂TiC₂@C best results. Stable after 10 hydrogenation/dehydrogenation cycles at 250/300 °C.	[94]	
Monodispersed single-crystal-like TiO₂ with amorphous carbon	-	MgO@TiO₂	6.5 (des. 275 °C, 10 min); 6.5 (abs. 200 °C, 5 min)	reductions in hydrogen desorption temperature (163.5 °C) and Ea (69.2 kJ mol⁻¹). The sample can be fully rehydrogenated with a reversible capacity of 6.5 wt.% at 200 °C within 5 min.	[95]	
Graphene nanosheet (GN)	-	MgH₂@GN-40wt.%	4.5 (reversible, 6 cycles, 300 °C)	Eₘ = 80.8 kJ mol⁻¹ (des., 0.01 atm H₂); MgH₂ size tunable by adjusting MgH₂/G wt. ratio before hydrogenation	[96]	
nickel/nitrogen-doped carbon spheres	Ni/Mg₂NiH₄	MgH₂-Ni@NCS	4.3 (des.), 5.7 (abs.) in 8 min, 350 °C; 4.2 (abs., 60 min, 100 °C)	high-energy ball milling process; negligible degradation after 10 cycles. In situ formed Mg₂NiH₄ induced dehydrogenation of MgH₂ and prevented Mg agglomeration.	[102]	
AlH₃@CNT	AlH₃	MgH₂/AlH₃@CNT	8.20 (des., 1 h, 200 °C); 5.61 (abs., 0.16 h, 250 °C)	CNFs: high specific surface area (550 m² g⁻¹), small diameter (6-8 nm), afford 60-80 nm crystal size nanocomposite MgH₂/AlH₃@CNT nanoparticles, releases H₂ at ~71 °C.	[109]	
Graphene Nanosheet GNS	-	MgH₂ –10 wt.% GNS	5.1 (des., 20 min, 325 °C); 5.2 (abs., 10 min, 290 °C)	well-dispersed Mg₂H₆ nanoparticles (~3 nm), confinement effect of graphene	[115]	
ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres	Mg₃Ni/Mg₂NiH₄	Ni loading up to 90 wt.% in composite catalyst; MgH₂-5 wt.% (90 wt.% Ni)	6.4 (reversible); 6.2 (des., 30 min, 250 °C); abs., 250 s, 150 °C	Des. onset (190 °C) and des. peak (242 °C). Reversible capacity of 6.4 wt.% achieves after 50 cycles at a moderate cycle regime.	[118]	
Graphene oxide (GO), reduced graphene oxide (rGO)	-	MgH₂@GO, MgH₂@rGO (rGO50, rGO100, and rGO200)	6.25 (200 °C, 15 bar H₂, MgH₂@GO)	role of graphene defects; rGO is detrimental, as Ea is lower on defected GO. MgH₂@rGO disturbed diffusion pathway of hydrogen atoms caused by the coalesced morphology	[121]	
Reduced graphene oxide (rGO)	Mg/MgH₂	Mg/rGO	6.2 (des., 2 h, Mg2Ti6@6)	preferential orientation of Mg/rGO nanocomposites was investigated: Mg growth on (0001) and (2210) planes of rGO. Mg2Ti6 stabilizes hydrogen absorption thermodynamics	[122]	
1D Carbon Matrix, fishbone shaped (CNF)	-	Ultrathin Mg Nanosheet @ 1D-C	6 (abs., 1, no catalyst, 200–250 °C); 6 (des, 1.5 h, 200–325 °C)	90% of the total capacity is absorbed within 1 h at all temperatures and desorbed within 1.5 h	[124]	
AC activated carbon	LiBH₄	2LiBH₄-MgH₂@AC (LB-MH-AC)	5.7 (theoretical); 2.56–4.55 (350 °C, abs. under 30–40 bar H₂)	melt infiltration of hydride in AC (400 °C, 40–50 bar H₂, 10 h) improvement of thermal conductivity of materials and temperature control system could alleviate wt.% decrease	[130]	
ZrC₁₋doped carbon aerogel scaffold (CAS)	2LiBH₄-MgH₂	2LiBH₄-MgH₂@ZrC₁₋CAS (x wt. % (x = 50, 67, 75)	5.4 (5.7, theoretical, x = 50); 3.4 (5.8 th., x = 67); 2.5 (2.9 th., x = 75) at 301–337 °C	melt infiltration technique. Up to 97 and 93% of theoretical H₂ capacity released and reproduced, respectively. 2LiBH₄ + MgH₂ = 2LiH + MgBH₄ + 4H₂ (350–500 °C)	[134]	
Additive/Host Used	Other H-Storing Source	H-Storing Nanocomposite	wt.% H₂	Obs.	Ref.	
--------------------	------------------------	------------------------	--------	-----	-----	
3-D activated carbon with TM dispersion (Co, Fe, and Ni)	TM/(TM)H₄	Mg₄H₂@3D-AC	6.6 (abs., 5 min, 180 °C, for Ni-MHCH-5); 6.55 (des., 75 min, 180 °C)	TEA (HOC)₃(CH₃)₃(N₃)/NH₄H₄ reduction in Ba,Mg-infiltrated 3D-C. MgH₂ embedded in 3D-AC with periodic synchronization of transition metals (MHCH). Excellent long-term cycling stability over ~435 h for MHCH-5. Ni more efficient than Co or Fe.	[137]	
nano-TiO₂@C	Mg/MgH₂	MgH₂-10 wt.% TiO₂@C	6.5 (7 min, 300 °C, des.); 6.6 (10 min, 140 °C, abs.)	10 wt.% nanocrystalline TiO₂@C weakens the Mg-H bond, thus lowering desorption temperature.	[146]	
Nb₂O₃@MOF	Nb₂O₃@MOF	7 wt.% Nb₂O₃@ MOF doped MgH₂	6.2 (6.3 min, 250 °C), 2.6 min, 275 °C)	Desorption onset: 181.9 °C. Eₐ = 25.57 ± 4.16 kJ mol⁻¹ for ab- desorption, respectively) and kinetics (4.9 wt.% (6 min, 175 °C); 6.5 wt.% (6 min, 150 °C); Eₐ = 51.38 ± 1.09 kJ mol⁻¹ for ab-desorption, respectively) of Mg/Nb₂H₆ in the MgH₂/Nb₂O₃-MOF composite. The Ni-MOF scaffold acts as “aggregation blocker”. Shortened H diffusion distance results in the ultrafast H diffusion rate in the nanosized Mg/Nb₂H₆, (C₁H₃)₂Mg + 2H₂ → MgH₂ + 2C₁H₃(g) 2C₁H₃(g) + Ni(Ni-MOF) + 4H₂ → Mg₂NiH₆ + 4C₁H₃(g) Mg₂NiH₆ = Mg₂Ni + 2H₂(g)	[147]	
Ni-MOF (7.58 nm, 0.46 cm²·g⁻¹)	Mg₉Ni/Mg₁NiH₄	MgH₂@Ni-MOF	4.03 abs-3.94 des (325 °C); 4.02 abs-3.91 des (350 °C); 3.95 abs = 3.87 des (375 °C). The Ni-MOF contribution (physisorption): 0.91 (325 °C), 0.85 (350 °C), 0.97 (375 °C), 0.88 (300 °C).	The abs/des plateau pressure: 4.63 atm/3.45 atm (325 °C), thermodynamics (~65.7 ± 2.1 and 69.7 ± 2.7 kJ mol⁻¹ H₂ for ab- desorption, respectively) and kinetics (41.5 ± 3.7 and 144.7 ± 7.8 kJ mol⁻¹ H₂ for ab-desorption, respectively) of Mg/Nb₂H₆ in the MgH₂/Ni-MOF composite. The Ni-MOF scaffold acts as “aggregation blocker”. Shortened H diffusion distance results in the ultrafast H diffusion rate in the nanosized Mg/Nb₂H₆, (C₁H₃)₂Mg + 2H₂ → MgH₂ + 2C₁H₃(g) 2C₁H₃(g) + Ni(Ni-MOF) + 4H₂ → Mg₂NiH₆ + 4C₁H₃(g) Mg₂NiH₆ = Mg₂Ni + 2H₂(g)	[149]	
(NiCo)MoO₃ nanorods	Mo/Mg₉Ni/Mg₁NiH₄	MgH₂-10 wt.% Mo/Mg₉Ni/Mg₁NiH₄	7.41 (319.4 °C, MgH₂); 6.55 (243.3 °C, MgH₂); 6.49 (277.6 °C, MgH₂); 6.49 (277.6 °C, Ni-MoO₃); 6.49 (277.6 °C, Co-MoO₃) from TPD up to 400 °C, 3°/min. 6 (des., MgH₂-NiMoO₃, 10min, 300 °C) 5.5 (abs., MgH₂-NiMoO₃, 10 min, 300 °C, 31.6 atm H₂)	Ni/CoMoO₃ were doped into MgH₂ ball milling method at 400 rpm with a ball-to-powder ratio of 60:1 for 6 h. Superior promoting effect of NiMoO₃ over CoMoO₃; NiMoO₃ reacts with MgH₂ during the first dehydrogenation to in situ form Mg₉Ni and MoO₃. Mg₉Ni/Mg₁NiH₆ mutual transformation upon hydrogen release/uptake is the well-known ‘hydrogen pump’. Mo²⁺ played for the hydrogen storage in MgH₂: (i) it accelerates the hydrogen desorption of MgH₂ through weakening the Mg-H bonding; (ii) it facilitates the mutual ‘Mg₉Ni/Mg₁NiH₆’ mutual transformation. No tdn effect: ΔHabs/ΔHdes of ~71.14/79.25 close to that of pure MgH₂: −72.42/74.08 kJ mol⁻¹	[158]	
Co	Mg₉CoH₄ and Mg₉Co₂H₁₁	2MgH₂-Co	4.43 (pellet); 2.32 (powder)	high pressure compacting in pellet doubles H₂ storage	[168]	
SeH₂, YH₂, TiH₂, ZrH₂, VH and NbH	Mg/MgH₂	0.05 MgH₂-0.05 (TMH₄)	≥5 wt.%	(TMH₄) crystal size of ~10 nm, obtained by mechanochemistry (RMB, reactive ball milling) MgH₂+TM (Sc, Y, Ti, Zr, V, Nb) under H₂ pressure. Early Transition Metals (ETM) chosen by the known stability of their respective hydrides under normal conditions.	[169]	
Biphasic MgH₂/TiH₂ within Mg₉Ti-H NP	Mg/MgH₂	Mg-x at.%Ti-H NPs	4 (x = 7); 2.2 (x = 35); 0.8 (x = 63) abs, full at 150 °C	Equilibrium data for H₂ ab- desorption by Mg/MgH₂ at low 100–150 °C range. Fast H₂ release from MgH₂ at 100–150 °C (no Pd catalyst). The free energy change at the TH₂/Mg interface induces MgH₂ destabilization. Hydrogen uptake (100 s) and release (1000 s, 0.1 . . . 0.2 wt.%/min) for Mg-x at.%Ti-H NPs.	[170]	
Table 11. Cont.

Additive/Host Used	Other H-Storing Source	H-Storing Nanocomposite	wt.% H₂	Obs.	Ref.	
TiO₂ (anatase)	TiO₂/Mg	MgH₂-TiO₂	2.70 (abs, 500 s, 100 °C); 4.5 (abs, 100 °C, 120 min); 5.3 (abs., 44 s, 200 °C) for MgH₂; 5 wt.% TiO₂	Influence of TiO₂ facets [001] and [101]; MgH₂-TiO₂[001] superior properties. E_{a,des} = 76.1 ± 1.6 kJ mol⁻¹ for MgH₂-TiO₂	[172]	
Multilayer Ti₃C₂ (ML-Ti₃C₂)	Ti₃C₂	MgH₂ + x wt.% ML-Ti₃C₂, x = 4, 6, 8, 10	6.45 (des.; 240 °C, 10 min.) 1.95-3.63 (des.; 140 °C, in 10-60 min). 6.47 (abs.; 150 °C), 4.20 (abs., 75 °C)	Ti₃C₂ was introduced into MgH₂ by ball milling. ML-Ti₃C₂ prepared in-house, by chemical exfoliation.	[177]	
Ti₅C₂	Mg/MgH₂	MgH₂-x wt.% Ti₅C₂, x = 0, 1, 3, 5 and 7	6.2 (x = 5; 1 min, 300 °C; des.); 6.1 (x = 5; 30 s, 150 °C)	MgH₂-x Ti₅C₂ shows excellent dehydrogenation/hydrogenation kinetics (charging/discharging in <1 min)	[193]	
Pd	Pd/PdHₓ; Mg₆Pd/Pd	Mg₆Pd: γ-MgH₂, PdHₓ(1:1)	3 (abs, 50 °C, 2 h)	Mg NPs (40-70 nm). Eₐ,des = 93.8 kJ/mol at 216.8 °C; Eₐ,abs = 44.3 kJ/mol at 50 °C. ΔH₁₀₀ ≈ 72.7 kJ/mol; ΔH₂₀₀ ≈ 71.5 kJ/mol. Pd-Mg alloy importance.	[196]	
FeCo nanosheets	FeCo (50nm)	FeCo-catalyzed MgH₂	6 (des., 9.5 min, 300 °C); 6.7 (abs, 1 min, 300 °C); 3.5 (abs, 10 min, 150 °C)	Eₐ,des = 56.5 ± 4.7 kJ mol⁻¹ (60 kJ mol⁻¹ reduction from pristine MgH₂); Eₐ,abs = 53.4 ± 1.0 kJ mol⁻¹	[201]	
flake Ni nano-catalyst composite	Mg₂Ni/Mg₀.₅NiH₄	MgH₂ + x wt.% Ni	4.6 (125 °C, 20 min, 29.6 atm H₂)	MgH₂-Ni composite shows excellent catalytic efficiency.	Eₐ,des = 71 kJ mol⁻¹; Eₐ,abs = 28.03 kJ mol⁻¹	[202]
TM (Co, Ni) nanoparticles wrapped with carbon	Mg₂Ni/Mg₀.₅NiH₄	MgH₂-6%Ni/C	6.1 des. at 250 °C; 5.0 (abs., 100 °C, 20 s)	dehydrogenation decomposition 275.7 °C. Absorption/desorption stability with respect to both capacity (up to 6.5 wt.%) and kinetics (within 8 min at 275 °C for dehydrogenation and within 10 s at 200 °C for rehydrogenation)	[204]	
TiH₂	-	MgH₂-TiH₂	6.45 (DFT)	MgH₂/TiH₂ interface is thermodynamically stable, and promotes the generation and diffusion of hydrogen.	[205]	
MgCo₂Ni₁.₅	Mg₂NiH₄, MgCo₁Co-Co C catalysts (from MgCo₁.₅Ni₁.₅)	Mg/MgH₂, MgCo₂Ni₁.₅	6.1-6 (abs, 5 min, 350 °C, 1st cycle-10th cycle); 5.9-5.8 (des, 1st cycle-10th cycle)	Ball-milling and hydriding combustion method. Desorbs H₂ at 216 °C (onset). Eₐ,des = 39.6 kJ mol⁻¹	[208]	
MgCNi₁₀	MgCN₁₀	MgH₂-MgCN₁₀	4.42 (abs, 150 °C, 1200s)	Mg/MgCN₁₀ composite shows excellent cycle stability with a 98% retention rate.	[209]	
Co-Ni Nanocatalysts	Mg/MgH₂	0.95MgH₂₋₀.05Co₄Ni₁₀(HOH); Ni₁₀G-doped MgH₂; Co₁₀G-doped MgH₂	6.5 (des, Ni₁₀G-doped MgH₂, 45 min, 26 °C, or 25 min, 280 °C)	Ball milling MgH₂ and Co-Ni, 5 bar H₂, 2 h, 400 rpm, 20:1 BPR. Co-subst. of Ni changes shape of catalyst (sphere-to-plate) and decreases catalytic efficiency.	[210]	
Mg-Ti-H nanoparticles	Mg/MgH₂	Mgₓ Ti-H NPs (x = 14 . . . 63 at.%)	4.2 (22 at.%Ti, at 100 . . . 150 °C)	Gas phase condensation of mixed Mg-Ti vapors under H₂. Eₐ,abs = 43 . . . 52 kJ/mol, the rate constant (150 °C) increases from 2.7×10⁻² s⁻¹ to 9.2×10⁻² s⁻¹ with increasing [Ti]. Hydrogen desorption: sequence of surface-limited (Eₐ = 32 kJ/mol) and contracting-volume kinetics, except at the highest Ti content where nucleation and growth is observed: kₐ,des (at 150 °C) increases from 0.5–10⁻² s⁻¹ to 1.2×10⁻² s⁻¹ with [Ti]. The activation energy for H₂ recombination is remarkably small (~32 kJ/mol).	[211]	
Jia et al., have utilized a Ni- or N-doped carbon scaffold for MgH₂ nanoconfine-
ment [92]. The carbonaceous support features high surface area, pore volume and narrow
PSD (pore size distribution) and constitutes a C-replica of the mesoporous 2D-silica, SBA-15.
Two Ni-loadings have been investigated: MgH₂@xNi-CMK-3 (x = 1 and 5). Expectedly, the
higher Ni-containing sample MgH₂@5wt.%Ni-CMK-3 showed 7.5 wt.% storing capacity,
whereas the MgH₂@1wt.%Ni-CMK-3 and MgH₂@N-CMK-3 showed 6.5 wt.% hydrogen
(Figure 6). The behavior of the nanocomposites has been investigated at 200, 250, 280 and
300 °C, and showed marked improvement scaling with temperature; at 300 °C, all three
nanocomposites absorb 6 wt.% in 10 min (6.5 wt.% in 2h). The samples were degassed for
2 h at 350 °C prior to conducting absorption measurements (Figure 6) [92].

![Figure 6](image_url)

Figure 6. Hydrogenation kinetics of MgH₂@CMK-3, MgH₂@N-CMK-3 and MgH₂@xNi-CMK-3
(x = 1 and 5) at 300 °C (a) and 200 °C (b) and under 19.74 atm. H₂ backpressure. Hydrogen desorption
profiles of the four investigated samples at 300 °C (c), 280 °C (d), 250 °C (vacuum, p < 0.01 atm)
(e). Dehydrogenation of nanocomposites within two hours at 300 °C and corresponding desorption
activation energies. Eₐ,des (f). Reprinted/adapted with permission from Ref. [92]. 2017, Elsevier.
The enhancement in kinetics was obvious; van’t Hoff plot analysis revealed systematic decrease of the activation energy barrier in the order: \(\text{MgH}_2@\text{CMK-3} (125.3 \pm 2.1 \text{ kJ mol}^{-1}) > \text{MgH}_2@\text{N-CMK-3} (116.2 \pm 1.8 \text{ kJ mol}^{-1}) > \text{MgH}_2@\text{Ni-CMK-3} (109.2 \pm 1.3 \text{ kJ mol}^{-1}) > \text{MgH}_2@\text{Sn-CMK-3} (107.6 \pm 1.2 \text{ kJ mol}^{-1}) \) \[92\].

Zhang et al., have dispersed TM-oxides (\(\text{TiO}_2 \) in particular) on amorphous carbon to achieve excellent, reversible hydrogen storage capacity, releasing in 10 min. at 275 °C, 6.5 wt.% hydrogen (85.5% that of pristine \(\text{MgH}_2 \)) (Figure 7) \[95\]. Notably, the activation energies for desorption \((E_{\text{a,des}}) \) and absorption \((E_{\text{a,abs}}) \) have been considerably reduced compared to bulk magnesium hydride (Figure 7a). In a multi-fold enhancement strategy, the \(\text{MgH}_2 \) was first dispersed on carbon \((\text{MgH}_2 + \text{C})\), which showed modest improvements (<1 wt.% \(\text{H}_2 \)) over \(\text{MgH}_2 \) bulk with no dehydrogenation in the same timespan (Figure 7c). \(\text{TiO}_2 \) was used as additive for \(\text{MgH}_2 \) to yield composites of \(\text{MgH}_2 + \text{TiO}_2 \) NPs, which surprisingly released ~6 wt.% \(\text{H}_2 \) in 10 min \[95\]. Driven by these enhancements, nanocomposites of the type \(\text{MgH}_2 + \text{TiO}_2 \) SCNPs/AC were synthesized, which further improved hydrogen release/uptake: even at 50 °C, over the course of 20 min, ~1.5 wt.% \(\text{H}_2 \) is released, whereas at 125 °C (~4.8 wt.%) and at 200 °C (6.5 wt.%) the kinetics is sped up considerably (Figure 7c–e). The rehydrogenation occurs within 5 min at 200 °C, and full recovery of the hydrogen storage capacity is achieved (6.5 wt.%). In addition, no appreciable hydrogen storage loss was recorded up to the 10th cycle (Figure 7f) \[95\].

Using an FeCo nanocatalyst (mean size of 50 nm), Yang et al., synthesized composites \(\text{MgH}_2 + \text{nano-FeCo} \) able to recharge to 6.7 wt.% hydrogen in one minute at 300 °C, and could desorb 6 wt.% \(\text{H}_2 \) (9.5 min, 300 °C) (Figure 8) \[201\]. In fact, even treatment under \(\text{H}_2 \) backpressure at 150 °C produced 3.5 wt.% absorption in 10 min (Figure 8b). This highlights the importance of catalyst chosen, but also its morphology (nanosheets in the

![Figure 7](image-url)

Figure 7. Schematic mechanistic approach in catalytic behavior of \(\text{MgH}_2-\text{TiO}_2 \) SCNPs/AC (a). DSC (b) of the investigated samples: ball-milled \(\text{MgH}_2 \), \(\text{MgH}_2-\text{C}, \text{MgH}_2-\text{TiO}_2 \) NPs and \(\text{MgH}_2-\text{TiO}_2 \) SCNPs/AC. Isothermal desorption curves of the four investigated samples at 300 °C (c); Isothermal desorption curves of \(\text{MgH}_2-\text{TiO}_2 \) SCNPs/AC and \(\text{MgH}_2-\text{TiO}_2 \) NPs at various temperatures in the range 50 … 300 °C (d,e); confirmation of reversible hydrogen storage capacity of \(\text{MgH}_2-\text{TiO}_2 \) SCNPs/AC at 300 °C recharging pressure of 50 bar \(\text{H}_2 \) (f). Reprinted/adapted with permission from Ref. \[95\]. 2019, Elsevier.
case of FeCo-nano). Plotting the Arrhenius equation also yielded the apparent activation energies: \(E_{\text{a,des}} = 65.3 \pm 4.7 \text{ kJ mol}^{-1}\) (60 kJ mol\(^{-1}\) reduction from pristine MgH\(_2\)), and the absorption energy \(E_{\text{a,abs}} = 53.4 \pm 1.0 \text{ kJ mol}^{-1}\) (Figure 8d). Gratifyingly, the FeCo-catalyzed magnesium hydride composite was able to rehydrogenate fully and was tracked over the course of 10 hydrogen release/uptake cycles (Figure 8h) [201].

The thermodynamic predictions that smaller size NPs will show the most important destabilization, Zhang et al., have produced ultrafine MgH\(_2\) that was able to release and recharge hydrogen under ambient temperature, with a very high hydrogen storage capacity of 6.7 wt.% (Figure 9) [222]. This capacity was checked over 50 cycles, and showed virtually the same high-capacity behavior (Figure 9). The conditions employed for reversible behavior were 360 min at rt (6.7 wt.%), or 60 min at 85 °C (6.7 wt.%), under 30 bar H\(_2\). This unexpectedly high storage capacity (65.6 g H\(_2\)/L) surpasses even DOE’s requirement (50 gH\(_2\)/L), and was possible solely on account of well-designed, size-restriction of MgH\(_2\) to nanoscale [222].

Using a nanoflake Ni catalyst, Yang et al., have synthesized MgH\(_2\) + 5 wt.% Ni, composites able to store 6.7 wt.% hydrogen (des., 300 °C, in 3 min) (Figure 10). The absorption was also very fast, achieving 4.6 wt.% at 125 °C in 20 min, under 29.6 atm H\(_2\) [202]. The results also translate into much lowered activation energies (Arrhenius plot): \(E_{\text{a,des}} = 71 \text{ kJ mol}^{-1}\); \(E_{\text{a,abs}} = 28.03 \text{ kJ mol}^{-1}\).
which is an intermetallic well-known in the Mg-Ni systems, and which absorbs hydrogen rapidly.

These results have been explained by means of the intermediate Mg2Ni (11) and MgNiHx (12).

Using a nanoflake Ni catalyst, Yang et al., have synthesized MgH2 with and without nano-FeCo (13). Reprinted/adapted with permission from Ref. [220]. 2018, Elsevier B.V.

Not only was the nanocomposite MgH2 stable thanks to the protective carbon shell (13). To the observed enhanced kinetics and improved thermodynamic behavior contribute decisively the transition metal dispersed into the 3D carbon: Ni>Co>Fe. Running in a continuous regime, the nanocomposite was also very fast, achieving 4.6 wt.% at 125 °C in 20 min, under 29.6 atm H2. These results have been explained by means of the intermediate Mg2NiH4 (10) and MgNiHx (9). Reprinted/adapted with permission from Ref. [201]. 2019, Royal Society of Chemistry.

These results have been explained by means of the intermediate Mg2Ni intermediate, which is an intermetallic well-known in the Mg-Ni systems, and which absorbs...
rapidly \(\text{H}_2 \) to form \(\text{Mg}_2\text{NiH}_4 \). This functions as an effective “hydrogen pump” (Figure 10a) (Equation (10)) [202].

\[
\text{Mg}_2\text{Ni} + 2\text{H}_2 \xrightarrow{\Delta} \text{Mg}_2\text{NiH}_4
\]

(10)

Decomposition of \(\text{nBu}_2\text{Mg} \) typically used as an organometallic precursor to Mg/MgH\(_2\) NPs can follow two different steps, depending on the reaction temperature (Equations (11) and (12)).

\[
(\text{C}_4\text{H}_9)_2\text{Mg} \xrightarrow{160-265^\circ\text{C}} (2 - x)\text{C}_4\text{H}_8(\text{g}) + x (\text{C}_4\text{H}_8)_{\text{surf}}\text{MgH}_2(\text{s})
\]

(11)

\[
(\text{C}_4\text{H}_8)_{\text{surf}}\text{MgH}_2(\text{s}) \xrightarrow{265-400^\circ\text{C}} \text{C}_4\text{H}_8(\text{g}) + \text{MgH}_2(\text{s}) \xrightarrow{\Delta} \text{Mg}(\text{s}) + \text{H}_2(\text{s})
\]

(12)

However small it might be, nanosized matter in general is also more reactive towards various gases and substrates, and Mg/MgH\(_2\) coupled system is no exception. Previous examples have overcome this downside by either pressing the nano-powders into pellets, or capping them with other reagents. There are however many reports where MgH\(_2\) has been introduced in the porosity of a carbonaceous host, such as the 3D activated carbon utilized by Shinde et al., to achieve a reversible hydrogen storage of 6.63 wt.% (Figure 11) [137]. Not only was the nanocomposite MgH\(_2\)@3D-C storing hydrogen under relatively mild conditions 6.63 wt.% (five minutes, 180 °C), but the desorption was likewise fast (6.55 wt.%, 75 min, 180 °C), and perhaps more importantly, the nanoconfined MgH\(_2\) was air-stable thanks to the protective carbon shell [137]. To the observed enhanced kinetics and improved thermodynamic behavior contribute decisively the transition metal dispersed into the 3D carbon: Ni>Co >Fe. Running in a continuous regime, the nanocomposite was able to cycle for about 435 h (more than 18 days), without a palpable decrease in the hydrogenation storage capacity (Figure 11) [137].

While typically reduction in \(\text{nBu}_2\text{Mg} \) infiltrated into a nanoporous host to afford MgH\(_2\) NPs is carried out in heterogeneous conditions (under \(\text{H}_2 \) pressure), Shinde used a mixed reductant system: TEA ((HOCH\(_2\)CH\(_2\))\(_3\)N)/NH\(_2\)NH\(_2\) hydrazine to reduce Mg(II) to Mg(0) [137]. The synthetic procedure is nicely followed in Figure 11, and in this case, both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) could be used for characterization, since the electron beam no longer hits directly the MgH\(_2\) NPs; thus, the risk of in-situ decomposition during data acquisition is minimized (Figure 11). The hydrogen storage capacity exceeds 6 wt.% in case of Ni-NPs deposited in the 3D-AC (MHCH-5), confirming the beneficial and synergistic role of Ni when used in conjunction with MgH\(_2\). The plausible intermediate Mg\(_2\)Ni forms the coupled system Mg\(_2\)Ni/Mg\(_2\)NiH\(_4\) during hydrogenation, and this can be held responsible for the superior cycling behavior in case of MgH\(_2\)@3D-AC (MHCH)-5(Ni), whereas this type of intermetallic is not common for Co or Fe [137].

The self-assembled MgH\(_2\) NPs are well embedded into the carbonaceous host, which plays a critical role in the overall performance of MHCH-5. It is implied, based on the thermal conductivity data (Figure 11h), that the carbon shell is important. The high thermal conductivity (70 W/mK), many times higher than that of MgH\(_2\) NPs themselves, induces a lower temperature gradient in the sample and a high heat transfer coefficient, thus contributing to the exemplary behavior of the sample during hydrogenation cycling [137].
Figure 11. (a) Schematics displaying the self-assembled MgH$_2$ on three-dimensional metal interacted carbon. (b) SEM image of prepared metal-interacted 3-D carbon; (c) SEM, (d) TEM images of the MHCH-5; (e) dehydrogenation of the as-synthesized MHCH samples at 180 °C in comparison to ball-milled MgH$_2$ and MgH$_2$/C; (f) Isothermal hydrogenation; (g) Hydrogen absorption of the MHCH-5 for different temperatures—the inset (g) shows the hydrogen absorption property of the MHCH-5 at 25 °C, over a long time period; hydrogenation and dehydrogenation were performed under hydrogen pressures of 10 bar and 0.01 bar, respectively; (h) Thermal conductivity variation in MHCH-5, MgH$_2$, and ball-milled MgH$_2$/C for ambient temperature and 180 °C; (i) The growth mechanism of MgH$_2$ in MHCH samples correlating with a Johnson–Mehl–Avrami model. (j) Reversible hydrogen (under 10 bar H$_2$ pressure) and dehydrogenation (under 0.01 bar H$_2$ pressure) performance of the MHCH-5 at 180 °C. Reprinted/adapted with permission from Ref. [137]. 2017, The Royal Society of Chemistry; RSC Pub.
6.3. AlH$_3$

Alane (AlH$_3$) is a metastable hydride, stabilized by the Al proneness to combine with oxygen and form a µ layer of Al$_2$O$_3$ ensuring chemical passivation. In bulk, AlH$_3$ decomposes at 100–150 °C and the kinetics are reasonably fast, but the high H$_2$ pressure required to achieve reversibility (10 GPa, 600 °C, 24 h; 10 GPa at 25 °C or 6 GPa at 300–380 °C by other accounts are all very high pressures) remains a hard obstacle to overcome (Table 12). Even so, mitigation of this drawback has been attempted by means of nanoconfinement [40,44,51,109,125,203,206,216,226–233]. Some results are pure theoretical results concerning the catalytic activity of nano-AlH$_3$ [229] in the decomposition of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane, with simulated evolution of Al-clusters during the reaction [228], or decomposition of CH$_3$NO$_2$/nano-AlH$_3$ composite [232].

Table 12. Hydrogen storage features of nanosized AlH$_3$ materials.

Additive Used	Other H-Storing Source	H-Storing Composite	wt.% H$_2$ Obs.	Ref.
Al-doping (925 ppm), AC	AC@MOF (activated carbon@MOF)	Al@AC-MIL-101	0.55 (MIL-101) . . . 1.74 (Al@AC-MIL-101) Al/α-AlH$_3$ hydrogenation release/uptake cycles ran at 298 K and pressure < 100 bar H$_2$	[40]
HSAG (high surface area graphite)	-	AlH$_3$@HSAG	0.25 (14.4 wt.%AlH$_3$ by ICP-OES data, and only 15% of Al behaves reversibly) H$_2$ uptake commences at 60 . . . 270 °C (mean 150 °C, peak 165 °C) and 60 bar H$_2$ pressure	[44]
CTF-bipyridine (CTF-bipy)	AlH$_3$@CTF-bipyridine; AlH$_3$@CTF-bipy—no reversibility (bipyridyl group was compulsory)	-	0.65, 0.58, 0.57 (2nd, 3rd, 4th cycles) H$_2$ desorption between 95 . . . 154 °C rapidly (completes at 250 °C) from AlH$_3$@CTF-bipyridine composite. Reversible at 700 bar H$_2$ and 60 °C (incomplete, 24 h).	[51]
CNT	MgH$_2$	MgH$_2$/AlH$_3$@CNT	8.2 (1 h, 200 °C, dehydrogenation); 5.61 (0.16 h, 250 °C) CNT prevent aggregation and enhance MgH$_2$-ALH$_3$ interaction	[109]
TiF$_3$	-	α-AlH$_3$/LiCl-TiF$_3$ (3:1:0.1 molar ratio)	9.92 (80–160 °C, 750 s) α-AlH$_3$ obtained by milling of LiH and AlCl$_3$.	[203]
Li$_3$N	Li$_3$N	Li$_3$N@AlH$_3$	8.24 (100 °C); 6.18 (90 °C) and 5.75 (80 °C) 10 wt.% doping of AlH$_3$ with Li$_3$N leads to ~8.0 wt.% H$_2$ release at 100 °C. Nanoscale dispersion of the two hexagonal phases (AlH$_3$, Li$_3$N) by ball milling, $E_\text{h} = 100.4$ kJ mol$^{-1}$ (0.9 AlH$_3$:0.1 Li$_3$N)	[206]
-	-	AlH$_3$	10.0 (140 °C, 3600 s) neat AlH$_3$ (commercial)	[227]
Al(OH)$_3$	-	core-shell α-AlH$_3$@Al(OH)$_3$	10.0 (140 °C, 1000 s) α-AlH$_3$@Al(OH)$_3$ nanocomposite can be stored in air (7 days)	[227]

The energetic bottleneck in hydrogenation of Al is the high activation barrier of H$_2$ dissociation over the Al surface, therefore catalysts have been employed to lower this barrier by using TM dopants like Sc, V, Ti or Nb [229].

The reaction of LiH and AlCl$_3$ was shown to be greatly sped up by using a 0.1 molar TiF$_3$, when the final product obtained after five hours milling under Ar pressure was a nanocomposite of composition α-AlH$_3$/LiCl-TiF$_3$ [203]. Duan et al., have shown the critical role of TiF3 that acted as a seed crystal for α-AlH$_3$. The pressure was also a crucial factor, as running the reaction under lower gas pressure only led to Al metal formation, without the envisioned hydridic phase (Equation (13)) [203].

$$3 \text{ LiH} + \text{ AlCl}_3 \xrightarrow{\Delta} \text{ 3 LiCl} + \text{ Al} + \frac{3}{2} \text{ H}_2 \uparrow$$ (13)
However, thermodynamic data showed a Gibbs free energy for the expected α-AlH$_3$ formation of $\Delta G = -269$ kJ mol$^{-1}$, therefore thermodynamically possible at 298 K [203]. Furthermore, tracking the reaction by solid-state 27Al NMR spectra has shown the complex behavior of the reactive mixture (Figure 12) (Equation (14)).

$$3\text{LiH} + \text{AlCl}_3 \Rightarrow \text{LiAlCl}_4 + \text{AlH}_x + 2\text{LiCl} \Rightarrow \text{LiAlCl}_4 - x\text{H}_x + 2\text{LiCl} \Rightarrow 3\text{LiCl} + \alpha - \text{AlH}_3 \quad (14)$$

![Figure 12](image1.png)

Figure 12. Solid state 27Al NMR for reactive mixture LiH/AlCl$_3$/TiF$_3$ (3:1:0.1) after ball milling for 0.5 h, one hour and three hours (a); hydrogen desorption curve for final composite α-AlH$_3$/LiCl-TiF$_3$ at temperatures 80 °C, 120 °C, 140 °C and 160 °C (inset shown for α-AlH$_3$/LiCl without TiF$_3$ addition) (b). Reprinted/adapted with permission from Ref. [203]. 2019, Elsevier B.V.

The kinetics are vastly improved, and raising the temperature above 120 °C allows for complete dehydrogenation in roughly 10 min (Figure 12).

After five hours of ball milling under Ar pressure and dehydrogenation at 160 °C for 600 s, the final composite (Figure 13) shows nanosized AlH$_3$ (mean size of α-AlH$_3$ was 45 nm, without traces of agglomerates).

![Figure 13](image2.png)

Figure 13. TEM image of α-AlH$_3$/LiCl-TiF$_3$ after dehydrogenation for 600 s at 160 °C (bright field TEM, (a); ED pattern, (b)). Reprinted/adapted with permission from Ref. [203]. 2019, Elsevier B.V.

The phase composition already shows formation of Al, consistent with the dehydrogenation reaction that had occurred. The report also highlighted the important role of the fluoride additive, as TiF$_3$ reduced E_a of H-desorption to 52.1 kJ/mol [203].

Nanoconfinement of alane in a Cr-based MOF (MIL-101) with Al-doping has led to a nanocomposite able to store and recharge at 298 K (ambient) and 100 bar H$_2$, 17.4 mg
H₂/g (equivalent to 1.74 wt.% H₂) [40]. The introduction of alane inside the MIL-101 pores was made via solvent infiltration from a THF solution of AlH₃. In fact, the pristine MOF MIL-101 (3148 m² g⁻¹, 2.19 cm³ g⁻¹ and 2.5–3 nm pores) was shown to store 0.55 wt.% H₂ under the same conditions. The hydrogen release profile from the investigated samples shows the improvement of nanoconfinement of AlH₃ in MOF pores over the hydrogen release performance (Figure 14) [40].

The gravimetric storage capacity (17.4 mg H₂ g⁻¹ composite) was rather low considering DOE’s goals, due to the inability to increase Al-doping of the framework without crystallinity loss, and the role of AC additive became apparent in order to enhance hydrogen interaction with confined Al NPs [40].

In an attempt to improve upon previous results, Duan switched the nano-host to MWCNT (multi-walled carbon nanotubes) of high pore textural characteristics (550 m² g⁻¹, 6–8 nm diameter) and obtained by ball-milling xMgH₂ + AlH₃ (x = 1–4) nanocomposites MgH₂/AlH₃@CNT of crystal size 40–60 nm that released 8.2 wt.% H₂ at 200 °C (60 min), and recharged to 5.61 wt.% H₂ at 250 °C (10 min) (Figure 15) [109].

Figure 14. Hydrogen adsorption–desorption isotherms for (a) MIL-101; (b) AC-MIL-101; (c) AL@MIL-101; (d) Al@AC-MIL-101-A; (e) Al@AC-MIL-101-B; (f) Al@AC-MIL-101-C at 298K and pressures up to 100 bar H₂ (closed symbols-Adsorption; open symbols: Desorption) (a). AlH₃ introduction into MIL = 101 (b). Reprinted/adapted with permission from Ref. [40]. 2017, Elsevier Inc.

Figure 15. TPD (temperature programmed desorption) of 85%, 90% and 95%-2.5MgH₂/AlH₃/CNTs and 100%-2.5MgH₂/AlH₃ (ball milling, BPR 20:1, 200 rpm, 1 h) (a); dehydrogenation isotherm of 95%-2.5MgH₂/AlH₃/CNTs under 10⁻² Pa pressure custom vacuum system (b); Isothermal rehydrogenation curves of 95%-2.5MgH₂/AlH₃@CNTs at different temperatures under 5 MPa H₂ pressure (c) [109]. Reprinted/adapted with permission from Ref. [109]. 2021, Royal Society of Chemistry.
The Al metal produced in the first dehydrogenation stage of the composite (Figure 16) will react with MgH$_2$ not yet dehydrogenated, to yield an intermetallic phase of Al$_{12}$Mg$_{17}$, which was confirmed by XRD data (Equation (15)).

$$12 \text{Al} + 17\text{MgH}_2 \Rightarrow \text{Al}_{12}\text{Mg}_{17} + 17 \text{H}_2 \uparrow \quad (15)$$

Figure 16. XRD pattern for 95%–2.5MgH$_2$/AlH$_3$/CNTs4 after dehydrogenation at temperatures 200 ... 400 °C (a); Al-tracking throughout the proposed mechanism, based on reaction data from ref. [109] (b) and Kissinger plot for deduction of E_a for hydrogenation of MgH$_2$ and AlH$_3$ (c) [109]. Reprinted/adapted with permission from Ref. [109]. 2021, Royal Society of Chemistry.

The reactions involved in the mechanistic proposal of the authors also allowed computation of the apparent activation energies (by Kissinger plot), which were of 97.3 kJ mol$^{-1}$ for MgH$_2$ and 61.4 kJ mol$^{-1}$ for AlH$_3$ (Figure 16c).

Wang et al., showed the potential of nanosizing by introducing (injection in HSAG of Et$_2$O solution of freshly-made AlH$_3$ from metathesis of LiAlH$_4$ and AlCl$_3$) [44]. Considering the 14 wt.% loading with AlH$_3$ in the composite AlH$_3$@HSAG (by ICP-OES), the expected hydrogen capacity was 1.4 wt.%. However, only 15% of the Al behaved reversibly and thus only an overall 0.25 wt.% storage could be attributed to the nanoconfined AlH$_3$ [44]. Interestingly, during sample preparation, the composite was heated at 65 °C under Ar to yield α-AlH$_3$ polymorph and minimize spontaneous decomposition of AlH$_3$ [44]. Either way, the reduction in dehydrogenation onset to ~60° (60 ... 270 °C with a peak at 165 °C) shows the effect of nanosizing, effectively reducing hydrogen release by 50 °C [44].

Recently, using a triazine framework functionalized with bipyridine groups, CTF-bipy, a reversible behavior of alane in AlH$_3$@CTF-bipy nanocomposite was observed at 700 bar H$_2$ and 60 °C (although incomplete; Al signals still show in 27Al MAS-NMR) (Figure 17) [51].

The EELS spectra of AlH$_3$@CTF-biph and AlH$_3$@CTF-bipy confirm that both contained aluminum, thus AlH$_3$ introduction in the CTF-based frame was achieved. However, inherent oxidation had also occurred so the Al$_2$O$_3$ presence was also recorded by EELS data [51]. Although alane introduction into CTF-biph and CTF-bipy porosity was confirmed by N$_2$ sorption isotherms (Figure 18), there was no reversibility in the case where CTF-biph was used as host [51].
Figure 17. Construction of triazine-type CTF-biph and CTF-bipy used for alane nanoconfinement. Reversibility was only achieved for AlH$_3$@CTF-bipy, presumably due to Al-complexation to N-atoms of bipyridyl moieties (shown inside the CTF frame). Reprinted/adapted with permission from [51].

The EELS spectra of AlH$_3$@CTF-biph and AlH$_3$@CTF-bipy confirm that both contained aluminum, thus AlH$_3$ introduction in the CTF-based frame was achieved. However, inherent oxidation had also occurred so the Al$_2$O$_3$ presence was also recorded by EELS data [51]. Although alane introduction into CTF-biph and CTF-bipy porosity was confirmed by N$_2$ sorption isotherms (Figure 18), there was no reversibility in the case where CTF-biph was used as host [51].

![Figure 17](image)

Figure 18. (a) Sievert data for CTF-based supported alane; (b) N$_2$ sorption isotherms at 77 K for CTF-biph, AlH$_3$@CTF-biph, CTF-bipy, and AlH$_3$@CTF-bipy. Reprinted/adapted with permission from Ref. [51]. 2021, Wiley-VCH GmbH.

Indeed, no reversibility was recorded in the absence of bipyridine groups (CTF-biph; biph = biphenyl), so the amino-functionality grafted on the covalent framework of the host was considered mandatory to achieve reversibility. This aspect was confirmed through DFT computations showing AlH$_3$ or higher clusters—(AlH$_3$)$_2$, (AlH$_3$)$_3$, or (AlH$_3$)$_4$—coordinating the 2 N-atoms of the bipyridine group. However, the reversible H$_2$ storage decreased from 1.44 wt.% (1st cycle) to 0.57 wt.% (4th cycle) [51].

Ball milling of a light metal nitride (Li$_3$N) with AlH$_3$ showed that a weakening of the Al-H bond is produced as a result of the milling process (a shift in XPS maximum), and that the hydrogen capacity decreases with the Li$_3$N fraction: 9.04 wt.% (0.95AlH$_3$-0.05Li$_3$N), 8.71 wt.% (0.9AlH$_3$-0.1Li$_3$N) and 7.85 wt.% (0.85AlH$_3$-0.15Li$_3$N), compared to the ball milled pure AlH$_3$ (9.86 wt.% (Figure 19) [206].
Ball milling of a light metal nitride (Li$_3$N) with AlH$_3$ showed that a 7.6 wt.% hydrogen uptake (7.6 wt.% theoretical, 7.1 wt.% experimental) (Figure 19b), compared to 7.85 wt.% (0.85AlH$_3$-0.15Li$_3$N) with AlH$_3$ (9.86 wt.%) (Figure 19) [206]. The XRD pattern of ETM (early transition metals: ETM = Sc, Y, Ti, Zr, V, Nb) to nanostructured MgH$_2$ clearly shows that the hydrogen capacity decreases with the Li$_3$N fraction: 9.04 wt.% (0.95AlH$_3$-0.05Li$_3$N), 7.9 wt.% (0.95AlH$_3$), 7.1 wt.% experimental) [169]. Moreover, the absorption rate is the fastest for 0.95 MgH$_2$-0.15 LiH$_2$, confirming a decrease in H$_2$ wt.% with the content of Li$_3$N. The XRD pattern of MgH$_2$-0.15Li$_3$N, compared to MgH$_2$-0.05 and MgH$_2$ (0.95AlH$_3$-0.05Li$_3$N), thus approaching an operating regime suitable for FCEs. The beneficial role of lithium amide was confirmed by the apparent E_a which is strongly reduced (Figure 19c) [206].

![Figure 19.](image)

Figure 19. The XRD pattern (0.9AlH$_3$-0.1Li$_3$N)$_{\text{dehydrog}}$ (a), the hydrogen release profile under isothermal conditions (100°C) of (1 − x)AlH$_3$-xLi$_3$N (x = 0, 0.05, 0.1, 0.15) (b), and the calculated apparent activation energy (c). Reprinted/adapted with permission from Ref. [206]. 2022, Wiley-VCH GmbH.

Figure 19b shows the isothermal dehydrogenation of (1 − x)AlH$_3$-xLi$_3$N (x = 0.05, 0.1, 0.15) at 100 °C, confirming a decrease in H$_2$ wt.% with the content of Li$_3$N. The XRD pattern confirms that the sole dehydrogenation product of the composite is metallic Al (Figure 19a). The onset of dehydrogenation was conveniently reduced to 66.8 °C (0.95AlH$_3$-0.05Li$_3$N), thus approaching an operating regime suitable for FCEs. The beneficial role of lithium amide was confirmed by the apparent E_a which is strongly reduced (Figure 19c) [206].

6.4. TM-Hydrides

While main group metal hydrides are attractive due to metal abundance and low atomic weight of the metal (so higher wt.% H$_2$ storage capacity), some TM (transition metals) have also been recently investigated by employing nanosizing effects (Table 13) [79,97,169,200,212,216,234]. The simplest and most classical model system to study TM-H interaction is the Pd-H system [200,234]. While the gravimetric storage capacity is too low for it to be considered for vehicular applications, the nature of Pd...H interaction has shed new light on thermodynamic predictions in Pd NPs forming PdH$_x$, estimating cluster expansion, phase boundaries Pd/Pd...H, phase transitions (>400 K) and interfacial free energies by using DFT method [200,234]. Pd is often thought of as being able to absorb H like a sponge, reversibly absorbing more than 1000 times its own volume. In short, intercalation of ETM (early transition metals: ETM = Sc, Y, Ti, Zr, V, Nb) to nanostructured MgH$_2$ has been recently harnessed in a complex Pd hydride CaPdH$_2$, for semi-hydrogenation of C$_n$H$_{2n-2}$ (alkynes) to C$_n$H$_{2n}$ (alkenes) [79].

Rizo-Acosta et al., have addressed the issue of Mg/MgH$_2$ slow kinetics by the addition of ETM (early transition metals: ETM = Sc, Y, Ti, Zr, V, Nb) to nanostructured MgH$_2$ in a one-pot, mechanochemical reaction [169]. The influence of the milling time (0 ... 120 min) over hydrogen wt.% storage capacity (Figure 20a) and absorption rate (Figure 20b) at 573 K has been studied and reveals that using 0.95 MgH$_2$-0.05 VH$_2$, a 7.3 wt.% hydrogen uptake is registered, even higher than the experimental value for MgH$_2$ (7.6 wt.% theoretical, 7.1 wt.% experimental) [169]. Moreover, the absorption rate is the fastest for 0.95 MgH$_2$-0.05 TiH$_2$, with a shoulder in the sigmoidal shape due to (ETM)H$_x$ formation, and varies in the order Y < V < Ti < Nb < Sc < Zr (Figure 20b). These hydrides (ScH$_2$, YH$_3$, TiH$_2$, ZrH$_2$, VH, NbH) are stable under experimental hydrogenation conditions and have a crystal size of ~10 nm, acting as effective catalysts for dehydrogenation (recombination of H atoms) and rehydrogenation (MgH$_2$ nucleation due to MgH$_2$/(ETM)H$_x$ interface energies).
Table 13. Hydrogen storage features of nanosized (TM) Hₓ materials.

Additive Used	Other H-Storing Source	H-Storing Composite	wt.% Hₓ	Obs.	Ref.
porous carbon (HSAG)	Co	Mg₂CoHₓ@HSAG Co + MgHₓ@HSAG	N/A	bottom-up approach affords PSD 2–50 nm (max. at 15 nm); wt.% Hₓ capacity decrease due to Mg oxidation. 2MgHₓ + Co + H₂ → Mg₂CoH₅ MgHₓ NPs: 5 nm. Co@Mg NPs: 7 nm. Desorption temperature increases with cycle number (1–7) in a 5 wt.% Mg₂CoH₅@HSAG nanocomposite from ~590 to ~610 K. Possible disproportionation: Mg₂CoH₅ → MgH₂ + Mg₆Co₂H₁₁	[97]
ScHₓ, YHₓ, TiHₓ, ZrHₓ, VH and NbH	MgHₓ	0.95 MgHₓ−0.05 (TM)Hₓ	≥5 wt.%	(TM)Hₓ crystallite size of ~10 nm, obtained by mechanochemistry (RMB, reactive ball milling) MgHₓ + TM (Sc, Y, Ti, Zr, V, Nb) under H₂ pressure. Early Transition Metals (ETM) chosen by the known stability of their respective hydrides under normal conditions.	[169]
MOF	Ir, Rh	TM-H@MOF (TM = Pd, Ir, Rh)	0.18H/Pd (cubes); 0.27H/Pd (octahedrons)	ΔHabs of the TM NPs change from endothermic to exothermic with decreasing particle size. Pd@HKUST-1 [copper(II) 1,3,5-benzenetricarboxylate (Cu₂(BTC)₃)] abs. 0.87H/Pd compared to Pd(bulk, cubes, 0.5 H/Pd)	[200,234]
Mg nanofilm	Mg	Pd NPs@Mg film	N/A	D_H²lim ≈ 8 × 10⁻¹⁸ m² s⁻¹	[212]
-	-	TaHₓ (0 < x < 0.7)	<0.389 wt.%	higher H-sensing activity than Pd-alloy (10⁻⁸ … 10⁻⁴ Pa H₂)	[216]

Figure 20. (a) Hydrogen uptake curves for 0.95 MgHₓ−0.05 (ETM)Hₓ during reactive ball milling; (b) absorption rate as derivative of hydrogen uptake curves. Reprinted/adapted with permission from Ref. [169]. 2019, Royal Society of Chemistry.

Notably, the reductive synthesis (300 °C, 7.89 atm H₂) yields stabilization of the lower oxidation states of ETM, and mostly (ETM)H₂ are produced, except for YHₓ which affords the slowest desorption rate (0.06 wt.% min⁻¹, 1 wt.% hydrogen release in 15 min under 0.296 atm H₂). The best result was obtained for 0.95 MgHₓ−0.05 VH, when 6.1 wt.% (90% of the maximum) hydrogen was desorbed in 15 min (Figure 21) [169].
of H$_2$-absorption/desorption cycles; (iii) lower activation energies and consequently faster kinetics and poor thermodynamics still constitute an obstacle for the wide acceptance of their use in the fuel of the future. However, various strategies have been recently explored, and the most stable reversible capacity during cycling was achieved for 0.95 MgH$_2$–0.05 TiH$_2$ nanocomposite, which shows fast kinetics and does not fall below 4.8 wt.% even after 20 cycles (Figure 21). Additionally, no Mg-ETM-H ternary phases were observed [169].

A series of notable advances have been observed for complex hydrides as well, although their details are beyond the scope of this review. In short, metal tetrahydridoaluminates/alanates [14,51]: LiAlH$_4$ [33,45,50,69,74,82,127–129,167,214,234,235], tetrahydридороborates/boroxydrides [3,12,14,42]: LiBH$_4$ [42,45,47,54,56,70,78,81,89,93,99,100,104,106,108,120,123,130,134,135,161,216,230–231,236–240], NaBH$_4$ [49,74,216,236,241], Mg(BH$_4$)$_2$ [42,55,61,70,105,126,132,151,159,207,216,220,224,236,242,243], Ca(BH$_4$)$_2$ [116,216,236,243] and (TM)(BH$_4$)$_2$ [150,216], ammonia-borane NH$_3$BH$_3$ [36,38,63,64,75,85,86,88,90,139–144,153,154,156,162,171,175,197,213,244–249] and RCH reactive hydride composites [45,54,78,91,99,130,134,173,215,216,230,250] have been recently explored and improved thermodynamic and/or kinetic parameters have been reported [107,145,226,251–253].

7. Conclusions and Outlook

The urgency of a green, renewable and sustainable fuel to replace fossil fuels is more stringent today than ever. The metal hydrides constitute materials that possess intrinsically high gravimetric and volumetric hydrogen storage capacities, but their sluggish kinetics and poor thermodynamics still constitute an obstacle for the wide acceptance of their use in the fuel of the future. However, various strategies have been recently explored, and perhaps the most returns derive from basic shifts in thinking: oriented growth of catalytically active substrates; size-reduction in metal hydrides to few nm when thermodynamic destabilization works best; or usage of new class of catalysts of 2D-structure (MXenes)—they have all showed unexpectedly good results. There is clearly room for improvement in the fascinating field of metal hydrides, and research efforts ought to concentrate on improving nanoparticle system design, careful consideration of the incorporating matrix and selected hydrogenation/dehydrogenation catalysts, from both an economic and a feasibility point of view. Given the raw material scarcity but also reactivity etc.), the optimal hydrogen storage material will likely be based on magnesium nanoconfined in a carbonaceous host and/or catalyzed by Ti-based catalysts (such as TiO$_2$, TiO, or MXenes). The realistic application of metal hydride systems is conditioned by a number of factors: (i) the discovery of a material that displays a reliably-reversible behavior in hydrogenation studies; (ii) consistent performance across hundreds of H$_2$-absorption/desorption cycles; (iii) lower activation energies and consequently faster
absorption/desorption kinetics and improved thermodynamics; (iv) consistently fast kinetics for fast refueling; (v) thermodynamic stability and material integrity to afford safe storage in a fuel tank; (vi) reasonable resistance to air and/or moisture; (vii) synthesis route moderately easy and preferably comprising of few steps; (viii) access to sufficient raw materials and limit amount of CRM (critical raw materials) used; (ix) reliable scaling-up of the lab demonstrator to a multi-KW tank capable to drive a vehicle for 500 km or more; (x) strong safety precautions and technological parameters implementation to afford a tank capable to store, release and withstand high H$_2$ pressures (of more than 100 atm). Within this framework, the EU directives to limit CRM usage is expected to drive the research towards more-abundant metal sources such as Mg or Al (Mg was also included in the list of CRM from 2020, although currently it can be obtained in enough quantities). Noble metal catalysis (like Pd) will probably not become a commercial way of speeding up hydrogen delivery or the recharging of hydride-based fuels due to the associated cost. Other catalysts like MXenes can be produced on a larger scale, but the Ti-based material could also face soon shortages.

Nanoconfinement still offers general improvements across the board for hydride-based materials, but the choice of host is limited—among the classes of hosts presented in the current review, the most promising are carbonaceous frameworks and MOFs. Carbon-based materials can be tailored morphologically for hydride inclusion, and their cost is modest; however, this must be considered with care since a zero-carbon policy might imply soon that carbon should not be used as a host any longer. Even though it releases no CO$_2$ in the atmosphere; there will be an associated cost with treatment of the end-of-life C-based fuel, and so the carbon footprint will not be negligible.

Considering these material, performance, safety and cost restrictions, the final choice for a viable, sustainable hydride-based material is a delicate one and only validation through a scaling-up proven in an operational environment could confirm whether it can be used on a large-scale tank for vehicular applications and afterwards adopted by industry. The ultimate goal is, without a doubt, to approach as much as possible the reversible, theoretical hydrogen capacity, and this is a joint venture of all the above considerations.

Funding: This work was supported by the Romanian Ministry of Research and Innovation through the Project PN-III-P1-1.1-TE-2021-1657 (TE 84), Core Program PN19-03 (contract no. PN21N/2019), and PN-III-P2-2.1-PED-2019-4816 within PNCD III. The fee for open access publication was supported from the project 35PF/E2021, funded by the Romanian Ministry of Research, Innovation and Digitization.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The fee for open access publication was supported from the project 35PF/E2021, funded by the Romanian Ministry of Research, Innovation and Digitization.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Agarwal, A.K.; Martínez, A.G.; Kalwar, A.; Valera, H. *Energy, Environment, and Sustainability—Advanced Combustion for Sustainable Transport*; Springer Nature: Singapore, 2022; pp. 299--330. [CrossRef]

2. Černý, R.; Brighi, F.M.M. Metal hydroborates: From hydrogen stores to solid electrolytes. *J. Alloys Compd.* 2022, 895, 162659. [CrossRef]

3. He, T.; Cao, H.; Chen, P. Complex Hydrides for Energy Storage, Conversion, and Utilization. *Adv. Mater.* 2019, 31, 1902757. [CrossRef] [PubMed]

4. Schneemann, A.; White, J.L.; Kang, S.Y.; Jeong, S.; Wan, L.F.; Cho, E.S.; Heo, T.W.; Prendergast, D.; Urban, J.J.; Wood, B.C.; et al. Nanostructured Metal Hydrides for Hydrogen Storage. *Chem. Rev.* 2018, 118, 10775--10839. [CrossRef] [PubMed]

5. US DOE Target Explanation Document: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles. Available online: https://www.energy.gov/eere/fuelcells/downloads/target-explanation-document-onboard-hydrogen-storage-light-duty-fuel-cell (accessed on 10 May 2022).
6. US DOE Hydrogen & Fuel Cells Program. Available online: https://www.hydrogen.energy.gov/ (accessed on 10 May 2022).

7. Shen, H.; Li, H.; Yang, Z.; Li, C. Magic of hydrogen spillover: Understanding and application. *Green Energy Environ.* 2022. [CrossRef]

8. Hirscher, M.; Yartys, V.A.; Baricco, M.; von Colbe, J.B.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for hydrogen-based energy storage—Past, recent progress and future outlook. *J. Alloys Compd.* 2020, 827, 153548. [CrossRef]

9. Lai, Q.; Sun, Y.; Wang, T.; Modí, P.; Cazorla, C.; Demirici, U.B.; Fernandez, J.R.A.; Leardini, F.; Aguey-Zinsou, K.-F. How to Design Hydrogen Storage Materials? Fundamentals, Synthesis, and Storage Tanks. *Adv. Sustain. Syst.* 2019, 3, 1900043. [CrossRef]

10. Abe, J.O.; Popoola, A.P.I.; Ajenifuja, E.; Popoola, O.M. Hydrogen energy, economy and storage: Review and recommendation. *Int. J. Hydrogen Energy* 2019, 44, 15072–15086. [CrossRef]

11. Kumar, R.; Karkamkar, A.; Bowden, M.; Autrey, T. Solid-state hydrogen rich boron–nitrogen compounds for energy storage. *Chem. Soc. Rev.* 2019, 48, 5350–5380. [CrossRef]

12. Hagemann, H. Boron Hydrogen Compounds: Hydrogen Storage and Battery Applications. *Molecules* 2021, 26, 7425. [CrossRef]

13. Lee, S.-Y.; Lee, J.-H.; Kim, Y.-H.; Kim, J.-W.; Lee, K.-J.; Park, S.-J. Recent Progress Using Solid-State Materials for Hydrogen Storage: A Short Review. *Processes* 2022, 10, 304. [CrossRef]

14. Hadjixenophonotos, E.; Dematteis, E.M.; Berti, N.; Wolczyk, A.R.; Huen, P.; Brighi, M.; Le, T.T.; Santoro, A.; Payande, S.; Peru, F.; et al. A Review of the MSCA ITN ECOSTORE—Novel Complex Metal Hydrides for Efficient and Compact Storage of Renewable Energy as Hydrogen and Electricity. *Inorganics* 2020, 8, 17. [CrossRef]

15. Broom, D.P.; Hirscher, M. Improving Reproducibility in Hydrogen Storage Material Research. *ChemPhysChem* 2021, 22, 2141–2157. [CrossRef] [PubMed]

16. Comanescu, C. Complex Metal Borohydrides: From Laboratory Oddities to Prime Candidates in Energy Storage Applications. *Molecules* 2022, 15, 2286. [CrossRef]

17. Kharbachi, A.E.; Dematteis, E.M.; Shinzato, K.; Stevenson, S.C.; Bannenberg, L.J.; Heere, M.; Zlojava, C.; Szilajgyi, P.A.; Bonnet, J.-P.; Grochala, W.; et al. Metal Hydrides and Related Materials. Energy Carriers for Novel Hydrogen and Electrochemical Storage. *J. Phys. Chem. C* 2020, 124, 7599–7607. [CrossRef]

18. Zheng, J.; Wang, C.-G.; Zhou, H.; Ye, E.; Xu, J.; Li, Z.; Loh, X.J. Current Research Trends and Perspectives on Solid-State Nanomaterials in Hydrogen Storage. *AAAS Res.* 2021, 2021, 3750689. [CrossRef] [PubMed]

19. He, T.; Cao, H.; Chen, P. The Roles of Alkali/Alkaline Earth Metals in the Materials Design and Development for Hydrogen Storage. *Acc. Mater. Res.* 2021, 2, 726–738. [CrossRef]

20. Huang, Y.; An, C.; Zhang, Q.; Zang, L.; Shao, H.; Liu, Y.; Zhang, Y.; Yuan, H.; Wang, C.; Wang, Y. Cost-effective Mechanochemical Synthesis of Highly Dispersed Supported Transition Metal Catalysts for Hydrogen Storage. *Nano Energy* 2021, 80, 105535. [CrossRef]

21. Li, Z.; Wei, B. Topological materials and topologically engineered materials: Properties, synthesis, and applications for energy conversion and storage. *J. Mater. Chem. A* 2021, 9, 1297–1313. [CrossRef] [PubMed]

22. Wood, B.C.; Heo, T.W.; Kang, S.Y.; Wan, L.F.; Li, S. Beyond Idealized Models of Nanoscale Metal Hydrides for Hydrogen Storage. *Ind. Eng. Chem. Res.* 2020, 59, 5786–5796. [CrossRef]

23. Callini, E.; Atakli, Z.O.K.; Hauback, B.C.; Orimo, S.-i.; Jensen, C.; Dornheim, M.; Grant, D.; Cho, Y.W.; Chen, P.; Hvorosvarsson, B.; et al. Complex and liquid hydrides for energy storage. *Appl. Phys. A* 2016, 122, 353. [CrossRef]

24. Milanese, C.; Jensen, T.R.; Hauback, B.C.; Pistidda, C.; Dornheim, M.; Yang, H.; Lombardo, L.; Zuteltt, A.; Filinchuk, Y.; Nge, P.; et al. Complex hydrides for energy storage. *Int. J. Hydrogen Energy* 2019, 44, 7860–7874. [CrossRef]

25. Ngene, P.; Longo, A.; Mooij, L.; Bras, W.; Dam, B. Metal-hydrogen systems with an exceptionally large and tunable thermodynamic destabilization. *Nat. Commun.* 2017, 8, 1846. [CrossRef] [PubMed]

26. Huot, J.; Cuevas, F.; Deledsda, S.; Edalati, K.; Filinchuk, Y.; Grosdiedier, T.; Hauback, B.C.; Heere, M.; Jensen, T.R.; Latroche, M.; et al. Mechanochemistry of Metal Hydrides: Recent Advances. *Materials* 2019, 12, 2778. [CrossRef] [PubMed]

27. Witman, M.; Ling, S.; Grant, D.M.; Walker, G.; Agarwal, S.; Stavila, V.; Allendorf, M.D. Extracting an Empirical Intermetallic Hydride Design Principle from Limited Data via Interpretable Machine Learning. *J. Phys. Chem. Lett.* 2020, 11, 40–47. [CrossRef]

28. Liu, Y.; Li, H.W.; Huang, Z. Editorial: Metal-Hydride-Based Energy Storage and Conversion Materials. *Front. Chem. 2020*, 8, 675. [CrossRef]

29. Andersson, J.; Gronkvist, S. Large-scale storage of hydrogen. *Int. J. Hydrogen Energy* 2019, 44, 11901–11919. [CrossRef]

30. Kweon, J.J.; Kim, H.-I.; Lee, S.-h.; Kim, J.; Lee, S.K. Quantitative probing of hydrogen environments in quasicrystals by high-resolution NMR spectroscopy. *Acta Mater.* 2022, 226, 117657. [CrossRef]

31. Misaki, T.; Oikawa, I.; Takamura, H. Negative Knight Shift in Ba-Ti Oxyhydride: An Indication of the Multiple Hydrogen Spillover. *Inorg. Chem.* 2021, 60, 1900043. [CrossRef] [PubMed]

32. Liu, Y.-S.; Jeong, S.; White, J.; Feng, X.; Cho, E.S.; Stavila, V.; Allendorf, M.; Urban, J.; Guo, J. In-situ/operando X-ray characterization of metal hydrides. *ChemPhysChem* 2020, 20, 1261–1271. [CrossRef]

33. NarasGowda, S.; Brown, C.M.; Tyagi, M.; Jenkins, T.; Dobbins, T.A. Quasi-Elastic Neutron Scattering Studies of Hydrogen Dynamics for Nanoconfined NaAlH4. *J. Phys. Chem. C* 2016, 120, 14863–14873. [CrossRef]
34. Zhou, C.; Gao, Y.; Bowman, R.C., Jr; Zhang, J.; Liu, H.; Sun, P.; Fang, Z.Z. A high throughput dynamic method for characterizing thermodynamic properties of catalyzed magnesium hydrides by thermogravimetric analysis. *Phys. Chem. Chem. Phys.* 2021, 23, 15374. [CrossRef] [PubMed]

35. Luong, H.M.; Pham, M.T.; Guin, T.; Madhogaria, R.P.; Phan, M.-H.; Larsen, G.K.; Nguyen, T.D. Sub-second and ppm-level optical sensing of hydrogen using templated control of nano-hydride geometry and composition. *Nat. Commun.* 2021, 12, 2414. [CrossRef] [PubMed]

36. Valero-Pedraza, M.J.; Gascón, V.; Carreón, M.A.; Leardini, F.; Ares, J.R.; Martín, Á.; Sánchez-Sánchez, M.; Bañares, M.A. Operando Raman-mass spectrometry investigation of hydrogen release by thermolysis of ammonia borane confined in mesoporous materials. *Microporous Mesoporous Mater.* 2016, 226, 454–465. [CrossRef]

37. Surrey, A.; Nielisch, K.; Rellinghaus, B. Comments on “Evidence of the hydrogen release mechanism in bulk MgH". *Sci. Rep.* 2017, 7, 4216. [CrossRef]

38. Petit, J.-F.; Demirci, U.B. Discrepancy in the thermal decomposition/dehydrogenation of ammonia borane screened by thermoanalytical techniques. *Int. J. Hydrogen Energy* 2019, 44, 14201–14206. [CrossRef]

39. Wu, Y.-J.; Wang, C.-Y. Insight into the Catalytic Effects of Open Metal Sites in Metal–Organic Frameworks on Hydride Dehydrogenation via Nanoconfinement. *ACS Sustain. Chem. Eng.* 2019, 7, 16013–16025. [CrossRef]

40. Prabhakaran, P.K.; Catoire, L.; Deschamps, J. Aluminium doping composite metal-organic framework by alane nanoconfinement: Impact on the room temperature hydrogen uptake. *Microporous Mesoporous Mater.* 2017, 243, 213–220. [CrossRef]

41. Pukazhselvan, D.; Sandhya, K.S.; Fagg, D.P. Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage. *Int. J. Hydrogen Energy* 2018, 43, 1545–1565. [CrossRef]

42. Lai, Q.; Yang, Y.; Aguey-Zinsou, K.-F. Nanoconfinement of borohydrides in hollow carbon spheres: Melt infiltration versus solvent impregnation for enhanced hydrogen storage. *Int. J. Hydrogen Energy* 2019, 44, 23225–23238. [CrossRef]

43. Zhang, J.; Yan, S.; Qu, H. Recent progress in magnesium hydride modified through catalysis and nanoconfinement. *Int. J. Hydrogen Energy* 2018, 43, 1600803. [CrossRef]

44. Wang, L.; Rawal, A.; Aguey-Zinsou, K.-F. Hydrogen storage properties of nanoconfined aluminium hydride (AlH3). *Chem. Eng. Sci.* 2019, 194, 64–70. [CrossRef]

45. Javadian, P.; Sheppard, D.A.; Buckley, C.E.; Jensen, T.R. Hydrogen Desorption Properties of Bulk and Nanoconfined LiBH4-NaAlH4. *Crystals* 2016, 6, 70. [CrossRef]

46. Rueda, M.; Sanz-Moral, L.M.; Martin, Á. Innovative methods to enhance the properties of solid hydrogen storage materials based on hydrides through nanoconfinement: A review. *J. Supercrit. Fluids* 2018, 141, 198–217. [CrossRef]

47. Le, T.T.; Pistidda, C.; Nguyen, V.H.; Singh, P.; Raizada, P.; Klassen, T.; Dornheim, M. Nanoconfinement effects on hydrogen storage properties of MgH2 and LiBH4. *Int. J. Hydrogen Energy* 2021, 46, 23723–23736. [CrossRef]

48. Zhang, S.; Hedtke, T.; Zhou, X.; Elimelech, M.; Kim, J.-H. Environmental Applications of Engineered Materials with Nanoconfine-ment. *ACS EST Eng.* 2021, 1, 706–724. [CrossRef]

49. Salman, M.S.; Rawal, A.; Aguey-Zinsou, K.-F. Tunable NaBH4 Nanostructures Revealing Structure-Dependent Hydrogen Release. *Adv. Energy Sustain. Res.* 2021, 2, 2100063. [CrossRef]

50. Chen, W.; You, L.; Xia, G.; Yu, X. A balance between catalysis and nanoconfinement towards enhanced hydrogen storage performance of NaAlH4. *J. Mater. Sci. Technol.* 2019, 79, 205–211. [CrossRef]

51. Stavila, V.; Li, S.; Dun, C.; Marple, M.A.T.; Mason, H.E.; Snider, J.L.; Reynolds III, J.E.; Gabaly, F.E.; Sugar, J.D.; Spataru, C.D.; et al. Defying Thermodynamics: Stabilization of Alane Within Covalent Triazine Frameworks for Reversible Hydrogen Storage. *Angew. Chem. Int. Ed. 2021*, 60, 25815–25824. [CrossRef]

52. Goh, P.S.; Ismail, A.F. Nanoconposites for Environmental and Energy Applications. *Nanomaterials* 2021, 11, 345. [CrossRef]

53. Huen, P.; Paskevicius, M.; Richter, B.; Ravnsbæk, D.B.; Jensen, T.R. Hydrogen Storage Stability of Nanoconfined MgH2 upon Cycling. *Inorgamics* 2017, 5, 57. [CrossRef]

54. Wood, B.C.; Stavila, V.; Poonyayant, N.; Heo, T.W.; Ray, K.G.; Klebanoff, L.E.; Udovic, T.J.; Lee, J.R.I.; Angboonpong, N.; Sugar, J.D.; et al. Nanointerface-Driven Reversible Hydrogen Storage in the Nanoconfined Li–N–H System. *Adv. Mater. Interfaces* 2017, 4, 1600803. [CrossRef]

55. Liu, Y.-S.; Ray, K.G.; Jørgensen, M.; Mattox, T.M.; Cowgill, D.F.; Eshelman, H.V.; Sawvel, A.M.; Snider, J.L.; York, W.; Wijeratne, P.; et al. Nanoscale Mg–B via Surfactant Ball Milling of MgB2: Morphology, Composition, and Improved Hydrogen Storage Properties. *J. Phys. Chem. C* 2020, 124, 21761–21771. [CrossRef]

56. Das, S.; Ngene, P.; Norby, P.; Vegge, T.; de Jongh, P.E.; Blancard, D. All-Solid-State Lithium-Sulfur Battery Based on a Nanoconfined LiBH4 Electrolyte. *J. Electrochem. Soc.* 2016, 163, A2029–A2034. [CrossRef]

57. Zhang, X.L.; Liu, Y.F.; Zhang, X.; Hu, J.J.; Gao, M.X.; Pan, H.G. Empowering hydrogen storage performance of MgH2 by nanoengineering and nanocatalysis. *Mater. Today Nano* 2020, 9, 100064. [CrossRef]

58. Rabkin, E.; Skripnyuk, V.; Estrin, Y. Ultrafine-Grained Magnesium Alloys for Hydrogen Storage Obtained by Severe Plastic Deformation. *Front. Mater.* 2019, 6, 240. [CrossRef]

59. Stavila, V.; Klebanoff, L.E. Nanostructured Metal Amides and Nitrides for Hydrogen Storage. U.S. Patent No. US10000377B1, 19 June 2018. Available online: https://patents.google.com/patent/US10000377B1/en (accessed on 16 May 2022).
113. Gasnier, A.; Amica, G.; Juan, J.; Troiani, H.; Gennari, F.C. N-Doped Graphene-Rich Aerogels Decorated with Nickel and Cobalt Nanoparticles: Effect on Hydrogen Storage Properties of Nanoconfined LiBH₄. *J. Phys. Chem. C* **2020**, *124*, 115–125. [CrossRef]

114. Xia, G.; Tan, Y.; Chen, X.; Fang, F.; Sun, D.; Li, X.; Guo, Z.; Yu, X. Oxygen-free Layer-by-Layer Assembly of Lithiated Composites on Graphene for Advanced Hydrogen Storage. *Adv. Sci.* **2016**, *3*, 1600257. [CrossRef]

115. Zhang, Q.; Huang, Y.; Xu, L.; Zang, L.; Guo, H.; Jiao, L.; Yuan, H.; Wang, Y. Highly Dispersed MgH₂ Nanoparticle–Graphene Nanosheet Composites for Hydrogen Storage. *ACS Appl. Nano Mater.* **2019**, *2*, 3828–3835. [CrossRef]

116. Comanesuc, C.; Capurso, G.; Maddalena, A. Nanoconfinement in activated mesoporous carbon of calcium borohydride for improved reversible hydrogen storage. *Nanotechnology* **2012**, *23*, 385401. [CrossRef] [PubMed]

117. Wang, L.; Cho, E.S.; Marangoni, T.; Shea, P.; Kang, S.Y.; Rogers, C.; Zaia, E.; Cloke, R.R.; Wood, B.C.; Fischer, F.R.; et al. Edge-Functionalized Graphene Nanoribbon Encapsulation to Enhance Stability and Control Kinetics of Hydrogen Storage Materials. *Chem. Mater.* **2019**, *31*, 2960–2970. [CrossRef]

118. Wang, S.; Gao, M.; Yao, Z.; Xian, K.; Wu, M.; Liu, Y.; Sun, W.; Pan, H. High-loading, ultrafine Ni nanoparticles dispersed on porous hollow carbon nanospheres for fast (de)hydrogenation kinetics of MgH₂. *J. Magnes. Alloys* **2021**. [CrossRef]

119. Morse, J.R.; Zugell, D.A.; Patterson, E.; Baldwin, J.W.; Willauer, H.D. Hydrogenated graphene: Important material properties regarding its application for hydrogen storage. *J. Power Sources* **2021**, *494*, 229734. [CrossRef]

120. Zhang, X.; Zhang, L.; Zhang, W.; Ren, Z.; Huang, Z.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. Nano-synergy enables highly reversible storage of 9.2 wt% hydrogen at mild conditions with lithium borohydride. *Nano Energy* **2021**, *83*, 105839. [CrossRef]

121. Han, D.J.; Kim, S.; Cho, E.S. Revealing the role of defects in graphene oxide in the evolution of magnesium nanocrystals and the resulting effects on hydrogen storage. *J. Mater. Chem. A* **2021**, *9*, 9875. [CrossRef]

122. Dun, C.; Jeong, S.; Kwon, D.-H.; Kang, S.Y.; Stavila, V.; Zhang, Z.; Lee, J.-W.; Mattox, T.M.; Heo, T.W.; Wood, B.C.; et al. Hydrogen Storage Performance of Preferentially Oriented Mg/rGO Hybrids. *Chem. Mater.* **2022**, *34*, 2963–2971. [CrossRef]

123. Martinez, A.A.; Gasnier, A.; Gennari, F.C. Pore Filling of a Carbon Matrix by Melt-Impregnated LiBH₄. *J. Phys. Chem. C* **2022**, *126*, 66–78. [CrossRef]

124. Cho, H.; Hyeon, S.; Park, H.; Kim, J.; Cho, E.S. Ultrathin Magnesium Nanosheet for Improved Hydrogen Storage with Fishbone Shaped One-Dimensional Carbon Matrix. *ACS Appl. Energy Mater.* **2020**, *3*, 8143–8149. [CrossRef]

125. Ko, Y.; Lombardo, L.; Li, M.; Oveisi, E.; Yang, H.; Zuüttel, A. Interfacial Effect between Aluminum-Based Complex Hydrides and Nickel-Containing Porous Carbon Sheets. *ACS Appl. Energy Mater.* **2020**, *3*, 9685–9695. [CrossRef]

126. Jeong, S.; Heo, T.W.; Oktawiec, J.; Shi, R.; Kang, S.Y.; Mattox, T.M.; Heo, T.W.; Wood, B.C.; et al. A Mechanistic Analysis of Phase Evolution and Hydrogen Storage Behavior in Nanocrystalline Mg(BH₄)₂ within Reduced Graphene Oxide. *ACS Nano* **2020**, *14*, 1745–1756. [CrossRef] [PubMed]

127. Beatrice, C.A.G.; Moreira, B.R.; de Oliveira, A.D.; Passador, F.R.; de Almeida Neto, G.R.; Leiva, D.R.; Pessan, L.A. Development of polymer nanocomposites with sodium alanate for hydrogen storage. *Int. J. Hydrogen Energy* **2020**, *45*, 5337–5436. [CrossRef]

128. Carr, C.L.; Jayawardana, W.; Zou, H.; White, J.L.; Gabaly, F.E.; Conradi, M.S.; Stavila, V.; Allendorf, M.D.; Majzoub, E.H. Anomalous H₂ Desorption Rate of NaAlH₄ Confined in Nitrogen-Doped Nanoporous Carbon Frameworks. *Chem. Mater.* **2018**, *30*, 2930–2938. [CrossRef]

129. Do, H.W.; Kim, H.; Cho, E.S. Enhanced hydrogen storage kinetics and air stability of nanoconfined NaAlH₄ in graphene oxide framework. *RSC Adv.* **2021**, *11*, 32533. [CrossRef] [PubMed]

130. Dansirima, P.; Thiangviriya, S.; Plerdsranoy, P.; Utke, O.; Utke, R. Small hydrogen storage tank filled with 2LiBH₄–MgH₂ nanoconfined in activated carbon: Reaction mechanisms and performances. *Int. J. Hydrogen Energy* **2019**, *44*, 10752–10762. [CrossRef]

131. Magnin, Y.; Villermaux, E.; Amara, H.; Bichara, C.; Pelleng, R.J.M. Morphology control of metallic nanoparticles supported on carbon substrates in catalytic conditions. *Carbon* **2020**, *159*, 504–511. [CrossRef]

132. Wahab, M.A.; Young, D.J.; Karim, A.; Fawzia, S.; Beltramini, J.N. Low-temperature hydrogen desorption from Mg(BH₄)₂ catalysed by ultrafine Ni nanoparticles in a mesoporous carbon matrix. *Int. J. Hydrogen Energy* **2016**, *41*, 20573–20582. [CrossRef]

133. Wang, L.; Quadir, M.Z.; Aguey-Zinsou, K.-F. Direct and reversible hydrogen storage of lithium hydride (LiH) nanoconfined in high surface area graphite. *Int. J. Hydrogen Energy* **2016**, *41*, 18088–18094. [CrossRef]

134. Utke, R.; Thiangviriya, S.; Javadian, P.; Jensen, T.R.; Milanese, C.; Klassen, T.; Dornheim, M. 2LiBH₄–MgH₂ nanoconfined into carbon aerogel scaffold impregnated with ZrCl₄ for reversible hydrogen storage. *Mater. Chem. Phys.* **2016**, *169*, 136–141. [CrossRef]

135. Plerdsranoy, P.; Javadian, P.; Jensen, N.D.; Nielsen, U.G.; Jensen, T.R.; Utke, R. Compaction of LiBH₄–LiAlH₄ nanoconfined in activated carbon nanofibers: Dehydrogenation kinetics, reversibility, and mechanical stability during cycling. *Int. J. Hydrogen Energy* **2017**, *42*, 1036–1047. [CrossRef]

136. Pandey, A.P.; Bhatnagar, A.; Shukla, V.; Soni, P.K.; Singh, S.; Verma, S.K.; Saneeth, M.; Sekkar, V.; Srivastava, O.N. Hydrogen storage properties of carbon aerogel synthesized by ambient pressure drying using new catalyst triethyamine. *Int. J. Hydrogen Energy* **2020**, *45*, 30818–30827. [CrossRef]

137. Shinde, S.S.; Kim, D.H.; Yu, J.Y.; Lee, J.H. Self-assembled air-stable magnesium hydride embedded in 3-D activated carbon for reversible hydrogen storage. *Nanoscale* **2017**, *9*, 7094–7103. [CrossRef]

138. Cho, E.S.; Rumininski, A.M.; Aloni, S.; Liu, Y.-S.; Guo, J.; Urban, J.J. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage. *Nat. Commun.* **2017**, *8*, 10804. [CrossRef] [PubMed]
139. Fang, M.H.; Wu, S.Y.; Chang, Y.H.; Narwane, M.; Chen, B.H.; Liu, W.L.; Kurniawan, D.; Chiang, W.H.; Lin, C.H.; Chuang, Y.C.; et al. Mechanistic Insight into the Synergistic Interaction of Ammonia Borane and Water on ZIF-67-Derived Co@Porous Carbon for Controlled Generation of Dihydrogen. *ACS Appl. Mater. Interfaces* 2021, 13, 47465–47477. [CrossRef] [PubMed]

140. Cao, Z.; Ouyang, L.; Felderhoff, M.; Zhu, M. Low temperature dehydrogenation properties of ammonia borane within carbon nanotube arrays: A synergistic effect of nanoconfinement and alan E. *RSC Adv.* 2020, 10, 19027–19033. [CrossRef] [PubMed]

141. So, S.H.; Jang, J.H.; Sung, S.J.; Yang, S.J.; Nam, K.T.; Park, C.R. Demonstration of the nanosize effect of carbon nanomaterials on the dehydrogenation temperature of ammonia borane. *Nanoscale Adv.* 2019, 1, 4967–4703. [CrossRef]

142. Champet, S.; van den Berg, J.; Szczesny, R.; Godula-Jopek, A.; Gregory, D.H. Nano-inclusion in one step: Spontaneous ice-templating of porous hierarchical nanocomposites for selective hydrogen release. *Sustain. Energy Fuels* 2019, 3, 396–400. [CrossRef]

143. Liu, H.; Chen, S.; Liu, M.; Cui, J.; Wang, Z.; Yu, P. Enhanced dehydrogenation performance of ammonia borane con-catalyzed by novel TiO2(B) nanoparticles and bio-derived carbon with well-organized pores. *Int. J. Hydrogen Energy* 2020, 45, 28070–28077. [CrossRef]

144. Yang, Z.; Zhou, D.; Chen, B.; Liu, Z.; Xia, Q.; Zhu, Y.; Xia, Y. Improved hydrogen release from ammonia borane confined in microporous carbon with narrow pore size distribution. *J. Mater. Chem. A* 2017, 5, 15395–15400. [CrossRef]

145. Fang, L.; Feng, J.J.; Shi, X.; Si, T.; Song, Y.; Jia, H.; Li, Y.; Li, H.-W.; Zhang, Q. Turn Bulks into 0D, 1D and 2D Metallic Nanomaterials by Selective Aqueous Corrosion. *Chem. Commun.* 2019, 55, 10476–10479. [CrossRef]

146. Zhang, X.; Leng, Z.; Gao, M.; Hu, J.; Du, F.; Yao, J.; Pan, H.; Liu, Y. Enhanced hydrogen storage properties of MgH2 catalyzed with carbon-supported nanocrystalline TiO2. *J. Power Sources* 2018, 398, 183–192. [CrossRef]

147. Zhang, L.; Nyahuma, F.M.; Zhang, H.; Cheng, C.; Zheng, J.; Wu, F.; Chen, L. Metal organic framework supported niobium pentoxide nanoparticles with exceptional catalytic effect on hydrogen storage behavior of MgH2. *Green Energy Environ.* 2022. [CrossRef]

148. Wang, T.C.; White, J.L.; Bie, B.; Deng, H.; Edgington, J.; Sugar, J.D.; Stavila, V.; Allendorf, M.D. Design Rules for Metal-Organic Framework Stability in High-Pressure Hydrogen Environments. *ChemPhysChem* 2019, 20, 1305–1310. [CrossRef] [PubMed]

149. Ma, Z.; Zhang, Q.; Panda, S.; Zhu, W.; Sun, F.; Khan, D.; Dong, J.; Ding, W.; Zou, J. In-situ catalyzed and nanoconfined magnesium hydride nanocrystals in a Ni-MOF scaffold for hydrogen storage. *Sustain. Energy Fuels* 2020, 4, 4694–4703. [CrossRef]

150. Callini, E.; Szlágyi, P.A.; Paskevicius, M.; Stadie, N.P.; Rehault, J.; Buckley, C.E.; Borgschulte, A.; Zuttel, A. Stabilization of volatile Ti(BH4)3 by nanoconfinement in a metal–organic framework. *Chem. Sci.* 2016, 7, 666–672. [CrossRef] [PubMed]

151. Schneemann, A.; Wan, L.F.; Lipton, A.S.; Liu, Y.-S.; Snider, J.L.; Baker, A.A.; Sugar, J.D.; Spataru, C.D.; Guo, J.; Autrey, T.S.; et al. Nanoconfinement of Molecular Magnesium Borohydride Captured in a Bipyridine-Functionalized Metal–Organic Framework. *ACS Nano* 2020, 14, 10294–10304. [CrossRef]

152. Bobbitt, N.S.; Snurr, R.Q. Molecular modelling and machine learning for high-throughput screening of metal-organic frameworks for hydrogen storage. *Mol. Simul.* 2019, 45, 1069–1081. [CrossRef]

153. Chung, J.-Y.; Liao, C.-W.; Chang, Y.-W.; Chang, B.K.; Wang, H.; Li, J.; Wang, C.-Y. Influence of Metal–Organic Framework Porosity on Hydrogen Generation from Nanoconfined Ammonia Borane. *J. Phys. Chem. C* 2017, 121, 27369–27378. [CrossRef]

154. Pei, S.; Wisser, D.; Stähle, M.; Roßmann, P.K.; Avadhut, Y.S.; Hartmann, M. Hydrogen Release from Ammonia Borane Nanoconfined in Metal–Organic Frameworks with MIL-53 Nanoparticles. *J. Phys. Chem. C* 2021, 125, 9990–10000. [CrossRef]

155. Ullman, A.M.; Brown, J.W.; Foster, M.E.; Leonard, F.; Leong, K.; Stavila, V.; Allendorf, M.D. Transforming MOFs for Energy Applications Using the Guest@MOF Concept. *Inorg. Chem.* 2016, 55, 7233–7249. [CrossRef] [PubMed]

156. Zhou, Z.; Yuan, F.; Ma, J. Nanoconfinement engineering for enhanced adsorption of carbon materials, metal–organic frameworks, mesoporous silica, MXenes and carbon nanomaterials: A review. *Environ. Chem. Lett.* 2022, 20, 563–595. [CrossRef]

157. Wang, Y.; Lan, Z.; Huang, X.; Liu, H.; Guo, J. Study on catalytic effect and mechanism of MOF (MOF = ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium. *Int. J. Hydrogen Energy* 2019, 44, 28863–28873. [CrossRef]

158. Huang, T.; Huang, X.; Hu, C.; Wang, J.; Liu, H.; Ma, Z.; Zou, J.; Ding, W. Enhancing hydrogen storage properties of MgH2 through addition of Ni/CoMoO4 nanorods. *Mater. Today Energy* 2021, 20, 100613. [CrossRef]

159. Leick, N.; Strange, N.A.; Schneemann, A.; Stavila, V.; Gross, K.; Washton, N.; Settle, A.; Martinez, M.B.; Gennett, T.; Christensen, S.T. Al2O3 Atomic Layer Deposition on Nanostructured γ-Mg(BH4)2 for H2 Storage. *ACS Appl. Energy Mater.* 2021, 4, 1150–1162. [CrossRef]

160. Habibi, P.; Vlugt, T.J.H.; Dey, P.; Moultos, O.A. Reversible Hydrogen Storage in Metal-Decorated Honeycomb Borophene Oxide. *ACS Appl. Mater. Interfaces* 2021, 13, 43233–43240. [CrossRef]

161. Zettl, R.; Gombotz, M.; Clarkson, D.; Greenbaum, S.G.; Ngene, P.; de Jongh, P.E.; Wilkening, H.M.R. Li-Ion Diffusion in Nanoconfined LiBH4-Li/Al2O3: From 2D Bulk Transport to 3D Long-Range Interfacial Dynamics. *ACS Appl. Mater. Interfaces* 2020, 12, 38570–38583. [CrossRef]

162. Salameh, C.; Moussa, G.; Bruma, A.; Fantozzi, G.; Malo, S.; Miele, P.; Demirci, U.B.; Bernard, S. Robust 3D Boron Nitride Nanoscaffolds for Remarkable Hydrogen Storage Capacity from Ammonia Borane. *Energy Technol.* 2018, 6, 570–577. [CrossRef]

163. Cho, E.S.; Ruminski, A.M.; Liu, Y.-S.; Shea, P.T.; Kang, S.Y.; Zaia, E.W.; Park, J.Y.; Chuang, Y.-D.; Yum, J.M.; Zhou, X.; et al. Hierarchically Controlled Inside-Out Doping of Mg Nanocomposites for Moderate Temperature Hydrogen Storage. *Adv. Funct. Mater.* 2017, 27, 1704316. [CrossRef]
164. Fan, J.; Cui, X.; Yu, S.; Gu, L.; Zhang, Q.; Meng, F.; Peng, Z.; Ma, L.; Ma, J.-Y.; Qi, K.; et al. Interstitial Hydrogen Atom Modulation to Boost Hydrogen Evolution in Pd-Based Alloy Nanoparticles. *ACS Nano* 2019, 13, 12987–12995. [CrossRef]

165. Abbas, A.; Rajagopal, V.; Huang, S.J. Magnesium metal matrix composites and their applications. In *Magnesium Alloys*; IntechOpen: London, UK, 2021. [CrossRef]

166. Li, Z.; Yu, J.Z.; Zhang, Y.; Liu, D.M.; Wang, C.Y.; Si, T.Z.; Li, Y.T.; Zhang, Q.A. Coupling of nanocoating with metallic catalysis in supported NaAlH4 for hydrogen storage. *J. Power Sources* 2021, 491, 229611. [CrossRef]

167. Ianni, E.; Sofianos, M.V.; Rowles, M.R.; Sheppard, D.A.; Humphries, T.D.; Buckley, C.E. Synthesis of NaAlH4/Al composites and their applications in hydrogen storage. *Int. J. Hydrogen Energy* 2018, 43, 17309–17317. [CrossRef]

168. Khan, D.; Zou, J.; Pan, M.; Ma, Z.; Zhu, W.; Huang, T.; Zeng, X.; Ding, W. Hydrogen storage properties of nanostructured 2MgH2-Co powders: The effect of high-pressure compression. *Int. J. Hydrogen Energy* 2019, 44, 15146–15158. [CrossRef]

169. Rizo-Acosta, P.; Cuevas, F.; Latroche, M. Hydrides of early transition metals as catalysts and grain growth inhibitors for enhanced reversible hydrogen storage in nanostructured magnesium. *J. Mater. Chem. A* 2019, 7, 23064–23075. [CrossRef]

170. Patelli, N.; Migliori, A.; Morandi, V.; Pasquini, L. Interfaces within biphasic nanoparticles give a boost to magnesium-based hydrogen storage. *Nano Energy* 2020, 72, 104654. [CrossRef]

171. Lai, Q.; Rawal, A.; Quadir, M.Z.; Cazorla, C.; Demirci, U.B.; Aguey-Zinsou, K.-F. Nanosizing Ammonia Borane with Nickel: A Path toward the Direct Hydrogen Release and Uptake of B-N-H Systems. *Adv. Sustain. Syst.* 2018, 2, 170022. [CrossRef]

172. Wu, Z.; Fang, J.; Liu, N.; Wu, J.; Kong, L. The Improvement in Hydrogen Storage Performance of MgH2 Enabled by Multilayer Ti3C2. *Micromachines* 2021, 12, 1190. [CrossRef] [PubMed]

173. Xia, Y.; Zhang, H.; Sun, Y.; Sun, L.; Xu, F.; Sun, S.; Zhang, G.; Huang, P.; Du, Y.; Wang, J.; et al. Crystal-facet-dependent catalysis of anatase TiO2 on hydrogen storage of MgH2. *J. Alloys Compd.* 2020, 822, 153553. [CrossRef]

174. Le, T.T.; Pistidda, C.; Abetz, C.; Georgopanos, P.; Garroni, S.; Capurso, G.; Milanese, C.; Puszkiel, J.; Dornheim, M.; Abetz, V.; et al. Enhanced Stability of Li-RHC Embedded in an Adaptive TPX Polymer Scaffold. *Materials* 2020, 13, 991. [CrossRef]

175. Ploszajski, A.R.; Billing, M.; Cockcroft, J.K.; Skipper, N.T. Crystalline structure of an ammonia borane–polyethylene oxide cocystal: A material investigated for its hydrogen storage potential. *CrystEngComm* 2018, 20, 4436–4440. [CrossRef]

176. Kumar, J.A.; Prakash, P.; Krithiga, T.; Amarnath, D.J.; Premkumar, J.; Rajamohan, N.; Vasagheyan, Y.; Saravanan, P.; Rajasimman, M. Methods of synthesis, characterization, and environmental applications of MXene: A comprehensive review. *Chemosphere* 2022, 286, 131607. [CrossRef]

177. Ploszajski, A.R.; Billing, M.; Cockcroft, J.K.; Skipper, N.T. Crystalline structure of an ammonia borane–polyethylene oxide cocystal: A material investigated for its hydrogen storage potential. *CrystEngComm* 2018, 20, 4436–4440. [CrossRef]

178. Yuan, Z.; Fan, Y.; Chen, Y.; Liu, X.; Liu, B.; Han, S. Two-dimensional C@TiO2 MXene for hydrogen storage performances of MgH2-LiH composite. *Chem. Phys.* 2019, 522, 178–187. [CrossRef]

179. Ronchi, R.M.; Arantes, J.T.; Santos, S.F. Synthesis, structure, properties and applications of MXenes: Current status and perspectives. *Ceram. Int.* 2019, 45, 18167–18188. [CrossRef]

180. Liu, Y.; Gao, H.; Zhu, Y.; Li, S.; Zhang, J.; Li, L. Excellent catalytic activity of a two-dimensional Nb3C1x (MXene) on hydrogen storage of MgH2. *Appl. Surf. Sci.* 2019, 493, 431440. [CrossRef]

181. Yadav, A.; Dashora, A.; Patel, N.; Miotello, A.; Press, M.; Kothari, D.C. Study of 2D MXene Cr2C material for hydrogen storage using density functional theory. *Appl. Surf. Sci.* 2016, 389, 88–95. [CrossRef]

182. Wu, R.; Du, H.; Wang, Z.; Gao, M.; Pan, H.; Liu, Y. Remarkably improved hydrogen storage properties of NaAlH4 doped with 2D titanium carbide. *J. Power Sources* 2012, 327, 519–525. [CrossRef]

183. Shen, Z.; Wang, Z.; Zhang, M.; Gao, M.; Hu, J.; Du, F.; Liu, Y.; Pan, H. A novel solid-solution MXene (Ti0.5V0.5)C2 with high catalytic activity for hydrogen storage in MgH2. *Materials* 2018, 11, 140–125. [CrossRef]

184. Fan, Y.; Chen, D.; Liu, X.; Fan, G.; Liu, B. Improving the hydrogen storage performance of lithium borohydride by Ti3C2 MXene. *Int. J. Hydrogen Energy* 2019, 44, 29279–29303. [CrossRef]

185. Jiang, R.; Xiao, X.; Zheng, J.; Chen, M.; Chen, L. Remarkable hydrogen absorption/desorption behaviors and mechanism of sodium alanates in-situ doped with Ti-based 2D MXene. *Mater. Chem. Phys.* 2020, 242, 122529. [CrossRef]

186. Feng, X.; Yuan, J.; Lv, Y.; Liu, B.; Huang, H.; Zhang, B.; Yan, Y.; Han, S.; Wu, Y. Improvement of desorption performance of Mg(BH4)2 by two-dimensional Ti3C2 MXene addition. *Int. J. Hydrogen Energy* 2020, 45, 16654–16662. [CrossRef]

187. Yuan, Z.; Fan, Y.; Chen, Y.; Liu, X.; Han, B.; Han, S. Two-dimensional C@TiO2/Ti3C2 composite with superior catalytic performance for NaAlH4. *Int. J. Hydrogen Energy* 2020, 45, 21666–21675. [CrossRef]

188. Zheng, J.; Cheng, H.; Xiao, X.; Chen, M.; Chen, L. Enhanced low temperature hydrogen desorption properties and mechanism of Mg(BH4)2 composites with 2D MXene. *Int. J. Hydrogen Energy* 2019, 44, 24292–24300. [CrossRef]

189. Wang, Z.; Zhang, X.; Ren, Z.; Liu, Y.; Hu, J.; Li, H.; Gao, M.; Pan, H.; Liu, Y. In situ formed ultrafine Nb Ti nanocrystals from a NbTiC solid-solution MXene for hydrogen storage in MgH2. *J. Mater. Chem. A* 2019, 7, 14244–14252. [CrossRef]

190. Xian, K.X.; Gao, M.; Li, Z.; Gu, J.; Shen, Y.; Wang, S.; Yao, Z.; Liu, Y.; Pan, H. Superior Kinetic and Cyclic Performance of a 2D Titanium Carbide Incorporated 2LiH + MgB2 Composite towards Highly Reversible Hydrogen Storage. *ACS Appl. Energy Mater.* 2019, 2, 4853–4864. [CrossRef]
192. Gao, H.; Liu, Y.; Zhu, Y.; Zhang, J.; Li, L. Catalytic effect of sandwich-like Ti2C2/TiO2(A)-C on hydrogen storage performance of MgH2. Nanotechnology 2020, 31, 115404. [CrossRef]

193. Liu, Y.; Du, H.; Zhang, X.; Yang, Y.; Gao, M.; Pan, H. Superior catalytic activity derived from a two-dimensional Ti2C2 precursor towards the hydrogen storage reaction of magnesium hydride. Chem. Commun. 2016, 52, 705–708. [CrossRef]

194. Li, Y.; Guo, Y.; Chen, W.; Jiao, Z.; Ma, S. Reversible hydrogen storage behaviors of Ti2N MXenes predicted by first-principles calculations. J. Mater. Sci. 2019, 54, 493–505. [CrossRef]

195. Veit, R.D.; Farber, R.G.; Sitaraman, N.S.; Arias, T.A.; Sibener, S.J. Suppression of nano-hydride growth on Nb(100) due to nitrogen doping. J. Chem. Phys. 2020, 152, 214703. [CrossRef]

196. Liu, Y.; Zhu, J.; Liu, Z.; Zhu, Y.; Zhang, J.; Li, L. Magnesium Nanoparticles with Pd Decoration for Hydrogen Storage. Front. Chem. 2020, 7, 949. [CrossRef]

197. Feng, Y.F.; Zhou, X.; Yang, J.-h.; Gao, X.; Yin, L.; Zhao, Y.; Zhang, B. Encapsulation of Ammonia Borane in Pd/Halloysite Nanotubes for Efficient Thermal Dehydrogenation. ACS Sustain. Chem. Eng. 2020, 8, 2122–2129. [CrossRef]

198. Snider, J.L.; Matty, T.M.; Liu, Y.-S.; Wan, L.F.; Wijeratme, P.; Allendorf, M.D.; Stavila, V.; Wood, B.C.; Klebanoff, L.E. The influence of LiH and TiH2 on hydrogen storage in MgB2 II. XPS study of surface and near-surface phenomena. Int. J. Hydrogen Energy 2022, 47, 403–419. [CrossRef]

199. Wang, Y.; Chen, X.; Zhang, H.; Xia, G.; Sun, D.; Yu, X. Heterostructures Built in Metal Hydrides for Advanced Hydrogen Storage Reversibility. Adv. Mater. 2020, 32, 2002647. [CrossRef] [PubMed]

200. Dekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen and Storage Properties of Palladium and Related Nanomaterials: Shape, Size, Alloying, and Metal–Organic Framework Coating Effects. ChemPhysChem 2019, 20, 1158–1176. [CrossRef] [PubMed]

201. Yang, X.; Ji, L.; Yan, N.; Sun, Z.; Lu, X.; Zhang, L.; Zhu, X.; Chen, L. Superior catalytic effect of FeCo nanosheets on MgH2 for hydrogen storage. Dalton Trans. 2019, 48, 12699–12706. [CrossRef]

202. Yang, X.; Hou, Q.; Yua, L.; Zhang, J. Improvement of the hydrogen storage characteristics of MgH2 with a flake Ni nano-catalyst composite. Dalton Trans. 2021, 50, 1797. [CrossRef]

203. Duan, C.; Cao, Y.; Hu, L.; Fu, D.; Ma, J.; Youngblood, J. An efficient mechanochemical synthesis of alpha-aluminum hydride: Synergistic effect of Ti3 in the crystallization rate and selective formation of alpha-aluminum hydride polymorph. J. Hazard. Mater. 2019, 373, 141–151. [CrossRef]

204. Huang, X.; Xiao, X.; Zhang, W.; Fan, X.; Zhang, L.; Cheng, C.; Li, S.; Ge, H.; Wang, Q.; Chen, L. Transition metal (Co, Ni) nanoparticles wrapped with carbon and their superior catalytic activities for the reversible hydrogen storage of magnesium hydride. Phys. Chem. Chem. Phys. 2017, 19, 4019–4029. [CrossRef]

205. Chen, Y.; Dai, J.; Song, Y. Catalytic mechanisms of TiH2 thin layer on dehydrogenation behavior of fluorite-type MgH2: A first principles study. Int. J. Hydrogen Energy 2020, 45, 21600–21610. [CrossRef]

206. Zhao, S.; Liang, L.; Liu, B.; Wang, L.; Liang, F. Superior Dehydrogenation Performance of α-AlH3 Catalyzed by Li3N: Realizing 8.0 wt.% Capacity at 100 °C. Small 2022, 18, 2107983. [CrossRef]

207. Dun, C.; Jeong, S.; Liu, Y.-S.; Leick, N.; Mattyo, T.M.; Guo, J.; Lee, J.-W.; Gennett, T.; Stavila, V.; Urban, J.J. Additive Distabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure. Small 2021, 17, 2101989. [CrossRef] [PubMed]

208. Ding, Z.; Zhang, L.; Fu, Y.; Wang, W.; Wang, Y.; Bi, J.; Li, Y.; Han, S. Enhanced kinetics of MgH2 via in situ formed catalysts derived from MgCCO1.5Ni1.5 3 Alloys Compd., 2022, 182, 53621. [CrossRef]

209. Ding, Z.; Fu, Y.; Wang, Y.; Bi, J.; Zhang, L.; Peng, D.; Li, Y.; Han, S. MgCNi3 prepared by powder metallurgy for improved hydrogen storage properties of MgH2. Int. J. Hydrogen Energy 2019, 44, 8347–8356. [CrossRef]

210. Ding, X.; Ding, H.; Song, Y.; Xiang, C.; Li, Y.; Zhang, Q. Activity-Tuning of Supported Co–Ni Nanocatalysts via Composition and Morphology for Hydrogen Storage in MgH2. Front. Chem. 2020, 7, 937. [CrossRef]

211. Patelli, N.; Migliori, A.; Pasquini, L. Reversible metal-hydride transformation in Mg-Ti-H nanoparticles at remarkably low temperatures. Chem. Phys. Chem. 2019, 20, 1325–1333. [CrossRef]

212. Kumar, S.; Pavlovidis, T.; Singh, V.; Nguyen, H.; Steinhauser, S.; Pursell, C.; Clemens, B.; Kioseoglou, J.; Grammatikopoulos, P.; Sowwan, M. Hydrogen Flux through Size Selected Pd Nanoparticles into Underlying Mg Nanofilms. Adv. Energy Mater. 2019, 8, 1701326. [CrossRef]

213. Rossin, A.; Tucci, G.; Luconi, L.; Giambastiani, G. Metal–Organic Frameworks as Heterogeneous Catalysts in Hydrogen Production from Lightweight Inorganic Hydrides. ACS Catal. 2017, 7, 5035–5045. [CrossRef]

214. Sun, Y.; Aguey-Zinsou, K.-F. Light-activated hydrogen storage in Mg, LiH and NaAlH4. ChemPlusChem 2018, 83, 904–908. [CrossRef]

215. White, J.L.; Baker, A.A.; Marcus, M.A.; Snider, J.L.; Wang, T.C.; Lee, J.R.I.; Kilcoyne, D.A.L.; Allendorf, M.D.; Stavila, V.; Gabaly, F.E. The Inside-Outs of Metal Hydride Dehydrogenation: Imaging the Phase Evolution of the Li-N-H Hydrogen Storage System. Adv. Mater. Interfaces 2020, 7, 1901905. [CrossRef]

216. Bannenberg, L.J.; Heere, M.; Benzidi, H.; Montero, J.; Dematteis, E.M.; Suwarno, S.; Jaron, T.; Winny, M.; Orłowski, P.A.; Wegner, W.; et al. Metal (boro-) hydrides for high energy density storage and relevant emerging technologies. Int. J. Hydrogen Energy 2020, 45, 33687–33730. [CrossRef]

217. Kim, H.; Choi, W.I.; Jang, Y.; Balasubramanian, M.; Lee, W.; Park, G.O.; Park, S.B.; Yoo, J.; Hong, J.S.; Choi, Y.-S.; et al. Exceptional Lithium Storage in a Co(OH)2 Anode: Hydride Formation. ACS Nano 2018, 12, 2909–2921. [CrossRef] [PubMed]
218. Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellosta von Colbe, J.M.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrogen Energy 2019, 44, 7809–7859. [CrossRef]

219. Zhang, B.; Wu, Y. Recent advances in improving performances of the lightweight complex hydrides Li-Mg-N-H system. Prog. Nat. Sci. 2017, 27, 21–33. [CrossRef]

220. Zhang, J.; Zhu, Y.; Yao, L.; Xu, C.; Liu, Y.; Li, L. State of the art multi-strategy improvement of Mg-based hydrides for hydrogen storage. J. Alloys Compd. 2019, 782, 796–823. [CrossRef]

221. El-Eskandarany, M.S. Recent developments in the fabrication, characterization and implementation of MgH2-based solid-hydrogen materials in the Kuwait Institute for Scientific Research. RSC Adv. 2019, 9, 9907. [CrossRef] [PubMed]

222. Zhang, X.; Liu, H.; Ren, Z.; Zhang, X.; Hu, J.; Huang, Z.; Lu, Y.; Gao, M.; Pan, H. Realizing 6.7 wt% reversible storage of hydrogen at ambient temperature with non-confined ultramagne hydroxide. Energy Environ. Sci. 2021, 14, 2302–2313. [CrossRef]

223. Wang, N.; Huang, S. Molecular dynamics study on magnesium hydride nanoclusters with machine-learning interatomic potential. Phys. Rev. B 2020, 102, 094111. [CrossRef]

224. Gigante, A.; Leick, N.; Lipton, A.S.; Tran, B.; Strange, N.A.; Bowden, M.; Martinez, M.B.; Moury, R.; Gennett, T.; Hagemann, H.; et al. Thermal Conversion of Unsolvated Mg(B2H6)2 to BH4− in the Presence of Mg2+. ACS Appl. Energy Mater. 2021, 4, 3737–3747. [CrossRef]

225. Duan, C.; Su, Z.; Cao, Y.; Hu, L.; Fu, D.; Ma, J.; Zhang, Y. Synthesis of core-shell α-AlH3@Al(OH)3 nanocomposite with improved low-temperature dehydriding properties by mechaehemical mixing and ionic liquid treatment. J. Chem. Prod. 2021, 283, 124635. [CrossRef]

226. Yu, X.; Tang, Z.; Sun, D.; Ouyang, L.; Zhu, M. Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog. Mater. Sci. 2017, 88, 1–48. [CrossRef]

227. Duan, C.; Su, Z.; Cao, Y.; Hu, L.; Fu, D.; Ma, J.; Zhang, Y. Synthesis of core-shell α-AlH3@Al(OH)3 nanocomposite with improved low-temperature dehydriding properties by mechaehemical mixing and ionic liquid treatment. J. Chem. Prod. 2021, 283, 124635. [CrossRef]

228. Zhao, Y.; Mei, Z.; Zhao, F.-Q.; Xu, S.-Y.; Ju, X.-H. Thermal Decomposition Mechanism of 1,3,5,7-Tetranitro-1,3,5,7-tetrazocane Accelerated by Nano-Aluminum Hydride (AlH3): ReaxFF-Lg Molecular Dynamics Simulation. ACS Omega 2020, 5, 23193–23200. [CrossRef]

229. Jiang, W.; Wang, H.; Zhu, M. AlH3 as a hydrogen storage material: Recent advances, prospects and challenges. Rare Met. 2021, 40, 3337–3356. [CrossRef]

230. Zhang, X.; Zhang, W.; Zhang, L.; Huang, Z.; Hu, J.; Gao, M.; Pan, H.; Liu, Y. Single-pot solvothermal strategy toward support-free nanostructured LiBH4 featuring 12 wt% reversible hydrogen storage at 400 °C. Chem. Eng. J. 2022, 428, 132566. [CrossRef]

231. Xian, K.; Nie, B.; Li, Z.; Gao, M.; Li, Z.; Shang, C.; Liu, Y.; Guo, Z.; Pan, H.; TiO2 decorated porous carbonaceous network structures offer confinement, catalysis and thermal conductivity for effective hydrogen storage of LiBH4. Chem. Eng. J. 2021, 407, 127156. [CrossRef]

232. Wang, X.-K.; Zhao, Y.; Zhao, F.-Q.; Xu, S.-Y.; Ju, X.-H. Atomic perspective revealing for combustion evolution of nitromethane/nano-aluminum hydride composite. J. Mol. Graph. Model. 2021, 108, 107987. [CrossRef]

233. Liu, H.; Zhang, L.; Ma, H.; Lu, C.; Luo, H.; Wang, X.; Huang, X.; Lan, Z.; Guo, J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J. Energy Chem. 2021, 52, 428–440. [CrossRef]

234. Rahm, J.M.; Löfgren, J.; Erhart, P. Quantitative predictions of thermodynamic hysteresis: Temperature-dependent character of the phase transition in Pd-H. Acta Mater. 2022, 227, 117697. [CrossRef]

235. Huen, P.; Peru, F.; Charalambopoulou, G.; Steriotes, T.A.; Jensen, T.R.; Ravnsbæk, D.B. Nanoconfined NaAlH4 Conversion Electrodes for Li Batteries. ACS Omega 2017, 2, 1956–1967. [CrossRef]

236. Dematteis, E.M.; Pistidda, C.; Dornheim, M.; Baricco, M. Exploring Ternary and Quaternary Mixtures in the LiBH4-NaBH4-KBH4-Mg(BH4)2-Ca(BH4)2 System. ChemPhysChem 2019, 20, 1348–1359. [CrossRef]

237. Zhang, W.; Zhang, X.; Huang, Z.; Liu, H.-W.; Gao, M.; Pan, H.; Liu, Y. Recent Development of Lithium Borohydride-Based Materials for Hydrogen Storage. Adv. Energy Sustain. Res. 2021, 2, 2100073. [CrossRef]

238. Wu, R.; Ren, Z.; Zhang, X.; Lu, Y.; Li, H.; Gao, M.; Pan, H.; Liu, Y. Nanosheet-like Lithium Borohydride Hydrate with 10 wt % Hydrogen Release at 70 °C as a Chemical Hydrogen Storage Candidate. J. Phys. Chem. Lett. 2019, 10, 1872–1877. [CrossRef] [PubMed]

239. Puszkiel, J.; Gasnier, A.; Amica, G.; Gennari, F. Tuning LiBH4 for Hydrogen Storage: Destabilization, Additive, and Nanoconfine ment Approaches. Molecules 2020, 25, 163. [CrossRef]

240. Bergemann, N.; Pistidda, C.; Uptmoo, M.; Milanese, C.; Santoru, A.; Emmler, T.; Puszkiel, J.; Dornheim, M.; Klassen, T. A new mutually destabilized reactive hydride system: LiBH4-Mg2NiH4. J. Energy Chem. 2019, 34, 240–254. [CrossRef]

241. Wang, T.; Aguey-Zinsou, K.-F. Controlling the growth of NaBH4 nanoparticles for hydrogen storage. Int. J. Hydrogen Energy 2020, 45, 2054–2067. [CrossRef]

242. White, J.L.; Strange, N.A.; Sugar, J.D.; Snider, J.L.; Schneemann, A.; Lipton, A.S.; Toney, M.F.; Allendorf, M.D.; Stavila, V. Melting of Magnesium Borohydride under High Hydrogen Pressure: Thermodynamic Stability and Effects of Nanoconfinement. Chem. Mater. 2020, 32, 5604–5615. [CrossRef]
243. Albanese, E.; Corno, M.; Baricco, M.; Civalleri, B. Simulation of nanosizing effects in the decomposition of Ca(BH$_4$)$_2$ through atomistic thin film models. Res. Chem. Intermed. 2021, 47, 345–356. [CrossRef]

244. Demirci, U.B. Ammonia borane, a material with exceptional properties for chemical hydrogen storage. Int. J. Hydrogen Energy 2017, 42, 9978–10013. [CrossRef]

245. Demirci, U.B. Mechanistic insights into the thermal decomposition of ammonia borane, a material studied for chemical hydrogen storage. Inorg. Chem. Front. 2021, 8, 1900–1930. [CrossRef]

246. Demirci, U.B. Ammonia Borane: An Extensively Studied, Though Not Yet Implemented, Hydrogen Carrier. Energies 2020, 13, 3071. [CrossRef]

247. Diaz, L.B.; Hanlon, J.M.; Bielewski, M.; Milewska, A.; Gregory, D.H. Ammonia Borane Based Nanocomposites as Solid-State Hydrogen Stores for Portable Power Applications. Energy Technol. 2018, 6, 583–594. [CrossRef]

248. Liu, S.; Zhang, X.; Jiang, L. 1D Nanoconfined Ordered-Assembly Reaction. Adv. Mater. Interfaces 2019, 6, 1900104. [CrossRef]

249. Chen, Z.; Kirlikovali, K.O.; Idrees, K.B.; Wasson, M.C.; Farha, O.K. Porous materials for hydrogen storage. Chem 2022, 8, 693–716. [CrossRef]

250. Ali, N.A.; Sazelee, N.A.; Ismail, M. An overview of reactive hydride composite (RHC) for solid-state hydrogen storage materials. Int. J. Hydrogen Energy 2021, 46, 31674–31698. [CrossRef]

251. Broom, D.P.; Webb, C.J. Pitfalls in the characterisation of the hydrogen sorption properties of materials. Int. J. Hydrogen Energy 2017, 42, 29320–29343. [CrossRef]

252. Wang, X.; Song, S.; Zhang, H. A redox interaction-engaged strategy for multicomponent nanomaterials. Chem. Soc. Rev. 2020, 49, 736–764. [CrossRef]

253. Wu, P.; Tan, S.; Moon, J.; Yan, Z.; Fung, V.; Li, N.; Yang, S.-Z.; Cheng, Y.; Abney, C.W.; Wu, Z.; et al. Harnessing strong metal–support interactions via a reverse route. Nat. Commun. 2020, 11, 3042. [CrossRef]