Complete mitochondrial genome of *Clistocoeloma sinensis* (Brachyura: Grapsoidea): Gene rearrangements and higher-level phylogeny of the Brachyura

Zhao-Zhe Xin, Yu Liu, Dai-Zhen Zhang, Xin-Yue Chai, Zheng-Fei Wang, Hua-Bin Zhang, Chun-Lin Zhou, Bo-Ping Tang & Qiu-Ning Liu

Deciphering the animal mitochondrial genome (mitogenome) is very important to understand their molecular evolution and phylogenetic relationships. In this study, the complete mitogenome of *Clistocoeloma sinensis* was determined. The mitogenome of *C. sinensis* was 15,706 bp long, and its A+T content was 75.7%. The A+T skew of the mitogenome of *C. sinensis* was slightly negative (−0.020). All the transfer RNA genes had the typical cloverleaf structure, except for the *trnS1* gene, which lacked a dihydroxyuridine arm. The two ribosomal RNA genes had 80.2% A+T content. The A+T-rich region spanned 684 bp. The gene order within the complete mitogenome of *C. sinensis* was identical to the pancrustacean ground pattern except for the translocation of *trnH*. Additionally, the gene order of *trnI-trnQ-trnM* in the pancrustacean ground pattern becomes *trnQ-trnI-trnM* in *C. sinensis*. Our phylogenetic analysis showed that *C. sinensis* and *Sesarmops sinensis* cluster together with high nodal support values, indicating that *C. sinensis* and *S. sinensis* have a sister group relationship. The results support that *C. sinensis* belongs to Grapsoidea, Sesarmidae. Our findings also indicate that Varunidae and Sesarmidae species share close relationships. Thus, mitogenomes are likely to be valuable tools for systematics in other groups of Crustacea.
its evolutionary status and rearrangement information by comparing it with complete Brachyuran mitogenomes available to date. This information may provide insights into phylogenetic rearrangement and enable phylogenetic analysis.
Methods
Sample and DNA Extraction. Adult specimens of *C. sinensis* were captured from Yancheng, Jiangsu province, China. Total genomic DNA was isolated from individual specimens using the Aidlab Genomic DNA Extraction Kit (Beijing, China). All procedures were completed following the manufacturer's instructions. The complete mitogenome was amplified from the DNA from one *C. sinensis* crab.

PCR Amplification and Sequencing. The complete mitogenome was obtained using a combination of conventional PCR and long PCR to amplify overlapping fragments spanning the whole mitogenome. Universal and specific primers were designed based on the conserved nucleotide sequences of known mitochondrial sequences in Brachyura (Table 1) and synthesized by Beijing Sunbiotech. The fragments were amplified using Aidlab Red Taq (Beijing, China) according to the manufacturer's instructions. All amplifications were performed on an Eppendorf Mastercycler and Mastercycler gradient in 50 µl reaction volumes with 5 µl 10 × Taq Buffer (Mg⁺²⁺) (Aidlab), 4 µl of dNTPs (2.5 mM, Aidlab), 2 µl of each primer (10 µM), 2 µl of DNA template (~30 ng), 34.5 µl ddH₂O, and 0.5 µl Red Taq DNA polymerase (5 U, Aidlab). PCR was performed using the following procedure: 94 °C for 3 min; followed by 40 cycles of 30 s at 94 °C, annealing for 35 s at 48–56 °C (depending on primer combination), and elongation at 72 °C for 10 min. The PCR products were separated by agarose gel electrophoresis (1% w/v) and purified using a DNA

Table 3. Summary of *Clistocoeloma sinensis* mitogenome.

Gene	Direction	Location	Size	Intergenic nucleotides	Anticodon	Start codon	Stop codon
cox1	F	1–1535	1535	0	ATG	TA	
trnL2	F	1536–1601	66	0	TAA		
cox2	F	1608–2295	688	0	ATG	T	
trnK	F	2296–2365	70	0	TTT		
trnD	F	2366–2433	68	0	GTC		
atp8	F	2434–2592	159	–7	ATG	TAA	
atp6	F	2586–3259	674	0	ATT	TA	
cox3	F	3260–4050	791	0	ATG	TA	
trnG	F	4051–4115	65	0	TCC		
nad3	F	4116–4466	351	2	ATT	TAA	
trnA	F	4469–4532	64	5	TGC		
trnR	F	4538–4601	64	2	TCG		
trnN	F	4604–4674	71	1	GGT		
trnS1	F	4676–4743	68	–1	TCT		
trnE	F	4743–4810	68	9	TTC		
trnH	R	4820–4886	67	0	GTG		
trnF	R	4887–4951	65	4	GAA		
nad5	R	4956–6686	1731	0	ATG	TAA	
nad4	R	6687–8065	1379	0	ATG	TA	
nad4L	R	8066–8361	296	7	ATG	A	
trnT	F	8369–8434	66	0	TGT		
trnP	R	8435–8502	68	2	TGG		
nad6	F	8505–9008	504	0	ATT	TAA	
cob	F	9009–10,143	1135	0	ATT	A	
trnS2	F	10,144–10,212	69	18	TGA		
nad1	R	10,231–11,169	939	59	ATA	TAA	
trnL1	R	11,209–11,276	68	0	TAG		
trnL	R	11,277–12,612	1336	0	TAC		
trnY	R	12,613–12,685	73	0	TAC		
trnS5	R	12,686–13,517	832	0			
CR	—	13,518–14,201	684	0			
trnQ	R	14,202–14,269	68	70	TTG		
trnI	F	14,304–14,405	66	12	GAT		
trnM	F	14,418–14,487	70	0	CAT		
nad2	F	14,488–15,493	1006	0	ATG	T	
trnW	F	15,494–15,562	69	11	TCA		
trnC	R	15,574–15,637	64	0	GCA		
trnY	R	15,638–15,706	69	—	GTA		
Figure 1. Graphical map of the mitogenome of *Clistocoeloma sinensis*. Protein-coding and ribosomal RNA genes are shown using standard abbreviations. Genes for transfer RNAs are abbreviated using a single letter. S1 = AGN, S2 = UCN, L1 = CUN, L2 = UUR. CR = control region. The 13 protein-coding genes are yellow, tRNAs are green, rRNAs are red, and CRs are dark red.

species	Size (bp)	A %	G %	T %	C %	A+T %	A+T skew	G+C skew
C. sinensis	15,706	37.1	9.4	38.6	14.9	75.7	−0.020	−0.228
S. sinensis	15,905	37.4	9.4	38.3	14.9	75.7	−0.012	−0.228
H. lattimena	16,246	34.0	11.0	35.1	19.9	69.1	−0.017	−0.290
G. paia	15,548	35.1	10.3	34.8	19.9	69.9	0.006	−0.313
P. sanguinolentus	16,024	31.6	12.9	34.0	21.5	65.6	−0.037	−0.243
E. j. sinensis	16,378	35.2	10.8	36.4	17.6	71.6	−0.016	−0.243
E. j. hepuensis	16,335	35.1	10.8	36.4	17.7	71.5	−0.018	−0.245
E. j. japonica	16,352	35.2	10.7	36.5	17.7	71.7	−0.018	−0.245
X. testudinatus	15,798	36.7	9.3	37.2	16.8	73.9	−0.007	−0.286
P. gigas	15,515	35.0	10.8	35.5	18.7	70.5	−0.006	−0.268
G. dehaami	18,197	36.9	8.3	38.0	16.8	74.9	−0.014	−0.341
L. brevifrons	16,112	34.2	11.3	36.4	18.1	70.6	−0.031	−0.231
C. rapidus	16,263	34.2	11.1	34.9	19.8	69.1	−0.011	−0.279
P. trituberculatus	16,026	33.3	11.3	36.9	18.5	70.2	−0.051	−0.241
H. malayensis	15,793	37.3	10.0	34.4	18.3	71.7	0.040	−0.292
C. japonica	15,738	33.8	11.9	35.4	18.9	69.2	−0.024	−0.228
S. paramamosain	15,824	34.9	10.1	38.2	16.8	73.1	−0.045	−0.247
U. orientalis	15,466	33.1	11.8	34.9	20.2	68.0	−0.027	−0.262
S. olivacea	15,723	33.5	11.2	35.9	19.4	69.4	−0.035	−0.267
S. tranquebarica	15,833	35.0	9.8	38.7	16.5	73.7	−0.050	−0.258
S. serrata	15,775	34.5	10.4	38.0	17.1	72.5	−0.047	−0.242
D. spinosisimus	15,817	33.3	10.5	36.9	19.4	70.1	−0.050	−0.294
C. ferdia	15,660	34.1	11.2	36.1	18.6	70.2	−0.028	−0.246
G. yunohana	15,567	34.3	10.8	35.6	19.3	69.9	−0.019	−0.281
P. pelagicus	16,157	33.7	12.2	35.0	19.1	68.8	−0.019	−0.219
A. alveae	15,620	34.4	11.4	32.4	21.8	66.8	0.029	−0.316
A. rodriguezensis	15,611	35.3	10.3	33.5	20.9	68.8	0.025	−0.341
P. crassipes	15,652	30.5	12.7	35.8	21.0	66.3	−0.080	−0.245
I. deschampsi	15,460	34.1	10.7	35.5	19.7	69.6	−0.019	−0.294

Table 4. Composition and skewness of mitogenome in 29 Brachyura species.
gel extraction kit (Transgen, Beijing, China). The purified products were then ligated into the T-vector (Sangon, Shanghai, China) and sequenced.

Complete Mitogenome Analysis. The graphical map of the complete mitogenome was drawn using the online mitochondrial visualization tool mtviz. The secondary cloverleaf structure and anticodon of transfer RNAs were identified using the tRNA-scan SE webserver. Codon usage and the nucleotide composition of the mitogenome were determined using MEGA6. The sequences of 29 Brachyura species and *Alpheus distinguendus* were aligned using MAFFT.

Phylogenetic Analysis. Twenty-eight complete Brachyura mitogenomes were downloaded from GenBank (https://www.ncbi.nlm.nih.gov/genbank/). In addition, the mitogenome of *A. distinguendus* was downloaded from GenBank and used as an outgroup taxon. GenBank sequence information is shown in Table 2.

The sequences were aligned with the mitochondrial sequences of closely related species. In order to remove the gaps in sequences, poorly aligned positions and divergent regions were removed using Gblocks. Then, fasta sequences were converted to nex format sequences and phylip format sequences for Bayesian inference (BI) and Maximum likelihood (ML) analyses using online software (http://sequenceconversion.bugaco.com/converter/biology/sequences/fasta_to_phylip.php). We used DAMBE to detect the saturation status of the sequences.

We determined the taxonomic status of *C. sinensis* within Brachyura by reconstructing the phylogenetic tree. Nucleotide sequences from 30 mitogenome PCGs were combined. The dataset was run using two inference methods: BI and ML analyses. The former was performed using Mrbayes v3.2.1, while ML analysis was performed using raxmlGUI. The nucleotide substitution model was selected using Akaike information criterion implemented in Mrmodeltest v2.3. The GTR+I+G model was the best model to examine nucleotide phylogenetic
analysis and molecular evolution. BI and ML analyses were performed under the GTRCAT model with nucleotide alignment (NT dataset) of the 13 mitochondrial PCGs. ML analyses were performed on 1000 bootstrapped datasets. The BI analysis ran as 4 simultaneous MCMC chains for 10,000,000 generations, sampled every 100 generations, and a burn-in of 5000 generations was used. The average standard deviation of split frequencies was less than 0.01, and the effective sample size determined using tracer v1.6 exceeded 200. These two findings indicate that our data was convergent. The resulting phylogenetic trees were visualized using FigTree v1.4.2.

Figure 3. Secondary structures of the 22 transfer RNA genes of Clistocoeloma sinensis. The tRNAs are labelled with the abbreviations of their corresponding amino acids. Dashes (−) indicate Watson-Crick pairing.
Results and Discussion

Genome Structure and Organization. The mitogenome of *C. sinensis* is 15,706 bp long, and its gene content and arrangement are similar to that of other known Brachyura: 13 PCGs, 2 rRNA genes, and 22 tRNA genes plus CR (Table 3 and Fig. 1). Twenty-three genes are coded on the J strand and the remaining 14 genes are transcribed on the N strand. It has been deposited in GenBank under accession number KU589292. The genome composition (A: 37.1%, T: 38.6%, C: 14.9%, G: 9.4%) shows a strong A+T bias, which accounts for 75.7% of the bases, and exhibits a negative AT skew (−0.080) and GC skew (−0.020) (Table 5). The A+T skews of other previously sequenced Brachyura mitogenomes ranged from −0.020 (Pachygrapsus crassipes) to 0.040 (Homologenus malayensis), while the G+C skew ranged from −0.341 (Austinsogastra rodriquezii, Geothelphusa dehaani) to 0.219 (Portunus pelagicus) (Table 4). However, different regions have different A+T contents. The CR had the highest A+T content (82.9%), whereas the PCG region had the lowest A+T content (74.2%) (Table 5).

Protein-Coding Genes. Among the 13 PCGs, 9 (*nad2*, *cox1*, *cox2*, *atp8*, *atp6*, *cox3*, *nad3*, *nad6*, and *cob*) were coded on the J strand, while the rest (*nad4*, *nad4L*, *nad5L*, and *nad1*) were on the N strand. The 13 PCGs ranged in size from 159 to 1731 bp (Table 3). Their A+T content was 74.2% and AT skew was −0.026 (Table 5). The relative synonymous codon usage for *C. sinensis* at the third position is shown in Fig. 2. The usage of the two- and four-fold degenerate codons was biased toward the use of codons abundant in A or T (Table 6), which is consistent with other Brachyura species35–37.

Transfer RNAs, Ribosomal RNAs, and A+T-Rich Region. Like most Brachyura mtDNA, the *C. sinensis* mitogenome contains a set of 22 tRNAs (Fig. 3), although this feature is not very well conserved in animal mtDNA. The tRNAs ranged in size from 64 to 73 bp and showed a strong A+T bias, as these bases accounted for 76.2% of the DNA. Further, they exhibited a negative AT skew (−0.010) (Table 5). Fourteen tRNA genes were present on the J strand and eight were on the N strand. All the tRNA genes had the typical cloverleaf structure, except for the *trnH* gene, whose dihydroxyuridine arm was instead just a simple loop (Fig. 3). These features are common in most Brachyura mitogenomes35–37. The secondary cloverleaf structure of 18 tRNAs was examined using tRNA-scan SE; 4 tRNAs not detected by tRNA-scan-SE were found in the unannotated regions by sequence analysis. The 2 rRNA genes with 80.2% total A+T content and positive AT skew were located between the *rrn15* and *rrn18* regions (Table 5).

Gene Arrangement. Gene order within the complete mitogenome of *C. sinensis* is similar to the pancrustacean ground pattern38–40 (Fig. 4A), except for the translocation of *trnH*. Typically, the *trnH* gene is located between the *nad4* and *nad5* genes in the pancrustacean ground pattern, but in *C. sinensis*, it is between the *trnE* and *trnF* genes (Fig. 4B). This translocation was also observed in the mitogenomes of Brachyura crabs available in GenBank that were compared with the *C. sinensis* mitogenome. In addition, in the pancrustacean ground pattern, the tRNA gene order between the CR and *nad2* is *rrnL-trnL-trnQ-trnM*. However, in *C. sinensis*, it is *trnQ-trnL-trnM* (Fig. 4B). The tRNA rearrangements are generally considered to be a consequence of tandem duplication of part of the mitogenome41. Similar non-coding sequences are present at the position of *trnL* originally occupied by the transposed *trnQ* in *C. sinensis*. Because these intergenic sequences have similar lengths to those of typical tRNA genes, they were presumed to be remnants of the *trnQ* gene and its boundary sequences42. The gene order

Codon	Count	RSCU									
UUU(F)	291	1.75	UCU(S)	111	2.44	UAU(Y)	140	1.76	UGU(C)	27	1.8
UUC(F)	42	0.25	UCC(S)	14	0.31	UAC(Y)	19	0.24	UGC(C)	3	0.2
UUA(L)	401	4.24	UCA(S)	96	2.11	UAA(*)	8	2	UGA(W)	89	1.82
UUG(L)	45	0.48	UCG(S)	3	0.07	UAG(*)	0	0	UGG(W)	9	0.18
CUC(L)	10	0.11	CCC(P)	90	2.61	CAU(H)	16	1.68	CGU(R)	16	1.25
CU(A)	49	0.52	CCA(Q)	40	1.16	CAA(Q)	70	1.94	CGA(R)	32	2.51
CUG(L)	2	0.02	CCG(P)	2	0.06	CAG(Q)	2	0.06	CGG(R)	3	0.24
AU(U)	312	1.85	ACU(T)	86	2.21	AUA(N)	128	1.74	AGU(S)	47	1.03
AUC(U)	26	0.15	ACC(T)	13	0.33	AAG(K)	19	0.26	AGC(S)	1	0.02
AUA(M)	203	1.76	ACA(T)	55	1.41	AAA(K)	82	1.71	AGA(S)	77	1.69
AUG(M)	28	0.24	ACG(T)	2	0.05	AAG(K)	14	0.29	AGG(S)	15	0.33
GUU(V)	85	1.6	GCU(A)	113	2.46	GAU(D)	50	1.64	GUG(G)	72	1.34
GUC(V)	5	0.09	GCC(A)	11	0.24	GAC(D)	11	0.36	GGC(G)	9	0.17
GUA(V)	115	2.17	GCA(A)	54	1.17	GAA(E)	66	1.74	GGA(G)	117	2.18
GUG(V)	7	0.13	GCC(A)	6	0.13	GAG(E)	10	0.26	GGG(G)	17	0.32

Table 6. The codon number and relative synonymous codon usage in *Clistocoeloma sinensis* mitochondrial protein coding genes.
of *C. sinensis* is identical to that of *S. sinensis* (Fig. 4B), which indicates that *C. sinensis* may belong to the group Sesarmidae of the superfamily Grapsoidea and that *C. sinensis* and *S. sinensis* probably belong to sister groups.

The gene sequences of Varunidae species (*Eriocheir japonica sinensis*, *E. japonica hepuensis*, *E. japonica japonica*, and *Helice latimera*) are identical (Fig. 4C). As shown in Fig. 4D, the order and orientation of genes in 7 families are uniform. The order of genes in *C. sinensis* sequences is different from that in the sequences of the mitogenomes of these 7 families because of the rearrangement of two tRNA genes between CR and trnM: the placement of genes between CR and trnM in *C. sinensis* is CR-trnQ-trnI-trnM, while that in the 7 families is CR-trnI-trnQ-trnM. In this case, tandem duplication of gene regions may be the most likely mechanism for mitochondrial gene rearrangement, which includes trnI and trnQ, followed by loss of supernumerary genes. Slipped-strand mispairing occurred first, followed by gene deletion. Partial PCGs, tRNAs, and rRNAs of *Damithrax spinosissimus*, *G. dehaami*, and *Xenograpsus testudinatus* appear to be rearranged compared to *C. sinensis* (Fig. 4E–G).

Phylogenetic analysis. Our analyses were based on the NT dataset in mitogenomes derived from 29 Brachyura species belonging to 12 families (Varunidae, Xenograpsidae, Homolidae, Menippidae, Mithracidae, Potamidae, Portunidae, Raninidae, Bythograeidae, Sesarmidae, Grapsidae, and Dotillidae). The data matrix (15,706 bp in all) was analysed using the model-based evolutionary methods of BI and ML analyses (Fig. 5). The ML and BI analyses of the dataset gave the same tree topology. It is obvious that *C. sinensis* and *S. sinensis* clustered in one branch in the phylogenetic tree with high nodal support values (Fig. 5), indicating that *C. sinensis*
and *S. sinensis* have a sister group relationship. This result supported that *C. sinensis* belongs to Grapsoidae, Sesarmidae. From the phylogenetic tree, we found that *X. testudinatus* and two Sesarmidae species formed a group and showed close relationships. *X. testudinatus*, which was originally placed in Varunidae, has been transferred to its own family (Xenograpsidae)21–30. Analysis of the 124 13 mitochondrial PCGs using BI and ML showed that *E. j. sinensis*, *E. j. hepensis*, *E. j. japonica*, and *H. latimera* clustered together with high statistical support, showing that these species have a sister group relationship and belong to Grapsoidae, Varunidae. Our phylogenetic analysis indicated that Sesarmidae species, Xenograpsidae species and Varunidae species have close relationships31. In addition, *P. crassipes* belongs to Grapsidae, Grapsidae58.

The phylogenetic position of *Ilyoplax deschampsi* is always within Grapsidae31, 47, 49, 50. *I. deschampsi* belongs to the family Dotillidae, Ocyopodoidea. The real phylogenetic position of *I. deschampsi* should be closer to the Grapsoidae species that shown in Fig. 5. Recent studies on the genus *Ucides* have also shown similar classification31, 52. *G. dehaani* belongs to Potamidae, Potamidae53. However, the phylogenetic tree showed that Potamidae are associated closely with Varunidae, Grapsidae, Sesarmidae, Dotillidae, and Xenograpsidae. This result is in agreement to that inferred from 23 Brachyuran crabs, in which the author use the two mitogenomes24. Phylogenetic relationships between *I. deschampsi*, *G. dehaani* and Grapsidae species need to be reconsidered by integrating more mitogenomic data. More mitogenomic data will also lead to a better overall understanding the phylogenetic relationships among Brachyuran crabs.

Availability of data and materials

The data set supporting the results of this article is available at NCBI (KU589292).

References

1. Boore, J. L. Animal mitochondrial genomes. *Nucleic Acids Res.* 27, 1767–1780 (1999).

2. Simon, C. & Frati, F. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. *Ann. Entomol. Soc. Am.* 87, 651–701 (1994).

3. Cameron, S. L. Insect mitochondrial genomics: implications for evolution and phylogeny. *Annu. Rev. Entomol.* 59, 95–117 (2014).

4. Culotta, J. P. & Kocher, T. D. Mitogenomics: digging deeper with complete mitochondrial genomes. *Trends Ecol. Evol.* 14, 394–398 (1999).

5. Lin, C. P. & Danforth, B. N. How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. *Mol. Phylogen. Evol.* 30, 686–704 (2004).

6. Yu, J. N., Azuma, N. & Abe, S. Genetic differentiation between collections of hatchery and wild masu salmon (*Onchorhynchus masou*) inferred from mitochondrial and microsatellite DNA analysis. *Environ. Biol. Fish.* 94, 259–271 (2012).

7. Liu, Q. N. et al. The first complete mitochondrial genome for the subfamily Limaciidae and implications for the higher phylogeny of Lepadoptera. *Sci. Rep.* 6, 35878 (2016).

8. Zhang, S. et al. The application of mitochondrial DNA in phylogeny reconstruction and species identification of portunid crab. *Mar. Sci.* 32, 9–18 (2008).

9. Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. *Proc. Natl. Acad. Sci. USA* 110, 15758–15763 (2013).

10. Zhang, P. et al. Efficient sequencing of Anuran mtDNAs and a mitogenomic exploration of the phylogeny and evolution of frogs. *Mol. Biol. Evol.* 30, 1899–1915 (2013).

11. Roe, A. D. & Sperling, F. A. H. Patterns of evolution of mitochondrial cytochrome c oxidase I and II DNA and implications for DNA barcoding. *Mol. Phylogen. Evol.* 44, 325–345 (2007).

12. Foster, P. G. Modeling compositional heterogeneity. *Syst. Biol.* 53, 485–495 (2004).

13. Hickson, R. E., Simon, C. & Perrey, S. W. The performance of several multiple-sequence alignment programs in relation to secondary structure features for an rRNA sequence. *Mol. Biol. Evol.* 17, 530–539 (2000).

14. Guinot, D., Tavares, M. & Castro, P. Significance of the sexual openings and supplementary structures on the phylogeny of brachyuran crabs. *Crustacean Biol.* 34, 241–248 (2014).

15. Zhou, C., Gong, X., Han, J. & Guo, R. Removal of Pb(II) and Zn(II) from Aqueous Solutions by Raw Crab Shell: A Comparative study of adsorption and desorption. *Sci. Total Environ.* 508, 130–137 (2015).

16. Liu, Q. N. et al. Removal of heavy metals from aqueous solutions by crab shells: Adsorption, desorption, and thermal regeneration. *Environ. Sci. Pollut. Res.* 22, 7596–7605 (2015).

17. Sun, H. Y., Zhou, K. Y. & Song, D. X. Mitochondrial genome of the Chinese mitten crab *Eriocheir japonica* (Brachyura: Thoracotremata: Grapsoidea) reveals a novel gene order and two target regions of gene rearrangements. *Mol. Biol. Evol.* 32, 101–108 (2015).

18. Zhang, P. et al. Unusual sequence features and gene rearrangements of primitive crabs revealed by three complete mitochondrial genomes. *Genome Biol. Evol.* 4, 1899–1915 (2012).

19. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. *Mol. Biol. Evol.* 17, 540–552 (2000).

20. Abele, I. G. Comparison of morphological and molecular phylogeny of the Decapoda. *Mem. Queensl. Mus.* 31, 1–80 (1991).

21. Sun, X. J., Li, Q. & Kong, L. F. Comparative mitochondrial genomics within sea cucumber (*Apostichopus japonicus*): Provide new insights into relationships among color variants. *Aquaculture* 309, 280–285 (2010).

22. Lowe, T. M. & Eddy, S. R. RNASeq-SE: a program for improved detection of transfer RNA genes in genomic sequence. *Nucleic Acids Res.* 25, 955–964 (1997).

23. Katoh, K., Misawa, K., Kuma, K. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. *Nucleic Acids Res.* 30, 3052–3060 (2002).

24. Xia, X. & Xie, Z. DAMBE: software package for data analysis in molecular biology and evolution. *J. Hered.* 92, 371–373 (2001).

25. Ronquist, F., Huelsenbeck, J. P. & Teslenko, M. Draft MrBayes version 3.2 Manual. Tutorials and model summaries. Distributed with the software from http://nahme.biology.rochester.edu/software.html (2011).
32. Silvestro, D. & Michalak, J.raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).
33. Cui, B. K., Tang, L. P. & Dai, Y. C. Morphological and molecular evidences for a new species of Lignosus (Polyporales, Basidiomycota) from tropical China. Mycol. Prog. 10, 267–271 (2011).
34. Zhao, C. L. & Cui, B. K. A new species of Perenniporia (Polyporales, Basidiomycota) described from southern China based on morphological and molecular characters. Mycol. Prog. 11, 555–560 (2012).
35. Ma, H. et al. The complete mitochondrial genome sequence and gene organization of the mud crab (Scylla paramamosain) with phylogenetic consideration. Gene 519, 120–127 (2013).
36. Ma, H. et al. First mitochondrial genome for the red crab (Charybdis feriata) with implication of phylogenomics and population genetics. Sci. Rep. 5, 11524 (2015).
37. Ki, J. S., Dahms, H. U. & Hwang, J. S. The complete mitogome of the hydrothermal vent crab Xenogaropus textudinatus (Decapoda, Brachyura) and comparison with brachyuran crabs. Comp. Biochem. Physiol. D 4, 290–299 (2009).
38. Boore, J. L., Lvaroa, D. V. & Brown, W. M. Gene translocation links insects and crustaceans. Nature 392, 667–668 (1998).
39. Podsiadlowski, L. & Braband, A. The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida). BMC Genomics 7, 284 (2006).
40. Shen, X. et al. The complete mitochondrial genomes of two common shrimps (Listopenaeus vannamei and Fenneropenaeus chinensis) and their phylogenomic considerations. Gene 403, 98–109 (2007).
41. Jühling, F. et al. Improved systematic rRNA gene annotation allows new insights into the evolution of mitochondrial RNA structures and into the mechanisms of mitochondrial genome rearrangements. Nucleic Acids Res. 40, 2833–2845 (2012).
42. Gong, Y. J., Shi, B. C., Kang, Z. J., Zhang, F. & Wei, S. J. The complete mitochondrial genome of the oriental fruit moth Grapholitha molesta (Busck) (Lepidoptera: Tortricidae). Mol. Biol. Rep. 39, 2893–2900 (2012).
43. Rawlings, T. A., Collins, T. M. & Bieler, R. Changing identities: rRNA duplication and remodeling within animal mitochondrial genomes. Proc. Natl. Acad. Sci. USA 100, 15790–15795 (2003).
44. Shi, W., Gong, L. & Wang, S. Y. Tandem duplication and random loss for mitogenome rearrangement in Symphurus (Teleost: Pleuronectiformes). BMC Genomics 16, 355 (2015).
45. Stanton, D. J., Daehler, L. L., Moritz, C. C. & Brown, W. M. Sequences with the potential to form stem-and-loop structures are associated with coding-region duplications in animal mitochondrial DNA. Genetics 137, 233–241 (1994).
46. Ng, N. K., Davie, P. J. F. & Schubart, C. D. Xenogaropids, a new family of crabs (Crustacea: Brachyura) associated with shallow water hydrothermal vents. Raffles. B. Zool. 16, 233–256 (2007).
47. Schubart, C. D., Cannici, S. & Vannini, M. Molecular phylogeny of grapsoid crabs (Decapoda, Brachyura) and allies based on two mitochondrial genes and a proposal for refraining from current superfamly classification. J. Zoological Syst. Evol. Res. 44, 193–199 (2006).
48. B. J. & Boulding, E. G. Genetic structure and phylogeography of the liny shore crab, Pachygrapsus crassipes, along the northeastern and western Pacific coasts. Mar. Biol. 149, 213–226 (2006).
49. Schubart, C. D., Neigel, J. E. & Felder, D. L. Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustacean Issues 12, 817–830 (2000).
50. Kitaura, J., Wada, K. & Nishida, M. Molecular phylogeny of grapsoid and ocypodoid crabs with special reference to the genera Metaplax and Macrophthalmus. J. Crustacean Biol. 22, 682–693 (2002).
51. Broersing, A. & Tuerkay, M. Gastric teeth of some thoracotreme crabs and their contribution to the brachyuran phylogeny. J. Morphol. 272, 1109–1115 (2011).
52. Ng, N. K., Guinot, D. & Davie, P. J. F. Systema Brachyorum: part I. an annotated checklist of extant brachyuran crabs of the world. Raffles. B. Zool. 17, 1–286 (2008).
53. Okano, T., Suzuki, H. & Miura, T. Comparative biology of two Japanese freshwater crabs Geothelphusa exigua and G. dehaani (Decapoda, Brachyura, Potamidae). J. Crustacean Biol. 20, 299–308 (2000).

Acknowledgements
This work was supported by the National Natural Science Foundation of China (31672267 and 31640074), the Natural Science Foundation of Jiangsu Province (BK201604444), the Natural Science Foundation of Education Department of Jiangsu Province (15KJB240002, 12KJA180009, and 16KJA180008), the Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection (JLCBE14006), the Jiangsu Key Laboratory for Bioresources of Saline Soils (JKLBS2014013 and JKLBS2015004), the Yancheng City Agricultural Science and Technology Guiding Project (YKN2014022).

Author Contributions
Q.N.L. and B.P.T. conceived and designed the experiments. Q.N.L., Z.Z.X., and X.Y.C. performed the experiments. Q.N.L., Z.F.W., H.B.Z. and Z.Z.X. analyzed the data. D.Z.Z., C.L.Z. and B.P.T. contributed reagents and materials. Q.N.L. and Z.Z.X. wrote the paper. Z.Z.X., and Q.N.L. revised the paper.

Additional Information
Competing Interests: The authors declare that they have no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© The Author(s) 2017