A Lower Bound on the Energy Density in Classical and Quantum Field Theories

Aron C. Wall

1School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540, USA

(Dated: July 26, 2017)

A novel method for deriving energy conditions in stable field theories is described. In a local classical theory with one spatial dimension, a local energy condition always exists. For a relativistic field theory, one obtains the dominant energy condition. In a quantum field theory, there instead exists a quantum energy condition, i.e. a lower bound on the energy density that depends on information-theoretic quantities. Some extensions to higher dimensions are briefly discussed.

INTRODUCTION

Perhaps the most important and powerful concept in physics is “energy”. In addition to being closely associated with time evolution and conservation laws, the energy must normally be bounded below, in order for a physical system to possess a stable ground state.

In a local field theory, the energy H is the integral of a canonical energy density h, calculated using Noether’s theorem. In many classical field theories, h is itself a positive quantity; for example in the Klein-Gordon theory, the Hamiltonian takes the form $h = \frac{1}{2}(\partial_t \phi)^2 + \frac{1}{2}(\partial_i \phi)^2 \geq 0$. However, in certain theories such as Maxwell, the canonical energy density is not gauge invariant or positive, and it is necessary to add an “improvement term” in order to obtain a suitable energy density h^1. Since these improvement terms are total derivatives, they do not affect the integrated energy if the fields fall off fast enough at infinity.

In general relativity (GR), there is no covariant positive stress-tensor for the gravitational field itself, and the proof of the global positive energy theorem—which requires the matter fields to obey the dominant energy condition: $T_{ab} u^a u^b > 0$, for u^a in the future lightcone—is more subtle [5–7]. However, the physical motivation for assuming that any particular energy condition holds generally is unclear [5] (but cf. [9]). Worse, quantum field theory (QFT) violates all positive energy conditions written in terms of local quantum fields [10]. Once these field theories are coupled to gravity, this raises grave questions [11, 12] about whether global results such as singularity theorems [13–15] and theorems ruling out causality violations [16–22] still apply. Yet some of these results can still be proven from plausible nonlocal inequalities, involving integrals of the energy [23–31] and/or entropic quantities associated with various regions of spacetime [32–33].

This letter outlines a general method for proving that stable local field theories will necessarily possess geometrically localized energy conditions. That is, given the fact that an integrated energy density is positive, we will show that there always exists a lower bound on the energy density at any point. The nature of this lower bound will depend on the dimension, and also whether the theory is classical or quantum.

For a classical theory with d spatial dimensions, the lower bound on the energy density may depend on fields localized to a $d-1$ dimensional surface. When $d = 1$, this proves the existence of a strictly local energy condition. There is a potential loophole for gravitational theories, arising from the fact that the Hamiltonian energy density vanishes on-shell. But the result still applies if one restricts attention to the matter sector, on any background spacetime admitting a positive global energy.

The quantum case is more subtle. Here, the energy condition also depends on some purely information-theoretic quantities defined on one side of the $d-1$ dimensional surface. More precisely, the energy condition is “semilocal”, meaning that it is invariant under all unitary transformations on one side (and does not depend at all on the other side). A classic example of a semilocal quantity is the entanglement entropy of a region [36–39]. As we shall see, the stability of a QFT is closely related to Strong Subadditivity [40] of the entanglement entropy (which implies that the more strongly a quantum system A is entangled with a system B, the less strongly it can be entangled with another system C).

In many (perhaps all) QFT’s, this lower bound on the stress-energy tensor is given simply by a second derivative of the entanglement entropy. This suggests that a “quantum dominant energy condition” (QDEC) holds in every Lorentz-invariant QFT. A special case—the quantum null energy condition (QNEC)—has already been conjectured on the basis of quantum gravity arguments [33, 41] and proven for conformal vacua [41], free or superrenormalizable bosonic field theories [33, 42] and in certain holographic contexts [43, 44] (cf. [45]). However, the letter cannot rule out the possibility that in more complicated field theories, additional semilocal terms may need to be added to the QNEC to obtain the correct bound.

The core argument is simple yet novel. Whenever you have a global energy condition, the knowledge of all the information in a given region places a lower bound on the energy in the complementary region. Now when you learn more about this quantity, its range of allowed values narrows and hence the lower bound is nondecreasing. This basic logical truth turns out to imply the nontrivial field theory results stated above.
CLASSICAL $d = 1$ CASE

Suppose we have a classical field theory with one spatial dimension, parameterized by some coordinate x, and a set of fields $\phi_1(x) \ldots \phi_n(x)$, optionally satisfying certain local constraints of the form

$$C(\phi_1, \phi_1', \phi_1'' \ldots) = 0 \quad (1)$$

involving some finite maximum number D of x-derivatives. The field data may be specified arbitrarily, as long as one satisfies these constraints, some choice of fall-off conditions at $x = \pm \infty$, and suitable differentiability conditions on the fields ϕ_i. It will be important that there are no nonlocal constraints on the data. We will not assume any kind of translation invariance, and everything that follows may be generalized to the case of a theory defined on a finite spatial interval in an obvious way.

In practice, such problems often arise when there is a 1+1 dimensional theory with a well-defined Cauchy problem, so that we may identify a 1 dimensional Cauchy slice Σ (either spacelike or null) on which data may be specified, subject only to local constraints. In this way the results that follow may be applied to field theories in 1+1 spacetime dimensions; however the time evolution of the initial data plays no role in what follows.

Let us assume that we can define an “energy density” $T(\phi_i, \phi_i', \phi_i'' \ldots)$, locally defined as a function of at most K derivatives of ϕ_i, which satisfies a global or integrated energy condition:

$$E = \int_{-\infty}^{+\infty} T \, dx \geq 0. \quad (2)$$

(This notation is schematic, covering many possible stability integrals such as

$$\int \Sigma T_{ab} u^a d\Sigma^b \geq 0, \quad (3)$$

where u^a is a vector in the future lightcone, Σ is a Cauchy slice, and $d\Sigma^a$ is the natural integration measure for fluxes crossing Σ.)

Does any such theory also obey a local energy condition? The answer is yes. However, the local energy condition may require the energy density to be improved by the addition of a total derivative term, i.e. $T(x) + M'(x) \geq 0$, for some M. This integrates to the same total energy E, so long as $M \to 0$ as $x \to \pm \infty$.

In order to derive the energy condition, we must identify the correct choice of M. We illustrate our method with the following parable: suppose that an ant is marching along the x axis from $x = -\infty$ towards $x = +\infty$, making note of all the field values she observes along the way. Partway through the journey, having arrived at the point $x = x_0$, the ant asks herself, “Given everything I have observed so far (from $-\infty$ to x_0), what is the minimum possible energy I might encounter in the remaining part of my journey (from x_0 to $+\infty$)?” Let us write this quantity as

$$M(x_0) = \inf \left(\int_{x_0}^{+\infty} T \, dx \mid \phi_i(x < x_0) \right), \quad (4)$$

where the inf$(A|B)$ symbol means the lower bound on A, consistent with the knowledge in B. The stability condition \Box places a lower bound on M, ensuring it is well-defined (this is our sole use of global stability in this section).

Since the constraints and differentiability conditions are local, M can depend only on the local field data at x_0. The jump conditions constrain only max$(D-1, K-1)$ derivatives of ϕ_i, so only that many derivatives of ϕ_i can appear in M. Thus the ant does not actually require any long-term memory to calculate M: knowledge of a finite number of derivatives at the point x_0 suffices.

As the ant continues her journey to higher values of x, she learns more about the value of the fields, placing further constraints on the allowed states of the system. Now the minimum value of any quantity cannot decrease upon learning more information. Hence, for any point $x_1 = x_0 + \Delta x$ further along the journey ($\Delta x > 0$):

$$M(x_0) \leq \inf \left(\int_{x_0}^{+\infty} T \, dx \mid \phi_i(x < x_1) \right) = \int_{x_0}^{x_1} T \, dx + M(x_1), \quad (5)$$

Thus, while M can increase due to the ant learning more, it can only decrease when the ant actually passes some energy and leaves it behind. By taking Δx to be infinitesimal, one obtains the desired local inequality:

$$T + M' \geq 0. \quad (7)$$

Thus, the theory obeys a local energy condition.

Now consider a relativistic field theory satisfying the stability condition \Box, with causal propagation of information, and no fluxes of 2-momentum through spatial infinity. Let Σ be a partial Cauchy slice extending from spacelike infinity to a point x_0. Define $M_a(x_0)$ for null a as the lower bound of p_a in the complement to Σ, given the data on Σ. Then $M_a(x_0)$ is well defined and satisfies a monotonicity property like \Box if x_0 is shifted in a spacelike direction. So we obtain a covariantly improved dominant energy condition: $(T_{ab} + c_s \partial_a M_b) t^a u^b \geq 0$, where t^a and u^a point in the future lightcone. (The improvement term is conserved on the first index, but is not manifestly symmetric.)

GRAVITATIONAL THEORIES

The above result may be applied on any curved background spacetime, as long as it admits a positive global
energy.

However, in diffeomorphism invariant theories such as GR (or dilaton gravity [10], which is better behaved than GR when \(d = 1 \)) the constraint equations imply that the Hamiltonian density vanishes on-shell, up to a total derivative term [17]. Thus, the argument of the previous section has a potential loophole: since \(T \) is itself a total derivative, conceivably the full state just from knowing the states in \(A \) can depend on information arbitrarily far to the left of \(x_0 \). This explains how a QFT can obey global, but not local energy conditions.

This motivates us to identify \(M = -\langle h/2\pi \rangle S'(\rho_{x < x_0}) \), so that

\[
\langle T \rangle \geq \frac{h}{2\pi} S'',
\]

where \(c = k_B = 1 \). Although \(S \) is divergent, its derivatives are normally finite. When evaluated along a null Cauchy slice, this inequality is called the QNEC, and was derived in special cases in [32, 41–44]. But we will argue that more generally, [11] probably holds more in all states of all Lorentz-invariant field theories, on all Cauchy slices. In passing, we will rederive the fact that [11] is saturated for first order perturbations to the vacuum [42, 54, 55].

We now justify our choice of \(M \). Although \(M \) is non-local, it is still highly constrained. For example, \(M \) must be invariant under any unitary operator \(U \) acting in a region strictly to the left of \(x_0 \):

\[
M(U \rho_{x < x_0} U^\dagger) = M(\rho_{x < x_0}),
\]

because a unitary acting on the left does not change the set of states allowed on the right. (Of course it is also unchanged by a unitary acting to the right of \(x_0 \), since by construction \(M \) depends only on the left region \(x < x_0 \).)

This tells us that the dependence of \(M \) on the physics to the left of \(x_0 \) must in a certain sense be purely information-theoretic; it is sensitive only to the entanglement of information, not to the details of the material in which the information is encoded. However, \(M \) may depend in a more detailed way on the physics right at \(x_0 \), i.e. it need not be invariant under unitaries acting in an interval that includes \(x_0 \). Let us refer to a functional of the density matrix satisfying these properties as (left) semilocal.

More generally, we can imagine acting with a unitary that couples the region \(x < x_0 \) to some auxiliary system \(Q \) whose initial state \(\rho_Q \) is unentangled with the QFT state. Such transformations are equivalent [56, 57] to trace-preserving, completely positive maps: \(\rho \to F[\rho] \).

1 For axiomatic characterizations of the von Neumann entropy, see [40, 62].

2 In nonsmooth conformal vacua, \(T \) may diverge [24, 52], but \(S'' \) compensates [11]. An additional \((S')^2\) term explains the limit on how far the negative and positive pulses may be separated.

3 A ‘completely positive’ map is one which preserves positivity of the density matrix even if it is entangled with another system.
These transformations are usually not invertible and do not preserve the information to the left of \(x_0\). But by construction, this new state \(F[\rho_{x,x_0}]\) must still be compatible with the state to the right of \(x_0\). Hence the lower bound on the energy to the right cannot increase under such a transformation (because we could imagine starting with a state arbitrarily near the lower bound, and then acting with \(F\)). We conclude that \(M\) is monotonically decreasing under such maps:

\[
M(F[\rho_{x,x_0}]) \leq M(\rho_{x,x_0}). \tag{13}
\]

We can also place a constraint on \(M\) from dimensional analysis, assuming that \(T\) (the energy density) is identified with the stress tensor (which is weight 2 in a 1+1 dimensional theory). In a CFT, \(M(x)\) must be weight 1 under scale-invariance. Or, if we choose our Cauchy slice to be null, \(M(v)\) must be weight 1 under a Lorentz boost \(v \to av + b\).

Up to a multiplicative constant, the only entity I know of which satisfies all of these constraints is \(-S'\). This is indeed monotonically decreasing under all completely positive maps, as can be seen by replacing the derivative with a finite difference to get the conditional entropy on two subsystems \(S(AB) - S(A)\). By the first form of Strong Subadditivity \(\Box\) we now have

\[
S_{AB} - S_A \geq S_{ABQ} - S_{AQ}, \tag{14}
\]

hence \(S'(\rho_{x,x_0}) \geq S'(F[\rho_{x,x_0}])\)

\[
\tag{15}
\]

Furthermore, in a relativistic theory, \(S'\) places a lower bound on the energy integral:

\[
\frac{2\pi}{\hbar} \int_{x_0}^{+\infty} \langle T \rangle dx \geq -S'(\rho_{x>x_0}) \geq -S'(\rho_{x<x_0}), \tag{16}
\]

where the first inequality follows \(\Box\) from monotonicity of relative entropy \(\Box\) together with the Unruh effect \(\Box\) while the second inequality follows from the second form of Strong Subadditivity \(\Box\).

For a state that is a first order perturbation to the vacuum state \((\rho = \rho_0 + \delta \rho)\), one can in fact prove that \(M = -\hbar S' / 2\pi\) (fixing the multiplicative constant): since both inequalities in \(\Box\) are saturated for \(\rho_0\), and satisfied in all states, they must also be saturated at first order in \(\delta \rho\) (cf. \(\Box\)).

It is hard to think of any other quantity which would satisfy the desired criteria. For example we cannot substitute the derivative of the Renyi entropy \(S_n \propto \ln \text{tr}(\rho^n)\), since this does not satisfy Strong Subadditivity. More generally, let us suppose that the greatest lower bound is

\[
M = -\frac{\hbar}{2\pi} S' + G, \tag{17}
\]

where \(G\) is a positive (by \(\Box\)) semilocal quantity of weight 1, that vanishes for all first order perturbations to the vacuum. Then the semilocal quantum energy condition will take the form:

\[
\langle T \rangle \geq \frac{\hbar}{2\pi} S'' - G'. \tag{18}
\]

Note that \(G\) cannot be constructed out of any smooth functional of \(S_n\) (including \(S\)) and their derivatives, because in order for the quantity to be weight 1, there would have to be a single derivative. But in pure states, \(S_n(\rho_{x,x_0}) = S_n(\rho_{x>x_0})\), which implies that \(S'_n\) is odd under spatial reflections, and hence cannot have a consistent sign.

Also, \(G = 0\) whenever the QNEC has already been proved \(\Box\), suggesting it vanishes generally. That would imply that \(\Box\) is the strongest possible bound on the energy to the right of \(x_0\). If you start with an excited state, this tells you the maximum amount of energy extractable from that region (without using classical communication to teleport information \(\Box\)).

Applying the same arguments covariantly using \(\Box\), it is natural to conjecture a quantum dominant energy condition (QDEC):

\[
\langle T_{ab} \rangle t^a u^b \geq \frac{\hbar}{2\pi} \epsilon_{abc} t^c \partial_a \partial_d S(t^a u^b), \tag{19}
\]

where \(t^a\) and \(u^a\) are restricted to the forwards lightcone. (The QDEC implies the QNEC, by taking \(t^a, u^a\) to be the same null vector.) The improvement term is symmetric and conserved.

HIGHER DIMENSIONS

We can also generalize the argument to the case of \(d > 1\) spatial dimensions. But now the analogue of \(x_0\) will be a \(d - 1\) dimensional surface \(\varsigma\), and it may be that \(M\) depends in a nonlocal way on the fields on \(\varsigma\).

We have a choice of which ‘global’ energy condition to use. One possibility is \(\Box\), the positivity of the energy-momentum vector, found by integrating \(T_{ab}\) along a Cauchy slice \(\Sigma\). A more interesting choice is the ‘average null energy condition’ (ANEC), which states that for any null geodesic \(\gamma\),

\[
\int_{-\infty}^{\infty} T_{\gamma v} dv \geq 0, \tag{20}
\]

where \(v\) is an affine null parameter along \(\gamma\). (Recent arguments suggest that any reasonable QFT will satisfy the ANEC \(\Box\), cf. \(\Box\)).

In either case, let us define \(M(\varsigma)\) as the lower bound of the energy to the “right” side of \(\varsigma\), given the state of all the fields on the “left” side. We can now derive an energy condition at a point \(p \in \varsigma\) in a similar manner as before. We will do this by considering a variation \(\delta \varsigma\).
with support only in a small neighborhood of the point \(p \). By applying the same monotonicity argument as in the previous section, one can show that there exists a positive function of the form \(T(p) + M'(\varsigma, \delta \varsigma) \geq 0 \). But now the improvement term \(M \) might depend on fields anywhere along \(\varsigma \). So the improved energy condition might not be local, even classically.

In the case where we start with \([20] \) in a QFT, an argument similar to the previous section suggests that the QNEC \([35]\) holds for \(\varsigma \) lying on a stationary null surface:

\[
(T_v(p)) \geq \frac{\hbar}{2\pi \lambda} (\delta \varsigma)^2 S(\varsigma) \tag{21}
\]

where \(v \) is an affine null coordinate and \(\mathcal{A} \) is the transverse area along which the slice \(\varsigma \) is translated by \(\delta \varsigma \). But further work is needed to show that there is no additional correction term in general interacting field theories.

Acknowledgements I am grateful for conversations with Jason Koeller, Stefan Leichenauer, Zachary Fisher, Raphael Bousso, Maulik Parikh, William Donnelly, Xi Dong, Nima Arkani-Hamed, Netta Engelhardt, Don Marolf, Ted Jacobson, Juan Maldacena, Tom Hartman, Gary Horowitz, Tom Roman, and Erik Curiel, and for support from the Institute for Advanced Study, the Martin A. and Helen Chooljian Membership Fund, the Raymond and Beverly Sackler Foundation Fund, and NSF grant PHY-1314311.

“aroncwall@gmail.com

[1] F. Belinfante, “On the spin angular momentum of mesons,” *Physica* **6** no. 7. (1939) 887 – 898

[2] F. Belinfante, “On the current and the density of the electric charge, the energy, the linear momentum and the angular momentum of arbitrary fields,” *Physica* **7** no. 5. (1940) 449 – 474

[3] L. J. H. C. Rosenfeld, “On the energy-momentum tensor [1940],” in *Selected Papers of Léon Rosenfeld*, R. S. Cohen and J. Stachel, eds., pp. 711–735. D. Reidel, Dordrecht, Holland, 1979.

[4] D. Bak, D. Cangemi, and R. Jackiw, “Energy-momentum conservation in gravity theories,” *Phys. Rev. D* **49** (May, 1994) 5173–5181

[5] R. Schoen and S.-T. Yau, “On the proof of the positive mass conjecture in general relativity.” *Commun. Math. Phys.* **65** no. 1, (1979) 45–76

[6] R. Schoen and S.-T. Yau, “Proof of the positive mass theorem. II.” *Commun. Math. Phys.* **79** no. 2, (1981) 231–260

[7] E. Witten, “A new proof of the positive energy theorem,” *Commun. Math. Phys.* **80** no. 3, (1981) 381–402

[8] E. Curiel, “A Primer on Energy Conditions,” arXiv:1405.0403 [physics.hist-ph]

[9] M. Parikh and J. P. van der Schaar, “Derivation of the Null Energy Condition,” *Phys. Rev. D91* no. 8, (2015) 084002 arXiv:1406.5163 [hep-th]

[10] H. Epstein, V. Glaser, and A. Jaffe, “Nonpositivity of the energy density in quantized field theories,” *Il Nuovo Cimento (1955-1965)* **36** no. 3, (1965) 1016–1022.

[11] M. Visser and C. Barcelo, “Energy conditions and their cosmological implications,” in *Proceedings, 3rd International Conference on Particle Physics and the Early Universe (COSMO 1999)*: Trieste, Italy, September 27–October 3, 1999, pp. 98–112. 2000. arXiv:gr-qc/0001099 [gr-qc]

[12] L. H. Ford, “The Classical singularity theorems and their quantum loop holes,” *Int. J. Theor. Phys.* **42** (2003) 1219–1227 arXiv:gr-qc/0301045 [gr-qc]

[13] R. Penrose, “Gravitational collapse and space-time singularities,” *Phys. Rev. Lett.* **14** (1965) 57–59

[14] S. Hawking, “Occurrence of singularities in open universes,” *Phys. Rev. Lett.* **15** (1965) 689–690

[15] J. M. M. Senovilla and D. Garfinkle, “The 1965 Penrose singularity theorem,” *Class. Quant. Grav.* **32** no. 12, (2015) 124008 arXiv:1410.5226 [gr-qc]

[16] F. J. Tipler, “Causality violation in asymptotically flat space-times,” *Phys. Rev. Lett.* **37** (1976) 879–882

[17] S. W. Hawking, “The Chronology protection conjecture,” *Phys. Rev. D46* (1992) 603–611

[18] M. S. Morris, K. S. Thorne, and U. Yurtsever, “Wormholes, Time Machines, and the Weak Energy Condition,” *Phys. Rev. Lett.* **61** (1988) 1446–1449

[19] J. L. Friedman, K. Schleich, and D. M. Witt, “Topological censorship,” *Phys. Rev. Lett.* **71** (1993) 1486–1489 arXiv:gr-qc/9305017 [gr-qc] [Erratum: Phys. Rev. Lett.75,1872(1995)]

[20] K. D. Olum, “Superluminal travel requires negative energies,” *Phys. Rev. Lett.* **81** (1998) 3567–3570 arXiv:gr-qc/9805003 [gr-qc]

[21] M. Visser, B. Bassett, and S. Liberati, “Superluminal censorship,” *Nucl. Phys. Proc. Suppl.* **88** (2000) 267–270 arXiv:gr-qc/9810026 [gr-qc]

[22] R. Penrose, R. D. Sorkin, and E. Woolgar, “A Positive mass theorem based on the focusing and retardation of null geodesics,” arXiv:gr-qc/9301015 [gr-qc]

[23] F. J. Tipler, “Energy conditions and spacetime singularities,” *Phys. Rev. D 17* (May, 1978) 2521–2528

[24] F. J. Tipler, “General relativity and conjugate ordinary differential equations,” *Journal of Differential Equations* **30** no. 2, (1978) 165 – 174

[25] A. Borde, “Geodesic focusing, energy conditions and singularities,” *Classical and Quantum Gravity* **4** no. 2, (1987) 343. http://stacks.iop.org/0264-9381/4/i=2/a=015

[26] L. H. Ford and T. A. Roman, “Averaged energy conditions and quantum inequalities,” *Phys. Rev. D51* (1995) 4277–4286 arXiv:gr-qc/9410043 [gr-qc]

[27] L. H. Ford and T. A. Roman, “Restrictions on negative energy density in flat spacetime,” *Phys. Rev. D 55* (1997) 2082–2089. gr-qc/9607003

[28] L. H. Ford, M. J. Penning, and T. A. Roman, “Quantum inequalities and singular negative energy densities,” *Phys. Rev. D57* (1998) 4839–4846 arXiv:gr-qc/9711030 [gr-qc]

[29] L. H. Ford and T. A. Roman, “The quantum interest
Teleportation via Qudit Probes,
Phys. Rev. A93 no. 2, (2016) 022308
arXiv:1510.03751 [quant-ph]

[68] T. Hartman, S. Kundu, and A. Tajdini, “Averaged Null Energy Condition from Causality,”
arXiv:1610.05308 [hep-th]

[69] T. Faulkner, R. G. Leigh, O. Parrikar, and H. Wang, “Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition,”
JHEP 09 (2016) 038 arXiv:1605.08072 [hep-th]

[70] A. C. Wall, “Proving the Achronal Averaged Null Energy Condition from the Generalized Second Law,”
Phys. Rev. D81 (2010) 024038
arXiv:0910.5751 [gr-qc]

[71] D. M. Hofman, “Higher Derivative Gravity, Causality and Positivity of Energy in a UV complete QFT,”
Nucl. Phys. B823 (2009) 174–194
arXiv:0907.1625 [hep-th]

[72] W. R. Kelly and A. C. Wall, “Holographic proof of the averaged null energy condition,”
Phys. Rev. D90 no. 10, (2014) 106003
arXiv:1408.3566 [gr-qc] [Erratum: Phys. Rev.D91,no.6,069902(2015)].

[73] R. Verch, “The averaged null energy condition for general quantum field theories in two-dimensions,”
J. Math. Phys. 41 (2000) 206–217
arXiv:math-ph/9904036 [math-ph]

[74] R. M. Wald and U. Yurtsever, “General proof of the averaged null energy condition for a massless scalar field in two-dimensional curved space-time,”
Phys. Rev. D44 (1991) 403–416

[75] C. J. Fewster, K. D. Olum, and M. J. Pfenning, “Averaged null energy condition in spacetimes with boundaries,”
Phys. Rev. D75 (2007) 025007
arXiv:gr-qc/0609007 [gr-qc]

[76] E.-A. Kontou and K. D. Olum, “Averaged null energy condition in a classical curved background,”
Phys. Rev. D87 no. 6, (2013) 064009
arXiv:1212.2290 [gr-qc]

[77] E.-A. Kontou and K. D. Olum, “Proof of the averaged null energy condition in a classical curved spacetime using a null-projected quantum inequality,”
Phys. Rev. D92 (2015) 124009
arXiv:1507.00297 [gr-qc]