Coincident Dp-branes in codimension two

Shesansu Sekhar Pal
Institute of Physics
Bhubaneswar - 751005, India
Sudhakar Panda
Harish-Chandra Research Institute,
Allahabad, 211019, India

Abstract

We derive the mass shell condition for N coincident D0 branes in codimension two i.e. in space-time dimension three. Using this we present the action for this system in first order formalism. Our analysis is restricted to flat space-time.

\hfill 1shesansu@iopb.res.in
\hfill 2panda@mri.ernet.in
1 Introduction

In recent years the importance of Dp branes have been realized through the studies of black hole entropy, AdS/CFT correspondence, tachyon condensation etc. Hence, it has been necessary to study the dynamics of these branes in various configurations. The dynamics of a single brane (both BPS and non-BPS) is known to be described by the sum of a Born-Infeld type action and a Chern-Simon action. The various degrees of freedom described by such an action include a $U(1)$ valued gauge field, transverse scalars, induced metric, induced Kalb-Ramond field on the world volume of the Dp brane coming from the NS-NS sector, and antisymmetric field of various ranks coming from the R-R sector. The supersymmetric and kappa symmetric invariant action describing a single BPS D-brane in flat space is known for quite some time [1] and in curved space, in particular in Type II background, [2]. The simplest generalization of this is the system of N number of coincident Dp branes, instead of a single brane. It is known that for such a system one gets a non-abelian theory with a gauge group $U(N)$ [3] and the fields that live on the brane take values in the adjoint representation of $U(N)$. It is also known that these branes are charged under R-R fields [4] and one expects that this system should also preserve half of the supersymmetries just like a single BPS brane. However, to show that this is indeed true one needs to show that the world volume action is in fact invariant under kappa symmetry as in the case for a single BPS Dp-brane. But such a proof has not been achieved so far. The main obstacle is that unlike a single brane where the kappa symmetry is realized as an abelian symmetry, for the case of multiple coincident branes, this symmetry is enhanced to a non-abelian symmetry.

The dynamics of the N coincident Dp branes is described in great detail in [5], which is derived by starting with a space filling brane but subsequent T-dualisation gives the desired action. The bosonic parts of the world volume action for N coincident Dp-branes are given as:

$$S_{BI} = -T_p \int d^{p+1}\sigma STr \left(e^{-\phi} \sqrt{- \det (P[E_{ab} + E_{ai}(Q^{-1} - \delta)^{ij}E_{jb}] + \lambda F_{ab}) det(Q_j^i)} \right),$$

with

$$E_{\mu\nu} = G_{\mu\nu} + B_{\mu\nu}, \quad \text{and} \quad Q_j^i = \delta_j^i + i\lambda[\Phi^i, \Phi^k]E_{kj};$$

and

$$S_{CS} = \mu_p \int STr \left(P[e^{i\lambda\Phi^i\phi}(\sum_n C^{(n)}e^{B})]e^{\lambda F} \right),$$

where $G_{\mu\nu}$, $B_{\mu\nu}$, ϕ, are the metric, Kalb-Ramond and the dilaton field coming from the NS-NS sector, respectively. F_{ab} is the $U(N)$ valued field strength that live on the world volume of the Dp brane and $C^{(n)}$’s are the rank n antisymmetric field coming from R-R sector. P is the pull-back which acts on the bulk fields and brings it onto the world volume of the brane. Φ^i’s are the $U(N)$ valued scalars, and STTr
stands for the symmetrised average over all orderings of the $U(N)$ valued objects and then taking the trace. The pull back is defined as

$$P[E]_{ab} = E_{ab} + E_{ai}D_b\Phi^i + E_{ib}D_a\Phi^i + D_a\Phi^i D_b\Phi^j E_{ij}$$

(4)

where D_a are the covariant derivatives with respect to the world volume coordinates and the gauge fields being the connection. The expression of the pull-back, as written in eq.(4), is expressed in the static gauge choice, namely $X^a = \sigma^a$, and $X^i = \Phi^i$, with the choice $\lambda = 1$, i.e. $p + 1$ coordinates of the target space are identified with the world volume coordinates σ^a and the indices i,j denotes the target space coordinates transverse to the Dp branes. Hence the space-time symmetry is now broken to world volume symmetry times the symmetry in the transverse directions to the branes. Since the above action is written in the static gauge, it implies that it cannot be world volume reparametrisation invariant and invariant under the full target space diffeomorphism, except for the case of space filling branes. In order to write an action which is both supersymmetric and κ symmetric invariant, we have to make it both world volume reparametrisation invariant and target space diffeomorphism invariant, otherwise it might be difficult to write down an action which is both supersymmetric and κ symmetric invariant. In a recent paper Sorokin has proposed a first order action for coincident D0 branes in codimension one which is shown to have both the world volume and space-time diffeomorphism invariance [6]. In this letter we extend this proposal to coincident D0 branes for codimension two and write down the bosonic part of the action.

Before we review the above construction, it is useful to note an interesting point about the Chern-Simons action, namely the N coincident Dp branes can couple to higher rank R-R fields through $\epsilon^{i_1\ldots i_p}\Phi^{i_1} \ldots \Phi^{i_p}$, [5], and which in turn gives rise to various fuzzy surfaces, like S^2 and S^4 [7] and also studied in [8].

In [9] a possible supersymmetric and kappa symmetric invariant action has been constructed but up to order F^2 in the field strength and in [10] the supersymmetric and fermion couplings have been considered in the context of Matrix theory of D0 branes.

The construction of [6] is to consider coincident N Dp branes as a single brane configuration, and call it NDp-brane. The transverse coordinates of this single brane is described by $x^i(\sigma)$, which is given as the trace of the $U(N)$ valued scalars Φ^i, i.e.

$$x^i(\sigma) = \frac{1}{N} Tr\Phi^i(\sigma).$$

(5)

Now this transverse coordinate x^i together with the world volume coordinate σ^a represents the coordinates of the single brane in the target space-time, i.e. $x^i(\sigma) = (\sigma^a, x^i(\sigma))$ with $\mu = 0, 1, \ldots, D - 1$, in a D dimensional target space in the static gauge. In order to make the world volume theory of that single brane diffeomorphism
invariant, let's introduce $p+1$ coordinates, $x^a(\sigma)$, as the world volume coordinates of the (single) NDp-brane, i.e.

$$x^\mu(\sigma) = (x^a(\sigma), x^i(\sigma)).$$

(6)

Then the $U(N)$ vector fields $A_a(\sigma)$ and the traceless scalars

$$\phi^i(\sigma) \equiv \Phi^i(\sigma) - x^i(\sigma) I, \quad \in SU(N),$$

(7)
takes values in $SU(N)$, and are being considered as pure world volume vector fields and scalar fields living on the NDp-brane. At this stage, we are assuming that this single NDp-brane action is invariant under only one kappa symmetry as rest $N-1$ kappa symmetries have been gauge fixed by construction. This feature will be more explicit in the next section.

The action of N coincident Dp-branes, eq. (1), gives us a complicated form after imposing the world volume reparametrisation invariance in a generic background. Hence, to avoid complications, we shall deal with the action in co-dimension one and two in flat spacetime, as the mass shell condition becomes complicated for higher codimension. The meaning of co-dimension one and two is that the dimension of the target space for a single NDp-brane becomes $p+2$, and $p+3$ respectively.

In section 2 we shall write down the world volume reparametrisation invariant action of N Dp branes in co-dimension d in flat spacetime, and in section 3 we shall write down the world volume reparametrisation invariant and kappa symmetric invariant action of N D0 branes in co-dimension 1 by implementing the proposal of [6]. In section 4 we shall write down the bosonic part of the action in co-dimension 2 i.e. in space-time dimension 3. Then we shall conclude in section 5 and in the appendix we have derived the mass shell condition for the co-dimension two case.

2 N Dp branes in codimension d

In co-dimension d the Born-Infeld action eq. (1) becomes, in the flat background, i.e. $B_{\mu\nu} = 0$, $G_{\mu\nu} = \eta_{\mu\nu}$, $\phi = 0$, and in the static gauge

$$S = -T_p \int d^{p+1}\sigma STr \left[(-\text{det}(\partial_a\sigma^c \partial_b\sigma^d \eta_{cd} + D_a \Phi^i D_b \Phi^j \eta_{ij}) \\
+ D_a \Phi^k D_b \Phi^l \eta_{kl}(Q^{-1} - \delta)^{ij} \eta_{ij} + F_{ab}) \text{det}(Q^i_j) \right]^{\frac{1}{2}},$$

(8)

with

$$Q^i_j = \delta^i_j + i[\Phi^i, \Phi^j] \eta_{kj}.$$

(9)
Let’s restore the world volume reparametrisation invariance by writing \(\sigma^a = x^a(\sigma) \), using eq. (\text{1}) and eq. (\text{2}) and substituting it in eq.(\text{3}). This gives us the following action:

\[
S = -T_p \int d^{p+1}\sigma ST r \left[(-\text{det}(\partial_a x^\mu \partial_b x^\nu \eta_{\mu\nu} + \partial_a x^\mu D_b \phi^j \eta_{ij} + D_a \phi^j \partial_b x^\nu \eta_{ij} + D_a \phi^j D_b \phi^j L_{kl} + \partial_a x^\mu \partial_b x^\nu L_{\mu\nu} + \partial_a x^\mu D_b \phi^j L_{\mu\nu} + D_a \phi^j \partial_b x^\nu L_{k\nu} + F_{ab})) \right]^{\frac{1}{2}}, \tag{10}
\]

where \(L_{AB} = \eta_{Ai}(Q^{-1} - \delta)^{ij} \eta_{jB}, \) and A, B can take values (a,i). The above action has a complicated form and is not suitable for further analysis i.e. to write down a supersymmetric and \(\kappa \) symmetric invariant action of N Dp-branes in co-dimension \(d \).

So, we consider the simpler cases of co-dimension one and two only.

3 N D0 branes in co-dimension one

The bosonic part of the action that follows from eq. (10) for N D0 branes in co-dimension one, i.e. in space-time dimension two, is

\[
S = -T_0 \int d\tau ST r \sqrt{-[\dot{x}^0 \dot{x}^0 \eta_{\mu\nu} + 2 \dot{x}^1 \dot{\phi}^1 + (\dot{\phi}^1)^2]}, \tag{11}
\]

where \(T_0 \) is the tension of a D0 brane, \(\tau \) is the world line parameter and \(\cdot \) denotes the derivative with respect this parameter. It is very easy to see that the action in eq. (11) is world line reparametrisation invariant, hence, the corresponding first class constraint would be some generalization of the mass shell condition for \(\phi = 0 \).

Let \(p_\mu \) be the momentum associated to \(x^\mu \). Before, we start to write down the canonical momenta associated to \(x^\mu \) and \(\phi \), we rewrite the action eq.(11) in a suggestive manner.

\[
S = -T_0 \int d\tau ST r \sqrt{(\dot{x}^0)^2 - (\dot{\Phi})^2}, \tag{12}
\]

where \(\Phi = x^1 + \phi^1 \), from eq. (7), and the momenta associated to \(x^0 \) and \(\Phi \) are

\[
p_0 = -T_0 \dot{x}^0 ST r \left[(\dot{x}^0)^2 - (\dot{\Phi})^2 \right]^{-1}, \tag{13}
\]

and

\[
p_\Phi = T_0 \dot{\Phi} \left[(\dot{x}^0)^2 - (\dot{\Phi})^2 \right]^{-1}. \tag{14}
\]

The momentum \(p_\Phi = \frac{1}{N} p_1 I + p_\phi \), with \(p_\Phi \in U(N) \) and \(p_\phi \in SU(N) \), where

\[
p_1 = T_0 ST r \left[\dot{\Phi} \sqrt{(\dot{x}^0)^2 - (\dot{\Phi})^2} \right]. \tag{15}
\]
The mass shell condition for N D0 brane in spacetime dimension two is

\[- (p_0)^2 + \left(ST r [\sqrt {p_0^2 + T_0^2 I}] \right)^2 = 0, \tag{16}\]

and this reduces to the usual mass shell condition for N D0 branes when \(\phi = 0\). Hence, the first order bosonic part of the action is

\[S = ST r \int d\tau \left[\frac{1}{N} p_\mu \dot{x}^\mu + p_\phi \dot{\phi} - \frac{e(\tau)}{2N} [- (p_0)^2 + \left(ST r [\sqrt {p_0^2 + T_0^2 I}] \right)^2] \right], \tag{17}\]

where \(e(\tau)\) is the Lagrange multiplier for the mass shell condition as given in eq. (16).

We can now supersymmetrise the above bosonic action by introducing a two component Majorana spinor field

\[\theta^a = \begin{pmatrix} \theta_1 \\ \theta_2 \end{pmatrix}, \tag{18}\]

for \(\phi = 0\). In the first order formalism, we know the form of the supersymmetric invariant action of a super particle with mass \(m\) and it is given by

\[S = \int d\tau \left[p_\mu (\dot{x}^\mu + i \theta \gamma^\mu \bar{\theta}) - \frac{e(\tau)}{2} (p_\mu p^\mu + m^2) + m \bar{\theta} \gamma^2 \theta \right], \tag{19}\]

where \(\bar{\theta} = \theta^T \gamma^0\) and the form of the \(\gamma\) matrices are

\[\gamma^0 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \gamma^1 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}, \quad \gamma^2 = \gamma^0 \gamma^1 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{20}\]

The corresponding Clifford algebra is

\[\{ \gamma^a, \gamma^b \} = -2 \eta^{ab} \quad \text{with} \quad \eta^{ab} = (-, +). \tag{21}\]

The action eq. (19) is invariant under both global supersymmetry and local \(\kappa\)-symmetry transformations, and the form of transformations are

\[\delta_\epsilon \theta = \epsilon, \quad \delta_\epsilon x^\mu = -i \epsilon \gamma^\mu \theta, \quad \delta_\epsilon (\text{others}) = 0, \tag{22}\]

\[\delta_\alpha x^\mu = i \delta_\alpha \bar{\theta} \gamma^\mu \theta, \quad \delta_\alpha e = 4 i \kappa \bar{\theta}, \quad \delta_\alpha \theta = (\gamma^\mu p_\mu - im \gamma^2) \kappa, \quad \delta_\alpha (\text{others}) = 0. \tag{23}\]

Lets supersymmetrise the action eq. (17) for the N coincident Dp-branes in codimension one for \(\phi \neq 0\) and introducing the fermions \(\psi\), following the action of a super particle as written in eq. (19), we get
\[S = \text{STr} \int d\tau \left(\frac{1}{N} \rho_\mu (\dot{x}^\mu + i \bar{\theta} \gamma^\mu \dot{\theta}) + p_\phi \dot{\phi} - \frac{e}{2N} [p_\mu p^\mu + \frac{M^2(p_\phi, p_1)}{N}] + \frac{M(p_\phi, p_1)}{N} \bar{\theta} \gamma^2 \dot{\theta} - i \bar{\psi} \dot{\psi} \right), \] (24)

where \(\psi \in \text{SU}(N) \) and \(M^2(p_\phi, p_1) = (\text{STr} \sqrt{p_\phi^2 + T_0^2 I})^2 - p_1^2 \). Where the supersymmetry and the kappa symmetry transformations are given by

\[
\delta_\epsilon \theta = \epsilon, \quad \delta_\epsilon \chi^\mu = -i \bar{\epsilon} \gamma^\mu \theta - \bar{\epsilon} \gamma^2 \theta \frac{\partial M}{\partial p_1} \delta_1^\mu, \quad \delta_\epsilon \phi = -\bar{\epsilon} \gamma^2 \theta \frac{\partial M}{N \partial p_\phi}, \quad \delta_\epsilon (\text{others}) = 0, \quad (25)
\]

\[
\delta_\kappa \chi^\mu = i \delta_\kappa \bar{\theta} \gamma^\mu \theta + \delta_\kappa \bar{\theta} \gamma^2 \theta \frac{\partial M}{\partial p_1} \delta_1^\mu, \quad \delta_\kappa \phi = \bar{\epsilon} \gamma^2 \theta \frac{\partial M_1}{N \partial p_\phi}, \quad \delta_\kappa (\text{others}) = 0, \quad (26)
\]

4 N DO branes in codimension two

The bosonic part of the action that governs the dynamics of N D0 branes in codimension two is given by

\[S = -T_0 \text{STr} \int d\tau \left[\sqrt{(\dot{x}^0)^2 (\det Q_{ij}) - (\det Q_{ij}) \Phi^k \Phi^i Q_{ij}^{-1}} \right], \]

where i, j of determinant \(Q_{ij} \) can take only two values, namely, 1, 2. Evaluating the determinant in three space-time dimensions, give rise to

\[S = -T_0 \text{STr} \int d\tau \sqrt{(\dot{x}^0)^2 - (\dot{x}^1)^2 - (\dot{x}^2)^2 - \dot{\phi}^2 - 2x^1 \dot{\phi}^1 - 2x^2 \dot{\phi}^2 - x^0 [\phi^1, \phi^2]^2)}, \]

using eq. (7), we can rewrite the above equation as

\[S = -T_0 \text{STr} \int d\tau \sqrt{(\dot{x}^0)^2 - \Phi^1 \Phi^2 - x^0 [\Phi^1, \Phi^2]^2)}. \]

The momenta conjugate to \(x^0, \Phi^1, \Phi^2 \) are

\[
p_0 = -T_0 \dot{x}^0 \text{STr} \left(\frac{1 - [\Phi^1, \Phi^2]^2}{\sqrt{(\dot{x}^0)^2 - \Phi^1 \Phi^2 - x^0 [\Phi^1, \Phi^2]^2}} \right),
\]

\[
p_{\Phi^1} = \frac{T_0}{2} \left\{ \Phi^1, \frac{1}{\sqrt{(\dot{x}^0)^2 - \Phi^1 \Phi^2 - x^0 [\Phi^1, \Phi^2]^2}} \right\},
\]

\[
p_{\Phi^2} = \frac{T_0}{2} \left\{ \Phi^2, \frac{1}{\sqrt{(\dot{x}^0)^2 - \Phi^1 \Phi^2 - x^0 [\Phi^1, \Phi^2]^2}} \right\}. \]

(30)
The momenta \(p_{\Phi^i} = \frac{1}{N} p_i I + p_{\phi^i} \), with \(p_{\Phi^i} \in U(N) \) and \(p_{\phi^i} \in SU(N) \). The mass shell condition for the N D0 brane in codimension two is (see the appendix for details)

\[
-p_0^2 + \left[ST\text{r} \sqrt{p_{\Phi^1}^2 + p_{\Phi^2}^2 + T_0^2}(1 - [\Phi^1, \Phi^2]^2) \right]^2 = 0. \tag{31}
\]

It is easy to see that this mass shell condition reduces to the mass shell condition for codimension one, eq. (16), for either \(\Phi^1 = 0 \), or \(\Phi^2 = 0 \).

Let’s rewrite eq. (28) in the first order formalism as

\[
S = ST\text{r} \int d\tau \left[\frac{1}{N} p_\mu \dot{x}^\mu + p_{\phi^1} \dot{\phi}^1 + p_{\phi^2} \dot{\phi}^2 - \frac{e(\tau)}{2N} (p_\mu p^\mu + \mathcal{M}^2(p_{\phi^1}, p_{\phi^2}, p_1, p_2, \phi_1, \phi_2)) \right], \tag{32}
\]

where \(\mathcal{M}^2(p_{\phi^1}, p_{\phi^2}, p_1, p_2, \phi_1, \phi_2) = \left(ST\text{r} \sqrt{p_{\Phi^1}^2 + p_{\Phi^2}^2 + T_0^2 I}(1 - [\Phi^1, \Phi^2]^2) \right)^2 - p_1^2 - p_2^2 \).

One can follow the procedure in the previous section to obtain a supersymmetric and kappa symmetric invariant action, which we donot pursue here. On the other hand we note that the above action is not manifestly Lorentz invariant because of the presence of the last two terms in the expression of the square of the effective mass, even though, this action has been derived from Myers action which is perfectly Lorentz invariant. This issue remains to be a puzzle for us and needs further investigation.

5 Conclusion

In this note, we have examined Sorokin’s prescription to see the coincident N D0 branes as a single ND0-brane in different co-dimensions to get atleast the bosonic part of the action in the first order formalism. In particular, we have considered only the N D0 branes in co-dimension one and two in flat spacetime. To implement the same prescription for higher branes and for higher codimensions one needs to know the corresponding mass shell conditions which become more complicated and the analysis becomes more involved (as seen in the appendix) though in principle it is possible. Moreover, even in this prescription we still encounter the usual problem of the nature of ‘trace’ one should adopt. However, the prescription by itself is beautiful since the kappa symmetry is reduced to an abelian symmetry, as we saw while in trying to write down the action of N coincident D0-branes in the first order formalism for codimension one case. The main draw back of this prescription seems to be the absence of manifest Lorentz invariance, but we can get back the invariance if we drop those terms from the square of the mass. In writing down the action we have to get pass two hurdles, first, the correct mass shell condition and second the transformation rules of the fields keeping in mind that \(\mathcal{M}^2 \) becomes a function of the nonabelian scalars, in order to make the action both supersymmetric and kappa
Acknowledgement

We wish to thank Dmitri Sorokin for useful email correspondences. SSP would like gratefully acknowledges the warm hospitality at the Harish-Chandra Research Institute, Allahabad, where part of the work is performed.

6 Appendix A

In this section we shall derive the mass shell condition eq. (31) by expanding it term by term. For this purpose we define some notations.

\[1 - [\Phi^1, \Phi^2]^2 \equiv Z \equiv 1 - B, \Rightarrow B = [\Phi^1, \Phi^2]^2, \]
\[\dot{\Phi}^2 + \dot{\Phi}^2 \equiv Y, \]
\[p_{\Phi^1}^2 + p_{\Phi^2}^2 \equiv A. \] (33)

The momentum \(p_0 \) in these notations becomes

\[p_0 = -T_0 x^0 STr \left(\frac{Z}{\sqrt{x^0 Z - Y}} \right), \] (34)

and expanding it, we get

\[p_0 = -T_0 STr \left[Z^\frac{1}{2} + \frac{1}{2} Z^\frac{1}{2} Y \frac{1}{x^0} + \frac{3}{8} Z^\frac{1}{2} Y^2 \frac{1}{x^0} + \ldots \right]. \] (35)

Now the other term present in the mass shell condition becomes, in these notations

\[STr\sqrt{(p_{\Phi^1}^2 + p_{\Phi^2}^2 + T_0^2)Z} = STr\sqrt{(A + T_0^2)Z}, \] (36)

which after expanding takes the form

\[T_0 STr Z^\frac{1}{2} + \frac{1}{2T_0} STr(Z^\frac{1}{2} A) - \frac{1}{8T_0^3} STr(Z^\frac{1}{2} A^2) + \ldots. \] (37)

\(^3\)We are hoping to come back to it in future for both supersymmetric and kappa symmetric invariant action.

\(^4\)We have used the property of symmetrised trace. Note: We shall also use the property of STr while expanding \(p_{\Phi^1}^2 \) and \(p_{\Phi^2}^2 \).
The second term $\text{STr}(Z^{4/2}A)$ and the 3rd term $\text{STr}(Z^{4/2}A^2)$ of the above equation can be written as
\[
\frac{1}{2T_0} \text{STr}[Z^{4/2}A] = \frac{T_0}{2x^0} \text{STr}(Z^{4/2}Y) + \frac{T_0}{2x^0} \text{STr}(Z^{4/2}Y^2) + \ldots,
\]
\[
-\frac{1}{8T_0^3} \text{STr}(Z^{4/2}A^2) = -\frac{T_0}{8x^0} \text{STr}(Z^{4/2}Y^2) + \ldots,
\]
substituting these expressions of the second term and the third term in eq.(37), we see that it becomes exactly the -ve of the eq.(35). Which upon substituting in eq. (31) gives us the right hand side. Hence, the mass shell condition is proved.

References

[1] M. Aganagic, C. Popescu and J.H. Schwarz, “D-brane actions with local kappa symmetry,” Phys. Lett. B 393 (1997) 311, [hep-th/9610249]; “Gauge-invariant and gauge fixed D-brane actions,” Nucl. Phys. B 495 (1997) 99, [hep-th/9612080]; A.A. Tseytlin, “Born-Infeld action, supersymmetry and string theory,” hep-th/9908105 and references therein.

[2] M. Cederwall, A. von Gussich, B. E.W. Nilsson and A. Westerberg, “The Dirichlet Super-Three-Brane in Ten-Dimensional Type IIB Supergravity,” Nucl. Phys. B490 (1997) 163, hep-th/9610148; M. Cederwall, A. von Gussich, B. E.W. Nilsson, P. Sundell and A. Westerberg, “The Dirichlet Super-p-Branes in Ten-Dimensional Type IIA and IIB Supergravity,” Nucl. Phys. B490 (1997) 179, hep-th/9611159; E. Bergshoeff and P.K. Townsend, “Super D-branes,” Nucl. Phys. B490 (1997) 145, hep-th/9611173.

[3] E. Witten, “Bound states of strings and p-branes,” Nucl. Phys. B 460 (1996) 335, hep-th/9510135.

[4] J. Polchinski, “Dirichlet-branes and Ramond-Ramond charges,” Phys. Rev. Lett. 75 (1995) 4724, hep-th/9510017.

[5] R. C. Myers, “Dielectric-branes,” JHEP 12 (1999) 022, hep-th/9910053.

[6] D. Sorokin, “Coincident (super)-Dp-branes of codimension one,” JHEP 08 (2001) 022, hep-th/0106212; “Space-time symmetries and supersymmetry of coincident D-branes,” Fortsch. Phys. 50 (2002), 973.

[7] Neil R. Constable, Robert C. Myers and Oyvind Tafjord, “Fuzzy Funnels: Non-abelian Brane Intersections,” hep-th/0105035; “Non-abelian Brane Intersections,” hep-th/0102080; “The Noncommutative Bion Core,” hep-th/9911136.
[8] S. Das, S. Trivedi and S. Vaidya, “Magnetic Moments of Branes and Giant Gravitons,” [hep-th/0008203]; “Fuzzy Cosets and their Gravity Duals,” [hep-th/0007011].

[9] E.A. Bergshoeff, M. de Roo and A. Servin, “Towards a supersymmetric non-abelian Born-Infeld theory,” Int. J. Mod. Phys. A 16 (2001) 750, [hep-th/0010151]; “Non-abelian Born-Infeld kappa-symmetry,” [hep-th/0011018]; “On the supersymmetric non-abelian Born-Infeld action,” Fortsch. Phys. 49 (2001) 433, [hep-th/0011264]; E.A. Bergshoeff, A. Bilal, M. de Roo and A. Servin, “Supersymmetric non-abelian Born-Infeld revisited,” JHEP 07 (2001) 029, [hep-th/0105274].

[10] W. Taylor IV, M. Van Raamsdonk, “Multiple D0-branes in weakly curved backgrounds,” Nucl. Phys. B 558 (1999) 63, [hep-th/9904095]; “Multiple Dp-branes in weak background fields,” Nucl. Phys. B 573 (2000) 703, [hep-th/9910052].