A Trade Credit Inventory Model with Multivariate Demand for Non-Instantaneous Decaying products

Vashisth Vikram¹, Tomar Ajay², Shekhar Chandra³ and A. K. Malik⁴

¹Department of Computer Science Engineering, B. K. Birla Institute of Engineering and Technology, CEERI Road, Pilani - 333031, Rajasthan, India; vikramrajvashisth@outlook.com
²Department of MCA, B. K. Birla Institute of Engineering and Technology, CEERI Road, Pilani - 333031, Rajasthan, India; ajaytomar6551@gmail.com
³Department of Mathematics, Birla Institute of Technology and Science, Pilani Campus, Vidya Vihar Pilani - 333031, Rajasthan, India; chandrashekhar@pilani.bits-pilani.ac.in
⁴Department of Mathematics, B. K. Birla Institute of Engineering and Technology, CEERI Road, Pilani - 333031, Rajasthan, India; ajendermalik@gmail.com

Abstract

The present study proposed a mathematical example using multivariate demand with non-instant decaying products. For any business organization, the carrying cost is an important term to find total inventory cost. Here we consider the numerical example to get the best optimum solution for understanding the behavior of inventory model. We also used sensitivity analysis to show the effect of variation in total profit per item with respect to changes in the other constraints to illustrate the model. The scenario of today's market is to encourage the retail dealers allowing them a delay in making the payments without them incurring any interest.

Keywords: Inventory, Multivariate Demand, Non-Instantaneous Deterioration, Ordering Cost, Trade Credit

1. Introduction

A large number of the researchers on the inventory models do not assume the trade credit with the inflation simultaneously. Trade credit and inflation play a crucial role in the optimum ordering policy inventory model with influence the demand of some items.

Proposed a mathematical model having stock dependent consumption rate with trade credit policy in payment conditions¹. Presented a mathematical model for obtaining the trade credit policy, optimum pricing and ordering policy¹. Design a model with constant deterioration and demand with increase exponentially due to inflation¹. Investigated a mathematical model with inventory level-dependent demand under the progressive payment scheme environment⁵. Discussed the inventory models which show the effect of inflation on two warehouse management⁶⁷. Various associated research reported in⁸⁻¹⁴. Presented a model with time dependent demand for decaying products using the Trade credit scheme condition¹⁵. Presented an inventory model with trade credit policy¹⁶. Discussed an optimal order policy with stock-level demand rate for non-instant diminishing products¹⁷. Developed an improved inventory model with stock-dependent demand¹⁸. Formulated a mathematical example with inflation and stock-level demand rate¹⁹⁻²¹. Developed a multi item model for diminishing products having expiry date under the shortages²². Discussed an optimum payment scheme for an inventory model with shortages and trade credit²³. Investigated a mathematical model under the inflation under partial backlogging²⁰⁻²⁴.

This paper investigates a trade credit inventory model with multivariate demand under the inflation condition. The main objective of this paper is to obtain the optimum restock procedure with multivariate demand under the inflation for non-instantaneous diminishing items. The maintenance and individuality of the finest solutions to the optimal circumstances are provided.
2. Notations and Assumptions

The inventory notations and assumptions of the proposed study are given below:

- The demand rate is \(D(t) = d_1 + d_2 t + d_3 Z(t) \), Where, \(d_1, d_2, d_3 \geq 0 \).
- Lead-time is assumed to be zero.
- The retailer can build up the returns and produce interest followed by the payment of customers in purchasing cost from the retailer in eagerness of the finishing of the permissible delay in payment time presented by the dealer.
- \(\theta \) rate of deterioration
- \(C_i \) cost of ordering per order
- \(C_s \) cost of carrying cost of inventory per item
- \(C_e \) cost of deterioration per item
- \(C_p \) cost of purchasing per item
- \(C_{sr} \) cost of sales revenue per item
- \(r \) discount rate, representing the time value of money
- \(i \) inflation rate
- \(R \) net discount rate of inflation; \(R = r - i \)
- \(M \) trade credit offered by supplier in months
- \(\gamma_1 \) interest charges per $ per month
- \(\gamma_2 \) interest earned per $ in stocks per month
- \(Z \) presents the non-decaying inventory level in duration \([0, t_1]\).
- \(Z_1 \) presents the inventory level in which demand and deterioration level goes to '0' in duration \([t_1, t_2]\).
- \(t_1 \) the time period in which product maintain their freshness.
- \(t_2 \) the time period in which the deterioration in the product takes place.
- TVP the total optimal function of profit per item.

3. Mathematical Model

We assumed a mathematical inventory model with multivariate demand which is used for non-instant decaying products under the trade credit policies. Depending upon this proposed inventory model the following equations describes the level of inventory (\(Z \)) at \(t \):

\[
\frac{dZ(t)}{dt} = -(d_1 + d_2 t + d_3 Z(t)) \quad t \in [0, t_1]
\]

(1)

\[
\frac{dZ_1(t)}{dt} + \theta Z_2(t) = -(d_1 + d_2 t + d_3 Z(t)) \quad t \in [t_1, T]
\]

(2)

Showing the boundary conditions \(Z(t_1) = W, Z(T) = 0 \), respectively, solving above equations (1) and (2), we get

\[
Z(t) = (W + \gamma_i) e^{-\theta t} - \gamma_1 - \frac{d_2}{d_3} t, \quad t \in [0, t_1],
\]

(3)

\[
Z_1(t) = (\gamma_2 - t \gamma_3) + e^{d_3 t \gamma_1 t} (T_\gamma_3 - \gamma_2) \quad t \in [t_1, T],
\]

(4)

Where \(\gamma_1 = \frac{d_1 d_3 - d_2}{d_3^2}, \gamma_2 = \frac{d_1 - d_2 (d_1 + d_2)}{(d_1 + d_2)^2}, \gamma_3 = \frac{d_1}{d_3 + \theta} \)

At \(t = t_1 \), using Eqns (3) and (4), we have considered \(Z_1(t_1) = Z(t_1) \)

\[
W = \frac{d_1}{d_3} t_1 + \gamma_1 - \gamma_2 - t_\gamma_3 e^{d_3 t} - \gamma_1 - e^{\theta t} (\gamma_2 - T \gamma_3)
\]

(5)

Total profit for each sequence contains the subsequent components:

1. The ordering cost (CO) = \(C_1 \).
2. The carrying cost (CH)

\[
CH = C_1 \int_0^T e^{-\theta t} Z_1(t)dt + \int_0^T e^{-\theta t} Z(t)dt
\]

(6)

\[
= \left[\frac{W + \gamma_1}{R + d_3} + \left(e^{\theta t} - 1 \right) \left(\frac{dR \gamma_1 + d_1}{dR^2} \right) \right] + \frac{d_1}{dR} t e^{d_3 t} + \frac{\gamma_2}{R} \left(T e^{-\theta t} - t e^{-\theta t} \right) + \frac{\gamma_1}{R} \left(R e^{-\theta t} - t e^{-\theta t} \right)
\]

(7)

3. The deterioration cost (CD) is

\[
CD = C_2 \int_0^T e^{-\theta t} Z_2(t)dt
\]

\[
= \frac{(\gamma_3 - \gamma_2 R)}{R} \left(e^{-\theta t} - e^{-\theta t} \right) + \frac{\gamma_2}{R} \left(T e^{-\theta t} - t e^{-\theta t} \right) + \frac{\gamma_1}{R} \left(R e^{-\theta t} - t e^{-\theta t} \right)
\]

(8)

4. The purchasing cost (CP) is \(CP = C_3 x W \)

\[
= C_3 \left[\frac{d_1}{d_3} t_1 + \gamma_1 - \gamma_2 - t_\gamma_3 e^{d_3 t} - \gamma_1 - e^{\theta t} (\gamma_2 - T \gamma_3) \right]
\]

(9)

5. The sales revenue cost (CSR) is

\[
CSR = C_4 \int_0^T e^{-\theta t} (d_1 + d_2 t + d_3 z(t))dt
\]
In this paper we have considered permissible delay in payment in two periods: (on the basis of the length of T and M)

Case-I (M∈[t, T]), here the interest payable is

\[
IP_i = C_iZ_i \int M \int (t, d_i + d_i(t)) dt + \int M \int (t, d_i + d_i(t)) dt
\]

The interest earned is

\[
IE_i = C_iZ_i \int M \int \left[\frac{d_i M_i}{2} + \frac{d_i M_i^3}{3} + \left(\frac{W + \gamma_i}{d_i} \right) \left(1 - e^{\gamma_i(d_i + M_i) + 1} \right) - \frac{\gamma_i d_i^3}{2} - \frac{\gamma_i^3}{3} \right] dt
\]

Total profit function TVP₁ per unit time is

\[
TVP_i = \frac{1}{T} \left[CSR - CO - CH - CD - CP - IP_i + IE_i \right]
\]

The total profit function TVP₁ is maximum if

\[
\frac{dTVP_i}{dt_i} = 0
\]

and \(\frac{dTVP_i}{dt_i} < 0 \)

Case-II (M≥T), here in this period for any product interest charges are not reward, i.e.,

\[
IP_i = 0
\]

The interest earned is

\[
IE_i = C_iZ_i \int M \int \left[t, (d_i + d_i(t)) dt + \int M \int (t, d_i + d_i(t)) dt + D(T) + M \right] dt
\]

The function of the total profit TVP₂ is

\[
TVP_i = \frac{1}{T} \left[CSR - CO - CH - CD - CP - IP_i + IE_i \right]
\]

The total profit function TVP₂ is maximum if

\[
\frac{dTVP_i}{dt_i} = 0
\]

and \(\frac{dTVP_i}{dt_i} < 0 \)

Solution Algorithm

Follow the given steps below to find the optimum solution:

Step.1. Input the constraints \(C_1, C_2, C_3, C_4, C_5, \theta, R, d_1, d_2, \ldots, M, Z, t, t_i \) values.

Step.2. Case-I: With the help of equation (14) determine the value of \(t_i \) and then compute the value of profit function TVP₁ using the equation (13).

Case-II: With the help of equation (15) determine the value of \(t_i \) and then compute the value of profit function TVP₂ using the equation (18).

Step.3. Case-I: Now if the value of \(t_i \) satisfies the condition \(\frac{dTVP_i}{dt_i} < 0 \) then the solution is optimal solution, if not move to step 1 and reset the constraints values.

Case-II: Now if the value of \(t_i \) satisfies the condition \(\frac{dTVP_i}{dt_i} < 0 \) then the solution is optimal solution, if not move to step 1 and reset the constraints values.

4. Numerical Example and Sensitivity Analysis

Ex.1. Consider \(C_1 = 100, C_2 = 0.40, C_3 = 0.05, C_4 = 40, C_5 = 75, Z = 0.1, Z = 0.08, d_1 = 200, d_2 = 0.5, d_3 = 0.2, \theta = 0.40, \)
and R=0.01. **Case-I** assume M=0.6 month, and **Case-II** assume M=1.5 month. From the Table 1.1, we monitor that (TVP) is maximum, if \(t_1=1/2, t_2=0.604 \) month, TVP \(*=3725.6 \) and optimal order quantity is \(W=383.543 \).

From the Table 1.2, we study that the profit (TVP) is maximum when \(t_1=1/2, t_2=0.2229, TVP_2*=5692.3 \) and optimal order quantity is \(W=251.0385 \).

5. Sensitivity Analysis

In the given inventory model the constraints are analyzed which shows that the total profit (TVP, and TVP) changes significantly with the change in the various constraint values as shown in the following cases:

Table 1. Sensitivity Analysis for Case I

Parameter	change	\(t_1^* \)	\(W^* \)	TVP \(*^* \)
\(C_1 \)	-10%	0.602	382.799	3734.7
	0%	0.604	383.543	3725.6
	+10%	0.606	384.286	3716.6
\(C_2 \)	-10%	0.605	384.034	3732.8
	0%	0.604	383.543	3725.6
	+10%	0.603	383.055	3718.4
\(C_3 \)	-10%	0.6041	383.561	3725.7
	0%	0.6041	383.543	3725.6
	+10%	0.6041	383.525	3725.5
\(C_4 \)	-10%	0.657	404.470	5130.1
	0%	0.604	383.543	3725.6
	+10%	0.568	369.640	2329.3
\(C_5 \)	-10%	0.604	368.642	1940.6
	0%	0.604	383.543	3725.6
	+10%	0.651	401.952	5518.4
\(d_1 \)	-10%	0.606	345.918	3345.5
	0%	0.604	383.543	3725.6
	+10%	0.602	421.167	4105.8
\(d_2 \)	-10%	0.602	383.956	3724.1
	0%	0.604	383.543	3725.6
	+10%	0.6040	383.530	3727.1
\(d_3 \)	-10%	0.661	394.763	4028.4
	0%	0.604	383.543	3725.6
	+10%	0.555	373.958	3436.9
\(\Theta \)	-10%	0.606	384.338	3734.7
	0%	0.604	383.543	3725.6
	+10%	0.602	382.755	3716.5

Case-I:

1. Rise in the demand rate \((d_1) \), reduces the time \(t_2 \) and an increment in the order quantity \((W) \) as well as total profit \((TVP) \).
2. Rise in the demand rate \((d_2) \), reduces the time \(t_2 \) as well as order quantity \((W) \) and an increment in total profit \((TVP) \).
3. Rise in the demand rate \((d_3) \), also gives rise to time \(t_2 \), order quantity \((W) \) and total profit \((TVP) \).
4. Rises in the deterioration rate \((\Theta) \), purchasing cost \((C_1) \), deteriorating cost \((C_2) \), carrying cost \((C_3) \) increases and inflation rate \((R) \), reduces time \(t_2 \), order quantity \((W) \) and the total profit \((TVP) \).
5. Rise in the ordering cost \((C_4) \), gives increment in time \(t_2 \) as well as order quantity \((W) \) on the other hand it reduces the total profit \((TVP) \).
6. Rise in the sales revenue cost \((C_5) \), gives increment in time \(t_2 \), order quantity \((W) \) and the total profit \((TVP) \).

Table 1. Sensitivity Analysis for Case 2

Parameter	change	\(t_1^* \)	\(W^* \)	TVP \(*^* \)
\(C_1 \)	-10%	0.2202	250.216	5706.2
	0%	0.2229	251.039	5692.3
	+10%	0.2255	251.858	5678.5
\(C_2 \)	-10%	0.2233	251.171	5697.9
	0%	0.2229	251.039	5692.3
	+10%	0.2224	250.907	5686.8
\(C_3 \)	-10%	0.2229	251.043	5692.3
	0%	0.2229	251.039	5692.3
	+10%	0.2229	251.034	5692.3
\(C_4 \)	-10%	0.1877	240.280	7085.2
	0%	0.2229	251.039	5692.3
	+10%	0.2479	258.845	4305.8
\(C_5 \)	-10%	0.2522	260.195	3717.8
	0%	0.2229	251.039	5692.3
	+10%	0.1889	240.655	7674.0
\(d_1 \)	-10%	0.2256	226.682	5111.4
	0%	0.2229	251.039	5692.3
	+10%	0.2206	275.393	6273.3
\(d_2 \)	-10%	0.2231	251.111	5690.2
	0%	0.2229	251.039	5692.3
	+10%	0.2227	250.966	5694.4
\(d_3 \)	-10%	0.2348	255.329	5690.2
	0%	0.2229	251.039	5692.3
	+10%	0.2120	247.163	5694.4
\(\Theta \)	-10%	0.2334	248.918	5932.5
	0%	0.2229	251.039	5692.3
	+10%	0.2106	252.201	5464.7
\(R \)	-10%	0.2240	251.386	5698.2
	0%	0.2229	251.039	5692.3
	+10%	0.2218	250.693	5686.4
Case-II:
1. The order quantity (W) and total profit (TVP_2) rises and the time (t_2) reduces, if there is an increment in the demand rate (d_1).
2. The total profit (TVP_2) rises whereas the order quantity (W) and the time (t_2) reduces, if there is an increment in the demand rate (d_1).
3. The total profit (TVP_2) rises whereas the order quantity (W) and the time (t_2) reduces, if there is an increment in the demand rate (d_1).
4. The order quantity (W) rises whereas total profit (TVP_2) and time (t_2) reduce, if there is an increment in the deterioration rate (θ).
5. The total profit (TVP_2) rises whereas the order quantity (W) and the time (t_2) reduce, if there is an increment in the sales revenue cost (C_5).
6. If there is an increment in purchasing cost (C_4) and ordering cost (C_1) then it will give rise to time t_2 and order quantity (W) whereas reduction in the total profit (TVP_2).
7. If there is an increment in carrying cost (C_2), deteriorating cost (C_3) and inflation rate (R), then it reduces the time t_2, order quantity (W) and total profit (TVP_2).

The graphs in (Figures 1.1 and 1.2) indicates the relation among profit functions (TVP_1* and TVP_2*) and time t_1* and t_2*.

Figure 1. 3D view of Total Profit TVP_1* v/s t_2* and t_1* values.

Figure 2. 3D view of Total Profit TVP_2 v/s t_2* and t_1* values.

6. **Conclusion**

This paper designs a mathematical model for the inventory system using, concept of effect of inflation and trade credit policy with the non-instant diminishing products which is very realistic in daily life environment. Finally, for the developed inventory model, numerical example, graphical representation of profit function with constraints and analyzed results are given to exemplify, the significant features of the results with various parameters. Some possible extension of this research paper, considering variable lead time, variable carrying cost, shortage, production model and two warehouses model etc.

7. **References**

1. Liao HC, Tsai CH, Su CT. An inventory model for deteriorating items under inflation when a delay in payment is permissible. International Journal of Production Economics. 2001; 63:207-14.
2. Teng JT, Chang CT, Goyal SK. Optimal pricing and ordering policy under permissible delay in payments. International Journal of Production Economics. 2005; 97:121-29.
3. Jaggi CK, Aggarwal KK, Goyal SK. Optimal Order Policy for Deteriorating Items with Inflation Induced Demand.
International Journal of Production Economics. 2006; 103:707–14.
4. Pal M, Ghosh SK. An inventory model with shortage and quantity dependent permissible delay in payment. Aust. Soc. Operat. Res. Bull. 2006; 25(3):1-12.
5. Singh SR, Malik AK. Effect of inflation on two warehouse production inventory systems with exponential demand and variable deterioration. International Journal of Mathematical and Applications. 2008; 2(1-2):141-49.
6. Soni H, Shah NH. Optimal ordering policy for stock-dependent demand under progressive payment scheme. European Journal of Operational Research. 2008; 184(1):91–100.
7. Singh SR, Malik AK. Two warehouses model with inflation induced demand under the credit period. International Journal of Applied Mathematical Analysis and Applications. 2009; 4(1):1185-96.
8. Chang CT, Teng JT, Goyal SK. Optimal replenishment policies for non-instantaneous deteriorating items with stock-dependent demand. International Journal of Production Economics. 2010; 123(1):62–8.
9. Sana, SS. An EOQ model for perishable item with stock-dependent demand and price discount rate. American Journal of Mathematical and Management Sciences. 2010; 30(3-4):299-316.
10. Singh SR, Malik AK, Gupta SK. Two Warehouses Inventory Model with Partial Backordering and Multi-Variate Demand under Inflation. International Journal of Operations Research and Optimization. 2011; 2(2):371-84.
11. Singh SR, Malik AK, Gupta SK. Two Warehouses Inventory Model for Non-Instantaneous Deteriorating Items With Stock-Dependent Demand. International Transactions in Applied Sciences. 2011; 3(4):911-20.
12. Malik AK, Kumar S. Two Warehouses Inventory Model with Multi-Variate Demand Replenishment Cycles and Inflation. International Journal of Physical Sciences. 2011; 23(3):847-54.
13. Singh SR, Malik AK. An Inventory Model with Stock-Dependent Demand with Two Storages Capacity for Non-Instantaneous Deteriorating Items. International Journal of Mathematical Sciences and Applications. 2011; 1(3):1255-59.
14. Malik AK, Sharma A. An Inventory Model for Deteriorating Items with Multi-Variate Demand and Partial Backlogging Under Inflation. International Journal of Mathematical Sciences. 2011; 10(3-4):315-21.
15. Khanra S, Ghosh SK, Chaudhuri KS. An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment. Applied Mathematics and Computation. 2011; 218(1):1–9.
16. Zhou YW, Zhong Y, Li J. An uncooperative order model for items with trade credit, inventory - dependent demand and limited - shelf space. European Journal of Operational Research. 2012; 223(1):76–85.
17. Gupta KK, Sharma A, Singh PR, Malik AK. Optimal Ordering Policy for Stock-dependent Demand Inventory Model with Non-Instantaneous Deteriorating Items. International Journal of Soft Computing and Engineering. 2013; 3(1):279-81.
18. Sarkar B, Sarkar S. An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand. Economic Modelling. 2013; 30:924-32.
19. Sharma A, Gupta KK, Malik AK. Non-Instantaneous Deteriorating Inventory Model with Inflation and Stock-dependent Demand. International Journal of Computer Applications. 2013; 67(25):6-9.
20. Sarma S, Singh SR. An inventory model for decaying items, considering multi variate consumption rate with partial backlogging. Indian Journal of Science and Technology. 2013; 6(7):4870-80.
21. Singh, Yashveer, Malik, AK. and Kumar Satish. (2014). An Inflation Induced Stock-Dependent Demand Inventory Model with Permissible delay in Payment. International Journal of Computer Applications. 96(25):14-18.
22. Tayal S, Singh SR, Sharma R. Multi item inventory model for deteriorating items with expiration date and allowable shortages. Indian Journal of Science and Technology. 2014; 7(4):463–71.
23. Singh SR, Rathore H. Optimal Payment Policy with Preservation Technology Investment and Shortages Under Trade Credit. Indian Journal of Science and Technology. 2015; 8(57):203-12.
24. Rajoria YK, Singh SR, Saini S. An Inventory Model for Decaying Item with Ramp Demand pattern under Inflation and Partial Backlogging. Indian Journal of Science and Technology. 2015; 8(12):1-6.