A Participatory Assessment of Forest Biodiversity Resources and Level of Threat in Hararge Area, Eastern Ethiopia

Tahir Abdala, Girma Eshetu, Abebe Worku
Ethiopian Biodiversity Institute, Harar Biodiversity Center, Harar, Ethiopia

Email address: tahirabdala34@gmail.com (T. Abdala), girma.eshetu@ymail.com (G. Eshetu), abebe21w@gmail.com (A. Worku)

To cite this article: Tahir Abdala, Girma Eshetu, Abebe Worku. A Participatory Assessment of Forest Biodiversity Resources and Level of Threat in Hararge Area, Eastern Ethiopia. International Journal of Science, Technology and Society. Vol. 5, No. 4, 2017, pp. 67-73. doi: 10.11648/j.ijsts.20170504.13

Received: March 15, 2017; Accepted: April 5, 2017; Published: June 14, 2017

Abstract: Ethiopia was endowed with abundant and diversified flora and fauna. Especially, forest ecosystem is one the important habitats which provide as home of variety of life. Thus, wood vegetation that covered almost all of the area is reduced due to mismanagement, limited awareness of forest value and high population pressure. Particularly, the forest resources of Harari region, eastern and west Hararge zone has been degraded dramatically. The study was conducted in eastern part of Ethiopia in both east and west Hararge zones. The aim of the study was to collect and document threatened forest Biodiversity species found in the study area for conservation priority. Data were collected community based participatory using single visit transect walk, informal interviews of elder community and review other literature. The collected data was summarized by table, percent and figure. A total of 112 forest species were recorded. Out of them 34.8% plant species were highly threatened, 22.3% species near threatened and 42.9% were least threatened plant species. Hence, it is recommended to establish legal basis for the in situ and ex situ conservation sites for the conservation of the priority species. In addition, there is an urgent need to apply biotechnology to propagate some of the priority species and raise public awareness on the value of forest genetic resources.

Keywords: Ethiopia, Forest Genetic Resource, Hararge, Threatened, Indigenous Knowledge

1. Introduction

Ethiopia is one of the top 25 biodiversity-rich countries in the world [1], and hosts two of the world’s 34 biodiversity hotspots, namely the Eastern Afromontane and the Horn of Africa hotspots. It is also among the countries in the Horn of Africa regarded as major centre of diversity and endemism for several plant species. The Ethiopian flora is estimated to about 6000 species of higher plants of which 10% are considered to be endemic [2]. Woody plants constitute about 1000 species out of which 300 are trees.

Forests form the major constituents of vegetation resources and thus conservation of forest genetic resources (FGRs) is among the priority areas of biodiversity conservation in Ethiopia. Efforts have been made to conserve and sustainably utilize FGRs in the country. Notable examples of such efforts are floristic, structure and socio-economic studies of woody plant species in Afromotane forests of the country; FGR conservation strategies and establishment of in situ and ex situ conservation sites.

Studies have shown that tropical forests are being destroyed at an alarming rate [3, 4, 5, 6]. Deforestation has been contributing to a decline in forest cover, loss of biodiversity both at global and national levels [7, 8]. Expansion of agricultural land as a result of over-increasing population growth, increase demand for fuel wood and construction material, illegal settlements within forests, logging and illegal trade were considered as major contributing factors to the loss of forest resources. Moreover, poverty and lack of alternative livelihoods have been driving forces of forest destruction [9, 10]. The annual rate of deforestation in Ethiopia was found to be extremely high [11, 12].

Particularly, the forest resource of Harari region eastern and west Hararge zone has been dramatically degraded due to limited agricultural land, over grazing, limited awareness of
forest value, due to high population pressure, mismanagement and recurrent drought. Moreover, absence forest protected areas and weak law enforcement, limited floristic document on forest diversity and conservation status are tackle for future conservation and research in the region. These situations are urgently called for forest data collection and writing forest biodiversity resource document in this region. Therefore, the objective of this study was to collect and document tree and shrub species found in Harari, eastern and west Hararge; to identify threatened species for priority conservation.

2. Methodology

2.1. Description of the Study Area

The study was conducted in the eastern part of Ethiopia at West and East, Hararge zones of Oromyia region and Harari region. The study area is situated approximately 400 km east of the capital, Addis Ababa. It is bordered by east Showa zone in the west, Arsi zone in south west, Bale zone in the south, Somali National Regional State in the east and south-east, and Dire Dawa Administrative Council in the north. The study area has 541 kebeles from east Hararge, 449 from west Hararge and 36 from Harari which have totally 1026 kebele (the lowest administrative structure in Ethiopia). The study area has the total area of approximately 4 million square kilometer. The physiographic condition of the study area is characterized by plateaus, rugged dissected mountains, deep valleys, gorges and plains. There are various prominent mountains and peaks in the area; Kundudo and Gara Mullata mountain chain are the major ones.

![Figure 1. Map of the study area.](image)
2.2. Methods of Data Collection

The data were collected through community based participatory approach using reconnaissance survey of single field visit; transect walk and informal interviewing with farmers and elder of local community. The survey covered Harari region, Babile, Jarso, Gara Mullata, Meta, Qarsa, Fadis and KurfaChale woredas in East Haragehe zone of Oromiya regional state and also Habro, Asbot, Dindin and Ades Forest of West Hararge. During informal interview respondent was requested to categorize level threat for all of the forest species into three categories: High, Medium and low. Where ‘High’ represent highly threatened plant species, when the population of the plant is rare and declining in the study area. Where ‘medium' represent near threatened plant species, when the population of plant species some was present but, not much abundant generation. Where ‘low’ represent least threatened plant species, when the population of plant species has good regeneration. To help the respondents to categorize the species key questions like trends of plant species, the origin of plant species and importance of individual species were asked.

2.2. Species Identification

Most plant species were identified in the field by the help of the book called flora of Ethiopia and Eritrea. Few species which couldn’t be identified at the field were identified at the herbarium by table. The data on level of plant threat, local name, family plant species some was present but, not much abundant. The collected data were mostly analyzed and summarized by descriptive statics such as, tables and percentages. The study of the vegetation data revealed that a total of 116 plant species were registered from study area. This all were belong to 42 families and 86 genera. Fabaceae was the most dominant family which comprise 24 species. Euphorbiaceae was the second family comprising 7 species. Moraceae and Rosaceae are both the third most abundant families by holding 6 species each. Asteraceae is the fourth family with 5 species while Anacardiaceae, Lamiaceae, Rhamnaceae, Tiliaceae are together ranking fifth by holding 4 Species each. Boraginaceae, Rubiaceae, Spotaceae, and Flacourtiaceae are the sixth altogether by holding 3 species each. The families Acanthaceae, Apocynaceae, Burseraceae, Myrtaceae, Oleaceae, and Simaroubaceae were represented by 2 species while the rest of the families were represented by a single species. The genus Acacia was represented by 10 species, Ficus by 4 species, Grewia and Euphorbia were represented by 3 species each, Cordia, Combretum, Grewia, Prunus, Ziziphus, Acanthus, Rhocicissus, Commiphora, Boswelia and Albizia by 2 species each. The rest of the genera of the survey area contained a single species each (Table 1).

Out of the 116 plant species 53 (45.7%) were categorized as highly threatened, 26 (22.4%) as medially threatened, and 37 (31.9%) as least threatened by the local community. Out of the 53 plant species categorized as highly threatened 22 were tree, 24 were Shrub, 6 species were exhibiting tree or shrub life-forms, and 1 species was herbaceous.

Among the recorded woody plant species, there was a number of plant species that are already nationally red listed (following the IUCN threat categories) as threatened species. These include Acacia negrii, Acanthus senii, Cadaba divaricata, Euphorbia burger, Euphorbia dalettiensis, Hagenia abyssinica, Juniperous procera, Prunus fricana and Podocarpus falcatus [22]. On the other hand out of the plants collected from the study area, 16 (13.8 %) were endemic to Ethiopia, calling immediate conservation measures. The endemic plant species in the study area are listed in Table 3.

3. Data Analysis

The collected data were mostly analyzed and summarized by table. The data on level of plant threat, local name, family and scientific name was analysed by descriptive statics such as, tables and percentages.

4. Results and Discussions

The study of the vegetation data revealed that a total of 116 plant species were registered from study area. This all were belong to 42 families and 86 genera. Fabaceae was the most dominant family which comprise 24 species. Euphorbiaceae was the second family comprising 7 species. Moraceae and Rosaceae are both the third most abundant families by holding 6 species each. Asteraceae is the fourth family with 5 species while Anacardiaceae, Lamiaceae, Rhamnaceae, Tiliaceae are together ranking fifth by holding 4 Species each. Boraginaceae, Rubiaceae, Spotaceae, and Flacourtiaceae are the sixth altogether by holding 3 species each. The families Acanthaceae, Apocynaceae, Burseraceae, Myrtaceae, Oleaceae, and Simaroubaceae were represented by 2 species while the rest of the families were represented by a single species. The genus Acacia was represented by 10 species, Ficus by 4 species, Grewia and Euphorbia were represented by 3 species each, Cordia, Combretum, Grewia, Prunus, Ziziphus, Acanthus, Rhocicissus, Commiphora, Boswelia and Albizia by 2 species each. The rest of the genera of the survey area contained a single species each (Table 1).

NO.	Scientific name	Local name	Family	Level of threat	Habit
1	Acacia albida	Garbi	Fabaceae	Medium	T
2	Acacia brevissipce	Hamareessa	Fabaceae	High	T
3	Acacia busset	Harlo	Fabaceae	High	T
4	Acacia etabaica	Doddoti	Fabaceae	High	T
5	Acacia lahai	Laftoo	Fabaceae	Medium	T
6	Acacia negrii	Dhedacha	Fabaceae	High	T
7	Acacia nilotica	Serkama	Fabaceae	Medium	T
8	Acacia senegal	Sobehensiama	Fabaceae	Low	T
9	Acacia seyal	Wacaudima	Fabaceae	Medium	T
10	Acacia tortils	Dhadacha	Fabaceae	High	T
11	Acanthus senii	Kosorruu	Acanthaceae	High	S
12	Acoelanthera schimperi	Qaraaru	Apocynaceae	Medium	T
13	Albizia lebbeck	Lebbek	Fabaceae	Low	T
14	Albizia lophantha	Shifire	Fabaceae	Low	T
15	Allphylus abyssinicus	Duruba	Sapindaceae	Low	T/S
16	Aloe trichosanthe	Hargiisa	Aloaceae	High	S
17	Aningera altissima	Kuraro/quduba	Spotaceae	High	T
18	Arundinaria alpinia	Karkaa	Poeaceae	Medium	S
NO.	Scientific name	Local name	Family	Level of threat	Habit
-----	-------------------	----------------	-------------------	-----------------	-------
19	Balanites aegyptiaca	Baddanoo	Balanitaceae	High	T
20	Berchemia discolor	Jajebaa	Rhamnaceae	Low	T
21	Calaba divaricata	Qulqacha	Capparidaceae	High	S
22	Caesalpinia decapetala	Qijimaaraaba	Fabaceae	Low	S
23	Calpurnea aurea	Ceekaa	Fabaceae	Medium	S
24	Capparis tomentosa	Ganoora	Capparidaceae	Low	C
25	Carissa edulis	Agarssaa	Apocynaceae	Medium	S
26	Celtis africana	Mataqooma	Ulmaceae	Low	T
27	Combretum aculeatum	Totaf	Combretaceae	Low	T
28	Combretum molle	Bikaaka/Rukeesa	Combretaceae	Medium	T
29	Commiphora africana	Anqa	Burseraceae	High	T/S
30	Commiphora erythraea	Hagar	Burseraceae	High	T
31	Cordia africana	Wodeesaa	Boraginaceae	High	T
32	Cordia monoica	Medhero	Boraginaceae	Medium	T/S
33	Croton macrostachyus	Mekenisaa	Euphorbiaceae	High	T/S
34	Cussonia holstii	Harfattu	Araliaceae	Low	T
35	Dichrostachys cherea	Jirima/adesesa	Fabaceae	Low	T/S
36	Dodonaea angustifolia	Kikita/dhadacha	Sapindaceae	Low	S
37	Doyvulis abyssinica	Koshamoo	Flacourtiaceae	Low	S
38	Draecena ofromontana	Algehe	Dracaenaceae	Low	S
39	Ebrectina cymosa	Huulaga	Boraginaceae	High	T/S
40	Ekebergia capensis	Somboo	Meliaeaceae	Low	T
41	Entada abyssinica	Kentafa	Fabaceae	Low	T
42	Eriobotrya japonica	Woshmella	Rosaceae	High	T/S
43	Erythrina brucei	Walensuu	Fabaceae	High	T
44	Eulea schimperi	Mi, eesa	Ebenaceae	Low	T/S
45	Euphorbia burgeri	Qancaree	Euphorbiaceae	High	S
46	Euphorbia dalattensis	Adamii	Euphorbiaceae	High	S
47	Euphorbia tirucalli	Qincibba	Euphorbiaceae	Low	T
48	Ficus carica	Beles	Moraceae	Low	T
49	Ficus sur	Qixxu	Moraceae	Medium	T
50	Ficus sycomorus	Lugoo	Moraceae	Low	T
51	Ficus vasta	Odaa	Moraceae	High	T
52	Ficus thonningii	Dambii	Moraceae	Medium	T
53	Flacourtia indica	Hudhaa	Flacourtiaceae	High	T
54	Flueggea viroso	Qacacilee	Euphorbiaceae	Medium	T/S
55	Gardenia terminifolia	Gambeloo	Rubiaceae	High	T/S
56	Grewia bicolor	Horeresaa	Tiliaceae	Medium	T
57	Grewia tembensis	Dheekkaa	Tiliaceae	Medium	T
58	Grewia villosa	Ogomooodi	Tiliaceae	Low	S
59	Hagenia abyssinica	Kosso	Rosaceae	High	S
60	Hildebrandtia diredawaensis	Dhacdhale	Convolvulaceae	High	S
61	Indigofera rothii	Khoshi	Fabaceae	High	S
62	Indigofera ellenbeckii	Khoshi	Fabaceae	High	S
63	Indigofera stokesii	Jusminum abyssinicum	Oleaceae	Low	C
64	Juniperus procera	Gatira	Cupressaceae	High	T
65	Justicia schimperiana	Dhumugaa	Acanthaceae	High	S
66	Kalanchee lanceolata	Kontorna	Crussulaceae	Low	H
67	Kirkia burgeri	Hudhaasawwa	Simaroubaceae	High	T
68	Kirkia tenafolia	Hudhaasawwa	Simaroubaceae	High	S
69	Kotschya recurvifolia	Henna	Leguminosae	High	S
70	Lamnea schimperi	Handarakkhu	Anacardiaceae	Low	T/S
71	Maesa lanceolata	Abbayyi	Myrsinaceae	Medium	S
72	Maytenus undata	Kombolchea	Celastraceae	High	T/S
73	Milletea ferruginea	Dedatu, Sotellu	Fabaceae	High	T
74	Mimusops kummel	Buriri	Sapotaceae	Low	T
75	Moringa oleifera	Shefera	Moringaceae	High	T
76	Myrcisca licifolia	Abay, kataba	Myricaceae	Low	T
77	Myrtus communis	Ades	Myrtaceae	Low	S
78	Ocimum lamifolium	Darnacasee	Lamiaceae	Medium	S
79	Ocimum jamessii	Qayyadurbaa	Lamiaceae	Medium	S
80	Olea europaea	Ijersa	Oleaceae	High	T
81	Oncoba spinosa	Jilboo	Flacourtiaceae	High	S
82	Pappea capensis	Biiqqua	Sapindaceae	Medium	T
83	Phytolacca dodecandra	Handode	Phytolacaceae	High	S
84	Plectranthus barbatu	Barbarusha	Lamiaceae	Low	H
85	Podocarpus falcatiis	Birbira	Podocarpaceae	High	T
NO.	Scientific name	Local name	Family	Level of threat	Habit
-----	----------------------------	------------	----------------	----------------	-------
86	Polygala obtusissima	Harmal	Polygalaceae	High	S
87	Pouteria oliviformis	Mandhisaa	Sapotaceae	Medium	T
88	Premna schimperi	Urgeessa	Lamiaceae	Medium	S
89	Prunus africana	Hadheessa	Rosaceae	High	T
90	Prunus persica	Kuki	Rosaceae	High	T
91	Pyradax schimperiana	Galo	Rubiaceae	Low	T
92	Pterolobium stellatum	Qajimaa	Fabaceae	Low	S
93	Rhamnus prinoides	Geshoo	Rhamnaceae	High	S
94	Rhoicissus revolii	Dagachebsa	Vitaceae	Low	C
95	Rhus glutinosa	Tatessa	Anacardiaceae	High	S
96	Rhus retinorrhoea	Debeluca	Anacardiaceae	Low	S
97	Rhus vulgaris	Rigaawaraabo	Anacardiaceae	Medium	T/S
98	Rhynchosia erlangeri	Soor-mudu	Fabaceae	High	S
99	Ricinus communis	Qoboo	Euphorbiaceae	Medium	S
100	Rosa abyssinica	Enqoto, Goro	Rosaceae	High	S
101	Rothmannia urcelliformis	Buruuri	Rosaceae	Low	S
102	Rubus apetalus	Goraa/Altufa	Rosaceae	High	S
103	Senecio myrioccephalus	Ingeshu	Asteraceae	High	S
104	Sterculia africana	Gere	Sterculiaceae	Low	T
105	Solanecio angulatus	Jinraas	Asteraceae	High	H
106	Sparmannia macrocarpa	Wulkifa	Tiliaceae	High	S
107	Suregada procera	Xillo	Euphorbiaceae	Medium	S
108	Syzygium guineense	Baddeessaa	Myrtaceae	High	T
109	Tamarindus indica	Roka	Fabaceae	High	T
110	Termina liabrownii	Birensaa	Combretaceae	Low	T
111	Vernonia amygdalina	Grawa/Ebicha	Asteraceae	Medium	S
112	Vernonia leopoldi	Qaxxee korma	Asteraceae	High	S
113	Vernonia ruepellii	Reejji	Asteraceae	High	S
114	Woodfordia uniflora	Marmarte	Lythraceae	Low	S
115	Ziziphus mauritiana	Kurkura	Rhamnaceae	Medium	T/S
116	Ziziphus mucronata	Kurkuragabroo	Rhamnaceae	Low	T/S

Key: *: Local name is unknown, T: tree, S: shrub, T/S: tree/shrub, H: herbs, C: climber

Table 2. Plant Families and number of highly threatened species they contained.

Families	Number of highly Threatened Species	Percentage
Fabaceae	11	20.7
Rosaceae	6	11.3
Asteraceae	4	7.5
Euphorbiaceae	3	5.6
Acanthaceae	2	3.8
Boraginaceae	2	3.8
Burseraceae	2	3.8
Flacourtiaceae	2	3.8
Simaroubaceae	2	3.8
Others in lump sum	1	35.9

Table 3. Endemic plant species collected from the study area.

NO.	Scientific name	Local name	Family
1	Acacia negrii	Dhedeca	Fabaceae
2	Acanthus semii	Kosorruu	Acanthaceae
3	Aloe trichosanthe	Hargissa	Aloaceae
4	Berchemia discolor	Jajeba	Rhamnaceae
5	Cadaba divaricata	Qulqalcha	Capparidaceae
6	Euphorbia burgeri	Qancaree	Euphorbiaceae
7	Erythrina brucei	Fabaceae	Tree
8	Euphorbia dalettensis	hadaamii	Euphorbiaceae
9	Hagenia abyssinica	Koso	Rosaceae
10	Hildebrandtia diredawaensis	Dhacdhale	Convolvulaceae
11	Indigofera ellenbeckii	Khoshi	Fabaceae
12	Indigofera rothii	Khoshi	Fabaceae
13	Kirkia burgeri	Hudhaa Sawwa	Simaroubaceae
14	Maytenes undata	Kombolcha	Celastraceae
15	Millettia ferruginea	Dedatu, Sotellu	Fabaceae
16	Moringa oleifera	Shefera	Moringaceae
17	Vernonia ruepellii	Reejji	Asteraceae
Table 4. List of the top 22 highly threatened shrub and tree species as their population is highly decreasing.

No.	Top Threatened species	Habitat
1	*Acacia brevispice*	Tree
2	*Acacia bussei*	Tree
3	*Acacia etabaica*	Tree
4	*Acacia tortilis*	Tree
5	*Aloe trichosantha*	Shrub
6	*Commiphora africana*	Tree
7	*Commiphora erythraea*	Tree
8	*Croton macrostachyus*	Tree
9	*Delonix rega*	Tree
10	*Ehretia cymosa*	Shrub /tree
11	*Eriobotrya japonica*	Shrub
12	*Flacourtia indica*	Shrub
13	*Justicia schimperiana*	Shrub
14	*Rosa abyssinica*	Shrub
15	*Maytenus undata*	Shrub
16	*Moringa oleifera*	Shrub
17	*Oncoba spinosa*	Shrub
18	*Prunus persica*	Tree
19	*Polygala obtusissima*	Shrub
20	*Rhamnus prinoides*	Shrub
21	*Solanecio angulatus*	Herbs
22	*Tamarindus indica*	Tree

5. Conclusion and Recommendation

The objective of this community-based participatory survey was to identify the threatened forest genetic resource in Hararge area, eastern Ethiopia and to recommend appropriate genetic conservation approaches in the area. The study has revealed 44% of the forest plant species in the study area were categorized as highly threatened by the local community. Among those species some like *Cordia africana*, *Erythrina burci*, *Hagenia abyssinica*, *Juniperous procera*, *Prunus africana* and *Podocarpus falcatus* were already incorporated in the IUCN red data list as vulnerable species [22]. Moreover, the record of population structure showed that 100% tree species listed in IUCN red data list have abnormal population structures with no or few individual's distribution in study area. Therefore, these species need urgent conservation measures that will facilitate healthy regeneration and guarantee sustainable use of the species. In addition, the vegetation survey conducted in the same area in 1996 reported 361 vascular plants species [23] while only 116 species were recorded by the present study which indicates there is marked amount of biodiversity loss. Hence, the following recommendations were suggested:

1. Raise public awareness on the value of forest genetic resources and the problems related to loss of genetic information and devise a mechanism by which human impacts can be minimized through discussion and consultation with the local people.
2. Carry out further studies on the patterns of ecosystem functioning, biology and ecology of the key stone species to be able to restore the composition and structure of the forest.
3. Establish legal basis for the in-situ and ex-situ conservation sites for the conservation of the priority species.
4. Conduct research on storage behaviour (seed physiology) and reproduction biology of woody species that focus on threatened and economically important species.
5. There is an urgent need of application of tissue culture for the rapid and mass propagation of the threatened plant species to conserve the available genetic resource.
6. Increase traditional forest management like, home garden and on-farm conservation.
7. Implement participatory management of protected areas by insuring the benefit shared to the local people.

Conflict of Interests

The authors declare that they have no conflict of interests.

Authors’ Contribution

Tahir Abdela collected the field data by consulting the local people in the study area and prepared the first draft of the manuscript, Girma Eshetu initiated the idea of the research and designed the methodology, and Abebe Worku identified the plant species both in the field and in the herbarium.

Acknowledgements

This work was supported by Ethiopian Biodiversity Institute, Harar Biodiversity Center.

References

[1] Biodiversity Data Source book, World Conservation Monitoring Centre, WCMC, World Conservation Press, Cambridge, UK, 1994.
[2] Hedberg, I., Friis, I. and Person, E., Flora of Ethiopia and Eritrea, the National Herbarium, Addis Ababa, Ethiopia and Uppsala, Sweden, General Part and Indexes, vol. 1-8, 2009.

[3] Hirsthorn, G. S., “Application of gap theory to tropical forest management: Natural regeneration on strip clear-cuts in the Peruvian Amazon,” Ecology, vol. 70, pp. 567-569, 1989.

[4] Sabogal, C., “Regeneration of tropical dry forest in central America with examples from Nicaragua,” Journal of Vegetation Science, vol. 3, pp. 407-416, 1992.

[5] Legesse Negash, “Indigenous Trees: Biology, Uses and Propagation Techniques,” Addis Ababa University Press, Addis Ababa, Ethiopia. ISBN 978-99944-52-27-9. pp. 386, 1995.

[6] Demel Teketay, “Seed ecology and regeneration in dryafromontane forest of Ethiopia,” Doctoral Theses, Swedish university of Agricultural science, Silvestria, 1996.

[7] Skole, D. and Tuker, C., “Tropical Deforestation and Habitat Fragmentation in the Amazon: satellite data from1978 to 1988,” Science vol., 260, no., 12, pp., 1905-1910, 1993.

[8] Environmental protection Authority (EPA), “Conservation Strategy of Ethiopia,” Environmental Protection Authority, Federal democratic Republic of Ethiopia, Addis Ababa. Ethiopian Journal of Biodiversity Vol. 1, no., 1, 2015.

[9] Forest Genetics Resources Conservation Strategy of Ethiopia. German Development Cooperation (GIZ) and Ethiopian Biodiversity Institute (EBI), Addis Ababa, 2002.

[10] Forest Development, Conservation and Utilization Proclamation, Proclamation no. 542/2007, Addis Ababa, Ethiopia, 2007.

[11] Reusing, M., “Change detection in natural high forests of Ethiopia using Remote Sensing and GIS techniques,” IAPR vol., 33 pp., 1253 – 1258, 2000.

[12] Shibru Tedla, “Protected Areas Management Crisis in Ethiopia,” Walia, vol., 16, pp., 17 - 30, 1995.

[13] TewoldBerhan G. Egziaber, “The importance of Ethiopia forests in the conservation Arabic coffee gene-pools,” In: Proceeding of the 12th plenary meeting AETFAT, Symposiuml. Allg. Bot. Humburg Band vol., 26a, pp., 65 - 72, 1990.