Dreiacher Bericht nach Inkrafttreten des Gentechnikgesetzes (GenTG) für den Zeitraum vom 1.1.2002 bis 31.12.2002

Die Arbeit der Zentralen Kommission für die Biologische Sicherheit (ZKBS) im Jahr 2002

Die Zentrale Kommission für die Biologische Sicherheit (ZKBS) prüft und bewertet sicherheitsrelevante Fragen nach den Vorschriften des Gentechnikgesetzes (GenTG), gibt hierzu Empfehlungen und berät die Bundesregierung und die Länder in sicherheitsrelevanten Fragen der Gentechnik. Da das GenTG hauptsächlich aus der nationalen Umsetzung der EU-Gentechnikrichtlinien hervorgegangen ist, sind die Entwicklungen im Bereich der internationalen und der nationalen Gentechnik-Regelungen für die ZKBS von besonderem Interesse.

Aus dem Bereich der internationalen Regelungen zur Gentechnik ist für das Berichtsjahr 2002 hervorzuheben, dass das „Intergovernmental Committee for the Cartagena Protocol“ (ICCP) eingerichtet wurde, das die Vorbereitungen zur Ratifizierung und schachrechten Umsetzung des „Biosafety Protocols“ begleitet. Mit seinem Inkrafttreten ist im Frühjahr 2003 zu rechnen, da zum Jahresende 2002 bereits 40 Ratifizierungen vorlagen und nach Erreichen von 50 Ratifizierungen und einer anschließenden Wartezeit von 90 Tagen die Bedingungen dafür erfüllt sind. Die ZKBS verfolgt die Umsetzung des Biosafety Protocols“ insofern mit besonderem Interesse, als die dabei getroffenen Regelungen z. B. über die grenzüberschreitende Verbringung gentechnisch veränderter Organismen (GVOs) zukünftig für die Bewertung der biologischen Sicherheit von GVOs durch die ZKBS von Bedeutung sein können.

Auf nationaler Ebene konnte im Verlauf des Berichtsjahres 2002 das Verfahren für das „Zweite Gesetz zur Änderung des Gentechnikgesetzes“, mit dem vorrangig die Systemrichtlinie 98/81/EG umgesetzt wurde, abgeschlossen werden. Der ZKBS war in diesem Verfahren sowohl durch eine schriftliche Stellungnahme (März 2002) als auch bei einer öffentlichen Anhörung des Gesundheitsausschusses der Deutschen Bundestags über die GenTSV. Bei diesem „Dritten Gesetz zur Änderung des Gentechnikgesetzes“ wird voraussichtlich auch die Implementierung des Cartagena-Protokolls berücksichtigt werden (s. oben).

Vom Dezember 2001 bis zum September 2002 fand auf Initiative des Bundesministeriums für Verbraucherschutz, Ernährung und Landwirtschaft (BMVEL) ein „Diskurs zur Grünen Gentechnik“ statt, an dem Repräsentanten der Grünen Gentechnik sowie Fachexperten teilgenommen haben. Informationen über den „Diskurs zur Grünen Gentechnik“ unter http://www.gruene-gentechnik.de

1 An diesem Diskurs haben einige ZKBS-Mitglieder nicht in dieser Funktion, sondern als Fachexperten teilgenommen. Informationen über den „Diskurs zur Grünen Gentechnik“ unter http://www.gruene-gentechnik.de

© Springer-Verlag 2003
überwechseln wird, erneut ihre Erwar-
tung auf eine Wende aus, die – unter
Wahrung sachgerechter, wissenschaft-
lich begründbarer Vorsorgemaßnahmen
– auch „den rechtlichen Rahmen für die
Erforschung, Entwicklung, Nutzung und
Förderung der wissenschaftlichen, tech-
nischen und wirtschaftlichen Möglich-
keiten der Gentechnik“ (GenTG § 1, Abs. 2) schaft.

**Anwendung der Gentechnik
im Jahr 2002 in Deutschland
im Vergleich zur EU**

Um im Rahmen dieses Tätigkeitsberichts
exemplarisch Aussagen über die Ent-
wicklung der Gentechnik in Deutschland
im Vergleich zu den anderen EU-Mit-
gliedstaaten zu machen, kann u. a. eine
Datenbank für die im Bereich der EU be-
antragten Freisetzungsvorhaben mit
GVOs herangezogen werden. Während es
zwischen 1995 und 1999 für Freilandver-
suche mit GVOs im Bereich der EU-Mit-
gliedstaaten jährlich eine in der Höhe
fast unveränderte Anzahl von Anträgen
gegeben hat, ist – wie bereits in den bei-
den Jahren zuvor – die Anzahl im Be-
richtsjahr 2002 weiter deutlich zurückge-
gangen (Abb. 1). Mit Ausnahme von Itali-
en trifft diese Tendenz in den Jahren 2000
bis 2002 nicht nur für Deutschland, son-
dern auch für alle anderen EU-Mitglied-
staaten gleichermassen zu; exemplarisch
ist dies in Tabelle 1 dargestellt. Sie zeigt
die Antragsentwicklung für die 7 EU-Mit-
gliedstaaten mit dem größten Anteil an
Freisetzungsvorhaben. Aus den Zahlen-
angaben der Tabelle 1 wird außerdem
deutlich, wie unterschiedlich die Frei-
setzungsaktivitäten in diesen 7 EU-Mit-
gliedstaaten im Zeitraum zwischen 1991
und 2002 waren. Während z. B. in Belgien
die meisten Freisetzungsvorhaben im
Jahr 1992 stattgefunden haben, aber dann
in den Folgejahren bis 1997 eine nahezu
stete Abnahme und in den Jahren 1998 bis
2000 wieder eine Zunahme zu verzeich-
nen ist, wurden die meisten Freisetzungs-
vorhaben in England und den Niederlan-
den im Jahr 1995 und in Deutschland im
Jahr 1999 durchgeführt. Wieder ganz an-
ders sieht der Verlauf der Freisetzungsak-
tivitäten in Italien mit einem „spät-
nen Start“ im Jahr 1993 und fast gleich blei-
bender Höhe in den Jahren 1996 bis 1999
aus; ob die im Vergleich zum Vorjahr im
Berichtsjahr gestiegene Anzahl an Frei-
setzungsanträgen tatsächlich eine Erhö-
hung der Freisetzungsaktivitäten in Itali-
en repräsentiert, bleibt abzuwarten. Zieht
man z. B. in Betracht, dass die klimati-
schen und/oder agronomischen Voraus-
setzungen für Freisetzungsversuche in
den Niederlanden nicht grundsätzlich
verschieden sind von denen in Belgien
dem angrenzenden Bereichen von
Großbritannien und Deutschland und
dass während der vergangenen 10 Jahre
hauptsächlich transgene(r) Mais, Raps,
Zuckerrüben und Kartoffeln in diesen
4 EU-Mitgliedstaaten freigesetzt worden
sind, so ist es nahe liegend, den unter-
schiedlichen Verlauf der Freisetzungsak-
tivitäten in diesen 4 EU-Mitgliedstaaten
in diesem Zeitraum u. a. auf gesellschafts-
politische Gründe zurückzuführen.

Konnte im Jahr 2001 noch darauf
hingewiesen werden, dass in Deutschland
die Betreiber durch die Antragstellung
und Genehmigung nach dem vereinfach-

Abb. 1 Anzahl der Anträge auf Freisetzung von gentechnisch veränderten Organismen in den EU-Mitgliedstaaten pro Jahr im Zeitraum von 1991–2002
(Quelle: Robert Koch-Institut. Die Zahlen repräsentieren Antragsverfahren.
Mit Ausnahme Deutschlands liegen dem Robert Koch-Institut keine Daten
über den jeweiligen Status eines Freisetzungsantrages vor)

Tabelle 1

Land	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Frankreich	–	1	35	60	70	99	71	70	60	34	17	3
Italien	–	–	6	16	45	50	42	42	49	24	4	9
Großbritannien	–	12	17	28	39	26	26	22	12	26	12	5
Spanien	–	–	3	9	14	16	41	42	45	14	17	15
Deutschland	2	–	3	8	12	17	18	19	22	9	9	7
Belgien	–	26	16	17	12	7	5	8	9	15	6	7
Niederlande	–	12	13	19	20	9	17	12	12	9	2	2
ten Verfahren vermehrt die Möglichkeit genutzt haben, Standorte für mehrere Jahre nachzumelden, und sich daraus für die Betreiber von derzeitig laufenden Freisetzungsvorhaben in Deutschland eine wachsende Anzahl von Optionen auf Nutzung von bereits nachgemeldeten Standorten ergab, so ist im Jahr 2002 sowohl die Anzahl solcher Nachmeldungen (Abb. 2) als auch die Anzahl der tatsächlich genutzten Optionen auf Freilandversuche mit gentechnisch veränderten Pflanzen zurückgegangen. Sollte sich dieser Trend im Jahr 2003 nicht ändern, so ist vorauszusehen, dass für das Jahr 2003 die Anzahl von Optionen auf Freilandversuche mit gentechnisch veränderten Pflanzen drastisch zurückgehen wird, da mit dem Jahr 2002 die genehmigte Zeitdauer einer großen Anzahl bisheriger Freilandversuche in Deutschland endet. Es sind keine Daten verfügbar, ob dies auch für die übrigen Mitgliedsstaaten der Europäischen Union zutrifft. Außerdem ist anzumerken, dass sich Optionen auf Freisetzungsstandorte durch Nachmeldungen nur auf bereits im Freiland erprobte GVOs beziehen und somit nicht für neu entwickelte gentechnisch veränderte Pflanzen verwendet werden können.

Wie in den Vorjahren wurden auch für das Berichtsjahr 2002 die meisten Anträge auf Freisetzungsanträge aus Frankreich gemeldet, gefolgt von Italien, Großbritannien und Spanien. Im Jahr 2002 liegen Deutschland, Belgien und die Niederlande mit fast der gleichen Anzahl von Freisetzungsanträge auf dem 5. bis 7. Platz (Tabelle 2).

EU-Mitgliedsstaat	Anzahl der Anträge
1 Frankreich	517
2 Italien	294
3 Großbritannien	229
4 Spanien	216
5 Niederland	138
6 Belgien	136
7 Deutschland	135
8 Schweden	64
9 Dänemark	40
10 Finnland	20
11 Griechenland	18
12 Portugal	12
13 Irland	5
14 Österreich	3

Summe 1.829

Abb. 2 ▲ Anzahl der Anträge auf Genehmigung von Freilandversuchen mit gentechnisch veränderten Organismen in Deutschland (graue Anzahl der beantragten Freisetzungsstandorte sowie Anzahl der nachgemeldeten Freisetzungsstandorte) sowie die Anzahl der beantragten bzw. nachgemeldeten Freisetzungsstandorte + Anzahl der nachgemeldeten Freisetzungsstandorte im Jahr der Nachmeldung + Anzahl der beantragten Freisetzungsstandorte + Anzahl der nachgemeldeten Freisetzungsstandorte in den folgenden Jahren (s. Erläuterungen im Text) (Quelle: Robert Koch-Institut)

Tabelle 3 nennt die freigesetzten Organismen im Vergleich zwischen der Bundesrepublik Deutschland und den Mitgliedsstaaten der Europäischen Union. Unverändert im Vergleich zu den Vorjahren wurden mehr als 70% aller Freilandversuche mit nur 4 Pflanzenarten (Mais, Raps, Kartoffel und Zuckerrübe) durchgeführt. Bei den unter „Sonstige“ zusammengefassten Anträgen sind in Berichtsjahr in Deutschland keine weiteren Empfängerorganismen hinzugekommen. Bei den Meldungen aus den Mitgliedsstaaten der Europäischen Union hat sich gegenüber dem Vorjahr die Anzahl der Organismen nur gering erhöht; die unter „Sonstige“ genannten 243 Anträge enthalten 50 verschiedene Organismen (2001: 232 Anträge mit 50 verschiedenen Organismen). Mehr als 10 Meldungen über Freisetzungsanträge im Bereich der Mitgliedsstaaten der Europäischen Union liegen vor für Viren (21 Anträge), Weizen (18 Anträge), Sojabohne (15 Anträge), Pappel (15 Anträge), Sonnenblume (14 Anträge), Ringelblume (11 Anträge) und Melone (10 Anträge).

Beiden auf die Empfängerpflanzen übertragenen Eigenschaften dominieren weiterhin die Herbizidtoleranzen bei den Freisetzungsanträge im Bereich der Europäischen Union (35%) (Abb. 3a) und in Deutschland (44%) (Abb. 3b). Trotz der geringeren Anzahl an neuen Freisetzungsanträge im Jahr 2002 hat sich im Fall der gentechnischen Veränderungen „Veränderter Kohlenhydratstoffwechsel“
und „Verändertes Fettsäuremuster“ der unterschiedliche Trend in Deutschland (25% bzw. 8%) und in der EU (7% bzw. 2%) im Vergleich zum Vorjahr weiter verstärkt. Inwieweit sich damit ein dauerhafter Wandel in der Präferenz der gentechnischen Modifikation der verwendeten Pflanzen abzeichnen könnte, wird sich in den nächsten Jahren zeigen (Übersicht in [2]), ließe sich jedoch bei weiter sinkender Freisetzungsaktivität im Bereich der EU-Mitgliedsstaaten nicht mehr erfassen und damit deutlich machen.

Insgesamt bleibt festzuhalten, dass es sich bei der großen Mehrzahl um Freilandversuche mit Organismen handelt, mit denen bereits langjährige Erfahrungen mit Freisetzungen an verschiedenen Orten vorliegen. Dieser Stand der Wissenschaft wird nicht berücksichtigt, wenn z. B. in den Medien immer wieder behauptet wird, es liege zur sicherheitsrelevanten Bewertung solcher Versuche noch kein ausreichendes Wissen vor, und Freilandversuche seien damit uninhaberfähigen Risiken für die Umwelt verbunden.

Die Situation innerhalb der Europäischen Union für die Genehmigungsverfahren zum Inverkehrbringen von Produkten, die gentech ואז Veränderte Organismen enthalten, stagniert nun schon im vierten Jahr unverändert seit 1998. Weder die z. T. seit einigen Jahren anhängigen Genehmigungsverfahren gemäß der Richtlinie 90/220/EWG noch solche nach der Novel-Foods-Verordnung wurden abgeschlossen (Tabelle 4 in [3]).

Zusammensetzung der Kommission und Kommissionsitzungen

Zur Erfüllung der Aufgaben der ZKBS bei der Prüfung sicherheitsrelevanter Fragen der Gentechnik werden die Mitglieder der Kommission aus unterschiedlichen Disziplinen berufen. Maßgeblich für die Zusammensetzung der ZKBS ist § 4 des Gentechnikgesetzes. Darin ist geregelt, dass sich die Kommission zusammensetzt aus

10 Sachverständigen, die über besondere und möglichst auch internationale Erfahrung in den Bereichen der Mikrobiologie, Zellbiologie, Virologie, Genetik, Hygiene, Ökologie und Sicherheitstechnik verfügen; von diesen müssen mindestens 6 auf dem Gebiet der Neukombination von Nukleinsäuren arbeiten; jeder der genannten Bereiche muss durch mindestens einen Sachverständigen, der Bereich der Ökologie muss durch mindestens 2 Sachverständige vertreten sein.

Organismus	Mitgliedsstaaten der EU	Bundesrepublik Deutschland
Mais	484	19 (3,9%)
Raps	367	41 (11,2%)
Zuckerrübe	276	24 (12,3%)
Kartoffel	211	49 (23,2%)
Tomate	76	0 (–)
Tabak	55	1 (1,1%)
Bakterien	45	2 (4,4%)
Chicoree	42	0 (–)
Baumwolle	30	0 (–)
Sonstige	243	8 (3,3%)

Abb. 3 a Prozentuale Verteilung der übertragenen neuen Eigenschaften bei freigesetzten, gentechnisch veränderten Organismen in der EU und Deutschland im Zeitraum von 1991 bis 2002. b Prozentuale Verteilung der übertragenen neuen Eigenschaften bei freigesetzten, gentechnisch veränderten Organismen in Deutschland im Zeitraum von 1991 bis 2002 (z. T. GVOs mit mehreren neuen Eigenschaften). HT Herbizidtoleranz, IR Insektenresistenz, IS sonstige Inhaltsstoffe, MS männliche Sterilität, VR Virusresistenz, KHS veränderter Kohlenhydratstoffwechsel, PR Pilzresistenz, FSM verändertes Fettsäuremuster, BR Bakterienresistenz (Quelle: Robert Koch-Institut)
Nach dem Gesetz ist für jedes Mitglied aus demselben Bereich ein stellvertretendes Mitglied zu bestellen. Die Tätigkeiten in der Kommission werden ehrenamtlich ausgeübt. Die Beratungen der Kommission sind nicht öffentlich. An den Sitzungen der ZKBS können Vertreter von Bundes- und Landesbehörden mit Zuständigkeiten in der Gentechnik teilnehmen. Über jede Sitzung wird ein Protokoll erstellt und anschließend von der ZKBS verabschiedet. Die Tabelle 4 zeigt die Zusammensetzung der Kommission unter Nennung der jeweiligen Sachgebiete der Mitglieder und der stellvertretenden Mitglieder zum Stand 31.12.2002.

Tätigkeitsbericht
je einer sachkundigen Person aus den Bereichen der Gewerkschaften, des Arbeitsschutzes, der Wirtschaft, des Umweltschutzes und der forschungsfördernden Organisationen.
Bundesgesundheitsbl - Gesundheitsforsch - Gesundheitsschutz 6• 2003

| Tabelle 4
Zusammensetzung der Zentralen Kommission für die Biologische Sicherheit (Stand vom 31.12.2002)
Bereich
Mikrobiologie
Institut für Lebensmittelwissenschaften der ETH Zürich
Zellbiologie
Institut für Experimentelle Onkologie und Therapie-Forschung der TU München
Virologie
Abteilung Virologie der Universität Heidelberg
Virologie
Institut für Virologie/FB 2 der Universität Bremen
Genetik
Lehrstuhl für Genetik der Universität Bielefeld
Genetik
Albrecht-von-Haller-Institut für Pflanzenwissenschaften der Universität Göttingen
Hygiene
Institut für Medizinische Mikrobiologie und Immunologie der Universität Bonn — Vorsitzender
Ökologie
Institut für Ökologie, Ökosystemforschung und Vegetationskunde der TU Berlin
Ökologie
Institut für Hygiene und Umweltmedizin der RWTH Aachen
Sicherheitstechnik
Technische Fakultät, AG Zellkulturtechnik der Universität Bielefeld
Gewerkschaften
Lehrstuhl für Genetik der Universität Oldenburg
Arbeitsschutz
Bay. Staatsministerium für Gesundheit, Ernährung und Verbraucherschutz, München
Wirtschaft
Verband Forschender Arzneimittelhersteller, Berlin
Umweltschutz
Büro für Landschaftsökologie und Umweltstudien, Göttingen
Verbraucherschutz
Forschungsfördernde Organisationen
Deutsche Forschungsgemeinschaft, Bonn
Die Berufung in die ZKBS erfolgt durch die Bundesministerin für Gesundheit im Einvernehmen mit weiteren Resorts der Bundesregierung. Die sachverständigen Mitglieder werden auf Vorschlag des Wissenschaftsrates berufen, die sachkundigen Mitglieder werden von den jeweiligen Verbänden vorgeschlagen. Eine Amtszeit in der Kommission beträgt 3 Jahre; Wiederberufung ist möglich.

Im Berichtsjahr wurden als neue Mitglieder der Kommission Frau Dr. Ehsses (Forschungsfördernde Organisationen) und Herr Dr. Throm (Wirtschaft) berufen. Aus der Kommission sind im Berichtszeitraum Herrn Dr. Brinkmann (Wirtschaft) und Herrn Dr. Klofat (Forschungsfördernde Organisationen) ausgeschieden. Die Amtsperiode des Vorsitzenden, Herrn Prof. Schaal, und seiner Stellvertreter, Frau Prof. Vallbracht und Herrn Prof. Pühler, begann im Dezember 2000.

Die Sitzungen der Kommission finden bei Bedarf im monatlichen Turnus statt. Ergänzend dazu wurden Beschlüsse im schriftlichen Umlaufverfahren gefasst. Im Berichtsjahr sind 5 Sitzungen durchgeführt worden.

Die Beratungstätigkeit der ZKBS im Berichtsjahr 2002

Anträge auf Sicherheitseinstufung gentechnischer Arbeiten

Im Verlauf des Berichtsjahres 2002 sind von der ZKBS 20 Anträge auf Sicherheitsbewertung gentechnischer Arbeiten bearbeitet worden (Tabelle 5). Im Hinblick auf die prozentuelle Verteilung auf die Sicherheitsstufen 1 bis 3 ergaben die Einstufungen dieser gentechnischen Arbeiten durch die ZKBS ein ähnliches Gesamtbild wie in den Vorjahren (Abb. 4).

Für 8 der vorgelegten gentechnischen Arbeiten empfahl die ZKBS die Sicherheitsstufe 3; es handelte sich u. a. dabei um
gentechnische Arbeiten zur Übertragung von Nukleinsäureabschnitten von Yersinia pestis auf Y. enterocolitica, Y. pseudotuberculosis, verschiedene Y-pestis-Stämme oder den in die Risikogruppe 2 eingestuften Y.-pestis-Impfstamm EV76 im Rahmen der Analyse der enteropathogenen Vergangenheit von Y. pestis,
die Untersuchungen zur In-vitro- und In-vivo-Wirksamkeit antiviraler Substanzen gegen das Hepatitis-C-Virus (HCV),
die Amplifikation von Plasmid-DNA mit vollständigem Genom intakter HCV-Klone aus Patientenisolaten,

Tabelle 5
Sicherheitseinstufungen gentechnischer Arbeiten im Jahr 2002, in Klammern ist die jeweilige Vergleichszahl des Vorjahres angegeben (Quelle: Robert Koch-Institut)

Sicherheitsstufe	Anzahl der Einstufungen der ZKBS	Anzahl der Einstufungen der Länder
Sicherheitsstufe 1	0 (1)	306 (324)
Sicherheitsstufe 2	12 (19)	256 (217)
Davon		
Teilweise Stufe 2 und Stufe 1	10 (15)	171 (125)
Sicherheitsstufe 3	8 (13)	2 (0)
Davon		
Teilweise Stufe 3 und Stufe 1	1 (6)	
Teilweise Stufe 3 und Stufe 2	2 (3)	
Teilweise Stufe 3, 2 und 1	4 (3)	
Sicherheitsstufe 4	0 (0)	0 (0)
Insgesamt	20 (33)	554 (541)
Tätigkeitsbericht

Allgemeine Empfehlungen und Stellungnahmen

Die ZKBS gibt nach § 5 Satz 1 GenTG in Verbindung mit § 1 Abs. 1 ZKBStV allgemeine Empfehlungen und Stellungnahmen zu sicherheitsrelevanten Fragen ab. Im Berichtsjahr 2002 erfolgten folgende Stellungnahmen:

- Im Juni 2002 verabschiedete die ZKBS die allgemeine Stellungnahme zur Risikobewertung des rekombinanten Vaccinaviirus MVA3.
- Im Juli 2002 verabschiedete die ZKBS die allgemeine Stellungnahme zur Einstufung gentechnischer Arbeiten, bei denen Zytokinogene und Apoptose-regulierende Gene in replikationskompetente Mikroorganismen integriert werden.
- Mit dem Zweiten Gesetz zur Änderung des Gentechnikgesetzes wurde die Richtlinie 98/81/EG vom 26. Oktober 1998 in nationales Recht umgesetzt. Am Gesetzgebungsverfahren war die ZKBS mit einer Stellungnahme zu den Änderungen dieses Entwurfes gegenüber dem bisher gültigen GenTG beteiligt; die ZKBS ging seine Empfehlungen und Stellungnahmen ein.

Beratungen zu Sicherheitsfragen

Während des Berichtszeitraums wurde die ZKBS von Landesbehörden – oft im Rahmen der Amtshilfe – um die Beratung zur Einstufung von Organismen und zur Sicherheitseinstufung und zur Vergleichbarkeit gentechnischer Arbeiten gebeten. Einige Beispiele seien hier dargestellt:

- Das „Gill-associated“-Virus (GAV) wurde in die Risikogruppe 2 einge stuft. Bisher sind für das GAV keine pathogenen Eigenschaften für Vertebraten beschrieben worden. GAV ist für eine bestimmte Crustacea, die „Schwarze Tigrerarne“ (Penaeus monodon) pathogen. Es gibt aber Hinweise auf experimentelle Infektionen und Erkrankungen anderer Crustacea [4]; deshalb ist nicht auszuschließen, dass das GAV auch auf heimische Crustacea übertragbar ist.
- Rekombinante replikationsdefekte Adenoviren Typ 5 (Ad5), die ein Überlängenomen des humanen Hepatitis-B-Virus (HBV) mit defektem X-Gen enthalten, wurden der Sicherheitsstufe 2 zugeordnet.
- Gentechnische Arbeiten, bei denen Gene für einzelne Virulenzfaktoren (YopN, YopP und YopT, evtl. zusammen mit seinem Chaperon SycT) von Yersinia enterocolitica in E. coli übertragen und exprimiert werden, wurden der Sicherheitsstufe 1 zugeordnet, weil diese ausreichend charakterisierten Gene einzeln in E. coli K12 eingebracht und im Zytoplasm exprimiert werden. Damit die Virulenzproteine in eukaryoten Zellen intrazellulär wirksam werden können, müssen sie mithilfe eines Injektionssystems in die Zielzellen gelangen. E. coli verfügt über kein entsprechendes Sekretionssystem und kann die Yersinia-Proteine nicht aus der Zelle ausschleusen.
- Gentechnische Arbeiten mit Nervenzellen von PrP™-Mäusen, infiziert mit aktivierten rekombinanten, replikationsdefekten SFV mit Prionprotein-Gensequenzen des Menschen, wurden der Sicherheitsstufe 2 zugeordnet, u. a. weil die bisher experimentell nicht gelungen ist, eine Pathogenität ausgehend von gentechnisch hergestellten Prionproteinen nachzuweisen, die Entstehung eines pathogenen Agens bei weiteren experimentellen Ansätzen aber nicht grundsätzlich ausgeschlossen werden kann.
- Gentechnische Arbeiten, bei denen sog. Minigenome von Marburg- oder Ebolaviren sowie hybride Minigenome mit Anteilen beider Viren und Marburg- bzw. Ebolavirus-infizierten Zellen als Empfängergorganismen verwendet werden, wurden der Sicherheitsstufe 4 zugeordnet. Aufgrund § 7 GenTSV sind die betreffenden gentechnischen Arbeiten mit Filovirus-infizierten Zellen, die gentechnisch verändert wurden, der Sicherheitsstufe 4 zuzuordnen.
- Der rekombinante Masernimpfvirus-Stamm Edmonston B, der das EGFPP-Gen trägt [5], wurde der Risikogrup-
Bei Bakterien-Mutanten-Stämmen, deren Auswahl anstelle von Impfstamm selektiert wurde, wird von einer Impfstammangabe in Genetischer Liste gesprochen. Die MCS-Bakterienmutanten wurden in einem Zusatzgen entwickelt, um die im Polykapsid von Edmonston B durch die Insertion eines zusätzlichen Gens nicht mehr als Impfstoff verwenden zu können. Auch konnte der Stamm in der Praxis nicht mehr als die jeweils von der Zulassungsstelle zugelassene Anzahl von Passagen verwendet werden, die Antragsteller geeignetes Material für die Herstellung von Impfstoffen verwenden, ist es unerheblich, ob die Herstellung von gentechnisch veränderten Organismen in Deutschland unter der Voraussetzung, dass nicht mehr als die jeweils von der Zulassungsstelle zugelassene Anzahl von Passagen erfolgt und zur Vermehrung keine anderen als die für die Impfstoffherstellung zugelassenen Zellkulturen und Wirtssysteme benutzt werden. Auch kann der Stamm Edmonston B durch die Insertion eines zusätzlichen Gens nicht mehr als Impfstamm angesehen werden.

Bei Bakterien-Mutanten-Stämmen, die mittels klassischer genetischer Methoden erzeugt worden waren, in die aber nur zwischenzeitlich – zur Erleichterung der Selektion – rekombinante Plasmide mit einer Antibiotikaresistenz eingesetzt worden waren, handelt es sich nicht um gentechnisch veränderte Organismen, weil die Plasmide als Hilfsmittel für die Selektionsstrategie dienten und nicht Ursache für die Mutation waren. Die Mutanten wurden somit nicht durch Verfahren der Veränderung genetischen Materials erzielt; vielmehr wurde das genetische Material in einer Weise verändert, wie sie unter natürlichen Bedingungen vorkommt. Anlässlich der Änderung der Gen-TSV stellte die ZKBS zur Ermittlung der Abwasserbehandlung hinsichtlich biologischer und bakteriologischer Sicherheit relevante Aspekte der gentechnisch veränderten Pflanzen, die im Freiland zu erweitern. Wie im Vorjahr wurden auch im Jahr 2002 wieder ausschließlich Freisetzungen mit gentechnisch veränderten Pflanzen beantragt. Es wurden 6 Freilandversuche mit transgenen Kartoffeln, Zuckerrüben, und Pappel angeboten. Mit beiden Kulturpflanzen waren bereits seit mehreren Jahren viele Freilandversuche sowohl in Deutschland wie auch in den Mitgliedsstaaten der Europäischen Union durchgeführt worden (Tabelle 6). Außerdem wurde ein Antrag auf Freisetzung von gentechnisch veränderten Pappeln gestellt. Damit war die Möglichkeit gegeben, den Kenntnisstand über das Verhalten dieser gentechnisch veränderter Pflanzen im Freiland zu erweitern.

Anträge auf Genehmigung von Freilandversuchen

Wie in den Vorjahren hat die ZKBS die Unterlagen zu den 7 Anträgen auf Freisetzung von gentechnisch veränderten Pflanzen geprüft und über die für die biologische Sicherheit relevanten Aspekte dieser Freisetzungsvorhaben beraten. Die ZKBS konnte in den 7 Antragsverfahren jeweils eine positive Stellungnahme abgeben, die im Einzelfall – geleitet von dem Vorsorgeprinzip – mit der Empfehlung von Auflagen versehen wurden. Diese von der ZKBS vorgesehenen Auflagen wurden in die Nebenbestimmungen der Genehmigungsbescheide durch das Robert Koch-Institut aufgenommen. Von den 7 Anträgen auf Freisetzung von GVO unterscheiden sich 3 in ihrer Zielsetzung und den gentechnisch zugesagten Eigenschaften deutlich von dem überwiegen- den Teil der bisherigen Freisetzungsexperimente.

In das Genom von Populus tremula x P. alba L. wurden integriert (i) das gshI-Gen aus E. coli, das für eine γ-Glutamylcystein-Synthase kodiert und das mit dem 35S-Promoter aus dem Cauliflower Mosaic Virus (CaMV) mit verdoppeltem Enhancer-Region sowie dem 35S-Terminationsignal des CaMV versehen ist, und (ii) das nptII-Gen aus dem Transponson Tn5, das für die Aminoglycosid-3'-Phosphotransferase II kodiert und das mit Promoter und Terminationsignal des Nopalinsynthase-Gens aus Agrobacterium tumefaciens versehen ist. In der gentechnisch veränderten Graupappel ist der Glutathiongehalt erhöht; daher soll sie Schadstoffe,

Antragsteller	Organismus	Wesentliche gentechnische Veränderung	Zeitraum
MPI für Züchtungs-Forschung, Köln	Kartoffel	Virusresistenz, Kohlenhydratstoffwechsel	2001–2005
Fa. Monsanto	Zuckerrübe	Herbizidtoleranz	2002–2005
Universität Freiburg	Pappel	Schwermetall-Sanierung	2002–2004
Fa. PlanTec Biotechnologie GmbH	Kartoffel	Kohlenhydratstoffwechsel	2002–2005
Biol. Bundesanstalt für Land- und Forstwirtschaft, Inst.f.Integrierten Pflanzenschutz	Kartoffel	Kohlenhydratstoffwechsel	2002–2006
Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben	Kartoffel	Entwicklungsveränderung	2002–2003
Institut für Pflanzengenetik und Kulturpflanzenforschung, Gatersleben	Kartoffel	Kohlenhydratstoffwechsel	2002–2004
Berichtsjahr 2001 fest, dass das De-facto-Moratorium in der EU in Bezug auf das Inverkehrbringen von GVO um ein weiteres Jahr andauert.

Erörterung von und Stellungnahmen zu Forschungsvorhaben, Gutachten oder Publikationen

Im Berichtsjahr hat die ZKBS eine Reihe von Gutachten, Publikationen etc. zur Kenntnis genommen, die Bezug zur Bewertung der Biologischen Sicherheit von gentechnisch veränderten Organismen haben bzw. relevant sind für gentechnische Methoden in der medizinischen Anwendung. Die ZKBS hat die jeweiligen Unterlagen geprüft sowie auf ihren Sitzungen erörtert und bewertet. Bei- spielhaft werden im Folgenden die Bewertungen zu (a) dem Bericht über das Auskreuzen der gentechnischen Veränderungen von transgenem Mais durch Pollenübertragung auf die einheimischen Mais-Landrassen in Mexiko und (b) Auskreuzung über transgenen Pollen bei Freisetzungsexperimenten vor-gestellt.

a) Bericht über das Auskreuzen der gentechnischen Veränderungen von transgenem Mais durch Pollenübertragung auf die einheimischen Mais-Landrassen in Mexiko

In ihrer Publikation „Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico“ [7] berichten Quist und Chapela über den Nachweis von DNA aus transgenen Maispflanzen in mexikanischen Mais-Landrassen. Das Anbaugebiet dieser Landrassen liegt etliche Kilometer entfernt von möglich Anbauflächen für transgenen Mais, sodass aus bisheriger Erfahrung eine Übertragung der gentechnisch veränderten Eigenschaf- ten von Pollen als unwahrscheinlich erscheint; hinzu kommt, dass in Mexiko der Anbau von gentechnisch verändertem Mais in den letzten Jahren aufgrund eines Moratoriums unterblieben ist. Die Ergebnisse der o. g. Publikation wurden wenige Monate später durch den Bericht über eine unabhängige Untersuchung des Centro Internacional de Mejoramiento de Maíz (CIMMYT) in Frage gestellt [8]. Bei diesen Kontrolluntersuchungen konnte keine transgene DNA in mexikanischen Mais-Landrassen nachgewiesen werden, obwohl die Proben aus demselben Anbaugebiet entnommen worden waren wie die für die Untersuchungen von Quist und Chapela. Die ZKBS stellte als Ergebnis einer eingehenden Diskussion fest, (i) dass grundsätzlich – auch bereits vor dem Anbau von gentechnisch verändertem Mais – schon immer ein Auskreuzen von Eigenschaften der Maissorten aus konventioneller Züchtung in die mexikanischen Mais-Landrassen nicht ausgeschlossen werden konnte und diese somit auch einer Veränderung und Weiterentwicklung schon immer unterlagen, (ii) dass grundsätzlich das Ereignis des Vorgangs „Auskreuzen“ noch nicht per se risikobehaftet ist und (iii) dass es im Einzelfall auf die Bewertung des Risikopotenzials der tatsächlich via Pollen übertragenen neuen Eigenschaften ankommt. Da im vorliegenden Fall aber lediglich der Vorgang des tatsächlichen (oder vermeintlichen) Auskreuzens bereits als Risiko dargestellt wird, kam die ZKBS überein, vorrangig die wissenschaftliche Validität der Publikation von Quist und Chapela durch Herrn Wackernagel prüfen zu lassen. Nach Abschluss seiner Recherchen und einer detaillierten Analyse der Untersuchungen von Quist und Chapela legte Herr Wackernagel der ZKBS dar, dass sich im Ergebnis die Aussagen von Quist und Chapela in allen wesentlichen Punkten als unbegründet und somit für die Arbeit der ZKBS als irrelevant erwiesen haben7. Im Nachgang kamen u. a. Christou [9] und Hodgson [10] zu einer ähnlichen Bewertung.

(b) Auskreuzung über transgene Pollen bei Freisetzungsexperimenten

Aus gegebenem Anlass geht die ZKBS erneut auf das Auskreuzen via transgene Pollen bei Freisetzungsexperimenten...
ein. Während der Vegetationsperiode wurde im Jahr 2002 – wie auch schon in den Jahren zuvor – an verschiedenen Standorten von Freisetzungsversuchen mit GVOs Einträge von diesen in Anbauflächen mit konventionell gezüchteten Kulturpflanzen durch Pollen festgestellt. Die ZKBS betont ausdrücklich, dass bei ihrer Einzelfallbewertung der biologischen Sicherheit der Freisetzungsexperimente mit GVOs dieser natürliche Vorgang des Übertragens von Erbeigenschaften von den GVOs über ihren Pollen auf Kreuzungspartner in der Umgebung des zukünftigen Freisetzungsstandortes sachgerecht geprüft und bewertet wurde. Die von der ZKBS im Einzelfall empfohlenen Maßnahmen (z.B. Mantelsaat oder Isolierstreifen) dienen als Vorsorgemaßnahme der Reduzierung des Pollenaustrags, können ihn aber nicht völlig ausschließen. Im Grundsatz sieht die ZKBS in diesem natürlichen Vorgang des Pollenaustrags bei den bisherigen Freisetzungsversuchen mit GVO aus wissenschaftlicher Sicht keinen Anlass für eine Gefährdung der Rechtsgüter gemäß § 1 GenTG.

Im Zusammenhang mit der seit Oktober 2002 geltenden EU-Richtlinie 2001/18/EG weist die ZKBS darauf hin, dass sich für die Durchführung von Freisetzungsversuchen mit GVOs eine weitere Problematik ergeben hat: Diese neue EU-Richtlinie erweitert die bestehenden Kennzeichnungsvorschriften für GVOs und eröffnet die Möglichkeit, Schwellenwerte für solche GVOs zu verhängen, denen Pollenaussträge von GVOs gleich null ist, führt zu einem Konflikt bei Freisetzungsversuchen. Für diese werden GVOs verwendet, für die noch keine Genehmigung für das Inverkehrbringen vorliegt. Aus der Sicht der ZKBS ist der Eintrag von gentechnischen Veränderungen in konventionelle Sorten eine mit der Freisetzung in Kauf genommene Folge der Einzelfallentscheidung durch die ZKBS. Hätte ihre Sicherheitsbewertung als Resultat ergeben, dass ein Austrag von Pollen von den GVOs nicht tolerierbare Risiken mit sich bringt, so hätte die ZKBS Maßnahmen gefordert, die den Pollenaustrag verhindern (z.B. rechtzeitiges Entfernen der Blüten). Die Überwachungsbehörden einiger Bundesländer haben jedoch solche Pollen-

einträge für genehmigungsbedürftig und damit für nicht zulässig erklärt. Diese Rechtsunsicherheit auf nationaler Ebene hat in Deutschland mit zu dem o.g., erheblichen Rückgang der Freisetzungsversuche mit GVOs beigetragen (s. Tabelle 2 und Abb. 1) und bedarf dringend der EU-einheitlichen Regelung.

Literatur

1. ZKBS (1999) Achter Bericht nach Inkrafttreten des Gentechnikgesetzes (GenTG) für den Zeitraum vom 1.1.1997 bis 31.12.1997, Bundesgesundheitsblatt 42:256–269
2. Brandt P (2000) Genetisch veränderte Pflanzen der „Zweiten und Dritten Generation“: Was können wir erwarten? Bundesgesundheitsblatt 43:87–93
3. ZKBS (2001) Elfter Bericht nach Inkrafttreten des Gentechnikgesetzes (GenTG) für den Zeitraum vom 1.1.2000 bis 31.12.2000, Bundesgesundheitsblatt 44:929–941
4. Walker PJ, Cowley JA, Spann KM, Hodgson RAJ, Hall MR, Withychumarnkul B (2001) Yellow head complex viruses: Transmission cycles and topographical distribution in the Asia-Pacific region. http://www.was.org/Abstracts/NewWave/Walkerabstract.htm
5. Duprex WP, McQuaid S, Hangartner L et al. (1999) Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 73:9568–9575
6. ZKBS (2000) Neunter Bericht nach Inkrafttreten des Gentechnikgesetzes (GenTG) für den Zeitraum vom 1.1.1998 bis 31.12.1998, Bundesgesundheitsblatt 43:138–151
7. Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543
8. CIMMYT (2002) Further tests at CIMMYT find no presence of promoter associated with transgenes in Mexican landraces in gene bank or from recent field collections. http://www.gene.co.uk/genes tech/2002/Jan/msg00004.html
9. Christou (2002) No credible scientific evidence is presented to support claims that transgenic DNA was introgressed into traditional maize landraces in Oaxaca, Mexiko, Nature 414:541–543
10. Hodgson J (2001) Doubts linger over Mexican corn analysis. Nat Biotechnol 20:3–4

Anhang

„Letter to the editor“ der Zeitschrift ‘Nature’

Ladies and Gentlemen,
in their article Quist and Chapela (1) report on the detection of transgenic DNA constructs in native maize landraces grown in remote mountains in Oaxaca, Mexico. They raise therewith concerns about the unintended introgression of transgenic maize traits into landraces (‘criollo’) in the centre of their origin resulting in a danger for the natural diversity of this crop plant. By use of molecular methods including PCR, inverted PCR (IPCR) and sequencing of the amplified DNA, they obtained data from which they conclude (i) that the nucleotide sequence of the cauliflower mosaic virus (CMV) 35S promoter [p-35S; contained in various lines of genetically modified maize; (2)] is present in the maize genomes of several ‘criollo’ samples, (ii) that in two instances these promoter sequences were flanked by adh1-sequences which are also neighbouring the p-35S in the transgenic construct of Novartis Bt11 maize, and (iii) that the transgenic p-35S sequences were “embedded within various genomic contexts” of the ‘criollo’ samples.

We have closely examined the experimental data and the analyses of the nucleotide sequences presented in the report. We find that aside from problematic details of the experimental design and some erratic presentations of the data the results of the study do not provide evidence for the introgression of recombinant DNA from transgenic crop plants into the genomes of ‘criollo’ maize. Our detailed analyses of the data including the nucleotide sequences (1) which the authors have deposited in the nucleotide sequence data base of GenBank clearly show that none of the authors conclusions are justified and therefore the far reaching interpretations on the endangered diversity of landraces is lacking any basis. Our position with respect to the presented data are detailed in the following.

1. In order to prove that the p-35S sequences that were amplified by PCR from the DNA samples prepared from the corn cobs were not derived from contaminating CMV it is necessary to show that the observed p-35S sequences are linked on one side or on both to maize DNA. To
identify the sequences flanking the p-35S the authors applied iPCR. The template for iPCR were EcoRV restriction fragments of the maize DNA circularized by ligation. EcoRV cuts at a site in the middle of the p-35S sequence and therefore DNA amplified by iPCR from ligation products with primer pairs matching the right and left parts of the p-35S sequence should contain one restored EcoRV cleavage site. Eight sequenced iPCR products were presented in Fig. 2 of Ref. 1 (sequences AF434754 to AF434761). None of them contains the EcoRV site (see box in our Fig.). This casts doubts on the authors assumption that restriction by EcoRV and ligation had created the circular DNA products necessary for iPCR.

2. Next we examined whether the nucleotides directly ahead of the four applied primers and expected to be identical to the p-35S sequence were present in the eight sequenced iPCR amplification products. As shown in our Fig. the primers iCMV2 and iCMV1 were used for iPCR on the left side of the 35S promoter sequence, the primers iCMV4 and iCMV3 on the right side. [At this point two details of the authors experimental setup must be criticized. First, the binding sites of iCMV2 and iCMV3 are located outside of the p-35S region initially amplified by primers cm01 and cm02 from the DNA samples and therefore the presence of these binding sites in the sample DNA was not certain. Second, iCMV2 has 10 nucleotides at the 3' end which do not match the 35S promoter region (waved line in iCMV2 in our Fig.) and therefore is not expected to allow specific amplification of p-35S sequences.]

In the sequences of the amplification products AF434754, -55, -56, -57 in which the iPCR primer sequences can be identified the nucleotide sequences ahead of the primers are not from p-35S. The expected p-35S sequence is only partially present ahead of iCMV1 in AF434758. In five cases the primer sequences were not discernible (AF434758, -59, -60). In one case (AF434761) the expected p-35S nucleotides were present. These data indicate that perhaps with the exception of AF434761 the template of the PCR amplifications was not the 35S promoter region.

Three other inconsistencies between the sequences AF434754 to AF434761 and the Fig. 2 are apparent (1). First, the sequences described as “downstream” relative to the p-35S by Quist and Chapela are in fact “upstream” sequences and correspondingly the “upstream” sequences of Quist and Chapela are in fact “downstream” (compare our Fig. with Fig. 2 of 1). Second, the vertical lines in Fig. 2 which according to Quist and Chapela indicate the ends of CMV sequences are misleading since as outlined above they only mark the 3’ ends of the primers employed (except for the sequence AF434761; the source of this sequence is termed B3 in the Fig. 2, B2 in the sequence deposited in GenBank, and A2 in the supplement to Ref. 1). Thirdly, the thin lines in Fig. 2 of Ref. 1 supposedly indicating the parts of CMV DNA in the amplified sequences are unduly overstretched (they essentially always represent only the PCR primers) and several of them should not be there at all because primer sequences can not be identified. This is the case at one side of A2 (AF434758) and both sides of B3 (AF434759).

3. We characterized with the help of BLAST searches those parts of the sequences of the iPCR amplification products that were denoted by Quist and Chapela in their Fig. 2 as regions flanking the CMV p-35S sequence. We find that the sequence of AF434754 denoted adh1 in the K1 source of Fig. 2 does not match with the maize adh1 gene. Rather, it matches with a sequence located about 40,000 nucleotides away from the adh1 gene (but still within the database entry of about 160,000 bp termed adh1). A corresponding BLAST search result was also obtained with AF434755 from the A3
source in Fig. 2. These two sequences thus incorrect associated with maize *adhi* gene were a strong argument for the authors that a transgenic construct was identified in the ‘criollo’ because *adhi* sequences are in fact present in the transgenic construct of the Bt11 event of Novartis. However, in the Bt11 construct the *adhi*-related sequences are the introns IVS6 and IVS2 of the *adhi* gene and are located downstream of p-35S (2). Different from the Bt11 construct the so called *adhi* sequences in AF434755 and AF434756 are located upstream of p-35S (see previous section). Thus, the *adhi* hits of two iPCR products presented by the authors as evidence for „the integrity as an unaltered construct” retained in the ‘criollo’ genomes are wrong in two ways: (i) the sequences are not from the *adhi* gene and (ii) they are located on the wrong side of p-35S. The sequence AF434758 (A2 sample) was denoted as *zea mays* alpha zein gene, although the matching region in GenBank sequence AF031569 is not an alpha zein gene. Instead, the target sequence is part of a region denoted as „similar to retrovirus-related POL polyprotein sequence”. Similarly, our BLAST search also identified the previously discussed „*adhi*” sequences of AF434754 and AF434755 as being highly similar to a putative gag-pol precursor, e.g. in the GenBank sequence AF464738. In case of the sequence AF434757 (A3 sample) the similarity (bit score 44) with the DULL1 gene could not be reproduced. A match of only 14 identical nucleotides (bit score 28) was obtained when using decreased stringency parameters in a pairwise alignment with „BLAST 2 sequences”. In summary, five of the eight iPCR sequences are retro element sequences, the other three are not (AF434760, -61) or not closely (AF434757) related to any known maize DNA sequence. Therefore, the conclusion that „sequences adjacent to the p-35S DNA were diverse” in the maize genome cannot be drawn.

4. We examined whether the identified regions in the maize genomic DNA from which PCR amplification products were obtained by the authors could perhaps be flanked by primer binding sites. For this we performed pairwise BLAST alignments of the iPCR sequences with the five matching maize genomic sequences. By adjusting the alignment parameters we were able to identify putative primer binding sites at the expected distances in the maize genome target sequences corresponding to AF434754 to AF434757 and also one binding site for the single primer sequence identified in AF434758. This indicates that these five assumed iPCR amplification products were most likely obtained by normal PCR amplification directly from continuous sequences of the maize genome having accidentally flanking regions with similarity to the primers. No primer binding sites were found in sequences AF434759 and AF434760. These findings support our conclusion from section 2 that the template for at least seven of the eight iPCR products were not p-35S sequences. Rather, the templates were sequences of the maize genome related to retroviral sequences which frequently had reasonably matching primer binding sites.

Conclusion

Evidence for the integration of p-35S sequences into the ‘criollo’ genome was not obtained because in none of the eight cases studied a linkage of p-35S sequences (aside from the primers used for PCR) to maize DNA could be demonstrated. In one case p-35S sequences were linked to a non-identified sequence. This can be a consequence of the use of iPCR in which the essential ligation step always bears the risk of fusing (restriction) fragments that are not naturally contiguous in the sample DNA. In this case the authors did not perform the necessary PCR control experiment using primers from p-35S and the unknown sequence to show that these sequences are in fact contiguous present in the ‘criollo’ genome. The fact that the p-35S specific primers used by the authors had considerable similarity to retroviral sequences explains the formation of PCR products from ‘criollo’ DNA under conditions when the the hybridization stringency is not sufficiently controlled. Five of the eight amplified sequences gave in fact matches with retroviral or retrotransposon elements. The claim of the authors that two of their sequences were related to sequences present in the transgenic construct of Novartis event Bt11 corn was disproven by careful analysis of the sequence and its target. The low amounts of p-35S sequences detected in the ‘criollo’ DNA preparation can easily be explained by contamination of the samples with CMV. If the samples had been tested for other CMV sequences they would probably be there in the equivalent amounts as the p-35S sequence.

References

(1) Quist, D. and I. Chapela. 2001. Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414, 541–543

(2) Matsuoka, T., Y. Kawashima, H. Akiyama, H. Miura, Y. Goda, Y. Kusakabe, K. Ishikawa, M. Toyoda and A. Hino. 2000. A method of detecting recombinant DNAs from four lines of genetically modified maize. Shokuhin Eiseigaku Zasshi 41, 137–143