Behnke, Jerzy M. and Cabaj, Wladyslaw and Wakelin, Derek (1992) The susceptibility of adult Heligmosomoides polygyrus to intestinal inflammatory responses induced by heterologous infection. International Journal for Parasitology, 22 (1). pp. 75-86. ISSN 0020-7519

Access from the University of Nottingham repository: http://eprints.nottingham.ac.uk/1162/1/Behnke_et_al_1992_IJP__22C_75._Hbakeri_%26_inflammatory_responses.pdf

Copyright and reuse:

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

This article is made available under the University of Nottingham End User licence and may be reused according to the conditions of the licence. For more details see: http://eprints.nottingham.ac.uk/end_user_agreement.pdf

A note on versions:

The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on accessing the published version and note that access may require a subscription.

For more information, please contact eprints@nottingham.ac.uk
SUSCEPTIBILITY OF ADULT *HELIGMOSOMOIDES POLYGYRUS* TO INTESTINAL INFLAMMATORY RESPONSES INDUCED BY HETEROLOGOUS INFECTION

Jerzy M. Behnke,† Wladyslaw Cabaj‡ and Derek Wakelin*

*MRC Experimental Parasitology Research Group, Department of Life Science, University of Nottingham, University Park, Nottingham NG7 2RD, U.K.
‡W. Stefanski Institute of Parasitology of the Polish Academy of Sciences, Pasteura 3, P.O. Box 153, 00-973 Warszawa, Poland

(Received 14 January 1991; accepted 31 July 1991)

Abstract—Behnke J. M., Cabaj W. and Wakelin D. 1992. Susceptibility of adult *Heligmosomoides polygyrus* to intestinal inflammatory responses induced by heterologous infection. *International Journal for Parasitology* 22: 75–86. Adult *H. polygyrus* are capable of surviving for many months after primary exposure of mice to infective larvae, raising the possibility that worms of this species have inherent resistance to intestinal immune responses. Accordingly experiments were carried out to determine whether *H. polygyrus* are resistant to the inflammatory changes elicited during the acute phase of the intestinal response to *Trichinella spiralis*. Adult worms were expelled from mice when their presence coincided with the most intense phase of inflammation elicited by *T. spiralis*. The effect was dose-dependent with more intense *T. spiralis* challenge resulting in a correspondingly greater loss of *H. polygyrus*. Even the less pathogenic species *T. pseudospiralis* elicited a response of sufficient intensity in NIH mice to cause the expulsion of *H. polygyrus* from concurrently infected animals. Tissue larval stages of *H. polygyrus* were protected from expulsion by their location deep in the intestinal walls and the maximum detrimental effect against *H. polygyrus* was observed during the adult phase or during the establishment of L3 larvae. Acceleration of the response to *T. spiralis* in immune challenged mice resulted in earlier loss of *H. polygyrus*. When the expulsion of *T. spiralis* was delayed (e.g. from slow responder C57BL/10 mice) the loss of *H. polygyrus* took place correspondingly later. These experiments demonstrate unequivocally that mouse strains which normally tolerate chronic infections with *H. polygyrus* have the capacity to mount intestinal inflammatory responses of sufficient vigour to remove the worms but that this potential is not normally realized. However, the observation that some *H. polygyrus* always survived even when the response induced by *T. spiralis* was of the rapid secondary type suggests that the parasites are resilient in the face of the inflammatory response capable of removing most of the worms. It is suggested that in addition to the immunomodulatory strategy employed by adult worms to prevent the intestinal response being elicited, the worms have a second line of defence which is reflected in their resilience to responses which they have been unable to prevent.

INDEX KEY WORDS: *Heligmosomoides polygyrus*; *Nematospirodes dubius*; *Trichinella spiralis*; *Trichinella pseudospiralis*; Nematoda; mouse; intestinal inflammation; immunity; evasion of immunity.

INTRODUCTION

The intestinal inflammatory response elicited by *Nippostrongylus brasiliensis* and *Trichinella spiralis* has been the focus of attention for well over 4 decades and the immunological control of this response is well documented (Rothwell, 1989; Moqbel & MacDonald, 1990). It is established that the induction of the response is specific, requiring the sensitization of CD4+ T$_H$ lymphocytes (Crook, 1990; Grencis, Riedlinger & Wakelin, 1985), however, the final effectors remain as controversial as ever. Among recent additions to the list of possible effectors are leukotrienes (Douch, Harrison, Buchanan & Greer, 1983), platelet activating factor (Moqbel & MacDonald, 1990), tumour necrosis factor (Ovington, 1987), mast cell protease II (McKean & Pritchard, 1989) and oxygen radicals (Smith & Bryant, 1989a,b). Once induced the specifically triggered effectors act non-specifically with detrimental consequences to unrelated parasites residing in the intestine at the time of expression (Christensen, Nansen, Fagbemi & Monrad, 1987). During the response to *T. spiralis*, totally unrelated nematodes (*Nippostrongylus brasiliensis*, see Kennedy, 1980) and cestodes (*Hymenolepis diminuta*, see Behnke, Bland & Wakelin, 1977; Christie, Wakelin & Wilson, 1979; *H. nana*, see Ferretti, Gabriele, Palmas & Wakelin, 1984) may be rejected and others (*H. microstoma*, see Howard, 75
H. polygyrus, may have their growth severely impaired. None of these show specific immunological cross immunity with *T. spiralis* and their loss from the host is brought about solely through the non-specific effectors of the inflammatory response initiated by *T. spiralis* and the resultant changes in the intestinal environment.

Not all nematodes parasitizing the intestines of vertebrates elicit acute inflammatory responses of the sort associated with the rejection of *T. spiralis* and *N. brasiliensis*. Some cause long-term chronic infections in which there is little/no evidence of host-protective immunity. For example, *Trichostrongylus tenius* accumulates in wild grouse and survives for over 600 days (Shaw & Moss, 1989), *Necator americanus* lives for up to 17 years in man (Palmer, 1955; Beaver, 1988) and *Heligmosomoides polygyrus* (*Nematospiroides dubius*) causes infections which last for 8–10 months in mice (Robinson, Wahin, Behnke & Gilbert, 1989). Little is known about the survival strategies of the former species, but *H. polygyrus* has been intensively investigated and it is generally accepted that this species is immunomodulatory, downregulating intestinal immunity to enable its own survival (Behnke, 1987). One of the indicators of intestinal inflammation, the mast cell response, is hardly detectable in mice carrying *H. polygyrus* and even in mice concurrently infected with *T. spiralis* mastocytosis is greatly depressed (Dehlawi, Wakelin & Behnke, 1987). This in turn is associated with prolonged infection with *T. spiralis* (Behnke, Wakelin & Wilson, 1978) indicating that *H. polygyrus* not only downregulates the inflammatory response in relation to its own survival but that the mechanism it invokes acts non-specifically and that it can benefit unrelated species resident in concurrently infected animals (Behnke, 1987; Christensen et al., 1987).

The effect of *H. polygyrus* in prolonging concurrent infections with heterologous species of parasites is well documented (Behnke, 1987; Christensen et al., 1987; Cabaj, 1989). However, the effect of an intense inflammatory response on *H. polygyrus* has never been studied in detail, although the worms are known to be resistant to free oxygen radical damage in vitro (Smith & Bryant, 1986). Furthermore, in comparison with nematodes causing acute infections, *H. polygyrus* have relatively high levels of oxygen radical scavenging enzymes and it has been suggested that in consequence the worms are more resilient to host-generated free oxygen radical-mediated damage, which may be a component of the non-specifically acting effectors of intestinal expulsion (Smith & Bryant, 1986). Thus in addition to showing immunomodulatory properties *H. polygyrus* may have a second line of defence to safeguard their survival in the host.

In the present paper we report the results of experiments which extend our earlier studies but this time examine the effect of the intestinal inflammatory response elicited by *T. spiralis* on concurrent infection with *H. polygyrus*.* T. pseudospiralis*, which is reputedly less pathogenic and causes longer lasting infections in mice than *T. spiralis* but also elicits an acute intestinal response (Przyjalkowski, Starzynski, Pykalo & Cabaj, 1981; Przyjalkowski & Pykalo, 1988; Stewart, Wood & Boley, 1985; Stewart, Mann, Ubelaker, McCarthy & Wood, 1988), was exploited as a further source of intestinal inflammation. The experiments were designed to minimize the possible immunodepressive influence of *H. polygyrus*, by keeping infections with the latter species low, worm burdens being just sufficient to allow any reductions to be recognized and analysed statistically, but not high enough to cause a major downregulation of the intestinal response to *Trichinella* spp. In contrast *Trichinella* infections were kept high to ensure maximum establishment and the induction of the host protective intestinal response. It is shown conclusively that adult *H. polygyrus* are lost when the parasites are caught in an inflammatory response which they have been unable to prevent. However, the same experiments again emphasize the tremendous resilience of this parasite, since expulsion of *H. polygyrus* was never complete and often only minimal, supporting the existence of a second line of defence against host immunity, as suggested by Smith & Bryant (1986).

MATERIALS AND METHODS

Mice. The mice used in this study were purchased from Harlan Olac Ltd and were bred in the departmental animal house. Unless otherwise stated, male mice were used throughout. All animals were housed under conventional animal house conditions with access to food and water *ad libitum*.

Parasites. *T. spiralis* was originally obtained in 1975 from the Wellcome Research Laboratories (Beckenham, Kent) since when it has been passaged regularly in CFLP mice. Our strain corresponds to *H. polygyrus bakeri* as reported by Durette-Desset, Kinsella & Forester (1972). The methods used for maintenance and infection have been reported previously (Jenkins & Behnke, 1977). Adult parasites were recovered by a 6 h incubation at 37°C of small intestines, suspended in a gauze, in 50 ml beakers containing Hank's saline as described. Faecal egg counts were carried out by the method of Behnke & Parish (1979). The strain of *T. spiralis* and the methods used for the infection of mice and recovery of worms have been described previously (Wakelin & Lloyd, 1976). *T. pseudospiralis* was obtained from the Polish Academy of Sciences and was maintained identically to *T. spiralis*.

Statistical analysis of results. The results are presented as group mean values (MWR) ± standard error (s.e.m.). Non-parametric statistical procedures were used to analyse the data sets, because of small sizes (Sokal & Rohlf, 1969). When more than two groups required comparison at a single time
Expulsion of *H. polygyrus* in concurrent infections

RESULTS

Expulsion of adult *H. polygyrus* following superimposed challenge with *Trichinella spiralis* (Expt 1)

A preliminary experiment was carried out in which NIH mice were infected with *H. polygyrus*, *T. spiralis* or with both species so that *T. spiralis* was superimposed on an existing adult population of *H. polygyrus* in the concurrently infected groups. It can be seen from the data which are summarized in Fig. 1 that the majority of *T. spiralis* were expelled at exactly the same time by mice carrying single and concurrent infections, although worms persisted longer in concurrently infected mice with 2.8 ± 3.8 being recovered on day 21 compared with none in the single infection group (*T. spiralis* only). It is also evident from Fig. 1 that whilst *H. polygyrus* persisted without loss to day 21 post-challenge in mice infected only with this species, there was a considerable loss of worms from concurrently infected animals with an 82.9 and 95.6% reduction by days 11 and 21, respectively.

Relationship between intensity of *T. spiralis* (Expts 2–5) and *T. pseudospiralis* (Expts 6–7) infections and the proportion of *H. polygyrus* lost during intestinal inflammation

Four separate experiments were carried out to ascertain the importance of infection intensity with *T. spiralis* on the proportion of adult *H. polygyrus* lost during the ensuing inflammatory response in concurrently infected mice. All the experiments were carried out in NIH mice, each included control groups to monitor the establishment of *T. spiralis* in single and concurrent infection groups. In each, *H. polygyrus* was given 14 days before *T. spiralis* and the mice were killed 3 weeks after the latter infection. The results are summarized in Fig. 2A, in which the mean worm burdens recovered at autopsy are expressed as a percentage of the single infection control group (*H. polygyrus* only). Rank order correlation coefficients were also calculated and these are presented in Table 1.

Table 1—Statistical analysis of the relationship between the intensity of *T. spiralis* and *T. pseudospiralis* infection and the proportion of *H. polygyrus* surviving the intestinal inflammatory response in concurrently infected mice

Experiment	Number of mice	\(r_s \)	\(P \)
Effect of *T. spiralis*			
2	40	-0.792	<0.001
3	17	-0.777	<0.001
4	30	-0.919	<0.001
5	30	-0.718	<0.001
Effect of *T. pseudospiralis*			
6	25	-0.815	<0.001
7	41	-0.872	<0.001

Spearman Rank-Order Correlation Coefficients were calculated using standard procedures and probabilities were read from tables.
declined. The reduction in eggs per gram of faeces corresponded to the onset of the inflammatory response to *Trichinella*.

Consequence of varying the interval between and order of infection with *H. polygyrus* and *T. spiralis* (Expts 8–11)

All of the experiments described so far were based on a primary infection with *H. polygyrus* followed 14 days later by challenge with *T. spiralis* or *T. pseudospiralis*. The inflammatory response generated by *Trichinella* spp. will therefore have coincided in all cases with the presence of adult *H. polygyrus*. It was necessary to extend these observations to encompass the effect of inflammation on the larval stages of *H. polygyrus*. Four experiments were carried out in which the sequence of primary/challenge infection and the interval between primary and challenge were varied. The results from three such experiments are summarized in Fig. 4.

The trend is very similar in all three experiments, with almost identical results for two (Expts 8 and 9) and a slightly earlier sequence of events but a similarly shaped graph for Expt 10. The most impressive effect was always when *H. polygyrus* was administered well before *T. spiralis* such that the inflammatory response coincided with the presence of adult worms. As the interval between primary infection with *H. polygyrus* and challenge with *T. spiralis* was reduced, so the proportion of *H. polygyrus* surviving increased. When *H. polygyrus* was given 5 days after *T. spiralis* (Expts 8 and 9) or on the day of *T. spiralis* infection (Expt 10) relatively few worms were lost. However, as the interval between a primary *T. spiralis* infection and a challenge with *H. polygyrus* increased, so the proportion of worms surviving again decreased. Finally when the interval was 13 days (Expt 8), there was again relatively little loss of *H. polygyrus*.

A fourth experiment (Expt 11) examined the effect of administering the two species at the same time (day 0) and this confirmed the data from Expts 8 and 9, indicating that only 26% of the worms survived to day 21 (*MWR* control group = 114.8 ± 13.4, *n* = 5; *MWR* concurrently infected group = 29.8 ± 9.3, *n* = 5).
Comparison of the effect on H. polygyrus of primary and secondary responses to T. spiralis (Expts 12–14)

The secondary response to T. spiralis occurs earlier in immune NIH mice and is associated with more intense inflammation of the intestine than takes place during the primary response. If the principal reason for loss of H. polygyrus in concurrently infected mice is through the non-specifically acting mediators of the inflammatory response specifically elicited by T. spiralis, secondary responses to T. spiralis occurring in concurrently infected mice would be expected to exert a significantly more potent effect against H. polygyrus. This prediction was tested in three experiments. All were carried out in male NIH mice. The basic design involved four groups of mice to control for possible specific as well as non-specific interactions. Thus each experiment had one group of mice which received only H. polygyrus (day -14) and therefore controlled for infectivity of this species (infectivity control). A second group received a primary infection with T. spiralis (days -34 or -35) and a second with H. polygyrus (day -14) to control for possible cross immunity between the species (infectivity control). A second group received a primary infection with T. spiralis (day -34 or -35), followed by a second infection with H. polygyrus (day -14) and a third infection with T. spiralis (day 0). Additional control groups monitored the infectivity of T. spiralis in both infections and the expression of acquired resistance in the absence of concurrent infection.

The results from Expt 12 are summarized in Table 2. It is quite clear that there was no residual activity persisting from the primary T. spiralis and no cross immunity between the species, since the establishment of H. polygyrus was not impaired when T. spiralis was given 3 weeks earlier. However, both of the H. polygyrus infected groups challenged with T. spiralis on day 0 had significantly fewer H. polygyrus on day 7 and the MWR was lower in mice which had been primed with T. spiralis. As can be seen, control groups indicated that the primary T. spiralis infection had sensitized the mice and an accelerated expulsion of T. spiralis ensued when both single species and concurrently infected mice were subjected to homologous challenge.

A second experiment (Expt 13) also monitored changes in both species on two occasions following challenge with T. spiralis (days 5, H. polygyrus, \(H = 4.718, P = \text{not significant} \) and 28, H. polygyrus, \(H = 7.463, P = 0.024 \)). Control groups again established that the mice receiving the primary infection with T. spiralis on day -35 developed strong
immunity to challenge administered on day 0. *H. polygyrus* established unimpaired in mice which had received *T. spiralis* on day -35 and were challenged with *H. polygyrus* 3 weeks later (day -14). On day +5 (i.e. day 19 of the *H. polygyrus* infection) these mice had 84.3 ± 4.3 worms (n = 6) and on day +28 (42 days after infection with *H. polygyrus*) 80.3 ± 6.6 (n = 6). The *T. spiralis* infection given on day 0 comprised 250 muscle larvae of which 144.5 ± 4.1 established and on this occasion, by day 5, there was no effect on *H. polygyrus* in mice which had not been primed with *T. spiralis* (MWR = 83.3 ± 2.7, n = 6) although a small reduction was evident by day 28 (MWR = 72.3 ± 6.7, not significant). However, mice primed with *T. spiralis* on day -35, challenged with *H. polygyrus* on day -14 and then with *T. spiralis* on day 0 only had 57.5 ± 9.8 *H. polygyrus* on day 5 and 43.8 ± 7.9 on day 28 (P = 0.008).

These two experiments were repeated on a larger scale with groups of mice from all the above treatments killed at regular intervals throughout the secondary infection with *T. spiralis*. The results are shown in Fig. 5. The data confirm and extend both of the above experiments and show that secondary responses to *T. spiralis* which take place in concurrently infected mice exert a rapid and potent effect against *H. polygyrus* causing earlier loss of worms than when a primary *T. spiralis* infection is superimposed on existing adult *H. polygyrus*.

Comparison of the effect on *H. polygyrus* of primary responses to *T. spiralis* in fast and slow responder mouse strains (Expts 15-17)

The final series of experiments exploited the known difference in the time of onset and subsequent intensity of the intestinal inflammatory response to *T. spiralis* between fast (NIH) and slow (C57BL/10) responder strains (Wakelin, 1978), in a further attempt to link the loss of *H. polygyrus* from concurrently infected mice to the acute inflammatory response elicited by *T. spiralis*. It would be anticipated that concurrently infected NIH mice would lose a greater proportion of *H. polygyrus* and the loss would occur earlier than in C57BL/10 mice.

The predictions of the hypothesis were tested in three experiments, two of which are summarized in Table 3 (Expts 15 and 16). In Expt 15, a single infection dose of *T. spiralis* was used throughout, whereas in Expt 16, groups of concurrently infected mice were challenged with one of two doses as shown. There was also a difference in establishment as shown by control groups infected only with *T. spiralis* and killed before expulsion. Thus in Expt 15 establishment of *T. spiralis* was relatively poor, but despite this a significant reduction in the *H. polygyrus* worm burden was observed by day 28 post-challenge with *T. spiralis* in concurrently infected mice of both strains. However, proportionally the loss was marginally greater in NIH relative to C57BL/10 mice (33.9% vs 28.3%). When *T. spiralis* infections were more intense (Expt 16), significant loss of *H. polygyrus* was detected as early as 11 days post-challenge confirming earlier data (Fig. 1). Proportionally the loss was again greater in NIH mice.
By day 30 the differences between the two strains were even further exaggerated with a 93 and 79.3% reduction in *H. polygyrus* in NIH mice compared with the singly infected control group, but a loss of only 50.6 and 54.4% in C57BL/10 mice.

These findings were confirmed in a larger experiment which followed the time course of events more precisely in both mouse strains and the results are summarized in Figs. 6 and 7. Again it is quite evident that *H. polygyrus* burdens already began to decline by day 10 in the fast responder NIH mice, at a time when *T. spiralis* had not yet been lost (Fig. 6a). Then, as *T. spiralis* was expelled, so a major proportion of *H. polygyrus* was also lost. In C57BL/10 mice, inflammation generated by *T. spiralis* was slower to appear and correspondingly loss of both parasites in concurrently infected animals and *T. spiralis* in single infection control groups was delayed. As in the earlier experiments (Expts 15 and 16) the loss from NIH mice was proportionally greater (day 20, NIH = 79.5%, C57BL/10 = 21.3%). The difference in the onset and intensity of intestinal inflammation between the strains was also reflected in the effects it had on the fecundity of *H. polygyrus* in concurrently infected mice. Figure 7 shows that faecal egg counts declined in concurrently infected NIH mice as early as day 5 after challenge with *T. spiralis* whereas in C57BL/10 mice no appreciable reduction was evident before day 14 post-challenge.

The effect of *H. polygyrus* on the expulsion of *T. spiralis* from concurrently infected mice

Although the primary purpose of this study was to examine the effect of the intestinal inflammation elicited by *T. spiralis* on the survival of *H. polygyrus* in concurrent infections, control groups were included in all experiments to monitor the infectivity of *T. spiralis* and to confirm that expulsion took place at the expected times. In concurrently infected mice, both *H. polygyrus* and *T. spiralis* were counted at autopsy, enabling a comparison of *T. spiralis* MWRs between single and concurrent infection groups. In general the experiments were designed so as to minimize the influence of the known immunomodulatory effects of
Expulsion of *H. polygyrus* in concurrent infections

Fig. 6. Comparison of the effect on *H. polygyrus* of primary responses to *T. spiralis* in fast and slow responder mouse strains (Expt 17). A,B. Groups of male NIH or C57BL/10 mice were infected with 100 L3 of *H. polygyrus* on day −14, challenged with 600 muscle larvae of *T. spiralis* on day 0 and were killed on the days shown (*n* = 6–7) for worm counts. C,D. Additional control groups from both strains monitored the course of primary infection with *T. spiralis* in the presence (*n* = 6–7 on each occasion) and absence (*n* = 3 on each occasion) of *H. polygyrus*. Statistical analysis of results: Comparisons of MWRs between groups within strains killed on the same day were made using the Mann-Whitney *U* test and for the groups marked: *P* = 0.05; ***0.02 > *P* ≥ 0.01; ****0.01 > *P* ≥ 0.001.

H. polygyrus (Behnke et al., 1978) and therefore, *H. polygyrus* infections were kept low (100–150 larvae in most experiments, although some utilized higher doses, e.g. Expt 1). Only some of the data are shown. Thus Fig. 1 shows that during Expt 1, there was no major effect on the expulsion of *T. spiralis*, although a few larvae did persist longer in the concurrent infection group. However, Figs. 5 and 6 show quite clearly that *T. spiralis* did persist longer in concurrently infected animals despite the low doses of *H. polygyrus* which were used on those occasions. In most of the remaining experiments for which we do not present quantitative data, *T. spiralis* and *T. pseudospiralis* persisted longer in the concurrent infection groups compared with mice infected only with *Trichinella* spp.

DISCUSSION

Despite the inability of most mouse strains to expel primary worm burdens of *H. polygyrus* as rapidly as *T. spiralis*, the experiments reported in this paper clearly establish that two such strains (NIH and C57BL/10) have the capacity to mount an intestinal inflammatory response of sufficient intensity to cause the expulsion of many, in some experiments the majority, of *H. polygyrus*. Thus the important conclusion from our experiments is that these mouse strains have the components necessary to mount an intestinal inflammatory response capable of driving the adult worms out but normally fail to express the response and in consequence tolerate chronic primary infections with *H. polygyrus*. This conclusion again focuses attention on the importance of the immunomodulatory strategy utilized by adult *H. polygyrus* in avoiding host immunity and it emphasizes that this strategy is essential to the parasite because *H. polygyrus* is susceptible to the non-specifically acting effectors of inflammatory responses which it has failed to prevent.

Our experiments defined the conditions under which expulsion of *H. polygyrus* could occur. The intensity of the concurrent *T. spiralis* infection was an important factor, because although some loss occurred when a low intensity *T. spiralis* infection was used, this was not always predictable and consistent effects
were observed only when the higher intensity infections were employed. There was a significant negative correlation between the proportion of *H. polygyrus* surviving the inflammatory phase of the *T. spiralis* challenge and the dose of *T. spiralis* administered, although this relationship was not linear as seen in Fig. 2. We explored also the effect of *T. pseudospiralis* which is reputed to be less pathogenic than *T. spiralis* (Przyjalkowski et al., 1981; Przyjalkowski & Pykaloi, 1988) and to persist for longer after primary infection. However, NIH mice expel both species at about the same time and our experiments suggest that the inflammatory effect generated by both *Trichinella* spp. is comparably detrimental to the survival of *H. polygyrus* in concurrently infected animals.

One of the interesting observations was the variation in the proportion of *H. polygyrus* eliminated when the relative timing of infection with the two species was varied. The proportion of *H. polygyrus* expelled declined as larvae were given nearer to the time of infection with *T. spiralis*. This reduction can be explained by the position of its larval stages. When mice were infected with *H. polygyrus* on days 0–5, L3 would have penetrated deeply into their normal site of development in the muscularis mucosa, and would have been relatively secure from expulsion at the time of peak inflammation, i.e. days 5–10, emerging from this site only after their normal development had been completed, some 8–10 days later (Bryant, 1973; Sukhdeo, O’Grady & Hsu, 1984). By this time conditions in the gut lumen would have returned almost to normal. The subsequent decline in survival when *H. polygyrus* larvae were given after *T. spiralis* on days 5–10 is explained by a failure to establish, since in these animals *H. polygyrus* L3 larvae would have been attempting to exsheath and penetrate the intestinal mucosa at the peak of the inflammatory phase. Finally the second decline in the proportion of *H. polygyrus* being eliminated, occurring when larvae were given on days 11–15, is explained by the less inflamed environment following the expulsion of *T. spiralis*.

The final two series of experiments exploited situations in which the inflammatory response to *T. spiralis* was known to be altered in time. Thus mice experiencing a secondary *T. spiralis* infection mount a vigorous rapid inflammatory response (Wakelin & Lloyd, 1976; Alizadeh & Wakelin, 1982). In contrast poor responder mice such as C57BL/10 reject *T. spiralis* more slowly, later and with less vigour than fast responders such as NIH (Wakelin, 1980). The observations that adult *H. polygyrus* were lost earlier in NIH mice experiencing a secondary response to *T. spiralis* and considerably later in C57BL/10 mice are in accordance with our hypothesis that it is the non-specific effectors of the inflammatory response which make life untenable for *H. polygyrus*.

One more approach could have been used to confirm the requirement for an active immune system and the expression of an inflammatory response but this was not available to us. Immunodepression of concurrently infected mice could have been exploited to demonstrate that in the absence of an inflammatory response both species can co-exist together. However, the combination of immunodepression and two relatively pathogenic intestinal parasites is more than mice can tolerate at the doses that are required. Small-scale exploratory pilot experiments convinced us that this approach was not one which we wished to pursue further.

The reciprocal interaction, i.e. the effect of *H. polygyrus* on the expulsion of *T. spiralis*, was not an objective of this work but nevertheless our data confirm that there is an immunodepressive influence of *H. polygyrus* which was detectable in some experiments despite out attempts to minimize the reciprocal interaction. The majority of experiments were carried out with low doses of *H. polygyrus*, large enough for a reduction in the worm burden to be detected but low enough not to cause a major impairment of the response to *T. spiralis*. Behnke et al. (1978) demonstrated that expulsion of *T. spiralis* was most consistently impaired when the infection intensity of *H. polygyrus* exceeded 200 adult worms and in most of these earlier experiments doses of 200–400 worms were used. However, in spite of our precautions it was quite clear from some of the results we have presented here, as well as from the large amount of additional data arising from necessary control groups which we have not included, that the immunodepressive influence of *H. polygyrus* was still evident in concurrently infected

Fig. 7. Faecal egg counts (*H. polygyrus*) during concurrent primary infections with *T. spiralis* in fast and slow responder mouse strains (Expt 17). For details of this experiment and explanation of the key denoting groups see legend to Fig. 6.
mice and that there was a degree of impairment of the response to *T. spiralis*. Nevertheless, *T. spiralis* were rejected and the response carried with it a proportion of *H. polygyrus*. However, it was equally interesting to observe that in most experiments some *H. polygyrus* managed to survive. Even when the infection intensity of *T. spiralis* was high and over 90% of *H. polygyrus* were lost, the remainder survived and continued to produce eggs as normal. Clearly, the intestinal effectors were not 100% effective against *H. polygyrus* even at the best of times demonstrating again the resilience and adaptability of this parasite in the face of inflammatory host protective responses.

In summary, our experiments have demonstrated unequivocally that mice can reject *H. polygyrus* through the same combination of intestinal inflammatory effectors which are normally invoked in response to *T. spiralis*. Most worms are susceptible to these effectors and when located in an inflamed intestine cannot escape from their damaging influence. However, a variable proportion of worms always survived even in immune mice responding to homologous challenge with *T. spiralis* in which intestinal inflammation was at its most intense. Chronic primary infections of *H. polygyrus* most likely maintain themselves by preventing host inflammatory effectors from being triggered in the first place and it is conceivable that in some mice aggregations of adult worms exerted sufficient local immunomodulatory influence to minimize the release of inflammatory mediators in the vicinity of the site occupied by the parasites (Behnke, 1978). Alternatively a subpopulation of worms may have been more resistant than the remainder even when immune effectors were triggered. This resilience in the face of host effectors could be attributable to the worm's relatively high free oxygen radical scavenging enzymes (Smith & Bryant, 1986) or to other, as yet undetermined qualities but either way it is likely that the parasite has a second line of defence against host immune responses.

Acknowledgements—We would like to thank Prof. P. N. R. Usherwood for the provision of facilities for this research project in the Department of Zoology of Nottingham University. WC was supported by a short study leave grant from the British Council. The work was financed by MRC grants G8100159T & G8328675T to JMB. We are indebted to Mr K. Cosgrove for supervision over the husbandry of our experimental animals.

REFERENCES

Alizadeh H. & Wakelin D. 1982. Comparison of rapid expulsion of *Trichinella spiralis* in mice and rats. *International Journal for Parasitology* 12: 65–73.

Beaver P. C. 1988. Light, long-lasting *Necator* infection in a volunteer. *American Journal of Tropical Medicine and Hygiene* 39: 369–372.

Behnke J. M., Bland P. W. & Wakelin D. 1977. The effect of the expulsion phase of *Trichinella spiralis* on *Hymenolepis diminuta* infection in mice. *Parasitology* 75: 79–88.

Behnke J. M., Wakelin D. & Wilson M. M. 1978. *Trichinella spiralis*: delayed rejection in mice concurrently infected with *Nematospiroides dubius*. *Experimental Parasitology* 46: 121–130.

Behnke J. M. & Parish H. A. 1979. *Nematospiroides dubius*: arrested development of larvae in immune mice. *Experimental Parasitology* 47: 116–127.

Behnke J. M. 1987. Evasion of immunity by nematode parasites causing chronic infections. *Advances in Parasitology* 26: 1–71.

Bryant V. 1973. The life cycle of *Nematospiroides dubius*, Baylis, 1926 (Nematoda: Heligmosomidae). *Journal of Helminthology* 48: 263–268.

Cabaj W. 1989. Intestinal and muscle phases of *Trichinella pseudospiralis* infection in C3H mice previously infected with *Nematospiroides dubius*. *Acta Parasitologica Polonica* 34: 181–189.

Christensen N. O., Nansen P., Fagbemi B. O. & Monrad J. 1987. Heterologous antagonistic interactions between helminths and between helminths and protozoans in concurrent experimental infection of mammalian hosts. *Parasitology Research* 73: 387–410.

Christie P. R., Wakelin D. & Wilson M. M. 1979. The effect of the expulsion phase of *Trichinella spiralis* on *Hymenolepis diminuta* infection in rats. *Parasitology* 78: 323–330.

Crock K. 1990. Humoral and cellular effector immune responses against parasites. In: *Parasites: Immunity and Pathology. The Consequences of Parasitic Infection in Mammals* (Edited by Behnke J. M.), pp. 89–119. Taylor and Francis, London.

Dehlawi M. S., Wakelin D. & Behnke J. M. 1987. Suppression of mucosal mastocytosis by infection with the intestinal nematode *Nematospiroides dubius*. *Parasite Immunology* 9: 187–194.

Douch P. G. F., Harrison G. B. L., Buchanan L. L. & Greer K. S. 1983. In *vitro* bioassay of sheep gastrointestinal mucus for nematode paralysing activity mediated by a substance with some properties characteristic of SRS-A. *International Journal for Parasitology* 13: 207–212.

Duretta-Desset M. C., Kinsella J. M. & Forrester D. J. 1972. Arguments en faveur de la double origine des nématodes naerctiques du genre *Heligmosomoides* Hall, 1916. *Annales de Parasitologie humaine et comparée* 47: 365–382.

Ferretti G., Gabriele F., Palmas C. & Wakelin D. 1984. Interactions between *Trichinella spiralis* and *Hymenolepis nana* in the intestine of the mouse. *International Journal for Parasitology* 14: 29–33.

Grencis R. K., Riedlinger J. & Wakelin D. 1985. L3T4-positive T lymphoblasts are responsible for transfer of immunity to *Trichinella spiralis* in mice. *Immunology* 56: 213–218.

Howard R. J., Christie D., Wakelin D., Wilson M. M. & Behnke J. M. 1978. The effect of concurrent infection with *Trichinella spiralis* on *Hymenolepis microstoma* in mice. *Parasitology* 77: 273–279.
Jenkins S. N. & Behnke J. M. 1977. Impairment of primary expulsion of *Trichuris muris* in mice concurrently infected with *Nematospiroides dubius*. *Parasitology* 75: 71–78.

Kennedy M. W. 1980. Immunologically mediated, non-specific interactions between the intestinal phases of *Trichinella spiralis* and *Nippostrongylus brasiliensis* in the mouse. *Parasitology* 80: 61–72.

McKean P. G. & Pritchard D. I. 1989. The action of a mast cell protease on the cuticular collagens of *Necator americanus*. *Parasite Immunology* 11: 293–297.

Moqbel R. & MacDonald A. J. 1990. Immunological and inflammatory responses in the small intestine associated with helminthic infections. In: *Parasites: Immunity and Pathology. The Consequences of Parasitic Infection in Mammals* (Edited by Behnke J. M.), pp. 249–282. Taylor and Francis, London.

Ovington K. S. 1987. *Nippostrongylus brasiliensis*: physiological and metabolic responses of rats to primary infection. *Experimental Parasitology* 63: 10–20.

Palmer E. D. 1955. Course of egg output over a 15 year period in a case of experimentally induced necatoriasis *americanus*, in the absence of hyperinfection. *American Journal of Tropical Medicine and Hygiene* 4: 756–757.

Przyalkowski Z., Starzynski S., Pykal R. & Cabaj W. 1981. Serological and pathological changes in germfree and conventional mice in single or mixed *Trichinella spiralis* and *T. pseudospiralis* infections. In: *Recent Advances in Germfree Research* (Edited by Sasaki S.), pp. 447–452. Tokai University Press, Japan.

Przyalkowski Z. & Pykal R. 1988. Histopathological changes in the course of single and mixed *Trichinella spiralis* and *T. pseudospiralis* infections in germfree and conventional mice. *Acta Parassitologica Polonica* 33: 59–69.

Robinson M., Wahid F., Behnke J. M. & Gilbert F. S. 1989. Immunological relationships during primary infection with *Heligmosomoides polygyrus* (*Nematospiroides dubius*): dose-dependent expulsion of adult worms. *Parasitology* 98: 115–124.

Rothwell T. L. W. 1989. Immune expulsion of parasitic nematodes from the alimentary tract. *International Journal for Parasitology* 19: 139–168.

Shaw J. L. & Moss R. 1989. The role of parasite fecundity and longevity in the success of *Trichostrongylus tenuis* in low density red grouse populations. *Parasitology* 99: 253–258.

Smith N. C. & Bryant C. 1986. The role of host generated free radicals in helminth infections: *Nippostrongylus brasiliensis* and *Nematospiroides dubius* compared. *International Journal for Parasitology* 16: 617–622.

Smith N. C. & Bryant C. 1989a. Free radical generation during primary infections with *Nippostrongylus brasiliensis*. *Parasite Immunology* 11: 147–160.

Smith N. C. & Bryant C. 1989b. The effect of antioxidants on the rejection of *Nippostrongylus brasiliensis*. *Parasite Immunology* 11: 161–167.

Sokal R. R. & Rohlf F. J. 1969. *Biometry*. Freeman, San Francisco.

Stewart G. L., Wood B. G. & Boley R. B. 1985. Modulation of host response by *Trichinella spiralis*. *Parasite Immunology* 7: 223–233.

Stewart G. L., Mann M. A., Ubelaker J. E., McCarthy J. L. & Wood B. G. 1988. A role for elevated plasma corticosterone in modulation of host response during infection with *Trichinella pseudospiralis*. *Parasite Immunology* 10: 139–150.

Sukdeo M. V. K., O'Grady R. T. & Hsu S. C. 1984. The site selected by the larvae of *Heligmosomoides polygyrus*. *Journal of Helminthology* 58: 19–23.

Wakelin D. & Lloyd M. 1976. Immunity to primary and challenge infections of *Trichinella spiralis* in mice: a re-examination of conventional parameters. *Parasitology* 72: 173–183.

Wakelin D. 1978. Genetic control of susceptibility and resistance to parasitic infections. *Advances in Parasitology* 16: 219–308.

Wakelin D. 1980. Genetic control of immunity to parasites. Infection with *Trichinella spiralis* in inbred and congenic mice showing rapid and slow responses to infection. *Parasite Immunology* 2: 85–90.