Protective Effect of Val_{129}-PrP against Bovine Spongiform Encephalopathy but not Variant Creutzfeldt-Jakob Disease

Natalia Fernández-Borges, Juan Carlos Espinosa, Alba Marín-Moreno, Patricia Aguilar-Calvo, Emmanuel A. Asante, Tetsuyuki Kitamoto, Shirou Mohri, Olivier Andréoletti, Juan Maria Torres

Bovine spongiform encephalopathy (BSE) is the only known zoonotic prion that causes variant Creutzfeldt-Jakob disease (vCJD) in humans. The major risk determinant for this disease is the polymorphic codon 129 of the human prion protein (Hu-PrP), where either methionine (Met_{129}) or valine (Val_{129}) can be encoded. To date, all clinical and neuropathologically confirmed vCJD cases have been Met_{129} homozygous, with the exception of 1 recently reported Met/Val heterozygous case. Here, we found that transgenic mice homozygous for Val_{129} Hu-PrP show severely restricted propagation of the BSE prion strain, but this constraint can be partially overcome by adaptation of the BSE agent to the Met_{129} Hu-PrP. In addition, the transmission of vCJD to transgenic mice homozygous for Val_{129} Hu-PrP resulted in a prion with distinct strain features. These observations may indicate increased risk for vCJD secondary transmission in Val_{129} Hu-PrP–positive humans with the emergence of new strain features.

The presence of variant Creutzfeldt-Jakob disease (vCJD) is considered by strong epidemiologic, pathologic, and molecular evidence to be a likely consequence of human dietary exposure to the bovine spongiform encephalopathy (BSE) agent (1–3). Secondary vCJD infection has occurred through iatrogenic routes such as blood transfusion (4–7). The pathogenesis of these fatal transmissible spongiform encephalopathies (TSEs), called prion diseases, is associated with the accumulation of the abnormal isoform (PrP^{Sc}) of prion protein (PrP), which is converted from the normal cellular isoform (PrP^{C}) (8). This conversion process involves a posttranslational conformational change of PrP^{C} and PrP^{Sc} that can be distinguished biochemically from PrP^{C} by its partial resistance to proteolysis and detergent insolubility (9,10).

The neuropathological features of vCJD are characterized by the presence of abundant florid PrP plaques and the propagation of type 4 disease-related PrP^{Sc} in the brain (1,11). Differences in the level of glycosylation, as well as in the size of protease-digested PrP^{Sc}, are widely used as surrogates of prion strain typing; 2 main classifications are recognized in the prion field (1,12). According to 1 of these classifications (1,13), type 4 PrP^{Sc} is characterized by a fragment size and glycoform ratio similar to that seen in BSE and BSE transmitted to several other species, with a predominance of the diglycosylated PrP glycoform (1,13–15).

Polymorphism at codon 129 of the human PrP gene (PRNP), where methionine (Met) or valine (Val) can be encoded, strongly affects susceptibility to human prion diseases (16–20). vCJD has only been neuropathologically confirmed in persons homozygous for Met at residue 129 of human PrP (21), with 1 exception of heterozygosity (Met/Val) at this codon (22). In addition, asymptomatic peripheral involvement in vCJD infection has been reported in 2 Met/Val_{129}–positive persons (5,7). Retrospective studies of the prevalence of subclinical vCJD infection using appendectomy and tonsillectomy specimens in the United Kingdom described 6 appendixes that were positive for disease-associated prion protein in Val_{129} persons (23–25). All of these human studies, in addition to the extremely prolonged and variable incubation periods seen in prion transmission experiments when crossing a species barrier, suggest that persons encoding any of the 3 human PrP codon 129 genotypes may be susceptible to vCJD, including secondary vCJD transmitted through blood transfusion, blood products, tissue and organ transplantation, and other iatrogenic routes.

Because only 1 definite case of heterozygous Met/Val_{129} vCJD and no homozygous Val_{129} cases have been described, it is unknown whether the clinicopathologic
characteristics and biochemical properties of vCJD would appear in persons with these codon 129 genotypes. To gain insights into that question, vCJD/BSE transmission studies in which either humanized overexpressing or knock-in transgenic mice were used have been performed (2,26–30). However, some discrepancies in the transmission efficiency of vCJD to humanized knock-in transgenic mice can be found, depending on the origin of the mice and on the vCJD isolate (29,30). Previous studies in humanized overexpressing transgenic mice revealed that the 3 human PrP codon 129 genotypes can be infected with vCJD but show significant differences depending on the genotype. Moreover, mice with the Val/Val129 genotype were more susceptible to vCJD infection than expected but lack the neuropathological characteristics observed with Met/Met129 (2,26–28).

In this study, we evaluated the zoonotic potential of BSE and BSE adapted to different species by using transgenic mice overexpressing similar levels of human PrPc carrying Met/Met, Met/Val, or Val/Val at position 129 of human PrP. Furthermore, we used these models to re-evaluate the potential for human-to-human spread of vCJD, as well as the differential susceptibility and characteristics of the transmitted disease across the different PRNP codon 129 genotypes in humans.

Materials and Methods

Ethics Statement

We carried out animal experiments in strict accordance with the recommendations in the guidelines of the Code for Methods and Welfare Considerations in Behavioral Research with Animals (Directive 86/609EC and 2010/63/EU), and all efforts were made to minimize suffering. Experiments were approved by the Committee on the Ethics for Methods and Welfare Considerations in Behavioral Research with Animals of the University of Leeuwarden, the Netherlands and the Committee on Experiments on Animals of the University of Essex, United Kingdom.

Mouse Transmission Studies

We inoculated all isolates in 3 different transgenic mouse models: 1) HuPrP-Tg340-Met129 (TgMet129) mouse line expressing human Met129-PrPc variant (31); 2) HuPrP-Tg361-Val129 (TgVal129) mouse line expressing human Val129-PrPc variant (40); and 3) HuPrP-Tg351-Met/Val129 (TgMet/Val129) transgenic mouse line obtained by mating TgMet129 and TgVal129 mice (40). All of these transgenic lines show similar strain expression levels of PrPc (around 4-fold the level of expression in the human brain) on a mouse PrP null background. We performed additional inoculations in HuPrP-Tg362-Val129, a transgenic mouse line expressing 8-fold the level of PrPc expression in human brain (TgVal129 [8×]) (41). We performed subsequent bioassays for the detection of low-level propagation of infectious BSE and BSE-derived prions in BoPrP-Tg110 mice, which are highly susceptible to vCJD prions (42,43), probably caused by the trace-back phenomenon (30).

We anesthetized individually identified mice, 6–7 weeks of age, with isoflurane and inoculated them with a 2-mg equivalent of brain homogenate in the right parietal lobe by using a 25-gauge disposable hypodermic needle. We observed mice daily and assessed neurologic status 2 times per week. When progression of a TSE disease was evident or at the established experimental endpoint (700 days postinoculation [dpi]), we euthanized the animal for ethical reasons and performed necropsy, excising the brain. We then fixed part of the brain by immersion

Table 1. Description of prion isolates used in analysis of BSE and CJD*

Isolate	Sample codification	Description (reference)	Supplier†
Hu-sCJD MM1	BC 1011	sCJD PrP-Met129 type 1 human natural case	BHUFA
Hu-sCJD VV2	BC 1452	sCJD PrP-Val129 type 2 human natural case	BHUFA
Hu-TSE negative		TSE free human brain	NIBSC
Ca-BSEFr	(Fr (139))	BSE naturally infected cow (31,32)	INRA
Ca-BSETg	(UK (PG1199/00))	BSE naturally infected cow (33,34)	VLA
Ca-BSEt/Tg001	BSE transmitted experimentally to porcine transgenic mice (32)	CISA	
Ca-BSEt/Sh(ARG)	Fr (ARQ0)	Pool of brains from terminally ill ARQ/ARG sheep inoculated with BSE	INRA
Ca-BSEt/Go	gBSE-P12	Pool of brains from 3 terminally ill wild type goats inoculated with a mixture of 4 cattle-BSE field cases (35–37)	Roslin
Go-BSE	Fr (CH636)	Goat BSE case (38)	AFSSA
Hu-vCJD1	UK (NHBY/0014)	vCJD PrP-Met129 human infected case (39)	NIBSC
Hu-vCJD2	BC 1458	vCJD PrP-Val129 human infected case	BHUFA

*BSE, bovine spongiform encephalopathy; Ca, cattle; CJD, Creutzfeldt-Jakob disease; Go, goat; Hu, human; Met129, methionine; PrP, prion protein; sCJD, sporadic CJD; TSE, transmissible spongiform encephalopathy; Val129, valine; vCJD, variant CJD.

†AFSSA, Agence Franaise de Sécurité Sanitaire des Aliments National TSE Reference Laboratory, Lyon, France; BHUFA, Biobanco Hospital Universitario Fundación Alcorcón, Madrid, Spain; CISA, Centro de Investigación en Sanidad Animal, Madrid, Spain; INRA, French National Institute for Agricultural Research, Nouzilly, France; NIBSC, National Institute for Biologic Standards and Control Creutzfeldt-Jakob Disease Resource Centre, South Mimms, Potters Bar, United Kingdom; Roslin, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom; VLA, Veterinary Laboratory Agency, New Haw, Addlestone, Surrey, United Kingdom.

TSE Isolates

We used 11 isolates from different sources in this study (Table 1 [31–39]). For mouse inoculation, we prepared all isolates from brain tissues as 10% weight/volume (wt/vol) homogenates in 5% glucose. We performed second passages by inoculating transgenic mice with 10% (wt/vol) homogenates in 5% glucose of brains selected from passage 1.

Mouse Transmission Studies

We inoculated all isolates from different sources in this study (Table 1 [31–39]). For mouse inoculation, we prepared all isolates from brain tissues as 10% weight/volume (wt/vol) homogenates in 5% glucose. We performed second passages by inoculating transgenic mice with 10% (wt/vol) homogenates in 5% glucose of brains selected from passage 1.
in neutral-buffered 10% formalin (4% 2-formaldehyde) and used the tissue for quantifying spongiform degeneration by histopathology. We froze the remaining tissue at −20°C and used it to determine the presence of disease-associated protease K (PK)–resistant PrP(PrP\textsubscript{res}) by Western blot.

In all cases, we calculated mouse survival time and disease attack rate for each isolate. We expressed survival times as mean ±SD of the dpi for all mice positive for PrP\textsubscript{res}. We defined the attack rate as the proportion of all inoculated mice whose samples tested positive for PrP\textsubscript{res}. We used brain homogenates from PrP\textsubscript{res}-positive mice, where available, for further passaging. When all mice were scored negative for PrP\textsubscript{res} on primary passage, we used PrP\textsubscript{res}-negative brain homogenates for second passage.

Western Blot

We homogenized frozen brain tissues (175 ± 20 mg) in 5% glucose in distilled water in grinding tubes (Bio-Rad, Hercules, CA, USA) adjusted to 10% (wt/vol) by using a TeSeE Precess 48TM homogenizer (Bio-Rad), according to the manufacturer’s instructions. We determined presence of PrP\textsubscript{res} in transgenic mouse brains by Western blot, using the reagents of the ELISA commercial test TeSeE (Bio-Rad). Based on a previously described protocol (31), we treated 10–100 μL of 10% wt/vol brain homogenates with protease K; the resulting samples were loaded in 12% Bis-Tris Gel (Criterion XT; Bio-Rad). We transferred proteins electrothermally onto PVDF membranes (Millipore, Billerica, MA, USA), which were blocked overnight with 2% BSA blocking buffer (Sigma-Aldrich, St. Louis, MO, USA). For immunoblotting, we incubated with Sha 31 (44) monoclonal antibody (mAb) at a concentration of 1 μg/mL to identify the 145-WEDRYRE-152 epitope of the human PrPC sequence. To detect immunocomplexes, we incubated the membranes for 1 h with horseradish peroxidase conjugated anti-mouse IgG (GE Healthcare Amersham Biosciences, Little Chalfont, UK). Immunoblots were developed with enhanced chemiluminescence ECL Select (GE Healthcare Amersham Biosciences). Images were captured using the ChemiDoc WRS+ System (Bio-Rad) and processed using Image Lab 5.2.1 software (Bio-Rad).

Histopathological Analysis

We performed procedures for the histopathological analysis of mouse brains as previously described (45). We immediately fixed mouse brain samples in neutral-buffered 10% formalin (4% 2-formaldehyde) during necropsy and embedded the tissues in paraffin later. After deparaffinization, we stained 2 μm–thick tissue slices with hematoxylin and eosin and established lesion profiles by using published standard methods (46). We conducted paraffin-embedded tissue (PET) blots as previously described (47).

Results

BSE Resistance in TgVal\textsubscript{129} Mice

To evaluate the relative susceptibility of the 3 human PRNP codon 129 genotypes to BSE, we performed serial transmission studies in 3 transgenic mouse lines expressing human PrP. These mouse lines were homozygous for Met (TgMet\textsubscript{129}) or Val (TgVal\textsubscript{129}) at codon 129 of human PrP or were their F1 cross (TgMet/Val\textsubscript{129}). These mouse models expressed similar human PrP levels, 4-fold more than that seen in uninfected human brain tissue (40). We observed no clinical signs of prion disease or PrP\textsubscript{res} accumulation in control mice inoculated with TSE-free control brain homogenate. The 3 human transgenic mouse models were readily infected when inoculated with sporadic CJD (sCJD) (Table 2). The 2 sCJD cases used as inocula in this study were classified as Met\textsubscript{129} type 1 (Hu-sCJD MM1) and Val\textsubscript{129} type 2 (Hu-sCJD VV2) (12) on the basis of the patient’s PRNP genotype at codon 129 and the PrP\textsubscript{res} Western blot profiles of these samples.

We inoculated the 3 mouse models intracerebrally with a panel of BSE isolates from different species (cattle, pig, sheep, and goat; Table 2). As previously described in TgMet\textsubscript{129} mice (31), we found a higher transmission efficiency adjudged by comparatively higher attack rates for BSE isolates previously passaged in other species than for cattle BSE, suggesting a strong transmission barrier to cattle BSE in these mice.

At completion of the first and second passages, none of the TgVal\textsubscript{129} mice challenged with the different BSE isolates developed clinical disease, and no PrP\textsubscript{res} accumulation was found in their brains (Table 2). Because of intercurrent illnesses, the group of TgVal\textsubscript{129} mice challenged with Ca-BSE, reinforced this negative result. In addition, results of subsequent passage of brain homogenates from these mice to BoPrP-Tg110 mice were negative, ruling out the presence of subclinical infection, with the exception of TgVal\textsubscript{129} mice inoculated with Go-BSE. For this isolate, 3 of 6 BoPrP-Tg110 mouse brains showed detectable PrP\textsubscript{res} and had a long incubation time of 427 ± 38 dpi, suggesting very low infectivity (online Technical Appendix Table 1, https://wwwnc.cdc.gov/eid/article/23/9/16-1948-Techapp.pdf).

To confirm that the lack of susceptibility of TgVal\textsubscript{129} mice to cattle BSE and to BSE previously adapted in different species was not caused by inadequate PrP substrate, we used the TgVal\textsubscript{129} (8×) mouse line (41). However, even under these high human PrP expression level conditions, none of the inoculated TgVal\textsubscript{129} (8×) mice showed any evidence of infection after challenge with the different BSE isolates (online Technical Appendix Table 2). This result indicates that even an increase in the TgVal\textsubscript{129} PrP expression level is not enough to allow transmission of BSE prions, irrespective of the species in which BSE has been previously passaged.
In a similar manner to that seen in the TgVal129 mice, we observed no clinical disease and no disease-associated PK-resistant PrP accumulation on first or second passage of the different BSE isolates in TgMet/Val129 mice. However, we did observe an exception in 1 TgMet/Val129 mouse inoculated with Go-BSE without clinical signs but with a positive score for brain PrPres that died at 476 dpi (Table 2). These findings support the interpretation that human-PrP Val129 polymorphism severely restricts propagation of the BSE prion strain independently of the species in which it had previously been adapted.

BSE Adaptation to the Human PrP Sequence

In parallel to the transmission experiments with the different BSE isolates, we also inoculated the 3 humanized transgenic mouse models with human brain material from 2 different cases of vCJD PrP-Met129 (Hu-vCJD\textsubscript{1}, and Hu-vCJD\textsubscript{2}). On first passage, 100% of the TgMet129 mice developed clinical disease in response to all inocula in the panel (Table 3). However, only the inoculum Hu-vCJD\textsubscript{1}, previously passaged in TgMet/Val129 mice caused clinical disease in the same heterozygous genotype upon serial passages; the rest of the inocula caused only subclinical infections in this genotype (Table 3).

The PrPres molecular profile (Figure 1, panel A, lanes 2, 3, and 5; Figure 1, panel B) and the PrPres distribution patterns on paraffin-embedded tissue (PET) blots in the mouse brains (Figure 2, panels A, B, C) were similar in both the TgMet129 and TgMet/Val129 mice, with or without clinical disease. However, we consistently observed a lower PrPres accumulation in TgMet/Val129 mice compared with TgMet homozygous animals, particularly in the hippocampus area, probably caused by a slower conversion rate of PrPsc in these animals with a half dose of PrP-Met129.

Table 2. Transmission of cattle, porcine, sheep, and goat BSE isolates to mice in transgenic mouse lines TgMet129, TgMet/Val129, and TgVal129*

Isolates	Mean survival time, d ±SD (no. PrPres-positive/inoculated animals) [reference]†‡			
	TgMet\textsubscript{129}	TgMet/Val\textsubscript{129}	TgVal\textsubscript{129}	
	First passage	Second passage	First passage	Second passage
Hu-sCJD MM1	219 ±17 (6/6)	239 ±18 (6/6) [40]	243 ±14 (6/6)	260 ±13 (6/6) [40]
Hu-sCJD VV2	618 ±61 (6/6)	509 ±41 (6/6) [40]	588 ±74 (6/6)	594 ±86 (6/6) [40]
Hu-TSE negative	>700‡ (0/6)	>700‡ (0/6) [40]	>700‡ (0/6)	>700‡ (0/6) [40]
Ca-BSE\textsubscript{E}	739 (1/6) (31)	633 ±32 (6/6) [40]	>700‡ (0/6)	>700‡ (0/6) [40]
Ca-BSE\textsubscript{E}	491–707 (0/9)	572 ±37 (3/4) [31]	>700‡ (0/5)	ND
Ca-BSE/TgPo	653 ±45 (3/5)	ND	>700‡ (0/6)	ND
Ca-BSE/Sh(ARQ)	615 ±48 (6/6)	564 ±39 (5/5) [31]	>700b (0/6)	>700‡ (0/6) [40]
Go-BSE	>700‡ (0/5)	>700‡ (0/5) [40]	>700‡ (0/5)	ND
Bo-BSE	683 ±36 (6/6)	675 ±36 (5/5) [31]	>700‡ (0/8)	>700‡ (0/8) [ND]

* BSE, bovine spongiform encephalopathy; Ca, cattle; CJD, Creutzfeldt-Jakob disease; Go, goat; Hu, human; Met129, methionine; ND, not done; PrPres, protease K-resistant PrP; sCJD, sporadic CJD; Val129, valine; vCJD, variant CJD.
† Survival time is indicated for all mice that scored positive for PrPres.
‡ Animals without clinical signs were euthanized at 700 dpi.
§ Three additional animals were culled before the end of the experiment because of intercurrent illnesses; all were negative for brain PrPres by using Western blot.

Table 3. Intracerebral inoculation of transgenic mice that express human PrP with vCJD and with vCJD previously adapted in TgMet\textsubscript{129} or TgMet/Val\textsubscript{129} mice†‡

Isolates	Mean survival time, d ±SD (no. PrPres-positive/inoculated animals) [reference]†‡			
	TgMet\textsubscript{129}	TgMet/Val\textsubscript{129}	TgVal\textsubscript{129}	
	First passage	Second passage	First passage	Second passage
Hu-vCJD\textsubscript{1}	626 ±29 (6/6)	>700‡ (3/3)§	>700‡ (0/5)	
Hu-vCJD\textsubscript{1}→TgMet\textsubscript{129}	650 ±60 (4/4)	>700‡ (5/5)	>700‡ (5/5)	
Hu-vCJD\textsubscript{2}	545 ±146 (5/5)	>700‡ (5/5)	>700‡ (0/6)#	
Hu-vCJD\textsubscript{2}→TgMet\textsubscript{129}	564 ±39 (4/4)	>700‡ (5/5)	>700‡ (2/2)¶	
Hu-vCJD\textsubscript{2}→TgMet/Val\textsubscript{129}	601 ±32 (5/5)	651 ±17 (7/7)	>700‡ (7/7)	
Ca-BSE\textsubscript{E}→TgMet\textsubscript{129}	614 ±87 (6/6)	>700‡ (4/4)	>700‡ (3/4)	
Ca-BSE/Sh(ARQ)→TgMet\textsubscript{129}	534 ±55 (5/5)	>700‡ (5/6)	>700‡ (5/6)	
Ca-BSE/Go→TgMet\textsubscript{129}	609 ±67 (5/5)	>700‡ (4/4)	>700‡ (6/6)	

* BSE, bovine spongiform encephalopathy; Ca, cattle; CJD, Creutzfeldt-Jakob disease; Go, goat; Hu, human; Met129, methionine; PrP, prion protein; PrPres, protease K-resistant PrP; sCJD, sporadic CJD; Val129, valine; vCJD, variant CJD.
† Survival time is indicated for all mice scored positive for PrPres.
‡ Animals were euthanized without clinical signs at 700 dpi.
§ Three additional animals had to be culled before the end of the experiment because of intercurrent illnesses; all were negative for brain PrPres on WB.
¶ Four additional animals had to be culled before the end of the experiment because of intercurrent illnesses; all were negative for PrPres expression on Western blot.
In sharp contrast, none of the TgVal₁₂₉ mice challenged with the 2 vCJD primary inocula, Hu-vCJD₁ and Hu-vCJD₂, developed clinical disease and no PrP^{res} accumulation was found in their brains after Western blot (WB) analysis (Table 3). However, subsequent passage of brain homogenates from TgVal₁₂₉ mice inoculated with Hu-vCJD₂ (that remained apparently uninfected) to BoPrP-Tg110 mice showed evidence of subclinical infection. These subpassages led to a mean incubation time of 371 ± 5 dpi and to propagation of PrP^{res} that was detectable by WB in 100% of animals (online Technical Appendix Table 1), showing a biochemical pattern indistinguishable from that of cattle BSE infection in this mouse model.

These results suggest that the adaptation of the BSE agent to human PrP sequence could favor its transmission to the polymorphic human PrP Val₁₂₉ genotype. In this context, we passaged all isolates in TgMet₁₂₉ mice before subsequent inoculation in TgVal₁₂₉ mice. Although we did not observe clinical prion disease, the inoculated TgVal₁₂₉ mice had an infection rate remarkably close to 100%, as assessed by the presence of brain PrP^{res} at the end of the experiment (Table 3). We obtained similar results with the Hu-vCJD₂ isolate after 1 passage in TgMet/Val₁₂₉ mice and subsequent inoculation into TgVal₁₂₉ mice (Table 3). These observations support the hypothesis that adaptation of BSE agent to the human-PrP Met₁₂₉ amino-acid sequence promotes its transmission to human PrP Val₁₂₉–expressing hosts.

vCJD Prions in TgVal₁₂₉ Mice

Challenge of TgMet₁₂₉ or TgMet/Val₁₂₉ mice with vCJD prions resulted in faithful propagation of a typical PrP^{vCJD} (also named type 4), characterized by low size fragments (19-kDa fragment for the aglycosyl band) and prominent diglycosylated species on WB (Figure 1, panel A, lanes 2, 4, and 6) when compared with sCJD VV2 and MM1 isolates included for comparative purposes (lanes 8 and 9, respectively). Molecular weight (MW) in kDa is shown. Error bars indicate SD. CJD, Creutzfeldt-Jakob disease; sCJD, sporadic CJD; vCJD, variant CJD.
of distinct molecular and neuropathological phenotypes suggesting vCJD prion infection can result in the generation of molecular mass differences in PrP* that shared the same predominance of the diglycosylated glycoform seen in type 4 PrP* but was distinguished by PK digestion products of greater molecular mass (Figure 1, panel A, lanes 4, 6), which closely resemble those seen in human type 2 PrP* (Figure 1, panel A, lane 8). This differential biochemical pattern is associated with the presence of amyloid plaques restricted to the corpus callosum without a florid morphology. Moreover, we saw no specific vacuolar changes in the brains of these animals. PET blot analysis of these brains confirmed PrP* deposition in corpus callosum and head of caudate nucleus in the brain of vCJD-inoculated TgVal129 mice (Figure 2, panels D, E). However, PrP* deposition was quite limited in comparison with those observed in vCJD-inoculated TgMet129 (Figure 2, panels A, B) and TgMet/Val129 mice (Figure 2, panel C).

These results resemble those previously described in a different TgVal129 mouse line in which neuropathological and molecular features similar to those observed in our TgVal129 were characterized (2,27,28). To prove the same PrP* molecular profile identity between this previously characterized PrP* (called type 5 PrP*, vCJD→129VV Tg152c) and our vCJD-TgVal129 PrP*, we performed a biochemical characterization by WB and found no molecular profile differences in PrP* from the various mouse lines (Figure 3, lanes 6 and 7). These particular molecular mass and glycoform profile characteristics seem to be a hallmark of vCJD transmission to human-PrP Val129, since these features were also found in a different human-PrP Val129 transgenic mouse line challenged with vCJD (vCJD→Ki-Hu129VV) (26) (Figure 3, lane 8). These results, suggesting vCJD prion infection can result in the generation of distinct molecular and neuropathological phenotypes dependent on human-PrP polymorphic residue 129, are in accordance with those reported previously (2,28,46).

Discussion

We report a detailed comparison of the transmission properties of BSE and vCJD prions among humanized transgenic mice with different PRNP codon 129 genotypes. Because a higher expression level of PrP in transgenic mice directly influences prion disease susceptibility and incubation time, these transgenic mice have an advantage over knock-in mice for evaluating these features in the different human PrP genotypes. In addition, the 3 mouse models used in our study have equivalent PrP expression levels, making them suitable for studying comparative susceptibilities across the different PRNP codon 129 genotypes.

In previous reports, we demonstrated that Met129 homozygous individuals might be susceptible to a sheep or goat BSE agent to a higher degree than to cattle BSE and that these agents might transmit with molecular and neuropathological properties indistinguishable from those of vCJD (31). In this study, we wanted to extend these results to the other human PRNP genotypes: Met/Val129 and Val/Val129. We gained a different perspective when several BSE isolates adapted to different species inoculated in TgVal129 mice showed an apparent lack of transmission. In addition, almost all inoculated TgMet/Val129 mice did not transmit BSE; this finding supports the interpretation by Wadsworth et al. that human PrP Val129 severely restricts propagation of the BSE prion strain (27).

An unexpected result of this study was the finding that 1 BSE isolate from a goat (Ca-BSE/Go) was clinically transmitted to 1 of 10 TgMet/Val129 mice and subclinically transmitted to TgVal129 mice. This particular isolate is characterized by a high infectious titer (35) that could explain the potential for this inoculum to overcome the restriction on BSE prions to propagate in TgVal129 mice.

Although cattle BSE did not transmit to TgMet/Val129 mice directly, adaptation of the BSE agent to human PrP...
Met₁₂₉ sequence and subsequent inoculation of the resultant vCJD prions to TgMet/Val₁₂₉ mice produced a 100% attack rate. However, we did not detect clinical prion disease, supporting a slower rate of vCJD conversion compared with that among TgMet₁₂₉ mice. This slow but potential conversion rate in TgMet/Val₁₂₉ mice correlates well with the single vCJD case of a human carrying the PrP Met/Val₁₂₉ genotype (22) and with the description of subclinical secondary transmissions through human vCJD–infected tissues (4–7,47).

TgVal₁₂₉ mice challenged with Hu-vCJD₂ did not produce detectable brain PrP^{res}, and clinical signs, in spite of the overexpression of HuPrP-Val₁₂₉ and the use of the more efficient intracerebral route of infection. However, subclinical infection in these TgVal₁₂₉ mice was demonstrated in BoPrP-Tg110 mice. These data suggest that PrP Val₁₂₉ could sustain a very slow and limited vCJD conversion rate that is consistent with the detection of PrP^{res} in tonsils and appendixes of asymptomatic PrP Val₁₂₉ persons (23–25). Previous studies of other transgenic mice expressing PrP Val₁₂₉ have also shown a low transmission efficiency of vCJD (2,27,30).

The fluctuating subclinical transmissibility of both vCJD inocula in TgVal₁₂₉ mice (negative for Hu-vCJD, and positive for Hu-vCJD₂) might be caused by differences in prion titer between inocula. This assessment was strengthened after the transmission of both vCJDs to TgMet₁₂₉ mice, in which a shorter incubation period was observed in animals inoculated with Hu-vCJD₂. A certain variability in subclinical transmissibility and incubation time between different vCJD isolates is not uncommon, as has been previously reported (2,27,30), suggesting that a Val₁₂₉ transmission barrier can only be overcome with highly infectious vCJD isolates.

The dramatic changes in the susceptibility of TgVal₁₂₉ mice (Table 3) challenged with vCJD isolates first passed in TgMet₁₂₉ mice suggest an apparent increase in titer of both vCJD prion isolates; however, adaptation of the inocula to the new host mouse cannot be disregarded as being partly responsible for this increased susceptibility. We observed a 100% infection rate, but without clinical signs of prion disease. We observed similar transmission features when we passed vCJD in TgMet/Val₁₂₉ mice. In addition, the apparent PrPVal₁₂₉ restricted propagation of cattle BSE and BSE from other species was completely abolished after its adaptation to human PrP Met₁₂₉.

Although PrP overexpression and the inoculation route can affect transmission efficiency, our results and those previously reported in both overexpressing and knock-in transgenic mice (2,27,30) suggest that the Val₁₂₉ PrP variant could sustain a very slow and limited vCJD conversion rate, and is unable to completely prevent vCJD transmission. Biochemical and neuropathological features of vCJD transmission to TgVal₁₂₉ mice showed substantial differences compared to TgMet₁₂₉ or TgMet/Val₁₂₉ mice. Similar to previous reports (2,27,28,48), a type 5 PrP^{res} associated with very weak and diffuse PrP plaques without a florid morphology was the hallmark among these mice. In addition, our demonstration of previously unreported type 5 PrP^{res} in brain samples of vCJD-challenged knock-in Ki-Hu129V/V mice (30) establishes that the evolution of type 5 PrP^{res} associated with the transmission of vCJD prions to the Val₁₂₉ genotype is not
an artifact of PrP overexpression. This finding further re-
forces the specific biochemical features of vCJD when trans-
mitted to the human-PrP Val
\textsubscript{129} sequence.

Extrapolation of results from prion transmission stud-
ies based on transgenic mice has to be done with caution,
especially when human susceptibility to prions is analyzed.
However, our results clearly indicate that PrPVal
\textsubscript{129} individ-
uals are highly resistant to transmission of cattle BSE
or BSE passed in other species. Also, PrPVa
\textsubscript{129} individ-
uals might be susceptible to infection with human-passaged
BSE (vCJD) prions, and the propagated agents might trans-
mit with molecular and neuropathological properties distinguishable from those of type 4 PrPSc. Although the
resultant type 5 PrPSc shares the same fragment sizes as
those of type 2 PrPSc, the 2 PrPSc types can be distinguished by the predominance of the diglycosylated glycoform associated with type 5 PrPSc. Overall, our results indicate that human Val
\textsubscript{129}-PrP polymorphic variant is a strong molecu-
lar protector against BSE zoonotic transmission but fails
to prevent human-to-human vCJD transmission. Because
potential late-onset vCJD cases could appear in the popula-
tion (49,50) these findings underline the need for continued
investigation of all forms of human prion disease.

Acknowledgments
We thank Wilfred Goldmann for providing the goat-BSE
material (gBSE-P12); Juan Piquer, Irene Prieto, Patricia Lo-
renzo, Ana Esteban, and Ana Villa for their technical assistance;
and the staff of the Biosafety Level 3 animal facility and the
Biosafety Office at the CISA-INIA (Valdeolmos-Madrid) for
their excellent animal care and work.

This work was funded by the European Union projects
CT-2006-36353 (GoatBSE), CT-2009-222887 (Priority), and
219235 ERANET EMIDA (GOAT-TSE-FREE); the UK Food
Standards Agency grant M03043; the Alliance BioSecure
Foundation grant FABS2014-03; and the Spanish Plan Nacional de
Innovación (PRH019235 ERANET EMIDA (GOAT-TSE-FREE)).

Dr. Fernández-Borges is a research scientist in the Prion Group
at Centro de Investigación en Sanidad Animal–Instituto Nacional
de Investigación y Tecnología Agraria y Alimentaria, Madrid,
Spain. Her research interests include prion strain characterization
and evolution and the pathogenesis of prion diseases and their
effects on human and animal health.

References
1. Collinge J, Sidle KC, Meads J, Ironside J, Hill AF. Molecular
analysis of prion strain variation and the aetiology of ‘new variant’
CJD. Nature. 1996;383:685–90. http://dx.doi.org/10.1038/383685a0
2. Hill AF, Desbruslais M, Joiner S, Sidle KC, Gowland I, Collinge
J, et al. The same prion strain causes vCJD and BSE. Nature.
1997;389:448–50, 526. http://dx.doi.org/10.1038/38925
3. Bruce ME, Will RG, Ironside JW, McConnell I, Drummond D,
Suttie A, et al. Transmissions to mice indicate that ‘new variant’
CJD is caused by the BSE agent. Nature. 1997; 389:498–501.
http://dx.doi.org/10.1038/39057
4. Llewynly CA, Hewitt PE, Knight RS, Amir K, Coursens S,
Mackenzie J, et al. Possible transmission of variant Creutzfeldt-
Jakob disease by blood transfusion. Lancet. 2004;363:417–21.
http://dx.doi.org/10.1016/S0140-6736(04)15486-X
5. Peden AH, Head MW, Ritchie DL, Bell JE, Ironside JW. Preclinical
vCJD after blood transfusion in a PRNP codon 129 heterozygous
patient. Lancet. 2004;364:527–9. http://dx.doi.org/10.1016/S0140-
6736(04)69835-8
6. Wroe SJ, Pal S, Siddique D, Hyare H, Macfarlane R, Joiner S,
et al. Clinical presentation and pre-mortem diagnosis of variant
Creutzfeldt-Jakob disease associated with blood transfusion: a case
report. Lancet. 2006;368:2061–7. http://dx.doi.org/10.1016/S0140-
6736(06)69835-8
7. Peden A, McCordile L, Head MW, Love S, Ward HJ, Coursens SN,
et al. Variant CJD infection in the spleen of a neurologically
asymptomatic UK adult patient with haemophilia. Haemophilia.
2010;16:296–304. http://dx.doi.org/10.1111/j.1365-2516.2009.02181
8. Prusiner SB, Scott MR, DeArmond SJ, Cohen FE. Prion protein
biology. Cell. 1998;93:337–48. http://dx.doi.org/10.1016/S0022-
8674(00)81163-0
9. Prusiner SB. Prions. Proc Natl Acad Sci U S A. 1998;95:13633–83.
http://dx.doi.org/10.1073/pnas.95.23.13363
10. Collinge J. Prion diseases of humans and animals: their causes
and molecular basis. Annu Rev Neurosci. 2001;24:519–50.
http://dx.doi.org/10.1146/annurev.neuro.24.1.519
11. Will RG, Ironside JW, Zeidler M, Estibeiro K, Coursens SN,
Smith PG, et al. A new variant of Creutzfeldt-Jakob disease
in the UK. Lancet. 1996;347:921–5. http://dx.doi.org/10.1016/S0140-
6736(96)91412-9
12. Parchi P, Castellani R, Capellari S, Ghetti B, Young K, Chen SG,
et al. Molecular basis of phenotypic variability in sporadic
Creutzfeldt-Jakob disease. Ann Neurol. 1996;39:767–78.
http://dx.doi.org/10.1002/ana.410390613
13. Hill AF, Joiner S, Wadsworth JD, Sidle KC, Bell JE, Budka H,
et al. Molecular classification of sporadic Creutzfeldt-Jakob disease.
Brain. 2003;126:1333–46. http://dx.doi.org/10.1093/brain/awg125
14. Torres JM, Espinosa JC, Aguilar-Calvo P, Herva ME,
Relaño-Ginés A, Villa-Díaz A, et al. Elements modulating the
prion species barrier and its passage consequences. PLoS One.
2014;9: e89722. http://dx.doi.org/10.1371/journal.pone.0089722
15. Wadsworth JD, Collinge J. Update on human prion disease.
Biochim Biophys Acta. 2007;1772:598–609. http://dx.doi.org/
10.1016/j.bbadis.2007.02.010
16. Palmer MS, Dryden AJ, Hughes JT, Collinge J. Homozygous
prion protein genotype predisposes to sporadic Creutzfeldt-Jakob
disease. Nature. 1991;352:340–2. http://dx.doi.org/10.1038/352340a0
17. Collinge J, Palmer MS, Dryden AJ. Genetic predisposition to
iatrogenic Creutzfeldt-Jakob disease. Lancet. 1991;337:1441–2.
http://dx.doi.org/10.1016/S0140-6736(91)93128-V
18. Mead S, Stumpf MP, Whitfield J, Beck JA, Poultet M, Campbell T,
et al. Balancing selection at the prion protein gene consistent with
prehistoric kurulike epidemics. Science. 2003;300:640–3.
http://dx.doi.org/10.1126/science.1083320
19. Baker HE, Poultet M, Crow TJ, Frith CD, Lofthouse R, Ridley RM,
et al. Aminoacid polymorphism in human prion protein and age
at death in inherited prion disease. Lancet. 1991;337:1286.
http://dx.doi.org/10.1016/0140-6736(91)92953-Y
20. Poultet M, Baker H, Frith CD, Leach M, Lofthouse R,
Ridley RM, et al. Inherited prion disease with 144 base pair
gene insertion. 1. Genealogical and molecular studies. Brain.
1992;115:675–85. http://dx.doi.org/10.1093/brain/115.3.675
21. Will RG, Zeidler M, Stewart GE, Macleod MA, Ironside JW,
Cousens SN, et al. Diagnosis of new variant Creutzfeldt-Jakob

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 23, No. 9, September 2017 1529
RESEARCH

disease. Ann Neurol. 2000;47:575–82. http://dx.doi.org/10.1002/1531-8249(200005)47:5<575::AID-ANA4>3.0.CO;2-W

22. Bishop MT, Duck AB, Ritchie DL, Ironside JW, Will RG, Manson JC. Prion infectivity in the spleen of a PRNP heterozygous individual with subclinical variant Creutzfeldt-Jakob disease. Brain. 2013;136:1139–45. http://dx.doi.org/10.1093/brain/awt032

23. Hilton DA, Ghani AC, Conyers L, Edwards P, McCardle L, Ritchie D, et al. Prevalence of lymphoreticular prion protein accumulation in UK tissue samples. J Pathol. 2004;203:733–9. http://dx.doi.org/10.1002/path.1580

24. Ironside JW, Bishop MT, Connolly K, Hegazy D, Lowrie S, Le Grice M, et al. Variant Creutzfeldt-Jakob disease: prion protein genotype analysis of positive appendix tissue samples from a retrospective prevalence study. BMJ. 2006;332:1186–8. http://dx.doi.org/10.1136/bmj.38804.511644.55

25. Gill ON, Spencer Y, Richard-Loendt A, Kelly C, Dabaghian R, Hoyes L, et al. Prevalent abnormal prion protein in human appendixes after bovine spongiform encephalopathy epizootic: large scale survey. BMJ. 2013;347:f5675. http://dx.doi.org/10.1136/bmj.f5675

26. Asante EA, Linehan JM, Desbruslais M, Joiner S, Gowland I, Wood AL, et al. BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein. EMBO J. 2002;21:6358–66. http://dx.doi.org/10.1093/emboj/cdf653

27. Wadsworth JD, Asante EA, Desbruslais M, Linehan JM, Joiner S, Gowland I, et al. Human prion protein with valine 129 prevents expression of variant CJD phenotype. Science. 2004;306:1793–6. http://dx.doi.org/10.1126/science.1103932

28. Asante EA, Linehan JM, Gowland I, Joiner S, Fox K, Cooper S, et al. Dissociation of pathological and molecular phenotype of variant Creutzfeldt-Jakob disease in transgenic human prion protein 129 heterozygous mice. Proc Natl Acad Sci U S A. 2006;103:10759–64. http://dx.doi.org/10.1073/pnas.0604292103

29. Bishop MT, Hart P, Aitchison L, Baybutt HN, Plinston C, Asante EA, Linehan JM, Joiner S, Desbruslais M, Linehan JM, Joiner S, Gowland I, et al. Phenotyping of protein-prion (PrPsc)-accumulating cells in lymphoid and neural tissues of naturally scrapie-affected sheep by double-labeling immunohistochemistry. J Biol Chem. 2005;280:11247–58. http://dx.doi.org/10.1074/jbc.M113.470328

30. Padilla D, Béranger V, Espinosa JC, Andreóletti O, Jaumain E, Reine F, et al. Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog. 2011;7:e1001319. PubMed http://dx.doi.org/10.1371/journal.ppat.1001319

31. Espinosa JC, Herva ME, Andreóletti O, Padilla D, Lacroux C, Cassard H, et al. Prion titer in lymphoid cells in lymphoid and neural tissues of naturally scrapie-affected sheep. J Neurosci. 2013;33:7778–86. http://dx.doi.org/10.1523/JNEUROSCI.0244-13.2013

32. de Marco MF, Linehan J, Gill ON, Clewley JP, Brandner S. Large-scale immunohistochemical examination for lymphoreticular prion protein in tonsil specimens collected in Britain. J Pathol. 2010;222:380–7. http://dx.doi.org/10.1002/path.2767

33. Collinge J. Medicine. Prion strain mutation and selection. Science. 2010;328:1111–2. http://dx.doi.org/10.1126/science.1190815

34. Douet JY, Zafar S, Perret-Liaudet A, Lacroux C, Lugin S, Aron N, et al. Detection of infectivity in blood of persons with variant and sporadic Creutzfeldt-Jakob disease. Emerg Infect Dis. 2014;20:114–7. http://dx.doi.org/10.3201/eid2001.130353

Address for correspondence: Juan Maria Torres Trillo, Centro de Investigación en Sanidad Animal (CISA-INIA). 28130 Valdeolmos, Madrid, Spain; email: jmtorres@inia.es
Protective Effect of Val129-PrP against Bovine Spongiform Encephalopathy but not Variant Creutzfeldt-Jakob Disease

Technical Appendix

Technical Appendix Table 1. Transmission of Ca-BSE derived isolates adapted in different human PrP polymorphic variants to BoPrP-Tg110 mice

Isolates	Mean survival time in days±SD (n/n0)†
BoPrP-Tg110	
Ca-BSE0	303 ± 10 (13/13)†
Ca-BSE0 → TgVal129	>700‡ (0/7)
Ca-BSE2	308 ± 5 (5/5) †
Ca-BSE0 → TgMet129 → TgMet129	308 ± 13 (5/5)(2)
Ca-BSE/Sh(ARQ) → TgVal129	>700‡ (0/6)
Ca-BSE/Sh(ARQ) → TgMet129	>700‡ (0/5)
Ca-BSE/Sh(ARQ) → TgMet129 → TgVal129	278 ± 7 (7/7)
Ca-BSE/Sh(ARQ) → TgMet129 → TgVal129	311 ± 9 (6/6)
Ca-BSE/Go	239 ± 66 (6/6/3)
Ca-BSE/Go → TgVal129	427 ± 38 (3/6)
Hu-vCJD1	370 ± 33 (9/9)(†)
Hu-vCJD1 → TgVal129	>700† (0/5)
Hu-vCJD2	276 ± 9 (6/6)
Hu-vCJD2 → TgVal129	371 ± 5 (3/3)§
Hu-vCJD2 → TgMet129 → TgVal129	260 ± 41 (6/6)

*†n/n0: diseased PrPres positive/inoculated animals.
†Survival time is indicated as mean±SD dpi of all the mice scored positive for PrPres.
‡Animals were euthanized without clinical signs at 700 dpi.
§Three additional animals had to be culled before the end of the experiment because of intercurrent illnesses; all were negative for brain PrPres on WB.

Technical Appendix Table 2. Transmission of vCJD and cattle, sheep and goat BSE isolates to TgVal129 (8x) mice

Isolates	Mean survival time in days±SD (n/n0)*
TgVal129 (8x)	
1st passage	2nd passage
Hu-sCJD MM1	295 ± 21 (6/6)
Hu-sCJD VV2	228 ± 7 (5/5)
Hu-TSE negative	>700† (0/6)
Ca-BSE0	>700† (0/6)
Ca-BSE2	>700† (0/3)‡
Ca-BSE0 → TgVal129	>700† (0/5)
Ca-BSE2 → TgVal129	>700† (0/5)
Ca-BSE/Sh(ARQ) → TgVal129	>700† (0/5)
Ca-BSE/Go	>700† (0/5)
Hu-vCJD2	>700† (0/6)

*Survival time is indicated as mean±SD dpi of all the mice scored positive for PrPres. n/n0: diseased PrPres positive/inoculated animals.
†Animals were euthanized without clinical signs at 700 dpi.
‡Three additional animals had to be culled before the end of the experiment because of intercurrent illnesses; all were negative for brain PrPres on WB.

References

1. Padilla D, Béringue V, Espinosa JC, Andreoletti O, Jaumain E, Reine F, et al. Sheep and goat BSE propagate more efficiently than cattle BSE in human PrP transgenic mice. PLoS Pathog. 2011;7:e1001319. PubMed http://dx.doi.org/10.1371/journal.ppat.1001319
2. Torres JM, Espinosa JC, Aguilar-Calvo P, Herva ME, Relaño-Ginés A, Villa-Diaz A, et al. Elements modulating the prion species barrier and its passage consequences. PLoS One. 2014;9:e89722. PubMed http://dx.doi.org/10.1371/journal.pone.0089722

3. Aguilar-Calvo P, Fast C, Tauscher K, Espinosa JC, Groschup MH, Nadeem M, et al. Effect of Q211 and K222 PRNP polymorphic variants in the susceptibility of goats to oral infection with goat bovine spongiform encephalopathy. J Infect Dis. 2015;212:664–72. PubMed http://dx.doi.org/10.1093/infdis/jiv112