INTRODUCTION

Nature has been always an intriguing source of drug design investigations [1]. It is well known that various bioactive proteins and peptides have been reported that the venom from different species of snakes, conus, scorpions, centipedes, lizards, spiders, sea anemones, bees, and octopus [2, 3]. In this present review, snake venom components, which are of importance for the treatment of various diseases, are considered. Venomous snakes are in focus of investigations and many pharmacologically useful molecules, which have already been isolated and characterized [4]. Epidemiological data estimates that 4.5-5.4 million peoples got bitten by snakes in every year and results about 1.8-2.7 million snakebites envenomation and 91,000 to 130,000 deaths in every year [5]. Hence, snakebite is one of the major public health issues in South Asia, South-east Asia, Sub-Saharan Africa, and Latin America [6, 7]. Venomous snakes with medical importance are mainly belongs to three families: Atractaspididae, Elapidae, and Viperidae [8]. Snakes from the Viperidae family are also further divided into two subfamilies; Viperinae and Crotalinae. In these families, the venom produced in specialized glands are typically delivered to the target organism throughout the modified teeth [9]. Many victims are inflicted with permanent physical injuries due to psychological sequelae, hemorrhage, nephrotoxicity, and tissue necrosis [10]. Snake venom is composed of 90-95% of proteins, which are mostly enzymes [11]. Snake venom is extremely modified with snake’s saliva [12], which containing a complex mixture of amino acids, nucleic acids, carbohydrates, lipids, proteins, and peptides [13, 14]. The composition of snake venom has been illustrated (fig. 1). Proteins and polypeptides are classified into enzymes, and non-enzymatic substances [15]. The most common enzymes of snake venom are phospholipases A2 (PLA2), serine proteases (SVSP), metalloproteases (SVMP), acetylcholinesterases (AChEs), L-amino acid oxidases (LAAO), nucleotidases (5'-nucleotidases, ATPases, phosphodiesterases, and DNases), and hyaluronidases [16]. The most common non-enzymes of snake venom are three-finger toxins (3FTx), Kunitz peptides (KUN), and disintegrins (DIS) (fig. 1). The composition of snake venom may undergo distinct qualitative and quantitative variation in populations and individuals of the same species [17]. Variations in protein expression of venom components may also be observed in the same species with different ontogeny [18]. Diversification of proteins present in the venom, which is directly reflects its toxicity, pathophysiologic effects, and may represent an evolutionary arms race, by the adaptation of venom composition to improve the ability of subduing different predator’s preys, and also to overcome the resistance of some prey species to the venom [19]. Elapidae and Viperidae venom proteins are produced and secreted by oral exocrine glands, which present in the baso-central lumen, where the venom is stored until its delivery [20]. The production of toxins will be activated by morphological and biochemical changes in secretory epithelial cells after venom injection [21]. Many regulatory mechanisms are carried out in the snakes, to effect protein compositions in their venom, such as mutations affecting gene expression [22], duplication, and loss of toxin-related genes [23], post-transcriptional microRNAs regulation [24], and proteolytic processing [25]. Based on their compositional importance and ubiquity, there are 59 protein families that have been classified into five groups [26], including group I-dominant protein families such as PLA2, SVMP, SVSP, and 3FTx; group II-secondary protein families, which are much smaller amounts than the dominant families such as KUN, LAAO, cysteine-rich secretory protein (CRISP), C-type lectin (CTL), disintegrin (DIS), and natriuretic peptide (NP); group III-minor protein families such as acetylcholinesterase, hyaluronidase, 5' nucleotidase, phosphodiesterase, phospholipase B, nerve growth factor (NGF), and vascular endothelial growth factor (VEGF); group IV-rare proteins including 36 families, and; group V-unique protein families such as defensins, waglerin, maticotoxin, and cystatins, which are restricted to the snake species specifically [26, 27].

Snake venom proteins

Snake venom proteins are classified into numerous families, which is based on the structural and functional similarities in the organization of these molecules.

Enzymatic proteins in venom

Phospholipases A2

Phospholipase A2 (PLA2) plays an important role in the neurotoxic and myotoxic effects of snakebites [28]. These proteins have molecular masses of 13–15 kDa, classified into groups I and II, which...
are found as major components in the venoms of Elapidae and Viperidae, respectively [12, 28]. There is a third group of PLA2s, which is termed as IIE, has been predominately recovered from the venom of non-front fanged snakes, although their importance in the venom arsenal is still remains unclear [29]. Studies reconstructing the evolutionary history of the multi-locus gene family and after translocation, each of these PLA2s types (I, II, and IIE) has been independently recruited into snake venom systems [30, 31]. Inflammation is induced by non-neurogenic and neurogenic components of PLAs [32]. The non-neurogenic components are especially mediate hydrolysis of membrane lipids, which generates potent pro-inflammatory lipid mediators [33].

Metalloproteases

Metalloproteases (SVMPs) are zinc-dependent proteinases, which execute their primary toxicity by altering the hemostatic system of their victims by inducing edema and hyperalgesia [49]. Metalloproteases typically abundant in viper venoms and less in other types of venoms of elapid and colubrid snakes (colubridae) [48]. SVSPs are well known for their ability to rupture capillary vessels of SVSPs, which execute their primary toxicity by altering the hemostatic system of their victims by inducing edema and hyperalgesia [49].

Serine proteases

Serine proteases (SVSP) belong to the S1 family of serine proteinases and the molecular masses ranging from 26 to 67 kDa with two distinct structural domains [46]. These venom toxins have been evolved from kallikrein-related serine proteases and, following their recruitment for use in the venom gland, which have undergone gene duplication events, ultimately giving rise to various isoforms [46]. SVSPs catalyze the cleavage of polypeptide chains on the C-terminal side, which is positively charged or hydrophobic amino acid residues [47]. Similarly, SVSPs have been described in the venom of wide varieties of snake families, although they are typically abundant in viper venoms and less in other types of venoms of elapid and colubrid snakes (colubridae) [48]. SVSPs are well known for their ability to rupture capillary vessels of SVSPs, which execute their primary toxicity by altering the hemostatic system of their victims by inducing edema and hyperalgesia [49].

Hyaluronidases

Snake venom hyaluronidases are the glycoproteins ranging from the molecular mass 28 to 70 kDa, and the optimum enzyme activity was detected around pH 5.5 [50]. Venom hyaluronidases are known to hydrolyse hyaluronan, which is the major glycosaminoglycan of the interstitial matrix specially found in the extracellular matrix of mammalian cells [51]. They have the capacity to hydrolyse glycosidic linkages β-1-4 residues of N-acetyl-D-glucosamine and D-glucuronate from hyaluronan producing tetra and hexasaccharides [52]. During envenomation, hyaluronidases facilitate the venom diffusion in the victim’s tissue due to hydrolysis, which make the venom to spread faster in the body and enhance the toxins effect [21].

Nucleotidases

Snake venom nucleotidases comprise of 5'-nucleotidase, ATPase, and ADPase. 5'-nucleotidase is a metalloenzyme with a high molecular mass ranging from 73 to 100 kDa [53]. Gulland and...
Jackson have identified the δ-nucleotidease activity in snake venoms, which increase the anticoagulant effect of ADPases, phospholipases A2, and disintegrins by acting synergistically with these specific toxins [54, 55]. ADPases are initially described by Zeller and are known to hydrolyze ATP, which releases adenosine and pyrophosphate. Based on the reaction conditions, ADPases could cleave ATP into AMP and pyrophosphate/phosphate [56, 57]. The only ADPase isolated from snake venom (D. acutus, hundred-pose viper) has a molecular mass of 94 kDa in it's purified form. This snake venom is known to inhibit platelet aggregation in platelet-rich plasma, which is induced by various molecules, but it does not inhibit thrombin-induced aggregation in platelet-poor plasma [58].

Acetylcholinesterase

Acetylcholinesterase (AChE) plays a crucial role in cholinergic transmission by rapidly inactivating the neurotransmitter acetylcholine. AChE belongs to the family cholinesterase, which includes butyrylcholinesterase (BuChE) [59]. Both the enzymes hydrolyze choline esters faster than any other substrates, which inhibit physostigmine. AChE is differing from BuChE, it is more active on acetylcholine than propionyl or butyrylcholine. It is also characterized by excess substrate inhibition, which is not observed by BuChE [59]. In addition, these two enzymes may be distinguished by their sensitivity to reversible inhibitors, specifically either AChE or BuChE. The catalytic center of AChE is traditionally considered as a composition of an esterase subsite and an anionic subsite [59]. Earlier studies have been suggested that amino acid residues present in the first and second loop of the toxins are involved in the inhibition of enzyme activity [60]. In all Elapidae venoms, AChE is known to be present [2].

Phosphodiesterase

Phosphodiesterase hydrolyzes phosphodiester bonds consecutively from the 30 termini of polynucleotides to produce 5-mononucleotides in the venom of P. flavoviridis (pit viper). In addition, phosphodiesterase activity has been found virtually in all snake venoms, although in general, there is a greater activity associated with Viperidae venoms [58]. Several transcriptome studies from snake venoms indicated that typically less than a few percent of the transcriptomes are comprised of transcripts for phosphodiesterases [61].

Non-enzymatic proteins in venoms

Three-finger toxins

The non-enzymatic proteins, such as 3FTxs family of polypeptides, comprised of 60–74 amino acid residues. These peptides showed diverse functionalities, which possesses a conserved structure [62]. Distinct structural features of 3FTxs are unique fold, including three loops, which emerge from a hydrophobic globular core [62]. Proteomic and transcriptomic analyses have shown that the ratio of 3FTxs might be higher relative to other toxins in the Elapidae venoms, for example, venom of N. ashei (spitting cobra), M. pyrrocryptus (coral snake), and M. tschudii (desert coral snake) [63]. 3FTxs constitute more than 60% of the venom compositions of coral snakes [64, 65], while there has been a wide range of distributions of relative abundance of 3FTxs among different krait species, ranging from 1.3% in B. fasciatus [66,67] and 60% in L. colubrina (a sea krait) [68, 69].

Cysteine-rich secretory proteins

Cysteine-rich secretory proteins (CRiSPs) are non-enzymatic components, which are present in various organisms. These enzymes are also found in snake venoms, but their function in envenoming have not yet been fully understood so far [70, 71]. CRiSPs are single-chain proteins with molecular mass ranging from 20 to 30 kDa. These enzymes have been displayed sixteen highly conserved cysteine residues that can form eight disulfide bonds [72]. CRiSPs are largely distributed among Viperidae and Elapidae families from different continents [21,72]. There are several reports suggesting the isolation and cloning of three snake venom CRiSPs from O. Hannah (king cobra), and C. atrox (diamondback rattlesnake), piscivorn, orphan, and catrin, respectively. Other CRiSPs, including triffin, abldomin, latissim, and tigrin are isolated from the venoms of P. flavoviridis, L. semifasciata (black-banded sea krait), and R. tigrinus (tiger keelback) [21, 72].

Disintegrins

Disintegrins (DIS) are cysteine-rich peptides that result from post-translational cleavage of SVMPs, which are phylogenetically related to ADAMS. The possible function and activity of disintegrins in snake venoms are assigned to support the distribution of other toxins throughout the prey tissues by binding integrins and inhibiting platelet aggregation directly on envenomation [73]. Disintegrins are found in the venoms of Crotalidae and Viperidae snakes, which constitute approximately 17% and 18% of total venom proteins [8]. Disintegrins might exist as monomers, homodimers, and/or heterodimers. The monomers include short [49–51 amino acid residues and four disulfide bonds], medium (70 amino acids and six disulfide bonds), and long disintegrins (84 amino acids and seven disulfide bonds). Most of the disintegrins belong to the monomeric type [74].

Natriuretic peptides

Natriuretic peptides (NPs) are mostly found in Viperidae than Elapidae [75]. NPs constitute only 3% of the venom proteome of Dendroaspis polyepis and 37% of B. nigroviridis [75]. NPs are found in vertebrates, which play an important role in natriuresis. Moreover, the homologous peptide has been reported in plants and bacteria [76]. These mammalian NPs are well known, such as atrial natriuretic peptide (ANP), B-type natriuretic peptide (BNP), and C-type natriuretic peptide (CNP). These NPs regulate the functions of cardiovascular and renal systems, which render them by forming a complex and binding to the natriuretic peptide receptor [76]. For example, ANP and BNP could act in an endocrine manner to maintain blood pressure and volume. Both ANP and BNP could be released by cardiomyocytes in response to elevated blood pressure and hypervolemia [77,78] and CNP is produced by endothelial cells [79]. Nowadays, NPs seem to be great, as they support the development of therapeutics and medical procedures for the treatment and diagnosis of unfortunate physiological conditions such as heart failure and hypertension [80].

Protease inhibitors

The first protease inhibitors are found by documenting the isolation of potant kunitz type protease inhibitors from the venom of D. russelli [81]. The occurrence of the protease inhibitors is reported in Elapidae and Viperidae snake venoms [82, 83]. Snake venoms are the interesting sources of protease inhibitors, although these molecules represent in a small proportion of snake venoms. Further, the chemical reactions of the body is sustained and controlled by the antagonism of: (i) proteases, which play key functions in different systems and biochemical pathways and (ii) the correspondent protease inhibitors, which is responsible for controlling protease activities [84].

Kunitz inhibitors

The first identified Kunitz inhibitor is from Australian elapid venoms O. scutellatus by Possani et al. 1992 [85]. Kunitz inhibitors are mainly found in different animals and are characterized by conserved folds consisting of approximately 60 amino acids, which are stabilized by three disulfide bonds [86]. Protease inhibitory activities are conferred by the binding of these highly specific Kunitz inhibitors to the active site of the serine protease in a substrate-like manner. A major contact is formed between a peptide bond of the inhibitors and the active site of the protease, but in contrast to the usual substrate, these peptides bond only with limited and extremely slow hydrolysis [87]. Sequence analysis of the snake venom Kunitz inhibitors has revealed that the amino acids are highly conserved at the core and in the N-terminal surface area but not at the anti-protease site [84]. This suggests that Kunitz inhibitors have been retained the same overall fold but evolved to have various functions [84].

Growth factors

The “growth factor” is conventionally associated with growth and cell proliferation. Later, however, other cellular responses are attributed
to these neurotrophins, including cell differentiation, transformation, synthesis, secretions, death, and motility [88]. The first identified growth factor is a nerve growth factor (NGF) from mouse sarcoma 180 in the 1950s [89]. NGF is isolated in 1956 from the venom of A. piscivorus (black water viper) [90]. NGFs are participated in neuronal differentiation, synaptic plasticity, and neuroprotection in tissues. NGF from N. atra exerts important systemic effects in the envenoming, including plasma extraction and histamine release, which could result in the development of cardiovascular disease [91]. NGF is also acts on non-neuronal cells, but especially on hematopoietic stem cells. However, most of these effects are already reported for murine NGF [92]. It has been observed that the part of the sv-NGF is injected at the bite site of N. atra (Chinese cobra) might reach the circulation, which could lead to some physiological activities on non-neuronal cells or tissues. NGF synthesis, secretions, death, and motility [88]. The first identified NGF-like peptides/proteins are described that the part of the sv-NGF is injected at the bite site of N. atra (Chinese cobra) might reach the circulation, which could lead to some physiological activities on non-neuronal cells or tissues. NGF synthesis, secretions, death, and motility [88].

Table 1: Prospective pharmacological influences of snake venom proteins/peptides

Family	Scientific name	Venom peptides/proteins	Experimental model	Observation	Reference	
Cancer	Bothrops jararaca	Jararhagin	Human melanoma cell lines (SK-Mel-28)	Increase in the expression of cell cycle and apoptosis	[99]	
Viperae	Naja naja atra	Cardiotoxin III	Human breast cancer cell lines (MDA-MB-231)	Suppression of EGF-induced cell invasion and migration	[100]	
Viperae	Cerastes vipera	L-amino acid oxidase	Human breast cancer cell lines (MCF-7)	Increase in H2O2 and TBARS levels by depletion of catalase activity	[101]	
Viperae	Calloselasma rhodostoma	L-amino acid oxidase	Human colon cancer cell lines (SW480, SW620)	Significant increase in the activity of caspase-3, and reduction in Bc1-2 levels	[13]	
Viperae	Cryptelytrops purpureomaculatus	L-amino acid oxidase (Rusvinooxidase)	Human breast cancer cell lines (MCF-7)	Significant increase in the activity of caspase-3, and reduction in Bc1-2 levels	[102]	
Viperae	Daboia russelli	L-amino acid oxidase	Human lung squamous carcinoma cell lines (SK-MES-1)	Expression of p-JNK and p17 increased during apoptosis	[104]	
Elapidae	Bothrops jararaca	Crotoxin	Human cancer cell lines (A549 and NCI-H460)	Induction of apoptosis in both intrinsic and extrinsic pathways	[105]	
Elapidae	Naja oxiana	Cytotoxin I and II	Human cancer cell lines: breast cancer (MCF-7), hepatocellular carcinoma (HepG2), prostate carcinoma (DU 45), and promyelocytic leukemia (HL-60)	Activation of apoptotic pathways	[106]	
Viperidae	Bothrops paloensis	L-amino acid oxidase	Human breast cancer cell lines (MDA-MB-231)	Involved in signaling pathways of apoptosis, and autophagy	[107]	
Cardiovascular disease	Bothrops marajoensis	Phospholipase A2	Human breast cancer cell lines (MDA-MB-231)	Induction of apoptosis, and bradycardia while simultaneously blocking electrical conduction in the heart	Leads to hypotensive shock, and require special attention in cases of envenoming	[111]
Viperidae	Bitis Arietans, Bitis gabonica, Bitis rhinoceros, Bitis nasicornis	Cytotoxic peptide	Wistar rats (WTs)	Induction of hypotension, and bradycardia while simultaneously blocking electrical conduction in the heart	[112]	
Viperidae	Bothrops jararaca	Proline-rich oligopeptide (Bj-PRO-10c)	Wistar rats (WTs)	Spontaneously hypertensive rats (SHRs) Modulates gene expression of key enzymes in NO production	Alteration of cardiac performance, collateral blood flow to the clotting system	[113]
Elapidae	Ophiophagus hannah	Cobra venom factor	Mongrel dogs	Spontaneously hypertensive rats (SHRs) Modulates gene expression of key enzymes in NO production	Alteration of cardiac performance, collateral blood flow to the clotting system	[113]
Elapidae	Ophiophagus hannah	Cobra venom factor	Feral baboons	Spontaneously hypertensive rats (SHRs) Modulates gene expression of key enzymes in NO production	Alteration of cardiac performance, collateral blood flow to the clotting system	[113]
Viperidae	Bothrops jararaca	Bradykinin potentiating peptides (BPP-5a)	Spontaneously hypertensive rats (SHRs)	Spontaneously hypertensive rats (SHRs) Modulates gene expression of key enzymes in NO production	Alteration of cardiac performance, collateral blood flow to the clotting system	[113]
Family	Scientific name	Venom peptides/proteins	Experimental model	Observation	Reference	
---------------	----------------------------------	-------------------------	--------------------	--	-----------	
Elapidae	Bungarus candidus	Crude venom	Wistar rats (WTs)	Involved in autonomic reflex, and vascular nitric oxide mechanisms	[116]	
Viperidae	Bitis rhinoceros	Serine protease	Human plasma	Reduction of the risk of human haemostatic disorders, such as heart attacks, and strokes	[117]	
Viperidae	Dendroaspis angusticeps	Mambaquaretin-1	Pcy mice	Inhibition of dDAVP, and induction of cAMP production	[122]	
Viperidae	Trimeresurus flavirudis	Crude venom	Sprague Dawley rats	Correlation of both ECM production, and degradation systems involved in repair process	[123]	
Viperidae	Agkistrodon acutus, Bothrops	Crude venom	182 sato mice (TIE2/IZ)	Glomerular endothelial cell turnover, and regeneration of glomerular microvasculature	[124]	
Viperidae	Bothrops alternatus	Crude venom	ddY’ mice	Inhibition of effect on glomerular disease	[125]	
Viperidae	Bothrops moojeni	Crude venom	Wistar-Hannover rats	Induce morphological, and functional renal alterations with enhanced Na+/K+-ATPase expression, and activity in the early phase of renal damage	[126]	
Viperidae	Bothrops maraoensis	L-amino acid oxidase	MadineDarby Canine Kidney cell lines (MDCK)	Responsible for nephrotoxicity, and renal cytotoxicity	[128]	
Elapidae	Micrurus browni, Micrurus laticollaris	Crude venom	Monkey Kidney epithelial cell lines (LLC-MK2), Wistar rats (WTs)	Alteration of renal physiological parameters, and cause nephrotoxic effects, with the involvement of oxidative stress	[129]	
Pulmonary disease	Agkistrodon acutus	Fibriolotic enzyme	Rabbits	Reduction of thrombi, which restores blood flow in the lung, and improving cardiovascular function	[134]	
Viperidae	Bothrops jararaca	Jarharagin	CD-1 mice	Affect lung microvessels by proteolytic activity, and also inhibits action of plasma proteinase inhibitors	[135]	
Viperidae	Agkistrodon acutus	Recombinant fibrinogenase II	Severe acute pancreatitis rats (SAP)	Degradation of TNF-a	[136]	
Viperidae	Bothrops caribaeus	P-III (snake venom metallocprotease)	CD-1 mice	Induction of pulmonary hemorrhage, and thrombocytopenia, and increased FDP, without causing blood incoagulability	[137]	
Neurodegenerative disease	Bothrops atrox	Glu-Val-Trp (p-BTX-I)	PC12 cell lines	Action via trkA receptor, and PI3K-AKT and MAPK-ERK pathways by NGF	[141]	
Viperidae	Bothrops jararaca	Crude venom (CV), Low molecular weight fractions (LMWF)	Hippocampal cell lines	Shows neuroprotective activity in cultured hippocampal cells in oxidative stress induced by H2O2	[142]	
Elapidae, Viperidae	Naja annulifera, Naja nivea, Dendroaspis jameisoni kaimosaes, Vipera ammodytes	Crude venom (CV)	On-line microfluidic profiling	Useful in direct post-column analysis	[143]	
Elapidae	Dendroaspis angusticeps (Eastern green mamba)	Fasciculin 2	Acetyloholinesterase in human	Treatment of cognitive impairments associated with Alzheimer’s disease	[144]	
Elapidae	Naja kaouthia	Metalloproteinase	Human Nerve growth factor (NGF)	Regulation of platelet reactivity through inhibition of GPVI/sheddase activity	[145]	
Viperidae	Daboia russelli russelli	β-amyloid (Aβ)	Human neuroblastoma cell lines (SH-SYSY)	Inhibition of amyloidosis from cell viability, and destabilization of amyloid to monomeric entities	[146]	
Diabetes mellitus	Naja naja atra	Crude venom (CV)	Wistar rats (WTs)	Reduces hyperglycaemia, decreases urinary protein, improvement renal function, and prevention inflammatory factor infiltration	[149]	
Viperidae	Agkistrodon halsys	Protein C activators (PCA)	Sprague Dawley rats (SD)	Potential to anti-fibrotic activities, such as the balance between inflammatory cytokine levels and collagen content, and modulates MMP expression	[150]	
Viperidae	Trimeresurus flavirudis	Vascular endothelial growth factor (VEGF)	Spontaneously diabetic Torii rats (SDT)	Enhance β cell injury, microvascular failure, and diabetes	[151]	
Elapidae	Naja nigricollis	Phospholipase A2 (PLA2)	Rat clonal β-cell lines (BRIN-BD11)	Identified isoforms of phospholipase A2, and effectively stimulate insulin release from BRIN-	[152]	
Family	Scientific name	Venom peptides/proteins	Experimental model	Observation	Reference	
------------	-----------------	-------------------------	--------------------	--	-----------	
Arthritis	Naja kaouthia	Crude venom (CV)	Albino Wistar rats	Protection against arthritis induced oxidative damages	[155]	
Elapidae	Naja naja	NN-32	Albino Wistar rats	Targets complex pathophysiological processes such as cancer, arthritis, and inflammation	[156]	
Viperidae	Crotalus durissus	Phospholipase A2 (PLA2)	Human plasma	Increase in the levels of PLA2 in patients with rheumatoid arthritis than in those with osteoarthritis	[157]	
Elapidae	Naja naja	Phospholipase A2 (PLA2)	Rats	Correlation of acute inflamed joints bathed in synovial fluids containing high levels of PLA2 in patients with rheumatoid arthritis	[158]	
Elapidae	Naja kaouthia	Cytotoxin I	Albino Wistar rats	Protective activity of nanogold conjugated with snake venom protein toxin, NKCT1, against osteoarthritis	[159]	
Viperidae	Bothrops asper	Metalloproteinase BaP1	Wistar rats (WTs)	Metalloproteinase BaP1 has pro-nociceptive activity in joints	[160]	

Inflammation

Elapidae	Hydrophis cyanocinctus	Hydrostatin-SN1 (H-SN1)	Human embryonic kidney cell lines (HEK293), human colon cancer cell lines (HT29), normal fibroblast cell lines (L929), and BALB/c mice	Significant anti-inflammatory activity under *in vitro* and *in vivo* conditions	[163]
Viperidae	Bothrops jararaca, Bothrops jararacussu	Crude venom (CV)	Swiss mice	Reduction in the inflammatory response to the venom injection	[164]
Viperidae	Bothrops jararaca, Bothrops jararacussu	Crude venom (CV)	Swiss mice	Increased production of IL-1β, COX-2 expression, and neutrophil chemotaxis induced by venom	[165]
Viperidae	Bothrops jararaca, Bothrops jararacussu	Crude venom (CV)	Swiss mice	Increased production of IL-1β, COX-2 expression, and neutrophil chemotaxis induced by venom	[166]
Viperidae	Crotalus durissus terrificus	Crotoxin B secreted phospholipase A2 (CB-sPLA2)	Swiss mice	Lipid droplets recognition acute phase of inflammation, which involved in both development, and resolution of the inflammatory process	[167]
Viperidae	Bothrops moojeni	Metalloprotease (BmooMP-alpha-I)	C57BL/6 mice	A novel perspective to treat intestinal inflammatory diseases	[168]
Elapidae	Hydrophis cyanocinctus	Hydrostatin-TL1 (H-TL1)	Normal fibroblast cell lines (L929), and BALB/c mice	For the development of new agents to treat IBD, sepsis acute shock, and other inflammatory diseases associated with TNF-α	[169]
Analgesic	Gloydius ussuriiensis	Gin49 phospholipase A2 (Gin49-PLA2)	Kunming white mice	Function of voltage-dependent ion channels, blocking neuronal signal transduction, and the blockade of potassium channels in nerve terminal	[171]
Viperidae	Bothrops asper	Crude venom (CV)	CD-1 mice	An alternative to reduces the pain, and distress of animals	[172]
Viperidae	Bothrops atrox	Crude venom (CV)	Swiss Webster mice	Signal reduction in edema and nociception	[173]

Cancer

Cancer, the second leading cause of mortality across the world, according to global statistics in 2018 ranges about 18.1 million new cases, and 9.6 million deaths [96]. Animal venom toxins exhibit effective anticancer properties, and are possible therapeutic drugs for cancer [97]. Toxins that are purified from various snake venoms are very effective in cancer cell multiplication, migration, invasion, apoptosis, and neo-vascularization [98]. Several studies suggested that low dose of jaranhagin induced proliferation and induction of apoptosis in SKMD-28 cells, which also increased the expression of cell cycle checkpoint and apoptosis [98, 99]. Another study revealed that CTX III could inhibit the EGF-mediated endothelial-mesenchymal transition (EMT) in MDAMB-231 cells, which could suppress the EGF-induced cell invasion, migration over EGFR-mediated PI3K/Akt, and ERK1/2 signaling pathways [100]. *C. vipera* (Sahara sand viper)-LAAD has been triggered anti-proliferative activity through H2O2 generation, which could increase H2O2 and TBARS levels accompanied by the depletion of catalase activity in MCF-7 treated cells [101]. Further data provides evidences that the anticancer activity of LAAD from *C. rhodostoma* (Malayan pit viper) venom in human colon cancer by significant increase in the activity of caspase-3 and reduction in Bcl-2 levels in human colon cancer tissues [13]. In another study same authors demonstrated same results with the venom of *C. purpureomaculatus* (Shore pit viper) [102]. Moreover, ruvisinoxidase induces apoptosis by intrinsic and extrinsic pathways in MCF-7 cells by DNA fragmentation due to activation of caspase-7 rather than caspase-3 [103]. Another study evidenced that the expression of p-JNK and p17 increased apoptosis [106]. Induction of apoptosis and autophage by PLA2 and BnSP-6 and leading to the activation of apoptotic pathways in cancer cells [107].

Cardiovascular disease

Cardiovascular diseases have been considered as a disease of men, which has translated into a lack of awareness and risk in women at the health policy and clinical level. Globally, cardiovascular disease is the most leading cause of death in both women and men [108].
Snakes use their venom to immobilize prey, and to defend against predators. Snake venoms target physiological systems, especially circulation, respiratory and locomotion that evolved to target cardiovascular, neuromuscular systems and locomotion [109]. PLA2 purified from *B. marajoensis* (Marajo lancehead) venom induced hypotension, bradycardia and at the same time simultaneously blocks the electrical conduction in the heart in Wistar rats [110]. Another study suggested that the venom of the *Bitis* species can be considered as an arsenal of molecules, which leads the victim of hypotensive shock, and requires special attention in cases of envenoming [111]. Further, Bj-PRO-10c is known to induce NO production, and the gene expression of argininosuccinate synthetase (ASS) and endothelial NOS in the brains of spontaneously hypertensive rats, by improving baroreflex sensitivity, which may reveal novel approaches for treating diseases with impaired baroreflex function [112]. Snake venom factors do not alter cardiac performance, collateral blood flow to the clotting system but reveal novel approaches for treating diseases with impaired cardiovascular function [113]. Snake venom factors could reduce polymorphonuclear (PMN) recruitment and activate myocardial ischemia, and coronary reperfusion to reduce tissue injury in feral baboons [114]. Evidences accumulate that the anti-hypertensive and vasorelaxation effects of BPP-5a in spontaneous hypertensive rats could be due to endothelial and nitric oxide (NO) dependent mechanism, which are unrelated to the inhibition of the sympathetic activities of ACE [115]. Cardiovascular disturbance observed after envenoming by Malayan krait might be involved in autonomic reflex and vascular nitric oxide mechanisms in rats [116]. Better understanding about the sequence, structure, and functional relationships of B. rhinoceros (Gabino viper) could lead to clinical studies and to investigate the potential application of this component or venom furthermore to be used to treat human haemostatic disorders, including heart attack, strokes, and hypotension [117].

Renal disease

Polycystic kidney disease is one of the life-threatening genetic diseases characterized by multiple fluid-filled cysts present in the kidney [118]. Cyst formation and enlargement progressively compromise normal renal parenchyma functions and, with time, further severely distort the entire kidney, which lead to end-stage renal failure [118]. Snake venoms, which have greater phospholipase activity, might induce myotoxicity with myoglobinuria could be results in renal lesions [119, 120]. Although investigations have been performed on the effect nephrotoxic effect of cobra snake venoms the studies are still insufficient in the literature [121]. Renoprotective effect of mambuqueratrin-1 showed the lowering of cAMP levels of V2R expressing cells, which inhibited the dDAVP (1-deamino-8D-arginine vasopressin) and could induce cAMP production in a dose-dependent manner in polycystic kidney disease (pck) mice [122]. HSV-induced glomerular damage is correlated with both ECM production and degradation systems in Sprague Dawley rats, which is particularly important for the repair process [123]. More findings indicated that the bone marrow-derived from the endothelial cells can contribute glomerular endothelial cell turnover and also to the regeneration of the glomerular microvasculature by the same venom in pathologic conditions in TIE2/IZ mice model [124]. Another study stated that venom of *D. acutus* with Chinese herbal medicine (P-19) could possess inhibitory effect on glomerular disease in ddy mice [125]. Moreover, *B. alternatus* (crossed pit viper) venom was known to morphological and functional changes in Wistar-Hannover rats renal tissues with elicited Na+/K-ATPase expression and activity subsequently could attenuate renal dysfunction during venom-induced damage [126]. *B. moojeni* (Brazilian lancehead) venom induced in Wistar rats was known to cause extreme changes in renal physiology, including a drop in RVR associated with diuresis, natremia, and kaliuresis [127]. Furthermore, LAAD from marajoensis venom might be responsible for the nephrotoxicity and renal cytotoxicity in MDCK renal cell lines [128], and thus could be used for the treatment of renal cancer. Recent study suggested that *M. laticollaris* and *M. browni* (Brown’s coral snake) venoms could alters the renal physiological parameters and cause nephrotoxic effects with the involvement of oxidative stress in Wistar rats [129].

Pulmonary disease

Chronic obstructive pulmonary disease (COPD) is the third chief cause of death in worldwide [130]. COPD is one of the most common disease results in chronic cigarette smoking and it is increasingly recognized, which the early life lung development, health, exposure to airway pollutants, and social deprivation are the major risk factors to develop COPD [130]. Several studies has been described that the harmful effects of venoms are due to the enzymatic activities of the venoms, which could cause endothelial damage or activation, rather than a direct pro-coagulant effect [131-133]. The therapeutic effect of FIIa could be by reducing thrombi, which could restore blood flow in the lung and improve cardiovascular function in rabbits by *D. acutus* venom [134]. Another investigation revealed that jararhagin from *B. jararaca* (Yarana snake) can induce pulmonary bleeding after intravenous injection in CD-1 mice. Under certain conditions coagulation tests may not be affected. Jararhagin affects lung microvessels by proteolytic activity and also inhibits the action of plasma protease inhibitors [135]. Further, rFII isolated from *D. acutus* venom has a protective effect on taurocholate-induced SAP in rats is mainly depending on the direct degradation of TFN-a [136]. Moreover, P-III SVMPs from the venom of *B. caribbaeus* (Saint Lucia viper) was known to induce pulmonary hemorrhage and thrombocytopenia in CD-1 mice, with increased FDP, and without causing blood incoagulability [137].

Neurodegenerative disease

Neurodegenerative diseases are induced by the abnormality in one or more genes that mainly code for proteins of the neuroectoderm and its derivatives [138]. Behavioral changes are well-established features of degenerative diseases such as Parkinson disease, frontotemporal dementia, and Alzheimer disease [139]. Neurodegenerative diseases are characterized by the loss of a function, which result in motor deficits, tremors, and postural instability [140]. Earlier study revealed that p-BTX-I from *B. atrox* (common lancehead) could induce neurotoxicity in PC12 cells are mediated by the trkA receptor, PI3K-AKT, and MAPK-ERK pathways which are triggered by NGF, which suggest that synthetic peptides p-BTX-I protects PC12 cells from MPP-toxicity [141]. Another study suggested that the LMWF of *B. jararaca* showed neuroprotective activity in cultured hippocampal cells with oxidative stress induced by H2O2 [142]. The advantage of direct post-column analysis of four venom proteomes described by microfluidic on-line screening methodology. The coupling of the miniaturized separation techniques to the microfluidic on-line assay and sensitive fluorescence detections, which showed the multiple, sensitive, and robust analyses are possible in a short time frame with the minimal amount of venom [143]. The snake venom toxin Fasciculin 2 has been reported to act as a potent reversible inhibitor of acetylcholinesterase, which could be further used in the treatment of cognitive impairments is associated with Alzheimer’s disease [144]. The role of NGF is regulating the metalloproteinase-mediated events, parameters like physiological, pathological, and therapeutic concentrations of NGF, relative localization of binding partners and the possible regulation of platelet reactivity through inhibition of GP1(ab)/sheddase activities has been reported [145]. The dual potency of venom protein-derived peptides for inhibition of amyloidosis from the cell viability against the toxicity and destabilization of amyloid to monomeric entities suggests a possibility of good opportunity to explore these molecules as a therapeutic agent for both prevention and maintenance of Alzheimer’s disease [146].

Diabetes mellitus

It is well known that *Diabetes mellitus* is a serious metabolic disease across worldwide. It is mainly classified into type 1 diabetes and type 2 diabetes. Type 2 diabetes patients are type 2 diabetes mellitus is characterized by insulin resistance, which result in decreasing insulin action and the heart in diabetes mellitus. Recently, diverse venom peptides have emerged as pharmacological implements and remedial for type 1 diabetes and type 2 diabetes [148]. *N. atro* venom is known to reduce hyperglycemia, decrease urinary protein, enhance renal function and structure, prevent oxidative stress and lipid metabolism products, and restrict
inflammatory factor infiltration in Wistar rats [149]. Further, PCA has the ability of anti-fibrotic activities in diabetic rats, such as modulates the balance between inflammatory cytokine levels and collagen content, modulates MMP expressions, and sustains the MMP-TIMP balance [150]. Enhanced VEGF signaling is in ilets could also contribute to beta cell injury, microvascular failure, and diabetes in spontaneously diabetic Torii (SDT) rats [151]. Furthermore, phospholipase A2 from *N. nigericollis* (black-necked spitting cobra) are effectively stimulated insulin, which release from BRIN-BD11 cells at the concentration of 1 μM, which is not cytotoxic to the cells and suggesting that the possible therapy for Type 2 diabetes [152].

Arthritis

Arthritis is a type of inflammation which affects the joints. The foremost symptoms of arthritis are joint pain and stiffness which is basically related with increasing age. Osteoarthritis and rheumatoid arthritis are two most common types of arthritis [153]. Cobra venom has a great potential for treating several pathological conditions, including joint pains and other disorders [154]. Earlier study reveals that *N. kaouthia* (monocled cobra) venom has been shown significant protection against arthritis-induced oxidative damages in male albino rats [155]. The study has proven that NN-32 from *N. naja* (Indian cobra) venom could targets complex pathophysiological processes such as cancer, arthritis, and inflammation in male albino rats [156]. It is known that there are significantly increasing levels of PLA2 in patients with rheumatoid arthritis than osteoarthritis and the plasma PLA2 is highest in those patients with active rheumatoid arthritis [157]. Further correlation of acute inflamed joints is agreeable in the synovial fluids containing high level of PLA2 in patients with rheumatoid arthritis [158]. The protective activity of nanoglut conjunctured with snake venom protein toxin, NKCTI *N. kaouthia*, against osteoarthritis in albino Wistar rats by limiting the inflammatory markers at the molecular level has been reported [159]. The experiment provides evidence of metalloproteinase Bap1 from *B. asper* has pro-nociceptive activity in joints. MMPs are involved in the inflammatory joint hypernociception and induce COX-2 expression in Wistar rats [160].

Inflammation

Although inflammation is not a disease per se, it is the retort to infection or wound and is perilous for both innate and adaptive immunity in the human body. It is documented as a fragment of the multifaceted biological response of vascular tissues, which are detrimental to stimuli for instance, pathogens, injured cells and irritations [161]. Inflammatory reactions are commonly observed in every victim bitten by venomous snakes, honeybees, and scorpions [162]. Researches reveal that the tumor necrosis factor receptor-1 (TNFR1) and specific binding peptides and Hydrostatin-SN1 (H-SN1), which has been purifi
ted from *H. cyanocinctus* (annulated sea snake) venom glands T7 phage were proven to display the significant changes in anti-inflammatory activities under in vitro and in vivo conditions [163]. Inflammation is part of the responsibility for the tissue damage induced by *B. rhinoceros* snake venom, which the enzymatic anti-inflammatory drug decemehasone could reduce the myotoxic effects of these venoms and reduce the inflammatory response in Swiss mice [164]. Increased production of IL-1β, COX-2 expression, and neutrophil chemotaxis are induced by *B. jararacussu* venom in mice could induce an early onset edema dependent on the prostostain production and neutrophil migration [165]. Phospholipase A2 from snake venom could induce lipid droplets formation in immunocompetent cells and also the inflammatory process [166]. Other findings suggested that the novel perspective to treat intestinal inflammatory diseases, highlighting the potential anti-inflammatory role of metalloproteases in C57BL/6 mice, and its effectiveness as a therapeutic alternative in the immunopathological conditions [167]. Another study documented that H-TL1 from the *H. cyanocinctus* venom gland T7 phage display library, effectively antagonized the TNF-α/TNFRI interaction, alleviated the cytotoxicity, and inflammation associated with TNF-α in vitro and in vivo, suggesting promising hopes for the development of new agents to treat inflammatory bowel disease, sepsis acute lung, and other inflammatory diseases, which are associated with elevation of TNF-α [168].

An essential component of the prevention of pain signaling system is binding of some venom-toxins with sensitive receptors, ion channels and thus potentially blocks the signals [169]. Thus, animal toxins act as analgesic properties and manifest healing in experimental arthritis and save from potentially destructive influences of inflammation. Ultimately, these toxins can be used as a new category of anti-inflammatory drugs for basic pain signaling, channelopathies and receptor expression [170]. The investigation has also demonstrated that peptides in venom-derived toxins exhibit improved analgesic properties and lesser side effects than current therapeutic drugs that are used clinically [170]. The main mechanism of analgesic actions of Glu-49-PLA2 from *C. sueurensis* (Ussuri pit viper) venom is via affecting the function of voltage-dependent ion channels, blocking neuronal signal transduction by the potentiation of sodium channels, and the blockade of potassium channels in the nerve terminal of Kunming white mice [171]. Furthermore, the prophylactic use of the analgesic tramadol does not affect the outcome of the anti-venom potency assay while using *B. asper* (velvet snake) venom and poly-specific anti-venom. Therefore, represents an alternative way to reduce the pain and distress of animals in this test. Finally, there is a significant correlation between the neutralization of lethality and of coagulant activity of *B. asper* venom [172]. Moreover, the study reveals that Glu is significantly reduced the venom-induced edema and nociception, which could be exhibited a central mechanism for pain inhibition and may also inhibit prostaglandin synthesis in Swiss Webster mice [173].

CONCLUSION

Peptides are recognized for being high selectivity, safe and well tolerated compounds. Due to their high selectivity, the venom peptides can act as effective tools in *in vitro* as well as in *in vivo* studies as possible therapeutic agents. Further studies will need for therapeutic applications of venom peptides linked with protection, pharmacokinetics and distribution. Optimization of the delivery of peptide to exterior and core targets will assist to govern the possibility of using these peptides as potential candidates for effective drug development. This makes a reason for the augmented attention in using peptides for further pharmaceutical research and development and their usage in clinical practices. Peptide therapeutics is at present being appraised in clinical trials. Most of the venoms possess bioactive peptides, which have been already proven potential as effective agents against a number of diseases. An advance in transcriptomics and proteomics research has vividly changed the manner and rate of venom peptide discovery. An emerging trend looks forward the discovery of venom peptides with new structure and mechanism and number of application for future research. Simultaneously, this advanced knowledge will be applied for the development of higher throughput strategies targets identification. The present research clearly threw light that venom peptides are the effective tools in the treatment of various disease conditions.

ABBREVIATION

3FTx: Three-finger toxins, AChE: Acetylcholinesterases, ADAM: A disintegrin and metalloprotease, ANP: Atrial natriuretic peptide, BuChE: Butyrylcholinesterase, CRiSP: Cysteine rich secretory protein, CTX I: Cross linked C-telopeptide of Type I Collagen, CTX II: Cross linked C-telopeptide of Type III Collagen, CTL: C-type lectin, CTX I: C-type lectin, CTX I: Cross linked C-telopeptide of Type I Collagen, CTX III: Cross linked C-telopeptide of Type III Collagen, CTX: C-type lectin, DIS: Disintegrins, EGf: Epidermal Growth Factor, FAD: Flavin Adenine Dinucleotide, IL-1β: Interleukin 1 beta, IL-6: Interleukin 6, KUN: Kunzit peptides, LAAO: L-amino acid oxidases, MAPK-ERK: Microtubule associated protein Kinase–Extra cellular Signal, Related Kinases, MCF-7: Michigan Cancer Foundation-7, MMP: Matrix metalloproteinase, MTT: Methyl thiazolyl tetrazolium, Naja: *Naja* species, NKCT-1: Naja kaouthia cytotoxin 1, NN-32: Naja naja toxin fraction 32, NN: Natriuretic peptide, P13K-AKT: Phosphatidylinositol 3-Kinase Protein Kinase B, p-BTX-1: Psychodiscus brevis toxin 1, PC 12: Pheochromocytoma 12, p-JNK: Phosphorylated c-Jun, p-Tyr: Phosphorylated c-Jun N-terminal Kinase, PGE2: Prostaglandin, PLA2: Phospholipase A2, TBI: Thiol-specific active Reactant substances, TNF-α: Tumour
Necrosis Factor alpha, SVMP: Metalloproteases, SVSP: Serine proteases, VEGF: Vascular endothelial growth factor

ACKNOWLEDGEMENT

This work is funded by Kerala State Council for Science, Technology, and Environment (KSCSTE), and the financial assistance from UGC-SAP and DST-FIST to the Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar is gratefully acknowledged.

CONFLICT OF INTERESTS

All the authors have contributed equally.

FUNDING

Nil

AUTHORS CONTRIBUTIONS

All the authors have contributed equally.

REFERENCES

1. Utkin YN. Animal venom studies: current benefits and future developments. World J Biol Chem. 2015;6(2):28-33. doi: 10.4331/wjbc.v6i2.122, PMID 26090791.
2. Pennington MW, Cerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(20):2738-58. doi: 10.1016/j.bmc.2017.09.029, PMID 28988749.
3. Munawar A, Ali SA, Akrem A, Betzel C. Snake venom peptides: tools of biodiscovery. Toxins. 2018;10(11):474. doi: 10.3390/toxins10110474, PMID 30448749.
4. Simoes Silva R, Alfonso L, Gomez A, Holanda RJ, Sobrinho JC, Zague KD, Moreira-Dill LS, Grabner FP, da Silva SL, Almeida JR, Stabeli RG, Zuliani JP, Soares AM. Snake venom, a natural library of new potential therapeutic molecules: challenges and current perspectives. Curr Pharm Biotechnol. 2018;19(4):308-35. doi: 10.2174/13892010196661802111025, PMID 29929461.

5. Longbottom J, Sharer FM, Devine M, Alcober G, Chappuis F, Weiss DJ, Ray SE, Ray N, Warren DA, Ruiz de Castaneda R, Williams DJ, Hay SI, Pigott DM. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018;392(10148):673-84. doi: 10.1016/S0140-6736(18)31224-8, PMID 30017551.

6. Ralph R, Sharma SK, Faiz MA, Ribeiro I, Rijal S, Chappuis F, Weiss DJ, Ray SE, Ray N, Warren DA, Ruiz de Castaneda R, Williams DJ, Hay SI, Pigott DM. Vulnerability to snakebite envenoming: a global mapping of hotspots. Lancet. 2018;392(10148):673-84. doi: 10.1016/S0140-6736(18)31224-8, PMID 30017551.

7. Sanhajariya S, Duffull SB, Isbister GK. Pharmacokinetics of venom Anim Toxins Incl Trop Dis. 2017;23:20. doi:10.3390/toxins9090290, PMID 28988749.

8. Boldrini Franca J, Cologna CT, Puca MB, Bordon KCF, Amorim FG, Anjolete FAP, Cordeiro FA, Weizel GA, Cerni FA, Pinheiro Junior EL, Shibao PY, Ferreira IG, de Oliveira IS, Cardoso IA, Anantes EC. Minor snake venom proteins: structure, function and potential applications. Biochem Biophys Acta Gen Subj. 2017;1861(4):824-38. doi:10.1016/j.bbagen.2016.12.022, PMID 28012742.

9. Roiky DR, Wray KP, McGovern JJ, Marges MJ. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the timber rattlesnake (Crotalus horridus). Toxins (Basel). 2015;7(1):33. doi:10.3390/toxins7010033, PMID 25773280.

10. Casewell JJ, Nanji S, Singh SK, Wei DQ. Combining and . Trans. 2020;48(2):537-46. doi:10.1042/BST20190739, PMID 32196542.

11. Schumacher JR, Stabeli RG, Calvete JJ, Gutiérrez JM. Snake venom proteins of the Central American rattlesnake Crotalus durissus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along with crotalus dispersal in South America. J Proteome Res. 2010;9(1):528-44. doi:10.1021/pr9008794, PMID 19863078.

12. Casewell JJ, Sanz L, Angulo Y, Munawar A, Moschuk J, Gutiérrez JM. Venom, antivenoms, and their uses in industry. Toxins (Basel). 2013;5(12):2533-71. doi:10.3390/toxins5125333, PMID 2451716.
43. Pessatti M, Fontana JD, Furtado MF, Guimarães MF, Zanette LR. Venom metalloproteinases, key members of the M12 reprolysin genome. Biol Evol. 2018;10(8):2110-29. doi: 10.1093/bib/bby056.

44. Casewell NR. On the ancestral recruitment of snake venoms for L-amino acid oxidase. Toxicon. 2012;59(7-8):696-708. doi: 10.1016/j.toxicon.2012.03.005. PMID 22465490.

45. Junqueira-De-Azevedo IL, Bastos CM, Ho PL, Luna MS, Yamanouye N, Casewell NR. Venom-related transcripts from Bothrops jararaca tissues provide novel molecular insights into the production and evolution of snake venom. Mol Biol Evol. 2015;32(3):754-66. doi: 10.1093/molbev/msv337. PMID 25502939.

46. Zhang CC, Medzhitovskiy FK, Sanchez EE, Basbaum AI, Julius D. Lys49 myotoxin from the Brazilian lancehead pit viper elicits pain through regulated ATP release. Proc Natl Acad Sci USA. 2017;114(12):E2524-32. doi: 10.1073/pnas.1615484114. PMID 28265084.

47. Costa SKP, Camargo EA, Ho PL, Luna MS. Molecular adaptations for sensing and securing prey and aggregation caused by an L-amino acid oxidase from Bothrops jararaca venom. Toxicon. 2012;59(7-8):696-708. doi: 10.1016/j.toxicon.2012.03.005. PMID 22465490.

48. More S, Kiran K, Veena S, Gadag J. Purification of an L-amino acid oxidase from Bungarus caeruleus (Indian krait) venom. J Venom Anim Toxins Incl Trop Dis. 2010;16(1):60-76. doi: 10.1111/j.1658-0247.2010.00119.x. PMID 20435127.

49. Fox JW. A brief review of the scientific history of several lesser-known snake venom proteins: l-amino acid oxidases, hyaluronidases and phosphodiesterases. Toxicon. 2013;62:75-82. doi: 10.1016/j.toxicon.2012.09.009. PMID 23010165.

50. Tan KK, Ray BH, GOPalakrishnakone P. L-amino acid oxidase from snake venom: an antibiotic potential. Toxicon. 2015;101:7-13. doi: 10.1016/j.toxicon.2015.01.015. PMID 29407871.

51. Georgieva D, Murakami M, Perband M, Arni R, Betzel C. The structure of a native L-amino acid oxidase, the major component of the Vipera ammodytoxy ammodin venom: reveals dynamic active site and quaternary structure stabilization by divalent ions. Mol Biosyst. 2011;7(2):379-84. doi: 10.1039/c0mb00108e. PMID 21908508.

52. Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, Kohhoff M, Gontijo CM, Navdaev A, de Rezende FF, Eble JA, Sanchez EF. Cytotoxicity and inhibition of platelet aggregation caused by an L-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta. 2011;1817(1):683-91. doi: 10.1016/j.bjba.2011.04.003. PMID 21539967.

53. Pesatti M, Fontana JD, Furtado MF, Guimarães MF, Zanette LR, Costa WT, Baran M. Screening of Bothrops snake venoms for L-amino acid oxidase activity. Appl Biochem Biotechnol. 1995;51-52:197-210. doi: 10.1007/BF02934244. PMID 7664847.

54. Fox JW, Serrano SM. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon. 2005;45(8):969-85. doi: 10.1016/j.toxicon.2005.02.012. PMID 15922769.

55. Casewell NR. On the ancestral recruitment of metalloproteinases into the venom of snakes. Toxicon. 2012;60(4):449-54. doi: 10.1016/j.toxicon.2012.02.006. PMID 22406471.

56. Ferreira BA, Deconte SR, De Moura FBR, Tomiasso TC, Clissa PB, Andrade SP, Araújo FA. Inflammation, angiogenesis and fibrogenesis are differentially modulated by distinct domains of the snake venom metalloproteinase jararhagin. Int J Biol Macromol. 2019;119:1179-87. doi: 10.1016/j.ijbiomac.2018.08.051. PMID 30102981.

57. Serrano SM. The long road of research on snake venom serine proteinases. Toxicon. 2013;62:19-26. doi: 10.1016/j.toxicon.2012.09.003. PMID 23010164.

58. Modahl CM, Fritzte S, MacKessy SP. Transciptome-facilitated proteomic characterization of rear-fanged snake venoms reveal abundant metalloproteinases with enhanced activity. J Proteomics. 2018;181:223-34. doi: 10.1016/j.jprot.2018.08.004. PMID 30092380.

59. Slagboom J, Kool J, Harrison RA, Casewell NR. Haemotoxic snake venoms: their functional activity, impact on snakebite victims and pharmacological promise. Br J Haematol. 2017;177(6):947-59. doi: 10.1111/bjh.14591. PMID 28233897.

60. Wybey AF, el Mahdy el-SM, El-Mezyan HA, Salama WH, Abdel-Aty AM, Fahmy AS. Egyptian horned viper Cerastes cerastes venom hyaluronidase: purification, partial characterization and evidence for its action as a spreading factor. Toxicon. 2012;60(8):1389-90. doi: 10.1016/j.toxicon.2012.08.016. PMID 23000079.
cultural snake *Micrurus pyrrocryptus* venom. Toxicon. 2018;153:23-31. doi: 10.1016/j.toxicon.2018.08.003, PMID 30153434.

64. Dutta S, Chanda A, Kalita B, Islam T, Patra A, Mukherjee AK. Proteomic analysis to unravel the complex venom proteome of *Proteomics*. 2017;156:29-39. doi: 10.1016/j.jprot.2016.12.018, PMID 28062377.

65. Slagboom J, Otovs RA, Cardoso RC, Iyer J, Visser JC, van Doedewaard BR, McCleary RJR, Niessen WMA, Somsen GW, Lewis RJ, Kini RM, Smit AB, Caswell NR, Koel J. Neurontoxicity fingerprinting of venoms using on-line microfluidic achb profiling. Toxicon. 2018;148:213-22. doi: 10.1016/j.toxicon.2018.04.022, PMID 29730150.

66. Ziganshin RH, Kovalchuk SI, Arapidi GP, Starkov VG, Hoang AN, Dutta S, Chanda A, Kalita B, Islam T, Patra A, Mukherjee AK. Proteomic analysis of Vietnamese krait venoms: neurotoxins are the major components in *Bungarus multicinctus* and phospholipases a2 in *Bungarus fasciatus*. Toxicon. 2015;107(8):197-209. doi: 10.1016/j.toxicon.2015.08.026, PMID 26341420.

67. Russmili MR, Ye TT, Mustafi MB, Hodgson WC, Ortman L. Bungarus candidus and *Bungarus fasciatus* venoms. J Proteomics. 2014;110:129-44. doi: 10.1016/j.jprot.2014.04.001, PMID 25150452.

68. Oh AMF, Tan CH, Arisarande GC, Quraishi N, Tan NH. Venomics of *Bungarus caeruleus* (Indian krait): compareable venom profiles, variable immunoactivities among specimens from Sri Lanka, India and Pakistan. J Proteomics. 2017;164:1-18. doi: 10.1016/j.jprot.2017.04.018, PMID 28476572.

69. Tan CH, Wong KY, Tan KY, Tan NH. Venom proteome of the yellow-lipped sea krait, *Laticauda colubrina* from Bali: insights into subvenomic diversity, venom antigenicity and cross-neutralization by antivenom. J Proteomics. 2017;166:48-58. doi: 10.1016/j.jprot.2017.07.002, PMID 28688916.

70. Yamazaki Y, Morita T. Structure and function of snake venom cysteine-rich secretory proteins. Toxicon. 2004;44(3):227-31. doi: 10.1016/j.toxicon.2004.05.023, PMID 15302528.

71. Utkin YN, Osipov AV. Non-lethal polypeptide components in cobra venom. Curr Pharm Des. 2007;13(28):2906-15. doi: 10.2174/138161207782023757, PMID 18509464.

72. Bilgrami S, Yadav S, Kaur P, Sharma S, Perbandt M, Betzel C, Singh TP. Crystal structure of the disintegrin heterodimer from *Bitis gabonica gabonica*. Protein family composition, subunit organization of venom toxins, and characterization of dimeric disintegrin bissigabonin-1 and bissigabonin-2. J Proteome Res. 2007;6(1):326-36. doi: 10.1021/pr060494k, PMID 17203976.

73. Earl STH, Richards R, Johnson LA, Flight S, Anderson S, Liao A, de Jersey J, Masci LP, Lavin MF. Identification and characterization of kunitz-type plasma kallikrein inhibitors unique to *Oxyuranus* sp. snake venoms. Biochimie. 2012;94(2):365-73. doi: 10.1016/j.biochi.2011.08.003, PMID 21843588.

74. Shamsi TN, Parveen R, Fatima S. Characterization, biomedical and agricultural applications of protease inhibitors: a review. Int J Biol Macromol. 2012;50(2):120-33. doi: 10.1016/j.ijbiomac.2012.06.069, PMID 22695576.

75. Possani LD, Martin BM, Yatani A, Mocha Morales J, Zamudio FZ, Gurrola GB, Brown AM. Isolation and physiological characterization of taicatoxin, a complex toxin with specific effects on calcium channels. Toxicon. 1992;30(11):1343-64. doi: 10.1016/0041-0101(92)90511-3, PMID 1485354.

76. Zupunski V, Kordis D, Gabenske F. Adaptive evolution in the snake venom Kunitz/BPTI protein family. FEBS Lett. 2003;547(1-3):131-6. doi: 10.1016/s0014-5793(03)00693-8, PMID 12860400.

77. Laskowski M, Kato I. Protein inhibitors of proteases. Ann Rev Biochem. 2008;77:87-116. doi: 10.1146/annurev.biochem.77.050107.160326.

78. Aloe L, Ria levimontalcini: the discovery of nerve growth factor and modern neurobiology. Trends Cell Biol. 2004;14(7):395-9. doi: 10.1016/j.tcb.2004.05.011, PMID 15246433.

79. Cohen S, Levy Montalcini R. A nerve growth-stimulating factor isolated from snake venom. Proc Natl Acad Sci USA. 1956;42:277-83. doi: 10.1073/pnas.42.6.277. PMID 13367206.

80. Mannion RJ, Costigan M, Decoster I, Amaya F, Ma QP, Holstege JC, Ji RR, Adelson A, Lindsay RM, Wilkinson GA, Woolf CJ. Neutrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci USA. 1999;96(16):9385-90. doi: 10.1073/pnas.96.16.9385, PMID 10430952.

81. Kostiza T, Meier J. Nerve growth factors from snake venoms: chemical properties, mode of action and biological significance. Toxicol. 1996;34(7):787-906. doi: 10.1016/0041-0101(96)00023-2, PMID 8843383.

82. Otrock ZK, Makarem JA, Shaiman S, Ely A. Vascular endothelial growth factor family of ligands and receptors: review. Blood Cells Mol Dis. 2007;38(3):258-68. doi: 10.1016/j.jbcmd.2006.12.003, PMID 17344076.

83. Yamazaki Y, Morita T. Molecular and functional diversity of vascular endothelial growth factors. Mol Divers. 2006;10(4):515-21. doi: 10.1007/s11030-006-9027-3, PMID 16972015.

84. Pennington MW, Czerwinski A, Norton RS. Peptide therapeutics from venom: current status and potential. Bioorg Med Chem. 2018;26(10):2738-58. doi: 10.1016/j.bmcl.2017.09.029, PMID 28988749.

85. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jamal A. Global cancer statistics 2018: GLOBOCAN estimates of
incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. doi: 10.3322/caac.21492, PMID 30207593.

97. Al-Sadoon MK, Abd-Malsoud MA, Rabah DM, Badr G. Induction of apoptosis and growth arrest in human breast carcinoma cells by a snake (Walterinnesia nigriflavus) venom combined with silica nanoparticles: crosstalk between Bcl2 and caspase 3. Cell Physiol Biochem. 2012;30(3):653-65. doi: 10.1159/000341446, PMID 22854437.

98. Neda A, Neda SK, Ata G, Ahmad TM, Mohamad G, Mohammad HP, A. crassicauda, M. eueps and H. Lepturus scorpion venoms initiate a strong in vivo anticancer immune response in C57BL/6 tumor mice model. Toxicon 2020;180:31-38.

99. Klein A, Capitanio JS, Maria DA, Ruiz IRG. Gene expression in SK-Mel-28 human melanoma cells treated with the snake venom jararhagin. Toxicon. 2011;57(1):1-8. doi: 10.1016/j.toxicon.2010.09.001, PMID 20851711.

100. Tsai PC, Fu YS, Chang LS, Lin SR. Taiwan cobra cardiotocin III suppresses EGF/EGFR-mediated epithelial-to-mesenchymal transition and invasion of human breast cancer MDA-MB-231 cells. Toxicon. 2016;111:108-20. doi: 10.1016/j.toxicon.2016.01.051, PMID 26774845.

101. Salama WH, Ibrahim NM, El Hakte AE, Basuany RL, Mohammed MM, Mousa FM, AM MM. L-amino acid oxidase from Cerastes vipera snake venom: isolation, characterization and biological effects on bacteria and tumor cell lines. Toxicon. 2018;150:270-9. doi: 10.1016/j.toxicon.2018.06.064, PMID 29898379.

102. Alain ABD SAZ, Rajaduriri P, Hoque Chowdhury ME, Othman I, Naidu R. Cytotoxicity anti-apoptotic and anti-proliferative activity of L-amino acid oxidase from Malaysian Cryptelytrops purpureomaculatus (CP-LAAO) venom on human colon cancer cells. Molecules. 2018;23(6):1388. doi: 10.3390/molecules23061388.

103. Mukherjee AK, Saviola AJ, Burns PD, Mackessy SP. Apoptosis induction in human breast cancer (MCF-7) cells by a novel venom L-amino acid oxidase (Rusvinioxidase) is independent of its enzymatic activity and is accompanied by caspase-7 activation and reactive oxygen species production. Apoptosis. 2015;20(10):1358-72. doi: 10.1007/s10495-015-1156-7, PMID 26319961.

104. Wang JH, Xie Y, Wu JC, Han R, Reid PF, Qin ZH. Crotoxin enhances the antitumor activity of gefitinib (Iressa) in SK-MES-1 human lung squamous carcinoma cells. Oncol Rep. 2012;27(5):1341-7. doi: 10.3892/or.2012.1677, PMID 22322185.

105. Lee HL, Park MH, Song DJ, Hong HS, Kim JH, Ko SC, Song MJ, Lee WH, Yoon JH, Han YW, Han SR, Hong JT. Anti-cancer effect of snake venom toxin through down regulation of AP-1 mediated gene expression. Oncotarget. 2015;6(10):2319-51. doi: 10.18632/oncotarget.4192, PMID 26601618.

106. Ibrahim K, Hafiz SFH, Mirakian L, Lamothe L, Ayatpour H. Cobra venom cytotoxines: apototic or necrotic agents? Toxicon. 2015;108:134-40. doi: 10.1016/j.toxicon.2015.09.017, PMID 26482932.

107. Azevedo FFPV, Lopes DS, Cirelo Gimenes SNC, Ache DC, Vecchi L, Alves PT, Guimaraes DS, De O, Rodrigues Vde M, Azevedo FVPV, Lopes DS, Cirilo Gimenes SNC, Achede DC, Vecchi L, Alves PT, Goulart LR, Rodrigues VS. Novel venoms from the snake Bothrops jararaca venom cytotoxins; apoptotic or necrotic agents? Toxicon. 2016;122:7-25. doi: 10.1016/j.toxicon.2016.03.005, PMID 26569875.

108. Lameu C, Pontieri V, Guerreiro JR, Oliveira EF, da Silva CA, Giglio JM, Melo RL, Campos RR, de Camargo AC, Ulrich H. Brain nitric oxide production by a proline-rich decapeptide from Bothrops jararaca venom improves baroreflex sensitivity of spontaneously hypertensive rats. Peptides. 2010;31(12):1283-8. doi: 10.1016/j.peptides.2010.02.005, PMID 20569875.

109. Lau, M., van der Schalk, S., van der Struijs, P., Poon, Y., & Gereben, B. (2012). The role of neuropeptides in the cardiovascular system. Hypertension Research, 35(10), 971-980. doi:10.1039/b121101j

110. Yamamoto, T., Takahashi, M., & Nakajima, T. (2010). The role of neuropeptides in the cardiovascular system. Hypertension Research, 35(10), 971-980. doi:10.1039/b121101j

111. Kodama RT, Caiado Carvalho D, Kuniyoshi AK, Kitano ES, Tashima AK, Barba BF, Takakura AK, Seranno SM, Dias-da-Silva W, Tambourgi DV, Portaro FV. New proline-rich oligopeptides from the venom of African adders: insights into the hypotensive effect of the venoms. Biochim Biophys Acta. 2012;1850(5):180-7. doi: 10.1016/j.bbabio.2012.02.005, PMID 22569875.

112. Lameu C, Pontieri V, Guerreiro JR, Oliveira EF, da Silva CA, Giglio JM, Melo RL, Campos RR, de Camargo AC, Ulrich H. Brain nitric oxide production by a proline-rich decapeptide from Bothrops jararaca venom improves baroreflex sensitivity of spontaneously hypertensive rats. Peptides. 2010;31(12):1283-8. doi: 10.1016/j.peptides.2010.02.005, PMID 20569875.

113. Srikanth, M., Murali, V., & Venkatesh, S. (2010). The role of neuropeptides in the cardiovascular system. Hypertension Research, 35(10), 971-980. doi:10.1039/b121101j

114. Yamamoto, T., Takahashi, M., & Nakajima, T. (2010). The role of neuropeptides in the cardiovascular system. Hypertension Research, 35(10), 971-980. doi:10.1039/b121101j

115. Kodama RT, Caiado Carvalho D, Kuniyoshi AK, Kitano ES, Tashima AK, Barba BF, Takakura AK, Seranno SM, Dias-da-Silva W, Tambourgi DV, Portaro FV. New proline-rich oligopeptides from the venom of African adders: insights into the hypotensive effect of the venoms. Biochim Biophys Acta. 2012;1850(5):180-7. doi: 10.1016/j.bbabio.2012.02.005, PMID 22569875.

116. Lameu C, Pontieri V, Guerreiro JR, Oliveira EF, da Silva CA, Giglio JM, Melo RL, Campos RR, de Camargo AC, Ulrich H. Brain nitric oxide production by a proline-rich decapeptide from Bothrops jararaca venom improves baroreflex sensitivity of spontaneously hypertensive rats. Peptides. 2010;31(12):1283-8. doi: 10.1016/j.peptides.2010.02.005, PMID 20569875.
endothelial progenitor cells in glomerular capillary repair in habu snake venom-induced glomerulonephritis. Virchows Arch. 2008;453(1):97-106. doi: 10.1007/s00428-008-0618-5, PMID 18531312.

125. Sugimoto K, Fujise Y, Shibata K, Komori Y, Nikai T, Sugihara H, Sakurai N. Effects of a prescription of Chinese herbal medicine on snake venom-induced nephropathy in mice. Biol Pharm Bull. 1996;19(4):587-92. doi: 10.1248/bpb.19.587, PMID 8866096.

126. Linardi A, Rocha e Silva TAA, Miyabara EH, Franco PE. The effect of snake venom. Toxicol Appl Pharmacol. 2003;193(1):17-28. doi: 10.1016/s0041-008x(03)00337-5, PMID 12696457.

127. Barbosa PSF, Hatvi A, Faco PI, Sousa TM, Bezerra ISAM, Fontes MI, Togayama MH, Marangoni S, Novelo JC, Monteiro HS. Renal toxicity of Bothrops moojeni snake venom and its main myotoxins. Toxicon. 2002;40(10):1427-35. doi: 10.1016/s0041-0101(02)00156-3, PMID 12368112.

128. Dantas RT, Jorge ARC, Jorge RRJ, de Menezes RRPPB, Lima DB, Torres AFC, Toiyama MH, Monteiro HS, Martins AM. L-amino acid oxidase from Bothrops jararacussu causes nephrotoxicity in isolated perfused kidney and cytoprotection in MDCK renal cells. Toxicon. 2015;104:52-6. doi: 10.1016/j.toxicon.2015.08.007, PMID 26233688.

129. Braga JRM, Jorge ARC, Marinho AD, Silveira JAM, Nogueira Junior FA, Valente JB, Alagon A, Martins AMC, Feijao LX, Monteiro HSA, Jorge RRJ. Renal effects of venoms of mexican coral snakes Micrurus browni and Micrurus laticollaris. Toxicon. 2020;181:45-52. doi: 10.1016/j.toxicon.2020.04.095, PMID 32339535.

130. Ramakrishnan S, Bagadhi M, Russell R. Chronic obstructive pulmonary disease: management of chronic disease. Medicine. 2020;49(5):333-6. doi: 10.1016/j.jmpmed.2020.02.002.

131. Gutierrez JM, Sani L, Escolano J, Fernandez J, Lomonte B, Angulo Y, Rucavado A, Arrellar DA, Calvete JJ. Snake venomics and immunoreactivity of a heterologous antivenom. J Proteome Res. 2008;7(10):4396-408. doi: 10.1021/pr8003826, PMID 18785768.

132. Malbranque S, Pierrecchi Marti MD, Thomas L, Barbery C, Courrier D, Bucher B, Bizarda A, Smaje B, Warrell DA. Fatal diffuse thrombotic microangiopathy after a bite by the "Fer-de-lance" Daboia russelli russelli. Acta. 2011;1810(9):895-906. doi: 10.1016/j.bjaen.2011.06.006, PMID 21704674.

133. Vallat JM, Goizet C, Tazir M, Couratier P, Mathis S. Malbranque S, Piercecchi Marti MD, Thomas L, Barbey C, Malbranque S, Piercecchi Marti MD, Thomas L, Barbey C, Bothrops jararaca. by jararhagin, a metalloproteinase from Theakston RDG, Gutierrez JM. Pulmonary hemorrhage induced acute pulmonary thromboembolism. Acta Pharmacol Sin. 2010;31(4):1121-44. doi: 10.1039/j1310.01034.016, PMID 21476427.

134. Yu S, Wang X, He X, Wang Y, Gao S, Ren L, Shi Y. Curcumin exerts anti-inflammatory and antioxidant properties in 1-methyl-4-phenylpyridinium ion (MPP +)-stimulated mesencephalic astrocytes by interference with TRL4 and downstream signaling pathway. Cell Stress Chaperones. 2016;21(4):697-705. doi: 10.1007/s12192-016-0695-3, PMID 27164809.

135. Bernardes CP, Santos NAG, Sisti FM, Ferreira SA, Santos Filho LA, Cintra CO, Cimi EM, Sampaio SA, Santos AC. A synthetic snake-venom-based tripeptide (Glu-Val-Trp) protects PC12 cells from MMP-toxicity by activating the NF-G-signaling pathway. Peptides. 2018;104:24-34. doi: 10.1016/j.peptides.2018.04.012. PMID 29664590.

136. Querobino SM, Carrettierno DC, Costa MS, Alberto Silva C. Neuroprotective property of low molecular weight fraction from B. jararaca snake venom in H2O2-induced cytotoxicity in cultured hippocampal cells. Toxicon. 2017;129:134-43. doi: 10.1016/j.toxicon.2017.02.015, PMID 28216408.

137. Heus F, Vork F, Otros RA, Bruyneel B, Smij AB, Lingeman H, Richardson M, Nissen WM, Kool J. An efficient analytical platform for on-line microfluidic profiling of neuro-active snake venoms towards nicotinic receptor affinity. Toxicon. 2013;61:112-24. doi: 10.1016/j.toxicon.2012.11.002, PMID 23286358.

138. Wasag M, Batool S. In silico analysis of binding of neurotoxic venom ligands with acetylcholinesterase for therapeutic use in treatment of Alzheimer's disease. J Theor Biol. 2015;372:107-17. doi: 10.1016/j.jtbi.2015.02.028, PMID 25747777.

139. Wijeyewickrema LC, Gardiner EE, Gladigau EL, Berndt MC, Andrews RA. Nerve growth factor inhibits metalloproteinase-disintegrins and blocks ectodomain shedding of platelet glycoprotein VI. J Biol Chem. 2010;285(16):11793-9. doi: 10.1074/jbc.M110.047499, PMID 20614177.

140. Bhattacharjee P, Bhattacharyya D. Factor V activator from Daboia russelli russelli venom destabilizes β-amyloid aggregate, the hallmark of Alzheimer's disease. J Biol Chem. 2013;288(42):30559-70. doi: 10.1074/jbc.M113.411410, PMID 23986449.

141. Yuzefovich LV, Musiyenko SI, Wilson GL, Rachek LI. Mitochondrial DNA damage and dysfunction, and oxidative stress are associated with endoplasmic reticulum stress, protein degradation and apoptosis in high fat diet-induced insulin resistance mice. PLOS ONE. 2013;8(1):e54059. doi: 10.1371/journal.pone.0054059, PMID 23342074.

142. Deplazes E. Molecular simulations of venom peptide-membrane interactions: progress and challenges. Pept Sci. 2010;108(1):1-9. doi: 10.1002/pep2.20406.

143. D'Al GL, He JK, Xie Y, Han R, Qin ZH, Zhu LJ. Therapeutic potential of Naja naja atro venom in a rat model of diabetic nephropathy. Biomed Environ Sci. 2012;25(6):630-8. doi: 10.3967/0895-3988.2012.06.004, PMID 23228852.

144. Lü S, Hong Y, Xing Z, Zhang G, Hu Z, Nie L. A new Agkistrodon halys venom-purified protein C activator prevents myocardial fibrosis in diabetic rats. Croat Med J. 2015;56(5):439-46. doi: 10.3325/cmj.2015.56.5.439, PMID 26526881.

145. Mukai E, Ohta T, Kawamura H, Lee EY, Morita A, Sasase T, Miyajima K, Inagaki N, Iwamae T, Miki T. Enhanced vascular endothelial growth factor signaling in islets contributes to β-cell injury and consequential diabetes in spontaneously diabetic torii rats. Diabetes Res Clin Pract. 2014;106(2):303-11. doi: 10.1016/j.diabres.2014.08.023, PMID 25262109.

146. Landon JM, Attoub S, Mavale V, Leprince J, Casewell NR, Sanz L, Calvete JJ. Isolation and characterization of cytotoxic and neurotoxic myotoxins. Toxicon. 2012;61:112-24. doi: 10.1016/j.toxicon.2012.11.002, PMID 23286358.

147. Lee YM, Cho SN, Son E, Song CH, Kim DS. Apamin from bee venom suppresses inflammation in a murine model of gouty arthritis. J Rhinol. 2020;257:112860. doi: 10.1016/j.jrhino.2020.122860.
Rocha JR, Borges PA, Calil Elias S, Melo PA. Dexamethasone antagonizes the in vivo myotoxic and inflammatory effects of bothrops venoms. Toxicon. 2013;69:55-64. doi: 10.1016/j.toxicon.2013.01.023. PMID 23416798.

Wanderley CWS, Silva CMS, Wong DVT, Ximenes RM, Morelo DFC, Cosker P, Aragao KS, Fernandes C, Palheta Junior RC, Havit A, Brito GA, Cunha FQ, Ribeiro RA, Lima Junior RC. Bothrops jararacussu snake venom induces a local inflammatory response in a prostanoid- and neutrophil-dependent manner. Toxicon. 2014;90:134-47. doi: 10.1016/j.toxicon.2014.08.001. PMID 25127849.

Giannotti KC, Leiguez E, de Carvalho AEZd, Nascimento NG, Matsubara MH, Fortes Dias CL, Moreira V, Teixeira C. A snake venom group IIA PLA2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ2 in macrophages. Sci Rep. 2017;7(1):4098. doi: 10.1038/s41598-017-0498-8.

Silva MC, Sáez Campos H, Oliveira CJF, Silva TF, Franco FB, Oliveira F, Mineo TPW, Mineo JR. Treatment with a zinc metalloproteinase purified from Bothrops moojeni snake venom (BmooMP-alpha-I) reduces the inflammation in an experimental model of dextran sulfate sodium-induced colitis. Mediators Inflamm. 2019;2019:5195134. doi: 10.1155/2019/5195134.

Wang N, Huang Y, Li A, Jiang H, Wang J, Li J, Qiu L, Li K, Lu Y. Hydrostatin-TL1, an anti-inflammatory active peptide from the venom gland of Hydrophis cyanocinctus in the South China sea. Int J Mol Sci. 2016;17(11):1940. doi: 10.3390/ijms17111940, PMID 27879679.

Upadhay RK. Animal venom derived toxins are novel analgesics for treatment of arthritis. J Mol Sci. 2018;26:6-13.

Gazerani P, Cairns BE. Venom-based biotoxins as potential analgesics. Expert Rev Neurother. 2014;14(11):261-74. doi: 10.1586/14737175.2014.962518, PMID 25234848.

Zhang Y, Jiang B, Li W, Zhou C, Ji F, Xie Q, Sun X, An L, Bao Y. Mechanisms of analgesic action of Gln49-PLA(2) from glycludysus ussurensis snake venom. Appl Biochem Biotechnol. 2010;160(3):773-9. doi: 10.1007/s13212-010-0857-3, PMID 19577489.

Charon F, Oviedo A, Escalante T, Solano G, Rucavado A, Gutierrez JM. The lethality test used for estimating the potency of antivenoms against Bothrops asper snake venom: pathophysiological mechanisms, prophylactic analgesia, and a surrogate in vitro assay. Toxicon. 2015;93:41-50. doi: 10.1016/j.toxicon.2014.11.223, PMID 25447772.

Picańo LC, Bittencourt JAHM, Henriques SVC, da Silva JS, Oliveira JMS, Ribeiro JR, Sanjay AB, Carvalho JC, Stien D, Silva JO. Pharmacological activity of costus spicatus in experimental Bothrops atrox envenomation. Pharm Biol. 2016;54(10):2103-10. doi: 10.3109/13880209.2016.1145703, PMID 27306958.