Introduction

Mosquitoes are vectors of several diseases affecting about one hundred million people worldwide and killing more than a million, mostly in tropical areas [1]. In the absence of protective vaccines, as is the case of malaria and dengue fever, at present transmission of the pathogens to humans is avoided using bed nets, and mosquitoes populations are controlled mainly with insecticide-based strategies. Although this last approaches may be very efficient, they are also unsafe for human health and for the environment. Moreover, insects can rapidly develop resistance to insecticides, thus continuously requiring the design and the use of new generations of chemicals. Therefore, alternative approaches to fight mosquitoes are strongly needed. A promising strategy is to target the chemical communication system of mosquitoes with the aim of developing efficient repellents that might interfere with the olfactory system and disrupt the perception of chemical messages, such as those that allow host localization and choice. In this respect, an interesting approach is suggested by the observation that high levels of carbon dioxide can disorient mosquitoes [2].

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of *Anopheles gambiae*, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBPS, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in *Anopheles gambiae* might facilitate future studies on host finding behavior in this important disease vector.

A Proteomic Investigation of Soluble Olfactory Proteins in *Anopheles gambiae*

Guido Mastrobuoni, Huili Qiao, Immacolata Iovinella, Simona Sagona, Alberto Niccolini, Francesca Boscaro, Beniamino Caputo, Marta R. Orejuela, Alessandra della Torre, Stefan Kempa, Antonio Felicioli, Paolo Pelosi, Gloriano Moneti, Francesca Romana Dani

1 Integrative Proteomics and Metabolomics, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany, 2 China-UK-NYNU-RRes Joint Labrotary of Insect Biology, Nanyang Normal University, Nanyang, China, 3 Department of Agriculture, Food and Environment, Università di Pisa, Pisa, Italy, 4 Department of Veterinary Sciences, Università di Pisa, Pisa, Italy, 5 CISM, Mass Spectrometry Centre, Università di Firenze, Firenze, Italy, 6 Department of Public Health and Infectious Diseases, Università “La Sapienza”, Roma, Italy, 7 Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany, 8 Biology Department, Università di Firenze, Firenze, Italy

Abstract

Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are small soluble polypeptides that bind semiochemicals in the lymph of insect chemosensilla. In the genome of *Anopheles gambiae*, 66 genes encode OBPs and 8 encode CSPs. Here we monitored their expression through classical proteomics (2D gel-MS analysis) and a shotgun approach. The latter method proved much more sensitive and therefore more suitable for tiny biological samples as mosquitoes antennae and eggs. Females express a larger number and higher quantities of OBPs in their antennae than males (24 vs 19). OBP9 is the most abundant in the antennae of both sexes, as well as in larvae, pupae and eggs. Of the 8 CSPs, 4 were detected in antennae, while SAP3 was the only one expressed in larvae. Our proteomic results are in fairly good agreement with data of RNA expression reported in the literature, except for OBP4 and OBPS, that we could not identify in our analysis, nor could we detect in Western Blot experiments. The relatively limited number of soluble olfactory proteins expressed at relatively high levels in mosquitoes makes further studies on the coding of chemical messages at the OBP level more accessible, providing for few specific targets. Identification of such proteins in *Anopheles gambiae* might facilitate future studies on host finding behavior in this important disease vector.

Citation: Mastrobuoni G, Qiao H, Iovinella I, Sagona S, Niccolini A, et al. (2013) A Proteomic Investigation of Soluble Olfactory Proteins in *Anopheles gambiae*. PLoS ONE 8(11): e75162. doi:10.1371/journal.pone.0075162

Editor: Walter S. Leal, University of California Davis, United States of America

Received January 8, 2013; Accepted August 13, 2013; Published November 25, 2013

Copyright: © 2013 Mastrobuoni et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by a European Union grant (FP7/2007-2013, Grant Agreement No. FP7-222927) to FRD and PP. BC is supported by a MIUR-FIRB “Futuro in Ricerca 2010” grant (number:RBFR106NTE). MRO acknowledges Prof. Dr. Nikolaus Rajewsky for funding. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: francescaromana.dani@unifi.it

Introduction

Mosquitoes are vectors of several diseases affecting about one hundred million people worldwide and killing more than a million, mostly in tropical areas [1]. In the absence of protective vaccines, as is the case of malaria and dengue fever, at present transmission of the pathogens to humans is avoided using bed nets, and mosquitoes populations are controlled mainly with insecticide-based strategies. Although this last approaches may be very efficient, they are also unsafe for human health and for the environment. Moreover, insects can rapidly develop resistance to insecticides, thus continuously requiring the design and the use of new generations of chemicals. Therefore, alternative approaches to fight mosquitoes are strongly needed. A promising strategy is to target the chemical communication system of mosquitoes with the aim of developing efficient repellents that might interfere with the olfactory system and disrupt the perception of chemical messages, such as those that allow host localization and choice. In this respect, an interesting approach is suggested by the observation that high levels of carbon dioxide can disorient mosquitoes [2].
receptors [12–14]. These genes have been expressed in different systems and their specificities in recognising chemical stimuli have been analysed [15,16].

While there is little doubt that all (or at least most of) the membrane-bound receptors classified as olfactory and gustatory are involved in the perception of external chemical stimuli, with OBPs the picture is much more complex. In fact, this large family of proteins comprises members that may perform different functions, indirectly related or even completely unrelated to olfaction and taste, such as transport of semiochemicals in reproductive organs [17] or binding of biogenic amines [18].

The genome of An. gambiae contains 66 genes encoding proteins that have been classified as OBPs solely on the basis of sequence similarity [14,19]. This number is very close to that of olfactory receptors and at the beginning suggested the idea that a one to one relationship could exist between members of the two families of proteins. However, this view proved to be too simplistic and the actual situation is much more complex. Only 33 of such genes encode so-called “classic OBPs”, whose signature is a conserved pattern of six cysteines, linked to each other by disulfide bonds in a specific fashion (1–3, 2–5, 4–6) [20,21]. The relative positions and the pairing of the six cysteines are conserved across all Orders of insects, from locusts and aphids to Coleoptera and Diptera. In addition, there are 19 longer OBPs in An. gambiae, containing a larger number of cysteines and therefore called C-plus OBPs. Their sequences still present a “classic” core with additional polypeptide segments [22]. A third group of 14 proteins includes outliers and is classified under the name of “atypical OBPs”. Among these, some are referred to as “tandem OBPs”, containing two “classic OB” sequences connected by few amino acids. These proteins, that occur in the saliva of mosquitoes, are probably not involved in chemoreception, on the basis of a recent report showing that one member binds biogenic amines and mediates antiinflammatory processes [18].

The picture is still more complex with the other family of soluble proteins of the chemoreception system, the Chemosensory Proteins (CSPs) [4,23,24]. In fact, several members of this group are expressed in non-sensory organs and some are involved in different functions, such as development and differentiation [25–31]. These polypeptides are shorter than OBPs (100–120 residues) and present only 4 cysteines paired in non-interlocked fashion [32]. In An. gambiae only 8 genes encoding such proteins have been identified, and reported alternatively as CSPs or SAPs (Sensory Appendage Proteins) [14,33,34].

Because of such complex picture, it is important to identify which OBPs and CSPs are expressed in antennae and other sensory organs, such as mouth parts and tarsi, being these proteins more likely involved in the perception of semiochemicals.

Using microarrays, Biessmann and coworkers [14], found that the most abundantly expressed OBPs in female antennae are in the order: 5, 48, 1, 17, 9, 47, 3, 7, 4 and 20. All of them are classic OBPs with the exception of C-plus OBP47 and OBP48. Most of these proteins are expressed at higher levels in female antennae than in males’, while OBPs 5 and 9 are more abundant in males. In the same study, several genes are reported to be down-regulated more likely involved in the perception of semiochemicals.

Moreover, OBP1 and OBP4 have been co-crystallized [42], supporting a previous report of functional interactions between these two proteins [43].

Here, we adopted a proteomic approach to identify OBPs and CSPs that are expressed in the antennae of An. gambiae males and females, as well as in pre-adult stages. The results show that only about one third of the genes encoding OBPs and half of those encoding CSPs are expressed at the protein level in antennae with a strong sexual dimorphism, while in pre-adult stages OBP9 is the by far the most abundant.

Materials and Methods

Ethics statement

This study was approved by the Ethical Committee of the University of Pisa, N. 12498. The rabbits were bled under anaesthetic from the heart.

Reagents

All enzymes, unless otherwise stated, were from New England Biolabs. Oligonucleotides were custom synthesized at Eurofins MWG GmbH, Ebersberg, Germany. All other chemicals, unless otherwise stated, were purchased from Sigma-Aldrich and were of reagent grade.

Preparation of extracts

Anopheles gambiae were reared at the Department of Public Health of the University “La Sapienza”, Roma, Italy, from a colony named GA-CAM-ST originated from the progeny of females collected in Cameroon and belonging to the molecular form M (standard with regard to the chromosomal inversions, [44]). All adult specimens were 2 days old and were fed only with 0.5% sugar solution. Females and males were segregated in different cages soon after emergence to keep them virgin. Specimens were killed by freezing at −20°C and then transferred at −80°C.

For 2D gel separation, the antennae of 1,110 male individuals were used. For shotgun proteomic experiments we used in total the antennae from 600 individuals of each sex to perform three sets of analysis, each in triplicate. Antennae were crushed in a mortar under liquid nitrogen and extracted with 0.1% trifluoroacetic acid. The extracts were centrifuged at 19,000×g for 40 min at 4°C and the supernatants were concentrated to 50 μL by centrifugal evaporation.

100 fourth instar larvae, or 100 pupae, or 100 eggs of *An. gambiae* were homogenised in 500 μL of 0.1% aqueous TFA by grinding in a mortar followed by sonication, and centrifuged at 19,000×g for 40 min at 4°C.

Two-dimensional electrophoresis and identification of protein spots

Along with our previously described protocol [45], the extracts were concentrated to 50 μL and then diluted to 250 μL with a buffer containing 7 M urea, 2 M thiourea, 2% (w/v) CHAPS, 1% (v/v) IPG buffer (GE-Healthcare) and 60 mM of Dithiothreitol (DTT). The samples were loaded by rehydration for 11.5 hours in IPG strips (pH 3–11, 7 cm). Isoelectrofocusing was performed with an Etan IPG Phor III system (GE-Healthcare) using the
following conditions: 50 V (2 hours), 100 V (2 hours), 500 V (2 hours), 1000 V (2 hours), 6000 V (1.5 hours). Strips were equilibrated for 15 minutes in a Tris-HCl 1.5M pH 8.8 solution containing glycerol 29.3%, urea 6M, SDS 2% (w/v), DTT 1% and then for further 15 minutes in a Tris-HCl 1.5M pH 8.8 solution, containing glycerol 29.3%, urea 6M, SDS 2% and Iodoacetamide 2.5%.

Gels were stained using Brilliant Blue G-Colloidal Concentrate (Sigma). The excised spots were subjected to tryptic digestion and nano-HPLC-ESI Orbitrap analyses. The acquired MS and MS/MS data were searched with Proteome Discoverer 1.2 (Thermo Fisher) using SEQUEST as the search algorithm against a database created by merging the sequences of the peptides predicted from An. gambiae genome [11] (Anopheles gambiae.AgamP3.48.pep.all.fa.gz, and Anopheles gambiae.AgamP3.48.pep.abinitio.fa.gz downloaded at http://www.ensembl.org/info/data/download.html) with the entries related to Anopheles in UniProtKB. Searches were performed allowing up to three missed cleavage sites, 10 ppm of tolerance for the monoisotopic precursor ion and 0.5 mass unit for monoisotopic fragment ions and carbamidomethylation of cysteine and oxidation of methionine as variable modifications. False discovery rate was set at 1%.

Shotgun experiments

Antennae. Samples for shotgun experiments were resuspended in 200 μL of urea containing buffer (8 M Urea, 100 mM Tris-HCl, pH 8.5). Based on Bradford colorimetric assay, the samples of female and male antennal extracts contained 80 and 200 μg of total protein, respectively. Reduction of disulfide bridges and alkylation was performed by treating samples with 2 mM DTT (30 minute at 25°C), followed by 11 mM iodoacetamide (20 minutes at room temperature in the dark). LysC digestion was then performed by incubating the samples with LysC (Wako) in a ratio 1:40 (w/w) under gentle shaking at 30°C. The digestion products were diluted 3 times with 50 mM ammonium bicarbonate and incubated with 10 μL of immobilized trypsin (Applied Biosystems) for 4 hours under rotation at 30°C.

Fifteen 15 μg of each resulting peptide mixture were then desalted on Stage Tip [46] and the eluates dried and reconstituted to 50 μL in 0.5% acetic acid. Fractions containing 7 μg of protein were injected.

The extract was analysed on three sets of analyses, each performed in triplicates on a LC-MS/MS system (Eksigent nano Liquid Chromatographer coupled to a Linear Trap Quadrupole - Orbitrap Velos (Thermo)), on a C18 (75 μm i.d. ×15 cm, 1.8 μm, 100 Å) column at 250 nL/min using a 155 or 255 minutes gradient ranging from 5% to 60% of solvent B (solvent A = 5% acetonitrile, 0.1% formic acid; solvent B 80% acetonitrile, 0.1% formic acid). The nano-spray source was operated with a spray voltage of 2.0 kV and ion transfer tube temperature of 275°C. Data were acquired in data dependent mode, with one survey MS scan in the Orbitrap mass analyzer (resolution 15,000 at m/z 400) followed by up to 3 MS/MS in the ion trap on the most intense ions. The acquired MS and MS/MS data were searched with Proteome Discoverer 1.2 (Thermo Fisher) using SEQUEST as the search algorithm, as described above.

RNA extraction and cDNA synthesis

Total RNA was extracted with the TRI® Reagent (Sigma), following the manufacturer’s protocol. cDNA was prepared from total RNA by reverse transcription, using 200 units of SuperScriptTM III Reverse Transcriptase (Invitrogen) and 0.5 μg of an oligo-dT primer in a 50 μL total volume. The mixture also contained 0.5 mM of each dNTP (GE-Healthcare), 75 mM KCl, 5 mM MgCl₂, 10 mM DTT and 0.1 mg/ml Bovine serum albumin in 50 mM Tris-HCl, pH 8.3. The reaction mixture was incubated at 50°C for 60 min and the product was directly used for PCR amplification or stored at −20°C.

Polymerase chain reaction

Aliquots of 1 μL of crude cDNA were amplified in a Bio-Rad Gene CyclerTM thermocycler, using 2.5 units of *Thermus aquaticus* DNA polymerase (GE-Healthcare), 1 mM of each dNTP (GE-Healthcare), 1 μM of each PCR primer, 50 mM KCl, 2.5 mM MgCl₂ and 0.1 mg/ml Bovine serum albumin in 10 mM Tris-HCl, pH 8.3, containing 0.1% v/v Triton X-100. At the 5’ end, we used a specific primer corresponding to the sequence encoding for each set of analysis, relative abundance of proteins was estimated using the “Intensity” values as produced by MaxQuant software [47], normalised on the total intensity signal. The results of the three sets were averaged.

PFAM enrichment analysis

Each identified protein was assigned to its Protein family (Pfam) [48] and Pfam were analysed for differential expression between male and female antennae. Proteins were considered to be expressed in only one sex if identification was based on more than 2 peptides and no peptides were identified in the other sex. Proteins were considered overexpressed if the ratio of intensity values between the two sexes was greater than three. The Pfam enrichment analysis was performed using custom R scripts (available on demand). For each individual Pfam id associated to proteins overexpressed or found in only sex, a Fisher exact test was performed over the total set of proteins. Results were filtered with an alpha = 0.05.

Eggs. Eggs extract was freeze-dried, redissolved in 40 μL of 10 mM DTT in 100 mM ammonium bicarbonate and incubated at 56°C for 45 min. Then, 40 μL of 55 mM iodoacetamide were added and the mixture was incubated at room temperature for 30 min in the dark. Digestion was performed by addition of 2 μL of 0.1 μg/μL trypsin and incubation overnight at 37°C. Digestion was blocked by 10% TFA to pH 2.5. Aliquots of 25 μL of the resulting peptide mixture were then desalted on three Stage Tips (Rappiäbab et al., 2007); eluates were pooled, dried and then reconstituted to 15 μL in 0.5% acetic acid. Peptide solution was analysed in triplicates (1 μL) on a Ultimate 3000 HPLC (Dionex, San Donato Milanese, Milano, Italy) coupled with a Linear Trap Quadrupole Orbitrap mass spectrometer (Thermo Fisher, Bremen, Germany) using a C18 (75 μm i.d. ×15 cm, 1.8 μm, 100 Å) column at a 250 nL/min flow, using a 144 min gradient ranging from 5% to 90% of solvent B (solvent A = 5% acetonitrile, 0.1% formic acid; solvent B 80% acetonitrile, 0.1% formic acid). The nanospray source was operated with a spray voltage of 2.0 kV and ion transfer tube temperature of 275°C. Data were acquired in data dependent mode, with one survey MS scan in the Orbitrap mass analyzer (resolution 15,000 at m/z 400) followed by up to 3 MS/MS in the ion trap on the most intense ions. The acquired MS and MS/MS data were searched with Proteome Discoverer 1.2 (Thermo Fisher) using SEQUEST as the search algorithm, as described above.
the first six amino acids of the mature protein. The primer also contained an Nde I restriction site for ligation into the expression vector and providing at the same time the ATG codon for an additional methionine in position 1. At the 3’ end a specific primer was used, encoding the last six amino acids, followed by a stop codon and an Eco RI restriction site for ligation into the expression vector. Therefore, we used the following primers for the OBP5 (enzyme restriction sites are underlined):

5’- AGATATGGCGATGACGC-3’

5’- AAATCTTATTAGGGAAAGA-GAAAACAC-3’

After a first denaturation step at 95°C for 5 min, we performed 35 amplification cycles (1 min at 95°C, 30 sec at 50°C, 1 min at 72°C) followed by a final step of 7 min at 72°C. An amplification product of about 400 bp, in agreement with the expected size was obtained.

Cloning and sequencing

The crude PCR product was ligated into a pGEM (Promega) vector without further purification, using a 1:5 (plasmid: insert) molar ratio and incubating the mixture overnight at room temperature. After transformation of E. coli XL-1 Blue competent cells with the ligation product, positive colonies were selected by PCR using the plasmid’s primers SP6 and T7 and grown in LB/ampicillin medium. DNA was extracted using the Plasmid MiniPrep Kit (Euroclone) and custom sequenced at Eurofins MWG (Ebersberg, Germany).

Cloning in expression vectors

pGEM plasmid containing the sequence of OBP5 (Acc. No. Q6T6R6) was digested with Nde I and Eco RI restriction enzymes for two hours at 37°C and the digestion product was separated on agarose gel. The obtained fragment was purified from gel using QIAEX II Extraction kit (Qiagen) and ligated into the expression vector pET-5b (Novagen, Darmstadt, Germany), previously linearized with the same enzymes. The resulting plasmid was sequenced and shown to encode the mature protein.

Preparation of the recombinant protein

For expression of recombinant protein, pET-5b vector containing the sequence of OBP5 was used to transform BL21(DE3)pLysS E. coli cells. Protein expression was induced by addition of Isopropyl-1-thio-β-D-galacto-pyranoside to a final concentration of 0.4 mM when the culture had reached a value of O.D. 600 = 0.8. Cells were grown for further 2 hours at 37°C, then harvested by centrifugation and sonicated. After centrifugation, OBP5 was obtained by injecting rabbits subcutaneously and intramuscularly with the ligation product, positive colonies were selected by PCR using the plasmid’s primers SP6 and T7 and grown in LB/ampicillin medium. DNA was extracted using the Plasmid MiniPrep Kit (Euroclone) and custom sequenced at Eurofins MWG (Ebersberg, Germany).

Preparation of antiserum

Antiserum against OBP4 (Acc. no. Q6T6R7) and OBP5 were obtained by injecting rabbits subcutaneously and intramuscularly with 300 µg of recombinant protein, followed by two additional injections of 150 µg after 15 and 30 days. The protein was emulsified with an equal volume of Freund’s complete adjuvant for the first injection and incomplete adjuvant for further injections.

The animals were bled 10 days after the last injection and the sera were used without further purification. The rabbits were individually housed in large cages, at constant temperature, and all operations were performed according to ethical guidelines to minimize pain and discomfort to animals.

Western blot experiments

After electrophoretic separation under denaturing conditions (14% SDS-PAGE), duplicate gels were stained with 0.1% Coomassie blue R250 (Euroclone) in 10% acetic acid, 25% ethanol, or electroblotted on a Trans-Blot nitrocellulose membrane (Bio-Rad Lab) by the procedure of Kyhse-Andersen [51]. After treatment with 2% powdered skimmed milk/0.05% Tween 20 in Phosphate Buffer Saline overnight, the membrane was incubated with the crude antiserum against the protein at a dilution of 1:500 (2 h) and then with goat anti-rabbit IgG horseradish peroxidase conjugate (dilution 1:1000, 1 h). Immunoreacting bands were detected by treatment with 4-chloro-1-naphthol and hydrogen peroxide.

Results and Discussion

Proteomic analysis of antennae

Our first attempt to identify OBPs and CSPs in the antennae of mosquitoes followed a classical approach. The 2D-gel, prepared with the antennae of 1,100 males (Figure 1), produced 79 protein spots in the region of MW lower than 40 kDa, that were excised and analysed. This choice included also proteins longer than classic OBPs, such as C-plus OBPs, salivary OBPs and so-called “tandem OBPs”. However, the only OBP identified in this experiment was OBP9. In addition, two proteins of the CSP family, named SAP1 and SAP3, were detected. These results reasonably exclude the presence of other OBPs and CSPs, at least above the Coomassie staining detection limit. However, we felt

![Figure 1. Two-dimensional gel electrophoretic separation of an extract from 1,100 antennae of An. gambiae. The gel was stained with colloidal Coomassie Brilliant Blue and all the spots migrating with apparent molecular weight lower than 40 kDa were excised and analysed by mass spectrometry. Only OBP9 and the two Chemosensory Proteins SAP1 and SAP3 could be identified among soluble olfactory proteins. Molecular weight markers are, from the top: Phosphorylase b, from rabbit muscle (97 kDa), Bovine serum albumin (66 kDa), Ovalbumin (45 kDa), Carbonic anhydrase (29 kDa), Trypsin inhibitor (20 kDa), α-Lactalbumin (14 kDa).](Image:315x167 to 519x354)

![Image](Image:519x354 to 591x482)

DOI:10.1371/journal.pone.0075162.g001

...
Female antennae only

Pfam ID	Description	N	P value
PF00005	ABC transporter	1	0.0492
PF00050	Kazal-type serine protease inhibitor domain	1	0.01
PF00095	WAP-type (Whey Acidic Protein) Four-disulfide core	1	0.01
PF00098	Zinc knuckle	1	0.01
PF00233	3n5n-cyclic nucleotide phosphodiesterase	1	0.0298
PF00454	Phosphatidylinositol 3- and 4-kinase	1	0.0298
PF01395	PBP/GOBP family	3	0.0018
PF01571	Aminomethyltransferase folate-binding domain	1	0.01
PF02872	5n-nucleotidase	1	0.0298
PF04000	Ssa10/Utp3/CID family	1	0.01
PF04968	CHORD	1	0.01
PF06377	Adipokinetic hormone	1	0.02
PF07258	HCaRG protein	1	0.01

Male antennae only

Pfam ID	Description	N	P value
PF00025	ADP-ribosylation factor family	2	0.0351
PF00082	Subtilase family	1	0.0384
PF00100	Zona pellucida-like domain	2	0.0198
PF00400	WD domain	6	9e-04
PF00432	Prenyltransferase and squalene oxidase repeat	1	0.0384
PF00561	alpha/beta hydrolase fold	2	0.044
PF00575	S1 RNA binding domain	1	0.0384
PF00692	dUTPase	1	0.0384
PF00849	RNA pseudouridylate synthase	1	0.0384
PF01250	Ribosomal protein S6	1	0.0384
PF01380	SIS domain	1	0.0384
PF01426	BAH domain	1	0.0384
PF01556	DnaJ C terminal region	1	0.0384
PF01733	Nucleoside transporter	1	0.0384
PF02146	Sir2 family	1	0.0384
PF02268	Transcription initiation factor IIA	1	0.0384
PF02515	CoA-transferase family III	1	0.0384
PF03083	MnN3/saliva family	1	0.0384
PF03531	Structure-specific recognition protein (SSRP1)	1	0.0384
PF04062	ARP2/3 complex ARPC3 (21 kDa) subunit	1	0.0384
PF04515	Plasma-membrane choline transporter	1	0.0384
PF05018	Protein of unknown function (DUF667)	1	0.0384
PF05172	MPPN (rrm-like) domain	1	0.0384
PF05620	Protein of unknown function (DUF788)	1	0.0384
PF06456	Arfaptin-like domain	1	0.0384
PF06814	Lung seven transmembrane receptor	1	0.0384
PF07159	Protein of unknown function (DUF1394)	1	0.0384
PF08235	LNS2 (Lipin/Ned1/Smpl2)	1	0.0384
PF08242	Methyltransferase domain	1	0.0384
PF08799	pre-mRNA processing factor 4 (PRP4) like	1	0.0384
PF09735	Membrane-associated apoptosis protein	1	0.0384
PF10037	Mitochondrial 28S ribosomal protein S27	1	0.0384
Table 1. Cont.

Male antennae only

PFAM ID	Description	N	P value
PF10211	Axonemal dynein light chain	1	0.0384
PF10270	Membrane magnesium transporter	1	0.0384
PF11069	Protein of unknown function (DUF2870)	1	0.0384
PF11467	Lens epithelium-derived growth factor (LEDGF)	1	0.0384
PF12494	Protein of unknown function (DUF3695)	1	0.0384
PF12612	Tubulin folding cofactor D C terminal	1	0.0384

Enriched in females

PFAM ID	Description	N	P value
PF00379	Insect cuticle protein	10	0
PF01249	Ribosomal protein S21e	1	0.0133
PF01395	PBP/GOBP family	12	0
PF01413	C-terminal tandem repeated domain in type 4 procollagen	1	0.0393
PF04527	Drosophila Retinin like protein	1	0.0393
PF07993	Male sterility protein	1	0.0393
PF08920	Splicing factor 3B subunit 1	1	0.0133

Enriched in males

PFAM ID	Description	N	P value
PF00024	PAN domain	1	0.0305
PF00079	Serpin (serine protease inhibitor)	3	0.0049
PF00230	Major intrinsic protein	2	9e-04
PF00293	NUDIX domain	3	5e-04
PF00344	eubacterial secY protein	1	0.0305
PF00379	Insect cuticle protein	5	0.0365
PF00709	Adenylosuccinate synthetase	1	0.0305
PF01007	Inward rectifier potassium channel	1	0.0305
PF01214	Casein kinase II regulatory subunit	1	0.0305
PF01462	Leucine rich repeat N-terminal domain	1	0.0305
PF01652	Eukaryotic initiation factor 4E	1	0.0305
PF01683	EB module	1	0.0305
PF01966	HD domain	1	0.0305
PF02209	Villin headpiece domain	1	0.0305
PF02781	Glucose-6-phosphate dehydrogenase	1	0.0305
PF03022	Major royal jelly protein	2	0.0228
PF03098	Animal haem peroxidase	2	0.0053
PF03148	Tektin family	2	0.0027
PF03392	Insect pheromone-binding family	2	0.0086
PF03870	RNA polymerase Rpb8	1	0.0305
PF04095	Nicotinate phosphoribosyltransferase (NAPRTase) family	1	0.0305
PF05918	Apoptosis inhibitory protein 5 (API5)	1	0.0305
PF06068	TIP49 C-terminus	1	0.0305
PF06602	Myotubularin-related	1	0.0305
PF07479	NAD-dependent glycerol-3-phosphate dehydrogenase C-terminus	1	0.0305
PF09315	Domain of unknown function (DUF1973)	1	0.0305
PF10629	Protein of unknown function (DUF2475)	1	0.0305

doi:10.1371/journal.pone.0075162.t001
that this method could not be sensitive enough to detect all the proteins present in our sample and probably not applicable to the small antennae of female mosquitoes. Therefore, we decided to apply a shot-gun approach, that does not require a 2D-gel, but analyses a tryptic digest of a crude protein extract by nano-HPLC and MS/MS. Such technique recently proved to be fast and efficient, requiring at the same time very small biological samples, as in the case of the antennae of Drosophila [9,52].

Applying this method to antennal samples from 600 males and 600 virgin females of An. gambiae, we identified 2958 proteins (2605 in females and 2634 in males). A complete list of such proteins is reported in file S1, grouped according to their Pfam descriptors.

Table 2. OBPs and CSPs identified in the antennae of An. gambiae by shot-gun analysis.

Entry code (*)	Leader protein	Unique peptides (F)	Unique peptides (M)	Sequence coverage % (***)
Classic Odorant-binding Proteins				
Q8I8T0 or Q8I8S8 or Q7PLY5	OBP1 or OBP17	13	6	63.9
Q7PLY2	OBP2	4	2	35.7
Q8T6R8	OBP3	9	4	50.8
Q8T6R5	OBP6	1	0	35.7
Q7PX79: (Q8T6R4)	AgamOBP7	8	2	57.8
Q8I8R2	OBP9	9	4	73.4
5SHMX5; (Q8I8R1)	OBP10	4	1	34.8
Q8T6T5	OBP12	10	4	58.5
Q8I8S7; (Q8I8S6)	AgamOBP18	1	1	16.6
Q7Q0J3 or Q8I8S4	OBP20	6	2	40.8
Q7PG45; (Q8I8S1)	OBP22	4	0	31.8
Q8I8R7:Q7Q0J8;Q6J291	AgamOBP25	4	2	40.3
Q8I8R6	AgamOBP26	4	1	38.2
C-plus Odorant-binding Proteins				
Q7QCC4	OBPjj9	3	2	16.7
Q7PPB0 or Q7YW68	OBP47	6	1	30.7
Q7YW67 or Q8MMI9 or Q6J290	AgamOBP48	7	3	39.5
Q5TY70 or Q8I8R3	OBP54	2	0	5.3
Q7QW3	OBP57	3	2	15.7
Salivary Odorant-binding Proteins				
Q7Q488 (Q9UB30)	D7-related 1 protein	3	0	17.0
Q9UB31 (Q76815)	D7-related 2 protein	6	1	50.6
Q9UB32 or Q7Q487 (Q76816)	D7-related 3 protein	2	0	15.6
Q7QNF2 or Q9BI3H	D7-related 4 protein	4	0	27.3
SNAP_ANOPHELES000000005748 (Q7Q484; Q7PJ76; Q8WR35)	SNAP_ANOPHELES000000005748	8	3	17.4
Q7PP74	AGAP006278-PA	7	6	27.8
Chemosensory Proteins				
Q7Q3U7 or Q8T6R3	Sensory appendage protein SAP-1	8	6	59.1
Q6H8Z3	Sensory appendage protein SAP-2	7	7	46.5
Q6H8Z2	Sensory appendage protein SAP-3	6	7	46.8
Q6H8Y9	chemosensory protein CSP3	5	3	42.9
Other proteins				
Q7Q2T1	putative antennal carrier protein ANP-1	4	5	50.0
Q86PT5	Putative antennal carrier protein TOL-1	8	4	37.9
Q7QPO2	Putative antennal carrier protein TOL-2	3	3	40.7

In several cases, entries with the same or similar names refer to very similar sequences, likely originated from different strains of mosquitoes. In the leader protein column we report the name of the sequence with the highest coverage, as reported in the SwissProt database. OBP9 was also identified as the only olfactory protein in eggs, on the basis of two peptides with a coverage of 25.9%. Unique peptides are those characteristic of each sequence. F: females, M: males.

*(in Swissprot or genome for leader protein (and other proteins in the group)).

**Total sequence coverage was calculated on the basis of the sum peptides identified in males and females.

doi:10.1371/journal.pone.0075162.t002
classic, C- plus- atypical), while Pfam PF03392, described as “Insect Pheromone-binding” includes CSPs and SAPs.

Most of the identified proteins and corresponding Pfam were common between the two sexes and not differently expressed. Table 1 reports Pfam overexpressed or identified in only one sex. Within the “PBP/GOBP” Pfam, 3 proteins are female specific and 12 are more abundantly expressed than in males. On the other hand, the expression of three CSPs, belonging to the “Insect pheromone-binding” Pfam, was male biased.

Table 2 reports the data relative to the individual 24 OBPs and 4 CSPs identified in the antennae of both sexes, together with their entry codes and names in Uniprot database. The table also includes three proteins previously reported by Justice and coworkers [53] in the antennae of the same species: the putative antennal carrier protein ANP-1, and two polypeptides named TOL-1 and TOL-2 (Take-Out-Like proteins) considered to be potential carriers for hydrophobic ligands and possibly involved in feeding behaviour. None of these three proteins shows significant sequence similarity with OBPs or CSPs.

In a few cases, because of high identity of sequences, more than one OBP was identified on the basis of the same set of peptides. As an example, OBP1 and OBP17 share the same amino acid sequence, but the latter presents a longer C-terminus (155 vs 144 aa). On the other hand, we could distinguish two proteins

![Figure 2. Abundance of OBPs, CSPs and other proteins in the antennae of An. gambiae males and females, as reported in Table 1. The evaluation of relative abundance (in arbitrary units) is based on the values produced by MaxQuant (see text). The values are the averages of three sets of analyses. Error bars represent standard error of the mean. By far the most abundant proteins in male antennae are OBP9, SAP1 and SAP3, in agreement with the results of the 2D-gel (Figure 1). doi:10.1371/journal.pone.0075162.g002](figure2)

![Figure 3. Expression of An. gambiae OBP5 in E. coli. SDS-PAGE of bacterial pellets before (Pre) and after (Ind) induction of the culture with Isopropyl-1-thio-D-galacto-pyranoside. Molecular weight markers are, from the top: Bovine serum albumin (66 kDa), Ovalbumin (45 kDa), Carbonic anhydrase (29 kDa), Trypsin inhibitor (20 kDa), α-Lactalbumin (14 kDa). OBP5: purified protein. doi:10.1371/journal.pone.0075162.g003](figure3)

![Figure 4. Western-blot of crude antennal extracts of male and female An. gambiae, using polyclonal antisera against OBPs 9, 4 and 5. Left panels: SDS-PAGE of crude extracts (Ex) and sample of purified OBPs as indicated by their numbers. Right panels: Western-blot analysis of crude extracts (Ex) performed with the three antisera. A sample of OBPs 9, 4 and 5 (0.5 μg of each protein) utilised for raising the antibodies was also loaded on the same gel. OBP4 and 5 are not detectable in our experimental conditions, while OBP9 is present in both sexes, in agreement with the shotgun experiment results. Molecular weight markers are, from the top: Bovine serum albumin (66 kDa), Ovalbumin (45 kDa), Carbonic anhydrase (29 kDa), Trypsin inhibitor (20 kDa), α-Lactalbumin (14 kDa). doi:10.1371/journal.pone.0075162.g004](figure4)
We also decided to investigate the presence of OBPs and CSPs in pre-adult stages and in eggs. Given the relatively large samples available for larvae and pupae, we have chosen to adopt for this

Proteomic analysis on pre-adult stages and eggs

We detected relatively low levels of the three SAPs and the CSP3. In males, according to the same criterion, the picture is quite different, with OBP9 as the only protein of this family present at high levels, together with SAP1 and SAP3, also strongly represented. This result is in good agreement with 2D-gel data on male antennae, where we could only detect the three above-mentioned proteins.

Overall, we can observe that female antennae generally express a larger number and higher quantities of OBPs than males, while the situation is reversed for CSPs.

Our results are in fairly good, but not complete, agreement with a microarray-based RNA analysis [14], which ranked female antennal OBPs in the following decreasing order of abundance: #5, 48, 1, 17, 9, 47, 3, 7, 4 and 20. All these genes, with the exception of OBP4 and OBP5, encode proteins that in our analysis were classified as “abundant” or “well represented”, although not in the same order.

These data are partially confirmed by a more recent a transcriptome analysis [35], that however failed to detect OBP9, a protein found in the present work as the most abundant OBP in all tissues and developmental stages.

The absence of OBP4 and OBP5 in our analysis posed a major problem, also because OBP4 transcript had been reported in our previous work [43], using mosquitoes of the same age and physiological state as those of the present research. In order to clarify this point, we decided to perform Western blot experiments.

Western blot experiments

Therefore, we expressed OBP5 in bacteria, adopting the classic procedure utilised for the expression of other OBPs. As most of these proteins, OBP5 was present as inclusion bodies and was solubilised and purified using our standard protocol successfully adopted for many proteins of this class [49,50] (Figure 3).

Polyclonal antibodies were raised against the newly produced OBP5 and the previously described OBP4 [43] and used in Western blot experiments on crude extracts of female and male antennae. Figure 4 reports the results of the immuno-detection. As controls for the antisera, we included samples of the purified proteins, while an internal control for the extract was provided by OBP9 that had been detected as the most intense spot in the 2D-gel of male antennae (Figure 1) and previously reported in the antennae of both sexes [56]. The expression of OBP9 and the production of a polyclonal antiserum is part of a currently ongoing research (Qiao et al., unpublished). While we could clearly stain OBP9 in the extract, we were not able to get evidence for the presence of OBP4 or OBP5 (Figure 4). We then repeated the Western blot experiments using polyclonal antisera against OBP47 and SAP3, two proteins expressed at lower levels than OBP9, that could provide alternative positive controls. As we failed to stain either of these proteins, both detected in our proteomic study, we concluded that our Western blot method is not sensitive enough for proteins expressed at lower levels, and consequently we cannot exclude the presence of OBP4 and OBP5 in the antennal extracts.

On the other hand, there could be alternative reasons for the absence of OBP4 and OBP5 in our shot-gun experiments, including the possibility that the synthesis of these proteins could be triggered by some physiological events, such as mating or ingesting a blood meal.
study a 2D-gel electrophoresis coupled to mass spectrometry analysis.

Crude extracts from 100 larvae at 4th instar or 100 pupae of An. gambiae were separated on 2D-gels (Figure 5) and the spots analysed as described in the Materials and Methods section. The mass spectrometry analysis performed on the digests of all the spots migrating with apparent molecular masses lower than 24 kDa has revealed the presence of OBP9 as the sole protein of this class, that however appears in several abundant spots (red circles). This phenomenon, that needs to be further investigated, might indicate the occurrence of different forms of OBP9, possibly the products of post-translational modifications. The widespread expression of OBP9 in An. gambiae also includes a report of this protein in the hemolymph of adults [57]. In the gel of larvae we could also detect OBP21, a protein absent in the antennae of adults, and SAP3 in spots where also OBP9 was identified.

A sample of 100 eggs was utilised for a shot-gun analysis, as reported in the Materials and Methods section. The only olfactory protein identified was OBP9, whose presence was based on two peptides found in all three replicates, with a coverage of 23.9%.

Conclusions

The main results of our work can be so summarised:

1. There is a strong sexual dimorphism in the number of OBPs expressed in the antennae. While only a few OBPs can be found in males with only OBP9 expressed at a high level, females are endowed with at least 8 members abundantly expressed, and 14 more that are still clearly detectable.

2. Two of the most expressed OBPs (#47 and #48) belong to the C-plus OBPs. In particular, these two proteins contain 4 and 7 cysteines, respectively, in addition to the six of the conserved motif and a more complex structure, recently elucidated for OBP47 [22]. It is not yet clear whether these unusual proteins might be involved in chemodetection like classic OBPs, or else be endowed with alternative functions and modes of action.

3. In pre-adult stages and in eggs the exceptional abundance of OBP9 and the absence of other proteins of the same family suggest that this protein might be involved in functions other than chemoreception. This fact is particularly true for eggs, that are not endowed with chemoreception.

4. The repertoire of OBPs present at detectable levels (13 classical OBPs, 5 C-plus OBPs, 6 salivary OBPs) is much lower than the number of genes encoding such proteins in An. gambiae, thus providing a reduced number of molecular targets for further biochemical research and actions aimed at mosquito population control.

Supporting Information

Figure S1 Annotated MS/MS spectrum of the peptide QIEILPETYR (m/z = 637.84). Peptide sequence is unique for the protein Q8BS7 (OBP18). (PDF)

Figure S2 Annotated MS/MS spectrum of the peptide QIEILPETRY (m/z = 631.34). Peptide sequence is unique for the protein Q5TR5 (OBP6). (PDF)

File S1 Complete list of proteins identified in Anopheles gambiae antennae through the shot-gun approach using ANDROMEDA [47] as search engine. Column A, protein identity as reported in An. gambiae genome and in UniProKB; Column B, identity of leader protein within the protein group; Column C and E, protein description in the genome and in UniprotKB; Column D, protein family; Column F, protein family description; Column G, molecular weight of leader protein; Column H, protein posterior error probability. (XLSX)

Acknowledgments

We thank Dr. E. Michelucci for technical assistance on HPLC-MS analyses of protein spots and egg extracts.

Author Contributions

Conceived and designed the experiments: FRD PP II. Performed the experiments: FRD G. Mastrobuoni FB HQ II PP SS AN AF. Analyzed the data: FRD G. Mastrobuoni SK PP MRO. Contributed reagents/ materials/analysis tools: G. Moneti BC AD. Wrote the paper: FRD PP II BC AD T AF G. Mastrobuoni G. Moneti.

References

1. Snow RW, Guerra CA, Noor AM, Myint HY, Hay SI (2005) The global distribution of clinical episodes of Plasmodium falciparum malaria. Nature 434: 214–217.
2. Turner SL, Li N, Guda T, Githure J, Carde´ RT et al. (2001) Ultra-prolonged attraction to synthetic female pheromone blend in the vector mosquito An. gambiae. Nature 409: 873-875.
3. Corbel V, Stankiewicz M, Pennetier C, Fournier D, Stojan J et al. (2009) Evidence for inhibition of cholinesterases in insect and mammalian nervous systems by the insect repellent deet. BMC Biology 7: 47.
4. Xu P, Atkinson R, Jones DN, Smith DP (2005) Drosophila OBP LUSH is required for activity of pheromone-sensitive neurons. Neuron 45: 193–200.
5. Groser-Wilde E, Swatos A, Krieger J (2006) A pheromone-binding protein mediates the bombykol-induced activation of a pheromone receptor in vitro. Chem Senses 31: 547–55.
6. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-Binding Proteins OBPAI7 and OBPAI57e affect taste perception and host-plant preference in Drosophila sericulturalis. PLoS Biol 5: e118.
7. Laughlin JD, Ha TS, Jones DNM, Smith DP (2008) Activation of pheromone-sensitive neurons is mediated by congenic activation of Pheromone-binding protein. Cell 133: 1255–1265.
8. Matsuo T, Sugaya S, Yasukawa J, Aigaki T, Fuyama Y (2007) Odorant-Binding Proteins OBPAI7 and OBPAI57e affect taste perception and host-plant preference in Drosophila sericulturalis. PLoS Biol 5: e118.
9. Swaroop S, Williams TI, Anholt RR (2011) Functional dissection of Odorant binding protein genes in Drosophila melanogaster. Genes Brain Behav 10: 648–657.
22. Lagarde A, Spinelli S, Qiao H, Tegoni M, Pelosi P et al. (2011) Crystal structure of odorant binding protein 7 from Anopheles gambiae exhibits an outstanding adaptability of its binding site. J Mol Biol 414(3): 401–12. doi: 10.1016/j.jmb.2011.10.005

23. Tsatsou KE, Thireou T, Drakou CE, Koussis K, Keramoti MV et al. (2012) Anopheles gambiae odorant binding protein crystal complex with the synthetic repellent DEET: implications for structure-based design of novel mosquito repellents. Cell Mol Life Sci 69: 283–297.

24. Ziemba BF, Murphy EJ, Edlin HT, Jones DN (2013). A novel mechanism of ligand binding and release in the odorant binding protein 29 from the malaria mosquito Anopheles gambiae. Biochem Physiol Res Commun 266: 386–391.

25. Pitts RJ, Rinker DC, Jones PL, Rokas A, Zwiebel LJ (2011) Transcriptome analysis of the insect OS-D-like gene family. J Chem Ecol 30: 809–911.

26. Maleszka J, Foret S, Saint R, Maleszka R (2007) RNAi-induced phenotypes of a novel type of odorant binding protein from Anopheles gambiae, belonging to the C4 class. J Biochem 437: 423–430.

27. Kitaabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana. FEBS Lett 464: 386–391.

28. Kitabayashi AN, Arai T, Kubo T, Natori S (1998) Molecular cloning of cDNA for p10, a novel protein that increases in nymphal regenerating legs of Periplaneta americana. FEBS Lett 464: 386–391.

29. Scaloni A, Monti M, Angeli S, Pelosi P (1999) Structural analyses and disulfide-bonding pattern of two odorant binding proteins from the silkworm moth, Bombyx mori. FEBS Lett 464: 85–90.

30. Amenya DA, Chou W, Li J, Yan GY, Gershon PD et al. (2010) Proteomics of reproductive organs of the locust Schistocerca gregaria: genome annotation and functional enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2: 1896–906.

31. Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A et al. (2003) Soluble Olfactory Proteins in Anopheles gambiae s.str.; Store carriers of semiochemicals. J Proteome Res 10: 3439–3449.

32. Biessmann H, Walter MF, Dimitratos S, Woods DF (2002) Isolation of cDNA clones encoding putative odorant binding proteins from the antennae of the malaria vector Anopheles gambiae reveals tissue- and sex-specific signatures of odor coding. Genomics 12: 271–288.

33. Justice R, Dimitratos S, Walter MF, Woods DF, Biesermann H (2003) Sexual dimorphism of antennal gene expression in the malaria vector Anopheles gambiae. Insect Mol Biol 10: 9–18.

34. Iovinella I, Felicioli A, Niccolini A, Dani FR, Michelucci E et al. (2011) Odorant-Binding Proteins in the mandibular glands of the honeybee as putative carriers of semiochemicals. J Proteome Res 10: 3439–3449.

35. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins in antennae and pheromonal gland of Manisastra hortensis. Chem Senses 28: 833–844.

36. Dani FR, Michelucci E, Fraschese F, Mastrobuoni G, Felicioli A et al. (2011) Odorant-binding proteins and Chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36: 335–344.

37. Ziemba BF, Murphy EJ, Edlin HT, Jones DN (2013). A novel mechanism of ligand binding and release in the odorant binding protein 29 from the malaria mosquito Anopheles gambiae. Biochem Physiol Res Commun 266: 386–391.

38. Zhou S, Stone EA, Mackay TF, Anholt RR (2009) Plasticity of the chemoreceptor repertoire in Drosophila melanogaster. PLoS Genet 5(10): e1000601

39. Qiao H, He XL, Schymura M, Ban L, Field L et al. (2011) Cooperative interactions between Odorant-Binding Proteins of Anopheles gambiae. Cell Mol Life Sci 68: 1799–813.

40. Ziemba BF, Murphy EJ, Edlin HT, Jones DN (2015). A novel mechanism of ligand binding and release in the odorant binding protein 29 from the malaria mosquito Anopheles gambiae. Biochem Physiol Res Commun 266: 386–391.

41. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins in antennae and pheromonal gland of Manisastra hortensis. Chem Senses 28: 833–844.

42. Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A et al. (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60: 1933–1943.

43. Ziemba BF, Murphy EJ, Edlin HT, Jones DN (2015). A novel mechanism of ligand binding and release in the odorant binding protein 29 from the malaria mosquito Anopheles gambiae. Biochem Physiol Res Commun 266: 386–391.

44. Kolbe R, Williams TI (2010) The soluble proteome of the Drosophila antenna. Chem Senses 35: 21–30.

45. Justice R, Dimitratos S, Walter MF, Woods DF, Biesermann H (2003) Sexual dimorphism of antennal gene expression in the malaria vector Anopheles gambiae. Insect Mol Biol 10: 9–18.

46. Biessmann H, Walter MF, Dimitratos S, Woods DF (2002) Isolation of cDNA clones encoding putative odorant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol Biol 11: 123–132.

47. Iovinella I, Bozza F, Caputo B, Della Torre A, Pelosi P (2013) Ligand-binding study of Anopheles gambiae chemosensory proteins. Chem Senses 38: 409–19.

48. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Research 40: D290-D301.

49. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins of Locusta migratoria. Insect Mol Biol 10: 125–134.

50. Calvello M, Guerra N, Brandazza A, D’Ambrosio C, Scaloni A et al. (2003) Soluble proteins of chemical communication in the social wasp Polistes dominulus. Cell Mol Life Sci 60: 1933–1943.

51. Ziemba BF, Murphy EJ, Edlin HT, Jones DN (2015). A novel mechanism of ligand binding and release in the odorant binding protein 29 from the malaria mosquito Anopheles gambiae. Biochem Physiol Res Commun 266: 386–391.

52. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins in antennae and pheromonal gland of Manisastra hortensis. Chem Senses 28: 833–844.

53. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins in antennae and pheromonal gland of Manisastra hortensis. Chem Senses 28: 833–844.

54. Ban LP, Scaloni A, Brandazza A, Angelii S, Zhang L et al. (2003) Chemosensory proteins in antennae and pheromonal gland of Manisastra hortensis. Chem Senses 28: 833–844.

55. Kalume DE, Okulate M, Zhong J, Reddy R, Suresh S et al. (2005) A proteomic study of antennal gene expression in the malaria vector Anopheles gambiae: genome annotation and comparative analyses. Insect Mol Biol 17: 147–163.

56. Dani FR, Michelucci E, Fraschese F, Mastrobuoni G, Felicioli A et al. (2011) Odorant-binding proteins and Chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36: 335–344.

57. Zhou XH, Ban LP, Iovinella I, Zhao LJ, Gao Q et al. (2012) Diversity, abundance and sex-specific expression of chemosensory proteins in the reproductive organs of the locust Locusta migratoria. Biol Chem 393: 43–54.

58. Dani FR, Michelucci E, Fraschese F, Mastrobuoni G, Cappellozza S et al. (2011) Odorant-binding proteins and Chemosensory proteins in pheromone detection and release in the silkmoth Bombyx mori. Chem Senses 36: 335–344.