Compound kernel estimates for the transition probability density of a Lévy process in \mathbb{R}^n

Victoria Knopova*

Abstract

We construct in the small-time setting the upper and lower estimates for the transition probability density of a Lévy process in \mathbb{R}^n. Our approach relies on the complex analysis technique and the asymptotic analysis of the inverse Fourier transform of the characteristic function of the respective process.

Keywords: transition probability density, transition density estimates, Lévy processes, Laplace method.

MSC 2010: Primary: 60G51. Secondary: 60J75; 41A60.

1 **Introduction**

Let Z_t be a real-valued Lévy process in \mathbb{R}^n with characteristic exponent ψ, i.e.

$$E e^{i\xi \cdot Z_t} = e^{-t\psi(\xi)}, \quad \xi \in \mathbb{R}^n.$$

It is known that the characteristic exponent ψ admits the Lévy-Khinchin representation

$$\psi(\xi) = ia \cdot \xi - \frac{1}{2} \xi \cdot Q \xi + \int_{\mathbb{R}^n} (1 - e^{i\xi \cdot u} + i\xi \cdot u 1_{\|u\| < 1}) \mu(du), \quad (1.1)$$

where $a \in \mathbb{R}^n$, Q is a positive semi-definite $n \times n$ matrix, and μ is a Lévy measure, i.e. $\int_{\mathbb{R}^n} (1 \wedge \|u\|^2) \mu(du) < \infty$. In what follows we assume that $Q \equiv 0$, and

$$\mu(\mathbb{R}^n) = \infty. \quad (1.2)$$

Clearly, (1.2) is necessary for Z_t to possess a distribution density.

In the past decades such questions as the existence and properties of the transition probability density of Lévy and, more generally, Markov processes, attracted a lot of attention. Although some progress is already achieved, this problem is highly non-trivial. One can prove the existence of the transition probability density of a symmetric Markov process and study its properties by applying the Dirichlet form technique, see [2], [3], [4], [5], [6], [7]. The other approach relies on versions of the Malliavin calculus for jump processes, see

V.M. Glushkov Institute of Cybernetics, NAS of Ukraine, 40, Acad. Glushkov Ave., 03187, Kiev, Ukraine, vic_knopova@gmx.de
and provides the pointwise small-time asymptotic of the transition probability density of a Markov process which is a solution to a Lévy-driven SDE. Under certain assumptions on the Lévy measure estimates on the transition probability density are obtained in [11]-[12], see also the references therein for earlier results. In [16], which is the one-dimensional predecessor of the current paper, we investigated the transition probability density \(p_t(x) \) of a Lévy process, and proposed a specific form of estimates, which we call the compound kernel estimates, see Definition 1 below. The approach described in [16] relies on the asymptotic analysis of the inverse Fourier transform of the respective characteristic function. The analysis made in [16] shows that under rather general assumptions the bell-like estimate

\[
p_t(x) \leq \sigma_t g(\|x\|\sigma_t) \tag{1.3}
\]

where \(g \in L_1(\mathbb{R}^n) \), and \(\sigma_t \) is some "scaling function", is not possible. We also point out, that in the case of a Lévy process the results obtained in [23]-[25] and [10] fit in our observation. At the same time, the upper and lower compound kernel estimates give an adequate picture of behaviour of the transition probability density. In [18], [19] we investigate possible applications of the compound kernel estimates for the construction of the transition probability density of some class of Markov processes.

In this paper we investigate the transition probability density of a Lévy process in the multi-dimensional setting. In Section 2 we set the notation and formulate our main result Theorem 1. Section 3 is devoted to the proof of Theorem 1. In Section 4 Theorems 2 and 3, we treat the particular cases in which it is possible to construct a bell-like estimate (1.3). In Section 5 we illustrate our results by examples. As already mentioned, even if one can construct an estimate of the form (1.3), it may prove to be not informative. In particular, in Example 2 we consider the discretized analogue of an \(\alpha \)-stable Lévy measure, and show that in the multi-dimensional setting the bell-like estimate for the respective transition probability density, which is given by Theorem 2, is not integrable in \(x \). At the same time, the compound kernel estimate provided by Theorem 1 gives an adequate answer.

\section{Settings and the main result}

\textbf{Notation:} We denote by \(S^n \) a unit sphere in \(\mathbb{R}^n \); \(\xi \cdot \eta \) and \(\|\xi\| \) denote, respectively, the scalar product of \(\xi, \eta \in \mathbb{R}^n \) and the Euclidean norm of \(\xi \) in \(\mathbb{R}^n \). We write \(f \asymp g \) if there exist constants \(c_1, c_2 > 0 \) such that \(c_1 f(x) \leq g(x) \leq c_2 f(x) \) for all \(x \in \mathbb{R} \); \(a \wedge b := \min(a, b) \).

To formulate the regularity assumption on the characteristic exponent \(\psi \) we introduce some auxiliary functions. For \(x \in \mathbb{R} \) put

\[
L(x) := x^2 \mathbf{1}_{\{|x| < 1\}}, \quad U(x) := x^2 \wedge 1, \tag{2.1}
\]

and define for \(\xi \in \mathbb{R}^n \) the functions

\[
\psi^L(\xi) := \int_{\mathbb{R}^n} L(\xi \cdot u) \mu(du) = \int_{\{|\xi \cdot u| \leq 1\}} (\xi \cdot u)^2 \mu(du),
\psi^U(\xi) := \int_{\mathbb{R}^n} U(\xi \cdot u) \mu(du) = \int_{\mathbb{R}^n} ((\xi \cdot u)^2 \wedge 1) \mu(du). \tag{2.2}
\]

2
Observe that we always have
\[(1 - \cos 1)\psi^L(\xi) \leq \text{Re} \, \psi(\xi) \leq 2\psi^U(\xi). \tag{2.3}\]

In addition, we assume that functions \(\psi^L\) and \(\psi^U\) are comparable, i.e. the assumption below holds true.

A. There exists \(\beta > 1\) such that \(\sup_{l \in \mathbb{S}^n} \psi^U(rl) \leq \beta \inf_{l \in \mathbb{S}^n} \psi^L(rl)\) for all \(r\) large enough.

In particular, assumption A implies the existence of the transition probability density for \(Z_t\), see Lemma 1 in Section 3.

Define
\[
\psi^*(r) := \sup_{l \in \mathbb{S}^n} \psi^U(rl),
\]
and
\[
\rho_t := \inf\{r : \psi^*(r) = 1/t\}. \tag{2.4}
\]

We decompose \(Z_t\) into a sum
\[
Z_t = \bar{Z}_t + \hat{Z}_t - a_t, \tag{2.5}
\]
where
- \(a_t \in \mathbb{R}^n\) is a vector with coordinates
 \[(a_t)_i = t \left(a_i + \int_{1/\rho_t<\|u\|<1} u_i \mu(du) \right), \tag{2.6}\]
where the vector \(a \in \mathbb{R}^n\) is that from representation (1.1), and \(\rho_t\) is defined in (2.3);
- for each \(t > 0\) the random variables \(\bar{Z}_t\) and \(\hat{Z}_t\) are independent; the variable \(\bar{Z}_t\) is infinitely divisible for each \(t > 0\), with respective characteristic exponent
 \[
 \psi_t(\xi) := t \int_{\rho_t<\|u\|<1} (1 - e^{\xi \cdot u} + i\xi \cdot u) \mu(du), \tag{2.7}\]
and \(\hat{Z}_t\) admits for each \(t > 0\) the compound Poisson distribution with the intensity measure
 \[
 \Lambda_t(du) := t\mu(du)1_{\{\rho_t\|u\|>1\}}. \tag{2.8}\]

If condition A is satisfied, then \(\bar{Z}_t\) possesses a distribution density (see Lemma 2 below), which we denote by \(\bar{p}_t(x)\). Therefore, we can represent \(p_t(x)\) as
\[
p_t(x) = (\bar{p}_t * P_t * \delta_{-a_t})(x), \tag{2.9}\]
where
\[
P_t(dy) := e^{-\Lambda_t(\mathbb{R}^n)} \sum_{m=0}^{\infty} \frac{1}{m!} \Lambda_t^m(dy), \tag{2.10}\]
and \(\Lambda_t^m\) denotes the \(m\)-fold convolution of the measure \(\Lambda_t\); by \(\Lambda_t^0\) we understand the \(\delta\)-measure at 0.

We are looking for a specific form of the estimate for \(p_t(x)\), called the compound kernel estimate, see the definition below.
Definition 1. Let \(\sigma, \zeta : (0, \infty) \to \mathbb{R} \), \(h : \mathbb{R}^n \to \mathbb{R} \) be some functions, and \((Q_t)_{t \geq 0} \) be a family of finite measures on the Borel \(\sigma \)-algebra in \(\mathbb{R}^n \). We say that a real-valued function \(g \) defined on a set \(A \subset (0, \infty) \times \mathbb{R}^n \) satisfies the upper compound kernel estimate with parameters \((\sigma_t, h, \zeta_t, Q_t) \), if

\[
g_t(x) \leq \sum_{m=0}^{n} \frac{1}{m!} \int_{\mathbb{R}^n} \sigma_t h((x - y)\zeta_t)Q_t^m(dy), \quad (t, x) \in A. \tag{2.11}
\]

If the analogue of (2.11) holds true with the sign \(\geq \) instead of \(\leq \), then we say that the function \(g \) satisfies the lower compound kernel estimate with parameters \((\sigma_t, h, \zeta_t, Q_t) \).

Let us put a lexicographical order on \(\mathbb{R}^n \); namely, we say that \(x \leq y \), if there exists \(1 \leq m \leq n \), such that for all \(i < m \) either \(x_i = y_i \), or \(x_i < y_i \). Introducing such an order, we can define in the lexicographical sense the first argument of maximum \(x_t \) of the function \(\tilde{p}_t(x) \). Below we show that \(x_t \) indeed exists, and for every \(t_0 > 0 \) there exists \(L = L(t_0) \) such that

\[
\|x_t\| \leq \frac{L}{\rho_t} \quad t \in (0, t_0].
\]

Below we present our main result on the behaviour of the transition probability density of a Lévy process in \(\mathbb{R}^n \).

Theorem 1. Suppose that condition \(A \) is satisfied. Then for every \(t_0 > 0 \) there exist constants \(b_i > 0 \), \(i = 1 \ldots 4 \), such that the statements below hold true.

I. The function

\[
p_t(x + a_t), \quad (t, x) \in (0, t_0] \times \mathbb{R}^n,
\]

satisfies the upper compound kernel estimate with parameters \((\rho_t^n, f_{upper}, b_t, \Lambda_t) \), where

\[
f_{upper}(x) = b_1 e^{b_2 \|x\|}. \tag{2.12}
\]

II. The function

\[
p_t(x + a_t - x_t), \quad (t, x) \in (0, t_0] \times \mathbb{R}^n,
\]

satisfies the lower compound kernel estimate with parameters \((\rho_t^n, f_{lower}, b_t, \Lambda_t) \), where

\[
f_{lower}(x) = b_3 I_{\|x\| \leq b_t}. \tag{2.13}
\]

One can obtain in the same fashion as in the statement I of the preceding theorem that \(p_t(\cdot) \in C_b^\infty(\mathbb{R}^n) \), and construct the upper estimates for derivatives.

Proposition 1. Suppose that condition \(A \) is satisfied. Then there exist constants \(b_1, b_2 > 0 \) such that for any \(N \geq 1 \), \(k_i \geq 0 \), \(i = 1 \ldots n \), such that \(k_1 + \ldots + k_n = N \), the function

\[
\frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} p_t(x + a_t), \quad (t, x) \in (0, t_0] \times \mathbb{R}^n,
\]

satisfies the upper compound kernel estimate with parameters \((\rho_t^{n+N}, f_{upper}, b_t, \Lambda_t) \).
Clearly, in the case of a symmetric Lévy measure and a zero drift the statement of Theorem 1 holds true with $a_t = x_t = 0$. Moreover, one can get the sharper upper estimate for $p_t(x)$ and its derivatives.

Proposition 2. Suppose that the process Z_t is symmetric, and condition A holds true. Then the first statement of Theorem 1 and Proposition 1 hold true with a_t replaced by zero, and f_{upper} replaced by
\begin{equation}
 f_{\text{upper}}(x) = b_1 e^{-b_2 \|x\| \ln(\|x\|+1)}.
\end{equation}

3 Proofs

We start with the proof of the auxiliary lemma on the growth of ψ^U.

Lemma 1. Under condition A we have for $\|\xi\|$ large enough
\begin{equation}
 \psi^U(\xi) \geq c \|\xi\|^{2/\beta},
\end{equation}
where $c > 0$ is some constant.

Proof. For $l \in \mathbb{S}^n$ and $r > 0$ let
\begin{equation}
 \theta^U(rl) := \psi^U(e^r l), \quad \theta^L(rl) := \psi^L(e^r l).
\end{equation}
Note that the functions L and U satisfy
\begin{equation}
 U(x_2) - U(x_1) = \int_{x_1}^{x_2} \frac{2}{x} L(x) \, dx, \quad x_1 < x_2.
\end{equation}
Then, taking two parallel vectors ξ_1 and ξ_2, and applying the above relation with $x_1 = \xi_1 \cdot u$, $x_2 = \xi_2 \cdot u$, where $u \in \mathbb{R}^n$ and $\|\xi_1\| \leq \|\xi_2\|$, we derive by the Fubini theorem
\begin{equation}
 \psi^U(\xi_2) - \psi^U(\xi_1) = \int_{\mathbb{R}^n} \left[U((\xi_2, u)) - U((\xi_1, u)) \right] \mu(du)
 = \int_{\mathbb{R}^n} \int_{\|\xi_2\|}^{\|\xi_1\|} \frac{2}{r} L(r(l \cdot u)) \, dr \, \mu(du)
 = \int_{\|\xi_2\|}^{\|\xi_1\|} \frac{2}{r} \psi^L(lr) \, dr,
\end{equation}
where $l := \xi_1 / \|\xi_1\|$. Thus, by (3.3) and condition A we have
\begin{equation}
 \theta^U(\xi_2) - \theta^U(\xi_1) \geq \frac{2}{\beta} \int_{\|\xi_2\|}^{\|\xi_1\|} \theta^L(vl) \, dv,
\end{equation}
implying that $e^{-\frac{2}{\beta} \|\xi_2\|} \theta^U(\xi_2) \geq e^{-\frac{2}{\beta} \|\xi_1\|} \theta^U(\xi_1)$. Thus,
\begin{equation}
 \psi^U(e^{\|\xi_2\|} l) = \theta^U(\xi_2) \geq c_1 e^{\frac{2}{\beta} \|\xi_2\|},
\end{equation}
where $c_1 := e^{-\frac{2}{\beta} \|\xi_1\|} \inf_{l \in \mathbb{S}^n} \theta^U(\xi_1) > 0$. Taking $\inf_{l \in \mathbb{S}^n}$ in the left-hand side of the preceding inequality, we arrive at (3.1).
The proof of Theorem 1 and Proposition 2 rely on the following lemma.

Lemma 2. For each $t > 0$ the variable Z_t possesses the density $\bar{p}_t(x)$, which satisfies
\[
\left| \frac{\partial^N}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} \bar{p}_t(x) \right| \leq b_1 p_t^{N+n} e^{-b_2 t u \|x\|}, \quad x \in \mathbb{R}^n, \quad t \in (0, t_0],
\] (3.5)
for any $N \geq 0$, $k_i \geq 0$, $i = 1 \ldots n$, such that $k_1 + \cdots + k_n = N$.

Proof. For $n = 1$ we have
\[
t \mu \{ u : \rho_t \| u \| \geq 1 \} \leq t \psi^*(\rho_t) = 1.
\]

For $n \geq 2$ the situation is similar, but a bit more complicated: since
\[
\mu \{ u : \| u \| \geq r \} \leq \sum_{i=1}^{n} \mu \{ u : |u_i| \geq r \} + \mu \{ u : \| u \| \geq r, |u_i| < r, i = 1, \ldots, n \}
\]
\[
\leq \sum_{i=1}^{n} \mu \{ u : |u_i| \geq r \} + \mu \{ u : r/2 \leq |u_i| < r, i = 1, \ldots, n \}
\]
\[
= \sum_{i=1}^{n} \mu \{ u : |u_i| \geq r \}
\]
\[
+ \mu \{ u : |u_i| \geq r, 1 \leq i \leq n \} - \mu \{ u : |u_i| \geq r/2, 1 \leq i \leq n \}
\]
\[
\leq \sum_{i=1}^{n} \mu \{ u : |u_i| \geq r \} + \mu \{ u : \exists i : |u_i| \leq r \}
\]
\[
\leq (n + 1) \psi^*(1/r),
\]
we arrive at $t \mu \{ u : \rho_t \| u \| \geq 1 \} \leq n + 1$. Therefore,
\[
Re \psi_t(\xi) = t Re \psi(\xi) - t \int_{\rho_t \| u \| \geq 1} (1 - \cos(\xi \cdot u)) \mu(du) \geq t Re \psi(\xi) - 2 t \mu \{ u : \rho_t \| u \| \geq 1 \}
\]
\[
= t Re \psi(\xi) - 2(n + 1) \geq t \left(\frac{1 - \cos 1}{\beta} \right) \psi^U(\xi) - 2(n + 1) \geq c_1 t \| \xi \|^2/\beta - 2(n + 1).
\] (3.7)

where in the last line we used (3.1). Thus, by Lemma 1 the variable Z_t possesses a distribution density $\bar{p}_t \in C^\infty_b(\mathbb{R}^n)$, and for any $N \geq 0$, $k_1 + \cdots + k_n = N$, we have
\[
\frac{\partial^N}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} \bar{p}_t(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} (-ix_1)^{k_1} \cdots (-ix_n)^{k_n} e^{-ix \cdot \xi - \psi_0(\xi)} d\xi.
\] (3.8)

Put $H(t, x, z) := -iz \cdot x - \psi_t(z)$. Note that by the structure of ψ_0 the function $H(t, x, z)$ can be extended analytically (with respect to z) to \mathbb{C}^n. Applying the Cauchy theorem, we derive
\[
\frac{\partial^N}{\partial x_1^{k_1} \cdots \partial x_n^{k_n}} \bar{p}_t(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} (-iz_1)^{k_1} \cdots (-iz_n)^{k_n} e^{H(t, x, z)} dz
\]
\[
= (2\pi)^{-n} \int_{\mathbb{R}^n} \prod_{j=1}^{N} (-iy_j + \eta_j)^{k_j} e^{x \cdot \eta - i x \cdot \psi_t(\eta)} d\eta.
\]
for any $\eta \in \mathbb{R}^n$ satisfying $\|\eta\| \leq \rho_t$. Since the proof of the above equality repeats line by line the proof of [16 Lemma 3.4], see also [14] and [15] for the n-dimensional case, we omit the details.

For $\|\eta\| \leq \rho_t$ we have

$$
\text{Re } H(t, x, y + i\eta) = x \cdot \eta - t \int_{\|u\| \leq 1} (1 - \eta \cdot u - e^{-u \eta}) \mu(du)
$$

$$
- t \int_{\|u\| \leq 1} e^{-\eta \cdot u} (1 - \cos(y \cdot u)) \mu(du)
$$

$$
\leq x \cdot \eta - \psi_t(i\eta) - e^{-1} \text{Re } \psi_t(y),
$$

which implies the upper bound

$$
\left| \frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \overline{\eta}_t(x) \right| \leq c_2 e^{\|y\|-\psi_t(i\eta)} \int_{\mathbb{R}^n} (\|\eta\| + \|y\|)^N e^{-e^{-1}\text{Re } \psi_t(y)} dy.
$$

(3.9)

Put

$$
c := \sup_{|s| \leq 1} \left| \frac{1 - s - e^{-s}}{s^2} \right|, \quad s \in \mathbb{R}.
$$

Using again the inequality $\|\eta\| \leq \rho_t$ and that $\{u : \rho_t \|u\| \leq 1\} \subset \{u : |\eta \cdot u| \leq 1\}$, we derive

$$
-\psi_t(i\eta) \leq ct \int_{\rho_t \|u\| \leq 1} |\eta \cdot u|^2 \mu(du) \leq ct \psi^*(\rho_t) = c.
$$

Thus, taking in (3.9) the vector η with coordinates $\eta_i = -\rho_t \text{sign } x_i$, $i = 1 \ldots n$, we get

$$
\left| \frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \overline{\eta}_t(x) \right| \leq c_3 e^{-\rho_t \|\eta\|} \int_{\mathbb{R}^n} (\rho_t^N + \|y\|^N) e^{-e^{-1}\text{Re } \psi_t(y)} dy,
$$

(3.10)

where $c_3 = c_3(n, N) > 0$ is some constant. Recall that in (3.7) we proved that $\text{Re } \psi_t(y) \geq tc_4 \psi^U(y) - 2$, where $c_4 := \frac{1 - \cos y}{y}$. Therefore,

$$
\left| \frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \overline{\eta}_t(x) \right| \leq c_5 e^{-\rho_t \|\eta\|} \sup_{l \in \mathbb{S}^n} (\rho_t^N I_{n-1}(t, c_6, l) + I_{N+n-1}(t, c_6, l)),
$$

where $c_6 := e^{-1}c_4$, and

$$
I_k(t, \lambda, l) := \int_0^\infty e^{-\lambda t\theta^U(v_l) + (k+1)v} dv, \quad k \geq 0.
$$

(3.11)

To finish the proof we need to show that

$$
\sup_{l \in \mathbb{S}^n} I_k(t, \lambda, l) \leq c_7 \rho_t^{k+1}.
$$

(3.12)

We get

$$
\sup_{l \in \mathbb{S}^n} I_k(t, \lambda, l) = \rho_t^{k+1} \sup_{l \in \mathbb{S}^n} \int_0^\infty e^{-\lambda t \theta^U(v_l) - \theta^U(v_l) + (k+1)(v-v_l) - \lambda t \theta^U(v_l)} dv
$$

$$
\leq \rho_t^{k+1} \int_0^\infty e^{-\lambda t \inf_{l \in \mathbb{S}^n} \theta^U(v_l) + (k+1)(v-v_l) - \lambda t \inf_{l \in \mathbb{S}^n} \theta^U(v_l)} dv
$$

$$
\leq \rho_t^{k+1} \left[\int_{v_l}^{vt} + \int_{v_l}^{\infty} \right] e^{-\lambda t \inf_{l \in \mathbb{S}^n} \theta^U(v_l) + (k+1)(v-v_l)} dv,
$$

7
where $v_t := \ln \rho_t$, and in the last line we used that θ^U is non-negative. To estimate the first integral observe that

$$
\int_0^{v_t} e^{-\lambda t[\theta^U(v_t) - \theta^U(v_t)]} \, dv \leq e^{\lambda t}[\theta^U(t\rho_t)] \int_0^{v_t} e^{(k+1)(v-v_t)} \, dv \leq \frac{e^{\lambda}}{k+1}.
$$

(3.13)

Using condition A and (3.4) we derive

$$
[\theta^U(v_t) - \theta^U(v_t)] = 2 \int_{v_t}^{v} \theta^L(rt) \, dr \geq \frac{2}{\beta} \int_{v_t}^{v} \theta^U(rt) \, dr
$$

$$
= \frac{2}{\beta} \theta^U(v_t)(v - v_t) + \frac{4}{\beta^2} \int_{v_t}^{v} \int_{v_t}^{r} \theta^L(sl) \, ds \, dr
$$

$$
\geq \frac{2}{\beta} \theta^U(v_t)(v - v_t) + \frac{4}{\beta^2} \theta^U(v_t)(v - v_t)^2.
$$

Further, by (2.3) and condition A we have

$$
t \inf_{l \in \mathbb{S}^n} \theta^U(v_t) \geq \frac{t(1-\cos 1)}{2\beta} \sup_{l \in \mathbb{S}^n} \psi^U(\rho_t) = \frac{t(1-\cos 1)}{2\beta} \sup_{l \in \mathbb{S}^n} \psi^*(\rho_t) = \frac{1-\cos 1}{2\beta},
$$

(3.14)

implying

$$
t \inf_{l \in \mathbb{S}^n} [\theta^U(v_t) - \theta^U(v_t)] \geq b(v - v_t) + 2b^{-1}(v - v_t)^2,
$$

where $b = \frac{1-\cos 1}{2\beta}$. Thus,

$$
\int_{v_t}^{\infty} e^{-t \inf_{l \in \mathbb{S}^n}[\theta^U(v_t) - \theta^U(v_t)]} (v - v_t) \, dv \leq \int_{0}^{\infty} e^{(k+1)w - b\lambda w - \frac{2b}{\beta}w^2} \, dw < \infty.
$$

(3.15)

Combining (3.13) and (3.15) we get (3.12), which finishes the proof. \hfill \square

If the Lévy measure μ is symmetric, one can refine the upper estimate in (3.5).

Lemma 3. Let condition A hold true, and suppose in addition that the Lévy measure μ is symmetric. Then for any $N \geq 0$ and any $k_i \geq 0$, $i = 1 \ldots n$, $k_1 + \ldots + k_n = N$, we have

$$
\left| \frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \mathcal{P}_t(x) \right| \leq b_t \rho_t^{N+n} e^{-b_2 \rho_t \|x\| \ln(\rho_t \|x\| + 1)}, \quad x \in \mathbb{R}^n, \quad t \in (0, t_0].
$$

(3.16)

Proof. By the same argument as in [16] Lemma 3.6 we have for any $\eta \in \mathbb{R}^n$

$$
\left| \frac{\partial^N}{\partial x_1^{k_1} \ldots \partial x_n^{k_n}} \mathcal{P}_t(x) \right| \leq (2\pi)^{-n} e^{\eta \cdot x - \psi(x)} \int_{\mathbb{R}^n} (\|y\| + \|\eta\|)^N e^{-Re \psi(y)} \, dy.
$$

(3.17)
By Lemma 2 the integral in (3.17) is estimated from above by $c_1(\|\eta\|^N \rho_t^n + \rho_t^{N+n})$, where $c_1 > 0$ is some constant. For $\psi_t(i\eta)$ we have

$$-\psi_t(i\eta) = t \int_{\rho_t \|u\| \leq 1} [\cosh(\eta \cdot u) - 1] \mu(du) = t\theta(\|\eta\|/\rho_t) \int_{\rho_t \|u\| \leq 1} (\eta \cdot u)^2 \mu(du)$$

$$\leq t\theta(\|\eta\|/\rho_t)(\|\eta\|/\rho_t)^2 \sup_{l \in \mathbb{S}^n} \int_{\rho_t \|u\| \leq 1} \rho_t^2(l \cdot u)^2 \mu(du)$$

$$\leq \left(\cosh(\|\eta\|/\rho_t) - 1 \right) t\psi_0(\rho_t)$$

$$= \cosh(\|\eta\|/\rho_t) - 1,$$

where $\theta(s) := s^{-2}(\cosh s - 1), s \geq 0$, is increasing. Since sofar η was arbitrary, take η with coordinates satisfying $\text{sign} \eta_i = -\text{sign} x_i, i = 1 \ldots n$. Then

$$\left| \frac{\partial^N}{\partial x_{k_1} \ldots \partial x_{k_n}} \overline{p}_t(x) \right| \leq c_2 \rho_t^{N+n} e^{-\|x\|\|\eta\| + \cosh(\|\eta\|/\rho_t)}.$$ \hspace{1cm} (3.18)

Minimizing the expression under the exponent in (3.18) in $\|\eta\|$, we arrive at (3.16).

\textbf{Proof of Theorem 7.} \textit{Upper bound.} The proof of the upper bound follows from Lemmas 1, 2, and representation (2.9).

\textit{Lower bound.} From Lemma 2 we know that the function $\overline{p}_t(x)$ is continuous in x, and bounded from above by $b_1 \rho_t^n$. Without loss of generality we may assume that $\int_{\rho_t \|x\| \leq 1} \overline{p}_t(x)dx \geq 1/2$. Then

$$1/2 \leq \int_{\rho_t \|x\| \leq L} \overline{p}_t(x)dx \leq \frac{w_n L^n}{\rho_t^n} \max_{x \in \mathbb{R}^n} \overline{p}_t(x),$$

where w_n is the volume of a unit ball in \mathbb{R}^n. Let x_i be the "smallest" in the lexicographical sense point in which the maximum of $\overline{p}_t(x)$ is achieved. For the off-diagonal lower bound we get using the Taylor formula:

$$\overline{p}_t(x) \geq \overline{p}_t(x_i) - \left| \sum_{i=1}^n (x - x_i)_i \int_0^1 \frac{\partial}{\partial x_i} \overline{p}_t(x_t + r(x - x_i))dr \right|$$

$$\geq \overline{p}_t(x_i) - \left(\sum_{i=1}^n \int_0^1 \left| \frac{\partial}{\partial x_i} \overline{p}_t(x_t + r(x - x_i)) \right|^2 dr \right)^{1/2} \|x - x_i\| \hspace{1cm} (3.19)$$

$$\geq \frac{1}{2w_n L^n} \rho_t^n - c_1(n) \rho_t^{n+1} \|x - x_i\|$$

$$= c_2(n) \rho_t^n \left(1 - c_3(n) \rho_t \|x - x_i\| \right),$$

where in the second line form below we used the on-diagonal estimate

$$\left| \frac{\partial}{\partial y_i} \overline{p}_t(y) \right| \leq c(n) \rho_t^{n+1}.$$

\hspace{1cm} \square
4 Bell-like estimates

In this section we discuss some particular cases in which we pose more restrictive assumptions on the regularity of the tail of the Lévy measure. We show that under certain assumptions it is possible to write more explicit upper and lower estimates for \(p_t(x) \). At the same time, we emphasize that although such estimates can be more explicit, they suppress the vital information about the transition probability density, given by the compound kernel estimates. Moreover, as we will see below, a bell-like estimate may heavily depend on the space dimension.

We begin with some notions on sub-exponential distributions in the multi-dimensional setting, see [22] and [21] for more details. We keep the notation of Theorem 1.

Definition 2. [22] We say that \(G \) is a sub-exponential distribution on \(\mathbb{R}^n \) (and write \(G \in L(\mathbb{R}^n) \)) if for all \(x \in \mathbb{R}^n \) such that \(\min_i x_i < \infty \), we have

\[
\lim_{t \to \infty} \frac{1 - G^{*2}(tx)}{1 - G(tx)} = 1.
\]

(4.1)

Theorem below generalizes the one-dimensional result, proved in [16].

Theorem 2. Let condition A hold true, and suppose that there exist a distribution function \(G \in L(\mathbb{R}^n) \), such that

\[
t\mu(\{u : \|\rho_t u\| > \|v\|\}) \leq C(1 - G(v)), \quad \|v\| \geq 1, \quad t \in (0, t_0],
\]

(4.2)

where \(C > 0 \) is some constant, independent of \(t \). Then for every \(t_0 > 0 \) there exist some constant \(C_1 > 0 \), such that

\[
p_t(x + a_t) \leq C_1 \rho_t^n \left(f_{\text{upper}}(\rho_t x) + 1 - G(\rho_t x) \right), \quad x \in \mathbb{R}^n, \quad t \in (0, t_0],
\]

(4.3)

where \(f_{\text{upper}} \) is defined by (2.12). If the inequality (4.2) holds true with the sign \(\geq \), then

\[
p_t(x + a_t - x_t) \geq C_2 \rho_t^n \left(f_{\text{lower}}(\rho_t x) + 1 - G(\rho_t x) \right), \quad x \in \mathbb{R}^n, \quad t \in (0, t_0],
\]

(4.4)

where \(C_2 > 0 \) is some constant, and \(f_{\text{lower}} \) is defined in (2.13).

In [16] we proved a version of Theorem 2 in the case when the measure \(\mu \) is absolutely continuous, and the density is sub-exponential in the sense of [13]. Up to our knowledge sub-exponential densities are not studied in the multi-dimensional case, see, however, [22] for a brief comment. We strongly believe that the result analogous to those proved in [16] also can be proved in the multi-dimensional setting, after establishing the necessary properties of sub-exponential densities analogous to those presented in [13]. However, it is possible to prove a version of Theorem 2 under the assumption of a power decay of the Lévy density.

Theorem 3. Let condition A hold true. Suppose that \(\mu(du) = m(u)du \), and for \(\|u\| \geq 1 \) we have the estimate

\[
t\rho_t^{-n} m(\rho_t^{-1} u) \leq \|u\|^{-n-b}, \quad t \in (0, t_0],
\]

(4.5)
where \(b > 0 \). Then

\[
p_t(x + a_t) \leq c_1 \frac{\rho^t_n}{(1 + \rho_t \|x\|)^{n+b}}, \quad x \in \mathbb{R}^n, \quad t \in (0, t_0]. \tag{4.6}
\]

If the inequality (4.5) holds true with the sign \(\geq \), then

\[
p_t(x + a_t - x_t) \geq c_2 \frac{\rho^t_n}{(1 + \rho_t \|x\|)^{n+b}}, \quad x \in \mathbb{R}^n, \quad t \in (0, t_0]. \tag{4.7}
\]

The proof of Theorem 2 relies on the results obtained in [22]. In order to make the presentation self-contained, we quote these results below.

It is shown in [22, Theorem 7, Corollary 11] that for a distribution function \(G \) the conditions

\begin{itemize}
 \item[\(G_1 \).] For \(\forall a, x \in \mathbb{R}^n, a \geq 0, x \geq 0 \), such that \(\min_i x_i < \infty \), \(\lim_{t \to \infty} \frac{1-G(tx-a)}{1-G(tx)} = 1 \);
 \item[\(G_2 \).] All marginals \(G_i \) of \(G \) are sub-exponential (i.e., \(G_i \in L(\mathbb{R}) \)), are equivalent to \(G \in L(\mathbb{R}^n) \), and imply that for \(x \geq 0 \), \(\min_i x_i < \infty \), and \(a \in \mathbb{R}^n, a \geq 0 \), one has
\end{itemize}

\[
\lim_{t \to \infty} \frac{1 - H(tx-a)}{1 - G(tx)} = \lambda, \tag{4.8}
\]

where

\[
H(x) = \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} G^{*k}(x), \quad \lambda \in (0, \infty). \tag{4.9}
\]

We also need [22, Theorem 10], which states that if the distribution function \(G \) satisfies \(G_1 \) and \(G_2 \), and the distribution functions \(R \) and \(F \) are such that

\[
\lim_{t \to \infty} \frac{1 - F(tx-a)}{1 - G(tx)} = \alpha, \tag{4.10}
\]

\[
\lim_{t \to \infty} \frac{1 - R(tx-a)}{1 - G(tx)} = \beta, \tag{4.11}
\]

for some \(\alpha, \beta \in \mathbb{R} \), and any \(a, x \in \mathbb{R}^n, a, x \geq 0 \), \(\min_i x_i < \infty \), then

\[
\lim_{t \to \infty} \frac{1 - R * F(tx-a)}{1 - G(tx)} = \alpha + \beta. \tag{4.12}
\]

Proof of Theorem 2. By (4.9) we have

\[
p_t(x) \leq \rho^t_n \mathcal{f}_{\text{upper}}(x \rho_t) + c_1 \rho^t_n \int_{\|v\| \geq 1} \mathcal{f}_{\text{upper}}(x \rho_t - v) G(dv). \tag{4.13}
\]

Note that for any \(c > 0 \) the tail of a sub-exponential distribution in \(\mathbb{R} \) decays slower than \(e^{-c|y|} \) as \(|y| \to \infty \), (see [13], also the comment in [10]), which implies that for any \(c > 0 \) the tail of a sub-exponential distribution in \(\mathbb{R}^n \) decays slower than \(e^{-c\|x\|} \) as \(\|x\| \to \infty \). Hence,
for $R(x) = 1 - f_{\text{upper}}(x)$ we have \[4.11\] with $\beta = 0$. Thus, by sub-exponentiality of G we have the relation \[4.12\] with $\alpha = 1$, $\beta = 0$, i.e.

$$
\lim_{s \to \infty} \frac{\int_{\|v\| \geq 1} f(xs - v) dG(v)}{1 - G(xs)} = 1.
$$

Since $\rho_t \to \infty$ as $t \to 0$, we finally derive \[4.3\] for t small enough.

Similar argument works for the lower bound: in this case we take $R(x) = 1 - f_{\text{lower}}(x)$.

Proof of Theorem 3. Let $q(v) := (1 + \|v\|)^{-n-b}$, and put $Q(v) := \sum_{k=1}^{\infty} \frac{q^k(v)}{k!}$, $v \in \mathbb{R}^n$. By Theorem 1 and \[4.5\] we get

$$
p_t(x) \leq c \rho_t^{q} (f_{\text{upper}}(x \rho_t) + \int_{\mathbb{R}^n} f_{\text{upper}}(x \rho_t - v) Q(v) dv).
$$

(4.14)

Let us estimate $Q(v)$. We have:

$$
q^2(w) = \int_{\mathbb{R}^n} \frac{1}{(1 + \|v\|)^{n+b}(1 + \|w - v\|)^{n+b}} dv
\leq \left[\int_{\{\|w - v\| \leq 2^{-1}\|w\|\}} + \int_{\{\|w - v\| \geq 2^{-1}\|w\|\}} \right] \frac{1}{(1 + \|v\|)^{n+b}(1 + \|w - v\|)^{n+b}} dv
= I_1 + I_2.
$$

To estimate I_1 observe that if $\|w - v\| \leq 2^{-1}\|w\|$, then $\|w\| \leq \|v\| \leq 3/2\|w\|$, or $1/2\|w\| \leq \|v\| \leq \|w\|$, implying $\frac{1}{1 + \|v\|} \leq \frac{2}{2 + \|w\|}$. Therefore,

$$
I_1 \leq \left(\frac{2}{2 + \|w\|} \right)^{n+b} \int_{\mathbb{R}^n} \frac{1}{(1 + \|v\|)^{n+b}} dv \leq c \left(\frac{2}{1 + \|w\|} \right)^{n+b}.
$$

Analogously, if $\|w - v\| \geq 2^{-1}\|w\|$, then $\frac{2}{2 + \|w\|} \geq \frac{1}{1 + \|w - v\|}$, implying

$$
I_2 \leq \left(\frac{2}{2 + \|w\|} \right)^{n+b} \int_{\mathbb{R}^n} \frac{1}{(1 + \|v\|)^{n+b}} dv \leq c \left(\frac{2}{1 + \|w\|} \right)^{n+b}.
$$

Thus, there exists a constant $C > 0$ such that $q^2(v) \leq Cq(v)$. By induction, $q^k(v) \leq C^{k-1}q(v)$, implying $Q(v) \leq c_1 q(v)$, $v \in \mathbb{R}$. Finally, observe that

$$
\int_{\mathbb{R}} f_{\text{upper}}(x - v) Q(v) dv = \left[\int_{\|x-v\| \geq 2^{-1}\|x\|} + \int_{\|x-v\| \leq 2^{-1}\|x\|} \right] f_{\text{upper}}(x - v) Q(v) dv
\leq c_2 f_{\text{upper}}(x/2) + c_3 Q(x) \leq c_4 Q(x).
$$

Thus, we arrive at

$$
p_t(x) \leq c_5 \frac{\rho_t^q}{(1 + \rho_t \|x\|)^{n+b}},
$$

which proves the first part of the theorem. The same argument applies for the lower bound.
5 Examples

Example 1. Let Z_t be an α-stable process, $\alpha \in (0, 2)$, with the Lévy measure $\mu(du) = c_\alpha u^{-n-\alpha}du$, and the drift vector $b \in \mathbb{R}^n$. One can easily verify that condition A is satisfied, and $\rho_t = t^{-1/\alpha}$. Applying Theorem 3, we arrive at

$$p_t(x + bt) \asymp t^{-n/\alpha} f(t^{-1/\alpha} \|x\|), \quad x \in \mathbb{R}^n, \quad t \in (0, t_0],$$

where

$$f(z) = 1 \wedge z^{-\alpha - n}, \quad z > 0,$$

and for the lower bound we used that due to the symmetry of the Lévy measure we have $x_t = 0$. Note that by the structure of μ the above estimates hold true for all $t > 0$, $x \in \mathbb{R}^n$, and coincides in the case $b = 0$ with the well-known estimate for the transition probability density of a symmetric α-stable process.

Observe that for $1 < \alpha < 2$ we have

$$t^{-1/\alpha} \|x - tb\| \geq t^{-1/\alpha} - t^{1-1/\alpha} \|b\| \geq t^{-1/\alpha} \|x\| - c \|b\|, \quad t \in (0, t_0].$$

Thus, for such α we arrived at

$$p_t(x) \asymp t^{-n/\alpha} f(t^{-1/\alpha} \|x\|), \quad t \in (0, t_0], \quad x \in \mathbb{R}^n.$$

Example 2. Consider a "discretized version" of an α-stable Lévy measure in \mathbb{R}^n. Let $m_k,\nu(dy)$ be a uniform distribution on a sphere S_k,ν centered at 0 with radius $2^{-k\nu}, \nu > 0, k \in \mathbb{Z}$. Consider a Lévy process with characteristic exponent of the form (1.1), where

$$\mu(dy) = \sum_{k=-\infty}^{\infty} 2^{k\gamma} m_{k,\nu}(dy), \quad 0 < \gamma < 2\nu,$$

and some drift coefficient $a \in \mathbb{R}^n$. Let us check that in this case $\psi^U(\xi) \asymp \psi^L(\xi) \asymp \|\xi\|^\alpha$, where $\alpha = \gamma/\nu$.

Let $k_0 := \nu^{-1} \log_2 \|\xi\|$. We have

$$\psi^U(\xi) \leq \int_{\mathbb{R}^n} (\|\xi\|^2 \|y\|^2 \wedge 1) \mu(dy)$$

$$= \|\xi\|^2 \int_{\|y\| \leq \|\xi\|} \|y\|^2 \mu(dy) + \int_{\|y\| > \|\xi\|} \mu(dy)$$

$$= \|\xi\|^2 \sum_{k \geq k_0} 2^{\gamma k - 2k\nu} + c_1 \sum_{k \leq k_0} 2^{\gamma k}$$

$$\leq \|\xi\|^2 \sum_{k \geq k_0} 2^{\gamma k_0 (\gamma - 2\nu)} \sum_{k \geq k_0} 2^{-(k - k_0) (2\nu - \gamma)} + c_1 + 2^{\gamma k_0} \frac{1 - 2^{-\gamma k_0}}{1 - 2^{-\gamma}}$$

$$\leq \frac{2^{2\nu - \gamma} - 1}{2^{2\nu - \gamma} - 1} \|\xi\|^2 2^{2\nu - \gamma \log_2 \|\xi\|} + c_2 2^{\gamma \log_2 \|\xi\|} \leq c_3 \|\xi\|^\alpha.$$
The above calculations and the inequality \((1 - \cos 1)\psi^L(\xi) \leq \int_{\mathbb{R}^n} (1 - \cos(\xi \cdot y))\mu(dy)\) imply that

\[
\psi^L(\xi) \leq c_4\psi^U(\xi) \leq c_5||\xi||^\alpha.
\]

For the lower bound we have

\[
\psi^L(\xi) \geq \int_{\|y\| \geq 1/\|\xi\|} |\xi \cdot y|^2 \mu(dy) \geq m_{k\alpha,\nu} \{l \in S_{k\alpha,\nu} : |\cos(l \xi \cdot l)| > \epsilon\} \|\xi\|^{2k_\alpha(\gamma - 2\nu)}
\]

Thus, condition A is satisfied, and \(\psi^L(\xi) \asymp \psi^U(\xi) \asymp ||\xi||^\alpha\), which in turn gives \(\rho_t \asymp t^{-1/\alpha}\).

Note that for \(||x|| > 1\) we have

\[
t\mu\left(\{u : \rho_t||u|| > ||x||\}\right) = t \sum_{n\leq\log_2(\rho_t/||x||)} 2^\gamma n \leq Ct_2^{\gamma\log_2(\rho_t/||x||)} = C||x||^{-\gamma/\nu} = C||x||^{-\alpha},
\]

where \(n(t, x) := \frac{1}{t} \log_2(\rho_t/||x||)\). Therefore, condition (4.2) of Theorem 2 holds true with \(1 - G(x) = ||x||^{-\alpha}\), \(||x|| \geq 1\). By this theorem we have the following estimate for the respective transition probability density:

\[
\rho_t(x + at) \leq c_1t^{-\alpha}f(t^{-1/\alpha}||x||) \tag{5.2}
\]

where

\[
f(z) = 1 \wedge z^{-\alpha}, \quad z > 0. \tag{5.3}
\]

However, as one may notice, such upper estimate is informative only in the case \(n = 1\) and \(1 < \alpha < 2\), see [16] for the detailed analysis. In the other cases the upper bound is not integrable! On the other hand, Theorem [1] together with Proposition [2] provides that the transition probability density satisfies the upper compound kernel estimates with parameters \((t^{-1/\alpha}, f_{upper}, t^{-1/\alpha}, \Lambda_1)\), with

\[
f_{upper}(x) = b_1e^{-b_2||x||\log(1+||x||)}, \quad \text{and} \quad \Lambda_1(du) = t\mathbb{1}_{\{||u|| \geq t^{1/\alpha}\}}\mu(du).
\]

In this case the obtained upper bound is integrable.

Remark 1. The above example illustrates that even if the (re-scaled) Lévy measure can be dominated by a reasonably good function, the explicit upper estimate obtained in Theorem 2 can be extremely inexact. Heuristically, the condition (4.2) is imposed on the tail of the re-scaled measure, which suppresses its intrinsic behaviour. See, however, [12] for another approach in a similar situation. On the other hand, the condition on the behaviour of the density can lead to adequate results, as we saw in Example 1. Possibly, one can modify the assumption Theorem 2 and get more reasonable explicit estimates, but in fact it is not needed, since the compound kernel estimates obtained in Theorem 1 already contain the information, sufficient for many applications, see [18] and [19].

Acknowledgement. The author is very grateful to Alexei Kulik for fruitful discussions. The DFG Grant Schi 419/8-1, and the Scholarship of the President of Ukraine for young scientists (2011-2013) are gratefully acknowledged.
References

[1] E. T. Copson. *Asymptotic expansions*. Cambridge Uni. Press, Cambridge, 1965.

[2] M. T. Barlow, R. B. Bass, Z.-Q. Chen, M. Kassmann. Non-local Dirichlet forms and symmetric jump processes. *Trans. Amer. Math. Soc.* 361 (2009), 1963–1999.

[3] M. T. Barlow, A. Grigoryan, T. Kumagai. Heat kernel upper bounds for jump processes and the first exit time. *J. Reine Angew. Math.* 626 (2009), 135–157.

[4] Z.-Q. Chen. Symmetric jump processes and their heat kernel estimates. *Sci. China Ser. A.* 52 (2009), 1423–1445.

[5] Z.-Q. Chen, T. Kumagai. Heat kernel estimates for stable-like processes on d-sets. *Stoch. Proc. Appl.* 108 (2003), 27–62.

[6] Z.-Q. Chen, T. Kumagai. Heat kernel estimates for jump processes of mixed types on metric measure spaces. *Probab. Th. Rel. Fields.* 140(1-2) (2008), 277–317.

[7] Z.-Q. Chen, P. Kim, T. Kumagai. On Heat kernel estimates and parabolic Harnack inequality for jump processes on metric measure spaces. *Acta Math. Sin. (Engl. Ser.)* 25 (2009), 1067–1086.

[8] Z.-Q. Chen, P. Kim, T. Kumagai. Global heat kernel estimates for symmetric jump processes. *Trans. Amer. Math. Soc.* 363(9) (2011), 5021–5055.

[9] Y. Ishikawa. Asymptotic behavior of the transitions density for jump type processes in small time. *Tôhoku Math. J.* 46 (1994), 443–456.

[10] Y. Ishikawa. Density estimate in small time for jump processes with singular Lévy measures. *Tôhoku Math. J.* 53(2) (2001), 183–202.

[11] K. Kaleta, P. Sztonyk. Upper estimates of transition densities for stable-dominated semigroups. To appear in *J. Evol. Equ.*, DOI 10.1007/s00028-013-0194-2

[12] K. Kaleta, P. Sztonyk. Estimates of transition densities and their derivatives for jump Lévy processes. Preprint 2013.

[13] C. Klüppelberg. Subexponential Distributions and Characterizations of Related Classes. *Probab. Th. Rel. Fields.* 82 (1989), 259–269.

[14] V. Knopova, R.L. Schilling. Transition density estimates for a class of Lévy and Lévy-type processes. *J. Theor. Probab.* 25 (2012), 144–170.

[15] V. Knopova, A. Kulik. Exact asymptotic for distribution densities of Lévy functionals. *Electronic J. Probab.* 16 (2011), 1394–1433.

[16] V. Knopova, A. Kulik. Intrinsic small time estimates for distribution densities of Lévy processes. Submitted to *Rand. Op. Stoch. Eq.*
[17] V. Knopova. Asymptotic behaviour of the distribution density some Lévy functionals in \mathbb{R}^n. *Th. Stoch. Proc. eory of Stochastic Processes* **17** (33), No. 2 (2011), 35–54.

[18] V. Knopova, A. Kulik. Parametrix construction for certain Lévy-type processes and applications. Preprint 2013.

[19] V. Knopova, A. Kulik. Intrinsic compound kernel estimates for the transition probability density of a Lévy type processes and their applications. Preprint 2013.

[20] R. Léandre, Densité en temps petit d’un processus de. In: *Seminaire de Probabilités XXI, Lecture Notes in Math.*, Ed. J. Azéma, P.A. Meyer, and M. Yor, Springer, Berlin, **1247** (1987), 81–99.

[21] E. Omey, F. Mallor, J. Santos. Multivariate subexponential distributions and random sums of random vectors. *Adv. in Appl. Probab.* **38**(4) (2006), 1028–1046.

[22] E. Omey. Subexponential distribution functions in \mathbb{R}^d. *J. Math. Sci.* **138**(1) (2006), 5434–5449.

[23] J. Picard. On the existence of smooth densities for jump processes. *Prob. Th. Rel. Fields.* **105** (1996), 481–511.

[24] J. Picard. Density in small time for Lévy processes. *ESAIM Probab. Statist.* **1** (1997), 358–389.

[25] J. Picard. Density in small time at accessible points for jump processes. *Stoch. Proc. Appl.* **67** (1997), 251–279.