Porównanie ultrasonograficznej oceny współczynnika żyła głównej dolna/aorta z przyłożenia głowicy w linii środkowej przedniej i pachowej przedniej prawej

Sonographic assessment of the inferior vena cava/aorta index measured with the transducer placed in the anterior median line and right anterior axillary line – a comparison

Monika Luboch1, Magdalena Łoś1, Łukasz Szmygel2, Wojciech Kosiak3

1 Ultrasound Student Association at the Laboratory of Diagnostic Ultrasound and Biopsy, Department of Pediatrics, Oncology, Hematology and Endocrinology, University Clinical Center in Gdańsk, Gdańsk, Poland
2 Department of Pediatrics, Diabetology and Endocrinology, University Clinical Center in Gdańsk, Gdańsk, Poland
3 Laboratory of Diagnostic Ultrasound and Biopsy, Department of Pediatrics, Oncology, Hematology and Endocrinology, University Clinical Center in Gdańsk, Dębinki 7, Building No. 12, 80-211 Gdańsk, Poland, e-mail: monika_anna@gumed.edu.pl, tel.: +48 58 349 29 22

DOI: 10.15557/JoU.2014.0028

Streszczenie

Celem pracy była ocena porównawcza wartości ultrasonograficznego współczynnika żyła głównej dolna/aorta z przyłożenia głowicy w linii środkowej i pachowej przedniej prawej. Material i metoda: W badaniu udział wzięło 45 ochotników, w tym 33 kobiety, w wieku 22,5 ± 1,26 roku, z ujemnym wywadem w kierunku chorób układu krążenia i nerek. Badanie polegało na ultrasonograficznej ocenie i pomiarach żyły głównej dolnej i aorty z przyłożenia głowicy w linii środkowej przedniej oraz w pachowej przedniej prawej. Wartość współczynnika żyła główna dolna/aorta uzyskiwano, wyliczając iloraz średnicy żyły głównej dolnej i aorty. pomiary średnicy naczyń były wykonywane z przyłożenia głowicy ultrasonograficznej w linii środkowej przedniej oraz linii pachowej przedniej prawej. Dwóch badających wykonywało wszystkie pomiary trzykrotnie, stosując głośnicę convex 3,5–5 MHz. Zmierniwo także masę ciała, wzrost i ciśnienie tętnicze. Wyniki: Po opracowaniu statystycznym za pomocą programu STATISTICA uzyskano następujące wartości współczynnika żyła główna dolna/aorta: w linii środkowej przedniej 1,43 ± 0,21, w linii pachowej przedniej po stronie prawej 1,285 ± 0,19. Nie wykazano istotnej statystycznie różnicy w pomiarach tego współczynnika pomiędzy badaczami (p = 0,17). Zaobserwowano silną korelację pomiędzy współczynnikami żyła główna dolna/aorta w obu przyłożeniach niezależnie od badającego (współczynnik korelacji r = 0,61 i r = 0,71). Na postawie przeprowadzonych badań wysunięto następujące wnioski: współczynnik żyła główna dolna/aorta mierzony w linii pachowej przedniej po stronie prawej jest prostą i powtarzalną metodą oceny nawodnienia pacjentów; badania w obu punktach przyłożenia mogą być stosowane zamiennie. Konieczne są dalsze badania w celu wyznaczenia norm współczynnika żyła główna dolna/aorta w linii pachowej przedniej po stronie prawej.
Abstract

The aim of the study was to compare the values of the sonographic inferior vena cava/aorta index obtained with the transducer placed in the median line and right anterior axillary line. **Material and methods:** The study enrolled 45 volunteers, including 33 women, aged 22.5 ± 1.26 with a negative history of circulatory and renal diseases. The study consisted in a sonographic assessment and measurement of the inferior vena cava and aorta by placing the transducer in the anterior median line and right anterior axillary line. The value of the inferior vena cava/aorta index was obtained by calculating the ratio of the diameters of the inferior vena cava and aorta. The diameter measurements were taken by placing the ultrasound transducer in the anterior median line and right anterior axillary line. Two examiners performed the measurement three times and used convex probes of 3.5–5 MHz. Additionally, the subjects’ weight, height and arterial blood pressure were taken. **Results:** Following a statistical analysis with the use of STATISTICA software, the following values of the inferior vena cava/aorta index were obtained: in the anterior median line – 1.43 ± 0.21, and in the right anterior axillary line – 1.285 ± 0.19. There was no statistically significant difference between the measurements obtained by the two examiners (p = 0.17). A strong correlation was noted between the inferior vena cava/aorta indices calculated in both sites of transducer placement, which was irrespective of the examiners (the correlation coefficient: r = 0.61 and r = 0.71). The study indicate that the inferior vena cava/aorta index measured in the right anterior axillary line is a simple and reproducible method for determining the body fluid status; the examinations conducted in both sites may be used interchangeably. Further studies are needed to determine reference values for the inferior vena cava/aorta index measured in the right anterior axillary line.

Introduction

An accurate assessment of the body fluid status, particularly in a pediatric patient, is a challenge (1). To do so, various methods are needed. The basic one is a physical examination which includes an assessment of the skin elasticity, mucous membranes, weight, blood pressure and heart rate (2). Laboratory tests, which are commonly performed to determine the fluid status, are characterized by unsatisfactory levels of sensitivity and specificity (1). Moreover, central venous pressure (CVP) is a basic method to assess the hydration status of patients in intensive care units, there is also bioimpedance and it is becoming more and more common. However, these methods are burdened with a low accuracy or are invasive. Moreover, they are also time-consuming (3). Frequently, they do not allow for monitoring the fluid status changes. A modality which may offer the possibility of even more accurate assessment of the fluid status and enable monitoring of patients is sonography (4, 5). The ultrasound assessment of the diameter of the inferior vena cava and aorta (IVC/Ao index) with the ultrasound transducer placed in the anterior median line is a recognized method (6, 7) used in the emergency departments and intensive care units. The limitations of this method include: trauma in the subternal region, wound dressing or substantial amount of gas in the intestines. In such situations the assessment of the IVC/Ao index performed in other sites may prove useful.

The aim of the study was to compare the values of the sonographic IVC/Ao index measured with the transducer placed in the median line and right anterior axillary line.
Material i metoda

W badaniu udział wzięło 45 ochotników, studentów w wieku 18–26 lat. Grupa ta składała się z 33 kobiet i 12 mężczyzn, średnia wieku wynosiła 22,5 ± 1,26 roku. U żadnej z tych osób nie stwierdzono wcześniej chorób układu krążenia ani chorób nerek. U badanych wykonano pomiar ciśnienia tętniczego na tętnicy ramianej oraz masy ciała i wzrostu, a także obliczono współczynnik BMI. Przeprowadzono ultrasonograficzną ocenę średnicy żyły głównej dolnej oraz aorty w przyłożeniu głowy w linii środkowej przedniej i w pachowej przedniej prawej. Wykorzystano głowicę typu convex o częstotliwości 3,5–5 MHz, aparat GE Logiq 7 (GE PDI, Tempe, AZ, USA, rok produkcji 2005). Badanie wykonano u osób leżących na wznak z przyłożenia głowy w linii środkowej ciała, poniżej wyrostka mieczkowatego. Przy niewielkiej zmianie pozycji głowicy uzyskano obraz IVC i Ao z tego samego miejsca. Pomiary średnicy żyły głównej dolnej przeprowadzono w jej odcinku wewnątrzwątrobowym, poniżej spływu wątrobowych (2 cm poniżej przeponiny), w miejscu równoległego przebiegu ścian naczynia (ryc. 1). Średnicę aorty mierzono 1 cm powyżej odejścia pnia trzewnego (ryc. 2). Dodatkowo głowicę przyłożono w linii pachowej przedniej po stronie prawej (ryc. 3). Przez okno wątrobowe uwidoczniono oba naczynia i dokonywano pomiarów największej uzykowanej ich średnicy podczas spokojnego oddychania pacjenta, w miejscu równoległego przebiegu ścian naczynia. Pomiary przeprowadzono w środkowej części wewnątrzwątrobowego przebiegu IVC i na tej samej wysokości zmierzono aortę (ryc. 4).

Badanie wykonywało dwóch badających (M.L., M.L.), członków Studenckiego Kola Ultrasonografii przy Pracowni Diagnostyki Ultrasonograficznej i Biopsji Kliniki Pediatrii, Hematologii i Onkologii Gdańskiego Uniwersytetu Medycznego. Pomiary były konsultowane przez doświadczonych lekarzy pracujących w pracowni ultrasonograficznej Kliniki. Każdy badający przeprowadził pomiar trzykrotnie. Uzyskane wyniki przeanalizowano przy użyciu programu STATISTICA 10 w wersji polskiej (StatSoft, 2011).

Material and methods

The study enrolled 45 volunteers – students aged 18–26. This group consisted of 33 women and 12 men. The mean age was 22.5 ± 1.26. None of the subjects had a history of circulatory or renal diseases. In each subject, the arterial blood pressure was measured in the brachial artery, weight and height were taken and the BMI index was calculated. The study consisted in a sonographic assessment and measurement of the inferior vena cava and aorta by placing the transducer in the anterior median line and right anterior axillary line. For this purpose, a convex probe with the frequency of 3.5–5 MHz and the GE Logiq 7 ultrasound system (GE PDI, Tempe, AZ, USA, produced in 2005) were used. The examinations were conducted with the patients in the supine position. The transducer was placed in the median line, inferior to the xiphoid process. Following a slight change of the transducer placement, the IVC and Ao were visualized from the same site. The inferior vena cava was measured in its intrahepatic fragment beneath the confluence with the hepatic veins (2 cm below the diaphragm), where its walls were parallel (fig. 1). The diameter of the aorta was taken 1 cm above the celiac trunk (fig. 2). Additionally, the transducer was placed in the right anterior axillary line (fig. 3). Using the liver as an acoustic window during the patient’s regular breathing cycle, both vessels were visualized and their maximum diameters were recorded at the site where the vessel’s walls were parallel. The measurements were taken in the median aspect of the intrahepatic IVC, and the aorta was measured at the same level (fig. 4).

The examinations were performed by two examiners (M.L. and M.L.) – the members of the Ultrasound Student Association at the Laboratory of Diagnostic Ultrasound and Biopsy, Department of Pediatrics, Oncology, Hematology and Endocrinology at the Medical University of Gdańsk, Poland. The measurements were consulted with experienced physicians working in the Laboratory. Each examiner took the measurements three times. The outcomes were analyzed in STATISTICA 10 software in the Polish language version (StatSoft, 2011).
Wyniki

W badanej grupie w linii środkowej uzyskano następujące wartości średnicy żyły głównej dolnej i aorty: IVC 2,03 ± 0,28 cm, Ao 1,42 ± 0,16 cm. Współczynnik IVC/Ao w badanej grupie wyniósł 1,43 ± 0,21 i jest nieco wyższy niż opisywany w literaturze – 1,2 ± 2 SD (SD = 0,17). W pomiarach w linii pachowej przedniej po stronie prawej uzyskano następujące wartości: średnica IVC 1,80 ± 0,28 cm, Ao 1,40 ± 0,20 cm, współczynnik IVC/Ao 1,285 ± 0,19. Nie wykazano istotnych statystycznie różnic w wynikach uzyskanych przez obu badających \((p = 0.96\) dla przyłożenia w linii środkowej oraz \(p = 0.17\) w linii pachowej przedniej prawej). Świadczy to o powtarzalności pomiarów wykonanych w obu przyłożeniach. Wykazano silną korelację pomiędzy wartościami współczynnika IVC/Ao w obu przyłożeniach. Współczynnik korelacji wyniósł \(r = 0.61\) dla pierwszej badającej (ryc. 5) oraz \(r = 0.71\) dla drugiej badającej (ryc. 6). Przemawia to za możliwością zamiennego stosowania obu miejsc przyłożenia głowicy w ocenie stanu nawodnienia pacjenta.

Omówienie

Postęp, jaki w ostatnich latach dokonał się w medycynie, szczególnie coraz większa popularność medycyny opartej na dowodach (evidence-based medicine, EBM), wymusza na lekarzach precyzynę diagnozy i kwalifikację pacjentów. Jednym z ważniejszych parametrów w ocenie stanu ogólnego chorego jest nawodnienie oraz oszacowanie stopnia odwodnienia/przewodnienia organizmu. Niewystarczająca dokładność stosowanych dotąd metod oceny nawodnienia powoduje konieczność poszukiwania nowych – precyzyjnych, powtarzalnych, szybkich i nieinwazyjnych. Ocena hematokrytu, poza stosunkowo długim oczekiwaniem na wynik badania, trudnym do zaakceptowania szczególnie na oddziale ratunkowym, może być przyczyną mylnej diagnozy, natomiast pomiar OCŻ jest nieinwazyjny i ma ograniczoną dostępność. Biorąc pod uwagę powyższe, ocena ultrasonograficzna współczynnika IVC/Ao może stanowić alternatywną metodę oceny stopnia nawodnienia. Badanie to jest szybkie, nieinwazyjne i może być wykonane w różnych miejscach.

Results

The following diameters of the inferior vena cava and aorta were obtained in the studied group: IVC 2.03 ± 0.28 cm, Ao 1.42 ± 0.16 cm. The IVC/Ao index equaled 1.43 ± 0.21 and was slightly higher than reported in the literature – 1.2 ± 2 SD (SD = 0.17). The measurements taken in the right anterior axillary line resulted in the following values: IVC 1.80 ± 0.28 cm, Ao 1.40 ± 0.20 cm; IVC/Ao index was 1.285 ± 0.19. No statistically significant differences in the results obtained by both examiners were observed \((p = 0.96\) for the median line and \(p = 0.17\) for the right anterior axillary line). This attests to the reproducibility of the measurements performed in the two analyzed sites. A strong correlation was observed between the values of the IVC/Ao indices measured in both sites. The correlation coefficient equaled \(r = 0.61\) for the first examiner (fig. 5) and \(r = 0.71\) for the other examiner (fig. 6). This suggests that both examination sites may be used interchangeably in establishing the fluid status of patients.

Discussion

The advancement that has occurred in medicine in recent years, particularly the growing popularity of the evidence-based medicine (EBM), forces physicians to establish accurate diagnoses and qualify patients in a precise way. One of the most important parameters in the assessment of the patient’s general condition is the fluid status and estimation of the dehydration/overhydration level. The insufficient accuracy of the methods currently employed to assess the hydration status prompts the search for the new methods that are accurate, reproducible, fast and non-invasive. Apart from the fact that after a hematocrit assessment the results arrive after a long time and are difficult to accept particularly in the emergency department, this method may also lead to an erroneous diagnosis. The measurement of CVP, in turn, is an invasive procedure and its accessibility is limited. Therefore, the sonographic assessment of the IVC/Ao index may constitute an alternative method to assess the hydration status. Such an examination is fast, non-invasive and reproducible. It may accelerate...
i powtarzalne\(^{(1,12)}\), może więc przyspieszyć wdrożenie odpowiedniej terapii chorych odwodnionych oraz zagrożonych wstrząsem hipowolemicznym\(^{(9)}\). Jest to szczególnie istotne u dzieci i osób starszych, z upośledzonym mechanizmem odczuwania pragnienia oraz pacjentów nieprzytomnych i w ciężkim stanie ogólnym\(^{(13)}\).

Dysponując aparatem ultrasonograficznym, można posłużyć się oceną średnicy oraz zapadalności żyły głównej dolnej\(^{(14)}\). Wiąże się to jednak z ograniczeniami, konieczne jest bowiem odniesienie uzyskanych wartości do powierzchni ciała pacjenta, szczególnie dziecka, co wymaga użycia specjalnych siatek centylowych\(^{(4,15)}\). Jest to kłopotliwe implementation of an adequate therapy for dehydrated patients and those at risk of hypovolemic shock\(^{(9)}\). This is of particular significance for elderly and pediatric patients as well as for those with impaired thirst mechanism, unconscious and in a severe general condition\(^{(13)}\).

When ultrasound equipment is available, it is also possible to measure the diameter and collapsibility of the inferior vena cava\(^{(14)}\). This, however, is associated with certain limitations, namely the necessity to refer the obtained values to the body surface area of the patient, particularly the child, which requires the usage of special centile charts\(^{(4,15)}\). This is inconvenient and time-consuming. Furthermore, the

\[r = 0.61079 \]

\[r = 0.71082 \]
Sonographic assessment of the inferior vena cava/aorta index measured with the transducer placed in the anterior median line and right anterior axillary line – a comparison

i czasochłonne. Ponadto normy średnicy żyły głównej dolnej dla populacji pediatrycznej oraz osób dorosłych nie są precyzyjne\(^4,8\), a na wynik wpływa zmienność osobnicza wymiarów żyły głównej dolnej\(^7\).

Powyższe ograniczenia zostały pominiete przez wprowadzenie współczynnika IVC/Ao, w którym odniesienie średnicy żyły głównej dolnej do średnicy aorty nie wymaga znajomości powierzchni ciała pacjenta\(^6,8\), co upraszcza oraz skraca czas badania. Pojawiają się także publikacje, w których autorzy sugerują uzupełnienie badania FAST u chorych z tępym urazem jamy brzusznej o ocenę współczynnika żyła główna dolna/aorta\(^3\). Dostępne prace wskazują na dużą wartość wskaźnika we wstępnej ocenie i późniejszym monitorowaniu stanu pacjenta\(^4,6,8,10\). Jednocześnie u osób po urazach jamy brzusznej, jak również z oparzeniami lub z opatrunkami w okolicy podmostkowej nie ma możliwości dokonania oceny z przyłożenia głowicy ultrasonograficznej w linii środkowej przedniej.

W takiej sytuacji należy rozważyć ocenę współczynnika IVC/Ao z przyłożenia głowicy podłużnie w linii pachowej przedniej prawej. W celu oceny średnicy obraz obu naczyń uzyskuje się poprzez tzw. okno wątrobowe\(^16\). Sposób ten znajduje zastosowanie także w przypadku utrudnień wynikających z obecności pokarmu w żołądku lub gazu w jelitach. Wyniki otrzymane z obu przyłożení wykazują silną korelację. Opanowanie techniki badania wskaźnika IVC/Ao nie jest czasochłonne.

Wnioski

1. Współczynnik IVC/Ao wyznaczany na podstawie pomiaru w linii pachowej przedniej prawej jest prostą i powtarzalną metodą oceny nawodnienia pacjentów.
2. Badania w obu punktach przyłożenia mogą być stosowane zamiennie.

Konflikt interesów

Autorzy nie zgłaszają żadnych finansowych ani osobistych powiązań z innymi osobami lub organizacjami, które mogłyby negatywnie wpłynąć na treść publikacji oraz rościć sobie prawo do tej publikacji.

Piśmiennictwo/References

1. Steiner MJ, DeWalt DA, Byerley JS: Is this child dehydrated? JAMA 2004; 291: 2746–2754.
2. Di Somma S, Gori CS, Grandi T, Risicato MG, Salvatori E: Fluid assessment and management in the emergency department. Contrib Nephrol 2004; 291: 2746–2754.
3. Gwinnett CL: Lecture Notes. Clinical Anaesthesia. Blackwell, Malden (Mass.) 2008.
4. Houdek L, Barata L, O’Donnell MB, Kaban J, Raio C, Ackerman M et al.: Does Inferior Vena Cava/Aorta Ratio Correlate with Fluid Therapy in Clinically Dehydrated Children? (poster). Department of Emergency Medicine, North Shore University Hospital, Manhasset, New York: www.northshorelij.com.
5. Szymel L, Świętoń D, Myśliwiec M: Ocena przydatności współczynnika IVC/Ao u pacjentów z nowo rozpoznana cukrzycą typu I: domieszczenie wstępne. Pediatr Endocrinol Diabet Metab 2010; 16: 24.
6. Kosiak W, Świętoń D, Piskunowicz M: Sonographic inferior vena cava/aorta diameter index, a new approach to the body fluid status assessment in children and young adults in emergency ultrasound – preliminary study. Am J Emerg Med 2008; 26: 320–325.
7. Sridhar H, Mangalore F, Chandrasekarar VP, Manikam R: Caval aorta index and central venous pressure correlation in assessing fluid status! "Ultrasonic Bridging the Gap". ISRN Emergency Medicine 2012. DOI: 10.5402/2012/828626.
8. Kosiak W, Świętoń D, Czarniak P, Kuja S, Piskunowicz M: Przydatność badania ultrasonograficznego w ocenie stopnia nawodnienia pacjenta. Ultrasonografia 2008; 8 (32): 12–14.
9. Chen L, Kim Y, Santucci K: Use of ultrasound measurement of the inferior vena cava diameter as an objective tool in the assessment of children with clinical dehydration. Acad Emerg Med 2007; 14: 841–845.

Conclusions

1. The IVC/Ao index determined on the basis of measurements taken in the right anterior axillary line is an easy and reproducible method of the fluid status assessment.
2. The examinations performed in both sites may be used interchangeably.

Conflict of interest

The authors do not report any financial or personal links with other persons or organizations, which might affect negatively the content of this publication and/or claim authorship rights to this publication.
10. Chen L, Hsiao A, Langhan M, Riera A, Santucci K: Use of bedside ultrasound to assess degree of dehydration in children with gastroenteritis. Acad Emerg Med 2010; 17: 1042–1047.

11. De Lorenzo RA, Morris MJ, Williams JB, Haley TF, Straight TM, Holbrook-Emmons VL et al.: Does a simple bedside sonographic measurement of the inferior vena cava correlate to central venous pressure? J Emerg Med 2012; 42: 429–436.

12. Levine AC, Shah SP, Umulisa I, Munyaneza RB, Dushimiyimana JM, Stegmann K et al.: Ultrasound assessment of severe dehydration in children with diarrhea and vomiting. Acad Emerg Med 2010; 17: 1035–1041.

13. Maristany CP, Segurola Gurruchaga H: [Hydration in clinical practice]. Rev Enferm 2011; 34: 59–64.

14. Seif D, Mailhot T, Perera P, Mandavia D: Caval sonography in shock. A noninvasive method for evaluating intravascular volume in critically ill patients. J Ultrasound Med 2012; 31: 1885–1890.

15. Krause I, Birk E, Davidovits M, Cleper R, Bleden L, Pinhas L et al.: Inferior vena cava diameter: a useful method for estimation of fluid status in children on haemodialysis. Nephrol Dial Transplant 2001; 16: 1203–1206.

16. Goldflam K, Saul T, Lewiss R: Focus on: inferior vena cava ultrasound. ACEP News 2011; 6: 24–25.