On the Covariance of the Charge Form Factor in the Transition Radiation Energy Spectrum of a Beam at Normal Incidence onto a Metallic Screen

Gian Luca Orlandi

Paul Scherrer Institut, 5232 Villigen PSI, CH.

Abstract

A charge-density-like covariance is expected to characterize the transition radiation energy spectrum of a N electron bunch as far as the charge form factor is intended to account for bunch-density effects in the radiation emission. The beam charge passing from a single electron to a high density electron bunch, the covariance of the transition radiation energy is expected to evolve from a charge-point-like to a charge-density-like one. Besides covariance, the radiation energy spectrum is expected to conform to the temporal causality principle: the N single electron amplitudes composing the radiation field are expected to propagate from the metallic screen with relative emission phases causally correlated with the temporal sequence of the N particle collisions onto the metallic screen. In the present paper, the case of a N electron bunch hitting at a normal angle of incidence a flat metallic surface with arbitrary size and shape will be considered. For such an experimental situation, the distribution function of the N electron longitudinal coordinates rules the temporal causality constraint into the transition radiation energy spectrum. The covariance feature of the transition radiation energy spectrum deals instead with the Lorentz invariance of the projection of the N electron spatial density in the transverse plane with respect to the direction of motion of the N electron beam. Because of the invariance of the N electron transverse density under a Lorentz transformation with respect to the direction of motion of the electron beam, the N single electron radiation amplitudes composing the radiation field show a covariant dependence on the distribution function.

Email address: gianluca.orlandi@psi.ch (Gian Luca Orlandi)
of the N electron transverse coordinates, the relative emission phases of the
N single electron radiation amplitudes being indeed only a function of the
N electron longitudinal coordinates because of the temporal causality con-
straint. As a consequence of the temporal causality and the covariance, both
the temporal coherent and incoherent components of the radiation energy
spectrum bear the covariant imprinting of the distribution function of the N
electron transverse coordinates as in the following argued.

Keywords: Virtual Quanta, Coherence, Fourier Transform, Collective
Effects

PACS: 41.60.-m, 41.75.-i, 42.25.Kb, 42.30.Kq

1. **Introduction**

A relativistic charge in a rectilinear and uniform motion can originate
an electromagnetic radiative mechanism crossing the dielectric interface be-
tween two different media. The fast dipolar oscillation of the polariza-
tion charge, induced on the dielectric interface by the relativistic charge,
generates indeed an instantaneous, broad spectral band, radially polarized
and highly directional radiation emission, the so called transition radiation
[1, 2, 3, 4, 5, 6, 7, 8]. A photon pulse propagates backward and forward
from the dielectric interface according to a double conical spatial distribu-
tion whose angular aperture scales down with the Lorentz γ factor of the
charge. The higher and steeper the discontinuity of the dielectric constant
across the interface, the more intense the radiation emission.

Thanks to the relativistic origin, transition radiation can be fruitfully ex-
plotted for energy detection or mass identification of high energy particles
[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Transition radiation based diag-
nostics is commonly used in a particle accelerator to monitor the transverse
[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37] or the longitu-
dinal profile of a charged beam [38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49,
50, 51, 52, 53, 54, 55]. Transition radiators, typically made of a thin metallic
foil or a thin polished Aluminium coating on dielectric substrates, respond
as an ideal conductor over a wide spectral range, from the long wavelength
to far beyond the visible optical region [56]. This experimental situation is
supposed in the present work. In particular, the case of a N electron bunch
colliding at a normal angle of incidence onto a flat ideal conductor surface
will be considered in the following.
An ideal conductor surface being assimilable to a double layer of charge, transition radiation emission can be thus schematized as the result of the interaction of an incident charge with the conduction electrons of the ideal conductor surface. As the relativistic charge approaches the metallic surface, the charge induced conduction electrons freely move in the transverse plane to maintain the metallic surface equipotential. The sudden and fast dipolar oscillation of the double layer of charge is thus responsible for the emission of the radiation pulse as confirmed by the emission of backward radiation.

In the relativistic limit, the electromagnetic field travelling with a relativistic electron can be assimilated to a transverse electromagnetic wave, the so-called virtual quanta field \([7, 57] \). In the case of a single relativistic electron, the harmonic component of the electric field at a given wavelength \(\lambda \) extends indeed in the transverse plane over an efficacious range in the order of \(\gamma \lambda / 2\pi \), the ratio of the longitudinal to the transverse component being \(1/\gamma^2 \). The virtual quanta field showing the nature of a quasi-plane wave front, the radiation emission can be formally described as the result of the wave propagation of the virtual quanta scattered by the metallic surface according to the Huygens-Fresnel principle \([58] \). Under the far field approximation \([7] \), the harmonic components of the transition radiation field at the observation point can be calculated as the Fourier transform of the virtual quanta field with respect to the spatial coordinates of the radiator surface. The transition radiation energy spectrum can be finally obtained as the flux of the Poynting vector.

A single and individually radiating electron and a high density electron beam are in general different from the point of view of the features of the spectral and the angular distribution of the emitted radiation. Compared to the case of a single and individually radiating electron, bunch-density effects may strongly affect the electromagnetic radiative mechanism by an electron beam. For a fixed energy of the beam, the number and the angular distribution of the photons radiated at a given wavelength may indeed change as a function of the density of the electron beam. In the formula of the radiation energy spectrum, the charge form factor accounts for bunch collective effects. This is, in principle, defined as the square module of the Fourier transform of the distribution function of the particle density of the charged beam.

Aim of the present paper is to verify how well such a theoretical definition of the charge form factor fits into a covariant formulation of the radiation energy spectrum or if, instead, under the covariance and the temporal causality constraints, the radiation energy spectrum shows a dependence on the charge
density that goes beyond the above mentioned formal definition of the charge form factor. In fact, the transverse density of the electron beam is a relativistic invariant under a Lorentz transformation with respect to the direction of motion of the beam. The invariance of the projection of the electron beam density onto the transverse plane with respect to the direction of motion is expected to leave, on the virtual quanta field and, consequently, on the radiation field, a covariant mark whose observability, for a given harmonic component of the radiation field, only depends on the transverse dimension of the electron beam compared to the transverse component of the wave-vector which is itself a Lorentz invariant with respect to the direction of motion of the beam. In the following, the charge-density-like covariance of the transition radiation energy spectrum by an electron beam will be investigated. First, the formal steps leading from the electromagnetic field of a \(N\) electron bunch to the transition radiation energy spectrum will be analyzed with regard to the temporal causality constraint. Finally, the covariance of the given formula of the electromagnetic field of the \(N\) electron bunch will be checked by verifying that, under a Lorentz transformation from the laboratory to the rest reference frame, the expected formula of the electric field of a charge distribution at rest is obtained.

2. Virtual quanta field and transition radiation energy spectrum of a \(N\) electron beam

In the following, \(N\) electrons in motion with a common rectilinear and uniform velocity \(\vec{w}\) along the \(z\) axis of the laboratory reference frame are supposed to strike, at a normal angle of incidence, onto a flat ideal conductor surface \(S\). The radiator, being in vacuum and placed in the plane \(z = 0\) of the laboratory reference frame, is supposed to have an arbitrary size and shape. Compared to the synchrotron motion of a single electron in the bunch, the time scale of the emission of the radiation pulse by the entire electron bunch can be considered instantaneous. Consequently, in modeling the radiation emission from the electron bunch, collisions between electrons in the bunch can be neglected and the \(N\) electron bunch can be thus described in terms of a “frozen-in-time” spatial distribution function, i.e., a spatial distribution function that is invariant under a time-space translation in the laboratory reference frame (see also Appendix B). With reference to such an experimental context, the temporal sequence of the \(N\) electron collisions onto the metallic screen is only ruled by the distribution function of the \(N\)
electron longitudinal coordinates z_{0j} ($j = 1, \ldots, N$) which, for the sake of ease, are taken at the time $t = 0$ when the center of mass of the electron bunch is supposed to strike the metallic surface.

On the radiator surface $S (z = 0)$, the harmonic components of the transverse electric field of both the relativistic charge ($E_{x,y}^{vq}$) and the charge induced conduction electrons ($E_{x,y}$) satisfy the following boundary constraint:

$$E_{x,y}^{vq}(x, y, z = 0, \omega) + E_{x,y}(x, y, z = 0, \omega) = 0. \quad (1)$$

The boundary condition above rules the dipolar oscillation of the conduction electrons, which is induced on the ideal conductor surface by the incident relativistic charge, and explains why a radiation field needs to fly away from the boundary surface in order to maintain its equipotential. The transition radiation emission can be thus interpreted as the result of the scattering of an electromagnetic wave from a metallic surface and described, on the basis of the Huygens-Fresnel principle, as the wave propagation of the transverse component ($E_{x,y}^{vq}$) of the virtual quanta field [7, 57] from the surface $S (z = 0)$ to the observation point. The transition radiation field ($E_{x,y}^{tr}$) can be calculated by means of the Helmholtz-Kirchhoff integral theorem [57, 58]. Under the far-field approximation, this integral can be finally expressed as the Fourier transform of the harmonic component of the virtual quanta field with respect to the spatial coordinates $\vec{\rho} = (x, y)$ of the radiator surface S [7, 57, 58]:

$$E_{x,y}^{tr}(\vec{\kappa}, \omega) = \frac{k}{2\pi R} \int_{S} d\vec{\rho} E_{x,y}^{vq}(\vec{\rho}, \omega) e^{-i\vec{\kappa} \cdot \vec{\rho}} \quad (2)$$

where $k = \omega/c$ is the wave-number, $\vec{\kappa} = (k_x, k_y)$ is the transverse component of the wave-vector and R is the distance from the radiator surface to the observation point that, in the present context, is supposed to be on the z-axis of the laboratory reference frame.

In the case of N electrons in a rectilinear and uniform motion with a common velocity $\vec{w} = (0, 0, w)$, the harmonic component of the virtual quanta electric field at the radiator surface $S (z = 0)$ reads, see [60, 61, 62, 63, 64, 65] and also Appendix D:

$$E_{x,y}^{vq}(x, y, z = 0, \omega) = \frac{i e}{w\pi} \sum_{j=1}^{N} e^{-i(\omega/w)z_{0j}} \int d\tau e^{i\vec{\tau} \cdot \vec{\rho}} \frac{T_{x,y} e^{-i\vec{\tau} \cdot \vec{\rho}_{0j}}}{\tau^2 + \alpha^2}, \quad (3)$$
where \(\alpha = \frac{\omega}{\omega_y} \), while \(\vec{\rho}_{0j} = (x_{0j}, y_{0j}) \) and \(z_{0j} \) \((j = 1, \ldots, N) \) are, respectively, the transverse and the longitudinal coordinates of the electrons in the laboratory reference frame at the time \(t = 0 \) when the center of mass of the electron bunch is supposed to strike the metallic surface. Taking into account Eqs. (2,3), the transition radiation electric field by a \(N \) electron bunch reads:

\[
E_{x,y}^{\text{tr}}(\vec{r}, \omega) = \sum_{j=1}^{N} H_{x,y}(\vec{r}, \omega, \vec{\rho}_{0j}) e^{-i\left(\frac{\omega}{\omega_y}\right)z_{0j}}
\]

where

\[
H_{\mu}(\vec{r}, \omega, \vec{\rho}_{0j}) = H_{\mu,j} = \frac{i e k}{2 \pi^2 R w} \int_{S} d\vec{\rho} \int \frac{d\tau \tau}{\tau^2 + \alpha^2} e^{i(\vec{r} - \vec{\rho})\cdot\vec{\rho}}
\]

with \(\mu = x, y \).

With reference to Eqs. (4,5), the transition radiation energy spectrum by a \(N \) electron beam can be finally calculated as the flux of the Poynting vector:

\[
\frac{d^2 I}{d\Omega d\omega} = \frac{c R^2}{4 \pi^2} \left(|E_{x}^{\text{tr}}(k_x, k_y, \omega)|^2 + |E_{y}^{\text{tr}}(k_x, k_y, \omega)|^2 \right) =
\]

\[
= \frac{c R^2}{4 \pi^2} \sum_{\mu=x,y} \left(\sum_{j=1}^{N} |H_{\mu,j}|^2 + \sum_{j,l(\mu \neq \mu, l \neq l)}^{N} e^{-i\left(\frac{\omega}{\omega_y}\right)(z_{0j} - z_{0l})} H_{\mu,j} H_{\mu,l}^* \right)
\]

where in previous equation the radiator surface \(S \) has, in general, an arbitrary shape and size (either infinite \(S = \infty \) or finite \(S < \infty \)).

The \textit{virtual quanta} field - see Eq. (3) - shows a field structure as a train of \(N \) travelling transverse waves hitting the metallic surface with a relative phase delay only dependent on the difference between the longitudinal coordinates of the \(N \) electrons \(z_{0j} \) \((j = 1, \ldots, N) \). In the same way, the radiation field - Eqs. (4,5) - results from the linear addition of \(N \) single particle field amplitudes \(H_{\mu,j} \) whose relative emission phases - \(e^{-i\left(\frac{\omega}{\omega_y}\right)z_{0j}} \), \((j = 1, \ldots, N) \) - from the metallic surface causally depend on the temporal sequence of the \(N \) electron collisions onto the metallic screen.

The temporal causal structure characterizing the transition radiation field of the \(N \) electron bunch - Eqs. (4,5) - is also a feature of the radiation energy spectrum - see Eq. (6) - where the \(N \) single particle field amplitudes \(H_{\mu,j} \) interfere indeed each other via a relative phase factor only dependent on the
relative difference of the electron longitudinal coordinates \(z_{0j}\) \((j = 1, ..., N)\).

In fact, (1) the radiator surface \(S\) being in principle arbitrary and (2) the formal expression of the transition radiation energy spectrum being expected to be invariant whether the radiator surface \(S\) is finite \((S < \infty)\) or infinite \((S = \infty)\) and whatever is its shape, the \(N\) single electron radiation field amplitudes \(H_{\mu,j}\) \((j = 1, ..., N)\) - Eqs.\(\text{(15)}\) - can be formulated in terms of an implicit integral form and treated as a sort of special function whose numerical value can be only formally and implicitly stated in view of the general formulation of the radiation energy spectrum, Eq.\(\text{(6)}\). Therefore, thanks to the arbitrariness of the radiator surface \(S\) and to the consequent implicit integral formulation of the \(N\) single electron radiation field amplitudes, the formula of the transition radiation energy spectrum - Eq.\(\text{(6)}\) - explicitly shows the temporal causal feature: the interference between the different single electron field amplitudes \(H_{\mu,j}\) is indeed ruled by the distribution function of the electron longitudinal coordinates \(z_{0j}\) \((j = 1, ..., N)\) via the phase factor \(e^{-i(\omega/w)(z_{0j} - z_{0l})} (l \neq j)\).

About the electron transverse coordinates \(\vec{\rho}_{0j} = (x_{0j}, y_{0j})\) \((j = 1, ..., N)\), they play the role to contribute, as a function of the electron displacement from the \(z\)-axis where the radiation field is supposed to be observed, not only to the global phase factor of the single electron field amplitude \(H_{\mu,j}\) \((j = 1, ..., N)\) at the observation point but also to the single electron field amplitude itself. It can be indeed demonstrated \([59]\) that, in the case of a round screen with a finite radius, the integral representing the \(N\) single electron amplitudes composing the radiation field - Eqs.\(\text{(15)}\) - can be solved showing the structure of the product of a real amplitude and a phase factor both depending on the electron transverse coordinates:

\[
H_{\mu,j} = H_{\mu}(\vec{r}, \omega, \vec{\rho}_{0j}) = A_{\mu}(\vec{r}, \omega, \vec{\rho}_{0j})e^{-i\vec{\kappa} \cdot \vec{\rho}_{0j}}. \tag{7}
\]

On the basis of Eq.\(\text{(7)}\), the formula of the radiation energy spectrum given in Eq.\(\text{(6)}\) shows the well known dependence on the three-dimensional form factor as well as an intrinsic dependence of the \(N\) single electron radiation field amplitudes on the electron transverse coordinates. The transverse density of the \(N\) electrons is indeed an invariant under a Lorentz transformation with respect to the direction of motion of the beam. The transverse coordinates of the \(N\) electrons are thus expected: (1) to contribute to the relative phase delay of the \(N\) electron field amplitudes at the observation point as a function of the transverse displacement of the \(N\) electrons with respect to the beam axis where the radiation field is supposed to be observed; (2) because
of the Lorentz invariance of the transverse projection of the N electron den-
sity, to leave a covariant mark on the N electron radiation field amplitudes -
Eqs. (4,5) - and, consequently, on both the temporal coherent and incoherent
components of the radiation energy spectrum, Eq.(6).

In conclusion, in the most general case of an electron bunch at a normal
angle of incidence onto a radiator surface S with an arbitrary size and shape
(finite $S < \infty$ or infinite $S = \infty$), Eq.(6) represents a temporal causal and
covariance consistent formulation of the transition radiation energy spectrum.

3. Covariance of the charge form factor in the transition radiation
ergy spectrum

3.1. Covariance of the electron bunch density

The covariance of the charge form factor and, in general, of the transition
radiation energy spectrum - as formulated in Eqs.(4,5,6) - will be analyzed
in the following paragraph. For such a purpose, the Fourier transforma-
tions of fields and charge distributions as normally defined in the ordinary
3-dimensional space will be reformulated in an explicitly covariant form as
4-dimensional Fourier representations in the conjugate Fourier wavevector-
frequency 4-space $(k_x, k_y, k_z, \omega/c)$ of the space-time (x, y, z, ct) in the labo-
atory reference frame \mathbb{R} or in the conjugate Fourier 4-space $(k'_x, k'_y, k'_z, \omega'/c)$
of the space-time 4-vector (x', y', z', ct') in the rest reference frame \mathbb{R}', see
Appendix A, Appendix B, Appendix C and Appendix D. The case of the
covariant transformation of the spatial density of a N electron bunch, as in
the following described, will exemplify the above mentioned explicitly covar-
ant extension of a Fourier representation of a field or a charge distribution
from the ordinary 3-dimensional space to the Lorentz 4-space.

In the present context, the N electrons of the bunch are described by a
“frozen” in time spatial distribution function: all the electrons are supposed
to move with a rectilinear and uniform velocity $\vec{w} = (0, 0, w)$ along the z axis
of the laboratory reference frame \mathbb{R}. In the reference frame \mathbb{R}', where the N
electrons are at rest, the distribution function of the spatial density of the
electron bunch reads:

$$\rho'(\vec{r}',t') = \rho'(\vec{r}',0) = \sum_{j=1}^{N} \delta(\vec{r}' - \vec{r}'_j), \quad (8)$$

where $\vec{r}'_j = (x'_j, y'_j, z'_j)$ $(j = 1, \ldots, N)$ are the spatial coordinates of the N
electrons at the time t' in \mathbb{R}'. In the ordinary 3-space $\vec{r}' = (x', y', z')$ and the
conjugate Fourier 3-space \(\vec{k}' = (k'_x, k'_y, k'_z) \) of \(\mathbb{R}' \), the spatial density of the \(N \) electrons - Eq.(8) - reads

\[
\rho'(\vec{r}', t') = \frac{1}{(2\pi)^3} \sum_{j=1}^{N} \int d\vec{k}' e^{i\vec{k}' \cdot (\vec{r}' - \vec{r}'_j)}.
\]

(9)

The above Fourier transformation of the spatial density of the \(N \) electron bunch is defined in the space \((x', y', z')\) and in the conjugate Fourier space \((k'_x, k'_y, k'_z)\) of the rest frame of reference \(\mathbb{R}' \), which are subspaces of the space-time \((x', y', z', ct')\) and of the wavevector-frequency \((k'_x, k'_y, k'_z, \omega'/c)\), respectively. Consequently, the charge density, as expressed by Eq.(9) in the ordinary 3-dimensional space of \(\mathbb{R}' \), cannot explicitly show the expected covariance under a Lorentz transformation from the rest to the laboratory reference frame \(\mathbb{R}' \Rightarrow \mathbb{R} \). An explicitly covariant Fourier representation of the spatial density of the \(N \) electrons can be obtained by extending the Fourier transformation as given in Eq.(9) into the Fourier conjugate 4-space \((k'_x, k'_y, k'_z, \omega'/c)\) of the reference frame \(\mathbb{R}' \), for details see Appendix B. With reference to Appendix B, the spatial density of the \(N \) electron bunch - as given in Eq.(9) - can be represented in an explicitly covariant form in the space-time and wavevector-frequency 4-spaces of the rest reference frame \(\mathbb{R}' \) as follows:

\[
\rho'(\vec{r}', t') = \frac{c}{(2\pi)^4} \int d^4\kappa' e^{i\kappa' \cdot \xi'} \rho(\vec{k}', \omega')
\]

(10)

where \(d^4\kappa' = d\vec{k}'d(\omega'/c) \) and

\[
\rho(\vec{k}', \omega') = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa' \cdot \xi'_j} \right) \delta(\omega'),
\]

(11)

where \(\xi'_j = (x'_j, y'_j, z'_j, ct'_j) \) \((j = 1, \ldots, N)\) are the space-time 4-vectors of the electron coordinates, while \(\xi' = (x', y', z', ct') \) and \(\kappa' = (k'_x, k'_y, k'_z, \omega'/c) \) are the space-time and the conjugate Fourier wavevector-frequency 4-vectors in the rest reference frame \(\mathbb{R}' \), respectively.

The covariance of the Fourier representation of the spatial density of \(N \) electron bunch - as represented in Eq.(9) or, equivalently, in Eqs.(10,11) - can be now easily checked, see also Appendix B. With reference to Eqs.(10,11), \(\rho(\vec{k}', \omega') \) is the only non-Lorentz-invariant quantity in the integrand of Eq.(10).
Moreover, according to Eqs. (11), the covariance of $\rho(\vec{k}', \omega')$ only depends on how the delta Dirac function $\delta(\omega')$ transforms under a Lorentz transformation. Under a Lorentz transformation from the rest to the laboratory reference frame ($\mathbb{R} \mapsto \mathbb{R}$) - see Appendix A and Appendix B - the delta Dirac function transforms indeed as

$$
\delta(\omega') = \delta[\gamma(\omega - w_kz)] = \frac{\delta(\omega - \vec{w} \cdot \vec{k})}{\gamma}.
$$

(12)

In conclusion, under a Lorentz transformation ($\mathbb{R}' \mapsto \mathbb{R}$), the N electron spatial density - as represented by Eq. (9) in the ordinary 3-space or, equivalently, by Eqs. (10,11) in the Lorentz 4-space - transforms in agreement with the expected time-like covariance as

$$
\rho'(\vec{k}', \omega') = \frac{1}{\gamma} \rho(\vec{k}, \omega),
$$

(13)

where

$$
\rho(\vec{k}, \omega) = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \delta(\omega - \vec{w} \cdot \vec{k})
$$

(14)

is the 4-dimensional Fourier transformation of the N electron spatial density in the laboratory reference frame \mathbb{R}, see also Appendix B.

3.2. Covariance of the electron bunch form factor

In the present context, a bunch of N electrons moving with a common rectilinear and uniform velocity $\vec{w} = (0, 0, w)$ along the z-axis of the laboratory reference frame is supposed to strike, at a normal angle of incidence, a flat metallic screen placed in the plane $z = 0$. For such an experimental situation, Equations (15) and (6) formulate the transition radiation energy spectrum in the most general case of a radiator surface S having an arbitrary shape and size (either finite $S < \infty$ or infinite $S = \infty$).

This formulation of the radiation energy spectrum is very general. It is indeed expressed in terms of the original discrete distribution function of the N electron coordinates: no continuous limit approximation is indeed applied to the distribution function of the electron spatial coordinates. Furthermore, the size and the shape of the radiator surface being indeed arbitrary,
Eqs. (4, 5, 6) represent a very general and implicit formulation of the transition radiation energy spectrum of a N electron bunch which is invariant in relation to the size and shape of the radiator.

This formulation of the radiation energy spectrum also meets the temporal causality constraint. For the electromagnetic radiative mechanism of the N electron bunch that is described in the present paper, the causality constraint rules the temporal correlation between the single electron collision onto the metallic screen and the consequent emission from the metallic surface of the corresponding single electron radiation field amplitude $H_{\mu,j}$ ($j = 1, ..., N$), see Eqs. (4, 5). In the considered experimental context, the temporal sequence of the N electron collisions onto the metallic screen is only ruled by the distribution function of the longitudinal coordinates z_{0j} ($j = 1, ..., N$) of the N electrons. Thanks to the implicit integral formulation of the N single electron amplitudes $H_{\mu,j}$ ($j = 1, ..., N$) composing the radiation field - see Eqs. (4, 5) - the general formula of the transition radiation energy spectrum - Eq. (6) - explicitly meet the temporal causality constraint.

In Eq. (6) indeed, the dependence of the N single electron field amplitudes on the electron transverse coordinates $\vec{\rho}_{0j} = (x_{0j}, y_{0j})$ ($j = 1, ..., N$) being encoded in the implicit integral formulation given in Eqs. (4, 5), the interference between the N single electron field amplitudes $H_{\mu,j}$ ($j = 1, ..., N$) is a direct function of the corresponding emission phases from the metallic surface, $e^{-i(\omega/w)(z_{0j} - z_l)}$ ($l \neq j$), in agreement with the temporal causal principle.

About the covariance of the transition radiation energy spectrum of the N electron bunch as formulated in Eqs. (4, 5, 6), this can be argued on the basis of the following analysis: first, verify the covariance of the formal steps leading from the virtual quanta field of the N electron bunch to the resultant radiation energy spectrum, see Eq. (3) and Eqs. (4, 5, 6); finally, verify the covariance of the given expression of the virtual quanta field under a Lorentz transformation from the laboratory reference frame R to the reference frame R' of rest of the N electrons.

About the covariance of the formal procedure leading from the virtual quanta field to the radiation field, the following observation can be done. On the basis of the far-field implementation of the Helmholtz-Kirchhoff integral theorem $[7, 57, 58]$, a given harmonic component of the transition radiation field of the N electron bunch can be obtained by Fourier transforming the corresponding virtual quanta field with respect to the spatial coordinates of the radiator surface S, see Eq. (2). The calculation of such a Fourier transformation only involves the coordinates (x, y) of the radiator surface S and
the related conjugate Fourier coordinates \((k_x, k_y)\) which are transverse with
respect to the direction of motion of the electron bunch and thus invariant
under a Lorentz transformation. Therefore, the covariance properties of the
virtual quanta field are entirely and unalterably transferred into the transition
radiation field - see Eq.(3) and Eq.(4) - via the Fourier transformation
as defined in Eq.(2).

Finally, about the covariance of the charge form factor formulation in the
transition radiation energy spectrum - Eqs.(15,6) - this can be verified by
analyzing how the virtual quanta field of the \(N\) electron bunch transforms
under a Lorentz transformation from the laboratory to the rest reference
frame \(\mathbb{R} \rightarrow \mathbb{R}'\), see also Appendix A.

In the present context, a “frozen-in-time” electron bunch is considered,
i.e., the \(N\) electrons in motion with the same velocity \(\vec{w} = (0, 0, w)\) are de-
scribed by a distribution function of the spatial coordinates that is invariant
under a time-space translation in the laboratory reference frame \(\mathbb{R}\), see also
Appendix B

\[
\begin{align*}
\vec{r} &= \vec{r}_0 + \vec{w}t \\
\vec{r}_j &= \vec{r}_0j + \vec{w}t
\end{align*}
\]

where \(\vec{r}_0j\) \((j = 1, \ldots, N)\) are the \(N\) electron spatial coordinates at the time
\(t = 0\) when, for instance, the center of mass of the \(N\) electron coordinates is
supposed to cross the plane \(z = 0\).

For such an experimental situation, with reference to [60, 61, 62, 63, 64],
the expression of the charge electric field reads, see also Appendix D:

\[
\vec{E}(\vec{k}, \omega) = -i(8\pi^2e)\left[\frac{\vec{k} - (\omega\vec{w}/c^2)}{|\vec{k}^2 - (\omega/c)^2|}\right]\left(\sum_{j=1}^{N} e^{-i\vec{k}\cdot\vec{r}_0j}\right)\delta(\omega - \vec{w} \cdot \vec{k}). \quad (15)
\]

The expression above of the electric field of the \(N\) electron bunch does not
explicitly show the expected covariance as the argument of the phase factor in
Eq.(15) clearly indicates. Following the procedure already described in pre-
vious subsection 3.1 and in Appendix B, Appendix C and Appendix D,
the explicit covariance of the electric field of the \(N\) electrons can be retrieved
by extending the Fourier representation of the charge electric field from the
ordinary 3-dimensional spaces of the spatial coordinates \(\vec{r} = (x, y, z)\) and con-
jugate wave-vector coordinates \(\vec{k} = (k_x, k_y, k_z)\) into the Lorentz 4-space of the
space-time \(\xi = (r, ct)\) and the conjugate Fourier 4-space of the wavevector-
frequency \(\kappa = (\vec{k}, \omega/c)\). With reference to the time-space translation of the
spatial coordinates of the \(N \) electrons in the laboratory reference frame \(\mathbb{R} \), see Equations above, the Fourier representation of the electric field of the \(N \) electrons - given in Eq.\((15)\) - can be reformulated in the following explicitly covariant form, see also Eqs.\((D.1,D.2)\) in Appendix \(D \):

\[
\vec{E}(\vec{r}, t) = \frac{1}{(2\pi)^4} \int d\vec{k}d\omega \, e^{i(\vec{k} \cdot \vec{r} - \omega t)} \vec{E}(\vec{k}, \omega) = \frac{c}{(2\pi)^4} \int d^4\kappa \, e^{i\kappa \cdot \xi} \vec{E}(\vec{k}, \omega)
\]

where \(d^4\kappa = d\vec{k}d(\omega/c) \) and, taking into account the following time-space translation \(\vec{r}_j = \vec{r}_{0j} + \vec{w}t \) (see coordinates transformation above),

\[
\vec{E}(\vec{k}, \omega) = -i(8\pi^2e)\frac{[\vec{k} - (\omega\vec{w}/c^2)]}{k^2 - (\omega/c)^2} \left(\sum_{j=1}^{N} e^{-i\vec{k} \cdot (\vec{r}_j - \vec{w}t)} \right) \delta(\omega - \vec{w} \cdot \vec{k})
\]

where the 4-vector \(\xi_j = (\vec{r}_j, ct) \) \((j = 1, ..., N)\) represents the space-time coordinates of the \(N \) electrons in the laboratory reference frame.

The covariance of the electric field of the \(N \) electron bunch - see Eq.\((17)\) or equivalently Eq.\((15)\) - can be finally verified, as in following argued. In fact, looking at the integrand of Eq.\((16)\) and at Eq.\((17)\), the term \([k_z - (\omega\vec{w}/c^2)]\delta(\omega - \vec{w} \cdot \vec{k}) \) is the only non-Lorentz-invariant quantity whose covariance has to be checked. Under a Lorentz transformation from the laboratory to the rest reference frame \((\mathbb{R} \rightarrow \mathbb{R}') \), such a quantity transforms indeed as, see also Appendix \(A \) and Appendix \(D \):

\[
\left\{ \begin{array}{l}
\delta(\omega - \vec{w} \cdot \vec{k}) \longrightarrow \delta[\gamma(\omega' + \vec{w}_\perp \vec{k}_\perp) - \gamma(\vec{w}_\perp (k_z' + \beta \omega'/c))] = \delta(\omega') = \gamma \delta(\omega') \\
(k_z - \omega w/c^2) \longrightarrow \gamma(\vec{k}_\perp + \beta \omega'/c) - \gamma(\omega' + \beta \vec{w}_\perp)w'/c^2 = \frac{k_z'}{\gamma}
\end{array} \right.
\]

Finally, under a Lorentz transformation \((\mathbb{R} \rightarrow \mathbb{R}') \), Eqs.\((16,17)\) transform as:

\[
\vec{E}(\vec{r}', t) = -\frac{iec}{2\pi^2} \int d^4\kappa e^{i\kappa \cdot \xi} \sum_{j=1}^{N} \frac{e^{-i\kappa \cdot \xi_j}}{k^2} [\vec{k} - (\omega\vec{w}/c^2)] \delta(\omega - \vec{w} \cdot \vec{k}) =
\]

\[
= -\frac{iec}{2\pi^2} \int d^4\kappa' e^{i\kappa' \cdot \xi'} \sum_{j=1}^{N} \frac{e^{-i\kappa' \cdot \xi_j'}}{k'^2} \left(\begin{array}{c}
\gamma k'_x \\
\gamma k'_y \\
k'_z
\end{array} \right) \delta(\omega') =
\]

\[
= \left(\begin{array}{c}
\gamma E'_x(\vec{r}', t') \\
\gamma E'_y(\vec{r}', t') \\
E'_z(\vec{r}', t')
\end{array} \right),
\]

\[13\]
where, in the last term of Eq. (18), the three components of the charge electric field $\vec{E}'(r', t')$ in the rest reference frame R' can be identified, see also Appendix C:

$$\vec{E}'(r', t') = -\frac{iec}{2\pi^2} \int d^4\kappa' e^{ix'\cdot\xi'} \sum_{j=1}^{N} e^{-i\kappa'\cdot\xi'_{j}} \frac{\kappa'}{\kappa'^2} \delta(\omega').$$ (19)

Equation (19) is the explicitly covariant Fourier representation of the electric field of a N electron bunch in the rest reference frame R', where (x', y', z', ct') and $(k'_x, k'_y, k'_z, \omega'/c)$ are, respectively, the space-time and the conjugate Fourier wavevector-frequency 4-vectors of R' and $\xi'_{j} = (r'_j, ct')$ $(j = 1, \ldots, N)$ is the space-time 4-vectors representing the N electron coordinates in R', see also Appendix C and Appendix D.

In conclusion, the expression of the virtual quanta field, see Eq. (17) or equivalently Eq. (15), which in the present and other works [60, 61, 62, 63, 64] is the starting point to the formulation of the radiation energy spectrum of a N electron bunch, is demonstrated to meet the covariant constraint.

The formulation of the radiation energy spectrum - see Eqs. (4,5,6) - is also demonstrated to be covariant and temporal causality consistent. Equations (4,5,6) are indeed the final result of a series of temporal-causality-consistent formal steps which preserve and transmit the original covariance of the virtual quanta field of the N electron beam into the radiation energy spectrum.

Finally, about the invariance of the transverse projection of the N electron density with respect to the direction of motion and about the covariant imprinting of it on the charge electric field and, consequently, on the radiation field and on the radiation energy spectrum, the following observation can be done. The effect of the transverse electron coordinates $\rho_{0j} = (x_{0j}, y_{0j})$ $(j = 1, \ldots, N)$ on the Fourier transformation of the charge electric field is driven by a phase factor, see Eqs. (16,17) and Eqs. (18,19). This is a function of the Lorentz invariant quantity $k_x x_{0j} + k_y y_{0j}$ $(j = 1, \ldots, N)$, where (k_x, k_y) are the transverse component of the wave-vector. With reference to Eqs. (16,17) and Eqs. (18,19), the charge electric field shows a dependence on the transverse electron coordinates which, under a Lorentz transformation from the laboratory to the rest reference frame, transfers and transforms in a covariant way and whose observability at a given wavelength remains unchanged, this being determined by the Lorentz-invariant scalar product of the electron transverse coordinates and the transverse components of the wave-vector. In the light of such a meaning, the statement that, see also end of section 2.
the Lorentz invariance of the transverse projection of the N electron den-
sity is expected to leave a covariant mark on the N electron radiation field
amplitudes - Eqs. (45) - and, consequently, on both the temporal coherent
and incoherent components of the radiation energy spectrum - see Eq. (6) -
has to be read and integrated with the statement that the observability of
the covariant effect of the transverse coordinates on the charge electric field
remains unchanged, passing from an inertial reference frame to the other,
this being a function of a Lorentz-invariant quantity.

4. Conclusions

In the present paper, the issue of the covariant formulation of the radi-
ation energy spectrum and, consequently, of the charge form factor of a N
electron bunch is argued. The N electron bunch is supposed to collide, at a
normal angle of incidence, onto a metallic screen S which has an arbitrary
shape and size (either finite $S < \infty$ or infinite $S = \infty$) and is supposed
to behave as an ideal conductor in the wavelength region of interest. As
the covariance of a charged distribution is expected to evolve from a charge-
point-like into a charge-density-like one when passing from a single electron
to a N electron bunch, the covariance of the radiation energy spectrum as
well is expected to behave in the same way when a N electron bunch is
considered instead of a single electron. In order to verify the covariant for-
mulation of the radiation energy spectrum, the formal steps leading from
the virtual quanta field to the transition radiation energy spectrum of a N
electron bunch have been explicitly derived and checked to meet, first, the
temporal causality constraint and, then, to be covariance consistent. Finally,
the expression of the virtual quanta field, which, in the present paper and
in other papers [60, 61, 62, 63, 64, 65], is the starting point to achieve the
formula of the radiation energy spectrum, has been checked to transform in
a covariant way under a Lorentz transformation from the laboratory refer-
ence frame (\mathbb{R}) to the reference frame of rest of the N electron bunch (\mathbb{R}').
In order to perform such a covariance check, the Fourier representations of
fields and charged distributions have been suitably extended from the ordi-
nary 3-dimensional space of the spatial coordinates and the conjugate Fourier
wave-vectors into the Lorentz 4-spaces of the space-time and of the conju-
gate Fourier wavevector-frequency in both \mathbb{R} and \mathbb{R}'. In a temporal causal
and covariant formulation of the transition radiation energy spectrum of a
N electron bunch, the invariance of the projection of the electron density in
the transverse plane with respect to the direction of motion manifests itself as a covariant feature of the N single electron amplitude composing the radiation field and, consequently, of both the temporal coherent and incoherent components of the transition radiation energy spectrum.

Appendix A. Lorentz transformations of coordinates and fields

In the present work, the case of a bunch of N electrons in a rectilinear and uniform motion with a common velocity $\vec{w} = (0, 0, w)$ along the positive direction of the z-axis of the laboratory reference frame \mathbb{R} is considered. In the present paper, Lorentz transformations from the laboratory reference frame \mathbb{R} to the reference frame of rest \mathbb{R}' of the N electron bunch - and viceversa - are applied to fields and spatial distributions of charges. Therefore, for the sake of easy reading, the main results are below reported.

The 4-vectors of \mathbb{R}, the space-time (x, y, z, ct) and the conjugate Fourier wavevector-frequency $(k_x, k_y, k_z, \omega/c)$, Lorentz-transform into the respective counterparts (x', y', z', ct') and $(k'_x, k'_y, k'_z, \omega'/c)$ of \mathbb{R}' according to $\mathbb{R}' \rightarrow \mathbb{R}$:

$$\begin{align*}
x' &= x \\
y' &= y \\
z' &= \gamma(z - \beta x_0) \\
x'_0 &= \gamma(x_0 - \beta z)
\end{align*}$$

$$\begin{align*}
k'_x &= k_x \\
k'_y &= k_y \\
k'_z &= \gamma(k_z - \beta k_0) \\
k'_0 &= \gamma(k_0 - \beta k_z)
\end{align*}$$

where $\beta = w/c$ and $\gamma = \frac{1}{\sqrt{1-\beta^2}}$.

As for the electromagnetic fields \vec{E} and \vec{B}, Lorentz transformations $\mathbb{R}' \rightarrow \mathbb{R}$ read:

$$\begin{align*}
E'_x(\vec{r}', t') &= \gamma(E_x(\vec{r}, t) - \beta B_y(\vec{r}, t)) \\
E'_y(\vec{r}', t') &= \gamma(E_y(\vec{r}, t) + \beta B_x(\vec{r}, t)) \\
E'_z(\vec{r}', t') &= E_z(\vec{r}, t)
\end{align*}$$

and

$$\begin{align*}
B'_x(\vec{r}', t') &= \gamma(B_x(\vec{r}, t) + \beta E_y(\vec{r}, t)) \\
B'_y(\vec{r}', t') &= \gamma(B_y(\vec{r}, t) - \beta E_x(\vec{r}, t)) \\
B'_z(\vec{r}', t') &= B_z(\vec{r}, t)
\end{align*}$$
The inverse Lorentz transformations $\mathbb{R} \rightarrow \mathbb{R}'$ for coordinates and fields can be obtained from previous equations by substituting $\beta \rightarrow -\beta$ and by exchanging the prime in field components and coordinates.

Appendix B. Covariance of the spatial density of a bunch of N electrons

N electrons in a bunch are supposed to move with a common rectilinear and uniform velocity in the laboratory reference frame \mathbb{R}. In the frame of reference \mathbb{R}' where each electron is at rest, the N electrons can be described in terms of a “static” distribution function of the particle density:

$$\rho'(\vec{r}', t') = \rho'(\vec{r}', 0) = \sum_{j=1}^{N} \delta(\vec{r}' - \vec{r}'_j) \quad \text{(B.1)}$$

where $\vec{r}' = (x', y', z')$ and $\vec{r}'_j = (x'_j, y'_j, z'_j) \ (j = 1, \ldots, N)$ are the N electron coordinates in the rest reference frame \mathbb{R}'. In the conjugate Fourier space (k'_x, k'_y, k'_z) of the ordinary 3-space of the spatial coordinates (x', y', z') of \mathbb{R}', the equation above reads

$$\rho'(\vec{r}'_j, t') = \frac{1}{(2\pi)^3} \int d\vec{k}' e^{i\vec{k}' \cdot \vec{r}'_j} \rho'(\vec{k}') \quad \text{(B.2)}$$

where

$$\rho'(\vec{k}') = \sum_{j=1}^{N} e^{-i\vec{k}' \cdot \vec{r}'_j} = \sum_{j=1}^{N} e^{-i(k'_x x'_j + k'_y y'_j + k'_z z'_j)} \quad \text{(B.3)}$$

is the Fourier transform of the distribution function of the N particle density. Since the bunch density - as represented by Eq.(B.1) - is only defined in a subspace (k'_x, k'_y, k'_z) of the wavevector-frequency 4-vector $(k'_x, k'_y, k'_z, \omega'/c)$ of \mathbb{R}', it cannot explicitly show the expected Lorentz-covariance. The explicit covariance of the spatial density of the N electrons can be directly retrieved by extending the Fourier representation of Eqs.(B.2,B.3) into the wavevector-frequency $(k'_x, k'_y, k'_z, \omega'/c)$ and space-time (x', y', z', ct') 4-spaces of the rest reference frame \mathbb{R}'. Such a result can be achieved by extending the integral of Eq.(B.2) into the 4-space $\kappa = (k'_x, k'_y, k'_z, \omega'/c)$ and the integrand into itself times $\delta(\omega') e^{i\omega' ct'} e^{-i\omega' t'}$ where $\delta(\omega')$ is a delta Dirac function. Following such
a formal procedure, Eq. (B.2) can be reformulated as follows:

\[
\rho'(r',t') = \frac{c}{(2\pi)^3} \int d\vec{k}'d(\omega'/c)e^{i(\vec{k}' \cdot \vec{r}' - \omega't')} \left(\sum_{j=1}^{N} e^{-i\vec{k}' \cdot \vec{r}_j'} \right) \delta(\omega') = \\
= \frac{c}{(2\pi)^3} \int d^4\kappa' e^{i\kappa' \cdot \xi'} \left(\sum_{j=1}^{N} e^{-i\kappa' \cdot \xi_j'} \right) \delta(\omega') = \\
= \frac{c}{(2\pi)^4} \int d^4\kappa' e^{i\kappa' \cdot \xi'} \rho(\vec{k}',\omega') \tag{B.4}
\]

where

\[
\rho'(\vec{k}',\omega') = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa' \cdot \xi_j'} \right) \delta(\omega') \tag{B.5}
\]

with \(\kappa' = (k'_x, k'_y, k'_z, \omega'/c) \) and \(\xi' = (x', y', z', ct') \) and where \(\xi'_j = (x'_j, y'_j, z'_j, ct') \) \((j = 1, \ldots, N)\) are the space-time coordinate 4-vectors of the electrons in the rest reference frame \(\mathbb{R}' \). Thanks to the extension of the Fourier representation of the spatial density of the \(N \) electron bunch into the 4-space of the rest reference frame \(\mathbb{R}' \) - see Eqs. (B.4, B.5) - the expected covariance of the charge density can be explicitly recovered. The following quantities are indeed Lorentz-invariant

\[
\begin{align*}
&\{ d^4\kappa' = d\vec{k}'d(\omega'/c) = d^4\kappa \\
&\kappa' \cdot \xi' = k'_x x' + k'_y y' + k'_z z' - \omega't' = \kappa \cdot \xi \\
&\kappa' \cdot \xi'_j = k'_x x'_j + k'_y y'_j + k'_z z'_j - \omega't' = \kappa \cdot \xi_j
\end{align*}
\]

Consequently, under a Lorentz transformation from the rest to the laboratory reference frame \((\mathbb{R}' \leftrightarrow \mathbb{R}) \), Eq. (B.5) transforms as follows, see also Appendix A:

\[
\rho'(\vec{k}',\omega') = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \delta(\omega') = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \delta[\gamma(\omega - wk_z)] = \\
= 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \frac{\delta(\omega - \vec{w} \cdot \vec{k})}{\gamma} = \frac{1}{\gamma} \rho(\vec{k},\omega), \tag{B.6}
\]

where

\[
\rho(\vec{k},\omega) = 2\pi \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \delta(\omega - \vec{w} \cdot \vec{k}) \tag{B.7}
\]
represents the 4-dimensional Fourier transformation of the distribution function of the spatial density of the N electron bunch in the laboratory reference frame \(\mathbb{R} \). In the equation above, \(\xi_j = (x_j, y_j, z_j, ct) \) \((j = 1, \ldots, N) \) are the 4-vector space-time coordinates of the electrons in \(\mathbb{R} \) as well as \(\xi = (x, y, z, ct) \) and \(\kappa = (k_x, k_y, k_z, \omega/c) \) are, respectively, the space-time and the conjugate Fourier wavevector-frequency Lorentz 4-vectors of \(\mathbb{R} \).

In conclusion, under a Lorentz transformation \(\mathbb{R}' \rightarrow \mathbb{R} \), the distribution function of the spatial density of the N electrons - see Eqs.\(^{B.1} B.2\) and Eqs.\(^{B.6} B.7\) - transforms according to the expected covariance:

\[
\rho'(\vec{r}', t') = \frac{1}{\gamma} \rho(\vec{r}, t), \quad (B.8)
\]

where

\[
\rho(\vec{r}, t) = \frac{c}{(2\pi)^3} \int d^4\kappa e^{i\kappa \cdot \vec{r}} \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \vec{r}_j} \right) \delta(\omega - \vec{w} \cdot \vec{k}) =
\]

\[
= \frac{1}{(2\pi)^3} \int d\vec{k} e^{i\vec{k} \cdot (\vec{r} - \vec{w}t)} \left(\sum_{j=1}^{N} e^{-i\vec{k} \cdot (\vec{r}_j - \vec{w}t)} \right) = \rho(\vec{r} - \vec{w}t) =
\]

\[
= \frac{1}{(2\pi)^3} \int d\vec{k} e^{i\vec{k} \cdot \vec{r}_0} \left(\sum_{j=1}^{N} e^{-i\vec{k} \cdot \vec{r}_0j} \right) = \sum_{j=1}^{N} \delta(\vec{r}_0 - \vec{r}_0j) = \rho(\vec{r}_0, t) \quad (B.9)
\]

represents the distribution function of the N electron density in the laboratory reference frame \(\mathbb{R} \), see also Eqs.\((5,6)\) in [61].

The distribution function of the spatial density of the N electrons - as represented by Eq.\((B.9)\) - is invariant under a time-space translation in the laboratory reference frame \(\mathbb{R} \)

\[
\begin{align*}
\vec{r} &= \vec{r}_0 + \vec{w}t \\
\vec{r}_j &= \vec{r}_0j + \vec{w}t
\end{align*}
\]

or, in other words, it is “frozen-in-time” as already mentioned in the present paper where the case of a N electron bunch in a rectilinear and uniform motion is considered. Looking at both integrand of Eqs.\((B.4,B.5,B.7,B.9)\), the presence of a delta Dirac function and, in particular, the argument of this delta are instructive about the attribute given to the charge distribution function to be “static” in the rest reference frame \(\mathbb{R}' \) or “frozen-in-time” in
the laboratory reference frame R. In the reference frame R', where the N
 electrons are at rest, $\delta(\omega')$ in Eq. (B.5) is indicating that only a wave with\n$\omega' = 0$ constitutes the relevant harmonic contribution to the Fourier trans-
formation of the charge density. Conversely, in the laboratory reference frame \nR, where all the N electrons move with a common rectilinear and uniform\nvelocity \vec{w}, the delta Dirac $\delta(\omega - \vec{w} \cdot \vec{k})$ in Eq. (B.9) is indicating that a plane\nwave traveling with the same velocity \vec{w} as the electron bunch constitutes\nthe only relevant harmonic contribution to the Fourier transformation of the\ncharge density.

Appendix C. Electric field of a N electron bunch in the rest re-
ference frame

In the rest reference frame R' of the N electron bunch, the magnetic field \n$\vec{B}'(\vec{r}', t') \equiv 0$. The electric field $\vec{E}'(\vec{r}') = -\vec{\nabla} \Phi'(\vec{r}')$ can be obtained from the \nPoisson equation for the scalar potential Φ:

$$- \nabla^2 \Phi'(\vec{r}') = 4\pi e \rho'(\vec{r}') \tag{C.1}$$

In the Fourier 3-space $\vec{k}' = (k'_x, k'_y, k'_z)$ of R', where the scalar potential and \nthe charge density read

$$\begin{align*}
\Phi'(\vec{k}') &= \frac{1}{(2\pi)^3} \int d\vec{k}' e^{i\vec{k}' \cdot \vec{r}'} \Phi'(\vec{k}') \\
\rho'(\vec{k}') &= \frac{1}{(2\pi)^3} \int d\vec{k}' e^{i\vec{k}' \cdot \vec{r}'} \rho'(\vec{k}')
\end{align*}$$

the Poisson equation reads

$$\Phi'(\vec{k}') = 4\pi e \frac{\rho'(\vec{k}')}{k'^2} \tag{C.2}$$

and the electric field reads

$$\begin{align*}
\vec{E}'(\vec{r}') &= -\vec{\nabla} \Phi'(\vec{r}') = -\frac{ie}{2\pi^2} \int d\vec{k}' e^{i\vec{k}' \cdot \vec{r}'} \frac{\vec{k}'}{k'^2} \rho'(\vec{k}') \\
&= -\frac{ie}{2\pi^2} \int d\vec{k}' e^{i\vec{k}' \cdot \vec{r}'} \frac{\vec{k}'}{k'^2 + k_x'^2 + k_y'^2 + k_z'^2} \left(\sum_{j=1}^{N} e^{-i\vec{k}' \cdot \vec{r}_j} \right) \tag{C.3}
\end{align*}$$

where the explicit expression of $\rho'(\vec{k}')$ is given in Eq. (B.3).
The Fourier representation of the electric field of a N electron bunch in the rest reference frame \mathbb{R}' - as given in Eq. (C.3) - is evidently non-explicitly covariant being restricted to the subspaces $\vec{k}' = (k_x', k_y', k_z')$ and $\vec{\xi}' = (r_x', r_y', r_z')$, respectively, of the wavevector-frequency $\vec{k} = (k_x, k_y, k_z, \omega/c)$ and spacetime $\vec{\xi} = (x', y', z', ct')$ Lorentz 4-vectors of \mathbb{R}'. The covariance of the electric field can be explicitly retrieved by suitably extending the Fourier transformation in Eq. (C.3) into the Fourier 4-space $(k_x', k_y', k_z', \omega'/c)$. Following the same formal procedure already described in Appendix B for the charge density, the Fourier transformation of the electric field of the N electron bunch in the rest reference frame \mathbb{R}' - Eq. (C.3) - can be reformulated as:

\[
\vec{E}'(\vec{r}') = -\frac{i e}{2\pi^2} \int d\vec{k}' e^{i \vec{k}' \cdot \vec{r}'} \frac{\vec{k}'}{(k_x'^2 + k_y'^2 + k_z'^2)} \left(\sum_{j=1}^{N} e^{-i \vec{k}' \cdot \vec{r}'_j} \right) = \\
= \frac{i e}{2\pi^2} \int d\vec{k}' d\omega' e^{i(\vec{k}' \cdot \vec{r}' - \omega't')} \left(\sum_{j=1}^{N} e^{-i(\vec{k}' \cdot \vec{r}'_j - \omega't')} \right) \frac{\vec{k}' \delta(\omega')}{[k_x'^2 + k_y'^2 + k_z'^2 - (\omega'/c)^2]} = \\
= \frac{i e c}{2\pi^2} \int d^4 \kappa' e^{i \vec{\kappa}' \cdot \vec{r}'} \left(\sum_{j=1}^{N} e^{-i \vec{\kappa}' \cdot \vec{r}'_j} \right) \frac{\vec{k}' \delta(\omega')}{\kappa'^2} = \\
= \frac{c}{(2\pi)^4} \int d^4 \kappa' e^{i \vec{\kappa}' \cdot \vec{r}'} \vec{E}'(\vec{\kappa}', \omega'),
\]

(C.4)

where $\vec{\xi}'_j = (r_x'_j, ct') = (x'_j, y'_j, z'_j, ct')$ are the space-time coordinates of the N electrons ($j = 1, \ldots, N$) in \mathbb{R}'. In the integrand of the equation above, the only non-Lorentz invariant quantity is the Fourier transform of the electric field $\vec{E}'(\vec{\kappa}', \omega')$:

\[
\vec{E}'(\vec{\kappa}', \omega') = -i (8\pi^2 e) \left(\sum_{j=1}^{N} e^{-i \vec{\kappa}' \cdot \vec{r}'_j} \right) \frac{\vec{k}' \delta(\omega')}{\kappa'^2}.
\]

(C.5)

The term $\vec{k}' \delta(\omega')$ is the only quantity in Eqs. (C.4),(C.5) whose covariance has to be checked. Under a Lorentz transformation from the rest to the laboratory reference frame ($\mathbb{R}' \rightarrow \mathbb{R}$) - see also Appendix A - such a quantity transforms as:

\[
\begin{align*}
{k}_x' \delta(\omega') &\rightarrow k_x \delta(\omega - wk_z) = k_x \gamma \delta(\omega - wk_z) \\
{k}_y' \delta(\omega') &\rightarrow \gamma (k_z - \frac{\omega'}{c}) \delta(\gamma (\omega - wk_z)) = (k_z - \frac{\omega'}{c}) \delta(\omega - wk_z)
\end{align*}
\]

where $\bar{w} = (0, 0, w)$ is the velocity of the electrons in the laboratory reference frame \mathbb{R}. Finally, under a Lorentz transformation $\mathbb{R}' \rightarrow \mathbb{R}$, the electric field
of a \(N \) electron bunch in the rest reference frame \(\mathbb{R}' \) - see Eqs.(C.3,C.4,C.5) - transforms into

\[
\vec{E}'(\vec{r}') = \frac{c}{(2\pi)^4} \int d^4k' e^{i\vec{k}' \cdot \vec{r}'} \vec{E}'(\vec{k}', \omega') =
\]

\[
= - \frac{i e c}{2\pi^2} \int d^4k e^{i\vec{k} \cdot \vec{r}} \left(\sum_{j=1}^{N} e^{-i\vec{k} \cdot \vec{\xi}_j} \right) \left(\begin{array}{c} k_x/\gamma \\ k_y/\gamma \\ k_z - w\omega/c^2 \end{array} \right) \delta(\omega - \vec{w} \cdot \vec{k}) =
\]

\[
= \left(\begin{array}{c} E_x(\vec{r},t)/\gamma \\ E_y(\vec{r},t)/\gamma \\ E_z(\vec{r},t) \end{array} \right)
\]

(C.6)

where, in the equation above, the 3 components of the electric field of the \(N \) electron bunch in the laboratory reference frame \(\mathbb{R} \) can be recognized, see Eqs.(16,17) and also Appendix D.

\[
\vec{E}(\vec{r},t) = - \frac{i e c}{2\pi^2} \int d^4k e^{i\vec{k} \cdot \vec{r}} \left(\sum_{j=1}^{N} e^{-i\vec{k} \cdot \vec{\xi}_j} \right) \delta(\omega - \vec{w} \cdot \vec{k}).
\]

(C.7)

Appendix D. Electromagnetic field of a \(N \) electron bunch in the laboratory reference frame

In the case of a bunch of \(N \) electrons in motion in vacuum with a common uniform and rectilinear velocity \(\vec{w} \) in the laboratory reference frame \(\mathbb{R} \), the Fourier representation of the propagation equations of the 4-potential \((\vec{A}, \Phi)\) in the 4-space \((\vec{k}, \omega/c)\) of \(\mathbb{R} \) reads in the gauge of Lorentz as

\[
\left\{ \begin{array}{l}
\left(-\frac{\omega^2}{c^2} + k^2 \right) \vec{A}(\vec{k}, \omega) = \frac{4\pi e}{c} \vec{w} \rho(\vec{k}, \omega) \\
\left(-\frac{\omega^2}{c^2} + k^2 \right) \Phi(\vec{k}, \omega) = 4\pi e \rho(\vec{k}, \omega)
\end{array} \right.
\]

where \(\vec{J}(\vec{k},\omega) = e\rho(\vec{k},\omega)\vec{w} \) is the Fourier transformation of the current density vector. With reference to the equations above, the Fourier transformation of the charge electric field reads:

\[
\vec{E}(\vec{k}, \omega) = -i\vec{k} \Phi(\vec{k}, \omega) + \frac{i\omega}{e} \vec{A}(\vec{k}, \omega) =
\]

\[
= -i4\pi e \frac{(\vec{k} - \omega\vec{w}/c^2)}{[k^2 - (\omega/c)^2]} \rho(\vec{k}, \omega).
\]

(D.1)
With reference to Eq. (B.7) in Appendix B, the Fourier representation of the electric field of the \(N\) electron bunch - as given in Eq. (D.1) - can be expressed in an explicitly covariant form in the space-time \(\xi = (\vec{r}, ct)\) and in the 4-space of the conjugate Fourier wavevector-frequency \(\vec{\kappa} = (\vec{k}, \omega/c)\) of the laboratory reference frame \(\mathbb{R}\), see also Eqs. (16,17) and Eq. (C.7) in Appendix C:

\[
\vec{E}(\vec{k}, \omega) = -i8\pi^2\frac{e^{(\vec{k} - \omega \vec{w}/c^2)}}{\kappa^2} \left(\sum_{j=1}^{N} e^{-i\kappa \cdot \xi_j} \right) \delta(\omega - \vec{w} \cdot \vec{k}),
\]

(D.2)

where \(\kappa^2 = k^2 - (\omega/c)^2\) and \(\xi_j = (\vec{r}_j, ct)\) \((j = 1, \ldots, N)\) are the space-time 4-vectors of the \(N\) electron coordinates in the laboratory reference frame \(\mathbb{R}\).

Under a Lorentz transformation from the laboratory to the rest reference frame \((\mathbb{R} \mapsto \mathbb{R}')\), the non-Lorentz-invariant quantities in Eq. (D.2) transform as follows:

\[
\left\{ \begin{array}{l}
k_z - \omega w/c^2 = k'_z/\gamma \\
\delta(\omega - wk_z) = \gamma \delta(\omega')
\end{array} \right.
\]

see also Appendix A. Taking into account the equations above, in the laboratory reference frame \(\mathbb{R}\), the covariance of the 4-dimensional Fourier representation of the electric field of the \(N\) electron bunch - Eq. (D.2) - can be finally checked. Under a Lorentz transformation \(\mathbb{R} \mapsto \mathbb{R}'\), Eq. (D.2) transforms indeed as

\[
\vec{E}(\vec{k}', \omega') = -i8\pi^2e^{(\sum_{j=1}^{N} e^{-in' \xi_j})} \left(\begin{array}{c}
\frac{c}{\kappa^2} \\
\gamma k'_x/k'_z \\
\gamma k'_y/k'_z \\
\gamma E'_z(\vec{k}', \omega')
\end{array} \right) \delta(\omega') = \left(\begin{array}{c}
\gamma E'_x(\vec{k}', \omega') \\
\gamma E'_y(\vec{k}', \omega') \\
E'_z(\vec{k}', \omega')
\end{array} \right),
\]

(D.3)

where, in the second term of previous equation, the explicitly covariant Fourier representation of the charge electric field \(\vec{E}'(\vec{k}', \omega')\) in the rest reference frame \(\mathbb{R}'\) can be recognized, see Eq. (19) and also Eq. (C.5) in Appendix C.

For the sake of completeness, the electric field of \(N\) electrons in the rest reference frame \(\mathbb{R}'\) - see second term of Eq. (D.3) or, equivalently, Eq. (19) or Eq. (C.5) in Appendix C - will be in the following obtained by Lorentz transforming the electric and magnetic fields in the laboratory frame of reference \(\mathbb{R}\). In the laboratory reference frame \(\mathbb{R}\), the Fourier transformation of the magnetic field by a \(N\) electron bunch reads:

\[
\vec{B}(\vec{k}, \omega) = i\vec{k} \times \vec{A}(\vec{k}, \omega) = \frac{i8\pi^2e^{(\sum_{j=1}^{N} e^{-in \xi_j})}}{cr^2} \left(\begin{array}{c}
w k_y \\
w k_x \\
0
\end{array} \right) \delta(\omega - \vec{k} \cdot \vec{w}).
\]

(D.4)
The 4-dimensional Fourier representation of the transverse components of the charge electric field in \(\mathbb{R}' \) can be obtained from the corresponding components of the electromagnetic field in \(\mathbb{R} \) as (see also Appendix A):

\[
E'_{(x,y)}(\mathbf{k}', \omega') = \gamma \{ E_{(x,y)}(\mathbf{k}, \omega) \mp \beta B_{(y,x)}(\mathbf{k}, \omega) \} = \\
= \gamma (-i8\pi^2 e) \left(\sum_{j=1}^{N} e^{-i\mathbf{k} \cdot \xi_j} \right) \delta(\omega - \mathbf{w} \cdot \mathbf{k}) \left(\begin{array}{c} k_x \\ k_y \end{array} \right) \pm \beta^2 \left(\begin{array}{c} -k_x \\ k_y \end{array} \right) = \\
= \gamma (-i8\pi^2 e) \left(\sum_{j=1}^{N} e^{-i\mathbf{k}' \cdot \xi'_j} \right) \delta(\omega' - \mathbf{w}k_z) \left(\begin{array}{c} k'_x \\ k'_y \end{array} \right) \\
= -i8\pi^2 e \left(\sum_{j=1}^{N} e^{-i\mathbf{k} \cdot \xi_j} \right) \delta(\omega) \left(\begin{array}{c} k_x \\ k_y \end{array} \right) \\
= -i8\pi^2 e \left(\sum_{j=1}^{N} e^{-i\mathbf{k}' \cdot \xi'_j} \right) \delta(\omega') \left(\begin{array}{c} k'_x \\ k'_y \end{array} \right)
\]

where in the last term of previous equation the transverse component of the Fourier transform of the charge electric field in the rest reference frame \(\mathbb{R}' \) can be recognized (see Appendix C, Eq.(C.5) in particular). Concerning the longitudinal component \(E_z(i, \omega) \), the corresponding covariant transformation is trivial, see Eq.(D.3) or Eq.(C.5).

References

[1] V. L. Ginzburg and I. M. Frank, Soviet Phys. JETP 16 (1946) 15.
[2] G.M. Garibian, Sov. Phys. JETP, 6 (33), 6 (1958) 1079-1085.
[3] G.M. Garibyan, Sov. Phys. JETP, 37 (10), 2 (1960) 372-376.
[4] I.M. Frank, Sov. Phys. Usp., 4, 5, (1962) 740-746.
[5] F.G. Bass, V. M. Yakovenko, Sov. Phys. Usp., 8, 3 (1965) 420-444.
[6] I.M. Frank, Sov. Phys. Usp., 8, 5 (1966) 729-741.
[7] M.L. Ter-Mikaelian, High-Energy Electromagnetic Processes in Condensed Media, Wiley, New York (1972).
[8] V.L. Ginzburg, V.N. Tsytovich, Transition Radiation and Transition Scattering, Adam Hilger, Bristol (1990).
[9] S. Prünster, C.L. Wang, L.C.L. Yuan, J. Oostens, Phys. Letters 28B, 1 (1968) 47-50.

[10] A.I. Alikhanyan, K.A. Ispiryan, A.G. Oganesyan, Sov. Phys. JETP 29, 6 (1969) 964-967.

[11] L.C.L. Yuan, C.L. Wang, S. Prünster, Phys. Rev. Lett. 23, 9 (1969) 496-498.

[12] A.I. Alikhanyan, K.A. Ispirian, A.G. Oganessian, A.G. Tamanian, Nucl. Instr. Meth. 89 (1970) 147-153.

[13] L. Wartski, J. Marcou, A. Papiernik, S. Roland, M. Bolore, G. Filippi, Nucl. Instr. Meth. 106 (1973) 103-107.

[14] M.L. Cherry, G. Hartmann, D. Müller, T.A. Prince, Phys. Rev. D 10, 11 (1974) 3594-3607.

[15] C.W. Fabjan, W. Struczinkski, Phys. Letters 57B, 5 (1975) 483-486.

[16] A.N. Chu, M.A. Piestrup, T.W. Barbee, Jr., R.H. Pantell, F.R. Buskirk, Rev. Sci. Instrum. 51, 5 (1980) 597-601.

[17] M.A. Piestrup, D.G. Boyers, C.I. Pincus, Q. Li, G.D. Hallewell, M.J. Moran, D.M. Skopik, R.M. Silzer, X.K. Maruyama, D.D Snyder, G.B. Rothbart, Phys. Rev. A 45, 2 (1992) 1183.

[18] R.B. Fiorito, D.W. Rule, M.A. Piestrup, X.K. Maruyama, R.M. Silzer, D.M. Skopik, A.V. Shchagin, Phys. Rev. E 51, 4 (1995) R2759.

[19] S.P. Wakely, S. Plewnia, D. Müller, J.R. Hörandel, F. Gahbauer, Nucl. Instr. and Meth. in Phys. Res. A 531 (2004) 435-444.

[20] A. Andronic et al., Nucl. Instr. and Meth. in Phys. Res. A 558 (2006) 516-525.

[21] L. Wartski, S. Roland, J. Lasalle, M. Bolore, G. Filippi, J. Appl. Phys. 46 (1975) 8.

[22] J. Bosser, J. Mann, G. Ferioli, L. Wartski, Nucl. Instr. Meth. in Phys. Res. A 238 (1985) 45-52.
[23] D.W. Rule, Nucl. Instr. and Meth. in Phys. Res. B 24/25 (1987) 901-904.

[24] A.H. Lumpkin, R.B. Feldman, D.W. Feldman, S.A. Apgar, B.E. Carlsten, R.B. Fiorito, D.W. Rule, Nucl. Instr. and Meth. in Phys. Res. A 285 (1989) 343-348.

[25] D.W. Rule, R.B. Fiorito, A.H. Lumpkin, R.B. Feldman, B.E. Carlsten, Nucl. Instr. Meth. in Phys. Res. A 296 (1990) 739-743.

[26] M.J. de Loos, S.B. van der Geer, W.P. Leemans Proc. of the 1994 European Particle Accelerator Conference 1679-1681.

[27] J.-C. Denard, P. Piot, K. Capek, F. Feldl, Proc. PAC 97, Vancouver, Canada, (1997) 2198-2200.

[28] P. Catravas, W.P. Leemans, E. Esarey, M. Zolotorev, D. Whittum, R. Iverson, M. Hogan, D. Walz, Proc. of the 1999 Particle Accelerator Conference, New York, (1999) 2111-2113.

[29] V.A. Lebedev, Nucl. Instr. Meth. in Phys. Res. A 372 (1996) 344-348.

[30] X. Artru, R. Chehab, K. Honkavaara, A. Variola, Nucl. Instr. Meth. in Phys. Res. B 145 (1998) 160-168.

[31] M. Castellano, V.A. Verzilov, Phys. Rev. ST-AB 1 (1998) 062801.

[32] A.P. Potylitsyn, Nucl. Instr. and Meth. in Phys. Res. B 145 (1998) 169-179.

[33] N.F. Shul’ga, S.N. Dobrovol’sky, V.G. Syshchenko, Nucl. Instr. and Meth. in Phys. Res. B 145 1998 180-184.

[34] E. Bravin, T. Lefèvre, Proc. DIPAC 2003, Mainz, Germany, 92-94.

[35] F. Sakamoto, H. Iijima, K. Dobashi, T. Imai, T. Ueda, T. Watanabe, M. Uesaka. Jpn. J. Appl. Phys., 44, 3 (2005) 1485-1491.

[36] C.P. Welsch, E. Bravin, T. Lefèvre, Rev. Adv. Mater. Sci. 16 (2007) 73-79.
[37] M.A. Holloway, R.B. Fiorito, A.G. Shkvarunets, P.G. O'Shea, S.V. Benson, D. Douglas, P. Evtushenko, K. Jordan, Phys. Rev. ST-AB 11, 082801 (2008).

[38] U. Happek, A.J. Sievers, E.B. Blum, Phys. Rev. Lett. 67, 21 (1991) 2962-2965.

[39] Y. Shibata, K. Ishi, T. Takahashi, T. Kanai, M. Ikezawa, K. Takami, T. Matsuyama, K. Kobayashi, Y. Fujita, Phys. Rev. A, 45, 12 (1992) R8340.

[40] W. Barry, CEBAF Preprint PR-91-012 (1991).

[41] T. Takahashi, Y. Shibata, F. Arai, T. Ohsaka, M. Ikezawa, Y. Kondo, T. Nakazato, S. Urasawa, R. Kato, S. Niwano, M. Oyamada, Phys. Rev. E 48, 6 (1993) 4674-4677.

[42] P. Kung, H.Lihn, H. Wiedemann, D. Bocek, Phys. Rev. Lett. 73, 7 (1994) 967-970.

[43] Y. Shibata, T. Takahashi, T. Kanai, K. Ishi, M. Ikezawa, J. Ohkuma, S. Okuda, T. Okada, Phys. Rev. E 50, 2 (1994) 1479-1484.

[44] R. Lai, U. Happek, A.J. Sievers, Phys. Rev. E 50, 6 (1994) R4294.

[45] J. Rosenzweig, G. Travish, A. Tremaine, Nucl. Instr. and Meth. in Phys. Res. A 365 (1995) 255-259.

[46] H. Lihn, P. Kung, C. Settakorn, H. Wiedemann, D. Bocek, Phys. Rev. E 53, 6 (1996) 6413-6418.

[47] V. Schlott, H. Loos, H. Genz, H.-D. Gräf, R. Hahn, A. Richter, M. Thomas, T. Wesp, M. Wiencken, Part. Acc. 52 (1996) 45-53.

[48] Gi. Schneider, R. Lai, W. Walecki, A.J. Sievers, Nucl. Instr. and Meth. in Phys. Res. A 396 (1997) 283-292.

[49] T. Watanabe, M. Uesaka, J. Sugahara, T. Ueda, K. Yoshii, Y. Shibata, F. Sakai, S. Kondo, M. Kando, H. Kotaki, K. Nakajima, Nucl. Instr. and Meth. in Phys. Res. A 437 (1999) 1-11.
[50] M. Geitz, G. Schmidt, P. Schmüser, G. v.Walter, Nucl. Instr. and Meth. in Phys. Res. A 445 (2000) 343-347.

[51] D. Mihalcea, C.L. Bohn, U. Happek, P. Piot, Phys. Rev. ST-AB 9, 082801 (2006).

[52] J. van Tilborg, C.B. Schroeder, C.V. Filip, Cs. Tóth, C.G.R. Geddes, G. Fubiani, R. Huber, R.A. Kaindl, E. Esarey, W.P. Leemans, Phys. Rev. Lett. 96, 014801 (2006).

[53] D. Sütterlin, D. Erni, M. Dehler, H. Jäckel, H. Sigg, V. Schlott, Nucl. Instr. and Meth. in Phys. Res. B 264 (2007) 361-370.

[54] R.A. Marsh, A.S. Kesar, R.J. Temkin, Phys. Rev. ST-AB 10, 082801 (2007).

[55] S. Casalbuoni, B. Schmidt, P. Schmüser, V. Arsov, S. Wesch, Phys. Rev. ST-AB 12, 030705 (2009).

[56] Handbook of Optical Constants of Solids, Ed. E.D. Palik, Academic Press (1985).

[57] J.D. Jackson, Classical Electrodynamics, Wiley, New York (1975).

[58] M. Born, E. Wolf, Principles of Optics, Pergamon Press, Oxford (1965).

[59] G.L. Orlandi, Covariant formulation of the transition radiation energy spectrum of an electron beam at a normal angle of incidence onto a round metallic screen Paul Scherrer Institut Preprint PSI-PR-12-02.

[60] G.L. Orlandi, Opt. Commun. 211 (2002) 109-119.

[61] G.L. Orlandi, Opt. Commun. 267 (2006) 322-334.

[62] G.L. Orlandi, Proc. FEL 2005, Stanford University (2005), JACoW / eConf C0508213, 576-579.

[63] G.L. Orlandi, Proc. EPAC 08, Genoa, Italy, (2008) 1221-1223.

[64] G.L. Orlandi, B. Beutner, R. Ischebeck, V. Schlott, B. Steffen, Proc. FEL 2009, Liverpool, UK, 153 (2009).

[65] G.L. Orlandi, R. Ischebeck, V. Schlott, B. Steffen, Proc. FEL 2010, Malmö, Sweden, (2010).