Electron Spin Transport in
Quantum Dots and Point Contacts
The work described in this thesis was performed in the research group Physics of Nanodevices of the Zernike Institute of Advanced Materials at the University of Groningen, the Netherlands. This work is part of the research program of the 'Stichting voor Fundamenteel Onderzoek der Materie (FOM)', which is financially supported by the 'Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)'.

Printed by: Drukkerij van Denderen, Groningen
Electron Spin Transport in Quantum Dots and Point Contacts

Proefschrift

ter verkrijging van het doctoraat in de Wiskunde en Natuurwetenschappen aan de Rijksuniversiteit Groningen op gezag van de Rector Magnificus, dr. F. Zwarts, in het openbaar te verdedigen op vrijdag 12 september 2008 om 13:15 uur

door

Erik Johan Koop

geboren op 27 mei 1980 te Stadskanaal
Promotor: Prof. dr. ir. B. J. van Wees

Copromotor: Dr. ir. C. H. van der Wal

Beoordelingscommissie: Prof. dr. J. A. Folk
 Prof. dr. Y. Meir
 Prof. dr. D. M. Zumbühl
Contents

1 Introduction .. 1
 1.1 Electrons: charge and spin 1
 1.2 Motivation ... 2
 1.3 Outline of this thesis 6

2 Theory, device fabrication and measurement techniques 9
 2.1 Quantum Point Contacts 9
 2.2 Quantized conductance 11
 2.3 Quantum Dots ... 16
 2.4 Device fabrication 17
 2.5 Measurement techniques 22

3 Many-body effects in quantum point contacts 27
 3.1 Introduction ... 28
 3.2 Experimental realization 30
 3.3 Spin splitting and energy splitting between QPC subbands 32
 3.4 Many-body effects 37
 3.5 Discussion and conclusions 43

4 Spin accumulation and spin relaxation in a large open quantum dot 47
 4.1 Introduction ... 48
 4.2 Resistor Model .. 49
 4.3 Experimental realization 50
 4.4 Results of non-local experiments 50
 4.5 Signatures of spin transport in the 2-terminal conductance 57
 4.6 Conclusions .. 59
5 Confinement-enhanced spin relaxation for electron ensembles in large quantum dots

5.1 Introduction ... 64
5.2 Spin-orbit coupling ... 67
5.3 Method ... 68
5.4 Results ... 72
5.5 Conclusions ... 74

6 Non-local detection of resistance fluctuations of an open quantum dot

6.1 Introduction .. 78
6.2 Experimental realization .. 80
6.3 Non-local resistance fluctuations .. 81
6.4 Influence of voltage probes .. 84
6.5 Theoretical analysis and discussion .. 87
6.6 Conclusions .. 91

7 The annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas

7.1 Introduction .. 96
7.2 Fabrication ... 97
7.3 Electrical measurements ... 98
7.4 Cross-sectional TEM imaging .. 101
7.5 Diffusion model ... 102
7.6 Conclusions .. 108

A Wafer inventory

A.1 WSUMI301612 ... 111
A.2 WREUT1098 ... 112
A.3 WREUT12570 ... 112

B Device fabrication

B.1 Alignment markers .. 113
B.2 Mesa etching ... 114
B.3 Ohmic contacts ... 115
B.4 Fine gates ... 116
B.5 Large gates ... 117
Contents	
Summary	119
Samenvatting	123
Epilogue	127
Curriculum vitae	129
List of publications	131
