Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning

Abstract
Schizophrenia is a complex psychiatric disease that is affected by multiple genes, some of which could be used as biomarkers for specific diagnosis of the disease. In this work, we explore the power of machine learning methodologies for predicting schizophrenia, through the derivation of a biomarker signature for robust diagnostic classification purposes. Postmortem brain gene expression data from the anterior prefrontal cortex of schizophrenia patients were used as training data for the construction of the classifiers. Several machine learning algorithms, such as support vector machines, random forests, and extremely randomized trees classifiers were developed and their performance was tested. After applying the feature selection method of support vector machines recursive feature elimination a 21-gene model was derived. Using these genes for developing classification models, the random forests algorithm outperformed all examined algorithms achieving an area under the curve of 0.98 and sensitivity of 0.89, discriminating schizophrenia from healthy control samples with high efficiency. The 21-gene model that was derived from the feature selection is suggested for classifying schizophrenic patients, as it was successfully applied on an independent dataset of postmortem brain samples from the superior temporal cortex, and resulted in a classification model that achieved an area under the curve score of 0.91. Additionally, the functional analysis of the statistically significant genes indicated many mechanisms related to the immune system.

Keywords: classification, schizophrenia, machine learning, gene expression, microarray studies, support vector machines, adaboost

Abbreviations
AUC, area under the curve; CV, cross-validation; GO, gene ontology; extra trees, extremely randomized trees; kNN, k-nearest neighbor; RF, random forests; RMA, robust multi-array analysis; ROC, receiver operating characteristic; SVM, support vector machines; SVM-RFE, support vector machines recursive feature elimination; SZ, schizophrenia

Introduction
Schizophrenia (SZ) is a serious psychiatric disease, with a complex genetic basis that affects around 1% of the population worldwide. The symptoms of the disease are divided into positive, negative and cognitive symptoms. Positive symptoms include hallucinations, delusions as well as disorganised speech and behaviour. Negative symptoms include anhedonia, social withdrawal, and lack of motivation and energy. Finally, cognitive symptoms involve cognitive dysfunctions of patients suffering from SZ. Pharmacological treatment of the disease mostly deals with the positive, psychotic symptoms of the disease, but does not improve cognitive and social dysfunction. Moreover, the etiology of SZ predicates upon a combination of genetic and environmental factors, probably in early life, that affect neurogenesis and neuronal plasticity.1 DNA microarray technologies enabling genome-wide gene expression profiling have been intensely exploited in the last decade, in order to promote the elucidation of the underlying biological mechanisms of SZ.2–3 These studies, through the high dimensional data that they yield, can prove to be very useful for the generation of diagnostic biomarker signatures in the management of SZ. The usefulness of these data is based on the fact that they may reveal several genes that act synergistically. Probably, the genes that present these synergistic effects with other genes cannot be associated with SZ on their own. The importance of the development of classification models in SZ is great as, at the moment, the diagnosis of the disease is based exclusively on the evaluation of the clinical symptoms after they have manifested. Despite much research effort, some of the most crucial questions regarding SZ have not been answered. The heterogeneity and the multi-factorial background of SZ suggest the study of this disease through statistical methods for the identification of patterns in the data. Differentially expressed genes occurring from microarray experiments can be utilized as classifying biomarkers gain and can reveal underlying genetic factors in relation to important psychiatric diseases, such as SZ.4

Classification includes two main methodological models: the supervised and the unsupervised model. In unsupervised learning, the instances are unlabeled and the aim is to discover useful classes.5 Supervised learning includes instances with known labels. In this study, supervised methods are used.6 In supervised learning, the classes are first defined and then the aim is to build a classifier that can separate samples among the defined classes citation.7 The discrimination of the classes in this study is based on the gene expression profiles of the samples.

Algorithms
Support vector machines (SVM)

In SVM, good separation of classes is achieved by the hyperplane that has the largest distance to the nearest training data points of any class. The instances that are on the boundaries of the margin
and determine the position and the orientation of the hyperplane are called the support vectors. SVM have some mathematical attributes that make them advantageous for gene expression classification, such as their ability to deal with large feature spaces and their ability to recognize outliers. 10

Extremely randomized trees (Extra Trees)

The Extra Trees classifier belongs to the tree classifier algorithms and is extremely randomized. Its difference from other tree algorithms lies in the way it is built. At the point where the algorithm seeks the most discriminative thresholds for the separation of the samples of a node into two groups, random thresholds are drawn for each of the randomly-selected features. Then, the best randomly-generated threshold is chosen as the splitting rule. 11

Random forests (RF)

The RF classification algorithm is based on an ensemble of classification trees. Each classification tree is developed with bootstrap sampling of the data and for each split a random subset of the variables is used. RF uses two approaches: bagging or bootstrap aggregation that combines unstable learners and random variable selection for building the tree. No pruning is applied on the trees, in order to achieve low-bias trees. Additionally, bagging and random variable selection create trees with low correlation. As a classification method in microarray studies, it gives good performances even with noisy predictive variables and for this reason, it doesn’t need gene pre-selection. Finally, good performance is not so dependent on fine-tuning the parameters of the algorithm. 12

Nearest neighbors

The k-nearest neighbors (kNN) algorithm is one of the most widely used and simplest methods among machine learning classification algorithms. In the training process, the kNN algorithm classifies an unlabeled instance based on the most common label of its k-neighbors in the training set. The distance metric that is used for the identification of the nearest neighbors affects the performance of the classifier. 13-15

Adaboost

This classification algorithm boosts the performance of a simple classifier by combining a set of weak classifiers to a stronger learning algorithm. In this way, the weak classifiers have to perform only a little better than a random guessing, but the final combined classifier usually results in a good performance. In order to boost a weak classifier, it is forced to solve a series of learning problems. After every learning round, the examples are weighted and the importance of the ones that were falsely classified by the previous weak classifier is increased. 16

Evaluation

In this specific study, cross-validation (CV) has been used as an evaluation method of the classifier. In n-fold CV, the training set is divided into n subsets. One after the other, one subset is used as a test subset for the trained classifier and the remaining n-1 subsets are used as the training subset. 17 The performance of the different classification algorithms is evaluated through receiver operating characteristic (ROC) curves. 18 In binary classification the outcomes can be labeled either as positive or negative. The true positive (also known as 1-specificity) rate refers to the proportion of negative examples that are incorrectly predicted as positive. The Y axis of the ROC curve represents the true positive rate and the X axis represents the false positive rate. The upper-left corner of the plot is the “ideal” point, as the true positive rate equals 1 and the false positive rate equals 0. After constructing a ROC curve for each classifier, the area under the curve (AUC), defined as the area between the ROC curve and the X axis, is used for the prediction performance of each classifier. In this study, the ROC curve for each classifier is estimated using a 10-fold CV procedure and we compare the mean AUC occurring from each curve. A larger AUC usually means a better classifier. 19 Other metrics for evaluating the performance of a classifier are precision, sensitivity and accuracy. Precision is the ability of the classifier to not label a sample that is negative as positive. As mentioned before, sensitivity equals to the proportion of positive samples that are correctly predicted as positive and, finally, accuracy is the number of correct predictions divided by the total number of predictions made. 20

Feature selection

Feature selection can prove to be very important, as it can reveal subsets of informative genes that can discriminate schizophrenics from healthy control subjects. There are three main feature selection methods: filter, wrapper, and embedded methods. Filter methods filter out features that, based on statistical methods, are not informative. Filter feature selection is performed before applying classification (e.g. Fisher criterion score). Wrapper methods (e.g. stepwise forward selection and stepwise backward selection) search for optimal feature subsets, and utilize a classifier in order to evaluate the predictive power of the feature subsets. Compared to the filter methods, wrapper methods are usually more computationally demanding; but, they also provide more accurate results. 21 The embedded methods select features while building a model. Embedded techniques are more computationally efficient than wrapper methods. An example of embedded methods is support vector machines recursive feature elimination (SVM-RFE), which is also used in this study. SVM-RFE is based on an iterative method of setting aside the feature with the lowest weight for each prediction method, until the optimal subset of genes is left. 22

The aim of this study is to test if the microarray gene expression data from a postmortem brain dataset contain enough information for the classification of SZ. For this reason several classification algorithms have been tested and their performance has been evaluated.

Materials and methods

Data preprocessing and analysis

A dataset that includes brain postmortem gene expression data of 28 schizophrenic and 23 healthy control subjects, derived from Broadmann area 10 (anterior prefrontal cortex), accessible at NCBI GEO database 23 with the accession number GSE 17612, was analyzed using the Bioconductor package “affy”24 through the R programming system. 25 Gene expression profiles were generated using the Affymetrix HG-U133 Plus 2.0 GeneChip. In this study, the robust multi-array analysis (RMA) method was used, which performs background correction on the Affymetrix perfect match data, applies quantile normalization and then performs summarization of the probe set information using median polish. 26 The limma (moderated t-test) Bioconductor package of R has been used towards the identification of differentially expressed genes among the two classes. 27 Transcripts

Citation: Logotheti M, Pillalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biomed Biostat Int J. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
were characterized as differentially expressed if their unadjusted p-value was less than 0.01. The differentially expressed genes were used as an input for the pathway analysis and gene prioritization as well as for the classification task.

Pathway analysis and gene prioritization

The differentially expressed genes were imported into the Bioinfominer web tool (available online: www.bioinfominer.com) for functional analysis based on established statistical tests and using different ontology databases, namely Gene Ontology (GO), Reactome, Human Phenotype Ontology, and MGI Mammalian Phenotype Ontology. In this way, significant biological mechanisms associated to the input data were revealed. The next part of the analysis included the identification and the prioritization of master regulatory genes, which represent hub nodes in the GO tree structure. These genes play a central role, as they are related to many distinct, cross-talking GO terms.

Classification algorithms and parameter optimization

In this study, the following classification techniques for the discrimination of the two classes (SZ and healthy controls) have been used: SVM, Extra Trees, RF, AdaBoost, and kNN classification algorithms. The classification algorithms come with a set of parameters. In this study, the parameters of the utilized classifiers were optimized with a CV grid search. Using this exhaustive search for each classifier, this method selects those parameters that maximize the mean AUC score of the CV. For all the classification models developed in this paper, parameter optimization has been performed. All of the machine learning methods were implemented in scikit-learn.

Feature selection

The differentially expressed genes were used as the dataset for SVM-RFE method, in order to filter out the optimum informative feature set. Generally, SVM-RFE selects the minimum informative subset of features that separates classes, by progressively removing features that are not informative. This procedure has many rounds. At each round one gene is eliminated and an SVM classifier is trained based on the rest of the genes. That procedure is recursively repeated on the pruned sets until the number of features that present the best performance according to CV is reached.

The reason for using SVM-RFE is that we aim at developing a sensitive and specific classification algorithm, based on realistic clinical biomarkers, assaying a small number of genes.

Data collection and classification of the independent test cohort

The second dataset (NCBI GEO accession number: GSE 21935) was used as an independent group of samples in order to examine if the final genes occurring from the feature selection can be used as biomarkers in SZ. For this reason, the 21-gene model was used as an input for testing if those genes can discriminate SZ samples from healthy control samples on this independent dataset. The classification task was applied on the normalized gene expression values of the dataset, also resulting from RMA. The dataset included samples from the Brodmann Area 22 (superior temporal cortex) of 23 schizophrenic patients and 19 healthy controls.

Model evaluation

ROC curve was mainly used in this study as a metric to evaluate the output quality of each classification model, created from the 10-fold CV. Each of the 10 different splits of the dataset generated by the 10-fold CV results in a curve. Taking all of these curves, the mean AUC of each classifier is calculated. A classifier with larger mean AUC is considered to have better performance. Other metrics were also used as evaluation criteria for the performance of the classifiers, including accuracy, precision, and sensitivity.

Results

Differentially expressed genes

Applying the criteria described above (see Data preprocessing and analysis in Materials and Methods), the microarray output showed that 164 genes were differentially expressed in schizophrenic patients compared to the healthy controls (Supplementary Table 1).

Pathway analysis and gene prioritization

The differentially expressed genes of (Supplementary Table 1) were submitted to the Bioinfominer web application for the elucidation of the overrepresented GO terms, Reactome pathways, Human Phenotype Ontology terms, and MGI Mammalian Phenotype Ontology terms. The full results are presented in (Supplementary Tables 2-5). The hub genes resulting from the gene prioritization corresponding to GO enrichment analysis are presented in (Supplementary Table 6).

Parameter optimization

A grid search was performed for the classifiers that used the expression values of the differentially expressed genes of the study. The parameters of each developed classification algorithm that were subjected to grid search through CV, as well as their final values that optimize their corresponding classifiers are presented in (Table 1). A grid search was also applied for the classifiers that were developed based on the genes that occurred from the feature selection (Supplementary Table 7) and for the classifiers developed for the testing dataset (Supplementary Table 8).

Classifier performance, feature selection

Classification algorithms, based on three datasets were developed. The first dataset contained the gene expression values of the differentially expressed genes from the training data (GSE 17612), the second dataset contained gene expression values of the 21 genes that occurred after the feature selection and the third dataset included the 21 genes also obtained from the SVM-RFE, with their corresponding gene expression values obtained from the independent test data (GSE 21935).

More specifically, in the context of the classification task: SZ vs healthy controls, classification algorithms that used the differentially expressed genes as input were compared. According to the mean AUC of the ROC curve, the SZ samples can be distinguished from healthy controls on the basis of gene expression. Figures 1 and 2 show the ROC curves response of 10-fold CV for the developed classifiers that used the differentially expressed genes and the genes resulting from the feature selection as an input, respectively. More specifically, (Figures 1a-1e) compare the classification techniques of SVM, Extra Trees classifiers, RF, kNN, and AdaBoost. The AdaBoost method, yielding a CV AUC of 0.95, generally outperforms the other tested classification techniques. Mean precision, accuracy, and sensitivity of each developed classifier are also presented in (Supplementary Table 9).

In this study, the SVM-RFE with stratified CV was used in order to find the ranks and the optimal number of features for classifying SZ. Among the 164 differentially expressed genes, the...
maximal classification performance was achieved with 21 genes (Table 2). Then, each classifier incorporated genes that occurred from SVM-RFE. The 21-gene model for each classifier was validated using 10-fold CV. The final achieved mean AUC scores of all tested classification methods using the 21-gene model as input are presented in (Figures 2a-2e). The best performance was achieved by the RF classifier, which achieved a mean AUC of 0.98. The 21-gene model was also used for developing classifiers on an independent dataset, based on the gene expression values obtained from the analysis of this specific dataset. The performance metrics of these classifiers are also presented in (Supplementary Table 9). The RF classifier resulted in the best mean AUC score of 0.91.

Table I Exhaustive grid search results for developed classification algorithms based on the 164 differentially expressed genes of the training dataset. Possible combinations of the parameter values are evaluated and the best combination is presented for each tested classification algorithm (RF, Extra Trees, kNN, AdaBoost, SVM)

RF	Extra trees	kNN	Adaboost	SVM					
Parameter	Optimal Value								
Criterion	gini	Criterion	gini	N_neighbors	5	N_estimators	500	kernel	linear
Max_features	3.16	Max_features	3.16	P	I	Learning rate	1	C	1000
N_estimators	10	N_estimators	10	weights	uniform				

RF parameters: Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity. Max_features: the number of features to consider when looking for the best split. N_estimators: the number of trees in the forest.

Extra Trees parameters: Criterion, Max_features, N_estimators as described for RF.

kNN parameters: N_neighbors: number of neighbors to use. P: power parameter for the Minkowski metric; p=1 is equivalent to using manhattan distance. Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.

AdaBoost parameters: N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: Learning rate at which the contribution of each classifier shrinks.

SVM parameters: Kernel: specifies the kernel type to be used in the algorithm. C: penalty parameter C of the error term.

Discussion

The top ranked biological processes resulting from the Bioinfominer tool includes calcium mediated signaling (CCL3, ALMS1, LAT2) (Supplementary Table 2). The Ca²⁺ signaling pathway is a major component of the mechanisms that regulate neuronal excitability, information processing, and cognition. Differences in gene transcription related to calcium signaling can prove to be very important, as they may lead to alterations in the neuronal signaling. Abnormalities of the Ca²⁺ signaling pathway have been related to the development of SZ as well as of bipolar disorder. In addition there are findings that suggest that calcium is capable of inducing structural and cognitive deficits observed in SZ. The Reactome pathway analysis (Supplementary Table 3) resulted in FCGR activation (SYK, HCK, FCGR3A), classical antibody-mediated complement activation (C1QC, C1QB), complement cascade (CD59, C1QC, C1QB), and Fcgamma receptor dependent phagocytosis (SYK, HCK, DOCK1, FCGR3A), which are all clustered to innate immune system. The MGI Mammalian Phenotype Ontology analysis resulted in abnormal neutrophil morphology (S100A9, ITGA), abnormal neutrophil physiology (SYK, HCK, ITGAM, S100A9), and abnormal lymphatic vessel morphology (VEGFA, SYK, GJB2), which are all related to immune system phenotype (Supplementary Table 4). Finally, as shown in (Supplementary Table 5), the Human Phenotype Ontology analysis results in abnormalities related to the immune system, such as decreased serum complement C4b (C1QB and C1QC), Hashimoto thyroiditis (C1QB, C1QC) and increased antibody level in the blood (DSP, FAM13A and SAMHD1). These findings are in accordance to other schizophrenic studies. In a postmortem study of schizophrenic patients, the immune-related pathway has been reported to be involved in the pathology of SZ. In the same study, arachidonic acid cascade markers were found to have increased. A gene expression study on peripheral blood mononuclear cells identified differentially expressed genes related to the immune pathways in schizophrenic patients. Another SZ study of microarray data on Broadmann Area 22 reports a decrease of neuroinflammation related pathways, which may result to cognitive impairment and progression of SZ disease. Finally, the enrichment analysis of MGI Mammalian Phenotype Ontology terms (Supplementary Table 4) revealed another important term, namely abnormal central nervous system synaptic transmission (LZT51, TRIB2, TNC, CSPG5). Many published SZ studies suggest there is an altered expression of presynaptic proteins. Anatomical and functional synaptic abnormalities probably contribute to the pathology and symptomatology of the disease, but synaptic disturbances are most likely to be a part of a complex network of events leading to the expression of the disease.
Table 2 Genes that occurred after the SVM-RFE feature selection and could discriminate the postmortem samples of SZ and healthy control subjects based on the differentially expressed genes of the GSE 17612 dataset

Gene symbol	Gene title	p-value
ARHGAP25	Rho GTPase activating protein 25	0.006071
GHR	growth hormone receptor	0.007136
CCL3	C-C motif chemokine ligand 3	0.006522
RPS6KA2	ribosomal protein S6 kinase A2	0.003058
CRYBG3	crystallin beta-gamma domain containing 3	0.002981
COX4I1	cytochrome c oxidase subunit 4I1	0.001857
KDM3A	lysine demethylase 3A	0.004227
LOC728613	programmed cell death 6 pseudogene	0.002835
CCNA2	cyclin A2	0.006075
S100A8	S100 calcium binding protein A8	0.000122
COX19	COX19 cytochrome c oxidase assembly factor	0.000137
MIR210HG	MIR210 host gene	0.002779
LOC100134317	hypothetical LOC100134317	0.009156
LONRF3	LON peptidase N-terminal domain and ring finger 3	0.006143
GSTM3	glutathione S-transferase mu 3 (brain)	0.005909
VCPPIP1	valosin containing protein (p97)/p47 complex interacting protein 1	0.006035
GJB2	gap junction protein beta 2	0.000687
LCOR	ligand dependent nuclear receptor corepressor	0.001645
MRS2	MRS2, magnesium transporter	0.0075
NAA38	N(alpha)-acetyltransferase 38, NatC auxiliary subunit	0.004166
ANKRD37	ankyrin repeat domain 37	0.006384

The Reactome analysis also resulted in signaling by retinoic acid including the genes CYP26B1, ALDH1A3 CRABP1, and ALDH1A1 (Supplementary Table 3). Retinoid dysfunction may also be involved in the pathophysiology of SZ. CYP26B1 and ALDH1A3 as well as other genes involved in the synthesis and transportation of retinoic acid are implicated in SZ [40]. The functional analysis also detected an integrin-mediated signaling pathway among the GO terms represented by the genes SYK, HCK, DOCK1, and ITGAM (Supplementary Table 2). The antipsychotic agent penfluridol has been reported to act through inhibition of the integrin signaling.44

Using supervised methods, we concluded that SZ can be classified by postmortem gene expression, even without applying any feature selection method, achieving an AUC score of 0.95 (Figure 1d) and sensitivity of 0.96 (Supplementary Table 9) with the use of the AdaBoost algorithm. Other classification algorithms also performed well, such as SVM with AUC 0.93 (Figure 1a), accuracy 0.94, precision 0.97, and sensitivity 0.93 (Supplementary Table 9). SVM-RFE feature selection concluded to 21 genes and with their gene expression values a RF classifier was developed with 0.98 AUC score (Figure 2c). Additionally, the good performances of the classification models after applying the 21-gene model on the testing set supports the generalization of the 21-gene model to a test dataset, independent from the samples included in the model construction, with final AUC performance of 0.91 and 0.85 sensitivity, achieved by the RF classification model (Supplementary Table 9).

The 21 genes after the SVM-RFE feature selection (Table 2) reported in this study could be considered a candidate biomarker set for the diagnosis of SZ, to serve as a starting point for its further validation. As shown in (Supplementary Table 1), the genes rendering from the feature selection do not present high fold changes. There are other studies supporting that top-ranked genes may lose essential information specifically for classification purposes because of the fact that they are usually highly correlated.7,45 Therefore, we considered that it is reasonable for the feature selection algorithms to identify statistically significant genes with small fold changes as predictors for classification. Among the 21 genes, S100A8 and CCL3 genes have been previously associated to SZ.46,47 The S100A8 gene encodes a member of the S100 protein family. S100 proteins are involved in many
cellular processes, such as cell cycle progression and differentiation. This specific protein acts as cytokine [provided by RefSeq]. The S100A8 gene also presents the greatest fold change among the upregulated genes of the study (Supplementary Table 1). The S100A8 gene dimerizes with the S100A9 gene, which was also shown to be differentially expressed in this study (Supplementary Table 1). This dimerization forms calprotectin, which is involved in innate immunity and inflammation. S100A8 is also reported to be upregulated at the protein level in another schizophrenic study.37 The CCL3 gene encodes a small inducible cytokine. Through binding to CCR1, CCR4 and CCR5 receptors, it participates in inflammatory responses [provided by RefSeq]. Chemokines are associated to neurobiological mechanisms, such as neurogenesis regulation or neurotransmitter-like effects, probably implicated in psychiatric disorders. It has been reported that many chemokines, including CXCL8 (IL-8), CCL2, CCL3 and CCL5, have been non-specifically associated to psychiatric diseases.46 All the aforementioned genes of the 21-gene model were also included in the hub genes list (Supplementary Table 6) resulted from the gene prioritization.

Figure 1 ROC curve analysis for the evaluation of the classification of SZ versus healthy controls after testing different classification algorithms: (a) SVM; (b) Extra Tree Classifiers; (c) RF; (d) AdaBoost; (e) kNN. The figure shows the ROC response of different classifiers, created from 10-fold CV. With the help of the ten occurring curves from each classification algorithm, the mean AUC for each algorithm is also calculated and presented in the figures as the crooked line in every case (Mean ROC).

Citation: Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
It is also worth mentioning that genes RPS6KA2 and CCNA2 are involved in the Reactome pathway of (R-HSA-2539582), which is also known as senescence messaging secretome. Oxidative stress can induce DNA damage, and the persistent DNA damage may be a senescence-associated secretory phenotype initiator. Generally, cellular senescence and apoptosis (programmed cell death) are ways to control DNA damage and exacerbation of those processes has been previously related SZ. Another hub gene included in the differentially expressed gene list is SYK (Supplementary Table 6), which is a member of the non-receptor type tyrosine protein kinases family. The encoded protein participates in coupling activated immunoreceptors to downstream signaling events that facilitate various cellular responses, such as proliferation, differentiation, and phagocytosis [provided by RefSeq]. It is considered to modulate epithelial cell growth. SYK was also identified to be upregulated in a study that examines the involvement of the immune system in

Figure 2 ROC curve analysis for the evaluation of the classification of SZ versus healthy controls after the SVM-RFE feature selection. The figures depict the evaluation results of the ROC analysis with five different algorithms: (a) SVM; (b) Extra Trees Classifiers; (c) RF; (d) AdaBoost and (e) kNN. The figure shows the ROC response of different classification algorithms, created from 10-fold CV. With the help of the ten occurring curves from each classification algorithm, the mean AUC for each algorithm is also calculated and presented in the figures as the crooked line in every case (Mean ROC).

Citation: Logotheti M, Pilalis E, Venizelos N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning

1. Kahn RS, Sommer IE, Murray RM, et al. Schizophrenia. Nature Reviews Disease Primers. 2015;1:15067.

2. Middleton FA, Mirnice K, Pierri JN, et al. Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci. 2002;22(7):2718–2729.

3. Iwamoto K, Kato T. Gene expression profiling in schizophrenia and related mental disorders. Neuroscientist. 2006;12(4):349–361.

4. Dean B, Kirakous D, Scarr E, et al. Gene expression profiling in Brodmann’s area 46 from subjects with schizophrenia. Aust N Z J Psychiatry. 2007;41(4):308–320.

5. Cattane N, Minelli A, Milanesi E, et al. Altered gene expression in schizophrenia: findings from transcriptional signatures in fibroblasts and blood. PLoS One. 2015;10(2):e0116686.

6. Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques. Real Word AI Systems with Applications in eHealth, HCI, Information Retrieval and Pervasive Technologies. Emerging Artificial Intelligence Applications in Computer Engineering, Greece. 2007.

7. Takahashi M, Hayashi H, Watanabe Y, et al. Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures. Schizophrenia Res. 2010;119(1–3):210–218.

8. Tarca AL, Romero R, Draghici S. Analysis of microarray experiments of gene expression profiling. Am J Obstet Gynecol. 2006;195(2):373–388.

9. Struyf J, Dobrin S, Page D. Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia. BMC Genomics. 2008;9:531.

10. Brown MP, Grundy WN, Lin D, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA. 2000;97(1):262–267.

11. Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Machine Learning. 2006;63(1):3–42.

12. Diaz-Uriarte R, Alvarez de Andrés S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7(3):1–13.

13. Sarkar M, Leong TY. Application of K-nearest neighbours algorithm on breast cancer diagnosis problem. Proc AMIA Symp. 2000;759–63.

14. Weinberger KQ, Saul LK. Distance Metric Learning for Large Margin Nearest Neighbour Classification. Journal of Machine Learning Research. 2009;10:207–244.

15. Asyali MH, Colak D, Demirkaya O, et al. Gene Expression Profile Classification: A Review. Current Bioinformatics. 2006;1(1):55–73.

16. Mozos OM, Stachniss C, Burgard W. Supervised Learning of Places from Range Data using Adaboost. IEEE International Conference on Robotics and Automation. 2005;1730–1735.

17. Hsu CW, Chang CC, Lin CJ. A Practical Guide to Support Vector Classification. Department of Computer Science, National Taiwan University. 2003;1–16.

18. Bradley AP. The use of the area under the Roc curve in the evaluation of machine learning algorithms. Pattern Recognition. 1997;30(7):1145–1159.

19. Hajian Tilaki K. Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. Caspian J Intern Med. 2013;4(2):627–635.

20. Sokolova M, Lapalme G. A systematic analysis of performance measures for classification tasks. Information Processing & Management. 2009;45(4):427–437.

21. Saey S, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007;23(19):2507–2517.

22. Lin X, Yang F, Zhou L, et al. A support vector machine–recessive feature elimination feature selection method based on artificial contrast variables and mutual information. J Chromatogr B Analyt Technol Biomed Life Sci. 2012;910:149–155.

23. Clough E, Barrett T. The Gene Expression Omnibus Database. Methods Mol Biol. 2016;1418:93–110.

24. Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.

25. Team RDC. A language and environment for statistical computing. Foundation for Statistical Computing: Vienna, Austria. 2010

26. Irizarry RA, Hobbs B, Collin F, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Bioinformatics. 2003;19(4):250–264.

27. Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

28. Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–29.

29. D’Eustachio P. Reactome knowledgebase of human biological pathways and processes. Methods Mol Biol. 2011;694:49–61.

30. Groza T, Kohler S, Moldenhauer D, et al. The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease. Am J Hum Genet. 2015;97(1):111–124.

Citation: Logotheti M, Pillalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biomed Res Int 2014;2015:345978. DOI: 10.15406/brii.2016.04.00106
31. Smith CL, Eppig JT. The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data. *Mamm Genome*. 2012;23(9‒10):653–668.

32. Koutsandreas T, Pilalis E, Vlachavas EL, et al. Making sense of the biological complexity through the platform-driven unification of the analytical and visualization tasks. *IEEE 15th International Conference on Bioinformatics and Bioengineering*. 2015;1‒6.

33. Bergstra J, Bengio Y. Random search for hyper-parameter optimization. *Journal of Machine Learning Research*. 2012;13:281–305.

34. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*. 2011;12:2825–2830.

35. Maldonado S, Weber R. A wrapper method for feature selection using Support Vector Machines. *Information Sciences*. 2009;179(13):2208–2217.

36. Guyon I, Weston J, Barnhill S, et al. Gene Selection for Classification Using Support Vector Machines. *Mach Learn*. 2002;46:389–422.

37. Clelland CL, Read LL, Panek LJ, Nadrich RH, et al. Utilization of never–mediated bipolar disorder patients towards development and validation of a peripheral biomarker profile. *PLoS One*. 2013;8(6):e69082.

38. Berridge MJ. Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia. *Cell Tissue Res*. 2014;357(2):477–492.

39. Lidow MS. Calcium signaling dysfunction in schizophrenia: a unifying approach. *Brain Res Brain Res Rev*. 2003;43(1):70–84.

40. Huang KC, Yang KC, Lin H, et al. Analysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system. *BMC Genomics*. 2013;14 Suppl 5:S10.

41. Gardiner EI, Cairns MJ, Liu B, et al. Gene expression analysis reveals schizophrenia–associated dysregulation of immune pathways in peripheral blood mononuclear cells. *J Psychiatr Res*. 2013;47(4):425–437.

42. Rao JS, Kim HW, Harry GJ, et al. Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients. *Schizophr Res*. 2013;147(1):24–31.

43. Faludi G, Mirnics K. Synaptic changes in the brain of subjects with schizophrenia. *Int J Dev Neurosci*. 2011;29(3):305–309.

44. Ranjan A, Gupta P, Srivastava SK. Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple–Negative Breast Cancer by Inhibiting Integrin Signaling Axis. *Cancer Res*. 2016;76(4):877–890.

45. Liu B, Cui Q, Jiang T, et al. A combinational feature selection and ensemble neural network method for classification of gene expression data. *BMC Bioinformatics*. 2004;5:136.

46. Xu J, Sun J, Chen J, et al. RNA–Seq analysis implicates dysregulation of the immune system in schizophrenia. *BMC Genomics*. 2012;13 Suppl 8:S2.

47. Perez-Santiago J, Diez Alarcia R, Callado LF, et al. A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. *J Psychiatr Res*. 2012;46(11):1464–1474.

48. Stuart MJ, Baune BT. Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. *Neurosci Biobehav Rev*. 2014;42:93–115.

49. Rodier F, Coppe JP, Patil CK, et al. Persistent DNA damage signalling triggers senescence–associated inflammatory cytokine secretion. *Nat Cell Biol*. 2009;11(8):973–979.

50. Papanastasiou E, Gaughran F, Smith S. Schizophrenia as segmental progeria. *Journal of the Royal Society of Medicine*. 2011;104(11):475–484.

51. Gao K, Wang Q, Zhang Y, et al. Association study of VEGFA polymorphisms with schizophrenia in Han Chinese population. *Neurosci Lett*. 2015;590:121–125.

52. Pirooznia M, Yang Y, Yang MQ, et al. A comparative study of different machine learning methods on microarray gene expression data. *BMC Genomics*. 2008;9 Suppl(1):S13.

Supplementary Table 1 The list of 164 differentially expressed genes identified after comparing the gene expression of healthy control and SZ samples and applying a p-value cut-off ≤ 0.01

Gene symbol	Gene title	Fold change (log2)	p-value
S100A8	S100 calcium binding protein A8	1.82649717	0.000122
C1QB	complement component 1, q subcomponent, B chain	0.73108089	0.005022
S100A9	S100 calcium binding protein A9	0.66209828	0.004514
C1QC	complement component 1, q subcomponent, C chain	0.64386268	0.008943
FCGR3A	Fc fragment of IgG receptor IIIa	0.5571018	0.005952
BAG3	BCL2 associated athanogene 3	0.53718983	0.006337
SLC16A3	solute carrier family 16 member 3	0.48248169	0.007186
FCGR3B	Fc fragment of IgG receptor IIIb	0.44658577	0.005075
ALOX5AP	arachidonate 5-lipoxygenase activating protein	0.38970751	0.005349
RNASET2	ribonuclease T2	0.3709181	0.003478
ANKRD37	ankyrin repeat domain 37	0.35263119	0.006384
HK2	hexokinase 2	0.34876561	0.001683
VEGFA	vascular endothelial growth factor A	0.3361983	0.005811
HCK	HCK proto-oncogene, Src family tyrosine kinase	0.33513209	0.00693

Citation: Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J*. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Gene symbol	Gene title	Fold change (log2)	p-value
DOCK8	dedicator of cytokinesis 8	0.3334688	0.00656
APBB1IP	amyloid beta precursor protein binding family B member 1 interacting protein	0.32000077	0.008019
DIS3L2	DIS3 like 3'-5' exoribonuclease 2	0.28118603	0.009462
CD59	CD59 molecule	0.2797727	0.009546
SAMHD1	SAM domain and HD domain 1	0.27388725	0.004751
ACVR1L1	activin A receptor like type 1	0.2697881	0.003338
LAT2	linker for activation of T-cells family member 2	0.24203936	0.002806
ITGAM	integrin subunit alpha M	0.24091813	0.005904
SYK	spleen tyrosine kinase	0.24009321	0.00638
P4HA1	prolyl 4-hydroxylase subunit alpha 1	0.2375438	0.00403
MIR100HG	mir-100-let-7a-2 cluster host gene	0.23017832	0.006184
MIR210HG	MIR210 host gene	0.2155124	0.002779
KDM3A	lysine demethylase 3A	0.21378786	0.004227
GSTM3	glutathione S-transferase mu 3 (brain)	0.21222917	0.005904
LONRF3	LON peptidase N-terminal domain and ring finger 3	0.20865663	0.006143
CRYBG3	crystallin beta-gamma domain containing 3	0.20282956	0.002981
LCOR	ligand dependent nuclear receptor corepressor	0.19836956	0.001645
AKAP12	A-kinase anchoring protein 12	0.19652621	0.001368
ARID5B	AT-rich interaction domain 5B	0.19459857	0.00905
CCDC69	coiled-coil domain containing 69	0.19234923	0.001352
SMAD7	SMAD family member 7	0.18979166	0.003705
IGF1R	insulin like growth factor 1 receptor	0.18640289	0.009458
APOC2	apolipoprotein C-II	0.18311411	0.002289
NAA38	N(alpha)-acetyltransferase 3B, NarC auxiliary subunit	0.1829926	0.004166
PAPD5	PAP associated domain containing 5	0.18204628	0.008159
JAKMIP2	janus kinase and microtubule interacting protein 2	0.17846675	0.005588
MRS2	MRS2, magnesium transporter	0.17714441	0.0075
GHR	growth hormone receptor	0.1761954	0.007136
C2CD2	C2 calcium-dependent domain containing 2	0.17009949	0.00975
COX19	COX19 cytochrome c oxidase assembly factor	0.16422962	0.000137
SNRNP48	small nuclear ribonucleoprotein U11/U12 subunit 48	0.16357351	0.009062
MOB1A	MOB kinase activator 1A	0.16338902	0.007832
ARHGAP25	Rho GTPase activating protein 25	0.16136169	0.006071
COX4I1	cytochrome c oxidase subunit 4I	0.15580507	0.001857
ABCD4	ATP binding cassette subfamily D member 4	0.15032984	0.006105
ST3GAL1	ST3 beta-galactoside alpha-2,3-sialyltransferase 1	0.14706143	0.009269
RS6KA2	ribosomal protein S6 kinase A2	0.14666215	0.003058
SOAT1	sterol O-acyltransferase 1	0.14069184	0.006413

Citation: Logotheti M, Pilalisb E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J*. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Table Continued

Gene symbol	Gene title	Fold change (log2)	p-value
ZC3H18	zinc finger CCCH-type containing 18	0.13836437	0.002404
MAX	MYC associated factor X	0.13176022	0.008971
RGS19	regulator of G-protein signaling 19	0.13170526	0.005579
DKK1	dickkopf/WNT signaling pathway inhibitor 1	0.13138221	0.006626
GTF2A2	general transcription factor II A 2	0.12594606	0.008314
HSBP1L1	heat shock factor binding protein 1-like 1	0.12215011	0.005242
C1GALT1C1	C1GALT1 specific chaperone 1	0.12188569	0.007076
CASP6	caspase 6	0.12106434	0.00282
SLC4A2	solute carrier family 4 member 2	0.11859651	0.006411
VCPPI	valosin containing protein (p97)/p47 complex interacting protein 1	0.11499142	0.006035
CCNA2	cyclin A2	0.10649764	0.006075
FBXO42	F-box protein 42	0.10227309	0.007903
LOC284009	hypothetical LOC284009	0.0992991	0.0068
ZNF202	zinc finger protein 202	0.09919633	0.005258
KHDCl	KH homology domain containing I	0.09373654	0.008083
RPS6KB1	ribosomal protein S6 kinase B1	0.09108946	0.007656
TMEM184C	transmembrane protein 184C	0.09047685	0.003114
FHAD1	forkhead-associated (FHA) phosphopeptide binding domain 1	-0.0868906	0.005764
PRKRIPI	PRKR interacting protein 1 (IL11 inducible)	-0.0877571	0.002776
DOCK1	dedicator of cytokinesis I	-0.0919423	0.00703
FAM13A	family with sequence similarity 13 member A	-0.0941148	0.006757
CHMP6	charged multisvesicular body protein 6	-0.0953008	0.009337
ZNF777	zinc finger protein 777	-0.0958465	0.007735
FAM204A	family with sequence similarity 204 member A	-0.0961403	0.009096
LOC440867	uncharacterized LOC440867	-0.1024177	0.003157
ANAPC13	anaphase promoting complex subunit 13	-0.1046875	0.009113
CORIN	corin, serine peptidase	-0.1056187	0.003811
TMEM239	transmembrane protein 239	-0.1066623	0.008018
VIPR2	vasoactive intestinal peptide receptor 2	-0.1084358	0.004582
TEX264	testis expressed 264	-0.1095848	0.001421
ZNF18	zinc finger protein 18	-0.1107995	0.003814
HSD17B8	hydroxysteroid (17-beta) dehydrogenase 8	-0.1109382	0.008904
JMD4	jumonji domain containing 4	-0.1130027	0.005253
BROX	BRO1 domain and CAAX motif containing	-0.1140799	0.003452
CCS	copper chaperone for superoxide dismutase	-0.1154503	0.000723
ATP1A4	ATPase Na+/K+ transporting subunit alpha 4	-0.1158428	0.006439
EXOSC9	exosome component 9	-0.116022	0.001765
LOC100506459	uncharacterized LOC100506459	-0.1198351	0.003974
TSEN15	tRNA splicing endonuclease subunit 15	-0.1200272	0.007396
DMKN	dermoline	-0.1207084	0.004637

Citation: Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Gene symbol	Gene title	Fold change (log2)	p-value
C3orf35	chromosome 3 open reading frame 35	-0.12101	0.001778
WDR86	WD repeat domain 86	-0.1227062	0.008758
SMURF1	SMAD specific E3 ubiquitin protein ligase 1	-0.1244752	0.00463
FAM173A	family with sequence similarity 173 member A	-0.1247547	0.008634
LOC730098	hypothetical LOC730098	-0.1253896	0.002728
IFT27	intraflagellar transport 27	-0.126053	0.004584
SAPCD1	suppressor APC domain containing 1	-0.1288511	0.004477
LINC009000	long intergenic non-protein coding RNA 900	-0.1307883	0.007456
LRRN4CL	LRRN4 C-terminal like	-0.1307926	0.002182
JAG1	jagged 1	-0.1311909	0.003896
C17orf97	chromosome 17 open reading frame 97	-0.1312053	0.006676
PNLDC1	PARN like, ribonuclease domain containing 1	-0.1318857	0.001077
CHCHD5	coiled-coil-helix-coiled-coil-helix domain containing 5	-0.1318954	0.009292
PEX10	peroxisomal biogenesis factor 10	-0.1330601	0.00123
PRR5L	proline rich 5 like	-0.1359154	0.004642
PARG1	poly(ADP-ribose) glycohydrolase pseudogene 1	-0.1369147	0.003835
ZFSP2	ZFSP2 zinc finger protein	-0.1396819	0.00489
ADGRA1	adhesion G protein-coupled receptor A1	-0.1402824	0.006006
IGLV1-44	immunoglobulin lambda variable 1-44	-0.1424417	0.009018
MSANTD1	Myb/SANT DNA binding domain containing 1	-0.1435871	0.009775
WSB1	WD repeat and SOCS box containing 1	-0.1461526	0.000747
LZTS1	leucine zipper, putative tumor suppressor 1	-0.1479398	0.007089
ALMS1	ALMS1, centrosome and basal body associated protein	-0.1483872	0.00191
SOHLH2	spermatogenesis and oogenesis specific basic helix-loop-helix 2	-0.1495143	0.002074
ACOX3	acyl-CoA oxidase 3, pristanoyl	-0.1497299	0.006074
ICA1	islet cell autoantigen 1	-0.1520765	0.000761
AMFR4	autocrine motility factor receptor	-0.157991	0.005319
ALDH1A3	aldehyde dehydrogenase 1	-0.1580397	0.003569
PCDHA1	protocadherin alpha 1	-0.1616883	0.008645
COL12A1	collagen type XII alpha 1	-0.1624951	0.006727
FMOD	fibromodulin	-0.1682213	0.00679
LOC440896	hypothetical LOC440896	-0.1692409	0.006958
PXDN	peroxidasin	-0.1700568	0.002642
ADAMTS8	ADAM metallopeptidase with thrombospondin type 1 motif 8	-0.1713025	0.003075
LYRM4	LYR motif containing 4	-0.1808278	0.000795
CSPG5	chondroitin sulfate proteoglycan 5	-0.1823952	0.008227
MTG2	mitochondrial ribosome-associated GTPase 2	-0.1827759	0.008865
SPAG6	sperm associated antigen 6	-0.1827796	0.003408

Citation: Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning

Table Continued

Gene symbol	Gene title	Fold change (log2)	p-value
IGFBP6	insulin like growth factor binding protein 6	-0.1859001	0.004757
PDCD6	programmed cell death 6	-0.1912033	0.000818
SLC22A8	solute carrier family 22 member 8	-0.192731	0.007573
LOC100134317	hypothetical LOC100134317	-0.1974936	0.009156
SETD9	SET domain containing 9	-0.2060151	0.008609
FLRT1	fibronectin leucine rich transmembrane protein 1	-0.2060696	0.001075
GPCPD1	Glycerophosphocholine phosphodiesterase 1	-0.2067034	0.006461
SLC6A20	solute carrier family 6 member 20	-0.2090165	0.002204
PEX7	peroxisomal biogenesis factor 7	-0.2100343	0.001087
TRIB2	tribbles pseudokinase 2	-0.2116417	0.001142
RASGRPI	RAS guanyl releasing protein 1	-0.2127558	0.005429
TNC	tenasin C	-0.2135083	0.002824
AHS2A2	AHA1, activator of heat shock 90kDa protein ATPase homolog 2 (yeast)	-0.2223365	0.007083
ADTRP	androgen dependent TFPI regulating protein	-0.2310652	0.008219
AGA	aspartylglucosaminidase	-0.240033	0.006235
MPPED2	metallophosphoesterase domain containing 2	-0.2474596	0.001065
CA4	carbonic anhydrase 4	-0.2483552	0.003805
ARMCX4	armadillo repeat containing, X-linked 4	-0.2518212	0.009947
SPO2N	spodin 2	-0.254678	0.003923
C1orf95	chromosome 1 open reading frame 95	-0.2738358	0.009582
ECM2	extracellular matrix protein 2	-0.2844704	0.006839
TYRP1	tyrosinase-related protein 1	-0.296184	0.003082
PHLD8B	pleckstrin homology like domain family B member 2	-0.3201603	0.009663
ALDH1A1	aldehyde dehydrogenase 1 family member A1	-0.3254277	0.007148
CYP26B1	cytochrome P450 family 26 subfamily B member 1	-0.3257775	0.000915
CRABPI	cellular retinoic acid binding protein 1	-0.3784878	0.003868
SLC13A4	solute carrier family 13 member 4	-0.3876823	0.001843
CCL3	C-C motif chemokine ligand 3	-0.4024027	0.006522
FRZB	frizzled-related protein	-0.515621	0.001186
FRMDP2	FERM and PDZ domain containing 2	-0.5236301	0.001204
GJB2	gap junction protein beta 2	-0.5305406	0.000687
LOC728613	programmed cell death 6 pseudogene	-0.6624631	0.002835
DSP	desmoplakin	-0.7005118	0.009817
OGN	osteoglycin	-0.804669	0.002176

Citation: Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Supplementary Table 2
Overrepresented GO terms occurring from the enrichment analysis of the differentially expressed genes (category Biological Process). The ranking of statistically significant terms is according to the corrected p-value.

Rank	Term id	Term definition	Enrichment	Hypergeometric p-value	Corrected p-value
1	GO:0046324	regulation of glucose import	2/7	2.27E-03	2.90E-03
2	GO:0001816	cytokine production	3/26	2.57E-03	7.00E-03
3	GO:0009060	aerobic respiration	3/28	3.18E-03	8.80E-03
4	GO:0042339	keratan sulfate metabolic process	3/32	4.67E-03	0.0117
5	GO:0016558	protein import into peroxisome matrix	2/10	4.76E-03	0.0174
6	GO:0030593	neutrophil chemotaxis	4/65	5.08E-03	0.0196
7	GO:0030199	collagen fibril organization	3/38	7.58E-03	0.0217
8	GO:0038083	peptidyl-tyrosine autophosphorylation	3/39	8.15E-03	0.0244
9	GO:0030514	negative regulation of BMP signaling pathway	3/42	1.00E-02	0.0271
10	GO:0038096	Fc-gamma receptor signaling pathway involved in phagocytosis	4/82	0.0119	0.0291
11	GO:0007229	integrin-mediated signaling pathway	4/84	0.0124	0.0341
12	GO:0071407	cellular response to organic cyclic compound	4/86	0.0134	0.0373
13	GO:0019722	calcium-mediated signaling	3/51	0.0169	0.0423
14	GO:0032760	positive regulation of tumor necrosis factor production	3/48	0.0144	0.0438
15	GO:0019370	leukotriene biosynthetic process	2/29	0.0206	0.0477
16	GO:0051090	regulation of sequence-specific DNA binding transcription factor activity	2/22	0.0225	0.0498

Supplementary Table 3
Overrepresented Reactome pathways occurring from the enrichment analysis of the differentially expressed genes. The ranking of statistically significant terms is according to the corrected p-value.

Rank	Term id	Term Definition	Enrichment	Hypergeometric p-value	Corrected p-value
1	R-HSA-5365859	RA biosynthesis pathway	4/22	3.22E-05	3.10E-03
2	R-HSA-5362517	Signaling by Retinoic Acid	4/42	4.31E-04	9.00E-03
3	R-HSA-2029481	FCGR activation	3/19	5.19E-04	0.0123
4	R-HSA-354192	Integrin alphabl beta3 signaling	3/25	1.19E-03	0.0171

Citation: Logotheti M, Pilalisb E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J*. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning

Rank	Term id	Term definition	Enrichment	Hypergeometric p-value	Corrected p-value
5	R-HSA-2022854	Keratan sulfate biosynthesis	3/27	1.49E-03	0.0186
6	R-HSA-1638074	Keratan sulfate/keratin metabolism	3/33	2.68E-03	0.0259
7	R-HSA-76009	Platelet Aggregation (Plug Formation)	3/34	2.92E-03	0.0283
8	R-HSA-3560782	Diseases associated with glycosaminoglycan metabolism	3/38	4.01E-03	0.0336
9	R-HSA-2022857	Keratan sulfate degradation	2/12	4.41E-03	0.0362
10	R-HSA-173623	Classical antibody-mediated complement activation	2/15	6.90E-03	0.0431
11	R-HSA-166658	Complement cascade	3/47	7.30E-03	0.0469
12	R-HSA-2029480	Fc gamma receptor (FCGR) dependent phagocytosis	4/91	7.45E-03	0.048

Supplementary Table 4 Overrepresented MGI Mammalian Phenotype Ontology terms occurring from the enrichment analysis of the differentially expressed genes. The ranking of statistically significant terms is according to the corrected p-value

Rank	Term id	Term definition	Enrichment	Hypergeometric p-value	Corrected p-value
1	MP:0010458	pulmonary trunk hypoplasia	2/3	4.07E-04	2.90E-03
2	MP:0000380	small hair follicles	2/5	1.34E-03	6.30E-03
3	MP:0011090	perinatal lethality, incomplete penetrance	9/226	1.52E-03	7.60E-03
4	MP:0010505	abnormal T wave	2/6	1.99E-03	0.0115
5	MP:0001879	abnormal lymphatic vessel morphology	3/24	2.69E-03	0.0152
6	MP:0001614	abnormal blood vessel morphology	6/142	6.77E-03	0.0176
7	MP:0001177	astelectasis	4/67	7.98E-03	0.019
8	MP:0000008	increased white adipose tissue amount	3/38	9.94E-03	0.0216
9	MP:0001261	obese	4/73	0.0107	0.0268
10	MP:0002828	abnormal renal glomerular capsule morphology	2/14	0.0113	0.0284
11	MP:0010239	decreased skeletal muscle weight	2/15	0.013	0.034
12	MP:0004938	dilated vasculature	2/17	0.0166	0.0365
13	MP:0002106	abnormal muscle physiology	4/84	0.0172	0.0365
14	MP:0002206	abnormal CNS synaptic transmission	4/87	0.0193	0.0373
15	MP:0005065	abnormal neutrophil morphology	2/18	0.0185	0.0397
16	MP:0009050	dilated proximal convoluted tubules	2/19	0.0205	0.0462
17	MP:0002463	abnormal neutrophil physiology	4/94	0.0249	0.0473

Citation: Logotheti M, Pilalis E, Venizelos N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. Biom Biostat Int J. 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Supplementary Table 5: Overrepresented Human Phenotype Ontology terms occurring from the enrichment analysis of the differentially expressed genes. The ranking of statistically significant terms is according to the corrected p-value.

Rank	Term id	Term definition	Enrichment	Hypergeometric p-value	Corrected p-value
1	HP:0200120	Chronic active hepatitis	3/11	2.00E-04	2.50E-03
2	HP:0001394	Cirrhosis	6/104	1.02E-03	3.90E-03
3	HP:0002138	Subarachnoid hemorrhage	2/5	1.16E-03	6.80E-03
4	HP:0045044	Decreased serum complement C4b	2/9	4.06E-03	8.40E-03
5	HP:0000872	Hashimoto thyroiditis	2/11	6.12E-03	0.0104
6	HP:0010702	Increased antibody level in blood	3/35	6.53E-03	0.0157
7	HP:0000992	Cutaneous photosensitivity	4/73	8.45E-03	0.0158
8	HP:0002910	Elevated hepatic transaminases	6/155	7.37E-03	0.0162
9	HP:0002092	Pulmonary hypertension	5/114	8.46E-03	0.0217
10	HP:0000979	Purpura	3/47	0.0147	0.0272
11	HP:0100729	Large face	2/20	0.0198	0.0277
12	HP:0002206	Pulmonary fibrosis	3/48	0.0155	0.0288
13	HP:0001635	Congestive heart failure	6/197	0.0217	0.0303
14	HP:0001808	Fragile nails	2/22	0.0238	0.0305
15	HP:0000311	Round face	4/98	0.0227	0.032
16	HP:0010982	Polygenic inheritance	2/23	0.0258	0.0353
17	HP:0011344	Severe global developmental delay	4/103	0.0266	0.0403
18	HP:0002633	Vasculitis	3/59	0.0268	0.0434
19	HP:0001369	Arthritis	4/104	0.0275	0.0447
20	HP:0006519	Alveolar cell carcinoma	2/25	0.0302	0.0467
21	HP:0002922	Increased CSF protein	2/26	0.0325	0.0476
22	HP:0009891	Underdeveloped supraorbital ridges	2/62	0.0304	0.049

Supplementary Table 6: Hub genes according to ontological clusters amount. Bioinfominer reveals 10 genes as hub nodes of the enriched GO graph.

Rank	Gene symbol	Clusters	Enriched clusters	Interactors	Associated drugs
1	CCL3	4	4	0	i
2	SYK	4	4	2	10
3	RASGRP1	2	2	0	0
4	VEGFA	2	2	0	24
5	SMAD7	2	2	1	0
6	RPS6KB1	2	2	2	2
7	S100A9	2	2	2	0
8	S100A8	2	2	3	0
9	FMOD	2	1	0	0
10	HCK	2	2	0	5

Citation: Logotheti M, Pilalisb E, VenizelosaN, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182–199. DOI: 10.15406/bbij.2016.04.00106
Supplementary Table 7

Exhaustive grid search results for the developed classification algorithms (RF, Extra Trees, kNN, Adaboost, SVM) based on genes that occurred from SVM-RFE feature selection. Possible combinations of parameter values are evaluated and the optimal value for each tested classification algorithm is presented.

	RF	Extra trees	kNN	Adaboost	SVM
	Parameter	Parameter	Parameter	Parameter	Parameter
	Optimal	Optimal	Optimal	Optimal	Optimal
	Value	Value	Value	Value	Value
Criterion	gini	Criterion: gini	N_neighbors: 5	N_estimators: 100	kernel
Max_features	7.07	Max_features: 5.5	p: 1	Learning rate: 1	C: 200
N_estimators	50	N_estimators: 30	weights: uniform		

RF parameters:
- Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity.
- Max_features: the number of features to consider when looking for the best split.
- N_estimators: the number of trees in the forest.

Extra Trees parameters:
- Criterion, Max_features, N_estimators as described in RF.

kNN parameters:
- N_neighbors: number of neighbors to use by default for k_neighbors queries.
- P: power parameter for the Minkowski metric; p=1 is equivalent to using Manhattan distance.
- Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.

AdaBoost parameters:
- N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: Learning rate at which the contribution of each classifier shrinks.

SVM parameters:
- Kernel: specifies the kernel type to be used in the algorithm.
- C: penalty parameter C of the error term.

Supplementary Table 8

Exhaustive grid search results for the construction of the classification models of gene expression from the independent test dataset GSE 21935, based on the 21 gene subset of the differentially expressed genes, after SVM-RFE feature selection on the GSE 17612 dataset. All the possible combinations of parameter values are evaluated and the best combination is presented for each tested classification algorithm.

	RF	Extra trees	kNN	Adaboost	SVM
	Parameter	Parameter	Parameter	Parameter	Parameter
	Optimal	Optimal	Optimal	Optimal	Optimal
	Value	Value	Value	Value	Value
Criterion	gini	Criterion: gini	N_neighbors: 5	N_estimators: 200	kernel
Max_features	3.87	Max_features: 10	p: 1	Learning rate: 1	C: 1000
N_estimators	15	N_estimators: 10	weights: uniform		

RF parameters:
- Criterion: the function to measure the quality of a split; gini corresponds to the Gini impurity.
- Max_features: the number of features to consider when looking for the best split.
- N_estimators: the number of trees in the forest.

Extra Trees parameters:
- Criterion, Max_features, N_estimators.

kNN parameters:
- N_neighbors: number of neighbors to use by default for k_neighbors queries.
- P: power parameter for the Minkowski metric; p=1 is equivalent to using Manhattan distance.
- Weights: weight function used in prediction; in uniform weights all points in each neighborhood are weighted equally.

Adaboost parameters:
- N_estimators: the maximum number of estimators at which boosting is terminated. Learning rate: learning rate at which the contribution of each classifier shrinks.

SVM parameters:
- Kernel: specifies the kernel type to be used in the algorithm.
- C: penalty parameter C of the error term.

Citation:
Logotheti M, Pilalis E, Venizelosa N, et al. Studying microarray gene expression data of schizophrenic patients for derivation of a diagnostic signature through the aid of machine learning. *Biom Biostat Int J.* 2016;4(5):182-199. DOI: 10.15406/bbij.2016.04.00106
Supplementary Table 9

Mean performance estimation values of different classification algorithms after applying 10-fold CV. Italics indicate the highest value corresponding to each performance metric.

	ROC_AUC	Accuracy	Precision	Sensitivity
GSE 17612 (no feature selection)				
kNN	0.88	0.85	0.84	0.93
SVM	0.93	0.94	0.97	0.93
RF	0.9	0.77	0.84	0.81
Extra Trees	0.85	0.78	0.89	0.75
AdaBoost	0.95	0.92	0.91	0.96
GSE 17612 (with feature selection)				
kNN	0.93	0.9	0.9	0.93
SVM	0.95	0.94	0.97	0.93
RF	0.98	0.83	0.93	0.89
Extra Trees	0.94	0.88	0.87	0.84
AdaBoost	0.93	0.78	0.8	0.77
GSE 21935				
kNN	0.72	0.63	0.79	0.58
SVM	0.82	0.76	0.87	0.74
RF	0.91	0.76	0.83	0.85
Extra Trees	0.76	0.6	0.76	0.65
AdaBoost	0.9	0.81	0.75	0.86