On \(\text{CH} + 2^{\aleph_1} \to (\alpha)_2^2 \) for \(\alpha < \omega_2 \)

by

Saharon Shelah\(^1\)

1. Introduction

We prove the consistency of

\[
\text{CH} + 2^{\aleph_1} \text{ is arbitrarily large } + 2^{\aleph_1} \not\to (\omega_1 \times \omega)_2^2
\]

(Theorem 1). If fact, we can get \(2^{\aleph_1} \not\to [\omega_1 \times \omega]_{\aleph_0}^2 \), see 1A. In addition to this theorem, we give generalizations to other cardinals (Theorems 2 and 3). The \(\omega_1 \times \omega \) is best possible as CH implies

\[
\omega_3 \to (\omega \times n)_2^2.
\]

We were motivated by the question of Baumgartner [B1] on whether CH implies \(\omega_3 \to (\alpha)_2^2 \) for \(\alpha < \omega_2 \) (if \(2^{\aleph_1} = \aleph_2 \), it follows from the Erdos–Rado theorem). He proved the consistency of positive answer with \(\text{CH} + 2^{\aleph_1} > \aleph_3 \), and proved in ZFC a related polarized partition relation (from CH)

\[
\left(\begin{array}{c} \aleph_3 \\ \aleph_2 \end{array} \right) \to \left(\begin{array}{c} \aleph_1 \\ \aleph_1 \end{array} \right)^{1,1}_{\aleph_0}.
\]

Note: The main proof here is that of Theorem 1. In that proof, in the way things are set up, the main point is proving the \(\aleph_2 \)-c.c. The main idea in the proof is using \(\mathbb{P} \) (defined in the proof). It turns out that we can use as elements of \(\mathcal{P} \) (see the proof) just pairs \((a, b)\). Not much would be changed if we used \(\{ (a_n, a_n) : n < \omega \} \), \(a_n \) a good approximation of the \(n \)th part of the suspected monochromatic set of order type \(\omega_1 \times \omega \). In 1A, 2 and 3 we deal with generalizations and in Theorem 4 with complementary positive results.

2. The main result

Theorem 1. Suppose

(a) CH.
(b) \(\lambda^{\aleph_1} = \lambda \).

Then there is an \(\aleph_2 \)-c.c. \(\aleph_1 \)-complete forcing notion \(\mathbb{P} \) such that

(i) \(|\mathbb{P}| = \lambda \).
(ii) \(\not\Vdash_{\mathbb{P}} "2^{\aleph_1} = \lambda, \lambda \not\to (\omega_1 \times \omega)_2^2" \).
(iii) \(\Vdash_{\mathbb{P}} \text{CH} \).
(iv) Forcing with \(\mathbb{P} \) preserves cofinalities and cardinalities.

\(^1\) Publication number 424. Partially supported by BSF.
Proof. By Erdos and Hajnal [EH] there is an algebra \mathcal{B} with $2^{|\aleph_0|} = \aleph_1$ \omega-place functions, closed under composition (for simplicity only), such that

\otimes If $\alpha_n < \lambda$ for $n < \omega$, then for some k

$\alpha_k \in \text{cl}_\mathcal{B}\{\alpha_l : k < l < \omega \}.$

[\otimes implies that for every large enough k, for every m, $\alpha_k \in \text{cl}_\mathcal{B}\{\alpha_k : m < l < \omega \}$.] Let

$$\mathcal{R}_\delta = \{ b : b \subseteq \lambda, \otp(b) = \delta, \alpha \in b \Rightarrow b \subseteq \text{cl}_\mathcal{B}(b \setminus \alpha) \}.$$

So by \otimes we have

\oplus If α is a limit ordinal, $b \subseteq \lambda$, $\otp(b) = \alpha$, then for some $\alpha \in b$, $b \setminus \alpha \in \bigcup \delta \mathcal{R}_\delta$.

Let $\mathcal{R}_{<\omega_1} = \bigcup_{\alpha < \omega_1} \mathcal{R}_\alpha$. Let \mathcal{P} be the set of forcing conditions

$$(w, c, \mathcal{P})$$

where w is a countable subset of λ, $c : [w]^2 \rightarrow \{\text{red}, \text{green}\} = \{0, 1\}$ (but we write $c(\alpha, \beta)$ instead of $c(\{\alpha, \beta\})$), and \mathcal{P} is a countable family of pairs (a, b) such that

(i) a, b are subsets of w
(ii) $b \in \mathcal{R}_{<\omega_1}$ and a is a finite union of members of $\mathcal{R}_{<\omega_1}$
(iii) $\sup(a) < \min(b)$
(iv) If $\sup(a) \leq \gamma < \min(b)$, $\gamma \in w$, then $c(\gamma, \cdot)$ divides a or b into two infinite sets.

We use the notation

$$p = (w^p, c^p, \mathcal{P}^p)$$

for $p \in \mathcal{P}$. The ordering of the conditions is defined as follows:

$$p \leq q \iff w^p \subseteq w^q \& c^p \subseteq c^q \& \mathcal{P}^p \subseteq \mathcal{P}^q.$$

Let

$$\mathcal{G} = \bigcup\{c^p : p \in G_{\mathcal{P}} \}.$$

Fact A. \mathcal{P} is \aleph_2-complete.

Proof. Trivial—take the union.

Fact B. For $\gamma < \lambda$, $\{ q \in \mathcal{P} : \gamma \in w^q \}$ is open dense.

Proof. Let $p \in \mathcal{P}$. If $\gamma \in w^p$, we are done. Otherwise we define q as follows: $w^q = w^p \cup \{\gamma\}$, $\mathcal{P}^q = \mathcal{P}^p$, $c^q | w^p = c^p$ and $c^q(\gamma, \cdot)$ is defined so that if $(a, b) \in \mathcal{P}^q$, then $c^q(\gamma, \cdot)$ divides a and b into two infinite sets.
Fact C. $\|\mathbb{P}\| \geq \lambda$ and $c : [\lambda]^{2} \to \{\text{red, green}\}$

Proof. The second phrase follows from Fact B. For the first phase, define $\rho_{\alpha} \in \omega_{1}2$, for $\alpha < \lambda$, by: $\rho_{\alpha}(i) = c(0, \alpha + i)$. Easily

\[\|\mathbb{P}\| \rho_{\alpha} \in \omega_{1}2 \text{ and for } \alpha < \beta < \lambda, \rho_{\alpha} \neq \rho_{\beta}; \text{ so } \|\mathbb{P}\| \geq 2^{\aleph_{1}}. \]

\[\square\]

Fact D. \mathbb{P} satisfies the \aleph_{2}-c.c.

Proof. Suppose $p_{i} \in \mathbb{P}$ for $i < \aleph_{2}$. For each i choose a countable family \mathcal{A}^{i} of subsets of $w^{p_{i}}$ such that $\mathcal{A}^{i} \subseteq \mathcal{R}_{<\omega_{1}}$ and $(a, b) \in \mathcal{P}^{p_{i}}$ implies $b \in \mathcal{A}^{i}$ and a is a finite union of members of \mathcal{A}^{i}. For each $\gamma \in c \in \mathcal{A}^{i}$ choose a function $F^{i}_{\gamma,c}$ s.t. $F^{i}_{\gamma,c}(c \setminus (\gamma + 1)) = \gamma$. Let v_{i} be the closure of w_{i} (in the order topology).

We may assume that $(v_{i} : i < \omega_{2})$ is a Δ-system (we have CH) and that otp(v_{i}) is the same for all $i < \omega_{2}$. W.l.o.g. for $i < j$ the unique order-preserving function $h_{i,j}$ from v_{i} onto v_{j} maps p_{i} onto p_{j}, $w^{p_{i}} \cap w^{p_{j}} = w^{p_{0}} \cap w^{p_{1}}$ onto itself, and

\[F^{i}_{\gamma,c} = F^{j}_{h_{i,j}(\gamma),h_{i,j} \cdot c} \]

for $\gamma \in c \in \mathcal{A}^{i}$ (remember: \mathbb{IB} has $2^{\omega_{0}} = \aleph_{1}$ functions only). Hence

\otimes_{1}

$h_{i,j}$ is the identity on $v_{i} \cap v_{j}$ for $i < j$.

Clearly by the definition of $\mathcal{R}_{<\omega_{1}}$ and the condition on $F^{i}_{\gamma,c}$:

\otimes_{2}

If $a \in \mathcal{A}^{i}$, $i \neq j$ and $a \notin w^{p_{i}} \cap w^{p_{j}}$,

then $a \setminus (w^{p_{i}} \cap w^{p_{j}})$ is infinite.

We define q as follows.

$w^{q} = w^{p_{0}} \cup w^{p_{1}}$.

$\mathcal{P}^{q} = \mathcal{P}^{p_{0}} \cup \mathcal{P}^{p_{1}}$.

c^{p} extends $c^{p_{0}}$ and $c^{p_{1}}$ in such a way that, for $e \in \{0, 1\}$,

(*) for every $\gamma \in w^{p_{e}} \setminus w^{p_{1-e}}$ and every $a \in \mathcal{A}^{1-e}$, $w^{p}(\gamma, \cdot)$ divides a into two infinite parts, provided that

(**) $a \setminus w^{p_{e}}$ is infinite.

This is easily done and $p_{0} \leq q$, $p_{1} \leq q$, provided that $q \in \mathbb{P}$. For this the problematic part is c^{q} and, in particular, part (iv) of the definition of \mathbb{P}. So suppose $(a, b) \in \mathcal{P}^{q}$, e.g., $(a, b) \in \mathcal{P}^{p_{0}}$. Suppose also $\gamma^{*} \in w^{q}$ so that sup(a) $\leq \gamma^{*} < \sup(b)$. If $\gamma^{*} \in w^{p_{0}}$, there is no problem, as $p_{0} \in \mathbb{P}$. So let us assume $\gamma^{*} \in w^{q} \setminus w^{p_{0}} = w^{p_{1}} \setminus w^{p_{0}}$. If $a \setminus w^{p_{1}}$ or $b \setminus w^{p_{1}}$ is infinite, we are through in view of condition (*) in the definition of c^{q}. Let us finally assume $a \setminus w^{p_{1}}$ is finite. But $a \subseteq w^{p_{0}}$. Hence $a \setminus (w^{p_{0}} \cap w^{p_{1}})$ is finite and \otimes_{2} implies it is empty, i.e. $a \subseteq w^{p_{0}} \cap w^{p_{1}}$. Similarly, $b \subseteq w^{p_{0}} \cap w^{p_{1}}$. So $h_{0,1}$ is the identity. But $(a, b) \in \mathcal{P}^{p_{0}}$. But $h_{i,j}$ maps p_{i} onto p_{j}. Hence $(a, b) \in \mathcal{P}^{p_{1}}$. As $p_{1} \in \mathbb{P}$, we get the desired conclusion. \square
Fact E. \[\vdash \text{“There is no c-monochromatic subset of } \lambda \text{ of order-type } \omega_1 \times \omega.” \]

Proof. Let \(p \) force the existence of a counterexample. Let \(G \) be \(\mathbb{I} \mathbb{P} \)-generic over \(V \) with \(p \in G \). In \(V[G] \) we can find \(A \subseteq \lambda \) of order-type \(\omega_1 \times \omega \) such that \(c \mid [A]^2 \) is constant. Let \(A = \bigcup_{n<\omega} A_n \) where \(\text{otp}(A_n) = \omega_1 \) and \(\sup(A_n) \leq \min(A_{n+1}) \). We can replace \(A_n \) by any \(A'_n \subseteq A_n \) of the same cardinality. Hence we may assume w.l.o.g.

\[(\ast)_1 \quad A_n \in \mathcal{R}_{\omega_1} \quad \text{for } n < \omega. \]

Let \(\delta_n = \sup(A_n) \) and

\[\beta_n = \min \{ \beta : \delta \leq \beta < \lambda, \ d(\beta, \cdot) \text{ does not divide } \bigcup_{l \leq n} A_l \text{ into two infinite sets} \}, \]

where \(d = c^G \). Clearly \(\beta_n \leq \min(A_{n+1}) \). Hence \(\beta_n < \beta_{n+1} \). Let \(d_n \in \{0, 1\} \) be such that \(d(\beta_n, \gamma) = d_n \) for all but finitely many \(\gamma \in \bigcup_{l \leq n} A_l \). Let \(u \) be an infinite subset of \(\omega \) such that \(\{ \beta_n : n \in u \} \in \mathcal{R}_\omega \). Let \(A_l = \{ \alpha_i^l : i < \omega_1 \} \) in increasing order. So \(p \) forces all this on suitable names

\[\langle \beta_n : n < \omega \rangle, \langle \alpha_i^l : i < \omega_1 \rangle, \langle \delta_n : n < \omega \rangle. \]

As \(\mathbb{I} \mathbb{P} \) is \(\aleph_1 \)-complete, we can find \(p_0 \in \mathbb{I} \mathbb{P} \) with \(p \leq p_0 \) so that \(p_0 \) forces \(\beta_l = \beta_l \) and \(\delta_n = \delta_n \) for some \(\beta_l \) and \(\delta_n \). We can choose inductively conditions \(p_k \in \mathbb{I} \mathbb{P} \) such that \(p_k \leq p_{k+1} \) and there are \(i_k < j_k \) and \(\alpha_i^l \) (for \(i < j_k \)) with

\[p_{k+1} \models “\alpha_i^l > \sup \{ i : \alpha_i^l \in w^p \}, \]

\[\alpha_i^l \in w^{p_{k+1}} \text{ for } i < j_k, \]

\[\{ \alpha_i^l : i < i_k \} \subseteq c_\mathbb{I} \mathbb{B} \{ \alpha_i^l : i < j_k \}, \]

\[\alpha_i^l = \alpha_i^l \text{ for } i < j_k \] and

\[\gamma \in [\delta_m, \beta_m] \cap w^p \text{ implies } c(\gamma, \cdot) \text{ divides } \{ \alpha_i^l : i < j_k, l \leq m \} \text{ into two infinite sets.”} \]

(remember our choice of \(\beta_m \)). Let

\[l(\ast) = \min(u) \]

\[a = \{ \alpha_i^l : l \leq l(\ast), i < \bigcup_k j_k \} \]

\[b = \{ \beta_l : l \in u \} \]

\[q = (\bigcup_k w^p, \bigcup_k c^p, \bigcup_k p^p \cup \{(a, b)\}). \]
Now \(q \in \mathcal{I} \). To see that \(q \) satisfies condition (iv) of the definition of \(\mathcal{I} \), let
\[\sup(a) \leq \gamma < \min(b). \]
Then
\[\sup\{ \alpha_{i_k}^{l(*)} : k < \omega \} \leq \gamma < \beta_{l(*)}. \]
But \(\gamma \in w^p = \bigcup_k w^{p_k} \), so for some \(k, \gamma \in w^{p_k} \). This implies
\[\gamma \notin \left(\alpha_{i_{k+1}}^{l(*)}, \delta_{l(*)} \right), \]
whence \(\gamma \geq \delta_{l(*)} \) and
\[\{ \alpha_i^l : l \leq l(*), i < j_k \} \subseteq a, \]
which implies the needed conclusion.

Also \(q \geq p_k \geq p \). But now, if \(r \geq q \) forces a value to \(\alpha_{l(*)}^{l(*)} \), we get a contradiction. \(\square \)

Remark 1A. Note that the proof of Theorem 1 also gives the consistency of \(\lambda \not\rightarrow [\omega_1 \times \omega_1]^2 \) \(\kappa \): replace “\(c(\gamma, \cdot) \) divides a set \(x \) into two infinite parts” by “\(c(\gamma, \cdot) \) gets all values on a set \(x \).”

3. Generalizations to other cardinals

How much does the proof of Theorem 1 depend on \(\aleph_1 \)? Suppose we replace \(\aleph_0 \) by \(\mu \).

Theorem 2. Assume \(2^\mu = \mu^+ < \lambda = \lambda^\mu \) and \(2 < \kappa \leq \mu \). Then for some \(\mu^+-\)complete \(\mu^{++}-\)c.c. forcing notion \(\mathcal{I} \) of cardinality \(2^\mu \):
\[\models_{\mathcal{I}} 2^\mu = \lambda, \quad \lambda \not\rightarrow [\mu^+ \times \mu]^2_\kappa. \]

Proof. Let \(\mathcal{I} \) and \(\mathcal{R}_\delta \) be defined as above (for \(\delta \leq \mu^+ \)). Clearly \(\oplus \)

If \(a \subseteq \lambda \) has no last element, then for some \(\alpha \in a, \ a \setminus \alpha \in \bigcup_\delta \mathcal{R}_\delta. \)
Hence, if \(\delta = \text{otp}(a) \) is additively indecomposable, then \(a \setminus \alpha \in \mathcal{R}_\delta \) for some \(\alpha \in a. \)

Let \(\mathcal{I}_\mu \) be the set of forcing conditions
\[(w, c, \mathcal{P}) \]
where \(w \subseteq \lambda, \ |w| \leq \mu, \ c : [w]^2 \rightarrow \{ \text{red}, \text{green} \}, \) and \(\mathcal{P} \) is a set of \(\leq \mu \) pairs \((a, b) \) such that
(i) \(a, b \) are subsets of \(w \).
(ii) \(b \in \mathcal{R}_\mu \), and \(a \) is a finite union of members of \(\bigcup_{\mu \leq \delta < \mu^+} \mathcal{R}_\delta. \)
(iii) \(\sup(a) < \min(b) \).
(iv) If \(\sup(a) \leq \gamma < \min(b), \ \gamma \in w, \) then the function \(c(\gamma, \cdot) \) gets all values \((< \kappa) \)
on \(a \) or \(b \).

With the same proof as above we get
\[\mathcal{I}_\mu \text{ satisfies the } \mu^{++}-\text{c.c.}, \]
\[\mathcal{I}_\mu \text{ is } \mu^+-\text{complete}, \]
(so cardinal arithmetic is clear) and
\[\models_{\mathcal{I}_\mu} \lambda \not\rightarrow [\mu \times \mu]^2_\kappa. \]
\[\square \]
What about replacing μ^+ by an inaccessible θ? We can manage by demanding
\[
\{ a \cap (\alpha, \beta) : (a, b) \in \mathcal{P}, \bigcup_n \text{otp}(a \cap (\alpha, \beta)) \times n = \text{otp}(a) \}
\]
(α, β) maximal under these conditions $\}$
is free (meaning there are pairwise disjoint end segments) and by taking care in defining the order. Hence the completeness drops to θ-strategical completeness. This is carried out in Theorem 3 below.

Theorem 3. Assume $\theta = \theta^{<\theta} > \aleph_0$ and $\lambda = \lambda^{<\theta}$. Then for some θ^+-c.c. θ-strategically complete forcing \mathbb{P}, $|\mathbb{P}| = \lambda$ and
\[
\models \mathbb{P} 2^\theta = \lambda, \lambda \not\rightarrow (\theta \times \theta)^2.
\]

Proof. For W a family of subsets of λ, each with no last element, let
\[
\text{Fr}(W) = \{ f : f \text{ is a choice function on } W \text{ s.t.} \}
\]
\[
\{ a \setminus f(a) : a \in W \} \text{ are pairwise disjoint } \}.
\]

If $\text{Fr}(W) \neq \emptyset$, W is called free.

Let $\mathbb{P}_{<\theta}$ be the set of forcing conditions
\[
(w, c, \mathcal{P}, W)
\]
where $w \subseteq \lambda$, $|w| < \theta$, $c : [w]^2 \to \{\text{red}, \text{green}\}$, W is a free family of $< \theta$ subsets of w, each of which is in $\bigcup_{\delta < \theta} \mathcal{R}_\delta$, and \mathcal{P} is a set of $< \theta$ pairs (a, b) such that
(i) a, b are subsets of w.
(ii) $b \in \mathcal{R}_\omega$.
(iii) $\sup(a) < \min(b)$ and for some $\delta_0 < \delta_1 < \cdots < \delta_n$, $\delta_0 < \min(a)$, $\sup(a) \leq \delta_n$, $a \cap [\delta_i, \delta_{i+1}) \in W$.
(iv) If $\sup(a) \leq \gamma < \min(b)$, $\gamma \in w$, then $c(\gamma, \cdot)$ divides a or b into two infinite sets.

We order $\mathbb{P}_{<\theta}$ as follows:
\[
p \leq q \text{ iff } w^p \subseteq w^q, c^p \subseteq c^q, \mathcal{P}^p \subseteq \mathcal{P}^q, W^p \subseteq W^q
\]
and every $f \in \text{Fr}(W^p)$ can be extended to a member of $\text{Fr}(W^q)$.

\[\square\]

4. A provable partition relation

Claim 4. Suppose $\theta > \aleph_0$, $n, r < \omega$ and $\lambda = \lambda^{<\theta}$. Then
\[
(\lambda^+)^r \times n \rightarrow (\theta \times n, \theta \times r)^2.
\]
Proof. We prove this by induction on \(r \). Clearly the claim holds for\(r = 0,1 \). So w.l.o.g. we assume \(r \geq 2 \). Let \(c \) be a 2-place function from \((\lambda^+)^r \times n\) to \{red,green\}. Let \(\chi = \mathit{beth}_2(\lambda)^+ \). Choose by induction on \(l \) a model \(N_l \) such that

\[
N_l \prec (H(\chi), \in, <^*) ,
\]

\(|N_l| = \lambda, \lambda + 1 \subseteq N_l, N_l^{<\theta} \subseteq N_l, c \in N_l \text{ and } N_l \in N_{l+1}. \] Here \(<^* \) is a well-ordering of \(H(\chi) \). Let

\[
A_l = [(\lambda^+)^r \times l, (\lambda^+)^r \times (l+1)] ,
\]

and let \(\delta_l \in A_l \setminus N_l \) be such that \(\delta_l \notin x \) whenever \(x \in N_l \) is a subset of \(A_l \) and \(\text{otp}(x) < (\lambda^+)^{r-1} \). W.l.o.g. we have \(\delta_l \in N_{l+1} \). Now we shall show

\[
(*) \quad \text{If } Y \in N_0, Y \subseteq A_m, |Y| = \lambda^+ \text{ and } \delta_m \in Y, \text{ then we can find } \beta \in Y \text{ such that } c(\beta, \delta_m) = \text{red.}
\]

Why \((*)\) suffices? Assume \((*)\) holds. We can construct by induction on \(i < \theta \) and for each \(i \) by induction on \(l < n \) an ordinal \(\alpha_{i,l} \) s.t.

(a) \(\alpha_{i,l} \in A_l \) and \(j < i \Rightarrow \alpha_{j,l} < \alpha_{i,l} \).

(b) \(\alpha_{i,l} \in N_0 \).

(c) \(c(\alpha_{i,l}, \delta_m) = \text{red} \) for \(m < n \).

(d) \(c(\alpha_{i,l}, \alpha_{i_1,l_1}) = \text{red} \) when \(i_1 < i \) or \(i_1 = i \) & \(l_1 < l \).

Accomplishing this suffices as \(\alpha_{i,l} \in A_l \) and

\[
l < m \Rightarrow \text{sup } A_l \leq \text{min } A_m .
\]

Arriving in the inductive process at \((i,l)\), let

\[
Y = \{ \beta \in A_l : c(\beta, \alpha_{j,m}) = \text{red} \text{ if } j < i, m < n, \text{ or } j = i, m < l \} .
\]

Now clearly \(Y \subseteq A_l \). Also \(Y \in N_0 \) as all parameters are from \(N_0 \), their number is \(< \theta \) and \(N_0^{<\theta} \subseteq N_0 \). Also \(\delta_l \in Y \) by the induction hypothesis (and \(\delta_l \in A_l \)). So by \((*)\) we can find \(\alpha_{i,l} \) as required.

Proof of \((*)\): \(Y \nsubseteq N_0 \), because \(\delta_m \in Y \) and \(Y \in N_0 \). As \(|Y| = \lambda^+ \), we have \(\text{otp}(Y) \geq \lambda^+ \). But \(\lambda^+ \rightarrow (\lambda^+ , \theta)^2 \), so there is \(B \subseteq A_m \) s.t. \(|B| = \lambda^+ \) and \(c \mid B \times B \) is constantly red or there is \(B \subseteq A_m \) s.t. \(|B| = \theta \) and \(c \mid B \times B \) is constantly green. In the former case we get the conclusion of the claim. In the latter case we may assume \(B \in N_0 \), hence \(B \nsubseteq N_0 \), and let \(k \leq n \) be maximal s.t.

\[
B' = \{ \xi \in B : \bigwedge_{l<k} c(\delta_l, \xi) = \text{red} \}
\]

has cardinality \(\theta \). If \(k = n \), any member of \(B' \) is as required in \((*)\). So assume \(k < n \). Now \(B' \in N_k \), since \(B \in N_0 \prec N_k \) and \(\{N_l, A_l\} \in N_k \) and \(\delta_l \in N_k \) for \(l < k \). Also

\[
\{ \xi \in B' : c(\delta_k, \xi) = \text{red} \}
\]
is a subset of B' of cardinality $< \theta$ by the choice of k. So for some $B''_0 \subseteq N_0$, $c \mid \{\delta_k\} \times (B' \setminus B'')$ is constantly green (e.g., as $B' \subseteq N_0$, and $N_0^<\theta \subseteq N_0$). Let

$$Z = \{ \delta \in A_k : c \mid \{\delta\} \times (B' \setminus B'') \text{ is constantly green} \}$$

and

$$Z' = \{ \delta \in Z : (\forall \alpha \in B' \setminus B'') (\delta < \alpha \iff \delta_k < \alpha) \}.$$

So $Z \subseteq A_k$, $Z \in N_k$, $\delta_k \notin N_k$ and therefore $\text{otp}(Z) = \text{otp}(A_k) = (\lambda^+)^r$. Note that $k \neq l \Rightarrow Z' = Z$ and $k = l \Rightarrow Z' = Z \setminus \sup(B' \setminus B'')$, so Z' has the same properties. Now we apply the induction hypothesis: one of the following holds (note that we can interchange the colours): (a) there is $Z'' \subseteq Z'$, $\text{otp}(Z'') = \theta \times n$, $c \mid Z'' \times Z''$ is constantly red, wlog $Z'' \in N_k$, or (b) there is $Z'' \subseteq Z'$, $\text{otp}(Z'') = \theta \times (r - 1)$, $c \mid Z'' \times Z''$ green and wlog $Z'' \in N_k$. If (a), we are done; if (b), $Z'' \cup (B' \setminus B'')$ is as required. □

Remark 4A. So $(\lambda^+)^{n+1} \to (\theta \times n)^2$ for $\lambda = \lambda^{<\theta}$, $\theta = \text{cf}(\theta) > \aleph_0$ (e.g., $\lambda = 2^{<\theta}$).

Remark 4B. Suppose $\lambda = \lambda^{<\theta}$, $\theta > \aleph_0$. If c is a 2-colouring of $(\lambda^+)^s \times n$ by k colours and every subset of it of order type $(\lambda^{+(r-1)})^s \times n$ has a monochromatic subset of order type θ for each of the colours, one of the colours being red, then by the last proof we get

(a) There is a monochromatic subset of order type $\theta \times n$ and of colour red or

(b) There is a colour d and a set Z of order type $(\lambda^+)^s$ and a set B of order type θ s.t. $B < Z$ or $Z < B$ and

$$\{ (\alpha, \beta) : \alpha \in B, \beta \in Z \text{ or } \alpha \neq \beta \in B \}$$

are all coloured with d.

So we can prove that for 2-colourings by k colours c

$$(\lambda^+)^s \times n \to (\theta \times n_1, \ldots, \theta \times n_k)^2$$

when r, s, n are sufficiently large (e.g., $n \geq \min\{n_1 : l = 1, \ldots, k, s \geq \sum_{l=1}^k n_l \}$ by induction on $\sum_{l=1}^k n_l$.

Note that if c is a 2-colouring of λ^{+2k}, then for some $l < k$ and $A \subseteq \lambda^{+2k}$ of order type $\lambda^{+(2l+2)}$ we have

(*) If $A' \subseteq A$, $\text{otp}(A') = \lambda^{+2l}$, and d is a colour which appears in A, then there is $B \subseteq A'$ of order type θ s.t. B is monochromatic of colour d.

We can conclude $\lambda^{+2k} \to (\theta \times n)^2_k$.

References

[B1] J. Baumgartner, ??

[EH] P. Erdos and A. Hajnal, ??
Institute of Mathematics
The Hebrew University
Jerusalem
Israel

Department of Mathematics
Rutgers University
New Brunswick, NJ
USA