Antibiotic resistance of *Neisseria* species in Iran: A systematic review and meta-analysis

Farzad Khademi\(^1\), Amirhossein Sahebkar\(^2,3,4\)

\(^1\)Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
\(^2\)Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
\(^3\)Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
\(^4\)School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Objective: To estimate the prevalence of antibiotic resistance of *Neisseria* species in Iran.

Methods: A systematic and electronic search using relevant keywords in major national and international databases was performed until 6th July, 2018 in order to find studies reporting the prevalence of antibiotic resistance of *Neisseria* species in Iran. Results: A total of nine studies were found to be eligible based on predefined inclusion and exclusion criteria. Our analysis indicated that the prevalence of *Neisseria gonorrhoeae* resistance to different antibiotics was as follows: 66.9% to penicillin, 59.1% to ciprofloxacin, 11.1% to ceftriaxone, 21.6% to spectinomycin, 13.8% to cefixime, 82.4% to co-trimoxazole, 52.7% to tetracycline, 29.9% to gentamicin, 87.5% to ampicillin, 11.1% to azithromycin, 2.2% to chloramphenicol, 50.1% to cefepime and 50.0% to vancomycin. Antimicrobial resistance rates of *Neisseria meningitidis* was as follows: 30.0% to penicillin, 33.3% to amoxicillin, 33.3% to cephalexin, 55.6% to ampicillin and 0.0% to ciprofloxacin, ceftriaxone, cefotaxime, amikacin, co-trimoxazole, gentamicin, kanamycin, chloramphenicol and ceftizoxime. Conclusion: *Neisseria gonorrhoeae* and *Neisseria meningitidis* isolates of Iran show resistance to different types of antibiotics. Therefore, care should be exercised for the use of penicillin, ciprofloxacin, co-trimoxazole, tetracycline, gentamicin, ampicillin, cefepime and vancomycin for gonococcal infections, and also with respect to the use of penicillin, amoxicillin, ampicillin and cephalexin for meningococcal infections in Iran.

1. Introduction

The genus *Neisseria* comprises aerobic, Gram-negative diplococci and obligate human pathogens that share common properties such as being oxidase-positive and catalase-positive\(^{[1-3]}\). *Neisseria gonorrhoeae* (*N. gonorrhoeae*) and *Neisseria meningitidis* (*N. meningitidis*) are two clinically important *Neisseria* species in the family *Neisseriaceae*\(^{[1-3]}\). *N. gonorrhoeae* infects only humans and causes a spectrum of diseases including urogenital infections (urethritis in men and women and cervicitis in women), epididymitis and pelvic inflammatory disease along with serious reproductive health consequences in untreated infections (e.g. infertility in women), conjunctivitis such as ophthalmia neonatorum in neonates during passage via the birth canal and rarely disseminated gonococcal infection\(^{[4]}\). Gonorrhea is a sexually transmitted infection and the most common local infection caused by *N. gonorrhoeae* that is acquired through direct human-to-human contact during sexual activities\(^{[4]}\). Despite the presence of effective antimicrobial treatments, gonorrhea still remains as a major public health issue worldwide due to dwindling of treatment...
options. Based on the World Health Organization (WHO) reports, approximately 106 million people are infected with gonorrhea as a new infection each year[5]. Owing to the lack of any vaccine against *N. gonorrhoeae*, antibiotic therapy is the only way to manage gonococcal infections[6]. However, bacteria have developed resistance to different classes of antimicrobial agents used to treat the disease including penicillins, early-generation cephalosporins, macrolides, tetracyclines, fluoroquinolones and sulphonamides, resulting in increased rates of treatment failure[4,7,8]. Recently, WHO announced a list of bacteria divided into three categories, critical, high and medium, based on urgently need to develop new antibiotics. *N. gonorrhoeae* is placed in the high priority categories with increasingly resistance to cephalosporin and fluoroquinolone antibiotics[9]. Hence, it is necessary to update the healthcare systems with accurate information on the antibiotic resistance profile of *N. gonorrhoeae* isolates to prevent spreading of treatment failure. Similar to gonococcus that infect human mucosal surfaces of the genito-urinary tract, meningococcal strains interact with mucosal surfaces of the nasopharynx and cause life-threatening systemic infections such as bacteremia, fulminant septicemia and meningitis[10]. Meningococcus acquired by respiratory droplets or throat secretions from carriers and along with *Haemophilus influenza* type b (Hib) and *Streptococcus pneumonia* (pneumococcus) are three important causative agents of bacterial meningitis characterized by stiff neck, sensitivity to light, high fever, headaches, confusion and vomiting as the most common symptoms[11]. The pathogen only infects humans and is responsible for 75,000 deaths within 24 to 48 hours in the world, but bacterial meningitis is curable and the mortality rate can decrease from 100% in untreated patients to less than 10% in those receiving effective antibiotic treatment[2,11,12]. Therefore, this fatal meningococcal disease is listed as a medical emergency and should be treated with effective antibiotics including penicillin, ampicillin, chloramphenicol and ceftriaxone[13]. However, evidences indicate increased prevalence of antibiotic-resistant meningococcal strains that threatens successful antibiotic therapy in a large number of countries[14].

To our knowledge, there has been no previous study to present pooled estimates of antibiotic resistance of *Neisseria* species in Iran. The present systematic review and meta-analysis was undertaken to fill this gap.

2. Materials and methods

2.1. Search strategies

This systematic review and meta-analysis was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement[15]. Until 6th July, 2018, we searched for all studies addressing the prevalence of antibiotic resistance of *Neisseria* species in Iran. The search was performed in major international databases including PubMed, Scopus and Web of Science as well as Iranian databases including Scientific Information Database (www.sid.ir) and Magiran (www.magiran.com). Relevant English and Persian medical terms including “drug resistance” OR “antibiotic resistance” AND “*Neisseria*” AND “Iran” were used for searching. After searching reference lists to find any additional study, a complete list of articles were collected in a digital library for further evaluations and selection of eligible articles based on inclusion and exclusion criteria.

2.2. Inclusion and exclusion criteria

The titles, abstracts and full texts of numerous original studies were collected in a digital library and reviewed to determine their eligibility by two independent investigators. Our inclusion criteria were: (1) published cross-sectional studies in English or Persian languages, (2) studies which focused on antibiotic resistance of *Neisseria* species and (3) studies in an Iranian population. Additionally, duplicate reports and non-original articles were excluded.

2.3. Data extraction

Author’s name, year of the study, location of the study, *Neisseria* species, number of isolated strains, methods used for antimicrobial susceptibility testing and antibiotic resistance rates of bacteria to different antibiotics were extracted from the included articles.

2.4. Meta–analysis

Antibiotic resistance rates of *N. gonorrhoeae* and *N. meningitidis* reported in different studies were calculated and expressed as percentage and 95% confidence intervals (95% CIs). Fixed- or random-effects models were applied to estimate pooled effect size on the basis of heterogeneity. Heterogeneity in study results and publication bias risk were determined by *I*² statistic and funnel plots, respectively. All statistical analyses were performed by Comprehensive Meta-Analysis software (Biostat, Englewood, NJ).

3. Results

3.1. Characteristics of included studies

Briefly, a total of 27 records involving 17 studies in English and 10 studies in Persian languages were identified following databases search for antibiotic resistance of *Neisseria* species in Iran. Six duplicate studies were excluded and 15 studies did not meet our inclusion criteria and were removed after full text review.
An additional 3 studies were added after checking the reference lists of articles and ultimately 9 studies met the inclusion criteria and were included in the meta-analysis. As presented in Table 1, 3 studies from Tehran, 2 studies from Kashan, 1 study from Zahedan and 1 study from Mashhad evaluated the prevalence of antibiotic resistance of *N. gonorrhoeae*. Additionally, 2 studies from Tabriz and Hamadan reported antibiotic resistance profiles of *N. meningitidis*. In these studies, *Neisseria* species were collected from various specimens including endocervix, vagina, urethra, cerebrospinal fluid and blood. On the other hand, standard microbiological methods including samples culturing on chocolate agar, sheep blood agar and modified Thayer-Martin agar mediums for 48 h at 35 °C under microaerophilic condition along with biochemical tests such as gram staining, morphology, oxidase, catalase and carbohydrate utilization tests were used for bacterial identification. Figure 1 shows forest plots of the meta-analysis of the prevalence of *N. gonorrhoeae* resistance to ciprofloxacin, ceftriaxone, cefixime and cefepime in Iran. Additionally, as shown in Figure 2, there is some evidence of antibiotic resistance rate to the fluoroquinolone ciprofloxacin was high (59.1%; 95% CI: 43.9-72.7). On the other hand, resistance rate to cefazolin (11.1%; 95% CI: 2.9-34.4) and cefixime (13.8%; 95% CI: 8.5-21.6) were low, with cefepime as the only exception (50.1%; 95% CI: 0.7-99.3). Therefore, the use of ciprofloxacin and cefepime for treating *N. gonorrhoeae* infections is not recommended in Iran.

3.2. Characteristics of *N. gonorrhoeae* antibiotic resistance

Table 1

First author (Ref)	Year	Area	Bacterium	Strains (n)	AST	**Antibiotic resistance (%)**(95% CI)
Ziree-Zadeh(19)	1972	Tehran	*N. gonorrhoeae*	Variable	Disk diffusion	40 (30-50) 40 (30-50) 40 (30-50) 40 (30-50) 39 (29-49)
Rahimi(20)	2007	Tehran	*N. gonorrhoeae*	12	Disk diffusion	4 (3-5) 4 (3-5) 4 (3-5) 4 (3-5) 4 (3-5)
Azimipour-Mohammadi(21)	2015	Tehran	*N. gonorrhoeae*	32	Disk diffusion	22 (21-23) 22 (21-23) 22 (21-23) 22 (21-23) 22 (21-23)
Taheri(22)	2001	Kashan	*N. gonorrhoeae*	2	Disk diffusion	ND 1 ND ND ND 25 (24-26) 25 (24-26) 25 (24-26) 25 (24-26) 25 (24-26)
Afsharalizadeh(23)	2012-2013	Kashan	*N. gonorrhoeae*	7	Disk diffusion	7 (6-8) 7 (6-8) 7 (6-8) 7 (6-8) 7 (6-8)
Bokaeian(24)	2006-2009	Zahedan	*N. gonorrhoeae*	77	Disk diffusion	61 (59-63) 61 (59-63) 61 (59-63) 61 (59-63) 61 (59-63)
Tabrizi(25)	2003-2004	Mashhad	*N. meningitidis*	200	Disk diffusion	151 (150-152) 151 (150-152) 151 (150-152) 151 (150-152) 151 (150-152)
Abdinia(26)	2003-2013	Tabriz	*N. meningitidis*	10	Disk diffusion	3 (2-4) 3 (2-4) 3 (2-4) 3 (2-4) 3 (2-4)
Mashhad(27)	1998-2002	Hamadan	*N. meningitidis*	9	Disk diffusion	ND 0 ND ND ND 5 (4-6) 5 (4-6) 5 (4-6) 5 (4-6) 5 (4-6)

PEN-penicillin, CIP-ciprofloxacin, CRO-ceftriaxone, SPT-spectinomycin, CFM-cefmxime, TMP-SMX-co-trimoxazole, TET-tetracycline, GEN-gentamicin, AMP-ampicillin, AZM-azithromycin, CHL-chloramphenicol, FEP-cefepime, VAN-vancomycin, CTX-cefotaxime, AMK-amikacin, AMX-ampicillin, KAN-kanamycin, LEX-lexiphelexin, ZOX-zoxefoxime, AST-antimicrobial susceptibility testing; ND-not determined.

Table 2

City	**Antibiotic resistance (%)**(95% CI)
Tehran	53.7 (37.2-69.4) 56.7 (40.1-73.3) 57.8 (41.6-74.1) 57.8 (41.6-74.1) 57.8 (41.6-74.1)
Kashan	93.7 (46.1-99.6) 93.7 (46.1-99.6) 93.7 (46.1-99.6) 93.7 (46.1-99.6) 93.7 (46.1-99.6)
Zahedan	79.2 (68.7-86.9) 79.2 (68.7-86.9) 79.2 (68.7-86.9) 79.2 (68.7-86.9) 79.2 (68.7-86.9)
Mashhad	75.5 (69.1-81.1) 75.5 (69.1-81.1) 75.5 (69.1-81.1) 75.5 (69.1-81.1) 75.5 (69.1-81.1)
Total	66.9 (52.4-78.9) 66.9 (52.4-78.9) 66.9 (52.4-78.9) 66.9 (52.4-78.9) 66.9 (52.4-78.9)

PEN-penicillin, CIP-ciprofloxacin, CRO-ceftriaxone, SPT-spectinomycin, CFM-cefmxime, TMP-SMX-co-trimoxazole, TET-tetracycline, GEN-gentamicin, AMP-ampicillin, AZM-azithromycin, CHL-chloramphenicol, FEP-cefepime, VAN-vancomycin, CTX-cefotaxime, AMK-amikacin, AMX-ampicillin, KAN-kanamycin, LEX-lexiphelexin, ZOX-zoxefoxime, ND-not determined.
Table 3
Antibiotic susceptibility profiles of *N. meningitidis* in different cities of Iran.

City	PEN	CIP	CRO	CTX	AMK	TMP-SMX	AMX	GEN	AMP	KAN	CHL	LEX	ZOX
Tabriz	30	0.0	0.0	0.0	0.0	0.0	ND	0	ND	ND	ND	ND	ND
Hamadan	ND	ND	ND	ND	ND	33.3(11.1-66.7)	0	55.6(25.1-82.3)	0	0	33.3(11.1-66.7)	0	0
Total	30	0.0	0.0	0.0	0.0	0.0	ND	0	ND	ND	ND	ND	ND

PEN-penicillin; CIP-ciprofloxacin; CRO-ceftriaxone; SPT-spectinomycin; CFM-cefixime; TMP-SMX/co-trimoxazole; TET-tetracycline; GEN-gentamicin; AMP-ampicillin; AZM-azithromycin; CHL-chloramphenicol; FEP-cefepeime; VAN-vancomycin; CTX-cefotaxime; AMK-amikacin; AMX-amoxicillin; KAN-kanamycin; LEX-cephalexin; ZOX-ceftizoxime; ND-not determined.

Figure 1
Forest plots of the meta-analysis of the prevalence of *N. gonorrhoeae* resistance to ciprofloxacin, ceftriaxone, cefixime and cefepime in Iran.

A: Ciprofloxacin; B: Ceftriaxone; C: Cefixime; D: Cefepime.

Figure 2
Funnel plots of the meta-analysis of the prevalence of *N. gonorrhoeae* resistance to ciprofloxacin and ceftriaxone in Iran. Funnel plot analysis was not performed for cefixime and cefepime resistance rates owing to the insufficient number of studies (\(n=2\)).

3.4. Characteristics of *N. meningitidis* antibiotic resistance

As shown in Table 3, the prevalence of *N. meningitidis* resistance to different antibiotics was as follows: 30.0% (95% CI: 10.0-62.4) to penicillin, 33.3% (95% CI: 11.1-66.7) to amoxicillin, 33.3% (95% CI: 11.1-66.7) to cephalexin, 55.6% (95% CI: 25.1-82.3) to ampicillin and 0.0% to ciprofloxacin, ceftriaxone, cefotaxime, amikacin, co-trimoxazole, gentamicin, kanamycin, chloramphenicol and cefizoxime.

4. Discussion

The emergence of antibiotic-resistant *N. gonorrhoeae* strains has led to some problems in the prevention and control of gonococcal infections[6,25]. The spread of resistance to the last-line cephalosporins, penicillins, sulfonamides, tetracyclines, quinolones and macrolides has limited treatment options for *N.*
gonorrhoeae infections and can lead to increased morbidity and mortality rates, a conditions resemble the pre-antibiotic era(6,25).

Therefore, it is important to obtain accurate information on the nationwide and global antibiotic susceptibility profile of Neisseria species to guide the treatment of infected patients. In the present study, antibiotic resistance of N. gonorrhoeae and N. meningitidis to β-lactam antibiotics and other antibiotics inhibiting bacterial cell wall synthesis including penicillins, cephalosporins and vancomycin were summerized. According to our results, antibiotic resistance of N. gonorrhoeae to penicillins, such as penicillin (66.9%) and ampicillin (87.5%), and vancomycin (50.0%) was high. A review of other studies shows that drug resistance findings vary widely among countries such as Germany (penicillin, 18.8%), Tunisia (penicillin, 55.3%) and Korea (penicillin, 100%)[9,26,27]. Similar resistance rates were observed for N. meningitidis strains; penicillin (30.0%), ampicillin (55.6%) and amoxicillin (33.3%). The results of other studies are as follows: 30.4% in Tunisia, 0.0% in Scotland, and 40.9% in Belgium[26]. Major mechanisms of antimicrobial resistance of N. gonorrhoeae and N. meningitidis to β-lactam antibiotics including (1) TEM-1 type β-lactamase-encoding plasmids and (2) chromosomally mediated resistance by the modification of penA and penA genes that encode penicillin-binding protein 1 and 2 (PBP1 and 2). mtrR gene that encodes efflux pump, porB gene that encodes outer membrane porin and pilQ gene that encodes a component of the gonococcal outer membrane. Enzymatic destruction of the antibiotic and the last two resistance genes are most often contributed to N. gonorrhoeae[4,10,26]. Included studies did not investigate the mechanisms of resistance to antibiotics in the Iranian isolates. For gonorrhea treatment, third-generation of cephalosporins and quinolones were proposed[1]. However, WHO reported that resistance to third-generation cephalosporins has emerged in some geographic areas such as the United Kingdom, Norway, Sweden, Australia, Japan and China[28]. In Iran, gonococcal resistance rate to cephalosporins including ceftriaxone (11.1%), cefixime (13.8%) and cefepime (50.1%) were variable. Therefore, as WHO reported, cefepime-resistant N. gonorrhoeae can be a threat to human health in Iran[9]. Additionally, meningococcal antibiotic resistance to cephalosporins such as ceftriaxone (0.0%), cefotaxime (0.0%) and cefizoxime (0.0%) were low, with cephalaxin (33.3%) as the only exception. The antibiotic of choice for meningococcal infections therapy is penicillin G[2]. However, treatment can be changed to ceftriaxone or cefotaxime if the organism is penicillin-resistant[2]. In Iran, according to the present results, meningococcal resistance to penicillin is high. Therefore, the use of ceftriaxone or cefotaxime instead of penicillin is recommended. Ciprofloxacin, a quinolone antibiotic which acts via inhibition of bacterial DNA synthesis by interfering with the DNA gyrase and topoisomerase IV enzymes, along with ceftriaxone are commonly prescribed as chemoprophylaxis drugs against meningococcal infection[26]. In the current study, resistance of N. meningitidis to ciprofloxacin was 0.0% but high rates of resistance were detected in N. gonorrhoeae strains (59.1%). This result in the current meta-analysis is consistent with WHO’s concerns about the emergence of fluoroquinolone-resistant N. gonorrhoeae in the world[9]. Ciprofloxacin resistance of Neisseria species can be achieved through mutations in genes gyrA, gyrB, parC, parE and mtrR, and there have been reports of emerging ciprofloxacin-resistant N. meningitidis strains in Australia, France, Spain, Argentina and Hong Kong[26]. Gonococcal and meningococcal resistance to antibiotics inhibiting protein synthesis were evaluated in the current meta-analysis and the results showed a low resistance rate to gentamicin, amikacin, kanamycin and chloramphenicol in N. meningitidis. However, N. gonorrhoeae resistance to spectinomycin, tetracycline and gentamicin was high. Chloramphenicol resistance is mediated by chloramphenicol acetyltransferase enzyme (encoded by cat genes) but the global resistance of Neisseria species to this antibiotic is low[26]. Similar results were found in the present study and N. meningitidis (0.0%) and N. gonorrhoeae (2.2%) showed low resistance rates to chloramphenicol. Spectinomycin and tetracycline, especially in patients allergic to penicillin, have been suggested as alternatives to treat gonorrhea and act via blocking bacterial protein synthesis by binding to the 30S ribosomal subunit[4,6,26]. Unlike some countries like South Korea in which susceptibility to spectinomycin is high (100.0%), in Iran 21.6% of strains were resistant to this antibiotic[27]. Based on WHO reports, there are high rates of tetracycline resistance worldwide and in the majority of countries gonorrhea treatment with this drug is not recommended[28]. Similar to other countries, tetracycline resistance in N. gonorrhoeae was high in Iran (52.7%). In N. gonorrhoeae, mechanisms of resistance may be attributed to the mutations of mtrR, penB, pilQ and tetM genes[4]. However, none of the included studies investigated the mechanisms underlying resistance. Due to the resistance of N. gonorrhoeae to first-line antibiotics as well as the extended-spectrum cephalosporins that lead to treatment failure, the Centers for Disease Control and Prevention recommended combination therapy with ceftriaxone and azithromycin or doxycycline, and this therapeutic regimen has been used in many regions such as USA, Asia and Europe[2,27]. In light of the present study, the antimicrobial susceptibility of N. gonorrhoeae to azithromycin was low (11.1%) in Iran. Similar results were reported from Germany (11.9%) and Korea (5.5%)[9,27]. Azithromycin binds to the 50S ribosomal subunit and inhibits bacterial protein synthesis. Mutations in the 23S rRNA and mtrR genes play a major role in the resistance to this macrolide antibiotic[4,29]. In the late 1930s, sulphonamides, which prevent folic acid synthesis in bacteria, were used to treat gonorrhoeal[4]. However, N. gonorrhoeae isolates resistant to these drugs were soon identified and the use of these drugs was stopped in many countries such as USA[4]. In this meta-analysis, we observed a high level of co-trimoxazole resistance in N. gonorrhoeae strains (82.4%) in Iran. However, while sulphonamides have lost their effectiveness against meningococcal infections due to the spread of resistant strains, co-trimoxazole resistance rate was 0% in N. meningitidis isolates of Iran[1].
treat meningococcal infections in Iran. Overall, global and national monitoring of antibiotic resistance profile of Neisseria isolates is fundamental to guide proper treatment and prevent spreading of resistant species. Finally, further research is required to evaluate the major mechanisms involved in the acquisition of antibiotic resistance in Neisseria species.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

References

[1] Carroll KC, Butel JS, Morse SA. Jawetz Melnick & Adelbergs medical microbiology. 27th ed. Pennsylvania: McGraw Hill Professional; 2016, p. 281-291.

[2] Murray PR, Rosenthal KS, Pfaller MA. Medical microbiology. 8th ed. UK: Elsevier Health Sciences; 2015, p. 234-242.

[3] Tonjum T. Genus I. Neisseria. Bergy’s manual of systematic bacteriology. 2nd ed. New York: Springer-Verlag; 2005, p. 777-798.

[4] Unemo M, del Rio C, Shafer WM. Antimicrobial resistance expressed by Neisseria gonorrhoeae: a major global public health problem in the 21st century. Microbiol Spectr 2016; 4(3): 1-31.

[5] Newman L, Rowley J, Vander Hoorn S, Wijesooriya NS, Unemo M, Low N, et al. Global estimates of the prevalence and incidence of four curable sexually transmitted infections in 2012 based on systematic review and global reporting. PLoS One 2015; 10(12): e0143304.

[6] Dillon J-AR, Parti RP, Thakur SD. Antibiotic resistance in Neisseria gonorrhoeae: will infections be untreatable in the future? Immunodeficiency 2016; 2: 5.

[7] Lewis DA. Global resistance of Neisseria gonorrhoeae: when theory becomes reality. Curr Opin Infect Dis 2014; 1: 27(1): 62-67.

[8] Bader S, Dudareva S, Jansen K, Loenenbach A, Nikisins S, Sailer A, et al. Antimicrobial resistance of Neisseria gonorrhoeae in Germany: low levels of cephaporphin resistance, but high azithromycin resistance. BMC Infect Dis 2018; 18(1): 44.

[9] World Health Organization. WHO publishes list of bacteria for which new antibiotics are urgently needed. Geneve: WHO; 2017.

[10] Zapan A, Morlot C, Taha MK. Resistance to β-lactams in Neisseria ssp due to chromosomally encoded penicillin-binding proteins. Antibiotics 2016; 5(4): 35.

[11] Houri H, Pormohammad A, Riahi SM, Nasiri MJ, Fallah F, Dabiri H, et al. Acute bacterial meningitis in Iran: Systematic review and meta-analysis. PLoS One 2017; 12(2): e0169617.

[12] Teleb N, Pilishvili T, Ben Vededen C, Ghoneim A, Amjad K, Mostafa A, et al. Bacterial meningitis surveillance in the Eastern Mediterranean region, 2005–2010: Successes and challenges of a regional network. J Pediatr 2013; 163(1 Suppl): S25–S31.

[13] Nadel S. Treatment of meningococcal disease. J Adolesc Health 2016; 59(3): S21-S28.

[14] Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR, Taylor TH, et al. Population-based surveillance of Neisseria meningitidis antimicrobial resistance in the United States. Open Forum Infect Dis 2015; 2(3): 1-6.

[15] Liberati A, Altman DG, Tetzlafl J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6(7): e1000100.

[16] Zirak–Zadeh T, Delavarian H, Beahavar M, Yaminifar R. A study on the penicillin-resistant strains of N. gonorrhoeae isolated from females. Iran J Public Health 1973; 2(2):199-205.

[17] Rahimi MK, Zakerbostanabadi S, Mirfakhradie M, Adimi Naghan P, Bossak M, Masoomi M, et al. Evaluation of antibiotic resistance of gonococcal infections in women referred to Azad University hospitals. Medical Sciences 2011; 21(1): 50-54. [In Persian]

[18] Azizmohammadi S, Azizmohammadi S. Antimicrobial susceptibility pattern of Neisseria gonorrhoeae isolated from fertile and infertile women. Trop J Pharm Res 2016; 15(12): 2653-2657.

[19] Tabasi Z, khorshidi A, Alinegahiimpour M, sadat Z, Akbari H. Study of gonococcal frequency in cervicitis and drug resistance in patients that admitted in genitourinary clinics of kashan in first half of 1380. J Kashan Uni Med Sci 2002; 6: 70-79. [In Persian]

[20] Afrasiabi S, Moniri R, Samimi M, Mousavi SG. The frequency of Neisseria gonorrhoeae endocervical infection among female carrier and changing trends of antimicrobial susceptibility patterns in Kashan, Iran. Iran J Microbiol 2014; 6(3): 194-197.

[21] Bokaeian M, Qureshi MI, Dabiri S, Fard AHM. An investigation on antibiotic resistance of Neisseria gonorrhoeae isolated from gonorrheal patients in Zahedan, Iran from 2007 to 2010. AFR J Microbiol Res 2011; 5(17): 2455-2459.

[22] Taghvaeii MR, Esmaeili H, Etehadi MM. Rate of drug sensitivity to Neisseria gonorrhoeae and laboratory resistance to fluoroquinolones and third generation cephalosporins in gonococcal urethritis of men. Zahedan J Res Med Sci 2005; 7: 9-15. [In Persian]

[23] Abdinia B, Rezaee MA, Oskouie SA. Etiology and antimicrobial resistance patterns of acute bacterial meningitis in children: a 10-year referral hospital-based study in northwest iran. Iran Red Crescent Med J 2014; 16(7): e17616.

[24] Marshouf RY, Hashemi SH, Bijarchi M. Bacterial agents of meningitis in children and detection of their antibiotic resistance patterns in Hamadan, Western Iran. Pak J Biol Sci 2006; 9(7): 1293-1298.

[25] World Health Organization. Global action plan to control the spread and elaboration. Analyses of studies that evaluate health care interventions: explanation and elaboration. PLoS Med 2009; 6(7): e1000100.

[26] Mechemgui A, Achour W, Hassen AB. Antibiotic resistance among commensal Neisseria species. Rev Med Microbiol 2014; 25(4): 93-99.

[27] Lee H, Unemo M, Kim HJ, Seo Y, Lee K, Chong Y. Emergence of decreased susceptibility and resistance to extended-spectrum cephalosporins in Neisseria gonorrhoeae in Korea. J Antimicrob Chemother 2015; 70: 2536-2542.

[28] World Health Organization. Emergence of multi-drug resistant Neisseria gonorrhoeae: Threat of global rise in untreatable sexually transmitted infections. Geneve: WHO; 2011.

[29] Khademi F, Faghi J, Moghim S, Eshafani BN, Fazeli H, Poursina F, et al. The study of mutation in 23S rRNA resistance gene of Helicobacter pylori to clarithromycin in patients with gastrointestinal disorders in Isfahan-Iran. Adv Biomed Res 2014; 3: 98.