Human mesenchymal stromal cells in adhesion to cell-derived extracellular matrix and titanium: Comparative kinome profile analysis

Marta Baroncelli1* | Gwenny M. Fuhler2* | Jeroen van de Peppel1 | Willian F. Zambuzzi3 | Johannes P. van Leeuwen1 | Bram C. J. van der Eerden1* | Maikel P. Peppelenbosch2*

1Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
2Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
3Laboratorio de Bioensaios e Dinâmica Celular, Departamento de Química e Bioquímica, Instituto de Biociências, Universidade Estadual Paulista-UNESP, São Paulo, Brazil

Correspondence: Bram C. J. van der Eerden, PhD, Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Wytemaweg 80, 3015 CN, Rotterdam, The Netherlands. Email: b.vandereerden@erasmusmc.nl

Funding information
Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Grant/Award Number: 2014/22689-3; Netherlands Institute for Regenerative Medicine NIRM, Grant/Award Number: FES0908; European Commission FP7 Program INTERBONE, Grant/Award Number: PIRSES-GA-2011-295181

INTRODUCTION

The extracellular matrix (ECM) is an essential structural component present in every tissue, which physically supports cells, but also actively modulates their behaviour, by regulating the availability of...
bioactive molecules and by transducing mechanical signalling (Discher, Mooney, & Zandstra, 2009; Guilak et al., 2009; Hynes, 2009; Reilly & Engler, 2010). Bone matrix is composed of collagen and noncollagenous proteins to maintain bone flexibility, whereas its stiffness is achieved by hydroxyapatite crystals, which makes bone a peculiar type of connective tissue (Alford & Hankenson, 2006; Gentili & Cancetta, 2009). Because of its composition, bone ECM is essential for the structure and the strength of the bone and it also actively participates in bone formation and bone metabolism, by regulating mineralization and modulating growth factor availability (Alford & Hankenson, 2006; Bonewald & Dallas, 1994). The physical cues of bone ECM proteins are mechanosensed by bone cells via integrin-mediated signalling, which converts the biomechanical properties of the ECM, eventually acting on cell adhesion, proliferation and differentiation (Grzesik & Robey, 1994; Hidalgo-Bastida & Martell, 2010; Marie, Haj, & Saidak, 2014). The molecular details of the signalling pathways that mediate the relay of information from integrin engagement to altered cellular physiology remain, however, largely obscure.

In recent years, the interest in bone ECM for regenerative purposes has grown rapidly. Bone tissue engineering (BTE) applications have been proposed as bone graft substitutes in large bone defects when bone healing capacity is lost. BTE involves the combination of scaffolds (osteocongduction), osteogenic factors (osteoinduction), and autologous mesenchymal stromal cells (MSCs; osteogenesis) to mimic the native bone ECM structure and stimulate the osteogenic differentiation of local progenitors, driving new bone formation (Gemini-Piperni, Takamori et al., 2014; Meijer, de Bruijn, Koole, & van Blitterswijk, 2007). Scaffolds serve as a structural template for osteogenesis, being biocompatible and osteoconductive (Bose, Roy, & Bandopadhyay, 2012). Among the several scaffolds that can be used for BTE, titanium shows good mechanical properties and it can be tailored in porosity to suit cell adhesion. Although not bioresorbable, titanium scaffolds are already clinically used for orthopaedic and dental implants and in load-bearing areas for their good mechanical properties (Holland & Mikos, 2006). As scaffolds do not reproduce the native structure of bone ECM, decellularized ECms represent an alternative cell-instructive microenvironment to guide endogenous repair (Badyak, Freytes, & Gilbert, 2009; Benders et al., 2013). In this context, cell-secreted ECms have also been proposed, as they are readily available and can be customized for the use as scaffold-coating (Decaris, Binder, Soicher, Bhat, & Leach, 2012; Fitzpatrick & McDevitt, 2015; Hoshiba, Lu, Kawazoe, & Chen, 2010). We and others demonstrated that osteoblast-derived ECM stimulates MSC osteogenesis and promotes bone formation (Baroncelli M., just accepted: Datta, Holtorf, Sikavitsas, Jansen, & Mikos, 2005; Mauney, Kaplan, & Volloch, 2004). Moreover, cell-secreted ECms have already been used to coat and modify titanium surfaces, showing that ECM influences gene expression and enhances osteogenic differentiation of MSCs (Datta, et al., 2005; Q. P. Pham, et al., 2008; M. T. Pham, Reuther, & Maitz, 2003). In this context, the aim of this study was to compare the naturally secreted devitalized ECM to titanium and investigate how they differentially regulate cell adhesion.

Kinase activity lies at the core of cell signal transduction, as activation of specific kinases mediates the induction of signalling cascades resulting into cellular processes such as cell metabolism, differentiation, and cytoskeletal rearrangements during cell adhesion (Peppelenbosch, Frijns, & Fuhler, 2016; Robertson, et al., 2015; Zaidel-Bar & Geiger, 2010; Zambuzzi, Coelho, Alves, & Granjeiro, 2011). Integrin-mediated activation of kinase signalling cascades such as FAK and Src family kinase converts mechanical forces into biochemical signals and results in the efficient adhesion of the cell to the surface. At the same time, deregulation of kinase-mediated signalling pathways leads to pathological states, emphasizing that studying kinase activity is crucial to understand biological functions.

The aim of our study was to assess specific kinomic changes upon MSC adhesion to cell-derived ECM and titanium surfaces, by using tyrosine-kinase PamChip® array which to the best of our knowledge has not been used before to investigate cell adhesion of human MSCs.

2 | MATERIALS AND METHODS

2.1 | Cell culture and ECM preparations

Human bone marrow-derived MSCs were used to prepare the osteopromotive devitalized ECM as previously described (Baroncelli et al., 2017). Briefly, MSCs (5,128 viable cells/cm²; PT-2501; Lonza, Walkersville, MD) from a single donor at passage seven were cultured in growth medium for 2 days (α-Mem phenol-red free [Gibco, Paisley, UK], 10% foetal bovine serum), and osteogenically differentiated for 11 days (culture medium supplemented with 100 nM of dexamethasone and 10 mM of β glycerophosphate [Sigma-Aldrich, St. Louis, MO]) to induce the deposition of the ECM. MSCs were devitalized by freeze-thaw cycles, DNAse treatment (10 U/ml; Sigma-Aldrich), extensive washings with phosphate buffer saline (PBS; Gibco), and sterile air drying. Devitalized ECms were stored at −20°C until further use.

2.2 | Tyrosine-kinase activity profiling using PamChip peptide microarray

To check the effect of the devitalized ECM and titanium on MSC behaviour, MSCs (28,300 viable cells/cm²) were cultured on these scaffolds in growth medium. After 4 hr, cells were scraped in M-PER mammalian protein extraction buffer (ThermoFisher Scientific, Rockford, IL) containing halt phosphatase and protease inhibitors (ThermoFisher Scientific), allowed to lyse at 4°C for 10 min and lysates were cleared by centrifugation at 14,000g for 10 min. Supernatants were stored at −80°C until use. Cell lysates (5 μg protein for all samples) were loaded on a PamChip tyrosine-kinase microarray (PamGene International BV, ‘s-Hertogenbosch, The Netherlands). PamChip® is a high-throughput and cost-effective peptide array that allows the study of kinome profile changes without a priori assumptions (Peppelenbosch, 2012). In the PamChip platform, cell lysates are continuously pumped past 144 consensus
peptide-sequences spotted on a three-dimensional porous microarray, and the phosphorylation of their specific target substrates by kinases present in the whole cell lysate is fluorescently detected, describing the entire tyrosine-kinase activity profile within a single experiment (Diks et al., 2004; Lemeer et al., 2007; Sikkema et al., 2009). Phosphorylation of the 144 kinase substrates on the array was detected by using FITC-labelled secondary antibody. After array washing, images were taken every 5 min to create real-time kinetics data. Signal intensities of the three technical replicates for each substrate were quantified using Bionavigator software (version 6.1.42.1; PamGene International BV). A complete list of phosphopeptides on PamChip is depicted in Supporting Information Table 1. The internal positive control peptide ART_003 EAIIpYAAPFAKXXC was not considered for further analysis. Kinase reactions start at \(t = 640 \) s. Subsequently, kinase reactions for different peptides show markedly different kinetics. Most peptides act according to classical biochemical theory, with the derivative of the initial reaction speed approximating maximal velocity (\(V_{\text{max}} \)) for phosphorylation of this peptide. For data analysis of these peptides \(V_{\text{max}} \) was established by calculating the tangent of apparent peptide phosphorylation between 640 and 1,040 s and were classified as early \(V_{\text{max}} \) peptides (Supporting Information Figure 1a). Phosphorylation of other peptides showed considerable lag time, followed by a quick rise in speed of phosphorylation and subsequent decay according to conventional biochemical theory, yielding sigmoid curves of substrate phosphorylation when plotted against the time domain. For peptides which upon visual inspection displayed such a Maxwell–Boltzmann-like activation kinetics, \(V_{\text{max}} \) was calculated by determining the tangent of substrate phosphorylation between 1,040 and 1,440 s and were classified as mid \(V_{\text{max}} \) (Supporting Information Figure 1b). Finally, a group of peptides displayed very slow initial activation followed by a rapid increase in reaction velocity toward the end of the experiment. These peptides were identified by inspection of the visual aspect of the curve and classified as late \(V_{\text{max}} \), whereas \(V_{\text{max}} \) was calculated by using the tangent of apparent substrate phosphorylation between 1,440 and 1,840 s (Supporting Information Figure 1c). A detailed flowchart of kinome profile analysis is presented in Supporting Information Figure 1d. \(V_{\text{max}} \) values used in IPA analysis. Markov-positive peptides were analyzed through Qiagen’s Ingenuity® Pathway Analysis (IPA®; Qiagen Redwood City; www.qiagen.com/ingenuity) against human genome provided by Ingenuity Knowledge Base as background. Gene IDs of the parent proteins of Markov-positive peptides on ECM and titanium were used in IPA. As the peptide ART_004 EAIIpYAAPFAKXXC is phosphorylated by ABL1 kinase if artificial (Kua et al., 2012) as in our case, ABL1 was also included in the IPA analysis. Consensus phosphopeptides representing different phosphorylation sites of the same protein were considered together. The Canonical Pathway analysis tool was used for IPA analysis. Intracellular signalling pathways not restricted to a specific cellular type were selected and used to generate the heat map using R, together with the relative Gene IDs of the phosphorylated kinase substrates.

Because specific kinases activate signalling cascades, the kinase substrates that were phosphorylated in cells on ECM and on titanium were further fitted into signalling pathways and cell-related functions as previously described (Sikkema et al., 2009) to confirm IPA analysis.

2.4 | Immunoblot analysis

Some of the activated kinases revealed by PamChip array were validated by western blot analysis as described (with modifications; Fuhler et al., 2009; Queiroz et al., 2012). Briefly, cell lysates (40 µg) were prepared as for kinome profile analysis, mixed with 2× Laemmli buffer, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane (Immobilion FL membrane; Merck KGaA, Darmstadt, Germany) and nonspecifically blocked with Odyssey buffer (LI-COR Biosciences, Lincoln, NE). Membranes were incubated overnight with primary antibodies against pFAK (Y925; rabbit polyclonal; Signalway Antibody, College Park, MD), pERK, pPKB, pEGFR, and pSMAD1/5/8 (Cell Signaling Technology, Beverly, MA) and β-actin loading control (mouse monoclonal; Clone sc-47778; Santa Cruz Biotechnology, Dallas, TX). All antibodies were used 1:1,000. Membranes were probed with secondary antibody conjugated with goat-anti-mouse-Alexa Fluor 680 and goat-anti-rabbit IRDye 800CW at 1:5,000 (LI-COR Biosciences). Odyssey infra-red imaging (LI-COR Biosciences) was used to detect proteins. Quantification was performed using Odyssey 3.0 software.

2.5 | Cell viability analysis

To assess the effect of PI3K signalling inhibition on cell viability, PI3K signalling was inhibited by Wortmannin or LY294002 (Okada, Sakuma, Fukui, Hazeki, & Ui, 1994). MSCs were cultured on ECM for 4 hr in growth culture medium in the presence of 10 µM of Wortmannin (in dimethyl sulfoxide (DMSO); Sigma), 10 µM of LY294002 (in DMSO; Cayman Chemical, Ann Arbor, MI) or vehicle control. After 4 hr, MSCs were gently rinsed with PBS and both floating and adherent cells were collected in Laemmli buffer.

To confirm that Wortmannin and LY294002 effectively inhibited PI3K signalling, cell lysates treated with and without PI3K inhibitors

2.3 | Kinome array analysis

Protein and gene annotations of the kinase substrates on PamChip were searched through Uniprot Knowledgebase (www.uniprot.org).
were probed for the presence of pPKB and pERK (p42/44) by immunoblot analysis.

To investigate if the PI3K inhibitors affected cell viability, the presence of poly-ADP-ribose polymerase (PARP) and caspase 3 and its relative cleaved forms were detected by western blot analysis (antibodies from Cell Signaling Technology; Somasundaram et al., 2013).

2.6 | Cell adhesion analysis

To check the effect of PI3K signalling inhibition on cell adhesion, MSCs were cultured in osteogenic conditions on cell-derived ECM, in the presence of increasing concentrations of Wortmannin and LY294002 (0.1, 1, and 10 μM in DMSO for both). MSCs in adhesion to titanium with and without the highest concentration of Wortmannin and LY294002 (10 μM in DMSO) were used for the same purpose. MSCs with vehicle were considered as control (1/200 vol/vol). After 4 hr, both floating cells and cells adhering to the substrates were collected and the fraction of adhering cells was quantified by Flow Cytometry (Accuri C6 Flow Cytometer; BD Biosciences, San Jose, CA), using counting beads (Liquid Counting Beads, BD Biosciences).

2.7 | Statistical analysis

Area under curve (AUC) of the kinetic reaction was calculated for each Markov-positive peptide, and nonparametric Wilcoxon matched-pairs signed rank test used to calculate significance.

Functional attachment data were representative of three independent experiments, with one or two technical replicates per each experiment, and all values were displayed as average ± standard deviation of biological replicates otherwise indicated elsewhere. One-way analysis of variance, followed by Bonferroni post hoc test was used to calculate significance, unless otherwise indicated.

3 | RESULTS

3.1 | PamChip array showed similar tyrosine-kinase activity profiles of MSCs on ECM and on titanium

To investigate how surfaces influence cell behaviour, we cultured MSCs for 4 hr on either an osteopromotive osteoblast-derived ECM or on titanium and analyzed the kinome profiles by a high-throughput tyrosine-kinase PamChip microarray system. Maximal velocity (V_{max}) as the slope of phosphorylation kinetics was used as measure of peptide phosphorylation and depending on the kinetic behaviour observed, peptides were categorized as either early V_{max}, mid V_{max}, or late V_{max} (see Supporting Information Figure 1a–c for examples). Following Markov state analysis, lysates obtained from MSCs cultured on ECM yielded significant phosphorylation of 43 early V_{max} peptides, 16 mid V_{max} peptides, and 4 late V_{max} peptides (Figure 1a, Supporting Information Figure 2a). Thus, a total of 63 "on calls" were detected over time on ECM and considered for further analysis (Figure 1a; complete list in Table 1).

On titanium, 37 peptides were phosphorylated with maximum reaction speed early in the analysis, with an additional 10 at mid stage and 12 at later stages (Supporting Information Figure 2b), yielding a total of 59 Markov-positive peptides phosphorylated on titanium over time (Figure 1b; complete list in Table 1). Scatter plots show the correlation of peptides at early, mid, and late stage in MSCs on ECM and on titanium are shown in Supporting Information Figure 2c,d. On both surfaces, the correlation is stronger between mid and late peptides.

Figure 1c shows the number of phosphorylated peptides on ECM and on titanium. Despite a similar number of peptides being phosphorylated on the two substrates, cultures on ECM induced a significantly higher overall phosphorylation compared to titanium (AUC of 34.1 ± 7.6 vs. 27.6 ± 6.5, $P < 0.0001$, data not shown). Several of the peptides that were significantly phosphorylated early in MSCs cultured on ECM, only achieved significant phosphorylation at later time points when cells were cultured on titanium, suggesting lower levels of active kinase present in these latter lysates. Comparing the kinase activity profiles, most of the phosphorylated peptides (55) were shared between the two substrates, highlighting a substantial overlap between the kinome profiles of MSCs in ECM and titanium, whereas eight kinase substrates were exclusively phosphorylated on the cell-derived ECM and four on titanium (Figure 1c).
Peptide #	ECM	Titanium				
	Early	Mid	Late	Early	Mid	Late
1	ART_004_EAIYAAPFAKKKXC	ART_004_EAIYAAPFAKKKXC				
2	CD79A_181_193	CD79A_181_193				
3	CDK2_8_20	CDK2_8_20				
4	CDK7_157_169	CDK7_157_169				
5	DCX_109_121	DCX_109_121				
6	EFS_246_258	EFS_246_258				
7	ENOG_37_49	ENOG_37_49				
8	EPHA1_774_786	EPHA1_774_786				
9	EPHA2_765_777	EPHA2_765_777				
10	EPHB1_921_933	EPHB1_921_933				
11	FER_707_719	FER_707_719				
12	FES_706_718	FES_706_718				
13	FRK_380_392	FRK_380_392				
14	K2C6B_53_65	K2C6B_53_65				
15	MBP_198_210	MBP_198_210				
16	MK10_216_228	MK10_216_228				
17	NCF1_313_325	NCF1_313_325				
18	NTRK2_696_708	NTRK2_696_708				
19	P85A_600_612	P85A_600_612				
20	PAXI_111_123	PAXI_111_123				
21	PAXI_24_36	PAXI_24_36				
22	PDPK1_2_14	PDPK1_2_14				
23	PECA1_706_718	PECA1_706_718				
24	PGFRB_572_584	PGFRB_572_584				
25	PLCG1_764_776	PLCG1_764_776				
26	RAF1_332_344	RAF1_332_344				
27	RB_804_816	RB_804_816				
28	RET_1022_1034	RET_1022_1034				
29	SRC8_CHICK_476_488	SRC8_CHICK_476_488				
30	SRC8_CHICK_492_504	SRC8_CHICK_492_504				
(Continues)						
Peptide #	ECM	Titanium				
---	---	---	---	---	---	---
	Early	Mid	Late	Early	Mid	Late
31	TYRO3_679_691	TYRO3_679_691				
32	VGFR2_944_956	VGFR2_944_956				
33	VGFR2_989_1001	VGFR2_989_1001				
34	41_654_666	41_654_666				
35	EPHA7_607_619	EPHA7_607_619				
36	JAK2_563_577	JAK2_563_577				
37	LAT_249_261	LAT_249_261				
38	PDPK1_369_381	PDPK1_369_381				
39	VGFR1_1326_1338	VGFR1_1326_1338				
40	DYM1_312_324					
41	MK01_180_192					
42	PGFRB_709_721					
43	PP2AB_297_309					
44	FAK2_572_584	FAK2_572_584				
45	PRRX2_202_214	PRRX2_202_214				
46	RASA1_453_465	RASA1_453_465				
47	EPHB1_771_783	EPHB1_771_783				
48	LCK_387_399	LCK_387_399				
49	MET_1227_1239	MET_1227_1239				
50	ANX1_14_26	ANX1_14_26				
51	EGFR_1165_1177	EGFR_1165_1177				
52	EPOR_361_373	EPOR_361_373				
53	EPOR_419_431	EPOR_419_431				
54	PGFRB_1002_1014	PGFRB_1002_1014				
55	PGFRB_1014_1028	PGFRB_1014_1028				
56	PGFRB_771_783	PGFRB_771_783				
57	ZAP70_485_497	ZAP70_485_497				
58	FAK1_569_581					
59	LAT_194_206					
60	TEC_512_524	TEC_512_524				
61	FGFR3_753_765	FGFR3_753_765				
3.2 PamChip array revealed activation of PI3K/AKT signalling pathway

We analyzed the identified activated kinase-mediated signalling cascades by IPA, to unravel meaningful signalling changes upon cell adhesion. The 63 kinase substrates phosphorylated on ECM and the 59 on titanium were involved in many signalling pathways (complete list in Supporting Information Table 2 for ECM and Supporting Information Table 3 for titanium). We further focused on intracellular signalling, not specific for a selected cell type, resulting in a total of 30 parent gene IDs of the Markov-positive peptides on ECM and on titanium, involved in 35 selected intracellular signalling pathways, as shown in the heat map in Figure 2. For ECM, the most induced kinases (11) were involved in phosphatase and tensin homologue (PTEN) signalling ($p = 5.01 \times 10^{-15}$), but also Tec kinase signalling ($p = 3.16 \times 10^{-12}$). Signalling cascades activated upon integrin activation such as FAK, PAK, Paxillin, and ILK signalling pathways were also activated ($p = 3.98 \times 10^{-14}$, 2.51×10^{-12}, 3.09×10^{-10}, 2.39×10^{-8}, respectively). Of the activated kinases, 10 are identified in IPA as regulating ERK/MAPK signalling, and seven modulate PI3K/AKT signalling ($p = 5.01 \times 10^{-11}$ and 2.08×10^{-8}, respectively). Moreover, Mitogen-activated protein kinase 1 (MAPK1; peptide MK01_180_192), phosphorylated only on ECM, was involved in most of the signalling pathways, together with phosphatidylinositol 3-kinase regulatory subunit α (PI3KR1; peptide P85A_600_612) and fibroblast growth factor receptor 3 (FGFR3; peptide FGFR3_753_765). These last kinase substrates were phosphorylated also on titanium, together with tyrosine-protein phosphatase non-receptor type 11 (PTPN11; peptide PTN11_539_551), which was uniquely phosphorylated in MSCs on titanium and involved in most of the activated signalling pathways (Figure 2). Most of the kinases activated on titanium were involved in nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) signalling ($p = 2.51 \times 10^{-12}$), Tec kinase signalling ($p = 5.01 \times 10^{-12}$), and PTEN signalling ($p = 6.30 \times 10^{-12}$). PAK, FAK, Paxillin, and ILK signalling pathways were activated on titanium as on the ECM ($p = 7.94 \times 10^{-11}$, 6.30×10^{-11}, 2.29×10^{-17}, and 5.75×10^{-6}, respectively), as well as ERK/MAPK ($p = 3.46 \times 10^{-7}$) and PI3K/AKT ($p = 1.91 \times 10^{-8}$), confirming the overlap between these substrates.

IPA analysis revealed that the activated kinases were involved in multiple signalling cascades. In addition, we used the results of the peptide array to fit each kinase that phosphorylates a selected peptide into one specific signalling pathway, as previously done (Sikkema et al., 2009), in a more biased approach but more osteoblast-oriented (complete list in Supporting Information Table 4). This approach confirmed the IPA analysis, as of the 63 kinase substrates phosphorylated on ECM, four induced the activation of FAK signalling and a total of 11 phosphopeptides were involved in cytoskeletal functions (Supporting Information Figure 3a,b; Supporting Information Table 5). Three peptides were clustered in MAPK signalling and three in PI3K signalling, illustrating that different approaches in kinase clustering lead to similar conclusions. Similar findings were found by clustering the 59 kinase substrates
phosphorylated on titanium (Supporting Information Table 6). Phosphorylation of four peptides induce the activation of FAK signalling. Moreover, MAPK (two peptides) and PI3K (three peptides) signalling were activated also in cells in adhesion to titanium (Supporting Information Figure 3c,d).

The activation of some signalling pathways on ECM and on titanium revealed by PamChip array was validated by immunoblot analysis, both in technical and biological replicates of cell lysates (Figure 3a). Overall and in line with the PamChip analyses, ECM tend to induce a higher kinase activity compared with titanium, as signalling pathways such as FAK, ERK/MAPK, and PI3K/AKT pathways were more active in cells on ECM than on titanium, as shown in Figure 3b–d by the quantification of the induced kinase relative to the loading control in technical and biological replicates. This highlights the importance of the peptide array as high-throughput screening technique to select candidate pathways.

Quantification of kinase substrate phosphorylation in the peptide array (Supporting Information Figure 4a–c) followed the same trend as the quantification of the putative kinases of each signalling pathway by western blot (Figure 3b–d). The activation of signalling pathways such as FAK, ERK/MAPK, and PI3K/AKT pathways were more active in cells on ECM than on titanium, as shown in Figure 3b–d by the quantification of the induced kinase relative to the loading control in technical and biological replicates. This highlights the importance of the peptide array as high-throughput screening technique to select candidate pathways.

FIGURE 2 Comparative kinomes of MSCs on ECM and titanium. Heat map of the 30 gene IDs of the parent proteins of Markov-positive phosphopeptides on ECM and titanium (bottom) involved in 35 selected intracellular signalling pathways (right) in IPA. Parent proteins of the Markov-positive peptides are indicated as gene IDs (bottom). Green: activated in both substrates; red: uniquely activated in ECM; blue: uniquely activated on titanium; grey: none. Colour scale bar represents log (p value) of enrichment. Black arrows indicate signalling pathways highlighted in the text. ECM: extracellular matrix; IPA: Ingenuity® pathway analysis; MSC: mesenchymal stromal cell.

FIGURE 3 Immunoblot analysis of phosphoproteins confirmed the activation of specific intracellular signalling pathways revealed by PamChip. (a) Western blot analysis of pFAK, pERK, and pAKT in technical and biological replicates. β-Actin was used as loading control. (b–d) Quantification of immunoblot band intensities of the selected phosphorylated kinases over β-actin of technical and biological replicates. Bars represent average ± standard deviation. ECM: extracellular matrix; Ti: titanium.
pathways revealed by IPA was the result of the phosphorylation of multiple kinase substrates (Supporting Information Table 7). For instance, the phosphorylation of eight peptides in PamChip revealed the activation of PI3K/AKT signalling in cells on ECM (Figure 4; Supporting Information Figure 4c), which was higher than on titanium (four Markov-positive peptides), confirming the higher phosphorylation of pPKB on ECM compared with titanium (Figure 3a,d).

3.3 | Functional consequences of reduced PI3K activation

PamChip microarray analysis revealed that the PI3K/AKT signalling pathway among others was activated in cells adhering to both substrates (Figure 2), but with a higher activity on ECM than on titanium (Figure 3a,d). The temporal kinetics of the peptides clustered in PI3K/AKT signalling are displayed in Figure 4. PI3K signalling has been shown to be important for several cellular functions, including cell adhesion. We validated this by allowing MSCs to adhere to ECM for 4 hr in the absence or presence of the PI3K kinase inhibitors Wortmannin or LY290042. Figure 5a shows that Wortmannin significantly reduced cell attachment to ECM in a dose-dependent manner (p < 0.001 for 10 μM of Wortmannin), by decreasing the number of cells in adhesion to the ECM (Figure 5a, left) and increasing the number of floating cells in culture medium (Figure 5a, right). Similarly, LY294002 increased the number of nonadherent cells (Figure 5b), albeit less efficiently. This is most likely due to residual PI3K activity, as shown in Figure 5c: Both Wortmannin and LY294002 selectively inhibit PI3K signalling (as indicated by decreased phosphorylation of its downstream target, PKB) at a concentration of 10 μM, but Wortmannin showed a more prominent inhibitory effect. To confirm that the increase in nonadherent cells in response to PI3K inhibition was not due to induction of apoptosis by these compounds, MSCs on ECM were treated for 4 hr with and without PI3K inhibitors (Wortmannin 10 μM and LY294002 10 μM), and cleaving of PARP and caspase 3 was measured by immunoblot analysis as a hallmark of apoptosis. The presence of cleaved caspase 3 was not detected in samples treated with and without PI3K inhibitors, nor were cleaved PARP levels increased, confirming that the PI3K inhibitors were not toxic (Figure 5d).
lesser PI3K activation in response to titanium engagement of MSCs (Figure 5e). Overall, our data confirm the importance of PI3K signalling in cell adhesion, and suggest that kinome activity differences observed are reflected by functional consequences in MSCs.

4 | DISCUSSION

In this study, we comprehensively described the kinome profiles of human MSCs during adherence to a cell-derived ECM and to titanium, by successfully using PamChip array technology. MSCs on the two substrates showed a substantial overlap of kinase signatures. Cells on ECM typically activate kinase reactions that conform classical kinetics, that is that maximum reaction speeds are seen early in the experiment, and have higher level of active kinases. Importantly, without a priori assumptions, we used the PamChip kinase array to identify PI3K signalling and further functional experiments showed its importance in MSC viability and adhesion. This observation may guide rational design of novel scaffolds for tissue engineering.

Cell-surface interplay has been studied to develop biomaterials to improve BTE (Gemini-Piperni, Takamori, et al., 2014; Zambuzzi et al., 2011). Upon cell adhesion to a surface, mechanical forces are converted into biochemical signals by integrins, that induce the activation of FAK, Src family kinases, and an intricate network of signalling pathways, such as PI3K, MAPK ERK1/2, PKC, and Rho-family GTPase, that eventually modulate cell behaviour (Marie et al., 2014). Osteoblast adhesion is controlled mainly by PKA, PKC, and RhoA proteins that promote cell cycle arrest and mediate cytoskeletal rearrangements (Zambuzzi, Bruni-Cardoso, et al., 2009). In line with this, we showed that pathways such as FAK, PAK, Paxillin, ILK, and Rho GTPase family signalling were activated upon MSC adhesion to ECM and titanium. Moreover, PamChip kinase array revealed the activation of ERK/MAPK signalling.

FIGURE 5 Functional effects of PI3K signalling inhibition. (a) Number of cells in adhesion to ECM (left) for 4 hr with Wortmannin 0.1, 1, and 10 μM and number of events floating in culture medium (right) in same culture conditions. (b) Quantification of MSCs in adhesion to ECM with increasing concentrations of LY294002 (left) and floating in culture medium (right). (c) Immunoblot of pAKT and pERK1/2 to confirm PI3K signalling inhibition by Wortmannin 10 μM and LY294002 10 μM in MSCs on ECM. (d) Immunoblot validation of PARP, caspase 3, and the relative cleaved forms in extracts of MSCs on ECM without and with PI3K inhibitors Wortmannin 10 μM and LY294002 10 μM. (e) Number of cells adherent to titanium (left) and nonadherent (right) after 4 hr of culture with Wortmannin 10 μM and LY294002 10 μM (left). Bars indicate average ± standard deviation of multiple independent experiments (N = 3; **p < 0.01; ***p < 0.001; no inhibitors). ECM: extracellular matrix; LY: LY294002; MSC: mesenchymal stromal cell; WM: Wortmannin
MAPKs are a central hub in controlling bone homeostasis, as they are activated by extracellular stimuli and ECM-mediated integrin activation via Src/FAK signalling network, but also promote osteoblast survival and differentiation by controlling osteogenic transcription factors (Greenblatt, Shim, & Glimcher, 2013; Marie et al., 2014). Cell adhesion to an ECM has been studied through mass spectrometry showing the high level of tyrosine phosphorylation in adhesion complexes, thus revealing the importance of kinases in cell adhesion (Robertson et al., 2015; Zaidel-Bar & Geiger, 2010). The behaviour of calvarial osteoblasts has been analyzed through PepChip kinase-array screening technology. Milani et al. (2010) studied calvarial osteoblasts in adhesion to polystyrene and reported not only the induction of FAK, Src, PKA, and PKC, but also kinases not directly related to cell adhesion such as GSK3β and Rap1A. The activation of PKA, PKC, VEGF, and adducin-1 (ADD1) was reported in calvarial osteoblast adhesion to hydroxyapatite (Gemini-Piperni, Milani, et al., 2014). Recently, Marumoto et al. (2017) used the PepChip platform to study the interplay between ECM and osteoblasts, showing that Hedgehog signalling regulates morphological changes in calvarial osteoblasts during a 10-day culture on Matrigel™, confirming some of the findings by Chaves Neto et al. (2011) who investigated the osteogenic differentiation on polystyrene. In our study, PamChip kinase array was used to investigate how changes in the kinomic signature regulate human MSC adhesion to diverse substrates, such as an osteoblast-derived ECM and titanium. PamChip contains a lower number of kinase substrates than PepChip, but allows kinetic measurements with strong reproducibility and giving quantification of end-point signals as well as temporal kinetics of the reaction (Baharani, Trost, Kusalik, & Napper, 2017). Our PamChip results showed a big overlap between the distributions of phosphorylation in cells on the two surfaces, but also a delay in phosphorylation kinetics in cells cultured on titanium compared with MSCs on ECM, highlighting the importance of analyzing temporal kinetics.

PamChip is a cost-effective high-throughput array that can simultaneously identify rapid changes in kinome profiles (Peppelenbosch, 2012). PamChip and other kinase-array platforms drive hypothesis formation, due to the variable number of putative upstream kinases that could phosphorylate the peptides. They represent powerful tools to select pathways that might be crucial in physiological functions, but the kinase activation needs to be validated by immunoblot analysis (Arsenault, Griebel, & Napper, 2011; Sikkema et al., 2009). We used IPA for functional clustering of the peptides into signalling pathways, as previously done (Kuijjer et al., 2014), and we confirmed it by fitting each peptide in one specific signalling pathway. However, software to fit phosphopeptides into cascade signalling networks needs to be implemented with kinomic-oriented tools.

In this study, PamChip revealed the activation of PI3K/AKT in MSCs adhering to ECM and titanium, which corroborates with previous findings on polystyrene and on hydroxyapatite (Gemini-Piperni et al., 2014; Milani et al., 2010). Conversely, PI3K/AKT signalling was found to be downregulated during osteogenic differentiation in standard culture conditions and on Matrigel (Chaves Neto et al., 2011; Marumoto et al., 2017). The PI3K/AKT signalling pathway regulates many cellular functions such as proliferation, adhesion and migration, and its activation promotes cell survival (Manning & Toker, 2017). In osteoblasts, PI3K was shown to mediate BMP2 induction of osteogenic differentiation (Baker, Sohn, & Tuan, 2015; Ghosh-Choudhury et al., 2002; McGonnellGrigoriadis, Lam, Price, & Sunters, 2012; Mukherjee & Rotwein, 2009) and to interact with RUNX2 in controlling osteoblast and chondrocyte differentiation and migration (Fujita et al., 2004), though findings are still controversial as for the influence of PI3K signalling in osteogenic differentiation (Kratcharmova, Blagoev, Haack-Sorensen, Kassem, & Mann, 2005; Viñals, Lópe-Rovira, Rosa, & Ventura, 2002). PI3K signalling is involved in integrin-mediated signal transduction during cell adhesion (Chen, Appeddu, Isoda, & Guan, 1996; King, Mattaliano, Chan, Tsichlis, & Brugge, 1997). In this study, we showed that PI3K is involved in osteoblast adhesion to ECM and titanium, in agreement to previous studies where PI3K-mediated AKT activity was shown to be reduced when PI3K inhibitors were present in COS7 cells and MSCs in adhesion to fibronectin (Chaudhary et al., 2000; Liu et al., 2010). When PI3K inhibitors were used, the number of nonadherent cells increased, with a stronger effect on ECM than titanium. This is probably due to the fact that PI3K signalling was more active on ECM than on titanium, as shown by the temporal kinetics of the PI3K kinase substrates, thus making it easier to visualize the inhibitory effect and highlighting the importance of performing kinetic analyses.

The mechanism of cell adhesion to titanium has been previously investigated by using FAK and Src phosphorylation as biomarkers to monitor cell or biomaterials interplay, as FAK and Src have been proven to be phosphorylated upon integrin activation in cells when adhering to different substrates (Zambuzzi et al., 2014, 2009; Zambuzzi, Milani, & Teti, 2010). Our study using the PamChip kinase array showed FAK signalling activation upon adhesion to titanium, confirming these previous findings. Further studies are needed to investigate how the cell-derived ECM as coating for titanium scaffolds would influence the kinome profile and osteoblast adhesion, to implement the use of ECM and titanium in BTE applications.

In summary, with this study we used a multiplex peptide array technology to assess global tyrosine kinase changes upon cell adhesion, showing that osteoblasts adhering to ECM exhibited a similar kinase signature compared with titanium, but with higher levels of active kinases present in MSCs on ECM. We successfully used PamChip kinase substrate platform to comprehensively study rapid changes in the phosphoproteomes of MSCs, and to investigate specific pathways, highlighting the importance of PI3K signalling in osteoblast viability and adhesion. We thus contributed to disentangle kinomic changes upon cell adhesion to different substrates, to develop biomaterials to improve BTE applications.

ACKNOWLEDGEMENTS

This study was supported by a grant from the Dutch government to the Netherlands Institute for Regenerative Medicine (NIRM, Grant
No. FES0908) and Erasmus Medical Center, European Commission FP7 Program INTERBONE Grant PIRSES-GA-2011–295181. Erasmus Trustfonds and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP, Grant No. 2014/22689-3). The authors thank Molecular Medicine Post Graduate School, M. Schreuders-Koedam for technical assistance and P. Delhanty for kindly providing Wortmannin.

AUTHORS’ CONTRIBUTIONS
All authors designed research. M.B., G.F., and W.Z. performed research. M.B., G.F., J.P., J.L., M.P., and B.E. analyzed data and drafted manuscript. All authors revised the final version of manuscript and have approved the final article.

CONFLICTS OF INTEREST
All authors declare that there are no conflicts of interest.

REFERENCES
Alford, A. I., & Hankenson, K. D. (2006). Matricellular proteins: Extracellular modulators of bone development, remodeling, and regeneration. Bone, 38(6), 749–757.
Alves, M. M., Fuhler, G. M., Queiroz, K. C. S., Scholma, J., Goorden, S., Anink, J., ... Peppelenbosch, M. P. (2015). PAK2 is an effector of TSC1/2 signaling independent of mTOR and a potential therapeutic target for tuberous sclerosis complex. Scientific Reports, 5, 14534.
Arsenault, R., Griebel, P., & Napper, S. (2011). Peptide arrays for kinome analysis: New opportunities and remaining challenges. Proteomics, 11(24), 4595–4609.
Badyal, S., Freytes, D., & Gilbert, T. (2009). Extracellular matrix as a biological scaffold material: Structure and function. Acta Biomaterialia, 5(1), 1–13.
Baharani, A., Trotz, B., Kusaklik, A., & Napper, S. (2017). Technological advances for interrogating the human kinome. Biochemical Society Transactions, 45(1), 65–77.
Baker, N., Sohn, J., & Tuan, R. S. (2015). Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis. Stem Cell Research & Therapy, 6, 238.
Baroncelli, M., van der Eerden, B. C., Kan, Y. Y., Alves, R. D., Demmers, J. A., van de Peppel, J., & van Leeuwen, J. P. (2017). Comparative proteomic profiling of human osteoblast-derived extracellular matrices identifies proteins involved in mesenchymal Stromal cell osteogenic differentiation and Mineralization. Journal of Cellular Physiology, 233, 387–395.
Benders, K. E. M., Weeren, P. R., Badyal, S. F., Saris, D. B. F., Dhert, W. J. A., & Malda, J. (2013). Extracellular matrix scaffolds for cartilage and bone regeneration. Trends in Biotechnology, 31(3), 169–176.
Bonewald, L. F., & Dallas, S. L. (1994). Role of active and latent transforming growth factor beta in bone formation. Journal of Cellular Biochemistry, 55(3), 350–357.
Bowe, S., Roy, M., & Bandypadhyay, A. (2012). Recent advances in bone tissue engineering scaffolds. Trends in Biotechnology, 30(10), 546–554.
Chaudhary, A., King, W. G., Mattaliano, M. D., Frost, J. A., Diaz, B., Morrison, D. K., ... Brugge, J. S. (2000). Phosphatidylinositol 3-kinase regulates Raf1 through Pak phosphorylation of serine 338. Current Biology, 10(9), 551–554.
Chaves Neto, A. H., Queiroz, K. C., Milani, R., Paredes-Gamero, E. J., Justo, G. Z., Peppelenbosch, M. P., & Ferreira, C. V. (2011). Profiling the changes in signaling pathways in ascorbic acid/d−glycerophosphate-induced osteoblastic differentiation. Journal of Cellular Biochemistry, 112(1), 71–77.
Chen, H. C., Appedu, P. A., Isoda, H., & Guan, J. L. (1996). Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. Journal of Biological Chemistry, 271(42), 26329–26334.
Datta, N., Holtorf, H. L., Sikavitas, V. I., Jansen, J. A., & Mikos, A. G. (2005). Effect of bone extracellular matrix synthesized in vitro on the osteoblastic differentiation of marrow stromal cells. Biomaterials, 26 (9), 971–977.
Decaris, M. L., Binder, B. Y., Soicher, M. A., Bhat, A., & Leach, J. K. (2012). Cell-derived matrix coatings for polymeric scaffolds. Tissue Engineering Part A, 18(19–20), 2148–2157.
Diks, S. H., Kok, K., O’Toole, T., Hommes, D. W., van Dijken, P., Joore, J., & Peppelenbosch, M. P. (2004). Kinome profiling for studying lipopoly-saccharide signal transduction in human peripheral blood mono-nuclear cells. Journal of Biological Chemistry, 279(47), 49206–49213.
Discher, D. E., Mooney, D. J., & Zandstra, P. W. (2009). Growth factors, matrices, and forces combine and control stem cells. Science, 324(5935), 1673–1677.
Fitzpatrick, L. E., & McDevitt, T. C. (2015). Cell-derived matrices for tissue engineering and regenerative medicine applications. Biomaterials Science, 3(1), 12–24.
Fuhler, G. M., Tyl, M. R., Olthof, S. G. M., Lyndsay Drayer, A., Blom, N., & Vellenga, E. (2009). Distinct roles of the mTOR components rictor and raptor in MO7e megakaryocytic cells. European Journal of Haematology, 83(3), 235–245.
Fujita, T., Azuma, Y., Fukuyama, R., Hattori, Y., Yoshida, C., Koida, M., ... Komori, T. (2004). Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling. Journal of Cell Biology, 166(1), 85–95.
Gemini-Piperni, S., Milani, R., Bertazzo, S., Peppelenbosch, M., Takamori, E. R., Granjeiro, J. M., ... Zambuzzi, W. (2014). Kinome profiling of osteoblasts on hydroxyapatite opens new avenues on biomaterial cell signaling. Biotechnology and Bioengineering, 111(9), 1900–1905.
Gemini-Piperni, S., Takamori, E. R., Sartoretto, S. C., Paiva, K. B. S., Granjeiro, J. M., de Oliveira, R. C., & Zambuzzi, W. F. (2014). Cellular behavior as a dynamic field for exploring bone bioengineering: A closer look at cell-biomaterial interface. Archives of Biochemistry and Biophysics, 561, 88–98.
Gentili, C., & Cancedda, R. (2009). Cartilage and bone extracellular matrix. Current Pharmaceutical Design, 15(12), 1334–1348.
Ghosh-Choudhury, N., Abdoub, S. L., Nishimura, R., Celeste, A., Mahimainathan, L., & Choudhury, G. G. (2002). Requirement of BMP-2-induced phosphatidylinositol 3-kinase and Akt serine/threonine kinase in osteoblast differentiation and Smad-dependent BMP-2 gene transcrip- tion. Journal of Biological Chemistry, 277(36), 33361–33368.
Greenblatt, M. B., Shim, J. H., & Glimecher, L. H. (2013). Mitogen-activated protein kinase pathways in osteoblasts. Annual Review of Cell and Developmental Biology, 29, 63–79.
Grzesik, W. J., & Robey, P. G. (1994). Bone matrix RGD glycoproteins: Immunolocalization and interaction with human primary osteoblastic bone cells in vitro. Journal of Bone and Mineral Research, 9(4), 487–496.
Guillak, F., Cohen, D. M., Estes, B. T., Gimble, J. M., Liedtke, W., & Chen, C. S. (2009). Control of stem cell fate by physical interactions with the extracellular matrix. Cell Stem Cell, 5(1), 17–26.
Hidalgo-Bastida, L. A., & Cartmell, S. H. (2010). Mesenchymal stem cells, osteoblasts and extracellular matrix proteins: Enhancing cell adhesion and differentiation for bone tissue engineering. *Tissue Engineering. Part B, Reviews*, 16(4), 405–412.

Holland, T. A., & Mikos, A. G. (2006). Biodegradable polymeric scaffolds: Improvements in bone tissue engineering through controlled drug delivery. *Advances in Biochemical Engineering/Biotechnology*, 102, 161–185.

Hoshita, T., Lu, H., Kawaoe, N., & Chen, G. (2010). Decellularized matrices for tissue engineering. *Expert Opinion on Biological Therapy*, 10(12), 1717–1728.

Hynes, R. O. (2009). The extracellular matrix: Not just pretty fibrils. *Science*, 326(5957), 1216–1219.

King, W. G., Mattaliano, M. D., Chan, T. O., Tsichlis, P. N., & Brugge, J. S. (1997). Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. *Molecular and Cellular Biology*, 17(8), 4406–4418.

Kratchmarova, I., Blagoev, B., Haack-Sorensen, M., Kassem, M., & Mann, M. (2005). Mechanism of divergent growth factor effects in mesenchymal stem cell differentiation. *Science*, 308(5727), 1472–1477.

Kua, H. Y., Liu, H., Leong, W. F., Li, L., Jia, D., Ma, G., … Li, B. (2012). c-Abi promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression. *Nature Cell Biology*, 14(7), 727–737.

Kuijjer, M. L., van den Akker, B. E., Hilhorst, R., Mommersteeg, M., Paredes, J. A., Justo, G. Z., … & Teti, A. (2010). Expanding the role of Src and phosphoinositide 3-kinase in modulating osteoblast function. *Biomaterials*, 31(10), 1355–1365.

Lemeer, S., Jopling, C., Naji, F., Ruijtenbeek, R., Slijper, M., Heck, A. J. R., … & van den Akker, B. E. (2007). Protein tyrosine kinase activity profiling in activated protein kinase pathway through the phosphoproteomic analysis of integrin signalling. *Biochemical and Biophysical Research Communications*, 401(4), 509–515.

Manning, B. D., & Toker, A. (2017). AKT/PKB signaling: Navigating the network. Cell, 169(3), 381–405.

Marumo, A., Milani, R., da Silva, R. A., da Costa Fernandes, C. J., Granjeiro, J. M., Ferreira, C. V., … & Zambuzzi, W. F. (2017). Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions. *Bone*, 103, 55–63.

Mauney, J. R., Kaplan, D. L., & Vlodov, V. (2004). Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion. *Biomaterials*, 25(16), 3233–3243.

McConnell, I. M., Grigoriadis, A. E., Lam, E. W. F., Price, J. S., & Sunters, A. (2012). A specific role for phosphoinositide 3-kinase and AKT in osteoblasts?. *Frontiers in Endocrinology*, 3, 88.

Meijer, G. J., de Bruijn, J. D., Koole, R., & van Blitterswijk, C. A. (2007). Cell-based bone tissue engineering. *PLoS Medicine*, 4(2), e9.

Milani, R., Ferreira, C. V., Granjeiro, J. M., Paredes-Gamero, E. J., Silva, R. A., Justo, G. Z., … & Zambuzzi, W. F. (2010). Phosphoproteome reveals an atlas of protein signalling networks during osteoblast adhesion. *Journal of Cellular Biochemistry*, 109(5), 957–966.

Mukherjee, A., & Rotwein, P. (2009). Akt promotes BMP2-mediated osteoblast differentiation and bone development. *Journal of Cell Science*, 122(Pt 5), 716–726.

Okada, T., Sakuma, L., Fukui, Y., Hazeki, O., & Ui, M. (1994). Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. *Journal of Biological Chemistry*, 269(5), 3563–3567.

Peppelenbosch, M. P. (2012). Kinome profiling. *Scientifica*, 2012, 306798–13.

Peppelenbosch, M. P., Frijns, N., & Fuhler, G. (2016). Systems medicine approaches for peptide array-based protein kinase profiling: Progress and prospects. *Expert Review of Proteomics*, 13(6), 571–578.

Pham, M. T., Reuther, H., & Maitz, M. F. (2003). Native extracellular matrix coating on Ti surfaces. *Journal of Biomedical Materials Research. Part A*, 66(2), 310–316.

Reilly, G. C., & Engler, A. J. (2010). Intrinsic extracellular matrix properties regulate stem cell differentiation. *Journal of Biomechanics*, 43(1), 55–62.

Roberts, J., Jacquemet, G., Byron, A., Jones, M. C., Warwood, S., Selley, J. N., … Humphries, M. J. (2015). Defining the phospho-adhesive through the phosphoproteomic analysis of integrin signalling. *Nature Communications*, 6, 6265.

Sikkema, A. H., Diks, S. H., den Dunnen, W. F. A., ter Elst, A., Scherpenzeel, F. J. G., Hoving, E. W. … & de Bont, E. J. S. M. (2009). Kinome profiling in pediatric brain tumors as a new approach for target discovery. *Cancer Research*, 69(14), 5987–5995.

Somassaram, R., Nuij, V. J. A. A., van der Woude, C. J., Kuipers, E. J., Peppelenbosch, M. P., & Fuhler, G. M. (2013). Peripheral neutrophil functions and cell signalling in Crohn’s disease. *PLoS One*, 8(12), e84521.

Vilial, F., López-Rovira, T., Rosa, J. L., & Ventura, F. (2002). Inhibition of PI3K/p70 S6K and p38 MAPK cascades increases osteoblastic differentiation induced by BMP-2. *FEBS Letters*, 510(1-2), 99–104.

Zaidel-Bar, R., & Geiger, B. (2010). The switchable integrin adhesome. *Journal of Cell Science*, 123(Pt 9), 1385–1388.

Zambuzzi, W. F., Bonfante, E. A., Jimbo, R., Hayashi, M., Andersson, M., Alves, G., … Granjeiro, J. M. (2014). Nanometer scale titanium surface texturing are detected by signaling pathways involving transient FAK and Src activations. *PLoS One*, 9(7), e95662.

Zambuzzi, W. F., Bruni-Cardoso, A., Granjeiro, M. M., Peppelenbosch, M. P., de Carvalho, H. F., Aoyama, H., & Ferreira, C. V. (2009). On the road to understanding of the osteoblast adhesion: Cytoskeleton organization is rearranged by distinct signaling pathways. *Journal of Cellular Biochemistry*, 108(1), 134–144.

Zambuzzi, W. F., Coelho, P. G., Alves, G. F., & Granjeiro, J. M. (2011). Intracellular signal transduction as a factor in the development of “smart” biomaterials for bone tissue engineering. *Biomaterials and Bioengineering*, 108(6), 1246–1250.

Zambuzzi, W. F., Milani, R., & Teti, A. (2010). Expanding the role of Src and protein-tyrosine phosphates balance in modulating osteoblast metabolism: Lessons from mice. *Biochimie*, 92(4), 327–332.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.