Two remarks on C^∞ Anosov diffeomorphisms

Shigenori Matsumoto

Abstract. Let M be a closed oriented C^∞ manifold and f a C^∞ Anosov diffeomorphism on M. We show that if M is the two torus T^2, then f is conjugate to a hyperbolic automorphism of T^2, either by a C^∞ diffeomorphism or by a singular homeomorphism. We also show that for general M, if f admits an absolutely continuous invariant measure μ, then μ is a C^∞ volume. The proofs are concatenations of well known results in the field.

1. Conjugacy

Let f be a C^∞ Anosov diffeomorphism on the two torus T^2. Then

$$A = f_* \in \text{Aut}(H_1(T^2, \mathbb{Z})) = \text{SL}(2, \mathbb{Z})$$

defines a hyperbolic automorphism of the abelian Lie group T^2, and f is isotopic to A. It is known [F, M] that f is conjugate to A by a homeomorphism h which is isotopic to the identity: $h \circ A = f \circ h$. It is well known that the conjugacy h is a bi-Hölder homeomorphism. Also it is easy to show that h is unique. Let us denote by m the normalized Haar measure of T^2. A homeomorphism h of T^2 is said to be singular if there is an m-conull Borel set E such that $h(E)$ is m-null. Our first result is the following.

Theorem 1. The conjugacy h is either a C^∞ diffeomorphism or a singular homeomorphism.

Proof. Let $TT^2 = E^u \oplus E^s$ be the hyperbolic splitting associated with f. By a dimensional reason, it is a C^1 splitting [MM1]. Fix a translation invariant C^∞ Riemannian metric g on T^2. The derivative of f along E^u (resp. E^s) measured with respect to g is denoted by $J^u f$ (resp. $J^u f$). These are C^1 functions. The Gibbs measure μ_+ for the potential $-\log|J^u f|$ (resp. $\log|J^s f|$) is denoted by μ_+ (resp. μ_-).

1991 Mathematics Subject Classification. 37D20.

Key words and phrases. Anosov diffeomorphism, topological conjugacy, Gibbs measure, absolutely continuous invariant measure.

The author is partially supported by Grant-in-Aid for Scientific Research (C) No. 20540096.
Let f, A and h be as above. First consider the case where f does not admit an a. c. i. m. (absolutely continuous invariant measure). Then the f-invariant measure h_*m is singular to m.

To show this, notice that h_*m is decomposed into two parts; one absolutely continuous and the other singular. Since h is a C^∞ diffeomorphism, it leaves each part invariant. But the absolutely continuous part must be zero since by the assumption there is no a. c. i. m. for f.

Thus h maps the measure m to a singular measure h_*m. Since h is a C^∞ diffeomorphism, it leaves each part invariant. But the absolutely continuous part must be zero since by the assumption there is no a. c. i. m. for f.

Next consider the case where f admits an a. c. i. m. μ. Then we have

\[
\mu = \mu_+ = \mu_- \text{ (Proof of Corollary 1 of [S], Corollary 4.13 of [B]).}
\]

In particular an a. c. i. m. μ is unique and ergodic. The induced measure h_*m is also ergodic. Therefore either μ and h_*m are mutually singular or coincide. In the former case, we argue just as before, to conclude that the conjugacy h is a singular homeomorphism.

Finally assume that $\mu_+ = \mu_- = h_*m$. These are the Gibbs measures of three potentials, $-\log|J^u f|$, $\log|J^s f|$ and a constant. By Section 3.4 of [S], these three functions, with the identical Gibbs measure, are mutually cohomologous modulo constant. That is, there are continuous functions v_1, v_2 and constants c_1, c_2 such that

\[
-\log|J^u f| = v_1 \circ f - v_1 + c_1,
\]

\[
\log|J^s f| = v_2 \circ f - v_2 + c_2.
\]

This shows that the Lyapunov exponents of all periodic orbits are the same. By Theorem 1 of [MM2], the conjugacy h is a C^∞ diffeomorphism. The proof of Theorem 1 is complete.

\[\square\]

2. Absolutely continuous invariant measure

Let M be a closed oriented n-dimensional C^∞ manifold and f a C^∞ Anosov diffeomorphism on M. Let g be a C^∞ Riemannian metric on M, and m the normalized measure given by the volume form associated with g.

Theorem 2. Assume f admits an a. c. i. m. μ with density φ: $\mu = \varphi m$, $\varphi \in L^1(m)$. Then the density φ is a positive C^∞ function.

Proof. Let $TM = E^u \oplus E^s$ be the hyperbolic splitting associated with f. Denote the Jacobian along E^u (resp. E^s) measured with respect to g by $J^u f$ (resp. $J^s f$). The total Jacobian measured with respect to g is denoted by Jf. All these are continuous real valued functions on M.

Define another continuous Riemannian metric g' by $g' = g|_{E^u} \oplus g|_{E^s}$. Thus E^u and E^s are perpendicular with respect to g'. Let m' be the normalized measure given by the volume form associated with g'. We have $m' = e^a m$ for a continuous function a.
Denote by J' the total Jacobian with respect to g'. Then we have

$$
(2.1) \quad \log |J'f| = \log |J^u f| + \log |J^s f|.
$$

By [S] [B], we have $\mu = \mu_+ = \mu_-$, where μ_+ (resp. μ_-) is the Gibbs measure for the potential $-\log |J^u f|$ (resp. $\log |J^s f|$). Then by [S], $\log |J^u f| + \log |J^s f|$ is cohomologous to a constant. Thus by (2.1), we have

$$
(2.2) \quad \log |J'f| = b \circ f - b + C.
$$

for a continuous function b and a constant C.

On the other hand, by the invariance of the a. c. i. m. $\mu = \varphi e^{-a} \mu'$, we have μ-almost everywhere

$$
(2.3) \quad \log |J'f| = (a - \log \varphi) \circ f - (a - \log \varphi)
$$

Now by (2.3), we have $\mu(\log |J'f|) = 0$. This implies that $C = 0$ in (2.2). Then (2.2) implies the invariance of the measure $e^{-b} \mu' = e^{-b+a} \mu$. Moreover, adding an appropriate constant to b, we may assume that $e^{-b+a} \mu$ is a probability measure. By the uniqueness of the a. c. i. m., we have $\mu = e^{-b+a} \mu$. That is, the density of μ is positive and continuous. Then by Corollary 2.1 of [LMM], we obtain that e^{-b+a} is a C^∞ function. The proof is complete. □

References

[B] R. Bowen, *Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms*, Springer Lect. Notes Series in Math. Vol. 470, 2nd Edition Ed. J.-R. Chazottes, 2008, Springer-Verlag, Berlin Heidelberg.

[F] J. Franks, *Anosov diffeomorphisms on tori*, Trans. A. M. S. 145(1969), 117–124.

[LMM] R. de la Llaves, J. M. Marco and R. Moriyon, *Canonical perturbation theory of Anosov systems and regularity results for the Livsic cohomology equation*, Ann. Math. 123(1986), 537–611.

[M] A. Manning, *There are no new Anosov diffeomorphisms on tori*, Amer. J. Math. 96 No. 3(1974) 422–429.

[MM1] J. M. Marco and R. Moriyon, *Invariants for smooth conjugacy of hyperbolic dynamical Systems, I*, Commun. Math. Phys. /bf 109(1987), 681–689.

[MM2] J. M. Marco and R. Moriyon, *Invariants for smooth conjugacy of hyperbolic dynamical Systems, III*, Commun. Math. Phys. /bf 112(1987), 317–333.

[S] Ya. Sinai, *Gibbs measures in ergodic theory*, Russ. Math. Surveys 27 No. 4(1972) 21–69.

Department of Mathematics, College of Science and Technology, Nihon University, 1-8-14 Kanda, Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan

E-mail address: matsumo@math.cst.nihon-u.ac.jp