This document includes step by step calculation of likelihoods, marginal likelihoods and MCMC algorithms, for one-state and two-state diffusion models as described in the Methods section.

One-state diffusion model marginal likelihood calculation

The marginal likelihood is defined

\[
\pi(X|M_1 D) = \int_0^\infty dD \pi(X|D, M_1 D) \pi(D)
\]

since \(\pi(D) = \text{Uniform}(0, D_{\text{max}}) \) we can write

\[
\pi(X|M_1 D) = \frac{1}{D_{\text{max}}} \int_0^{D_{\text{max}}} dD \pi(X|D, M_1 D)
\]

changing variables from \(D \) to \(D^{-1} \) gives

\[
\pi(X|M_1 D) = \frac{1}{D_{\text{max}}} \prod_{i=1}^N \frac{1}{4\pi \Delta t_i} \int_0^{1/D_{\text{max}}} dD^{-1} \left(\frac{1}{D}\right)^{N-2} \exp \left(-\frac{1}{D \sum_{i=1}^N \frac{\Delta X_i}{4\Delta t_i}} \right).
\]

In general \(\int_0^\infty dt t^{\alpha-1}e^{-\beta t} = \frac{1}{\beta^\alpha} \Gamma(\alpha, \beta x) \), where \(\Gamma(\alpha, \beta x) \) is an upper incomplete gamma function. Using this gives

\[
\pi(X|M_1 D) = \frac{1}{D_{\text{max}}} \prod_{i=1}^N \frac{1}{4\pi \Delta t_i} \left(\sum_{i=1}^N \frac{\Delta X_i}{4\Delta t_i} \right)^{1-N} \Gamma \left(N - 1, \frac{1}{D \sum_{i=1}^N \frac{\Delta X_i}{4\Delta t_i}} \right).
\]

Approximate one-state diffusion model with measurement noise

We consider a trajectory \(X \) subject to Gaussian observation error, with fixed localisation accuracy \(\sigma^2 \). By a result in [1] (also see the section Approximation to the likelihood for one-state diffusion model with measurement noise) an approximation for the likelihood of \(X \) given \(D \) is

\[
\pi(X|D) = \prod_{i=1}^N \mathcal{N}(\Delta X_i; 0, 2(D\Delta t_i + \sigma^2)).
\]
We now add fixed localisation error to the previous two-state diffusion hidden Markov model. Using an Approximate two-state diffusion model with measurement noise given as pseudocode in S1 Algorithms.

Letting \(\theta \) be the parameter vector, the associated posterior is

\[
\pi(D|\theta) \propto \pi(D) \prod_{i=1}^{N} \mathcal{N}(\Delta X_i; 0, 2D\Delta t_i + 2\sigma^2),
\]

which can be sampled using a Metropolis-Hastings algorithm. We set \(\pi(D) = \text{Unif}(D; 0, D_{\text{max}}) \), and use a random walk sampler (RW MCMC) with a symmetric Gaussian proposal, \(q(D \to D') = \mathcal{N}(D'; D, S_D) \), giving the acceptance probability

\[
\alpha(D \to D') = \min \left\{ 1, \frac{\prod_{i=1}^{N} \mathcal{N}(\Delta X_i; 0, 2(D'\Delta t_i + \sigma^2))}{\prod_{i=1}^{N} \mathcal{N}(\Delta X_i; 0, 2(D\Delta t_i + \sigma^2))} \right\} 1_{[0,D_{\text{max}}]}(D).
\]

Thus, any moves outside \([0, D_{\text{max}}]\) are automatically rejected. The value of \(S_D \) is tuned during the burn-in to ensure that the acceptance rate is approximately 0.25 [2]. The MCMC sampler is also given as pseudocode in S1 Algorithms.

Approximate two-state diffusion model with measurement noise

We now add fixed localisation error to the previous two-state diffusion hidden Markov model. Using the same approximation to the likelihood as the approximate one-state model we can write

\[
\begin{align*}
\Delta X_i|z_i &\sim \mathcal{N}(0, 2(Dz_i\Delta t_i + \sigma^2)) \\
z_i|z_{i-1} &\sim \text{Bernoulli}(z_{i-1}(1 - p_{10}) + (1 - z_{i-1})p_{01})
\end{align*}
\]

Letting \(\theta = \{D_0, D_1, p_{01}, p_{10}\} \) we can write the posterior as

\[
\pi(\theta, z|X) \propto \pi(\theta) \pi(z_i|\theta) \prod_{i=1}^{N} \mathcal{N}(\Delta X_i; 0, 2(Dz_i\Delta t_i + \sigma^2)) \\
\times \prod_{i=1}^{N-1} \text{Bernoulli}(z_{i+1}; z_i(1 - p_{10}) + (1 - z_i)p_{01}).
\]

We use the same priors on \(D_0, D_1, p_{01}, p_{10} \) and \(z_i \) as in the two-state diffusion model without measurement noise, given in equation [7], main text. \(D_0, D_1 \) are updated with Metropolis-Hastings moves. The proposals are Gaussians centred at the current value \(q(D_0 \to D'_0) = \mathcal{N}(D'_0; D_0, S_{D_0}), q(D_1 \to D'_1) = \mathcal{N}(D'_1; D_1, S_{D_1}) \) and the acceptance probabilities are

\[
\begin{align*}
\alpha(D_0 \to D'_0|z, X) &\propto \min \left\{ 1, \frac{\prod_{z_i=0} \mathcal{N}(\Delta X_i; 0, 2(D'_0\Delta t_i + \sigma^2))}{\prod_{z_i=0} \mathcal{N}(\Delta X_i; 0, 2(D_0\Delta t_i + \sigma^2))} \right\} 1_{[0,D_{\text{max}}]}(D'_0)
\end{align*}
\]

\[
\begin{align*}
\alpha(D_1 \to D'_1|z, X) &\propto \min \left\{ 1, \frac{\prod_{z_i=1} \mathcal{N}(\Delta X_i; 0, 2(D'_1\Delta t_i + \sigma^2))}{\prod_{z_i=1} \mathcal{N}(\Delta X_i; 0, 2(D_1\Delta t_i + \sigma^2))} \right\} 1_{[0,D_{\text{max}}]}(D'_1).
\end{align*}
\]

\(S_{D_0}, S_{D_1} \) are tuned during the burn-in to ensure an acceptance rate of approximately 0.25. We also impose the condition that \(D_0 < D_1 \), which we enforce after the MCMC run as follows: if the posterior means \(D_0 > D_1 \) then we swap the \(D_0, D_1 \) chains, swap the \(p_{01}, p_{10} \) chains, and swap the 0 and 1 states in the hidden state \(z \) throughout the run. This is possible because although state identity switching (0 ⇔ 1) is possible because of a permutation symmetry during a run, it isn’t observed to occur. The updates for the transition probabilities are Gibbs moves, identical to the two-state model without measurement noise, given by equations [15] and [16], main text. The \(z \) update is similar to the other two-state models, the conditional is

\[
\pi(z_i|z_{i-1}, z_{i+1}, \ldots) \propto \text{Bernoulli}(z_i; z_{i-1}(1 - p_{10}) + (1 - z_{i-1})p_{01}) \\
\times \mathcal{N}(\Delta X_i; 0, 2Dz_i\Delta t_i + 2\sigma^2) \\
\times \text{Bernoulli}(z_{i+1}; z_i(1 - p_{10}) + (1 - z_i)p_{01}).
\]
And again the update is
\[z_i \mid \theta, U, z_{i+1} \sim \text{Bernoulli} \left(\pi(z_i = 1 \mid z_{i-1}, z_{i+1}, \theta, X) \right). \]

At the endpoints \(i = 1 \) and \(i = N \) we have
\[\pi(z_1 \mid z_2, \theta, X) \propto N(\Delta X_1; 0, 2Dz_2\Delta t_1 + 2\sigma^2) \text{Bernoulli} \left(z_2; z_1(1 - p_{10}) + (1 - z_1)p_{01} \right) \]
\[\pi(z_N \mid z_{N-1}, \theta, X) \propto N(\Delta X_N; 0, 2Dz_N\Delta t_N + 2\sigma^2). \]

Pseudocode for this MCMC sampler is given in \[S1\] Algorithms.

Approximation to the likelihood for one-state diffusion model with measurement noise

(This method is mentioned in reference [1].) Consider a 2D trajectory observed with experimental noise with known localisation accuracy \(\sigma^2 \). Let \(\{U_i\}_{i=1}^{N+1} \) be the underlying particle position and \(\{X_i\}_{i=1}^{N+1} \) be the observed positions. For each time step

\[U_i - U_{i-1} \sim N(0, 2D\Delta t_{i-1}) \]
\[X_i \sim N(U_i, \sigma^2). \]

Which we can write as (summing two Gaussians)
\[X_i - X_{i-1} \sim N(U_i - U_{i-1}, 2\sigma^2). \]

shifting the mean
\[X_i - X_{i-1} \sim N(0, 2\sigma^2) + U_i - U_{i-1} \]

since \(U_i - U_{i-1} \sim N(0, 2D\Delta t_{i-1}) \) we can write
\[X_i - X_{i-1} \sim N(0, 2D\Delta t_{i-1} + 2\sigma^2). \]

So we know that the measured displacement then satisfies \(X_{i+1} \mid X_i \sim X_i + N(0, 2D\Delta t_i + 2\sigma^2) \), which suggests that the likelihood is given by
\[\pi(X \mid D) = \prod_{i=1}^{N} N(\Delta X_i; 0, 2D\Delta t_i + 2\sigma^2). \]

However, this is only true if the displacements are independent, which not the case since the displacements \(U_{i+1} - U_i \) and \(U_i - U_{i-1} \) both depend on the measurement noise \(U_i - X_i \) at time point \(i \). However, we demonstrate that equation 5 is sufficient for model selection, see Results.

Log likelihood for approximate two-state diffusion model with measurement noise

We use a modified version of the Das et al. forward algorithm [3] to calculate \(\pi(X \mid \theta) \). The initial forward probabilities in log scale are
\[\log_e \alpha_1(z_1 = 0) = \log_e \frac{p_{10}}{p_{10} + p_{01}} + \log_e \pi(\Delta X_1 \mid z_1 = 0, D_0, D_1) \]
\[\log_e \alpha_1(z_1 = 1) = \log_e \frac{p_{01}}{p_{10} + p_{01}} + \log_e \pi(\Delta X_1 \mid z_1 = 1, D_0, D_1) \]
where \(\log_e \pi(\Delta X_i|z_i, D_0, D_1) = N(\Delta X_i; 0, 2(D_z_i \Delta t_i + \sigma^2)) \) for \(i = 1..N \). The recursion for \(i = 2 \) to \(i = N \) is then

\[
\log_e \alpha_i(z_i = 0) = \log_e \left[e^{\log_e \alpha_{i-1}(z_{i-1} = 0) + \log_e (1 - p_{01}) + \log_e \pi(\Delta X_i|z_i = 0, D_0, D_1)} + e^{\log_e \alpha_{i-1}(z_{i-1} = 1) + \log_e (p_{01}) + \log_e \pi(\Delta X_i|z_i = 0, D_0, D_1)} \right]
\]

\[
\log_e \alpha_i(z_i = 1) = \log_e \left[e^{\log_e \alpha_{i-1}(z_{i-1} = 1) + \log_e (p_{10}) + \log_e \pi(\Delta X_i|z_i = 1, D_0, D_1)} + e^{\log_e \alpha_{i-1}(z_{i-1} = 0) + \log_e (1 - p_{10}) + \log_e \pi(\Delta X_i|z_i = 1, D_0, D_1)} \right]
\]

And the final likelihood is

\[
\pi(X|\theta) = \log_e \left[e^{\log_e \alpha_N(z_N = 0)} + e^{\log_e \alpha_N(z_N = 1)} \right]
\]

References

[1] Michalet X. Mean square displacement analysis of single-particle trajectories with localization error: Brownian motion in an isotropic medium. Physical review E, Statistical, nonlinear, and soft matter physics. 2010 Oct;82(4 Pt 1):041914.

[2] Roberts GO, Gelman A, Gilks WR. Weak Convergence And Optimal Scaling Of Random Walk Metropolis Algorithms. The Annals of Applied Probability. 1997;7(1):110–120.

[3] Das R, Cairo CW, Coombs D. A hidden Markov model for single particle tracks quantifies dynamic interactions between LFA-1 and the actin cytoskeleton. PLoS computational biology. 2009 Nov;5(11):e1000556.