Peripheral Blood Gamma Interferon Release Assays Predict Lung Responses and *Mycobacterium tuberculosis* Disease Outcome in Mice

Gillian L. Beamer,1,2 David K. Flaherty,3 Bridget Vesosky,1 and Joanne Turner1,2*

Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio 43210; Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio 43210; and Vanderbilt Medical Center, Vanderbilt University, Nashville, Tennessee 37232

Received 28 September 2007/Returned for modification 29 October 2007/Accepted 19 December 2007

Current diagnostic tests for tuberculosis (TB) are not able to distinguish active disease from latent *Mycobacterium tuberculosis* infection, nor are they able to quantify the risk of a latent infected person progressing to active TB. There is interest, however, in adapting antigen-specific gamma interferon (IFN-γ) release assays (IGRAs) to predict disease outcome. In this study, we used the differential susceptibilities of inbred mouse strains to *M. tuberculosis* infection to evaluate the prognostic capabilities of IGRAs. Using lung and blood cultures, we determined that CBA/J, DBA/2, and C3H/HeJ mice (models of heightened risk of progression to active TB) produced less antigen-specific IFN-γ in response to *M. tuberculosis* culture filtrate proteins and early secreted antigenic target-6 than the relatively resistant C57BL/6 mouse strain. Additionally, reduced IFN-γ secretion in supernatants reflected a reduced frequency of IFN-γ-responding cells in the lung and blood and not a specific defect in IFN-γ secretion at the single-cell level. Importantly, detection of antigen-specific IFN-γ from blood cultures accurately reflected lung responses, indicating that blood can be an appropriate test tissue in humans. Furthermore, reduced antigen-specific IFN-γ production and low frequencies of IFN-γ-responding cells from peripheral blood predicted increased risk of TB disease progression across genetically diverse TB disease-susceptible mouse strains, suggesting that similar results may occur in humans. The development of efficacious predictive diagnostic tests for humans would lead to targeted therapy prior to progression to active TB, reducing transmission, incidence, and prevalence rates while maximizing the use of public health resources.

*Corresponding author. Mailing address: 1010 Biomedical Research Tower, The Ohio State University, 460 West 12th Avenue, Columbus, OH 43210. Phone: (614) 292-6724. Fax: (614) 292-9616. E-mail: joanne.turner@osumc.edu.
*Published ahead of print on 9 January 2008.

Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), infects up to one-third of the world’s population (60). The majority (90%) of infected adults control *M. tuberculosis* in a latent state that is clinically silent and is not considered contagious. In contrast, the remaining 10% of *M. tuberculosis*-infected individuals progress to contagious, active TB and may transmit bacilli to others, resulting in significant global morbidity and mortality each year (61). The mechanisms that contribute to *M. tuberculosis* susceptibility and TB disease progression in humans are multifactorial and reflect altered pulmonary immunity due to polygenic interactions, immune status, age, and environmental factors (6, 50). These interactions contribute to the common outcome of active TB, associated with increased growth of *M. tuberculosis* in the lung and detrimental pulmonary inflammation, for which similar disease characteristics have been described in animal models (4, 12, 54).

Although the predisposing mechanisms underlying progression to active TB are not fully understood, we and others (1, 36, 41) propose that the transition from latency to active TB can be detected, quantified, and predicted by peripheral immune responses prior to disease onset. The identification of such biomarkers could then be used to quantify the risk of TB disease progression, allowing targeted treatment of susceptible individuals. Current application of diagnostic tests, including skin tests and gamma interferon (IFN-γ) release assays (IGRAs), cannot distinguish latent *M. tuberculosis* infection from active TB, nor can they assess the risk of TB disease progression (1, 25, 41). Research interest does exist, however, in longitudinal assessment of IGRAs and its adaptation for TB prognosis in humans. Indeed, evidence exists to show that IFN-γ responders stratify into high, middle, and low categories (1), suggesting that IGRA results could also assess the risk of disease progression in humans.

Commercial IGRAs quantify the amounts of antigen-specific IFN-γ in blood culture supernatants (QuantiFERON-TB Gold; Cellestis Ltd., Carnegie, Victoria, Australia) or determine the frequency of IFN-γ-producing blood leukocytes (T-SPOT.TB; Oxford Immunotec, Oxford, United Kingdom) in response to specific mycobacterial peptides. IGRA peptides are synthetic immunogenic mycobacterial antigens from early secreted antigenic target-6 (ESAT-6), culture filtrate protein (CFP) 10, and TB7.7. These proteins are almost exclusively expressed by members of the *M. tuberculosis* complex and not by environmental, opportunistic mycobacteria or the vaccine strain *Mycobacterium bovis* BCG. Therefore, immune responses to these peptides are highly sensitive and specific for *M. tuberculosis* infection (31). Furthermore, ESAT-6 stimulates T-cell responses in mice (3, 46, 62) and humans (45). It is currently unknown whether the magnitude of *M. tuberculosis*
antigen-specific responses could quantitate the risk of TB disease progression or whether antigen-specific IFN-γ from the blood accurately reflects responses within the lung. Interpretation of differential responses in IGRAs may identify individuals with predicted poor outcomes and holds promise for earlier, targeted therapy.

Using immunocompetent inbred mouse strains (C57BL/6, CBA/J, DBA/2, and C3H/HeJ) with known timelines of TB disease progression (30), we modified IGRAs to assess antigen-specific IFN-γ production from the peripheral blood as an immunological predictor of TB disease outcome. All analyses were performed on mice that had no outward signs of TB disease (i.e., normal body weight, normal hair coat and posture, normal socialization, etc.) and stable bacterial loads within the lungs. The results, therefore, did not reflect morbidity-associated inflammatory responses. Our data demonstrate that mouse strains with reduced survival times following M. tuberculosis infection (30) failed to sustain or generate a robust antigen-specific IFN-γ response to M. tuberculosis CFP and ESAT-6 in both lung and peripheral-blood cultures. Most significant was the fact that low IFN-γ production from blood cells was evident throughout the entire infection period in CBA/J mice, even in the absence of clinical signs and prior to TB disease progression. Furthermore, using short-term infection studies, poor antigen-specific IFN-γ production was identified in two additional TB-susceptible mouse strains. These data indicate that reduced antigen-specific responses ex vivo can predict an increased susceptibility to TB disease progression in mice. Furthermore, these data demonstrate that the total amount of IFN-γ and the frequency of IFN-γ-responding cells in the blood directly reflect immune responses in the lung. These results, therefore, define a simple blood assay as both an indicator of lung-specific immunity and a predictor of disease outcome.

MATERIALS AND METHODS

Mice. Specific-pathogen-free 6-week-old female C57BL/6 and CBA/J mice (Charles River Laboratories, Wilmington, MA) and specific-pathogen-free 6-week-old female C57BL/6J, DBA/2J, and C3H/HeJ mice (The Jackson Laboratory, Bar Harbor, ME) were maintained in ventilated cages within biosafety level 3 facilities and provided with sterile food and water ad libitum. All protocols were approved by the Ohio State University’s Institutional Animal Care and Use Committee.

M. tuberculosis stocks. M. tuberculosis Erdman (ATCC 35801) was obtained from the American Type Culture Collection (Manassas, VA). Stocks were grown in Proskauer-Beck liquid medium containing 0.05% Tween 80 to mid-log phase and frozen in 1-ml aliquots at −80°C.

M. tuberculosis infection. Mice were exposed to an aerosol of M. tuberculosis Erdman using an inhalation exposure system (Glas-col, Terre Haute, IN) calibrated to deliver 50 to 100 CFU to the lungs of each individual mouse. Confirmation of the M. tuberculosis dose and calculation of the M. tuberculosis burden throughout the experimental-infection period were performed by plating serial dilutions of partial lung homogenates onto oleic acid-albumin-dextrose-catalase-supplemented 7H11 agar. M. tuberculosis CFU were counted after 3 weeks at 37°C and transformed to a log_{10} scale. The mice were weighed weekly. Mice weighing 20% less than the average for age- and sex-matched noninfected controls (i.e., normal socialization, etc.) and stable bacterial loads within the lungs. The results, therefore, define a simple blood assay as both an indicator of lung-specific immunity and a predictor of disease outcome.
Lung and blood modified IGRAs by ELISpot assays. At each time point, six mice per inbred strain were euthanized, and their lung cells were pooled in groups of two for CD4 purification using magnetic MACS columns and anti-CD4 beads (Miltenyi Biotech, Auburn, CA) according to the manufacturer’s instructions with one modification. Following lung cell isolation, adherent cells from each individual mouse were removed by incubation in 100-mm sterile tissue culture petri dishes for 1 h at 37°C. CD4 T-cell purity was confirmed by flow cytometry (93.5% ± 1.7% of the purified lung cells were CD4+ CD45+). Purified cells from each pair of mice were serially diluted 1:2 in complete DEMEM on precoated, blocked, sterile ELISpot plates according to the manufacturer’s instructions (Ready-Set-Go Mouse IFN-γ ELISpot kit; eBioscience, San Diego, CA). At least six serial dilutions were performed for lung cells. Following the serial dilutions, 2.5 × 10⁴ antigen-pulsed bone marrow-derived APCs were added to each well.

Pooled samples from six mice per strain were used for ELISpot assays with blood leukocytes. Following red blood cell lysis, leukocytes were counted by tripan blue exclusion, resuspended in complete DEMEM, and serially diluted 1:2 in triplicate on precoated (Ready-Set-Go Mouse IFN-γ ELISpot kit; eBioscience), blocked, sterile ELISpot plates (Millipore, Billerica, MA). At least three serial dilutions were performed for blood leukocytes. Following the serial dilutions, 2.5 × 10⁴ antigen-pulsed bone marrow-derived APCs were added to each well.

For both lung CD4 and blood leukocyte ELISpot assays, the plates were incubated for 36 h at 37°C. IFN-γ spot-forming units were detected and developed according to the manufacturer’s instructions (eBioscience; Ready-Set-Go Mouse IFN-γ ELISpot kit). Spots were counted and analyzed using the ImmunoSpot Analyzer (C.T.L., Cleveland, OH). The numbers of antigen-specific IFN-γ spot-forming units were determined by subtracting the number of spots formed in the presence of a negative control antigen (ovalbumin).

Flow cytometry. All conjugated and unconjugated antibodies and isotype controls were purchased from BD Biosciences, including Fc Block (clone 2.4G2), PerCP-Cy5.5 anti-CD3ε (145-2C11), APC-Cy7 anti-CD4 (GK1.5), PerCy7 anti-CD8 (53-6.7), APC anti-T-cell receptor β chain (TCR-β) (H57-597), PerCP anti-CD8 (53-6.7), PerCy7 anti-IFN-γ (XMG1.2), and PerCy7 rat immunoglobulin G1(e) isotype control. Analyses were performed on lung cells or blood leukocytes from individual mice, except for groups of six pooled blood samples (see Fig. 3C and D and 5C and D) and three groups of two pooled lung CD4 T cells (see Fig. 5A and B). For surface staining, aliquots of lung cell suspensions were adjusted to 4 × 10⁶ cells/ml and placed immediately into 1 ml of FACS buffer, and blood leukocytes were fixed in 500 μl of FACS buffer for 30 min at 4°C. For intracellular-cytokine staining, separate aliquots of lung cells from each individual mouse were removed by incubation in 100-mm sterile tissue culture plates for 1 h at 37°C. CD4 T-cell purity was confirmed by flow cytometry. CD4 T cells were identified based upon CD3 or TCR-β expression followed by three washes in FACS buffer. Lymphocytes were identified according to characteristic forward and side scatter profiles, and 20,000 to 50,000 events were analyzed for each sample.

RESULTS

CBA/J mice maintain stable *M. tuberculosis* CFU with no external signs of TB disease. The abilities of inbred mouse strains to survive *M. tuberculosis* infection segregate into TB-resistant and -susceptible clusters with known survival times (4, 8, 23, 29, 30, 44, 54, 55). C57BL/6 mice survive *M. tuberculosis* infection into their second year of life and are considered relatively resistant (30, 34, 35, 44). In contrast, CBA/J mice are more susceptible to *M. tuberculosis* infection (30). Infection in CBA/J mice is associated with a persistently elevated *M. tuberculosis* bacterial load in the lung with early death due to overwhelming pulmonary disease (4, 29, 54).

In this study, we analyzed immune responses during a period of *M. tuberculosis* infection when CBA/J mice showed no outward signs of disease and compared the responses to those of the relatively resistant C57BL/6 mouse strain. Throughout the experimental time frame, *M. tuberculosis*-infected CBA/J mice exhibited normal weight gain relative to noninfected age- and sex-matched controls (Fig. 1A). A small proportion (10%) of CBA/J mice developed morbidity between days 90 and 150 postinfection (data not shown), and they were excluded from the study. All C57BL/6 mice appeared clinically healthy and gained weight at the same rate as noninfected age- and sex-matched control mice over 150 days of *M. tuberculosis* infection (data not shown). Despite remaining clinically healthy, CBA/J mice had significantly more *M. tuberculosis* CFU recovered from the lungs than C57BL/6 mice at all time points tested (Fig. 1B).

Increased risk of TB disease progression is associated with reduced antigen-specific IFN-γ production from lung cells. Lung cells from infected C57BL/6 and CBA/J mice were cultured with *M. tuberculosis* CFP or ESAT-6 to determine antigen-specific IFN-γ secretion ex vivo. Lung cells from C57BL/6 mice produced abundant IFN-γ in response to both CFP (Fig. 2A) and ESAT-6 (Fig. 2C), and these responses were sustained throughout the first 150 days of *M. tuberculosis* infection. In contrast, lung cells from CBA/J mice responded with a potent but transient peak of IFN-γ in response to CFP at day 21.
postinfection, but this response declined over time (Fig. 2A). As infection progressed beyond day 60, CFP-specific IFN-γ production from CBA/J lung cells was significantly less than that of C57BL/6 mice. ESAT-6 induced a small and delayed peak of antigen-specific IFN-γ at day 60 in CBA/J lung cell cultures (Fig. 2C) that, similar to CFP-specific responses, was not sustained. At all time points tested, ESAT-6-specific IFN-γ production was significantly reduced in lung cell cultures from CBA/J mice compared to C57BL/6 mice (Fig. 2C).

These data demonstrate that predicted TB disease progression and decreased survival in susceptible CBA/J mice following *M. tuberculosis* infection are associated with reduced antigen-specific immune responses throughout chronic, asymptomatic pulmonary infection. Poor antigen-specific IFN-γ production from the primary site of *M. tuberculosis* infection can therefore predict accelerated TB disease progression in mice. Because lung cells from *M. tuberculosis*-exposed or infected humans are not readily available for testing, we subsequently determined whether blood was an appropriate surrogate tissue for lung immune responses.

Antigen-specific IFN-γ responses from blood are accurate indicators of lung responses. *M. tuberculosis* IGRAs approved for human diagnostics use heparinized whole blood or freshly isolated peripheral blood mononuclear cells cocultured with *M. tuberculosis* antigens. We modified IGRAs for use in *M. tuberculosis*-infected C57BL/6 and CBA/J mice by stimulating diluted heparinized whole blood with the *M. tuberculosis* antigens CFP and ESAT-6. Blood samples were analyzed in parallel with the lung cultures.

Antigen-specific IFN-γ from blood samples generated profiles similar to that observed from isolated lung cells. Blood cell cultures from C57BL/6 mice produced abundant and sustained IFN-γ in response to *M. tuberculosis* CFP (Fig. 2B) and ESAT-6 (Fig. 2D) throughout 150 days of infection. ESAT-6-specific IFN-γ production from blood cell cultures was elevated after 21 days of infection in comparison to the lung but then was comparable between 60 and 150 days (Fig. 2D). Therefore, the data indicate that for the relatively resistant C57BL/6 mouse strain, antigen-specific IFN-γ production from blood cell cultures directly reflects the immune status of the lung and can be used to predict disease outcome.

Minimal IFN-γ was secreted by blood cell cultures from CBA/J mice in response to *M. tuberculosis* CFP (Fig. 2B) and ESAT-6 (Fig. 2D) throughout 150 days of infection. ESAT-6-specific IFN-γ production from blood cell cultures was substantially reduced at all time points, and ESAT-6-specific IFN-γ was lower at days 60 and 90 of infection. These results suggest that sequestration of antigen-specific T cells to the lungs may have occurred in CBA/J mice. Therefore, blood cultures from susceptible CBA/J mice reflect lung-specific events to some degree, and in fact, due to the substantially reduced

![FIG. 2. Antigen-specific IFN-γ production from lung cells and blood. C57BL/6 and CBA/J mice were infected with 50 to 100 CFU of *M. tuberculosis* Erdman by aerosol. Lung cells (2 x 10⁵) (A and C) and 1:10-diluted whole blood (B and D) from noninfected and infected mice at specific time points postinfection were cultured with *M. tuberculosis* CFP (A and B) or *M. tuberculosis* ESAT-6 (C and D). The results are the mean plus standard error of the mean of four (A and B) or two (C and D) independent experiments with four or five mice per strain per time point. The data were analyzed by mouse strain, with comparison to noninfected controls by one-way ANOVA with Dunnett’s posttest. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ND, no significant difference. Direct pairwise comparisons between C57BL/6 and CBA/J mice at each time point were analyzed by Student’s *t* test. +, P < 0.05; ++, P < 0.01; +++, P < 0.001. IFN-γ production in response to ovalbumin (negative control) did not exceed 0.12 ± 0.3 ng/ml from lung cells and 0.02 ± 0.07 ng/ml from blood.]
reduced responses, blood may be a better predictor of disease outcome than the lung.

It is widely accepted that CD4 T cells are the dominant source of antigen-specific IFN-γ during *M. tuberculosis* infection (20). We therefore determined whether poor antigen-specific IFN-γ production from the lungs and blood of CBA/J mice was associated with inadequate numbers or function of CD4 T cells.

Number and function of CD4 T cells in the lungs and blood. Although primary genetic defects (6), human immunodeficiency virus infection (51), and pharmacologic (63) immunosuppression increase the risk of TB disease progression, most active cases are not attributable to any of these immunodeficiencies (6, 11, 15). Furthermore, many TB patients appear to have intact acquired immune responses and produce IFN-γ in response to *M. tuberculosis* antigens and unrelated antigens (2, 13). In conjunction with mice with genes disrupted (5, 10), these observations suggest that a critical mass of functional CD4 T cells is optimal for *M. tuberculosis* control. To determine whether increased risk of TB disease progression in CBA/J mice was associated with low CD4 T-cell numbers in the lungs or blood, CD4 T-cell numbers were determined. The proportion of CD4 T cells in the lungs of *M. tuberculosis*-infected CBA/J mice was significantly less than those of C57BL/6 mice throughout the 150-day study (Fig. 3A), leading to fewer total CD4 T cells recovered from the lungs (Fig. 3B) and fewer well-analyzed CD4 T cells in each cell culture (data not shown). Although the proportion of CD4 T cells in the blood was increased in CBA/J mice compared to C57BL/6 mice (Fig. 3C), the absolute number of CD4 T cells was less (Fig. 3D) due to fewer leukocytes being recovered from equivalent volumes of blood (data not shown). These data indicate that reduced numbers of lung and circulating CD4 T cells may contribute to poor TB disease outcome.

To determine whether CD4 T cells from CBA/J mice had the potential to respond in an antigen-dependent manner during infection, lung and blood cells were stimulated with anti-CD3 and anti-CD28 for 4 h with GolgiStop, and accumulated intracellular IFN-γ was quantified by flow cytometry. In lung (Fig. 4A) and blood (Fig. 4B) cell cultures, the proportion of CD4 T cells that produced IFN-γ in response to TCR stimulation from CBA/J mice was approximately one-half of that from C57BL/6 mice. The fluorescence intensity of IFN-γ within individual CD4 T cells from the lungs or blood of CBA/J mice was equivalent to that for C57BL/6 mice (data not shown). These data show that IFN-γ responses were not deficient in CBA/J mice on an individual CD4 T-cell basis but that CBA/J mice have fewer CD4 T cells with the potential to respond to TCR-mediated stimulation. Therefore, CBA/J mice generate or maintain a smaller pool of T cells that are capable of secreting IFN-γ. We next determined whether susceptible CBA/J mice had fewer *M. tuberculosis* CFP and ESAT-6 IFN-γ-responding cells than C57BL/6 mice.

Low IFN-γ production results from decreased antigen-specific T cells in CBA/J mice. To confirm that the low levels of antigen-specific IFN-γ produced by lung and blood cells from
CBA/J mice in culture were attributable to reduced numbers of antigen-specific cells in vivo, we performed ELISpot assays and calculated the frequencies of cells capable of secreting IFN-γ in response to *M. tuberculosis* CFP and ESAT-6. As anticipated, CBA/J mice had significantly fewer CD4 T cells that could secrete IFN-γ in response to CFP (Fig. 5A) and ESAT-6 (Fig. 5C) than C57BL/6 mice. Isolated blood leukocytes from CBA/J mice also showed a substantially reduced frequency of IFN-γ responders to CFP (Fig. 5B) and ESAT-6 (Fig. 5D) compared to blood cells from C57BL/6 mice. ELISpot analysis therefore confirmed that CBA/J mice generate or sustain fewer antigen-specific CD4 T cells within the lungs and circulation during *M. tuberculosis* infection. To maintain the integrity of the IGRA ELISpot model, CD4 T cells were not purified from blood samples; however, depletion of CD4 T cells from ex vivo cultures has been shown to nearly abrogate IFN-γ detection (46). These data demonstrate that increased risk of TB disease progression is associated with a reduced precursor frequency of antigen-specific CD4 T cells in the lung and the peripheral blood, providing further evidence that antigen-specific responses in the blood accurately reflect immune events within the lungs.

Reduced antigen-specific IFN-γ production is common among *M. tuberculosis*-susceptible mouse strains. To determine whether reduced antigen-specific IFN-γ can be used as a...
common predictor of TB disease outcome, we analyzed two additional *M. tuberculosis*-susceptible mouse strains (4, 7). Modified IGRAs were performed on lung and blood samples from DBA/2 and C3H/HeJ mice, and the responses were compared to those of C57BL/6 mice. As previously observed in CBA/J mice, low CFP and ESAT-6 IFN-γ responses accurately predicted an increased risk of TB disease progression from both blood (Fig. 6A and B) and lung (Fig. 6C and D) cultures during asymptomatic infection. Blood and lung cultures from DBA/2 and C3H/HeJ mice produced abundant IFN-γ when stimulated nonspecifically with concanavalin A (data not shown), indicating no general defects in IFN-γ production in either mouse strain. These results indicate that reduced antigen-specific IFN-γ production, and responses to ESAT-6 in particular, is a common immunological outcome among susceptible mouse strains during early *M. tuberculosis* infection. These data indicate that blood-derived immunological biomarkers may predict TB disease outcome across genetically disparate individuals.

DISCUSSION

Using several different immunocompetent inbred mouse strains, we have shown that modified IGRAs can successfully identify strains that have shorter survival times in response to infection with *M. tuberculosis*. Mouse strains with accelerated TB disease progression (CBA/J, DBA/2, and C3H/HeJ) produced suboptimal IFN-γ secretion ex vivo from lung and blood cultures in response to the *M. tuberculosis* antigens CFP and ESAT-6. In CBA/J mice, the decreased antigen-specific IFN-γ corresponded to low frequencies of antigen-specific IFN-γ T cells in the lung and blood. Furthermore, antigen-specific responses in peripheral-blood cultures provided a more sensitive indicator of risk for TB disease progression than the lung. These data demonstrate that diagnostic test results based on blood cell culture supernatants (Quantiferon-Gold) or frequency of antigen-specific blood cells (T-Spot.TB) may be adapted for use to predict TB disease outcome in humans infected with *M. tuberculosis*.

Several studies have characterized antigen-specific T-cell responses in the lungs or spleens of *M. tuberculosis*-infected mice (27, 28, 53); however, we believe we are the first to study and report the relationship between peripheral-blood immune responses and that of lung cells in mice. Using murine models with differential TB susceptibilities, we have shown that IFN-γ antigen-specific immune responses in the blood are a sensitive indicator of lung-specific events. Our studies are relevant to humans, for whom the most common source of antigen-specific T cells is the peripheral blood. Very few human or animal studies have compared the lung and blood immune responses during long-term *M. tuberculosis* infection, and to our knowledge, none have correlated the results with disease outcome. A recent study of human TB patients, however, reported that ESAT-6-specific IFN-γ from normalized cell numbers was elevated in the lungs compared to blood (48), indicating that our findings in the murine system can accurately model humans. Furthermore, individual variation in secreted ESAT-6-specific IFN-γ from blood assays has been described in *M. tuberculosis*-infected nonhuman primates. In a study of four animals, two had minimal responses to ESAT-6, and of those, one animal had massive infection with hematogenous spread at necropsy (57). Although lung-specific responses were not compared to those of blood, these studies in nonhuman primates provide additional evidence that low IFN-γ responses to ESAT-6 can be associated with increased susceptibility to TB disease and elevated bacterial burden, similar to our findings in mice. In contrast to our murine models, however, both studies quantified ESAT-6-specific responses during clinical disease, rather than prior to disease onset.

Our studies also demonstrate that we can successfully predict the risks of different mouse strains for developing TB disease using a simple blood IGRA. The potential to predict TB outcome in humans using a simple blood assay could create a powerful tool for the early detection and treatment of susceptible individuals prior to the onset of active TB. Such a strategy would decrease *M. tuberculosis* transmission and lead to a reduction in the global burden of TB. Many clinical research papers (23, 38–40) and reviews (1, 36, 41, 42) support the use of IGRAs to monitor or classify stages of TB disease and to predict disease outcome in humans. Additionally, recent
analysis (1) of previously published data (14) indicated that healthy contacts of TB patients stratify into low, medium, and high IFN-γ ESAT-6 responders, suggesting that a correlation with TB disease progression might exist in humans. Results from large-scale prospective longitudinal studies in humans are not yet available, and currently, it is unknown whether low or high responders progress to active TB.

A number of studies have investigated associations between the TB disease state and the strength of antigen-specific responses. For example, active TB disease has been associated with depressed M. tuberculosis-specific IFN-γ responses (49), whereas latently infected individuals and patients with minimal TB disease had increased numbers of ESAT-6-specific IFN-γ-secreting blood cells (43, 56). In contrast, other human studies (19, 21, 25) have associated strong ESAT-6-specific IFN-γ responses with active TB and/or elevated M. tuberculosis bacterial load; however, subjects were not assessed prior to disease onset, and it is unclear whether the study participants had ongoing M. tuberculosis exposure throughout the follow-up periods. These contradictory findings from human IGRA data may be due to small group sizes or differing methodologies or may indicate that subpopulations of M. tuberculosis-susceptible individuals have differential responses to ESAT-6. Larger and longitudinal studies are under way to critically evaluate whether IGRA can be successfully used to predict TB disease progression in humans (1, 36). Using inbred mouse strains with different susceptibilities to M. tuberculosis, our results suggest that TB disease outcome can be predicted by low ESAT-6 antigen-specific IFN-γ secretion ex vivo.

With the inclusion of highly specific M. tuberculosis antigens, IGRA are more sensitive and specific for M. tuberculosis infection than the purified protein derivative skin test but cannot yet distinguish latent M. tuberculosis infection from active TB disease or predict disease outcome. In these experiments, IGRA were modified to accommodate the small numbers of lung and blood cells available from mice and ESAT-6 was chosen to model human assays. Complex proteins (CFP) were also included to quantify global CD4 T-cell IFN-γ responses to soluble mycobacterial antigens. The incubation times in our assays were 36 and 72 h, which likely resulted in antigen IFN-γ production from effector rather than memory T cells (26). Our data clearly indicate that purified ESAT-6 was a superior predictor of TB disease susceptibility in our mouse models, with better discrimination between the relatively resistant and susceptible strains than is seen with CFP. Perhaps most intriguing was our finding that in the blood, ESAT-6-specific IFN-γ production could not distinguish M. tuberculosis-infected susceptible CBA/J mice from noninfected mice. The same pattern can also be observed in humans, for whom peripheral-blood IGRA failed to detect small proportions of M. tuberculosis-infected individuals (18, 37) and TB patients (45). As our data indicate, the inclusion of a less selective pool of M. tuberculosis antigens, such as CFP, may ensure that all M. tuberculosis-infected individuals are identified. Nonetheless, our results indicate that poor immune responses to complex (CFP) and single (ESAT-6) antigens can successfully predict the M. tuberculosis infection outcome in mice. It is currently unknown how peripheral-blood IGRA responses of M. tuberculosis-susceptible inbred mouse strains are affected by vaccination, antibiotic treatment, or immunosuppression. In other animal models, M. bovis BCG vaccination of calves (59) and relatively resistant C57BL/6 mice (17) showed decreased ESAT-6-specific IFN-γ blood responses, likely reflecting antigenic loads lower than those of nonvaccinated control animals. Because CBA/J, DBA/2, and C3H/HeJ mice had low circulating ESAT-6 responses during primary M. tuberculosis infection, we predict minimal changes due to BCG vaccination, antibiotic treatment, or immunosuppression. Following therapy of M. tuberculosis-infected humans, inconsistent responses from IGRA have been reported, which included maintenance of sustained ESAT-6 responses (9), temporally dependent and discordant results (16), and declining frequencies of antigen-specific cells (43). The immunologic mechanisms underlying these disparities in susceptible humans are currently unknown; however, some of these clinically relevant questions can now be addressed with the use of multiple M. tuberculosis-susceptible inbred mouse strains, such as we describe here.

An intriguing finding was that CBA/J mice had an initial robust antigen-specific immune response to CFP antigens within the lung, which subsequently waned as infection progressed. Loss of acquired immunity occurred, despite increased bacterial loads in the lung at all time points tested. These data suggest that CBA/J mice can initially generate a protective immune response, coinciding with control of M. tuberculosis growth within the lung, but for reasons currently unknown fail to maintain a sufficient functional pool of antigen-specific IFN-γ-secreting CD4 T cells within the lung. An understanding of this mechanism could provide valuable information about why protective immunity cannot be sustained in a subset of individuals with latent M. tuberculosis infection, resulting in reactivation of infection and TB disease.

Increased susceptibility of inbred mouse strains to infection with M. tuberculosis has been associated with poor localization of T cells to the lung (4), decreased expression of T-cell adhesion molecules (54), delayed M. tuberculosis dissemination (4, 7), and increased interleukin 10 (IL-10) production (53). Poor expression of adhesion molecules may contribute to the reduced number of CD4 T cells localizing to the lungs; however, additional mechanisms must contribute, as the reduction in IFN-γ and antigen-specific cells was not proportional to the reduction in total lung CD4 T cells. Impaired dissemination of M. tuberculosis antigens to the regional lymph nodes could also contribute to susceptibility; however, if protective immunity were simply due to slow dissemination and delayed generation of acquired immunity, IFN-γ responses should eventually reach levels equivalent to those in resistant mice, which was not observed. Increased levels of IL-10, an immunosuppressive cytokine, have been shown within the lungs of CBA/J mice during chronic infection with M. tuberculosis (53), and the pleiotropic effects of IL-10 could certainly contribute to poor antigen-specific IFN-γ production. IL-10 has been shown to down regulate macrophage activation by inhibiting major histocompatibility complex class II recycling, peptide loading, or inhibition of transcription factors (35), all of which could impair the generation or maintenance of antigen-specific T cells capable secreting IFN-γ. Furthermore, overexpression of IL-10 on the relatively resistant C57BL/6 background strain led to reduced antigen-specific IFN-γ secretion and significantly elevated bacterial burdens (53). The exact mechanism through which IL-10 negatively influences chronic M. tuberculosis in-
fraction is not fully known, but in other mycobacterial infections, blocking IL-10 promoted macrophage activation, proinflammatory cytokine production, and production of reactive nitrogen intermediates, as well as positively influencing vaccination and therapeutic responses (47, 52).

The complex immune response to Mycobacterium tuberculosis likely cannot be explained by one underlying mechanism in susceptible mice or humans; however, the use of genetically disparate mouse strains can mimic the genetic diversity of the human population. These models, therefore, can be used to identify and validate immunologic mechanisms and biomarkers of TB disease progression in humans.

The identification of immunologic predictors of TB disease progression has the potential to diminish the global TB disease burden by targeted monitoring of at-risk patients and initiation of treatment prior to disease onset, thus limiting disease burden by targeted monitoring of at-risk patients and disease progression in humans.

Population. These models, therefore, can be used to identify and validate immunologic mechanisms and biomarkers of TB disease progression in humans.

ACKNOWLEDGMENTS

Support for this project was provided by the American Lung Association (CI-6009-N), NIH NIAID R01 AI-064522, and NIH NCRR T32 RR07073-05.

The contents of this article are solely the responsibility of the authors and do not necessarily represent the official views of NCRR or NIH.

M. tuberculosis antigens were generously provided by Colorado State University as part of NIH NIAID contract no. HHSN266200400091C, entitled Tuberculosis Vaccine Testing and Research Materials.

REFERENCES

1. Andersen, P., T. M. Doherty, M. Pai, and K. Wening. 2007. The prognosis of latent tuberculosis: can disease be predicted? Trends Mol. Med. 13:175–182.

2. Boussiotis, V. A., E. Y. Tsai, E. J. Yunis, S. Thim, J. C. Delgado, C. C. Dascher, A. Beregovskaya, D. Rousset, J.-M. Reynes, and A. E. Goldfeld. 2000. IL-10-producing T cells suppress immune responses in anergic tuberculosis patients. J. Clin. Investig. 105:1317-1325.

3. Brandt, L. T., T. Oettinger, A. Holm, A. B. Andersen, and P. Andersen. 1996. Key epitopes on the ESAT-6 antigen recognized in mice during recall of protective immunity to Mycobacterium tuberculosis. J. Immunol. 157:2527–2533.

4. Cardona, P. J., S. Gordillo, J. Diaz, G. Tapia, I. Amat, A. Pallares, C. Vilaplana, A. Ariza, and V. Ausina. 2003. Widespread bronchogenic dissemination makes DBA/2 mice more susceptible than C57BL/6 mice to experimental TB disease progression in humans.

5. Caruso, A. M., N. Serhina, E. Klein, K. Triebold, B. R. Bloom, and J. L. Flynn. 1999. Mice deficient in CD4 T cells have only transiently diminished levels of IFN-gamma, yet succumb to tuberculosis. J. Immunol. 161:5407–5416.

6. Casanova, J.-L., and L. Abel. 2002. Genetic dissection of immunity to mycobacteria: the human model. Annu. Rev. Immunol. 20:581–620.

7. Chackerian, A. A., J. M. Alt, T. V. Perera, C. C. Dascher, and S. M. Behar. 2002. Dissemination of Mycobacterium tuberculosis is influenced by host factors and precedes the initiation of T-cell immunity. Infect. Immun. 70:4501–4509.

8. Chackerian, A. A., T. V. Perera, and S. M. Behar. 2001. Gamma interferon-producing CD4+ T lymphocytes in the lung correlate with resistance to infection with Mycobacterium tuberculosis. Infect. Immun. 69:2666–2674.

9. Chee, C. B. E., K. W. KinMar, S. H. Gan, T. M. S. Barkham, M. Pushpanathan, and Y. T. Wang. 2007. Latent tuberculosis infection treatment and T-cell responses to Mycobacterium tuberculosis-specific antigens. Am. J. Respir. Crit. Care Med. 175:282–287.

10. Cooper, A., D. Dalton, T. Stewart, J. Griffith, D. Russell, and I. M. Orme. 1995. Disseminated tuberculosis in interferon-gamma gene-disrupted mice. J. Exp. Med. 178:2243.

11. Corbett, E. L., C. J. Watt, N. Walker, D. Maher, B. Williams, M. C. Raviglione, and C. Dye. 2003. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163:1047–1053.

12. Dannenberg, A., and F. Collins. 2001. Progressive pulmonary tuberculosis is not due to increasing numbers of viable bacilli in rabbits, mice and guinea pigs, but is due to a continuous host response to mycobacterial products. Tuberculosis 81:229–242.

13. Delgado, J. C., E. Y. Tsai, S. Thim, A. Baena, V. A. Boussiotis, J.-M. Reynes, S. Sath, P. Grosjean, E. J. Yunis, and A. E. Goldfeld. 2002. Antigen-specific and persistent tuberculin anergy in a cohort of pulmonary tuberculosis patients from rural Cambodia. Proc. Natl. Acad. Sci. USA 99:7576–7581.

14. Demissie, A., M. Abebe, A. Assefa, G. Rook, H. Fletcher, A. Zummah, K. Weldingh, I. Brock, P. Andersen, and T. M. Doherty. 2004. Healthy individuals that control a latent infection with Mycobacterium tuberculosis express high levels of Th1 cytokines and the IL-4 antagonist IL-4G2. J. Immunol. 172:6938–6943.

15. Desai, S. B., and D. E. Furst. 2006. Problems encountered during anti-tumour necrosis factor therapy. Best Pract. Res. Clin. Rheumatol. 20:757–770.

16. Dheda, K., A. Pooran, M. Pai, R. F. Miller, K. Lesley, H. L. Booth, G. M. Scott, A. N. Akbar, and G. A. Rook. 2007. Interpretation of Mycobacterium tuberculosis antigen-specific IFN-gamma release assays (T-SPOT.TB) and factors that may modulate test results. J. Infect. 55:169–173.

17. Dietrich, J. C., A. Gaagard, R. Leah, A. W. Olsen, A. Stryhn, T. M. Doherty, and P. Andersen. 2005. Exchanging ESAT-6 with TBH1.4 in an Ag85B fusion molecule-based tuberculosis subunit vaccine: efficient protection and ESAT-6-based sensitive monitoring of vaccine efficacy. J. Immunol. 174:632–639.

18. Dogra, S., P. Narang, D. K. Mendiratta, P. Chaturvedi, A. L. Reingold, J. M. Collford, J. R. W. Riley, and M. Pai. 2007. Comparison of a whole-blood interferon-gamma assay with tuberculin skin testing for the detection of tuberculosis infection in hospitalized children in rural India. J. Infect. 54:285–292.

19. Doherty, T. M., A. Demissie, J. Olobo, D. Wolday, S. Britton, T. Eguale, P. Ravn, and P. Andersen. 2002. Immune responses to the Mycobacterium tuberculosis-specific antigen ESAT-6 signal subclinical infection among contacts of tuberculosis patients. J. Clin. Microbiol. 40:704–706.

20. Flynn, J. L., and J. Chan. 2001. Immunology of tuberculosis. Annu. Rev. Immunol. 19:93–129.

21. Hill, P., A. Fox, D. Jeffries, D. Jackson-Silah, M. Lagos, M. Owiafe, S. Donkor, A. Hammond, T. Corrah, R. Adegbola, and K. MacAdam, 2005. Quantitative interferon gamma assay for detecting Mycobacterium tuberculosis in an endemic case control model. Clin. Infect. Dis. 40:273–279.

22. Hurwitz, A. A., T. F.-Y. Yu, D. R. Leach, and J. P. Allison. 1998. CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc. Natl. Acad. Sci. USA 95:10967–10971.

23. Jagannath, C., H. Hoffmann, E. Sepulveda, J. K. Actor, R. A. Wetsel, and R. L. Hunter, Jr. 2000. Hypersusceptibility of AJ mice to tuberculosis is in part due to a deficiency of the fifth complement component (C5). Scand. J. Immunol. 52:369–379.

24. Jamil, B., F. Shaid, Z. Hasan, N. Nasir, T. Razgaki, G. Dawood, and R. Hussain. 2007. Interferon-gamma/IL-10 ratio defines disease severity in pulmonary and extra-pulmonary tuberculosis. Tuberculosis 87:279–287.

25. Jessens, J. L., P. Rouse-Lombard, T. Perneger, M. Metzger, R. Vivien, and J. Perneger. 2007. Discrepancy between interferon-gamma assay with tuberculin skin testing for the detection of tuberculosis infection in hospitalized children in rural India. J. Infect. 54:285–292.

26. Leyten, E. M., S. M. Arend, C. Prins, F. G. Colebens, T. H. M. Ottenhoff, and T. H. M. Ottenhoff. 2007. Discrepancy between Mycobacterium tuberculosis-specific interferon-gamma release assays using short versus prolonged in vitro incubation. Clin. Vaccine Immunol. 7:800–805.

27. Lyadova, I., E. Eruslanov, S. Khaidukov, V. Yeremenko, K. Majorov, A. Pichugin, B. V. Nikonenko, T. Kondratieva, and A. S. Apt. 2000. Comparative analysis of T lymphocytes recovered from the lungs of mice genetically susceptible, resistant, and hyperresistant to M. tuberculosis triggered disease. J. Immunol. 165:5921–5931.

28. Lyadova, I. V., Y. V. Kondratieva, M. Konstantin, B. Nikonenko, S. Khaidukov, T. Kondratieva, N. Kabets, and A. S. Apt. 1995. An ex vivo study of T lymphocytes recovered from the lungs of IFN-gamma deficient mice with and susceptible to Mycobacterium tuberculosis. Infect. Immun. 66:4981–4988.

29. Medina, E., and R. North. 1999. Genetically susceptible mice remain pro-
portionally more susceptible to tuberculosis after vaccination. Immunology 96:16–21.

30. Medina, E., and R. J. North. 1998. Resistance ranking of some common inbred mouse strains to Mycobacterium tuberculosis and relationship to major histocompatibility complex haplotype and N-ramp genotype. Immunology 93:270–274.

31. Menzies, D., M. Pai, and G. Comstock. 2007. Meta-analysis. New tests for the diagnosis of latent tuberculosis infection: areas of uncertainty and recommendations for research. Ann. Intern. Med. 146:340–354.

32. Millington, K. A., J. A. Innes, S. Hackforth, T. S. Hinks, J. J. Deeks, D. Dosanjh, V. Guyot-Revol, R. Gunatheesan, P. Klenerman, and A. LaValni. 2007. Dynamic relationship between IFN-γ and IL-2 profile of Mycobacterium tuberculosis-specific T cells and antigen load. J. Immunol. 178:5217–5226.

33. Moore, K. W., R. de Wall Malefyt, R. L. Coffman, and A. O’Garra. 2001. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19:885–924.

34. Orme, I. M. 1987. Aging and immunity to tuberculosis: increased susceptibility of old mice reflects a decreased capacity to generate T lymphocytes. J. Immunol. 138:4414–4418.

35. Orme, I. M. 1993. Mechanisms underlying the increased susceptibility of aged mice to tuberculosis. Nutr. Rev. 53:355–360.

36. Pai, M., K. Dheda, J. Cunningham, F. Scano, and R. O’Brien. 2007. T-cell assay for the diagnosis of latent tuberculosis infection: moving the research agenda forward. Lancet Infect. Dis. 7:268–283.

37. Pai, M., K. Gokhale, R. Joshi, S. Dogra, S. Kalantri, D. K. Mendiratta, P. Narang, C. L. Daley, R. M. Granich, G. H. Mazurek, A. L. Reingold, L. W. Riley, and J. M. Colford, Jr. 2005. Mycobacterium tuberculosis infection in health care workers in rural India: comparison of a whole-blood interferon-γ assay with tuberculin skin testing. JAMA 293:2746–2755.

38. Pai, M., R. Joshi, M. Bandyopadhyay, P. Narang, S. Dogra, B. Taksande, and S. Kalantri. 2007. Sensitivity of whole-blood interferon-gamma assay among patients with pulmonary tuberculosis and variations in T-cell responses during anti-tuberculosis drug treatment. Infection 35:98–103.

39. Pai, M., R. Joshi, S. Dogra, D. K. Mendiratta, P. Narang, K. Dheda, and S. Kalantri. 2006. Persistently elevated T cell interferon-gamma responses after treatment for latent tuberculosis infection among health care workers in India: a preliminary report. J. Occup. Med. Toxicol. 1:1–7.

40. Pai, M., R. Joshi, S. Dogra, D. K. Mendiratta, P. Narang, S. Kalantri, A. L. Reingold, J. M. Colford, Jr., L. W. Riley, and D. Menzies. 2006. Serial testing of health care workers for tuberculosis using interferon-gamma assay. Am. J. Respir. Crit. Care Med. 174:349–355.

41. Pai, M., S. Kalantri, and K. Dheda. 2006. New tools and emerging technologies for the diagnosis of tuberculosis. Part I. Latent tuberculosis. Exp. Rev. Mol. Diagn. 6:413–422.

42. Pai, M., and D. Menzies. 2007. Interferon-gamma release assays: what is their role in the diagnosis of active tuberculosis? Clin. Infect. Dis. 44:74–77.

43. Pathan, A. A., K. A. Wilkinson, P. Klenerman, H. McShane, R. N. Davidson, G. Passvol, A. V. S. Hill, and A. LaValni. 2001. Direct ex vivo analysis of antigen-specific IFN-γ-secreting CD4 T cells in Mycobacterium tuberculosis-infected individuals: associations with clinical disease state and effect of treatment. J. Immunol. 167:5217–5225.

44. Pierce, C., R. Dubos, and G. Middlebrook. 1947. Infection of mice with mammalian tubercle bacilli grown in Tween-albumin liquid medium. J. Exp. Med. 86:159–174.

45. Ravn, P., A. Demissie, T. Eguale, H. Wondosssen, D. Lein, H. A. Amundy, A. S. Mustafa, A. K. Jensen, A. Holm, I. Rosenkrands, F. Oftung, J. Olobo, and F. von Reyn. 1999. Human T cell responses to ESAT-6 antigen from Mycobacterium tuberculosis. J. Infect. Dis. 179:637–645.

46. Rogerson, B. J., Y.-J. Jung, R. LaCourse, L. Ryan, N. Enright, and R. J. North. 2006. Expression levels of Mycobacterium tuberculosis antigen-encoding genes versus production levels of antigen-specific T cells during stationary level lung infection in mice. Immunology 118:195–201.

47. Roque, S., C. Nobrega, R. Appleberg, and M. Corrêa-Neves. 2007. IL-10 underlies distinct susceptibility of BALB/c and C57BL/6 mice to Mycobacterium avium infection and influences efficacy of antibiotic therapy. J. Immunol. 178:8028–8035.

48. Sable, S. B., D. Goyal, I. Verma, D. Behera, and G. K. Khuller. 2007. Lung and blood mononuclear cell responses of tuberculosis patients to mycobacterial proteins. Eur. Respir. J. 29:337–346.

49. Sahiratmadja, E., B. Alisjahbana, T. de Boer, I. Adnan, A. Maya, H. Danu-santoso, R. H. H. Newlan, S. Marzuki, J. W. M. van der Meer, R. van Crevel, E. van de Vosse, and T. H. M. Ottenhoff. 2007. Dynamic changes in pro- and anti-inflammatory cytokine profiles and gamma interferon receptor signaling integrity correlate with tuberculosis disease activity and response to curative treatment. Infect. Immun. 75:820–829.

50. Schurr, E. 2007. Is susceptibility to tuberculosis acquired or inherited? J. Intern. Med. 261:100–111.

51. Sepkowitz, K. A., J. Raffalli, L. Riley, T. E. Kiern, and D. Armstrong. 1995. Tuberculosis in the AIDS era. Clin. Microbiol. Rev. 1995:2.

52. Silva, R. A., T. F. Pais, and R. Appleberg. 2001. Blocking the receptor for IL-10 improves antmycobacterial chemotherapy and vaccination. J. Immunol. 167:1535–1541.

53. Turner, J., M. Gonzalez-Juarrero, D. L. Ellis, R. J. Basaraba, A. Kipnis, I. M. Orme, and A. M. Cooper. 2002. In vivo IL-10 production reactivates chronic pulmonary tuberculosis in C57BL/6 mice. J. Immunol. 169:6343–6351.

54. Turner, J., M. Gonzalez-Juarrero, B. M. Saunders, J. V. Brooks, P. Marietta, D. L. Ellis, A. A. Frank, and I. M. Orme. 2001. Immunological basis for reactivation of tuberculosis in mice. Infect. Immun. 69:3264–3270.

55. Turner, O. C., R. Keefe, I. Sugawara, H. Yamanda, and I. M. Orme. 2003. SWR mice are highly susceptible to pulmonary infection with Mycobacterium tuberculosis. Infect. Immun. 71:5266–5277.

56. Ulrichs, T., P. Anding, S. A. Porcelli, S. A. Kaufmann, and M. E. Munk. 2000. Increased numbers of ESAT-6 and purified protein derivative-specific gamma-interferon-producing cells in subclinical and active tuberculosis infection. Infect. Immun. 68:6073–6076.

57. Vervenne, R., P. E. Tom, J. Ham, van Soolingen, T. van der Laan, P. Andersen, P. J. Heidt, A. W. Thomas, and J. A. M. Lernergann. 2004. TB diagnosis in non-human primates: comparison of two interferon-gamma assays and the skin test for identification of Mycobacterium tuberculosis infection. Vet. Immunol. Immunopathol. 106:61–71.

58. Vosky, B., D. K. Flaherty, E. K. Rottinghaus, G. L. Beamer, and J. Turner. 2006. Age dependent increase in early resistance of mice to Mycobacterium tuberculosis is associated with an increase in CD8 T cells that are capable of antigen independent IFN-γ-gamma production. Exp. Gerontol. 41:1185–1194.

59. Vordermeier, H. M., M. A. Chambers, P. J. Cockle, A. O. Whelan, J. Simmons, and R. G. Hewinson. 2002. Correlation of ESAT-6-specific gamma interferon production with pathology in cattle following Mycobacterium bovis BCG vaccination against experimental bovine tuberculosis. Infect. Immun. 70:3026–3032.

60. WHO. 2005. Report: global tuberculosis control—surveillance, planning, financing. http://www.who.int/ tb/publications/global_report/2005.

61. WHO. 2005. Report: tuberculosis fact sheet number 104. http://www.who.int/ mediacentre/factsheets/fs104/en/print.html.

62. Winslow, G. M., A. D. Roberts, M. A. Blackman, and D. L. Woodland. 2003. Persistence and turnover of antigen-specific CD4 T cells during chronic tuberculosis infection in the mouse. J. Immunol. 170:2046–2052.

63. Winthrop, K. 2006. Risk and prevention of tuberculosis and other serious opportunistic infection associated with the inhibition of tumor necrosis factor. Nat. Clin. Pract. Rheumatol. 2:602–610.