Five amino acid residues responsible for extreme stability have been identified in cytochrome c_{552} (HT c_{552}) from a thermophilic bacterium, *Hydrogenobacter thermophilus*. The five residues, which are spatially distributed in three regions of HT c_{552}, were replaced with the corresponding residues in the homologous but less stable cytochrome c_{551} (PA c_{551}) from *Pseudomonas aeruginosa*. The quintuple HT c_{552} variant (F7A/V13M/Y34F/Y43E/178V) showed the same stability against guanidine hydrochloride denaturation as that of PA c_{551}, suggesting that the five residues in HT c_{552} necessarily and sufficiently contribute to the overall stability. In the three HT c_{552} variants carrying mutations in each of the three regions, the Y34F/Y43E mutations resulted in the greatest destabilization, by -13.3 kJ mol$^{-1}$, followed by AF/M13V/34F/Y43E/178V. The order of destabilization in HT c_{552} was the same as that of stabilization in PA c_{551} with reverse mutations such as F34Y/E49Y, F7A/V13M, and V78I (13.4, 10.3, and 0.3 kJ mol$^{-1}$, respectively). The results of guanidine hydrochloride denaturation were consistent with those of thermal denaturation (ΔG). The effects of side-chain contacts were experimentally evaluated by swapping the residues between the two homologous proteins that differ in stability. A comparative study of the two proteins was a useful tool for assessing the amino acid contribution to the overall stability.

Proteins from thermophilic bacteria usually exhibit enhanced stability against temperature or denaturants compared with the homologues from mesophiles (1, 2). Sequence comparison and rationally designed mutations of thermophilic and mesophilic proteins provide several lines of information on protein stability. In particular, investigation of the relationship between three-dimensional structure and thermodynamic parameters on protein unfolding provides detailed information on factors contributing to the stability.

A thermophilic hydrogen-oxidizing Gram-negative bacterium, *Hydrogenobacter thermophilus*, which grows optimally at 72 °C, produces a periplasmic Class I cytochrome c_{552} (HT c_{552}) (3). This bacterial cytochrome c has greatly contributed to the understanding of protein stability through pairwise comparison with homologous cytochrome c_{551} (PA c_{551}) from a mesophilic bacterium, *Pseudomonas aeruginosa*, which grows at 37 °C (4). These two proteins exhibit 56% sequence identity and have almost the same backbone conformations, but HT c_{552} is much more stable than PA c_{551} (5–9).

On precise structural comparison between HT c_{552} and PA c_{551}, we predicted that five amino acid residues spatially located in three regions were responsible for the higher stability of HT c_{552} (6). These residues were then introduced at the corresponding positions in PA c_{551} (7–9). The single mutation Val-78 to Ile (V78I) and two double mutations Phe-7 to Ala/Val-13 to Met (F7A/V13M) and Phe-34 to Tyr/Glu-43 to Tyr (F34Y/E43Y) in the corresponding three regions of PA c_{551} resulted in enhanced protein stability in an additive manner. Although the five residues were proved to be effective for stability, e.g., the denaturation temperature was elevated by more than 30 °C when they were introduced into the PA c_{551}, their roles in the original HT c_{552} remain unknown.

For an understanding of the high stability of HT c_{552}, the protein should be subjected to mutagenesis study. In this context, the HT c_{552} gene was first expressed as a modified holoprotein that had a covalently attached heme group in the cytoplasm of *Escherichia coli* or *Paracoccus denitrificans* with the attachment of an N-terminal Met residue (10, 11). Subsequently, the HT c_{552} apoprotein was targeted to the periplasm of *P. aeruginosa*, in which the protein became a holoprotein with the aid of a cellular apparatus for cytochrome c maturation (*ccm* gene products) (12). Recently, HT c_{552} was expressed in the *E. coli* periplasm as a holoprotein with the aid of a cellular apparatus for cytochrome c maturation (*ccm* gene products) (13). Here we established a new HT c_{552} expression system involving *E. coli* as a host and optimized the production level, which in turn facilitated further biophysical analyses of this protein.

†† To whom correspondence should be addressed: Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan. Tel. and Fax: 81-82-424-7924; E-mail: sambongi@hiroshima-u.ac.jp.

* This work was supported in part by grants from Hiroshima University, the Noda Institute for Scientific Research, and the Japanese Ministry of Education, Science and Culture (grants-in-aid for Scientific Research on Priority Areas). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

1 The abbreviations used are: HT c_{552}, *H. thermophilus* cytochrome c_{552}; PA c_{551}, *P. aeruginosa* cytochrome c_{551}; GdnHCl, guanidine hydrochloride.
Amino acid residues were systematically substituted in the three regions of HT c552 with the corresponding residues of the less stable PA c551. The thermodynamic parameters upon unfolding of the variants were compared with those of the reverse variants of PA c551.

EXPERIMENTAL PROCEDURES

Bacterial Strains and Plasmids—E. coli DH5a was used to maintain plasmids. E. coli JCB387 was the host for testing the overexpression of HT c552, and its variants (11). The gene coding the mature HT c552 had been previously fused with the gene for signal sequence of PA c551 in the 5' region (12), which was then inserted into the pKK223–3 vector (ampicillin resistance) under the control of the tac promoter. The resultting plasmid was designated pKO2 and carried the wild-type HT c552 gene fused with the PA c551 signal sequence. Mutations A7F/M13V, Y34F/Y43E, 178V, and A7F/M13V/Y34F/Y43E/178V (quintuple) were introduced into the fusion gene by a PCR-based method as described previously (7). For clarity throughout this paper the residues numbers used are those in PA c551. The resulting mutated HT c552 genes with the PA c551 signal sequence were inserted into the pKK223–3 vector. Plasmid pECS6 (chloramphenicol resistance) carrying the ccmABCDE/DEFG genes for cytochrome c maturation genes (14) was co-transformed into E. coli JCB387 together with pKO2 or its derivatives carrying the mutated genes.

Growth Conditions and Preparation of Periplasmic Protein Fractions—E. coli cells containing both pECS6 and pKO2 or their derivatives were initially grown in liquid LB medium containing 100 μg ml⁻¹ ampicillin and 34 μg ml⁻¹ chloramphenicol. The resulting cultures (1 ml) were inoculated into 100 ml of minimal medium containing 0.4% glycerol as a carbon source and the two antibiotics in 500-ml flasks, which were then shaken aerobically at 37 °C for an appropriate period before harvesting.

Periplasmic protein fractions of the E. coli cells were obtained by the cold osmotic shock method (15). The expressed HT c552 proteins in the periplasmic protein fractions were purified by Hitrap SP column chromatography (Amersham Biosciences), eluting with 25 mM sodium acetate containing 10% ethanol (pH 5.0) containing a NaCl concentration gradient (0–500 mM), followed by a Superdex 75 column equilibrated and eluted with 25 mM sodium acetate buffer (pH 5.0). The authentic HT c552 protein was also purified by the same method from H. thermophilus cells grown autotrophically as described (3). The protein purity was confirmed by SDS-polyacrylamide gel electrophoresis.

UV-Visible and NMR Spectroscopy and Cyclic Voltammetry of HT c552—UV-visible spectra of HT c552 and its derivatives were measured with a Jasco 530 spectrophotometer. The NMR spectra of oxidized HT c552 at pH 7.2 and 25 °C were recorded on a Bruker Avance 600 FT NMR spectrometer operating at the 1H frequency of 600 MHz. The protein concentration for the NMR analysis was ~1 mg in 90% H2O 10%2H2O. Chemical shifts are given in ppm downfield from sodium 2,2-dimethyl-2-silapentane-5-sulfonate with the residual H2HO as an internal reference. Cyclic voltammetry assaying of HT c552 was carried out as described elsewhere (16). All potentials were referenced to the standard hydrogen electrode and calculated from the cyclic voltammogram as described.

Protein Denaturation—Thermal denaturation experiments involving circular dichroism (CD) were carried out in a newly developed pressure-proof cell compartment, which was attached to a Jasco J-720 CD spectrometer (17). This new apparatus facilitated thermal denaturation up to 180 °C. The oxidized proteins (20 μM) in HCl water (pH 5.0) were subjected to the following analyses. The temperature-dependent CD ellipticity change at 222 nm (Fig. 1B) was observed for all the variants examined in this study (data not shown), indicating that the variants did not markedly differ in terms of secondary structure.

Guanidine hydrochloride (GdnHCl) denaturation measurement by CD was performed according to the previous methods (7). HT c552 protein and its derivative were incubated in HCl water (pH 5.0) with varying concentrations of GdnHCl at 25 °C for 2 h before the measurements to equilibrate the proteins with the denaturant. The CD ellipticity at 222 nm of the protein solutions was measured at 25 °C. The oxidized proteins were used for measurement of denaturation as to both temperature and GdnHCl.

Other Procedures—The HT c552 contents in the periplasmic protein fractions were determined by measuring absorption spectra of solutions to which a few grains of solid sodium dithionite had been added. The extinction coefficient for reduced HT c552 at 552 nm, 20,400 M⁻¹ cm⁻¹, was used to calculate the concentration of the cytochrome c. The nonlinear least-squares fitting of the data were performed according to the previous methods (7). The N-terminal sequence of HT c552 expressed in the E. coli periplasm was determined with an automatic peptide sequencer (Hewlett Packard). Activity staining of SDS gels for covalently bound heme was also performed (18). The concentrations of the periplasmic protein fractions were estimated by the Bradford method using bovine serum albumin as a standard.

RESULTS AND DISCUSSION

Expression of HT c552 in the E. coli Periplasm—The wild-type HT c552 protein expressed in the E. coli JCB387 strain was fully recovered in the periplasmic protein fraction after the cold osmotic shock but not in the membrane and cytoplasmic fractions. The expressed protein had a covalently attached heme, as judged on heme activity staining after separation by SDS-polyacrylamide gel electrophoresis (data not shown). The N-terminal amino acid sequence of the wild-type HT c552 protein expressed in the E. coli periplasm was determined to be Asn-Glu-Gln-Leu-Ala-Lys-Gln, which is identical to that of the authentic protein purified from the native organism, H. thermophilus (3). This indicates that the PA c551 signal peptide in the present fusion protein was correctly processed in the E. coli cells.

The time course of wild-type HT c552 production during aerobic E. coli growth was followed. The maximal production level (~25 mg liter⁻¹ culture) was obtained several hours after the beginning of the stationary phase of cell growth. This high HT c552 production may be due to (i) the suitability of the PA c551 signal peptide that can target the apo-precuror protein efficiently to the E. coli periplasm, and (ii) the constitutive expression of ccm genes on the plasmid under aerobic conditions where the E. coli growth yield is higher than that under anaerobic ones (a natural control for the ccm genes). The efficient production and easy purification from the E. coli periplasm performed here enabled us to obtain a large amount of correctly processed HT c552, which will facilitate further structural and mutagenesis studies.

Spectroscopic and Electrochemical Features of Heterologously Expressed Wild-type HT c552—We next examined whether the heterologously expressed wild-type HT c552 exhibited the same spectroscopic and electrochemical properties as those of the authentic protein. The visible (400–600 nm) spectrum of dithionite-reduced wild-type HT c552 exhibited the same spectroscopic and electrochemical properties as those of the authentic protein. The visible (400–600 nm) spectrum of dithionite-reduced wild-type HT c552 protein expressed in E. coli showed absorption maxima at 417, 521, and 552 nm, which are characteristic features of the authentic HT c552 protein (Fig. 1A). The far ultraviolet CD (200–250 nm) spectrum of the air-oxidized form of the expressed wild-type was also the same as that of the authentic protein, exhibiting CD ellipticity at 222 nm (Fig. 1B). The same properties in CD spectra were observed for all the variants examined in this study (data not shown), indicating that the variants did not markedly differ in terms of secondary structure.

Paramagnetically shifted signals arising from heme peripheral methyl and iron-coordinated methionine protons in 1H NMR spectra were similarly observed for the oxidized forms of the expressed wild-type and authentic HT c552 (Fig. 2). These spectroscopic features suggested that His and Met residues are similarly coordinated to the heme iron in the expressed recombinant and authentic HT c552. Thus, the expressed HT c552 polypeptide was correctly folded in the E. coli periplasm and did not differ in the spatial structure around the heme compared with that of the authentic protein.
To compare the redox properties of the expressed wild-type HT\textsubscript{552} and the authentic protein, we carried out electrochemical measurements using cyclic voltammogram. At 22 °C and pH 6.0, the redox potential (\(E^\circ\)) value of the expressed protein was \(+250 \text{ mV}\), which was equivalent within error to that of the authentic value, \(+247 \text{ mV}\). Previously, we found that the \(E^\circ\) value of the authentic HT\textsubscript{551} exhibited a negative shift with increasing temperature up to 85 °C (16). This property was also conserved by the present heterologously expressed protein (data not shown).

Taken together, holo-HT\textsubscript{552} with a heme covalently attached, which in terms of spectroscopic and electrochemical features is indistinguishable from the native authentic protein, could be expressed in the periplasm of \(E.\ coli\). Thus, using this expression system for thermophilic HT\textsubscript{552}, a site-directed mutagenesis study on the structural origin of its high stability can be performed as described below. The resulting thermodynamic data for HT\textsubscript{552} should be compared with those for a mesophilic counterpart PA\textsubscript{551}, that has been expressed in the \(E.\ coli\) periplasm with the aim of a mutagenesis study (7).

Destabilization of HT\textsubscript{552} as to GdnHCl Denaturation by Mutations—We first examined whether mutation(s) in HT\textsubscript{552} destabilized the structure as to GdnHCl denaturation. The mutated positions were 7, 13, 34, 43, and 78, where the original amino acid residues were replaced with the corresponding ones found in the less stable PA\textsubscript{551}. The mutated residues in HT\textsubscript{552} had been predicted to be responsible for the high stability from the results of three-dimensional structure analysis (6).

Fig. 3 shows GdnHCl-induced denaturation curves for HT\textsubscript{552} variants. The value for the midpoint of denaturation (\(C_{m}\)) of the variants (A7F/M13V, Y34F/Y43E, I78V, and A7F/M13V/Y34F/Y43E/I78V) became smaller as compared with that of the wild type (the difference in \(C_m\) between the wild-type HT\textsubscript{552} and variants (\(\Delta C_m\)) were \(-0.76, -1.77, -0.48, \) and \(-0.78 \text{ M}\), respectively, Table I). The values for differences in the free energy change in water between the wild type and variants (\(\Delta G^W\)) showed that the quintuple A7F/M13V/Y34F/Y43E/I78V variant had nearly the same stability as that of the mesophilic wild-type PA\textsubscript{551}. We have already shown that the quintuple reverse mutations in PA\textsubscript{551} (F7A/V13M/F34Y/E43Y/V78I) caused enhancement of stability to level in the wild-type HT\textsubscript{552} (8). These results together suggest that the five residues in HT\textsubscript{552} (Ala-7, Met-13, Tyr-34, Tyr-43, and Ile-78) necessarily and sufficiently contribute to the overall protein stability.

Correlation of Stability of the Reciprocal HT\textsubscript{552} and PA\textsubscript{551} Variants—Previously we obtained thermodynamic data for the GdnHCl denaturation of PA\textsubscript{551} variants having reverse mutations at positions 7, 13, 34, 43, and 78 (F7A/V13M, F34Y/E43Y, V78I, and F7A/V13M/F34Y/E43Y/V78I variants, Refs. 7–9). Because the experiments on these variants had been carried out under identical conditions (pH 5.0, 25 °C), we could compare the data with those obtained for the present HT\textsubscript{552} variants.

The differences in stability against GdnHCl denaturation (\(\Delta G^W\)) between wild-type HT\textsubscript{552} and PA\textsubscript{551} and their reciprocal variants are shown in Fig. 4. In the three regional HT\textsubscript{552} variants (A7F/M13V, Y34F/Y43E, and I78V), the Y34F/Y43E mutations most strongly destabilized HT\textsubscript{552} as to GdnHCl denaturation (\(\Delta G^W = -13.3 \text{ kJ mol}^{-1}\), Table I). Remarkably, the corresponding stabilizing effect of the reverse mutations (F34Y/E43Y) was prominent in the PA\textsubscript{551} variants under identical denaturation conditions (Fig. 4, Ref. 7). The difference in \(\Delta G^W\) values between the wild-type PA\textsubscript{551} and F34Y/E43Y variant was 13.4 \text{ kJ mol}^{-1} (7), i.e. close to the absolute value for \(\Delta G^W\) of the HT\textsubscript{552} Y34F/Y43E variant. This same contribution to the whole \(\Delta G^W\) value (\(\Delta G^W\) difference between the values for two wild-type proteins) indicates that the effects of side chain interactions related to Tyr-34 and Tyr-43 are equal in the wild-type HT\textsubscript{552} and PA\textsubscript{551} F34Y/E43Y variant. Previous three-dimensional structure analysis of the wild-type HT\textsubscript{552} and PA\textsubscript{551} reverse quintuple variant showed that Tyr-34 and Tyr-43 contributes to the hydrophobic interaction and the formation of a hydrogen bond with one of the heme propionate side chains (6, 8). The present results indicate that the side chain interactions involving the two Tyr residues in the wild-type HT\textsubscript{552} and PA\textsubscript{551} F34Y/E43Y variant similarly contribute to the overall stability.

In contrast, the effect of A7F/M13V mutations on the overall stability of HT\textsubscript{552} (\(\Delta G^W = -3.3 \text{ kJ mol}^{-1}\), Table I) was less than that of the corresponding reverse F7A/V13M mutations on the PA\textsubscript{551} stability (\(\Delta G^W = 10.3 \text{ kJ mol}^{-1}\), calculated from Ref. 7) (Fig. 4). Three-dimensional structure analysis has indicated that Ala-7 and Met-13 in the wild-type HT\textsubscript{552} probably together cause tighter packing than that of the corresponding region of the wild-type PA\textsubscript{551} with Phe and Val residues (6). Other structure analysis showed that the PA\textsubscript{551} variant with the F7A/V13M mutations also caused tight packing, as found for the wild-type HT\textsubscript{552} (8). The same mutations in PA\textsubscript{551} change the Ile-18 side chain conformation to the thermodynamically favorable gauche plus form from the wild-type gauche minus form (as judged on \(\chi_1\) dihedral angle analysis), which further results in tight packing in the same region of the PA\textsubscript{551} variant. From the results of these structure analyses, we have predicted that the region consisting of Ala-7 and Met-13 in the wild-type HT\textsubscript{552} and the PA\textsubscript{551} variant with the F7A/V13M mutations contributes to the high stability. The
present less effective destabilization of the HT \textit{c}_{552} protein caused by the A7F/M13V mutations indicates that, in contrast to in the case of the wild-type PA \textit{c}_{551}, the side chains of the introduced Phe-7 and Val-13 still cause tight packing to some extent. In addition, the residue corresponding to PA \textit{c}_{551} Ile-18 is Leu in HT \textit{c}_{552}, whose side-chain conformation is presumably fixed as gauche plus form in both the wild-type and A7F/M13V variant because of steric hindrance between the isopropyl group and main-chain atoms. Thus, the effect of Leu-18 in HT \textit{c}_{552} may not drastically differ regardless of the mutations at positions 7 and 13, as is the case for Ile-18 in PA \textit{c}_{551}. Therefore, the effects of the A7F/M13V mutations in HT \textit{c}_{552} are less than those of the reverse mutations in PA \textit{c}_{551}.

Although we could not evaluate the effects of the I78V mutation in HT \textit{c}_{552} and its PA \textit{c}_{551} reverse mutation (V78I) precisely because of their smaller effects compared with the experimental error, the order of destabilization by the three HT \textit{c}_{552} mutation(s) was the same as that of the stabilizing effects of reverse mutation(s) in PA \textit{c}_{551}, as judged from the differences in ΔG^W values between the wild-type and variants (Fig. 4). In addition, the order of the ΔC_m values observed for HT \textit{c}_{552} variants was the same as that for the increase in C_m reported for the reverse PA \textit{c}_{551} variants (Table I, Ref. 7). In short, the more destabilizing mutation(s) in the three regions of HT \textit{c}_{552} is the more effective mutation(s) in PA \textit{c}_{551} when it is introduced in reverse.

\textbf{Thermal Stability of HT \textit{c}_{552}—}We next measured the thermal stabilities of the wild-type HT \textit{c}_{552} and its variants and then compared them with their stabilities against GdnHCl denaturation. HT \textit{c}_{552} was so stable that we were not able to evaluate its thermodynamic property as to the pure effect of temperature using CD spectra (5, 8). Recently, however, we have newly developed a pressure-proof cell compartment that is attached to a CD spectrometer (17). The compartment can tolerate 10 atm, at which the boiling temperature of water is around 180 °C. Using this device, we could obtain complete thermal denaturation profiles for the highly stable HT \textit{c}_{552} in both the oxidized and reduced states (17). This new system was used for thermal denaturation experiments on the oxidized forms of the wild-type HT \textit{c}_{552} and its variants.

CD spectra (200–250 nm) of the proteins were measured from 40 to 150 °C at pH 5.0. The shapes of the spectra of all the proteins at the lower temperature did not differ significantly (see Fig. 1B, for an example). However, the CD ellipticities of the quintuple variant and the others began to change over 85 and 95 °C, respectively, as previously reported. The CD ellipticities at 222 nm were plotted against temperature, yielding thermal denaturation profiles of these proteins (Fig. 5). All the profiles exhibited complete single cooperation, indicating that the protein unfolding proceeded with a two-state transition.

From these CD measurements we obtained thermodynamic parameters for the thermal denaturation of HT \textit{c}_{552} and its variants (Table I). The melting temperatures (T_m) of the wild-type, A7F/M13V, Y34F/Y43E, I78V, and the quintuple variants were 121.1, 117.0, 108.3, 117.8, and 95.2 °C, respectively. Differences in free energy changes between the proteins and the quintuple variant and the others began to change over 85 and 95 °C, respectively, as previously reported. The CD ellipticities at 222 nm were plotted against temperature, yielding thermal denaturation profiles of these proteins (Fig. 5). All the profiles exhibited complete single cooperation, indicating that the protein unfolding proceeded with a two-state transition.

\textbf{Similarity and Difference in Stability against GdnHCl and Thermal Denaturation—}Similar to the results of GdnHCl denaturation, the more destabilizing mutation(s) in the three regions of HT \textit{c}_{552} is...
The stabilization of PA proteins and the quintuple variant at the transition temperature of the midpoint of the transition region using the equation $\Delta G = \Delta G^W - m[HodHCl]$. The differences in the midpoints of the transition curves for the quintuple variant (HT552) were calculated using the equation given by Becktel and Schellman (24), $\Delta G_m = \Delta T_m \times \Delta S$ (quintuple variant), where ΔT_m is the difference in the T_m values between the proteins and the quintuple variant, and ΔS (quintuple variant) is the entropy change of the quintuple variant at T_m.

The experimental results of GdnHCl denaturation are shown. The unfolded fractions are plotted against GdnHCl concentration (m) for the wild-type HT552 (closed triangle), I78V (open square), A7F/M13V (closed square), Y34F/Y43E (open circle), and the quintuple variant (closed circle).

Table I

Protein	$C_m(\Delta G_m)$	$\Delta G^W(\Delta G^W)$	$T_m(\Delta T_m)$	ΔG_m
Wild type	4.46 ± 0.18	44.9 ± 10.3	121.1 ± 1.0	19.5 ± 9.2
I78V	3.98 ± 0.18	43.4 ± 8.2	117.8 ± 0.6	17.0 ± 3.3
A7F/M13V	3.70 ± 0.07	41.6 ± 5.1	117.0 ± 2.5	16.4 ± 4.6
Y34F/Y43E	2.69 ± 0.05	31.6 ± 1.3	108.3 ± 1.2	9.8 ± 2.1
Quintuple	1.67 ± 0.06	20.0 ± 4.4	95.2 ± 1.7	0
PA c551	2.25 ± 2.21	20.8 ± 24.1	86.4 ± 0.7	-7.6 ± 2.2

a Data are from Hasegawa et al. (7).

b T. Sonoyama and Y. Sambongi, unpublished data.

The unfolded fractions are plotted as a function of temperature. Denaturation curves are shown as the wild-type HT c552 (closed triangle), I78V (open square), A7F/M13V (closed square), Y34F/Y43E (open circle), and the quintuple variant (closed circle). The experimental results of GdnHCl denaturation are shown. The relative stabilities of the parent proteins, HT c552 and PA c551, are indicated by the horizontal lines. The first four entries are the relative differences in stability (ΔG^W) caused by the substitutions of the respective residues of PA c551 in HT c552. The four bars at the right show the stabilization of PA c551 by the reverse mutations.

Protein Engineering for Thermostable Cytochrome c
Tyr-43, and Ile-78) are among the limited and reciprocal determinants of the high stability of HT c$_{552}$.

Conclusion—In this study, we have established a HT c$_{552}$ expression system involving *E. coli* as a host, with which we could produce 25 mg of HT c$_{552}$ protein L (culture)$^{-1}$ in the periplasm. The expressed wild-type HT c$_{552}$ exhibited the same physicochemical properties as those of the authentic one. This progress has facilitated mutagenesis study on HT c$_{552}$ as to whether or not the specific amino acid residues reflect improvement in overall protein stability.

The present reciprocal mutation experiments involving HT c$_{552}$ and PA c$_{551}$ provided a unique opportunity to elucidate the protein stability in terms of the protein structure. We have shown previously that the five residues in HT c$_{552}$ predicted to contribute to the overall protein stability were effective in enhancing the stability of PA c$_{551}$ (7–9). The present study demonstrated that the reverse mutations of the selected five residues in HT c$_{552}$ effectively destabilized the protein structure to the extent expected from the effects of the corresponding PA c$_{551}$ mutations on the overall protein stability. In conjunction with the three-dimensional structure comparison, the effect of specific amino acid side chain interactions on the overall protein stability could be evaluated in both directions (stabilizing and destabilizing).

Perspectives—Finally, we should mention some limitations of the reciprocal mutation method, which will be useful for the development of general strategies for increasing protein stability through protein engineering. (i) A set of homologous proteins of interest should be small enough, each consisting of a single domain. Such proteins may have almost the same backbone conformation. (ii) Next, we should compare structural features to find interactions, such as side-chain packing, an ion pair, or a hydrogen bond, possibly responsible for the overall protein stability in a thermophilic protein. (iii) Reciprocal mutations should independently affect the overall protein stability. With the mutations, the backbone conformation should not change drastically so as not to affect other side chain interactions in remote regions.

The present results and another example of reciprocal mutation (20) more or less satisfy these criteria for methodological limitation. We can artificially control protein stability through the selection of amino acid residues contributing to the reciprocal stability. However, there is still a necessity to understand the general principle of protein stabilization, to study a strategy employed in an individual protein. Further accumulation of examples of reciprocal residue swapping between homologous native proteins together with artificially designed proteins (21, 22) will rationally reveal the principle of protein stability.

Acknowledgments—We thank Dr. L. Thün-Meyer (Eidgenossische Technische Hochschule) for the kind gift of the pEC86 plasmid and Dr. K. Mizuta (Hiroshima University) for the helpful discussion.

REFERENCES
1. Jaenicke, R. & Bohm, G. (1998) *Curr. Opin. Struct. Biol.* 8, 738–748
2. Jaenicke, R. (2000) *J. Biotechnol.* 79, 193–203
3. Sanbongi, Y., Ichii, M., Igarashi, Y. & Kodama, T. (1989a) *J. Bacteriol.* 171, 65–69
4. Sambongi, Y., Uchiyama, S., Kobayashi, Y., Igarashi, Y. & Hasegawa, J. (2002) *Eur. J. Biochem.* 269, 3355–3361
5. Sambongi, Y., Igarashi, Y. & Kodama, T. (1989b) *Biochemistry* 28, 9574–9578
6. Hasegawa, J., Yoshida, T., Yamazaki, T., Sambongi, Y., Yu, Y., Igarashi, Y., Kodama, T., Yamazaki, K., Kyogoku, Y. & Kobayashi, Y. (1998) *Biochemistry* 37, 9641–9649
7. Hasegawa, J., Shimahara, H., Mizutani, M., Uchiyama, S., Arai, H., Ichii, M., Kobayashi, Y., Ferguson, S. J., Sambongi, Y. & Igarashi, Y. (1999) *J. Biol. Chem.* 274, 37533–37537
8. Hasegawa, J., Uchiyama, S., Tanimoto, Y., Mizutani, M., Kobayashi, Y., Sambongi, Y. & Igarashi, Y. (2000) *J. Biol. Chem.* 275, 37824–37828
9. Uchiyama, S., Hasegawa, J., Tanimoto, Y., Moriguchi, H., Mizutani, M., Igarashi, Y., Sambongi, Y. & Kobayashi, Y. (2002) *Protein Eng.* 15, 455–461
10. Sanbongi, Y., Yang, J.-H., Igarashi, Y. & Kodama, T. (1991) *Eur. J. Biochem.* 198, 7–12
11. Sambongi, Y. & Ferguson, S. J. (1994) *FEBS Lett.* 340, 65–70
12. Zhang, Y., Arai, H., Sambongi, Y., Igarashi, Y. & Kodama, T. (1998) *J. Ferment. Biotechnol.* 85, 346–349
13. Karan, E. F., Russell, B. S. & Bren, K. L. (2002) *J. Biol. Inorg. Chem.* 7, 260–272
14. Arslan, E., Schule, H., Zaffrey, R., Kunzler, P. & Thün-Meyer, L. (1998) *Biochem. Biophys. Res. Commun.* 251, 744–747
15. Sambongi, Y., Stoll, R. & Ferguson, S. J. (1996) *Mol. Microbiol.* 19, 1193–1204
16. Terui, N., Tachiiri, N., Matsuo, H., Hasegawa, J., Uchiyama, S., Kobayashi, Y., Igarashi, Y., Sambongi, Y. & Yamamoto, Y. (2003) *J. Am. Chem. Soc.* 125, 13650–13651
17. Uchiyama, S., Ohshima, A., Nakamura, S., Hasegawa, J., Terui, N., Takayama, S., Yamamoto, Y., Sambongi, Y. & Kobayashi, Y. (2004) *J. Am. Chem. Soc.* 126, 14684–14685
18. Goodfellow, C. F., Brown, K. R. & Pettigrew, G. W. (1986) *Biochim. Biophys. Acta* 852, 288–294
19. Sambongi, Y. (1999) *Study on Thermal Stability of Cytochromes c.* Ph.D. thesis, University of Tokyo
20. Perl, D., Müller, U., Heinemann, U. & Schmid, F. X. (2000) *Nat. Struct. Biol.* 7, 380–383
21. Kuroda, Y. & Kim, P. S. (2000) *J. Mol. Biol.* 298, 493–501
22. Ishida, M., Doehne, N., Shiro, Y., Oku, T., Izuka, T. & Iosgai, Y. (2004) *Biochemistry* 43, 9823–9833
23. Pace, C. N. (1990) *Trends Biotechnol.* 8, 93–98
24. Becktel, W. J. & Schellman, J. A. (1987) *Biopolymers* 26, 1859–1877
