Microsatellite polymorphism among *Chrysanthemum* sp. polyploids: the influence of whole genome duplication

Haibin Wang1,2, Xiangyu Qi1, Ri Gao1, Jingjing Wang1, Bin Dong1, Jiafu Jiang1, Sumei Chen1, Zhiyong Guan1, Weimin Fang1, Yuan Liao1 & Fadi Chen1,2

1College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China, 2Jiangsu Province Engineering Lab for Modern Facility Agriculture Technology & Equipment, Nanjing 210095, China.

Polyploidy is common among flowering plants, including the Asteraceae, a relatively recent angiosperm group. EST-SSRs were used to characterize polymorphism among 29 *Chrysanthemum* and *Ajania* spp. accessions of various ploidy levels. Most EST-SSR loci were readily transferable between the species. 29 accessions were separated into three groups in terms of the number of fragments. It inferred that the formation from tetraploid to hexaploid and from octoploid to decaploid may be a recent event, while from the diploid to the tetraploid may be an ancient one in the *Chrysanthemum* lineage. EST-SSR polymorphism was found and some transcripts containing an SSR were transcribed differently in the *de novo* autotetraploid *C. nankingense* and *C. lavandulifolium* than in their progenitor diploid. EST-SSR could provide a potential molecular basis of adaptation during evolution, while whole genome duplication has a major effect on the mutational dynamics of EST-SSR loci, which could also affect gene regulation.

Whole genome duplication (WGD) is a frequent event during the evolution of the angiosperms1, the majority of species now are polyploids or cryptic polyploids2. WGD has been associated with the induction of various alterations to both genome sequence and patterns of gene expression, and some of these changes likely favored evolutionary adaption1-3. It is suggested that changes both in DNA sequence and methylation can result in the differential expression of homoeologous genes, leading to the adaptive phenotypic variation1, however the mechanisms underlying these changes remained poorly understood.

Microsatellites, or simple sequence repeats (SSRs), are ubiquitous throughout both the coding and non-coding regions of all eukaryotic genomes4. SSRs derived from EST (expressed sequence tag) libraries (EST-SSRs) show a higher rate of interspecies transferability than genomic SSRs which reside in the non-coding region of the genome5. SSRs, as highly polymorphic, easily reproducible, codominant markers, have been widely exploited to assess genetic diversity, identify germplasm, and linkage mapping6. New alleles at SSR loci are likely to be generated by a combination of DNA slippage during replication, imperfect mismatch repair, selection and other factors7,8. Although most of the SSR variation are functionally neutral, SSR variation in coding regions may have functional significance, including chromosomal organization, DNA structure, protein binding, gene transcription and translation, etc9-13, which provides the basis for rapid evolution14-17. Nonetheless, little information about the origin and variation of SSRs in polyploidy is available.

The tribe Anthemideae Cass. (Asteraceae) is one of the largest group of flowering plants. It consists of at least 25,000 species, with a large representation of polyploids18,19. The genus *Chrysanthemum* has a basic chromosome number of nine, and includes a range of ploidy levels from diploid (*2n* = *2x* = 18) to decaploid (*2n* = *10x* = 90). Based on the EST assembly and gene family statistics for 18 species of Asteraceae, the evolved Asteraceae genomes are thought to have experienced at least three ancient WGD events20. The potential importance of WGD for species diversification21,22 suggests that it has contributed to the ecological and morphological diversity of the *Chrysanthemum* spp. The diploid species *C. nankingense* and *C. lavandulifolium* are native to China, both species contribute to the origin of polyploids of *Chrysanthemum*22. Although, polyploid is a fundamental biological process, it is relatively underexplored and little is known about duplicate genes or genome changes in WGD. In the previous study, we detected rapid changes at the genetic level and some novel fragments containing microsatellite sequence in *Chrysanthemum* spp. during allopolyploid formation, suggesting that WGD may be accompanied by the modification of microsatellite sequence23. As no SSR primers were reported before, we then...
successfully developed over 2,000 EST-SSR primers from *C. nankin-
gense* EST libraries for *Chrysanthemum* spp. and some closely related
species. Here we intend to reveal how WGD alters EST-SSR loci
employing diploid *C. nankinense* and *C. lavandulifolium* and their
autotetraploids as well as *Chrysanthemum* spp. and *Ajania* spp. of
different ploidy levels. The effects of WGD on gene expression
were also investigated by comparing the abundance of SSR-containing
transcripts in autotetraploid *C. nankinense* and *C. lavandulifolium*
with that in their diploid progenitors, and whether these changes in
DNA sequence could contribute the unidirectional changes in gene
expression were discussed, all these findings will further expand our
current evolutionary framework.

Results

Polymorphism survey with EST-SSR. Twenty nine *Chrysanthemum*
sect. accessions including 17 different *Chrysanthemum* spp. (23
accessions) and 6 *Ajania* spp. (6 accessions) were analyzed
(Table 1). These ploidy levels varied from diploid (2n=2x=19) to
decaploid (2n=10x=90)\(^{12-26}\). In total across the test accessions,
2,807 loci were detected by 20 EST-SSR primer pairs (Table 2,
primer pairs #1-#20), and displayed polymorphism between nearly
all of the accessions tested. The mean number of fragments
amplified from the diploid species was less than from the higher
ploidy ones (Fig. 1). For example, primer pair #5 recognized a mean
of 1.67 fragments among the diploids, but, 2.56, 2.75, 4.00 and 4.33,
respectively, among the tetra-, hexa-, octo- and decaploids (Table 3).
Primer pair #8 detected a mean of 3.33 fragments among the diploids,
and, 4.22, 5.13, 7.33 and 9.33, respectively, among the higher ploidy
species. Similarly, primer pairs #4, #10, #12, and #14 detected lesser
fragments in lower ploidy species than in higher ones. But primer pair
#17 amplified a larger number of fragments from tetra- and hexaploid
templates than from either the octo- or the decaploid ones (Table 3).
A statistical analysis suggested 29 accessions fell into three groups in
terms of the number of fragments: the diploids (2x species group),
the tetra- and hexaploids (4x-6x species group), and the octo- and
decaploids (8x-10x species group) according to Tukey’s test and the
Student’s t test (P < 0.05). In general, the number of fragments
amplified was highest for high ploidy group (8x-10x) and lowest for
the diploids (2x), but there was no significant difference between
either the 8x and 10x, or the 4x and 6x ones (Fig. 1).

The effect on EST-SSR genotype of autopolyploidization. In the
previous study, we detected rapid genomic SSRs variation in *Chrysanthemum*
spp. during allopolyploid formation via amplified fragment length
polymorphism markers, indicating that mutation of SSR sequence
might be a rapid process in the nascent allopolyploid\(^{42}\). In
present study, we aimed to address SSRs changes in
autopolyplody using four individual plants of autotetraploid *C. nankinense*
(referred to as T1-T4)\(^{27}\), and six individuals of
autotetraploid *C. lavandulifolium*. The changes were compared
between autotetraploid and their progenitor diploids. For PCR
amplification, genome DNA was used as template, 20 EST-SSR
primer pairs (Table 2, primer pairs #1-#20) used for 29 accessions
genotyping were employed. Only four primer pairs (#2, #3, #14 and
#15) out of above 20 EST-SSR primer pairs were polymorphic. To
generate more polymorphic fragments, additional 20 SSRs primer
pairs were employed (Table 2, primer pairs #21-#40), as a result,
three additional polymorphic primer pairs #26, #31 and #34 were
screened. The PCR amplicons were electrophoresed through a 6%
denaturing polyacrylamide gel. The expectation was that
autopolyblodization would have no effect on the SSR genotype of
polyploid, since their parent was a homozygous autotetraploid.
However, six out of 40 EST-SSR loci detected showed polymorphic
variation between *C. nankinense* diploid and its tetraploid plants.
For example, primer pair #15 produced a 116 bp fragment including
seven GTG repeats in diploid and tetraploid T1-T4 lines, in addition,
Table 2 | Primer sequences employed to assay variation at 20 EST-SSR loci

Primers ID	SSR motifs	Primer sequence (5'-3')	Polymorphic
#1	CAT	F: TTCCTCTATAGCCAAGGCA	
		R: GGCTGGATCTAGTGTTCAT	
#2	ACC	F: AAACACCAAACACCATCAA	★
		R: AACCTGGAACATCGACTT	
#3	GTG	F: CGACAGTTGACCAACAGGAA	★
		R: CCAAACCCGACACCATTC	
#4	CAC	F: TATCCCTATGGCCACACAC	
		R: AAACCTGTTGGATCTGCTC	
#5	CACCTG	F: GGCCAGCAACACTGAGGACA	
		R: ATTTTTGCGGCAATTTTGCT	
#6	AAGAGG	F: CGAAGAGGAAGGAGGACG	
		R: CGTTTAGGGCTGCTTGTT	
#7	GAATGT	F: ATGGCGAATGGAGGATGAG	
		R: AACAAACCGCAACACACAGC	
#8	GGGTCA	F: CCAAACACCAAACAAACAGC	
		R: ACAGAAACCTATGCGGAGC	
#9	TGA	F: CAAAAATGCAATGAGGAGCT	
		R: TCCCCAAATAAAACCAACAA	
#10	CCT	F: AACTACAGCCACCTTCCCC	
		R: AACGACTGTTGCTCAATTCCG	
#11	AAG	F: GTCCACCTACATACCACAG	
		R: ATGTTGCAGACCTGACAGT	
#12	TCA	F: GAGCGGAGGAAAGAGAGAAA	
		R: GCGCTTTCTTCACAGTCCT	
#13	ATC	F: CCCCCCACTTGACTACA	★
#14	GAA	F: CACCGCTTCTGTCAAAAAAC	
#15	GTG	F: CGGCTGTTGCTGATAATG	★
		R: ACAATTTGCTGCTCATAA	
#16	CAA	F: ATGGGAGATAGTGCCCTTTC	
		R: TAAATGAAATCTGCGCCTGC	
#17	GCT	F: GGAATATCGACCGGGAATTT	
		R: ACTGATTTTGCAACAGTCCC	
#18	AAG	F: TCCCCATTAGAGAGAGAG	
		R: TCTGATGATGGCATAAGACAG	
#19	GAG	F: TCGTAAAATGGCGCTATCA	
		R: TCAATCCCTAGCACCACCAAC	
#20	ATG	F: GACGAGCCAGCAACAAGAAGA	
		R: CTGATGAGGAAACCGTGCTG	
#21	CAA	F: TGTCGATCACCCAAATTC	
		R: TTTAAGCCCTGTACCTCCG	
#22	CTT	F: CACCGGAAATGCGAAACACC	
		R: GCAATACATCCTGCTCAACA	
#23	TCC	F: CCCCCCTCTTCACAAAAACAC	
#24	ACC	F: TCTATCTACCGGCTACAGC	
		R: GTGCGCTCAAAAACATGGTG	
#25	TCA	F: AACCATGATACCCAGACACC	
		R: ACCAAGGCACTGAGTITTG	★
#26	TTC	F: GGCGATGGATGATGATGATT	
		R: GAAAGAGGATGGATGATGGA	
#27	AAG	F: CTAGTCGTGCTCTCAGAGCT	
#28	GAATGT	F: CTAGTCGTGCTCAGAGCT	
		R: AGTCCGCTAGACATTTTC	
#29	GGGTCA	F: CCAACACACCAACACACACAC	
		R: ACAGAACCGGATAGACCAGC	
#30	TCA	F: TCAATGGACATACAAAGAAGA	
		R: GGTTGCAATACCGCTGATAC	
#31	TTC	F: GATTTCGAGCAATCACAGA	★☆
		R: TAAACAGGGCGCAGCATAGA	
#32	ATC	F: CCCCCCTCTGTACATACTCA	
		R: ATCGCTCGGCTGCAAATCTA	
#33	CAC	F: ACCATGCGGCCATCTACACAC	
		R: TGCGCTCAGTCTGCTGCT	
#34	A(G)AGATG	F: CCGATGTATCAAAACCGCTG	
		R: CAATCGGCTTTGCTGATCC	★☆
Figure 1 | The relationship between mean SSR allele number and chromosome number in *Chrysanthemum* spp. The lines show the grouping of the ploidy levels into (1) diploid, (2) tetra- and hexaploids, and (3) octo- and decaploids according to Tukey’s test and the Student’s t test (*P < 0.05*).

Table 2 | Continued

Primers ID	SSR motifs	Primer sequence (5'-3')	Polymorphic
#35	CCA	F: CTGACCAAGGACACCATCA	
		R: TTGGGGAATGTGAAAGGC	
#36	GTAGTG	F: ATCTATACGGAGTCCGCC	
		R: TTGGGGAATGTGAAAGGC	
#37	ACA	F: AAACAAACACAGGGGCA	
		R: AAAGCTTGTGAATTCTGTCGCC	
#38	CAC	F: CACACCCGCTTCACACCTC	
#39	TTC	F: AGTCTGCTCCCTGCTGTT	
#40	AAT	F: TGGGAGAAACACACACACCA	
		R: TGGGAGAAACACACACACCA	
		R: TGTTTACGCGACACTCCA	

Note: Primer pairs #1-#20 were used for 29 accessions genotyping; Primer pairs #1-#40 were used for diploid *C. nankingense* and *C. lavandulifolium* and their autotetraploid; *: Polymorphic between *C. nankingense* diploid and tetraploid plants; /: Polymorphic between *C. lavandulifolium* diploid and tetraploid plants.

A fragment including six repeats (113 bp) in tetraploids was detected (Fig. 2a). Primer pair #34 amplified a 309 bp fragment from both diploid and tetraploids, and additionally a 255 bp fragment from the tetraploid lines (Fig. 2b). Similarly, primer pairs #14 and #31 detected five GAA/TTC repeats in the diploid, but seven in the tetraploid (Fig. 2c, d). Primer pair #2 amplified a 260 bp fragment from the diploid, tetraploid T3 and T4 lines, but one more 257 bp fragment (one fewer ACC repeat) from tetraploid T1 line and one more 254 bp fragment (loss of ACCATC) from tetraploid T2 line (Fig. 2e). Primer pair #26 produced identical fragment among diploid and tetraploid T2 and T4 lines, however, the tetraploid T1 contained an extra TTT repeat and the T3 amplicon included three TTC repeats delete compared with that in diploid (Fig. 2f).

The lines show the grouping of the ploidy levels into (1) diploid, (2) tetra- and hexaploids, and (3) octo- and decaploids according to Tukey’s test and the Student’s t test (*P < 0.05*).

To test whether changes in DNA sequence may contribute the unidirectional changes in gene expression, we isolated lines (Fig. 3). #15, #31 and #34 all produced an additional fragment in all tetraploid unidirectional changes in gene expression and function, we isolated lines (Fig. 3).

Increased gene or genome dosage may induce disease syndromes when two different/same genomes are combined into a single cell, they must respond to the consequences of genome duplication, especially duplicate copies of genes with similar or redundant ones. Increased gene or genome dosage may induce disease syndromes and abnormal development. This resembles the “genomic shock” phenomenon proposed by McClintock. The genomic shock occurs...
rapidly in allo- or auto-polyploids, resulting in mutations, sequence eliminations, chromosomal rearrangements and large-scale transcriptional changes. Although, the evolutionary model of EST-SSR loci and the full range of factors underlying their sequence mutation rate remain uncertain following WGD, it seems to have been a measurable induction of EST-SSR sequence alteration in Chrysanthemum, since we detected 6 and 4 alleles at SSR loci (loci #2, #14, #15, #26, #31 and #34 in C. nankingense and #3, #15, #31 and #34 in C. lavandulifolium) shown a rapid variability, just as there was in de novo amphidiploids derived from the wide cross C. morifolium × Leucanthemum paludosum (Asteraceae). The assumption is that these changes are driven by genomic shock, which may also accelerate SSR sequence variation and that some of the novel alleles induced provides the polyploid cell with a degree of genetic flexibility, as shown also with respect to repeat-induced point mutations in duplicated sequences of Neurospora crassa.

In general, the higher ploidy Chrysanthemum species tended to be more polymorphic and have more amplified fragments than the diploids (Fig. 1). This pattern is quite general among Chrysanthemum. EST-SSR loci become duplicated upon WGD, but there are also instances of sub-genome level duplications involving whole chromosomes or segments within a chromosome. We also note that the variation of an allele or locus may occur due to single (or multiple) nucleotide substitutions, insertions or deletions occurring in flanking regions or SSR regions (even the eliminating DNA sequence) of different polyploid individuals, like loci #2 and 26 in C. nankingense and #3 in C. lavandulifolium, which may in time become fixed in the population as a result of “genomic shock” and a lack of further fragment accumulation in higher ploidy levels, however, all species which share similar randomly selected homologous polymorphic microsatellite systems will have fragment frequency spectra with the same mean size. While comparisons involving a broad spectrum of species have shown that estimates of the timing of a whole genome (or other) duplication event is reasonably robust across the species set. This means these species which have the similar polymorphic microsatellite systems will perform a more concentrated divergence time of WGD. The present statistical analysis suggested that although there was a difference in allele number between the 2x and 4x-6x species group, and between the 4x-6x and 8x-10x species group, there was no significant difference between the 8x and 10x, or the 4x and 6x ones. Based on this observation, the formation time from tetraploid to hexaploid and from octoploid to decaploid may well have been a close event, but that from the diploid to the tetra-hexaploid group or to octo-decaploid group are more likely to have been a widely separated one in the Chrysanthemum lineage (Fig. 1). This scenario fits well with the observation that meiotic chromosome pairing is much looser in diploid than in polyploid ones, and that hybridization barriers are only serious in diploid x polyploid combinations.

It is of interest to note that, although many SSR loci are genetically neutral, strong evidence shows that some EST-SSRs can provide the molecular basis for rapid adaptation to a new environment especially for these tri-nucleotide and tri-nucleotide-based repeats SSR loci. For example, rapidly evolved triplet repeats in plant may be the main reason for modulation of transcription factor activity and thus result in subtle or overt genomic effects. These repeated codon changes in the number can increase or decrease the length of homopolymeric amino acid stretches which in turn may affect such properties as protein flexibility and binding affinity. The number of repeats in different SSRs also can affect gene function, particularly vulnerable to mutation by virtue of having SSRs in its own coding regions. Here, we have shown that WGD induced EST-SSR polymorphism in C. nankingense and C. lavandulifolium, and that certain genes (containing an SSR) were transcribed differently in de novo autotetraploids compared with that in their progenitor diploid (loci #26 and #34 in C. nankingense, loci #3 and #34 in C. lavandulifolium). In particular, the gene targeted by primer pair #34 produced an additional shorter version of the transcript in both C. nankingense and C. lavandulifolium autotetraploid compared with diploid (Fig. 4a, b), the cSSR variation completely replaced the origin one in the autotetraploid compared with diploid. Transcription polymorphism was also shown by the gene targeted by primer pair #26 and #3 (Fig. 3), where the autotetraploid plants generated an additional (Fig. 4a, b) and shorter transcript (Fig. 4a) than the one generated by the diploid.

To a certain degree, these changes of microsatellites may reflect the genetic variation after WGD. We cannot at the present exclude the possibility that the EST-SSR polymorphism induced in the C. nankingense and C. lavandulifolium autotetraploid modifies the function and/or efficiency of the gene products, possibly in an advantageous manner (Of course, the probability is too little). Plant genomes contain very large numbers of EST-SSRs, a proportion of which can contribute to the process of species adaptation during evolution. In the previous study, de novo autotetraploids of C. nankingense is

Primers ID	2x	4x	6x	8x	10x
#1	1.83 ± 0.40	3.89 ± 0.61	4.00 ± 0.19	4.00 ± 1.00	4.00 ± 0.00
#2	1.83 ± 0.54	3.89 ± 0.56	5.00 ± 0.19	4.33 ± 0.88	6.00 ± 0.00
#3	3.00 ± 0.45	4.44 ± 0.50	4.13 ± 0.52	4.33 ± 0.33	6.00 ± 1.00
#4	1.67 ± 0.49	3.22 ± 0.36	2.88 ± 0.48	4.67 ± 0.33	5.00 ± 0.00
#5	1.67 ± 0.33	2.56 ± 0.34	2.75 ± 0.31	4.00 ± 1.00	4.33 ± 0.33
#6	1.50 ± 0.22	4.11 ± 0.51	3.50 ± 0.38	3.33 ± 0.67	6.00 ± 1.00
#7	1.83 ± 0.31	3.33 ± 0.55	3.38 ± 0.46	4.67 ± 1.33	4.00 ± 0.00
#8	3.33 ± 0.61	4.22 ± 0.72	5.13 ± 0.55	7.33 ± 1.20	9.33 ± 0.67
#9	1.33 ± 0.21	2.44 ± 0.24	2.50 ± 0.33	2.33 ± 0.88	2.33 ± 0.67
#10	3.50 ± 0.56	5.89 ± 0.59	4.88 ± 0.85	7.67 ± 0.33	9.00 ± 0.00
#11	1.50 ± 0.32	2.78 ± 0.60	2.38 ± 0.42	3.67 ± 0.33	4.00 ± 1.00
#12	1.67 ± 0.21	3.44 ± 0.50	3.63 ± 0.38	4.33 ± 0.33	6.00 ± 0.00
#13	1.33 ± 0.33	3.33 ± 0.53	3.88 ± 0.81	5.33 ± 0.33	5.00 ± 1.00
#14	2.67 ± 0.56	3.11 ± 0.54	3.63 ± 0.42	4.33 ± 0.88	6.67 ± 1.33
#15	2.00 ± 0.26	3.22 ± 0.22	3.25 ± 0.41	3.33 ± 0.33	4.67 ± 0.33
#16	1.33 ± 0.33	3.22 ± 0.22	3.38 ± 0.53	4.00 ± 1.00	5.33 ± 0.33
#17	2.17 ± 0.60	3.33 ± 0.73	3.38 ± 0.60	2.33 ± 0.88	2.67 ± 0.33
#18	1.83 ± 0.31	4.11 ± 0.26	3.63 ± 0.42	5.00 ± 0.58	5.33 ± 0.33
#19	2.83 ± 0.31	4.44 ± 0.47	4.00 ± 0.33	4.67 ± 0.33	5.00 ± 0.00
#20	2.50 ± 0.34	4.44 ± 0.34	4.25 ± 0.31	5.00 ± 1.53	7.33 ± 0.66

www.nature.com/scientificreports
fertilizable and shows an improved level of adaptation to cold, drought and salinity stress\(^4\), here, EST-SSR variation was found almost immediately after WGD. Considering the potential function of EST-SSR variation, we deduced that these EST-SSR variation may be a potential molecular basis for adaptation to new environments of *Chrysanthemum* spp.

Methods

Plant material and EST-SSR polymorphism survey
All materials have been maintained by the Chrysanthemum Germplasm Resource Preserving Centre, Nanjing Agricultural University, China. These ploidy levels varied from diploid (2n = \(2x = 19\)) to decaploid (2n = \(10x = 90\))\(^2\). Fully expanded fourth and fifth leaves of plants from each accession were harvested and frozen in liquid nitrogen. Each accession consists of 5 individual plants. Genomic DNA was extracted using a modified CTAB method\(^4\). DNA extract was treated with RNase to remove any contamination of RNA, then dissolved in 50-\(\mu l\) TE (pH 8.0). The concentration and purity of the DNA preparations were measured using NanoDrop\(\text{H}\)ND-1000 spectrophotometer (Nanodrop Technologies, USA), and the ratio of OD\(260/OD_{280}\) was calculated.

EST-SSR screening and polymorphism survey
A set of 20 EST-SSR primer pairs (synthesized by Invitrogen, Shanghai, China) was used to amplify each of the 29 templates (Table 2). All primers were developed from *C. nankingense* EST libraries (NCBI SRA accession: SRP041330; Dataset name: SRS595330-SRS595332), which could be used for *Chrysanthemum* spp. and some closely related species due to their cross-species transferability\(^6\). The PCR followed the three primer amplification protocol described elsewhere\(^8\) with minor modification. The PCR regime comprised an initial denaturation of 95°C/5 min, followed by seven cycles of 94°C/45 s, 68°C/

Figure 2 | Variation in SSR sequence among diploid and autotetraploid *C. nankingense* plants. (A) A GTG repeat absent from the tetraploid amplicon; (b) \#34 nine A(G)AGATG repeat absent from the tetraploid amplicon; (c–d) Two GAA (c) and TTC (d) repeat present in the tetraploid amplicons; (e) an ACC repeat absent from the T4 amplicon and an ACCATC repeat from the T1 amplicon; (f) an additional TTC repeat in the T1 amplicon, and the loss of three TCT repeats in the T3 amplicon. a: primer pair \#15, b: primer pair \#34, c: primer pair \#14, d: primer pair \#31, e: primer pair \#2, f: primer pair \#26. The cropped gels have been run under the same experimental conditions. Full-length gels are presented in Supplementary Fig. S1.

Repeat motifs: GTG	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: AAGATG / GAGATG	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: GAA	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: TTC	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: ACC	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: TTC	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: ACC	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

Repeat motifs: TTC	Primer pairs
Diploid	T1 T2 T3 T4
Tetraploid	T1 T2 T3 T4

EST-SSR screening and polymorphism survey. A set of 20 EST-SSR primer pairs (synthesized by Invitrogen, Shanghai, China) was used to amplify each of the 29 templates (Table 2). All primers were developed from *C. nankingense* EST libraries (NCBI SRA accession: SRP041330; Dataset name: SRS595330-SRS595332), which could be used for *Chrysanthemum* spp. and some closely related species due to their cross-species transferability\(^6\). The PCR followed the three primer amplification protocol described elsewhere\(^8\) with minor modification. The PCR regime comprised an initial denaturation of 95°C/5 min, followed by seven cycles of 94°C/45 s, 68°C/
Total RNA was isolated from leaves of *C. nankingense* and *C. lavandulifolium*; plants and pattern of variation in SSR sequence after polyploidization. Four polymorphic variation EST-SSR loci were shown. The cropped gels have been run under the same experimental conditions. Full-length gels are presented in Supplementary Fig. S2.

RNA extraction and RT-PCR analysis. Total RNA was isolated from leaves of diploid and autotetraploid *C. nankingense* and *C. lavandulifolium* using the TRIzol reagent (Takara), treated with RNase-free DNase I (Takara) at 37 °C for 30 min according to the manufacturer's instructions to remove any contamination of DNA. The concentration of the extracted RNA was measured using a NanoDrop®-ND-1000 spectrophotometer. Total RNA samples (2 μg) with an OD_{260}/OD_{280} ratio of >2.0 and an OD_{260}/OD_{230} ratio of >1.8 were used to synthesize the first cDNA strand based on random priming and SuperScript III Reverse Transcriptase (Invitrogen) according to the manufacturer's instructions. Prior to RT-PCR analysis, the synthesized cDNA was diluted to 1/5 by adding sterilized ddH_{2}O.

Figure 3 Variation in SSR sequence among diploid and autotetraploid *C. lavandulifolium* plants and pattern of variation in SSR sequence after polyploidization. Four polymorphic variation EST-SSR loci were shown. The cropped gels have been run under the same experimental conditions. Full-length gels are presented in Supplementary Fig. S2.

Figure 4 Changed transcription patterns of SSR-containing genes upon autopolyploidization. No amplicons were produced from either the diploid or any of the four tetraploid *C. nankingense* cDNA templates using primer pairs #14 or #15, while primer pairs #2 and #31 in autotetraploid *C. nankingense* and primer pairs #3 and #15 in autotetraploid *C. lavandulifolium* produced an identical amplicon from all five templates. However, primer pair #26 detected transcription changes in two (T1 and T3) of the four tetraploid *C. nankingense* plants and primer pair #3 detected transcription changes in three of six autotetraploid *C. lavandulifolium* plants. Primer pair #34 detected transcription in all autotetraploid but not in the diploid. The cropped gels have been run under the same experimental conditions. Full-length gels are presented in Supplementary Fig. S3.

1. Adams, K. L. & Wendel, J. F. Novel patterns of gene expression in polyploid plants. *Trends Genet.* **21**, 539–543 (2005).
2. Jiao, Y. et al. Ancestral polyploidy in seed plants and angiosperms. *Nature* **473**, 97–100 (2011).
3. Chen, Z. J. Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. *Annu Rev Plant Biol* **58**, 377–406 (2007).
4. Powell, W., Machray, G. C. & Provan, J. Polymorphism revealed by simple sequence repeats. *Trends Plant Sci* **1**, 215–222 (1996).
5. Zwenger, S. R., Abagali, R. & Basu, C. Does an expressed sequence tag (EST) library of *Salola iberica* (tumbleweed) help to understand plant responses to environmental stresses? *Plant Signal Behav.* **5**, 1330–1335 (2010).
6. Wang, H. et al. Next-generation sequencing of the *Chrysanthemum nankingense* (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. *PloS One* **8**, e62293 (2013).
7. Weber, J. L. & Wong, C. Mutation of human short tandem repeats. *Hum Mol Genet* **2**, 1123–1128 (1993).
8. Ellegren, H. Microsatellite mutations in the germline: implications for evolutionary inference. *Trends Genet.* **16**, 551–558 (2000).
9. Li, Y. C., Korol, A. B., Fahima, T., Beiles, A. & Nevo, E. Microsatellites: genomic distribution, putative functions and mutualational mechanisms: a review. *Mol Ecol* **11**, 2453–2465 (2002).
10. Li, Y. et al. Microsatellite diversity correlated with ecological–edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. *Mol Biol Evol* **17**, 851–862 (2000).
11. Gur-Arie, R. et al. Simple sequence repeats in *Escherichia coli*: abundance, distribution, composition, and polymorphism. *Genome Res* **10**, 62–71 (2000).
