Incidentalomas of the prostate detected by 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography

Miles P. Mannas, MD; Taeweon Lee, MD; Maral Pourghiasian, MD; Don C. Wilson, MD; Peter C. Black, MD

Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada; Vancouver Prostate Centre, Vancouver BC, Canada

Abstract

Introduction: Prostate incidentalomas are prostatic lesions suspicious for cancer discovered by imaging patients without a known history of prostatic cancer (PCa) for other reasons. 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG PET) is used to diagnose, stage, and assess response to treatment for numerous cancers, but it is not routinely used for PCa. We aimed to determine the rate of detection of prostate incidentalomas in patients undergoing FDG PET and to evaluate the natural history of these lesions.

Methods: A retrospective review was conducted of all FDG PET scans performed between 2005 and 2017 at a single institution. Patients were selected who had prostatic uptake without a history of PCa. Clinical data were collected from electronic medical records to determine how the prostate incidentalomas were further evaluated and to define the rate of malignancy.

Results: A prostate incidentaloma was identified in 309 (1.0%) of 31 019 FDG PET scans performed on men. A prostate-specific antigen (PSA) test was obtained in 40.1% of patients within six months of prostate incidentaloma detection. Six patients underwent a multiparametric magnetic resonance imaging (mpMRI) of the prostate, which identified PCa in one case. Overall, PCa was diagnosed in 33 cases, representing 10.7% of the prostate incidentalomas and 0.1% of the scanned patients. PCa was intermediate- or high-risk in 27 (8.7%) of the prostate incidentalomas.

Conclusions: Incidental lesions detected in the prostate by FDG PET may represent clinically significant PCa. Referral to a urologist for further evaluation should be considered if the patient is otherwise in reasonable health.

Introduction

The shift towards an increase in aerobic glycolysis, known as the Warburg effect, is a well-characterized metabolic derangement in cancer. 1 18-fluoro-2-seoxy-D-glucose positron emission tomography/computed tomography (FDG PET) detects this increase in glycolysis and, as such, is routinely used in the diagnosis and surveillance of many cancers, including melanoma, lung cancer, squamous cell carcinoma of the head and neck, and lymphoma.2-3 Prostate cancer (PCa), however, does not routinely experience the Warburg effect and FDG PET is not part of the routine staging of PCa.4-7 An investigation of FDG PET in localized PCa revealed 51.9% sensitivity and 75.7% specificity in the context of an elevated prostate-specific antigen (PSA).3

Incidental focal uptake in any organ on FDG PET that is not directly associated with the disease under investigation is referred to as an incidentaloma. Incidentalomas are commonly observed, occurring in approximately 10–14% of FDG PET scans.1,2 Some of these incidentalomas are located within the prostate in the absence of known PCa. The rate of prostate incidentaloma on FDG PET has been reported in two series as 0.086%8 and 1.4%.4-5 This elevated prostatic FDG uptake may represent both benign and malignant conditions, including especially PCa, benign prostatic hyperplasia, and prostatitis.6

To our knowledge, FDG PET prostate incidentalomas have yet to be investigated in a North American population. We aimed to further characterize the etiology, rate of malignancy, aggressiveness of malignancy identified, FDG PET characteristics of identified malignancy, and the adequacy of subsequent investigation once they have been identified. There are also no guidelines to aid in the investigation of these lesions and we sought to develop recommendations for investigation once FDG PET prostate incidentalomas are identified.

Methods

A retrospective review was conducted of all FDG PET scans performed in men ≥18 years of age between September 2005 and June 2017 at the British Columbia (BC) Cancer Agency. This facility serves the entire population of BC (over 4.4 million residents in 2016) as the sole PET scanner for the duration of this study period.7 This study was approved by the Clinical Research Ethics Board of the BC Cancer Agency (H17-01483).
A search was conducted for all FDG PET reports on male patients that contained the word “prostate.” These reports were further narrowed by reviewing the context in the electronic reports. Men with a history of PCa were excluded from further analysis. Full clinical review of the remaining patients was conducted.

A prostate incidentaloma was considered PCa if this was determined by biopsy (ultrasound-guided transrectal [TRUS] biopsy, magnetic resonance imaging [MRI]-TRUS fusion biopsy, or transurethral resection of prostate [TURP]) and was considered benign if a biopsy was negative. A prostate incidentaloma was also considered benign if a multiparametric (mp) MRI of the prostate was normal, as defined by absence of a Prostate Imaging – Reporting and Data System (PIRADS) ≥3 lesion. The prostate incidentalomas were otherwise categorized based on age-standardized PSA gathered from provincial databases that capture results from almost all bloodwork in BC. If the PSA was less than the age-standardized cutoff value (PSA <2.5 ug/L for age <50 years; PSA <3.5 ug/L for age 50–59 years; PSA <4.5 ug/L for age 60–69 years; and PSA <6.5 ug/L for age >70 years), the lesion was considered “likely benign.” Prostate incidentalomas were considered suspicious for PCa if the PSA was above the age-standardized cutoff level and a biopsy or mpMRI was not performed. The status of the prostate incidentaloma was considered unknown if a PSA could not be located in the databases within 10 years of the FDG PET.

One-way ANOVA and mean statistical testing were performed using Prism 7, version 7.0e.

Results

In the study period, 31 019 FDG PET scans were performed on men over 18 years of age. The number of scans performed per year increased during the study period from 570 per year in 2005 to 9551 per year in 2017, but the rate of detection of prostate incidentalomas remained constant. A prostate incidentaloma was identified in 309 men undergoing FDG PET scanning, representing 1.0% of all men scanned. The mean age of all men undergoing FDG PET was 63.7 (18–98) years, compared to 70.5 (18–93) years in the patients with a prostate incidentaloma.

Fig. 1 shows how the patients were evaluated after FDG PET. The diagnostic categorization of prostate incidentalomas is summarized in Fig. 2. A prostate TRUS biopsy was performed in 24 (7.8%) patients within 12 months of detection of the prostate incidentaloma identified on FDG PET, and in 13 (4.2%) patients beyond 12 months. PCa was diagnosed in 18 (75.0%) of the early biopsies and 12 (92.3%) of the delayed biopsies (Table 1). The mean PSA of all patients together was 7.3 ug/L around the time of FDG PET. The mean PSA of patients not undergoing prostate biopsy was 5.9 ug/L, while the PSA of patients undergoing biopsy was 12.1 ug/L. Of patients who went on to be diagnosed with PCa, the mean PSA was 14.9 ug/L. As summarized in Table 2, of patients who went on to have a prostate biopsy and were diagnosed with PCa, 87.1% of prostate incidentalomas represented clinically significant PCa defined as Gleason grade group ≥2. Evaluation of the incidentaloma revealed metastatic PCa in one patient and 12 others progressed to metastatic PCa during subsequent followup.

A mpMRI of the prostate was performed in six cases. Two patients had no abnormal findings and did not undergo biopsy. A targeted biopsy was performed in two patients with a PIRADS 3 lesion and two with a PIRADS 4 lesion. These lesions corresponded to the prostate incidentaloma in all cases. One patient with a PIRADS 4 lesion was diagnosed with a Gleason grade group 2 PCa. This 68-year-old patient had a PSA of 1.9 and PSA density of 0.07. The biopsy was benign in the other cases.

Only 124 (40.1%) patients underwent PSA testing within six months of FDG PET and 147 (47.6%) patients underwent PSA
testing at any point after FDG PET. Based on age-standardized PSA cutoffs, the incidentaloma was deemed likely benign in 117 (37.9%) patients and suspicious for PCa in 34 (11.0%) patients who did not undergo prostate biopsy or mpMRI (Fig. 1). In 77 (24.9%) cases no PSA was measured.

The prostate incidentaloma represented a non-prostate malignancy in 35 (11.3%) patients. In 22 (7.1%) patients it was indicative of direct invasion of rectal carcinoma, and in 13 (4.2%) patients it was associated with urothelial carcinoma. Eight of these incidentalomas represented urothelial carcinoma with histological confirmation of prostatic stromal invasion. Five patients had a prior history of non-muscle-invasive bladder cancer and intravesical therapy, but recurrence in the prostate was not confirmed. In no case was the prostate incidentaloma identified to be a metastatic lesion. Furthermore, all PCa cases were adenocarcinoma.

The FDG PET scans were performed to stage different cancers: 34% lung, 17% colorectal, 11% head and neck, 11% lymphoma, 11% upper gastrointestinal or hepatobiliary, 4% melanoma, and 6% for cancer of 10 other origins. Metastatic cancer other than PCa was present in 137 (44.3%) patients. Four of these patients underwent prostate biopsy, which was benign in all cases, and 81 (59.1%) were tested for PSA. The mean followup of patients after FDG PET was 5.1 years. The mean duration of survival and five-year survival of patients with a prostate incidentaloma was 3.0 years (range 0–11 years) and 43.2%, respectively. Three of the 34 patients with a prostate incidentaloma confirmed to be PCa have died of PCa.

One-way ANOVA statistical testing was conducted to investigate whether patient age at time of FDG PET or prostate incidentaloma maximum standardized uptake value (SUVmax) correlated with subsequent diagnosis of PCa. Mean age was not statistically different between likely benign (69.9; 95% confidence interval [CI] 68.11–71.79), suspicious PSA (71.4; 95% CI 67.45–75.18), PCa on biopsy (71.8; 95% CI 69.7–74.0), and patients without a PSA measurement (71.4; 95% CI 68.76–73.84; p=0.66) (Fig. 3). Similarly, there was no statistically significant difference between the mean SUVmax of likely benign (8.06; 95% CI 6.93–9.32), suspicious PSA (8.26; 95% CI 6.85–10.35), biopsy-confirmed PCa (9.83; 95% CI 7.92–11.74), and patients without a PSA measurement (7.37; 95% CI 5.94–8.80; p=0.2) (Fig. 4). In the reporting of prostate incidentalomas, only 204 patients had quantitative measurements of SUVmax, 11 qualitative, and 94 had no description other than stating there was abnormal uptake.

Discussion

We describe a 1.0% incidence of prostate incidentalomas in men without a history of PCa undergoing FDG PET imaging for staging of a non-PCa. Since PCa is the most commonly diagnosed and third leading cause of cancer-related death in Canadian men,8 it is not surprising that it can be found incidentally using other imaging modalities. The identification of PCa relies on digital rectal examination (DRE), PSA, and tissue sampling, with mpMRI also taking on a growing role.10,11 With increasing use of FDG PET in oncology, it has become more common to encounter patients with prostate incidentalomas, even though PCa is not typically FDG-avid.

Table 1. Time to diagnosis of prostate cancer after detection of prostate incidentaloma on FDG PET

Time to diagnosis	Number of patients	Gleason grade group
<1 year	20	1–5
1–2 years	7	1–3
2–3 years	2	5
3–4 years	1	3
4–5 years	3	2 and 5
5–6 years	1	5

FDG PET: 18-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.

Table 2. Prostate cancer diagnosed after FDG PET

Gleason grade group	Number of patients
1	5
2	6
3	6
4	3
5	12
De novo metastatic disease	1
FDG PET-detected prostate incidentalomas

Bertagna et al previously identified equal distribution of incidentalomas between peripheral and transitional zones; however, incidentalomas in the peripheral zone were significantly more often PCa. Studies have been unable to detect differences in signal intensity (SUV_max) between prostate incidentalomas that are found to be benign or malignant. The rate of PCa detected in FDG PET prostate incidentalomas is variable in prior reports. Han et al evaluated 87% of patients with a prostate incidentaloma and found that 5.4% represented PCa. Bertagna et al evaluated 22.5% of patients with PSA and biopsy and found PCa in 55.5% of evaluated cases, or 12.5% of the overall cohort. Hwang et al evaluated 12.5% of cases and found that 12% of cases contained PCa with Gleason score ≥7. Though variant subtypes of PCa, such as neuroendocrine or ductal PCa, represent <10% of all cases, these cancers are more frequently FDG-avid on PET. The aggressive clinical behavior of these tumors is associated with metabolic derangements that allow them to use glucose metabolism preferentially. There is evidence that mRNA expression of GLUT1, the first rate-limiting step in glucose metabolism, is associated with Gleason score and is upregulated in poorly differentiated castrate-resistant PCa, which may correlate to increased FDG uptake. However, histological variants were not detected in our cohort. In general, it is believed that patients likely benefit from treatment of intermediate- and high-risk localized PCa if they have a life expectancy of ≥10 years. Although in our series only 40.1% of patients underwent PSA testing within six months of the prostate incidentaloma identification, and 64.1% eventually underwent PSA testing or underwent prostate tissue sampling, we are unable to characterize the health status of our patients and are, therefore, unable to comment on the appropriateness of the delayed investigation of prostate incidentalomas. The competing risk of morbidity and mortality from comorbidities and the cancer that the FDG PET was used to stage need to be taken into account.

We have proposed an evaluation algorithm for patients with a prostate incidentaloma on FDG PET without a prior history of PCa (Fig. 5). We suggest that all patients should have a serum PSA test and undergo DRE, unless they have a severely limited life expectancy (e.g., <2 years). Further evaluation with prostate MRI and/or TRUS-guided biopsy would depend on the balance between the patient's general health and the degree of PSA rise or abnormal DRE. We suggest that a patient with a life expectancy >10 years who would be eligible for definitive PCa treatment should undergo prostate MRI and/or TRUS-guided biopsy to rule out clinically significant PCa. This recommendation is based on the overall experience of detecting aggressive PCa variants in prostate incidentalomas.

There are significant limitations to this retrospective study. Prostate incidentalomas were identified based on review of FDG PET reports without review of original FDG PET scans. Age-standardized PSA was used to classify lesions and exclude PCa; however, patients concluded to have likely benign disease certainly had the possibility to be harboring clinically significant PCa. PSA and followup of the cohort was based on electronic medical record review and patients could have had followup or lab results not discovered through this review.

Conclusions

Prostate incidentalomas are an infrequent finding on FDG PET. If the incidentaloma was deemed appropriate for prostate biopsy, then typically, clinically significant cancer is found. Our results and prior reports in the literature are inadequate to define optimal evaluation of prostate inci-
Prostate incidentaloma detected on FDG PET

No further evaluation if short life expectancy (<5 years); reconsider investigation if prognosis improves

History, physical (including DRE) and PSA

Consider prostate evaluation if one or more of following present:
• PET lesion in peripheral zone
• PSA > age adjusted cut-off
• PSA density >0.15
• Concerning DRE
• Other risk factor(s) for prostate cancer

It suspicion for non-prostatic malignancy in prostate (e.g., urothelial carcinoma), investigate appropriately (e.g., cystoscopy)

Cognitive PET-TRUS fusion biopsy

Fig. 5. Proposed algorithm to investigate prostate incidentalomas detected on 18-fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET). DRE: digital rectal exam; MRI: magnetic resonance imaging; PSA: prostate-specific antigen; TRUS: transrectal ultrasound.

Consider MRI followed by MRI-TRUS fusion if available

Followup as required on an individual basis

Benign etiology

Prostate cancer

Counsel patient on management options, including active surveillance and definitive local therapy

References
1. Maletto L, Bisoli S, Fantin A, et al. PET/CT incidental detection of second tumour in patients investigated for pancreatic neoplasms. BMC Cancer 2018; 18: 531. https://doi.org/10.1186/s12885-018-4469-4
2. Sone Y, Sabajimu A, Kowash T, et al. Ability of 18-fluorodeoxyglucose positron emission tomography/CT to detect incidental cancer. Br J Radiol 2014; 87: 20140030. https://doi.org/10.1259/bjr.20140030
3. Minamimura R, Benkov H, Saro F, et al. The potential of FDOTET/CT for detecting prostate cancer in patients with an elevated serum PSA level. Ann Nucl Med 2011; 25: 21-7. https://doi.org/10.1007/s12440-010-0424-4
4. Bhosale P, Balchandhara A, Vikram R, et al. What is the clinical significance of 18F-unexpected uptake in the prostate in patients undergoing PET/CT for other malignancies? Int J Mol Imaging 2013; 2013: 476786. https://doi.org/10.1155/2013/476786
5. Cho SK, Choi JY, Yoo J, et al. Incidental focal (18)F-FDG uptake in the prostate: clinical significance and differential diagnostic criteria. Nucl Med Mol Imaging 2011; 45: 192-6. https://doi.org/10.1007/s13139-011-0092-x
6. Hwang I, Chang A, Jung SI, et al. Is further evaluation needed for incidental focal uptake in the prostate in 18-fluorodeoxyglucose positron emission tomography/computed tomography images? Ann Nucl Med 2013; 27: 1495. https://doi.org/10.1007/s12440-012-0663-7
7. Statistics CC. Census Profile, 2016 Census.
8. C.C. Statistics, Canadian Cancer Society’s Advisory Committee On Cancer Statistics., in, Canadian Cancer Society, 2015.
9. Ostergaard JE. Serum prostate-specific antigen in a community-based population of healthy men. JAMA 1993; 270: 860-4. https://doi.org/10.1001/jama.1993.03510070082041
10. Forca USPST, Grossman DC, Curry SJ, et al. Screening for prostate cancer: US Preventive Services Task Force recommendation statement. JAMA 2018; 319: 1900-13. https://doi.org/10.1001/jama.2018.3710
11. Kasivisvanathan V, Ramikko A, Borghi M, et al. MRI-targeted or standard biopsy for prostate cancer diagnosis. N Engl J Med 2018; 378: 1767-77. https://doi.org/10.1056/NEJMoa181993
12. Han EJ, Ho J, Choi WH, et al. Significance of incidental focal uptake in prostate on 18-fluorodeoxyglucose positron emission tomography CT images. Br J Radiol 2010; 83: 915-20. https://doi.org/10.1259/bjr.1983771
13. Bertagna F, Piccardo A, Dib B, et al. Multicenter study of 18F-FDG-PET/CT prostate incidental uptake. J Nucl Med 2013; 54: 1153-60. https://doi.org/10.2967/jnumed.112.114260
14. McEvoy LM, Wong D, Yaxley J. Flourodeoxyglucose positron emission tomography scan may be helpful in the case of ductal variant prostate cancer when prostate-specific membrane antigen ligand positron emission tomography scan is negative. J Med Imaging Radiat Oncol 2017; 61: 503-5. https://doi.org/10.1111/jmri.12605
15. Spratt DE, Gervane S, Tarleton L, et al. Utility of FDG-PET/CT in clinical neuroendocrine prostate cancer. Prostate 2014; 74: 1153-9. https://doi.org/10.1002/pros.22833
16. Jadvar H. FDG PET in prostate cancer. PET Clin 2009; 4: 155-61. https://doi.org/10.1016/j.petr.2009.05.002
17. Heidenreich A, Bastian PJ, Bellmunt J, et al. EAU guidelines on prostate cancer. Part 1: Screening, diagnosis, and local treatment with curative intent, update 2013. Eur Urol 2014; 65: 124-37. https://doi.org/10.1016/j.eururo.2013.09.046
18. Rendon RA, Mason RJ, Mazouz K, et al. Canadian Urological Association recommendations on prostate cancer screening and early diagnosis. Can Urol Assoc J 2017; 11: 298-309. https://doi.org/10.5489/cuaj.4888
19. Rawla P. Epidemiology of prostate cancer. World J Oncol 2019; 10: 63-89. https://doi.org/10.14740/wjoa191

Correspondence: Dr. Peter C. Black, Department of Urologic Sciences, University of British Columbia, Vancouver BC, Canada; Vancouver Prostate Centre, Vancouver BC, Canada; pblack@mail.ubc.ca