PERIODIC POINTS OF ALGEBRAIC ACTIONS OF DISCRETE GROUPS

SIDDHARTHA BHATTACHARYA

Abstract. Let Γ be a countable group. A Γ-action on a compact abelian group X by continuous automorphisms of X is called Noetherian if the dual of X is Noetherian as a $\mathbb{Z}(\Gamma)$-module. We prove that any Noetherian action of a finitely generated virtually nilpotent group has a dense set of periodic points.

1. Introduction

Let Γ be a countable group. An algebraic Γ-action is an action α of Γ on a compact metrizable abelian group X by continuous automorphisms of X. By duality theory, any such action induces a Γ-action on \hat{X}, the dual of X, by automorphisms of \hat{X}. Hence \hat{X} can be viewed as a $\mathbb{Z}[\Gamma]$-module, where $\mathbb{Z}[\Gamma]$ is the integral group ring of Γ. The action α is called Noetherian if \hat{X} is Noetherian as a $\mathbb{Z}[\Gamma]$-module. Equivalently, α is Noetherian if any decreasing sequence

$$X = X_0 \supset X_1 \supset X_2 \supset \cdots$$

of closed Γ-invariant subgroups stabilizes.

For $\Gamma = \mathbb{Z}^d$, the study of such actions was initiated in [5], and since then these systems have been extensively studied (see [9] for a comprehensive account). For general Γ, several important results about entropy and homoclinic points of Noetherian Γ-actions have been proved in recent years ([1], [2], [3], [6]). However, unlike the commutative case, many basic dynamical properties are only partly understood in the general situation.

In this paper, we study periodic points of Noetherian Γ-actions. Recall that a point $x \in X$ is periodic if the Γ-orbit of x is finite. It is

2010 Mathematics Subject Classification. 37B05, 37B20.

Key words and phrases. Nilpotent groups, automorphisms, periodic points.
known that when $\Gamma = \mathbb{Z}^d$, for any Noetherian Γ-action (X, α) the space X contains a dense set of periodic points ([9], Theorem 5.7). However, the proof uses tools from commutative algebra and does not generalize to actions of non-abelian groups. The question whether Noetherian actions of all residually finite groups admit a dense set of periodic points was raised in [7, Problem 8.5].

In this paper we show that for algebraic actions of countable groups, the density of periodic points is related to vanishing of certain cohomology groups. As a consequence, we obtain the following:

Theorem 1.1. Let Γ be a finitely generated virtually nilpotent group and let α be a Noetherian action of Γ on a compact metrizable abelian group X. Then X contains a dense set of α-periodic points.

As another application we show that there exist Noetherian actions of finitely generated residually finite groups that do not have a dense set of periodic points, thus giving a negative answer to the above question in the most general case.

2. Virtual first cohomology groups

Let α be an action of a countable group Γ on a compact metrizable group X by continuous automorphisms of X. A *virtual 1-cocycle* of α is a map c from a finite index subgroup $\Lambda \subset \Gamma$ to X that satisfies the equation

$$c(\gamma \gamma') = c(\gamma) + \alpha(\gamma)(c(\gamma'))$$

for all $\gamma, \gamma' \in \Lambda$. Two virtual 1-cocycles $c_1 : \Lambda_1 \to X$ and $c_2 : \Lambda_2 \to X$ are *equivalent* if there exists a finite index subgroup $\Lambda \subset \Lambda_1 \cap \Lambda_2$ such that $c_1(\gamma) = c_2(\gamma)$ for all $\gamma \in \Lambda$. For any $x \in X$, the map $c_x : \Gamma \to X$ defined by $c_x(\gamma) = \alpha(\gamma)(x) - x$ is a 1-cocycle. A virtual 1-cocycle $c : \Lambda \to X$ is said to be a *virtual coboundary* if it is equivalent to c_x for some $x \in X$. We will call two virtual 1-cocycles $c_1 : \Lambda_1 \to X$ and $c_2 : \Lambda_2 \to X$ *cohomologous* if there exists a finite index subgroup $\Lambda \subset \Lambda_1 \cap \Lambda_2$, and a virtual coboundary $c : \Lambda \to X$ such that $c_1(\gamma) - c_2(\gamma) = c(\gamma)$ for all $\gamma \in \Lambda$. It is easy to see that the equivalence classes of virtual 1-cocycles is a group with respect to the pointwise addition, and the equivalence classes of virtual coboundaries form a subgroup.
We will denote the quotient group by $H^1_v(\alpha)$ and call it the virtual first cohomology group of α.

Let (Y, β) be an algebraic Γ-action, and let $X \subset Y$ be a closed β-invariant subgroup such that Y/X is finite. Let α denote the restriction of β to X and let $\Lambda \subset \Gamma$ be a finite index subgroup that acts trivially on Y/X. For any $y \in Y$ we define a map $c_y : \Lambda \to X$ by $c_y(\gamma) = \beta(\gamma)(y) - y$. It is easy to see that c_y is a virtual 1-cocycle of α.

Proposition 2.1. Let (Y, β), (X, α) and $y \in Y$ be as above. Then the virtual 1-cocycle c_y is a virtual coboundary if and only if the coset $y + X$ contains a β-periodic point.

Proof. Suppose $y_1 \in y + X$ is a β-periodic point, and $\Lambda_1 \subset \Lambda$ is a finite index subgroup such that $\beta(\gamma)(y_1) = y_1$ for all $\gamma \in \Lambda_1$. Then $x = y - y_1 \in X$ and

$$c_y(\gamma) = \beta(\gamma)(y) - y = \beta(\gamma)(x) - x$$

for all $\gamma \in \Lambda_1$. Hence c_y is a virtual coboundary of α. Conversely, if c_y is a virtual coboundary of α, then there exists a finite index subgroup Λ_1 and $x \in X$ such that $c_y(\gamma) = \beta(\gamma)(x) - x$ for all $\gamma \in \Lambda_1$. If $p = y - x$ then $p \in y + X$ and it is fixed by $\beta(\Lambda_1)$. Hence it is a periodic point. \qed

A compact abelian group X is zero-dimensional if the connected component containing 0_X is trivial. From the duality theory it follows that X is zero-dimensional if and only if every element of \hat{X} has finite order.

Proposition 2.2. Let Γ be a countable group, and let α be a Noetherian action of Γ on a zero-dimensional compact abelian group X. Then there exists $k \geq 1$ such that $kx = 0$ for all $x \in X$.

Proof. Let $\{\chi_1, \ldots, \chi_n\} \subset \hat{X}$ be a finite set that generates \hat{X} as a $\mathbb{Z}(\Gamma)$-module. As every element of \hat{X} has finite order, we can find $k \geq 1$ such that $k\chi_i = 0$ for $i = 1, \ldots, n$. Since for any m the set $N_m = \{\chi : m\chi = 0\}$ is a $\mathbb{Z}(\Gamma)$-submodule of \hat{X}, we deduce that $N_k = \hat{X}$, i.e., $k\chi = 0$ for all $\chi \in \hat{X}$. If $x \in X$ then for all $\chi \in \hat{X}$, $\chi(kx) = k\chi(x) = 0$. Hence $kx = 0$. \qed
Our next proposition shows that all virtual 1-cocycles of Noetherian \(\Gamma \)-actions on zero-dimensional groups arise in the manner described in Proposition 2.1.

Proposition 2.3. Let \(\Gamma \) be a countable group and let \((X, \alpha)\) be a Noetherian action of \(\Gamma \) on a zero-dimensional group \(X \). Then for any virtual 1-cocycle \(c : \Lambda \to X \) there exists \(k \geq 1 \) and an algebraic \(\Lambda \)-action \(\beta \) on \(Y = (\mathbb{Z}/k\mathbb{Z}) \times X \) such that

1. For all \(\gamma \in \Lambda \), \(\beta(\gamma) \) fixes the first co-ordinate.
2. \(\beta(\gamma)(0, x) = (0, \alpha(\gamma)(x)) \) for all \(\gamma \in \Lambda \) and \(x \in X \).
3. \(c(1, 0) = c \).

Proof. Since \(\alpha \) is Noetherian and \(X \) is zero-dimensional, by the previous proposition there exists \(k \geq 1 \) such that \(kx = 0 \) for all \(x \in X \). For any \(z \in Y \) and a continuous automorphism \(\tau \) of \(X \) there exists a unique homomorphism \(\theta : Y \to Y \) such that \(\theta(1, 0) = z \) and \(\theta(0, x) = (0, \tau(x)) \) for all \(x \in X \). It is easy to see that \(\theta \) is continuous. For \(\gamma \in \Lambda \) let \(\beta(\gamma) \) denote the unique continuous endomorphism of \(Y \) satisfying the following two conditions:

1. \(\beta(\gamma)(0, x) = (0, \alpha(\gamma)(x)) \) for all \(x \in X \).
2. \(\beta(\gamma)(1, 0) = (1, c(\gamma)) \).

Similarly we define \(\beta'(\gamma) \) to be the unique continuous endomorphism of \(Y \) with the property that \(\beta'(\gamma)(0, x) = (0, \alpha(\gamma)^{-1}(x)) \) and \(\beta'(\gamma)(1, 0) = (1, -\alpha(\gamma)^{-1}c(\gamma)) \). Then

\[
\beta(\gamma)\beta'(\gamma)(1, 0) = \beta(\gamma)(1, 0) + \beta(\gamma)(0, -\alpha(\gamma)^{-1}c(\gamma)) = (1, 0).
\]

As \(\beta(\gamma)\beta'(\gamma) \) fixes both \(\{0\} \times X \) and the point \((1, 0) \), we conclude that \(\beta(\gamma)\beta'(\gamma) = I \). A similar computation shows that \(\beta'(\gamma)\beta(\gamma) = I \). Hence \(\beta(\gamma) \) is a continuous automorphism of \(Y \) for each \(\gamma \in \Lambda \). As \(c(\gamma_1\gamma_2) = c(\gamma_1) + \alpha(\gamma_1)c(\gamma_2) \), it follows that

\[
\beta(\gamma_1\gamma_2)(1, 0) = (1, c(\gamma_1\gamma_2)) = \beta(\gamma_1)\beta(\gamma_2)(1, 0).
\]

Since \(\beta(\gamma_1\gamma_2)(0, x) = \beta(\gamma_1)\beta(\gamma_2)(0, x) \) for all \(x \in X \), this implies that \(\beta(\gamma_1\gamma_2) = \beta(\gamma_1)\beta(\gamma_2) \). Hence \(\beta \) defines an algebraic \(\Lambda \)-action on \(Y \). It is easy to see that \(\beta \) satisfies all three conditions stated in the proposition.
\(\square \)
Lemma 2.4. Let Γ be a countable group and let (X, α) be a Noetherian Γ-action such that X admits non-zero periodic points. Then X also contains non-trivial α-invariant finite subgroups.

Proof. Let $x \in X$ be a non-zero α-periodic point and let $\Lambda \subset \Gamma$ be the stabilizer of x. Since the orbit of x is finite, Λ is a finite index subgroup of Γ. We define a subgroup $\Lambda_0 \subset \Gamma$ by

$$\Lambda_0 = \bigcap_{\gamma \in \Gamma} \gamma \Lambda \gamma^{-1}.$$

It is easy to see that $\Lambda_0 \subset \Gamma$ is normal and has finite index. Let Y denote the set of points of X that are fixed by all elements of Λ_0. Then Y is a non-trivial α-invariant closed subgroup of X. Since $\Lambda_0 \subset \Gamma$ has finite index, the action $\alpha|_{\Lambda_0}$ is also Noetherian. As Λ_0 acts trivially on Y, it follows that any collection of closed subgroups of Y has a minimal element. Let Y_0 be a minimal element of the collection of all non-trivial subgroups of Y. Since closed subgroups of Y_0 are in one to one correspondence with subgroups of \hat{Y}_0, we deduce that \hat{Y}_0 does not admit non-trivial subgroups. Therefore \hat{Y}_0, and hence Y_0, are isomorphic with $\mathbb{Z}/p\mathbb{Z}$ for some prime p. In particular, Y_0 is finite. We define $H \subset X$ by

$$H = \sum_{\gamma \in \Gamma} \alpha(\gamma)(Y_0).$$

As $\alpha(\gamma)(Y_0) = Y_0$ for all $\gamma \in \Lambda_0$, and $\Lambda_0 \subset \Gamma$ has finite index, the above sum is finite and H is a well defined closed subgroup of X. It is easy to see that H is finite and α-invariant. \square

The above lemma is not true if α is not assumed to be Noetherian. For example, suppose Γ is an arbitrary countable group and α is the trivial action of Γ on $X = \hat{\mathbb{Q}}$. Then every point of X is α-periodic, but since the group \mathbb{Q} does not have non-trivial finite quotients, X does not admit non-trivial finite subgroups.

Theorem 2.5. Let Γ be a countable group satisfying :

1. Every Noetherian Γ-action (X, α) with $X \neq \{0\}$, has a non-zero α-periodic point.
2. The group $H_v^1(\alpha)$ is trivial for every Noetherian Γ-action (X, α) on a zero-dimensional group X.
Then every Noetherian action of \(\Gamma \) on a compact abelian group (not necessarily zero-dimensional) admits a dense set of periodic points. Conversely, if every Noetherian \(\Gamma \)-action admits a dense set of periodic points, then both the conditions are satisfied.

Proof. Suppose every Noetherian action of \(\Gamma \) admits a dense set of periodic orbits. Then the first condition is automatically satisfied. Let \(\alpha \) be a Noetherian \(\Gamma \)-action on a zero-dimensional group \(X \), and let \(c : \Lambda \to X \) be a virtual 1-cocycle of \(\alpha \). By Proposition 2.3, there exists \(k \geq 1 \) and an algebraic \(\Lambda \)-action \(\beta \) on \(Y = (\mathbb{Z}/k\mathbb{Z}) \times X \) such that \(c = c_{(1,0)} \) and \(\beta(\gamma)|_X = \alpha(\gamma) \) for all \(\gamma \in \Lambda \). Since the coset containing \((1,0)\) is an open subset of \(Y \), it contains a \(\beta \)-periodic orbit.

From Proposition 2.4, we deduce that \(c \) is a virtual coboundary. Hence \(H^1_v(\alpha) = \{ 0 \} \).

Now suppose \(\Gamma \) satisfies both the conditions stated above. Let \((Y, \beta)\) be a Noetherian action of \(\Gamma \). Let \(X \subset Y \) denote the closure of the set of all \(\beta \)-periodic points. Since the sum of two periodic points is again a periodic point it follows that \(X \) is a closed \(\beta \)-invariant subgroup. Suppose \(X \neq Y \). Let \(\bar{\beta} \) denote the induced action of \(\Gamma \) on the quotient \(Y/X \). Since \(\Gamma \) satisfies the first condition, by Lemma 2.4 there exists a finite \(\bar{\beta} \)-invariant non-zero subgroup \(F \subset Y/X \). We define \(Y' = \pi^{-1}(F) \), where \(\pi \) is the projection map from \(Y \) to \(Y/X \). We choose a finite index subgroup \(\Lambda \subset \Gamma \) that acts trivially on \(F \) under \(\bar{\beta} \).

Let \(y \notin X \) be a point in \(Y' \), and let \(c_y : \Lambda \to X \) denote the virtual 1-cocycle of \((X, \beta)\) defined by \(c_y(\gamma) = \beta(\gamma)(y) - y \).

Let \(X_0 \) denote the connected component of \(X \). It is easy to see that \(X_0 \) is a \(\beta \)-invariant closed subgroup of \(X \). Let \(\beta_1 \) denote the induced action of \(\Lambda \) on \(X/X_0 \). As \(X/X_0 \) is zero-dimensional and \(\beta_1 \) is Noetherian, applying Proposition 2.2 we deduce that there exists \(l \geq 2 \) such that \(lp \in X_0 \) for all \(p \in X \). Let \(k \geq 2 \) be a positive integer such that \(kx = 0 \) for all \(x \in F \). Then \(lky \in X_0 \). Since \(X_0 \) is connected, the map \(x \mapsto lkx \) is a surjective endomorphism of \(X_0 \). We find \(q \in X_0 \) such that \(lky = lkw \), and define a virtual 1-cocycle \(c_1 : \Lambda \to X \) by \(c_1 = c_y - c_q \). Then for any \(\gamma \in \Lambda \),

\[
lkc_1(\gamma) = lk(\beta(\gamma)(y-q) - (y-q)) = 0.
\]
Hence the image of c_1 is contained in $H = \{ x \in X : lkx = 0 \}$. Since H is closed, β-invariant, and zero-dimensional; from the second condition we conclude that c_1 is a virtual coboundary. As c_1 is cohomologous to c_y, this implies that c_y is also a virtual coboundary. Applying Proposition 2.1 we deduce that the coset $y + X$ contains a periodic point y_1. This contradicts the fact that $y \notin X$, and shows that $Y = X$, i.e., the set of β-periodic points is dense in Y. □

We now construct an example of a Noetherian action of a finitely generated residually finite group that does not have a dense set of periodic points. Let H denote the group of all functions from \mathbb{Z} to \mathbb{Z} with finite support, equipped with pointwise addition. We define an action of \mathbb{Z} on H by $n \cdot f(i) = f(i + n)$. Let Γ denote the semi-direct product of \mathbb{Z} and H defined by $(f_1, n_1) \cdot (f_2, n_2) = (f_1 + n_1 \cdot f_2, n_1 + n_2)$. It is easy to see that Γ is torsion free. For $k \in \mathbb{Z}$, we define $f^k \in H$ by $f^k(i) = 0$ if $k \neq i$ and $f^k(i) = 1$ if $k = i$. Then for any $k \in \mathbb{Z}$, $(0, 1)(f^{k+1}, 0) = (f^k, 0)(0, 1)$, i.e., $(0, 1)(f^{k+1}, 0)((0, 1)^{-1} = (f^k, 0)$. As $\{(0, f^k) : k \in \mathbb{Z}\}$ generates H as a \mathbb{Z}-module, this shows that Γ is generated by $(0, 1)$ and $(f^0, 0)$. In particular, Γ is finitely generated. For $k \geq 2$ let $\Gamma_k \subset \Gamma$ denote the set of all elements (f, n) such that $n = 0 \pmod{k}$ and

$$\sum_{i=-\infty}^{\infty} f(ki + j) = 0 \pmod{k} \ \forall j = 0, 1, \ldots, k - 1.$$

It is easy to see that for each k, Γ_k is a normal subgroup of Γ and Γ/Γ_k is finite. Moreover for each non-zero $(f, n) \in \Gamma$ there exists k such that $(f, n) \notin \Gamma_k$. Hence Γ is residually finite.

Let X denote the compact abelian group $(\mathbb{Z}/2\mathbb{Z})^\mathbb{Z}$, equipped with the product topology and pointwise addition, and let $S : X \to X$ denote the shift map defined by $S(x)(i) = x(i + 1)$. We define an algebraic Γ-action α on X by $\alpha(f, n)(x) = S^n(x)$. It is easy to see that the shift action of \mathbb{Z} on X is Noetherian. Since $\alpha|_H$ is trivial and the action of $\Gamma/H \cong \mathbb{Z}$ induced by α is the shift action on X, we deduce that α is also Noetherian.
Let $\pi : H \to X$ denote the homomorphism defined by $\pi(f)(i) = f(i) \pmod{2}$. We define $c : \Gamma \to X$ by $c(f, n) = \pi(f)$. Then $c((f_1, n_1)(f_2, n_2)) = \pi(f_1 + n_1 : f_2) = c(f_1, n_1) + S^{n_1}(\pi(f_2))$. Since

$$S^{n_1}(\pi(f_2)) = S^{n_1}(c(f_2, n_2)) = \alpha(f_1, n_1)(c(f_2, n_2)),$$

this shows that c is a 1-cocycle of α. We pick any $x \in X$ and define $c' : \Gamma \to X$ by $c'(\gamma) = \alpha(\gamma)(x) - x$. Let Λ be an arbitrary finite index subgroup of Γ. Since $\alpha(\gamma) = I$ for all $\gamma \in H$, it follows that $c'(H \cap \Lambda) = \{0\}$. On the other hand, the restriction of c to H is a homomorphism with infinite image. As $H \cap \Lambda$ is a finite index subgroup of H, we deduce that $c(H \cap \Lambda)$ is also infinite. Hence $c|_\Lambda \neq c'|_\Lambda$. As Λ and x are arbitrary, we conclude that c is not a virtual coboundary.

We now apply Proposition 2.3. Let β denote the action corresponding to the cocycle c. Since α is Noetherian, so is β. Applying Proposition 2.1 we conclude that β does not have a dense set of periodic points.

3. Density of periodic orbits

In this section we concentrate on the case when Γ is polycyclic-by-finite. A countable group Γ is *polycyclic* if there exists a decreasing sequence of subgroups

$$\Gamma = \Gamma_n \supset \Gamma_{n-1} \supset \cdots \supset \Gamma_0 = \{0\}$$

such that for each i, Γ_i is a normal subgroup of Γ_{i+1} and Γ_{i+1}/Γ_i is cyclic. Any such series is called a *polycyclic series* of Γ. A group Γ is called *polycyclic-by-finite* if it contains a finite index subgroup that is polycyclic. If Γ is polycyclic-by-finite then every subgroup of Γ is finitely generated, and $\mathbb{Z}(\Gamma)$ is a Noetherian ring.

Let Γ be a polycyclic-by-finite group, $\Gamma_0 \subset \Gamma$ be a polycyclic subgroup of finite index and $\Gamma_0 = \Gamma_n \supset \Gamma_{n-1} \supset \cdots \supset \Gamma_0 = \{0\}$ be a polycyclic series of Γ_0. Then the number of i's such that Γ_i/Γ_i is infinite cyclic is independent of Γ_0 and the polycyclic series. This number is known as the *Hirsch number* of Γ. The following proposition summarizes some basic properties of this invariant (see [10]).

Proposition 3.1. Let Γ be a polycyclic-by-finite group.

1. $h(\Gamma) = 0$ if and only if Γ is finite.
(2) If Γ_1 is a subgroup of Γ then $h(\Gamma_1) \leq h(\Gamma)$.
(3) If $\Gamma_1 \subset \Gamma$ is normal then $h(\Gamma) = h(\Gamma_1) + h(\Gamma/\Gamma_1)$.

We note that the previous proposition applies to finitely generated virtually nilpotent groups since they are polycyclic-by-finite. In the proof of Theorem 1.1 we will also use the following result about polycyclic-by-finite groups (see [8]):

Proposition 3.2. Let Γ be a polycyclic-by-finite group and let M be a simple $\mathbb{Z}[\Gamma]$-module. Then M is finite.

Our next lemma is a direct consequence of this result.

Lemma 3.3. Let Γ be a polycyclic-by-finite group and let (X, α) be a Noetherian action of Γ on a non-trivial compact abelian group X. Then X admits a non-zero periodic point.

Proof. Let \mathcal{A} be the collection of all proper $\mathbb{Z}(\Gamma)$-submodules of \hat{X}. Since α is Noetherian, \mathcal{A} contains a maximal element M. It is easy to see that $N = \hat{X}/M$ is a simple $\mathbb{Z}(\Gamma)$-module. By the previous proposition N is finite. Let $i : \hat{N} \to X$ denote the dual of the projection map $\pi : \hat{X} \to N$. Since π is surjective, i is injective. Hence $i(\hat{N})$ is a non-trivial α-invariant finite subgroup of X. Clearly every non-zero point of $i(\hat{N})$ is periodic. □

Lemma 3.4. Let Γ be a polycyclic-by-finite group and let α be a Noetherian action of Γ on a zero-dimensional group X such that $H^1_v(X, \alpha) \neq \{0\}$. If $\text{Ker}(\alpha) = \{\gamma : \alpha(\gamma) = I\}$ is infinite then there exists a polycyclic-by-finite group Γ' with $h(\Gamma') < h(\Gamma)$, and a Noetherian Γ'-action α' on X such that $H^1_v(X, \alpha') \neq \{0\}$.

Proof. Let $\Lambda \subset \Gamma$ be a finite index subgroup, and let $c : \Lambda \to X$ be a virtual 1-cocycle of α that is not a virtual coboundary. Replacing Γ by Λ if necessary, we may assume that $\Lambda = \Gamma$. Since $\text{Ker}(\alpha)$ acts trivially on X, it follows that the restriction of c to $\text{Ker}(\alpha)$ is a homomorphism. Since Γ is polycyclic-by-finite, the subgroup $\text{Ker}(\alpha)$ is finitely generated. This implies that $c(\text{Ker}(\alpha))$ is also finitely generated. By Proposition 2.2 there exists $k \geq 2$ such that $kx = 0$ for
all \(x \in X \). Hence \(c(\text{Ker}(\alpha)) \) is a finite subgroup of \(X \). We define \(M = \{ \gamma \in \text{Ker}(\alpha) : c(\gamma) = 0 \} \). Since \(\text{Ker}(\alpha) \) is finitely generated and \(M \subset \text{Ker}(\alpha) \) has finite index, \(M \) contains a finite index characteristic subgroup of \(\text{Ker}(\alpha) \), i.e., there exists a finite index subgroup \(N \subset M \) such that \(\theta(N) = N \) for all automorphism \(\theta \) of \(\text{Ker}(\alpha) \). Since for any \(g \in \Gamma \) the map \(\gamma \mapsto g\gamma g^{-1} \) is an automorphism of \(\text{Ker}(\alpha) \), we deduce that \(N \) is a normal subgroup of \(\Gamma \). We define \(\Gamma' = \Gamma/N \). As \(N \) is a finite index subgroup of \(\text{Ker}(\alpha) \) and \(\text{Ker}(\alpha) \) is infinite, \(N \) is also infinite. In particular \(h(N) > 0 \). Hence

\[
h(\Gamma/N) = h(\Gamma) - h(N) < h(\Gamma).
\]

As \(\alpha(\gamma) = I \) for all \(\gamma \in N \), \(\alpha \) induces a Noetherian \(\Gamma' \)-action \(\alpha' \) on \(X \). We define \(c' : \Gamma' \to X \) by \(c'(\gamma N) = c(\gamma) \). We note that for any \(\gamma \in \Gamma \) and \(n \in N \), \(c(\gamma n) = c(\gamma) + \alpha(\gamma)(c(n)) = c(\gamma) \). Hence \(c' \) is a well defined virtual 1-cocycle of \(\alpha' \). Suppose there exist a finite index subgroup \(\Lambda' \subset \Gamma' \) and \(x \in X \) such that \(c'(a) = \alpha'(a)(x) - x \) for all \(a \in \Lambda' \). We define \(\Lambda_1 = \pi^{-1}(\Lambda') \), where \(\pi : \Gamma \to \Gamma' \) is the projection map. Then for any \(\gamma \in \Lambda_1 \),

\[
c(\gamma) = c'(\pi(\gamma)) = \alpha'(\pi(\gamma))(x) - x = \alpha(\gamma)(x) - x.
\]

Since this contradicts the fact that \(c \) is not a virtual coboundary, we conclude that \(c' \) is also not a virtual coboundary. Hence \(H_1^v(X, \alpha') \neq 0 \).

Our next result shows that for Noetherian actions of virtually nilpotent groups on zero-dimensional compact abelian groups, the virtual first cohomology group vanishes. In view of Theorem 2.5 and Lemma 3.3 this completes the proof of Theorem 1.1.

Theorem 3.5. Let \(\Gamma \) be a finitely generated virtually nilpotent group, and let \((X, \alpha) \) be a Noetherian action of \(\Gamma \) on a zero-dimensional group \(X \). Then \(H_1^v(\alpha) = \{0\} \)

Proof. Let \(\Lambda \subset \Gamma \) be a finite index subgroup, and let \(c : \Lambda \to X \) be a virtual 1-cocycle of \(\alpha \). Suppose \(\Gamma_0 \subset \Gamma \) is a nilpotent subgroup of finite index. Then \(c \) is equivalent to \(c|_{\Gamma_0 \cap \Lambda} \). Hence, to show that \(c \) is
a virtual coboundary, without loss of generality we may assume that $\Lambda \subset \Gamma_0$.

We will use induction on $h(\Lambda)$, the Hirsch number of Λ. If $h(\Lambda) = 0$ then Λ is finite, and hence c is a virtual coboundary. Suppose $h(\Lambda) \geq 1$. Then Λ is a finitely generated infinite nilpotent group. Hence the center of Λ is also finitely generated and infinite ([H], Proposition 2.8). We choose an element γ_0 in the center of Λ that has infinite order. For $m \geq 1$, we define $K_m = (\alpha(\gamma_0^m) - I)(X)$. Since $\alpha(\gamma_0)$ commutes with $\alpha(\gamma)$ for all $\gamma \in \Gamma$, it follows that each K_m is a closed α-invariant subgroup. As α is Noetherian, the collection $\{K_m : m \geq 1\}$ has a minimal element K. Clearly K is of the form $(\alpha(\gamma_1) - I)(X)$, where $\gamma_1 = \gamma_0^n$ for some $n \geq 1$. Let β denote the induced algebraic Γ-action on the quotient X/K. If P denotes the projection map from X to X/K then $P \circ c$ is virtual 1-cocycle of the action β. We note that the $\beta(\gamma) = I$ for all γ in the infinite cyclic subgroup generated by γ_1. By Lemma 3.4 and the induction hypothesis we deduce that $P \circ c$ is a virtual coboundary of β. We find a finite index subgroup $\Lambda_1 \subset \Lambda$ and $p \in X/K$ such that

$$P \circ c(\gamma) = \beta(\gamma)(p) - p \quad \forall \gamma \in \Lambda_1.$$

We choose $q \in X$ such that $P(q) = p$. Let $c_1 : \Lambda_1 \to X$ denote the virtual 1-cocycle defined by $c_1 = c - c_q$. Since P is an equivariant map it follows that $P \circ c_1 = 0$, i.e., the image of c_1 is contained in $K = (\alpha(\gamma_1) - I)(X)$. We choose $l \geq 1$ such that $\gamma_1^l \in \Lambda_1$. From the minimality of K we deduce that $K = (\alpha(\gamma_2) - I)(X)$, where $\gamma_2 = \gamma_1^l$. We find $x \in X$ such that $\alpha(\gamma_2)(x) - x = c_1(\gamma_2)$. Let $c_2 : \Lambda_1 \to X$ be the virtual 1-cocycle defined by $c_2(\gamma) = c_1(\gamma) - c_x(\gamma)$. Then c_2 is cohomologous to c_1 and $c_2(\gamma_2) = 0$. Let $F \subset X$ denote the set of points that are fixed by $\alpha(\gamma_2)$. Since $\alpha(\gamma_2)$ commutes with $\alpha(\gamma)$ for all γ, F is a α-invariant closed subgroup. We note that for any $\gamma \in \Lambda_1$, $c_2(\gamma_2 \gamma) = c_2(\gamma_2) + \alpha(\gamma_2)(c_2(\gamma)) = \alpha(\gamma_2)(c_2(\gamma))$. As γ_2 lies in the center of Γ we also have,

$$c_2(\gamma_2 \gamma) = c_2(\gamma_2 \gamma) = c_2(\gamma) + \alpha(\gamma)(c_2(\gamma_2)) = c_2(\gamma).$$
This shows that for all $\gamma \in \Lambda_1$ the element $c_2(\gamma)$ lies in F. Let α_F denote the restriction of α to F. Then c_2 can be viewed as a virtual 1-cocycle of α_F. Since $\alpha(\gamma)|_F = I$ for all γ in the infinite cyclic group generated by γ_2, from the previous lemma and the induction hypothesis we conclude that c_2 is a virtual coboundary. Since c is cohomologous to c_2 this completes the proof. □

We conclude this paper with the following question:

Question 3.6. Does Theorem 1.1 hold if Γ is polycyclic-by-finite?

In view of Theorem 2.5 and Lemma 3.3 this is true if and only if Theorem 3.5 holds for polycyclic-by-finite groups.

References

[1] Lewis Bowen, *Entropy for expansive algebraic actions of residually finite groups*, Ergodic Theory Dynam. Systems 31 (2011), no. 3, 703-718.

[2] Nhan-Phu Chung, and Hanfeng Li, *Homoclinic groups, IE groups, and expansive algebraic actions*, Invent. Math. 199 (2015), no. 3, 805-858.

[3] Christopher Deninger, *Fuglede-Kadison determinants and entropy for actions of discrete amenable groups*, J. Amer. Math. Soc. 19 (2006), no. 3, 737-758.

[4] Meng-Che Ho, *Describing groups*, Proc. Amer. Math. Soc. 145 (2017), no. 5, 2223-2239.

[5] Bruce Kitchens and Klaus Schmidt, *Automorphisms of compact groups*, Ergodic theory dynam. systems 9 (1989), no. 4, 691-735.

[6] Hanfeng Li, *Compact group automorphisms, addition formulas and Fuglede-Kadison determinants*, Ann. of Math. (2) 176 (2012), no. 1, 303-347.

[7] Douglas Lind and Klaus Schmidt, *A survey of algebraic actions of the discrete Heisenberg group*, Russian Math. Surveys 70 (2015), no. 4, 657-714.

[8] J. E. Roseblade, *Group rings of polycyclic groups*, J. Pure Appl. Algebra 3 (1973), 307-328.

[9] Klaus Schmidt, *Dynamical systems of algebraic origin*, Birkhauser Verlag, 1995.

[10] B. A. F. Wehrfritz, *Group and ring theoretic properties of polycyclic groups*, Algebra and Applications, 10. Springer-Verlag London, Ltd., London, 2009.