Seminal Fructose Concentration in Man Infertility and the Fructose Test’s Meaning in Diagnosis Reason of Azoospermia Man

Nguyen Thi Trang*
Department of Biomedical and Genetic, Hanoi Medical University, Vietnam

Abstract

Background: This is a review from 2 studies that determine the concentration of seminal fructose and show the correlations between seminal fructose concentration with sperm concentration, vitality and motility (progressive). Besides, these studies also show the reason of man infertility cases which azoospermia and no seminal fructose.

Materials and methods: Include random 60 normozoospermia, 60 oligozoospermia semen. Determine fructose concentration by ROE method, 25 azoospermia cases with no fructose had been examined and precede Percutaneous Epididymal Sperm Aspiration (PESA) to find the infertility reason.

Results: Fructose concentration of normozoospermia: 1.601 ± 0.604 (g/l) significant lower than oligozoospermia: 1.881 ± 0.640 (g/l). Fructose seminal concentration has negative correlations with sperm concentration (R = -0.156; p > 0.05); sperm vitality (R = -0.065; p > 0.05); sperm progressive motility (R = -0.186; p < 0.05). Examine and process Percutaneous Epididymal Sperm Aspiration (PESA), 25 azoospermia with no fructose cases has diagnosed Congenital Bilateral Absence of the Vas Deferens (CBAVD).

Conclusion: Seminal fructose concentration of normozoospermia group is significant lower than oligozoospermia group. Fructose seminal concentration has negative correlations with sperm concentration, concentration and motility. 100% azoospermia cases with no seminal fructose have diagnosed CBAVD.

Keywords: Infertility; Seminal fructose; Azoospermia; CBAVD

Introduction

WHO [1] divided man infertility into 3 groups: normozoospermia (sperm concentration ≥ 15 billion/ml), oligozoospermia (sperm concentration <15 billion/ml) and azoospermia (no sperm). There are many studies determined seminal fructose and its correlations with concentration, vitality and motility of sperm. Azoospermia is the reason in 20% infertility man [2] and the common reason of azoospermia is CBAVD [3,4]. The purpose of the studies is using seminal fructose test to replace Percutaneous Epididymal Sperm Aspiration (PESA) to diagnosis CBAVD.

Fructose is essential for spermatozoa metabolism and spermatozoa motility [5]. Fructose is an energy source for spermatozoa. It is produced by the seminal vesicles with some contribution from the ampulla of the ductus deferens [4,6]. Determination of seminal fructose concentration has been used in examination of obstructive azoospermia and inflammation of male accessory glands [7,8]. The role of fructose concentrations in seminal plasma for total and sperm density has been investigated by several authors. Rajalakhshmi et al. [3] and Gonzales [9] reported that an increase in sperm concentration is often accompanied by a decrease in fructose concentration in seminal plasma, because sperm using fructose as the primary source of energy. However, others studies have also shown that fructose concentrations in seminal plasma of patients with oligozoospermia and azoospermia did not decrease as compared to normal men.

Materials and Methods

The studies select semen of infertility men (age 18-50) visited in Centre of genetics counseling of Hanoi medical university hospital from 3/2017-5/2018. After analyzing the semen, results of sperm concentration, vitality and motility were selected. Random choose 60 normozoospermia, 60 oligozoospermia cases. Determine fructose concentration by ROE improved method [10]. Fructose content in seminal plasma was determined by the resorcinol method where fructose reacts with resorcinol in concentrated Hydrochloric acid (HCl) solution to form a red compound. Measure the caloric complex of Zinc and Fructose at a wavelength of 560 nm against blanks.

Besides, 25 patients that azoospermia with no fructose had been examined and proceed Percutaneous Epididymal Sperm Aspiration (PESA) to find the infertility reason in Department of Andrology, Hanoi Medical University Hospital.

Use SPSS version 16.0 to analyze the results.

Results and Discussion

Abdella et al. [11] have reported that seminal fructose concentration is higher in oligozoospermia and lower in azoospermia
and as the nospermia. Fructose concentration in normozoospermia is significant lower than oligozoospermia [12].

Table 1 shows that seminal fructose in oligozoospermia is significant higher than oligozoospermia (p <0.05). Besides, other semen characteristics include sperm concentration, vitality and progressive motility in oligozoospermia are significant lower than normozoospermia (p <0.001). That means when seminal fructose decreases, sperm concentration, vitality and progressive motility increase. In some cases that sperm count and sperm concentration is too, high, seminal fructose may decrease lower than normal. To clear these correlations between seminal fructose and other semen characteristics, the studies analyze selected results by Pearson’s correlation.

The results show the negative correlations between seminal fructose and sperm concentration (R=-0.156 and p >0.05), sperm vitality (R=-0.065 and p >0.05) and sperm progressive motility (R=-0.186 and p <0.05). Gonzales [9], Orakwe et al. [13] and Mahmoud et al. [14] have reported similar conclusions. Fructose in semen is the source of energy of every sperm activities. The higher of sperm concentration, vitality and motility asked for more energy, so fructose is lower [4,15]. The study of Lu [15] reported when sperm motility increased, fructose decreased and in vitro, sperm continued using fructose.

Normal seminal fructose concentration confirms the role of testosterone and the function of vesicles and vas deferens are normal [16]. The absence of both sperm and fructose correlates with the obstruction in CBAVD or retrograde ejaculation [1,17]. Especially, the correlation between azoospermia and fructose in CBAVD had been proved by many authors [18]. All 25 cases azoospermia with no seminal fructose have been examined and precede Percutaneous Epididymal Sperm Aspiration (PESA) by andrologist to find the infertility reason. The result shows that the reason in all the cases is CBAVD. Fructose concentration in obstructive azoospermia cases is lower than normal or zero [8]. By other side, non-obstructive azoospermia, fructose concentration usually higher or equal than normal [17]. Inflammation the reproductive glands causes temporary obstruction, so that sperm count and seminal fructose concentration may decrease, but rarely absence both of them [17,19].

Follow to WHO [1], Gonzales [9], Kumar (2005) [4], some characteristics of the semen in obstructive infertility include:

- Azoospermia,
- Seminal fructose low or zero,
- Volume of semen <1.5 ml,
- pH of semen <7.

Our studies show that all 25 azoospermia cases with no seminal fructose are CBAVD. Because of that reason, seminal fructose test is considered to replace Percutaneous Epididymal Sperm Aspiration (PESA) to find the infertility reason.

Fructose is a main carbohydrate source in seminal plasma and necessary for sperm motion [10,20]. The measurement of seminal fructose has been used in most laboratories. Therefore, the World Health Organization manual recommends measurement of seminal fructose as a marker of seminal vesicular function [21]. Methods for determination of seminal fructose mainly include gas chromatography, indole coloration, and resorcinol coloration. In particular, the resorcinol method has been used widely in clinical andrology laboratories for its simplicity of operation, high specificity, and no need for special instrument.

Fructose in semen is the source of energy for all sperm activities. The higher of sperm concentration, and vitality and motility asked for more energy, so fructose is lower [4,15]. Normal seminal fructose concentration confirms the role of testosterone and the function of vesicles and vas deferens are normal [17].

In this study, negative correlations were observed between seminal fructose and sperm concentration (R=-0.156 và p >0.05), sperm vitality (R=-0.065 và p >0.05) and sperm progressive motility (R=-0.186 và p <0.05). This finding is in line with that of Gonzales [9], Orakwe et al. [13] and Mahmoud et al. [14]. Fructose in semen is the source of energy of every sperm activities. The higher of sperm concentration, vitality and motility asked for more energy, so fructose is lower [4,15]. Lu [15] reported seminal fructose concentration decreased, sperm concentration and mobility increased.

Buckett and Lewis-Jones [17] found that fructose concentrations were inversely ratio to sperm motility with R=-0.062 (p <0.05). However, Andrade Rocha [22] confirmed that seminal fructose concentration was related to sperm concentration, survival, motility and morphology, but the results were not statistically significant. In the study of Amidu et al. [12] seminal fructose concentration was negatively correlated with sperm motility (R=-0.04) but not statistically significant. Fructose concentrations were inversely ratio to sperm concentration (R=-0.21) with correlation was significant at 0.05 level [23]. Fructose is the major glycolysable substrate of seminal plasma and is widely accepted as a marker of seminal vesicle function [16,23,24]. Inflammation may lead to atrophy of the seminal vesicles and low seminal fructose concentration. When ejaculatory ducts are blocked, fructose concentration in seminal plasma usually decreases and may become undetectable [24,25]. Additionally, seminal plasma fructose concentration determination is useful for auxiliary diagnosis of obstructive and non obstructive azaospermia. Seminal fructose concentration in non-obstructive azaospermia is usually higher than that in normal fertility [22]. However, fructose concentration in seminal plasma of patients with obstructive azaospermia is usually absent or significantly lower than that in men of normal fertility [16,24]. Absence of seminal fructose has also been found in patients with congenital vas deferens-semale vesicle developmental defect [26]. Therefore, our results are consistent with most of the results of studies in the world.

Normal seminal fructose concentration confirms the role of testosterone and the function of vesicles and vas deferens are normal [16]. The absence of both sperm and fructose correlates with the obstruction in CBAVD or retrograde ejaculation [8,11]. Especially, the correlation between azaospermia and fructose in CBAVD had been proved by many authors [5]. In this study, all 25 cases azaospermia without seminal fructose have been examined and precede Percutaneous Epididymal Sperm Aspiration (PESA) by andrologist to find the infertility reason. The result shows that the reason in all the cases is CBAVD. Fructose concentration in obstructive azoospermia cases is lower than normal or absent [8]. By other side in human with non-obstructive azaospermia, fructose concentration usually higher or equal than normal [8]. Inflammation the reproductive glands causes temporary obstruction, so that sperm count and seminal fructose concentration may decrease, but rarely absence both of them [8,19,27].
Conclusion

Seminal fructose concentration of normozoospermia group is significantly lower than oligozoospermia group. Fructose seminal concentration has negative correlations with sperm concentration, concentration and motility. 100% azoospermia cases with no seminal fructose are congenital bilateral absence of the vas deferens-CBAVD.

References

1. WHO. Laboratory manual for the examination and processing of human semen. 5th ed. Geneva: Cambridge University Press; 2010.
2. Male Infertility Best Practice Policy Committee of the American Urological Association; Practice Committee of the American Society for Reproductive Medicine. Report on optimal evaluation of the infertile male. Fertil Steril. 2006;86(5 Suppl 1):S202-09.
3. Rajalakshmi M, Sharma RS, David GF, Kapur MM. Seminal fructose in normal and infertile men. Contraception. 1989;39(3):299-06.
4. Biswas S, Ferguson KM, Stedronska J, Baffoe G, Mansfield MD, Kosbab MH, et al. Fructose and hormone levels in semen: their correlations with sperm counts and motility. Fertil Steril. 1978;30(2):200-04.
5. Videla E, Blanco AM, Galli ME, Fernández-Collazo E. Human seminal biochemistry: Fructose, ascorbic acid, citric acid, acid phosphatase and their relationship with sperm count. Andrologia. 1981;13(3):212-4.
6. Schoenfeld C, Amelar RD, Dubin L, Numeroff M. Prolactin, fructose, and zinc levels found in human seminal plasma. Fertil Steril. 1979;32(2):206-08.
7. Carpino A, De Sanctis V, Siciliano L, Maggiolini M, Vivaçqua A, Pinamonti A, et al. Epididymal and sex accessory gland secretions in transfusion-dependent beta-thalassemic patients: Evidence of an impaired prostatic function. Exp Clin Endocrinol Diabetes. 1997;105(3):169-74.
8. Manivannan B, Bhande SS, Panneerdoss S, Srimam L, Lohiya NK. Safety evaluation of long-term vas occlusion with styrene maleic anhydride and its non-invasive reversal on accessory reproductive organs in langurs. Asian J Androl. 2005;7(2):195-204.
9. Gonzales GF. Function of seminal vesicles and their role on male fertility. Asian J Androl. 2001;3(4):251 58.
10. Roe JH. A colorimetric method for the determination of fructose in blood and urine. J Biol Chem. 1934;107:15-22.
11. Abdella MA, Omer EA, Al-Ahmed HR. Biochemical markers in semen and their correlation with fertility hormones and semen quality among Sudanese infertile patients. African Journal of Biochemistry Research. 2010;4(11):255-60.
12. Amida N, Owiredu WKRA, Bekoe MAT, Quaye L. The impact of seminal zinc and fructose concentration on human sperm characteristic. Journal of Medical and Biomedical Sciences. 2012;1(1):14-20.
13. Orakwe JC, Chukwuoz F, Ebu GU. True corrected seminal fructose in male infertility Nigerians a preliminary study. Niger J Clin Pract. 2010;13(1):84-86.
14. Mahmoud HH, Almarshedy LM, Alsalman AR. The key role of Zinc in enhancement of total antioxidant levels in spermatozoa of patients with Asthenozoospermia. Reprod Biol Endocrinol. 2014;12:3-8.
15. Lu CJ. Standardization and quality control for determination of fructose in seminal plasma. J Androl. 2007;28(2):207-13.
16. WHO. Laboratory manual for the examination of human semen and semen-cervical mucus interaction. 4th ed. Geneva: Cambridge University Press; 1987.
17. Buckett WM, Lewis-Jones DI. Fructose concentrations in seminal plasma from men with non-obstructive azoospermia. Arch Androl. 2002;48(1):23-7.
18. Lipshultz LI, Howards SS, Niederberger CS. Infertility in the Male. 2nd ed. St. Louis: Mosby year book, Inc; 1991. p. 133-35.
19. Dohle GR. Inflammatory associated obstructions of the male reproductive tract. Andrologia. 2003;35(5):321–4.
20. Johnsen O, Eliasson R. Evaluation of a commercially available kit for the colorimetric determination of zinc in human seminal plasma. Int J Androl. 1987;10(2):435-40.
21. Franken DR, Oehninger S. Semen analysis and sperm function testing. Asian J Androl. 2012;14(1):6-13.
22. Andrade Rocha FT. Sperm parameters in men with suspected infertility. Sperm characteristics, strict criteria sperm morphology analysis and hypoosmotic swelling test. J Reprod Med. 2001;46:577-82.
23. Raj V, Vijayan AN, Joseph K. Naked eye detection of infertility using fructose blue-a novel gold nanoparticle based fructose sensor. Biosens Bioelectr. 2014;54:171-4.
24. Ndovi TT, Choi L, Caffo B, Parsons T, Baker S, Zhao M. Quantitative assessment of seminal vesicle and prostate drug concentrations by use of a noninvasive method. Clin Pharmacol Ther. 2006;80(2):146-58.
25. Coppens L. Diagnosis and treatment of obstructive seminal vesicle pathology. Acta Urol Belg. 1997;65(2):11-9.
26. Kise H, Nishioji K, Satoh K, Okuno T, Kawamura J, Suzuki K. Measurement of protein C inhibitor in seminal plasma is useful for detecting agenesis of seminal vesicles or the vas deferens. J Androl. 2000;21(2):207-12.
27. Yassa DA, Idriss WK, Atassi ME. The diagnostic value of seminal α-glucosidase enzyme index for sperm motility and fertilizing capacity. Saudi Med J. 2001;22(11):987-991.