INTRODUCTION

The incidence and mortality rate of melanoma continues to increase despite advances in drug discovery programs and molecular approaches for identifying drug targets [1]. In order to effectively treat melanoma, it is necessary to inhibit key mechanistic events which regulate melanoma development, including cell proliferation, survival, angiogenesis, invasion, and metastasis [2].

C-Met is a receptor tyrosine kinase (RTK) that promotes the growth, metastasis, and angiogenesis of melanoma cells. The combination of vemurafenib and MET-targeting siRNA can inhibit cell growth and reduce cell invasion and migration by melanoma cells with MET amplification [3]. Melanoma is sensitive to c-Met inhibition, which decreases Akt phosphorylation, tumor cell proliferation, migration, and induction of apoptosis. Melanoma progression is stimulated by c-Met activation.

Long non-coding RNAs (lncRNAs) refers to a class of linear RNA molecules which are longer than 200 nucleotides in length and do not contain an open reading frame [4-6]. Dysregulations of lncRNAs are present in various tumor tissues and cancer cells where they serve as oncogenes or tumor suppressors [7]. KCNQ1OT1:TSS-DMR is located within intron 10 of KCNQ1 and encompasses the promoter of the non-coding RNA KCNQ1OT1, which is orientated in the antisense direction relative to KCNQ1[8]. KCNQ1OT1 expression was higher in breast cancer tissues and indicated malignancy [9]. KCNQ1OT1 was also over expressed in hepatocellular carcinoma and glioma [7].

RESULTS

The correlation of KCNQ1OT1, miR-153, and MET with melanoma

To identify lncRNAs involved in melanoma, we performed a cDNA microarray analysis. We collected
three pairs of melanoma tissue and adjacent tissues, and a gene expression microarray analysis was performed using the Agilent SurePrint G3 Human Gene Expression 8X60K V2 Microarray Kit. We detected 12 up-regulated and seven down-regulated lncRNAs in melanoma tissues (Table 1). The top lncRNA, KCNQ1OT1, was selected, and its expression was verified by real time PCR. KCNQ1OT1 expression increased in melanoma tissues compared with the paired adjacent normal tissues (Figure 1A).

Kaplan-Meier analysis indicated that patients with high levels of KCNQ1OT1 had worse overall survival (40 months) than those with lower KCNQ1OT1 (60 months; Figure 1B). Melanoma tissues had lower miR-153 expression, and the patients with higher miR-153 levels survived longer (Figure 1C, 1D). MET expression was increased in melanoma tissues, and patients with lower MET expression had a better prognosis (Figure 1E-1G). Compared with HACAT cells, miR-153 expression was decreased in melanoma cell lines (A375, A875, and MuM-2C), while KCNQ1OT1 and MET expression was increased (Figure 1H-1K).

KCNQ1OT1 is a target of miR-153

It is possible that lncRNAs might function as ceRNAs to indirectly regulate miRNAs [15]. There is a negative correlation between KCNQ1OT1 and miR-153 in melanoma (Figure 2A). The lncbase software showed that there are binding sites between KCNQ1OT1 and miR-153 (Figure 2B). The EGFP reporter assay showed that KCNQ1OT1 activity was decreased after cotransfection with miR-153, and increased after cotransfection with miR-153 antisense (Figure 2C). This was not the case when KCNQ1OT1 and miR-153 binding sites were mutated (Figure 2D). Real time PCR assays showed that miR-153 could inhibit KCNQ1OT1 expression (Figure 2E), and that KCNQ1OT1 could inhibit miR-153 (Figure 2F). This result suggests that KCNQ1OT1 has a direct combining effect with the miR-153.

Table 1. Differential expression of lncRNA between melanoma tissues and adjacent tissues.

Name	P	Fold Change	Change trend
KCNQ1OT1	4.05E-06	68.942	up
XLOC_009222	6.61E-06	65.257	up
CTC-459F4.3	9.53E-06	54.608	up
XLOC_010769	7.69E-05	50.137	up
RP11-386J22.3	0.031	39.842	up
chr22-38_28785274-29006793.1	0.001	29.150	up
XLOC_008698	0.001	29.152	up
XLOC_000782	0.003	27.265	up
KC6	0.004	21.203	up
RP11-424G14.1	0.011	13.509	up
CTD-2027I19.3	0.006	11.097	up
XLOC_003651	0.006	9.321	up
AC012368.1	0.009	8.037	up
CTB-89H12.4	0.023	7.689	up
RP11-508N22.12	0.035	6.072	up
MIR6818	0.039	4.167	up
XLOC_008295	2.76E-05	31.825	down
TTTY15	1.04E-04	68.303	down
RP1-104O17.1	0.001	9.871	down
FGD5-AS1	0.001	2.905	down
Figure 1. KCNQ1OT1, miR-153, and MET correlation with melanoma. (A) KCNQ1OT1 levels detected by real time PCR in 30 samples of melanoma and adjacent tissues. Data are presented as means ± SEM. ** P < 0.01 for comparison of tumor vs. adjacent tissues groups. (B) The relationship between KCNQ1OT1 expression and patient survival. (C) The levels of miR-153 were
miR-153 can target MET

Correlation analysis showed that miR-153 expression was negatively correlated with MET expression in melanoma (Figure 3A). UA miR-153 binding site within the MET 3' UTR sequence was identified by the miRDB software (Figure 3B). Luciferase reporter assays demonstrated that miR-153 can directly reduce
MET expression at the transcriptional level, since the wild-type MET 3' UTR was constructed by HACAT cells co-transfected with a luciferase reporter. Luciferase activity was lower than in the control group. However, luciferase levels were unchanged in cells co-transfected with the MET-MUT luciferase reporter or ASO miR-153 (miR-153 antisense) (Figure 3C, 3D). In A375 cells with miR-153 overexpression, miR-153 expression can inhibit MET expression (Figure 3E, 3F). When miR-153 expression was inhibited in A375 cells, MET expression increased (Figure 3G, 3H).

Figure 3. miR-153 can target MET. (A) Correlation between MET and miR-153 expression. (B) Prediction that miR-153 can specifically bind to the MET 3' UTR by MirDB. (C, D) Fluorescence intensity was measured in HACAT cells co-transfected with miR-153 or miR-153 as and MET WT/mut construct. Vector was used as a control. (E, F) After transfecting A375 cells with miR-153 mimic, the MET protein and mRNA levels were detected by western blot and real time PCR. Data are shown as mean ± SEM. ** P< 0.01. (G, H) After transfecting A375 cells with miR-153 AS, MET protein and mRNA levels of was detected by western blot and real-time PCR. Data are shown as mean ± SEM. ** P< 0.01.
KCNQ1OT1 suppresses miR-153’s activity on MET

KCNQ1OT1 expression was positively correlated with MET expression in melanoma (Figure 4A). In addition, the stimulatory effect of KCNQ1OT1 on MET expression was analyzed using real time PCR (Figure 4B, 4C). The miR-153 combining sites of MET WT or mutant were co-transfected with KCNQ1OT1 plasmids

Figure 4. Overexpression of MET enhances transcription and lncRNA-coated territory of KCNQ1OT1. (A) Correlation between MET expression and KCNQ1OT1. (B, C) Fluorescence intensity was measured in HACAT cells co-transfected with KCNQ1OT1, KCNQ1OT1 MUT or si-KCNQ1OT1, and MET WT/MUT construct. Vector was used as a control. (D, E) After transfecting KCNQ1OT1/control in A375 cells, MET level was detected by western blot and real time PCR. Data are shown as mean ± SEM. **P < 0.01 (F, G) After transfecting si-KCNQ1OT1 or control in A375 cells, MET level was detected by western blot and real time PCR. Data are shown as mean ± SEM. **P < 0.01.
(WT or MUT) or KCNQ1OT1 knockdown plasmids into HACAT cells. KCNQ1OT1 overexpression enhanced MET expression, while KCNQ1OT1 knockdown reduced MET expression. These results were not observed for the KCNQ1OT1 mutant or when the miR-153 binding sites in the MET 3'UTR were mutated. Western blot and real time PCR revealed that the ectopic KCNQ1OT1 expression increased MET protein and mRNA levels in A375 cells. KCNQ1OT1 depletion decreased MET protein and mRNA levels in A375 cells (Figure 4D-4G).

These data indicate that KCNQ1OT1 may act as a ceRNA for MET by competitively binding to miR-153, which suppresses the repressive activity of miR-153 on the MET 3’UTR.

Figure 5. KCNQ1OT1 promotes melanoma cell proliferation. (A) After transfecting cells with KCNQ1OT1, proliferation rates of A375 and A875 were determined using MTT assays. Data are presented as means ± SEM. (B) After transfecting cells with si-KCNQ1OT1, the proliferation rates of A375 and A875 were determined using MTT assays. Data are presented as means ± SEM. (C, D) After transfecting KCNQ1OT1/control in A375 cells, the cyclin d1 protein and mRNA level was detected by western blot and real time PCR. Data are shown as mean ± SEM. **P < 0.01. (E, F) After transfecting si-KCNQ1OT1 or control in A375 cells, cyclin d1 protein and mRNA level was detected by western blot and real time PCR. Data are shown as mean ± SEM. **P < 0.01.
Figure 6. KCNQ1OT1 promotes melanoma cell metastasis. (A, B) After transfecting KCNQ1OT1/control in A375 cells and (E, F) A875 cells, transwell assays with or without matrigel were performed. Cells were counted and results represent the mean ± SD of three experiments. ** P < 0.01 (C, D) After transfecting si-KCNQ1OT1 or control in A375 cells and (G, H) A875 cells, transwell assays with or without matrigel were performed. Cells were counted and results represent the mean ± SD of three experiments. ** P < 0.01 (I, J) After transfecting KCNQ1OT1/control or (K, L) si-KCNQ1OT1 in A375 cells, MMP2 protein and mRNA level was detected by western blot and real time PCR. Data are shown as mean ± SEM. ** P < 0.01 (M) 2×10⁶ A375 cells with stable expression of vector (control), KCNQ1OT1, and si-KCNQ1OT1 were injected into nude mice via the tail vein. Livers were dissected and either macroscopically photographed (left) or stained with H&E (middle, Scale bar, 100μm). The right side is the HE staining results of the liver (right).
Figure 7. miR-153 mediates the effect of KCNQ1OT1 on proliferation and metastasis in melanoma cells. (A) After transfecting with control, miR-153, or KCNQ1OT1 and miR-153, A375 and A875 cell proliferation was detected using an MTT assay. Data are shown as mean ± SEM. (B) After transfecting control, miR-153, or KCNQ1OT1 and miR-153 in A375 cells, a transwell assay without matrigel was performed. Cells were counted and results represent the mean ± SD of three experiments. ** P < 0.01 (C, D) Western blot and real time PCR was used to detect indicant proteins in A375 cells. ** P < 0.01 (E) After transfecting with control, AS-miR-153, or si-KCNQ1OT1 and miR-153 AS, A375 and A875 cell proliferation was detected using an MTT assay. Data are shown as mean ± SEM. (F) After transfecting control, ASO-miR-153, or si-KCNQ1OT1 and miR-153 AS in A375 cells, a transwell assay without matrigel was performed. Cells were counted and results represent the mean ± SD of three experiments. ** P< 0.01 (G, H) Western blot and real time PCR were used to detect indicant proteins in A375 cells. ** P< 0.01.
KCNQ1OT1 promotes melanoma cell proliferation

MTT assays revealed that the proliferation of A375 cells and A875 cells transfected with KCNQ1OT1 was greater than in the control group (Figure 5A). When si-KCNQ1OT1 was transfected, A375 and A875 cell proliferation decreased (Figure 5B). KCNQ1OT1 promoted cyclin d1 expression; KCNQ1OT1 inhibition decreased cyclin d1 expression (Figure 5C-5F).

KCNQ1OT1 promotes melanoma cell metastasis

Transwell results suggest that KCNQ1OT1 can promote melanoma cell invasion and migration (Figure 6A-6H). After KCNQ1OT1 expression decreased, cell invasion and migration also decreased. KCNQ1OT1 can promote MMP2 expression (Figure 6I-6L), which is an enzyme that promotes cell metastasis. To examine the effect of KCNQ1OT1 on melanoma cell metastasis in vivo, A375 cells stably expressing vector (control), KCNQ1OT1, or si-KCNQ1OT1 were injected into nude mice via the tail vein. Liver tissues were obtained 21 days after injection for microscopic histological analysis. Hepatic tumor metastasis increased in mice injected with KCNQ1OT1 cells (Figure 6M left). Hematoxylin and eosin staining confirmed that KCNQ1OT1 expression increased metastatic spread to the livers of the mice more than si-KCNQ1OT1 (Figure 6M middle, right).

KCNQ1OT1 suppresses miR-153’s inhibition of proliferation and metastasis

To determine whether KCNQ1OT1 functioned through miR-153 in melanoma cells, KCNQ1OT1 was over-expressed in A375 and A875 cells transfected with miR-153. We found that KCNQ1OT1 could eliminate miR-153’s inhibition of proliferation and metastasis of melanoma cells (Figure 7A, 7B). KCNQ1OT1 also eliminated miR-153’s inhibitory effect on MET, cyclin d1, and MMP2 (Figure 7C, 7D). Our data suggest that KCNQ1OT1 acts as a sponge for miR-153, which enhances MET expression, thereby promoting proliferation and metastasis of melanoma cells.

DISCUSSION

Melanoma cancer has a survival rate less than 5% after metastasis [16]. Understanding the dynamic interaction of pathways will help us identify promising molecular targets for critical barriers to cancer therapy and clinical treatment [17]. IncRNAs can promote apoptosis, proliferation, cell migration, and invasion.

We demonstrated that KCNQ1OT1 was upregulated in melanoma tissues and cells. MiRNA can silence genes by binding to mRNA, while ceRNA can regulate gene expression by competitively binding miRNA. MiR-153 is deregulated in several tumors [13, 18-28], and we found miR-153 expression in melanoma to be 24.78% lower than in adjacent tissues.

To clarify whether KCNQ1OT1 functions as an miRNA sponge, we analyzed potential miRNA binding sites contained in KCNQ1OT1. Based on function analysis of KCNQ1OT1, we focused on miR-153 and MET. MET may be responsible for KCNQ1OT1’s ability to promote melanoma proliferation and metastasis. Increased melanoma cell proliferation and metastasis are correlated with upregulated cyclin d1 and MMP2, which are downstream of MET. KCNQ1OT1 shared the same response elements with MET for miR-153. Thus, KCNQ1OT1 may act as a ceRNA to regulate MET expression in a miR-153-dependent manner. We also demonstrated that KCNQ1OT1 could inhibit melanoma metastasis by in vivo experiments.

MATERIALS AND METHODS

Informed consent

All methods were carried out in accordance with relevant guidelines and regulations. The study protocol was approved by Ethics Committee of the General Hospital of Shenyang Military Region and Human Clinical Trial Committee. The procedures were approved by ethics committee according to the Chinese Community guidelines. Written informed consent was obtained from all patients.

Ethical approval

The study protocol was approved by Medical Ethics and Human Clinical Trial Committee.

Tissue specimens and cell culture

Thirty melanoma and adjacent tissues were obtained from the cancer center of the General Hospital of Shenyang Military Region. Samples were collected from 30 patients (13 men, 17 women). Ages ranged from 29 to 81 years old, with an average age of 54.8 (Table 2). HACAT, A375, A875, and MuM-2C cell lines were obtained from American Type Culture Collection (Manassas, VA, USA). Cells were cultured in DMEM (Invitrogen, Carlsbad, CA, USA) containing 10% FBS (Invitrogen, Carlsbad, CA, USA). All cells were cultured at 37 °C with humidified atmosphere of 5% CO2.

Microarray

The SurePrint G3 Human Gene Expression 8X60K Microarray version 2 (Agilent Technologies) was used...
to analyze differences in lncRNA or mRNA levels in melanoma tissues and adjacent tissues. Total RNA was prepared using an RNeasy Mini Kit (Qiagen).

Real time PCR

RNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, USA) [14], and was reverse transcribed to cDNA by a RT reaction kit (Promega, Madison, WI, USA). Real-time PCR was performed by SYBR Green PCR master mix (TAKARA, Japan) on Mx 3000P real time PCR System. All reactions were performed at least three times. A dissociation step was conducted to generate a melting curve to confirm amplification specificity. GAPDH was used as the reference gene, and primer sequences are in Table 3.

Transfection

Lipo2000 transfection reagent (Ribobio, China) was used according to the manufacturer’s protocol. All the sequences were bought from Ribobio. KCNQ1OT1, including the miR-153 target sites, was amplified from the KCNQ1OT1 expression plasmid using the primers shown in Table 1, and then cloned into restriction sites of pcDNA3.1 vector (Ribobio, China). The resultant plasmid was named KCNQ1OT1. The KCNQ1OT1 fragment with mutations in the miR-153 response elements was inserted into pcDNA3.1 and named KCNQ1OT1 MUT (miR140-5p). The siRNA of KCNQ1OT1 was annealed and cloned into the vector pSilencer 2.1-U6 neo (Ribobio, China) to construct the knockdown plasmids. Similarly, the MET 3′UTR, which contains miR-153 target sites, was cloned into the same restriction sites, and the mutant forms of the KCNQ1OT1 or MET 3′UTR were obtained according to the methods described above. MiR-153/control and miR-153 antisense/control were bought from Ribobio China. The transfection efficiency was tested by real time PCR. Primer sequences are found in Table 4.

Fluorescent reporter assays

HACAT cells were co-transfected with miR-153/control, miR-153 AS/AS-NC, EGFP-KCNQ1OT1 WT/MUT, or MET WT/MUT plasmid in 48-well plates. GFP (Clontech, Mountain View, CA, USA) was used as control. Forty-eight hours later, cells were lysed in 200 µl lysis buffer per well. The fluorescence intensity of GFP was measured by an F-4500 Fluorescence Spectrophotometer (Hitachi, Tokyo, Japan). The primers of MET WT/MUT, EGFP-KCNQ1OT1 WT/MUT were designed by Shengong, Shanghai. This experiment was performed in triplicate.

MTT assays

Cells were plated in 96-well plates. The medium was replaced 24 hrs later, and the transfection was conducted. MTT solution was added to the well at 0, 12, 24, 36, and 48h after starting the culture. The medium was removed at 4 hours after incubation. The remaining MTT formazan was dissolved in 150 µl of DMSO. Each well’s absorbance was measured at 490 nm. This experiment was performed in triplicate.

Cell migration and invasion assay

The transwell chambers (Corning, USA) were coated with or without 20 µl matrigel (1:4, BD Bioscience, USA). The transfected cells were trypsinized and suspended in 100 µl of DMEM without serum, which was transfected to the upper chamber. A total of 600 µl culture medium with 10 % FBS was added to the lower chamber. Twenty-four hours after incubation, the numbers of cells which pass through the membrane were counted under a microscope. This experiment was performed in triplicate.

Western blot analyses

Proteins from the tissue and cells were isolated with RIPA (Beyotime, Shanghai, China) containing protease inhibitor. Each protein sample (30 µg) was separated by 10% SDS-PAGE, and then transferred onto a PVDF membrane. The membrane was blocked with 5% nonfat dry milk in TBST for 1 h at room temperature. The proteins were probed with specific antibodies: cyclin d1 (sc-4074), mmp2 (sc-13594), and MET (sc-8057). The proteins were detected using the ECL detection system (UVP Inc., Cambridge, UK) with enhanced chemiluminescence detection reagents. To confirm equal protein loading, the gels were stripped and reprobed with antibodies against GAPDH (Santa Cruz, California, Texas).

Nude mice xenografts

Five- to six-week-old female, athymic nude BALB/c mice (Vital River Laboratory Animal Technology Co. Ltd., Beijing, China) were used to study metastasis, in which 2×10⁶ cells mixed with 1ml saline were injected into the tail vein. The experiment was divided into three groups (the cell lines that stably overexpressed KCNQ1OT1, the cell lines of si-KCNQ1OT1 and the control group) with six mice in each group. At day 21 following tumor cell injection, liver samples were collected for histological examination.

All experimental procedures involving animals were conducted in accordance with the Guide for the Care
and Use of Laboratory Animals (NIH publication no. 80-23, revised 1996) and were performed according to the institutional ethical guidelines for animal experiments.

Histopathology

Liver specimens were fixed with 4% paraformaldehyde. The fixation time depended on the size of the tissue block and the tissue type. Serial sections (2 μm) were cut using a microtome and affixed onto positively charged slides. All slides were incubated at 60°C for a few hours to allow the sections to adhere to the slides. Tissues were depaaffinized and rehydrated through graded xylene and alcohol. Hematoxylin–eosin staining procedures were performed according to routine protocols.

Statistical methods

Each assay was performed in triplicate and repeated three times independently. All data was analyzed with Graph PRISM 6.0 (GraphPad, Inc.). Continuous variables were analyzed by the Student’s t-test or one-way variance. The overall survival rate was calculated by the Kaplan–Meier method. The comparison of differences was performed with the log-rank test, and \(P<0.05 \) indicated significance.

ACKNOWLEDGEMENTS

All personnel who have contributed to this article are in the list of authors.

CONFLICTS OF INTEREST

The authors declare no conflict of interest.

FUNDING

This work was supported by Liaoning Provincial Natural Science Foundation (20170540953).

REFERENCES

1. Madhunapantula SV, Robertson GP. Chemoprevention of melanoma. Adv Pharmacol. 2012; 65:361–98. https://doi.org/10.1016/B978-0-12-397927-8.00012-9
2. Evans MS, Madhunapantula SV, Robertson GP, Drabick JJ. Current and future trials of targeted therapies in cutaneous melanoma. Adv Exp Med Biol. 2013; 779:223–55. https://doi.org/10.1007/978-1-4614-6176-0_10
3. Caenepeel S, Cooke K, Wadsworth S, Huang G, Robert L, Moreno BH, Parisi G, Cajulis E, Kendall R, Beltran P, Ribas A, Coxon A, Hughes PE. MAPK pathway inhibition induces MET and GAB1 levels, priming BRAF mutant melanoma for rescue by hepatocyte growth factor. Oncotarget. 2017; 8:17795–809. https://doi.org/10.18632/oncotarget.14855
4. Ma P, Xu T, Huang M, Shu Y. Increased expression of LncRNA PANDAR predicts a poor prognosis in gastric cancer. Biomed Pharmacother. 2016; 78:172–76. https://doi.org/10.1016/j.biopharm.2016.01.025
5. Pan W, Liu L, Wei J, Ge Y, Zhang J, Chen H, Zhou L, Yuan Q, Zhou C, Yang M. A functional LncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility. Mol Carcinog. 2016; 55:90–96. https://doi.org/10.1002/mc.22261
6. Shao Y, Ye M, Li Q, Sun W, Ye G, Zhang X, Yang Y, Xiao B, Guo J. LncRNA-RMRP promotes carcinogenesis by acting as a miR-206 sponge and is used as a novel biomarker for gastric cancer. Oncotarget. 2016; 7:37812–24. https://doi.org/10.18632/oncotarget.9336
7. Gong W, Zheng J, Liu X, Liu Y, Guo J, Gao Y, Tao W, Chen J, Li Z, Ma J, Xue Y. Knockdown of Long Non-Coding RNA KCNQ1OT1 Restrained Glioma Cells’ Malignancy by Activating miR-370/CCNE2 Axis. Front Cell Neurosci. 2017; 11:84. https://doi.org/10.3389/fncel.2017.00084
8. Zhang H, Zeitz MJ, Wang H, Niu B, Ge S, Li W, Cui J, Wang G, Qian G, Higgins MJ, Fan X, Hoffman AR, Hu JF. Long noncoding RNA-mediated intrachromosomal interactions promote imprinting at the Kcnq1 locus. J Cell Biol. 2014; 204:61–75. https://doi.org/10.1083/jcb.201304152
9. Zhang Z, Weaver DL, Olsen D, deKay J, Peng Z, Ashikaga T, Evans MF. Long non-coding RNA chromogenic in situ hybridisation signal pattern correlation with breast tumour pathology. J Clin Pathol. 2016; 69:76–81. https://doi.org/10.1136/jclinpath-2015-203275
10. Dahmke IN, Backes C, Rudzitis-Auth J, Laschke MW, Leidinger P, Menger MD, Meese E, Mahlknecht U. Curcumin intake affects miRNA signature in murine melanoma with mmu-mir-205-Sp most significantly altered. PLoS One. 2013; 8:e81122. https://doi.org/10.1371/journal.pone.0081122
11. Jazirehi AR, Torres-Collado AX, Nazarian R. Epigenetic regulation of melanoma tumor suppressor miRNA-124a. Epigenomics. 2013; 5:251–52. https://doi.org/10.2217/epi.13.23
12. Liu F, Liu B, Qian J, Wu G, Li J, Ma Z. miR-153 enhances the therapeutic effect of gemcitabine by targeting Snail in pancreatic cancer. Acta Biochim
13. Wu X, Li L, Li Y, Liu Z. MiR-153 promotes breast cancer cell apoptosis by targeting HECTD3. Am J Cancer Res. 2016; 6:1563–71.
14. Guo B, Hui Q, Zhang Y, Chang P, Tao K. MiR-194 is a negative regulator of GEF-H1 pathway in melanoma. Oncol Rep. 2016; 36:2412–20. https://doi.org/10.3892/or.2016.5020
15. Tay Y, Rinn J, Pandolfi PP. The multilayered complexity of ceRNA crosstalk and competition. Nature. 2014; 505:344–52. https://doi.org/10.1038/nature12986
16. He J, Tian N, Yang Y, Jin L, Feng X, Hua J, Lin S, Wang B, Li H, Wang J. MiR-185 enhances the inhibition of proliferation and migration induced by ionizing radiation in melanoma. Oncol Lett. 2017; 13:2442–48. https://doi.org/10.3892/ol.2017.5699
17. Wagenseller AG, Shada A, D’Auria KM, Murphy C, Sun D, Molhoek KR, Papin JA, Dutta A, Slingluff CL Jr. MicroRNAs induced in melanoma treated with combination targeted therapy of Temsirolimus and Bevacizumab. J Transl Med. 2013; 11:218. https://doi.org/10.1186/1479-5876-11-218
18. Liu F, Liu B, Qian J, Wu G, Li J, Ma Z. MiR-153 enhances the therapeutic effect of gemcitabine by targeting Snail in pancreatic cancer. Acta Biochim Biophys Sin (Shanghai). 2017; 49:520–29. https://doi.org/10.1093/abbs/gmx039
19. Fkih M’hamed I, Privat M, Trimeche M, Penault-Llorca F, Bignon YJ, Kenani A. MiR-10b, MiR-26a, MiR-146a And MiR-153 Expression in Triple Negative Vs Non Triple Negative Breast Cancer: potential Biomarkers. Pathol Oncol Res. 2017; 23:815–27. https://doi.org/10.1007/s12253-017-0188-4
20. Fkih M’hamed I, Privat M, Ponelle F, Penault-Llorca F, Kenani A, Bignon YJ. Identification of MiR-10b, MiR-26a, MiR-146a and MiR-153 as potential triple-negative breast cancer biomarkers. Cell Oncol (Dordr). 2015; 38:433–42. https://doi.org/10.1007/s13402-015-0239-3
21. Wang Z, Liu C. MiR-153 regulates metastases of gastric cancer through Snail. Tumour Biol. 2015.
22. Li W, Zhai L, Zhao C, Lv S. MiR-153 inhibits epithelial-mesenchymal transition by targeting metadherin in human breast cancer. Breast Cancer Res Treat. 2015; 150:501–09. https://doi.org/10.1007/s10549-015-3346-y
23. Shan N, Shen L, Wang J, He D, Duan C. MiR-153 inhibits migration and invasion of human non-small-cell lung cancer by targeting ADAM19. Biochem Biophys Res Commun. 2015; 456:385–91. https://doi.org/10.1016/j.bbrc.2014.11.093
24. Yuan Y, Du W, Wang Y, Xu C, Wang J, Zhang Y, Wang H, Ju J, Zhao L, Wang Z, Lu Y, Cai B, Pan Z. Suppression of AKT expression by miR-153 produced anti-tumor activity in lung cancer. Int J Cancer. 2015; 136:1333–40. https://doi.org/10.1002/ijc.29103
25. Zhang L, Pickard K, Jenei V, Bullock MD, Bruce A, Mitter R, Kelly G, Paraskeva C, Strefford J, Primrose J, Thomas GJ, Packham G, Mirnezami AH. MiR-153 supports colorectal cancer progression via pleiotropic effects that enhance invasion and chemotherapeutic resistance. Cancer Res. 2013; 73:6435–47. https://doi.org/10.1158/0008-5472.CAN-12-3308
26. Anaya-Ruiz M, Celabado J, Delgado-López G, Sánchez-Vázquez ML, Pérez-Santos JL. MiR-153 silencing induces apoptosis in the MDA-MB-231 breast cancer cell line. Asian Pac J Cancer Prev. 2013; 14:2983–86. https://doi.org/10.7314/APJCP.2013.14.5.2983
27. Xu Q, Sun Q, Zhang J, Yu J, Chen W, Zhang Z. Downregulation of miR-153 contributes to epithelial-mesenchymal transition and tumor metastasis in human epithelial cancer. Carcinogenesis. 2013; 34:539–49. https://doi.org/10.1093/carcin/bgs374
28. Wu Z, He B, He J, Mao X. Upregulation of miR-153 promotes cell proliferation via downregulation of the PTEN tumor suppressor gene in human prostate cancer. Prostate. 2013; 73:596–604. https://doi.org/10.1002/pros.22600