The potential of gene therapies for spinal cord injury repair: a systematic review and meta-analysis of pre-clinical studies

Catriona J. Cunningham1,*, Mindaugas Viskontas1, Krzysztof Janowicz1, Yasmin Sani1, Malin E. Håkansson1, Anastasia Heidari1, Wenlong Huang1,∗, Xuennong Bo1,2

https://doi.org/10.4103/1673-5374.347941

Abstract
Currently, there is no cure for traumatic spinal cord injury but one therapeutic approach showing promise is gene therapy. In this systematic review and meta-analysis, we aim to assess the efficacy of gene therapies in pre-clinical models of spinal cord injury and the risk of bias. In this meta-analysis, registered at PROSPERO (Registration ID: CRD42020185008), we identified relevant controlled in vivo studies published in English by searching the PubMed, Web of Science, and Embase databases. No restrictions of the year of publication were applied and the last literature search was conducted on August 3, 2020. We then conducted a random-effects meta-analysis using the restricted maximum likelihood estimator. A total of 71 studies met our inclusion criteria and were included in the systematic review. Our results showed that overall, gene therapies were associated with improvements in locomotor score (standardized mean difference [SMD]: 2.07, 95% confidence interval [CI]: 1.68–2.47, Tau2 = 2.13, I2 = 83.6%) and axonal regrowth (SMD: 2.78, 95% CI: 1.92–3.65, Tau2 = 4.13, I2 = 85.9%). There was significant asymmetry in the funnel plots of both outcome measures indicating the presence of publication bias. We used a modified CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) checklist to assess the risk of bias, finding that the median score was 4 (IQR: 3–5). In particular, reports of allocation concealment and sample size calculations were lacking. In conclusion, gene therapies are showing promise as therapies for spinal cord injury repair, but there is no consensus on which gene or genes should be targeted.

Key Words: animal models; gene delivery; meta-analysis; regenerative medicine; spinal cord injury; systematic review; viral vectors

Introduction

Traumatic spinal cord injury (SCI) is a devastating life event leaving around 90% of patients with significant long-term disability including sensorimotor impairment, loss of independence, and decreased quality of life (Ahuja et al., 2017). There are an estimated 27 million people worldwide living with the consequences of SCI (GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators, 2019). Central nervous system (CNS) regeneration is often referred to as the holy grail of neuroscience. The obstacles to overcome are vast including the physical barrier of cystic cavities, the presence of numerous inhibitory molecules such as chondroitin sulphate proteoglycans which create a non-permissive environment and the limited intrinsic regenerative capacity of adult CNS neurons (Fawcett, 2019).

Gene therapy is the application of genetic material to correct disease-causing mutations, downregulate genes contributing to disease or deliver genes encoding molecules with therapeutic potential. The most widely used vectors for gene therapy delivery are viral vectors including adenoviruses, adeno-associated viruses (AAV), and lentiviruses (LV), the latter of which is a genus of retroviruses (Cring and Sheffield, 2022). Non-viral vectors including liposomes and nanoparticles might be used in favor of viral vectors due to their capacity to carry longer genetic sequences (Uchida et al., 2014). Another approach is genome editing, revolutionized by the development of CRISPR-Cas9 technology in 2012 (Dunbar et al., 2018). Gene therapy approaches being investigated in preclinical models of SCI include in vivo delivery of genes to the spinal cord to increase the expression of promoters of axonal regeneration or silence inhibitors with short hairpin RNA (shRNA) or small interfering RNA (siRNA) (Bo et al., 2011; Zavvarian et al., 2020). This has the potential to overcome some of the limitations of direct administration of drugs and recombinant proteins. For example, it has long since been established that Chondroitinase ABC (CHABC) can degrade chondroitin sulphate proteoglycan chains and promote functional recovery after SCI in animal models (Bradbury et al., 2002) but due to the short half-life of the enzyme, repeated invasive dosing would be required. In more recent years, gene therapy approaches have therefore been explored to deliver CHABC (Burnside et al., 2018).

Several narrative reviews have discussed the potential of gene therapy for spinal cord repair (Bo et al., 2011; Uchida et al., 2014; Zavvarian et al., 2020), but to the best of our knowledge, there is no existing systematic review and meta-analysis. Our review, therefore, aims to assess the efficacy of gene therapies in preclinical models of SCI and the risk of bias.

Methods

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement (PRISMA) guidelines (Moher et al., 2009) and the protocol of this meta-analysis has been published in the PROSPERO database under registration No. CRD42020185008.

Search strategy
We conducted searches in PubMed, Web of Science, and Embase (OVID) for articles published in English using the following keywords search strategy: (gene therapies OR gene therapy OR gene delivery OR CRISPR OR CRISPR/cas9 OR CRISPR/cas9 OR CRISPR-cas9 OR CRISPR-cas9 OR viral vector$ OR viral construct$ OR lentivir* OR lentiviral construct$ OR lentiviral vector$ OR adeno-associated viral vector$ OR adeno-associated viral construct$ OR adeno-associated viral vector$ OR adeno associated viral construct$ OR adeno associated viral construct$ OR adeno viral OR adeno viral vector$ OR adenoviral viral construct$ OR AAV$ OR AAV-induced) AND (spinal cord injury OR spinal cord injuries OR SCI OR injured spinal cord OR spinal cord repair: a systematic review and meta-analysis of pre-clinical studies. Neural Regen Res 18(2):299-305.
cord injured OR damaged spinal cord OR spinal cord damage OR spinal cord contusion OR contused spinal cord OR lacerated spinal cord OR spinal cord laceration OR spinal cord compression OR compressed spinal cord OR spinal cord trauma OR transected spinal cord OR spinal cord transaction OR spinal cord hemisection OR axon regeneration OR axon growth OR axon regrowth.

To limit the searches to animal studies, we used previously published filters (Hooijmans et al., 2010; de Vries et al., 2014). We also screened relevant review articles for additional studies. We applied no limits to the year of publication and the last search was performed on August 3, 2020.

Study screening

Study screening was conducted by two independent reviewers (MH, AH) and disagreements were resolved through discussion with a third reviewer (CC). After removing duplicates, we first screened titles and abstracts to exclude clearly irrelevant studies (e.g., reviews, irrelevant disease models). In the second phase, we then assessed the full texts of identified studies against the complete inclusion and exclusion criteria. Controlled studies which delivered a gene therapy (*in vivo* vector delivery, administration of *ex vivo* transduced cells, CRISPR/cas9) to a preclinical model of traumatic SCI and assessed functional recovery using a locomotor score were included. The criteria for the comparator group were SCI + one of the following: vector expressing a reporter protein only; cells transduced with a vector expressing a reporter protein only or a CRISPR non-targeting control. Studies with naïve, sham surgery, and SCI only controls were excluded.

Data extraction

Qualitative data for the systematic review were extracted by two independent reviewers (MV, KJ) and any disagreements were resolved through discussion with a third reviewer (CC). The study design information extracted included: (1) SCI model; (2) species; (3) age; (4) sex; (5) total animal number; (6) number of groups; (7) gene therapy; (8) timing of administration; (9) route of administration; (10) dose and (11) combination therapy. We defined the primary outcome measure as locomotor score (any scale) and the secondary outcome measures as axon regrowth and evoked hind paw functional recovery using a locomotor score were included. The criteria for the comparator group were SCI + one of the following: vector expressing a reporter protein only; cells transduced with a vector expressing a reporter protein only or a CRISPR non-targeting control. Studies with naïve, sham surgery, and SCI only controls were excluded.

Risk of bias assessment

We assessed the risk of bias using an adapted 7-point CAMARADES (Collaborative Approach to Meta-Analysis and Review of Animal Data in Experimental Studies) Risk of Bias Checklist (Macleod et al., 2004) including the following: 1) peer-reviewed publication; 2) random allocation to group; 3) allocation concealment; 4) blinded assessment of outcome; 5) sample size calculation/power calculation; 6) compliance with animal welfare regulations; 7) statement of potential conflict of interest.

Statistical analysis

We conducted all statistical analysis and graphing using the metafor package (Viechtbauer, 2010) in RStudio V1.3.959 (RStudio, Boston, MA, USA), R version 4.0.1. Effect sizes were calculated using Hedge’s *g* with a positive standardized mean difference (SMD) favoring treatment for all outcome measures. We then conducted random effects meta-analyses using the restricted maximum likelihood estimator. We assessed heterogeneity using *I²* (percentage of between-study variance due to heterogeneity rather than sampling error) and *τ*² (between-study variance) (Vesterinen et al., 2014). To visualize publication bias, we used funnel plots and confirmed asymmetry with a trim-and-fill test. We used trim-and-fill analysis to estimate the number of “missing” unpublished studies and calculate an adjusted effect size accounting for publication bias (Duval & Tweedie, 2000). Lastly, we conducted subgroup analyses to explore the following study characteristics as sources of heterogeneity: gene therapy platform; SCI model; timepoint of administration; route of administration; randomization and blinding. Independent random effects models were fitted to subgroup data and then comparisons were made using a Wald-type test. We only conducted analysis when there were at least four comparisons in a subgroup. Significance was defined as *P* < 0.05.

Results

Study characteristics

We identified 2487 records from our literature search and following screening, 71 studies were included in the systematic review (Figure 1). Study characteristics including genes delivered, SCI models and total animal numbers are presented in Additional Table 1. As expected, the majority of studies were conducted in rats (*n* = 55) and mice (*n* = 12) with the remaining studies using dogs (*n* = 3) and rabbits (*n* = 1) models. The models used were as follows: contusion (*n* = 35); compression (*n* = 17); complete transection (*n* = 14); hemisection (*n* = 4) and electrolytic lesion (*n* = 1). The vast majority of studies induced a thoracic SCI (*n* = 66) with almost half (*n* = 35) using T10 as the injury level. The remaining studies induced injury in the lumbar (*n* = 3) and cervical (*n* = 1) spinal cord and one final study did not specify the level.

All but one study used viral vectors as the gene therapy platform, employing either *in vivo* delivery, employing *ex vivo* transduction of cells, lentiviruses favoring treatment for all outcome measures. We then conducted random effects meta-analyses using the restricted maximum likelihood estimator. We assessed heterogeneity using *I²* (percentage of between-study variance due to heterogeneity rather than sampling error) and *τ*² (between-study variance) (Vesterinen et al., 2014). To visualize publication bias, we used funnel plots and confirmed asymmetry with a trim-and-fill test. We used trim-and-fill analysis to estimate the number of “missing” unpublished studies and calculate an adjusted effect size accounting for publication bias (Duval & Tweedie, 2000). Lastly, we conducted subgroup analyses to explore the following study characteristics as sources of heterogeneity: gene therapy platform; SCI model; timepoint of administration; route of administration; randomization and blinding. Independent random effects models were fitted to subgroup data and then comparisons were made using a Wald-type test. We only conducted analysis when there were at least four comparisons in a subgroup. Significance was defined as *P* < 0.05.

A total of seven studies administered gene therapies in combination with biomaterials (*n* = 4) such as fibrin gels (Tsai et al., 2017; Shi et al., 2019), stem cells (*n* = 1) and CHABC (*n* = 2). Blits et al. (2003) implanted a Schwann cell bridge into the lesion at the same time as AAV vectors containing brain-derived neurotrophic factor and NT-3. Only three studies co-administered cyclosporin as an immunosuppressant (Hwang et al., 2009; Lee et al., 2009, 2011).

Figure 1 | PRISMA flow diagram.

Summary of the number of studies included, screened, and ultimately included in the systematic review and meta-analysis. PRISMA:Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement.
Meta-analysis results
A total of 56 studies (68 comparisons) were assessed in the meta-analysis of our primary outcome measure, locomotor score. Two studies could not be included as the data were reported as median ± interquartile range (IQR) and 13 studies were excluded after the authors did not respond to our requests for clarification of their data. As summarized in Figure 2, our results suggested that gene therapies improved locomotor scores compared with control (SMD: 2.07, 95% confidence interval [CI]: 1.68–2.47, P < 0.0001, Tau² = 2.13, I² = 83.6%).

We then proceeded to analyze our secondary outcome measures. We included 24 studies (28 comparisons) in the meta-analysis of the axonal regrowth data (Figure 3). Overall, gene therapies led to an improvement in axonal regrowth compared with control (SMD: 2.78, 95% CI: 1.92–3.65, P < 0.0001, Tau² = 4.13, I² = 85.5%). Only 3 studies included data on evoked hind paw mechanical hypersensitivity and as we defined 10 as the minimum in our protocol, we were not able to analyze this secondary outcome measure.

Subgroup analysis
Lastly, we conducted a subgroup analysis to explore sources of heterogeneity. As shown in Additional Tables 3 and 4, we did not observe any significant effects of randomization, blinding, SCI model, or gene therapy platform in either the locomotor score or axonal regrowth datasets.

Study quality and risk of bias
As shown in Table 1, the median score was 4 (IQR: 3–5). Although most studies reported randomization (71.8%), less than half (45.1%) reported using randomization. Only two studies (Li et al., 2017; Chen et al., 2020) specified that sample size calculations were performed and it was only possible to determine that one study used allocation concealment (Cen et al., 2013).

An important finding of the studies included in our meta-analysis was that only one study used a cervical SCI model. This is in stark contrast to the clinical population in which ~60% of traumatic injuries are at the cervical level (Ahuja et al., 2017). Around 32% of patients have a thoracic SCI but 93% of our included studies used a thoracic model. We, therefore, recommend that future studies focus more on assessing the efficacy of gene therapies in cervical models to increase the translational potential. However, we do acknowledge the challenges this can introduce including respiratory dysfunction, higher mortality rates, and increased post-operative care needs (Sharif-Alhoseini et al., 2017). Another limitation that may impact clinical translation was the lack of studies which explored subacute and chronic timepoints of administration for gene therapies. While this will increase research costs, these timepoints also need to be explored because the pathophysiology is substantially different from acute SCI.

In conclusion, our systematic review and meta-analysis demonstrate that gene therapies are showing promise in preclinical models of SCI. Although a number of cell therapies for SCI have been ongoing for several years, gene therapy is still not yet reached clinical trial. A consortium called CHASE-IT, supported by International Spinal Research Trust, plans to conduct a clinical trial on lentivector mediated transduction of humanized ChABC (International Spinal Research Trust, 2021). However, the degradation of the inhibitory chondroitin sulphate proteoglycans at the injury site alone may not be enough to lead to successful axonal regeneration and functional recovery. As previously mentioned, combinatorial approaches likely hold the key to successful SCI repair. Gene therapies may need to be combined with cell therapies, biomaterials, and other strategies such as rehabilitation and epidural stimulation (Bo et al., 2011).

Discussion
We identified 71 studies which met the inclusion criteria for our systematic review and meta-analysis of gene therapies in preclinical models of SCI. Overall, our meta-analysis favored treatment with gene therapies leading to significant improvements in the locomotor score and enhanced axonal regrowth compared to controls. We observed significant asymmetry in the funnel plots of both outcome measures suggesting the presence of publication bias. However, the trim-and-fill analysis only estimated a modest number of “missing” studies with negative or neutral effect sizes in both datasets. We next reported that the median risk of bias score was 4 (IQR: 3–5) as assessed using a modified CAMARADES checklist. Although the vast majority of studies used blinding, reporting of allocation concealment and power calculations was lacking.

While gene therapies were associated with improvements in both outcome measures, there was great heterogeneity in the therapies administered. A total of 58 different genes were targeted including the delivery of promoters of axonal regrowth brain-derived neurotrophic factor, NT-3, and NFG. As an alternative approach, some studies silenced inhibitors of axonal regeneration such as Nogo (Liu et al., 2016) and its receptor-negative growth regulatory protein 1 (Lv et al., 2012; Zhao et al., 2018) using siRNAs or shRNAs. Given the complex pathophysiology of SCI, it seems unlikely that gene therapy alone will be able to induce substantial recovery in patients (Griffin and Bradke, 2020). However, only 7 out of 71 included studies that administered gene therapies as part of the combinational approach.

A potential limitation of our meta-analysis was the focus on motor recovery. By requiring studies to have assessed locomotor scores to meet our inclusion criteria, we may have excluded studies focussing on the therapies for sensory nerve regeneration and treatment of neuropathic pain. This could explain why just three studies assessed evoked hind paw mechanical hypersensitivity and it was therefore not feasible to conduct a meta-analysis on this outcome. We chose locomotor scores (including Basso, Beattie and Bresnahan locomotor rating scale and Basso mouse scale) as our primary outcome measure as these are the most widely used behavioral tests for assessing functional recovery in preclinical models of SCI (Wattlawich et al., 2019). While simple to conduct and inexpensive, we do acknowledge that a disadvantage of locomotor scores is subjectivity (Silva et al., 2014). Another possible limitation in our meta-analysis was that all the comparisons in our subgroup analysis were insignificant. This could be explained by a lack of power. In our analysis, we reported high heterogeneity and unbalanced subgroups which can increase the number of studies required to reach sufficient power in the subgroup analysis (Cuijpers et al., 2021).

An important finding of the studies included in our meta-analysis was that only one study used a cervical SCI model. This is in stark contrast to the clinical population in which ~60% of traumatic injuries are at the cervical level (Ahuja et al., 2017). Around 32% of patients have a thoracic SCI but 93% of our included studies used a thoracic model. We, therefore, recommend that future studies focus more on assessing the efficacy of gene therapies in cervical models to increase the translational potential. However, we do acknowledge the challenges this can introduce including respiratory dysfunction, higher mortality rates, and increased post-operative care needs (Sharif-Alhoseini et al., 2017). Another limitation that may impact clinical translation was the lack of studies which explored subacute and chronic timepoints of administration for gene therapies. While this will increase research costs, these timepoints also need to be explored because the pathophysiology is substantially different from acute SCI.

An ongoing issue in preclinical research is inadequate study reporting and in particular, measures to reduce bias such as blinding and randomization. To address this, the National Centre for the Replacement, Refinement and Reduction of Animals (NC3Rs) worked with a group of experts to develop the Animal Research: Reporting of in vivo Experiments (ARRIVE) Guidelines (Percie du Sert et al., 2020). While many journals endorse these guidelines and began requiring authors to submit a completed ARRIVE checklist, a randomized controlled trial of manuscripts submitted to PLoS One showed that compliance with the guidelines was still lacking (Hair et al., 2019). The Nature Publishing Group implemented its checklist to reduce the risk of bias in preclinical studies. While this did lead to some improvements compared with manuscript submissions in journals without this policy, there were still improvements needed including reporting of power calculations (NPQIP Collaborative Group, 2019). In similarity with this, we found that very few studies included power calculations and reported allocation concealment.

After decades of clinical trials, several gene therapies have been approved in recent years including AAV9-based Zolgensma for the treatment of spinal muscular atrophy (European Medicines Agency; EMA/173982/2020, 2020). The safety of several types of viral vectors, particularly AAV (Nathwani et al., 2014; Colella et al., 2018), has been widely reported. While clinical trials of cell therapies for SCI have been ongoing for several years, gene therapy for SCI is yet to reach clinical trial. A consortium called CHASE-IT, supported by International Spinal Research Trust, plans to conduct a clinical trial on lentivector mediated transduction of humanized ChABC (International Spinal Research Trust, 2021). However, the degradation of the inhibitory chondroitin sulphate proteoglycans at the injury site alone may not be enough to lead to successful axonal regeneration and functional recovery. As previously mentioned, combinatorial approaches likely hold the key to successful SCI repair. Gene therapies may need to be combined with cell therapies, biomaterials, and other strategies such as rehabilitation and epidural stimulation (Bo et al., 2011).

In conclusion, our systematic review and meta-analysis demonstrate that gene therapies are showing promise in preclinical models of SCI. Although a number of cell therapies for SCI have been ongoing for several years, gene therapy for SCI is yet to reach clinical trial. A consortium called CHASE-IT, supported by International Spinal Research Trust, plans to conduct a clinical trial on lentivector mediated transduction of humanized ChABC (International Spinal Research Trust, 2021). However, the degradation of the inhibitory chondroitin sulphate proteoglycans at the injury site alone may not be enough to lead to successful axonal regeneration and functional recovery. As previously mentioned, combinatorial approaches likely hold the key to successful SCI repair. Gene therapies may need to be combined with cell therapies, biomaterials, and other strategies such as rehabilitation and epidural stimulation (Bo et al., 2011).
Figure 2 | Forest plot of locomotor score data. Summary of the effect sizes of each comparison included in the meta-analysis expressed as standardized mean difference (SMD) and 95% confidence intervals (CIs). A positive SMD favors treatment and represents an improvement in locomotor score. The overall estimated effect size, as represented by the blue diamond, was 2.07 (95% CI: 1.68–2.47).

Figure 3 | Forest plot of axonal regrowth data. Effect sizes are expressed as standardized mean difference (SMD) and 95% confidence intervals (CIs). A positive SMD represents increased axonal regrowth. The overall estimated effect size was 2.78 (95% CI: 1.92–3.65).

Figure 4 | Funnel plots for assessing the risk of publication bias. (A, B) The asymmetric funnel plot in the locomotor score dataset is suggestive of publication bias (A) and the trim-and-fill analysis (B) estimated there were 2 “missing” unpublished studies (unfilled circles) on the left-hand side of the plot with negative effect sizes favoring control. (C, D) Similarly, there was also pronounced asymmetry in the funnel plot of the axonal regrowth outcome (C) with trim-and-fill analysis again estimating 2 “missing” studies (D). The dotted lines represent 95% confidence intervals.

Acknowledgments: We would like to thank Dr Ying Jin (Drexel University) and Dr Alexandros Lavdas (Eurac Research) for replying to our requests for clarification of the exact n numbers.

Author contributions: Concept and design of the study: CJC, WH, XB; acquisition of data: MV, KJ, YS, MEH, AH; analysis and interpretation of data: CC; drafting manuscript: CJC; revising manuscript: CJC, WH, XB; acquisition of funding: WH. MEH and AH contributed equally to this work. WH and XB also contributed equally to this work. All authors read and approved the final manuscript.

Conflicts of interest: None declared.

Availability of data and materials: All data generated or analyzed during this study are included in this published article and its supplementary information files.

Open access statement: This is an open access journal, and articles are distributed under the terms of the Creative Commons AttributionNonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Additional files:
- Additional Table 1: Summary of studies included in the systematic review.
- Additional Table 2: Extended risk of bias checklist data.
- Additional Table 3: Subgroup analysis of the locomotor score data.
- Additional Table 4: Subgroup analysis of the axonal regrowth outcome.
References

Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Rev Dis Primers 3:17018.

Akramayeva ER, Mukhamedshina YG, Zhuravleva MN, Galieva LR, Kostennikov AA, Garanina EE, Rizvanov AA (2018) Transplantation of microglia in the area of spinal cord injury in an acute period increases tissue sparing, but not functional recovery. Front Cell Neurosci 12:507.

Blits B, Oudega M, Boer GI, Bartlett Bunge M, Verhaagen J (2003) Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function. Neuroscience 118:271-281.

Bo X, Wu D, Ye J, Zhang Y (2011) Gene therapy approaches for neuroprotection and axonal regeneration after spinal cord and spinal root injury. Curr Gene Ther 11:110-115.

Bradbury EJ, Moon LD, Popat RI, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636-640.

Burnside ER, De Winter F, Didangelos A, James ND, Andreica EC, Layard-Horsfall H, Muir EM, Verhaagen J, Bradbury EJ (2018) Immune-evasive gene switch enables regulated delivery of chondroitinase after spinal cord injury. Brain 141:2362-2381.

Cao L, Liu L, Chen ZY, Wang LM, Ye JL, Qiu HY, Lu CL, He C (2004) Olfactory ensheathing cells genetically modified to secrete GDNF to promote spinal cord repair. Brain 127:535-549.

Chen J, Wu H, Wang J, Ren X, Zhang H, Wang J, Yan Y, Denga Y (2013) Local injection of lentivirus encoding LINGO-1-shRNA promotes functional recovery in rats with complete spinal cord transection. Spine 38:1632-1639.

Chen CH, Sung CS, Huang SQ, Feng CW, Hung HC, Yang SN, Chen NF, Tai MH, Wen ZH, Chen WF (2016a) The role of the PI3K/Akt/mTOR pathway in glial scar formation following spinal cord injury. Exp Neurol 278:27-41.

Chen D, Hu S, Liu J, Lu S (2019) E-cadherin regulates biological behaviors of neural stem cells and promotes motor function recovery following spinal cord injury. Exp Ther Med 17:2061-2070.

Chen J, Wu J, Apostolova I, Skup M, Kugler S, Schachner M (2007) Adeno-associated virus-mediated I1 expression promotes functional recovery after spinal cord injury. Brain 130:954-969.

Chen J, Joon Lee H, Jakovcesci I, Shah R, Bhagat N, Loers G, Liu HY, Meiners S, Taschenberger G, Kugler S, Inrichtev A, Schachner M (2010) The extracellular matrix glycoprotein tenasin-c is beneficial for spinal cord regeneration. Mol Ther 18:1769-1777.

Chen N, Zhou P, Liu X, Li J, Wan Y, Liu S, Wei F (2020) Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury. FASEB J 34:6984-6998.

Chen XW, Lin WP, Lin JH, Wu CY, Zhang LQ, Huang ZD, Lai JM (2012) The protective effects of the lentivirus-mediated neuroglobin gene transfer on spinal cord injury in rabbits. Spinal Cord 50:467-471.

Chen XW, Wang HP, Yuan FM, Zhang X, Dong XI, Xie RS, Tian C, Li BS, Sun ZW, Zhou LH, Liu J, Wang TH (2016a) Releasing of herpes simplex virus carrying NGF in subarachnoid space promotes the functional repair in spinal cord injured rats. Curr Gene Ther 16:263-270.

Colella P, Ronzitti G, Mingozzi F (2018) Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev 8:87-104.

Cringle MR, Sheffield VC (2022) Gene therapy and gene correction: targets, progress, and challenges for treating human diseases. Gene Ther 29(1-2):3-12.

Cuipers P, Griffin JW, Furukawa TA (2021) The lack of statistical power of subgroup analyses in meta-analyses: a cautionary note. Epidemiol Psychiatr Sci 30:678.

de Vries RB, Hooijmans CR, Tillema A, Leenaars M, Ritjes-Hoitinga M (2014) Updated version of the Embase search filter for animal studies. Lab Anim 48:88.

Du BL, Zeng X, Ma YH, Lai BQ, Wang JM, Lin EA, Wu JL, Zeng YS (2015) Graft of the gelatin sponge scaffold containing genetically-modified neural stem cells promotes cell differentiation, axon regeneration, and functional recovery in rat with spinal cord transection. J Biomed Mater Res A 103:1533-1545.

Dunbar CE, High KA, Joung JK, Kohn DB, Ozawa K, Sadelain M (2018) Gene therapy comes of age. Science 359:eaa4672.

Duval S, Tweedie R (2000) Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 56:455-463.

European Medicines Agency: EMA/173982/2020 (2020) Zolgensma (onasemnogene abeparvovec). An overview of Zolgensma and why it is authorised in the EU.

Fawcett JW (2019) The struggle to make CNS axons regenerate: why has it been so difficult? Neurochem Res 45:144-158.

Figley SA, Liu Y, Karadimas SK, Satkunendrarajah K, Fettes P, Spratt SK, Lee G, Ando D, Surosky R, Giedlin M, Fehlings MG (2014) Delayed administration of a bioengineered zinc-finger VEGF-A gene therapy is neuroprotective and attenuates alldynia following traumatic spinal cord injury. PLoS One 9:e96137.

Gao Z, Zhao Y, He X, Leng Z, Zhou X, Song H, Wang R, Gao Z, Wang Y, Liu J, Niu B, Li, Ouyang P, Chang S (2020) Transplantation of sh-mir-199a-5p-modified olfactory ensheathing cells promotes the functional recovery in rats with contusive spinal cord injury. Cell Transplant 29:9638972901916173.

GBD 2016 Traumatic Brain Injury and Spinal Cord Injury Collaborators (2019) Global, regional, and national burden of traumatic brain injury and spinal cord injury, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18:56-87.

Griffin JM, Bradke F (2020) Therapeutic repair for spinal cord injury: combinatorial approaches to address a multifaceted problem. EMBO Mol Med 12:e11505.

Guo Y, Liu S, Zhang X, Wang L, Zhang X, Hao A, Han A, Yang J (2014) Sox11 promotes endogenous neurogenesis and locomotor recovery in mice spinal cord injury. Biochem Biophys Res Commun 446:830-835.

Hair K, Macleod MR, Sena ES; ICIARus Collaboration (2019) A randomised controlled trial of an Intervention to Improve Compliance with the ARRIVE guidelines (ICICARus). Res Integr Peer Rev 4:12.

Han X, Chen Y, Liu Y, Wang Z, Tang G, Tian W (2018) HIF-1a promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med 20:e3062.

Han XF, Zhang Y, Xiong LL, Xu Y, Zhang Y, Xia QJ, Wang TH, Ba YC (2017) Lentiviral-mediated Netrin-1 overexpression improves motor and sensory functions in SCT rats associated with SYP and GAP-43 expressions. Mol Neurobiol 54:1684-1697.

Hooijmans CR, Tillema A, Leenaars M, Ritjes-Hoitinga M (2010) Enhancing search efficiency by means of a search filter for finding all studies on animal experimentation in PubMed. Lab Anim 44:170-175.

Hu J, Lang Y, Zhang T, Ni S, Lu H (2016) Lentiviral-mediated PGC-1alpha overexpression protects against traumatic spinal cord injury in rats. Neuroscience 328:40-49.

Huang WC, Kuo HS, Tsai MJ, Ma H, Chiu CW, Huang MC, Yang LH, Chang PT, Lin YL, Kuo WC, Lee MI, Liu JC, Cheng H (2011) Adeno-associated virus-mediated human acidic fibroblast growth factor expression promotes functional recovery of spinal cord-contused rats. J Gene Med 13:283-289.

Hwang DH, Kim BG, Kim EJ, Lee SI, Joo IS, Suh-Kim H, Sohn S, Kim SU (2009) Transplantation of human neural stem cells transduced with Olig2 transcription factor improves locomotor recovery and enhances myelination in the white matter of rat spinal cord following contusive injury. BMC Neurosci 10:1157.

International Spinal Research Trust (2021) CHASE-IT: Chondroitinase ABC for Spinal Injury Therapy. Available at: https://spinal-research.org/chase-it. Accessed December 14, 2021.
Ito M, Natsume A, Takeuchi H, Shimato S, Ohno M, Wakabayashi T, Yoshida J (2009) Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway. J Neurotrauma 26:41-53.

Jia Y, Wu D, Zhang R, Shuang W, Sun J, Hao H, An Q, Liu Q (2014) Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats. Neurosci Lett 573:46-51.

Khan IU, Yoon Y, Kim A, Jo KR, Choi KU, Jung T, Kim N, Son SY, Kim WH & Kweon OK (2018) Improved healing after the co-transplantation of HO-1 and BDNF overexpressed mesenchymal stem cells in the subacute spinal cord injury of dogs. Cell Transplant 27:1140-1153.

Koda M, Kamada T, Hashimoto M, Murakami M, Shirasawa H, Sakao S, Ino H, Yoshinaga K, Koshizuka S, Moriya H, Yamazaki M (2007) Adenovirus vector-mediated ex vivo gene transfer of brain-derived neurotrophic factor to bone marrow stromal cells promotes axonal regeneration after transplantation in completely transected adult rat spinal cord. Eur Spine J 16:2206-2214.

Koelsch A, Feng Y, Fink DJ, Mata M (2010) Transgene-mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. J Neurochem 113:143-152.

Lan WBin, Lin JH, Chen XW, Wu CY, Zhong GX, Zhang LQ, Lin WP, Liu WN, Li X, Lin JL (2014) Overexpressing neuroglobin improves functional recovery by inhibiting neuronal apoptosis after spinal cord injury. Brain Res 1562:100-108.

Lavdas AA, Chen J, Papastefanaki F, Chen S, Schachner M, Matsas R, Thomaidou D (2010) Schwann cells engineered to express the cell adhesion molecule L1 accelerate myelination and motor recovery after spinal cord injury. Exp Neurol 221:206-216.

Lee HH, Bai S, Jakovevski I, Wu B, Irintchev A, Schachner M (2012) Delayed applications of L1 and chondroitinase ABC promote recovery after spinal cord injury. J Neurotrauma 29:1850-1863.

Lee KH, Oh JS, Ha Y, Lee BH, Pennant WA, Yoon DH, Kim KN (2011) Neurotrophin-3-over-expressing mesenchymal stem cell transplantation improves functional recovery and axonal outgrowth in a rat model of spinal cord injury. Tissue Eng Regen Med 8:477-481.

Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH & Kweon OK (2017a) Impact of local injection of brain-derived neurotrophic factor-expressing mesenchymal stromal cells (MSCs) combined with intravenous MSC delivery in a canine model of chronic spinal cord injury. Cytotherapy 19:75-87.

Lee SH, Kim Y, Rhew D, Kim A, Jo KR, Yoon Y, Choi KU, Jung T, Kim WH & Kweon OK (2017b) Effect of canine mesenchymal stromal cells overexpressing heme oxygenase-1 in spinal cord injury. J Vet Sci 18:377-386.

Lee SI, Kim BG, Hwang DH, Kim HM, Kim SU (2009) Overexpression of Bcl-XL in human neural stem cells promotes graft survival and functional recovery following transplantation in spinal cord injury. J Neurosci Res 87:3186-3197.

Li WY, Wang Y, Zhai FG, Sun P, Cheng YX, Deng LX, Wang ZY (2017) KLF7 overexpression following transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102-113.

Macleod MR, O’Collins T, Howells DW, Donnan GA (2004) Pooling of animal experimental data reveals influence of study design and publication bias. Stroke 35:1203-1208.

Miura T, Tanaka S, Seichi A, Arai M, Goto T, Katagiri H, Asano T, Oda H, Nakamura K (2000) Partial functional recovery of paraplegic rat by adenovirus-mediated gene delivery of constitutively active MEK1. Exp Neurol 166:115-126.

Mohler D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097.

Mukhamedshina YO, Garanina EE, Masgutova GA, Galieva LR, Sanatova ER, Chelyshev YA, Rizvanov AA (2016) Assessment of glial scar, tissue sparing, behavioral recovery and axonal regeneration following acute transplantation of genetically modified human umbilical cord blood cells in a rat model of spinal cord contusion. PLoS One 11:e0151745.

Nathwani AC, Reiss UM, Tuddenham EG, Rosales C, Chowdary P, McIntosh J, Della Peruta M, Lheritier A, Patel N, Raj D, Riddell A, Pie J, Ragaranjan S, Bevan D, Recht M, Shen YM, Halka KG, Basner-Tschakarjian E, Mungozzi F, High KA, et al. (2014) Long-term safety and efficacy of factor IX gene therapy in hemophilia B. N Engl J Med 371:1994-2004.

Ning G, Liu Y, Xu H, Li Y, Wu W, Wang X, Feng S (2017) Gene silencing of NMII promotes axonal regeneration against corrosive spinal cord injury in rats. Int J Clin Exp Pathol 10:11345-11352.

NPQIP Collaborative group (2019) Did a change in Nature journals’ editorial policy for life sciences research improve reporting? BMJ Open Sci 3:e000035.

Papastefanaki F, Chen J, Lavdas AA, Thomaidou D, Schachner M & Matsas R (2007) grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury. Brain 130:2159-2174.

Park YM, Han SH, Seo SK, Park KA, Lee WT, Lee JE (2015) Restorative benefits of transplanting human mesenchymal stromal cells overexpressing arginine decarboxylase genes after spinal cord injury. Cytotherapy 17:25-37.

Peng Z, Li X, Fu M, Zhu K, Long L, Zhao X, Chen Q, Deng DYM, Wan Y (2019) Inhibition of Notch1 signaling promotes neuronal differentiation and improves functional recovery after spinal cord injury through suppressing the activation of Ras homolog family member A. J Neurochem 150:709-722.

Percie du Sert N, Hurst V, Ahiwalla A, Alm S, Avey MT, Baver M, Browne WI, Clark A, Cuthill IC, Dormig U, Emerson M, Garner P, Holgate ST, Howells DW, Karp NA, Lazzec S, Lidster K, MacCallum CJ, Macleod M, Pearl EJ, et al. (2020) The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol 18:e0030410.

Pomeshchik Y, Kidin I, Savchenko E, Rolova T, Yamamoto M, Levonen AL, Ylä-Herttuala S, Malm T, Kanninen K, Koistinaho J (2014) Does Nr2f2 gene transfer facilitate recovery after contusion spinal cord injury? Antioxid Redox Signal 20:1313-1323.

Qu Y, Zhao J, Wang Y, Gao Z (2014) Silencing ephrinB3 improves functional recovery following spinal cord injury. Mol Med Rep 9:1761-1766.

Seo DK, Kim JH, Min J, Yoon HH, Shin ES, Kim SW, Jeon SR (2017) Enhanced axonal regeneration by transplanted Wnt3a-secreting human mesenchymal stem cells in a rat model of spinal cord injury. Acta Neurochir 159:947-957.

Shahrezaei M, Mansour RN, Nazari B, Hassannia H, Hosseini F, Mahboudi H, Effekhteh M, Kehtari M, Veshkini A, Ahmadi Vasmehjani A, Enderami SE (2017) Improved stem cell therapy of spinal cord injury using GDNF-overexpressed bone marrow stem cells in a rat model. Biologics 50:73-80.

Shang AJ, Hong SQ, Xu Q, Wang HY, Yang Y, Wang ZF, Xu BN, Jiang XD, Xu RX (2011) NT-3-secreting human umbilical cord mesenchymal stromal cell transplantation for the treatment of acute spinal cord injury in rats. Brain Res 1391:102-113.
