On some exceptional cases in the integrability of the
three–body problem

Alexei V. Tsygvintsev

Unité de mathématiques pures et
appliquées
Ecole Normale Supérieure de Lyon
46, allée d’Italie, Lyon
F–69364 Lyon Cedex 07, France
atsygvin@umpa.ens-lyon.fr

November 20, 2017

Abstract

We consider the Newtonian planar three–body problem with positive masses m_1, m_2, m_3. We prove that it does not have an additional first integral meromorphic in the complex neighborhood of the parabolic Lagrangian orbit besides three exceptional cases $\sum m_im_j/(\sum m_k)^2 = 1/3, 2^3/3^3, 2/3^2$ where the linearized equations are shown to be partially integrable. This result completes the non–integrability analysis of the three–body problem started in papers [3], [5] and based of the Morales–Ramis–Ziglin approach.

Key words: meromorphic first integrals, non–integrability, Ziglin’s lemma, three–body problem

1 Introduction

Let $M \subset \mathbb{C}^n$ be a complex domain and let $\text{Hol}(M)$ be a set of functions $f : M \to \mathbb{C}$ holomorphic in M. We consider a system of n ordinary differential equations written in the Pfaffian form

$$\frac{dx_1}{f_1(x)} = \frac{dx_2}{f_2(x)} = \cdots = \frac{dx_n}{f_n(x)}, \quad f_i \in \text{Hol}(M),$$

$$x = (x_1, x_2, \ldots, x_n) \in M.$$

As far as the dynamical properties of the flow are concerned it is more convenient to consider the trajectories of the vector field $F = (f_1, \ldots, f_2)$ as leaves of a codimension $n – 1$ foliation defined by (1.1) regardless the time parametrisation.

Let $h : \Gamma \to M$ be a particular leaf of (1.1) where h is a certain holomorphic map (not necessary unique). We note that in many mechanical problems the surface Γ is a punctured
Riemann sphere $\Gamma = \mathbb{CP}^1 \setminus \{z_1, \ldots, z_k\}$ and h is rational. Let $e \in \Gamma$ be a fixed basepoint and $\{\gamma\}$ is the set of loops generating the fundamental group $\pi_1(e, \Gamma)$.

We take a particular closed path $\gamma_0 \in \{\gamma\}$ defined by a continuos map $\gamma_0 : [0, 1] \to \Gamma$, $\gamma(0) = \gamma(1) = e$. Each tangent vector $v \in T_e M$ can be transported along γ_0 following the neighborhood leafs of $h(\Gamma)$ back to the tangent space $T_e M$. One obtains a linear representation of $\pi_1(e, \Gamma)$ into $\text{GL}(n, \mathbb{C})$ called the monodromy group G.

This group measures the complexity of “enrolling” of the neighborhood to $h(\Gamma)$ leafs and usually contains strong obstacles to the existence of first integrals of (1.1) meromorphic in M. The following lemma of Ziglin [8] establishes the link between the integrability of (1.1) and rational invariants of G.

Lemma 1. Let $\Phi_1 \ldots \Phi_k$ be a set of functionally independent first integrals of the differential system (1.1) which are meromorphic in M. Then the monodromy group $G \subset \text{GL}(\mathbb{C}, n)$ admits k functionally independent homogeneous rational invariants I_1, \ldots, I_k.

In many mechanical problems the previous lemma allows to reduce the initial integrability problem to the question from the theory of invariants of finitely generated linear groups $G = \langle G_1, \ldots, G_k \rangle \subset \text{GL}(n, \mathbb{C})$. Once it is shown that G has no more than p rational invariants one concludes that the system (1.1) can not have more than p functionally independent first integrals meromorphic in M. If G does have a rational invariant, the higher variational approach has to be applied (see [6]).

2 The planar three–body problem

It is natural to view the monodromy generators as linear transformations obtained through the solving of the normal variational equation of (1.1) along the particular solution $h(\Gamma)$ (see for definition [8]). This equation describes the linearization of the system (1.1) around the particular orbit after reduction of all already known first integrals.

We consider three mass points $m_1 > 0, m_2 > 0, m_3 > 0$ in the plane which attract each other according to the Newtonian law. Using the Whittaker variables we the corresponding equations of motion can be written as a Hamiltonian system with 3 degrees of freedom

$$
\dot{q}_r = \frac{\partial H}{\partial p_r}, \quad \dot{p}_r = -\frac{\partial H}{\partial q_r}, \quad (r = 1, 2, 3),
$$

with the Hamiltonian function

$$
H = \frac{M_1}{2} \left\{ p_1^2 + \frac{1}{q_1^2} P^2 \right\} + \frac{M_2}{2} (p_2^2 + p_3^2) + \frac{1}{m_3} \left\{ p_1 p_2 - p_3 P \right\} - \frac{m_1 m_3}{r_1} - \frac{m_3 m_2}{r_2} - \frac{m_1 m_2}{r_3},
$$

$$
P = p_3 q_2 - p_2 q_3 - k, \quad M_1 = m_3^{-1} + m_1^{-1}, \quad M_2 = m_3^{-1} + m_2^{-1},
$$

where

$$
r_1 = q_1, \quad r_2 = \sqrt{q_2^2 + q_3^2}, \quad r_3 = \sqrt{(q_1 - q_2)^2 + q_3^2},
$$

are the mutual distances of the bodies; q_1 is the distance $m_3 m_1$; q_2 and q_3 are the projections of $m_2 m_3$ on, and perpendicular to $m_1 m_3$; p_1 is the component of momentum of m_1 along $m_3 m_1$; p_2 and p_3 are the components of momentum of m_2 parallel and perpendicular to $m_3 m_1$; k is the constant of the angular momentum.

Let us denote $M(4, K)$ the set of square n by n matrices over a field K. In [5] we calculated the normal variational equation of (2.1) along the Lagrangian parabolic equilateral solution
for a fixed non-zero value of the angular momentum k

$$\frac{dx}{dz} = \left(\frac{A}{z - z_0} + \frac{B}{z - z_1} + \frac{C}{z - z_2} \right)x, \quad x \in \mathbb{C}^4, \quad z \in \Gamma, \quad A, B, C \in M(4, \mathbb{C}), \quad (2.2)$$

where

$$z_0 = \frac{\sqrt{3}m_1m_2}{2S_2}, \quad z_1 = \frac{m_1(\sqrt{3}m_2 + iS_3)}{2S_2}, \quad z_2 = \frac{m_1(\sqrt{3}m_2 - iS_3)}{2S_2}, \quad (2.3)$$

$$\Gamma = \mathbb{C} \setminus \{z_0, z_1, z_2\}$$

$$S_2 = m_1m_2 + m_2m_3 + m_3m_1, \quad S_3 = m_2 + 2m_3.$$

One verifies (see [3], Appendix A) that in (2.2)

$$\left\{ \begin{array}{l}
z_2 = \overline{z}_1, \\
A \in M(4, \mathbb{R}), \quad B = R + iJ, \quad C = \overline{B} = R - iJ \quad \text{with} \quad R, J \in M(4, \mathbb{R}).
\end{array} \right. \quad (2.4)$$

Therefore, the equations (2.2) are invariant under the complex conjugation fixing the time t. This is not surprising since the equations of the three–body problem (2.1) are real.

Let $\Sigma(z)$, $\Sigma(e) = \text{Id}$, $e \in \Gamma$ be the fundamental matrix solution of the linear differential equation (2.2). Continued along a closed path $\gamma \in \pi_1(e, \Gamma)$ the solution $\Sigma(z)$ gives a function $\hat{\Sigma}(z)$ which also satisfies (2.2). From linearity of (2.2) it follows that there exists $T_\gamma \in \text{GL}(4, \mathbb{C})$ such that $\hat{\Sigma}(z) = \Sigma(z)T_\gamma$. The set of matrices $G = \{T_\gamma\}$ corresponding to all paths from $\pi_1(e, \Gamma)$ form monodromy group of the linear system (2.2). Let T_i be the elements of G corresponding to loops around the singular points $z = z_i$, $i = 0, 1, 2$. Then G is generated by T_0, T_1, T_2. Let $T_\infty \in G$ denotes the monodromy element around $z = \infty$.

Proposition 1 ([3]). The following assertions about the monodromy group G hold

a) The singularity z_0 is an apparent one i.e $T_0 = \text{Id}$ and

$$T_1T_2 = T_\infty^{-1}. \quad (2.5)$$

b) The generators T_1, T_2 are unipotent trnsformations. Moreover, there exist $U, V \in \text{GL}(4, \mathbb{C})$ such that

$$U^{-1}T_1U = V^{-1}T_2V = \begin{pmatrix}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}. \quad (2.6)$$

c) $\text{Spectr}(T_\infty) = \{e^{2\pi i \lambda_1}, e^{2\pi i \lambda_2}, e^{-2\pi i \lambda_1}, e^{-2\pi i \lambda_2}\}$

where

$$\lambda_1 = \frac{3}{2} + \frac{1}{2} \sqrt{13 + \sqrt{\theta}}, \quad \lambda_2 = \frac{3}{2} + \frac{1}{2} \sqrt{13 - \sqrt{\theta}}, \quad (2.7)$$

and

$$\theta = 144 \left(1 - \frac{3S_2}{S_1^2}\right). \quad (2.8)$$
Let U_{Γ} be a connected neighborhood of the Lagrangian parabolic equilateral solution of the three–body problem (2.1) defined in [3]. Below we summarize the results concerning the integrability of (2.1) obtained in our previous papers.

Theorem 1. ([2], [3]) For arbitrary $m_i > 0$, $i = 1, 2, 3$ the monodromy group G of (2.2) does not have two independent rational invariants. As a result, the three–body problem (2.1) never has two additional independent first integrals meromorphic in U_{Γ}.

Corollary 1. The three–body problem (2.1) is not completely meromorphically integrable in the sense of Liouville–Arnold.

We introduce the parameter

$$
\sigma = \frac{m_1m_2 + m_2m_3 + m_3m_1}{(m_1 + m_2 + m_3)^2} .
$$

(2.10)

The following two theorems concern the non–existence of one additional meromorphic first integral.

Theorem 2. ([4], [5]) Let $\sigma \notin \left\{ \frac{1}{3}, \frac{5}{27}, \frac{2}{9}, \frac{7}{48}, \frac{5}{24} \right\}$. Then the three–body problem (2.1) does not have an additional first integral meromorphic in U_{Γ}.

Theorem 3. ([4], [5]) If $\sigma \in \left\{ \frac{1}{3}, \frac{5}{27} \right\}$ then G has a polynomial invariant and the normal variational equation (2.2) admits a first integral $I(x, z)$ which is a quadratic polynomial with respect to x and which is a rational function with respect to z.

The proof of these results is based on the following result from [8]: to every additional first integral of (2.1) independent with H and meromorphic in U_{Γ} corresponds a rational invariant of the monodromy group G. We used also the infinitesimal techniques from the Morales–Ramis differential Galois approach [6].

As follows from Theorems 1–3, the only remaining values of σ for those the integrability property was not clear are

$$
\sigma \in \left\{ \frac{2}{9}, \frac{7}{48}, \frac{5}{24} \right\} .
$$

(2.11)

Our main result makes more precise the integrability property for these values of σ.

Theorem 4. If $\sigma = \frac{7}{48}, \frac{5}{24}$ then the three–body problem (2.1) does not have an additional first integral meromorphic in U_{Γ}. If $\sigma = \frac{2}{9}$ then G has a polynomial invariant of degree 1 or 2 so that the normal variational equation (2.2) admits a first integral $I(x, z)$ which is a linear or quadratic polynomial with respect to x and which is a rational function with respect to z.

The proof is contained in the next section.

3 The reflection symmetry of the monodromy group

As shown in [4], [5] the monodromy group G always possesses a centralizer in GL(4, \mathbb{C}) given explicitly by

$$
T = T_{\infty} + T_{\infty}^{-1} - 2 \text{Id} .
$$

(3.1)
Proposition 2. Let
\[\sigma \in \left\{ \frac{7}{48}, \frac{5}{24} \right\}. \] \tag{3.2}
Then \(\text{Spectr}(T) = \{ \sigma_1, \sigma_1, \sigma_2, \sigma_2 \} \) where \(\sigma_1 \neq \sigma_2 \).

It can be verified directly with help of the following formulas obtained in [5]
\[\text{Spectr}(T) = \{ \sigma_1, \sigma_1, \sigma_2, \sigma_2 \}, \quad \sigma_i = 2(\cos(2\pi \lambda_i) - 1), \quad i = 1, 2, \] \tag{3.3}
where \(\lambda_i \) are defined by (2.8).

Thus, if (3.2) holds, then the Jordan canonical form of \(T \) always contains two 2 \times 2 blocks (either diagonal or not) corresponding to two different eigenvalues \(\sigma_1 \) and \(\sigma_2 \). Then, as follows from the solution of the Frobenius problem (see e.g. [1]), the relations \([T_i, T_j] = 0, \quad i = 1, 2 \) imply the existence of a linear basis in which the monodromy generators \(T_{1,2} \) have the same block–diagonal form
\[T_1 = \begin{bmatrix} T_{11} & 0 \\ 0 & T_{22} \end{bmatrix}, \quad T_2 = \begin{bmatrix} T_{11} & 0 \\ 0 & T_{22} \end{bmatrix}, \] \tag{3.4}
with unipotent blocks \(T_{i,kk} \in \text{GL}(2, \mathbb{C}) \).

Proposition 3. Under the condition (3.2) the group \(G \) does not have a rational invariant.

Proof. The proof is exactly the same as in [3], pp. 243-244. Since \(T \neq \alpha \text{Id}, \quad \alpha \in \mathbb{C} \) it is sufficient to verify that \(1 \notin \text{Spectr}(T_{\infty}) \) (*). For \(\sigma = 7/48 \) one obtains \(\lambda_1 = 3/2 + \sqrt{22}/2, \quad \lambda_2 = 5/2 \) and for \(\sigma = 5/24 \) respectively \(\lambda_1 = 7/2, \quad \lambda_2 = 3/2 + \sqrt{10}/2 \). In both cases \(\lambda_i \notin \mathbb{Z} \) and the condition (*) follows from (2.7). \(\square \)

We note that the result of Proposition 3 was not contained in our work [3] where \(T_{\infty} \) was supposed to be diagonalizable.

Lemma 2. If \(\sigma = \frac{2}{9} \) then \(G \) has a polynomial invariant.

Proof. Below we assume that the monodromy group \(G = < T_1, T_2 > \) of (2.2) is defined for the basepoint \(e = 0 \). One significant problem in the analysis of \(G \) is that the Jordan canonical form of \(T_{\infty} \) and whose of the centralizer \(T \) depend on the masses \(m_i \) in a quite complicated way. At least no elementary algebraic description of this dependence is known. This difficulty can be overcome using the “reflection” symmetry of \(G \) given by the following lemma.

Lemma 3. The monodromy transformations \(T_1 \) and \(T_2 \) are related by \(T_1^{-1} = T_2 \).

Proof. Let \(\Sigma(z), \Sigma(0) = \text{Id} \) be the normalised fundamental matrix solution of (2.2) and let \(G \) be the corresponding monodromy group. For a function \(f(z) \) defined by its Taylor expansion \(f(z) = \sum a_n z^n, \quad a_n \in \mathbb{C} \) we define the operator of complex conjugation \(f(z) \mapsto \overline{f(z)} \) according to \(\overline{f(z)} = \sum \overline{a_n} z^n \). One can always represent locally \(\Sigma(z) \) as a power series convergent in a small neighborhood of the regular point \(z = 0 \). The symmetry conditions (2.4) imply then \(\overline{\Sigma(z)} = \Sigma(z) \).

Let \(\gamma_1, \gamma_2 \) be two loops starting from \(z = 0 \) and going in the counter clock–wise direction around the singular points \(z_1 \in \mathbb{C}_+ \) and \(z_2 \in \mathbb{C}_- \) respectively. By definition of \(T_1 \) we have \((A): \Sigma(z) \overset{\gamma_1}{\to} \Sigma(z)T_1 \) after the analytic continuation of \(\Sigma(z) \) along \(\gamma_1 \). Let \(\overline{\gamma}_1 \) denote the loop symmetric to \(\gamma_1 \) with respect to the real axis \(\text{Im} z = 0 \) (\(\overline{\gamma}_1 \) has the clock–wise orientation). According to (2.4) and (A) one will have \(\Sigma(z) \overset{\overline{\gamma}_1}{\to} \Sigma(z)T_1 \) after the analytic continuation
along γ_1. At the same time we have (B): $\Sigma(z) \subset \Sigma(z)T_2$ with $\Sigma(z)$ continued along the loop γ_2. The curves γ_2 and γ_1 are homotopic of opposite orientations. Hence, comparing (A) and (B) we obtain $T_2 = T_1^{-1}$ that achieves the proof of Lemma 3.

If $\sigma = 2/9$ then $\text{Spectr}(T_\infty) = (p, p^{-1}, p^{-1})$, $p = e^{2\pi i/\sigma}$, $p \neq p^{-1}$ in view of (2.7). We denote by L_p and $L_{p^{-1}}$ the eigenspaces of T_∞ corresponding to the eigenvalues p and p^{-1} respectively. Firstly, we consider the case dim$(L_p) = 2$ (the case dim$(L_{p^{-1}}) = 2$ is similar).

From Lemma 3 and (2.5) we deduce $T_\infty = T_1^{-1}$. Therefore, if $v \in L_p$ then $v \in L_{p^{-1}}$ and hence dim$(L_p) = \text{dim}(L_{p^{-1}}) = 2$. Thus, $T_\infty \in M(4, \mathbb{C})$ is diagonalizable. In this case, as shown in [5], pp. 245-246, the group G possesses a quadratic polynomial invariant that proves the statement. Let us consider the remaining case dim$(L_p) = \text{dim}(L_{p^{-1}}) = 1$ with $L_p = < v >$ and $L_{p^{-1}} = < \tau >$ spanned by the linearly independent vectors v and τ respectively. Then the following proposition holds.

Proposition 4. There exist two linearly independent vectors $w, \bar{w} \in \mathbb{C}^4$ such that the dual transformations $T_1 = T_1^T$, $T_2 = T_2^T$ act on w, \bar{w} by permutations:

$$T_1 w = \bar{w}, \quad T_1 \bar{w} = w, \quad T_2 w = \bar{w}, \quad T_2 \bar{w} = w.$$

(3.5)

Proof. Let $T_\infty = T_1^T$ then $\text{Spectr}(T_\infty) = \text{Spectr}(T_\infty)$. Since the geometric multiplicity of any eigenvalue in T_∞ is the same as in T_∞, we define w and \bar{w} as the only eigenvectors of T_∞ corresponding to the eigenvalues p and p^{-1} respectively. The dual centralizer $T = T^T$ commutes with T_1, T_2 and its only eigendirections are w and τ as follows from (3.1). The transformations T_1, T_2 preserve the eigendirections of T. So, in view of (2.6) and the identity $T_2 = T_1^{-1}$, either the relations (3.5) take place or we have

$$T_1 w = w, \quad T_1 \bar{w} = \bar{w}, \quad T_2 w = \bar{w}, \quad T_2 \bar{w} = w.$$

(3.6)

One defines $< u, l > = \sum_{i=1}^n u_i l_i$ for $u, l \in \mathbb{C}^4$. In the case (3.5) the monodromy group G has two independent polynomial invariants: $I(x) = < w, x >$ and $I(x) = < \bar{w}, x >$. But it is impossible according to Theorem 1. The proposition is proved.

In the remaining case (3.6) the group G has a linear polynomial invariant given by $I(x) = < w + \bar{w}, x >$. That achieves the proof of Lemma 2.

Theorem 4 follows immediately from Proposition 3, Lemma 2, Lemma 1 and the fact (see [5], p. 246) that to every rational invariant of G corresponds a single–valued first integral of the linear differential system (2.2). We believe that these integrals, existing for $\sigma = 1/3, 2/3^3, 2/3^2$ may contribute towards a better understanding of the dynamics of the three–body problem in the vicinity of parabolic Lagrangian orbits.

References

[1] Gantmacher, F. R. The theory of matrices. Vol. 2. AMS Chelsea Publishing, Providence, RI, 1998.

[2] Tsygvintsev, A. La non-integrabilit mromorphe du problme plan des trois corps. C. R. Acad. Sci. Paris Sr. I Math. 33, no. 3, 241–244, 2000.

[3] Tsygvintsev, A. The meromorphic non-integrability of the three-body problem. Journal für die reine und angewandte Mathematik, N 537, 2001, p. 127-149.
[4] Tsygvintsev, A. Sur l’absence d’une intégrale première supplémentaire méromorphe dans le problème plan des trois corps, C.R. Acad. Sci. Paris, t. 333, Série I, p. 125-128, 2001.

[5] Tsygvintsev, A. Non-existence of new meromorphic first integrals in the planar three-body problem. Celestial Mech. Dynam. Astronom. 86 (2003), no. 3, 237–247.

[6] Morales-Ruiz J. Differential Galois theory and non-integrability of Hamiltonian systems, Birkhäuser Verlag, Basel, 1999.

[7] Whittaker, E.T. A Treatise on the Analytical Dynamics of particles and Rigid Bodies. Cambridge University Press, New York, (1970).

[8] Ziglin, S.L. Branching of solutions and non-existence of first integrals in Hamiltonian Mechanics I, Funct. Anal. Appl. 16, (1982), 181–189.