Association between coefficients of variation of the R-R intervals on electrocardiograms and post-challenge hyperglycemia in patients with newly diagnosed type 2 diabetes

Yusuke Nakade1, Toshinari Takamura2*, Masaru Sakurai3, Hirofumi Misu2, Mitsuko Nagata1, Yuko Nanbu1, Hiroyasu Oe1, Toshiji Takamura3, Yoshio Sakai1, Shuichi Kaneko2, Takashi Wada1

ABSTRACT

The aim of the present study was to examine whether there is a relationship between autonomic function and post-challenge hyperglycemia in patients with type 2 diabetes. Subjects included 122 Japanese patients newly diagnosed with type 2 diabetes. Autonomic nerve function was assessed using coefficients of variation of the R-R intervals on electrocardiograms (CVRR). Unlike anthropometry, insulin secretion and insulin resistance, age (r = -0.209, P < 0.021) and post-challenge plasma glucose at 120 min (PG120; r = -0.219, P < 0.015) were the only variables significantly correlated with CVRR. Age was not significantly correlated with PG120. In multiple regression analyses, CVRR Z-score, but not age, was significantly correlated with PG120. The present results suggest that autonomic function affects post-challenge blood glucose levels independently of age. (J Diabetes Invest, doi: 10.1111/j.2040-1124.2010.00098.x, 2011)

KEY WORDS: Type 2 diabetes mellitus, Hyperglycemia, Autonomic function

INTRODUCTION

Diabetic autonomic neuropathy is a major complication in patients with diabetes; it decreases quality of life and increases mortality. Long-term hyperglycemia is a primary cause of diabetic neuropathy1. Conversely, autonomic function might affect glycemic control through gastrointestinal peristalsis. In addition, results from animal experiments have suggested that the autonomic nervous system contributes to glucose homeostasis by mediating interorgan networks2–4. Matsuhisa et al. have reported that the vagus nerve, which in part controls the liver, plays an important role in regulating postprandial glucose levels5,6. In addition, the intestinal–brain–liver neuronal axis has been reported to be involved in liver gluconeogenesis5. However, showing that these pathways and autonomic function play a role in glycemic control is lacking in humans. The aim of the present study was to examine whether there is a relationship between autonomic function, evaluated by coefficient of variation of the R-R intervals on electrocardiograms (ECG; CVRR), and post-challenge hyperglycemia in patients with newly diagnosed type 2 diabetes.

MATERIAL AND METHODS

Subjects

A total of 122 Japanese patients newly diagnosed with type 2 diabetes mellitus between January 2008 and December 2009, in the Division of Endocrinology and Metabolism at Kanazawa University Hospital, were recruited for the present study. None of the patients were treated with an oral hypoglycemic agent or insulin. Table 1 shows the demographic, clinical and physical characteristics of the subjects.

Written informed consent was obtained from all patients before initiation of the study. The study was approved by the ethics committee established at the Kanazawa University Hospital (Approval No. 729) and was carried out in accordance with the Declaration of Helsinki.

Laboratory Data

HbA1c was described in the Japan Diabetes Society (JDS) value. Oral glucose tolerance tests using 75 g of glucose (75-g OGTT) were carried out for all patients. The plasma glucose concentration was measured using an automated glucose analyzer (model GA08; ATWiLL M.I., Kanazawa, Japan). The plasma insulin concentration was measured by immunoassay (AIA-1800ST; Tosoh, Tokyo, Japan).

Insulin resistance in the liver was evaluated using the liver insulin resistance index (L-IR) as reported by Muhammad et al7. Insulin resistance in muscle was evaluated using the muscle

1Department of Clinical Laboratory, Kanazawa University Hospital, and 2Department of Disease Control and Homeostasis, Kanazawa University Graduate School of Medical Science, and 3Department of Epidemiology and Public Health, Kanazawa Medical University, Kanazawa, Japan

*Corresponding author. Toshinari Takamura Tel.: +81-76-265-2233 Fax: +81-76-234-4250 E-mail address: ttakamura@m-kanazawa.jp

Received 25 April 2010; revised 27 October 2010; accepted 29 November 2010
The CVRR was used to evaluate diabetic autonomic neuropathy. After the patient had rested in the supine position for at least 10 min, a standard 12-lead ECG was recorded (Cardio Star FCP-7541; Nihon Kohden, Tokyo, Japan). The R-R intervals were measured for 3 min, and the CVRR was obtained by dividing the standard deviations (SD) by the means (M): CV (%) = (SD/M) × 100. Because CVRR is influenced by age, we also used CVRR Z-score calculated by (CVRR-mean CVRR)/SD-CVRR in each age category to the age-specific normal value of CVRR (Table S2).

Statistical Analysis

For statistical analyses, SPSS II for Windows (SPSS, Chicago, IL, USA) was used. Single regression analysis and multiple regression analysis were used to examine associations between CVRR and clinical parameters. All data are presented as means ± SD.

RESULTS

Clinical characteristics of the 122 newly diagnosed type 2 diabetic patients are shown in Table 1. The prevalence of retinopathy and nephropathy was 21% and 25% of the subjects, respectively. When somatic polyneuropathy is defined as below mean-2SD in nerve conduction velocity in more than two of six sites in the healthy subjects, its prevalence was 18%.

The results for single linear regression analyses between CVRR and each clinical parameter are shown in Table 2. CVRR was significantly correlated with age ($r = -0.209$, $P < 0.021$) and PG120 ($r = -0.219$, $P < 0.015$; Table 2), but was not correlated with body mass index, HbA1c, insulinogetic index, PG0-60 and IRI0-120, L-IR, and M-IR ($P > 0.05$; Table 2). Although CVRR diminishes with age, CVRR, but not age, significantly correlated to PG120 (Table S1). In a multiple regression analysis for PG 120 as a dependent variable, CVRR was still significantly correlated with PG120 ($P = 0.004$), even after adjustment for age (Table 3, upper panel). When we used CVRR Z-scores in the analysis, CVRR Z score, but not age, was significantly correlated with PG120 in a multiple regression model (Table 3, lower panel).

Evaluation of Autonomic Nerve Function

The CVRR was used to evaluate diabetic autonomic neuropathy. After the patient had rested in the supine position for at least 10 min, a standard 12-lead ECG was recorded (Cardio Star FCP-7541; Nihon Kohden, Tokyo, Japan). The R-R intervals were measured for 3 min, and the CVRR was obtained by dividing the standard deviations (SD) by the means (M): CV (%) = (SD/M) × 100. Because CVRR is influenced by age, we also used CVRR Z-score calculated by (CVRR-mean CVRR)/SD-CVRR in each age category to the age-specific normal value of CVRR (Table S2).
Table 3 | Multiple regression analysis for plasma glucose concentrations at 120 min after load as a dependent variable and clinical parameters as independent variables

	Partial regression coefficient β	t-value	P-value
Sex	-12.061	-1.135	0.259
Age	-1.109	-1.994	0.048*
CVRR	-16.879	-2.901	0.004*
Sex	-12.091	-1.143	0.255
Age	-0.534	-0.924	0.357
CVRR Z-score	-18.123	-2.935	0.004*

CVRR, coefficients of variation of the R-R intervals on electrocardiograms. *P < 0.05; n = 121.

DISCUSSION

The present results suggest that autonomic nerve dysfunction, specifically parasympathetic nerve dysfunction, increases post-challenge glucose levels without affecting insulin secretion or insulin sensitivity. One possible mechanism underlying autonomic dysfunction-associated post-challenge hyperglycemia is gastrointestinal peristalsis that affects absorption of nutrients. The failure of liver gluconeogenesis, regulated by the vagus nerve, has been shown to contribute to diabetic autonomic neuropathy-related hyperglycemia. Wang et al. reported that lipids in the upper intestine activate the intestine–brain–liver neural axis to inhibit glucose production. This mechanism, which inhibits liver gluconeogenesis after food consumption, is mediated through the vagus nerve, which innervates the small intestine from the cerebrum. We suspect that dysfunction of this mechanism caused by diabetic autonomic neuropathy might contribute to hyperglycemia.

The neuronal pathway might mediate the action of incretin hormones secreted by the gut, such as glucagon-like peptide-1 (GLP-1) and glucose-dependent gastric inhibitory peptide (GIP). Incretin hormones enhance glucose-mediated insulin secretion and suppress exaggerated glucagon secretion, thereby regulating postprandial plasma glucose levels.

Diabetic autonomic neuropathy might also cause the dysfunction of cardiovascular, gastrointestinal, genitourinary, sudomotor or ocular organs. Postprandial and post-challenge hyperglycemia is an independent risk factor for macrovascular disease as well as many other complications, such as diabetic retinopathy, increased carotid intima-media thickness, increased oxidative stress, decreased myocardial blood volume and myocardial blood flow, increased risk for cancer, and impaired cognitive function. Further studies are needed to clarify whether diabetic autonomic neuropathy increases the risks for these complications.

In conclusion, the present results suggest that autonomic function affects post-challenge blood glucose levels independently of age in patients with type 2 diabetes.

ACKNOWLEDGEMENTS

We thank the staff of the Clinical Laboratory at Kanazawa University Hospital for their technical assistance in this study. We have no financial support and relationship with conflicts of interest.

REFERENCES

1. American Diabetes Association American Academy of Neurology. Consensus statement: report and recommendations of the San Antonio conference on diabetic neuropathy. Diabet Care 1988; 11: 592–597.
2. Uno K, Katagiri H, Yamada T, et al. Neuronal pathway from the liver modulates energy expenditure and systemic insulin sensitivity. Science 2006; 312: 1656–1659.
3. Imai J, Katagiri H, Yamada T, et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Science 2008; 322: 1250–1254.
4. Wang PY, Caspi L, Lam CK, et al. Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 2008; 452: 1012–1016.
5. Matsuhisa M, Yamasaki Y, Shiba Y, et al. Important role of the hepatic vagus nerve in glucose uptake and production by the liver. Metabolism 2000; 49: 11–16.
6. Nordback I, Harju E. Immediate effect of vagotomy on pancreatic insulin secretion. Gut 1991; 32: 303–305.
7. Abdul-Ghani MA, Matsuda M, Balas B, et al. Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 2007; 30: 89–94.
8. Matsuda M, DeFronzo RA. Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 1999; 22: 1462–1470.
9. Hayano J, Sakakibara Y, Yamada A, et al. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol 1991; 67: 199–204.
10. Camilleri M. Clinical practice. Diabetic gastroparesis. N Engl J Med 2007; 356: 820–829.
11. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159–166.
12. Orskov C, Wettergren A, Holst JJ. Secretion of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide correlates with insulin secretion in normal man throughout the day. Scand J Gastroenterol 1996; 31: 665–670.
13. Holst JJ, Vilsboll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol 2009; 297: 127–136.
14. Dunning BE, Foley JE, Ahren B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 2005; 48: 1700–1713.
15. DECODE Study Group, the European Diabetes Epidemiology Group. Glucose tolerance and cardiovascular mortality: comparison of fasting and 2-hour diagnostic criteria. Arch Intern Med 2001; 161: 397–405.

16. Nakagami T, Qiao Q, Tuomilehto J, et al. Screen-detected diabetes, hypertension and hypercholesterolemia as predictors of cardiovascular mortality in five populations of Asian origin: the DECODA study. Eur J Cardiovasc Prev Rehabil 2006; 13: 555–561.

17. Levitan EB, Song Y, Ford ES, et al. Is nondiabetic hyperglycemia a risk factor for cardiovascular disease? A meta-analysis of prospective studies. Arch Intern Med 2004; 164: 2147–2155.

18. Shiraiwa T, Kaneto H, Miyatsuka T, et al. Post-prandial hyperglycemia is an important predictor of the incidence of diabetic microangiopathy in Japanese type 2 diabetic patients. Biochem Biophys Res Commun 2005; 336: 339–345.

19. Hanefeld M, Koehler C, Schaper F, et al. Postprandial plasma glucose is an independent risk factor for increased carotid intima-media thickness in non-diabetic individuals. Atherosclerosis 1999; 144: 229–235.

20. Monnier L, Mas E, Ginet C, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006; 295: 1681–1687.

21. Scognamiglio R, Negut C, De Kreutzenberg SV, et al. Postprandial myocardial perfusion in healthy subjects and in type 2 diabetic patients. Circulation 2005; 112: 179–184.

22. Gapstur SM, Gann PH, Lowe W, et al. Abnormal glucose metabolism and pancreatic cancer mortality. JAMA 2000; 283: 2552–2558.

23. Abbatecola AM, Rizzo MR, Barbieri M, et al. Postprandial plasma glucose excursions and cognitive functioning in aged type 2 diabetics. Neurology 2006; 67: 235–240.

SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article:

Table S1 | Single linear regression analyses between PG120 and clinical parameters
Table S2 | Age-specific normal values of the coefficients of variation of the R-R interval on electrocardiograms (CVRR)

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.