New Cameron–Liebler line classes with parameter $\frac{q^2+1}{2}$

A. Cossidente F. Pavese

Abstract

New families of Cameron–Liebler line classes of PG(3, q), $q \geq 7$ odd, with parameter $(q^2 + 1)/2$ are constructed.

Mathematics Subject Classification: 51E20, 05B25, 05E30

Keywords: Cameron–Liebler line class; tight set; Klein quadric.

1 Introduction

In this paper we deal with Cameron–Liebler line classes of PG(3, q). The notion of Cameron–Liebler line class was introduced in the seminal paper \[4\] with the purpose of classifying those collineation groups of PG(3, q) having the same number of orbits on points and lines. On the other hand, a classification of Cameron–Liebler line classes would yield a classification of symmetric tactical decompositions of points and lines of PG(n, q) and that of certain families of weighted point sets of PG(3, q) \[13\]. Cameron–Liebler line classes are also related to other combinatorial structures such as two–intersection sets, strongly regular graphs and two–weight codes \[1\], \[14\].

In PG(3, q), a Cameron–Liebler line class \mathcal{L} with parameter x is a set of lines such that every spread of PG(3, q) contains exactly x lines of \mathcal{L}, \[4\], \[13\]. There exist trivial examples of Cameron–Liebler line classes \mathcal{L} with parameters $x = 1, 2$ and $x = q^2, q^2 - 1$. A Cameron–Liebler line class with parameter $x = 1$ is either the set of lines through a point or the set of lines in a plane. A Cameron–Liebler line class with parameter $x = 2$ is the union of the two previous example, if the point is not in the plane \[4\], \[13\]. In general, the complement of a Cameron–Liebler line class with parameter x is
a Cameron–Liebler line class with parameter $q^2 + 1 - x$ and the union of two disjoint Cameron–Liebler line classes with parameters x and y, respectively, is a Cameron–Liebler line class with parameter $x + y$.

It was conjectured that no other examples of Cameron–Liebler line classes exist [4], but Bruen and Drudge [3] found an infinite family of Cameron–Liebler line classes with parameter $x = (q^2 + 1)/2$, q odd. Bruen–Drudge’s example admits the group $G = P\Omega^-(4, q)$, stabilizing an elliptic quadric $Q^-(3, q)$ of $PG(3, q)$, as an automorphism group.

In [10], Govaerts and Penttila found a Cameron–Liebler line class with parameter $x = 7$ in $PG(3, 4)$.

Infinite families of Cameron–Liebler line classes with parameter $(q^2 - 1)/2$ were found for $q \equiv 5$ or $9 \pmod{12}$ in [6], [7]. By construction, such a family X never contains the lines Y in a plane Π and the lines Z through a point $z \notin \Pi$. Therefore, $X \cup Y$ and $X \cup Z$ are both examples of Cameron–Liebler line classes with parameter $(q^2 + 1)/2$.

For non–existence results of Cameron–Liebler line classes see [9], [12] and references therein.

Recently, by perturbating the Bruen–Drudge’s example, a new infinite family of Cameron–Liebler line classes with parameter $(q^2 + 1)/2$, $q \geq 5$ odd, has been constructed independently in [5] and [8]. Such a family admits the stabilizer of a point of $Q^-(3, q)$ in the group G, say K.

Here, we introduce a new derivation technique for Cameron–Liebler line classes with parameter $(q^2 + 1)/2$, see Theorem 3.9. Applying such a derivation to the Bruen–Drudge’s example, we construct a new family of Cameron–Liebler line classes with parameter $(q^2 + 1)/2$, $q \geq 7$ odd, not equivalent to the examples known so far and admitting a subgroup of K of order $q^2(q + 1)$.

Under the Klein correspondence between the lines of $PG(3, q)$ and points of a Klein quadric $Q^+(5, q)$, a Cameron–Liebler line class with parameter i gives rise to a so–called i–tight set of $Q^+(5, q)$.

A set \mathcal{T} of points of $Q^+(5, q)$ is said to be i–tight if

$$|P^\perp \cap \mathcal{T}| = \begin{cases} i(q + 1) + q^2 & \text{if } P \in \mathcal{T} \\ i(q + 1) & \text{if } P \notin \mathcal{T}. \end{cases}$$

where \perp denotes the polarity of $PG(5, q)$ associated with $Q^+(5, q)$.

For more results on tight sets of polar spaces, see [1].

Throughout the paper q is a power of an odd prime.
2 The Bruen–Drudge’s example

Let \(X_1, \ldots, X_4 \) be homogeneous projective coordinates in \(\text{PG}(3, q) \). Let \(\omega \) be a non–square element of \(\text{GF}(q) \). Let \(\mathcal{E} \) be the elliptic quadric of \(\text{PG}(3, q) \) with equation \(X_1^2 - \omega X_2^2 + X_3 X_4 = 0 \) and quadratic form \(Q \). Each point \(P \in \mathcal{E} \) lies on \(q^2 \) secant lines to \(\mathcal{E} \), and so lies on \(q + 1 \) tangent lines. Let \(\mathcal{L}_P \) be a set of \((q + 1)/2\) tangent lines to \(\mathcal{E} \) through \(P \), and let \(\mathcal{E} \) be the set of external lines to \(\mathcal{E} \); then the set

\[
\bigcup_{P \in \mathcal{E}} \mathcal{L}_P \cup \mathcal{E}
\]

has size \((q^2 + 1)(q^2 + q + 1)/2\) which is the number of lines of \(\text{PG}(3, q) \) in a Cameron–Liebler line class with parameter \((q^2 + 1)/2\). By suitably selecting the sets \(\mathcal{L}_P \), it is in fact a Cameron–Liebler line class \([3]\). Let \(G = \text{PGL}(4, q) \) be the commutator subgroup of the full stabilizer of \(\mathcal{E} \) in \(\text{PGL}(4, q) \). The group \(G \) has three orbits on points of \(\text{PG}(3, q) \), i.e., the points of \(\mathcal{E} \) and other two orbits \(\mathcal{O}_s \) and \(\mathcal{O}_n \), both of size \(q^2(q^2 + 1)/2 \). The two orbits \(\mathcal{O}_s \), \(\mathcal{O}_n \) correspond to points of \(\text{PG}(3, q) \) such that the evaluation of the quadratic form \(Q \) is a non–zero square or a non–square in \(\text{GF}(q) \), respectively. We say that a point \(X \) of \(\text{PG}(3, q) \) is a square point or a non–square point with respect to a given quadratic form \(F \) according as the evaluation \(F(X) \) is a non–zero square or a non–square in \(\text{GF}(q) \). In its action on lines of \(\text{PG}(3, q) \), the group \(G \) has four orbits: two orbits, say \(\mathcal{L}_0 \) and \(\mathcal{L}_1 \), both of size \((q + 1)(q^2 + 1)/2\), consisting of lines tangent to \(\mathcal{E} \) and two orbits, say \(\mathcal{L}_2 \) and \(\mathcal{L}_3 \), both of size \(q^2(q^2 + 1)/2 \) consisting of lines secant or external to \(\mathcal{E} \), respectively. The block-tactical decomposition matrix for this orbit decomposition is

\[
\begin{pmatrix}
1 & 1 & 2 & 0 \\
q & 0 & \frac{q-1}{2} & \frac{q+1}{2} \\
0 & q & \frac{q-1}{2} & \frac{q+1}{2} \\
q + 1 & 0 & \frac{q(q-1)}{2} & \frac{q(q+1)}{2}
\end{pmatrix},
\]

and hence the point-tactical decomposition matrix is

\[
\begin{pmatrix}
\frac{q+1}{2} & \frac{q+1}{2} & q^2 & 0 \\
q + 1 & 0 & \frac{q(q-1)}{2} & \frac{q(q+1)}{2} \\
0 & q + 1 & \frac{q(q-1)}{2} & \frac{q(q+1)}{2}
\end{pmatrix}.
\]

Simple group–theoretic arguments show that a line of \(\mathcal{L}_0 \) (\(\mathcal{L}_1 \)) contains \(q \) points of \(\mathcal{O}_s \) (\(\mathcal{O}_n \)), that a line secant to \(\mathcal{E} \) always contains \((q - 1)/2\) points of
Let E be a line that is either secant or external to E. Then the number of lines of L_0 (or of L_1) meeting E equals $(q + 1)/2$.

Lemma 2.2. Let E be a line of L_0 (resp. L_1). Then

- the number of lines of L_0 (resp. L_1) meeting E in a point equals $q^2 + (q - 1)/2$;
- the number of lines of L_1 (resp. L_0) meeting E in a point equals $(q + 1)/2$;

Let $L' = L_0 \cup L_3$. Using Lemma 2.1 and Lemma 2.2, it can be seen that L' is the Cameron–Liebler line class constructed in $[3]$. In particular, L' has the following three characters with respect to line–sets in planes of $\text{PG}(3, q)$:

\[
\frac{q + 1}{2}, \frac{q(q + 1)}{2}, \frac{q(q + 1)}{2} + 1,
\]

and

\[
\frac{q + 1}{2}, \frac{q(q + 1)}{2}, \frac{q(q + 1)}{2} + q + 1,
\]

with respect to line–stars of $\text{PG}(3, q)$.

Consider a point of E (since G is transitive on E we can choose it as the point $U_3 = (0, 0, 1, 0)$) and let π be the plane with equation $X_4 = 0$. Then π is tangent to E at the point U_3. The plane π contains a set L'_3 consisting of q^2 lines of L_3. Let L'_2 be the set of q^2 lines of L_2 through U_3. In $[5]$, we showed that $L'' = (L' \setminus L'_3) \cup L'_3$ is a Cameron–Liebler line class of with parameter $(q^2 + 1)/2$, admitting the group K as an automorphism group.

In particular, L'' has the following five characters with respect to line–sets in planes of $\text{PG}(3, q)$:

\[
\frac{q + 1}{2}, \frac{q(q - 1)}{2} - 1, \frac{q(q + 1)}{2}, \frac{q(q + 1)}{2} + q + 1, q^2 + \frac{q - 1}{2},
\]

and

\[
\frac{q + 3}{2}, \frac{q(q - 1)}{2}, \frac{q(q + 1)}{2} + 1, \frac{q(q + 1)}{2} + q + 2, q^2 + \frac{q + 1}{2},
\]

with respect to line–stars of $\text{PG}(3, q)$. It turns out that, if $q > 3$, these characters are distinct from those of a Bruen–Drudge Cameron–Liebler line class.
3 The new family

In this section we introduce a new derivation technique which will allow us to construct a new infinite family of Cameron–Liebler line classes with parameter \((q^2 + 1)/2, \ q \geq 7\).

With the notation introduced in the previous section, let \(E_\lambda\) be the elliptic quadric with equation \(X_1^2 - \omega X_2^2 + \lambda X_4^2 + X_3X_4 = 0, \ \lambda \in \text{GF}(q)\). Then the non–degenerate quadrics \(E = E_0, E_\lambda, \lambda \in \text{GF}(q) \setminus \{0\}\), together with \(\pi\), form a pencil \(\mathcal{P}\) of \(\text{PG}(3,q)\). The base locus of \(\mathcal{P}\) is the point \(U_3\). Let \(\perp (\text{resp. } \perp_\lambda)\) be the orthogonal polarity associated to \(E\) (resp. \(E_\lambda\)). Note that \(U_3 \perp_\lambda = \pi, \ \forall \lambda \in \text{GF}(q) \setminus \{0\}\).

With a slight abuse of notation we will denote in the same way a plane and the set of lines contained in it.

Lemma 3.1. If \(P \in O_s\), then

\[
|P^\perp \cap L_0| = \begin{cases}
q + 1 & \text{if } q \equiv -1 \ (\text{mod } 4) \\
0 & \text{if } q \equiv 1 \ (\text{mod } 4)
\end{cases}
\]

\[
|P^\perp \cap L_1| = \begin{cases}
0 & \text{if } q \equiv -1 \ (\text{mod } 4) \\
q + 1 & \text{if } q \equiv 1 \ (\text{mod } 4)
\end{cases}
\]

If \(P \in O_n\), then

\[
|P^\perp \cap L_0| = \begin{cases}
0 & \text{if } q \equiv -1 \ (\text{mod } 4) \\
q + 1 & \text{if } q \equiv 1 \ (\text{mod } 4)
\end{cases}
\]

\[
|P^\perp \cap L_1| = \begin{cases}
q + 1 & \text{if } q \equiv -1 \ (\text{mod } 4) \\
0 & \text{if } q \equiv 1 \ (\text{mod } 4)
\end{cases}
\]

Proof. It is enough to show that if \(t \in L_0\), then \(t^\perp\) belongs either to \(L_0\) or to \(L_1\), according as \(q \equiv -1 \ (\text{mod } 4)\) or \(q \equiv 1 \ (\text{mod } 4)\). Since \(G\) is transitive on elements of \(L_0\), let \(t\) be the line joining \(U_3\) with \(U_1 = (1,0,0,0)\). Then \(t^\perp\) is the line joining \(U_3\) with \(U_2 = (0,1,0,0)\), which belongs to \(L_0\) if and only if \(-1\) is not a square in \(\text{GF}(q)\), i.e., \(q \equiv -1 \ (\text{mod } 4)\). \(\square\)

Lemma 3.2. Every line of \(\text{PG}(3,q)\) not contained in \(\pi\) is tangent to exactly one elliptic quadric of \(\mathcal{P}\).
Proof. Let $\lambda \in \text{GF}(q)$ and let P be a point of the elliptic quadric E_λ of \mathcal{P}. Let T_P be the pencil of lines through P in $P^{-\lambda}$. In order to prove the result it is enough to show that a line ℓ of T_P is either secant or external to a non-degenerate quadric of \mathcal{P} distinct from E_λ. The plane π meets $P^{-\lambda}$ in a line r and $E_{\lambda'}$, $\lambda' \neq \lambda$, in a non-degenerate conic $C_{\lambda'}$, $\lambda' \in \text{GF}(q) \setminus \{\lambda\}$. Then P, r, $C_{\lambda'}$, $\lambda' \in \text{GF}(q) \setminus \{\lambda\}$, form a pencil of quadrics of π. From [11, Table 7.7], r is the polar line of P with respect to $C_{\lambda'}$. Hence, P is an interior point with respect to $C_{\lambda'}$ and the result follows.

Remark 3.3. Note that $E_\lambda \subseteq O_s$ if and only if $-\lambda$ is a non-zero square in $\text{GF}(q)$.

Remark 3.4. Let Q_λ be the quadratic form associated to E_λ (then $Q_\lambda = Q_0$). For a point of π the evaluation of Q_λ is the same for all $\lambda \in \text{GF}(q)$.

Let $\pi_0 = O_s \cap \pi$ and $\pi_1 = O_n \cap \pi$. Then $|\pi_0| = |\pi_1| = q(q+1)/2$. We need the following result.

Lemma 3.5. Let R be a point of $E_\lambda \setminus \{U_3\}$, $\lambda \neq 0$, let ℓ be a line meeting E_λ exactly in R and let $P = \pi \cap \ell$. If $P \in \pi_0$, then

$$|\ell \cap E| = \begin{cases} 0 & \text{if } \lambda \text{ is a non-square in } \text{GF}(q) \\ 2 & \text{if } \lambda \text{ is a square in } \text{GF}(q) \end{cases}.$$

If $P \in \pi_1$, then

$$|\ell \cap E| = \begin{cases} 2 & \text{if } \lambda \text{ is a non-square in } \text{GF}(q) \\ 0 & \text{if } \lambda \text{ is a square in } \text{GF}(q) \end{cases}.$$

Proof. Since there exists a subgroup of K of order q^2 which permutes in a single orbit the q^2 points of an elliptic quadric of \mathcal{P}, w.l.o.g., we can choose the point R as the point $(0,0,-\lambda,1) \in E_\lambda$. Then ℓ is contained in $R^{-\lambda}$. Assume that $P \in \pi_0$. Straightforward calculations show that P is a point having coordinates $(x,y,0,0)$, where $x^2 - \omega y^2$ is a non-zero square in $\text{GF}(q)$ and the line ℓ, apart from P, contains the points $(\mu x, \mu y, -\lambda, 1)$, $\mu \in \text{GF}(q)$. Note that $(\mu x, \mu y, -\lambda, 1) \in E$ if and only if $\lambda = \mu^2(x^2 - \omega y^2)$, that is if and only if λ is a square in $\text{GF}(q)$. Analogously, if $P \in \pi_1$.

Let $\lambda_1 \neq 0$ be a fixed square in $\text{GF}(q)$ and let λ_2 be a fixed non-square in $\text{GF}(q)$. Consider the following sets of lines:

$$t_0 = \{r \in \mathcal{L}_0 : |r \cap \pi_0| = q\}, \quad t_1 = \{r \in \mathcal{L}_1 : |r \cap \pi_1| = q\},$$

6
\[T_{10} = \{ r \in L_2 : |r \cap \mathcal{E}_{\lambda_1}| = 1, |r \cap \pi_0| = 1 \}, \]
\[T_{11} = \{ r \in L_3 : |r \cap \mathcal{E}_{\lambda_1}| = 1, |r \cap \pi_1| = 1 \}, \]
\[T_{20} = \{ r \in L_3 : |r \cap \mathcal{E}_{\lambda_2}| = 1, |r \cap \pi_0| = 1 \}, \]
\[T_{21} = \{ r \in L_2 : |r \cap \mathcal{E}_{\lambda_2}| = 1, |r \cap \pi_1| = 1 \}. \]

Then \(|t_0| = |t_1| = (q + 1)/2\) and \(|T_{10}| = |T_{11}| = |T_{20}| = |T_{21}| = q^2(q + 1)/2\).

Let \(A = T_{11} \cup T_{20}\) and \(B = T_{10} \cup T_{21}\). From Lemma 3.5, we have that \(A\) is a set consisting of \(q^2(q + 1)\) external lines to \(E\) and \(B\) is a set consisting of \(q^2(q + 1)\) secant lines to \(E\).

For a line \(\ell\) of PG(3, q), we define the following line–sets:
\[A_\ell = \{ r \in A : |r \cap \ell| = 1 \}, \quad B_\ell = \{ r \in B : |r \cap \ell| = 1 \}. \]

Remark 3.6. Taking into account Remark 3.4, by construction, we have the following:

- the lines in \(T_{11} \cup t_1\) are all the \((q + 1)(q^2 + 1)/2\) tangent lines to \(\mathcal{E}_{\lambda_1}\) having \(q\) non–square points with respect to \(Q_{\lambda_1}\);
- the lines in \(T_{10} \cup t_0\) are all the \((q + 1)(q^2 + 1)/2\) tangent lines to \(\mathcal{E}_{\lambda_1}\) having \(q\) square points with respect to \(Q_{\lambda_1}\);
- the lines in \(T_{20} \cup t_0\) are all the \((q + 1)(q^2 + 1)/2\) tangent lines to \(\mathcal{E}_{\lambda_2}\) having \(q\) square points with respect to \(Q_{\lambda_2}\);
- the lines in \(T_{21} \cup t_1\) are all the \((q + 1)(q^2 + 1)/2\) tangent lines to \(\mathcal{E}_{\lambda_2}\) having \(q\) non–square points with respect to \(Q_{\lambda_2}\).

Lemma 3.7. Let \(\ell\) be a line of PG(3, q) such that \(\ell \not\in A \cup B\), then \(|A_\ell| = |B_\ell|\).

Proof. From Lemma 3.2, the line \(\ell\) either is not tangent neither to \(\mathcal{E}_{\lambda_1}\) nor to \(\mathcal{E}_{\lambda_2}\), or \(U_3 \in \ell \subset \pi\) and \(\ell\) is tangent to both \(\mathcal{E}_{\lambda_1}\) and \(\mathcal{E}_{\lambda_2}\). Observe that if \(\ell\) is not tangent neither to \(\mathcal{E}_{\lambda_1}\) nor to \(\mathcal{E}_{\lambda_2}\), then, from Remark 3.6 and Lemma 2.1, each of the following line–sets: \(T_{11} \cup t_1\), \(T_{20} \cup t_0\), \(T_{10} \cup t_0\), \(T_{21} \cup t_1\), contains \((q + 1)^2/2\) lines meeting \(\ell\) in a point. We consider several cases.

Case 1: \(|\ell \cap \mathcal{E}_{\lambda_1}| = |\ell \cap \mathcal{E}_{\lambda_2}| = 0\)

7
There are two possibilities: either \(\ell \cap \pi_0 = 1 \). In this case, there is exactly one line of \(t_0 \) meeting \(\ell \) in a point and there are no lines of \(t_1 \) meeting \(\ell \) in a point. It follows that \(|A_\ell| = (q + 1)^2/2 + (q + 1)^2/2 - 1 \). Analogously, there are \((q + 1)^2/2 \) lines in \(T_{10} \cup t_0 \) meeting \(\ell \) and \((q + 1)^2/2 \) lines in \(T_{21} \cup t_1 \) meeting \(\ell \). Hence, \(|B_\ell| = (q + 1)^2/2 + (q + 1)^2/2 - 1 \).

b) If \(|\ell \cap \pi_1| = 1 \), then there is exactly one line of \(t_1 \) meeting \(\ell \) in a point and there are no lines of \(t_0 \) meeting \(\ell \) in a point. Hence, we get again \(|A_\ell| = |B_\ell| = q(q + 2) \).

c) If \(|\ell \cap \pi_0| = |\ell \cap \pi_1| = (q + 1)/2 \), then there are \((q + 1)/2 \) lines of \(t_1 \) meeting \(\ell \) in a point and \((q + 1)/2 \) lines of \(t_0 \) meeting \(\ell \) in a point. It follows that \(|A_\ell| = |B_\ell| = (q + 1)^2/2 + (q + 1)^2/2 - (q + 1)^2/2 - (q + 1)^2/2 = q(q + 1) \).

Case 2): \(|\ell \cap E_{\lambda_1}| = 2 \), \(|\ell \cap E_{\lambda_2}| = 0 \) or \(|\ell \cap E_{\lambda_1}| = 0 \), \(|\ell \cap E_{\lambda_2}| = 2 \)

Repeating the same argument as in Case 1), a), or Case 1), b), according as \(|\ell \cap \pi_0| = 1 \) or \(|\ell \cap \pi_1| = 1 \), we obtain \(|A_\ell| = |B_\ell| = q(q + 2) \).

Case 3): \(|\ell \cap E_{\lambda_1}| = 2 \), \(|\ell \cap E_{\lambda_2}| = 2 \)

Repeating the same argument as in Case 1), a), or Case 1), b), according as \(|\ell \cap \pi_0| = 1 \) or \(|\ell \cap \pi_1| = 1 \), we obtain \(|A_\ell| = |B_\ell| = q(q + 2) \). If \(U_3 \in \ell \), then there are \((q + 1)/2 \) lines of \(t_1 \) meeting \(\ell \) in a point and \((q + 1)/2 \) lines of \(t_0 \) meeting \(\ell \) in a point. It follows that \(|A_\ell| = |B_\ell| = q(q + 1) \).

Case 4): \(|\ell \cap E_{\lambda_1}| = |\ell \cap E_{\lambda_2}| = 1 \)

There are two possibilities: either \(\ell \in t_0 \) or \(\ell \in t_1 \).

a) \(\ell \in t_0 \). In this case, from Remark 3.6 and Lemma 2.2, each of the following line–sets: \(T_{10} \cup t_0 \), \(T_{20} \cup t_0 \), contains \(q^2 + (q-1)/2 \) lines meeting \(\ell \) in a point. Analogously, each of the following line–sets: \(T_{11} \cup t_1 \), \(T_{21} \cup t_1 \), has \((q + 1)/2 \) elements meeting \(\ell \) in a point. On the other hand, \(t_0 \) contains \((q-1)/2 \) lines intersecting \(\ell \) in a point and \(t_1 \) contains \((q + 1)/2 \) lines intersecting \(\ell \) in a point. Hence, \(|A_\ell| = |B_\ell| = q^2 \).

b) \(\ell \in t_1 \). As in the previous case, we get again \(|A_\ell| = |B_\ell| = q^2 \).
The proof is now complete. \hfill \Box

Lemma 3.8. Let ℓ be a line of $PG(3, q)$.

- If $\ell \in A$, then $|A_{\ell}| = \frac{3q^2 + 3q - 2}{2}$ and $|B_{\ell}| = \frac{q^2 + 3q}{2}$;
- if $\ell \in B$, then $|A_{\ell}| = \frac{q^2 + 3q}{2}$ and $|B_{\ell}| = \frac{3q^2 + 3q - 2}{2}$.

Proof. Assume first that $\ell \in A$ and in particular that $\ell \in T_{11}$. From Remark 3.6 and Lemma 2.2, there are $q^2 + (q - 1)/2$ lines of $T_{11} \cup t_1$ meeting ℓ in a point, whereas, there are $(q + 1)/2$ lines of T_{10} meeting ℓ in a point. Also, from Remark 3.6 and Lemma 2.1, each of the following line–sets: $T_{20} \cup t_0$, $T_{21} \cup t_1$ contains $(q + 1)/2$ lines meeting ℓ in a point. Since there is exactly one line of t_1 meeting ℓ in a point and there are no lines of t_0 meeting ℓ in a point, it follows that $|A_{\ell}| = q^2 + (q - 1)/2 - 1 + (q + 1)/2 = (3q^2 + 3q - 2)/2$ and $|B_{\ell}| = (q + 1)/2 + (q + 1)/2 - 1 = (q^2 + 3q)/2$. Similarly, if $\ell \in T_{20}$, repeating the previous arguments, we obtain the desired result. \hfill \Box

We are ready to prove the following result.

Theorem 3.9. Let L be a Cameron–Liebler line class with parameter $(q^2 + 1)/2$ such that $A \subset L$ and $|B \cap L| = 0$. Then the set $\bar{L} = (L \setminus A) \cup B$ is a Cameron–Liebler line class with parameter $(q^2 + 1)/2$.

Proof. Since L is a Cameron–Liebler line class with parameter $(q^2 + 1)/2$, we have that $|\{r \in L : |r \cap \ell| \geq 1\}|$ equals $q^2 + (q + 1)(q^2 + 1)/2$ if $\ell \in L$, or $(q + 1)(q^2 + 1)/2$ if $\ell \notin L$.

Let ℓ be a line of $PG(3, q)$.

- If $\ell \in L \setminus (A \cup B)$, then $\ell \in \bar{L}$. From Lemma 3.7 it follows that $|\{r \in \bar{L} : |r \cap \ell| \geq 1\}|$ equals $q^2 + (q + 1)(q^2 + 1)/2$.
- If $\ell \notin L \cup A \cup B$, then $\ell \notin \bar{L}$. From Lemma 3.7 it follows that $|\{r \in \bar{L} : |r \cap \ell| \geq 1\}|$ equals $(q + 1)(q^2 + 1)/2$.
- If $\ell \in A$, then $\ell \in L \setminus \bar{L}$. From Lemma 3.8 we have that $|\{r \in \bar{L} : |r \cap \ell| \geq 1\}|$ equals $q^2 + (q + 1)(q^2 + 1)/2 - (3q^2 + 3q - 2)/2 - (q^2 + 3q)/2 - 1 = (q + 1)(q^2 + 1)/2$.
- If $\ell \in B$, then $\ell \in \bar{L} \setminus L$. From Lemma 3.8 we have that $|\{r \in \bar{L} : |r \cap \ell| \geq 1\}|$ equals $(q + 1)(q^2 + 1)/2 + (3q^2 + 3q - 2)/2 - (q^2 + 3q)/2 + 1 = q^2 + (q + 1)(q^2 + 1)/2$.

9
The proof is now complete.

We consider \(\mathcal{L} \) being \(\mathcal{L}' \) and we denote by \(\mathcal{L}''' = (\mathcal{L}' \setminus \mathcal{A}) \cup \mathcal{B} \). Then, from Theorem 3.9, \(\mathcal{L}''' \) is a Cameron–Liebler line class with parameter \((q^2 + 1)/2\).

In what follows, we show that \(\mathcal{L}''' \) is left invariant by a group of order \(q^2(q + 1) \). We shall find it helpful to associate to a projectivity of \(\text{PGL}(4, q) \) a matrix of \(\text{GL}(4, q) \). We shall consider the points as column vectors, with matrices acting on the left.

Proposition 3.10. The Cameron–Liebler line class \(\mathcal{L}''' \) admits a subgroup of \(K \) of order \(q^2(q + 1) \).

Proof. Let \(\Psi \) be the subgroup of \(\text{PGL}(4, q) \) whose elements are associated to the following matrices:

\[
\begin{pmatrix}
1 & 0 & 0 & -x \\
0 & 1 & 0 & -y \\
2x & -2wy & 1 & wy^2 - x^2 \\
0 & 0 & 0 & 1
\end{pmatrix},
\]

where \(x, y \in \text{GF}(q) \). Then \(\Psi \) is an elementary abelian group of order \(q^2 \).

Easy computations show that if \(g \in \Psi \) and \(P \in \mathcal{E}_\lambda \), then \(P^g \in \mathcal{E}_\lambda \) and \(\Psi \) acts transitively on \(\mathcal{E}_\lambda \setminus \{U_3\} \), \(\lambda \in \text{GF}(q) \); furthermore, the evaluation of \(Q_{\lambda'} \), \(\lambda' \neq \lambda \), is the same for both \(P \) and \(P^g \). Let \(\Phi \) be the subgroup of \(\text{PGL}(4, q) \) whose elements are associated to the following matrices:

\[
\begin{pmatrix}
z & wt & 0 & 0 \\
t & z & 0 & 0 \\
0 & 0 & u & 0 \\
0 & 0 & 0 & u
\end{pmatrix},
\]

where \(z, t, u \in \text{GF}(q) \) are such that \(z^2 - wt^2 = u^2 \). Note that the previous equation holds true if and only if the line of \(\text{PG}(2, q) \) joining the points \((0,0,1)\) and \((z,t,0)\) is secant to the conic \(D : X_1^2 - wX_2^2 - X_3^2 = 0 \). Since \((0,0,1)\) is an interior point with respect to \(D \), we have that up to a scalar factor there are exactly \(q + 1 \) triple \((z,t,u)\) such that \(z^2 - wt^2 = u^2 \). Hence \(|\Phi| = q + 1 \). Easy computations show that if \(g \in \Phi \) and \(P \in \mathcal{E}_\lambda \), then \(P^g \in \mathcal{E}_\lambda \); furthermore, the evaluation of \(Q_{\lambda'} \), \(\lambda' \neq \lambda \), for the point \(P \) is a square if and only if it is a square for \(P^g \). Since both, \(\Psi \) and \(\Phi \) stabilize \(U_3 \),
we have that the direct product $\Gamma = \Psi \times \Phi$ is a group of order $q^2(q + 1)$ fixing the point U_3 and the plane π. Hence Γ is a subgroup of K.

The group Γ has the orbits π_0, π_1 and $\{U_3\}$ on π. It follows that the stabilizer in Γ of a point of $\pi \setminus \{U_3\}$ has order two. Let t be a line of $PG(3, q)$ not contained in π. From Lemma 3.2, t is tangent to exactly an elliptic quadric E_λ at the point R. The stabilizer of t in Γ has to fix R and $t \cap \pi$. Hence it has order at most two. On the other hand $(RU_3)^{-\lambda}$ does not depend on λ and Γ contains the involutory biaxial homology of G fixing pointwise the lines RU_3 and $(RU_3)^{-\lambda}$. Hence $|t^\Gamma|$ equals $q^2(q + 1)/2$ and Γ fixes L''.

\square

Let us denote by O_s^i and O_t^i, the sets of size $q^2(q^2 + 1)/2$ corresponding to points of $PG(3, q)$ such that the evaluation of the quadratic form Q_{λ_i}, $i = 1, 2$, is a non–zero square or a non–square in $GF(q)$, respectively.

Proposition 3.11. The characters of L'', with respect to line–sets in planes of $PG(3, q)$ form a subset of:

$$\left\{ q^2 + \frac{q + 1}{2}, q^2 - \frac{3(q + 1)}{2}, \frac{q(q - 1)}{2} + 3(q + 1), \frac{q(q - 1)}{2} + 2(q + 1), \frac{q(q - 1)}{2} + q + 1, \frac{q(q - 1)}{2} - (q + 1), \frac{q(q + 1)}{2} - 2(q + 1) \right\}. $$

Proof. Note that if σ is a plane distinct from π and not containing U_3, then $\sigma = P^{\perp \lambda_i}$, for some $P \in E_{\lambda_i} \setminus \{U_3\}$. In particular we may assume that $P = (0, 0, -\lambda_1, 1)$.

The plane π contains $q^2 + (q + 1)/2$ lines of L''.

Let σ be a plane distinct from π.

If $\sigma \cap \pi \in L_0$, then σ contains q lines of T_{20} and of T_{10} and no line of T_{11} and of T_{21}. Since σ contains $q(q - 1)/2 + q + 1$ lines of L', we have that σ contains $q(q - 1)/2 + q + 1$ lines of L''.

If $\sigma \cap \pi \in L_1$, then σ contains q lines of T_{11} and of T_{21} and no line of T_{20} and of T_{10}. Since σ contains $q(q - 1)/2$ lines of L', we have that σ contains $q(q - 1)/2$ lines of L''.

Let $\sigma = P^{\perp}$, with $P \in E \setminus \{U_3\}$. Consider the tactical configuration whose points are the q^2 planes tangent to E at some point of $E \setminus \{U_3\}$ and whose blocks are the $q^2(q + 1)/2$ lines contained in T_{11} (in T_{20}). It turns out that σ contains $q + 1$ lines of T_{11} (T_{20}). Since σ contains $q^2 + (q + 1)/2$ lines of L', we have that σ contains $q^2 - 3(q + 1)/2$ lines of L''.
Let $\sigma = P^\perp_{\lambda_1}, P \in \mathcal{E}_{\lambda_1} \setminus \{U_3\}$. Assume that $q \equiv 1 \pmod 4$. Taking into account Lemma 3.1 we have that σ contains no line of L_0.

If $\lambda_1 - \lambda_2$ is a non-square, then $(P^\perp_{\lambda_1})^\perp_{\lambda_2} \in O^2_n$. The plane σ contains $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{21} and $q + 1$ lines of T_{20}. Since σ contains $q(q-1)/2$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2$ lines of \mathcal{L}''.

If $\lambda_1 - \lambda_2$ is a square, then $(P^\perp_{\lambda_1})^\perp_{\lambda_2} \in O^2_n$. The plane σ contains $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{21} and $q + 1$ lines of T_{20}. Since σ contains $q(q-1)/2$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2$ lines of \mathcal{L}''.

If $\lambda_1 - \lambda_2$ is a square, then $(P^\perp_{\lambda_1})^\perp_{\lambda_2} \in O^2_n$. The plane σ contains $q(q-1)/2$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2 + q + 1$ lines of \mathcal{L}''.

Let $\sigma = P^\perp_{\lambda_2}, P \in \mathcal{E}_{\lambda_2} \setminus \{U_3\}$. Assume that $q \equiv 1 \pmod 4$. Taking into account Lemma 3.1 we have that σ contains $q + 1$ lines of L_0.

If $\lambda_2 - \lambda_1$ is a non-square, then $(P^\perp_{\lambda_2})^\perp_{\lambda_1} \in O^1_n$. The plane σ contains $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{11} and $q + 1$ lines of T_{10}. Since σ contains $q(q-1)/2 + q + 1$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2 + 2(q + 1)$ lines of \mathcal{L}''.

If $\lambda_2 - \lambda_1$ is a square, then $(P^\perp_{\lambda_2})^\perp_{\lambda_1} \in O^1_n$. The plane σ contains $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{10} and $q + 1$ lines of T_{11}. Since σ contains $q(q-1)/2 + q + 1$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2$ lines of \mathcal{L}''.

Assume that $q \equiv -1 \pmod 4$. Taking into account Lemma 3.1 we have that σ contains $q + 1$ lines of L_0.

If $\lambda_2 - \lambda_1$ is a non-square, then $(P^\perp_{\lambda_2})^\perp_{\lambda_1} \in O^1_n$. The plane σ contains $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{10} and $q + 1$ lines of T_{11}. Since σ contains $q(q-1)/2$ lines of \mathcal{L}', we have that σ contains $q(q-1)/2 - (q + 1)$ lines of \mathcal{L}''.

If $\lambda_2 - \lambda_1$ is a square, then $(P^\perp_{\lambda_2})^\perp_{\lambda_1} \in O^1_n$. The plane σ contains $(q + 1)/2$
lines of \(T_{20} \) and of \(T_{21} \), no line of \(T_{11} \) and \(q + 1 \) lines of \(T_{10} \). Since \(\sigma \) contains \(q(q - 1)/2 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L'' \).

Let \(\sigma = P^{\perp_{\lambda_3}}, P \in \mathcal{E}_{\lambda_3} \setminus \{U_3\}, \lambda_3 \in \text{GF}(q) \setminus \{0, \lambda_1, \lambda_2\} \).

Taking into account Lemma 3.1, we have that \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_1}} \in O_s \) if and only if \(\lambda_3 \) is a square in \(\text{GF}(q) \).

Assume that \(\lambda_3 \) is a square in \(\text{GF}(q) \). The following possibilities arise:

- \(\lambda_3 - \lambda_1, \lambda_3 - \lambda_2 \) are squares in \(\text{GF}(q) \) and then \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_1}} \in O_1 \) and \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_2}} \in O_2^2 \). If \(q \equiv -1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{20} \) and of \(T_{10} \) and no line of \(T_{21} \) and of \(T_{11} \). Since \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L'' \). If \(q \equiv 1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{11} \) and of \(T_{21} \) and no line of \(T_{20} \) and of \(T_{10} \). Since \(\sigma \) contains \(q(q - 1)/2 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 \) lines of \(L'' \);

- \(\lambda_3 - \lambda_1 \) is a non–square and \(\lambda_3 - \lambda_2 \) is a square in \(\text{GF}(q) \), then \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_1}} \in O_1 \) and \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_2}} \in O_2^2 \). If \(q \equiv -1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{20} \) and of \(T_{11} \) and no line of \(T_{21} \) and of \(T_{10} \). Since \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 -(q + 1) \) lines of \(L'' \). If \(q \equiv 1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{21} \) and of \(T_{10} \) and no line of \(T_{20} \) and of \(T_{11} \). Since \(\sigma \) contains \(q(q - 1)/2 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 + 2(q + 1) \) lines of \(L'' \);

- \(\lambda_3 - \lambda_1 \) is a square and \(\lambda_3 - \lambda_2 \) is a non–square in \(\text{GF}(q) \), then \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_1}} \in O_1 \) and \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_2}} \in O_2^2 \). If \(q \equiv -1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{21} \) and of \(T_{10} \) and no line of \(T_{20} \) and of \(T_{11} \). Since \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 + 3(q + 1) \) lines of \(L'' \). If \(q \equiv 1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{20} \) and of \(T_{11} \) and no line of \(T_{21} \) and of \(T_{10} \). Since \(\sigma \) contains \(q(q - 1)/2 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 - 2(q + 1) \) lines of \(L'' \);

- \(\lambda_3 - \lambda_1, \lambda_3 - \lambda_2 \) are non–squares in \(\text{GF}(q) \) and then \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_1}} \in O_1 \) and \((P^{\perp_{\lambda_3}})^{\perp_{\lambda_2}} \in O_2^2 \). If \(q \equiv -1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{11} \) and of \(T_{21} \) and no line of \(T_{20} \) and of \(T_{10} \). Since \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L' \), we have that \(\sigma \) contains \(q(q - 1)/2 + q + 1 \) lines of \(L'' \). If \(q \equiv 1 \pmod{4} \), \(\sigma \) contains \(q + 1 \) lines of \(T_{20} \) and of \(T_{10} \).
and no line of T_{21} and of T_{11}. Since σ contains $q(q - 1)/2$ lines of L', we have that σ contains $q(q - 1)/2$ lines of L''.

Assume that λ_3 is a non-square in GF(q). Arguing as above, we have the following possibilities:

- $\lambda_3 - \lambda_1, \lambda_3 - \lambda_2$ are squares in GF(q). In this case σ contains $q(q - 1)/2$ or $q(q - 1)/2 + q + 1$ lines of L'', according as $q \equiv -1 \pmod{4}$ or $q \equiv 1 \pmod{4}$;
- $\lambda_3 - \lambda_1$ is a non-square and $\lambda_3 - \lambda_2$ is a square in GF(q). In this case σ contains $q(q - 1)/2 - 2(q + 1)$ or $q(q - 1)/2 + 3(q + 1)$ lines of L'', according as $q \equiv -1 \pmod{4}$ or $q \equiv 1 \pmod{4}$;
- $\lambda_3 - \lambda_1$ is a square and $\lambda_3 - \lambda_2$ is a non-square in GF(q). In this case σ contains $q(q - 1)/2 - 2(q + 1)$ or $q(q - 1)/2 - (q + 1)$ lines of L'', according as $q \equiv -1 \pmod{4}$ or $q \equiv 1 \pmod{4}$;
- $\lambda_3 - \lambda_1, \lambda_3 - \lambda_2$ are non-squares in GF(q). In this case σ contains $q(q - 1)/2$ or $q(q - 1)/2 + q + 1$ lines of L'', according as $q \equiv -1 \pmod{4}$ or $q \equiv 1 \pmod{4}$.

The proof is now complete.

Proposition 3.12. The characters of L'', with respect to line-stars of $\text{PG}(3, q)$ form a subset of:

$$\left\{ \frac{q + 1}{2}, \frac{5(q + 1)}{2}, \frac{q(q + 1)}{2} - 2(q + 1), \frac{q(q + 1)}{2} - (q + 1), \right.$$

$$\frac{q(q + 1)}{2}, \frac{q(q + 1)}{2} + q + 1, \frac{q(q + 1)}{2} + 2(q + 1), \frac{q(q + 1)}{2} + 3(q + 1) \right\}.$$

Proof. Through the point U_3, there pass $(q + 1)/2$ lines of L''.

Let $P \in E \setminus \{U_3\}$. Consider the tactical configuration whose points are the q^2 points of $E \setminus \{U_3\}$ and whose blocks are the $q^2(q + 1)/2$ lines contained in T_{10} (in T_{21}). It turns out that through P there pass $q + 1$ lines of T_{10} (T_{21}). Since P is on $q + 1$ lines of L', we have that P is on $5(q + 1)/2$ lines of L''.

Let $P \in \pi_0$. Through P there pass q lines of T_{10} and of T_{20} and no line of T_{11} and of T_{21}. Since P is on $q(q + 1)/2 + q + 1$ lines of L', we have that P is on $q(q + 1)/2 + q + 1$ lines of L''.

14
Let $P \in \pi_1$. Through P there pass q lines of T_{11} and of T_{21} and no line of T_{10} and of T_{20}. Since P is on $q(q + 1)/2$ lines of L', we have that P is on $q(q + 1)/2$ lines of L''.

Let $P \in \mathcal{E}_{\lambda_1} \setminus \{U_3\}$.

Assume that $q \equiv 1 \pmod{4}$. Taking into account Remark 3.3, we have that $\mathcal{E}_{\lambda_1} \subseteq O_s$. If $\lambda_2 - \lambda_1$ is a square, then $\mathcal{E}_{\lambda_1} \subseteq O_s^2$. Through P there pass $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{21} and $q + 1$ lines of T_{20}. Since P is on $q(q + 1)/2 + q + 1$ lines of L', we have that P is on $q(q + 1)/2$ lines of L''. If $\lambda_2 - \lambda_1$ is a non–square, then $\mathcal{E}_{\lambda_1} \subseteq O_s^2$. Through P there pass $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{20} and $q + 1$ lines of T_{21}. Since P is on $q(q + 1)/2 + q + 1$ lines of L', we have that P is on $(q + 1)/2 + 2(q + 1)$ lines of L''.

Assume that $q \equiv -1 \pmod{4}$. Taking into account Remark 3.3, we have that $\mathcal{E}_{\lambda_1} \subseteq O_s$. If $\lambda_2 - \lambda_1$ is a square, then $\mathcal{E}_{\lambda_1} \subseteq O_s^2$. Through P there pass $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{21} and $q + 1$ lines of T_{20}. Since P is on $q(q + 1)/2 + q + 1$ lines of L', we have that P is on $q(q + 1)/2 - (q + 1)$ lines of L''. If $\lambda_2 - \lambda_1$ is a non–square, then $\mathcal{E}_{\lambda_1} \subseteq O_s^2$. Through P there pass $(q + 1)/2$ lines of T_{11} and of T_{10}, no line of T_{20} and $q + 1$ lines of T_{21}. Since P is on $q(q + 1)/2$ lines of L', we have that P is on $(q + 1)/2 - (q + 1)$ lines of L''.

Let $P \in \mathcal{E}_{\lambda_2} \setminus \{U_3\}$.

Assume that $q \equiv 1 \pmod{4}$. Taking into account Remark 3.3, we have that $\mathcal{E}_{\lambda_2} \subseteq O_s$. If $\lambda_1 - \lambda_2$ is a square, then $\mathcal{E}_{\lambda_2} \subseteq O_s^1$. Through P there pass $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{11} and $q + 1$ lines of T_{10}. Since P is on $q(q + 1)/2$ lines of L', we have that P is on $q(q + 1)/2 + q + 1$ lines of L''. If $\lambda_1 - \lambda_2$ is a non–square, then $\mathcal{E}_{\lambda_2} \subseteq O_s^1$. Through P there pass $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{10} and $q + 1$ lines of T_{11}. Since P is on $q(q + 1)/2$ lines of L', we have that P is on $(q + 1)/2 - (q + 1)$ lines of L''. Assume that $q \equiv -1 \pmod{4}$. Taking into account Remark 3.3, we have that $\mathcal{E}_{\lambda_2} \subseteq O_s$. If $\lambda_1 - \lambda_2$ is a square, then $\mathcal{E}_{\lambda_2} \subseteq O_s^1$. Through P there pass $(q + 1)/2$ lines of T_{20} and of T_{21}, no line of T_{11} and $q + 1$ lines of T_{10}. Since P is on $q(q + 1)/2 + q + 1$ lines of L', we have that P is on $(q + 1)/2 + 2(q + 1)$ lines of L''.

15
If \(\lambda_1 - \lambda_2 \) is a non–square, then \(E_{\lambda_2} \subseteq O^1_n \). Through \(P \) there pass \((q + 1)/2 \) lines of \(T_{20} \) and of \(T_{21} \), no line of \(T_{10} \) and \(q + 1 \) lines of \(T_{11} \). Since \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L' \), we have that \(P \) is on \(q(q + 1)/2 \) lines of \(L'' \).

Let \(P \in E_{\lambda_3} \setminus \{ U_3 \}, \lambda_3 \in GF(q) \setminus \{ 0, \lambda_1, \lambda_2 \} \).

Taking into account Remark 3.3, we have that \(P \in O_s \) if and only if \(-\lambda_3 \) is a square in GF(\(q \)). Assume that \(-\lambda_3 \) is a square in GF(\(q \)). The following possibilities arise:

- \(\lambda_1 - \lambda_3, \lambda_2 - \lambda_3 \) are squares in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). Through \(P \) there pass \(q + 1 \) lines of \(T_{20} \) and of \(T_{10} \) and no line of \(T_{21} \) and of \(T_{11} \). Since \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L' \), we have that \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L'' \);

- \(\lambda_1 - \lambda_3 \) is a square and \(\lambda_2 - \lambda_3 \) is a non–square in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). Through \(P \) there pass \(q + 1 \) lines of \(T_{21} \) and of \(T_{10} \) and no line of \(T_{20} \) and of \(T_{11} \). Since \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L' \), we have that \(P \) is on \(q(q + 1)/2 + 3(q + 1) \) lines of \(L'' \);

- \(\lambda_1 - \lambda_3 \) is a non–square and \(\lambda_2 - \lambda_3 \) is a square in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). Through \(P \) there pass \(q + 1 \) lines of \(T_{11} \) and of \(T_{20} \) and no line of \(T_{21} \) and of \(T_{10} \). Since \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L' \), we have that \(P \) is on \(q(q + 1)/2 - (q + 1) \) lines of \(L'' \);

- \(\lambda_1 - \lambda_3, \lambda_2 - \lambda_3 \) are non–squares in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). Through \(P \) there pass \(q + 1 \) lines of \(T_{11} \) and of \(T_{21} \) and no line of \(T_{20} \) and of \(T_{10} \). Since \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L' \), we have that \(P \) is on \(q(q + 1)/2 + q + 1 \) lines of \(L'' \).

Assume that \(-\lambda_3 \) is a non–square in GF(\(q \)). Arguing as above, we have the following possibilities:

- \(\lambda_1 - \lambda_3, \lambda_2 - \lambda_3 \) are squares in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). In this case \(P \) is on \(q(q + 1)/2 \) lines of \(L'' \);

- \(\lambda_1 - \lambda_3 \) is a square and \(\lambda_2 - \lambda_3 \) is a non–square in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). In this case \(P \) is on \(q(q + 1)/2 + 2(q + 1) \) lines of \(L'' \);

- \(\lambda_1 - \lambda_3 \) is a non–square and \(\lambda_2 - \lambda_3 \) is a square in GF(\(q \)) and then \(P \in O^1_s \cap O^2_n \). In this case \(P \) is on \(q(q + 1)/2 - 2(q + 1) \) lines of \(L'' \);

16
• $\lambda_1 - \lambda_3, \lambda_2 - \lambda_3$ are non–squares in $\text{GF}(q)$ and then $P \in O^1_n \cap O^2_n$. In this case P is on $q(q + 1)/2$ lines of L''.

The proof is now complete. \hfill \Box

Theorem 3.13. If $q \geq 7$ odd, the Cameron–Liebler line class L'' is not equivalent to one of the previously known examples.

Proof. From the proof of Proposition 3.12 if $P \in E \setminus \{U_3\}$, through P there pass $5(q + 1)/2$ lines of L'''. Since, for $q \geq 7$, the value $5(q + 1)/2$ does not appear among the characters of L' and L'', we may conclude that L''' is distinct from L' and L''. On the other hand, both examples $X \cup Y$ and $X \cup Z$ admit $q^2 + q + 1$ as a character, but from Proposition 3.11 and Proposition 3.12 such a value does not appear as a character of L'''. \hfill \Box

Remark 3.14. Let \square_q denote the non–zero square elements of $\text{GF}(q)$. From the proof of Proposition 3.11 and of Proposition 3.12 if there exist $a_1, a_2, a_3, a_4, b_1, b_2, b_3, b_4 \in \text{GF}(q) \setminus \{0, \lambda_1, \lambda_2\}$ such that $a_1, a_2, a_3, a_4 \in \square_q$, $b_1, b_2, b_3, b_4 \notin \square_q$ and $a_1 - \lambda_1 \notin \square_q, a_1 - \lambda_2 \notin \square_q, a_2 - \lambda_1 \notin \square_q, a_2 - \lambda_2 \notin \square_q, a_3 - \lambda_1 \notin \square_q, a_3 - \lambda_2 \notin \square_q, a_4 - \lambda_1 \notin \square_q, a_4 - \lambda_2 \notin \square_q, b_1 - \lambda_1 \notin \square_q, b_1 - \lambda_2 \notin \square_q, b_2 - \lambda_1 \notin \square_q, b_2 - \lambda_2 \notin \square_q, b_3 - \lambda_1 \notin \square_q, b_3 - \lambda_2 \notin \square_q, b_4 - \lambda_1 \notin \square_q, b_4 - \lambda_2 \notin \square_q$, then L''' has exactly eight characters with respect to line–sets in planes of $\text{PG}(3, q)$ (line–stars of $\text{PG}(3, q)$).

Remark 3.15. Note that both, L' and L'', are Cameron–Liebler line classes satisfying the requirements of Theorem 3.9 and that, starting from L' or L'', the replacement technique described in Theorem 3.9 can be iterated $(q - 1)/2$ times.

Remark 3.16. Computations performed with Magma [2] suggest that starting from L' and applying Theorem 3.9 (multiple derivation is allowed), apart from Bruen–Drudge’s example and the example described in [5] and [8], we get what follows. The notation α^i in the character strings below stands for: there are i planes containing α lines of the Cameron–Liebler line class or there are i line–stars containing α lines of the Cameron–Liebler line class.

$q = 7$

A new example arises having the characters:

1) $13^{49}, 21^{126}, 29^{77}, 37^{98}, 45^{49}, 53$ with respect to line–sets in planes of $\text{PG}(3, 7)$ and $4, 12^{49}, 20^{98}, 28^{77}, 36^{126}, 44^{49}$ with respect to line–stars of $\text{PG}(3, 7)$.

17
Three new examples arise having the characters:

\[q = 9 \]

i) \(16^{81}, 36^{207}, 46^{288}, 56^{81}, 66^{162}, 86\) with respect to line–sets in planes of \(\text{PG}(3,9)\) and \(5, 25^{162}, 35^{81}, 45^{288}, 55^{207}, 75^{81}\) with respect to line–stars of \(\text{PG}(3,9)\);

ii) \(26^{162}, 36^{207}, 46^{126}, 56^{162}, 66^{162}, 86\) with respect to line–sets in planes of \(\text{PG}(3,9)\) and \(5, 25^{162}, 35^{162}, 45^{126}, 55^{207}, 65^{162}\) with respect to line–stars of \(\text{PG}(3,9)\);

iii) \(26^{162}, 36^{126}, 46^{288}, 56^{162}, 66^{162}, 86\) with respect to line–sets in planes of \(\text{PG}(3,9)\) and \(5, 15^{81}, 35^{162}, 45^{288}, 55^{126}, 65^{162}\) with respect to line–stars of \(\text{PG}(3,9)\).

Five new examples arise having the characters:

\[q = 11 \]

i) \(31^{121}, 43^{121}, 55^{308}, 67^{429}, 79^{242}, 91^{121}, 103^{121}, 127\) with respect to line–sets in planes of \(\text{PG}(3,11)\) and \(6, 30^{121}, 42^{121}, 54^{242}, 66^{429}, 78^{308}, 90^{121}, 102^{121}\) with respect to line–stars of \(\text{PG}(3,11)\), see Remark 3.14

ii) \(43^{242}, 55^{550}, 67^{187}, 79^{121}, 91^{242}, 103^{121}, 127\) with respect to line–sets in planes of \(\text{PG}(3,11)\) and \(6, 30^{121}, 42^{242}, 54^{121}, 66^{187}, 78^{550}, 90^{242}\) with respect to line–stars of \(\text{PG}(3,11)\);

iii) \(43^{242}, 55^{429}, 67^{308}, 79^{363}, 115^{121}, 127\) with respect to line–sets in planes of \(\text{PG}(3,11)\) and \(6, 18^{121}, 54^{363}, 66^{308}, 78^{429}, 90^{242}\) with respect to line–stars of \(\text{PG}(3,11)\);

iv) \(31^{121}, 43^{242}, 55^{187}, 67^{187}, 79^{484}, 91^{242}, 127\) with respect to line–sets in planes of \(\text{PG}(3,11)\) and \(6, 42^{242}, 54^{484}, 66^{187}, 78^{187}, 90^{242}, 102^{121}\) with respect to line–stars of \(\text{PG}(3,11)\);

v) \(19^{121}, 55^{249}, 67^{308}, 79^{363}, 91^{242}, 127\) with respect to line–sets in planes of \(\text{PG}(3,11)\) and \(6, 42^{242}, 54^{363}, 66^{308}, 78^{429}, 114^{121}\) with respect to line–stars of \(\text{PG}(3,11)\).

Interestingly, if we start from \(L''\), we get the complements of the abovementioned examples. In general, it seems a difficult task to determine how many inequivalent examples of Cameron–Liebler line classes arise from Theorem 3.9 and we leave it as an open problem.
References

[1] J. Bamberg, S. Kelly, M. Law, T. Penttila, Tight sets and m–ovoids of finite polar spaces, *J. Combin. Theory Ser. A* 114 (2007), no. 7, 1293–1314.

[2] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. Computational algebra and number theory, *J. Symbolic Comput.* 24 (1997), no. 3-4, 235–265.

[3] A.A. Bruen, K. Drudge, The construction of Cameron–Liebler line classes in PG(3,q), *Finite Fields Appl.* 5 (1999), no. 1, 35–45.

[4] P.J. Cameron, R.A. Liebler, Tactical decompositions and orbits of projective groups, *Linear Algebra Appl.* 46 (1982), 91–102.

[5] A. Cossidente, F. Pavese, Intriguing sets of quadrics in PG(5,q), *Adv. Geom.* (to appear).

[6] J. De Beule, J. Demeyer, K. Metsch, M. Rodgers, A new family of tight sets of $Q^+(5,q)$, *Des. Codes Cryptogr.* 78 (2016), 655–678.

[7] T. Feng, K. Momihara, Q. Xiang, Cameron–Liebler line classes with parameter $x = (q^2−1)/2$, *J. Comb. Theory Ser. A* 133 (2015), 307–338.

[8] A.L. Gavrilyuk, I. Matkin, T. Penttila, Derivation of Cameron–Liebler line classes, *Des. Codes Cryptogr.* DOI 10.1007/s10623-017-0338-4.

[9] A.L. Gavrilyuk, K. Metsch, A modular equality for Cameron–Liebler line classes, *J. Combin. Theory Ser. A* 127 (2014), 224–242.

[10] P. Govaerts, T. Penttila, Cameron–Liebler line classes in PG(3,4), *Bull. Belg. Math. Soc. Simon Stevin* 12 (2005), no. 5, 793–804.

[11] J.W.P. Hirschfeld, *Projective Geometries over Finite Fields*, Oxford University Press,

[12] K. Metsch, An improved bound on the existence of Cameron–Liebler line classes, *J. Comb. Theory Ser. A* 121 (2014), 89–93.

[13] T. Penttila, Cameron–Liebler line classes in PG(3,q), *Geom. Ded.* 37 (1991), 245–252.
[14] M. Rodgers, *On some new examples of Cameron–Liebler line classes*, Ph.D. Thesis, University of Colorado, Denver, 2012.

A. Cossidente
Dipartimento di Matematica Informatica ed Economia
Università della Basilicata
Contrada Macchia Romana
85100 Potenza (ITALY),
antonio.cossidente@unibas.it

F. Pavese
Dipartimento di Meccanica, Matematica e Management
Politecnico di Bari
Via Orabona, 4
70125 Bari (ITALY),
francesco.pavese@poliba.it