Genomic Analysis of a Mycobacterium Bovis Bacillus Calmette-Guérin Strain Isolated from an Adult Patient with Pulmonary Tuberculosis

Xuming Li¹,²*, Liping Chen¹*, Yongqiang Zhu³, Xia Yu⁴, Jun Cao¹, Rui Wang³, Xinyan Lv³, Jin He², Aizhen Guo²*, Hairong Huang⁴*, Huajun Zheng³,⁵*, Siguo Liu¹*

¹ Division of Bacterial Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agriculture, Harbin 150001, China, ² Stake Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China, ³ Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai 201203, China, ⁴ National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory on Drug-resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China, ⁵ Laboratory of Medical Foods, Shanghai Institute of Planned Parenthood Research, 2140 Xie-Tu Road, Shanghai 200032, China

* These authors contributed equally to this work.

Abstract

For years, bacillus Calmette-Guérin (BCG) has served as the unique vaccine against tuberculosis and has generally been regarded as safe. However, a clinical strain labeled 3281 that was isolated from a TB patient was identified to be BCG. Via the combination of next-generation sequencing (NGS) and comparative genomic analysis, unique 3281 genetic characteristics were revealed. A region containing the dnaA and dnaN genes that is closely related to the initial chromosome replication was found to repeat three times on the BCG Pasteur-specific tandem duplication region DU1. Due to the minimum number of epitopes in BCG strains, 3281 was inferred to have a high possibility for immune evasion. Additionally, variations in the virulence genes and predictions for potential virulence factors were analyzed. Overall, we report a pathogen that has never previously been thought to be pathogenic and initial insights that are focused on the genetic characteristics of virulent BCG.

Introduction

During the 20 years since the WHO declared that tuberculosis (TB) is a global public health emergency, great efforts have been made to control and eradicate this disease worldwide. Globally, the TB mortality rate has fallen by 45% since 1990. Although considerable progress has been made in these years, an estimated 8.6 million individuals still develop TB, and 1.3 million die from the disease every year [1]. As one of the “three killers” of humans, TB remains a current major global health problem. Furthermore, one-third of the world population is latentl...
infected with *Mycobacterium tuberculosis* (MTB), which makes the eradication of this disease more difficult[2].

With the development of genomics and high-throughput sequencing technology, scientists have sought to disclose the “secret garden” of TB via the use of genomic methods[3,4]. H37Rv is a laboratory virulent MTB strain whose genome was the first to be completely sequenced, and it has typically been used as a reference strain in comparative genomic research. The sole available TB vaccine, bacillus Calmette-Guérin (BCG), was derived from *Mycobacterium bovis* (*M. bovis*); the virulence of this mycobacterium was attenuated in the laboratory via cultivation on potatoglycerol medium, and this vaccine can only supply sufficient protection for children. However, this vaccine is incapable of providing the same efficacy for adolescents and adults[1,5]. Furthermore, the continual process of the subculturing of BCG in laboratories around the world has led to the generation of daughter strains, and the protective efficacies against these strains has been shown to vary across laboratories and epidemiological investigations[6–8]. To define the molecular basis of the attenuation of BCGs and the variation among daughter strains, comparative genomics research has been performed. Comparisons of BCG to *M. bovis*-revealed that several genes associated with virulence were lost[9]. Further studies identified two tandem duplications, DU1 and DU2, which were shown to vary across all of the BCG vaccine strains[10–12]. In addition to these major mutations, it has been demonstrated that single nucleotide polymorphisms (SNPs) might also play significant roles in the attenuation and variation of BCGs[13,14].

In our study, a strain labeled 3281, which was derived from an adult TB patient who reported having never been inoculated with a TB vaccine and was determined to be free of HIV infection, was screened and identified to be BCG. Our interest was aroused by the question how BCG turned into a pathogen despite being regarded as safe for years. The present research compared a virulent BCG isolate with BCG vaccines.

Results and Discussion

Case finding

The strain 3281 was isolated from a 33 year old male, who lived in Hebei province, which is a none-animal-husbandry region located in northern China. The patient worked in a commercial company which was not involved with livestock. The patient had never previously been diagnosed with tuberculosis and there was no known tuberculosis case among his family members or friends. The patient reported a cough and expectorate for less than 3 weeks before he consulted a doctor. The chest X-ray and CT demonstrated sign of pneumonia. Three consecutive sputa were all Acid-Fast Bacilli (AFB) positive while the *M. bovis* BCG strain was cultured from all of the sputa. Given these reason, we suggested that the *M. bovis* BCG strain might be the pathogen of this pneumonia patient.

This isolate 3281 belonged to a predominant spoligotype (SB0120) which was frequently reported both among human bovine TB and among cattle[15]. This spoligotype is similar to the spoligotype of the vaccine strain BCG type, and four strains out of the 14 *M. bovis* strains isolated from cattle in China during 2007 and 2008 had the same spoligotype[16].

MIC(minimal inhibitory concentration) testing

Mycobacterium tuberculosis susceptibility to 12 first- and second-line drugs were performed using Trek Sensititre MYCOTB MIC plate (MYCOTB; Trek Diagnostic Systemes, Cleveland, OH), with incubation at 37°C for 30 days. The MIC was recorded as the lowest antibiotic concentration that reduced visible growth (Table 1). The result showed that BCG 3281 showed a higher resistance to Ethionamide (5μg/ml) than BCG Pasteur (2.5μg/ml), *M. bovis*(1.2μg/ml).
Table 1. MIC testing results.

Antibiotic	Concentration Range (μg/ml)	MIC (μg/ml)			
		BCG 3281	BCG Pasteur	M. bovis	H37Rv
Cycloserine	2–256	16	16	16	8
Ethambutol	0.5–32	1	1	4	2
Ethionamide	0.3–40	5	2.5	1.2	0.6
Isoniazid	0.03–4	0.12	0.06	0.12	0.06
Para-aminosalicylic acid	0.5–64	0.5	1	64	0.5
Rifabutin	0.12–16	0.12	0.12	0.12	0.12
Rifampicin	0.12–16	0.12	0.12	0.5	0.25
Kanamycin	0.6–40	1.2	0.6	1.2	2.5
Ofloxacin	0.25–32	0.25	1	2	1
Moxifloxacin	0.06–8	0.06	0.25	0.5	0.5
streptomycin	0.25–32	0.25	0.25	1	0.5
Amikacin	0.12–16	0.12	0.12	0.5	0.5

doi:10.1371/journal.pone.0122403.t001

and H37Rv (0.6μg/ml). Meanwhile, BCG 3281 showed similar resistance to Isoniazid as M. bovis (0.12μg/ml), twice that of BCG Pasteur and H37Rv (0.06μg/ml). In addition, the resistance to Para-aminosalicylic acid, Kanamycin, Ofloxacin and Moxifloxacin of BCG 3281 was different with BCG Pasteur, indicating that BCG 3281 was not a traditional BCG strain.

General genomic features

The size of the BCG 3281 genome was 4,410,431 bp (Fig 1), and the sequencing error was less than 1/Mb. Thus far, BCG 3281 has the largest genome size in terms of the genomes of BCG that have been completed. The genome of 3281 is 135,909 bps larger than that of BCG Pasteur (Table 2). A total of 4,186 CDSs were identified by glimmer-prediction and reference gene-alignment[17]. Among these CDSs, 3,079 might be COG categories with e-values 1e-5. No credible prophage was found, despite the finding that prophage genes produced four hits in the BCG 3281 genome via phage-finder[18]. Due to the polymorphic G+C-rich sequences (PGRSs), most of which consist of enzymes involved in lipogenesis and lipolysis and the Pro-Glu(PE) motif-Pro-Pro-Glu(PPE) motif gene family, BCG 3281’s GC-content was as much as 65.6%, which is similar to the GC contents of MTB and M. bovis[3]. Forty-five tRNA operons were predicted by tRNAscan-SE, and one rRNA operon was located by RNAmmer[19,20].

Genomic comparison with M. bovis and the four BCG strains revealed that the regions of difference (RDs) that contain virulence genes that were lost in the BCGs were also absent in 3281. Compared to the other BCGs and M. bovis, 35 BCG 3281-specific single nucleotide polymorphisms (SNPs) were identified (Fig 1), and 23 of these SNPs produced nonsynonymous variations. Additionally, nine indels (three insertions and six deletions) were found to be exclusive to BCG 3281, and four other deletions were shared only with M. bovis only. A total of 20 genes were affected by the 23 nonsynonymous variations (S1 Table), and 50 genes were affected by the 13 indels (Table 3 and S2 Table).

Unique genomic features of the BCG strains

Thirteen years of laboratory cultivation have caused great differences in virulence between the progeny and the original strain and resulted in the attenuated virulence and sufficient reserved antigenicity for protection against TB. Comparative genomic analyses have revealed massive discrepancies between BCG and M. bovis. The most significant two events were the loss of the
RD1 regions that contain a specialized secretion system that is strongly associated with pathogenic ability[11,21] and the two tandem duplications, DU1 and DU2. DU1 is restricted to BCG Pasteur 1173P2, and DU2 is present in four different types in different BCGs[10,22].

In the genome sequence of BCG 3281, a loss of RD1 and duplications in the DU1 and DU2 regions were observed, which validates this strain as BCG. In the DU1 region, a 7 kb unit that covered six genes and crossed the oriC was found to be repeated three times (Fig 2); this duplication is specific to BCG 3281 and has never been reported before (Table 4 and 5). The DU1 in
BCG Pasteur is 29.7 Kb, encompassing the region from \(Rv3910 \) to \(Rv0013 \), while the DU1 in BCG 3281 is only 7.2 Kb, including the region from \(Rv3921c \) to \(Rv0003 \). BCG 3281 has three copies of \(dnaA-dnaN \) region with functional oriC. Protein DnaA initiates chromosome replication when accumulated to the ‘initiation’ level\[23\], and multiple copies of \(dnaA \) in BCG 3281 might help the strain increase growth rate \[24\] and activate some gene expression \[25\]. Thus, the triploid for DNA replication elements might partly contribute to the pathogenic of BCG 3281.

Table 2. Genome messages of strains used in this paper.

Strain	Length(bp)	GC	CDSs	rRNA Operons	tRNA Operons
M. tuberculosis H37Rv	4,411,708	65.62%	4111	1	45
M. bovis AF2122	4,345,492	65.63%	3918	1	45
M. bovis BCG Mexico	4,350,386	65.66%	3951	1	45
M. bovis BCG Tokyo	4,371,711	65.64%	3944	1	45
M. bovis BCG Pasteur	4,374,522	65.64%	3949	1	47
M. bovis BCG Korea	4,376,711	65.64%	4139	1	45
M. bovis BCG 3281	4,410,431	65.65%	4186	1	45

doi:10.1371/journal.pone.0122403.t002

Table 3. CDSs involved in indels between \(M. \) bovis and BCGs.

CDSs	Function	CDSs	Function
GS11_3486	TetR family transcriptional regulator	Mb3236c	hypothetical protein
GS11_3501	acetyl-CoA carboxylase biotin carboxyl carrier protein subunit	Mb3237	ATP-dependent RNA helicase RhlE
GS11_3519	hypothetical protein Mb3266c	Mb3238	hypothetical protein
BCG_1955c	PPE family protein	Mb3239c	SOJ/PARA-like protein
BCG_2407	hypothetical protein	Mb3240	acid phosphatase
BCG_3228	hypothetical protein	Mb3241	isochorismate synthase
BCG_3354c	L-lysine-epsilon aminotransferase lat'	Mb3242	acetyltransferase
Mb1951c	malto-oligosyltrehalose synthase	Mb3243c	hypothetical protein
Mb2572	lipoprotein LppA	Mb3244	hypothetical protein
Mb2573	lipoprotein LprR	Mb3245	transcriptional regulator WhiB
Mb3220	ABC transporter ATP-binding protein	Mb3246c	two component sensor kinase
Mb3222c	DNA helicase II	Mb3247c	acetyl-CoA carboxylase biotin carboxyl carrier protein subunit
Mb3223	glutaredoxin protein	Mb3248c	anti-sigma factor
Mb3224c	NADH pyrophosphatase	Mb3249c	hypothetical protein
Mb3225c	transmembrane cation transporter	Mb3250c	RNA polymerase sigma factor RpoE
Mb3226c	ATP-dependent DNA helicase	Mb3251	short chain dehydrogenase
Mb3227c	ATP-dependent DNA helicase	Mb3254c	hypothetical protein
Mb3228	lipase LipV	Mb3255c	hypothetical protein
Mb3229	DNA-methyltransferase	Mb3256	transferase
Mb3230c	hypothetical protein	Mb3257	hypothetical protein
Mb3231c	molybdopterin biosynthesis-like protein MoeZ	Mb3258c	3-phosphoshikimate 1-carboxyvinyltransferase
Mb3232c	hypothetical protein	Mb3259c	hypothetical protein
Mb3233	TetR family transcriptional regulator	Mb3319c	AsnC family transcriptional regulator
Mb3234c	hypothetical protein	Mb3320	hypothetical protein
Mb3235	hypothetical protein	Mb3321	piperideine-6-carboxilic acid dehydrogenase

The GS11 is the official locus of BCG 3281 given by Genbank.

doi:10.1371/journal.pone.0122403.t003
The DU2 zone of BCG 3281 belongs to the DU2-IV type, which consists of two repeat units (41 kb and 37.5 kb) that correspond to regions 3,567,459–3,608,472 and 3,671,536–3,709,097 of *M. tuberculosis*H37Rv that are separate and repeat twice (Table 6).

The loss of RD1 and the two identified tandem duplications in BCG 3281 confirmed that the strain is a BCG. This result is completely contrasted with our expectation that BCG 3281 would be an *M. bovis*. Furthermore, the RD17 and RDpan, which are specific to BCGs and lost in *M. bovis*AF2122, were also found in BCG 3281[26].

To ensure the accuracy of the strain identification, a SNP-based NJ phylogenetic tree was constructed (Fig 3). The phylogenetic position of BCG 3281 was located near BCG Tokyo and far from the clinic strains, which validated 3281 as a BCG. For years, people have acknowledged that BCG strains are safe for vaccination and have not transmissibility. Nevertheless, the strain 3281, which was isolated from an adult patient who had not been vaccinated with a BCG, was

Table 4. Summary of DU1 regions within*M. bovis* BCG Pasteur, Mexico, Tokyo, Korea and 3281.

Strain	H37Rv Coordinate	Unit Length	Repeat Times	Total Length
BCG Pasteur	4398772..16733	29.7kb	2	59.4kb
BCG Mexico	NA	NA	NA	NA
BCG Tokyo	NA	NA	NA	NA
BCG Korea	NA	NA	NA	NA
BCG 3281	4409117..4581	7.2kb	3	21.6kb

“NA” means not present.

doi:10.1371/journal.pone.0122403.t004
identified to be a BCG. We believe that the source of pathogen in this case was from the vaccine and had mutated to acquire the ability for horizontal transmission.

Antigen epitope variations

Epitopes are the parts of antigens that are recognized by T-cell receptors (TCRs) and B-cell receptor (BCRs) and play the core role in the immune response. We believed similarities between the epitopes of BCG 3281 and *M. Bovis* or MTB would exist because all of these strains are pathogenic.

To identify the variations in the epitopes of these strains, 2,667 epitopes compiled from the Immune Epitope Database (IEDB)[27], including 2,055 T-cell epitopes and 612 B-cell epitopes, were selected and renamed (S3 Table). These epitopes were subsequently positively experimentally identified by IEDB. Four complete genome BCG vaccines (i.e., BCG Pasteur 1173P2, BCG Tokyo 172, BCG Mexico and BCG Korea 1168P) were acquired from the National Center of Biotechnology Information (NCBI).

Only 100% identical match results were considered as the same epitopes because recent studies have shown that human T cell epitopes of *Mycobacterium tuberculosis* are evolutionarily hyper-conserved[28]. For comparison, 1,600 epitopes, including 1,213 T-cell epitopes and 387 B-cell epitopes, were identified in all seven strains (BCG 3281, BCG Pasteur 1173P2, BCG Tokyo 172, BCG Mexico, BCG Korea 1168P, *M. bovis* AF2122 and *M. tuberculosis* H37Rv). In contrast, 531 epitopes, including 404 T-cell epitopes and 127 B-cell epitopes, were absent in all seven strains. Moreover, 329 epitopes, including 290 T-cell epitopes and 39 B-cell epitopes, were found to be lost in only BCG 3281 and other BCGs. Additionally, 44 epitopes, including 33 T-cell epitopes and 11 B-cell epitopes, located in 22 genes were found to be missing in only BCG 3281. When these 22 genes were examined, frameshifts were found to have occurred in the coding regions of 19 genes and 3 genes were lost (S4 Table).

Table 5. Genes in the duplication unit that located at DU1 region of *M. bovis* BCG 3281.

Genes	Length	Function
GS11_4181	507	dnaA, chromosomal replication initiation protein
GS11_4182	402	dnaN, DNA polymerase III subunit beta
GS11_4183	385	recF, recombination protein F
GS11_4184	366	oxaA, inner membrane protein translocase component YidC
GS11_4185	62	rpa, ribonuclease P protein component
GS11_4186	47	rpmH, 50S ribosomal protein L34

doi:10.1371/journal.pone.0122403.t005

Table 6. Summary of DU2 regions with in *M. bovis* BCG Pasteur, Mexico, Tokyo, Korea and 3281.

Strain	Type	H37Rv Coordinate	Unit Length	Repeat Times	Total Length
BCG Pasteur	DU2-IV	3590899..3608474	17.5kb	2	72kb
BCG Mexico	DU2-IV	3671533..3690125	18.5kb	2	72kb
BCG Tokyo	DU2-I	3684226..3705104	20.8kb	3	62.4kb
BCG Korea	DU2-IV	3590899..3608473	17.5kb	3	106.5kb
BCG 3281	DU2-III	3567459..3608472	41kb	2	157kb

doi:10.1371/journal.pone.0122403.t006
Despite sharing majorities of both T-cell and B-cell epitopes with H37Rv and *M. bovis*, the BCGs obviously possess fewer epitopes (Fig 4), which might result in reduced protection against TB. In other words, fewer epitopes indicate poorer recognition of alien invaders by the human body. Moreover, BCG 3281 had the fewest number of epitopes among the BCGs, which amplifies the possibility for immune escape. Wen et al. found that BCG Tokyo possess the greatest number of both T-cell and B-cell epitopes among the BCGs and thus might be the vaccine that confers the best immune protection[29]. We found that 62 unique epitopes of BCG Tokyo that are located in two BCG Tokyo genes, JTY1991 and JTY1996, that were also present in *M. bovis* and H37Rv but absent in other BCGs. The efficiency of BCG protection might be improved by the transduction of two genes into other BCG vaccines. No epitopes unique to 3281 among the other BCGs were identified. In one aspect, this might hint that BCG 3281 did not obtain exogenous genetic element through lateral gene transfer, emphasizing the possibility that pathogenic BCG 3281 might be formed through mutation from BCG vaccine. On the other hand, epitopes that had not been experimentally identified might existed in BCG 3281 unique genes.

Virulence factors in BCG 3281

Variation in known virulence factors. Because BCG 3281 was considered to be a pathogenic bacterium, we expected that BCG 3281 would share extensive similarities with MTB and *M. bovis* and possess distinct genetic differences from other BCGs, particularly with respect to virulence genes. To detect the variations in the virulence factors, 88 virulence genes that were identified from the Virulence Factors Database (VFDB) were selected[30]. Blast results
Table 7 revealed that 51 virulence genes were 100% identical with *M. bovis* and the five CG strains. Three genes (located at RD5) were lost in both *M. bovis* and all of the BCGs, and seven genes were *M. bovis*-specific; the latter genes were located at RD1 and were lost in all of the BCGs. A copy number variation (CNV) of one gene (*VFG1412*) was found and was located in the DU2 region. Additionally, a frameshift in one virulence gene (*VFG2388*) was found in both *M. bovis* and the BCGs. Moreover, plentiful nonsynonymous mutations were identified. To our surprise, no virulence genes were found to be specific to BCG 3281 with respect to *M. bovis* and the other BCGs. Although the differences between *M. bovis* and BCG 3281 were enormous, these differences were found to be common characteristics of BCGs.

Possible virulence genes. Because no large variations in confirmed virulence genes were detected within BCG 3281, a pan-genome analysis was performed to identify possible new virulence factors[31]. Via the use of the pan-genome analysis pipeline (PGAP), orthologous clusters within the 5 BCGs were grouped (Fig 5)[32]. The pan-genome clusters consisted of 4,282 orthologs and had a core of 3,363 orthologs. Two hundred and ninety ortholog clusters contained 294 CDSs that were likely to be unique to 3281 and might have conferred additional virulence to BCG 3281.

Fig 4. Epitopes in *M. tuberculosis* H37Rv, *M. bovis* AF2122 and genome finished BCGs. Duplicate epitopes were removed and only epitopes with 100% identical matches were considered present in the strain.

doi:10.1371/journal.pone.0122403.g004
Considering the prediction discrepancy and the restrictions of the software, we searched these 294 CDSs within the genome and re-predicted the CDS libraries of the other four BCGs. Ultimately, four CDSs were proven to be 3281-specific, and all of these CDSs were generated by indels (Table 8).

Table 7. Comparison of mutative virulence factors within *M. bovis* AF2122 and *M. bovis* BCG 3281, Pasteur, Tokyo, Mexico and Korea.

Virulence Factors	*M. bovis*	BCG 3281	BCG Pasteur	BCG Tokyo	BCG Mexico	BCG Korea
VFG1382	+	+	+	1	+	+
VFG1384	1	1	1	1	1	1
VFG1385	1	1	1	1	1	1
VFG1386	+	1	+	+	+	+
VFG1390	1	1	1	1	1	1
VFG1391	2	2	2	2	2	2
VFG1396	1	1	1	1	1	1
VFG1400	-	-	-	-	-	-
VFG1401	-	-	-	-	-	-
VFG1402	-	-	-	-	-	-
VFG1407	1	1	1	1	1	1
VFG1408	1	1	1	1	1	1
VFG1409	1	1	1	1	1	1
VFG1412	1 copy	2 copies	2 copies	1 copy	2 copies	3 copies
VFG1421	1	1	1	1	1	1
VFG1422	+	-	-	-	-	-
VFG1423	+	-	-	-	-	-
VFG1812	+	1	1	1	1	1
VFG1815	+	+	1	+	+	+
VFG1816	1	1	1	1	1	1
VFG1818	1	1	1	1	1	1
VFG1820	2	2	2	2	2	2
VFG1825	1	1	1	1	1	1
VFG2378	+	-	-	-	-	-
VFG2379	+	-	-	-	-	-
VFG2380	1	1	1	1	1	1
VFG2383	+	trancted	trancted	trancted	trancted	trancted
VFG2384	+	-	-	-	-	-
VFG2385	+	-	-	-	-	-
VFG2387	2	2	2	2	2	2
VFG2388	frameshift	frameshift	frameshift	frameshift	frameshift	frameshift
VFG2389	trancted	-	-	-	-	-
VFG2391	1	1	1	1	1	1
VFG2394	3	3	3	3	3	3
VFG2395	1	2	2	2	2	2
VFG2397	1	1	1	1	1	1
VFG2398	2	2	1	1	1	1

"+" means 100% in identit, "-" stands for lost, the number shows nonsynonymous mutations number or copy number.

doi:10.1371/journal.pone.0122403.t007
Conclusions

Although BCG, which is an attenuated derivative of \textit{M. bovis}, has served for nearly 90 years as the sole vaccine that provides protection against tuberculosis, the clinical strain 3281 was proven to be a BCG and was found to be morbigenous. In an effort to determine the genetic structure of BCG 3281 and determine whether a BCG could be pathogenic, we sequenced the complete genome of BCG 3281 and compared its entire genome to four complete BCGs.
genomes and the genome of *M. bovis* AF2122. First, to demonstrate the accuracy of the physiological and biochemical identification results, we examined the tandem duplications DU1 and DU2, which are significant characteristics of BCGs. Simultaneously, a genetic evolution analysis of the complete BCG genomes and the genome of *M. bovis* was constructed. The results of both analyses verified that strain 3281 is a BCG.

Examinations of all of the BCG genomes, including those of BCG Pasteur, Tokyo, Mexico, Korea, Frappier, Glaxo, Moreau, Phipps, Prague, Sweden, China, ATCC35733, ATCC35740 and ATCC35743, revealed that none contained the 7 kb duplication in the DU1 region. The presence of the *dnaA* and *dnaN* genes is strongly associated with the initiation and regulation of chromosomal replication; thus, we inferred that BCG 3281 would likely be capable of enduring greater burdens in replication[24].

To determine whether any identified virulence factors were unique to 3281 relative to the other BCGs, 88 virulence genes located at H37Rv were examined; 3281-unique indels and a single amino acid polymorphism were located, but 3281-unique virulence factors were not found. We believe that these variations might influence the virulence of BCG 3281 to some extent but not so much as to convert an attenuated vaccine into a pathogenic bacterium. To identify the possible virulence factors, a pan-genome method was applied and four BCG 3281-unique CDSs were identified as potential virulence genes since no other large variations in genome structure were found. Additionally, we detected antigen epitope variations in BCG 3281. Compared to the other BCGs, BCG 3281 has lost more epitopes, which might intensify this strain’s potential for immune escape and increase the risk of secondary infection. Overall, this study provides initial insight into the characteristics of a pathogenic BCG that should have significant effects on TB vaccine research.

Materials and Methods

Strain Information

The mycobacterial strain used in this study was acquired from the Beijing Bio-Bank of clinical resources on Tuberculosis (D09050704640000)”. This strain was originally isolated from an adult male patient who was not infected with HIV.

Genome sequencing, assembly and annotation

Through a combination of next-generation sequencing (NGS) techniques, the genome was sequenced with both a 454 GS-FLX system and a Hiseq2500. The 454 data were assembled with Newbler 2.5 with coverage of 29.6. Using Soap 1.05, the Hiseq reads were assembled with a 108.9-fold coverage[33]. Gap closure was performed using the PCR method with the help of ContigScape using the 454 assembly results[34]. The low value dots were verified by the Hiseq assembly results. ORFs were predicted with Glimmer 3.0.2 and replenished by reference annotation[35].

Table 8. CDSs inferred with potential virulence in *M. bovis* BCG 3281.

CDS	Length	Variation	Former Function
GS11_0276	1056	a single nucleotide deletion	succinate dehydrogenase flavoprotein subunit
GS11_0578	1737	9 nucleotides deletion	PE-PGRS family protein
GS11_1865	2145	a single nucleotide insertion	WAG22 antigen
GS11_3751	5442	9 nucleotides insertion	PE-PGRS family protein

The GS11 is the official locus of BCG3281 given by Genbank.

doi:10.1371/journal.pone.0122403.t008
SNP and Phylogenetic analyse

All SNPs were identified with Mauve 2.3.1, and they were localized to CDS via an in-house Perl script[36]. The pangenome method was employed for the phylogenetic analysis. A core of 2,263 gene lengths of at least 0.8 and similarities of at least 0.8 was generated. The neighbor-joining tree was generated by MEGA with a bootstrap value of 1,000[37].

Supporting Information

S1 Table. Details of M. bovis BCG 3281 specific SNPs.
(DOC)

S2 Table. Details of indels between M. bovis and genome finished BCGs.
(DOC)

S3 Table. Detailed information of epitopes used in this paper.
(DOC)

S4 Table. Details of the lost epitopes by BCG 3281 alone.
(DOC)

Acknowledgments

This work was supported by the Major State Basic Research Development Program of China (973 program, No. 2012CB518800), the National Natural Science Foundation of China (Nos. 31201920, 31272538), Bank of clinical resources on Tuberculosis (D09050704640000), and the Transmission Mode of Tuberculosis project of the National Key Program of Mega Infectious Diseases (2013ZX10003006-002).

Author Contributions

Conceived and designed the experiments: AG HH HZ SL. Performed the experiments: X. Li LC YZ. Analyzed the data: X. Li YZ HZ. Contributed reagents/materials/analysis tools: X. Li LC YZ XY JC RW X. Lv JH AG HH HZ SL. Wrote the paper: X. Li HZ SL.

References

1. Organization WH. Global tuberculosis report 2013: World Health Organization; 2013.
2. Brennan MJ, Thole J. Tuberculosis vaccines: a strategic blueprint for the next decade. Tuberculosis. 2012; 92: S6–S13. doi: 10.1016/S1472-9792(12)70005-7 PMID: 22441160
3. Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393(6685):537–44. PMID: 9634230
4. Fleischmann R, Alland D, Eisen J, Carpenter L, White O, Peterson J, et al. Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. Journal of bacteriology. 2002; 184(19):5479–90. PMID: 12218036
5. Liu J, Tran V, Leung AS, Alexander DC, Zhu B. BCG vaccines: their mechanisms of attenuation and impact on safety and protective efficacy. Human vaccines. 2009; 5(2):70–8. PMID: 19164935
6. Davids V, Hanekom WA, Mansoor N, Gamieldien H, Sebastian JG, Hawkinson A, et al. The effect of bacille Calmette-Guerin vaccine strain and route of administration on induced immune responses in vaccinated infants. Journal of Infectious Diseases. 2006; 193(4):531–6. PMID: 16426132
7. Behr MA, Small PM. Has BCG attenuated to impotence? Nature. 1997; 389(6647):133–4. PMID: 9296487
8. Lagranderie M, Balazuc A-M, Deriaud E, Leclerc CD, Gheorghiu M. Comparison of immune responses of mice immunized with five different Mycobacterium bovis BCG vaccine strains. Infection and immunity. 1996; 64(1):1–9. PMID: 8557324
9. Garnier T, Eiglemeier K, Camus J-C, Medina N, Mansoor H, Pryor M, et al. The complete genome sequence of *Mycobacterium bovis*. Proceedings of the National Academy of Sciences. 2003; 100 (13):7877–82. PMID: 12788972

10. Brosch R, Gordon SV, Garnier T, Eiglemeier K, Frigui W, Valenti P, et al. Genome plasticity of BCG and impact on vaccine efficacy. Proceedings of the National Academy of Sciences. 2007; 104(13):5596–601. PMID: 17372194

11. Pym AS, Brodin P, Brosch R, Huere M, Cole ST. Loss of RD1 contributed to the attenuation of the live *Mycobacterium bovis* vaccine BCG and *Mycobacterium microti*. Molecular microbiology. 2002; 46(3):709–17. PMID: 12410828

12. Mostowy S, Tsolaki AG, Small PM, Behr MA. The in vitro evolution of BCG vaccines. Vaccine. 2003; 21 (27):4270–4. PMID: 14505909

13. Collins DM, Kawakami RP, Buddle BM, Wards BJ, de Lisle GW. Different susceptibility of two animal species infected with isogenic mutants of *Mycobacterium bovis* identifies phoT as having roles in tuberculosis virulence and phosphate transport. *Microbiology*. 2003; 149(11):3203–12. PMID: 14600232

14. Pelayo MCG, Uplekar S, Keniry A, Lopez PM, Garnier T, Garcia JN, et al. A comprehensive survey of single nucleotide polymorphisms (SNPs) across *Mycobacterium bovis* strains and *M. bovis* BCG vaccine strains refines the genealogy and defines a minimal set of SNPs that separate virulent *M. bovis* strains and *M. bovis* BCG strains. Infection and immunity. 2009; 77(5):2230–8. doi: 10.1128/IAI.01099-08 PMID: 19289514

15. Duarte EL, Domingos M, Amado A, Botelho A. Spoligotype diversity of *Mycobacterium bovis* and *Mycobacterium caprae* animal isolates. Veterinary microbiology. 2008; 130(3–4):415–21. doi: 10.1016/j.vetmic.2008.02.012 PMID: 18417301

16. Du Y, Qi Y, Yu L, Lin J, Liu S, Ni H, et al. Molecular characterization of *Mycobacterium tuberculosis* complex (MTBC) isolated from cattle in northeast and northwest China. Research in veterinary science. 2011; 90(3):385–91. doi: 10.1016/j.rvsc.2010.07.020 PMID: 20797738

17. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007; 23(6):673–9. PMID: 17237039

18. Fouts DE. Phage_Finder: automated identification and classification of prophage regions in complete bacterial genome sequences. Nucleic acids research. 2006; 34(20):5839–51. PMID: 17062630

19. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and improved RNA secondary structure prediction. Nucleic Acids Research. 2007; 35(9):3100–5. PMID: 17452365

20. Lowe TM, Eddy SR. RNARegex: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):955–64. PMID: 9023104

21. Mahairas GG, Sabo PJ, Hickey MJ, Singh DC, Stover CK. Molecular analysis of genetic differences between *Mycobacterium bovis* BCG and virulent *M. bovis*. J Bacteriol. 1996; 178(5):1274–82. PMID: 8631702

22. Brosch R, Gordon SV, Buchrieser C, Pym AS, Garnier T, Cole ST. Comparative genomics uncovers large tandem chromosomal duplications in *Mycobacterium bovis* BCG Pasteur. Yeast. 2000; 17 (2):111–23. PMID: 10900457

23. Zhang Q, Shi H. Coupling chromosomal replication to cell growth by the initiator protein DnaA in *Escherichia coli*. Journal of theoretical biology. 2012; 314:164–76. doi: 10.1016/j.jtbi.2012.08.045 PMID: 22975089

24. Shuvaev A. DnaA dynamics could be linked with fitness cost in bacteria. Cell biochemistry and biophysics. 2014; 70(1):295–9. doi: 10.1007/s12013-014-9908-5 PMID: 24639114

25. Hoover SE, Xu W, Xiao W, Burkholder WF. Changes in DnaA-dependent gene expression contribute to the transcriptional and developmental response of *Bacillus subtilis* to manganese limitation in Luria-Bertani medium. J Bacteriol. 2010; 192(15):3915–24. doi: 10.1128/JB.00210-10 PMID: 20511500

26. Mostowy S, Inwald J, Gordon S, Martin C, Warren R, Kremer K, et al. Revisiting the evolution of *Mycobacterium bovis*. Journal of bacteriology. 2005; 187(18):6386–95. PMID: 16159772

27. Vaughan K, Seymour E, Peters B, Sette A. Substantial gaps in knowledge of *Bordetella pertussis* antibody and T cell epitopes relevant for natural immunity and vaccine efficacy. Human immunology. 2014.

28. Comas I, Chakravartti J, Small PM, Galagan J, Niemann S, Kremer K, et al. Human T cell epitopes of *Mycobacterium tuberculosis* are evolutionarily hyperconserved. Nature genetics. 2010; 42(6):498–503. doi: 10.1038/ng.959 PMID: 20495566

29. Zhang W, Zhang Y, Zheng H, Pan Y, Liu H, Du P, et al. Genome sequencing and analysis of BCG vaccine strains. PloS one. 2013; 8(8):e71243. doi: 10.1371/journal.pone.0071243 PMID: 23977002

30. Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, et al. VFDB: a reference database for bacterial virulence factors. Nucleic acids research. 2005; 33(suppl 1):D325–D8.
31. D’Auria G, Jiménez-Hernández N, Peris-Bondia F, Moya A, Latorre A. Legionella pneumophila pangenome reveals strain-specific virulence factors. BMC genomics. 2010; 11(1):181.

32. Zhao Y, Wu J, Yang J, Sun S, Xiao J, Yu J. PGAP: pan-genomes analysis pipeline. Bioinformatics. 2012; 28(3):416–8. doi: 10.1093/bioinformatics/btr655 PMID: 22130594

33. Li R, Li Y, Kristiansen K, Wang J. SOAP: short oligonucleotide alignment program. Bioinformatics. 2008; 24(5):713–4. doi: 10.1093/bioinformatics/btn025 PMID: 18227114

34. Tang B, Wang Q, Yang M, Xie F, Zhu Y, Zhuo Y, et al. ContigScape: a Cytoscape plugin facilitating microbial genome gap closing. BMC genomics. 2013; 14(1):289.

35. Delcher AL, Bratke KA, Powers EC, Salzberg SL. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics. 2007; 23(6):673–9. PMID: 17237039

36. Darling AE, Mau B, Perna NT. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One. 2010; 5(6):e11147. doi: 10.1371/journal.pone.0011147 PMID: 20599022

37. Hall BG. Building phylogenetic trees from molecular data with MEGA. Molecular biology and evolution. 2013; 30(5):1229–35. doi: 10.1093/molbev/ms3012 PMID: 23466614