Molybdenum Catalyzed Ammonia Borane Dehydrogenation

Joshua A. Buss, Guy A. Edouard, Christine Cheng, Jade Shi, and Theodor Agapie*

Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC 127-72, Pasadena, California 91125, United States

Supporting Information

Contents

Experimental Details S3
General Considerations S3
Synthesis of 2 S3
Synthesis of 3 S4
Synthesis of 4 S4
Synthesis of 5 S5
Synthesis of 6 S6
Synthesis of 6-HD S6
Synthesis of 7 S6
Synthesis of 8 S7
Reaction of 8 with D₂ S7
Reactivity with AB Analogs S7
Time Resolved AB Dehydrogenation Experiments S8
NH₂BH₂ Trapping Experiments S8
Eudiometric Measurement Details S8
Figure S1—Eudiometer Diagram S9
Reaction Kinetics Measurements S10

NMR Spectra
Figure S2—¹H NMR Spectrum of 2 S11
Figure S3—³¹P NMR Spectrum of 2 S11
Figure S4—¹³C NMR Spectrum of 2 S11
Figure S5—¹H NMR Spectrum of 3 S12
Figure S6—³¹P NMR Spectrum of 3 S12
Figure S7—¹³C NMR Spectrum of 3 S12
Figure S8—¹H NMR Spectrum of 4 S13
Figure S9—³¹P NMR Spectrum of 4 S13
Figure S10—¹³C NMR Spectrum of 4 S13
Figure S11—¹H NMR Spectrum of 5 S14
Figure S12—³¹P NMR Spectrum of 5 S14
Figure S13—¹³C NMR Spectrum of 5 S14
Figure S14—¹H NMR Spectrum of 6 S15
Figure S15—³¹P NMR Spectrum of 6 S15
Figure S16—¹³C NMR Spectrum of 6 S15
Figure S17—¹H NMR Spectrum of 7 S16
Figure S18—³¹P NMR Spectrum of 7 S16
Figure S19—¹³C NMR Spectrum of 7 S16
Figure S20—¹H NMR Spectrum of 8 S17
Figure S21—31P NMR Spectrum of 8
Figure S22—13C NMR Spectrum of 8
Figure S23—T_1(min) Determination for 6 and 8
Figure S24—Partial 1H and 31P NMR Spectra of 6-HD
Figure S25—Partial 1H and 31P NMR Spectra of 8-H$_3$D$_x$
Figure S26—Time Resolved Reaction of 4 and AB
Figure S27—Time Resolved Reaction of 8 and AB
Figure S28—NH$_2$BH$_2$ Trapping Experiment with Precatalyst 4
Figure S29—NH$_2$BH$_2$ Trapping Experiment with Precatalyst 5

Eudiometric Data
Figure S30—H$_2$ Evolution Profiles for AB Dehydrogenation by 4 and 5
Figure S31—Kinetic Competence of 4, 7, and 8
Figure S32—Comparison of Eudiometric Measurements
Figure S33—Reusability from Precatalyst 4
Figure S34—Reusability from Precatalyst 5
Figure S35—Thermal Control for Reusability Reaction Conditions
Figure S36—Dehydrogenation of Concentrated AB Slurries by 4
Figure S37—Dehydrogenation of Concentrated AB Slurries by 5
Figure S38—Effect of H$_2$O and MeOH on AB Dehydrogenation with 4
Figure S39—Effect of H$_2$O on AB Dehydrogenation with 5
Table S1—Comparison of AB Dehydrogenation Catalysts

Kinetic Data
Figure S40—[AB] vs. Time for AB Dehydrogenation by Precatalyst 4
Figure S41—First-Order Kinetic Fit for AB Dehydrogenation by Precatalyst 4
Figure S42—[AB] vs. Time for AB Dehydrogenation by Precatalyst 5 and 6

Crystallographic Information
Refinement Details
Table S2—Crystal and Refinement Data for 2-5 and 7-8
Figure S43—Structural Drawing of 2
Figure S44—Structural Drawing of 3
Figure S45—Structural Drawing of 4
Figure S46—Structural Drawing of 5
Figure S47—Structural Drawing of 7
Figure S48—Structural Drawing of 8

References
Experimental Details

General Considerations

Unless otherwise specified, all operations were carried out in an MBraun drybox under a nitrogen atmosphere or using standard Schlenk and vacuum line techniques. Solvents for air- and moisture-sensitive reactions were dried over sodium benzophenone ketyl, calcium hydride, or by the method of Grubbs. Deuterated solvents were purchased from Cambridge Isotope Laboratories and vacuum transferred from sodium benzophenone ketyl (C₆D₆) or calcium hydride (CD₃CN and CD₂Cl₂). All solvents, once dried and degassed, were stored under inert atmosphere over 4 Å molecular sieves. Ammonia borane and all amino-borane analogs were sublimed prior to use and stored at -35 °C unless noted otherwise. Magnesium turnings were oven dried prior to use. All other compounds were used as received. Diphosphine 1,2 Mo(CO)₃(MeCN)₃,3 9.4 10.7 11.6 ND₃BH₃, NH₃BD₃, ND₃BD₄ and NH₃BEt₃ were prepared and purified according to literature procedures. Mo(CO)₆ was purchased from Strem Chemicals, Inc. Diethylene glycol dimethyl ether (diglyme) was purchased from TCI America. Silver trifluoromethanesulfonate (triflate) was purchased from Alfa Aesar. Magnesium turnings were purchased from Fischer Scientific. Ammonia borane, LiHBET₃ (Superhydride), sodium tetraphenyl borate, dimethylamine borane, and trimethylamine borane were all purchased from Sigma Aldrich. H₂ and D₂ gases were purchased from American Air Liquide and Cambridge Isotope Laboratories, respectively. HD was prepared according to a previously reported procedure9 and purified via passage through a -196 °C cold trap prior to use. 1H, 13C, and 31P NMR spectra were recorded on Varian Mercury 300 MHz, Varian 400 MHz, or Varian INOVA-500 spectrometers with shifts reported in parts per million (ppm). 11B NMR spectra were recorded for samples prepared in quartz NMR tubes, using a Varian 400 MHz spectrometer equipped with a quartz probe insert. 1H and 13C{1H} NMR spectra are referenced to residual solvent peaks. 10 31P and 11B chemical shifts are referenced to external 85% H₃PO₄ (0 ppm) and NaBPh₄ (-7.26 ppm) standards, respectively. IR spectra were obtained as solution samples using a CaF₂ window cell on a Thermo Scientific Nicolet 6700 FT-IR spectrometer. Photolyses were conducted using an Oriel Instruments arc lamp housing and a Newport Corporation 200 W Hg/Xe arc lamp set to a current of 8 A. During irradiation, samples were cooled with a dry ice/acetone bath. Elemental analysis was conducted by Robertson Microlit Laboratories, Inc. (Ledgewood, NJ).

Synthesis of 2

Addition of Mo(CO)₃(MeCN)₃ (1.43 g, 4.75 mmol) to a clear solution of 1 (2.05 g, 4.32 mmol) in toluene (50 mL) resulted in a yellow/green heterogeneous mixture. Following heating to 100 °C and stirring for 12 h, the mixture became a deep orange homogenous solution. The volatiles were removed in vacuo. The resulting orange solids were collected and washed with cold hexanes (2 x 15 mL). Residual volatiles were removed under reduced pressure to yield 2 (2.54 g, 3.81 mmol, 88 %). X-ray quality crystals were grown from vapor diffusion of pentane into a saturated THF solution of 2. 1H NMR (500 MHz, CD₂Cl₂, 25 °C) δ: 7.86 (m, 2H, aryl-H), 7.53 (m, 6H, aryl-H), 6.52 (br s, 4H, central arene-H), 2.75 (br s, 4H, CH(CH₃)₂), and 1.09-1.23 (br s, 24H, CH(CH₃)₂). 13C{1H} NMR (101 MHz, CD₂Cl₂, 25 °C) δ: 221.15 (t, J = 10.19 Hz, Mo-CO)), 213.75 (t, J = 8.87 Hz, Mo-CO)), 148.80 (t, J = 6.90 Hz, aryl-C), 139.99 (t, J = 2.74, central arene-C), 131.23 (s, aryl-CH), 131.02 (t, J = 9.41 Hz, aryl-C), 129.90 (s, aryl-CH), 129.35 (s, aryl-CH), 128.34 (s, aryl-CH), 33.83 (br s, CH(CH₃)₂), 19.88 (s, CH(CH₃)₂), and 19.43 (s, CH(CH₃)₂). 31P{1H}
NMR (121 MHz, CD$_3$OD, 25 °C) δ: 51.01. IR (CaF$_2$ window, C$_6$H$_6$, cm$^{-1}$) ν$_{CO}$: 2298.5, 2192.8. Anal. Calcd. for 2 C$_{33}$H$_{40}$MoO$_3$P$_2$ (%): C, 61.68; H, 6.27. Found: C, 61.43; H, 5.99.

Synthesis of 3

To a rapidly stirring solution of 2 (1.17 g, 1.82 mmol) in THF (50 mL), a solution of AgOTf (1.00 g, 3.83 mmol) in THF (35 mL) was added dropwise. With each drop, an immediate darkening of the solution was observed. Complete addition of the silver solution led to a persistent purple/brown mixture, which was stirred at room temperature for 3 h. The volatiles were removed under reduced pressure to yield green/brown solids. These solids were collected on a fritted glass funnel and washed with THF (3 x 10 mL). The solid residue was extracted into MeCN (30 mL), filtered through Celite, and the resulting yellow solution was dried in vacuo. The yellow solids were dissolved in minimal MeCN and filtered through celite once more.

Et$_2$O was added to the filtrate which was then cooled to -35 °C. The precipitate was collected via vacuum filtration, providing 3 (1.16 g, 1.26 mmol, 69 %) as yellow microcrystals. X-ray quality crystals were obtained from vapor diffusion of diethyl ether into a saturated MeCN solution of 3.

1H NMR (300 MHz, CD$_3$CN, 25 °C) δ: 7.93 (m, 2H, aryl-H), 7.83 (m, 6H, aryl-H), 7.15 (s, 4H, central arene-H), 3.35 (m, 4H, CH(CH$_3$)$_2$), and 1.29-1.44 (m, 24H, CH(CH$_3$)$_2$).

13C{$_1$H} NMR (101 MHz, CD$_3$CN, 25 °C) δ: 219.03 (s, Mo-CO), 141.32 (dd, J = 7.58, 5.79, aryl-C), 137.69 (t, J = 3.93 Hz, central arene-C), 134.64 (s, aryl-CH), 133.93 (dd, J = 47.74, 8.22, aryl-C), 133.83 (s, aryl-CH), 132.12 (t, J = 3.07 Hz, aryl-CH), 128.58 (t, J = 5.70 Hz, aryl-CH), 122.07 (q, J = 320.73 Hz, F$_3$COSO$_3$), 104.72 (s, central arene-CH), 28.97 (q, J = 11.67 Hz, CH(CH$_3$)$_2$), 18.47 (s, CH(CH$_3$)$_2$), and 18.07 (s, CH(CH$_3$)$_2$).

31P{$_1$H} NMR (121 MHz, CD$_3$CN, 25 °C) δ: 75.05. IR (CaF$_2$ window, C$_6$H$_6$, cm$^{-1}$) ν$_{CO}$: 2025.2, 1986.4. Anal. Calcd. for 3 C$_{34}$H$_{40}$F$_6$MoO$_8$P$_2$S$_2$ (%): C, 44.74; H, 4.42. Found: C, 44.65; H, 4.49.

Synthesis of 4

A bright yellow acetonitrile (20 mL) solution of 3 (533 mg, 0.583 mmol) was transferred to a quartz Schlenk tube, charged with a stir bar. The tube was degassed via three freeze-pump-thaw cycles and then, while stirring, irradiated with a 200 W Hg/Xe lamp at -78 °C for 2 h. The evolution of bubbles was observed and the solution steadily darkened to deep red. The flask was degassed as above and photolysis continued. With continued irradiation, the solution darkened to a deep purple color that glowing intensely under the UV light. This degas/irradiation process was continued until aliquots of the solution showed no presence of 3 or the putative monocarbonyl species by 31P NMR (75.05 and 68.62 ppm, respectively). The total irradiation time was dependent on lamp age, frequency of degassing, and solution concentration, varying from 12 h to several days. Upon complete conversion, volatiles were removed under reduced pressure, providing deep purple solids. These solids were collected on a fritted funnel and washed with

1 Omission of this second filtration step resulted in a less-soluble yellow/orange impurity noticed when employing 3 in the preparation of 4.
THF until the filtrate was colorless. The purple microcrystalline product was collected (528 mg, 0.565 mmol, 97%). Crystals suitable for X-ray diffraction were obtained from vapor diffusion of Et₂O into a saturated MeCN solution of 4. ¹H NMR (300 MHz, CD₂CN, 25 °C) δ: 7.62-7.72 (m, 6H, aryl-H), 7.51-7.52 (m, 2H, aryl-H), 5.59 (t, 4H, J = 2.2 Hz, central arene-H), 2.86-2.93 (m, 4H, CH(CH₃)₂), 2.72 (m, 6H, NC(CH₃)), and 1.25-1.31 (m, 24H, CH(C₆H₅)). ¹³C [¹H] NMR (126 MHz, CD₂CN, 25 °C) δ: 145.36 (t, J = 10.51 Hz, aryl-C), 143.35 (s, NC(CH₃)), 133.44 (s, aryl-CH), 132.35 (s, aryl-CH), 130.57 (s, aryl-CH), 127.48 (s, aryl-CH), 123.39 (s, Mo-CNCH₃), 122.15 (q, J = 318.51, F₃CSO₂), 120.50 (s, central arene-C), 88.90 (s, central arene-CH), 25.74 (t, J = 9.77 Hz, CH(CH₃)₂), 18.67 (s, CH(CH₃)₂), 17.86 (s, CH(CH₃)₂), 7.03 (s, Mo-NCCCH₃) and 6.52 (m, Mo-NCCCH₃). ³¹P [¹H] NMR (121 MHz, CD₂CN, 25 °C) δ: 63.35. Anal. Calcd. for C₃₆H₄₆MoN₂O₆P₂S₂ (%): C, 46.06; H, 4.94; N, 2.98. Found: C, 45.09; H, 4.77; N, 3.25.

Synthesis of 5

A deep purple solution of 4 (225 mg, 0.241 mmol) in MeCN (4 mL) was portioned into four 20 mL scintillation vials, each charged with a stir bar and an excess of magnesium turnings (3-5 g/vial). The solution was stirred at room temperature for 8 h, during which time it lightened to a green/brown heterogeneous mixture. The mixtures were filtered through celite. Each vial was rinsed with MeCN (2 x 1.5 mL) and each rinse was likewise filtered. The insoluble material was extracted in benzene and dried in vacuo, providing a brown/green residue. This residue was extracted with benzene and filtered through celite once more. The brown filtrate solution was lyophilized, yielding 5 as a red/brown powder (108 mg, 0.184 mmol, 76%). X-ray quality crystals were grown by either vapor diffusion of pentane into a saturated toluene solution of 5 at -35 °C or by chilling a saturated hexanes solution of 5 (-35 °C).

In an alternate synthesis, a 20 mL scintillation vial was charged with 4 (370 mg, 0.396 mmol), MeCN (15 mL), and a stir bar. Stirring was initiated, and 1.0 M LiHBEt₃ in THF (0.80 mL, 0.792 mmol) was added to the purple solution dropwise. An immediate color change to reddish-brown was observed. Stirring continued for 12 h, furnishing a green/brown suspension. Volatiles were removed under reduced pressure affording brown solids. The solids were extracted with benzene (10 mL) and filtered. The filtrate was lyophilized, giving 5 as a red/brown powder (63 mg, 0.107 mmol, 27 %). ¹H NMR (300 MHz, C₆D₆, 25 °C) δ: 7.48-7.50 (m, 2H, aryl-H), 7.23-7.27 (m, 2H, aryl-H), 7.02-7.09 (m, 4H, aryl-H), 4.26 (s, 2H, central arene-H), 3.99 (s, 2H, central arene-H), 2.38-2.50 (m, 2H, CH(CH₃)₂), 2.20-2.31 (m, 2H, CH(CH₃)₂), and 0.94-1.27 (m, 24H, CH(CH₃)₂). ¹³C [¹H] NMR (101 MHz, C₆D₆, 25 °C) δ: 150.23-150.84 (m, aryl-C), 130.50 (s, aryl-CH), 128.21 (s, aryl-CH), 126.62 (s, aryl-CH), 126.06 (s, central arene-C), 97.47 (s, central arene-C), 82.04 (s, central arene-CH), 75.29 (s, central arene-CH), 29.71 (br t, J = 6.20, CH(CH₃)₂), 28.17 (br t, J = 5.33, CH(CH₃)₂), 21.14 (br t, J = 5.06, CH(CH₃)₂), 19.85 (br t, J = 4.31, CH(CH₃)₂), 19.59 (s, CH(CH₃)₂), and 19.16 (s, CH(CH₃)₂). ³¹P [¹H] NMR (121 MHz, C₆D₆, 25 °C) δ: 76.72. IR (CaF₂ window, C₆H₆, cm⁻¹) ν_{vN}: 2020.2. Anal. Calcd. for 5 C₃₀H₃₄MoN₂P₂ (%): C, 61.43; H, 6.87; N, 4.78. Found: C, 61.40; H, 6.67; N, 3.68.
Synthesis of 6

A J. Young NMR tube was charged with a brown/red solution of 5 (20 mg, 0.034 mmol) in C\textsubscript{6}D\textsubscript{6} (0.7 mL). The solution was degassed via three freeze-pump-thaw cycles. The headspace was backfilled with H\textsubscript{2} gas, enacting an immediate reddening of the solution. The NMR tube was mechanically rotated for 15 min, providing a red solution of 6. Isolation and recrystallization of 6 is hampered by its conversion back to 5 in the presence of N\textsubscript{2}. 1H NMR (300 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C) δ: 7.44-7.48 (m, 2H, aryl-\textit{H}), 6.97-7.11 (m, 6H, aryl-\textit{H}), 4.81 (t, 4H, \textit{J} = 3.17 Hz, central arene-\textit{H}), 2.12-2.24 (m, 4H, CH(CH\textsubscript{3})\textsubscript{2}), 1.23-1.30 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), 0.92-0.99 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), and -4.10 (t, 1H, \textit{J} = 35.8 Hz, Mo-\textit{H}). 13C\{1H\} NMR (126 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C) δ: 150.20 (s, central arene-\textit{C}), 74.40 (s, central arene-\textit{C}), 75.29 (s, central arene-CH), 30.05 (t, \textit{J} = 9.71, CH(CH\textsubscript{3})\textsubscript{2}), 20.27 (s, CH(CH\textsubscript{3})\textsubscript{2}), and 19.49 (s, CH(CH\textsubscript{3})\textsubscript{2}). 31P\{1H\} NMR (121 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C) δ: 89.70.

Synthesis of 6-HD

The hydride-deuteride isotopolog can be prepared analogously utilizing H–D gas rather than H\textsubscript{2} gas. This gave rise to a 3:5:2 mixture of 6-H\textsubscript{2}:6-H\textsubscript{3}:6-D\textsubscript{2}. Integration of the hydridic resonances is omitted. 1H NMR (400 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C) δ: 7.45-7.47 (m, 2H, aryl-\textit{H}), 7.16-7.06 (m, 2H, aryl-\textit{H}), 6.96-7.02 (m, 2H, aryl-\textit{H}), 4.81 (br t, 4H, \textit{J} = 2.52 Hz, central arene-\textit{H}), 2.12-2.24 (m, 4H, CH(CH\textsubscript{3})\textsubscript{2}), 1.24-1.30 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), 0.93-0.98 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), -4.10 (t, \textit{J} = 33.9 Hz, 6-H\textsubscript{2} Mo-\textit{H}), -4.12 (tt, \textit{J}_{HD} = 10.8 Hz, \textit{J}_{HP} = 34.0 Hz, 6-H\textsubscript{3} Mo-\textit{H}). 31P\{1H\} NMR (162 MHz, C\textsubscript{6}D\textsubscript{6}, 25 °C) δ: 89.70 (s, 6-H\textsubscript{2}), 89.44 (t, \textit{J}_{DP} = 4.3 Hz, 6-H\textsubscript{3}), and 89.04 (q, \textit{J}_{DP} = 4.4 Hz, 6-D\textsubscript{2}).

Synthesis of 7

To a Schlenk tube charged with 4 (142 mg, 0.152 mmol), NaB\textsubscript{Ph\textsubscript{4}} (107 mg, 0.313 mmol), and a stir bar, a THF (7 mL) solution of AB (5.0 mg, 0.162 mmol) in was added. The purple/brown suspension was heated to 70 °C with stirring for 4 h, providing a homogeneous orange solution. Volatiles were removed \textit{in vacuo}, furnishing an orange powder. DCM (3 mL) was added and the powder was filtered through a Celite plug. Volatiles were again removed and the resulting residue was crystallized via pentane vapor diffusion into a concentrated THF solution. Generally additional recrystallizations were conducted to fully remove the B-N reaction byproducts, providing pure 7 as X-ray quality red/orange blades (89 mg, 0.097 mmol, 64%). 1H NMR (400 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 25 °C) δ: 7.30-7.56 (m, 8H, aryl-\textit{H}), 7.01 (br s, 8H, B-C\textsubscript{6}H\textsubscript{3}), 7.01 (br s, 8H, B-C\textsubscript{6}H\textsubscript{3}), 6.86 (br s, 4H, B-C\textsubscript{6}H\textsubscript{3}), 5.20 (br s, 2H, central arene-\textit{H}), 4.26-4.23 (m, 2H, central arene-\textit{H}), 2.66-2.79 (m, 2H, CH(CH\textsubscript{3})\textsubscript{2}), 2.54-2.67 (m, 2H, CH(CH\textsubscript{3})\textsubscript{2}), 1.93 (s, 3H, NCC\textsubscript{6}H\textsubscript{3}), 1.19-1.37 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), 0.94-1.02 (m, 12H, CH(CH\textsubscript{3})\textsubscript{2}), and -0.56 (t, 1H, \textit{J} = 76.74 Mo-\textit{H}). 13C\{1H\} NMR (101 MHz, CD\textsubscript{2}Cl\textsubscript{2}, 25 °C) δ: 163.69-165.16 (q, \textit{J} = 49.90 Hz, B-C), 147.43 (d, \textit{J} = 25.04 Hz, 7-C\textsubscript{6}H\textsubscript{3}).
Hydrogenation of the hydridic resonances is unknown. Integration of the hydridic resonances is expected, giving a mixture of yellow and white solids. The solids were collected via vacuum filtration.

Reaction of 8 with D₂

A mixture of the isotopologs can be prepared via addition of 7 equiv. of D₂ (as measured by calibrated gas bulb) to a degassed CD₂Cl₂ solution of 8. Unlike the dihydride 6, the isotopologs of 8 are not resolved in the ³¹P{¹H} NMR and as such, their relative ratio is unknown. Integration of the hydridic resonances is omitted. ¹H NMR (400 MHz, CD₂Cl₂, 25 °C): δ: 7.39-7.59 (m, 8H, aryl-H), 7.31 (br s, 8H, B-aryl-H), 7.01 (br t, 8 H, J = 6.50, B-aryl-H), 6.68 (br t, 4H, J = 6.60, B-aryl-H), 5.56 (s, 4H, central arene-H), 2.43-2.54 (m, 4H, CH(CH₃)₂), 1.24-1.31 (m, 12H, CH(CH₃)₂), and -4.64 (t, 3H, J = 29.72 Mo-H). ¹³C{¹H} NMR (101 MHz, CD₂Cl₂, 25 °C): δ: 165.13-166.61 (q, J = 49.44 Hz, B-C), 143.89 (br d, J = 4.19 Hz, aryl-C), 143.65 (d, J = 15.99 Hz, aryl-C), 137.82 (s, B-C₆H₅), 133.34 (s, aryl-CH), 132.33 (br s, central arene-C), 131.84 (s, aryl-CH), 131.70 (br s, aryl-CH), 127.96-128.08 (m, 12H, CH(CH₃)₂), 127.51 (s, B-C₆H₅), 123.63 (s, B-C₆H₅), 91.16 (s, central arene-CH), 31.97 (d, J = 32.95, CH(CH₃)₂), 20.90 (s, CH(CH₃)₂), and 20.53 (s, CH(CH₃)₂). ³¹P{¹H} NMR (121 MHz, CD₂Cl₂, 25 °C): δ: 97.70.

Reactivity with AB Analogs

In a typical reaction, the Mo complex under investigation (4-8, 0.025 mmol) and the AB analog (NH₃BEt₃ or NMe₂BH₃, 0.125 mmol) were dissolved in THF. The resulting solution was transferred to a quartz J.

¹¹ CAUTION: Pressure builds up over the course of the reaction.

S7
Young NMR tube. In the case of precatalyst 4, NaBPh4 (17 mg, 0.050 mmol) was also added to the reaction mixture to aid in solubilizing the dication. The reactions were heated to 70 °C and monitored via \(^{31}\)P NMR spectroscopy.

Time Resolved AB Dehydrogenation Experiments

In a typical reaction, a solution of catalyst (4 or 8, 0.010 mmol) and AB (2.3 mg, 0.075 mmol) in diglyme (0.500 mL) was transferred to quartz J. Young NMR tube. NaBPh4 (6.8 mg, 0.020 mmol) was added in reactions with 4 to aid in solubilizing the dication as well as acting as an internal standard for \(^{11}\)B NMR experiments. The reactions were placed in a Varian 400 MHz NMR spectrometer preheated to 70 °C. Successive \(^{11}\)B and \(^{31}\)P\{\(^{1}\)H\} NMR spectra were recorded. See figures S23-S24.

NH\(_3\)BH\(_2\) Trapping Experiments

In a typical reaction, a quartz J. Young NMR tube was charged with precatalyst (4 or 5, 0.020 mmol), AB (1.2 mg, 0.040 mmol), and diglyme (0.5 mL). Cyclohexene (61 µL, 0.600 mmol) was added via microsyringe and the tube was sealed and placed in a Varian 400 MHz NMR spectrometer preheated to 70 °C. Successive \(^{11}\)B and \(^{31}\)P\{\(^{1}\)H\} NMR spectra were recorded. See figures S25-S26.

Eudiometric Measurement Details

In a typical run, a 2 mL Schlenk tube was charged with precatalyst (0.0125 mmol), AB (7.7 mg, 0.250 mmol), diglyme (1 mL) and a stir bar. The Schlenk tube was sealed and attached to the eudiometer depicted in Figure S1. The tubing attached to the Schlenk tube was evacuated and backfilled with N\(_2\) (x3).

Under positive N\(_2\) pressure, the flask was opened to the burette, causing immediate bubbling. Once the pressure had equilibrated, the Schlenk tube was quickly opened and closed to alleviate positive pressure remaining from the drybox. Once bubbling stopped, the initial volume was recorded. The Schlenk tube was submerged in a 70 °C oil bath, with stirring, and opened. Gas evolution was monitored over time.

Precatalysts 5, 9, and 11, formed homogeneous solutions under the above described conditions. Complex 4 proved only slightly soluble in diglyme, but rapidly formed a homogeneous red/orange solution upon heating the in the presence of AB. In case of 4, 5, and 11, homogeneity was maintained until the majority of the H\(_2\) had been liberated, at which point the forming solids were assumed to be dehydrogenation byproducts (namely PB). Experiments utilizing complex 9 remained homogeneous throughout the 6.5 h experiment. Diglyme solutions of complex 10 appeared to remain homogeneous, but at the employed concentrations, the deep green solution proved too darkly colored to be certain.

For catalyst reusability reactions, following a run set up as described above, the 3-way valve was used to place the reaction vessel under positive N\(_2\) pressure. The Teflon tap was removed and additional dry AB was added with a backflow of N\(_2\). The Schlenk tube was sealed, the pressure in the eudiometer allowed to equalize, and H\(_2\) evolution measurement resumed.

Catalyst reuse was first explored using conditions analogous to those employed for single-use dehydrogenation measurements. In a typical run, a 2 mL Schlenk tube was charged with precatalyst (0.017 mmol), AB (10.5 mg, 1.62 mmol), diglyme (1.00 mL) and a stir bar. The Schlenk tube was sealed and attached to the eudiometer as described above. The Schlenk tube was submerged in a 70 °C oil bath, with stirring, and opened. Gas evolution was monitored over time. Every 4 h (for complex 4) or 6 h (for complex 5), an additional charge of AB (10.5 mg, 1.62 mmol) was added with N\(_2\) counter pressure. Turnover number was calculated from the moles of H\(_2\) produced and system weight percent hydrogen was determined according to the following formula:

\[
\text{Turnover Number} = \left(\frac{\text{Theor. Wt. Yield} \ H_2}{\text{Wt. AB} + \text{Wt. Diglyme} + \text{Wt. Precatalyst}} \right) \times \left(\frac{\text{Tot.} \ H_2 \ \text{Collected}}{\text{Theor.} \ H_2 \ \text{Content}} \right) \times 100\% = \text{System Wt.} \% \ H_2
\]
In an attempt to increase the system weight percent, conditions similar to those reported by Williams and coworkers were used. In a typical reaction, a 2 mL Schlenk tube was charged with precatalyst (0.0017 mmol), AB (50.0 mg, 1.62 mmol), diglyme (0.100 mL) and a stir bar, providing a slurry comprised of ca. 16 M AB. The Schlenk tube was sealed and attached to the eudiometer as described above. The Schlenk tube was submerged in a 70 °C oil bath, with stirring, and opened. Gas evolution was monitored over time. Every 6 h, an additional charge of 50 mg of AB and 0.100 mL of diglyme was added with N₂ counter pressure. Turnover number and system weight percent hydrogen were calculated as before.

The effect of H₂O and methanol on dehydrogenation catalysis was determined as follows. In a typical reaction, a 2 mL Schlenk tube was charged with precatalyst (0.017 mmol), AB (10.5 mg, 1.62 mmol), diglyme (1.00 mL) and a stir bar. The Schlenk tube was sealed and attached to the eudiometer as described above. With a backflow on N₂, the Teflon pin was removed and replaced with a rubber septum. Degassed H₂O or MeOH (2 µL) was added via microsyringe. The septum was removed and the Teflon pin replaced. The 3-way valve was turned to connect the reaction vessel and the upturned burette and following pressure equilibration, the Schlenk tube was submerged in a 70 °C oil bath, with stirring, and opened. Gas evolution was monitored over time. Alternatively, unpurified (benchtop) AB was used in lieu of sublimed AB in the absence of added water as described above.

Figure S1. Schematic for the eudiometer apparatus used for ammonia borane dehydrogenation reactions. Note that rather than a 2-neck round bottom flask as depicted above, a Teflon valve Schlenk tube was used for all reported reactions.
Reaction Kinetics Measurements
In a typical reaction, a quartz J. Young NMR tube was charged with precatalyst (4 or 5, 0.009 mmol), AB (5.6 mg, 0.180 mmol), NaBPh₄ (30.8 mg, 0.09 mmol) and diglyme (0.5 mL). Tube was sealed and placed in a Varian 400 MHz NMR spectrometer preheated to 70 °C. ¹¹B NMR spectra were recorded as an array utilizing the pre-acquisition delay mechanism in Agilent’s VnmrJ software. Relative AB concentration was determined via integration of the AB resonance with respect to NaBPh₄.

\[\text{11B NMR spectra were recorded as an array utilizing the pre-acquisition delay mechanism in Agilent’s VnmrJ software. Relative AB concentration was determined via integration of the AB resonance with respect to NaBPh₄.}\]

\[\text{11B NMR spectra were recorded as an array utilizing the pre-acquisition delay mechanism in Agilent’s VnmrJ software. Relative AB concentration was determined via integration of the AB resonance with respect to NaBPh₄.}\]

\[\text{11B NMR spectra were recorded as an array utilizing the pre-acquisition delay mechanism in Agilent’s VnmrJ software. Relative AB concentration was determined via integration of the AB resonance with respect to NaBPh₄.}\]
NMR Spectra

Figure S2—1H NMR Spectrum (500 MHz, CD$_2$Cl$_2$) of 2.

Figure S3—31P{1H} NMR Spectrum (121 MHz, CD$_2$Cl$_2$) of 2.

Figure S4—13C{1H} NMR Spectrum (101 MHz, CD$_2$Cl$_2$) of 2.
Figure S5—1H NMR Spectrum (300 MHz, CD$_3$CN) of 3.

Figure S6—31P{1H} NMR Spectrum (121 MHz, CD$_3$CN) of 3.

Figure S7—13C{1H} NMR Spectrum (101 MHz, CD$_3$CN) of 3.
Figure S8 — 1H NMR Spectrum (300 MHz, CD$_3$CN) of 4.

Figure S9 — 31P (1H) NMR Spectrum (121 MHz, CD$_3$CN) of 4.

Figure S10 — 13C (1H) NMR Spectrum (126 MHz, CD$_3$CN) of 4.
Figure S11—1H NMR Spectrum (300 MHz, C$_6$D$_6$) of 5.

Figure S12—31P{1H} NMR Spectrum (121 MHz, CD$_2$Cl$_2$) of 5.

Figure S13—13C{1H} NMR Spectrum (101 MHz, C$_6$D$_6$) of 5.
Figure S14 — 1H NMR Spectrum (300 MHz, C$_6$D$_6$) of 6.

Figure S15 — 31P(1H) NMR Spectrum (121 MHz, C$_6$D$_6$) of 6.

Figure S16 — 13C(1H) NMR Spectrum (126 MHz, C$_6$D$_6$) of 6.
Figure S17 — 1H NMR Spectrum (400 MHz, CD$_2$Cl$_2$) of 7.

Figure S18 — 31P(1H) NMR Spectrum (162 MHz, CD$_2$Cl$_2$) of 7.

Figure S19 — 13C(1H) NMR Spectrum (101 MHz, CD$_2$Cl$_2$) of 7.
Figure S20—\(^1\)H NMR Spectrum (300 MHz, CD\(_2\)Cl\(_2\)) of 8.

Figure S21—\(^{31}\)P\(^{1}\)H) NMR Spectrum (121 MHz, CD\(_2\)Cl\(_2\)) of 8. Inset: \(^{31}\)P\(^{1}\)H) NMR Spectrum (162 MHz, CD\(_2\)Cl\(_2\)) of 8 with the proton decoupler centered at 7.0 ppm (selective hydride coupling).

Figure S22—\(^{13}\)C\(^{1}\)H\) NMR Spectrum (101 MHz, CD\(_2\)Cl\(_2\)) of 8.
Figure S23—Plots of T_1 vs. T for 6 (left) and 8 (right).

Figure S24—Partial 1H (top left, 400 MHz, C$_6$D$_6$), 1H{31P} (bottom left, 400 MHz, C$_6$D$_6$), and 31P{1H} (right, 162 MHz, C$_6$D$_6$) NMR spectra of a mixture of 6, 6-HD, and 6-D$_2$. The observed J_{HD} of 10.7 Hz is consistent with a contracted Mo dihydride complex.12
Figure S25—Partial 1H (left, 400 MHz, CD$_2$Cl$_2$) and 31P{1H} (right, 162 MHz, CD$_2$Cl$_2$) NMR spectra of 8 following treatment with ca. 7 equiv. of D$_2$. Unresolved isotopologue resonances have been reported for other classical Mo trihydride complexes.13

Figure S26—11B (left) and 31P{1H} (right) NMR spectra (128 and 162 MHz respectively, diglyme) of AB dehydrogenation by 4. In the 11B NMR spectra, the internal NaBPH$_4$ standard (A) and AB (C) were initially observed. Over 45 mins, AB was consumed with concomitant generation of BCDB (B, inset). The 31P{1H} NMR spectrum shows formation of 8 and 7 from 4, even prior to heating.
Figure S2—11B (left) and 31P{1H} (right) NMR spectra (128 and 162 MHz respectively, diglyme) of AB dehydrogenation by 8. In the 11B NMR spectra, borazine (A) and PB (B) grow in with time. The formation of BCBD (D) is observed with the concomitant consumption of AB (E). A resonance for the BPh$_4$- counterion of 8 is also observed. The 31P{1H} NMR spectrum shows formation of several species (see inset), with the most prominent starting to form prior to heating.

Figure S28—11B (left) and 31P (right) NMR spectra (128 and 162 MHz respectively, diglyme) of AB dehydrogenation by 4 in the presence of cyclohexene and the internal standard NaBPh$_4$ (B). The formation of the hydroborylation product H$_2$NB(Cy)$_2$ (A) is observed, along with consumption of AB (D). Some BCDB (C) was also generated. The selectively coupled 31P NMR spectrum (top left) shows that 4 is consumed completely within 10 m, furnishing 7 (doublet) and 8 (quartet). Subsequent 31P NMR spectra were proton decoupled to increase the signal to noise ratio.
Figure S29—¹¹B (left) and ³¹P{¹H} (right) NMR spectra (128 and 162 MHz respectively, diglyme) of AB dehydrogenation by 5 in the presence of cyclohexene. The formation of the hydroborylation product H₂NB(Cy)₂ (A) is observed, along with consumption of AB (F). Some BCDB (D), borazine (B), and PB (C) were also generated. The ³¹P{¹H} NMR shows that 5 is consumed completely within 5 m, and 6 is the major species throughout the reaction.
Eudiometric Data

Figure S30—Hydrogen evolution measurements for 4 (left) and 5 (right). Addition of elemental mercury was observed to have no effect on the rate of catalysis (black x’s). Mercury addition did lessen the extent of dehydrogenation catalysis from precatalyst 5.

Figure S31—Eudiometric measurements displaying the kinetic competence of 4, 7, and 8.
Figure S32—Hydrogen evolution profiles for Mo catalyzed AB dehydrogenation. Control reactions with AB in the absence of a catalyst and in the presence of Mo⁰ powder are included for reference.

Figure S33—Multiple substrate additions to the reaction of AB with 5 mol % 4. No decrease in the rate or extent of catalysis is observed over four sequential ca. 4 hour experiments. A total of 2.0 equiv. of H₂ per AB molecule were released, indicating 274 turnovers. This corresponds to the liberation of 0.80 system wt. % H₂ (out of a possible 1.18 %).
Figure S34—Multiple substrate additions to the reaction of AB with 5 mol % 5. A slight decrease in the extent of catalysis is observed for the second and third addition. A total of 1.8 equiv. of H$_2$ per AB molecule were released, indicating 143 turnovers. This corresponds to the liberation of 0.52 system wt. % H$_2$ (out of a possible 0.88 %).

Figure S35—Multiple substrate additions to the thermal control reaction of heating ca. 0.25 M AB solutions in diglyme. No decrease in the rate or extent of catalysis is observed over four sequential ca. 4 hour experiments. A total of 1.25 equiv. of H$_2$ per AB was collected, a significant decrease from the catalyzed systems (2.04 equiv. for 4 and 1.78 equiv. for 5, respectively).

During the control, the marked difference in the rate of dehydrogenation observed between the first and latter two additions of AB is attributed to the second-order decomposition process for thermal dehydrogenation.14 As the concentration of AB increases with subsequent substrate additions, thermal dehydrogenation becomes more kinetically viable, leading to rapid H$_2$ release in the third and fourth runs.
The system weight percent H_2 released from the above systems is low in comparison to reported values11,15 however, this is largely a manifestation of the concentration of AB in solution. The majority (93\%) of the system weight can be attributed to the solvent. To attempt to increase system weight percent H_2, dehydrogenation was attempted at higher AB concentrations and lower catalyst loadings.

Reusability of Precatalyst 4 in a Concentrated AB Slurry

![Graph: Reusability of Precatalyst 4 in a Concentrated AB Slurry](image)

Figure S36—Multiple substrate additions to 0.1 mol $\%$ 4 in a ca. 16 M slurry of AB. The thermal control (identical conditions sans catalyst) is overlayed in red. Although a slight deviation between the catalyzed run and the control is observed for the first addition, no difference is observed following the second addition. Notably, this system achieves 4.4 wt. $\%$ H_2 release. The similarity of the catalyzed and control experiments eliminates the ability to attribute dehydrogenation activity to 4 under these conditions.

Reusability of Precatalyst 5 in a Concentrated AB Slurry

![Graph: Reusability of Precatalyst 5 in a Concentrated AB Slurry](image)

Figure S37—Multiple substrate additions to 0.1 mol $\%$ 5 in a ca. 16 M slurry of AB. The thermal control (identical conditions sans catalyst) is overlayed in red. Only a slight deviation between the catalyzed run and the control is observed. Notably, this system achieves 4.5 wt. $\%$ H_2 release. The similarity of the catalyzed and control experiments eliminates the ability to attribute dehydrogenation activity to 5 under these conditions.

Under concentrated AB conditions, little difference was observed between catalyzed and uncatalyzed experiments. This is attributable to thermal dehydrogenation processes dominating at high [AB]. With low catalyst loading (0.1 mol $\%$), these conditions fail to lend insight into the role of the catalyst but
further optimization of the catalyzed systems for both precatalysts 4 and 5 is underway. Corroborating the concentration dependence of thermally induced, solution state AB dehydrogenation, rapid H₂ release is observed even after the first substrate addition under these more concentrated conditions. The increase from 1.5 equiv. to 2.0 equiv. released in control runs 1 and 2 is attributed to the presence of reactive dehydrogenation intermediates and improved stirring resulting from doubling the volume of diglyme. Presumably, solid-state thermal dehydrogenation is also playing a role in these slurry reactions.¹⁶

![Effects of H₂O and MeOH on AB Dehydrogenation by Precatalyst 4](image)

Figure S38—Hydrogen evolution profiles for reactions of precatalyst 4 with dry AB (A), AB and water (B-D), and AB and methanol (E). Control reactions with dry AB (F) and AB with water added (G) are included for comparison.

A significant disparity in the rate and extent of hydrogen evolution was observed when using sublimed AB (A) and unpurified AB (B). This rate increase was attributed to water, as sublimed AB that was later exposed to air showed a similar H₂ evolution profile to unpurified AB (C). Addition of 50 mol % H₂O to dehydrogenation experiments resulted in a significant rate increase, releasing over 2 equiv. of H₂ in 1 h (D). A similar effect was observed with the addition of 20 mol % methanol, again resulting in a significant increase to the rate and extent of dehydrogenation. Addition of 50 mol % H₂O to an AB solution lacking catalyst also leads to a greater extent of H₂ release (G). Though hydrolysis¹⁷ and acid catalysis¹⁷b,¹⁸ are established methods for the dehydrogenation of AB, the resulting B–O bonds likely preclude facile recyclability and therefore these systems were not studied further. Though little effect was observed for the source of AB utilized with precatalyst 5, reported experiments use rigorously purified AB unless stated otherwise. Control experiments (with AB and 4) were run on each batch of substrate to ensure consistency.
Effect of H₂O on AB Dehydrogenation by Precatalyst 5

Figure S39—Hydrogen evolution profiles for reactions of precatalyst 5 with dry AB (I) and AB and water (II). Control reactions with dry AB (III) and AB with water added (IV) are included for comparison.

Table S1. Mo-Based Homogeneous Precatalysts for AB Dehydrogenation in Comparison to Precatalysts Reported to Release ≥2.0 equiv of H₂.

NH₃BH₃ → X H₂ + B-N Byproducts

- **4**: X = 2.0 equiv. 5 mol%, 70 °C, 9 h
- **5**: X = 2.5 equiv. 5 mol%, 70 °C, 17 h
- **10**: X = 2.2 equiv. 5 mol%, 70 °C, 16 h
- **11**: X = 1.9 equiv. 5 mol%, 70 °C, 10 h
- **12**: X = 2.8 equiv. 10 mol%, 60 °C, 4 h
- **13**: X = 2.0 equiv. 5 mol%, 70 °C, 2 h
- **14**: X = 2.3 equiv. 2 mol%, 70 °C, 6 h
- **15**: X = 2.0 equiv. 1.2 mol%, 45 °C, 48 h
- **16**: X = 2.0 equiv. 3 mol%, 25 °C, 60 s
Kinetic Data

Figure S40—Relative concentration vs. time plots for reactions of AB isotopologs with catalytic 4 as monitored by 11B NMR spectroscopy.

Figure S41—Log plot of $[AB]$ vs. time with catalytic 4 as monitored by 11B NMR spectroscopy. Isotope effects were calculated from the ratios of the respective slopes and are reported in the inset.
Figure S42—Relative concentration vs. time plots for reactions of AB with catalytic 5 and 6 as monitored by 11B NMR spectroscopy.

Analysis of the dehydrogenation kinetics for 5 showed neither first- nor second-order behavior. The possibility of the equilibrium between 5 and 6 ([H$_2$] increases with time) affecting the rate of the reaction was ruled out via measuring kinetics from isolated 6 (red squares). Addition of 1 atm of H$_2$ to precatalyst 5 prior to heating demonstrated pseudo-first-order kinetics. This is consistent with product (H$_2$) inhibition, but further experimentation is required to confirm this hypothesis.
Crystallographic Information

CCDC deposition numbers 804890, 1008197, 1008330-1008331, and 1008356-1008357 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Refinement Details—In each case, crystals were mounted on a glass fiber or nylon loop using Paratone oil, then placed on the diffractometer under a nitrogen stream. Low temperature (100 K) X-ray data were obtained on a Bruker APEXII CCD based diffractometer (Mo sealed X-ray tube, \(\lambda = 0.71073\) Å) or a Bruker SMART CCD based diffractometer (Mo sealed X-ray tube, \(\lambda = 0.71073\) Å). All diffractometer manipulations, including data collection, integration, and scaling were carried out using the Bruker APEXII software.\(^{19}\) Absorption corrections were applied using SADABS.\(^{20}\) Space groups were determined on the basis of systematic absences and intensity statistics and the structures were solved by direct methods using XS\(^{21}\) or by intrinsic phasing using XT (incorporated into SHELXTL) and refined by full-matrix least squares on \(F^2\). All non-hydrogen and hydride atoms were refined using anisotropic displacement parameters. Non-hydride hydrogen atoms were placed in the idealized positions and refined using a riding model. The structure was refined (weighed least squares refinement on \(F^2\)) to convergence. Graphical representation of structures with 50% probability thermal ellipsoids was generated using Diamond visualization software.\(^{22}\)
Table S2. Crystal and refinement data for complexes 2-5 and 7-8.

	2	3	4	5	6	7	8
CCDC Number	804890	1008197	1008330	1008356	1008331	1008357	
Empirical formula	C_{33}H_{40}MoO_{2}P_{2}	C_{34}H_{40}MoO_{8}P_{2}S_{2}	C_{36.67}H_{40}MoN_{2.33}O_{8}P_{2}S_{2}	C_{38}H_{40}MoN_{2}P_{2}	C_{56}H_{40}MoNP_{2}	C_{58}H_{40}MoOP_{2}	
Formula weight	642.53	912.66	951.42	586.52	919.77	952.83	
T (K)	100	100	100	100	100	100	
a, Å	12.9284(7)	12.7866(6)	32.0444(10)	8.9892(3)	12.7883(6)	11.1314(5)	
b, Å	12.6055(6)	16.4447(7)	32.0444(10)	23.8655(7)	16.1757(7)	17.1403(8)	
c, Å	19.2797(9)	17.5292(7)	21.1665(9)	12.7797(4)	23.2443(10)	26.9594(12)	
α, °	90	90	90	90	90	90	
β, °	100.020(2)	91.785(2)	90	94.7145(16)	101.250(2)	94.544(2)	
γ, °	90	90	120	90	90	90	
Volume, Å³	3094.1(3)	3684.1(3)	18822.7(14)	2732.37(15)	4715.9(4)	5127.6(4)	
Z	4	4	18	4	4	4	
Crystal system	Monoclinic	Monoclinic	Trigonal	Monoclinic	Monoclinic	Monoclinic	
Space group	P 2₁/c	P 2₁/n	R̄3c	P 2₁/c	P 2₁/c	P 2₁/c	
\(d_{calc}, \text{g/cm}³\)	1.379	1.645	1.511	1.426	1.295	1.234	
θ range, °	2.44 to 30.54	1.698 to 45.424	2.059 to 43.500	1.707 to 45.535	1.544 to 39.298	1.409 to 45.385	
\(μ, \text{mm}⁻¹\)	0.559	0.637	0.563	0.619	0.384	0.357	
Abs. Correction	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	Semi-empirical	
GOF	1.631	1.130	1.056	1.111	1.120	1.092	
\(R₁, wR₂ \text{[I>2} \sigma(I)\text{]}\)	0.0313, 0.0313	0.0464, 0.1251	0.0371, 0.0855	0.0493, 0.0951	0.0731, 0.1417	0.0448, 0.1007	
Diffactometer	APEXII	APEXII	APEXII	SMART	APEXII	APEXII	

\(R₁ = \sum|F_o| - |F_c|/\sum|F_o|\), \(wR₂ = \sum[w(F_o^2 - F_c^2)^2]/\sum[w(F_o^2)]^{1/2}\).
Figure S43—Structural drawing of 2 with 50% probability ellipsoids. Co-crystallized toluene and hydrogen atoms are omitted for clarity.

Figure S44—Structural drawing of 3 with 50% probability ellipsoids. Outer-sphere triflate ions and hydrogen atoms are omitted for clarity.

Special refinement details for 3—The crystal was twinned by a 180 degree rotation about the a axis. An HKLF 5 file was generated with the TwinRotMat option in PLATON. The twin ratio refined to 0.82:0.18.
Figure S45 — Structural drawing of 4 with 50% probability ellipsoids. Co-crystallized acetonitrile, outer-sphere triflate ions and hydrogen atoms are omitted for clarity.

Figure S46 — Structural drawing of 5 with 50% probability ellipsoids. Hydrogen atoms are omitted for clarity.
Figure S47—Structural drawing of 7 with 50% probability ellipsoids. Outer-sphere tetraphenylborate molecule and hydrogen atoms (except for the hydride) are excluded for clarity.

Special refinement details for 7—The ligand isopropyl groups were positionally disordered and satisfactorily modeled as approximately a 70:30 mixture using “PART” cards in SHELX.

Figure S48—Structural drawing of 8 with 50% probability ellipsoids. A co-crystallized THF molecule and hydrogen atoms (except the hydrides) are omitted for clarity.

References
(1) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.
(2) Velian, A.; Lin, S. B.; Miller, A. J. M.; Day, M. W.; Agapie, T. *J. Am. Chem. Soc.* **2010**, *132*, 6296.
(3) Tate, D. P.; Knipple, W. R.; Augl, J. M. *Inorg. Chem.* **1962**, *1*, 433.
(4) Archer, L. J.; George, T. A. *Inorg. Chem.* **1979**, *18*, 2079.
(5) Arashiba, K.; Miyake, Y.; Nishibayashi, Y. *Nat. Chem.* **2011**, *3*, 120.
(6) Pidcock, A.; Smith, J. D.; Taylor, B. W. *J. Chem. Soc. A.* **1967**, 872.
(7) Keaton, R. J.; Blacquiere, J. M.; Baker, R. T. *J. Am. Chem. Soc.* **2007**, *129*, 1844.
(8) Marziale, A. N.; Friedrich, A.; Klopsch, I.; Drees, M.; Celinski, V. R.; Guenne, J. S. A. D.; Schneider, S.
J. Am. Chem. Soc. 2013, 135, 13342.

(9) Wender, I.; Friedel, R. A.; Orchin, M. J. Am. Chem. Soc. 1949, 71, 1140.

(10) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.;
Goldberg, K. I. Organometallics 2010, 29, 2176.

(11) Conley, B. L.; Guess, D.; Williams, T. J. J. Am. Chem. Soc. 2011, 133, 14212.

(12) (a) Grundemann, S.; Limbach, H. H.; Buntkowsky, G.; Sabo-Etienne, S.; Chaudret, B. J. Phys. Chem. A. 1999,
103, 4752. (b) Gelabert, R.; Moreno, M.; Lluch, J. M.; Lledos, A.; Pons, V.; Heinekey, D. M. J. Am. Chem. Soc.
2004, 126, 8813.

(13) Janak, K. E.; Shin, J. H.; Parkin, G. J. Am. Chem. Soc. 2004, 126, 13054.

(14) (a) Wang, J. S.; Geanangel, R. A. Inorg. Chim. Acta. 1988, 148, 185. (b) Shaw, W. J.; Linehan, J. C.;
Szymczak, N. K.; Heldebrant, D. J.; Yonker, C.; Camaioni, D. M.; Baker, R. T.; Autrey, T. Angew. Chem. Int. Ed.
2008, 47, 7493.

(15) Blaquiere, N.; Diallo-Garcia, S.; Gorelsky, S. I.; Black, D. A.; Fagnou, K. J. Am. Chem. Soc. 2008, 130,
14034.

(16) Baitalow, F.; Baumann, J.; Wolf, G.; Jaenicke-Rossler, K.; Leitner, G. Thermochim Acta 2002, 391, 159.

(17) (a) Chandra, M.; Xu, Q. J Power Sources 2006, 156, 190. (b) Stephens, F. H.; Pons, V.; Baker, R. T. Dalton.
Trans. 2007, 2613. (c) Diwan, M.; Diakov, V.; Shafirovich, E.; Varma, A. Int. J. Hydrogen Energ. 2008, 33, 1135.
(d) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. Chem. Soc. Rev. 2009, 38, 279.

(18) (a) Kelly, H. C.; Marchello, F. R.; Giusto, M. B. Inorg. Chem. 1964, 3, 431. (b) Kelly, H. C.; Marriott, V. B.
Inorg. Chem. 1979, 18, 2875. (c) Stephens, F. H.; Baker, R. T.; Matus, M. H.; Grant, D. J.; Dixon, D. A. Angew.
Chem. Int. Ed. 2007, 46, 746.

(19) APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.

(20) Sheldrick, G.M. “SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector
Frames”, University of Göttingen, 2008.

(21) Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

(22) Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.

(23) Crystallographic data have been deposited at the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK and
copies can be obtained on request, free of charge, by quoting the publication citation and the respective deposition
numbers.