Formulas for Generalized Two-Qubit Separability Probabilities

Paul B. Slater

Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030

(Dated: September 28, 2016)

Abstract

To begin, we find certain formulas $Q(k, \alpha) = G_1^k(\alpha)G_2^k(\alpha)$, for $k = -1, 0, 1, \ldots 9$. These yield that part of the total separability probability, $P(k, \alpha)$, for generalized (real, complex, quaternionic,\ldots) two-qubit states endowed with random induced measure, for which the determinantal inequality $|\rho^{PT}| > |\rho|$ holds. Here ρ denotes a 4×4 density matrix, obtained by tracing over the pure states in $4 \times (4 + k)$-dimensions, and ρ^{PT}, its partial transpose. Further, α is a Dyson-index-like parameter with $\alpha = 1$ for the standard (15-dimensional) convex set of (complex) two-qubit states. For $k = 0$, we obtain the previously reported Hilbert-Schmidt formulas, with (the real case) $Q(0, \frac{1}{2}) = \frac{29}{128}$, (the standard complex case) $Q(0, 1) = \frac{4}{33}$, and (the quaternionic case) $Q(0, 2) = \frac{13}{323}$—the three simply equalling $P(0, \alpha)/2$. The factors $G_2^k(\alpha)$ are sums of polynomial-weighted generalized hypergeometric functions pF_{p-1}, $p \geq 7$, all with argument $z = \frac{27}{16} = (\frac{3}{4})^3$. We find number-theoretic-based formulas for the upper (u_{ik}) and lower (b_{ik}) parameter sets of these functions and, then, equivalently express $G_2^k(\alpha)$ in terms of first-order difference equations. Applications of Zeilberger’s algorithm yield “concise” forms of $Q(-1, \alpha), Q(1, \alpha)$ and $Q(3, \alpha)$, parallel to the one obtained previously (J. Phys. A, 46 [2013], 445302) for $P(0, \alpha) = 2Q(0, \alpha)$. Notably, we find that $Q(k, \frac{1}{2}) = \frac{1}{2} - \frac{r(2k+\frac{3}{2})}{\sqrt{\pi(2k+3)}}$. For nonnegative half-integer and integer values of α, $Q(k, \alpha)$ has descending roots starting at $k = -\alpha - 1$. Then, we (C. Dunkl and I) construct a remarkably compact (hypergeometric) form for $Q(k, \alpha)$ itself. The possibility of an analogous “master” formula for $P(k, \alpha)$ is, then, investigated, and a number of interesting results found.

PACS numbers: Valid PACS 03.67.Mn, 02.30.Zz, 02.50.Cw, 02.40.Ft, 03.65.-w

*Electronic address: slater@kitp.ucsb.edu
I. INTRODUCTION

In a previous paper [1], a family of formulas was obtained for the (total) separability probabilities $P(k, \alpha)$ of generalized two-qubit states ($N = 4$) endowed with Hilbert-Schmidt ($k = 0$) [2], or more generally, random induced measure [3, 4]. In this regard, we note that the natural, rotationally invariant measure on the set of all pure states of a $N \times K$ composite system ($k = K - N$), induces a unique measure in the space of $N \times N$ mixed states [3, eq. (3.6)]. Further, α serves as a Dyson-index-like parameter [5, 6], assuming the values $\frac{1}{2}, 1, 2$ for the ($N = 4$) two-rebit, (standard/complex) two-qubit, and two-quaterbit states, respectively.

The concept itself of a “separability probability”, apparently first (implicitly) introduced by Žyczkowski, Horodecki, Sanpera and Lewenstein in their much cited 1998 paper [7], entails computing the ratio of the volume—in terms of a given measure [8]—of the separable quantum states to all quantum states. Here, we first examine a certain component $Q(k, \alpha)$ of $P(k, \alpha)$. This informs us of that portion—equalling simply $P(k, \alpha)/2$ in the Hilbert-Schmidt ($k = 0$) case [9]—for which the determinantal inequality $|\rho^{PT}| > |\rho|$ holds, with ρ denoting a 4×4 density matrix and ρ^{PT}, its partial transpose. By consequence [10] of the Peres-Horodecki conditions [11, 12], a necessary and sufficient condition for separability in this 4×4 setting is that $|\rho^{PT}| > 0$. The nonnegativity condition $|\rho| \geq 0$ itself certainly holds, independently of any separability considerations. So, the total separability probability can
clearly be expressed as the sum of that part for which $|\rho^{PT}| > |\rho|$ and that for which $|\rho| > |\rho^{PT}| \geq 0$. The former quantity will be the one of initial concern here, the ones the formulas $Q(k, \alpha)$ will directly yield.

The complementary quantity, that for which $|\rho| > |\rho^{PT}| \geq 0$ can, in the most basic cases of interest, be readily obtained from the total separability probability formulas $P(k, \alpha)$ reported in [1], which took the form

$$P(k, \alpha) = 1 - F(k, \alpha), \quad (1)$$

where for integral and half-integral α,

$$F(k, \alpha) = p_{\alpha}(k) G(k, \alpha),$$

with

$$G(k, \alpha) := 4^k \frac{\Gamma(k + 3\alpha + \frac{3}{2}) \Gamma(2k + 5\alpha + 2)}{\Gamma\left(\frac{1}{2}\right) \Gamma(3k + 10\alpha + 2)}.$$

Here, for integral α, $p_{\alpha}(k)$ is a polynomial of degree $4\alpha - 2$ with leading coefficient $\frac{2^{8\alpha+1}}{(2\alpha - 1)!}$.

In [1], certain α-specific formulas ($\alpha = 1, 2, \ldots, 13$ and $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}$) had been derived. Most notably [1, eq. (3)],

$$P(k, 1) = 1 - \frac{3 \cdot 4^{k+3}(2k(k + 7) + 25)\Gamma\left(k + \frac{7}{2}\right)\Gamma(2k + 9)}{\sqrt{\pi}\Gamma(3k + 13)}. \quad (2)$$

Here $P(k, 1)$ denotes the total separability probability of the (15-dimensional) standard, complex two-qubit systems endowed with the random induced measure for $k = K - 4$. Further, in the two-quater[nionic]bit setting [1, eq. (4)],

$$P(k, 2) = 1 - \frac{4^{k+6}(k(k(2k(k + 21) + 355) + 1452) + 2430)\Gamma\left(k + \frac{13}{2}\right)\Gamma(2k + 15)}{3\sqrt{\pi}\Gamma(3k + 22)}. \quad (3)$$

Also, for the two-re[al]bit scenario [1, eq. (5)],

$$P(k, \frac{1}{2}) = 1 - \frac{4^{k+1}(8k + 15)\Gamma(k + 2)\Gamma\left(2k + \frac{9}{2}\right)}{\sqrt{\pi}\Gamma(3k + 7)}. \quad (4)$$

Tables 1, 2 and 3 in [1] reported for $k = 0, 1, \ldots, 8$, the, in general, rather simple fractional separability probabilities $P(k, \alpha)$ yielded by these three formulas.

By way of example, we first note that formula (2) yields $P(1, 1) = \frac{61}{113}$. Then, since we will find from our analyses below, that $Q(1, 1) = \frac{45}{286}$, we can readily deduce that the
corresponding (complementary) separability probability corresponding to the inequalities $|\rho| > |\rho^{PT}| \geq 0$, for this $k = 1, \alpha = 1$ scenario is equal to $P(1, 1) - Q(1, 1) = \frac{7}{26} = \frac{61}{143} - \frac{45}{286}$.

Let us further observe that for the Hilbert-Schmidt ($k = 0$) case, strong evidence has been presented [9] that for the two-rebit, two-qubit and two-quaterbit cases, the apparent total separability probabilities $P(0, \alpha)$ of $\frac{29}{64}$, $\frac{8}{33}$ and $\frac{26}{323}$, respectively, are equally divided between the two forms of determinantal inequalities (cf. [13]). (These “half-probabilities”, remarkably, are also the corresponding separability probabilities of the minimally degenerate states [13], those for which ρ has a zero eigenvalue.) For $k > 0$, however, our analyses will indicate that equal splitting is not, in fact, the case. Greater separability probability is associated with the $|\rho| > |\rho^{PT}| \geq 0$ inequality than $|\rho^{PT}| > |\rho|$. Thus, in the $k = 1, \alpha = 1$ instance just discussed, we do have $\frac{7}{26} > \frac{45}{286}$. (On the other hand, if $k = -1$, then necessarily $|\rho| = 0$, so all the total separability probability $P(-1, \alpha)$ must, it is clear, be assigned to the $|\rho^{PT}| > |\rho|$ component. That is, $Q(-1, \alpha) = P(-1, \alpha)$.) Observations of this nature should help in the further understanding of the intricate geometry of the generalized two-qubit states endowed with random induced measure (cf. [14]).

II. PROCEDURES

A. Previous Analyses

To obtain the new formulas $Q(k, \alpha)$ to be presented here for the separability probability amounts for which $|\rho^{PT}| > |\rho|$ holds, we first employed—as in our prior studies [1, 9, 15, 16]—the Legendre-polynomial-based probability density approximation (Mathematica-implemented) algorithm of Provost [17] (cf. [18]). In this regard, we utilized the previously-obtained determinantal moment formula [1] eq. (6) [9 sec. II] (cf. [19])

$$\left\langle |\rho|^k \left(|\rho^{PT}| - |\rho| \right)^n \right\rangle / \left\langle |\rho|^k \right\rangle = (-1)^n \frac{(\alpha)_n (\alpha + \frac{1}{2})_n (n + 2k + 2 + 5\alpha)_n}{2^{4n} (k + 3\alpha + \frac{3}{2})_n (2k + 6\alpha + \frac{5}{2})_n} \times \text{4F3}\left(-\frac{n}{2}, \frac{1-n}{2}, k + 1 + \alpha, k + 1 + 2\alpha; 1 - n - \alpha, \frac{1}{2} - n - \alpha, n + 2k + 2 + 5\alpha ; 1 \right)$$

(where the variable k has the same sense as indicated above, in equalling $K - 4$, and the bracket notation indicates averaging with respect to the random induced measure). Here, $\left\langle |\rho|^k \right\rangle = \frac{(1)_k (\frac{1}{2})_k (2)_k (\frac{3}{2})_k}{(10)_{4k}}$, where the Pochhammer (rising factorial) notation is employed.
On the other hand in [1], a second companion moment formula [15, sec. X.D.6] had been utilized for density-approximation purposes with the routine of Provost, with the objective of finding the total separability probabilities $P(k, \alpha)$, associated with the Peres-Horodecki-based inequality $|\rho_{PT}| > 0$. (These moment formulas had been developed in [15], based on calculations solely for the two-rebit $[\alpha = \frac{1}{2}]$ and two-qubit $[\alpha = 1]$ cases. However, they do appear, as well, remarkably, to apply to the two-quer[tion]bit $[\alpha = 2]$ case, as reported by Fei and Joynt in a highly computationally intensive Monte Carlo study [20]. No explicit formal extension of the Peres-Horodecki positive-partial-transposition separability conditions [11, 12] to two-querbit systems seems to have been developed, however [cf. [21–23]]. The value $\alpha = 4$ corresponds, presumably it would seem, to an octonionic setting [24].)

B. Present Analyses

Here, contrastingly (“dually”) with respect to the approach indicated in [1], we will find k-specific formulas ($k = -1, 0, 1, \ldots, 9$) as a function of α, that is $Q(k, \alpha)$, for the indicated one ($|\rho_{PT}| > |\rho|$) of the two component determinantal inequality parts of $|\rho_{PT}| > 0$. We utilized an exceptionally large number (15,801) number of the first set of moments above in the routine of Provost [17], helping to reveal—to extraordinarily high accuracy—the rational values that the corresponding desired (partial) separability probabilities $Q(k, \alpha)$ strongly appear to assume. Sequences ($\alpha = 1, 2, \ldots, 30, \ldots$) of such rational values, then, served as input to the FindSequenceFunction command of Mathematica, which then yielded the initial set of k-specific (hypergeometric-based) formulas for $Q(k, \alpha)$. (This apparently quite powerful [but “black-box”] command of which we have previously and will now make copious use, has been described as attempting “to find a simple function that yields the sequence when given successive integer arguments”. It can, it seems, succeed too, at times, for rational-valued inputs.) We, then, decompose $Q(k, \alpha)$ into the product form $G_1^k(\alpha)G_2^k(\alpha)$
FIG. 1: Plots of the separability probability formulas $Q(k, \alpha)$ over the range $\alpha \in [1, 10]$, for $k = -1, \ldots, 9$. For fixed α, we have $Q(k_1, \alpha) > Q(k_2, \alpha)$, if $k_1 > k_2$.

III. COMMON FEATURES OF THE k-SPECIFIC FORMULAS $Q(k, \alpha)$

For each $k = -1, 0, 1, \ldots, 9$, the FindSequenceFunction command yielded what we can consider as a large, rather cumbersome (several-page) formula, which we denote by $Q(k, \alpha)$. These expressions, in fact, faithfully reproduce the rational-valued (separability probability) sequences that served as input. This fidelity is indicated by numerical calculations to apparently arbitrarily high accuracy (hundreds of digits). (The difference equation results below [sec. V] will provide a basis for our observation as to the rational-valuedness [fractional nature] of these separability probabilities.)

In Fig. 1 we show plots of the formulas $Q(k, \alpha)$ obtained over the range $\alpha \in [1, 10]$, for $k = -1, \ldots, 9$. For fixed α, we have $Q(k_1, \alpha) > Q(k_2, \alpha)$, if $k_1 > k_2$. In Fig. 2, we show a companion plot, exhibiting strongly log-linear-like behavior, for $\log Q(k, \alpha)$.

A. Distinguished $7F_6$ function with 2 as an upper parameter in $Q(k, \alpha)$

In each of the eleven k-specific formulas $Q(k, \alpha)$ obtained, there is a distinguished $7F_6$ generalized hypergeometric function, with the (“omnipresent”, we will find) argument of $z = \frac{27}{64} = \left(\frac{3}{4}\right)^3$ (cf. [25, 26, Ex. 8.6, p. 159]), having 2 as one of the seven upper parameters
FIG. 2: Plots of log $Q(k, \alpha)$ over the range $\alpha \in [1, 10]$, for $k = -1, \ldots, 9$. For fixed α, log $Q(k_1, \alpha) > \log Q(k_2, \alpha)$, if $k_1 > k_2$.

(cf. [16]).

1. The six lower parameters

The lower (bottom) six parameters b_{ik}, $i = 1, \ldots, 6$, of the τF_6 function conform for all eleven cases to the simple linear rule,

$$\{b_{1k}, b_{2k}, b_{3k}, b_{4k}, b_{5k}, b_{6k}\} = \left\{\alpha + \frac{2k}{5} + \frac{5}{2}, \alpha + \frac{2k}{5} + \frac{27}{10}, \alpha + \frac{2k}{5} + \frac{29}{10}, \alpha + \frac{31}{10}, \alpha + k + 3\right\}. \quad (6)$$

The six entries sum to $6\alpha + 3k + \frac{33}{2}$.

2. The six upper parameters

The six upper parameters (aside from the seventh k-invariant constant of 2 already indicated), $\{u_{1k}, u_{2k}, u_{3k}, u_{4k}, u_{5k}, u_{6k}\}$, can be broken into one set of two (the numerical parts summing to integers), incorporating consecutive fractions having 6's in their denominators, and one set of four (the numerical parts also summing to integers), incorporating consecutive
fractions having 5’s in their denominators. For the set of two, the smaller of the two upper entries abides by the rule

\[u_{1k} = \alpha + \frac{1}{6} \left(4 \left\lfloor \frac{k}{3} \right\rfloor + 2 \left\lfloor \frac{k+1}{3} \right\rfloor + 11 \right), \]

(7)

where the (integer-valued) floor function is employed, while the larger entry is given by

\[u_{2k} = \alpha + \frac{1}{6} \left(2 \left\lfloor \frac{k}{3} \right\rfloor + 4 \left\lfloor \frac{k+1}{3} \right\rfloor + 13 \right). \]

(8)

For integral values of \(k \), the same values of \(u_{1k} \) and \(u_{2k} \) are yielded by the interpolating functions,

\[\alpha + \frac{1}{18} \left(6k + 2 \cos \left(\frac{2\pi k}{3} \right) + 2 \cos \left(\frac{4\pi k}{3} \right) + 29 \right), \]

and

\[\alpha + \frac{1}{18} \left(6k - \sqrt{3} \sin \left(\frac{2\pi k}{3} \right) + \sqrt{3} \sin \left(\frac{4\pi k}{3} \right) + \cos \left(\frac{2\pi k}{3} \right) + \cos \left(\frac{4\pi k}{3} \right) + 37 \right), \]

respectively.

For \(k = 1 \), for illustrative purposes, application of the two rules yields \(\{ \alpha + \frac{11}{6}, \alpha + \frac{13}{6} \} \), and for \(k = 5 \), we have \(\{ \alpha + \frac{19}{6}, \alpha + \frac{23}{6} \} \). (We have noted that \(u_{1k} + u_{2k} - 2\alpha = \left\lfloor \frac{k}{3} \right\rfloor + \left\lfloor \frac{k+1}{3} \right\rfloor + 4 \) is an integer. The sequence of these integers–for arbitrary integer or half-integer values of \(\alpha \)–is found in the On-Line Encyclopedia of Integer Sequences [https://oeis.org/ol.html] as A004523 [“Two even followed by one odd”] and as A232007 [“Maximal number of moves needed to reach every square by a knight from a fixed position on an n X n chessboard, or -1 if it is not possible to reach every square”].)

For the complementary set of four upper parameters of the \(\tau F_6 \) function, the entries in order of increasing magnitude are expressible as

\[u_{3k} = \alpha + \frac{1}{5} \left(3 \left\lfloor \frac{k-4}{5} \right\rfloor + 2 \left\lfloor \frac{k-3}{5} \right\rfloor + 2 \left\lfloor \frac{k-2}{5} \right\rfloor + 3 \left\lfloor \frac{k-1}{5} \right\rfloor + 16 \right), \]

(9)

\[u_{4k} = \alpha + \frac{1}{5} \left(3 \left\lfloor \frac{k-4}{5} \right\rfloor + 2 \left\lfloor \frac{k-3}{5} \right\rfloor + \left\lfloor \frac{k-2}{5} \right\rfloor + 4 \left\lfloor \frac{k-1}{5} \right\rfloor + 17 \right), \]

\[u_{5k} = \alpha + \frac{1}{5} \left(2 \left\lfloor \frac{k-4}{5} \right\rfloor + 3 \left\lfloor \frac{k-3}{5} \right\rfloor + \left\lfloor \frac{k-2}{5} \right\rfloor + 4 \left\lfloor \frac{k-1}{5} \right\rfloor + 18 \right), \]

and

\[u_{6k} = \alpha + \frac{1}{5} \left(2 \left\lfloor \frac{k-4}{5} \right\rfloor + 3 \left\lfloor \frac{k-3}{5} \right\rfloor + \left\lfloor \frac{k-2}{5} \right\rfloor + 4 \left\lfloor \frac{k-1}{5} \right\rfloor + 19 \right). \]
For \(k = 1 \), for illustrative purposes, application of these four rules yields
\[\{ \alpha + \frac{9}{5}, \alpha + \frac{11}{5}, \alpha + \frac{12}{5}, \alpha + \frac{13}{5} \} \], and for \(k = 5 \), we have
\[\{ \alpha + \frac{16}{5}, \alpha + \frac{17}{5}, \alpha + \frac{18}{5}, \alpha + \frac{19}{5} \} \].

For arbitrary \(k \), the sum of the four terms under discussion minus \(4 \alpha \) is an integer, namely,
\[2 \left\lfloor \frac{k-4}{5} \right\rfloor + 2 \left\lfloor \frac{k-3}{5} \right\rfloor + \left\lfloor \frac{k-2}{5} \right\rfloor + 3 \left\lfloor \frac{k-1}{5} \right\rfloor + 14. \]

Further, let us note that for integral values of \(k \), \(u_{3k} \) has values
\[
\frac{1}{250} (50(2k + 7) + \sqrt{50 - 10\sqrt{5}(-3 \sin(\frac{\pi}{5}(1 - 2k)) + 2 \sin(\frac{4\pi k}{5}) - 2 \sin(\frac{6\pi k}{5}) - 3 \sin(\frac{1}{5}(\pi - 6\pi k))) + 2 \sin(\frac{1}{5}(\pi - 4\pi k))} - 3(\sin(\frac{2}{5}(3\pi k + \pi)) + 3 \sin(\frac{1}{5}(4\pi k + \pi))) + 2 \sin(\frac{1}{5}(6\pi k + \pi)))) + \sqrt{10(5 + \sqrt{5})(-2 \sin(\frac{2}{5}\pi(1 - 4k)) - 2 \sin(\frac{2\pi k}{5}) + 2 \sin(\frac{2\pi k}{5}) - 2 \sin(\frac{2}{5}\pi(k + 1)) - 3(\sin(\frac{1}{5}(\pi - 2\pi k)) - \sin(\frac{2}{5}(4\pi k + \pi)) + \sin(\frac{1}{5}(8\pi k + \pi)))) + 3 \cos(\frac{1}{10}(4\pi k + \pi)))].
\]

B. Distinguished \(7F_6 \) function with 1 as an upper parameter in \(Q(k, \alpha) \)

Each \(k \)-specific formula \(Q(k, \alpha) \) we have found also incorporates a second \(7F_6 \) function (again with argument \(z = \frac{27}{64} \), which is, to repeat, invariably the case throughout this paper), having all its thirteen parameters simply equalling 1 less than those in the function just described. (A basic transformation exists [consulting the HYP manual of C. Krattenthaler, available at www.mat.univie.ac.at], allowing one to convert the thirteen [twelve \(\alpha \)-dependent parameters, plus 1] of this \(7F_6 \) function [that is, add 1 to each of them] to those thirteen of the first distinguished \(7F_6 \) function previously described, plus other terms.)

C. The \(m_k \) remaining \(pF_{p-1} \) functions, \(p = 8, \ldots, 8 + m_k - 2 \), in \(Q(k, \alpha) \).

Now, in addition to the two distinguished \(7F_6 \) functions just presented, there are \(m_k \) more hypergeometric functions \(pF_{p-1} \), \(p > 7 \), for each \(k \), where
\[
\{m_{-1}, m_0, m_1, m_2, m_3, m_4, m_5, m_6, m_7, m_8, m_9\} = \{3, 5, 6, 6, 7, 9, 8, 10, 10, 10\}. \quad (10)
\]

Each of these additional functions possesses, to begin with, the same seven upper parameters (that is, 2, plus those six indicated in (7), (8) and (9)) and the same six lower parameters (6), as in the first \(7F_6 \) function detailed above (sec. IIIA). Then, the seven upper parameters are supplemented by from 1 to \(m_k \) 2’s, and the six lower parameters supplemented by from 1 to \(m_k \) 1’s.
D. Large α-free terms collapsing to 0

We now point out a rather remarkable property of the formulas for $Q(k, \alpha)$ yielded by the FindSequenceFunction command. If we isolate those (often quite bulky) terms that do not involve any of the $m_k + 2$ hypergeometric functions for each k already described above, we find (to hundreds of digits of accuracy) that they collapse to zero. These terms, typically, do contain hypergeometric functions similar in nature to those described above, but with the crucial difference that the Dyson-index-like parameter α does not occur among their upper and lower parameters. Thus, we are left, after this nullification of terms, with formulas $Q(k, \alpha)$ that are simply sums of $m_k + 2$ polynomial-weighted $\,_{p}F_{p-1}$ functions (of α), with $p = 7, 7, 8, \ldots, 7 + m_k$.

E. Summary

To reiterate, for each k, our formulas for $Q(k, \alpha)$, all contain a single function of the form

$$7F_6 \left(2, u_k, u_{2k}, u_{3k}, u_{4k}, u_{5k}, u_{6k}; b_k, b_{2k}, b_{3k}, b_{4k}, b_{5k}, b_{6k}; \frac{27}{64} \right).$$

There is another distinguished single $7F_6$ function, with all its thirteen parameters being one less. Also there are m_k additional functions, $i = 1, \ldots, m_k$,

$$7+i\,_{6+i}F_{6+i} \left(2, 2, \ldots, u_k, u_{2k}, u_{3k}, u_{4k}, u_{5k}, u_{6k}; 1, \ldots, b_k, b_{2k}, b_{3k}, b_{4k}, b_{5k}, b_{6k}; \frac{27}{64} \right),$$

with the number of upper 2’s running from 2 to $m_k + 1$ and the number of lower 1’s, simultaneously running from 1 to m_k.

IV. DECOMPOSITION OF $Q(k, \alpha)$ INTO THE PRODUCT $G_1^k(\alpha)G_2^k(\alpha)$

The formulas for $Q(k, \alpha)$ that we have obtained can all be written—we have found—in the product form $G_1^k(\alpha)G_2^k(\alpha)$. The $G_2^k(\alpha)$ factor involves the summation of the hypergeometric functions $\,_{p}F_{p-1}$ indicated above, each such function weighted by a polynomial in α, the degrees of the weighting polynomials diminishing as p increases. Let us first discuss the other (hypergeometric-free) factor $G_1^k(\alpha)$, involving ratios of products of Pochhammer symbols.
A. Hypergeometric-function-independent factor $G_k^1(\alpha)$

Some supplementary computations (involving an independent use of the FindSequenceFunction command) indicated that these (hypergeometric-free) factors can be written quite concisely, in terms of the upper and lower parameter sets, setting $U_{ik} = u_{ik} - \alpha, B_{ik} = b_{ik} + 1 - \alpha$, as

$$G_k^1(\alpha) = \left(\frac{27}{64}\right)^{\alpha-1} \frac{(U_{1k})_{\alpha-1} (U_{2k})_{\alpha-1} (U_{3k})_{\alpha-1} (U_{4k})_{\alpha-1} (U_{5k})_{\alpha-1} (U_{6k})_{\alpha-1}}{(B_{1k})_{\alpha-1} (B_{2k})_{\alpha-1} (B_{3k})_{\alpha-1} (B_{4k})_{\alpha-1} (B_{5k})_{\alpha-1} (B_{6k})_{\alpha-1}},$$

(12)

where the Pochhammer symbol (rising factorial) is employed. We note that, remarkably, $G_k^1(1) = 1$—further apparent indication of the special/privileged status of the standard (complex, $\alpha = 1$) two-qubit states.

B. Hypergeometric-function-dependent factor $G_k^1(\alpha)$

1. Canonical form

In App. A for $k = -1, 0, 1, 2$, we show the “canonical form” we have developed for the factors $G_k^2(\alpha)$ (cf. [16, Fig. 3]), the component hypergeometric parts of which we have discussed in sec. II.

V. DIFFERENCE EQUATION FORMULAS FOR $G_k^2(\alpha)$

It further appears that all the $G_k^2(\alpha)$ factors ($k = -1, 0, 1, \ldots, 9$) (App. B) can be equivalently written as functions that satisfy first-order difference (recurrence) equations of the form

$$p_0^k(\alpha) + p_1^k(\alpha) G_2^k(\alpha) + p_2^k(\alpha) G_2^k(1 + \alpha) = 0,$$

(13)

where the p’s are polynomials in α (cf. [27]). This finding was established by yet another application of the Mathematica FindSequenceFunction command.

That is, we generated—for each value of k under consideration—a sequence ($\alpha = 1, 2, \ldots, 85$) of the rational values yielded by the hypergeometric-based formulas for $G_2^k(\alpha)$, to which the command was then applied. While we have limited ourselves in App. B to displaying our results for $k = -1, 0, 1, 2, 3$ and 4, we do have the analogous set of results in terms of the hypergeometric functions for the additional instances, $k =$
5, 6, 7, 8 and 9, and presume that an equivalent set of difference-equation results is constructible (though substantial efforts with \(k = 5\) have not to this point succeeded). The initial points \(G_k^2(1)\) in the six difference equations shown are—in the indicated order—

\[\{\frac{1}{14}, \frac{4}{43}, \frac{45}{386}, \frac{1553}{8398}, \frac{3073}{14858}, \frac{8348}{37145}\}\].

The next five members of this monotonically-increasing sequence are

\[\{188373, 1096583, 6050627, 160298199, 13988600951\}\]. Since, as noted above, \(G_1^2(1) = 1\), these are the respective separability probabilities \(Q(k, 1)\) themselves. We would like to extend this sequence sufficiently, so that we might be able to establish an underlying rule for it. (However, since the sequence is increasing in value, the Legendre-polynomial density-approximation procedure of Provost converges more slowly as \(\alpha\) increases, so our quest seems somewhat problematical, despite the large number [15,801] of moments incorporated [cf. [11 App. II]].)

If in the difference equation for \(k = -1\), we replace the term \(G_{-1}^2(1) = \frac{1}{14}\) by \(G_{-1}^2(1) = 0\), then we can add

\[
\frac{\pi^3 - 3\alpha - 5\alpha^3 + 25\alpha^3}{52055003\Gamma(5\alpha)} \prod_{i=1}^{6} \left(u_{ik} - 1 \right)
\]

where the \(u_{ik}\)'s (and \(b_{ik}\)'s) are themselves functions of \(\alpha\). This can be added to the \(\alpha\)-specific values obtained from the so-modified equation to recover the values generated by the original \(k = -1\) difference equation.

A. Polynomial coefficients in difference equations

1. The polynomials \(p_k^2(\alpha)\)

We have for the six \((k = -1, 0, 1, 2, 3, 4)\) cases at hand (App. II) the proportionality relation

\[
p_k^2(\alpha) \propto \prod_{i=1}^{6} (u_{ik} - 1),
\]

where the \(u_{ik}\)'s (and \(b_{ik}\)'s) are themselves functions of \(\alpha\).

2. The polynomials \(p_k^1(\alpha)\)

For all six displayed cases,

\[
p_k^1(\alpha) \propto \prod_{i=1}^{6} b_{ik}.
\]
3. The polynomials $p_k^0(\alpha)$

Further, for all six cases, the polynomial coefficients $p_k^0(\alpha)$—constituting the inhomogeneous parts of the recurrences—are proportional to the product of a factor of the form

$$\Pi_{i=1}^{6} b_{ik}(b_{ik} - 1),$$

and an irreducible polynomial. These irreducible polynomials are, in the indicated order ($k = -1, 0, 1$),

$$9250\alpha^4 + 12625\alpha^3 + 5645\alpha^2 + 938\alpha + 54, \quad (18)$$
$$185000\alpha^5 + 779750\alpha^4 + 1289125\alpha^3 + 1042015\alpha^2 + 410694\alpha + 63000, \quad (19)$$
$$74000\alpha^6 + 578300\alpha^5 + 1830820\alpha^4 + 3013197\alpha^3 + 2724024\alpha^2 + 1284280\alpha + 246960, \quad (20)$$

and (for $k = 2$)

$$740000\alpha^7 + 9002000\alpha^6 + 45576950\alpha^5 + 125164535\alpha^4 + 202090226\alpha^3 \quad (21)$$

$$+192332891\alpha^2 + 100092606\alpha + 22004136.$$

The irreducible polynomial for $k = 3$ is also of degree 7, that is,

$$740000\alpha^7 + 11666000\alpha^6 + 76382750\alpha^5 + 271168745\alpha^4 + 566336789\alpha^3 \quad (22)$$

$$+698007782\alpha^2 + 471120306\alpha + 134548128.$$

For $k = 4$, this auxiliary polynomial $p_k^0(\alpha)$ is now the product of $(9+4\alpha)$ times an irreducible polynomial of degree 7, that is,

$$296000\alpha^7 + 5584000\alpha^6 + 43492140\alpha^5 + 182972656\alpha^4 + 451645197\alpha^3 \quad (23)$$

$$+656629192\alpha^2 + 522054355\alpha + 175452420.$$

The coefficients of the highest powers of α in all six irreducible polynomials are factorable into the product of 37 and powers of 2 and 5.
VI. HYPERGEOMETRIC-FREE FORMULAS FOR $Q(k+1, \alpha) - Q(k, \alpha)$

In Fig. 3 we show formulas we have generated for the differences between the formulas for $Q(k, \alpha)$ for successive values of k. We note that these are hypergeometric-free. We will find below (51) that these obey the formula

$$Q(k+1, \alpha) - Q(k, \alpha) =$$

$$\sqrt{\pi} 3^{3\alpha-1} \alpha \Gamma(3\alpha + \frac{3}{2}) (20\alpha + 8k + 11) \Gamma(k + 2\alpha + \frac{3}{2}) \Gamma(k + 3\alpha + \frac{3}{2}) \Gamma(2k + 5\alpha + 2)$$

$$\frac{1}{2\Gamma(\alpha + \frac{1}{2}) \Gamma(\alpha + \frac{5}{6}) \Gamma(\alpha + \frac{7}{6}) \Gamma(k + \alpha + 2) \Gamma(k + 4\alpha + 2) \Gamma(2k + 5\alpha + \frac{7}{2})}.$$
FIG. 3: Hypergeometric-Free Formulas for \(Q(k + 1, \alpha) - Q(k, \alpha)\).

\[
Q[-9, \alpha] - Q[-10, \alpha] = \\
\left(2^{7-4} \cdot 5^{7-5} \cdot \pi \cdot (59 + 20 \alpha) \cdot \Gamma\left[-\frac{17}{6} + \alpha\right] \cdot \Gamma\left[-\frac{13}{6} + \alpha\right] \cdot \Gamma\left[-18 + 5 \alpha\right]\right) \\
\left((-15 + 2 \alpha) \cdot (-13 + 2 \alpha) \cdot (-11 + 2 \alpha) \cdot (-9 + 2 \alpha) \cdot (-7 + 2 \alpha) \cdot (-5 + 2 \alpha) \cdot \Gamma\left[-\frac{33}{10} + \alpha\right] \cdot \Gamma\left[-\frac{29}{10} + \alpha\right] \cdot \Gamma\left[-\frac{27}{10} + \alpha\right] \right)
\]

\[
Q[-8, \alpha] - Q[-9, \alpha] = \\
\left(2^{9-4} \cdot 3^{13-3} \cdot \pi \cdot (53 + 20 \alpha) \cdot \Gamma\left[-\frac{13}{6} + \alpha\right] \cdot \Gamma\left[-\frac{11}{6} + \alpha\right] \cdot \Gamma\left[-14 + 5 \alpha\right]\right) \\
\left((-11 + 2 \alpha) \cdot (-9 + 2 \alpha) \cdot (-7 + 2 \alpha) \cdot (-13 + 4 \alpha) \cdot (-11 + 4 \alpha) \cdot \Gamma\left[2 (-6 + \alpha)\right] \cdot \Gamma\left[-\frac{23}{10} + \alpha\right] \right)
\]

\[
Q[-7, \alpha] - Q[-8, \alpha] = \\
\left(2^{12-4} \cdot 3^{7-3} \cdot 5^{13-5} \cdot \pi \cdot (51 + 20 \alpha) \cdot \Gamma\left[-\frac{13}{6} + \alpha\right] \cdot \Gamma\left[-\frac{11}{6} + \alpha\right] \cdot \Gamma\left[-14 + 5 \alpha\right]\right) \\
\left((-11 + 2 \alpha) \cdot (-9 + 2 \alpha) \cdot (-7 + 2 \alpha) \cdot (-13 + 4 \alpha) \cdot (-11 + 4 \alpha) \cdot \Gamma\left[2 (-6 + \alpha)\right] \cdot \Gamma\left[-\frac{23}{10} + \alpha\right] \right)
\]

\[
Q[-6, \alpha] - Q[-7, \alpha] = \\
\left(4^{3-2} \cdot 2^{7-2} \cdot (-5 + 2 \alpha) \cdot (-4 + \alpha) \cdot (-3 + 3 \alpha) \cdot \Gamma\left[-\frac{12}{5} + \alpha\right] \cdot \Gamma\left[-\frac{11}{5} + \alpha\right] \cdot \Gamma\left[-\frac{11}{6} + \alpha\right]\right) \\
\left(\sqrt{5} \cdot \pi \cdot (-11 + 4 \alpha) \cdot (-13 + 4 \alpha) \cdot \Gamma\left[2 (-6 + \alpha)\right] \cdot \Gamma\left[-\frac{21}{10} + \alpha\right] \cdot \Gamma\left[-\frac{19}{10} + \alpha\right] \cdot \Gamma\left[-\frac{17}{10} + \alpha\right] \cdot \Gamma\left[-\frac{13}{10} + \alpha\right] \cdot \Gamma\left[-2 + 2 \alpha\right] \right)
\]

\[
Q[-5, \alpha] - Q[-6, \alpha] = \\
\left(2^{4-4} \cdot 3^{5-3} \cdot 5^{9-5} \cdot \pi \cdot (37 + 20 \alpha) \cdot \Gamma\left[5 (-2 + \alpha)\right] \cdot \Gamma\left[-\frac{7}{6} + \alpha\right] \cdot \Gamma\left[-\frac{5}{6} + \alpha\right]\right) \\
\left((-7 + 2 \alpha) \cdot (-5 + 2 \alpha) \cdot (-3 + 2 \alpha) \cdot (-9 + 4 \alpha) \cdot (-7 + 4 \alpha) \cdot (-5 + 4 \alpha) \cdot \Gamma\left[2 (-8 + \alpha)\right] \cdot \Gamma\left[-\frac{13}{10} + \alpha\right] \cdot \Gamma\left[-\frac{11}{10} + \alpha\right] \cdot \Gamma\left[-1 + \alpha\right] \cdot \Gamma\left[-\frac{9}{10} + \alpha\right] \cdot \Gamma\left[-8 + 2 \alpha\right] \right)
\]
\[Q[-4, \alpha] - Q[-5, \alpha] = \]
\[(2^{1-4} a 3^{4-13} a 5^{1-5} a \pi a (-29 + 20 a) \Gamma[-7/6 + a] \Gamma[-5/6 + a] \Gamma[-8 + 5 a]) / \]
\[((35 - 48 a + 16 a^2) \Gamma[-3 + a] \Gamma[-13/10 + a] \Gamma[-11/10 + a] \Gamma[-9/10 + a] \Gamma[-7/10 + a] \Gamma[-1 + 2 a]) \]

\[Q[-3, \alpha] - Q[-4, \alpha] = \]
\[(4^{1-2} a 2^{1-1} a (-2 + a) a (-21 + 20 a) \Gamma[-6/5 + a] \Gamma[-5/6 + a] \Gamma[-4/5 + a] \Gamma[-3/5 + a] \Gamma[-2/5 + a]) / \]
\[(5 \pi \sqrt{5} (3 + 4 a) (-3 + 4 a) \Gamma[-3/10 + a] \Gamma[-2 + 2 a]) \]

\[Q[-2, \alpha] - Q[-3, \alpha] = \]
\[(2^{1-4} a 3^{1-13} a 5^{1-5} a \pi a (-13 + 20 a) \Gamma[-1/6 + a] \Gamma[1/6 + a] \Gamma[-5 + 5 a] \Gamma[-1 + 2 a]) / \]
\[(3 + 2 a (-5 + 4 a) \Gamma[-3/10 + a] \Gamma[-2/5 + a]) \]

\[Q[-1, \alpha] - Q[-2, \alpha] = \]
\[(2^{1-4} a 3^{1-13} a \Gamma[-2/5 + a] \Gamma[1/5 + a] \Gamma[1/6 + a] \Gamma[1/5 + a] \Gamma[2/5 + a]) / \]
\[(5 \pi \Gamma[-1/10 + a] \Gamma[2 a] \Gamma[1/10 + a] \Gamma[3/10 + a] \Gamma[7/10 + a]) \]

\[Q[0, \alpha] - Q[-1, \alpha] = \]
\[(2^{1-4} a 3^{1-13} a 5^{1-5} a 27 a (3 + 20 a) \Gamma[5 a] \Gamma[1/6 + a] \Gamma[5/6 + a]) / \]
\[(\Gamma[3/10 + a] \Gamma[7/10 + a] \Gamma[9/10 + a] \Gamma[11/10 + a] \Gamma[13/10 + a]) \]

\[Q[1, \alpha] - Q[0, \alpha] = \]
\[(2^{4} a 3^{1-13} a 5^{3-5} a \pi (11 + 20 a) \Gamma[5/6 + a] \Gamma[7/6 + a] \Gamma[2 + 5 a]) / \]
\[(\Gamma[7/10 + a] \Gamma[9/10 + a] \Gamma[11/10 + a] \Gamma[13/10 + a]) \]

\[Q[2, \alpha] - Q[1, \alpha] = \]
\[(2^{5-4} a 3^{2-13} a (3 + 4 a) (19 + 20 a) \Gamma[4/5 + a] \Gamma[5/6 + a] \Gamma[7/5 + a] \Gamma[8/5 + a]) / \]
\[(5 \pi \sqrt{5} (2 + a) \Gamma[7/10 + a] \Gamma[13/10 + a] \Gamma[17/10 + a] \Gamma[19/10 + a]) \]
\[Q[3, \alpha] - Q[2, \alpha] = \]
\[
\left(4^{3-2} - 5^{1-2} \pi (5 + 4 \alpha) (27 + 20 \alpha) \frac{7}{6} + \alpha\right) \frac{\Gamma\left(\frac{11}{6} + \alpha\right)}{\Gamma(6 + 5 \alpha)} \]
\[
\left(1 + 2 \alpha\right) \frac{\Gamma\left(2 \alpha\right)}{\Gamma\left(17 + \alpha\right)}
\]
\[
\frac{\Gamma\left(19 + \alpha\right)}{\Gamma\left(10 + \alpha\right)} \frac{\Gamma\left(21 + \alpha\right)}{\Gamma\left(23 + \alpha\right)} \frac{\Gamma\left(23 + \alpha\right)}{\Gamma\left(23 + \alpha\right)} \frac{\Gamma\left(23 + \alpha\right)}{\Gamma\left(23 + \alpha\right)}
\]
\[Q[4, \alpha] - Q[3, \alpha] = \]
\[
\left(2^{-7-4} \alpha 3^{1-3} \alpha (5 + 4 \alpha) (7 + 4 \alpha)^2 \frac{8}{5} + \alpha\right) \frac{\Gamma\left(\frac{9}{5} + \alpha\right)}{\Gamma(6 + 5 \alpha)} \frac{\Gamma\left(\frac{11}{6} + \alpha\right)}{\Gamma(6 + 5 \alpha)} \frac{\Gamma\left(\frac{13}{6} + \alpha\right)}{\Gamma(6 + 5 \alpha)}
\]
\[
\left(\frac{5}{6} + \alpha\right) \frac{\Gamma\left(\frac{12}{5} + \alpha\right)}{\Gamma\left(\frac{19}{10} + \alpha\right)}
\]
\[
\frac{\Gamma\left(21 + \alpha\right)}{\Gamma\left(23 + \alpha\right)} \frac{\Gamma\left(23 + \alpha\right)}{\Gamma\left(23 + \alpha\right)} \frac{\Gamma\left(23 + \alpha\right)}{\Gamma\left(23 + \alpha\right)}
\]
\[Q[5, \alpha] - Q[4, \alpha] = \left(3^{5-3} \alpha 5^{1-5} \alpha 16^{-2-\alpha} \pi (7 + 4 \alpha)
\]
\[
(9 + 4 \alpha) (43 + 20 \alpha) \frac{\Gamma\left(\frac{11}{6} + \alpha\right)}{\Gamma(3 + 2 \alpha)} \frac{\Gamma\left(\frac{13}{6} + \alpha\right)}{\Gamma(3 + 2 \alpha)}
\]
\[
\left(\frac{11}{6} + \alpha\right) \frac{\Gamma\left(\frac{27}{10} + \alpha\right)}{\Gamma(6 + \alpha)} \frac{\Gamma\left(\frac{31}{10} + \alpha\right)}{\Gamma(6 + \alpha)}
\]
VII. PARTIAL SEPARABILITY PROBABILITY ASYMPTOTICS

A. k-specific prob($|\rho^{PT}| > |\rho|$) formulas

Now, as concerns the eleven formulas $Q(k, \alpha)$ ($k = -1, 0, 1, \ldots, 9$) we have obtained for prob($|\rho^{PT}| > |\rho|$), which have been the principal focus of the paper, we have computed the ratios of the probability for $\alpha = 101$ to the probability for $\alpha = 100$. These ranged from 0.419810 ($k = -1$) to 0.4204296 ($k = 9$). Let us note here that $z = \frac{27}{64} \approx 0.421875$.

B. α-specific prob($|\rho^{PT}| > |\rho|$) formulas

We had available $\alpha = \frac{1}{2}, 1$ and 2 computations for $k = 1, \ldots, 40$ for this scenario. We found that, for each of the three values of α, we could construct strongly linear plots–with unit-like slopes between 1.00177 and 1.00297–by taking k times the ratio (R) of the $(k+1)$-th separability probability to the k-th separability probability. (From this, it appears, simply, that $R \to 1$, as $k \to \infty$.)

C. “Diagonal” $\alpha = k$ prob($|\rho^{PT}| > |\rho|$) formulas

For values $\alpha = k = 1, \ldots, 50$, we were able to construct a strongly linear plot by–similarly to the immediate last analysis–taking $k = \alpha$ times the ratio of the $(k+1) = (\alpha+1)$ separability probability to the $k = \alpha$-th separability probability. Now, however, rather than a slope very close to 1, we found a slope near to one-half, that is 0.486882. The ($k = \alpha = 0$)-intercept of the estimated line was 0.894491.

VIII. TOTAL SEPARABILITY PROBABILITY FORMULAS

Efforts of our to conduct parallel sets of (k-specific) analyses to those reported above for the total separability probabilities $P(k, \alpha)$, corresponding to $|\rho^{PT}| > 0$, rather than for that component part $Q(k, \alpha)$ of the probabilities satisfying the determinantal inequality $|\rho^{PT}| > |\rho|$ had been unsuccessful, in the following sense. We had computed what appeared to be appropriate sequences ($\alpha = 1, 2, \ldots, 74$) of rational values for $k = 1$ and ($\alpha = 1, 2, \ldots, 124$) for $k = 2$, but the Mathematica FindSequenceFunction did not yield
FIG. 4: Plot of logs of total separability probability ($|\rho^{PT}| > 0$) for random induced measure with $k = 1$. A least-squares linear fit to these 74 points is $-0.878482\alpha - 0.362781$. Any underlying governing rules. (This can be contrasted with the results in [1], where such successes were reported in obtaining α-specific $|\rho^{PT}| > 0$ formulas $[\alpha = 1, 2, \ldots, 13$ and $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{7}{2}]$, including [2]-[4] above. However, we do eventually succeed in characterizing the nature of these two ($k = 1, 2$) sequences [cf. sec. F].)

In Fig. 4, we plot the logs of these $k = 1$ seventy-four total separability probabilities (based on $\alpha = 1, \ldots, 74$). A least-squares linear fit to these points is $-0.878482\alpha - 0.362781$, while in Fig. 5 we show (based on $\alpha = 1, \ldots, 124$) the $k = 2$ counterpart, with an analogous fit of $-0.871033\alpha + 0.351201$. (We note that $\log \left(\frac{27}{64} \right) \approx -0.863046$.) Although the slopes of these two linear fits are quite close, the y-intercepts themselves are of different sign. The predicted probabilities at $\alpha = 1$, the first of the fitted points, are 0.289019 and 0.602955, respectively. In statistical parlance, the “coefficients of determination” or R^2 for the two linear fits to the log-plots are both greater than 0.99995. Further, sampling at $\alpha = 1, 51, 101, \ldots, 1451$, we obtained an estimated, again, very-well fitting line of $-1.4754 - 0.86417\alpha$.

21
FIG. 5: Plot of logs of total separability probability ($|\rho^{PT}| > 0$) for random induced measure with $k = 2$. A least-squares linear fit to these 124 points is $-0.871033\alpha + 0.351201$. We note that $\log\left(\frac{27}{64}\right) \approx -0.863046$.

A. Total separability probability asymptotics

1. k-specific prob($|\rho^{PT}| > 0$) formulas

C. Dunkl, on the basis of our $k = 1, \alpha = 1, 51, 101, \ldots, 1451$ analysis just above (and its companions), did advance the bold and (certainly, in our overall analytical context) elegant hypothesis of a k-invariant ($\alpha \to \infty$) slope equal to $\log\left(\frac{27}{64}\right) \approx -0.8630462173553$, which does seem quite consistent with the numerical properties we have observed (that is, with the direction in which the estimates of the slope tend as the number of points sampled increase).

As further support, we obtained for a $k = 2, \alpha = 1, 49, 73, \ldots, 1465$ analysis, a slope estimate of -0.864025, again converging in the direction of $\log\left(\frac{27}{64}\right)$. (Let us remark, regarding the generalized two-qubit version of the [simpler, lower-dimensional] X-states model [19, 28, 29], that it has been shown that the slope of a [now, log-log] plot of $\log($prob($|\rho^{PT}| > 0$)) vs. $\log\alpha$ tends to $-\frac{1}{2}$, as $\alpha \to \infty$.)

22
These interesting observations led us to reexamine, for their asymptotic properties, the “dual” $P(k, \alpha)$ formulas (2)-(4), given above, and previously reported in [1]. We now find—through analytic means—that for each of $\alpha = 1, 2, 3, 4$ and $\frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \frac{9}{2}$, that as $k \to \infty$, the ratio of the logarithm of the $(k + 1)$-st separability probability to the logarithm of the k-th separability probability is $\frac{16}{27}$ (cf. [30] sec. 7). (Presumably, the pattern continues for larger α, but the required computations have, so far, proved too challenging.)

For example, for $\alpha = \frac{1}{2}$, we have for the two-rebit total separability probability $P(k, \frac{1}{2})$, as a function of k, the formula (4) given above. In Fig. 6, we show a plot of log($-\log P(k, \frac{1}{2})$) vs. k. The slope of a least-squares-fitted line based on the 200 points is -0.523280, while $\log \frac{16}{27} \approx -0.523248$. (As we increase α from $\frac{1}{2}$, but hold the number of points constant at 200, the approximation of the slope to this value slowly weakens.)

IX. “CONCISE FORMULAS” FOR $Q(k, \alpha)$

Let us remind the reader of the interesting “concise” (Hilbert-Schmidt $k = 0$) generalized two-qubit result—applying Zeilberger’s (“creative telescoping”) algorithm [31]—of Qing-Hu
Hou, reported in [16, eqs. (1)-(3)]. This—in our present notation—takes the form

\[Q(0, \alpha) = \sum_{i=0}^{\infty} f_0(\alpha + i), \] (25)

where

\[f_0(\alpha) = Q(0, \alpha) - Q(0, \alpha + 1) = \frac{q_0(\alpha)2^{-4\alpha-6}\Gamma(3\alpha + \frac{5}{2})\Gamma(5\alpha + 2)}{6\Gamma(\alpha + 1)\Gamma(2\alpha + 3)\Gamma(5\alpha + \frac{13}{2})}, \] (26)

and

\[q_0(\alpha) = 185000\alpha^5 + 779750\alpha^4 + 1289125\alpha^3 + 1042015\alpha^2 + 410694\alpha + 63000 = \alpha\left(5\alpha(25\alpha(740\alpha + 3119) + 10313) + 208403\right) + 410694 + 63000. \] (27)

We divide the originally reported formula by one-half [9], since we have moved here from the \((k = 0)\) Hilbert-Schmidt \(|\rho^{PT}| > 0\) original scenario to its \(|\rho^{PT}| > |\rho|\) counterpart. Using our earlier results above, Hou has further been able to construct the \(k = 1\) analogue of the “concise formula” above (a Maple worksheet of his is presented in App. C [cf. [16, Figs. 5, 6]). That is,

\[Q(1, \alpha) = \sum_{i=0}^{\infty} f_1(\alpha + i), \] (28)

where

\[f_1(\alpha) = \frac{q_1(\alpha)(27)^{\alpha}\Gamma(5\alpha)\Gamma(\alpha + \frac{5}{6})\Gamma(\alpha + \frac{7}{6})}{(50000)^{\alpha}\Gamma(\alpha)\Gamma(\alpha + \frac{17}{10})\Gamma(\alpha + \frac{19}{10})\Gamma(\alpha + \frac{21}{10})\Gamma(\alpha + \frac{23}{10})\Gamma(2\alpha + 5)} \] (29)

and

\[q_1(\alpha) = \frac{9\pi}{1000000}(5\alpha + 1)(5\alpha + 2)(5\alpha + 3)\times(74000\alpha^6 + 578300\alpha^5 + 1830820\alpha^4 + 3013197\alpha^3 + 2724024\alpha^2 + 1284280\alpha + 246960). \] (30)

(These results correspond to the variable “dif” in App. C.) Thus, in passing from the (symmetric \(k = 0\)) Hilbert-Schmidt setting to the random induced \(k = 1\) scenario, the degree of “conciseness” somewhat diminishes. The polynomials \(q_0(\alpha)\) and \(q_1(\alpha)\) in this pair of formulas are the same as the difference-equation [13] polynomials \(p_0^0(\alpha)\) and \(p_0^1(\alpha)\), given in [19] and [20].

At this point in our research, we were able to employ the Mathematica-based HolonomicFunctions package of Christoph Koutschan of the Research Institute for Symbolic Computation (RISC) of Johannes Kepler University. With it, we were readily able to derive the \(k = -1\) result

\[Q(-1, \alpha) = P(-1, \alpha) = \sum_{i=0}^{\infty} f_{-1}(\alpha + i), \] (31)
where
\[f_{-1}(\alpha) = \pi^{5-5\alpha-4}16^{-\alpha-1}27^{\alpha} (10\alpha + 7) (925\alpha^2 + 615\alpha + 134) + 54) \Gamma \left(\frac{\alpha}{2} \right) \Gamma \left(\frac{\alpha + \frac{5}{6}}{2} \right) \Gamma(5\alpha + 1). \]

(32)

\[\frac{\Gamma(\alpha + \frac{5}{10}) \Gamma(\alpha + 1) \Gamma(\alpha + \frac{13}{10}) \Gamma(\alpha + \frac{17}{10}) \Gamma(2\alpha + 2)}{\Gamma(\alpha + \frac{9}{10})} \]

We see that the polynomial \((10\alpha + 7) (925\alpha^2 + 615\alpha + 134) + 54\) above is, in expanded form, the same as \(p_{-1}(\alpha)\) given in (18).

For the standard trio of Dyson-indices \(\alpha = \frac{1}{2}, 1\) and 2, this formula for \(Q(-1, \alpha)\) yields \(\frac{1}{5}, \frac{1}{14}, \frac{11}{14}\), respectively, while \(\alpha = -\frac{1}{2}, 0 \leadsto \frac{1}{3}, \frac{1}{5}\). (Also, \(\alpha = -\frac{3}{2}\) gives \(\frac{1}{3}\), and \(\alpha = -1\) yields \(\frac{1}{5}\).) Additionally, \(\alpha = -\frac{3}{3}\) gives \(\frac{19}{60}C^2\), where \(C^2\) is the Baxter’s four-coloring constant for a triangular lattice, that is, \(C^2 = \frac{3}{14} \Gamma \left(\frac{1}{3} \right)^2\). (Also, \(\alpha = \frac{2}{3}\) gives \(1 - \frac{27C^2}{44}\).) Continuing with this “zoo” of remarkable results (suggested largely by use of WolframAlpha), \(\alpha = \frac{1}{4}\) gives \(1 - G_{GA} \approx 0.1653731583\), where \(G_{GA}\) is Gauss’s constant, that is, the reciprocal of the arithmetic-geometric mean of 1 and \(\sqrt{2}\), equalling \(\frac{\Gamma \left(\frac{1}{4} \right)^2}{2\sqrt{2\pi}}\). Now, for \(\alpha = -\frac{1}{4}\), we get \(\frac{8}{5L} + 1 \approx 1.6102078108\), where \(L\) is the Lemniscate constant, that is, \(L = \frac{1}{2\sqrt{2\pi}} \Gamma \left(\frac{1}{4} \right)^2\). To continue, \(\alpha = -\frac{2}{3}\) gives us \(1 - \frac{163}{10083(\omega_1)} \approx 0.87795554\), where \(\omega_1 = \frac{(1+i\sqrt{3})\Gamma \left(\frac{1}{4} \right)^3}{8\pi}\), is a known constant of interest (cf. [16] sec. 3.2.1).

Further, employing the RISC package, we obtained
\[Q(3, \alpha) = \Sigma_{i=0}^{\infty} f_3(\alpha + i), \]

(33)

where
\[f_3(\alpha) = \frac{3^{3\alpha+4}4^{2\alpha-5}(2\alpha + 5) \Gamma(\alpha + \frac{9}{5}) \Gamma(\alpha + \frac{9}{6}) \Gamma(\alpha + \frac{13}{6}) \Gamma(\alpha + \frac{11}{5}) \Gamma(\alpha + \frac{12}{5}) q_3(\alpha)}{625\sqrt{5\pi}(\alpha + 4)\Gamma(\alpha + \frac{27}{10}) \Gamma(\alpha + \frac{29}{10}) \Gamma(\alpha + \frac{31}{10}) \Gamma(\alpha + \frac{33}{10}) \Gamma(2\alpha + 7)}, \]

and
\[q_3(\alpha) = \alpha(\alpha(5\alpha(50\alpha(8\alpha(370\alpha+5833)+305531)+54233749)+566336789)+698007782)+471120306)+134548128 \]

is a degree-7 polynomial in \(\alpha\).

For the standard trio of Dyson-indices \(\alpha = \frac{1}{2}, 1\) and 2, this formula for \(Q(3, \alpha)\) yields \(\frac{84888}{3264141}, \frac{2073}{4858} \) and \(\frac{3439}{413514}\), respectively.

It would clearly be of interest to find such “concise” expressions for \(Q(k, \alpha)\), encompassing the four \((k = -1, 0, 1, 3)\) examples above, as well as values \(k > 3\). (We have so far encountered certain difficulties in applying the RISC HolonomicFunctions program to the \(k = 2\) scenario.)
X. SERIES OF EXACT k-VALUES FOR CERTAIN α AND ASSOCIATED FORMULAS

A. Series

We have previously noted $Q(-1, -\frac{1}{3}) = \frac{19}{60} C^2$, where C^2 is the Baxter’s four-coloring constant for a triangular lattice, that is, $C^2 = \frac{3}{4\sqrt{2}} \Gamma\left(\frac{1}{3}\right)^3$. For the succeeding values $k = 0, \ldots, 9$, we obtain $C^2 = \frac{802455575181 C^2}{30063326097640} + 1 - \frac{582160729281381 C^2}{2134496152932440}, 1 = \frac{437242642140070827 C^2}{1576752308171934280}, 1 = \frac{447620586026496661827 C^2}{1592519851252905362280}$. For the series $(k = -1, 0, \ldots, 9)$, we obtain $\{\frac{1}{3}, \frac{1}{3}, 1, \frac{13}{16}, 1, 191, 1453, 44923, 350523, 5494379, 43249277, 2730885203\}$. Here, all the denominators $(k = 1, \ldots, 9)$ are simply increasing powers of 2.

For the series $(k = 0, \ldots, 9)$ with $\alpha = -\frac{1}{2}$, we obtain $\{1, 1 - \frac{4}{5} L, 1 - \frac{184}{195} L, 1 - \frac{1116}{1105} L, 1 - \frac{504688}{480675 L}, 1 - \frac{19161148}{17784975 L}, 1 - \frac{47082376}{4293175 L}, 1 - \frac{301219589404}{27052754725 L}, 1 - \frac{18584575275424}{1650216538325 L}, 1 - \frac{288596382356}{2538704236655 L}\}$. where L is the indicated Lemniscate constant, that is, $L = \frac{1}{2\sqrt{2\pi}} \Gamma\left(\frac{1}{4}\right)^2$.

B. Formulas

This last series has the explanatory rule $(k = 0, 1, \ldots, 9)$

$$Q(k, -\frac{1}{4}) = \Gamma\left(\frac{5}{4}\right) \left(\frac{\Gamma\left(2k + \frac{3}{4}\right) 3F2\left(1, k + \frac{3}{8}, k + \frac{7}{8}; k + \frac{9}{8} ; 1\right)}{\Gamma\left(2k + \frac{7}{4}\right)} - \sqrt{\pi}\right) + 1 = \left(\frac{5}{4}\right)^2 \Gamma\left(\frac{5}{4}\right) \left(\frac{2^{2k - \frac{3}{4}} \Gamma\left(2k + \frac{3}{4}\right) 3F2\left(1, k + \frac{3}{8}, k + \frac{7}{8}; k + \frac{9}{8} ; 1\right)}{\Gamma\left(2k + \frac{7}{4}\right)} + \frac{1}{2}\right),$$

where the regularized hypergeometric function is indicated. For $k = -1$, the formula yields $1 + 8 \frac{1}{5L}$, while our prior computations indicate a value of $1 + 8 \frac{1}{5L}$.

Also (now agreeing for $k = -1, 0, \ldots, 9$),

$$Q\left(k, \frac{1}{4}\right) = 1 + \frac{L}{21\pi} U$$

where

$$U = 4 \cdot 3F2\left(\frac{5}{8}, 1, \frac{9}{8}, \frac{11}{8}, \frac{15}{8} ; 1\right) - 21 - \frac{4\Gamma\left(\frac{11}{4}\right) \Gamma\left(2k + \frac{13}{4}\right) 3F2\left(1, k + \frac{13}{8}, k + \frac{17}{8} ; k + \frac{9}{8}, k + \frac{23}{8} ; 1\right)}{\Gamma\left(\frac{5}{4}\right) \Gamma\left(2k + \frac{19}{4}\right)}.$$

26
Absorbing the Lemniscate constant L, we obtain, equivalently,

$$Q(k, \frac{1}{4}) = -2^{-2k-\frac{19}{4}} \Gamma \left(2k + \frac{13}{4} \right) 3 \tilde{F}_2 \left(1, k + \frac{13}{8}, k + \frac{17}{8}; k + \frac{19}{8}, k + \frac{23}{8}; 1 \right) + \frac{1}{2}.$$

We see some obvious parallels between the formulas for $Q(k, -\frac{1}{4})$ and $Q(k, \frac{1}{4})$. (We note that $Q(0, \frac{1}{4}) - Q(k, -\frac{1}{4}) = -\frac{17G\a}{21}$, where Gauss’s constant is indicated.)

In fact, we can subsume both these last two formulas ($\alpha = -\frac{1}{4}, \frac{1}{4}$) into

$$Q(k, \alpha) = \frac{1}{2} - 2^{-5\alpha-2k-\frac{7}{2}} \text{sgn}(\alpha) \Gamma(2k+5\alpha+2) 3 \tilde{F}_2 \left(1, k + \frac{5\alpha}{2} + 1, k + \frac{5\alpha}{2} + \frac{3}{4}, k + \frac{5\alpha}{2} + \frac{7}{4}, k + \frac{5\alpha}{2} + \frac{9}{4}; 1 \right).$$

Building upon (37), we found

$$Q(k, \frac{3}{4}) = -2^{-2k-\frac{29}{4}} \Gamma \left(2k + \frac{23}{4} \right) 3 \tilde{F}_2 \left(1, k + \frac{23}{8}, k + \frac{27}{8}; k + \frac{29}{8}, k + \frac{33}{8}; 1 \right) - \frac{\Gamma (2k + \frac{23}{4})}{2\sqrt{\pi}(k+3)\Gamma (2k + \frac{21}{4})} + \frac{1}{2}.$$

Strikingly simply, we have the result (valid for all eleven values $k = -1, 0, \ldots, 9$ for which we have computations)

$$Q(k, \frac{1}{2}) = \frac{1}{2} - \frac{\Gamma (2k + \frac{9}{2})}{\sqrt{\pi}\Gamma (2k + 5)}$$

(having a root at $k = -\frac{3}{2}$). So, using formula (4) above, we find that the complementary separability probability, that is, that associated with the determinantal inequality $|\rho| > |\rho^{PT}| \geq 0$ is

$$P(k, \frac{1}{2}) - Q(k, \frac{1}{2}) = \frac{\Gamma (2k + \frac{9}{2}) \left(\frac{1}{\Gamma (2k + 5)} - \frac{4^{k+1}(8k+15)\Gamma(k+2)}{\Gamma(3k+7)} \right)}{\sqrt{\pi}} + \frac{1}{2}. \quad (40)$$

Also, we have found (agreeing with the earlier formulas for all eleven k) that

$$Q(k, -\frac{1}{2}) = \frac{\Gamma (2k - \frac{1}{2})}{\sqrt{\pi}\Gamma (2k)} + \frac{1}{2}, \quad (41)$$

for $k = 1, 2, \ldots, 9$, with the results for $k = -1, 0$ of $\frac{1}{2}$ differing from the prediction of $\frac{1}{3}$ given by the early formulas given above.

Further, we have

$$Q(k, 1) = \frac{1}{2} - \frac{4^{k+3}\Gamma \left(k + \frac{9}{2} \right)^2 \Gamma \left(k + \frac{9}{2} \right)}{\pi\Gamma(k+5)\Gamma (2k + \frac{13}{2})}, \quad (42)$$

having a root at $k = -2$.

27
To continue (with a root at \(k = -\frac{5}{2} \)),

\[
Q(k, \frac{3}{2}) = \frac{1}{2} - \frac{(6k + 31)\Gamma (2k + \frac{19}{2})}{4\sqrt{\pi}(k + 5)(k + 6)\Gamma(2k + 9)}.
\] (43)

Further,

\[
Q(k, 2) = \frac{1}{2} - \frac{4^{k+6}(k + 6)\Gamma (k + \frac{11}{2}) \Gamma (k + \frac{13}{2}) \Gamma (k + \frac{15}{2})}{\pi\Gamma(k + 9)\Gamma (2k + \frac{23}{2})}
\] (44)

(having a root at \(k = -3 \)) agreeing with our earlier formulas for all eleven \(k \) (as well as \(k = -2 \) and 10).

Our formulas give that \(Q(k, 0) \) is equal to \(\frac{1}{5} \) for both \(k = -2 \) and 1, and equal to \(\frac{1}{2} \) for \(k = 0, \ldots, 9 \). Here, \(\alpha = 0 \) presumably corresponds to a classical/nonquantum scenario.

Charles Dunkl has observed that for integral values of \(\alpha \), the arguments of the gamma functions in the numerators are of the form \(\{2\alpha + k + \frac{3}{2}, 2\alpha + \left\lfloor \frac{\alpha}{2} \right\rfloor + k + \frac{3}{2}, 3\alpha + k + \frac{3}{2}\} \), and in the denominators of the form \(\{k + 4n + 1, 2k + 5n + \frac{3}{2}\} \). He further noted that the leading (highest power) in the polynomial takes the form \(\alpha^{2^{5\alpha+2k+1}k^{\alpha+\left\lfloor \frac{\alpha-1}{2} \right\rfloor}-1} \). Also, the second leading coefficient (normalizing the leading coefficient of the polynomial to 1) follows the rule

\[
c_2 = \frac{1}{48} \left(190\alpha^2 - 174\alpha - 3(-1)\alpha(10\alpha + 3) - 55 \right).
\] (45)

Similarly, the so-normalized leading third coefficient takes the form

\[
c_3 = \frac{30766\alpha^4 - 77260\alpha^3 + 23350\alpha^2 - 5(-1)^\alpha(2\alpha(950\alpha^2 - 885\alpha - 716) - 213) + 26920\alpha + 3799}{3840}.
\] (46)

We have been able to generate a considerable number (including \(k = 1, \ldots, 100 \)) of such \(Q(k, \alpha) \) formulas, a limited number of which we present in App. [D].

Each half-integral \(\alpha \) formula contains a gamma function in its numerator with an argument of the form \(2 + 5\alpha + 2k \) and in its denominator a gamma function with an argument of the form \(2k + \frac{1}{2}(-1)^\alpha (-2(-1)^\alpha(5\alpha + 2) - i) \).

C. Sets of consecutive negative roots

All the \(Q(k, \alpha) \) formulas we have (App. [D]), for nonnegative half-integer and integer values of \(\alpha \), have roots (in unit steps) from \(k = -\alpha - 1 \) downwards to \(k = \)
\[-\frac{1}{4}(-1)^\alpha ((-1)^\alpha(10\alpha + 1) - 1)\]. So, there are

\[-\alpha + \frac{1}{4}(-1)^\alpha ((-1)^\alpha(10\alpha + 1) - 1) - 1\] \hspace{1cm} (47)

associated roots. (The formulas displayed in App. D with negative values of \(\alpha\) match our computations only above certain [nonnegative] values of \(k\).)

XI. HYPERGEOMETRIC FORMULA FOR \(Q(k, \alpha)\)

Based on the information presented above, including that in an extended form of App. D, C. Dunkl developed the following formula, succeeding in reproducing our computations for \(\alpha = 0, 1, 2, \ldots\)

\[
Q(k, \alpha) = Q(-\alpha, \alpha) \sum_{j=0}^{\alpha+k} H(\alpha, j) \tag{48}
\]

where

\[
Q(-\alpha, \alpha) = \frac{1}{2} \left(\frac{4}{27}\right)^\alpha \left(\frac{3}{2}\right)_\alpha \left(\frac{5}{6}\right)_\alpha \left(\frac{7}{6}\right)_\alpha \tag{49}
\]

and

\[
H(\alpha, j) = \frac{\left(\frac{3\alpha}{2}\right)_j \left(\alpha + \frac{1}{2}\right)_j \left(\frac{3\alpha}{2} + \frac{1}{2}\right)_j \left(\frac{3\alpha}{2} + \frac{11}{8}\right)_j \left(2\alpha + \frac{1}{2}\right)_j}{j! \left(\frac{3\alpha}{2} + \frac{3}{8}\right)_j \left(\frac{3\alpha}{2} + \frac{3}{4}\right)_j \left(\frac{3\alpha}{2} + \frac{3}{2}\right)_j \left(3\alpha + 1\right)_j}.
\]

(In explaining how this formula was obtained, Dunkl stated that the key insights was that \(Q(k + 1, \alpha) - Q(k, \alpha)\) factors nicely and that \(Q(-\alpha - 1, \alpha) = 0\).) If we let both \(\alpha\) and \(k\) be free, and perform the indicated summation in (48), we obtain a hypergeometric-based formula that appears not only to reproduce the formulas in App. D for integer \(\alpha\), but also half-integer and other nonnegative fractional values (such as \(\frac{1}{4}, \frac{2}{3}\)) of \(\alpha\).

Dunkl argued that for \(k > -\alpha\) and \(n = 1, 2, 3, \ldots\)

\[
Q(k + n, \alpha) = Q(k, \alpha) + (Q(k + 1, \alpha) - Q(k, \alpha)) + (Q(k + 2, \alpha) - Q(k + 1, \alpha)) + \cdots
\]

\[
+ \cdots + (Q(k + n, \alpha) - Q(k + n - 1, \alpha))
\]

\[
= Q(k, \alpha) + Q(-\alpha, \alpha) \sum_{i=0}^{n-1} H(\alpha, k + \alpha + 1 + i).
\]

Taking the limit as \(n \to \infty\)

\[
\frac{1}{2} = Q(k, \alpha) + Q(-\alpha, \alpha) \sum_{i=0}^{\infty} H(\alpha, k + \alpha + 1 + i)
\]

\[
= Q(k, \alpha) + Q(-\alpha, \alpha) H(\alpha, k + \alpha + 1) \sum_{i=0}^{\infty} \frac{H(\alpha, k + \alpha + 1 + i)}{H(\alpha, k + \alpha + 1)}.
\]
Thus
\[Q(k, \alpha) = \frac{1}{2} - Q(-\alpha, \alpha) H(\alpha, k + \alpha + 1) \sum_{i=0}^{\infty} \frac{H(\alpha, k + \alpha + 1 + i)}{H(\alpha, k + \alpha + 1) i!}. \]

The resultant master formula takes the form
\[Q(k, \alpha) = \frac{1}{2} - \frac{\alpha (20\alpha + 8k + 11) \Gamma(5\alpha + 2k + 2) \Gamma(3\alpha + k + \frac{3}{2}) \Gamma(2\alpha + k + \frac{3}{2})}{4\pi \Gamma(5\alpha + 2k + \frac{5}{2}) \Gamma(\alpha + k + 2) \Gamma(4\alpha + k + 2)} \times \, _6F_5 \left(\begin{array}{c} 1, \frac{5}{2}\alpha + k + 1, \frac{5}{2}\alpha + k + \frac{3}{2}, 2\alpha + k + \frac{3}{2}, 3\alpha + k + \frac{3}{2}, 5\alpha + k + \frac{19}{8} \\ \alpha + k + 2, 4\alpha + k + 2, \frac{5}{2}\alpha + k + \frac{7}{4}, \frac{5}{2}\alpha + k + \frac{9}{4}, \frac{5}{2}\alpha + k + \frac{11}{8} \end{array} ; 1 \right). \]

The value \(\frac{1}{2} \) from which these terms are subtracted itself has an interesting provenance. It was obtained by conducting the sum indicated in \((48)\), not over \(j \) from 0 to \(\alpha + k \) as indicated there, but over \(j \) from 0 to \(\infty \), that is \(Q(-\alpha, \alpha) \sum_{j=0}^{\infty} H(\alpha, j) \). (The \(Q(k, \alpha) \) formula can then be recovered by subtracting the sum over \(j \) from \(\alpha + k + 1 \) to \(\infty \), that is, \(Q(-\alpha, \alpha) \sum_{j=\alpha+k+1}^{\infty} H(\alpha, j) \).) This resulted in the expression (cf. http://math.stackexchange.com/questions/1872364/prove-that-a-certain-hypergeometric-function-assumes-either-the-value-frac1)

\[Q(-\alpha, \alpha) \sum_{j=0}^{\infty} H(\alpha, j) = \]

\[\sqrt{3}^{-3\alpha-1} \frac{3^3 \Gamma(3\alpha + 2)}{\Gamma(\alpha + \frac{5}{6}) \Gamma(\alpha + \frac{4}{6})} \frac{5F_4 \left(\begin{array}{c} 3\alpha + 2, \frac{3}{2}, \frac{3}{2}, \frac{3}{2}, \frac{11}{3}, \frac{1}{2} \\ 2\alpha + \frac{1}{2}, 3\alpha + \frac{1}{2}, 3\alpha + \frac{3}{2}, 3\alpha + \frac{3}{2}, 3\alpha + \frac{5}{2}, 3\alpha + 1, 1 \end{array} ; 1 \right)}{2 \Gamma(k + \alpha + 2) \Gamma(k + 4\alpha + 2) \Gamma(2k + 5\alpha + 2)}. \]

For \(\alpha > 0 \) this gives us the indicated value of \(\frac{1}{2} \). Let us note that for both this \(5F_4 \) function and the \(6F_5 \) immediately preceding, the sums of the denominator entries minus the sums of the numerator parameters equal \(\frac{1}{2} \) while if these differences had been 1, the two functions could be designated as "\(\frac{1}{2} \)-balanced" \([32]\).

In the notation of this section (cf. \((24)\)),

\[Q(k + 1, \alpha) - Q(k, \alpha) = Q(-\alpha, \alpha) H(\alpha, k + \alpha + 1) = \]

\[\frac{\sqrt{3} \Gamma(3\alpha + \frac{3}{2}) (20\alpha + 8k + 11) \Gamma(k + 2\alpha + \frac{3}{2}) \Gamma(2k + 5\alpha + 2) \sqrt{3} \Gamma(3\alpha + \frac{3}{2}) (20\alpha + 8k + 11) \Gamma(k + 2\alpha + \frac{3}{2}) \Gamma(2k + 5\alpha + 2)}{2 \Gamma(\alpha + \frac{1}{2}) \Gamma(\alpha + \frac{2}{6}) \Gamma(\alpha + \frac{5}{6}) \Gamma(\alpha + \frac{4}{6}) \Gamma(k + \alpha + 2) \Gamma(k + 4\alpha + 2) \Gamma(2k + 5\alpha + 2)}. \]

A. Implications for \(P(k, \alpha) \) formula

Let us note that for the Hilbert-Schmidt \((k = 0)\) case, apparently \([9]\),

\[2Q(0, \alpha) = P(0, \alpha), \]

where

\[Q(0, \alpha) = \frac{1}{2} \]
Thus, any presumed “master formula” for $P(k, \alpha)$ (sec. XIII), should reduce to 2$Q(0, \alpha)$ for $k = 0$ (cf. eqs. (25)-(27)). We have been investigating the use of 2$Q(k, \alpha)$ as an initial candidate for $P(k, \alpha)$, then padding out the six upper and five lower entries of the $_6F_5$ function with additional pairs of entries, identical for $k = 0$, but different for $k \neq 0$. Then, for $k = 0$, the initial candidate would be recovered. (The somewhat interesting “$4\frac{1}{2}$-balanced” property, mentioned above, or some k-free counterpart of it would, then, be lost.) Initial limited numerical investigations along these lines have been somewhat disappointing, as they appeared to indicate that the best fits would be obtained for pairs of padded entries with equal coefficients of k. Also, fits to values of $P(k, \alpha)$ did not seem to be improved through the padding strategy.

However, another considerably more interesting approach along similarly motivated lines was, then, developed. We mapped the parameter k in the $Q(k, \alpha)$ function to βk, so that for $k = 0$ the original function would be recovered, no matter the specific value of β. We evaluated the transformed functions by seeing how well they fit the series of (known) eight values $P(k, k)$, $k = 5, \ldots, 12$. For the original $\beta = 1$, the figure-of-merit for the fit was 0.7703536. This figure rather dramatically decreases/improves as β increases, reaching a near minimum of 0.0479732 for $\beta = \frac{11}{2}$ (and 0.108008 for $\beta = 5$ and 0.153828 for $\beta = 6$.) The implications of this phenomenon will be further investigated. Perhaps it might be of value to combine the last two (padding and scaling of k) strategies.

B. Conjectured Identity

In relation to (50), Dunkl formulated the conjecture

\[
_5F_4\left(\begin{array}{c}
\frac{3\alpha}{2}, \alpha + \frac{1}{2}, \frac{3\alpha}{2} + 1, \frac{3\alpha}{2} + \frac{11}{8}, 2\alpha + 1
\end{array}; 2\alpha + \frac{3}{2}, \frac{3\alpha}{2} + 3, 3\alpha + \frac{3}{2}, 4, \frac{3\alpha}{2} + 5, 3\alpha + 1; 1 \right)
\]

\[
= \frac{3}{2\sqrt{2}} \frac{27}{4} \alpha \Gamma\left(\frac{\alpha + \frac{5}{6}}{6}\right) \Gamma\left(\frac{\alpha + \frac{7}{6}}{6}\right).
\]

To avoid zero denominators, it is necessary that $\alpha > -\frac{1}{8}$. For $\alpha = 0$, the value is 1, while the sum is rational for $\alpha = n, n + \frac{1}{2}, n = 0, 1, 2, \ldots$.

In response to this conjecture, C. Koutschan wrote: “The 5F4 sum fits into the class of identities that can be done with Zeilberger’s algorithm. I attach a Mathematica notebook
with some computations. More precisely, using the creative telescoping method, my program finds a linear recurrence equation that is satisfied by the 5F4 sum. It is a trivial calculation to verify that also the right-hand side satisfies the same recurrence. As you remark, both sides give 1 for $\alpha = 0$. We can conclude that the identity holds for all α in \mathbb{N}.” However, cases where α is neither an integer or half-integer still require attention. (G. Gasper has commented that the $5F4$ function is not a special case of the formulas in his paper with M. Rahman [33].)

XII. “EXTERIOR” SEPARABILITY PROBABILITIES

A. Inspheres

The convex set of two-qubit states possesses an “insphere” of maximum radius. The states within in it are all separable [7, 13]. So, one can ask what is the Hilbert-Schmidt separability probability outside of it, presuming the apparent total separability probability of $\frac{8}{33} \approx 0.242424$. Using the formulas in [2], we have $\frac{\pi^6}{851356500}$ for the total volume of the two-qubit states, $\frac{1}{2\sqrt{3}}$ for the radius of this insphere, and thus $\frac{\pi^7}{567437270400\sqrt{3}}$ for its 15-dimensional volume. This yields an exterior separability probability of

$$E_{\text{two-qubits}} = \frac{385\sqrt{3\pi} - 186624}{11(35\sqrt{3\pi} - 69984)} = \frac{1}{1 + \frac{1}{\frac{29}{64} - \frac{128}{38880}\sqrt{3}}} \approx 0.240357. \quad (54)$$

Let us proceed similarly for the two-rebit states. We use, again, the pertinent formulas [2, sec. 7], obtaining a total volume of $\frac{\pi^4}{10080}$, a radius of the insphere of $\frac{1}{2\sqrt{3}}$, and a 9-dimensional insphere volume of $\frac{\pi^4}{24106163760\sqrt{3}}$. This yields a separability probability (ever so slightly less than the presumed value of $\frac{29}{64} \approx 0.453125000$) exterior to the insphere of

$$E_{\text{two-rebits}} = \frac{128\sqrt{3} - 416118303}{64(2\sqrt{3} - 14348907)} = \frac{1}{1 + \frac{1}{\frac{29}{64} - \frac{128}{167403915}\sqrt{3}}} \approx 0.453124868. \quad (55)$$

B. Absolutely separable states

Next, let us observe that these inspheres are themselves contained within the sets of absolutely separable states [34]—those states that can not be entangled through unitary transformations. In [33, eq. (32)], the result $\frac{6928 - 2205\pi}{16\sqrt{2}} \approx 0.0348338$ was reported for the two-rebit
absolute separability probability. This leads to an exterior separability probability of

$$E_{\text{AbsSep}}^{\text{two-rebits}} = \frac{29 - 13856\sqrt{2} + 4410\sqrt{2}\pi}{2(32 - 6928\sqrt{2} + 2205\sqrt{2}\pi)} = 1 + \frac{1}{29 - 13856\sqrt{2} + 4410\sqrt{2}\pi} \approx 0.433387744. \quad (56)$$

Also, a considerably more complicated two-qubit formula [35, eq. (34)] was given. The corresponding absolutely separable probability is approximately 0.00365826. This yields, proceeding similarly, to

$$E_{\text{AbsSep}}^{\text{two-qubits}} \approx 0.239643.$$

XIII. MASTER FORMULA INVESTIGATION FOR $P(k, \alpha)$

Appendix A in [1] considered the possibility of developing a master formula for the total separability probability $P(k, \alpha)$, that associated with the determinantal inequality $|\rho^{PT}| > 0$ (cf. [2]-[4]). It now clearly seems appropriate to reexamine those results (App. E) in terms of the striking hypergeometric-based formula (sec. XI) we have obtained for the partial separability probability $Q(k, \alpha)$, that associated with the determinantal inequality $|\rho^{PT}| > |\rho|$.

In the earlier study [1], the formulas took the form of 1 minus terms involving polynomials in k and gamma functions, while above the interesting such terms have been subtracted from $\frac{1}{2}$. So, conjecturally there exists a tightly-related analogue of the results reported in sec. XI for $P(k, \alpha)$. (Dunkl did note the qualitative difference that “the ratio $\frac{1}{2} - \frac{Q(k+1,\alpha)}{1-P(k,\alpha)}$ tends to 1 as $k \to \infty$ but $\frac{1-P(k+1,\alpha)}{1-P(k,\alpha)}$ tends to $\frac{16}{27}$.”)

In investigating these matters, we have found that for our set of computed $P(k, \alpha), \alpha = 1, \ldots, 47$, the number and location of the consecutive negative roots (sec XI C) are precisely the same (47) as for $Q(k, \alpha)$ (sec. X C). (There strangely appears to be a sole exception to this rule for $\alpha = 3$, where there are five such roots for $Q(k, 3)$ and six such for $P(k, 3)$, with $P(-3, 3)$ anomalously equalling 0.) However, in the $P(k, \alpha)$ situation, the component polynomials are of degree $4\alpha - 2$, while in the $Q(k, \alpha)$ setting the corresponding polynomials are of considerably smaller degree $\alpha + \lfloor \frac{\alpha - 1}{2} \rfloor - 1$, so we are faced with a greater number of coefficients to determine.

Here, is the equation we have solved to determine—based on [1, App. A]—formulas for $P(k, \alpha)$ for $\alpha = 1, \ldots, 47$. The c’s are (nonnegative integer) coefficients we fitted to exact values obtained using the Legendre-polynomial density-approximation routine of Provost
The first 15,760 of the moments \((5) \) were employed.

\[
P(k, \alpha) = 1 - \frac{2^{8a+2k+1}k^{-\left\lfloor \frac{a+1}{3} \right\rfloor - 3} \Gamma \left(k + 3a + \frac{3}{2} \right) \Gamma \left(k + 3a + \left\lfloor \frac{a+1}{3} \right\rfloor + 1 \right) \left(k^{\left\lfloor \frac{a+1}{3} \right\rfloor + 1} - k^{\left\lfloor \frac{a+1}{3} \right\rfloor - 3} \sum_{i=1}^{3a} k^i + k^{\left\lfloor \frac{a+1}{3} \right\rfloor - 3} c_{i+1} k^{i-1} \right) + (c_1 + k)^{3a + \left\lfloor \frac{a+1}{3} \right\rfloor}}{\sqrt{\pi} \Gamma \left(2a \right) \Gamma \left(k + 10a + 2 \right) \Gamma \left(k + 3a + \left\lfloor \frac{a+1}{3} \right\rfloor + 1 \right)}.
\]

A. The ratios \(P(k+1, \alpha) - P(k, \alpha) \)

In App. [F] we show a number of formulas we have generated for the differences between the formulas for \(P(k, \alpha) \) for successive values of \(k \), in relation to the earlier \(Q(k, \alpha) \)-based formulas shown in Fig. 3. (A stark contrast occurs, with the formulas initially yielding rational functions—with equal-degree numerators and denominators—and, then, difference equations.) So, it appears that the quest for a general \(P(k, \alpha) \) formula could be successfully addressed by employing the same framework as in the \(Q(k, \alpha) \) case, by modifying the \(H(\alpha, j) \) function to incorporate the new terms shown in Fig. 3 and their extensions to \(k \), in general. We see an evident relation between the coefficients of the \(y[1 + \alpha] \) terms in the difference equations in App. [F] and the six hypergeometric upper parameters described in sec. III A 2 in the pattern of two 6’s and four 5’s. Also, the coefficients of the \(y[\alpha] \) terms appear related to the six hypergeometric lower parameters described in sec. III A 1.

1. Solution of difference equation for \(\frac{P(1, \alpha) - P(0, \alpha)}{Q(1, \alpha) - Q(0, \alpha)} \)

We have been successfully able to solve the second difference equation recorded (in two forms) in App. [F] The initial solution consisted of a large (multi-page) output with numerous hypergeometric functions (again with argument \(\frac{27}{64} \)). (In App. [G] we show the Maple counterpart, provided by Carl Love (http://math.stackexchange.com/questions/1903720/what-solution-does-maple-give-to-this-difference-equation), of our Mathematica solution. There is an implicit [unperformed] summation in it.) The solution naturally broke into the sum of two parts. For the first part—using high-precision numerics, rationalizations and the FindSequenceFunction command—we were able to obtain the (hypergeometric-free) formula

\[
\frac{5 \cdot 3^{3a - 1} \cdot 8^{2a + 1} \cdot (5\alpha + 3) \cdot \left(\frac{7}{10} \right)_\alpha \cdot \left(\frac{9}{10} \right)_\alpha \cdot (1)_\alpha \cdot \left(\frac{11}{10} \right)_\alpha \cdot \left(\frac{13}{10} \right)_\alpha \cdot \left(\frac{9}{2} \right)_\alpha}{(20\alpha + 11) \cdot \left(\frac{2}{5} \right)_\alpha \cdot \left(\frac{3}{5} \right)_\alpha \cdot \left(\frac{4}{5} \right)_\alpha \cdot \left(\frac{5}{6} \right)_\alpha \cdot \left(\frac{7}{6} \right)_\alpha \cdot \left(\frac{9}{5} \right)_\alpha}.
\]

\(58 \)
Remarkably, when this term was multiplied by the function (which comprises the denominator of the ratio), examples of which are shown in Fig. 3, and formulated in (51),

\[Q(1, \alpha) - Q(0, \alpha) = \frac{\pi^2 - 4\alpha^3 + 15 - 5\alpha^3 - 3(20\alpha + 11)\Gamma(\alpha + \frac{3}{10})\Gamma(\alpha + \frac{7}{10})\Gamma(5\alpha + 2)}{\Gamma(\alpha)\Gamma(\alpha + \frac{7}{10})\Gamma(\alpha + \frac{9}{10})\Gamma(\alpha + \frac{11}{10})\Gamma(2\alpha + 3)}, \]

the product simplified to the form \(\frac{4\alpha(5\alpha + 3)}{9(\alpha + 1)} \). So, we can consider this term to be the first of two parts of a formula for \(P(1, \alpha) - P(0, \alpha) \). Now, in quest of the remaining term, when we formed a new difference equation for just the second part, we obtained a new solution, again naturally breaking into the sum of two parts. Now, the first part—previously given by (58)—was zero, and the new second part was given by precisely the same difference equation as originally, but for the single change of the initial value (at \(\alpha = 1 \)) from \(y[1] = \frac{158}{31} = \frac{474}{93} \) to \(y[1] = -\frac{4102}{93} \).

B. X-states counterpart

In App. H we show the analogue of the \(P(k, \alpha) \) formulas for the “toy” model of X-states [28, 29]. One feature to be immediately noted is that the arguments of the indicated hypergeometric functions are -1. Another is that for half-integer \(\alpha \)'s, \(P(k, \alpha) \) yields rational values, while \(P_{X-states}(k, \alpha) \) yields value of the form 1 minus rational numbers divided by \(\pi^2 \).

C. Use of consecutive negative roots

We have noted that both \(Q(k, \alpha) \) and \(P(k, \alpha) \) have roots at consecutive negative values of \(k \) (sec. X.C). If we examine the (limiting) values of \(P(k, \alpha) \) for \(k \) immediately (one) below the end of the consecutive series, we find that they satisfy the relation

\[P(-\frac{1}{4}(-1)^{\alpha}((-1)^{\alpha}(10\alpha + 1) - 1), \alpha) = \frac{(3\alpha(5\alpha + 2) - 1)\sin(\frac{\pi\alpha}{2})}{4(\alpha + 1)} + \cos(\frac{\pi\alpha}{2}). \]

(This might serve as a ”starting point” analogous to the use ((48), (49)) of \(Q(-\alpha, \alpha) \)). For the analogous set of \(Q(-\frac{1}{4}(-1)^{\alpha}((-1)^{\alpha}(10\alpha + 1) - 1), \alpha) \)'s, the real parts appear to be \(\frac{1}{2} \) for even \(\alpha \) and \(-\frac{1}{4} \) for odd \(\alpha \), with the imaginary parts given by

\[\Im Q(-\frac{1}{4}(-1)^{\alpha}((-1)^{\alpha}(10\alpha + 1) - 1), \alpha) = -\frac{3(-1)^{\alpha}(20((-1)^{\alpha} + 3)\alpha + 5(-1)^{\alpha} + 7)}{4\pi(400\alpha^2 + 80\alpha + 3)}. \]
Dunkl has observed that the sequence generated by (60) is really two interspersed sequences, one for odd and one for even values of \(\alpha \). They can be represented as

\[
\begin{align*}
\text{odd: } f(2\alpha) &= (-1)^\alpha \\
\text{even: } f(2\alpha + 1) &= (-1)^\alpha \left(\frac{15\alpha^2 + 18\alpha + 5}{2\alpha + 2} \right) = (-1)^\alpha \left(\frac{15\alpha}{2} + \frac{1}{\alpha+1} + \frac{3}{2} \right).
\end{align*}
\]

D. Rules for leading coefficients of the polynomials \(p_\alpha(k) \)

In App. I we show for \(i = 1, \ldots, 10 \), the first of the rules we have developed for the leading coefficients of the polynomials \(p_\alpha(k) \) given in the formula above (1) for \(P(k, \alpha) \)–having been normalized to monic form (the original leading degree-(4\(\alpha - 2 \)) coefficient being \(\frac{2^{8\alpha+1}}{2\alpha-1} \)). (For convenience, we drop this \(k^{4\alpha-2} \) term, and are left with degree-(4\(\alpha - 3 \)) polynomials.) We note that these resultant polynomials are of degree \(2i \). Now, we can make the interesting observation that their leading (highest power) coefficients are given (in descending order) by the rules:

\[
\begin{align*}
C_1 &= \left(\frac{17}{2} \right)^i \Gamma(i + 1), \\
C_2 &= 2^{-i-2}17i^{-2}(1109 - 497i), \\
C_3 &= 2^{-i-5}17i^{-4}(i(i(247009i - 1370262) + 3942323) - 11308734), \\
C_4 &= -2^{-i-7}17i^{-6}(i - 1)i \\
C_5 &= 2^{-i-11}17i^{-8}(i - 1)i \\
C_6 &= -2^{-i-13}17i^{-10}(i - 2)(i - 1)i.
\end{align*}
\]

Also, \(C_4 \) is the product of

\[
613817365i^4 - 5492491130i^3 + 30016283027i^2 - 173872269670i + 542508998592.
\]

Further, \(C_5 \) is the product of

\[
305067230405i^6 - 4403156498055i^5 + 38051293414691i^4
\]

and

\[
-325978342903557i^3 + 2137571940201488i^2 - 8722204904328012i + 13657232612174832.
\]

Continuing, \(C_6 \) is the product of

\[
-2^{-i-13}17i^{-10}(i - 2)(i - 1)i
\]
and
\[212265778915799i^7 - 4033760477145378i^6 + 46257531538470350i^5 - 526319720165886192i^4\]
\[+ 5002806671861237557i^3 - 35895786322816308558i^2 + 16944687395391015482i\]
\[-385892347895176978944,\]
while \(C_7\) is the product of
\[
\frac{2^{-i-16}17^{i-12}(i-2)(i-1)i}{1148175\Gamma(i+1)}
\]
and
\[527480460605760515i^9 - 14061542253335879085i^8 + 216128338841103270330i^7 - 3070915881213672409050i^6\]
\[+ 39074939804872696010811i^5 - 414647891239558549971645i^4 + 346680037946298787766973880i^3\]
\[-20874814527662001270399420i^2 + 78054176824402526959936464i - 118165465673929410155118720.\]

So, an obvious important challenge would be to find the common formula generating these results. (The pattern of [negative] integer exponents of 2—that is, 0, 2, 5, 7, 11, 13, 16—is yielded by sequence A004134 ”Denominators in expansion of \((1 - x)^{-1/4}\) are \(2^n(n)\)” of the The On-Line Encyclopedia of Integer Sequences.)

Let us make the observation that the constant (lowest-order) coefficient in the polynomial \(p_k(\alpha)\) in the formula for \(P(k, \alpha)\) in (1) is equal to \(\frac{1-2Q(0,\alpha)}{G(0,\alpha)}\).

XIV. CONCLUDING REMARKS

The asymptotic analyses reported here and those in studies of Szarek, Aubrun and Ye \[4, 36, 37\] both employ Hilbert-Schmidt and (more generally) random induced measures. However, contrastingly, we chiefly consider asymptotics as the Dyson-index-like parameter \(\alpha \to \infty\) (cf. \[38, 39\]), while they implicitly are concerned with the standard case of \(\alpha = 1\), and large numbers of qubits. Perhaps some relation exists, however, between their high-dimensional findings and the quite limited set of asymptotics we have presented above (secs. \(\text{VII B, VII C, VII A 2}\), pertaining to the dimensional index \(k \to \infty\).

A strong, intriguing theme in the analyses presented above has been the repeated occurrence of the interesting constant \(z = \frac{27}{64} = \left(\frac{3}{4}\right)^3\). Let us note that J. Guillera in his article “A new Ramanujan-like series for \(\frac{1}{\pi^2}\), applying methods related to Zeilberger’s algorithm \[31\],

37
obtained a hypergeometric identity involving a sum over n from 0 to ∞ of terms involving factors of the form $(\frac{27}{64})^n$ [25 sec. 3] (cf. [30 sec. 8]).

Further, in a study of products of Ginibre matrices of Penson and Życzkowski, the Fuss-Catalan distribution $P_s(x)$ is represented as a sum of s generalized hypergeometric functions sF_{s-1}, somewhat analogous to those given above in Figs. 3-6 (and, in particular, Fig. 3 in [16], since only $7F_6$ functions are employed). These functions $P_s(x)$ have hypergeometric arguments $\frac{s^s}{(s+1)^{(s+1)}} x$, where s is a nonnegative integer, and have support $x \in [0, \frac{s^s}{(s+1)^{(s+1)}}]$ [40 eq. (11)]. So, for $s = 3$, $\frac{s^s}{(s+1)^{(s+1)}} = \frac{27}{256}$. (We had inquired of Hou whether the telescoping procedure might be profitably applied in such a context. He replied “the method I used only works for sF_{s-1} with a concrete integer s” [cf. [40 eqs. (13)-(16)].) As an item of further curiosity, we note that in the MathWorld entry on hypergeometric functions, the identity $2F_1 \left(\frac{1}{3}; \frac{2}{3}; 5; \frac{27}{32} \right) = \frac{8}{5}$, the argument being $\frac{27}{32}$, is noted. (Also, cf. (49) above.)
Appendix A: Hypergeometric forms of the factors $G_2^k(\alpha)$

\[
\frac{1}{1517923887480} \cdot (\alpha + 1) (2 \alpha + 3) (10 \alpha + 9) (10 \alpha + 11)
\]

\[
(10 \alpha + 13) (10 \alpha + 17) (\alpha (10 \alpha + 7) (925 \alpha^2 + 615 \alpha + 134) + 54)
\]

\[
{\gamma}F{6}\left(1, \alpha + \frac{1}{6}, \alpha + \frac{1}{5}, \alpha + \frac{2}{5}, \alpha + \frac{3}{5}, \alpha + \frac{4}{5}; \alpha + \frac{9}{6}, \alpha + 1, \alpha + \frac{11}{10}, \alpha + \frac{13}{10}, \alpha + \frac{3}{2}, \alpha + \frac{17}{10}; \frac{27}{64}\right) +
\]

\[
\frac{125 (5 \alpha (25 \alpha (296 \alpha + 303) + 2258) + 938)}{22487761296} \cdot _{\gamma}F_{6}\left(2, \alpha + \frac{7}{6}, \alpha + \frac{19}{6}, \alpha + \frac{21}{5}, \alpha + \frac{23}{5}, \alpha + \frac{27}{5}; \alpha + 2, \alpha + \frac{23}{10}, \alpha + \frac{27}{10}, \alpha + \frac{27}{2}, \alpha + \frac{27}{10}; \frac{27}{64}\right) +
\]

\[
\frac{1}{22487761296} \cdot 625 (75 \alpha (148 \alpha + 101) + 1129) \cdot _{\gamma}F_{6}\left(2, 2, \alpha + \frac{7}{6}, \alpha + \frac{19}{6}, \alpha + \frac{21}{5}, \alpha + \frac{23}{5}, \alpha + \frac{27}{5}; \alpha + \frac{27}{10}, \alpha + \frac{27}{10}, \alpha + \frac{27}{2}, \alpha + \frac{27}{10}; \frac{27}{64}\right) +
\]

\[
\frac{1}{22487761296} \cdot 15625 (296 \alpha + 101) \cdot _{\gamma}F_{6}\left(2, 2, 2, \alpha + \frac{7}{6}, \alpha + \frac{19}{6}, \alpha + \frac{21}{5}, \alpha + \frac{23}{5}, \alpha + \frac{27}{5}; \alpha + \frac{27}{64}, \alpha + \frac{27}{64}, \alpha + \frac{27}{2}, \alpha + \frac{27}{64}; \frac{27}{64}\right) +
\]

\[
\frac{1}{11243880648} \cdot 578125 \cdot _{\gamma}F_{6}\left(2, 2, 2, 2, \alpha + \frac{7}{6}, \alpha + \frac{19}{6}, \alpha + \frac{21}{5}, \alpha + \frac{23}{5}, \alpha + \frac{27}{5}; \alpha + \frac{27}{64}, \alpha + \frac{27}{64}, \alpha + \frac{27}{2}, \alpha + \frac{27}{64}; \frac{27}{64}\right)
\]

\[G_2^{-1}(\alpha)\]
\[
\begin{align*}
\frac{1}{779\,779\,185\,625\,440} & (2 (\alpha + 2) (2 \alpha + 3) (10 \alpha + 13) (10 \alpha + 17) (10 \alpha + 19) \\
& (10 \alpha + 21) (\alpha (5 \alpha (25 \alpha (2 \alpha (740 \alpha + 3119) + 10\,313) + 208\,403) + 410\,694) + 63\,000) \\
\gamma F_4 & \left(1, \alpha + \frac{1}{5}, \alpha + \frac{2}{5}, \alpha + \frac{3}{5}, \alpha + \frac{4}{5}, \alpha + \frac{5}{5}; \alpha + \frac{13}{10}, \alpha + \frac{3}{2}, \alpha + \frac{17}{10}, \alpha + \frac{19}{10}, \alpha + 2, \alpha + \frac{21}{10}, \alpha + \frac{27}{64}\right) + \\
& \frac{1}{5} \alpha + 1 \\
\Gamma & \left(\alpha + \frac{1}{5}, \alpha + \frac{2}{5}, \alpha + \frac{3}{5}, \alpha + \frac{4}{5}, \alpha + \frac{5}{5}; \alpha + \frac{13}{10}, \alpha + \frac{3}{2}, \alpha + \frac{17}{10}, \alpha + \frac{19}{10}, \alpha + 2, \alpha + \frac{21}{10}, \alpha + \frac{27}{64}\right) + \\
& \frac{1}{5} \alpha + 1 \\
\end{align*}
\]
\[
\frac{1}{4288785 \cdot 520 \cdot 939920} \left(2 (\alpha + 3) (2 \alpha + 5) (10 \alpha + 17) (10 \alpha + 19) (10 \alpha + 21) (10 \alpha + 23) \\
(\alpha \cdot (\alpha (20 \alpha (5 \alpha (740 \alpha + 5783) + 91541) + 3013197) + 2724024) + 1284280) + 246960 \right) \\
\frac{\alpha + 4}{5} \left(6 \right) \left(\frac{1}{6} \right) \left(5 \right) \left(\frac{1}{5} \right) \left(1 \right) \left(4 \right) \left(\frac{1}{4} \right) \left(2 \right) \left(\frac{1}{2} \right) \left(3 \right) \left(\frac{1}{3} \right)
\]

\[
(\alpha \cdot (\alpha (20 \alpha (5 \alpha (740 \alpha + 5783) + 91541) + 3013197) + 2724024) + 1284280) \cdot \frac{\alpha + 4}{5} \left(6 \right) \left(\frac{1}{6} \right) \left(5 \right) \left(\frac{1}{5} \right) \left(1 \right) \left(4 \right) \left(\frac{1}{4} \right) \left(2 \right) \left(\frac{1}{2} \right) \left(3 \right) \left(\frac{1}{3} \right)
\]

\[
(\alpha \cdot (\alpha (20 \alpha (5 \alpha (740 \alpha + 5783) + 91541) + 3013197) + 2724024) + 1284280) \cdot \frac{\alpha + 4}{5} \left(6 \right) \left(\frac{1}{6} \right) \left(5 \right) \left(\frac{1}{5} \right) \left(1 \right) \left(4 \right) \left(\frac{1}{4} \right) \left(2 \right) \left(\frac{1}{2} \right) \left(3 \right) \left(\frac{1}{3} \right)
\]
\[
\frac{1}{625\,122\,980\,476\,394\,400} \left(2 (\alpha + 4) (2 \alpha + 5) (10 \alpha + 21) (10 \alpha + 23) (10 \alpha + 27) (10 \alpha + 29) \\
(\alpha (\alpha (5 \alpha (10 \alpha (40 \alpha (370 \alpha + 4501) + 911\,539) + 25\,032\,907) + 202\,090\,226) + 192\,332\,891) + 100\,092\,606) + 22\,004\,136 \\
\right)
\]
Appendix B: Difference equation forms of the factors $G_2^k(\alpha)$

\[
\text{DifferenceRoot}\left[\text{Function}\left[\left\{G_2^{-1}, \alpha\right\}, \left\{(1 + \alpha)(2 + \alpha)(3 + 2 \alpha)(5 + 2 \alpha)(9 + 10 \alpha)(11 + 10 \alpha)(13 + 10 \alpha)(17 + 10 \alpha)(19 + 10 \alpha)(21 + 10 \alpha)(23 + 10 \alpha)(27 + 10 \alpha)\left(54 + 938 \alpha + 5645 \alpha^2 + 12625 \alpha^3 + 9250 \alpha^4\right) + (-1517923887480(2 + \alpha)(5 + 2 \alpha)(19 + 10 \alpha)(21 + 10 \alpha)(23 + 10 \alpha)(27 + 10 \alpha)) \right\}, \left\{G_2^{-1}(1 + \alpha) = 0, G_2^{-1}(1) = \frac{1}{14}\right\}\right]\right]
\]

\[
\text{DifferenceRoot}\left[\text{Function}\left[\left\{G_2^{0}, \alpha\right\}, \left\{(2 + \alpha)(3 + 2 \alpha)(5 + 2 \alpha)(1 + 5 \alpha)(13 + 10 \alpha)(17 + 10 \alpha)(19 + 10 \alpha)(21 + 10 \alpha)(23 + 10 \alpha)(27 + 10 \alpha)(29 + 10 \alpha)(31 + 10 \alpha)(63000 + \alpha (410694 + 5 \alpha (208403 + 25 \alpha (10313 + 2 \alpha (3119 + 740 \alpha)))) \right\}, \left\{G_2^{0}(1 + \alpha) = 0, G_2^{0}(1) = \frac{4}{33}\right\}\right]\right]
\]

\[
\text{DifferenceRoot}\left[\text{Function}\left[\left\{G_2^{1}, \alpha\right\}, \left\{(3 + \alpha)(4 + \alpha)(5 + 2 \alpha)(7 + 2 \alpha)(17 + 10 \alpha)(19 + 10 \alpha)(21 + 10 \alpha)(23 + 10 \alpha)(27 + 10 \alpha)(29 + 10 \alpha)(31 + 10 \alpha)(33 + 10 \alpha)(4432788704 + \alpha (2724024 + \alpha (3013197 + 20 \alpha (91541 + 5 \alpha (5783 + 740 \alpha)))) \right\}, \left\{G_2^{1}(1 + \alpha) = 0, G_2^{1}(1) = \frac{45}{286}\right\}\right]\right]
\]

\[
\text{DifferenceRoot}\left[\text{Function}\left[\left\{G_2^{2}, \alpha\right\}, \left\{(4 + \alpha)(5 + 2 \alpha)(7 + 2 \alpha)(17 + 10 \alpha)(19 + 10 \alpha)(21 + 10 \alpha)(23 + 10 \alpha)(27 + 10 \alpha)(29 + 10 \alpha)(31 + 10 \alpha)(33 + 10 \alpha)(35 + 10 \alpha)(4756308512 + \alpha (202090226 + 5 \alpha (25032907 + 10 \alpha (911539 + 40 \alpha (4501 + 370 \alpha)))) \right\}, \left\{G_2^{2}(1 + \alpha) = 0, G_2^{2}(1) = \frac{1553}{8398}\right\}\right]\right]
\]
\[
\text{DifferenceRoot}\left[\text{Function}\left[\{G_2^3, \alpha\}, \((5 + \alpha) (6 + \alpha) (5 + 2 \alpha) (7 + 2 \alpha) (27 + 10 \alpha) (29 + 10 \alpha) (31 + 10 \alpha) (33 + 10 \alpha) (37 + 10 \alpha) (39 + 10 \alpha) (41 + 10 \alpha) (43 + 10 \alpha) (134 548 128 + a (471 120 306 + a (698 007 782 + a (566 336 789 + 5 a (54 233 749 + 50 a (305 531 + 8 a (5833 + 370 a))))))) + (-1 926 733 941 573 222 600 (6 + a) (7 + 2 a) (37 + 10 a) (39 + 10 a) (41 + 10 a) (43 + 10 a)) G_2^3 (a) + (722 525 228 089 958 475 (a + 5 a) (11 + 5 a) (12 + 5 a) (11 + 6 a) (13 + 6 a)) G_2^3 (1 + a) = 0, G_2^3 (1) = \frac{3073}{14858}\]\]

\[
G_2^3 (a)
\]

\[
\text{DifferenceRoot}\left[\text{Function}\left[\{G_2^4, \alpha\}, \((6 + \alpha) (7 + \alpha) (7 + 2 \alpha) (9 + 2 \alpha) (9 + 4 \alpha) (29 + 10 \alpha) (31 + 10 \alpha) (33 + 10 \alpha) (37 + 10 \alpha) (39 + 10 \alpha) (41 + 10 \alpha) (43 + 10 \alpha) (47 + 10 \alpha) (175 452 420 + a (522 054 355 + a (656 629 192 + a (451 645 197 + 4 a (45 743 164 + 5 a (2 174 607 + 400 a (698 + 37 a))))))) + (-41 795 305 501 819 136 400 (7 + a) (9 + 2 a) (39 + 10 a) (41 + 10 a) (43 + 10 a) (47 + 10 a)) G_2^4 (a) + (15 673 239 563 182 176 150 (11 + 5 a) (12 + 5 a) (13 + 5 a) (14 + 5 a) (11 + 6 a) (13 + 6 a)) G_2^4 (1 + a) = 0, G_2^4 (1) = \frac{37 145}{8348}\]\]

\[
G_2^4 (a)
\]
Appendix C: Maple worksheet of Qing-Hu Hou for \(Q(1, \alpha)\) “concise” formula \(^{(28)}\)

```maple
> use the package APCI
> with(APCI):
> [AbelZ, Dis_set, Ext_Zeil, GP_form, Gosper, Zeil, hyper_simp, hyperterm, poch, qExt_Zeil, qGosper, qZeil, qhyper_simp, qhyperterm, poch]

> Input p1 and p2
> p1 := Pi^2 (-12\*i\*4*alpha)*3^2 (2 + 3*i + 3*alpha)*5^2 (-10^5*i - 5*alpha)*(1 + 5*i + 5*alpha)*(2 + 5*i + 5*alpha)*(3 + 5*i + 5*alpha)*GAMMA(5*i + 5*alpha)*GAMMA(5/6 + i + alpha)*GAMMA(7/6 + i + alpha)/GAMMA(7/10 + i + alpha)*GAMMA(27/10 + i + alpha)*GAMMA(29/10 + i + alpha)*GAMMA(31/10 + i + alpha)*GAMMA(33/10 + i + alpha)*GAMMA(7 + 2*i + 2*alpha):

> p2 := 5964650032320 + 23835047352984 I + 5575052392678 I^2 + 9919948885203 I^3 + 136634564520678 I^4 + 137601444510984 I^5 + 100870855711440 I^6 + 53647137646725 I^7 + 20499951790500 I^8 + 5488677585000 I^9 + 977478600000 I^10 + 103970250000 I^11 + 4995000000 I^12 + 47696918381784 alpha + 17683941693996 I alpha + 37327414263369 I^2 alpha + 58917132283712 I^3 alpha + 70175206871980 I^4 alpha + 60739235678640 I^5 alpha + 375648759427075 I^6 alpha + 163999614324000 I^7 alpha + 49398098265000 I^8 alpha + 977478600000 I^9 alpha + 114367275000 I^10 alpha + 5994000000 I^11 alpha + 171701152670358 alpha +
585374488954841 i alpha^2 + 110527161634476 i^2 alpha^2 + 1522578444975640 I^3 alpha^2 + 155305274528600 I^4 alpha^2 + 113189945681225 I^5 alpha^2 + 574250622354000 I^6 alpha^2 + 197592393060000 I^7 alpha^2 + 43986357000000 I^8 alpha^2 + 5718363750000 I^9 alpha^2 + 329670000000 I^10 alpha^2 + 368005374928795 alpha^3 + 1141227961715664 i alpha^3 + 190571711666714 i^2 alpha^3 + 2257010366983575 i^3 alpha^3 + 193466407287250 I^4 alpha^3 + 15154930325500 I^5 alpha^3 + 461327637825000 I^6 alpha^3 + 117297432000000 I^7 alpha^3 + 171550912500000 I^8 alpha^3 + 10989000000000 I^9 alpha^3 + 523055475511422 alpha^4 + 145584501671428 I^2 alpha^4 + 2118376128800365 I^3 alpha^4 + 2116541234138375 I^3 alpha^4 + 14837941805200000 I^4 alpha^4 + 696335208795000 I^5 alpha^4 + 205439856850000 I^6 alpha^4 + 34310182500000 I^7 alpha^4 + 2472525000000 I^8 alpha^4 + 519299901639418 alpha^5 + 1275615699900245 i alpha^5 + 1585595170701575 I^2 alpha^5 + 1301704000505500 I^3 alpha^5 + 717390913760000 I^4 alpha^5 + 248316593550000 I^5 alpha^5 + 48087748250000 I^6 alpha^5 +
```
\[
\begin{align*}
395604000000 \ i \cdot 7 \ \alpha^5 + 369093881652055 \ \alpha^6 + \\
782853027242275 \ i \ \alpha^6 + 808755750519500 \ i \cdot 2 \ \alpha^6 + \\
524763112490000 \ i \cdot 3 \ \alpha^6 + 213482150750000 \ i \cdot 4 \ \alpha^6 + \\
484800870000000 \ i \cdot 5 \ \alpha^6 + 46222250000000 \ i \cdot 6 \ \alpha^6 + \\
189032852501700 \ \alpha^7 + 336112752155000 \ \alpha^7 + \\
277267270822500 \ i \cdot 2 \ \alpha^7 + 133611164500000 \ i \cdot 3 \ \alpha^7 + \\
3573694875000000 \ i \cdot 4 \ \alpha^7 + 3997100000000 \ i \cdot 5 \ \alpha^7 + \\
691097653260000 \ \alpha^8 + 98738578850000 \ \alpha^8 + \\
6103746675000000 \ i \cdot 2 \ \alpha^8 + 1947369625000000 \ i \cdot 3 \ \alpha^8 + \\
257520000000000 \ i \cdot 4 \ \alpha^8 + 1753405007000000 \ \alpha^9 + \\
188382003500000 \ i \ \alpha^9 + 77695050000000 \ i \cdot 2 \ \alpha^9 + \\
123580000000000 \ i \cdot 3 \ \alpha^9 + 291468645000000 \ \alpha^{10} + \\
2089094250000 \ i \ \alpha^{10} + 43234500000000 \ i \cdot 2 \ \alpha^{10} + \\
282338000000000 \ \alpha^{11} + 101010000000 \ i \ \alpha^{11} + \\
1184000000000 \ \alpha^{12}:
\end{align*}
\]

Use command Zeil to compute recurrence relation (on alpha) of sum_i p1*p2

\[
\text{> re := Zeil(p1*p2, alpha, i, `cert`):}
\]

The first part is the recurrence relation
\[
\text{> re[1]:}
\quad S(\alpha) - S(\alpha + 1) = 0
\] (2)

The second part is the function g such that \(\text{lhs(re[1])=Delta}_i g\)
\[
\text{> g := re[2]*p1*p2:}
\]

for the sum_i, we need the 0-th term and the infinity term
\[
\text{> limit(g, i=infinity);}
\]
\[
\text{> dif := -subs(i = 0, g);}
\]
\[
\text{dif :=}\left(11840000000 \ \alpha^{12} + 252368000000 \ \alpha^{11} + 2434795200000 \ \alpha^{10}
\right.
\]
\[
+ 14054205920000 \ \alpha^9 + 54034558896000 \ \alpha^8 + 145711430491200 \ \alpha^7
\]
\[
+ 282454365323680 \ \alpha^6 + 396358843713808 \ \alpha^5 + 399389846749080 \ \alpha^4
\]
\[
+ 281668516008088 \ \alpha^3 + 131894906017920 \ \alpha^2 + 36798294294720 \ \alpha
\]
\[
+ 4623357916800) \ \pi \ 2^{-12} - 4 \ \alpha \ \alpha^2 + 3 \ \alpha^3 - 5 \ \alpha^{10} - 5 \ \alpha \ (1 + 5 \ \alpha) \ (2 + 5 \ \alpha) \ (3
\]
\[
+ 5 \ \alpha) \ \Gamma(5 \ \alpha) \ \Gamma\left(\frac{5}{5} + \alpha\right) \ \Gamma\left(\frac{7}{5} + \alpha\right)\right) / \left(\Gamma(\alpha) \ \Gamma\left(\frac{27}{10} + \alpha\right) \ \Gamma\left(\frac{29}{10}\right)\right)
\]

46
\[+ \alpha \left(\Gamma \left(\frac{31}{10} + \alpha \right) \Gamma \left(\frac{33}{10} + \alpha \right) \Gamma \left(7 + 2 \alpha \right) \right) \]

\[\text{dif} := \text{simplify(dif)}; \]

\[\text{dif} := \frac{9}{1000000} \left(\pi \left(1 + 5 \alpha \right) \left(2 + 5 \alpha \right) \left(3 + 5 \alpha \right) \left(74000 \alpha^6 + 578300 \alpha^5 \right) \\
+ 1830820 \alpha^4 + 3013197 \alpha^3 + 2724024 \alpha^2 + 1284280 \alpha + 246960 \right) \Gamma \left(\frac{7}{6} \right) \]

\[+ \alpha \left(\Gamma \left(\frac{5}{6} + \alpha \right) \Gamma(5 \alpha) 2^{\alpha} 50000^{-\alpha} \right) / \left(\Gamma \left(\frac{23}{10} + \alpha \right) \Gamma \left(\frac{21}{10} + \alpha \right) \Gamma \left(\frac{19}{10} \right) \right) \]

We need initial values

It seems that \(S(0) = 1/2 \). But we do not have the proof.

\[\text{evalf(add(subs(alpha = 0, pl\cdot p2), i = 1..100) + limit(subs(alpha = 0, pl\cdot p2), i = 0));} \]

\[0.5000000002 \] \hspace{1cm} (6)

It seems that \(S(-1/2) = 1 \). But we do not have the proof.

\[\text{evalf(add(subs(alpha = -1/2, pl\cdot p2), i = 0..100));} \]

\[0.9999999987 \] \hspace{1cm} (7)

With the initial values, we find a formula for \(S(\alpha) \)

\[\alpha0 := 2; \]

\[\alpha0 := 2 \] \hspace{1cm} (8)

\[\frac{1}{2} - \text{add(limit(dif, alpha = alpha0 - k), k = 1..alpha0)}; \]

\[\frac{1}{2} - \frac{66066}{37145 \text{ csc} \left(\frac{1}{10} \pi \right) \text{ csc} \left(\frac{3}{10} \pi \right)} \] \hspace{1cm} (9)

\[\text{csc}(\pi/10) \text{csc}(3\pi/10) = 4 \]

\[\text{simplify} \left(\text{csc} \left(\frac{1}{10} \pi \right) \text{ csc} \left(\frac{3}{10} \pi \right) \right); \]

\[4 \] \hspace{1cm} (10)

\[\frac{1}{2} - \frac{66066}{37145 \cdot 4}; \]

\[\frac{2056}{37145} \] \hspace{1cm} (11)
\[\alpha_0 := \frac{1}{2} \]

\[1 - \text{add} \left(\text{limit} \left(\text{dif}, \alpha = \alpha_0 - k, k = 1 \ldots \alpha_0 + \frac{1}{2} \right) \right) \begin{equation} 1 - \frac{743}{1280} \frac{\sqrt{5}}{\csc \left(\frac{2}{5} \pi \right) \csc \left(\frac{1}{5} \pi \right)} \end{equation} \]

The right most fraction equals \(\frac{5}{4} \)

\[1 - \frac{743 \cdot 5}{1280 \cdot 4} \]

\[\frac{281}{1024} \]
Appendix D: Collected $Q(k, \alpha)$ formulas

$$Q[k, -1] = \frac{1}{2} + \frac{4^{-2k} \Gamma[-\frac{1}{2} + k] \Gamma[-\frac{1}{2} + k]}{\pi \Gamma[k] \Gamma[-\frac{7}{2} + 2k]}$$

$$Q[k, 1/4] = \frac{1}{2} - 2^{-\frac{15k}{4}} \Gamma[\frac{13}{4} + 2k] \text{HypergeometricPFQRegularized}[[1, \frac{13}{8} + k, \frac{17}{8} + k, \frac{19}{8} + k, \frac{23}{8} + k], 1];$$

$$Q[k, -1/4] = \frac{1}{2} + 2^{-\frac{15k}{4}} \Gamma[\frac{3}{4} + 2k] \text{HypergeometricPFQRegularized}[[1, \frac{3}{8} + k, \frac{7}{8} + k, \frac{9}{8} + k, \frac{13}{8} + k], 1]$$

$$Q[k, \alpha] = \frac{1}{2} - 2^{-\frac{7-2k-5\alpha}{2}} \Gamma[2 + 2k + 5\alpha] \text{HypergeometricPFQRegularized}[[1, 1 + k + \frac{5\alpha}{2}, 3 + k + \frac{5\alpha}{2}],
\{\frac{7}{4} + k + \frac{5\alpha}{2}, \frac{9}{4} + k + \frac{5\alpha}{2}\}, 1] \text{Sign}[\alpha] \text{ (unifying the previous two formulas)}$$

$$Q[k, -1/3] = \frac{1}{2} + \frac{1}{648 \sqrt{2\pi}} \left\{ 9 \Gamma[13 + 24k] \Gamma[\frac{1}{6} + k] \Gamma[\frac{1}{2} + k] \Gamma[\frac{5}{6} + k] \text{HypergeometricPFQRegularized}[[1, \frac{1}{6} + k, \frac{1}{2} + k, \frac{5}{6} + k],
\{1, \frac{11}{12} + k, \frac{17}{12} + k, \frac{5}{3} + k\}, 1] + 16 \times 3^{-3k} \pi \Gamma[\frac{7}{2} + 3k] \text{HypergeometricPFQRegularized}[[2, \frac{7}{6} + k, \frac{3}{2} + k, \frac{11}{12} + k, \frac{23}{12} + k, \frac{29}{12} + k, \frac{8}{3} + k], 1] \right\}$$

$$Q[k, -1/2] = \frac{1}{2} + \frac{\Gamma[-\frac{1}{2} + k]}{\sqrt{\pi} \Gamma[2k]}$$

$$Q[k, -1/2] = \frac{1}{2} - 2^{-1-2k} \Gamma[-\frac{1}{2} + 2k] \text{HypergeometricPFQRegularized}[[1, -\frac{1}{4} + k, \frac{1}{4} + k],
\{\frac{1}{2} + k, 1 + k\}, 1] \Gamma[\frac{1}{2} + 2k] \text{HypergeometricPFQRegularized}[[1, \frac{1}{4} + k, \frac{3}{4} + k, \{1 + k, \frac{3}{2} + k\}, 1]$$

$$Q[k, 1/2] = \frac{1}{2} - \frac{\Gamma[\frac{5}{2} + 2k]}{\sqrt{\pi} \Gamma[5 + 2k]}$$

$$Q[k, 1/2] = \frac{1}{2} - 2^{-6-2k} \Gamma[\frac{9}{2} + 2k] \text{HypergeometricPFQRegularized}[[1, \frac{9}{4} + k, \frac{11}{4} + k, \{3 + k, \frac{7}{2} + k\}, 1] \Gamma[\frac{11}{2} + 2k] \text{HypergeometricPFQRegularized}[[1, \frac{11}{4} + k, \frac{13}{4} + k, \{\frac{7}{2} + k, 4 + k\}, 1]};$$
\[Q[k, -3/4] = \frac{1}{2} + 2^{1-2k} \Gamma \left[\frac{7}{4} + 2k \right] \]

\[\text{HypergeometricPFQRegularized} \left[\left\{ 1, 1 - \frac{7}{8} + k, -\frac{3}{8} + k \right\}, \left\{ -\frac{1}{8} + k, \frac{3}{8} + k \right\}, 1 \right] - \left(\Gamma \left[\frac{1}{4} \right] \right)^2 \text{Pochhammer} \left[\frac{1}{8} - 1 + k \right] \text{Pochhammer} \left[\frac{5}{8} - 1 + k \right] \]

\[\left(2 \sqrt{2} \left(-3 + 4k \right) \pi^{3/2} \text{Pochhammer} \left[-\frac{1}{8}, -1 + k \right] \text{Pochhammer} \left[\frac{3}{8}, -1 + k \right] \right) \]

\[Q[k, 2/3] = \frac{1}{2} - \frac{1}{108 \sqrt{2} \pi} \Gamma \left[\frac{17}{6} + k \right] \Gamma \left[\frac{19}{6} + k \right] \Gamma \left[\frac{7}{6} + k \right] \]

\[\left(3 \left(73 + 24k \right) \text{HypergeometricPFQRegularized} \left[\left\{ 1, \frac{17}{6} + k, \frac{19}{6} + k, \frac{7}{6} + k \right\}, \left\{ \frac{41}{12} + k, \frac{47}{12} + k, \frac{14}{3} + k \right\}, 1 \right] + \left(7 + 2k \right) \left(17 + 6k \right) \left(19 + 6k \right) \text{HypergeometricPFQRegularized} \left[\left\{ 2, \frac{23}{6} + k, \frac{25}{6} + k, \frac{9}{2} + k \right\}, \left\{ \frac{53}{12} + k, \frac{59}{12} + k, \frac{17}{3} + k \right\}, 1 \right] \right) \]

\[Q[k, 3/4] = \frac{1}{2} - \frac{4^{3-k} \Gamma \left[\frac{7}{2} + k \right]^2 \Gamma \left[\frac{9}{2} + k \right]}{\pi \Gamma \left[5 + k \right] \Gamma \left[\frac{11}{2} + 2k \right]} - 2^{3-2k} \Gamma \left[\frac{23}{4} + 2k \right] \]

\[\text{HypergeometricPFQRegularized} \left[\left\{ 1, \frac{23}{8} + k, \frac{27}{8} + k \right\}, \left\{ \frac{29}{8} + k, \frac{33}{8} + k \right\}, 1 \right] \]

\[Q[k, 1] = \frac{1}{2} - \frac{4^{3-k} \Gamma \left[\frac{7}{2} + k \right]^2 \Gamma \left[\frac{9}{2} + k \right]}{\pi \Gamma \left[5 + k \right] \Gamma \left[\frac{11}{2} + 2k \right]} \]
\[Q[k, 5/2] = \frac{1}{2} - \left(\frac{9173 + k (3547 + 20 k (23 + k))}{4 (8 + k) (9 + k) (10 + k) \sqrt{\pi}} \right) \Gamma \left[\frac{29}{2} + 2 k \right] \]

\[Q[k, 3] = \frac{1}{2} - \left(4^{8-k} (1944 + 668 k + 77 k^2 + 3 k^3) \right) \Gamma \left[\frac{15}{2} + k \right] \Gamma \left[\frac{17}{2} + k \right] \Gamma \left[\frac{21}{2} + k \right] \]

\[\left(\pi \Gamma \left[13 + k \right] \Gamma \left[\frac{33}{2} + 2 k \right] \right) \]

\[Q[k, 3] = \frac{1}{2} - \left(4^{8-k} (1944 + k (668 + k (77 + 3 k))) \right) \Gamma \left[\frac{15}{2} + k \right] \Gamma \left[\frac{17}{2} + k \right] \Gamma \left[\frac{21}{2} + k \right] \]

\[\left(\pi \Gamma \left[13 + k \right] \Gamma \left[\frac{33}{2} + 2 k \right] \right) \]

\[Q[k, 7/2] = \frac{1}{2} - \left((772746 + k (279845 + 14 k (2747 + 2 k (85 + 2 k))) \right) \Gamma \left[\frac{39}{2} + 2 k \right] \]

\[\left(16 (10 + k) (11 + k) (12 + k) (13 + k) (14 + k) \sqrt{\pi} \Gamma \left[19 + 2 k \right] \right) \]

\[Q[k, 4] = \frac{1}{2} - \left(2^{23+2 k} (11 + k) (1608 + k (402 + k (34 + k))) \right) \Gamma \left[\frac{19}{2} + k \right] \Gamma \left[\frac{23}{2} + k \right] \Gamma \left[\frac{27}{2} + k \right] \]

\[\left(\pi \Gamma \left[17 + k \right] \Gamma \left[\frac{43}{2} + 2 k \right] \right) \]

\[Q[k, 4] = \frac{1}{2} - \left(2^{23+2 k} (11 + k) (1608 + 402 k + 34 k^2 + k^3) \right) \Gamma \left[\frac{19}{2} + k \right] \Gamma \left[\frac{23}{2} + k \right] \Gamma \left[\frac{27}{2} + k \right] \]

\[\left(\pi \Gamma \left[17 + k \right] \Gamma \left[\frac{43}{2} + 2 k \right] \right) \]

\[Q[k, 9/2] = \frac{1}{2} - \left(3 \left(309020628 + k \left(133011851 + k \left(24013347 + 8 k \left(291395 + k \left(16069 + 478 k + 6 k^2 \right) \right) \right) \right) \right) \right) \]

\[\Gamma \left[\frac{49}{2} + 2 k \right] \]

\[\left(16 (13 + k) (14 + k) (15 + k) (16 + k) (17 + k) (18 + k) \sqrt{\pi} \Gamma \left[25 + 2 k \right] \right) \]

\[Q[k, 5] = \frac{1}{2} - \left(4^{13-k} (42253920 + k (17437488 + k \left(3006982 + k \left(278177 + k \left(14613 + 5 k (83 + k) \right) \right) \right) \right) \right) \]

\[\Gamma \left[\frac{23}{2} + k \right] \Gamma \left[\frac{27}{2} + k \right] \Gamma \left[\frac{33}{2} + k \right] \]

\[\left(\pi \Gamma \left[21 + k \right] \Gamma \left[\frac{53}{2} + 2 k \right] \right) \]

\[Q[k, 11/2] = \frac{1}{2} - \left(136027165680 + k \left(54876836241 + k \left(955012777 + 22 k (42325165 + 4 k (625297 + 2 k (11222 + k (227 + 2 k)))) \right) \right) \right) \]

\[\Gamma \left[\frac{59}{2} + 2 k \right] \]

\[\left(64 (15 + k) (16 + k) (17 + k) (18 + k) (19 + k) (20 + k) (21 + k) (22 + k) \sqrt{\pi} \Gamma \left[29 + 2 k \right] \right) \]
\[Q[k, 6] = \frac{1}{2} - \left(4^{16+k} (16 + k) \right) \]
\[\left(84618864 + k (28334952 + k (3965226 + k (298261 + k (12795 + k (299 + 3 k)))))) \right) \]
\[\Gamma\left[\frac{27}{2} + k \right] \Gamma\left[\frac{33}{2} + k \right] \Gamma\left[\frac{39}{2} + k \right] / \left(\pi \Gamma[25 + k] \Gamma\left[\frac{63}{2} + 2 k \right] \right) \]

\[Q[k, 13/2] = \frac{1}{2} - \left(\left(375983486363250 + k (166805964311481 + k (33015314849730 + k (3830484371511 +
52 k (5528219870 + k (278721151 + 4 k (2364230 +
k (52153 + 4 k (170 + k))))))) \right) \right) \]
\[\Gamma\left[\frac{69}{2} + 2 k \right] / \left(64 (18 + k) (19 + k) (20 + k) (21 + k) (22 + k) (23 + k) (24 + k) (25 + k) \right) \]
\[(26 + k) \sqrt{\pi} \Gamma[35 + 2 k] \]

\[Q[k, 7] = \frac{1}{2} - \left(\left(3598868931840 + k (1585809491904 + k (310678834224 + k (35568651388 + k (2627181856 + k (130116779 + k (4332796 + 7 k (13406 + k (172 + k)))))))))) \right) \]
\[\Gamma\left[\frac{45}{2} + k \right] / \left(\pi \Gamma[29 + k] \Gamma\left[\frac{73}{2} + 2 k \right] \right) \]

\[Q[k, 15/2] = \frac{1}{2} - \left(\left(79439194716197400 + k (334661026528250 + k (6366113899366227 + k (720769149273895 +
2 k (26925097796079 + 2 k (694501996875 + 2 k (12547829631 +
2 k (157106325 + 2 k (1307421 + 10 k (1309 + 6 k))))))))) \right) \right) \]
\[\Gamma\left[\frac{25}{2} + k \right] / \left(256 (20 + k) (21 + k) (22 + k) (23 + k) (24 + k) \right) \]
\[(25 + k) \]
\[(26 + k) \]
\[(27 + k) (28 + k) (29 + k) \]
\[(30 + k) \sqrt{\pi} \Gamma[39 + 2 k] \]

\[Q[k, 8] = \frac{1}{2} - \left(\left(4^{22+k} (21 + k) (1988611948800 + k (750781316640 + k (125965449664 + k (12348998564 +
2 k (781319218 + k (33180174 + k (949221 + k (17721 + k (197 + k)))))))))) \right) \]
\[\Gamma\left[\frac{51}{2} + k \right] / \left(\pi \Gamma[33 + k] \Gamma\left[\frac{83}{2} + 2 k \right] \right) \]
Appendix E: Collected $P(k, \alpha)$ formulas

\[
P[k, 1/2] = 1 - \frac{4^{1-k} \left(15 + 8k\right) \text{Gamma}[2 + k] \text{Gamma}\left[\frac{5}{2} + 2k\right]}{\sqrt{\pi} \text{Gamma}[7 + 3k]}
\]

\[
P[k, 1] = 1 - \frac{4^{4k} \left(25 + 2k + k\right) \text{Gamma}\left[\frac{5}{2} + 2k\right]}{\sqrt{\pi} \text{Gamma}[7 + 2k]}
\]

\[
P[k, 3/2] = 1 - \left(2^{1+2k} 3^{\frac{19}{3} - 3k} \left(11171160 + k \left(13811867 + k \left(7191111 + 2k \left(1010639 + 8k \left(20237 + 8k \left(219 + 8k\right)\right)\right)\right)\right)\right)\right)\gamma_k\left[\frac{19}{2} + 2k\right] / \left(4 + k\right) \text{Gamma}\left[\frac{17}{3} + k\right] \text{Gamma}\left[\frac{19}{3} + k\right]
\]

\[
P[k, 2] = 1 - \left(2^{15+2k} \left(6 + k\right) \left(7 + k\right) \left(2430 + k \left(1452 + k \left(355 + 2k \left(21 + k\right)\right)\right)\right)\right) \text{Gamma}\left[\frac{15}{2} + k\right] \text{Gamma}[12 + 2k] / \left(3 \sqrt{\pi} \text{Gamma}[22 + 3k]\right)
\]

\[
P[k, 5/2] = 1 - \frac{1}{3 \sqrt{\pi} \text{Gamma}[3 \left(9 + k\right)]} \left(368357561371800 + k \left(520690320295542 + k \left(39412022168607 + k \left(13486078149434 + k \left(36318860274685 + 4k \left(1740283783810 + k \left(242075899443 + 8k \left(3050881797 + 16k \left(13632885 + 8k \left(82123 + 4k \left(599 + 8k\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right) \text{Gamma}[6 + k] \text{Gamma}\left[\frac{29}{2} + 2k\right]
\]

\[
P[k, 3] = 1 - \frac{1}{15 \sqrt{\pi} \text{Gamma}[32 + 3k]} \left(379459080 + k \left(308904450 + k \left(115725397 + k \left(26122781 + k \left(3878429 + k \left(385625 + 2k \left(12439 + 8k \left(59 + k\right)\right)\right)\right)\right)\right)\right)\right) \text{Gamma}\left[\frac{21}{2} + k\right] \text{Gamma}[17 + 2k]
\]

\[
P[k, 7/2] = 1 - \left(2^\left(2k + 1\right) / \left(45 \text{Sqrt}[\pi] \text{Gamma}[3k + 37]\right)\right) \left(k \left(k \left(k \left(k \left(k \left(2 + 2k + 8k + 8k + 8k + 8k + (8k + 1155) + 627745) + 213092505\right) + 50701408687 + 8975560338105\right) + 122491774627465 + 13168240090862515\right) + 2822204465118872387 + 48470018085663415875\right) + 665743984716690849005 + 3621396836907797314965\right) + 153031211593095182909 + 48559423717416333398805\right) + 109056593928539986791210 + 1547096492105758595010200\right) + 104291177291881660800000 \text{Gamma}[k + 8] \text{Gamma}\left[\frac{2}{2} + 39/2\right] \text{Gamma}[k + 8] \text{Gamma}[k + 8]
\]

\[
P[k, 4] = 1 - \frac{1}{315 \sqrt{\pi} \text{Gamma}[42 + 3k]} \left(12 + k \left(13 + k \left(166878079200 + k \left(122897189520 + k \left(122303702816 + k \left(9572954872 + k \left(1478287827 + k \left(165605534 + k \left(13511051 + 4k \left(196472 + k \left(7727 + 2\left(92 + k\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right)\right) \text{Gamma}\left[\frac{27}{2} + k\right] \text{Gamma}[22 + 2k]
\]
\[P[k, 5] = 1 - \frac{1}{2835 \sqrt{\pi} \Gamma(52 + 3 k)} 2^{19 + 2k} (14 + k) (15 + k) (16 + k) (17 + k) (120 924 273 204 504 000 + k (102 507 830 306 476 560 + k (41 932 771 534 166 364 + k (11 014 606 145 379 168 + k (2 080 654 407 844 389 + k (299 162 082 651 495 + k (33 711 740 125 624 + k (3 014 239 364 594 + k (213 865 097 437 + k (11 917 312 635 + 2 k (255 274 065 + 2 k (4 055 247 + 2 k (44 953 + 4 k (155 + 33 k)))))))))))))) \Gamma\left(\frac{33}{2} + k\right) \Gamma(27 + 2 k) \]

\[P[k, 6] = 1 - \left(4^{17 + k} (16 + k) (17 + k) (18 + k) (19 + k) (20 + k) \right) (19 220 355 288 511 977 600 000 + k (16 242 449 566 598 300 707 200 + k (6 681 220 202 514 090 240 720 + k (1 783 004 730 929 329 600 620 + k (346 733 293 844 456 153 244 + k (52 233 918 193 551 980 097 + k (6 314 185 368 328 049 009 + k (624 822 841 174 948 365 + k (51 102 255 599 055 628 + k (3 460 662 911 592 359 + k (193 165 571 388 240 + k (8 794 057 241 035 + 4 k (80 259 953 428 + k (2 290 377 429 + 32 k (1 536 055 + k (23 285 + k (222 + k)) \right))))))))))\right) \Gamma\left(\frac{39}{2} + k\right) \Gamma(32 + 2 k) \left(155 925 \sqrt{\pi} \Gamma[62 + 3 k] \right) \]

\[P[k, 7] = 1 - \left(4^{19 + k} (19 + k) (20 + k) (21 + k) (22 + k) (23 + k) \right) (93 115 983 364 352 262 836 121 600 000 + k (83 540 230 985 901 994 042 939 200 000 + k (36 625 725 362 656 183 042 319 918 400 + k (10 465 359 136 524 733 926 516 872 400 + k (2 192 145 883 141 091 556 079 168 416 + k (358 727 739 182 758 926 362 746 224 + k (47 679 369 852 153 863 755 127 304 + k (5 277 019 018 029 942 137 772 715 + k (4 940 853 360 280 547 480 317 019 + k (39 497 660 323 444 969 737 281 + k (2 706 986 876 977 229 352 363 + k (159 053 936 795 503 466 535 + k (7 983 979 653 658 456 617 + k (3 408 174 122 396 803 + k (12 169 364 536 290 137 + 2 k (180 377 767 095 805 + 8 k (543 229 743 195 + k (10 355 031 855 + 2 k (75 053 103 + 2 k (388 285 + 8 k (319 + k)) \right))))))))))\right) \Gamma\left(\frac{45}{2} + k\right) \Gamma(37 + 2 k) \left(6 081 075 \sqrt{\pi} \Gamma[72 + k] \right) \]

54
\[P[k, 8] = 1 - \left(2^{47 - 2k} (21 + k)^2 (22 + k) (23 + k) (24 + k) (25 + k) (26 + k) (27 + k) \right) \]

\[
\begin{align*}
&= 1 - \left(4802045879109616081302758400000 + k \right) (3858710297326679219601496320000 + k) (1522723359891589468186651200000 + k) (393656346276850862450802748800 + k) (75015854746893295465165101360 + k) (11235433364499485176177244760 + k) (1376051855680016441319285648 + k) (141420797208530011704449806 + k) (12403797654835598964642751 + k) (938120717565132430404908 + k) (61506100038006314747573 + k) (3499723365716436188862 + k) (172428615280172511057 + k) (7317206363102863696 + k) (265284554221243363 + 8k (1015738921366876 + k) (25900524928321 + 2k (269504627784 + k) (4453632393 + 8k (7018508 + k) (63338 + k) (364 + k))) \right) \right)} \]
\[P[k, 9] = 1 - \left(4^{25+k} (24 + k) (25 + k) (26 + k) (27 + k) (28 + k) (29 + k) (30 + k) (713 293 553 139 622 754 694 693 963 317 452 800 000 + k (635 355 395 074 463 514 029 323 149 661 191 936 000 + k (278 079 496 027 206 198 093 652 897 101 461 184 000 + k (79 774 736 642 216 531 455 635 139 673 023 718 400 + k (16 881 840 743 207 830 734 528 515 180 749 014 432 + k (2 811 576 620 348 468 867 593 749 708 243 852 480 + k (383 844 823 765 194 924 061 357 689 524 175 336 + k (44 163 653 980 970 699 767 641 018 110 895 324 + k (4 366 931 784 817 264 916 038 450 286 530 024 + k (376 310 465 758 103 836 625 708 281 277 013 + k (28 535 747 593 621 941 160 233 619 408 627 + k (1 916 199 167 065 366 032 140 260 947 616 + k (114 341 155 382 976 892 972 424 085 160 + k (6 069 207 710 505 070 678 992 562 294 + k (286 281 946 344 496 671 122 808 298 + k (11 966 909 137 541 867 094 048 832 + k (441 364 445 548 145 326 318 436 + k (14 278 308 060 865 405 496 245 + k (402 116 429 151 760 056 739 + 4 k (2 441 577 706 031 304 487 + k (50 536 674 524 298 973 + 2 k (439 014 247 801 397 + 2 k (3 137 761 067 965 + 4 k (8 975 086 291 + k (78 955 579 + 4 k (125 257 + k (510 + k)))))))))))))))))))))))))))))}
\[P[k, 10] = 1 - \left(2^{55-k} \cdot (26 + k) \cdot (27 + k) \cdot (28 + k) \cdot (29 + k) \cdot (30 + k) \cdot (31 + k) \right) \\
(32 + k) \cdot (33 + k) \cdot (673 864 017 029 721 730 280 206 932 087 415 080 960 000 000 +
\]
\(k \cdot (595 551 326 805 287 318 481 629 639 547 653 536 204 800 000 +
\]
\(k \cdot (259 149 862 742 413 082 988 388 374 293 809 136 290 560 000 +
\]
\(k \cdot (74 060 839 172 363 967 775 004 371 596 332 268 394 752 000 +
\]
\(k \cdot (15 644 068 047 783 142 703 251 769 339 454 227 128 560 000 +
\]
\(k \cdot (2 606 121 006 903 663 300 624 557 044 933 919 746 850 880 +
\]
\(k \cdot (356 718 928 562 542 757 740 595 836 335 516 173 561 616 +
\]
\(k \cdot (41 263 026 144 122 239 865 482 368 770 234 247 920 544 +
\]
\(k \cdot (4 116 221 644 057 589 252 439 228 973 433 300 796 096 +
\]
\(k \cdot (359 442 799 411 115 647 912 819 946 072 322 280 612 +
\]
\(k \cdot (27 780 862 961 069 849 336 998 256 320 586 367 669 +
\]
\(k \cdot (1 915 554 645 587 419 188 272 736 521 552 550 244 +
\]
\(k \cdot (118 468 772 469 069 463 559 633 698 799 649 947 +
\]
\(k \cdot (6 592 327 301 694 904 219 454 935 064 139 576 +
\]
\(k \cdot (330 467 749 324 318 131 460 451 277 773 238 +
\]
\(k \cdot (14 917 028 114 582 139 119 687 300 385 384 +
\]
\(k \cdot (605 177 059 416 137 391 199 300 303 302 +
\]
\(k \cdot (21 997 289 548 010 924 978 292 302 676 +
\]
\(k \cdot (713 325 624 935 490 782 206 568 913 +
\]
\(k \cdot (20 525 891 792 380 364 132 497 044 +
\]
\(k \cdot (520 667 694 529 696 348 316 127 +
\]
\(k \cdot (2 887 684 465 959 496 315 524 +
\]
\(k \cdot (55 484 895 641 085 087 057 +
\]
\(k \cdot (2 288 078 589 200 024 504 +
\]
\(k \cdot (3 160 403 710 463 067 +
\]
\(k \cdot (9 042 264 246 924 +
\]
\(k \cdot (83 137 167 333 + 8 \cdot k \cdot (73 731 685 +
\]
\(k \cdot (37 663 +
\]
\(2 \cdot k \cdot (626 + k) \cdot (63 + k) \cdot \frac{\Gamma(52 + k)}{\Gamma(63 + k)} \cdot \left\lfloor \frac{1}{1856 156 927 625} \cdot \sqrt{\pi} \cdot \Gamma(52 + k) \right\rfloor \]
\[102 +
\]
\[3 \cdot \]
\[k \cdot \]
\[P[k, 11] =
\[1 - \left(2^{59+k} \cdot (29 + k) \cdot (30 + k) \cdot (31 + k) \cdot (32 + k) \cdot (33 + k) \cdot (34 + k) \cdot (35 + k) \cdot (36 + k) \cdot (37 + k) \right) \\
(652 453 123 059 428 614 655 643 144 951 152 830 897 582 080 000 000 +
\]
\(k \cdot (578 368 992 529 279 555 442 655 862 245 369 150 332 877 926 400 000 +
\]
\(k \cdot (252 732 342 153 123 902 506 590 541 241 454 304 916 910 673 920 000 +
\]
\(k \cdot (72 613 831 874 396 289 876 005 765 844 824 586 761 162 484 096 000 +
\]
\(k \cdot (15 437 987 486 609 370 279 148 153 488 417 206 897 176 244 352 000 +
\]
\(k \cdot (2 591 474 920 363 656 128 228 793 303 259 205 349 723 442 272 960 +
\]
\(k \cdot (357 877 556 061 689 419 375 871 248 847 018 300 873 590 549 440 \cdot k +
\]
\(41 827 388 581 207 931 939 304 511 850 131 702 607 822 928 816 +
\]
\(k \cdot (4 223 613 318 657 703 714 388 168 020 587 627 852 063 042 +
\]
\(960 + k \cdot
\]
\((374 233 930 852 822 631 199 507 598 074 921 784 149 +
\]
\(182 196 + k \cdot
\]

57
Appendix F: Formulas for the differences $P(k + 1, \alpha) - P(k, \alpha)$

\[
\begin{align*}
\{(P[-9, \alpha] - P[-10, \alpha]) / (Q[-9, \alpha] - Q[-10, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (46 177 834 903 200 - 137 291 945 232 420 \alpha + 183 223 770 062 544 \alpha^2 - 144 928 552 337 505 \alpha^3 + \\
& 75 551 086 993 917 \alpha^4 - 27 294 195 105 127 \alpha^5 + 6 992 185 966 703 \alpha^6 - 1 276 717 993 092 \alpha^7 + \\
& 164 445 900 780 \alpha^8 - 14 524 536 600 \alpha^9 + 831 888 000 \alpha^{10} - 27 620 000 \alpha^{11} + 400 000 \alpha^{12}) / \\
& (16 (-2 + \alpha) (-1 + \alpha) \alpha (-9 + 2 \alpha) (-7 + 2 \alpha) (-3 + 2 \alpha) (-1 + 2 \alpha) \\
& (-33 + 10 \alpha) (-31 + 10 \alpha) (-29 + 10 \alpha) (-27 + 10 \alpha) (-69 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-8, \alpha] - P[-9, \alpha]) / (Q[-8, \alpha] - Q[-9, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (71 065 874 880 - 196 508 655 288 \alpha + 238 390 781 430 \alpha^2 - 166 655 889 287 \alpha^3 + \\
& 74 136 642 801 \alpha^4 - 21 856 175 231 \alpha^5 + 4 308 401 065 \alpha^6 - 558 359 270 \alpha^7 + \\
& 45 307 900 \alpha^8 - 2 067 000 \alpha^9 + 40 000 \alpha^{10}) / (8 (-1 + \alpha) (-7 + 2 \alpha) (-5 + 2 \alpha) \\
& (-3 + 2 \alpha) (-1 + 2 \alpha) (-29 + 10 \alpha) (-27 + 10 \alpha) (-23 + 10 \alpha) (-61 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-7, \alpha] - P[-8, \alpha]) / (Q[-7, \alpha] - Q[-8, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (11 442 150 720 - 37 572 363 864 \alpha + 54 199 380 564 \alpha^2 - 45 137 088 975 \alpha^3 + 23 974 654 780 \alpha^4 - \\
& 8 462 466 071 \alpha^5 + 2 003 607 746 \alpha^6 - 312 951 500 \alpha^7 + 30 713 000 \alpha^8 - 1 700 000 \alpha^9 + 4 000 \alpha^{10}) / \\
& (20 (-1 + \alpha) \alpha (-7 + 2 \alpha) (-5 + 2 \alpha) (-3 + 2 \alpha) (-1 + 2 \alpha) \\
& (-23 + 10 \alpha) (-21 + 10 \alpha) (-53 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-6, \alpha] - P[-7, \alpha]) / (Q[-6, \alpha] - Q[-7, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (142 037 280 - 432 060 636 \alpha + 557 917 331 \alpha^2 - 397 844 119 \alpha^3 + \\
& 170 537 449 \alpha^4 - 44 743 105 \alpha^5 + 6 969 400 \alpha^6 - 584 500 \alpha^7 + 20 000 \alpha^8) / \\
& (20 (-1 + \alpha) \alpha (-5 + 2 \alpha) (-1 + 2 \alpha) (-9 + 4 \alpha) (-21 + 10 \alpha) (-19 + 10 \alpha) (-17 + 10 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-5, \alpha] - P[-6, \alpha]) / (Q[-5, \alpha] - Q[-6, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (5 (-94 500 + 306 741 \alpha - 410 318 \alpha^2 + 291 973 \alpha^3 - 118 784 \alpha^4 + 27 472 \alpha^5 - 3320 \alpha^6 + 160 \alpha^7) \\
& 4 (-1 + \alpha) \alpha (-5 + 2 \alpha) (-3 + 2 \alpha) (-17 + 10 \alpha) (-37 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-4, \alpha] - P[-5, \alpha]) / (Q[-4, \alpha] - Q[-5, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (163 800 - 598 470 \alpha + 878 307 \alpha^2 - 657 809 \alpha^3 + 262 580 \alpha^4 - 52 300 \alpha^5 + 4 000 \alpha^6 \\
& 2 \alpha (-3 + 2 \alpha) (-1 + 2 \alpha) (-13 + 10 \alpha) (-11 + 10 \alpha) (-29 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-3, \alpha] - P[-4, \alpha]) / (Q[-3, \alpha] - Q[-4, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (-1890 + 7821 \alpha - 12 267 \alpha^2 + 9050 \alpha^3 - 3120 \alpha^4 + 400 \alpha^5 \\
& \alpha (-3 + 2 \alpha) (-1 + 2 \alpha) (-9 + 10 \alpha) (-21 + 20 \alpha))
\end{align*}
\]

\[
\begin{align*}
\{(P[-2, \alpha] - P[-3, \alpha]) / (Q[-2, \alpha] - Q[-3, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& (-102 + 431 \alpha - 545 \alpha^2 + 200 \alpha^3) \\
& 5 \alpha (-1 + 2 \alpha) (-13 + 20 \alpha)
\end{align*}
\]

\[
\begin{align*}
\{(P[-1, \alpha] - P[-2, \alpha]) / (Q[-1, \alpha] - Q[-2, \alpha]) =
\end{align*}
\]

\[
\begin{align*}
& 3 - 18 \alpha + 20 \alpha^2 \\
& 5 \alpha (-1 + 2 \alpha)
\end{align*}
\]

\[
\begin{align*}
\{(P[0, \alpha] - P[-1, \alpha]) / (Q[0, \alpha] - Q[-1, \alpha]) = \text{DifferenceRoot}[\\
& \text{Function}[[y, \alpha], \{104 616 + 1 771 356 \alpha + 11 477 230 \alpha^2 + 37 246 100 \alpha^3 + 66 529 450 \alpha^4 + \\
& 66 401 000 \alpha^5 + 34 705 000 \alpha^6 + 7 400 000 \alpha^7 + (-49 896 - 820 728 \alpha - 5 136 912 \alpha^2 - \\
& 16 254 080 \alpha^3 - 28 608 000 \alpha^4 - 28 400 000 \alpha^5 - 14 880 000 \alpha^6 - 3 200 000 \alpha^7) y[\alpha] + \\
& (8280 + 153 066 \alpha + 1 109 331 \alpha^2 + 4 080 090 \alpha^3 + 8 299 125 \alpha^4 + 9 435 000 \alpha^5 + \\
& 5 602 500 \alpha^6 + 1 350 000 \alpha^7) y[1 + \alpha] = 0, \ y[1] = \frac{79}{23}\}]][\alpha]
\end{align*}
\]
\[
\frac{(P[0, \alpha] - P[-1, \alpha])}{(Q[0, \alpha] - Q[-1, \alpha])} = \\
\text{DifferenceRoot}[\text{Function}[\{y, \alpha\}, \{2 (52308 + \alpha (885678 + 5 \alpha (1147723 + 5 \alpha (74922 + 20 \alpha (66401 + 5 \alpha (6941 + 1480 \alpha))))) - 8 (1 + \alpha) (1 + 2 \alpha) (3 + 10 \alpha) (7 + 10 \alpha) (9 + 10 \alpha) (11 + 10 \alpha) (3 + 20 \alpha) \ y[\alpha] + \\
8280 + 153066 \alpha + 1190331 \alpha^2 + 4080090 \alpha^3 + 8299125 \alpha^4 + 9435000 \alpha^5 + \\
5602500 \alpha^6 + 1350000 \alpha^7 \} \ y[1 + \alpha] = 0, \ y[1] = \frac{79}{23}]] [\alpha] \\
\]

\[
\frac{(P[1, \alpha] - P[0, \alpha])}{(Q[1, \alpha] - Q[0, \alpha])} = \\
\text{DifferenceRoot}[\text{Function}[\{y, \alpha\}, \{2 (3 + 2 \alpha (5168520 + \alpha (42053906 + 5 \alpha (28672669 + 5 \alpha (10621126 + 5 \alpha (2308917 + 10 \alpha (147271 + 20 \alpha (2551 + 370 \alpha)))))) - 8 (1 + \alpha) (3 + 2 \alpha) (8 + 5 \alpha) (7 + 10 \alpha) (9 + 10 \alpha) (11 + 10 \alpha) (13 + 10 \alpha) (11 + 20 \alpha) \ y[\alpha] + \\
3 \ (2 + 5 \alpha) (3 + 5 \alpha)^2 (4 + 5 \alpha) (6 + 5 \alpha) (5 + 6 \alpha) (7 + 6 \alpha) \ y[1 + \alpha] = 0, \ y[1] = \frac{159}{31}]] [\alpha] \\
\]

\[
\frac{(P[2, \alpha] - P[1, \alpha])}{(Q[2, \alpha] - Q[1, \alpha])} = \\
\text{DifferenceRoot}[\text{Function}[\{y, \alpha\}, \{2 (19 + 10 \alpha) (965816136 + \\
\alpha (8854435188 + \alpha (35536758156 + \alpha (82467493278 + 5 \alpha (24560864569 + \alpha (2456169849 + 10 \alpha (1672506807 + 10 \alpha (76642461 + \\
10 \alpha (2263503 + 20 \alpha (19461 + 1480 \alpha))))))))) + \\
\ (8 + 5 \alpha) (7 + 5 \alpha) (8 + 5 \alpha) (5 + 6 \alpha) (7 + 6 \alpha) (39 + 20 \alpha) \ y[1 + \alpha] = 0, \ y[1] = \frac{14725}{2548}]] [\alpha] \\
\]

\[
\frac{(P[2, \alpha] - P[1, \alpha])}{(Q[2, \alpha] - Q[1, \alpha])} = \\
\text{DifferenceRoot}[\text{Function}[\{y, \alpha\}, \{2 (19 + 10 \alpha) (965816136 + \\
\alpha (8854435188 + \alpha (35536758156 + \alpha (82467493278 + 5 \alpha (24560864569 + \alpha (2456169849 + 10 \alpha (1672506807 + 10 \alpha (76642461 + \\
10 \alpha (2263503 + 20 \alpha (19461 + 1480 \alpha))))))))) + \\
\ (8 + 5 \alpha) (7 + 5 \alpha) (8 + 5 \alpha) (5 + 6 \alpha) (7 + 6 \alpha) (39 + 20 \alpha) \ y[1 + \alpha] = 0, \ y[1] = \frac{14725}{2548}]] [\alpha] \\
\]
\[(P[3, \alpha] - P[2, \alpha]) / (Q[3, \alpha] - Q[2, \alpha]) = \]

\[\text{DifferenceRoot}[\{\{y, \alpha\}, \{119886687531072 + 1130007651578280 \alpha + 4730377453468740 \alpha^2 + 11736225438624060 \alpha^3 + 19353165218029748 \alpha^4 + 22479041543936940 \alpha^2 + 18970703732153000 \alpha^6 + 11799854114254400 \alpha^7 + 5418307029360000 \alpha^8 + 181627581000000 \alpha^9 + 432427870000000 \alpha^{10} + 6930360000000 \alpha^{11} + 6705600000000 \alpha^{12} + 296000000000 \alpha^{13} - 40 (1 + \alpha) (2 + \alpha) (3 + 2 \alpha) (5 + 4 \alpha) (17 + 10 \alpha) (19 + 10 \alpha) (21 + 10 \alpha) (23 + 10 \alpha) (27 + 20 \alpha) (15804 + 23196 \alpha + 12500 \alpha^2 + 2925 \alpha^3 + 250 \alpha^4) \}
\]

\[\text{DifferenceRoot}[\{\{y, \alpha\}, \{62053150896 + \alpha (528361338510 + \alpha (1954265133195 + \alpha (4184976329605 + \alpha (5800159706339 + 25 \alpha (219394968301 + 2 \alpha (72428907219 + 20 \alpha (1672960971 + 5 \alpha (106146747 + 50 \alpha (440993 + 16 \alpha (3377 + 185 \alpha)))))))))) - 40 (1 + \alpha) (2 + \alpha) (3 + 2 \alpha) (5 + 4 \alpha) (17 + 10 \alpha) (19 + 10 \alpha) (21 + 10 \alpha) (23 + 10 \alpha) (27 + 20 \alpha) (15804 + 23196 \alpha + 12500 \alpha^2 + 2925 \alpha^3 + 250 \alpha^4) \}
\]

\[\text{DifferenceRoot}[\{\{y, \alpha\}, \{12399482931292800 + 1323602698868602800 \alpha + 63071256304638672 \alpha^2 + 1801725804655612520 \alpha^3 + 3478633593011297088 \alpha^4 + 4836803358078921200 \alpha^2 + 5027417725018326608 \alpha^6 + 399499233902932300 \alpha^7 + 245764488211592832 \alpha^3 + 1176182395193731200 \alpha^6 + 437000054487800 \alpha^{10} + 124851335722672000 \alpha^{11} + 269119986266560000 \alpha^{12} + 423391999840000 \alpha^{13} + 4587617920000000 \alpha^{14} + 306028800000000 \alpha^{15} + 94720000000 \alpha^{16} - 40 (1 + \alpha) (2 + \alpha) (5 + 2 \alpha) (5 + 4 \alpha) (7 + 4 \alpha)^2 (19 + 10 \alpha) (21 + 10 \alpha) (23 + 10 \alpha) (27 + 10 \alpha) (583260 + 1138556 \alpha + 909557 \alpha^2 + 379832 \alpha^3 + 87215 \alpha^4 + 10400 \alpha^5 + 500 \alpha^6) \}
\]

\[\hat{y}[1 + \alpha] = 0, \hat{y}[1] = \frac{6815}{1331} \} [\alpha] \]
\[(P[4, \alpha] - P[3, \alpha]) / (Q[4, \alpha] - Q[3, \alpha]) =
\]
\[\text{DifferenceRoot\ Function}\bigg[
\{\hat{\gamma}[\alpha], \{8 (5 + 2 \alpha) (27 + 10 \alpha) (11 481 002 714 160 + \alpha (113 711 181 136 696 + \alpha (494 692 499 913 170 + \alpha (1270 322 088 653 659 + \alpha (2 169 050 754 875 320 + \alpha (2 619 353 329 479 694 + \alpha (2 315 803 364 917 750 + \alpha (1 526 988 332 040 751 + 200 \alpha (3 780 842 831 328 + \alpha (1 401 537 106 177 + 10 \alpha (38 332 087 672 + 5 \alpha (1 501 625 411 + 40 \alpha (4 981 961 + 10 \alpha (40 121 + 1480 \alpha)))))))))) - 40 (1 + \alpha) (2 + \alpha) (5 + 2 \alpha) (5 + 4 \alpha) (7 + 4 \alpha^2) (19 + 10 \alpha) (21 + 10 \alpha) \bigg] (23 + 10 \alpha) (27 + 10 \alpha)
(583 260 + \alpha (1 138 556 + \alpha (909 557 + \alpha (379 832 + 5 \alpha (17 443 + 20 \alpha (104 + 5 \alpha)))\bigg)
\hat{\gamma}[\alpha] + 15 (2 + \alpha) (9 + 4 \alpha)
(11 + 4 \alpha^2) (7 + 5 \alpha) (8 + 5 \alpha) (9 + 5 \alpha)
(11 + 5 \alpha) (11 + 6 \alpha) (13 + 6 \alpha)
(51 744 + \alpha (159 078 + \alpha (196 851 + \alpha (124 972 + 5 \alpha (8543 + 20 \alpha (74 + 5 \alpha)))\bigg))
\hat{\gamma}[1 + \alpha] = 0, \hat{\gamma}[1] = \frac{6815}{1331}\bigg]\]\[\{\alpha]\]

\[(P[5, \alpha] - P[4, \alpha]) / (Q[5, \alpha] - Q[4, \alpha]) =
\text{DifferenceRoot\ Function}\bigg[
\{\hat{\gamma}[\alpha], \{95 843 301 403 610 880 + 1 005 797 018 340 668 736 \alpha + 4 488 321 940 206 566 688 \alpha^2 + 11 688 717 091 787 617 392 \alpha^3 + 20 226 680 342 523 054 240 \alpha^4 + 24 912 622 091 457 479 904 \alpha^5 + 22 742 206 460 428 681 952 \alpha^6 + 15 768 969 222 081 931 248 \alpha^7 + 8 421 569 967 419 796 320 \alpha^8 + 3 484 687 064 851 977 600 \alpha^9 + 1 115 689 813 578 828 800 \alpha^{10} + 273 928 767 919 968 000 \alpha^{11} + 50 626 703 200 960 000 \alpha^{12} + 6 816 000 422 400 000 \alpha^{13} + 630 985 024 000 000 \alpha^{14} + 35 911 680 000 000 \alpha^{15} + 947 200 000 000 \alpha^{16} - 8 (1 + \alpha) (3 + \alpha)
(5 + 2 \alpha) (7 + 4 \alpha) (9 + 4 \alpha) (23 + 10 \alpha) (27 + 10 \alpha) (29 + 10 \alpha) (31 + 10 \alpha) (43 + 20 \alpha)
(1 148 688 + 1 816 332 \alpha + 1 168 168 \alpha^2 + 390 117 \alpha^3 + 71 110 \alpha^4 + 667 525 \alpha^5 + 250 \alpha^6
\hat{\gamma}[\alpha] + (20 902 102 409 444 256 + 137 515 155 727 116 024 \alpha + 421 449 877 467 477 144 \alpha^2 + 798 528 313 509 741 684 \alpha^3 + 1 046 682 277 829 067 717 \alpha^4 + 1 006 140 957 028 025 676 \alpha^5 + 733 495 550 368 339 371 \alpha^6 + 413 538 104 057 622 906 \alpha^7 + 182 152 007 863 395 567 \alpha^8 + 62 863 465 592 397 240 \alpha^9 + 16 932 727 087 280 325 \alpha^{10} + 3 519 994 581 864 750 \alpha^{11} + 553 169 603 602 500 \alpha^{12} + 63 463 938 225 000 \alpha^{13} + 5 006 365 500 000 \alpha^{14} + 242 190 000 000 \alpha^{15} + 5 400 000 000 \alpha^{16}\bigg) \hat{\gamma}[1 + \alpha] = 0, \hat{\gamma}[1] = \frac{620 310}{143 134}\bigg]\]\[\{\alpha]\]

\[(P[5, \alpha] - P[4, \alpha]) / (Q[5, \alpha] - Q[4, \alpha]) =
\text{DifferenceRoot\ Function}\bigg[
\{\hat{\gamma}[\alpha], \{16 (27 + 10 \alpha) (29 + 10 \alpha) (31 + 10 \alpha)
(246 784 754 160 + \alpha (2 333 696 110 452 + \alpha (9 046 565 685 306 + \alpha (19 862 064 339 339 + \alpha (28 130 157 093 360 + \alpha (27 462 353 153 578 + \alpha (19 157 780 117 274 + \alpha (9 719 584 134 491 + 20 \alpha (179 987 554 983 + 5 \alpha (9 639 125 475 + 4 \alpha (454 438 839 + 10 \alpha
(5 724 797 + 40 \alpha (10 809 + 370 \alpha)))))))) - (1 + \alpha) (3 + \alpha) (5 + 2 \alpha) (7 + 4 \alpha) (9 + 4 \alpha) (23 + 10 \alpha) (27 + 10 \alpha) (29 + 10 \alpha)
(31 + 10 \alpha) (43 + 20 \alpha)
(1 148 688 + \alpha (1 816 332 + \alpha (1 168 168 + \alpha (390 117 + 5 \alpha (14 222 + 5 \alpha (267 + 10 \alpha)))\bigg)\hat{\gamma}[\alpha] + (3 (2 + \alpha) (11 + 4 \alpha) (13 + 4 \alpha) (9 + 5 \alpha) (11 + 5 \alpha)
(12 + 5 \alpha) (13 + 5 \alpha) (11 + 6 \alpha) (13 + 6 \alpha) (63 + 20 \alpha)
(175 092 + \alpha (397 782 + \alpha (361 477 + \alpha (167 427 + 5 \alpha (8297 + 5 \alpha (207 + 10 \alpha)))\bigg)\hat{\gamma}[1 + \alpha] = 0, \hat{\gamma}[1] = \frac{620 310}{143 134}\bigg]\]\[\{\alpha]\]

61
Appendix G: Maple solution, provided by Carl Love, of difference equation for
\[\frac{P(1, \alpha) - P(0, \alpha)}{Q(1, \alpha) - Q(0, \alpha)} \]

```maple
restart;
rsolve(
    {
        62022240 + 545995032*n + 2056791388*n^2 + 4333244560*n^3 +
        5587600700*n^4 + 4517982000*n^5 + 2238010000*n^6 + 621200000*n^7 +
        74000000*n^8 +
        (-19027008 - 158454120*n - 566231672*n^2 - 1135130960*n^3 -
        1397526400*n^4 - 1082880000*n^5 - 516080000*n^6 - 138400000*n^7 -
        16000000*n^8)*y(n) +
        3*(2 + 5*n)*(3 + 5*n)^2*(4 + 5*n)*(6 + 5*n)*
        (5 + 6*n)*(7 + 6*n)*(31 + 20*n)*y(1 + n) = 0,
        y(1) = 158/31
    }, y(n));
```

\[-(3+5n)\sqrt{\pi}\Gamma(n + \frac{13}{10})\Gamma(n + \frac{11}{10})\Gamma(n + \frac{9}{10})\Gamma(n + \frac{7}{10})\Gamma(n + \frac{3}{2})\left(-\cos\left(\frac{1}{5}\pi\right)
\right.
\]

\[+ 2\cos\left(\frac{1}{5}\pi\right)^2 - 1\right)64^n27^{-n}\Gamma(1+n)\sum_{n1=1}^{n-1}\frac{4}{3}\left(\cos\left(\frac{1}{5}\pi\right) + 1\right)2\cos\left(\frac{1}{5}\pi\right)
\]

\[- 1\right)\Gamma(nl + \frac{7}{5})\Gamma(nl + \frac{9}{5})\Gamma(nl + \frac{11}{5})\Gamma(nl + \frac{13}{6})\Gamma(nl + \frac{8}{5})(2nl + 3)(9250000nl^7 + 63775000nl^6 + 184088750nl^5 + 288614625nl^4 + 265528150nl^3
\]

\[+ 143363345nl^2 + 42053906nl + 5168520)\left(\Gamma(2 + nl)27^{-nl-1}64^{nl+1}(2\cos\left(\frac{1}{5}\pi\right)
\right.
\]

\[+ 1\right)\left(\cos\left(\frac{1}{5}\pi\right) - 1\right)\Gamma(nl + \frac{5}{2})\Gamma(nl + \frac{17}{10})\Gamma(nl + \frac{19}{10})\Gamma(nl + \frac{21}{10})\Gamma(nl
\]

\[+ \frac{23}{10}\sqrt{\pi}\left(8 + 5nl\right)(6nl + 5)(5nl + 2)(5nl + 4)(5nl + 6)(6nl + 7)(5nl + 3)^2
\]

\[+ \frac{7900}{1287})\left(20n + 11\right)\Gamma(n + \frac{3}{5})\Gamma(n + \frac{7}{6})\Gamma(n + \frac{6}{5})\Gamma(n
\]

\[+ \frac{4}{5}\right)\Gamma(n + \frac{2}{5})\left[\cos\left(\frac{1}{5}\pi\right) + 2\cos\left(\frac{1}{5}\pi\right)^2 - 1\right]
\]

lprint(%);
```
Appendix H: $P_{X-states}(k, \alpha)$ formulas

$P_{X-states}(k, \alpha) = 1 - \left( \Gamma\left(2 + 2k + 3\right) / \Gamma\left(4 + 3k + 2\right) \right) \sum_{j} \text{Pochhammer}[\alpha + k + 1, \alpha - 1 - j]^{2} \ \ \ \ \text{Pochhammer}[-1 - 3k - 4\alpha, j] / (\alpha + k + 1), \ {j, 0, \alpha - 1}\]

$P_{X-states}(k, \alpha) = 1 - \left( (1 + k + \alpha) \Gamma\left[3 + 2k + 2\alpha\right]^{2} \Gamma\left[-1 - 3k - 4\alpha\right] \Gamma\left[k + 2\alpha\right]^{2} \text{HypergeometricPFQ}[\{1, -1 - 3k - 4\alpha, 1 - k - 2\alpha\}, -1 + (-1)^{1\alpha} \Gamma\left[-1 - 3k - 3\alpha\right] \Gamma\left[k + 2\alpha\right]^{2} \text{HypergeometricPFQ}[\{1, -1 - 3k - 3\alpha\}, -1] \right) / \left( 2 \Gamma\left[-1 - 3k - 4\alpha\right] \Gamma\left[k\right] \Gamma\left[2 + k + 3k + 4\alpha\right] \right)$

$P_{X-states}[-\alpha, \alpha] = \text{DifferenceRoot}\left[\text{Function}\left[y, \alpha\right], \ {2 + 3 \alpha - 2\alpha^{2} - (1 + \alpha)(2 + \alpha)y[\alpha] + \alpha(1 + \alpha)(2 + \alpha)y[1 + \alpha] = 0, y[1] = 0\right]\right] [\alpha]

$P_{X-states}(k, 1/2) = 1$

$P_{X-states}(k, 1) = 1 - \left( 3 \Gamma\left[5 + 2k\right]^{2} \right) / \left( 2 \Gamma\left[3 + k\right] \Gamma\left[7 + 3k\right] \right)$

$P_{X-states}(k, 3/2) = 1 - \left( 4^{5-2k} \Gamma\left[3 + k\right]^{4} \right) / \left( \pi^{3/2} \Gamma\left[\frac{5}{2} + k\right] \Gamma\left[8 + 3k\right] \right)$
\[ P_{\{x\text{-states}\}}[k, 9] =
1 - \left( (11 + k) (12 + k) (836611258029120 + k (787432346124066 + k (341069443496841 + k (90017157331525 + k (16151347804036 +
  k (2080443892873 + k (197924201742 + k (14080889291 +
  k (749111976 + k (29434100 + k (830243 + k (15920 +
  k (186 + k)))))))))))))))
ight)
\]
\[ \frac{\Gamma[21 + 2 k]^2}{(80640 \Gamma[11 + k] \Gamma[38 + 3 k])} \]
Appendix I: Formulas for leading coefficients of $p_\alpha(k)$

\[
\begin{align*}
\{c[1], \frac{1}{2} \{-6 + 3 \alpha + 17 \alpha^2\}\}, \quad &\{c[2], \frac{1}{48} \{-528 - 778 \alpha - 999 \alpha^2 + 115 \alpha^3 + 1734 \alpha^4\}\}, \\
\{c[3], \frac{1}{96} \{-5664 + 13908 \alpha + 550 \alpha^2 - 9068 \alpha^3 - 6305 \alpha^4 - 3247 \alpha^5 + 9826 \alpha^6\}\}, \\
\{c[4], \frac{1}{23400} \{-10022400 - 31568232 \alpha + 16382330 \alpha^2 + 17887935 \alpha^3 - 4888975 \alpha^4 - 6386883 \alpha^5 - 1379215 \alpha^6 + 5080620 \alpha^7 + 5011260 \alpha^8\}\}, \quad &\{c[5], \frac{1}{46080} \{-187776000 + 684261552 \alpha - 607912452 \alpha^2 - 164989744 \alpha^3 + 256009255 \alpha^4 + 100781358 \alpha^5 - 48547592 \alpha^6 - 32851086 \alpha^7 + 17787865 \alpha^8 - 33801440 \alpha^9 + 17038284 \alpha^{10}\}\}, \\
\{c[6], \frac{1}{23224320} \{-28427821793280 + 12361248175488 \alpha - 171854326364544 \alpha^2 + 63587690631408 \alpha^3 + 37787479654680 \alpha^4 - 19361796892858 \alpha^5 - 916171583428 \alpha^6 + 19130141267 \alpha^7 + 1757788331756 \alpha^8 + 422517857430 \alpha^9 - 87184703214 \alpha^{10} - 382834914875 \alpha^{11} + 29195268854 \alpha^{12} - 141332565780 \alpha^{13} + 2954438456 \alpha^{14}\}\}, \\
\{c[7], \frac{1}{4448640} \{-20729721993868800 - 958307937434380 \alpha + 1508939143387848864 \alpha^2 - 841368159884093640 \alpha^3 - 113920897079475740 \alpha^4 + 217932724151667450 \alpha^5 + 16341177603067457 \alpha^6 - 33983690902505250 \alpha^7 - 7275967321197495 \alpha^8 + 2704170654584070 \alpha^9 + 1201805229852179 \alpha^{10} + 222533989499610 \alpha^{11} + 259111597957975 \alpha^{12} - 522347651873040 \alpha^{13} + 295672089249 \alpha^{14} - 99651470865120 \alpha^{15} + 150676307256 \alpha^{16}\}\}, \\
\{c[8], \frac{1}{44590640} \{-70961964166471608 + 3449475479369659 \alpha^2 - 11771943321600 \alpha^3 - 4328754423756382192 \alpha^4 - 860282475196587120 \alpha^5 + 1566221444035610788 \alpha^6 + 1206144528277389149 \alpha^7 - 10113802328563491 \alpha^8 - 1502262158280876735 \alpha^9 - 17484396187122039 \alpha^{10} + 11115082284691759 \alpha^{11} + 2738271370653103 \alpha^{12} - 968447838915965 \alpha^{13} + 2649200393563055 \alpha^{14} - 234547798259244 \alpha^{15} + 993017941625880 \alpha^{16} - 284668273274960 \alpha^{17} + 28461090395290 \alpha^{18}\}\}, \\
\{c[9], \frac{1}{11771943321600} \{-356836961761036812800 - 180970239754323652608000 \alpha + 33845535927349275570432 \alpha^2 - 281159483121084275104320 \alpha^3 + 7393566206499466034160 \alpha^4 + 32726499209461557918176 \alpha^5 - 1742542790237017242448 \alpha^6 - 356053411103650640392 \alpha^7 + 19728791878788928377 \alpha^8 + 53620086171170365177 \alpha^9 - 111738527756535461265 \alpha^{10} - 637590684370484291 \alpha^{11} - 5074472171919021907 \alpha^{12} + 47417670389497771523 \alpha^{13} + 1510831820151451941 \alpha^{14} - 189070879784722057 \alpha^{15} + 1969607381708323038 \alpha^{16} - 112594945618676376 \alpha^{17} + 36666631200476640 \alpha^{18} - 71104174262410640 \alpha^{19} + 63866686766262432 \alpha^{20}\}\}\}
\end{align*}
\]
Acknowledgments

I would like to express appreciation to Charles Dunkl for his many, many expert contributions and interactions in this research program in the past few years, and specifically for his important insights reported in sec. XI. Qing-Hu Hou has been very generous in his assistance also. Christioph Koutschan helped with the implementation of the fast Zeilberger algorithm in the RISC package. Christian Krattenthaler provided advice at early stages of the research reported. Robert Israel, Brendan Godfrey and Michael Love have helpfully responded to a number of questions posted on the Mathematics and Mathematica Stack Exchanges.

[1] P. B. Slater and C. F. Dunkl, Advances in Mathematical Physics 2015, 621353 (2015).
[2] K. Życzkowski and H.-J. Sommers, J. Phys. A 36, 10115 (2003).
[3] K. Życzkowski and H.-J. Sommers, J. Phys. A 34, 7111 (2001).
[4] G. Aubrun, S. J. Szarek, and D. Ye, Commun. Pure Appl. Math. LXVII, 0129 (2014).
[5] F. J. Dyson, Commun. Math. Phys. 19, 235 (1970).
[6] I. Dumitriu, A. Edelman, and G. Shuman, J. Symb. Comp 42, 587 (2007).
[7] K. Życzkowski, P. Horodecki, A. Sanpera, and M. Lewenstein, Phys. Rev. A 58, 883 (1998).
[8] D. Petz and C. Sudár, J. Math. Phys. 37, 2662 (1996).
[9] P. B. Slater and C. F. Dunkl, J. Geom. Phys. 90, 42 (2015).
[10] R. Augusiak, M. Demianowicz, and P. Horodecki, Phys. Rev. A 77, 030301(R) (2008).
[11] A. Peres, Phys. Rev. Lett. 77, 1413 (1996).
[12] M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Lett. A 223, 1 (1996).
[13] S. Szarek, I. Bengtsson, and K. Życzkowski, J. Phys. A 39, L119 (2006).
[14] O. Gamel, arXiv preprint arXiv:1602.01548 (2016).
[15] P. B. Slater and C. F. Dunkl, J. Phys. A 45, 095305 (2012).
[16] P. B. Slater, J. Phys. A 46, 445302 (2013).
[17] S. B. Provost, Mathematica J. 9, 727 (2005).
[18] R. Askey, I. Schoenberg, and A. Sharma, Journal of Mathematical Analysis and Applications 86, 237 (1982).
[19] K. Bartkiewicz, J. Beran, K. Lemr, M. Nored, and A. Miranowicz, Phys. Rev. A 91, 022323 (2015).
[20] J. Fei and R. Joynt, arXiv.1409:1993.
[21] C. M. Caves, C. A. Fuchs, and P. Rungta, Found. Phys. Letts. 14, 199 (2001).
[22] H. Aslaksen, Math. Intelligencer 18, 57 (1996).
[23] A. Peres, Phys. Rev. Lett. 42, 683 (1979).
[24] G. Najarbashi, B. Seifi, and S. Mirzaei, Quantum Information Processing 15, 509 (2016).
[25] J. Guillera, Ramanujan J. 26, 369 (2011).
[26] W. Koepf, Hypergeometric Summation: An Algorithmic Approach to Summation and Special Function Identities (Springer, London, 2014).
[27] M. Petkovšek, Journal of Symbolic Computation 14, 243 (1992).
[28] P. Mendonça, M. A. Marchiolli, and D. Galetti, Anns. Phys. 351, 79 (2014).
[29] C. F. Dunkl and P. B. Slater, Random Matrices: Theory and Applications 4, 1550018 (2015).
[30] W. Chu and W. Zhang, Mathematics of Computation 83, 475 (2014).
[31] D. Zeilberger, Discr. Math. 80, 207 (1990).
[32] C. Wenchang, Rocky Mountain J. Math. 32, 561 (2002), URL http://dx.doi.org/10.1216/rmjm/1030539687.
[33] G. Gasper and M. Rahman, Canad. J. Math 42, 27 (1990).
[34] F. Verstraete, K. Audenaert, and B. DeMoor, Phys. Rev. A 64, 012316 (2001).
[35] P. B. Slater, Journal of Geometry and Physics 59, 17 (2009).
[36] S. Szarek, Phys. Rev. A 72, 032304 (2005).
[37] G. Aubrun and S. Szarek, Phys. Rev. A 73, 022109 (2006).
[38] I. Dumitriu and A. Edelman, J. Math. Phys. 43, 5830 (2002).
[39] I. Dumitriu and A. Edelman, Annales de l’Institut Henri Poincare (B) Probability and Statistics 41, 1083 (2005).
[40] K. A. Penson and K. Życzkowski, Phys. Rev. E 83, 061118 (2011).