9th International Fröhlich’s Symposium

ELECTRODYNAMIC ACTIVITY OF LIVING CELLS
Including Microtubule Coherent Modes and Cancer Cell Physics

Prague, Czechia, EU
July 1-3, 2011

EDITORS

MICHAL CIFRA
Institute of Photonics and Electronics AS CR
Czechia, EU

JIŘÍ POKORNÝ
Institute of Photonics and Electronics AS CR
Czechia, EU

ONDŘEJ KUCERA
Czech Technical University in Prague
Czechia, EU

Published under licence by IOP Publishing Ltd
The Symposium was organized by

Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic

First Faculty of Medicine, Charles University, Prague

under the aegis of

Professor Tomáš Zima
Dean of the First Faculty of Medicine, Charles University

Professor Otomar Kittnar
Director of the Institute of Physiology, First Faculty of Medicine, Charles University

and

Dr. Vlastimil Matějček
Director of the Institute of Photonics and and Electronics AS CR

Symposium was technically sponsored by

![IEEE Logo]

Further sponsor was

![HEKA Logo]

Scientific Committee

Chair: J. Pokorný, Czechia
- A. Bandyopadhyay, Japan
- I. Belyaev, Slovakia
- V.N. Binhí, Russia
- L.S. Brzhik, Ukraine
- M. Cifra, Czechia
- A. Čoček, Czechia
- D. Dimitrov, Bulgaria
- A. Foletti, Italy
- S. Hameroff, USA
- R. Hölzel, Germany
- G. Hyland, England
- A. Jandová, Czechia
- F. Jelinek, Czechia
- I. Jerman, Slovenia
- O. Kittnar, Czechia
- A.R. Liboff, USA
- L. Mora, France
- M. Nedbalová, Czechia
- M. Sataric, Serbia
- F. Šrobár, Czechia
- J. Tuszynski, Canada
- E. Tvrzická, Czechia
- C. Vedruccio, Italy
- G. Vitiello, Italy
- J. Vrba, Czechia
- J. Zon, Poland

Organizing Committee

Chair: M. Cifra, Czechia
- D. Havelka, Czechia
- A. Jandová, Czechia
- R. Janča, Czechia
- F. Jelinek, Czechia
- O. Kučera, Czechia
- M. Nedbalová, Czechia
- J. Pokorný, Czechia
- Š. Řihová, Czechia
- F. Šrobár, Czechia
- B. Vrbová, Czechia
Introductory Remarks

This volume contains papers presented at the International Fröhlich’s Symposium entitled “Electrodynamic Activity of Living Cells” (July 1–3, 2011, Prague, Czech Republic). The Symposium was the 9th meeting devoted to physical processes in living matter organized in Prague since 1987. Hypothesis of oscillation systems in living cells featured by non-linear interaction between elastic and electrical polarization fields, non-linear interactions between the system and the heat bath leading to energy downconversion along the frequency scale, energy condensation in the lowest frequency mode and creation of a coherent state was formulated by H. Fröhlich, founder of the theory of dielectric materials. He assumed that biological activity is based not only on biochemical but also on biophysical mechanisms and that their disturbances form basic links along the cancer transformation pathway. Fröhlich outlined general ideas of non-linear physical processes in biological systems. The downconversion and the elastic–polarization interactions should be connected in a unified theory and its solution based on comprehensive non-linear characteristics.

Biochemical and genetic research of biological systems are highly developed and have disclosed a variety of cellular and subcellular structures, chemical reactions, molecular information transfer, and genetic code sequences— including their pathological development. Nevertheless, the cancer problem is still a big challenge. Warburg’s discovery of suppressed oxidative metabolism in mitochondria in cancer cells suggested the essential role of physical mechanisms (but his discovery has remained without impact on cancer research and on study of physical properties of biological systems for a long time). Mitochondria, the power plants of the cell, have several areas of activity—oxidative energy production is connected with formation of a strong static electric field around them, water ordering, and liberation of non-utilized energy to their surroundings. Mitochondrial function connected with water ordering and excitation of oscillations in microtubules may play a central role in biological activity, in particular in transport, organization, interactions, and information transfer. Mitochondrial dysfunction results in disturbances of the generated electrodynamic field with bad consequences in biological activity and creation of pathological states. A special issue of the biological activity concerns the brain function (consciousness is not yet adequately understood). Experimental investigation using nanotechnology would supply yet unknown data and parameters of physical mechanisms in living systems. Extremely weak biological signals have to be separated from technical noise under conditions of possible non-linear mutual interactions.

Some authors questioned the validity of the Fröhlich hypothesis. Foster and Baish (J. Biol. Phys. 26, 2000, 255) neglected water ordering and concluded that strong damping by water viscosity effects prevents formation of coherent state. Reimers et al. (PNAS 106, 2009, 4219) and McKemmish et al. (Phys. Rev. E 80, 2009, 021912-1) omitted non-linear elastic-electrical polarization interactions and analyzed a linearized model of downconversion with strong damping that cannot represent the Fröhlich system. Fröhlich assumed high quality non-linear system with energy supply. Some methods used for analysis of linear system (for instance method of superposition) are not valid in non-linear systems. For this reason also experimental analysis based on subtraction of the noise from the measured signal spectrum is not a simple question.

There is another special issue concerning the biological activity. Living state and in particular consciousness are very often connected with an idea of non-material and non-measurable entity entering the biological system from outside. There is a splendid harmony and order in nature. Science
should disclose measurable mechanisms of the harmony and order. But the human knowledge about the electrodynamic and electromagnetic fields in biological systems is still at low level.

The Symposium continued in the series of international scientific meetings devoted to physical processes in living cells organized in Prague. The first meeting was entitled “Biophysical Aspects of Cancer” (July 6–9, 1987). At this occasion the anglo-german physicist H. Fröhlich presented a lecture “Coherence in Biology”. The next meeting devoted to the Fröhlich coherent systems, information transfer, and neural activity was in 1993. The role of the Fröhlich coherence in the neural activity was included in the meeting “Biophysical Aspects of Coherence” in 1995 too. The further symposia were entitled “Electromagnetic Fields in Biological Systems” (1998), “Electromagnetic Aspects of Selforganization in Biology” (2000), “Endogenous Physical Fields in Biology” (2002), “Coherence and Electromagnetic Fields in Biological Systems” (2005), and “Biophysical Aspects of Cancer – Electromagnetic Mechanisms” (2008). In 2008 a novel project for research of convergence of physics and oncology was triggered in the USA by the National Cancer Institute and the Institute of Public Health.

This issue contains main part of papers presented at the Symposium. The ideas presented at the Symposium might have impact on future research of physical processes and mechanisms in biological systems. Experimental research may provide a background for understanding of the neglected part of biological activity and reveal the physical mechanisms of the cancer transformation pathway.

The Symposium and this issue were prepared by a scientific team whose members were M. Cifra, D. Havelka, A. Jandová, F. Jelinek, O. Kučera, M. Nedbalová, and F. Šrobár.

Jiří Pokorný
List of Talks

E. Del Giudice, A. Tedeschi
The Interplay of DNA and Water at the Origin of Informational structures in Living Organisms

V. Salari, J. Tuszyński, I. Bokkon, M. Cifra
On the Photonic Cellular Communication/Interaction and the Electric Activity of Neurons in the Human Brain

E. C. Fuchs, A. H. Paulitsch-Fuchs
The Armstrong Experiment as High Voltage Laboratory

A. Prasad, M. Cifra, P. Pospíšil
Ultra-Weak Photon Emission from Synchronized and Non-Synchronized Yeast Cells, Saccharomyces cerevisiae – 2 Dimensional Imaging Study

M. A. Deriu
Multiscale Modeling of Microtubules and Actin Microfilaments

A. Foletti, S. Grimaldi
Systems Information Therapy and the Central Role of the Brain in Allostasis

M. V. Satarić, B. M. Satarić
Nonlinear Ionic Pulses along Microtubules

J. Pokorný, M. Cifra, A. Jandová, F. Šrobár
Targeting Mitochondria for Cancer Treatment

M. Lipkind
Critical Consideration of the Electromagnetic Field-Based Theories of Consciousness

C. de Mello Gallep
Time Dynamics of Photon Emission from Germinating Seeds

H. Nawrocka-Bogusz
May the Variable Magnetic Field and Pulse Red Light Induce Synergy Effects in Respiratory Burst of Neutrophils in vitro?

J. Vrba, L. Oppl, J. Vorlíček, B. Vrbová, D. Vrba, D. Havelka
Application of EM Fields in Medicine

S. Hameroff
Coherence, symmetry breaking, topological qubits and microtubules: Current status of the Penrose-Hameroff Orch OR theory

A. Bandyopadhyay
How Microtubule Research Can Revolutionize Every Single Sphere of Human Civilization

L. V. Belousov
Mechanoelectrical and Photon-Generating Devices in Cells and Organisms: From Molecular Machines to Macroscopic Fields

N. Mavromatos
Quantum Coherence in Brain Microtubules and Efficient Energy and Signal Transport

K. Michalak, H. Nawrocka-Bogusz
The Changes of the Frequency-Specific Impedance of the Human Body due to the Resonance in the kHz Range in the Diagnostics of Cancer

L. Giuliani, E. D’Emilia, S. Grimaldi, M. Ledda, A. Lisi
Bioelectromagnetics: Benefits and Risks. Preliminary Results Confirm Spectra of Montagnier

J. Pokorný
Disturbances of Physical Processes in Cancer Cells Triggered by Mitochondrial Dysfunction

I. Jerman, N. Verdel, R. Krašovec, P. Bukovec
Influence of Water Ordering Near Hydrophilic Surfaces on Conductivity and Its Biological Significance

F. Šrobár
Influence of Static Electric Field on Modal Populations in the Fröhlich System

M. Nedbalová, A. Jandová, A. Dohnalová
Disturbances of Electrodynamical Activity Affect Abortion in Animals

D. Fels
Electromagnetic Information and Cell Division in Paramecia
Authors	Title
H. Freedman, L. Cruzeiro	Mixed Quantum-Classical Model of the Time–Dependent Propagation of Vibrational Excitation within a Protein Backbone
S. Grimaldi, A. Liši, M. Ledda, A. Foletti, E. D'Emilia, L. Giuliani	Ion Cyclotron Resonance (ICR) Module Myogenic Differentiation through Actine and Cytoskeletal Repatterning
M. Pregnolato, R. Pizzi	Experimental and Computational Studies on Interesting Biophysical Properties of Microtubules
S. Zeković, S. Zdravković, Z. Ivić	Charge Transfer in DNA: The Role of Large Polarons
G. G. Sullivan, J.A. Drisko, Q. Chen, P. Chen	Mitochondrial Disruption and the Metabolic Shift in Cancer: Clinical Assessment and Support
B. Výbíral	Autothixotropy of Water and Its Possible Importance for the Cytoskeleton Structures
J. Dvořák, V. Sitorova, D. Hadži Nikolov, J. Mokey, I. Richter, S. Filip, A. Ryska, J. Petera	Primary Cilium - Antenna Like Structure on the Surface of Most Mammalian Cell Types
L. Strašák, E. Bártová, J. Krejčí, L. Fojí, V. Vetterl	Effect of Low-Frequency Magnetic Field on Level of Brain Proteins in Mice
R. S. Dotson	Photobiomodulation (PMB) Applications in Ophthalmology
Y. P. Chukova	The Doubttings about Non-Thermal Effects of MM Radiation Have no Scientific Foundations
A. De Ninno, A. Congiu Castellano	Effect of Weak Magnetic Field on Glutamic Acid
M. Čifra, D. Havelka, M. A. Deriu	Electric field generated by longitudinal axial microtubule vibration modes based on atomic resolution microtubule model
R. R. Traill	1. Coherent Infra-Red as Logically Necessary to Explain Piagetian Psychology and Neuromicroanotomy - Two Independent Corroborations for the Gurwitshian Case
2. Asbestos as 'Toxic Short Circuit' Optic-Fibre for Cellular UV? |
| M. Skarja | Further Investigation on AC Near Electric Field Transmission and Absorption through Humans, Other Living Objects, and Environment, by EMADEL Method |
| T. Vydra, J. Vrba | 1. Visualization of Living Cells During Exposure by EM Field
2. Ablation Applicator for Destructive Hyperthermia Treatment |
| A. Bondarcući, C. Ravaria, V. Bondarcući | The Infrared Emission by Laser Bio-photometry versus the Tissue Hydration Degree |
| N. Őzkucur, R. H. W. Funk | Endogenous Ion Dynamics in Cell Motility and Tissue Regeneration |
| D. Havelka, M. Čifra, J. Vrba | What is More Important for Radiated Power from Cells - Size or Geometry |
| R. Janča | Data Mining of Cellular Electromagnetic Activity Signals by Neural Network |
| G. H. Pollack | The Secret Life of Water: E = H2O |
| J. A. Tuszynski | Molecular Dynamics Calculations of the Electrostatic Properties of the Tubulin Family of Proteins and Their Consequences for Drug Binding to Microtubules |
| A. Čoček, M. Ambrus, A. Dohnalová, M. Nedbalová, A. Hahn, A. Jandová | The Impact Lower Induction Values of External Magnetic Field of Power Frequencies (50 Hz) on the Adherence Inhibition of T Lymphocytes |
Author(s)	Title
A. Jandová, M. Nedbalová, J. Kobílková, A. Čoček, A. Dohnalová, J. Pokorný	Disturbances of Electromagnetic Activity Affect Abortion in Humans
F. Jelínek, M. Cifra, J. Pokorný, J. Šaroch, J. Hašek, L. Nováková	Measurement of Electrical Oscillations of Yeast Cells at MHz Frequencies
C. Vedruccio, C. Ricci	Radiofrequency Non-Invasive Diagnostics of Cancer. The Bioscanner “Trimprob” Technology and Medical Applications
A. M. Pietak	Electromagnetic Resonance in Biological Tissue: A Hypothesized Role for Fields in Morphogenesis
X. Shen	The Dielectric Constant of Water is Increased by Treatment with an Extremely Low Frequency Electromagnetic Field and Its Possible Biological Implication
F. Scholkmann, M. Cifra, T. A. Moraes, C. de Mello Gallop	Multifractal Analysis of Ultra-Weak Photon Emission of Germinating Wheat Seedlings Stressed by Potassium Dichromate
R. Höltzel	Detection System for Radio Frequency Electric Activity of Biological Cells
M. Teplan	Impedance Analysis of Acupuncture Points and Meridians
A. H. Paulitsch-Fuchs, E. C. Fuchs, A. D. Wexler, F. T. Freund, L. J. Rothschild, A. Cherukupally, G. J. W. Euverlink	Prokaryotic Transport in Electrohydrodynamic Structures
M. Molski	Living Systems as Coherent Anharmonic Oscillators
R. M. Sarimov, V. N. Binhi	Compensation of the Geomagnetic Field Affects Human Eye Movements and the Pupil Size
R. Krašovec	Biological Coherence from an Evolutionary Perspective
E. Cocherová, P. Kupec, V. Štofaník	Resonance Properties of the Biological Objects in the RF Field
G. Andocs, L. Balogh, H. Sajó, C. Buettner, O. Szasz, Á. Szasz	Electromagnetic Activity of the Immune System? Immunological Aspects of Oncothermia Treatment
I. Verginadis, A. Velalopoulou, Y. Simos, D. Peschos, V. Kalfakakou, S. Karkabounas, K. Havelas, A. Evangelou	Emission of the Resonant Electromagnetic Frequencies Derived from 1H-NMR Spectra of Biological Active Substances Induce Similar Effects with the Substances Themselves. A new Approach in Investigation Treatment
J. F. Geurdes	Field equations, quantum mechanics and cellular form
M. Plankar	Role of Biological Coherence in a Systems View on Cancer Development
B. Vrbová	Deep Local Thermotherapy: Comparison of 3D SAR Distribution in Homogenous Phantom with in Anatomical Model
J. Vordiček, J. Vrba	Influence of Electromagnetic Field Exposure on the Colony of Eukaryotic Cells
J. Vrba, L. Vísek, L. Oppl, L. Vannucci	Research of Biological Effects of EM Field
E. A. Preoteasa, M. Apostol	Coherence Domains’ Number Fluctuations, Number-Phase Incertitude, and Cell Size
E. P. A. Van Wijk, J. van der Greef, R. van Wijk	Cell Dynamics Determined by Using Photon Count Statistics
