COMPACTNESS OF HANKEL OPERATORS WITH SYMBOLS CONTINUOUS ON THE CLOSURE OF PSEUDOCONVEX DOMAINS

TIMOTHY G. CLOS, MEHMET ÇELİK, AND SÖNMEZ ŞAHUTOĞLU

ABSTRACT. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^2 with Lipschitz boundary or a bounded convex domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$ such that the Hankel operator H_ϕ is compact on the Bergman space $A^2(\Omega)$. Then $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to \partial \Omega$.

Let Ω be a domain in \mathbb{C}^n and $A^2(\Omega)$ denote the Bergman space of Ω, the space of square integrable holomorphic functions on Ω. Since $A^2(\Omega)$ is a closed subspace of $L^2(\Omega)$, the space of square integrable functions on Ω, there exists an orthogonal projection $P : L^2(\Omega) \to A^2(\Omega)$, called the Bergman projection. The Hankel operator $H_\phi : A^2(\Omega) \to L^2(\Omega)$ with symbol $\phi \in L^\infty(\Omega)$ is defined as $H_\phi f = (I - P)(\phi f)$ where I denotes the identity operator. Hankel operators have been well studied on the Bergman space of the unit disc. Sheldon Axler in [Axl86] proved the following interesting theorem.

Theorem (Axler). Let $\phi \in A^2(\mathbb{D})$. Then H_ϕ is compact if and only if $(1 - |z|^2)\phi'(z) \to 0$ as $|z| \to 1$.

The space of holomorphic functions satisfying the condition in the theorem is called little Bloch space. One can check that $\phi(z) = \exp((z + 1)/(z - 1))$ is bounded on \mathbb{D} but it does not belong to the little Bloch space. Hence not every bounded symbol that is smooth on the domain produces compact Hankel operator on the disc. However, Hankel operators with symbols continuous on the closure are compact for bounded domains in \mathbb{C} (see, for instance, [Şah12, Proposition 1]). We refer the reader to [Zhu07] for more information on the theory of Hankel operators (as well as Toeplitz operators) on the Bergman space of the unit disc. We note that Sheldon Axler’s result has been extended to a small class of domains in \mathbb{C}^n, such as strongly pseudoconvex domains, by Marco Peloso [Pel94] and Huiping Li [Li94].

The situation in \mathbb{C}^n for $n \geq 2$ is radically different. For instance, H_{τ_1} is not compact when Ω is the bidisc (see, for instance, [Le10, Clo17b, CŞ18, Clo17a]). Hence in higher dimensions compactness of Hankel operators is not guaranteed even if the symbol is smooth up to the boundary. We refer the reader to [Str10, Has14] for more information about Hankel operators in higher dimensions and their relations to ∂-Neumann problem.

Date: June 4, 2018.

2010 Mathematics Subject Classification. Primary 47B35; Secondary 32W05.

Key words and phrases. Hankel operators, convex domains, pseudoconvex domains.
We are interested in studying compactness of Hankel operators on Bergman space defined on domains in \mathbb{C}^n. We would like to understand compactness of Hankel operators in terms of the interaction of the symbol with the boundary geometry. This interaction does not surface for domains in \mathbb{C} as the boundary has no complex geometry. However, to relate the symbol to the boundary geometry we will restrict ourselves to symbols that are at least continuous up to the boundary. The first results in this direction are due to Željko Čučković and the third author in [ČS09]. They obtain results, about compactness of Hankel operators in terms of the behavior of the symbols along analytic discs in the boundary, on smooth bounded pseudoconvex domains (with a restriction on the Levi form) and on smooth bounded convex domains in \mathbb{C}^n. Moreover, for convex domains in \mathbb{C}^2 they obtain a characterization for compactness (see [ČS09, Corollary 2]). We note that even though they state their results for C^∞-smooth domains and symbols, observation of the proofs shows that only C^1-smoothness is sufficient. So we will state their results with C^1 regularity.

Theorem (Čučković-Şahutoğlu). Let Ω be a C^1-smooth bounded convex domain in \mathbb{C}^2 and $\phi \in C^1(\overline{\Omega})$. Then H_ϕ is compact if and only if $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

The theorem above can be interpreted as follows: H_ϕ is compact if and only if ϕ is “holomorphic along” every non-trivial analytic disc in the boundary.

The situation for symbols that are only continuous up to the boundary is less understood. When Ω is a bounded convex domain in \mathbb{C}^n with no non-trivial discs in $b\Omega$ (that is, any holomorphic mapping $f : \mathbb{D} \to b\Omega$ is constant) all of the Hankel operators with symbols continuous on $\overline{\Omega}$ are compact. This follows from facts that on such domains the $\bar{\partial}$-Neumann operator is compact (see [FS98]) and compactness of the $\bar{\partial}$-Neumann operator implies that Hankel operators with symbols continuous on closure are compact (see [Str10, Proposition 4.1]). In case of the polydisc Trieu Le in [Le10] proved the following characterization.

Theorem (Le). Let ϕ be continuous on \mathbb{D}^n for $n \geq 2$. Then H_ϕ is compact if and only if there exist $\phi_1, \phi_2 \in C(\overline{\mathbb{D}^n})$ such that ϕ_1 is holomorphic on \mathbb{D}^n, $\phi_2 = 0$ on $b\mathbb{D}^n$, and $\phi = \phi_1 + \phi_2$.

A domain $\Omega \subset \mathbb{C}^n$ is called Reinhardt if $(z_1, \ldots, z_n) \in \Omega$ implies that $(e^{i\theta_1}z_1, \ldots, e^{i\theta_n}z_n) \in \Omega$ for any $\theta_1, \ldots, \theta_n \in \mathbb{R}$. That is, Reinhardt domains are invariant under rotation in each variable. These are generalizations of the ball and the polydisc. Reinhardt domains are useful in describing domain of convergence for power series centered at the origin (see, for instance, [Kra01, Nar71, Ran86]).

Motivated by the previous results mentioned above, recently, the first and the last authors proved the following result on convex Reinhardt domains in \mathbb{C}^2 (see [CS18]), generalizing the results in [ČS09] (in terms of regularity of the symbol but on a small class of domains) and [Le10] (in terms of the domain in \mathbb{C}^2).
Theorem (Clos-Şahutoğlu). Let Ω be a bounded convex Reinhardt domain in \mathbb{C}^2 and $\phi \in C(\overline{\Omega})$. Then H_ϕ is compact if and only if $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

We note that on piecewise smooth bounded convex Reinhardt domains in \mathbb{C}^2, the first author studied compactness of Hankel operators with conjugate holomorphic square integrable functions in [Clo17a]. Furthermore, compactness of products of two Hankel operators with symbols continuous up to the boundary was studied by Željko Ćučković and the last author in [ČS14].

In this paper we are able to partially generalize the result of Clos-Şahutoğlu to more general domains. In case the domain is in \mathbb{C}^2 we have the following result.

Theorem 1. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^2 with Lipschitz boundary and $\phi \in C(\overline{\Omega})$ such that H_ϕ is compact on $A^2(\Omega)$. Then $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

However, for convex domains we can prove the following result in \mathbb{C}^n.

Theorem 2. Let Ω be a bounded convex domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$ such that H_ϕ is compact on $A^2(\Omega)$. Then $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

As a corollary of Theorem 2 we obtain the following result for locally convexifiable domains in \mathbb{C}^n.

Corollary 1. Let Ω be a bounded locally convexifiable domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$ such that H_ϕ is compact on $A^2(\Omega)$. Then $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

A domain $\Omega \subset \mathbb{C}^n$ is called complete Reinhardt if $(z_1, \ldots, z_n) \in \Omega$ implies that $(\xi_1 z_1, \ldots, \xi_n z_n) \in \Omega$ for any $\xi_1, \ldots, \xi_n \in \mathbb{C}$ with $|\xi_j| \leq 1$ for all j. We note that convex Reinhardt domains are complete Reinhardt but the converse is not true.

As a second corollary we obtain the following result for pseudoconvex complete Reinhardt domains in \mathbb{C}^2.

Corollary 2. Let Ω be a bounded pseudoconvex complete Reinhardt domain in \mathbb{C}^2 and $\phi \in C(\overline{\Omega})$ such that H_ϕ is compact on $A^2(\Omega)$. Then $\phi \circ f$ is holomorphic for any holomorphic $f : \mathbb{D} \to b\Omega$.

Remark 1. Peter Matheos, in his thesis [Mat97] (see also [FS01, Theorem 10] and [Str10, Theorem 4.25]), constructed a smooth bounded pseudoconvex complete Hartogs domain in \mathbb{C}^2 that has no analytic disc in its boundary, yet the $\overline{\partial}$-Neumann operator on the domain is not compact. Furthermore, Zeytuncu and the third author [SZ17, Theorem 1] proved that on smooth bounded pseudoconvex Hartogs domains in \mathbb{C}^2, compactness of the $\overline{\partial}$-Neumann operator is equivalent to compactness of all Hankel operators with symbols smooth up to
the boundary. Therefore, on Matheos’ example the condition of Theorem 1 is trivially satisfied, yet there exists a non-compact Hankel operator with a symbol smooth on the closure of the domain. Namely, the converse of Theorem 1 is not true. On the other hand, the converse of Theorem 2 is open.

The plan of the paper is as follows: First we will prove a localization result for compactness of Hankel operators with bounded (not necessarily continuous) symbols. Then we will prove Theorem 1 and Theorem 2. Finally, we will finish the paper with the proofs of Corollary 1 and 2.

LOCALIZATION OF COMPACTNESS

We note that H^U_ϕ denotes the Hankel operator on $A^2(U)$ with symbol ϕ which is an essentially bounded function on U. Furthermore, we will use the following notation: $A \lesssim B$ means that there exists $c > 0$ that does not depend on quantities of interest such that $A \leq cB$. Also the constant c might change at every appearance.

Lemma 1. Let Ω be a bounded pseudoconvex domain in \mathbb{C}^n, $\phi \in L^\infty(\Omega)$, $p \in b\Omega$, $0 < r_1 < r_2$, and $R_{r_2,r_1} : A^2(B(p,r_2) \cap \Omega) \to A^2(B(p,r_1) \cap \Omega)$ be the restriction operator defined as $R_{r_2,r_1}f = f|_{B(p,r_1) \cap \Omega}$. Assume that H^Ω_ϕ is compact on $A^2(\Omega)$. Then $H^{B(p,r_1) \cap \Omega}_{\phi} R_{r_2,r_1} f$ is compact on $A^2(B(p,r_2) \cap \Omega)$.

Proof. Let $U_j = B(p,r_j) \cap \Omega$, $Q^{U_j} = I - P^{U_j}$, for $j = 1,2$, and $Q^{\Omega} = I - P^{\Omega}$. In the following calculations $\| \cdot \|_{U_j}$ and $\| \cdot \|_{\Omega}$ denote the L^2 norm on U_j and Ω, respectively. We note that by [Sah12 Lemma 3] we have an operator $E_\epsilon : A^2(U_2) \to A^2(\Omega)$ has the following estimate

$$\|f - E_\epsilon f\|_{U_1} \leq \epsilon \|f\|_{U_1}$$

for $f \in A^2(U_2)$. Furthermore, $H^{U_j}_{\phi} g = Q^{U_j} H^\Omega_\phi g$ for any $g \in A^2(\Omega)$. Then for $f \in A^2(U_2)$ we have

$$\left\| H^{U_1}_{\phi} R_{r_2,r_1} f \right\|_{U_1}^2 = \left\| \langle \phi(f - E_\epsilon f), Q^{U_1}(\phi f) \rangle_{U_1} + \langle \phi E_\epsilon f, Q^{U_1}(\phi f) \rangle_{U_1} \right\|_{U_1}^2$$

$$\lesssim \epsilon \|f\|_{U_1}^2 + \left\| \langle \phi E_\epsilon f, Q^{U_1}(\phi(f - E_\epsilon f)) \rangle_{U_1} \right\|_{U_1}^2 + \left\| \langle \phi E_\epsilon f, Q^{U_1}(\phi f) \rangle_{U_1} \right\|_{U_1}^2$$

$$\lesssim (\epsilon + \epsilon(1 + \epsilon)) \|f\|_{U_1}^2 + \left\| Q^{U_1} H^\Omega_\phi E_\epsilon f \right\|_{U_1}^2$$

$$\lesssim \epsilon(2 + \epsilon) \|f\|_{U_1}^2 + \left\| H^\Omega_\phi E_\epsilon f \right\|_{U_1}^2.$$

Since H^Ω_ϕ is compact for every $\epsilon' > 0$ there exists a compact operator $K_{\epsilon'} : A^2(\Omega) \to L^2(\Omega)$ such that

$$\left\| H^\Omega_\phi E_\epsilon f \right\|_{U_1}^2 \leq \left\| H^\Omega_\phi E_\epsilon f \right\|_{\Omega}^2 \leq \epsilon' \|E_\epsilon f\|_{\Omega}^2 + \|K_{\epsilon'} E_\epsilon f\|_{\Omega}^2.$$
Therefore, we have
\[
\left\| H_{\hat{\phi}}^2 E_\varepsilon f \right\|_{U_1}^2 \leq \varepsilon' \left\| E_\varepsilon \right\|_{U_1}^2 + \left\| K_{\varepsilon} E_\varepsilon f \right\|_{\Omega}^2.
\]

We note that \(K_{\varepsilon} E_\varepsilon : A^2(U_2) \to L^2(\Omega) \) is compact for any \(\varepsilon \) and \(\varepsilon' \). Now we choose \(\varepsilon' \) sufficiently small so that \(\varepsilon' \left\| E_\varepsilon \right\|_{U_1}^2 < \varepsilon \). Hence, there exists \(C > 0 \) (independent of \(\varepsilon, \varepsilon' \) and \(f \)) such that
\[
\left\| H_{\hat{\phi}}^U_{U_1} R_{r_2,r_1} f \right\|_{U_1}^2 \leq C \varepsilon (3 + \varepsilon) \left\| f \right\|_{U_2}^2 + \left\| K_{\varepsilon} E_\varepsilon f \right\|_{\Omega}^2.
\]

Finally, [Str10, Lemma 4.3] (see also [D’A02, Proposition V.2.3]) implies that \(H_{\hat{\phi}}^U_{U_1} \) is compact on \(A^2(U_2) \).

\[\square\]

Remark 2. We note that the third author proved a localization result previously in [Sah12]. In [Sah12, Theorem 1] the domain may be very irregular but the symbol was assumed to be \(C^1 \)-smooth up to the boundary. In Lemma 1, however, we assume that the symbol is only continuous on the closure.

\section*{Proof of Theorem 1}

Lemma 2. Let \(U \) be a domain in \(\mathbb{C} \) and \(\phi \in C(U) \) that is not holomorphic. Assume that \(\{ \phi_k \} \subset C^1(U) \) such that \(\left\langle \phi_k, h \right\rangle \to \left\langle \phi, h \right\rangle \) for all \(h \in C^0_0(U) \). Then there exists a subsequence \(\{ \phi_{k_j} \} \), \(\delta > 0 \), and \(h \in C^0_0(U) \) such that
\[
\left| \left\langle \frac{\partial \phi_{k_j} }{\partial \overline{z}}, h \right\rangle \right| \geq \delta
\]
for all \(j \).

\textbf{Proof.} We want to show that there exists \(h \in C^\infty_0(U) \) such that \(\left\langle (\phi_k)_{\overline{z}}, h \right\rangle \) does not converge to 0 as \(k \to \infty \). Suppose that \(\left\langle (\phi_k)_{\overline{z}}, h \right\rangle \to 0 \) as \(k \to \infty \) for all \(h \in C^\infty_0(U) \). Then, \(\left\langle \phi_k, h_z \right\rangle \to \left\langle \phi, h_z \right\rangle \) as \(k \to \infty \). Hence, we have \(\left\langle \phi, h_z \right\rangle = 0 \) for all \(h \in C^\infty_0(U) \). This implies that \(\phi \) is in the kernel of the \(\overline{\partial} \) operator (in the distribution sense) on \(U \). In particular, it is harmonic. Then \(\phi \) is \(C^\infty \)-smooth (see, for instance, [Fol95, Corollary 2.20]) and, in turn, it is holomorphic. This contradicts with the assumption that \(\phi \) is not holomorphic. Hence there exists \(\delta > 0, h \in C^\infty_0(U), \) and a subsequence \(\phi_{k_j} \) such that
\[
\left| \left\langle (\phi_{k_j})_{\overline{z}}, h \right\rangle \right| \geq \delta
\]
for all \(j \).

\[\square\]

Lemma 3. Let \(\Omega_1 \) and \(\Omega_2 \) be two bounded domains, \(F : \Omega_1 \to \Omega_2 \) be a biholomorphism and \(\phi \in L^\infty(\Omega_2) \). Assume that \(H_{\phi}^{\Omega_2} \) is compact. Then \(H_{\phi \circ F}^{\Omega_1} \) is compact.
Proof. Let J_F denote the determinant of (complex) Jacobian of F and $g \in L^2(\Omega_2)$. Then by [Bel81] Theorem 1] we have

$$P_{\Omega_1}(J_F \cdot (g \circ F)) = J_F \cdot P_{\Omega_2}(g) \circ F$$

(see also [JP13] Proof of Theorem 12.1.11]). Let h be a square integrable holomorphic function on Ω_2. Then

$$H^\Omega_{\phi \circ F}(h \circ F) = \phi \circ F \cdot h \circ F - P_{\Omega_1}(\phi \circ F \cdot h \circ F)$$

$$= J_F \cdot \phi \circ F \cdot \frac{h \circ F}{J_F} - J_F \cdot P_{\Omega_2} \left(\frac{\phi \circ F \cdot h \circ F}{J_F} \circ F^{-1} \right) \circ F$$

$$= J_F \cdot \left(\frac{\phi \cdot \frac{h}{J_F \circ F^{-1}} - P_{\Omega_2} \left(\phi \cdot \frac{h}{J_F \circ F^{-1}} \right) \circ F \right)$$

$$= J_F \cdot H^\Omega_{\phi \circ F} \left(\frac{h}{J_F \circ F^{-1}} \right) \circ F.$$

Next we want to show that $\frac{f \circ F^{-1}}{J_F \circ F^{-1}} \in A^2(\Omega_2)$ for any $f \in A^2(\Omega_1)$. Indeed,

$$\left\| \frac{f \circ F^{-1}}{J_F \circ F^{-1}} \right\|_{\Omega_2}^2 = \int_{\Omega_2} \left| \frac{f \circ F^{-1}(w)}{J_F \circ F^{-1}(w)} \right|^2 dV(w)$$

$$= \int_{\Omega_1} \left| \frac{f \circ F^{-1}(F(z))}{J_F \circ F^{-1}(F(z))} \right|^2 |J_F(z)|^2 dV(z)$$

$$= \int_{\Omega_1} \left| \frac{f(z)}{J_F(z)} \right|^2 |J_F(z)|^2 dV(z)$$

$$= \int_{\Omega_1} |f(z)|^2 dV(z)$$

$$= \|f\|^2_{\Omega_1}.$$

If $\{f_j\}$ is a bounded sequence in $A^2(\Omega_1)$ then

$$H^\Omega_{\phi \circ F}(f_j) = J_F \cdot H^\Omega_{\phi} \left(\frac{f_j \circ F^{-1}}{J_F \circ F^{-1}} \right) \circ F.$$

Then compactness of H^Ω_{ϕ} together with the fact that $\left\{ \frac{f_j \circ F^{-1}}{J_F \circ F^{-1}} \right\}$ is a bounded sequence in $A^2(\Omega_2)$ imply that $\left\{ H^\Omega_{\phi \circ F}(f_j) \right\}$ has a convergent subsequence because using (1) we get

$$\left\| H^\Omega_{\phi \circ F}(f_j) \right\|_{\Omega_1} = \left\| J_F \cdot H^\Omega_{\phi} \left(\frac{f_j \circ F^{-1}}{J_F \circ F^{-1}} \right) \circ F \right\|_{\Omega_1} = \left\| H^\Omega_{\phi} \left(\frac{f_j \circ F^{-1}}{J_F \circ F^{-1}} \right) \right\|_{\Omega_2}.$$

Therefore, $H^\Omega_{\phi \circ F}$ is compact.
Let \(\chi \in C_0^\infty(B(0,1)) \) such that \(\int_{B(0,1)} \chi(z) dV(z) = 1 \). We define
\[
\chi_k(z) = k^{2n} \chi(kz)
\]
for \(k = 1, 2, 3, \ldots \).

Proof of Theorem 1. We assume that \(H_\phi \) is compact and there is a holomorphic map \(f : \mathbb{D} \to b\Omega \) such that \(\phi \circ f \) is not holomorphic. Then \(f \) is a non-constant mapping. Furthermore, we can use Lemma 1 to localize the compactness of \(H_\phi \) near a point \(p \in b\Omega \) such that \(f(\xi_0) = p \) and \(\phi \circ f \) is not holomorphic near \(\xi_0 \). That is, we choose \(0 < r_1 < r_2 \) such that \(H_\phi^{\Omega \cap B(p,r_1)} \) is compact on \(A^2(\Omega \cap B(p,r_2)) \). Then, shrinking \(r_1, r_2 \) if necessary, we use a local holomorphic change of coordinates
\[
F : \Omega \cap B(p,r_2) \to \mathbb{C}^2
\]
so that \(F \circ f \) maps a neighborhood of the origin in \(\mathbb{C} \) onto an open set on \(z_1 \)-axis and \(F \circ f(0) = 0 \). Then Lemma 3 implies that \(H_\phi^{F(\Omega \cap B(p,r_1))} \) is compact on \(A^2(F(\Omega \cap B(p,r_2))) \). Therefore, without loss of generality, for \(\Omega_2 = F(\Omega \cap B(p,r_2)) \) we may assume that

i. \(\phi \in C(\mathbb{C}^2) \),
ii. \((0,0) \in \Gamma_1 \times \{0\} \subset b\Omega_2 \) is a non-trivial affine disc where \(\Gamma_1 = \{z \in \mathbb{C} : |z| < s_1\} \),
iii. \(\Omega_2 \subset \{ (z_1,z_2) \in \mathbb{C}^2 : |\arg(z_2)| < \theta_1 \} \) for some \(0 < \theta_1 < \pi \),
iv. \(H_\phi^{\Omega_1} R \) is compact on \(A^2(\Omega_2) \) where \(\Omega_1 = F(\Omega \cap B(p,r_1)) \) and \(R : A^2(\Omega_2) \to A^2(\Omega_1) \) is the restriction operator.

We define \(\tilde{\phi} = \phi|_{\{(z_1,z_2) \in \mathbb{C}^2 : z_2 = 0\}} \) and
\[
\phi_k = E(\tilde{\phi} \ast k)
\]
where \(\ast \) and \(E \) denote the convolution and the trivial extension from \(\{(z_1,z_2) \in \mathbb{C}^2 : z_2 = 0\} \) to \(\mathbb{C}^2 \), respectively. Then \(\phi_k \to \phi \) uniformly on compact subsets in \(\{(z_1,z_2) \in \mathbb{C}^2 : z_2 = 0\} \) as \(k \to \infty \).

Lemma 2 implies that there exist \(\delta > 0, h \in C_0^\infty(\Gamma_1) \), and a subsequence \(\{\phi_{k_j}\} \) such that
\[
\left| \langle (\phi_{k_j})_\Gamma, h \rangle_{\Gamma_1} \right| \geq \delta > 0
\]
for all \(j = 1, 2, 3, \ldots \). By passing to a subsequence, if necessary, we can assume that
\[
\left| \langle (\phi_k)_\Gamma, h \rangle_{\Gamma_1} \right| \geq \delta > 0
\]
for all \(k = 1, 2, 3, \ldots \).

Since \(\Omega_2 \) has Lipschitz boundary there exists \(0 < t_1 < t_2 \) and \(0 < \theta_1 < \pi/2 < \theta_2 < \pi \) such that
\[
\Gamma_1 \times W_{t_1,\theta_1} \subset \Omega_1 \subset \Omega_2 \subset \Gamma_2 \times W_{t_2,\theta_2}
\]
where $\Gamma_2 = \{ z \in \mathbb{C} : |z| < s_2 \}$ and
\[W_{t_j, \theta_j} = \left\{ \rho e^{i\theta} \in \mathbb{C} : 0 < \rho < t_j, |\theta| < \theta_j \right\} \]
for $j = 1, 2$. We define the sequence
\[f_j(z_1, z_2) = \frac{\alpha_j}{z_2^j} \]
where $\beta_j = 1 - 1/j$ and $\alpha_j \to 0$ such that $\|f_j\|_{L^2(W_{t_1, \theta_1})} = 1$ for all j. One can show that $\{f_j\}$ is a bounded sequence in $A^2(\Omega_2)$ as $\|f_j\|_{L^2(W_{t_2, \theta_2})}$ are uniformly bounded. Furthermore, the sequence $\{f_j\}$ converges to zero uniformly on compact subsets that are away from $\{(z_1, z_2) \in \mathbb{C}^2 : z_2 = 0\}$. Then $f_j \to 0$ weakly in $A^2(\Omega_2)$ as $j \to \infty$. We note that
\[(H \phi f)z_1 = (f \phi)z_1 - (P(f \phi))z_1 = f \phi z_1. \]
Using the identity above (when we pass from second to third line below) we get
\[\delta^2 = \delta^2 \|f\|^2_{L^2(W_{t_1, \theta_1})} \leq \int_{W_{t_1, \theta_1}} |\langle (\phi_k)z_1, h \rangle_{\Gamma_1}|^2 f_j(z_1, z_2) f_j(z_1, z_2) \, dV(z_2) \]
\[= \int_{W_{t_1, \theta_1}} |\langle (\phi_k)z_1, h \rangle_{\Gamma_1}|^2 \, dV(z_2) \]
\[= \int_{W_{t_1, \theta_1}} |\langle (H_{\phi_k}^\Omega R f_j)z_1, h \rangle_{\Gamma_1}|^2 \, dV(z_2) \]
\[= \int_{W_{t_1, \theta_1}} |\langle (H_{\phi_k}^\Omega R f_j, h_{z_1})_{\Gamma_1}|^2 \, dV(z_2) \]
\[\leq \int_{W_{t_1, \theta_1}} \|H_{\phi_k}^\Omega R f_j(\cdot, z_2)\|_{\Gamma_1}^2 \, dV(z_2) \]
\[= \|H_{\phi_k}^\Omega R f_j\|^2_{\Gamma_1 \times W_{t_1, \theta_1}} \|h_{z_1}\|^2_{\Gamma_1}. \]
Then, for all j and k, we have
\[\frac{\delta}{\|h_{z_1}\|_{\Gamma_1}} \leq \|H_{\phi_k}^\Omega R f_j\|_{\Omega_1}. \]
Using the facts that $\phi_k \to \phi$ uniformly on Γ_1 and $f_j \to 0$ uniformly on compact subset away from z_1-axis, one can show that
\[\|H_{\phi_k - \phi}^\Omega R f_j\|_{\Omega_1} \leq \|(\phi_k - \phi) f_j\|_{\Omega_1} \to 0 \text{ as } j, k \to \infty. \]
Then we have
\[\frac{\delta}{\|h_{z_1}\|_{\Gamma_1}} \leq \|H_{\phi_k}^\Omega R f_j\|_{\Omega_1} \leq \|H_{\phi_k - \phi}^\Omega R f_j\|_{\Omega_1} + \|H_{\phi}^\Omega R f_j\|_{\Omega_1}. \]
Then if we let $j, k \to \infty$ we get
\[0 < \frac{\delta}{\|h_{\xi_1}\|_{L_1}} \leq \liminf_{j \to \infty} \|H_{\phi}^{\Omega_1}Rf_j\|_{\Omega_1}. \]

We conclude that $H_{\phi}^{\Omega_1}R$ is not compact on $A^2(\Omega_2)$ because if it were the sequence $\{H_{\phi}^{\Omega_1}Rf_j\}$ would converge to zero in norm. Therefore, using Lemma 1, we reach a contradiction with the assumption that H_{ϕ} is compact. \qed

Proof of Theorem 2 and Corollaries

In the following lemma we will use the following notation: $L_{z_0,z_1} : D \to b\Omega$ is defined as $L_{z_0,z_1}(\xi) = z_0 + \xi z_1$ where $z_0, z_1 \in \mathbb{C}^n$.

Lemma 4. Let Ω be a bounded convex domain in \mathbb{C}^n and $\phi \in C(\overline{\Omega})$. Assume that there exists a holomorphic function $f : D \to b\Omega$ so that $\phi \circ f$ is not holomorphic. Then there exist $z_0 \in b\Omega, z_1 \in \mathbb{C}^n$ such that $L_{z_0,z_1}(D) \subset b\Omega$ and $\phi \circ L_{z_0,z_1}$ is not holomorphic.

Proof. We may assume $f(D)$ is a non degenerate analytic disk in $b\Omega$. By [FS98, Theorem 1.1], the convex hull of $f(D)$ is contained in an affine variety $V \subset b\Omega$. So $\phi|_V$ is not holomorphic. Next we use the following fact: a continuous function is holomorphic on an open set U if and only if it is holomorphic on every complex line in U. Therefore, we conclude that there is a complex line $L_{z_0,z_1}(D) \subset V$ such that $\phi \circ L_{z_0,z_1}$ is not holomorphic. \qed

Lemma 5. Let Ω be a domain in \mathbb{C}^n with Lipschitz boundary such that $0 \in b\Omega$. Then the function $f(z) = |z_n|^{-p}$ is not square integrable on Ω for $p \geq n$.

Proof. We can use rotation to assume that positive y_n-axis is transversal to $b\Omega$ and there exists $a, \varepsilon > 0$ such that
\[W_{\varepsilon,a} = \{(z', z_n) \in \mathbb{C}^{n-1} \times \mathbb{C} : |z'|^2 + x_n^2 < a^2 y_n^2, -\varepsilon < y_n < 0\} \subset \Omega \]
where $z_n = x_n + iy_n$. In the following calculation $w_{\varepsilon,a} = \{x_n + iy_n \in \mathbb{C} : |x_n| + ay_n < 0, -\varepsilon < y_n < 0\}$ is a wedge in z_n.

\[\int_{\Omega} |z_n|^{-2p}dV(z) \geq \int_{W_{\varepsilon,a}} |z_n|^{-2p}dV(z', z_n) \]
\[= \int_{z_n \in w_{\varepsilon,a}} \int_{|z'|^2 < a^2 y_n^2 - x_n^2} |z_n|^{-2p}dV(z')dV(z_n) \]
\[\gtrsim \int_{z_n \in w_{\varepsilon,a}} (a^2 y_n^2 - x_n^2)^{n-1} |z_n|^{-2p}dV(z_n) \]
\[\gtrsim \int_0^{\varepsilon} \frac{1}{r^{1+2(p-n)}}dr. \]

Therefore, if $p \geq n$ the function $f(z) = |z_n|^{-p}$ is not square integrable on Ω as the last integral above is infinite. \qed
Proof of Theorem 2. It is well known that convex domains have Lipschitz boundary (see, for instance, [Way72]). Without loss of generality we may assume that \(\Omega \subset \{ y_n < 0 \} \) and the origin be in the boundary of \(\Omega \). Furthermore, by Lemma 4 we may assume that \(0 \in \Gamma = \{ z \in \mathbb{C} : (z,0,\ldots,0) \in b\Omega \} \) is a non-trivial affine analytic disc such that \(\phi(.,0,\ldots,0) \) is not holomorphic and positive \(y_n \)-axis is transversal to \(b\Omega \) on \(\Gamma \).

Let \(\Omega^{z_1} = \{ z'' \in \mathbb{C}^{n-1} : (z_1,z'') \in \Omega \} \) be the slice of \(\Omega \) perpendicular to \(\Gamma \) at \(z_1 \in \Gamma \). Convexity of \(\Omega \) and the fact that \(0 \in \Gamma \times \{ 0 \} \subset b\Omega \) imply that

\[
\left(\frac{z_1}{2}, \frac{z''}{2} \right) = \frac{1}{2}(z_1,0) + \frac{1}{2}(0,z'') \in \Omega
\]

for \(z_1 \in \Gamma \) and \(z'' \in \Omega^0 \). That is, \(\Omega^0 \subset 2\Omega^{z_1/2} \) for \(z_1 \in \Gamma \). Equivalently, \(\Omega^0 \subset 2\Omega^{z_1} \) for \(z_1 \in \frac{1}{2} \Gamma \).

Let \(0 < r_1 \) such that \(\{ z_1 \in \mathbb{C} : |z_1| < r_1 \} \subset \Gamma \) and \(z'' \in \Omega^{z_1/2} \). Then, we have \((z_1/2,z'') \in \Omega \) and \((-z_1/2,0) \in \Gamma \). Hence

\[
\left(0, \frac{z''}{2} \right) = \frac{1}{2} \left(-\frac{z_1}{2},0 \right) + \frac{1}{2} \left(\frac{z_1}{2}, z'' \right) \in \Omega.
\]

That is, \(\Omega^{z_1/2} \subset 2\Omega^0 \) for \(|z_1| < r_1 \).

Therefore, we have

\[
\frac{1}{2}(\Gamma \times \Omega^0) \cap B(0,r_1) \subset \Omega \cap B(0,r_1) \subset 2(\Gamma \times \Omega^0).
\]

Since \(f(z) = z_n^{-n+1} \) is not square integrable on \(\Omega^0 \) and the norm of \((z_n - i\delta)^{-n+1} \) continuously depend on \(\delta > 0 \), we can choose positive sequence \(\{ \delta_j \} \) such that \(\delta_j \to 0 \) as \(j \to \infty \) and \(\| f_j \|_{\mathcal{L}^2(\Omega^0)} = 1 \) where

\[
(2) \quad f_j(z) = \frac{1}{j(z_n - i\delta_j)^{n-1}}.
\]

Furthermore, one can show that \(\{ f_j \} \) is a bounded sequence in \(A^2(\Omega) \) (as \(\| f_j \|_{2\Omega^0} \) is uniformly bounded) and \(f_j \to 0 \) weakly in \(A^2(\Omega) \) as \(j \to \infty \).

The rest of the proof follows the proof of Theorem 1. Namely, we define \(\Gamma_1 = \{ z \in \mathbb{C} : |z| < \frac{r_1}{2} \} \) and \(\tilde{\phi} = \phi|_{\Gamma \times \{ 0 \}} \). Without loss of generality, we may assume that \(\phi \in C(\mathbb{C}^n) \). We define

\[
\phi_k = E(\tilde{\phi} \ast \chi_k)
\]

where \(E \) denotes trivial extension from \(\{ (z_1,z'') \in \mathbb{C}^2 : z'' = 0 \} \) to \(\mathbb{C}^n \), respectively. Using Lemma 2 we can choose \(\delta > 0 \) and \(h \in C_0^\infty(\Gamma_1) \) so that, by passing to a subsequence if necessary, we can assume that

\[
|\langle (\phi_k)_{|\Gamma_1}, h \rangle_{|\Gamma_1} | \geq \delta > 0
\]
for all $k = 1, 2, 3, \ldots$. Then for $\Omega_1 = \Omega \cap B(p, r_1)$ we get
\[
\frac{\delta}{\|h_{z_1}\|_{\Gamma_1}} \leq \|H_{\phi_k}^{\Omega_1} R f_j\|_{\Omega_1}
\]
for all j, k where $R : A^2(\Omega) \to A^2(\Omega_1)$ is the restriction operator. Then letting $j, k \to \infty$ we get
\[
0 < \frac{\delta}{\|h_{z_1}\|_{\Gamma_1}} \leq \liminf_{j \to \infty} \|H_{\phi_k}^{\Omega_1} R f_j\|_{\Omega_1}.
\]

Hence, $H_{\phi_k}^{\Omega_1} R$ is not compact and we reach a contradiction with the assumption that H_{ϕ} is compact. Therefore, the proof of Theorem 2 is complete. \hfill \Box

Proof of Corollary 1. Suppose $\Omega \subset \mathbb{C}^n$ is a bounded locally convexifiable domain, $\phi \in C(\overline{\Omega})$ is such that H_{ϕ} is compact on $A^2(\Omega)$, and $f : \mathbb{D} \to b\Omega$ is a holomorphic function. Let $p \in f(\mathbb{D})$ and choose $r > 0$ such that $B(p, r) \cap \Omega$ is convexifiable. Furthermore, without loss of generality, we may assume that the range of f is contained in $B(p, r/2)$. Then using Lemma 1 and Lemma 3 (and shrinking r is necessary) we may assume that $U = (p, r) \cap \Omega$ is convex and $H_{\phi}^U R_V$ is compact on $A^2(U)$ where $V = B(p, r/2) \cap \Omega$ and $R_V : A^2(U) \to A^2(V)$ is the restriction from U onto V. Then the proof of Theorem 2 implies that $\phi \circ f$ is holomorphic. \hfill \Box

Proof of Corollary 2. Let $\Omega \subset \mathbb{C}^2$ be a bounded pseudoconvex complete Reinhardt domain, $\phi \in C(\overline{\Omega})$, and H_{ϕ} is compact on $A^2(\Omega)$. By Ran86 Theorem 3.28, Ω is locally convexifiable away from the coordinate axes under the map $(z_1, z_2) \to (\log z_1, \log z_2)$. Let $f : \mathbb{D} \to b\Omega$ be a non-constant holomorphic function so that $f(\mathbb{D}) \subset \{(z_1, z_2) \in \mathbb{C}^2 : z_1 \neq 0 \text{ and } z_2 \neq 0\}$. Using an argument similar to the one in the proof of Corollary 1 we conclude that $\phi \circ f$ is holomorphic. Therefore, ϕ is holomorphic along any disc away from the coordinate axis.

Next, let $f = (f_1, f_2)$ and, without loss of generality, assume that $f(\mathbb{D}) \cap \{(z_1, z_2) \in \mathbb{C}^2 : z_1 = 0\} \neq \emptyset$. Then $f_1 : \mathbb{D} \to \mathbb{C}$ has a zero. Since zeroes of a holomorphic function on a planar domain are isolated, we can choose f so that $f_1(z) = 0$ if and only if $z = 0$. Therefore, we may assume that $f(z)$ is on a coordinate axis if and only if $z = 0$. Then, similarly as in the previous paragraph, we conclude that $\phi \circ f$ is holomorphic on $\mathbb{D} \setminus \{0\}$. Furthermore, 0 is a removable singularity for $\phi \circ f$ as $\phi \circ f$ is continuous on \mathbb{D}. That is, $\phi \circ f$ is holomorphic on \mathbb{D}. \hfill \Box

ACKNOWLEDGEMENT

We would like to thank Emil Straube for reading an earlier manuscript of this paper and for providing us with valuable comments.
References

[Axl86] Sheldon Axler, *The Bergman space, the Bloch space, and commutators of multiplication operators*, Duke Math. J. **53** (1986), no. 2, 315–332.

[Bel81] Steven R. Bell, *Proper holomorphic mappings and the Bergman projection*, Duke Math. J. **48** (1981), no. 1, 167–175.

[Clo17a] Timothy G. Clos, *Compactness of Hankel operators with conjugate holomorphic symbols on complete Reinhardt domains in \(\mathbb{C}^2 \)*, New York J. Math. **23** (2017), 1265–1272.

[Clo17b] Timothy George Clos, *Compactness of Hankel Operators with Continuous Symbols on Domains in \(\mathbb{C}^2 \)*, Ph.D. thesis, University of Toledo, 2017.

[ČS09] Željko Čučković and Sönmez Şahutoğlu, *Compactness of Hankel operators and analytic discs in the boundary of pseudoconvex domains*, J. Funct. Anal. **256** (2009), no. 11, 3730–3742.

[ČS14] Željko Čučković and Sönmez Şahutoğlu, *Compactness of products of Hankel operators on convex Reinhardt domains in \(\mathbb{C}^2 \)*, New York J. Math. **20** (2014), 627–643.

[CŠ18] Timothy G. Clos and Sönmez Şahutoğlu, *Compactness of Hankel operators with continuous symbols*, Complex Anal. Oper. Theory **12** (2018), no. 2, 365–376.

[D’A02] John P. D’Angelo, *Inequalities from complex analysis*, Carus Mathematical Monographs, vol. 28, Mathematical Association of America, Washington, DC, 2002.

[Fol95] Gerald B. Folland, *Introduction to partial differential equations*, second ed., Princeton University Press, Princeton, NJ, 1995.

[FS98] Siqi Fu and Emil J. Straube, *Compactness of the \(\overline{\partial} \)-Neumann problem on convex domains*, J. Funct. Anal. **159** (1998), no. 2, 629–641.

[FS01] Siqi Fu and Emil J. Straube, *Compactness in the \(\overline{\partial} \)-Neumann problem*, Complex analysis and geometry (Columbus, OH, 1999), Ohio State Univ. Math. Res. Inst. Publ., vol. 9, de Gruyter, Berlin, 2001, pp. 141–160.

[Has14] Friedrich Haslinger, *The \(\overline{\partial} \)-Neumann problem and Schrödinger operators*, De Gruyter Expositions in Mathematics, vol. 59, De Gruyter, Berlin, 2014.

[JP13] Marek Jarnicki and Peter Pflug, *Invariant distances and metrics in complex analysis*, extended ed., De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter GmbH & Co. KG, Berlin, 2013.

[Kra01] Steven G. Krantz, *Function theory of several complex variables*, AMS Chelsea Publishing, Providence, RI, 2001, Reprint of the 1992 edition.

[Le10] Trieu Le, *Compact Hankel operators on generalized Bergman spaces of the polydisc*, Integral Equations Operator Theory **67** (2010), no. 3, 425–438.

[Li94] Huiping Li, *Hankel operators on the Bergman spaces of strongly pseudoconvex domains*, Integral Equations Operator Theory **19** (1994), no. 4, 458–476.

[Mat97] P. Matheos, *A Hartogs domain with no analytic discs in the boundary for which the \(\overline{\partial} \)-Neumann problem is not compact*, Ph.D. thesis, University of California Los Angeles, CA, 1997.

[Nar71] Raghavan Narasimhan, *Several complex variables*, The University of Chicago Press, Chicago, Ill.-London, 1971, Chicago Lectures in Mathematics.

[Pel94] Marco M. Peloso, *Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains*, Illinois J. Math. **38** (1994), no. 2, 223–249.

[Ran86] R. Michael Range, *Holomorphic functions and integral representations in several complex variables*, Graduate Texts in Mathematics, vol. 108, Springer-Verlag, New York, 1986.

[Şah12] Sönmez Şahutoğlu, *Localization of compactness of Hankel operators on pseudoconvex domains*, Illinois J. Math. **56** (2012), no. 3, 795–804.
[Str10] Emil J. Straube, *Lectures on the L^2-sobolev theory of the $\overline{\partial}$-neumann problem*, ESI Lectures in Mathematics and Physics, European Mathematical Society (EMS), Zürich, 2010.

[SZ17] Sönmez Şahutoğlu and Yunus E. Zeytuncu, *On compactness of Hankel and the $\overline{\partial}$-Neumann operators on Hartogs domains in \mathbb{C}^2*, J. Geom. Anal. 27 (2017), no. 2, 1274–1285.

[Way72] Classroom Notes: *Every Convex Function is Locally Lipschitz*, Amer. Math. Monthly 79 (1972), no. 10, 1121–1124.

[Zhu07] Kehe Zhu, *Operator theory in function spaces*, second ed., Mathematical Surveys and Monographs, vol. 138, American Mathematical Society, Providence, RI, 2007.

(Timothy G. Clos) UNIVERSITY OF TOLEDO, DEPARTMENT OF MATHEMATICS & STATISTICS, 2801 W. BANCROFT, TOLEDO, OH 43606, USA

E-mail address: timothy.clos@utoledo.edu

(Mehmet Çelik) TEXAS A&M UNIVERSITY-COMMERCE, DEPARTMENT OF MATHEMATICS, 1600 EDUCATION DR., COMMERCE, TX, 75429

E-mail address: mehmet.celik@tamuc.edu

(Sönmez Şahutoğlu) UNIVERSITY OF TOLEDO, DEPARTMENT OF MATHEMATICS & STATISTICS, 2801 W. BANCROFT, TOLEDO, OH 43606, USA

E-mail address: sonmez.sahutoglu@utoledo.edu