In vitro anticancer activity of ethanolic extract of pericarp and seed parts of *Momordica charantia* on colon cancer cell lines

Dr. Purushoth Prabhu T, Deepak Venkatraman, Dr. Ravichandran S, Dr. Kabilan N and Deepak Dev

DOI: https://doi.org/10.22271/phyto.2021.v10.i3c.14078

Abstract

Objective: To investigate *in vitro* anticancer activity of ethanolic extract of pericarp and seed parts of *Momordica charantia* on colon cancer cell line.

Materials and Methods: *In vitro* anticancer activity was carried out by 3 (4,5-dimethylthiazol-2-yl) 2,5-diphenyltetrazolium bromide assay. Different concentrations of the ethanolic extracts were tested on cell lines HT29.

Results and Discussion: IC50 value were determined by measuring absorbance at 570nm. The IC50 value of seed and Pericarp was found to be 62.84 μg/ml and 143.75μg/ml respectively. The *Momordica charantia* seed was better therapeutic activity than pericarp in the treatment of colon cancer. The Therapeutic activity may be due to the phytoconstituents present in the seed extract and further the seed have to be evaluated for GCMS studies.

Keywords: Momordica charantia, anti-cancer, MTT, HT29, GCMS

Introduction

India has a very long, safe and continuous usage of many herbal drugs in the officially recognized alternative system of health namely Ayurveda, Yoga, Unani, Siddha, Homeopathy and Naturopathy. These systems are rightfully existed side by side with allopathy are not in domain of obscurity [1-3]. The reason behind exponential growth and commercialization in the field of herbal medicines in both developing and developed countries is mainly due to their natural origin, low cost, easy availability and lesser side effects. But the pharmacopoeia standards on raw materials or finished products are not available [4-5]. World Health Organization has set specific guidelines for the assessment of safety, efficacy and quality of herbal medicines [6]. *Momordica charantia* is rich in nutrients like thiamine, beta carotene, foliate, riboflavin and minerals like calcium, iron, phosphorous, manganese, potassium, magnesium, zinc and dietary fibres. Regular use of bitter gourd juice boosts body stamina and prevents chronic fatigue and effective in early stage of cholera and other types of diarrhoea. It is used in the treatment of various diseases such as hypertension, diabetes mellitus and it is also a good digestive agent and helps in stimulating the secretion of gastric juice [7-9].

Materials and methods

The fruit of *Momordica charantia* were collected from Thyagaraja Nagar, Chennai, Tamil Nadu, India during November 2019. The plant material was identified by professor Dr. J. Jayaraman, Ph. D. Director, plant Anatomy Research centre, west Tambaram, Chennai. A voucher specimen (PARC/2019/4177) was submitted at C. L. Metha College of Pharmacy, Chennai- 97. The Pericarp and seeds were separated, shade dried, Pulverized and extracted by hot percolation (Soxhlet) method by using ethanol as solvent. The extract obtained was tested for preliminary phytochemical screening and tested for *in vitro* anti-cancer studies by MTT assay.

A) Anticancer Activity studies using MTT

For Anticancer studies, serial two-fold dilutions (3.125-100μg/ml) were prepared from this for carrying out anticancer studies. Human colorectal adenocarcinoma cell lines (HT29) were procured from NCCS, stock cells was cultured in medium supplemented with 10% inactivated Fetal Bovine Serum (FBS), penicillin (100 IU/ml), streptomycin (100 μg/ml) in a humidified atmosphere of 5% CO2 at 37°C until confluent. The cell was dissociated with TPVG solution (0.2 % trypsin, 0.02% EDTA, 0.05 % glucose in PBS).
The viability of the cells is checked and centrifuged. Further 50,000 cells / well was seeded in a 96 well plate and incubated for 24 hrs at 37°C, 5% CO₂ incubator.

Procedure
The monolayer cell culture was trypsinized and the cell count was adjusted to 1.0 x 10⁵ cells/ml using respective media containing 10% FBS. To each well of the 96 well microtiter plate, 100μl of the diluted cell suspension (50,000 cells/well) was added. After 24 h, when a partial monolayer was formed, the supernatant was flicked off, washed the monolayer once with medium and 100μl of different test concentrations of test drugs were added on to the partial monolayer in microtiter plates. The plates were then incubated at 37°C for 24 hrs in 5% CO₂ atmosphere. After incubation the test solutions in the wells were discarded and 100μl of MTT (5 mg/10 ml of MTT in PBS) was added to each well. The plates were incubated for 4h at 37°C in 5% CO₂ atmosphere. The supernatant was removed and 100μl of DMSO was added and the plates were gently shaken to solubilize the formed formazan. The absorbance was measured using a microplate reader at a wavelength of 570 nm. The percentage growth inhibition was calculated using the following formula and concentration of test drug needed to inhibit cell growth by 50% (IC₅₀) values is generated from the dose-response curves for each cell line.

IC₅₀ Value
The half maximal inhibitory concentration (IC₅₀) is a measure of the effectiveness of a compound in inhibiting biological or biochemical function. This quantitative measure indicates how much of a particular drug or other substance (inhibitor) is needed to inhibit a given biological process (or component of a process, i.e. an enzyme, cell, cell receptor or microorganism) by half. The IC₅₀ of a drug can be determined by constructing a dose-response curve and examining the effect of different concentrations of antagonist on reversing agonist activity. IC₅₀ values can be calculated for a given agonist by determining the concentration needed to inhibit half of the maximum biological response of the agonist. IC₅₀ values for cytotoxicity tests were derived from a nonlinear regression analysis (curve fit) based on sigmoid dose response curve.

Table 1: Qualitative Analysis

Sample	Seed	Pericarp
Alkaloids	+	+
Saponins	-	+
Tannins	-	+
Cardiac Glycosides	+	-
Flavonoids	-	+
Phenols	+	+
Steroids	+	+
Terpenoids	+	+
Quinones	-	+
Proteins	+	+

MTT ASSAY

Table 2: MTT assay of Seed

MCSE Concentration µG	Mean	Mean-OD	Standard Deviation	Viability
3.12	1.236	1.223	0.0122	97.57
6.25	1.195	1.192	0.0155	94.30
12.5	1.103	1.100	0.0240	87.07
25	0.922	0.919	0.0230	72.75
50	0.825	0.822	0.0384	65.04
100	0.340	0.337	0.0188	26.64

IC 50 Value= 62.84

Table 3: MTT Assay of Pericarp

MCPC Concentration µG	Mean	Mean-OD	Standard Deviation	Viability
3.12	1.251	1.249	0.0171	98.78
6.25	1.205	1.202	0.0136	95.14
12.5	1.162	1.159	0.0200	91.77
25	1.017	1.014	0.0487	80.27
50	0.871	0.868	0.0407	68.74
100	0.595	0.592	0.0318	46.87

IC 50 VALUE=143.75

Table 4: 5-Fluorouracil

5-FU Concentration µG	Mean	Mean-OD	Standard Deviation	Viability
3.12	0.829	0.826	0.0116	65.41
6.25	0.552	0.549	0.0291	43.41
12.5	0.361	0.358	0.0226	28.33
25	0.240	0.237	0.0220	18.78
50	0.136	0.133	0.0177	10.57
100	0.053	0.050	0.007	3.96

IC 50 VALUE = 5.01
Fig 2: Momordica charantia Seed
B. Momordica Charantia Pericarp

Fig 3: Momordica charantia Pericarp

C.5- Fluourouracil

~ 227 ~
Interest in the pharmacological effects of bioactive compounds on cancer treatments and prevention has increased dramatically over the past twenty years. It has been shown to possess numerous anti-cancer activities in various cancer cells through different forms of cytotoxic effects without exhibiting considerable damage to normal cells. The *Momordica charantia* plant parts pericarp and seed were selected for study. The solvent used for extraction is ethanol. The ethanolic extract of *momordica charantia* pericarp and seed were measured. The qualitative phytochemical analysis of *Momordica charantia* ethanolic extract of pericarp and seed showed the presence of alkaloids, saponins, tannins, flavonoids, phenols, steroids, terpenoids, quinones and proteins. The seed showed the presence of alkaloids, cardiac glycosides, phenols, steroids, terpenoids and proteins. The *in vitro* anticancer activity was studied using cell lines. HT29 cell lines were used for the study MTT assay was performed. IC 50 value were determined by measuring absorbance at 570nm. The IC50 value of seed and Pericarp was found to be 62.84 µg/ml and 143.75µg/ml respectively. Thus, *momardica charantia* showed moderate to potent anticancer activity.

Discussion

The well-known common medicinal *Momordica charantia* plant parts pericarp and seed were selected for study. The plant has vast review in research and proven multiple therapeutic activities. The universal solvent ethanol was used for extraction. The yield of *ethanolic extract of momordica charantia* pericarp and seed were quantified. The qualitative phytochemical analysis of *Momordica charantia* ethanolic extract of pericarp and seed showed the presence of alkaloids, phenols, steroids and terpenoids.
5. Archana A, Anubha K. Standardization of herbal drugs: an overview. International research journal of pharmacy 2011;12(2):56-60

6. Leatherdale BA, Panesar RK, Singh G et al. Improvement in glucose tolerance due to *Momordica charantia* (karela). Br Med J (Clin Res Ed). 1981;282:1823-1824.

7. Ahmad N, Hassan MR, Halder H et al. Effect of *Momordica charantia* (Karolla) extracts on fasting and postprandial serum glucose levels in NIDDM patients. Bangladesh Med Res Coun Bull. 1999;25:11-13.

8. Jayasooriya AP, Sakono M, Yukizaki C et al. Effects of *Momordica charantia* powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol. 2000;72:331-336

9. Crouch SPM et al. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Meth 1993;160:81-8.

10. Gonzalez RJ, Tarloff JB. Evaluation of hepatic subcellular Fractions for alamar blue and MTT reductase activity. Toxicology in vitro 2001;15:259-9.

11. Hattori N. et al. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal. Biochem 2003, 319287–95.

12. Kangas L et al. Bioluminescence of cellular ATP: A new method for Evaluating cytotoxic agents in vitro. Med. Biol. 1984;62:338-43.

13. Jayasooriya AP, Sakono M, Yukizaki C, et al. Effects of *Momordica charantia* powder on serum glucose levels and various lipid parameters in rats fed with cholesterol-free and cholesterol-enriched diets. J Ethnopharmacol. 2000;72:331-336

14. Rebecca L, Siegel, Kimberly D. Miller, Ahmedin Jemal, Cancer Statistics, 2019, CA Cancer J Clin 2019;69:7-34.

15. Subhashchandra Patel, Tushar Patel, Kaushal Parmar, Yagnesh Bhatt, Yogesh Patel, Patel NM. Isolation, Characterization and antimicrobial activity of charantin from *Momordica Charantia* Fruit, International Journal of Drug Development and Research 2010;2(3):629-634.

16. Sen S, Chakraborty R, Borah B, Dey BK, Sarkar BR, Sahariah BJ. In vitro anthelmintic and antioxidant potential of fruits of *Momordica charantia*: A comparative study. Indian J Health Sci Biomed Res 2014;7:113-7.

17. Ekramul Haque M, Badrul Alam M, Sarowar Hossain M. the efficacy of cucurbitane type triterpenoids, glycosides and phenolic compounds isolated from momordica charantia: a review, JPSR 2011;2(5):1135-1146.

18. Panel, Wu-QingLiu, LuLu, Xian-Min, Zhang, LinZhou, Zhong-RongLi, Kugucains FS. cucurbitane triterpenoids from *Momordica charantia*, Phytochemistry 2009;70(1):133-140.

19. Duke JA. CRC Handbook of Medicinal Herbs. Boca Raton, FL: CRC Press 1985, 315-6.

20. Crouch SPM. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Meth 1993;160:81-8.

21. Gonzalez RJ, Tarloff JB. Evaluation of hepatic subcellular Fractions for alamar blue and MTT reductase activity. Toxicology in vitro 2001;15:259-9.

22. Hattori N. Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Anal. Biochem 2003;319(2):287-95.

23. Kangas L. Bioluminescence of cellular ATP: A new method for Evaluating cytotoxic agents in vitro. Med. Biol1984;62:338-43.

24. Senthilraja P, KathiresanB K. In vitro cytotoxicity MTT assay in Vero, HepG2 and MCF -7 cell lines study of Marine Yeast. J App Pharm Sci 2015;5(03):080-084.