A NOTE ON BANACH SPACES E ADMITTING A CONTINUOUS MAP FROM $C_p(X)$ ONTO E_w

JERZY KĄKOL, ARKADY LEIDERMAN, ARTUR MICHALAK

Abstract. $C_p(X)$ denotes the space of continuous real-valued functions on a Tychonoff space X endowed with the topology of pointwise convergence. A Banach space E equipped with the weak topology is denoted by E_w. It is unknown whether $C_p(K)$ and $C(L)_w$ can be homeomorphic for infinite compact spaces K and L [14, 15]. In this paper we deal with a more general question: what are the Banach spaces E which admit certain continuous surjective mappings $T: C_p(X) \to E_w$ for an infinite Tychonoff space X?

First, we prove that if T is linear and sequentially continuous, then the Banach space E must be finite-dimensional, thereby resolving an open problem posed in [12]. Second, we show that if there exists a homeomorphism $T: C_p(X) \to E_w$ for some infinite Tychonoff space X and a Banach space E, then (a) X is a countable union of compact sets $X_n, n \in \omega$, where at least one component X_n is non-scattered; (b) E necessarily contains an isomorphic copy of the Banach space ℓ_1.

1. Introduction

For a locally convex space E by E_w we denote the space E endowed with the weak topology $w = \sigma(E, E')$ of E, where E' means the topological dual of E. All topological spaces in the paper are assumed to be Tychonoff. For a Tychonoff space X let $C_p(X)$ be the space of continuous real-valued functions $C(X)$ endowed with the pointwise convergence topology. If X is a compact space, then $C(X)$ means the Banach space equipped with the sup-norm.

In [14] M. Krupski asked the following question:

Problem 1.1. Suppose that K is an infinite (metrizable) compact space. Can $C(K)_w$ and $C_p(K)$ be homeomorphic?

The main result of [14] shows that the answer is ”no”, provided K is an infinite metrizable compact C-space (in particular, if K is any infinite metrizable finite-dimensional compact space).

Date: September 15, 2021.
2010 Mathematics Subject Classification. 46B04; 46E10; 46E15.
Key words and phrases. Banach space, weak topology, $C_p(X)$ space, (sequentially) continuous (linear) map.

The first named author is supported by the GAČR project 20-22230L and RVO: 67985840.
A more general problem was posed in [15]:

Problem 1.2. Let K and L be infinite compact spaces. Can it happen that $C_p(L)$ and $C(K)_w$ are homeomorphic?

Both Problems 1.1 and 1.2 remain open, although in some cases the answer is known to be negative. For example, the most easy examples of compact spaces K such that $C_p(K)$ and $C(K)_w$ are not homeomorphic, as already observed in [15, (D), p. 648], are scattered compact spaces. The reason is the following: the space $C(K)_w$ is not Fréchet-Urysohn for every infinite compact space K. Recall that a topological space X is called scattered if every non-empty subspace of X contains an isolated point, and $C_p(K)$ is Fréchet-Urysohn for any scattered compact space K. We refer the reader to articles [14], [15] (and references therein) discussing these problems and providing more concrete examples of compact spaces K and L such that $C_p(K)$ and $C(L)_w$ are not homeomorphic. We recommend also the paper [16] which surveys a substantial progress in the study of various types of homeomorphisms between the function spaces $C_p(X)$.

One of the starting points of our research is the following result of M. Krupski and W. Marciszewski: for any infinite compact spaces K and L a homeomorphism $T : C(K)_w \to C_p(L)$ which is in addition uniformly continuous, does not exist (see [15, Proposition 3.1]). In particular, there is no a linear homeomorphism between function spaces $C(K)_w$ and $C_p(L)$ [15, Corollary 3.2].

This short summary makes it clear our motivation for a formulation of the following ”linear” variant of the above Problem 1.1.

Problem 1.3 ([12]). Does there exist an infinite compact space X admitting a continuous linear surjection $T : C_p(X) \to C(X)_w$?

It has been proved earlier that no infinite metrizable compact C-space X admits such a mapping [12].

In this note we suggest to consider analogous questions in a more general framework. It was H.H. Corson who initiated the investigation aiming to find criteria or techniques which can be used to determine whether or not a given Banach space E under its weak topology has any of the usual topological properties (see [3]). The next problem combines together two lines of research: both E_w and $C_p(X)$.

Problem 1.4. Let E be a Banach space which admits certain continuous surjective mappings $T : C_p(X) \to E_w$ for an infinite Tychonoff space X. 1) Characterize such E; 2) What are the possible restrictions on X?

Thus, this paper continues several lines of research initiated in the recent papers [6], [7], [8], [12], [13], [14], [15].

Recall that a mapping between topological spaces is sequentially continuous if it sends converging sequences to converging sequences. The following statement proved in Section 2 which is one of the main results of our paper, gives a negative answer to Problem 1.3 in a very strong form.
Theorem 1.5. Let X be any Tychonoff space and let E be a Banach space. Then every sequentially continuous linear operator $T : C_p(X) \to E_w$ has a finite-dimensional range.

In Section 3 we consider another particular version of Problem 1.4, imposing on T a requirement to be a (non-linear) homeomorphism.

Remark 1.6. Let E be a Banach space, and X be an infinite Tychonoff space. If there is a homeomorphism $T : C_p(X) \to E_w$, then E cannot be reflexive. This is because E_w is K_σ (a countable union of compact subspaces), for every reflexive Banach space E. However, $C_p(X)$ is K_σ if and only if X is finite [1, Theorem I.2.1].

Our next statement, which is one of the main results of our paper, significantly extends Remark 1.6.

Theorem 1.7. Let E be a Banach space. If there exist an infinite Tychonoff space X and a homeomorphism $T : C_p(X) \to E_w$, then

(a) X is a countable union of compact sets $X_n, n \in \omega$, where at least one component X_n is non-scattered;
(b) E contains an isomorphic copy of the Banach space ℓ_1.

A Banach space E is called weakly compactly generated (WCG) if there is a weakly compact subset K in X such that $E = \text{span}(K)$. WCG spaces constitute a large and important class of Banach spaces [5]. Every weakly compact subspace of a Banach space is called an Eberlein compact space.

Corollary 1.8. Let E be a WCG (separable) Banach space. If there exist an infinite Tychonoff space X and a homeomorphism $T : C_p(X) \to E_w$, then

(a) X is a countable union of Eberlein (metrizable, respectively) compact spaces $X_n, n \in \omega$, where at least one component X_n is non-scattered;
(b) E contains an isomorphic copy of the Banach space ℓ_1.

Corollary 1.9. Let E be a WCG (separable) Banach space. If there exist an infinite compact space X and a homeomorphism $T : C_p(X) \to E_w$, then X is a non-scattered Eberlein (metrizable, respectively) compact space and E contains a copy of ℓ_1.

Theorem 1.7 provides a generalization of [15, Corollary 5.11, Theorem 5.12], because the Banach space $C(L)$ over a compact space L contains an isomorphic copy of ℓ_1 if and only if L is non-scattered (see [5, Theorem 12.29]). Note that our approach is different from that presented in [15]; we make use of the main result of [15] and some standard arguments from general topology and functional analysis.

Necessary conditions in Theorem 1.7 are not sufficient, because the Banach space ℓ_1 is never homeomorphic to any space $C_p(X)$ (cf. Remark 3.8). This and some other remarks related with the topic were mentioned earlier in [13].
Note that M. Krupski and W. Marciszewski have asked already whether the spaces \(C_p(K) \) and \(C(K)_w \) are homeomorphic for \(K = [0, 1]^\omega, K = \beta \mathbb{N}, K = \beta \mathbb{N} \setminus \mathbb{N} \) \cite{15} Questions 4.7 - 4.9.

Our notation is standard and follows the book \cite{4}. The closure of a set \(A \) is denoted by \(\overline{A} \). The following very well-known notions play an important role in the proof of Theorem 1.7. A topological space \(X \) is Fréchet-Urysohn if for each subset \(A \subset X \) and each \(x \in A \) there exists a sequence \(\{x_n : n \in \omega\} \) in \(A \) which converges to \(x \). A subset \(B \) of a topological vector space \(E \) is bounded in \(E \) if for each neighbourhood of zero \(U \) in \(E \) there exists a scalar \(\lambda \) such that \(B \subset \lambda U \).

2. Sequentially continuous linear mappings \(T : C_p(X) \to E_w \)

Let \(X \) be a Tychonoff space. For a function \(f : X \to \mathbb{R} \), we denote the support of \(f \) by

\[
\text{supp} (f) = \{ t \in X : f(t) \neq 0 \}.
\]

In order to prove Theorem 1.5 we need an elementary lemma.

Lemma 2.1. Let \(X \) be an infinite Tychonoff space and let \(E \) be a Banach space. If \(T : C_p(X) \to E_w \) is a sequentially continuous linear operator, then for every sequence \(\{U_n : n \in \omega\} \) of pairwise disjoint nonempty open subsets of \(X \) there exists \(N \) such that \(T(f) = 0 \) for all \(n \geq N \) and \(f \in C(X) \) with \(\text{supp} (f) \subset U_n \).

Proof. On the contrary, suppose we can find a strictly increasing sequence \(\{k_n : n \in \omega\} \) of natural numbers and a sequence \(\{f_n : n \in \omega\} \subset C(X) \) such that \(\text{supp} (f_n) \subset U_{k_n} \) and \(\|T(f_n)\| > 0 \) for every \(n \). Then the sequence \(\left\{ n \frac{f_n}{\|T(f_n)\|} : n \in \omega \right\} \) pointwise converges to zero, but the sequence of images

\[
\left\{ n \frac{T(f_n)}{\|T(f_n)\|} : n \in \omega \right\}
\]

is not bounded in \(E \). We arrive at a contradiction with the facts that the families of bounded sets in \(E_w \) and \(E \) coincide and sequentially continuous linear operators map bounded sets into bounded sets. \(\square \)

Proof of Theorem 1.5

First step: \(X \) is a compact space.

Denote by \(A \) the set of all points \(t \) in \(X \) such that there exists an open neighbourhood \(U \) of \(t \) in \(X \) such that \(T(f) = 0 \) for every \(f \in C(X) \) satisfying the property \(\text{supp} (f) \subset U \). Evidently, the set \(A \) is open. We consider the following three cases:

1. The set \(X \setminus A \) is infinite;
2. The set \(X \setminus A \) is empty;
3. The set \(X \setminus A \) is finite and nonempty.

Suppose that the item (1) holds.
Since $X \setminus A$ is infinite, we can find a sequence $\{t_n : n \in \omega\} \subset X \setminus A$ and a sequence $\{U_n : n \in \omega\}$ of pairwise disjoint open subsets of X such that $t_n \in U_n$. Then we choose $f_n \in C(X)$ such that $\text{supp} (f_n) \subset U_n$ and $T(f_n) \neq 0$ for every n. This contradicts Lemma 2.1.

Suppose that the item (2) holds.

Let us fix $f \in C(X)$ for a moment. For every $t \in X$, we can find an open neighbourhood U_t of t in X such that $T(g) = 0$ for every $g \in C(X)$ satisfying $\text{supp} (g) \subset U_t$. Since X is a compact space, we choose a finite set $\{t_1, \ldots, t_N\} \subset X$ such that $X = \bigcup_{k=1}^N U_{t_k}$. Now we take the partition of unity subordinated to the open finite cover $\{U_{t_k}\}_{k=1}^N$ [4 p. 300]: the functions $\{g_1, \ldots, g_N\} \subset C(X)$ such that

$$\text{supp} (g_k) \subset U_{t_k}, \ g_k(X) \subset [0,1], \ \sum_{j=1}^N g_j(t) = 1$$

for all $1 \leq k \leq N$ and $t \in X$. Note that $\text{supp} (fg_k) \subset U_{t_k}$ for every k, therefore,

$$T(f) = T\left(f \left(\sum_{k=1}^N g_k \right) \right) = \sum_{k=1}^N T(fg_k) = 0.$$

Consequently, $T(f) = 0$ for every $f \in C(X)$, i.e. the range of T is trivial.

Suppose that the item (3) holds.

Since $X \setminus A$ is finite, there exists a continuous linear extension operator $L : C_p(X \setminus A) \to C_p(X)$ such that $L(f)|_{X \setminus A} = f$ for every $f \in C(X \setminus A)$. Let us fix $f \in C(X)$ for a moment. For every n, we can find open sets V_n and W_n such that

$$X \setminus A \subset V_n \subset \overline{V_n} \subset W_n$$

and

$$\left| (f - L(f)|_{X \setminus A}) \right| (t) < \frac{1}{n}$$

for every $t \in W_n$. For every $t \in X \setminus W_n$, we choose an open neighbourhood $U_{t,n}$ of t such that $U_{t,n} \subset X \setminus \overline{V_n}$ and $T(g) = 0$ for every $g \in C(X)$ satisfying $\text{supp} (g) \subset U_{t,n}$. Since $X \setminus W_n$ is a compact space, we find a finite set

$$\{t_{1,n}, \ldots, t_{N_n,n}\} \subset X \setminus W_n$$

such that

$$X \setminus W_n \subset \bigcup_{k=1}^{N_n} U_{t_{k,n}} \subset X \setminus \overline{V_n}.$$

By standard arguments, we find a partition of unity $\{g_{1,n}, \ldots, g_{N_n,n}\} \subset C(X)$ such that

$$\text{supp} (g_{k,n}) \subset U_{t_{k,n}}, \ g_{k,n}(X) \subset [0,1], \ \sum_{j=1}^{N_n} g_{j,n}(t) = 1, \ \sum_{j=1}^{N_n} g_{j,n}(s) \leq 1.$$
for all \(n, 1 \leq k \leq N_n, t \in X \setminus W_n \) and \(s \in X \). Therefore,
\[
\left\| (f - L(f|_{X \setminus A})) - (f - L(f|_{X \setminus A})) \left(\sum_{k=1}^{N_n} g_{k,n} \right) \right\| \leq \frac{1}{n}
\]
and
\[
T \left((f - L(f|_{X \setminus A})) \left(\sum_{k=1}^{N_n} g_{k,n} \right) \right) = \sum_{k=1}^{N_n} T((f - L(f|_{X \setminus A})) g_{k,n}) = 0
\]
for every \(n \). It is clear that the sequence
\[
\left\{ (f - L(f|_{X \setminus A})) \left(\sum_{k=1}^{N_n} g_{k,n} \right) : n \in \omega \right\}
\]
converges to \((f - L(f|_{X \setminus A}))\) in \(C_p(X) \). Finally we deduce that
\[
T(f) = T(L(f|_{X \setminus A}))
\]
for every \(f \in C(X) \), i.e. the dimension of the range of \(T \) does not exceed the finite size of \(X \setminus A \).

Second step: \(X \) is any Tychonoff space.

Denote by \(C^*_p(X) \) the linear subspace of \(C_p(X) \) consisting of all bounded continuous functions on \(X \). Recall a well known fact that \(C^*_p(X) \) is sequentially dense in \(C_p(X) \). Indeed, if \(f \) is any function in \(C(X) \), then for each natural \(n \) define \(f_n \in C^*_p(X) \) by the rule: \(f_n(x) = f(x) \) if \(|f(x)| \leq n \); \(f_n(x) = n \) if \(f(x) \geq n \); \(f_n(x) = -n \) if \(f(x) \leq -n \). Clearly, \(\{f_n : n \in \omega \} \subset C^*_p(X) \) and the sequence \(\{f_n : n \in \omega \} \) pointwise converges to \(f \).

Every function from \(C^*_p(X) \) uniquely extends to a function from \(C(\beta X) \), where \(\beta X \) is the Stone-Čech compactification of \(X \). Denote by \(\pi \) the linear continuous operator of restriction: \(\pi : C_p(\beta X) \to C_p(X) \). The range of \(\pi \) is the linear space \(C^*_p(X) \). Now we consider the composition
\[
T \circ \pi : C_p(\beta X) \to E_w.
\]
Let \(C \) be the range of the operator \(T \circ \pi \). Since \(T \circ \pi \) is a sequentially continuous linear operator, and \(\beta X \) is compact, the range \(C \) is finite-dimensional by the first step. But \(C \) coincides with the image \(T(C^*_p(X)) \). Since \(C^*_p(X) \) is sequentially dense in \(C_p(X) \) and \(T \) is sequentially continuous, we get that \(C \) is dense in the range of the operator \(T \). However, \(C \) is finite-dimensional, hence complete, finally we conclude that the whole range of \(T \) coincides with the finite-dimensional linear space \(C \). \(\square \)
3. When $C_p(X)$ and E_w are homeomorphic?

Let S be the convergent sequence, that is, the space homeomorphic to $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. It is known that for every compact metrizable space X there exists a continuous surjection $T : C_p(S) \rightarrow C_p(X)$ \[10\] Remark 3.4. To keep our paper self-contained we recall the argument in the proof of Proposition 3.1 below. A topological space X is called analytic if X is a continuous image of the space $\mathbb{N}^\mathbb{N}$, which is in turn homeomorphic to the space of irrationals $J \subset \mathbb{R}$ (see e.g. \[19\]).

Proposition 3.1. A locally convex space E is analytic if and only if E is a continuous image of the space $C_p(S)$.

Proof. Assume first that such a continuous mapping from $C_p(S)$ onto E exists. Since $C_p(S)$ is separable and metrizable and $K_{\sigma\delta}$, hence analytic, the image E is analytic as well. Conversely, assume that E is analytic. We fix a continuous surjection $\phi : \mathbb{N}^\mathbb{N} \rightarrow E$. The space $C_p(S)$ is a $K_{\sigma\delta}$-subset of \mathbb{R}^S but not K_σ. Hence, from the Hurewicz theorem (see \[19\] Theorem 3.5.4) it follows that $C_p(S)$ contains a closed copy J of the space of irrationals. Now we apply the classic Dugundji extension theorem (see \[17\] Theorem 2.2), to get a continuous surjective mapping $T : C_p(S) \rightarrow E$ extending the mapping ϕ. \[\square\]

Corollary 3.2. Let E be a Banach space. Then there exists a continuous surjective mapping $T : C_p(S) \rightarrow E_w$ if and only if E is separable.

Proof. If E is a separable Banach space, then E_w is analytic as a continuous image of a Polish space E. It follows from Proposition 3.1 that there exists a continuous surjection $T : C_p(S) \rightarrow E_w$. Conversely, analytic space is separable, hence E_w and E are separable as well. \[\square\]

Let X be an infinite Tychonoff space, and E be a Banach space. For every continuous mapping $T : C_p(X) \rightarrow E_w$ we define the set $B(T)$ as follows: $B(T)$ consists of all points t in X such that there exists an open neighbourhood U of t in X with the property

$$\sup\{\|T(f)\| : f \in C(X), \text{supp}(f) \subset U\} < \infty.$$

Evidently, the set $B(T)$ is open.

The following lemma will be used below.

Lemma 3.3. Let X be an infinite Tychonoff space and let E be a Banach space. If $T : C_p(X) \rightarrow E_w$ is a sequentially continuous map, then $X \setminus B(T)$ is finite.

Proof. On the contrary, suppose that the set $X \setminus B(T)$ is infinite. Claim: There exist a sequence $\{t_n : n \in \omega\} \subset X \setminus B(T)$ and a sequence $\{U_n : n \in \omega\}$ of pairwise disjoint open subsets of X such that $t_n \in U_n$ for each natural n.

Indeed, let us take any $s_1, s_2 \in X \setminus B(T)$ such that $s_1 \neq s_2$. We find disjoint open neighbourhoods V_1 and V_2 of s_1 and s_2, respectively. By the regularity of X,
we find an open set W_1 such that $s_1 \in W_1 \subset \overline{W_1} \subset V_1$. At least one of the sets $(X \setminus B(T)) \cap V_1$ and $(X \setminus B(T)) \cap (X \setminus \overline{W_1})$ is infinite. If the set $(X \setminus B(T)) \cap V_1$ is infinite, we put $t_1 = s_2$, $U_1 = V_2$ and $A_1 = V_1$. If the set $(X \setminus B(T)) \cap V_1$ is finite and the set

$$(X \setminus B(T)) \cap (X \setminus \overline{W})$$

is infinite, we put $t_1 = s_1$, $U_1 = W_1$ and $A_1 = X \setminus \overline{W_1}$.

Suppose that for some natural n we can find open sets A_n, U_1, \ldots, U_n and points $t_1, \ldots, t_n \in X \setminus B(T)$ such that the set $(X \setminus B(T)) \cap A_n$ is infinite, $t_k \in U_k$, $A_n \cap U_k = \emptyset$ and $U_m \cap U_j = \emptyset$ for all $1 \leq k \leq n$ and $1 \leq m < j \leq n$. We take any

$s_{2n+1}, s_{2n+2} \in (X \setminus B(T)) \cap A_n$

such that $s_{2n+1} \neq s_{2n+2}$. We have disjoint open neighbourhoods V_{2n+1} and V_{2n+2} of s_{2n+1} and s_{2n+2}, respectively.

By the regularity of X, we find an open set W_{n+1} such that

$s_{2n+1} \in W_{n+1} \subset \overline{W_{n+1}} \subset A_n \cap V_{2n+1}$.

At least one of the sets

$$(X \setminus B(T)) \cap A_n \cap V_{2n+1}$$

and

$$(X \setminus B(T)) \cap A_n \cap (X \setminus \overline{W_{n+1}})$$

is infinite. If the set

$$(X \setminus B(T)) \cap A_n \cap V_{2n+1}$$

is infinite, we put $t_{n+1} = s_{2n+2}$, $U_{n+1} = V_{2n+2}$ and $A_{n+1} = A_n \cap V_{2n+1}$. If the set

$$(X \setminus B(T)) \cap A_n \cap V_{2n+1}$$

is finite and the set

$$(X \setminus B(T)) \cap A_n \cap (X \setminus \overline{W_{n+1}})$$

is infinite, we put $t_{n+1} = s_{2n+1}$, $U_{n+1} = W_{n+1} \cap A_{n+1} = A_n \cap (X \setminus \overline{W_{n+1}})$. An appeal to the mathematical induction completes the proof of the Claim.

For every natural n, we find $f_n \in C_p(X)$ such that $\text{supp}(f_n) \subset U_n$ and $\|T(f_n)\| > \|T(f_n)\| + 1$. Then the sequence $\{f_n : n \in \omega\}$ pointwise converges to zero, hence $\{T(f_n) : n \in \omega\}$ converges in E_w, but the sequence $\{\|T(f_n)\| : n \in \omega\}$ is not bounded in E. We arrive at a contradiction with the facts that the families of bounded sets in E_w and E coincide and sequentially continuous functions map convergent sequences into convergent sequences. □

The above results apply to get the following

Proposition 3.4. Let S be the convergent sequence and let E be an infinite-dimensional separable Banach space. Then there is no a continuous linear surjection $T : C_p(S) \to E_w$ but there exists a continuous (non-linear) surjection $T : C_p(S) \to E_w$ such that $S \setminus B(T)$ is finite.
Proof. The first claim is an immediate consequence of Theorem 1.5. The second claim is an immediate consequence of Corollary 3.2 and Lemma 3.3. □

A mapping T in Corollary 3.2 is never a homeomorphism, because $C_p(S)$ is a metrizable and infinite-dimensional locally convex space, while E_w is metrizable provided it is finite-dimensional. In this section we are interested in finding necessary conditions for the existing of a homeomorphism $T : C_p(X) \to E_w$. In order to find such conditions it is reasonable first to examine several basic topological properties that are satisfied by all infinite-dimensional spaces E_w.

Remark 3.5.
(1) Countable chain condition (ccc). It is a fundamental result on the weak topology, due to H.H. Corson, that E_w satisfies the ccc property for every Banach space E [3, proof of Lemma 5]. However, $C_p(X)$ also always enjoys the ccc property [1, Corollary 0.3.7], so we cannot distinguish these spaces by ccc.

(2) Angelicity.
Another fundamental result about weak topology is the Eberlein-Šmulian theorem for every space E_w. However, $C_p(X)$ also always enjoys this property for every compact space X [1], so we cannot distinguish much E_w and $C_p(X)$ by angelicity.

(3) Eberlein-Grothendieck property.
A topological space Z is called an Eberlein-Grothendieck space if Z homeomorphically embeds into the space $C_p(K)$ for some compact space K (see [11, p. 95]). It is widely known that E_w always embeds into $C_p(K)$, where K is the compact unit ball of the dual E' endowed with the weak* topology, i.e. E_w always is an Eberlein-Grothendieck space.

(4) k-space, sequentiality, Fréchet-Urysohn property.
All the three properties coincide for each $C_p(X)$ by the Gerlits-Nagy theorem (see [11]). If X is compact then $C_p(X)$ enjoys these properties if and only if X is scattered. Vice versa, if E_w is Fréchet-Urysohn, then E is finite-dimensional. Several alternative proofs are known for this statement. a) By [11, Lemma 14.6] the closed unit ball B in E is a w-neighbourhood of zero, so E is finite-dimensional; b) M. Krupski and W. Marciszewski [13, Corollary 6.5] gave a simple proof for a stronger statement: E_w is not a k-space, if E is an infinite-dimensional Banach space; and c) Original proof of the latter fact appears in [20, p. 280].

We need several auxiliary results.

Lemma 3.6. Let a Tychonoff space X can be represented as a countable union of scattered compact sets. Then the space $C_p(X)$ is Fréchet-Urysohn.

Proof. Denote $X = \bigcup\{X_n : n \in \omega\}$, where each X_n is a scattered compact space. Define Y_n to be the \aleph_0-modification of the topological space X_n, i.e. the family of all G_δ-sets of X_n is declared as a base of the topology of Y_n. It is known that
every Y_n is a Lindelöf P-space (see e.g. [1] Lemma II.7.14]). Define Y to be the free countable union of all Y_n. Evidently, Y remains a Lindelöf P-space. We define a natural continuous mapping φ from Y onto X as follows. Let $y \in Y$, then $y = x \in Y_n$ for a certain unique $n \in \omega$, and we define $\varphi(y) = x \in X$. The map dual to φ homeomorphically embeds $C_p(X)$ into $C_p(Y)$. The space $C_p(Y)$ is Fréchet-Urysohn (see e.g. [1, Theorem II.7.15]), therefore the space $C_p(X)$ is Fréchet-Urysohn as well. □

Lemma 3.7. Let X be a non-scattered compact space. Then for every finite set $A \subset X$ there is a non-scattered compact set Y such that $Y \subset X \setminus A$.

Proof. We shall use the following classic theorem of A. Pełczyński and Z. Semadeni: Let X be a compact space, then X is scattered if and only if there is no continuous mapping of X onto the segment $[0,1]$ (see [21] Theorem 8.5.4]). Since X is not scattered, there exists a continuous surjection $f : X \to [0,1]$. Since the set A is finite, we find a segment $[a,b] \subset [0,1] \setminus f(A)$. Then $Y = f^{-1}[a,b]$ is a compact non-scattered subset of X. □

Now we are ready to present the proof of Theorem 1.7.

Proof of Theorem 1.7. We have already observed in Remark 3.5 that E_w always is an Eberlein-Grothendieck space. Hence, by our assumptions $C_p(X)$ is the image under a continuous open mapping of an Eberlein-Grothendieck space. Making use of the fundamental result of O. Okunev, we immediately conclude that X must be a σ-compact space (see [18, Theorem 4] or [1] Corollary III.2.9)).

Denote $X = \bigcup \{X_n : n \in \omega\}$, where each X_n is a compact space. We claim that at least one component X_n is non-scattered, and then clearly X is non-scattered. Indeed, otherwise, the space $C_p(X)$ would be Fréchet-Urysohn by Lemma 3.6, therefore also E_w would be Fréchet-Urysohn, which is false, again by Remark 3.5.

Fix any n such that the compact set X_n is non-scattered.

According to Lemma 3.3, the set $X \setminus B(T)$ is finite, therefore we can apply Lemma 3.7 and find a non-scattered compact set $Y \subset X_n \cap B(T)$. For every $t \in Y$, we choose open sets V_t and W_t such that $t \in V_t \subset \bigcap V_t \subset W_t \subset B(T)$ and

$$\sup \{\|T(g)\| : g \in C(X), \text{supp}(g) \subset W_t\} < \infty.$$

Since Y is compact, we find finitely many sets V_t covering Y. There exists at least one $t \in Y$ such that $\bigcap V_t \setminus Y$ is not scattered. Indeed, assuming that each $\bigcap V_t \cap Y$ is scattered we would get that a non-scattered compact space Y is covered by finitely many scattered compact sets, which is obviously impossible. Fix a non-scattered $Z = \bigcap V_t \setminus Y$. The next fact plays a crucial role: the space $C_p(Z)$ is not Fréchet-Urysohn. We prove the following

Claim: $F = \{f \in C(X) : \text{supp}(f) \subset W_t\}$ is not a Fréchet-Urysohn space.

Indeed, it is clear that F is a closed subset of $C_p(X)$. Let G be a subset of $C_p(Z)$ satisfying the property: there exists $g \in \overline{G}$ such that does not exist any sequence
in G which converges to g in $C_p(X)$. Let
\[H = \{ f \in F : f|_Z \in G \}. \]
Using the Tietze-Urysohn theorem and the Urysohn lemma we deduce that \{f|_Z : f \in F\} = C_p(Z)$. Hence the space \{f|_Z : f \in F\} fails the Fréchet-Urysohn property. To complete the proof it is enough to show that \{f|_Z : f \in \overline{F}\} = \overline{G}$. It is clear that \{f|_Z : f \in \overline{F}\} \subset \overline{G}$. Suppose that
\[h \in \overline{G} \setminus \{f|_Z : f \in \overline{F}\}. \]
Let $\tilde{h} \in F$ be such that $\tilde{h}|_Z = h$. Since \overline{F} is a closed subset of $C_p(X)$ and $\tilde{h} \notin \overline{F}$, we find $N \in \mathbb{N}$, \{t_1, \ldots, t_N\} \subset W_t$ and $\varepsilon_j > 0$ for every $1 \leq j \leq N$ such that
\[\{f \in F : |\tilde{h}(t_j) - f(t_j)| < \varepsilon_j, 1 \leq j \leq N\} \cap \overline{F} = \emptyset. \]
Either \{t_1, \ldots, t_N\} \cap Z = \emptyset or \{t_1, \ldots, t_N\} \cap Z \neq \emptyset. In the first case, according to the Tietze-Urysohn theorem for every $f \in G$ we find $\tilde{f} \in H$ such that $\tilde{f}|_Z = f$ and $\tilde{f}(t_j) = \tilde{h}(t_j)$ for every $1 \leq j \leq N$. Consequently, only the second case may hold. We may assume that there exists $1 \leq L \leq N$ such that
\[\{t_1, \ldots, t_N\} \cap Z = \{t_1, \ldots, t_L\}. \]
It is clear that
\[\{f|_Z : f \in F, |h(t_j) - f(t_j)| < \varepsilon_j, 1 \leq j \leq L\} \cap G = \emptyset. \]
Consequently, $h \notin \overline{G}$. Thus we have arrived at a contradiction. The Claim has been proved.

Finally, relying on the definition of F, we observe that $T(F)$ is a bounded subset of E which is not a Fréchet-Urysohn space in the weak topology. According to [2, Proposition 4.4], the Banach space E contains a subspace isomorphic to l_1, which finishes the proof.

In [15, Corollary 5.11, Theorem 5.12] M. Krupski and W. Marciszewski proved that for infinite compact spaces K and L, where L is scattered, the spaces $C_p(K)$, $C(L)_w$ and the spaces $C_p(L)$, $C(K)_w$ are not homeomorphic. Our Theorem [17] generalizes both results because the Banach space $C(L)$ does not contain a subspace isomorphic to l_1, if L is scattered.

Proof of Corollary [17]. By Theorem [17] we have that $X = \bigcup\{X_n : n \in \omega\}$, where each X_n is a compact space. On the other hand, if E is a WCG Banach space, then E_w contains a dense σ-compact subspace. Therefore, $C_p(X)$ also contains a dense σ-compact subspace, which we denote by Y. For each $n \in \omega$ consider the restriction mapping π_n from $C_p(X)$ onto $C_p(X_n)$. It is easily seen that $Z_n = \pi_n(Y)$ is a dense σ-compact subspace of $C_p(X_n)$. It follows that a compact space X_n is Eberlein (see [1, Theorem IV.1.7]) for each n. Assume now that E is separable, then E_w is also separable, hence analogously to the above case, $C_p(X_n)$ is separable.
for each n. It follows that a compact space X_n is metrizable (see [1 Theorem I.1.5]) for each n. The rest is provided by Theorem [1.7].

Proof of Corollary 1.3. This is done actually in the previous proof. Just replace X_n by X. □

Remark 3.8. Necessary conditions in Theorem 1.7 are not sufficient, because the Banach space $E = \ell_1$ in the weak topology is never homeomorphic to any space $C_p(X)$. The reason is the following: every separable Banach space E with the Schur property is an \aleph_0-space in the weak topology. But $C_p(X)$ is an \aleph_0-space if and only if X is countable, i.e. if and only if $C_p(X)$ is metrizable. (For the details see [7]).

Remark 3.9. The arguments used in the proof of Theorem 1.7 are not applicable for the question whether X in that result must be a compact space and not just a σ-compact space. This is because compactness of X is not invariant under the homeomorphisms of the spaces $C_p(X)$. For instance, the spaces $C_p[0, 1]$ and $C_p(\mathbb{R})$ are homeomorphic [9].

We finish the paper by the following challenging question.

Problem 3.10. Does there exist a separable Banach space E such that E_w is homeomorphic to $C_p[0, 1]$?

References

[1] A. V. Arkhangel'ski, Topological Function Spaces, Kluwer, Dordrecht, 1992.
[2] C. S. Barroso, O. F. K. Kalenda, P. K. Lin, On the approximate fixed point property in abstract spaces, Math. Z. 271 (2012), 1271–1285.
[3] H. H. Corson, The weak topology of a Banach space, Trans. Amer. Math. Soc. 101 (1961), 1–15.
[4] R. Engelking, General Topology, Heldermann Verlag, Berlin, 1989.
[5] M. Fabian, P. Habala, P. Hájek, V. Montesinos, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, CMS Books Math./Ouvrages Math. SMC, 2001.
[6] S. Gabriyelyan, J. Grebik, J. Kąkol, L. Zdomskyy, The Ascoli property for function spaces, Topology Appl. 214 (2016), 35–50.
[7] S. Gabriyelyan, J. Kąkol, W. Kubis, W. Marciszewski, Networks for the weak topology of Banach and Fréchet spaces, J. Math. Anal. Appl. 432 (2015), 1183–1199.
[8] S. Gabriyelyan, J. Kąkol, G. Plebanek, The Ascoli property for function spaces and the weak topology on Banach and Fréchet spaces, Studia Math. 233 (2016), 119–139.
[9] S. P. Gul’ko, T. E. Khmyleva, Compactness is not preserved by the relation of t-equivalence, Mathematical Notes of the Academy of Sciences of the USSR, 39 (1986), 484–488.
[10] K. Kawamura, A. Leiderman, Linear continuous surjections of C_p-spaces over compacta, Topology Appl. 227 (2017), 135–145.
[11] J. Kąkol, W. Kubis, M. Lopez-Pellicer, Descriptive Topology in Selected Topics of Functional Analysis, Developments in Mathematics, Springer, New York, 2011.
[12] J. Kąkol, A. Leiderman, On linear continuous operators between distinguished spaces $C_p(X)$, to appear in RACSAM.
[13] J. Kąkol, S. Moll-López, A note on the weak topology of spaces $C_k(X)$ of continuous functions, RACSAM (2021) 115:125, https://doi.org/10.1007/s13398-021-01051-1

[14] M. Krupski, On the weak and pointwise topologies in function spaces, RACSAM 110 (2016), 557–563.

[15] M. Krupski, W. Marciszewski, On the weak and pointwise topologies in function spaces II, J. Math. Anal. Appl. 452 (2017), 646–658.

[16] W. Marciszewski, Function Spaces, in Recent Progress in General Topology II, Edited by M. Hušek, J. van Mill, North-Holland (2002), 345–369.

[17] J. van Mill, The Infinite-Dimensional Topology of Function Spaces, North-Holland Mathematical Library 64, North-Holland, Amsterdam, 2001.

[18] O. G. Okunev, Weak topology of an associated space and t-equivalence, Mathematical Notes of the Academy of Sciences of the USSR, 46 (1989), 534–538.

[19] C. A. Rogers, J. E. Jayne, K-analytic sets, in: Analytic Sets, Academic Press, 1980, p. 1–181.

[20] G. Schlüchtermann, R. F. Wheeler, The Mackey dual of a Banach space, Note di Mat. 11 (1991), 273–287.

[21] Z. Semadeni, Banach spaces of continuous functions, Volume I, PWN - Polish Scientific Publishers, Warszawa, 1971.

Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland and Institute of Mathematics Czech Academy of Sciences, Prague, Czech Republic
Email address: kakol@amu.edu.pl

Department of Mathematics, Ben-Gurion University of the Negev, Beer Sheva, P.O.B. 653, Israel
Email address: arkady@math.bgu.ac.il

Faculty of Mathematics and Informatics, A. Mickiewicz University, 61-614 Poznań, Poland
Email address: michalak@amu.edu.pl