The relationship between draft force and horizontal force acting on passive tillage tool in term of soil-tool interaction. A review

Amer K. A. Al-Neama 1, Mousa A. Al-Jibouri 2 and Essam L. Esmail 3

1 Soil Science and Water Resources Department, College of Agriculture, University of Diyala, Iraq.
2 Al-Furat Al-Awsat Technical University, Iraq.
3 Mechanical Engineering Department, College of Engineering, University of Al-Qadisiyah, Al-Diwaniyah, Iraq.
Email: amer_agri@yahoo.com

Abstract
This paper presents a review of the relationship between draft force and horizontal force acting on passive tillage tool in term of soil-tool interaction. Scientifically, the horizontal force is one of the draft force components, but sometimes in the literature refers to the horizontal as the draft force. This difference needs clarifying.

Keywords: Draft force; horizontal force; passive tillage tool; soil-tool interaction

Nomenclature

Symbol	Description
c	Soil cohesion
c_a	Soil adhesion
d	Depth
d_c	Critical depth
F_d	Draft force
F_f	Friction force
F_f_h	Horizontal component of friction force
F_f_v	Vertical component of friction force
F_h	Horizontal force
F_l	Lateral force
F_n	Normal force
F_n_h	Horizontal component of normal force
F_n_v	Vertical component of normal force
F_v	Vertical force
F_t	Total force
g	Acceleration of gravity
kN	Kilo newton
N_a	Dimensionless factor denote the soil inertia
N_c	Dimensionless factor denote the cohesiveness
N_d	Dimensionless factor denote the adhesiveness
N_d_d	Dimensionless factor denote the surcharge pressure
q	Surcharge pressure
s	Second
w	Width of tine
w_c	Critical width
v	Speed
α	Rake angle
α_c	Critical rake angle
ρ	Soil bulk density
δ	Soil-metal friction angle
δ	Degree (angle)

1. Introduction

Tillage operations are always described by finding the best compromise between effort and result by matching of mechanical interaction with the soil with fuel consumption and greenhouse gas emissions. As a result, numerous technique for reducing and predicting the amount of the draft force have been applied such as: Dimensional analysis [1-3], Analytical models [4-11], regression technique [12-16], and numerical model for instance finite element method (FEM) or distinct element method (DEM) [17-20].

Sometimes in the literature refers to the horizontal force (F_h) as the draft force (F_d) (see table 1). From this table, it can be seen that the other literature refers to F_d as the total force (F_t).

The main aim of this paper is to provide a comprehensive understanding of the relationship between draft force and horizontal force acting on tillage tine in term of soil-tool interaction, as well as the standardization of terminology used in the field of agricultural engineering.
Table 1. References vary in which force terms they include. Where: F_h is the horizontal force, F_v is the vertical force, F_d is the draft force and F_t is the total force.

Reference	F_h	F_v	F_h as F_d	F_d as F_t
[21]	✓	✓	✓	✓
[22]	✓	✓	✓	✓
[23]	✓	✓	✓	✓
[24]	✓	✓	✓	✓
[25]	✓	✓	✓	✓
[26]	✓	✓	✓	✓
[27]	✓	✓	✓	✓
[28]	✓	✓	✓	✓
[7]	✓	✓	✓	✓
[29]	✓	✓	✓	✓
[30]	✓	✓	✓	✓
[6]	✓	✓	✓	✓
[31]	✓	✓	✓	✓
[32]	✓	✓	✓	✓
[33]	✓	✓	✓	✓
[34]	✓	✓	✓	✓
[35]	✓	✓	✓	✓
[9]	✓	✓	✓	✓
[36]	✓	✓	✓	✓
[16]	✓	✓	✓	✓
[37]	✓	✓	✓	✓
[38]	✓	✓	✓	✓
[39]	✓	✓	✓	✓
[40]	✓	✓	✓	✓
[41]	✓	✓	✓	✓
[42]	✓	✓	✓	✓
[43]	✓	✓	✓	✓
[10]	✓	✓	✓	✓
[44]	✓	✓	✓	✓
[45]	✓	✓	✓	✓
[46]	✓	✓	✓	✓

2. Forces acting on tine tools

To specify the forces acting on simple tillage tools (tine), the analytical model gives the best clue of all forces acting on it, as shown in Eq. [47].

$$F_t = (\rho g d^2 N_r + c d N_c + c_s d N_{cs} + q d N_q + \rho v^2 d N_d) w$$ \hspace{1cm} (1)

Where: F_t is the total force, ρ is the soil bulk density, g is the gravitational acceleration, d is working depth, c is soil cohesion, c_s is soil adhesion at the soil-tool interface, q is the surcharge pressure vertically acting on the soil surface, v is operating speed, w is tool width, and $N_r, N_c, N_{cs}, N_q,$ and N_d are dimensionless factors denoting the gravitational, cohesive, adhesive, surcharge, and soil inertia component, respectively.

The total force F_t (passive force, soil cutting force) is the sum of gravitational, cohesive, adhesive, surcharge forces and inertial forces. The F_t is composed two components, which can simply be obtained by basic mathematics as given in Eq. (1) and (2) in the coordinate system.
\[F_h = F_t \sin(\alpha + \delta) + c_d \Delta w \cot \alpha \]
(2)

\[F_v = F_t \cos(\alpha + \delta) - c_d \Delta w \]
(3)

Where: \(F_v \) is the vertical force, \(\alpha \) is the rake angle, and \(\delta \) is the soil-metal friction angle. From a practical point of view, normal force \(F_n \) and friction force \(F_f \) are exerted with soil-tool interaction, perpendicularly and tangentially on the tine, respectively [48]. Logically both \(F_n \) and \(F_f \) are composed two parts; \(F_{n_h} \) and \(F_{f_h} \) are the horizontal coordinate components, \(F_{n_v} \) and \(F_{f_v} \) are the vertical coordinate components.

3. Exceptional cases

This section reviews exceptional cases that \(F_v \) magnitude can be neglected, leads to \(F_h \) is equal to \(F_d \) [49]. \(F_h \) is defined as a required force that need to push or to pull the tillage tool through the soil in the direction of travel, while \(F_v \) is defined as a required force that need to penetrate the tillage tool into the soil, meanwhile \(F_l \) is the lateral force (see Figure 1). But practically, needs to overcome all active forces to draw or to push the tool through the soil. According to \(F_h \) definition, it can be said that \(F_h \) equal to \(F_d \) in some of the literature reviews (see table 1).

\[\alpha \] displayed the effect of rake angle on \(F_h \) (solid line) and \(F_v \) (broken line) , quoted from [50]. From this figure it can be see that the critical rake angle \(\alpha_c \) where the \(F_v \) magnitude changed its trend from upward to downward (\(\alpha_c = 67.5^\circ \)). Therefore, in this case it can be said that the \(F_h \) equal to the total force (\(F_t \)) or the draft force (\(F_d \)). However, at the \(\alpha_c \) the magnitude of \(F_h \) is higher than the \(\alpha \) equal to 22.5 (see Figure 2).

![Figure 1. Forces acting on the single tine in the Cartesian Coordinates.](image1)

In addition, when the magnitude of \((\alpha + \delta) \) is equal to 90° (see Eq. ()), then \(F_v \) is equal to zero and \(F_h \) is equal to \(F_t \) (in an adhesion less soil).

[7] displayed the effect of rake angle on \(F_h \) (solid line) and \(F_v \) (broken line) , quoted from [50]. From this figure it can be see that the critical rake angle \(\alpha_c \) where the \(F_v \) magnitude changed its trend from upward to downward (\(\alpha_c = 67.5^\circ \)). Therefore, in this case it can be said that the \(F_h \) equal to the total force (\(F_t \)) or the draft force (\(F_d \)). However, at the \(\alpha_c \) the magnitude of \(F_h \) is higher than the \(\alpha \) equal to 22.5 (see Figure 2).

![Figure 2. Effect of tool rake angle on horizontal (solid) and vertical (broken) forces.](image2)
Numerous studies have been addressed the effect of speed, depth, and tine width on F_h and F_v, but, are not specify the critical speed (v_c), critical depth (d_c), and the critical width (w_c) that leads to the F_v magnitude can be neglected. Soil texture is one of the significant parameters highly effected not only on the soil physical properties such as soil water content and soil water infiltration [51], [52], but also on the F_h and F_v magnitude. However, few studies have addressed this issue. Scientifically, the tine can be easily penetrating in the light soil (sandy or silty with very little clay content) than the heavy soil. Therefore, F_v magnitude is very small can be neglected at the light soil.

Conclusions

Scientifically, the horizontal force is equal to the draft force when the magnitude of the vertical force very small can be neglected or equal to the zero. This can only be achieved at a critical rake angle, when the F_v magnitude changed its trend from upward to downward at the $\alpha_c = 67.5^\circ$. It needs to know the critical value of speed, depth and width, which leads to neglect the amount of vertical force.

References

[1] L. W. Sprinkle, T. D. Langston, J. A. Weber and N. M. Sharon, "A similitude study with sttic and dynamic parameters in an artificial soil," *Transactions of the ASAE*, pp. 13, 580-586, 1970.

[2] S. K. Upadhyaya, T. H. Williams, L. J. Kemble and N. E. Collins, "Energy requirements for chiseling in coastal plain soils," *Transactions of the ASAE*, pp. 27(6):1643-1649, 1984.

[3] A. Moeenifar, S. R. Mousavi-Seyedi and D. Kalantari, "Influence of tillage depth, penetration angle and forward speed on the soil/thin-blade interaction force," *Agri. Eng. International: CIGR*, pp. 16 (1), 69-74, 2014.

[4] A. R. Reece, "The fundamental equation of earth-moving mechanics," *In Symposium on Earth-Moving Machinery, Proceedings ofthe Institution of Mechanical Engineers*, pp. 179: 8-14, 1965.

[5] D. Hettiaratchi, B. Whitney and A. Reece, "The calculation of passive pressure in two-dimensional soil failure," *J.Agric. Eng. Res.*, pp. 11(2):89-107, 1966.

[6] Dreeb, H. A.,& Abdul Razak,N.A. (2020). The Impact of Corruption on Agriculture Sector in Iraq: Econometrics Approach. IOP Conference Series: Earth and Environmental Science. 553 (1).

[7] R. J. Godwin and G. Spoor, "Soil failure with narrow tines," *J. of Agric. Eng. Res.*, pp. 22(4):213-228, 1977.

[8] Abbas Salim H. Al-Machi. (2014). The Effect of Nutrition Systems and Exchange of Diets on Some Productive Performance of Broilers. Al-Qadisiyah Journal For Agriculture Sciences, 4(2), 40-49.

[9] J. Perumpral, R. Grisso and C. Desai, "A soil tool model based on limit equilibrium analysis," *Transactions of the ASAE*, pp. 26(4):991-995, 1983.

[10] W. C. Swick and J. V. Perumpral, "A model for predicting soil-tool interaction," *J.of Terramechanics*, pp. 25 (1), 43–56, 1988.

[11] D. Zeng and Y. Yao, "A dynamic model for soil cutting by blade and tine," *J. Terramechanics*, pp. 29, 317–327, 1992.

[12] R. D. Grisso, M. Yasin and M. F. Kocher, "Tillage tool forces operating in silty clay loam," *Transactions of the ASAE*, pp. 39,1977–1982, 1996.

[13] J. . L. Glancey, S. K. Upadhyaya, W. . J. Chancellor and . J. W. Rumsey, "Prediction of agricultural implement draft using an instrumented analog tillage tool," *Soil and Till.Res.*, pp. 37:47-65, 1996.

[14] Mohammed, M.A., Abdulridha, W.M., Abd, A.N. (2018). Thickness effect on some physical properties of the Ag thin films prepared by thermal evaporation technique. Journal of Global Pharma Technology, 10(3), 613-619.

[15] R. K. Sahu and H. Raheman, "Draught Prediction of Agricultural Implements using Reference Tillage Tools in Sandy Clay Loam Soil," *Biosystems Engineering, SW-Soil and Water*, p. 88 (2): 275–284, 2006.

[16] U. Rosa and D. Wulfsohn, "Soil bin monorail for high-speed testing of narrow tillage tools," *Biosystems Engineering*, pp. 99 (3), 444 –
454, 2008.

[17] S. Karmakar and R. L. Kushwaha, "Dynamic modeling of soil–tool interaction: An overview from a fluid flow perspective," *Journal of Terramechanics*, pp. 43 (4): 411-425, 2006.

[18] I. Shmulevich, "State of the art modeling of soil–tillage interaction using discrete element method," *Soil and Tillage Research*, pp. 111 (1): 41-53, 2010.

[19] K. Tamás, I. J. Jóri and A. M. Mouazen, "Modelling soil–sweep interaction with discrete element method," *Soil and Tillage Research*, pp. 134: 223-231, 2013.

[20] C. Hang, Y. Huang and R. Zhu, "Analysis of the movement behaviour of soil between subsoilers based on the discrete element method," *Journal of Terramechanics*, pp. 74: 35-43, 2017.

[21] A. Abo El-Kheer, M. Kharmanda, A. El Hami and A. Mouazen, "Estimating the variability of tillage forces on a chisel plough shank by modeling the variability of tillage system parameters," *Computers and Electronics in Agriculture*, p. (78): 61–70, 2011.

[22] J. Arvidsson and O. Hillerström, "Specific draught, soil fragmentation and straw incorporation for different tine and share types," *Soil & Tillage Research*, pp. 110, 154–160, 2010.

[23] R. Berntsen, B. Berre, T. Torp and H. Aasen, "Tine forces established by a two-level model and the draught requirement of rigid and flexible tines," *Soil & Tillage Research*, pp. 90, 230–241, 2006.

[24] J. Bührke, F. Schramm and L. Frerichs, "Geometry-discrete load measurement on a cultivator tool," *LANDTECHNIK*, p. 73(2): 39–50, 2018.

[25] Z. Dechoa and Y. Yusu, "A DYNAMIC MODEL FOR SOIL CUTTING BY BLADE AND TINE," *Terramechanics*, pp. 29 (3): 317-327, 1992.

[26] A. P. Dedousis and T. Bartzanas, Soil Engineering, Springer-Verlag Berlin Heidelberg, 2010.

[27] J. M. A. Desbiolles, R. J. Godwin, J. Kilgour and B. S. Blackmore, "A Novel Approach to the Prediction of Tillage Tool Draught using a Standard tine," *Soil & Tillage Research*, pp. 66 , 295 – 309, 1997.

[28] J. M. Fielke, "Finite Element Modelling of the Interaction of the Cutting Edge of Tillage Implements with Soil," *agric. Eng. Res.*, pp. 74, 91-101, 1999.

[29] R. Godwin and M. O'Dogherty, "Integrated soil tillage force prediction models," *Journal of Terramechanics*, p. (44); 3–14, 2007.

[30] H. P. Harrison, "Soil Reactions from Laboratory Studies with an Inclined Blade," *Transactions of the ASAE*, pp. 7- 12, 1982.

[31] R. L. Kushwaha and C. Linke, "Draft-speed relationship of simple tillage tools at high operating speeds," *Soil & Tillage Research* , pp. 39, 61–73, 1996.

[32] S. I. Manuwa and O. C. Ademosun, "Draught and Soil Disturbance of Model Tillage Tines Under Varying Soil Parameters," *Agricultural Engineering International: the CIGR Ejournal*, pp. 9, 1-18, 2007.

[33] S. I. Manuwa, O. C. Ademosun and A. Adesina, "Regression Equations for Predicting the Effect of Tine Width on Draught and Soil Translocation in Moderately Fine Textured Soil," *Journal of Environmental Science and Engineering B*, pp. 6: 820-825, 2012.

[34] E. McKyes and F. Desir, "Prediction and field measurements of tillage tool draft forces and efficiency in cohesive soils," *Soil & Tillage Res.*, pp. 4, 459-470, 1984.

[35] A. Onwualu and K. Watts, "Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools," *Soil and Till. Res.*, pp. 48(4):239-253, 1998.

[36] C. Petru, M. S. L., S. R. and M. V., "General structure of tillage draft force. Consequences in experimental and applicative
researches," INMATEH Agricultural Engineering, pp. 59: (3), 253 - 262, 2019.

[37] R. Rowe and K. Barnes, "Influence of speed on elements of draft of a tillage tool," Transactions of the ASAE, pp. 4, 55-57, 1961.

[38] J. C. Siemens, J. A. Weber and T. H. Thornburn, "Mechanics of soil as influenced by model tillage tools," Transactions of the ASAE, pp. 8, 1–7, 1965.

[39] K. Skonieczny, "Modeling the effects of surcharge accumulation on terrestrial and planetary wide-blade soil–tillage tool interactions," Soil & Tillage Research, pp. 176, 104–111, 2018.

[40] G. Spoor and R. J. Godwin, "An experimental investigation into the deep loosening of soil by rigid tines," agric. Eng. Res., pp. 23 (3), 243-258, 1978.

[41] J. V. Stafford, "The performance of a rigid Tine in relation to soil properties and speed." J. agric. Engng. Res., pp. 24 (1), 41-56, 1979.

[42] J. V. Stafford, "An application of critical state soil mechanics: the performance of rigid tines," J. agric. Engng. Res., pp. 26 (5): 387-401, 1981.

[43] J. V. Stafford, "Force prediction models for brittle and flow failure of soil by draught tillage tools," J. agric. Engng Res., pp. 29, 51-60, 1984.

[44] J. Tong and B. Z. Moayad, "Effects of rake angle of chisel plough on soil cutting factors and power requirements: A computer simulation," Soil & Tillage Research, pp. 88, 55–64, 2006.

[45] P. N. Wheeler and R. J. Godwin, "Soil Dynamics of Single and Multiple Tines at Speeds up to 20 km / h," J. agric. Engng Res., pp. 63, 243 – 250, 1996.

[46] J. Zhang and R. L. Kushwaha, "A modified model to predict soil cutting resistance," Soil & Tillage Research, pp. 34, 157-168, 1995).

[47] E. McKyes, Soil Cutting and Tillage, 1st ed., vol. 7, New York: Elsevier Science, 1985.

[48] A. Koolen and H. Kuipers, Agricultural Soil Mechanics, Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 1983.

[49] E. L. Esmail, "Influence of the operating conditions of two-degree-of-freedom planetary gear trains on tooth friction losses," Journal of Mechanical Design, Transactions of the ASME, 140(5). https://doi.org/10.1115/1.4039452, 2018.

[50] R. J. Godwin, "A review of the effect of implement geometry on soil failure and implement forces," Soil & Tillage Research, pp. 97, 331–340, 2007.

[51] H. A. Jebur and Y. A. Alsayyah, " The Effect of Some Primary Tillage Equipment on Performance Efficiency Under Two Level of Soil Moisture Content and Different Machinery Unit," Al-Qadisiyah Journal For Agriculture Sciences, 7 (2): 192-204, 2017.

[52] K. A. H. Al-Mosawi and B. A. J. A. Kareem, " The Effect of the Conventional and Modified Subsoilers on the Soil Water Infiltration in Clay Soil During Sun Flower Crop Growth Stages (Helianthus annus L.)," Al-Qadisiyah Journal For Agriculture Sciences, 7 (1): 28-40, 2017.