The published article used dressed weight (i.e. head, guts, and other body parts removed) as the edible portion (i.e. yield) values for terrestrial species. This was an error, and instead we should have used yield values based on retail cuts of meat, which is consistent with the values used for farmed aquatic species. Therefore, we have replaced the dressed weight values with retail cut values for beef cattle and pigs, including bone-in and boneless values, similar to yield values used for aquatic animals. Chickens are commonly sold in a dressed form (i.e. dressed weight is a retail cut for chickens), so a combination of dressed weight and other retail cut values were used for chickens. We recalculated the protein and calorie efficiencies for these terrestrial species, and the following tables and figure below are corrected for beef cattle, pigs, and chickens: tables 1 and 2 and S4; figure 2. These revisions do not pertain to any data or calculations for aquatic animals.

These changes result in the following text revisions:

1. In the abstract, the sentence:
 Comparing all terrestrial and aquatic animals in the study, chickens are most efficient using these measures, followed by Atlantic salmon.

Revision:
Comparing all terrestrial and aquatic animals in the study, chickens and Atlantic salmon are most efficient using these measures.

2. In the first paragraph of section 3, the following text:
 Protein retention means ranged from 14%–28% for the nine aquatic species, and 10%–34% for livestock. Calorie retention means ranged from 6%–25% for the aquatic species, and 5%–25% for livestock. Chickens performed best for both protein and calorie retention, followed by Atlantic salmon.

Revision:
Protein retention means ranged from 14%–28% for the nine aquatic species, and 10%–34% for livestock. Calorie retention means ranged from 6%–25% for the aquatic species, and 5%–25% for livestock. Chickens and Atlantic salmon performed best for protein and calorie retention.

3. The last sentence in the second paragraph of section 3:
 Chicken has the highest mean protein retention (37%), due to a low FCR (1.9), low feed protein level (18%–23%), and high edible portion (0.70–0.78) (table 1).

Revision:
Chicken has the highest mean protein retention (34%), due to a low FCR (1.9), low feed protein level (18%–23%), and high edible portion (0.63–0.73) (table 1).

4. In the third paragraph of section 3, the following sentence:
 Similar to above, chicken and Atlantic salmon have the highest mean calorie retention: 27 and 25%, respectively. Pigs have an FCR (3.9) that is less efficient than chicken and aquatic species, but high calories in edible flesh (211–304 kcal per 100 g) and the high edible portion (0.68–0.76) improves pig calorie retention (16%).

Revision:
Chicken and Atlantic salmon have the highest mean calorie retention: both 25%. Pigs have an FCR (3.9) that is less efficient than chicken and aquatic species, but high calories in edible flesh (211–304 kcal per 100 g) improves pig calorie retention (11%).
Table 1. Data used to calculate protein and calorie retention for selected aquatic and terrestrial farmed animal species.

Species	FCR^a	Edible portion of animal^b	Feed content^c (g or kcal per 100 g of feed)	Human nutrition^d (g or kcal per 100 g serving)			
			Protein	Calories	Protein	Calories	
Carps	1.5–2.0		0.36–0.54	17–45	175.8–554.2	18	109–127
Common carp	–		0.36–0.54	23	326.0–345.5	17–18	112–127
Grass carp	–		0.36–0.54	26–32	339–388	15	97
Catfishes	1.2–2.2		0.35–0.63	28–32	345–390	15–17	117–119
Channel catfish	–		0.35–0.63	26–32	339–388	15	97
Pangas catfish	–		0.35–0.63	26–32	339–388	15	97
Salmonids							
Atlantic salmon	1.2–1.5		0.58–0.88	35.5–44	372–554.5	20	208
Rainbow trout	1.0–2.0		0.40–0.82	40–47	383–454	20	141
Shrimps	1.2–2.4						
Giant tiger prawn	–		0.40	25–45	225–433	20	85
Whiteleg shrimp	–		0.62–0.65	25–45	277–417	20	85
Tilapia	1.4–2.4		0.37–0.45	20–32	216–404.4	20	96
Cattle	6.0–10		0.35–0.51	7–15.4	188–339	15–20	214–276
Chicken	1.7–2.0		0.63–0.73	18–23	320	18.6	215
Pigs	2.7–5.0		0.37–0.57	13.2–20.9	326.3–335.1	15–18.2	211–304

^a Data sources: Tacon and Metian (2008) (aquatic species) [1]; Smil (2013) (livestock species) [2]; Shike (2013) (cattle) [3]; Zuidhof et al (2014) (chicken) [4]; Rabobank Research (2015) (pigs) [5].

^b Data sources: see table S4.

^c Data sources: see table S5.

^d Data sources: USDA National Nutrient Database for Standard Reference [6]; Shauhua Zahn, Nanyang Technical University (personal communication); Seafood Health Facts [7]; USDA National Nutrient Database terms used for beef: 'composite of trimmed retail cuts, separable lean and fat, trimmed to 1/8’ fat, all grades, raw’ and ‘variety meats and by-products, mechanically separated beef, raw’; USDA National Nutrient Database term used for chicken: ‘meat and skin, raw’; USDA National Nutrient Database terms used for pork: ‘composite of trimmed leg, loin, shoulder, and spareribs, separable lean and fat, raw’ and ‘fresh, variety meats and by-products, mechanically separated, raw’.

Figure 2. Protein and calorie retention for selected aquatic and terrestrial farmed animal species. Dots represent sample means and bars represent standard deviations. Higher values indicate more efficient retention.
Table 2. Mean FCR and retention values in the current study and past researcha.

	Current study	Cassidy et al (2013)	Shepon et al (2016)						
	FCRb Feed/edible wt.	Protein retention	Calorie retention	FCR Feed/edible wt.	Protein retention	Calorie retention	FCR Feed/edible wt.	Protein retention	Calorie retention
Common carp	1.7	3.78	0.15	0.09					
Grass carp	1.7	3.78	0.18	0.09					
Channel catfish	1.4	2.87	0.18	0.11					
Pangas catfish	1.4	3.02	0.17	0.09					
Atlantic salmon	1.3	1.77	0.28	0.25					
Rainbow trout	1.3	2.14	0.22	0.16					
Giant tiger prawn	1.7	4.25	0.14	0.06					
Whiteleg shrimp	1.7	2.68	0.22	0.09					
Tilapia	1.7	4.17	0.18	0.07					
Aqua. weighted ave.	1.6	3.08	0.19	0.10					
Beef cattle	8.0	18.6	0.10	0.05					
Pigs	3.9	7.65	0.15	0.11					
Chicken	1.9	2.81	0.34	0.25					
Eggs									
Dairy	0.43	0.40	0.14	0.17					

a Sources: Cassidy et al (2013) [8] and Shepon et al (2016) [9].

b FCRs are average values based on Tacon and Metian (2008) (aquatic species) [1]; Smul (2013) (livestock species) [2]; Shike (2013) (cattle) [3]; Zuidhof et al (2014) (chicken) [4]; and Rabobank Research (2015) (pigs) [5].
Table S4. Edible portion data and sources for terrestrial species.

Species	Edible portion range	No. of values used	Source
Cattle	0.35–0.51	6	National Renderers Association [10], Oklahoma Department of Agriculture, Food, and Forestry [11], South Dakota State University Extension [12], University of Kentucky Cooperative Extension Service [13], University of Tennessee Institute for Agriculture [14].
Chicken	0.63–0.73	6	FAO [15], MSU Extension (adapted from Principles of Meat Science, 4th Ed.) [16], National Renderers Association [10], US Foods. Inc. (expected meat yield from a dressed chicken was multiplied by dressed weight values from FAO and MSU sources to develop two retail cut values) [17].
Pigs	0.37–0.57	8	Maine Organic Farmers and Gardeners Association [18], National Pork Board [19], National Renderers Association [10], Oklahoma Department of Agriculture, Food, and Forestry [20], University of Kentucky Cooperative Extension Service [13].

ORCID iDs

Jillian P Fry @ https://orcid.org/0000-0002-5836-9076
Nicholas A Mailloux @ https://orcid.org/0000-0002-4041-3665
David C Love @ https://orcid.org/0000-0002-2606-8623

References

[1] Tacon A G J and Metian M 2008 Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects Aquaculture 285 146–58
[2] Smil V 2013 Should We Eat Meat?: Evolution and Consequences of Modern Carnivory (Chichester: Wiley-Blackwell)
[3] Shike D W 2013 Beef Cattle Feed Efficiency (http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=1027&context=driftlessconference) (Accessed: 2 November 2017)
[4] Zuiddhof M J et al 2014 Growth, efficiency, and yield of commercial broilers from 1957, 1978, and 2005 Poult. Sci. 93 870–82
[5] Rabobank Food and Agribusiness Research 2015 Pigs Might Fly: Peak Pork Production Potential (https://research.rabobank.com/far/en/sectors/farm-inputs/Pigs_Might_Fly.html) (Accessed: 2 November 2017)
[6] USDA National Agricultural Library 2016 National Nutrient Database for Standard Reference Release 28 (https://ndb.nal.usda.gov)
[7] Seafood Health Facts-Pangasius (www.seafoodhealthfacts.org/description-top-commercial-seafood-items/pangasius)
[8] Cassidy E S et al 2013 Redefining agricultural yields: from tonnes to people nourished per hectare Environ. Res. Lett. 8 034015
[9] Shepon A et al 2016 Energy and protein feed-to-food conversion efficiencies in the US and potential food security gains from dietary changes Environ. Res. Lett. 11 105002
[10] Meeker D L 2006 Essential Rendering All About the Animal By-Products Inudstry National Renderers Association Alexandria, VA (http://assets.nationalrenderers.org/essential_rendering_book.pdf)
[11] Oklahoma Department of Agriculture, Food, and Forestry How Much Meat? (Cows) (www.oda.state.ok.us/food/fs-cowweight.pdf)
[12] Nold R 2013 How Much Meat Can You Expect from a Fed Steer? South Dakota State University Extension (http://igrow.org/livestock/beef/how-much-meat-can-you-expect-from-a-fed-steer/)
[13] Rentfrow G 2010 How Much Meat to Expect from a Carcass University of Kentucky Cooperative Extension Service
[14] Holland R, Loveday D and Ferguson K 2013 How Much Meat to Expect from a Beef Carcass University of Tennessee Institute for Agriculture (https://extension.tennessee.edu/publications/Documents/FP1822.pdf)
[15] UN FAO Technical Conversion Factors For Agricultural Commodities (www.fao.org/economic/the-statistics-division/ess/methodology/methodology-systems/technical-conversion-factors-for-agricultural-commodities/en/) (Accessed: 26 January 2017) p 286
[16] Michigan State University Extension 2011 Carcass Dressing Percentage and Cooler Shrink (http://msue.anr.msu.edu/news/carcass_dressing_percentage_and_cooler_shrink) (Accessed: 26 January 2017)
[17] Common Product Yields US Foods, Inc. (www.usfoods.com/content/dam/dcc/pdfs/Your-Business/Easy-Ordering/MPP_Online-Common_Product_Yields_and_Conversions.pdf)
[18] Schivera D 2011 Meat Processing TerminologyMaine Organic Farmers and Gardeners Association (www.mofga.org/Publications/MaineOrganicFarmerGardener/Spring2011/Meat/tabid/1873/Default.aspx)
[19] National Pork Board 2017 Typical Market Pig Today (www.pork.org/facts/stats/consumption-and-expenditures/typical-market-pig-today/)
[20] Oklahoma Department of Agriculture, Food, and Forestry How Much Meat? (Hogs) (www.oda.state.ok.us/food/fs-hogweight.pdf)