An Association Between Human Epidermal Growth Factor Receptor 2 and Prostate Cancer

Magdi M. Salih

Department of Clinical Laboratory Sciences, faculty of Applied Medical Sciences, Taif University, Taif city, Saudi Arabia

Abstract

Background: Prostate cancer is a momentous health problem worldwide. Prostate cancer in Sudan is the third most common cancer type. The role of human epidermal growth factor receptor 2 (HER2/neu) in prostatic tumors is still not fully understood. The findings of studies testing the association between HER2/neu expression and prostate cancer have been inconsistent.

Objectives: To demonstrate the association between ages, epidermal growth factor receptor 2 and prostate cancer.

Design: Retrospective.

Settings: Sudan University for Science and Technology and National Health Laboratory (NHL) in Khartoum state Republic of Sudan.

Patients and methods: Two paraffin sections were taken, one stained with Haematoxylin and Eosin to confirm the diagnosis, the other stained using primary antibodies to HER2 protein with immunohistochemistry method using the DAKO Hercep Test™ protocol.

Sample size: Forty-six paraffin blocks were included in this study; 36 specimens were medium-grade and high-grade cancers and ten specimens were low-grade cancer.

Results: The mean age of the study group was 64 years. Prostatic cancer grades revealed, 10 (21.7%) patients with Gleason Group = 3 + 3, 2 (4.3%) patients with Gleason Group = 3 + 4, 11 (23.9%) patients with Gleason Group = 4 + 3, and 23 (50%) patients with Gleason Group = 4 + 4. Positive Her2 was found to be associated with high-grade (GG8) and medium-grade (GG7) compared to low-grade prostatic cancer (GG6).

Conclusions: The current study was a clue for a possible association between HER2/neu and prostatic cancer, and further studies might elucidate this connection.

Keywords: HER2/neu, Prostate Cancer

(Received January 5, 2021; Accepted January 18, 2021)
androgen independence and in identifying patients more likely to present disease progression\(^ 15\). The aim of the present study was to demonstrate the association between ages, HER-2 and prostate neoplasia.

Materials and methods

This study was conducted at the Faculty of Medical Laboratory Sciences, histopathology department, Sudan University for Science and Technology and National Health Laboratory (NHL) in Khartoum state Republic of Sudan (May 2016 to June 2018). Paraffin wax sections were selected from patients that were previously diagnosed as prostatic cancer at the National Health Laboratory. Clinic pathologic data of patients were collected from the records of the archive of the National Health Laboratory; their ages were ranged from 40 to 90 years. Tiny biopsies and the focal nodular prostate cancer were excluded. Forty-six paraffin blocks were included in this study; Prostatic cancer classified in adenocarcinomas according to WHO 2016 each lesion was evaluated according to the Gleason Group (GG) classification\(^ 15\). Thirty-six specimens were medium-grade and high-grade cancers and ten specimens were low-grade cancer. The tissues were cut into 4-μm thick sections and mounted on microscope slides. All sections were incubated in an oven at 60°C for 1 h, then in three changes of xylene for 2 min each to remove the wax, and then treated with three changes of absolute ethyl alcohol each for 2 min, then rehydrated through gradual ethyl alcohol and placed in water. Two sections were taken from all cases; one section was stained with Haematoxylin and Eosin stain as described by Fischer\(^ 16\) to confirm the diagnosis.

HER2 immunohistochemistry (IHC) was performed using the DAKO Hercep Test\(^ 14\); The slides were boiled at low power in a domestic microwave oven in citrate buffer (pH 6) for 30 min, and cooled at room temperature for 20 min. Next, slides were transferred to distilled water and washed in phosphate buffer saline (PBS), then blocked in 0.5% hydrogen peroxide in methanol for 10 min, and next washed twice with phosphate buffer saline (pH 7.4) for 2 min each. Next, protein block serum-free was added to each section for 10 min, then incubated in primary antibodies to HER2 protein for 1 h, washed twice with phosphate buffer, followed by incubation in biotinylated secondary antibody for 20 min, then washed with PBS. Next, drops of streptavidin reagent were applied for 20 min, sections were washed in PBS, and 3,3′diaminobenzidine tetrahydrochloride (DAB) substrate chromogen was applied for 5 min. The sections were then washed in distilled water, stained with Mayer’s hematoxylin for 1 min, and washed in distilled water. Finally, sections were dehydrated in alcohol, cleared in xylene and mounted in DPX. All sections were stained in the same batch to eliminate inter batch variation. The slides were studied by a pathologist who remained blind about the clinical characteristics and histopathology on the arms of the study. HER2 expression was classified according to the modified DAKO criteria as follows: Negative (scores 0+/+), and positive (score 2+ & 3+), the cutoff for score 3+ are more than 10% strongly positive cells. According to Kolla et al.\(^ 17\), sections with scores of 2 and 3 were considered positive for HER2/neu.

Statistical analysis

Data analysis was carried out with SPSS version 16.0. The correlation between prostatic tumor and HER-2 expressions status was determined by the Chi-square test. P-values < 0.05 were considered statistically significant.

Results

The mean age of the study group was 64 years (median, 65 years; range, 40 to 90 years). In regards to Gleason Group (GG) classification, a total of 46 patients with a clinical and pathologic diagnosis of prostatic cancer showed 10 (21.8%) patients with GG = 3 + 3, 13 (28.2%) patients with GG = 4 + 3, and 23 (50%) patients with GG = 4 + 4. The grades of prostate tumors and age groups are presented in Table 1.

The staining intensity of HER2-positive expression in the paraffin section was compared between high-grade (GG8), medium-grade (GG7), and low-grade prostatic cancer (GG6). Table 2 shows the comparison between the detailed staining results of HER2 positive expression in different grades of prostatic adenocarcinoma among the study group. The significant differences in HER2-positive expression staining intensity were observed in high-grade (GG8) prostatic adenocarcinoma. However, the majority of low-grade prostatic cancer (GG6) cases showed positivity see illustrations (Fig. 1). Positive expression was seen in 84.8% of prostatic cancer cases (39

Age groups	40 – 50	51 – 60	61 - 70	71 - 80	81 - 90	Total
Gleason Group (GG)	No (%)					
(GG = 6)	2 (4.3%)	4 (8.7%)	3 (6.6%)	1 (2.2%)	0 (0%)	10 (21.8%)
(GG = 7)	1 (2.2%)	0 (0%)	9 (19.5%)	3 (6.5%)	0 (0%)	13 (28.2%)
(GG = 8)	1 (2.2%)	4 (8.7%)	11 (23.9%)	5 (10.9%)	2 (4.3%)	23 (50%)
Total	4 (8.7%)	8 (17.4%)	23 (50%)	9 (19.6%)	2 (4.3%)	46 (100%)
Human Epidermal Growth Factor Receptor 2 and Prostate Cancer

Table 2. HER2 expression and prostatic tumor grade

Prostatic tumor grad (GG = 6)	(GG = 7)	(GG = 8)	Total	
HER2 expression classes	No (%)	No (%)	No (%)	No (%)
Negative	1 (2.2%)	3 (6.5%)	3 (6.5%)	7 (15.2%)
Positive	9 (19.6%)	10 (21.7%)	20 (43.5%)	39 (84.8%)
Total	10 (21.8%)	13 (28.2%)	23 (50.0%)	46 (100%)

P: Value with chi-square test

P (GG = 6)	P (GG = 7)	P (GG = 8)
0.000	0.000	0.000

Negative (scores 0/1+), and positive (score 2+ and more), the cutoff for score ≥ 2+ is more than 10% strongly positive cells. According to Kolla et al., 2008.

![Microscopic findings](image)

Discussion

Prostate cancer is a momentous health problem worldwide. Prostate cancer in Sudan is the third most common cause of cancer-related deaths in men. This study confirmed the previous finding that the possibility of prostate cancer increases continuously with age. The median age in our study group was 65 years, with the highest percentages of more than 60% of the study group reported with high-grade (GG8) and medium-grade (GG7) prostatic cancer among those of 61–70 years old and older, the comparative risk for prostate cancer equivalent showed relations with age. Prostate cancer has long been recognized as a disease of older men. Nevertheless, the inclinations in the age-specific incidence rate of prostate cancer had distinctive patterns relative to geographic and racial deviation. In most Western countries, including North America and Western Europe, the current age-specific occurrence rate peaked in the 65–74-year-old group, and dropped beyond the age of 75 years. In our investigation, the high rates occurred through the 60s and older, with an increased incidence of moderate- and high-grade prostate cancer rise in the late 60s and over 70s in comparison with that in the 40–60 age groups. Despite current progress in prostate cancer investiga-
tion, the role of human epidermal growth factor receptor 2 (HER2/neu) in androgen-stimulated proliferation is still not fully understood. Furthermore, the investigation of the association between HER2/neu expression and prostate cancer is inconsistent. Generally, HER2 overexpression has been determined only by gene amplification and because of this, protein levels of HER2 have not been comprehensively explored and described in prostate cancer. The predictive importance of HER2 in breast cancer is currently well-known. Controversy remains about the significance of HER2 in prostate cancer. Therefore, in the present study, we investigated the association between HER2/neu and prostate cancer. HER2 positive expression was noticed in 84.8% of the prostatic cancer, with statistical significance (p < 0.001). Positive Her2 is found to be associated with high-grade (GG8), medium-grade (GG7), compared to low-grade prostatic cancer (GG6) in 43.5%, 21.7%, and 19.6%, respectively. Former studies of HER2 overexpression in numerous cancers have described varieties from 0% to 100% in immunohistochemical studies. The histopathological findings from this study demonstrated that the expression of HER2 protein is associated with high-grade prostate cancer, in which HER2/neu positive expression was seen in more than 84% of prostatic cancer cells. These results agree with Day et al., who found that HER2 expression is elevated in bone metastases of prostate cancer. Furthermore, our results differed from data reported by Sanchez and colleagues and Jorda and colleagues, both of which described a low level of HER2 expression in primary prostate tumors. Other researches have reported higher HER2 expression levels. These inconsistent sets of records are possible due to the use of diverse immunohistochemistry tests and antibodies. This would propose that levels of HER2 expression in prostate cancer are actually considerably lower than detected in breast and other tumor types.

Furthermore, HER2/neu shows a major role in appr-eciative the oncogenesis of prostate adenocarcinoma. For this purpose, illuminating the HER2/neu expression is principally important in androgen independent prostate cancer, due to the increasing interest in using anti-HER2 targeted therapies for progressive disease treatment. The current study hints at an association between HER2/neu and prostatic cancer, and more studies might elucidate this connection. The cases involved in our study were restricted, and would need long-term follow-up, but our present research has only been undertaken for only a few years. Also, it would be beneficial to include more grades of malignant tumors as well as ‘ benign’ groups.

Conclusions

There is no clear consensus on the ideal management of prostate cancer, particularly in aging men. Cautious se-

References

1) Woodrum DA, Kawashima A, Gorny KR, Mynderse LA. Targeted prostate biopsy and MR-guided therapy for prostate cancer. Abdom Radiol (NY). 2016;41(5):877–888.
2) Elima E, Jedy-Agba, Maria-Paula Curado, Emmanuel Oga, Modupeola O, Saimu, Emmanuel R. Ezeome, Christopher Obiorah, Olagoke O. Erinomo, Ima-ombong A, Ekanem, Cornelius Uka, Ahmed Mayun, Enoch A. Afolayan, Papopula Abidun, Babatunde J. Olasode, Abidemi Omonisi, Theresa Otu, Patience Osinubi, Patrick Dakum, William Blattner, and Clement A. Adebamowo. The role of hospital-based cancer registries in low and middle income countries-The Nigerian Case Study. Cancer Epidemiol. 2012;36(5):430–435.
3) Saeed IE, Weng HY, Mohamed KH, Mohammed SI. Cancer incidence in Khartoum, Sudan: first results from the Cancer Registry, 2009-2010. Cancer Med. 2014;3(4):1075–1084.
4) Torre LA, Sauer AM, Chen MS Jr, Kagawa-Singer M, Jemal A, Siegel RL. Cancer statistics for Asian Americans, Native Hawaiians, and Pacific Islanders, 2016: Converging incidence in males and females. CA Cancer J Clin. 2016;66(3):182–202.
5) Sporn M, Roberts A. Autocrine growth factors and cancer. Nature. 1985;313:745–747. doi: 10.1038/313745a0.
6) Vigneron N. Human Tumor Antigens and Cancer Immunotherapy. Biomed Res Int. 2015;2015:948501. doi: 10.1155/2015/948501.
7) Menezes SV, Sahni S, Kovacevic Z, Richardson DR. Interplay of the iron-regulated metastasis suppressor NDRG1 with epidermal growth factor receptor (EGFR) and oncogenic signaling. J Biol Chem. 2017;292:12772–12782. doi: 10.1074/jbc.R117.776393.
8) Ahmed Abdel Hadi, Ali El Hindawi, Amal Hareedy, Heba Khalil, Ranya Al Ashiry, Shady Elia, Ahmed Sadek, Mona Magdy, Rafat Atta, Amgad Anas, Hisham Bakr, Olfat Hammam, Her2/ neu Protein Expression and Oncogene Amplification in Gastric Carcinoma with Clinico-Pathological Correlation in Egyptian Patients. Open Access Maced J Med Sci. 2016;4:535–542. doi: 10.3889/oamjms.2016.104.
9) 34th Annual Meeting & Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC 2019): part 1: National Harbor, MD, USA. 6-10 November 2019. J Immunother Cancer. 2019;7(Suppl 1):282. doi: 10.1186/s40425-019-0763-1.
10) Siao-Syun Guan, Cheng-Tien Wu, Chen-Yuan Chiu, Tsai-Yueh Luo, Jeng-Yih Wu, Tse-Zung Liao, and Shing-Hwa Liu. Polyethylene glycol-conjugated HER2-targeted peptides as a nuclear imaging probe for HER2-overexpressed gastric cancer detection in vivo. J Transl Med. 2018;16:168. doi: 10.1186/s12976-018-1550-3.
11) Ai M, Liang K, Lu Y, Qiu S, Fan Z, Bnk/PTK6 cooperates with HER2 and Src in regulating breast cancer cell survival and epithe-

lial-to-mesenchymal transition. Cancer Biol Ther. 2013;14:237–45. PMid: 23291984, doi: 10.4161/cbt.23295.
12) Mallory Batty, Rachel Pugh, Ilampirai Rathinam, Joshua Simmonds, Edwin Walker, Amanda Forbes, Shailendrā Anoopkumar-Dukie, Catherine M. McDermott, Brinny Spencer, David Christie, and Russ Chess-Williams. The Role of α1-Adrenoceptor Antagonists in the Treatment of Prostate and Other Cancers. Int J Mol Sci. 2016;17:1339. doi: 10.3390/ijms17081339.
13) Whitney P. Kirschbrown, Matts Kågedal, Bei Wang, Lars Lindbom, Adam Knott, Rachelle Mack, Sharareh Momemi, Ihsan Nijem, Sandhya Girish, Christie Freeman, Debora Pumagalli, Robin McConnell, Guy Jerusalem, Chris Twelves, José Baselga, Gunter von Minckwitz, José Bines, and Amit Garg. Pharmacokinetic and exploratory exposure-response analysis of pertuzumab in patients with operable HER2-positive early breast cancer in the APHINITY study. Cancer Chemother Pharmacol. 2019;83:1147–1158. doi: 10.1007/s00280-019-03826-1

14) Elahe A. Mostaghel, Andrew Morgan, Xiaotun Zhang, Brett T. Marck, Jing Xia, Rachel Hunter-Merrill, Roman Gulati, Stephen Pymate, Robert L. Vessella, Eva Corey, Celestia S. Higano, Alvin M. Matsumoto, R. Bruce Montgomery, and Peter S. Nelson. Prostate cancer characteristics associated with response to receptor-targeting of the androgen axis. PLoS One. 2014;9:e111545. doi: 10.1371/journal.pone.0111545

15) Humphrey PA, Moch H, Cubilla AL, Ulbright TM, Reuter VE. The 15th WHO Classification of Tumours of the Urinary System and Male Genital Organs-Part B: Prostate and Bladder Tumours. Eur Urol. 2016;70(1):106–119. Epub 2016 Mar 17. PMID: 26996659. doi: 10.1016/j.eururo.2016.02.028

16) Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. CSH Protoc. 2008; pdb.prot4986. doi: 10.1011/journal.pone.0111545

17) Kolla SB, Seth A, Singh MK, Gupta NP, Hemal AK, Dogra PN, and Kumar R. Prognostic significance of HER2/neu overexpression in patients with muscle invasive urinary bladder cancer treated with radical cystectomy. Int Urol Nephrol. 2008;40:321–7. PMID:17899426. doi: 10.1007/s11255-007-9283-x

18) Magdi M Salih and Lamia Ahmed Elsheikh. Feulgen reaction as a marker for identifying prostatic hyperplasia and prostate cancer. Andrology. 2019;8:Issue 1.

19) Wang G, Zhao D, Spring DJ, DePinho RA. Genetics and biology of prostate cancer. Genes Dev. 2018;32:1105–1140. doi: 10.1101/gad.315739.118

20) Baade PD, Youlden DR, Cramb SM, Dunn J, and Gardiner RA. Epidemiology of prostate cancer in the Asia-Pacific region. Prostate Int. 2013;1:47–58.

21) Cindy Ke Zhou, David P. Check, Joannie Loriet-Tieulent, Mathieu Laversanne, Ahmend Jemal, Jacques Ferlay, Freddie Bray, Michael B. Cook, and Susan S. Devesa. Prostate cancer incidence in 43 populations worldwide: An analysis of time trends overall and by age group. Int. J. Cancer. 2016;138:1388–1400.

22) Hernes E, Fossa SD, Berner A, Otnes B, Nesland JM. Expression of the epidermal growth factor receptor family in prostate carcinoma before and during androgen-independence. Br J Cancer. 2004;90:449–454.

23) Sanchez KM, Sweeney CJ, Mass R, Koch MO, Eckert GJ, Geary WA, Baldrige LA, Zhang S, Eble JN, Cheng L. Evaluation of HER-2/neu expression in prostatic adenocarcinoma: a requested for a standardized, organ specific methodology. Cancer. 2002;95:1650–1655.

24) Mohamed HM, Aly MS, Hussein TD. Genetic alterations in benign prostatic hyperplasia patients. Ger Med Sci. 2017;15:Doc16. doi: 10.3205/000257

25) Edward J. Jarman, Carol Ward, Arran K. Turnball, Carlos Martinez-Perez, James Meehan, Chrysii Xintaropoulos, Andrew H. Sims and Simon P. Langdon. HER2 regulates HIF-2α and drives an increased hypoxic response in breast cancer. Breast Cancer Res. 2019;21:10. doi: 10.1186/s13058-019-1097-0

26) H. I. Scher, A. Sarks, V. Reuter, D. Cohen, G. Netto, D. Petrlyak, P. Lianes, Z. Fuks, J. Mendelsohn, and C. Cordon-Cardo. Changing pattern of expression of the epidermal growth factor receptor and transforming growth factor alpha in the progression of prostatic neoplasms. Clinical cancer research: an official journal of the American Association for Cancer Research. 1995;1:545–50.

27) Jorda M, Morales A, Ghorab Z, Fernandez G, Nadji M, Block N. Her2 expression in prostatic cancer: A comparison with mammary carcinoma. The Journal of urology. 2002;168:1412–4.

28) Chow NH, Chan SH, Tsai TS, Ho CL, Liu HS. Expression profiles of ErbB family receptors and prognosis in primary transitional cell carcinoma of the urinary bladder. Clinical cancer research: an official journal of the American Association for Cancer Research. 2001;7:1957–62.

29) Nesrine Mejri, Rym Sellami, Charfi Lamia, Doghri Raoudha, Naziba B. Hmida, Badreddine Sribi, Hmissa Sihem, Mrad Karima, and Khaled B. Romdhane. Her-2/neu overexpression in muscle-invasive urothelial carcinoma of the bladder: prognostic significance and comparative analysis in primary and metastatic tumors. Clinical cancer research: an official journal of the American Association for Cancer Research. 2001;7:2440–7.

30) Kathleen C. Day, Guadalupe Lorenzatti Hiles, Molly Kozminsky, Scott J. Dawsey, Alyssa Paul, Luke J. Broses, Rajal Shah, Lakshmi P. Kunja, Christopher Hall, Nallasivam Palanisamie, Stephanie Daignault-Newlay, Layla El-Sawy, Steven James Wilson, Andrew Chou, Kathleen Woods Ignatoski, Evan Keller, Dayffydd Thomas, Sunitha Nagrath, Todd Morgan, and Mark L. Day. HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res. 2017;77:74–85.

31) Katya M. Sanchez, Christopher J. Sweeney, Robert Mass, Michael O. Koch, George J. Eckert, William A. Geary, Lee Ann Baldridge, Shaoobo Zhang, John N. Eble, and Liang Cheng. Evaluation of HER2/neu expression in prostatic adenocarcinomas. Cancer. 2002;85:1650–1655.

32) Jorda M, Morales A, Ghorab S, Fernandez G, Nadji M, Block N. HER2 expression in prostatic cancer: a comparison with mammary carcinoma. J Urol. 2002;168:1412–1414.

33) Kuhn EJ, Kurnot RA, Sesterhenn IA, Chang EH, Moul JW. Expression of the c-erbB-2 (HER-2/neu) oncrotein in human prostatic carcinoma. J Urol. 1993;150:1427–1433.

34) R. Sadasivan, R. Morgan, S. Jennings, M. Austenfeld, P. Van Veldhuizen, R. Stephens, and M. Noble. Overexpression of Her-2/neu may be an indicator of poor prognosis in prostate cancer. J Urol. 1993;150:126–131.