Autofluorescence of NADH is a new biomarker for sorting and characterizing cancer stem cells in human glioma

Ye Yuan, Zexuan Yan, Jingya Miao, Ruili Cai, Mengsi Zhang, Yanxia Wang, Lihong Wang, Weiqi Dang, Di Wang, Dongfang Xiang, Yan Wang, Peng Zhang, Youhong Cui*, Xiwu Bian* and Qinghua Ma*

Abstract

Background: The existing cell surface markers used for sorting glioma stem cells (GSCs) have obvious limitations, such as vulnerability to the enzymatic digestion and time-consuming labeling procedure. Reduced nicotinamide adenine dinucleotide (NADH) as a cellular metabolite with property of auto-fluorescence has the potential to be used as a new biomarker for sorting GSCs.

Methods: A method for sorting GSCs was established according to the properties of the auto-fluorescence of NADH. Then, the NADH high and NADH low subpopulations were sorted. The stem-like properties of the subpopulations were evaluated by qRT-PCR, western blot analyses, limiting dilution assay, cell viability assay, bioluminescence imaging, and immunofluorescence analysis in vitro and in vivo. The relationship between CD133+/CD15+ cells and NADH high subpopulation was also assessed.

Results: NADH high cells expressed higher stem-related genes, formed more tumor spheres, and harbored stronger pluripotency in vitro and higher tumorigenicity in vivo, compared to NADH low subpopulation. NADH high glioma cells had the similar stemness with CD133+ or CD15+ GSCs, but the three subpopulations less overlaid each other. Also, NADH high glioma cells were more invasive and more resistant to chemotherapeutic drug temozolomide (TMZ) than NADH low cells. In addition, the auto-fluorescence of NADH might be an appropriate marker to sort cancer stem cells (CSCs) in other cancer types, such as breast and colon cancer.

Conclusion: Our findings demonstrate that intracellular auto-fluorescence of NADH is a non-labeling, sensitive maker for isolating GSCs, even for other CSCs.

Keywords: Glioma stem cells, Auto-fluorescence, NADH, FACS, Biomarker
labeling process is time-consuming. Therefore, it is necessary to find alternative strategies, which are more specific, simple, and economic for the isolation of GSCs.

Energy metabolism is involved in the self-renewal, reprogramming, and differentiation of regular stem cells and cancer stem cells (CSCs) [11, 12]. Reduced nicotinamide adenine dinucleotide (NADH) is a key carrier of electrons in cellular energy metabolism. It possesses a property of autofluorescence with an excitation wavelength at 340 ± 30 nm and an emission wavelength within the 460 ± 50 nm range [13, 14], and has been used as an important intracellular autofluorescence component to non-invasively monitor and analyze metabolic activity of living cells and tissues [15, 16]. Recently, NADH fluorescence intensity and fluorescence lifetime of bound and free NADH have been used to distinguish CSCs from their differentiated progeny [17–19]. Besides, NADH has been used to screen or monitor CSCs from their differentiated progeny [17–19]. Moreover, NADH autofluorescence in the isolation and purification of GSCs by FACS has not been evaluated.

In the present study, we applied the autofluorescence of NADH as a non-labeling marker to isolate GSCs by FACS. Compared to NADHlow subpopulation, NADH-high subpopulation exhibited higher stem-like properties, including abilities of self-renewal, multilineage differentiation, and tumorigenesis, as well as higher invasive ability and resistance to chemotherapeutic temozolomide (TMZ). Besides, NADHhigh as a biomarker could be used to isolate breast and colon CSCs. Therefore, NADH is a suitable biomarker for the isolation of GSCs or other CSCs.

Materials and methods

Human glioma specimens and the preparation of single cell suspension

A total of 13 fresh surgical glioma specimens were collected from patients enrolled in the Southwest Hospital, Third Military Medical University, Chongqing, China, after signing an informed consent from patients or their guardian. All patients had not received chemoradiotherapy before surgery. The histopathological grading was in accordance with the World Health Organization (WHO) classification (2016). The clinicopathologic information of these patients is summarized in Additional file 1: Table S1. This study was approved by the Ethics Committee of Southwest Hospital.

To prepare the single cell suspension, fresh surgical glioma tissues were collected and cut into small pieces immediately, and then, glioma cells were isolated using the Papain Dissociation System (Worthington Biochemical, Lakewood, NJ, USA) as previously reported [21, 22] and suspended in PBS at 1–5 × 106 cells/mL.

Cell lines and culture

Glioma cell lines (T98G, LN229), breast cancer cell line (MDA-MB-231), and colon cell line (HT-29) were purchased from ATCC (VA, USA). Primary glioma cells GBM1 and GBM2 were respectively isolated from two human glioma surgical specimens in our laboratory [23, 24]. All the cell lines were maintained in DMEM (HyClone, USA) supplemented with 10% fetal bovine serum (FBS) (HyClone, USA). The medium for tumorsphere culture was composed of F12 medium containing 20 μL/mL B27 supplement (Gibco, USA), 20 ng/mL basic fibroblast growth factor (bFGF), and 20 ng/mL epidermal growth factor (EGF) (both from PeproTech, USA) without serum. All the cells were cultured at 37 °C in 5% CO2 and 100% humidity.

FACS analysis and cell sorting

The cultured glioma cells were digested by trypsin or accutase and resuspended with PBS. The fresh glioma specimens were transferred to laboratory on ice in half hour after surgery, then washed and enzymatically dissociated into single cells and resuspended in PBS. The staining procedures for CD133 and CD15 markers were performed as previously described [6, 8]. The labeling antibodies were anti-CD133-APC antibody (Clone REA816; Miltenyi Biotec, Germany) and anti-CD15-FITC antibody (Biolegend, USA) with REA Control (S)-APC (Miltenyi Biotec, Germany) and FITC Mouse IgM (Biolegend, USA) as controls, respectively.

The FACS analysis and cell sorting were performed on BD FACS Aria II cytometer (USA) or Beckman moFlo XDP (USA). For analyzing and sorting with NADH autofluorescence intensity as a marker, an excitation wavelength of 375 nm or 355 nm and an emission wavelength of 450/50BP filter were used. For analyzing and sorting with CD133 and CD15 as markers, labeled cells were analyzed and sorted with corresponding excitation and emission wavelengths of the fluorochrome. All data were analyzed with BD FACSDiva software version 8 or Beckman moFlo XDP submit 5.2.

Limiting dilution assay

Limiting dilution assay was performed as previously described [24]. Briefly, serial twofold dilutions (from 40 to 0 cells) of different glioma, breast cancer, and colon cells were seeded into ultra-low adhesion 96-well plates (10 wells per dilution) (Costar, USA) and cultured in tumor-sphere medium. After incubation for 2 weeks, wells without spheres (log2, Y-axis) were counted and plotted against the number of cells plated per well (X-axis) to calculate the sphere formation efficiency.

RNA preparation and qRT-PCR

Total RNAs from sorted cells by FACS were extracted with RNA extracting Kit (Fastagen, China) according to the
Fig. 1 (See legend on next page.)
manufacturer’s instructions. One microgram of total RNA was reverse transcribed with the Reverse Transcription Kit (Takara, Dalian, China). Quantitative real-time PCR was carried out using the SYBR PrimeScript PCR kit II (Takara, Dalian, China). Quantitative real-time PCR was reverse transcribed with the Reverse Transcription Kit (Takara, Dalian, China). The level of β-tubulin mRNA was used as the internal control. The primers used in this study are listed in Additional file 1: Table S2.

Cell viability assay and IC50 evaluation
Different subpopulations of GBM1 and LN229 cells were seeded in 96-well plates at 2 x 10^3 cells/well and treated with TMZ at the indicated concentrations for 48 h. The viability of glioma cells was measured by using a Cell Counting Kit-8 (Beyotime, China) according to the manufacturer’s instructions. The OD values at 450 nm were recorded by fluoroanalyzer (Floskan Ascent, USA).

Immunofluorescence analysis
For induction of differentiation, NADH^{high} cells were cultured in DMEM with 10% FBS for 7 days. The NADH^{high} cells cultured in same conditions within 6 h were used as controls. Both differentiated and control cells were fixed in 4% paraformaldehyde for 30 min, washed three times with PBS at room temperature, and incubated with blocking buffer containing 10% normal goat serum and 0.3% Triton. The samples were incubated with primary antibodies anti-Sox2 (#3579, 1:400, CST), anti-Nestin (#33475, 1:400, CST), and anti-GFAP (#12389, 1:400, CST) overnight at 4 °C. Hoechst 33342 was used to counterstain the cell nuclei. After washing with PBS, the samples were mounted with Immuno-Mount™ (Thermo Scientific, USA) and then examined on a LEICA TCS-SP5 confocal microscope (×63 objective).

Xenograft in NOD-SCID mice and bioluminescence imaging
The animal study was performed in accordance with the protocol approved by the Institutional Animal Care and Use Committee of Southwest Hospital, Third Military Medical University (TMMU). NOD/SCID female mice (5 weeks old) were purchased from the Laboratory Animal Center of TMMU. Different treated GBM cells were washed and resuspended in PBS and mixed with Matrigel (1:1, BD Bioscienes), then subcutaneously injected into NOD/SCID mice at 4 x 10^3, 4 x 10^4, and 4 x 10^5 cells (100 μL/site) with the left flank as the test group and right flank as the control group. Tumor growth was monitored by bioluminescence imaging using In Vivo Imaging System (IVIS) Spectrum (Perkin Elmer, USA) and Living Image Software for IVIS (Perkin Elmer). At the end of 6 weeks after the injection, the mice were killed. Xenograft tumors were removed and weighted.

Western blotting
Western blotting was performed as previously described [25]. The primary antibodies used in western blot were anti-Sox2 (#3579, 1:1000, CST), anti-CD133 (#64326, 1:1000, CST), anti-Nanog (#8822, 1:1000, CST, USA), and anti-β-tubulin (#2128, 1:10000, CST).

Transwell invasion analysis
Glioma cells were seeded into the upper chambers (Millipore, 8.0 μm, 24 well) that were coated with 15 μL/ well of Matrigel in advance (Corning, USA) at the density of 3 x 10^4 cells/well in 200 μL of serum-free DMEM, and then, the upper chambers were placed in a 24-well plate added with 600 μL/well DMEM supplemented with 10% FBS. After incubation for 24 h, the cells were fixed with 4% paraformaldehyde followed by crystal violet staining. Non-invading cells were removed with a cotton swab, and the images of stained cells were collected by microscope (Olympus, Japan).

Statistical analysis
All experiments were performed at least three times. Statistical analysis was performed by using SPSS statistical software (SPSS16.0, Chicago, CA, USA) and GraphPad Prism 6 software (GraphPad, La Jolla, CA, USA). The unpaired two-group comparison and multiple comparisons were made with Student’s t test or one-way ANOVA, respectively. Data were presented as the mean ± SD. Statistical significance was set at *p < 0.05, **p < 0.01, and ***p < 0.001.

Results
NADH^{high} and NADH^{low} subpopulations can be sorted from glioma cells by FACS in vitro
By using flow cytometry, we firstly examined the autofluorescence intensity of NADH in 13 fresh glioma tissues, including 4 WHO grade II, 3 grade III, and 6 grade IV. The autofluorescence intensity of NADH was increased with WHO grades (grade IV > grade III > grade II > grade I).
Fig. 2 (See legend on next page.)
enrolled in grade IV (Fig. 1a, Additional file 1: Figure S1). According to previous reports [26, 27], we defined the highest top 10% intensity as high autofluorescence of NADH (NADHhigh) and defined the lowest bottom 10% intensity as low autofluorescence of NADH (NADHlow). Accordingly, we sorted the subpopulations with top 10% and bottom 10% intensity of NADH autofluorescence from GBM1 and LN229 cells (Fig. 1b). To confirm the autofluorescence intensity of NADH in both NADHhigh and NADHlow subpopulations, we examined the intensity of NADH autofluorescence with confocal analysis. The cells with top 10% intensity of NADH showed strong autofluorescence intensity, while the cells with bottom 10% intensity of NADH had weak fluorescence signal (Fig. 1c). These results indicate that NADHhigh and NADHlow subsets existed in glioma cells and could be promptly isolated by FACS.

NADHhigh glioma cells exhibit GSC traits in vitro

To evaluate the stem-related properties of NADHhigh and NADHlow glioma cells in vitro, we first compared the expression of stem-related genes in both subpopulations. Compared to NADHlow subpopulation, NADHhigh glioma cells highly expressed stem-related genes Nanog, Oct-4, Oligo2, and Sox2 at both mRNA and protein levels in GBM1 and LN229 cells (Fig. 2a). Then, the tumorsphere formation rates and longer average diameter of tumorsphere in NADHhigh cells compared to NADHlow cells in GBM1 and LN229 cell lines. The weight of tumors derived from NADHhigh cells was heavier than that derived from NADHlow cells (Fig. 3b). H&E staining confirmed the glioma origin of tumors, and IHC showed that the tumors derived from NADHhigh cells exhibited higher Ki-67 and Sox2 expression than those derived from NADHlow cells (Fig. 3c). These results indicate that NADHhigh glioma cells have high tumorigenicity in vivo.

NADHhigh glioma cells show high tumorigenicity in vivo

The stem-related properties of NADHhigh and NADHlow glioma cells in vivo were further evaluated by xenograft experiment in NOD-SCID mice. Bioluminescent analyses showed that the tumor size derived from NADHhigh subpopulation was significantly larger than that derived from NADHlow subpopulation in LN229 cells at 28 days after implantation (Fig. 3a). As shown in Fig. 3b and Additional file 1: Table S3, the tumor incidence rate of NADHhigh cells was higher than that of NADHlow cells. The weight of tumors derived from NADHhigh cells was heavier than that derived from NADHlow cells (Fig. 3b). H&E staining confirmed the glioma origin of tumors, and IHC showed that the tumors derived from NADHhigh cells exhibited higher Ki-67 and Sox2 expression than those derived from NADHlow cells (Fig. 3c). These results indicate that NADHhigh glioma cells have high tumorigenicity in vivo.

NADHhigh glioma subpopulation possesses similar stem-like properties with CD133+ or CD15+ cells, but only partially overlaps with them

Since CD133 and CD15 are usually used as makers to enrich GSCs by FACS, the relationship between NADHhigh, CD133+, and CD15+ subpopulations was assessed. We first measured the proportions of CD133+ and CD15+ cells in GBM1, GBM2, T98G, and LN229 cells and found that the percentages were 0.73 ± 0.04%, 0.47 ± 0.04%, 1.37 ± 0.22%, and 0.53 ± 0.04%, and 0.50 ± 0.07%, 0.1%, 4.77 ± 0.24%, and 0.13 ± 0.09%, respectively (Additional file 1: Figure S2 and Figure S3, Table 1), which was consistent with previous reports [30–32]. We then compared the proportions of CD133+ and CD15+ cells in NADHhigh and NADHlow subpopulations in the glioma cell lines. The percentages of CD133+ cells were elevated about two times in NADHhigh subpopulation, but no obvious change in NADHlow subpopulations of those cell lines (Additional file 1: Figure S2, Additional file 1: Table S1). The proportion changes of CD15+ cells in NADHhigh and NADHlow subpopulations were similar to those of CD133+ cells (Additional file 1:
Fig. 3 (See legend on next page.)
Figure S3, Additional file 1: Table S1. The proportion of NADH^{high} cells in CD133⁺ and CD15⁺ subpopulations was also analyzed. The percentages of NADH^{high} cells ranged from 20.1 to 63.7% in CD133⁺ subpopulation and from 10 to 86.2% in CD15⁺ subpopulation in the four cell lines (Additional file 1: Figure S4). These results suggest that NADH^{high} subpopulation is only partially overlapped with CD133⁺ or CD15⁺ subpopulation.

To further illustrate the relationship among NADH^{high}, CD133⁺, and CD15⁺ subpopulations, we compared the stem-like properties of subpopulations with different combination of the expression status of NADH and CD133/CD15⁺, including NADH^{high}/CD133⁺, NADH^{high}/CD133[−], NADH^{low}/CD133⁺, NADH^{high}/CD15⁺, NADH^{high}/CD15[−], NADH^{low}/CD15⁺, and NADH^{low}/CD15[−]. NADH^{high}/CD133⁺ subpopulation showed the highest expression of stem-related genes Nanog, Oct4, Oligo2, and Sox2, whereas NADH^{low}/CD133[−] subpopulation had the lowest expression of those genes in GBM1 and LN229 cells (Fig. 4a). Compared to NADH^{high}/CD133⁺ and NADH^{low}/CD133[−] subpopulations, both NADH^{high}/CD133[−] and NADH^{low}/CD133⁺ subpopulations exhibited medium expression levels of those genes (Fig. 4a). Similar results were observed in the subpopulations which combined NADH and CD15 markers (Additional file 1: Figure S5A). The similar results were observed in the subpopulations which combined NADH and CD15 markers (Additional file 1: Figure S5A). The similar results were observed in the subpopulations which combined NADH and CD15 markers (Additional file 1: Figure S5A).

The invasion ability and temozolomide resistance of NADH^{high} subpopulation are comparable with CD133⁺ and CD15⁺ subpopulations in glioma cells

Previous studies have demonstrated that GSCs are implicated in tumor invasiveness and chemotherapeutic resistance [33, 34]. Compared with NADH^{low} subpopulation, NADH^{high} subpopulation had higher invasive ability in LN229 and GBM1 cells (p < 0.01 for both) (Fig. 5a). The invasive abilities between NADH^{high}, CD133⁺, and CD15⁺ subpopulations were comparable (p < 0.01) (Fig. 5a and Additional file 1: Figure S8). Moreover, NADH^{high} cells were less sensitive to TMZ than NADH^{low} cells (Fig. 5b). CD133⁺ and CD15⁺ cells were more resistant to TMZ than CD133[−] and CD15[−] cells (Fig. 5b), which were consistent with the previous reports [33, 35]. These results suggest that NADH^{high} subpopulation has similar malignant behaviors of invasion and chemotherapeutic resistance with CD133⁺ and CD15⁺ subpopulations.

The intensity of NADH autofluorescence can be used as a biomarker to sort other CSCs

In order to assess whether the intensity of NADH autofluorescence was suitable for isolating the CSCs in other tumors, we sorted NADH^{high} and NADH^{low} subpopulations from breast cancer cell line MDA-MB-231 and colorectal cancer cell line HT-29. With limiting dilution, we evaluated
the self-renewal capability between NADH$_{\text{high}}$/ALDH$^+$, NADH$_{\text{high}}$/ALDH$^-$, NADH$_{\text{low}}$/ALDH$^+$, and NADH$_{\text{low}}$/ALDH$^-$ cells. Compared to NADH$_{\text{low}}$/ALDH$^-$ subpopulation, NADH$_{\text{high}}$/ALDH$^+$, NADH$_{\text{high}}$/ALDH$^-$, and NADH$_{\text{low}}$/ALDH$^+$ exhibited higher ability of tumorsphere formation both in MDA-MB-231 and HT-29 (Fig. 6a). Besides, the average diameter of the tumorspheres derived from NADH$_{\text{high}}$/ALDH$^+$, NADH$_{\text{high}}$/ALDH$^-$, and NADH$_{\text{low}}$/ALDH$^+$ was larger than that from NADH$_{\text{low}}$/ALDH$^-$ both in MDA-MB-231 and HT-29 (Fig. 6b). Thus, the intensity of NADH autofluorescence could be used as a biomarker to isolate CSCs from breast cancer and colorectal cancer, implying that the intensity of NADH autofluorescence might be an extensive biomarker for CSCs.

Discussion

Many endogenous ingredients of cells and tissues, such as some amino acids, collagen, elastin, NAD(P)H, flavin adenine dinucleotide (FAD), vitamins, lipids, and porphyrins, possess natural autofluorescence [36, 37]. Because these...
endogenous autofluorescence ingredients are the metabolites of cells or tissues, their autofluorescence intensity may directly reflect the physiological and/or pathological status of cells and tissues. So far, only the autofluorescence of NAD(P)H and FAD has been widely studied, mainly to be used in monitoring alteration of metabolic profiles and cellular oxidation-reduction status [38–40]. Moreover, the autofluorescence of NAD(P)H and FAD has been studied in normal stem cells and CSCs. Quinn et al. reported that the quantitative metabolic imaging using the endogenous fluorescence of NADH and FAD could monitor human mesenchymal stem cell differentiation into adipogenic and osteoblastic lineages [41]. Fluorescence of free and protein-bound NADH could discriminate different differentiation stages of neuronal progenitor stem cells [42]. Buschke et al. used multiphoton flow cytometry to non-

Fig. 5 The invasion ability and TMZ resistance of NADHhigh glioma cells are similar to the ability of CD133+ and CD15+ subpopulation in glioma cells. a The quantitative histograms of invasion showed that invasion ability was significantly increased in NADHhigh, CD133+, and CD15+ LN229 and GBM1 cells. b Effect of TMZ resistance in CD133, CD15, and NADH. IC50 of TMZ in CD133+ and NADHhigh was higher than in CD133−, and NADHlow of GBM1 and LN229. The similar result was in CD15 of GBM1, but IC50 of TMZ in CD15 of LN229 was not different. All data are presented as the means ± SD. **p < 0.01, ***p < 0.001 (n = 3 independent experiments).
invasively characterize and purify populations of intact stem cell aggregates based on NADH intensity and assessed the differentiation capacity of sorted populations [43]. Bonuccelli et al. demonstrated that NAD(P)H autofluorescence was a new metabolic biomarker for CSCs in MCF-7 breast cancer cell line and sorted high NAD(P)H autofluorescence intensity cells exhibited CSC phenotype [26]. Miranda-Lorenzo et al. used FAD autofluorescence as a novel tool to isolate and characterize epithelial CSCs, but it had obvious limitations, such as exogenous riboflavin needed to be added to enhance the sensitivity, and the experimental results varied with the concentrations of riboflavin, incubation times, and cell concentrations [44]. Therefore, in comparison with FAD, NADH autofluorescence is a more reliable and promising biomarker to be used to sort CSCs without exogenous substances to be added. In the present study, we sorted NADHhigh subpopulation from glioma cells and further demonstrated that this subpopulation possessed the properties of CSCs, featured with significant increase of stemness-related gene expression, tumorsphere formation, invasiveness, resistance to TMZ in vitro, and tumorigenicity in vivo.

Herein, we used a wavelength of 355 nm or 375 nm for the autofluorescence of NADH. However, under our experimental conditions, the sorted NADHhigh subpopulation actually also contained NADPHhigh cells because NADH and NADPH are spectrally identical. Nonetheless, despite the two co-enzymes exert different functions with NAD/NADH as a key determinant of cellular energy metabolism and NADP/NADPH as a central role in biosynthetic pathways and antioxidant defense, both of them may be important for stemness maintenance of CSCs. Several other studies have suggested that the concentration of NADH is higher (up to 5 times) than the NADPH in mammalian and the quantum yield of NADH is 1.25 to 2.5 times higher than that of NADPH [45]. Since NADH is the main source of the autofluorescence, we used NADHhigh but not NAD(P)Hhigh subpopulation as GSCs.

CD133 and CD15 have been regarded as reliable maker for enriching GSCs. In our studies, we compared the relationship of CD133+, CD15+, and NADHhigh subpopulations and found that CD133/CD15− defines distinct cell subpopulations and both CD133+ and CD15+ cells were only partially overlapped with NADHhigh subpopulation in glioma cells. Thus, NADHhigh may define a subset of GSCs independent of CD133+ and CD15+ subsets. As for the relationship between CD133+ and
CD15+ cells. Son et al. reported that most CD133+ tumor cells freshly isolated from glioma specimens were CD15+ [6], but a less overlap between CD133+ and CD15+ subsets was observed in GBM1 and LN229 cells (Additional file 1: Figures S6 and S7).

As a basic metabolite, NADH is ubiquitously distributed in cells. Therefore, NADH autofluorescence could be a biomarker not only for GSCs, but also for other CSCs. Indeed, we found that NADHhigh/ALDH−, NADHhigh/ALDH+, and NADHlow/ALDH+ subpopulations had higher self-renewal ability than NADHlow/ALDH− subpopulation in breast cancer and colon cancer cells, implying that the autofluorescence of NADH might serve as a biomarker for CSCs of these cancers.

Conclusion

Our findings demonstrate that intracellular autofluorescence of NADH is a non-labeling, sensitive maker for isolating GSCs, even for other CSCs.

Supplementary information

Supplementary information accompanies this paper at https://doi.org/10.1186/s13287-019-1467-7.

Abbreviations

ALDH: Aldehyde dehydrogenase; bFGF: Basic fibroblast growth factor; CSCs: Cancer stem cells; EGF: Epidermal growth factor; FACS: Fluorescence-activated cell sorting; FAD: Flavin adenine dinucleotide; FLIM: Fluorescence lifetime microscopy; GSCs: Glioma stem cells; NADH: Nicotinamide adenine dinucleotide; TMZ: Temozolomide; WHO: World Health Organization

Acknowledgements

We would like to thank the specimen bank of Southwest Hospital for the specimens.

Authors’ contributions

YC, XB, and QM contributed to the study conception and design. YC, XB, and QM contributed to the development of methodology. YY, YZ, JM, RC, and MZ contributed to the acquisition of data. QM, YY, YW, and LW contributed to the analysis and interpretation of data. WD, DW, and DX were involved in the administrative, technical, or material support. QM, YW, PZ, YC, and XB contributed to the writing, review, and/or revision of the manuscript. YC and XB were involved in the study supervision. All authors read and approved the final manuscript.

Funding

This work was supported by grants from the National Natural Science Foundation of China (innovative research group projects, 81821003 to XW Bian, Chongqing Science and Technology Commission (cstc2017jcyjA0544 to QH Ma), and Southwest Hospital Foundation (SWH2016JCZD-09 to DY Guo).

Availability of data and materials

For data requests, please contact the authors.

Ethics approval and consent to participate

This study was approved by the Ethical/Scientific Committee of Southwest Hospital.

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Received: 17 July 2019 Revised: 14 October 2019 Accepted: 22 October 2019 Published online: 20 November 2019

References

1. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al. Identification of human brain tumour initiating cells. Nature. 2004;432:396–401.
2. Minata M, Audia A, Shi J, Lu S, Bersnock I, Pavlyukov MS, et al. Phenotypic plasticity of invasive edge glioma stem-like cells in response to ionizing radiation. Cell Rep. 2019;26:1893–905.
3. Liu G, Yuan X, Zeng Z, Tunci P, Ng H, Abdulkadir IR, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer. 2006;5:67.
4. Hattermann K, Fluh C, Engel D, Mehdon HM, Synowitz M, Mentlein R, et al. Stem cell markers in glioma progression and recurrence. Int J Oncol. 2016;49:1899–910.
5. Singh SK, Clarke ID, Terasaki M, Bonne VE, Hawkins C, Square J, et al. Identification of a cancer stem cell in human brain tumours. Cancer Res. 2003;63:5821–8.
6. Son MJ, Woolard K, Narn DH, Lee J, Fine HA. SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell. 2009;4:440–52.
7. Wang J, Sakariassen PO, Tsinakovsky O, Immervoll H, Boe SO, Svendsen A, et al. CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. Int J Cancer. 2008;122:761–8.
8. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al. CD133(+) and CD133(-) glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res. 2007;67:4010–5.
9. Panchision DM, Chen HL, Pistollato F, Papini D, Ni HT, Hawley TS. Optimized flow cytometric analysis of central nervous system tissue reveals novel functional relationships among cells expressing CD133, CD15, and CD24. Stem Cells. 2007;25:1560–70.
10. Baronneva NS, Kettman K, Fastel-Kan E, Potashnikova D, Vorobjev IA. Cell sorting in cancer research—diminishing degree of cell heterogeneity. Biochim Biophys Acta. 2013;1836:1015–22.
11. Tesář T, Tettet MA. Pluripotent stem cell energy metabolism: an update. EMBO J. 2015;34:138–53.
12. Shen Y, Wang CY, Hsieh YT, Chen YJ, Wei YH. Metabolic reprogramming orchestrates cancer stem cell properties in nasopharyngeal carcinoma. Cell Cycle. 2015;14:86–98.
13. Blacker TS, Mann ZF, Gale JE, Ziegler M, Bain AJ, Szabadkai G, et al. Separating NADH and NADPH fluorescence in live cells and tissues using FLIM. Nat Commun. 2014;5:3936.
