Introduction. Staphylococcus aureus is associated with various infections ranging from skin and soft tissues to lower respiratory tracts and bloodstream. The aim of this study was to evaluate underlying condition of patients with S. aureus infections in an Iranian referral pediatric Hospital.

Material and methods. Information was extracted retrospectively from the medical records of patients who were diagnosed with S. aureus infections. Data obtained about the study subjects included basic demographics, reason for admission, culture site, length of hospital stay, and methicillin susceptibility.

Results. The underlying condition of patients with S. aureus infection during November 2011 and March 2013 were included in the study. The most frequent diagnosis in patients with S. aureus infection was jaundice (12%), abscess (10%), cellulitis (10%), wound infection (8%), septic arthritis (7%) and seizure (5%). Wound was the most common infection sites among all subjects 34/98 (35%) following by blood (20/98, 20%) as well as skin and soft tissue (19/98, 19%). The proportion of MRSA infections among all S. aureus isolates was 79% (77/98) during the study period. In addition, 58/74 (78%) met the definition of Hospital-Associated Methicillin-Resistant S. aureus (HA-MRSA) infections and the rest; 20/24 patients (83%), were classified as Community-Associated Methicillin-Resistant S. aureus (CA-MRSA).

Conclusion. In our study, the high frequency of MRSA was found not only in HA S. aureus but also in CA S. aureus isolates; therefore, the strategic goals to optimize antimicrobial use including [sic]...
Clinical isolates were identified as *S. aureus* by Gram stain, colonial morphology, catalase and coagulase test. Susceptibility to oxacillin was performed using oxacillin disk according to the performance standards of the Clinical and Laboratory Standards Institute (CLSI) [6].

**Statistical analyses**

The Statistical Package for the Social Sciences (Windows version 16.0; SPSS Inc, Chicago, US) was used for all analyses. Descriptive statistics were used to summarize patient variables.

**Results**

In this study, records of 98 *S. aureus* infected patients who were diagnosed during November 2011 and March 2013 were analysed. The mean age of the patients was 3.3 ± 2.45 years (range from 1 day to 13.8 year) and the male to female ratio was 1.2. *S. aureus* isolates were frequently isolated from patients who were suffered from jaundice (12%), abscess (10%), cellulitis (10%), wound infection (8%), septic arthritis (7%) and seizer (5%).

The most common infection sites which *S. aureus* strains were isolated were wound (34/98, 35%) following by bloodstream (20/98, 20%) and skin and soft tissue (19/98, 19%). The proportion of MRSA infections among all *S. aureus* isolates was 79% (77/98) during the study period. In addition, 58/74 (78%) met the definition of HA-MRSA infections and the rest; 20/24 patients (83%), were classified as CA-MRSA.

Among all *S. aureus* isolates, 24 CA-*S. aureus* isolates were associated generally with the wound, skin and soft tissue infections infection. The sites of CA-MRSA and HA-MRSA infections is shown in Table I.

**Discussion**

The rate of MRSA has been increased considerably over the last decade [7], and are mainly associated with skin and soft tissue infections particularly abscesses and cellulitis [8].

According to our results, the high frequency of MRSA was found not only in HA-*S. aureus* isolates but also in CA-*S. aureus* isolates. CA-MRSA strains appear to have rapidly disseminated among the general population and affect patients with and without exposure to the health care environment.

The frequency of MRSA infections among all *S. aureus* isolates in this study was more than other studies [5, 9-12]. Huang et al. reported that 42% of the *S. aureus* isolates were MRSA (55.1% HA-MRSA and 44.9% CA-MRSA) [5]. Amin et al. reported that CA-MRSA infections represented 31.5% of CA-*S. aureus* infections, while HA-MRSA accounted for 52.6% of HA-*S. aureus* infections [9].

The rapid emergence of MRSA in the recent years might be due to the increasing consumption of antibiotics, long time of hospitalization, failures of hospital hygiene and even selective and mobile genetic elements [3, 13-16]. Soriano et al. has been reported a 1.8 fold increase in MRSA isolation in patients who were prescribed more than 2 antibiotics in the last 180 days [17].

In our study, *S. aureus* isolates were commonly associated with wound, bloodstream and skin, and soft tissue infections. Caini et al. reported that more than 50% of all reported HA-MRSA isolates belonged to surgical site as well as skin and soft tissues in Hungarian patients during 2005-2010 [18].

In our study, the frequency of MRSA causing bloodstream infections was 60% (12/20). In the previous studies which were conducted in our hospital, the rates of MRSA was 60% and 79% during 1996–2000 [19] and 2001-2005 [20], respectively.

In this study, the rate of wounds MRSA isolates was higher than other reports (26/34, 76%) [2, 21]. In Wolk et al. [2] and Borgundvaag et al. studies [21], the prevalence of wound MRSA isolates was 30% and 32%, respectively. Skin and soft tissue consider as one other common infection sites [19] that was found in 25% of patients. This rate was less than Huang et al. reports [5].

Drug resistance has continued to emerge particularly in intensive care units (ICUs) [14, 15]. In this study, a high frequency of MRSA was found in Pediatric Intensive Care Unit (PICU) and Neonatal Intensive Care Unit (NICU) (80% and 77%, respectively). Minimizing the antibiotic pressure and duration of empiric therapy as well as hand hygiene is essential for controlling the emergence of these resistant strains in the hospitals [22, 23].

**Tab. I. Sites of CA-MRSA and HA-MRSA infections.**

|          | Wound | Bloodstream | Skin and soft tissue | Eye | Respiratory tract | Other* | Total |
|----------|-------|-------------|----------------------|-----|------------------|--------|-------|
| CA-MRSA  | 6     | 2           | 6                    | 4   | 0                | 2      | 20    |
| %        | 33    | 13          | 25                   | 21  | 0                | 8      | 100   |
| HA-MRSA  | 20    | 12          | 9                    | 7   | 8                | 2      | 58    |
| %        | 35    | 23          | 18                   | 11  | 11               | 3      | 100   |

* Includes urine tract and bone marrow aspiration
CA: Community-Associated
HA: Hospital-Associated
Moreover, identifying of the important factors contributing to acquisition and transmission of \textit{S. aureus} infection as well as antibiotic stewardship programs should imply in our hospital. The spread of MRSA is usually occurring by transient carriage on the hands of health care workers. In our hospital due to high rate of MRSA isolates, improvement in the adherence of health care workers to hand-hygiene guidelines should perform. In addition, aseptic technique such as waterless antiseptic hand rubs, use of sterile gowns and gloves must be practiced. In addition, a series of appropriate guidelines for antimicrobial use and a chart audit should be developed. In conclusion, in our study, the high frequency of MRSA was found not only in HA \textit{S. aureus} but also in CA \textit{S. aureus} isolates; therefore, the strategic goals to optimize antimicrobial use including optimizing choice and duration of empiric therapy, monitoring and providing feedback regarding antibiotic resistance, prevention of antimicrobial resistant transmission as well as basic infection control policies and procedures are recommended.

References

[1] Valaperta R, Tejada MR, Frigerio M, et al. \textit{Staphylococcus aureus} nosocomial infections: the role of a rapid and low-cost characterization for the establishment of a surveillance system. New Microbiol 2010;33:223.

[2] Wolk D, Struelens M, Pancholi P, et al. Rapid detection of \textit{Staphylococcus aureus} and methicillin-resistant \textit{S. aureus} (MRSA) in wound specimens and blood cultures: multicenter preclinical evaluation of the Cepheid Xpert MRSA/SA skin and soft tissue and blood culture assays. J Clin Microbiol 2009;47:823-6.

[3] Hsueh P-R, Teng L-J, Chen W-H, et al. Increasing prevalence of methicillin-resistant \textit{Staphylococcus aureus} causing nosocomial infections at a university hospital in Taiwan from 1986 to 2001. Antimicrob Agents Chemother 2004;48:1361-4.

[4] Campos GB, Souza SG, LOB O, et al. Isolation, molecular characteristics and disinfection of methicillin-resistant \textit{Staphylococcus aureus} from ICU units in Brazil. New Microbiol 2012;35:183.

[5] Huang H, Flynn NM, King JH, et al. Comparisons of community-associated methicillin-resistant \textit{Staphylococcus aureus} (MRSA) and hospital-associated MRSA infections in Sacramento, California. J Clin Microbiol 2006;44:2423-7.

[6] Wikler MA. Performance Standards for Antimicrobial Susceptibility Testing: Twentieth Informational Supplement. Clinical and Laboratory Standards Institute; 2010.

[7] Kopp BJ, Nix DE, Armstrong EP. Clinical and economic analysis of methicillin-susceptible and-resistant \textit{Staphylococcus aureus} infections. Ann Pharmacother 2004;38:1377-82.

[8] Eady EA, Cove JH. \textit{Staphylococcal} resistance revisited: community-acquired methicillin-resistant \textit{Staphylococcus aureus} an emerging problem for the management of skin and soft tissue infections. Curr Opin Infect Dis 2003;16:103-24.

[9] Amin N, Faiadah HS. Methicillin-resistant \textit{Staphylococcus aureus} in the western region of Saudi Arabia: prevalence and antibiotic susceptibility pattern. Ann Saudi Med 2012;32:513-6.

[10] Mamishi S, Mahmoudi S, Sadeghi R, et al. Genotyping of \textit{Staphylococcus aureus} strains among healthcare workers and patients in the tertiary referral Children’s Medical Hospital in Tehran, Iran. Br J Biomed Sci 2011;69:173-7.

[11] Lamy B, Laurens F, Gallon O, et al. Antibacterial resistance, genes encoding toxins and genetic background among \textit{Staphylococcus aureus} isolated from community-acquired skin and soft tissue infections in France: a national prospective study. Eur J Clin Microbiol Infect Dis 2012;31:1279-84.