We present the results from ASCA observations of the centrally enhanced supernova remnant (SNR) 3C 391 (G31.9+0.0). We use the ASCA SIS data to carry out an investigation of the spatial and spectral properties of the X-ray emission from this remnant. The collisional equilibrium ionization and nonequilibrium ionization spectral fits indicate that the hot gas within the remnant has basically reached ionization equilibrium. The variation of the hydrogen column density across the remnant is in agreement with the presence of a molecular cloud to the northwest. The comparisons of hydrogen column and X-ray hardness between the northwest and southeast portions of the remnant suggest a scenario in which the SNR has broken out of a dense region into an adjacent region of lower density. The mean density within the SNR is observed to be much lower than the immediate ambient cloud density. This and the centrally brightened X-ray morphology can be explained either by the evaporation of engulfed cloudlets or by a radiative stage of evolution for the remnant.

Subject headings: ISM: individual (3C 391, G31.9+0.0) — radiation mechanisms: thermal — supernova remnants — X-rays: ISM

1. INTRODUCTION

Apart from the well-known classification of shell-like, Crab-like, and composite supernova remnants (SNRs), a collection of SNRs with shell-like radio emission and centrally brightened thermal X-rays has attracted substantial attention (e.g., White & Long 1991, hereafter WL91; Rho & Petre 1998; Wilner, Reynolds, & Moffett 1998). Many of these so-called thermal composite or mixed morphology remnants (such as W28, W44, IC 443, G349.7+0.2, and 3C 391) are found to produce the hydroxyl radical 1720 MHz maser emission that is characteristic of a shock interaction with dense molecular gas (Green et al. 1997).

3C 391 (G31.9+0.0) is similar to other remnants in this collection. Its X-ray brightness peaks well inside the radio shell, and the spectrum is that of a thermal plasma. The remnant shows an elongation from northwest (NW) to southeast (SE) in the radio band, and the centroid of the soft X-ray emission lies in the SE region. Reynolds & Moffett (1993, hereafter RM93) first pointed out that the radio and X-ray morphologies can be explained with a gas breakout from a molecular cloud into a lower density region. In a ROSAT X-ray study, Rho & Petre (1996, hereafter RP96) could not actually distinguish between an increase in hydrogen column density or a decrease in temperature across the remnant from SE to NW from the spectra alone and favored the hydrogen column variation based on the morphology. Frail et al. (1996) suggest that OH masers in the direction of 3C 391 are associated with the remnant, and Reach & Rho (1996) find strong enhancement in [O I] emission near the northwestern edge of the remnant, which is indicative of shock interaction. CO and other molecular line observations confirm the location of the remnant at the southwestern edge of a molecular cloud (Wilner et al. 1998; Reach & Rho 1999). The far-infrared H$_2$O and OH emission lines are consistent with the passage of shock wave through dense clumps (Reach & Rho 1998), and broad CS- and CO-line sources are found to coincide with one of the OH maser regions (Reach & Rho 1999).

Because of the limited spectral resolution of the ROSAT PSPC (0.5–2.2 keV) and Einstein IPC (<4 keV), the previous X-ray instruments did not resolve line features in the SNR spectrum. ASCA, with its broader energy range (0.5–10 keV) and better energy response, allows us to analyze the line emission, element abundances, and narrow-band images to investigate the physics of the hot gas inside 3C 391 and inspect the breakout model more fully.

2. DATA ANALYSIS

The ASCA observation of 3C 391 was made on 1994 April 21–22 with both the Solid-State Imaging Spectrometer (SIS) and the Gas Imaging Spectrometer (GIS). In the SIS observation, both 1 CCD and 4 CCD clocking modes were used. The observational data were screened with the standard "rev2" criteria (see Day et al. 1997). The SIS0 and SIS1 bright mode data were exploited in this analysis due to the better spectral and spatial resolution of the SIS data over the GIS data. The relevant observation parameters are listed in Table 1.

2.1. Spectral Analysis

The spectra for the whole remnant (Fig. 1) were extracted from a circular region of a radius 3.5, centered at R.A. = $18^h 49^m 28.3^s$, decl. = $-00^\circ 56' 15''$ (J2000) (Fig. 3a, diagram). Background spectra were extracted from a nearby source-free field. The net count rates of the two CCD mode SIS0 and SIS1 spectra are tabulated in Table 2. Since data of different clocking modes have different spectral responses, we would not merge the spectra but fit them simultaneously to the same model.

In order to search for spectral variations across the remnant, we also extracted spectra from two circular regions of radius 1.7 in the NW and SE halves (Fig. 3a, diagram). The net count rates of these spectra are tabulated in Table 2. All the spectra mentioned above were regrouped to contain at least 25 net counts per bin.

There are three prominent line features in the spectra. To determine accurately the energy of the lines, following
TABLE 1
SUMMARY OF OBSERVATIONS (USED)

Seq. No.	Instrument	Clocking Mode	Exposure (s)
ad51017000s000102h	SIS0	4 CCD	36
s0002020h	SIS0	4 CCD	10,479
s0003020m	SIS0	1 CCD	23,927
s0005020m	SIS0	4 CCD	26
s0006020m	SIS0	1 CCD	94
ad51017000s100102h	SIS1	4 CCD	10,594
s1002020m	SIS1	1 CCD	24,056
s1004020m	SIS1	4 CCD	26

Bamba et al. (2000), we first fitted the spectra of the whole remnant to a thermal bremsstrahlung and three Gaussian lines with a Morrison & McCammon (1983) interstellar absorption. The best-fit line centers are 1.35 ± 0.01, 1.85 ± 0.01, and 2.46 ± 0.02 keV (the errors are 90% confidence). They correspond to Mg He, Si He, and S He emission lines, respectively. The Fe L complex at 1–1.5 keV could be present in the spectra. The emission diminishes rapidly above the photon energy ~ 4 keV and no Fe K emission is observed, indicating that the gas temperature is not very high assuming normal abundances (below 1 keV). We used an absorbed collisional equilibrium ionization (CEI) model, VMEKAL (Mewe, Kaastra, & Liedahl 1995), in the XSPEC code to fit the two clocking mode SIS0 and SIS1 spectra of the whole remnant simultaneously. In the spectral fitting, the abundances of the elements (Mg, Si, and S) showing evident emission lines are treated as free parameters, while other element abundances are fixed at the default solar values. The spectral fit for the whole remnant is shown in Figure 1. Similar fit procedures are also applied to the spectra of the NW and SE portions individually. We find no significant contribution of a high-energy tail that might be associated with a strong non-thermal component to the spectrum. The CEI fit results are summarized in Table 3.

![Figure 1](image1.png)

Figure 1. SIS X-ray spectra of 3C 391 fitted with the VMEKAL model. Labels indicate the three energy ranges (ERs) in which the narrowband images are produced.

![Figure 2](image2.png)

Figure 2. Two-dimensional confidence contours for the NW and SE regions of 3C 391. The contours from inner to outer correspond to $\Delta \chi^2 = 2.30$ (68%), 4.61 (90%), and 9.21 (99%).

TABLE 2
SUMMARY OF NET COUNT RATES

CCD Chips	Whole (counts s$^{-1}$)	NW (counts s$^{-1}$)	SE (counts s$^{-1}$)
SIS0 1 CCD	$18.7 \pm 0.3 \times 10^{-2}$	$5.3 \pm 0.2 \times 10^{-2}$	$7.2 \pm 0.2 \times 10^{-2}$
SIS1 1 CCD	$15.2 \pm 0.3 \times 10^{-2}$	$4.9 \pm 0.1 \times 10^{-2}$	$5.8 \pm 0.2 \times 10^{-2}$
SIS0 4 CCD	$17.3 \pm 0.4 \times 10^{-2}$	$5.4 \pm 0.2 \times 10^{-2}$	$6.3 \pm 0.3 \times 10^{-2}$
SIS1 4 CCD	$13.0 \pm 0.4 \times 10^{-2}$	$4.3 \pm 0.2 \times 10^{-2}$	$4.5 \pm 0.2 \times 10^{-2}$
On the other hand, we also fitted these spectra to VNEI, a nonequilibrium ionization (NEI) model, in the XSPEC11.0 code. The NEI fit results are presented in Table 4. The goodness-of-fit and most of the fit parameters are similar for the CEI and NEI cases, and the ionization parameter \(n_{\text{e}} \) obtained from the NEI model is greater than \(10^{12} \text{ cm}^{-3} \), so the hot gas in the remnant is basically in ionization equilibrium.

The metal abundances yielded with both the CEI and NEI models (see Tables 3 and 4) are essentially consistent with solar values and, thus, seem to be consistent with an interstellar composition. From the two tables we cannot see significant difference in temperature between the SE and NW regions of 3C 391 in either model but find different error ranges of \(N_{\text{H}} \) for the two regions (with higher \(N_{\text{H}} \) in the NW than in the SE). To check this, we compute the two-dimensional error contours for \(N_{\text{H}} \) and \(kT \) for the SE and NW regions (Fig. 2). In both the CEI and NEI cases, the confidence contours for the two regions are clearly disjoint, so \(kT \) and \(N_{\text{H}} \) are highly correlated for each region. The contours show similar range of temperature but different range of column density for the two regions. We also fitted the NW and SE spectra simultaneously to the same temperature and the same column density, respectively, using a CEI model; here the metal abundances for the two regions given in Table 3 are used. The best-fit results are summarized in Table 5. For the case of the same temperature, one would again see that the one dimensional error ranges of \(N_{\text{H}} \) for the two regions do not overlap. Assuming the same column density, on the other hand, leads to another possible case in which the NW region is higher in temperature but lower in emission measure than the SE. In the latter case, considering the immediate adjacency of the molecular cloud to the NW of the remnant (Wilner et al. 1998), it is quite unlikely that the gas density in the NW region is lower than that in the SE region, so the hot gas in the defined circular NW region should actually occupy a larger volume than in the SE region. Though this possibility cannot be eliminated, a variation in column density between the SE and NW regions, i.e., an increase in column density from the SE to the NW, is consistent with the proximity of the molecular cloud.

Table 3

VMEKAL (CEI) Fitting Results with the 90% Confidence Ranges

Parameter	Whole	NW	SE
\(n_{\text{e}} N_{\text{H}} V/d_{2} \) (10^{58} \text{ cm}^{-3})	10.39±1.95	4.16±1.46	3.71±1.11
\(kT \) (keV)	0.52±0.03	0.52±0.03	0.51±0.03
\([\text{Mg/H}]\)	1.36±0.10	1.16±0.35	1.50±0.31
\([\text{Si/H}]\)	1.90±0.17	0.81±0.17	1.07±0.17
\([\text{S/H}]\)	0.67±0.14	0.53±0.23	0.63±0.26
\(N_{\text{H}} \) (10^{12} \text{ cm}^{-2})	3.03±0.11	3.34±0.10	2.96±0.14
\(F(0.5–10 \text{ keV}) \) (ergs cm\(^{-2}\) s\(^{-1}\))	4.7×10\(^{-12}\)	1.5×10\(^{-12}\)	1.7×10\(^{-12}\)
\(F(0.5–10 \text{ keV}) \) (ergs cm\(^{-2}\) s\(^{-1}\))	5.3×10\(^{-10}\)	1.4×10\(^{-10}\)	1.2×10\(^{-10}\)
\(\chi^{2} / \text{dof} \)	349/230	125/108	201/118

Note.—Here \(f \) denotes the filling factor of the hot gases, \(F \) the absorbed flux, and \(F^{0} \) the unabsorbed flux.

Table 4

VNEI Fitting Results with the 90% Confidence Ranges

Parameter	Whole	NW	SE
\(n_{\text{e}} N_{\text{H}} V/d_{2} \) (10^{58} \text{ cm}^{-3})	7.38±1.48	3.50±1.08	1.99±0.90
\(kT \) (keV)	0.59±0.03	0.57±0.04	0.63±0.03
\(n_{\text{e}} \) (10^{13} \text{ cm}^{-3} \text{ s}^{-1})	0.85±0.10	3.86±0.52	3.76±0.44
\([\text{Mg/H}]\)	1.37±0.28	1.25±0.46	2.64±0.21
\([\text{Si/H}]\)	1.92±0.18	1.02±0.23	1.38±0.24
\([\text{S/H}]\)	0.75±0.17	0.59±0.29	0.68±0.32
\(N_{\text{H}} \) (10^{12} \text{ cm}^{-2})	2.90±0.07	3.33±0.15	2.70±0.16
\(F(0.5–10 \text{ keV}) \) (ergs cm\(^{-2}\) s\(^{-1}\))	4.8×10\(^{-12}\)	1.5×10\(^{-12}\)	1.8×10\(^{-12}\)
\(F(0.5–10 \text{ keV}) \) (ergs cm\(^{-2}\) s\(^{-1}\))	2.3×10\(^{-10}\)	1.1×10\(^{-10}\)	6.4×10\(^{-11}\)
\(\chi^{2} / \text{dof} \)	359/229	133/107	201/117

Note.—Here \(f \) denotes the filling factor of the hot gases, \(F \) the absorbed flux, and \(F^{0} \) the unabsorbed flux.
Fig. 3.—X-ray images produced using SIS0 data. (a) The hard (2.6–10 keV) emission gray-scale image overlaid with the soft (0.5–2.6 keV) emission contours. The three circles designate the areas from which the SIS spectra are extracted. (b, c) The gray-scale images of soft and hard emission, respectively, overlaid with the dashed contours of 1.5 GHz radio emission (from Moffett & Reynolds 1994). (d, e, f) The narrowband gray-scale images and solid contours of Mg He (1.2–1.5 keV), Si He (1.7–2.0 keV), and S He (2.3–2.6 keV) emissions, respectively. In (f) the image is also overlaid with the dashed radio contours. The seven levels of solid contours are linear between the maximum and 20% maximum brightness. The two plus signs in each panel denote the OH maser points (Frail et al. 1996).

which the narrowband emissions are extracted, are labeled in Figure 1. The three narrowband images contain 2308, 2587, and 833 counts, individually. Note that the three images are not corrected for the underlying continuum contribution, and the Mg band (ER1) also includes emission from the Fe L blend. The Mg, Si, and S emissions have 56%, 55%, and 36% energy contributions, respectively, in each energy range. All these image maps have been adaptively
smoothed so as to contain a minimum of 50 counts in the top hat filter. The two OH maser points (Frail et al. 1996) are labeled in the maps.

3. DISCUSSION

3.1. Absorbing Hydrogen

Both the CEI and NEI models give a hydrogen column density \(N_H \) around \(3.0 \times 10^{22} \text{ cm}^{-2} \) (Tables 3 and 4). In the spectral fits above, we show disjoint error ranges of \(N_H \) for the NW and SE regions of 3C 391 and favor a variation in \(N_H \) between the two regions. This is consistent with the northwestern enhancement of CO emission (Wilner et al. 1998) and with the southeastward breakout scenario (RM93). In the CEI model fit, the best-fit value of \(N_H \) for the NW portion is \(4 \times 10^{21} \text{ cm}^{-2} \) higher than that for the SE portion; and in the NEI model fit, this difference is \(6 \times 10^{21} \text{ cm}^{-2} \). If the difference of \(N_H \) for the two portions reflects the density contrast between the inside and outside of the molecular cloud, the molecular column inside the cloud would be \(N(\text{H}_2) \sim 3 \times 10^{25} \text{ cm}^{-2} \) (following RM93, considering that the photoionization cross section for \(\text{H}_2 \) at 1 keV, per H atom, is about 8 times that for atomic hydrogen; Brown & Gould 1970). In this way the mean molecular density inside the cloud would be \(\langle n(\text{H}_2) \rangle \sim 100 \text{pc}^{-1} \text{ cm}^{-3} \), where \(\text{pc} \) is the depth in parsecs of the molecular layer. This would imply \(\langle n(\text{H}_2) \rangle \) of order \(10 \sim 20 \text{ cm}^{-3} \) if the line-of-sight depth of the SNR in the cloud is similar to the remnant radius (6–9 pc).

3.2. Images

The soft band map (Figs. 3a, 3b) is very similar to the ROSAT PSPC image (RP96). The hard X-ray image (Figs. 3a and 3c) looks relatively bright in the NW compared with that in the SE, in contrast to the soft X-ray image which looks faint in the NW. This fact can be explained by increased extinction from the NW cloud and is consistent with a model in which the gas in the SE region has broken out into a lower density environment. There seems to be a narrow X-ray bridgelike structure at the center of the X-ray images connecting the SE and NW portion, which might possibly represent the “nozzle” or “tunnel” of the NW-to-SE breakout.

The emission dominated by Mg and Si (Figs. 3d and 3e) is centrally brightened in the SE half but faint in the NW (similar to the soft band map), implying obscuration in the NW half. An arclike feature emerges in the NW of the S He emission map (Fig. 3f), while it is absent in the Mg emission map (Fig. 3d) and marginally evident in the Si emission map (Fig. 3e). This is consistent with an absorption effect in the softer Mg and Si lines. This arclike shaped feature is close to the NW radio shell and reveals a hot gas structure behind the blastwave and embedded in the dense cloud.

In each X-ray map the SE half is centrally brightened. The hard emission (continuum) in the NW is also centrally brightened and is conspicuously faintest along the western limb where the radio brightness is a maximum. The mechanism responsible for the enhanced central emission may be interior cloudlet evaporation (WL91) or, perhaps, the cooling of the rim gas (e.g., Harrus et al. 1997; Rho & Petre 1998, Cox et al. 1999; Shelton et al. 1999). We discuss these two mechanisms in § 3.4.

The peak of the X-ray brightness distribution is located at about R.A. = \(18^h 49^m 33^s \), decl. = \(-00^\circ 56\arcmin 37\arcsec \) (J2000) for both the soft map and the narrowband maps, and the hard map peaks at about R.A. = \(18^h 49^m 25^s \), decl. = \(-00^\circ 54\arcmin 32\arcsec \) (J2000). The association of 3C 391 with a dense molecular cloud is suggestive of a massive progenitor star. The gravitational core collapse of the massive progenitor should have left behind a compact star, such as that observed for IC 443 (Olbert et al. 2001), another “thermal composite” which is similar to 3C 391 in many aspects. While the broad spatial response of ASCA prohibits a sensitive search for an embedded compact star, future Chandra and XMM observations near the peaks in the soft and hard maps mentioned above are clearly of interest.

3.3. Distance

The presence of the H I absorption against 3C 391 out to the tangent point velocity \(< 105 \text{ km s}^{-1} \) puts the remnant beyond 7.2 kpc (for a Galactocentric radius 8.5 kpc), and the absence of the absorption at negative velocities sets an upper limit of 11.4 kpc (Caswell et al. 1971; Radhakrishnan et al. 1972; RM93). This range is supported by the discovery of two OH 1720 MHz maser features (at +105 and +110 \text{ km s}^{-1} \) in the direction of 3C 391 (Wilner et al. 1998). With the hydrogen column density (\(N_H \sim 3 \times 10^{22} \text{ cm}^{-2} \)) obtained from the X-ray spectral fits, one can estimate another upper limit to the distance. The extinction per unit distance within 2 kpc in the direction of 3C 391 is \(E(B-V)/d \sim 0.60 \text{ mag kpc}^{-1} \) (Lucke 1978). The extinction beyond 2 kpc, in the direction of the Galactic center, should be higher than this value. The correlation \(N_H = 5.9 \times 10^{21} E_{B-V} \text{ cm}^{-2} \) (Spitzer 1978; Predehl & Schmitt 1995) then gives \(d \sim 8.5 \text{ kpc} \), which is in agreement with the above range of distance. In this paper \(d \sim 8 \text{ d}_8 \text{ kpc} \) will be used hereafter.

3.4. X-Ray Emitting Gas and Its Dynamics

If the unabsorbed flux in the VMEKAL model (case CEI) is adopted, the X-ray (0.5–10 keV) luminosity is \(L_X \sim 2.7 \times 10^{34} \text{ d}_8 \text{ ergs s}^{-1} \). The best-fit volume emission measure (EM) of the remnant in the CEI case is \(f_n n_H V \sim 1.0 \times 10^{69} \text{ d}_8 \text{ cm}^{-3} \), where \(f \) is the filling factor of the X-ray emitting plasma; the EM value in the NEI case is a bit smaller. Based on the VLA observation (RM93), we approximate the remnant volume as a cylinder of a diameter \(S' \) and a height \(S \). With \(n_H \approx 1.2 \text{ cm}^{-3} \) assumed, the emission measure yields \(n_H V \sim 1.5 \times 10^{63} \text{ d}_8 \text{ cm}^{-3} \). The X-ray emitting mass is \(M_X = 4.1 \times 10^{64} \text{ M}_\odot \), which indicates that the emission is dominated by swept-up ambient matter. (The NEI case would correspond to 0.86 times the above...
The mean interior hot gas density n_H is much smaller than the environment H-atm density $2\langle n(H_2)\rangle$ inside the molecular cloud, indicating that a large amount of ambient matter does not act as X-ray emitting gas after being swept up or engulfed by the supernova blastwave. The explanation could be either that we are observing the hot, tenuous internal gas while the dense material near the rim has cooled down, or that the medium inside the cloud is clumpy and most of the X-ray emitting interclump medium (ICM) was evaporated from the clumps. The two mechanisms can both lead to the observed centrally brightened X-ray morphology, as we discuss below.

3.4.1. Cloud Evaporation Case

Here we use the self-similar solution incorporating cloud evaporation (WL91) to discuss the dynamics of SNR 3C 391. Because cloud evaporation slowly increases the interior density, the mean interior hot gas density could be a few times the postshock density. This gas can provide the centrally emitting thermal X-ray component observed “mixed morphology” remnants such as 3C 391 and others (Harrus et al. 1997; Harrus et al. 2001). The postshock temperature T_s can be derived from the observed X-ray emitting gas temperature $kT_X \approx 0.52$ keV in the CEI case) using a scaling factor

$$q = KT_X/1.27T_s,$$

where q and the energy ratio constant K (scaled by Sedov value) are dependent on C/τ (WL91). Here C is the ratio of the mass in the clumps to the mass of ICM, and τ is the ratio of the cloud evaporation time to the SNR’s age. We follow RP96 and take $C/\tau \approx 3.5$. The velocity of the blastwave can be obtained from

$$v_s = (16kT_s/3 \mu n_0q)^{1/2},$$

where the mean atomic weight $\mu = 0.61$, which then gives the dynamic age of the remnant $t = 2\tau/5v_s$. Since the SNR is complicated in morphology, we scale the radius with a mean value (3') of the whole radio volume: $r_s = 3' r_3$. The hot gas density distribution is dependent upon the model parameters; for simplicity, however, we assume the mean interior density is twice the postshock density, which is broadly consistent with a range of profiles for the cloud evaporation model. Thus, the undisturbed preshock ICM density n_0 is about $n_0/8 \approx 0.2 f^{-1/2} d_8^{-1/2}$ cm$^{-3}$. This density can also be estimated from the X-ray luminosity $L_X \approx 2.7 \times 10^{34} d_8^4$ ergs s$^{-1}$ using WL91’s equation (21), and it is thus in a consistent range $\sim 0.1 - 0.2 f^{-3/2} d_8^{-1/2}$. The explosion energy is given by

$$E = 16\pi(1.4 n_0 m_0) r_s^5 \sqrt{25(\gamma + 1)K} r_s^2,$$

where the adiabatic index $\gamma = 5/3$. The results of the dynamic parameters obtained from the above relations are tabulated in Table 6. The explosion energy $(1.3 - 3.4) \times 10^{50}$ ergs is somewhat lower than the canonical value of 10^{51} ergs. The age estimate in RP96’s evaporation model ($\sim 6 - 8 \times 10^3$ yr) is higher than that obtained here ($\sim 4 - 5 \times 10^3 r_3 d_8$ yr), mainly because they used a larger-than-average radius of remnant. RM93 used a Sedov model with a high preshock density, so their estimate of age is rather large ($\sim 1.7 \times 10^4$ yr).

3.4.2. Radiative Rim Case

In this case we assume the clumpy mass is not important and the mean molecular density $\langle n(H_2)\rangle$ would correspond to a uniform undisturbed hydrogen density $n_0 \sim 30$ cm$^{-3}$. The radius of the SNR at the beginning of the radiative pressure-driven snowplow (PDS) stage is given by (Cioffi, McKee, & Bertshinger 1988)

$$r_{PDS} = 14.0 E_{51}^{2/7} n_0^{3/7} r_s^{1/7} d_8^{-1/7} \text{pc},$$

where ζ_m is the metallicity factor and is close to unity for normal abundances. Adopting an explosion energy $E_{51} \approx E/(10^{51}$ ergs) ≈ 1, we have $r_{PDS} \sim 3.3$ pc, which is smaller than the remnant’s radius $r_s \geq 6 d_8$ pc (here a radius 2/5 of the NW radio shell is adopted). Thus, we expect at least the NW part of the SNR, which appears to be in contact with the dense cloud, to have already approached the PDS phase. In fact, the X-ray emission in the NW does not extend out to the radio shell as it does in the SE. This is similar to what is observed in W44, in which the remnant has entered the radiative phase, shutting down the X-ray at the radio shell (Harrus et al. 1997). The newly detected near-infrared [Fe II] and the mid-infrared 12–18 um emission reveals the radiative shell of 3C 391, particularly in the NW rim (Reach, Rho, & Jarrett 2001). We, thus, assume that the shell of 3C 391 has cooled sufficiently to have reached the radiative phase. In this case the hot interior of the remnant drives the cooled shell to expand and is responsible for the centrally enhanced cooling (e.g., Cioffi et al. 1988). Although ignored here, the effects of thermal conduction enhance this process through smoothing of the interior temperature profile (Cox et al. 1999; Shelton et al. 1999).

The postshock temperature should be lower than that for the Sedov case: $kT_s < 0.77 kT_X \sim 0.4$ keV; the shock velocity v_s is then slower than ~ 580 km s$^{-1}$. In the PDS stage, r_s and v_s follow the formulae (Cioffi et al. 1988)

$$r_s = r_{PDS} \left(\frac{4t}{3 t_{PDS}} - \frac{1}{3} \right)^{3/10},$$

$$v_s = v_{PDS} \left(\frac{4t}{3 t_{PDS}} - \frac{1}{3} \right)^{-7/10},$$

Table 6

Parameter	Value
C/t^a	$3-5$
K^b	$0.385 - 0.189$
q^a	$0.372 - 0.143$
kT_s (keV)	$0.42 - 0.54$
v_s (km s$^{-1}$)	$590 - 670$
r_s (pc)	$7.0 d_8$
t (103 yr)	$(4.6 - 4.0) r_p d_8$
E (1050 ergs)	$(1.3 - 3.4) f^{-1/2} r_s^{3/2}$

*a Following RP96.
*b Adopted from WL91.
where \(v_{\text{PDS}} = 413 n_{0}^{1/7} r_{3}^{3/14} E_{51}^{1/14} \text{ km s}^{-1} \) and \(t_{\text{PDS}} = 1.33 \times 10^{4} E_{51}^{1/4} n_{0}^{-4/7} r_{3}^{-5/14} \) yr. From the above, one has
\[
E_{51} = \left(\frac{r_{s}}{14 \text{ pc}} \right)^{98/31} \left(\frac{v_{s}}{413 \text{ km s}^{-1}} \right)^{42/31} n_{0}^{36/31} r_{3}^{5/31}, \tag{6}
\]
which yields \(E_{51} < 9.2(r_{3} d_{8})^{98/31} \), which is reasonable although it offers a weak overall constraint. From Cioffi et al. (1988), the age of the remnant can readily be obtained:
\[
t = 3.3 \times 10^{3} \left(\frac{r_{s}}{14 \text{ pc}} \right) \left(\frac{v_{s}}{413 \text{ km s}^{-1}} \right)^{-1}
\times \left[3 + n_{0}^{10/31} r_{3}^{-10/31} \left(\frac{r_{s}}{14 \text{ pc}} \right)^{-10/31} \left(\frac{v_{s}}{413 \text{ km s}^{-1}} \right)^{40/31} \right] \text{yr},
\tag{7}
\]
which yields \(t > 4.3 \times 10^{3} r_{3} d_{8} \text{ yr} \). If we use \(E_{51} \) as a parameter, then the present shock velocity is \(v_{s} \sim 110 E_{51}^{3/42} r_{3} d_{8}^{-7/3} \text{ km s}^{-1} \) and the remnant age is \(t \sim 1.9 \times 10^{4} E_{51}^{-3/42} r_{3} d_{8}^{10/3} \text{ yr} \).

The cloud evaporation and the radiative rim mechanisms both produce acceptable dynamic parameters. A final judgment between them may depend on higher resolution observations with Chandra and XMM-Newton, which may, for example, yield fine radial brightness and temperature profile or reveal smaller scale features that might support the clumpy ISM scenario.

4. CONCLUSION

We have investigated the spatial and spectral properties of the SNR 3C 391 using ASCA SIS data. The CEI and NEI spectral fits indicate that the hot gas within the SNR has basically reached ionization equilibrium. The hydrogen column density in the direction of the NW portion of the SNR is higher than that of the SE portion, in agreement with the location of the molecular cloud to the NW. The comparison of the hydrogen column and X-ray hardness between the NW and SE portions supports the NW-to-SE breakout scenario, as suggested by earlier observations of this SNR. The much lower mean density within the SNR than the immediate ambient cloud density and the centrally brightened X-ray morphology can be explained either by an SNR evolving in a clumpy cloud inside of which gas is evaporated from the engulfed cloudlets, or by an SNR which has entered the radiative stage with the interior gas still hot, but with the rim material cooled down.

The authors would like to thank Steve Reynolds and David Moffett for providing the radio image of 3C 391. We also thank Randall Smith for helpful discussions related to this paper. A special gratitude should be ascribed to an anonymous referee whose comments helped to improve the manuscript appreciably. Part of Y. C.’s work was carried out in the CfA. Y. C. acknowledges support from CNSF grant 1007003 and grant NKBRSF-G19990754 of China Ministry of Science and Technology. P. O. S. acknowledges support from NASA contract NAS 8-39073 and grant NAG 5-9281.

REFERENCES

Bamba, A., Yokogawa, J., Sakano, M., & Koyama, K. 2000, PASJ, 52, 259
Brown, R. L., & Gould, R. J. 1970, Phys. Rev. D, 1, 2252
Caswell, J. L., Dulk, G. A., Goss, W. M., Radhakrishnan, V., & Green, A. J. 1971, A&A, 12, 271
Cioffi, D. F., McKee, C. F., & Bertchinger, E. 1988, ApJ, 334, 252
Cox, D. P., Shelton, R. L., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rożycka, M. 1999, ApJ, 524, 179
Day, C., et al. 1997, ASCA Data Reduction Guide (Greenbelt: NASA/GSFC)
Frail, D. A., Goss, W. M., Reynoso, E. M., Giacani, E. B., Green, A. J., & Otrupcek, R. 1996, AJ, 111, 1651
Gotthelf, E. V., Ueda, Y., Fujimoto, R., Kii, T., & Yamaoka, K. 2000, ApJ, 533, 417
Green, A. J., Frail, D. A., Goss, W. M., & Otrupcek, R. 1997, AJ, 114, 2058
Harrus, I. M., Hughes, J. P., Singh, K. P., Koyama, K., & Asaoka, I. 1997, ApJ, 488, 781
Harrus, I. M., Slane, P. O., Smith, R. K., & Hughes, J. P. 2001, ApJ, 552, 614
Lucke, P. B. 1978, A&A, 64, 367
Mewe, R., Kaastra, J. S., & Liedahl, D. A. 1995, Legacy, 6, 16
Moffett, D. A., & Reynolds, S. P. 1994, ApJ, 425, 668
Morrison, R., & McCammon, D. 1983, ApJ, 270, 119
Olbert, C. M., Clearfield, C. R., Williams, N. E., Keohane, J. W., & Frail, D. A. 2001, ApJ, 544, L205
Predehl, P., & Schmitt, J. H. M. M. 1995, A&A, 293, 889
Radhakrishnan, V., Goss, W. M., Murray, J. D., & Brooks, J. W. 1972, ApJS, 49, 9
Reach, W. T., & Rho, J. H. 1996, A&A, 315, L277
———. 1998, ApJ, 507, L13
———. 1999, ApJ, 511, 836
Reach, W. T., Rho, J. H., & Jarrett, T. H. 2001, preprint (astro-ph/0108173)
Reynolds, S. P., & Moffett, D. A. 1993, AJ, 105, 2226 (RM93)
Rho, J. H., & Petre, R. 1996, ApJ, 467, 698 (RP96)
———. 1998, ApJ, 503, L167
Shelton, R. L., Cox, D. P., Maciejewski, W., Smith, R. K., Plewa, T., Pawl, A., & Rożycka, M. 1999, ApJ, 524, 192
Spitzer, L. Jr. 1978, Physical Processes in the Interstellar Medium (New York: Wiley)
Wilner, D. J., Reynolds, S. P., & Moffett, D. A. 1998, ApJ, 115, 247
White, R. L., & Long, K. S. 1991, ApJ, 373, 543 (W191)