Selective Oxidation by $H_5[PV_2Mo_{10}O_{40}]$ in a Highly Acidic Medium

Chandan Kumar Tiwari, Mark Baranov, Alevtina Neyman, Ronny Neumann, and Ira A. Weinstock*

ABSTRACT: Dissolution of the polyoxometalate (POM) cluster anion $H_5[PV_2Mo_{10}O_{40}]$ (I; a mixture of positional isomers) in 50%aq H_2SO_4 dramatically enhances its ability to oxidize methylenes, while fully retaining the high selectivities typical of this versatile oxidant. To better understand its impressive reactivity, we now provide new information regarding the nature of I (115 mM) in 50% (9.4 M) H_2SO_4. Data from ^{31}P NMR spectroscopy and cyclic voltammetry reveal that as the volume of H_2SO_4 in water is incrementally increased to 50%, $V(V)$ ions are stoichiometrically released from I, generating two reactive pervanadyl, VO_2^+, ions, each with a one-electron reduction potential of ca. 0.95 V (versus Ag/AgCl), compared to 0.46 V for 1 in 1.0 M H_2SO_4. Phosphorus-31 NMR spectra obtained in parallel reveal the presence of PO_4^{3-}, which at 50% H_2SO_4 accounts for all the $P(V)$ initially present in I. Addition of (NH$_4$)$_2$SO$_4$ leads to the formation of crystalline [NH$_4$]$_6[Mo_2O_5(SO_4)_4]$ (34% yield based on Mo), whose structure (from single-crystal X-ray diffraction) features a corner-shared, permolybdenyl $[Mo_2O_5]^{2+}$ core, conceptually derived by acid condensation of two Mo$_3$O$_3$ moieties. While I in 50%aq H_2SO_4 oxidizes p-xylene to p-methylbenzaldehyde with conversion and selectivity both greater than 90%, reaction with VO_2^+ alone gives the same high conversion, but at a significantly lower selectivity. Importantly, selectivity is fully restored by adding [NH$_4$]$_6[Mo_2O_5(SO_4)_4]$, suggesting a central role for Mo(VI) in attenuating the (generally) poor selectivity achievable using VO_2^+ alone. Finally, ^{31}P and ^{51}V NMR spectra show that intact I is fully restored upon dilution to 1 M H_2SO_4.

INTRODUCTION

The molybdovanadophosphate cluster anion, $H_5[PV_2Mo_{10}O_{40}]$ (I), is a versatile catalyst for selective aerobic oxidations of organic and inorganic compounds via a range of mechanisms, from electron transfer (ET) to electron-transfer induced oxygen transfer (ET-OT), a homogeneous liquid-phase analogue of Mars–van Krevelen type reactions. Over the past three decades, numerous advances have been achieved using I in a range of solvents, including water, MeCN, and toluene, with reduced forms of I reoxidized by air/O$_2$. In general, high selectivities have been attributed at least in part to the stabilization or ET sequestration of organic-radical intermediates by I itself, and during reoxidation, the absence of reactive intermediates from the partial reduction of O$_2$ that, if generated as they are in numerous aerobic oxidations, would give rise to nonselective radical-chain processes.

When functioning as an outer-sphere oxidant, the activity of I is controlled by its reduction potential, which at 0.4−0.45 V versus the saturated calomel electrode (SCE) has historically restricted its ET activity to transformations of more readily oxidizable substrates. This situation changed dramatically upon discovery that in 80%aq H_2SO_4 the reduction potential of I increased to 1.1−1.2 V, facilitating its use in transforming carbohydrates to synthesis gas. In 50%aq H_2SO_4, I (92 mM) is capable of oxidizing benzene, facilitating its aerobic oxidation to phenol, and 115 mM solutions of I selectively convert methylenes to benzaldehyde derivatives.

While the protonation of intact I in 50% (9.4 M) H_2SO_4 could readily account for the more positive reduction potential observed in that solvent system, the retention of high selectivity further suggested that the cluster anion remained otherwise largely intact and thus able to sequester electrons from radical-organic intermediates. Consistent with this, after the reaction, electrochemical reoxidation, and dilution in D$_2$O, ^{31}P NMR spectra invariably revealed the signature set of signals associated with the five positional isomers of $H_5PV_2Mo_{10}O_{40}$. To better understand its reactivity and selectivity, the nature of I (115 mM) in 50%aq H_2SO_4 has now been systematically investigated by ^{31}V and ^{51}P NMR spectroscopy, ESR spectroscopy, cyclic voltammetry (CV), and single-crystal X-ray crystallography and by a series of reactions involving oxidation of a model substrate, p-xylene, to p-methylbenzaldehyde. The herein reported data, which provide an entirely new picture of I in 50%aq H_2SO_4 reveal the reversible formation of...
A selective oxidative system composed of free VO$_2^+$ (for enhanced reactivity), with high selectivity attributed to the coformation of an oxo-bridged (corner-sharing) dimeric permolybdenyl cation, [Mo$_2$O$_5$]$^{2+}$ (Figure 1). Control experiments indicate that free phosphate (also observed) plays a minimal role. As previously observed,$^{7-9}$ dilution of this thermodynamically stable oxidative system leads quantitatively to hydrolytic self-assembly of the component species into fully intact 1.

RESULTS AND DISCUSSION

To investigate the solution-state chemistry of 1 in 50% aq H$_2$SO$_4$, the first set of experiments involved the use of 51V NMR spectroscopy, in combination with cyclic voltammetry, to help explain the previously observed9 ca. 0.5 V increase in reduction potential. For this, 51V NMR spectra of 1 (115 mM) were obtained for solutions containing incrementally larger concentrations of H$_2$SO$_4$. The use of 115 mM 1 was critically important not only because this concentration was used in previously reported reactivity studies9 but also because of the speciation chemistry of metal cations, including those that form metal-oxide cluster anions (POMs) is a function of concentration.10,11 As such, smaller concentrations of 1 would not provide definitive information about the reactive system under investigation.

Release of Pervanadyl Ions (VO$_2^+$). The pH of 115 mM 1 in pure water is 0.06. As the concentration of H$_2$SO$_4$, [H$_2$SO$_4$], was incrementally increased from 0 to 5 M, the set of 51V NMR signals characteristic of the five positional isomers of 1, observed between −510 and −525 ppm, decreased in intensity and were entirely replaced by a broad signal at ca. −550 ppm (Figure 2). This signal shifted to more negative ppm values as [H$_2$SO$_4$] was increased to 9.4 M. Notably, very little change was observed when an additional 0.25 equiv (28.75 mM) of NaVO$_3$ was added (topmost plot in Figure 2). Moreover, an identical solvent system containing 230 mM NaVO$_3$ gave a 51V NMR spectrum nearly identical to that obtained upon dissolution of 1 (Figure S1). The sharp signal at −539 ppm, indicated by an asterisk in Figure 2, is due to the external reference, K$_4$[PVW$_{11}$O$_{40}$], present in a coaxial NMR tube.

The nearly identical spectrum of NaVO$_3$ suggested that as [H$_2$SO$_4$] increased, VO$_2^+$ ions were released from 1 to give pervanadyl ions, VO$_3^+$. Although documented for much smaller concentrations of 1 in 1−3 M acid, the partial release of V(V) from 1 has been observed in equilibrium with a proposed V-depleted anion, [PVMo$_{10}$O$_{39}$]$^{8-}$. In the present case, using 9.4 M H$_2$SO$_4$ the 51V NMR data suggested a more positive shift in reduction potential as [H$_2$SO$_4$] increased from 3 to 4 M. (Between these concentrations, broad voltammograms were obtained; see Figure S2.) Notably, this shift in reduction potential corresponds nicely with the [H$_2$SO$_4$] values at which large changes were observed by 51V NMR spectroscopy (Figure 2). In the inset to Figure 3A, CVs obtained at 0 and 9.4 M H$_2$SO$_4$ are shown as gray and red plots, respectively.

For comparison, CVs were also obtained as a function of [H$_2$SO$_4$] for NaVO$_3$ alone (Figure 3B). A similar positive shift in reduction-potential values was observed. In the absence of simultaneous speciation chemistry of 1, a smoother shift to more positive potentials was observed. In both cases, however, the magnitudes of the positive shifts and the final potentials

Figure 1. H$_2$[PV$_2$Mo$_{10}$O$_{40}$] (1) in 50% aq H$_2$SO$_4$. Dissolution of 1 (at left) in this acidic medium generates highly reactive pervanadyl ions, VO$_2^+$, along with a [Mo$_2$O$_5$]$^{2+}$-core complex (at right), shown below to be responsible for retention of selectivity. Dilution to 1 M H$_2$SO$_4$ leads to a quantitative reconstitution of intact 1.

Figure 2. Vanadium-51 NMR spectra of 115 mM 1 as [H$_2$SO$_4$] was increased from 0 to 9.4 M (50% v/v). The measurements were carried out using K$_4$[PVW$_{11}$O$_{40}$] (0.1 equiv with respect to 1 in 9:1 H$_2$O:D$_2$O indicated by a hash-tag, #) as an external reference in a coaxial NMR tube. The topmost spectrum was obtained after adding an additional 0.25 equiv of NaVO$_3$ in 9.4 M H$_2$SO$_4$.

Figure 3. (A) Reduction potentials as a function of [H$_2$SO$_4$] for 115 mM 1. Inset: the CV of 1 in 0.1 M H$_2$SO$_4$ (gray curve; for clarity, the y-axis has been suppressed by a factor of 3) and in 9.4 M H$_2$SO$_4$ (red curve). (B) Reduction potentials as a function of [H$_2$SO$_4$] for 230 mM NaVO$_3$ (from 1 to 5 M H$_2$SO$_4$ cathodic-maxima values were used; see Figure S3). Inset: the CV of NaVO$_3$ in pure water (gray curve) and in 9.4 M H$_2$SO$_4$ (red curve).
were similar. In 9.4 M H$_2$SO$_4$, the CV of pure NaVO$_3$ (red curve in the inset to Figure 3B) was electrochemically reversible, while quasi-reversible behavior was observed for V from 1, pointing to some interactions between released VO$_2^+$ and other products of the speciation of 1.

Amperometric titration was then used to quantify the numbers of equivalents of VO$_2^+$ released from 1 upon dissolution in 9.4 M H$_2$SO$_4$. For this, 1 (115 mM) was dissolved in the acidic medium and the cathodic-current maximum was used as a starting point for the titration (blue curve in Figure 4A). Next (also in Figure 4A) CVs were recorded after incremental additions of NaVO$_3$, up to 230 mM added VO$_3^−$ (i.e., identical to the total concentration of V(V) in 115 mM 1). As VO$_3^−$ was added, the cathodic current relative to that for 1 alone doubled from unity (for 1 alone) to two, as the “relative concentration” of free V(V) increased from 230 mM (from 1 alone) to a total of 460 mM (Figure 4B). This doubling of current indicated that upon dissolution of 115 mM 1 in 9.4 M H$_2$SO$_4$, both V(V) atoms are released to form VO$_2^+$.

To further confirm the fidelity of this method, a similar experiment was carried out starting with a solution of 230 mM VO$_3^−$ (Figure 4C,D). An identical doubling of the relative current (Figure 4D) confirmed that no unexpected concentration-dependent behavior was responsible for the results shown in Figure 4A,B.

Release of Phosphate. The solution-state behavior of the phosphate heteroatom in 1 as a function of [H$_2$SO$_4$] was then investigated by 31P NMR spectroscopy (Figure 5). As was observed in 51V NMR spectra (Figure 2), the intensity of the characteristic set of signals associated with positional isomers of 1 decreased with [H$_2$SO$_4$], while the intensity of a new (broad) signal closer to 0 ppm grew correspondingly. Signals in this region, near 0 ppm, are typical for solutions of phosphate. At the largest [H$_2$SO$_4$] values, three broad signals were observed. Integration using a coaxial tube containing Na$_4$P$_2$O$_7$ as an external standard (sharp signal at $−5.8$ ppm in Figure 5) indicated a quantitative release of phosphate.

The intensity of the broad signals increased when an additional 0.25 equiv (28.75 mM) of H$_3$PO$_4$ was added, but no new signals were observed (see the two topmost spectra in Figure 5). Given that 31P is a spin 1/2 nucleus (giving narrow-line width signals), and in light of the absence of paramagnetic species, the broadness of the 31P NMR signals suggested the presence of a dynamic process involving relatively labile species.

This was explored further by preparing 9.4 M H$_2$SO$_4$ solutions of H$_3$PO$_4$ alone and in combination with NaVO$_3$ (plots a and b, respectively, in Figure 6A). In both cases, relatively sharp 31P NMR signals were observed near 0 ppm. When H$_3$PO$_4$ was combined with 10 equiv of Na$_2$MoO$_4$, however, three broad signals, similar to those observed for 1, were observed (plots c and d, respectively, in Figure 6A).

This suggested that the broad 31P NMR signals were due to a dynamic process involving both P and Mo. The dynamic nature of the system was confirmed by variable-temperature...
31P NMR spectroscopy (Figure 6B). As the temperature of a solution of 1 in 9.4 M H2SO4 was increased from 298 to 333 K, the three broad signals coalesced.

Reactivity and Selectivity. The above spectroscopic and electrochemical data pointed to the formation of a new set of species upon dissolution of 1 in 9.4 M H2SO4. Although the increase in reactivity relative to 1 in pure water or organic solvents could be explained by the quantitative formation of V^V_O^+, the pervanadyl cation is known to give only modest selectivities. This raised the intriguing question as to why the constellation of species present in 9.4 M H2SO4 retained the high selectivity characteristic of ET-driven oxidations by 1. This was addressed using the ET oxidation of an arylalkane to the corresponding benzaldehyde.9 For this, p-xylene was chosen as a representative substrate. Its conversion to p-methylbenzaldehyde (eq 1) was investigated by comparing the reactivity and selectivity of 1 with solutions of its component species in 9.4 M H2SO4 (Figure 7).

![Figure 7. Conversion and selectivity for oxidations of p-xylene in 9.4 M H2SO4. Species added to the acidic medium, deacidified with Na2MoO4 (P + 10Mo), no reactivity was observed. For 2 equiv of NaVO3 alone (P), in combination with H2PO4 (2 V + P), high conversions were achieved, but with compromised selectivity relative to 1. However, when Na2MoO4 was added to NaVO3 (2 V + 10Mo), selectivity was fully restored, i.e., identical to that obtained using 1. The same results were obtained when H3PO4 was included (2 V + 10Mo + P), indicating that the dynamic species observed by 31P NMR for combinations of H3PO4 and Na2MoO4 (Figure 6) were not essential to the retention of selectivity.

Upon reduction by p-xylene, the color of the solution changed from orange-red to greenish-blue. To further confirm the central role of VO2+ as the electron acceptor, the reduced (greenish-blue) solution was analyzed by ESR spectroscopy. The results (Figures S4–S6, Table S1) are definitive for the formation of vanadyl ion, V^IVO^+, rather than for the hypothetical presence of reduced 1. Taken alone, this result does provide definitive evidence for extensive rearrangement of 1. This is because the reduction of V(V) to V(IV) in 1 is known to induce the release of V(IV) ions from the otherwise intact Keggin-PO4 structure. Nevertheless, ESR identification of V^IVO^+ is consistent with the release of reactive pervanadyl, V^V_O^+, ions upon dissolution of 1 in 9.4 M H2SO4.

Additional support for conversion of 1 into constituent species in 9.4 M H2SO4 was provided by investigating solutions of related molybdovanadophosphates, H4[PVMo11O40] and H6[PV3Mo9O40]. In 9.4 H2SO4, both cluster anions gave 31P and 51V NMR spectra and electrochemical data very similar to those provided in Figures 2, 3, and 5 (see Figures S7–S8). Moreover, data from amperometric titrations (cf. Figure 4), indicated 1 and 3 equiv of V^V_O^+ respectively, were released from the mono- and trivanadium cluster anions (Figures S9 and S10). As expected, 9.4 M H2SO4 solutions containing H4[PVMo11O40] (230 mM; 2 equiv relative to 1 in Figure 7) or of H6[PV3Mo9O40] (767 mM; two-thirds of an equivalent relative to 1), gave conversions of p-xylene effectively identical to that shown in Figure 7 for 1, and with equally good selectivities (Figure S11). Notably, the first one-electron reduction potentials of H4[PVMo11O40] and H6[PV3Mo9O40] are, respectively, more and less positive compared with that of 1 (Figure S12). Nevertheless, once the stoichiometry of V^V_O^+ is taken into account, the three cluster anions display identical reactivities and selectivities.

Formation of [MoO4]2-. The results in Figure 7 identify the presence of Mo(VI) as critical to the high selectivity observed for ET oxidations by 1 in 50% H2SO4. As such, evidence for the solution-state structure of molybdate in this medium was sought. As NMR spectra of Mo nuclei are relatively uninformative, an effort was made to obtain crystals of Mo-containing species from 9.4 M H2SO4. However, solutions of 1 gave considerable amounts of pervanadyl phosphate and pervanadyl sulfate, making it difficult to isolate crystalline Mo-based species. Therefore, Na2MoO4 was dissolved in H2SO4 with the concentration of Mo (1150 mM) equal to that in 115 mM 1. To isolate the crystalline product, ammonium sulfate, (NH4)2SO4, which is highly soluble in 9.4 M H2SO4, was added.

Crystals of [NH4]6[Mo2O5(SO4)4] (2; 34% yield based on Mo), were obtained and characterized by single-crystal X-ray diffraction. The complex (Figure 8) features a corner-sharing [MoO4]2- core, conceptually derived by acid condensation of two MoO3 moieties.

As shown in eq 2, MoO3 (or its hydrated form) is prepared by dissolving MoO22- in strong aqueous acid, e.g., 1 M HClO4.13 In 9.4 M H2SO4 reaction with an additional 1 equiv of H+ per Mo gives the [MoO4]2- core of 2 (eq 3).

https://dx.doi.org/10.1021/acs.inorgchem.9b03747
Inorg. Chem. 2020, 59, 11945–11952
those metalloorganic complexes, analyzing the solution by 31P NMR. The mixture (Figure 9; topmost spectrum in Figure 9).

\[
\text{MoO}_4^{2-} + 2H^+ = \text{MoO}_3 + H_2O
\]

(2)

\[
2\text{MoO}_3 + 2H^+ = [\text{Mo}_2\text{O}_3]^{2+} + H_2O
\]

(3)

Notably, the corner-shared MoO$_5$ core of 2 is a feature of several reported molybdo-organic complexes.14,20 Similar to those metalloorganic complexes, 2 possesses a syn-[Mo$_2$O$_3$]$_{2+}$ unit with a 2-fold axis of rotation passing through the corner-shared O atom. The bond lengths of the terminal Mo=O ligands of 2 (1.68–1.69 Å) are in good agreement with Mo=O bond lengths reported for the related molybdo-organic complexes (1.68–1.71 Å).17 Distances from the corner-shared O atom to the Mo centers in 2 (1.89 and 1.90 Å) are also in line with the reported value of 1.88 (i.e., for both distances).17 A complete set of lengths and angles is given in Figure S13 and Tables S2–S4.

At the same time, to our knowledge, the permolybdenyl core, [Mo$_2$O$_5$]$_{2+}$, of 2 has not been identified as a product of condensation in aqueous acid. In this context, 2 may be viewed as a new member in the natural progression from titanyl, [Ti(VI)]$_{2+}$, to pervanadyl [V(V)]$^+$, to permolybdenyl, [Mo$_2$V$_2$O$_9$]$^{2+}$, oxy cations.

Evidence for the latter species in actual solutions of 1 was sought by dissolving 2 and H$_3$PO$_4$ in 9.4 M H$_2$SO$_4$ and analyzing the solution by 3P NMR. The mixture (Figure 9; bottom) gave rise to three broad signals, very similar to those observed for 1 itself (topmost spectrum in Figure 9).

This finding is consistent with the dissolution of 1 in 9.4 M H$_2$SO$_4$ giving rise to a dynamic equilibrium involving interactions between phosphate and 2.

Nevertheless, the data in Figure 7 point to Mo-based species alone as sufficient for retaining the high selectivity of 1. In this regard, selectivity in ET oxidations by 1 is in many cases attributed to the rapid sequestration of organic radicals by additional equivalents of V(V) in the intact POM itself. In the present case, a similar selectivity-enhancing mechanism could involve the oxidation of radical intermediates by the [Mo$_2$O$_5$]$_{2+}$ core of 2, alone, or with phosphate anions in rapid exchange with SO$_4^{2-}$ ligands. The impressive reactivity of H$_2$PV$_3$Mo$_{10}$O$_{40}$ (1; 115 mM) in 9.4 M H$_2$SO$_4$8,9 thus arises from the presence of pervanadyl ions, VO$_2^{2+}$ (with a reduction potential of 0.95 V versus Ag/AgCl), while selectivity is apparently provided by a dynamic mixture of complexed dimolybdenum(VI) oxide, [Mo$_2$O$_5$]$_{2+}$ cations. While CVs attributable to Mo(VI) in 9.4 M H$_2$SO$_4$ (from 1, as well as from 2), are poorly defined, cathodic responses occur over a range of negative potentials, from ca. 0 to −0.4 V (Figure S14). While 2 alone does not oxidize p-xylene to p-methylbenzaldehyde (Figure S11), the Mo-containing species are nevertheless sufficiently reactive to provide for high selectivity by sequestering electrons from organic-radical intermediates.

Reversible Formation of a Multicomponent System for Selective Electron-Transfer Oxidation. The 3P NMR spectrum of 1 (40 mM) at its native pH of 0.8 is shown at the bottom of Figure 10A. Data provided above show that in 50% (9.4 M) aq H$_2$SO$_4$, H$_2$PV$_3$Mo$_{10}$O$_{40}$ (1; 115 mM) undergoes condensation-driven rearrangement to form aqua and/or sulfate complexed pervanadyl (VO$_2^{2+}$) and permolybdenyl ([Mo$_2$O$_5$]$_{2+}$) cations (eq 4; its 3PNMR spectrum is shown in Figure 10B).

\[
\text{H}_2[\text{PV}_3\text{Mo}_{10}\text{O}_{40}] (1) + 9\text{H}^+ = \text{PO}_4^{3-} + 2\text{VO}_2^{2+} + 5[\text{Mo}_2\text{O}_5]^{2+} + 7\text{H}_2\text{O}
\]

(4)

These species act in concert to provide high reactivity and selectivity (Figure 10B,C). A 3PNMR spectrum of the reduced solution is shown in Figure 10C. Importantly, ESR spectra (Figures S4–S6, Table S1) confirm the reduced species.
is the vanadyl ion, VVO$^{2+}$, whose spectrum is distinct from that of reduced 1 (i.e., H$_{2}$PVVVVMo$_{10}$O$_{40}$).21 Electrochemical reoxidation (bulk electrolysis) gives a solution with the 31P NMR spectrum shown in panel D, very similar to that acquired before p-xylene oxidation (panel B).

In polyoxometalate chemistry, as in aqueous speciation chemistry generally, the acid condensation that occurs upon dissolution of 1 in 50% H$_{2}$SO$_{4}$ is reversible. Upon dilution and NaOH neutralization of the solution in panel D (115 mM 1 in 50% H$_{2}$SO$_{4}$) to 40 mM (pH 0.8), hydrolysis-driven assembly (the reverse of eq 4) leads to the complete re-formation of 1, as shown by the 31P NMR spectrum provided as an inset in the center of panel A. The shift in ppm values associated with the positional isomers of 1 is due to the presence of Na$_{2}$SO$_{4}$ (3.2 M).22

Unique Medium for Cluster-Anion Formation and Reactivity. Viewed from a general perspective of polyoxometalate synthesis, 50% aq H$_{2}$SO$_{4}$ is a unique environment. POMs are typically formed by stoichiometric reactions of metalate anions (e.g., MO$^{2+}$, M = Mo(VI) or W(VI)), or their partially condensed cluster anion forms, with mineral acids in water. Once the ratio of H$^{+}$ to MO$^{2+}$ reaches a value of 2, insoluble metal oxides such as MoO$_{2}$(H$_{2}$O) (a hydrated form of MO$_{2}$) are obtained. This ratio of 2 (referred to in the early isopolytungstate and -molybdate literature as the Z value)23 has generally defined the limits of condensed structures that span the speciation “space” between metalates (MO$_{2}$$^{2+}$) and solid-state MO$_{2}$.

In the present medium, not only is the acid concentration much larger than that typically used in POM synthesis, but also the medium itself is entirely different. Rather than (relatively) dilute mineral acids in water, 50% (9.4 M) aq H$_{2}$SO$_{4}$ contains ca. three molecules of water for each molecule of H$_{2}$SO$_{4}$, giving a liquid medium that may be written as, H$_{3}$O$_{2}$SO$_{4}$ (Figure S15, Table S5). The data provided here argue that the thermodynamically controlled speciation chemistry of POM-component cations in this medium is dramatically different from that in water. Notably, this unique medium makes it possible to exceed the Z values of from 0 to 2 that have traditionally defined cluster-anion formation. As shown in eq 4, 1 reacts with H$^{+}$ in 50% H$_{2}$SO$_{4}$ to give 5 equiv of [Mo$_{2}$O$_{5}$]$^{2+}$, representing an overall Z value of 3 with respect to MoO$_{2}$.2

(1) reacts with H$^{+}$ in 50% H$_{2}$SO$_{4}$ to give 5 equiv of [Mo$_{2}$O$_{5}$]$^{2+}$, representing an overall Z value of 3 with respect to MoO$_{2}$.2

(1) reacts with H$^{+}$ in 50% H$_{2}$SO$_{4}$ to give 5 equiv of [Mo$_{2}$O$_{5}$]$^{2+}$, representing an overall Z value of 3 with respect to MoO$_{2}$.2

This access to larger Z values, and the larger degree of condensation inherent to the formation of [Mo$_{2}$O$_{5}$]$^{2+}$, is also due to the relative solubility and lability of Mo(VI). This contrasts with the W(VI) analogue of 1, H$_{2}$[PVVW$_{10}$O$_{40}$], which upon mixing with 50% H$_{2}$SO$_{4}$ gave insoluble WO$_{2}$(H$_{2}$O) as a yellow precipitate (which did not readily react with additional H$^{+}$).

It should be noted as well that 1 in 50% aq H$_{2}$SO$_{4}$ is quite different from 1 present as a component of the “etherate” phases used synthetically to isolate this and other cluster anions.24 Those phases are obtained after POM formation via acid condensation in water, by adding an approximately equal volume of diethyl ether, followed by acid (HCl or H$_{2}$SO$_{4}$) to total concentrations of ca. 3 M. After mixing, the etherate phase forms as a highly dense (POM-rich) bottom layer. As part of the present work, that etherate phase was analyzed by 31P NMR spectroscopy and CV (Figures S16 and S17) and, unlike in 50% aq H$_{2}$SO$_{4}$, intact 1 was the overwhelmingly dominant species present. This observation suggests that, unlike 1 in “H$_{2}$O$_{5}$SO$_{4}$”, highly concentrated POM anions in protonated diethyl ether [H$_{2}$C$_{2}$O]$^{+}$ may be viewed as hybrid inorganic/organic liquids.$^{25-27}$

Finally, as is true for speciation chemistry generally, the highly condensed species present in 50% aq H$_{2}$SO$_{4}$ are formed under thermodynamic control. This not only provides for the high stability of the accessed oxidative system over cycles of reduction and reoxidation8 but, as shown in Figure 10, also allows for facile hydrolytic assembly of intact 1 upon dilution to the less acidic aqueous environment historically more typical of polyoxometalate formation and reactivity.

CONCLUSIONS

Data provided here demonstrate that the unique medium provided by 50% aq H$_{2}$SO$_{4}$ in combination with the specific solution-state chemistry of Mo(VI), provides for the formation of more highly condensed species than typically encountered in POM cluster science. In the present case, the dissolution of H$_{2}$[PV$_{2}$Mo$_{10}$O$_{40}$] (1; 115 mM) in 50% aqueous H$_{2}$SO$_{4}$ gives rise to phosphate, two pervanadyl ions, VVO$_{2}^{+}$ (Figures 2 and 3), and 5 equiv of complexed dimolybdenum(VI) oxide, [Mo$_{5}$O$_{12}$]$^{2-}$, or closely related cations. The formation of two VVO$_{2}^{+}$ ions for each equivalent of dissolved 1 is quantified by amperometric titration (Figure 4), while the formation of [Mo$_{5}$O$_{12}$]$^{2-}$-core complexes is suggested by the recovery of [NH$_{4}$]$_{6}$[Mo$_{5}$O$_{12}$(SO$_{4}$)$_{4}$] (2) in 34% yield upon addition of [NH$_{4}$]$_{2}$SO$_{4}$ (Figure 8). Data from 31P NMR spectroscopy additionally show that phosphate is released (Figure 5) and interacts in dynamic equilibrium with [Mo$_{5}$O$_{12}$]$^{2-}$ and possibly additional related Mo(VI) species (Figures 6 and 9).

Reactivity studies using a model reaction, the electron-transfer oxidation of p-xylene to p-methylbenzaldehyde (Figure 7), show that the impressive reactivity and selectivity of H$_{2}$[PV$_{2}$Mo$_{10}$O$_{40}$] (1; 115 mM) in 50% aqueous H$_{2}$SO$_{4}$ arises from the combined presence of pervanadyl ions, VVO$_{2}^{+}$ (with a reduction potential of 0.95 V versus Ag/AgCl), and a dynamic mixture of complexed permolybdenyl cations, [Mo$_{5}$O$_{12}$]$^{2-}$; with reduction potentials near 0 V, the permolybdenyl complexes are sufficiently reactive to plausibly provide for high selectivity by sequestering electrons from reactive organic-radical intermediates.

Finally, the acid condensation that generates VVO$_{2}^{+}$ and [Mo$_{5}$O$_{12}$]$^{2-}$-core complexes upon dissolution of 1 in 50% aq H$_{2}$SO$_{4}$ is fully reversible. Upon dilution of the solution of 1 (115 mM) in 50% aq H$_{2}$SO$_{4}$ and adjustment to pH 0.8, hydrolytically driven assembly processes (the reverse of eq 4) lead to complete re-formation of intact 1 (Figure 10).

EXPERIMENTAL SECTION

Materials. All materials were purchased as reagent grade and used without further purification. Sodium metavanadate (NaVO$_{3}$, Alfa-Aesar), sodium molybdate dihydrate (Na$_{2}$MoO$_{4}$.2H$_{2}$O, extra pure, Sigma-Aldrich), disodium hydrogen phosphate (Na$_{2}$HPO$_{4}$.9H$_{2}$O, Bio Lab Ltd.), sodium hydroxide (NaOH, flake, 98.9% assay, Alfa Aesar), potassium bromide (KBr for IR spectroscopy, Fisher Chemical), deuterium oxide (D$_{2}$O, D, 99.9%, Tzamal D-Chem Laboratories), sulfuric acid (H$_{2}$SO$_{4}$ 96%, Carlo-Erba), p-xylene (Sigma-Aldrich) were obtained. Additional reagent-grade salts, acids, and diethyl ether for polyoxometalate synthesis and reactions were obtained from commercial sources and used as received, except for diethyl ether, which was distilled to separate the solvent from a preservative that readily reduced the strongly oxidizing (acidic) POMs. All water used for cleaning, synthesis, and reactions was of high purity (18.2 MΩ resistivity) from a Millipore Direct-Q water purification system.
polyoxometalates, $\text{H}_3[\alpha-\text{PVMo}_3\text{O}_{10}]\cdot32\text{H}_2\text{O}$, $\text{H}_4[\alpha-\text{PV}_2\text{M}_{3}\text{O}_{11}\text{O}_4]$, 34.5H$_2$O, and $\text{H}_6[\alpha-\text{PV}_2\text{M}_{3}\text{O}_{11}\text{O}_4]$, were prepared according to literature methods. The purity of each POM was confirmed as appropriate by 3P and/or 51V NMR and FTIR.

Phosphorus-31 and 51V NMR Experiments. Phosphorus-31 and 51V NMR spectra were acquired on a Bruker 400 MHz instrument. Chemical-shift values were externally referenced to 0.24 M Na$_3$P$_4$O$_{12}$ (δ$_P$ = 5.8 ppm) and 0.072 M K$_3$[PV$_2$W$_{11}$O$_{40}$] (δ$_P$ = −339 ppm). Internal lock signals were tuned using D$_2$O. Spectral data were processed using the NMR software package MestReNova.

Cyclic Voltammetry, Amperometric Titration, and Electrolysis. Cyclic voltammetry (CV) of the POMs was carried out in a three-electrode cell setup on a CHI 760C potentiostat at 25 °C in 0.1 M Na$_2$SO$_4$ electrolyte solutions, using a 2 mm glassy-carbon, Pt-wire, and Ag/AgCl (3 M KCl) working, counter, and reference electrodes, respectively. The scan rate was 50 mV s$^{-1}$.

Amperometric titrations were performed using cyclic voltammetry. 1 (115 mM) was dissolved in 9.4 M H$_2$SO$_4$ in an electrochemical cell and after its CV was recorded, increasing amounts of NaVO$_3$ (up to 230 mM) were added and cathodic-current maxima were recorded for the VV/VIV redox couple. Finally, the relative current values were plotted against the total relative concentration of V(V). A control experiment carried out starting with 230 mM NaVO$_3$ in place of 115 mM 1 gave effectively identical results.

Substrate Oxidations. Typically, oxidations of p-xylene were carried out in 50 mL pressure tubes under N$_2$. The products were exposed to ultrasound for approximately 5 min.

Single-Crystal X-ray Measurements. A colorless block-shaped crystal (0.087 × 0.115 × 0.161 mm3) of [NH$_4$]$_3$[Mo$_2$O$_5$(SO$_4$)$_4$] was mounted on a CrystalCap ALS HT cryo-loop mount for data collection on a Rigaku XtalAB Synergy-S single-crystal X-ray diffractometer, which includes a Hy-Pix-6000HE detector and a standard Cu K$_\alpha$ X-ray radiation source ($\lambda = 1.54184$ Å). Unit cell dimensions, space group assignment, data reduction, and finalization were done by using the CrystAlisPRO software package (ver. 39.49, released 2018). A total of 50845 reflections were collected, of which 4578 were used after merging by SHELXL according to the crystal class and on the basis of Friedel pair equivalence for structure solution. Analytical numerical absorption correction was done using a multisector crystal model and empirical absorption correction was done using spherical harmonics. The structure was solved in the orthorhombic C222, space group (no. 20) by SHELXT via intrinsic phasing and refined by SHELXL using a full-matrix least-squares technique.

The final refinement cycle included the atomic coordinates and anisotropic thermal parameters of all atoms (not including hydrogen atoms), which converged toward $R_1 = 0.0387$, $wR_2 = 0.1053$, and $S = 1.021$. All non-hydrogen atoms were located; hydrogen atoms were not assigned due to structural disorder. Full details of crystal data are listed in the Supporting Information (Table S2–S4).

Frozen-State Electron Spin Paramagnetic Resonance (ESR) Measurements. ESR measurements were carried out in a frozen state (T \leq 100 ± 0.1 K) using a Bruker EMX220 X-band (ν ~ 9.4 GHz) spectrometer equipped with an Oxford Instrument ESR900 cryostat and an Agilent S3150A frequency counter. Spectra processing, determination of parameters, and spectral simulations were done using the Bruker WIN-EPR/SimFonia package and OriginLab software.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.9b03747.

Accession Codes

CCDC 1973877 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Ira A. Weinstock — Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; orcid.org/0000-0002-6701-2001; Email: iraw@bgu.ac.il

Authors

Chandan Kumar Tiwari — Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; orcid.org/0000-0001-5470-4191

Mark Baranov — Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; orcid.org/0000-0002-5517-6674

Alevtina Neyman — Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

Ronny Neumann — Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100; orcid.org/0000-0002-5530-1287

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.9b03747

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

L.A.W. and R.N. thank the Israel Ministry of Science, Technology & Space (Project 3-12589), L.A.W. thanks the Israel Science Foundation (170/17), and C.K.T. thanks the Kreitman School of Advanced Graduate Studies of Ben-Gurion University of the Negev for a doctoral fellowship. R.N. is the Rebecca and Israel Sieff Professor of Organic Chemistry and L.A.W. is the Irene Evens Professor of Inorganic Chemistry. We thank Alexander Shemes for ESR measurements.

REFERENCES

(1) Neumann, R. Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg. Chem. 2010, 49, 3594–3601.
(2) Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxogen in polyoxometalate mediated reactions. *Chem. Rev.* **2018**, *118*, 2680–2717.

(3) Khenkin, A. M.; Neumann, R. Low-temperature activation of dioxogen and hydrocarbon oxidation catalyzed by a phosphovanadomolybdate: evidence for a Mars-van Krevelen type mechanism in a homogeneous liquid phase. *Angew. Chem., Int. Ed.* **2000**, *39*, 4088–4090.

(4) Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann, R. Electron and oxygen transfer in polyoxometalate, $\text{H}_2\text{PV}_2\text{Mo}_8\text{O}_{39}$, catalyzed oxidation of aromatic and alkyl aromatic compounds: Evidence for aerobic Mars-van Krevelen-Type reactions in the liquid homogeneous phase. *J. Am. Chem. Soc.* **2001**, *123*, 8531–8542.

(5) Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J. Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts - boosting FA selectivity by in-situ extraction. *Environ. Sci. Technol.* **2015**, *49*, 2985–2990.

(6) Neumann, R.; Levin, M. Selective aerobic oxidative dehydrogenation of alcohols and amines catalyzed by a supported molybdovanadanium heteropolyanion salt $\text{Na}_5\text{PMo}_2\text{V}_2\text{O}_{40}$. *J. Org. Chem.* **1991**, *56*, 5707–5710.

(7) Sarma, B. B.; Neumann, R. Polyoxometalate-mediated electron transfer-oxygen transfer oxidation of cellulose and hemicellulose to synthesis gas. *Nat. Commun.* **2014**, *5*, 4621–4626.

(8) Sarma, B. B.; Carmieli, R.; Collauto, A.; Efremenko, I.; Martin, J. M. L.; Neumann, R. Electron transfer oxidation of benzene and aerobic oxidation to phenol. *ACS Catal.* **2016**, *6*, 6403–6407.

(9) Sarma, B. B.; Efremenko, I.; Neumann, R. Oxygenation of methylarenes to benzaldehyde derivatives by a polyoxometalate mediated electron transfer-oxygen transfer reaction in aqueous sulfuric acid. *J. Am. Chem. Soc.* **2015**, *137*, 5916–5922.

(10) Pettersson, L.; Hedman, B.; Andersson, I.; Ingi, N. Multicomponent polyoxometalates. 34. A potentiometric and vanadium-51 NMR study of equilibria in the hydrogen(1+)-hydrogen vanadate(2-) system in 0.6 M sodium chloride medium covering the range $1 \leq -\lg[H^+] \leq 10$. *Chem. Sci.* **1985**, *25*, 309–317.

(11) Kozhevnikov, I. V.; Matveev, K. I. Heteropoly acids in catalysis. *Russ. Chem. Rev.* **1982**, *51*, 1075–1088.

(12) Cruywagen, J. B. B. a. J. J. Yellow molybdenum(VI) oxide dihydrate. *Inorganic Syntheses*, John Wiley & Sons: New York, 1986; Vol. 24, pp 191–192.

(13) Cotton, F. A.; Morehouse, S. M.; Wood, J. S. The identification and characterization by X-ray diffraction of a new binuclear molybdenum(VI) oxalate complex. *Inorg. Chem.* **1964**, *3*, 1603–1608.

(14) Pierpont, C. G.; Buchanan, R. M. Radical-anion coordination of 9,10-phenanthrenequinone in (pentaoxo)bis(9,10-phenanthrenequinone)dymolybdenum. *J. Am. Chem. Soc.* **1975**, *97*, 6450–6455.

(15) Pierpont, C. G.; Buchanan, R. M. Molybdenum complexes containing catecholate ligands. Structural studies on complexes of the pentaoxobis(quinone)dymolybdenate(n−) $(n = 0, 1, 2)$ redox series. *Inorg. Chem.* **1982**, *21*, 652–657.

(16) Burgmayer, S. J. N.; Stiefel, E. I. Synthesis and structure of the first molybdenum-pterin complex. *J. Am. Chem. Soc.* **1986**, *108*, 8310–8311.

(17) Malinak, S. M.; Coucouvanis, D. Synthesis and characterization of $[\text{Mo}_2\text{O}_8]^{12-}$-bridged complexes containing cofacially-oriented, catechol-functionalized macrocyclic and SALPHEN ligands. *Inorg. Chem.* **1996**, *35*, 4810–4811.

(18) Malinak, S. M.; Coucouvanis, D. A new class of complexes possessing cofacially-oriented, planar, metal-containing subunits. synthesis, characterization, and reactivity of $[\text{Mo}_2\text{O}_8]^{12-}$-linked, catechol-functionalized, tetraazamacrocyclic and salicylideneamine complexes. *Inorg. Chem.* **1998**, *37*, 1175–1190.