Multivariate model for predicting semen cryopreservation outcomes in a human sperm bank

Xu-Ping Jiang¹,²⁺, Wei-Min Zhou¹,²⁺, Shang-Qian Wang³, Wei Wang², Jing-Yuan Tang², Zhen Xu², Zhao-Xia Zhang¹, Chao Qin³, Zeng-Jun Wang², Wei Zhang²

Semen cryopreservation is widely used in assisted reproductive technologies, but it reduces sperm quality dramatically. The aim of this study was to develop a model using basal semen quality to predict the outcome of postthaw semen parameters and improve the efficiency of cryopreservation in a human sperm bank. Basal semen parameters of 180 samples were evaluated in the first stage, and a multiple logistic regression analysis involving a backward elimination selection procedure was applied to select independent predictors. After a comprehensive analysis of all results, we developed a new model to assess the freezability of sperm. Progressive motility (PR), straight-line velocity (VSL) and average path velocity (VAP) were included in our model. A greater area under the receiver operating characteristic curve was obtained in our model when compared with other indicators. In the second stage of our study, samples that satisfied the new model were selected to undergo freeze–thawing. Compared with the first stage, the rate of good freezability was increased significantly (94% vs 67%, \(P = 0.003 \)). By determining basal semen quality, we have developed a new model to improve the efficiency of cryopreservation in a human sperm bank.

Keywords: cryopreservation; freezability; model; sperm bank

INTRODUCTION

Cryopreservation involves the freezing of living cells and tissues and storage at \(-196^\circ\text{C}\) or below. At this temperature, all metabolic processes are arrested including some cellular changes that can result in cell death. Sperm cryopreservation has a history of more than 70 years. It helps keep spermatozoa alive indefinitely, enables the conservation of male fertility and is widely used in assisted reproductive technologies (ARTs). It is of great importance for patients undergoing medical or surgical treatments that could induce sterility, such as those with cancer about to undergo chemotherapy or radiotherapy, as it offers them the hope of future fertility and psychological support in the therapeutic process.¹ In some cases, couples cannot use the male partner’s own spermatozoa for ART, so they might benefit from using donor spermatozoa obtained from a bank of frozen samples.

However, cryopreservation adversely affects spermatozoa in terms of standard semen parameters and fertilizing ability.²,³ The recovery of functionally intact spermatozoa from thawed samples varies between individuals and is dependent on the cryopreservation process but also on the initial quality of the semen sample. One aspect of great importance in Andrology is the identification of men whose ejaculates are more suitable to undergo cryopreservation procedures. Although a protocol is indicated in the World Health Organization (WHO) manual for semen analysis,⁴ the procedure is not standardized. To date, there is a lack of markers for predicting the quality of semen samples following the freeze–thawing procedure.

Many studies have tried to find predictors of sperm freezability success through evaluating prefreezing characteristics. Lee et al. reported that, compared with conventional semen analysis, Kruger strict morphology criteria were better predictors of the postthaw progressive motility recovery.⁵ Others found that higher concentration and prefreeze motility and fewer days of abstinence before producing a semen sample were associated with an increased sperm recovery rate through evaluating the relationship between prefreezing and postthawing semen characteristics.⁶–⁷ In general, it appears that the postthawing recovery is associated with basal semen quality, but previous studies only used single parameters to predict the outcome after thawing without considering the possibility of combining parameters.

Therefore, the aim of this study was to evaluate basal semen indexes to develop a new diagnostic tool for predicting freezability. This new model should help to minimize cryoinjury, maximize sperm survival, and contribute to the development of an optimized cryopreservation protocol.

MATERIALS AND METHODS

Sample collection

This study was approved by the Ethics Committee of Nanjing Medical University. All subjects gave written consent with regard to the storage of their information for the purpose of research. The study was performed in accordance with national and international guidelines.
The first stage included 180 semen samples from 180 normozoospermic donors contributing to our Human Sperm Bank at The First Affiliated Hospital of Nanjing Medical University. Semen samples were collected in sterile containers by masturbation after 3–7 days of sexual abstinence. All the semen samples underwent clinical and laboratory evaluations in our sperm bank in accordance with the WHO laboratory manual for the examination and processing of human semen, Fifth Edition. Normozoospermic samples needed to have the following characteristics: volume >2 ml; liquefaction time <1 h; sperm concentration >60 x 10^6 ml^-1; progressive motility (PR) >60% and normal morphology >5%. The ages of donors, days of sexual abstinence, semen volumes and liquefaction time, and other clinical data were recorded. Each liquefied semen sample was divided into two aliquots: one was analyzed fresh for seminal parameters, and the other was frozen for 7 days and analyzed soon after thawing for sperm motility and vitality.

In the second stage, we selected 75 samples that fulfilled the original standards. Within these, 31 samples satisfied our new model and underwent freezing–thawing. Finally, we compared the characteristics of good freezability ejaculates between the two stages.

Pre- and post-treatment semen analyses

Samples were analyzed before and after thawing for volume, morphology, concentration and motility, using the WHO guidelines. Morphology was evaluated using an optical microscope (Axioskop 2 Plus, Zeiss, Jena, Germany) with ×1000 magnification under oil immersion. Sperm motility and concentrations were determined using computer-aided sperm analysis (CASA, CFT-9201, Rich, Xuzhou, China). In each analysis, a minimum of 200 spermatozoa were assessed and the following sperm motility parameters were recorded: progressive motility (PR, %), nonprogressive motility (NP, %), immotility (IM, %), total motility (TM, %), curvilinear velocity (VCL, µm s^-1), straight-line velocity (VSL, µm s^-1), average path velocity (VAP, µm s^-1), percentage of straight paths (%), STR = VSL/VAP x 100, motility parameter wobbble (%), WOB = VAP/VCL x 100, percentage of linearity (%), LIN = VSL/VCL x 100, amplitude of lateral head displacement (ALH, µm), beat cross frequency (BCF, Hz), mean moving angle (MAD°) and sperm concentration (10^6 ml^-1). The computer settings for detecting progressively motile spermatozoa were VSL ≥25 µm s^-1; or 5 µm s^-1 < VSL ≤25 µm s^-1; STR >80% and LIN >50%. Three replicates per sample were evaluated before calculating the corresponding mean ± s.d.

Freezing and thawing procedures

The liquefied semen samples were mixed with an equal volume of 10% glycerol–10% yolk freezing medium. The equilibrated samples were transferred to 2 ml cryovials (Greiner Bio-One GmbH, Frickenhausen, Germany) and a programmable freezer (Kry320–1.7, Planer PLC, Sunbury-on-Thames, UK) to obtain cooling from +20°C to −80°C. Then, the cryovials were removed and stored in liquid nitrogen (−196°C). After 7 days, the frozen samples were thawed in a water bath at 37°C for 10 min.

Statistical analysis

Statistical analysis was performed using IBM SPSS statistics (version 20.0; IBM Corp., Armonk, NY, USA) and R, version 3.2.1 (http://www.r-project.org/) for Windows. The Kolmogorov–Smirnov test was used to test sample distributions. Differences between the means of parameters were analyzed using Student’s t-test for normally distributed variables and the Mann–Whitney nonparametric U-test for nonnormally distributed variables. Multiple logistic regression analysis with a backward elimination selection procedure was applied. Parameters showing significant differences (P < 0.05) were included into a nomogram for good sperm freezability. An equation for the freezability rate (FR) was developed on the basis of the final logistic regression model. Receiver operating characteristic (ROC) curves were generated as a binary classifier system to identify the accuracy of prefreezing semen parameters in predicting the success rate of cryopreservation. In all analyses, the significance level was set at P < 0.05.

RESULTS

Effect of cryopreservation on sperm parameters

In accordance with the standard of postthaw PR ≥40%, samples were grouped into poor freezability ejaculates (PFE, n = 59) and good freezability ejaculates (GFE, n = 121), of which 67.2% (121/180) showing good freezability results. Basic semen characteristics in the first stage are shown in Table 1. The median age of both groups of donors was 22 years (range: 19–35) with no statistically significant difference. Days of sexual abstinence, volume, and liquefaction time also had no statistically significant differences between the PFE and GFE groups.

The 14 sperm parameters before and after cryopreservation are shown in Table 2. After thawing, the PR, NP, TM, VCL, VAP, MAD, and ALH values, concentration and percentage of normal morphology of all samples decreased dramatically. Significant increases in LIN, WOB and STR values were observed. However, cryopreservation had no effect on VSL or BCF.

Prognostic value of sperm parameters

As shown in Table 2, the PR, TM, VCL, VSL, VAP, and ALH values were dramatically higher in the GFE than in the PFE samples among all the evaluated parameters of prefreezing samples. These parameters were included into our multivariate logistic analysis. Sperm concentration was also higher in GFE samples but not significantly (P = 0.081). Considering the important role of concentration in semen quality, we included it in our logistic analysis. After a backward elimination selection procedure, PR, VSL, and VAP showed significant differences indicating that they were potential predictors for freezability (Table 3).

Establishment of multivariate prediction model

The model was created based on the results of our logistic analysis. PR, VSL, and VAP values were included to establish the model. The equation for freezability rate (FR) was defined as follows:

\[
FR = \frac{e^{-10.178 + 0.18 \times PR - 0.79 \times VSL - 0.7 \times VAP}}{1 + e^{-10.178 + 0.18 \times PR - 0.79 \times VSL - 0.7 \times VAP}}
\]

We then developed a nomogram resulting from the graphical representation of multivariate regression analysis of the studied
Asian Journal of Andrology

Table 2: Basic parameters of sperm before and after cryopreservation in Stage 1 (means±s.d.)

Variables	Prefreeze PFE (n=59)	Postthawing PFE (n=180)	P*	Prefreeze GFE (n=121)	Postthawing GFE (n=180)	P**
PR (%)	61.34±6.71	67.66±6.96	<0.001	65.59±7.48	41.92±12.71	<0.001
NP (%)	17.42±5.97	18.01±5.29	0.054	17.82±5.51	7.67±3.94	<0.001
TM (%)	79.15±6.44	85.97±6.11	<0.001	83.74±6.98	50.07±14.40	<0.001
VCL (µm s⁻¹)	51.99±6.05	55.22±6.76	0.002	54.16±6.70	50.62±6.89	<0.001
VSL (µm s⁻¹)	34.32±3.96	35.71±4.57	0.046	35.26±4.41	35.07±5.15	0.642
VAP (µm s⁻¹)	37.86±3.95	39.69±4.76	0.007	38.09±4.58	37.76±5.16	0.001
MAD (%)	54.10±7.76	57.16±6.65	0.117	56.58±7.06	51.72±6.24	<0.001
ALH (µm)	4.21±1.02	4.56±0.95	0.028	4.45±0.99	3.44±0.94	<0.001
BCF (Hz)	5.12±0.51	4.99±0.44	0.088	5.03±0.47	4.98±0.59	0.287
LIN (%)	63.63±6.67	62.66±5.88	0.320	62.98±6.15	67.65±5.79	<0.001
WOB (%)	71.47±5.83	70.53±5.05	0.264	70.84±5.32	74.18±4.96	<0.001
STR (%)	86.95±2.77	86.76±2.59	0.653	86.82±2.64	89.38±3.31	<0.001
Concentration (10⁶ ml⁻¹)	130.42±51.34	141.85±48.02	0.081	138.14±29.28	58.70±22.50	<0.001
Normal morphology (%)	29.08±5.19	30.10±4.37	0.170	29.77±4.66	13.82±2.18	<0.001

Table 3: Multivariate analysis of the predictors of freezability ejaculates rate*

Variables	B	OR	95% CI for OR	P	
Intercept	−10.178			<0.001	
PR (%)	0.177	1.193	1.115	1.277	<0.001
TM (%)	0.069	1.072	0.972	1.182	0.166
VCL (µm s⁻¹)	0.078	1.081	0.878	1.330	0.464
VSL (µm s⁻¹)	−0.786	0.456	0.293	0.710	0.001
VAP (µm s⁻¹)	0.697	2.008	1.318	3.058	0.001
ALH (µm)	−0.075	0.927	0.563	1.528	0.767
Concentration (10⁶ ml⁻¹)	−0.009	0.991	0.978	1.004	0.157

*PR, TM, VCL, VSL, VAP, and ALH were included in our logistic analysis with a backward elimination scheme. PR, VSL, and VAP showed significant difference (P<0.05) and were included into an equation for freezability rate. PR: progressive motility; TM: total motility; VCL: curvilinear velocity; VSL: straight line velocity; VAP: average path velocity; ALH: amplitude of lateral head displacement.

Figure 1: Receiver operating characteristic (ROC) curve analysis of PR, VSL, and VAP values and the new model. The areas under the curve (AUC) of these predictors were 0.746, 0.589, 0.612, and 0.789, respectively. PR (%): progressive motility; VSL (µm s⁻¹): straight-line velocity; VAP (µm s⁻¹): average path velocity.

AUC (0.789) than did single parameters. Considering that a higher Youden's index (YI = sensitivity + specificity − 1) should be maintained, we determined the cutoff FR value at 0.8324, which provided a sensitivity of 52.9% and a specificity of 93.2%. Donors with an FR >0.8324 were entered into the high-rate group, whereas others were entered into the low-rate group. The actual rate of good freezability in the high-rate group was significantly higher than in the low-rate group (94% vs 51% of donors, P < 0.001).

In the second stage, 75 candidate semen donors were recruited and evaluated using our new model. Of these, 31 high-rate samples were chosen and subjected to the standard freeze–thawing program. The characteristics of the donors in both stages are shown in Table 4. No significant difference in basic conditions was found between the two stages. The rate of good freezability among samples was improved from 67% to 94% (P = 0.003) compared with the retrospective cohort.

DISCUSSION

Sperm cryopreservation in ART normally involves the freezing and storage of semen samples at −196°C in liquid nitrogen. It has potentially opened opportunities for fertility preservation in a variety of situations including the gonadotoxic effects of chemotherapy or radiotherapy, anatomical and pathological defects of the male reproductive system, cryptozoospermia, transient azoospermia, and for rare occupational reasons.

However, cryopreservation can reduce sperm fertility through impairing sperm DNA integrity, motility and viability.29 Many studies on human and animal semen have attempted to define predictors of freezability. These suggested that sperm freezability is associated with basal prefreezing semen qualities. Dong et al. found that sperm...
Have developed an effective model based on sperm motility parameters derived by CASA to predict postthawing sperm motility from simple prefreezing variables. This model could predict the posterior probability of good freezability of fresh ejaculates with an accuracy of 78.9%, which is significantly higher than the accuracy of 74.6% obtained using traditional methods. The model is based on a combination of factors including sperm concentration, progressive motility, and straight-line velocity, which are known to be important predictors of sperm viability after cryopreservation. The use of this model could help reduce the cost and labor involved in testing large numbers of semen samples and identify those with a high likelihood of successful cryopreservation before they are subjected to the freezing process. Moreover, this model could also be used to identify donors with a low likelihood of success, allowing them to be allocated to a lower priority group and reducing the number of samples that need to be processed. Overall, the use of this model could help optimize the process of semen cryopreservation and improve the success rate of cryopreservation procedures.
sperm vulnerability to cryoinjury in human sperm banks, so that it
could minimize the need for freeze–thawing of new semen samples to
acquire data on thawing rate success. We should validate these findings
in a larger cohort of semen donors to establish a more robust model.
Further, more research is warranted to improve cryopreservation
methods and diminish the impact of cryodamage on sperm quality.

AUTHOR CONTRIBUTIONS
ZJW and WZ conceived and designed the experiments. XPJ, WMZ, and
SQW performed the experiments. WW, JYT, and ZX analyzed the data.
ZZX and CQ contributed reagents, materials and analysis tools. XPJ
wrote the paper. All authors read and approved the final manuscript.

COMPETING INTERESTS
The authors declare that they have no competing interests.

ACKNOWLEDGMENTS
The authors would like to thank Dr. Yuan Huang and Dr. Rui-Zhe Zhao,
Department of Urology, The First Affiliated Hospital of Nanjing Medical
University, for their statistical assistance. The research is supported by the
National Natural Science Funding of China (No. 81370781).

REFERENCES
1. Saito K, Suzuki K, Iwasaki A, Yumura Y, Kubota Y. Sperm cryopreservation before
cancer chemotherapy helps in the emotional battle against cancer. Cancer 2005;
104: 521–4.
2. Davvisahin H, Lakpour N, Lahljani MS, Heidari-Vala H, Akhondi MA, et al. Effects of
very rapid versus vapor phase freezing on human sperm parameters. Cell Tissue
Bank 2013; 14: 679–85.
3. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared
sperm: effects on motility parameters and DNA integrity. Fertil Steril 2001;
76: 892–900.
4. World Health Organisation. WHO Laboratory Manual for the Examination and
Processing of Human Semen, 5th ed. Geneva: World Health Organization; 2010.
5. Lee CY, Lee CT, Wu CH, Hsu CS, Hsu MI. Kruger strict morphology and post-thaw
progressive motility in cryopreserved human spermatozoa. Andrologia 2012;
44 Suppl 1: 81–6.
6. Degl’Innocenti S, Filimberti E, Magini A, Krausz C, Lombardi G, et al. Semen
cryopreservation for men banking for oligosperma, cancers, and other pathologies:
prediction of post-thaw outcome using basal semen quality. Fertil Steril 2013;
100: 1559–63.
7. Zhang X, Zhou Y, Xia W, Wu H, Yao K, et al. Effect of pre-freezing conditions on
the progressive motility recovery rate of human frozen spermatozoa. Andrologia
2012; 44: 343–8.
8. Centola GM, Raubertas RF, Mattio JH. Cryopreservation of human semen. Comparison
of cryopreservatives, sources of variability, and prediction of post-thaw survival.

Model for predicting semen cryopreservation outcomes
XP Jiang et al

Asian Journal of Andrology 1991; in vitro Semen 2001; 2001; 2013; 408

©The Author(s)(2017)
This is an open access article distributed under the terms of the Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix,
tweak, and build upon the work non-commercially, as long as the author is credited
and the new creations are licensed under the identical terms.