Virulence-determinants and antibiotic-resistance genes of MDR-\textit{E. coli} isolated from secondary infections following FMD-outbreak in cattle

Abdelazeem M. Algammal1*, Helal F. Hetta2,3, Gaber E. Batiha4, Wael N. Hozzein5,6, Waleed M. El Kazzaz7, Hany R. Hashem8, Ayat M. Tawfik9 & Reham M. El-Tarabili1,10

This study aimed to evaluate the prevalence, multidrug-resistance traits, PCR-detection of virulence, and antibiotic-resistance genes of \textit{E. coli} isolated from secondary infections following FMD-outbreak in cattle. A total of 160 random samples were gathered from private dairy farms in Damietta Province, Egypt. The specimens were subjected to bacteriological examination, serotyping, congo-red binding assay, antibiogram-testing, and PCR-monitoring of virulence-determinant genes (\textit{tsh}, \textit{phoA}, \textit{hly}, \textit{eaeA}, \textit{sta}, and \textit{lt}) as well as the antibiotic-resistance genes (\textit{bla}_{\text{TEM}}, \textit{bla}_{\text{KPC}}, and \textit{bla}_{\text{CTX}}). The prevalence of \textit{E. coli} was 30% (\textit{n} = 48) distributed in 8 serogroups (40/48, 83.3%), while 8 isolates (8/48, 16.6%) were untypable. Besides, 83.3% of the examined isolates were positive for CR-binding. The tested strains harbored the virulence genes \textit{phoA}, \textit{hly}, \textit{tsh}, \textit{eaeA}, \textit{sta}, and \textit{lt} with a prevalence of 100% and 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Furthermore, 50% of the recovered strains were multidrug-resistant (MDR) to penicillins, cephalosporins, and carbapenems, and are harboring the \textit{bla}_{\text{TEM}}, \textit{bla}_{\text{CTX}}, and \textit{bla}_{\text{KPC}} genes. Moreover, 25% of the examined strains are resistant to penicillins, and cephalosporins, and are harboring the \textit{bla}_{\text{TEM}} and \textit{bla}_{\text{CTX}} genes. To the best of our knowledge, this is the first report concerning the \textit{E. coli} secondary bacterial infections following the FMD-outbreak. The emergence of MDR strains is considered a public health threat and indicates complicated treatment and bad prognosis of infections caused by such strains. Colistin sulfate and levofloxacin have a promising in vitro activity against MDR-\textit{E. coli}.

Foot and mouth disease (FMD) is a primary contagious disease of a significant threat to ruminants1,2. Globally, it causes severe financial loss in the veterinary sector owing to the high cost of treatment, vaccination, and production losses3,4. Recently, three common strains, A, O and SAT2 are endemic in Egypt. Despite the routine application of vaccination programs in Egypt, a high prevalence of FMD-outbreaks was recorded5. The FMD-Vaccination is usually accompanied by immunosuppression that may lead to secondary bacterial infections in the vaccinated animals3. \textit{Escherichia coli} (\textit{E. coli}) is an opportunistic microorganism that is usually inhabitants of the intestinal tract of both humans and animals. \textit{E. coli} represents a common bacterial pathogen which incriminated in various secondary infections6. The pathogenicity of \textit{E. coli} is governed by several virulence factors such as;
hemolysins, enterotoxins, Shiga-toxins, intimin, fimbria-mannose binding type1-H adhesion, alkaline phosphatase, and Temperature Sensitive Haemagglutinin (Tsh-protein) which are affected by the specific virulence genes: hly, lt, sta, stx1, stx2, eaeA, fimH, phoA, and tsh, respectively.

Concerning the site of infection, E. coli is categorized into (1)-intestinal pathogenic E. coli, and (2)-extra-intestinal pathotype. Moreover, Virulent E. coli strains, which usually affect both animals and humans, are categorized in various pathotypes according to the mechanism of disease occurrence, including: Enterotoxigenic, Enteropathogenic, Enteroinvasive, Enteroaggregative, and Shiga-toxigenic pathotypes. Enterotoxigenic E. coli is the main pathotype that incubated in white scours in calves, both enterotoxins (heat-labile and heat-stable) and fimbrial-adhesions govern the pathogenesis of the disease. Although Enteropathogenic E. coli doesn’t produce enterotoxins, it causes severe watery diarrhea in cattle by other mechanisms. Briefly, the bacteria do intimate-adhesion (non-fimbrial adhesion called intimin) with the enterocyte apical cell membrane resulting in the demodulation of the intestinal brush border. Furthermore, the Enteroinvasive E. coli can invade the epithelial cells of the large intestine, causing ulcerations and inflammation. The invasion process is controlled by a specific plasmid (140 MDa) encoding for the release of various outer membrane proteins involved in the disease pathogenesis.

Globally, the β-lactam antibiotics (cephalosporins, carbapenems, and penicillins) represent about 60% of the used antimicrobial agents. The emerging multidrug-resistant E. coli is considered a public health threat. The antimicrobial resistance in E. coli is mainly attributed to the Extended-Spectrum Beta-Lactamases (ESBLs); which could destroy various β-lactam antimicrobial agents as penicillins, various generations of cephalosporins, and carbapenems. ESBLs are encoded by specific ESBL-genes such as: blαTEM (encoded for penicillins-resistance), blαREPC (encoded for cephalosporins-resistance), and blαCTX (encoded for carbapenems-resistance). The emergence of multidrug-resistant virulent E. coli has been described by previous studies.

This study was performed to inspect the prevalence, antibiogram, PCR detection of virulence genes (tsh, phoA, hly, eaeA, sta, and lt) as well as the antibiotic-resistance genes (blαTEM, blαREPC, and blαCTX) of E. coli isolated from secondary bacterial infections following FMD-outbreak in cattle.

Methods

Animal ethics. All methods performed consistent with relevant guidelines and regulations. Well-trained experts conducted the handling of animals and experimental procedures. Handling of animals and all protocols were approved by the Animal Ethics Review Committee of Suez Canal University (AERC-SCU), Egypt.

Sampling and clinical examination. One hundred and sixty specimens; milk (n = 40), blood (n = 40), fecal swabs (n = 40), and nasal swabs (n = 40) were randomly collected under complete aseptic conditions from two private cattle farms (native breeds cows of both sexes with average two years old age and with a history of FMD-outbreak) at Damietta Province, Egypt (From March 2019 to August 2019). The sampling was conducted after FMD-outbreak. The examined farms are very close to each other and sharing the same management practices, nutrition, and water supply. The sampling was performed according to the clinical signs. Blood specimens were gathered from animals suffering from fever, milk specimens were collected from clinically mastitic animals, fecal swabs were collected from diarrheic animals, and nasal swabs were collected from animals that exhibited respiratory manifestations. The examined animals were previously treated with trimethoprim and amoxicillin without improvement. The obtained specimens were processed as soon as possible at the same day of collection and were collected on tryptic soy broth (Oxoid, Hampshire, UK).

Isolation and identification of E. coli and other pathogens. For isolation of E. coli, swabs from the obtained specimens were inoculated in McConkey’s broth (Oxoid, Hampshire, UK), followed by incubation for 24 h at 37 °C. A loopful of broth-culture was streaked onto MacConkey’s agar, and eosin methylene blue agar (Oxoid, Hampshire, UK). The suspected colonies were identified according to their colonial characters, morphological characters, and biochemically as described by Quinn.

For isolation of other bacterial pathogens, swabs from the processed specimens were inoculated on nutrient agar, blood agar, mannitol salt agar, cetrimide agar, and MacConkey’s agar (Oxoid, Hampshire, UK), then the inoculated plates were incubated for 24–48 h at 37 °C. The obtained pure colonies were identified according to their colonial characters, morphological characters, and biochemically as described by Quinn.

E. coli serotyping. The retrieved isolates were serotyped for somatic antigen (O-antigen) by the aid of slide agglutination test using standard polyvalent and monovalent commercial E. coli antisera (Denka Seiken-Co., Ltd., Tokyo, Japan) at the Animal-Health Research-Institute, Dokki, Egypt as described by Starr.

Congo-red binding. To emphasize the pathogenicity and the invasiveness of the isolated strains, the assessment of Congo-red binding was performed on trypticase agar (containing 0.03% CR dye) (Oxoid, UK). The tested strains were inoculated on trypticase agar and then incubated at 37 °C for 24 h. Then plates were preserved at room temperature (for 48 h). The positive result is indicated by the appearance of red colonies as previously reported by Panigrahy and Yushen.

Antimicrobial susceptibility testing. The recovered E. coli strains were assessed for their antimicrobial resistance using the disc diffusion method on Mueller–Hinton agar (Oxoid, UK). The following antimicrobial agents were involved; ampicillin (AMP) (10 μg), meropenem (MEM) (10 μg), amikacin (AK) (30 μg), trimetho-
Table 1. Oligonucleotides sequences, target genes, specific amplicon size, and PCR re-cycling conditions.

Target gene	Primers sequences	Amplicon size (bp)	Denaturation	Annealing	Extension	References
lt	GGTTCTGCAGTGGTAGTGGA	605	94 °C 30 s	57 °C 45 s	72 °C 45 s	28
	GGGACTTGACCTGAAATGT					
sta	GAAACACATGACGGAGGAGT	299	94 °C 30 s	57 °C 30 s	72 °C 30 s	28
	GCAGAGCCAGGTATCAAACA					
caeA	ATGCTTGTGCGTGTCTTAGG	248	94 °C 30 s	51 °C 30 s	72 °C 30 s	28
	GCCCTCATCTTGGTCTTTT					
tsh	GGT GGT GCA CTG GAG TGG	620	94 °C 30 s	54 °C 40 s	72 °C 45 s	28
	AGT CCA GGG TGA TAG TGG					
phaA	CGATTCTGGAATGAGCAAAC	720	94 °C 30 s	60 °C 40 s	72 °C 1 min	28
	CGTGTACGCCCCTGATATGAC					
hly	AACAAGGATAAGGACTGTGTTGCT	1177	94 °C 30 s	54 °C 40 s	72 °C 45 s	28
	ACCATATAAGGGGCTATCCCGTCA					
blaKPC	ATGTCACTGTATCGCCGCTCT	882	94 °C 1 min	55 °C 1 min	72 °C 1 min	28
	TTACTGCCCCGTGAGGGCC					
blaCTX	ATG TGC AGY ACC AGT AAR GTA TC	593	94 °C 30 s	54 °C 40 s	72 °C 45 s	28
	TGG GTR AAR TAR GTS ACC AGA TCG AG GG					
blaTEM	ATCGCAATAAACCAGC	516	94 °C 30 s	54 °C 40 s	72 °C 45 s	28
	CCCCGGAAAAGGCTTTC					

Molecular typing of virulence-determinant genes and antibiotic-resistance genes. PCR-monitoring of virulence-determinant genes (*tsh, phoA, hly, caeA, sta, and lt*) and the antibiotic-resistance genes (*blaTEM*, *blaKPC*, and *blaCTX*) was carried out. The selection of these antibiotic-resistance genes was based upon the results of the antimicrobial susceptibility testing, moreover, the selection of the current virulence genes is based upon their significant role in the pathogenesis of the disease as described in previous studies. Genomic DNA of the examined strains was extracted according to the manufacturer’s guidelines of the QIAamp DNA Mini Kit (Qiagen, GmbH, Germany/Catalogue No.51304). The reaction volume was adjusted at 25-μl (3 μl genomic-DNA, 5 μl of 5 × Master Mix, and 20 pmol of each prime, the reaction volume was completed by adding distilled H2O). Positive controls (provided by A.H.R.J., Egypt) and negative controls (DNA-free) were used in all reactions. The sequences of the used primers (Metabion International AG, Germany) and the PCR-cycling conditions are illustrated in Table 1. Finally, the separation of the obtained products was performed using the agar gel electrophoresis (1.5% agarose stained with ethidium bromide 0.5 μg/ml), and the gel was photographed.

Statistical analyses. The Chi-square test was performed to analyse the obtained results (SAS software, version 9.4, SAS Institute, Cary, NC, USA) (significance level; P < 0.05). Furthermore, the correlation analysis was conducted using R software (version 4.0.2; https://www.r-project.org/), it was calculated using the “cor” function and visualization using the “corrplot” functions from the “corrplot” package.

Results

Prevalence of *E. coli* and other bacterial pathogens in the examined animals. Regarding the phenotypic characteristics of the retrieved *E. coli* isolates were identified as *E. coli* based on their morphology and biochemical characteristics. Microscopically, the bacteria appeared as Gram-negative moderate size, motile, and non-sporulated rods. The bacteria grew well on MacConkey’s agar and gave characteristic pink colonies due to lactose fermentation. On blood agar, the colonies are hemolytic, moreover on EMB; the bacteria gave characteristic metallic sheen colonies. Biochemically, all isolates were positive for catalase, lactose fermentation, indole, and methyl-red, tests. Simultaneously, they were negative for cytochrome oxidase, Voges-Proskauer, citrate-utilization, H2S production, and urease tests. The bacteriological inspection proved that the total prevalence of *E. coli* was 30% (48/160); the prevalence of *E. coli* was 28.75% (23/80) in the farm (1), while it was 31.25% (25/80) in the farm (2) as described in Table 2. Concerning the types of the tested samples, the prevalence of *E. coli* was 42.5%, 27.5%, 17.5%, and 32.5% in the examined milk samples, blood specimens, nasal, and fecal swabs,
respectively (Table 2, Fig. 1). Statistically, there is no significant difference in the prevalence of \textit{E. coli} between the examined farms \((P>0.05)\).

Besides, 70\% of the examined diseased animals \((n = 112)\) are infected with other bacterial pathogens including; in mastitis: \textit{Streptococcus uberis} \((10/40, 25\%)\), \textit{Streptococcus bovis} \((8/40, 20\%)\) and \textit{Enterococcus faecalis} \((5/40, 12.5\%)\), in fever: \textit{Pseudomonas aeruginosa} \((10/40, 25\%)\), and \textit{Mannheimia hemolytica} \((6/40, 15\%)\), in respiratory manifestations: \textit{Pasturella multocida} \((10/40, 25\%)\), \textit{Mannheimia hemolytica} \((4/40, 10\%)\), and \textit{Pseudomonas aeruginosa} \((4/40, 10\%)\), and in diarrhea; \textit{Proteus mirabilis} \((17/40, 42.5\%)\) and \textit{Enterococcus faecalis} \((10/40, 25\%)\).

Table 2. Prevalence of \textit{E. coli} in various types of samples obtained from diseased cattle. Chi-square value \(= 3.112\), \textit{P} value \(= 0.375\).

Examined samples	Farm 1 \(n=80\)	Farm 2 \(n=80\)	Total
Milk	8/20 (40)	9/20 (45)	17/40 (42.5)
Blood	6/20 (30)	5/20 (25)	11/40 (27.5)
Nasal swabs	3/20 (15)	4/20 (20)	7/40 (17.5)
Fecal swabs	6/20 (30)	7/20 (35)	13/40 (32.5)
Total	23/80 (28.75)	25/80 (31.25)	48/160 (30)

Figure 1. Prevalence of \textit{E. coli} in various examined samples. The prevalence of \textit{E. coli} was 42.5\%, 27.5\%, 17.5\%, and 32.5\% in the examined milk samples, blood specimens, nasal, and fecal swabs, respectively.

Serotyping of the recovered \textit{E. coli} isolates. The serotyping of the retrieved isolates showed that 40 isolates belonged to 8 O-serogroups and were distributed as the following; O1 \((9/48, 18.7\%)\), O114 \((7/48, 14.6\%)\), O111 \((5/48, 10.4\%)\), O18 \((4/48, 8.4\%)\), O26 \((4/48, 8.4\%)\), O55 \((4/48, 8.4\%)\), O86a \((4/48, 8.4\%)\), and O158 \((3/48, 6.2\%)\). Furthermore, the remaining isolates \((8/48, 16.6\%)\) were untypable (Table 3; Fig. 2). Regarding the type of the examined samples, the \textit{E. coli} serovars scattered as the following; nasal swabs: O86a \((4/48)\) and untyped strains \((3/48)\), fecal swabs: O114 \((7/48)\), O26 \((4/48)\), and untyped strains \((2/48)\), blood samples: O111 \((5/48)\), O18 \((4/48)\), and untyped strains \((2/48)\), milk samples: O1 \((9/48)\), O55 \((4/48)\), O158 \((3/48)\), and untyped strains \((1/48)\). Statistically, there is a significant difference in the prevalence of different serovars retrieved from various types of samples \((P<0.05)\).

Congo-red binding assay. In the present study, 83.3\% of the examined isolates \((40/48)\) were positive for CR-binding assay. All the tested serovars were positive, including; O1 \((9/48)\), O114 \((7/48)\), O111 \((5/48)\), O18 \((4/48)\), O26 \((4/48)\), O55 \((4/48)\), O86a \((4/48)\), and O158 \((3/48)\), while the untyped strains were negative \((8/48)\).

Antimicrobial-resistance traits of the recovered isolates. The in-vitro antimicrobial susceptibility testing revealed that the retrieved isolates displayed high resistance pattern to penicillins: ampicillin and amoxicillin \((100\%)\), and amoxicillin-clavulanic acid \((60.4\%)\), cephalosporins: cefotaxime and ceftazidime \((83.3\%)\), and carbapenems: imipenem and meropenem \((50\%)\), while showed intermediate resistance to trimethoprim-sulfamethoxazole \((93.8\%)\). Besides, the examined strains were highly susceptible to colistin sulfate \((100\%)\), followed by levofloxacin \((93.8\%)\) and amikacin \((56.2\%)\) as described in Table 4 and Fig. 3. Statistically, there is a significant difference in the resistance of the retrieved isolates to various tested antimicrobial agents \((P<0.05)\). The correlation analysis among the tested antimicrobial-agents was conducted. Our results revealed strong positive correla-
Table 3. Prevalence of *E. coli* serovars isolated from the examined diseased cattle. Chi-square value = 116.588, \(P < 0.0001 \).

Sample-types	Serovars	Number	%
Nasal swabs	O86a	4	8.4
	Untyped	3	6.2
Fecal swabs	O114	7	14.6
	O26	4	8.4
	Untyped	2	4.1
Blood-samples	O111	5	10.4
	O18	4	8.4
	Untyped	2	4.1
Milk samples	O1	9	18.7
	O55	4	8.4
	O158	3	6.2
	Untyped	1	2.1
Total		48	100

Figure 2. The distribution of *E. coli* serovars among various examined samples. The most prevalent *E. coli* serovar accompanied the respiratory infection was O86a, diarrhea: O114, fever: O111, and mastitis: O1.

Table 4. Antimicrobial resistance pattern of the retrieved *E. coli* strains (\(n = 48 \)).

Antibiotic classes	Specific tested antibiotic	Sensitive	Intermediate	Resistance
Penicillins	Amoxicillin	–	–	48 100
	Ampicillin	–	–	48 100
	Amoxicillin-Clavulanic acid	10 20.8	9 18.7	29 60.4
Cephalosporins	Cefotaxime	5 10.4	3 6.2	40 83.3
	Ceftazidime	5 10.4	3 6.2	40 83.3
Carbapenems	Imipenem	24 50	–	24 50
	Meropenem	24 50	–	24 50
Aminoglycosides	Amikacin	27 56.2	17 35.4	4 8.4
Fluoroquinolones	Levofloxacin	45 93.8	3 6.2	– –
Polymyxins	Colistin sulfate	48 100	–	– –
Sulfonamides	Trimethoprim-sulfamethoxazole	–	45 93.8	3 6.2

\[P \text{ value} \quad P \leq 0.0001 \quad P \leq 0.0001 \quad P \leq 0.0001 \]
The frequency of the virulence-determinant and antibiotic-resistance genes among the recovered strains (n = 48). Regarding the virulence-determinant genes, the PCR proved that the tested strains harbored the virulence genes phoA, hly, tsh, eaeA, sta, and + with a prevalence of 100% and 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Concerning the antibiotic-resistance genes, the examined strains were positive for
Table 5. PCR-based screening of virulence and antibiotic resistance genes among the recovered strains (*n* = 48).

Target genes	N	%	*P*-value
Virulence-determinant genes			
phoA	48	100	
hly	24	50	
tsh	22	45.8	
eaeA	12	25	
stA	4	8.4	
lt	3	6.2	
Antibiotic-resistance genes			
bla TEM	48	100	*P* < 0.0001
bla CTX	40	83.3	*P* < 0.0001
bla KPC	24	50	

Table 6. Prevalence of virulence genes and antibiotic resistance genes among the retrieved serovars (*n* = 48).

Samples	Serovars	N	*tsh* gene	*phoA* gene	*hly* gene	*eaeA* gene	*sta* gene	*lt* gene	*bla CTX* gene	*bla KPC* gene	*bla TEM* gene
Nasal swabs	O86a	4	4	4	4	–	–	–	4	4	4
	Untyped	3	3	3	3	–	–	–	2	1	3
Fecal swabs	O114	7	7	7	1	3	4	–	5	5	7
	O26	4	4	4	4	1	–	3	4	4	4
	Untyped	2	2	2	2	2	–	2	–	–	–
Blood samples	O111	5	5	5	5	–	–	–	4	4	5
	O18	4	4	4	2	–	–	–	4	–	4
	Untyped	2	2	2	2	1	–	–	1	–	2
Milk samples	O1	9	2	9	3	5	–	–	7	2	9
	O55	4	3	4	2	–	–	–	3	4	4
	O158	3	2	3	2	–	–	–	3	–	3
	Untyped	1	1	1	1	–	–	–	1	–	1
Total	48	22	48	24	12	4	3	40	24	48	

*bla TEM, bla CTX, and bla KPC resistance genes with a prevalence of 100%, 83.3%, and 50%, respectively, as presented in Table 5. The frequency of the virulence-determinant and antibiotic-resistance genes in the retrieved serovars is illustrated in Tables 5 and 6, and Fig. 5. Statistically, there is a significant difference in the prevalence of the virulence-determinant genes and the antibiotic-resistant genes among the tested strains (*P* < 0.05). The correlation analysis was determined between various virulence genes and antibiotic-resistance genes. The obtained results revealed strong positive correlations (*r* = 0.53–0.95) between: *phoA* and *hly* (*r* = 0.72); *tsh* and *sta* (*r* = 0.3); *eaeA* and *bla TEM* (*r* = 0.69); *hly* and *bla CTX* (*r* = 0.63); *eaeA* and *bla KPC* (*r* = 0.56); *tsh* and *bla TEM* (*r* = 0.53). Moreover, moderate positive correlation (*r* = 0.3–0.49) was observed between: *tsh, bla TEM*, and *phoA* (*r* = 0.49); *hly, bla TEM*, and *phoA* (*r* = 0.46); *bla KPC* and *sta* (*r* = 0.46); *sta, bla TEM*, and *phoA* (*r* = 0.43); *eaeA* and *sta* (*r* = 0.39); *lt* and *hly* (*r* = 0.37); *bla CTX* and *tsh* (*r* = 0.32); *lt* and *bla KPC* (*r* = 0.31); *bla CTX* and *sta* (*r* = 0.3). Besides, low positive correlation was noticed between *eaeA* and *tsh* (*r* = 0.25) (Fig. 6). Furthermore, the heat-map illustrates the distribution of virulence genes and the antibiotic-resistance genes among the recovered *E. coli* serovars. The intensity of colors indicates the numerical value of the distribution (Fig. 7).

The in-vitro multidrug-resistance patterns and the distribution of antibiotic-resistance genes. Concerning the occurrence of multidrug-resistance phenomena, in the present study, 50% of the recovered strains are multidrug-resistant (MDR) (MDR: non-susceptible to ≥ one agent in ≥ three antimicrobial classes); to penicillins: ampicillin, amoxicillin, and amoxicillin–clavulanic acid; cephalosporins: ceftazidime and cefotaxime; carbapenems: meropenem and imipenem, and are harboring the *bla TEM, bla CTX*, and *bla KPC* genes. Moreover, 25% of the examined strains are resistant to penicillins: ampicillin, amoxicillin, and clavulanic acid; cefazidime, and cefotaxime, and are harboring the *bla TEM* and *bla CTX* genes. Furthermore, 8.3% of the recovered strains were multidrug-resistant (MDR) to penicillins: ampicillin, and amoxicillin; cephalosporins: ceftazidime, cefotaxime, and amoxicilliosides: amikacin, and possessed the *bla TEM* and *bla CTX* resistance genes (Table 7). The correlation analysis performed between various phenotypic multidrug-resistance patterns and the antibiotic-resistance genes. The obtained results revealed strong positive correlations between: *bla CTX* gene, CAZ, and CTX (*r* = 0.99); *bla TEM* gene, AMX, AMP, and AMC (*r* = 1); *bla KPC* gene, MEM, and IMP (*r* = 1) (Fig. 8).
Figure 5. The distribution of virulence-determinant and antibiotic-resistance genes among the recovered strains. The tested strains harbored the virulence-determinant genes phoA, hly, tsh, eaeA, sta, and lt with a prevalence of 100%, 50%, 45.8%, 25%, 8.4%, and 6.2%, respectively. Besides, they harbored the blaTEM, blaCTX, and blaKPC resistance genes with a prevalence of 100%, 83.3%, and 50%, respectively.

Figure 6. The correlation between virulence genes and the antibiotic-resistance genes. The intensity of colors indicates the numerical value of the correlation coefficient (r), red, and blue color refers to the negative and positive correlations, respectively.
Figure 7. The heat-map illustrates the distribution of virulence genes and the antibiotic-resistance genes among the recovered E. coli serovars. The intensity of colors indicates the numerical value of the distribution.

Table 7. The frequency of the phenotypic multidrug-resistance and the antibiotic-resistance genes among the retrieved strains (n = 48). Characteristics of multidrug resistance (MDR), extensively drug-resistance (XDR), and pandrug-resistance (PDR) in E. coli: PDR non-susceptible to all antimicrobial agents listed, XDR non-susceptible to ≥ one agent in all but ≤ two antimicrobial classes, MDR non-susceptible to ≥ one agent in ≥ three antimicrobial classes.
E. coli in the prevalence of bacterial pathogens were isolated from 112 (70%) examined diseased animals. There is no significant difference in the prevalence of E. coli between the surveyed farms (P > 0.05), as the inspected farms are very close to each other and sharing the same management practices, nutrition, and water supply. E. coli is a common opportunistic microorganism that incriminated in several infections, especially diarrhea, mastitis, septicemia, and respiratory manifestations.

Regarding the in-vitro antimicrobial susceptibility testing, the retrieved strains exhibited a remarkable resistance to penicillins, cephalosporins, and carbapenems which gave a public health alarm. The current findings agreed with those obtained by previously reported by Algammal, Andrade, and Whitelegge. The pathogenesis of virulent E. coli is controlled by multiple virulence determinants that vary among different pathotypes. The most common virulence determinants that accompanied the E. coli-pathotypes are enterotoxins, hemolysins, and flagella.

Figure 8. The correlation between various phenotypic multidrug-resistance patterns and the antibiotic-resistance genes. The intensity of colors indicates the numerical value of the correlation coefficient (r), red, and blue color refers to the negative and positive correlations, respectively.

Discussion

Globally, cattle are representing the main supply of high-quality meat and milk. However, few reports explained the role of pathogenic E. coli as a secondary bacterial pathogen following the FMD-outbreaks. The current study was conducted to inspect the prevalence, antibiogram, PCR detection of virulence-determinant genes (tsh, phoA, hly, eaeA, sta, and It) and the antibiotic-resistance genes (blaTEM, blaPC, and blaCTX) of E. coli isolated from secondary bacterial infections following FMD-outbreak in cattle.

The bacteriological assay proved that E. coli was detected in 30% of the examined samples. Besides, other bacterial pathogens were isolated from 112 (70%) examined diseased animals. There is no significant difference in the prevalence of E. coli between the surveyed farms (P > 0.05), as the inspected farms are very close to each other and sharing the same management practices, nutrition, and water supply. E. coli is a common opportunistic microorganism that incriminated in several infections, especially diarrhea, mastitis, septicemia, and respiratory manifestations.

In Nigeria, S.iberis and S. bovis clinical mastitis are also reported by Amosun. In China, the emergence of P. mirabilis as a causative agent of diarrhea was reported by Gong. Moreover, in Nepal, E. faecalis diarrhea was recorded in immune-compromised persons by Sah. El-Seedy reported that P. multocida and M. hemolytica are major pathogens of calf pneumonia in Egypt, while Algammal categorized P. aeruginosa as a common pathogen of pneumonia in calves. In Egypt, although the available FMD-vaccine is efficient to minimize the mortality rate, the vaccination-failure may happen that results in the occurrence of FMD-outbreak and the emergence of secondary bacterial infections due to the immunosuppression. A previous study in Cambodia reported the occurrence of FMD-vaccination failure in more than 50% of the vaccinated animals. The vaccination failure is mainly attributed to improper technique, insufficient dose, immunological factors, and vaccine cold-chain miscarriage. Several causes are implicated in the existence of E. coli secondary infection, including; bad sanitation, intensive-breeding management, bad environmental conditions, stress, and weak animal immunity.

Concerning the E. coli serovars, the most prevalent E. coli serovar accompanied the respiratory infection was 086a (n = 4), diarrhea: O114 (n = 7), fever: O111 (n = 5), mastitis: O1 (n = 9). The investigation of E. coli O-serogroups has a major public health concern. The recovered serovars are analogous to those reported by previous studies, which concerned the E. coli infections. In the present study, the CR-binding assay proved that 83.3% of the examined isolates (40/48) were CR-binding positive. All the tested serovars were positive. Moreover, the untypable strains were negative (8/48). The current results agreed with Algammal, who reported that 89.8% of the tested strains are invasive by congo-red binding assay, which confirms the pathogenicity of these isolates.

Regarding the in-vitro antimicrobial susceptibility testing, the retrieved strains exhibited a remarkable resistance to penicillins, cephalosporins, and carbapenems which gave a public health alarm. The current findings nearly agreed with those reported by Shahram, Gupta, and Touwendsi. The uncontrolled widespread use of antibiotics in veterinary and health sectors as well as the bacterial antibiotic-resistant genes are incriminated in the development of such multidrug-resistant strains. Regrettably, E. coli is capable to resist various antibiotic-classes due to possessing resistant genes and/or R-plasmids.

In the current study, the PCR proved that the recovered E. coli strains were found to posse 2–5 virulence genes. The most prevalent virulence genes accompanied the respiratory infections are phoA and hly genes, in diarrhea: phoA, sta, It, eaeA, and hly genes, in fever and mastitis: phoA, tsh, and hly genes. These findings agreed with those obtained by previously reported by Algammal, Andrade, and Whitelegge. The pathogenesis of virulent E. coli is controlled by multiple virulence determinants that vary among different pathotypes. The most common virulence determinants that accompanied the E. coli-pathotypes are enterotoxins, hemolysins,
siderophores, intimin, fimbria-mannose binding type-1 H adhesion, alkaline phosphatase, and temperature-sensitive haemagglutinin (Tsh-protein). Furthermore, the production of these virulence-determinants is regulated by the expression of specific virulence genes.

In the present study, 50% of the recovered strains are MDR to penicillins, cephalosporins, and carbapenems, and are harboring the \(\beta-lactamase \) genes \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{CTX}}, \text{and \ bla}_{\text{KPC}} \). Furthermore, 25% of the examined strains are resistant to penicillins and cephalosporins, and are harboring the \(\text{bla}_{\text{ESBL}} \) genes. The Extended Spectrum \(\beta-lactamases \) (ESBLs) produced by \(E. coli \) in the \(\beta-lactam-antibiotic \) resistance. The heavy use of penicillins, cephalosporins, and carbapenems-antibiotics in medications is resulting in the evolution of multidrug-resistant strains. The resistance to the \(\beta-lactam-antibiotics \) is mainly mediated by the ESBL-genes; \(\text{TEM}, \text{penicillin}, \text{cephalosporins, and carbapenem-resistance, respectively} \). Different mechanisms explain the emergence of MDR- \(E. coli \) strains: 1-Shared resistance mechanisms; occur especially for the antimicrobial agents in the same category due to penicillin-binding protein mutations as well as the \(\beta-lactamases \). Furthermore, it could happen for different antibiotics in various classes due to the efflux pumps acting on numerous drugs in different species. 2-Linkage among the antibiotic resistance genes, this mechanism plays a significant role in association links between various resistances and to differentiate between resistance mechanisms (either the resistance arise due to alterations in the target protein of the antibiotic or due to a resistance gene encoded for an enzyme that destroys the antibiotic). 3-Correlated drug exposure of the host, it mainly occurs due to routine use of combination therapy and the repeated treatment failure.

Limitations and future recommendations: Future work is recommended to perform phylogenetic analysis either by MLST or PFGE to understand the clonal relatedness of the obtained strains.

In conclusion, to the best of our knowledge, this is the first report concerning the \(E. coli \) secondary bacterial infections following the FMD-outbreak. The immunosuppression due to the FMD increases the animal susceptibility to \(E. coli \) secondary infections. The most prevalent \(E. coli \) serovar associated the respiratory infections was \(O86a \), in diarrhea: \(O114 \), in fever: \(O111 \), and in mastitis: \(O1 \). Furthermore, the most predominant virulence-determinant genes accompanied the \(E. coli \) respiratory infections were \(\text{phaA}, \text{hlyA}, \text{lt}, \text{eaeA}, \text{and \ hly \ genes} \), fever, and mastitis: \(\text{phaA, tsh, and \ hly \ genes} \). A high percentage of the isolated \(E. coli \) strains were multidrug resistant (MDR) to penicillins: ampicillin, amoxicillin, and amoxicillin-clavulanic acid; cephalosporins: ceftazidime and cefotaxime; and are harboring the \(\text{bla}_{\text{TEM}}, \text{bla}_{\text{CTX}}, \) and \(\text{bla}_{\text{KPC}} \). In-vitro, colistin sulfate and levofloxacin have promising activity against MDR- \(E. coli \). The emergence of highly pathogenic MDR- \(E. coli \) strains constitutes a significant threat to the cattle health resulting in multiple severe infections and huge economic losses in the livestock production. Furthermore, the evolution of penicillins, cephalosporins, and carbapenems-resistant strains is reflecting a public health alarm and specifies the convoluted treatment of the infections caused by these strains. Moreover, it recommends the proper use of antimicrobial agents in the veterinary and health sectors as well as the routine application of the antimicrobial susceptibility testing.

Received: 15 July 2020; Accepted: 19 October 2020

Published online: 13 November 2020

References
1. Verma, A. K. et al. Studies of the outbreaks of foot and mouth disease in Uttar Pradesh, India, between 2000 and 2006. Asian J. Epidemiol. 3, 141–147 (2011).
2. Rodriguez, L. L. & Gay, C. G. Development of vaccines toward the global control and eradication of foot-and-mouth disease. Expert Rev. Vaccines 10, 377–387 (2011).
3. Verma, A. K., Kumar, A., Rahal, A. & Bist, B. Multi drug resistant pseudomonas aeruginosa: a secondary invader. Glob. J. Med. Res. 14, 6–9 (2014).
4. Yao-Zhong, D. et al. An overview of control strategy and diagnostic technology for foot-and-mouth disease in China. Virol. J. 10, 1–6 (2013).
5. Elbayoumy, M. K. et al. Molecular Characterization of Foot-and-Mouth Disease Virus Collected from Al-Fayoum and Beni-Suef Governorates in Egypt (2014).
6. Dobrindt, U. (Patho-)genomics of Escherichia coli. Int. J. Med. Microbiol. 295, 357–371 (2005).
7. Ulett, G. G. et al. Uropathogenic Escherichia coli virulence and innate immune responses during urinary tract infection. Curr. Opin. Microbiol. 16, 100–107 (2013).
8. Eid, H. I., Algammal, A. M., Nasef, S. A., Elfeil, W. K. & Mansour, G. H. Genetic variation among avian pathogenic \(E. coli \) strains isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Asian J. Anim. Vet. Adv. 11, 350–356 (2016).
9. Smith, J. L., Fratamico, P. M. & Gunther, N. W. Extraintestinal pathogenic \(E. coli \). Foodborne Pathogens Dis. 4, 134–163 (2007).
10. Clarke, S. C., Haigh, R. D., Freestone, P. P. E. & Williams, P. H. Virulence of enteropathogenic \(E. coli \), a global pathogen. Clin. Microbiol. Rev. 16, 365–378 (2003).
11. Algammal, A. M. et al. Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express 10, 1–8 (2020).
12. Abolghait, S. K., Fathi, A. G., Youssef, F. M. & Algammal, A. M. Methicillin-resistant \(S. aureus \) (MRSA) isolated from \(S. aureus \) chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. Int. J. Food Microbiol. 328, 108669 (2020).
13. Algammal, A. M., Enany, M. E., El-Tarabili, R. M., Gobashby, M. O. I. & Helmy, Y. A. Prevalence, antimicrobial resistance profiles, virulence and enterotoxin-determinant genes of MRSA isolated from subclinical bovine mastitis samples in Egypt. Pathogens 9, 1–11 (2020).
14. Algammal, A. M. et al. Molecular typing, antibiogram and PCR-RFLP based detection of \(A. hydrophila \) isolated from \(O. niloticus \). Pathogens 9, 238 (2020).
15. Magiorakos, A. P. et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infection 18, 268–281. https://doi.org/10.1111/1469-0691.2011.03570.x (2012).
16. Enany, M. E. et al. The occurrence of the multidrug resistance (MDR) and the prevalence of virulence genes and QACs resistance genes in E. coli isolated from environmental and avian sources. AMR Express 9, 192 (2019).
17. Eid, H. M. et al. Prevalence, molecular typing, and antimicrobial resistance of bacterial pathogens isolated from ducks. Vet. World 12, 677–683 (2019).
18. Algammal, A. M. et al. Genes encoding the virulence and the antimicrobial resistance in enterotoxicogenic and Shiga-toxicogenic E. coli isolated from diarrheic calves. Toxins (Basel) 12, 383 (2020).
19. Quinn, P. J. et al. Veterinary Microbiology and Microbial Disease 2nd edn, 1–928 (Wiley, Hoboken, 2011).
20. Starr, M. P. Edwards and Ewing’s Identification of Enterobacteriaceae.: Fourth Edition. By William H. Ewing. Elsevier Science
21. Lee, S. I., Kang, S. G., Kang, M. L. & Yoo, H. S. Development of multiplex polymerase chain reaction assays for detecting enterotoxigenic Escherichia coli and their application to field isolates from pigs with diarrhea. J. Vet. Diagn. Invest. 20, 492–496 (2008).
22. LSU, Clinical and Laboratory Standards Institute: Performance standards for antimicrobial susceptibility testing; 27th ed 424
23. Lee, S. I., Kang, S. G., Kang, M. L. & Yoo, H. S. Development of multiplex polymerase chain reaction assays for detecting enterotoxigenic Escherichia coli and their application to field isolates from pigs with diarrhea. J. Vet. Diagn. Invest. 20, 492–496 (2008).
24. Bisi-Johnson, M. A., Obi, C. L., Vasaikar, S. D., Baba, K. A. & Hattori, T. Molecular basis of virulence in clinical isolates of Escherichia coli and Salmonella species from a tertiary hospital in the Eastern Cape. South Africa. Gut Pathog. 3, 9 (2011).
25. Delicato, E. R., De Brito, B. G., Gaziiri, L. C. & Vidotto, M. C. Virulence-associated genes in Escherichia coli isolates from poultry with colibacillosis. Vet. Microbiol. 94, 97–103 (2003).
26. Hu, Q. & al. Development of multiplex PCR assay for rapid detection of Riemerella anatipestifer, Escherichia coli, and Salmonella enterica simultaneously from ducks. J. Microbiol. Methods 87, 64–69 (2011).
27. Pya, I. C. et al. Virulence markers of enteropathogenic Escherichia coli isolated from children and adults with diarrhea in Brasilia, Brazil. J. Clin. Microbiol. 41, 1827–1832 (2003).
28. Pillai, D. R. et al. Klebsiella pneumoniae Carbapenemase Canada. Emerg. Infectious Dis. 15, 827–829 (2009).
29. Archbishop, M. et al. Molecular characterization and occurrence of extended-spectrum β-lactamase resistance genes among Salmonella enterica serovar corvallis from Thailand, Bulgaria, and Denmark. Microb. Drug Resist. 12, 192–198 (2006).
30. Colom, K. et al. Simple and reliable multiplex PCR assay for detection of blaTEM, blalSHV and blaoX4-1 genes in Enterobacteriaceae. FEMS Microbiol. Lett. 223, 147–151 (2003).
31. Amosun, E. A., Ajuwape, A. T. & Adetosoye, A. I. Bovine streptococcal mastitis in Southwest and Northern states of Nigeria. Afr. J. Biomed. Res. 13, 33–37 (2010).
32. Gong, Z. et al. Characterization of a novel diarrheagenic strain of Proteus mirabilis associated with food poisoning in China. Front. Microbiol. 10, 2810 (2019).
33. Sah, R. et al. Vancomycin resistant Enterococcus faecalis causing diarrhea in renal transplant patient. Int. Educ. Appl. Sci. Res. J. 2(9), 1–3 (2017).
34. El-Seedy, F. R. et al. Respiratory affections in calves in upper and middle Egypt: bacteriologic, immunologic and epidemiologic studies. Adv. Anim. Vet. Sci. 8, 558–569 (2020).
35. Diab, E. et al. Foot and mouth disease outbreaks in Egypt during 2013–2014: molecular characterization of serotypes A, O and SAT2. Vet. World 12, 190–197 (2019).
36. Sieng, S., Walkden-Brown, S. W. & Kerr, J. Effect of vaccine storage temperatures and dose rate on antibody response to foot and mouth disease vaccination in Cambodia. Vet. Med. Sci. 4, 35–44 (2018).
37. Yang, J. R. et al. Comparison between O serotyping method and multiplex real-time PCR to identify diarrheagenic Escherichia coli in Taiwan. J. Clin. Microbiol. 45, 3620–3625 (2007).
38. Blum, S. et al. Identification of a bovine mastitis Escherichia coli subset. Vet. Microbiol. 132, 135–148 (2008).
39. Shahana, I. I. Escherichia coli pathotypes associated with diarrhea in human and domestic animals. Am. J. Anim. Vet. Sci. 9, 155–161 (2014).
40. Shahrami, M., Dehkordi, F. S. & Montaz, H. Characterization of Escherichia coli virulence genes, pathotypes and antibiotic resistance properties in diarrheic calves in Iran. Biol. Res. 47, 28. https://doi.org/10.1186/s41064-017-0271-8 (2018).
41. Gupta, M. D., Islam, M., Sen, A., Sarker, M. S. & Das, A. Prevalence and antibiotic susceptibility pattern of Escherichia coli in cattle on Bathan and intensive rearing system. Microb. Health 6, 1–4 (2017).
42. Tawwendsida, S. B. et al. Antibiotic susceptibility of Escherichia coli and Salmonella strains isolated from raw and cured milk consumed in Ouagadougou and Ziniar, Burkina Faso. Afr. J. Microbiol. Res. 8, 1012–1016 (2014).
43. Du, X., Shen, Z., Wu, R., Xia, S. & Shen, J. Characterization of class 1 integrons-mediated antibiotic resistance among calf pathogenic Escherichia coli. FEMS Microbiol. Lett. 245, 295–298 (2005).
44. Algammal, A. M. et al. Emerging MDR-Pseudomonas aeruginosa in fish commonly harbor oprl and toxA virulence genes and blaTEM, blalCTX-M, and tetA antibiotic-resistance genes. Scientific Reports 10, 15961 (2020). https://doi.org/10.1038/s41598-020-72254-4.
45. Perelle, S., Dilasser, G., Grout, J. & Fach, P. Detection by 5′-nuclease PCR of Shiga-toxin producing Escherichia coli O26, O55, O91, O103, O111, O113, O145 and O157:H7, associated with the world’s most frequent clinical cases. Mol. Cell. Probes 18, 185–192 (2004).
46. Andrade, G. I. et al. Identification of virulence factors by multiplex PCR in Escherichia coli isolated from calves in Minas Gerais, Brazil. Trop. Anim. Health Prod. 44, 1783–1790 (2012).
47. Whitelegge, J. Gas-phase structure of the E. coli OmpA dimer. Structure 22, 666–667 (2014).
48. Kaipainen, T. et al. Virulence factors of Escherichia coli isolated from bovine clinical mastitis. Vet. Microbiol. 85, 37–46 (2002).
49. Pearce, M. C. et al. Prevalence and virulence factors of Escherichia coli serogroups O26, O103, O111 and O145 shed by cattle in Scotland. Appl. Environ. Microbiol. 72, 653–659 (2006).
50. Bradford, P. A. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14, 933–951 (2001).
51. Bonnet, R. Growing group of extended-spectrum β-Lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48, 1–14 (2004).
52. Nordmann, P., Dortet, L. & Poirel, L. Carbapenem resistance in Enterobacteriaceae: Here is the storm!. Trends Mol. Med. 18, 263–272 (2012).
53. Humphries, R. M. et al. Carbapenem-resistant enterobacteriaceae detection practices in california: what are we missing?. Clin. Infect. Dis. 66, 1061–1067 (2018).
54. Giske, C. G., Monnet, D. L., Cars, O. & Carmeli, Y. Clinical and economic impact of common multidrug-resistant gram-negative bacilli. Antimicrob. Agents Chemother. 52, 813–821. https://doi.org/10.1128/aac.01169-07 (2008).
55. Batilha, G. S. et al. The pharmacological activity, biochemical properties, and pharmacokinetics of the major natural polyphenolic flavonoid: quercetin. Foods 9, 374 (2020).
56. Falagas, M. E. & Bliziotis, I. A. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?. Int. J. Antimicrob. Agents 29, 630–636. https://doi.org/10.1016/j.ijantimicag.2006.12.012 (2007).
57. El-Sayed, M. et al. Pathogenicity, genetic typing, and antibiotic sensitivity of Vibrio alginolyticus isolated from Oreochromis niloticus and Tilapia zillii. Rev. Med. Vet. J. 170, 80–86 (2019).
58. Piddock, L. J. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. *Clin. Microbiol. Rev.* **19**, 382–402. https://doi.org/10.1128/cmr.19.2.382-402.2006 (2006).

59. Enany, M. E. *et al.* Molecular typing and evaluation of Sidr honey inhibitory effect on virulence genes of MRSA strains isolated from catfish in Egypt. *Pak. J. Pharma. Sci.* **31**, 1865–1870 (2018).

Acknowledgements

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Author contributions

A.M.A and R.M.E Conceptualization; A.M.A and R.M.E, H.F.H, H.R.H, W.N.H, G.E.B., and W.M.E conducted the experiments. A.M.A and R.M.E drafted the manuscript. A.M.A, R.M.E, H.F.H, H.R.H, W.N.H, G.E.B., W.M.E, and A.M.T did the statistical analysis, investigation, data validation and accuracy, and supervision. A.M.A, H.F.H, and R.M.E wrote and revised the manuscript. All authors have revised and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to A.M.A. or R.M.E.-T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020