OPINION

Harnessing the Power of Defensive Microbes: Evolutionary Implications in Nature and Disease Control

Suzanne A. Ford*, Kayla C. King*

Department of Zoology, University of Oxford, Oxford, United Kingdom

*suzanne.abigail.ford@gmail.com (SAF); kayla.king@zoo.ox.ac.uk (KCK)

Microbes are vital to the functioning of multicellular organisms. This realisation has fuelled great interest in the effects of microbes on the health of plant [1–3] and animal hosts [4–6] and has revealed that microbe-mediated protection against infectious disease is a widespread phenomenon (Table 1) [7–11]. Defensive microbes can protect hosts from infection by parasites (including pathogens and parasitoids) by direct or host-mediated means (Box 1). Such protective traits have made these microbes attractive candidates for disease control. In fact, defensive microbes are already being applied in phage therapy and bacteriotherapy for humans, as well as to control vector-borne and agricultural diseases (Table 2).

Despite the impact defensive microbes can have on host and parasite fitness, our current perspective of host–parasite evolution is largely based upon pairwise species interactions [12]. By combining knowledge of defensive microbe–parasite interactions at the mechanistic level with evolutionary theory, we can predict how defensive microbes might alter the evolution of host and parasite traits, such as resistance and virulence. This will not only shape how we understand patterns of host–parasite coevolution in nature but will inform our decisions in utilising defensive microbes as disease control agents. We propose three potential evolutionary implications of defensive microbes on host–parasite interactions.

Defensive Microbe–Parasite Coevolution

Microbes can be an evolvable component of host defence (Box 2). Given that they can have short generation times, high mutation rates, and large within-host population sizes, defensive microbes might adapt to parasites much faster than their longer-lived eukaryotic hosts are able [11]. Consequently, coevolution between defensive microbes and parasites could provide “real-time” disease control, whereby evolutionary changes in parasites are met by rapid reciprocal evolution in defensive microbes. For defensive microbes utilising direct mechanisms of interaction with parasites (Box 1), coevolution is likely to depend upon the population size, generation time, and gene flow of the defensive microbe population. For defensive microbes utilising host-mediated mechanisms of interaction with parasites (Box 1), coevolution is more likely to be limited by the rate of host evolution, since those mechanisms employ host-encoded traits.

Exploring the potential for defensive microbe–parasite coevolution will be fundamental for predicting the long-term efficacy of microbe-mediated defence in the face of parasite evolution. There are a variety of methods, traditionally used to study host–parasite interactions, that can be extended to look for evidence of defensive microbe–parasite coevolution. These include: (1) testing for signals of selection at the molecular level [13], (2) identifying coevolutionary
Box 1. Mechanisms of Defensive Microbes

Direct

Hyperparasitism or predation: Microbes can parasitise or predate upon the parasite [39].

Interference competition: Microbes can produce toxic compounds, such as antibiotics or bacteriocins, that may either kill the parasite or reduce its growth rate [40–42].

Resource competition: Microbes can compete with parasites for host resources [10,42], usually via the rate of resource acquisition [40,41].

Host-mediated

Host immune-mediation: Microbes can elicit a host immune response to which the parasite is not resistant [40,42].

Host tolerance-mediation: Microbes can increase the fitness of their host during infection without reducing the fitness of the parasite by enhancing host tolerance (e.g., via tissue damage prevention and/or repair) [43,44].

Box 2. Evolution of Defensive Microbes

Microbe-mediated defence is hypothesised to evolve from two sources of selection [11]. Firstly, microbe-mediated defence can be directly favoured when microbial fitness depends strongly on host fitness [45], such as when microbes are vertically transmitted (e.g., *Wolbachia* in Table 1) or when the host exercises “partner choice” or “host sanctions” and selectively cultures defensive microbes [8, 9, 11]. It is thought that beewolf wasps selectively acquire protective *Streptomyces* bacteria to ensure continued defence [46]. Alternatively, microbe-mediated defence might be selected as a byproduct of intra-specific and interspecific microbial interactions [11,47] (e.g., via competition over resources) or hyperparasitism (e.g., hyperparasitic viruses parasitise fungal pathogens of plants in Table 1). Hosts may also impose partner choice by exploiting microbial competition, termed “competition-based screening” [48].

Ultimately, defensive traits may differ in their efficacy over evolutionary time [11]. It is likely that defensive traits that evolve via partner choice or maternal inheritance are more evolutionarily persistent than those that evolve as a byproduct of microbial interactions. This difference is because host defence is a directly selected trait in microbes in the former but a byproduct of another interaction in the latter. Above all, evolutionary persistence will depend upon the presence of parasites [49,50]. From the defensive microbe’s perspective, high parasite prevalence can select for their persistence in the host population [50,51]. However, parasites are not always highly prevalent and can have a natural periodicity (e.g., seasonality) or be spatially variable [15,52]. How this variation alters the intensity of selection for and maintenance of defensive microbes has been explored theoretically [53] and in field patterns [54] but has rarely been tested directly [4].

The host-associated costs of harbouring defensive microbes can affect the potential for such microbes to evolve and, as such, their position on the mutualism–parasitism continuum [55]. In many cases, defensive microbes have been found to be physiologically and ecologically costly to their hosts [4,56–58]. Nevertheless, if the benefit of
protection to the host outweighs any costs, then the evolution of defensive microbes will be favoured [59]. Alternatively, a host–parasite interaction would arise if defensive microbes become more costly than beneficial [59]. For example, a microbe that protects a host as a byproduct of competing for resources with a parasite could itself evolve increased host exploitation, and so virulence, by means of competition. If the cost (virulence) of this microbe now outweighs its benefit (defence), this defensive microbe is now a parasite.

Table 1. Defensive microbes in nature. Defensive microbes are listed with their host(s), the parasite(s) they protect against, their mechanism(s) of defence, their impact on parasite fitness, and their mode of transmission.

Host Group	Host(s)	Defensive microbe(s)	Parasite(s)	Mechanism(s)	Impact on parasite fitness	Transmission mode	Ref(s.)	
Crustacea	American Lobster	gram-negative bacterium	Fungi	Interference competition	Negative	Unknown	[80]	
	Shrimp	Alteromonas bacteria	Fungi	Interference competition	Not measured	Unknown	[81]	
Insects	Aphids	Hamiltonella defensa; Regiella	Parasitoids	Interference competition	Negative	Vertical	[82,83]	
	Aphids	Regiella; Rickettsia; Rickettsiella; Spiroplasma	Fungi	Unknown	Negative	Vertical	[84–86]	
	Beewolf wasp; Subterranean termite	Streptomyces bacteria	Fungi	Interference competition	Negative	Vertical and Horizontal	[87,88]	
	Bumble bees	Gilliamella	Protozoa	Unknown	Negative	Horizontal	[16]	
	Dampwood termite	Undefined microbiome	Fungi	Interference competition	Negative	Unknown	[89]	
	Fruit flies	Spiroplasma	Parasitoids Nematodes	Interference competition	Negative	Vertical	[54,90,91]	
	Fruit flies; Mosquitoes	Wolbachia sp.	Arboviruses Protozoans Fungi	Resource competition Immune mediation	Negative	None	Vertical	[92–95]
	Invasive Whitefly	Rickettsia	Fungi	Unknown	Negative	Vertical	[96]	
	Leaf cutting ants	Actinomycete bacteria	Fungi	Interference competition	Negative	Vertical and Horizontal	[97,98]	
	Leaf-rolling Weevil	Penicillium herquei	Unknown microbes	Interference competition	Negative	Unknown	[99]	
Plants	Cacao Tree	Foliar Endophytic fungi; Arbuscular Mycorrhizal fungi	Fungi Oomycetes	Resource and Interference competition Immune mediation	Negative	Horizontal	[100–103]	
	Chestnut trees	Virus	Fungi	Hyperparasitism	Negative	Horizontal	[104]	
Vertebrates	Hoopoe birds	Enterococcus faecalis	Bacteria	Interference competition	Negative	Unknown	[105,106]	
	Humans	Undefined microbiome in breast milk	Bacteria	Unknown	Negative	Unknown	[107]	
	Metazoan hosts (incl. humans)	Bacteriophage	Bacteria	Hyperparasitism	Negative	Unknown	[108]	
	Metazoan hosts (incl. humans)	Bdellovibrio bacteriovorus	Bacteria	Predation	Negative	Horizontal	[109,110]	
	North American Bullfrog	Undefined skin microbiome	Fungi	Interference competition	Negative	Unknown	[5]	

doi:10.1371/journal.ppat.1005465.t001
dynamics via translocation or time-shift experiments [4,12,14,15], and 3) detecting specificity in defensive microbe–parasite interactions [16–21]. Although tests 2 and 3 cannot be performed in human hosts, it is possible for defensive microbes and parasites of humans to be studied in model organisms, e.g., mice [22] or *Caenorhabditis elegans* [23], in which such studies could be carried out. To date, research has found that defensive microbes often interact specifically with parasites, suggesting defensive microbe–parasite coevolution [16–21]. In the case of aphid protection against parasitoids by *Hamiltonella defensa*, the specificity of microbi-mediated defence [17,19] is associated with a high diversity of toxin genes within the locus responsible for parasitoid resistance [24], indicative of rapid gene turnover due to coevolution [25]. Consistent with these data, mathematical models have revealed conditions under which defensive microbes coevolve with parasites to the point that the host becomes irrelevant [26].

Evolution of Host Dependence on Defensive Microbes

Given that defensive microbes protect hosts from parasite-induced fitness costs, they could reduce selection for costly immune-based or behavioural-based host defence mechanisms [10]. Unless defensive microbes employ host-encoded traits (e.g., host immune or tolerance mediation), selection favouring host defences could wane, making hosts dependent on microbi-mediated protection over evolutionary time. It has been speculated that the loss of immune genes in pea aphids and honeybees that possess defensive microbes are a result of the evolution of host dependence [10,27,28]; however, further research is required to test this hypothesis. Ultimately, a dependence on microbes for defence could increase host susceptibility to infection, making defensive microbe perturbation or loss (e.g., via antibiotics or diet changes) dangerous for the host [29,30].

Phylogenetic comparisons can be used to test the hypothesis that defensive microbes remove selection for host-based defences. Here, the innate resistance of host populations that harbour defensive microbes can be compared with those that do not. We can predict that host populations associating with defensive microbes should have a lower innate resistance to parasites. In support of this prediction, natural *Trachymyrmex* ant populations that harbour protective antibiotic-producing bacteria exhibit significantly reduced cleaning behaviour than populations without the bacteria [31]. The innate resistance of host populations can be assessed by removing the defensive microbe and measuring resistance to parasitic infection and/or the activity level of a host-encoded resistance trait. Given that it is rare to find natural populations that differ only in their association with a defensive microbe, an experimental evolution approach could be used, whereby host populations are coevolved with parasites in the presence or absence of a defensive microbe. The use of lab-tractable host organisms with short generation times and well-studied innate immune systems, such as *C. elegans* [32] or *Drosophila melanogaster* [33], would facilitate such experimentation and allow us to determine whether particular immune system components have been lost or are expressed less over evolutionary time.

Defensive Microbes and Parasite Virulence Evolution

Parasite virulence is defined as the infection-induced decrease in host fitness [34] and is assumed to be an inevitable consequence of host exploitation and so parasite replication [35]. The evolution of virulence can be shaped by interactions between parasites and other microbes within a host; most research to date has focused on the effects of parasite coinfections on virulence evolution (for a full review, see [36]). Critically, as mechanisms of interaction that occur between coinfecting parasites (e.g., resource competition, interference competition, and immune mediation) are similar to those between a defensive microbe and a parasite (Box 1),
Box 3. Case Examples of the Application of Defensive Microbes

Wolbachia and vector-borne parasites

Wolbachia are bacteria that live within the cells of 60%–70% of insect species and can spread vertically via manipulating host reproduction [60,61]. Two *Wolbachia* strains isolated from *Drosophila*, wMelPop and wMel, have been found to reduce the infection load of a range of human parasites, including dengue virus, malaria, yellow fever, chikungunya, West Nile virus, and filarial nematodes, when introduced into the novel hosts *Aedes aegypti* and *Anopheles gambiae* [62–68]. Consequently, there is great interest in using *Wolbachia* to halt disease transmission [53,61]. It has been suggested that host immune mediation may be the protective mechanism of *Wolbachia* within mosquitoes [62,69–71]; however, more research is required to assess the role of other mechanisms (Box 1) across different host–*Wolbachia* combinations and over evolutionary time [72]. Trial introductions of *Wolbachia*-infected mosquitoes into natural populations have so far resulted in the successful spread of the wMel strain [73,74]. More information will be critical to predicting the long-term efficacy of *Wolbachia* as a disease control strategy [75]. Specifically, determining whether the intracellular existence and vertical transmission of *Wolbachia* could constrain its evolution will indicate the potential for *Wolbachia*–parasite coevolution and so persistent disease control. Secondly, identifying the mechanism of protection will be vital in predicting whether *Wolbachia* will drive the evolution of mosquito dependence on microbe-mediated defence; if protection is indeed dominated by host immune mediation, *Wolbachia* may not remove the selection pressure for mosquito defences. Finally, characterising the mechanism(s) of *Wolbachia*-mediated defence will be important in predicting whether *Wolbachia* will select for changes in parasite virulence [75].

Human microbiome

Research into the human microbiome has uncovered information regarding microbe-mediated host defence and has highlighted promising routes for disease control (Table 2). Treatments aimed at manipulating the human microbiome commonly rely on the introduction of defensive microbes that suppress parasites by various means (Box 1). Faecal transplantation [6,76] and the introduction of probiotics [77] are two ways to use microbes to restore an unhealthy gut microbiota back to a healthy state. These methods likely rely on microbial competition to eliminate infections. Phage therapy, on the other hand, is a technique that kills targeted bacteria with hyperparasitic lytic phage viruses [78] and is another promising route to manipulate the composition of our microbiota [79]. Importantly, these methods all involve applying defensive microbes that have great evolutionary potential and so could act as persistent disease control agents in the face of parasite evolution.

Despite growing interest in the manipulation of the human microbiome to prevent or cure infectious disease, the evolutionary implications have been largely overlooked. Recent theory has shown that microbiome engineering could lead to the evolution of increased parasite virulence [38]. This prediction is based on the assumption that parasite resistance traits are also virulence traits [38]. This may often be the case, e.g., when the parasite’s response to microbe-mediated defence is to elicit host inflammation or to produce a toxin against the defensive microbe that also harms the host. Such mechanisms might be common in the use of faecal transplantation and probiotics, as microbial
predictions for virulence evolution based on coinfection might be applied to microbe-mediated defence. For example, it is predicted that if a parasite competes over resources under coinfection by evolving increased host exploitation, it will become more virulent [36]. Similarly, this prediction could be made for parasites resisting defensive microbes that function via resource competition. Consistent with this, recent theory on defensive microbes has hypothesised that if parasite resistance to microbe-mediated defence is correlated with parasite virulence, then defensive microbes will alter the evolution of parasite virulence [11,37,38]. It follows that the direction of this correlation will determine the direction of virulence evolution. For example, if parasite resistance measures are also virulent to the host, defensive microbes will select for increased virulence [38]. Alternatively, if parasite resistance and virulence traits trade off against each other, defensive microbes will select for decreased virulence.

The extent to which defensive microbes might affect parasite virulence evolution is of concern in the application of microbe-mediated disease control strategies (Box 3). If microbe-mediated defence via resource competition indeed selects for more virulent parasites, this potential outcome could influence the choice of the defensive microbe being applied (Table 2). This example thus illustrates the significance of linking the mechanism of microbial protection to parasite virulence evolution in the application of defensive microbes.

Conclusions

Defensive microbes are abundant in nature and have important fitness consequences for hosts and their parasites. By considering defensive microbes in the light of evolution, we can identify
traits that enable their coevolution with parasites and reveal their impacts on the evolution of host-based resistance and parasite virulence. Such information will help us to choose defensive microbes for optimal disease control. Ultimately, by combining our understanding of defensive microbes at the mechanistic level with current evolutionary theory, we will be better able to predict the role of defensive microbes in driving host and parasite evolution in nature and in the context of disease control.

Acknowledgments
We thank Michael Brockhurst, Charlotte Rafaluk, Adrian Smith, and the two anonymous reviewers for their comments on the manuscript.

References
1. Mendes R, Kruitj M, de Bruijn I, Dekkers E, van der Voort M, Schneider JH, et al. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science. 2011; 332(6033):1097–100. doi: 10.1126/science.1203980 PMID: 21551032.
2. Hanada RE, Pomella AW, Costa HS, Bezerra JL, Pereira JO. Endophytic fungal diversity in Theobroma cacao (cacao) and T. grandiflorum (cupuaçu) trees and their potential for growth promotion and biocontrol of black-pod disease. Fungal Biol. 2010; 114(11–12):901–10. doi: 10.1016/j.funbio.2010.08.006 PMID: 21036333.
3. Kiss L. A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Manag Sci. 2003; 59(4):475–83. doi: 10.1002/ps.689 PMID: 12701710.
4. Oliver KM, Smith AH, Russell JA. Defensive symbiosis in the real world—advancing ecological studies of heritable, protective bacteria in aphids and beyond. Functional Ecology. 2014; 28(2):341–55. doi: 10.1111/1365-2435.12133
5. Lauer A, Hernandez T. Cutaneous bacterial species from Lithobates catesbeianus can inhibit pathogenic dermatophytes. Mycopathologia. 2015; 179(3–4):259–68. doi: 10.1007/s11046-014-9838-1 PMID: 25431089.
6. Fuentes S, van Nood E, Tims E, Heikamp-de Jong I, ter Braak CJ, Keller JJ, et al. Reset of a critically disturbed microbial ecosystem: faecal transplant in recurrent Clostridium difficile infection. ISME J. 2014; 8(8):1621–33. doi: 10.1038/ismej.2014.13 PMID: 24577353.
7. Brownlie JC, Johnson KN. Symbiont-mediated protection in insect hosts. Trends Microbiol. 2009; 17(8):348–54. doi: 10.1016/j.tim.2009.05.005 PMID: 19660955.
8. Clay K. Defensive symbiosis: a microbial perspective. Functional Ecology. 2014; 28(2):293–8. doi: 10.1111/1365-2435.12258
9. Haine ER. Symbiont-mediated protection. Proc Biol Sci. 2008; 275(1633):353–61. doi: 10.1098/rspb.2007.1211 PMID: 18055391; PubMed Central PMCID: PMC2213712.
10. Parker BJ, Barrieau SM, Laughton AM, de Roode JC, Gerardo NM. Non-immunological defense in an evolutionary framework. Trends Ecol Evol. 2011; 26(5):242–8. doi: 10.1016/j.tree.2011.02.005 PMID: 21435735.
11. May G, Nelson P. Defensive mutualisms: do microbial interactions within hosts drive the evolution of defensive traits? Functional Ecology. 2014; 28(2):356–63. doi: 10.1111/1365-2435.12166
12. Brockhurst MA, Koskella B. Experimental coevolution of species interactions. Trends Ecol Evol. 2013; 28(6):367–75. doi: 10.1016/j.tree.2013.02.009 PMID: 23523051.
13. Paterson S, Vogwill T, Buckling A, Benmayor R, Spiers AJ, Thomson NR, et al. Antagonistic coevolution accelerates molecular evolution. Nature. 2010; 464(7286):275–8. doi: 10.1038/nature08798 PMID: 2082425; PubMed Central PMCID: PMC3717453.
14. Gaba S, Ebert D. Time-shift experiments as a tool to study antagonistic coevolution. Trends Ecol Evol. 2009; 24(4):226–32. doi: 10.1016/j.tree.2008.11.005 PMID: 19201504.
15. King KC, Delph LF, Jokela J, Lively CM. The geographic mosaic of sex and the Red Queen. Curr Biol. 2009; 19(17):1438–41. doi: 10.1016/j.cub.2009.06.062 PMID: 19631541.
16. Cariveau DP, Elijah Powell J, Koch H, Winfree R, Moran NA. Variation in gut microbial communities and its association with pathogen infection in wild bumble bees (Bombus). ISME J. 2014; 8(12):2369–79. doi: 10.1038/ismej.2014.88 PMID: 24763369; PubMed Central PMCID: PMC4260702.
17. Cayetano L, Vorb urger C. Symbiont-conferred protection against Hymenopteran parasites in aphids: how general is it? Ecological Entomology. 2015; 40(1):85–93. doi: 10.1111/een.12161
18. Koch H, Schmid-Hempel P. Gut microbiota instead of host genotype drive the specificity in the interaction of a natural host-parasite system. Ecology Letters. 2012; 15(10):1095–103. doi:10.1111/j.1461-0248.2012.01831.x PMID: WOS:000308402300003.

19. Rouchet R, Vorburger C. Strong specificity in the interaction between parasitoids and symbiont-protected hosts. Journal of Evolutionary Biology. 2012; 25(11):2369–75. doi:10.1111/j.1420-9101.2012.02608.x PMID: 22998667.

20. Poulsen M, Cafaro MJ, Erhardt DP, Little AE, Gerardo NM, Tebbets B, et al. Variation in Pseudonocardia antibiotic defence helps govern parasite-induced morbidity in Acromyrmex leaf-cutting ants. Environ Microbiol Rep. 2010; 2(4):534–40. doi:10.1111/j.1758-2229.2009.00098.x PMID: 22896766; PubMed Central PMCID: PMC3418327.

21. Oliver KM, Moran NA, Hunter MS. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci U S A. 2005; 102(36):12795–800. doi:10.1073/pnas.0506131102 PMID: 16120675; PubMed Central PMCID: PMC1200300.

22. Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG, et al. A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe. 2010; 8(4):369–76. doi:10.1016/j.chom.2010.09.003 PMID: 20951970; PubMed Central PMCID: PMC2972545.

23. Sifri CD, Begun J, Ausubel FM, Calderwood SB. Caenorhabditis elegans as a model host for Staphylococcus aureus pathogenesis. Infect Immun. 2010; 78(5):2208–17. PMID: 20178569; PubMed Central PMCID: PMC2872881.

24. Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A. 2009; 106(22):9063–8. doi:10.1073/pnas.0900194106 PMID: 19451630; PubMed Central PMCID: PMC2690004.

25. Kaltenpoth M, Engel T. Defensive microbial symbionts in Hymenoptera. Functional Ecology. 2014; 28(2):315–27. doi:10.1111/1365-2435.12089

26. Raffi F, Sutherland JB, Cerniglia CE. Effects of treatment with antimicrobial agents on the human colonic microflora. Therapeutics and Clinical Risk Management. 2008; 4(6):1343–58. PMID: PMC2643089.

27. Brown K, DeCoffe D, Molcan E, Gibson DL. Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease. Nutrients. 2012; 4(8):1095–119. doi:10.3390/nu4081095 PMID: PMC3448089.

28. Vila J, Cer organisms in Hymenoptera. Functional Ecology. 2014; 28(2):315–27. doi:10.1111/1365-2435.12089

29. McPherson L, Vale PF, Brown SP. Microbiome engineering could select for more virulent pathogens. bioRxiv. 2015. Preprint. http://biorxiv.org/content/early/2015/09/30/027854.
39. Tollenaere C, Permechele B, Mäkinen HS, Parratt SR, Németh MZ, Kovács GM, et al. A hyperparasite affects the population dynamics of a wild plant pathogen. Mol Ecol. 2014; 23(23):5877–87. doi: 10.1111/mec.12908 PMID: 25204419; PubMed Central PMCID: PMC4282315.

40. Mideo N. Parasiite adaptations to within-host competition. Trends Parasitol. 2009; 25(6):261–8. doi: 10.1016/j.pt.2009.03.001 PMID: 19409846.

41. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol. 2010; 8(1):15–25. doi: 10.1038/nrmicro2259 PMID: 19946288; PubMed Central PMCID: PMC2879262.

42. Gerardo NM, Parker BJ. Mechanisms of symbiont-conferred protection against natural enemies: an ecological and evolutionary framework. Current Opinion in Insect Science. 2014; 4:8–14. doi: http://dx.doi.org/10.1016/j.cois.2014.08.002.

43. Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008; 8(11):889–95. doi: 10.1038/nri2432 PMID: 18927577; PubMed Central PMCID: PMC4368196.

44. Råberg L. How to Live with the Enemy: Understanding Tolerance to Parasites. PLoS Biol. 2014; 12 (11):e1001989. doi: 10.1371/journal.pbio.1001989 PMID: 24219658.

45. Jones EO, White A, Boots M. The evolution of host protection by vertically transmitted parasites. Proc Biol Sci. 2011; 278(1707):863–70. doi: 10.1098/rspb.2010.1397 PMID: 20861052; PubMed Central PMCID: PMC3049046.

46. Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW, et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci U S A. 2014; 111(17):6359–64. doi: 10.1073/pnas.1400457111 PMID: 24733936; PubMed Central PMCID: PMC4035988.

47. King K, Brockhurst M, Vasieva O, Paterson S, Betts A, Ford S, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. The ISME Journal. 2016. E-pub ahead of print.

48. Scheuring I, Yu DW. How to assemble a beneficial microbiome in three easy steps. Ecol Lett. 2012; 15(11):1300–7. doi: 10.1111/j.1461-0248.2012.01853.x PMID: 22913725; PubMed Central PMCID: PMC3507015.

49. Clay K, Holah J, Rudgers JA. Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A. 2005; 102(35):12465–70. doi: 10.1073/pnas.0503059102 PMID: 16116093; PubMed Central PMCID: PMC1194913.

50. Lively C, Clay K, Wade M, Fuqua C. Competitive co-existence of vertically and horizontally transmitted parasites. Evolutionary Ecology Research. 2005; 7(8):1183–90. PMID: WOS:000234549900007.

51. Martinez J, Ok S, Smith S, Snoeck K, Day JP, Jiggins FM. Should Symbionts Be Nice or Selfish? Anti-viral Effects of Wolbachia Are Costly but Reproductive Parasitism Is Not. PLoS Pathog. 2015; 11(7):e1005021. doi:10.1371/journal.ppat.1005021 PMID: PMC4488530.

52. Fenton A, Johnson KN, Brownlie JC, Hurst GDD. Solving the Wolbachia Paradox: Modeling the Tri-partite Interaction between Host, Wolbachia, and a Natural Enemy. The American Naturalist. 2011; 178(3):331–42. doi: 10.1086/661247 PMID: 21828990.

53. Abeku TA, van Oortmarssen GJ, Borsboom G, de Vlas SJ, Habbema JDF. Spatial and temporal variations of malaria epidemic risk in Ethiopia: factors involved and implications. Acta Tropica. 2003; 87 (3):331–40. doi: http://dx.doi.org/10.1016/S0001-706X(03)00123-2. PMID: 12875926.

54. Jones EO, White A, Boots M. The evolution of host protection by vertically transmitted parasites. Proc Biol Sci. 2011; 278(1707):863–70. doi: 10.1098/rspb.2010.1397 PMID: 20861052; PubMed Central PMCID: PMC3049046.

55. Palmen LM, Anderson RM. Insect symbionts: a critical review of their role in the epidemiology of human diseases. Parasitology. 1987; 95(1):1–19. doi:10.1017/S0031182000046826.

56. Mideo N. Symbiont adaptations to within-host competition. Trends Parasitol. 2009; 25(6):261–8. doi: 10.1016/j.pt.2009.03.001 PMID: 19409846.

57. Kaltenpoth M, Roeser-Mueller K, Koehler S, Peterson A, Nechitaylo TY, Stubblefield JW, et al. Partner choice and fidelity stabilize coevolution in a Cretaceous-age defensive symbiosis. Proc Natl Acad Sci U S A. 2014; 111(17):6359–64. doi: 10.1073/pnas.1400457111 PMID: 24733936; PubMed Central PMCID: PMC4035988.

58. King K, Brockhurst M, Vasieva O, Paterson S, Betts A, Ford S, et al. Rapid evolution of microbe-mediated protection against pathogens in a worm host. The ISME Journal. 2016. E-pub ahead of print.

59. Scheuring I, Yu DW. How to assemble a beneficial microbiome in three easy steps. Ecol Lett. 2012; 15(11):1300–7. doi: 10.1111/j.1461-0248.2012.01853.x PMID: 22913725; PubMed Central PMCID: PMC3507015.

60. Clay K, Holah J, Rudgers JA. Herbivores cause a rapid increase in hereditary symbiosis and alter plant community composition. Proc Natl Acad Sci U S A. 2005; 102(35):12465–70. doi: 10.1073/pnas.0503059102 PMID: 16116093; PubMed Central PMCID: PMC1194913.
61. Hancock PA, Sinkins SP, Godfray HC. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases. PLoS Negl Trop Dis. 2011; 5(4):e1024. doi: 10.1371/journal.pntd.0001024 PMID: 21541357; PubMed Central PMCID: PMC3082501.

62. Moreira LA, Iturbe-Ormaetxe I, Jeffery JA, Lu G, Pyke AT, Hedges LM, et al. Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell. 2009; 139(7):1268–78. doi: 10.1016/j.cell.2009.11.042 PMID: 20064373.

63. Walker T, Johnson PH, Moreira LA, Iturbe-Ormaetxe I, Frentiu FD, McMeniman CJ, et al. The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature. 2011; 476(7361):450–3. doi: 10.1038/nature10355 PMID: 21866159.

64. Kambris Z, Blagborough AM, Pinto SB, Blagrove MS, Godfray HC, Sinden RE, et al. Wolbachia stimulates immune gene expression and inhibits plasmodium development in Anopheles gambiae. PLoS Pathog. 2010; 6(10):e1001143. doi: 10.1371/journal.ppat.1001143 PMID: 20949079; PubMed Central PMCID: PMC2951381.

65. Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL. Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011; 7(5):e1002043. doi: 10.1371/journal.ppat.1002043 PMID: 21625582; PubMed Central PMCID: PMC3098226.

66. Hussain M, Lu G, Torres S, Edmonds J, Kay B, Khromykh A, et al. Effect of Wolbachia on Replication of West Nile Virus in a Mosquito Cell Line and Adult Mosquitoes. Journal of Virology. 2013; 87(2):851–8. doi: 10.1128/JVI.01837-12 PMID: WOS:000312934400015.

67. van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, et al. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012; 6(11):e1892. doi: 10.1371/journal.pntd.0001892 PMID: 23133693; PubMed Central PMCID: PMC3486898.

68. Kambris Z, Cook PE, Phuc HK, Sinkins SP. Immune activation by life-shortening Wolbachia and reduced filarial competence in mosquitoes. Science. 2009; 326(5949):134–6. doi: 10.1126/science.1177531 PMID: 19797660; PubMed Central PMCID: PMC2867033.

69. Ye YH, Woolfit M, Rancés E, O’Neill SL, McGraw EA. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti. PLoS Negl Trop Dis. 2013; 7(8):e2362. doi: 10.1371/journal.pntd.0002362 PMID: 23951381; PubMed Central PMCID: PMC3738474.

70. Rancés E, Ye YH, Woolfit M, McGraw EA, O’Neill SL. The relative importance of innate immune priming in Wolbachia-mediated dengue interference. PLoS Pathog. 2012; 8(2):e1002548. doi: 10.1371/journal.ppat.1002548 PMID: 22383681; PubMed Central PMCID: PMC3285598.

71. Bian G, Zhou G, Lu P, Xi Z. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector. PLoS Negl Trop Dis. 2013; 7(6):e2250. doi: 10.1371/journal.pntd.0002250 PMID: 23755311; PubMed Central PMCID: PMC3675004.

72. Martinez J, Longdon B, Bauer S, Chan YS, Miller WJ, Bourtzis K, et al. Symbionts commonly provide broad spectrum resistance to viruses in insects: a comparative analysis of Wolbachia strains. PLoS Pathog. 2014; 10(9):e1004369. doi: 10.1371/journal.ppat.1004369 PMID: 25233241; PubMed Central PMCID: PMC4169468.

73. Hoffmann AA, Iturbe-Ormaetxe I, Callahan AG, Phillips BL, Billington K, Axford JK, et al. Stability of the wMel Wolbachia Infection following invasion into Aedes aegypti populations to suppress dengue transmission. PLoS Negl Trop Dis. 2014; 8(9):e3115. doi: 10.1371/journal.pntd.0003115 PMID: 25211492; PubMed Central PMCID: PMC4161343.

74. Hoffmann AA, Montgomery BL, Popovic J, Iturbe-Ormaetxe I, Johnson PH, Muzzi F, et al. Successful establishment of Wolbachia in Aedes populations to suppress dengue transmission. Nature. 2011; 476(7361):454–7. doi: 10.1038/nature10356 PMID: 21866160.

75. Bull JJ, Turelli M. Wolbachia versus dengue: Evolutionary forecasts. Evolution, Medicine, and Public Health. 2013; 2013(1):197–207. doi: 10.1093/emph/eot018 PMID: 24481199.

76. Brown WR. Fecal microbiota transplantation in treating Clostridium difficile infection. J Dig Dis. 2014; 15(6):405–8. doi: 10.1111/jdgs.12160 PMID: 24825534.

77. Kominami S, Bretl DJ, Lam V, Chakraborty R, Hayward M, Simpson P, et al. Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature. 2015; 526:719–722. doi: 10.1038/nature15524 PMID: 26479034.

78. Viertel TM, Ritter K, Horz HP. Viruses versus bacteria-novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J Antimicrob Chemother. 2014; 69(8):2326–36. doi: 10.1093/jac/dku173 PMID: 24872344.
79. Reyes A, Semenovich NP, Whiteson K, Rohwer F, Gordon JI. Going viral: next-generation sequencing applied to phage populations in the human gut. Nat Rev Microbiol. 2012; 10(9):607–17. doi: 10.1038/nrmmicro2853; PubMed Central PMCID: PMC3596094.

80. GilTurnes MS, Fenical W. EMBRYOS OF HOMARUS-AMERICANUS ARE PROTECTED BY EPIBIOTIC BACTERIA. Biological Bulletin. 1992; 182(1):105–8. doi: 10.2307/1542184 PMID: WOS: A1992K973000011.

81. Gil-Turnes MS, Hay ME, Fenical W. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science. 1989; 246(4926):116–8. doi: 10.1126/science.1120180 PMID: 24281548; PubMed Central PMCID: PMC3966124.

82. Parker BJ, Spragg CJ, Altincicek B, Gerardo NM. Symbiont-mediated protection against fungal pathogens in pea aphids: a role for pathogen specificity? Appl Environ Microbiol. 2013; 79(7):2455–8. doi: 10.1128/AEM.03193-12 PMID: 23354709; PubMed Central PMCID: PMC3623210.

83. Kroiss J, Kaltenpoth M, Schneider B, Schwinger MG, Hertweck C, Maddula RK, et al. Symbiotic Strep-tomyces provide antibiotic combination prophylaxis for wasp offspring. Nat Chem Biol. 2010; 6(4):261–3. doi: 10.1038/nchembio.331 PMID: 20190763.

84. Chouvenc T, Efstathion CA, Elliott ML, Su NY. Extended disease resistance emerging from the faecal nest of a subterranean termite. Proc Biol Sci. 2013; 280(1770):20131885. doi: 10.1098/rspb.2013.1885 PMID: 24048157; PubMed Central PMCID: PMC779336.

85. Rosengauss RB, Schultheis KF, Yalonetskaya A, Bulmer MS, DuComb WS, Benson RW, et al. Symbiont-derived β-1,3-glucanases in a social insect: mutualism beyond nutrition. Front Microbiol. 2014; 5:607. doi: 10.3389/fmicb.2014.00607 PMID: 25484878; PubMed Central PMCID: PMC4240165.

86. Xie J, Butler S, Sanchez G, Mateos M. Male killing Spiroplasma protects Drosophila melanogaster against two parasitoid wasps. Heredity (Edinb). 2014; 112(4):399–408. doi: 10.1038/hdy.2013.118 PMID: 24281548; PubMed Central PMCID: PMC3966124.

87. Hamilton PT, Peng F, Boulinier MJ, Perlman SJ. A ribosome-inactivating protein in a Drosophila defensive symbiont. Proc Natl Acad Sci U S A. 2016; 113(2):350–5. doi: 10.1073/pnas.1518648113 PMID: 26712000.

88. Zéloté F, Nicot A, Duron O, Rivero A. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system. J Evol Biol. 2012; 25(7):1243–52. doi: 10.1111/j.1420-9110.2012.02519.x PMID: 22533729.

89. Chrostek E, Marialva MS, Esteves SS, Weinert LA, Martinez J, Jiggins FM, et al. Wolbachia variants induce differential protection to viruses in Drosophila melanogaster: a phenotypic and phylogenomic analysis. PLoS Genet. 2013; 9(12):e1003896. doi: 10.1371/journal.pgen.1003896 PMID: 24348259; PubMed Central PMCID: PMC3861217.

90. Teixeira L, Ferreira A, Ashburner M. The bacterial symbiont Wolbachia induces resistance to RNA viral infections in Drosophila melanogaster. PLoS Biol. 2008; 6(12):e2. doi: 10.1371/journal.pbio.1000002 PMID: 19222304; PubMed Central PMCID: PMC2605931.

91. Panteleev DIu, Goriacheva II, Andrianov BV, Reznik NL, Lazebnyĭ OE, Kulikov AM. [The endosymbiotic bacterium Wolbachia enhances the nonspecific resistance to insect pathogens and alters behavior of Drosophila melanogaster]. Genetika. 2007; 43(9):1277–80. PMID: 17990528.

92. Hendry TA, Hunter MS, Baltrus DA. The Facultative Symbiotic Rickettsia Protects an Invasive Whitefly Against Entomopathogenic Pseudomonas syringae Strains. Appl Environ Microbiol. 2014. doi: 10.1128/AEM.02447-14 PMID: 25217020; PubMed Central PMCID: PMC4249164.

93. Barke J, Seipek RF, Grüschow S, Heavens D, Drou N, Bibb MJ, et al. A mixed community of actinomycetes produce multiple antibiotics for the fungus farming ant Acromyrnex ocellatus. BMC Biol. 2010; 8(109). doi: 10.1186/1741-7007-8-109 PMID: 20796277; PubMed Central PMCID: PMC2942817.
98. Mattoso TC, Moreira DDO, Samuels RI. Symbiotic bacteria on the cuticle of the leaf-cutting ant Acromyrmex subterraneus protect workers from attack by entomopathogenic fungi. Biology Letters. 2012; 8(3):461–4. doi:10.1098/rsbl.2011.0963 PMID: 22130174

99. Wang L, Feng Y, Tian J, Xiang M, Sun J, Ding J, et al. Farming of a defensive fungal mutualist by an attelabid weevil. ISME J. 2015; 9(8):1793–801. doi:10.1038/ismej.2014.263 PMID: 25658054

100. Herre EA, Mejía LC, Kyle DA, Rojas E, Maynard Z, Butler A, et al. ecological implications of anti-pathogen effects of tropical fungal endophytes and mycorrhizae. Ecology. 2007; 88(3):550–8. PMID: 17503581.

101. Mejía LC, Herre EA, Sparks JP, Winter K, García MN, Van Bael SA, et al. Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol. 2014; 5:479. doi:10.3389/fmicb.2014.00479 PMID: 25309519; PubMed Central PMCID: PMC4162356.

102. Arnold AE, Mejía LC, Kyle D, Rojas Ei, Maynard Z, Robbins N, et al. Fungal endophytes limit pathogen damage in a tropical tree. Proc Natl Acad Sci U S A. 2003; 100(26):15649–54. doi:10.1073/pnas.2533483100 PMID: 14671327; PubMed Central PMCID: PMC307622.

103. Mejía LC, Rojas EI, Maynard Z, Bael SV, Arnold AE, Hebbar P, et al. Endophytic fungi as biocontrol agents of Theobroma cacao pathogens. Biological Control. 2008; 46(1):4–14. http://dx.doi.org/10.1016/j.biocontrol.2008.01.012.

104. Milgroom MG, Cortesi P. Biological control of chestnut blight with hypovirulence: a critical analysis. Annu Rev Phytopathol. 2004; 42:311–38. doi:10.1146/annurev.phyto.42.040803.140325 PMID: 15283669.

105. Martín-Vivaldi M, Peña A, Peralta-Sánchez JM, Sánchez A, Ananou S, Ruiz-Rodríguez M, et al. Antimicrobial chemicals in hoopoe preen secretions are produced by symbiotic bacteria. Proceedings of the Royal Society B: Biological Sciences. 2010; 277(1678):123–30. doi:10.1098/rspb.2009.1377 PMID: PMC2842625.

106. Martín-Platero AM, Valdivia E, Ruiz-Rodríguez M, Soler JJ, Martín-Vivaldi M, Maqueda M, et al. Characterization of Antimicrobial Substances Produced by Enterococcus faecalis MRR 10–3, Isolated from the Uropygial Gland of the Hoopoe (Upupa epops). Applied and Environmental Microbiology. 2006; 72(6):4245–9. doi:10.1128/AEM.02940-05 PMID: PMC1489579.

107. Heikilä MP, Saris PE. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003; 95(3):471–8. PMID: 12911694.

108. Barr JJ, Auro R, Furlan M, Whiteson KL, Pogliano J, et al. Bacteriophage adhering to mucus provide a non-host-derived immunity. Proc Natl Acad Sci U S A. 2013; 110(26):10771–6. doi:10.1073/pnas.1305923110 PMID: 23690590; PubMed Central PMCID: PMC3696810.

109. Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, et al. Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus Cystic fibrosis isolates. Front Microbiol. 2014; 5:280. doi:10.3389/fmicb.2014.00280 PMID: 24926292; PubMed Central PMCID: PMC4046265.

110. Chu WH, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health. 2010; 57(4):258–64. doi:10.1111/j.1863-2378.2008.01224.x PMID: 19486499.

111. Pandian P, Balaraman D, Thirunavukkarasu R, George EGJ, Subaramaniyan K, Manikkan S, et al. Probiotics in aquaculture. Drug Invention Today. 2013; 5(1):55–9. doi: http://dx.doi.org/10.1016/j.dit.2013.03.003.

112. Levin BR, Bull JJ. Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol. 2004; 2(2):166–73. doi:10.1038/nrmicro822 PMID: 15040264.

113. Homan M, Orel R. Are probiotics useful in Helicobacter pylori eradication? World J Gastroenterol. 2015; 21(37):10644–53. doi:10.3748/wjg.v21.i37.10644 PMID: 26457024; PubMed Central PMCID: PMC4588086.