Static perfect fluid balls with given equation of state and cosmological constant

Christian G. Böhmer*

Institut für Theoretische Physik, Technische Universität Wien, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria

Abstract

Static and spherically symmetric perfect fluid solutions of Einstein’s field equations with cosmological constant are analysed. After showing existence and uniqueness of a regular solution at the centre the extension of this solution is discussed. Then the existence of global solutions with given equation of state and cosmological constant bounded by $4\pi \rho_b$, where ρ_b is the boundary density (given by the equation of state) of the perfect fluid ball, is proved.

Keywords: exact solutions, spherical symmetry, perfect fluid, cosmological constant

PACS numbers: 04.20.Jb, 04.40.Dg
1 Introduction

This paper analyses static, spherically symmetric perfect fluid solutions to Einstein’s field equations with cosmological constant for a given monotonic equation of state $\rho = \rho(P)$. The choice of central pressure (central energy density) and cosmological constant uniquely determines the pressure function. It is the aim of this work to extend the results presented in [12] to include the cosmological constant.

Existence and uniqueness of a global solution with given equation of state can be proved for cosmological constants satisfying $\Lambda < \frac{4\pi}{3}\rho_0$, which is given by the equation of state since $\rho_0 = \rho(P = 0)$, following the line of argument of [12].

The existence of such global solutions is quite important because assuming their existence, Buchdahl [5] showed that the total mass of a fluid ball is bounded by its radius. He showed the strict inequality $M < \left(\frac{4}{9}\right)R$, which holds for fluid balls in which the density does not increase outwards. It implies that radii of fluid balls are always larger than the black-hole event horizon. It is expected that perfect fluid balls with cosmological constant are larger than the black hole event horizon but still be smaller than the cosmological event horizon.

This paper is organised as follows: In section 2 Einstein’s field equations and the Buchdahl variables are presented, in the beginning of section 3 uniqueness and existence of a regular solution at the centre is shown. In theorem 3 the extension of the solution is discussed. For fluid balls the Buchdahl inequality with cosmological term is obtained in theorem 5. Solutions without singularities are constructed in section 5. Finally remarks on the finiteness of solutions are given and moreover some conclusions are presented.

2 Field equations and Buchdahl variables

The most general static and spherically symmetric

$$ds^2 = -e^{\nu(r)}dt^2 + e^{a(r)}dr^2 + r^2(d\theta^2 + \sin^2\theta d\phi^2),$$

in Einstein’s theory of gravity yields three independent field equations with cosmological constant

$$\frac{1}{r^2}e^{\nu(r)}\frac{d}{dr}\left(r - re^{-a(r)}\right) - \Lambda e^{\nu(r)} = 8\pi \rho(r)e^{\nu(r)},$$

$$\frac{1}{r^2}\left(1 + r\nu'(r) - e^{a(r)}\right) + \Lambda e^{a(r)} = 8\pi P(r)e^{a(r)},$$

$$-\frac{\nu'(r)}{2} (P(r) + \rho(r)) = P'(r),$$

for an isotropic perfect fluid. Note that one can either use the three field equations which imply conservation of energy-momentum or two of the field equations together with the conservation equation which we do.

One function can be chosen freely since these are three independent ordinary differential equations for four unknown functions. The most physical assumption
is to prescribe an equation of state \(\rho = \rho(P) \). Integration of (2) gives
\[
e^{-a(r)} = 1 - 2w(r)r^2 - \frac{\Lambda}{3}r^2,
\] (5)
where the constant of integration is put to zero demanding regularity at the centre and where \(w(r) \) is the mean density up to \(r \) defined by
\[
w(r) = \frac{m(r)}{r^3}, \quad m(r) = 4\pi \int_0^r s^2 \rho(s)ds.
\] (6)
Eliminating the function \(\nu'(r) \) from the field equations yields the Tolman-Oppenheimer-Volkoff \([11, 16, 14]\) equation (TOV-\(\Lambda \))
\[
P'(r) = -r \left(\frac{4\pi P(r) + w(r) - \frac{\Lambda}{3}}{1 - 2w(r)r^2 - \frac{\Lambda}{3}r^2} \right).
\] (7)
With given equation of state the conservation equation leads to
\[
\nu(r) = -\int_{P_c}^{P(r)} \frac{2dP}{P + \rho(P)},
\] (8)
where \(P_c \) is the central pressure. With \(m(r) \), equations (6) and (7) are forming an integro-differential system for \(\rho(r) \) and \(P(r) \). However, differentiating the mean density \(w(r) \) with respect to \(r \) implies
\[
w'(r) = \frac{1}{r} \left(4\pi \rho(P(r)) - 3w(r) \right).
\] (9)
Therefore for a certain \(\rho = \rho(P) \), equations (6) and (7) are forming a system of first order differential equations in \(P(r) \) and \(w(r) \).
To extract the TOV-\(\Lambda \) equation from Einstein’s field equations the metric function \(\nu(r) \) was eliminated. On the other hand, one may eliminate the pressure for which Buchdahl \([5]\) introduced new variables
\[
y^2 = e^{-a(r)} = 1 - 2w(r)r^2 - \frac{\Lambda}{3}r^2,
\] (10)
\[
\zeta = e^{\nu/2} ,
\] (11)
\[
x = r^2 ,
\] (12)
which we have supplemented by a cosmological constant. The second field equation (3) written in those variables leads to
\[
8\pi P - \frac{2}{3}\Lambda = 4y^2 \frac{\zeta_x}{\zeta} - 2w.
\] (13)
After differentiating this with respect to \(x \) and using the conservation equation (4) the pressure can be eliminated. After some algebra one arrives at
\[
(y\zeta_x)_x - \frac{1}{2} \frac{w_x \zeta}{y} = 0 ,
\] (14)
which is surprisingly similar to the square of the Weyl tensor

\[C_{abcd}C^{abcd} = \frac{64}{3} y^2 \left((y\zeta, x)_x + \frac{1}{2} \frac{w, x \zeta}{y} \right)^2 x^2. \]

(15)

This implies that the constant density solutions are conformally flat [13], since \(w, x = 0 \) and therefore with (14) gives \((y\zeta, x)_x = 0\).

3 Existence of unique regular solutions

Since the field equation for a static and spherically symmetric perfect fluid with given equation of state reduce to a system of singular first order differential equations it is our first aim to apply theorem 1 of [12] to the resulting system with cosmological constant.

Theorem 1 (Rendall and Schmidt, 1991) Let \(V \) be a finite dimensional real vector space, \(N : V \rightarrow V \) a linear mapping, \(G : V \times I \rightarrow V \) a \(C^\infty \) mapping and \(g : I \rightarrow V \) a smooth mapping, where \(I \) is an open interval in \(\mathbb{R} \) containing zero. Consider the equation

\[s \frac{df}{ds} + Nf = sG(s, f(s)) = g(s), \]

(16)

for a function \(f \) defined on a neighbourhood of \(0 \) and \(I \) and taking values in \(V \). Suppose that each eigenvalue of \(N \) has a positive real part. Then there exists an open interval \(J \) with \(0 \in J \subset I \) and a unique bounded \(C^1 \) function \(f \) on \(J \setminus 0 \) satisfying (16). Moreover \(f \) extends to a \(C^\infty \) solution of (16) on \(J \) if \(N, G \) and \(g \) depend smoothly on a parameter \(z \) and the eigenvalues of \(N \) are distinct then the solution also depends smoothly on \(z \).

Note that (9) is singular at the centre whereas (7) is not, however using \(\rho = \rho_c + x \rho_1 \), where \(\rho_c \) is the central density, we find for a given equation of state

\[x \frac{dw}{dx} + \frac{3}{2} w = 2\pi \rho_c + 2\pi x \rho_1, \]

(17)

\[x \frac{d\rho_1}{dx} + \rho_1 = - \left(\frac{dP}{d\rho} \right)^{-1} \frac{1}{2} \frac{1}{1 - 2wx - \frac{\Lambda}{3x}} \frac{1}{1 - 2wx - \frac{\Lambda}{3x}} \left(P + \rho_c + x \rho_1 \right). \]

(18)

With the help of the corresponding pressure relation \(P = P_c + x P_1(\rho_1) \) and by noting that

\[\left(1 - 2wx - \frac{\Lambda}{3x} \right)^{-1} = 1 + \left(2wx + \frac{\Lambda}{3x} \right) \times \left(1 - 2wx - \frac{\Lambda}{3x} \right)^{-1}, \]

(19)
we find that the matrix N of (16) has the following form

$$
\begin{pmatrix}
\frac{3}{2} & 0 \\
\frac{P_c + \rho_c}{2dP/d\rho(P_c)} & 1
\end{pmatrix}.
$$

(20)

Since the eigenvalues of N are independent of the cosmological constant the system has a unique bounded solution in the neighbourhood of the centre, which is indeed C^∞. This implies the existence of a unique, smooth solution to (7) and (9) or (17) and (18) near the centre.

In [6] it is claimed that for a fixed equation of state and cosmological constant the choice of central pressure (and by virtue of the equation of state the central density) do not uniquely determine the solution. The existence and uniqueness theorem above disproves this statement.

Uniqueness of the solution at the centre immediately implies:

Theorem 2 Let an equation of state $\rho(P)$, a central pressure P_c and the cosmological constant Λ be given such that

$$
4\pi P_c + \frac{4\pi}{3}\rho(P_c) - \frac{\Lambda}{3} = 0,
$$

(21)

where $(4\pi/3)\rho_c = (4\pi/3)\rho(P_c) = w_c$ so that also the central energy density is given by the equation of state. Then the unique solution is the Einstein static universe with $\Lambda = \Lambda_E$.

For well defined right-hand sides of (17) and (18) standard theorems for differential equations guarantee that the solution can be extended. This implies that the solution is extendible if the pressure is finite $P < \infty$ and if the denominator of (18) is non-zero, i.e. $y = 1 - 2wx - (\Lambda/3)x > 0$. Since the second condition depends on the cosmological constant, new properties may arise. Moreover it must be clarified whether $y = 0$ corresponds to a coordinate singularity of the spacetime, as in the constant density case [4], or to a geometric singularity. In Buchdahl variables (10)–(12) the line element (1) takes the form

$$
ds^2 = -\zeta(x)^2 dt^2 + \frac{dx^2}{4xy(x)^2} + x(d\theta^2 + \sin^2 \theta d\phi^2),
$$

(22)

which implies the following non-vanishing components of the Riemann tensor

$$
R_{\phi t}^{\phi t} = R_{\phi t}^{\phi t} = -2y(x)^2 \frac{\zeta'(x)}{\zeta(x)},
$$

(23)

$$
R_{x\phi}^{x\phi} = R_{x\phi}^{x\phi} = -2y(x)y'(x),
$$

(24)
with the remaining two given by

\[R_{\theta\phi} = \frac{1 - y(x)^2}{x}, \]
(25)

\[R_{xt} = -4xy(x)^2 \frac{\zeta''(x)}{\zeta(x)} - 2y(x)^2 \frac{\zeta'(x)}{\zeta(x)} - 4xy(x)y'(x)\frac{\zeta'(x)}{\zeta(x)}, \]
(26)

which indicates that \(y \to 0 \) corresponds to a coordinate singularity rather than a geometric singularity if \(y'(x) \) and \(1/\zeta(x) \) behave well as \(y \to 0 \).

The following theorem clarifies the extendibility of solutions.

Theorem 3 Suppose the pressure is decreasing near the centre, which means

\[4\pi P_c + \frac{4\pi}{3} \rho(P_c) - \frac{\Lambda}{3} > 0. \]
(27)

Then the solution is extendible and the pressure is monotonically decreasing if

\[4\pi P + w - \Lambda/3 > 0. \]
(28)

Proof. Assume that \(\rho = \rho(P) \), \(P_c \) and \(\Lambda \) are given such that \(P \) is decreasing near the centre, then \(w(x) \leq 0 \). Since \(y > 0 \) equation (14) implies

\[(y\zeta)_x \leq 0. \]
(29)

Rewriting (29) gives

\[y\zeta_x = \frac{\zeta}{2y} \left(4\pi P + w - \frac{\Lambda}{3} \right), \]
(30)

next using the implication of (29), leads to

\[y\zeta_x \leq (y\zeta_x)(0). \]
(31)

Together with the explicit expression of \(y\zeta_x \) in (29), this finally shows

\[y \geq \frac{4\pi P + w - \frac{\Lambda}{3}}{4\pi P_c + w_c - \frac{\Lambda}{3}}. \]
(32)

Therefore the Buchdahl variable \(y \) cannot vanish before the numerator does and consequently the right-hand sides of (17) and (18) are well defined, hence one can extend the solution if \(4\pi P + w - \Lambda/3 > 0 \).

Since \(y > 0 \) and \(4\pi P + w - \Lambda/3 > 0 \) the sign of the right-hand side of (18) is strictly negative. Therefore the energy density and because of the equation of state the pressure are monotonically decreasing functions. \(\square \)

The last theorem contained the extendibility condition of solutions, which also allows to show the existence of global solutions.
Theorem 4 Suppose an equation of state is given such that \(\rho \) is defined for \(p \geq 0 \), non-negative and continuous for \(p \geq 0 \), \(C^\infty \) for \(p > 0 \) and suppose that \(d\rho/dp > 0 \) for \(p > 0 \). Furthermore assume that the cosmological constant be given such that \(\Lambda < 4\pi \rho_0 \).\(^1\)

Then the pressure is decreasing near the centre and there exists for any positive value of the central pressure \(P_c \) a unique inextendible static and spherically symmetric solution of Einstein's field equations with cosmological constant having a perfect fluid source with equation of state \(\rho(P) \).

If \(\Lambda \leq 0 \) the matter either occupies the whole spacetime with \(\rho \) tending to \(\rho_\infty \) as \(r \) tends to infinity or the matter has finite extent. In the second case a unique Schwarzschild-anti-de Sitter solution attached as an exterior field.

If the cosmological constant satisfies \(0 < \Lambda < 4\pi \rho_0 \), the matter has always finite extent and a unique Schwarzschild-de Sitter solution attached as an exterior field.

Proof. If the cosmological constant is given such that \(\Lambda < 4\pi \rho_0 \) then

\[
0 < \frac{4\pi}{3} \rho_b - \frac{\Lambda}{3} < 4\pi P_c + \frac{4\pi}{3} \rho(P_c) - \frac{\Lambda}{3} ,
\]

and the pressure is decreasing near the centre by \(\ref{eq:pressure_decrease} \).

Since the pressure is decreasing near the centre the denominator of \(\ref{eq:denominator} \) is some positive number. Furthermore one can estimate the numerator of \(\ref{eq:denominator} \) by

\[
y \geq \frac{4\pi P + w - \frac{\Lambda}{3}}{4\pi P_c + w_c - \frac{\Lambda}{3}} ,
\]

\[
\geq \frac{w_b - \frac{\Lambda}{3}}{4\pi P_c + w_c - \frac{\Lambda}{3}} ,
\]

\[
\geq \frac{4\pi}{3} \rho_b - \frac{\Lambda}{3} ,
\]

(33)

and conclude that if

\[
\Lambda < 4\pi \rho_0 ,
\]

(35)

the Buchdahl variable \(y \) cannot vanish before the pressure does. The coordinate \(x_b \) where the pressure vanishes will be taken as the definition of the stellar object's radius \(R \).

\(\Lambda \leq 0 \)

If \(\Lambda \leq 0 \) the matter can occupy the whole space because \(\ref{eq:denominator} \) implies positivity of \(y \).

\(^{1}\)Assumptions on the equation of state could be weakened according to \(\ref{eq:state_assumptions} \) and \(\ref{eq:state_p_decrease} \). Moreover the line of argument presented in \(\ref{eq:state_p_decrease} \) can surely be applied for cosmological constants having the derived bound.
Suppose that $P(x_b) = 0$, at the corresponding radius R the Schwarzschild-anti-de Sitter solution is joined uniquely by the condition $M = m(R)$. In this manner the metric is C^0 only, because the density at the boundary may be non-zero. The metric is C^1 at $P(R) = 0$ if Gauss coordinates relative to the hypersurface $P(R) = 0$ are used. If the boundary density does not vanish the Ricci tensor has a discontinuity. Thus the metric is at most C^1. Without further assumptions on the boundary density this cannot be improved.

Now assume that $P(x) > 0$ for all $x > 0$. $P(x)$ is monotonically decreasing, therefore $\lim_{x \to \infty} P(x) = P_\infty$ exists. This implies that the pressure gradient tends to zero as $x \to \infty$. Because $y^{-1} \to 0$ as $x \to \infty$ equation (7) does not imply that $P_\infty = 0$, which it does if $\Lambda = 0$. Thus the equation of state only gives $\rho \to \rho_\infty = \rho(P_\infty)$ as $x \to \infty$.

$0 < \Lambda < 4\pi\rho_b$

If $0 < \Lambda < 4\pi\rho_b$ then one can estimate the pressure at the possible coordinate or geometric singularity \hat{r} defined by $y(\hat{r}) = 0$ since

$$\frac{\Lambda}{3} < \frac{4\pi}{3}\rho_b \leq \rho_b \leq \rho(r),$$

which holds for all r. Therefore

$$P(\hat{r}) = \frac{1}{4\pi} \left(\frac{\Lambda}{3} - w(\hat{r}) \right) < 0.$$ (37)

Hence there exists R such that $P(R) = 0$. Since the pressure is decreasing and $P(\hat{r}) < 0$ it follows that $R < \hat{r}$.

Thus if the cosmological constant is positive and $\Lambda < 4\pi\rho_b$ then the pressure always vanishes at some x_b. At the corresponding radius R the Schwarzschild-de Sitter solution is joined uniquely by the same condition $M = m(R)$. The metric is at most C^1 because the boundary density is larger than zero, this cannot be improved. \square

It is quite remarkable that this upper bound $\Lambda < 4\pi\rho_b$ was found independently by considering consistency of the Newtonian limit [9], the gravitational equilibrium via the virial theorem [10] and was also found in [15] by demanding stability of circular orbits. This “coincidence” deserves a closer inspection, which was already initiated in [1].

4 Buchdahl inequality

The importance of Buchdahl’s inequality was already discussed in the introduction. In the following its generalisation with cosmological constant is derived, see e.g. [3] without the cosmological term and [7] with cosmological constant following Buchdahl’s original approach.
In the proof of the following theorem the field equations with constant density, denoted with a tilde, are solved with the help of Buchdahl variables and then this solution is compared with a general decreasing solution. The boundary mean density of the general solution defines the constant density solution that is used for comparison.

Theorem 5 Let the cosmological constant be given such that \(\Lambda < 4\pi \rho_b \). Then for solutions having finite radius there holds

\[
\sqrt{1 - 2\tilde{w} \tilde{\zeta} R^2 - \frac{\Lambda}{3} R^2} \geq \frac{1}{3} - \frac{\Lambda}{9\tilde{w}_b}.
\]

(38)

Proof. Assume that \(\rho(P), P_c \) and \(\Lambda \) are given such that the pressure is decreasing near the centre. Then by theorem 3 the pressure and mean density are decreasing functions and equation (14) implies

\[
(y\tilde{\zeta},_x)_x = 0, \quad \tilde{y}\tilde{\zeta}_x = \frac{1}{2} \tilde{\omega} - \frac{\Lambda}{6},
\]

(39)

where the constant of integration is obtained from (13) evaluated at the boundary which can be used to integrate (39). Let us rewrite the right-hand side of (39) as

\[
\tilde{y}\tilde{\zeta}_x = \left(2\tilde{\omega} + \frac{\Lambda}{3}\right) \left(\frac{1}{2} \tilde{\omega} - \frac{\Lambda}{6}\right) \left(2\tilde{\omega} + \frac{\Lambda}{3}\right)^{-1},
\]

(40)

and substitute in \(-2\tilde{y}\tilde{\eta}_x = 2\tilde{\omega} + \Lambda/3\) for the first factor, divide by \(\tilde{y}\) which after integration yields

\[
\tilde{\zeta}(x) = -\frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}} \tilde{\eta}(x) + \tilde{\zeta}(0) + \frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}}.
\]

(41)

From equation (29) we conclude \(\tilde{y}\tilde{\zeta},_x = (y\zeta),_b < y\zeta,_,\) so that with \(\tilde{y} > y\) one finds

\[
\zeta(x) \geq \tilde{\zeta}(x) = -\frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}} \tilde{\eta}(x) + \tilde{\zeta}(0) + \frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}}.
\]

(42)

Evaluating this at the boundary and using that \(\zeta\) can be normalised such that \(\zeta_b = y_b\), it is found that

\[
y_b \geq -\frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}} y_b + \tilde{\zeta}(0) + \frac{\tilde{\omega} - \frac{\Lambda}{3}}{2\tilde{\omega} + \frac{\Lambda}{3}}.
\]

(43)

Since \(\tilde{\zeta}(0)\) is a positive number, some algebra finally leads to the generalised Buchdahl inequality

\[
y_b \geq \frac{1}{3} - \frac{\Lambda}{9\tilde{w}}.
\]

(44)
Now we compare solutions with decreasing mean density and solution with constant density, where the constant density corresponds to the boundary mean density of the general solution. Thus (44) yields

\[y_b \geq \frac{1}{3} - \frac{\Lambda}{9w_b}, \tag{45} \]

which reads more explicitly

\[\sqrt{1 - 2w_b R^2 - \frac{\Lambda}{3} R^2} \geq \frac{1}{3} - \frac{\Lambda}{9w_b}, \tag{46} \]

and which holds for all monotonically decreasing densities. □

By using the definition of the boundary mean density \(w_b = M/R \) one can reformulate (46) arrive at

\[3M < \frac{2}{3} R + R \sqrt{\frac{4}{9} - \frac{\Lambda}{3} R^2}, \tag{47} \]

a generalised Buchdahl inequality that takes the cosmological constant into account. In [7] the \(2M/R \) version of (47) was for example used to calculate the surface redshift with \(\Lambda \). For comparison, note the in [7] the cosmological constant is rescaled by \(8\pi \).

5 Solutions without singularities

The last two sections showed the existence of stellar models for cosmological constants \(\Lambda < 4\pi \rho_b \). Equation (47) implies that the boundary of the stellar object has a lower bound given by the black-hole event horizon and an upper bound given by the cosmological event horizon. The upper bound for positive cosmological constants.

Stellar models with \(\Lambda \leq 0 \) have a lower bound given by the black-hole event horizon. At the boundary the Schwarzschild-anti-de Sitter solution attached as an exterior field. Therefore stellar models with \(\Lambda \leq 0 \) have no singularities. Solutions with cosmological constant satisfying \(\Lambda \leq 0 \) are globally static.

For positive cosmological constants the situation is different. But one can also construct solutions without singularities.

At the boundary \(r = R \), defined by \(P(R) = 0 \) the Schwarzschild-de Sitter solution is joined \(C^1 \) by the usual procedure introducing Gauss coordinates. The surface \(r = R \) can also be found in the vacuum region where the time-like Killing vector is past directed. This means that a second stellar object can be put in the spacetime:

Remarks on finiteness of the radius

So far it has been shown that given an equation of state, a central pressure and a cosmological constant there exist a unique model with finite or infinite extent.
Figure 1: Penrose-Carter diagram with two stellar objects having radii R which lie between the two horizons. Since the group orbits are increasing up to R the vacuum part contains the cosmological event horizon r_{++}. This solution with two objects has no singularities. Because of regions II_C and III_C this spacetime is not globally static.

This depends on the given equation of state and on the cosmological constant. As was proved in theorem 4 solutions are always finite for positive cosmological constants. If $\Lambda \leq 0$ either the pressure vanishes for some finite radius or the density is always positive and tends to ρ_∞ as r tends to infinity, which depends on the equation of state; in $[12]$ necessary and sufficient conditions can be found.

6 Conclusions and Outlook

In this paper existence and uniqueness of static and spherically symmetric perfect fluid solutions with given equation of state for cosmological constants satisfying $\Lambda < 4\pi\rho_b$ was proven. It would be interesting to extend these proofs to any value of the cosmological constant. The existence of these solutions is conjectured in $[1]$.

One could start studying this system numerically or by using generating function techniques. An investigation of the Riemann tensor as outlined might also be a good starting point.

Furthermore the relation of the different theories that give rise to the same upper bound must be analysed and understood.

Acknowledgements

This article is based on the author’s unpublished diploma thesis which was supervised by Bernd G. Schmidt. I am grateful to thank Herbert Balasin, Daniel Grumiller and Wolfgang Kummer for their constant support and moreover I thank Marek Nowakowski for his suggestions regarding this project.
This work has partly been supported by project P-15449-N08 of the Austrian Science Foundation (FWF) and is part of the research project Nr. 01/04 Quantum Gravity, Cosmology and Categorification of the Austrian Academy of Sciences (ÖAW) and the National Academy of Sciences of Ukraine (NASU).

References

[1] A. Balaguera-Antolínez, C. G. Böhmer, and M. Nowakowski. On astrophysical bounds of the cosmological constant. 2004. gr-qc/0409004.

[2] T. W. Baumgarte and A. D. Rendall. Regularity of spherically symmetric static solutions of the Einstein equations. Class. Quant. Grav., 10:327–332, 1993.

[3] R. Beig and B. G. Schmidt. Time-independent gravitational fields. Lect. Notes Phys., 540:325–372, 2000.

[4] C. G. Böhmer. Eleven spherically symmetric constant density solutions with cosmological constant. Gen. Rel. Grav., 36:1039–1054, 2004.

[5] H. A. Buchdahl. General relativistic fluid spheres. Phys. Rev., 116:1027–1034, 1959.

[6] C. B. Collins. Comments on the static spherically symmetric cosmologies of Ellis, Maartens, and Nel. J. Math. Phys., 24:215–219, 1983.

[7] M. K. Mak, Jr. Dobson, P. N., and T. Harko. Maximum mass-radius ratio for compact general relativistic objects in Schwarzschild-de Sitter geometry. Mod. Phys. Lett., A15:2153–2158, 2000.

[8] M. Mars, M. M. Martin-Prats, and J. M. M. Senovilla. The $2m \leq r$ property of spherically symmetric static spacetimes. Phys. Lett., A218:147–150, 1996.

[9] M. Nowakowski. The consistent Newtonian limit of Einstein’s gravity with a cosmological constant. Int. J. Mod. Phys., D10:649–662, 2001.

[10] M. Nowakowski, J.-C. Sanabria, and A. Garcia. Gravitational equilibrium in the presence of a positive cosmological constant. Phys. Rev., D66:023003, 2002.

[11] J. R. Oppenheimer and G. M. Volkoff. On massive neutron cores. Phys. Rev., 55:374–381, 1939.

[12] A. D. Rendall and B. G. Schmidt. Existence and properties of spherically symmetric static fluid bodies with a given equation of state. Class. Quant. Grav., 8:985–1000, 1991.
[13] H. Stephani. Über Lösungen der Einsteinschen Feldgleichungene, die sich in einen fünfdimensionalen flachen Raum einbetten lassen. Commun. Math. Phys., 4:137–142, 1967.

[14] Z. Stuchlík. Spherically symmetric static configurations of uniform density in spacetimes with a non-zero cosmological constant. Acta Physica Slovaca, 50:219–228, 2000.

[15] R. A. Sussman and X. Hernandez. On the Newtonian limit and cut–off scales of isothermal dark matter halos with cosmological constant. Mon. Not. Roy. Astron. Soc., 345:871, 2003.

[16] R. C. Tolman. Static solutions of Einstein’s field equations for spheres of fluid. Phys. Rev., 55:364–373, 1939.