Supercritical carbon dioxide (SC-CO₂) extraction of essential oil from *Swietenia mahagoni* seeds

N S M Norodin¹,², L M Salleh³,⁴, Hartati⁵ and N M Mustafan⁵,⁶

¹ Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, UniversitiTeknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
² Center of Lipids Engineering and Applied Research (CLEAR), Ibnu Sina Institute Scientific & Industrial Research (Ibnu Sina ISIR), Universiti Teknologi Malaysia, 81300 Johor Bahru, Johor, Malaysia
³ Department of Biology, Universitas Negeri Makassar, South Sulawesi, Indonesia
⁴ Natural Product Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor Darul Ehsan, Malaysia

E-mail: ¹nursalsabilmdnorodin@gmail.com, ²i.liza@cheme.utm.my, ³tati_biounm@yahoo.co.id, ⁴musaadah@frim.gov.my

Abstract. *Swietenia mahagoni* (Mahogany) is a traditional plant that is rich with bioactive compounds. In this study, process parameters such as particle size, extraction time, solvent flowrate, temperature and pressure were studied on the extraction of essential oil from *Swietenia mahagoni* seeds by using supercritical carbon dioxide (SC-CO₂) extraction. *Swietenia mahagoni* seeds was extracted at a pressure of 20-30 MPa and a temperature of 40-60°C. The effect of particle size on overall extraction of essential oil was done at 30 MPa and 50°C while the extraction time of essential oil at various temperatures and at a constant pressure of 30 MPa was studied. Meanwhile, the effect of flowrate CO₂ was determined at the flowrate of 2, 3 and 4 ml/min. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO₂ of 4 ml/min, at a pressure of 30 MPa and the temperature of 60°C were the best conditions to obtain the highest yield of essential oil.

1. Introduction

Swietenia mahagoni is also known as ‘tunjuk langit’ in Malaysia is used traditionally to treat various diseases such as diabetes and high blood pressure [1]. *S. mahagoni* tree is 30 meters or taller [2] and the wood, usually being used for making furniture [3]. Meanwhile, the bark can be used for natural colorant [4]. The fruit of *S. mahagoni* is woody and consisting of capsules containing winged seeds [5]. Whereas, the seed of *S. mahagoni* can be obtained by removing the wing. In Malaysia, the raw seeds were used for treating hypertension and diabetes [6]. In addition, *S. mahagoni* seeds have been reported to have various biological activities such as anti-inflammatory activity, anticancer and antitumor activity [7] and also antidiabetic activity [8].

Also, carbon dioxide (CO₂) is the most frequent solvent used that is environmental friendly (fairly non-toxic), low cost and can be easily removed from the extract [9]. The elimination of CO₂ is easily achieved since CO₂ is in a gas state at room temperature. In addition, CO₂ in the supercritical state is in a moderate critical temperature (31.3°C) and pressure (7.38 MPa). Supercritical state is when gas and liquid are indistinguishable where at this state it is compressible but possessing a density of a liquid. In a word, supercritical CO₂ makes a good solvent because of the gas-like state that attributed the low viscosity and high diffusion coefficient and the liquid-like state that gave the solvating power [10].

2. Methodology

2.1. Materials and reagents

Swietenia mahagoni seeds were bought in the local market. The seeds were rinsed with tap water to remove any foreign particles and dirt prior to drying. Then, the cleaned seeds were cut into small pieces and dried by using oven at temperature of 50°C for a week to remove moistures. The seeds were ground by using a blender and sieved to approximate 0.25, 0.50 and 0.75 mm of particle size. Commercial Second International Conference on Chemical Engineering (ICCE) UNPAR IOP Publishing

IOP Conf. Series: Materials Science and Engineering 162 (2017) 012030 doi:10.1088/1757-899X/162/1/012030

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd
grade liquid carbon dioxide (purity 99.99%) used in supercritical carbon dioxide extraction was purchased from Kras, Instrument and Services, Johor, Malaysia.

2.2. Supercritical Carbon dioxide (SC-CO$_2$) extraction
CLEAR supercritical fluid extraction (SFE) machine in Center of Lipids Engineering and Applied Research (CLEAR), Universiti Teknologi Malaysia consisted of CO$_2$ gas cylinder, CO$_2$ controller pump (Lab Alliance), co-solvent pump (Lab Alliance), oven (Memmert, Germany), 10 ml stainless steel extraction vessel, pressure gauge (Swagelock, Germany), automatic back pressure regulator (Jasco BP 2080- Plus) and restrictor valve. A schematic diagram of CLEAR SC-CO$_2$ unit is illustrated in figure 1.

![Figure 1. The schematic design of the SC-CO$_2$ unit](image)

Five gram of sample was placed in 10 ml stainless steel extraction vessel and sealed tightly in the oven. Set all the parameters (temperature, pressure and flowrate of CO$_2$), the extraction process started after all the parameters were attained. Lastly, depressurized the system and the oil yields were collected. The parameters used in extraction process is presented in table 1.

Parameter	Range/value
Temperature (°C)	40-60
Pressure (MPa)	20-30
Flowrate of CO$_2$ (ml/min)	2.00-4.00
Particle size (mm)	0.25-0.75
Mass of sample (g)	5.00
Extraction time (min)	0-180

Collected oil yield was calculated as percentage of oil yield by using equation below:

$$\text{Oil yield (\%) = \frac{\text{Mass of oil extract (g)}}{\text{Mass of sample (g)}} \times 100} \quad (\text{Eq. 1})$$

3. Result and Discussion
3.1. Particle size
Particle size is one of the important factors to be considered in the extraction of S. mahagoni seeds. In a word, as the surface area increases, the extraction rate also increases. Hence, smaller particle size will increase the extraction yield because the mass transfer will increase with smaller particle size of the sample. But the downside is as the sample is ground to small, the extraction rate may decrease due to channeling.
effect inside the extraction vessel [11]. Channeling effect in the extraction vessel is due to over fine particle size of the sample that reduce the contact between the sample and solvent. Supported by Salleh (2010), fine powder with smaller particle size can increase the extraction rate but it is also lead to the difficulty in maintaining the flow rate to obtain a good optimization of SC-CO$_2$ extraction [12].

![Figure 2. Effect of particle size on extraction yield](image)

Figure 2 shows that particle size of 0.5 mm gave the highest percentage of oil yield which is 20.68% ± 5.25 compared to 0.75 mm and 0.25 mm. From the figure, it shows that when the particle size is too small, the extraction yield is decreased. This is because when the particle size is too fine, the porosity of the sample is reduced and slower CO$_2$ penetration into the sample, hence lower the extraction yield. In this study, *S. mahagoni* seeds are naturally oily thus it may easily clumped together in the extraction vessel hence reduce the surface area. Similarly with the study in the extraction of rubber seed, smaller particle size (≤0.355 mm) can easily clump together, however larger particle size (0.50mm) do not clump together easily and provide larger surface area [13]. It is resulted that the particle size of 0.5 mm is considered for this SC-CO$_2$ extraction.

3.2. Extraction time
The determination of the extraction time for the extraction of *S. mahagoni* seeds by using SC-CO$_2$ extraction was performed. The conditions used were pressure of 20, 25 and 30 MPa, with the temperature of 50°C. The flow rate used in this study was 2 ml/min. The yield of extract was collected every 20 minutes over 180 minutes of extraction time. The results of the best extraction time are presented in Figure 3.
The figure displays the oil yield in percent versus the extraction time in minutes. At pressure of 20 MPa, it took more than 120 minutes to achieve the asymptomatic value. The highest yield (0.4306%) was at the highest pressure of 30 MPa within 120 minutes. Lina et al., (2010) also obtained similar result with this study where the seed oil of Microula sikkimensis increased as extraction time increased [14]. The same trend was found in the study of saffron extract by Lozano et al. (2000) [15]. In conclusion, the extraction time of S. mahagoni seeds was performed at 120 min constantly for each sample throughout this study in order to obtain asymptotic value to ensure maximum extraction yield was extracted.

3.3. Flowrate
Flow rate of solvent (example: CO$_2$) is another factor affecting the extraction process to produce a high yield of extract by using supercritical carbon dioxide (CO$_2$) [16]. By increasing the flow rate of solvent, also reduce the extraction time and mass transfer resistance.

As shown in figure 4, the overall oil yield increase with the increasing of flow rate at constant pressure of 30 MPa and temperature of 50°C. The extraction of borage oil by SC-CO$_2$ extraction showed higher flow rate gives higher yield of borage seed oil [17]. Similarly, in the extraction of flaxseed showed that at higher
flow rate (3 L/min) recovered higher oil yield [18]. Furthermore, by increasing the SC-CO\(_2\) flowrate, the intermolecular interaction between solvent and the solute increase due to the increase of CO\(_2\) molecules per volume in the extraction vessel [19]. In this condition, the mass transfer increases as the flowrate increases. Hence, 4 ml/min of CO\(_2\) was selected as the best flowrate for the extraction of \textit{S. mahagoni} seeds.

3.4. Temperature and Pressure
The extraction of \textit{S. mahagoni} seeds by using SC-CO\(_2\) extraction shows that the highest yield (14.45 \%) obtained was at the maximum level (30MPa, 60°C) meanwhile lowest (1.49\%) at (20MPa, 60°C) as shown in Table 2. At higher temperature, the decomposition of cell walls occurred thus extracted oil produced is higher [19]. Operating at higher pressure will influence the solvent density, thus enhanced the solvating power (the interaction of inter-molecules and solutes increase) [11]. Similar result was reported in the extraction of \textit{S. mahagoni} seeds by using SC-CO\(_2\) extraction [20].

Condition (s)	Oil yield (%)
P= 20MPa, T= 40°C	6.556
P= 20MPa, T= 50°C	3.676
P= 20MPa, T= 60°C	1.490
P= 25MPa, T= 40°C	6.640
P= 25MPa, T= 50°C	4.954
P= 25MPa, T= 60°C	4.558
P= 30MPa, T= 40°C	7.024
P= 30MPa, T= 50°C	8.612
P= 30MPa, T= 60°C	14.45

Figure 5 shows the effect of pressure and temperature on oil extraction. At constant temperature, oil yield increases as pressure increases (20-30 MPa). This is due to the increase of density and thus increase the solvating power of SC-CO\(_2\). Effect of pressure influenced both solvating power and intermolecular interaction strength [21,22]. Similar result was reported in SC-CO\(_2\) extraction of green coffee oil [23], wheat bran [24] and \textit{S. mahagoni} seeds [20].

![Figure 5](image-url)
Next, at constant pressure (20 and 25 MPa), oil yield decreases as temperature increases (40-60 ºC). But at constant pressure (30 MPa), oil yield increases as temperature increases. Effect of temperature in extraction process is much more difficult to evaluate unlike pressure. This is due to the dual effect of temperature toward extraction process depending on the domination of solute vapour pressure or solvent density [19,25,26]. Decreasing solvent density with the increase in temperature resulted in higher extracted yield because of the increase in vapour pressure. Similar effect were reported on extraction green coffee oil [23] and silkworm pupal oil [26].

4. Conclusion
Supercritical carbon dioxide (SC-CO$_2$) extraction applied to extract *Swietenia mahagoni*. From the experimental data, the extraction time of 120 minutes, particle size of 0.5 mm, the flowrate of CO$_2$ of 4 ml/min, at a pressure of 30 MPa and the temperature of 60ºC were the best conditions to obtain the highest yield of essential oil.

Acknowledgements
The authors gratefully acknowledge the Universiti Teknologi Malaysia for awarding with the Research University Grant Scheme, GUP (Q.J130000.2546.10H50).

References
[1] Goh B H, Kadir H A, Malek S N A, Ng S W 2010 Swietenolide diacetate from the seeds of Swietenia macrophylla *Acta Crystallogr. Sect. E Struct. Reports Online* 66
[2] Eid A M M, Elmarzugi N A, El-Enshasy H A 2013 A review on the phytopharmacological effect of Swietenia macrophylla *Int. J. Pharm. Pharm. Sci.* 5 47–53
[3] Falah S, Suzuki T, Katayama T 2008 Chemical constituents from Swietenia macrophylla bark and their antioxidant activity *Pakistan J. Biol. Sci.* 11 2007–2012
[4] Haque M A, Khan G M A, Razzaque S M A, Khatun K, et al. 2013 Extraction of rubiadin dye from Swietenia mahagoni and its dyeing characteristics onto silk fabric using metallic mordants *Indian J. Fibre Text. Res.* 38 280–284
[5] Blundell A G, Gullison R E 2003 *For. Policy Econ.* 5 395–405
[6] Balijepalli M K, Suppaiah V, Chin A-M, Buru A S, et al. 2014 Acute oral toxicity studies of swietenia macrophylla seeds in sprague dawley rats *Pharmacognosy Res.* 7 38–44
[7] Goh B H, Kadir H A 2011 In vitro cytotoxic potential of Swietenia macrophylla King seeds against human carcinoma cell lines *J. Med. Plants Res.* 5 1395–1404
[8] Maiti A, Dewanjee S, Kundu M, Mandal S C 2009 Evaluation of anti diabetic activity of the seeds of Swietenia macrophylla in diabetic rats *Pharm. Biol.* 47 132–136
[9] Liza M S, Rahman, R A, Mandana B, Jinap S, et al. 2010 Supercritical fluid extraction of bioactive flavonoid from Strobilanthes crispus (Pecah Kaca) *Pharmacognosy Res.* 2 319–326
[10] Aionicesei E, Škerget M, Knez Ž 2008 Measurement of CO2 solubility and diffusivity in poly(l-lactide) and poly(d,l-lactide-co-glycolide) by magnetic suspension balance *J. Supercrit. Fluids* 47 296–301
[11] Pereira C G, Meireles M A A 2009 Supercritical Fluid Extraction of Bioactive Compounds: Fundamentals, Applications and Economic Perspectives *Food Bioprocess Technol.* 3 340–372
[12] Salleh L M 2010 Extraction of bioactive flavonoid compounds from Pecah Kaca (Strobilanthes Crispus) using supercritical carbon dioxide Ph. D. Thesis Universiti Putra Malaysia
[13] Yian L N 2015 Supercritical carbon dioxide extraction of rubber seed oil rich in alpha-linolenic acid *Ph.D. Thesis* Universiti Teknologi Malaysia
[14] Lina S, Fei R, Xudong Z, Yangong D, Fa H 2010 Supercritical carbon dioxide extraction of microula sikkimensis seed oil. *J. Am. Oil Chem. Soc.* 87 1221–1226
[15] Lozano P, Delgado D, Gómez D, Rubio M, Iborra J L 2000 A non-destructive method to determine the safranal content of saffron (Crocus sativus L.) by supercritical carbon dioxide extraction combined with high-performance liquid chromatography and gas chromatography *J. Biochem. Biophys. Methods* 43 367–378
[16] Leo L, Rescio L, Ciurlia L, Zacheo G 2005 Supercritical carbon dioxide extraction of oil and α-tocopherol from almond seeds *J. Sci. Food Agric.* 85 2167–2174
[17] Gómez A M, de la Ossa E M 2002 Quality of borage seed oil extracted by liquid and supercritical
carbon dioxide Chem. Eng. J. 88 103–109
[18] Bozan B, Temelli F 2002 Supercritical CO2 extraction of flaxseed J. Am. Oil Chem. Soc. 79 231–235
[19] Machmudah S, Kawahito Y, Sasaki M, Goto M 2007 Supercritical CO2 extraction of rosehip seed oil: Fatty acids composition and process optimization J. Supercrit. Fluids 41 421–428
[20] Hartati, Salleh L M, Yunus, A C M, Aziz A A 2014 Optimization of supercritical CO2 extraction of Swietenia mahagoni seed by response surface methodology J. Teknol. Sciences Eng. 67 15–20
[21] Bulgarevich D S, Sako T, Sugeta T, Otake K, et al. 2002 The role of general and hydrogen-bonding interactions in the solvation processes of organic compounds by supercritical CO2 / n-Alcohol Mixtures Ind. Eng. Chem. Res 41 2074–2081
[22] Morita A, Kajimoto O 1990 Solute-solvent interaction in nonpolar supercritical fluid: a clustering model and size distribution J. Phys. Chem. 94 6420–6425
[23] de Azevedo A B A, Kieckbush T G, Tashima A K, Mohamed R S, et al. 2008 Extraction of green coffee oil using supercritical carbon dioxide J. Supercrit. Fluids 44 186–192
[24] Kwon K, Uddin S, Jung G, Sim J, Chun B 2010 Supercritical carbon dioxide extraction of phenolics and tocopherols enriched oil from wheat bran Int. J. Biol. Life Sci. 6 117–122
[25] Thana P, Machmudah S, Goto M, Sasaki M, et al. 2008 Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis Bioresour. Technol. 99 3110–3115
[26] Wei Z J, Liao A M, Zhang H X, Liu J, Jiang S T 2009 Optimization of supercritical carbon dioxide extraction of silkworm pupal oil applying the response surface methodology Bioresour. Technol. 100 4214–4219