The association of vitamin D deficiency and glucose control among diabetic patients

Mansour S Almetwazi, Ahmad O Noor, Diena M Almasri, Ioana Popovici, Tariq Alhawassi, Khalid A Alburikan, Catherine A Harrington

Clinical Pharmacy Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Medication Safety Research Chair, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
Clinical Pharmacy Department, College of Pharmacy, King Abdulaziz University, Saudi Arabia
Department of Sociobehavioral and Administrative Pharmacy, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA

Objective: To evaluate the association between the level of vitamin D and glycemic control among patients with diabetes.

Research design and method: We analyzed data collected from NHANES 2003–2006. We included only non-pregnant adult diabetic persons 18 years or older. Participants who had vitamin D level less than 20 ng/ml were considered as having vitamin D deficiency. Participants were considered to have a glucose control if the HbA1c level was less than 7% [53 mmol/L]. We used student’s t test to compare the difference in HbA1c means between people with Diabetes with and without a vitamin D deficiency. We used a multivariate logistic regression model to predict the relationship between glucose control and vitamin D deficiency. We used race/ethnicity, BMI, age, gender, type of diabetic medication used, having health insurance or not, and comorbid conditions (hypertension, anemia, cholesterol, liver disease, and kidney disease) as control variables.

Results: The study population included a total of 929 non-institutionalized, non-pregnant, diabetic adult persons. About 57% of patients with diabetes had a vitamin D deficiency. Blacks (non-Hispanic patients) with diabetes had the highest rate of vitamin D deficiency (79%). The unadjusted means of HbA1c were significantly different between diabetic patients with no vitamin D deficiency and those with a vitamin D deficiency (7.06% [54 mmol/L], 7.56 % [59 mmol/L], respectively, P < 0.0001). Multivariate adjustment showed a small but not significant, increase in odds (11%) of having uncontrolled diabetes in patients with a vitamin D deficiency after adjustment for other factors.

Conclusion: Vitamin D deficiency is very common in patients with diabetes. We found no significant association between vitamin D level and glycemic control in patients with diabetes after adjustment for control variables.

1. Introduction

Vitamin D has many roles in the regulation of the mineral homeostasis as well as other non-skeletal functions. Of these roles, increasing insulin secretion and insulin sensitivity (Sung et al., 2012). Studies have shown that a low serum level of vitamin D increases the risk of developing diabetes (Afzal et al., 2013; Schöttker et al., 2013; Tsur et al., 2013). Other studies have found that vitamin D deficiency is associated with complications of diabetes such as neuropathy and retinopathy (Patrick et al., 2012). However, little is known about the strength of the association between Vitamin D levels and glucose control.

Only a few studies have examined the association between vitamin D levels and diabetic control. A study conducted in Iran evaluated the effect of vitamin D on insulin resistance in patients with Type 2 diabetes. Researchers found that raising the level of vitamin D improved the fasting plasma glucose and reduced insulin
resistance in these patients (Talaei et al., 2013). Another study that was conducted in Saudi Arabia found that vitamin D supplementation significantly improved their insulin resistance and lipid profile (Al-Daghri et al., 2012). A couple of studies used HbA1c as an outcome, which might have had a better estimation of diabetes control over fasting blood glucose (FBG) (Jorde and Figenschau, 2009; Ljunghall et al., 1987; Mohamad et al., 2016). However, no studies were found to determine the association between vitamin D and glycemic control in diabetic patients in the U.S.

Based on the Institute of Medicine (IOM), there are four categories of vitamin D status: (1) risk of deficiency: if the level of serum 25-hydroxyvitamin D (25OHD) is less than 12 ng/ml, (2) risk of inadequacy: if the level of 25OHD is between 12 to less than 20 ng/ml, (3) sufficiency: if the level of 25OHD is between 20 to 50 ng/ml, and (4) possibly harmful: if the level of 25OHD is more than 50 ng/ml (Ross et al., 2011). In 2011, a report claimed that about 32% of United States population had a level of vitamin D of less than sufficiency (Looker et al., 2011).

The purpose of this retrospective cross-sectional study was to examine the relationship between levels of vitamin D and diabetes control among patients with diabetes (both Type 1 and 2 but not gestational) drawn from National Health and Nutrition Examination Survey (NHANES) 2003–2006. We also explored the association between HbA1c levels and serum vitamin D status (deficiency or non-deficiency) in patients with diabetes in the U.S.

Patients with diabetes are more susceptible to have serious health complications such as cerebrovascular disease, retinopathy, coronary heart disease, nephropathy and neuropathy. From this study we will be able to know the effect of vitamin D level on the HbA1c, that may help to reduce the complications of diabetes. Moreover, the study will describe the vitamin D status among the patients with diabetes.

2. Materials and methods

2.1. Design

Secondary database analysis using data collected in NHANES that used a cross-sectional design.

2.2. Data source

NHANES is a program of studies designed to assess the health and nutritional status of adults and children in the United States. It is implemented by the US National Center for Health Statistics, part of the Centers for Disease Control and Prevention. NHANES uses a multistage stratified sampling design to collect data from the non-institutionalized civilian US population. The survey is unique in that it combines interviews, physical examinations, and laboratory tests.

The analysis sample consists of non-pregnant diabetic persons 18 years or older selected from the NHANES 2003–2006 cross-sections. We used the data from 2003 to 2006 because the measurement technique was changed after 2006 in the dataset, and the vitamin D level was not available at the time of analysis. A participant was excluded if HbA1c or serum vitamin D level data was missing. The participants were defined as having diabetes if they answer yes to the question, “they have ever been told by a doctor or health professional that they have diabetes or sugar diabetes” in the NHANES questionnaire.

2.2.1. Dependent variable

2.2.1.1. HbA1c and diabetes control

According to the American Diabetic Association (ADA), the goal for HbA1c for non-pregnant adults is less than 7% [53 mmol/L]. Therefore, participants who had HbA1c less than 7% [53 mmol/L] were considered to have glucose control (American Diabetes Association, 2017).

2.2.2. Independent variable

2.2.2.1. Serum vitamin D deficiency

From the categories of vitamin D levels, we classified the participants into two groups. The first group consisted of participants with serum vitamin D ≥ 20 ng/ml (non-vitamin D deficiency). The second group consisted of participants with serum vitamin D < 20 ng/ml (vitamin D deficiency).

2.2.3. Control variables

The analysis included the following additional covariates: age (young adults, aged 18–44, middle age adults, ages 45–64, and elderly, 65 years or older), race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, and other), gender, body mass index (BMI), having health insurance or not, type of diabetic medications used, and co-morbid conditions (i.e., hypertension, anemia, cholesterol, liver disease, and kidney disease). Diabetic patients were characterized into four groups based on Body Mass Index (i.e., underweight if the BMI was <18.5, normal weight if the BMI was between 18.5 and 24.9, overweight if the BMI was between 25 and 29.9, and obese if the BMI was ≥30). In regard to the type of diabetic medications, the precipitants were also classified into one of four groups (i.e., not using medications, using insulin only, using oral medication only, or using both insulin and oral medications).

2.3. Statistical analysis

Statistical analysis was performed using STATA® 11.0 statistical package. Data were weighted to represent the U.S. non-pregnant diabetic adults aged ≥18 years. Descriptive analyses were conducted to characterize the participant and to examine demographic differences between patients by Vitamin D deficiency category. Student’s t test was used to compare the difference in HbA1c means between diabetic patients with and without a vitamin D deficiency. A multivariate logistic regression model was used to predict the relationship between glucose control (HbA1c <7% [53 mmol/L]) and vitamin D deficiency. Adjusted odds ratios, 95% confidence intervals were used to present the results, and the significance was set at P < 0.05.

![Table 1](image)

Characteristic	Number (%)
Gender	
Male	465 (50.1)
Female	464 (49.9)
Age	
Young adults (18–44 year)	104 (11.2)
Middle age adults (45–64)	368 (39.6)
Elderly (≥65 year)	457 (49.2)
Race/ethnicity	
Hispanic	264 (28.4)
Non-Hispanic White	382 (41.1)
Non-Hispanic Black	246 (26.5)
Other	37 (4.0)
Body mass index	
Under weight	4 (0.4)
Normal weight	141 (15.2)
Over weight	285 (30.7)
Obese	499 (53.7)

Table 1

Demographic characteristics of diabetic patients, 2003–2006, U.S.
3. Results

The study population included a total of 929 non-institutionalized, non-pregnant, diabetic adult persons that represent a total of 15,233,753 similar persons in the entire United States. Demographic characteristics and medication use and co-morbidity characteristics of the study sample are presented in Tables 1 and 2, respectively. The participants were mainly of middle to older age, overweight or obese, and roughly have equivalent distribution in gender. The majority used only oral medications for diabetes and had health insurance, and most of the participants reported having comorbidities including hypertension and hypercholesterolemia.

3.1. Vitamin D deficiency

In the U.S. in 2003–2006, we found that more than half (57%) of non-institutionalized, non-pregnant, adults with diabetes had a vitamin D deficiency. The Somewhat more females (279/464 [60%]) than males (251/465 [54%]) with diabetes were deficient in vitamin D. In regard to age, young adults with diabetes (18–44 years) had the highest rate of deficiency (72/104 [69%]), and the vitamin D deficiency in the middle age adults with diabetes (45–64 years) were (217/368 [59%]), while it was 52% (241/457) in elderly patients. Black patients with diabetes had an extremely high rate of vitamin D deficiency at (194/246[79%]). Hispanics with diabetes also had an above average rate of deficiency (170/264[64%]). Whites with diabetes were much less likely than the other groups to be deficient (Fig. 1). In terms of BMI, underweight patients with diabetes had a high rate of deficiency (5/4 [31%]).

3.2. Association of HbA1c and vitamin D deficiency

The result of student’s t test that was done for 929 patients showed that the means of the HbA1c were significantly different

Independent variable	Adjusted odds ratio (95%)	P value
Vitamin D		
Non-deficient – Reference	0.891 [CI: 0.58–1.38]	0.605
Deficient		
Medication		
Oral medication only –	Reference	
Oral medication and insulin	0.31 [CI: 0.17–0.57]	0.000
Insulin	0.30 [CI: 0.17–0.55]	0.000
No medication	4.05 [CI: 2.15–7.66]	0.000
Gender		
Female – Reference	Reference	
Male	0.76 [CI: 0.51–1.14]	0.184
Race/ethnicity		
Non-Hispanic White –	Reference	
Hispanic	0.43 [CI: 0.24–0.78]	0.006
Non-Hispanic Black	0.47 [CI: 0.29–0.74]	0.001
Other	0.86 [CI: 0.36–2.04]	0.735
Age		
Middle age adult (45–64 year)	Reference	
Young adult (18–44 year)	0.95 [CI: 0.47–1.89]	0.884
Elderly (≥65 year)	1.79 [CI: 1.16–2.79]	0.009
BMI		
Normal weight	Reference	
Under weight	7.57 [CI: 3.56–163.31]	0.196
Over weight	1.51 [CI: 0.80–2.85]	0.201
Obese	1.89 [CI: 1.02–3.52]	0.043
Having health insurance		
No – Reference	1.6 [CI: 0.79–3.26]	0.192
Having anemia		
No – Reference	1.62 [CI: 0.77–3.40]	0.203
Having hypertension		
No – Reference	1.26 [CI: 0.79–2.02]	0.335
Having hypercholesterolemia		
No – Reference	0.87 [CI: 0.58–1.32]	0.512
Having liver disease		
No – Reference	0.91 [CI: 0.41–2.05]	0.826
Having kidney disease		
No – Reference	0.65 [CI: 0.34–1.27]	0.209

* Statistical significant.

![Fig. 1. Vitamin D status in diabetic patients in U.S., 2003–2006, by race/ethnicity.](image-url)
between diabetic patients with no vitamin D deficiency and those with a vitamin D deficiency (7.06% [54 mmol/L], 7.56% [59 mmol/L], respectively, P < 0.0001. Results from multiple regression modeling after adjustment for age, race/ethnicity, gender, BMI, having health insurance or not, type of diabetic medications used, and co-morbid conditions (hypertension, anemia, cholesterol, liver disease, kidney disease) are presented in Table 3. The analysis sample consists of 802 respondents without missing values for all the variables. The result shows that a small but insignificant, increase in odds (11%) of having uncontrolled diabetes exists in patients with a vitamin D deficiency after adjustment for control variables.

The model showed that the patients with diabetes who do not use medication were more likely to have controlled diabetes than those who were using oral medication (adjusted OR: 4.05 [95% CI 2.15–7.66]), while the patients who were using insulin or insulin and oral medication were less likely to have controlled diabetes compared to the patients who were using oral medication only (adjusted OR: 0.30 [95% CI 0.17–0.55]), (adjusted OR: 0.30 [95% CI 0.17–0.57] respectively).

In regard to race/ethnicity, the results showed that Hispanic and non-Hispanic Black patients with diabetes were less likely to have controlled diabetes than non-Hispanic White patients with diabetes (adjusted OR: 0.43 [95% CI 0.24–0.78]), (adjusted OR: 0.47 [95% CI 0.29–0.74]) respectively. The results also showed that obese patients with diabetes were more likely to have controlled diabetes than those with normal weight (adjusted OR: 1.89 [95% CI 1.02–3.52]). Lastly, the models showed that elderly patients with diabetes were more likely to have controlled diabetes than middle age adult patients with diabetes (adjusted OR: 1.79 [95% CI 1.16–2.79]).

Furthermore, we conducted sub-analysis in Hispanic, non-Hispanic White, and non-Hispanic Black groups to assess the relationship between vitamin D and glycemic control. The regression model showed that vitamin D deficiency was not a significant factor when stratified by subgroup. (Adjusted OR for Hispanic, non-Hispanic White, and non Hispanic Black: 0.64 [95% CI 0.25–1.64], 0.95 [95% CI 0.54–1.67], and 0.97 [95% CI 0.36–2.06], respectively).

4. Discussion

To our knowledge, this the first study in the United States that has evaluated the vitamin D status in patients with diabetes and found when the data was stratified by race/ethnicity. The strength of our study is that we used a nationally representative sample of the U.S. population. NHANES oversamples minority groups, which help to give better estimates of population trends. One limitation of our study is that the analysis is based on a cross-sectional survey, which means that measurements of vitamin D levels and HbA1c were taken only once and are subject to measurement error. Also, we did not separate diabetes into Type 1/Type 2 because there is no question in the NHANES questionnaire allows separating between the two types accurately. Separation between the types of diabetes in a future study may give different results.

5. Conclusion

In conclusion, vitamin D deficiency is more common in patients with diabetes. Therefore, monitoring of serum vitamin D level in diabetics is advised. Although we found that correcting the level of vitamin D is not likely to improve glycemic control, other studies suggested that vitamin D supplementation may help to reduce the development of other health risks such as bone diseases, cognitive impairment, and cardiovascular diseases.

Acknowledgment

We would like to acknowledge the Deanship of Research Chairs and Medication Safety Research Chair, King Saud University.

References

Afzal, S., Bojesen, S.E., Nordestgaard, B.G., 2013. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and meta-analysis. Clin. Chem. 59 (2), 381–391. http://dx.doi.org/10.1373/clinchem.2012.193003.
Al-Daghri, N.M., Alkharfy, K.M., Al-Othman, A., El-Kholie, E., Moharram, O., Alokail, M.S., Al-Saleh, Y., Sabico, S., Kumar, S., Chrousos, G.P., 2012. Vitamin D supplementation as an adjuvant therapy for patients with T2DM: an 18-month prospective interventional study. Cardiovasc. Diabetol. 11, 85. http://dx.doi.org/10.1186/1475-2840-11-85.

American Diabetes Association, 2017. Standard of medical care in diabetes-2017. Diabetes Care 40 (Suppl. 1), 1–142.

Feldman, D., Krishnan, A.V., Swami, S., Giovannucci, E., Feldman, B.J., 2014. The role of vitamin D in reducing cancer risk and progression. Nat. Rev. Cancer 14 (5), 342–357.

Giovannucci, E., Liu, Y., Hollis, B.W., Rimm, E.B., 2008. 25-hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch. Intern. Med. 168 (11), 1174–1180.

Jorde, R., Figenschau, Y., 2009. Supplementation with cholecalciferol does not improve glycaemic control in diabetic subjects with normal serum 25-hydroxyvitamin D levels. Eur J Nutr 48 (6), 349–354. http://dx.doi.org/10.1007/s00394-009-0020-3.

Schöttler, B., Herder, C., Rothenbacher, D., Perna, L., Müller, H., Brenner, H., 2013. Serum 25-hydroxyvitamin D levels and incident diabetes mellitus type 2: a competing risk analysis in a large population-based cohort of older adults. Eur. J. Epidemiol. 28 (3), 267–275. http://dx.doi.org/10.1007/s10654-013-9769-z.

Sung, C.C., Liao, M.T., Lu, K.C., Wu, C.C., 2012. Role of vitamin D in insulin resistance. J. Biomed. Biotechnol. 2012, 634195. http://dx.doi.org/10.1155/2012/634195.

Talaei, A., Mohamadi, M., Adgi, Z., 2013. The effect of vitamin D on insulin resistance in patients with type 2 diabetes. Diabetol. Metab. Synd. 5 (1), 8. http://dx.doi.org/10.1186/1758-5996-5-8.

Tsur, A., Feldman, B.S., Feldhammer, I., Hosben, M.B., Leibowitz, G., Balicer, R.D., 2013. Decreased serum concentrations of 25-hydroxycholecalciferol are associated with increased risk of progression to impaired fasting glucose and diabetes. Diabetes Care 36 (5), 1361–1367. http://dx.doi.org/10.2337/dc12-1050.

UKPDS, 1998a. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 352(9131), 854–865.

UKPDS, 1998b. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group. Lancet, 352(9131), 837–853.

Wilkins, C.H., Sheline, Y.I., Roe, C.M., Birge, S.J., Morris, J.C., 2006. Vitamin D deficiency is associated with low mood and worse cognitive performance in older adults. Am. J. Geriatr. Psychiatr. 14 (12), 1032–1040.