Positional-based cloning ‘fail-safe’ approach is overpowered by wheat chromosome structural variation

Ella Taagen1 | James Tanaka1 | Alvina Gul2 | Mark E. Sorrells1

Abstract
Positional-based cloning is a foundational method for understanding the genes and gene networks that control valuable agronomic traits such as grain yield components. In this study, we sought to positionally clone the causal genetic variant of a 1000-grain weight (TGW) quantitative trait loci (QTL) on wheat (*Triticum aestivum* L.) chromosome arm 5AL. We developed heterogenous inbred families (HIFs) (>5,000 plants) for enhanced genotypic resolution and fine-mapped the QTL to a 10-Mbp region. The transcriptome of developing grains from positive and negative control HIF haplotypes revealed presence–absence chromosome arm 5AS structural variation and unexpectedly no differential expression of genes within the chromosome arm 5AL candidate region. Evaluation of genomic, transcriptomic, and phenotypic data, and predicted function of genes, identified that the 5AL QTL was the result of strong linkage disequilibrium (LD) with chromosome arm 5AS presence or absence (HIF $r^2 = 0.91$). Structural variation is common in wheat, and our results highlight that the redundant polyploid genome’s masking of such variation is a significant barrier to positional cloning. We propose recommendations for more efficient and robust detection of structural variation, including transitioning from a single nucleotide polymorphism (SNP) to a haplotype-based approach to identify positional cloning targets. We also present nine candidate genes for grain yield components based on chromosome arm 5AS presence or absence, which may unveil hidden variation of homoeolog dosage-dependent genes across the group five chromosome short arms. Taken together, our discovery demonstrates the phenotypic resiliency of polyploid genomic structural variation and highlights a considerable challenge to routine positional cloning in wheat.

Abbreviations: ARF, auxin response factor; BLUP, best linear unbiased prediction; DEG, differentially expressed gene; DPA, days postanthesis; GBS, genotyping-by-sequencing; GFD, grain-fill duration; GL, grain length; GO, gene ontology; GW, grain width; HC, high confidence; HD, heading date; HIF, heterogenous inbred family; HT, plant height; IWGSC, International Wheat Genome Sequencing Consortium; KASP, Kompetitive allele specific polymerase chain reaction; LC, low confidence; LD, linkage disequilibrium; LOD, logarithm of odds; QTgw.cnl-5A−, W7984 allele; QTgw.cnl-5A+, Opata allele; QTL, quantitative trait loci; RIL, recombinant inbred line; RNA-seq, RNA sequencing; SNP, single nucleotide polymorphism; SPS, spikelets per spike; SSR, simple sequence repeat; SynOpDH, W7984 × Opata M85 doubled-haploid reference population; SynOpRIL, W7984 × Opata M85 recombinant inbred line; TGW, 1000-grain weight; TILLING, target-induced local lesions in genome
INTRODUCTION

Common wheat (Triticum aestivum L.) and durum wheat (Triticum turgidum L. subsp. Durum (Desf.) van Slageren) deliver more than 20% of the daily calories and protein consumed by the human population (http://www.fao.org/faostat/en/#data). To sustainably support the world’s growing population and farm profitability, wheat productivity must increase under fewer production hectares. Despite wheat’s crucial bearing on global food security, the genes and gene networks controlling wheat grain yield remain poorly understood. Grain yield is a highly polygenic trait that is influenced by genetic and environmental factors at every stage of plant growth (Slafer, 2003). An additional challenge to pinpointing the genetic control of grain yield is posed by the large polyploid wheat genome, where the phenotypic consequence of a single-variable locus can be masked by the redundant copies of other homoeologous genomes (Borrill et al., 2018). Given the complexity of identifying genetic controls of grain yield, a reductionist approach that considers highly heritable yield components is a valuable strategy to improve our understanding of underlying genes and gene networks (Brinton & Uauy, 2018; Zhang et al., 2018a).

Total grain yield is a balancing act between yield components such as spikes per unit of area, grain number per spike, and grain weight. Quantitative trait loci for yield components have been identified on every wheat chromosome, but many of these QTL span broad genomic regions and offer limited impact for breeding. Some of the latest advances in wheat genomics, such as the advent of an annotated reference genome and gene editing techniques (Borrill et al., 2018), now allow us to go beyond QTL mapping and invest in positional cloning. Positional-based cloning identifies a gene through fine-mapping, sequencing, and functional validation. Fine-mapping resolution is limited by the low frequency and uneven distribution of crossovers between linked genetic markers. A ‘fail-safe’ approach is to develop heterogeneous inbred families (HIFs) or near isogenic lines, which share a highly inbred and homogenous genome but are segregating for the genomic region of interest, for example, as a QTL (Brinton et al., 2017; Kuzay et al., 2019; Tuinstra et al., 1997). Continuous inbreeding of several thousand HIF progeny will produce distinct crossovers that delimit the QTL to a gene variant that can be confidently associated with the plant’s phenotype, for example using target-induced local lesions in genome (TILLING) populations or gene editing.

We set out to positionally clone the causal variant underlying a 1000-grain weight (TGW) and grain morphology QTL on chromosome arm 5AL, QTgw.cnl-5A, as previously identified in the Synthetic W7984 x Opata M85 spring wheat doubled-haploid reference population (herein abbreviated ‘W7984’, ‘Opata’, and ‘SynOpDH’) (Bresegello & Sorrells, 2006; Sorrells et al., 2011; Williams et al., 2014). Strong associations between grain weight or morphology and markers in this region have also been reported (Brinton et al., 2017; Kato et al., 2000; Sukumaran et al., 2018). In this study we leveraged the SynOp recombinant inbred line (SynOpRIL) population for HIF development by identifying two founder F₆ lines segregating for the QTgw.cnl-5A flanking markers (5A_283300187 and 5A_482369161). We screened more than 5,000 progenies over five generations (2017–2019 field and greenhouses) and narrowed QTgw.cnl-5A to a 10-Mbp region flanking 37 high-confidence (HC) genes. This fine-mapping advancement coincided with the publication from Gutierrez-Gonzalez et al. (2019) that identified the short arm of chromosome 5A was missing from the W7984 parent and prompted us to evaluate the implications for our positional cloning.

The W7984 chromosome arm deletion may not have been detected by the larger wheat community, or earlier in our research, in part because of no aberrant morphological variation or infertility, which is characteristic of whole-chromosome arm deletions (Zhang et al., 2019, 2020). Here, we used a subset of both SynOpDH and SynOpRIL populations to (a) significantly and consistently map QTgw.cnl-5A across four environments; (b) develop HIFs for fine-mapping QTgw.cnl-5A and disrupt linkage disequilibrium (LD) with chromosome arm 5AS presence (+) and absence (−); (c) conduct grain growth rate analysis for greater phenotypic resolution; (d) measure the transciptome of chromosome arm 5AS+/QTgw.cnl-5A+ and chromosome arm 5AS−/QTgw.cnl-5A− HIFs; and (e) conduct gene ontology (GO) term enrichment analysis. Based on genetic data, phenotypic associations, early grain development expression profiles, and predicted function of genes, we suggest that QTgw.cnl-5A is the result of strong LD with chromosome arm 5AS presence or absence (SynOpDH r² = 0.95, HIF r² = 0.91). The resources invested for positional cloning QTgw.cnl-5A were overpowerd by chromosomal structural variation, and we discuss the challenges that persist for identifying gene function in wheat.
We also present nine candidate genes on chromosome arm 5AS that may impact yield components including TGW, grain length (GL), grain width (GW), and spikelets per spike (SPS). These results lay the foundation for identifying hidden variation of homoeolog dosage-dependent and functionally redundant genes on the group five chromosome short arms. Altogether, our findings highlight the phenotypic resiliency of polyploid genomic structural variation and present recommendations for future approaches to positional cloning.

2 MATERIALS AND METHODS

2.1 QTL validation plant materials

A synthetic hexaploid wheat, generated by crossing the durum wheat ‘Altar 84’ (AABB) with an Aegilops tauschi Coss. (DD) accession, crossed with the spring wheat ‘Opata 85’, were used to generate 215 doubled-haploids (SynOpDH) via chromosome doubling, and 2,039 RILs (SynOpRIL) (Sorrells et al., 2011). Both populations segregate for the absence of W7984 chromosome arm 5AS, or presence of Opata, but the structural variation remains to be characterized in all 2,039 SynOpRILs (Supplemental file_S1.5.csv). A subset of each mapping population was used for this study. One hundred forty-nine entries from SynOpDH, along with parental checks and two commercial checks ‘Glenn’ and ‘Tom’, were grown in two replicated and randomized 1-m, single-row plots in Ithaca, NY, during the field seasons of 2019 (Snyder field), 2017 (Caldwell field), and 2018 (Caldwell and Helfer field). An unbalanced set of 13 additional entry observations were included during best linear unbiased prediction (BLUP) phenotype calculations for 162 total entries. All field trials were nonirrigated. All of the spikes in each 1-m row were hand harvested and threshed with a belt thresher (Almaco). Heading date (HD), TGW, GL, and GW were measured and used to validate the QTL across years and environments as well as identify the flanking marker positions of the QTL based on Chinese Spring genome assembly released by the International Wheat Genome Sequencing Consortium (IWGSC), henceforth RefSeq v1.0 (International Wheat Genome Sequencing Consortium (IWGSC), 2018). Gene annotations presented in this study are based on RefSeq v1.1 annotation. While RefSeq v2.0 assembly was available at the time of analysis, the annotation was still under development.

2.2 Development of HIF-derived fine-mapping population

The fine-mapping population was constructed using HIFs derived from two F_6 SynOpRIL founder entries (7-956 and 7-1201) heterozygous for markers flanking the QTL on chromosome arm 5AL (5A_283300187 and 5A_482369161; marker origin is RefSeq v1.0 and the syntax is chromosome_RefSeq v1.0 position). In order to increase the genetic resolution of the QTL and maintain an isogenic background genome, individual progeny from these two entries were inbred X generations (F_{6,χ}) and genotyped to screen for recombinants between the QTL flanking markers. Heterozygous entry advancement, recombinant evaluation, and progeny testing took place 2016–2019 until the F_{6,4} or F_{6,5} generation. Inbreeding cycled between Snyder or Caldwell fields in Ithaca, NY, and Cornell University Guterman greenhouse. Under field evaluation, 100 progenies of each heterozygous entry were advanced, and 20 progenies from a recombinant entry were advanced for validation. Greenhouse evaluation space was limited, and this environment was only used for recombinant validation testing between field cycles. The greenhouse environment was supplemented with artificial lighting to obtain a 16-h day, 8-h night photoperiod with 21–23 °C day and 15–17 °C night temperatures. Individual plant identity was tracked throughout HIF development and all of the spikes of each plant were hand harvested into a coin envelope and belt threshed. For example, HIF entry 7-956-2-89-2-17-01 started with F_6 founder entry 7-956 and out of the 100 progenies planted, the second plant was heterozygous for the QTL flanking markers and was selected from F_{6,1} planting, the 89th plant was selected from F_{6,2} planting, the second plant was selected from F_{6,3} planting, at F_{6,4} the 17th plant recombined between the QTL flanking markers and was validated at the F_{6,5} generation. Homozygous recombinant and sister entries, Opata (+) and W7984 (−) allele controls without a crossover between QTL flanking markers, were selected and evaluated for pre- and postharvest phenotypes in field experiments.

In total, more than 5,000 progenies were screened for recombinants between the QTL flanking markers and 109 (F_{6,4} or F_{6,5}) recombinant haplotypes were selected for the fine-mapping population. In addition, nine sister entries with Opata alleles and 11 with W7984 alleles spanning QTgw.cnlt-5A (+/− controls) were selected. The 129 fine-mapping population entries were genotyped with 31 Kompetitive allele specific polymerase chain reaction (KASP) markers spanning QTgw.cnlt-5A. One hundred twenty-nine entries, along with parental checks and two commercial checks, Glenn and Tom, were grown in two replicated and randomized 1-m, single-row plots in Ithaca, NY, during the field seasons of 2019 (Snyder field) and 2020 (Caldwell and Helfer field). All of the spikes in each 1-m row were hand harvested and threshed with a belt thresher. Heading date, plant height (HT), grain-fill duration (GFD), SPS, TGW, GL, and GW were measured and used for t test comparisons between recombinant haplotypes and control haplotypes to narrow the QTL flanking markers (Supplemental file_S2.7.csv).
2.3 Phenotypic data and statistical analysis

The preharvest phenotypes measured in this study include HD, HT, days postanthesis (DPA) grain morphology, and GFD; postharvest include SPS, TGW, GL, and GW. The HD was recorded as Julian date of 50% spike emergence. Plant height was measured as the average height (cm) from the ground to spike tip in a 1-m, single-row plot. Days postanthesis was recorded by tagging individual spikes at 0 DPA, when anthers at the center spikelet are light green and pollination can be confirmed within 24-h of tagging. The GFD was recorded as the time between 0 DPA and physiological maturity (when the peduncle turned yellow) for a 1-m, single-row plot.

The spikes from every plot in this study were hand harvested with sickles or scissors. The SPS was recorded as the average spikelet number from 10 random spikes in a plot. The GL and GW were measured using >150 grains per sample on a WinSEEDLE STD4800 system flatbed scanner. The number of grains was recorded and then weighed as a proxy for TGW. This process was replicated without resampling for a given plot, and the average GL, GW, and TGW was recorded. Phenotypes for the SynOpDH across four field-year environments and the fine-mapping population across three field-year environments can be found in Supplemental file_S1.1.csv and file_S2.1.csv, respectively.

In order to evaluate QTgw.cn1-5A+/- haplotypes and phenotypes across field and year combinations, univariate linear models with random genotype and environment effects and correlated information (HD, chromosome arm 5AS+/-, or HIF RIL founder) fixed effects were fitted with the R/lme4 package (Supplemental file_S1.8.xlsx / script_S1.md and file_S2.9.csv / script_S2.md) (Bates et al., 2015; R Core Team, 2020). Models were evaluated based on their broad-sense heritability and Akaike information criterion. Fixed-effect significance was assessed with Rcar package Wald chi-square test (Fox & Sanford, 2019). Broad-sense heritability (H^2) estimates for HD, TGW, GL, and GW in the SynOpDH population were calculated using the following equation:

$$H^2 = \frac{\sigma^2_G}{\sigma^2_G + \frac{\sigma^2_{GXE}}{l} + \frac{\sigma^2_E}{r}}$$

where σ^2_G is the genetic variance, σ^2_{GXE} is the G×E variance, σ^2_E is the residual variance, r is the number of replications, and l is the number of environments. Best linear unbiased predictions were obtained from the univariate linear models for SynOpDH and HIF phenotypes. The SynOpDH BLUP phenotypes were used for QTL mapping with the R/qtl package (Broman et al., 2003). The HIF BLUP phenotypes were used for Welch two-sample t tests with control and recombinant haplotypes and chromosome arm 5AS+/- haplotypes (Supplemental file_S2.7.csv, script_S2.md) (R Core Team, 2020).

For the grain growth rate analysis, GL, GW, fresh weight, and dry weight were measured at 0, 4, 10, 16, and 22 DPA in a replicated subset of 10 fine-mapping haplotypes (five QTgw.cn1-5A— and five QTgw.cn1-5A+; Supplemental file_S3.1.csv) during the 2019 field season. The experiment was replicated in the Cornell University Guterman greenhouse during spring 2020 for four HIF haplotypes (same entries as RNA sequencing [RNA-seq] experiment) and also included measurements at 28 DPA and senescence (Supplemental file_S3.2.csv). For every haplotype and replicate, 10 primary spikes were used per timepoint. From each of the 10 spikes, 10 primary developing grains in florets 1 and 2 were taken only from the central spikelets and the average GL, GW, fresh weight, and dry weight (5 d in a 30 °C dryer) were measured. Single-trait mixed models with a fixed interaction between haplotype and DPA and a random effect of plot (field or tube (greenhouse) nested within haplotype were fitted with the R/lme4 package (Bates et al., 2015). Post hoc comparison of least-squares means for haplotype and DPA was performed within each model using the R/emmeans package in addition to multiple-test correction P values (Supplemental script_S3.md) (Lenth et al., 2019).

2.4 Genetic map construction and QTL mapping

A genetic map for the 162-entry SynOpDH subset was constructed with 1,551 polymorphic genotyping-by-sequencing (GBS) and simple sequence repeat (SSR) markers that were previously published and using the R package ‘qtl’ (Broman et al., 2003; Poland et al., 2012; Sorrells et al., 2011). The function ‘estmap’ was used to estimate the genetic distances using the ‘kosambi’ mapping function followed by maximum-likelihood analysis of marker order on each chromosome using the function ‘ripple’. Any missing genotypes were imputed with the function ‘fill.geno’ and ‘imp’ method. The QTL were identified by a single QTL genome scan using the function ‘scanone’ with the ‘imp’ method. The QTL were identified by a single QTL model genome scan using the function ‘scanone’ with the Haley–Knott regression method. A .05 significance logarithm of odds (LOD) threshold for each phenotype was determined with the function ‘scanone’ and ‘n.perm = 1000’. Next, the percentage variance explained by each significant QTL was calculated. The RefSeq v1.0 physical position of flanking markers was determined for each significant QTL. Later a consensus marker for chromosome arm 5AS presence or absence was added for QTL mapping. The code for the genetic map and QTL mapping can be found in Supplemental script_S1.md.
2.5 | High-resolution QTgw.cn1-5A genetic mapping

Seedling leaf tissue samples for DNA extraction were collected in the field or greenhouse from a single plant in each plot or pot with two replicates of the parents per 96-well plate. The DNA was extracted from lyophilized leaf tissue using a modified cetyl trimethylammonium bromide extraction (Doyle & Doyle, 1990). The KASP assays were developed to screen recombinant entries and their progeny as well as to identify sister entries. The KASP markers were generated from polymorphisms identified using the wheat exome-capture and regulatory-capture sequence of parental entries of the Wheat-CAP project (https://www.triticeaecap.org/wheatcap-germplasm-list/) (Gardiner et al., 2019; He et al., 2019a). We also used the 10+ Genome Project data repository to BLAST our KASP marker sequences and confirmed genome and chromosome specificity and the marker order across Chinese Spring and eleven diverse wheat cultivars: Arina, FrFor, Jagger, Julius, Lancer, Landmark, Mace, Norin61, Stanley, SY-Mattis, Zavitan, and Spelt (Supplemental file_S2.6.csv, script_S2.md) (Walkowiak et al., 2020). The KASP assay procedure followed the methods outlined in Makhoul et al. (2020) including PACE-IR Genotyping Master Mix with a low ROX level and thermo-cycling conditions according to 3CR bioscience protocols. On each SNP reaction plate, the parent lines, check lines, and at least one water sample were included as controls. All experiments were repeated at least twice. If clear genotyping clusters were not obtained, the KASP marker was abandoned. The clustering patterns of the three KASP markers that span QTgw.cn1-5A (10-Mbp region) are available as Supplemental file_2.13.pdf. QTgw.cn1-5A flanking KASP markers (5A_283300187 and 5A_482369161) were used to screen the HIF progeny, and all 31 KASP markers were used to select the fine-mapping population (129 entries). Later, the fine-mapping population was genotyped with three SSR markers for chromosome arm 5AS presence or absence (Supplemental file_S2.5.csv). The homogeneous genetic background of the HIFs and the high heritability of the traits allowed us to differentiate their association with QTgw.cn1-5A from the causal effects of chromosome arm 5AS structural variation.

2.6 | Gene expression

We used RNA-seq to compare the levels of expression of genes within the candidate QTgw.cn1-5A region across chromosome arm 5AS and to evaluate the HIF isogenic background genome. The plant tissue was sampled from developing grains at 4 and 8 DPA from four HIF haplotypes: 7-956-2-19-1-31-03 (Opata control), 7-956-2-19-1-44 (W7984 control), 7-956-2-19-1-31-05 (recombinant I), and 7-956-2-12-1-69-07 (recombinant II). The four haplotypes were grown in a completely randomized design in the greenhouse during spring 2020. We sampled 500 mg of whole grain tissue per biological replicate. At the 4-DPA timepoint, 40 primary spikes were collected for each haplotype and 10 developing primary grains from the central spikelets of 10 randomly sampled spikes (four biological replicates, 100 hundred grains per biological replicate) were immediately frozen in liquid nitrogen and stored at −80 °C. The process was repeated at the 8-DPA timepoint but only two randomly sampled spikes per biological replicate were necessary because of the rapidly growing grains (four biological replicates, 20 grains per biological replicate). The tissue was ground with liquid nitrogen and mortar and pestle and total RNA was extracted using a modified hot borate protocol (Wan & Wilkins, 1994). Quantity and quality of the isolated total RNA was determined using a Biotek Epoch 2 Spectrophotometer with Nanodrop functionality and gel electrophoresis. Three of the four biological replicates were sent to Novogene for further quality screening and nondirectional 150-bp paired-end reads. mRNA sequencing (four haplotypes, three biological replicates at two timepoints: 24 samples). The raw sequence reads were submitted to the SRA of NCBI under BioProject ID: PRJNA693003.

The bioinformatics pipeline and scripts for gene expression analysis can be found in Supplemental script_S4.md. Paired-end reads from raw sequence data were imported to the Cornell University BioHPC server and all computational analysis was performed within the command line and R. Imported reads quality was checked with ‘FastQC’ (Andrews, 2010). The IWGSC RefSeq v1.0 assembly and RefSeq v1.1 high and low confidence gene annotations were downloaded from https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Assemblies/v1.0/ and https://urgi.versailles.inra.fr/download/iwgsc/IWGSC_RefSeq_Annotations/v1.1/. The genome was indexed, and the sequence reads were aligned with STAR for both low-confidence (LC) and HC RefSeq v1.1 gene annotation (Dobin et al., 2013). Batch effects were accounted for using the ‘ComBat_seq’ function in the R/sva package, and differential expression between haplotypes was analyzed with the R/DESeq2 package (Leek et al., 2020; Love et al., 2014). A false discovery rate cut-off value of 0.01 and log2 fold-change threshold of two was used to select the list of differentially expressed genes at 4 and 8 DPA between the haplotype contrasts. Variance stabilizing transformation of the DESeq2 adjusted counts was used for principal component analysis and heatmaps of the count matrix. The SNP variants in the QTgw.cn1-5A region were identified with the SAMtools BCFtools command ‘mpileup’ (Li et al., 2009).
2.7 | Gene ontology term enrichment

At this point we excluded LC gene models from further analysis. The list of 556 HC genes differentially expressed between all three positive haplotypes (Opata control, recombinant I, and recombinant II) and the negative haplotype (W7984 control) at 4 and 8 DPA can be found in Supplemental file_S4.20.csv. We obtained RefSeq v1.1 HC gene annotation GO terms from the Wheat@URGI JBrowse portal (Alaux et al., 2018). In total, we extracted GO terms for 93,141 genes, which included all 556 differentially expressed genes (DEGs). The 93,141 genes served as the universe of genes for a GO term enrichment study with the R package ‘GOseq’ to test overrepresentation of GO terms among the DEGs (Young et al., 2010). We considered over-represented GO terms with Benjamin–Hochberg false discovery rate adjusted P value < .05 to be significant.

We also identified DEGs with GO terms known to be associated with spike architecture and early grain development including cell proliferation, division, growth, and differentiation; meristem initiation, maintenance, and transition; flowering time; floral organ development; mitosis; regulation of gene expression; DNA methylation and gene silencing; auxin; cytokinin; response to stress; phosphorylation; photosynthesis; nucleosome assembly; starch; nucleic acid metabolic process; protein metabolic process; glucose and sucrose; ubiquitin pathway; brassinosteroid; microtubule; and endoreduplication (Brinton & Uauy, 2018; Li et al., 2018; Wang et al., 2017). Arabidopsis [Arabidopsis thaliana (L.) Heynh.] and rice [Oryza sativa L.] orthologs were identified using EnsemblPlants (https://plants.ensembl.org/index.html), arabidopsis.org TAIR Gene Search, and funricegenes (Yao et al., 2018). Additional packages required to reproduce results or figures include tidyverse, knitr, kableExtra, rgt, rstax, rlang, ggpubr, r/snn, PCAtools, pheatmap, reshape, ggbiplot, biovizBase, gghighlight, r/InAugural (Bligh & Lun, 2020; Henry et al., 2020; Huber et al., 2002; Iannone et al., 2020; Kassambari, 2020a, 2020b; Kolde, 2019; Wickham, 2018; Wickham et al., 2019; Xie, 2020; Yin et al., 2012, 2020; Yutani, 2020; Zhu, 2020; Bedford-Petersen, 2021).

3 | RESULTS

3.1 | A QTL on chromosome 5A is associated with increased grain weight

A genetic map was developed for the SynOpDH population comprising of 1,551 polymorphic molecular markers (Supplemental file_S1.9.csv, script_S1.md). Using the SynOpDH phenotype BLUP values, calculated from four field-year observations, significant QTL for TGW were identified on chromosomes 2D (QTgw.cn1-2D), 5A (QTgw.cn1-5A), and 6A (QTgw.cn1-6A). QTgw.cn1-2D and QTgw.cn1-6A colocalized with QTL for GL, and QTgw.cn1-5A colocalized with a QTL for GW. A QTL for HD on the long arm of chromosome 5A was also detected, spanning the VRN-1 gene (Yan et al., 2003). The flanking and peak markers, LOD score, positions in the genetic map and wheat reference genome, and grain weight percentage variation explained by each QTL are described in Supplemental script_S1.md. A univariate linear model for TGW with random entry and environment effects and fixed-interaction effects between peak markers of the three TGW QTL showed highly significant effects for all three QTL but no significant interactions (Supplemental script_S1.md). These results indicated that QTgw.cn1-5A, the focus of this study, could be mapped regardless of combinations with QTgw.cn1-2D and QTgw.cn1-6A.

The QTgw.cn1-5A flanking markers were wmc705 (0.1 cM, LOD 3.86) and synopGBS284 (4.49 cM, LOD 3.49) and accounted for 10.39% of the grain weight and 37.9% of the width variation. Upon inspection of the flanking marker RefSeq v1.0 physical positions (wmc705, 290 Mb) and synopGBS284, (487 Mb), it became clear that QTgw.cn1-5A mapped to chromosome arm 5AL and the genetic map lacked markers on chromosome arm 5AS. Our QTL mapping occurred before Gutierrez-Gonzalez et al. (2019) published dense GBS linkage maps that indicated that the SynOpDH population segregated for the presence or absence of the short arm on chromosome 5A. Later, we adjusted the marker order to reflect physical positions and incorporated a single marker for QTL mapping that represented the chromosome arm 5AS structural variation (Figure 1a).

Phenotypic distributions and ANOVA tests of the SynOpDH population revealed Opata provides the increased TGW and GW allele (Figure 1b, Table 1). We hypothesized that the increased grain weight is mediated by differences in GW rather than GL, which are under independent genetic control (Gegas et al., 2010). The broad-sense heritability for TGW, GL, GW, and HD were 0.68, 0.75, 0.81, and 0.78 respectively. SynOpDH entries with the QTgw.cn1-5A Opata allele (+) were, on average, 6.4% heavier and 4.2% wider than the W7984 allele (−) and significantly different across all environments (Table 1).

3.2 | HIFs differing for QTgw.cn1-5A show a 21.3% difference in TGW

To further investigate the effect of QTgw.cn1-5A on TGW, HIF populations were generated from two F2 SynOpRIL entries (7-956 and 7-1201) heterozygous for flanking KASP markers 5A_283300187 and 5A_482369161. The fine-mapping population selection was based on recombination between flanking markers and sister line genotypes, as individual plant
FIGURE 1 (a) Quantitative trait loci detected for 1000-grain weight (TGW), grain width (GW), and heading date (HD) in the SynOpDH population on chromosome 5A. A single marker was used to represent the chromosome arm 5AS structural variation. Values on the x axis represent RefSeq v1.0 physical position, and the vertical dashed line represents the centromere. The dashed line on the y axis represents the logarithm of odds (LOD) significance threshold. (b) Best linear unbiased prediction (BLUP) phenotype distribution for SynOpDH entries subset by QTgw.cnl-5A allele, based on flanking marker genotypes for TGW were too variable. Our fine-mapping population development occurred before results by Gutierrez-Gonzalez et al. (2019) were published.

In 2016, we grew a seed increase of the SynOpRIL population (F₆:1) and identified HIF founder lines 7-956 and 7-1201, heterozygous for QTgw.cnl-5A flanking markers. We screened 600 F₆:1 progeny (F₆:2) during the 2017 field season (Snyder field) with QTgw.cnl-5A flanking KASP markers and identified no crossovers within the maker interval and 45 plants that remained heterozygous. Nine hundred progenies from the F₆:2 heterozygous plants (F₆:3) were evaluated in a greenhouse during the winter of 2017, and 44 plants with crossovers within the flanking KASP interval, seven W7984 sister lines (recombination outside of flanking KASP interval), and six Opata sister lines were identified. Five additional KASP markers were developed across the target region based on SNPs identified in parental exome-capture data (He et al., 2019a). The F₆:4 generation, validated during the 2018 field season (Caldwell field), consisted of inbreeding 1,620 entries with a single heterozygous flanking marker and progeny tests of the 44 recombinants. We identified 65 new homozygous recombinant plants within the flanking KASP interval, four W7984 sister lines, and three Opata sister lines. An additional 24 KASP markers were developed between the flanking markers based on SNPs identified in the exome-capture and regulatory-capture data (Gardiner et al., 2019). Progeny tests of the 65 recombinant plants (F₆:5) as well as replicates of the 44 F₆:4 validated recombinants, and 20 sister lines were planted in a greenhouse during winter 2018 and characterized with the full set of 31 KASP markers. We screened an additional 1,514 segregating F₆:6 plants during the 2019 field season (Snyder) but did not find a crossover event that reduced the target region. The 109 recombinants and 20 sister lines were selected for the fine-mapping population and field-based phenotypic evaluation.

The fine-mapping population was grown in 2019 (Snyder) and 2020 (Caldwell and Helfer) and evaluated for HD, HT, GFD, SPS, TGW, GL, and GW (Table 2). Significant differences in TGW and GW associated with the peak marker 5A_341510829 narrowed the QTgw.cnl-5A candidate region to a 10-Mbp interval containing 37 HC and 84 LC genes flanked by markers 5A_339757917 and 5A_349628635 (Figure 2; Supplemental script_S2.md). The Opata allele frequency at SNP 5A_341510829 was 0.58, and the W7984 allele frequency was 0.42. The lower variability of the HIFs and homogenous background genome increased the resolution of additional yield component quantitative traits, including significant associations for GL, SPS, and HT with QTgw.cnl-5A (Table 2). There was no significant difference in HD or GFD, suggesting the difference in grain weight may be due to the grain filling rate rather than duration. Given the additional phenotypes associated with the candidate gene region, we decided to explore the transcriptome of QTgw.cnl-5A+ and QTgw.cnl-5A− haplotypes.

3.3 | HIF variation in grain weight and morphology was significantly associated with early grain development

In order to better understand the mechanism driving the grain weight and morphology phenotype and to identify the optimum timepoints for our transcriptome study, we conducted a DPA analysis of the developing grains in five QTgw.cnl-5A+ and five QTgw.cnl-5A− HIF haplotypes. Grains of 10 replicated haplotypes were sampled from the 2019 field season at 0, 4, 10, 16, and 22 DPA. The first significant difference in GL, GW, and fresh weight was measured at 10 DPA, with QTgw.cnl-5A+ grains 4.6% (P < .001) longer, 5.7% (P < .001) wider, and 18.9% (P < .001) heavier than...
Table 1
Mean 1000-grain weight (TGW), grain length (GL), grain width (GW), and heading date (HD) of SynOpDH entries. Percentages (%) refer to the trait value gained in SynOpDH QTgw.cn5A+ (Opata allele) entries vs. QTgw.cn5A− (W7984 allele) entries. The QTgw.cn5A+ and QTgw.cn5A− allele categories were determined by genotype at the peak quantitative trait loci marker 5A_341510829. Broad-sense heritability (H^2) considered trait observations across all locations. Replicates grown in locations with spatial variation are reported independently and denoted with a letter in parentheses. Asterisks indicate significance determined by ANOVA for each location or best linear unbiased prediction (BLUP).

Year	Location	Genotype	TGW	GL	GW	HD
			g	mm		Julian date
2016	Caldwell	QTgw.cn5A+	39.19	7.16	3.26	–
		QTgw.cn5A−	36.49	7.09	3.08	–
		Trait value gained (%)	7.4***	0.98ns	5.7***	–
2017	Caldwell	QTgw.cn5A+	–	6.58	2.84	–
		QTgw.cn5A−	–	6.53	2.68	–
		Trait value gained (%)	–	0.81ns	6.1***	–
2018	Caldwell	QTgw.cn5A+	40.36	7.25	3.26	184.71
		QTgw.cn5A−	38.37	7.28	3.14	182.64
		Trait value gained (%)	5.2**	–0.21ns	3.7***	1.1*
2018	Helfer (A)	QTgw.cn5A+	31.04	7.08	3.08	187.05
		QTgw.cn5A−	28.55	6.97	2.92	184.8
		Trait value gained (%)	8.7***	1.70ns	5.4***	1.2*
2018	Helfer (B)	QTgw.cn5A+	31.61	7.03	3.09	186.91
		QTgw.cn5A−	29.77	6.97	2.96	184.79
		Trait value gained (%)	6.2**	0.81ns	4.5***	1.1*
		BLUP	36.46	7.07	3.12	186.02
			34.26	7.004	2.996	183.77
		Trait value gained (%)	6.4***	0.92ns	4.2***	1.2**
		H^2	0.68	0.75	0.81	0.78

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.
†ns, nonsignificant.

QTgw.cn5A- grains (Figure 3). The first significant difference in dry weight was measured at 16 DPA, with QTgw.cn5A- grains 25.2% ($P < .001$) heavier than QTgw.cn5A- grains (Figure 3). These effects increased and were maintained at 22 DPA and senescence (data not shown).

The experimental design was repeated in a greenhouse environment and included additional measurements at 28 DPA and senescence with four HIF entries that were selected for RNA-seq (Opata control, W7984 control, recombinant I, recombinant II). The trend remained that the first significant difference in GW and fresh weight was measured at 10 DPA and dry weight at 16 DPA for Opata control vs. W7984 control grains. However, for comparisons between recombinant I and W7984 control and recombinant II and W7984 control, the difference for any phenotype was first measurable at 16 DPA (Supplemental script_S3.md). Differences in grain development between the field and greenhouse could be due to the growing environment, time of year, HIF haplotype, or too few experimental entry comparisons.

Grain development begins after pollination starting with rapid proliferation of cells that form the outer layer of the grain followed by the endosperm’s cell division and expansion at ∼6 DPA (Brinton & Uauy, 2018; Li & Li, 2016). Our DPA study had consistent association with phenotypic variation at 10–16 DPA and, in conjunction with the 2019 and 2020 field data that found no significant difference in GFD among QTgw.cn5A+ and QTgw.cn5A− HIFs, suggests the difference in GW and grain weight is driven by the rapid endosperm cell division and expansion during early grain development.

3.4 | QTgw.cn5A in LD with chromosome arm 5AS structural variation

Upon learning from Gutierrez-Gonzalez et al. (2019) that the SynOpDH population was segregating for the presence or absence of the short arm on chromosome 5A, we genotyped our fine-mapping population with three SSR
TABLE 2 Mean heading date (HD), grain-fill duration (GFD), plant height (HT), spikelets per spike (SPS), 1000-grain weight (TGW), grain length (GL), and grain width (GW) of SynOp HIF entries. Percentages (%) refer to the trait value gained in SynOp HIF QTgw.cn5A+ (Opata allele) entries vs. QTgw.cn5A− (W7984 allele) entries. The QTgw.cn5A+ and QTgw.cn5A− allele categories were determined by genotype at the peak QTL marker, 5A_341510829. Replicates grown in locations with spatial variation are reported independently denoted with a letter in parentheses. Asterisks indicate significance determined by ANOVA for each observation or best linear unbiased prediction (BLUP).

Year	Location	Genotype	HD	GFD	HT	SPS	TGW	GL	GW
			Julian date	d	cM	g	mm		
2019	Snyder (A)	QTgw.cn5A+	172.19	30.9	77.55	15.03	37.49	6.54	3.24
	QTgw.cn5A−	172.57	30.98	74.96	14.76	31.22	6.4	2.93	
Trait value gained (%)	−0.22ns	−0.26ns	0.35ns	1.80ns	20.08 ***	2.2 ***	10.4 ***		
2019	Snyder (B)	QTgw.cn5A+	171.59	30.4	81.99	15.11	38.69	6.58	3.28
	QTgw.cn5A−	172	30.82	78.67	14.57	31.87	6.61	2.95	
Trait value gained (%)	−0.24ns	−1.40ns	4.20ns	3.7 **	21.4 ***	2.7 ***	11.1 ***		
2019	Snyder (C)	QTgw.cn5A+	173.56	–	83.81	15.59	38.33	6.45	3.24
	QTgw.cn5A−	171.67	–	79.83	14.9	32.58	6.53	2.95	
Trait value gained (%)	1.10ns	–	4.90ns	4.60ns	17.6 ***	−1.20ns	9.9 ***		
2020	Caldwell	QTgw.cn5A+	174.21	29.36	66.24	12.71	38.21	6.92	3.53
	QTgw.cn5A−	173.81	29.46	62.94	12.43	31.41	6.81	3.21	
Trait value gained (%)	0.23ns	−0.35ns	5.2*	2.20ns	21.7 ***	1.6 **	10.2 ***		
2020	Helfer	QTgw.cn5A+	172.13	29.23	58.73	11.71	36.58	6.8	3.45
	QTgw.cn5A−	171.93	28.91	55.59	11.43	29	6.67	3.11	
Trait value gained (%)	0.12ns	1.10ns	5.7**	2.40ns	26.1 ***	1.9 ***	11.02 ***		
BLUP	QTgw.cn5A+	172.57	29.32	71.2	13.62	37.72	6.71	3.37	
	QTgw.cn5A−	172.63	29.39	68.45	13.43	31.09	6.58	3.06	
Trait value gained (%)	−0.04ns	−0.26ns	4.02**	1.4***	21.3 ***	1.99 ***	10.3 ***		

*Significant at the .05 probability level. **Significant at the .01 probability level. ***Significant at the .001 probability level.

1ns, nonsignificant.

markers for chromosome arm 5AS presence or absence. The frequency of chromosome arm 5AS presence was 0.57 and absence was 0.43. Of the 129 fine-mapping entries, 126 had either haplotype chromosome short arm 5AS+QTgw.cn5A+ or chromosome short arm 5AS−QTgw.cn5A−, with only one entry chromosome short arm 5AS+QTgw.cn5A+ and two entries chromosome short arm 5AS−QTgw.cn5A−. The skewed haplotype distributions revealed chromosome arm 5AS structural variation and QTgw.cn5A−alleles are in very strong LD, with a correlation coefficient of 0.91. We tested for an interaction between the two loci using a univariate linear model for TGW with entry as a random effect and a fixed interaction between chromosome arm 5AS and peak marker 5AS_341510829. A Wald chi-square test showed highly significant differences for presence or absence of chromosome arm 5AS or the 5A_341510829 allele, suggesting the phenotypic variation was largely explained by the chromosome arm 5AS structural variation, and QTgw.cn5A− is a result of linkage (Figure 4b and 4c; Supplemental script_S2.md).

3.5 RNA-seq of QTgw.cn5A HIFs confirmed the significance of chromosome arm 5AS structural variation

We used RNA-seq to investigate three questions with four HIF haplotypes (Table 3): (a) are genes in the QTgw.cn5A candidate region differentially expressed? (b) are there genes on chromosome arm 5AS that are differentially expressed? and (c) do the HIFs share an isogenic background genome? We
The Plant Genome

FIGURE 2 Fine-mapping of heterogenous inbred family (HIF) recombinant entries and trait variation pinpoints QTgw.cnlt-5A to a 10-Mbp interval on wheat chromosome arm 5AL. (a) Graphical genotypes of 129 HIFs grouped by shared recombination intervals (KASP marker positions not to scale, purple Opata SNPs, blue W7984 SNPs). Number of HIFs in each group noted within parentheses. (b, c) Best linear unbiased prediction (BLUP) phenotype boxplot distribution of each HIF group. Boxes are colored based on Opata- or W7984-like phenotype determined by t test (Supplemental script_S2.md)

TABLE 3 Heterogenous inbred family (HIF) haplotypes selected for RNA sequencing. Chromosome arm 5AS structural variation (chr 5AS), QTgw.cnlt-5A genotype (marker 5A_341510829) where Opata is (+) and W7984 is (−), 1000-grain weight (TGW), grain width (GW)

HIFa	NAME	CHR 5AS	QTgw.cnlt-5a	TGW	GW
7-956-2-19-1-31-03	Opata control	Present	+	37.895	3.408
7-956-2-19-1-44	W7984 control	Absent	−	29.983	3.091
7-956-2-19-1-31-05	Recombinant I	Present	+	36.341	3.39
7-956-2-12-1-69-07	Recombinant II	Present	+	40.199	3.44

*HIF entries were chosen to prioritize isogenic lineage and QTL resolution over chr 5AS and QTgw.cnlt-5A recombinants.

Hypothesized that gene expression changes influencing phenotypic differences occurred before the first significant difference in grain morphology was detectable at 10 DPA and sampled whole grains at 4 and 8 DPA. We measured over 621 million reads across the 24 samples, with individual sample reads ranging from 21.8 to 37 million and an average of 25.8 million reads (SE = 0.7 million) per sample (Supplemental file_S4.02.csv, file_S4.03.csv). We aligned the reads to RefSeq v1.1 HC and LC annotations independently, and, on average, across samples 89.4 ± 0.6% of reads aligned to the HC gene annotation, and 89 ± 0.62% aligned to the LC gene annotation (for read counts see Supplemental file_S4.md).

We performed differential expression comparisons between the HIFs at both timepoints. Independent comparison between HIFs for Opata control, recombinant I, and recombinant II vs. W7984 control did not identify any DEGs at 4 and 8 DPA in the QTgw.cnlt-5A candidate region (chromosome 5A 339757917–349628635 bp) for the HC or LC gene annotation. However, there were 532 significant DEGs in common among these HIF comparisons at 4 DPA, 469 at 8 DPA, and 556 in total at either timepoint for the HC gene annotation. Of the 556 DEGs, 15 were on chromosome 1A, one on 1B, one on 3A, 532 on 5A short arm, three on 5A long arm, one on 5D, two on 7A, and one on 7B. The 535 genes on chromosome 5A were all differentially expressed because of no expression in the W7984 control HIF. None of the DEGs homoeologous copies were differentially expressed. Given only 21 of the 556 DEGs were on chromosomes other than chromosome 5A, the differential expression comparisons between HIFs also validated the fine-mapping population’s isogenic background genome (Figure 5; Supplemental script_S4.md).

These results prompted us to evaluate the considerable resources we had invested in an otherwise reliable positional cloning approach for QTgw.cnlt-5A. It was possible we sampled tissue at the wrong timepoints or that QTgw.cnlt-5A association with grain weight and morphology was driven by a posttranscriptional or posttranslational modification. We investigated the 10-Mbp candidate region of the 24 samples’ raw reads for SNP variants from the reference genome and identified only one variant. Among the three W7984 control biological replicates, a 3’ (T → C) was present in TraesCS5A02G160900 (Supplemental file_S4.18.xlsx). This gene codes for the third largest subunit of RNA
polymerase II and the SNP, termed BA00617686, had previously been identified by the CerealsDB Axiom 820K and 35K SNP Array (Winfield et al., 2016). The SNP has not been associated with any phenotype, and there is no literature on the Arabidopsis and rice orthologs that implicate the gene in grain development.

Centromeres are vital for proper chromosomal segregation during mitosis and meiosis. Consequentially, experimentally derived chromosome arm deletion lines in wheat often lack a clean break at the centromere (Gill, 1996). The centromere of chromosome 5A is near 250 Mbp in Chinese Spring RefSeq v1.0. Although Gutierrez-Gonzalez et al. (2019) reported that the entire short arm was missing for W7984 chromosome 5A, our transcriptome study revealed 15 genes expressed in the W7984 control haplotype at 237–250 Mbp. None of the W7984 haplotype expressed genes were differentially expressed, which made them unlikely candidates for the observed phenotypic variation. The centromeric position can change among cultivars, but this has not previously been associated with a structural variation event (Walkowiak et al., 2020). We propose that W7984 short arm of chromosome 5A broke approximately 13 Mbp from the centromere, as compared with Chinese Spring. This remains to be validated with a transcriptome study across additional SynOp entries and parents.

Across the W7984 haplotype samples, there were 23 genes that were unexpectedly expressed on chromosome arm 5AS (0–237 Mbp) (Supplemental file_S4.14.xlsx). We investigated the read counts of these genes and identified 11 of the genes were differentially expressed, but still from less expression by W7984 samples. We explored the 23 gene sequences using EnsemblPlants and IWGSC BLAST, and, on average, there was 94.6 ± 1.7% sequence alignment with at least one homoeolog or paralog. On average, reads aligned to multiple loci represent 5.16 ± 0.22% of the total alignment (for read counts see Supplemental file_S4.md). We suggest these 23 genes have multiple sequence alignments and that their expression in the W7984 haplotype samples was incorrect.

Collectively, these findings indicate our approach to positional cloning was overpowered by chromosome arm 5AS structural variation and that QTgw.cn1-5A was a result of strong LD. The presence or absence of chromosome arm 5AS was significantly associated with the yield component variation we identified in the fine-mapping population. An in-depth comparison of the 556 DEGs and association with yield components follows in the next section.
3.6 Chromosome arm 5AS differential expression provided insight into candidate genes

The phenotypes measured in the fine-mapping population were chosen based on the quantitative phenotypic variation associated with $QT_{gw.cn}l-5A$ in the SynOpDH background. In an isogenic fine-mapping background, the phenotypic resolution was enhanced and included significant associations between HT, SPS, TGW, GL, and GW and the presence or absence of chromosome arm 5AS. The percentage difference between the $QT_{gw.cn}l-5A +/-$ HIFs for these traits is reflective of additive, rather than dominance variation (Table 2). There were no other variable phenological or morphological traits among SynOpDH and HIF populations that were obvious during field trials. It is well known that wheat harbors hidden variation as a result of polyploidy and there are likely nonadditive and functionally redundant genes among the DEGs on chromosome 5A.

To better understand the DEGs, we performed GO enrichment analysis with GOsEquation (Young et al., 2010). The DEGs were associated with 1,919 out of 9,709 unique GO terms from the RefSeq v1.1. After statistical overrepresentation tests and correction for multiple testing, the only
significant term was “killing of cells of other organism” (GO:0031640) (Supplemental script_S4.md). There were nine DEGs with GO:0031640, including the physical cluster of genes TraesCS5A02G018000, TraesCS5A02G018800, TraesCS5A02G019000, and TraesCS5A02G019100, which are orthologs of Arabidopsis bacterium and fungus response gene Osmotin-like protein, OSM34 (Capelli et al., 1997). TraesCS5A02G077600 is within the interval of a fusarium head blight resistance QTL, termed Qfhs.ifa-5AS, and is orthologous to the rice Osmotin-like protein Os12g0569300 (National Center for Biotechnology Information, 2021; Steiner et al., 2019). TraesCS5A02G059000 is orthologous to the rice defense response gene OsPR1b, which is constitutively expressed at background levels (Luan & Zhou, 2015). Although the physical gene cluster of TraesCS5A02G046300, TraesCS5A02G046400, and TraesCS5A02G046500 has no known orthologs in Arabidopsis or rice, they share the additional GO terms defense response to fungus (GO:0050832), binding (GO:0005488), peptidase activity (GO:0008233), extracellular region (GO:0005576), cell wall (GO:0005618), integral component of membrane (GO:0016021), cellular component organization (GO:0016043), and cellular metabolic process (GO:0044237).

The relative lack of GO term enrichment among chromosome arm 5AS+ and 5AS− HIF DEGs coupled with phenological variation characteristic of a single gene rather than entire chromosome arm, highlights the challenge of identifying hidden variation in a redundant polyploid genome. Despite the limited GO term enrichment, the positive association of SPS, TGW, GL, and GW with chromosome arm 5AS presence prompted us to investigate genes with GO terms related to spike architecture and early grain development. It was unclear if the difference in height was attributable to any DEGs measured at 4 or 8 DPA. There were 292 DEGs that had at least one GO term related to biological, cellular, and developmental processes during spike and early grain growth (Supplemental file_S4.16.csv). Of these genes, 52 were only differentially expressed at 4 DPA, and 10 genes were only differentially expressed at 8 DPA. The majority of the 230 genes that were differentially expressed at both timepoints decreased in expression across time. Only seven of the genes were on chromosomes other than 5A and are poor candidates based on GO terms and Arabidopsis and rice orthologs. We explored the Arabidopsis and rice orthologs for all 292 genes and present nine genes as candidates for wheat yield components in Table 4.

While the genes in Table 4 have not previously been associated with wheat yield components, their Arabidopsis and rice orthologs have been shown to regulate inflorescence development or seed and grain size. Based on RefSeq v1.0 alignment

Figure 5 Differentially expressed genes (a) genome wide and (b) on chromosome 5A, for Opata vs. W7984 control haplotypes at 8 d postanthesis (DPA). Each point represents a gene, ordered by RefSeq v1.0 physical position along the x axis. The y axis represents the differential expression significance, −\log base 10 adjusted P value. The red dashed line marks P value = .01. In (b) the grey dashed line represents the centromere, and the red points highlight genes between QTgw.cnf-5A flanking KASP markers 5A_339757917 and 5A_349628635.
T. aestivum	RefSeq v1.0	RefSeq v2.0	4-DPA P value	8-DPA P value	Selected GO terms	A. thaliana	O. sativa
TraesCS2A02G103900	1AS	5AS	3.99 × 10⁻⁸	1.07 × 10⁻⁷	Regulation of cell size (GO:0008361) Plant-type cell wall organization (GO:0009664) Multidimensional cell growth (GO:0009825) Epidermal cell differentiation (GO:0009913)	**HAIKU2** (IKU2), regulator of seed size	**HAIKU2**
TraesCS2A02G025900	5AS	5AS	5.59 × 10⁻¹⁰	1.34 × 10⁻¹⁷	Post-embryonic development (GO:0009791) Cell differentiation (GO:0030154) Reproductive structure development (GO:0048608)	YAB2, abaxial cell fate	OsYAB6
TraesCS2A02G037100	5AS	5AS	2.25 × 10⁻⁹	1.7 × 10⁻⁷	Brassinosteroid mediated signaling pathway (GO:0009742)	**BSL2** and **BSL3**, brassinosteroid-insensitive suppressor family	OsPPKL3, negative regulator of grain length
TraesCS2A02G038300	5AS	5AS	4.99 × 10⁻¹⁶	5.75 × 10⁻¹⁰	Stamen development (GO:00488443)	PID, establishment of bilateral symmetry	**BIF2**, organogenesis during inflorescence
TraesCS2A02G103800	5AS	5AS	1.43 × 10⁻¹⁶	5.75 × 10⁻¹⁰	Auxin-activated signaling pathway (GO:0009734) Flower development (GO:0009098)	ARF6, regulator of flower development and maturation	OsARF25, regulator of grain size
TraesCS2A02G106400	5AS	5AS	6.54 × 10⁻¹¹	7.61 × 10⁻⁷	Auxin metabolic process (GO:0009850) Cytokinin metabolic process (GO:0009690)	**RGLG1** and **RGLG2**, regulator of apical dominance	–
TraesCS2A02G107800	5AS	5AS	4.69 × 10⁻¹²	4.93 × 10⁻⁷	Diacylglycerol kinase activity (GO:0004143) Intracellular anatomical structure (GO:0005622)	DGK2, pollen and seed development	–
TraesCS2A02G110600	5AS	5AS	1.37 × 10⁻¹⁴	9.33 × 10⁻¹⁴	Response to ethylene (GO:0009723) Response to auxin (GO:0009733)	VTC2 and VTC5, ascorbate biosynthesis	OsGGP, biomass production
			1.07 × 10⁻¹³	4.18 × 10⁻⁹	Phragmoplast (GO:0009524) Spindle assembly (GO:0051225)	**AUG6**, mitotic and meiotic cell division	Os02g329300, AUGMIN subunit 6

Table 4 Candidate *Triticum aestivum* RefSeq v1.1 genes and *Arabidopsis thaliana* and *Oryza sativa* orthologs. RefSeq v1.0 and v2.0 assembly chromosome.

Notes:

[a] GOSeq2 adjusted P value from Opata vs. W7984 heterogenous inbred family haplotype comparisons, 4 and 8 D postanthesis (DPA). All haplotype comparisons can be found in Supplemental script_S4.md.

[b] All GO terms are available in Supplemental file file_S4.17.xlsx.
and v1.1 annotation, there are eight candidate genes on chromosome arm 5AS and one candidate gene on chromosome arm 1AS, *TraesCS1A02G103900*. *TraesCS1A02G103900* had GO terms related to cell size, cell growth, and epidermal cell differentiation and was orthologous to *HAIKU2* (IKU2), a regulator of endosperm proliferation and cellularization (Li & Li, 2016; Luo et al., 2005). IKU2 loss-of-function is associated with reduced seed size in Arabidopsis (Luo et al., 2005). Notably, the homoeologous copies of *TraesCS1A02G103900*, *TraesCS5B02G012000*, and *TraesCS5D02G019400* map to the group 5 chromosomes not group 1. The homoeologs, as reported on *EnsemblPlants*, are orthologues to IKU2 as well. Our transcriptome analysis identified three other DEGs on chromosome 1AS clustered near *TraesCS1A02G103900* (9.76–9.98 Mbp), which also have homoeologs on the group 5 chromosome (Supplemental file_S4.19.xlsx). All four of these genes were differentially expressed as a result of zero read counts from the W7984 haplotype, while the other 11 DEGs identified on chromosome 1A have a mix of expression profiles among the four haplotypes. We submitted the *TraesCS1A02G103900* coding sequence to IWGSC BLAST RefSeq v1.0 and RefSeq v2.0, which identified 100% alignment with RefSeq v1.0 chromosome 1A and 71% with 5A and 100% alignment with RefSeq v2.0 chromosome 5A and 75% with 1A. We also identified 99% alignment with chromosome 5A of the durum wheat (*Svevo*) genome assembly v1. Given the haplotype expression profile, homoeologous copies on group 5 chromosomes and RefSeq v2.0 and Durum alignment, we believe *TraesCS1A02G103900* was misannotated by RefSeq v1.1 and belongs on chromosome arm 5AS. The eight additional candidate genes on chromosome arm 5AS and their ortholog functions are discussed in the proceeding section.

4 | DISCUSSION

In this study, we discovered that a stable and robust QTL was confounded by linkage with chromosome structural variation. We confirmed that the SynOpRIL population, in addition to the SynOpDH population described by Gutierrez-Gonzalez et al. (2019) is segregating for presence of the Opata parent chromosome arm 5AS and absence of the majority of the W7984 parent chromosome arm 5AS. Furthermore, we associated the chromosome arm 5AS structural variation in an isogenic background with yield component phenotypes, characterized the early grain development transcriptome, and propose nine candidate genes for agronomically valuable traits on chromosome arm 5AS. Genomic structural variations are common across polyploids, and this study contributes to our understanding of the complexities associated with fine-mapping in a polyploid species and discusses a more robust approach to positional cloning (Saxena et al., 2014; Song et al., 1995).

4.1 Detecting the chromosome structural variation

SynOpDH and SynOpRIL were two of the most widely referenced mapping populations leading up to the advent of the annotated wheat reference genome. Aside from the phenotypic variation subtleties, why was the W7984 chromosome arm deletion not detected sooner by the wider wheat community? The original W7984 × Opata crosses were developed in the early 1990s and were later reconstructed and expanded in 2011 (Sorrells et al., 2011). The rereleased population was genotyped with SSR and DArT markers, which are scored for the presence or absence of genomic fragments and would not have alerted researchers to the segregation of chromosome arm 5AS. When the SynOpDH high-density GBS marker genetic map was developed in 2012 there was no reference genome available to flag that none of the markers mapped to chromosome arm 5AS (Poland et al., 2012). Our research group first noticed an anomaly on chromosome arm 5AS when we were unable to identify genome and chromosome arm specific polymorphic sites among the parent line exome-capture and regulatory-capture sequence for KASP marker development. In 2019, the dense GBS linkage maps created by Gutierrez-Gonzalez et al. (2019) confirmed the significant structural variation of chromosome arm 5AS. It is also worth noting that many SynOp studies relied on a subset of either mapping population and may not have had a high enough frequency of the missing arm to detect the abnormality or were not focused on chromosome 5A. We urge previous studies involving SynOp populations and group 5 chromosomes to consider implications of chromosome arm 5AS structural variation on their results and recommend a list of SSR markers for any future studies that need to characterize SynOp entries not included in our current study (Supplemental file_S2.11.csv).

4.2 Why did QTgw.cnl-5A map to chromosome arm 5AL?

Fundamentally, our positional cloning difficulties began with a QTL that mapped to the wrong chromosome arm. Our SynOpDH QTL map significantly associated markers on chromosome arm 5AL with grain weight and morphology across four environments, which is consistent with previous publications but inconsistent with our fine-mapping results (Breseghello & Sorrells, 2006; Williams et al., 2014). Even when we were prompted by the findings of Gutierrez-Gonzalez et al. (2019) to add a chromosome arm 5AS structural variation marker to the genetic map, QTgw.cnl-5A still presented on the long arm. Potentially, R/qtl is insensitive to chromosome arm 5AS presence or absence because the QTgw.cnl-5A causal variant is
very near the centromere or part of the W7984 chromosome arm 5AS 13-Mbp segment, but none of the genes in this region were differentially expressed. The lack of phenotypic resolution for quantitative traits like TGW and GW in the SynOpDH background may have also reduced our power to detect the association with chromosome arm 5AS, as seen among the minimal DH chromosome arm 5AS and QTgw.cnl-5A haplotype recombinants (Supplemental script_S1.md). Alternatively, the genetic map of GBS and SSR markers on chromosome arm 5AL may not be genome specific, and false recombination events placed QTgw.cnl-5A on chromosome arm 5AL. Finally, as we observed across QTgw.cnl-2D, QTgw.cnl-5A, and QTgw.cnl-6A, GL, and GW can independently influence grain weight. Although the GW 5A QTL spanned the centromere, because of its overlap with QTgw.cnl-5A we considered the difference in GW and TGW to be a pleiotropic effect. Collectively, these results encouraged us to develop a fine-mapping population targeting QTgw.cnl-5A on chromosome arm 5AL.

4.3 Candidate genes for yield components

Grain yield is a key economic driver behind the success of wheat production and the value chain. However, grain yield is determined at the end of plant growth and is directly or indirectly impacted by all genes. Balancing the mechanisms driving the source tissue growth, the number of grains produced by a plant, and the weight of those grains are a key challenge for breeders as the constituent yield components compete for resources. Notably, in this study, we have identified a positive combination among five traits (HT, SPS, TGW, GL, and GW) under independent genetic control on Opata chromosome arm 5AS. Phenotypic variation associated with chromosome arm 5AS structural variation, significant differential expression during early grain development, GO terms, and orthologs were leveraged to identify nine candidate genes that may impact spike or grain development (Table 5). Ultimately, the genomic resolution of this study was limited by presence–absence structural variation and it is premature to conclude that any of the nine candidate genes contribute to the observed spikelet and grain morphology variation. Independent knockout studies of each candidate gene in HIF entries with Opata chromosome arm 5AS are necessary for functional validation. A discussion of each candidate gene follows.

Among the DEGs we identified TraeCS5A02G025900, an ortholog to Arabidopsis gene YAB2 and rice gene YAB6, which regulate abaxial cell fate in leaf, sepal, petal, stamen, and carpel primordia (Siegfried, 1999). In Arabidopsis, YAB2 acts redundantly with the larger YABBY gene family, and single loss-of-function plants exhibited no measurable organ polarity defects (Stahl et al., 2009). There are 21 YABBY genes subdivided into six families in wheat, but functional validation studies and phenotypic associations remain unexplored (Buttar et al., 2020). Given the functional redundancy identified in Arabidopsis, and large gene family in wheat, the loss of TraeCS5A02G025900 (TaYABBY5-5A) in our study was likely masked by gene family copies.

Another candidate gene that may impact wheat spike inflorescence development is TraeCS5A02G037100. TraeCS5A02G037100 is orthologous to Arabidopsis gene PID, and rice and maize (Zea mays L.) gene BIF2, which are involved in inflorescence organogenesis (Benjamins et al., 2001; He et al., 2019b; McSteen et al., 2007). While loss-of-function plants in maize produced fewer spikelets and florets, rice did not suffer from flower initiation defects and indicated BIF2 function is likely veiled by redundant partners (He et al., 2019b). TraeCS5A02G037100 has not been associated with SPS in wheat outside of our chromosome arm 5AS structural variation study.

TraeCS5A02G103800 is orthologous to Arabidopsis RING domain Ligase genes RGLG1 and RGLG2, which modulate the directional flow of auxin (Yin et al., 2007). While single mutants in either gene have no apparent phenotypic effect, double-mutant plants exhibit loss of apical dominance and altered phyllotaxy. TraeCS5A02G103800 and homoeologous gene copies may harbor hidden variation regulating spike development in wheat.

TraeCS1A02G103900 is orthologous to IKU2, a gene involved in endosperm growth and seed development signaling pathways (Luo et al., 2005). The RefSeq v1.1 annotation maps TraeCS1A02G103900 to chromosome 1A; however, our results indicate this gene was misannotated and maps to chromosome 5A. SHB1, IKU1, IKU2, and MINI3 function in the same signaling pathway to control seed size in Arabidopsis, and loss of any gene can reduce seed size (Li & Li, 2016). Loss of the IKU2 wheat ortholog impact on grain size remains to be functionally validated outside of our chromosome arm 5AS structural variation study.

TraeCS5A02G030300 is orthologous to protein phosphatases with Kelch-like domains BSL2 & BSL3 in Arabidopsis, and OsPPKL3 in rice (Kim et al., 2018). Protein phosphatases with Kelch-like domains genes are known positive effectors of brassinosteroid signaling in plants, and brassinosteroid has been shown to regulate seed size and shape in Arabidopsis (Jiang et al., 2013). OsPPKL3 and its homolog OsPPKL1 are negative regulators of GL, but rare allelic variation is associated with extra-large grains and increased yield (Zhang et al., 2012). The wheat ortholog to OsPPKL1, TaGL3-5A, is associated with longer GL and has been functionally validated, suggesting TraeCS5A02G030300 may be a strong candidate for exploring allelic diversity and association mapping (Yang et al., 2019).

Another potential grain size regulator is TraeCS5A02G038300, or TaARF14, which is ortholo-
ous to auxin response factor (ARF) ARF6 in Arabidopsis and OsARF25 in rice (Nagpal et al., 2005; Xu et al., 2020; Zhang et al., 2018b). Dosage effects among ARF knockouts in Arabidopsis found that ARF6 impacts the timing of flower maturation. OsARF25 has been functionally validated in an auxin signaling pathway where it binds to the promoter of OsERF142, a positive regulator of cell expansion and ultimately GL (Zhang et al., 2018b). A recent comprehensive atlas of wheat ARF gene expression suggests TaARF14 is required to promote stamen development, but functional validation outside of chromosome arm 5AS structural variation remains to be determined.

TraesCSSA02G106400, TaDGK5A, is the wheat ortholog of the Arabidopsis gene DGK2, a diacylglycerol kinase essential for reproductive organ development (Angkawijaya et al., 2020). There are seven DGK genes in Arabidopsis, which cumulatively contribute to phospholipid signaling and three are known to impact gametogenesis. A recent preprint of wheat DGK2 genomic and expression profiles identified 20 genes and their upregulated expression in root tissues under salt and drought stress (Jia et al., 2020). The study did not sample grain tissue for transcriptome analysis. The larger TaDGK family likely masked a phenotypic response to loss of chromosome arm 5AS TaDGK5A in our HIF population and functional validation of TaDGK genes in wheat is an outstanding area of research.

Meiotic and mitotic cell divisions are elevated during flowering plant reproductive growth and organogenesis. Among the DEGs we identified TraesCSSA02G110600, an ortholog to Arabidopsis and rice subunit 6 of the augmin complex, which is responsible for microtubule nucleation during cell divisions (Hotta et al., 2012; Oh et al., 2016). Knockdown lines of AUG6 in Arabidopsis disturbed mitotic and meiotic cell divisions as a result of malformed microtubule arrays and affected both male and female gamete development (Oh et al., 2016). Functional validation of genes that affect gamete development is challenging because of homozygous lethality. An alternative approach to studying the effect of TraesCSSA02G110600 on HIF entries could be to measure cell size and number of developing grains, which has previously been associated with grain morphology variation in wheat (Brinton et al., 2017).

Given the dramatic genomic structural variation and relatively few variable visual phenotypes in the HIF population, there is likely more phenotypic variation than what meets the eye. For example, TraesCSSA02G107800 orthologs VTC2 and VTC5 in Arabidopsis and OsGGP in rice catalyze the first step in the ascorbate biosynthetic pathway (Gao et al., 2011; Höller et al., 2015; Lim et al., 2016). Ascorbate is an essential signal-transducing molecule for regular plant development, and loss-of-function OsGGP plants have significantly reduced biomass (80% loss), panicle number, and panicle weight. Knockout VTC2 and VTC5 plants and ascorbate deficiency have been associated with reduced growth by some studies, or more recently with an independent cryptic mutation (Gao et al., 2011; Lim et al., 2016). While we did not detect biomass variation on the order of magnitude measured in rice, hidden variation or homoeologous masking is likely at play. A future study of signal-transducing molecule concentrations or hormone panels of the HIF population would likely unveil additional candidate genes.

4.4 Wheat positional cloning recommendations

Positional cloning in wheat has lagged behind the progress made in other staple crops in large part because of the redundant polyploid genome’s masking of quantitative variation and the delayed availability of an annotated genome sequence. Even in an isogenic background, the missing chromosome 5A short arm was associated with only subtle phenotypic variation. Wheat deletion lines are classically associated with aberrant morphological variation or infertility, but our results demonstrate that large structural variation can go undetected for years across environments, research projects, and lab groups. Recent studies of 15 bread wheat cultivar genome assemblies showed that only 59% of each cultivar’s genome was identical-by-state with other sequenced cultivars and detected extensive genomic rearrangements, underscoring the structural diversity of wheat (Brinton et al., 2020; Walkowiak et al., 2020). Our study illustrates that approaching positional cloning based on stable and robust biparental QTL mapping may overlook some hurdles unique to wheat’s resilient polyploid genome. If one is going to invest the considerable resources necessary for successful positional cloning in wheat, or other polyploid crops, we propose the following recommendations:

1. **Move from a SNP to haplotype-based approach to identify genetic diversity.** Genetic markers are often associated with a trait of interest but are not causal. In a fine-mapping context this can overlook linkage, especially with broad genomic regions spanning the centromere, such as the GW 5A QTL, and result in selection of false positives (Platten et al., 2019). Haplotype blocks can identify genetic structural variation more comprehensively and precisely, as demonstrated by the recent release of 15 cultivar genome assemblies and accompanying visualization platform (Brinton et al., 2020; Walkowiak et al., 2020). Exome sequence-capture data are available for far more wheat cultivars than genome assemblies, but safeguards need to be in place to detect and flag structural variation, for example in W7984 exome and regulatory-capture (Gardiner et al., 2019; He et al., 2019a).
2. **Invest in sequencing to detect structural variants.**

While the cost of whole-genome sequencing in wheat is not yet feasible for individual breeding programs, long-read sequencing and greater fold coverage (i.e., 10) has become increasingly affordable. Longer sequencing reads can detect even small- (30–10,000 bp) to mid-scale (10,000–30,000 bp) structural variants, which impact trait diversity and are shown to be widespread in polyploid species (Chawla et al., 2021; Gabur et al., 2019; Mahmoud et al., 2019). For example, a recent study of *Brassica napus* L. found that up to 10% of all genes were affected by small- to mid-scale structural variants including flowering-time pathway genes, which can influence agronomic traits (Chawla et al., 2021). Obtaining long-read sequencing (small- to mid-scale structural variants) or 10-fold coverage (large-scale structural variants) of parental lines for a mapping population could become a prerequisite first-step in positional cloning population development.

3. **Use the transcriptome to identify candidate genes.**

RNA-seq of isogenic material can identify differential expression and coding-region allelic variation. This method alerted us to variants of interest arguably faster than pursuing additional HIF recombinants in the QGtw.cn-5A 10-Mbp region. Measurements across multiple timepoints (i.e., >5) can open the door to developing gene networks for candidate gene discovery (Borrill et al., 2020). It is also notable that wheat transcriptome studies have reported large-scale structural variants including interhomoeolog exchanges (He et al., 2017).

4. **Traits with broad overlapping QTL may not be pleiotropic.**

The traditional yield components (spikes m$^{-2}$, grain number per spike, and grain weight) are polygenic traits themselves. For example, in our study we showed that GL and GW can independently contribute to TGW. However, our hypothesis that a gene contributing to GW drove the TGW variation on chromosome arm 5AL overlooked the association with GW and chromosome arm 5AS. Eventually, in an isogenic background, we identified additive and hidden phenotypic variation associated with structural variation, rather than a single gene. Another recent example that has disrupted pleiotropic assumptions based on single-marker trait associations was identified in a highly conserved region of chromosome 6A with a haplotype-led approach (Brinton et al., 2020).

With an annotated reference genome and advancing gene editing techniques, positional cloning in wheat may become routine, but pinpointing quantitative phenotypic variation and causal genomic loci requires a more tactical approach in polyploids. Incorporating strategies that are sensitive to structural variation with classic positional cloning population development approaches will reduce the likelihood of mapping in the wrong direction. Fewer roadblocks to identifying a candidate gene will also lead to more efficient selection from TILLING populations or transgenic approaches during sequencing and functional validation (Krasileva et al., 2017). A comprehensive review of the latest advances of genomics and phenomics for trait discovery in polyploid wheat and gene functional characterization is given in Borrill et al. (2018) and Adamski et al. (2020).

5 | CONCLUSION

The outcomes of this research challenge whether a causal gene variant approach to characterizing wheat grain yield components offers an efficient and sustainable path to genetic gains and food security. We set out to identify the causal variant underlying a previously characterized grain weight and morphology QTL, QTgw.cn-5A, using a well-vetted, positional-based cloning approach. We leveraged a HIF population, SNP genomic data, phenotypic associations, early grain development expression profiles, and predicted gene function to determine that QTgw.cn-5A was a result of strong LD with chromosome arm 5AS presence or absence (Syn-OpDH $r^2 = 0.95$, HIF $r^2 = 0.91$). Our results highlight that chromosome structural variation linkages can overpower the considerable resources required for positional cloning and that wheat harbors hidden phenotypic variation. Chromosome structural variation is common among polyploids, and the results and recommendations presented will be immensely useful for aiding future causal variant discovery. We also identified nine candidate genes on chromosome arm 5AS that may impact yield components; however, their practical application to breeding remains to be functionally validated. Given the resources required for individual gene validation, uncertain impact on final grain yield, and unknown response in a different genetic background, we argue that causal variant discovery for a complex quantitative trait like wheat yield requires an update to traditional positional-based cloning approaches. Altogether, our findings demonstrate the phenotypic resiliency associated with polyploid genomic structural variation and provide recommendations for variant discovery strategies.

ACKNOWLEDGMENTS

We thank David Benscher and Amy Fox for planting and harvesting assistance. We are grateful for the contributions of undergraduate research assistants Elizabeth De Meyer, Rui Fengui Zhan, and J. Edward Keating for phenotyping and greenhouse support. We also thank the Eastern Regional Small Grains Genotyping Laboratory for assistance with KASP marker genotyping of HIFs. Funding for this project was provided by USDA National Institute of Food and Agri-
culture grant 2017-67007-25939 (Wheat-CAP) and Hatch Project 149-945.

AUTHOR CONTRIBUTIONS

Ella Taagen: Data curation; Formal analysis; Investigation; Methodology; Validation; Visualization; Writing—original draft; Writing—review & editing. James Tanaka: Project administration; Resources; Supervision; Writing—review & editing. Alvina Gul: Data curation; Investigation; Methodology. Mark E. Sorrells: Conceptualization; Funding acquisition; Project administration; Supervision; Writing—review & editing.

SUPPLEMENTAL MATERIAL

All of the data referenced in this manuscript, Supplemental files, and scripts for reproducing results are publicly available at: https://github.com/etaagen/Taagen_2021_TPG. Refer to .md files to view analysis output, and .Rmd files to view full script and reproduce results.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

ORCID

Ella Taagen https://orcid.org/0000-0001-8086-2775

REFERENCES

Adamski, N. R., Borrill, P., Brinton, J., Harrington, S. A., Marchal, C., Bentley, A. R., Bovill, W. D., Cattivielli, L., Cockram, J., Contreras-Moreira, B., Ford, B., Ghosh, S., Harwood, W., Hassan-Pak, K., Hayta, S., Hickey, L. T., Kanyuka, K., King, J., Maccaferri, M., ..., Uauy, C. (2020). A roadmap for gene functional characterisation in crops with large genomes: Lessons from polyploid wheat. *eLife*, 9, e55646. https://doi.org/10.7554/eLife.55646

Alaux, M., Rogers, J., Letellier, T., Flores, R., Alfama, F., Pommier, C., Mohelbili, N., Durand, S., Kimmel, E., Michotey, C., Guercet, C., Loaec, M., Lainé, M., Steinbach, D., Choulet, F., Rimbert, H., Leroy, P., Guilhot, N., Salse, J., ..., Quesneville, H. (2018). Linking the International Wheat Genome Sequencing Consortium bread wheat reference genome sequence to wheat genetic and phenomic data. *Genome Biology*, 19, 111. https://doi.org/10.1186/s13059-018-1491-4

Andrews, S. (2010). fastQC—A quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Angkawijaya, A. E., Nguyen, V. C., Gunawan, F., & Nakamura, Y. (2020). A pair of Arabidopsis diacylglycerol kinases essential for gametogenesis and endoplasmic reticulum phospholipid metabolism in leaves and flowers. *The Plant Cell*, 32, 2602–2620. https://doi.org/10.1105/tpc.20.00251

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67, 1–48. https://doi.org/10.18637/jss.v067.i01

Bedford-Petersen, C. (2021). Inauguration, R color palette. https://github.com/ciannabp/inauguration

Benjamins, R., Quint, A., Weijers, D., Hooykaas, P., & Offringa, R. (2001). The PINOID protein kinase regulates organ development in Arabidopsis by enhancing polar auxin transport. *Development*, 128, 4057–4067. https://doi.org/10.1242/dev.128.20.4057

Blihge, K., & Lun, A. (2020). PCAtools: Everything principal components analysis. https://bioconductor.org/packages/release/bioc/vignettes/PCAtools/inst/doc/PCAtools.html

Borrill, P., Harrington, S. A., Simmonds, J., & Uauy, C. (2020). Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. *Plant Physiology*, 180, 1740–1755. https://doi.org/10.1104/pp.19.00380

Borrill, P., Harrington, S. A., & Uauy, C. (2018). Applying the latest advances in genomics and phenomics for trait discovery in polyploid wheat. *Plant Journal*, 97, 56–72. https://doi.org/10.1111/tpj.14150

Breseghello, F., & Sorrells, M. E. (2006). Association mapping of kernel size and milling quality in wheat (*Triticum aestivum* L.) cultivars. *Genetics*, 172, 1165–1177. https://doi.org/10.1534/genetics.105.044586

Brinton, J., Ramirez-Gonzalez, R. H., Simmonds, J., Wingen, L., Orford, S., Grifiths, S., Haberer, G., Spannagl, M., Walkowiak, S., Pozniak, C., & Uauy, C. (2020). A haplotype-led approach to increase the precision of wheat breeding. *Communications Biology*, 3, 712. https://doi.org/10.1038/s42003-020-01413-2

Brinton, J., Simmonds, J., Minter, F., Leverington-Waite, M., Snape, J., & Uauy, C. (2017). Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat. *New Phytologist*, 215, 1026–1038. https://doi.org/10.1111/nph.14624

Brinton, J., & Uauy, C. (2018). A reductionist approach to dissecting grain weight and yield in wheat. *Journal of Integrative Plant Biology*, 61, 337–358. https://doi.org/10.1111/jipb.12741

Broman, K. W., Wu, H., Sen, S., & Churchill, G. A. (2003). R/qtl: QTL mapping in experimental crosses. *Bioinformatics*, 19, 889–890. https://doi.org/10.1093/bioinformatics/btg112

Butar, Z. A., Yang, Y., Sharif, R., Nan Wu, S., Xie, Y., & Wang, C. (2020). Genome wide identification, characterization, and expression analysis of YABBY-gene family in wheat (*Triticum aestivum* L.). *Agronomy*, 10, 1189. https://doi.org/10.3390/agronomy10081189

Capelli, N., Diogon, T., Greppin, H., & Simon, P. (1997). Isolation and characterization of a cDNA clone encoding an osmotin-like protein from *Arabidopsis thaliana*. *Gene*, 191, 51–56. https://doi.org/10.1016/S0378-1119(97)00029-2

Chawla, H. S., Lee, H., Gabur, I., Vollrath, P., Tamilselvan-Nattar-Amutha, S., Obermeier, C., Schiesel, S. V., Song, J. - M., Liu, K., Guo, L., Parkin, I. A. P., & Snowdon, R. J. (2021). Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. *Plant Biotechnology Journal*, 19, 240–250. https://doi.org/10.1111/pbi.13456

Dobin, A., Davis, C. A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., & Gingeras, T. R. (2013). STAR: Ultrafast universal RNA-seq aligner. *Bioinformatics*, 29, 15–21. https://doi.org/10.1093/bioinformatics/bts635

Doyle, J., & Doyle, J. (1990). Isolation of plant DNA from fresh tissue. *Focus*, 12, 13–15

Fox, J., & Sanford, W. (2019). *An R companion to applied regression*. 3rd ed. Sage Publications Inc.

Gabur, I., Chawla, H. S., Snowdon, R. J., & Parkin, I. A. P. (2019). Connecting genome structural variation with complex traits in crop plants. *Theoretical and Applied Genetics*, 132, 733–750. https://doi.org/10.1007/s00122-018-2323-0

Gao, Y., Badejo, A. A., Shibata, H., Sawa, Y., Maruta, T., Shigeoka, S., Page, M., Smirnoff, N., & Ishikawa, T. (2011). Expression analysis
of the VTC2 and VTC5 genes encoding GDP-\(\Delta\)galactose phosphorlyase, an enzyme involved in ascorbate biosynthesis, in Arabidopsis thaliana. Bioscience, Biotechnology, and Biochemistry, 75, 1783–1788. https://doi.org/10.1271/bbb.110320

Gardiner, L. J., Brabbs, T., Akhunov, A., Jordan, K., Budak, H., Richmond, T., Singh, S., Catchpole, L., Akhunov, E., & Hall, A. (2019). Integrating genomic resources to present full gene and putative promoter capture probe sets for bread wheat. GigaScience, 8, giz018. https://doi.org/10.1093/gigascience/giz018

Gegas, V. C., Nazari, A., Griffiths, S., Simmonds, J., Fish, L., Orford, S., Sayers, L., Doonan, J. H., & Snape, J. W. (2010). A genetic framework for grain size and shape variation in wheat. The Plant Cell, 22, 1046–1056. https://doi.org/10.1105/tpc.110.074153

Endo, T. R., & Gill, B. S. (1996). The deletion stocks of common wheat. Journal of Heredity, 87, 295–307. https://doi.org/10.1093/oxfordjournals.jhered.a023003

Gutierrez-Gonzalez, J. J., Mascher, M., Poland, J., & Muelhbaier, G. J. (2019). Dense genotyping-by-sequencing linkage maps of two Synthetic W7984 × Opatra reference populations provide insights into wheat structural diversity. Scientific Reports, 9, 1793. https://doi.org/10.1038/s41598-018-38111-3

He, F., Pasam, R., Shi, F., Kant, S., Keeble-Gagnere, G., Kay, P., Forrest, K., Fritz, A., Huc, P., Wiebe, K., Knox, R., Cuthbert, R., Pozniak, C., Akhunova, A., Morrell, P. L., Davies, J. P., Webb, S. R., Spanenberg, G., Hayes, B., . . . Akhunov, E. (2019a). Exome sequencing highlights the role of wild-relative introgression in shaping the adaptive landscape of the wheat genome. Nature Genetics, 51, 896–904. https://doi.org/10.1038/s41588-019-0382-2

He, Y., Yan, L., Ge, C., Yao, X. F., Han, X., Wang, R., Xiong, L., Jiang, L., Liu, C. M., & Zhao, Y. (2019b). PINDO is required for formation of the stigma and style in rice. Plant Physiology, 180, 926–936. https://doi.org/10.1104/pp.18.01389

He, Z., Wang, L., Harper, A. L., Havlickova, L., Pradhan, A. K., Parkin, I. A. P., & Bancroft, I. (2017). Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. Plant Biotechnology Journal, 15, 594–604. https://doi.org/10.1111/pbi.12657

Henry, L., Wickham, H., & Collet, Y. (2020). rlang: Functions for base types and core R and ‘tidyverse’ features. https://rdrift.io/cran/rlang/

Höller, S., Ueda, Y., Wu, L., Wang, Y., Hajirezaei, M. R., Ghaffari, M. R., Von Wirén, N., & Frei, M. (2015). Ascorbate biosynthesis and its involvement in stress tolerance and plant development in rice (Oryza sativa L.). Plant Molecular Biology, 88, 545–560. https://doi.org/10.1007/s11103-015-0341-y

Hotta, T., Kong, Z., Ho, C. M. K., Zeng, C. J. T., Horio, T., Fong, S., Vuong, T., Lee, Y. R. J., & Liu, B. (2012). Characterization of the Arabidopsis augmin complex uncovers its critical function in the assembly of the acentrosomal spindle and phragmoplast microtubule arrays. The Plant Cell, 24, 1494–1509. https://doi.org/10.1105/tpc.112.096610

Huber, W., Von Heydebreck, A., Sultmann, H., Poustka, A., & Vingron, M. (2002). Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics, 18, S96–S104. https://doi.org/10.1093/bioinformatics/18.suppl_1.S96

Iannone, R., Cheng, J., & Schloerke, B. (2020). gt: Easily create presentation-ready display tables. https://cran.r-project.org/web/packages/gt/index.html

International Wheat Genome Sequencing Consortium (IWGSC). (2018). Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science, 361, eaar7191. https://doi.org/10.1126/science.aar7191

Jia, X., Si, X., Jia, Y., Zhang, H., Tian, S., Li, W., Zhang, K., & Pan, Y. (2020). Genomic profiling and expression analysis of the diacglycerol kinase gene family in heterologous hexaploid wheat. Research Square. https://doi.org/10.21203/rs.3.rs-49275/v1

Jiang, W. B., Huang, H. Y., Hu, Y. W., Zhu, S. W., Wang, Z. Y., & Lin, W. H. (2013). Brassinosteroid regulates seed size and shape in Arabidopsis. Plant Physiology, 162, 1965–1977. https://doi.org/10.1104/pp.113.217703

Kassambura, A. (2020a). rstatix: Pipe-friendly framework for basic statistical tests. https://rpkgs.datanovia.com/rstatix/

Kassambura, A. (2020b). ggpubr: ‘ggplot2’ based publication ready plots. https://rpkgs.datanovia.com/ggpubr/

Kato, K., Miura, H., & Sawada, S. (2000). Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theoretical and Applied Genetics, 101, 1114–1121. https://doi.org/10.1007/s00120051587

Kim, E. J., Lee, S. H., Park, C. H., & Kim, T. W. (2018). Functional role of BSL1 subcellular localization in brassinosteroid signaling. The Journal of Plant Biology, 61, 40–49. https://doi.org/10.1007/s12374-017-0363-x

Kolde, R. (2019). pheatmap: Pretty heatmaps. https://rdrift.io/cran/pheatmap

Krasileva, K. V., Vasquez-Gross, H. A., Howell, T., Bailey, P., Paraiso, F., Clissold, L., Simmonds, J., Ramirez-Gonzalez, R. H., Wang, X., Borrill, P., Fosker, C., Aylng, S., Phillips, A. L., Uaoy, C., & Dubcovsky, J. (2017). Uncovering hidden variation in polyploid wheat. Proceedings of the National Academy of Sciences, 114, E913–E921. https://doi.org/10.1073/pnas.1619268114

Kuzay, S., Xu, Y., Zhang, J., Katz, A., Pearce, S., Su, Z., Fraser, M., Anderson, J. A., Brown-Guedira, G., Dewitt, N., Peters Haugrud, A., Faris, J. D., Akhunov, E., Bai, G., & Dubcovsky, J. (2019). Identification of a candidate gene for a QTL for spikelet number per spike on wheat chromosome arm 7AL by high-resolution genetic mapping. Theoretical and Applied Genetics, 132, 2689–2705. https://doi.org/10.1007/s00120-0-02-03382-5

Leck, J., Johnson, W., Parker, H., Fertil, E., Jaffe, A., Zhang, Y., Storey, J., & Torres, L. (2020). sva: Surrogate Variable Analysis. R package version 3.38.0. https://doi.org/10.18129/B9.bioc.sva

Lenth, R., Singmann, H., Love, J., Burow, P., & Herve, M. (2019). emmeans: Estimated marginal means, aka least-squares means. https://github.com/rvlenth/emmeans

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., & Durbin, R. (2009). The sequence alignment/map format and SAMTools. Bioinformatics, 25, 2078–2079. https://doi.org/10.1093/bioinformatics/btp352

Li, N., & Li, Y. (2016). Signaling pathways of seed size control in plants. Current Opinion in Plant Biology, 33, 23–32. https://doi.org/10.1016/j.pbi.2016.05.008

Li, Y., Fu, X., Zhao, M., Zhang, W., Li, B., An, D., Li, J., Zhang, A., Liu, R., & Liu, X. (2018). A genome-wide view of transcriptome dynamics during early spike development in bread wheat. Scientific Reports, 8, 15338. https://doi.org/10.1038/s41598-018-33718-y

Lim, B., Smirnoff, N., Cobbett, C. S., & Golz, J. F. (2016). Ascorbate-deficient vtc2 mutants in Arabidopsis do not exhibit decreased growth.
Love, M. I., Huber, W., & Anders, S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. *Genome Biology*, 15, 550. https://doi.org/10.1186/s13059-014-0550-8

Luan, Z. H., & Zhou, D. W. (2015). Screening of rice (Oryza sativa L.) OsPR1b-interacting factors and their roles in resisting bacterial blight. *Genetics and Molecular Research, 14*, 1868–1874. https://doi.org/10.4238/2015.March.13.15

Luo, M., Dennis, E. S., Berger, F., Peacock, W. J., & Chaudhary, A. (2005). MINISEED3 (MIN3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. *Proceedings of the National Academy of Sciences, 102*, 17531–17536. https://doi.org/10.1073/pnas.0508418102

Mahmoud, M., Gobet, N., Cruz-Dávalos, D. I., Mounier, N., Dessimoz, C., & Sedlazeck, F. J. (2019). Structural variant calling: The long and the short of it. *Genome Biology, 20*, 246. https://doi.org/10.1186/s13059-019-1828-7

Makhoul, M., Rambla, C., Voss-Fels, K. P., Hickey, L. T., Snowden, R. J., & Obermeier, C. (2020). Overcoming polyploidy pitfalls: A user guide for effective SNP conversion into KASP markers in wheat. *Theoretical and Applied Genetics, 133*, 2413–2430. https://doi.org/10.1007/s00122-020-03608-x

McSteen, P., Malcomber, S., Skipper, A., Lunde, C., Wu, X., Kellogg, E., & Hake, S. (2007). *barren inflorescence2* encodes a co-ortholog of the PINOID serine/threonine kinase and is required for organogenesis during inflorescence and vegetative development in maize. *Plant Physiology, 144*, 1000–1011. https://doi.org/10.1104/pp.107.098558

Nagpal, P., Ellis, C. M., Weber, H., Poens, E. S., Barkawi, L. S., Guilfoyle, T. J., Hagen, G., Alonso, José M., Cohen, J. D., Farmer, E. E., Ecker, J. R., & Reed, J. W. (2005). Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. *Development, 132*, 4107–4118. https://doi.org/10.1242/dev.01955

National Center for Biotechnology Information. (2021). *LOC4352571 osmotin-like protein [Oryza sativa Japonica Group (Japanese rice)].* https://www.ncbi.nlm.nih.gov/gene/4352571

Oh, S. A., Jeon, J., Park, H. J., Grini, P. E., Twell, D., & Park, S. K. (2016). Analysis of Gemini pollen 3 mutant suggests a broad function of AUGHIN in microtubule organization during sexual reproduction in Arabidopsis. *Plant Journal, 87*, 188–201. https://doi.org/10.1111/tpj.13192

Platten, J. D., Cobb, J. N., & Zantua, R. E. (2019). Criteria for evaluating molecular markers: Comprehensive quality metrics to improve marker-assisted selection. *PLOS ONE, 14*, e0210529. https://doi.org/10.1371/journal.pone.0210529

Poland, J. A., Brown, P. J., Sorrells, M. E., & Jannink, J. L. (2012). Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. *PLOS ONE, 7*, e32253. https://doi.org/10.1371/journal.pone.0032253

R Core Team. (2020). *R: A language and environment for statistical computing*. R Foundation for Statistical Computing. https://www.R-project.org/

Saxena, R. K., Edwards, D., & Varshney, R. K. (2014). Structural variation in plant genomes. *Briefings in Functional Genomics, 13*, 296–307. https://doi.org/10.1093/bfgp/elu016

Siegfried, K. R. (1999). Members of the YABBY genes specify abaxial cell fate in Arabidopsis. *Development, 126*, 4117–4128. https://doi.org/10.1242/dev.126.18.411

Slafer, G. A. (2003). Genetic basis of yield as viewed from a crop physiologist’s perspective. *Annals of Applied Biology, 142*, 117–128. https://doi.org/10.1111/j.1744-7348.2003.tb00237.x

Song, K., Lu, P., Tang, K., & Osborn, T. C. (1995). Rapid genome change in syntenic polyploids of Brassica and its implications for polyploid evolution. *Proceedings of the National Academy of Sciences, 92*, 7719–7723. https://doi.org/10.1073/pnas.92.17.7719

Sorrells, M. E., Gustafson, J. P., Somers, D., Chao, S., Benscher, D., Guedira-Brown, G., Huttner, E., Kiliyan, A., Mcguire, P. E., Ross, K., Tanaka, J., Wenzl, P., Williams, K., & Qaulset, C. O. (2011). Reconstruction of the Synthetic W7984 × Opata M85 wheat reference population. *Genome, 54*, 875–882. https://doi.org/10.1139/g11-054

Stahle, M. I., Kuehlich, J., Staron, L., Von Arnim, A. G., & Golz, J. F. (2009). YABBYs and the transcriptional corepressors LEUNIG and LEUNIG-HOMOLOG maintain leaf polarity and meristem activity in Arabidopsis. *The Plant Cell, 21*, 3105–3118. https://doi.org/10.1105/tpc.109.070458

Steiner, B., Buerstmayr, M., Wagner, C., Danler, A., Eshonkulov, B., Ehn, M., & Buerstmayr, H. (2019). Fine-mapping of the Fusarium head blight resistance QTL QHs.ifa.5A identifies two resistance QTL associated with anther extrusion. *Theoretical and Applied Genetics, 132*, 2039–2053. https://doi.org/10.1007/s00122-019-03336-x

Sukumaran, S., Lopes, M., Dreisigacker, S., & Reynolds, M. (2018). Genetic analysis of multi-environmental spring wheat trials identifies genomic regions for locus-specific trade-offs for grain weight and grain number. *Theoretical and Applied Genetics, 131*, 985–998. https://doi.org/10.1007/s00122-017-3037-7

Tuinstra, M. R., Ejeta, G., & Goldsbrugh, P. B. (1997). Heterogeneous inbred family (HIF) analysis: A method for developing near-isogenic lines that differ at quantitative trait loci. *Theoretical and Applied Genetics, 95*, 1005–1011. https://doi.org/10.1007/s001220050654

Walkowiak, S., Gao, L., Monat, C., Haberer, G., Kassa, M. T., Brinton, J., Ramirez-Gonzalez, R. H., Kolodziej, M. C., Delorean, E., Thambugala, D., Klymiuk, V., Byrns, B., Gundlach, H., Bandi, V., Siri, J. N., Nilsen, K., Aquino, C., Himmelbach, A., Copetti, D., … Pozniak, C. J. (2020). Multiple wheat genomes reveal global variation in modern breeding. *Nature, 588*, 277–283. https://doi.org/10.1038/s41586-020-2961-x

Wan, C. Y., & Wilkins, T. A. (1994). A modified hot borate method significantly enhances the yield of high-quality RNA from cotton (Gossypium hirsutum L.). *Analytical Biochemistry, 223*, 7–12. https://doi.org/10.1006/abio.1994.1538

Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., & Jiao, Y. (2017). Transcriptome association identifies regulators of wheat spike architecture. *Plant Physiology, 175*, 746–757. https://doi.org/10.1104/pp.17.00694

Wickham, H. (2018). reshape2: Flexibly reshape data: A reboot of the reshape package. https://rdrr.io/cran/reshape2/

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, H. (2019). Welcome to the tidyverse. *The Journal of Open Source Software, 4*, 1686. https://doi.org/10.21105/joss.01686

Williams, K., & Sorrells, M. E. (2014). Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. *Crop Science, 54*, 98–110. https://doi.org/10.2135/cropsci2012.10.0609
Winfield, M. O., Allen, A. M., Burridge, A. J., Barker, G. L. A., Benbow, H. R., Wilkinson, P. A., Coghill, J., Waterfall, C., Davassi, A., Scopes, G., Pirani, A., Webster, T., Brew, F., Bloor, C., King, J., West, C., Griffiths, S., King, I., Bentley, A. R., & Edwards, K. J. (2016). High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. *Plant Biotechnology Journal*, 14, 1195–1206. https://doi.org/10.1111/pbi.12485

Xie, Y. (2020). *knitr: A General-purpose package for dynamic report generation in R*. https://yihui.org/knitr/

Xu, L., Wang, D., Liu, S., Fang, Z., Su, S., Guo, C., Zhao, C., & Tang, Y. (2020). Comprehensive atlas of wheat (*Triticum aestivum L.*) AUXIN RESPONSE FACTOR expression during male reproductive development and abiotic stress. *Frontiers in Plant Science*, 11, 586144. https://doi.org/10.3389/fpls.2020.586144

Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., Dubcovsky, J., & Tanksley, S. D. (2003). Positional cloning of the wheat vernalization gene Vrn1. *Proceedings of the National Academy of Sciences*, 100, 6263–6268. https://doi.org/10.1073/pnas.0937399100

Yang, J., Zhou, Y., Wu, Q., Chen, Y., Zhang, P., Zhang, Y. E., Hu, W., Wang, X., Zhao, H., Dong, L., Han, J., Liu, Z., & Cao, T. (2019). Molecular characterization of a novel TaGL3-5A allele and its association with grain length in wheat (*Triticum aestivum L.*). *Theoretical and Applied Genetics*, 132, 1799–1814. https://doi.org/10.1007/s00122-019-03316-1

Yao, W., Li, G., Yu, Y., & Ouyang, Y. (2018). funRiceGenes dataset for comprehensive understanding and application of rice functional genes. *GigaScience*, 7, gix119. https://doi.org/10.1093/gigascience/gix119

Yin, T., Cook, D., & Lawrence, M. (2012). ggbio: An R package for extending the grammar of graphics for genomic data. *Genome Biology*, 13, R77. https://doi.org/10.1186/gb-2012-13-8-r77

Yin, T., Lawrence, M., & Cook, D. (2020). biovizBase: Basic graphic utilities for visualization of genomic data. https://rdrr.io/bioc/biovizBase/

Yin, X. J., Volk, S., Ljung, K., Mehliner, N., Dolezal, K., Ditengou, F., Hanano, S., Davis, S. J., Schmelzer, E., Sandberg, G., Teige, M., Palme, K., Pickart, C., & Bachmair, A. (2007). Ubiquitin lysine 63 chain-forming ligases regulate apical dominance in *Arabidopsis*. *The Plant Cell*, 19, 1898–1911. https://doi.org/10.1105/tpc.107.052035

Young, M. D., Wakefield, M. J., Smyth, G. K., & Oshlack, A. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias.

Genome Biology, 11, R14. https://doi.org/10.1186/gb-2010-11-2-r14

Yutan, H. (2020). gghighlight: Highlight lines and points in ‘ggplot2’. https://github.com/yutanhighlight/gghighlight/

Zhang, A., Li, N., Gong, L., Gou, X., Wang, B., Deng, X., Li, C., Dong, Q., Zhang, H., & Liu, B. (2020). Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. *Plant Physiology*, 175, 828–847. https://doi.org/10.1104/pp.17.00819

Zhang, J., Shifera, Gizaw, A., Bossolini, E., Hegarty, J., Howell, T., Carter, A. H., Akhunov, E., & Dubcovsky, J. (2018a). Identification and validation of QTL for grain yield and plant water status under contrasting water treatments in fall-sown spring wheats. *Theoretical and Applied Genetics*, 131, 1741–1759. https://doi.org/10.1007/s00122-018-3111-9

Zhang, R., Geng, S., Qin, Z., Tang, Z., Liu, C., Liu, D., Song, G., Li, Y., Zhang, S., Li, W., Gao, J., Han, X., & Li, G. (2019). The genome-wide transcriptional consequences of the nullisomic-tetrasomic stocks for homoeologous group 7 in bread wheat. *BMC Genomics*, 20, 1–17. https://doi.org/10.1186/s12864-018-5421-3

Zhang, X., Wang, J., Huang, J., Lan, H., Wang, C., Yin, C., Wu, Y., Tang, H., Qian, Q., Li, J., & Zhang, H. (2012). Rare allele of OsPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. *Proceedings of the National Academy of Sciences*, 109, 21534–21539. https://doi.org/10.1073/pnas.1219776110

Zhang, Z., Li, J., Tang, Z., Sun, X., Zhang, H., Yu, J., Yao, G., Li, G., Guo, H., Li, J., Wu, H., Huang, H., Xu, Y., Yin, Z., Qi, Y., Huang, R., Yang, W., & Li, Z. (2018b). Gnp4/LAX2, a RAWUL protein, interferes with the OsIAA3–OsARF25 interaction to regulate grain length via the auxin signaling pathway in rice. *Journal of Experimental Botany*, 69, 4723–4737. https://doi.org/10.1038/jxb.ery256

Zhu, H. (2020). kableExtra: Construct complex table with ‘kable’ and pipe syntax. https://rdrr.io/cran/kableExtra/

How to cite this article: Taagen, E., Tanaka, J., Gul, A., & Sorrells, M. E. (2021). Positional-based cloning ‘fail-safe’ approach is overpowered by wheat chromosome structural variation. *Plant Genome*. 2021;14:e20106. https://doi.org/10.1002/tpg2.20106