Structure of human RNA polymerase III

Ewan Phillip Ramsay1,5, Guillermo Abascal-Palacios1,5, Julia L. Daiß2,5, Helen King1, Jerome Gouge1, Michael Pilsl2, Fabienne Beuron1, Edward Morris1, Philip Gunkel3, Christoph Engel2✉ & Alessandro Vannini1,4✉

In eukaryotes, RNA Polymerase (Pol) III is specialized for the transcription of tRNAs and other short, untranslated RNAs. Pol III is a determinant of cellular growth and lifespan across eukaryotes. Upregulation of Pol III transcription is observed in cancer and causative Pol III mutations have been described in neurodevelopmental disorders and hypersensitivity to viral infection. Here, we report a cryo-EM reconstruction at 4.0 Å of human Pol III, allowing mapping and rationalization of reported genetic mutations. Mutations causing neurodevelopmental defects cluster in hotspots affecting Pol III stability and/or biogenesis, whereas mutations affecting viral sensing are located in proximity to DNA binding regions, suggesting an impairment of Pol III cytosolic viral DNA-sensing. Integrating x-ray crystallography and SAXS, we also describe the structure of the higher eukaryote specific RPC5 C-terminal extension. Surprisingly, experiments in living cells highlight a role for this module in the assembly and stability of human Pol III.

1 Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK. 2 Regensburg Center for Biochemistry, University of Regensburg, 93053 Regensburg, Germany. 3 Max Planck Institute for Biophysical Chemistry, Research Group Nuclear Architecture, 37077 Göttingen, Germany. 4 Fondazione Human Technopole, Structural Biology Research Centre, 20157 Milan, Italy. 5 These authors contributed equally: Ewan Phillip Ramsay, Guillermo Abascal-Palacios, Julia L. Daiß. ✉email: christoph.engel@ur.de; alessandro.vannini@fht.org
Transcription of the eukaryotic genome is mediated by three highly specialized nuclear RNA polymerase (Pol) enzymes. Pol III transcribes short untranslated RNAs, which are essential for cellular functions, such as the entire pool of transfer RNAs, the precursor of the 5S ribosomal RNA and the U6 spliceosomal RNA.

Pol III is a multi-subunit complex composed of 17 subunits. A central ten-subunit core, which harbours the catalytic site and a peripheral heterodimeric stalk that are structurally conserved among the three eukaryotic Pols. The TFIIF-like RPC4/5 and the TFIIE-like RPC3/6/7 subcomplexes are Pol III specific and can be regarded as built-in general transcription factors that play a fundamental role in Pol III transcription initiation and termination.

Across the eukaryotic kingdom, Pol III displays a high degree of conservation both in terms of subunit composition and sequence homology of the individual components. A notable exception is the subunit RPC5, which in metazoans encompasses a long C-terminal extension (RPC5EXT, ~450 residues long), whose function is currently unknown.

Pol III activity is highly regulated in a cell cycle and cell-type-dependent manner, and is a determinant of lifespan in eukaryotes. In recent years, a large number of disease-causing mutations have been assigned to Pol III subunits, with a particular incidence of allele variants that strongly affect the correct development of the central nervous system (CNS), resulting in severe neurodegenerative diseases. Furthermore, causative Pol III mutations have also been described in patients affected by hypersensitivity to viral infection.

To date, yeast Pol III has been extensively structurally and functionally characterized, while its human counterpart has been left relatively untouched, due to the inherent technical challenges in obtaining yields amenable for structural biology. However, understanding the specific influence of pathological mutations and the role of regulatory elements unique to the human enzyme relies on such structural information. Here, we report the cryo-electron microscopy (cryo-EM) reconstruction of human Pol III. We further study the enzymes’ complete architecture using a structural biology hybrid approach integrating two crystal structures of the human RPC5 C-terminal extension, as well as SAXS data and molecular modelling. Results of our comparative structural analysis rationalize the effect of pathological mutations and yield unexpected insights into Pol III regulation.

Results

Purification of human RNA Pol III. To obtain a high-resolution structure of human Pol III, we isolated the endogenous complex from HeLa cells. To this end, we employed CRISPR/Cas9 genome editing in human cells to create a homozygous knock-in of a cleavable green fluorescent protein (GFP)-tag at the C terminus of subunit RPAC1 (shared between Pol I and Pol III) (Fig. 1a).

Fractionation experiments followed by immunopurification using an anti-GFP nanobody revealed that Pol III is present in both nuclear and cytoplasmic fractions (Fig. 1b), in agreement with previous reports highlighting a Pol III cytosolic DNA-sensing activity. In recent years, a large number of disease-causing mutations have been assigned to Pol III subunits, with a particular incidence of allele variants that strongly affect the correct development of the central nervous system (CNS), resulting in severe neurodegenerative diseases. Furthermore, causative Pol III mutations have also been described in patients affected by hypersensitivity to viral infection.

To date, yeast Pol III has been extensively structurally and functionally characterized, while its human counterpart has been left relatively untouched, due to the inherent technical challenges in obtaining yields amenable for structural biology. However, understanding the specific influence of pathological mutations and the role of regulatory elements unique to the human enzyme relies on such structural information. Here, we report the cryo-electron microscopy (cryo-EM) reconstruction of human Pol III. We further study the enzymes’ complete architecture using a structural biology hybrid approach integrating two crystal structures of the human RPC5 C-terminal extension, as well as SAXS data and molecular modelling. Results of our comparative structural analysis rationalize the effect of pathological mutations and yield unexpected insights into Pol III regulation.

Fig. 1 Purification of GFP-tagged endogenous human RNA polymerase III.

- **a** Confocal imaging of modified HeLa cell line expressing homozygous sfGFP-tagged POLR1C gene. Endogenous GFP signal, representing Pol I and III (green), DAPI staining (magenta) and overlay of both channels are shown. Scale bar: 5 µm. Shown is a representative image of four independent experiments.
- **b** Affinity-purified human RNA Pol III from HeLa nuclear and cytoplasmic fractions. Shown is a representative image of two separate experiments.
- **c** Purified human RNA Pol III (hPol III) from large-scale whole-cell lysate with Pol III subunits marked. Shown is an excised lane of a representative image of three separate purifications.
- **d** RNA extension assay of fluorescently labelled FAM-15mer RNA primer by purified human Pol III. Marked is Pol III-mediated primer extension. The molecular marker displays expected sizes for 15 and 21 nucleotides (nt). Displayed is a representative image of seven independent repeats. Source data are provided as a Source Data file.
Cryo-EM structure of human Pol III. The non-crosslinked purified human Pol III sample was applied to carbon-coated cryo-EM grids and imaged on a Titan Krios TEM microscope equipped with a Falcon III camera. Two data sets were collected at 0° and 30° tilting angles, to overcome preferred orientation of the sample on the cryo-grids, resulting in a merged dataset of 172,678 particles after two-dimensional (2D) class averaging (Supplementary Fig. 2 and Table 1). The majority of imaged particles represented the intact 17-subunit human Pol III but a sizeable fraction with a similar angular distribution displayed no density for the RPC3/6/7 heterotrimer, which had possibly dissociated during purification, in agreement with earlier reports19, or during cryo-EM specimen preparation. Hierarchical three-dimensional (3D) classification led to a reconstruction of the intact human Pol III from 25,369 particles at an overall resolution of 4.0 Å (Supplementary Figs. 2 and 3, and Table 1). The core of the enzyme is characterized by a very detailed EM map where side chains are clearly discernible (Fig. 2). The RPC8/9 stalk and the RPC3/6/7 subcomplex are more flexible than the rest of the complex (Supplementary Fig. 3). Interestingly, the coiled-coil region of the clamp subdomain within the largest subunit RPC1, which is in direct contact with the RPC3/6/7 heterotrimer, also displays a high degree of flexibility. This finding suggests that the coiled-coil region of the clamp together with the heterotrimer form a discrete structural and functional unit, which in yeast has been shown to be able to sense melting of the upstream side of the transcription bubble4.

As can be expected from the high degree of sequence conservation, the overall structure of human Pol III resembles the yeast counterpart. Structure-based alignments and comparison revealed that most subunits share a high degree of similarity and low root-mean-squared deviation values (Supplementary Fig. 4). However, local differences highlight specific features that might be relevant for human-specific regulation and correct assembly of the Pol III enzyme. Three relevant deletions were

Table 1 Cryo-EM data collection, refinement and validation statistics.

Data collection (0° Tilt)	
Voltage (kV)	300
Electron exposure (e⁻/Å²)	44.1
Defocus range (µm)	-1.0 to -3.0
Pixel size (Å)	1.065
Data collection (30° Tilt)	
Voltage (kV)	300
Electron exposure (e⁻/Å²)	37.8, 40.6
Defocus range (µm)	-1.2 to -3.0
Pixel size (Å)	1.065
Reconstruction (RELION)	
Initial particle images (no.)	172,678
Final particle images (no.)	25,369
Map resolution (Å)	4.0
FSC threshold (0.143-thr)	(0.143-thr)
Map sharpening B factor (Å²)	-116.839
Model composition	
Non-hydrogen atoms	34,636
Protein residues	4369
Refinement (PHENIX)	
Map CC	0.53
R.m.s. deviations	
Bond lengths (Å)	0.016
Bond angles (°)	1.086
Validation	
MolProbity score	2.74
Clashscore (all-atom)	31.792
Poor rotamers	0.0
Ramachandran plot	
Favoured (%)	78.66
Allowed (%)	20.94
Disallowed (%)	0.39

Fig. 2 The structure of human RNA polymerase III. Shown is the electron density map filtered according to the local resolution with the fitted model shown in ribbon representation (above). Regions of the electron density map are coloured according to the subunit structure as labelled. Shown below are selected regions of several subunits showing the fit with the filtered electron density (mesh).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20262-5 | ARTICLE

NATURE COMMUNICATIONS | (2020) 11:6409 | https://doi.org/10.1038/s41467-020-20262-5 | www.nature.com/naturecommunications
observed in the human RPC1 sequence in both the jaw and foot domains. The deletion in the jaw domain removed a small unstructured loop (Supplementary Fig. 5), whereas two deletions in the human RPC1 foot domain result in a rearranged, more compact foot structure (Supplementary Fig. 5). Interestingly, similar structural rearrangements have been observed in the mammalian Pol II foot domain, a region that provides a binding interface for auxiliary regulators such as the DSIF and the PAF complex.20,21

In human RPC4, a small deletion removed a helix (residues 269–285), which in the yeast RPC4 protrudes back towards the Pol core and contacts RPC2 (Supplementary Fig. 5). Deletion of this region may therefore highlight a weaker association between the human RPC4/5 heterodimer and core when compared to the yeast enzyme. In the RPC5 dimerization module, structural alignment detected the insertion of a small loop in humans in addition to the large C-terminal insertion (RPC5EXT), which together suggest a slightly rearranged heterodimer module in human Pol III (Supplementary Fig. 5). Furthermore, comparison of the yeast and human stalk subunit RPC9 identified two additional deletions in the human structure which remove unstructured loops (not present in the cryo-EM map of the corresponding yeast subunit). This comparative analysis of the Pol peripheral subcomplexes was limited in the human structure due to the flexibility of the RPC5EXT and heterotrimer-clamp module. As a result, both the reported RPC3 iron-sulphur cluster22 and the RPC5EXT, elements absent in the Saccharomyces cerevisiae Pol III structures3,4,23, were not visible in our EM map.

Structure of the RPC5 C-terminal extension. To gain insight into the structure and function of RPC5EXT, we determined the structure of its individual domains by X-ray crystallography (Supplementary Fig. 6, Fig. 3, and Tables 2 and 3). The RPC5EXT is formed by two consecutive tandem winged helix domains (tWHD1 residues 259–440; tWHD2 residues 556–708) connected by a 115 residue-long flexible linker. Such an architecture has not been reported for other components of the eukaryotic transcription apparatus and appears to be found exclusively in metazoan RPC5. Of the two tWHDs, tWHD1 is the most conserved while tWHD2 is absent in Caenorhabditis elegans and Drosophila melanogaster (Supplementary Fig. 7). The tWHD1 is formed by two juxtaposed winged helix domains that form a compact globular domain with one of the two recognition helices, typically involved in DNA binding, buried within the structure (Fig. 3b). The compact conformation of tWHD1 is observed also in solution as highlighted by small-angle X-ray scattering (SAXS) data (Fig. 3d and Supplementary Fig. 6). The tWHD2 structure revealed a dimer formed by
domain swapping (Fig. 3c). This arrangement is likely caused by the crystallization conditions and, in agreement with this hypothesis, SAXS data showed a monomeric conformation as the most likely in solution (Fig. 3e and Supplementary Fig. 6). Nevertheless, the two possible conformations of tWHD2, compact or elongated, suggests a degree of flexibility within this domain. Finally, SAXS analysis of a construct encompassing the full-length RPC5EXT support the model of two globular compact tWHD domains connected by a long flexible linker, spanning approximately up to 175 Å in length (Fig. 3f and Supplementary Figs. 8 and 9).

Comparison with existing protein structures using the Dali server (http://ekhidna.biocenter.helsinki.fi/dali_server/) suggested similarities between tWHD1 and the WHD of S. cerevisiae Pol II general transcription factor TFIIF Rap30 subunit24–26 and with the tWHD of Pol I A49 subunit27–31. Both subunits are orthologs of RPC5 and involved in stabilization of the pre-initiation complexes (PICs), suggesting a putative functional link. However, although the position of TFIIF Rap30 WHD in the Pol II PIC clashes with the Bdp1 subunit of transcription factor TFIIIB in the Pol III PIC3,4 (Fig. 4), the equivalent position of A49 tWHD in the Pol I PIC27 is accessible in the Pol III PIC (Fig. 4). Thus, one possibility is that, analogously to A49 tWHD, the RPC5-tWHD1 participates in an interaction with the upstream DNA and bound transcription factors, thus stabilizing the human Pol III PIC.

Table 2: RPC5-tWHD1 (aa. 259–440) data collection, phasing and refinement statistics for MAD (SeMet) structures.

Data collection	Crystal 1 (Native)	Crystal 2 (SeMet)
P6,22	P6,22	
Space group	P6,22	P6,22
Cell dimensions	P6,22	P6,22
a, b, c (Å)	56.30, 56.30, 275.88	56.43, 56.43, 277.27
α, β, γ (°)	90, 90, 120	90, 90, 120
α, β, γ (°)	0.91983	0.97965
Resolution (Å)	48.01–2.23 (2.29–2.23)	48.87–2.72 (2.79–2.72)
Rmerge or Rfree	0.05 (0.749)	0.324 (2.163)
I/α	26.9 (5.7)	8.7 (1.5)
Completeness (%)	100.0 (100.0)	100.0 (100.0)
Redundancy	27.4 (28.8)	21.6 (19.6)
Refinement	45.97–2.23 (2.31–2.23)	45.97–2.23 (2.31–2.23)
No. reflections	376,023	376,023
Rwork/Rfree	0.1800/0.2193	0.268 (1.820)
I/σI	26.9 (5.7)	8.7 (1.5)
Completeness (%)	100.0 (100.0)	100.0 (100.0)
Redundancy	27.4 (28.8)	21.6 (19.6)

Table 3: Rpc5-tWHD2 (aa. 556–708) data collection, phasing and refinement statistics for MAD (SeMet) structures.

Data collection	Crystal 1 (SeMet)	Crystal 2 (SeMet)
P1 2, 1	P1 2, 1	P1 2, 1
Space group	P1 2, 1	P1 2, 1
Cell dimensions	P1 2, 1	P1 2, 1
a, b, c (Å)	41.11, 75.76, 62.4	41.37, 75.67, 62.77
α, β, γ (°)	90.0, 103.57, 90.0	90.0, 103.73, 90.0
α, β, γ (°)	0.97942	0.97942
Resolution (Å)	30.33–1.48 (1.52–1.48)	47.48–1.74 (1.79–1.74)
Rmerge or Rfree	0.075 (0.735)	0.095 (0.942)
I/α	11.8 (1.3)	10.5 (1.6)
Completeness (%)	96.1 (71.2)	99.9 (100.0)
Redundancy	6.1 (3.6)	6.7 (5.8)
Refinement	30.33–1.55 (1.60–1.55)	41.35, 75.78, 62.79
No. reflections	364,951	41.30, 75.72, 62.67
Rwork/Rfree	0.1876/0.2078	0.088 (0.964)
I/σI	30.33–1.55 (1.60–1.55)	41.35, 75.78, 62.79
Completeness (%)	99.9 (100.0)	11.2 (1.5)
Redundancy	6.1 (3.6)	6.7 (5.4)
Bond lengths (Å)	24.28	11.2 (1.5)
Bond angles (°)	20.98	6.7 (5.4)
addition, the Dali server analysis retrieved similarities between the individual WHDs of RPC5EXT tWHD2 and the WHDs of cullin and cullin-like proteins, which are involved in ubiquitin-dependent proteolysis[32].

The RPC5 extension is required for RNA Pol III stability. To gain insight into the functional role of RPC5EXT, we used small interfering RNA (siRNA) to knock down RPC5 in HEK293T cells and rescued it with ectopic expression of hemagglutinin (HA)-tagged RPC5 constructs encompassing the full-length protein (RPC5FL) or a version of RPC5 devoid of either tWHD2 (RPC5ΔtWHD2) or the entire RPC5EXT (RPC5ΔC) (Supplementary Fig. 10a, b). Immunoprecipitation using anti-HA magnetic beads revealed that both RPC5FL, RPC5ΔtWHD2 and RPC5ΔC are able to integrate into and pull down a bona fide intact Pol III complex, as probed by RPC1, RPC2 and RPC4 antibodies (Supplementary Fig. 10c). However, the corresponding immunoblots of whole-cell extracts, prior to the immunoprecipitation, indicate lower steady-state levels of RPC5ΔC compared to RPC5FL, pointing towards a direct role of RPC5EXT in enhancing RPC5 stability. To further explore the role of RPC5EXT in regulating RPC5 stability in the context of an intact Pol III complex, we employed a cycloheximide chase assay (Fig. 5). Levels of RPC5FL remained stable for the course of the experiment (8 h), as well as subunits RPC1 and RPC2, suggesting a relatively long half-life of the Pol III complex (Fig. 5a). On the contrary, RPC5ΔtWHD2 and RPC5ΔC were rapidly degraded with RPC5ΔC almost completely depleted after only 2 h following cycloheximide treatment (Fig. 5b, c). Surprisingly, subunits RPC2 and, to a minor extent, RPC1 and RPC4 were also rapidly depleted, suggesting that RPC5EXT is essential for the stability of the whole Pol III complex.

Pathological genetic mutations map to Pol III subunit interfaces. Many studies have reported mutations of the Pol III enzyme that are related to human diseases, in particular heritable disorders. Reportedly, mutations affecting CNS development tend to cluster in specific hotspots, very often at the interface of several Pol III subunits. For example, TCS mutations L51R and T50I in RPAC2 result in disruption of hydrophobic and salt-bridge interactions, respectively, at the interface with the RPAC1 subunit, suggesting a strong destabilizing effect that might impair correct assembly of the enzyme (Fig. 6). Analogously, most reported HL mutations lay at the interface of several subunits and have disruptive effects on these interfaces (Fig. 6 and Supplementary Data 1). Interestingly, WRS mutation R1069Q in subunit RPC1 disrupts a charged interaction with residue N1249 in the same subunit. This residue is itself mutated in HL, possibly altering the interface between subunits RPC1 and RPAC1 in both pathologies. Overall, these findings indicate a general molecular mechanism from mutations resulting in CNS disorders, which is the partial loss of function of Pol III activity through destabilization of the enzyme core.

Recently, Pol III mutations have also been described in patients affected by acute severe response to Varicella zoster virus (VZV) infection[15,16,38]. Most of these mutations map at the periphery of the Pol III enzyme and result in neutralizing basic charged residues exposed to the solvent in proximity of DNA-binding regions (Fig. 6). As human Pol III has been shown to display cytosolic DNA-sensing activity, it is conceivable that VZV mutations indeed impair proper DNA binding and transcription factor-independent RNA synthesis in the cytoplasm. Overall, these findings are in agreement with previous work using the homologous yeast Pol III, and/or Pol I and Pol II enzymes to map disease-causing mutations[8–10,15,39]. However, the availability of a high-resolution structure of human Pol III enables the comprehensive mapping and rationalization of these allele variants with high confidence.

Discussion

Here we describe the 4.0 Å resolution cryo-EM structure of apo human Pol III. The structure confirms the overall high-degree of structural homology with its S. cerevisiae counterpart but also highlights specific differences, such as a rearranged foot domain (Supplementary Fig. 5). Integrating cryo-EM data with X-ray crystallographic and SAXS data for the metazoan-specific RPC5EXT, detailed structural information has been obtained for the whole Pol III complex (Supplementary Fig. 11). Surprisingly, experiments in living cells highlighted a prominent role of RPC5EXT for the integrity of the Pol III complex. Absent in lower eukaryotes, RPC5EXT thus represents an additional
metazoan-specific module, impacting on the correct assembly of Pol III. Several abundant phosphorylation sites have been identified in RPC5EXT, which, together with the evidence of structural similarities between RPC5EXT tWHD2 and factors involved in targeted degradation, suggests the intriguing hypothesis of an RPC5EXT-mediated layer of regulation impacting overall Pol III abundance in response to environmental cues that may have evolved in higher organisms.

Furthermore, the high-resolution structure of human Pol III enabled the mapping of more than 85% of reported Pol III genetic mutations with high precision, rationalizing their effects at a molecular level (Supplementary Data 1). Mutations affecting the CNS development tend to spatially cluster together and it seems likely that the severity of the phenotypes observed in HL, TCS and WRS correlate with the disruptive effect of such variants. For example, TCS mutations appear to be particularly disruptive at the interface of RPAC1 and RPAC2, two subunits shared between Pol I and Pol III. Interestingly, mutations N32I and N74S in RPAC1 mutations associated with HL lead to reduced Pol III assembly and nuclear import, without affecting Pol I7. This is consistent with our model, as these residues mediate interactions with Pol III-specific RPC1 and RPC2, respectively (Supplementary Data 1).

Finally, as Pol III represents a central nexus involved in the regulation of organismal growth, development and lifespan in eukaryotes and is often deregulated in cancer, the structure of the

Fig. 5 Cycloheximide chase assay investigation of RPC5 protein stability. HEK293T cells were seeded, endogenous RPC5 was knocked down via siRNA and either the FL a, ΔtWHD2 b, or ΔC c, RPC5 constructs were transfected. After 24 h, cycloheximide was added in at a concentration of 300 µg/ml and cells lysed at the specified time points. RPC1, 2, 4 and 5 (as shown via HA-tag antibody) levels were probed by western blotting. Displayed images are representative of three independent experiments. Source data are provided as a Source Data file.
human enzyme will represent an invaluable tool to aid the design of small molecules capable of specifically targeting Pol III transcription for therapeutic purposes.

Methods

CRISPR/Cas9 genome editing. HeLa cells were cultured in Dulbecco’s modified Eagle medium (DMEM, D6429, Sigma Aldrich) supplemented with 10% fetal bovine serum (FBS) (P40-37500, PAN-Biotech) and 1% AAS (A5955, Sigma Aldrich). Genomic integration of Superfolder GFP (sfGFP) ORF at the C terminus of POLR1C was done by CRISPR/Cas9 based on a published protocol (Ran et al.40) performed as following.

Design of the guide RNAs (gRNAs) was done with a web-based tool (http://CRISPR.mit.edu) and annealed oligos (gRNA1 = 5′-gCTAGTTCATCCAAGAAGCGC-3′; gRNA2 = 5′-gCGGTTCAGATGGACTGAGCT-3′) were cloned via Bpi into the bicistronic Cas9n expression vector pSpCas9n(BB)-2A-Puro (PX462) V2.0, which...
was a gift from Feng Zhang (Addgene plasmid #62987; https://n2t.net/addgene:62987; RRID: Addgene_62987). A donor plasmid carried a short GS-linker sequence with an embedded NHEJ (HRV C) cDNA expression site and GFP-SDR, surrounded by two large sequence segments homologous to the insertion locus in the genome.

Hela cells were transfected with a 1:1:1 mix of gRNA1 and gRNA2 vectors together with the donor plasmid using PolyJet transfection reagent (SII, Tokyo). GFP+ Hela cells, according to the manufacturer’s instructions. Several days later, the GFP-expressing cells were enriched by flow cytometry using a Bio-Rad S3e cell sorter. GFP-positive cells were seeded on large culture dishes such that they could grow as single cell colonies. After 2–3 weeks, colonies were transferred manually to microfuge tubes for live-cell imaging and were screened under identical microscope settings. The brightest clones were selected for expansion. These monoclonal populations were validated by PCR on extracted genomic DNA (using the Blood & Tissue Kit, Qiagen).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-20262-5 | www.nature.com/naturecommunications

Pre-cast SDS-polyacrylamide gel electrophoresis (PAGE) gels (4–12% NuPAGE Bis-Tris, Thermo Scientific) were loaded with 12.5 µl fractions.

Large-scale human RNA Pol purification. Large-scale cell growth was carried out in 3 L spinner culture. Respiratory System Platform at The Francis Crick Institute, London. Adherent Hela POLR1C-GFP cells were grown in DMEM–4 medium supplemented with 1% fetal bovine serum (FCS), 1% Glutamax and 1% Penicillin/Streptomycin. For sfGFP detection, a 488 nm laser and the same band-pass filter (300 nm) was used. For sfGFP detection, a 488 nm laser and the same band-pass filter (300 nm) was used. For sfGFP detection, a 488 nm laser and the same band-pass filter (300 nm) was used. For sfGFP detection, a 488 nm laser and the same band-pass filter (300 nm) was used. For sfGFP detection, a 488 nm laser and the same band-pass filter (300 nm) was used.
All data sets were imaged using EPU automated acquisition software with the Falcon III operating in electron counting mode at a nominal magnification of \(\times75,000\) and cycled sampling of 1.965 Å/pixel. For unfilled data collection, 3115 movies were collected. Movies were collected over 45 frames with a 70 s exposure time and a total dose of 44.1 \(e^-/\AA^2\) giving a dose per frame of 0.98 \(e^-/\AA^2/s\) and a dose rate of 0.63 \(e^-/\AA^2/s\). Data were collected over a defocus range of –1 μm to -3 μm. Tilted data collection was carried out at 30° in two separate sessions. The first session collected 921 movies, with a total dose of 37.8 \(e^-/\AA^2\) fractionated over 38 frames during a 70 s exposure. This gave dose per frame of 1.07 \(e^-/\AA^2\) and a dose rate of 0.58 \(e^-/\AA^2/s\). The second session collected 1703 movies, imaged with a total dose of 40.6 \(e^-/\AA^2\) fractionated over 38 frames during a 70 s exposure. This gave dose per frame of 1.03 \(e^-/\AA^2\) and a dose rate of 0.54 \(e^-/\AA^2/s\). In both tilted data collections, micrographs were collected using a –1.2 to –3 μm defocus range.

Cryo-EM image processing. Frame alignment and dose weighting was carried out off-the-fly using MotionCor241. Following motion correction, CTFFIND4 implemented in the cisTEM software package was used for contrast transfer function (CTF) estimation42. Particle picking was carried out using the ab initio particle picking option in cisTEM43 and resulting particles exported to Relion 3.144. Subsequent 2D and 3D classification, refinement and post-processing steps were carried out using Relion 3.1, and ab initio model generation using Cryosparc245. For the untitled dataset, 332,238 particles were selected, yielding a final particle set of 139,891 particles corresponding to hPol III following multiple rounds of 2D classification. This particle subset was used to generate an initial model of the hPol III structure using the ab initio model functionality in Cryosparc v2. Similarly, 87,975 particles were selected from 2624 cryo-electron micrographs, yield 146,074 particles following 2D classification. Both particle sets were combined generating the merged particle set of 172,678 particles. This subject was 3D classification in Relion 3.1 using the Cryosparc ab initio model as a reference. Classification produced 80 classes, with a single class (class 4, containing 68,291 particles) corresponding to the template Pol III. This class was refined and subjected to CTF refinement. This was a sequential procedure, first correcting for trefoil and fourth-order aberrations, followed by correction for magnification anisotropy in the second step. In the final step, the defocus was refined on a per particle basis to correct for errors in CTF estimation for tilted particles. Following this, a further refinement was carried out yielding a final model at 3.7 Å resolution following a Fourier shell correlation value of 0.143. The resulting density was subjected to CTF refinement, which was carried out following the local resolution of each region. The final model resolution at the experimental conditions was 3.7 Å.

Cryo-EM model building and refinement. As an initial step, homology models were generated for all core (RPC1, RPC2, RPC10, RPAC1, RPAC2, RPABC1, RPABC2, RPABC3, RPAC4 and RPABC5), heterodimer (RPC4 and RPC5) and heterotrimer density following consensus repositioning38. To improve this region, a local mask was generated and 3D classification was carried out, yielding a model at 3.7 Å resolution at the gold-standard 0.143 visionary scale (CTF) estimation43. Particle picking was carried out using the ab initio particle picking option in cisTEM44 and resulting particles exported to Relion 3.145. Subsequent 2D classification, refinement, and local resolution estimation to produce the final model revealing 4.0 Å global resolution at the 0.143 CTF cut-off criterion.

RCSB PDB Code: 5AFQ was structurally aligned with the yeast heterotrimer in I03 beamline of DLS. Using the MAD dataset, an initial model was calculated. Subsequent 2D classification, refinement, and local resolution estimation to produce the final model revealing 4.0 Å global resolution at the 0.143 CTF cut-off criterion.

Cryo-EM model building and refinement. As an initial step, homology models were generated for all core (RPC1, RPC2, RPC10, RPAC1, RPAC2, RPABC1, RPABC2, RPABC3, RPAC4 and RPABC5), heterodimer (RPC4 and RPC5) and heterotrimer (RPC1, RPC2, RPC10, RPAC1, RPAC2, RPABC1, RPABC2, RPABC3, RPAC4 and RPABC5) constructs expressed and purified following the same protocol. Both protein constructs were expressed and purified following the same protocol. Cells were grown at 37 °C, 200 r.p.m. in Terrific Broth to OD600 = 1.5 and protein expression was induced with 1 mM isopropyl \(\beta\)-D-thiogalactopyranoside at 20 °C overnight. All subsequent steps were performed at 4 °C. Collected cells were resuspended in 20 mM HEPES pH 7.9, 150 mM NaCl, 10 mM imidazole and 1 mM DTT using fast spin columns containing 5 ml HiLoad 26/600 Superdex 75 gel filtration column (GE Healthcare) containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 10 mM \(\beta\)-mercaptoethanol. The protein was subsequently eluted using an isocratic gradient from 70 mM to 2 M NaCl in 30 column volumes. Fractions containing RPC constructs were identified by SDS-PAGE analysis. Cleavage of the His-tag was performed overnight incubating the protein with 3C protease in a 1: 50 molar ratio (3C protease: RPC3). Unclaved His-tagged proteins were removed by incubation of the sample with 1 ml HisPur\(^{TM}\) (Thermo Fisher) nickel resin for 1 h at 4 °C. The cleared lysate was loaded on an HiLoad 16/600 Superdex 75 pg gel-filtration column (GE Healthcare) equilibrated with 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 10 mM \(\beta\)-mercaptoethanol. Purified RPC5 (259–440) and RPC5 (556–708) were concentrated to 30 and 80 mg/ml, respectively, flash-frozen and stored at –80 °C.

Crystallization, data collection and structure determination. Crystals used for structure determination were grown from a 1: 1 ratio solution (protein : reservoir) at 1.5 M β-Mercaptoethanol in 2 M sodium acetate, 100 mM β-mercaptoethanol, 20 °C. After a milder sonication step, purification was performed following the protocol described above. Finally, protein was concentrated to 10 mg/ml, flash-frozen in liquid nitrogen and stored at –80 °C.

Cryo-EM model building and refinement. As an initial step, homology models were generated for all core (RPC1, RPC2, RPC10, RPAC1, RPAC2, RPABC1, RPABC2, RPABC3, RPAC4 and RPABC5), heterodimer (RPC4 and RPC5) and heterotrimer (RPC1, RPC2, RPC10, RPAC1, RPAC2, RPABC1, RPABC2, RPABC3, RPAC4 and RPABC5) constructs expressed and purified following the same protocol. Both protein constructs were expressed and purified following the same protocol. Cells were grown at 37 °C, 200 r.p.m. in Terrific Broth to OD600 = 1.5 and protein expression was induced with 1 mM isopropyl \(\beta\)-D-thiogalactopyranoside at 20 °C overnight. All subsequent steps were performed at 4 °C. Collected cells were resuspended in 20 mM HEPES pH 7.9, 150 mM NaCl, 10 mM imidazole and 1 mM DTT using fast spin columns containing 5 ml HiLoad 26/600 Superdex 75 gel filtration column (GE Healthcare) containing 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 10 mM \(\beta\)-mercaptoethanol. The protein was subsequently eluted using an isocratic gradient from 70 mM to 2 M NaCl in 30 column volumes. Fractions containing RPC constructs were identified by SDS-PAGE analysis. Cleavage of the His-tag was performed overnight incubating the protein with 3C protease in a 1: 50 molar ratio (3C protease: RPC3). Unclaved His-tagged proteins were removed by incubation of the sample with 1 ml HisPur\(^{TM}\) (Thermo Fisher) nickel resin for 1 h at 4 °C. The cleared lysate was loaded on an HiLoad 16/600 Superdex 75 pg gel-filtration column (GE Healthcare) equilibrated with 50 mM Tris-HCl pH 7.5, 150 mM NaCl and 10 mM \(\beta\)-mercaptoethanol. Purified RPC5 (259–440) and RPC5 (556–708) were concentrated to 30 and 80 mg/ml, respectively, flash-frozen and stored at –80 °C.

Crystallization, data collection and structure determination. Crystals used for structure determination were grown from a 1: 1 ratio solution (protein : reservoir) at 1.5 M β-Mercaptoethanol in 2 M sodium acetate, 100 mM β-mercaptoethanol, 20 °C. After a milder sonication step, purification was performed following the protocol described above. Finally, protein was concentrated to 10 mg/ml, flash-frozen in liquid nitrogen and stored at –80 °C.

RCSB PDB Code: 5AFQ was structurally aligned with the yeast heterotrimer in I03 beamline of DLS. Using the MAD dataset, an initial model was calculated. Subsequent 2D classification, refinement, and local resolution estimation to produce the final model revealing 4.0 Å global resolution at the 0.143 CTF cut-off criterion.

RCSB PDB Code: 5AFQ was structurally aligned with the yeast heterotrimer in I03 beamline of DLS. Using the MAD dataset, an initial model was calculated. Subsequent 2D classification, refinement, and local resolution estimation to produce the final model revealing 4.0 Å global resolution at the 0.143 CTF cut-off criterion.

RCSB PDB Code: 5AFQ was structurally aligned with the yeast heterotrimer in I03 beamline of DLS. Using the MAD dataset, an initial model was calculated. Subsequent 2D classification, refinement, and local resolution estimation to produce the final model revealing 4.0 Å global resolution at the 0.143 CTF cut-off criterion.
Characterization of the structural heterogeneity of RNA Pol III subunits.

Cell culture. HEK293T cells (a kind gift from Dr Sebastien Guettler) were cultured in DMEM supplemented with 10% heat-inactivated FBS and 1% penicillin/streptomycin at 37 °C in 5% CO2. For transient knockdown, 20 nM siRNA of either ONTAR-Δ′-CUACGAUGA-3′ or tWHD1 or tWHD2 (Promega) was transfected in using Fugene HD transfection reagent (Promega) as per the manufacturers’ instructions. The sequences for each RPC5 siRNA are as follows: 5′-UGGAAUAGCCUCGCGC3′-3′, 5′-GGGAGCA GAUUGGCGCUGAA-3′, 5′-GGGAGCA GAUUGGCGCUGAA-3′, 5′-GGGAGCA GAUUGGCGCUGAA-3′. For transient knockdown, 20 nM siRNA of either ONTAR-Δ′-CUACGAUGA-3′ or tWHD1 or tWHD2 (Promega) as per the manufacturers’ instructions.

Antibodies. The following primary antibodies were used: POLR3A (ab96328, Abcam), POLR3B (ab157030, Abcam), POLR3D (ab86786, Abcam), POLR3F (ab34560, Abcam), GAPDH (MAB374, diluted 1:200 for western blotting, Merck) and RPA40 (sc-374443, Santa Cruz). The following secondary antibodies were used: anti-rabbit IgG (H + L) DyLight™ 800 4× PEG conjugate (#5151, Cell Signalling Technology) and anti-mouse IgG (H + L) DyLight™ 680 (#5470, Cell Signalling Technology). All antibodies were used at a dilution of 1:10,000, unless otherwise stated.

Co-immunoprecipitation and western blotting. HEK293T cells were seeded into 10 cm plates in the presence of siRNA. After 24 h, they were subsequently transfected with RPC5 (HA-tagged full-length ΔWHD2 or ΔC) and maintained for a further 24 h. Cells were lysed in RIPA buffer and co-immunoprecipitation was performed using PierceTM anti-HA magnetic beads (Thermo Fisher Scientific). HA-tagged proteins were eluted from the beads through addition of NuPAGE™ LDS 4× sample buffer and boiling the samples for 10 min. For whole-cell lysates, cells were lysed in RIPA buffer and then NuPAGE™ LDS 4× sample buffer (Thermo Fisher Scientific) plus NuPAGE™ 10× sample reducing agent (Thermo Fisher Scientific) was added before being boiled for 5 min. SDS-PAGE was sub- sequently performed, but ran at 4–12% Bis-Tris gel. This protocol was transferred to nitrocellulose membrane, blocked for 1 h in 5% milk/Tris-buffered saline/0.1% Tween20 and probed with primary antibody overnight at 4 °C. Secondary antibodies were incubated for 1 h at room temperature in the dark and detected using the Odyssey®-CLx fluorescence imaging system (LI-COR Biosciences). All uncropped gel images are available in the source data file.

Cycloheximide chase assay. HEK293T cells were seeded into six-well plates in the presence of siRNA. After 24 h, they were subsequently transfected with either RPC5 (HA-tagged full-length ΔWHD2 or ΔC) and maintained for a further 24 h. Cycloheximide was then added at a concentration of 300 μg/ml and cells lysed at regular time points (every 2 h, up to a maximum of 8 h) using RIPA buffer and lysates were analysed via western blotting, as previously stated. All uncropped gel images are available in the Source Data file.

Data availability

The electron density reconstructions and Raw Text started here.

References

1. Cramer, P. et al. Structure of eukaryotic RNA polymerases. Annu. Rev. Biophys. 37, 337–352 (2008).
2. Vannini, A. & Cramer, P. Conservation between the RNA Polymerase I, II, and III transcription initiation machineries. Mol. Cell 45, 439–446 (2012).
3. Vorlander, M. K., Khatfer, H., Wetzet, R., Hagen, W. J. H. & Muller, C. W. Molecular mechanisms of promoter opening by RNA polymerase III. Nature 553, 295–300 (2018).
4. Abascal-Palacios, G., Ramsay, E. P., Beuron, E. & Vannini, A. Structural basis of RNA polymerase III transcription initiation. Nature 553, 301–306 (2018).
5. White, R. J. Transcription by RNA polymerase III: more complex than we thought. Nat. Rev. Genet. 12, 459–463 (2011).
6. Filer, D. et al. RNA polymerase III limits longevity downstream of TORC1. Nature. https://doi.org/10.1038/nature25007 (2017).
7. Thiffault, I. et al. Reciprocal mutations in POLR1C encoding a leucodystrophy by impairing biogenesis of RNA polymerase III. Nat. Commun. 6, 7623 (2015).
8. Bernard, G. et al. Mutations of POLR3A encoding a catalytic subunit of RNA polymerase Pol III cause a recessive hyopopylenia leukodystrophy. Am. J. Hum. Genet. 89, 415–423 (2011).
9. Tetreault, M. et al. Reciprocal mutations in POLR3B encoding the second largest subunit of Pol III, cause a rare hyopopylenia leukodystrophy. Am. J. Hum. Genet. 89, 652–655 (2011).
10. Månsson, H. et al. Mutations in POLR3A and POLR3B encoding RNA polymerase III subunits cause an autosomal-recessive hyopopylenia leukoencephalopathy. Am. J. Hum. Genet. https://doi.org/10.1016/j.ajhg.2011.10.003 (2011).
11. Dauwser, J. G. et al. Mutations in genes encoding subunits of RNA polymerases I and III cause Treacher Collins syndrome. Nat. Genet. 43, 20–22 (2011).
12. Sch.dateTime9, E. et al. Autosomal recessive POLR1D mutation with decrease of TCOF1 mRNA is responsible for Treacher Collins syndrome. Genet. Med. 16, 720–724 (2014).
13. Paolacci, S. et al. Specific combinations of biallelic POLR3A variants cause Wiedemann-Rautenstrauch syndrome. J. Med. Genet. 55, 837–846 (2018).
14. Warnbach, J. A. et al. Bi-allelic POLR3A loss-of-function variants cause autosomal-recessive Wiedemann-Rautenstrauch syndrome. Am. J. Hum. Genet. 103, 968–975 (2018).
15. Ogunjimi, B. et al. Inborn errors in RNA polymerase III underlie severe varicella zoster virus infections. J. Clin. Invest. 127, 3543–3556 (2017).
16. Carter-Timofte, M. E., Hansen, A. F., Christiansen, M., Paludan, S. R. & Hansen, K. F. RIG-I dependent sensing in adults with varicella-zoster virus CNS infection. Genes Immun. https://doi.org/10.1038/s41335-018-0027-y (2018).
17. Chiu, Y.-H., Macmillan, J. B. & Chen, Z. J. RNA polymerase III defects cytolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).
18. Ablasser, E. et al. RIG-I dependent sensing of poly(A/dT) is triggered by the induction of an RNA polymerase III -transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).
19. Wang, Z. & Roeder, R. G. Three human RNA polymerase III-specific subunits form a complex with a selective function in specific transcription initiation. Genes Dev. 11, 1315–1326 (1997).
20. Vos, S. M., Farnung, L., Uhlhaas, H. & Cramer, P. Structure of paused transcription complex Pol II-DSIF-NELF. Nature 560, 601–606 (2018).
21. Vos, S. M. et al. Structure of activated transcription complex Pol II-DSIF-PAF-SPT6. Nature 560, 607–612 (2018).
22. Blombach, F. et al. Archaeal TFIIIFbeta is a hybrid of TFIIIE and the RNA polymerase III subcomplex hRPC62/39. Elife 4, e08378 (2015).
23. Hoffmann, N. A. et al. Molecular structures of unbound and transcribing RNA polymerase III. Nature 528, 231–236 (2015).
24. Plaschka, C. et al. Transcription initiation complex structures elucidate DNA opening. Nature 533, 353–358 (2016).
25. Nogales, E. & Shuman, S. A. Structural insights into the eukaryotic transcription initiation machinery. Annu. Rev. Biophys. 46, 59–83 (2017).
26. He, Y. et al. Near-atomic resolution visualization of human transcription promoter opening. Nature 533, 359–365 (2016).
27. Han, Y. et al. Structural mechanism of ATP-independent transcription initiation by RNA polymerase I. Elife 6, https://doi.org/10.7554/eLife.27414 (2017).
28. Sadian, Y. & Vannini, A. Molecular insight into RNA polymerase I promoter recognition and promoter melting. Nat. Commun. 10, 5543 (2019).
29. Engel, C. et al. Structural basis of RNA polymerase I transcription initiation. Cell 169, 120–131 e122 (2017).
30. Sadian, Y. et al. Structural insights into transcription initiation by yeast RNA polymerase I. EMBO J. 36, 2699–2709 (2017).
31. Piló, M. & Engel, C. Structural basis of RNA polymerase I pre-initiation complex formation and promoter melting. Nat. Commun. 11, 1206 (2020).
32. Lyead, J. R., Schulman, B. A. & Harper, J. W. Building and remodelling CullinRING E3 ubiquitin ligases. EMBO Rep. 14, 1050–1061 (2013).
33. Doak, H. et al. Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism. J. Med. Genet. 50, 194–197 (2013).
34. Gauquelin, L. et al. Clinical spectrum of POLR3-related leukodystrophy caused by biallelic POLR1C pathogenic variants. Nat. Genet. 51, e369 (2019).
35. Potic, A., Bernard, G. 4H syndrome with late-onset growth hormone deficiency caused by POLR3A mutations. Arch. Neurol. 69, 920–923 (2012).
36. Shimozima, K. et al. Novel compound heterozygous mutations of POLR3A revealed by whole-exome sequencing in a patient with hypomyelination. Brain Dev. 36, 315–321 (2014).
37. Terao, Y. et al. Diffuse central hypomyelination presenting as 4H syndrome caused by compound heterozygous mutations in POLR3A encoding the catalytic subunit of polymerase III. J. Neurol. Sci. 320, 102–105 (2012).
38. Carter-Timofte, M. E. et al. Varicella-zoster virus CNS vasculitis and RNA polymerase III gene mutation in identical twins. Neurrol. Neuroimmunol. Neuroinflamm. 5, e500 (2018).
39. Walker-Kopp, N. et al. Treacher Collins syndrome mutations in Saccharomyces cerevisiae destabilize RNA polymerase I and III complex integrity. Hum. Mol. Genet. 26, 4290–4300 (2017).
40. Ran, F. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 https://doi.org/10.1038/nprot.2013.143 (2013).
41. Dignam, J. D., Martin, P. L., Shastry, B. S. & Roeder, R. G. Eukaryotic gene transcription with purified components. Methods Enzymol. 101, 582–598 (1983).
42. Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
43. Rohou, A. & Grigorieff, N. CTFSSIND4D: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
44. Grant, T., Rohou, A. & Grigorieff, N. cisTEM, user-friendly software for single-particle image processing. Elife 7, https://doi.org/10.7554/eLife.35383 (2018).
45. Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, https://doi.org/10.7554/eLife.42166 (2018).
46. Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods, https://doi.org/10.1038/nmeth.4169 (2017).
47. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
48. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
49. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D. Biol. Crystallogr. 66, 486–501 (2010).
50. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D. Biol. Crystallogr. 66, 213–221 (2010).
51. Boissier, F., Dumay-Odelot, H., Teichmann, M. & Fribourg, S. Structural analysis of human RPC32 beta-RPC62 complex. J. Struct. Biol. 192, 313–319 (2015).
52. Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195–202 (1999).
53. Soding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).
54. Heining, M. & Frishman, D. STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. 32, W500–W502 (2004).
55. Rambo, R. P. & Tainer, J. A. Characterizing flexible and intrinsically unstructured biological macromolecules by SAS using the Porod-Debye law. Biopolymers 95, 559–571 (2011).
56. Svergun, D. I. Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys. J. 76, 2879–2886 (1999).
57. Volkov, V. V. & Svergun, D. I. Uniqueness of ab initio shape determination in small-angled scattering. J. Appl. Crystallogr. 36, 860–864 (2003).
58. Svergun, D., Barberato, C. & Koch, M. H. J. CRYsol - a program to evaluate x-ray solution scattering of biological macromolecules from atomic coordinates. J. Appl. Crystallogr. 28, 768–773 (1995).
59. Tria, G., Mertens, H. D. T., Kashala, M. & Svergun, D. I. Advanced ensemble modelling of flexible macromolecules using X-ray solution scattering. IUCrJ 2, 207–217 (2015).