Communication

Comparative phytosociological assessment of three terrestrial ecosystems of Wayanad Wildlife Sanctuary, Kerala, India

M. Vishnu Chandran, S. Gopakumar & Anoopa Mathews

26 April 2020 | Vol. 12 | No. 5 | Pages: 15631–15645
DOI: 10.11609/jott.5754.12.5.15631-15645

For Focus, Scope, Aims, Policies, and Guidelines visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-0
For Article Submission Guidelines, visit https://threatenedtaxa.org/index.php/JoTT/about/submissions#onlineSubmissions
For Policies against Scientific Misconduct, visit https://threatenedtaxa.org/index.php/JoTT/about/editorialPolicies#custom-2
For reprints, contact <ravi@threatenedtaxa.org>

The opinions expressed by the authors do not reflect the views of the Journal of Threatened Taxa, Wildlife Information Liaison Development Society, Zoo Outreach Organization, or any of the partners. The journal, the publisher, the host, and the partners are not responsible for the accuracy of the political boundaries shown in the maps by the authors.
Comparative phytosociological assessment of three terrestrial ecosystems of Wayanad Wildlife Sanctuary, Kerala, India

M. Vishnu Chandran, S. Gopakumar & Anoopa Mathews

Abstract: Phytosociological studies were conducted in three vegetation types in the WS II area of Wayanad Wildlife Sanctuary. In each vegetation type, 85 quadrats (10 x 10 m) were laid to quantify the vegetation. Natural forest showed comparatively higher species richness than plantation and vayal (swamps/low lying grassland). In natural forest 96 plant species were present while it was 70 and 66 respectively in plantation and vayal. Fabaceae was the dominant family in all the three vegetation types. The natural forest was dominated by *Mimosa pudica*, *Glycosmis pentaphylla* showed dominance. The vayal was dominated by *Arundinella leptochloa*. The second most dominant species in the vayal was *Chromolaena odorata*. Among the three, vayal recorded the highest Simpson Diversity Index. The highest Berger-Parker Dominance Index value in plantation indicates the presence of dominant species. Natural forests recorded highest Margalef Richness Index and the least was in vayal. The highest Pielou’s Wiener Equitability Index in vayal indicated all species are evenly distributed.

Keywords: Invasive alien species, phytosociology, Simpson Diversity Index, Wayanad Wildlife Sanctuary, Western Ghats.

Abbreviations: C—Climber | H—Herb | IVI—Important Value Index | NF—Natural Forest | S—Shrub | T—Tree | WS—Wildlife Sanctuary | WI—Wildlife Sanctuary II.

Editor: K. Ravikumar, Foundation for Revitalisation of Local Health Traditions (FRLHT), Bengaluru, India. Date of publication: 26 April 2020 (online & print)

Citation: Chandran, M.V., S. Gopakumar & A. Mathews (2020). Comparative phytosociological assessment of three terrestrial ecosystems of Wayanad Wildlife Sanctuary, Kerala, India. *Journal of Threatened Taxa* 12(5): 15631–15645. https://doi.org/10.11609/jott.4754.12.5.15631-15645

Copyright: © Chandran et al. 2020. Creative Commons Attribution 4.0 International License. JoTT allows unrestricted use, reproduction, and distribution of this article in any medium by providing adequate credit to the author(s) and the source of publication.

Funding: Kerala Agricultural University, Vellanikkara, Thrissur, Kerala.

Competing interests: The authors declare no competing interests.

For Author details & Author contribution see end of this article.

Acknowledgements: The first and second author would like to thank the Kerala Agricultural University for the financial and technical support given for this study. The permission granted by the Kerala state Forest and Wildlife department to undertake this investigation which forms a part of the postgraduate study of the first author is also gratefully acknowledged.
INTRODUCTION

Forests are the principal bio-resources and repositories of natural wealth that support human well-being and ecological sustainability (Sarkar 2016). Phytosociological studies are necessary for protecting the biodiversity and natural plant communities (Rao et al. 2015). These are very essential components for understanding the changes accomplished in the past and future (Hamzaoglu 2006). The environmental safety of a country depends on the health of its forest area (Lloyd & Ghelard 1964) as it is the forest ecosystems which allocate disparate share to the world’s biodiversity (Battles et al. 2001). For the conservation of biodiversity, it is crucial to attain forest sustainability (Chaubey et al. 1988). It is proven that long-term sustainability of forest ecosystems is greatly related to plant diversity and their phytosociological attributes. Most of the forests in the world today are under extensive anthropogenic disturbances and require careful management intervention to maintain overall biodiversity and sustainability (Kumar et al. 2006). As plants provide both food and habitat for other organisms (Das et al. 2015), the total forest diversity is a dependent factor of plant diversity. The overall strength of the forest rests on its plant composition, and hence the information on its composition, diversity and ecological aspects is of primary importance in conservation planning and implementation.

Tree species control the growth of other vascular plants as they regulate sunlight availability of the forest floor. Analysis and estimation of tree diversity, through which a combination of physical habitat, vegetation, physiognomy, species composition and community relationship are unlocked, are useful datasets in forest management interventions (Battles et al. 2004). The inherent variation within communities and ecosystems must be documented and used as base-line data to effectively predict the outcome of disturbances, such as regeneration and harvest methods on floristic diversity and richness (Sarkar 2015).

MATERIALS AND METHODS

Study area

The study was carried out in Wayanad Wildlife Sanctuary (WWS), Kerala State located in southern India, between October 2016 and February 2017. WWS is spread over to 344km² and comprises two discontinuous land areas of 77.67km² (WS-I) and 266.77 km² (WS-II) (Figure 1). The larger of these two, WS-II lies within the geographical extremes of 11°35’–11°49’N and 76°13’–76°27’E. The other area WS-I lies within 11°50’–11°59’N and 76°02’–76°07’E. The phytosociological study was done in WS-II which has been divided into three forest ranges, namely, Muthanga, Kurichiat, and Sulthan Bathery. The dominant natural vegetation here is characterized by moist and dry deciduous forest (Image 1), teak and eucalyptus plantations (Image 2), and bamboo brakes (Management Plan 2012–2022). Swamps, which are low lying grasslands are spread over 715.79ha. The land area locally known as vayals (Image 3), represent an edaphic climax with its deep clayey soils and are waterlogged during the monsoon, but sustain grasses throughout the year.

The quadrat method was employed for phytosociological analysis of all vegetation. Three ecosystems, viz., natural forest (NF), plantation, and swamps/vayal (low lying grasslands) were compared. In each vegetation type, 85 quadrats (10 × 10 m) were randomly laid to quantify the tree vegetation. Tree species found within each quadrat were photographed. Those plants which could not be immediately identified were recorded by their vernacular names (information from range officer, beat officer, forest guards, and local people). These species were later identified and their scientific names recorded by consulting dendrologists, books, articles, and internet. The other vegetation inside the 10 × 10 m quadrat was further surveyed using 2 × 2 m nested quadrats. In the nested quadrats, for all the species identity, origin (native or alien), growth form (herb, shrub, and climber), and abundance of other vascular plant species were recorded. In order to analyse the diversity of tree vegetation, frequency, relative frequency, density, and relative density were calculated using the following formulae.

Density (D) = \(\frac{\text{Number of individuals}}{\text{Hectare}} \)

Relative Density (RD) = \(\frac{\text{Number of individuals of the species}}{\text{Number of individuals of all species}} \times 100 \)

Total number of individuals of a species in all quadrats
Abundance (A) = \(\frac{\text{Number of quadrats of occurrence of the species}}{\text{Number of quadrats studied}} \)

Frequency (F) = \(\frac{\text{Number of quadrats of occurrence of the species}}{\text{Total number of quadrats studied}} \times 100 \)

Relative frequency (RF) = \(\frac{\text{Frequency of individual species}}{\text{Sum of frequency of all species}} \times 100 \)

Importance value index (IVI) was calculated by adding relative frequency, relative density and relative
Species richness was calculated according to Margalef (1958). Diversity was calculated using Simpson’s diversity index (Simpson 1949). The evenness was calculated in terms of Pielou’s equitability index (Pielou 1969). Dominance was calculated using Berger-Parker dominance index (Berger & Parker 1970).

Figure 1. Location map of the study area.
RESULTS AND DISCUSSION

Overall 129 plant species representing 111 genera were recorded from the three ecosystems (Table 2). Of these, 55 were trees, 24 were shrubs, 35 herbs, and 12 climbers (Table 1). Natural forest showed comparatively higher species richness than plantation and vayal. In natural forest there were 96 plant species. Plantation and vayal had 70 and 66 plant species, respectively. The species recorded in natural forest represented 84 genera in 46 families (Table 1). Fabaceae was the dominant family across the three ecosystems (Figure 2). In the natural forest alone, Fabaceae was represented by 12 species. The other dominant families were Poaceae, Asteraceae, Caesalpinaceae, Combretaceae, Verbenaceae and Euphorbiaceae.

Among the tree species Anogeissus latifolia, Butea monosperma, Cassia fistula, Lagerstroemia microcarpa, Lannea coromandelica, Naringi crenulata, Olea dioica, Pterocarpus marsupium, Shorea roxburghii, Syzygium cumini, Tabernamontana alternifolia, Tectona grandis, Terminalia bellirica, and T. elliptica were seen in all the three vegetation types. Aporosa cardiosperma, Carallia brachiata, Dalbergia lanceolaria, Diospyros melanoxylon, Elaeocarpus variabilis, Gmelina arborea, Hydnocarpus pentandra, Mililusa tomentosa, Pongamia pinnata, Streblus asper, and Terminalia paniculata were observed only in NF. In vayals, the trees, namely, Careya arborea and Trewia nudiflora were seen. In plantations, only Ailanthus triphysa, Elaeocarpus tuberculatus, Mallotus tetracoccus, and Ziziphus mauritiana were present.

Biophytum reinwardtii var. reinwardtii, Crassocephalum crepidioides, Curculigo orchioides,
Table 1. Vegetation-type-wise distribution of species, genera, and families.

Ecosystem	Herb	Shrub	Tree	Climber	Total no. of plant species	Family	Genus
Natural forest	17	21	46	9	96	46	84
Plantation	15	16	30	6	70	36	59
Vayal	26	10	24	3	66	31	60

Table 2. List of all plant species in the WS II of sanctuary.

Binomial	Category	Family	NF	Plantation	Vayal
1	Herb	Asteraceae	+	-	+
2	Tree	Simaboubaceae	-	+	-
3	Tree	Annonaceae	+	-	+
4	Tree	Combretaceae	+	+	+
5	Tree	Euphorbiaceae	+	-	-
6	Herb	Poaceae	-	-	+
7	Herb	Poaceae	-	-	+
8	Shrub	Acanthaceae	+	+	-
9	Tree	Caesalpiniae	-	-	+
10	Tree	Caesalpiniae	+	+	-
11	Herb	Oxalidaceae	+	+	+
12	Tree	Fabaceae	+	+	+
13	Climber	Caesalpiniae	+	-	-
14	Shrub	Asclepiadaceae	-	-	+
15	Climber	Combretaceae	+	+	-
16	Shrub	Rubiaceae	+	-	-
17	Tree	Rhizophoraceae	+	-	-
18	Climber	Sapindaceae	+	+	-
19	Tree	Lecythidae	-	-	+
20	Shrub	Boraginaceae	+	-	+
21	Tree	Palmae	+	+	-
22	Tree	Caesalpiniae	+	+	+
23	Shrub	Rubiaceae	+	+	+
24	Herb	Umbellifera	+	-	-
25	Herb	Caesalpiniae	+	-	-
26	Climber	Apocynaceae	-	-	+
27	Shrub	Asteraceae	+	+	+
28	Tree	Lauraceae	+	-	-
29	Shrub	Meliaceae	+	+	-
30	Shrub	Verbenaceae	+	-	-
31	Climber	Asclepiadaceae	+	-	-
32	Herb	Asteraceae	+	+	+
33	Herb	Hypoxidaceae	+	-	+
34	Herb	Zingiberaceae	+	+	+
35	Climber	Menisperminaceae	+	+	-
36	Herb	Pyrolaceae	-	-	+
37	Tree	Fabaceae	+	-	-
38	Tree	Fabaceae	-	+	+
Binomial	Category	Family	NF	Plantation	Vayal
----------	----------	--------	-----	-------------	-------
39 Dendrocalamus strictus Nees	Shrub	Gramineae	+	+	+
40 Desmodium gangeticum Blanco	Herb	Fabaceae	-	+	-
41 Desmodium heterocarpum (L.) DC.	Shrub	Fabaceae	+	+	-
42 Desmodium laxiflorum DC.	Herb	Fabaceae	+	+	-
43 Desmodium pulchellum (L.) Benth.	Shrub	Fabaceae	+	+	-
44 Desmodium triforum (L.) DC.	Herb	Fabaceae	-	-	+
45 Digitaria ciliaris (Retz.) Koeler	Herb	Gramineae	-	-	+
46 Diospyros melanoxylon Roxb.	Tree	Ebenaceae	+	-	-
47 Elaeagnus kologa Schltdl.	Climber	Elaeagnaceae	+	-	-
48 Elaeocarpus tuberculatus Roxb.	Tree	Elaeocarpaceae	-	+	-
49 Elaeocarpus variabilis Zmarzty	Tree	Elaeocarpaceae	+	-	-
50 Elephantopus scaber L.	Herb	Asteraceae	+	+	+
51 Eleutheranthera ruderalis (Sw.) Sch.Bip.*	Herb	Asteraceae	+	-	-
52 Eragrostis tenella (L.) P. Beauv. ex Roem. & Schult.	Herb	Poaceae	-	-	+
53 Eucalyptus globulus Labill.*	Tree	Myrtaceae	-	+	+
54 Flacourtia indica (Burm.f.) Merr.	Shrub	Flacourtiaecae	+	-	-
55 Flemingia strobilifera (L.) W.T.Aiton	Shrub	Fabaceae	-	-	+
56 Glycosmis pentaphylla (Retz.) DC.	Shrub	Rutaceae	+	+	+
57 Gmelina arborea Roxb.	Tree	Verbenaceae	+	-	-
58 Gomphrena celosioides Mart.*	Herb	Amaranthaceae	-	+	-
59 Grangea maderaspatana (L.) Poir.	Herb	Asteraceae	-	-	+
60 Grewia tilifolia Vahl.	Tree	Tiliaceae	+	+	-
61 Haldina cordifolia (Roxb.) Ridsdale.	Tree	Rubiaceae	+	-	+
62 Helicteres isora L.	Shrub	Sterculiaceae	+	-	-
63 Hemidesmus indicus (L.) R.Br.	Climber	Periplocaceae	+	+	+
64 Hydrocotylosus patens (Buch.-Ham.) Oken	Tree	Flacourtiaecae	+	-	-
65 Hymenocallis suaveolens (L.) Poit.	Herb	Lamianae	+	+	-
66 Jansenella griffithiana (Müll.Hal.) Bor	Herb	Poaceae	-	-	+
67 Kyllinga nemoralis (J.R.Forst. & G.Forst.) Dandy	Herb	Cyperaceae	-	-	+
68 Lagerstroemia microcarpa Wight.	Tree	Lythraceae	+	+	+
69 Lagerstroemia speciosa Pers.	Tree	Lythraceae	+	-	-
70 Lannea coromandelica (Houtt.) Merr.	Tree	Anacardiaceae	+	+	+
71 Lantana camara L.*	Shrub	Verbenaceae	+	+	+
72 Lepidagathis incurva Buch.-Ham. ex D.Don	Herb	Acanthaceae	+	+	+
73 Leucaena leucocephala (Lam.) de Wit*	Herb	Mimosaceae	+	-	-
74 Leucas aspera Link	Herb	Lamianae	+	-	+
75 Lindernia griffithiana	Herb	Scrophulariaceae	+	+	+
76 Ludwigia peruviana (L.) H.Hara*	Herb	Scrophulariaceae	+	-	-
77 Mallotus tetrococcus Kurz	Tree	Euphorbiaceae	-	+	-
78 Mangifera indica Wall.	Tree	Anacardiaceae	+	-	-
79 Melastoma malabathricum L.	Shrub	Melastomataceae	+	-	+
80 Melia azedarach L.*	Tree	Melianae	+	+	-
81 Melia dubia Cav.	Tree	Melianae	+	+	-
82 Mikania micrantha Kunth*	Climber	Asteraceae	-	+	-
83 Milicia tomentosa (Roxb.) Finet & Gagnep.	Tree	Annonaceae	+	-	-
84 Mimosa pudica L.*	Herb	Fabaceae	+	+	+
Binomial	Category	Family	NF	Plantation	Vayal
--------------------------------	----------	-------------------	----	------------	-------
Mimusops elengi Wight	Tree	Sapotacea	+		
Mitracarpus hirtus DC.*	Herb	Rubiaceae	+	+	+
Naringi crenulata (Roxb.) Nicolson	Tree	Rutaceae	+		+
Olea Dioica Roxb.	Tree	Oleaceae	+		
Osbeckia aspera Blume	Shrub	Melastomataceae	+		
Panicum trypberon Schult.	Herb	Poaceae	-		+
Persea macrantha (Nees) Koetem.	Tree	Lauraceae	+		
Phyllanthus emblica L.	Tree	Euphorbiaceae	+		
Piper nigrum L.	Climber	Piperaceae	+		
Pogonanthem purpurascens Dalzell	Herb	Lamiaceae	-		-
Pongamia pinnata (L.) Merr.	Tree	Fabaceae	+		
Premna tomentosu Wild.	Tree	Verbenaceae	+		
Pterocarpus marsupium Roxb.	Tree	Fabaceae	+		
Rauvelfia serpentina Jacq.	Shrub	Apocynaceae	+	-	
Rhynchopora corymbosa (L.) Britton	Herb	Cyperaceae	-		+
Sacciolepis indica (L.) Chase*	Herb	Poaceae	-		+
Schleichera aloesa (Lour.) Oken	Tree	Sapindaceae	+	-	-
Schrebera swietenioides Roxb.	Tree	Oleaceae	+		
Semecarpus anacardium Roxb.	Tree	Anacardiaceae	-		+
Senko spectabilis (DC.) H. S. Irwin & Barney*	Tree	Fabaceae	+		+
Senna tora Roxb.*	Herb	Caesalpinaceae	+		+
Shorea roxburghi G. Don.	Tree	Dipterocarpaeceae	+		+
Sida acuta burm. F.	Shrub	Malvaceae	+		
Sida alyfolia L.	Shrub	Malvaceae	+		+
Sida rhombifolia L.	Shrub	Malvaceae	-		
Solarum aculeatissimum Jacq.*	Shrub	Solanaceae	+		+
Spathodea campanulata Buch.-Ham. ex DC.*	Tree	Bignoniaceae	+		
Sporobolus tenusissimus Kunte	Herb	Poaceae	-		-
Stachyapheta jamaicensis (L.) Vahl*	Shrub	Verbenaceae	+		+
Streblus asper Lour.	Tree	Moraceae	+		-
Syzygium cumini (L.) Skeels	Tree	Myrtaceae	+		+
Tabernamontana alternifolia Roxb.	Tree	Apocynaceae	+		+
Tamalinda uliginosa (Retz.) Tirveng. & Sastre	Tree	Rubiaceae	-		+
Tectona grandis L.f.	Tree	Verbenaceae	+		+
Terminalia bellica (Gaertn.) Roxb.	Tree	Combretaceae	+		+
Terminalia cuneata Roth	Tree	Combretaceae	+		
Terminalia elliptica Willd.	Tree	Combretaceae	+		+
Terminalia paniculata Roth	Tree	Combretaceae	+		
Themeda triandra Forssk.	Herb	Poaceae	-		+
Trewia nudiflora Wight	Tree	Euphorbiaceae	-		+
Triumfetta rhomboidea Jacq.	Shrub	Tiliaceae	+		-
Vitex altissima L.f.	Tree	Verbenaceae	+		-
Ziziphus gabrata B. Heyne ex Roth	Tree	Rhamnaceae	+		-
Ziziphus mauritiana Lam.	Tree	Rhamnaceae	-		+
Ziziphus oenoplia (L.) Mill.	Climber	Rhamnaceae	+		+

*indicates non-native species
Curcuma neilgherrensis, Elephantopus scaber, Eleutheranthera ruderalis, Lepidagathis incurva, Mimosa pudica, Mitracarpus hirtus, and Senna tora were the herbs seen in all the three vegetation types. Centella asiatica, Chamaecrista absus, and Lindernia crustacea were the herbs observed only in NF. In plantations, the herbs seen were Acalypha paniculata, Desmodium gangeticum, Gomphrena celosioides, Arundinella leptochoa, Axonopus compressus, Cyperus pilosus, Desmodium trifolium, Digitaria ciliaris, Grangea maderaspatana, Jansenella griffithiana, and Kyllinga nemoralis were observed only in vayal.

Catunaregam spinosa, Dendrocalamus strictus, Glycosmis pentaphylla, Sida acuta, S. alnifolia, and Solanum aculeatissimum are the shrubs that could be recorded in all three vegetation types. Canthium coromandelicium, Carmona retusa, Clerodendrum infortunatum, Desmodium heterocarpon, D. pulchellum, Flacourtia indica, Glycosmis pentaphylla, Helicteres isora, Melastoma malabathricum, Osbeckia aspera, Rauwolfia serpentina, Sida acuta, S. alnifolia, Solanum aculeatissimum, Stachyphrynium jamaicensis, and Triumfetta rhomboidei were the shrubs observed in NF. Canthium coromandelicium, Clerodendrum infortunatum, Flacourtia indica, Osbeckia aspera, and Rauwolfia serpentina were seen only in NF. Carmona retusa, Catunaregam spinosa, Cipadessa baccifera, Dendrocalamus strictus, Desmodium heterocarpon, D. pulchellum, Glycosmis pentaphylla, Helicteres isora, Sida acuta, S. alnifolia, S. rhombifolia, Solanum aculeatissimum, Stachyphrynium jamaicensis, and Triumfetta rhomboidei were the shrubs seen in plantation. Calotropis gigantea, Catunaregam spinosa, Dendrocalamus strictus, Flemingia strobilifera, Glycosmis pentaphylla, Ludwigia peruviana, Melastoma malabathricum, Sida acuta, S. alnifolia, and Solanum aculeatissimum are the shrubs commonly seen in vayal. Among these, Calotropis gigantea and Flemingia strobilifera were only seen in vayal.

Among the 11 climbers, Hemidesmus indicus and Ziziphus oenoplia were seen in all the vegetation types. Caesalpinia mimosoides, Cosmostigma racemosum, Elaeagnus kologa, and Piper nigrum were seen in NF. In vayal, Chonemorpha fragrans was only climber which was seen. No climber could be recorded in the plantation. The vegetation analysis in NF showed that Chromolaena odorata has maximum abundance (81.6) and frequency (61.1) (Table 3). Next to Chromolaena odorata, Stachytarpheta jamaicensis (31.3) has maximum abundance. The abundance of Senna spectabilis and Lantana camara were 17.7 and 9.8, respectively. The density of Lantana camara was 532.9 stems ha⁻¹. After Lantana camara, Glycosmis pentaphylla (338.8 stems ha⁻¹) and Mitracarpus hirtus (195.2 stems ha⁻¹) were the densely seen plant species in NF. The most densely seen tree species in NF is S. spectabilis (188.2 stems ha⁻¹). Among the first ten highly dense plant species in NF, five were IAPS. Maximum frequency in NF was shown by Chromolaena odorata (61.1) and Lantana camara.
Table 3. Phytosociological analysis of vegetation in natural forest.

Binomial	F	RF	D	RD	A	RBA	IVI
Ageratum conyzoides*	11.76	1.14	61.18	0.60	5.20	1.14	2.88
Annona squamosa*	1.18	0.11	1.18	0.01	1.00	0.11	0.24
Anogeissus latifolia	9.41	0.91	12.94	0.13	1.38	0.91	1.95
Aporosa cardiophyllum	5.88	0.57	8.24	0.08	1.40	0.57	1.22
Barleria mysorensis	1.18	0.11	1.18	0.01	1.00	0.11	0.24
Bauhinia racemosa	1.18	0.11	1.18	0.01	1.00	0.11	0.24
Biophytum reinwardti	2.35	0.23	10.59	0.10	4.50	0.23	0.56
Butera monasperma	9.41	0.91	10.59	0.10	1.13	0.91	1.93
Caesalpinia mimosoides	1.18	0.11	17.65	0.17	15.0	0.11	0.40
Calycophyllum floribunda	18.82	1.83	37.65	0.37	2.00	1.83	4.02
Campanthium coromandelicum	1.18	0.11	2.35	0.02	2.00	0.11	0.25
Canthium coromandelicum	15.29	1.48	37.65	0.37	2.46	1.48	3.33
Cardiospermum halicacabum	8.24	0.80	10.59	0.10	1.29	0.80	1.70
Carmona retusa*	15.29	1.48	18.82	0.18	1.23	1.48	3.15
Caryota urens	3.53	0.34	7.06	0.07	2.00	0.34	0.75
Cassia fistula	28.24	2.74	57.65	0.56	2.04	2.74	6.04
Catunaregma spinosa	10.59	1.03	11.76	0.11	1.11	1.03	2.17
Centella asiatica	1.18	0.11	2.35	0.02	2.00	0.11	0.25
Chamaecrista absus	1.18	0.11	2.35	0.02	2.00	0.11	0.25
Chromolaena odorata*	61.18	5.94	4996.47	48.69	81.6	5.94	60.5
Cinnamomum verum	11.76	1.14	52.94	0.52	4.50	1.14	2.80
Cipadessa baccifera	4.71	0.46	8.24	0.08	1.75	0.46	0.99
Clerodendrum infortunatum	1.18	0.11	2.35	0.02	2.00	0.11	0.25
Cosmostigma racemosum	1.18	0.11	2.35	0.02	2.00	0.11	0.25
Crassocephalum crepidioides*	8.24	0.80	11.76	0.11	1.43	0.80	1.71
Curcuma neilgherrensis	17.65	1.71	70.59	0.69	4.00	1.71	4.11
Cyclistis petiolaris	17.65	1.71	27.06	0.26	1.53	1.71	3.69
Dalbergia lanceolata	10.59	1.03	15.29	0.15	1.44	1.03	2.20
Dendrocalamus strictus	18.82	1.83	58.82	0.57	3.13	1.83	4.23
Desmodium heterocarpus	2.35	0.23	8.24	0.08	3.50	0.23	0.54
Desmodium laxiflorum	7.06	0.68	11.76	0.11	1.67	0.68	1.48
Desmodium pulchellum	5.88	0.57	7.06	0.07	1.20	0.57	1.21
Diospyros melanoxylon	7.06	0.68	9.41	0.09	1.33	0.68	1.46
Elaeagnus kologa	2.35	0.23	4.71	0.05	2.00	0.23	0.50
Elaeocarpus variabilis	1.18	0.11	1.18	0.01	1.00	0.11	0.24
Elaphantopus scaber	14.12	1.37	142.35	1.39	10.1	1.37	4.13
Eleutherothera ruderals*	7.06	0.68	31.76	0.31	4.50	0.68	1.68
Flacourtia indica	11.76	1.14	14.12	0.14	1.20	1.14	2.42
Glycosmis pentaphylla	36.47	3.54	338.82	3.30	9.29	3.54	10.3
Gmelina arborea	2.35	0.23	2.35	0.02	1.00	0.23	0.48
Grewia triflora	14.12	1.37	20.00	0.19	1.42	1.37	2.93
Halodina cordifolia	5.88	0.57	9.41	0.09	1.60	0.57	1.23

F—Frequency | RF—Relative Frequency | D—Density, RD—Relative density | A—Abundance | RBA—Relative basal area | IVI—Importance Value Index.
Binomial	F	RF	D	RD	A	RBA	IVI
44 Helicteres isora	27.06	2.63	50.59	0.49	1.87	2.63	5.74
45 Hemidesmus indicus	1.18	0.11	3.53	0.03	3.00	0.11	0.26
46 Hydnocarpus pentandra	5.88	0.57	5.88	0.06	1.00	0.57	1.20
47 Hyptis suaveolens*	3.53	0.34	24.71	0.24	7.00	0.34	0.93
48 Lagerstroemia microcarpa	31.76	3.08	38.82	0.38	1.22	3.08	6.54
49 Lagerstroemia speciosa	3.53	0.34	3.53	0.03	1.00	0.34	0.72
50 Lannea coromandelica	2.35	0.23	2.35	0.02	1.00	0.23	0.48
51 Lantana camara*	54.12	5.25	532.94	5.19	9.85	5.25	15.7
52 Lepidagathis incurva	15.29	1.48	29.41	0.29	1.92	1.48	3.25
53 Leucaena leucocephala*	1.18	0.11	1.18	0.01	1.00	0.11	0.24
54 Leucas aspera	1.18	0.11	2.35	0.02	2.00	0.11	0.25
55 Lindernia crustacea*	12.94	1.26	35.29	0.34	2.73	1.26	2.86
56 Mangifera indica	4.71	0.46	11.76	0.11	2.50	0.46	1.03
57 Melastoma malabathricum	1.18	0.11	1.18	0.01	1.00	0.11	0.24
58 Mella azedarach*	4.71	0.46	5.88	0.06	1.25	0.46	0.97
59 Mella dubia	4.71	0.46	4.71	0.05	1.00	0.46	0.96
60 Milusia tomentosa	1.18	0.11	2.35	0.02	2.00	0.11	0.25
61 Mimosa pudica*	48.24	4.68	149.41	1.46	3.10	4.68	10.8
62 Mimusops elengi	2.35	0.23	2.35	0.02	1.00	0.23	0.48
63 Mitracarpus hirtus	9.41	0.91	195.29	1.90	20.7	0.91	3.73
64 Naringi crenulata	20.00	1.94	40.00	0.39	2.00	1.94	4.27
65 Olea dioica	30.59	2.97	80.00	0.78	2.62	2.97	6.72
66 Osbeckia aspera	1.18	0.11	1.18	0.01	1.00	0.11	0.24
67 Persea macrantha	22.35	2.17	40.00	0.39	1.79	2.17	4.73
68 Phyllanthus emblica	2.35	0.23	2.35	0.02	1.00	0.23	0.48
69 Piper nigrum	7.06	0.68	11.76	0.11	1.67	0.68	1.48
70 Pongamia pinnata	5.88	0.57	8.24	0.08	1.40	0.57	1.22
71 Premna mollissima	1.18	0.11	1.18	0.01	1.00	0.11	0.24
72 Pterocarpus marsupium	8.24	0.80	8.24	0.08	1.00	0.80	1.68
73 Rauvolfia serpentina	3.53	0.34	5.88	0.06	1.67	0.34	0.74
74 Schleichera oleosa	16.47	1.60	22.35	0.22	1.36	1.60	3.41
75 Schrebera swietenioides	1.18	0.11	1.18	0.01	1.00	0.11	0.24
76 Senna spectabilis*	10.59	1.03	188.24	1.83	17.7	1.03	3.89
77 Senna tora*	3.53	0.34	10.59	0.10	3.00	0.34	0.79
78 Shorea roxburghii	15.29	1.48	36.47	0.36	2.38	1.48	3.32
79 Sida acuta	3.53	0.34	3.53	0.03	1.00	0.34	0.72
80 Sida alnifolia	11.76	1.14	22.35	0.22	1.90	1.14	2.50
81 Solanum aculeatissimum*	18.82	1.83	29.41	0.29	1.56	1.83	3.94
82 Spathodea campanulata*	11.76	1.14	18.82	0.18	1.60	1.14	2.47
83 Stachytypheta jamaiicensis*	3.53	0.34	110.59	1.08	31.3	0.34	1.76
84 Strelbus asper	7.06	0.68	7.06	0.07	1.00	0.68	1.44
85 Syzygium cumini	18.82	1.83	60.00	0.58	3.19	1.83	4.24
86 Tabernamontana alternifolia	16.47	1.60	32.94	0.32	2.00	1.60	3.52
87 Taminadia uliginosa	1.18	0.11	1.18	0.01	1.00	0.11	0.24
88 Tectona grandis	20.00	1.94	42.35	0.41	2.12	1.94	4.29
Table 4. Phytosociological analysis of vegetation in plantation.

Binomial	F	RF	D	RD	A	RBA	IVI
Acalypha paniculata	1.18	0.13	2.35	0.03	2.00	1.18	1.33
Ailanthus triphysa	5.88	0.64	7.06	0.09	1.20	5.88	6.61
Anogeissus latifolia	14.12	1.54	14.1	0.17	1.00	14.12	15.8
Barleria mysorensis	1.18	0.13	1.18	0.01	1.00	1.18	1.32
Boushinia racemosa	1.18	0.13	1.18	0.01	1.00	1.18	1.32
Biophytum reinwardtii	2.35	0.26	5.88	0.07	2.50	2.35	2.68
Butea monosperma	2.35	0.26	2.35	0.03	1.00	2.35	2.64
Calycopteris floribunda	2.35	0.26	4.71	0.06	2.00	2.35	2.67
Cordia depressum hollacabum	3.53	0.38	3.53	0.04	1.00	3.53	3.96
Carmona retusa *	3.53	0.38	3.53	0.04	1.00	3.53	3.96
Caryota urens	2.35	0.26	2.35	0.03	1.00	2.35	2.64
Cassia fistula	42.35	4.62	83.5	1.01	1.97	42.35	47.9
Coturnicola spinosa	21.18	2.31	31.7	0.38	1.50	21.18	23.8
Chromolaena odorata *	75.29	8.21	4943.53	59.56	65.6	75.29	143.1
Cinnamomum verum	4.71	0.51	11.76	0.14	2.50	4.71	5.36
Cipadessa baccifera	11.76	1.28	14.12	0.17	1.20	11.76	13.22
Crossocephalum crepidioides *	24.71	2.69	35.29	0.43	1.43	24.71	27.82
Curculigo archioides	10.59	1.15	84.71	1.02	8.00	10.59	12.76
Curcuma neilgherrensis	15.29	1.67	72.94	0.88	4.77	15.29	17.84
Cyclos peltata	10.59	1.15	17.65	0.21	1.67	10.59	11.95
Dalbergia latifolia	27.06	2.95	34.12	0.41	1.26	27.06	30.42
Dendrocalamus strictus	14.12	1.54	37.65	0.45	2.67	14.12	16.11
Desmodium gangeticum	1.18	0.13	2.35	0.03	2.00	1.18	1.33
Desmodium heterocarpfen	2.35	0.26	2.35	0.03	1.00	2.35	2.64
Desmodium laxiflorum	7.06	0.77	7.06	0.09	1.00	7.06	7.91
Desmodium pulchellum	9.41	1.03	14.12	0.17	1.50	9.41	10.61
Elaeocarpus tuberculatus	2.35	0.26	16.47	0.20	7.00	2.35	2.81
Elephantopus scaber	23.53	2.56	101.18	1.22	4.30	23.53	27.31
Eleutheranthera ruderalis *	1.18	0.13	4.71	0.06	4.00	1.18	1.36
Eucalyptus globulus *	12.94	1.41	75.29	0.91	5.82	12.94	15.26
Gymnosperm pentaphylla	44.71	4.87	484.71	5.84	10.8	44.71	55.42

*indicates non-native species

F—Frequency | RF—Relative Frequency | D—Density, RD—Relative density | A—Abundance | RBA—Relative basal area | IVI—Importance Value Index.
Binomial	F	RF	D	RD	A	RBA	IVI
32 Gomphrena celosioides*	3.53	0.38	9.41	0.11	2.67	3.53	4.03
33 Grewia bilifolia	10.59	1.15	16.47	0.20	1.56	10.59	11.94
34 Helicteres isora	29.41	3.21	67.06	0.81	2.28	29.41	33.42
35 Hemidesmus indicus	8.24	0.90	68.24	0.82	8.29	8.24	9.95
36 Hyptis suaveolens*	1.18	0.13	4.71	0.06	4.00	1.18	1.36
37 Lagerstroemia microcarpa	17.65	1.92	20.00	0.24	1.13	17.65	19.81
38 Lannea coromandelica	1.18	0.13	1.18	0.01	1.00	1.18	1.32
39 Lantana camara*	45.88	5.00	322.35	3.88	7.03	45.88	54.77
40 Lepidagathis incurve	4.71	0.51	28.24	0.34	6.00	4.71	5.56
41 Mallotus tetrococcus	4.71	0.51	9.41	0.11	2.00	4.71	5.33
42 Melia azedarach*	1.18	0.13	1.18	0.01	1.00	1.18	1.32
43 Melia dubia	11.76	1.28	57.65	0.69	4.90	11.76	13.74
44 Mikania micrantha*	2.35	0.26	11.76	0.14	5.00	2.35	2.75
45 Mimosa pudica*	49.41	5.38	383.53	2.21	3.71	49.41	57.01
46 Mimusops elengi	1.18	0.13	1.18	0.01	1.00	1.18	1.32
47 Mitracarpus hirtus	11.76	1.28	147.06	1.77	12.5	11.76	14.82
48 Naringi crenulata	2.35	0.26	2.35	0.03	1.00	2.35	2.64
49 Olea diosica	16.47	1.79	42.35	0.51	2.57	16.47	18.78
50 Persea macrantha	1.18	0.13	4.71	0.06	4.00	1.18	1.36
51 Pogostemon purpurascens	3.53	0.38	50.59	0.61	14.3	3.53	4.52
52 Pterocarpus marsupium	2.35	0.26	2.35	0.03	1.00	2.35	2.64
53 Schleichera oleosa	18.82	2.05	92.94	1.12	4.94	18.82	21.99
54 Semecarpus anacardium	18.82	2.05	25.88	0.31	1.38	18.82	21.19
55 Senna spectabilis*	8.24	0.90	63.53	0.77	7.71	8.24	9.90
56 Senna tora*	3.53	0.38	38.82	0.47	11.0	3.53	4.38
57 Shorea rosulghii	12.94	1.41	17.65	0.21	1.36	12.94	14.56
58 Sida acuta	12.94	1.41	14.12	0.17	1.09	12.94	14.52
59 Sida alinifolia	25.88	2.82	54.12	0.65	2.09	25.88	29.35
60 Sida rhombifolia	8.24	0.90	8.24	0.10	1.00	8.24	9.23
61 Solanum aculeatissimum*	11.76	1.28	21.18	0.26	1.80	11.76	13.30
62 Stachyphora jamaicensis*	2.35	0.26	90.59	1.09	38.5	2.35	3.70
63 Syzygium cumini	8.24	0.90	20.00	0.24	2.43	8.24	9.37
64 Tabernanontana alternifolia	23.53	2.56	41.18	0.50	1.75	23.53	26.59
65 Tecoma grandis	87.06	9.49	564.71	6.80	6.49	87.06	103.3
66 Terminalia bellirica	2.35	0.26	2.35	0.03	1.00	2.35	2.64
67 Terminalia elliptica	4.71	0.51	14.12	0.17	3.00	4.71	5.39
68 Triumfetta rhotboidea	15.29	1.67	23.53	0.28	1.54	15.29	17.24
69 Ziziphus mauritiana	5.88	0.64	5.88	0.07	1.00	5.88	6.59
70 Ziziphus oenoplia	14.12	1.54	25.88	0.31	1.83	14.12	15.97
Total	**917.65**	**100.00**	**8300.00**	**100.00**	**321.66**	**100.00**	**300**

*indicates non-native species
Table 5. Phytosociological analysis of vegetation in Vayal.

Binomial	F	RF	D	RD	A	RBA	IVI
Ageratum conyzoides*	10.59	1.03	768.24	2.39	72.56	1.03	4.46
Annona squamosa*	1.18	0.11	22.35	0.07	19.00	0.11	0.30
Anogeissus latifolia	11.76	1.15	11.76	0.04	1.00	1.15	2.34
Arundinella leptochoia	83.53	8.16	11662.3	36.27	139.6	8.16	52.59
Axonopus compressus	17.65	1.72	2917.65	9.07	165.3	1.72	12.52
Bauhinia malabarica	1.18	0.11	1.18	0.00	1.00	0.11	0.23
Biophyllum reinwardthii	4.71	0.46	4.71	0.01	1.00	0.46	0.93
Butea monosperma	2.35	0.23	2.35	0.01	1.00	0.23	0.47
Calotropis gigantea	3.53	0.34	3.53	0.01	1.00	0.34	0.70
Coreya arborea	4.71	0.46	4.71	0.01	1.00	0.46	0.93
Cassia fistula	12.94	1.26	20.00	0.06	1.55	1.26	2.59
Catanuragam spinosa	4.71	0.46	4.71	0.01	1.00	0.46	0.93
Chonemorpha fragrans	1.18	0.11	1.18	0.00	1.00	0.11	0.23
Croscosephalum crepidioides*	40.00	3.91	80.00	0.25	2.00	3.91	8.06
Curcuma neilgherrensis	7.06	0.69	11.76	0.04	1.67	0.69	1.42
Cyperus pilosus	8.24	0.80	195.29	0.61	23.71	0.80	2.22
Dalbergia latifolia	4.71	0.46	4.71	0.01	1.00	0.46	0.93
Dendrocalamus strictus	7.06	0.69	11.76	0.04	1.67	0.69	1.42
Desmodium triforum	15.29	1.49	712.94	2.22	46.62	1.49	5.21
Digitaria ciliaris	29.41	2.87	992.94	3.09	33.76	2.87	8.83
Elephantopus scaber	8.24	0.80	37.65	0.12	4.57	0.80	1.73
Eleutheranthera ruderalis*	4.71	0.46	37.65	0.12	8.00	0.46	1.04
Eragrostis tenella	21.18	2.07	1052.94	3.27	49.72	2.07	7.41
Eucalyptus globulus*	1.18	0.11	3.53	0.01	3.00	0.11	0.24
Flemingia strobilifera	2.35	0.23	7.06	0.02	6.00	0.23	0.48
Glycosmis pentaphylla	14.12	1.38	148.24	0.46	10.50	1.38	3.22
Grangea maderaspatana	7.06	0.69	11.76	0.04	1.67	0.69	1.42
Holodina cordifolia	35.29	3.45	38.82	0.12	1.10	3.45	7.02
Hemidesmus indicus	3.53	0.34	8.24	0.03	2.33	0.34	0.72
Jansenella griffithiana	18.82	1.84	203.53	0.63	10.81	1.84	4.31
Kylinga nemoralis	24.71	2.41	4289.41	13.34	173.6	2.41	18.17
Lagerstroemia microcarpa	8.24	0.80	8.24	0.03	1.00	0.80	1.63
Lannea coromandelica	1.18	0.11	1.18	0.00	1.00	0.11	0.23
Lantana camara*	43.53	4.25	423.53	1.32	9.73	4.25	9.82
Lepidagathis incurve	1.18	0.11	3.53	0.01	3.00	0.11	0.24
Leucas asper	8.24	0.80	10.59	0.03	1.29	0.80	1.64
Ludwigia peruviana	1.18	0.11	7.06	0.02	6.00	0.11	0.25
Melastoma malabathricum	2.35	0.23	12.94	0.04	5.50	0.23	0.50
Mimosa pudica*	52.94	5.17	172.94	0.54	3.27	5.17	10.88
Mitracarpus hirtus*	18.82	1.84	137.65	0.43	7.31	1.84	4.11
Naringia crenulata	2.35	0.23	2.35	0.01	1.00	0.23	0.47

F—Frequency | RF—Relative Frequency | D—Density, RD—Relative density | A—Abundance | RBA—Relative basal area | IVI—Importance Value Index.
(54.1). *Terminalia elliptica* (50.5) was the tree species having the highest frequency, followed by *Lagerstroemia microcarpa* (31.7) and *Olea dioica* (35.8). It is *Annona squamosa* which has the lowest frequency, abundance and density in NF.

In plantation, *Chromolaena odorata* (75.29) was recorded in maximum frequency, followed by *Glycosmis pentaphylla* (44.7), *Lantana camara* (44.5) and *Mimosa pudica* (44.9) (Table 4). After *Chromolaena odorata* (65.6), *Stachytarpheta jamaicensis* (38.5) recorded the second highest abundance. The highest frequency in plantation was for *Tectona grandis* (87.05). It was followed by *Chromolaena odorata* (75.29) and *Mimosa pudica* (49.4). The least frequency was shown by *Barleria mysoresensis*, *Bauhinia racemosa*, *Lannea coromandelica*, *Melia azedarach* and *Mimusops elengi*. *Chromolaena odorata* recorded the highest IVI, followed by *Tectona grandis*.

The most densely seen plant species in vayals was *Arundinella leptochloa* (11,662 stems ha\(^{-1}\)) (Table 5). Density of *Chromolaena odorata* in vayal was (58,10.6 stems ha\(^{-1}\)). The lowest density in vayal was recorded for *Bauhinia malabarica*, *Chonemorpha fragrans*, and *Lannea coromandelica*. The most abundantly seen plant species in vayals was *Kyllinga nemoralis* (173.6). It was followed by *Arundinella leptochloa* (165.3) and

Table 6. Diversity attributes of three ecosystems.

Ecosystem	Simpson’s diversity index (1-D)	Berger-Parker dominance index	Margalef richness index	Pielou’s equitability index
Natural Forest	0.61	0.62	10.76	1.002
Plantation	0.58	0.64	7.85	0.999
Vayal	0.80	0.36	6.46	1.19
Axonopus compressus (139.6). In vayals, Ageratum conyzoides (72.56) was more abundantly seen than Chromolaena odorata. The highest frequency in vayals was recorded for Chromolaena odorata (89.4) and Arundinella leptochoila (83.5).

The NF in WS II was dominated by Chromolaena odorata (60.56) (Figure 3). The second most dominant species in NF was Lantana camara (15.7). Other dominating species were Mimosa pudica (10.82), Terminalia elliptica (10.53), and Glycosmis pentaphylla (10.38). In the WS II plantation also, the dominance of Chromolaena odorata (143.06) was evident. The second most dominant species here was Tectona grandis (103.35). Other dominating species were Mimosa pudica (57.01), and Glycosmis pentaphylla (55.42). In vayal, Arundinella leptochoila (143.06) had the highest dominance. This was followed by Chromolaena odorata (35.54), K. nemoralis (18.17) and Sporobolus tenuissimus (13.0) in that order.

Among the three ecosystems (Table 6), vayals recorded the highest Simpson’s diversity index, with plantations recording the least index value. In the vayal ecosystem, the predominance of many grass species has contributed to the higher index value. Moreover, vayals also recorded the highest Pielou’s Wiener equitability index, which means that, in vayals, the plant species present are also more evenly distributed. The highest Berger-Parker dominance index for the plantations indicates the domination by selected species in this ecosystem which is also a reason for its reduced diversity index. The highest Margalef richness index was in natural forest followed by plantation and vayal.

CONCLUSION

The paper assessed the phytosociological characters of the vegetation in three different ecosystems (Natural forest, plantation and vayal) of WS II area of Wayanad WS in Kerala State. The plant species diversity and the structural composition of flora found in these ecosystems were distinctly different. As expected, the highest species richness was found in NF and the least was in vayal. All the three ecosystems had their unique set of representative plant species. Chromolaena odorata, which is an invasive alien plant species (IAPS), however, was one of the dominant species in all three ecosystems. Besides the tree species, Terminalia elliptica and Tectona grandis, WS II of Wayanad WS was also observed to be largely invaded by Chromolaena odorata, Lantana camara, and Mimosa pudica, which are also invasive in nature.

REFERENCES

Battles, J.J., A.J. Shlinsky, R.H. Barrett, R.C. Heald & B.H. Allen-Diaz (2001). The effects of forest management on plant species diversity in a Sierraan conifer forest. Forest Ecology and Management 146: 211–222.

Berger, W.H. & F.L. Parker (1970). Diversity of Planktonic Foraminifera in Deep-Sea Sediments. Science 168(3937): 1345–1347.

Chaubey, O.P., R. Prasad & G.P. Mishra (1988). Studies of Teak Plantation and mixed natural forest in Madhya Pradesh. Journal of Tropical Forestry 4: 22–35.

Das, D., B.K. Pramanik & S.K. Mollay (2015). A Model Classical Ecological report on Vegetation dynamics in Gorurama National Park in West Bengal, India. International Journal Pharmacy & Biomedical Research 2(2): 1–14.

GOK [Government of Kerala] (2012). Wayanad Wildlife Sanctuary Management plan [on-line]. Available: http://www.forest.kerala.gov.in/index.php/forest/forestmanagement-management-plans [11 Sept 2012], 230pp.

Hamzaoglu, E. (2006). Phytosociological studies on the steppe communities of East Anatolia. Ekoloji 15(61): 29–55.

Kumar, A., G.M. Bruce & S. Ajai (2006). Tree species diversity and distribution patterns in tropical forests of Gare Hills. Current Science 91: 1370–1381.

Lloyd, M. & R.J. Ghelard (1964). A table for calculating the equitability component of species diversity. Journal of Animal Ecology 33: 217–255.

Margalef, R. (1958). Temporal succession and spatial heterogeneity in phytoplankton, pp. 323–347. In: Buzzatti-Traverso (ed.). Perspectives in Marine Biology. University California Press, Berkeley. 621 pp.

Pielou, E.C. (1969). An Introduction to Mathematical Ecology. Wiley-Interscience, New York, 286pp.

Sarkar, A.K. (2015). Phytosociological studies of tree vegetation of Moraghat forest range, India. Asian Journal of Biological Life Science 4(3): 217–220.

Sarkar, A.K. (2016). Ecological Studies of Tree Vegetation of Ramshai Forest Range, Gorurama National Park, India. Research Journal of Biological Sciences 5(7): 53–59.

Simpson, E.H. (1949). Measurement of Diversity. Nature.163: 688.

Rao, S.D., P.P. Murthy & O.A. Kumar (2015). Plant biodiversity and phytosociological studies on tree species diversity of Khammam District, Telangana State, India. Journal of Pharmaceutical Sciences and Research 7(8): 518–522.

Author details: Mr. M. VISHNU CHANDRAN is a postgraduate in tropical forestry from the Department of Natural Resource Management of College of Forestry of Kerala Agricultural University, India and is specializing in the study and management of invasive alien plant species in tropical ecosystems. Dr. S. GORNUMAK is a Professor of Forest Management in the Department of Natural Resource Management of College of Forestry of Kerala Agricultural University, India with over 21 years of research and academic experience in tropical forestry. Miss. ANUPA MATHews is an Environmental science postgraduate from Christ College Irinjalakkuda, India. She is an amateur plant taxonomist and an expert in tree and grass systematics.

Author contribution: MVC—conducted the field study, data analyses, drafting the manuscript, provided literatures, photos of specimens, habitats. SG—conceptualized the research idea and peer reviewed the manuscript. AM—identification of the observed plant species.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

April 2020 | Vol. 12 | No. 5 | Pages: 15535–15674

Date of Publication: 26 April 2020 (Online & Print)

DOI: 10.11609/jott.2020.12.5.15535-15674

www.threatenedtaxa.org

Article

Prey selection and food habits of the Tiger *Panthera tigris* (Mammalia: Carnivora: Felidae) in Kalakkad-Mundanthurai Tiger Reserve, southern Western Ghats, India
– Bawa Mothilal Krishnakumar, Rajarathinavelu Nagarajan & Kanagaraj Muthamizh Selvan, Pp. 15535–15546

Communications

Community-based study to demonstrate the presence and local perspectives of the Critically Endangered Chinese Pangolin *Manis pentadactyla* in Zhejiang Wuyanling, China
– Hongying Li, Shusheng Zhang, Ji Zhang, Zupei Lei, Fangdong Zheng & Peter Daszak, Pp. 15547–15556

Field friendly method for wild feline semen cryopreservation
– Giediensdson Ribeiro de Araujo, Thyara de Deco Souza, Letícia Coelho Ferreira Bergo, Leanes Cruz da Silva, Ronaldo Gonçalves Morato, Pedro Nacib Jorge Neto, Maitê Cardoso Coelho da Silva, Gustavo Guerino Macedo & Tarcízio Antônio Rego De Paula, Pp. 15557–15564

Habitat structure determines the abundance of the Endangered Sharpe’s Longclaw *Macronyx sharpei* (Aves: Passeriformes: Motacillidae) at Timau montane grasslands in central Kenya
– Dominic Kimani, Muchane Muchai, Johnstone Kimanzi, Joseph Mwangi, Wanyoike Wamiti, Samuel Bakari, Bernhard Walter & Peter Njoroge, Pp. 15565–15571

Avifaunal diversity of some selected water bodies of Khanapur Taluka, Belagavi District, Karnataka, India
– Harsha D. Neelgund & Girish Kadadevaru, Pp. 15572–15586

Herpetofauna of Shuklaphanta National Park, Nepal
– Yam Bahadur Rawat, Santosh Bhattarai, Laxman Prasad Poudyal & Naresh Subedi, Pp. 15587–15611

Varying colour pattern, yet genetically similar: Pebble Crab *Seulocia vittata* (Stimpson, 1858) (Brachyura: Leucosiidae) from the southeastern coast of India
– Sanjeevi Prakash & Amit Kumar, Pp. 15612–15618

Grasses of Kundadri Hills in the Western Ghats of Karnataka, India
– Hanchali Udayashankar Abhijit & Yelugere Linganaik Krishnamurthy, Pp. 15619–15630

Comparative phytosociological assessment of three terrestrial ecosystems of Wayanad Wildlife Sanctuary, Kerala, India
– M. Vishnu Chandran, S. Gopakumar & Anoopa Mathews, Pp. 15631–15645

Short Communications

Piroplasmosis in a captive Grant’s Zebra *Equus quagga boehmi* (Mammalia: Perissodactyla: Equidae) - a case study
– Sarat Kumar Sahu, Niranjana Sahoo, Bijayendranath Mohanty & Debabrata Mohapatra, Pp. 15646–15650

Eurylophella karelica Tiensuu, 1935 (Insecta: Ephemeroptera: Ephemerellidae) – an additional species to the mayfly fauna of Ukraine and notes on distribution of the family in the country
– Alexander V. Martynov, Pp. 15651–15654

Some new records of katydids (Orthoptera: Tettigoniidae) from Uttar Pradesh, India
– Ramesh Singh Yadav & Dharmendra Kumar, Pp. 15655–15660

Notes

On the occurrence of Honey Badger *Mellivora capensis* (Mammalia: Carnivora: Mustelidae) in the northern Eastern Ghats of Andhra Pradesh, India
– Vikram Aditya, Yogesh Pasul & Ganesh Thyagarajan, Pp. 15661–15663

Assamese Cat Snake *Boiga quincunciata* (Wall, 1908) (Reptilia: Squamata: Colubridae) - new country record for Bhutan
– Lekey Chaïda, Abhijit Das, Uyen Tshering & Dorji Wangdi, Pp. 15664–15667

Loss of Critically Endangered Hawksbill Turtle nesting beach at EGA facility, Abu Dhabi, UAE
– D. Adhavan, Pp. 15668–15670

Meliola elaeocarpicola sp. nov. (Ascomycetes, Meliolales) from Malabar Wildlife Sanctuary in Kerala State, India
– Lini K. Mathew & Jacob Thomas, Pp. 15671–15674