η- Ricci solitons in α- para kenmotsu manifolds

Prabhavati G Angadi¹, G S Shivaprasanna² and G Somashekhara³
¹Department of Mathematics, Dr.Ambedkar institute of technology, Bengaluru-560056,India
²Department of Mathematics, Dr.Ambedkar institute of technology, Bengaluru-560056,India
³M.S.Ramaiah University of Applied Science, Bengaluru-560058, India
E-mail: ¹prabhavatiangadi71@gmail.com, ²shivaprasanna28@gmail.com, ³someshekhar96@gmail.com

Abstract. The motto of the paper is to examine “η-Ricci solitons” in “α-para Kenmotsu manifolds” with second order parallel tensor. Also study “η-Ricci solitons” are considered manifolds fulfilling some particular curvature conditions: \(S(\zeta, X_1) \cdot R = 0 \), \(R \cdot S = 0 \). Further we show that Pseudo quasi conformally flat is an Einstein with scalar curvature is constant.

keywords: “η-Ricci solitons”, Second order parallel tensor, Einstein manifold and “η- Einstein manifold”.

1. Introduction
In 1972 Kenmotsu have introduced Kenmotsu manifolds [12], and “almost Kenmotsu manifolds” to investigated in many angles. Maximum outcomes carried in [9],[10] would be simply generalized to the “class of almost α-Kenmotsu manifolds” [8]. The properties of “α-para Kenmotsu manifolds” have studied by Srivastava and Srivastava [20]. In the examination of Ricci flow, “Ricci Solitons” are the major things, since they are self-similar solutions of the flow. A “η-Ricci solitons” is a triple \((g, \varphi, \lambda) \) with \(g \) a “Riemannian metric”, \(\varphi \) a “vector field” generated by \(\varphi_t \in \mathbb{R} \) and \(\lambda \) a real scalar” such that \(L_V g + 2S + 2\lambda g = 0 \). “Ricci soliton” is a generalization of Einstein metric. Where \(S \) is a Ricci tensor of \(M, L_V \) indicates the “Lie derivative” operator with the “vector field” \(V \). The “Ricci soliton” is noted “shrinking, steady and expanding when \(\lambda \) is negative, zero and positive” respectively.

Motivated by the above results we studied, in section 3 the η-Ricci Solitons in \((\alpha - pkm)_3 \), in the section 4 we discuss η-Ricci Solitons in \((\alpha - pkm)_3 \) Satisfying \(S(\zeta, B_1) \cdot R = 0 \). Section 5 is devoted to the study of η-Ricci Solitons on \((\alpha - pkm)_3 \) satisfying \(R \cdot S = 0 \). In section 6, we establish η-Ricci Solitons in Pseudo Quasi Conformally flat \((\alpha - pkm)_3 \). In section 7, we discuss the η-Ricci Solitons in Partially Ricci Pseudo Symmetric \((\alpha - pkm)_3 \).

2. Preliminaries
A “smooth manifold \(M \)” of dim. \(2n+1 \) is called an “almost paracontact manifold” [13],[15] provided with the structure \((\varphi, \zeta, \eta) \) where \(\varphi \) is a tensor field of type \((1,1)\), a “vector field” \(\zeta \) and a 1-form \(\eta \) fulfilling

\[\varphi^2 = I - \eta \otimes \zeta, \]

\[\eta(\zeta) = 1, \]

\[\varphi \zeta = 0, \eta \circ \varphi = 0, rank(\varphi) = 2n. \]
If an “almost paracontact manifold” M acknowledges a “pseudo-Riemannian metric” g fulfilling

$$\eta(B_1) = g(B_1, \zeta)$$

$$g(\varphi B_1, \varphi B_2) = -g(B_1, B_2) + \eta(B_1)\eta(B_2)$$

$$-g(\varphi B_1, B_2) = g(B_1, \varphi B_2),$$

A 3-dim. “normal almost paracontact metric manifold” of type (α, β) are Paracosymplectic, “α-para Kenmotsu” and “para Kenmotsu” respectively [3],[21],[7].

In a 3-dim. “α-Para Kenmotsu manifold”, the mentioned result holds [20]

$$R(B_1, B_2)B_3 = \left(\frac{r}{2} + 2\alpha^2\right)[g(B_2, B_3)B_1 - g(B_1, B_3)B_2] - \left(\frac{r}{2} + 3\alpha^2\right)[g(B_2, B_3)\eta(B_1) - g(B_1, B_3)\eta(B_2)]\zeta$$

$$+\left(\frac{r}{2} + 3\alpha^2\right)[\eta(B_1)B_2 - \eta(B_2)B_1]\eta(B_3),$$

$$S(B_1, B_2) = \left(\frac{r}{2} + \alpha^2\right)g(B_1, B_2) - \left(\frac{r}{2} + 3\alpha^2\right)\eta(B_1)\eta(B_2),$$

$$S(B_1, \zeta) = -2\alpha^2\eta(B_1),$$

$$R(B_1, B_2)\zeta = -\alpha^2\{\eta(B_2)B_1 - \eta(B_1)B_2\},$$

$$(D_{B_1}\eta)B_2 = \alpha\{g(B_1, B_2) - \eta(B_1)\eta(B_2)\},$$

$$(D_{B_1}\varphi)B_2 = \alpha\{g(\varphi B_1, B_2)\zeta - \eta(B_2)\varphi B_1\},$$

$$D_{B_1}\zeta = \alpha\{B_1 - \eta(B_1)\zeta\},$$

for all “vector fields” B_1, B_2, B_3 and $B_4 \in \chi(M)$. We assume 3- dimensional “α-Para Kenmotsu Manifold” to be $(\alpha-pkm)_3$.

3. η-Ricci Solitons in $(\alpha-pkm)_3$

Let $(M, \varphi, \zeta, \eta, g)$ be an “almost paracontact metric manifold”, By examine the equation

$$L_{\zeta}g + 2S + 2\lambda g + 2\mu\eta \otimes \eta = 0$$

where L_{ζ} is the “Lie derivative operator” with the “vector field” ζ, S is the Ricci curvature tensor field of the metric g, “λ and μ” are real constants. Creating $L_{\zeta}g$ in terms of the “Levi-Civita connection D", we get:

$$2S(B_1, B_2) = -g(D_{B_1}\zeta, B_2) - g(B_1, D_{B_2}\zeta) - 2\lambda g(B_1, B_2) - 2\mu\eta(B_1)\eta(B_2),$$

for any $B_1, B_2 \in \chi(M)$.

$$S(B_1, B_2) = -(\alpha + \lambda)g(B_1, B_2) + (\alpha - \mu)\eta(B_1)\eta(B_2)$$

The content (g, ζ, λ, μ) it delivers the equation (15) is called as “η-Ricci solitons” on M [5]; in some specific, it is labeled “Ricci soliton” when $\mu = 0$ and it is noted to be a shrinking, steady or expanding based on λ is negative, zero or positive respectively [6].

Definition 1 A tensor ϑ of second order is said to be a parallel tensor if $D\vartheta = 0$, where D indicates the operator of covariant differentiation with respect to the metric tensor g.

Let ϑ be a $(0,2)$-symmetric tensor field on a $(\alpha - pkm)_3 M$ such that $D\vartheta = 0$. Using Ricci identity [18] we get

\[
D^2\vartheta(B_1, B_2; B_3, B_4) - D^2\vartheta(B_1, B_2; B_4, B_3) = 0
\]

(18)

and (11) in the above equation, we get

\[
\vartheta(R(B_1, B_1)B_2, B_3) + \vartheta(B_2, R(B_1, B_1)B_3) = 0
\]

(19)

for arbitrary vector field B_4, B_1, B_2, B_3 on M. The substitution of $B_2 = B_3 = \zeta$ in (19) gives

\[
\vartheta(\zeta, R(B_4, B_1)\zeta) = 0
\]

(20)

Since ϑ is symmetric. By using the expression (8) for $(\alpha - pkm)_3$ and (11) in the above equation, we get

\[
\alpha^2[g(B_4, \zeta)\vartheta(B_1, \zeta) - g(B_1, \zeta)\vartheta(B_4, \zeta)] = 0
\]

(21)

\textbf{Definition 2} If $(\alpha^2 \neq 0)$ then $M^{2n+1}(\zeta)$ its known as regular.

In the sense of getting a characterisation of such manifolds we consider:

\textbf{Definition 3} [16] ζ is known as semi-torse forming “vector field for (M, g)”, for all “vector fields” B_1:

\[
R(B_1, \zeta)\zeta = 0
\]

(22)

From (8) we get

\[
R(B_1, \zeta)\zeta = -\alpha^2 B_1 - \eta(B_1)\zeta
\]

(23)

and therefore, if $B_1\eta = \zeta^\perp$, then $R(B_1, \zeta)\zeta = -\alpha^2 B_1$ and we obtain:

\textbf{Proposition 1} For $M^{2n+1}(\zeta)$ the followig are equivalent:

\begin{enumerate}
 \item[i)] ζ is regular,
 \item[ii)] ζ is not semi-torse forming,
 \item[iii)] $S(\zeta, \zeta) \neq 0$ i.e., ζ is non-degenetate with respect to S,
 \item[iv)] $Q(\zeta) \neq 0$ i.e., ζ does not belong to the kernel of Q. In particular, if ζ is parallel $(D\zeta = 0)$ then M is not regular.
\end{enumerate}

Regards to the above we restrict to the regular case. Returning to (21), with $B_1 = \zeta$ then we obtain:

\[
\alpha^2\{\eta(B_1)\vartheta(\zeta, \zeta) - \vartheta(B_1, \zeta)\} = 0
\]

(24)

By differentiating (24) covariantly along B_2, we get

\[
\alpha^2\{[g(DB_2B_1, \zeta) + g(B_1, DB_2\zeta)]\vartheta(\zeta, \zeta)
+ 2g(B_1, \zeta)\vartheta(DB_2\zeta, \zeta) - [\vartheta(DB_2B_1, \zeta) + \vartheta(B_1, DB_2\zeta)]\} = 0
\]

(25)

put $B_1 = DB_2B_1$ in (21)

\[
\alpha^2\{g(DB_2B_1, \zeta)\vartheta(\zeta, \zeta) - \vartheta(DB_2B_1, \zeta)\} = 0
\]

(26)

From (25) and (26), we get

\[
-\alpha^3[g(B_1, B_2) - \eta(B_2)\eta(B_1)]\vartheta(\zeta, \zeta) - 2\alpha^3\eta(B_1)[\vartheta(B_2, \zeta) - \eta(B_2)\vartheta(\zeta, \zeta)]
+ \alpha^3[\vartheta(B_1, B_2) - \eta(B_2)\vartheta(B_1, \zeta)] = 0
\]

(27)

Replace B_1 by φB_2 in (24), we have

\[
\alpha^2\vartheta(\varphi B_2, \zeta) = 0
\]

(28)
Replace B_2 by φB_2 in (27) and using (28) we get
\[
\alpha^3 \{g(B_1, \varphi B_2) \vartheta(\zeta, \zeta) - \vartheta(B_1, \varphi B_2)\} = 0 \quad (29)
\]
Again replace B_2 by φB_2 in (29) and using (2) and (24), we get
\[
\alpha^3 [g(B_1, B_2) \vartheta(\zeta, \zeta) - \vartheta(B_1, B_2)] = 0 \quad (30)
\]
By differentiating (30) invariantly along any “vector field on M”, it can be easily seen that $\vartheta(\zeta, \zeta)$ is constant when $\alpha^3 \neq 0$. Hence we can state the following theorem:

Theorem 1 Let M be a $(\alpha - pkm)_3$ with non vanishing ζ sectional curvature and admit with a tensor field ϑ which is symmetric. If ϑ is parallel with respect to D then it is a constant multiple of metric tensor g when $\alpha^3 \neq 0$.

Now,
\[
\vartheta(B_1, B_2) = L_\zeta g(B_1, B_2) + 2S(B_1, B_2) + 2\mu \eta(B_1) \eta(B_2) \quad (31)
\]
Put $B_1 = B_2 = \zeta$
\[
\vartheta(\zeta, \zeta) = -2\lambda \quad (32)
\]
which implies
\[
\vartheta(B_1, B_2) = -2\lambda g(B_1, B_2) \quad (33)
\]
for any $B_1, B_2 \in \chi(M)$ (31) becomes
\[
L_\zeta g + 2S + 2\mu \eta \otimes \eta = -2\lambda g \quad (34)
\]
we conclude that

Theorem 2 On $(\alpha - pkm)_3$ with the property that the symmetric tensor field $\vartheta(B_1, B_2) = L_\zeta g(B_1, B_2) + 2S(B_1, B_2)$ is parallel with respect to D associated to g, the “Ricci soliton” on M defines $\lambda = 2\alpha^2$ when $\mu = 0$.

Proposition 2 Under this hypothesis if α is positive or negative then Ricci soliton is expanding.

4. **η-Ricci Solitons in $(\alpha - pkm)_3$ Satisfying** $S(\zeta, B_1) \cdot R = 0$

The condition that must be fulfilled as $S(\zeta, B_1) \cdot R = 0$
\[
S(B_1, R(B_2, B_3)B_4)\zeta - S(\zeta, R(B_2, B_3)B_4)B_1 + S(B_1, B_2)R(\zeta, B_3)B_4 \\
- S(\zeta, B_2)R(B_1, B_3)B_4 + S(B_1, B_3)R(B_2, \zeta)B_4 - S(\zeta, B_3)R(B_2, B_1)B_4 \\
+ S(B_1, B_4)R(B_2, B_3)\zeta - S(\zeta, B_4)R(B_2, B_3)B_1 = 0
\]
For any $B_1, B_2, B_3, B_4 \in \chi(M)$
Taking inner product with ζ to the relation (35) and by virtue of (8),(10).
\[
\begin{align*}
\frac{r}{2} + 2\alpha^2 & [g(B_3, B_4)S(B_1, B_2) - g(B_2, B_4)S(B_1, B_3)] \\
- \frac{r}{2} + 3\alpha^2 & [g(B_3, B_4)\eta(B_2) - g(B_2, B_4)\eta(B_3)]S(B_1, \zeta) \\
+ \frac{r}{2} + 3\alpha^2 & [\eta(B_2)S(B_1, B_3) - \eta(B_3)S(B_1, B_2)]\eta(B_4) \\
- \frac{r}{2} + 2\alpha^2 & [g(B_3, B_4)S(\zeta, B_2) - g(B_2, B_4)S(\zeta, B_3)] \\
- \frac{r}{2} + 3\alpha^2 & [g(B_3, B_4)\eta(B_2) - g(B_2, B_4)\eta(B_3)]S(\zeta, \zeta) + \left(\frac{r}{2} + 3\alpha^2 \right)[\eta(B_2)S(\zeta, B_3) \\
- \eta(B_3)S(\zeta, B_2)[\eta(B_1) + S(B_1, B_2) - \alpha^2[g(B_3, B_4) - \eta(B_3)\eta(B_4)] \\
- S(\zeta, B_2) - \alpha^2[g(B_3, B_4)\eta(B_1) - g(B_1, B_4)\eta(B_3)] \\
+ S(B_1, B_3) - \alpha^2[\eta(B_4)\eta(B_2) - g(B_2, B_4)] - S(\zeta, B_3) - \alpha^2[g(B_1, B_4)\eta(B_2) - g(B_2, B_4)\eta(B_1)] \\
- S(\zeta, B_4) - \alpha^2[g(B_3, B_1)\eta(B_2) - g(B_2, B_1)\eta(B_3)] = 0
\end{align*}
\]
Taking $B_4 = B_3 = \zeta$ to (36) Which implies
\[
S(B_1, B_2) = 2\alpha^2 g(B_1, B_2) - 4\alpha^2 \eta(B_1)\eta(B_2)
\]

Lemma 1 Let M be a $(\alpha - pkm)_3$ fulfilled $S(\zeta, B_1) \cdot R = 0$ then M is an “η- Einstein manifold” with scalar curvature $2\alpha^2$.

Then from equations (17) and (37), we get
\[
2\alpha^2 g(B_1, B_2) - 4\alpha^2 \eta(B_1)\eta(B_2) = -(\alpha + \lambda)g(B_1, B_2) + (\alpha - \mu)\eta(B_1)\eta(B_2)
\]
Substitution of $B_1 = \zeta$ in (38), we get the relation
\[
\lambda + \mu = 2\alpha^2
\]

Theorem 3 Let M be $(\alpha - pkm)_3$ admitting the “η-Ricci solitons” with satisfying $S(\zeta, B_1) = 0$ then $\lambda + \mu = 2\alpha^2$.

Proposition 3 i) A $(\alpha - pkm)_3$ satisfying $S(\zeta, B_1) \cdot R = 0$ then a “Ricci soliton” in M is expanding when α is positive or negative.

ii) Let $(\alpha - pkm)_3$ be Paracosympletic manifold ($\alpha = 0$) satisfying $S(\zeta, B_1) \cdot R = 0$ then “Ricci soliton” in M is steady.

5. η-Ricci Solitons on $(\alpha - pkm)_3$ satisfying $R \cdot S = 0$

A $(\alpha - pkm)_3$ are equivalent by comparing to the followed statements. M is (1) Einstein (2) $DS = 0$ (3) $R \cdot S = 0$.

The imputation “(1) \Longrightarrow (2) \Longrightarrow (3) is trivial”. Now we establish the imputation “(3) \Longrightarrow (1)” and $R \cdot S = 0$ means exactly (19) with substituted ϑ by S. Note that, the process that must be fulfilled by S is:
\[
S(R(\zeta, B_1)B_2, B_3) + S(B_2, R(\zeta, B_1)B_3) = 0
\]
For any $B_1, B_2, B_3 \in \chi(M)$.

In view of (9) and (40)
\[
2\alpha^4 g(B_1, B_2)\eta(B_3) + \alpha^2 \eta(B_2)S(B_1, B_3) + 2\alpha^4 g(B_1, B_3)\eta(B_2) + \alpha^2 \eta(B_3)S(B_1, B_2) = 0
\]
For $B_3 = \zeta$ we have
\[
S(B_1, B_2) = -2\alpha^2 g(B_1, B_2)
\]
Lemma 2 A locally Ricci symmetric $(D S=0)$ $(\alpha - pkm)_3$ is an Einstein manifolds.

Theorem 4 On $(\alpha - pkm)_3$ there is no non-zero second order skew symmetric parallel tensor

Proposition 4 i) Let M be a $(\alpha - pkm)_3$ satisfying $R \cdot S = 0$. Then “Ricci soliton” in M is
a) Shrinking provided $\alpha > 0$ and $\alpha = 1$ (para Kenmotsu manifold).
b) Expanding provided $\alpha < 0$.
c) Steady provided $\alpha = 0$ (Paracosympletic manifold).

6. η-Ricci Solitons in Pseudo Quasi Conformally flat $(\alpha - pkm)_3$

Definition 4 The Pseudo quasi conformal curvature tensor [17] L on a $(\alpha - pkm)_3$ is defined by

$$L(B_1, B_2)B_3 = (p + d)R(B_1, B_2)B_3 + \left(q - \frac{d}{n - 1} \right) [S(B_2, B_3)B_1 - S(B_1, B_3)B_2]$$
$$+ q[g(B_2, B_3)QB_1 - g(B_1, B_3)QB_2] - \frac{r}{n(n - 1)} \{ p + 2(n - 1)q \} [g(B_2, B_3)B_1 - g(B_1, B_3)B_2]$$

(43)

for all vector fields B_1, B_2, B_3 where p, q, d are arbitrary constants not simultaneously zero, S is the "Ricci tensor", Q is the Ricci operator, R is the Reimannian curvature tensor and r is the scalar curvature tensor of the manifold M.

We consider $(\alpha - pkm)_3$ M which is Pseudo-Quasi conformally flat. Then from definition (2) and (43) we have

$$(p + d)R(B_1, B_2)B_3 + \left(q - \frac{d}{2} \right) [S(B_2, B_3)B_1 - S(B_1, B_3)B_2]$$
$$+ q[g(B_2, B_3)QB_1 - g(B_1, B_3)QB_2] - \frac{r}{6} \{ p + 4q \} [g(B_2, B_3)B_1 - g(B_1, B_3)B_2] = 0$$

(44)

Contracting with B_1 and B_2 in (44), we obtain

$$(p + d)S(B_2, B_3) + \left(q - \frac{d}{2} \right) [3S(B_2, B_3) - S(B_1, B_3)] + q [rg(B_2, B_3) - g(QB_2, B_3)]$$
$$- \frac{r}{6} \{ p + 4q \} [2g(B_2, B_3)] = 0$$

(45)

Hence we get

$$S(B_2, B_3) = -2g(B_2, B_3)$$

(46)

Lemma 3 A pseudo quasi conformally flat $(\alpha - pkm)_3$ is an Einstein with constant scalar curvature.

In view of (17) and (46), we state that

Theorem 5 Let M be a pseudo quasi conformally flat $(\alpha - pkm)_3$ then η-Ricci soliton in M is $\lambda + \mu = 2$.

Proposition 5 i) A Ricci soliton in pseudo quasi conformally flat para Kenmotsu manifold $(\alpha = 1)$ is expanding.
ii) A Ricci soliton in pseudo quasi conformally flat paracosympletic $(\alpha = 0)$ is expanding.
7. η-Ricci Solitons in Partially Ricci Pseudo Symmetric $(\alpha - pkm)_3$

Definition 5 An $(\alpha - pkm)_3$ is called partially Ricci-pseudo symmetric if and only if the relation

$$R \cdot S = j(p)Q(g, S)$$ \hspace{1cm} (47)

hold on the set $A = \{ B \in M : Q(g, S) \neq 0 \text{ at } B \}$. where $j \in C^\infty(M)$ for $p \in A$. $R \cdot S$, $Q(g, S)$ and $(B_1 \land B_2)$ are respectively defined as

$$(R(B_1, B_2)S)(U, V) = -S(R(B_1, B_2)U, V) - S(U, R(B_1, B_2)V)$$ \hspace{1cm} (48)

$$Q(g, S) = ((B_1 \land B_2) \cdot S)(U, V)$$ \hspace{1cm} (49)

$$(B_1 \land B_2)B_3 = g(B_2, B_3)B_1 - g(B_1, B_3)B_2$$ \hspace{1cm} (50)

for all B_1, B_2, U and $V \in TM^p$.

Let us consider partially Ricci-pseudo symmetric $(\alpha - pkm)_3$. Then from definition (14), we have

$$(R(B_1, B_2) \cdot S)(B_3, U) = j(p)[(B_1 \land B_2) \cdot S](B_3, U)$$ \hspace{1cm} (51)

From equations (8) and (49), it follows that

$$S(R(B_1, B_2)B_3, U) + S(B_3, R(B_1, B_2)U) = j(p)[S((B_1 \land B_2)B_3, U) + S(B_3, (B_1 \land B_2)U]$$ \hspace{1cm} (52)

Taking $B_2 = U = \zeta$ in Applying (8), (10) in (52), we have

$$\alpha^2g(B_1, B_3)S(\zeta, \zeta) - \eta(B_3)S(B_1, \zeta) - \alpha^2[S(B_1, B_3) - \eta(B_3)S(B_3, \zeta)]$$

$$= j(p)[\eta(B_3)S(B_1, \zeta) - g(B_1, B_3)S(\zeta, \zeta) + S(B_1, B_3) - \eta(B_1)S(B_3, \zeta)],$$

This can be written as

$$-2\alpha^2[j(p) + \alpha^2]g(B_1, B_3) - S(B_1, B_3)[j(p) + \alpha^2] = 0$$ \hspace{1cm} (54)

Thus, we have which gives

$$S(B_1, B_3) = -2\alpha^2g(B_1, B_3) \text{ provided } j(p) \neq -\alpha^2$$ \hspace{1cm} (55)

Hence, we state the following lemma:

Lemma 4 : A partially Ricci pseudo symmetric $(\alpha - pkm)_3$ is an Einstein manifold provided $j(p) \neq -\alpha^2$.

Let a partially Ricci pseudo symmetric $(\alpha - pkm)_3$ admits “η-Ricci solitons” on M.

Then from (17) and (55), we get

$$(\alpha + \lambda - 2\alpha^2)g(B_1, B_3) - (\alpha - \mu)\eta(B_1)\eta(B_3) = 0$$ \hspace{1cm} (56)

Take $B_1 = \zeta$ in (56), we obtain

$$\lambda + \mu = 2\alpha^2$$ \hspace{1cm} (57)

Hence we state that the following theorem:

Theorem 6 A partially Ricci pseudo symmetric $(\alpha - pkm)_3$ M is in “η-Ricci Solitons” on M then “$\lambda + \mu = 2\alpha^2$”.

Proposition 6 A “Ricci soliton” in (g, ζ, λ) in partial Ricci Pseudo symmetric $(\alpha - pkm)_3$ is expanding provided α is positive or negative.

Proposition 7 A partially Ricci pseudo symmetric $(\alpha - pkm)_3$ is not an Einstein manifold provided $j(p) = -\alpha^2$.
References

[1] Bagewadi CS, Ingalahalli G and Ashoka SR 2013 A Study on Ricci Solitons in Kenmotsu manifolds ISRN Geometry vol.2013, Article ID 412593, 6 pages.

[2] Bejan CL 1988 Almost parahermitian structures on the tangent bundle of an almost para-coHermitian manifold In: The proceedings of the Fifth National seminar of Finsler and Lagrange Space Soc. vert, Stine te Mat. R. S. Romania, Bucharest, (1989) 105-109.

[3] Blaga AM η-Ricci solitons on para-Kenmotsu manifolds 2014 reprint arXiv 0223v3 1402.

[4] Calvaruso G and Perron D 2014 η-Ricci solitons on para-Kenmotsu manifolds arXiv 0223v3 1402.

[5] Cho JT and Kimura M 2009 Ricci solitons and real hyper surfaces in a conleb space form Tohoku Math. J 61 205-212.

[6] Chow B, Lu P, Ni L and Hamilton’s 2006 Ricci flow, Graduate Studies in Mathematics AMS, Providence, RI, USA 77.

[7] Dacko P 2004 On almost para-cosymplectic manifolds Tsukuba J. Math 28 193-213.

[8] Dileo G 2011 On the Geometry of almost contact metric manifolds of Kenmotsu type Differential Geom. Appl 29 558-564.

[9] Dileo G and Pastore AM 2007 Almost Kenmotsu manifolds and local symmetry Bull. Belg. Math. Soc. Simon Stevin 14 343-354.

[10] Dileo G and Pastore AM 2009 Almost Kenmotsu manifolds and nullity distribution J. Geom 93 46-61.

[11] Hamilton RS 1986 The Ricci flow on surfaces Math. and general relativity (Santa Cruz, CA, Contemp. Math AMS (1988) 71 237-262.

[12] Kenmotsu K 1971 A class of almost contact Riemannian manifolds T^ω ohoku Math. J 24 93-103.

[13] Manev M and Staikova M 2001 On almost paracontact Riemannian manifolds of type (n, n) J. Geom 72 108-114.

[14] Maralabhavi YB and Shivaparasanna G S 2012 Second order parallel tensors on generalized sasakian spaceforms ISSN 1 Issue 10 2277-6982.

[15] Nakova G and Zamkovoy S 2009 Almost paracomplex manifolds arXiv 3859v2 0806.

[16] Rachunek L and Mikes J 2005 On tensor fields semiconjugated with torseforming vector fields Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 44 151-160 MR 2218574 (2007b:53038).

[17] Shaik AA and Sanjib Kumar Jana 2005 A pseudo Quasi-conformalcurvature tensor on a Riemannian manifolds South East Asian J. Math. Math. Sci. 4(1). pp.15-20.

[18] Sharma R 1989 Second order parallel tensor in real and compleB space forms International. J. Math. Math. Sci 12 787-790.

[19] Shivaparasanna GS and Maralabhavi YB 2014 Ricci soliton in 3-dimensional (ε, δ)-Trans-sasakian structure ISSN 2229-5046 5(4) 258-265.

[20] Srivastava K and Srivastava SK 2014 On a class of α-Para Kenmotsu Manifolds Mediterr. J. Math. DOI 10.1007/s00009 014-0496-9.

[21] Welyczko J 2014 Slant curves in 3-dimensional normal almost paracontact metric manifolds Mediterr. J. Math. 11 965-978.