Research Article

Ahmed Bachir*, Abdelkader Segres, and Nawal A. Sayyaf

Range-kernel weak orthogonality of some elementary operators

https://doi.org/10.1515/math-2021-0001
received December 3, 2019; accepted October 12, 2020

Abstract: We study the range-kernel weak orthogonality of certain elementary operators induced by non-normal operators, with respect to usual operator norm and the Von Neumann-Schatten p-norm ($1 \leq p < \infty$).

Keywords: range-kernel orthogonality, elementary operator, Schatten p-classes, quasinormal operator, subnormal operator, k-quasihyponormal operator

MSC 2020: 47A30, 47B20, 47B47, 47B10

1 Introduction

Let $B(\mathcal{H})$ be the algebra of all bounded linear operators acting on a complex separable Hilbert space \mathcal{H}. Given $A, B \in B(\mathcal{H})$, we define the generalized derivation $\delta_{A,B} : B(\mathcal{H}) \to B(\mathcal{H})$ by $\delta_{A,B}(X) = AX - XB$.

Let $X \in B(\mathcal{H})$ be a compact operator, and let $s_1(X) \geq s_2(X) \geq \ldots \geq 0$ denote the eigenvalues of $|X| = (X^*X)^{1/2}$ arranged in their decreasing order. The operator X is said to belong to the Schatten p-class $C_p(\mathcal{H})$, if

$$\|X\|_p = \left(\sum_{i=1}^{\infty} s_i(X)^p \right)^{1/p} = \text{tr}(|X|^p)^{1/p} < +\infty,$$

where tr denotes the trace functional. In case $p = \infty$, we denote by $C_\infty(\mathcal{H})$, the ideal of compact operators equipped with the norm $\|X\|_\infty = s_1(X)$. For $p = 1$, $C_1(\mathcal{H})$ is called the trace class, and for $p = 2$, $C_2(\mathcal{H})$ is called the Hilbert-Schmidt class and the case $p = \infty$ corresponds to the class. For more details, the reader is referred to [1]. In the sequel, we will use the following further notations and definitions. The closure of the range of an operator $T \in B(\mathcal{H})$ will be denoted by ran_T and $\ker T$ denotes the kernel of T. The restriction of T to an invariant subspace \mathcal{M} will be denoted by $|T|_{\mathcal{M}}$, and the commutator $AB - BA$ of the operators A, B will be denoted by $[A, B]$. We recall the definition of Birkhoff-James’s orthogonality in Banach spaces [2,3].

Definition 1. If X is a complex Banach space, then for any elements $x, y \in \mathcal{X}$, we say that x is orthogonal to y, noted by $x \perp y$, iff for all $\alpha, \beta \in \mathbb{C}$ there holds

$$\|\alpha y + \beta x\| \geq \|\beta x\|,$$

for all $\alpha, \beta \in \mathbb{C}$ or \mathbb{R}.

* Corresponding author: Ahmed Bachir, Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia, e-mail: abishr@kku.edu.sa, bachir_ahmed@hotmail.com

Abdelkader Segres: Department of Mathematics, Mascara University, Mascara, Algeria, e-mail: segres03@yahoo.fr

Nawal A. Sayyaf: Department of Mathematics, College of Science, Bisha University, Bisha, Saudi Arabia, e-mail: nasayyaf@ub.edu.sa

Open Access. © 2021 Ahmed Bachir et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
If M and N are linear subspaces in X, we say that M is orthogonal to N if $x \perp_{B,J} y$ for all $x \in M$ and all $y \in N$. The orthogonality in this sense is asymmetric.

Let $* : \mathcal{B} \to \mathcal{B}(X)$ be an involution defined on a linear subspace \mathcal{B} of $\mathcal{B}(X)$ onto the algebra of all bounded linear operators acting on the Banach space X and $\mathcal{B}^* = \mathcal{B}$. According to the definition given by Harte [4], if E is called the Fuglede operator if $\ker E \subseteq \ker E^*$.

The elementary operator is an operator E defined on Banach $(\mathcal{A}, \mathcal{B})$-bimodule M with its representation $E(x) = \sum_{i=1}^n a_i x b_i$, where $a = (a_i) \in \mathcal{A}^n$, $b = (b_i) \in \mathcal{B}^n$ are n-tuples of algebra elements. The length of E is defined to be the smallest number of multiplication terms required for any representation $\sum a_i x b_i$ for E.

In this note, we consider $\mathcal{A} = \mathcal{B} = B(\mathcal{H})$ and $\mathcal{B} = B(\mathcal{H})$ or $\mathcal{B} = C_p : (1 \leq p < \infty)$ and the length of E will be less or equal to 2, i.e., if $A = (A_1, A_2), B = (B_1, B_2)$ are 2-tuples of operators in $B(\mathcal{H})^2$, then the elementary operator induced by A and B is defined by $E(x) = A_1 x B_1 - A_2 x B_2$ for all $x \in \mathcal{B}$. We will denote by E the formal adjoint of E defined by $E(x) = \sum_{i=1}^n A_i^* x B_i^*$ for all $x \in \mathcal{B}$. Note also that $E \in C_p$ and $E^*(X) = \sum_{i=1}^n B_i X A_i$ on any separable ideal of compact operator, where E^* is the operator adjoint of E in the sense of duality.

J. Anderson [5] proved that if A and B are normal operators, then
\[
\text{for all } X, S \in B(\mathcal{H}) : S \in \ker \delta_{A,B} \Rightarrow \|\delta_{A,B}(X) + S\| \geq \|S\|.
\]
This means that the kernel of $\delta_{A,B}$ is orthogonal to its range.

F. Kittaneh [6] extended this result to an u.i. ideal norm \mathcal{J} in $B(\mathcal{H})$, by proving that the range of $\delta_{A,B}^\mathcal{J}$ is orthogonal to $\ker \delta_{A,B} \cap \mathcal{J}$.

A detailed study of range-kernel orthogonality for generalized derivation $\delta_{A,B}$ has received much attention in recent years and has been carried out in a large number of studies [3,5,7–13] and are based on the following result.

Theorem 2. Let A, B be operators in $B(\mathcal{H})$. If $\delta_{A,B}$ is Fuglede, then the range of $\delta_{A,B}$ (resp. the range of $\delta_{A,B}^\mathcal{J}$) is orthogonal to the kernel of $\delta_{A,B}$ (resp. the kernel of $\delta_{A,B}^\mathcal{J}$) for all $1 \leq p \leq \infty$.

D. Keckic [14] and A. Turnšek [15] extended Theorem 2 to the elementary operator E defined by $E(x) = AXB - CXD$, where (A, C) and (B, D) are 2-tuples of commuting normal operators. Duggal [16] generalized the famous theorem to the case (A, C) and (B, D) are 2-tuples of commuting operators, where A, B are normal and C, D^* are hyponormal.

In this paper, our goal is to extend the previous theorem to non-normal operators including quasi-normal, subnormal, and k-quasihyponormal operators.

In the following, we recall some definitions about the range-kernel weak orthogonality.

Definition 3. [4] If $E : X \to \mathcal{Y}$ and $T : \mathcal{Y} \to \mathcal{Z}$ are bounded linear operators between Banach spaces and $0 < k \leq 1$,
\[
[s \in \ker T \Rightarrow \text{dist}(s, \text{ran} E) \geq \|s\|] \Rightarrow T \perp_k E \iff \ker T \perp_k \text{ran} E.
\]
We say that T is weakly orthogonal to E, written $T \perp E$, or equivalently
\[
\ker T \perp \text{ran} E \iff \exists k : 0 < k \leq 1 : T \perp_k E.
\]
For $0 < k \leq 1$, we say that (E, T) has a $\frac{1}{k}$ gap if $T \perp_k E$.

If $T = E$ and $k \neq 1$, we shall call E w-orthogonal $(E \perp E)$, consequently we get a $\frac{1}{k}$-gap between the subspaces $\ker E$ and $\text{ran} E$, which corresponds to the “range-kernel weak-orthogonality” for an operator E. If $k = 1$, we shall say that T is orthogonal to E, written $T \perp E$, also if $X = (Y) = \mathcal{Z}$ and $T = E$ we get a 1-gap between the subspaces $\ker E$ and $\text{ran} E$.
T is said to be a quasi-normal if $[T, T^* T] = 0$, subnormal if there exist a Hilbert space $\mathcal{K} \supseteq \mathcal{H}$ and a normal operator $N \in B(\mathcal{K})$ such that $N|_{\mathcal{H}} = T$. Also, T is called hyponormal if $[T^*, T]$ is a positive operator. Furthermore, we have the following proper inclusion

$$T \text{ normal } \Rightarrow T \text{ quasi-normal } \Rightarrow T \text{ subnormal } \Rightarrow T \text{ hyponormal}.$$

$A \in B(\mathcal{X})$ is said the Fuglede operator [13] if $\ker A \subseteq \ker A^\dagger$.

Recall that an n-tuple $A = (A_1, A_2, \ldots, A_n) \in B(\mathcal{H})^n$ is said commuting (resp. doubly commuting) if $[A_i, A_j] = 0$ (resp. $[A_i, A_j] = 0$ and $[A_i^*, A_j^*] = 0$) for all $i, j = 1, \ldots, n, i \neq j$. The n-tuple A is said to be normal if A is commuting and each A_i $(i = 1, \ldots, n)$ is normal, and A is subnormal if A is the restriction of a normal n-tuple to a common invariant subspace. Clearly, every normal n-tuple is subnormal n-tuple. Any other notation or definition will be explained as and when required.

2 Preliminaries

We summarize the results given by D. Keckic [14], A. Turnšek [15], and B. P. Duggal [16] in the following theorem.

Theorem 4. [14–16] Let A, B be normal operators, C, D^* be hyponormal operators in $B(\mathcal{H})$ such that $[A, C] = [B, D] = 0$ and $\mathcal{J} = B(\mathcal{H})$ or $\mathcal{J} = C_p : 1 \leq p \leq \infty$, then

(i) If $\ker A \cap \ker C = \{0\} = \ker B^* \cap \ker D^*$, then for all $X \in B(\mathcal{H})$ such that $E(X), E(X) \in \mathcal{J}$

$$S \in \ker E \cap \mathcal{J} \Rightarrow \min\|E(X) + S\|_{\mathcal{J}}, \|E(X) + S\|_{\mathcal{J}} \geq \|S\|_{\mathcal{J}}.$$

(ii) If $\ker A \cap \ker C \neq \{0\}$ or $\ker B^* \cap \ker D^* \neq \{0\}$, then there exists k verifying $0 < k < 1$ such that

$$\forall X \in B(\mathcal{H}), \quad \forall S \in \ker E \cap \mathcal{J} : \|E(X) + S\|_{\mathcal{J}} \geq k\|S\|_{\mathcal{J}}, \quad \text{where } E(X) \in \mathcal{J}.$$

(iii) If $\mathcal{J} = C_2(\mathcal{H})$ with its inner product $(X, Y) = \text{tr}(Y^* X)$ and E is defined on $C_2(\mathcal{H})$, then for all $S \in \ker E$, we get

$$\|E(X) + S\|_2 = \|E(X)\|_2 + \|S\|_2; \quad \|\tilde{E}(X) + S\|_2 = \|\tilde{E}(X)\|_2 + \|S\|_2.$$

We recall some useful results which are important in the sequel.

Lemma 5. [13] Let A, B be commuting operators in $B(\mathcal{H})$ with no trivial kernel.

1. Let ξ be the elementary Fuglede operator defined by $\xi(X) = AX^* - BX^*$, then

 (i) if $\ker A \cap \ker B = \{0\}$, then $\ker A$ reduces A and $\ker B$ reduces B.

 (ii) if $[A, B^*] = 0$ and $\ker A \cap \ker B \neq \{0\}$, then $\ker A \cap \ker B$ reduces A and B.

2. Let $A \in B(\mathcal{H}), B \in B(\mathcal{K})$, and $E(X) = AXB; X \in B(\mathcal{K}, \mathcal{H})$, then E is the Fuglede operator if and only if $\ker A$ reduces A and $\ker B^*$ reduces B^*.

Lemma 6. [9] Let T be an operator represented by block matrix as $T = (T_{i,j})_{i,j=1}^n$.

(i) If $T \in B(\mathcal{H})$, then $\frac{1}{n^2} \sum_{i,j} \|T_{i,j}\|^2 \leq \|T\|^2 \leq \sum_{i,j} \|T_{i,j}\|^2$

(ii) If $T \in C_p(T); 1 \leq p \leq \infty$, then

$$\frac{1}{n^{p-2}} \|T\|_p^p \leq \sum_{i,j} \|T_{i,j}\|_p^p \leq \|T\|_p^p \quad \text{for all } 2 \leq p < \infty,$$

$$\|T\|_p^p \leq \sum_{i,j} \|T_{i,j}\|_p^p \leq \frac{1}{n^{p-2}} \|T\|_p^p \quad \text{for all } 1 \leq p < 2.$$
3 Main results

Proposition 7. Let \mathcal{H}, \mathcal{K} be Hilbert spaces and $A \in B(\mathcal{H}), B \in B(\mathcal{K})$, and $E \in B(B(\mathcal{K}, \mathcal{H}))$ such that $E(X) = AXB$. If E is the Fuglede operator, then E is w-orthogonal, $E \perp \tilde{E}$, and the inequality
\[
\min\|E(X) + S\|_{\mathcal{F}}, \|\tilde{E}(X) + S\|_{\mathcal{F}} \geq \|S\|_{\mathcal{F}}
\]
holds if
- $\mathcal{F} = B(\mathcal{K}, \mathcal{H})$ with $k = 1/2$ or
- $\mathcal{F} = C_p(\mathcal{K}, \mathcal{H})$ with $k = \frac{1}{2 - p}$, if $1 \leq p \leq 2$ and $k = \frac{1}{2 + p}$, if $2 \leq p < \infty$.

Proof. If A and B^* are injective operators, then E is injective. So there is nothing to prove.

Suppose that A or B^* is the non-injective operator. From Lemma 5(2) and with respect to the decompositions:
\[
\mathcal{H} = (\ker A)^\perp \oplus \ker A, \quad \mathcal{K} = (\ker B^*)^\perp \oplus \ker B^*
\]
we obtain $A = A_i \oplus A; B = B_1 \oplus 0$. Let $X = (X_{ij})_{i,j=1,2} : \mathcal{K} \to \mathcal{H}$. Then \(E(X) = A_i X_{11} B_1 \oplus 0\).

From the injectivity of A_i and B_1^* it yields that any $S = (S_{ij})_{i,j=1,2}$ in ker E can be written as
\[
S = \begin{bmatrix} 0 & S_{12} \\ S_{21} & S_{22} \end{bmatrix},
\]
where the operators $S_{12}, S_{21},$ and S_{22} are arbitrary.

Hence, for all $S \in \ker E$ and all $X \in B(\mathcal{K}, \mathcal{H})$, by Lemma 5(2), we have
\[
\min\|E(X) + S\|_{\mathcal{F}}, \|\tilde{E}(X) + S\|_{\mathcal{F}} \geq \frac{1}{2}(\|S_{12}\|^2 + \|S_{21}\|^2 + \|S_{22}\|^2)^{1/2} \geq \frac{1}{2}\|S\|.
\]

Also, for all $S \in \ker E \cap C_p(\mathcal{K}, \mathcal{H})$ and all $X \in B(\mathcal{K}, \mathcal{H})$ such that $E(X) \in C_p(\mathcal{K}, \mathcal{H})$, we get
(i) if $1 \leq p \leq 2$, then
\[
\min\|E(X) + S\|_{\mathcal{F}}, \|\tilde{E}(X) + S\|_{\mathcal{F}} \geq \frac{1}{2}\|S_{12}\|^p + \|S_{21}\|^p + \|S_{22}\|^p)^{1/p} \geq \frac{1}{2^{1/p}}\|S\|_{\mathcal{F}}.
\]

(ii) if $2 \leq p < \infty$, then
\[
\min\|E(X) + S\|_{\mathcal{F}}, \|\tilde{E}(X) + S\|_{\mathcal{F}} \geq \frac{1}{2^{1/p}}(\|S_{12}\|^p + \|S_{21}\|^p + \|S_{22}\|^p)^{1/p} \geq \frac{1}{2^{1/p}}\|S\|_{\mathcal{F}}.
\]

Using Lemma 5(2), we get a simple form of the previous result as follows.

Corollary 8. If $\ker A$ reduces A and $\ker B^*$ reduces B^*, then E is w-orthogonal, $E \perp \tilde{E}$ and satisfies the relation (6).

In the sequel ξ denotes the elementary operator defined by
\[
\xi(X) = AXA^* - BXB^*
\]
from $B(\mathcal{H})$ to \mathcal{F}, where A and B are operators in $B(\mathcal{H})$ and $\mathcal{F} = B(\mathcal{H})$ or $\mathcal{F} = C_p(\mathcal{H}); 1 \leq p < \infty$.

Lemma 9. Let Δ be the elementary operator defined on $B(\mathcal{H})$ by $\Delta(X) = AXB - X$, where $A, B \in B(\mathcal{H})$. If Δ is a Fuglede operator, then Δ is orthogonal and $\Delta \perp \Delta$.

Proof. The proof is the same as the one in Theorem 4. □
Proposition 10. Let A, B be doubly commuting operators in $B(\mathcal{H})$ and

$$\xi : B(\mathcal{H}) \to C_p(\mathcal{H}); \quad (1 \leq p \leq \infty, \quad p \neq 2).$$

If $\ker A$ reduces A, $\ker B$ reduces B and ξ orthogonal, then $\ker A \cap \ker B = \{0\}$.

Proof. We consider the following three cases:

(i) Let us suppose that $N = \ker A \cap \ker B \neq \{0\}$.

If $\ker A \neq \ker B$ and $\ker B \notin \ker A$, then with respect to the decomposition

$$\mathcal{H} = (\ker B)^\perp \oplus (\ker B \oplus N) \oplus N$$

and from the hypothesis it yields

$$A = A_1 \oplus A_2 \oplus 0, \quad B = B_1 \oplus 0, \quad \text{and} \quad S = (S_{ij})_{i,j=1,...,3},$$

where A_2 is an injective operator. Hence,

$$S \in \ker \xi \Rightarrow A_1 S_{11} A_1^* = B_1 S_{11} B_1^*; \quad A_1 S_{12} A_1^* = A_2 S_{21} A_1^* = 0; \quad S_{22} = 0$$

and the other entries are arbitrary. Choosing X and S as follows:

$$X = 0 \oplus (e \otimes e) \oplus 0, \quad S = 0 \oplus \begin{bmatrix} 0 & R \\ R^* & C \end{bmatrix},$$

where e is a non-zero vector in \mathcal{H}, R is an operator of rank one, and C is a self-adjoint operator of rank one. Then

$$\xi(X) + S = 0 \oplus \begin{bmatrix} A_2 e \oplus A_2 e & R \\ R^* & C \end{bmatrix}.$$

Applying Lemma (2.4) [15], we get

$$\|\xi(X) + S\|_p < \left\| \begin{bmatrix} 0 & R \\ R^* & C \end{bmatrix} \right\|_p = \|S\|_p \quad (p \neq 2).$$

(ii) If $\ker A \neq \ker B$ and $\ker A \notin \ker B$, we proceed similarly as in the first case, it suffices to replace A by B and B by A in the preceding argument.

(iii) If $\ker A = \ker B$, then with respect to the decomposition

$$\mathcal{H} = (\ker B)^\perp \oplus \ker B,$$

we get

$$A = A_1 \oplus 0, \quad B = B_1 \oplus 0.$$

Letting $S = (S_{ij})_{i,j=1,...,3}$. Then

$$S \in \ker \xi \Rightarrow A_1 S_{11} A_1^* = B_1 S_{11} B_1^*,$$

and the other entries are arbitrary. Choosing X and S as

$$X = (e \otimes e) \oplus 0, \quad S = \begin{bmatrix} 0 & R \\ R^* & C \end{bmatrix},$$

where e and R are as in (i). Then

$$\xi(X) + S = \begin{bmatrix} A_1 e \otimes A_1 e - B_1 e \otimes B_1 e & R \\ R^* & C \end{bmatrix}.$$

If $A_1 e \otimes A_1 e = B_1 e \otimes B_1 e$ for all $e \in \mathcal{H}$, then it follows from this fact and the injectivity of A_1 and B_1 that $A_1 = a B_1$ with $|a| = 1$ and hence $\xi = 0$, which is a contradiction with the assumption $\xi \neq 0$. We use Lemma (2.4) [15] to complete the proof for $p \notin \{1, 2\}$.

Ahmed Bachir et al.
In the case $p = 1$, let us assume that $A_1 e \otimes A_1 e - B_1 e \otimes B_1 e$ is an operator of rank 2 and has eigenvalues λ_1, λ_2 with $|\lambda_1| = |\lambda_2|$ for all $e \in \mathcal{H}$, then we can check that

$$|\lambda_i| = |\lambda_2| \Rightarrow \|A_1 e\| = \|B_1 e\| \quad \text{and} \quad \langle A_1 e, B_1 e \rangle = 0 \quad \forall e \in \mathcal{H}.$$

If $\ker B^* \subseteq \ker B$, then by the injectivity of B_1^*, it follows that $A_1 = 0$, which is a contradiction since $A \neq 0$.

If $\ker B^* \not\subseteq \ker B$, with respect to the decomposition

$$\mathcal{H} = (\ker B_1^*)^\perp \oplus \ker B_1^* \oplus \ker B$$

we get

$$A = A_1 \oplus A_2 \oplus 0, \quad B = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix} \oplus 0, \quad \text{and} \quad S = (S_{i,j})_{i=1,...,3}.$$

Since A_i is injective and $S \in \ker \xi$, we obtain

$$A_1 S_{11} A_1^* = B_1 S_{11} B_1^*; \quad S_{12} = S_{21} = S_{22} = 0$$

and the other entries are arbitrary.

We rewrite S on the following decomposition

$$\mathcal{H} = (\ker B_1^*)^\perp \oplus \ker B \oplus \ker B_1^*$$

and choose $S_{11} = S_{23} = S_{32} = 0$, $S_{13} = R$, $S_{31} = R^*$, $S_{33} = C$, and $X = e \otimes e \oplus 0$ (R, C, e are as in (i)). Then

$$\xi(X) + S = \begin{bmatrix} A_1 e \otimes A_1 e - B_1 e \otimes B_1 e & R^* \\ R & C \end{bmatrix} \oplus 0.$$

If $A_1 e \otimes A_1 e - B_1 e \otimes B_1 e$ is an operator of rank two and has eigenvalues λ_1, λ_2 with $|\lambda_1| = |\lambda_2|$ for all $e \in \mathcal{H}$, then from the previous argument we conclude that $A_1 = 0$. On the other hand, if $B_2 \neq 0$, then from $[A, B] = 0$ it follows that $A_2 = 0$, also a contradiction with the fact that $A \neq 0$.

If $B_2 = 0$ (ker B^* reduces B^*), then $B = B_1 \oplus 0, A = 0 \oplus A_2 \oplus 0$ (A_2 is injective), and $S = (S_{i,j})_{i,j=1,...,3}$. Hence, it follows from $ASA^* = BSB^*$ that

$$S = \begin{bmatrix} 0 & S_{12} & S_{13} \\ S_{21} & 0 & S_{23} \\ S_{31} & S_{32} & S_{33} \end{bmatrix}$$

and the other entries are arbitrary.

To conclude the proof we can argue similarly as in the first case (i). \qed

Corollary 11. Let $(A_1, A_2), (B_1, B_2)$ be 2-tuples of doubly commuting operators in $\mathcal{B}(\mathcal{H})$ and $E : \mathcal{B}(\mathcal{H}) \to \mathcal{C}_p(\mathcal{H});$ $(1 \leq p \leq \infty, \ p \neq 2)$ be the elementary operator defined by $E(X) = A_1 X B_1 - A_2 X B_2$ such that $\ker A_1, \ker A_2, \ker B_1^*, \text{and ker} \ker B_2^*$ reduce A_1, A_2, B_1^*, and B_2^*, respectively. If E is orthogonal, then

$$\ker A_1 \cap \ker A_2 = \{0\} = \ker B_1^* \cap \ker B_2^*.$$

Proof. Consider the space $\mathcal{H} \oplus \mathcal{H}$ and the following decompositions

$$A = A_1 \oplus B_1^*, \quad B = A_2 \oplus B_2^*, \quad \text{and} \quad Y = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}.$$

Then, for all $X \in \mathcal{B}(\mathcal{H})$, we have $AY = BYB^* = A_1 X B_1 - A_2 X B_2$, ker $A = \ker A_1 \cap \ker B_1^*$, and ker $B = \ker A_2 \cap \ker B_2^*.$ Hence,

$$\ker A_1 \cap \ker A_2 = \{0\} = \ker B_1^* \cap \ker B_2^* \iff \ker A \cap \ker B = \{0\}.$$

So to achieve the proof, it suffices to apply the previous proposition. \qed
Theorem 12. Let A_1, A_2, N_1, and N_2 be operators in $B(H)$ such that (N_1, N_2) is 2-tuple normal and $[A_1, N_1] = [A_2, N_2] = 0$. Let $E(X) = A_1XA_2 - N_1XN_2$ such that $E(X), \tilde{E}(X) \in \mathcal{J}$. If E is the Fuglede operator, then E is w-orthogonal and $E \perp \tilde{E}$. Furthermore,

(i) If $\mathcal{J} = C_p(H)$: $(1 \leq p < \infty, p \neq 2)$, then

\[E \text{ is orthogonal if and only if } \ker A_1 \cap \ker N_1 = \{0\} = \ker A_2^* \cap \ker N_2^*; \]

(ii) If $\ker A_1 \cap \ker N_1 = \{0\} = \ker A_2^* \cap \ker N_2^*$, then E is orthogonal and $E \perp \tilde{E}$;

(iii) If $\ker A_1 \cap \ker N_1 \neq \{0\}$ or $\ker A_2^* \cap \ker N_2^* \neq 0$, then for all $X \in B(H)$ and all $S \in \ker E \cap \mathcal{J}$,

\[\min \{\|E(X) + S\|_{\mathcal{J}}, \|\tilde{E}(X) + S\|_{\mathcal{J}}\} \geq k\|S\|_{\mathcal{J}}, \]

where

\[-\mathcal{J} = B(H) : k = \frac{1}{2^p}; \]

\[-\mathcal{J} = C_p(H) : k = \frac{1}{2^p - 2p}, \text{ if } 1 \leq p \leq 2 \text{ and } k = -\frac{1}{2^p - 4p}, \text{ if } 2 < p < \infty. \]

Proof.

(i) The implication (\Rightarrow) follows from Corollary 8.

Let $\xi : B(H) \to \mathcal{J}$ be the elementary operator defined by $\xi(X) = AXA^* - NXX^*$, where $A, N \in B(H)$, N is normal with $[A, N] = 0$. Assume that ξ is the Fuglede operator.

(ii) Suppose that N is invertible and set $D = N^{-1}A$. ξ is Fuglede implies that ξ_0 is Fuglede, where ξ_0 is the elementary operator induced by D. By Lemma 2.4 [16], we have

\[\|\xi(X) + S\|_{\mathcal{J}} = \|AXA^* - NXX^* + S\|_{\mathcal{J}} = \|D(NX^*)D^* - NXX^* + S\|_{\mathcal{J}} \geq \|S\|_{\mathcal{J}}. \]

Similarly, it can be shown that $\|\xi_0(X) + S\|_{\mathcal{J}} \geq \|S\|_{\mathcal{J}}$ for any operator $S \in (\ker \xi) \cap \mathcal{J}$.

(iii) Suppose that N is injective, set $\Delta_n = \{\lambda \in \mathbb{C} : |\lambda| \leq \frac{1}{n}; n \in \mathbb{N}\}$ and $\mu(\Delta_n)$ denotes the corresponding spectral projection, where $P_n = I - \mu(\Delta_n)$ converges strongly to I.

From $[A, N] = 0$ and by Fuglede-Putnam’s theorem it follows that $[A, N^\tau] = 0$ and therefore $P_n^\tau H$ reduces both A and N. Let

\[\mathcal{H} = P_n^\tau H \oplus (I - P_n^\tau)H, \]

then $A = A_{1n} \oplus A_{2n}; N = N_{1n} \oplus N_{2n}$ and $P_n = I \oplus 0$, where N_{1n} is invertible. Hence,

\[P_n(\xi(X) + S)P_n = [A_{1n}X_{1n}A_{1n}^* - N_{1n}X_{1n}N_{1n} + S_{1n}] \oplus 0 \]

for all $X = (X_{ij})_{i,j=1,2} \in B(H)$ and $S = (S_{ij})_{i,j=1,2} \in \ker \xi$ implying

\[\|\xi(X) + S\|_{\mathcal{J}} \geq \|P_n(\xi(X) + S)P_n\|_{\mathcal{J}} = \|A_{1n}X_{1n}A_{1n}^* - N_{1n}X_{1n}N_{1n} + S_{1n}\|_{\mathcal{J}} \geq \|S_{1n}\|_{\mathcal{J}}. \]

Since $P_n(\xi^*(X) + S)P_n = [A_{1n}^*X_{1n}A_{1n} - N_{1n}X_{1n}N_{1n} + S_{1n}] \oplus 0$, then

\[\|\xi^*(X) + S\|_{\mathcal{J}} \geq \|P_n(\xi^*(X) + S)P_n\|_{\mathcal{J}} = \|A_{1n}^*X_{1n}A_{1n} - N_{1n}X_{1n}N_{1n} + S_{1n}\|_{\mathcal{J}} \geq \|S_{1n}\|_{\mathcal{J}}. \]

On the other hand, for all positive integer n, we have

\[\|S_{1n}\|_{\mathcal{J}} = \|P_nS_{1n}\| \leq \min \{\|\xi(X) + S\|_{\mathcal{J}}, \|\xi^*(X) + S\|_{\mathcal{J}}\} < \infty \]

and thus $\sup \|P_nS_{1n}\| < \infty$ for all $S \in \ker \xi \cap \mathcal{J}$ and $X \in B(H)$. It follows by Lemma 3 [14] that

\[\min \{\|\xi(X) + S\|_{\mathcal{J}}, \|\xi^*(X) + S\|_{\mathcal{J}}\} \geq \|S\|_{\mathcal{J}}. \]

(iii) Suppose that N is an arbitrary normal operator.

If $\ker A \cap \ker N = \{0\}$, then \mathcal{H} may be decomposed as

\[\mathcal{H} = (\ker N)^\perp \oplus \ker A \oplus \ker A \oplus \ker N. \]
Since ξ is Fuglede and by Lemma 5(i), we have $\ker A$ reduces A, $A = A_{11} \oplus 0 \oplus A_{22}$ and $N = N_{11} \oplus N_{22} \oplus 0$. For $X = (X_{ij})_{i,j=1,2,3} \in B(\mathcal{H})$, set $\xi_i(X_{ij}) = A_{11}X_{ij}A_{11}^* - N_{11}X_{ij}N_{11}^*$ and $S = (S_{ij})_{i,j=1,2,3} \in \ker \xi$, then

$$\xi_i(S_{ij}) = 0 \quad \text{and} \quad A_{11}S_{13}A_{12}^* = A_{22}S_{31}A_{11}^* = A_{22}S_{31}A_{12}^* = 0,$$

$$N_{11}S_{12}N_{22}^* = N_{22}S_{21}N_{11}^* = N_{22}S_{22}N_{22}^* = 0.$$

Since ξ is Fuglede, then $S \in \ker \xi$ and

$$\xi_i(S_{ij}) = 0 \quad \text{and} \quad A_{11}^*S_{13}A_{22} = A_{22}^*S_{31}A_{11} = A_{22}^*S_{31}A_{22} = 0,$$

$$N_{11}^*S_{12}N_{22} = N_{22}^*S_{21}N_{11} = N_{22}^*S_{22}N_{22} = 0.$$

(7)

Since $N_{11}, N_{22}, A_{11},$ and A_{22} are injective, we get from (ii) that ξ_i is orthogonal, $\xi_i \perp \tilde{\xi}_i$ and $S_{13} = S_{31} = S_{12} = S_{22} = S_{21} = 0$ and any operator $S \in \ker \xi$ has the form

$$S = \begin{bmatrix} S_{11} & 0 & 0 \\ 0 & 0 & S_{23} \\ 0 & S_{32} & 0 \end{bmatrix},$$

where S_{23} and S_{32} are arbitrary.

Let $S_{23} = U_{23}S_{23}$, $S_{22} = U_{22}S_{22}$ be the polar decompositions of S_{23} and S_{32}, respectively, let V be the operator defined by

$$V = I \oplus \begin{bmatrix} 0 & U_{22} \\ U_{23} & 0 \end{bmatrix}.$$

Then

$$\|\xi(X) + S\|_F \geq \|V(\xi(X) + S)\|_F = \left\| \begin{bmatrix} \xi_i(X_{11}) + S_{11} & * & * \\ * & |S_{21}| & * \\ * & * & |S_{23}| \end{bmatrix} \right\|_F.$$

Applying Lemma 6, we get

- if $F = B(\mathcal{H})$:

$$\|\xi(X) + S\| \geq \max\{\|\xi_i(X_{11}) + S_{11}\|, \|S_{22}\|, \|S_{23}\|\} \geq \max\{\|S_{11}\|, \|S_{22}\|, \|S_{23}\|\} = \|S\|._F.$$

- if $F = C_p(\mathcal{H}); (1 \leq p < \infty)$:

$$\|\xi(X) + S\|_p \geq (\|\xi_i(X_{11}) + S_{11}\|_p^p + \|S_{22}\|_p^p + \|S_{23}\|_p^p)^{1/p} \geq (\|S_{11}\|_p^p + \|S_{22}\|_p^p + \|S_{23}\|_p^p)^{1/p} = \|S\|_p.$$

By the same method, we have that $\xi \perp \tilde{\xi}$. If $M = \ker A \cap \ker N \neq \{0\}$ and \mathcal{H} is decomposed as $\mathcal{H} = (\ker N)^\perp \oplus [\ker N \cap M] \oplus M,$ then by Lemma 5(ii) and the fact that ξ is Fuglede, it follows that M reduces A, and hence $A = A_{11} \oplus A_{22} \oplus 0, \quad N = N_{11} \oplus 0.$

For $X = (X_{ij})_{i,j=1,2,3}$, we set $\xi_i(X) = A_{11}X_{ij}A_{11}^* - N_{11}X_{ij}N_{11}^*$ and let $S = (S_{ij})_{i,j=1,2,3} \in \ker \xi$. From the injectivity of A_{11} and A_{22}, we obtain

$$\xi_i(S_{ij}) = 0 \quad \text{and} \quad S_{12} = S_{21} = S_{22} = 0.$$

By simple computation, we get

$$\|\xi(X) + S\|_F = \left\| \begin{bmatrix} \xi_i(X_{11}) + S_{11} & S_{13} \\ S_{31} & S_{32} + S_{33} \end{bmatrix} \right\|_F.$$
Applying Lemma 6 yields

- for \(\mathcal{F} = B(\mathcal{H}) \):
 \[
 \|\xi(X) + S\|^2 \geq \frac{1}{2^2} (\|\xi(X_{11} + S_{11})\|^2 + \|S_{22}\|^2 + \|S_{33}\|^2) \geq \frac{1}{2^2} \|S\|^2.
 \]

- for \(\mathcal{F} = C_p(\mathcal{H}) ; 1 \leq p \leq 2 \):
 \[
 \|\xi(X) + S\|^p \geq \frac{1}{2^{2-p}} (\|\xi(X_{11} + S_{11})\|^p + \|S_{22}\|^p + \|S_{33}\|^p) \geq \frac{1}{2^{2-p}} \|S\|^p.
 \]

- for \(\mathcal{F} = C_p(\mathcal{H}) ; 2 \leq p < \infty \):
 \[
 \|\xi(X) + S\|^p \geq \frac{1}{2^{2-p}} (\|\xi(X_{11} + S_{11})\|^p + \|S_{22}\|^p + \|S_{33}\|^p) \geq \frac{1}{2^{2-p}} \|S\|^p.
 \]

Similarly,

- for \(\mathcal{F} = B(\mathcal{H}) \):
 \[
 \|\xi(X) + S\| \geq \frac{1}{2} \|S\|.
 \]

- for \(\mathcal{F} = C_p(\mathcal{H}) ; 1 \leq p \leq 2 \):
 \[
 \|\xi(X) + S\|_p \geq \frac{1}{2^{\frac{2}{-p}}} \|S\|_p.
 \]

- for \(\mathcal{F} = C_p(\mathcal{H}) ; 2 \leq p < \infty \):
 \[
 \|\xi(X) + S\|_p \geq \frac{1}{2^{\frac{2}{-p}}} \|S\|_p.
 \]

Let us now finish the proof for the elementary operator \(E(X) = A_1 X A_2 - N_1 X N_2 \). Consider the space \(\mathcal{H} \oplus \mathcal{H} \) and define the following operators on \(B(\mathcal{H} \oplus \mathcal{H}) \) as

\[
N = N_1 \oplus N_2^*; \quad A = A_1 \oplus A_2^*; \quad \text{and} \quad Z = \begin{bmatrix} 0 & X \\ 0 & 0 \end{bmatrix}
\]

It is clear that \(N \) is normal operator and \([A_1, N_1] = [A_2, N_2] = 0 \) imply \([A, N] = 0 \) and \(E(Z) = AZA^* - NZN^* \).

Applying the preceding result, the proof is complete.

Let \(A, B \in B(\mathcal{H}) \) and \(\Omega \) be a set in \(B(\mathcal{H})^2 \) defined by \((A, B) \in \Omega \) if and only if \(\Delta(X) = ANXBM - X \) is the Fuglede operator for any normal \(N, M \) satisfying \([N, A] = [M, B] = 0 \).

It follows from the definition that \(\Delta \) is Fuglede and \(\Omega \neq \emptyset \) since \((I, I) \in \Omega \).

It is shown in [13] that if \((A, B) \in \Omega \), then the elementary operator \(E \) defined by \(E(X) = NXM - AXB \) is Fuglede for any normal operators \(N \) and \(M \) in \(B(\mathcal{H}) \). So as a consequence of the previous theorem, we get the following corollaries.

Corollary 13. Let \(A, B \in B(\mathcal{H}) \) and \(N, M \) be arbitrary normal operators in \(B(\mathcal{H}) \) such that \([N, A] = [M, B] = 0 \) and \(E \) be the elementary operator defined by \(E(X) = NXM - AXB \) for all \(X \in B(\mathcal{H}) \).

If \((A, B) \in \Omega \), then \(E \) is \(w \)-orthogonal and \(E \in \tilde{E} \). Furthermore, \(E \) and \(\tilde{E} \) verify assertions (i), (ii), and (iii) in Theorem 12.

Lemma 14. [13] Let \(A, B \in B(\mathcal{H}) \) and \(N, M \) be normal operators in \(B(\mathcal{H}) \) such that \([N, A] = [M, B] = 0 \), then \((A, B) \in \Omega \) in each of the following cases:

(i) \(A \) and \(B^* \) are hyponormal operators;

(ii) \(A \) is \(k \)-quasihyponormal and \(B^* \) is injective \(k \)-quasihyponormal operator.
Corollary 15. If \((A_1, A_2), (B_1, B_2)\) are 2-tuples of commuting operators in \(B(\mathcal{H})\) such that \(A_1, B_1\) are normal operators and \(E(X) = A_1XB_1 - A_2XB_2\), then \(E\) is w-orthogonal and \(E \not\perp \bar{E}\). Furthermore, \(E\) and \(\bar{E}\) satisfy assertions (i), (ii), and (iii) cited in Theorem 12, in each of the following cases:

(i) \(A_i\) and \(B_i^*\) are hyponormal operators;
(ii) \(A_i\) is \(k\)-quasihyponormal and \(B_i^*\) is injective \(k\)-quasihyponormal operator.

In the next theorem, we give a positive answer to a question raised by P. B. Duggal [16]: Is Theorem 2 still true if the hypothesis is related to \(A\) and \(B^*\) being subnormal?

Theorem 16. If \(A\) and \(B^*\) are 2-tuples of commuting subnormal operators in \(B(\mathcal{H})\) such that \(A = (A_1, A_2), B = (B_1, B_2), \) and \(E(X) = A_1XB_1 - A_2XB_2\), then \(E\) is w-orthogonal and \(E \not\perp \bar{E}\).

Proof. From the definition of subnormality of 2-tuple operator, we have \(A\) is the restriction of a 2-tuple normal \(N = (N_1, N_2)\) to a common invariant subspace \(\mathcal{H}\) and \(B^*\) is the restriction of a 2-tuple normal \(M = (M_1, M_2)\) to a common invariant subspace \(\mathcal{H}\) equivalent to \(A_i = N_i|\mathcal{H}; B_i^* = M_i|\mathcal{H}\), \(i = 1, 2\) with \(N_i, M_i\) are normal operators on a Hilbert space \(\mathcal{K} \supseteq \mathcal{H}\) and \([N_i, N_2] = [M_i, M_2] = 0\). If \(S \in \ker E\), then for all \(X \in B(\mathcal{H})\), we have

\[N_1\tilde{X}M_1^* - N_2\tilde{X}M_2^* + \tilde{S} = \begin{bmatrix} E(X) + S & 0 \\ 0 & 0 \end{bmatrix},\]

where \(\tilde{X} = X \oplus 0\) and \(\tilde{S} = S \oplus 0\). Hence,

\[\|N_1\tilde{X}M_1^* - N_2\tilde{X}M_2^* + \tilde{S}\|_f = \|E(X) + S\|_f.\]

Since \(N_i, M_i : i = 1, 2\) are normal, we get the w-orthogonality of \(E\). With similar argument, \(E \not\perp \bar{E}\) follows.

Corollary 17. If \((A_1, A_2)\) and \(B = (B_1, B_2)\) are 2-tuples of commuting operators in \(B(\mathcal{H})\) such that \([A_1, A_1^*A_1 + A_2^*A_2] = [B_1^*, B_1B_1^* + B_2B_2^*] = 0; i = 1, 2\) and \(E(X) = A_1XB_1 - A_2XB_2\), then \(E\) is w-orthogonal and \(E \not\perp \bar{E}\).

Proof. By assumption, \(A\) and \(B^*\) are spherically quasi-normal commuting 2-tuples (see definition [17]) and also by [17], \(A\) and \(B^*\) are subnormal 2-tuples. So the desired result follows from Theorem 16.

Theorem 18. Let \((A_1, A_2), (B_1, B_2)\) be 2-tuples of doubly commuting operators in \(B(\mathcal{H})\) and \(E\) be the elementary operator defined by \(E(X) = A_1XB_1 - A_2XB_2\) such that \(E(X), \bar{E}(X) \in \mathcal{J}\), \(A_i, B_i^*\) are quasi-normal operators and \(A_2, B_2^*\) are \(k\)-quasihyponormal operators \((k \geq 1)\) with \(\ker A_2 \subseteq \ker A_2^*\) and \(\ker B_2^* \subseteq \ker B_2\). Then \(E\) is w-orthogonal and \(E \not\perp \bar{E}\). Furthermore,

1. If \(\mathcal{J} = C_p(\mathcal{H}); 1 \leq p < \infty, p \neq 2\), then

 \(E\) is orthogonal if and only if \(\ker A_1 \cap \ker N_1 = \ker A_1^* \cap \ker N_1^* = \{0\}\).

2. If \(\ker A_1 \cap \ker N_1 = \{0\} = \ker A_1^* \cap \ker N_1^*\), then \(E\) is orthogonal and \(E \perp \bar{E}\);

3. If \(\ker A_1 \cap \ker A_2 \neq 0 \text{ or } \ker B_1^* \cap \ker B_2^* \neq 0\), then for all \(X \in B(\mathcal{H})\) and all \(S \in \ker E \cap \mathcal{J}\),

 \[
 \min\|E(X) + S\|_f, \|\bar{E}(X) + S\|_f \geq k\|S\|_f.
 \]

 - For \(\mathcal{J} = B(\mathcal{H}), k = \frac{1}{6}\);

 - For \(\mathcal{J} = C_p(\mathcal{H}), k = \frac{1}{6-1/p}, \text{ if } 1 \leq p \leq 2\);

 - For \(\mathcal{J} = C_p(\mathcal{H}), k = \frac{1}{6-1/p}, \text{ if } 2 \leq p < \infty\).
Proof. Consider the following decompositions
\[\mathcal{H} = \mathcal{H}_1 = (\ker A_2)^\perp \oplus \ker A_2, \quad \mathcal{H} = \mathcal{H}_2 = (\ker B_2)^\perp \oplus \ker B_2^* \]
Then
\[A_2 = C_1 \oplus 0, \quad B_2 = C_2 \oplus 0, \]
where \(C_1, C_2 \) are injective \(k \)-quasihyponormal and by hypothesis, we get
\[A_1 = T_1 \oplus T_2, \quad B_1 = R_1 \oplus R_2 \]
with \(T_1, T_2, R_1^*, \) and \(R_2^* \) are quasinormal operators and \((T_1, C_1), (R_1, C_2) \) are 2-tuples of doubly commuting operators.
Since \(\ker T_1 \) reduces \(T_1 \) (resp. \(\ker R_1^* \) reduces \(R_1^* \)) and by commutativity, we have that
\[T_1 = A_{11} \oplus 0, \quad R_1 = B_{11} \oplus 0, \quad C_1 = A_{21} \oplus A_{22}, \quad C_2 = B_{21} \oplus B_{22} \]
with respect to the following decompositions
\[(\ker A_2)^\perp = (\ker T_1)^\perp \oplus \ker T_1, \quad (\ker B_2)^\perp = (\ker R_1^*)^\perp \oplus \ker R_1^*, \]
where \(A_{11} \) and \(B_{11}^* \) are injective quasinormal operators, \(A_{21}, A_{22}, B_{21}^*, \) and \(B_{22}^* \) are injective \(k \)-quasihyponormal. We set \(A_{11} = U|A_{11}| \) and \(B_{11} = V|B_{11}| = |B_{11}^*| V \). Then it follows from the injectivity of \(A_{11} \) and \(B_{11}^* \) that \(U \) and \(V^* \) are isometry operators and by \(|T_1, C_1| = |T_1^*, C_1^*| = 0 \), we get that
\[|A_{11}, A_{21}| = |A_{11}^*, A_{21}| = 0. \] (8)
Then \([A_{11}^*, A_{21}] = [A_{11}, A_{21}] = 0 \) and \(\|A_{11}, A_{21}\| = \|A_{11}^*, A_{21}\| = 0 \). Hence, \(\|U, A_{21}\| = \|U^*, A_{21}\| = 0 \).
Similarly, we obtain that \(\|V, B_{21}\| = \|V^*, B_{21}\| = 0 \), and \((UA_{21}^*)^\perp \) is \(k \)-quasihyponormal. Indeed,
\[(A_{21}^* U)^k [U^* A_{21}^* U] A_{21}^* U^k = (A_{21}^*)^k U^k [U^*, U] A_{21}^* U^k + U^k A_{21}^* U \]
\[= U^k A_{21}^* U + U^k A_{21}^* U \leq 0. \]
Similarly, we get \((V B_{21})^*\) is an injective \(k \)-quasihyponormal.
Let \(X, S \in B(\mathcal{H}) : X = (X_{ij})_{i,j=1,2,3} \) and \(S = (S_{ij})_{i,j=1,2,3} \). If \(S \in \ker E \), then
\[A_{11} S_{11} B_{11} = A_{21} S_{21} B_{21}, \] (9)
\[A_{11} S_{13} R_3 = T_3 S_{13} B_{11} = T_2 S_{13} R_2 = 0, \] (10)
\[A_{31} S_{23} B_{22} = A_{22} S_{23} B_{22} = A_{23} S_{22} B_{22} = 0. \] (11)
And
\[U^*(A_{21} X_{21} B_{21} - A_{21} X_{31} B_{21} + S_{11}) V^* = |A_{11}| X_{11} B_{11}^* - U^* A_{21} X_{11} B_{21} + U^* S_{11} V^*. \]
We derive from 8 that
\[|A_{11}| U S_{11} V^* B_{11} = U^* A_{21} U^* S_{11} V^* B_{21} V^*. \]
Applying Corollary 8,
\[\|A_{11} X_{11} B_{11} - A_{21} X_{11} B_{21} + S_{11}\| \geq \|U^*(A_{11} X_{11} B_{11} - A_{21} X_{11} B_{21} + S_{11}) V^*\| \geq \|U^* S_{11} V^*\|. \]
from the injectivity of \(A_{11} \) and its polar decomposition, we have
\[(\ker T_1)^\perp = (\ker A_{11})^\perp = (\ker U)^\perp; \quad \ker A_{11} = \text{ran } U \]
and \(U : (\ker U)^\perp \rightarrow \text{ran } U \) is unitary. Taking the following decompositions yields
\[(\ker U)^\perp = \text{ran } U \oplus (\text{ran } U)^\perp; \quad (\ker V^*)^\perp = \overline{\text{ran } V^*} \oplus (\text{ran } V^*)^\perp. \]
Then

\[
A_{11} = \begin{bmatrix} A_{11} & 0 \\ 0 & 0 \end{bmatrix}, \quad B_{11} = \begin{bmatrix} B_{11} & 0 \\ \zeta & 0 \end{bmatrix}, \quad S_{11} = \begin{bmatrix} S_{11} & S_{12} \\ S_{21} & S_{22} \end{bmatrix},
\]

\[
U = \begin{bmatrix} U_1 \\ 0 \end{bmatrix} : (\ker U)^+ \to \text{ran } U \oplus (\text{ran } U)^+,
\]

\[
V = [V_1 \ 0] : \text{ran } V^* \oplus (\text{ran } V^*)^+ \to (\ker V^*)^+.
\]

From the commutativity, we obtain

\[
A_{21} = A_{12}^1 \oplus A_{21}^2; \quad B_{21} = B_{12}^1 \oplus B_{21}^2.
\]

By simple computation, we get

\[
U^* S_{11} V^* = U_1^* S_{11}^1 V_1^*, \quad A_{12}^1 S_{11}^2 B_{12}^2 = A_{21}^2 S_{11}^1 B_{21}^2 = A_{21} S_{11}^2 B_{21}^2 = 0.
\]

From the injectivity of \(A_{1i}\) and \(B_{2i}^2\), \(i = 1, 2\), we derive that

\[
S_{11}^2 = S_{11}^1 = S_{11} = 0.
\]

The injectivity of \(A_{31}, B_{22}, A_{22}, B_{21}, A_{11}\), and \(B_{11}^*\) in the equalities 10 and 11 implies that

\[
S_{12} = S_{21} = S_{32} = 0, \quad S_{13} R_2 = T_2 S_{31} = T_2 S_{32} R_2 = 0.
\]

Setting \(E_{11}(X_{11}) = A_{11} X_{11} B_{11} - A_{21} X_{11} B_{21}\),

(i) If \(\ker A_1 \cap \ker A_2 = \{0\} = \ker B_{11}^* \cap \ker B_{21}^*\), then \(S_{13} = S_{33} = S_{31} = 0\) and therefore any operator \(S \in \ker E\) has the form

\[
S = \begin{bmatrix} S_{11} & 0 & 0 \\ 0 & 0 & S_{32} \\ 0 & S_{23} & 0 \end{bmatrix},
\]

where \(S_{23}\) and \(S_{32}\) are arbitrary with

\[
\|S_{11}\|_\mathcal{F} = \|S_{11}^{1}\|_\mathcal{F} = \|U_1^* S_{11}^1 V_1^*\|_\mathcal{F} = \|U^* S_{11} V^*\|_\mathcal{F}
\]

and

\[
\|E(X) + S\|_\mathcal{F} = \begin{bmatrix} E_{11}(X_{11}) + S_{11} & * & * \\ * & * & S_{32} \\ * & S_{23} & * \end{bmatrix}_\mathcal{F}.
\]

Let \(S_{23} = U_{23} S_{23}\), \(S_{32} = S_{32}^* S_{32}\) be the polar decomposition of \(S_{23}\) and \(S_{32}\), respectively, and set the operator

\[
V = I \oplus \begin{bmatrix} 0 & U_{12} \\ U_{23}^* & 0 \end{bmatrix}. \quad \text{Then}
\]

\[
\|E(X) + S\|_\mathcal{F} \geq \|V(E(X) + S)\|_\mathcal{F} \geq \begin{bmatrix} E_{11}(X_{11}) + S_{11} & * & * \\ * & |S_{32}| & * \\ * & * & |S_{23}| \end{bmatrix}_\mathcal{F}.
\]

Applying Lemma 5, we get

\[
- \mathcal{J} = B(\mathcal{H}) : \quad \|E(X) + S\| \geq \max\{\|E(X_{11}) + S_{11}\|, \|S_{32}\|, \|S_{23}\|\} \geq \max\{\|S_{11}\|, \|S_{32}\|, \|S_{23}\|\} = \|S\|.
\]

\[
- \mathcal{J} = C_p(\mathcal{H}) : (1 \leq p < \infty)
\]

\[
\|E(X) + S\|_p \geq (\|E(X_{11}) + S_{11}\|_p + \|S_{32}\|_p + \|S_{23}\|_p^{1/p})^{1/p} \geq (\|S_{11}\|_p + \|S_{32}\|_p + \|S_{23}\|_p^{1/p})^{1/p} = \|S\|_p^{1/p}.
\]
(ii) If \(\ker A_1 \cap \ker A_2 \neq \{0\} \) or \(\ker B_1^* \cap \ker B_2^* \neq \{0\} \), then any operator \(S \in \ker E \) has the form

\[
S = \begin{bmatrix}
S_{11} & 0 & S_{13} \\
0 & 0 & S_{23} \\
S_{13} & S_{32} & S_{33}
\end{bmatrix},
\]

where \(S_{23} \) and \(S_{32} \) are arbitrary. By simple calculation, we have

\[
\|E(X) + S\|_{\mathcal{J}} = \left\| \begin{bmatrix}
E_{11}(X_{11}) + S_{11} & + & A_{11}X_{13} + S_{13} \\
* & + & * \\
T_{2}X_{31}B_{11} + S_{31} & + & T_{2}X_{33}R_{2} + S_{33}
\end{bmatrix} \right\|_{\mathcal{J}}.
\]

It is well known that the kernel of a quasinormal operator is a reduced subspace, then by application of Corollary 8, we obtain

\[
\|A_{11}X_{13} + S_{13}\|_{\mathcal{J}} \geq k\|S_{13}\|_{\mathcal{J}} \\
\|T_{2}X_{31}B_{11} + S_{31}\|_{\mathcal{J}} \geq k\|S_{31}\|_{\mathcal{J}} \\
\|T_{2}X_{33}R_{2} + S_{33}\|_{\mathcal{J}} \geq k\|S_{33}\|_{\mathcal{J}}.
\]

Therefore, by Lemma 6, we get

\[-\mathcal{J} = B(\mathcal{H});
\]

\[
\|E(X) + S\|^2 \geq \frac{1}{3^2} \left(\|E_{11}(X_{11}) + S_{11}\|^2 + \frac{1}{2^2} \|S_{23}\|^2 + \|S_{31}\|^2 + \|S_{33}\|^2 \right) \geq \frac{1}{6^2}\|S\|^2.
\]

\[-\mathcal{J} = C_p(\mathcal{H}); (2 \leq p < \infty)
\]

\[
\|E(X) + S\|_p \geq \frac{1}{3^{p-2}}\|S_{11}\|_p + \frac{1}{2^{p-2}}\|S_{23}\|_p + \|S_{31}\|_p + \|S_{33}\|_p \geq \frac{1}{2^{p-2}} \frac{1}{3^{p-2}} \|S\|_p = \frac{1}{6^{p-2}}\|S\|_p.
\]

\[-\mathcal{J} = C_p(\mathcal{H}); (1 \leq p \leq 2)
\]

\[
\|E(X) + S\|_p \geq \frac{1}{3^{1-p}}\|S_{11}\|_p + \frac{1}{2^{1-p}}\|S_{23}\|_p + \|S_{31}\|_p + \|S_{33}\|_p \geq \frac{1}{2^{1-p}} \frac{1}{3^{1-p}} \|S\|_p = \frac{1}{6^{1-p}}\|S\|_p.
\]

\[\square\]

4 Conclusion

D. Keckic [14] and A. Turnšek [15] extended Theorem 2 to the elementary operator \(E \) defined by \(E(X) = AXB - CXD \), where \(A, C \) and \(B, D \) are 2-tuples of commuting normal operators. Duggal [16] generalized the famous theorem to the case \(A, C \) and \(B, D \) are 2-tuples of commuting operators, where \(A, B \) are normal and \(C, D^* \) are hyponormal.

In this paper, Theorem 2 was extended to non-normal operators including quasinormal, subnormal, and \(k \)-quasi-hyponormal operators. The main results are Theorems 12 and 18, both of considerable value in the relevant area of research, also the paper includes new ideas, along with a few new tools and techniques, and likely to attract considerable attention from researchers in operator theory and Banach space theory.

Acknowledgements: The authors would like to express their cordial gratitude to the referee for valuable comments which improved the paper. The authors would also like to add their great appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through General Project Research, Grant number (GPR/247/42).
Research funding: This research was funded through General Project Research, Grant number (GPR/247/42).

Author contributions: A. Bachir, A. Segres, and Nawal A. Sayyaf contributed to the design and implementation of the research, to the analysis of the results, and to the writing of the manuscript.

Conflict of interest: Authors state no conflict of interest.

References

[1] B. Simon, Trace ideals and their applications, London Math. Soc. Lec. Notes Ser., vol. 35, Cambridge University Press, Cambridge, 1979.
[2] A. Bachir, Generalized derivation, SUT J. of Math. 40 (2004), no. 2, 111–116.
[3] B. Fuglede, A commutativity theorem for normal operator, Proc. Nat. Acad. Sci. 36 (1950), 35–40.
[4] R. Harte, Skew Exactness and Range-Kernel Orthogonality, Marcel Dekker, New-York-Basel, 1988.
[5] J. Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 136–140.
[6] F. Kittaneh, Normal derivations in norm ideals, Proc. Amer. Math. Soc. 123 (1995), 1779–1985.
[7] A. Bachir and A. Segres, Generalized Fuglede-Putnam’s theorem and orthogonality, AJMAA 1 (2004), 1–5.
[8] A. Bachir and A. Segres, An asymmetric Fuglede-Putnam’s theorem and orthogonality, Kyungpook Math. J. 46 (2006), no. 4, 497–502.
[9] R. Bhatia and F. Kittaneh, Norm inequalities for partitioned operators and an application, Math. Ann. 287 (1990), 719–726.
[10] B. P. Duggal, Putnam-Fuglede theorem and the range-kernel orthogonality of derivations, Int. J. Math. Sci. 27 (2001), 573–582.
[11] T. Furuta, Extension of the Fuglede-Putnam type to subnormal operators, Bull. Austral. Math. Soc. 31 (1985), 161–169.
[12] M. Rosenblum, On a theorem of Fuglede and Putnam’s, J. London Math. Soc. 33 (1985), 376–377.
[13] A. Segres and A. Bachir, Fuglede operator and elementary operators on Banach spaces, Filomat 23 (2009), no. 3, 125–133.
[14] D. Keckic, Orthogonality of the range and kernel of some elementary operators, Proc. Amer. Math. Soc. 128 (2000), 3369–3377.
[15] A. Turnšek, Generalized Anderson’s inequality, J. Math. Anal. Appl. 263 (2001), 121–134.
[16] B. P. Duggal, Subspace gaps and range-kernel orthogonality of an elementary operator, L. A. A. 383 (2004), 93–106.
[17] A. Lubin, Weighted shifts and products of subnormal operators, Indiana Univ. Math. J. 26 (1977), 839–845.