Conjugates of Tacrine with Salicylamide as Promising Multitarget Agents for Alzheimer’s Disease

Maria V. Grishchenko, Galina F. Makhaeva, Yanina V. Burgart, Elena V. Rudakova, Natalia P. Boltneva, Nadezhda V. Kovalova, Olga G. Serebryakova, Sofya V. Lushchekina, Tatiana Y. Astakhova, Ekaterina F. Zhilina, Evgeny V. Shchegolkov, Rudy J. Richardson,* and Victor I. Saloutin
Table of Contents Page

1. Chemical part... 3
 1.1 Synthesis of compounds 5a-d (general procedure)... 3
 1.2 Synthesis of compounds 6a-d and 7 ... 3
2. Biological Assays ... 6
 2.1 Esterase profile. In vitro AChE, BChE and CES Inhibition... 6
 2.2 Kinetic Study of AChE and BChE Inhibition. Determination of Steady-State Inhibition Constants... 7
 2.3 Propidium Iodide Displacement Studies.. 7
 2.4 ABTS radical cation scavenging activity assay .. 8
 2.5 Metal-chelating .. 9
3. Molecular Modeling Studies .. 9
 3.1 Preparation of the molecules.. 9
 3.2 Molecular docking .. 9
References... 10
Copies of spectra... 14
1. Chemical part

Melting points were measured in open capillaries on “Stuart SMP30” melting point apparatus and uncorrected. The 1H (13C) NMR spectra were registered on “Bruker AvanceIII 500” spectrometer, 500 MHz (125 MHz) relative to SiMe4. The IR spectra were recorded on “Perkin Elmer Spectrum One FT-IR” spectrometer by diffuse reflection accessory at 4000-400 cm$^{-1}$. The microanalyses (C, H, N) were carried out on “Perkin Elmer PE 2400” series II elemental analyzer. The high resolution mass spectrometry (HRMS) was performed using Bruker Daltonik MaXis Impact HD quadrupole time-of-flight mass spectrometer with positive electrospray ionization from methanol solutions, flow rate 180 μl·h$^{-1}$ with parameters optimized for small molecules detection based on a pre-installed method for infusion analysis.

1.1 Synthesis of compounds 5a-d (general procedure). A mixture of 9-chloro-1,2,3,4-tetrahydroacridine 3 (1 g, 46 mmol), diaminoalkane 4a-d (230 mmol), and a catalytic amount of potassium iodide in 15 ml of pentanol-1 was placed in a seal tube and reflux (160 °C) for 16 h, the reaction mixture was concentrated under reduced pressure. The residue was diluted with 50 ml of chloroform, the organic layer was washed with 10% solution of sodium hydroxide (3×50 ml) and water (3×50 ml), dried over sodium sulfate and evaporated. The residues were purified by silica gel column chromatography (eluent: CHCl$_3$/EtOH/NH$_4$OH 50:1:0.1 → CHCl$_3$/EtOH/NH$_4$OH 1:5:0.1). The physicochemical properties of the compounds 5a-d coincide with the literature data [1–4].

1.2 Synthesis of compounds 6a-d and 7

Synthesis of salicyloyl chloride. Thionyl chloride (2.5 g, 220 mmol) was added dropwise to a mixture of salicylic acid (2.8 g, 210 mmol) and triethylamine (0.2 ml, 1.4 mmol) in 10 ml of dry n-hexane. The mixture was refluxed for 2.5 hours, then the solvent was distilled off. The resulting salicyloyl chloride was used without further purification.

Method A. To a solution of compound 5a-d (1.0 mmol) and pyridine (0.12 ml, 1.5 mmol) in anhydrous DCM (10 ml) at -20 °C a solution of salicyloyl chloride (0.188 g, 1.2 mmol) in anhydrous DCM was added dropwise. The reaction mixture was stirred for 4 h at the room temperature. Next the reaction mixture was concentrated on the rotary evaporator, the residue was dissolved in 20 ml of chloroform, the organic layer was washed with water (2×20 ml), dried over sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent CHCl$_3$/EtOH/NH$_4$OH 25:1:0.1, then CHCl$_3$/EtOH/NH$_4$OH 5:1:0.1).

Method B. Diisopropylethylamine (0.43 ml, 2.5 mmol) was added to a solution of compound 5a-d (1.1 mmol) or hexylamine (0.111 g, 1.1 mmol) in anhydrous DCM (10 ml). The
reaction mixture was stirred for 20 minutes, and then HATU (0.418 g, 1.1 mmol) was added. After stirring the reaction mixture for 30 minutes, the solution of salicylic acid (0.138 g, 1.0 mmol) in anhydrous DCM (10 ml) was added, the reaction mixture was stirred for 4 h at the room temperature. Next the reaction mixture was concentrated on the rotary evaporator. The residue was dissolved in 20 ml of chloroform, the organic layer was washed with water (2×20 ml), dried over sodium sulfate and evaporated. The residue was purified by silica gel column chromatography (eluent CHCl₃/EtOH/NH₄OH 25:1:0.1, then CHCl₃/EtOH/NH₄OH 5:1:0.1).

\[
\text{N-(3-(1,2,3,4-tetrahydroacridin-9-ylamino)propyl)salicylamide (6a).}
\]

Yield 0.225 g (60% method A), 0.240 g, 64% (method B), yellow oil. \(^1\)H NMR (500 MHz, CDCl₃) \(\delta\) 1.85 (4H, d, \(J\) 3.1 Hz, CH₂); 1.89–1.97 (2H, m, CH₂); 2.70–2.77 (2H, m, CH₂); 2.95–3.02 (2H, m, CH₂); 3.54–3.61 (2H, m, CH₂); 3.61–3.67 (2H, m, CH₂); 4.95 (1H, br.s., NH); 6.77–6.82 (1H, m, CH₆); 6.97 (1H, d, \(J\) 8.2 Hz, CH₆); 7.30–7.35 (2H, m, CH₆); 7.48–7.53 (1H, m, CH₆); 7.58–7.63 (1H, m, CH₆); 7.87 (1H, d, \(J\) 8.2 Hz, CH₆); 7.92 (1H, br.s., NH); 8.02 (1H, d, \(J\) 8.5 Hz, CH₆). \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta\) 22.47; 22.84; 24.92; 31.29; 33.21; 36.88; 45.65; 115.27; 116.29; 118.38; 118.48; 120.03; 122.68; 124.01; 126.91; 127.6; 128.7; 133.94; 146.47; 151.04; 158.00; 161.22; 170.11. IR: ν 3287, 3061 (NH); 2936, 2864 (CH); 1636 (C=O); 1561, 1498, 1450, 1364 (NH, C=C, N–H, C=N) cm\(^{-1}\). Anal. calcd. for C₂₃H₂₇N₃O₂: C, 73.57; H, 6.71; N, 11.19. Found: C, 73.28; H, 6.50 N, 11.22. HRMS (ESI), \(m/z\): calcd. for C₂₃H₂₇N₃O₂: 390.2181 [M+H]\(^+\); found 390.2171.

\[
\text{N-(4-(1,2,3,4-tetrahydroacridin-9-ylamino)butyl)salicylamide (6b).}
\]

Yield 0.210 g (54% method A), 0.276 g (71% method B), yellow oil. \(^1\)H NMR (500 MHz, CDCl₃) \(\delta\) 1.63–1.77 (4H, m, CH₂); 1.82 (4H, s, CH₂); 2.65–2.53 (2H, m, CH₂); 3.00 (2H, s, CH₂); 3.45 (2H, s, CH₂); 3.54 (2H, s, CH₂); 4.34 (1H, br.s., NH); 6.71–6.79 (1H, m, CH₆); 6.91–6.97 (1H, m, CH₆); 7.27–7.35 (2H, m, CH₆); 7.45–7.53 (1H, m, CH₆); 7.60–7.70 (1H, m, CH₆); 7.74–7.86 (1H, m, CH₆); 7.86–7.91 (1H, m, NH); 7.91–7.99 (1H, m, CH₆). \(^{13}\)C NMR (125 MHz, CDCl₃) \(\delta\) 22.26; 22.68; 24.54; 26.87; 28.84; 32.74; 39.06; 48.63; 115.17; 115.24; 118.22; 118.52; 119.42; 122.96; 123.94; 126.67; 126.95; 129.00; 133.78; 145.76; 151.38;
157.20; 161.00; 169.67. IR: ν 3283 (NH); 3060 (NH); 2924, 2854 (CH); 1637 (C=O); 1577, 1562, 1453, 1360, 1330, 1303 (NH, C=C, N–H, C=N) cm⁻¹. Anal. calcd. for C₂₄H₂₇N₃O₂, C, 74.01; H, 6.99; N, 10.79. Found: C, 73.95; H, 7.34 N, 10.62. HRMS (ESI), m/z: calcd. for C₂₄H₂₇N₃O₂: 390.2181 [M+H]+; found 390.2171.

![Chemical structure](image)

N-(6-(1,2,3,4-tetrahydroacridin-9-ylamino)hexyl)salicylamide (6c). Yield 0.246 g (59% method A), 0.254 g (61% method B), white powder, mp 140–142°C. ¹H NMR (500 MHz, DMSO) δ 1.25–1.40 (4H, m, CH₂); 1.44 – 1.64 (4H, m, CH₂); 1.70– 1.90 (4H, m, CH₂); 2.61– 2.76 (2H, m, CH₂); 2.82–3.00 (2H, m, CH₂); 3.20–3.34 (2H, m, CH₂); 3.37–3.53 (2H, m, CH₂); 5.52–5.76 (1H, m, NH); 6.85–6.88 (1H, m, CHAr); 6.89–6.92 (1H, m, CHAr); 7.31–7.42 (2H, m, CHAr); 7.52–7.62 (1H, m, CHAr); 7.68–7.77 (1H, m, CHAr); 7.81–7.92 (1H, m, CHAr); 8.09–8.21 (1H, m, CHAr); 8.75–8.97 (1H, m, NH). Anal. calcd. for C₂₆H₃₁N₃O₂, C, 74.79; H, 7.48; N, 10.06. Found: C, 74.57; H, 7.50, N, 9.93. HRMS (ESI), m/z: calcd. for C₂₆H₃₁N₃O₂: 418.2495 [M+H]+; found 418.2494.

![Chemical structure](image)

N-(6-(1,2,3,4-tetrahydroacridin-9-ylamino)octyl)salicylamide (6d). Yield 0.214 g (48% method A), 0.263 g (59% method B), yellow oil. ¹H NMR (500 MHz, CDCl₃): δ 1.20–1.36 (6H, m, CH₂); 1.34–1.45 (2H, m, CH₂); 1.56 (2H, m, CH₂); 1.71 (2H, dd, J 14.1 Hz, CH₂); 1.82–1.95 (4H, m, CH₂); 2.58–2.70 (2H, m, CH₂); 3.08–3.19 (2H, m, CH₂); 3.40 (2H, dd, J 13.4 Hz, CH₂); 3.57–3.76 (2H, m, CH₂); 4.44 (1H, br.s, NH); 6.75–6.85 (2H, m, C₆H₄); 6.94–7.00 (1H, m, J 7.5 Hz, C₆H₄); 7.41–7.32 (2H, m, C₆H₄); 7.49 (1H, d, J 7.7 Hz, CH₃); 7.59 (1H, t, J 7.3 Hz, CH₃); 8.04 (1H, d, J 8.5 Hz, CH₃); 8.11 (1H, d, J 9.1 Hz, CH₃). ¹³C NMR (125 MHz, CDCl₃): δ 22.24; 22.71; 24.44; 26.59; 26.65; 28.95; 28.95; 29.31; 31.52; 32.52; 39.51; 49.12; 114.54; 115.05; 118.05; 118.49; 120.64; 123.86; 123.86; 127.14; 127.45; 129.19; 130.17; 133.69; 145.45; 151.92; 156.78; 161.07; 169.59. Anal. calcd. for C₂₈H₃₆N₃O₂, C, 75.47; H, 7.92; N, 9.43. Found: C, 75.34; H, 7.77; N, 9.31. HRMS (ESI), m/z: calcd. for C₂₈H₃₆N₃O₂: 446.2802 [M+H]+; found 446.2807.
N-hexylsalicylamide (7). Yield 0.163 g (57% method B) yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 0.85–0.94 (3H, m, CH$_3$); 1.28–1.43 (6H, m, CH$_2$); 1.57–1.67 (2H, m, CH$_2$); 3.44 (2H, dd, J 13.1, 7.1 Hz, CH$_2$); 6.32 (1H, bs, NH); 6.80–6.87 (1H, m, J 11.2, 3.9 Hz, CH$_{Ar}$); 6.98 (1H, d, J 7.9 Hz, CH$_{Ar}$); 7.34 (1H, d, J 7.9 Hz, CH$_{Ar}$); 7.36–7.42 (1H, m, CH$_{Ar}$); 12.40 (1H, br.s, OH). 13C NMR (126 MHz, CDCl$_3$) δ 13.97; 22.52; 26.60; 29.44; 31.44; 39.72; 114.38; 118.53; 118.65; 125.13; 134.06; 161.59; 169.91. IR: ν 3373; 3063 (NH); 2929; 2858 (CH); 1638 (C=O); 1591; 1539; 1463; 1491; 1362 (C$_{Ar}$–C$_{Ar}$, N–H, C–N, C–H) cm$^{-1}$. Anal. calcd. for C$_{13}$H$_{19}$NO$_2$. C, 70.56; H, 8.65; N, 6.33. Found: C, 70.52; H, 8.78; N, 6.17. HRMS (ESI), m/z: calcd. for C$_{13}$H$_{19}$NO$_2$: 222.1489 [M+H]$^+$; found 222.1487.

2. Biological Assays

2.1 Esterase profile. In vitro AChE, BChE and CES Inhibition

All experiments were carried out in accordance with the standard protocols approved by IPAC RAS. Human erythrocyte AChE, equine serum BChE, porcine liver CES, acetylthiocholine iodide (ATCh), butyrylthiocholine iodide (BTCh), 5,5´-dithio-bis-(2-nitrobenzoic acid) (DTNB), and 4-nitrophenol acetate (4-NPA) were purchased from Sigma-Aldrich. For the esterase profile evaluation, AChE from human erythrocytes was used along with two enzymes of non-human origin, because of their relatively low cost and the exploratory character of this work [5]. High protein sequence identities between human and equine BChE (90%) and human CES1 and porcine liver CES (77%) (determined using NCBI protein BLAST, [6] along with good correlations with results obtained using enzymes from the same species [7] support the applicability of this set of enzymes for determining esterase profiles of new compounds.

AChE and BChE activities were measured by the colorimetric method of Ellman et al. [8] with modifications as described in [9]. The assay solution consisted of 0.1 M K/Na phosphate buffer pH 7.5, 25 °C, 0.33 mM DTNB, 0.02 unit/mL AChE or BChE, and 1 mM substrate (ATCh or BTCh, respectively). Reagent blanks consisted of reaction mixtures without substrates. The activity of CES was determined spectrophotometrically at 405 nm to monitor the release of 4-nitrophenol [10] with modifications as described in [9] in 0.1 M K/Na phosphate buffer pH 8.0, 25 °C. Final enzyme and substrate (4-nitrophenyl acetate) concentrations were 0.02 unit/mL and 1 mM, respectively. Assays were carried out with a blank containing all constituents except porcine CES to assess non-enzymatic hydrolysis. Test compounds were dissolved in DMSO;

6
reaction mixtures contained 2% (v/v) of the solvent, a concentration shown not to affect the activity of the enzymes on its own (data not shown). Tacrine and donepezil were used as positive controls.

An initial evaluation of inhibitory activity of compounds was carried out by determination of the AChE, BChE and CES inhibition at a compound concentration of 20 µM. For this, a sample of the corresponding enzyme was incubated with the test compound for 5 min at 25 °C for temperature equilibration; then the enzyme residual activity was determined. Each experiment was performed in triplicate. For the most active compounds, the IC\textsubscript{50} values (the concentration of inhibitor required to decrease the enzyme activity by 50%) were determined. Eight different concentrations of the test compounds in the range 10-12 – 10-4 M were selected in order to obtain inhibition of esterases activity between 20% and 80%. The test compounds were added to the assay solution and incubated at 25 °C with the enzyme for 5 min (for temperature equilibration) followed by the addition of substrate. A parallel control was made for the assay solution with no inhibitor. Measurements were performed in a FLUOStar OPTIMA (BMG Labtech, Germany) microplate spectrophotometer. Each experiment for the IC\textsubscript{50} assay was performed in triplicate. The results were expressed as the mean ± SEM. The reaction rates in the presence and absence of inhibitor were compared, and the percent residual enzyme activity due to the presence of test compounds was calculated. IC\textsubscript{50} values were determined graphically from inhibition curves (log inhibitor concentration vs. percent residual enzyme activity) using Origin 6.1 software.

2.2 Kinetic Study of AChE and BChE Inhibition. Determination of Steady-State Inhibition Constants

We assessed the mechanisms of AChE and BChE inhibition were by performing a thorough analysis of enzyme kinetics. After a 5 min incubation at 25°C (for temperature equilibration) with three increasing concentrations of inhibitor and six decreasing substrate concentrations, the residual enzyme activity was measured as described above for enzymatic assays. Linear regression of 1/V versus 1/[S] double-reciprocal (Lineweaver-Burk) plots was used to determine the inhibition constants for the competitive component (K\textsubscript{i}) and noncompetitive component (\alpha K\textsubscript{i}).

2.3 Propidium Iodide Displacement Studies

We used the fluorescence method to detect the propensity of the test compounds to competitively displace propidium iodide (Sigma-Aldrich; a selective ligand of the AChE PAS) [11,12]. Donepezil and tacrine (Sigma-Aldrich) were employed as the positive controls (i.e.,
reference compounds). The enzyme was electric eel AChE (EeAChE type VI-S, lyophilized powder, Sigma-Aldrich). We selected this source of AChE for consistency with our other reports and because of the purity, specific activity, and lower cost compared to human AChE. Moreover, a 3D alignment of EeAChE (PDB: 1C2O) and human AChE (PDB: 4EY7) using the MUSTANG procedure [13] in YASARA-Structure 18.4.24 for Windows [14] yielded close agreement between the two structures (RMSD 0.623 Å over 527 aligned residues and 88.6% sequence identity.

The assay is based on the high level of fluorescence intensity of propidium iodide bound with AChE decreases in the presence of test compounds that competitively displace propidium iodide from the AChE PAS [15,16]. Specifically, EeAChE (7 μM final concentration) is incubated with the test compound (20 μM in 1 mM Tris-HCl buffer pH 8.0, 25 °C, for 15 min). Propidium iodide (final concentration 8 μM) is then added for a further 15 min incubation and the fluorescence spectrum taken (530 nm (excitation) and 600 nm (emission)). The same concentration of propidium iodide in the Tris buffer was used as the blank. Triplicate determinations were recorded from a FLUOStar Optima microplate reader and results calculated via the following equation:

\[
\text{% Displacement} = 100 - \left(\frac{\text{IF}_{\text{AChE + Propidium + inhibitor}}}{\text{IF}_{\text{AChE + Propidium}}} \right) \times 100
\]

where \(\text{IF}_{\text{AChE + Propidium}} \) = fluorescence intensity of propidium iodide associated with AChE in the absence of the test compound (taken as 100%), and \(\text{IF}_{\text{AChE + Propidium + inhibitor}} \) = fluorescence intensity of propidium iodide associated with AChE in the presence of the test compound.

2.4 ABTS radical cation scavenging activity assay

Radical scavenging activity of the compounds was assessed using the ABTS radical cation (ABTS\(^{+}\)) decolorization assay [17] with modifications described in detail in [18,19]. ABTS (2,2’-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid)) was purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo, Japan), potassium persulfate (dipotassium peroxodisulfate), Trolox (6-hydroxy-2,5,7,8-tetramethylenamyl-2-carboxylic acid), HPLC-grade ethanol, and DMSO were obtained from Sigma-Aldrich. All tested compounds were dissolved in DMSO.

ABTS was dissolved in deionized water to a 7mM concentration. The solution of ABTS\(^{+}\) was produced by mixing 7mM ABTS stock solution with 2.45mM aqueous potassium persulfate solution in equal quantities and allowing them to react for 12–16 h at room temperature in the dark. At the time of activity determinations, ABTS\(^{+}\) solution was diluted with ethanol to adjust to an absorbance value of 0.80 ± 0.05 at 734 nm. Fresh working ABTS\(^{+}\) solution was prepared for each assay. Radical scavenging capacity of the compounds was analyzed by mixing 10 μl of compound solution with 240 μl of ABTS\(^{+}\) working solution (100 μM final concentration). After
1 h of mixing the solutions, the reduction in absorbance was measured spectrophotometrically at 734 nm using a xMark UV/VIS microplate spectrophotometer (Bio-Rad, Hercules, CA, USA). Ethanol blanks were run in each assay. Standard antioxidant Trolox was used as reference compound. Values were obtained from three replicates of each sample and three independent experiments. Antioxidant activity was reported as Trolox Equivalent Antioxidant Capacity (TEAC values) as the ratio between the slopes obtained from the linear correlation of the ABTS radical absorbance with the concentrations of tested compounds and Trolox. For the test compounds, we also determined the IC₅₀ values (compound concentration required for 50% reduction of the ABTS radical) using Origin 6.1 software.

2.5 Metal-chelating

The complexation abilities of tested compound for biometals Cu²⁺, Fe²⁺ and Zn²⁺ were studied in ethanol (95% v/v) at 298 K (25°C) by UV–VIS spectrometry as described [20]. CuCl₂, FeCl₂·4H₂O, Zn(NO₃)₂·6H₂O ethanol solutions were prepared in 200 µM concentration using volumetric flask. The tested compound was prepared with ethanol in 400 µM concentration. To a mixture of 0.5ml tested compound solution and 3.5 ml ethanol, 1 ml CuCl₂ solution (FeCl₂·4H₂O or Zn(NO₃)₂·6H₂O) were added. The solution was incubated at 298 K (25°C) for 30 min and then the absorption spectra were recorded in a 1 cm quartz cell using a UV–vis spectrophotometer (Shimadzu UV-2600) with wavelength ranging from 190 to 500 nm. The control sample was prepared by mixing 0.5 ml tested compound solution and 4.5ml ethanol.

3. Molecular Modeling Studies

3.1 Preparation of the molecules

To determine protonation states of the inhibitors estimations of pKₐ values were performed using the Calculator Plugins of Marvin 21.14.0, ChemAxon (http://www.chemaxon.com). According to the results, for all conjugates at the experimental pH, the tacrine fragments were protonated. Compounds in the chosen protonated form were optimized using a DFT quantum chemistry method (B3LYP/6-31G*, GAMESS-US [21] software). Obtained optimized geometries with partial atomic charges derived from QM results according to the Löwdin scheme [22] were used for further molecular docking simulations.

3.2 Molecular docking

According to the previous findings [23], for docking of bulky ligands, X-ray structures of human AChE co-crystallized with donepezil (PDB: 4EY7 [24]) is more suitable, than unliganded (apo-form). This one, and an optimized X-ray structure of human BChE (PDB: 1P0I) [25,26] were used as targets for molecular docking. The grid box for docking included the entire active
site gorge of AChE (22.5 Å × 22.5 Å × 22.5 Å grid box dimensions) and BChE (15 Å × 20.25 Å × 18 Å grid box dimensions) with a grid spacing of 0.375 Å. Molecular docking was performed with AutoDock 4.2.6 software [27]. The main Lamarckian Genetic Algorithm [28] docking parameters were: 256 runs, 25×10⁶ evaluations, 27×10⁴ generations, and a population size of 3000. Figures were prepared with PyMOL visualizing software (www.pymol.org).

References
1. Gniazdowska E., Koźmiński P., Wasek M., et. al. Synthesis, physicochemical and biological studies of technetium-99m labeled tacrine derivative as a diagnostic tool for evaluation of cholinesterase level, Bioorg Med Chem Lett. 2017;25(3):912-920. doi.org/10.1016/j.bmc.2016.12.004.
2. Zhang P., Wang Z., Mou C., Zou J., Xie Y., Liu Z., Naman C. B., Mao Y., Wei J., Huang X., Dong J., Yang M., Wang N., Jin H., Liu F., Lin. D., Liu H., Zhou f., Cui. W. Design and synthesis of novel tacrine-dipicolylamine dimers that are multiple-target-directed ligands with potential to treat Alzheimer’s disease. Bioorg. Chem. 2021;116. doi.org/10.1016/j.bioorg.2021.105387.
3. Cheng Z.-Q., Zhua K.-K., Zhang J., Song J.-L., Muehlmann L. A., Jiang C.-S., Liu C.-L., Zhanga H. Molecular-docking-guided design and synthesis of new IAA-tacrine hybrids as multifunctional AChE/BChE inhibitors. Bioorg. Chem. 2019;83:277-288. doi.org/10.1016/j.bioorg.2018.10.057.
4. Bornstein, Joshua J., Todd J. Eckroat, Jacob L. Houghton, Christopher K. Jones, Keith D. Green, and Sylvie Garneau-Tsodikova. 2011. “Tacrine-Mefenamic Acid Hybrids for Inhibition of Acetylcholinesterase.” MedChemComm 2 (5): 406. https://doi.org/10.1039/c0md00256a
5. Makhaeva, G.F.; Boltneva, N.P.; Lushchekina, S.V.; Serebryakova, O.G.; Stupina, T.S.; Terentiev, A.A.; Serkov, I.V.; Proshin, A.N.; Bachurin, S.O.; Richardson, R.J. Synthesis, molecular docking and biological evaluation of N,N-disubstituted 2-aminothiazolines as a new class of butyrylcholinesterase and carboxylesterase inhibitors. Bioorg. Med. Chem. 2016, 24, 1050-1062, doi:10.1016/j.bmc.2016.01.031.
6. Makhaeva, G.F.; Radchenko, E.V.; Palyulin, V.A.; Rudakova, E.V.; Aksinenko, A.Y.; Sokolov, V.B.; Zefirov, N.S.; Richardson, R. Organophosphorus compound esterase profiles as predictors of therapeutic and toxic effects. Chem. Interactions 2013, 203, 231–237, doi:10.1016/j.cbi.2012.10.012.
7. Makhaeva, G.F.; Rudakova, E.V.; Serebryakova, O.G.; Aksinenko, A.Y.; Lushchekina, S.V.; Bachurin, S.; Richardson, R. Esterase profiles of organophosphorus compounds in
vitro predict their behavior in vivo. Chem. Interactions 2016, 259, 332–342, doi:10.1016/j.cbi.2016.05.002.

8. Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88-95, doi:10.1016/0006-2952(61)90145-9.

9. Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Lushchekina, S.V.; Astakhova, T.; Rudakova, E.V.; Proshin, A.N.; Serkov, I.V.; Radchenko, E.V.; Palyulin, V.A.; et al. New Hybrids of 4-Amino-2,3-polymethylene-quinoline and p-Tolylsulfonamide as Dual Inhibitors of Acetyl- and Butyrylcholinesterase and Potential Multifunctional Agents for Alzheimer’s Disease Treatment. Mol. 2020, 25, 3915, doi:10.3390/molecules25173915.

10. Sterri, S.H.; Johnsen, B.A.; Fonnum, F. A radiochemical assay method for carboxylesterase, and comparison of enzyme activity towards the substrates methyl [1-14C] butyrate and 4-nitrophenyl butyrate. Biochem. Pharmacol. 1985, 34, 2779-2785, doi:10.1016/0006-2952(85)90579-9.

11. Taylor, P.; Lappi, S. Interaction of fluorescence probes with acetylcholinesterase. Site and specificity of propidium binding. Biochemistry 1975, 14, 1989-1997, doi:10.1021/bi00680a029.

12. Taylor, P.; Lwebuga-Mukasa, J.; Lappi, S.; Rademacher, J. Propidium—a fluorescence probe for a peripheral anionic site on acetylcholinesterase. Mol. Pharm. 1974, 10, 703-708.

13. Konagurthu, A.S.; Whisstock, J.C.; Stuckey, P.J.; Lesk, A.M. MUSTANG: a multiple structural alignment algorithm. Proteins 2006, 64, 559-574, doi:10.1002/prot.20921.

14. Krieger, E.; Vriend, G. YASARA View - molecular graphics for all devices - from smartphones to workstations. Bioinformatics 2014, 30, 2981-2982, doi:10.1093/bioinformatics/btu426.

15. De Ferrari, G.V.; Canales, M.A.; Shin, I.; Weiner, L.M.; Silman, I.; Inestrosa, N.C. A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 2001, 40, 10447-10457, doi:10.1021/bi0101392.

16. Inestrosa, N.C.; Dinamarca, M.C.; Alvarez, A. Amyloid-cholinesterase interactions. Implications for Alzheimer's disease. FEBS J. 2008, 275, 625-632, doi:10.1111/j.1742-4658.2007.06238.x.

17. Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231-1237, doi:10.1016/s0891-5849(98)00315-3.
18. Makhaeva, G.F.; Kovaleva, N.V.; Boltneva, N.P.; Lushchekina, S.V.; Rudakova, E.V.; Stupina, T.S.; Terentiev, A.A.; Serkov, I.V.; Proshin, A.N.; Radchenko, E.V., et al. Conjugates of tacrine and 1,2,4-thiadiazole derivatives as new potential multifunctional agents for Alzheimer's disease treatment: Synthesis, quantum-chemical characterization, molecular docking, and biological evaluation. Bioorg. Chem. 2020, 94, 103387, doi:10.1016/j.bioorg.2019.103387.

19. Makhaeva, G.F.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Lushchekina, S.V.; Faingold, I.I.; Poletaeva, D.A.; Soldatova, Y.V.; Kotelnikova, R.A.; Serkov, I.V., et al. New Multifunctional Agents Based on Conjugates of 4-Amino-2,3-polyethylenequinoline and Butylated Hydroxytoluene for Alzheimer’s Disease Treatment. Molecules 2020, 25, 5891, doi:10.3390/molecules25245891.

20. Mao F, Huang L, Luo Z, et al. O-Hydroxyl- or o-amino benzylamine-tacrine hybrids: Multifunctional biometals chelators, antioxidants, and inhibitors of cholinesterase activity and amyloid-β aggregation. Bioorg Med Chem. 2012;20(19):5884-5892. doi:10.1016/j.bmc.2012.07.045

21. Schmidt, M.W.; Baldridge, K.K.; Boatz, J.A.; Elbert, S.T.; Gordon, M.S.; Jensen, J.H.; Koseki, S.; Matsunaga, N.; Nguyen, K.A.; Su, S., et al. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347-1363, doi:10.1002/jcc.540141112.

22. Löwdin, P.-O. On the nonorthogonality problem. In Advances in Quantum Chemistry, Per-Olov, L., Ed. Academic Press: New York, London, 1970; Vol. 5, pp. 185-199.

23. Lushchekina, S.V.; Makhaeva, G.F.; Novichkova, D.A.; Zueva, I.V.; Kovaleva, N.V.; Richardson, R.J. Supercomputer modeling of dual-site acetylcholinesterase (AChE) inhibition. Supercomput. Front. Innov. 2018, 5, 89–97, doi:10.14529/jsfi1804.

24. Cheung, J.; Rudolph, M.J.; Burshteyn, F.; Cassidy, M.S.; Gary, E.N.; Love, J.; Franklin, M.C.; Height, J.J. Structures of Human Acetylcholinesterase in Complex with Pharmacologically Important Ligands. J. Med. Chem. 2012, 55, 10282-10286, doi:10.1021/jm300871x.

25. Nicolet, Y.; Lockridge, O.; Masson, P.; Fontecilla-Camps, J.C.; Nachon, F. Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products. J. Biol. Chem. 2003, 278, 41141-41147, doi:10.1074/jbc.M210241200.

26. Masson, P.; Lushchekina, S.; Schopfer, L.M.; Lockridge, O. Effects of viscosity and osmotic stress on the reaction of human butyrylcholinesterase with cresyl saligenin phosphate, a toxicant related to aerotoxic syndrome: kinetic and molecular dynamics studies. Biochem. J. 2013, 454, 387-399, doi:10.1042/bj20130389.
27. Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 1998, 19, 1639-1662, doi:10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b.

28. Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J Comp Chem 2009, 30, 2785-2791, doi:10.1002/jcc.21256.
NAME
GMV095b

EXPNO
1

PROCNO
1

USER
uralnmr

Date_
20210301

Time
14.43

INSTRUM
AV500

PROBHD
5 mm PABBO BB-

PULPROG
zg30

SOLVENT
DMSO

TD
32768

SW
14.0019 ppm

O1P
6.000 ppm

FIDRES
0.213709 Hz

NS
16

DS
2

AQ
2.3396852 sec

RG
144

TE
296.1 K

DE
6.50 usec

D1
1.00000000 sec

TD0
1

****** CHANNEL f1 ******

NUC1
1H

P1
12.00 usec

PL1
0.30 dB

PL1W
18.91792679 W

SFO1
500.1330008 MHz

SI
32768

HZpPT
0.213709 Hz

SR
2.26 Hz

WDW
EM

LB
0.00 Hz

GB
0

SSB
0

Diagram:

Chemical structure of compound 5b.

Legend:

- ppm values indicate chemical shift positions.
- Peaks correspond to specific functional groups or nuclei in the compound.

5d

Current Data Parameters
NAME GMV048
EXPNO 1
PROCNO 1
USER uralnmr

F2 - Acquisition Parameters
Date_ 20201119
Time 12.24
INSTRUM DRX400
PROBHD 5 mm SEF 19F-1
PULPROG zg30
TD 32768
SOLVENT DMSO
NS 16
DS 2
SWH 5592.841 Hz
FIDRES 0.170680 Hz
AQ 2.9295092 sec
RG 256
DW 89.400 usec
DE 6.00 usec
TE 297.2 K
DI 1.00000000 sec
MCREST 0.00000000 sec
MCWRK 0.01500000 sec

==== CHANNEL f1 ====
NUC1 1H
P1 20.00 usec
PL1 0.00 dB
SFO1 400.1324008 MHz

F2 - Processing parameters
SI 32768
HZpPT 0.170680 Hz
SF 400.1300015 MHz
SR 1.51 Hz
WDW EM
LB 0.00 Hz
GB 0
SSB 0
PC 4.00
N

H

N

H

6a

NAME GMV141a
EXPNO 13
PROCNO 1
USER uralnmr
Date_ 20210812
Time 16.23
INSTRUM AV500
PROBHD 5 mm PABBO BB-
PULPROG zgpg30
SOLVENT CDCl3
TD 32768
SW 200.7838 ppm
O1P 95.000 ppm
FIDRES 0.770646 Hz
NS 1024
DS 8
AQ 0.6488564 sec
RG 203
TE 296.0 K
DE 6.50 usec
D1 0.85000002 sec
D11 0.03000000 sec
TD0 1
======== CHANNEL f1 ========
NUC1 13C
P1 10.00 usec
PL1 0.00 dB
PL1W 115.29558563 W
SFO1 125.7697360 MHz
========CHANNEL f2 ========
CPDPDG2 waltz16
NUC2 1H
PCPD2 75.00 usec
PL2 120.00 dB
PL12 16.30 dB
PL13 19.30 dB
PL2W 0.00000000 W
PL12W 0.47519693 W
PL13W 0.23816262 W
SFO2 500.1320005 MHz
SI 32768
HZpPT 0.770646 Hz
SR 5.30 Hz
WDW EM
LB 1.00 Hz
GB 0
SSB 0

ppm

190 170 150 130 110 90 80 70 60 50 40 30 20 10 0
Comment: 22/09/2022: +Bckgnd: 118.09, 322.05, 622.03, 922.01, 1221.97, 1821.95, 2121.93, 2421.91, 2721.89 (G1969-85000; +/-299.981 HPC); other intense peaks (>2*e4): 102.13 (NEt3); 132.91 (*2-PrOH); 391.28&413.26 (DOP); 86.10, 113.13, 140.07, 149.02, 158.96, 167.03, 187.07, 194.10, 203.14, 207.17, 209.19, 214.25, 217.10, 223.21, 227.23, 237.22, 245.19, 249.22, 251.24, 255.27, 259.20, 263.23, 265.25, 273.22, 279.16, 291.27, 293.28, 304.30, 307.30, 321.31, 326.38, 332.33, 335.33, 349.35, 413.27, 413.29, 1259.95, 1307.08, 1559.93; background (prev. analyzed samples and impurities); 188.09 (#6216); 588.32 (#6218); 404.23 (#6219)

+MS, 0.9-0.9min #50-53

+MS, 3.6-3.7min #206-212
Compound Spectrum SmartFormula Report

Analysis Info

Analysis Name: D:\Data\ING21\GMV-107.26D-C4.0-ESIPOS-180.5874-26D1020.d
Method: EP180_50-2200_TunePosStd-UA13_1f30021200hrf50ie3lm1 Operator: admin
Sample Name: 00ce3crf300-800tt60-120pps6x0.75_fsthpc.m
Comment: 22/04/2021: +Bckgnd: 118.09, 322.05, 622.03, 922.01, 1221.99, 1521.97, 1821.95, 2121.93, 2421.91, 2721.89 (G1969-85000; +/-299.981 HPC); other intense peaks (>2e4): 102.13 (NET3); 132.91 (2-PrOH); 391.28 (DOP); 79.0, 86.10, 111.09, 157.03 (DMSO); 129.05, 132.91, 144.98, 140.02, 161.08, 165.13, 175.10, 183.17, 194.12, 199.12, 209.19, 214.25, 223.21, 227.24, 249.22, 251.24, 251.24, 255.27, 277.25, 293.28, 299.19, 304.30, 307.30, 344.19, 407.10, 430.17, 707.12, 1007.10, 1307.08, 1557.95: background (prev. analyzed samples and impurities); 339.12 (#5451); 446.28 (#5721); 309.02/311.02 (#5899); 155.08 (#5898); 231.11 (#5901); 321.14 (#5990); 367.19 (#5873)

Acquisition Parameter

Source Type: ESI
Focus: Active
Scan Begin: 50 m/z
Scan End: 2200 m/z
Ion Polarity: Positive
Set Capillary: 3500 V
Set End Plate Offset: -500 V
Set Charging Voltage: 2000 V
Set Corona: 0 nA
Set Nebulizer: 0.3 Bar
Set Dry Heater: 200 °C
Set Dry Gas: 4.0 l/min
Set Divert Valve: Source
Set APCI Heater: 0 °C

+MS, 6.5-15.7min #281-682

Meas. m/z # Ion Formula m/z err [ppm] mSigma # mSigma Score rdb e⁻ Conf N-Rule
390.2171 1 C24H28N3O2 390.2176 1.4 20.3 1 100.00 12.5 even ok

GMV-107.26D-C4.0-ESIPOS-180.5874-26D1020.d
Bruker Compass DataAnalysis 4.2 printed: 4/26/2021 10:45:56 AM by: admin Page 1 of 1

Institute of Organic Synthesis UB RAS
22 S.Kovalevskoy, 20 Akademicheskaya str, Yekaterinburg, Russian Federation
Phone: +7 (343) 362-34-56
NAME: GMV108a
EXPNO: 13
PROCNO: 1
USER: uralnmr
Date: 20210405
Time: 16.24
INSTRUM: AV500
PROBHD: 5 mm PABBO BB-
PULPROG: zgpg30
SOLVENT: DMSO
TD: 32768
SW: 200.7838 ppm
O1P: 95.000 ppm
FIDRES: 0.770646 Hz
NS: 256
DS: 8
AQ: 0.6488564 sec
RG: 203
TE: 297.9 K
DE: 6.50 usec
D1: 0.85000002 sec
D11: 0.03000000 sec
TD0: 1

==== CHANNEL f1 =====
NUC1: 13C
P1: 10.00 usec
PL1: 0.00 dB
PL1W: 115.29558563 W
SFO1: 125.7697360 MHz

==== CHANNEL f2 ====
CPDPRG2: waltz16
NUC2: 1H
PCPD2: 75.00 usec
PL2: 120.00 dB
PL12: 16.30 dB
PL13: 19.30 dB
PL2W: 0.00000000 W
PL12W: 0.47519693 W
PL13W: 0.23816262 W
SFO2: 500.1320005 MHz
SI: 65536
HZpPT: 0.385323 Hz
SR: 63.61 Hz
WDW: EM
LB: 1.00 Hz
GB: 0
SSB: 0

--- Compound 6c ---

proton spectrum of compound 6c with peak assignments marked.
Comment: 26/04/2021: +Bckgnd: 118.09, 322.05, 622.03, 922.01, 1221.99, 1521.97, 1821.95, 2121.93, 2421.91,
2721.89 (G1969-85000; +/-299.981 HPC); other intense peaks (>2e4): 102.13 (NEt3); 132.91 (2-ProOH);
391.28 (DOP); 79.0, 86.10, 119.09, 157.03 (DMSO); 129.05, 132.91, 144.98, 140.02, 161.08, 165.13,
175.10, 183.17, 194.12, 199.12, 209.19, 214.25, 223.21, 227.24, 237.24, 249.22, 251.24, 251.24, 255.27,
277.25, 293.28, 299.19, 304.30, 307.30, 344.19, 407.10, 430.17, 470.12, 1007.10, 1307.08, 1557.95:
background (prev. analyzed samples and impurities); 339.12 (#5451); 446.28 (#5721); 309.02/311.02
(#5899); 155.08 (#5898); 231.11 (#5901); 321.14 (#5990); 367.19 (#5873); 390.22 (#5874)

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source
Scan End	2200 m/z	Set Charging Voltage	2000 V	Set APCI Heater	0 °C
		Set Corona	0 nA		

+MS, 4.1-4.3min #178-186

Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# mSigma	Score	rdb	e°	Conf	N-Rule
418.2494	1	C26H32N3O2	418.2489	-1.1	11.3	1	100.00	12.5	even	ok	
Current Data Parameters
NAME: GMV090a
EXPNO: 1
PROCNO: 1
USER: uralnmr

F2 - Acquisition Parameters
Date: 20210209
Time: 13.29
INSTRUM: DRX400
PROBHD: 5 mm SEF 19F-1
PULPROG: zg30
TD: 32768
SOLVENT: D2O
NS: 16
DS: 2
SWH: 8012.820 Hz
FIDRES: 0.244532 Hz
AQ: 2.0447731 sec
RG: 1625.5
DW: 62.400 usec
DE: 6.00 usec
TE: 297.2 K
D1: 1.00000000 sec
MCREST: 0.00000000 sec
MCWRK: 0.01500000 sec

===== CHANNEL f1 =====
NUC1: 1H
P1: 20.00 usec
PL1: 0.00 dB
SFO1: 400.1336012 MHz

F2 - Processing parameters
SI: 32768
HZpPT: 0.244532 Hz
SF: 400.1300078 MHz
SR: 7.83 Hz
WDW: EM
LB: 0.00 Hz
GB: 0
SSB: 0
PC: 4.00

N N H
H OH

6d
Compound Spectrum SmartFormula Report

Analysis Info

Analysis Name: D:\Data\ING21\GMV-90.12C-C1.6-ESIPOS-180.5721-12C1445.d
Method: EP180_50-2200_TunePosStd-UA13_1f30021200h50ie3im1
Operator: admin
Sample Name:
Comment: 03/03/2021: -Bckgnd: 112.99, 302.00, 601.98, 1033.99, 1333.98, 1633.95, 1933.93, 2233.91, 2533.89, 2833.87 (G1969-85000; +/-299.981 HPC); other intense peaks: 154.97, 170.95, 204.97, 231.99, 248.96, 264.93, 384.94, 400.91, 536.88, 556.00, 584.98, 617.97, 656.98, 734.01, 805.98, 947.00, 955.97, 982.99, 1063.87, 1291.94, 1305.95, 1555.94, 1691.91, 1733.94, 1805.92, 1921.91, 2055.90, 2155.89, 2182.91; 226.13 (#5716), 233.11 (#5720), 446.28 (#5721)

Acquisition Parameter

Source Type	ESI	Ion Polarity	Positive	Set Nebulizer	0.3 Bar
Focus	Active	Set Capillary	3500 V	Set Dry Heater	200 °C
Scan Begin	50 m/z	Set End Plate Offset	-500 V	Set Divert Valve	Source
Scan End	2200 m/z	Set Charging Voltage	2000 V	Set APCI Heater	0 °C
Scan Corona	0 nA				

+MS, 0.0-0.2min #1-8

Meas. m/z	#	Ion Formula	m/z	err [ppm]	mSigma	# mSigma	Score	rdb	e-	Conf	N-Rule
446.2807	1	C28H36N3O2	446.2802	-1.1	54.5	1	100.00	12.5	even	ok	
446.2807	2	C13H32N15O3	446.2807	0.1	124.2	2	5.70	5.5	even	ok	

![Image of compound structure]

Institute of Organic Synthesis UB RAS
22 S. Kovalevskoy, 20 Akademicheskaya str, Yekaterinburg, Russian Federation
Phone: +7 (343) 362-34-56
Analysis Info

Acquisition Date 10/19/2021 11:24:40 AM

Analysis Name D:\Data\ING21\GMV-169a.14j-C-ESIPOS-180.6312-19j1125.d
Method EP180UJ19HPC50-2200_500-3500-0.4-4-200_1f2002f200hrfOperator admin
Sample Name 70ieS70ce10pps6crf300-1200tt40-110_F3x1_Segm1.m
Comment

Instrument maXis impact 1819696.00172

Acquisition Parameter

Source Type	Ion Polarity	Positive	Focus	Set Nebulizer	Set Dry Heater	Scan Begin	Set End Plate Offset	Scan End	Set Capillary	Set Dry Gas	Source	Set Charging Voltage	Set Divert Valve	Set Corona	Set APCI Heater
ESI	Positive	0.4 Bar	Active	-500 V	200 °C	50 m/z	-500 V	2000 V	3500 V	4.0 l/min	Source	2200 m/z	0 °C	0 nA	

+MS, 7.7-8.5min #437-484 (G1969-85000 HPC Int)

Meas. m/z # Ion Formula m/z err [ppm] mSigma # mSigma Score rdb e¯ Conf N-Rule
178.1588 1 C12H20N 178.1590 1.0 13.6 1 100.00 3.5 even ok
190.1231 1 C12H18NO 190.1226 -2.2 760.9 1 100.00 5.5 even ok
204.1386 1 C13H18NO 204.1383 -1.5 185.2 1 100.00 5.5 even ok
222.1487 1 C13H20N2O2 222.1489 0.5 1.3 1 100.00 4.5 even ok
228.1568 1 C13H19LN2O2 228.1570 1.2 74.5 1 100.00 4.5 even ok
244.1308 1 C13H19NNa2O2 244.1308 -0.1 12.2 1 100.00 4.5 even ok
266.1122 1 C13H18NNa2O2 266.1127 2.1 10.4 1 100.00 4.5 even ok
282.2040 1 C16H28NO3 282.2064 8.5 730.4 1 100.00 3.5 even ok
465.2729 1 C26H38N2NaO4 465.2724 -1.2 111.0 1 100.00 8.5 even ok