High-purity Hydrogen: Guidelines to Select the Most Suitable Purification Technology

Marco Succi, Giorgio Macchi, and Sarah Riddle Vogt – Entegris, Inc.

ABSTRACT

Hydrogen (H₂) is a gas widely used in a number of industrial applications. For example, in the electronics industry it is used to manufacture highly advanced devices like microprocessors, light-emitting diodes (LEDs), and solar cells. Hydrogen usage will be expanding as it is a primary component in fuel cell technology and is used to store the excess energy generated by renewable sources such as solar and wind. In these applications the degree of H₂ purity is crucial and advanced purification systems guarantee the purity. This article will review the types of purification technologies that are currently available to generate high-purity H₂, starting from an already clean source that is at least 99.9% pure. Other technologies also widely used in gas purification, like pressure swing adsorption (PSA) and polymeric membrane separation, which are more suitable to handle a lower degree of H₂ purity will not be discussed. This article will review the advantages and disadvantages of adsorbers, getters, cryogenic, and palladium (Pd) purification technologies with guidelines on how to select the most appropriate technology depending on the application and the experimental conditions.

INTRODUCTION

Hydrogen is widely used to grow epitaxial layers to make silicon devices and is also used in compound semiconductor manufacturing. An increase in H₂ use is also taking place for the adoption of extreme ultraviolet lithography (EUV) to define smaller geometrical patterns. The purity of H₂ needed for these processes is typically down to 10 ppb or preferably 1 ppb; thus, gas purifiers at bulk, area, or at the point of use are needed to achieve this very high degree of purity. The use of purification maintains the same quality of gas over time and also eliminates any impurity contribution coming from the gas distribution system, eliminates variation in gas batch quality, and mitigates impurities introduced during the replacement of gas batches and other random sources of contamination.

Hydrogen has the potential to become a significant source of clean energy. All the major car manufacturers have developed cars powered by proton exchange membrane (PEM) fuel cells. This technology is a great step ahead in the introduction of clean cars because water vapor is the only exhaust. A requirement for the mass adoption of this new vehicle technology is the development of a suitable infrastructure capable of filling car tanks at high pressure, 700 bars, with high-purity H₂. The specification limits for some impurities, such as carbon monoxide (CO) and sulphur compounds, are very tight, down to 200 ppb or even less, because of their ability to deplete the lifetime of the fuel cells.

Due to the chemical and physical properties of H₂, several purification technologies have been developed over the years. This article will review the most common technologies used to improve H₂ quality down to at least 8 nines (8N) quality, explaining where each technology has advantages.
**PURIFICATION TECHNOLOGIES**

The technologies widely used for H\(_2\) purification are:

- Adsorber
- Getter
- Cryogenic
- Palladium

**Adsorber Purifiers**

Adsorber purifiers consist of a cylindrical column filled with high surface area materials that are suitable for the chemisorption and physisorption of impurities (Figure 1).

![Figure 1. Adsorber purifiers.](image)

An adsorber purifier is operated at room temperature and removes reactive impurities such as oxygen (O\(_2\)), water (H\(_2\)O), CO, carbon dioxide (CO\(_2\)), non-methane hydrocarbons (NMHC), ammonia (NH\(_3\)), nitrogen oxides (NO\(_x\)), and sulphur (S) compounds to ppb, or sub-ppb levels. It is completely transparent to, and thus not suitable for removing nitrogen (N\(_2\)), methane (CH\(_4\)), and rare gases. If these gases are considered to be critical impurities in H\(_2\) other purification technologies should be considered.

Figure 2 demonstrates a typical application to maintain a low and constant concentration of H\(_2\)O and O\(_2\) in H\(_2\) from a high-pressure cylinder. When H\(_2\) is progressively used from a gas cylinder, there is a continual decrease of the pressure, which affects the moisture content in the delivered gas. Figure 2 shows the water vapor and oxygen content in H\(_2\) vs. cylinder pressure when a constant flow of 4.6 L/min from a 4.5N cylinder is delivered.

**H\(_2\)O and O\(_2\) Trend versus Cylinder Pressure**

![Figure 2. Water vapor and oxygen trend vs. cylinder pressure.](image)

The H\(_2\)O and O\(_2\) content in H\(_2\) was analyzed by means of a Delta F DF-760E; every 30 minutes an adsorber MicroTorr\textsuperscript{®} H\(_2\) purifier was switched between bypass and on-line to continuously monitor the delivered gas and the purified gas. It is clear that when the cylinder is approaching 80 bar (5.5 psig), the water vapor concentration in H\(_2\) starts significantly increasing. Simultaneously the H\(_2\) from the purifier remains below 1 ppb independent of the inlet concentration guaranteeing not only a high degree of purity but also consistency.

Once saturated with impurities, the purifier can be regenerated to fully recover the initial capacity and efficiently absorb impurities. If this technology is used with relatively clean inlet gas, e.g., 5N or preferably 6N, the purifier is normally regenerated off-line at the factory. Since the quality of the inlet gas is already fairly good, the lifetime of an adsorber purifier could be several years. An accurate estimation of the lifetime is possible if the average impurity level, the average flow rate, and the duty cycle are known.
The cost of ownership of these purifiers is low: in fact, they do not require any power to operate or any loss of H₂ due to venting. However, if the loading of impurities is high, the purifier could be saturated in a very short time. Mishandling, such as lack of purging the gas lines during installation, could easily contaminate the purifier due to residual air saturating the purifier active sites, drastically reducing the estimated lifetime.

The flow rate managed by these purifiers typically ranges from a few sccm up to thousands of slpm.

If the H₂ purity is not as high, such as 4.5N or 5N, and/or the flow rate is higher than 50 – 100 standard m³/h, it could be more convenient to use the same purification technology with two columns mounted in parallel in a so-called automatically regenerable purifier. Such a purifier assembly includes valves, heaters, and a microprocessor to continuously cycle between the two columns (Figure 3). The purification logic is very simple and effective: while one column purifies the gas, the other is either undergoing regeneration or is in standby mode. This type of purifier is used when the H₂ flow rates are relatively high ranging from 10 m³/h to many hundreds of m³/h. The higher the flow rate handled by the purifier is, the use of a more complex unit is further justified.

The cost of ownership of this purifier is also low: it requires energy to heat up the vessel under regeneration for a period of about 8 – 12 hours every week or whenever it is necessary to regenerate the purifier. During this process about 5% of the purified H₂ is used to purge the column under regeneration to remove previously sorbed impurities.

In high flow rate purifiers it is also convenient to use N₂ for the regeneration gas in order to minimize the amount of H₂ consumed in every regeneration cycle.

The final achievable purity and the impurities removed are the same for the single column and the dual column regenerable purifiers, down to less than 1 ppb (Table 1).

**Getter Purifiers**

Getter purifiers are another widely used technology for the purification of H₂ based on zirconium alloys. They must be run at high temperature and can remove O₂, H₂O, CO, CO₂, NH₃, NO, NO₂, N₂, CH₄, and other hydrocarbons while they are transparent to rare gases. The zirconium alloy forms stable compounds like oxides, carbides, and nitrides, and differently from the adsorber technology, cannot be regenerated. Once the getter column has been saturated with impurities it has to be replaced.

Capacity of a getter column is much higher than an adsorber column of the same volume; as a reference, in the case of O₂ and H₂O impurities, the getter column has 10 to 50 times higher capacity.

While the use of heat exchangers helps to save energy, since the gas must be heated 100% of the time, the cost of ownership of a getter purifier is higher compared to the adsorber technology.

Depending on the impurity concentration in H₂, the lifetime of a typical getter-based column is in the range of three to five years. However, it is not uncommon for a getter-based cartridge to last more than eight years.
Table 1. Comparison of purifier technologies under general conditions

This table provides general purification conditions. Purifiers based on the same technology but made by different manufacturers could have different specifications.

| Technology          | Inlet gas purity | Impurities removed | Impurities not removed | Flow range | Operating temperature | Pressure drop | Maintenance | Comment                                                                 |
|---------------------|------------------|--------------------|------------------------|------------|-----------------------|--------------|-------------|--------------------------------------------------------------------------|
| Adsorber            | 5N               | O₂, H₂O, CO, CO₂, HC>C₅, NOx, S | N₂, CH₄, rare gases | 0.1 – 120 m³/h | Room temperature      | Low          | Regeneration every 1 – 3 years | The better the inlet gas purity, the longer the lifetime. Less expensive technology with limited performance |
| Regenerable adsorber| 4.5N             | O₂, H₂O, CO, CO₂, HC>C₅, NOx, S | N₂, CH₄, rare gases | 10 – 1,000 m³/h | Room temperature      | Low          | None        | Suitable for very high flow rate. Low running cost. No N₂ removal.       |
| Getter              | 6N               | O₂, H₂O, CO, CO₂, N₂, CH₄, NOx, S | Rare gases            | 0.1 – 300 m³/h | 300° – 600°C (572° – 1112°F) | Low          | Getter column replacement every 3 – 8 years | Good when the gas is relatively clean. Removes all impurities, N₂ included. |
| Cryogenic           | 4N               | O₂, H₂O, CO, CO₂, N₂, CH₄, NOx, S | He                    | 20 – 1,000 m³/h | -180°C (-292°F)       | Low          | None        | Requires complex infrastructure to manage liquid N₂. High running cost. Removes all impurities except He. Competitive for high flow rates. |
| Palladium membrane  | 3.5N             | O₂, H₂O, CO, CO₂, N₂, CH₄, rare gases, NOx, S | None                  | 0.1 – 100 m³/h | 400°C (752°F)         | High         | None        | Removes all impurities, rare gases included. Very compact. Compatible with high inlet gas purity. Sensitive to S contamination. |
| Supported palladium membrane | 3.5N | O₂, H₂O, CO, CO₂, N₂, CH₄, rare gases, NOx, S | None                  | 0.1 – 500 m³/h | 400°C (752°F)         | Medium-low  | None        | Removes all impurities, rare gases included. Very compact. Compatible with high inlet gas purity. Sensitive to S contamination. |
To minimize the consumption of the getter-based cartridge, an adsorber column could be installed upstream of the getter column. In this way all of the getter capacity will be used to trap N₂ and CH₄ impurities.

The flow rates for a getter-based purifier (Figure 4) range from a few L/min up to hundreds of m³/h.

Figure 5 shows the typical very low concentration of impurities at the outlet of a getter purifier measured by a Thermo Scientific atmospheric pressure ionization mass spectrometry (APIMS).¹⁰

---

**Cryogenic Purifiers**

In the cryogenic purification of H₂, the stream is cooled down to cryogenic temperatures through a column filled with a high-surface media. In this manner all impurities with the exception of helium (He) are trapped onto the cryogenic column.

The cryogenic purifier works with two columns in parallel so that one is in operation while the other is under regeneration, similarly to the adsorber purifier but at different operating temperatures.

This technology is quite efficient but requires a high cost infrastructure because it is necessary to continuously supply liquid N₂ to maintain the columns’ low operation temperature. If the vaporized N₂ is used in the plant for equipment purging, the running cost is reduced. It also requires power to warm up the column during regeneration and uses a small percentage of the purified H₂ during regeneration.

This technology can also reduce argon (Ar) in H₂ from ppbs down to ppts.

Potentially this technology can be used starting from medium flow rates, e.g., 10 m³/h, but the high cost of the infrastructure and the consumption of liquid N₂ make it practical only when the flow rates are at least 100 m³/h. The running cost of the purifier is strongly influenced by the location and the availability of liquid nitrogen.

Figure 6 shows the impurities trend at the outlet of a cryogenic purifier. The downward trend of moisture is due to the clean-up of the sample line.

---

¹⁰The typical impurities concentration at the outlet of a getter purifier.

---

Figure 6. Typical impurities concentration at the outlet of a cryogenic purifier.
Palladium Purifiers

This technology is specific for H₂ purification because H₂ is the only atom capable of diffusing across a hot Pd membrane (Figure 7). This technology allows the removal of all impurities from H₂ even the rare gases such as He and Ar. Hydrogen diffusion is driven by the inlet gas pressure and by the Pd membrane operating temperature, 350° – 400°C (662° – 752°F), with no need for cycling or switching valves during operation.¹¹

H₂ Flow Rate: Inside/out

Palladium purifiers (Figure 8) have unlimited lifetime as long as the Pd membrane integrity is maintained and, in terms of footprint, these purifiers are also significantly more compact compared to the other purifier technologies.

To keep removing the impurities upstream of the Pd membrane and prevent their build-up, a few percent of the incoming H₂ flow, typically 2%, is vented along with the impurities.¹²

Figure 9 shows a realization of a Pd purifier using multiple Pd tubes mounted in parallel to achieve a high surface area in a small volume and the typical impurities concentration. The running cost of this purifier is determined by the power consumption and the loss of H₂ from the bleed flow. In general terms and compared to heated getter or cryogenic purifiers, the cost of ownership will be relatively low if the unit is well engineered with heat exchangers to recover a large part of the energy.

New generations of Pd purifiers based on supported membranes are currently under development.¹³⁻¹⁵ They have characteristics similar to the self-standing Pd purifiers but use thinner Pd layers in the 2 – 10 micron range. The lower Pd thickness has two main advantages:

- The need for a small quantity of an expensive precious metal
- High H₂ permeance across the membrane

CONCLUSION

Purification technologies suitable to purify H₂ and reduce the impurities concentration down to the ppb and ppt range have been briefly discussed and compared. Each one has its own peculiarities and it is up to the customer to decide on the most appropriate purifier technology for the application based on the inlet H₂ purity, the desired specifications, and the target purity levels.

Installing a gas purifier will achieve a very low concentration of the impurities of concern and maintain it over time, even when the incoming H₂ purity is not consistent.
REFERENCES

1. Henry, et al., 2012. SiC Epitaxy Growth Using Chloride-based CVD. Physica B Condensed Matter 407 (10): 1467-71. http://dx.doi.org/10.1016/j.physb.2011.09.063.

2. Leeson, N., 2011. Developments in the Market for UHP Hydrogen Purifiers. Semiconductor TODAY 6 (4).

3. Ostrander, Solcia, 2001. The Presence of Impurities in Ultra-high Purity Gas Distribution Systems: Case History Studies. Semiconductor Fabtech 13th Edition, 195–8.

4. Landoni, 2015. ELV Tools: Hydrogen Gas Purification and Recovery Strategies. Proceedings of the SPIE, 7.

5. Briot, 2011. Managing Gas Purity in Epitaxial Growth. Cryst. Res. Technol. 46 (8): 809-1.2.

6. Ahluwalia, R., 2004. Fuel Economy of Hydrogen Fuel Cell Vehicles. Journal of Power Sources 130 (1): 192-20.

7. Rodrigues, 1997. Carbon Monoxide Poisoning of Proton-Exchange Membrane Fuel Cells. Proceedings of the Honolulu, Hi.

8. International Standard ISO 14687-2:2012. Proton Exchange Membrane (PEM) Fuel Cell Applications for Road Vehicles.

9. Angelo, M., 2008. The Impacts of Repetitive Carbon Monoxide Poisoning on Performance and Durability of a Proton Exchange Membrane Fuel Cell. ECS Transactions 16 (2): 669-76.

10. Briasascher, J., 1991. Gas Purification and Measurement at the PPT Level. J. Electrochem. Soc. 138 (12): 3717-2.3

11. Succi, M., 2015. Hydrogen Gas Purifiers for Fuel Cells. J. of Electrical Engineering 3: 91-7.

12. Burkhanov, G., 2011. Palladium-Based Alloy Membranes for Separation of High Purity Hydrogen from Hydrogen-Containing Gas Mixtures. Platinum Metals Rev. 55 (1): 3-1.

13. Arratibel, D., Pacheco Tanaka, A., Van Sint Annaland, M., and Gallucci, F., 2017. Recent Advances in Pd-based Membranes for Membrane Reactors. Molecules 22: 5.

14. Gallucci, F., Fernandez, E., Corengia, P., and Van Sint Annaland, M., 2013. Recent Advances on Membranes and Membrane Reactors for Hydrogen Production. Chem. Eng. Sci. 92: 40-66. http://dx.doi.org/10.1016/j.ces.2013.01.008

15. Helmi, F., Gallucci, M., and Van Sint Annaland, M., 2014. Resource Scarcity in Palladium Membrane Applications for Carbon Capture in Integrated Gasification Combined Cycle Units. Int. J. Hydrogen Energy 39 (20): 10498-506.