Two *Thiomicrospira* strains, WB1 and XS5, were isolated from the Kebrit Deep brine-seawater interface in the Red Sea, Saudi Arabia. Here, we present the draft genome sequences of these gammaproteobacteria, which both produce sulfuric acid from thiosulfate in culture.

Strains WB1 and XS5 were enriched and purified at 28°C using a sulfur-oxidizing-bacteria (SOB) medium, which includes the following ingredients: (NH₄)₂SO₄ (1.0 g/liter), MgSO₄·7H₂O (15% [wt/vol]). After autoclaving, the medium was supplemented to contain 10 mM Na₂S₂O₃, 0.5 g/liter K₂HPO₄, 5 mM H₄Cl, 5 mM EDTA, and 10 mM NaHCO₃. Bromothymol purple was added as pH indicator at a concentration of 4 mg/liter, and the mixture was folded based on read mapping. The genome completeness (100%) was assessed using CheckM (version 1.0.3) (9). Protein-coding open reading frames were predicted by Glimmer (version 3.02) (10). rRNAs were predicted by RNAmer (version 1.2) (11), and tRNAs were predicted by tRNAscan-SE (version 1.21) (12).

The genome of WB1, as presented here, is composed of 6 contigs, with a total length of 2,279,450 bp (N₅₀, 568,675 kbp) and a G+C content of 53.73%. It contains 2,072 protein-coding genes, 43 tRNAs, and 3 rRNAs. For strain XS5, the genome is composed of 23 contigs, with a total length of 2,633,068 bp (N₅₀, 2,522,699 bp) and a G+C content of 50.12%. It contains 2,432 protein-coding genes, 45 tRNAs, and 6 rRNAs. Functional annotation by RAST (13) showed the presence of the gene for the osmolarity sensor protein EnvZ and genes related to thiosulfate and sulfur metabolism, supporting the high-salinity adaptation and observed sulfuric acid production during culturing.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited at DDBJ/EMBL/GenBank under the accession numbers LQBN00000000 for WB1 and LQBO00000000 for XS5.

ACKNOWLEDGMENTS

This work was supported by King Abdullah University of Science and Technology (KAUST) baseline funding and the SEDCO Research Excellence Award to U.S.

REFERENCES

1. Kuenen JG, Veldkamp H. 1972. *Thiomicrospira pelophila*, gen. nov., sp. nov., a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek 38:241–256. http://dx.doi.org/10.1007/BF02328096.
2. Takai K, Hirayama H, Nakagawa T, Suzuki Y, Nealon KH, Horikoshi K. 2004. *Thiomicrospira thermophila* sp. nov., a novel microaerobic, thermotolerant, sulfur-oxidizing chemolithohimoxotroph isolated from a deep-sea hydrothermal fumarole in the Toto caldera, Mariana arc, western Pacific. Int J Syst Evol Microbiol 54:2325–2333. http://dx.doi.org/10.1099/ijs.0.063284-0.
3. Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA, Muzyer G. 2006. *Thiomicrospira halophila* sp. nov., a moderately halophilic, obligately chemohimooxotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380. http://dx.doi.org/10.1099/ijs.0.04445-0.
4. Knittel K, Kuever J, Meyerdierks A, Meinke R, Amann R, Brinkhoff T.
2005. *Thiomicrospira arctica* sp. nov. and *Thiomicrospira psychrophila* sp. nov., psychrophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacteria isolated from marine Arctic sediments. Int J Syst Evol Microbiol 55:781–786. http://dx.doi.org/10.1099/ijs.0.63362-0.
5. Birnboim HC, Doly J. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523. http://dx.doi.org/10.1093/nar/7.6.1513.
6. Schmieder R, Edwards R. 2011. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864. http://dx.doi.org/10.1093/bioinformatics/btr026.
7. Li R, Li Y, Kristiansen K, Wang J. 2008. SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714. http://dx.doi.org/10.1093/bioinformatics/btn025.
8. Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20:263–272. http://dx.doi.org/10.1101/gr.097261.109.
9. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055. http://dx.doi.org/10.1101/gr.186072.114.
10. Delcher AL, Bratke KA, Powers EC, Salzberg SL. 2007. Identifying bacterial genes and endosymbiotic DNA with Glimmer. Bioinformatics 23:673–679. http://dx.doi.org/10.1093/bioinformatics/btm009.
11. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. 2007. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35:3100–3108. http://dx.doi.org/10.1093/nar/gkm160.
12. Lowe TM, Eddy SR. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964. http://dx.doi.org/10.1093/nar/25.5.955.
13. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The seed and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. http://dx.doi.org/10.1093/nar/gkt1226.