The Mendeleev-Klayperon Equation in Estimation of Pressure on Box Spans in Enclosed Spaces of Pedestrian Bridges

I Y Belutskiy¹, A V Lapin ²
¹Pacific National University, 680035, Russia, Khabarovsk. 136, Tihookeanskaya st.
²E-mail: tema_s14@mail.ru, mosttogu@mail.ru

Abstract. Practical use of building structures with enclosed spaces is determined by their corrosion resistance requirements. These requirements are implemented and applied in closed spaces spans for pedestrian bridges built in Khabarovsk in Gogol and P. Morozov streets. Implementing of such a constructive solution raises a question of climatic factors effect on confined space and as a result the strain-stress state of the box-shaped span. The article deals with the issue of changing the pressure inside a closed loop span of pedestrian bridge when the ambient temperature changes. The amount of distributed pressure on the elements of a box span was defined on the basis of the Mendeleev-Klayperon equation. The results of stress state change of box-shaped span elements with a closed space depending on the ambient temperature changes were achieved by means of numerical simulation.

Introduction
The actuality of the research conditions is predetermined by p. 8.2. [8] with regard to ensure the sealing of fully closed profiles of elements and blocks.

The attention in considering this idea is emphasized with a help of already completed box spans constructions with an enclosed space pedestrian overpasses over Gogol street at Lenin square (fig. 1,2) and over P. Morozov street to the Ice Palace "Erofey arena" (fig. 3,4) in Khabarovsk city.

Figure 1. Side view of the structure of pedestrian bridge span in Gogol street at Lenin square.
A clear need to determine the pressure of surface forces at the enclosed spaces follows from the requirements of normative documents estimating the sustainability of web plates, with joint action of vertical loads and forces of the surface pressure, caused by the impact of environment, it may be assumed that the combination of these factors can actualize the power issue of web plates rigidity or initiate constructive interference regarding control of their rigidity.
To estimate the magnitude of the surface pressure force caused by the impact of environmental dependencies based on the equation of Mendeleev-Klayperon was taken up:

\[
\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}
\]

(1)

In the run-up to the quantification of environmental effects on enclosed spaces the qualitative analysis in the initial phase of dependencies (1) and the establishment of the dominant factors of influence on the magnitude of environmental impacts seem appropriate.

In this connection, it should be noted that in case of a relatively large stiffness of elements (walls, top and bottom plates, forming the outline of the box section) as a first approximation at the first step in solving the problem, you can assume a small dependence of the amount of the enclosed space from the pressure changing \(P \), and thus to accept a constancy \(V_1 = V_2 \), and to accept the ambient temperature as the predominant factor influencing the amount of surface pressure. And in the summer we need to take into account the direct effect of sunlight on the temperature of the metal structures and obviously equal temperature within enclosed space of a box span.

Define air temperature in periods of time reflecting specific stages of formation and operation of box-shaped span with enclosed spaces on the one hand and at the same time determining the greatest outrage in a constructional enclosure limiting the enclosed space in the span.

In this manner, in accordance with paragraph 6.27 [8] and in the light of [5] for the region of Khabarovsk we have:

\[T_{aT} = t_{VI} + T = 21.1 + 8 = +29.1 \, ^{\circ}C \]

The standard value of the temperature in the warm season \(T_{aT} \) as aerial environment temperature in enclosed spaces guiding surface forces, obviously, accounting the effects of solar radiation estimated at p. 6.27 [8] by additional construction heating at the amount \(\Delta t = 10\,^{\circ}C \) is required, that is obviously affecting the air temperature in a enclosed space box span.

In this way, the standard value of the temperature in the warm season can be taken as:

\[t_{aT} = t_{VI} + 10 = +39.1\,^{\circ}C \]

The standard value of the temperature in the cold season \(T_{aC} \) in accordance with the instructions of p. 6.27 [8] and in the light of p. 5.39 equals expected value as for p. 5.39 based on [5]

\[T_{aC} = -34\,^{\circ}C \]

The temperature of construction locking in warm season

\[t_{aT} = t_{aC} - 15 = 21.9 - 15 = +14.1\,^{\circ}C \]

The temperature of construction locking in cold season

\[t_{aC} = t_{aC} + 15 = -34 + 15 = -19\,^{\circ}C \]

When choosing the counting start for estimating extreme temperature swings we take into account that the creation of enclosed spaces in the box span will be provided with the appliance of blind welds along the entire perimeter of a supporting diaphragm contact with the walls, top and bottom sheets of a box span, and it's likely to be the temperature of the warm season, as \(t_{aT} = 14.1^\circ C \)

On the basis of the temperature values at fixed points of time, reflecting the typical stages of construction and the conditions for its operation in a particular way it's possible to mark the following time intervals, fitting in with temperatures and temperature changes.

1 combination:

The temperature of the locking \(t_{aT} = +14.1^\circ C \) up to the operating temperature in the cold season with temperatures \(t_{aC} = -34^\circ C \)

2 combination:

The temperature of the locking \(t_{aT} = +14.1^\circ C \) up to the operating temperature in the warm season, taking into account the influence of solar radiation \(t_{oT} = +39.1^\circ C \)

The impact of local effects of sunlight may be even higher.

The following entry is equal to the equation (1):

\[P_1 V_1 T_2 = P_2 V_2 T_1 \]

(2)
From which pressure P_2 other than pressure P_1 and reflecting the change of ambient environment temperature.

With P_2 as $P_2 = P_1 + \Delta P$ dependency (1) acquires the form of equation:

$$\frac{P_2 V_2}{T_1} = \frac{(P_1 + \Delta P)V_2}{T_2}$$

(3)

At relatively greater rigidity of the frame plates that make up the outline of the box section, we can assume as the first step to approximation to the solution of the problem a small dependence of the volume of the enclosed space from the pressure P, and in this way the following equation can be assumed correct. Then ΔP is given from the equation:

$$\Delta P = \left(\frac{P_3}{T_3} - \frac{P_2}{T_2}\right) \cdot T_2,$$

where

- T_1 - the temperature of span installation (288.15 K [15 °C]);
- P_1 - atmospheric pressure; (1.066 Pa for summer and 0.826 Pa for winter);
- T_2 - the maximum and minimum operating temperature 312.25 K (39.1 °C) for summer and 239.15 K (-34° oC) for the winter, [6];
- $\Delta P_s = 0.093 \text{ Pa} = 9.48 \cdot 10^{-6} \text{ t/m}^2$;
- $\Delta P_w = 0.141 \text{ Pa} = 14.38 \cdot 10^{-6} \text{ t/m}^2$;

For the evaluation of thermal effects on the stress-strain state of the pedestrian bridge span over P. Morozov street to the Ice Palace "Erofey arena" in Khabarovsk was created a numerical model in PC Lira. 3-d model of the span was created as flat finite elements. The span structure was loaded with pedestrian load size 400kgf/m² and distributed pressure from environmental temperature changes at box section elements. The results of numerical simulation of box-shaped span with an enclosed space are shown in figures 5-12.

The results of the evaluation of stress stated bearing elements of the box span

![Figure 5. Stresses mosaic of the upper platen and side boxes](Image)

![Figure 6. Item A - of the upper platen](Image)
Figure 7. Stresses mosaic of the box span wall

Figure 8. Item B - span wall.

Figure 9. Stresses mosaic of box span bottom plate

Figure 10. Item C - bottom plate.

Numeric values of stresses in box span finite elements of selected sections are specified in the tables. 1-3.
Table 1. The stress values of the upper plate elements (View A), tf/m²

NoFE	Own weight, bridge floor and pedestrians (excluding temperature)	Own weight, bridge floor and pedestrians (summer period, \(t = 39.1^°C = 312.25 K \))	Own weight, bridge floor and pedestrians (winter period, \(t = 34^°C = 239.15 K \))						
	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)
12244									
12144									
12044									
11944									
11844									
11744									
11644									
11544									
11444									
14362.020									
13345.316									
13243.194									
13142.219									
13041.980									
12941.020									

Table 2. The stress values at the elements of the side wall (View B), tf/m²

NoFE	Own weight, bridge floor and pedestrians (excluding temperature)	Own weight, bridge floor and pedestrians (summer period, \(t = 39.1^°C = 312.25 K \))	Own weight, bridge floor and pedestrians (winter period, \(t = 34^°C = 239.15 K \))						
	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)
16144									
16044									
15944									
15844									
15744									
15644									
15544									
15444									
15344									

Table 3. The stress values at the elements of the bottom platen (View C), tf/m²

No FE	Own weight, bridge floor and pedestrians (excluding temperature)	Own weight, bridge floor and pedestrians (summer period, \(t = 39.1^°C = 312.25 K \))	Own weight, bridge floor and pedestrians (winter period, \(t = 34^°C = 239.15 K \))						
	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)	\(N_x \)	\(N_y \)	\(t_{xy} \)
17144									
17044									
16944									
16844									
16744									
16644									

The results of the evaluation of the strained state of box span bearing elements
Conclusions.
The achieved results of numerical solutions at estimating the stress state of shell structure elements in enclosed spaces permit to register a negligible impact of pressure caused by ambient temperature change. However, in the case of the developed sizes of box span section and definitely relatively large sizes of enclosed space shells, bending moments in the top, bottom platen and web plates of box span obviously become significant as elements that form the construction of the enclosed space shell. This issue definitely will gain relevance when engineering practices will ensure the airtight packing for erection joints and we may suppose this is a matter of the nearest future. Herein we already know the examples of practical development of pressure-proofed erection joints accompanied with enclosed spaces at the span elements of modern development, enclosed spaces represent the longitudinal beams, supporting covering sheets of orthotropic plate deckings.

References
[1] Belutskiy I Y and Chzhao Tsyan 2012 Real metering conditions of frameworks support at creating their finite element model Journal ESSUTM 2(37) pp. 192-197.
Belutskiy I Y and Lapin A V 2017 Adaptation of a finite element model of pedestrian overpass span to real conditions of work construction SIC «Construction». Structural mechanics and proportioning of structures 5 pp. 28-31.

Belutskiy I Y, Tomilov S N, Grishin A I, Lovtsov A D and Chzhao Tszyan 2012 Dynamic parameters evaluation of a pedestrian bridge on the PC 156 +32 at the object: Reconstruction of the airport "Knevichi"-St. Sanatornaya on a hack of the highway М-60 "Ussuri" Khabarovsk-Vladivostok between 747-750 km. (Khabarovsk) vol 06/12 p. 40.

Timoshenko S P 1967 Oscillations in Engineering (Moscow: Publishing House "Nauka") p. 444.

Building regulations 23-01-99 2003 Building climatology (Gosstroy of Russia, SUE Centre of Construction Design Products) p. 276.

CR 131.13330.2012 2015 Building climatology. Updated edition Building regulations 23-01-99 (Ministry of Housing and Building of Russia) p. 108.

Guidelines for vibration-based diagnostics of road bridges 2001 (Ministry of transport of the Russian Federation. The State Road service Rosavtodor) p. 25.

CR 35.13330 2011 Bridges and pipes. Updated edition (Min. Region OJSC CNIIS) p. 340.

Belutskiy I Y, Lapin A V, Sim A D and Chzhao Tszyan 2014 The research report on "The study of the stress-strain state and estimation of possible introduction into service of pedestrian overpass span on PC 103+90 the hack between 733.5-747 KM of highway М-60 "Ussuri" Khabarovsk-Vladivostok" (Khabarovsk: Pacific National University Publishing House) p. 73.

Belutskiy I Y, Lapin A V, Sim A D, Tomilov S N and Chzhao Tszyan 2014 Scientific-and-technical report on the topic "Study of the work of the construction of pedestrian bridge on 60 years of October Avenue of the bus stop Yubilejnaya in Khabarovsk and the evaluation of its dynamic and weight lifting parameters" (Khabarovsk: Pacific National University Publishing House) p. 45.

Belutskiy I Y 2003 Scientific-and-technical report on "Proposals for constructive solutions for pedestrian overpass span over Gogol st. in Khabarovsk" (Khabarovsk: Pacific National University Publishing House) p. 20.

Iovenko V V 2016 Selection of lectures in theory of strength of materials (Khabarovsk: Pacific National University Publishing House) p. 223.

Ovchinnikov I G and Dyadchenko G S 2005 Pedestrian bridges: design, construction, architecture. Tutorial (Saratov Saratov State. Tech. University Publishing House) p. 227.

Yelovskiy R E, Lyuzovik S S and Kozyrev S V 2010 Calculation of span. Pedestrian overpass. Span (L) = 42 m. "Reconstruction of the road airport" Knevichi" -Sanatornaya st. on a hack of the highway М-60 "Ussuri" Khabarovsk-Vladivostok between 747-750 km (SPA Mostovik) p 21

Belutskiy I Y, Lapin A V and Chzhao Tszyan 2015 Box spans of pedestrian bridges with enclosed spaces/\textit{Far East: Problems of the development of the building-architectural complex (Khabarovsk: TOGU Publishing House) pp. 320-325.

Belutskiy I Y and Lapin A V 2015 Features of spans pedestrian bridges dynamic work /\textit{Far East: Problems of the development of the building-architectural (Khabarovsk: TOGU Publishing House) pp. 263-270.

Lapin A V 2015 Topical issues about arrangement of spans pedestrian bridges cross sections (Electronic scientific edition “Scholarly notes of PNU”) 6(2) pp. 6-18.

Birger I A and Panovko Y G 1968 Strength, stability, oscillations. Handbook in three volumes (3) (Engineering) p. 567.

Smirnov A F 1958 Stability and oscillation of constructions (Transzheldorizdat) p. 571.

Belutskiy I Y, Chzhao Tszyan and Yatsura V G 2012 Study of the influence of pier tables of steel reinforced concrete bridges in the system of Continuous temperature spans on their free vibrations (Khabarovsk: Journal of Pacific State University) 4(27) pp. 79-86.