Research Article

Absence of Cospeciation between the Uncultured *Frankia* Microsymbionts and the Disjunct Actinorhizal *Coriaria* Species

Imen Nouioui,1 Faten Ghodbane-Gtari,1 Maria P. Fernandez,2 Abdellatif Boudabous,1 Philippe Normand,2 and Maher Gtari1,3

1 Laboratoire Microorganismes et Biomolécules Actives, Université de Tunis El Manar (FST) et Université Carthage (INSAT), 2092 Tunis, Tunisia
2 Ecologie Microbienne, Centre National de la Recherche Scientifique UMR 5557, Université Lyon I, 69622 Villeurbanne Cedex, France
3 Laboratoire Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2092 Tunis, Tunisia

Correspondence should be addressed to Maher Gtari; maher.gtari@fst.rnu.tn

Received 4 March 2014; Revised 25 March 2014; Accepted 27 March 2014; Published 22 April 2014

Academic Editor: Ameur Cherif

Copyright © 2014 Imen Nouioui et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Coriaria is an actinorhizal plant that forms root nodules in symbiosis with nitrogen-fixing actinobacteria of the genus *Frankia*. This symbiotic association has drawn interest because of the disjunct geographical distribution of *Coriaria* in four separate areas of the world and in the context of evolutionary relationships between host plants and their uncultured microsymbionts. The evolution of *Frankia-Coriaria* symbioses was examined from a phylogenetic viewpoint using multiple genetic markers in both bacteria and host-plant partners. Total DNA extracted from root nodules collected from five species: *C. myrtifolia*, *C. arborea*, *C. nepalensis*, *C. japonica*, and *C. microphylla*, growing in the Mediterranean area (Morocco and France), New Zealand, Pakistan, Japan, and Mexico, respectively, was used to amplify glnA gene (glutamine synthetase), dnaA gene (chromosome replication initiator), and the nif DK IGS (intergenic spacer between nifD and nifK genes) in *Frankia* and the matK gene (chloroplast-encoded maturase K) and the intergenic transcribed spacers (18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA) in *Coriaria* species. Phylogenetic reconstruction indicated that the radiations of *Frankia* strains and *Coriaria* species are not congruent. The lack of cospeciation between the two symbiotic partners may be explained by host shift at high taxonomic rank together with wind dispersal and/or survival in nonhost rhizosphere.

1. Introduction

The genus *Frankia* comprises nitrogen-fixing actinobacteria that are able to induce perennial root nodules on woody dicotyledonous plants called actinorhizals [1]. The actinorhizal plant families belong to three dicotyledonous orders: Fagales (Betulaceae, Casuarinaceae, and Myricaceae), Rosales (Elaeagnaceae, Rhamnaceae, and Rosaceae), and Cucurbitales (Coriariaceae and Datiscaceae) [2]. Analysis of the molecular phylogeny of members of *Frankia* genus consistently identifies four main clusters regardless of the typing locus used [3]. Three symbiotic *Frankia* clusters containing strains able to establish effective nodules and fulfill Koch’s postulates and one atypical with strains unable to establish effective nodulation on their host plants have been defined among *Frankia* genera. Cluster 1 includes *Frankia* strains in association with Betulaceae, Myricaceae, and Casuarinaceae. Cluster 2 contains *Frankia* nodulating species from the Coriariaceae, Datiscaceae, and Rosaceae families as well as *Ceanothus* of the Rhamnaceae. *Frankia* strains in cluster 3 form effective root nodules on plants from members of the Myricaceae, Rhamnaceae, Elaeagnaceae, and Gymnostoma of the Casuarinaceae.

Symbiotic *Frankia* strains have been only isolated from Fagales (*Frankia* cluster 1) and the families Elaeagnaceae and Rhamnaceae (*Frankia* cluster 3) of the Rosales, while *Frankia* of cluster 2 have still not yet been isolated in culture despite repeated attempts [2]. The position in the *Frankia* phylogenetec tree of cluster 2 relative to the other clusters has varied depending on the marker used. It was proposed at the base using *glnA* and 16S rRNA genes [4, 5], derived with ITS 16S–23S rRNA genes [6] and concatenated gyrB, *nifH* and
2. Materials and Methods

2.1. DNA Extraction, PCR Amplification, and Sequencing. Root nodules from naturally occurring Coriaria species (Table 1) were kindly provided by Dr. María Valdés (Escuela Nacional de Ciencias Biológicas, México, DF, México), Dr. Sajjad Mirza (National Institute for Biotechnology Genetic Engineering, Faisalabad, Pakistan), Dr. Warwick Silvester (University of Waikato, Waikato, New Zealand), Dr. Kawther Benbrahim (University of Fes, Fes, Morocco), Dr. Takashi Yamanaka (Forest and Forestry Products Research Institute, Ibaraki, Japan), and Dr. Jean-Claude Cleyet-Mare1 (INRA-IRD, Montpellier, France). Individual lobes were selected, surface-sterilized in 30% (vol/vol) H$_2$O$_2$, and rinsed several times with distilled sterile water. The DNA extraction from single nodule lobes was performed as previously described by Rouvier et al. [26]. Nodule lobes were crushed with sterile plastic mortars and pestles in 300 μL of extraction buffer (100 mM Tris (pH 8), 20 mM EDTA, 1.4 M NaCl, 2% (wt/vol) CTAB (cetyltrimethyl ammonium bromide), and 1% (wt/vol) PVPP (polyvinyl polypyrrolidone)). The homogenates were incubated at 65°C for 60 min, extracted with chloroform-isomyl alcohol (24:1, vol/vol) and the resulting DNA was ethanol-precipitated and resolubilized. The extracted DNA was used for PCR amplification of both bacterial and plant DNA regions using the primers listed in Table 2. The amplifications were then cycle-sequenced in both directions using an ABI cycle sequencing kit (Applied Biosystem 3130). The nucleotide sequences obtained in this study were deposited in the NCBI nucleotide sequence database under the accession numbers given in Table 1.

2.2. Phylogenetic Analysis. Frankia strain Cc13 and Casuarina equisetifolia were used as outgroups in this study because they are physiologically distinct from the group studied yet phylogenetically close. The data sets were completed with homologous sequences present in the databases (Table 1). Alignments of Frankia glnA, dnaA, and IGS nifD-K and Coriaria matK and 18S rRNA-ITS1-5.8S rRNA-ITS2-28S rRNA were generated with ClustalW [27], manually edited with MEGA5.0 [28]. Bacterial and plant sequences were separately concatenated and then used to examine maximum-likelihood cladogram evolutionary relationships of each symbiotic partner using 1000 bootstraps by following the GTR + G base substitution model. The distance between the sequences was calculated using Kimura’s two-parameter model [29]. Phylogenetic trees were constructed using the Neighbor-Joining method [30] with 1000 bootstraps as implemented in MEGA 5.0. In parallel, a Bayesian inference was realized with MrBayes [32] using the GTR + G model and 1,000,000 generations.

A statistical test for the presence of congruence between Coriaria and Frankia phylogenies was evaluated through global distance-based fitting in ParaFit program [33] as implemented in CopyCat [34] and tests of random association were performed with 9999 permutations globally across both phylogenies for each association. An additional statistical test for correlation between geographical distances (obtained using http://www.daftlogic.com/projects-google-maps-distance-calculator.htm) and phylogenetic distances was made using Pearson’s r correlation implemented in the R software [35].

3. Results

To avoid taxonomic ambiguities, DNAs from both Coriaria hosts and Frankia microsymbionts were characterized on the same root nodule tissues. The method of DNA isolation from
Species	Locality coordinates/altitude (asl)	Nodule labels	Plant sequence accession number	Bacterial sequence accession number	References			
Morocco			ITSI-ITS2	mat	glnA	dnaA	IGS nifD-K	
Oued El Koub, Ouezzane: 35° 01' 879''N/05° 20' 565''E/140 m	CmMs1	KC796592	KC796601	KC796522	KC796532	KC796582	KC796555	This study
	CmMs2	KC796523	KC796538	KC796556	KC796555	This study		
	CmMs3	KC796524	KC796584	KC796557	KC796555	This study		
	CmMs4	KC796525	KC796585	KC796558	KC796555	This study		
	CmM1a	KC796590	KC796599	KC796517	KC796578	KC796550	This study	
	CmM1b	KC796518	KC796579	KC796551	KC796555	This study		
	CmM1c	KC796519	KC796580	KC796552	KC796555	This study		
	CmM2a	KC796591	KC796600	KC796520	—	KC796553	This study	
	CmM2b	KC796521	KC796581	KC796554	KC796555	This study		
C. myrtifolia	Bab Berred, Chefchaouen: 35° 00' 979''N/04° 58' 092''E/1290 m	CmM1a						
		CmM1b						
		CmM1c						
		CmM2a	KC796591	KC796600	KC796520	—	KC796553	This study
		CmM2b	KC796521	KC796581	KC796554	This study		
France	Nyons, 44° 21' 46.50''N/5° 08' 21.82''E/259 m	CmNy1	KC796598	KC796603	KC796531	KC796591	KC796564	This study
		CmNy2	KC796532	KC796592	KC796565	This study		
		CmNy3	KC796533	KC796593	—	This study		
		CmNy4	KC796534	KC796594	KC796566	This study		
		CmNy5	KC796535	KC796595	KC796567	This study		
	Montpellier, 43° 36' 51.48''N/3° 52' 23.97''E/41 m	CmF1						This study
		CmF2	KC796593	KC796602	KC796526	KC796586	KC796559	This study
		CmF3	KC796527	KC796587	KC796560	This study		
		CmF4	KC796528	KC796588	KC796561	This study		
		CmF5	KC796529	KC796589	KC796562	This study		
			KC796530	KC796590	KC796563	This study		
Japan								
C. japonica	Tosa district, +33° 45' 39.18'', +133° 27' 42, 89''/10 m	CJA						This study
		CJB	KC796594					This study
		CJC	KC796537	KC796504	KC796577	This study		
		CJD	KC796538	KC796505	KC796578	This study		
		CJE	KC796539	KC796506	KC796579	This study		
			AF280101					This study
Pakistan								
C. nepalensis	Murree, +33° 5' 15''N 73° 23' 25''E/33.9042''N 73.3903'E/2291.2 m	CnP1	KC796597	KC796607	KC796536	KC796503	KC796576	This study
		CnP2	KC796544	KC796508	KC796584	This study		
		CnP3	KC796545	KC796509	KC796585	This study		
		CnP4	KC796546	KC796510	KC796586	This study		
			AF280103					This study

References: AF280102, AB016459, Yang et al., unpublished (Yokoyama et al., 2000 [19]).
Species	Locality coordinates/altitude (asl)	Nodule labels	Plant sequence accession number	Bacterial sequence accession number	References
New Zealand					
C. arborea	Hapuku river, North Canterbury, South island: −42°23'42.24"N, +173°41'18.07"E/64 m	CaNZ1	KC796595	KC796542	This study
		CaNZ2	KC796543	KC796511	This study
		CaNZ3	KC796544	KC796512	This study
Mexico					
C. microphylla	Morelos, 99°30', 19°30' /2400 m	CmicMx1	KC796596	KC796547	This study
		CmicMx2	KC796548	KC796514	This study
		CmicMx3	KC796549	KC796515	This study
C. intermedia		AF280100			Yang et al., unpublished
C. terminalis		AY091817			Yang et al., unpublished
C. ruscifolia		AY091815			Yang et al., unpublished
		AY091814			Yang et al., unpublished
		AF280104			Yang et al., unpublished
C. sarmentosa		AY091816			Yang et al., unpublished
C. papuana		AY091861			Yang et al., unpublished
Datisca		AY968449			(Persson et al., 2011 [50])
glomerata		AF485250			Zhang et al., unpublished
Casuarina					Forrest and Hollingsworth
equisetifolia		AY864057			Herbert et al., unpublished
Table 2: Primers used for PCR amplification and DNA sequencing.

Gene primers	Sequence (5'-3')	Amplicons approximate size (bp)	References
glnA			
DB41	TTCTTCATCCAGCCCGT 500		(Clawson et al., 2004 [4])
DB44	GGCTCGGCATGAAGGT 700		
dnaA			
F7154_dnaAF	GAGGARTTCACCAACAGCTCTCAT 700		
F7155_dnaAR	CRGAAGTGCTGCCGATCTTT 500		Bautista et al. unpublished
IGS nifD-K			
F9372_nifD1 5	GTCATGCTCGCGCTGCGNG 700		This study
F9374_nifK1 5	GTCATTCTCCGGTAyTCCA 700		This study
F9373_nifD2 5	ACCGGCTACGAGTTCGCNCA 700		
F9375_nifK2 5	TGGCACACGCTGACCAGNG 700		
18S-ITS1-5.8S-ITS2-28S			
ITS1	TCCGTAAGTGAACCTGCGG 700		(White et al., 1990 [52])
ITS4	TCTCTCGGCTTTATGATGTC 400		
F9030-CJ-ITSF			
F9030-CJ-ITSF	AGCCGGACCCCGCGAGGCAGTT 400		This study
F9031-CJ-ITSR	CGACGGTCGTAAGCGACGCCCA 700		
matK			
F9249-matKF	ACATTTAAATATGTCGAG 700		This study
F9250-matkR	TGCATATACGTATCAGCAATA 700		

root nodules used in this study yielded PCR-amplifiable DNA for both bacterial and plant PCR target sequences in all cases. However, in several instances it was easier to amplify Frankia than Coriaria DNA, which may have been mostly due to the specificity of the primer sets used. Thus, in this study, new primers were designed (Table 2).

For the bacterial microsymbionts, the average uncorrected \(p \)-distances (proportion of differences between sequences) were computed for each region and were found to be relatively small for dnaA \((p = 0.0378) \), intermediate for glnA \((p = 0.0625) \), and high for IGS nifD-K region \((p = 0.0833) \). Blast analyses of the individual genes permitted assigning them all to Frankia cluster 2. Nearly 3000 nucleotides were obtained by concatenating sequences of the three DNA regions.

Sequences variation for Coriaria species was small based on matK gene \((p = 0.0205) \) compared to ITS1-ITS2 sequences \((p = 0.0423) \). By concatenating matK and ITS1-ITS2 region, a composite sequence of 1500 nt was used for phylogenetic inference.

All studied sequences were analyzed independently to test for incongruence between the data sets for each symbiotic partner. Similar topologies have been generally observed between phylogenetic trees inferred from glnA, dnaA, and IGS nifD-K sequences for Frankia and from matK and ITS sequences for Coriaria regardless of the used phylogenetic methods (not shown).

The topologies of the trees obtained for the two symbiotic partners were not congruent (Figure 1). Moreover, global distance-based ParaFit analysis recovered mostly random associations between Frankia and Coriaria host plant species \((p = 0.33) \) and rejected cospeciation hypothesis. On the microbial side, the New Zealand microsymbionts were at the root (Group A); then three groups emerged, group B comprising the Pakistani, Mexican, and Mediterranean symbionts from France, group C comprising microsymbionts from Morocco, and then group D comprising French and Japanese microsymbionts as well as the Dg1 reference sequence obtained initially from a Pakistani soil. On the host plant side, group 1 at the root comprises New Zealand and South American sequences, while group 2 comprises the Japanese, Mediterranean, and Pakistani sequences.

On the other hand, no significant correlations were found for Frankia symbionts \((r^2 = 0.772; \text{Fgenetic dist} = (\text{geog dist} \times 5.830E^{-06}) + 2.541E^{-02}) \) nor for the Coriaria host plants \((r^2 = 0.883; \text{Fgenetic dist} = (\text{geog dist} \times 2.023E^{-06}) + 6.460E^{-03}) \) (data not shown).

4. Discussion

Cospeciation has been postulated to have occurred in some Frankia actinorhizal host plants, in particular in the Casuarina-Frankia cluster 1b [18] but not in Alnus-infective and Elaeagnus-infective Frankia strains where many isolates able to fulfill Koch’s postulates have been obtained. To test if cospeciation was general or an exception, it was decided to study uncultured Frankia microsymbionts and representative Coriaria hosts, a lineage where no Frankia isolate exists and where geographic discontinuities may have limited dispersion. DNA sequences were obtained from root nodules collected from New Zealand (C. arbores), Pakistan (C. nepalensis), Japan (C. japonica), Mexico (C. microphylla), and France and Morocco (C. myrtillo) and multiple molecular markers were analyzed for phylogenetic inference.
Paleontological data based on macrofossils and pollen fossils have brought several authors [36–40] to conclude that the Coriariaceae had a Laurasian origin (North America and Eurasia). There have been a few dissenting opinions, in particular those of Croizat [41] and Schuster [42] who considered that Coriaria originated in Gondwana and migrated to the Northern Hemisphere. However, such paleontological studies are not very convincing, as it is recognizably hard to ascribe fossils to a given family and even more so to a given genus. Thus, several authors have been surprised by the results of molecular phylogeny positioning Coriariaceae close to the Datiscaceae. Molecular approaches would thus give support to a Gondwanan origin.

Yokoyama et al. [19] proposed that Coriaria species had emerged 59–63 million years ago, which is coherent with the date of 70 million years proposed by Bell et al. [25], considerably older than that proposed (30 million years) by the same authors for the Casuarinaeae.

Topology and clustering of Coriaria phylogeny obtained in the current study are similar to those obtained by Yokoyama et al. [19], while the position at the base of the host plant species from New Zealand, C. arborea, and the South American C. ruscifolia and C. microphylla species was contrary to that of Yokoyama et al. [19] who found the Eurasian species at the base using rbcL (a large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase) and matK (maturase K) genes. The present study suggests that the Coriaria ancestor may have emerged between Asia and NZ and then dispersed worldwide and that the Asian lineage may have given rise relatively recently to the Mediterranean species, while the NZ lineage gave rise to the North American species (Figure 2).

Previous studies had concluded that Frankia cluster 2 had a low genetic diversity [6, 7, 16] but these studies had been focused on only part of the full diversity of the symbiotic Coriaria-Frankia, essentially in North America and Mediterranean. In this work we aimed to expand the scope of the study to the worldwide diversity and phylogeny of microsymbionts of Coriaria species. Four microbial subgroups were identified that did not fit to the geographic range of the host plants, while two host plant subgroups were identified. The position of subgroup A containing microsymbionts of New Zealand C. arborea at the base of Frankia cluster 2 is in agreement with previous study [16]. In view of previously
reported data, members of cluster 2 Frankia studied here were found to have relatively higher sequences variation (p-distance = 0.0625) than those reported by Vanden Heuvel et al. [16] (p = 0.00454) based on the same 460 nt of the glnA gene.

Molecular clock dating suggests that Frankia genus has emerged much earlier, 125 Myr bp before the appearance of angiosperm fossils in the Cretaceous period and the extant actinorhizal plants [4]. Normand et al. [5] using the 4% divergence in the 16S rRNA between cluster 2 and other Frankia lineages as equivalent to 50 MY/1% distance [17] concluded that the genus Frankia had emerged long before the extreme dicotyledonous lineages. These authors proposed Frankia cluster 2 as the proto-Frankia as nonsymbiotic ancestor of 62–130 Myr bp [43] and 100–200 Myr bp [5]. Since the distance in the 16S rRNA gene between cluster 1a (Frankia alni) and cluster 1b is less than 1%, the date of emergence of the Casuarina-infected lineage has been proposed to be less than 50 million years [5]. Thus the Casuarina/Frankia 1b lineage is considerably younger than the Coriaria/Frankia lineage and would have had less time to migrate out of its cradle and mingle with other hosts in its new territories and lose the cospeciation signal.

Symbiotic partnership often tends to become obligatory, as in the case of Casuarina host plants, where Frankia is only present in soils close to the host plant [44], which means that the bacterium loses autonomy and becomes dependent on its host. Speciation of the host could then lead to synchronous speciation of its microsymbiont unless dispersal through long-distance carriers such as winds or migratory birds occurred or if there is survival of Frankia cluster 2 in the rhizosphere of nonhosts as was recently demonstrated for Alnus glutinosa in Tunisia [45]. The numerous transitions seen in the Frankia phylogenetic tree from one continent to another would reinforce the idea.

Yokoyama et al. [19] concluded from their study of the Coriaria species phylogeny that the Eurasian species had diverged earlier and are more diverse than other groups, but that nevertheless the origin of the genus could have been in North America, whence the South America and the Pacific species could have originated. Our study brings us to suggest a third possibility, Oceania, which could also be the origin of this actinorhizal symbiosis, which can be concluded from phylogenetic inferences positioning both bacterial and host plant partners as at the base to Frankia-Coriaria symbiosis. Another element that would support this hypothesis is the large number of extinct species there; according to Yokoyama et al. [19] New Zealand would be home to 8 of the 17 existing species. A similar argument has often been made to establish Sub-Saharan Africa as the cradle of humankind [46] or Mexico for maize [47].

Comparison of both the plant and the microbe phylogenetic topologies did not show any evidence for cospeciation of Frankia microsymbionts and their Coriaria host species. The results obtained in this study suggest that Frankia microsymbionts hosted currently by Coriaria species had probably dispersed globally as a proto-Frankia, a free living and nonsymbiotic ancestor. In parallel, the proto-Coriaria then diversified into the extant Coriaria species that appear to have been retreating given their scattered distribution, a trend...
possibly reinforced recently due to man uprooting because of the toxicity of the fruits for mammals [48, 49]. It can thus be hypothesized that *Coriaria* appeared in the Pacific Islands more than 70 million years ago and presumably was symbiotic from the start, before dispersing over all continents as they drifted apart. The *Coriaria* species diversified in their different biotopes, as they saw the appearance of other plants hosting the same microsymbiont of *Frankia* cluster 2 such as Datisca canadensis, *Rosaceae*, *Ceanothus*, or even nonhost species such as *Alnus glutinosa* that was recently found to host *Frankia* cluster 2 in its rhizosphere [45]. Members of these alternative host plant species cooccur sympatrically with *Coriaria* such as *Ceanothus* and *Purshia* species in Mexico and *Datisca cannabina* in Pakistan. These *Frankia* cluster 2 host plant species have more extended geographic distribution and overlap in some instances *Coriaria*’s disjunct area and as a result can compensate *Frankia* microsymbionts remoteness, which would thus obscure the cospeciation signal. Cospeciation may also occur but subsequently is lost after bacterial mixing and fitness selection in the presence of “indigenous” and “dispersal” symbionts.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work is supported by CMCU (Comité Mixte Tuniso-Français pour la Coopération Inter-Universitaire No. 10/G0903). The authors are grateful to Dr. María Valdés (Escuela Nacional de Ciencias Biológicas, México, México), Dr. Sajjad Mirza (National Institute for Biotechnology Genetic Engineering, Faisalabad, Pakistan), Dr. Warwick Silvester (University of Waikato, Waikato, New Zealand), Dr. Kawther Benbrahim and Dr. A. Ennabili (University of Fes, Fes, Morocco), Mr. Spick (Montpellier Botanical garden, France), Dr. J. C. Cleyt-Marel (Montpellier INRA, France), Mr. D. Moukouanga (IRD Montpellier, France), and Dr. Takashi Yamanaka (Forest and Forestry Products Research Institute, Ibaraki, Japan) for providing *Coriaria* nodules.

References

[1] M. P. Lechevalier, “Taxonomy of the genus *Frankia* (Actinomycetales),” *International Journal of Systematic Bacteriology*, vol. 44, no. 1, pp. 1–8, 1994.

[2] D. R. Benson, B. D. Vanden Heuvel, and D. Potter, “Actinorhizal symbioses: diversity and biogeography,” in *Plant Microbiology*, M. Gillings, Ed., pp. 97–127, BIOS Scientific Publishers, Oxford, UK, 2004.

[3] M. Gtari, L. S. Tisa, and P. Normand, “Diversity of *Frankia* strains, actinobacteria symbionts of actinorhizal plants,” in *Symbiotic Endophytes, Soil Biology*, R. Aroca, Ed., vol. 37, Chapter 7, pp. 123–148, Springer, Berlin, Germany, 2013.

[4] M. L. Clawson, A. Bourret, and D. R. Benson, “Assessing the phylogeny of *Frankia*-actinorhizal plant nitrogen-fixing root nodule symbioses with *Frankia* 16S rRNA and glutamine synthetase gene sequences,” *Molecular Phylogenetics and Evolution*, vol. 31, no. 1, pp. 131–138, 2004.

[5] P. Normand, S. Orso, B. Courmoyer et al., “Molecular phylogeny of the genus *Frankia* and related genera and emendation of the family *Frankiaceae*,” *International Journal of Systematic Bacteriology*, vol. 46, no. 1, pp. 1–9, 1996.

[6] F. Ghodhbane-Gtari, I. Nouioui, M. Chair, A. Boudabous, and M. Gtari, “16S–23S rRNA intergenic spacer region variability in the genus *Frankia*,” *Microbial Ecology*, vol. 60, no. 3, pp. 487–495, 2010.

[7] I. Nouioui, F. Ghodhbane-Gtari, N. J. Beauchemin, L. S. Tisa, and M. Gtari, “Phylogeny of members of the *Frankia* genus based on gyrB, nifH and glnII sequences,” *Antonie van Leeuwenhoek*, vol. 100, no. 4, pp. 579–587, 2011.

[8] P. Normand and D. R. Benson, “Genus *I Frankia* Brunchorst 1886, 174AL,” in *Bergey’s Manual of Systematic Bacteriology, The Actinobacteria*, M. Goodfellow, P. Kämpfer, H.-J. Busse et al., Eds., vol. 5 of *Bergey’s Manual Trust*, pp. 512–520, Springer, New York, NY, USA, 2012.

[9] J. G. Torrey, “Cross-inoculation groups within *Frankia* and host-endosymbiont associations,” in *The Biology of Frankia and Actinorhizal Plants*, C. R. Schwintzer and J. D. Tjeekema, Eds., pp. 83–106, Academic Press, San Diego, Calif, USA, 1990.

[10] J. S. Kohls, J. Thimmapuram, C. A. Buschena, M. W. Paschke, and J. O. Dawson, “Nodulation patterns of actinorhizal plants in the family Rosaceae,” *Plant and Soil*, vol. 162, no. 2, pp. 229–239, 1994.

[11] M. S. Mirza, K. Pawlowski, F. Y. Hafeez, A. H. Chaudhary, and A. D. L. Akkermans, “Ultrastructure of the endophyte and localization of nifH transcripts in root nodules of *Coriaria nepalensis* Wall. by in situ hybridization,” *New Phytologist*, vol. 126, no. 1, pp. 131–136, 1994.

[12] G. Nick, E. Paget, P. Simonet, A. Moiroud, and P. Normand, “The nodular endophytes of *Coriaria* spp. form a distinct lineage within the genus *Frankia*,” *Molecular Ecology*, vol. 1, no. 3, pp. 175–181, 1992.

[13] M. Bosco, S. Jamann, C. Chapelon, and S. P. Normand, “*Frankia* microsymbiont in *Dryas drummondii* nodules is closely related to the microsymbiont of *Coriaria* and genetically distinct from other characterized *Frankia* strains,” in *Nitrogen Fixation with Non-Legumes*, N. A. Hegazi, M. Fayez, and M. Monib, Eds., pp. 173–183, The American University in Cairo Press, 1994.

[14] D. R. Benson, D. W. Stephens, M. L. Clawson, and W. B. Silvester, “Amplification of 16S rRNA genes from *Frankia* strains in root nodules of *Ceanothus Greggii*, *Coriaria arborea*, *Coriaria plumosa*, *Discaria tournatou*, and *Purshia tridentata*,” *Applied and Environmental Microbiology*, vol. 62, no. 8, pp. 2904–2909, 1996.

[15] D. R. Benson and M. L. Clawson, “Evolution of the actinorhizal plant symbioses,” in *Prokaryotic Nitrogen Fixation: A Model System for Analysis of Biological Process*, E. W. Triplett, Ed., pp. 207–224, Horizon Scientific Press, Wymondham, UK, 2000.

[16] B. D. Vanden Heuvel, D. R. Benson, E. Bortiri, and D. Potter, “Low genetic diversity among *Frankia* spp. strains nodulating sympatric populations of actinorhizal species of *Rosaceae, Ceanothus* (Rhamnaeae) and *Datisca glomerata* (Datiscaeae) west of the Sierra Nevada (California),” *Canadian Journal of Microbiology*, vol. 50, no. 12, pp. 989–1000, 2004.

[17] H. Ochman and A. C. Wilson, “Evolution in bacteria: evidence for a universal substitution rate in cellular genomes,” *Journal of Molecular Evolution*, vol. 26, no. 1-2, pp. 74–86, 1987.
[18] P. Simonet, E. Navarro, C. Rovier et al., “Co-evolution between Frankia populations and host plants in the family Casuarinaceae and consequent patterns of global dispersal,” Environmental Microbiology, vol. 1, no. 6, pp. 525–533, 1999.

[19] J. Yokoyama, M. Suzuki, K. Iwatsuki, and M. Hasebe, “Molecular phylogeny of Coriaria, with special emphasis on the disjunct distribution,” Molecular Phylogenetics and Evolution, vol. 14, no. 1, pp. 11–19, 2000.

[20] R. D. O. Good, “The geography of the genus Coriaria,” New Phytologist, vol. 29, pp. 170–198, 1930.

[21] H. H. Allan, “Coriariaceae,” in Flora of New Zealand, L. B. Moore, Ed., pp. 300–305, Government printer, Wellington, New Zealand, 1961.

[22] R. Melville, “Continental drift, mesozoic continents and the migrations of the angiosperms,” Nature, vol. 211, no. 5045, pp. 116–120, 1966.

[23] L. E. Skog, “The genus Coriaria Coriariaceae in the Western Hemisphere,” Rhodora, vol. 74, pp. 242–253, 1972.

[24] R. Melville, “Vicarious plant distributions and paleogeography of the Pacific region,” in Vicariance Biogeography, G. Nelson and E. D. Rosen, Eds., pp. 413–435, Columbia University Press, New York, NY, USA, 1981.

[25] C. D. Bell, D. E. Soltis, and P. S. Soltis, “The age and diversification of the angiosperms re-revisited,” American Journal of Botany, vol. 97, no. 8, pp. 1296–1303, 2010.

[26] C. Rovier, J. Schwenke, Y. Prin et al., “Biologie et diversité génétique des souches de Frankia associées aux Casuarinacées,” Acta Botanica Gallica, vol. 143, pp. 567–580, 1996.

[27] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680, 1994.

[28] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, and M. Kumar, “MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods,” Molecular Biology and Evolution, vol. 28, no. 10, pp. 2731–2739, 2011.

[29] M. Kimura, “A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences,” Journal of Molecular Evolution, vol. 16, no. 2, pp. 111–120, 1980.

[30] N. Saitou and M. Nei, “The neighbor-joining method: a new method for reconstructing phylogenetic trees,” Molecular Biology and Evolution, vol. 4, no. 4, pp. 406–425, 1987.

[31] J. Felsenstein, “Confidence limits on phylogenies: an approach using the bootstrap,” Evolution, vol. 39, pp. 783–791, 1985.

[32] F. Ronquist and J. P. Huelsenbeck, “MrBayes 3: bayesian phylogenetic inference under mixed models,” Bioinformatics, vol. 19, no. 12, pp. 1572–1574, 2003.

[33] P. Legendre, Y. Dessevies, and E. Bazin, “A statistical test for host-parasite coevolution,” Systematic Biology, vol. 51, no. 2, pp. 217–234, 2002.

[34] J. P. Meier-Kolthoff, A. F. Auch, D. H. Huson, and M. Göker, “CopyCat: cophylogenetic analysis tool,” Bioinformatics, vol. 23, no. 7, pp. 898–900, 2007.

[35] R. Ihaka and R. Gentleman, “R: a language for data analysis and graphics,” Journal of Computational and Graphical Statistics, vol. 5, no. 3, pp. 299–314, 1996.

[36] A. N. Gladkova, “Fragments of the history of the Myricaceae family,” Pollen and Spore, vol. 4, p. 345, 1962.