Advantages and Disadvantages of Applying the NHT Type Cooperative Learning Model Physics Learning in School

Hadma Yuliani, Normilawati, Tiya Andani and Maryam Aulia
Program Studi Tadris (Pendidikan) Fisika, Fakultas Tarbiyah dan Ilmu Keguruan
Institut Agama Islam Negeri Palangkaraya, Palangkaraya, Indonesia
hadma.yuliani@iain-palangkaraya.ac.id

Abstract
This study analyses the advantages and disadvantages of cooperative learning type Numbered Head Together (NHT). The method in this research is a literature study based on previous research. The analysis technique used in this research is descriptive qualitative obtained from books and journals. Based on literature from 26 articles in scientific journals, it was found that the advantages of this type of NHT cooperative learning model are to make students more active, make students more interested in learning, think critically and responsibly and can improve student learning outcomes. While the obstacle in this learning model is the lack of time management so that not all students can present the results of the discussions obtained during the learning process.

Keyword: Advantages; Disadvantages; NHT

Received : 15 December 2020
Accepted : 28 February 2021
Published : 28 February 2021
DOI : https://doi.org/10.20527/jipf.v5i1.2822

How to cite: Yuliani, H., Normilawati, T., & Aulia, M. (2021). Advantages and disadvantages of applying the NHT type cooperative learning model physics learning in school. Jurnal Ilmiah Pendidikan Fisika, 5(1), 55-61.

INTRODUCTION
Physics is a collection of knowledge that significantly influences the ability to master science and technology (Aslamiyah, Masturi, & Nugroho, 2017). Physics is a collection of knowledge, ways of thinking, and investigation. Physics is seen as a process and, at the same time, a product. Therefore, learning must consider effective and efficient learning strategies or methods (Susanti, Ayub, & Taufik, 2016).

In learning physics, a person is often faced with learning difficulties (Azizah, 2015). Several factors can cause learning difficulties. One of them is the use of learning methods that are not suitable so that the solution that can be given to facilitate understanding of physics concepts is to use cooperative learning models. One of the learning models that can help is the NHT type of cooperative learning model (Subur, 2015).

In cooperative learning, a learning strategy is applied to many students as small groups with different levels of ability (Sanjaya, 2014). In group assignments, each group member must work together and help each other to understand the subject matter. In this learning, learning is said to be incomplete if one of the group's friends has not mastered the learning material (Taniredja, Faridli, & Harmianto, 2014). Cooperative learning has proven to be an effective learning tool for students'
various characteristics and social backgrounds because it can improve student academic achievement (Warsono & Hariyanto, 2013).

Numbered Head Together (NHT) or numbering thinking together is a type of cooperative learning designed to influence student interaction patterns and as an alternative to traditional classroom structures. Developed by Russ Frank, this type provides opportunities for students to share ideas, consider the most appropriate answers, increase the spirit of student cooperation, and be used for all subjects and grade levels (Huda, 2016). In asking questions to the whole class, the teacher uses a four-phase structure: the numbering phase, the question phase, the thinking phase, the answering phase (Simanjuntak & Soedjito, 2014).

Therefore, based on the problems in learning physics above, the authors are interested in discussing the advantages and disadvantages of the NHT type cooperative learning model because it is considered capable of making students more active, responsible and able to work together between group members learning physics.

METHODS

The research was conducted using the literature study method based on existing research and library sources such as books, archives, old documents, journals, notes, etc. to obtain data (Sani, 2014). It is then managed again into a valid material unit to produce a simpler discussion component for further study. In literature study, there are at least four main characteristics that the author needs to pay attention to, including (a) Authors of direct association with text or numerical data, not with direct knowledge from the field; (b) Library data is "ready to use" means that the author does not go directly into the field because the author is dealing directly with existing data sources in the library; (c) Library data is generally a secondary source, in the sense that the author obtains material or data from second hand and not data from the first in the field; (d) Library data is not limited by time and space (Trianto, 2012). Sources of data in this study include 26 articles from scientific journals.

RESULTS & DISCUSSION

Based on the literature, it is found that the advantages of this type of NHT cooperative learning model are that it can improve student learning outcomes (sourced from 10 articles in accredited and non-accredited national journals); make students more interested in learning (sourced from 2 articles in accredited and non-accredited national journals); make students more active, think critically and be responsible (sourced from 12 articles in accredited and non-accredited national journals). In comparison, this learning model's obstacle is the lack of time management (source from 2 articles in national journals).

| The advantages of the type of learning model are numbered head together | The Disadvantages of Types of Learning Model Same head number |
|---|---|
| Improve learning outcomes | 10 articles |
| Make students interested | 2 articles |
| Students become more active, think critically and be responsible | 12 articles |
| Time problem | 2 articles |
| Total | 26 articles |
The learning model is a conceptual framework in the form of a systematic procedure pattern developed based on theory and used in organizing the learning process (Huda, 2016). One of the learning models is cooperative learning (Trianto, 2012). Cooperative learning is a learning strategy through small groups of students who maximize learning conditions to achieve learning goals (Wati & Rini, 2016). In a cooperative learning system, students learn to cooperate with other members to have two responsibilities, namely learning by themselves and helping fellow members learn (Trianto, 2012).

Cooperative learning models have many learning types, one of which is Numbered Head Together (NHT) (Simanjuntak, 2013). Numbered Head Together is an approach developed by Spencer Kagen in 1993 to involve more students in studying the material covered in a lesson and checking their understanding of the lesson's content (Sani, 2014).

There are four steps in its implementation: (a) Numbering. The teacher divides students into groups of 3-5 people, and each group is numbered 1-5; (b) Asking the question, the teacher asks a question to students. The questions may vary. Questions can be particular and take the form of an interrogative sentence such as, "What are the properties of an object?" or in the form of directions such as: "Make sure everyone knows the various properties of objects!"; (c) Think Together, students synthesize their opinions on the answer to that question and make sure the flap team members know the answer; (d) Answer, the teacher calls a certain number then the student whose number matches it must raise a hand and try to answer questions for the whole class (Sani, 2014).

The advantages of the NHT Type Cooperative Learning Model in Physics Learning
The advantage of applying this learning model compared to other learning models is that it improves physics learning outcomes significantly in all cognitive aspects because it provides good benefits to students with varied thinking skills and also provides opportunities for students to exchange ideas and consider the answers obtained (Afta, Sada, & Etovia, 2016; Basonggo, Darskin, & Pasaribu, 2019; Batubara & Sinulingga, 2014; Damanik, Panjaitan, & Simangunsong, 2020; Juniar Hutahaean & Ratna, 2014; Mahir, 2015; Nurazizah, Sudarto, & Yunus, 2017; Nurhadisah, Halim, & Khandun, 2014; Prastiti, 2016; Purnomo, Sinon, & Widyaningsih, 2017; Rasyid, Pasaribu, & Kamaluddin, 2015; Sari, Husna, & Anaperta, 2017; Susanti et al., 2016; Yuli, Sahidu, & Ayub, 2018). The NHT type of cooperative learning makes students more active, able to share and work together (Sari et al., 2017). This model will also make it easier for students to understand concepts if they discuss each other with messages, following the characteristics of this method, namely group discussions (Dewi, Prihandono, & Handayani, 2016; Nurazizah et al., 2017). Besides that, it can also make students creative in the learning process. During the cooperative learning process of the NHT type, student learning activities also increase, as indicated by the increasing number of students who pay attention and listen to the teacher’s directions to provide satisfactory learning outcomes (Damanik et al., 2020).

The NHT type can easily support critical thinking processes in students such as identifying problems, providing hypotheses on problems, then analyzing problems and discussing these problems in groups, and students also feel happy when they are directly involved in
In the numbering step, students in-group members are given different numbers so that students become more responsible for the assigned task; in the step of thinking together (head together), they focus on completing the task (Siregar, 2012). Given because this step can be a forum for students to work together to achieve learning objectives in completing academic tasks such as answering questions about the material from the teacher as well as in the step of asking questions (questioning) and giving answers (answering), making each group member will help each other for the success and good name of the group (Mahir, 2015). The application of the NHT type cooperative learning model, which is carried out with the assistance of other media such as student worksheet (student guides to solve a problem in learning), can also improve students creative thinking skills because if media accompany the learning model, it can make students understand more about the lesson (Nor, Suryani, & Zulhelmi, 2009).

The learning model with the NHT type can make students interested and feel that physics learning is not boring, and job training and student activeness in learning (Basonggo et al., 2019; Prastiti, 2016). NHT type cooperative learning also affects students attitudes and knowledge on physics learning; then, when experimental methods accompany the NHT type cooperative learning, it will affect student skills and the development of scientific attitudes (Bektiarso, Haniyah, & Wahyuni, 2014; Hidayah, 2018; Rahmawati, Nugroho, & Putra, 2014). This model's application is also considered to have a good impact on students understanding of physics concepts and scientific communication (Hidayah, 2018; Sari et al., 2017). The NHT type of cooperative learning model can help involve more in reviewing the material to make students appear to be active during the learning process. This can also increase individual responsibility in group discussions (Hakim & Rambe, 2012; Hidayah, 2018; Rasyid et al., 2015; Rofiqoh, Mahardika, & Yushardi., 2015; Sari, Supriatin, & Yuliani, 2015; Setianingrum & Sunarti, 2013).

**Constraints of the NHT Type Cooperative Learning Model in Physics Learning**

Some of the obstacles experienced in implementing this type of NHT cooperative learning model are the problem of time because time is considered insufficient to complete the learning process (Hidayah, 2018; Nursyamsi, Corebima, & Susilo, 2016; Prastiti, 2016; Rasyid et al., 2015; Susanti et al., 2016). In this application, students are also not used to doing experiments and discussions, making learning less effective (Hutahaean & Ratna, 2014; Prastiti, 2016). So in its implementation, it is suggested to make learning more interesting (Rasyid et al., 2015), and careful planning and preparation are needed before it is implemented in class so that it can run according to the learning objectives to be achieved (Simanjuntak, 2013). More attention is needed to the material and test instruments used in this study, especially for verbal and figural creativity test instruments (Prastiti, 2016).

**CONCLUSION**

The NHT type cooperative learning model is proven to improve student learning outcomes and attitudes. The advantages of the NHT type of cooperative learning model are that it can make students more active, work together between group members, respect other opinions during discussions, and instil an attitude of responsibility towards oneself. While
the constraints in this learning model are the lack of time management so that not all students can present the discussion results, there are still students who do not pay attention so that they are relaxed with their activities. Some students do not participate in group discussions, and uneven group division is needed division of groups with variations in student abilities.

REFERENCE
Afta, Y., Sada, C., & Etiovia, R. Y. (2016). Penerapan model pembelajaran tipe number heads together (nht) berbasis pendekatan saintifik terhadap hasil belajar ipa. Jurnal Pendidikan Dasar, 4(1), 103.
Aslamiyah, L., Masturi, & Nugroho, S. E. (2017). Pengembangan media pembelajaran fisika berbasis integrasi –interkoneksi nilai-nilai Al-Quran. Jurnal Fisika, 6(3), 45.
Azizah, R. (2015). Kesulitan pemecahan masalah fisika pada siswa sma. Jurnal Penelitian Dan Aplikasinya, 5(2), 45.
Basonggo, H., Darsikin, & Pasaribu, M. (2019). Pengaruh model pembelajaran numbered head together (nht) terhadap hasil belajar fisika siswa kelas VIII SMP Negeri 19 Palu. Jurnal Pendidikan Fisika Tadulako, 7(1), 5.
Batubara, F., & Sinulingga, K. (2014). Pengaruh model pembelajaran kooperatif tipe number head together terhadap hasil belajar siswa smp pada materi getaran dan gelombang. Jurnal Unimed, 2(2), 53.
Bektiarso, S., Haniyah, L., & Wahyuni, S. (2014). Model pembelajaran kooperatif tipe nht (numbered head together) disertai metode eksperimen pada pembelajaran ipa fisika smp. Jurnal Pembelajaran Fisika, 3(1), 6–8.
Damanik, D. P., Panjaitan, J., & Simangunsong, I. T. (2020). Pengaruh model pembelajaran kooperatif nht (numbered head together) berbantuan mind mapping terhadap hasil belajar fisika pada materi pokok listrik dinamis. Jurnal Darma Agung, 28(1), 98.
Dewi, D. R., Prihando, T., & Handayani, R. D. (2016). Penerapan model pembelajaran kooperatif tipe nht disertai metode eksperimen pada pembelajaran fisika kelas X di SMA negeri Arjasa. Jurnal Pembelajaran Fisika, 5(1), 49–51.
Hakim, A., & Rambe, D. (2012). Perbedaan hasil belajar fisika dengan menggunakan model pembelajaran kooperatif tipe nht dan model konvensional pada materi pokok besaran dan satuan. Jurnal Pendidikan Fisika, 1(2), 12.
Hidayah, N. (2018). Pengaruh model pembelajaran kooperatif tipe numbered head together terhadap pemahaman konsep fisika siswa di SMA Negeri 2 Tebih Tinggi, 433–434.
Huda, M. (2016). Cooperative Learning: metode, teknik, struktur dan model terapan. Yogyakarta: Pustaka Pelajar.
Hutahaean, J, & Ratna, S. D. (2014). Pengaruh model pembelajaran kooperatif tipe numbered heads together (nht) dengan menggunakan media mindmapping terhadap hasil belajar siswa kelas xi semester 2 pada materi pokok fluida statis di SMA Negeri 10 Medan TP. 2013/2014. Jurnal Inpafi, 2(4), 66.
Mahir, M. (2015). Peningkatan hasil belajar fisika melalui model pembelajaran kooperatif tipe numbered heads together pada peserta didik kelas XI IPA 4 SMA Negeri 16 Makassar. JPF, 4(1), 82–86.
Nor, M., Suryani, L., & Zulhelmi, Z. (2009). Keterampilan sosial siswa dalam pembelajaran fisika melalui penerapan model kooperatif...
pendekatan nht dan tsos Di Kelas X SMA Negeri 12 Pekanbaru. Jurnal Geliga Sains, 3(1), 42.
Nurazizah, N., Sudarto, S., & Yunus, S. R. (2017). Pengaruh penggunaan metode mind mapping pada model pembelajaran kooperatif tipe nht (number head together) terhadap keterampilan berpikir kreatif dan hasil belajar ipa peserta didik kelas VII SMPN 6 Watampone. JIT, 1(1), 80.
Nurhadisah, N., Halim, A., & Khaldun, I. (2014). Pembelajaran kooperatif tipe numbered head together dengan pendekatan inkuiri untuk meningkatkan penguasaan konsep kalor siswa SMA. Jurnal Pendidikan Sains Indonesia, 2(1), 58–63.
Nursyamsi, S. Y., Corebima, A. D., & Susilo, H. (2016). Pengaruh strategi pembelajaran numbered heads together (nht) terhadap hasil belajar siswa SMA Negeri 1 Muara Badak. Jurnal Pendidikan: Teori, Penelitian, Dan Pengembangan, 4(10), 1997.
Prastiti, W. (2016). Penerapan pembelajaran kooperatif tipe numbered head together (nht) pada materi gerak parabola dan gerak melingkar melalui kegiatan lesson study. Jurnal Pendidikan Fisika, 4(1), 57.
Purnomo, B. E., Sinon, I. L. S., & Widyaningish, S. R. (2017). Penerapan model kooperatif tipe nht untuk meningkatkan partisipasi dan prestasi belajar fisika. Jurnal Sainsmat, 6(1), 70–73.
Rahmawati, D., Nugroho, S. E., & Putra, N. M. D. (2014). Penerapan model pembelajaran kooperatif tipe numbered head together berbasis eksperimen untuk meningkatkan keterampilan proses sains siswa smp. Unnes Physics Education Journal, 3(1), 41–45.
Rasyid, A., Pasaribu, M., & Kamaluddin, H. (2015). Pengaruh model pembelajaran kooperatif tipe nht (numbered heads together) dan kemampuan awal terhadap hasil belajar siswa pada mata pelajaran fisika di SMP Negeri 2 Poso. Jurnal Mitra Sains, 3(1), 64.
Rofiqoh, F., Mahardika, I. K., & Yushardi, (2015). Pengaruh model pembelajaran kooperatif tipe numbered head together (nht) disertai media monopoly games terintegrasi pendekatan problem solving pada pembelajaran fisika di sma. Jurnal Pembelajaran Fisika, 4(3), 202.
Sani, R. A. (2014). Inovasi Pembelajaran. Jakarta: Bumi Aksara.
Sanjaya, W. (2014). Strategi Pembelajaran Berorientasi Standar Proses Pendidikan. Jakarta: Pranada Media.
Sari, E. W., Husna, H., & Anaperta, M. (2017). Pengaruh penerapan model pembelajaran kooperatif tipe numbered head together (nht) terhadap pemahaman konsep ipa fisika siswa kelas vii SMP Muhammadiyah 6 Padang.
Sari, R. K., Supriatin, A., & Yuliani, H. (2015). Perbandingan model pembelajaran kooperatif tipe numbered head together (nht) dan study team achievement division (stad) ditinjau dari sikap ilmiah siswa. EduSains, 3(2), 107.
Setianingrum, R. P., & Sunarti, T. (2013). Penerapan model pembelajaran kooperatif tipe nht dengan media physicround pada materi cahaya. Jurnal Inovasi Pendidikan Fisika, 2(2), 90.
Simanjuntak, B. A., & Soedjito, S. (2014). Metode Penelitian Sosial. Jakarta: Yayasan Pustaka Obor Indonesia dan Conservation International.
Simanjuntak, M. P. (2013). Implementasi model pembelajaran kooperatif tipe nht terhadap hasil
belajar siswa SMP pada materi gaya
dan hukum Newton T.P 2012/2013.  
*Jurnal Inpafi, 1(2), 111–113.*

Siregar, A. F. (2012). Pengaruh model kooperatif tipe nht terhadap hasil belajar siswa kelas viii SMP Negeri 18 Medan. *Jurnal Pendidikan Fisika, 1*(1), 38.

Subur, S. (2015). *Pembelajaran Nilai Moral Berbasis Kisah.* Yogyakarta: Kalimedia.

Susanti, F., Ayub, S., & Taufik, M. (2016). Perbedaan hasil belajar fisika melalui model pembelajaran kooperatif tipe numbered heads together (nht) berbantuan kartu soal dengan model pembelajaran direct instruction di SMAN 7 Mataram Tahun Ajaran 2015/2016. *Jurnal Pendidikan Fisika Dan Teknologi, 2*(4), 150–152.

Taniredja, T., Faridli, E. M., & Harmianto, S. (2014). *Model-Model Pembelajaran Inovatif dan Efektif.* Bandung: Alfabeta.

Trianto, T. (2012). *Model Pembelajaran Terpadu* Jakarta: Bumi Aksara.

Warsono, W., & Hariyanto, H. (2013). *Pembelajaran aktif.* Bandung: Remaja Rosdakarya.

Wati, W., & Rini, F. (2016). Effect size model pembelajaran kooperatif tipe numbered heads together (nht) terhadap kemampuan berpikir kritis siswa pada pembelajaran fisika. *Berkala Ilmiah Pendidikan Fisika, 5*(2), 219–220.

Yuli, Sahidu, H., & Ayub, S. (2018). Pengaruh model pembelajaran kooperatif tipe numbered heads together (nht) berbantuan lkpd terhadap kemampuan berpikir kreatif fisika peserta didik Di SMAN Mataram. *Jurnal Pendidikan Fisika Dan Teknologi, 4*(1), 54–55.