Supplementary to “Robust Inference of Bi-Directional Causal Relationships in Presence of Correlated Pleiotropy with GWAS Summary Data”

Haoran Xue¹ and Wei Pan¹, ²

¹Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota 55455.
²Corresponding author. Email: panxx014@umn.edu. Phone: 612-624-4655. Fax: 612-626-0660.

Contents

S1 Full Simulation Results

S2 Full Real Data Results
 S2.1 48 Risk Factor-Disease Pairs
 S2.2 Pairs of 4 Diseases
 S2.3 Links to GWAS Summary Datasets

S3 Theoretical Results
 S3.1 Proof of Theorem 1
 S3.2 Proof of Theorem 2
 S3.3 MR-cML with Data Perturbation
S1 Full Simulation Results

S1 Fig: When both X and Y are continuous, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S2 Fig: When both X and Y are continuous, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[
\theta_{XY} = 0, \xi \sim \text{Unif}(-0.2,0.2), \text{ X Continuous, Y Continuous}
\]
S3 Fig: When both X and Y are continuous, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S4 Fig: When both X and Y are continuous, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S5 Fig: When both X and Y are continuous, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S6 Fig: When both X and Y are continuous, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[\theta_{XY} = 0.1, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Continuous, } Y \text{ Continuous} \]
S7 Fig: When both X and Y are continuous, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S8 Fig: When both X and Y are continuous, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

$\theta_{XY} = 0.2$, $\xi \sim \text{Unif}(-0.2,0.2)$, X Continuous, Y Continuous
S9 Fig: When both X and Y are continuous, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

$\theta_{XY} = 0.3$, $\xi = 0$, X Continuous, Y Continuous
S10 Fig: When both X and Y are continuous, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S11 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S12 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[\theta_{XY} = 0, \xi \sim \text{Unif}(-0.2,0.2), \text{X Binary, Y Continuous} \]
S13 Fig: When \(X \) is binary, \(Y \) is continuous, \(\theta_{XY} = 0.02 \) and \(\xi = 0 \), the proportions of significant simulation results obtained by the methods for direction \(X \rightarrow Y \) (left column) and \(Y \rightarrow X \) (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S14 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[\theta_{XY} = 0.02, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Binary}, Y \text{ Continuous} \]
S15 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S16 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S17 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S18 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S19 Fig: When X is binary, Y is continuous, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S20 Fig: When \(X \) is binary, \(Y \) is continuous, \(\theta_{XY} = 0.3 \) and \(\xi \sim \text{Unif}(-0.2,0.2) \), the proportions of significant simulation results obtained by the methods for direction \(X \to Y \) (left column) and \(Y \to X \) (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S21 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S22 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
When X is continuous, Y is binary, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S24 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S25 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[\theta_{XY} = 0.1, \xi = 0, X \text{ Continuous, } Y \text{ Binary} \]
S26 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S27 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

\[
\theta_{XY} = 0.2, \xi = 0, X \text{ Continuous, } Y \text{ Binary}
\]
S28 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
When X is continuous, Y is binary, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S30 Fig: When X is continuous, Y is binary, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

$\theta_{XY} = 0.3, \xi \sim \text{Unif}(-0.2,0.2), X \text{ Continuous, Y Binary}$
S31 Fig: When both X and Y are binary, $\theta_{XY} = 0$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S32 Fig: When both X and Y are binary, $\theta_{XY} = 0$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S33 Fig: When both X and Y are binary, $\theta_{XY} = 0.02$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S34 Fig: When both X and Y are binary, $\theta_{XY} = 0.02$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S35 Fig: When both X and Y are binary, $\theta_{XY} = 0.1$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.

$\theta_{XY} = 0.1$, $\xi = 0$, X Binary, Y Binary

![Graph showing proportions of significant results for different methods and directions.](image-url)
S36 Fig: When both X and Y are binary, $\theta_{XY} = 0.1$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \to Y$ (left column) and $Y \to X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
When both X and Y are binary, $\theta_{XY} = 0.2$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S38 Fig: When both X and Y are binary, $\theta_{XY} = 0.2$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S39 Fig: When both X and Y are binary, $\theta_{XY} = 0.3$ and $\xi = 0$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
When both X and Y are binary, $\theta_{XY} = 0.3$ and $\xi \sim \text{Unif}(-0.2,0.2)$, the proportions of significant simulation results obtained by the methods for direction $X \rightarrow Y$ (left column) and $Y \rightarrow X$ (right column). The first row shows results for four main methods: MR-cML-DP-S, CD-cML-DP-S, CD-Ratio-S, and CD-Egger-S; the second row shows results for four methods without screening: MR-cML-DP, CD-cML-DP, CD-Ratio, and CD-Egger; the third row shows results for other five methods.
S2 Full Real Data Results

S2.1 48 Risk Factor-Disease Pairs

S1 Table: Inferring causal effects between first 6 risk factors and CAD. In each cell we show the Bonferroni adjusted 1-0.05/96 \approx 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant results. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.
S2 Table: Inferring causal effects between second 6 risk factors and CAD. In each cell we show the Bonferroni adjusted 1-0.05/96 = 0.9995 confidence intervals (CIs) of \(\theta \) for the MR methods, and CIs of \(K \) for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	Direction	BW to CAD	CAD to CAD	DBP to CAD	DBP to DBP	SBP to CAD	SBP to DBP	FG to CAD	CAD to FG	Smoke to CAD	CAD to Smoke	Alcohol to CAD	CAD to Alcohol
MR-CML-DP-S	TRUE	0.057	0.968	0.009	0.603	TRUE	TRUE	0.129	0.131	FALSE	FALSE	FALSE	TRUE
	FALSE	0.027	0.997	0.068	0.074	FALSE	TRUE	0.369	0.265	FALSE	TRUE	FALSE	TRUE
MR-CML-S	TRUE	0.026	0.009	0.059	0.076	TRUE	TRUE	0.038	0.055	TRUE	FALSE	TRUE	TRUE
	FALSE	0.025	0.084	0.047	0.055	FALSE	TRUE	0.537	0.357	FALSE	TRUE	TRUE	TRUE
CD-3ML-DP-S	FALSE	0.002	0.043	0.196	0.272	FALSE	FALSE	0.130	0.230	TRUE	TRUE	TRUE	TRUE
	TRUE	0.012	0.008	0.024	0.061	TRUE	TRUE	0.009	0.014	FALSE	FALSE	FALSE	FALSE
CD-3ML-S	FALSE	0.002	0.012	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.012	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-Ratio-S	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-Egger-S	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
MR-CML-DP	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
MR-CML	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-CML-DP	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-CML	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-Ratio	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
CD-Egger	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
Steiger	FALSE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
	TRUE	0.002	0.009	0.014	0.029	FALSE	FALSE	0.012	0.014	FALSE	FALSE	FALSE	FALSE
S3 Table: Inferring causal effects between first 6 risk factors and Stroke. In each cell we show the Bonferroni adjusted 1-0.05/96 ≈ 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	TG to Stroke	Stroke to TG	LDL to Stroke	Stroke to LDL	HDL to Stroke	Stroke to HDL	Height to Stroke	Stroke to Height	BMI to Stroke	Stroke to BMI	BF to Stroke	Stroke to BF
MR-ML-DP-S	c(0.169, 0.179)	FALSE	0.098	0.188	0.014	0.111	0.082	0.137	0.014	0.099	0.011	0.451
MR-ML-S	c(0.198, 0.217)	FALSE	0.188	0.083	0.089	0.095	0.064	0.054	0.015	0.098	0.013	0.451
CD-ML-DP-S	c(0.022, 0.023)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-ML-S	c(0.018, 0.021)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-Ratio-S	c(0.018, 0.021)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-Ratio	c(0.018, 0.021)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-Egger-S	c(0.035, 0.062)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-Egger	c(0.035, 0.062)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
MR-ML-DP	c(0.169, 0.179)	FALSE	0.098	0.188	0.014	0.111	0.082	0.137	0.014	0.099	0.011	0.451
MR-ML	c(0.088, 0.155)	FALSE	0.188	0.083	0.083	0.083	0.064	0.054	0.003	0.085	0.006	0.451
CD-ML-DP	c(0.022, 0.023)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-ML	c(0.022, 0.023)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD	c(0.022, 0.023)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
CD-Egger	c(0.018, 0.018)	FALSE	0.098	0.029	0.029	0.029	0.005	0.018	0.018	0.018	0.018	0.018
LHC-ML	c(0.589, 0.640)	FALSE	0.188	0.083	0.083	0.083	0.064	0.054	0.015	0.098	0.006	0.451
Steiger	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE
S4 Table: Inferring causal effects between second 6 risk factors and Stroke. In each cell we show the Bonferroni adjusted 1-0.05/96 ≈ 0.9995 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method Type	Direction	Stroke to	Alcohol to Stroke	Alcohol to Stroke									
MR-cML-DP-S	BW to Stroke	(1.477, 0.088)	FALSE	(1.058, 0.062)	FALSE	(1.057, 0.045)	TRUE	(1.045, 0.049)	TRUE	(1.031, 0.319)	FALSE	(1.044, 0.510)	FALSE
MR-cML-S	BW to Stroke	(1.478, 0.086)	TRUE	(1.058, 0.062)	FALSE	(1.057, 0.045)	TRUE	(1.045, 0.049)	TRUE	(1.031, 0.319)	FALSE	(1.044, 0.510)	FALSE
CD-3ML-DP-S	Stroke to Stroke	(1.047, 0.062)	FALSE	(0.108, 0.074)	TRUE	(0.107, 0.212)	TRUE	(0.140, 0.240)	TRUE	(0.103, 0.195)	FALSE	(0.108, 0.474)	FALSE
CD-3ML-S	Stroke to Stroke	(1.047, 0.062)	FALSE	(0.108, 0.074)	TRUE	(0.107, 0.212)	TRUE	(0.140, 0.240)	TRUE	(0.103, 0.195)	FALSE	(0.108, 0.474)	FALSE
CD-Ratio-S	Stroke to Stroke	(1.047, 0.062)	FALSE	(0.108, 0.074)	TRUE	(0.107, 0.212)	TRUE	(0.140, 0.240)	TRUE	(0.103, 0.195)	FALSE	(0.108, 0.474)	FALSE
CD-Egger-S	Stroke to Stroke	(1.047, 0.062)	FALSE	(0.108, 0.074)	TRUE	(0.107, 0.212)	TRUE	(0.140, 0.240)	TRUE	(0.103, 0.195)	FALSE	(0.108, 0.474)	FALSE

Legend: TRUE/FALSE indicates whether the result is significant or not, and the cells giving significant results are marked in red.
S5 Table: Inferring causal effects between first 6 risk factors and T2D. In each cell we show the Bonferroni adjusted $1 - 0.05/96 \approx 0.9995$ confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	Direction	TG to T2D	T2D to TG	LDL to T2D	T2D to LDL	HDL to T2D	T2D to HDL	Height to T2D	T2D to Height	BMI to T2D	T2D to BMI	TF to T2D	T2D to TF	BF to T2D	T2D to BF
MR-cML-IP-S	TRUE	0.164	0.217	0.203	0.024	0.035	0.021	0.154	0.057	FALSE	0.409	0.042	FALSE	0.289	0.089
MR-cML-S	TRUE	0.095	0.185	0.135	0.039	0.039	0.039	0.154	0.057	FALSE	0.409	0.042	FALSE	0.124	0.034
CD-ML-TP-S	TRUE	0.113	0.029	0.066	0.055	0.042	0.042	0.061	0.061	FALSE	0.409	0.042	FALSE	0.289	0.089
MR-cML-TP	TRUE	0.095	0.185	0.135	0.039	0.039	0.039	0.154	0.057	FALSE	0.409	0.042	FALSE	0.124	0.034
CD-ML	FALSE	0.181	0.181	0.181	0.181	0.181	0.181	0.181	0.181	TRUE	3.329	0.032	TRUE	0.289	0.089
CD-ML-IP	TRUE	0.111	0.029	0.066	0.055	0.042	0.042	0.061	0.061	FALSE	0.409	0.042	FALSE	0.124	0.034
CD-ML-TP	TRUE	0.095	0.185	0.135	0.039	0.039	0.039	0.154	0.057	FALSE	0.409	0.042	FALSE	0.124	0.034
S6 Table: Inferring causal effects between second 6 risk factors and T2D. In each cell we show the Bonferroni adjusted $1-0.05/96 \approx 0.9995$ confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	Direction	BW to T2D	BW to T2D	BW to DBP	DBP to T2D	DBP to DBP	DBP to SSB	T2D to T2D	T2D to T2D	T2D to SSB	SSB to T2D	T2D to FG	FG to T2D	T2D to Smoke	Smoke to T2D	Alcohol to T2D	Alcohol to T2D	T2D to Alcohol	
MR-cML-DP-S		0.226	0.034	0.004	0.412	0.039	0.185	0.215	1.344	0.177	0.064	0.029	0.614	0.177	0.064	0.051	0.177	0.064	0.177
MR-cML-S		0.015	0.044	0.001	0.041	0.030	1.677	2.842	0.106	0.241	0.023	0.608	0.177	0.064	0.177	0.064	0.177	0.064	0.177
CD-3ML-DP-S		0.749	0.195	0.006	0.177	1.103	0.031	0.411	0.134	0.207	0.781	0.030	0.959	0.195	0.030	0.177	0.030	0.195	0.030
CD-3ML-S		0.012	0.019	0.005	0.160	0.021	0.666	0.614	0.218	0.041	0.036	0.027	0.014	0.021	0.041	0.041	0.014	0.027	0.041
CD-Ratio-S		0.364	0.188	0.352	0.011	0.47	0.062	0.671	0.235	0.215	0.383	0.101	0.813	0.011	0.383	0.011	0.813	0.011	0.383
CD-Egger-S		0.201	0.123	0.413	0.057	0.549	0.012	1.055	0.276	0.018	0.015	0.016	1.056	0.014	0.016	0.015	1.060	0.006	0.015
MR-cML-DP		0.245	0.054	0.056	0.012	0.039	1.585	3.221	0.11	0.959	0.029	0.614	0.177	0.029	0.614	0.177	0.029	0.614	0.177
MR-cML-S		0.015	0.044	0.041	0.034	0.069	0.033	0.016	0.039	0.016	0.021	0.218	0.006	0.021	0.218	0.006	0.021	0.218	0.006
CD-3ML-DP-S		0.399	0.223	0.452	0.054	0.549	0.013	0.411	0.043	0.847	0.038	0.959	0.151	0.038	0.959	0.151	0.038	0.959	0.151
CD-3ML-S		0.012	0.019	0.356	0.005	0.466	0.020	0.019	0.167	0.020	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019	0.019
CD-Ratio-S		0.007	0.028	0.322	0.001	0.185	0.024	0.388	0.017	0.017	0.038	0.001	0.038	0.017	0.038	0.017	0.038	0.017	0.038
CD-Egger-S		0.172	0.123	0.569	0.087	0.106	0.017	0.017	0.421	0.017	0.421	0.017	0.017	0.421	0.017	0.017	0.017	0.421	0.017
LHC-MR		0.118	0.068	0.789	0.248	0.001	1.007	0.216	0.5	0.216	0.5	0.216	0.5	0.216	0.5	0.216	0.5	0.216	0.5
Steiger		0.018	0.045	0.097	0.042	0.048	0.091	0.032	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055

47
S7 Table: Inferring causal effects between first 6 risk factors and Asthma. In each cell we show the Bonferroni adjusted $1-0.05/96 \approx 0.9995$ confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	TG to Asthma	LDL to Asthma	Asthma to LDE	HDL to Asthma	Asthma to BMI	BMI to Asthma	Asthma to BF	BF to Asthma
CD-cML-DP-S	0.059, 0.043	0.013	0.033	0.032	0.026	0.041	0.023	0.026
CD-cML-S	0.042, 0.031	0.010	0.031	0.036	0.029	0.042	0.029	0.029
MR-cML-DP-S	0.064, 0.018	0.010	0.031	0.036	0.029	0.042	0.029	0.029
MR-cML-S	0.056, 0.017	0.010	0.031	0.036	0.029	0.042	0.029	0.029
CD-Ratio-S	0.022, 0.012	0.003	0.016	0.030	0.029	0.032	0.029	0.029
CD-Egger-S	0.027, 0.017	0.003	0.016	0.030	0.029	0.032	0.029	0.029
MR-cML-DP	0.060, 0.018	0.010	0.031	0.036	0.029	0.042	0.029	0.029
MR-cML-S	0.056, 0.017	0.010	0.031	0.036	0.029	0.042	0.029	0.029
CD-MU-DP	0.063, 0.017	0.010	0.031	0.036	0.029	0.042	0.029	0.029
CD-MU-S	0.056, 0.017	0.010	0.031	0.036	0.029	0.042	0.029	0.029
CD-Ratio	0.013, 0.010	0.003	0.016	0.030	0.029	0.032	0.029	0.029
CD-Egger	0.021, 0.010	0.003	0.016	0.030	0.029	0.032	0.029	0.029
LH-MR	0.065, 0.059	0.013	0.031	0.036	0.029	0.042	0.029	0.029
Steiger	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE	TRUE, FALSE
S8 Table: Inferring causal effects between second 6 risk factors and Asthma. In each cell we show the Bonferroni adjusted $1-0.05/96 \approx 0.9995$ confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	Direction	BW to Asthma	Asthma to BW	DBP to Asthma	Asthma to DBP	SBP to Asthma	Asthma to SBP	FG to Asthma	Asthma to FG	Smoke to Asthma	Asthma to Smoke	Alcohol to Asthma	Asthma to Alcohol
MR-cML-DP-S		-0.123	0.043	0.012	0.443	0.001	0.686	0.022	0.711	0.018	0.052	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	FALSE
MR-cML-S		-0.394	0.021	0.012	0.089	0.009	0.159	0.148	0.045	0.012	0.041	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-cML-DP-S		-0.018	0.076	0.057	0.069	0.066	0.059	0.065	0.289	0.123	0.073	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE
CD-cML-S		-0.004	0.066	0.022	0.052	0.020	0.032	0.261	0.136	0.096	0.168	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-Ratio-S		-0.048	0.011	0.008	0.023	0.016	0.024	0.041	0.223	0.041	0.223	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-Ratio		-0.007	0.060	0.021	0.065	0.006	0.098	0.261	0.136	0.096	0.168	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-cML-DP		-0.038	0.023	0.016	0.023	0.011	0.024	0.041	0.223	0.041	0.223	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-cML		-0.044	0.011	0.008	0.023	0.016	0.024	0.041	0.223	0.041	0.223	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-Ratio		-0.009	0.066	0.022	0.052	0.020	0.032	0.261	0.136	0.096	0.168	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
CD-Ratio		-0.007	0.060	0.021	0.065	0.006	0.098	0.261	0.136	0.096	0.168	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
LHC-MR		-0.394	0.076	0.057	0.069	0.066	0.059	0.065	0.289	0.123	0.073	FALSE	FALSE
		TRUE	FALSE	TRUE	FALSE	TRUE	TRUE	TRUE	TRUE	TRUE	TRUE	FALSE	FALSE
S2.2 Pairs of 4 Diseases

S41 Fig: Causal relationship between pairs of 4 diseases.

Asthma	CAD	Stroke	T2D
Asthma			
CAD			
Stroke			
T2D			

- ▲: $p > 0.05$
- ▲: $0.004 < p < 0.05$
- ▲: $p < 0.004$
S9 Table: Inferring causal effects between pairs of 4 diseases. In each cell we show the Bonferroni adjusted 1-0.05/12 ≈ 0.996 confidence intervals (CIs) of θ for the MR methods, and CIs of K for the CD methods; for Steiger’s method, we show the proportion of SNPs giving significant result. TRUE/FALSE in each cell indicates whether the result is significant or not, and the cells giving significant results are marked in red.

Method	CAD to Stroke	Stroke to CAD	CAD to T2D	T2D to CAD	Stroke to Asthma	Asthma to Stroke	Stroke to T2D	T2D to Stroke	Stroke to Asthma	Asthma to Stroke
CD-cML-DP-S	0.270, 0.386	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-cML-S	0.238, 0.396	TRUE	FALSE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
CD-ML	0.005, 0.149	FALSE	0.046, 0.173	FALSE	0.084, 0.187	TRUE	0.174, 0.246	FALSE	0.04, 0.132	FALSE
CD-cML	0.136, 0.225	TRUE	0.041, 0.165	FALSE	0.059, 0.163	TRUE	0.157, 0.239	FALSE	0.058, 0.155	FALSE
S2.3 Links to GWAS Summary Datasets										

We downloaded the GWAS summary datasets from the IEU GWAS database [1], which are the same as the data included in R package TwoSampleMR. The links are shown in S10 Table.
S3 Theoretical Results

S3.1 Proof of Theorem 1

Theorem 1. Under Assumptions 1 and 2, if \(m_{YX}^0 \in \mathcal{M} \), we have \(P(\hat{m}_I = m_{YX}^0) \to 1 \) and \(P(\hat{B}_{XY}(\hat{m}_I) = B_{XY}^0) \to 1 \) as \(N_1, N_2 \to \infty \). Furthermore, the cMLE \(\hat{K}_{XY} := \hat{K}_{XY}(\hat{m}_I) \) is consistent and asymptotically normal:

\[
\sqrt{V}(\hat{K}_{XY} - K_{XY}) \xrightarrow{d} N(0,1), \text{ as } N_1, N_2 \to \infty,
\]

where

\[
V = \sum_{g \in (B_{XY}^c)^c} \frac{\rho_{Xg}^2}{\sigma_{Xg}^2} - \frac{K_{XY}^2}{\sigma_{Yg}^2}.
\]

Proof. First, we show \(P(\hat{B}_{XY}(m_{YX}^0) = B_{XY}^0) \to 1 \), which is equivalent to show for any \(B_1 \subseteq \{1, \cdots, m\} \) such that \(|B_1| = m_{YX}^0 \) and \(B_1 \neq B_{XY}^0 \), \(P(\hat{B}_{XY}(m_{YX}^0) = B_1) \to 0 \) as \(N_1, N_2 \to \infty \). We have

\[
P(\hat{B}_{XY}(m_{YX}^0) = B_1)
\leq P(\min_{K, \rho_{Xg} \in B_1} \sum_{g \in (B_{XY}^c)^c} \left(\frac{(r_{Xg} - \hat{\rho}_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \hat{\rho}_{Yg})^2}{SE(r_{Yg})^2} \right) \leq \min_{K, \rho_{Xg} \in (B_{XY}^c)^c} \sum_{g \in (B_{XY}^c)^c} \left(\frac{(r_{Xg} - \hat{\rho}_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \hat{\rho}_{Yg})^2}{SE(r_{Yg})^2} \right)
\]

\[
\leq P(\min_{K, \rho_{Xg} \in B_1} \sum_{g \in (B_{XY}^c)^c} \left(\frac{(r_{Xg} - \hat{\rho}_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \hat{\rho}_{Yg})^2}{SE(r_{Yg})^2} \right) \leq \sum_{g \in (B_{XY}^c)^c} \left(\frac{(r_{Xg} - \hat{\rho}_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \hat{\rho}_{Yg})^2}{SE(r_{Yg})^2} \right)).
\]
Note that, for \(g \in (B_Y^n)^c \), \(r_X^g - p_X^g \) and \(\frac{r_X^g - K_{XY} \rho_X^g}{SE(\rho_g)} \) are independent, so for any \(\varepsilon > 0 \), there exists \(C > 0 \) such that
\[
P(\sum_{g \in (B_Y^n)^c} \left(\frac{(r_X^g - \rho_X^g)^2}{SE(r_X^g)^2} + \frac{(r_Y^g - K_{XY} \rho_X^g)^2}{SE(\rho_g)^2} \right) > C) < \frac{\varepsilon}{2}.
\]

And we have
\[
P(\min_{\hat{\rho}_X^g \in B_1} \sum_{g \in (B_Y^n)^c} \left(\frac{(r_X^g - \hat{\rho}_X^g)^2}{SE(r_X^g)^2} + \frac{(r_Y^g - \hat{\rho}_X^g)^2}{SE(\rho_g)^2} \right) \leq C) + P(\sum_{g \in (B_Y^n)^c} \left(\frac{(r_X^g - \hat{\rho}_X^g)^2}{SE(r_X^g)^2} + \frac{(r_Y^g - K_{XY} \rho_X^g)^2}{SE(\rho_g)^2} \right) > C).
\]

After profiling out \(\hat{\rho}_X^g \)'s, we get
\[
\min_{\hat{\rho}_X^g \in B_1} \sum_{g \in (B_Y^n)^c} \left(\frac{(r_X^g - \hat{\rho}_X^g)^2}{SE(r_X^g)^2} + \frac{(r_Y^g - \hat{\rho}_X^g)^2}{SE(\rho_g)^2} \right) = \min_{\hat{\rho}_X^g \in B_1} \frac{(r_Y^g - \bar{\hat{K}} \cdot r_X^g)^2}{SE(r_g)^2 + \bar{\hat{K}}^2SE(r_X^g)^2},
\]
so
\[
P(\min_{\hat{\rho}_X^g \in B_1} \sum_{g \in (B_Y^n)^c} \left(\frac{(r_X^g - \hat{\rho}_X^g)^2}{SE(r_X^g)^2} + \frac{(r_Y^g - \hat{\rho}_X^g)^2}{SE(\rho_g)^2} \right) \leq C)
= P(\min_{\hat{\rho}_X^g \in B_1} \frac{(r_Y^g - \bar{\hat{K}} \cdot r_X^g)^2}{SE(r_g)^2 + \bar{\hat{K}}^2SE(r_X^g)^2} \leq C).
\]

We have \(\frac{r_X^g - K_{XY} \rho_X^g}{\sqrt{SE(r_X^g)^2 + K^2SE(r_X^g)^2}} \sim N(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g, 1) \), so \(\sum_{g \in B_1^n} \frac{(r_X^g - K_{XY} \rho_X^g)^2}{SE(r_X^g)^2 + K^2SE(r_X^g)^2} \) follows non-central \(\chi^2 \) distribution with degrees of freedom \(m - m_Y^n \) and non-centrality parameter \(\lambda_{\bar{\hat{K}}} \) depending on \(\bar{\hat{K}} \)
\[
\lambda_{\bar{\hat{K}}} = \sum_{g \in B_1^n} \frac{(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g - \bar{\hat{K}} \cdot \rho_X^g)^2}{SE(\rho_g)^2 + \bar{\hat{K}}^2SE(r_X^g)^2}.
\]

With Assumption 2, we get
\[
\lambda_{\bar{\hat{K}}} \geq \sum_{g \in B_1^n} \frac{(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g - \bar{\hat{K}} \cdot \rho_X^g)^2}{u_Y + \bar{\hat{K}}^2 \cdot \frac{\rho_X}{\sqrt{\nu}}}
= N_2 \cdot \sum_{g \in B_1^n} \frac{(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g - \bar{\hat{K}} \cdot \rho_X^g)^2}{u_Y + \bar{\hat{K}}^2 \cdot \frac{\rho_X}{\sqrt{\nu}}}.
\]

With Assumption 1, we know
\[
\min_{\hat{\rho}_X^g \in B_1} \sum_{g \in B_1^n} \frac{(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g - \bar{\hat{K}} \cdot \rho_X^g)^2}{u_Y + \bar{\hat{K}}^2 \cdot \frac{\rho_X}{\sqrt{\nu}}} = v > 0,
\]
here \(v \) is a constant. This is because, with Assumption 1, there is no \(\bar{\hat{K}} \) making \(K_{XY} \cdot \rho_X^g + b_{XY} \cdot r_X^g = \bar{\hat{K}} \cdot \rho_X^g \) for all \(g \in B_1^n \) simultaneously. So we have \(\min_{\bar{\hat{K}}} \lambda_{\bar{\hat{K}}} \geq N_2 \cdot v \). Then as \(N_2 \) large enough, we have
\[
P(\min_{\hat{\rho}_X^g \in B_1} \sum_{g \in (B_Y^n)^c} \frac{(r_Y^g - \bar{\hat{K}} \cdot r_X^g)^2}{SE(r_g)^2 + \bar{\hat{K}}SE(r_X^g)^2} \leq C) \leq \frac{\varepsilon}{2}.
\]
Combining (1) and (2), we get \(P(\hat{B}_{XY}(m_{XY}^0) = B_{XY}^0) \to 1 \) as \(N_1, N_2 \to \infty \).

Next, we show \(P(\hat{m}_1 = m_{XY}^0) \to 1 \). For any \(m_1 < m_{XY}^0 \), we have

\[
P(\hat{m}_1 = m_1) \leq P(BIC(m_1) \leq BIC(m_{XY}^0))
\]

\[
= P\left(-2 \cdot L(\hat{K}_{XY}(m_1), \hat{\rho}_{XY}(m_1), \hat{b}_{XY,g}(m_1)) + \log(n) \cdot m_1 \leq -2 \cdot L(\hat{K}_{XY}(m_{XY}^0), \hat{\rho}_{XY}(m_{XY}^0), \hat{b}_{XY,g}(m_{XY}^0)) + \log(n) \cdot m_{XY}^0\right)
\]

\[
= P\left(2 \cdot L(\hat{K}_{XY}(m_{XY}^0), \hat{\rho}_{XY}(m_{XY}^0), \hat{b}_{XY,g}(m_{XY}^0)) - 2 \cdot L(\hat{K}_{XY}(m_1), \hat{\rho}_{XY}(m_1), \hat{b}_{XY,g}(m_1)) \leq \log(n)(m_{XY}^0 - m_1)\right).
\]

As we have shown \(P(\hat{B}_{XY}(m_{XY}^0) = B_{XY}^0) \to 1 \), with probability goes to 1 we have

\[
2 \cdot L(\hat{K}_{XY}(m_{XY}^0), \hat{\rho}_{XY}(m_{XY}^0), \hat{b}_{XY,g}(m_{XY}^0)) - 2 \cdot L(\hat{K}_{XY}(m_1), \hat{\rho}_{XY}(m_1), \hat{b}_{XY,g}(m_1))
\]

\[
= \min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) - \min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right).
\]

Then we get

\[
P(\hat{m}_1 = m_1)
\]

\[
\leq P\left(\min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) \leq \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - K \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) + \log(n)(m_{XY}^0 - m_1)\right)
\]

\[
\leq \sum_{|B| = m_1} P\left(\min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) \leq \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - K \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) + \log(n)(m_{XY}^0 - m_1)\right)
\]

Similar as above, we get

\[
\min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) = \min_{\hat{K}} \sum_{g \in B_{XY}} \frac{(r_g - \hat{K} \cdot \hat{r}_g)^2}{SE(r_g)^2 + K^2 \cdot SE(r_g)^2},
\]

and \(\sum_{g \in B_{XY}} \frac{(r_g - \hat{K} \cdot \hat{r}_g)^2}{SE(r_g)^2 + K^2 \cdot SE(r_g)^2} \) follows non-central \(\chi^2 \) distribution with degrees of freedom \(m - m_1 \) and non-centrality parameter \(\lambda_K \) depending on \(\hat{K} \)

\[
\lambda_K = \sum_{g \in B_{XY}} \frac{(K_{XY} \cdot \hat{\rho}_{XY} + b_{XY,g} - \hat{K} \cdot \hat{\rho}_{XY})^2}{SE(r_g)^2 + K^2 \cdot SE(r_g)^2}.
\]

Similarly, since \(m_1 < m_{XY}^0 \), with Assumption 2 we have \(\lambda_K \geq N_2 \cdot \nu \) for some constant \(\nu \), so for any \(|B| = m_1 \), we get

\[
P\left(\min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) \leq \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - K \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) + \log(n)(m_{XY}^0 - m_1)\right) \to 0.
\]

This gives us \(P(\hat{m}_1 = m_1) \to 0 \) for any \(m_1 < m_{XY}^0 \). For any \(m_1 > m_{XY}^0 \), we have

\[
P(\hat{m}_1 = m_1)
\]

\[
\leq P\left(\log(n)(m_1 - m_{XY}^0) \leq \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right) - \min_{\hat{K}, \hat{\rho}_{XY} \in B_{XY}} \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right)\right)
\]

\[
\leq P\left(\log(n)(m_1 - m_{XY}^0) \leq \sum_{g \in B_{XY}} \left(\frac{(r_{XY} - \hat{\rho}_{XY})^2}{SE(r_{XY})^2} + \frac{(r_g - \hat{K} \hat{\rho}_{XY})^2}{SE(r_g)^2} \right)\right).
\]
Since $\sum_{g \in \{B^{0}_{XY}\}^c} \left(\frac{(r_{Xg} - \rho_{Xg})^2}{SE(r_{Xg})^2} + \frac{(r_{Yg} - \rho_{Yg})^2}{SE(r_{Yg})^2}\right)$ is a central χ^2 distribution with degrees of freedom $2(m - m_{0_{XY}})$, we get $P(\hat{m}_{I} = m_{1}) \to 0$ for any $m_{1} > m_{0_{XY}}$. So we have $P(\hat{m}_{I} = m_{0_{XY}}) \to 1$ as $N_{1}, N_{2} \to \infty$.

As $P(\hat{B}_{XY}(\hat{m}_{I}) = B^{0}_{XY}) \to 1$, we could consistently select all invalid IVs. Following Theorem 3.2 in [4], we have

$$\frac{V}{\sqrt{V_{1}}} (\hat{K}_{XY} - K_{XY}) \xrightarrow{d} N(0, 1), \text{ as } N_{1}, N_{2} \to \infty,$$

where

$$V = \sum_{g \in \{B^{0}_{XY}\}^c} \frac{\rho_{Xg}^{2} \sigma_{Xg}^{2} + \rho_{Yg}^{2} \sigma_{Yg}^{2}}{(\sigma_{Xg}^{2} \cdot K_{XY}^{2} + \sigma_{Yg}^{2})^{2}} = \sum_{g \in \{B^{0}_{XY}\}^c} \frac{\rho_{Xg}^{2}}{\sigma_{Xg}^{2} \cdot K_{XY}^{2} + \sigma_{Yg}^{2}},$$

and

$$V_{1} = \sum_{g \in \{B^{0}_{XY}\}^c} \frac{\rho_{Xg}^{2} \sigma_{Xg}^{2} + \rho_{Yg}^{2} \sigma_{Yg}^{2} + \sigma_{Xg}^{2} \sigma_{Yg}^{2}}{(\sigma_{Xg}^{2} \cdot K_{XY}^{2} + \sigma_{Yg}^{2})^{2}}.$$

In our model ρ_{Xg}’s and ρ_{Yg}’s are fixed constants, σ_{Xg}^{2}’s and σ_{Yg}^{2}’s are $O(1/n)$, so we have $V/V_{1} \to 1$, and

$$\sqrt{V}(\hat{K}_{XY} - K_{XY}) \xrightarrow{d} N(0, 1), \text{ as } N_{1}, N_{2} \to \infty.$$

S3.2 Proof of Theorem 2

First we introduce the definition of “converge weakly”, as Definition 2.2 in [2].

Definition 2.2 by Xiong et al. [2]. $F(\cdot)$ is a distribution function, $F_{n}(\cdot)$ is random distribution function that depends on some random variable. We say $F_{n}(\cdot)$ converges weakly to $F(\cdot)$ in probability if for each continuous point x of $F(\cdot)$, $F_{n}(x) \xrightarrow{p} F(x)$ as $n \to \infty$. This is denoted by $F_{n}(\cdot) \xrightarrow{w.p.} F(\cdot)$.

Now we show the proof of Theorem 2.

Theorem 2. Under Assumptions 1 and 2, conditional on the original GWAS summary data, $\sqrt{V}(\hat{K}^{(i)}_{XY} - K_{XY}) \xrightarrow{w.p.} N(0, 1)$ as $N_{1}, N_{2} \to \infty$.

Proof. Denote $\bar{B} = \{i : \hat{b}_{XY} \neq 0\}$ as the set of estimated invalid IVs with non-zero direct effects based on perturbed data. First we show that $P(\bar{B} = B_{XY}^{0} | \mathcal{D}) \xrightarrow{P} 1$, which is equivalent to for any $\varepsilon > 0, \delta > 0$, there exists n such that when $n_{1} > n, n_{2} > n$ we have $P(\bar{P}(\bar{B} = B_{XY}^{0} | \mathcal{D}) < 1 - \varepsilon) < \delta$. Following similar argument in Theorem 1, we could get the unconditional probability $P(\bar{B} = B_{XY}^{0}) \to 1$. Suppose we could find a pair of $\varepsilon_{0} > 0, \delta_{0} > 0$ such that $P(\bar{P}(\bar{B} = B_{XY}^{0} | \mathcal{D}) < 1 - \varepsilon_{0}) > \delta_{0}$ for arbitrarily large n_{1}, n_{2}, then we can get

$$P(\bar{B} = B_{XY}^{0}) = \int_{\mathcal{D}} \bar{P}(\bar{B} = B_{XY}^{0}) dF(\mathcal{D}) < 1 - \varepsilon_{0} \delta_{0},$$

55
contradicts that \(P(\hat{B} = B_{XY}^{0}) \rightarrow 1 \), thus we have shown that \(P(\hat{B} = B_{XY}^{0} | \emptyset) \overset{w}{\rightarrow} 1 \). Now we could focus on the case that \(\hat{B} = \hat{B} = B_{XY}^{0} \), for simplicity we use \(\hat{K}, \hat{\hat{K}} \) to represent \(\hat{K}_{XY}^{(l)} \), \(\hat{K}_{XY} \). Similar to [4], after profiling out \(\rho_{XY} \)'s in the original log-likelihood function, we have

\[
\hat{K} = \arg \min_{K} \sum_{g \in (B_{XY}^{0})^{c}} \frac{(\hat{r}_{g} - K \cdot \hat{r}_{g})^{2}}{\sigma_{Xg}^{2} \cdot K^{2} + \sigma_{Yg}^{2}}, \quad \hat{\hat{K}} = \arg \min_{K} \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K \cdot r_{g})^{2}}{\sigma_{Xg}^{2} \cdot K^{2} + \sigma_{Yg}^{2}}.
\]

(3)

Denote

\[
f(K) = \sum_{g \in (B_{XY}^{0})^{c}} \frac{(\hat{r}_{g} - K \cdot \hat{r}_{g})^{2}}{\sigma_{Xg}^{2} \cdot K^{2} + \sigma_{Yg}^{2}},
\]

and

\[
\phi(K) = \frac{\partial f(K)}{\partial K} = \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K r_{g})(K \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2})}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{2}},
\]

\[
= \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K r_{g})(K \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2})}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{2}},
\]

\[
= \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K r_{g})(K \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2}) + (\xi_{g} - K \xi_{g})(K r_{g} \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2} + K \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2})}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{2}},
\]

here \(\xi_{g} = \hat{r}_{g} - r_{g} = \xi_{g}, \sigma_{g} = \hat{r}_{g} - r_{g} \sim N(0, \sigma_{g}^{2}) \). We have

\[
0 = \phi(\hat{K}) = \phi(\hat{K}) + \phi'(\hat{K})(\hat{K} - \hat{\hat{K}}) + \frac{1}{2} \phi''(K^{*})(\hat{K} - \hat{\hat{K}})^{2},
\]

with \(K^{*} \) is between \(\hat{K} \) and \(\hat{\hat{K}} \), thus

\[
\sqrt{V}(\hat{K} - \hat{\hat{K}}) = -\frac{\phi(\hat{K})/\sqrt{V}}{\phi'(\hat{K})/V + (1/2)(\hat{K} - \hat{\hat{K}})\phi''(K^{*})/V}.
\]

Next we show \(\phi(\hat{K})/\sqrt{V} \overset{w}{\rightarrow} N(0, 1) \). From equation (6), we can get

\[
\phi(\hat{K}) = \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K r_{g})(\hat{K} \xi_{g} \sigma_{Xg}^{2} + \epsilon_{g} \sigma_{Yg}^{2}) + (\xi_{g} - K \xi_{g})(K r_{g} \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2} + \hat{K} \sigma_{Xg}^{2} + \epsilon_{g} \sigma_{Yg}^{2})}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{2}}.
\]

Note that \(\xi_{g} \)'s and \(\epsilon_{g} \)'s are \(O_{p}(1/\sqrt{n}) \), \(n = \min(N_{1}, N_{2}) \), thus

\[
\phi(\hat{K}) = \sum_{g \in (B_{XY}^{0})^{c}} \frac{(r_{g} - K r_{g})(\hat{K} \xi_{g} \sigma_{Xg}^{2} + \epsilon_{g} \sigma_{Yg}^{2}) + (\xi_{g} - K \xi_{g})(K r_{g} \sigma_{Xg}^{2} + r_{g} \sigma_{Yg}^{2} + \hat{K} \sigma_{Xg}^{2} + \epsilon_{g} \sigma_{Yg}^{2})}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{2}} + O_{p}(1),
\]

thus \(\phi(\hat{K})/\sqrt{V} \overset{w}{\rightarrow} N(0, V^{*}/V) \overset{w}{\rightarrow} N(0, 1) \), with

\[
V^{*} = \sum_{g \in (B_{XY}^{0})^{c}} \frac{\sigma_{Xg}^{2}(r_{g} - K r_{g})^{2} + \frac{1}{2} \sigma_{Xg}^{2}(r_{g} - K r_{g})^{2}}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{4}}.
\]

as \(r_{g} \overset{p}{\rightarrow} \rho_{X}, r_{g} \overset{p}{\rightarrow} \rho_{Y}, \hat{K} \overset{p}{\rightarrow} K_{0} \), we can get \(V^{*}/V \overset{p}{\rightarrow} 1 \), thus we get \(\phi(\hat{K})/\sqrt{V} \overset{w}{\rightarrow} N(0, 1) \).

Next we show \(-\phi'(\hat{K})/V \overset{w}{\rightarrow} 1 \). After some calculation we get

\[
\phi'(K) = \sum_{g \in (B_{XY}^{0})^{c}} \frac{2 \sigma_{Xg}^{2} r_{g} \hat{r}_{g} - 6 \sigma_{Xg}^{2} r_{g} \hat{r}_{g} (r_{g} - K r_{g})^{2} + 3 \sigma_{Xg}^{2} r_{g} \hat{r}_{g} (r_{g} - K r_{g})^{2}}{(\sigma_{Xg}^{2} K^{2} + \sigma_{Yg}^{2})^{3}},
\]

(5)
as \(r_{Xg} \xrightarrow{p} p_{Xg}, \hat{r}_{Yg} \xrightarrow{p} p_{Yg}, \hat{K} \xrightarrow{p} K_0 \), we get \(-\varphi'(\hat{K})/V \xrightarrow{w} 1\), with Theorem 3.3 in [2], \(-\varphi'(\hat{K})/V \xrightarrow{D} w \rightarrow 1\).

Based on equation (8), we can see \(\delta''(K) \) has its numerator of order \(n^5 \) and its denominator of order \(n^6 \), thus \(\delta''(K^*)/V = O_p(1) \). As \(\hat{K} \xrightarrow{D} K_0, \hat{K} \xrightarrow{p} K_0 \), we have \(\hat{K} - \hat{K} \xrightarrow{D} \rightarrow 0 \), again with Theorem 3.3 in [2] we get \(\hat{K} - \hat{K} \xrightarrow{D} w \rightarrow 0 \). Thus we can get \(\frac{1}{2} \delta''(K^*)(\hat{K} - \hat{K}) \xrightarrow{D} w \rightarrow 0 \). Now with Theorem 3.2 in [2], we can get \(\sqrt{V}(\hat{K} - \hat{K}) \xrightarrow{D} w \rightarrow N(0,1) \), completing the proof. \(\square \)

S3.3 MR-cML with Data Perturbation

Now we show that the data perturbation scheme is also consistent for MR-cML in [3]. We use the following notations: the true effects on \(X \) are \(\beta_{Xi} \)'s, and those on \(Y \) are \(\beta_{Yi} \)'s; the estimated/observed effects on \(X \) are \(\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \sigma_{Xi}^2) \), and those on \(Y \) are \(\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \sigma_{Yi}^2) \). Here \(\sigma_{Xi} \)'s and \(\sigma_{Yi} \)'s are the true standard deviations; in practice we have the standard errors \(\hat{\sigma}_{Xi} \)'s and \(\hat{\sigma}_{Yi} \)'s as their estimates from GWAS datasets, thus approximately we have \(\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \hat{\sigma}_{Xi}^2) \) and \(\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \hat{\sigma}_{Yi}^2) \). For simplicity and without ambiguity, we treat the standard errors \(\hat{\sigma}_{Xi} \)'s and \(\hat{\sigma}_{Yi} \)'s as the true values of \(\sigma_{Xi} \)'s and \(\sigma_{Yi} \)'s in the following. The perturbed effects on \(X \) are \(\hat{\beta}_{Xi} \sim N(\beta_{Xi}, \sigma_{Xi}^2) \), and the perturbed effects on \(Y \) are \(\hat{\beta}_{Yi} \sim N(\beta_{Yi}, \sigma_{Yi}^2) \). The true causal effect is \(\theta \), the estimated causal effect based on the observed data with cML-BIC is \(\hat{\theta} \), and the estimated causal effect based on a perturbed dataset with cML-BIC is \(\hat{\theta} \). Let \(\mathcal{D} = \{ (\hat{\beta}_{Xi}, \hat{\beta}_{Yi}) | i = 1, \cdots, m \} \) denote the observed data.

Assumption 1 for MR-cML. (Plurality condition.) Suppose that \(B_0 \) is the index set of the invalid IVs with non-zero direct effects, i.e. \(r_i \neq 0 \) if and only if \(i \in B_0 \), and \(K_0 = |B_0| \). For any \(B \subseteq \{1, \cdots, m\} \) and \(|B| = K_0 \), if \(B \neq B_0 \), then there does not exist any constant \(S \) such that \(r_i = S \cdot \beta_{Xi} \) for all \(i \in B^c \).

Assumption 2 for MR-cML. (Orders of the variances and sample sizes.) There exist positive constants \(l_x, l_y, l_n \) and \(u_x, u_y, u_n \) such that we have \(l_x/n_1 \leq \sigma_{Xi}^2 \leq u_x/n_1, l_y/n_2 \leq \sigma_{Yi}^2 \leq u_y/n_2, \) and \(l_n \cdot n_2 \leq n_1 \leq u_n \cdot n_2 \) for \(i = 1, \cdots, m \).

Denote

\[
V = \sum_{i \in B_0} \frac{\beta_{Xi}^2}{\sigma_{Xi}^2, \beta_{Xi}, \sigma_{Yi}^2}.
\]

Theorem 2 for MR-cML. Under Assumptions [1] for MR-cML and [2] for MR-cML according to Definition 2.2 in [2], \(\sqrt{V}(\hat{\theta} - \theta) \xrightarrow{D} w \rightarrow N(0,1) \) as \(n_1, n_2 \rightarrow \infty \).

Proof. Denote \(\bar{B} = \{ i : \tilde{r}_i \neq 0 \} \) as the set of estimated invalid IVs with non-zero direct effects based on perturbed data. First we show that \(P(\bar{B} = B_0 | \mathcal{D}) \xrightarrow{p} 1 \), which is equivalent to for any \(\varepsilon > 0, \delta > 0 \), there exists \(n \) such that when \(n_1 > n, n_2 > n \) we have \(P(\bar{B} = B_0 | \mathcal{D}) < 1 - \varepsilon < \delta \). Following similar argument in Theorem 1, we could get the unconditional probability \(P(\bar{B} = B_0) \rightarrow 1 \). Suppose we could find a pair of \(\varepsilon_0 > 0, \delta_0 > 0 \) such that \(P(\bar{B} = B_0 | \mathcal{D}) < 1 - \varepsilon_0) > \delta_0 \) for arbitrarily large \(n_1, n_2 \), then we can get

\[
P(\bar{B} = B_0) = \int_{\mathcal{D}} P(\bar{B} = B_0 | \mathcal{D}) dF(\mathcal{D}) < 1 - \varepsilon_0 \delta_0,
\]

57
contradicts that \(P(\hat{B} = B_0) \to 1 \), thus we have shown that \(P(\hat{B} = B_0|\mathcal{G}) \xrightarrow{P} 1 \). Now we could focus on the case that \(\hat{B} = \hat{B} = B_0 \). Similar to [4], after profiling out \(b Xi; i \)'s in the original log-likelihood function, we have

\[
\hat{\theta} = \arg \min_{\theta} \sum_{i \in B_0} \frac{(\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})^2}{\sigma^2_{Xi} + \sigma^2_{yi}}, \quad \hat{\theta} = \arg \min_{\theta} \sum_{i \in B_0} \frac{(\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})^2}{\sigma^2_{Xi} + \sigma^2_{yi}}.
\]

(6)

Denote

\[
f(\theta) = \sum_{i \in B_0} \frac{(\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})^2}{\sigma^2_{Xi} + \sigma^2_{yi}},
\]

and

\[
\phi(\theta) = \frac{\partial f(\theta)}{\partial \theta} = \sum_{i \in B_0} \frac{(\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})(\theta \hat{\beta}_{yi} \sigma^2_{Xi} + \hat{\beta}_{Xi} \sigma^2_{yi})}{(\sigma^2_{Xi} + \sigma^2_{yi})^2}
\]

\[
= \sum_{i \in B_0} \frac{(\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})(\hat{\beta}_{yi} \cdot \xi_i \sigma^2_{Xi} + \hat{\beta}_{Xi} \cdot \xi_i \sigma^2_{yi} + (\hat{\beta}_{yi} - \theta \cdot \hat{\beta}_{Xi})(\theta \hat{\beta}_{yi} \sigma^2_{Xi} + \hat{\beta}_{Xi} \sigma^2_{yi} + \theta \xi_i \sigma^2_{Xi} + \xi_i \sigma^2_{yi})}{(\sigma^2_{Xi} + \sigma^2_{yi})^2},
\]

here \(\xi_i = \hat{\beta}_{yi} - \hat{\beta}_{Xi} \sim N(0, \sigma^2_{yi}), \xi_i = \hat{\beta}_{Xi} - \hat{\beta}_{Xi} \sim N(0, \sigma^2_{Xi}) \). We have

\[
0 = \phi(\hat{\theta}) = \phi(\hat{\theta}) + \phi'(\hat{\theta})(\hat{\theta} - \hat{\theta}) + \frac{1}{2} \phi''(\theta^*)(\hat{\theta} - \hat{\theta})^2,
\]

with \(\theta^* \) is between \(\hat{\theta} \) and \(\hat{\theta} \), thus

\[
\sqrt{V(\hat{\theta} - \hat{\theta})} = \frac{-\phi(\hat{\theta})/\sqrt{V}}{\phi'(\hat{\theta})/V + (1/2)(\hat{\theta} - \hat{\theta})\phi''(\theta^*)/V}.
\]

Next we show \(\phi(\hat{\theta})/\sqrt{V}|\mathcal{G} \xrightarrow{w.P} N(0,1) \). From equation (6), we can get

\[
\phi(\hat{\theta}) = \sum_{i \in B_0} \left(\frac{(\hat{\beta}_{yi} - \hat{\beta}_{Xi})(\hat{\beta}_{yi} \cdot \xi_i \sigma^2_{Xi} + \hat{\beta}_{Xi} \cdot \xi_i \sigma^2_{yi} + (\hat{\beta}_{yi} \cdot \theta \cdot \xi_i \sigma^2_{Xi} + \hat{\beta}_{Xi} \cdot \theta \cdot \xi_i \sigma^2_{yi})}{(\sigma^2_{Xi} + \sigma^2_{yi})^2} \right) + O_p(1),
\]

(7)

Note that \(\xi_i \)'s and \(\xi_i \)'s are \(O_p(1/\sqrt{n}), n = \min(n_1, n_2) \), thus

\[
\phi(\hat{\theta}) = \sum_{i \in B_0} \left(\frac{\xi_i (\hat{\beta}_{yi} \cdot \hat{\beta}_{Xi} \sigma^2_{Xi} - \hat{\beta}_{yi} \cdot \hat{\beta}_{Xi} \sigma^2_{Xi} + \hat{\beta}_{Xi} \cdot \hat{\beta}_{Xi} \sigma^2_{yi} - \hat{\beta}_{Xi} \cdot \hat{\beta}_{Xi} \sigma^2_{yi})}{(\sigma^2_{Xi} + \sigma^2_{yi})^2} \right) + O_p(1),
\]

(8)

so that \(V^* \xrightarrow{P} \beta_{Xi}, \hat{\beta}_{yi} \xrightarrow{P} \beta_{Xi}, \hat{\beta}_{yi} \xrightarrow{P} \theta, \theta \xrightarrow{P} \theta_0 \), we can get \(V^*/V \xrightarrow{P} 1 \), thus we get \(\phi(\hat{\theta})/\sqrt{V}|\mathcal{G} \xrightarrow{w.P} N(0,1) \).

Next we show \(-\phi'(\hat{\theta})/V|\mathcal{G} \xrightarrow{w.P} 1 \). After some calculation we get

\[
\phi'(\theta) = \sum_{i \in B_0} \left(\frac{2 \sigma^2_{Xi} \beta_{Xi} \beta_{yi} \cdot \theta^3 + 3(\sigma^2_{Xi} \beta_{Xi} \beta_{yi} \cdot \theta^3 - \sigma^2_{Xi} \beta_{Xi} \beta_{yi} \cdot \theta^3)(\sigma^2_{Xi} \beta_{Xi} \beta_{yi} \cdot \theta^3 - \sigma^2_{Xi} \beta_{Xi} \beta_{yi} \cdot \theta^3)}{(\sigma^2_{Xi} + \sigma^2_{yi})^3} \right) + O_p(1),
\]

(8)

58
as $\tilde{\beta}_{Xi} \xrightarrow{P} \beta_{Xi}$, $\tilde{\beta}_{Yi} \xrightarrow{P} \beta_{Yi}$, $\tilde{\theta} \xrightarrow{P} \theta_0$, we get $-\phi'(\hat{\theta})/V \xrightarrow{P} 1$, with Theorem 3.3 in [2], $-\phi'(\hat{\theta})/V \xrightarrow{w.p.} 1$.

Based on equation (8), we can see $\phi''(\theta)$ has its numerator of order n^5 and its denominator of order n^6, thus $\phi''(\theta^\ast)/V = O_p(1)$. As $\tilde{\theta} \xrightarrow{P} \theta_0$, $\hat{\theta} \xrightarrow{P} \theta_0$, we have $\tilde{\theta} - \hat{\theta} \xrightarrow{P} 0$, again with Theorem 3.3 in [2] we get $\tilde{\theta} - \hat{\theta} \xrightarrow{w.p.} 0$. Thus we can get $\frac{1}{2} \phi''(\theta^\ast)(\tilde{\theta} - \hat{\theta}) \xrightarrow{w.p.} 0$. Now with Theorem 3.2 in [2], we can get $\sqrt{V(\tilde{\theta} - \hat{\theta})} \xrightarrow{w.p.} N(0,1)$, completing the proof. □

References

[1] Lyon, M. S., Andrews, S. J., Elsworth, B., Gaunt, T. R., Hemani, G., & Marcora, E. (2021). The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biology, 22(1), 1-10.

[2] Xiong, S., & Li, G. (2008). Some results on the convergence of conditional distributions. Statistics & probability letters, 78(18), 3249-3253.

[3] Xue, H., Shen, X., & Pan, W. (2021). Constrained maximum likelihood-based Mendelian randomization robust to both correlated and uncorrelated pleiotropic effects. The American Journal of Human Genetics, 108(7), 1251-1269.

[4] Zhao, Q., Wang, J., Hemani, G., Bowden, J., & Small, D. S. (2020). Statistical inference in two-sample summary-data Mendelian randomization using robust adjusted profile score. The Annals of Statistics, 48(3), 1742-1769.