Utilisation of magnets to enhance gastrointestinal endoscopy

Imdadur Rahman, Praful Patel, Philip Boger, Mike Thomson, Nadeem Ahmad Afzal

Abstract

Methods to assess, access and treat pathology within the gastrointestinal tract continue to evolve with video endoscopy replacing radiology as the gold standard. Whilst endoscope technology develops further with the advent of newer higher resolution chips, an array of adjuncts has been developed to enhance endoscopy in other ways; most notable is the use of magnets. Magnets are utilised in many areas, ranging from endoscopic training, lesion resection, aiding manoeuvrability of capsule endoscopes, to assisting in easy placement of tubes for nutritional feeding. Some of these are still at an experimental stage, whilst others are being increasingly incorporated in our everyday practice.

Key words: Magnet; Endoscopy; Training; Therapeutic; Capsule; Nutrition; Child; Paediatric; Colonoscopy; Imaging

INTRODUCTION

Magnets were traditionally viewed with great scepticism by the endoscopy community due to the potentially hazardous consequence that ingestion of this material...
led to. However, the property of magnets, notably the ability to be sensed and also exert a force from a distance, began to be recognised as a solution to many emerging problems faced by an endoscopist. Magnetic technology is now incorporated within many areas of endoscopy.

Endoscopic training

Colonoscopy is undertaken worldwide, with variations in reported caecal intubation rates. Although there are several reasons for this, a common factor elucidated in quality assurance audits is the consequence of recurrent colonic looping leading to a consequent lack of advancement of the endoscope tip, and subsequent patient discomfort[4]. Measures to appreciate colonoscopic positioning in the past required fluoroscopy, however, its use was cumbersome and posed a radiation risk[5,6,7]. In 1993, the technique of magnetic endoscopic imaging (MEI) of the colonoscope was described by Bladen et al[8]. This was then further developed by Olympus® into a mobile unit known as “Scopeguide”. This technology provides a real-time three-dimensional image of the colonoscope as it passes through the colon. The basic principle relies on the generation of pulsed low intensity magnetic fields generated from electromagnetic generator coils positioned at regular intervals within the colonoscope. This is then picked up by a receiver dish which allows calculation of the precise position and orientation of the colonoscope. It enables loops to be visualised and loop resolution to be performed under direct vision as well as assisting in identifying the location of the tip of the scope.

It has been proposed that this device can improve caecal intubation rates, times and patient comfort. This was demonstrated in the first randomized controlled trial (RCT) of MEI on colonoscopy performance in adults[9]. However, more recent studies have demonstrated conflicting results in those with enough statistical power to show a difference in the two groups. Two studies have shown higher caecal intubation rates, one study has shown shorter intubation times and two showed patient comfort scores were better with MEI, although one of the latest studies looking into its role in unsedated colonoscopy failed to show any statistical difference in any of these outcome measures[10,11,12]. The largest RCT on MEI to date (n = 810) did however reveal that in less experienced endoscopists the performance, measured by caecal intubation rate, was significantly better than with standard colonoscopy without MEI[13]; also demonstrated by Chen et al[14] in a meta-analysis collating 8 RCT. This may lead to the conclusion that the benefit of the device may be more of a training tool for trainee endoscopist through identification of loops, as shown by similar performance improvements in this group in other cohort studies[15,16,17].

These devices are not in general routine practice on all endoscopy sessions, in part because they are expensive to purchase and require the use of Olympus® equipment. However, what studies have not recorded is the current trainee and trainer satisfaction with this equipment. As the dynamics of the colon can be visualised, there can be a more logical discussion between the trainer and trainee, to resolve an issue of lack of tip advancement or patient discomfort. In practice, trainees appear to be more satisfied with the use of MEI during colonoscopy. One explanation for this is that it allows the trainer to explain the decision making required to facilitate tip advancement without taking the colonoscope over from the trainee. With the growing pressure to train a greater number of generic healthcare endoscopists, the additional cost may thus be justified. With other endoscope manufacturers, such as Pentax®, incorporating MEI into their equipment in the near future it is likely this technology becomes increasingly embedded in day to day colonoscopy practice.

Therapeutic endoscopy

Going beyond the realms of basic diagnostic endoscopy, into an era where the endoscopist has now developed the proficiency to undertake therapy, comes an explosion of technology. Endoscopic polypectomy has evolved since its first undertaking by Hiromi Shinya in 1969, from the basic “lassoing” of a polyp to endoscopic mucosal resection (EMR) to endoscopic submucosal dissection (ESD) which allows en-bloc resection of large lesions[18]. ESD is however a technically demanding procedure with relatively longer procedure times compared with EMR, and significant complication rates with perforation risk as high as 18% in some series[19]. A common reason for this difficulty is the limited field within which the endoscopist, with his “one handed knife”, is operating in. Current standard technique requires the use of a combination of submucosal fluid injection and utilisation of gravity. However, these methods often lead to difficulty in maintaining a safe field of dissection due to a lack of elevation to expose the submucosal plane. To overcome this issue, Gotoda et al[20] designed a magnetic anchor device to apply countertraction. The anchor consisted of a small magnetic weight that was attached to an endoclip with a thread. Once the standard circumferential incision had been made for ESD, the anchor, which was loaded on the end of a standard endoscope, was deployed by attaching the clip to one end of the flap of the lesion[21]. Initially, an extracorporeal magnetic control system of a C-arm type was used to attract the anchor away from the lesion to allow sufficient countertraction of the flap by the endoclip, which behaved as micro-forceps. The external magnet has since been miniaturised by other investigators to a smaller hand held magnet which is positioned over the torso of the patient. This method has been shown to be feasible as well as reduce procedural times, with no reported complications on 25 gastric lesions[22,23]. This is a promising method and adds to the arsenal of ways to allow possible endoluminal triangulation.

At a more endoscopic surgical level, the use of magnets has been used to create suture free anastomoses. The concept relies on a pair of identical magnetic rings being applied to each end of the intestinal segments to be joined.
Capsule endoscopy
The demand for capsule endoscopes has grown exponentially, and it is unlikely that even Paul Swain when he took it upon himself to swallow this first "pill" in 1999 would have envisaged that over 2 million of these would have been ingested worldwide subsequently. The market is well established in the small bowel, and beginning to grow in force progressively for the colon. The upper GI tract seemed to have eluded this technology, firstly due to the speed of travel down the oesophagus and secondly because the larger more capacious stomach really necessitated capsule maneuverability. This has led to several investigators trialling various methods for capsule control, with magnetic assisted capsule endoscopy (MACE) being the most promising. Four systems have been developed, all of which have incorporated magnetic inclusion bodies into the capsule endoscope and controlled externally either by a magnetic field generated by a guidance system or more simply by a fixed magnet.

When they are then brought into close proximity, the magnets align and mate together. Over a period of about 5 d the inner area necroses off while the surrounding non compressed tissue heals and remodels itself. The coupled magnets then fall off into the created lumen leaving a magnetic compression anastomosis. Initial animal model experiments have shown encouraging safety and efficacy. But unfortunately this did not transpire into the clinical setting, with reports of serious adverse events. Further disadvantages in this technique were the inevitable delay in anastomatic formation as well as a restriction on the circumference of the anastomosis due to the initial fixed size magnets used. To get over this drawback, more recent research has looked into using "nano-magnets" delivered via an endoscopic catheter device. These self-assemble at the two opposing desired sites to occupy a larger perimeter. The lumen of the anastomosis is then created with the aid of a needle knife. An early proof of concept study on live porcine models, as well as a human cadaver, has shown the successful formation of gastro-jejunostomies. Although currently not commercially available, magnetic compression anastomosis seems a viable option to aid in the formation of a secure gastro-enteric anastomosis during future natural orifice transluminal endoscopic surgery, replacing the standard methods of suturing or stapling which has its associated complications of leakage and stricture formation.

Nutritional feeding
In recent times there has been a growing demand for endoscopically placed naso-gastric/jejunal tubes largely due to increase demand for enteral feeding in those unable to maintain an adequate oral intake. Jejunal tube placement is often undertaken at the bedside blindly, although this approach is associated with a significant failure rate. The alternative of direct endoscopic or radiological placement requires significantly resources. To attempt to solve these issues, two "bedside magnetic" devices have been developed; the Syncro-Blue tube and the Cortrak system. The Syncro-Blue tube uses a magnetic stylet placed at the end of the feeding tube which is then maneuvered into position via attraction of a handheld magnet. This system was evaluated in a case series of 288 critically ill patients, with successful post pyloric placement in 89% and a mean procedure time of 15 min. Each tube costs approximately 95 dollars, which is likely to be cost saving given the associated expense of endoscopic or radiologically placed tubes.

The more widely used Cortrak system, which has an electromagnetic transmitting stylet and a receiver placed in anastomotic formation as well as a restriction on the pylorus. Due to the simplicity of its use and high patient acceptance this technology certainly seems a true prospect for the future of upper GI tract examination, with the possibility of accurate capsule localisation and even targeted drug delivery being a distinct likelihood in the future. The opportunity to support a community based screening programme, if one was to ever occur for upper GI tract pathology, is an attractive proposition with this technology. This MACE system would not require the expensive set-up costs or decontamination equipment needed with standard endoscopy. However, the current cost of this capsule would need to drop considerably, which should be within the realms of the manufacturers should mass use occur.
dislodgement to the stomach was to occur.

CONCLUSION
So it seems that magnets are truly an ally to GI endoscopy, with several establishing methods. Those that are in an experimental stage are growing in momentum with even newer concepts being conceived. With more and more collaborations being undertaken between scientists, physicians and surgeons this seems to be an innovating field and the application of magnets is and will remain an attractive proposition enhancing endoscopy.

REFERENCES
1. Gavin DR, Valori RM, Anderson JT, Donnelly MT, Williams JG, Swarbrick ET. The national colonoscopy audit: a nationwide assessment of the quality and safety of colonoscopy in the UK. Gut 2013; 62: 242-249 [PMID: 22661458 DOI: 10.1136/gutjnl-2011-301848]
2. Circocco WC, Rusin LC. Fluoroscopy. A valuable ally during difficult colonoscopy. Surg Endosc 1996; 10: 1080-1084 [PMID: 8881056]
3. Williams CB, Laage NJ, Campbell CA, Douglas JR, Walker-Smith JA, Booth IW, Harries JT. Total colonoscopy in children. Arch Dis Child 1982; 57: 49-53 [PMID: 706594]
4. Bladen JS, Anderson AP, Bell GD, Rameh B, Evans B, Heatley DJ. Non-radiological technique for three-dimensional imaging of endoscopes. Lancet 1993; 341: 719-722 [PMID: 8095625]
5. Shah SG, Brooker JC, Williams CB, Thapar C, Saunders BP. Effect of magnetic force on colonoscopic imaging: a randomized controlled trial. Lancet 2000; 356: 1718-1722 [PMID: 11095259 DOI: 10.1016/s0140-6736(00)02305-0]
6. Hoff G, Brethauer M, Dahler S, Huppertz-Hauss G, Sauer J, Paulsen J, Seib B, Montz V. Improvement in caecal intubation rate and pain reduction by using 3-dimensional magnetic imaging for unseated colonoscopy: a randomized trial of patients referred for colonoscopy. Scand J Gastroenterol 2007; 42: 885-889 [PMID: 17558914 DOI: 10.1080/00365520601127125]
7. Ignjatovic A, Thomas-Gibson S, Suzuki N, Vance M, Palmer N, Saunders BP. Does scopeguide improve caecal intubation? A randomised controlled trial. Gut 2014; 60: A191
8. Shergill AK, McQuaid KR, Delacoe A, McAnanama M, Shah JN. Randomized trial of standard versus magnetic endoscopic imaging colonoscopes for unseated colonoscopy. Gastrointest Endosc 2012; 75: 1031-1036.e1 [PMID: 22381532 DOI: 10.1016/j.gie.2011.12.030]
9. Holme O, Høie O, Matre J, Stallemo A, Garborg K, Hasund A, Wiig H, Hoff G, Brethauer M. Magnetic endoscopic imaging versus standard colonoscopy in a routine colonoscopy setting: a randomized, controlled trial. Gastrointest Endosc 2011; 73: 1215-1222 [PMID: 21481862 DOI: 10.1016/j.gie.2011.01.054]
10. Chen Y, Duan YT, Xie Q, Qin XP, Chen B, Xua L, Zhou Y, Li NN, Wu XT. Magnetic endoscopic imaging vs standard colonoscopy: a meta-analysis of randomized controlled trials. World J Gastroenterol 2013; 19: 7197-7204 [PMID: 24222966 DOI: 10.3748/wjg.v19.i41.7197]
11. Kaltenbach T, Leung C, Wu K, Yan K, Friedland S, Soetinko R. Use of the colonoscope training model with the colonoscope 3D imaging probe improved trainee colonoscopy performance: a pilot study. Dig Dis Sci 2011; 56: 1496-1502 [PMID: 21409379 DOI: 10.1007/s10620-011-1614-1]
12. Shah SG, Thomas-Gibson S, Lockett M, Brooker JC, Thapar CJ, Grace I, Saunders BP. Effect of real-time magnetic endoscopic imaging on the teaching and acquisition of colonoscopy skills: results from a single trainee. Endoscopy 2003; 35: 421-425 [PMID: 12701015 DOI: 10.1055/s-2003-87770]
13. Codere S, Anderson J, Rikers R, Dunckley P, Holbrook K, McLaughlin K. Early use of magnetic endoscopic imaging by novice colonoscopists: improved performance without increase in workload. Can J Gastroenterol 2010; 24: 727-732 [PMID: 21165380]
14. Tanaka S, Kashida H, Saito Y, Yahagi N, Yamano H, Saito S, Hisabe T, Yao T, Watanabe M, Yoshida M, Kudo SE, Tsutara O, Sugihara K, Watanabe T, Saitoh Y, Igarashi M, Toyonaga T, Ajikawa Y, Ichinose M, Matsui T, Sugita A, Sugano K, Fujimoto K, Tajiri H. JGES guidelines for colorectal endoscopic submucosal dissection: endoscopic mucosal resection. Dig Endosc 2015; 27: 417-434 [PMID: 25652022 DOI: 10.1111/den.12456]
15. Rahimi G, Hotay B, Chausseade S, Lepilliez V, Giovanni M, Coumaros J, Charonch A, Chollet F, Laquiere A, Samaha E, Prat F, Ponchon T, Bories E, Robaszkiewicz M, Boustiere C, Cellier C. Endoscopic submucosal dissection for superficial rectal tumors: prospective evaluation in France. Endoscopy 2014; 46: 670-676 [PMID: 24977740 DOI: 10.1055/s-0034-1365810]
16. Gotoda T, Oda I, Tanaka K, Ueda H, Kobayashi T, Kakizoe T. Prospective clinical trial of magnetic-anchor-guided endoscopic submucosal dissection for large early gastric cancer (with videos). Gastrointest Endosc 2009; 69: 10-15 [PMID: 18599053 DOI: 10.1016/j.gie.2008.03.1127]
17. Aihara H, Ryor M, Kumar N, Ryan MB, Thompson CC. A novel magnetic countertraction device for endoscopic submucosal dissection significantly reduces procedure time and minimizes technical difficulty. Endoscopy 2014; 46: 422-425 [PMID: 24573770 DOI: 10.1055-s-0034-1369404]
18. Matsuaki I, Miyahara R, Hirooka Y, Funasaka K, Furukawa K, Ohno E, Nakamura M, Kawashima H, Maeda O, Watanabe O, Ando T, Kobayashi M, Goto H. Simplified magnetic anchor-guided endoscopic submucosal dissection in dogs (with videos). Gastrointest Endosc 2014; 80: 712-716 [PMID: 25083334 DOI: 10.1016/j.gie.2014.05.334]
19. Wall J, Diana M, Leroy J, Deruijter V, Gonzales KD, Lindner V, Harrison M, Marscaux J. Magmanmosis IV: magnetic compression anastomosis for minimally invasive colorectal surgery. Endoscopy 2013; 45: 643-648 [PMID: 23807805 DOI: 10.1055/s-0033-1344119]
20. Myers C, Yellen B, Evans J, DeMaria E, Pryor A. Using external magnet guidance and endoscopically placed magnets to create suture-free gastro-enteral anastomoses. Surg Endosc 2010; 24: 1104-1109 [PMID: 20033734 DOI: 10.1007/s00464-009-0735-5]
21. van Hoof JT, Vleggar FP, Le Moine O, Bizzotto A, Voermans RP, Costamagna G, Devière J, Siersma PD, Fockens P. Endoscopic magnetic gastrotomy versus laparoscopic gastrotomy for palliation of malignant gastric outlet obstruction: a prospective multicenter trial. Endoscopy 2010; 42: 530-535 [PMID: 20656288 DOI: 10.1055/s-0034-1365025]
22. Ryoo M, Cantillon-Murphy P, Azagury D, Shaikh SN, Ha G, Greenwalt I, Ryan MB, Lang JH, Thompson CC. Smart Self-Assembling MagnetS for Endoscopy (SAMSEN) for transoral endoscopic creation of immediate gastrointestinal anastomosis (with video). Gastrointest Endosc 2011; 73: 353-359 [PMID: 21183179 DOI: 10.1016/j.gie.2010.11.024]
23. Denzer UW, Rösch T, Hoyatt B, Abdel-Hamid M, Hebuterne X, Vanbiervliet G, Filippi J, Ogata H, Hosoe N, Ohtsuka K, Ogata N, Ikeda K, Aihara H, Kudo SE, Tajiri H, Treszl A, Wegscheider K, Greff M, Rey JF. Magnetically guided capsule versus conventional gastroscopy for upper abdominal complaints: a prospective blinded study. J Clin Gastroenterol 2015; 49: 101-107 [PMID: 24618504 DOI: 10.1097/ MCG.0000000000000110]
24. Rahman I, Pioche M, Shin C, Sung I, Saurin JC, Patel P. First human series of magnet assisted capsule endoscopy in the upper GI tract using the novel MiroCam-Navi system. Gut 2014; 63: A50
25. Yim S, Sitti M. 3-D Localization Method for a Magnetically Actuated Soft Capsule Endoscope and Its Applications. IEEE Trans Robot 2013; 29: 1139-1151 [PMID: 25383064 DOI: 10.1109/tro.2013.2266754]
26. Munoz F, Aliaci G, Li W. A review of drug delivery systems for gastrointestinal endoscopy.
capsule endoscopy. *Adv Drug Deliv Rev* 2014; **71**: 77-85 [PMID: 24384373 DOI: 10.1016/j.addr.2013.12.007]

27 **Russell M**, Stieber M, Brantley S, Freeman AM, Lefton J, Malone AM, Roberts S, Skates J, Young LS. American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) and American Dietetic Association (ADA): standards of practice and standards of professional performance for registered dietitians (generalist, specialty, and advanced) in nutrition support. *Nutr Clin Pract* 2007; **22**: 558-586 [PMID: 17906280]

28 **Lochs H**, Dejong C, Hammarqvist F, Hebuterne X, Leon-Sanz M, Schütz T, van Gemert W, van Gossum A, Valenti L, Lübke H, Bischoff S, Engelmann N, Thul P. ESPEN Guidelines on Enteral Nutrition: Gastroenterology. *Clin Nutr* 2006; **25**: 260-274 [PMID: 16698129 DOI: 10.1016/j.clnu.2006.01.007]

29 **Gabriel SA**, Ackermann RJ. Placement of nasoenteral feeding tubes using external magnetic guidance. *JPEN J Parenter Enteral Nutr* 2004; **28**: 119-122 [PMID: 15080607]

30 **Gerritsen A**, van der Poel MJ, de Rooij T, Molenaar IQ, Bergman JJ, Busch OR, Mathus-Vliegen EM, Besselink MG. Systematic review on bedside electromagnetic-guided, endoscopic, and fluoroscopic placement of nasoenteral feeding tubes. *Gastrointest Endosc* 2015; **81**: 836-47.e2 [PMID: 25660947 DOI: 10.1016/j.gie.2014.10.040]

31 **Powers J**, Luebbehusen M, Spitzer T, Coddington A, Beeson T, Brown J, Jones D. Verification of an electromagnetic placement device compared with abdominal radiograph to predict accuracy of feeding tube placement. *JPEN J Parenter Enteral Nutr* 2011; **35**: 535-539 [PMID: 21700968 DOI: 10.1177/0148607110387436]

P- Reviewer: Kobayashi N, Landsman MJ, Rafeey M
S- Editor: Qiu S
L- Editor: A
E- Editor: Lu YJ
