Kinetic and Molecular Analysis of 5-Epiaristolochene 1,3-Dihydroxylase, a Cytochrome P450 Enzyme Catalyzing Successive Hydroxylations of Sesquiterpenes

The final step of capsidiol biosynthesis is catalyzed by 5-epiaristolochene dihydroxylase (EAH), a cytochrome P450 enzyme that catalyzes the regio- and stereospecific insertion of two hydroxyl moieties into the bicyclic sesquiterpene 5-epiaristolochene (EA). Detailed kinetic studies using EA and the two possible monohydroxylated intermediates demonstrated the release of 1β-hydroxy-EA (OH)EA at high EA concentrations and a 10-fold catalytic preference for 1β(OH)EA versus 3α(OH)EA, indicative of a preferred reaction order of hydroxylation at C-1, followed by that at C-3. Sequence alignments and homology modeling identified active-site residues tested for their contribution to substrate specificity and overall enzymatic activity. Mutants EAH-S368C and EAH-S368V exhibited wild-type catalytic efficiencies for 1β(OH)EA biosynthesis, but were devoid of the successive hydroxylation activity for capsidiol biosynthesis. In contrast to EAH-S368C, EAH-S368V catalyzed the relative equal biosynthesis of 1β(OH)EA, 2β(OH)EA, and 3β(OH)EA from EA with wild-type efficiency. Moreover, EAH-S368V converted 1.5% of these monohydroxylated products to their respective ketone forms. Alanine and threonine mutations at position 368 were significantly compromised in their conversion rates of EA to capsidiol and correlated with 3.6- and 5.7-fold increases in their K_m values for the 1β(OH)EA intermediate, respectively. A role for Ile368 in the successive hydroxylations of EA was also suggested by the EAH-I468A mutant, which produced significant amounts 1β(OH)EA, but negligible amounts of capsidiol from EA. The altered product profile of the EAH-I468A mutant correlated with a 3.6-fold higher K_m for EA and a 4.4-fold slower turnover rate (k_{cat}) for 1β(OH)EA. These kinetic and mutational studies were correlated with substrate docking predictions to suggest how Ser368 and Ile368 might contribute to active-site topology, substrate binding, and substrate presentation to the oxo-Fe-heme reaction center.

The mevalonate and methylerthritol phosphate pathways are responsible for the biosynthesis of isoprenoids, a diverse group of organic natural products found in animals, plants, fungi, insects, and bacteria. Isoprenoids are further divided into classes of primary and secondary metabolites. Isoprenoids that are primary metabolites include sterols, carotenoids, hormones, and long chain hydrocarbons used to tether particular enzymes to membrane systems, compounds essential for viability. Isoprenoids classified as secondary metabolites include monoterpenes, sesquiterpenes, diterpenes, and triterpenes, and many of these mediate interactions between organisms and their environments (1–5).

Capsidiol is a bicyclic dihydroxylated sesquiterpene produced by several solanaceous plants in response to pathogen or elicitor challenge (6–10) and is considered an important plant defense response because it can prevent the germination and growth of several fungal species (11). Capsidiol biosynthesis is regulated by the expression of two key enzymes (see Scheme 1). 5-Epiaristolochene synthase catalyzes the cyclization of farnesyl diphasphate to the bicyclic intermediate 5-epiaristolochene (EA)1–2 and is responsible for the diversion of farnesyl diphasphate from the mevalonate pathway toward antimicrobial compound biosynthesis (12, 13). Recently, two highly homologous cDNAs for EA dihydroxylase (EAH) were isolated from Nicotiana tabacum and functionally expressed in yeast, and the encoded proteins were characterized as cytochrome P450 enzymes catalyzing the stereo- and regiospecific hydroxylation of EA at C-1 and C-3 (see Scheme 1) (14).

Plant P450 enzymes known to catalyze regiospecific mono-hydroxylation of carbocyclic structures include limonene 3- and 6-hydroxylases (15, 16); cinnamate 4-hydroxylase (17); ferulate 5-hydroxylase (18, 19); taxoid 10- and 14-hydroxylases (20–22); the CYP71C subfamily enzymes for 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one biosynthesis in maize and wheat (23, 24); and members of the CYP90 family involved in the biosynthesis of the steroid hormone brassinolide (25, 26). Successive hydroxylation/oxidation reactions catalyzed by plant P450 enzymes have also been documented for tyrosine n-hydroxylase involved in the biosynthesis of the cyanogenic

*This work was supported by National Institutes of Health Grant GM54029 (to J. P. N. and J. C.) and Grant GM13956 (to R. M. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

[S] The on-line version of this article (available at http://www.jbc.org) contains Supplemental Figs. 1 and 2.

‖To whom correspondence should be addressed: Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Dept., University of Kentucky, 301B Plant Science Bldg., 1405 Veterans Dr., Lexington, KY 40546-0312. Tel.: 859-257-5020 (ext. 80775); Fax: 859-257-7125; E-mail: chappell@uky.edu.

The abbreviations used are: EA, 5-epiaristolochene; EAH, 5-epiaristolochene dihydroxylase; (OH)EA, hydroxy-5-epiaristolochene; GC/MS, gas chromatography/mass spectrometry; CHAPS, 3-(3-cholamidopropyl)dimethylammonio)-1-propanesulfonic acid; SRS, substrate recognition site.

§The proper semi-systematic name for 5-epiaristolochene is 4-epi-eremophila-1(10),11(12)-diene. The common name 5-epiaristolochene relating the structure to (−)-aristolochene (4,5-di-epi-eremophila-9(10),11(12)-diene) is widely used in the literature and is adopted in this work for that reason.

Received for publication, October 19, 2004.
Published, JBC Papers in Press, November 2, 2004, DOI 10.1074/jbc.M411870200

Shunji Takahashi‡, Yuxin Zhao§, Paul E. O’Maille¶, Bryan T. Greenhagen†, Joseph P. Noelǁ, Robert M. Coates‡, and Joe Chappell¶†

From the ‡Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, KY 40546-0312, the †Department of Chemistry, University of Illinois, Urbana, IL 61801, and the ¶Salk Institute for Biological Studies, La Jolla, California 92037
glucoside dhurrin (27), flavonoid 3', 5'-hydroxylase in anthocyanin biosynthesis (28, 29), and several of the enzymes in the gibberellin biosynthetic pathway (30–33). For example, flavonoid 3', 5'-hydroxylase (28, 29) catalyzes the planar insertion of hydroxyl groups into the equivalent meta-positions (C-3' and C-5') of the flavonoid B (phenolic) ring and yields 3', 5', and 3', 5'-hydroxylated reaction products (29). "ent-Kaurene oxida
e" (32) catalyzes the successive oxidation of the methyl substituent of "ent-kaurene at C-19 en route to "ent-kaurenoidoic acid. "ent-Kaurenoidoic acid is itself subject to multiple oxidations and a ring contraction through the action of a single P450, CYP88A, or "ent-kaurenoidoic acid oxide (33). Interestingly, although flavonoid 3', 5'-hydroxylase and both "ent-kaurenoidoic and "ent-kaurenoidoic acid oxidases catalyze regiospecific hydroxylations, these enzymes do not exhibit the regio- and stereospecific complexity of EAH. EAH introduces hydroxyl groups at distal sites on opposite faces of the epiaristolochene ring system (see Scheme 1).

A preferred order for the successive hydroxylation of EA has yet to be determined (see Scheme 1). Of the two possible mono-

hydroxylated intermediates of EA, only 3α-hydroxy-EA (3αOH-EA) has been reported as a minor metabolite accumulating in pepper fruits challenged with fungal spores (34), suggesting that small amounts of this reaction intermediate might be released as a general consequence of catalysis. Consistent with this notion are several observations that 3α(OH)EA can be converted to capsidiol. Whitehead et al. (35) reported a modest conversion of 3α(OH)EA to capsidiol when radiolabeled forms of this intermediate were fed to either control or elicitor-treated callus cultures of tobacco. However, although Ralston et al. (14) documented the ready conversion of 3α(OH)EA to capsidiol by microsomes from yeast overexpressing the EAH gene, they also reported the biosynthesis of capsidiol without the accumulation of either monohydroxylated intermediate, 3α(OH)EA or 1β(OH)EA, in reactions incubated with low concentrations (<1 μM) of the EA substrate. Although 1β(OH)EA has not been reported as a reaction product of EAH or observed in plants exposed to exogenous stimuli, preference for P450-mediated hydroxylations of mono- and diterpenes occurring allylic to carbon–carbon double bonds (16, 20, 21) suggests that the initial hydroxylation catalyzed by EAH could occur at C-1, followed by that at C-3.

This work describes investigations of the successive regio- and stereospecific hydroxylation of EA by EAH. The ready availability of EA, 3α(OH)EA, and 1β(OH)EA greatly facilitated our ability to perform detailed kinetic studies to address the preferred order of hydroxylation. Sequence comparisons with related P450 enzymes and modeling of EAH based upon the mammalian 2C5 steroid hydroxylase structure (36) enabled us to identify amino acid residues potentially providing catalytic specificity to these reactions. These structural hypotheses were then tested by site-directed mutagenesis and kinetic analysis. Together, the results demonstrate a preferred reaction order and provide evidence that Ser68 and Ile68 play a significant role in orchestrating the successive hydroxylation of EA to capsidiol.

EXPERIMENTAL PROCEDURES

Chemicals—Standard laboratory reagents were purchased from Fisher, Sigma, and Aldrich. Authentic standards of EA, 3α(OH)EA, and capsidiol were available from previous work (14). Synthesis of 1β(OH)EA, 3β(OH)EA, EA-1-one, and EA-3-one was conducted as described (37).

Site-directed Mutagenesis—All mutations were engineered into the CYP71D20 (EAH) cDNA using the standard QuikChange protocol (Stratagene) (38). A full-length EAH cDNA (GenBankTM/EBI accession number AF368376) inserted into the BamHI/EcoRI restriction sites of the pBlueScript II KS (+) vector was used in combination with PfuTurbo DNA polymerase (Stratagene) and then the following primer pairs (with the mutation sites underlined): S368A primers, 5'-GACTTCTACCCGCG-TCCCTTTTGGTCC-3' and 5'-GGACCAAAAGTTGACCGAGCTGTA-GATGCT-5' (S386C primers), 5'-GAATCGGCTCACCCGC-GATTGGTCC-3' and 5'-GGACAAAGTTGACCGAGCTGTA-GATGCT-5' (S368T primers), 5'-GACTTCTACCCGCGCGTCCCTTTTGGTCC-3' and 5'-GGACAAAGTTGACCGAGCTGTA-GATGCT-5'. Transformants were grown from single colonies; expression of the EAH cDNA was induced by galactose addition to the growth medium; and microsomes were prepared as described previously (41).

CO Difference Spectroscopy—CO difference spectra were determined to estimate the amount of properly folded wild-type and mutant EAH proteins in microsome preparations. The amount of functional P450 was calculated using an extinction coefficient of 91 mM−1 cm−1 at 450 nm (42). The wild-type and mutant enzymes showed a clear absorption maximum at 450 nm (Supplemental Fig. 1), consistent with properly folded enzymes having the heme cofactor oriented in the correct elec-

tron state.

EAH Assays—Standard assays were performed in 1-ml glass vials with a final reaction volume of 200 μl containing 4% Me2SO, 2.4 mM NADPH, 100 mM Tris-HCl (pH 7.5), and microsomes at a final concentration of 90 or 180 pmol of EAH protein eq (determined by CO difference spectroscopy)/ml. Substrate concentrations were varied from 2 to 100 μM for EA, 3 to 30 μM for 3α(OH)EA, and 0.5 to 30 μM for 1β(OH)EA. After preincubation of the reaction mixtures at 30 °C for 5 min, the reactions were initiated by the addition of 2.4 mM NADPH and allowed to proceed for 2 min (EA), 1 min (1β(OH)EA), or 5 min (3α(OH)EA), which allowed for a 5–20% conversion of substrate to reaction product(s). The reactions were terminated by the rapid addition of 400 μl of ethyl acetate and mixed by vortexing, followed by removal of the ethyl acetate extract. The ethyl acetate extract was dried with the first, and the combined organic extracts were carefully concentrated on ice under N2 gas, redissolved in 20 μl of ethyl acetate containing 10 ng/μl valencene as an internal standard, and subjected to gas chromatography (GC) and GC/mass spectrometry (MS) analyses. Assays were performed in triplicate for each substrate concentration, and kinetic constants were calculated by a nonlinear regression fit to the Michaelis-Menten equation using EnzymeKinetics Version 1.5 soft-

ware (Trinity Software). Kinetic constants calculated from Lineweaver-Burk, Eadie-Hofstee, and Hanes-Woolf plots were not significantly different from those derived from nonlinear regression. Optimized reactions were linear with respect to reaction product generation over time and corresponded to a 5–20% conversion of substrate to product, sufficient to generate 1 ng or more of reaction product(s) readily quantified and identifiable by GC/MS.

Reaction Product Analyses—Quantification of the reaction products as well as standards of EA, 1β(OH)EA, 3α(OH)EA, and capsidiol was routinely performed using (+)-(−)-valencene (Fluka, Buchs, Switzerland) as an internal standard. Accuracy of the valencene standard was periodically verified relative to a (+)-(−)-cedrene standard (Fluka). Reaction products were derivatized with an HP-5890 gas chromatograph equipped with an HP-5 capillary column (30 m × 0.25 mm, 0.25-μm phase thickness) and a flame ionization detector as described previously (38). Splitless injections were performed at an injection port temperature of 250 °C with an initial column temperature of 140 °C maintained for 0.5 min. The column temperature was then increased to 230 °C with a 4 °C/min gradient. In addition to comigration and retention time comparisons with authentic standards, reaction products...
were identified by MS using a Thermo Finnigan DSQ GC/MS system equipped with a Restek Rtx-5 capillary column (30 m × 0.32 mm, 0.25-μm phase thickness). Samples were injected in the splitless mode at 250 °C with an initial oven temperature of 70 °C for 1 min, followed by an 8 °C/min gradient to 230 °C. Mass spectra were recorded at 70 eV, scanning from 35 to 300 atomic mass units, and compared with authentic standards for verification.

Purification of the EAH-S368V Reaction Products—To isolate and identify the EAH-S368V reaction products, ethyl acetate extracts from the in vitro assays were carefully concentrated under an N₂ stream and resuspended with hexane such that the final ethyl acetate concentration was <2%. The sample was then applied to a 250-400 mesh silica column (0.5 × 1 cm), and the hydrocarbon fraction was collected with a 2-ml hexane wash. Hydroxylated products were selectively eluted with 2 ml of a 1:19 (v/v) ethyl acetate/hexane solution, followed by 2 ml of a 1:4 (v/v) ethyl acetate/hexane solution. The fractions were carefully reconstituted under an N₂ stream before GC/MS analysis.

Computational Studies—Homology modeling was performed with Modeler Version 6.2 (43–45) by threading the EAH amino acid sequence (GenBank™/EBI accession number AF368376) onto the structural coordinates for the mammalian P450 2C5 protein (Protein Data Bank code 1DT6) (36). Ligands EA, 1β(OH)EA, and 3α(OH)EA were created using Chemdraw Ultra Version 7.0.1, energy-minimized with MOPAC in Chem3D Ultra Version 7.0 (CambridgeSoft Corp., Cambridge, MA), and subsequently used in docking simulation experiments. Docking calculations were conducted with GOLD Version 1.2 software (Genetic Optimization for Ligand Docking, Cambridge Crystallographic Data Centre, Cambridge, United Kingdom) (46–49).

RESULTS

Optimization of the EAH Activity—Numerous preliminary experiments were performed to optimize EAH activity for the conversion of EA to capsidiol. For example, the ability of a miscible organic co-solvent and various detergents to improve EA solubility was assessed. Maximum conversion of EA to capsidiol activity was observed at final concentrations of 2–5% (v/v) Me₂SO, but was inhibited at concentrations >10%. Detergents were also evaluated at concentrations ranging from 0.01 to 0.1% Triton X-100 (v/v), deoxycholate (w/v), and 1-O-octyl β-d-glucopyranoside (w/v) all inhibited EAH activity, whereas CHAPS (w/v) and Tween 20 (v/v) had no effect. Standard assays were therefore performed using EA stock solutions dissolved in Me₂SO and assayed at a final Me₂SO concentration of 4% (v/v) in all reaction assays. The pH optimum was determined using 100 mM Tris-HCl (pH 7.2–9.2) and phosphate (pH 6.0–7.5) buffering systems. Maximum activity was observed at pH 7.5 with little preference for either the Tris-HCl or phosphate buffer. The optimum NADPH concentration for EAH activity was also determined. The maximum conversion rate...
for EA to capsidiol was observed at 0.3 mM and remained saturated up to a final concentration of 2.4 mM. The K_m for NADPH was subsequently estimated to be $61 \pm 5 \mu M$. All subsequent enzyme assays were therefore performed at optimized reaction conditions of 4% (v/v) Me$_2$SO and 2.4 mM NADPH in 100 mM Tris-HCl (pH 7.5).

Kinetic Analysis of EAH Indicates a Specific Reaction Order—To initially address the hydroxylation specificity of EAH (Scheme 1), we tested the enzyme for substrate preference for either of the putative reaction intermediates, 3α(OH)EA and 1β(OH)EA (Fig. 1). Microsomes from WAT11 yeast overexpressing the EAH gene were used as the enzyme source, and the absolute amount of active EAH enzyme was calculated from the carbon monoxide difference spectra. Both 3α(OH)EA and 1β(OH)EA were converted to capsidiol by EAH in NADPH-dependent reactions, but with different efficiencies. The K_m for 1β(OH)EA was ~ 4 times lower and the k_{cat} was ~ 3 times higher than those for 3α(OH)EA, resulting in a catalytic efficiency (k_{cat}/K_m) for 1β(OH)EA ~ 10 times greater than that for 3α(OH)EA (Table I). The kinetic constants for the hydrocarbon

Fig. 3. GC and MS profiles for the reaction products generated by EAH incubated with EA. Shown are total ion chromatograms for reaction products generated by EAH in the presence and absence of NADPH (A) and mass spectrum matches for peaks 1 and 2 to authentic standards of 1β(OH)EA and capsidiol (B).
substrate EA were also determined (Fig. 2 and Table I). Although the K_m for the hydrocarbon substrate was considerably higher than that for either of the monohydroxylated intermediates, the turnover rates for EA and 1\text{H9252}(OH)EA were similar and significantly greater than that for 3\text{H9251}(OH)EA. The kinetic constants reported in Table I are consistent with a catalytic barrier to the successive hydroxylation of the 3\text{H9251}(OH)EA intermediate and suggested that 1\text{H9252}(OH)EA would be the preferred monohydroxylated intermediate. In an effort to capture the release of an initial reaction intermediate, assays were performed with increasing concentrations of EA (2–100 μM), and the reaction product profiles were determined (Fig. 2). Reaction products were observed only after incubations with NADPH and were identified by GC/MS comparisons with authentic standards (Fig. 3). Capsidiol production reached a maximum at ≈ 40 μM EA and gradually decreased after that. Although no monohydroxylated intermediates were detectable at EA concentrations below 16 μM, a proportionate increase in the biosynthesis of 1\text{H9252}(OH)EA was observed at EA concentrations above 20 μM. In contrast, no release of 3\text{H9251}(OH)EA was observed over the entire concentration range investigated.

Molecular Analysis of the Dihydroxylase Activities—A combination of computational methods was used to identify structural elements possibly contributing to the successive hydroxylation activity of EAH (Fig. 4). Sequence alignment of EAH with the known substrate recognition sites (SRSs) of closely related P450 enzymes of the CYP71D subfamily (50) revealed several potentially important sites. SRS-5 and SRS-6 were of particular interest given their proximity to the active site in several P450 structures (51) and because specific amino acid positions within these regions have previously been correlated with regio- and stereospecific reaction mechanisms (Fig. 4A) (52–61). A homology model of EAH was derived using the mammalian P450 2C5 protein (Protein Data Bank code 1DT6) (36) as described under “Experimental Procedures” and is shown here as a ribbon diagram (B). A close-up is shown of the active-site model of EAH showing the spatial location of Ser368 and Ile466 relative to the heme reaction center (C).
the turnover rates for capsidiol formation were 3–13 times lower compared with that of the wild-type enzyme. EAH-S368A and EAH-S368T were also able to convert 1β(OH)EA to capsidiol with \(K_{m} \) values comparable with that of wild-type EAH, but with \(K_{m} \) values for 1β(OH)EA 4–6 times greater compared with that of wild-type EAH. Although mutant enzymes containing bulky amino acid substitutions such as Ile and Phe might not be released from EAH, but instead might be flipped and/or rotated within the active site in a manner to reposition the intermediate for the second hydroxylation event. The second hydroxylation event would then provide a trigger for product release. The present results clearly refute such speculation and provide strong kinetic evidence for independent and stepwise hydroxylation of EA. EAH readily accepts and catalyzes the conversion of both monohydroxylated intermediates to capsidiol. However, although the turnover rate for 3α(OH)EA to capsidiol is comparable with that for the native hydrocarbon substrate EA, the relative efficiency for 1β(OH)EA conversion is 10-fold greater (Table I). The latter is largely accounted for by a much lower \(K_{m} \) for 1β(OH)EA. The accumulation of 1β(OH)EA in reactions initiated with concentrations of EA exceeding 20 \(\mu \)M also clearly demonstrates a specific reaction pathway. When EA concentrations are below 20 \(\mu \)M, EA must be converted first to 1β(OH)EA, which is released but rapidly recaptured and converted to the dihydroxylated product. At concentrations exceeding 20 \(\mu \)M (the approximate \(K_{m} \) for EA),

\[\text{1β(OH)EA, 2β(OH)EA, and 3β(OH)EA; a small amount of } 3α(OH)EA; \text{ another unidentified monohydroxylated compound accounting for 7% of the total products (presumed to be } 2α(OH)EA \text{ based on retention time and MS); and EA-3-one and EA-1-one at 1.5% (Fig. 6 and Scheme 2). Control microsomes (microsomes from yeast harboring an expression vector not engineered with any EAH gene constructs) were not able to metabolize 1β(OH)EA, but did exhibit a very minor activity (4.6% of that associated with EAH-S368V) for conversion of 3α(OH)EA to the corresponding ketone (data not shown). Overall, the catalytic efficiency of EAH-S368V for the turnover of EA to 1β(OH)EA was slightly superior to the ability of the wild-type enzyme to convert EA to capsidiol (Table II). However, when the biosynthetic rates for all the monohydroxylated and ketone reaction products are taken into account, EAH-S368V exhibited a turnover rate for EA twice that of the wild-type enzyme. Ile\(^{486}\) within SRS-6 was also chosen for mutagenesis because this position exhibits significant variability between other members of the CYP71D subfamily, and the spatial location of its R group is oriented into the active site based on molecular modeling (Fig. 4). Mutation of Ile\(^{486}\) to Ala in EAH also caused a significant reduction in the successive hydroxylation of EA to capsidiol (Fig. 7 and Table II). The EAH-I486A mutant enzyme turned over EA to the monohydroxylated intermediate 1β(OH)EA at approximately one-half the rate of the wild-type enzyme, but produced only negligible amounts of capsidiol from EA. Because an accurate determination of the EA-to-capsidiol conversion was not possible, no kinetic constants for this reaction were calculated. However, the turnover rate for 1β(OH)EA to capsidiol by EAH-I486A had a 12-fold higher \(K_{m} \) and a 4-fold turnover rate compared to that of the wild-type enzyme (Table II).

DISCUSSION

The aim of this work was to determine whether successive hydroxylations of EA to capsidiol catalyzed by EAH occur with a preferred reaction order, and if so, if there are structural features of the EAH active site that can be associated with this specificity. Earlier work had demonstrated that EA is readily converted to capsidiol by EAH without the apparent release of any reaction intermediate(s) (14, 41). This in turn prompted speculation that the successive hydroxylations might occur sequentially within a single catalytic cascade terminating with the release of only the dihydroxylated capsidiol product. The relatively large cavities described for the active site of several P450 enzymes (62, 63) lent support to this notion. We therefore suggested that the initial monohydroxylated intermediate might not be released from EAH, but instead might be flipped and/or rotated within the active site in a manner to reposition the intermediate for the second hydroxylation event. The second hydroxylation event would then provide a trigger for product release. The present results clearly refute such speculation and provide strong kinetic evidence for independent and stepwise hydroxylation of EA. EAH readily accepts and catalyzes the conversion of both monohydroxylated intermediates to capsidiol. However, although the turnover rate for 3α(OH)EA to capsidiol is comparable with that for the native hydrocarbon substrate EA, the relative efficiency for 1β(OH)EA conversion is 10-fold greater (Table I). The latter is largely accounted for by a much lower \(K_{m} \) for 1β(OH)EA. The accumulation of 1β(OH)EA in reactions initiated with concentrations of EA exceeding 20 \(\mu \)M also clearly demonstrates a specific reaction pathway. When EA concentrations are below 20 \(\mu \)M, EA must be converted first to 1β(OH)EA, which is released but rapidly recaptured and converted to the dihydroxylated product. At concentrations exceeding 20 \(\mu \)M (the approximate \(K_{m} \) for EA),

\[\text{1β(OH)EA, 2β(OH)EA, and 3β(OH)EA; a small amount of } 3α(OH)EA; \text{ another unidentified monohydroxylated compound accounting for 7% of the total products (presumed to be } 2α(OH)EA \text{ based on retention time and MS); and EA-3-one and EA-1-one at 1.5% (Fig. 6 and Scheme 2). Control microsomes (microsomes from yeast harboring an expression vector not engineered with any EAH gene constructs) were not able to metabolize 1β(OH)EA, but did exhibit a very minor activity (4.6% of that associated with EAH-S368V) for conversion of 3α(OH)EA to the corresponding ketone (data not shown). Overall, the catalytic efficiency of EAH-S368V for the turnover of EA to 1β(OH)EA was slightly superior to the ability of the wild-type enzyme to convert EA to capsidiol (Table II). However, when the biosynthetic rates for all the monohydroxylated and ketone reaction products are taken into account, EAH-S368V exhibited a turnover rate for EA twice that of the wild-type enzyme. Ile\(^{486}\) within SRS-6 was also chosen for mutagenesis because this position exhibits significant variability between other members of the CYP71D subfamily, and the spatial location of its R group is oriented into the active site based on molecular modeling (Fig. 4). Mutation of Ile\(^{486}\) to Ala in EAH also caused a significant reduction in the successive hydroxylation of EA to capsidiol (Fig. 7 and Table II). The EAH-I486A mutant enzyme turned over EA to the monohydroxylated intermediate 1β(OH)EA at approximately one-half the rate of the wild-type enzyme, but produced only negligible amounts of capsidiol from EA. Because an accurate determination of the EA-to-capsidiol conversion was not possible, no kinetic constants for this reaction were calculated. However, the turnover rate for 1β(OH)EA to capsidiol by EAH-I486A had a 12-fold higher \(K_{m} \) and a 4-fold turnover rate compared to that of the wild-type enzyme (Table II).

DISCUSSION

The aim of this work was to determine whether successive hydroxylations of EA to capsidiol catalyzed by EAH occur with a preferred reaction order, and if so, if there are structural features of the EAH active site that can be associated with this specificity. Earlier work had demonstrated that EA is readily converted to capsidiol by EAH without the apparent release of any reaction intermediate(s) (14, 41). This in turn prompted speculation that the successive hydroxylations might occur sequentially within a single catalytic cascade terminating with the release of only the dihydroxylated capsidiol product. The relatively large cavities described for the active site of several P450 enzymes (62, 63) lent support to this notion. We therefore suggested that the initial monohydroxylated intermediate might not be released from EAH, but instead might be flipped and/or rotated within the active site in a manner to reposition the intermediate for the second hydroxylation event. The second hydroxylation event would then provide a trigger for product release. The present results clearly refute such speculation and provide strong kinetic evidence for independent and stepwise hydroxylation of EA. EAH readily accepts and catalyzes the conversion of both monohydroxylated intermediates to capsidiol. However, although the turnover rate for 3α(OH)EA to capsidiol is comparable with that for the native hydrocarbon substrate EA, the relative efficiency for 1β(OH)EA conversion is 10-fold greater (Table I). The latter is largely accounted for by a much lower \(K_{m} \) for 1β(OH)EA. The accumulation of 1β(OH)EA in reactions initiated with concentrations of EA exceeding 20 \(\mu \)M also clearly demonstrates a specific reaction pathway. When EA concentrations are below 20 \(\mu \)M, EA must be converted first to 1β(OH)EA, which is released but rapidly recaptured and converted to the dihydroxylated product. At concentrations exceeding 20 \(\mu \)M (the approximate \(K_{m} \) for EA),
EA effectively competes with released 1β(OH)EA for substrate-binding sites. Hence, 1β(OH)EA accumulates in direct proportion to the EA concentration.

The successive hydroxylation activity of EAH exhibits similarities and differences relative to other well characterized multifunctional P450 enzymes. For example, CYP27A1 catalyzes the successive hydroxylation of vitamin D₃ (64) and cholesterol (65). Based on the time-dependent appearance of multiple reaction products during in vitro reactions, Sawada et al. (64) concluded that CYP27A1 initially catalyzes hydroxylation at C-25 of vitamin D₃, followed by a second hydroxylation at C-24, C-1, or C-26, yielding a complex mixture of a single monohydroxylated product and three or more dihydroxylated ones. No C-1 or C-24 monohydroxylation products were observed. However, the mass spectrum for peak 5 resolves into two nearly equal sized peaks by chiral GC analysis (Supplemental Fig. 2), with peak 5-1 corresponding to 3β(OH)EA and peak 5-2 to 2β(OH)EA (as determined by NMR analysis).

FIG. 6. Reaction product analysis of EAH-S368V incubated with EA. EAH-S368V was incubated with 40 μM EA, and the total reaction products were fractionated by silica gel chromatography. Total ion chromatograms of the reaction products eluted from the silica gel with 5% ethyl acetate in hexane (A, left panel) are compared with those of authentic standards for EA-3-one and EA-1-one (A, right panel). Mass spectra for peaks 1 and 2 are compared directly with those for the respective ketones (B). Total ion chromatograms of reaction products sequentially eluted from the silica gel with 20% ethyl acetate in hexane (C, left panel) are compared with those of authentic standards for 1β(OH)EA, 3α(OH)EA, and 3β(OH)EA (C, right panel). The mass spectrum for peak 3 matches that for 1β(OH)EA (D), shown previously in Fig. 3. The mass spectra for peaks 5 and 6 are compared directly with those for 3β(OH)EA and 3α(OH)EA (D). However, peak 5 resolves into two nearly equal sized peaks by chiral GC analysis (Supplemental Fig. 2), with peak 5-1 corresponding to 3β(OH)EA and peak 5-2 to 2β(OH)EA (as determined by NMR analysis). RT, retention time.
observed, nor products with more than two inserted hydroxyls. Consistent with this complex reaction product profile, the K_m for the C-25 monohydroxylated intermediate is equal to that for the original substrate, but the apparent reaction velocity for the successive hydroxylation is only one-tenth that of the initial hydroxylation event. P450$_{11}$ and P450$_{17}$, lyase (67) are likewise P450 enzymes catalyzing successive hydroxylation reactions in aldosterone and androgen metabolism, respectively, that generate mono- and dihydroxylated reaction mixtures. Using rapid quench methods, rate constants for the initial hydroxylation step were shown to be -10-fold greater than the rate constants for the second hydroxylation step, and the dissociation rates of the monohydroxylated intermediates were also competitive with the rate constants for the second hydroxylation step, altogether consistent with the release and accumulation of monohydroxylated intermediates over time. In light of these reports and the current results, our initial observation of complete conversion of EA to a single dihydroxylated product without release of monohydroxylated intermediate (14) can now be attributed to the greater affinity and faster turnover rate of EAH for the monohydroxylated intermediate than for the initial EA substrate.

Previous site-directed mutagenesis studies and the three-dimensional structure of mammalian P450 2C5 (36) provided important frameworks for targeting active-site residues that might play a role in the successive hydroxylation specificity of EAH (68, 69). Using only those sequence regions that map to substrate contact points to positions equivalent to amino acid 368 in several members of the CYP2B subfamily was shown to affect the regiospecific hydroxylation of steroids (52, 53). The same position was also reported to play a role in substrate recognition for CYP2A5 (54) and CYP3A4 (55). Swapping this region between two highly homologous plant P450 enzymes, limonene 6-hydroxylase and limonene 3-hydroxylase, followed by reciprocal site-directed mutagenesis, demonstrated that the corresponding position also contributes to the regiospecificity of monoterpene hydroxylation. Exchange of Phe$_{363}$ with Ile changes the regiospecificity of limonene 6-hydroxylase (CYP71D18) from hydroxylating limonene at C-6 to C-3, but the reciprocal mutation, I363F, completely inactivates limonene 3-hydroxylase activity (56). A similar modification of the corresponding site (position 371) in cinnamate hydroxylase (CYP73A1), another plant-specific P450 family, from Ile to Phe leads to a dramatic decrease in substrate binding and enzymatic activity, but without a major perturbation of protein folding (57).

The position corresponding to amino acid 486 in SRS-6 of EAH has also been extensively evaluated in mammalian hydroxylases. For instance, exchange of Gly$_{478}$ of CYP2B1 with larger hydrophobic amino acids (Ala, Val, Ile, and Leu) alters the stereospecific hydroxylation of androstenedione (58, 59). In contrast, substitution of Phe for Ile at position 479 of CYP3A4 completely inactivates limonene 6-hydroxylase activity (56). Similarly, substitution of smaller hydrophobic amino acids (Ala, Val, Ile, Leu, and Leu) for Phe$_{494}$ in CYP3A4 also alters the regiospecificity of lauric acid hydroxylation (60). Further, exchange of Phe$_{363}$ with Ile changes the regiospecificity of limonene 6-hydroxylase (CYP71D18) from hydroxylating limonene at C-6 to C-3, but the reciprocal mutation, I363F, completely inactivates limonene 3-hydroxylase activity (56). A similar modification of the corresponding site (position 371) in cinnamate hydroxylase (CYP73A1), another plant-specific P450 family, from Ile to Phe leads to a dramatic decrease in substrate binding and enzymatic activity, but without a major perturbation of protein folding (57).

The position corresponding to amino acid 486 in SRS-6 of EAH has also been extensively evaluated in mammalian hydroxylases. For instance, exchange of Gly$_{478}$ of CYP2B1 with larger hydrophobic amino acids (Ala, Val, Ile, and Leu) alters the stereospecific hydroxylation of androstenedione (58, 59). In contrast, substitution of Phe for Ile at position 479 of CYP3A4 completely inactivates limonene 6-hydroxylase activity (56). Similarly, substitution of smaller hydrophobic amino acids (Ala, Val, Ile, Leu, and Leu) for Phe$_{494}$ in CYP3A4 also alters the regiospecificity of lauric acid hydroxylation (60). Further, exchange of Phe$_{363}$ with Ile changes the regiospecificity of limonene 6-hydroxylase (CYP71D18) from hydroxylating limonene at C-6 to C-3, but the reciprocal mutation, I363F, completely inactivates limonene 3-hydroxylase activity (56). A similar modification of the corresponding site (position 371) in cinnamate hydroxylase (CYP73A1), another plant-specific P450 family, from Ile to Phe leads to a dramatic decrease in substrate binding and enzymatic activity, but without a major perturbation of protein folding (57).
amino acids 368 and 486 (51), but these have yet to be functionally confirmed by site-directed mutagenesis studies.

This work, summarized in Table III, demonstrates that positions 368 and 486 in EAH are both critical for regulating successive hydroxylation reactions as well as dictating regio- and stereospecificity. Substitution of Cys for Ser at position 368 completely abolished the capacity of EAH to generate capsidiol from either EA or 1\(^{(OH)}\)EA, yet the initial hydroxylation reaction of EA to 1\(^{(OH)}\)EA was preserved. Position 486 likewise is critical for the successive hydroxylation reaction. Although the EAH-I486A mutant readily catalyzed the biosynthesis of 1\(^{(OH)}\)EA from EA, it was severely compromised for capsidiol biosynthesis. The latter limitation was in fact correlated with a significant reduction in the binding affinity for the monohydroxylated intermediate.

The diversity of hydroxylated products generated by the EAH-S368V mutant underscores its importance in controlling stereo- and regiospecific hydroxylation. Although, like EAH-I486A, this mutant is severely compromised in its ability to convert 1\(^{(OH)}\)EA to capsidiol, it has a total activity 2-fold greater than that of the wild-type enzyme and generates at least five novel hydroxylation products (Fig. 6). These new products represent unique stereospecific products (3\(^{(OH)}\)EA), regiospecific isomers (2\(^{(OH)}\)EA and 2\(^{(OH)}\)EA), and novel successive hydroxylation products (EA-1-one and EA-3-one) that must arise from multiple hydroxylation reactions at C-1 and C-3, respectively (Scheme 2).

Substrate docking experiments using the EAH homology model provide a basis to rationalize the catalytic specificities of EAH and the various Ser\(^{368}\) and Ile\(^{486}\) mutations (Fig. 8). Multiple docking solutions for EA as ligand cluster around two distinct binding modes in which the plane of the bicyclic ring is rotated by \(-180^\circ\). In binding mode A (Fig. 8A), the \(\beta\)-face of EA is directed toward the heme center, placing C-1 in position for hydroxylation to produce 1\(^{(OH)}\)EA. In binding mode B (Fig. 8B), C-3 is now poised for hydroxylation on the \(\alpha\)-face leading to 3\(^{(OH)}\)EA. It is apparent from these binding models that the \(\alpha\)-face is more hindered, given the methyl group on C-4. Therefore, one might expect that hydroxylation on the \(\beta\)-face may proceed faster.

Docking solutions using 1\(^{(OH)}\)EA as ligand cluster around a single binding mode, placing the \(\beta\)-hydroxy in the vicinity of Ser\(^{368}\) for a potential hydrogen bonding interaction (Fig. 8C). Docking solutions for the 3\(^{(OH)}\)EA ligand produced a single nonproductive binding mode that directs the 3\(^{(OH)}\)EA toward the heme center and C-1 away (data not shown). A compelling explanation for the greater catalytic efficiency of EAH for 1\(^{(OH)}\)EA than for 3\(^{(OH)}\)EA is that the hydroxyl group of Ser\(^{368}\) anchors the 1\(^{(OH)}\)EA intermediate via a hydrogen bonding network (70) in a proper orientation for the second hydroxylation event. The EAH-S368A mutant may retain successive hydroxylation activity because it accommodates an additional water molecule in the active-site pocket along with the monohydroxylated intermediate, and this water molecule complements the missing hydroxyl function of the Ser or Thr side chain. Confirmation of a hydrogen bonding network or

Amino acid/position	R group	Reaction after feeding substrate
368A	-CH\(_3\)	++1
368S (wt)	-CH\(_2\)OH	+1
368C	-CH\(_2\)SH	No activity
368T	-CH\(_3\)OH	No activity
368V	-CH\(_3\)	++2
368I	-CH\(_2\)CH\(_3\)	No activity
368F	-CH\(_2\)CH\(_3\)	No activity
486A	-CH\(_3\)	++1
486I (wt)	-CH\(_2\)CH\(_3\)	+2

\(^1\) Calculated as percent of the wild-type \(k_{cat}\) of 0.493.

\(^2\) Calculated as percent of the wild-type \(k_{cat}\) of 0.582.

TABLE III

Summary comparisons of mutations at Ser\(^{368}\) and Ile\(^{486}\) on the successive hydroxylation activity of EAH	
1 Calculated as percent of the wild-type \(k_{cat}\) of 0.493.	
2 Calculated as percent of the wild-type \(k_{cat}\) of 0.582.	
were predicted from docking experiments. A single binding mode for
active site. We thank Dr. Neil Fannin for valuable assist-
ance with GC and GC/MS analyses and Dr. Balazs Siminszky for
measurement of the CO difference spectrum.

REFERENCES

1. Stevens, K. L. (1984) Isopentenoids in Plants, pp. 63–80, Marcel Dekker, Inc., New York
2. Keseler, I. A., and Baldwin, I. T. (2001) Science 291, 2141–2144
3. Gibson, R. W., and Pickett, J. A. (1983) Nature 302, 698–699
4. Chappell, J. (1995) Plant Physiol. 107, 1–6
5. Stoessl, A., Stothers, J. B., and Ward, E. W. B. (1976) Phytochemistry 15, 855–873
6. Stoessl, A., Unwin, C. H., and Ward, E. W. B. (1973) Phytopathology 63, 1225–1231
7. Ward, R. W. B., Unwin, C. H., and Stoessl, A. (1973) Phytopathology 63, 1537–1538
8. Guedes, M. E. M., Kuc, J., Hammerschmidt, R., and Bostock, R. (1982) Phytochem.
istry 21, 2987–2988
9. Watson, D. G., Rycroft, D. S., Freer, I. M., and Brooks, C. J. W. (1985) Phytochemistry 24, 2195–2200
10. Chappell, J., Nable, R., Fleming, P., Andersen, R. A., and Burton, H. R. (1987) Phytochemistry 26, 2259–2260
11. Stoessl, A., Unwin, C. H., and Ward, E. W. B. (1972) Phytopathol. Z. 74, 141–152
12. Vartiainen, T., and Chappell, J. (1988) Plant Physiol. 98, 1291–1296
13. Facchini, P. J., and Chappell, J. (1992) Proc. Natl. Acad. Sci. U. S. A. 89, 11088–11092
14. Rakolt, L., Kwon, S. T., Schoenbeck, M., Rakolt, J., Schenk, D. J., Coates, R. M., and Chappell, J. (2001) Arch. Biochem. Biophys. 393, 222–235
15. Lupien, S., Karp, F., Wildung, M., and Croteau, R. (1999) Arch. Biochem. Biophys. 368, 181–192
16. Wust, M., Lelièvre, B., Schalk, M., and Croteau, R. (2001) Arch. Biochem. Biophys. 387, 125–136
17. Teutisch, H. G., Hasenfratz, M. P., Loset, A., Stoltz, C., Garnier, J. M., Jeltisch, J. M., Durst, F., and Weck-Reichhart, D. (1993) Proc. Natl. Acad. Sci. U. S. A. 90, 4102–4106
18. Meyer, K., Cusumano, J. C., Somerville, C., and Chappell, C. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 6869–6874
19. Humphreys, J. M., Hemm, M. R., and Chappell, C. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10045–10050
20. Schoendorf, A., Rithner, C. D., Williams, R. M., and Croteau, R. B. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 1501–1506
21. Jennewein, S., Rithner, C. D., Williams, R. M., and Croteau, R. B. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 13595–13600
22. Jennewein, S., Rithner, C. D., Williams, R. M., and Croteau, R. (2003) Arch. Biochem. Biophys. 415, 262–270
23. Frey, M., Chomet, P., Glawischnig, E., Stettner, C., Grun, S., Winklmair, A., Eisenreich, W., Bacher, A., Meley, R. B., Briggs, S. P., Simeon, K., and Gierl, A. (1997) Science 277, 696–699
24. Nomura, T., Ishihara, A., Imaishi, H., Endo, T. R., Ohkawa, H., and Iwamura, H. (2002) Mol. Genet. Genomics 267, 210–217
25. Sticher, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T., Redei, G. P., Nagy, F., Schell, J., and Koncz, C. (1996) Cell 85, 171–182
26. Choe, S., Dilkes, B. P., Fujisaki, S., Takasato, S., Sakurai, A., and Feldmann, K. A. (1999) Plant Cell 11, 231–243
27. Koch, B. M., Sibbesen, O., Halkier, B. A., Svendsen, I., and Moller, B. L. (1995) Arch. Biochem. Biophys. 323, 177–186
28. Kaltenbach, M., Schuder, G., Schmelzer, E., Lutz, V., and Schroder, J. (1999) Plant J. 19, 183–193
29. Menting, J., Scopes, R. K., and Stevenson, T. W. (1994) Plant Physiol. 106, 633–642
30. Xu, Y. L., Li, L., Wu, K., Peeters, A. J. A., Gage, D. A., and Zeevaart, J. A. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 6640–6644
31. Phillips, A. L., Ward, D. A., Uknes, S., Appleford, N. E., Lange, T., Hutty, A., Gaskin, P., Grasbe, J. E., and Hedden, P. (1995) Plant Physiol. 106, 1049–1057
32. Hellingwell, C. A., Poole, A., Peacock, W. J., and Dennis, E. S. (1999) Plant Physiol. 118, 567–570
33. Hellingwell, C. A., Chandler, P. M., Poole, A., Dennis, E. S., and Peacock, W. J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 2065–2070
34. Watson, D. G., Baker, F. C., and Brooks, C. J. W. (1983) Biochem. Soc. Trans. 11, 589–590
35. Whitehead, I., Threlfall, D. R., and Ewing, D. F. (1989) Phytochemistry 28, 775–779
36. Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F., and McRee, D. E. (2000) Arch. Biochem. Biophys. 379, 121–131
37. Zhao, Y., Schenk, D. J., Takahashi, S., Chappell, J., and Coates, R. M. (2004) J. Org. Chem. 69, 7429–7435
38. Rising, K. A., Starks, C. M., Noel, J. P., and Chappell, J. (2000) J. Am. Chem. Soc. 122, 1861–1866
39. Pompon, D., Lourierat, B., Bronine, A., and Urban, P. (1996) Methods Enzymol. 272, 51–64
40. Urban, P., Mignotte, C., Kazmaier, M., Delorme, F., and Pompon, D. (1997) J. Biol. Chem. 2721, 1916–1918
41. Greenough, B. T., Grigg, P., Takahashi, S., Rakolt, L., and Chappell, J. (2000) Arch. Biochem. Biophys. 409, 385–394
42. Omura, T., and Sato, R. (1964) J. Biol. Chem. 239, 2370–2378
43. Marti-Renom, M. A., Stuart, A., Fiser, A., Sánchez, R., Melo, F., and Sali, A. (2000) Annu. Rev. Biophys. Biomol. Struct. 29, 291–325
44. A. Sali, A., and Blundell, T. L. (1993) J. Mol. Biol. 234, 779–815
45. Fiser, A., Do, R. K., and Sali, A. (2000) Protein Sci. 9, 1753–1773
46. Jones, G., Willett, P., and Glen, R. C. (1995) J. Mol. Biol. 245, 523–532
47. Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R. (1997) J. Mol. Biol. 267, 727–748
48. Nissink, J. W. M., Murray, C., Harthorn, M., Verdonk, M. L., Cole, J. C., and Taylor, R. (2002) Proteins 49, 457–471. W. M.
49. Verdonk, M. L., Cole, J. C., Hartshorn, M. J., Murray, C. W., and Taylor, R. D. (2003) *Proteins* **52**, 609–623
50. Gotoh, O. (1992) *J. Biol. Chem.* **267**, 83–90
51. Rupasinghe, S., Baudry, J., and Schuler, M. A. (2003) *Protein Eng.* **16**, 721–731
52. He, Y., Luo, Z., Klekotka, P. A., Burnett, V. L., and Halpert, J. R. (1994) *Biochemistry* **33**, 4419–4424
53. Hasler, J. A., Harlow, G. R., Sklarz, G. D., John, G. H., Kedzie, K. M., Burnett, V. L., He, Y. A., Kaminsky, L. S., and Halpert, J. R. (1994) *Mol. Pharmacol.* **46**, 338–345
54. Pelkonen, P., Lang, M. A., Negishi, M., Wild, C. P., and Juvonen, R. O. (1997) *Chem. Res. Toxicol.* **10**, 85–90
55. He, Y. A., He, Y. Q., Sklarz, G. D., and Halpert, J. R. (1997) *Biochemistry* **36**, 8831–8839
56. Schalk, M., and Croteau, R. (2000) *Proc. Natl. Acad. Sci. U. S. A.* **97**, 11948–11953
57. Schoch, G. A., Attias, R., Le Ret, M., and Werck-Reichhart, D. (2003) *Eur. J. Biochem.* **270**, 3684–3695
58. Kedzie, K. M., Balfour, C. A., Escobar, G. Y., Grimm, S. W., He, Y. A., Pepperl, D. J., Regan, J. W., Stevens, J. C., and Halpert, J. R. (1991) *J. Biol. Chem.* **266**, 22515–22521
59. He, Y. A., Balfour, C. A., Kedzie, K. M., and Halpert, J. R. (1992) *Biochemistry* **31**, 9220–9226
60. Khan, R. K., and Halpert, J. R. (2000) *Arch. Biochem. Biophys.* **373**, 335–345
61. Kahn, R. A., Le Bouquin, R., Pinot, F., Benveniste, I., and Durst, F. (2001) *Arch. Biochem. Biophys.* **15**, 180–187
62. Williams, P. A., Cosme, J., Ward, A., Angove, H. C., Matak, V. D., and Jhoti, H. (2003) *Nature* **424**, 464–468
63. Williams, P. A., Cosme, J., Vinkovic, D. M., Ward, A., Angove, H. C., Day, P. J., Vonrhoin, C., Tickle, I. J., and Jhoti, H. (2004) *Science* **305**, 683–686
64. Sawada, N., Sakaki, T., Ohta, M., and Inouye, K. (2000) *Biochem. Biophys. Res. Commun.* **273**, 977–984
65. Pikuleva, I., and Javitt, N. B. (2003) *Arch. Biochem. Biophys.* **420**, 35–39
66. Imai, T., Yamazaki, T., and Kominami, S. (1998) *Biochemistry* **37**, 8097–8104
67. Yamazaki, T., Ohno, T., Sakaki, T., Akiyoshi-Shibata, M., Yabusaki, Y., Imai, T., and Kominami, S. (1998) *Biochemistry* **37**, 2800–2806
68. Lewis, D. F. V. (2002) *J. Inorg. Biochem.* **91**, 502–514
69. Kumar, S., Scott, E. E., Liu, H., and Halpert, J. R. (2003) *J. Biol. Chem.* **278**, 17178–17184
70. Wester, M. R., Johnson, E. F., Marques-Soares, C., Dijols, S., Daniset, F. M., Mansuy, D., and Stout, C. D. (2003) *Biochemistry* **42**, 9335–9345
71. Scott, E. E., White, M. A., He, Y. A., Johnson, E. F., Stout, C. D., and Halpert, J. R. (2004) *J. Biol. Chem.* **279**, 27294–27301
72. Wang, E., Wang, R., DeParasis, J., Loughrin, J. H., Gan, S., and Wagner, G. J. (2001) *Nat. Biotechnol.* **19**, 371–374
Kinetic and Molecular Analysis of 5-Epiaristolochene 1,3-Dihydroxylase, a Cytochrome P450 Enzyme Catalyzing Successive Hydroxylations of Sesquiterpenes
Shunji Takahashi, Yuxin Zhao, Paul E. O'Maille, Bryan T. Greenhagen, Joseph P. Noel,
Robert M. Coates and Joe Chappell

J. Biol. Chem. 2005, 280:3686-3696.
doi: 10.1074/jbc.M411870200 originally published online November 2, 2004

Access the most updated version of this article at doi: 10.1074/jbc.M411870200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2004/11/18/M411870200.DC1

This article cites 70 references, 24 of which can be accessed free at
http://www.jbc.org/content/280/5/3686.full.html#ref-list-1