Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions

C. Q. TANG (唐勤)
Institute of Ecology and Geobotany, Yunnan University, CN-650091 Kunming, China
E-mail: cindytang@ynu.edu.cn

Editors: M.-X. Ren & J. López-Pujol

Received 15 December 2014; accepted 15 January 2015

Abstract

Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, as compared with those of the eastern Chinese subtropical regions. — This paper analyzes the geographic distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China, and compares with other subtropical regions in the east of China in terms of forest types, pertinent species, and spatial distribution along latitudinal, longitudinal and altitudinal gradients. In general, for both the western and the eastern subtropical regions, the evergreen broad-leaved forests are dominated by species of Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae), Machilus, Cinnamomum (Lauraceae), Schima (Theaceae), Manglietia, and Michelia, (Magnoliaceae), while in southwestern China there are more diverse forest types including semi-humid, monsoon, mid-montane moist and humid evergreen broad-leaved forests, but only monsoon and humid forests in the east. The Yunnan area has more varied species of Lithocarpus or Cyclobalanopsis or Castanopsis as dominants than does eastern China, where the chief dominant genus is Castanopsis. The upper limits of the evergreen broad-leaved forests are mainly 2400–2800 m in western Yunnan and western Sichuan, much higher than in eastern China (600–1500, but 2500 m in Taiwan). Also discussed are the environmental effects on plant diversity of the evergreen broad-leaved forest ecosystems exemplified by Yunnan and Taiwan.

Key words: dominant species; environmental gradient; forest type; plant diversity; spatial distribution; succession.

Resumen

Patrones de distribución de los bosques subtropicales perennifolios de hoja ancha del suroeste de China en comparación con aquellos de las regiones subtropicales del este de China. — En este trabajo se analiza la distribución geográfica de los bosques subtropicales perennifolios de hoja ancha del suroeste de China, y se comparan con los de otras regiones subtropicales del este de China en términos de tipología de bosque, especies relevantes, y distribución espacial a lo largo de un gradiente latitudinal, longitudinal y altitudinal. De manera general, los bosques perennifolios de hoja ancha de la región subtropical tanto orientales como occidentales presentan predominancia de especies de Castanopsis, Lithocarpus, Cyclobalanopsis (Fagaceae), Machilus, Cinnamomum (Lauraceae), Schima (Theaceae), Manglietia y Michelia (Magnoliaceae); sin embargo, mientras que en el suroeste de China hay más diversidad de tipos de bosques perennifolios de hoja ancha —húmedos, semi-húmedos, monzónicos y montanos húmedos—, en el este del país la variedad de tipos se limita a dos: monzónicos y húmedos. El área de Yunnan tiene una mayor variedad de especies dominantes de los géneros Lithocarpus, Cyclobalanopsis y Castanopsis, mientras que en este de China el género dominante es casi invariablemente Castanopsis. El límite altitudinal superior de los bosques perennifolios de hoja ancha se sitúa en 2400-2800 m para el oeste de las provincias de Yunnan y Sichuan, muy superior a lo que sucede en el este del país (entre 600 y 1500 m, aunque para Taiwan el límite alcanza los 2500 m). En último lugar se discuten los efectos medioambientales sobre la diversidad de especies vegetales de los bosques perennes de hoja ancha, y se proporcionan ejemplos de Yunnan y Taiwan.

Palabras clave: distribución espacial; diversidad de especies vegetales; especies dominantes; gradiente medioambiental; sucesión; tipo de bosque.
INTRODUCTION

Subtropical evergreen broad-leaved forests (hereafter EBLFs) refer to lauro-fagaceous evergreen forests, also known as lucidophylls or laurophylls, referring to their often glossy leaves. These forests, dominated by the genera Castanopsis (D. Don) Spach, Lithocarpus Blume, Cyclobalanopsis Oerst. (Fagaceae), Machilus Rumph. ex Nees (Lauraceae), Schima Reinw. ex Blume (Theaceae), Manglietia Blume, Michelia L. (Magnoliaceae), and Distylium Siebold & Zucc. (Hamamelidaceae) are almost exclusively confined to southern, southwestern, and southeastern mainland China, Taiwan, southwestern Japan, southern Korea, and some mountain regions of Vietnam, Laos, Thailand, Myanmar, India, Bhutan, and Nepal (Kira, 1991; Ohsawa, 1993; Tagawa, 1995; Song, 1995; Li, 1997; Tang & Ohsawa, 2009; Song, 2013; Tang et al., 2013). Climatic delimitation of Asian regions has been discussed by investigators (Wolfe, 1979; Ohsawa, 1990, 1993; Kira, 1991; Box, 1995) who have emphasized the seasonal variations in temperature of the monsoon system as the principal determinant of plant distribution patterns. Ohsawa (1995) has provided an explicit template to depict zonal climate-forest patterns along latitudinal and altitudinal gradients in East Asia. As to latitude, southwestern China (SW China including Yunnan, Sichuan, Guizhou provinces and Chongqing Municipality, 21° 08′ 32″–34° 20′ N, 97° 30′–110° 10′ E) (Fig. 1) falls into the transitional forest zone from tropical mountain to temperate mountain zonation (Fig. 2).

Primary EBLFs once covered most of the subtropical areas of East Asia, but are now greatly diminished as a result of human activities. A recent study found only 5% of China’s total land area to be covered by natural EBLFs (Chen, 1995). In the subtropical regions of China, extensive secondary forests have recently been grown on land used for agriculture or firewood production from the 19th to the middle 20th century, but remnants of the natural EBLFs are still found in remote isolated areas, on steep slopes, in nearly inaccessible or protected areas in nature reserves, and around temples. China, especially Yunnan, is home to the most diversified subtropical EBLFs to be found in East Asia (Tang & Ohsawa, 2009; Tang, 2010; Tang et al., 2013).

In this paper the aim is to present an overview of the distribution patterns of the subtropical EBLFs across SW China as compared with all the Chinese subtropical regions to the east.

CLIMATE OF THE SUBTROPICAL EBLFs

China’s subtropical regions are bounded to the north by a line running between the Huai River and the Qinling Mountains (35° N), with a southern limit
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

Figure 1. SW China and major mountain ranges of China.

Figure 2. Altitudinal and latitudinal vegetation zonation scheme for East Asia (Ohsawa, 1995). The mountains located between 20° and 30°(33°) N show a transitional zonation pattern; the lower two zones are comparable to the lower two of the tropical zonation (tropical lowland and tropical lower montane), and the upper two zones are comparable to those of the temperate zonation (temperate lower montane and temperate upper montane). The tropical upper montane zone is not found north of 20°–30°(33°) N, while the tropical lower montane zone reaches down to sea level and so becomes also the temperate lowland zone. Thus the zonation between 20° and 30°(33°) N includes tropical lowland, tropical lower montane/temperate lowland, temperate lower montane, and temperate upper montane zones (Ohsawa, 1990, 1995).
approaching the Tropic of Cancer. Eastward the sub-
tropics extend to the coastlands and the islands of the
East China Sea, the South China Sea and Taiwan; the
westward limit is the Chinese national border, extend-
ing from the eastern slope of the Tibetan Plateau to
southern Yunnan. The subtropical zone thus spans 11–
12° from north to south, 28° from east to west (Wu,
1980). China’s subtropical region is divided into three
different zones: (1) the southern subtropics (transi-
tional tropics), extending from latitude 22° to 24° or
25° N; (2) the middle subtropics, which lie between
24° or 25° N and 31° or 32° N; and (3) the northern
subtropics (transitional subtropics) which cover from
31° or 32° N to 34° or 35° N (Hou, 1983). SW China is
located at subtropical latitudes often distinguished as
north, middle, and south subtropical (Fig. 3). A small
part of southernmost Yunnan falls into the tropical
zone. According to altitude, climates in SW China
include tropical, subtropical, temperate, alpine and
frigid. The climate is dominated by the Asian mon-
soon system, including the southwestern monsoon
(the summer monsoon of India), the East Asian sum-
mer monsoon, and the East Asian winter monsoon,
with dry continental winds in winter and moist oce-
nic winds in summer (Fig. 4). In China, generally
the oceanic monsoon season begins earlier and ends
later in the south than in the north, giving the south
a longer rainy season and milder winter winds (Guo
& Werger, 2010). In general, Chinese regions east of
c. 103° E are strongly influenced by the East Asian
monsoon, while the regions to the west are affected by
the Indian monsoon.

Song (2013) offers the general information on
the climate of the EBLFs. The annual temperature
difference between the warmest and coldest months
is smaller in the west (10–14°C) than in the east
(14–27°C). In Holdridge’s life zone system (1947),
bio-temperature (the sum of temperatures >0°C, if
mean monthly temperature >30°C is calculated as
30°C) ranges from 12 to 24°C for the EBLF. In the
subtropical EBLF region of China, the bio-temper-
ature is 15–22°C.

Figure 3. Climate divisions of China. 1: Cold-temperate humid; 2: Middle-temperate humid; 3: Middle-temperate subhumid;
4: South-temperate humid; 5: South-temperate subhumid; 6: South-temperate subdry; 7: North-temperate humid; 8: Middle
subtropical humid; 9: South-subtropical humid; 10: Middle-subtropical subhumid and plateau; 11: Tropical humid; 12: Mid-
dle-temperate subdry; 13: Middle-temperate dry; 14: Middle-temperate alpine subdry; 15: South-temperate dry; 16: Plateau
(dry and subdry). Modified from NCNWC (1984) and Winkler & Wang (1993).
Kira (1945) has proposed a warmth index (WI) and a coldness index (CI) for vegetation zones in East Asia, as follows: $WI (°C) = \sum (t - 5) \cdot \text{months}$; $CI (°C) = \sum (5 - t') \cdot \text{months}$; t is the mean monthly temperature $\geq 5°C$ and t' is the mean monthly temperature $\leq 5°C$. In Japan, a WI of 85–180°C \cdot months and a CI of −10–0°C \cdot months correspond to the EBLF distribution, and a CI of −10°C is a decisive northern limit for the EBLF (Kira, 1945; Hattori & Nakanishi, 1985). In China, a WI of 125°C and a CI of −5°C determine the northern limit of the EBLF; a WI of 135°C, and a CI of −2°C correspond to the northern limit of the EBLF zone (Song, 2013).

In China, the annual precipitation for the EBLF in the eastern region ranges from 1100 to 1700 mm, and is between 800–1000 mm in most areas of the western region (such as central and northern Yunnan and southwestern Guizhou). However, due to the complexity of the topography and varying elevations, the annual rainfall is ca. 1500–1800 mm in southern Yunnan, though it reaches 1500–2800 mm (but 3673 mm in Bapo, Dulongjiang) in some localities of western Yunnan, but in deep river valleys and on lee slopes it is just ca. 600–800 mm. In the western region, 80–90% of the annual precipitation falls from May to October, and the dry season is much more pronounced from November to April as compared with the east. The mean annual potential evapotranspiration for the subtropical EBLF region is ca. 800–1200 mm, and it is greater in the west than in the east. The Sichuan Basin area has the lowest evapotranspiration (Gao et al., 2006).

TYPES OF THE SUBTROPICAL EBLFs

Li (1997) divided the EBLF of East Asia into four regions: the Japanese, eastern Chinese, western Chinese, and western Chinese sclerophyllous distribution regions. The evergreen sclerophyllous forest should be considered apart from the subtropical EBLF, because the morphology, physiognomy, and structure of their leaves are different. The subtropics from 33° to 35° N constitute a transitional zone from EBLFs to deciduous broad-leaved forests.
Zhu (2013) considered a line at $ca. 22^\circ 30^\prime$ N to be the northern biogeographic boundary of the tropical zone in southern China. The evergreen broad-leaved forest of southernmost Yunnan is considered to be a tropical montane evergreen broad-leaved forest (Zhu, 2007; Zhu & Yan, 2009). The subtropical EBLFs exclude northern tropical rain forests, which are basically tropical in nature but with some obvious transitional characteristics from tropical to subtropical floras, and are found at low altitudes in southernmost Yunnan (e.g., Xishuangbanna in SE Yunnan, Xilongshan and Daweishan in SE Yunnan, Nangunhe in SW Yunnan). But here I do include the tropical montane evergreen broad-leaved forest of S, SE and SW Yunnan so as to take into account the altitudinal transition from the tropical rain forest to the subtropical EBLF. Song (2013) asserted that the subtropical EBLF of China corresponds to the region from 23$^\circ$ to 33$^\circ$ N and from 98$^\circ$ to 123$^\circ$ E. In fact, within Yunnan the forest extends west to $ca. 97^\circ 32^\prime$ E (e.g., Dulongjiang), and within Tibet it extends to 95$^\circ$ E (e.g., Chayu and Motuo in Yarlung Zangbo River). The most eastern longitude is 122$^\circ$ E in Taiwan. In sum, 95$^\circ$–122$^\circ$ E is the longitudinal range of the EBLF within China. The distribution range of EBLFs in China is proposed in Fig. 5.

A detrended correspondence analysis (DCA) (Fig. 6) for the plots of natural mature EBLFs of SW China, including Yunnan, Guizhou and the Sichuan Basin, that have been free of major disturbance during the past 60 years, indicates that along Axis 2 from the low to the upper side with increasing moisture, four forest types are roughly distinguished: the semi-humid EBLF (SH), the monsoon EBLF (MS), the humid EBLF (HE) and the mid-montane moist EBLF (MM). Axis 1 may indicate a gradient of topography or soil properties.

In SW China, most significantly, four forest types are representative of the major subtropical EBLFs: (1) the semi-humid EBLF in Yunnan, western Sichuan, and western Guizhou. (2) the monsoon EBLF in Yunnan. (3) the mid-montane moist EBLF in Yunnan, which I combine with the montane mossy EBLF as classified by former researchers (e.g., Wu, 1980; Wu et al., 1987) since their physiognomy and ecological characteristics, including various epiphytes and lianas on tree trunks and branches, are similar.

Figure 5. Distribution of subtropical evergreen broad-leaved forests in China. Note: Chayu and Motuo in Yarlung Zangbo River, southern Tibet, are included in the subtropical evergreen broad-leaved forest, though in deep gorges at 100–600 m a.s.l., very limited patches of the tropical rain forest are found, dominated by *Dipterocarpus* C. F. Gaertn.
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

(4) the humid EBLF in the Sichuan Basin (also including Chongqing) and eastern Guizhou, having no distinctive dry season throughout the year. The humid EBLF differs from the mid-montane moist EBLF in lacking rich epiphytes and lianas on tree trunks and branches. The humid EBLF in the Sichuan Basin and eastern Guizhou is considered as the same type as the typical humid EBLF of eastern China.

The montane mossy dwarf forest as classified by former researchers (e.g. Wu, 1980; Wu et al., 1987; Shi & Zhu, 2009), dominated by species of Rhododendron L. along with some dwarf trees of the Fagaceae, Vaccinioideae, Rosaceae, Aceraceae, grows in special topo-habitats such as near muntaintops. This is not considered a type of the subtropical EBLF in this paper.

Figure 6. Ordination of plots along the first two detrended correspondence analysis (DCA) axes for SW China. EBLF: evergreen broad-leaved forest. All plots have been free of major disturbance during the past 60 years. The analysis reveals a sequence of 4 EBLF types along Axis 1. Axis 1 may indicate a gradient of topography or soil properties. Partial data sources: Zhou (1992), Zuo (1995), Tang & Ohsawa (1997), Li et al. (2000), Liu & Zhong (2000), Bao & Liu (2002), Peng et al. (2006a), Tang et al. (2007a), Tang & Ohsawa (2009), Shi et al. (2011), Tang et al. (2013), Wang et al. (2013).

Spatial Distribution Patterns of the Subtropical EBLFs

Southwestern China

Yunnan

The spatial patterns of distribution of dominant evergreen broad-leaved communities along latitudes, longitudes, and altitudes in Yunnan, as represented by 22 mountains, are depicted in Fig. 7. In Yunnan, secondary forests such as coppice woods and fast-growing Pinus L. (e.g. Pinus yunnanensis Franch. and Pinus armandii Franch.) and Eucalyptus (e.g. Eucalyptus smithii R. T. Baker and Eucalyptus globulus Labill.) plantations, as well as agricultural fields are common at low altitudes, while remnants of the natural subtropical EBLF are only found in isolated mountains, on steep slopes, and temple grounds. The semi-humid EBLFs (SH) dominated by Castanopsis orthacantha Franch., Cyclobalanopsis glaucoides Schottky, Cyclobalanopsis delavayi (Franch.) Schottky, or Lithocarpus dealbatus (Hook. f. & Thomson ex Miq.) Rehder are found at (1500)1900–2400 m in central, south-central, and eastern Yunnan, including Jizhushan, Huafushan, Shizishan, Qiongzhushu, Wuliangshan, eastern Ailaoshan, Zhujiangyuan, Laojunshan of Wenshan, Wumengshan, and Yaoshan (shan means “mountain”).

The monsoon EBLFs (MS) are mainly distributed at (800)1000–1800 m in southern Yunnan (e.g. Tongbiguan, Nangunhe, Beihualin, Yongde Daxueshan, Wuliangshan, Ailaoshan, Xilongshan, Daweishan, and Xishuangbanna) and in the province’s north-west (e.g. Dulongjiang, and Fugong). Most of them are dominated by species of Castanopsis and Lithocarpus with some Trigonobalanus Forman and Cyclobalanopsis, as well as Lauraceae and Theaceae, such as Castanopsis hystrix Hook. f. & Thomson ex A. DC., Castanopsis fleuryi Hickel & A. Camus, Castanopsis calathiformis Rehder & E. H. Wilson, Lithocarpus truncatus (King ex Hook. f.) Rehder & E. H. Wilson, Lithocarpus polystachyus (Wall. ex A. DC.) Rehder, Lithocarpus fenestratus (Roxb.) Rehder, Trigonobalanus doichangensis (A. Camus) Forman, Cyclobalanopsis augustinii (Skán) Schottky, Cyclobalanopsis kerrii (Craib) Hu, Cryptocarya calcicola H. W. Li, Cryptocarya densiflora Blume, Beilschmiedia yunnanensis Hu, Schima wallichii (DC.) Korth., and Anneslea fragrans Wall.
Collectanea Botanica

vol. 34 (enero-diciembre 2015), e006, ISSN-L: 0010-0730, http://dx.doi.org/10.3989/collectbot.2015.v34.006

C. Q. TANG

8

Longling Xishuangbanna

Li. variolosus- Michelia lanuginosa	Li. xylanvarpus- Alcinandra cathartii
2000	2700

Nangunhe

Li. echinophorus- Cy. rex	Ca. hystrix- Ca. indica
Li. polyxanthus- Olea resin	Li. polyxanthus- Schima wallichii

2600	1900	1000

Wuliangshan

Li. xylocarpus- Ca. watti	Li. echinophorus- Schima argentea
Li. xylanvarpus- Schima argentea	Ca. delavayi

2800	2000	1300

Xishuangbanna

Phoebe macrocarpa- Mang. gurvenii
Ca. flaveolus- Schima wallichii
Aporosa yunnanensis- Eriolaena kwangsiensis

2430	1600	1000 (800)

Beihualin

Ca. echinocarpus	Ca. flaves	Ca. hystrix- Li. crassifolium

2600	2000	1000

Fugong

Cy. lamellosa- Michelia longifolia- Schima longifolia
Ca. delavayi- Li. dealbatus

5128	4379	480

Dulongjiang

Li. polyphyllum- Cy. aoyan- Schima khasiana
Ca. delavayi- Li. longiloba- Machilus longipedicellata

2600	2000	1100

Gongshan

Cy. lamellosa- Michelia longifolia
Ca. delavayi- Li. dealbatus

5128	4379	480

Jizushan

Ca. orthacantha- Ca. delavayi

3780	2600	900

Dongchuan

Cy. lamellosa- Michelia longifolia- Schima longifolia- Machilus longipedicellata
Ca. delavayi- Li. dealbatus

5128	4379	480

Yongde Daxueshan

Li. xylocarpus- Li. variolosus- Ca. stevensiana var. longizexutata
-Mang. hookeri- Alcinandra cathartii
Ca. delavayi- Li. mairei
Li. truncatus- Schima wallichii

3504	2800	1600

Figure 7. The spatial patterns of distribution of dominant evergreen broad-leaved communities along latitudes, longitudes, and altitudes in Yunnan. SH: Semi-humid EBLF; MS: Monsoon EBLF; MM: Mid-montane moist EBLF; Cy: Cyclobalanopsis; Ca: Castanopsis; Li: Lithocarpus; Ma: Machilus; Trig: Trigonobalanus; Mang: Manglietia; Alcin: Alcinandra Dandy; Cy: Cryptocarya R. Br.; El: Elaeocarpus L. Data sources: Peng & Dang (1998), Hu (1999), Yang & Li (1999), Li et al. (2000, 2006), Peng & Wu (2001), Yang & Du (2004, 2006), Wang et al. (2005, 2013), Peng et al. (2006a), Yang et al. (2006), Liu & Peng (2007), Tang & Zhu (2007), Tang et al. (2007a, b, 2010a, b, 2013), Tang & Ohsawa (2009), Tang & He (2013).
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

At low altitudes below the EBLF zones on these mountains, secondary forests or shrublands or plantations of conifers (such as *Pinus yunnanensis* and *Pinus armandii*) or eucalyptus, or agricultural fields are all common, while some localities along rivers support hot-dry valley vegetation; also in southern Yunnan there are some patches of tropical seasonal rain forest or tropical rain forest. At higher altitudes above the EBLFs, there are various vegetation types, such as montane mossy dwarf communities, evergreen sclerophyllous *Quercus* L. forests, or temperate coniferous [e.g. *Tsuga dumosa* (D. Don) Eichler] and broad-leaved mixed forests, or cold temperate forests, alpine scrubland, grassland, meadows.

Collectanea Botanica vol. 34 (enero-diciembre 2015), e006, ISSN-L: 0010-0730, http://dx.doi.org/10.3989/collectbot.2015.v34.006
Figure 8. The spatial patterns of distribution of dominant evergreen broad-leaved communities along latitudes, longitudes and altitudes in Sichuan, Chongqing and Guizhou. HE: Humid EBLF; SH: Semi-humid EBLF; Cy: Cyclobalanopsis; Ca: Castanopsis; Li: Lithocarpus; Cinn: Cinnamomum; El: Elaeocarpus. Data sources: SVEG (1980), Yang (1983), Liu (1985),
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

Liu & Qiu (1986), Zhou (1992), Zuo (1995), He et al. (1996), Tang & Ohsawa (1997), Xie & Chen (1998), Liu & Zhong (2000), Tang & Ohsawa (2000), Bao & Liu (2002), Xu et al. (2004), Xu (2005), Tang et al. (2007a), Yang et al. (2008), Bai et al. (2012), Yang & Xie (2012), Yang et al. (2012), Zhang et al. (2013).

Collectanea Botanica vol. 34 (enero-diciembre 2015), e006, ISSN-L: 0010-0730, http://dx.doi.org/10.3989/collectbot.2015.v34.006
Figure 9. The spatial distribution patterns of dominant evergreen broad-leaved communities along latitudes, longitudes and altitudes in eastern China. MS: Monsoon EBLF; HE: Humid EBLF; Cy: Cyclobalanopsis; Ca: Castanopsis; Li: Lithocarpus; Ma: Machilus. Data sources: Chen & Su (1995), Huang et al. (1998), Hu et al. (2003), Da et al. (2004), Xia & Nie (2004).
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

Zheng et al. (2004), Zhu et al. (2004), Huang et al. (2006), Peng et al. (2006b), Wan (2007), Deng et al. (2008), Wang et al. (2009), Qiu et al. (2010), Chang et al. (2013), Tang et al. (2013), Yang et al. (2013).
The mid-montane moist EBLFs (MM) are distributed at (1600)1800–2500(2800) m from the east to the west of Yunnan, and from southern to south-central, and northern Yunnan, but not in central Yunnan, as on Jizushan, Huafushan, Shizishan, and Qiongzhusi, where no such moist EBLFs grow. Compared with the former two forest types, in the mid-montane moist EBLFs are to be found, besides dominant species of Fagaceae [e.g. Cyclobalanopsis lamellosa (Sm.) Oerst., Cyclobalanopsis oxyodon (Miq.) Oerst., Cyclobalanopsis myrsinifolia (Blume) Oerst., Lithocarpus variolosus (Franch.) Chun, Lithocarpus hancei (Benth.) Rehder, Lithocarpus pachyphyllus (Kurz) Rehder, Lithocarpus xylocarpus (Kurz) Markgr., Lithocarpus echinotolusus (Hu) Chun & C. C. Huang ex Y. C. Hu & H. W. Jen, Castanopsis echidnocarpa A. DC., Castanopsis watti (King ex Hook. f.) A. Camus, and Castanopsis remotidenticulata Hu], Lauraceae [Machilus longipedicellata Lecomte, Machilus viridis Hand.-Mazz., Cinnamomum iners Reinw. ex Blume, Phoebe faberi (Hemsli.) Chun], Theaceae (Schima khasiana Dyer, Schima argentea E. Pritz., and Schima villosa Hu) and Magnoliaceae [Mangliettia kungshanensis Law, Mangliettia insignis (Wall.) Blume, and Alcinandra cathcartii (Hook. f. & Thomson) Dandy] also appear as co-dominants. The mid-montane moist EBLF is characterized by abundant lianas, ferns and mosses on tree trunks and branches.

Sichuan, Guizhou, and Chongqing Municipality

Figure 8 shows the spatial patterns of distribution of dominant evergreen broad-leaved communities along latitudes, longitudes, and altitudes in Sichuan, Guizhou, and Chongqing Municipality, as represented by 21 mountains. In these areas, natural EBLFs at low altitudes have been even more severely reduced by human activities than in Yunnan. Here secondary forests, shrublands, and plantations of pines (Pinus yunnanensis in the west of Sichuan and Guizhou, Pinus massoniana Lamb. in the east of Sichuan and Guizhou as well as Chongqing) or Cunninghamia lanceolata (Lamb.) Hook. or Cryptomeria japonica (Thunb. ex L. f.) D. Don var. sinensis Miq. (formerly Cryptomeria fortunei Hooibr.) prevail. Some semi-humid EBLFs dominated by Castanopsis delavayi Franch. or Cyclobalanopsis glaucoides are found in western Sichuan (e.g. Jinyangxian, Xiaoxiangling). In these areas, the typical humid EBLFs (HE) prevail. The dominants are Castanopsis, Lithocarpus, and Cyclobalanopsis [e.g. Castanopsis carlesii (Hemsl.) Hayata var. carlesii, Castanopsis fargesii Franch., Castanopsis eyrei (Champ. ex Benth.) Tutch., Castanopsis carlesii (Hemsl.) Hayata var. spinulosa W. C. Cheng & C. S. Chao, Castanopsis playacantha Rehder & E. H. Wilson, Lithocarpus corneus (Lour.) Rehder, Lithocarpus cleistocarpus (Seemen) Rehder & E. H. Wilson, Cyclobalanopsis oxyodon, and Cyclobalanopsis multinevris W. C. Cheng & T. Hong], and many species of Lauraceae [e.g. Phoebe neurantha (Hemsl.) Gamble, Phoebe zhennan S. K. Lee & F. N. Wei, Lindera pulcherrima (Nees) Hook. f. var. hemsleyana (Diels) H. P. Tsui, Lindera megaphylla Hemsl., Lindera pulcherrima (Nees) Hook. f. var. pulcherrima, Cinnamomum longepaniculatum (Gamble) N. Chao ex H. W. Li, Machilus pingii W. C. Cheng ex Yen C. Yang, Machilus ichangensis Rehder & E. H. Wilson, and Actinodaphne omeiensis (H. Liu) C. K. Allen], and Theaceae [Schima superba Gardner & Champ., Schima argentea, Gordonia sichuanensis H. T. Chang, and Gordonia chryssandra Cowan], and Magnoliaceae [e.g. Michelia martini (H. Lév.) Finet & Gagnep. ex H. Lév. and Mangliettia fordiana Oliv.] as well as Elaeocarpaceae [e.g. Elaeocarpus japonicus Siebold & Zucc. and Elaeocarpus sylvestris (Lour.) Poir.].

To summarize: in SW China, the EBLFs are mainly distributed at higher altitudes [1000–(2400)2800 m] in the western areas of Yunnan and Sichuan, while occurring at lower altitudes [600–1500(2000) m] toward the southern and the eastern areas (Figs. 7 and 8). Communities dominated by Castanopsis are widely distributed over the region of SW China. In Yunnan, many plant communities dominated by Lithocarpus and/or Cyclobalanopsis are conspicuous compared with those in the Sichuan Basin and eastern Guizhou.

Eastern China

In Figure 9, representing 23 mountains of eastern China, we find that the Sichuan Basin, eastern Guizhou, and eastern China share some dominant canopy tree species of Fagaceae [e.g. Castanopsis carlesii, Castanopsis fargesii, Castanopsis eyrei,
Castanopsis tibetana Hance, Lithocarpus glaber (Thunb.) Nakai, Cyclobalanopsis glauca (Thunb.) Oerst., Cyclobalanopsis myrsinifolia, Lauraceae (e.g. Phoebe neanrtha), Theaceae (e.g. Schima superba) and Elaeocarpaceae (e.g. Elaeocarpus sylvestris). In the understory, they often share some genera including Ilex L. (Aquifoliaceae), Linder Thunb., Litsea Lam. (Lauraceae), Camellia L., Eu- rya Thunb. (Theaceae), Symlocos Jacq. (Symlococaceae), and Vaccinium L. (Ericaceae). However, these forests lack the flourishing epiphytes and lianas on tree trunks and branches, as compared to the mid-montane moist EBLF of Yunnan. Additionally, in the Yunnan area there are more types of plant communities dominated by Lithocarpus or Cyclobalanopsis or Castanopsis than in eastern China, where the chief dominant genus is Casta- nopsis. The upper limits of the EBLFs are mainly 600–1500 m in eastern China (but 2500 m in Taiwan), much lower than in western Yunnan and western Sichuan (2400–2800 m) (Fig. 10).

EFFECTS OF ENVIRONMENTAL FACTORS ON PLANT DIVERSITY PATTERNS IN THE SUBTROPICAL EBLFs

As an evidence of environmental effects on species diversity of the EBLF ecosystems, Tang et al. (2013) provided species diversity models comparing the EBLF ecosystems of Yunnan and Taiwan (Fig. 11A, B). In Yunnan, the monsoon EBLF in the mesic-humid sites tends to have higher species richness and diversity (Fig. 11A). Along the altitudinal gradients in Taiwan, higher diversity is found in the Machilus–Castanopsis zone at the middle altitudes (500–1500 m) and in the lower Cyclobalanopsis zone at the mid-high altitude (1500–2000 m) (Fig. 11B) (see Fig. 9 for the altitudinal distribution of dominant evergreen broad-leaved tree communities in Taiwan). Species diversity, as influenced by temperature and precipitation, varies with altitude. Thus, altitude in the EBLFs of Taiwan may be a proxy for temperature, because
the annual rainfall is abundant (1800–3000 mm) throughout the EBLF zone. In short, site moisture is the best predictor of species composition and diversity in the EBLFs of Yunnan, while temperature along altitudes plays a decisive role in Taiwan. For forest ecosystems, various temporal trends in diversity have been observed during succession, including increases, decreases, and one or more peaks with passing time (e.g. Auclair & Goff, 1971; Peet, 1978; Halpern & Spies, 1995; Turner et al., 1997). Relationships between diversity and succession are complex and should be seen as system-specific. Secondary forests under varying degrees of human disturbance, such as coppice woods or those growing on abandoned farmland, exhibit a range of stages of plant succession in the EBLF zones of both the Yunnan and Taiwan areas. The peak in diversity in the stands at the middle successional stage of each study site in Yunnan and Taiwan (Fig. 11A, B) reflects the persistence of species with varying attributes, including fast growth, slow growth, light demands, limited or greater shade-tolerance, contributing to significantly higher species diversities as compared with the early successional stage. In general, as a forest develops, diversity in the late stage tends to decrease with the disappearance of short-lived light-demanding pioneer species (e.g. Pinus, Alnus Mill., Populus L., Carpinus L., Acacia Mill., Mallotus Lour., and Diospyros L.); however, in both Yunnan and Taiwan the differences in species diversity between the middle and late successional stages are not significant, which reflects the recruitment of shade-tolerant evergreen trees (e.g. Cyclobalanopsis, Castanopsis, Machilus, Ficus L., Manglietia, and Michelia) into the overstory.

This brief comparison clearly shows the effects of moisture, altitude, and disturbance/succession on plant species diversity patterns in the two EBLF ecosystems of Yunnan and Taiwan.

ACKNOWLEDGEMENTS

I sincerely thank Dr. J. López-Pujol who invited me to synthesize the available work on the subtropical evergreen broad-leaved forests of China.

Figure 11. (A), changes in species diversity with site moisture and successional time in the EBLFs of Yunnan; (B), changes in species diversity with altitude and successional time in the EBLFs of Taiwan. Data source: Tang et al. (2013).
REFERENCES

Auclair, A. N. & Groff, F. G. 1971. Diversity relations of upland forests in the western Great Lakes area. The American Naturalist 105: 499–528. http://dx.doi.org/10.1086/282742

Bai, Z.-B., Zhang, H.-J. & Ren, G. 2012. Vegetation diversity in the present and past forests in the upper Yangtze River basin. Journal of Anhui Agricultural Science 40: 14839–14843 [in Chinese].

Bao, W. & Liu, Z. 2002. Fourvalya wulingensis and its distribution in the subtropical evergreen broad-leaved forests in Mt. Wawu in Sichuan, China. Chinese Journal of Environmental Biology 8: 120–126 [in Chinese].

Box, E. O. 1995. Climatic relations of East and Southeast Asia. In: Box, E. O., Peet, R. K., Masuzawa, T., Yamada, I., Fujiwara, K. & Maycock, P. F. (Eds.), Vegetation science in forestry. Global perspective based on forest ecosystems of East and Southeast Asia. Papers from four symposia from the International Congress of Ecology, Yokohama 1990. Kluwer Academic Publishers, Dordrecht: 23–55.

Chang, Y., Zhong, Q., Cheng, D., Xu, C., Hu, B. & Zhang, Z. 2013. Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China. Journal of Sichuan University (Natural Science Edition) 42: 1–7 [in Chinese].

Chen, B. & Su, Z. 1995. Species diversity of evergreen broad-leaved mixed forest with different forest age in the north-west of Fujian province. Ecology and Environmental Sciences 22: 955–960 [in Chinese].

Chen, B. & Su, Z. 1995. Guangxi Baoxiangshan National Nature Reserve [Vegetation types of Xiaoshan in the Daxue Mountain Nature Reserve, Longling]. Yunnan Forestry Investigation, Plan and Design 24: 1–7 [in Chinese].

Hu, Z., Yu, M., Ding, B., Fang, T., Quang, H. & Chen, Q. 2003. Vegetation of China with reference to its geographical distribution. Annuls of the Missouri Botanical Garden 70: 509–548. http://dx.doi.org/10.2307/2992085.

He, M., Zhang, J., Liu, S. & Li, W. 1996. 峨眉山竹林的分布特征 [A preliminary study on the natural vegetation of Black Bamboo Ravine in Ebian County of Sichuan]. Journal of Sichuan University (Natural Science Edition) 33: 347–350 [in Chinese].

Holdridge, L. R. 1947. Determination of world plant formations from simple climatic data. Science 105: 367–368. http://dx.doi.org/10.1126/science.105.2727.367.

Hou, X.-Y. 1983. Vegetation of China with reference to its geographical distribution. Annals of the Missouri Botanical Garden 70: 509–548. http://dx.doi.org/10.2307/2992085.

Bao, W. & Liu, Z. 2002. 四川瓦屋山原生和次生常绿阔叶林的群落特征 [Community features of primary and naturally secondary evergreen broad-leaved forests in Mt. Wawu in Sichuan, China]. Chinese Journal of Environmental Biology 8: 120–126 [in Chinese].
the Gongga mountainous region], Acta Phytocoecologica et Geobotanica Sinica 10: 26–34 [in Chinese].

NCNWC (The Normal College of Northwest China) 1984. 中国自然地理地图集 [Maps of the Natural Geography of China]. Department of Geography, Normal College of Northwest China, Lanzhou & Special Publications Map Office, Beijing [in Chinese].

Ohsawa, M. 1990. An interpretation of latitudinal patterns of forest limits in south and east Asian mountains. Journal of Ecology 78: 326–339. http://dx.doi.org/10.2307/2261115

Ohsawa, M. 1993. Latitudinal pattern of mountain vegetation zonation in southern and eastern Asia. Journal of Vegetation Science 4: 13–18. http://dx.doi.org/10.1023/A:1009729027521

Ohsawa, M. 1995. Latitudinal comparison of altitudinal changes in forest structure, leaf-type and species richness in humid Asia. Vegetatio 121: 3–10. http://dx.doi.org/10.1007/BF00046667

Peet, R. K. 1978. Forest vegetation of the Colorado Front Range: patterns of species diversity. Vegetatio 37: 65–78. http://dx.doi.org/10.1007/BF00121025

Peng, H., Du, Y., Li, J., Ouyang, X. & Huang, Z. 2006b. 南岭大顶山与鼎湖山常绿阔叶林种群分布格局对比研究 [Comparison of population distribution pattern of evergreen broad-leaved forests between Nanling Dadingshan Nature Reserve and Dinghushan]. Ecology and Environment 15: 770–774 [in Chinese].

Peng, H. & Wu, Z.-Y. 2001. 云南半湿润常绿阔叶林的区系特征及保护生物学意义 [The floristic characteristics and its significance in conservation of semi-humid evergreen broad-leaved forests in Mt. Wuliangshan]. Acta Botanica Yunnanica 23: 278–286 [in Chinese].

Peng, M.-C. & Wang, C.-Y. & Dang, C.-L. 2006a. 云南云山半湿润常绿阔叶林区系组成及植被类型 [Studies on the semi-humid evergreen broad-leaved forest of Yunnan, SW China]. Acta Ecologica Sinica 15: 159–166 [in Chinese].

Peng, M.-C., Wang, C.-Y. & Dang, C.-L. 2006a. 云南亚热带湿润区系组成及保护研究 [Studies on biodiversity and conservation in Yunnan, southwestern China]. Science Press, Beijing [in Chinese].

Qiu, Z.-J., Liu, C.-S. & Gao, J.-G. 2010. 金华北山常绿阔叶林群落结构及优势乔木种群更新类型 [Community structure and regeneration types of dominant species in an evergreen broad-leaved forest in Mount Beishan of Jinhua, China]. Guaiha 30: 629–635 [in Chinese].

Shi, J.-P., Chang, Y.-F., Xu, C.-D. & Zhu, H. 2011. 楚雄花椒园半湿润常绿阔叶林群落生态学特征 [Synchronological studies on the semi-humid evergreen broad-leaved forest in Huaiyaojun Nature Reserve, Chuxiong, Yunnan]. Guaiha 31: 204–207 [in Chinese].

Shi, J. P. & Zhu, H. 2009. Tree species composition and diversity of tropical mountain cloud forest in the Yunnan, southwestern China. Ecological Research 24: 83–92. http://dx.doi.org/10.1007/s11284-008-0484-2

Song, Y.-C. 1995. On the global position of the evergreen broad-leaved forests of China. In: Box, E. O., Peet, R. K., Masuzawa, T., Yamada, I., Fujii, K. & Maycock, P. F. (Eds.), Vegetation science in forestry: Global perspective based on forest ecosystems of East and Southeast Asia. Papers from four symposia at the International Congress of Ecology, Yokohama 1990. Kluwer Academic Publishers, Dordrecht: 69–84.

Song, Y.-C. (Ed.) 2013. 中国常绿阔叶林分类, 生态, 保育 [Evergreen broad-leaved forests in China, classification-ecology-conservation]. Science Press, Beijing [in Chinese].

SVEG (Sichuan Vegetation Editorial Group) 1980. 四川植被 [The vegetation of Sichuan]. Sichuan People’s Press, Chengdu [in Chinese].

Tagawa, H. 1995. Distribution of lucidophyll oak-laurel forest formation in Asia and other areas. Tropics 5: 1–40. http://dx.doi.org/10.3759/tropics.5.1

Tang, C. Q. 2010. Subtropical montane evergreen broad-leaved forests of Yunnan, China: diversity, succession dynamics, human influence. Frontiers of Earth Science in China 4: 22–32. http://dx.doi.org/10.1007/s11707-009-0057-x

Tang, C. Q., Chou, C.-R., Lin, C.-T. et al. 2013. Plant diversity patterns in subtropical evergreen broad-leaved forests of Yunnan and Taiwan. Ecological Research 28: 81–92. http://dx.doi.org/10.1007/s11284-012-1002-0

Tang, C. Q. & He, L.-Y. 2013. Population status of the Tertiary relic Tetracentron sinense in the subtropical Ailaoshan Mountains, Yunnan, SW China, and proposed conservation efforts. Annual Report of Pro Natura Fund 21: 141–150.

Tang, C. Q., Hou, X., Gao, K., Xia, T., Duan, C. & Fu, D. 2007b. Man-made versus natural forests in mid-Yunnan, southwestern China: plant diversity and initial data on water and soil conservation. Mountain Research and Development 27: 242–249. http://dx.doi.org/10.1659/mrd.0732

Tang, C. Q., Li, T. & Zhu, X. 2007a. Structure and regeneration dynamics of three subtropical midmontane moist evergreen broad-leaved forests in southwestern China, with special reference to bamboo in the forest understories. Canadian Journal of Forest Research 37: 2701–2714. http://dx.doi.org/10.1139/m07-101

Tang, C. Q., Li, Y.-H. & Zhang, Z.-Y. 2010a. Species diversity patterns of natural secondary plant communities and man-made forests in a subtropical mountainous karst area, Yunnan, SW China. Mountain Research and Development 30: 244–251. http://dx.doi.org/10.1659/MRD-JOURNAL-D-10-00021.1

Tang, C. Q. & Ohsawa, M. 1997. Zonal transition of evergreen, deciduous and coniferous forests along the altitudinal gradient on a humid subtropical mountain, Mt. Emei, Sichuan, China. Plant Ecology 133: 63–78. http://dx.doi.org/10.1023/A:1009729027521

Tang, C. Q. & Ohsawa, M. 2000. Transitional pattern of tree leaf-types from tropical to temperate forests on Mt. Emei, Sichuan, China. In: Zheng, D. & Zhu, L. (Eds.), Formation, evolution and sustainable development on the Qinghai-Tibet Plateau. Academy Press, Beijing: 397–407.

Tang, C. Q. & Ohsawa, M. 2009. Ecology of subtropical evergreen broad-leaved forests of Yunnan, southwestern China as compared to those of southwestern Japan. Journal of Plant Research 122: 335–350. http://dx.doi.org/10.1007/s10265-009-0221-0

Tang, C. Q., Zhao M.-H., Li, X.-S., Ohsawa, M. & Ou, X.-K. 2010b. Secondary succession of plant communities in a subtropical mountainous region of SW China. Ecological Research 25: 149–161. http://dx.doi.org/10.1007/s11284-009-0644-z

Tang, C. Q. & Zhu, X. 2007. Structure and dynamics of mid-montane moist evergreen broad-leaved forest on subtropical mountains, Ailaoshan and Gaoligongshan, Yunnan, China, and the relationship between the forests and the people, with a view of future sustainability. Annual Report of Pro Natura Fund 16: 153–175.

Turner, I. M., Wong, Y. K., Cheng, P. T. & Ibrahim A. B. 1997. Tree species richness in primary and old secondary tropical forest in Singapore. Biodiversity and Conservation 6: 537–543. http://dx.doi.org/10.1023/A:1018381111842
Distribution patterns of the subtropical evergreen broad-leaved forests of southwestern China

Wan, H. 2007. 云南大围山自然保护区植被及其特徵的初步研究 [Preliminary investigation on the vegetation of Dawei Nature Reserve, Yunnan]. Science Press, Kunming [in Chinese].

Wang, C.-Y., He, Z.-R. & Peng, M.-C. 2013. 独龙江流域及邻近区域植被与物种研究 [Studies on vegetation and plants in Dulongjiang (upper Irrawaddy River) watershed and adjacent area]. Science Press, Beijing [in Chinese].

Wang, J., Ma, Q.-Y., Du, F. & Yang, Y.-M. 2005. 云南大围山自然保护区植被及其特徵的初步研究 [Preliminary investigation on the vegetation of Dawei Nature Reserve, Yunnan]. Science Press, Kunming [in Chinese].

Wang, J., Ma, Q.-Y., Du, F. & Yang, Y.-M. 2005. 云南大围山自然保护区植被及其特徵的初步研究 [Preliminary investigation on the vegetation of Dawei Nature Reserve, Yunnan]. Science Press, Kunming [in Chinese].

Xie, Z. & Chen, W. 1998. 云南大围山自然保护区综合科学考察研究 [Integrated scientific studies of Dawei Nature Reserve, Yunnan]. Yunnan Science Press, Kunming [in Chinese].

Yang, Y.-M. & Du, F. (Eds.) 2004. 云南文山自然保护区综合科学考察报告 [Integrated scientific studies of Wenshan National Nature Reserve, Yunnan]. Science Press, Beijing [in Chinese].

Zhou, Z.-X. (Ed.) 1992. 贵州森林植被的地理研究 [Biogeographical affinities of the forest vegetation of Guizhou]. Science Press, Beijing [in Chinese].

Zhu, H. & Yan, L.-C. 2009. Biogeographical affinities of the flora of southeastern Yunnan, China. Botanical Studies 50: 467–475.

Zuo, J.-F. 1995. 黄心夜合林的调查研究 [Investigation on Michelia martini]. Chinese Journal of Ecology 14: 27–32 [in Chinese].