QUANTUM PROPERTIES OF THE DUAL
MATRICES IN $GL_q(1|1)$

Salih Celik

Department of Mathematics, Faculty of Sciences, Mimar Sinan University, 80690 Besiktas, Istanbul, TURKEY.

Sultan A. Celik

Department of Mathematics, Faculty of Sciences, Yildiz Technical University, Sisli, Istanbul, TURKEY.

Abstract

In this paper, we give the quantum analogue of the dual matrices for the quantum supergroup $GL_q(1|1)$ and discuss these properties of the quantum dual supermatrices.
1. INTRODUCTION

An explicit quantum deformation of the supergroup $GL(1|1)$ with two even and two odd generators was given by Corrigan et al in [1]. The properties of the 2x2-supermatrices in $GL_q(1|1)$ was investigated by Schwenk et al in [2]. In this work, we consider the dual supermatrices in $GL(1|1)$ and discuss the properties of quantum dual supermatrices.

Let us begin with some remarks. We know that the supergroup $GL(1|1)$ can be deformed by assuming that the linear transformations in $GL(1|1)$ are invariant under the action of the quantum superplane and its dual [3]. Consider a quantum superplane and its dual,

$$V = \begin{pmatrix} x \\ \xi \end{pmatrix} \quad \text{and} \quad \hat{V} = \begin{pmatrix} \eta \\ y \end{pmatrix}$$

satisfying

$$x\xi - q\xi x = 0, \quad \xi^2 = 0,$$

$$\eta^2 = 0, \quad y\eta - q\eta y = 0$$

(1.2a, 1.2b)

where latin and greek letters denote even and odd elements respectively. Taking

$$M = \begin{pmatrix} a & \beta \\ \gamma & d \end{pmatrix}$$

(1.3)

as a supermatrix in $GL(1|1)$, we demand that the relations (1.2) are preserved under the action of M on the quantum superplane V and its dual \hat{V}

$$MV = V' \quad \text{and} \quad M\hat{V} = \hat{V}'$$

(1.4)

We assume that even generators commute with everything and odd generators anticommute among themselves. Then we obtain the following q-commutation relations [1] (also see [2])

$$a\beta = q\beta a, \quad d\beta = q\beta d,$$

$$a\gamma = q\gamma a, \quad d\gamma = q\gamma d,$$

$$\beta\gamma + \gamma\beta = 0, \quad \beta^2 = 0 = \gamma^2,$$

$$ad - da = (q - q^{-1})\gamma\beta.$$

(1.5)

These relations will be used in sec. 4. Note that if $M \in GL_q(1|1)$ then $M^n \in GL_{q^n}(1|1)$. This is proved in [2].
2. QUANTUM DUAL SUPERMATRICES IN $GL_q(1|1)$

In this section we give the q-commutation relations which the matrix elements of a dual supermatrix satisfy. Let \hat{M} be a dual supermatrix in $GL_q(1|1)$, namely,

$$\hat{M} = \begin{pmatrix} \alpha & b \\ c & \delta \end{pmatrix}$$

with its generators (anti)commuting with the coordinates of V and \hat{V}. Then, the transformations

$$V \rightarrow \hat{M}V = \hat{V}' \quad \text{and} \quad \hat{V} \rightarrow \hat{M}\hat{V} = V'$$

impose the following bilinear product relations among the generators of \hat{M}:

$$\begin{align*}
\alpha b &= q^{-1}b\alpha, \quad \alpha c = q^{-1}c\alpha, \\
\delta b &= q^{-1}b\delta, \quad \delta c = q^{-1}c\delta, \\
\alpha\delta + \delta\alpha &= 0, \quad \alpha^2 = 0 = \delta^2, \\
bc - cb &= (q - q^{-1})\delta\alpha
\end{align*}$$

and $q^2 - 1 \neq 0$. From these relations one obtains

$$\begin{align*}
\alpha b^{-1} &= qb^{-1}\alpha, \quad \alpha c^{-1} = qc^{-1}\alpha, \\
\delta b^{-1} &= qb^{-1}\delta, \quad \delta c^{-1} = qc^{-1}\delta, \\
bc^{-1} - c^{-1}b &= (q - q^{-1})\alpha c^{-1}\delta c^{-1}
\end{align*}$$

provided b and c are invertible.

3. THE INVERSE OF \hat{M}

To obtain the inverse of \hat{M}, we introduce Δ_1 and Δ_2 in the form

$$\Delta_1 = bc - q\delta\alpha \quad \text{and} \quad \Delta_2 = cb - q\alpha\delta.$$ \hspace{1cm} (3.1)

just as in [4]. Then one can write

$$\hat{M}_L^{-1} = \begin{pmatrix} -q\Delta_1^{-1}\delta & \Delta_1^{-1}b \\ \Delta_2^{-1}c & -q\Delta_2^{-1}\alpha \end{pmatrix}$$

as the left inverse of \hat{M}. After some calculations one obtains
\[\Delta_1 b = b \Delta_1, \quad \Delta_2 c = c \Delta_2, \]
\[\Delta_k \alpha = q^2 \alpha \Delta_k, \quad \Delta_k \delta = q^2 \delta \Delta_k, \quad k = 1, 2 \tag{3.3} \]

and also
\[b^2 \Delta_1^{-1} = bc^{-1} - \alpha c^{-1} \delta c^{-1}, \]
\[c^2 \Delta_2^{-1} = cb^{-1} - \delta b^{-1} \alpha b^{-1}. \tag{3.4} \]

Note that it is easy to verify that \(b^2 \Delta_1^{-1} \) and \(c^2 \Delta_2^{-1} \) commute with everything. Therefore the matrix \(\hat{M}_L^{-1} \) in (3.2) may be written as
\[\hat{M}_L^{-1} = \left(\begin{array}{cc}
-c^{-1} \delta c^{-1} & b^{-1} \\
c^{-1} & -b^{-1} \alpha b^{-1}
\end{array} \right) \left(\begin{array}{cc}
c^2 \Delta_2^{-1} & 0 \\
0 & b^2 \Delta_1^{-1}
\end{array} \right) \tag{3.5} \]

which shows that \(\hat{M}_L^{-1} = \hat{M}^{-1} \) after some calculations along the lines of [2], sec. 3. Thus one can define the quantum dual superdeterminant as follows:
\[s \hat{D}_q(\hat{M}) = b^2 \Delta_1^{-1} = bc^{-1} - \alpha c^{-1} \delta c^{-1}. \tag{3.6} \]

Note that the inverse of a dual supermatrix \(\hat{M} \) can be also obtained from the decomposition
\[\hat{M} = \left(\begin{array}{cc}
\alpha & b - \alpha c^{-1} \delta \\
c & 0
\end{array} \right) \left(\begin{array}{cc}
1 & c^{-1} \delta \\
0 & 1
\end{array} \right). \tag{3.7} \]

Finally we note that the product of two dual supermatrices is not a dual supermatrix, i.e., the matrix elements of a product \(\hat{M} = \hat{M} \hat{M}' \) do not satisfy (2.6) but they satisfy (1.5) if \(\hat{M} \) and \(\hat{M}' \) are two dual supermatrices and \((b, c) ((\alpha, \delta)) \) pairwise commute (anti-commute) with \((b', c') ((\alpha', \delta'))\). This interesting property will show as the way to the contents of the next section.

4. PROPERTIES OF \(\hat{M}^n \)

From sec. 3 we know that the matrix elements of a product matrix \(\hat{M} \hat{M}' \) obey the relations (1.5). Therefore we must consider the matrix elements of \(\hat{M} \) with respect to even and odd values of \(n \). Let the \((2n - 1)\)-th power of \(\hat{M} \) be
\[\hat{M}^{2n-1} = \left(\begin{array}{cc}
A_{2n-1} & B_{2n-1} \\
C_{2n-1} & D_{2n-1}
\end{array} \right), \quad n \geq 1. \tag{4.1} \]
After some algebra, one obtains

\[
A_{2n-1} = \{ [n]_q \alpha + q[n-1]_q \delta \} (bc)^{n-1},
\]

\[
B_{2n-1} = \{ bc + q[n-1]_q^2 \alpha \delta \} (bc)^{n-2} b,
\]

\[
C_{2n-1} = \{ cb + q[n-1]_q^2 \delta \alpha \} (cb)^{n-2} c,
\]

\[
D_{2n-1} = \{ [n]_q \delta + q[n-1]_q \alpha \} (cb)^{n-1},
\]

where

\[
[n]_q = \frac{1 - q^{2n}}{1 - q^2}
\]

(4.3)

Now it is easy to show that the following relations are satisfied.

\[
A_{2n-1}B_{2n-1} = q^{-2(n-1)} B_{2n-1} A_{2n-1}
\]

\[
A_{2n-1}C_{2n-1} = q^{-2(n-1)} C_{2n-1} A_{2n-1}
\]

\[
D_{2n-1}B_{2n-1} = q^{-2(n-1)} B_{2n-1} D_{2n-1}
\]

\[
D_{2n-1}C_{2n-1} = q^{-2(n-1)} C_{2n-1} D_{2n-1},
\]

\[
A_{2n-1}D_{2n-1} + D_{2n-1} A_{2n-1} = 0,
\]

\[
A_{2n-1}^2 = 0 = D_{2n-1}^2;
\]

\[
B_{2n-1} C_{2n-1} - C_{2n-1} B_{2n-1} = (q^{2n-1} - q^{-(2n-1)}) A_{2n-1} D_{2n-1}.
\]

Then \(\hat{M}^{2n-1} \) is a dual supermatrix with deformation parameter \(q^{2n-1} \).

Similarly, if we write for the matrix \(\hat{M}^{2n} \), the \((2n)\)-th power of \(\hat{M} \) as

\[
\hat{M}^{2n} = \begin{pmatrix} A_{2n} & B_{2n} \\ C_{2n} & D_{2n} \end{pmatrix}, \quad n \geq 1
\]

(4.5)

where (after some calculations)

\[
A_{2n} = \{ bc + q \frac{1 - q^2}{1 + q^2} [n]_q [n-1]_q \alpha \delta \} (bc)^{n-1},
\]

\[
B_{2n} = [n]_q \{ \alpha + q \delta \} b (cb)^{n-1},
\]

\[
C_{2n} = [n]_q \{ \delta + q \alpha \} c (bc)^{n-1},
\]

\[
D_{2n} = \{ bc + q \frac{1 - q^2}{1 + q^2} [n]_q [n-1]_q \delta \alpha \} (cb)^{n-1},
\]

(4.6)
then the elements of \widehat{M}^{2n} obey the following relations

\begin{align*}
A_{2n}B_{2n} &= q^{2n}B_{2n}A_{2n} \\
A_{2n}C_{2n} &= q^{2n}C_{2n}A_{2n} \\
D_{2n}B_{2n} &= q^{2n}B_{2n}D_{2n} \\
D_{2n}C_{2n} &= q^{2n}C_{2n}D_{2n}, \\
B_{2n}C_{2n} + C_{2n}B_{2n} &= 0, \\
B_{2n}^2 &= 0 = C_{2n}^2, \\
A_{2n}D_{2n} - D_{2n}A_{2n} &= (q^{2n} - q^{-2n})C_{2n}B_{2n}.
\end{align*}

(4.7)

Thus the matrix \widehat{M}^{2n} is a supermatrix in the form (1.3).

Equations (4.4) and (4.7) can be proved using the relation (2.3).

5. CONCLUSIONS

We have given the q-commutation relations which the matrix elements of a dual supermatrix in $GL_q(1|1)$ satisfy and obtained the (dual) quantum superinverse and (dual) quantum superdeterminant of a dual quantum supermatrix. Finally we have shown that it must consider the matrix elements of a dual supermatrix with respect to even and odd values of n. And so we discussed the properties of the n-th power of a dual supermatrix.

Acknowledgment. We wish to thank Prof. Dr. M. Arik for reading the manuscript and for many useful suggestions and clarifications.

REFERENCES

[1] Corrigan, E., Fairlie, B., Fletcher, P. and Sasaki, R., J. Math. Phys. 31, 776, 1990.
[2] Schwenk, J., Schmidke, B. and Vokos, S., Z. Phys. C 46, 643, 1990.
[3] Manin, Yu I., Commun. Math. Phys. 123, 163, 1989.
[4] Celik, S., Celik, S. A., On the quantum supergroup $SU_{p,q}(1|1)$ and quantum oscillators, Preprint MSUMB - 95/1, 1995.