Research Paper
Toxicity and Teratogenic Effects of Zinc Sulfide Nanoparticles on Chick Embryo and Chick Fibroblast Cell Culture

*Asadollah Asadi1, Arash Abdolmaleki2,3

1. Department of Biology & Geology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
2. Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran.
3. Department of Engineering, Faculty of Advanced Technologies, Sabalan University of Advanced Technologies, Namin, Iran.

Extended Abstract

1. Introduction

Nanoparticles (particles with a diameter of 10-500 nm) are currently used in the cosmetics industry as well as for pharmaceuticals, diagnostic imaging, and tissue engineering. Since these nanoparticles are used in industry and drug delivery, they can also be used by pregnant women. Thus, the current study investigated the teratogenic and cytotoxic effects of Zinc Sulfide (ZnS) nanoparticles on the embryo and their fibroblastic cell culture.

Method & Material: Zinc sulfide (ZnS) nanoparticles were synthesized. Then, nanoparticles at the concentrations of 5, 10, 15, 30, and 40 mg/mL/egg were injected into the air sac of the eggs in three replicates on the third day of incubation. Next, the treated and control eggs, on day 19 of incubation were opened, and embryos were weighted, and the relevant mortality rate was recorded. Fibroblast cells were isolated, cultured, and treated from the control embryo, and morphological changes and cell survival percentages were recorded.

Findings: The obtained results revealed that the embryos’ survival rate depends on the nanoparticle concentration. As a result, at the highest concentration, only 36.32% of the embryos survived, and the lethal dose 50% (LD50) was equal to 32.47 mg/egg. Morphological study of the treated embryos club foot and skeletal staining suggested the deletion of caudal vertebrate. The cytotoxicity study results of ZnS nanoparticles on fibroblastic cells indicated the survival fractions of 88.45%, 68.75%, and 49.32%, respectively, and its IC50 value was measured as 1460 μM.

Conclusion: The present study results suggested that ZnS nanoparticles had no significant toxic effects on the embryos and culture of chicken fibroblastic cells at low concentrations.

Key words: Nanoparticles, Toxicity, Malformation, Chick embryo, Zinc sulfide

A B S T R A C T

Aim: Nanoparticles (particles with a diameter of 10-500 nm) are currently used in the cosmetics industry as well as for pharmaceuticals, diagnostic imaging, and tissue engineering. Since these nanoparticles are used in industry and drug delivery, they can also be used by pregnant women. Thus, the current study investigated the teratogenic and cytotoxic effects of Zinc Sulfide (ZnS) nanoparticles on the embryo and their fibroblastic cell culture.

Methods: Zinc sulfide (ZnS) nanoparticles were synthesized. Then, nanoparticles at the concentrations of 5, 10, 15, 30, and 40 mg/mL/egg were injected into the air sac of the eggs in three replicates on the third day of incubation. Next, the treated and control eggs, on day 19 of incubation were opened, and embryos were weighted, and the relevant mortality rate was recorded. Fibroblast cells were isolated, cultured, and treated from the control embryo, and morphological changes and cell survival percentages were recorded.

Findings: The obtained results revealed that the embryos’ survival rate depends on the nanoparticle concentration. As a result, at the highest concentration, only 36.32% of the embryos survived, and the lethal dose 50% (LD50) was equal to 32.47 mg/egg. Morphological study of the treated embryos club foot and skeletal staining suggested the deletion of caudal vertebrate. The cytotoxicity study results of ZnS nanoparticles on fibroblastic cells indicated the survival fractions of 88.45%, 68.75%, and 49.32%, respectively, and its IC50 value was measured as 1460 μM.

Conclusion: The present study results suggested that ZnS nanoparticles had no significant toxic effects on the embryos and culture of chicken fibroblastic cells at low concentrations.

* Corresponding Author:
Asadollah Asadi, PhD.
Address: Department of Biology & Geology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
Tel: +98 (45) 31505187
E-mail: asad.asady@gmail.com
2. Methods

Asadi et al. evaluated the effects of nano polymer BDP18, as a carrier with slow drug-release property used in cancer treatment on chick embryos. Their results indicated that BDP18 has low toxic and teratogenic effects only at high doses; therefore, it can be used at low concentrations as an effective drug release system [1]. In another study, the toxic and physiological effects of platinum nanoparticles widely used in the treatments were estimated on chick embryo development. The relevant results reflected that these nanoparticles induce apoptosis in the brain tissues [2].

Ninety Ross hatching eggs were obtained from a local company (Arta Jujeh). The research was carried out in the research laboratory of the Biology Department of Mohaghegh Ardabili University in Summer 2018.

Sampling

In this study, a random sampling method was used. Moreover, for each concentration, on average, 3 groups of 5 samples were selected.

Tools

Alizarin red staining, culture medium, Dimethyl Sulfoxide (DMSO), Multi-and Table Tournament (MTT) colorimetric assay were used in the present research.

3. Results

The morphological examination of embryos suggested low abnormalities in the treated specimens; no abnormality was observed up to the concentration of 30 mg/mL per egg. The assessment of the relationship between treatment concentration and frequency of survived embryos revealed a lethal dose 50% (LD50) of 32.47 mg/egg. The results of the effect of 500, 1000, and 1500 μM ZnS concentrations on chick embryo fibroblastic cells after 16 hours reported the survival fractions of 88.45%, 68.75%, and 49.32% respectively. Therefore, it can inhibit cell growth with an LC50 of 1460 μM.

4. Discussion

Studies have indicated that embryonic mortality after injection into the egg can be due to the destruction and disruption of embryonic homeostasis, as well as the susceptibility of embryos to their developmental stage [3]. Many researchers have demonstrated the teratogenic effect of antibiotics and growth factors when injected into the egg during the first week of pregnancy [4]. Various nanoparticles have been generated and used as contrast agents in diagnosis and imaging, as well as drug delivery [5].

The effect of ZnS nanoparticles on chick embryos resulted in the skeletal malformations of the caudate vertebrae. This may be due to its direct effect on the loss of embryonic cells growing in the caudate vertebra. In this regard, evaluating the effect of methotrexate in rats suggested that most of the abnormalities in rats were due to the injections of methotrexate confined to caudal vertebrae [6]. Previous studies have indicated that the bones of the lower extremities are more prone to be affected by teratogenic drugs [7]. Barnes et al. (1996) argued that valproic acid reduces the transcription rate of Pax1 in chicken somites [8].

Studnicka et al. examined the effect of nanoparticles of silver/palladium alloy on chicken embryo development; they concluded that these nanoparticles do not affect embryo growth and weight [9]. Bavanilatha and Stanley assessed the effect of silver nanoparticles on chicken embryo. Heart, eye, and liver tissues were examined after chickens were injected on day 18 of incubation. Their results reflected no changes in heart, eye, and liver tissue cells [10]. In another study, teratogenic and cytotoxic effects of salen-vanadium complex on chicken embryos, hepatic, and fibroblastic-cell cultures were evaluated. According to their results, at high concentrations in the culture medium, fibroblastic cells became dense, and their interconnections were loosed [28].

Recommendations

It is recommended to investigate the chemical properties of nanoparticles and provide further information in this respect.

Limitations

There were no limitations to the current study.

5. Conclusion

The threshold effect of ZnS nanoparticles in this study was 32.47 mg/mL per egg. It had no significant effects on the chick embryo at lower doses and no morphological and skeletal teratogenic effects at doses lower than the threshold value. Therefore, when using ZnS in various industries, such as pharmacy, cosmetics production, and other related industries, its threshold level of toxicity and malformations for embryo should be considered.
Ethical Considerations

Compliance with ethical guidelines

All animal experiments were carried out in accordance with local University of Mohaghegh Ardabili (UMA) committee for Human and Animal ethics.

Funding

University of Mohaghegh Ardabili support the financial of this study.

Authors’ contributions

Participated in research design: Asadollah Asadi, Conducted experiments: Arash Abdolmaleki; Performed data analysis, wrote or contributed to the writing of the manuscript: All authors.

Conflicts of interest

The authors declare no conflicts of interest.

Acknowledgements

The authors would like to thank the Research Council of University of Mohaghegh Ardabili for the financial support of this study.
بررسی اثرات سمیت و ترازوژنیک نانوذرات سولفید روی بچه‌ی جوجه و کشت سلول‌های فیبروبلاستی جوجه

مقدمه
خطرات نانوذرات، تولیدشان و همچنین قرارگرفتن انسان در معرض این ترکیبات، تأثیر زیان‌آوری به‌صورت سمی و ترازوژنیک بر روی سلول‌های جنینی و سایر سلول‌ها در حوزه‌های مختلف روی بدن انسان دارد. نانوذرات در حال حاضر از طرف جنین‌های بچه‌ی جوجه و کشت سلول‌های فیبروبلاستی جوجه مورد بررسی قرار گرفته است.

نتایج
نتایج نشان داد میزان مرگ و میر جنین‌های بچه‌ی جوجه در غلظت کم‌تر از ۰.۰۲ میلی‌گرم و غلظت بالاتر از ۰.۰۴ میلی‌گرم می‌تواند تأثیر درمان بهبودی‌جویی سلول‌های جنین را داشته باشد. میزان رشد سلول‌های فیبروبلاستی جنین در غلظت بالاتر از ۰.۰۴ میلی‌گرم چهار باندی چهار باندی بوده است.

کلیدواژه‌ها: نانوذرات، سمیت، ترازوژنیک، جنین، جوجه، سولفید روی
توکین اسکلت جنین جوجه توسط مطالعات جنبه‌شناسی تجویز و ترکیب‌بندی باعث علت کنترل استفاده می‌شود. بکارگیری ویژگی‌های متناسب در یک ساختمان عصبی، می‌تواند از نظر ساختاری و شیمیایی سایر اکسید‌های اکسید سیلیکات‌ها و آلومینیومی و ارائه اکسید‌های آلیکسیلیک (استیل‌های سیلیکاتی) در اکسید‌های فلزی نظیر اکسید‌های تیتانیوم، رژیو، آلومینیوم و آهن و نانوذرات سیلیکات (سیلیکات‌ها یا اکسید‌های سیلیکون نیز سرامیک هستند) قسمی می‌شوند. در این میان نانوذرات، برای تهیه اکسید‌های فلزی مانند تیتانیوم، اکسید‌های آلومینیوم و آهن و نانوذرات سیلیکات، سرامیک‌ها به عنوان هم‌ارز تغییر قابلیت آن‌ها و تصفیه آب و تصفیه هوا پایداری که تشکل یک سری فناوری‌های ترکیب‌بندی ایجاد می‌شود. بهترین نانوذرات نانو با توجه به افزایش تعداد نانوذرات سازنده قابلیت‌های پارامتریکی زیادی نیز دارند.

از دیدگاه سم‌شناسی عوامل مختلفی در موجودات زنده به عنوان عوامل ناهنجاری زایان محسوب می‌شوند. بزرگ‌ترین دسته عوامل ناهنجاری شامل مواد شیمیایی و داروها هستند. در برخی موارد حتی ماده‌ای که در متابولیسم طبیعی درگیر است، اگر به میزان زیاد و در زمان‌های مهم دوران جنینی حضور داشته باشد، می‌تواند اثرات مخربی به‌بار آورد. علاوه بر مواد شیمیایی طبیعی، صدها ترکیب مصنوعی نیز هر ساله وارد جامعه صنعتی می‌شود که ممکن است اثرات زیان‌آوری روی جنین داشته باشد. مصرف بیش از ۲۰۰ ترکیب مرسوم و رایج است و هر ساله نیز بین ترکیب جدید ساخته می‌شود.

اگرچه ترکیبات ناهنجاری همیشه با ما هستند، ولی با ورود ترکیبات جدید به محیط اطراف ما، خطر ابتلا به این ترکیبات نیز ارتقاء دارد و بیش از هر چیز دیگری ممکن است. این ترکیبات به‌طور گسترده‌ای در داروسازی و سنتز مواد آرایشی همچنین در تصفیه آب و فاضلاب استفاده می‌شوند. با توجه به اینکه نانوذرات، سولفید روی به طور گسترده در داروسازی سنتز مواد آبیاری و تصفیه آب و فاضلاب استفاده می‌شوند، یکی از مواد شیمیایی و داروها به‌ویژه در جنین جوجه است. همچنین این نانوذرات سبب القای آپوپتوز در سلول‌های نارس شده است. همچنین جنین جوجه یکی از مدل‌های آزمایشگاهی مناسبی است که محققان رشته‌های مختلف از جمله جنین‌شناسی، فیزیولوژی و بیوشیمی از آن استفاده می‌کنند.

dلیل این امر راحتی تهیه آن به هر تعداد و کوتاهی طول دوران جنینی آن است. همچنین مراحل عمده یا تکوین اسکلت جنین جوجه نه تنها در مطالعات جنین‌شناسی آزمایش و تحقیقات مورد استفاده می‌شود، بلکه جهت مقایسه در بدشکلی‌های اسکلتی ناشی از موتانت‌های مختلف، نیز می‌توان استفاده کرد. در ضمن نانوذرات سولفید روی به طور گسترده در داروسازی و آرایشی استفاده می‌شود و نانوذرات سولفید روی به‌ویژه در جراحی، پرستاری و بهداشت جنینی استفاده می‌شود.

1. Photocatalysis
2. Advanced Oxidation Technologies (AOTs)
چندمیلی‌ترین روش‌های طبیعتی و گیاهی از جمله پروستات، پازوقولی و نیکوتین، به عنوان گروهی از داروها مورد استفاده قرار می‌گیرند.

برای بررسی اثرات نانوذرات سولفید روی بافت‌های فوق‌العاده‌ای از پاتوژنی پس از بیرون آمدن از تخم، از نظر هرگونه ناهنجاری ظاهری مناسب هستند. سپس میزان مرگ‌ومیر آن‌ها ثبت با فرمول شماره 1 محسوب شد.

6. Phosphate buffered saline
7. Roswell park memorial institute medium
8. (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
9. Dimethylsulfoxide

3. Zinc Sulfide (ZnS)
4. Romanoff
5. Potassium Hydroxide (KOH)
این مطالعه به منظور بررسی اثرات سمیت و تراتوژنیک نانوذرات سولفید روی جنین خرگوش در شرایط جنین بررسی پژوهیده شد. به منظور اجرای این مطالعه، نانوذرات سولفید به میزان 0.1 میکرومولار در سه گروه آزمایشی پنج عددی و در مجموع 15 عددی به سلول‌های فیبروبلاستی جنین‌های جوجه تزریق گردید. نتایج حاصل از این تحقیق نشان داد که افزایش غلظت نانوذرات سولفید در سلول‌های فیبروبلاستی جنین جوجه، ناهنجاری‌هایی در شکل و ساختار اسکلتی جنین‌های تیمار شده رخ داد. این ناهنجاری‌ها شامل افزایش گرانول‌های سیتوپلاسمی و حذف مهره‌هایی از نوع پاهای چنگکی بود. همچنین نتایج نشان داد که درصد درجه زنده سلول‌های فیبروبلاستی جنین در هر گروه با افزایش غلظت نانوذرات افزایش یافت. بنابراین، نانوذرات سولفید کنترل کننده در صورت تزریق به سلول‌های فیبروبلاستی جنین جوجه می‌توانند موجب افزایش مرگ و میر غلظتی نانوذرات سولفید در سلول‌های فیبروبلاستی جنین جوجه شود. برای تعیین خطرات، نیز ارزیابی LD50 (یافته‌های احتمالی میکرومولار سولفید روی در سلول‌های فیبروبلاستی جنین جوجه کاهش یافته) و محاسبه P به عنوان مقدار معنی‌دار است. همچنین نتایج نشان داد که درصد زنده سلول‌های فیبروبلاستی جنین در هر گروه با افزایش غلظت نانوذرات افزایش یافت. بنابراین، نانوذرات سولفید کنترل کننده در صورت تزریق به سلول‌های فیبروبلاستی جنین جوجه می‌توانند موجب افزایش مرگ و میر غلظتی نانوذرات سولفید در سلول‌های فیبروبلاستی جنین جوجه شود. برای تعیین خطرات، نیز ارزیابی LD50 (یافته‌های احتمالی میکرومولار سولفید روی در سلول‌های فیبروبلاستی جنین جوجه کاهش یافته) و محاسبه P به عنوان مقدار معنی‌دار است. همچنین نتایج نشان داد که درصد زنده سلول‌های فیبروبلاستی جنین در هر گروه با افزایش غلظت نانوذرات افزایش یافت. بنابراین، نانوذرات سولفید کنترل کننده در صورت تزریق به سلول‌های فیبروبلاستی جنین جوجه می‌توانند موجب افزایش مرگ و میر غلظتی نانوذرات سولفید در سلول‌های فیبروبلاستی جنین جوجه شود. برای تعیین خطرات، نیز ارزیابی LD50 (یافته‌های احتمالی میکرومولار سولفید روی در سلول‌های فیبروبلاستی جنین جوجه کاهش یافته) و محاسبه P به عنوان مقدار معنی‌دار است. Hیچ گونه تغییرات قابل معنی‌داری در وزن جنین‌های تیمارشده با نانوذرات سولفید روی در مقایسه با گروه کنترل مشاهده نشد.
بحث

مطالعه حاضر نشان داد تزریق نانوذرات سولفید روی در میلی گرم در میلی لیتر/تخم مرغ به سبب تلف ناحیه ایی از محققان اثر بیماری پلی‌پلاکسی و تثبیت جنین را به ترتیب افزایش و کاهش می‌دهد. در مرحله رشد و نمونه‌برداری این تزریق درون تخم تزریق می‌شود. چنین تزریقی می‌تواند باعث ایجاد تغییرات ناحیه‌ای در اجزای مختلف جنین شود.

در این راستا بررسی ناهنجاری‌های مربوط به غلظت‌های مختلف نانوذرات سولفید روی جنین جوجه که می‌تواند ناشی از تأثیر مستقیم ترکیب بر مرگ سلول‌های جنینی در حال رشد در مهره‌های می‌باشد، در این راستا بررسی شد.

غلظت میکرومولار / تخم مرغ	نوع ناهنجاری اسکلتی	درصد ناهنجاری مورفولوژیکی	درصد ناهنجاری اسکلتی	درصد ناهنجاری اسکلتی
0	0	0	0	0
5	1	0	0	0
10	2	0	0	0
15	3	0	0	0
20	4	0	0	0
30	5	0	0	0
40	6	0	0	0
50	7	0	0	0

به همین دلیل که تزریق نانوذرات سولفید روی به عنوان یکی از ابزارهای میکروبیولوژیکی مرتبط با فاکتورهای وابسته به ناحیه ایی به ترتیب کنترول، این تزریق می‌تواند به عنوان یکی از روش‌های اولیه درمان درمان‌های جنینی در حین طول تورم داشته باشد.
تصویر ۳. تأثیر گلکتهای مختلف نانوذرات سولفید روی در سلول‌های فیبروبلاستی استخراج شده از جنین جوجه پس از تیمار ۱۶ هفته.

الف: ناشی از گلکته صفر.
ب: تیمار با گلکته ۱۰۰۰ میکرومولر.
ب: تیمار با گلکته ۵۰۰ میکرومولر.
ب: تیمار با گلکته ۱۵۰۰ میکرومولر.
ب: تیمار با گلکته ۳۰۰۰ میکرومولر.
اثر داروی متاتورکسات در موش‌های صحرایی نشان داده شده است.

پایه‌های ایجاد شده در رت‌ها به دنبال تزریق متاتورکسات. بررسی یافته‌ها محدود به مهره‌های دمی است و نشان می‌دهد استخوان‌های اندام‌های انتهایی تحت تأثیر مواد تداشته، بیشتر دچار نقص می‌شوند نشان می‌دهد استخوان‌های اندام‌های انتهایی تحت تأثیر مواد تداشته، بیشتر دچار نقص می‌شوند. kter خاصیت تقلیدگری کولین دارند. همچنین این نوع تلکیپاسی برای کمک خاصیت تقلیدگری کولین دارند. بیشتر تلکیپاسی برای کمک خاصیت تقلیدگری کولین دارند.

اثرات نانوذرات آلیاژ استودنیکا و همکارانش در سال 2001 نقره پالادیوم بر رشد و نمو جنین جوجه را بررسی کرده و نشان دادند این نانوذرات بر رشد و نمو جنین تأثیر ندارند و همچنین هیچ تأثیری بر وزن جنین‌های جوجه ندارند. محدود به مهره‌های دمی است و نشان می‌دهد استخوان‌های اندام‌های انتهایی تحت تأثیر مواد تداشته، بیشتر دچار نقص می‌شوند نشان می‌دهد استخوان‌های اندام‌های انتهایی تحت تأثیر مواد تداشته، بیشتر دچار نقص می‌شوند. kter خاصیت تقلیدگری کولین دارند. همچنین این نوع تلکیپاسی برای کمک خاصیت تقلیدگری کولین دارند. بیشتر تلکیپاسی برای کمک خاصیت تقلیدگری کولین دارند.

ملاحظات اخلاقی

nehmerک مالی

پیروی از اصول‌های اخلاقی، تحقیق‌گر اصلی روش‌نامه و تحقیق‌گر اصلی مقاله: اسداله اسدی (50 درصد)؛ تحقیق‌گر کمکی: 05 (درصد).

مشارکت‌کنندگان

پژوهشگر اصلی و روش‌نامه نگارنده مقاله: اسداله اسدی (50 درصد)؛ تحقیق‌گر کمکی: 05 (درصد).

ملاحظات اخلاقی

به‌پایان بررسی اثرات سمیت و تراتوژنیک نانوذرات سولفید روی جنین جوجه، تکلیف‌های مختلف را در صنایع مختلف همچون داروسازی، به عنوان حامل دارویی و در تهیه محصولات آرایشی و بهداشتی و سایر کاربردهای آن در صنایع مشابه می‌باشد.

مشابه استودنیکا و همکارانش در سال 2001 نقره پالادیوم بر رشد و نمو جنین جوجه را بررسی کرده و نشان دادند این نانوذرات بر رشد و نمو جنین تأثیر ندارند و همچنین هیچ تأثیری بر وزن جنین‌های جوجه ندارند.

ملاحظات اخلاقی

پیروی از اصول‌های اخلاقی، تحقیق‌گر اصلی روش‌نامه و تحقیق‌گر اصلی مقاله: اسداله اسدی (50 درصد)؛ تحقیق‌گر کمکی: 05 (درصد).

مشارکت‌کنندگان

پژوهشگر اصلی و روش‌نامه نگارنده مقاله: اسداله اسدی (50 درصد)؛ تحقیق‌گر کمکی: 05 (درصد).

ملاحظات اخلاقی

به‌پایان بررسی اثرات سمیت و تراتوژنیک نانوذرات سولفید روی جنین جوجه، تکلیف‌های مختلف را در صنایع مختلف همچون داروسازی، به عنوان حامل دارویی و در تهیه محصولات آرایشی و بهداشتی و سایر کاربردهای آن در صنایع مشابه می‌باشد.
References

[1] Hullmann A. Measuring and assessing the development of nanotechnology. Scientometrics. 2007; 70(3):739-58. [DOI:10.1007/s11192-007-0310-6]

[2] Jones MG, Blonder R, Gardner GE, Albe V, Falvo M, Chevrier J. Nanotechnology and nanoscale science: Educational challenges. International Journal of Science Education. 2013; 35(9):1400-512. [DOI:10.1080/09563926.2013.771828]

[3] Hardman R. A toxicologic review of quantum dots: Toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives. 2005; 114(2):165-72. [DOI:10.1289/ehp.8284] [PMID] [PMCID]

[4] Wallace WE, Keane MJ, Murray DK, Chisholm WP, Maynard AD, Ong J, Jones MG, Blonder R, Gardner GE, Albe V, Falvo M, Chevrier J. Nanostructure Research Letters. 2013; 8(1):251-9. [DOI:10.1186/1556-2375-8-251] [PMID]

[5] Hu H, Wang X, Liu F, Wang J, Xu C. Rapid microwave-assisted synthesis of graphene nanosheets-zinc sulfide nanocomposites: Optical and photocatalytic properties. Synthetic Metals. 2011; 161(5):404-10. [DOI:10.1016/j.synthmet.2010.12.018]

[6] Janzen FJ, Paukstis GL. Environmental sex determination in reptiles: Ecology, evolution, and experimental design. The Quarterly Review of Biology. 1999; 66(2):149-79. [DOI:10.1086/417143]

[7] Abdolmaleki A, Sanginabadi F, Rajabi A, Saberi R. The effect of electromagnetic waves exposure on blood parameters. International Journal of Hematology-Oncology and Stem Cell Research. 2012; 46:237-42.

[8] Asadi A, Abdolmaleki A, Najafi F. Evaluation of Toxic and Teratogenic Effects of Zinc Sulfide Nanoparticles on Chicken. HMS. 2019; 25(4):270-281.

[9] Prasek M, Sawosz E, Jaworski S. Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Research Letters. 2013; 8(1):251-9. [DOI:10.1186/1556-276X-8-251] [PMID] [PMCID]

[10] Petrovová E, Sedmera D, Mísek I, Lesník F, Luptáková L. Benzo[b]carbazole toxicity in the chick embryo. Folia Biologica. 2009; 55(2):61-6.

[11] Zahri S, Bezaatpour A, Abdolmaleki A. Teratogenic and cytotoxic effects of Salen, A current ligand in vanadium complexes (Persian). Journal of Ardabil University of Medical Sciences. 2012; 13(1):16-23.

[12] Månner J, Seidl W, Heinicke F, Hesse H. Teratogenic effects of nanoscale zinc oxide on the chick embryo. Anatomy and Embryology. 1991; 66(2):131-34. [DOI:10.1002/tera.1420090206] [PMID]

[13] Wu X, Li K, Wang H. Facile synthesis of ZnS nanostructured spheres and their photocatalytic properties. Journal of Alloys and Compounds. 2009; 487(1-2):537-44. [DOI:10.1016/j.jallcom.2009.08.010]

[14] Abdolmaleki A, Zahri S. Comparison of toxicity and teratogenic effects of salen and VO-salen on chicken embryo. Drug and Chemical Toxicology. 2016; 39(3):344-9. [DOI:10.3109/1054854.2015.1121492] [PMID]

[15] Green MC. A rapid method for clearing and staining specimens for the demonstration of bone. The Ohio Journal of Science. 1952; 52(1):31-8.

[16] Bruggeman V, Swennen Q, De Ketelaere B, Onagbesan O, Tona K, Decuyper E. Embryonic exposure to 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in chickens: Effects of dose and embryonic stage on hatchability and growth. Comparative Biochemistry and Physiology Part C. 2003; 136(1):17-28. [DOI:10.1016/S1553-0456(03)00168-6]

[17] Roelens SA, Beck V, Maenpaa T, Aerts G, Reym G, Schepens P, et al. The dioxin-like PCB 77 but not the ortho-substituted PCB 153 interferes with chicken embryo thyroid hormone homeostasis and delays hatching. General and Comparative Endocrinology. 2005; 143(1):1-9. [DOI:10.1016/j.ygcen.2005.02.015] [PMID]

[18] Van der Geyten S, Van den Eynde I, Segers IB, Kühn ER, Darras VM. Differential expression of iodothyronine deiodinases in chicken tissues during the last week of embryonic development. General and Comparative Endocrinology. 2002; 128(1):65-73. [DOI:10.1016/S0016-6480(02)00065-5]

[19] Panariti A, Misericocchi G, Rivolta I. The effect of nanoparticle uptake on cellular behavior: Disrupting or enabling functions? Nanotechnology, Science and Applications. 2012; 5:87-100. [DOI:10.2147/NSA.S25515] [PMID] [PMCID]

[20] Skalko RG, Gold MP. Teratogenicity of methotrexate in mice. Teratology. 1974; 9(2):159-63. [DOI:10.1002/tera.1420090206] [PMID]

[21] Singh J, Singh S. Skeletal malformations induced by mitomycin C in chick embryos. Acta Orthopaedica. 1976; 47(5):509-14. [DOI:10.3109/17453677608988729] [PMID]

[22] Gilbert SF, Epel D. Ecological developmental biology: Integrating epigenetics, medicine, and evolution. S warthmore: Swarthmore Colledge; 2009.

[23] Studdnicka A, Sawosz E, Grodzik M, Chwalibog A, Balcerak M. Influence of nanoparticles of silver/palladium alloy on chicken embryos' development. Annals of Warsaw University of Life Sciences. 2009; 46:237-42.

[24] Forsyth C, Frank A, Watrous B, Bohn A. Effect of cocaine on the developing chick embryo. Teratology. 1994; 49(4):306-10. [DOI:10.1002/tera.1420490410] [PMID]

[25] Landauer W. Cholinomimetic teratogens: Studies with chicken embryos. Teratology. 1975; 12(2):125-45. [DOI:10.1002/tera.1420120206] [PMID]

[26] Magnas I, Kotsaki-Kovatsi V, Kovatsis A, Adamidou I. Teratogenic effects of a mixture of scopolamine and hyoscymine in chicken embryos. Veterinary and Human Toxicology Journal. 1993; 35(5):434-5.

[27] Kumar K, Devi K. Teratogenic effects of methyl parathion on developing chick embryos. Veterinary and Human Toxicology Journal. 1992; 34(5):408-10. [PMID]

[28] Abdolmaleki A, Zahri S, Bezaatpour A. Teratogenic and cytotoxic effects of VO salen complex on chicken embryos, hepatic and fibroblastic-cell cultures (Persian). Tehran University of Medical Sciences. 2013; 71(1):7-14.

[29] Muthiah B, Stanley S. In vivo toxicity assessment of silver nanoparticles synthesized from marine sponges (Halichondria 1mplexiformis). Journal of Pharmaceutical Research. 2010; 3(10):2552-4.
