The molecular mechanism of acute lung injury caused by *Pseudomonas aeruginosa*: from bacterial pathogenesis to host response

Teiji Sawa

Abstract

Pseudomonas aeruginosa is the most common gram-negative pathogen causing pneumonia in immunocompromised patients. Acute lung injury induced by bacterial exoproducts is associated with a poor outcome in *P. aeruginosa* pneumonia. The major pathogenic toxins among the exoproducts of *P. aeruginosa* and the mechanism by which they cause acute lung injury have been investigated: exoenzyme S and co-regulated toxins were found to contribute to acute lung injury. *P. aeruginosa* secretes these toxins through the recently defined type III secretion system (TTSS), by which gram-negative bacteria directly translocate toxins into the cytosol of target eukaryotic cells. TTSS comprises the secretion apparatus (termed the injectisome), translocators, secreted toxins, and regulatory components. In the *P. aeruginosa* genome, a pathogenic gene cluster, the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS. Four type III secretory toxins, namely ExoS, ExoT, ExoU, and ExoY, have been identified in *P. aeruginosa*. ExoS is a 49-kDa form of exoenzyme S, a bifunctional toxin that exerts ADP-ribosyltransferase and GTPase-activating protein (GAP) activity to disrupt endocytosis, the actin cytoskeleton, and cell proliferation. ExoT, a 53-kDa form of exoenzyme S with 75% sequence homology to ExoS, also exerts GAP activity to interfere with cell morphology and motility. ExoY is a nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation. ExoU, which exhibits phospholipase A2 activity activated by host cell ubiquitination after translocation, is a major pathogenic cytotoxin that causes alveolar epithelial injury and macrophage necrosis. Approximately 20% of clinical isolates also secrete ExoU, a gene encoded within an insertional pathogenic gene cluster named *P. aeruginosa* pathogenicity island-2. The ExoU secretory phenotype is associated with a poor clinical outcome in *P. aeruginosa* pneumonia. Blockade of translocation by TTSS or inhibition of the enzymatic activity of translocated toxins has the potential to decrease acute lung injury and improve clinical outcome.

Keywords: Acute lung injury, Pneumonia, *Pseudomonas aeruginosa*, Type III secretion system, ExoU

Introduction

Pseudomonas aeruginosa is one of the most common gram-negative pathogens causing pneumonia in immunocompromised patients [1-4]. Ventilated patients are at particularly high risk of developing *P. aeruginosa* pneumonia [5,6], and the mortality rate of ventilator-associated pneumonia (VAP) due to *P. aeruginosa* is significantly higher than that due to other pathogens [7-9]. Some *P. aeruginosa* strains possess the ability to destroy the integrity of the alveolar epithelial barrier, causing rapid necrosis of the lung epithelium and bacterial dissemination into the circulation [10,11]. Understanding the mechanism by which virulent strains of *P. aeruginosa* cause acute lung injury is critical for preventing subsequent sepsis and death. The present review summarizes the progress and explains the mechanisms causing acute lung injury and sepsis, focusing on the type III secretion system (TTSS) of *P. aeruginosa*.

Review

Acute lung epithelial injury caused by *P. aeruginosa*

Acute lung injury in animal models

P. aeruginosa secretes various toxic exoproducts (Table 1). Investigation of the toxic exoproducts of *P. aeruginosa*...
with major roles in acute lung injury began in the late 1980s. In animal models, acute lung epithelial injury was quantified through the measurement of bidirectional protein movement across the lung epithelial barrier [12–14]. In this model, the airspace instillation of live P. aeruginosa resulted in increased movement of the alveolar tracer into the vascular compartment, a twofold increase in the vascular tracer in the airspace, and a significant reduction in liquid clearance by the lung, while instillation of Escherichia coli endotoxin did not cause lung epithelial injury. These early animal experiments initiated the search for a major virulence factor responsible for acute lung epithelial injury among the exoproducts of P. aeruginosa [15,16].

Discovery of a major cytotoxin: ExoU

The P. aeruginosa toxin exoenzyme S was identified in the late 1970s as an ADP-ribosyltransferase distinct from exotoxin A [17,18]. Early studies revealed that the exoenzyme S-positive phenotype correlated with increased virulence in lung infections and burn wounds [19–24]. The protein transcriptional regulator ExsA was found to regulate the production of exoenzyme S and co-regulated proteins [25–27]. PAO-S21, an insertion mutant of transposon Tn501 in the exsA gene of P. aeruginosa, is exoenzyme S-deficient [15,19]. PAO-S21 infection did not result in altered protein flux across the alveolar epithelial barrier [15]. Based on these findings, exoenzyme S, or an unknown exoenzyme S-related toxin regulated by ExsA, was determined to play a major role in acute lung injury. Exoenzyme S activity was later determined to be the result of two highly homologous toxins, ExoS (a 49-kDa form of exoenzyme S) and ExoT (a 53-kDa form of exoenzyme S), encoded by two separate regions of the P. aeruginosa genome [28–31].

The virulent P. aeruginosa strain PA103, lacking the 49-kDa form of the exoenzyme S gene (exoS) but possessing the 53-kDa form (exoT), causes a high degree of acute injury [16]. Because the isogenic mutant lacking the 49-kDa form of exoenzyme S remained capable of causing acute lung injury in a rabbit model, it was initially considered possible that ExoT is the major factor underlying acute lung injury [16]. However, an isogenic mutant lacking ExoT remained capable of causing alveolar epithelial injury in a mouse model [32]. Thus, neither ExoT nor ExoS was the major virulence factor. PA103 was found to secrete a unique unknown 74-kDa protein, the production of which decreased with a transposon mutation in exsA. The gene encoding this 74-kDa protein was cloned, and a mutant missing this protein was created in PA103. PA103 lacking this 74-kDa protein failed to cause acute lung injury in our mouse model [33,34]. This protein, regulated by ExsA, was named ExoU. Clinical isolates with a cytotoxic phenotype *in vitro* were found to express ExoU and cause acute epithelial injury in a mouse model [33]. Cytotoxic P. aeruginosa isolates were identified to possess *exoU*, while noncytotoxic isolates lacked the gene [33]. High cytotoxicity, severity of lung epithelial injury, and bacterial dissemination into the circulation appeared to show a high correlation with the *exoU* genotype [35,36]. Therefore, it was concluded that the ability of P. aeruginosa to cause acute lung epithelial injury and sepsis is highly linked to the expression of ExoU, regulated by the transcriptional activator ExsA [33,34].

Type III secretion system

The secretion systems of gram-negative bacteria

Gram-negative bacteria, which have inner and outer bacterial membranes, use dedicated secretion systems to transport proteins synthesized to the outside environment. The secretion systems of gram-negative bacteria can be classified into six subtypes [37]. The type I secretion system is relatively simple, consisting of only a few proteins. Unlike proteins secreted by the type II secretion system, proteins secreted by the type I secretion system contain no signal sequence at their amino termini; instead, they contain domains at their carboxyl termini necessary for recognition by the type I secretion complex. The type II system conducts so-called sec-independent secretion [38]. Proteins secreted by the type II system possess amino-terminal signal sequences of 16–26 residues [38].

The type III and IV secretion systems have been more recently defined (Figure 1). Recently, a high degree of

Table 1 The major toxic exoproducts of *Pseudomonas aeruginosa*

Exoproducts	Locus ID, PA number	Effect on host	Secretion type	Regulation system
Exotoxin A	toxA, PA1148	Antiphagocytic, cytotoxic	Type II	(LasR-LasI quorum sensing)
Exoenzyme S	exoS, PA3841	Antiphagocytic, cytotoxic	Type III	ExsA-activated type III system
Elastase (LasA, LasB)	lsaA, PA1871	Elastolytic activity	Type II	LasR-LasI quorum sensing
LasB, PA3724				
Alkaline proteinase	aprA, PA1249		Type I	LasR-LasI quorum sensing
Phospholipase C	plcH, PA0844	Disturbance of membrane lipid metabolism	Type II	Inorganic phosphate
	plcN, PA3319			
association has been reported to exist between the type III and IV secretion systems and the pathogenesis of gram-negative bacteria [37,39]. In both the secretion systems, bacteria directly deliver proteins into the cytosol of target eukaryotic cells [40]. Evolutionarily, TTSS is derived from flagella, while the type IV system is derived from a conjugational system [39,41]. TTSS is utilized by most pathogenic gram-negative bacteria, including Yersinia, Salmonella, Shigella, E. coli, and P. aeruginosa (Table 2) [42]. TTSS functions as a molecular syringe, directly delivering toxins into the cytosol of cells [43]. The translocated toxins modulate eukaryotic cell signaling. All TTSSs studied till date share an important feature: the genes encoding this system are upregulated by direct contact between bacteria and host cells, with consequent direct delivery of bacterial virulence products (type III secretory toxins or effector molecules) into the host cell via the secretion and translocation apparatus [42]. In P. aeruginosa, exoenzyme S was initially thought to be secreted via the type II secretion pathway. However, based on the genomic homology to other gram-negative bacteria, this toxin and co-regulated toxins (ExoT, ExoU, and ExoY) were ultimately determined to be translocated as effector proteins into host cells via TTSS [44].

Table 2 Type III secretion systems in animal-associated gram-negative bacteria

Bacteria	Effect on host	Secreted proteins	Secretion apparatus
Pseudomonas aeruginosa	Cytotoxic, antiphagocytic	Exo, Pop	Psc
Bordetella spp.	Cytotoxic	Bop	Bsc
Burkholderia pseudomallei	Facilitates invasion, etc.	Bop	Bsa
Chlamydia spp.	Prevents microtubule assembly, etc.	Cop	Cds
Pathogenic *E. coli*	A/E lesion formation	Esp, Tir	Sep
Salmonella spp.	Bacterial entry, apoptosis	Sip, Sop, Inv, Prg, Spa, Sip	
Shigella spp.	Bacterial entry, apoptosis	Ipa, VtrA, Spa, Mxi	
Yersinia spp.	Cytotoxic, antiphagocytic	Yop, Lcr	Ysc

Genomic organization of *P. aeruginosa* TTSS

TTSS of *P. aeruginosa* is highly homologous to the prototypical *Yersinia* TTSS [45,46]. The whole genome of *P. aeruginosa* strain PAO1 was sequenced by the *Pseudomonas* Genome Project and published in 2000 (Figure 2) [47]. It was found that the 25.6-kb genomic region, named the exoenzyme S regulon, encodes genes underlying the regulation, secretion, and translocation of TTSS [48]. Expression of these genes is under the regulation of the transcriptional activator protein ExsA, and ExsA itself is encoded by the exsCBA operon in the exoenzyme S regulon [28,48].

In the genome of *P. aeruginosa* PAO1, three type III secretory toxins (excluding ExoU), co-regulated with the exoenzyme S regulon by ExsA, have been identified (Figure 2). These are ExoS (a 49-kDa form of exoenzyme S), ExoT (a 53-kDa form of exoenzyme S, also known as exoenzyme T), and ExoY [31,49]. The genes encoding these type III secretory toxins (exoS, exoT, and exoY) are distributed in regions of the genome separate from the exoenzyme S regulon [47,48]. Later, two distinct *P. aeruginosa* pathogenicity islands, PAPI-1 (108 kb) and PAPI-2 (11 kb), which are absent from the less virulent strain PAO1, were found in the highly virulent clinical strain PA14, and exoU was discovered in the PAPI-2 region of this strain [50,51]. Approximately 20% of clinical isolates are more virulent; they possess exoU, but not exoS [52].

The exoenzyme S regulon

Transcriptional activator ExsA

ExsA, encoded by the exsCBA operon (the trans-regulatory locus for exoenzyme S secretion) in the exoenzyme S regulon, is a transcriptional activator of the *P. aeruginosa* TTSS [48]. In the exoenzyme S regulon, ExsA regulates the transcription of five operons (exsD-pscl, exsCBA, pscG-popD, popN-pcrR, and pscN-pscl) encoding TTSS and the translocation machinery (Figure 2) [48]. Another four or five
ExsA-binding sites have been found in the genome for the regulation of effector molecules (type III secretory toxins) and their chaperones [47].

Secretion apparatus

In TTSS, secretion describes the process by which toxins are transferred from the bacterial cytosol to the surrounding medium across the inner and outer bacterial membranes [43]. This process seems to require secretion apparatus involving many protein components (Figure 3). All known TTSSs in animals and pathogenic bacteria share a number of highly conserved core structural components. The TTSS-specific export apparatus is termed the needle complex in *Salmonella* [53,54], *Shigella* [55], and *E. coli* [56]. This structure spans both the inner and outer membranes of the bacterial envelope and closely resembles the flagella basal body, further supporting the evolutionary relationship between the flagella and TTSS [41,57].

In *Yersinia*, ysc genes in the Yop virulon largely encode components of TTSS, and *P. aeruginosa* possesses homologous psc genes in its exoenzyme regulon [45,48]. Ysc proteins from *Yersinia* ysc genes and Psc proteins from *P. aeruginosa* psc genes are considered as components of their respective needle complexes because of their sequence homology to *Salmonella* Spa, Prg, and Inv; *Shigella* Spa and Mxi; and *E. coli* Esc proteins.

Translocators and V-antigen

In TTSS, translocation, which describes the process of direct toxin transfer into the eukaryotic cytosol across the eukaryotic plasma membrane, has been thoroughly investigated in *Yersinia* [45,58-60]. In *P. aeruginosa*, the *pcrGVHpopBD* operon, under regulation by ExsA, encodes five proteins, namely PcrG, PcrV, PcrH, PopB, and PopD, homologous to *Yersinia* LcrG, LcrV, LcrH, YopB, and YopD, respectively (Table 3) [61,62]. Translocation in the *P. aeruginosa* TTSS is mediated by PcrV, PopB, and PopD. In fact, in *P. aeruginosa*, isogenic mutants lacking *pcrV* or *popD* were unable to intoxicate eukaryotic cells [63,64]. Historically, *Yersinia* LcrV was designated *Yersinia* V-antigen and thought to protect mice from lethal infections with *yersiniae* strains [65,66]. PcrV (*P. aeruginosa* V-antigen) corresponds to the *Yersinia* V-antigen LcrV. Antibodies against LcrV and PcrV are likely to block type III protein translocation by interfering with pore formation by LcrV/YopB/YopD and PcrV/PopB/PopD, respectively [63,64].

Four type III secretory toxins of *P. aeruginosa*

Till date, *P. aeruginosa* is known to secrete at least four effector molecules (type III secretory toxins) via TTSS: ExoS, ExoT, ExoU, and ExoY (Table 4, Figure 4).
The virulence of each strain differs depending on the genotypes and phenotypes of the type III secretory toxins [32,33,52].

ExoS

P. aeruginosa exoenzyme S was originally characterized as a toxin distinct from exotoxin A exhibiting ADP-ribosyltransferase activity [17]. Exoenzyme S ADP-ribosylates vimentins and several Ras-related GTP-binding proteins, including Rab3, Rab4, Ral, Rap1A, and Rap2 [67,68]. The enzymatic reaction requires a soluble eukaryotic protein, termed factor-activating exoenzyme S (FAS), to ADP-ribosylate all substrates [69,70]. Analysis of several deletion peptides showed that 222 amino acids at the carboxyl terminal of exoenzyme S possessed FAS-dependent ADP-ribosyltransferase activity [69,70]. Expression of the ADP-ribosyltransferase domain of exoenzyme S is cytotoxic to eukaryotic cells [71].

The amino-terminal domain of exoenzyme S has been characterized as a GTPase-activating protein (GAP) for Rho GTPases [72], suggesting that exoenzyme S is a bifunctional type III secreted cytotoxin [71]. *In vivo* data indicate that the Rho GAP activity of ExoS stimulates the reorganization of the actin cytoskeleton by inhibiting Rac and Cdc42 and stimulates actin stress fiber formation by inhibiting Rho [73].

ExoT

Two immunologically undistinguishable proteins, with apparent molecular sizes of 53- and 49-kDa, co-fractionated with exoenzyme S activity [18]. Later, these two exoenzymes were found to be the products of two different genes [31]. ExoT was found to encode a protein of 457 amino acids, with 75% amino acid homology to ExoS. However, ExoT possessed approximately 0.2% of its ADP-ribosyltransferase activity [74]. ExoT diminishes macrophage motility and phagocytosis, at least in part through disruption of the actin cytoskeleton of eukaryotic cells, and blocks wound healing [75,76]. Biochemical studies have shown that ExoT is a GAP for RhoA, Rac1, and Cdc42 [77,78]. These data show that ExoT interferes with the Rho signal transduction pathways, which regulate actin organization, exocytosis, cell cycle progression, and phagocytosis [77,79].

ExoU

In 1997, a novel cytotoxin, ExoU (termed PepA by Hauser et al. [34]), was found to be a major contributory factor to lung injury, and the gene *exoU* was cloned from the cytotoxic PA103 strain. A region downstream of *exoU* was found to encode a specific *Pseudomonas* chaperone for ExoU (SpcU) [80]. In *P. aeruginosa*, ExoU and SpcU are coordinately expressed as an operon controlled at the transcriptional level by ExsA [80]. Acquisition of the
expression of \textit{P. aeruginosa} ExoU caused increased bacterial virulence and systemic spread in a mouse model of acute pneumonia [33]. Hauser et al. determined the type III secretion genotypes and phenotypes of isolates cultured from patients with VAP: in vitro assays indicated that ExoU most closely linked to mortality in animal models was secreted in detectable amounts \textit{in vitro} by 10 (29\%) of the 35 isolates examined [34].

ExoU has a potato patatin-like phospholipase (PLA) domain (pfam01734 in the Conserved Domain Database of BLAST (National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MA, USA); Figure 5). Patatin is a member of a multigene family of vacuolar storage glycoproteins with lipid acyl hydrolase and acyltransferase activities; it represents 40\% of the total soluble protein in potato tubers [81]. Sequence alignment of ExoU, potato patatin, and human PLA2 revealed three highly conserved regions in the amino acid sequence of ExoU [82]. In the alignment, Ser-142 and Asp-344 of ExoU corresponded to the catalytic serine and aspartate of PLA2, respectively [82]. Subsequently, using \textit{in vitro} models, it was shown that ExoU exhibits Ser-142- and Asp-344-dependent catalytic PLA2 activity, which requires eukaryotic cell factors for its activation [82,83]. Then, it was finally concluded that virulent \textit{P. aeruginosa} causes acute lung injury, thereby causing sepsis and mortality, through cytotoxic activity derived from the patatin-like phospholipase domain of ExoU [84]. The cells targeted by ExoU injection through TTSS comprise not only epithelial cells but also macrophages [85]. Through TTSS, ExoU is activated after its translocation into the eukaryotic cell cytosol. It has been recently reported that ubiquitin and ubiquitin-modified proteins are associated with ExoU activation [86,87].

\textbf{ExoY}

ExoY is the fourth type III secretion effector protein controlled by ExoS regulon. ExoY is homologous to the extracellular adenylate cyclases of \textit{Bordetella pertussis} (CyaA), \textit{Bacillus anthracis} (EF), and \textit{Yersinia pestis} (insecticidal toxin) [49]. In assays for adenylate cyclase activity, recombinant ExoY (rExoY) catalyzed the formation of cyclic adenosine monophosphate (cAMP). In contrast to CyaA and EF, rExoY activity was not stimulated or activated by calmodulin. Infection of eukaryotic cells with \textit{P. aeruginosa} producing catalytically active ExoY resulted in the elevation of intracellular cAMP levels and changes in cell morphology [88,89]. It is more recently reported that ExoY is likely to be a promiscuous nucleotidal cyclase that increases the intracellular levels of cyclic adenosine and guanosine monophosphates, resulting in edema formation [90].

\textbf{Epidemiology of the \textit{P. aeruginosa} TTSS}

Analysis of type III secretory protein phenotypes was performed in 108 isolates derived from patients with \textit{P. aeruginosa} infections [52]. The mortality rate in
patients with *P. aeruginosa* isolates expressing at least one of the type III secretory proteins was 21% compared with the rate of 3% in patients with isolates expressing no type III secretory protein. In another study, infection with isolates secreting TTSS proteins, particularly isolates with an ExoU-positive phenotype, correlated with severe disease [91]. Recently, additional reports have demonstrated an association between the ExoU genotype or phenotype and a poor clinical outcome of *P. aeruginosa* pneumonia. *exoU*-positive isolates were more likely to be fluoroquinolone resistant and exhibit both a *gyrA* mutation and efflux pump overexpression [92]. Clinical isolates containing the *exolI* gene were more likely to be resistant to cefepime, ceftazidime, piperacillin tazobactam, carbapenems, and gentamicin [93]. A fluoroquinolone-resistant phenotype in an ExoU-positive strain contributes to the pathogenesis of *P. aeruginosa* pneumonia [94]. However, the expression of TTSS exoenzymes in *P. aeruginosa* isolates from bacteremic patients confers a poor clinical outcome, independent of antibiotic susceptibility [95]. Severity of the illness and expression of type III secretory proteins were the strongest predictors of 30-day mortality from *P. aeruginosa* bacteremia [96].

Update the clinical approach against *P. aeruginosa* pneumonia

P. aeruginosa expresses a variety of factors that confer resistance to a broad array of antibacterial agents. Multidrug-resistant *P. aeruginosa* (MDPR) is defined as the resistance to carbapenems, aminoglycosides, and fluoroquinolones. The current increase in the incidence of lethal outbreaks of MDRP is especially a serious concern. Multiple genetic rearrangements, such as chromosomal mutations or horizontal gene transfers (plasmids, integrons, phages), are associated with the acquisition of multidrug resistance in these bacteria. The various mechanisms, such as β-lactamases, carbapenemases or aminoglycoside-modifying enzymes, and mutations in antibiotic targets, efflux pumps, impermeability, are associated in these multidrug resistances. In the management of *P. aeruginosa* pneumonia, the increasing resistance level of these bacteria to most classes of antibacterial agents frequently leads to failure of effective treatment, which is associated with high mortality of the infected patients. Therefore, choosing adequate antibiotics is crucial to increase the survival rate, especially in patients infected with MDRP. Therefore, surveillance in antibiotic resistance must be important to reduce the risk of inadequate antibacterial therapy. In addition, surveillance in TTSS-genotype- and phenotype-associated acute lung injury and sepsis may help to predict the higher risk of lethal outbreaks.

Polymyxin E (colistin) remains the most consistently effective agent against MDPR, while colistin-resistant *P. aeruginosa* has been already reported as a caution of the emergence of pan-resistant strains in the near future [97].
Different strategies against the different targets must be required before the spread of super-resistant strains. Among various experimental therapeutic approaches, the anti-TTSS therapy is reasonable because acute lung injury due to P. aeruginosa is highly depending on its TTSS-associated virulence as described above. PcrV has a critical role in the TTSS-associated virulence of P. aeruginosa as follows [63]. In a series of these studies, active and passive immunization against PcrV in animal models of P. aeruginosa-induced lung injury greatly increased survival [63]. Virulent P. aeruginosa strains expressing PcrV disabled macrophage phagocytosis. However, antibodies against PcrV blocked this critical antiphagocytic effect [63]. Passive protection with anti-PcrV reduced the inflammatory response, minimized bacteremia, and prevented septic shock in mice and rabbits [98]. The protective capacity of the antibody was Fc-independent as F(ab')2 fragments of polyclonal anti-PcrV were also effective [98]. A murine monoclonal anti-PcrV antibody mAb166 was developed, and its protective effects on acute lung injury were demonstrated when co-instilled with the bacterial challenge or passively transferred to infected animals [99]. The administration of either mAb166 or Fab of mAb166 showed comparable therapeutic effects to rabbit polyclonal anti-PcrV IgG [100]. Based on mAb166, humanized anti-PcrV antibody that was developed by molecular engineering has recently entered phase I/II clinical trials in the USA and Europe for prophylactic and therapeutic uses against P. aeruginosa pneumonia in artificially ventilated patients and cystic fibrosis patients [101-103].

Conclusions
Summary and future implications
P. aeruginosa possesses a sophisticated toxin secretion system to directly inject toxins into the cytosol of target eukaryotic cells. This system, called TTSS, is regulated by the exoenzyme S regulon of P. aeruginosa. Through TTSS, P. aeruginosa translocates the type III secretory toxins ExoS, ExoT, ExoU, and ExoY. By injecting these toxins into the cytosol of eukaryotic cells, P. aeruginosa exploits mammalian enzyme functions to modulate eukaryotic cell signaling.

Of these four toxins, ExoU is the major virulence factor responsible for alveolar epithelial injury in P. aeruginosa pneumonia. Virulent strains of P. aeruginosa possess the exoU gene, whereas nonvirulent strains lack the same. The major pathogenesis of P. aeruginosa-induced acute epithelial lung injury and subsequent bacteremia and sepsis is highly dependent on the ExoU phenotype of the strain, while the type III secretory toxins ExoS, ExoT, and ExoY modulate host immunity and cause lung edema (Figure 6). Progress in the field of translational research is now anticipated to prevent the acute lung injury and improve the poor clinical outcome of P. aeruginosa pneumonia. What we have learned from our attempts to elucidate the molecular mechanisms underlying acute lung injury over the last 30 years is how well pathogenic bacteria utilize our cell signaling to cause diseases: bacteria know our cell signaling better than we do.

Abbreviations
ATP: Adenosine triphosphate; cAMP: Cyclic adenosine monophosphate; CF: Cystic fibrosis; cGMP: Cyclic guanosine monophosphate; ExsA: Transcriptional regulator ExsA; FAS: Factor-activating exoenzyme S; GAP: GTPase-activating protein; PAPI: Pseudomonas aeruginosa pathogenicity island; TTSS: Type III secretion system; PLA: Patatin-like phospholipase; PLA2: Phospholipase A2; VAP: Ventilator-associated pneumonia.

Competing interests
Relating to the content of the manuscript, the author has a patent fee from the Regents of the University of California, CA, USA.

Authors’ information
TS is a professor in Anesthesiology at Kyoto Prefectural University of Medicine, Japan.

Acknowledgements
The author would like to thank Dr. Jeanine P. Wiener-Kronish, Anesthetist-in-Chief, Henry Isaiah Dorr Professor of Anesthesia, Harvard Medical School for her critical support of his research.

Received: 25 December 2013 Accepted: 28 January 2014
Published: 18 February 2014

References
1. Quartin AA, Scerpella EG, Puttagunta S, Kett DH: A comparison of microbiology and demographics among patients with healthcare-
Reizer J, Saier MH, Hancock RE, Lory S, et al: Complete genome sequence of *Pseudomonas aeruginosa* PA01, an opportunistic pathogen. *Nature* 2000, 406:959–964.

48. Frank DW: The exoenzyme S regulon of *Pseudomonas aeruginosa*. *Mol Microbiol* 1997, 26:211–219.

49. Yahr TL, Valls AJ, Hancock MK, Barbieri JT, Frank DW: ExoY, an adenylate cyclase secreted by the *Pseudomonas aeruginosa* type III system. *Proc Natl Acad Sci USA* 1998, 95:13899–13904.

50. Wolfgang MC, Kulasekara BR, Liang X, Boyd D, Wu K, Yang Q, Miyada CG, Sawa T, Frank DW: Several GTP-binding proteins, including p2C1-Hras, are preferred substrates of *Pseudomonas aeruginosa* exoenzyme S. *J Biol Chem* 1989, 264:9004–9008.

51. Coburn J, Kane AV, Feig L, Gill DM: *Pseudomonas aeruginosa* exoenzyme S requires a eukaryotic protein for ADP-ribosyltransferase activity. *J Biol Chem* 1991, 266:6438–6446.

52. Fu H, Coburn J, Collier RJ: The eukaryotic host factor that activates exoenzyme S of *Pseudomonas aeruginosa* is a member of the 14–3–3 protein family. *Proc Natl Acad Sci USA* 1993, 90:2320–2324.

53. Barbieri JT, *Pseudomonas aeruginosa* exoenzyme S, a bifunctional type III secreted cytotoxin. *Int J Med Microbiol* 2000, 290:381–387.

54. Geisinger UM, Schmidt G, Pederson KJ, Aktersies K, Barbieri JT: The N- terminal domain of *Pseudomonas aeruginosa* exoenzyme S is a GTPase activating protein for Rho GTPases. *J Biol Chem* 1999, 274:36869–36872.

55. Kral R, Sun J, Pederson KJ, Barbieri JT: In vivo rho GTPase-activating protein activity of *Pseudomonas aeruginosa* cytotoxin ExoS. *Infect Immun* 2002, 70:360–367.

56. Liu S, Yahr TL, Frank DW, Barbieri JT: Biochemical relationships between the 53-kilodalton (ExoS3) and 49-kilodalton (ExoS) forms of exoenzyme S of *Pseudomonas aeruginosa*. *J Bacteriol* 1997, 179:1669–1673.

57. Cowell BA, Chen DY, Frank DW, Valls AJ, Feig L: ExoY of cytotoxic *Pseudomonas aeruginosa* prevents uptake by corneal epithelial cells. *Infect Immun* 2000, 68:403–406.

58. Geier TK, Kazmierczak BJ, Garry-Ryan LK, Matthay MA, Engel JN: *Pseudomonas aeruginosa* ExoT inhibits in vitro lung endothelial wound repair. *Cell Microbiol* 2001, 3:223–236.

59. Kral R, Schmidt G, Aktersies K, Barbieri JT: *Pseudomonas aeruginosa* ExoT is a rho GTPase-activating protein. *Infect Immun* 2000, 68:6066–6068.

60. Kazmierczak BJ, Engel JN: *Pseudomonas aeruginosa* ExoT acts in vivo as a GTPase-activating protein for RhoA, Rac1, and CDC42. *Infect Immun* 2002, 70:2198–2205.

61. Garry-Ryan L, Kazmierczak B, Kowal R, Comilli J, Hauser A, Engel JN: The arginine finger domain of ExoT contributes to actin cytoskeleton disruption and inhibition of internalization of *Pseudomonas aeruginosa* by epithelial cells and macrophages. *Infect Immun* 2000, 68:7100–7113.

62. Finck-Berbancon V, Yahr TL, Frank DW: Identification and characterization of SpdU, a chaperone required for efficient secretion of the ExoU cytotoxin. *J Bacteriol* 1998, 180:2624–2631.

63. Racusen L: Lipid acyl hydrolysis of patatin. *Can J Bot* 1984, 62:1640–1644.

64. Sato H, Frank DW, Hilliard CJ, Feix JB, Parkhanyia RR, Moriyama K, Finck-Berbancon V, Buchaklian A, Lei M, Long RM, Wiener-Kronish J, Sawa T: The mechanism of action of the *Pseudomonas aeruginosa*-encoded type III cytotoxin, ExoU. *EMBO J* 2003, 22:2679–2694.

65. Tamura M, Aijay T, Allmon LR, Moriyama K, Wiener-Kronish J, Sawa T: *Pseudomonas aeruginosa* cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. *Infect Immun* 2010, 78:1447–1456.

66. Anderson DM, Schnalzer KM, Sato H, Casey M, Terhune SS, Haas AL, Feix JB, Frank DW: Ubiquitin and ubiquitin-modified proteins activate the *Pseudomonas aeruginosa* T3SS cytotoxin, ExoU. *Mol Microbiol* 2011, 82:1454–1467.

67. Anderson DM, Feix JB, Monroe AL, Peterson FC, Volkman BF, Haas AL, Frank DW: Identification of the major ubiquitin-binding domain of the *Pseudomonas aeruginosa* ExoU A2 phospholipase. *J Biol Chem* 2013, 288:26741–26752.

68. Sayner SL, Frank DW, King J, Chen H, VandeWaa J, Stevens T: Paradoxical cAMP-induced lung endothelial hyperpermeability revealed by *Pseudomonas aeruginosa* ExoU. *Circ Res* 2004, 95:196–203.

69. Doherty AR, Evans DJ, Feig L: Actin cytoskeleton disruption by ExoY and its effects on *Pseudomonas aeruginosa* invasion. *FEBS Lett* 2005, 570:71–76.

70. Ochoa CD, Alexander M, Patulak V, Balcon R, Stevens T: *Pseudomonas aeruginosa* exotoxin Y is a promiscuous cyclase that increases endothelial tau phosphorylation and permeability. *J Biol Chem* 2012, 287:25407–25418.

71. Hauser A, Cobb E, Bodi M, Mariscal D, Valles J, Engel JN. Type III protein secretion is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by *Pseudomonas aeruginosa*. *Crit Care Med* 2002, 30:521–528.
92. Wong-Beringer A, Wiener-Kronish J, Lynch S, Flanagan J: Comparison of type III secretion system virulence among fluoroquinolone-susceptible and -resistant clinical isolates of Pseudomonas aeruginosa. Clin Microbiol Infect 2008, 14:330–336.

93. Garey KW, Vo QP, Larocco MT, Gentry LO, Tam VH: Prevalence of type III secretion protein exoenzymes and antimicrobial susceptibility patterns from bloodstream isolates of patients with Pseudomonas aeruginosa bacteremia. J Chemother 2008, 20:714–720.

94. Sullivan E, Bensman J, Lou M, Agnello M, Shriner K, Wong-Beringer A: Risk of developing pneumonia is enhanced by the combined traits of fluoroquinolone resistance and type III secretion virulence in respiratory isolates of Pseudomonas aeruginosa. Crit Care Med 2014, 42(1):48–56.

95. Hattemer A, Hauser A, Diaz M, Scheetz M, Shah N, Allen J, Phrompoyon J, El-Solh AA: Bacterial and clinical characteristics of health care- and community-acquired bloodstream infections due to Pseudomonas aeruginosa. Antimicrob Agents Chemother 2013, 57:3969–3975.

96. El-Solh AA, Hattemer A, Hauser AR, Alhajhusain A, Vora H: Clinical outcomes of type III Pseudomonas aeruginosa bacteremia. Crit Care Med 2012, 40:1157–1163.

97. Lee JY, Ko KS: Mutations and expression of PmrAB and PhoPQ related with colistin resistance in Pseudomonas aeruginosa clinical isolates. Diagn Microbiol Infect Dis 2013. doi:10.1016/j.diagmicrobio.2013.11.027.

98. Shime N, Sawa T, Fujimoto J, Faure K, Allmon D, Karaka T, Swanston BL, Spack EG, Wiener-Kronish JP: Therapeutic administration of anti-PcrV F(ab′)2 in sepsis associated with Pseudomonas aeruginosa. J Immunol 2001, 167:5880–5886.

99. Frank DW, Vallis A, Wiener-Kronish JP, Roy-Burman A, Spack EG, Mullany BP, Megdoud M, Marks JD, Fritz R, Sawa T: Generation and characterization of a protective monoclonal antibody to Pseudomonas aeruginosa PcrV. J Infect Dis 2002, 186:64–73.

100. Faure K, Fujimoto J, Shimabukuro DW, Aja J, Shime N, Moriyama K, Spack EG, Wiener-Kronish JP, Sawa T: Effects of monoclonal anti-PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model. J Immun Based Ther Vaccines 2003, 1:2.

101. Baer M, Sawa T, Flynn P, Luehsen K, Martinez D, Wiener-Kronish JP, Yarranton G, Bebbingnton C: An engineered human antibody Fab fragment specific for Pseudomonas aeruginosa PcrV antigen has potent anti-bacterial activity. Infect Immun 2008, 77:1083–1090.

102. François B, Luuy CE, Dugard A, Wolff M, Dief JL, Jaber S, Forel JM, Garot D, Kipnis E, Meeaza A, Misset B, Andreomont A, Ploy MC, Jacobs A, Yarranton G, Pearce T, Fagon JY, Chastre J: Safety and pharmacokinetics of an anti-PcrV PEGylated monoclonal antibody fragment in mechanically ventilated patients colonized with Pseudomonas aeruginosa: a randomized, double-blind, placebo-controlled trial. Crit Care Med 2012, 40:2320–2326.

103. Millia CE, Chmiel JF, Accurso FJ, Vandevanter DR, Konstan MW, Yarranton G, Geller DE, Millia CE, Chmiel JF, Accurso FJ, Vandevanter DR, Konstan MW, Yarranton G, Geller DE, for the KB001 Study Group: Anti-PcrV antibody in cystic fibrosis: a novel approach targeting Pseudomonas aeruginosa airway infection. Pediatr Pulmonol. doi:10.1002/ppul.22890.