SHORT COMMUNICATION

Comparative transcriptomic analysis reveals the oncogenic fusion protein PAX3-FOXO1 globally alters mRNA and miRNA to enhance myoblast invasion

JM Loupe1,4,6, PJ Miller1,5,6, BP Bonner1,6, EC Maggi1, J Vijayaraghavan1, JS Crabtree1, CM Taylor2, J Zabaleta3 and AD Hollenbach1

Rhabdomyosarcoma, one of the most common childhood sarcomas, is comprised of two main subtypes, embryonal and alveolar (ARMS). ARMS, the more aggressive subtype, is primarily characterized by the t(2;13)(p35;p14) chromosomal translocation, which fuses two transcription factors, PAX3 and FOXO1 to generate the oncogenic fusion protein PAX3-FOXO1. Patients with PAX3-FOXO1-positive tumors have a poor prognosis, in part due to the enhanced local invasive capacity of these cells, which leads to the increased metastatic potential for this tumor. Despite this knowledge, little is known about the role that the oncogenic fusion protein has in this increased invasive potential. In this report we use large-scale comparative transcriptomic analyses in physiologically relevant primary myoblasts to demonstrate that the presence of PAX3-FOXO1 is sufficient to alter the expression of 70 mRNA and 27 miRNA in a manner predicted to promote cellular invasion. In contrast the expression of PAX3 alters 60 mRNA and 23 miRNA in a manner predicted to inhibit invasion. We demonstrate that these alterations in mRNA and miRNA translate into changes in the invasive potential of primary myoblasts with PAX3-FOXO1 increasing invasion nearly 2-fold while PAX3 decreases invasion nearly 4-fold. Taken together, these results allow us to build off of previous reports and develop a more expansive molecular model by which the presence of PAX3-FOXO1 alters global gene regulatory networks to enhance the local invasiveness of cells. Further, the global nature of our observed changes highlights the fact that instead of focusing on a single-gene target, we must develop multi-faceted treatment regimens targeting multiple genes of a single oncogenic phenotype or multiple genes that target different oncogenic phenotypes for tumor progression.

INTRODUCTION

Rhabdomyosarcoma (RMS), which accounts for nearly half of childhood soft tissue sarcomas, is comprised of two main subtypes: embryonal and alveolar (ARMS). Each is defined by its unique histology, clinical presentation and prognosis.1 ARMS, the more aggressive subtype, is primarily defined by the t(2;13)(p35;p14) chromosomal translocation,2 which generates the oncogenic fusion protein PAX3-FOXO1.3,4 PAX3-FOXO1 has altered molecular activities relative to wild-type PAX3, including being a more potent transcriptional activator,5 being unresponsive to normal PAX3 co-regulators6 and having greater post-translational stability upon the induction of myogenic differentiation.7 These aberrant molecular activities are believed to contribute to altered gene regulation, including the activation of genes not normally regulated by PAX38 and increased expression of other genes relative to PAX3,9,10 which taken together is believed to contribute to ARMS tumor phenotypes.11 Patients diagnosed with PAX3-FOXO1-positive ARMS have a 4-year survival rate of 8%.12 This poor prognosis stems in part from these tumor cells having a higher incidence of localized invasion,12 which may then lead to heightened aggressiveness and an increased propensity for metastasis. The presence of PAX3-FOXO1 is known to enhance the invasive potential of cells,13 possibly through its ability to alter the expression of multifunctional genes that contribute, in part to invasion in other tumor types, including MET,10 FGFR4,14 IGF215 and IGFBP5.15 Despite these circumstantial correlations, to date only a single report demonstrates that the PAX3-FOXO1 altered expression of a gene, the cannabinoid receptor 1, directly contributes to the invasive capacity in ARMS.16 However, these results were derived from the expression of the oncogenic fusion protein in established tumor cell lines15 or in primary myoblasts that genetically contained compensatory oncogenic mutations.16 Further, these reports either did not examine altered gene expression13 or focused their study on changes in the expression of a single gene.16 While these reports are noteworthy and of importance, they provide little information to describe how the expression of PAX3-FOXO1 in the absence of any other compensatory mutations globally alters mRNA expression patterns to contribute to invasion. Further, to date no studies have directly examined how the presence of
PAX3-FOXO1 affects microRNA (miRNA) expression and how these changes contribute to the invasive capacity of myoblasts.

In this study we utilized physiologically relevant wild-type primary myoblasts along with large-scale comparative transcriptomic analyses to examine how the expression of PAX3-FOXO1 or PAX3 alters global mRNA and miRNA expression profiles and how these changes contribute to the invasive potential of these cells. We report here that the expression of the oncogenic fusion protein is sufficient to alter the expression of 70 mRNA and 27 miRNA in such a way that would be expected to promote cellular invasion. In contrast, the expression of PAX3 elicits mRNA and miRNA expression changes that would be expected to inhibit cellular invasion. We found that these mRNA and miRNA changes translate into biological effects, with the expression of PAX3-FOXO1 enhancing and the expression of PAX3 inhibiting primary myoblast invasion. Taken together, these results provide a more expansive picture to describe the increased localized invasion seen with t(2;13)(q35;q14) positive ARMS tumors, and describes how the presence of PAX3-FOXO1 may contribute to higher levels of metastasis in these patients.

RESULTS AND DISCUSSION

To understand how PAX3-FOXO1 affects global mRNA and miRNA expression, we stably transduced passage-matched wild-type mouse primary myoblasts with the MSCV-IRES-puromycin retroviral vector (negative control), or the same retroviral vector expressing FLAG epitope-tagged PAX3 (FLAG-PAX3) or FLAG-PAX3-FOXO1, a tag previously shown to not affect Pax3 or Pax3-FOXO1 function.6,7 The puromycin selected cells were harvested from three independent transductions and pooled, resulting in a single mixed population for each individual construct, which removes the potential for variability that may occur from clonal effects. The level of PAX3-FOXO1 expression is equivalent to the level of expression of the fusion protein in ARMS tumor cell lines (Figure 1 and Dietz et al.18,19) and is therefore directly relevant to the role of the oncogenic fusion protein in ARMS. This model allows us to use a physiologically relevant cell system in the absence of any complimentary transforming mutations to determine the specific effects of PAX3-FOXO1 on oncogenic phenotypes.

We performed mRNA and miRNA deep-sequencing analyses on total RNA isolated from three independent growths of stably transduced cells and utilized the resulting data to perform comparative transcriptomic analyses to understand how each protein alters expression profiles to exert their effects on the invasive capacity of cells. For both the mRNA and miRNA analyses the data used for subsequent studies were limited to (1) those genes or miRNA displaying statistically significant differences (P < 0.05, as determined by the Galaxy Cuffdiff program (mRNA) or miRNAKey (miRNA)), (2) transcripts whose expression was present in both data sets being analyzed to rule out potential artifactual differences resulting from depth of read and (3) transcripts or miRNA that exhibited at least 2-fold differences in expression either up or downregulated.

We found a total of 480 mRNA whose expression changed in a PAX3-FOXO1-dependent manner (276 downregulated and 204 upregulated) relative to the empty vector negative control (data}
not shown). We performed a PubMed search on each of the 480 mRNA, using the gene name and the search term ‘invasion’ to determine if they were experimentally proven to contribute to cellular invasion. We found that 70 of the 480 altered genes (14.5%) are involved in regulating the invasive capacity of cells (Table 1). Forty-three of these genes have literature evidence demonstrating their role in promoting cellular invasion, with these altered genes being split nearly equally between being upregulated (19/43; 44%) or downregulated (24/43; 56%) in a PAX3-FOXO1-dependent manner. In a similar manner, 27 genes have literature evidence to support their role in inhibiting cellular invasion, with 21 of these genes (nearly 80%) being downregulated in a PAX3-FOXO1-dependent manner. Finally, 17 of the 70 differentially expressed genes (nearly 25%) contain PAX3-FOXO1 binding sites in their proximal promoters, as previously described. A PubMed search of each of the individual 84 genes identified in the literature to be directly regulated by PAX3, including cannabinoid receptor 1,16 FGFR4,20 IGF221 and IGFBP515 (Table 1, b), demonstrated to be regulated by PAX3-FOXO1, including cannabinoid receptor 1 (cannabinoid receptor 1–6.92-fold), the top four genes being upregulated >20-fold. Therefore, this data suggest that PAX3-FOXO1 exerts its effects on invasion capacity by not only decreasing the expression of a large number of inhibitory genes, but by simultaneously greatly increasing the expression of key genes that promote invasion, including genes that encode for proteins involved in cytoskeletal organization (CAP6–33.45-fold), cadherins (CDH6–23.23-fold), extracellular matrix metalloproteases (ADAMTS1–21.98-fold) and cell adhesion proteins (MSLN – 20.93-fold).

A similar analysis found 399 mRNA change in a PAX3-dependent manner (276 downregulated and 123 upregulated) relative to the empty vector negative control (data not shown). A similar PubMed search revealed that 60 of the 399 genes (15%) are involved in regulating invasion (Table 1). Thirty-eight of these genes have a demonstrated role in promoting invasion, with a relative number of these inhibitory genes are upregulated, one of them is upregulated >15-fold (metalloproteinase Mme–15.17-fold). In contrast to the results seen with PAX3-FOXO1, these data suggest that PAX3 would be expected to inhibit invasive capacity, primarily through the downregulation of genes that promote this biological event.

A comparative transcriptomic analysis of the miRNA data identified a total of 84 miRNAs whose expression changed in a PAX3-FOXO1-dependent manner (46 downregulated and 38 upregulated) relative to the empty vector negative control (data not shown). A PubMed search of each of the individual 84 miRNA, using the miRNA name and the search term ‘invasion’, indicated that 10 of these miRNA promote cellular invasion (Table 2). Of these miRNA, 9/10 (90%) have an increased PAX3-FOXO1-dependent expression with the top two being increased >20-fold. In a similar manner, 17 miRNA are important for inhibiting cellular invasion, of which 16/17 (94%) are
Table 1. (Continued)

| Gene      | Gene function                                                                 | V vs PF | V vs P3 |
|-----------|-----------------------------------------------------------------------------|--------|--------|
| Dusp4     | Phosphatase; negatively regulates MAP                                        | −3.32  | −3.26  |
| Tagln     | Actin crosslinking/gelling protein                                           | −2.66  |        |
| Cdk1      | Cell cycle regulatory kinase                                                 | −3.01  |        |
| Creb3l1   | Transcriptional activator                                                   | −3.04  |        |
| Dusp4     | Phosphatase; negatively regulates MAP                                        | −3.08  |        |
| Igfbp5    | Alter the interaction of IGFs with receptor                                  | 8.28   | −5.68  |
| Spry1     | Antagonist of FGF pathways                                                    | 7.39   |        |
| Serpinb1  | Proteinase inhibitor                                                         | 6.48   |        |
| Dcx       | Bind microtubules                                                            | 5.16   |        |
| Coa4a2    | Inhibitor of angiogenesis and tumor growth                                   | 2.83   |        |
| Cdh2      | Metastasis suppressor                                                        | 2.62   | −2.37  |
| Spry2     | Inhibitory effect on growth factor signaling                                 | −2.10  |        |
| Deptor    | Negative regulator of the mTORC1 signaling                                   | −2.12  |        |
| Cited2    | Inhibits transactivation of HIF1A-induced genes                               | −2.26  | −4.02  |
| Actn1     | Nonmuscle, cytoskeletal, alpha actinin isoform                                | −2.32  |        |
| Flna      | Remodeling the cytoskeleton                                                  | −2.43  |        |
| Lpp       | Involved in cell–cell adhesion and cell motility                             | −2.62  |        |
| Dlg5      | Transmission of signals to the cytoskeleton                                  | −2.66  |        |
| Timp2     | Inhibitors of the matrix metalloproteinases                                   | −2.68  |        |
| Tagln     | Actin crosslinking/gelling protein                                           | −2.70  | −3.56  |
| App       | Transcriptional activator                                                   | −2.88  |        |
| Cdk1      | Cell cycle regulatory kinase                                                 | −3.01  |        |
| Dusp4     | Phosphatase; negatively regulates MAP                                        | −3.08  |        |
| Id3       | Inhibits the DNA-binding transcription factors                               | −3.13  |        |
| Wisp1     | Downstream in the WNT1 signaling pathway                                      | −3.32  | −2.36  |
| Rgs16     | Inhibits signal transduction                                                 | −3.78  | −4.93  |
| Tns3      | Cell migration and bone development                                          | −4.18  | −4.30  |
| Filip1l   | Regulator of the anti-angiogenic activity                                     | −5.68  | −2.21  |
| Sox4      | Regulation of embryonic development                                          | −6.48  | −2.91  |
| Akap12    | Scaffold protein in signal transduction                                      | −7.98  | −3.87  |
| Fst1      | Modulate action of growth factors                                            | −8.56  | −2.16  |
| Mme       | Metalloproteinase                                                            | 15.17  |        |
| Gprsa5    | Development, cellular growth and differentiation                              | 3.67   |        |
| Nefl      | Intracellular transport to axons and dendrites                                | 3.31   |        |
| Dusp6     | Negatively regulates (MAP) kinases                                           | 2.93   |        |
| Galn7     | GalNAc transferase 7                                                         | 2.48   |        |
| Adam9     | Biological processes: cell–cell/matrix interactions                          | 2.44   |        |
| Flnc      | Crosslink actin filaments                                                   | −2.15  |        |
| Rhob      | Cell adhesion and growth factor signaling                                    | −2.58  |        |

Abbreviations: FGF, fibroblast growth factors; EGFR, epidermal growth factor receptor; IGF, insulin-like growth factor. Total RNA was isolated using the miRNeasy mini kit (Qiagen), allowing for the isolation of RNA from 30 bp in length, according to the manufacturer’s specifications. Poly(A+)- miRNA was isolated from 4 μg total RNA, to generate the cDNA libraries, using the Illumina sample preparation kit according to the manufacturer’s specifications. The raw data were trimmed and quality-checked for quality of the reads using online Galaxy analyses (https://usegalaxy.org), resulting in 40–41 high-quality base pair reads for each sequence with between 4–6 million independent reads for each sample. The sequences were then mapped to the mouse genome using TopHat analyses, transcripts were assembled using the Cufflinks program, and individual replicates were merged into a single file using Cuffmerge. The resulting transcript reads were normalized using Fragments Per Kilobase of transcript per Million mapped reads analysis, which normalizes each identified sequence for the length of the identified transcript and the volume of the total read yield from each run. Differential expression was determined from these normalized values comparing vector versus Pax3-FOXO1 (V vs PF) or vector versus Pax3 (V vs P3) using the Cuffdiff program, which not only compares differential expression of the merged files between sets but also utilizes the sequence results from the three independent determinations within each set to assign statistical significance to the differential expression. "Indicates genes with similar trends in expression changes in human tumor samples." indicates genes demonstrated in the literature to be direct targets of Pax3 or Pax3-FOXO1. "Indicates genes with known Pax3-FOXO1 binding sites in their promoter." downregulated, with the top four being downregulated > 12-fold. In conjunction with the results of our PubMed search, which also described the target genes responsible for the invasive effect of the miRNA, we used miRtarBase28 to identify known target genes whose biological function may contribute to an invasive phenotype, with validation on miRtarBase by at least two independent experimental methods. Interestingly, only a small number of the altered miRNA have the expected inverse correlation to our observed changes in mRNA expression (miR-222/miR-221 and TIMP2, and miR-362 and CD82). A similar analysis determined a total of 58 miRNA whose expression changed upon the expression of Pax3 (25 downregulated and 33 upregulated) relative to the empty vector negative control (data not shown). Of these genes, a PubMed search determined that 7 are important for promoting while 16 inhibit cellular invasion. Of those miRNA, 5/7 (71%) that promote invasion are decreased whereas 10/16 (63%) that inhibit invasion are increased, with the top inhibitory miRNA being increased > 15-fold. Finally, for both Pax3-FOXO1- and Pax3-dependent miRNA changes, the literature provides direct evidence for the genes they target in order to exert their effects on invasion (Table 2). As seen with Pax3-FOXO1 changes, only one of the Pax3-altered miRNA has the expected inverse correlation to miRNA expression (miR-206 and MET, Tables 1 and 2). Interestingly, three sets of miRNA are present as clusters in the mouse genome and have similar changes in expression. These include miRNA 222 and 221, which are upregulated to a similar extent by Pax3-FOXO1 while being downregulated to a similar extent by Pax3 (Table 2, a); miRNA 362 and 532, which are downregulated to a similar extent by Pax3-FOXO1 but are unaffected by Pax3 (Table 2, b); and miRNA 133b and 206, which are unaffected by
### Table 2. Altered miRNA expression important for tumor cell invasion

| miRNA    | Gene target | Gene function                                      | V vs PF | V vs P3 |
|----------|-------------|----------------------------------------------------|---------|---------|
| **miRNA that promote tumor cell invasion**                                                                 |
| 615-3p   | +30.45      | +5.01                                              |         |         |
| 196a-5p  | HOXA5       | Developmental transcription factor                  | +24.39  | —       |
|          | ING5        | Suppresses growth and invasion                     |         |         |
| 30d-3p   | GALNT7      | Glycopeptide transferase                            | +3.39   | —       |
| 301a-3p  | SMAD4       | Signal transduction activator                      | +3.07   | —       |
|          | TXNIP       | Suppressor of tumor cell growth                    |         |         |
|          | BBC3        | Pro-apoptotic protein                              |         |         |
|          | PTEN        | Tumor suppressor protein                           |         |         |
|          | COL2A1      | Collagen 2 alpha 1                                 |         |         |
|          | RUNX3       | Transcriptional tumor suppressor                   |         |         |
|          | TGFBR2      | TGF beta receptor                                  |         |         |
|          | SOCS6       | Suppressor of cytokine signaling                   |         |         |
| **#222-3p** | TIMP2      | Metallopeptidase inhibitor                         | +2.78   | −2.52   |
| **#221-5p** | TIMP3      | Metallopeptidase inhibitor                         |         |         |
|          | RECK        | Negatively regulates metalloproteinases            | +2.63   | —       |
|          | TIMP2       | Metallopeptidase inhibitor                         |         |         |
|          | MMP9        | Matrix metalloproteinase                           |         |         |
|          | MMP14       | Matrix metalloproteinase                           |         |         |
|          | PTEN        | Tumor suppressor                                   |         |         |
|          | TIMP3       | Metallopeptidase inhibitor                         |         |         |
| 183-5p   | ITGB1       | Integrin—cell adhesion receptor                    | +2.05   | —       |
|          | SOCS6       | Cytokine signal transduction regulator             |         |         |
|          | PDCCD4      | Inhibit translation—tumor suppressor              | −3.67   | −2.18   |
| **#362-3p** | CD2         | Metastasis suppressor                              |         |         |
| **Let-7g-5p** | GAB2       | Signaling adaptor protein                          |         |         |
|          | TIMP3       | Tumor suppressor                                   |         |         |
|          | FN1         | Cell surface adhesion molecule                     |         |         |
| 28a-5p   | CCND1       | Cyclin D1                                          |         |         |
|          | HOXB3       | Developmental transcription factor                  |         |         |
| 23b-3p   | PTEN        | Tumor suppressor                                   |         | +2.19   |
|          | ATG12       | Regulates autophagy                                 |         |         |
|          | HMG8B2      | Architectural transcription factor                  |         |         |
| **mRNA that inhibit tumor formation**                                                                   |
| 1a-3p    | TAGLN2      | Unknown function                                   | −18.50  | —       |
| 145a-5p  | HIF-2 alpha | Hypoxia-induced transcription factor               | −16.76  | —       |
|          | EGFR        | Growth factor receptor                             |         |         |
|          | OCT4        | Developmental transcription factor                 |         |         |
|          | MUC1        | Cell adhesion molecule                             |         |         |
|          | MYC         | Growth-related transcription factor                |         |         |
|          | DS2         | Unknown—overexpressed in cancer cells             |         |         |
| 133a-5p  | TAGLN2      | Unknown function                                   | −16.76  | —       |
|          | LASP1       | Actin-binding protein                              |         |         |
|          | FSCN        | Actin-binding protein                              |         |         |
|          | MMP14       | Matrix metalloproteinase                           |         |         |
| 335-5p   | SP1         | Transcriptional regulator                          | −12.50  | +2.95   |
|          | CXCL2       | Regulatory chemokine                               | −4.67   | —       |
| 148a-3p  | S1PR1       | Receptor to regulate adhesion                      | −4.41   | −2.98   |
| 133a-3p  | TAGLN2      | Unknown function                                   | −3.72   | —       |
|          | LASP1       | Actin-binding protein                              |         |         |
|          | FSCN        | Actin-binding protein                              |         |         |
|          | MMP14       | Matrix metalloproteinase                           |         |         |
| **#532-5p** | SP1         | Transcriptional regulator                          |         |         |
| **148b-3p** | NRP1       | Membrane-bound signaling protein                   | −3.44   | —       |
|          | FRA1        | FOS family member                                  | −2.87   | —       |
|          | HSP47       | Serine protease inhibitor                          | −2.65   | —       |
|          | LAMC2       | Extracellular matrix glycoprotein                  |         |         |
|          | ITGA6       | Integrin—cell adhesion receptor                    | −2.60   | —       |
| 34b-5p   | FOXM1       | Transcription factor                               | −2.34   | −7.04   |
|          | RAP1a       | Adhesion signaling protein                         |         |         |
|          | RAP1b       | Adhesion signaling protein                         |         |         |
| **#133b-5p** | MMP14      | Matrix metalloproteinase                           | −2.26   | —       |
| **30d-5p** | CCNE2      | Cyclin E2                                          | −2.22   | —       |
|          | RAC1        | GTPase-signaling molecule                          | −2.07   | —       |
|          | EGFR        | Growth factor receptor                             |         |         |
|          | EP300       | Histone acetyltransferase—chromatin                |         |         |
| 339-5p   | NACC1       | Transcriptional corepressor                        | −1.93   | +2.19   |
|          | BCL6        | Transcriptional corepressor                        |         |         |
|          | MDM2        | Regulator of p53 stability                         |         |         |
To validate the observed changes, we performed a quantitative RT–PCR analysis on a subset of mRNA and miRNA. We tested IGF2, which was reported to promote cellular invasion in a variety of tumors,30–33 and CDK1, which has alternative roles in inhibiting cellular invasion in different tumor models.34–38 We also examined two miRNA (miR-196a-5p and miR301a-3p), both demonstrated to promote cellular invasion.39–44 We observed quantitative and significant changes in expression for all of the mRNA and miRNA examined that are consistent with our mRNA deep-sequencing results (Figure 1).

Our comparative transcriptomic results suggest that the mRNA and miRNA changes induced by the oncogenic fusion protein would be predicted to promote cellular invasion, whereas those changes that occur in a PAX3-dependent manner should inhibit the invasive capacity of cells. Therefore, we used a standard invasion assay to determine whether our observed mRNA and miRNA changes translate into experimental differences in the invasive potential of primary myoblasts. Consistent with our mRNA and miRNA changes, we observed a nearly 2-fold increase in primary myoblasts expressing PAX3-FOXO1, consistent with the previous reports,16 whereas cells expressing PAX3 had a nearly 4-fold decrease in invasive potential (Figure 2).

Taken together, our results build off of previous work, in which a single gene was examined,16 and show that the sole expression of PAX3-FOXO1 in the absence of any complimentary genetic mutations is capable of globally altering mRNA and miRNA levels to promote the invasive capacity of primary myoblasts. Further, this is the first study to examine how the oncogenic fusion protein alters miRNA levels, which combined with our global mRNA results allow us to develop a more expansive picture of the underlying regulatory mechanisms by which the expression of PAX3-FOXO1 promotes invasion.

In this regulatory mechanism, the somatic and random acquisition of the chromosomal translocation creates the fusion

| miRNA   | Gene target | Gene function                                      | V vs PF  | V vs P3  |
|---------|-------------|----------------------------------------------------|----------|----------|
| 338-3p  | SMO         | G-protein coupled receptor                         | +2.09    | +15.27   |
|         | MMP9        | Matrix metalloproteinase                           |          |          |
|         | PREX2a      | Guanine nucleotide exchange factor                 |          |          |
|         | ZEB2        | Transcriptional repressor                          |          |          |
|         | MACC1       | Transcriptional activator                          |          |          |
| 133b-3p | FSCN1       | Actin-binding protein                              | —        | +5.74    |
| 206-3p  | MET         | Matrix metalloproteinase                           | —        | +4.49    |
|         | Cdc42       | Growth factor receptor                             | —        |          |
|         | NOTCH3      | Developmental receptor                             |          |          |
| 582-5p  | RAB27a      | Membrane-bound GTPase                              | —        | +4.41    |
|         | PGGT1B      | Geranylgeranyl transferase enzyme                   |          |          |
|         | LRRK2       | Leucine-rich repeat kinase                         |          |          |
|         | DIXDC1      | Positive regulator of Wnt signaling                |          |          |
| 345-5p  | BAG3        | Inhibits HSP chaperone activity                     | —        | +3.09    |
| 206-5p  | MET         | Growth factor receptor                             | —        | +2.31    |
|         | Cdc42       | Regulates actin polymerization                      | —        |          |
|         | NOTCH3      | Developmental receptor                             |          |          |
| 486-5p  | ARHGAP5     | Rho GTPase-activating protein                       | —        | +2.09    |
|         | PIK3R1      | PI3K regulatory subunit                            | —        |          |
|         | OLFM4       | Extracellular matrix glycoprotein                  | —        |          |
| 31-3p   | PAC1        | Adenylate cyclase-activating receptor               | +4.19    | +2.05    |
|         | MARCKS      | F-actin crosslinking protein                        | +3.38    | +3.33    |
|         | elf4E       | Translation elongation factor                       |          |          |
| 615-5p  | AKT2        | Ser/Thr protein kinase                             | +34.90   | −2.53    |
|         | IGF2        | Growth factor ligand                               | +3.26    | −        |
| 193-3p  | ERBB4       | Receptor tyrosine growth factor receptor            | —        |          |
|         | S6K2        | Ribosomal kinase                                   | −        |          |
| 181c-3p | SMAD7       | Negatively regulates TGF beta signaling            | −        | −3.77    |
| 30a-3p  | ITGB3       | Integrin—cell-adhesion receptor                    | —        | −2.50    |
|         | NCAM        | Cellular-adsorption molecule                       | —        |          |
|         | SEPT7       | Cytoskeletal GTPase—actin organization              | −        |          |
|         | MTDH        | Activates NFkB                                     | −        |          |
| 30c-2-3p| TRADD       | Mediates apoptosis and NFkB signaling               | −        | −2.32    |
|         | CCNE1       | Cyclin E1                                          |          |          |

Abbreviation: HSP, heat shock proteins. Total RNA was isolated using the miRNeasy mini kit (Qiagen), allowing for the isolation of RNA < 30 bp in length, according to the manufacturer’s specifications. mRNA was isolated from 4 μg total RNA using the miRNeasy kits according to the manufacturer’s instructions. The mRNA libraries were generated from single sequencing lane, and deep-sequencing analyses were performed in triplicate from three independent cell growth, RNA isolation and cDNA library constructions. Raw fastq sequences were obtained from the Illumina Genome Analyzer II (Illumina, San Diego, CA, USA) using the CASAVA 1.8.2 software (Illumina) that allows the identification and removal of reads containing adapters and introduced during the adapter ligation and amplification of the samples. miRNAKey was used for data analysis. The pipeline clips the Illumina 3′ adapter sequences from the reads, maps the clipped reads to miRBase and uses the Seq-EM algorithm to estimate the distribution of multiply mapped reads across the observed miRNAs. Sequences < 16 bases after adapter clipping were removed. The read counts obtained were then used for differential expression analysis comparing vector versus Pax3-FOXO1 (V vs PF) or vector versus Pax3 (V vs P3) between control and experimental samples using EBSeq from the R package with a false discovery rate of 5%. We used the default ‘Median Normalization’ in EBSeq to make the counts comparable across samples. Target genes for each miRNA were identified either as a result of the indicated PubMed search or using miRTarBase, which lists experimentally validated direct targets. Several miRNA are expressed in clusters and show similar changes in expression. *Upregulated by PAX3-FOXO1 and downregulated by Pax3. †Unaffected by PAX3-FOXO1 and unaffected by Pax3. ‡Downregulated by PAX3-FOXO1 and upregulated by PAX3.
protein, which alters, either directly or indirectly, the expression of mRNA important for enhancing cellular invasion. PAX3-FOXO1 achieves this by both decreasing the expression of genes that inhibit invasion (80% of downregulated genes) while also greatly increasing the expression of nearly half of the altered genes that promote invasion (Table 1). However, our results demonstrate that miRNAs, which post-transcriptionally 'fine tune' gene expression, also have a significant role, as nearly all of the increased miRNAs promote invasion and a majority of the decreased miRNAs inhibit invasion. Further, a closer inspection of the data reveals that although some of the miRNA changes have an inverse correlation to target genes present in our results, there are only three miRNA (miR-221, miR-222 and miR-362) that have such a correlation with the target genes (TIMP2 and CD82, respectively). Therefore, instead of post-transcriptionally contributing to our observed mRNA changes, the altered miRNA target a different set of genes important for invasive capacity, thereby greatly increasing the number of affected genes.

The global nature of the mRNA and miRNA expression changes that result upon the sole expression of PAX3-FOXO1 provide a basis for how it may be necessary to rethink approaches to the development of therapies for ARMS. At present, many developmental ARMS therapies focus on attacking a single gene or pathway mechanistically located downstream of the fusion protein. However, given that the expression of PAX3-FOXO1 alters the expression of 70 different genes and 27 different miRNAs to affect the invasive potential of cells, it is not too surprising that such focused and targeted therapies are not proving effective in Phase I or Phase II clinical trials for ARMS.55-58 It is conceivable that the loss of a single gene through these targeted and focused therapies could easily be compensated through the changes in nearly 100 other affected genes, thereby negating the effects of the treatment.

Work in the past few years identified multiple aspects of the invasive process as potential targets for therapy development. Along these lines we propose developing a multi-faceted regimen that targets several of these processes, targets that include tumor-promoting genes we found to be the most highly upregulated in our study (Table 1). These processes include cytoskeletal remodeling, which is mediated in part by the intracellular signaling cysteine proteases calpains49 (Capn6 is upregulated 33-fold in our study), cellular adhesion mediated by such molecules as mesothelin50 (Msln is upregulated 21-fold in our study) and matrix metalloproteases,51 in particular the Adams family of proteases52 (Adams1 is upregulated 22-fold and Adams5 is upregulated 7.5-fold in our study). A regimen that minimally targets these three processes would inhibit the necessary biological events required for invasion and metastasis. Alternatively, inhibiting one of these events (for example, matrix metalloproteases) could serve as one arm of a novel multi-faceted regimen for the treatment of ARMS, a regimen that also targets other ARMS molecular processes such as inhibiting phosphorylation of PAX3-FOXO1,17 attacking aneuploid cells and preventing enhanced proliferation.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

Funding for this project is from the National Cancer Institute grant R01CA138656, the Louisiana State University School of Medicine Research Enhancement Bridge Grant and the Louisiana Cancer Research Consortium (LCRC) (ADH). ZJ has been partially supported by grants from the National Institute of General Medicine Sciences (NIGMS) grants P20GM103501, subproject #2, P30GM114732 and U54GM104940-01, and the National Institute on Minority Health and Health Disparities (NIMHD) grants P20MD004817 and US4MD006176-01. All deep sequencing was performed in the LCRC Translational Genomics Core facility.

REFERENCES

1 Horn RC Jr., Enterline HT. Rhabdomyosarcoma: a clinicopathological study and classification of 39 cases. Cancer 1958; 11: 181–199.

2 Punyko JA, Merrick AC, Bader RS, Kes KK, Robison LL, Gurney JG. Long-term survival probabilities for childhood rhabdomyosarcoma. A population-based evaluation. Cancer 2005; 103: 1473–1483.

3 Galli N, Davis RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ 3rd, Emanuel BS et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993; 5: 230–235.

4 Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW. Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 1993; 53: 5108–5112.

5 Fredericks WJ, Galli N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG et al. The PAX3-FKHR fusion protein created by the (t;2;13) translocation in alveolar rhabdomyosarcoma is a more potent transcriptional activator than PAX3. Mol Cell Biol 1995; 15: 1522–1535.

6 Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G. The PAX3-FKHR oncoprotein is unresponsive to the PAX3-associated repressor hDaxx. Embo J 1999; 18: 3702–3711.

7 Miller PJ, Hollenbach AD. The oncogenic fusion protein PAX3-FKHR has a greater post-translational stability relative to Pax3 during early myogenesis. Biochim Biophys Acta 2007; 1770: 1450–1458.

8 Epstein JA, Song B, Lakkis M, Wang C. Tumor-specific PAX3-FKHR transcription factor, but not PAX3, activates the platelet-derived growth factor alpha receptor. Mol Cell Biol 1998; 18: 3118–3130.

9 Ayalon D, Glaser T, Werner H. Transcriptional regulation of IGF-I receptor gene expression by the PAX3-FKHR oncoprotein. Growth Horm IGF Res 2001; 11: 289–297.

10 Ginsberg JP, Davis RJ, Bennicelli JL, Nauta LE, Barr FG. Up-regulation of MET but not neural cell adhesion molecule expression by the PAX3-FKHR fusion protein in alveolar rhabdomyosarcoma. Cancer Res 1998; 58: 3542–3546.

Figure 2. PAX3-FOXO1 promotes whereas Pax3 inhibits primary myoblast invasive capacity. Invasive capacity was determined using stably transduced proliferating primary myoblasts (empty vector (white bars), PAX3 (gray bars) or PAX3-FOXO1 (black bars)) using the BD Biocoat Tumor Invasion System (Becton Dickinson, Franklin Lakes, NJ, USA). About 50,000 cells suspended in proliferation media were added to the insert plate, with proliferation media supplemented with hepatocyte growth factor (HGF; PenviroTeck Rockvill, NJ, USA) at 25 ng/ml being used as the chemoattractant. After 24 h of incubation, the insert system was transferred to a second 24-well plate containing calcein AM in Hank’s balanced salt solution (HBSS) that enabled the fluorescent labeling of cells that invaded through the Matrigel matrix. Fluorescence of the invaded cells was read at wavelengths of 494/517 (Ex/Em) using a Synergy HT multi-well microplate reader (BioTek, Winooski, VT, USA). P-values were computed using non-parametric one-way ANOVA analysis comparing all samples with results obtained, with cells expressing empty vector (P = 0.03, **P = 0.001). ANOVA, analysis of variance.
11 Linardic CM. PAX3-FOXO1 fusion gene in rhabdomyosarcoma. Cancer Lett 2008; 270: 10–18.
12 Sorensen PH, Lynch JC, Qualman SJ, Tirabosco R, Lim JM, Maurer HM et al. PAX3-FKHR and PAX7-FKHR gene fusions are prognostic indicators in alveolar rhabdomyosarcoma: a report from the children's oncology group. J Clin Oncol 2002; 20: 2672–2679.
13 Anderson J, Ramsay A, Gould S, Pritchard-Jones K. PAX3-FKHR induces morphological change and enhances cellular proliferation and invasion in rhabdomyosarcoma. Am J Pathol 2001; 159: 1089–1096.
14 Lifang Ma, Kormish JD, Rocancourt D, Manceau M, Epstein JA, Zaret KS et al. PAX3-FOXO1 induces cannabinoid receptor 2 expression and enhances cellular proliferation and invasion in rhabdomyosarcoma. Cell 2016; 167: 1884–1898.
15 Khan J, Simon R, Bittner M, Chen Y, Leighton SB, Pohida T. PAX3-FOXO1 induces cannabinoid receptor 2 expression and enhances cellular proliferation and invasion in rhabdomyosarcoma. Cell 2016; 167: 1884–1898.
16 Marshall AD, Lagutina I, Grosveld GC. PAX3-FOXO1 induces cannabinoid receptor 2 expression and enhances cellular proliferation and invasion in rhabdomyosarcoma. Cell 2016; 167: 1884–1898.
17 Lagha M, Kormish JD, Rocancourt D, Manceau M, Epstein JA, Zaret KS et al. PAX3-FOXO1 induces cannabinoid receptor 2 expression and enhances cellular proliferation and invasion in rhabdomyosarcoma. Cell 2016; 167: 1884–1898.
18 Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL. Pax3 modulates expression of oncogenesis (2016), 1
19 De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. 2672–2679.
20 Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL. Pax3 modulates expression of oncogenesis (2016), 1
21 Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL. Pax3 modulates expression of oncogenesis (2016), 1
22 Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ. Davicioni E, Finckenstein FG, Shahbazian V, Buckley JD, Triche TJ, Anderson MJ. 2011; 11: 367–376.
23 De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. 2672–2679.
24 Epstein JA, Shapiro DN, Cheng J, Lam PY, Maas RL. Pax3 modulates expression of oncogenesis (2016), 1
25 De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. De Pitta C, Tombolan L, Albiero G, Sartori F, Romualdi C, Jurman G. 2672–2679.