Mindfulness-based intervention in patients with persistent pain in chest (MIPIC) of non-cardiac cause: a feasibility randomised control study

Tarun Kumar Mittal,1,2 Emma Evans,3 Alison Pottle,1 Costas Lambropoulos,4 Charlotte Morris,4 Christina Surawy,5 Antony Chuter,1 Felicia Cox,1 Ranil de Silva,1,2 Mark Mason,1,2 Winston Banya,6 Divish Thakrar,7 Peter Tyre8

ABSTRACT

Objective The study evaluated the feasibility of mindfulness-based cognitive therapy (MBCT) in patients with non-cardiac chest pain by assessing their willingness to participate and adhere to the programme, and for these data to help further refine the content of MBCT for chest pain.

Patients and methods This prospective 2:1 randomised controlled trial compared the intervention of adapted MBCT as an addition to usual care with just usual care in controls. Among 573 patients who attended the rapid access chest pain clinic over the previous 12 months and were not diagnosed with a cardiac cause but had persistent chest pain were invited. The intervention was a 2-hour, weekly, online guided 8-week MBCT course. Compliance with attendance and the home practice was recorded. Enrolled patients completed the Seattle angina questionnaire (SAQ), Hospital Anxiety and Depression Scale, Cardiac Anxiety Questionnaire, Five-Facet Mindfulness Questionnaire, and Euro Quality of Life–5 Dimensions–5 Level at baseline assessment and after 8-week period.

Results Persistent chest pain was reported by 114 patients. Of these, 33 (29%) patients with a mean age of 54.2 (±12.2) years and 68% women, consented to the study. Baseline questionnaires revealed mild physical limitation (mean SAQ, 76.8±25), high levels of anxiety (76%) and depression (53%), modest cardiac anxiety (CAQ,1.78±0.61) and mindfulness score (FFMQ, 45.5±7.3). Six patients subsequently withdrew due to bereavement, caring responsibilities and ill health. Of the remaining 27 participants, 18 in the intervention arm attended an average of 5 sessions with 61% attending ≥6 sessions. Although not statistically powered, the study revealed a significant reduction in general anxiety, improved mindfulness with trend towards reducing depression and improvement in chest pain parameters.

Conclusion One-third of patients with persistent non-cardiac chest pain were willing to participate in mindfulness-based therapy. An improvement in anxiety and mindfulness was detected in this feasibility study. A larger trial is required to demonstrate improvement in chest pain symptoms.

WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT?

⇒ Around half of the patients presenting to chest pain clinics continue to have chest pain despite the exclusion of a cardiac cause and one-third of these also have high levels of anxiety and depression. Cognitive–behavioural therapy, as an established psychological therapy, has shown mixed results in reducing chest pain. More recently, mindfulness-based interventions (MBI) have shown small improvements in chronic pain in other parts of the body but have not been used for chest pain.

WHAT DOES THIS STUDY ADD?

⇒ This study establishes the feasibility of conducting MBI in patients with chest pain and demonstrated a similar degree of willingness and compliance as seen in other studies with pain in other parts of the body. MBI significantly reduced anxiety and improved mindfulness with trend towards reducing depression and improving chest pain parameters.

HOW MIGHT THIS IMPACT ON CLINICAL PRACTICE?

⇒ As chest pain continues to persist in one-third of patients without a cardiac cause alongside associated anxiety and depression, MBIs may be a useful alternative that empowers patients, reduce dependence on analgesics and opioids, and reduce attendance to general practitioners and hospitals. However, the efficacy of MBIs in reducing chest pain has to be explored in a larger study.

BACKGROUND

Pain is a complex biopsychosocial experience and is defined as an unpleasant sensory and emotional experience associated with, or resembling that associated with, actual or potential tissue damage. When occurring in the chest, pain can have several causes and patients can present acutely or as non-acute stable chest pain (SCP). SCP is a common symptom in general practice accounting
for 1%–3% of patient attendances. In the UK, these patients are referred to the rapid access chest pain clinics (RACPC) in secondary care where they are assessed to exclude significant coronary artery disease (CAD) or other cardiac causes of pain as per the National Institute for Health and Care Excellence guidance.

Only up to 10% of RACPC patients with SCP are found to have a cardiac cause due to significant CAD, requiring treatment with anti-anginal medications, or coronary revascularisation. Approximately 23% of patients are diagnosed by general practitioners (GPs) to have chest pain due to gastro-oesophageal reflux disease, musculoskeletal problems, pulmonary causes or psychological issues including anxiety, stress and depression. Other patients with no attributable cause (~70%) are characterised as having non-cardiac chest pain (NCCP). The lifetime prevalence of NCCP is 20%–33% compared with 6%–7% for CCP. When pain persists for more than 3 months, it is classified as ‘chronic pain’, which can be primary or secondary with the latter having an attributable cause.

Limited available data suggest that about half the patients with a diagnosis of NCCP continue to have chest pain symptoms despite the exclusion of a cardiac cause, and approximately one-third of patients with NCCP and cardiac chest pain have anxiety and depression. The experience of pain is understood to be the result of complex interactions between biological, psychological and sociological factors. There is substantial evidence of the importance of psychological factors in the experience of pain, both in the presence of tissue damage (as with underlying CAD) and its absence (as with NCCP). Biopsychosocial approaches for NCCP should therefore be considered.

Although long-term follow-up indicates low mortality in these patients, continuing chest pain has serious consequences for the patient in terms of patient-reported impact including an impaired quality of life (QOL). Patient concerns regarding an ongoing cardiac condition also result in fear-avoidance of physical activities and increased use of healthcare resources. Adverse psychological states are known to be a strong risk factor for myocardial infarction and cardiovascular death with an incremental predictive power. There is evidence that adverse psychological states may also contribute to the recurrence of acute chest pain.

Psychological interventions, particularly cognitive–behavioural therapy (CBT), have been evaluated in patients with NCCP with mixed results. CBT offered by trained psychotherapists on an individual basis is a well-established technique. Mindfulness-based intervention (MBI), on the other hand, offered as group therapy, was developed by Dr Jon Kabat-Zinn at the University of Massachusetts Medical Centre in the 1970s as Mindfulness-Based Stress Reduction (MBSR), to reduce and manage chronic physical pain. This approach has been adopted widely with success for the management of anxiety and stress. Mindfulness trains the mind to cultivate awareness in the present moment and decreasing from internal experiences resulting from beliefs, thoughts or emotions. This results in supporting an objective and non-judgmental stance to oneself and a greater sense of emotional balance and well-being.

Later, MBSR was combined with elements of CBT to form mindfulness-based cognitive therapy (MBCT) which reduces relapse of depression and is an effective alternative to antidepressants.

There is emerging evidence that both MBSR and MBCT are effective for pain management (eg, chronic pain, lower back, headaches, fibromyalgia; irritable bowel syndrome (IBS) and cancer). However, as far as we know, there is currently no published study exploring the use of mindfulness in patients with NCCP.

There are various hypothesised mechanisms by which MBIs may improve chronic pain symptomology including increased emotion regulation, openness or acceptance, reduced fear-avoidance or pain catastrophising, behavioural activation. Pain catastrophising (thoughts about pain that are characterised by magnification, rumination and helplessness) is strongly associated with a number of important pain-related outcomes. MBIs teach participants skills such as de-centring from thoughts and stabilising attention, which are likely to disrupt pathways between the experience of pain and its consequences.

This study explored the feasibility of an adapted MBCT as an intervention in patients diagnosed with NCCP to inform the design and conduct a larger randomised controlled trial (RCT). The primary aim of this study was to evaluate the willingness of patients with persistent NCCP to participate in a mindfulness programme, their compliance and to refine the content of MBCT for this patient cohort. The prevalence of anxiety, depression, state of mindfulness and QOL in these patients was also evaluated.

METHODS

Overall design

This feasibility study was performed as a prospective RCT design with adapted MBCT and usual care in the intervention arm and usual care alone in the control arm. It was designed in consultation with a patient group advising on research in the hospital (comprising of lay people who have been patients previously and volunteer to provide a patient’s perspective on new research studies) and a patient representative who took part in the design and conduct of the study.

Patients who attended the RACPC in a tertiary cardiac centre between January and December 2019 (n=573) with SCP were retrospectively screened for their diagnosis from the hospital Electronic Patient record and RACPC database (online supplemental figure 1). Those with a diagnosis of a cardiac cause of their chest pain or previous revascularisation were excluded and the remaining patients aged 18–75 years were contacted by...
telephone and/or letter to determine the persistence of their symptoms. Patients were excluded if the chest pain had resolved; had a cardiac event or revascularisation; were under psychiatric care or had a new psychoactive drug prescription within the previous 3 months. Those with no access to a computer or tablet device with the internet or who did not adequately understand written and verbal English were also excluded from the study. Patients with persistent chest pain of any intensity who met the inclusion criteria were informed and invited to take part in the study. Written consent was obtained for participation in an 8-week course which included home practice of mindfulness. A simple 2:1 randomisation was followed so that adapted MBCT could be experienced and evaluated by more participants. The random allocation sequence was generated by the statistician (WB) and TKM enrolled and assigned participants accordingly.

Research staff performed the initial and follow-up assessments and were not able to be blinded due to the nature of the study.

Initial assessment

At the initial assessment, the eligible patients received an explanation of the study, a short practice of mindfulness and instructions for home practise during the 8-week course. Those who consented to participate in the study provided details of ethnicity, job status, height, body weight, history of cardiovascular risk factors, any non-cardiac diagnoses by GP, alcohol intake, physical activity and current drug therapy.

All participants were subsequently asked to complete the following questionnaires:

1. **Seattle Angina Questionnaire (SAQ)** with three domains of physical limitation, angina stability and frequency and QOL.37 Used in multiple RCTs, this questionnaire has been well validated as an objective tool to quantify chest pain and QOL.38

2. **Hospital Anxiety and Depression scale (HADS)** questionnaire. This well-validated questionnaire assesses the two dimensions of general anxiety and depression in patients.39 40 A cut-off value of ≥8 was taken to represent anxiety or depression.

3. **Cardiac Anxiety Questionnaire (CAQ):** This questionnaire assessed heart focused anxiety. CAQ consists of 18 items with three subscales for fear, avoidance and heart-focused attention.41 The scores range from 0 to 4 with higher scores representing greater cardiac anxiety.

4. **Five-Facet Mindfulness Questionnaire (FFMQ-15):** This 15-item questionnaire measures the mindfulness state of an individual for research purposes. It comprises five domains of observing, describing, acting with awareness, non-judging of inner experience and non-reactivity to inner experience.42

5. **Euro Quality of Life-5 Dimensions-5 Level (EQ-5D-5L):** This QOL questionnaire comprises five dimensions of mobility, self-care, usual activities, pain/discomfort, and anxiety/depression; each with 5-options or levels.43 This includes a Visual Analogue Scale for the patient’s self-rating of overall health at the time.

Intervention group: MBCT adaptation and delivery

The standard MBCT course was adapted for patients with chest pain as per recommended guidance44 by clinical psychologists with >10 years of experience in MBCT including adaptations and teaching (online supplemental table 1). Adaptations were made to increase the relevance of the intervention to those with chest pain, with increased emphasis on chest pain symptoms, the impact of pain on daily life and stress/anxiety (as opposed to depression for which the original programme was designed). This involved minor changes to the content and handout of each session, for example, attending to typical pain cognitions in cognitive exercises and increased guidance for working with unpleasant bodily symptoms in the meditation practices. However, the overall structure of the course, including the core meditation practices, remained the same.

Participants in the intervention arm underwent the adapted MBCT course over 8 weeks while continuing any GP prescribed treatments. Two courses were run on different days and different times conducted using the Zoom online platform by experienced MBCT teachers, who were qualified psychologists or psychotherapists. MBCT sessions were 2 hours in duration except for the first and last week sessions which were 2.5 hours long. An online practice day of 6 hours was held after the sixth session as per the standard MBCT programme for depression. Audio recordings of the teachers and participants were used to supervise and evaluate the adapted MBCT.

After each session, handouts and meditation audio recordings were emailed to the participants. They were invited to practice at home for 45 min for 6 days each week and to record their practice and experience daily in an online questionnaire (SurveyMonkey platform). The latter was used to assess their compliance with different formal and informal practices performed at home and their frequency. Participants could withdraw from the study at any time without giving a reason. Any adverse events arising from the MBCT programme were recorded as per the study protocol.

Control group

Participants in the control arm maintained/continued with any GP-prescribed treatment. They were offered participation in the adapted MBCT course after the follow-up assessment.

Follow-up

Patients from both groups had a single follow-up 1–4 weeks after their 8-week MBCT course or usual care. Patients were asked to complete the online questionnaires, as used at baseline.

Sample size and recruitment

No statistical sample size calculation was performed due to the feasibility nature of this study. A sample size of 50
participants was chosen for this feasibility study based on the attendance to the RACPC in the previous year as demonstrated in online supplemental figure 2.

Statistical analysis
The baseline characteristics of the participants are described with comparisons between those with and without persistent chest pain, and between the intervention and control groups. All continuous variables are presented as mean±SD or median (IQR) while categorical variables are presented as frequencies with percentages. Comparisons between groups were made using the Chi-square test for categorical variables and t-test or Mann-Whitney test for continuous variables. The internal consistency test of the different questionnaires used in the study was performed using Cronbach’s alpha. A pairwise comparison was made for those participants who completed the follow-up assessment. The treatment effect was estimated from the difference in means using the two-sample t-test or the Hodges-Lehman estimate for non-normal continuous variables. All statistical analyses were performed using Stata V.16.0 statistical software.

RESULTS
Persistent chest pain and patient enrolment
Out of the 573 patients who attended the RACPC during the 12 months with SCP or equivalent symptoms, 418 (72.9%) fulfilled the eligibility criteria (figure 1). Persistent chest pain was reported by 114 (32%) patients out of 356 patients (62.1%) who could be contacted. The characteristics of patients with persistent pain compared with those with resolved pain as assessed during the RACPC visit are shown in table 1. More patients with persistent CP were diabetic but there was no difference in other characteristics.

Of the 114 patients with persistent chest pain, 33 (29%) agreed to participate and underwent randomisation. Pain not being experienced as problematic was the main reason for non-participation, followed by lack of time/other responsibilities (figure 1).

Baseline characteristics and comparison between control and intervention groups
Baseline characteristics of the 33 participants are given in table 2. Mean age was 54.2 years (range, 26–72 years) and 22 (68%) were women with no other differences between the two groups. The mean time between attendance at RACPC and the initial assessment for the study was 10.3 months. Chest pain was atypical or non-anginal in 30 of the participants with a mean duration of 18.7 months (±5.5). The prevalence of risk factors, physical activity, alcohol intake and participants drug history are described in table 2 and online supplemental table 2, respectively. Eight participants (24%) had a prediagnosis of both anxiety and depression.

After consent and initial assessment, one participant did not complete the study questionnaires at the baseline and withdrew from the study. Thus, the baseline scoring of questionnaires in table 3 is for the remaining 32 participants. The internal consistency of the SAQ, HADS, CAQ, FFMQ-15 and EQ-5D-5L questionnaires in this study demonstrated a Cronbach’s alpha of 0.87, 0.91, 0.73, 0.69 and 0.96, respectively, with an average of 0.95. The SAQ at baseline demonstrated mild physical limitation (mean score 78.6±25), stability in chest pain symptoms and frequency compared with the previous 4 weeks, and moderate to severely reduced QOL score (mean score 78.6±25). The HADS score ≥8 for anxiety and depression was found in 76% and 53% of all participants with no significant difference between the control and intervention groups. Similarly, a moderate degree of cardiac anxiety was identified in the study group with a
mean score of 1.78. The total mean FFMQ-15 score in its five dimensions was also modest at a mean of 45.5 (±7.3) with no significant difference between groups.

A further five participants withdrew from the study, with the remaining 27 participants (82%) taking part in the study, with 18 in the intervention and 9 in the control group, maintaining 2:1 randomisation. It was only these patients who were included in the final analysis. Reasons for withdrawing from the study included bereavement, caring responsibilities and ill health. The intervention group participants attended an average of 5.3 MBCT sessions with 61% attending ≥6 sessions. An average of 74% participants returned completed home practice questionnaires with a reported frequency of formal meditation practice being 68% (range 53%–90%).

DISCUSSION

In this feasibility study, almost one-third of patients who presented to RACPC were found to have persistent chest pain despite the exclusion of a cardiac cause or treatment for a non-cardiac cause where present. Of these, one-third of patients were willing to participate in MBCT. This is the first study exploring the use of an MBI in patients with NCCP. We will further discuss the results and challenges met in this feasibility study to enable an improved design of a larger RCT.

Prevalence of persistent chest pain

Few studies have evaluated the prevalence of persisting SCP from the contemporary chest pain clinics after a cardiac cause has been excluded. One such study describes ongoing chest pain in almost 50% of patients after a mean time of 8 months since clinic attendance.10 In this study, 32% of patients reported persistent chest pain after a mean of 10 months. The paucity of data in this common symptom group is probably because patients are generally discharged from cardiology care after the initial evaluation and exclusion of cardiac diagnosis back to their GPs. These patients may have further evaluation and treatment for other causes of NCCP, while others may learn to live with their pain. A few patients may be referred back to the chest pain clinic or may present to the emergency department. Although this group of patients have low mortality, a recent study for the primary care population demonstrated an increased rate of myocardial infarction in those with unattributed NCCP.7 They may also have reduced QOL as we found in our study.12

Study participation, adherence and home practice

The recruitment of patients from chest pain clinics for psychological treatments can be challenging.45 Patient participation (32%) in our study was consistent with studies using MBIs in patients with other physical pain28 and CBT in NCCP.18 One of the main reasons
that patients gave for lack of participation was that the chest pain was not bothersome (25%). Unlike other studies, this study included patients with low intensity or frequency of chest pain so that the prevalence of persistent NCCP could be documented. Such people seem to accept the pain and go about their life reassured that a cardiac cause has been excluded. Other reasons given included lack of time, caring responsibilities, or some were still undergoing other investigations for their pain. After enrolment, a further six patients (18%) withdrew from the study due to caring responsibilities, bereavement and ill health. Similar rates of drop-out and completion of MBI has been observed in other studies. The 61% attendance of ≥6 MBCT sessions in our study is a satisfactory compliance rate and comparable to other studies.

Home practice has been hypothesised to be one of the important aspects of MBIs determining their efficacy. A combination of in-session and between sessions regular home practice is considered to be

Table 2 Baseline characteristics of randomised patients

Characteristic	All	MBCT group (n=22)	Control group (n=11)	P value
Participated (%)	27 (82)	18 (82)	9 (82)	
Age in years, mean (±SD)	54.2 (12.5)	54.2 (12.8)	53.4 (11.4)	0.89
Female sex (%)	22 (68)	15 (68)	7 (64)	0.79
Time between RACPC and assessment, months (±SD)	10.3 (2.1)	10.5 (2.4)	9.8 (1.7)	0.4
Ethnicity				
White (%)	14 (42)	7 (32)	7 (64)	
Asian British (%)	17 (52)	13 (59)	4 (36)	
Black (%)	2 (6)	2 (9)	0	0.23
Employment				
Full time (%)	16 (48)	10 (45)	6 (55)	
Part time (%)	6 (18)	5 (23)	1 (9)	
Unemployed (%)	2 (6)	1 (5)	1 (9)	
Housewife or husband (%)	3 (9)	1 (5)	2 (18)	
Retired (%)	6 (18)	5 (23)	1 (9)	0.5
Chest pain type				
Typical (%)	3 (9)	2 (9)	1 (9)	
Atypical (%)	21 (64)	15 (68)	6 (55)	0.74
Non-anginal (%)	9 (27)	5 (23)	4 (36)	
Other diagnosis				
None (%)	23 (70)	15 (68)	8 (73)	
GORD (%)	4 (12)	2 (9)	2 (18)	
MSK (%)	4 (12)	3 (14)	1 (9)	
Other (%)	2 (6)	2 (9)	0	0.85
BMI, mean (±SD)	28.7 (6.6)	30.6 (6.8)	25.1 (4.5)	0.02
Cardiovascular risk factors				
Hypertension (%)	18 (55)	11 (50)	7 (64)	0.46
Diabetes (%)	10 (30)	4 (23)	5 (45)	0.18
High cholesterol (%)	16 (49)	12 (55)	4 (36)	0.47
Current smoker (%)	3 (9)	2 (9)	1 (9)	1
Family history of premature CAD (%)	4 (24)	8 (36)	0	0.02
Anxiety (%)	10 (30)	8 (36)	2 (18)	0.28
Depression (%)	9 (27)	6 (27)	3 (27)	1
Physical activity moderate or more (%)	13 (39)	9 (41)	4 (36)	0.8
Alcohol >7 units/week (%)	12 (36)	7 (32)	5 (45)	0.44

BMI, body mass index; CAD, coronary artery disease; GORD, gastro-oesophageal reflux disease; MBCT, mindfulness-based cognitive therapy; MSK, musculo-skeletal; RACPC, rapid access chest pain clinic.
Coronary artery disease

essential to obtain the maximum therapeutic effects of the MBI. However, there is limited data on the relationship between the degree of home practice and therapeutic effect due to a lack of consistency in the way it is recorded in different studies. Published data suggest an average frequency of formal practice to be 64% (95% CI 60% to 69%) or 29 min a day in one meta-analysis and 21 min over 3.4 days in another meta-analysis. Although we did not ask participants to record the duration of each formal practice, the frequency of 68% was similar.

Online mindfulness classes

MBCT sessions were conducted online using a video-conferencing programme due to COVID-19 pandemic social distancing restriction. There was no obvious reduction in the quality of the online MBC programme as it was delivered by experienced instructors and as judged from the feedback questionnaires. Participants did, however, express that they would have liked to meet for the customary retreat day as in non-COVID times.

Table 3 Questionnaire scores at initial assessment

Questionnaire	All (N=32)	Intervention group (n=21)	Control group (n=11)	P value
SAQ, mean (±SD)				
Physical limitation Score	78.6 (25)	74.8 (23.5)	87.0 (27.3)	0.2
Angina Stability Scale	58.6 (25.8)	53.4 (24.7)	70.0 (25.8)	0.09
Angina Frequency Scale	55.0 (28.7)	49.0 (30.7)	68.0 (19.3)	0.08
Quality of Life Scale	38.2 (25.5)	34.5 (24.5)	46.4 (27.1)	0.22
HADS, mean (±SD)				
Anxiety score	11.2 (4.9)	12.0 (4.8)	9.4 (4.7)	0.16
Anxiety score ≥8 (%)	25 (76)	18 (82)	7 (64)	0.39
Depression score	8.1 (4.3)	9.2 (4.0)	1.6 (4.2)	0.03
Depression score ≥8 (%)	17 (53)	13 (59)	4 (40)	0.45
Cardiac anxiety score, mean (±SD)	1.78 (0.61)	1.89 (0.64)	1.53 (0.48)	0.12
FFMQ-15 score, mean (±SD)				
Observing	9.3 (2.8)	9.7 (2.8)	8.3 (2.7)	0.21
Describing	9.1 (2.4)	8.6 (1.9)	10.1 (3.2)	0.1
Acting with awareness	8.9 (2.6)	8.5 (2.4)	9.7 (2.5)	0.25
Non-judging of inner experience	9.1 (2.4)	8.5 (2.2)	10.6 (2.2)	0.01
Nonreactivity of inner experience	8.6 (2.1)	8.5 (2.2)	8.8 (1.9)	0.71
Total score	45.5 (7.3)	43.8 (7.3)	47.5 (6.7)	0.18
EQ-5D-5L questionnaire				
Mobility	1.7 (0.99)	1.72 (0.98)	1.6 (1.07)	0.75
Self-care	1.5 (0.91)	1.5 (0.91)	1.4 (0.97)	0.68
Usual activities	1.9 (1.3)	2.0 (1.3)	1.8 (1.4)	0.75
Pain/discomfort	2.6 (1.1)	2.6 (0.9)	2.4 (1.3)	0.57
Anxiety/depression	2.5 (1.1)	2.5 (1.1)	2.5 (1.3)	1
Health today score	63.7 (22.8)	63.4 (21.7)	64.5 (26.3)	0.9

EQ-5D-5L, Euro Quality of Life-5 Dimensions-5 Level; FFMQ, Five-Facet Mindfulness Questionnaire; HADS, Hospital Anxiety and Depression Scale; SAQ, Seattle Angina Questionnaire.

Pre-COVID, as well as more recent literature, has demonstrated the effectiveness of online mindfulness delivery particularly when instructor-guided on a video platform. A recent study of health anxiety has shown that effectiveness of a complex psychological intervention can be achieved with online contact only.

Prevalence of anxiety and depression

There was a low prevalence of documented history of anxiety or depression (up to 14%) during the RACPC visit (table 1) with no difference in patients with or without persistent CP. This is much lower compared with studies where anxiety and depression were assessed at the time of clinic attendance which was not done in our study. However, the prevalence of anxiety and depression was much higher in the 33 enrolled patients being 76% and 53%, respectively. The prevalence of cardiac anxiety was however modest in this study.
Effectiveness of mindfulness for chest pain and psychological factors

There was a positive trend towards improvement in chest pain stability, frequency and QOL in our study. As this study was not powered for this purpose and the follow-up was short, statistical significance was not shown. There was, however, a reduction in anxiety and depression, as well as improvement in overall mindfulness scores. The improvement in QOL with SAQ but not with EQ-5D-5L questionnaire could be due to a small number of participants and a short follow-up.

A recent meta-analysis of 30 RCTs in patients with chronic pain in other parts of the body found mindfulness to be associated with a small effect of improved pain symptoms (19% reduction) compared with treatment as usual, passive controls and education/support groups.27 The efficacy of mindfulness did not differ with the type of intervention, medical condition or frequency of intervention. There was statistically significant improvement in depression, physical and mental related QOL. However, there was evidence of substantial heterogeneity among studies and possible publication bias resulting in low quality of evidence.

There is interesting emerging research evidence of MBIs in other health conditions which highlight mechanisms of change that are likely to be important in NCCP. For example, an MBI for blood-pressure reduction appears to develop skills that allowed participants to engage more effectively behaviours that lower cardiovascular disease risk with emotion regulation, perceived

Variable	Control group	MBCT group	Control group	MBCT group
SAQ				
PLS	96 (86, 100)	91 (68, 100)	84 (46, 96)	87.5 (54, 100)
ASS	75 (75, 100)	50 (25, 100)	50 (50, 75)	75 (50, 100)
AFS	80 (60, 80)	80 (60, 80)	60 (40, 80)	80 (40, 100)
QOL	44 (25, 75)	44 (13, 63)	31.5 (13, 50)	63 (25, 75)
HADS				
Anxiety				
Anxiety score≥8	9.5 (6, 11)	10 (9, 11)	12.5 (11, 16)	9 (6, 12)
Depression				
Depression score≥8	6.5 (5, 8)	6.5 (3, 9)	8.5 (7, 11)	6.5 (2, 8)
CAQ	1.7 (1.3, 1.9)	1.55 (1.2, 2.1)	1.85 (1.5, 2.0)	1.65 (1.1, 2.2)
FFMQ				
Describing	9 (5, 13)	8.1 (4.3, 12)	8.8 (7.8, 9.8)	10.8 (9.6, 12.1)
Awareness	9.3 (6.5, 12)	9.2 (6.2, 12.1)	8.4 (7.8, 9.8)	9.6 (8.5, 10.6)
Non-judging	11.3 (9.6, 13)	10 (7.2, 12.8)	8.3 (7.2, 9.4)	9.7 (8.2, 11.1)
Non-reactivity	8.7 (6.3, 11)	8.5 (6.8, 10.2)	8.5 (7.4, 9.6)	10.2 (9, 11.3)
Total score	38.3 (29.3, 47.4)	35.6 (27.5, 44.1)	34 (30.1, 37.3)	40.3 (37.4, 43.3)
EQ-5D-5L				
Mobility	1 (1, 3)	1 (1, 2)	1 (1, 3)	1 (1, 2)
Self-care	1 (1, 2)	1 (1, 1)	1 (1, 2)	1 (1, 2)
Usual activities	1 (1, 3)	1 (1, 2)	1.5 (1, 3)	1 (1, 3)
Pain discomfort	2.5 (2, 4)	2 (2, 2)	2 (2, 3)	2 (2, 3)
Anxiety/depression	2.5 (2, 4)	2 (2, 3)	2 (2, 3)	2 (2, 3)
Health today	73.5 (43, 85)	69 (25, 76)	70.5 (50, 75)	78.5 (65, 85)
AD-SUS				
Hospital Inpatient	0 (0, 0)	0 (0, 0)	0 (0, 0)	0 (0, 0)
Hospital Outpatient	1 (0, 1)	0 (0, 0)	0 (0, 1)	0 (0, 1)
A&E	0 (0, 0)	0 (0, 0)	0 (0, 0)	0 (0, 0)
GP	1 (1, 1)	1 (1, 1)	1 (1, 1)	1 (1, 2)

A&E, Accident and Emergency; AFS, Angina Frequency Score; ASS, Angina Stability Score; CAQ, Cardiac Anxiety Questionnaire; EQ-5D-5L, Euro Quality of Life-5 Dimensions-5 Level; FFMQ, Five-Facet Mindfulness Questionnaire; GP, general practitioner; HADS, Hospital Anxiety and Depression Scale; MBCT, mindfulness-based cognitive therapy; PLS, Physical Limitation Score; SAQ, Seattle Angina Questionnaire.
stress, interoceptive awareness and attention control likely mechanisms by which change occurs.52 MBCt for IBS has been found to reduce IBS symptoms and increase the QOL with reduction in maladaptive illness cognitions and reducing biases in self-referent processing of illness and health as possible mechanisms of change.53

Besides their effect on pain, the practice of meditation potentially has other beneficial effects on the cardiovascular system. Different MBIs have been shown to reduce parasympathetic tone causing increased heart rate variability54 and reduce resting respiratory rate.55 There is also an indication of improved myocardial and endothelial function from meditation practice in patients with microvascular angina,56 and reduction in markers of inflammation.57 58 MBIs have been shown to reduce hypertension in a recent meta-analysis,59 contribute to weight loss and blood-sugar levels60 61 and reduce smoking.62

One of the main advantages of non-pharmacological techniques such as MBIs in pain management is reduced utilisation of analgesics, particularly opioids which has reached epidemic proportions in recent years.63 Besides, through an increased awareness of one’s lifestyle, the MBIs can promote self-management and lead to individual empowerment with the potential of improving the overall physical and mental health in the long run. Studies have shown high compliance to mindfulness practice even after 3–4 years and without any side effects, unlike most analgesic medications.64 65

Limitations of the study and lessons for further research

During the initial contact, the potentially eligible RACPC patients were asked about the persistence of pain but not about the intensity or frequency of pain. In a future study, these aspects of chest pain could be incorporated in the screening questionnaire so that patients with higher intensity and frequency who may be more likely to adhere to the MBCT course can be enrolled.

This was a pilot study and thus had a small sample size. However, it demonstrated the proportions of patients with persistent chest pain who may agree to take part in a larger study. We also learnt about the reasons for the patient drop-out of patients during 8 weeks of MBI. In the future, we could offer several MBCT courses starting at frequent intervals at different times on different days allowing improved enrolment and compliance. A longer follow-up will also be required to assess the effectiveness of MBCT in reducing chest pain, improvement in QOL and healthcare utilisation. All these factors would be helpful while designing a larger study.

Although the importance of home practice was emphasised during the initial assessment interview, only three-quarter of participants completed the practice questionnaires. Further improvements in methods of recording of home practice will be required to measure the effect of duration and frequency of practice on any clinical improvement in future studies.

We also did not include any active control treatments such as relaxation exercises or health education. This may be required in the larger trial along with a cost-effective analysis.

CONCLUSION

Almost one-third of patients who presented to RACPC were found to have persistent chest pain despite the exclusion of a cardiac cause or treatment for a non-cardiac cause where present. Of these, one-third of patients were willing to participate in the mindfulness-based therapy with most of them participating in six or more sessions. Although not statistically powered, the study revealed a significant reduction in general anxiety, improved mindfulness and a trend towards improvement in chest pain scores in the intervention arm. A larger trial would be required to demonstrate the effectiveness of MBI in reducing NCCP and offering a potential treatment for this common condition.

Author affiliations

1Heart Division, Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
2Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
3Oxford Psychological Medicine Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
4Paron Mindfulness, London, UK
5Oxford Mindfulness Centre, Department of Psychiatry, University of Oxford, Oxford, UK
6Department of Medical Statistics, Research & Development, Royal Brompton and Harefield Hospitals, London, UK
7Acre Surgery, London, UK
8Centre of Psychiatry, Imperial College London, London, UK

Acknowledgements

The authors are indebted to all the participants to the study for their perseverance and contribution to the study. Particular thanks to Dr. Neelima Avasthy for her critical review and advice on the manuscript from the patient’s perspective.

Contributors

TKM was responsible for the conception of the study, TKM, EE, AP, CS, AC, FC, RoS, WB and PT contributed to the design and monitoring of the study. EE and CS developed and supervised the adapted version of MBCT while CL and CM conducted the MBCT classes based on the adapted version. TKM drafted the manuscript and WB performed the statistical analysis. All authors revised and approved the final version of manuscript and are accountable for the accuracy and integrity of the work. TKM is the guarantor who accepts full responsibility for the finished work and/or conduct of the study, had access to the data and controlled the decision to publish.

Funding

The trial was funded through the Royal Brompton and Harefield Hospitals charitable funds.

Competing interests

None declared.

Patient consent for publication

Not applicable.

Ethics approval

The study was approved by the NHS Health Research Authority (REC reference: 19/LO/1092) and registered on ClinicalTrials.gov on 4 November 2019 (NCT04151121). The study was initially approved to be conducted in person, but because of the COVID-19 pandemic, substantial amendments were obtained to carry out the study online using virtual platforms.

Provenance and peer review

Not commissioned; externally peer reviewed.

Data availability statement

Data are available on reasonable request.

Supplemental material

This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability
of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the work is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Tarun Kumar Mittal http://orcid.org/0000-0001-8550-2453

REFERENCES

1. Raja SN, Carr DB, Cohen M, et al. The revised international association for the study of pain definition of pain: concepts, challenges, and compromises. *Pain* 2020;161:1976–82.
2. NICE. Chest pain of recent onset: assessment and diagnosis. National Institute for health and care excellence (NICE) clinical guideline CG95, 2016.
3. Hoornweg BB, Willemsen RT, Cleef LE, et al. Frequency of chest pain in primary care, diagnostic tests performed and final diagnoses. *Heart* 2017;103:1727–32.
4. Walters K, Rait G, Haroon S, et al. Socio-Demographic variation in chest pain incidence and subsequent coronary heart disease in primary care in the United Kingdom. *Eur J Prev Cardiol* 2014;21:566–75.
5. Sekhri N, Feder GS, Junghans C, et al. How effective are rapid access chest pain clinics? Prognosis of incident angina and non-cardiac chest pain in 8762 consecutive patients. *Heart* 2007;93:458–63.
6. Mittal TK, Pottie A, Nicol E, et al. Prevalence of obstructive coronary artery disease and prognosis in patients with stable symptoms and a zero-coronary calcium score. *Eur Heart J Cardiovasc Imaging* 2017;18:922–9.
7. Jordan KP, Timmins A, Croft P, et al. Prognosis of undiagnosed chest pain: linked electronic health record cohort study. *BMJ* 2017;357:j1194.
8. Chambers JB, Marks EM, Hunter MS. The head says yes but the heart says no: is non-cardiac chest pain and how is it managed? *Heart* 2015;101:1240–9.
9. NICE. Chronic pain (primary and secondary) in over 16s: assessment of all chronic pain and management of chronic primary pain; NICE guideline NG193, 2021. Available: https://www.nice.org.uk/guidance/ng193.
10. Dumville JC, MacPherson H, Griffith K, et al. Non-cardiac chest pain: a retrospective cohort study of patients who attended a rapid access chest pain clinic. *Fam Pract* 2007;24:152–7.
11. Robertson N, Javed N, Samani NJ, et al. Psychological morbidity and illness appraisals of patients with cardiac and non-cardiac chest pain attending a rapid access chest pain clinic: a longitudinal cohort study. *Heart* 2008;94:e12.
12. Marks EM, Chambers JB, Russell V, et al. The rapid access chest pain clinic: unmet distress and disability. *QJM* 2014;107:429–34.
13. Chambers JB, Marks E, Knisley L, et al. Non-cardiac chest pain: to extend the rapid access chest pain clinic? *Int J Clin Pract* 2013;67:303–6.
14. Lichtman JH, Froelicher ES, Blumenthal JA, et al. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American heart association. *Circulation* 2014;129:1350–69.
15. Hamer M, Molyne GJ, Stamatakis E. Psychological distress as a risk factor for cardiovascular events: pathophysiological and behavioral mechanisms. *Am J Cardiol* 2008;52:2156–62.
16. Bai B, Yin H, Guo L, et al. Comorbidity of depression and anxiety leads to a poor prognosis following angina pectoris patients: a prospective study. *BMJ Psychiortry* 2021;2:202.
17. Kim Y, Soiffer M, Paradise S, et al. Depression is associated with recurrent chest pain with or without coronary artery disease: a prospective cohort study in the emergency department. *Am Heart J* 2017;191:47–54.
18. Kissel SR, Campbell LA, Yelland MJ, et al. Psychological interventions for symptomatic management of non-specific chest pain in patients with normal coronary anatomy. *Cochrane Database Syst Rev* 2015;Cd004101.
19. Richards SH, Anderson L, Jenkinson CE, et al. Psychological interventions for coronary heart disease: cochrane systematic review and meta-analysis. *Eur J Prev Cardiol* 2018;25:247–59.
20. Tywer P, Tyrer H, Cooper S, et al. Cognitive behaviour therapy for non-cardiac pain in the chest (COPIC): a multicentre randomised controlled trial with economic evaluation. *BMJ Psychiortry* 2015;3:34.
21. Kabat-Zinn J. An outpatient program in behavioral medicine for chronic pain patients based on the practice of mindfulness meditation: theoretical considerations and preliminary results. *Gen Hosp Psychiatry* 1982;43:37–47.
22. Ludwig DS, Kabat-Zinn J. Mindfulness in medicine. *JAMA* 2008;300:1350–2.
23. Williams JMG, Kuyken W. Mindfulness-based cognitive therapy: a promising new approach to preventing depressive relapse. *Br J Psychiatry* 2012;200:359–60.
24. NICE. Depression in adults: recognition and management. clinical guideline CG90, 2009. Available: www.nice.org.uk/guidance/cg90 [Accessed 10 Jan 2021].
25. Kuyken W, Warren FC, Taylor RS, et al. Effectiveness of mindfulness-based cognitive therapy in prevention of depressive relapse: an individual patient data meta-analysis from randomized trials. *JAMA Psychiatry* 2016;73:565–74.
26. Teasdale JD, Segal ZV, Williams JM, et al. Prevention of relapse/reurrence in major depression by mindfulness-based cognitive therapy. *J Consult Clin Psychol* 2000;68:615–23.
27. Hilton L, Hempell S, Ewing BA, et al. Mindfulness meditation for chronic pain: systematic review and meta-analysis. *Ann Behav Med* 2012;43:199–213.
28. Cherkin DC, Sherman KJ, Balderson BH, et al. Effect of Mindfulness-Based stress reduction vs cognitive behavioral therapy or usual care on back pain and functional limitations in adults with chronic low back pain: a randomized clinical trial. *JAMA* 2016;315:1340–9.
29. Pells RE, O’Connell N. Predis of mindfulness meditation vs headache education for adults with migraine: a randomized controlled trial. *JAMA Intern Med* 2021;181:317–28.
30. Lauche R, Cramer H, Dobos G, et al. A systematic review and meta-analysis of mindfulness-based stress reduction for the fibromyalgia syndrome. *J Psychosom Res* 2013;75:500–10.
31. Ljótsson B, Hedman E, Anderson E, et al. Internet-delivered exposure-based treatment vs. stress management for irritable bowel syndrome: a randomized trial. *Am J Gastroenterol* 2011;106:1481–91.
32. Langacher CA, Reich RR, Paterson CL, et al. Examination of broad symptom improvement resulting from Mindfulness-Based stress reduction in breast cancer survivors: a randomized controlled trial. *J Clin Oncol* 2016;34:2827–34.
33. Harrison AM, Scott W, Johns LC, et al. Are We Speaking the Same Language? Finding Theoretical Coherence and Precision in “Mindfulness-Based Mechanisms” in Chronic Pain, *Pain Med* 2017;18:2138–51.
34. Quartana P, Campbell CM, Edwards RR. Pain catastrophizing: a critical review. *Expert Rev Neurother* 2009;9:745–58.
35. Shelby LA, Somers TJ, Campbell CR, et al. Effectiveness of patient-based cognitive therapy in patients with noncardiac chest pain: relationships with pain, anxiety, and disability. *Psychosom Med* 2009;71:861–8.
36. Feldman F, Kuyken W. Mindfulness: ancient wisdom meets modern psychology. New York, NY: The Guilford Press, 2019.
37. Spertus JA, Winter M, Winder PA, et al. Development and evaluation of the Seattle angina questionnaire: a new functional status measure for coronary artery disease. *Am J Cardiol* 1995;25:333–41.
38. Thomas M, Jones PG, Arnold SV, et al. Interpretation of the Seattle angina questionnaire as an outcome measure in clinical trials and clinical care: a review. *JAMA Cardiol* 2021;6:593–9.
39. Zigmond AS, Snith RP. The hospital anxiety and depression scale. *Acta Psychiatr Scand* 1983;67:361–70.
40. Wu Y, Levis B, Sun Y, et al. Accuracy of the hospital anxiety and depression scale depression subscale (HADS-D) to screen for major depression: systematic review and individual participant data meta-analysis. *BMJ* 2021;373:n972.
41. Effert GH, Thompson RN, Zvolensky MJ, et al. The cardiac anxiety questionnaire: development and preliminary validity. *Behav Res Ther* 2000;38:1009–53.
42. Baer RA, Smith GT, Lysins E, et al. Construct validity of the five facet mindfulness questionnaire in meditating and nonmeditating samples. *Assessment* 2008;15:329–42.
43. Herdman M, Gudec D, Lloyd A, et al. Development and preliminary testing of the new five-level version of EQ-5D (EQ-5D-5L). *Qual Life Res* 2011;20:1727–36.
44. Crane RS, Brewer J, Feldman C, et al. What defines mindfulness-based programs? the warp and the weft. *Psychol Med* 2017;47:990–9.
45. Tywer P, Tyrer H, Morris R, et al. Clinical and cost-effectiveness of adapted cognitive behaviour therapy for non-cardiac chest
pain: a multicentre, randomised controlled trial. *Open Heart* 2017;4:e000582.

46 la Cour P, Petersen M. Effects of mindfulness meditation on chronic pain: a randomized controlled trial. *Pain Med* 2015;16:641–52.

47 Parsons CE, Crane C, Parsons LJ, et al. Home practice in Mindfulness-Based cognitive therapy and Mindfulness-Based stress reduction: a systematic review and meta-analysis of participants' mindfulness practice and its association with outcomes. *Behav Res Ther* 2017;95:29–41.

48 Lloyd A, White R, Eames C, et al. The utility of Home-Practice in Mindfulness-Based group interventions: a systematic review. *Mindfulness* 2018;9:673–92.

49 Toivonen KI, Zernicke K, Carlson LE. Web-Based mindfulness interventions for people with physical health conditions: systematic review. *J Med Internet Res* 2017;19:e303.

50 Sommers-Spijkerman M, Austin J, Bohlmeijer E, et al. New evidence in the Booming field of online mindfulness: an updated meta-analysis of randomized controlled trials. *JMIR Ment Health* 2021;8:e28168.

51 Morriss R, Patel S, Malins S, et al. Clinical and economic outcomes of remotely delivered cognitive behaviour therapy versus treatment as usual for repeat unscheduled care users with severe health anxiety: a multicentre randomised controlled trial. *BMC Med* 2019;17:16.

52 Nardi WR, Harrison A, Saadeh FB, et al. Mindfulness and cardiovascular health: qualitative findings on mechanisms from the mindfulness-based blood pressure reduction (MB-BP) study. *PLoS One* 2020;15:e0239533.

53 Henrich JF, Gjelsvik B, Surawy C, et al. A randomized clinical trial of Mindfulness-Based cognitive therapy for women with irritable bowel syndrome-Effects and mechanisms. *J Consult Clin Psychol* 2020;88:295–310.

54 Adler-Neal AL, Vaugh CE, Garland EL, et al. The role of heart rate variability in mindfulness-based pain relief. *J Pain* 2020;21:306–23.

55 Wielgosz J, Schuyler BS, Lutz A, et al. Long-term mindfulness training is associated with reliable differences in resting respiration rate. *Sci Rep* 2016;6:27533.

56 Kim BJ, Cho IS, Cho KI. Impact of mindfulness based stress reduction therapy on myocardial function and endothelial dysfunction in female patients with microvascular angina. *J Cardiovasc Ultrasound* 2017;25:118–23.

57 Amarasekera AT, Chang D. Buddhist meditation for vascular function: a narrative review. *Integr Med Res* 2019;8:252–6.

58 Creswell JD, Taren AA, Lindsay EK, et al. Alterations in resting-state functional connectivity link mindfulness meditation with reduced interleukin-6: a randomized controlled trial. *Biol Psychiatry* 2016;80:53–61.

59 Conversano C, Orrù G, Pozza A, et al. Is Mindfulness-Based stress reduction effective for people with hypertension? A systematic review and meta-analysis of 30 years of evidence. *Int J Environ Res Public Health* 2021;18. doi:10.3390/ijerph18062882. [Epub ahead of print: 11 Mar 2021].

60 Mason AE, Epel ES, Kristeller J, et al. Effects of a mindfulness-based intervention on mindful eating, sweets consumption, and fasting glucose levels in obese adults: data from the shine randomized controlled trial. *J Behav Med* 2016;39:201–13.

61 Kes D, Can Cicak S. Mindful eating, obesity, and risk of type 2 diabetes in university students: a cross-sectional study. *Nurs Forum* 2021;56:483–489.

62 Roche Al, Kroska EB, Denburg NL. Acceptance- and Mindfulness-Based interventions for health behavior change: systematic reviews and meta-analyses. *J Contextual Behav Sci* 2019;13:74–93.

63 Vowles KE, McIntee ML, Julnes PS, et al. Rates of opioid misuse, abuse, and addiction in chronic pain: a systematic review and data synthesis. *Pain* 2015;156:569–76.

64 Kabat-Zinn J, Lipworth L, Burncy R. Four-Year follow-up of a Meditation-Based program for the self-regulation of chronic pain: treatment outcomes and compliance. *Clin J Pain* 1986;2:159–774.