A New Type of Proton Coordination in an F_1F_0-ATP Synthase Rotor Ring

Laura Preiss1, Özkan Yildiz1, David B. Hicks2, Terry A. Krulwich2, Thomas Meier1,3*

1 Department of Structural Biology, Max-Planck Institute of Biophysics, Frankfurt, Germany, 2 Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York, United States of America, 3 Cluster of Excellence Macromolecular Complexes, Max-Planck Institute of Biophysics, Frankfurt, Germany

Abstract

We solved the crystal structure of a novel type of c-ring isolated from Bacillus pseudofirmus OF4 at 2.5 Å, revealing a cylinder with a tridecameric stoichiometry, a central pore, and an overall shape that is distinct from those reported thus far. Within the groove of two neighboring c-subunits, the conserved glutamate of the outer helix shares the proton with a bound water molecule which itself is coordinated by three other amino acids of outer helices. Although none of the inner helices contributes to ion binding and the glutamate has no other hydrogen bonding partner than the water oxygen, the site remains in a stable, ion-locked conformation that represents the functional state present at the c-ring/membrane interface during rotation. This structure reveals a new, third type of ion coordination in ATP synthases. It appears in the ion binding site of an alkaliphile in which it represents a finely tuned adaptation of the proton affinity during the reaction cycle.

Introduction

Most living cells depend upon the adenosine triphosphate (ATP) generated by F_1F_0-ATP synthases that are energized by a proton-or a sodium-motive force (pmf, smf). These multi-subunit enzymes contain a cytoplasmic F_1 catalytic domain (subunits α,$\beta_3\gamma_0\delta$) that is connected with a membrane-embedded F_0 domain ($ab_3c_{10.15}$ in bacteria) by a central ($\gamma\delta$) and peripheral ($b_2\delta$) stalk. Energetically downhill ion translocation across the membrane through the F_0 complex is mediated by successive interactions between the stator a-subunit and a rotor ring (c-ring). Translocation involves ion binding to an unoccupied c-subunit, rotation, and subsequent ion release. The c-ring is attached to the $\gamma\delta$ stalk subunits so that c-ring rotation causes rotation of the stalk. The inherently elastic [1] and asymmetric γ-subunit extends into the α-β_3 headpiece [2] and by rotation [3] induces conformational changes [4] in the catalytic β-subunits, which results in ATP synthesis.

In the Na$^+$-binding c$_{11}$ ring from Btyobacter tartaricus [5] and the H$^+$-binding c$_{13}$ ring from Spirulina platensis [6], the translocated ions are bound within the groove of two adjacent c-subunits in a coordination network including a conserved carboxylate (Glu). In both cases, the ion is further coordinated by a precise network of residues, several of which are common to both organisms (Figure 1). The ion specificity of these two systems is determined by several factors including the geometry and distances of the ion coordination network, and a water molecule [7] providing a coordination site for Na$^+$. The ion binding specificity of ATP synthases in various cells is adapted to the physiological requirements of the organism, and the different binding motifs observed presumably reflect these adaptations. The range of the ion-binding motif includes variations from complete Na$^+$-binding signatures to c-subunits where the conserved carboxylate (E/D) of the C-terminal helix is the only residue that can be predicted with confidence to play a role in ion coordination (e.g., in Escherichia coli or Homo sapiens, Figure 1). On this basis, we here assign the name “E/D-only” to the c-subunits of this sub-class of proton-coupled ATP synthases.

Alkaliphilic Bacillus species are among the bacteria having proton-coupled ATP synthases [8] with E/D-only c-subunits (Figure 1). The extreme alkaliphile Bacillus pseudofirmus OF4 grows by oxidative phosphorylation with cytoplasmic pH values maintained 1.5-2.3 pH units below the high external pH (up to 11) of the medium [9]. The existence of this reversed ΔpH poses a major thermodynamic problem, with which these cells must cope. Among a variety of adaptive strategies to resolve the energetic problem [10], some special adaptations of the ATP synthase itself have evolved: latent ATPase activity [9,11], a-subunit modification [12,13], and in particular, specific adaptations of the c-subunit sequence [14] resulting in a large c-ring width with more c-subunits [15]. The adaptations to alkaliphilic conditions in an ATP synthase rotor, with a widely found but structurally uncharacterized E/D-only motif, made its c-ring an attractive candidate for an X-ray diffraction study.

Results

Structure of the Bacillus pseudofirmus OF4 c_{13} Ring

Three-dimensional crystals of the c-ring from native Bacillus pseudofirmus OF4 F_1F_0-ATP synthase were obtained and diffraction
Author Summary

Like the wind turbines that generate electricity, the F₀F₁-ATP synthases are natural “ion turbines” each made up of a stator and a rotor that turns, when driven by a flow of ions, to generate the cell’s energy supply of ATP. The F₀ motor rotates by reversible binding and release of coupling ions that flow down the electrochemical ion gradient across the cytoplasmic membrane cell (in the case of bacteria) or intracellular organelle membranes (in the case of eukaryotic cells). Here, we present the structure of a rotor (c-)ring from a Bacillus species (B. pseudofirmus OF4) determined at high-resolution by X-ray crystallography. This bacterium prefers alkaline environments where the concentration of protons (H⁺) is lower outside than inside the cell – the inverse of the situation usually found in organisms that prefer neutral or acidic environments. The amino acid sequence of the protein subunits in this rotor, nevertheless, has features common to an important group of ATP synthases in organisms from bacteria to man. The structure reveals a new type of ion binding in which a protonated glutamate residue in the protein associates with a water molecule. This finding raises the possibility considered by Nobel laureate Paul Boyer several decades ago that a hydronium ion (a protonated water molecule, H₃O⁺), rather than a proton alone, might be the coupling species that energizes ATP synthesis. Also, it demonstrates the finely tuned adaptation of ATP synthase rotor rings and their ion-binding sites to the specific requirements of different organisms.

Figure 1. Amino acid sequence alignment of c-subunits. The c-subunits of selected species were aligned according to their cytoplasmic loop region (bold). Residues structurally proven to be involved in ion coordination shown in this work and in [7] are marked. The type of ion binding in the respective ATP synthase is indicated on the right side, together with their corresponding binding motifs. Among these types: E/D-only is defined in the text, “Na⁺” is a sodium-coupled rotor with a complete Na⁺-binding motif [7], and “mix” is a proton-coupled rotor that has elements of the Na⁺- or H⁺-binding motif (highlighted in grey), e.g. a polar (or charged) residue at positions required for Na⁺ coordination [7,33].

doi:10.1371/journal.pbio.1000443.g001

Figure 1. Amino acid sequence alignment of c-subunits. The c-subunits of selected species were aligned according to their cytoplasmic loop region (bold). Residues structurally proven to be involved in ion coordination shown in this work and in [7] are marked. The type of ion binding in the respective ATP synthase is indicated on the right side, together with their corresponding binding motifs. Among these types: E/D-only is defined in the text, “Na⁺” is a sodium-coupled rotor with a complete Na⁺-binding motif [7], and “mix” is a proton-coupled rotor that has elements of the Na⁺- or H⁺-binding motif (highlighted in grey), e.g. a polar (or charged) residue at positions required for Na⁺ coordination [7,33].

doi:10.1371/journal.pbio.1000443.g001
Table 1. Data collection and refinement statistics.

Data collection	c13 Ring	
Space group	P2₁	
Cell dimensions	a, b, c (Å)	74.18, 97.34, 121.24
α, β, γ (°)	90.0, 104.7, 90.0	
Resolution (Å)	20–2.5 (2.6–2.5)*	
Rmerge	9.8 (98.5)	
Rmerge/F	20.4 (119.8)	
Rwork/Rfree	11.7 (1.6)	
Completeness (%)	98.8 (92.8)	
Redundancy	3.64 (3.1)	
Refinement		
Resolution (Å)	20–2.5	
Number of reflections	57,052	
Rmerge/F	18.76%/23.45%	
Number of atoms	6,753	
Protein	6,370	
Ligand/ion	309	
Water	84	
Δ-factors	55.2	
Protein	52.46	
Ligand/ion	111.9	
Water	54.7	
R.m.s. deviations		
Bond lengths (Å)	0.007	
Bond angles (°)	0.932	

*Values in parentheses are for highest resolution shell. The data are strong, with only little anisotropy, to 2.6 Å resolution. Inclusion of data to 2.5 Å resolution, despite high R-merge values, helped improve the electron density at the ion binding sites. doi:10.1371/journal.pbio.1000443.t001

serines also accounts for the larger than anticipated c-ring diameter observed in the ATP synthase of *Bacillus* TA2.A1 [15]. On the outer helices of the c13 ring from an alkaliphile, two prolines located one helix turn below and above the ion-binding glutamate can be identified in a motif (PxxExxP) [14] in which the first proline, Pro51, is specific for alkaliphiles [13]. Both prolines break the regular α-helix hydrogen bonding pattern and cause helix bends; these two motifs of this c-ring are important factors that have an impact on the c13 diameter and ion binding as well as the overall “tulip beer glass” shape of the complex (Figure S1).

The Ion Binding Site

Ion binding in all c-rings includes a conserved outer helix Glu (or Asp). In the c13 ring of *B. pseudofirmus* OF4, this residue (Glu54) is located ~6 Å above the middle of the membrane (Figure 3) toward the cytoplasmic side. At the pH (4.5) used in the cryoprotection buffer, Glu54 is protonated. Two outer helices from neighboring c-subunits form an ion binding site (Figure 3C). During structure refinement a sphere-shaped density in 2F_{o}-F_{calc} as well as in the omit map remained unassigned. In close proximity of this density center (2.8-3.2 Å), four atoms were identified. One of these belongs to the side chain carboxyl oxygen (Oe2) of Glu54, whereas the three others originate from the backbone carbonyls of Leu52 and Ala53 and from the backbone nitrogen of Val56. The observed distances and the arrangement of the four associated hydrogen donor/acceptor sites around this density are in almost pyramidal arrangement and the hydrogen atom positions lie on a plane. Such an arrangement resembles internal protonated water molecules (hydroxion ion) [18] in other proteins.

Electron densities of certain cations (e.g., Na⁺) or oxygen atoms from water molecules are from water molecules are similar and difficult to distinguish by X-ray crystallography at the given resolution. However, several lines of evidence indicate the density seen in the binding pocket of this c13 ring should be interpreted as water rather than Na⁺. The hydrogen-bonding distance and angle geometry for the ligands are in the typical range for water molecules in proteins, as they are also found, for example, in carboxypeptidase (Figure S3) or in the protonated water cluster of bacteriorhodopsin [19]. In contrast, the mean distances for Na⁺ coordination such as those in the Na⁺-binding c11 ring [7] are significantly shorter (~2.3 Å) [20] than observed in the c13 ring. For direct experimental evidence we used NCD-4, a fluorescent analogue of the ATP synthase inhibitor DCCD, which is known to react covalently with protonated glutamates/aspartates in c-subunits [21]. Figure 4 illustrates the time-dependent labeling of detergent-solubilized c13 ring at pH 6.0. Consistent with dependence of labeling on protonation of the carboxylate, an increase of pH to 9.0 immediately and significantly decelerates the reaction. This observation has also been reported by others [22,23] and a control experiment showed that the labeling by NCD-4 continued to increase linearly when the labeling time was extended to 9,000 s without an alkaline pH shift (Figure S4). The marked deceleration upon imposition of an alkaline pH shift also resembles the DCCD labeling pattern of the proton-coupled c13 ring as a function of pH (unpublished data). Most importantly, the presence of 200 mM Na⁺ shows no dramatic influence on the labeling kinetics and addition of 200 mM K⁺ leads to comparable effects to Na⁺. Whereas the presence of salts, either Na⁺ or K⁺, presumably causes minor changes on, for example, detergent micelles, water availability, or fluorophore quenching [24], the lack of a major Na⁺-specific effect on NCD-4 binding rates contrasts sharply with the immediate and strong Na⁺-protective effect of a much lower Na⁺ concentration (15 mM) on the Na⁺-binding c11 ring [25]. This key evidence for H⁺ rather than Na⁺ binding of the *B. pseudofirmus* OF4 c13 ring is fully consistent with biochemical studies on the pmf- (but not smf-) dependent *B. pseudofirmus* OF4 cells [26] and its H⁺-dependent ATP synthase [9]. The result furthermore suggests that the ion binding site is highly selective for H⁺ over Na⁺ essentially under any (physiological) condition with a minimum concentration excess of ~10⁶ Na⁺ (200 mM) over H⁺ (pH 9.0). Taken together, the findings indicate that the density observed in the binding site of the c13 ring of the *B. pseudofirmus* OF4 ATP synthase is an oxygen atom with four valences. The data show that the proton must be located in between the atom positions of Glu54(Oe1/2) and the water oxygen (O).

Discussion

Comparison of the c-Rings and Ion Binding Sites

In contrast to other rotor ring structures [5,6,16], no residues from the inner helices contribute to ion coordination in the c13 ring (Figure 3B and Figure S1B). In the c11 and c15 rings a proline (Pro28 and Pro25, respectively) is involved in kinking the inner helices (not shown), thereby allowing the hydrogen bonding of the glutamate (Gln32 and Gln29, respectively) with the glutamate on the outer helix. This proline and glutamine are replaced by a
Figure 2. Structure of the c_{13} ring of the alkaliphilic *Bacillus pseudofirmus* OF4 ATP synthase. The c-subunits are shown in different colors in ribbon representation. The protonated water molecules are shown as red spheres. (A) View perpendicular to the membrane from the cytoplasm. (B) Side view of the c_{13} ring. The membrane border is indicated with grey bars.

doi:10.1371/journal.pbio.1000443.g002
glycine and valine, respectively, in the c13 ring. Consequently, the inner helices form a complete \(\alpha \)-helical hydrogen bonding pattern, retain a straight shape, and cannot hydrogen bond with the ion-binding glutamate.

A second notable difference of the ion binding site in the c13 ring as compared with the c11 and c15 rings is visible at the second oxygen of the glutamate (Glu54 O\(e_2 \)). Whereas in c11 and c15 this oxygen forms a hydrogen bond with a tyrosine from the adjacent outer helix, such an interaction is missing in the c13 ring (Figure 3C and Figure S1B). The hydrogen bonding network of Glu54 in the c13 ring is therefore reduced to one bond only compared to the others. The additional freedom allows more rotameric flexibility of the glutamate carboxylate. This property becomes impressively visible in an overlay of 13 single c-subunits taken from one asymmetric unit (Figure 5). Notably, although the carboxyl group appears in different rotameric states in the crystal structure, the distance of the closest Glu54 oxygen to the water oxygen remains

![Figure 3. The ion binding site.](image1)

The c-subunits are shown in different colors as ribbons and the protonated water is shown as a red sphere. Coordination of the ion is indicated by dashed lines. (A) A c2-dimer consisting of two adjacent C-terminal \(\alpha \)-helices (blue and yellow) and two straighter N-terminal helices (gray). (B) View perpendicular to the membrane focused on the binding side. (C) The binding site at pH 4.5, view from the membrane plane. The electron density (2F\(_{\text{obs}}\) - F\(_{\text{calc}}\)) is shown as a blue mesh. The coordinating residues Glu54, Leu52, Ala53, and Val56 are indicated. The omit map for the position of the water oxygen (O) is shown as purple mesh (\(\sigma = 4.5 \)). Distances are in Å.

doi:10.1371/journal.pbio.1000443.g003

![Figure 4. Kinetics of the modification of the ion-coordinating Glu54 of detergent-solubilized c13 ring from B. pseudofirmus OF4 with NCD-4 in response to pH, NaCl, and KCl.](image2)

The continuous fluorescence of a sample containing B. pseudofirmus c13 ring was recorded (yellow). The reaction of NCD-4 with Glu54 was started by the addition of 100 \(\mu \)M NCD-4 and the increase of fluorescence at \(\lambda = 465 \) nm was monitored. An increase of pH to 9.0 immediately and significantly decelerates the reaction. The presence of 200 mM NaCl (blue) had no notable effect beyond effects also made by the presence of 200 mM KCl (red) on the reaction kinetics.

doi:10.1371/journal.pbio.1000443.g004
in bonding distance (2.6–3.1 Å) across all binding sites of the c₁₃ ring.

The subtle but important differences in the H-bonding network geometry allow a fine-tuning of the pKₐ of the carboxylic acid [27] and serve to optimize the required solvation energy [28] which is necessary to unlock the site and allow ion release and reloading during the ion translocation mechanism in the Fₒ complex (Figure 6 and Text S1). Fine tuning of these parameters is of crucial importance within the α/c-ring interface, where the rotor binding sites pass a more hydrophilic environment [29] (and J. D. Faraldo-Gómez, personal communication with TM) that is somewhat unique because of the adaptations in both the α- and c-subunits of the alkaliphile [13,14,15]. By contrast, while the ion-binding site is in contact with the hydrophobic barrier of the lipid phase, during the long rotation cycle of the rotor ring, the glutamate is expected to be neutralized. The structural data suggest that under these conditions the ion binding site of the c₁₃ ring remains in the ion-locked state, much in analogy with the Na⁺- and H⁺-locked states in the c₁₁ and c₁₅ ring, respectively [5,6].

The amino acid residues involved in the coordination of the water are exactly at the same positions of the c₁₃ ring as those that coordinate the water in the Na⁺-binding c₁₁ ring (Figure 1 and Figure S1B) [7]. This commonality of binding pattern underlines the evolutionary and functionally conserved relationship between the pmf- and smf-driven systems. The smf-driven ATP synthases have been suggested to be evolutionary pioneers in the establishment of the modern ATP synthases [30]. If this hypothesis is correct, the E/D-only type such as that seen in the B. pseudofirmus OF4 c₁₃ ring and in the mixed type (c₁₅ ring) primarily found in light-driven systems (chloroplasts, cyanobacteria) could be

Figure 5. Overlay of 13 c-subunits from B. pseudofirmus OF4 c₁₃ ring. The color code is given in B-factor (temperature factor) from low (blue) to high (red). The zoomed region shows the ion binding site with the rotameric states of Glu54 as discussed in the text. The position of the water is indicated by an arrow. The position of the membrane border at the outer helix is indicated with grey bars.

doi:10.1371/journal.pbio.1000443.g005
derivatives of the c\textsubscript{11} basic structure from an evolutionary point of view. Rather small differences in the amino acid sequences of the c-subunits apparently account for the different ion binding types, which are phenotypically manifested in the differently coupled and differently environmentally adapted ATP synthases.

A Hydronium Ion (\(H_3O^+\)) as Coupling Ion for F\textsubscript{1}F\textsubscript{o}-ATP Synthases?

Hydrogen atoms have a very weak X-ray diffracting power and their electron density often does not match with the exact position of the nucleus. Therefore, from a crystallographic point of view, at current resolution, the data do not allow the distinction between a protonated glutamate associating with a water molecule and a hydronium ion as a separate species. The scenario of a hydronium ion as a possible coupling ion species in F\textsubscript{1}F\textsubscript{o}-ATP synthases was proposed for consideration by Boyer more than 20 years ago [31]. Later, experimental differences in the pH-dependent inhibition kinetics of Na+- and H+-ATP synthases were interpreted to be in support of this hypothesis [32], but recent high-resolution structure data on the cyanobacterial [6] and chloroplast [33] c-rings clearly conflict with this as a general hypothesis. The possibility raised by the structural data presented here that this E/D-only type of c-ring may ultimately conform to Boyer’s suggestion awaits further experimental (and/or quantum mechanical) analyses.

Figure 6. Ion translocation model for the F\textsubscript{1}F\textsubscript{o}-ATP synthase of Bacillus pseudofirmus OF4. The model shows the c\textsubscript{13} ring (rotor, grey) with the neighboring a-subunit (stator, yellow) and the view is slanted to the membrane plane. A selection of c-subunits are shown with the ion coordinating Glu54 and helix 4 of the a-subunit [43] with Arg172 and Lys180 [13]. In ATP synthesis mode of the enzyme, the rotor moves from left to right. Two access pathways to and from the binding sites in the membrane [44,45] are indicated in grey. The grey bars mark the membrane border. The four stages (0, 1, 2, and 3) of the ion translocation mechanism are indicated in a close-up view and further described in Text S1.

DOI:10.1371/journal.pbio.1000443.g006
Conclusions
This work shows a new type of proton coordination in an F1F0-ATP synthase rotor ring. An additional electron density within the protonated ion binding site corresponds to a water molecule (but not Na\(^+\)). It is evident that the coordination network of the water itself, in analogy with the stable water coordination network in the Na\(^+\)-binding c11 ring, is a stabilizing and therefore a structural part of this c-ring. The presence of the water has been shown to enhance the Na\(^+\)-binding affinity in the Na\(^+\)-binding c11 ring [7]. Given this observation we propose that the water in the c11 ring binding pocket also enhances the proton affinity. High affinity rotor binding sites are of central importance for all ATP synthases but are especially important for ATP synthases of bacteria that grow in alkaline environments [13,14].

Some of the novel details of this c-ring are likely to be specific to Bacillus species growing at high pH [34], especially those differences in shape that relate directly to alkaliphile-specific motifs. Perhaps the novel manner in which a water participate in proton binding is also a consequence of adaptation of the ATP synthase to alkaliphilicity. Further structural analysis of c-rings from the large groups of non-alkaliphilic species harboring the E/D-only motif is necessary to clarify the precise role of such water molecules in the ion translocation process. It may reveal the presence of this ion binding type throughout a broader subset of molecules in the ion translocation process. It may reveal the only motif is necessary to clarify the precise role of such water molecules in the ion translocation process. It may reveal the presence of this ion binding type throughout a broader subset of H\(^+\)-coupled rotors, where it influences both ion affinity and selectivity during torque generation in the F\(_m\) motors of the H\(^+\)-dependent F-type ATP synthases, and possibly also for the ion-driven motors known from V-type and A-type ATPases/synthases.

Materials and Methods
Purification and Crystallization of the c-Ring from Bacillus pseudofirmus OF4
The ATP synthase was purified from B. pseudofirmus OF4 in which a six histidine tag was inserted after the N-terminal methionine in the chromosomal gene encoding the \(\beta\)-subunit of the ATP synthase. The complex was extracted from everted vesicles with 1% \(\beta\)-dodecyl maltoside in the presence of 3 mg/ml soybean asolectin and purified by affinity chromatography on NiNTA agarose. The isolation of the c-ring was carried out according to [25]. To improve purity of the sample, the c-ring was concentrated by ultrafiltration with an Amicon tube with a molecular weight cut-off of 10,000 (Millipore GmbH, Schwalbach, Germany), incubated with 1.5% Foscholine-12 (w/v) at 45°C for 10 min, and run on a sucrose-gradient [15,35]. The c-ring containing fractions were concentrated by Hydroxyapatite (BioGelHT, Bio-Rad, Munich, Germany) [36] and dialyzed for 12 h (10 mM Tris/HCl pH 8.0) at 4°C. The c-ring was further concentrated using polyethylene glycol (PEG) [37] to a final concentration of 2.5 mg/ml (bicinchoninic acid assay, Pierce, Rockford, IL, USA). Crystals were grown by vapor diffusion in hanging drops at 18°C to a size of approx. 200×100×100 \(\mu\)m\(^3\). The c-ring sample was supplied with 1% (w/v) \(\beta\)-undecyl maltoside and mixed with crystallization buffer (0.1 M sodium acetate, pH 4.3) and 20% PEG 400 (v/v). Before flash-freezing in liquid nitrogen, the rod shaped clear crystals were transferred for 2 min into a buffer containing 30% PEG 400 (v/v), 0.1 M sodium acetate pH 4.5, and 0.05% \(\beta\)-dodecyl maltoside (v/v).

NCD-4 Labeling Reactions
A 60 \(\mu\)l sample (0.2 mg/ml) of purified c13 from Bacillus pseudofirmus OF4 in 12.5 mM MES-HCl (pH 6.0) buffer and 0.05% \(\beta\)-dodecyl maltoside (w/v) was used. Continuous increase of fluorescence was recorded with an F-4300 Hitachi Fluorescence Spectrophotometer (\(\lambda_{ex}=342\) nm, \(\lambda_{em}=465\) nm). The reaction was started by the addition of 0.6 \(\mu\)l of NCD-4 (Invitrogen Inc.) from a 10 mM stock solution in dimethylformamide. After 2,000 s, the rate of reaction was greatly reduced by addition of 11 \(\mu\)l of 1 M Tris/HCl pH 9.0. The time required for the addition of these compounds (NCD-4 and Tris buffer) was approximately 5 s in both cases.

Data Collection, Structure Determination, and Refinement
Data to 2.5 Å resolution were collected from a single crystal at the Max-Planck beamline X10SA (PX-II) at the Swiss Light Source (SLS, Villigen, Switzerland) and processed using the XDS package [39]. The structure was determined by molecular replacement using PHASER [40] with two bundles of six subunits from the structure of the c13 ring from Spirulina platensis [6] as search model. Model bias was removed by density modification and solvent flattening with RESOLVE [38]. Iterative cycles of model building and refinement were performed using COOT [39] and phenix.refine of the PHENIX package [40], respectively. During refinement, non-crystallographic symmetry operation was applied. The refinement resulted in electron density maps that were unambiguously interpretable and after chain fitting the Ramachandran plot shows no outliers. Figures were generated using Povscript [41], POV-ray (http://www povray.org), and Pymol [42]. Electrostatic potential distribution was generated using Pymol [42].

Data deposition. The atomic coordinates and structure factors of the Bacillus pseudofirmus OF4 c13 ring have been deposited with accession code 2x2v.

Supporting Information
Figure S1 Comparison of c-ring structures from Ilyobacter tartaricus, Bacillus pseudofirmus OF4, and Spirulina platensis. (A) The c-subunits are shown in ribbon representation. Side views of the c-rings from I. tartaricus (yellow, lyce and 2xgm), B. pseudofirmus OF4 (blue, 2x2v), and S. platensis (green, 2wie). The membrane border is indicated with grey bars. (B) View on the three types of ion binding sites in F-type ATP synthases, c13, I. tartaricus; c13, B. pseudofirmus OF4; c15, S. platensis. The hydrogen bonding network is indicated by dashed lines and the ion/water molecules are shown with small spheres.

Figure S2 Electrostatic potential distribution of the B. pseudofirmus OF4 c13 ring surface. (A) Side view on the surface. (B) Section through the ring, same view as in (A). Detergent molecules (Foscholine-12) attached to the hydrophobic inner surface are displayed in stick representation (yellow) and helices of the c-ring in ribbon representation. Colors: red, negative; blue, positive; white, neutral. The membrane border is indicated with grey bars.

Figure S3 Comparison of ion coordination in B. pseudofirmus OF4 c13 ring and carboxypeptidase. (A) Ion coordination in the c13 ring from B. pseudofirmus OF4. (B) Ion coordination in carboxypeptidase A1 (PDB code 3iu). The water oxygen at the glutamate is shown as a red sphere. Distances are given in Å. In both cases, the water oxygen has four valences for hydrogen, either four (A) or three (B) of them are forming a hydrogen bonding network with the corresponding protein (complex).

Figure S4 Long-term kinetics of the modification of the ion-coordinating Glu54 of detergent-solubilized c13 ring
from *B. pseudofirmus* OF4 with NCD-4 in the absence and presence of NaCl. The fluorescence of a sample containing *B. pseudofirmus* c13 ring was taken every 20 min at pH 6 in the absence (yellow circles) or presence (blue squares) of 200 mM NaCl. The reaction of NCD-4 with Glu54 was started by the addition of 100 mM NCD-4 and the increase of fluorescence at λ = 438 nm was followed for 9,000 s. The arrow marks the time point, at which the rate of NCD-4 labeling was reduced by shifting the pH to 9 in the experiment shown in Figure 4 (see text). For experimental details see Materials and Methods section.

Acknowledgments

Werner Kühlbrandt is acknowledged for generous support of TM’s research and helpful comments on the manuscript. The authors also thank José D. Faraldo-Gómez for sharing his unpublished simulation results and contributing to the development of the microscopic model of ring rotation. Denys Pogorelov is acknowledged for providing models of the c13 ring used for molecular replacement trials. We furthermore would like to thank the staff of the Swiss Light Source (SLS, PXII) and the European Synchrotron Radiation Facility (ESRF) for their continuous support.

Author Contributions

The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: LP DBH TAK TM. Performed the experiments: LP OY DBH. Analyzed the data: LP OY TM. Contributed reagents/materials/analysis tools: LP OY DBH. Directed the project and wrote the paper: TAK TM.

References

1. Junge W, Siefaf H, Engelbrecht S (2009) Torque generation and elastic power transmission in the rotary F$_{1}$F$_{0}$-ATPase. Nature 459: 364–370.

2. Abraham JF, Leslie AGW, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F$_{1}$F$_{0}$ATPase from bovine heart mitochondria. Nature 370: 621–628.

3. Noji H, Yasuda R, Yoshida M, Kinosita K, Jr. (1997) Direct observation of the rotation of F$_{1}$-ATPase. Nature 386: 299–302.

4. Boyer PD (1993) The binding change mechanism for ATP synthase - some probabilities and possibilities. Biochim Biophys Acta 1140: 215–250.

5. Meier T, Polzer P, Diederichs K, Welte W, Dimroth P (2005) Structure of the rotor ring of F-Type Na$^{+}$-ATPase from *Synechocystis* strain. Science 308: 659–662.

6. Pogorelov D, Yildiz O, Faraldo-Gómez JD, Meier T (2009) High-resolution structure of the rotor ring of a proton-dependent ATP synthase. Nat Struct Mol Biol 16: 1068–1073.

7. Meier T, Krahl A, Bond IJ, Pogorelov D, Diederichs K, et al. (2009) Complete ion-coordination structure in the rotor ring of Na$^{+}$-dependent FATP synthases. J Mol Biol 391: 498–507.

8. Krulwich TA, Hicks DB, Swartz T, Ito M (2007) Bioenergetic adaptations that enable ATP synthesis at high pH but not at neutral pH values. J Biol Chem 282: 17395–17404.

9. Krulwich TA, Hicks DB, Guffanti AA, Baldwin K, Krulwich TA (2004) Replacement of the monomeric outer-membrane porin OmpG in the open and closed conformations. J Biol Chem 279: 20547–20554.

10. Krulwich TA, Ito M, Gilmour R, Hicks DB, Guffanti AA (1998) Energetics of alkalophilic *Bacillus* species: physiology and molecules. Adv Microb Physiol 40: 401–438.

11. Cook GM, Keis S, Morgan HW, von Ballmoos C, Matthey U, et al. (2003) Protonation and deprotonation pH dependence of the F$_{1}$F$_{0}$-ATP synthase from *thermoalkaliphilic Bacillus* sp. strain TAZA1. J Bacteriol 185: 4442–4449.

12. McMillan DGG, Keis S, Dimroth P, Cook GM (2007) A specific adaptation in the subunit of the ATP synthase of *Escherichia coli*. ASM Press, pp 311–329.

13. Meier T, Ferguson SA, Cook GM, Dimroth P, Vonck J (2006) Structural investigations of the membrane-embedded rotor ring of the F-ATPase from *Clostridium pasteurianum*. J Bacteriol 188: 7759–7764.

14. Yildiz O, Vinothkumar KR, Goswami P, Kühlbrandt W (2006) Structure of the monomeric outer-membrane porin OmpF in the open and closed conformations. EMBO J 25: 3702–3711.

15. Tewfik T (2004) SOLVE and RESOLVE: automated structure solution, density modification and model building. J Synchrotron Radiat 11: 49–52.

16. Embley T, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr 60: 2126–2132.

17. Zwart PH, Afonine PV, Grosse-Kunstleve RW, Hung LW, Iberer TR, et al. (2008) Automated structure solution with the PHENIX suite. Methods Mol Biol 426: 419–435.

18. Dunn P, Duhaylongsod VM, Valencia DF, Takano S, Loh XJ, et al. (2009) A suite of computational tools for the automated structure solution of macromolecular complexes. Acta Crystallogr D Biol Crystallogr 65: 308–318.

19. Zwart PH, Afonine PV, Grosse-Kunstleve RW, Hung LW, Iberer TR, et al. (2008) Automated structure solution with the PHENIX suite. Methods Mol Biol 426: 419–435.

20. Fenn D, Ring D, Penko GA (2003) POVScrip++: a program for model and data visualization using persistence of vision ray-tracing. J Appl Crystallogr 36: 944–947.

21. DeLano WL (2002) The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA).

Author Contributions

The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: LP DBH TAK TM. Performed the experiments: LP OY DBH. Analyzed the data: LP OY TM. Contributed reagents/materials/analysis tools: LP OY DBH. Directed the project and wrote the paper: TAK TM.
43. Valiyaveetil FI, Fillingame RH (1998) Transmembrane topography of subunit a in the Escherichia coli F₁F₀ ATP synthase. J Biol Chem 273: 16241–16247.
44. Steed PR, Fillingame RH (2009) Aqueous accessibility to the transmembrane regions of subunit c of the Escherichia coli F₁F₀ ATP synthase. J Biol Chem 284: 23243–23250.
45. Lau WC, Rubinstein JL (2010) Structure of intact Thermus thermophilus V-ATPase by cryo-EM reveals organization of the membrane-bound V_o motor. Proc Natl Acad Sci U S A 107: 1367–1372.