Muscle tone changes in the lower limbs of stroke patients induced by trunk stabilization exercises

MIN-HYUNG RHEE, MS, PT1, LAURENTIUS JONGSOON KIM, PhD, PT2* 

1) Department of Rehabilitation Medicine, Pusan National University Hospital, Republic of Korea
2) Department of Physical Therapy, College of Health Sciences, Catholic University of Pusan: 9 Bugok, 3-dong, Geumjung-gu, Busan 609-757, Republic of Korea

Abstract. [Purpose] The purpose of this study was to identify the effects of trunk stabilization exercises on the spasticity of the lower limbs in stroke patients. [Subject] The subject of this study was a 38-year-old male patient who experienced a spontaneous intracranial hemorrhage, and had motor paralysis symptoms and spasticity on the left side. [Methods] The Hmax/Mmax ratio was measured before and after the trunk stabilization exercises, by using proprioceptive neuromuscular facilitation techniques. [Results] The Hmax/Mmax ratio changed from 37% to 20%. [Conclusion] Trunk stabilization exercises help control the muscle tone in stroke patients.

Key words: Trunk stability, Stroke, Spasticity

INTRODUCTION

Spasticity is defined as a motor disorder characterized by “a velocity-dependent increase in the tonic stretch reflex (muscle tone) with exaggerated tendon reflexes, resulting from the hyperexcitability of the stretch reflex, as one component of the upper motor neuron syndrome”1). It often appears in patients with central nervous system diseases such as multiple sclerosis, spinal cord injury, and traumatic brain injury2). This spasticity leads to involuntary muscle contractions that interfere with the normal movements of the arms and legs, restrict the range of motion of joints, cause joint contractures, and lower the functions of daily living, thereby restricting the functional recovery of patients3). To control spasticity, drug treatment, injection therapies, and operative treatments are being used; however, they have the risk of causing adverse reactions and their effects differ depending on the technical abilities of the operators4). Physical therapies that pose less risks of adverse reactions include massage therapy5), electrical stimulation treatment6), stretching stimulation therapy7), and vibration stimulation therapy8). Recent clinical studies found that trunk stabilization exercises influence the muscle tone of the distal part; however, there is still insufficient clinical evidence. Therefore, this study was conducted to investigate the effects of trunk stabilization exercises on the spasticity of the lower limbs of stroke patients.

SUBJECT AND METHODS

The subject of this study was a 38-year-old male patient. In January 2003, he experienced a spontaneous intracranial hemorrhage in the basal ganglia and pons of the right side, which led to motor paralysis symptoms on the left side. He scored 30 on the Mini-mental State Examination and could perform the intervention according to the instructions of the therapist. His sensory functions were normal. His abnormal reflexes, Babinski’s reflex, and Hoffmann reflex (H-reflex) were evaluated. His motor functions were Fair+ in the proximal part of the left upper limb, Poor in the distal part, Fair+ in the proximal part of the left lower limb, and Zero in the distal part. His motions of the upper and lower limbs of the right side were normal. The modified Ashworth scale (MAS) score was 3 for the upper limb and 3 for the lower limb. The subject consented to participate after receiving an explanation about the purpose and procedure of the study. This study was approved by the institutional review board of Pusan National University Hospital (E-2015012).

The Hmax/Mmax ratio was used to measure the excitability of the α-motor neuron, which indicates spasticity9). For the electrical stimulation to obtain the H-reflex, the posterior tibial nerve at the midpopliteal crease was stimulated with bipolar electrodes. The stimulation was applied with 1-Hz frequency in the forward direction, and the stimulation frequency was one per 2 s. The low-pass filtering was set to 10 kHz, high-pass filtering to 5 Hz, sensitivity to 5,000 mV, and sweep speed to 5 ms. For the attachment of the electrodes for H-reflex, the patient was laid in prone position and the active electrode was attached to the medial triceps surae of the tibial crest, at the center of a line connecting the middle point of the bisected medial surface of the tibia at the knee, with the tip of the medial malleolus. The reference electrode was attached to a site above the Achilles tendon, and the ground
the motions. This type of movement strategy also appears in the early stage of balance development during which the degrees of freedom of the legs and trunk are restricted to enable the selective movements of the muscles surrounding the ankle joint. With the progress of learning, the degrees of freedom of the legs and trunk increase, which in turn improves the balance performance capability. Also, in this study, a more selective movement control of the lower limb was possible because the trunk stabilization exercise that induced cocontraction of the trunk restricted the degree of freedom of the body. This study has the limitation of having a single subject; however, the result shows that a combination of the trunk stabilization exercise with other exercises could help better control the muscle tone in the clinical treatment of hemiplegic patients.

REFERENCES

1) Feldman RG, Young RR, Koella WP: Spasticity: disordered motor control. Symposia Specialists, Inc., 1980.
2) Dietz V, Sinkjaer T: Spastic movement disorder: impaired reflex function and altered muscle mechanics. Lancet Neurol, 2007, 6: 725–733. [Medline] [CrossRef]
3) Welmer AK, von Arbin M, Widén Holmquist L, et al.: Spasticity and its association with functioning and health-related quality of life 18 months after stroke. Cerebrovasc Dis, 2006, 21: 247–253. [Medline] [CrossRef]
4) Bhakta BB: Management of spasticity in stroke. Br Med Bull, 2000, 56: 476–485. [Medline] [CrossRef]
5) Macgregor R, Campbell R, Gladden MH, et al.: Effects of massage on the mechanical behaviour of muscles in adolescents with spastic diplegia: a pilot study. Dev Med Child Neurol, 2007, 49: 187–191. [Medline] [CrossRef]
6) Yan T, Hui-Chan CW, Li LS: Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. Stroke, 2005, 36: 80–85. [Medline] [CrossRef]
7) Yeh CY, Tsai KH, Chen JJ: Effects of prolonged muscle stretching with constant torque or constant angle on hypertonic calf muscles. Arch Phys Med Rehabil, 2005, 86: 235–241. [Medline] [CrossRef]
8) Shirahashi I, Matsumoto S, Shimodzono M, et al.: Functional vibratory stimulation on the hand facilitates voluntary movements of a hemiplegic upper limb in a patient with stroke. Int J Rehabil Res, 2007, 30: 227–230. [Medline] [CrossRef]
9) Kim LJ: Changes of compound muscle action potential after low-intensity exercise with transient restriction of blood flow: a randomized, placebo-controlled trial. J Phys Ther Sci, 2009, 21: 361–366. [CrossRef]
10) Beckers D, Buck M, Adler S: PNF in practice: an illustrated guide. Spring er, 2013.
11) Kim Y, Kim E, Gong W: The effects of trunk stability exercise using PNF on the functional reach test and muscle activities of stroke patients. J Phys Ther Sci, 2011, 23: 699–702. [CrossRef]
12) Bertoti DB: Effect of therapeutic horseback riding on posture in children with cerebral palsy. Phys Ther, 1988, 68: 1505–1512. [Medline]
13) Lechner HE, Feldhaus S, Gudmundsen L, et al.: The short-term effect of hip manipulation on the functional reach test and muscle activities of stroke patients. J Phys Ther Sci, 2011, 23: 699–702. [CrossRef]
14) Dishman JD, Burke J: Spinal reflex excitability changes after cervical and lumbar spinal manipulation: a comparative study. Spine J, 2003, 3: 204–212. [Medline] [CrossRef]
15) Leonard CT, Diedrich PM, Matsumoto T, et al.: H-reflex modulations during voluntary and automatic movements following upper motor neuron damage. Electroencephalogr Clin Neurophysiol, 1998, 109: 475–483. [Medline] [CrossRef]
16) Vereijken B, Emmerik REV, Whiting H, et al.: Freezing degrees of freedom in skill acquisition. J Mot Behav, 1992, 24: 133–142. [CrossRef]
17) Woolacott MH, Burner P, Jensen J, et al.: Development of postural responses during standing in healthy children and children with spastic diplegia. Neurosci Biobehav Rev, 1998, 22: 583–589. [Medline] [CrossRef]