In this note we determine the obstruction to triviality of the stack of exact vertex algebroids thereby recovering the result of [GMS].

The stack $\mathcal{VA}_{\mathcal{O}_X}$ of exact vertex \mathcal{O}_X-algebroids is a torsor under the stack in Picard groupoids $\mathcal{EC}_{\mathcal{O}_X}$ of exact Courant \mathcal{O}_X-algebroids. The latter is equivalent to the stack of torsors under $\Omega^2_X \to \Omega^3_{cl}$. Therefore, $\mathcal{EC}_{\mathcal{O}_X}$-torsors are classified by $H^2(X; \Omega^2_X \to \Omega^3_{cl})$.

The goal of the present note is to determine the class of $\mathcal{VA}_{\mathcal{O}_X}$.

The first step toward this goal is to replace $\mathcal{VA}_{\mathcal{O}_X}$ by the equivalent $\mathcal{EC}_{\mathcal{O}_X}$-torsor $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$, whose (locally defined) objects are certain Courant algebroids which are extensions by Ω^1_X of the Lie \mathcal{O}_X-algebroid $A_{\Omega^1_X}$, the Atiyah algebra of the sheaf Ω^1_X. Any such extension induces an $A_{\Omega^1_X}$-invariant symmetric pairing \langle , \rangle on the Lie algebra $\text{End}_{\mathcal{O}_X}(\Omega^1_X)$.

The objects of $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$ are those for which \langle , \rangle is given by the negative of the trace of the product of endomorphisms.

We show that $\mathcal{VA}_{\mathcal{O}_X}$ and $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$ are anti-equivalent as $\mathcal{EC}_{\mathcal{O}_X}$-torsors by adapting the strategy of [BD] to the present setting and making use of (the degree zero part of) the unique vertex Ω^\bullet_X-algebroid constructed in [B]. It follows that the classes of $\mathcal{VA}_{\mathcal{O}_X}$ and $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$ in $H^2(X; \Omega^2_X \to \Omega^3_{cl})$ are negatives of each other. The advantage of passing to $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$ has to do with the fact that Courant algebroids are objects of “classical” nature. In particular they are \mathcal{O}_X-modules (as opposed to vertex algebroids).

The second step is the determination of the class of $CE_{\mathcal{O}_X}(A_{\Omega^1_X}) \langle , \rangle$ which is achieved in the more general framework. Namely, we consider a transitive Lie \mathcal{O}_X algebroid \mathcal{A}, locally free of finite rank over \mathcal{O}_X, and denote by \mathfrak{g} the kernel of the anchor map. Thus, \mathfrak{g} is a sheaf of Lie algebras in \mathcal{O}_X-modules. If \mathcal{A} is a Courant algebroid, such that the associated Lie algebroid is identified with \mathcal{A}, then \mathfrak{g} is an extension of \mathcal{A} by Ω^1_X. The symmetric bilinear form on \mathcal{A} induces an \mathcal{A}-invariant symmetric bilinear form on \mathfrak{g}.

Suppose \mathcal{A}, \mathfrak{g} as above, and \langle , \rangle an \mathcal{A}-invariant symmetric bilinear form on \mathfrak{g}. Let $CE_{\mathcal{O}_X}(\mathcal{A}) \langle , \rangle$ denote the stack of whose (locally defined) objects are pairs, consisting of a Courant algebroid \mathcal{A} together with an identification of the associated Lie algebroid with \mathcal{A}, such that the symmetric bilinear form induced on \mathfrak{g} coincides with \langle , \rangle. We show that, if \mathcal{A} admits a flat connection locally on X, then $CE_{\mathcal{O}_X}(\mathcal{A}) \langle , \rangle$ has a natural structure of an $\mathcal{EC}_{\mathcal{O}_X}$-torsor and calculate its characteristic class in $H^2(X; \Omega^2_X \to \Omega^3_{cl})$. It turns out that...
it is equal to the Pontryagin class naturally associated to the pair \((A, \langle , \rangle)\). For example, the Pontryagin class of \((A_{\Omega^1_X}, \langle , \rangle)\) (where the symmetric pairing is given by the negative of the trace of the product of endomorphisms) is equal to \(-2 \text{ch}(\Omega^1_X)\). Hence, the class of \(E\mathcal{VA}_{O_X}\) in \(H^2(X; \Omega^2_X \to \Omega^{3,ct})\) is equal to \(2 \text{ch}(\Omega^1_X)\).

The paper is organized as follows. In Section 2 we recall the basic material on Courant algebroids. In Section 3 we study Courant extensions of transitive Lie algebroids and classification thereof. In Section 4 we recall the basic material on vertex algebroids and their relationship to Courant algebroids. We explain how the construction of [B] gives an example of a vertex extension (of the Atiyah algebra of the cotangent bundle) and use this example to classify exact vertex algebroids.

The fact that the Pontryagin class of a principal bundle (defined with respect to an invariant symmetric pairing on the Lie algebra of the structure group) is the obstruction to the existence of a Courant extension of the Atiyah algebra of the principal bundle was pointed out by P. Ševera in [S] together with the constructions of 3.5.

2. COURANT ALGEBROIDS

2.1. Courant algebroids. A Courant \(O_X\)-algebroid is an \(O_X\)-module \(Q\) equipped with

1. a structure of a Leibniz \(C\)-algebra

\[
[,] : Q \otimes_C Q \to Q ,
\]

2. an \(O_X\)-linear map of Leibnitz algebras (the anchor map)

\[
\pi : Q \to T_X ,
\]

3. a symmetric \(O_X\)-bilinear pairing

\[
\langle , \rangle : Q \otimes_{O_X} Q \to O_X ,
\]

4. a derivation

\[
\partial : O_X \to Q
\]

such that \(\pi \circ \partial = 0\)

which satisfy

\[
[q_1, f q_2] = f[q_1, q_2] + \pi(q_1)(f)q_2 \quad (2.1.1)
\]

\[
\langle [q_1, q_2] + [q_1, [q, q_2]] \rangle = \pi(q)(\langle q_1, q_2 \rangle) \quad (2.1.2)
\]

\[
[q, \partial(f)] = \partial(\pi(q)(f)) \quad (2.1.3)
\]

\[
\langle q, \partial(f) \rangle = \pi(q)(f) \quad (2.1.4)
\]

\[
[q_1, q_2] + [q_2, q_1] = \partial(\langle q_1, q_2 \rangle) \quad (2.1.5)
\]

for \(f \in O_X\) and \(q, q_1, q_2 \in Q\).

2.1.1. A morphism of Courant \(O_X\)-algebroids is an \(O_X\)-linear map of Leibnitz algebras which commutes with the respective anchor maps and derivations and preserves the respective pairings.
2.2. **The associated Lie algebroid.** Suppose that \(Q \) is a Courant \(\mathcal{O}_X \)-algebroid. Let

\[
\Omega_Q \overset{\text{def}}{=} \mathcal{O}_X \partial(\mathcal{O}_X) \subset Q,
\]

\[
\overline{Q} \overset{\text{def}}{=} Q/\Omega_Q.
\]

Note that the symmetrization of the Leibniz bracket on \(Q \) takes values in \(\Omega_Q \).

For \(q \in Q, f, g \in \mathcal{O}_X \)

\[
[q, f \partial(g)] = f[q, \partial(g)] + \pi(q)(f)\partial(g)
\]

\[
= f\partial(\pi(q)(g)) + \pi(q)(f)\partial(g)
\]

which shows that \([Q, \Omega_Q] \subseteq \Omega_Q\). Therefore, the Leibniz bracket on \(Q \) descends to the Lie bracket

\[
[,] : \overline{Q} \otimes_{\mathcal{O}_X} \overline{Q} \to \overline{Q}.
\]

Since \(\pi \) is \(\mathcal{O}_X \)-linear and \(\pi \circ \partial = 0 \), \(\pi \) vanishes on \(\Omega_Q \) and factors through the map

\[
\pi : \overline{Q} \to T_X.
\]

2.2.1. **Lemma.** The bracket (2.2.1) and the anchor (2.2.2) determine the structure of a Lie \(\mathcal{O}_X \)-algebroid on \(\overline{Q} \).

2.3. **Transitive Courant algebroids.** A Courant \(\mathcal{O}_X \)-algebroid is called transitive if the anchor is surjective.

2.3.1. **Remark.** A Courant \(\mathcal{O}_X \)-algebroid \(Q \) is transitive if and only if the associated Lie \(\mathcal{O}_X \)-algebroid is.

2.3.2. Suppose that \(Q \) is a transitive Courant \(\mathcal{O}_X \)-algebroid. The derivation \(\partial \) induces the \(\mathcal{O}_X \)-linear map

\[
i : \Omega^1_X \to Q.
\]

Since \(\langle q, \alpha \rangle = \iota_{\pi(q)}\alpha \), it follows that the map \(i \) is adjoint to the anchor map \(\pi \). The surjectivity of the latter implies that \(i \) is injective. Since, in addition, \(\pi \circ i = 0 \) the sequence

\[
0 \to \Omega^1_X \xrightarrow{i} Q \to \overline{Q} \to 0
\]

is exact. Moreover, \(i \) is isotropic with respect to the symmetric pairing.

2.3.3. **Definition.** A connection on a transitive Courant \(\mathcal{O}_X \)-algebroid \(Q \) is a \(\mathcal{O}_X \)-linear isotropic section of the anchor map \(Q \to T_X \).

2.3.4. **Definition.** A flat connection on a transitive Courant \(\mathcal{O}_X \)-algebroid \(Q \) is a \(\mathcal{O}_X \)-linear section of the anchor map which is morphism of Leibniz algebras.

2.3.5. **Remark.** As a consequence of (2.1.5) a flat connection is a connection.

2.4. **Exact Courant algebroids.**
2.4.1. **Definition.** The Courant algebroid \mathcal{Q} is called *exact* if the anchor map $\pi : \mathcal{Q} \to T_X$ is an isomorphism.

We denote the stack of exact Courant \mathcal{O}_X-algebroids by $\mathcal{ECA}_{\mathcal{O}_X}$.

2.4.2. A morphism of exact Courant algebroids induces a morphism of respective extensions of T_X by Ω^1_X, hence is an isomorphism of \mathcal{O}_X-modules. It is clear that the inverse isomorphism is a morphism of Courant \mathcal{O}_X-algebroids. Therefore, $\mathcal{ECA}_{\mathcal{O}_X}$ is a stack in groupoids.

2.4.3. The evident morphism $\mathcal{ECA}_{\mathcal{O}_X} \to \text{Ext}^1_{\mathcal{O}_X}(T_X, \Omega^1_X)$ is faithful. The natural structure of a \mathbb{C}-vector space in categories on $\text{Ext}^1_{\mathcal{O}_X}(T_X, \Omega^1_X)$ restricts to one on $\mathcal{ECA}_{\mathcal{O}_X}$. In particular, $\mathcal{ECA}_{\mathcal{O}_X}$ is a stack in Picard groupoids.

2.4.4. **Connections.** Suppose that \mathcal{Q} is an exact Courant \mathcal{O}_X-algebroid. Let $\mathcal{C}(\mathcal{Q})$ denote the sheaf of (locally defined) connections on \mathcal{Q}.

2.4.5. **Lemma.** $\mathcal{C}(\mathcal{Q})$ is an Ω^2_X-torsor.

Proof. The difference of two sections of the anchor map $\mathcal{Q} \to T_X$ is a map $T_X \to \Omega^1_X$ or, equivalently, a section of $\Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X$. The difference of two isotropic sections gives rise to a skew-symmetric tensor, i.e. a section of Ω^2_X. \square

2.4.6. **Curvature.** For a (locally defined) connection ∇ the formula

$$(\xi, \xi_1, \xi_2) \mapsto \iota_\xi(\nabla(\xi_1), \nabla(\xi_2)) - \nabla(\iota_\xi(\xi_1, \xi_2))$$

defines a section, denoted $c(\nabla)$, of $\Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X$ called the curvature of the connection ∇.

A connection ∇ is called flat if $c(\nabla) = 0$.

2.4.7. **Lemma.**

1. The tensor $c(\nabla)$ is skew-symmetric, i.e. a section of Ω^3_X.
2. The differential form $c(\nabla)$ is closed.
3. For $\alpha \in \Omega^2_X$, $c(\nabla + \alpha) = c(\nabla) + d\alpha$.

2.4.8. **Exact Courant algebroids with connection.** Pairs (\mathcal{Q}, ∇), where $\mathcal{Q} \in \mathcal{ECA}_{\mathcal{O}_X}$ and ∇ is a connection on \mathcal{Q} give rise in the obvious way to a stack in Picard groupoids which we denote \mathcal{ECA}_∇.

The “zero” object in \mathcal{ECA}_∇ is “the Courant algebroid”, $\mathcal{Q}_0 = \Omega^1_X \oplus T_X$ with the obvious connection, the symmetric pairing given by the duality pairing between Ω^1_X and T_X, and the bracket characterized by the fact the connection is flat.

Note that the pair (\mathcal{Q}, ∇) has no non-trivial automorphisms. The assignment $(\mathcal{Q}, \nabla) \mapsto c(\nabla)$ gives rise to the morphism of Picard groupoids

$$c : \mathcal{ECA}_\nabla \to \Omega^{3,cl}_X,$$ \hspace{1cm} (2.4.1)

where $\Omega^{3,cl}_X$ is viewed as discrete, i.e. the only morphisms are the identity maps.
2.4.9. **Lemma.** The morphism (2.4.1) is an equivalence.

Proof. The inverse is given by the following construction. Let \([,]_0\) denote the Leibniz bracket on \(Q_0\). For \(H \in \Omega X^{3,cl} , \xi_1, \xi_2 \in T_X\) let

\[
[\xi_1, \xi_2]_H = [\xi_1, \xi_2]_0 + \iota_{\xi_1} \wedge \iota_{\xi_2} H.
\]

This operation extends uniquely to a Leibniz bracket \([,]_H\) on \(\Omega X^1 \oplus T_X\) which, together with the symmetric pairing induced by the duality pairing, is a structure of an exact Courant algebroid. Let \(Q_H\) denote this structure.

The obvious connection on \(Q_H\) has curvature \(H\). \(\square\)

2.4.10. **Classification of Exact Courant algebroids.** Suppose that \(Q\) is an exact Courant \(O_X\)-algebroid. The assignment \(\nabla \mapsto c(\nabla)\) gives rise to the morphism

\[
c : C(Q) \to \Omega X^{3,cl}.
\]

The formula \(c(\nabla + \alpha) = c(\nabla) + d\alpha\) means that \(c\) is a morphism of sheaves with an action of \(\Omega X^2\), where \(\alpha \in \Omega X^2\) acts on \(H \in \Omega X^{3,cl}\) by \(H \mapsto H + d\alpha\). Thus, the pair \((C(Q), c)\) is a torsor under \((\Omega X^2 \xrightarrow{d} \Omega X^{3cl})\).

2.4.11. **Lemma.** The correspondence \(Q \mapsto (C(Q), c)\) establishes an equivalence of stacks in \(\mathbb{C}\)-vector spaces in categories

\[
\mathcal{ECA}_{O_X} \to (\Omega X^2 \xrightarrow{d} \Omega X^{3cl}) - \text{tors}.
\]

In particular, the \(\mathbb{C}\)-vector space of isomorphism classes of exact Courant algebroids is canonically isomorphic to \(H^1(X; \Omega X^2 \to \Omega X^{3cl})\).

2.4.12. **Locally trivial exact Courant algebroids.** An exact Courant algebroid is said to be **locally trivial** if it admits a flat connection locally on \(X\).

Let \(\mathcal{ECA}_{O_X}^{loc.triv.}\) denote the stack of locally trivial exact Courant \(O_X\)-algebroids.

2.4.13. For an exact Courant \(O_X\)-algebroid let \(C^{fl}(Q)\) denote the sheaf of flat connections on \(Q\).

The sheaf \(C^{fl}(Q)\) is locally nonempty if and only if \(Q\) is locally trivial, in which case it is a torsor under \(\Omega X^{2cl}\). The correspondence \(Q \to C^{fl}(Q)\) establishes an equivalence of stacks \(\mathcal{ECA}_{O_X}^{loc.triv.} \to \Omega X^{2cl} - \text{tors}\).

3. Courant extensions of Lie algebroids

Suppose that \(A\) a Lie \(O_X\)-algebroid.

3.1. Courant extensions.

3.1.1. **Definition.** A Courant extension of \(A\) is a Courant \(O_X\)-algebroid \(\hat{A}\) together with the isomorphism \(\hat{A} = A\) of Lie \(O_X\)-algebroids.
3.1.2. **Morphisms of Courant extensions.** A morphism of Courant extensions of \mathcal{A} is a morphism of Courant \mathcal{O}_X-algebroids which is compatible with the identifications.

Let $\mathcal{CE}_{\mathcal{O}_X}(\mathcal{A})$ denote the stack of Courant extensions of \mathcal{A}.

3.1.3. For a Lie (respectively Courant) \mathcal{O}_X-algebroid \mathcal{A} let $\mathfrak{g}(\mathcal{A})$ denote the kernel of the anchor map. Then, $\mathfrak{g}(\mathcal{A})$ is a Lie (respectively Courant) \mathcal{O}_X-algebroid with the trivial anchor natural in \mathcal{A}.

If $\hat{\mathcal{A}}$ is a Courant extension of \mathcal{A}, then $\mathfrak{g}(\hat{\mathcal{A}})$ is a Courant extension of $\mathfrak{g}(\mathcal{A})$ Hence, there is a morphism $\mathfrak{g}(\) : \mathcal{CE}_{\mathcal{O}_X}(\mathcal{A}) \to \mathcal{CE}_{\mathcal{O}_X}(\mathfrak{g}(\mathcal{A}))$.

3.2. **Courant extensions of transitive Lie algebroids.** From now on we assume that \mathcal{A} is a transitive Lie \mathcal{O}_X-algebroid and $\mathfrak{g}(\mathcal{A})$ (equivalently \mathfrak{g}) is a locally free \mathcal{O}_X-module of finite rank.

For a sheaf \mathcal{F} of \mathcal{O}_X-modules let \mathcal{F}^\vee denote the dual $\text{Hom}_{\mathcal{O}_X}(\mathcal{F}, \mathcal{O}_X)$.

3.2.1. Suppose that $\hat{\mathcal{A}}$ is a Courant extension of \mathcal{A}. Then, the exact sequence

$$0 \to \Omega^1_X \to \hat{\mathcal{A}} \to \mathcal{A} \to 0$$

is canonically associated to the Courant extension $\hat{\mathcal{A}}$ of \mathcal{A}. Since a morphism of Courant extensions of \mathcal{A} induces a morphism of the associated extensions of \mathcal{A} by Ω^1_X, it is an isomorphism of the underlying sheaves, and it is clear that the inverse isomorphism is a morphism of Courant Ω-extensions of \mathcal{A}.

Therefore, $\mathcal{CE}_{\mathcal{O}_X}(\mathcal{A})$ is a stack in groupoids.

3.2.2. **Remark.** $\mathcal{CE}_{\mathcal{O}_X}(\mathcal{T}_X)$ is none other than $\mathcal{ECA}_{\mathcal{O}_X}$.

3.2.3. Suppose that $\hat{\mathcal{A}}$ is a Courant extension of \mathcal{A}. Let $\mathfrak{g} = \mathfrak{g}(\mathcal{A})$ and $\hat{\mathfrak{g}} = \mathfrak{g}(\hat{\mathcal{A}})$ for short.

Since $\langle \hat{\mathfrak{g}}, \Omega^1_X \rangle = 0$, the pairing on $\hat{\mathcal{A}}$ induces the pairing

$$\langle , \rangle : \hat{\mathfrak{g}} \otimes_{\mathcal{O}_X} \mathcal{A} \to \mathcal{O}_X$$

and the pairing

$$\langle , \rangle : \mathfrak{g} \otimes_{\mathcal{O}_X} \mathfrak{g} \to \mathcal{O}_X .$$

These yield, respectively, the maps $\hat{\mathfrak{g}} \to \mathcal{A}^\vee$ and $\mathfrak{g} \to \mathfrak{g}^\vee$. Together with the projection $\hat{\mathfrak{g}} \to \mathfrak{g}$ and the map $\mathcal{A}^\vee \to \mathfrak{g}^\vee$ adjoint to the inclusion $\mathcal{A} \to \mathfrak{A}$ they fit into the diagram

$$
\begin{array}{ccc}
\hat{\mathfrak{g}} & \longrightarrow & \mathcal{A}^\vee \\
\downarrow & & \downarrow \\
\mathfrak{g} & \longrightarrow & \mathfrak{g}^\vee
\end{array}
$$

3.2.4. **Lemma.** The diagram (3.2.2) is Cartesian.

3.2.5. **Corollary.** $\hat{\mathfrak{g}}$ is canonically isomorphic to $\mathcal{A}^\vee \times_{\mathfrak{g}^\vee} \mathfrak{g}$.
3.3. Central extensions of Lie algebras. We maintain the notations introduced above, i.e. \(A \) is a transitive Lie \(\mathcal{O}_X \)-algebroid and \(g \) denotes \(g(A) \) so that there is an exact sequence

\[
0 \to g \overset{i}{\to} A \overset{\pi}{\to} T_X \to 0.
\]

Hence, \(g \) is a Lie algebra in \(\mathcal{O}_X \)-modules. We assume that \(g \) is locally free of finite rank.

Suppose in addition that \(g \) is equipped with a symmetric \(\mathcal{O}_X \)-bilinear pairing

\[
\langle \cdot, \cdot \rangle : g \otimes \mathcal{O}_X g \to \mathcal{O}_X
\]

which is invariant under the adjoint action of \(A \), i.e., for \(a \in A \) and \(b, c \in g \)

\[
\pi(a)(\langle b, c \rangle) = \langle [a, b], c \rangle + \langle b, [a, c] \rangle
\]

holds.

3.3.1. From Lie to Leibniz. The map \(i : g \to A \) and the pairing on \(g \) give rise to the maps

\[
A^\vee \overset{i^\vee}{\to} g^\vee \overset{\langle \cdot, \cdot \rangle}{\leftarrow} g
\]

Let \(\widehat{g} = A^\vee \times_g^\vee g \) and let \(\text{pr} : \widehat{g} \to g \) denote the canonical projection. A section of \(\widehat{g} \) is a pair \((a^\vee, b)\), where \(a^\vee \in A^\vee \) and \(b \in g \), which satisfies \(i^\vee(a^\vee)(c) = \langle b, c \rangle \) for \(c \in g \).

The Lie algebra \(g \) acts on \(A \) (by the restriction of the adjoint action) by \(\mathcal{O}_X \)-linear endomorphisms and the map \(i : g \to A \) is a map of \(g \)-modules. Therefore, \(A^\vee \) and \(g^\vee \) are \(g \)-modules in a natural way and the map \(i^\vee \) is a morphism of such. Hence, \(\widehat{g} \) is a \(g \)-module in a natural way and the map \(\text{pr} \) is a morphism of \(g \)-modules.

As a consequence, \(\widehat{g} \) acquires the canonical structure of a Leibniz algebra with the Leibniz bracket \([\widehat{a}, \widehat{b}]\) of two sections \(\widehat{a}, \widehat{b} \in \widehat{g} \) given by the formula \([\widehat{a}, \widehat{b}] = \text{pr}(\widehat{a})(\widehat{b})\).

We define a symmetric \(\mathcal{O}_X \)-bilinear pairing

\[
\langle \cdot, \cdot \rangle : \widehat{g} \otimes \mathcal{O}_X \widehat{g} \to \mathcal{O}_X
\]

as the composition of \(\text{pr} \otimes \text{pr} \) with the pairing on \(g \).

The inclusion \(\Omega^1_X \overset{\pi^\vee}{\to} A^\vee \) gives rise to the derivation \(\partial : \mathcal{O}_X \to \widehat{g} \).

3.3.2. Lemma. The Leibniz bracket, the symmetric pairing and the derivation defined above endow \(\widehat{g} \) with the structure of a Courant \(\Omega^1_X \)-extension of \(g \) (in particular, a Courant \(\mathcal{O}_X \)-algebroid with the trivial anchor map).

3.3.3. Lemma. The isomorphism of Corollary 3.2.5 is an isomorphism of Courant extensions of \(g(A) \).

3.3.4. Suppose that \(\nabla \) is a connection on \(A \). \(\nabla \) determines

1. the isomorphism \(g \oplus T_X \overset{\nabla}{\to} A \) by \(a + \xi \mapsto i(a) + \nabla(\xi) \), where \(a \in g \) and \(\xi \in T_X \);
2. the isomorphism \(\phi^\vee : \widehat{g} \to \Omega^1_X \oplus g \) by \((a^\vee, b) \mapsto \nabla^\vee(a^\vee) + b \), where \(a^\vee \in A^\vee \), \(b \in g \), \(i^\vee(a^\vee) = \langle b, \cdot \rangle \), \(\nabla^\vee : A^\vee \to \Omega^1_X \) is the transpose of \(\nabla \) and \(i^\vee : A^\vee \to \mathcal{O}_X g \) is the transpose of \(i \).
Let $[\ , \]_{\nabla}$ denote the Leibniz bracket on $\Omega^1_X \oplus \mathfrak{g}$ induced by ϕ_{∇}. A simple calculation (which is left to the reader) shows that it is the extension of the Lie bracket on \mathfrak{g} by the Ω^1_X-valued (Leibniz) cocycle $c_{\nabla}(\ , \ : \mathfrak{g} \otimes \mathfrak{g} \to \Omega^1_X$ determined by $\iota_{\xi}(a, b) = \langle [a, \nabla(\xi)], b \rangle$ (where $\xi \in \mathcal{T}_X$, $a, b \in \mathfrak{g}$, and the bracket is computed in \mathcal{A}). In other words, $c_{\nabla}(\ , \)$ is the composition

$$\mathfrak{g} \otimes \mathfrak{g} \xrightarrow{\nabla^0 \otimes \text{id}} \Omega^1_X \otimes \mathfrak{g} \times \mathfrak{g} \xrightarrow{\text{id} \otimes (\ , \)} \Omega^1_X,$$

where ∇^0 is the connection on \mathfrak{g} induced by ∇.

Suppose that $A \in \Omega^1_X \otimes_{\mathcal{O}_X} \mathfrak{g}$. The automorphism of $\Omega^1_X \oplus \mathfrak{g}$ given by $(\alpha, a) \mapsto (\alpha + \langle A, a \rangle, a)$ is the isomorphism of Courant algebroids $(\Omega^1_X \oplus \mathfrak{g}, \{\ , \}_{\nabla}) \to (\Omega^1_X \oplus \mathfrak{g}, \{\ , \}_{\nabla + A})$ which corresponds to the identity map on $\hat{\mathfrak{g}}$ under the identifications ϕ_{∇} and $\phi_{\nabla + A}$.

3.4. The action of $\mathcal{EC}_\mathcal{A}_{\mathcal{O}_X}$. As before, \mathcal{A} is a transitive Lie \mathcal{O}_X-algebroid locally free of finite rank over \mathcal{O}_X, \mathfrak{g} denotes $\mathfrak{g}(\mathcal{A})$, $\{\ , \}$ is an \mathcal{O}_X-bilinear symmetric \mathcal{A}-invariant pairing on \mathfrak{g}, $\hat{\mathfrak{g}}$ is the Courant extension of \mathfrak{g} constructed in 3.3.1.

3.4.1. Let $\mathcal{CE}_{\nabla}\mathcal{T}_{\mathcal{O}_X}(\mathcal{A})_{\{\ , \}}$ denote the stack of Courant extensions of \mathcal{A} which induce the given pairing $\langle \ , \ \rangle$ on \mathfrak{g}. Clearly, $\mathcal{CE}_{\nabla}\mathcal{T}_{\mathcal{O}_X}(\mathcal{A})_{\{\ , \}}$ is a stack in groupoids.

Note that, if $\hat{\mathcal{A}}$ is in $\mathcal{CE}_{\nabla}\mathcal{T}_{\mathcal{O}_X}(\mathcal{A})_{\{\ , \}}$, then $\mathfrak{g}(\hat{\mathcal{A}})$ is canonically isomorphic to $\hat{\mathfrak{g}}$.

3.4.2. Suppose that Q is an exact Courant \mathcal{O}_X-algebroid and $\hat{\mathcal{A}}$ is a Courant extension of \mathcal{A}. Let $\hat{\mathcal{A}} + Q$ denote the push-out of $\hat{\mathcal{A}} \times_{\mathcal{T}_X} Q$ by the addition map $\Omega^1_X \times \Omega^1_X \xrightarrow{\oplus} \Omega^1_X$. Thus, a section of $\hat{\mathcal{A}} + Q$ is represented by a pair (a, q) with $a \in \hat{\mathcal{A}}$ and $q \in Q$ satisfying $\pi(a) = \pi(q) \in \mathcal{T}_X$. Two pairs as above are equivalent if their (componentwise) difference is of the form $(\alpha, -\alpha)$ for some $\alpha \in \Omega^1_X$.

For $a_i \in \hat{\mathcal{A}}$, $q_i \in Q$ with $\pi(a_i) = \pi(q_i)$ let

$$[(a_1, q_1), (a_2, q_2)] = [(a_1, a_2), [q_1, q_2]], \quad \langle (a_1, q_1), (a_2, q_2) \rangle = \langle a_1, a_2 \rangle + \langle q_1, q_2 \rangle$$

(3.4.1)

These operations are easily seen to descend to $\hat{\mathcal{A}} + Q$. Note that the compositions

$$\Omega^1_X \to \hat{\mathcal{A}} \to \hat{\mathcal{A}} \times_{\mathcal{T}_X} Q \to \hat{\mathcal{A}} + Q$$

and

$$\Omega^1_X \to Q \to \hat{\mathcal{A}} \times_{\mathcal{T}_X} Q \to \hat{\mathcal{A}} + Q$$

coincide; we denote their common value by

$$i : \Omega^1_X \to \hat{\mathcal{A}} + Q.$$

(3.4.2)

3.4.3. Lemma. The formulas (3.4.1) and the map (3.4.2) determine a structure of Courant extension of \mathcal{A} on $\hat{\mathcal{A}} + Q$. Moreover, the map $\mathfrak{g}(\hat{\mathcal{A}}) \to \hat{\mathcal{A}} + Q$ defined by $a \mapsto (a, 0)$ induces an isomorphism $\mathfrak{g}(\hat{\mathcal{A}} + Q) \cong \mathfrak{g}(\hat{\mathcal{A}})$ of Courant extensions of $\mathfrak{g}(\mathcal{A})$ (by Ω^1_X).
3.4.4. Lemma. Suppose that $\hat{A}^{(1)}$, $\hat{A}^{(2)}$ are in $CE_{X \circ X}(\mathcal{A}) \langle , \rangle$. Then, there exists a unique Q in ECA_{O_X}, such that $\hat{A}^{(2)} = \hat{A}^{(1)} + Q$.

Proof. Let Q denote the quotient of $\hat{A}^{(2)} \times_A \hat{A}^{(1)}$ by the diagonally embedded copy of \hat{g}. Then, Q is an extension of \mathcal{T} by Ω^1_X. There is a unique structure of an exact Courant algebroid on Q such that $\hat{A}^{(2)} = \hat{A}^{(1)} + Q$. □

3.5. Courant extensions of flat connections. Suppose that \mathcal{A} is a transitive Lie O_X-algebroid, locally free over O_X, $g = g(\mathcal{A})$, \langle , \rangle is an \mathcal{A}-invariant symmetric pairing on g.

3.5.1. Suppose that ∇ is a flat connection on \mathcal{A} and Q is an exact Courant algebroid. For $a, b \in g$, $q, q_1, q_2 \in Q$ let

$$
\langle a, b \rangle_{\nabla, Q} = \langle a, b \rangle_g, \quad \langle q_1, q_2 \rangle_{\nabla, Q} = \langle q_1, q_2 \rangle_Q, \quad \langle a, q \rangle_{\nabla, Q} = 0,
$$

(3.5.1)

and

$$
\left[a, b \right]_{\nabla, Q} = [a, b]_{\nabla}, \quad \left[q_1, q_2 \right]_{\nabla, Q} = [q_1, q_2]_Q, \quad \left[q, a \right]_{\nabla, Q} = \nabla^g(\pi(q))(a)
$$

(3.5.2)

taking values in $g \oplus Q$, where $[,]_{\nabla}$ is the Leibniz bracket on $\Omega^1_X \oplus g$ as in 3.3.4, ∇^g is the connection on g induced by ∇ and π is the anchor of Q.

3.5.2. Lemma. The formulas (3.5.1) and (3.5.2) define a structure of a Courant extension of \mathcal{A} on $g \oplus Q$.

3.5.3. Corollary. Suppose that \mathcal{A} admits a flat connection locally on X. Then, $CE_{X \circ X}(\mathcal{A}) \langle , \rangle$ is locally non-empty, hence a torsor under ECA_{O_X}.

3.5.4. Notation. We denote $g \oplus Q$ together with the Courant algebroid structure given by (3.5.1) and (3.5.2) by $\hat{\mathcal{A}}_{\nabla, Q}$.

3.5.5. Conversely, suppose that $\hat{\mathcal{A}}$ is a Courant extension of \mathcal{A}, and ∇ is a flat connection on $\hat{\mathcal{A}}$.

Let $Q_{\nabla, \hat{\mathcal{A}}} \subset \hat{\mathcal{A}}$ denote the pre-image of $\nabla(T_X)$ under the projection $\hat{\mathcal{A}} \to \mathcal{A}$.

3.5.6. Lemma.

(1) The (restrictions of the) Leibniz bracket and the symmetric pairing on $\hat{\mathcal{A}}$ endow $Q_{\nabla, \hat{\mathcal{A}}}$ with a structure of an exact Courant algebroid.

(2) $Q_{\nabla, \hat{\mathcal{A}}} \cap Q_{\nabla} = 0$.

(3) The projection $\hat{\mathcal{A}} \to \mathcal{A}$ restricts to an isomorphism $Q_{\nabla, \hat{\mathcal{A}}} \to g$.

(4) $\hat{g} = Q_{\nabla, \hat{\mathcal{A}}} + \Omega^1_{\hat{\mathcal{A}}}$.

(5) The induced isomorphism $\hat{g} \sim g \oplus \Omega^1_X$ coincides with the one constructed in 3.3.4.
3.5.7. Lemma. The isomorphism $\hat{\mathcal{A}} \cong \mathfrak{g} \oplus \mathcal{Q}_{\nabla,\hat{\mathcal{A}}}$ induced by ∇ is an isomorphism $\hat{\mathcal{A}} \cong \hat{\mathcal{A}}_{\nabla,\mathcal{Q},\hat{\mathcal{A}}}$ (of Courant extensions of \mathcal{A}).

3.5.8. Change of connection. Suppose that ∇ is a flat connection on \mathcal{A} and $A \in \Omega^1_X \otimes_{\mathcal{O}_X} \mathfrak{g}$ satisfies the Maurer–Cartan equation $\nabla A + \frac{1}{2} [A, A] = 0$, so that the connection $\nabla + A$ is also flat. Suppose that \mathcal{Q} is an exact Courant algebroid. To simplify notations, let $\hat{\mathcal{A}} = \hat{\mathcal{A}}_{\nabla,\mathcal{Q}}$.

By Lemma 3.5.7, we have the isomorphism $\hat{\mathcal{A}} \cong \hat{\mathcal{A}}_{\nabla + A, \mathcal{Q}_{\nabla + A, \hat{\mathcal{A}}}}$. Recall that a closed 3-form $H \in \Omega^3_X$ defines an exact Courant algebroid \mathcal{Q}_H equipped with a connection, whose curvature is equal to H.

Since $A \in \Omega^1_X \otimes_{\mathcal{O}_X} \mathfrak{g}$ satisfies the Maurer–Cartan equation, the 3-form $\langle A, [A, A] \rangle$ is closed.

3.5.9. Lemma. In the notations introduced above, there is an isomorphism $\mathcal{Q}_{\nabla + A, \hat{\mathcal{A}}} \cong \mathcal{Q} + \mathcal{Q}_{\langle A, [A, A] \rangle}$.

Proof. We identify \mathcal{A} with $\mathfrak{g} \oplus T_X$ using the flat connection ∇. In terms of this identification, the image of T under the connection $\nabla + A$ consists of pairs $(A(\xi), \xi)$, where $\xi \in T_X$. Therefore, $\mathcal{Q}_{\nabla + A, \hat{\mathcal{A}}} \subset \mathfrak{g} \oplus \hat{\mathcal{A}}$ consists of pairs $(A(\xi), q)$, where $\xi \in T_X$ and $\pi(q) = \xi$.

For $i = 1, 2$, $\xi_i \in T_X$, $q_i \in \mathcal{Q}$ satisfying $\pi(q_i) = \xi_i$, we calculate the Leibniz bracket in $\hat{\mathcal{A}}$ using (3.5.1) and (3.5.2):

$$[(A(\xi_1), q_1), (A(\xi_2), q_2)]_{\nabla, \mathcal{Q}} = (A([\xi_1, \xi_2]), [(A(\xi_1), \nabla(\bullet)_\xi), A(\xi_2)] + [q_1, q_2]_{\mathcal{Q}}) = (A([\xi_1, \xi_2]), \iota_{\xi_1, \xi_2}([A, A] + [q_1, q_2])_{\mathcal{Q}})$$

The latter formula shows that the assignment $(A(\pi(q)), q) \mapsto (q, \pi(q))$ viewed as a morphism of extensions of T_X by Ω^1_X $\mathcal{Q}_{\nabla + A, \hat{\mathcal{A}}} \to \mathcal{Q} + (\Omega^1_X \oplus T_X)$

is, in fact a morphism of exact Courant algebroids $\mathcal{Q}_{\nabla + A, \hat{\mathcal{A}}} \to \mathcal{Q} + \mathcal{Q}_{\langle A, [A, A] \rangle}$.

3.5.10. Proposition. For \mathcal{A} as above, ∇ a flat connection on \mathcal{A} the assignment $\mathcal{Q} \mapsto \hat{\mathcal{A}}_{\nabla, \mathcal{Q}}$ gives rise to a morphism $\mathcal{ECA}_{\mathcal{O}_X} \to \mathcal{ECA}_{\mathcal{O}_X}(\mathcal{A})_{\langle \cdot , \cdot \rangle}$ of $\mathcal{ECA}_{\mathcal{O}_X}$-torsors, i.e. a trivialization of $\mathcal{ECA}_{\mathcal{O}_X}(\mathcal{A})_{\langle \cdot , \cdot \rangle}$.

Proof. This amounts to showing that, for $i = 1, 2$, $\mathcal{Q}_i \in \mathcal{ECA}_{\mathcal{O}_X}$, there is a canonical isomorphism $\hat{\mathcal{A}}_{\nabla, \mathcal{Q}_1 + \mathcal{Q}_2} \cong \hat{\mathcal{A}}_{\nabla, \mathcal{Q}_1} + \mathcal{Q}_2$ which possesses associativity properties. This follows from (3.5.1) and (3.5.2) and the definition of the $\mathcal{ECA}_{\mathcal{O}_X}$-action. We leave details to the reader.

3.5.11. Corollary. There is an isomorphism $\hat{\mathcal{A}}_{\nabla + A, \mathcal{Q}} \cong \hat{\mathcal{A}}_{\nabla, \mathcal{Q}} + \mathcal{Q}_{\langle A, [A, A] \rangle}$.

3.6. The Pontryagin class. Suppose that \mathcal{A} is a transitive Lie algebroid, locally free of finite rank over \mathcal{O}_X, $g = g(\mathcal{A})$, and $\langle \ , \ \rangle$ is an \mathcal{A}-invariant symmetric pairing on g. We assume from now on that \mathcal{A} admits a flat connection locally on X.

3.6.1. Suppose that $\mathcal{U} = \{U_i\}_{i \in I}$ is a covering of X by open subsets such that $\mathcal{A}|_{U_i}$ admits a flat connection. Let ∇_i denote a flat connection on $\mathcal{A}|_{U_i}$. Let $A_{ij} = \nabla_j - \nabla_i$, $A_{ij} \in \Omega^1_X \otimes \mathcal{O}_X \mathcal{g}(U_i \cap U_j)$.

Let $H_{ij} = \langle A_{ij}, [A_{ij}, A_{ij}] \rangle$, $H_{ij} \in \Omega^3_{\mathcal{X}}(U_i \cap U_j)$; let $H \in \check{C}^1(\mathcal{U}; \Omega^3_{\mathcal{X}})$ denote the corresponding cochain.

Let $B_{ijk} = -\langle A_{ij} \wedge A_{jk} \rangle - \langle A_{jk} \wedge A_{ki} \rangle + \langle A_{ki} \wedge A_{ij} \rangle$, $B_{ijk} \in \Omega^2_X(U_i \cap U_j \cap U_k)$; let $B \in \check{C}^2(\mathcal{U}; \Omega^2_X)$ denote the corresponding cochain.

3.6.2. Lemma.

1. $\check{\partial}B = dB = 0$, $\check{\partial}H = dB$, i.e. $H + B$ is a 2-cocycle in $\check{C}^*(\mathcal{U}; \Omega^2_X \to \Omega^3_{\mathcal{X}})$.

2. The class of $H + B$ in $H^2(X; \Omega^2_X \to \Omega^3_{\mathcal{X}})$ does not depend on the choices of the open cover and of the locally defined flat connections.

3.6.3. Notation. We denote the class of $H + B$ in $H^2(X; \Omega^2_X \to \Omega^3_{\mathcal{X}})$ by $n(\mathcal{A}, \langle \ , \ \rangle)$.

3.7. The Pontryagin class via obstruction theory.

3.7.1. We begin by a brief outline of the cohomological classification of $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}$-torsors.

Suppose that \mathcal{S} is a torsor under $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}$. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be a covering of X by open subsets such that $\mathcal{S}(U_i)$ is non-empty for all $i \in I$. In this case there are isomorphisms $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}|_{U_i} \cong \mathcal{S}|_{U_i}$ of $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}|_{U_i}$-torsors. A choice of such gives rise to the objects $\mathcal{Q}_{ij} \in \mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}(U_i \cap U_j)$, isomorphisms $\mathcal{Q}_{ij} = -\mathcal{Q}_{ji}$ and flat connections ∇_{ijk}^0 on $\mathcal{Q}_{ijk} = \mathcal{Q}_{ij} + \mathcal{Q}_{jk} + \mathcal{Q}_{ki}$.

We may assume (by passing to a refinement of \mathcal{U}), that the exact Courant algebroids \mathcal{Q}_{ij} admit connections. Let ∇_{ij} denote a connection on \mathcal{Q}_{ij} whose curvature we denote by $H_{ij} \in \Omega^3_{\mathcal{X}}(U_i \cap U_j)$. Let $H \in \check{C}^1(\mathcal{U}; \Omega^3_{\mathcal{X}})$ denote the corresponding cochain.

The connections ∇_{ij} give rise to connections on the exact Courant algebroids \mathcal{Q}_{ijk}. Hence there are 2-forms $B_{ijk} \in \Omega^2_X(U_i \cap U_j \cap U_k)$ such that $\nabla_{ijk} = \nabla_{ijk}^0 + B_{ijk}$. Let $B \in \check{C}^2(\mathcal{U}; \Omega^2_X)$ denote the corresponding cochain.

It is clear that $dH = \check{\partial}B = 0$ and $\check{\partial}H = dB$, i.e. $H + B$ is a 2-cocycle in $\check{C}^*(\mathcal{U}; \Omega^2_X \to \Omega^3_{\mathcal{X}})$. One checks easily that the class of $H + B$ in $H^2(X; \Omega^2_X \to \Omega^3_{\mathcal{X}})$ is independent of the choices of the covering \mathcal{U} and the connections ∇_{ij}. Moreover, the above construction establishes a bijection (in fact an isomorphism of \mathcal{C}-vector spaces) between the isomorphism classes of torsors under $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}$ and $H^2(X; \Omega^2_X \to \Omega^3_{\mathcal{X}})$.

3.7.2. Theorem. Suppose that \mathcal{A} is a transitive Lie \mathcal{O}_X-algebroid, locally free of finite rank over \mathcal{O}_X which admits a flat connection locally on X, and $\langle \ , \ \rangle$ is an \mathcal{A}-invariant symmetric pairing on $g(\mathcal{A})$ The isomorphism class of the $\mathcal{E} \mathcal{C} \mathcal{A}_{\mathcal{O}_X}$-torsor $\mathcal{E} \mathcal{T} \mathcal{O}_X(\mathcal{A}) \langle \ , \ \rangle$ corresponds to $n(\mathcal{A}, \langle \ , \ \rangle)$. In particular, Courant extensions of \mathcal{A} which induce $\langle \ , \ \rangle$ on $g(\mathcal{A})$ exist globally on X if and only if $n(\mathcal{A}, \langle \ , \ \rangle) = 0$.

Proof. Let $U = \{U_i\}_{i \in I}$ be a covering of X by open subsets such that $\mathcal{A}|_{U_i}$ admits a flat connection. Let ∇_i be a flat connection on $\mathcal{A}|_{U_i}$. By Proposition 3.5.10, these give rise to trivializations of $\mathcal{C}(\mathcal{A})|_{U_i}$. The procedure outlined in 3.7.1 applied to these yields the definition of $\pi(\mathcal{A}, \langle , \rangle)$ given in 3.6. □

3.8. The Pontryagin class Atiyah style. Throughout this section \mathcal{A} is a transitive Lie \mathcal{O}_X-algebroid locally free of finite rank over \mathcal{O}_X, g denotes $g(\mathcal{A})$, \langle , \rangle is a symmetric \mathcal{O}_X-bilinear \mathcal{A}-invariant pairing on g, \hat{g} is the Courant extension of g as in 3.3.1.

3.8.1. The Atiyah class. The (isomorphism class of the) extension

$$0 \to g \to \mathcal{A} \to T_X \to 0 \quad (3.8.1)$$

is an element of $\text{Ext}_{\mathcal{O}_X}(T_X, g)$, whose image under the canonical isomorphism $\text{Ext}_{\mathcal{O}_X}(T_X, g) \cong H^1(X; \Omega^1_X \otimes_{\mathcal{O}_X} g)$ is called the Atiyah class of \mathcal{A} and will be denoted $\alpha(\mathcal{A})$.

Recall that a connection on \mathcal{A} is a splitting of the extension (3.8.1). Let $\mathcal{C}(\mathcal{A})$ denote the sheaf of locally defined connections on \mathcal{A}. As the difference of two connections is a map $T_X \to g$, the sheaf $\mathcal{C}(\mathcal{A})$ is a torsor under $\Omega^1_X \otimes_{\mathcal{O}_X} g$. The Atiyah class $\alpha(\mathcal{A})$ is the isomorphism class of the $\Omega^1_X \otimes_{\mathcal{O}_X} g$-torsor $\mathcal{C}(\mathcal{A})$.

The cup product together with the pairing \langle , \rangle give rise to the map

$$H^1(X; \Omega^1_X \otimes_{\mathcal{O}_X} g) \otimes H^1(X; \Omega^1_X \otimes_{\mathcal{O}_X} g) \to H^2(X; \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X).$$

We will denote the image of $a \otimes b$ under this map by $\langle a \sim b \rangle$.

3.8.2. Lemma. $\langle \alpha(\mathcal{A}) \sim \alpha(g) \rangle$ is the image of $\pi(\mathcal{A}, \langle , \rangle)$ under the map $H^2(X; \Omega^2_X \to \Omega^3_X) \to H^2(X; \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X)$.

3.9. Obstruction theoretic interpretation. Recall that there is an exact sequence

$$0 \to \Omega^1_X \to \hat{g} \to g \to 0.$$

Spliced with (3.8.1) it gives rise to the extension

$$0 \to \Omega^1_X \to \hat{g} \to \mathcal{A} \to T_X \to 0 \quad (3.9.1)$$

whose isomorphism class is an element of $\text{Ext}_{\mathcal{O}_X}^2(T_X, \Omega^1_X)$. Let $\beta = \beta(\mathcal{A}, \langle , \rangle)$ denote its image under the canonical isomorphism $\text{Ext}_{\mathcal{O}_X}^2(T_X, \Omega^1_X) \cong H^2(X; \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X)$.

The extension (3.9.1) gives rise to the stack in groupoids \mathcal{L} defined as follows. For an open set $U \subseteq X$, $\mathcal{L}(U)$ is the category of pairs (\hat{C}, ϕ), where \hat{C} is an $\Omega^1_X \otimes_{\mathcal{O}_X} \hat{g}$-torsor on U and ϕ is a morphism of $\Omega^1_X \otimes_{\mathcal{O}_X} g$-torsors $\hat{C} \otimes_{\Omega^1_X \otimes_{\mathcal{O}_X} g} \Omega^1_X \otimes_{\mathcal{O}_X} g \to \mathcal{C}(\mathcal{A})|_U$. Equivalently, $\mathcal{L}(U)$ is the category of pairs (\hat{A}, ψ), where \hat{A} is an extension of T_X by \hat{g} and ψ is a morphism of the push-out of \hat{A} by the map $\hat{g} \to g$ to \mathcal{A} (of extensions of T_X by g).

As is well-known, the stack \mathcal{L} is a gerbe with lien $\Omega^1_X \otimes_{\mathcal{O}_X} \Omega^2$, whose isomorphism class in $H^2(X; \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1)$ is, on one hand, β, and, on the other hand, the image of $\alpha(\mathcal{A}, \langle , \rangle)$ under the boundary map $H^1(X; \Omega^1_X \otimes_{\mathcal{O}_X} g) \to H^2(X; \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1)$ induced by the extension

$$0 \to \Omega^1_X \otimes_{\mathcal{O}_X} \Omega^1_X \to \Omega^1_X \otimes_{\mathcal{O}_X} \hat{g} \to \Omega^1_X \otimes_{\mathcal{O}_X} g \to 0.$$
3.9.1. **Lemma.** $\beta = \langle \alpha(A) \sim \alpha(A) \rangle$.

3.9.2. **Remark.** Note that there is a natural morphism of stacks $\mathcal{E}_{\mathcal{T} \mathcal{O}_X}(A \langle , \rangle) \rightarrow \mathcal{L}$ (which maps a Courant extension to the underlying \mathcal{O}_X-module).

4. **Vertex algebroids**

4.1. **Vertex algebroids.** A vertex \mathcal{O}_X-algebroid is a sheaf of \mathbb{C}-vector spaces \mathcal{V} with a pairing

$$\mathcal{O}_X \otimes \mathbb{C} \mathcal{V} \rightarrow \mathcal{V}$$

$$f \otimes v \mapsto f \ast v$$

such that $1 \ast v = v$ (i.e. a “non-associative unital \mathcal{O}_X-module”) equipped with

1. a structure of a Leibniz \mathbb{C}-algebra $[,] : \mathcal{V} \otimes \mathbb{C} \mathcal{V} \rightarrow \mathcal{V}$
2. a \mathbb{C}-linear map of Leibniz algebras $\pi : \mathcal{V} \rightarrow \mathcal{T}_X$ (the anchor)
3. a symmetric \mathbb{C}-bilinear pairing $\langle , \rangle : \mathcal{V} \otimes \mathbb{C} \mathcal{V} \rightarrow \mathcal{O}_X$
4. a \mathbb{C}-linear map $\partial : \mathcal{O}_X \rightarrow \mathcal{V}$ such that $\pi \circ \partial = 0$

which satisfy

$$f \ast (g \ast v) - (fg) \ast v = -\pi(v)(f) \ast \partial(g) - \pi(v)(g) \ast \partial(f)$$

$$[v_1, f \ast v_2] = \pi(v_1)(f) \ast v_2 + f \ast [v_1, v_2]$$

$$[v_1, v_2] + [v_2, v_1] = \partial(\langle v_1, v_2 \rangle)$$

$$\pi(f \ast v) = f \pi(v)$$

$$\langle f \ast v_1, v_2 \rangle = f \langle v_1, v_2 \rangle - \pi(v_1)(\pi(v_2)(f))$$

$$\pi(v)(\langle v_1, v_2 \rangle) = \langle [v, v_1], v_2 \rangle + \langle v_1, [v, v_2] \rangle$$

$$\partial(fg) = f \ast \partial(g) + g \ast \partial(f)$$

$$[v, \partial(f)] = \partial(\pi(v)(f))$$

$$\langle v, \partial(f) \rangle = \pi(v)(f)$$

for $v, v_1, v_2 \in \mathcal{V}$, $f, g \in \mathcal{O}_X$.

4.1.1. A morphism of vertex \mathcal{O}_X-algebroids is a \mathbb{C}-linear map of sheaves which preserves all of the structures.

4.1.2. **Remark.** The notions “a vertex \mathcal{O}_X algebroid with the trivial anchor map” and “a Courant \mathcal{O}_X algebroid with the trivial anchor map” are equivalent.

4.2. **The associated Lie algebroid.** Suppose that \mathcal{V} is a vertex \mathcal{O}_X-algebroid. Let

$$\Omega_\mathcal{V} \overset{\text{def}}{=} \mathcal{O}_X \ast \partial(\mathcal{O}_X) \subset \mathcal{V} ,$$

$$\mathcal{V} \overset{\text{def}}{=} \mathcal{V} / \Omega_\mathcal{V} .$$
It is easy to see (cf. [B]) that the action of \mathcal{O}_X on \mathcal{V} descends to a structure of an \mathcal{O}_X-module on \mathcal{V} and the Leibniz bracket on \mathcal{V} descends to a Lie bracket on \mathcal{V}. Moreover, there is an evident map $\mathcal{V} \rightarrow T_X$.

4.2.1. Lemma. The \mathcal{O}_X-module \mathcal{V} with the bracket and the anchor as above is a Lie \mathcal{O}_X-algebroid.

4.3. Transitive vertex algebroids. A vertex \mathcal{O}_X-algebroid is called transitive if the anchor map is surjective.

4.4. Exact vertex algebroids. A vertex algebroid \mathcal{V} is called exact if the map $\mathcal{V} \rightarrow T_X$ is an isomorphism. We denote the stack of exact vertex \mathcal{O}_X-algebroids by $\mathcal{EVA}_{\mathcal{O}_X}$.

A morphism of exact vertex algebroids induces a morphism of underlying extensions of T_X by Ω^1_X. The latter is an isomorphism and it is clear that the inverse morphism of extensions is a morphism of vertex algebroids. Hence, $\mathcal{EVA}_{\mathcal{O}_X}$ is a stack in groupoids.

4.4.1. It was shown in [B] that $\mathcal{EVA}_{\mathcal{O}_X}$ is locally non-empty and has a canonical structure of a torsor under $\mathcal{EC}_A_{\mathcal{O}_X}$. Isomorphism classes of $\mathcal{EC}_A_{\mathcal{O}_X}$-torsors form a vector space naturally isomorphic to $H^2(X; \Omega^2_X \rightarrow \Omega^3_X)$.

The purpose of this section is the determination of the isomorphism class of $\mathcal{EVA}_{\mathcal{O}_X}$. The following theorem was originally proven in [GMS] by explicit calculations with representing cocycles. Our proof, “coordinate-free” and based on Theorem 3.7.2 and the strategy proposed in [BD], appears in 4.9.6.

4.4.2. Theorem ([GMS]). The class of $\mathcal{EVA}_{\mathcal{O}_X}$ in $H^2(X; \Omega^2_X \rightarrow \Omega^3_X)$ is equal to $2 \text{ch}_2(\Omega^1_X)$.

4.4.3. Remark. Suppose that P is a GL_n-torsor on X. Let \mathcal{A}_P denote the Atiyah algebra of P. Then, $\mathfrak{g}(\mathcal{A}_P) = \mathfrak{gl}_n^P$ and the symmetric pairing on the latter given by the trace of the product of matrices is \mathcal{A}_P-invariant. The corresponding Pontriagin class is equal to $2 \text{ch}_2(P)$.

4.5. Vertex extensions of Lie algebroids. Suppose that \mathcal{A} is a Lie \mathcal{O}_X-algebroid.

4.5.1. Definition. A vertex extension of \mathcal{A} is a vertex algebroid $\hat{\mathcal{A}}$ together with an isomorphism $\hat{\mathcal{A}} = \mathcal{A}$ of Lie \mathcal{O}_X-algebroids.

4.5.2. Morphisms of vertex extensions. A morphism of vertex extensions of \mathcal{A} is a morphism of vertex algebroids which is compatible with the identifications.

Let $\mathcal{VE}_{\mathcal{O}_X}(\mathcal{A})$ denote the stack of Courant extensions of \mathcal{A}.

4.6. Vertex extensions of transitive Lie algebroids. From now on we suppose that \mathcal{A} is a transitive Lie \mathcal{O}_X-algebroid locally free of finite rank over \mathcal{O}_X. Let $\hat{\mathfrak{g}} = \hat{\mathfrak{g}}(\mathcal{A})$.
4.6.1. Suppose that \hat{A} is a vertex extension of A. Then, the derivation $\partial : O_X \to \hat{A}$ induces an isomorphism $\Omega^1_X \cong \Omega_{\hat{A}}$. The resulting exact sequence

$$0 \to \Omega^1_X \to \hat{A} \to A \to 0$$

is canonically associated to the vertex extension \hat{A} of A. Since a morphism of vertex extensions of \hat{A} induces a morphism of associated extensions of A by Ω^1_X, it is an isomorphism of the underlying sheaves. It is clear that the inverse isomorphism is a morphism of vertex extensions of A.

Therefore, $\mathcal{VE}_{\tau O_X}(A)$ is a stack in groupoids.

4.6.2. Remark. $\mathcal{VE}_{\tau O_X}(T_X)$ is none other than \mathcal{EA}_{O_X}.

4.6.3. Suppose that \hat{A} is a vertex extension of A. Let $\hat{g} = \hat{g}(\hat{A})$ denote the kernel of the anchor map (of \hat{A}). Thus, \hat{g} is a vertex (equivalently, Courant) extension of g.

Analysis similar to that of 3.2 shows that

- the symmetric pairing on \hat{A} induces a symmetric O_X-bilinear pairing on g which is A-invariant;
- the vertex extension \hat{g} is obtained from the Lie algebroid A and the symmetric A-invariant pairing on g as in 3.3.

4.7. The action of \mathcal{ECA}_{O_X}. As before, A is a transitive Lie O_X-algebroid locally free of finite rank over O_X, g denotes $g(A)$, $\langle \ , \ \rangle$ is an O_X-bilinear symmetric A-invariant pairing on g, \hat{g} is the Courant extension of g constructed in 3.3.1.

4.7.1. Let $\mathcal{VE}_{\tau O_X}(A)\langle \ , \ \rangle$ denote the stack of Courant extensions of A which induce the given pairing $\langle \ , \ \rangle$ on g. Clearly, $\mathcal{VE}_{\tau O_X}(A)\langle \ , \ \rangle$ is a stack in groupoids.

Note that, if \hat{A} is in $\mathcal{VE}_{\tau O_X}(A)\langle \ , \ \rangle$, then $g(\hat{A})$ is canonically isomorphic to \hat{g}.

4.7.2. Suppose that Q is an exact Courant O_X algebroid and \hat{A} is a vertex extension of A. Let $\hat{A} + Q$ denote the push-out of $\hat{A} \times_{\tau_X} Q$ by the addition map $\Omega^1_X \times \Omega^1_X \to \Omega^1_X$. Thus, a section of $\hat{A} + Q$ is represented by a pair (a, q) with $a \in \hat{A}$ and $q \in Q$ satisfying $\pi(a) = \pi(q) \in T_X$. Two pairs as above are equivalent if their (componentwise) difference is of the form $(i(\alpha), -i(\alpha))$ for some $\alpha \in \Omega^1_X$.

For $a \in \hat{A}$, $q \in Q$ with $\pi(a) = \pi(q)$, $f \in O_X$ let

$$f \ast (a, q) = (f \ast a, f q), \quad \partial(f) = \partial_{\hat{A}}(f) + \partial_Q(f) \ . \quad (4.7.1)$$

For $a_i \in \hat{A}$, $q_i \in Q$ with $\pi(a_i) = \pi(q_i)$ let

$$[(a_1, q_1), (a_2, q_2)] = [(a_1, a_2), [q_1, q_2]], \quad \langle (a_1, q_1), (a_2, q_2) \rangle = \langle a_1, a_2 \rangle + \langle q_1, q_2 \rangle \quad (4.7.2)$$

These operations are easily seen to descend to $\hat{A} + Q$.
The two maps $\Omega^1_X \to \mathcal{A} + Q$ given by $\alpha \mapsto (i(\alpha), 0)$ and $\alpha \mapsto (0, i(\alpha))$ coincide; we denote their common value by

$$i : \Omega^1_X \to \mathcal{A} + Q.$$ \hspace{1cm} (4.7.3)

4.7.3. **Lemma.** The formulas (4.7.1), (4.7.2) and the map (4.7.3) determine a structure of vertex extension of \mathcal{A} on $\mathcal{A} + Q$. Moreover, the map the map $g(\mathcal{A}) \to \mathcal{A} + Q$ defined by $a \mapsto (a, 0)$ induces an isomorphism $g(\mathcal{A} + Q) \cong g(\mathcal{A})$ of vertex (equivalently, Courant) extensions of $g(\mathcal{A})$ (by Ω^1_X).

4.7.4. **Lemma.** Suppose that $\mathcal{A}^{(1)}, \mathcal{A}^{(2)}$ are in $\mathcal{ECA}_{O_X}(\mathcal{A})$. Then, there exists a unique Q in \mathcal{ECA}_{O_X} such that $\mathcal{A}^{(2)} = \mathcal{A}^{(1)} + Q$.

Proof. Let Q denote the quotient of $\mathcal{A}^{(2)} \times_{\mathcal{A}} \mathcal{A}^{(1)}$ by the diagonally embedded copy of \mathcal{g}. Then, Q is an extension of \mathcal{T} by Ω^1_X. There is a unique structure of an exact Courant algebroid on Q such that $\mathcal{A}^{(2)} = \mathcal{A}^{(1)} + Q$. \hfill \square

4.8. **Comparison of \mathcal{ECA}_{O_X}-torsors.** Suppose that \mathcal{A} is a vertex extension of the Lie algebroid \mathcal{A}. Let $\langle \cdot, \cdot \rangle$ denote the induced symmetric pairing on $g(\mathcal{A})$.

4.8.1. Suppose that \mathcal{V} is an exact vertex algebroid. Let $\mathcal{A} - \mathcal{V}$ denote the pushout of $\mathcal{A} \times_{\mathcal{T}} \mathcal{V}$ by the difference map $\Omega^1_X \times \Omega^1_X \to \Omega^1_X$. Thus, a section of $\mathcal{A} - \mathcal{V}$ is represented by a pair (a, v) with $a \in \mathcal{A}, v \in \mathcal{V}$ satisfying $\pi(a) = \pi(v) \in \mathcal{T}_X$. Two pairs as above are equivalent if their (componentwise) difference is of the form (α, α) for some $\alpha \in \Omega^1_X$.

For $a \in \mathcal{A}, v \in \mathcal{V}$ with $\pi(a) = \pi(v)$, $f \in O_X$, let

$$f \ast (a, v) = (f \ast a, f \ast v), \quad \partial(f) = \partial_{\mathcal{A}}(f) - \partial_{\mathcal{V}}(f).$$ \hspace{1cm} (4.8.1)

For $a_i \in \mathcal{A}, v_i \in \mathcal{V}$ with $\pi(a_i) = \pi(v_i)$ let

$$[(a_1, v_1), (a_2, v_2)] = [(a_1, a_2), [v_1, v_2]], \quad \langle (a_1, v_1), (a_2, v_2) \rangle = \langle a_1, a_2 \rangle - \langle v_1, v_2 \rangle$$ \hspace{1cm} (4.8.2)

These operations are easily seen to descend to $\mathcal{A} - \mathcal{V}$.

The two maps $\Omega^1_X \to \mathcal{A} - \mathcal{V}$ given by $\alpha \mapsto (i(\alpha), 0)$ and $\alpha \mapsto (0, -i(\alpha))$ coincide; we denote their common value by

$$i : \Omega^1_X \to \mathcal{A} - \mathcal{V}.$$ \hspace{1cm} (4.8.3)

4.8.2. **Lemma.** The formulas (4.8.1), (4.8.2) together with (4.8.3) determine a structure of a Courant extension of \mathcal{A} on $\mathcal{A} - \mathcal{V}$. Moreover, the map $g(\mathcal{A}) \to \mathcal{A} - \mathcal{V}$ defined by $a \mapsto (a, 0)$ induces an isomorphism $g(\mathcal{A} - \mathcal{V}) \cong g(\mathcal{A})$ of Courant extensions of $g(\mathcal{A})$ (by Ω^1_X).
4.8.3. The assignment $V \mapsto \hat{A} - V$ extends to a functor

$$\hat{A} - (\bullet) : EVA_{O_X} \to C\mathcal{E}xT_{O_X}(A)_{(\cdot, \cdot)}$$

which, clearly, anti-commutes with the respective actions of ECA_{O_X} on EVA_{O_X} and $C\mathcal{E}xT_{O_X}(A)_{(\cdot, \cdot)}$.

4.8.4. Corollary. The functor (4.8.4) is an equivalence of stacks in groupoids. The isomorphism class of the ECA_{O_X}-torsors EVA_{O_X} and $C\mathcal{E}xT_{O_X}(A)_{(\cdot, \cdot)}$ are opposite as elements of $H^2(X; \Omega^2_X \to \Omega^3_X)$.

4.8.5. Remark. In fact, the above construction gives rise to the functor

$$VE \to Hom_{ECA_{O_X}}(EVA_{O_X}, C\mathcal{E}xT_{O_X}(A)_{(\cdot, \cdot)})$$

which is an equivalence.

4.9. The canonical vertex \mathcal{O}_X-algebroid. We will show how the construction of [B] leads to the canonical vertex extension $\hat{A}_{can}^{\Omega_1}$ of A_{Ω_1}, the Atiyah algebra of the cotangent sheaf. As a consequence, we obtain the canonical equivalence

$$\hat{A}_{can}^{\Omega_1} - (\bullet) : EVA_{O_X} \to C\mathcal{E}xT_{O_X}(A_{\Omega_1})$$

which anti-commutes with the action of ECA_{O_X}.

4.9.1. The canonical exact vertex Ω^\bullet_X-algebroid. All of the considerations regarding the Lie, Courant and vertex algebroids apply in the differential graded setting. Let X^\sharp denote the dg-manifold with \mathcal{O}_{X^\sharp} the de Rham complex of X. In [B] we showed that there exists a unique exact vertex (differential graded) \mathcal{O}_{X^\sharp}-algebroid which we will denote by \mathcal{U}. Thus, there is a short exact sequence

$$0 \to \Omega^1_{X^\sharp} \to \mathcal{U} \to \mathcal{T}_{X^\sharp} \to 0$$

(of complexes of sheaves on X) of which we will be interested in the short exact sequence

$$0 \to \Omega^1_{X^\sharp}(0) \to \mathcal{U}(0) \to \mathcal{T}_{X^\sharp}(0) \to 0$$

of the degree zero constituents. Note that there is a canonical isomorphism $\Omega^1_{X^\sharp}(0) \cong \Omega^1_X$.

The natural action of \mathcal{T}_{X^\sharp} on $\mathcal{O}_{X^\sharp} = \Omega^\bullet_X$ restricts to the action of $\mathcal{T}_{X^\sharp}(0)$ on \mathcal{O}_X and Ω^1_X. The action of $\mathcal{T}_{X^\sharp}(0)$ on \mathcal{O}_X gives rise to the map $\mathcal{T}_{X^\sharp}(0) \to \mathcal{T}_X$ which, together with the natural Lie bracket on $\mathcal{T}_{X^\sharp}(0)$, endows the latter with a structure of a Lie \mathcal{O}_X-algebroid.

The action of $\mathcal{T}_{X^\sharp}(0)$ on Ω^1_X gives rise to the map

$$\mathcal{T}_{X^\sharp}(0) \to A_{\Omega^1_X},$$

where $A_{\Omega^1_X}$ denotes the Atiyah algebra of Ω^1_X.

4.9.2. Lemma. The map (4.9.1) is an isomorphism of Lie \mathcal{O}_X-algebroids.

4.9.3. It follows that there is a short exact sequence

$$0 \to \Omega^1_X \to \mathcal{U}(0) \to A_{\Omega^1_X} \to 0.$$
4.9.4. Lemma. The vertex \mathcal{O}_X-algebroid structure on \mathcal{U} restricts to a structure of a vertex extension of $A_{\Omega^1_X}$ on $\mathcal{U}^{(0)}$. The induced symmetric pairing on $\text{End}_{\mathcal{O}_X}(\Omega^1_X)$ is given by the negative of the trace of the product of endomorphisms.

Proof. The first statement is left to the reader.

According to 5.3 of [B], the \mathcal{O}_X-vertex algebroid $\mathcal{U}^{(0)}$ is a quotient of the $(\mathcal{O}_X$-vertex algebroid) $\tilde{\mathcal{U}}^{(0)}$, where

$$\tilde{\mathcal{U}}^{(0)} = \Omega^1_X \bigoplus \left(\Omega^1_X[1] \otimes \mathcal{T}_X[-1] \bigoplus \mathcal{O}_X \otimes \mathcal{T}_X \right)$$

Moreover, under the quotient map, $\Omega^1_X \bigoplus \Omega^1_X[1] \otimes \mathcal{T}_X[-1]$ (respectively, $\Omega^1_X[-1] \otimes \mathcal{T}_X[1]$) surjects onto $\tilde{\mathcal{U}}^{(0)}$ (respectively, $\mathcal{g}(A_{\Omega^1_X}) = \text{End}_{\mathcal{O}_X}(\Omega^1_X) \cong \Omega^1_X \otimes \mathcal{O}_X \mathcal{T}_X$). The symmetric pairing on the latter is induced by the one on the former given by the formula

$$\langle \beta_1 \otimes \xi_1, \beta_2 \otimes \xi_2 \rangle = -\langle \iota_\xi \beta_2, \iota_\xi \beta_1 \rangle$$

where $\beta_i \in \Omega^1_X[-1]$ and $\xi_i \in \mathcal{T}_X[1]$.

(The formula for the symmetric pairing on $\tilde{\mathcal{U}}$ in 5.3 of [B] reads

$$\langle \beta_1 \otimes \xi_1, \beta_2 \otimes \xi_2 \rangle = -\beta_1 \tau(\xi_2)(\tau(\xi_1)(\beta_2)) - \beta_2 \tau(\xi_1)(\tau(\xi_2)(\beta_1)) - \tau(\xi_1)(\beta_2) \tau(\xi_2)(\beta_1)$$

where $\beta_i \in \mathcal{O}_X$, $\xi_i \in \mathcal{T}_X$, $\mathcal{T}_X = \mathcal{T}_X[1] \bigoplus \mathcal{T}_X$ and τ is the canonical action of \mathcal{T}_X on \mathcal{O}_X by derivations with $\xi \in \mathcal{T}_X[1]$ acting by contraction ι_ξ. If $\beta_i \in \Omega^1_X$, then the first two summands in the formula are equal to zero for degree reasons.)

Under the canonical isomorphism $\text{End}_{\mathcal{O}_X}(\Omega^1_X) \cong \Omega^1_X \otimes \mathcal{O}_X \mathcal{T}_X$ the symmetric pairing given by (4.9.2) corresponds to the one given by the negative of the trace of the product of endomorphisms.

4.9.5. Corollary. Let \langle , \rangle denote the symmetric pairing on $\mathcal{g}(A_{\Omega^1_X}) = \text{End}_{\mathcal{O}_X}(\Omega^1_X)$ given by the negative of the trace of the product of endomorphisms. Then, the isomorphism class of $\mathcal{CE}_X \tau_{\mathcal{O}_X}(A_{\Omega^1_X}, \langle , \rangle)$ is equal to $-2 \text{ch}_2(\Omega_X)$ in $H^2(X; \Omega^3_X \rightarrow \Omega^3_X)$. The claim follows from Theorem 3.7.2.

4.9.6. Proof of 4.4.2. Follows from 4.8.4 and 4.9.5.

References

[B] P. Bressler, Vertex algebroids I, preprint.

[BD] A. Beilinson, V. Drinfeld, Chiral algebras, preprint.

[GMS] V. Gorbunov, F. Malikov, V. Schechtman, Gerbes of chiral differential operators II, preprint.

[S] P. Ševera, letters to A. Weinstein.

E-mail address: bressler@math.arizona.edu