Natriuretic peptides are synthesized in ventricular myocytes and released into the circulation in response to increased myocardial wall stress. Causes of myocardial wall stress include pulmonary hypertension, ventricular dilatation, as well as heart failure with reduced or preserved left ventricular function. The 108 amino acid pro-brain natriuretic peptide (pro-BNP) is the cleavage product of the 134-amino acid hormone Pre-Pro-BNP, which once released into circulation further cleaves into C-terminal pro-BNP (32 amino acids, BNP) and N-terminal pro-BNP (76 amino acids, NT-proBNP). Physiological effects of pro-BNP include reduction of sympathetic tone and activity of the renin-angiotensin system, promotion of vasodilation, natriuresis and diuresis.

Multiple studies have determined the diagnostic and prognostic value of BNP and NT-proBNP in patients with heart failure with reduced as well as preserved ejection fraction. Although defined NT-proBNP cutoffs support the diagnosis of heart failure among patients with normal as well as impaired renal function, there is no consensus regarding specific NT-proBNP levels and their prognostic utility in patients with end stage renal disease (ESRD). In addition, no study to date has evaluated the significance of severely elevated NT-proBNP values in mortality rates.

In a sub-sample analysis among patients with systolic HF, there was a statistically significant difference in mortality and survival among patients with an EF of < 25%. Patients with EF < 35% revealed a trend towards decreased survival. The best-fit logistic regression model predicting mortality contained only age and an indicator variable for EF < 25%.

In view of the above findings, the study demonstrates that among patients with uniformly severely elevated NT-proBNP, heart failure and ESRD, EF continues to be a significant predictor of mortality. While elevated NT-proBNP levels in patients with ESRD are partially due to renal clearance, values exceeding 70,000 pg/mL are unlikely to be due solely to renal dysfunction. Evidence suggests renal clearance of BNP and NT-proBNP to be equivalent, while additional clearance of NT-proBNP is present in liver and skeletal tissue. Previous studies have demonstrated that neither length of time of hemodialysis nor duration of
renal disease has significant correlation with NT-proBNP levels. This suggests that while renal function plays a role in elevated NT-proBNP levels, left ventricular function is the most critical variable influencing mortality and NT-proBNP.

During the evaluation of renal function of our population, we incidentally discovered a large prevalence of ESRD. Previous studies diverge on a normal NT-proBNP in patients with ESRD. The prevalence of heart failure among patients with ESRD is estimated to be 31%, while

Table 1. Association between mortality rate and clinical variables among patients with NT-proBNP > 70,000 pg/mL.

Variable	Category	Alive	Dead	Overall	P-Value
Diastolic HF	No diastolic HF	42 (52.5%)	38 (47.5%)	80 (56.7%)	0.5644
	Diastolic HF	35 (57.4%)	26 (42.6%)	61 (43.3%)	
Systolic HF	No systolic HF	44 (57.1%)	33 (42.9%)	77 (54.6%)	0.5076
	Systolic HF	33 (51.6%)	31 (48.4%)	64 (45.4%)	
Combined systolic and diastolic HF	No	46 (56.1%)	46 (43.9%)	92 (65.3%)	0.6757
	Yes	31 (52.5%)	28 (47.5%)	59 (41.8%)	
E/e'	E/e' < 12	9 (50%)	9 (50%)	18 (12.8%)	0.6740
	E/e' ≥ 12	68 (55.3%)	55 (44.7%)	123 (87.2%)	
EF < 35%	EF ≥ 35%	55 (59.8%)	37 (40.2%)	92 (65.3%)	0.0909
	EF < 35%	22 (44.9%)	27 (55.1%)	49 (34.8%)	
EF < 25%	EF ≥ 25%	66 (60.6%)	43 (49.5%)	109 (77.3%)	0.0089
	EF < 25%	11 (54.4%)	21 (45.6%)	32 (22.7%)	
ESRD	No	8 (53.3%)	7 (46.7%)	15 (10.6%)	0.9163
	Yes	69 (54.8%)	57 (45.2%)	126 (89.4%)	
Gender	Female	43 (55.8%)	34 (44.2%)	77 (54.6%)	0.6116
	Male	33 (51.6%)	31 (48.4%)	64 (45.4%)	
Medical treatment	No	63 (54.8%)	52 (45.2%)	115 (81.6%)	0.9310
	Yes	14 (53.8%)	12 (46.2%)	26 (18.4%)	

All tests done using Chi-Squared

Data were presented as n (%). Only EF < 25% is statistically significant. Medical treatment consists of angiotensin inhibitors, diuretics and beta blockers. ESRD: end-stage renal disease; EF: ejection fraction; E/e': Tissue Doppler from Echo; HF: heart failure; NT-proBNP: N-terminal pro-brain natriuretic peptide.
the median survival is 36 months.[22] Despite the known decreased survival in patients with heart failure and ESRD, no previous study has demonstrated such a strong correlation between EF and mortality in patients with NT-proBNP > 70,000 pg/mL (Table 1).

Mortality rates in the studied population remained uniformly elevated in both systolic and diastolic HF. The subset of patients with severe systolic HF (< 25%) were noted to have 65.6% mortality over four years. We are unable to explain the occurrence of normal E/e’ in 12.8% of patients with diastolic HF, despite elevated NT-proBNP levels. Possible reasons for such observation include operator error or poor acoustic windows at the time of imaging.

In view of the above findings, we assert that among patients with NT-proBNP > 70,000 pg/mL and ESRD, left ventricular EF < 25% is an indicator of increased mortality rate. Utilization of a uniform NT-proBNP level allows for better characterization of variables significant in mortality prediction among patients with ESRD. It is essential to emphasize the importance of aggressive medical management of heart failure patients with ESRD to prevent such magnitude of NT-proBNP levels and decrease mortality rates.

References

1. Levin ER, Gardner DG, Samson WK. Natriuretic Peptides. N Engl J Med 1998; 339: 321–328.
2. Reddy P, Rohan S. Clinical utility of natriuretic peptides in left ventricular failure. South Med J 2013; 106: 182–187.
3. Weber M, Hamm C. Role of B-type natriuretic peptide (BNP) and NT-proBNP in clinical routine. Heart 2006; 92: 843–849.
4. Kim HN, Januzzi JL Jr. Natriuretic peptide testing in heart failure. Circulation 2011; 123: 2015–2019.
5. Braunwald E, Biomarkers in heart failure. N Engl J Med 2008; 358: 2148–2159.
6. van Veldhuisen DJ, Linssen GC, Jaarsma T, et al. B-type natriuretic peptide and prognosis in heart failure patients with preserved and reduced ejection fraction. J Am Coll Cardiol 2013; 61: 1498–1506.
7. Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol 2007; 50: 2357–2368.
8. Januzzi JL Jr, Rehman SU, Mohammed AA, et al. Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular dysfunction. J Am Coll Cardiol 2011; 58: 1881–1889.
9. Parekh N, maisel AS. Utility of B-natriuretic peptide in the evaluation of left ventricular diastolic dysfunction and diastolic heart failure. Curr Opin Cardiol 2009; 24:155–160.
10. Komajda M, Carson PE, Hetzel S, et al. Factors associated with outcome in heart failure with preserved ejection fraction: findings from the Irbesartan in Heart Failure with Preserved Ejection Fraction Study (I-PRESERVE). Circ Heart Fail 2011; 4: 27–35.
11. Januzzi JL, van Kimmenade R, Lainchbury J, et al. NT-proBNP testing for diagnosis an short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1,256 patients; The International Collaborative of NT-proBNP Study. Eur Heart J 2006; 27: 330–337.
12. DeFilippi C, Van Kimmenade RR, Pinto YM, et al. Amino-terminal pro-B-type natriuretic peptide testing in renal disease. Am J Cardiol 2008; 101: 82–88.
13. Svensson M, Gorst-Rasmussen A, Schmidt EB, et al. NT-proBNP is an independent predictor of mortality in patients with end-stage renal disease. Clin Nephrol 2009; 71: 380–386.
14. Madsen LH, Ladefoged S, Corell P, et al. N-terminal pro-brain natriuretic peptide predicts mortality in patients with end-stage renal disease in hemodialysis. Kidney Int 2007; 71: 548–554.
15. Rajagopalan S, Croal BL, Reeve J, et al. N-terminal pro-B-type natriuretic peptide is an independent predictor of all-cause mortality and MACE after major vascular surgery in medium-term follow up. Eur J Vasc and Endovasc Surg 2011; 41: 657–662.
16. Harrison A, Morrison LK, Krishnaswamy P, et al. B type natriuretic peptide predicts future cardiac events in patients presenting to the emergency department with dyspnea. Ann Emerg Med 2002; 39: 131–138.
17. Taylor CJ, Roalfe AK, Iles R, et al. The potential role of NT-proBNP in screening for and predicting prognosis in heart failure: a survival analysis. BMJ Open 2014; 4: e004675.
18. Kirk V, Bay M, Parner J, et al. N-terminal proBNP and mortality in hospitalised patients with heart failure and preserved vs. reduced systolic function: data from the prospective Copenhagen Hospital Heart Failure Study (CHHF). Eur J Heart Fail 2004; 6: 335–341.
19. Sharma R, Gaze DC, Pellerin D, et al. Raised plasma N-terminal pro-B-type natriuretic peptide concentrations predict mortality and cardiac disease in end-stage renal disease. Heart 2006; 92: 1518–1519.
20. Maisel AS, Krishnaswamy P, Nowak RM, et al. Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 2002; 347: 161–167.
21. Palmer SC, Yandle TG, Nicholls MG, et al. Regional clearance of amino-terminal pro-brain natriuretic peptide from human plasma. Eur J Heart Fail 2009; 11: 832–839.
22. Harnett JD, Foley RN, Kent GM, et al. Congestive heart failure in dialysis patients: prevalence, incidence, prognosis and risk factors. Kidney Int 1995; 4: 884–890.
23. Osajima A, Okazaki M, Kato H, et al. Clinical significance of natriuretic peptides and cyclic GMP in hemodialysis patients with coronary artery disease. Am J Nephrol 2001; 21: 112–119.