GABA and endocannabinoids mediate depotentiation of Schaffer collateral synapses induced by stimulation of temporoammonic inputs

Yukitoshi Izumi
Washington University School of Medicine in St. Louis

Charles F. Zorumski
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Izumi, Yukitoshi and Zorumski, Charles F., "GABA and endocannabinoids mediate depotentiation of Schaffer collateral synapses induced by stimulation of temporoammonic inputs." PLoS One. 11,2. e0149034. (2016).
https://digitalcommons.wustl.edu/open_access_pubs/4691

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temporoammonic Inputs

Yukitoshi Izumi1,2,3, Charles F. Zorumski1,2,3*

1 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States of America, 2 Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, United States of America, 3 Washington University Center for Brain Research in Mood Disorders, Washington University School of Medicine, St. Louis, MO, United States of America

* zorumskc@wustl.edu

Abstract

Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency activation of temporoammonic (TA) inputs to the CA1 region depotentiates SC LTP without persistently altering basal transmission. This heterosynaptic depotentiation involves adenosine A1 receptors but not N-methyl-D-aspartate receptors, metabotropic glutamate receptors or L-type calcium channels. In the present study, we used rat hippocampal slices to explore other messengers contributing to TA-induced SC depotentiation, and provide evidence for the involvement of cannabinoid-1 and γ-aminobutyric acid (GABA) type-A receptors as more proximal signaling events leading to synaptic resetting, with A1 receptor activation serving as a downstream event. Surprisingly, we found that TA-induced SC depotentiation is independent of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)/kainate glutamate receptors. We also examined the involvement of mitogen-activated protein kinases (MAPKs), and found a role for extracellular-signal related kinase 1/2 and p38 MAPK, but not c-Jun-N-terminal kinase. These results indicate that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that instructs SC synaptic resetting. The involvement of GABA and endocannabinoids suggest mechanisms that could contribute to cognitive dysfunction associated with substance abuse and neuropsychiatric disorders.
Introduction

Defects in learning and memory accompany neuropsychiatric disorders and are a leading cause of illness-related disability. While mechanisms underlying memory are not completely understood, present evidence indicates a role for long-term, use-dependent synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD) [1]. LTP and LTD have been extensively studied in the hippocampus, a brain region that processes new declarative memories and is involved in psychiatric illnesses.

While much has been learned about LTP and LTD [2], numerous questions remain. Among these are how hippocampal synapses reset to baseline following LTP. Is synaptic resetting a local process or can inputs from other brain regions instruct depotentiation? Because the hippocampus is involved in initial memory formation, operates over a restricted range of synaptic efficacy, and has limited storage capacity, this is an important question for understanding the dysfunction of neuropsychiatric illnesses. There are at least three ways that synaptic resetting can occur. These include homeostatic changes in which neurons adjust in response to longer-lived changes in activity by cell autonomous mechanisms [3]. Alternatively, other neurons can instruct synaptic resetting. These include homosynaptic depotentiation (LTP-D), in which the same inputs that undergo LTP trigger resetting [4,5], or heterosynaptic depotentiation in which other inputs drive resetting [6]. Considerable information is available about mechanisms underlying homeostatic [3] and homosynaptic effects [7], but less is known about heterosynaptic LTP-D. Studies to date indicate a role for N-methyl-D-aspartate receptors (NMDARs) in homosynaptic LTP-D, and this form of synaptic resetting shares some, but not all, mechanisms with de novo homosynaptic LTD. For example, homosynaptic LTP-D involves serine phosphatases, but differs from LTD in the role of specific subtypes of mitogen-activated protein kinases (MAPKs) [8,9,10].

Our laboratory has examined signals that induce depotentiation in the Schaffer collateral (SC) pathway and that modulate subsequent LTP in these same SC inputs [11,12]. Consistent with prior studies [4,5], we find that low frequency stimulation (LFS) of the homosynaptic SC inputs that have undergone LTP result in pathway-specific LTP-D [13]. Additionally, we found that LFS of heterosynaptic inputs that enter the CA1 region via the perforant (tempor-ommonic, TA) path to synapse on distal dendrites of CA1 pyramidal neurons in stratum lacunosum moleculare (SLM) can selectively erase SC LTP without persistently altering baseline SC transmission or subsequent SC LTP induction [11]. This latter form of LTP-D has unique properties and does not involve NMDARs, metabotropic glutamate receptors (mGluRs) or L-type voltage-activated calcium channels (VACCS), but does involve adenosine A1 receptors [11]. These latter findings indicate that activation of a heterosynaptic input to the CA1 area from entorhinal cortex depotentiates SC LTP in a manner that allows these synapses to be readily re-potentiated by subsequent homosynaptic high-frequency stimulation. Given the limited storage capacity of the hippocampus this form of depotentiation provides a mechanism by which the cortex can prepare the hippocampus for subsequent synaptic processing and avoid synaptic overload by resetting synaptic transmission in the hippocampus.

Here, we extend our work on TA-induced LTP-D by examining other messengers thought to be important in synaptic resetting, focusing on γ-aminobutyric acid (GABA) and lipid derived messengers including GABAergic neurosteroids and endocannabinoids. The involvement of GABA and endocannabinoids shown in this study indicates that low frequency stimulation of TA inputs to CA1 activates a complex signaling network that underlies this form of SC synaptic resetting.
Results

For the present studies, we used hippocampal slices containing a portion of entorhinal cortex to ensure intact TA inputs to area CA1. In control slices, 1 Hz x 900 pulse LFS of the TA (perforant path) inputs (referred to as PLFS in all figures) reliably reverses previously established LTP in the SC pathway, when administered 60 min following induction of SC LTP by a single 100 Hz x 1 s high frequency stimulation (HFS) of SC inputs [11] (EPSP slope: 151.2 ± 6.6% 60 min after HFS and 78.0 ± 12.1% 60 min after PLFS, n = 5, P = 0.005 by paired t-test after PLFS; Fig 1A). In initial experiments, we sought to determine upstream signals involved in TA-induced LTP-D. Because our prior studies found no role for NMDARs or mGluRs [11], and glutamate is the principal neurotransmitter in the TA path from entorhinal cortex to SLM [14,15], we examined the effects of inhibiting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors. Unexpectedly, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 30 μM) administered during TA stimulation had no effect on depotentiation, despite inhibiting synaptic responses in the SC pathway completely during perfusion (145.0 ± 10.4% 60 min after HFS and 89.2 ± 15.1% 60 min after PLFS, n = 5, P = 0.005 by paired t-test after PLFS; Fig 1B). The depotentiation induced by TA LFS in the presence of CNQX did not simply result from the complete block of postsynaptic responses, because administering CNQX in the absence of TA stimulation had no effect on LTP following washout of CNQX (144.1 ± 9.2% 60 min after HFS and 146.9 ± 21.2% after washout, n = 5, p = 0.91; Fig 1B). We also examined the effect of combining glutamate receptor antagonists, but found that

![Graph showing time course of change in SC EPSPs following single 100 Hz x 1 sec HFS delivered to SC pathway. After establishing SC LTP, 1 Hz LFS of the TA (perforant path) inputs to CA1 (PLFS) reversed LTP. Following stable SC LTP induction, 30 μM CNQX (black bar) was administered and inhibited SC EPSPs completely. CNQX did not prevent LTP-D by PLFS (white circles) and had no effect on LTP by itself (black circles). A combination of glutamate receptor antagonists (30 μM CNQX, 100 μM APV and 500 μM MCPG) also failed to prevent PLFS-induced LTP-D. Traces to the right of the graphs show representative field EPSPs at the times indicated (black lines) with baseline EPSPs shown as dashed traces. Calibration: 1 mV, 5 ms.](https://doi.org/10.1371/journal.pone.0149034.g001)
a combination of 30 μM CNQX, 100 μM d,l-2-amino-5-phosphonovalerate (APV) and 500 μM α-methyl-4-carboxyphenylglycine (MCPG) to block AMPA/kainate, NMDA and mGluR receptors did not prevent TA-induced LTP-D (143.0 ± 9.5% 60 min after HFS and 62.2 ± 10.2% 60 min after PLFS, N = 5; Fig 1C).

Inputs from entorhinal cortex to CA1 SLM via the TA pathway are topographically precise and activate a small number of CA1 pyramidal neurons [16,17]. SLM inputs, however, also activate a more widely distributed feedforward GABAergic inhibitory system [18,19]. These observations prompted us to examine whether block of GABA-A receptors alters TA-induced LTP-D. We found that 1 μM picrotoxin (PTX), a non-competitive and broad spectrum GABA-A receptor antagonist, completely prevented TA LTP-D when administered prior to and during TA LFS (148.2 ± 11.8% 60 min after HFS and 135.6 ± 7.4% 60 min after PLFS, n = 5, P = 0.28 before and after PLFS; Fig 2A). In contrast, the GABA-B receptor antagonist 2-hydroxysaclofen (200 μM) had no effect on TA-induced LTP-D (142.4 ± 7.0% 60 min after HFS and 78.8 ± 10.7% 60 min after PLFS, n = 5, P = 0.004; Fig 2B).

GABA-A receptors can be positively modulated and directly activated by 5α-reduced neurosteroids, including allopregnanolone [20], and our prior studies indicated a role for GABA and GABA-enhancing neurosteroids in de novo homosynaptic LTD in the SC pathway [21]. These observations prompted us to examine a role for GABAergic neurosteroids in TA-induced LTP-D using the 5α-reductase inhibitor, finasteride (1 μM), to block the synthesis of allopregnanolone and other 5α-reduced neurosteroids. Finasteride had no effect on TA-induced LTP-D, indicating that neurosteroid production does not participate in this form of synaptic modulation (139.4 ± 6.3% 60 min after HFS and 76.3 ± 8.3% after PLFS, n = 5, P = 0.001; Fig 3). In contrast, finasteride completely inhibited homosynaptic LTP-D (137.7 ± 7.7% 60 min after HFS and 143.7 ± 4.0% 60 min after Schaffer LFS, n = 5, P = 0.599; Fig 3), consistent with what we previously showed for de novo SC LTD [21].

Based on prior studies demonstrating a role for endocannabinoids (ECs) in CA1 synaptic depression and LTD [22,23,24], we also examined whether ECs contribute to TA-induced LTP-D. When administered for 15 minutes following stable induction of SC LTP, exogenous administration of the EC, 2-arachidonylglycerol (2-AG, 20 μM), resulted in chemically-induced depotentiation (122.6 ± 2.1% after HFS and 82.7 ± 15.5% after 2AG, n = 5, P = 0.003; Fig 4A). We also found that LTP-D induced by TA LFS occluded further depression by 2AG, suggesting commonality of action (163.9 ± 24.5% 60 min after SC HFS, 87.8 ± 3.7% 60 min following TA LFS, and 90.0 ± 4.7% 60 min following 2AG, n = 5, P = 0.435 vs. TA LFS; Fig 4B).

Fig 2. GABA-A but not GABA-B receptors contribute to TA-induced SC LTP-D. (A) In the presence of 1 μM picrotoxin, a GABA-A receptor antagonist (PTX, black bar), PLFS (hatched bar) failed to depotentiate SC LTP. (B) 2-Hydroxysaclofen (200 μM, black bar), a GABA-B receptor antagonist did not alter TA-induced LTP-D. Traces show representative EPSPs at the times indicated in the graphs. Calibration: 1 mV, 5 ms.

doi:10.1371/journal.pone.0149034.g002
The effects of 2-AG, were not mimicked by a related EC, anandamide (145.0 ± 6.4% 60 min after LFS and 146.7 ± 5.2% 60 min after 10 μM anandamide, n = 3, P = 0.851), but were completely inhibited by the CB1 receptor antagonist, AM251 (133.7 ± 5.4% after HFS and 136.5 ± 11.1% 60 min after 2AG, n = 5, P = 0.714; Fig 4C). Interestingly, the depotentiating actions of 2-AG were also completely blocked by PTX (163.0 ± 19.6% after HFS and 145.2 ± 14.4% after 2AG, n = 6, P = 0.467; Fig 4D). Depotentiation by 2-AG was also inhibited by the adenosine A1 receptor antagonist, 8-cyclopenthyl-1,3-dipropylxanthine (DPCPX) (200 nM) (139.1 ± 8.3% after HFS and 141.6 ± 10.9% after 2AG, n = 6, P = 0.724; Fig 4E), which we previously found to block TA-induced LTP-D [11].

Further supporting a role for endogenous ECs in TA LTP-D, we found that tetrahydrolipstatin (10 μM), an inhibitor of diacylglycerol lipase that blocks endogenous 2-AG synthesis [25], prevented the effects of TA LFS on established SC LTP (169.5 ± 13.8% after HFS and 149.7 ± 12.7% after PLFS, n = 5, p = 1.000 by signed Rank test; Fig 5A). We also found that AM251, the CB1 receptor antagonist, blocked the effects of TA LFS on LTP, but did not prevent the ability of the adenosine A1 receptor agonist, N6-cyclopentyl-adenosine (CPA, 10 nM) to reverse previously established SC LTP (136.8 ± 7.6% after HFS and 134.0 ± 5.3% after CPA, n = 6, p = 0.011; Fig 5B). Similarly, the ability of CPA to depotentiate SC synapses was not altered by PTX (172.0 ± 26.6% after HFS and 100.5 ± 15.8% after PLFS, n = 5, p = 0.023; Fig 5C). Taken together these results indicate that both ECs and adenosine play a role in TA-induced LTP-D, but based on specific receptor antagonists, adenosine A1 receptor activation appears to occur downstream of CB1 receptor activation. Furthermore, activation of GABA_A receptors appears to occur downstream of ECs but upstream of adenosine receptors.

Because prior studies indicate that different MAPKs participate in hippocampal LTD and depotentiation [10], we examined a role for MAPKs in TA-induced LTP-D. We found that the MEK inhibitor, PD98059 (10 μM), which prevents signaling in the ERK 1/2 pathway (159.5 ± 15.6% after HFS and 147.2 ± 15.7% after PLFS, n = 8, Fig 6A), and the p38 MAPK inhibitor, SB20358 (10 μM) (160.5 ± 16.5% after HFS and 155.3 ± 12.2% after PLFS, n = 5, Fig 6B) [11], independently blocked the effects of TA stimulation on LTP, suggesting a role for these MAPKs in heterosynaptic depotentiation. In contrast, the c-Jun-N-terminal kinase (JNK) inhibitor, SP600125 (10 μM) had no effect on TA-induced LTP-D (138.4 ± 8.8% after HFS and 91.4 ± 12.5% after PLFS, n = 5, p = 0.008; Fig 6C).

Finally, we examined whether the MAPK inhibitors altered chemically-induced depotentiation using the receptor agonists described above. We found the PD98059, failed to block the
effects of either 2-AG (137.0 ± 11.5% after HFS and 83.9 ± 7.9% after 2AG, n = 5, p = 0.002; Fig 7A) or CPA (140.0 ± 5.8% after HFS and 92.3 ± 8.5% after CPA, n = 6, p = 0.004; Fig 7B) on LTP, suggesting that ERK activation occurs relatively early in the depotentiation cascade and is upstream of both CB1 and A1 receptor activation. In contrast, the p38 MAPK inhibitor, SB20358 completely eliminated LTP-D produced by 2-AG (134.4 ± 2.8% after HFS and 151.5 ± 12.9% after 2AG, n = 5, p = 0.216; Fig 8A), but did not prevent chemical depotentiation
induced by the adenosine agonist (157.8 ± 23.1% after HFS and 99.4 ± 12.1% after CPA, n = 6, p = 0.0239; Fig 8B).

**Discussion**

These results indicate that low frequency stimulation of inputs to distal dendrites in the SLM region of hippocampal area CA1 depotentiates previously established SC LTP via a complex signaling system. We previously found that this form of heterosynaptic depotentiation in which extrahippocampal inputs instruct synaptic resetting of SC synapses involves activation of adenosine A1 receptors but not NMDARs, mGluRs or L-type calcium channels [11]. Our present study indicates that TA LTP-D engages multiple other modulators, involving at the minimum activation of CB1 receptors, GABA-A receptors and A1 receptors, along with two components of MAPK signaling, ERK 1/2 and p38 MAPK. Based on differential effects of inhibitors of these modulators and pathways, it appears that endocannabinoids and CB1 receptors are early mediators, GABA and GABA-A receptors are involved at an intermediate stage, and A1 receptor activation occurs more distally in the cascade. Similarly, ERK 1/2 is involved
more proximally, while p38 MAPK appears to play a role more distally, but prior to A1 receptor involvement (Fig 9).

A surprising result is the apparent lack of involvement of glutamate receptors in this form of depotentiation. We previously found no role for NMDARs or mGluRs based on broad spectrum antagonists [11]. Here we examined a role for AMPA/kainate receptors using CNQX, a broad spectrum antagonist that blocked SC transmission completely and reversibly at the concentration used. Despite the block of SC EPSPs, CNQX had no effect on the ability of TA LFS to depotentiate SC LTP. Similarly a combination of antagonists against AMPA/kainate, NMDA and mGluR receptors failed to prevent TA-induced SC depotentiation. We used MCPG as a broad spectrum mGluR antagonist in these studies, although this agent has diminished effects at Group III mGluRs [26]).
The findings with glutamate receptor antagonists suggest that other modulators entering the CA1 region via the TA path are critical activators of this unique form of LTP-D. Activation of ECs and GABAergic inputs is likely based on the effects of AM251 and picrotoxin, and the known ability of SLM inputs to engage feed forward inhibition [18]. For experiments examining the role of GABA-A receptors, we used the broad spectrum antagonist, picrotoxin, dissolved in ethanol and administered at 1 μM. We previously found that this concentration of picrotoxin dampens CA1 inhibition without inducing epileptiform activity. At this low concentration, picrotoxin may preferentially block liganded extrasynaptic GABA-A receptors although our studies do not directly address this issue [27]. Furthermore, recent studies

Fig 7. An ERK inhibitor does not alter chemical LTP-D by 2AG or CPA. (A,B) In the presence of 10 μM PD98059, both 2AG (A), the endocannabinoid agonist, and CPA (B), the adenosine A1 receptor agonist, induced chemical depotentiation. Traces show EPSPs at the times indicated. Calibration: 1 mV, 5 ms.

doi:10.1371/journal.pone.0149034.g007

Fig 8. A p38 MAPK inhibitor blocks chemical LTP-D by CB1 receptor activation but not A1 receptor activation. (A) In the presence of 10 μM SB20358, 20 μM 2AG failed to induce LTP-D of SC LTP. B. SB20358, however, did not prevent chemical depotentiation by CPA. Traces show EPSPs at the times indicated. Calibration 1 mV, 5 ms.

doi:10.1371/journal.pone.0149034.g008
indicate that entorhinal cortex sends direct long-range GABAergic inhibitory projections to CA1 via SLM and these inputs can modulate CA1 function [28]. Other modulators, including monoamines, also innervate SLM and could play a role [29,30,31]. Our studies exclude a role for GABA-enhancing, 5α-reduced neurosteroids based on the lack of effect of finasteride, a selective 5α-reductase inhibitor that blocks synthesis of allopregnanolone in the hippocampus.
20, 32, 33]. These neurosteroids, however, do play a role in homosynaptic SC LTP-D, just as we previously found for homosynaptic SC LTD [21].

Our results indicate that ECs, particularly 2AG, and CB1 receptors are involved in TA-induced depotentiation. Prior studies have shown that ECs play complex roles in synaptic function and plasticity, participating in homosynaptic and heterosynaptic LTD in the SC pathway [34,35]. In some cases, the involvement of ECs has included a complex interaction with NMDARs and mGluRs, particularly Group I mGluRs linked to phosphoinositide metabolism [24,34,36]. ECs also modulate GABA-mediated inhibitory transmission, including forms of inhibitory LTD (I-LTD) [37]. Thus, interactions of ECs with interneurons and GABA-A receptor activation as observed here are consistent with findings in other forms of plasticity, including our own prior studies of homosynaptic SC LTD [24]. ECs are known to function as retrograde intercellular messengers in synaptic plasticity [22,23] raising the possibility that these modulators help to drive both presynaptic and postsynaptic changes in TA-induced LTP-D. In our studies, it appears that ECs are involved relatively early in the events leading to synaptic resetting.

The present studies also begin to explore second messenger systems contributing to TA-induced LTP-D. Prior work has indicated that MAPKs play important role in several forms of long-term synaptic plasticity, including LTP, LTD and LTP-D [10,38,39]. Here we found that ERK 1/2 and p38 MAPK, but not JNK, are involved in TA-induced LTP-D. ERK 1/2 appears to be involved earlier in the process and p38 MAPK later, based on block by specific antagonists and the effects of these MAPK antagonists on agonists that activate CB1 and A1 receptors. Prior studies indicate that p38 MAPK is involved in SC LTD [39,40,41] and in NMDAR-mediated metaplastic inhibition of SC LTP [42]. It is likely that other intracellular and possibly intercellular messengers are involved in TA-induced LTP-D, based on the role that nitric oxide [13] and phosphatases [2] play in homosynaptic SC LTD and LTP-D. It is also likely that TA-induced LTP-D modulates the trafficking of AMPARs at SC synapses based on the importance of this mechanism in multiple forms of hippocampal synaptic plasticity [39,43].

Our studies further indicate that adenosine acting at A1 receptors is involved later in the events driving TA-induced LTP-D than other messengers examined to date. Among the signaling inhibitors studied, only the A1 receptor antagonist blocked the effects of an adenosine agonist, and this antagonist also blocks the effects of direct TA stimulation [11]. The involvement of adenosine in this form of LTP-D is consistent with its role in other forms of LTD and depotentiation [44,45,46,47]. Numerous questions remain about the involvement of adenosine in TA stimulation, including the source of adenosine and the messengers that adenosine activates to ultimately produce depotentiation. Prior work indicates that both neurons and glia can release adenosine and, in some cases, adenosine is generated from adenosine triphosphate (ATP) followed by enzymatic conversion by extracellular ectonucleotidases [41,48]. It is also unclear which messengers/mechanisms are triggered by adenosine to drive synaptic resetting. We examined a role for p38 MAPK based on prior work indicating that adenosine can activate p38 MAPK to depotentiate synapses [47], but found that a p38 inhibitor did not alter the effects of an A1 receptor agonist, suggesting that p38 activation likely occurs earlier in the signaling events.

Taken together, the present results indicate that TA-induced LTP-D is a unique form of synaptic plasticity and provides a mechanism by which extra-hippocampal brain regions can instruct the resetting of SC synapses following LTP induction. Prior work has indicated the importance of bidirectional synaptic plasticity and metaplasticity in learning [2,12] and TA inputs are subject to both LTP and LTD [49,50,51] and can modulate induction of SC plasticity and learning [52,53,54,55]. The complex signaling involved in TA-induced LTP-D, including the role of GABA, ECs and adenosine, also provide ways by which therapeutic and abused...
drugs can modulate hippocampal function. Understanding this form of synaptic resetting could provide ways by which cognitive function can be improved in a variety of neuropsychiatric disorders.

**Materials and Methods**

**Hippocampal Slice Preparation**

Hippocampal slices were prepared from postnatal day (P) 30–32 albino rats using standard methods [11,29]. Rats were anesthetized with isoflurane and decapitated. All animal protocols were approved by the Washington University Animal Studies Committee in accordance with national and international guidelines. Dissected hippocampi were placed in ice-cold artificial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl, 5 KCl, 2 MgSO4, 2 CaCl2, 1.25 NaH2PO4, 22 NaHCO3, 10 glucose, bubbled with 95% O2-5% CO2 at 4–6°C, and cut into 450 μm slices using a vibrotome. The slices were cut in a fashion that included a significant portion of entorhinal cortex to maximize TA inputs to SLM in the CA1 region [11]. Acutely prepared slices were placed in an incubation chamber containing gassed ACSF for 1 hr at 30°C before further experimentation.

**Hippocampal Slice Physiology**

At the time of study, slices were transferred individually to a submersion-recording chamber. Experiments were done at 30°C with continuous ACSF perfusion at 2 ml/min. Extracellular recordings were obtained from the apical dendritic layer (stratum radiatum) of the CA1 region for analysis of excitatory postsynaptic potentials (EPSPs) using electrodes filled with 2 M NaCl (5–10 MΩ resistance).

EPSPs were evoked with 0.1 msec constant current pulses through a bipolar stimulating electrode in the SC pathway. A second stimulating electrode was placed in the TA pathway to activate distal dendrites of CA1 in SLM. A control input-output curve was obtained to determine stimulus intensities for subsequent studies. Responses were monitored by applying single stimuli to the SC pathway every 60 sec at half maximal intensity. After establishing a stable baseline for at least 10 min, LTP was induced by a single 100 Hz x 1 s tetanus using the same intensity stimulus. Input-output curves were repeated 60 min following tetanic stimulation. In some experiments, a second independent SC input to CA1 was activated using a stimulating electrode placed at a different level in stratum radiatum than the primary SC stimulating electrode and positioned on the distal (subiculum) side of the dendritic recording electrode.

**Materials**

2-Arachidonoylglycerol (2AG), AM251, PD98059, SB20358 and SP600125 were obtained from Tocris Bioscience (St. Louis MO). Finasteride was obtained from Steraloids (Newport RI). Other chemicals and pharmacological agents were obtained from Sigma Chemical Company (St. Louis MO).

**Statistical Analysis**

Data were collected and analyzed using PClamp software (Axon Instruments, Union City CA). Data in the text are expressed as mean ± SEM. A two-tailed Student’s t-test was used for comparisons between groups. Statistical comparisons were based on input-output curves at baseline and sixty minutes following tetanic or 1 Hz stimulation with p < 0.05 considered significant. Analyses were done using commercial software (SigmaStat, Systat Software, Inc., Richmond City, CA).
Acknowledgments
The authors thank Kazuko O’Dell for technical assistance.

Author Contributions
Conceived and designed the experiments: YI CFZ. Performed the experiments: YI. Analyzed the data: YI CFZ. Contributed reagents/materials/analysis tools: YI CFZ. Wrote the paper: YI CFZ.

References
1. Martin SJ, Grimwood PD, Morris RGM. Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci. 2000; 23:649–711. PMID: 10845079
2. Malenka RC, Bear MF. LTP and LTD: an embarrassment of riches. Neuron. 2004; 44:5–21. PMID: 15450156
3. Turrigiano G. Too many cooks? Intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. Annu Rev Neurosci. 2011; 34:89–103. doi: 10.1146/annurev-neuro-060909-153238 PMID: 21438687
4. Dudek SM, Bear MF. Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci (USA). 1992; 89:4363–4367.
5. Dudek SM, Bear MF. Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus. J Neurosci. 1993; 13:2910–2918. PMID: 8331379
6. Abraham WC, Mason-Parker SE, Bear MF, Webb S, Tate WP. Heterosynaptic metaplasticity in the hippocampus in vivo: a BCM-like modifiable threshold for LTP. Proc Natl Acad Sci (USA). 2001; 98:10924–10929.
7. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Neuroreport. 2010; 11:459–473.
8. Kim J-I, Lee H-R, Sim S, Baek J, Yu N-K, Choi J-H, et al. PI3K is required for NMDA receptor-dependent long-term depression and behavioral flexibility. Nature Neurosci. 2011; 14:1447–1454. doi: 10.1038/nn.2937 PMID: 21527831
9. Peineau S, Bradley C, Taghibiglou C, Doherty A, Bortolotto ZA, Wang YT, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008; 153:S428–S437. doi: 10.1038/bjp.2008.2 PMID: 18311157
10. Zhu Y, Pak D, Qiu Y, McCormack SG, Kim MJ, Baumgart JP, et al. Rap-2-JNK removes synaptic AMPA receptors during depotentiation. Neuron. 2005; 46:905–916. PMID: 15953419
11. Izumi Y, Zorumski CF. Direct cortical inputs erase LTP at Schaffer collateral synapses. J Neurosci. 2008; 28:9557–9563. doi: 10.1523/JNEUROSCI.3346-08.2008 PMID: 18799687
12. Zorumski CF, Izumi Y. NMDA receptors and metaplasticity: mechanisms and possible roles in neuropsychiatric disorders. Neurosci Biobehav Rev. 2012; 36:989–1000. doi: 10.1016/j.neubiorev.2011.12.011 PMID: 22230702
13. Izumi Y, Zorumski CF. Nitric oxide and long-term synaptic depression in the rat hippocampus. NeuroReport. 1993; 4:1131–1134. PMID: 8219040
14. Buzsaki G, Penttonen M, Bragin A, Nadasdy Z, Chrobak JJ. Possible physiological role of the perforant path-CA1 projection. Hippocampus. 1995; 5:141–146. PMID: 7633517
15. Jones RSG. Entorhinal-hippocampal connections: a speculative view of their function. Trends Neurosci. 1993; 16:58–64. PMID: 7680501
16. Levy WB, Colbert CM, Desmond NL. Another network model bites the dust: entorhinal inputs are no more than weakly excitatory in the hippocampal CA1 region. Hippocampus. 1995; 5:137–140. PMID: 7633516
17. Otmakhova NA, Otmakhov N, Lisman JE. Pathway-specific properties of AMPA and NMDA-mediated transmission in CA1 hippocampal pyramidal cells. J Neurosci. 2002; 22:1199–1207. PMID: 11850447
18. Empson RM, Heinemann U. Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal-entorhinal cortex combined slice preparation. Hippocampus. 1995; 5:104–107. PMID: 7633510
19. Kiss J, Buzsaki G, Morrow JS, Glantz SB, Leranth C. Entorhinal cortical innervation of parvalbumin-containing neurons (Basket and Chandelier cells) in the rat Ammon’s horn. Hippocampus. 1996; 6:239–246. PMID: 8641824
20. Chisari M, Eisenman LN, Covey DF, Mennerick S, Zorumski CF. The sticky issue of neurosteroids and GABA<sub>A</sub> receptors. Trends Neurosci. 2010; 33:299–306. doi: 10.1016/j.tins.2010.03.005 PMID: 20409596

21. Izumi Y, O'Dell KA, Zorumski CF. Metaplastic LTP inhibition after LTD induction in CA1 hippocampal slices involves NMDA receptor-mediated neurosteroidogenesis. Physiol Rep. 2013; 1:e00133. doi: 10.1002/phy2.133 PMID: 24303196

22. Castillo PE, Younts TJ, Chavez AE, Hashimoto-Dani Y. Endocannabinoid signaling and synaptic function. Neuron. 2012; 76:70–81. doi: 10.1016/j.neuron.2012.09.020 PMID: 23040807

23. Helfets BD, Castillo PE. Endocannabinoid signaling and long-term synaptic plasticity. Annu Rev Neurosci. 2009; 71:283–306.

24. Izumi Y, Zorumski CF. NMDA receptors, mGluR5 and endocannabinoids are involved in a cascade leading to hippocampal long-term depression. Neurypsychopharmacol. 2012; 37:609–617.

25. Kano M, Ohno-Shosaku T, Hashimoto-Dani Y, Uchigashima M, Watanabe M. Endocannabinoid-mediated control of synaptic transmission. Physiol Rev. 2009; 89:309–380. doi: 10.1152/physrev.00019.2008 PMID: 19126760

26. Bushell TJ, Jane DE, Tes H-W, Watkins JC, Garthwaite J, Collingridge GL. Pharmacological antagonism of the actions of group II and III mGluR antagonists in the lateral perforant path of rat hippocampal slices. Br J Pharmacol. 1996; 117:1457–1462. PMID: 8730739

27. Semyanov A, Walker MC, Kullmann DM. GABA uptake regulates cortical excitability via cell type-specific tonic inhibition. Nat Neurosci. 2003; 6:484–490. PMID: 12679782

28. Basu J, Zaremba JD, Cheung SK, Hitti FL, Zemelman BV, Losonczy A, et al. Gating of hippocampal activity and memory by entorhinal cortex long-range inhibition. Science. 2016; 351:aaa5694–1. doi: 10.1126/science.aaa5694 PMID: 26744409

29. Maccarelli G. Modulation of hippocampal stratum lacunosum-moleculare microcircuits. J Physiol. 2011; 589:1885–1901. doi: 10.1113/jphysiol.2010.201079 PMID: 21350043

30. Otmaikhova NA, Lisman JE. Dopamine selectively inhibits the direct corticofugal pathway to the CA1 hippocampal region. J Neurosci. 1998; 18:1437–1445.

31. Otmaikhova NA, Lewey J, Asrican B, Lisman JE. Inhibition of perforant path input to the CA1 region by serotonin and noradrenaline. J Neurophysiol. 2005; 94:1413–1422. PMID: 15888529

32. Tokuda K, O’Dell KA, Izumi Y, Zorumski CF. Midazolam inhibits hippocampal long-term potentiation and learning through dual central and peripheral benzodiazepine receptor activation and neurosteroidogenesis. J Neurosci. 2010; 30:16788–16795. doi: 10.1523/JNEUROSCI.4101-10.2010 PMID: 21159950

33. Tokuda K, Izumi Y, Zorumski CF. Ethanol enhances neurosteroidogenesis in hippocampal pyramidal neurons by paradoxical NMDA receptor activation. J Neurosci. 2011; 31:9905–9909. doi: 10.1523/JNEUROSCI.1660-11.2011 PMID: 21734282

34. Péterfi Z, Urbán GM, Papp OI, Németh B, Monyer H, Szabó G, et al. Endocannabinoid-mediated long-term depression of afferent excitatory synapses in hippocampal pyramidal cells and GABAergic interneurons. J Neurosci. 2012; 32:14448–14463. doi: 10.1523/JNEUROSCI.1676-12.2012 PMID: 23055515

35. Xu J-Y, Chen R, Zhang J, Chen C. Endocannabinoids differentially modulate synaptic plasticity in rat hippocampal CA1 pyramidal neurons. PLoS One. 2010; 5:e10306. doi: 10.1371/journal.pone.0010306 PMID: 20421986

36. Yasuda H, Huang Y, Tsumoto T. Regulation of excitability and plasticity by endocannabinoids and PKA in developing hippocampus. Proc Natl Acad Sci (USA). 2008; 105:3106–3111.

37. Chevaleyre V, Castillo PE. Heterosynaptic LTD of hippocampal GABAergic synapses: a novel role of endocannabinoids in regulating excitability. Neuron. 2003; 38:461–472. PMID: 12741992

38. Wang JQ, Fibuch EE, Mao L. Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem. 2007; 100:1–11. PMID: 17018022

39. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R. Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell. 2002; 110:443–455. PMID: 12202034

40. Chen J, Tan Z, Zeng L, Shang X, He Y, Gao W, et al. Heterosynaptic long-term depression mediated by ATP released from astrocytes. Glia. 2012; 61:178–191. doi: 10.1002/glia.22425 PMID: 23044720

41. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R, Sul J-Y, et al. Astrocytic purinergic signaling coordinates synaptic networks. Science. 2005; 310:113–116. PMID: 16210541

42. Izumi Y, Tokuda K, Zorumski CF. Long-term potentiation inhibition by low-level N-methyl-D-aspartate receptor activation involves calcineurin, nitric oxide and p38 mitogen-activated protein kinase. Hippocampus. 2008; 18:258–265. PMID: 18000819
43. Kessels HW, Malinow R. Synaptic AMPA receptor plasticity and behavior. Neuron. 2009; 61:340–350. doi: 10.1016/j.neuron.2009.01.015 PMID: 19217372

44. Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-Ca1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. J Neurosci. 2014; 34: 9621–9643. doi: 10.1523/JNEUROSCI.3991-13.2014 PMID: 25031403

45. Chung HJ, Ge WP, Qian X, Wiser O, Jan YN, Jan LY. G protein-activated inward rectifying potassium channels mediate depotentiation of long-term potentiation. Proc Natl Acad Sci (USA). 2009; 106:635–640.

46. Huang CC, Liang YC, Hsu KS. A role for extracellular adenosine in time-dependent reversal of long-term potentiation by low-frequency stimulation at hippocampal CA1 synapses. J Neurosci. 1999; 19:9728–9738. PMID: 10559382

47. Liang Y-C, Huang C-C, Hsu K-S. A role of p38 mitogen-activated protein kinase in adenosine A1 receptor-mediated synaptic depotentiation in area CA1 of the rat hippocampus. Mol Brain. 2008; 1:13 doi: 10.1186/1756-6606-1-13 PMID: 18947392

48. Zhang Q, Haydon PG. Roles for gliotransmission in the nervous system. J Neural Trans. 2005; 112:121–125.

49. Aksoy-Aksel A, Manahan-Vaughan D. The temporoammonic input to the hippocampal CA1 region displays distinctly different synaptic plasticity compared to the Schaffer collateral input in vivo: significance for synaptic information processing. Front Synap Neurosci. 2013; 5: 1–12.

50. Colbert CM, Levy WB. Long-term potentiation of perforant path synapses in hippocampal CA1 in vitro. Brain Res. 1993; 606:87–91. PMID: 8462007

51. Remondes M, Schuman EM. Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature. 2002; 416:736–740. PMID: 11961555

52. Remondes M, Schuman EM. Role for a cortical input to hippocampal area CA1 in the consolidation of long-term memory. Nature. 2004; 431:699–703. PMID: 15470431

53. Suh J, Rivest AJ, Nakashiba T, Tominaga T, Tonegawa S. Entorhinal cortex layer III input to the hippocampus is crucial for temporal association memory. Science. 2011; 334:1415–1420. doi: 10.1126/science.1210125 PMID: 22052975

54. Levy WB, Desmond NL, Zhang DX. Perforant path activation modulates the induction of long-term potentiation of the Schaffer collateral-hippocampal CA1 response: theoretical and experimental analyses. Learn Mem. 1998; 4:510–518. PMID: 10701875

55. Xu J-Y, Zhang J, Chen C. Long-lasting potentiation of hippocampal synaptic transmission by direct cortical input is mediated via endocannabinoids. J Physiology. 2012; 590:2305–2315.