Existence of weak solutions to the Ericksen–Leslie model for a general class of free energies

Etienne Emmrich† Robert Lasarzik‡

Abstract

A quasistatic model due to Ericksen and Leslie describing incompressible liquid crystals is studied for a general class of free energies. Global existence of weak solutions is proven via a Galerkin approximation with eigenfunctions of a strongly elliptic operator. A novelty is that the principal part of the differential operator appearing in the director equation can be nonlinear.

Keywords: Liquid crystal, Ericksen–Leslie equation, Existence, Weak solution, Galerkin approximation

MSC (2010): 35Q35, 35K52, 76A15

Contents

1 Introduction 2
1.1 Review of known results . 3
1.2 Free energy potential . 4
1.3 Outline of the paper . 5
2 Preliminaries 6
2.1 Notation . 6
2.2 A few interpolation inequalities . 8
3 Ericksen–Leslie model and main result 8
3.1 Governing equations . 8
3.2 A class of free energy potentials . 10
3.3 Existence of weak solutions . 11
4 Galerkin approximation and proof of the main result 14
4.1 Galerkin approximation . 14
4.2 Energy inequality and a priori estimates . 16
4.3 Convergence of the approximate solutions 24

†This work was funded by CRC 901 Control of self-organizing nonlinear systems: Theoretical methods and concepts of application. (Project A8)
‡Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
emmrich@math.tu-berlin.de
‡Technische Universität Berlin, Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Germany
lasarzik@math.tu-berlin.de
1 Introduction

Liquid crystals are fluids that exhibit anisotropic (directional depending) properties. After several reports on such materials in the second half of the 19th century (see Heinz [16], Virchow [42], and Reinitzer [37]), they were first named and characterised as a state of matter in between fluids and solids by Otto Lehmann (see [22]). Only in the second half of the last century liquid crystals came into the focus for many applications (see Palffy-Muhoray [35]), where the liquid crystal display (see Heilmeier et al. [15]) is only the most prominent one.

This article is mainly concerned with nematic liquid crystals, which is a special mesophase of liquid crystals. In this phase, the rod-like molecules are randomly distributed in space as in isotropic liquids. These molecules tend to align in a common direction, even though they are not in a rigid lattice structure as in solids (see Figure 1). The most common model describes the anisotropic properties, i.e., the preferred direction of the alignment, by a unit vector field \(\mathbf{d} \) and the fluid flow by a velocity field \(\mathbf{v} \). This model is due to Oseen [34] and Frank [10] in the stationary case and Ericksen [7, 8] and Leslie [23] in the non-stationary case. This model is indeed quite successful and has also been confirmed by experiments (see Beris and Edwards [1, §11.1 page 463]).

In this article, we prove existence of weak solutions to the Ericksen–Leslie model under rather weak assumptions on the free energy.
1.1 Review of known results

Ericksen [7,8] and Leslie [23] introduced the following system, which consists of an equation for the evolution of the anisotropic parameter d coupled with an incompressible Navier–Stokes equation for the velocity v and the pressure p with a certain additional stress tensor:

\[
\begin{aligned}
\rho \frac{dv}{dt} + \nabla p + \nabla \cdot \left(\nabla d^T \frac{\partial F}{\partial \nabla d} \right) - \nabla \cdot T^L &= \rho g, \\
\rho_1 \frac{dd}{dt} - \nabla \cdot \left(\frac{\partial F}{\partial \nabla d} \right) + \frac{\partial F}{\partial d} - \lambda_1 \left(\frac{dd}{dt} - (\nabla v)_{skw} d \right) - \lambda_2 (\nabla v)_{sym} d &= \rho_1 f, \\
\nabla \cdot v &= 0, \\
|d|^2 &= 1.
\end{aligned}
\] (1.1a - 1.1d)

Here $\frac{dd}{dt} := \frac{\partial d}{\partial t} + (v \cdot \nabla) d$ denotes the material derivative. The free energy density is denoted by $F = F(d, \nabla d)$. Moreover, f and g represent external forces acting on the director and on the velocity field, respectively. Finally, ρ denotes the mass density of the fluid whereas $\rho_1 = \rho \bar{r}^2$ with \bar{r} being of the size of the length of the molecules.

The dissipative part of the stress tensor, also called Leslie stress, is given by

\[
T^L := \mu_1 (d \cdot (\nabla v)_{sym} d) d \otimes d + \mu_2 e \otimes d + \mu_3 d \otimes e
+ \mu_4 (\nabla v)_{sym} + \mu_5 (\nabla v)_{sym} d \otimes d + \mu_6 d \otimes (\nabla v)_{sym} d.
\] (1.2)

Here we use the abbreviation $e := \frac{dd}{dt} - (\nabla v)_{skw} d$. Note that e is an invariant of the system with respect to translations and rotations (see Leslie [23]). The constants appearing in (1.1) and (1.2) are related to each other in the following way (see Leslie [23]):

\[
\lambda_1 = \mu_2 - \mu_3, \quad \lambda_2 = \mu_5 - \mu_6.
\] (1.3a)

Additionally, Parodi’s relation

\[
\lambda_2 + \mu_2 + \mu_3 = 0
\] (1.3b)

is often assumed to hold (see Lin and Liu [27] or Parodi [36]), but will not be assumed to hold for the proof of our existence result. Parodi’s relation follows from Onsager’s reciprocal relation and can be employed in order to obtain the stresses as derivatives of a dissipation distance (see Wu, Xu and Liu [46]).

The first mathematical analysis of the Ericksen–Leslie model is due to Lin and Liu [26] for the simplified model

\[
\begin{aligned}
\partial_t v + (v \cdot \nabla)v + \nabla p - \mu_4 \Delta v &= -\nabla \cdot (\nabla d^T \nabla d), \\
\partial_t d + (v \cdot \nabla)d - \Delta d + \frac{1}{\varepsilon} (|d|^2 - 1) d &= 0, \\
\nabla \cdot v &= 0.
\end{aligned}
\] (1.4)

The norm restriction (1.1d) is incorporated by a standard relaxation technique adding a double-well potential to the free energy. The free energy potential for this model is given by

\[
F_\varepsilon(d, \nabla d) = \frac{1}{2} |\nabla d|^2 + \frac{1}{4\varepsilon^2} (|d|^2 - 1)^2, \quad \varepsilon > 0.
\] (1.5)

Indeed, Lin and Liu [26] prove global existence of weak solutions as well as local existence of strong solutions to (1.4). In [27], the authors generalise these results to the system (1.1b)-(1.1e) equipped with the energy (1.5) and under the additional assumption $\rho_1 = \lambda_2 = 0$. With
this last simplification ($\lambda_2 = 0$), translational forces of the fluid onto the director are neglected. This enables the authors to prove a weak maximum principle which is essential for the analysis in [26] and [27].

The full Ericksen–Leslie model (1.1a)-(1.1c) (with $\rho_1 = 0$) equipped with the Dirichlet energy and double-well potential (1.5) was considered by Wu, Xu and Liu [46]. They show existence of weak solutions under the condition that μ_4 is large enough. Cavaterra, Rocca and Wu [3] prove the existence of weak solutions for the same system when μ_4 is only assumed to be positive. They add a regularising p-Laplacian to the velocity equation. Feireisl et al. [9] generalised the Ericksen–Leslie model to account for nonisothermal effects by considering additionally to system (1.1) an energy balance and an entropy inequality. They show global existence of weak solutions.

There are also several articles studying the local well-posedness of the Ericksen–Leslie model. Wang, Zhang and Zhang [44] show local existence of strong solutions to system (1.1) equipped with the so-called Oseen–Frank energy (1.7) below was considered by Hong, Li, and Xin [19], they managed to prove the energy potential due to Oseen [34] and Frank [10], called Oseen–Frank energy, $F = \frac{1}{2} \chi_{\perp} |\nabla d|^2 + \frac{1}{2} \chi_{\parallel} |d|^2 + \frac{1}{2} \lambda_2 (\nabla \cdot d)^2 + \frac{1}{2} \lambda_3 (\nabla \times d)^2 + \frac{1}{2} \lambda_4 (\nabla \times d)^{\skw}$.

Taking the equation for the director in the cross product with the director itself, assures that the energy potential (1.5) can be written as

$$F = k_1 (\nabla \cdot d)^2 + k_2 (d \cdot (\nabla \times d))^2 + k_3 d \times (\nabla \times d)^2 + \alpha (\nabla (\nabla d)^2) - (\nabla \cdot d)^2.$$

This gives rise to the free energy potential

$$F_H(d, \nabla d) := F(d, \nabla d) - \chi_{\perp} |H|^2 - (\chi_{\parallel} - \chi_{\perp})(d \cdot H)^2.$$

1.2 Free energy potential

The free energy potential F models the inner forces and thus the influence of the molecules onto each other as well as on the velocity field. The focus of the present work is to generalise the global existence theory available for the Ericksen–Leslie model to a larger class of free energies, including also potentials associated to nonlinear principal parts in the director equation.

To model distortions in the material, already Leslie (see [23]) suggested to consider the free energy potential due to Oseen [34] and Frank [10], called Oseen–Frank energy,

$$F := k_1 (\nabla \cdot d)^2 + k_2 (d \cdot (\nabla \times d))^2 + k_3 d \times (\nabla \times d)^2 + \alpha (\nabla (\nabla d)^2) - (\nabla \cdot d)^2.$$

Note that $d \times (\nabla \times d) = -2 (\nabla d)^{\skw}$. The last term of (1.7) can be expressed as the divergence of a vector field, $\nabla (\nabla dd - (\nabla \cdot d) d) = \nabla (\nabla d^2) - (\nabla \cdot d)^2$, and with Gauß' formula it is already prescribed by the boundary data. With the one-constant approximation $k_1 = k_2 = k_3 = \alpha$ and employing $|d| = 1$, one obtains the Dirichlet energy $F(d, \nabla d) = k_1 |\nabla d|^2$. This gives rise to study the energy potential (1.5).

In the physics literature, there are several choices of free energy potentials, which are not covered by the available mathematical existence theory of generalised solutions yet. Possible electromagnetic field effects could be taken into account by considering (see de Gennes [5])

$$F_H(d, \nabla d) := F(d, \nabla d) - \chi_{\perp} |H|^2 - (\chi_{\parallel} - \chi_{\perp})(d \cdot H)^2.$$
Here H denotes the electromagnetic field and χ_\perp and χ_\parallel are the magnetic susceptibility constants for a magnetic field parallel and perpendicular to the director, respectively. Already Leslie suggests to incorporate two additional degrees of freedom into the system, which can be achieved by considering a free energy potential of the form

$$F_\Lambda(d, \nabla d) := F(d, \nabla d) - d \cdot \nabla db + \frac{\tilde{b}}{2} |d|^2$$

(1.9)

with $b \in \mathbb{R}^3$ and $\tilde{b} \in \mathbb{R}$. Furthermore, the case of the following simplified Oseen–Frank energy is not fully treated in the literature yet. For $k_2 = k_3$ and under the assumption $|d| = 1$, the Oseen–Frank energy can be transformed to (see Section 6)

$$F(d, \nabla d) = k_1 (\nabla \cdot d)^2 + k_2 |\nabla \times d|^2 + \frac{1}{\varepsilon} (|d|^2 - 1)^2$$

with $k_1, k_2 > 0$.

It is also possible to prove the existence of weak solutions to the Ericksen–Leslie system equipped with a scaled version of the Oseen–Frank energy. This energy is given by

$$F(d, \nabla d) := \frac{k_1}{2} (\nabla \cdot d)^2 + \frac{k_2}{2} |\nabla \times d|^2$$

$$+ (1 + |\nabla d|^2)^{(1 + |d|^2)^{-1}} \left(\frac{k_3}{2} (d \cdot \nabla \times d)^2 + \frac{k_4}{2} |d \times \nabla \times d|^2 \right)$$

(1.10)

with $k_1, k_2 > 0$ and k_3, k_4 sufficiently small as well as $s > 1/6$. This is a modification of the Oseen–Frank energy taking into account the non-quadratic terms and thus anisotropic, director-depending properties of the material. The non-quadratic parts of the free energy are scaled appropriately and the energy has an anisotropic character comparable to the Oseen–Frank energy.

We provide the proof of existence of weak solutions to the Ericksen–Leslie equation (3.1) equipped with each of the above physical relevant energies, except for the general Oseen–Frank energy (1.7). For the existence of measure-valued solutions to the problem with general Oseen–Frank energy, we refer to [21].

1.3 Outline of the paper

In the present paper, we study the original Ericksen–Leslie system (1.1) in three dimensions with $\rho_1 = 0$ (macroscopic theory) together with a relaxation by a double-well potential. We focus in particular on the free energy and introduce a class of free energy functions that allow us to show global existence of weak solutions. The class of free energies we consider is of the type

$$F(d, \nabla d) = \frac{1}{2} \nabla d : \Lambda : \nabla d + \tilde{F}(d, \nabla d),$$

(1.11)

where Λ denotes a tensor of fourth order and \tilde{F} collects terms that are of lower order with respect to ∇d. This class of free energies includes, for instance, all free energy potentials mentioned above except the general Oseen–Frank energy (see Section 6).

In order to ensure dissipativity of the system, we require that (see also the equivalent formulation (3.3) below)

$$\mu_1 > 0, \mu_3 > \mu_2, \mu_4 > 0, \mu_3 - \mu_2)(\mu_6 + \mu_5) > (\mu_3 + \mu_2)(\mu_6 - \mu_5),$$

$$4(\mu_3 - \mu_2)(\mu_6 + \mu_5) > ((\mu_3 + \mu_2) + (\mu_6 - \mu_5))^2.$$
For proving existence of a solution, we employ a Galerkin method to approximate both equations (1.15a), (1.15b) simultaneously. This is in contrast to previous work such as Wu, Xu and Liu [46] or Cavaterra, Rocca and Wu [3] where the authors combine a Schauder fixed point argument with a Galerkin approximation of only the Navier–Stokes-like equation and solving the director equation in each step exactly. This method relies on existence and continuity of the solution operator to equation (1.1b). To be able to use such a property previous work had to invoke additional regularity in the approximation of the velocity field either by assuming \(\mu_4 \) to be sufficiently large [46] or by introducing an additional regularisation [3]. Due to the generalisation with respect to the free energy considered in the present paper, the continuity of the solution operator to equation (1.1b) is no longer at hand. Additionally, a simultaneous discretisation is more suitable for a numerical approximation.

The paper is organised as follows: In Section 2 we collect some notation and important inequalities. Section 3 then contains the main result together with a detailed description of the class of free energies. The proof is then carried out in Section 4. In Section 5, we generalise the result to possible nonlinear principal parts and comment on the adaptations needed in the proof. Finally, some examples are discussed in Section 6.

2 Preliminaries

2.1 Notation

Vectors of \(\mathbb{R}^3 \) are denoted by bold small Latin letters. Matrices of \(\mathbb{R}^{3 \times 3} \) are denoted by bold capital Latin letters. We also need tensors of third and fourth order, which are denoted by capital and bold capital Greek letters, respectively. Moreover, numbers are denoted by small Latin or Greek letters, and capital Latin letters are reserved for potentials.

The Euclidean inner product in \(\mathbb{R}^3 \) is denoted by a dot, \(\mathbf{a} \cdot \mathbf{b} := \sum_{i=1}^{3} a_i b_i \) for \(\mathbf{a}, \mathbf{b} \in \mathbb{R}^3 \). The Frobenius inner product in the space \(\mathbb{R}^{3 \times 3} \) of matrices is denoted by a double dot, \(\mathbf{A} : \mathbf{B} := \text{tr}(\mathbf{A}^T \mathbf{B}) = \sum_{i,j=1}^{3} A_{ij} B_{ij} \) for \(\mathbf{A}, \mathbf{B} \in \mathbb{R}^{3 \times 3} \). We also employ the corresponding Euclidean norm with \(|\mathbf{a}|^2 = \mathbf{a} \cdot \mathbf{a} \) for \(\mathbf{a} \in \mathbb{R}^3 \) and Frobenius norm with \(|\mathbf{A}|^2 = \mathbf{A} : \mathbf{A} \) for \(\mathbf{A} \in \mathbb{R}^{3 \times 3} \). In addition, we define products of tensors of different order in a similar fashion: The product of a third with a second order tensor is defined by

\[
\Gamma : \mathbf{A} := \left[\sum_{j,k=1}^{3} \Gamma_{ijk} A_{jk} \right]_{i=1}^{3}, \quad \Gamma \in \mathbb{R}^{3 \times 3}, \mathbf{A} \in \mathbb{R}^{3 \times 3}.
\]

The product of a fourth order with a second order tensor is defined by

\[
\Gamma : \mathbf{A} := \left[\sum_{k,l=1}^{3} \Gamma_{ijkl} A_{kl} \right]_{i,j=1}^{3}, \quad \Gamma \in \mathbb{R}^{3 \times 3 \times 3}, \mathbf{A} \in \mathbb{R}^{3 \times 3}.
\]

The product of a fourth order with a third order tensor is defined by

\[
\Gamma : \Gamma := \left[\sum_{i,j,k,l=1}^{3} \Gamma_{ijkl} \Gamma_{kld} \right]_{i=1}^{3}, \quad \Gamma \in \mathbb{R}^{3 \times 3 \times 3}, \Gamma \in \mathbb{R}^{3 \times 3 \times 3}.
\]

The standard matrix and matrix-vector multiplication, however, is written without an extra sign for brevity,

\[
\mathbf{A} \mathbf{B} = \left[\sum_{j=1}^{3} A_{ij} B_{jk} \right]_{i,k=1}^{3}, \quad \mathbf{A} \mathbf{a} = \left[\sum_{j=1}^{3} A_{ij} a_j \right]_{i=1}^{3}, \quad \mathbf{A} \in \mathbb{R}^{3 \times 3}, \mathbf{B} \in \mathbb{R}^{3 \times 3}, \mathbf{a} \in \mathbb{R}^3.
\]
The outer product is denoted by $a \otimes b = ab^T = \{a_i b_j\}_{i,j=1}^3$ for $a, b \in \mathbb{R}^3$. Note that $\text{tr}(a \otimes b) = a \cdot b$. The symmetric and skew-symmetric part of a matrix are denoted by $A_{\text{sym}} := \frac{1}{2}(A + A^T)$ and $A_{\text{skw}} := \frac{1}{2}(A - A^T)$ for $A \in \mathbb{R}^{3 \times 3}$, respectively. For the Frobenius product of two matrices $A, B \in \mathbb{R}^{3 \times 3}$, we find that

$$A : B = A : B_{\text{sym}} \text{ if } A^T = A, \quad A : B = A : B_{\text{skw}} \text{ if } A^T = -A.$$

Moreover, there holds $A^T B : C = B : AC$ for $A, B, C \in \mathbb{R}^{3 \times 3}$ as well as $a \otimes b : A = a \cdot Ab$ for $a, b \in \mathbb{R}^3, A \in \mathbb{R}^{3 \times 3}$. This implies $a \otimes a : A = a \cdot Aa = a \cdot A_{\text{sym}}a$.

We use the Nabla symbol ∇ for real-valued functions $f : \mathbb{R}^3 \to \mathbb{R}$, vector-valued functions $f : \mathbb{R}^3 \to \mathbb{R}^3$ as well as matrix-valued functions $A : \mathbb{R}^3 \to \mathbb{R}^{3 \times 3}$ denoting

$$\nabla f := \left[\frac{\partial f_j}{\partial x_i} \right]_{i,j=1}^3, \quad \nabla f := \left[\frac{\partial f_i}{\partial x_j} \right]_{i,j=1}^3, \quad \nabla A := \left[\frac{\partial A_{ij}}{\partial x_k} \right]_{i,j,k=1}^3.$$

For brevity, we write ∇f^T instead of $(\nabla f)^T$. The divergence of a vector-valued and a matrix-valued function is defined by

$$\nabla \cdot f := \sum_{i=1}^3 \frac{\partial f_i}{\partial x_i} = \text{tr}(\nabla f), \quad \nabla \cdot A := \left[\sum_{i=1}^3 \frac{\partial A_{ij}}{\partial x_j} \right]_{i=1}^3.$$

The symmetric and skew-symmetric part of the gradient of a vector-valued function is denoted by $(\nabla f)_{\text{sym}}$ and $(\nabla f)_{\text{skw}}$, respectively. Note that $(\nabla \cdot f)v = (\nabla f)v$.

Throughout this paper, let $\Omega \subset \mathbb{R}^3$ be a bounded domain of class C^2. We rely on the usual notation for spaces of continuous functions, Lebesgue and Sobolev spaces. Spaces of vector-valued functions are emphasised by bold letters, for example $L^p(\Omega) := L^p(\Omega; \mathbb{R}^3)$, $W^{k,p}(\Omega) := W^{k,p}(\Omega; \mathbb{R}^3)$. If it is clear from the context, we also use this bold notation for spaces of matrix-valued functions. For brevity, we often omit calling the domain Ω. The standard inner product in $L^2(\Omega; \mathbb{R}^3)$ is just denoted by (\cdot, \cdot) and in $L^2(\Omega; \mathbb{R}^{3 \times 3})$ by $(\cdot : \cdot)$. In view of the Poincaré–Friedrichs inequality, we equip $H^1_0(\Omega)$ with the norm $\| \cdot \|_{H^1_0} := \| \nabla \cdot \|_{L^2}$. We often need to work with the space $H^2 \cap H^1_0(\Omega)$ that we equip with the norm $\| \cdot \|_{H^2 \cap H^1_0(\Omega)} := \| \Delta \cdot \|_{L^2}$, which is equivalent to the standard H^2-norm (see Gilbarg and Trudinger [13] Thm. 9.15, Lemma 9.17) or Ladyzhenskaya [20] p. 18f).

The space of smooth functions with compact support is denoted by $C_c^\infty(\Omega; \mathbb{R}^3)$. By $L^p_0(\Omega), L^{1/p}_0(\Omega)$, and $W^{1,p}_0(\Omega)$, we denote the closure of $C_c^\infty(\Omega; \mathbb{R}^3)$ with respect to the norm of $L^p(\Omega), L^{1/p}(\Omega)$, and $W^{1,p}(\Omega)$, respectively.

The dual space of a Banach space V is always denoted by V^* and equipped with the standard norm; the duality pairing is denoted by (\cdot, \cdot). The duality pairing between $L^p(\Omega)$ and $L^q(\Omega)$ (with $1/p + 1/q = 1$), however, is denoted by $(\cdot \cdot)$ or $(\cdot : \cdot)$. The dual of $H^1_0(\Omega)$ is denoted by H^{-1}.

The Banach space of linear bounded operators mapping a Banach space V into itself is denoted by $\mathscr{L}(V)$ and equipped with the usual norm. For a given Banach space V, Bochner–Lebesgue spaces are denoted, as usual, by $L^p(0, T; V)$. Moreover, $W^{1,p}(0, T; V)$ denotes the Banach space of abstract functions in $L^p(0, T; V)$ whose weak time derivative exists and is again in $L^p(0, T; V)$ (see also Diestel and Uhl [6], Section II.2 or Roubíček [38], Section 1.5) for more details. We often omit the time interval $(0, T)$ and the domain Ω and just write, e.g., $L^p(W^{k,p})$ for brevity. By $\sigma(C^0([0, T]; V), C^0([0, T]; V], C^0_w([0, T]; V)$, and $\sigma_w(C^0([0, T]; V)$, we denote the spaces of abstract functions mapping $[0, T]$ into V that are absolutely continuous, continuous, and continuous with respect to the weak topology in V, respectively.

Finally, by $c > 0$, we denote a generic positive constant.
2.2 A few interpolation inequalities

We commence with a Gagliardo–Nirenberg-type result for time-dependent functions.

Lemma 2.1. Let \(p \in [2, 6] \), \(q \in [6, \infty] \) and let \(r, s \in [1, \infty] \) and \(\theta_1, \theta_2 \in [0, 2] \) such that

\[
\frac{1}{p} = \frac{1}{2} - \frac{\theta_1}{3r}, \quad \frac{1}{q} = \frac{1}{6} - \frac{\theta_2}{3s}. \tag{2.1}
\]

Then there exists a constant \(c > 0 \) such that the inequalities

\[
\| \nabla d \|_{L^p(L^p)} \leq c \| d \|_{L^6(H^3 \cap H^1_0)}^{\theta_1} \| d \|_{L^6(H^3 \cap H^1_0)}^{r-\theta_1}, \quad \| d \|_{L^p(L^p)} \leq c \| d \|_{L^6(H^3 \cap H^1_0)}^{\theta_2} \| d \|_{L^6(H^3 \cap H^1_0)}^{s-\theta_2}
\]

hold for any \(d \in L^\infty(0, T; H^1_0) \cap L^2(0, T; H^2 \cap H^1_0) \).

Proof. Since \(H^2 \cap H^1_0 \) is continuously embedded in \(W^{1,6} \), we immediately find with Hölder’s inequality that for \(p \in [2, 6] \) and any \(d \in H^2 \cap H^1_0 \)

\[
\| \nabla d \|_{L^p} \leq \| \nabla d \|_{L^6}^{3/2} \| \nabla d \|_{L^2}^{3/2-p/2} \leq c \| d \|_{H^2 \cap H^1_0}^{3/2-3/p} \| d \|_{H^1_0}^{3/2-p/2}.
\]

From the classical Gagliardo–Nirenberg inequality (see, e.g., Nirenberg [33], Friedman [11], or Zeidler [47] Section 21.19)), we infer that there exists \(c > 0 \) such that for \(q \in [6, \infty] \) and any \(d \in H^2 \cap H^1_0 \)

\[
\| d \|_{L^q} \leq c \| d \|_{H^2 \cap H^1_0}^{1/2-3/q} \| d \|_{L^6}^{1/2+3/q} \leq c \| d \|_{H^2 \cap H^1_0}^{1/2-3/q} \| d \|_{H^1_0}^{1/2+3/q},
\]

the case \(q = \infty \) remains true with both exponents being \(1/2 \).

Let us now consider \(d \in L^\infty(0, T; H^1_0) \cap L^2(0, T; H^2 \cap H^1_0) \) and integrate the foregoing estimates in time. We then find

\[
\| \nabla d \|_{L^p(L^p)} \leq c \| d \|_{L^6(H^3 \cap H^1_0)}^{3/2-3/p} \| d \|_{L^6(H^3 \cap H^1_0)}^{3/2-1/2} \| d \|_{L^6(H^3 \cap H^1_0)}^{3/2-1/2},
\]

as long as \(\theta_1 = 3r(1/2 - 1/p) \leq 2 \) such that \(L^2(0, T; H^2 \cap H^1_0) \) is continuously embedded in \(L^{\theta_1}(0, T; H^1 \cap H^0_0) \). This proves the first inequality.

In the same fashion, one proves the second estimate. \(\square \)

Lemma 2.2. There exists a constant \(c > 0 \) such that for \(p \in [2, 6] \), \(r \in [2, \infty] \) with

\[
\frac{1}{p} = \frac{1}{2} - \frac{2}{3r}
\]

and any \(v \in L^\infty(0, T; L^2) \cap L^2(0, T; H^1) \)

\[
\| v \|_{L^p(L^p)} \leq c \| v \|_{L^2(H^1)}^{1/2} \| v \|_{L^p(L^p)}^{1/2}.
\]

Proof. The proof is analogous to that of Lemma [2.1]. \(\square \)

3 Ericksen–Leslie model and main result

3.1 Governing equations

We consider the Ericksen–Leslie model [11] for dimensionless quantities with \(\rho_1 \) set to zero. We focus on a rather general class of free energy functions and incorporate the restriction of
the director \(\mathbf{d} \) onto unit vectors into the free energy via a classical relaxation technique, see also (1.5). Furthermore, we restrict our considerations to the incompressible case with \(\rho \equiv 1 \).

The governing equations then read as

\[
\begin{align*}
\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} + \nabla p + \nabla \cdot \mathbf{T}^E - \nabla \cdot \mathbf{T}^L &= \mathbf{g}, \\
\partial_t \mathbf{d} + (\mathbf{v} \cdot \nabla) \mathbf{d} - (\nabla \mathbf{v})_{\text{skw}} \mathbf{d} + \lambda (\nabla \mathbf{v})_{\text{sym}} \mathbf{d} + \gamma \mathbf{q} &= 0, \\
\nabla \cdot \mathbf{v} &= 0.
\end{align*}
\]

(3.1a)

(3.1b)

(3.1c)

We recall that \(\mathbf{v} : \Omega \times [0, T] \to \mathbb{R}^3 \) denotes the velocity of the fluid, \(\mathbf{d} : \Omega \times [0, T] \to \mathbb{R}^3 \) represents the orientation of the rod-like molecules, and \(p : \Omega \times [0, T] \to \mathbb{R} \) denotes the pressure. The Helmholtz free energy potential \(F \), which is described rigorously in the next section, is assumed to depend only on the director and its gradient, \(F = F(\mathbf{d}, \nabla \mathbf{d}) \). The free energy functional \(\mathcal{F} \) is defined by

\[\mathcal{F} : H^1 \to \mathbb{R}, \quad \mathcal{F}(\mathbf{d}) := \int_\Omega F(\mathbf{d}, \nabla \mathbf{d}) \, d\mathbf{x}, \]

and \(\mathbf{q} \) is its variational derivative (see Furihata and Matsuo [12, Section 2.1]),

\[
\mathbf{q} := \delta \mathcal{F} / \delta \mathbf{d}(\mathbf{d}) = \left(\frac{\partial F}{\partial \mathbf{d}}(\mathbf{d}, \nabla \mathbf{d}) \right) - \nabla \left(\frac{\partial F}{\partial \nabla \mathbf{d}}(\mathbf{d}, \nabla \mathbf{d}) \right).
\]

(3.2a)

The Ericksen stress tensor \(\mathbf{T}^E \) is given by

\[
\mathbf{T}^E = \nabla \mathbf{d}^T \frac{\partial F}{\partial \nabla \mathbf{d}}(\mathbf{d}, \nabla \mathbf{d}).
\]

(3.2b)

The Leslie tensor is given by

\[
\mathbf{T}^L = \mu_1 (\mathbf{d} \cdot (\nabla \mathbf{v})_{\text{sym}} \mathbf{d}) \mathbf{d} \otimes \mathbf{d} + \mu_4 (\nabla \mathbf{v})_{\text{sym}} + (\mu_5 + \mu_6) (\mathbf{d} \otimes (\nabla \mathbf{v})_{\text{sym}} \mathbf{d})_{\text{sym}}
\]

\[+ (\mu_2 + \mu_3) (\mathbf{d} \otimes \mathbf{e})_{\text{sym}} + \frac{\lambda}{\gamma} (\mathbf{d} \otimes (\nabla \mathbf{v})_{\text{sym}} \mathbf{d})_{\text{skw}} + \frac{1}{\gamma} (\mathbf{d} \otimes \mathbf{e})_{\text{skw}}, \]

(3.2c)

where

\[
\mathbf{e} := \partial_t \mathbf{d} + (\mathbf{v} \cdot \nabla) \mathbf{d} - (\nabla \mathbf{v})_{\text{skw}} \mathbf{d}.
\]

(3.2d)

This follows immediately from (1.2). Following Walkington [43], we have sorted the Leslie tensor (1.2) into symmetric and skew symmetric parts. We explicitly inserted (1.3a) established in Leslie [23], and we set

\[
\gamma := \frac{1}{\lambda_1} = \frac{1}{\mu_3 - \mu_2}, \quad \lambda := \frac{\lambda_2}{\lambda_1} = \gamma (\mu_5 - \mu_6).
\]

(3.2e)

We emphasise that Parodi’s law (1.3b) is neither essential for the reformulation nor the existence of weak solutions (see also Wu et al. [46]).

To ensure the dissipative character of the system, we assume that

\[
\mu_1 > 0, \quad \mu_4 > 0, \quad \gamma > 0, \quad \mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3) > 0,
\]

\[
4 \gamma (\mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3)) > (\gamma (\mu_2 + \mu_3) - \lambda)^2.
\]

(3.3)

The case \(\mu_1 = 0 \) can be dealt with similarly but somewhat simpler.

Finally, we impose boundary and initial conditions as follows:

\[
\mathbf{v}(\mathbf{x}, 0) = \mathbf{v}_0(\mathbf{x}) \quad \text{for} \quad \mathbf{x} \in \partial \Omega, \quad \mathbf{v}(\mathbf{x}, t) = \mathbf{0} \quad \text{for} \quad (\mathbf{x}, t) \in \partial \Omega \times [0, T],
\]

(3.4a)

\[
\mathbf{d}(\mathbf{x}, 0) = \mathbf{d}_0(\mathbf{x}) \quad \text{for} \quad \mathbf{x} \in \partial \Omega, \quad \mathbf{d}(\mathbf{x}, t) = \mathbf{d}_1(\mathbf{x}) \quad \text{for} \quad (\mathbf{x}, t) \in \partial \Omega \times [0, T].
\]

(3.4b)

We shall assume that \(\mathbf{d}_1 = \mathbf{d}_0 \) on \(\partial \Omega \), which is a compatibility condition providing regularity.
3.2 A class of free energy potentials

This section is devoted to the free energy potential that describes the inner forces between the molecules. We commence with a class of free energies that leads to a linear principal part. The more delicate case with a nonlinear principal part is dealt with in Section 5. Let us consider

\[F = F(h,S) \in \mathscr{C}^2(\mathbb{R}^3 \times \mathbb{R}^{3\times3}; \mathbb{R}) \]
(3.5)

and let us assume that

\[\frac{\partial^2 F}{\partial S^2} \equiv \Lambda \in \mathbb{R}^{3\times3\times3}, \]
(3.6a)

where \(\Lambda \) satisfies the symmetry condition

\[\Lambda_{ijk} = \Lambda_{kij} \quad \text{for } i,j,k = 1,2,3 \]
(3.6b)

and the following strong Legendre–Hadamard (strong ellipticity) condition: there exists \(\eta > 0 \) such that for all \(a, b \in \mathbb{R}^3 \)

\[a \otimes b : \Lambda : a \otimes b \geq \eta |a|^2 |b|^2. \]
(3.6c)

Remark 3.1. It is possible to generalise the assumptions on the second derivative of \(F \) with respect to \(S \). The tensor \(\Lambda \) can continuously depend on the spatial variable \(x \) (see Remark 4.1). Additionally, a nonlinear term, which is sufficiently small, can be handled as a part of the second derivative of \(F \) with respect to \(S \) (see Section 5).

In the course of the proof of our main result, we shall need further coercivity-type assumptions on the free energy \(F \) and its derivatives. Let us assume that there exist \(\eta_1 > 0 \) and \(\eta_2, \eta_3 \geq 0 \) such that for all \(h \in \mathbb{R}^3 \) and \(S \in \mathbb{R}^{3\times3} \)

\[F(h,S) \geq \eta_1 |S|^2 - \eta_2 |h|^2 - \eta_3. \]
(3.7)

For a particular free energy, such a condition may follow from (3.6) together with suitable growth or nonnegativity assumptions on the lower order terms.

Later we will have that \(F = F(d,\nabla d) \) with \(d = d(x,t) \). Under the regularity assumption (3.5), we may now consider (see also (3.2a))

\[q = \frac{\partial F}{\partial h}(d,\nabla d) - \nabla \frac{\partial F}{\partial S}(d,\nabla d). \]
(3.8)

With respect to \(q \), we first observe that formally

\[
q = \frac{\partial F}{\partial h}(d,\nabla d) - \frac{\partial^2 F}{\partial S^2}(d,\nabla d) : \nabla (\nabla d)^T - \frac{\partial^2 F}{\partial S \partial h}(d,\nabla d) : \nabla d^T
\]
\[
= \frac{\partial F}{\partial h}(d,\nabla d) - \nabla \cdot (\Lambda : \nabla d) - \frac{\partial^2 F}{\partial S \partial h}(d,\nabla d) : \nabla d^T. \]
(3.9)

For arbitrary \(a,b,c \in \mathbb{R}^3 \), one finds

\[|a - b - c|^2 \geq \frac{1}{2} |b|^2 - 4|c|^2 - 4|a|^2, \]
(3.10)

and thus

\[|q|^2 \geq \frac{1}{2} |\nabla \cdot (\Lambda : \nabla d)|^2 - 4 \left| \frac{\partial^2 F}{\partial S \partial h}(d,\nabla d) : \nabla d^T \right|^2 - 4 \left| \frac{\partial F}{\partial h}(d,\nabla d) \right|^2. \]
This calculation motivates the following growth conditions: There exist $C_{Sh} > 0, C_h > 0$ and $\gamma_1 \in [2, 10/3), \gamma_2 \in [6, 10)$ such that for all $h \in \mathbb{R}^3$ and $S \in \mathbb{R}^{3 \times 3}$

\[
\frac{\partial^2 F}{\partial S \partial h}(h, S) \leq C_{Sh} \left(|S|^{\gamma_1/2 - 1} + |h|^{\gamma_1} + 1 \right) \tag{3.11a}
\]
\[
\frac{\partial F}{\partial h}(h, S) \leq C_h \left(|S|^{\gamma_2/2} + |h|^{\gamma_2/2} + 1 \right), \tag{3.11b}
\]

where

\[
\gamma_1 := \frac{(\gamma_1 - 2)\gamma_2}{2\gamma_1}. \tag{3.11c}
\]

This choice of exponents will allow us to derive appropriate a priori estimates. Of course, the term with $|S|^{\gamma_2/2 - 1}$ in (3.11a) is superfluous for a potential fulfilling (3.6a) but will be essential for the analysis in Section 5.

3.3 Existence of weak solutions

In this section, we state our main result on the existence of weak solutions. We first give a precise definition of what we mean by a weak solution. We shall work in solenoidal function spaces and thus only consider the variables velocity and director.

Let us start with a reformulation of the Ericksen stress tensor. For $v \in H_{0, \sigma}^1$ and $d \in H^2 \cap H_0^1$, we find

\[
\nabla ((v \cdot \nabla)d) = \nabla d \nabla v + (v \cdot \nabla) \nabla d. \tag{3.12}
\]

For sufficiently smooth functions $h : \Omega \rightarrow \mathbb{R}^3, S : \Omega \rightarrow \mathbb{R}^{3 \times 3}$, we obtain

\[
(v \cdot \nabla)F(h, S) = \sum_{i=1}^3 v_i \left(\sum_{j=1}^3 \frac{\partial F}{\partial h_j}(h, S) \frac{\partial h_j}{\partial x_i} + \sum_{j,k=1}^3 \frac{\partial F}{\partial S_{jk}}(h, S) \frac{\partial S_{jk}}{\partial x_i} \right) \]
\[
= \frac{\partial F}{\partial h}(h, S) \cdot (v \cdot \nabla)h + \frac{\partial F}{\partial S}(v \cdot \nabla)S.
\]

With (3.2b), (3.8), (3.12), and integration by parts, we obtain for all $v \in H_{0, \sigma}^1$

\[
(T^E : \nabla v) - \langle \nabla d^T q, v \rangle = \left(\nabla d^T \frac{\partial F}{\partial S} : \nabla v \right) + \left(\nabla d^T \frac{\partial F}{\partial S} (v \cdot \nabla) \right) - \left(\nabla d^T \frac{\partial F}{\partial h} \right)
\]
\[
= \frac{\partial F}{\partial S} : \nabla d \nabla v + \nabla \cdot \frac{\partial F}{\partial S} (v \cdot \nabla) - \frac{\partial F}{\partial h} (v \cdot \nabla)d
\]
\[
= \frac{\partial F}{\partial S} : \nabla d \nabla v + \nabla \cdot \frac{\partial F}{\partial S} (v \cdot \nabla)d - \frac{\partial F}{\partial h} (v \cdot \nabla)d
\]
\[
= - \frac{\partial F}{\partial S} : (v \cdot \nabla)d - \frac{\partial F}{\partial h} (v \cdot \nabla)d
\]
\[
= - (\nabla F, v) = \int_\Omega F (\nabla \cdot v) dx = 0, \tag{3.13}
\]

where we omitted the argument $(d, \nabla d)$ for readability.

The above identity allows us to reformulate equation (3.1) by incorporating F in a redefinition of the pressure, $p := p + F$, and by finally replacing $\nabla \cdot T^E$ by $-\nabla d^T q$.
Definition 3.1 (Weak solution). Let \((v_0, d_0) \in L^2_0 \times H^1_0\) and \(g \in L^2(0,T;!H^1_{0,0})\). A pair \((v,d)\) is said to be a solution to (3.11) with (3.2), (3.4) if
\[
\begin{align*}
\nu &\in L^\infty(0,T;L^2_0) \cap L^2(0,T;H^1_{0,0}) \cap W^{1,2}(0,T;(H^2 \cap H^1_{0,0})^*) , \\
d &\in L^\infty(0,T;H^1_0) \cap L^2(0,T;H^2 \cap H^1_0) \cap W^{1,4/3}(0,T;L^2) , \\
\end{align*}
\]
if
\[
\begin{align*}
-\int_0^T (v(t), \partial_t \phi(t)) dt + \int_0^T ((v(t) \cdot \nabla) v(t), \phi(t)) dt - \int_0^T (\nabla d(t)^T q(t), \phi(t)) dt \\
+ \int_0^T (T^1(t) : \nabla \phi(t)) dt = \int_0^T (g(t), \phi(t)) dt , \\
-\int_0^T (d(t), \partial_t \psi(t)) dt + \int_0^T ((v(t) \cdot \nabla) d(t), \psi(t)) dt - \int_0^T ((\nabla v(t))_{skew} d(t), \psi(t)) dt \\
+ \lambda \int_0^T ((\nabla v(t))_{sym} d(t), \psi(t)) dt + \gamma \int_0^T (q(t), \psi(t)) dt = 0
\end{align*}
\]
(3.15a)
for all solenoidal \(\phi \in \mathcal{C}_c^\infty(\Omega \times (0,T);\mathbb{R}^3)\) and all \(\psi \in \mathcal{C}_c^\infty(\Omega \times (0,T);\mathbb{R}^3)\), and if the initial conditions are satisfied.

Remark 3.2. Let \((v,d)\) be a solution in the sense of Definition 3.1. Then \(d \in L^\infty(0,T;H^1_0)\) as well as
\[
d \in W^{1,4/3}(0,T;L^2) \subset \mathcal{A treatment of } \mathcal{C}_c^\infty(\Omega \times (0,T);\mathbb{R}^3) \subset \mathcal{C}_w([0,T];L^2).
\]
Moreover, there holds (see Lions and Magenes [29, Ch. 3, Lemma 8.1])
\[
\mathcal{C}_w([0,T];L^2) \cap L^\infty(0,T;H^1_0) = \mathcal{C}_w([0,T];H^1_0)
\]
such that \(d \in \mathcal{C}_w([0,T];H^1_0)\). Analogously, we find \(v \in \mathcal{C}_w([0,T];L^2_0)\).

The initial conditions for the Navier–Stokes-like equation (3.15a) and for the director equation (3.15b) are thus attained in the following sense:
\[
v(t) → v_0 \text{ in } L^2, \quad d(t) → d_0 \text{ in } H^1_0 \text{ as } t → 0.
\]
(3.16)

The above notion of a weak solution can be justified as follows.

Proposition 3.1. Under the regularity assumptions (3.14), all terms appearing in (3.15) are well-defined.

Proof. Obviously, we only have to concentrate on the nonlinear terms. Let us start with equation (3.15b). With Hölder’s inequality, we easily find that \((v \cdot \nabla) d \in L^2(0,T;L^{1/2})\) since
\[
|||v \cdot \nabla|||_{L^2(0,T;L^{1/2})} \leq ||v||_{L^2(0,T;L^{1/2})}||d||_{L^2(0,T;L^{1/2})}
\]
and since \(H^2 \to W^{1,6}\). Similarly, we have
\[
|||\nabla_i v|||_{L^2(0,T;L^{1/2})} + ||\nabla v||_{L^2(0,T;L^{1/2})} \leq c||v||_{L^2(0,T;L^{1/2})}||d||_{L^2(0,T;L^{1/2})},
\]
which shows that also \((\nabla v)_{skew} d, (\nabla v)_{sym} d \in L^2(0,T;L^{1/2})\). Note that \(L^{1/2} \to H^{-1}\).

The term \(q\) (see (3.8)) is in \(L^2(0,T;L^2)\). Indeed, with (3.9) we can estimate
\[
||q||_{L^2(0,T;L^2)} \leq \left(\frac{\partial F}{\partial h} (d, \nabla d) \right)_{L^2(0,T;L^2)} + \left(\frac{\partial^2 F}{\partial h d^2} (d, \nabla d) : \nabla d^T \right)_{L^2(0,T;L^2)} + ||\nabla (A : \nabla d)||_{L^2(0,T;L^2)}
\]
= \(I_1 + I_2 + I_3\).
Regarding the term \(I_1 \), we see with growth condition (3.11b) and Lemma 2.1 that
\[
I_1 \leq C_h \left\| \nabla d \right\|_{L^2}^{\gamma/2} + |d|_{L^2}^{\gamma/2} + 1 \right\|_{L^2}
\]
\[
= C_h \left(\left\| \nabla d \right\|_{L^{5/3} (L^{10/3})}^{5/3} + |d|_{L^{10/3}}^{5/3} + T^{1/2} \right) \
\leq c \left(\left\| \nabla d \right\|_{L^{5/3} (L^{10/3})}^{5/3} + |d|_{L^{10/3}}^{5/3} + 1 \right) \
\leq c \left(\left\| d \right\|_{L^2(H^{2} \cap H_{0}^0)}^{2/3} \right) \left\| d \right\|_{L^2(H^{2} \cap H_{0}^0)}^{4/3} + |d|_{L^2(H^{2} \cap H_{0}^0)}^{4} + 1 \right\|_{L^2}.
\]

The term \(I_2 \) is dealt with in a similar fashion. The growth condition (3.11a) gives
\[
I_2 \leq C_{sh} \left\| \nabla d \right\|_{L^2}\left(|d|_{L^2}^{\gamma/2 - 1} + |d|_{L^2}^{\gamma} + 1 \right) \right\|_{L^2}.
\]

An application of Young’s inequality together with definition (3.11c) and Lemma 2.1 provides that
\[
I_2 \leq c \left(|d|_{L^2(H^{2} \cap H_{0}^0)}^{2/3} \right) \left(|d|_{L^2(H^{2} \cap H_{0}^0)}^{4/3} + |d|_{L^2(H^{2} \cap H_{0}^0)}^{4} + 1 \right) \right\|_{L^2}.
\]

Finally, the term \(I_3 \) can be estimated by
\[
I_3 \leq c \left(|d|_{L^2(H^{2} \cap H_{0}^0)} \right) \right\|_{L^2}.
\]

since \(\Lambda \) is a constant tensor (see (3.6a)).

Let us turn to the Navier–Stokes-like equation (3.15a). The convection term can be shown to be in \(L^{10/7} (0, T; L^{15/13}) \) since
\[
\| (\nabla \cdot \nabla) v \|_{L^{10/7} (L^{15/13})} \leq \| v \|_{L^{15} (L^{30/11})} \| v \|_{L^2(H_{0}^0)},
\]

which can easily be shown with Hőlder’s inequality. Moreover, \(v \in L^{15} (0, T; L^{30/11}) \) in view of Lemma 2.2. Since \(q \in L^{2} (0, T; L^{2}) \), we easily find with Hőlder’s inequality that
\[
\| \nabla d \cdot q \|_{L^2 (L^{5/4})} \leq \| \nabla d \|_{L^{10/3} (L^{10/3})} \| q \|_{L^2 (L^{2})},
\]

where the norm of \(\nabla d \) can be estimated as before.

It remains to estimate the Leslie stress. From definition (3.2c) and Hölder’s inequality, it follows that
\[
\| T^L \|_{L^{10/7} (L^{10/9})} \leq c \left(\| d \cdot (\nabla v)_{\text{sym}} d \| + \| \nabla v \|_{L^{10/9} (L^{10/9})} + \| d \cdot e \|_{L^{10/9} (L^{10/9})} \right)
\]
\[
\leq c \left(\| d \|_{L^2}^2 \| H_{0}^0 \| + \| \nabla \|_{L^2} \right) \left(\| q \|_{L^2 (L^{5/4})} \right) \left(\| q \|_{L^2 (L^{2})} \right).
\]

We can further estimate the norm of \(e \) (see (3.2d) by
\[
\| e \|_{L^{5/4} (L^{5/4})} \leq \| \partial d \|_{L^{5/4} (L^{2})} + \| \nabla d \|_{L^{5/4} (L^{5/4})} + \| (\nabla v)_{\text{sym}} d \|_{L^{5/4} (L^{5/4})}
\]
\[
\leq c \| \partial d \|_{L^2 (L^{2})} + c \| v \|_{L^2 (L^{5/4})} \| d \|_{L^2 (L^{5/4})} + c \| v \|_{L^2 (H_{0}^0)} \| d \|_{L^2 (L^{2})}.
\]

All this shows that \(T^L \in L^{10/7} (0, T; L^{10/9}). \)
Our main result is

Theorem 3.1 (Existence of weak solutions). Let \(\Omega \) be a bounded domain of class \(\mathcal{C}^2 \), assume \((3.3) \), and let the free energy potential \(F \) fulfil the assumptions \((3.5), (3.6), (3.7) \), and \((3.11) \). For given initial data \(v_0 \in L^1_\sigma, d_0 \in H^1_0 \) (such that \(d_1 = 0 \)) and right-hand side \(g \in L^2(0,T; (H^1_0)^\perp) \), there exists a weak solution to the Ericksen–Leslie system \((3.1) \) with \((3.2), (3.4) \) in the sense of Definition 3.1.

Let us note that one may also handle a more general right-hand side \(g = g_1 + g_2 \) with \(g_1 \in L^1(0,T; (L^2_\sigma)^\perp) \) and \(g_2 \in L^2(0,T; (H^1_0)^\perp) \) (see Tartar [20, Chapter 20] or Simon [39]). For the sake of simplicity, however, we neglect \(g_1 \).

Remark 3.3. A non-homogeneous boundary condition for \(d \), i.e., \(d_1 \neq 0 \), can be dealt with by a standard transformation as follows. Let \(d_0 \in H^1(\Omega), d_1 \in H^{3/2}(\partial\Omega) \) and assume that the trace of \(d_0 \) equals \(d_1 \). As \(\Omega \) is of class \(\mathcal{C}^2 \), there exists a linear continuous extension operator \(\mathcal{S} : H^{3/2}(\partial\Omega) \rightarrow H^1(\Omega) \) that is the right-inverse of the trace operator (see Wloka [45, Thm. 8.1]). Therefore, we can replace \(d \) in \((3.1) \) by \(d - \mathcal{S}d_1 \) that satisfies a homogeneous boundary condition. The regularity of \(d_1 \) and thus of \(\mathcal{S}d_1 \) is sufficient to estimate all the terms appearing in addition.

4 Galerkin approximation and proof of the main result

In this section, we prove the main result (Theorem 3.1) via convergence of a Galerkin approximation. The proof is divided into the following steps: We first (Section 4.1) introduce the Galerkin scheme and deduce local-in-time existence of a solution to the approximate problem. We then (Section 4.2) derive a priori estimates and conclude that solutions to the approximate problem exist globally in time. The crucial part is dealt with in Section 4.3 where we use the a priori estimates to extract a weakly convergent subsequence of the sequence of approximate solutions. We also prove weak convergence of a subsequence of the sequence of time derivatives of the approximate solutions. This implies strong convergence in a suitable norm and allows us to identify the initial values. Strong convergence is a prerequisite to handle the nonlinear variational derivative of the free energy. Finally, we can identify the weak limits as a solution to the director and the Navier–Stokes-like equation.

4.1 Galerkin approximation

For the approximation of the Navier–Stokes-like equation, we follow Temam [41, p. 27f.] and use a Galerkin basis consisting of eigenfunctions \(w_1, w_2, \ldots \in H^2 \cap H^1_0, \sigma \) of the Stokes operator (with homogeneous Dirichlet boundary condition). As is well known, the eigenfunctions form an orthogonal basis in \(L^2_\sigma \) as well as in \(H^1_0, \sigma \) and in \(H^2 \cap H^1_0, \sigma \). Let \(W_n = \text{span} \{ w_1, \ldots, w_n \} \ (n \in \mathbb{N}) \) and let \(P_n : L^2_\sigma \rightarrow W_n \) denote the \(L^2_\sigma \)-orthogonal projection onto \(W_n \). The restriction of \(P_n \) on \(H^1_0, \sigma \) and \(H^2 \cap H^1_0, \sigma \) is nothing than \(H^1_0, \sigma \)- and \(H^2 \cap H^1_0, \sigma \)-orthogonal projection onto \(W_n \), respectively, such that

\[
||P_n||_{L^2(L^2_\sigma)} = ||P_n||_{L^2(H^1_0, \sigma)} = ||P_n||_{L^2(H^2 \cap H^1_0, \sigma)} = 1.
\]

Remark that \(\Omega \) is of class \(\mathcal{C}^2 \). Hence, there exists \(c > 0 \) such that for all \(n \in \mathbb{N} \) and \(v \in H^2 \cap H^1_0, \sigma \)

\[
||P_n v||_{H^2} \leq c ||v||_{H^2},
\]

see, e.g., Málek et al. [30, Appendix, Thm. 4.11 and Lemma 4.26] together with Boyer and Fabrie [2, Prop. III.3.17].
E. Emmrich and R. Lasarzik

For the approximation of the director equation, we use a Galerkin basis consisting of eigenfunctions \(z_1, z_2, \ldots \) of the differential operator corresponding to the boundary value problem

\[
- \nabla \cdot (\mathbf{A} : \nabla z) = h \quad \text{in } \Omega,
\]
\[
z = 0 \quad \text{on } \partial \Omega. \tag{4.1}
\]

In view of the assumptions \((3.6)\) on \(\mathbf{A} \), the above problem is a symmetric strongly elliptic system that possesses a unique weak solution \(z \in H^1_0 \) for any \(h \in H^{-1} \) (see, e.g., Chipot \([4\) Thm. 13.3]). Its solution operator is thus a compact operator in \(L^2 \). Hence there exists an orthogonal basis of eigenfunctions \(z_1, z_2, \ldots \) in \(L^2 \).

Remark 4.1. If \(\mathbf{A} \) depends on \(x \), the claims of the above paragraph are not true any more. The boundary-value problem \((4.1)\) would not be well-posed under this generalised condition. Consider a tensor \(\mathbf{A} \in C^{0,1}(\overline{\Omega}; \mathbb{R}^{3 \times 3 \times 3}) \), and let the strong Legendre–Hadamard condition \((3.6e)\) as well as the symmetry condition \((3.6a)\) be fulfilled uniformly in \(x \). Under this conditions, the well-posedness can be achieved by considering the boundary-value problem shifted by a multiplicative of the identity,

\[
- \nabla \cdot (\mathbf{A} : \nabla z) + \zeta z = h \quad \text{in } \Omega,
\]
\[
z = 0 \quad \text{on } \partial \Omega. \tag{4.2}
\]

Here \(\zeta \) is a possibly large constant. This boundary-value problem is for a sufficiently large constant \(\zeta \) well-posed (see, e.g., Chipot \([4, Prop. 13.1 and Prop. 13.2]\)) and the solution operator is again compact. The existence of eigenfunctions to this system follows by the same arguments as above.

Consequently, the Galerkin space has to be adapted for an \(x \)-dependent tensor \(\mathbf{A}(x) \) and is the span of eigenfunctions of the solution operator to the boundary value problem \((4.2)\). However, \((3.13)\) as well as the variational derivative have to be adapted and in particular additional terms with the derivative of \(\mathbf{A} \) with respect to \(x \) occur. It is, therefore, open whether the main result also applies to this generalisation.

Moreover, the problem \((4.1)\) is \(H^2 \)-regular (see, e.g., Morrey \([32\) Thm. 6.5.6] and recall that \(\Omega \) is of class \(C^2 \)), i.e., for any \(h \in L^2 \) the solution \(z \) is in \(H^2 \cap H^1_0 \) and there exists a constant \(c_\mathbf{A} > 0 \) such that

\[
\| z \|_{H^2} \leq c_\mathbf{A} \| \nabla \cdot (\mathbf{A} : \nabla z) \|_{L^2} \tag{4.3}
\]

for any \(z \in H^2 \cap H^1_0 \). This also shows that \(\| \nabla \cdot (\mathbf{A} : \nabla \cdot) \|_{L^2} \), \(\| \mathbf{A} \cdot \|_{L^2} \), \(\| \cdot \|_{H^2} \) are equivalent norms on \(H^2 \cap H^1_0 \), and that the eigenfunctions are in \(H^2 \cap H^1_0 \).

Again the eigenfunctions form an orthogonal basis in \(L^2 \). Let \(Z_n := \text{span} \{ z_1, \ldots, z_n \} \) \((n \in \mathbb{N}) \) and assume \(\| z_i \|_{L^2} = 1 \) for \(i = 1, 2, \ldots \). Then

\[
R_n : (H^2 \cap H^1_0)^* \to Z_n, \quad R_n f := \sum_{i=1}^n (f, z_i) z_i
\]

is well-defined and its restriction to \(L^2 \) is the \(L^2 \)-orthogonal projection onto \(Z_n \) such that

\[
\| R_n \|_{L^2(Z_n)} = 1.
\]

If we equip \(H^1_0 \) and \(H^2 \cap H^1_0 \) with the inner product

\[
\langle (\mathbf{A} : \nabla v) : \nabla w \rangle \quad \text{and} \quad \langle \nabla \cdot (\mathbf{A} : \nabla v), \nabla \cdot (\mathbf{A} : \nabla w) \rangle
\]

\((4.4)\)
respectively, then the induced norms are equivalent to the standard norms (see also Chipot [13, Prop. 13.1]) and the restriction of \(R_n \) to \(H^1_0 \) and \(H^2 \cap H^1_0 \) is the \(H^1_0 \) and \(H^2 \cap H^1_0 \)-orthogonal projection onto \(Z_n \), respectively. The corresponding operator norms then equal 1 and, with respect to the standard norms, we thus find that there is a constant \(c > 0 \) such that for all \(n \in \mathbb{N} \)

\[
\| R_n \|_{L^2(H^1_0)} \leq c, \quad \| R_n \|_{L^2(H^2 \cap H^1_0)} \leq c.
\]

Let \(n \in \mathbb{N} \) be fixed. As usual, we consider the ansatz

\[
v_n(t) = \sum_{i=1}^n v_i(t)w_i, \quad d_n(t) = \sum_{i=1}^n d_i(t)z_i.
\]

Our approximation reads as

\[
(\partial_t v_n, w) + ((v_n \cdot \nabla)v_n, w) - (\nabla d_n^\text{sym} q_n, w) + (T_n^L \cdot \nabla w) = \langle g, w \rangle, \quad v_n(0) = p_n v_0, \quad (4.5a)
\]

\[
(\partial_t d_n, \zeta) + ((v_n \cdot \nabla)d_n, \zeta) - ((\nabla v_n)_{\text{skew}} d_n, \zeta) + \lambda((\nabla v_n)_{\text{sym}} d_n, \zeta) + \gamma(q_n, \zeta) = 0, \quad d_n(0) = R_n d_0, \quad (4.5b)
\]

for all \(w \in W_n \) and \(\zeta \in Z_n \), where

\[
q_n := R_n \left(\frac{\delta F}{\delta \mathcal{F}}(d_n) \right) = R_n \left(\frac{\partial F}{\partial h}(d_n, \nabla d_n) - \nabla \cdot \frac{\partial F}{\partial S}(d_n, \nabla d_n) \right), \quad (4.5c)
\]

and

\[
T_n^L := \mu_1 (d_n \cdot (\nabla v_n)_{\text{sym}} d_n) d_n \otimes d_n + \mu_4 (\nabla v_n)_{\text{sym}} \gamma - \gamma(\mu_2 + \mu_3) (d_n \otimes q_n)_{\text{sym}}
\]

\[
- (d_n \otimes q_n)_{\text{skew}} + (\mu_5 + \mu_6 - \lambda(\mu_2 + \mu_3)) (d_n \otimes (\nabla v_n)_{\text{sym}} d_n)_{\text{sym}}. \quad (4.5d)
\]

The approximation \(T_n^L \) of the Leslie stress tensor \(T^L \) (see (3.2c)) relies upon replacing the term \(e \), in which unfortunately the time derivative of \(d \) occurs, by \(e = -\lambda(\nabla v)_{\text{sym}} d - \gamma q \), which follows from (3.1b) and (3.2d). Formally, this leads with (3.2e) to

\[
T^L = \mu_1 d \cdot (\nabla v)_{\text{sym}} d \otimes d + \mu_4 (\nabla v)_{\text{sym}} - \gamma(\mu_2 + \mu_3) (d \otimes q)_{\text{sym}}
\]

\[
- (d \otimes q)_{\text{skew}} + (\mu_5 + \mu_6 - \lambda(\mu_2 + \mu_3)) (d \otimes (\nabla v)_{\text{sym}} d)_{\text{sym}}. \quad (4.6)
\]

It is standard to prove existence locally in time of solutions to the approximate problem in the sense of Carathéodory, i.e., of solutions that are absolutely continuous with respect to time (see, e.g., Hale [14, Chapter I, Thm. 5.2]). Of course, the existence interval may depend on \(n \). Global-in-time existence on \([0, T]\), however, follows later directly from suitable a priori estimates.

4.2 Energy inequality and a priori estimates

In what follows, we derive an energy inequality and appropriate a priori estimates for the approximate solutions.

Proposition 4.1. Let the assumptions of Theorem 3.1 be fulfilled and let \(\{(v_n, d_n)\} \) be a solution to (4.5). Then there holds for almost all \(t \)

\[
\frac{d}{dt} \left(\frac{1}{2} \| v_n \|_{L^2}^2 + \mathcal{F}(d_n) \right) + \mu_1 \| d_n \cdot (\nabla v_n)_{\text{sym}} d_n \|_{L^2}^2 + \mu_4 \| (\nabla v_n)_{\text{sym}} \|_{L^2}^2
\]

\[
+ (\mu_5 + \mu_6 - \lambda(\mu_2 + \mu_3)) \| (\nabla v_n)_{\text{sym}} d_n \|_{L^2}^2 + \gamma \| q_n \|_{L^2}^2
\]

\[
= \langle g, v_n \rangle + (\gamma(\mu_2 + \mu_3) - \lambda) \langle q_n, (\nabla v_n)_{\text{sym}} d_n \rangle. \quad (4.7)
\]
Remark 4.2. If Parodi’s relation \(1.3b\) is assumed to hold for the constants appearing (see also \(3.2a\)) then the constant in front of the last term on the right-hand side of \((4.7)\) vanishes.

Proof of Proposition 4.1. We recall that the approximate solution \(\{ (v_n, d_n) \} \) is absolutely continuous in time. In order to derive the estimate asserted, we test \((4.5a)\) with \(v_n\), \((4.5b)\) with \(q_n\), and add both equations. This leads to

\[
\frac{1}{2} \frac{d}{dt} \| v_n \|_{L^2}^2 + \langle \partial_t d_n, q_n \rangle - \langle \nabla d_n^T q_n, v_n \rangle + \langle (v_n \cdot \nabla) d_n, q_n \rangle + \langle (T_n^L : \nabla v_n) - ((\nabla v_n)_{\text{sym}} d_n, q_n) + \gamma |q_n|^2 \rangle_{L^2} = \langle g, v_n \rangle - \lambda ((\nabla v_n)_{\text{sym}} d_n, q_n) \text{.}
\]

Here we have employed that the convection term vanishes since \(v_n\) is solenoidal. Moreover, the projection \(R_n\) maps \(L^2\) into \(Z_n\), which ensures that \(q_n\) takes values in \(Z_n\).

A straightforward calculation shows that

\[
\frac{d}{dt} \mathcal{F}(d_n) = \frac{d}{dt} \int_{\Omega} F(d_n, \nabla d_n) \, dx = \int_{\Omega} \frac{\partial F}{\partial h}(d_n, \nabla d_n) \cdot \partial_t d_n + \frac{\partial F}{\partial S}(d_n, \nabla d_n) : \partial_t (\nabla d_n) \, dx \quad (4.8)
\]

In the last but one step, we used that \(R_n\) is the \(L^2\)-orthogonal projection onto \(Z_n\).

For the term with the Leslie stress tensor, we find with rules recapitulated in Section 2.1 that

\[
T_n^L : \nabla v_n = \mu_1 (d_n \cdot (\nabla v_n)_{\text{sym}} d_n)^2 + \mu_4 |(\nabla v_n)_{\text{sym}}|^2 \\
+ (\mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3)) |(\nabla v_n)_{\text{sym}} d_n|^2 \\
- \gamma (\mu_2 + \mu_3) q_n \cdot (\nabla v_n)_{\text{sym}} d_n + q_n \cdot (\nabla v_n)_{\text{sym}} d_n 	ext{.}
\]

The assertion now follows from putting all together.

An essential step in our analysis is the following energy inequality that is an adaptation of Lin and Liu [27, Lemma 1] to general free energy functions considered here. In order to ensure the dissipative character of the system, the constants appearing are supposed to fulfil the constraints \((3.3)\).

Corollary 4.1. Under the assumptions of Theorem 3.1 there exist \(\alpha, \beta, \gamma > 0\) such that for any solution \(\{ (v_n, d_n) \} \) to \((4.5)\) the energy inequality

\[
\frac{d}{dt} \left(\frac{1}{2} \| v_n \|_{L^2}^2 + \mathcal{F}(d_n) \right) + \mu_1 \| d_n \cdot (\nabla v_n)_{\text{sym}} d_n \|_{L^2}^2 \\
+ \mu_2 \| (\nabla v_n)_{\text{sym}} \|_{L^2}^2 + \alpha \| (\nabla v_n)_{\text{sym}} d_n \|_{L^2}^2 + \beta \| q_n \|_{L^2}^2 \leq c \| g \|_{H^1_{(0, \sigma)}}^2 \\
\]

holds for almost all \(t\).
Proof: The assertion is an immediate consequence of Proposition 4.1. We first observe with Korn’s first inequality (see, e.g., McLean [31, Thm. 10.1]) and Young’s inequality that

\[\langle g, v_n \rangle \leq \| g \|_{H^1_0} \| v_n \|_{H^1_0} \leq c \| g \|_{H^1_0} \| (\nabla v_n) \|_{L^2} \]

\[\leq \frac{c^2}{2 \mu_4} \| g \|_{H^1_0}^2 + \frac{\mu_4}{2} \| (\nabla v_n) \|_{L^2} \cdot \]

In a second step, we find with (3.3) that there is \(\delta \in (0, 1) \) such that

\[\gamma (\mu_2 + \mu_5) - \lambda)^2 \leq 4 \delta^2 \gamma (\mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3)) \]

and thus

\[(\gamma (\mu_2 + \mu_5) - \lambda) (q_n, (\nabla v_n) \| \| \| d \| n) \]

\[\leq \gamma (\mu_2 + \mu_5) - \lambda \| q_n \|_{L^2} \| (\nabla v_n) \|_{L^2} \]

\[\leq 2 \delta \sqrt{\gamma (\mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3)) \| q_n \|_{L^2} \| (\nabla v_n) \|_{L^2} \]

\[\leq \delta^2 \| q_n \|_{L^2}^2 + \delta (\mu_5 + \mu_6 - \lambda (\mu_2 + \mu_3)) \| (\nabla v_n) \|_{L^2} \]

Taking \(\alpha, \beta \) appropriately proves the assertion.

Corollary 4.2 (A priori estimates I). Under the assumptions of Theorem 3.1 there holds

\[
\frac{1}{2} \| v_n \|_{L^2}^2 + \sup_t \mathcal{F}(d_n(t)) + \mu_1 \| d_n \cdot (\nabla v_n) \|_{L^2}^2 \]

\[+ \frac{\mu_4}{2} \| (\nabla v_n) \|_{L^2}^2 + \alpha \| (\nabla v_n) \|_{L^2}^2 + \beta \| q_n \|_{L^2}^2 \]

\[\leq c \left(\| v_0 \|_{L^2}^2 + \| g \|_{L^2(H^1_0)}^2 + \| d_0 \|_{H^1_0}^2 + 1 \right). \]

(4.10)

on the time interval of existence.

Proof. Integrating (4.9) with respect to time implies

\[
\frac{1}{2} \| v_n \|_{L^2(t)}^2 + \sup_t \mathcal{F}(d_n(t)) + \mu_1 \| d_n \cdot (\nabla v_n) \|_{L^2(t)}^2 \]

\[+ \frac{\mu_4}{2} \| (\nabla v_n) \|_{L^2(t)}^2 + \alpha \| (\nabla v_n) \|_{L^2(t)}^2 + \beta \| q_n \|_{L^2(t)}^2 \]

\[\leq c \left(\| v_0 \|_{L^2(t)}^2 + \mathcal{F}(R_n d_0(t)) + \| g \|_{L^2(H^1_0)}^2 \right) \]

since \(v_n(0) = P_n v_0 \) and \(d_n(0) = R_n d_0 \). Thus it remains to estimate \(\mathcal{F}(R_n d_0) \) independently of \(n \).

In view of the smoothness of the free energy potential \(F \), we find with the fundamental theorem of calculus

\[
F(R_n d_0, \nabla R_n d_0) = F(d_0, \nabla d_0) + \int_0^1 \frac{\partial F}{\partial h}(d_0(s), \nabla d_0(s)) ds \cdot (R_n d_0 - d_0) \]

\[+ \int_0^1 \frac{\partial F}{\partial S}(d_0(s), \nabla d_0(s)) ds \cdot \nabla (R_n d_0 - d_0), \]
where $d'_0(s) := sR_n d_0 + (1 - s)d_0$ ($s \in [0, 1]$). Applying the fundamental theorem of calculus again to the second term gives

$$F(R_n d_0, \nabla R_n d_0) = F(d_0, \nabla d_0) + \int_0^1 \frac{\partial F}{\partial h}(d'_0(s), \nabla d'_0(s)) \, ds \cdot (R_n d_0 - d_0)$$

$$+ \int_0^1 \frac{\partial F}{\partial S} (0, 0) \, ds \cdot \nabla (R_n d_0 - d_0)$$

$$+ \int_0^1 \int_0^1 \frac{\partial^2 F}{\partial S \partial h} (\tau d'_0(s), \tau \nabla d'_0(s)) \, d\tau \cdot (R_n d_0 - d_0) \, ds$$

Integrating over Ω gives

$$\mathcal{F}(R_n d_0) = \mathcal{F}(d_0) + \int_0^1 \left(\frac{\partial F}{\partial h}(d'_0(s), \nabla d'_0(s)), R_n d_0 - d_0 \right) \, ds$$

$$+ \int_0^1 \frac{\partial F}{\partial S} (0, 0) \, ds \cdot \nabla (R_n d_0 - d_0)$$

$$+ \int_0^1 \int_0^1 \frac{\partial^2 F}{\partial S \partial h} (\tau d'_0(s), \tau \nabla d'_0(s)) \, d\tau \cdot (R_n d_0 - d_0) \, ds$$

$$= \mathcal{F}(d_0) + I_1 + I_2 + I_3 + I_4,$$

such that

$$|\mathcal{F}(R_n d_0) - \mathcal{F}(d_0)| \leq |I_1| + |I_2| + |I_3| + |I_4|.$$

Let us consider the term I_1. Invoking the growth conditions and Young’s inequality yields

$$|I_1| \leq \int_\Omega \left(\int_0^1 \left| \frac{\partial F}{\partial h}(d'_0(s), \nabla d'_0(s)) \right| \, ds \right) |R_n d_0 - d_0| \, dx$$

$$\leq C_h \int_\Omega \left(\int_0^1 \left(|\nabla d'_0(s)|^{5/2} + |d'_0(s)|^{5/2} + 1 \right) \, ds \right) |R_n d_0 - d_0| \, dx.$$

Using Young’s and Hölder’s inequality as well as Sobolev’s embedding theorem thus leads to

$$|I_1| \leq c \int_\Omega \left(\int_0^1 \left(|\nabla d'_0(s)|^{5/3} + |d'_0(s)|^5 + 1 \right) \, ds \right) |R_n d_0 - d_0| \, dx$$

$$\leq c \int_\Omega \left(|\nabla R_n d_0|^{5/3} + |R_n d_0|^5 + |\nabla d_0|^{5/3} + |d_0|^5 + 1 \right) |R_n d_0 - d_0| \, dx$$

$$\leq c \left(|\nabla R_n d_0|_{L^6}^2 + |R_n d_0|_{L^6}^6 + |\nabla d_0|_{L^6}^3 + |d_0|_{L^6}^6 + 1 \right)^{5/6} |R_n d_0 - d_0|$$

$$\leq c \left(|R_n d_0|_{H^0}^6 + |d_0|_{H^0}^6 + 1 \right)^{5/6} |R_n d_0 - d_0|_{H^1}.$$
For the term \(I_3 \), we get with (3.11a) and estimating \(\tau \) by 1 that
\[
|I_3| \leq \int_{\Omega} \int_0^1 |\frac{\partial^2 F}{\partial S \partial H}(d_0^s(s), \nabla d_0^s(s))| d_0^s(s)|d\mathbf{n}(R_n d_0 - d_0)|dx
\]
\[
\leq C_2 h \int_{\Omega} \int_0^1 \left(\left(|\nabla d_0^s(s)|^{\gamma_1/2 - 1} + |d_0^s(s)|^{\gamma_1} + 1 \right) |d_0^s(s)| \right) ds |\nabla (R_n d_0 - d_0)|dx.
\]
Since \(\gamma_1 \) can be estimated by 10/3 and \(\gamma_3 \) by 2, we obtain
\[
|I_3| \leq c \int_{\Omega} \int_0^1 \left(|\nabla d_0^s(s)|^{2/3} |d_0^s(s)| + |d_0^s(s)|^3 + 1 \right) ds |\nabla (R_n d_0 - d_0)|dx.
\]
An application of Young’s and Hölder’s inequality gives
\[
|I_3| \leq c \int_{\Omega} \int_0^1 \left(|\nabla d_0^s(s)|^{2} + |d_0^s(s)|^3 + 1 \right) ds |\nabla (R_n d_0 - d_0)|dx
\]
\[
\leq c \left(\|R_n d_0\| H^1_0 + \|R_n d_0\|_{L^6}^2 + \|d_0\|_{H^6_0}^2 + \|d_0\|_{L^6}^3 + 1 \right)^{1/2} \|R_n d_0 - d_0\|_{H^3_0}
\]
\[
\leq c \left(\|R_n d_0\|_{H^6_0}^6 + \|d_0\|_{H^6_0}^6 + 1 \right)^{1/2} \|R_n d_0 - d_0\|_{H^3_0}.
\]

For the term \(I_4 \), we observe with (3.6a) that
\[
|I_4| \leq c |d_0^s(s)|_{H^1_0} \|R_n d_0 - d_0\|_{H^3_0} \leq c \left(\|R_n d_0\|_{H^1_0} + \|d_0\|_{H^6_0} \right) \|R_n d_0 - d_0\|_{H^3_0}.
\]

Finally, we come up with
\[
|\mathcal{F}(R_n d_0) - \mathcal{F}(d_0)| \leq c \left(\|R_n d_0\|_{H^6_0}^6 + \|d_0\|_{H^6_0}^6 + 1 \right) \|R_n d_0 - d_0\|_{H^3_0},
\]

With similar estimates as before, one can show that
\[
|\mathcal{F}(d_0)| \leq c \left(\|d_0\|_{H^6_0}^6 + 1 \right)
\]
if \(d_0 \in H^1_0 \). Due to the boundedness of the projection \(R_n \) as an operator in \(H^3_0 \), we see that \(\mathcal{F}(R_n d_0) \) is bounded (independently of \(n \)) as long as \(d_0 \in H^6_0 \). This proves the assertion.

Remark 4.3. The proof of Corollary 4.2 also shows that \(\mathcal{F}(R_n d_0) \) converges to \(\mathcal{F}(d_0) \). The proof of Corollary 4.2 is done in such a way that it is still valid for the modified assumptions of Section 5.

Due to the strong coercivity assumptions on the free energy potential \(F \) and its derivatives, we are able to deduce a priori estimates in spaces with rather strong norms.

Corollary 4.3 (A priori estimates II). Under the assumptions of Theorem 5.1 there is a constant \(C > 0 \) such that for all \(n \in \mathbb{N} \)
\[
\|v_n\|_{L^2(\mathbb{L}^2)} + \|d_n\|_{L^2(H^3_0)} + \|d_n \cdot (\nabla v_n)_{\text{sym}} d_n\|_{L^2(\mathbb{L}^2)}^2 + \|((\nabla v_n)_{\text{sym}})^2\|_{L^2(\mathbb{L}^2)}^2 + \|\Delta d_n\|_{L^2(\mathbb{L}^2)}^2 \leq C.
\]

(4.11)

Proof. The coercivity condition (3.7) implies
\[
\mathcal{F}(d_n(t)) = \int_{\Omega} F(d_n(t), \nabla d_n(t)) dx \geq \eta_1 \|\nabla d_n(t)\|_{L^2}^2 - \eta_2 \|d_n(t)\|_{L^2}^2 - \eta_3 |\Omega|
\]

(4.12)
The director equation (4.5b) tested with
\[d_n \cdot (\nabla \cdot d_n, d_n) - (\nabla \cdot d_n, d_n) + \lambda (\nabla \cdot d_n, d_n) + \gamma (q_n, d_n) = 0. \]

Integration in time and using (2) with \(\partial \| d_n \|_{L^2}^2 = \partial_t \| d_n \|_{L^2}^2 \), the vanishing divergence of \(v_t \) and the skew-symmetry of \((\nabla v_n)_{skw} \) shows that
\[
\frac{1}{2} \| d_n(t) \|_{L^2}^2 + \int_0^t \left(\lambda (\nabla \cdot d_n, d_n) + \gamma (q_n, d_n) \right) ds = \frac{1}{2} \| d_0 \|_{L^2}^2.
\]

The norm of the director can thus be estimated using Hölder’s and Young’s inequality and in the second step Poincaré’s inequality
\[
\| d_n(t) \|_{L^2} \leq \int_0^t \left(\frac{\alpha}{2 \eta_2} \| (\nabla v_n) \|_{L^2}^2 + \frac{\beta}{2 \eta_2} \| q_n \|_{L^2}^2 + c \| d_n \|_{L^2}^2 \right) ds + \| d_0 \|_{L^2}^2
\]

Applying this estimate together with (4.12) and (4.9) gives
\[
\frac{1}{2} \| v_n \|_{L^2}^2 + \eta_1 \| \nabla d_n(t) \|_{L^2}^2 + \mu_1 \int_0^t \left(\| d_n \|_{(H^1_0)'} \right)^2 ds
\]
\[
+ \frac{1}{2} \int_0^t \left(\mu_4 \| (\nabla v_n) \|_{L^2}^2 + \alpha \| (\nabla v_n) \|_{L^2}^2 + \beta \| q_n \|_{L^2}^2 \right) ds
\]
\[
\leq \frac{1}{2} \| v_0 \|_{L^2}^2 + c \left(\| g \|_{L^2((H^1_0)')}^2 + \| d_0 \|_{H^1_0}^6 + 1 \right)
\]
\[
+ \eta_2 c \int_0^t \| \nabla d_n \|_{L^2}^2 ds + \eta_2 \| d_0 \|_{H^1_0}^2 + \eta_2 | \omega |.
\]

The lemma of Gronwall and taking the supremum over all \(t \in [0, T] \) shows the estimate
\[
\frac{1}{2} \| v_n \|_{L^\infty(0, T; H^1)}^2 + \eta_1 \| \nabla d_n \|_{L^\infty(0, T; L^2)}^2 + \mu_1 \| d_n \|_{(H^1_0)'} \| \nabla d_n \|_{L^2(L^2)}^2
\]
\[
+ \frac{\mu_4}{2} \| (\nabla v_n) \|_{L^2(L^2)}^2 + \frac{\alpha}{2} \| (\nabla v_n) \|_{L^2(L^2)}^2 + \frac{\beta}{2} \| q_n \|_{L^2(L^2)}^2
\]
\[
\leq c \left(\| v_0 \|_{L^2}^2 + \| \nabla d_n \|_{L^2}^2 + \| g \|_{L^2((H^1_0)')}^2 + \| d_0 \|_{H^1_0}^6 + 1 \right) e^t
\]
\[
=: K
\]

and thus, the boundedness of the director in the \(L^\infty(0, T; H^1) \) norm.

Moreover, (4.5c), (3.9), and (3.10) leads to
\[
\| q_n \|_{L^2}^2 \geq \frac{1}{2} \| (\nabla d_n) \|_{L^2}^2 - 4 \left[R_n \frac{\partial F}{\partial \delta \theta} (d_n, \nabla d_n) : \nabla d_n \right]^2 - 4 \left[R_n \frac{\partial F}{\partial \theta} (d_n, \nabla d_n) \right]^2.
\]

The orthogonality properties of \(R_n \) then imply
\[
\| q_n \|_{L^2}^2 \geq \frac{1}{2} \| (\nabla d_n) \|_{L^2}^2 - 4 \left[\frac{\partial^2 F}{\partial \delta \theta} (d_n, \nabla d_n) : \nabla d_n \right]^2 - 4 \left[\frac{\partial F}{\partial \theta} (d_n, \nabla d_n) \right]^2.
\]
The estimates \((4.3)\), \((3.11a)\), and \((3.11b)\) show that there are constants \(c_1, c > 0\) such that for all \(t\)

\[
\|q_n\|_{L^2}^2 \geq c_1 \|\Delta d_n\|_{L^2}^2 - c \left(\|\nabla d_n\|_{L^3}^2 + \|d_n\|_{L^3} \right) \left(\|\nabla d_n\|_{L^2}^2 + \|d_n\|_{L^2}^2 + 1 \right) .
\]

\((4.14)\)

With \((3.11c)\), an application of Young’s inequality (recall that \(\gamma_3 = 0\) if \(\gamma_1 = 2\)),

\[
\|d_n\|_{L^3} \|\nabla d_n\|_{L^2} \leq \frac{2}{\gamma_1} \|\nabla d_n\|_{L^3}^\gamma_1 + \frac{\gamma_1 - 2}{\gamma_1} \|d_n\|_{L^6}^{2\gamma_1/(\gamma_1 - 2)}
\]

\[
= \frac{2}{\gamma_1} \|\nabla d_n\|_{L^3}^\gamma_1 + \frac{\gamma_1 - 2}{\gamma_1} \|d_n\|_{L^2}^\gamma_1,
\]

and

\[
\|\nabla d_n\|_{L^2}^2 \leq c \|\nabla d_n\|_{L^6}^\gamma_1 \leq 1 + c \|\nabla d_n\|_{L^2}^\gamma_1,
\]

we come up with

\[
\|q_n\|_{L^2}^2 \geq c_1 \|\Delta d_n\|_{L^2}^2 - c \left(\|\nabla d_n\|_{L^3}^\gamma_1 + \|d_n\|_{L^2}^\gamma_1 + 1 \right)
\]

and thus with

\[
\|q_n\|_{L^2(L^2)}^2 \geq c_1 \|\Delta d_n\|_{L^2(L^2)}^2 - c \left(\|\nabla d_n\|_{L^6(L^3)}^\gamma_1 + \|d_n\|_{L^2(L^2)}^\gamma_1 + 1 \right).
\]

Lemma\(2.1\) yields

\[
\|\nabla d_n\|_{L^6(L^3)}^\gamma_1 \leq c \|\Delta d_n\|_{L^2(L^2)}^\gamma_1 \|d_n\|_{L^6(H^1_0)}^{\gamma_1 - \theta_1}, \quad \theta_1 = \frac{3}{2} (\gamma_1 - 2),
\]

\[
\|d_n\|_{L^2(L^2)}^\gamma_1 \leq c \|\Delta d_n\|_{L^2(L^2)}^\gamma_1 \|d_n\|_{L^6(H^1_0)}^{\gamma_1 - \theta_2}, \quad \theta_2 = \frac{1}{2} (\gamma_1 - 6).
\]

Young’s inequality now leads to

\[
\|q_n\|_{L^2(L^2)}^2 \geq \frac{c_1}{2} \|\Delta d_n\|_{L^2(L^2)}^2 - c \left(\|d_n\|_{L^6(H^1_0)}^\gamma_1 + 1 \right)
\]

with

\[
p = 2 \max \left(\frac{\gamma_1 - \theta_1}{2 - \theta_1}, \frac{\gamma_1 - \theta_2}{2 - \theta_2} \right) = 2 \max \left(\frac{6 - \gamma_1}{10 - 3\gamma_1}, \frac{6 + \gamma_1}{10 - \gamma_1} \right) < \infty.
\]

Because of \((4.13)\), we already know that \(\eta_1 \|d_n\|_{L^6(H^1_0)}^\gamma_1\) is bounded by \(K\). Hence, \((4.10)\) leads to

\[
\frac{1}{2} \|v_n\|_{L^2(L^2)}^2 + \eta_1 \|d_n\|_{L^6(H^1_0)}^2 + \mu_1 \|d_n \cdot (\nabla v_n)_{\text{sym}} d_n\|_{L^2(L^2)}^2 + \frac{\mu_4}{2} \|\nabla v_n\|_{\text{sym}}^2_{L^2(L^2)}
\]

\[
+ \frac{\alpha}{2} \|\nabla v_n\|_{\text{sym}}^2_{L^2(L^2)} + \frac{c_1 \beta}{4} \|\Delta d_n\|_{L^2(L^2)}^2 \leq K + c_{\beta} \left(\frac{K}{\eta_1} \right)^\frac{\gamma_1}{2} + 1,
\]

which proves the assertion. \(\square\)

The above a priori estimates ensure that the approximate solutions exist on \([0, T]\) (see, again, Hale \([14, \text{Chapter I, Thm. 5.2}]\)).

We are now going to estimate the time derivative of \(d_n\) and \(v_n\) in appropriate norms.
Proposition 4.2. Under the assumptions of Theorem 3.1, there is a constant \(C > 0 \) such that for all \(n \in \mathbb{N} \)

\[
\| \partial_n v_n \|_{L^2((H^2 \cap H^1_{0,\sigma})^\ast)} \leq C.
\]

(4.15)

Proof. Recall that \(P_n \) is the \((H^2 \cap H^1_{0,\sigma})\)-orthogonal projection onto \(W_n \). We thus find with (4.5a) for all \(t \in [0,T] \) and all \(\varphi \in H^2 \cap H^1_{0,\sigma} \)

\[
\| \partial_n v_n \|_{L^2((H^2 \cap H^1_{0,\sigma})^\ast)} = \| \langle g, P_n \varphi \rangle \| = \| (v_n \cdot \nabla)v_n \| + \| (\nabla d_n^T q_n, P_n \varphi) - (T^L_n : \nabla P_n \varphi) \|
\leq \| g \|_{(H^2 \cap H^1_{0,\sigma})^\ast} \| P_n \varphi \|_{H^2_{0,\sigma}} + \| (v_n \cdot \nabla)v_n \|_{L^2} \| P_n \varphi \|_{L^2}
+ \| \nabla d_n^T q_n \|_{L^2} \| P_n \varphi \|_{L^2} + \| T^L_n \|_{L^6/3} \| \nabla P_n \varphi \|_{L^6}.
\]

Since \(H^2 \) is continuously embedded in \(H^1, L^\infty, \) and \(W^{1,6} \), we find

\[
\| \partial_n v_n \|_{L^2((H^2 \cap H^1_{0,\sigma})^\ast)} \leq C \left(\| g \|_{(H^2 \cap H^1_{0,\sigma})^\ast} + \| (v_n \cdot \nabla)v_n \|_{L^2} + \| \nabla d_n^T q_n \|_{L^2} + \| T^L_n \|_{L^6/3} \right)
\]

and thus

\[
\| \partial_n v_n \|_{L^2((H^2 \cap H^1_{0,\sigma})^\ast)} \leq C \left(\| g \|_{L^2(H^1_{0,\sigma})^\ast} + \| (v_n \cdot \nabla)v_n \|_{L^2(L^1)}
+ \| \nabla d_n^T q_n \|_{L^2(L^1)} + \| T^L_n \|_{L^2(L^6/3)} \right).
\]

With Hölder’s inequality and Lemma 2.2 we see that

\[
\| (v_n \cdot \nabla)v_n \|_{L^2(L^1)} \leq \| v_n \|_{L^6(L^2)} \| \nabla v_n \|_{L^2(L^2)} \quad \text{and} \quad \| \nabla d_n^T q_n \|_{L^2(L^1)} \leq \| \nabla d_n \|_{L^6(L^2)} \| q_n \|_{L^2(L^2)}.
\]

In view of (4.11), (4.13), and Korn’s inequality, the terms on the right-hand sides of the foregoing estimates are bounded.

Finally, we observe with (4.5d) the estimate

\[
\| T^L_n \|_{L^2(L^6/3)} \leq C \left(\| (d_n \cdot (\nabla v_n) \text{sym} d_n) d_n \|_{L^2(L^5/3)} + \| \nabla v_n \|_{L^2(L^5/3)}
+ \| d_n \otimes q_n \|_{L^2(L^5/3)} + \| d_n \otimes (\nabla v_n) \text{sym} d_n \|_{L^2(L^6/3)} \right),
\]

where (again with Hölder’s inequality)

\[
\| (d_n \cdot (\nabla v_n) \text{sym} d_n) d_n \otimes d_n \|_{L^2(L^5/3)} \leq \| d_n \cdot (\nabla v_n) \text{sym} d_n \|_{L^2(L^5/3)} \| d_n \|_{L^2(L^5/3)}^2,
\]

\[
\| d_n \otimes q_n \|_{L^2(L^5/2)} \leq C \| d_n \otimes q_n \|_{L^2(L^5/2)} \leq \| d_n \|_{L^6(L^2)} \| q_n \|_{L^2(L^2)}^2,
\]

\[
\| d_n \otimes (\nabla v_n) \text{sym} d_n \|_{L^2(L^5/3)} \leq C \| d_n \otimes (\nabla v_n) \text{sym} d_n \|_{L^2(L^5/3)}
\leq C \| d_n \|_{L^6(L^2)} \| (\nabla v_n) \text{sym} d_n \|_{L^2(L^2)},
\]

which proves the assertion because of (4.11) and (4.13).

Proposition 4.3. Under the assumptions of Theorem 3.1, there is a constant \(C > 0 \) such that for all \(n \in \mathbb{N} \)

\[
\| \partial_n d_n \|_{L^6/3(L^2)} \leq C.
\]

(4.16)
The existence of weakly and weakly* convergent subsequences immediately follows, by standard arguments, from the a priori estimates (4.11) and (4.13) together with Korn’s inequality and from (4.15), (4.16) together with the definition of the weak time derivative.
The strong convergence follows from the Lions–Aubin compactness lemma (see Lions [28, Théorème 1.5.2]). With respect to v_n, we observe that $H^{1}_{0,\sigma}$ is compactly embedded in L^{2}_{σ}, which implies strong convergence in $L^{2}(0,T;L^{2}_{\sigma})$ and together with the boundedness in $L^{\infty}(0,T;L^{2}_{\sigma})$ also in $L^{p}(0,T;L^{2}_{\sigma})$ for any $p \in [1,\infty)$.

With respect to d_n, we observe that $H^{2} \cap H^{1}_{0}$ is compactly embedded in H^{1}_{0}, which implies strong convergence in $L^{2}(0,T;H^{1}_{0})$ and together with the boundedness in $L^{\infty}(0,T;H^{1}_{0})$ also in $L^{p}(0,T;H^{1}_{0})$ and thus in $L^{p}(0,T;L^{6})$ for any $p \in [1,\infty)$. Moreover, d_n is also bounded in $L^{10}(0,T;L^{10})$. Indeed, With Lemma [2.1] we find

$$
\|d_n\|_{L^{10}(L^{10})} \leq c \|d_n\|_{L^{2}(H^{2};H^{1}_{0})}^{1/5} \|d_n\|_{L^{\infty}(H^{1}_{0})}^{4/5},
$$

This implies (4.18i). Finally, d_n is also bounded in $L^{10/3}(0,T;W^{1,10/3})$ since

$$
\|d_n\|_{L^{10/3}(W^{1,10/3})} \leq c \|d_n\|_{L^{2}(H^{2};H^{1}_{0})}^{3/5} \|d_n\|_{L^{\infty}(H^{1}_{0})}^{2/5},
$$

because of Lemma [2.1]. This proves (4.18j).

Corollary 4.5. Under the assumptions of Theorem 3.1 the limits v and d from Corollary 4.4 satisfy

$$
v(0) = v_0 \text{ and } d(0) = d_0.
$$

Proof. Due to the convergence results (4.18i) for the time derivative of the velocity field, we get $v \in W^{1,2}(0,T;\langle H^{2} \cap H^{1}_{0,\sigma} \rangle^*) \hookrightarrow \mathcal{C}([0,T];\langle H^{2} \cap H^{1}_{0,\sigma} \rangle^*)$ and together with (4.18i) that for any $w \in H^{2} \cap H^{1}_{0,\sigma}$ and $\omega(t) = (T-t)/T$

$$
\langle v_n(0) - v(0), w \rangle = -\int_{0}^{T} \left(\langle v_n(t) - v(t), w \omega'(t) \rangle + \langle \partial_{t} v_n(t) - \partial_{t} v(t), w \omega(t) \rangle \right) \, dt \to 0,
$$

which shows that

$$
v_n(0) \rightharpoonup v(0) \text{ in } \langle H^{2} \cap H^{1}_{0,\sigma} \rangle^*.
$$

Moreover, we know that

$$
v_n(0) = P_{\sigma} v_0 \to v_0 \text{ in } L^{2}_{\sigma},
$$

which proves $v(0) = v_0$.

Analogously, one proves that $d(0) = d_0$.

With the following proposition, we identify the limit \tilde{q} in (4.18c).

Proposition 4.4. Under the assumptions of Theorem 3.1 the limit \tilde{q} in (4.18c) is given by $\tilde{q} = q$, where q is given by (3.3).

Proof. In what follows, we do not relabel the subsequence that exists in view of Corollary 4.4. We already know (4.18c) and wish to establish now weak convergence of q_n to q in $L^{p}(0,T;H^{-1})$. Recalling that R_{σ} is the L^{2}-orthogonal projection onto Z_{σ}, we find for all
\[\psi \in L^2(0, T; H^1_0) \] that

\[
\int_0^T \left(q_n(t) - q(t), \psi(t) \right) dt = \int_0^T \left\langle \frac{dF}{dh}(d_n(t), \nabla d_n(t)) - \nabla \cdot \frac{dF}{dS}(d_n(t), \nabla d_n(t)), R_n \psi(t) \right\rangle dt
\]

\[
- \int_0^T \left\langle \frac{dF}{dh}(d(t), \nabla d(t)) - \nabla \cdot \frac{dF}{dS}(d(t), \nabla d(t)), \psi(t) \right\rangle dt
\]

\[
= \int_0^T \left\langle \frac{dF}{dh}(d_n(t), \nabla d_n(t)) - \nabla \cdot \frac{dF}{dS}(d_n(t), \nabla d_n(t)), R_n \psi(t) - \psi(t) \right\rangle dt
\]

\[
+ \int_0^T \left\langle \frac{dF}{dh}(d_n(t), \nabla d_n(t)) - \nabla \cdot \frac{dF}{dS}(d(t), \nabla d(t)), \psi(t) \right\rangle dt
\]

\[
- \int_0^T \left\langle \nabla \cdot \frac{dF}{dS}(d_n(t), \nabla d_n(t)) - \nabla \cdot \frac{dF}{dS}(d(t), \nabla d(t)), \psi(t) \right\rangle dt =: I_{1,n} + I_{2,n} + I_{3,n}. \quad (4.19)
\]

Regarding the term \(I_{1,n} \), we note that

\[
\left\| \frac{dF}{dh}(d_n(t), \nabla d_n(t)) - \nabla \cdot \frac{dF}{dS}(d_n(t), \nabla d_n(t)) \right\|_{L^2(L^2)} \leq c \left(\left\| d_n \right\|_{L^2(H^2; H^1_0)} \left\| \nabla d_n \right\|_{L^2(L^2)}^2 + \left\| d_n \right\|_{L^2(H^2; H^1_0)}^2 + 1 \right),
\]

which can be shown as in the proof of Proposition 3.1. This, together with (4.11), shows the boundedness of the term above. Moreover, \(R_n \) is the \(L^2 \)-orthogonal projection onto \(Z_n \) such that for all \(\psi \in L^2(0, T; L^2) \)

\[
\lim_{n \to \infty} \left\| R_n \psi - \psi \right\|_{L^2(L^2)} = 0.
\]

This shows that \(I_{1,n} \) converges to 0 as \(n \to \infty \).

Let us now consider the term \(I_{2,n} \). Because of (4.18a) and (4.18b), we observe that (passing to a subsequence if necessary)

\[
d_n(x,t) \to d(x,t), \quad \nabla d_n(x,t) \to \nabla d(x,t)
\]

for almost all \((x,t) \in \Omega \times (0, T) \). Moreover, \(|d_n(x,t)| \) is dominated by a function in \(L^q(0, T; L^2) \) \((q \in [1, 10])\) and \(\|\nabla d_n(x,t)\| \) is dominated by a function in \(L^r(0, T; L^{r'}) \) \((r \in [1, 10/3])\). The growth condition (3.11b) then shows that

\[
\left\| \frac{dF}{dh}(d_n(x,t), \nabla d_n(x,t)) \right\| \leq C_h \left(\|\nabla d_n(x,t)\|^{1/2} + \|d_n(x,t)\|^{10/3} + 1 \right)
\]

is dominated by a function in \(L^2(0, T; L^2) \). With the continuity of \(\frac{dF}{dh} \) and Lebesgue's theorem on dominated convergence, we thus find that \(I_{2,n} \) converges to 0 as \(n \to \infty \).

For the term \(I_{3,n} \), we find (see (3.9)) that

\[
I_{3,n} = \int_0^T \left\langle \langle A : \nabla d_n(t) - d(t) \rangle : \nabla \psi(t) \right\rangle dt
\]

\[
- \int_0^T \left\langle \frac{d^2 F}{dS_d h}(d_n(t), \nabla d_n(t)) : \nabla d_n(t)^T - \frac{d^2 F}{dS_d h}(d(t), \nabla d(t)) : \nabla d(t)^T, \psi(t) \right\rangle dt.
\]
The first term on the right-hand side, which is linear, converges to 0 because of \((4.18e)\). The second term can be dealt with similarly as \(I_{2,v}\). In particular, \((3.11a)\) together with Young’s inequality provides that
\[
\frac{\partial^2 F}{\partial S^2 h}(d_n(x,t),\nabla d_n(x,t)) : \nabla d_n(x,t) \leq C_{sh}\left(|\nabla d_n(x,t)|^{\gamma/2-1} + |d_n(x,t)|^{\gamma+1} \right) |\nabla d_n(x,t)| \leq c \left(|\nabla d_n(x,t)|^{\gamma/2} + |d_n(x,t)|^{\gamma/2+1} \right)
\]
is dominated by a function in \(L^2(0,T;L^2)\). \(\square\)

We are now ready to prove the main result.

Proof of Theorem 3.1 It only remains to prove that the limit \((v,d)\) from Corollary 4.4 satisfies the original problem in the sense of Definition 5.1. This is shown by passing to the limit in the approximate problem \((4.5)\).

Let us start with the approximation \((4.5a)\) of the Navier–Stokes-like equation. In view of Corollary 4.4, we already know that the term incorporating the time derivative converges. Moreover, we find with \((4.18h)\) and \((4.18i)\) convergence of the convection term such that for all solenoidal \(\varphi \in C_{c}^\infty(\Omega \times (0,T);\mathbb{R}^3)\)
\[
\int_0^T \langle (v_n(t) \cdot \nabla) v_n(t), \varphi(t) \rangle dt \to \int_0^T \langle (v(t) \cdot \nabla) v(t), \varphi(t) \rangle dt.
\]
With Proposition 4.4 \((4.18c)\), and \((4.18i)\), we find that
\[
\int_0^T \langle \nabla d_n^T(t) \cdot q_n(t), \varphi(t) \rangle dt \to \int_0^T \langle \nabla d^T(t) \cdot q(t), \varphi(t) \rangle dt.
\]
With respect to the term incorporating the Leslie tensor, we only focus on the first term that is the least regular one. With \((4.18b)\) and \((4.18i)\), we find that
\[
\int_0^T \langle (d_n(t) \cdot (\nabla v_n(t)))_{\text{sym}} \cdot d_n(t) \cdot \nabla \varphi(t) \rangle dt \to \int_0^T \langle (d(t) \cdot (\nabla v(t)))_{\text{sym}} \cdot d(t) \cdot \nabla \varphi(t) \rangle dt.
\]
This, together with similar observations for the other terms, shows that
\[
\int_0^T \langle T^L_n(t) \cdot \nabla \varphi(t) \rangle dt \to \int_0^T \langle T^L(t) \cdot \nabla \varphi(t) \rangle dt,
\]
where \(T^L\) is given by \((4.6)\), which is equivalent to \((3.2c)\).

Regarding the approximation \((4.5b)\) of the director equation, we observe convergence of the term incorporating the time derivative because of \((4.18e)\). With \((4.18h)\) and \((4.18i)\), we obtain for all \(\Psi \in C_{c}^\infty(\Omega \times (0,T);\mathbb{R}^3)\)
\[
\int_0^T \langle (v_n(t) \cdot \nabla) d_n(t), \Psi(t) \rangle dt \to \int_0^T \langle (v(t) \cdot \nabla) d(t), \Psi(t) \rangle dt.
\]
With \((4.18b)\) and \((4.18i)\), we find that
\[
\int_0^T \langle (\nabla v_n(t))_{\text{skew}} d_n(t), \Psi(t) \rangle dt \to \int_0^T \langle (\nabla v(t))_{\text{skew}} d(t), \Psi(t) \rangle dt
\]
as well as
\[\int_0^T ((\nabla v(t))_{\text{sym}} d(t), \psi(t)) \, dt \to \int_0^T ((\nabla v(t))_{\text{sym}} d(t), \psi(t)) \, dt. \]

For the term with \(q_n \), we employ Proposition 4.4 together with Proposition 4.4.

All this shows that the limit \((v, d)\) of the approximate solutions satisfies the original equations. Moreover, Corollary 4.5 shows that the initial conditions are also fulfilled.

\[\square \]

5 Nonlinear principal part

In this section, we study the more general case \((1.11)\) and prove the main result as stated in Theorem 3.1 but with \((3.6a)\) replaced by \((5.1)\).

5.1 Assumptions on the second derivative

To handle more general free energies with a possible nonlinear principal part, we consider the following assumptions on the second derivative:

\[\frac{\partial^2 F}{\partial S^2}(h, S) = \Lambda + \Theta(h, S), \]
\[(5.1) \]

where \(\Theta \in C(\mathbb{R}^3, \mathbb{R}^{3 \times 3}; \mathbb{R}^{3 \times 3 \times 3}) \) is sufficiently small such that \(|\Theta(h, S)| \leq c_\Theta \) with \(c_\Theta = c_\Lambda/(16c_{H^2}) \). Here \(c_\Lambda \) denotes the constant of estimate \((4.3)\) and \(c_{H^2} \) denotes the constant of the equivalent norm estimate of \(|\cdot|_{H^2} \leq c_{H^2} \cdot |\cdot|_{H^1} \) (see also Section 2.1).

The proof of Theorem 3.1 is similar under this modified assumption. We are commenting only on the necessary changes.

Theorem 5.1. Let \(\Omega \) be a bounded domain of class \(C^2 \), assume \((3.3)\), and let the free energy potential \(F \) fulfill the assumptions \((3.5), (3.5)\), \((3.7)\), and \((3.11)\). For given initial data \(v_0 \in L^2_0 \), \(d_0 \in H^1_0 \) (such that \(d_1 = 0 \)) and right-hand side \(g \in L^2(0, T; (H^1_0)^*) \), there exists a weak solution to the Ericksen–Leslie system \((3.1)\) with \((3.2), (3.4)\) in the sense of Definition 3.1.

5.2 Estimate of the variational derivative

Under assumption \((5.1)\), the variational derivative (compare with equation \((3.9)\)) becomes

\[q = -\nabla (\Lambda \cdot \nabla d) - \Theta(d, \nabla d) : \nabla (\nabla d)^T - \frac{\partial^2 F}{\partial S^2} \partial_h (d, \nabla d) : (\nabla d)^T + \frac{\partial F}{\partial h} (d, \nabla d). \]

For arbitrary \(a_i \in \mathbb{R}^3, i \in \{1, 2, 3, 4\} \) one finds that

\[\sum_{i=1}^4 |a_i|^2 \geq \frac{1}{2} |a_1|^2 + |a_2|^2 + |a_3|^2 + |a_4|^2 - 2|a_2 + a_3 + a_4|^2 - |a_2|^2 - |a_3|^2 - |a_4|^2 \]

\[\geq \frac{1}{2} |a_1|^2 - 4|a_2|^2 - 10(|a_3|^2 + |a_4|^2) \]
and thus

\[|q|^2 \geq \frac{1}{2} |\nabla (A : \nabla d)|^2 - 4 |\Theta(d, \nabla d) : \nabla (\nabla d)^T|^2 \]

\[- 10 \left| \frac{\partial^2 F}{\partial S \partial h}(d, \nabla d) : (\nabla d)^T \right|^2 - 10 \left| \frac{\partial F}{\partial h}(d, \nabla d) \right|^2. \]

Inserting this estimate into Corollary 4.3 yields

\[|q_{n}|^2 \geq \frac{1}{2} |R_n \nabla (A : \nabla d_n)|^2 - 4 |R_n (\Theta(d_n, \nabla d_n) : \nabla (\nabla d_n)^T)|^2 \]

\[- 10 \left| R_n \left(\frac{\partial^2 F}{\partial S \partial h}(d_n, \nabla d_n) : (\nabla d_n)^T \right) \right|^2 - 10 \left| R_n \frac{\partial F}{\partial h}(d_n, \nabla d_n) \right|^2. \]

Again the orthogonality property of \(R_n \) and the estimate (4.3) yields

\[\frac{1}{2} \| R_n \nabla (A : \nabla d_n) \|^2_{L^2} - 4 \| R_n (\Theta(d_n, \nabla d_n) : \nabla (\nabla d_n)^T) \|^2_{L^2} \geq \]

\[\frac{c_A}{16} \| \Delta d_n \|^2_{L^2} - 4 \| \Theta(d_n, \nabla d_n) : \nabla (\nabla d_n)^T \|^2_{L^2}. \]

The assumptions on \(\Theta \) (see Section 5.1) guarantee that

\[\| \Theta(d_n, \nabla d_n) : \nabla (\nabla d_n)^T \|_{L^2} \leq \| \Theta(d_n, \nabla d_n) \|_{L^2} \| \nabla d_n \|_{H^2} \leq c \| \Theta \|_{H^2} \| \Delta d_n \|_{L^2} \leq \frac{c_A}{16} \| \Delta d_n \|_{L^2}. \]

Inserting this into (5.4) then shows that (5.3) together with (3.11b) yields the estimate (4.14).

Now we can proceed as in the proof of Corollary 4.3.

5.3 Convergence of the nonlinear part

The only other change in the proof of Theorem 3.1 under the new assumptions (5.1) is needed in the limiting procedure in the nonlinear terms in Proposition 4.4. We consider the term \(I_{3,n} \) of equation (4.19). For this term, we find with the fundamental theorem of calculus that

\[I_{3,n} = \int_0^T \left(\frac{\partial F}{\partial S}(d_n(t), \nabla d_n(t)) - \frac{\partial F}{\partial S}(d(t), \nabla d(t)), \nabla \psi(t) \right) dt \]

\[= \int_0^T \left(\int_0^1 \frac{\partial F}{\partial S}(\nabla d_n^s(t), \nabla d_n^s(t)) \cdot (d_n(t) - d(t)) \right) ds : \nabla \psi(t) dt \]

\[+ \int_0^T \left(\int_0^1 \Theta(d_n^s(t), \nabla d_n^s(t)) : (\nabla d_n(t) - \nabla d(t)) \right) ds : \nabla \psi(t) dt \]

\[+ \int_0^T (\Theta(d_n(t), \nabla d_n(t)) : \nabla \psi(t)) dt = J_{1,n} + J_{2,n} + J_{3,n}, \]

where \(d_n(t) := sd_n(t) + (1 - s)d(t) \). For the term \(J_{1,n} \), the growth condition (3.11a), Young’s inequality, and (3.11c) show that

\[\left| \frac{\partial^2 F}{\partial S \partial h}(d_n^s(x,t), \nabla d_n^s(x,t)) \cdot (d_n(x,t) - d(x,t)) \right| \]

\[\leq C_{Sh} \left(|\nabla d_n^s(x,t)|^{(\gamma/2 - 1)} + |d_n^s(x,t)|^{\gamma_5} + 1 \right) \left(|d_n(x,t)| + |d(x,t)| \right) \]

\[\leq c \left(|\nabla d_n^s(x,t)|^{\gamma/2} + |d_n^s(x,t)|^{\gamma_2} + |d_n(x,t)|^{\gamma/2} + |d(x,t)|^{\gamma_2} + 1 \right) \]

\[\leq c \left(|\nabla d_n(x,t)|^{\gamma/2} + |d_n(x,t)|^{\gamma/2} + |\nabla d(x,t)|^{\gamma/2} + |d(x,t)|^{\gamma/2} + 1 \right). \]
Thus, the above function is dominated by a function in $L^2(0,T;\mathbb{L}^2)$ (see also (4.20) and note that $\gamma_2 < 10$). The continuity of $\frac{\partial F}{\partial S}$ and the pointwise convergence (4.20) imply $|J_{1,n}| \to 0$ as $n \to \infty$ in view of Lebesgue’s theorem on dominated convergence.

For the terms $J_{2,n}$ and $J_{3,n}$, we observe that those terms can be estimated due to the assumptions on Θ by

$$|J_{2,n} + J_{3,n}| \leq (c_\Theta + |\Lambda|) \|
abla d_n - \nabla d\|_{L^2(L^2)} \|
abla \psi\|_{L^2(L^2)}.$$

The strong convergence (4.18) with $r = 2$ shows that $|J_{2,n} + J_{3,n}| \to 0$, for $n \to \infty$.

6 Some examples

6.1 Dirichlet energy with Ginzburg–Landau penalisation

System (3.1)–(3.8) with the assumptions on the free energy (3.5) and (3.11) is especially a generalisation of the models considered by Lin and Liu [27] and by Cavaterra et al. [3]. Therefore, the free energy considered in [27, 3] fits into our setting, i.e., the free energy function (1.5) with $k_1 > 0$ fulfils the hypothesis on the free energy potential in Section 3.2 with Λ being a multiple of the identity mapping $\mathbb{R}^3 \times \mathbb{R}^3$ and $\gamma_1 = 2$, $\gamma_2 = 6$.

6.2 Electromagnetic field effects

If the influence of an electromagnetic field is taken into account, which is essential since the desirable anisotropic effects are controlled in such a way, the function (1.8) is needed (see de Gennes [5]). If the magnetic field is bounded such that $|H(x,t)| \leq C$ for all $(x,t) \in \Omega \times [0,T]$, the energy (1.8) fits into our model. Especially, it fulfils the assumptions (3.7) and (3.11b).

As the assumption (3.11b) suggests, functions \tilde{F} (see (1.11)) which only depend on the director d and not on its gradient are incorporated in our setting as long as they are continuously differentiable, bounded from below and of polynomial growth of a degree strictly less than 6.

6.3 Additional degrees of freedom

Leslie recognised in [23] that the system (1.1) possesses two additional degrees of freedom. He proposed to alter the system (3.1) by adding $d \otimes b$ to the derivative of the free energy potential with respect to the gradient of the director, and by adding $\bar{b} d - \nabla db$ to the derivative of the free energy with respect to the director with certain constant vector $b \in \mathbb{R}^d$ and constant scalar $\bar{b} \in \mathbb{R}$.

These two changes can be introduced into the system by replacing the free energy F by a new function F_A defined by (1.9).

With this function, we find that

$$\frac{\partial F_A}{\partial S}(d,\nabla d) = \frac{\partial F}{\partial S}(d,\nabla d) - d \otimes b$$

and

$$\frac{\partial F_A}{\partial h}(d,\nabla d) = \frac{\partial F}{\partial h}(d,\nabla d) - \nabla db + \bar{b} d,$$

as proposed by Leslie (see [23]). What remains is to check that the system (3.1) is not altered somewhere else. The only other term depending on the free energy is the Ericksen stress. To
calculate the altered Ericksen stress, tested with a solenoidal, sufficiently smooth function \(w \), we use the calculation \(8.13 \) and obtain

\[
\langle T^E_A : \nabla w \rangle = \langle \nabla d^T q_A, w \rangle = \left\langle \nabla d^T \left(\frac{\partial F}{\partial h}(d, \nabla d) - \nabla \cdot \frac{\partial F}{\partial S}(d, \nabla d) \right), w \right\rangle \\
= \left\langle \nabla d^T \left(\frac{\partial F}{\partial h}(d, \nabla d) - \nabla d b + \bar{b} d - \nabla \cdot \left(\frac{\partial F}{\partial S}(d, \nabla d) - d \otimes b \right) \right), w \right\rangle \\
= \left\langle \nabla d^T \left(\frac{\partial F}{\partial h}(d, \nabla d) - \nabla \cdot \frac{\partial F}{\partial S}(d, \nabla d) + \bar{b} d \right), w \right\rangle \\
= \langle \nabla d^T q, w \rangle + \frac{\bar{b}}{2} \langle |d|^2, w \rangle = \langle \nabla d^T q, w \rangle = \langle T^E : \nabla w \rangle.
\]

The last but one equation holds since \(w \) is a solenoidal function. We thus see that the system is only changed by the new free energy potential \(1.9 \) as proposed by Leslie. The model with these additional degrees of freedom thus fits into our framework.

6.4 Simplified Oseen–Frank energy

The Oseen–Frank energy \(1.7 \) fits only into our setting for a particular choice of the constants appearing. Since

\[
(d \cdot (\nabla \times d))^2 + |d \times (\nabla \times d)|^2 = |d|^2 |\nabla \times d|^2
\]

and since in the classical Ericksen–Leslie model the norm of the director is supposed to be one, it is convenient to consider the following reformulation of the Oseen–Frank energy for the case \(k_2 = k_3 \):

\[
F_{(k_2=k_3)}(d, \nabla d) = k_1 (\nabla \cdot d)^2 + k_2 |\nabla \times d|^2 + \alpha (\text{tr}(\nabla d^2) - (\nabla \cdot d)^2).
\]

For \(k_1, k_2 > 0 \), this energy fulfills the assumptions of Section \(3.2 \) A simple but tedious calculation shows that

\[
|\nabla d|^2 = \nabla d : \Lambda^0 : \nabla d \quad \text{with} \quad \Lambda^0_{i,j} = \delta_{i,j}
\]

\[
(\nabla \cdot d)^2 = \nabla d : \Lambda^1 : \nabla d \quad \text{with} \quad \Lambda^1_{i,j,k,l} = \delta_{i,j} \delta_{k,l}
\]

\[
\text{tr}(\nabla d^2) = \nabla d : \Lambda^2 : \nabla d \quad \text{with} \quad \Lambda^2_{i,j,k,l} = \delta_{i,j} \delta_{k,l}
\]

\[
|\nabla \times d|^2 = \nabla d : \Lambda^3 : \nabla d \quad \text{with} \quad \Lambda^3 = \Lambda^0 - \Lambda^2,
\]

where \(\Lambda^0 \) is the identity mapping \(\mathbb{R}^{3\times3} \) into \(\mathbb{R}^{3\times3} \). It follows that

\[
F_{(k_2=k_3)}(d, \nabla d) = \frac{1}{2} \nabla d : \Lambda : \nabla d \quad \text{with} \quad \Lambda = 2k_2\Lambda^0 + 2(k_1 - \alpha)\Lambda^1 - 2(k_2 - \alpha)\Lambda^2.
\]

For \(a, b \in \mathbb{R}^3 \), we find

\[
a \otimes b : \Lambda : a \otimes b = 2k_2 |a|^2 |b|^2 + 2(k_1 - k_2)(a \cdot b)^2,
\]

and the strong Legendre–Hadamard condition is fulfilled for any \(\alpha \in \mathbb{R} \) and any \(k_1, k_2 > 0 \).
6.5 Scaled Oseen–Frank energy

It does not seem to be possible to include the general Oseen–Frank energy in the presented setting, but to include its anisotropic character. We consider an energy, where the non-quadratic terms are scaled appropriately. The energy is given by (1.10) with sufficiently small constants k_3 and k_4.

The associated tensor of fourth order Λ is given by

$$\Lambda = k_1 \Lambda^1 + \min\{k_2, k_3\} \left(\Lambda^0 - \Lambda^2 \right),$$

where Λ^i for $i = 0, 1, 2$ is defined in (6.1). Let c_Λ be the associated coercivity constant of the estimate (4.3). A careful calculation and estimate of the partial derivatives of the free energy potential (1.10), shows that they fulfill the assumptions of Section 3.2 and Section 5 for $s > \frac{1}{6}$, and $k_3 + k_4$ sufficiently small. The condition on s follows from the property (3.11a) and the smallness condition from property (5.1) and the estimate on Θ. If in addition $s \leq \frac{1}{4}$, it can be seen by roughly estimating the second partial derivative of F with respect to S that the constants k_3 and k_4 have to be chosen such that

$$53(k_3 + k_4) \leq \frac{c_\Lambda}{c_H^2}.$$
[15] G. H. Heilmeyer, L. A. Zanoni and L. A. Barton. Dynamic scattering: A new electrooptic effect in certain classes of nematic liquid crystals. *Proceedings of the IEEE*, 56(7):1162–1171, 1968.

[16] H. Heinz. Ueber das Schmelzen von Stearin aus Hammeltalg. *Polytechnisches Journal*, 115:78–79, 1850.

[17] M. Hieber, M. Nesensohn, J. Prüss, and K. Schade. Dynamics of nematic liquid crystal flows: The quasilinear approach. *Ann. Inst. H. Poincaré Anal. Non Linéaire*, 33(2):397–408, 2016.

[18] M. Hieber and J. Prüss. Thermodynamical consistent modeling and analysis of nematic liquid crystal flows. In Y. Shibata and Y. Suzuki, editors, *Mathematical Fluid Dynamics, Present and Future (Japan, 2014)*, pages 433–459. Springer Japan, Tokyo, 2016.

[19] M.-C. Hong, J. Li, and Z. Xin. Blow-up criteria of strong solutions to the Ericksen–Leslie system in \mathbb{R}^3. *Comm. Partial Differential Equations*, 39(7):1284–1328, 2014.

[20] O. A. Ladyzhenskaya. *The mathematical theory of viscous incompressible flows*. Gordon and Breach, New York, 1963.

[21] R. Lasarzik. Measure-valued solutions to the Ericksen–Leslie model equipped with the Oseen–Frank energy. *In preparation*, 2017.

[22] O. Lehmann. Über fließende Krystalle. *Z. Phys. Chem.*, 4:467–472, 1889.

[23] F. M. Leslie. Some constitutive equations for liquid crystals. *Arch. Ration. Mech. Anal.*, 28(4):265–283, 1968.

[24] F. Lin and C. Liu. Static and dynamic theories of liquid crystals. *J. Partial Differential Equations*, 14(4):289–330, 2001.

[25] F. Lin and C. Wang. Recent developments of analysis for hydrodynamic flow of nematic liquid crystals. *Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.*, 372(2029):20130361, 18, 2014.

[26] F.-H. Lin and C. Liu. Nonparabolic dissipative systems modeling the flow of liquid crystals. *Comm. Pure Appl. Math.*, 48(5):501–537, 1995.

[27] F.-H. Lin and C. Liu. Existence of solutions for the Ericksen-Leslie system. *Arch. Ration. Mech. Anal.*, 154(2):135–156, 2000.

[28] J. Lions. *Quelques méthodes de résolution des problèmes aux limites non linéaires*. Gauthier-Villars, Paris, 1969.

[29] J.-L. Lions and E. Magenes. *Non-homogeneous boundary value problems and applications. Vol. I*. Springer, New York, 1972.

[30] J. Málek, J. Nečas, M. Rokyta, and M. Růžička. *Weak and measure-valued solutions to evolutionary PDEs*. Chapman & Hall, London, 1996.

[31] W. McLean. *Strongly elliptic systems and boundary integral equations*. Cambridge University Press, Cambridge, 2000.

[32] C. B. Morrey Jr. *Multiple integrals in the calculus of variations*. Springer, Berlin, 1966.

[33] L. Nirenberg. An extended interpolation inequality. *Ann. Scuola Norm. Sup. Pisa* (3), 20:733–737, 1966.

[34] C. W. Oseen. The theory of liquid crystals. *Trans. Faraday Soc.*, 29(140):883–899, 1933.

[35] P. Palffy-Muhoray. The diverse world of liquid crystals. *Phys. Today*, 60(9):54–60, 2007.

[36] O. Parodi. Stress tensor for a nematic liquid crystal. *J. de Phys*, 31(7):581–584, 1970.

[37] F. Reinitzer. Beiträge zur Kenntniss des Cholesterins. *Monatsh. Chem. Vers. Teile. anderer Wiss.*, 9(1):421–441, 1888.

[38] T. Roubiček. *Nonlinear partial differential equations with applications*. Birkhäuser, Basel, 2005.

[39] J. Simon. A generalization of the Lions–Tartar theorem. *Bol. Soc. Esp. Mat. Apl.*, 40:43–69, 2007.

[40] L. Tartar. *An introduction to Navier-Stokes equation and oceanography*. Springer, Berlin, 2006.
Weak solutions to the Ericksen–Leslie model

[41] R. Temam. *The Navier-Stokes equations: Theory and numerical analysis*. American Math. Soc., New York, 1984 (corrected reprint 2001).

[42] R. Virchow. Ueber das ausgebreitete Vorkommen einer dem Nervenmark analogen Substanz in den thierischen Geweben. *Arch. Pathol. Anat. Physiol. Klin. Med.*, 6(4):562–572, 1854.

[43] N. J. Walkington. Numerical approximation of nematic liquid crystal flows governed by the Ericksen-Leslie equations. *ESAIM Math. Model. Numer. Anal.*, 45(3):523–540, 2011.

[44] W. Wang, P. Zhang, and Z. Zhang. Well-posedness of the Ericksen–Leslie system. *Arch. Ration. Mech. Anal.*, 210(3):837–855, 2013.

[45] J. Wloka. *Partial differential equations*. Cambridge University Press, Cambridge, 1987.

[46] H. Wu, X. Xu, and C. Liu. On the general Ericksen–Leslie system: Parodi’s relation, well-posedness and stability. *Arch. Ration. Mech. Anal.*, 208(1):59–107, 2013.

[47] E. Zeidler. *Nonlinear functional analysis and its applications. II/A*. Springer, New York, 1990.