Synthesis, radiolabelling, and biological assessment of folic acid-conjugated G-3 99mTc-dendrimer as the breast cancer molecular imaging agent

Saedeh Zamani1, Mehdi Shafeie-Ardestani2, Ahmad Bitarafan-Rajabi2,3,4, Ali Khalaj1, Omid Sabzevari5
1Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
2Cardiovascular Interventional Research Center, Iran University of Medical Sciences, Tehran, Iran
3Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
4Echocardiography Research Center, Iran University of Medical Sciences, Tehran, Iran
5Department of Toxicology and Pharmacology, Faculty of Pharmacy, and Toxicology and Poisoning Research Centre, Tehran University of Medical Sciences, Tehran, Iran
E-mail: omid@sina.tums.ac.ir

Abstract: Hence, in this study, the authors aimed to develop a dendrimer-based imaging agent comprised of poly(ethylene glycol) (PEG)-citrate, technetium-99 m (99mTc), and folic acid. The dendrimer-G3 was synthesised and conjugated with folic acid, which confirmed by Fourier transform infrared, proton nuclear magnetic resonance, dynamic light scattering, and transition electron microscopy. 2,5-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-Tetrazolium-5-Carboxanilide cytotoxicity assay kit was used to measure the cellular toxicity of dendrimer. Imaging and biodistribution studies were conducted on the mice bearing tumour. The results showed that the fabricated dendrimer-G3 has a size of 90 ± 3 nm, which was increased to 100 ± 4 nm following the conjugation with folic acid. The radioisotopy investigation showed that the fabricated dendrimers were stable in the human serum at various times. Toxicity assessment confirmed no cellular toxicity against HEK-293 cells at 0.25, 0.5, 1, 2, 4, and 8 mg/μl concentrations. The in vivo studies demonstrated that the synthesised dendrimers were able to provide a bright SPECT image applicable for tumour detection. In conclusion, the authors’ study documented the positive aspects of PEG-citrate dendrimer conjugated with folic acid as the SPECT contrast agent for breast cancer detection.

1 Introduction

Breast cancer is a term that refers to the out of control and rapid growth/division of abnormal breast cells, which overcrowd normal cells [1]. According to the National Center for Health Statistics (NCHS) reports breast cancer is the most common cancer in women, and about 1 in 8 US women (about 12.4%) will develop invasive breast cancer throughout her lifetime [2]. Moreover, 63,960 new cases of non-invasive (in situ) breast cancer are expected to be diagnosed, along with 266,120 new cases of invasive breast cancer. Interestingly, breast cancer is not solely women-specific and men can get it too [3, 4]. It is estimated about 2550 new cases of invasive breast cancer in men in 2018 and a man’s lifetime risk of breast cancer is about 1 in 1000 [2, 5–7]. The breast cancer incidence was reported in 7582 cases (23% of total cancers in women) in 2009 in Iranian women [8].

The success of cancer treatment and survival of a cancer patient depends significantly on the early detection of cancer cells. The current detecting methods for breast cancer are digital mammography [9, 10], computer-aided detection (CAD) [11, 12], ultrasound imaging [13], and magnetic resonance imaging (MRI) [14, 15]. Moreover, there are some other imaging technologies under development for breast cancer detection, including positron emission tomography (PET) [16, 17], single-photon emission computed tomography (SPECT) [18], and SPECT/CT imaging. Despite their versatility in cancer detection, they are not very powerful methods, in the traditional form, when it comes to cancer detection at very early stages. Researchers are working on diagnostic methods to detect distinctive ‘molecular signatures’ of a pre-malignant or malignant breast tumour at the earliest stage. This can be done by working on the improvements of current techniques and/or new imaging modalities of cancer detection [19, 20].

Molecular imaging (MI) is a promising biomedical detecting approach that enables the quantification, characterisation, and visualisation of biologic processes taking place at the cellular and subcellular levels within intact living subjects, including patients [21, 22]. Generally, MI comprised two main parts, a sophisticated imaging modality and a selective and specific contrast agent. While the conventional imaging modalities, such as ultrasound, computed tomography (CT), and X-rays, provide pictures of physical structure, MI offers the ability to measure chemical and biological processes at the cellular and subcellular levels [23]. SPECT/CT technique is a sophisticated imaging modality applicable in MI, which provides the ability to capture two essential and complementary images and combine results at the same time [24]. The current and usual contrast agents for SPECT is 99mTc based contrast agents, which suffer from low specificity. Nanomaterials and nanotechnology can overcome the drawbacks of the current contrast agents due to their promising properties.

Nanotechnology is enabling approaches dealing with subjects at the size scale lower than 100 nm [25, 26]. Nanotechnology and nanomaterials are involving in various fields of medical sciences and technology such as drug delivery [27–29], tissue engineering [30–32], wound dressing [33–35], cancer detection and therapy [36, 37]. Dendrimers are a versatile class of polymeric nanostructures known as highly branched, globular, nanosized, highly monodispersed, multifunctional, and highly symmetrical polymeric three-dimensional (3D) structures [38–40]. Dendrimers offer a wide range of advantages over linear polymers such as controllable ‘surface’ functionalities, ability to conjugate with various imaging agents, targeting ligands, and therapeutic payloads, which make these structures suitable for cancer imaging and therapy (the theranostic agent). Despite these promising futures, the current dendrimers are cytotoxic due to the high cationic charge density in the periphery, which disrupts cell membrane integrity under interaction with negatively charged membrane phospholipids [41]. Alternatively, using biocompatible polymers such as poly(ethylene glycol) (PEG) and introducing...
for conjugating a higher amount of radionuclides, as well as the targeting agent providing selectivity and specificity. Breast cancer carboxylic groups of the dendrimer © The Institution of Engineering and Technology 2020 IET Nanobiotechnol. to the solution to generate G1 dendrimer. These processes were repeated to synthesise G2 and G3 dendrimers peripheral functional groups. These functional groups are essential for the major and distinct route for folate entry into the cell.

Overexpression of the folate receptors was associated with basal-like breast cancer cells. Various studies have been conducted to breast cancer cells imaging using folic acid as the targeting agents [45–47]. Accordingly, the purpose of the present study was to fabricate a breast cancer imaging agent based on PEG-citrate dendrimers decorated with 99mTc as the imaging agent and folic acid as the targeting agent.

This study is the first report on the third generation of citric acid-based dendrimers, which is applicable in biomedical applications, especially in nuclear medicine.

2 Materials and methods

2.1 Chemicals

PEG diacid 600, 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-Tetrazolium-5-Carboxanilide (XTT), and N,N'-dicyclohexylcarbodiimide (DCC) were purchased from Sigma-Aldrich (St. Louis, USA). Dimethyl sulfoxide (DMSO), folic acid, hydrochloric acid (HCl), citric acid, adipic acid dihydrazide (ADH), and trichloroacetic acid were obtained from Merck (Darmstadt, Germany). Trypsin/EDTA, penicillin, streptomycin, Dulbecco’s modified Eagle’s medium: nutrient mixture F-12 (DMEM/F12), and foetal bovine serum (FBS) were purchased from Gibco, BRL (Eggenstein, Germany). Female nude mice and HEK-293 cell lines were obtained from the Pasteur Institute (Iran). Ketamine and Xylazine were obtained from Alfasan (Woerden, the Netherlands).

2.2 Dendrimers fabrication and conjugation

First off, dendrimer-G2 (second generation) was synthesised based on the previous studies [48]. Briefly, PEG diacid 600 was dissolved in DMSO and DCC in dimethyl sulfoxide-d6 (DMSO-d6) was added as the activator, and the solution kept at room temperature under stirrer. In the next step, the monomers (citric acid) were added to the solution and stirred for 24 h at room temperature. Unreacted DCC was precipitated using distilled water and the product was purified by dialysis bag. The synthesised dendrimer-G1 was activated using DCC in DMSO-d6 and reacted with citric acid as the monomer under stirrer for 24 h at room temperature to produce dendrimer-G2. The resulted products were purified using a dialysis bag after precipitation of unreacted DCC by distilled water.

This process was repeated one more time to produce dendrimer-G3 (Fig. 1). In the next step, ADH was used to optimise the surface of the synthesised dendrimer-G3 and induce NH$_2$ functional groups. Briefly, 5 ml DMSO containing 150 mg ADH and 1 g DCC was added to the solution of dendrimer-G3 and kept for 4 days under stirrer. The purification of the products was done based on the mentioned process.

In the next step, folic acid was conjugated to the synthesised dendrimer-G3, as described in Fig. 2. Briefly, the prepared dendrimer-G3 (0.05 g) was activated by 0.02 g DCC in 10 ml DMSO under stirrer for 30 min. The activated dendrimers were reacted with 0.02 g folic acid under stirrer for 48 h at room temperature to react completely with the carboxylate terminal groups of the dendrimer. The protecting groups of the reaction products were removed by using HCl (0.1%). Afterwards, distilled water was added to the reaction mixture to precipitate DCU and the final products were purified using a dialysis bag (cut-off 500–1000 Da).

2.3 99mTc radiolabelling of dendrimer–folate conjugate

The radiolabelling was conducted based on the previously described method. In this regard, 10 mg of lyophilised nanocomplex was dissolved in 2 ml DD water, then 0.4 ml antioxidant agent (5 mg/ml ascorbic acid) and 0.3 ml tin chloride solution (1 mg/ml) were added to the solution. In the next step, the pH of the solution was adjusted to be 8 and the resultant solution lyophilised using a freeze drier (Telstar, Terrassa, Spain) for 24 h at −54°C. In the final stage, 370 MBq 99mTcO$_4$ obtained from 99mMo/
The infrared spectrum of the fabricated samples was recorded using a Perkin Elmer Spectrum BX-II spectrometer (PerkinElmer, Inc., Waltham, MA, USA). 1H-NMR spectra of the synthesised and conjugated dendrimers were measured by a Bruker 500 MHz instrument (Billerica, Massachusetts, Germany) and DMSO-d6 was used as the solvent. The hydrodynamic size of the particles was measured based on the dynamic light scattering (DLS) method using Malvern nano-zs (Malvern Instruments Ltd., Malvern, Worcestershire, UK). The morphology of the dendrimers was observed via atomic force microscopy (AFM, JPK Nanowizard II, Germany) and transmission electron microscope (TEM, JEOL JEM-2100, Japan).

2.5 Radiochemical purity assessment
For the radiochemical purities (RPCs) measurement of the dendrimers, the solid phase and the mobile phase were Whatman paper and saline and acetone/methanol (1: 1), respectively. This method is based on the distinct movement of the radiolabelled dendrimer, free pertechnetate, and 99mTcO2 on the paper under the flow of the mobile phase. 5 μl of the specimen was spotted at the one side of the paper and after the segment of the samples, the radioactivity of each segment was recorded by a γ well-type counter. By applying saline, free pertechnetate and the radiolabelled dendrimer moved along with the solvent, while 99mTcO2 was fixed at the spotted site. On the other hand, using acetone/methanol, free pertechnetate moved along the solvent, while 99mTcO2 and the radiolabelled dendrimer was fixed. In this regard, (1) was used to calculate RCP value

\[
RCP = 100 - (\text{free pertechnetate} - \frac{99mTcO2}{})
\]

2.6 Stability test
The stability of the nanoconjugates was evaluated in human serum at 37°C and a PBS solution at room temperature. The nanocomplex (300 μl) was incubated in human serum (600 μl) and PBS (600 μl) and at predetermined time points, 100 μl trichloroacetic acid (10%) added to the solutions. Finally, the serum proteins were removed via centrifugation and the stability of the conjugates measured via chromatography.

2.7 Cell toxicity assessment
The toxicity of the synthesised dendrimers was evaluated on the HEK-293 cell line using the XTT assay kit. XTT assay is a colorimetric assay that measures the viability of cells based on metabolic activity. The cells were cultured in DMEM/F12 supplemented with FBS 10% (v/v), penicillin (100 unit/ml), and streptomycin (100 μg/ml). The number of 10,000 cells/100 μl (300 μl) was incubated in human serum (600 μl) and PBS (600 μl) and at predetermined time points, 100 μl trichloroacetic acid (10%) added to the solutions. The cells were cultured at 37°C, 5% CO2, and the humidity of 90% for 24 and 48 h. At the end of each time point, 25 μl of the XTT/ N-methylphenazonium methyl sulphate (PMS) (50:1 μl) was added to each well, incubated for 2 h, and the absorbance was read at a wavelength of 450 nm using a spectrophotometer. The obtained results were compared with the control group (untreated cells).

2.8 Animal study
The animal studies were conducted on female nude mice (20–28 g) according to the instruction of the ethics committee of Tehran University of Medical Sciences (number IR.Tums.REC.1394.1509). The tumour induction was done according to the previously established protocol [48, 49] as the following. Each nude mouse was subcutaneously injected in the right flank with 1 × 10^6 HEK-293 cells suspended in 100 μl PBS solution.

2.8.1 Scintigraphic images: The animals were anaesthetised by intraperitoneal injection of ketamine 100 mg/xylazine 10 mg/kg of body weight. 99mTc-conjugated dendrimer (3.7 MBq) was injected through the tail vein into nude mice bearing the tumour. The imaging was conducted using SPECT/CT imaging system (Siemens, Simbta12 equipped with low energy high-resolution collimators) at 3 h after injection (n = 3). The anaesthetised animal was horizontally placed under the imaging system, and the images were acquired using a 256 × 256 matrix size with a 20% energy window set at 140 keV.

2.8.2 Biodistribution studies: 99mTc-conjugated dendrimer (3.7 MBq) was injected into the animals through the tail vein under anaesthesia. The animals were euthanised at different time intervals (30, 60, 90, and 120 min), and the intended tissues (spleen, liver, cortical bone, and kidney) were excised, weighed, and counted. Calibrated gamma counter was used to measure the radioactivity in different tissues and organs and the values calculated as the percent of the injected dose per gram of the tissue divided by total activities.

2.9 Statistical analysis
Prism 5 and Excel software (Microsoft Office 2013) were used for statistical data analysis. The obtained results were quantitatively analysed via the one-way analysis of variance (ANOVA) followed by Tukey’s test. The statistically significance level was set at p < 0.05.

3 Results and discussion
3.1 Size, zeta potential, and surface morphology of the conjugate
The synthesis, conjugation, and radiolabelling of the dendrimers were conducted based on Figs. 1 and 2. The structure and composition of the synthesised dendrimers were determined by 1H NMR spectroscopy in DMSO-d6, as shown in Fig. 3. The results showed the observed peaks around 2.7 (2J = 15.5 Hz, 2 h), 3.5 (t, 3J = 5 Hz, 2 h), and 5.02 (s, 2 h) in Fig. 3a are related to the CH3COOH functional group of citric acid, OCH2CH2 and OCH2CO functional groups of PEG, respectively. These peaks confirmed the presence of citric acid and PEG in the synthesised dendrimer-G2.

According to Fig. 3b, it can be concluded the formation of dendrimer-G3. The results showed that the obtained and calculated-theoretical ratio of citric acid-H to PEG-H were 0.77 and 0.75, respectively. The peaks observed at 2.3–2.8 ppm are corresponding to citric acid-H and the peaks around 3.5 ppm to PEG-CH2. Moreover, the weak peak at 4.17 ppm is related to PEG-single H. The peaks related to citric acid and PEG are sharper in G3 dendrimers and these significant differences between the citric acid and PEG peaks in dendrimer-G2 and dendrimer-G2 indicated the conversion of G2 to G3. The formation of the dendrimers and the conjugation with folic acid were further evaluated by LC-MS spectroscopy and the results are presented in Fig. 4.

The peak around 306 m/z is attributed to the fragmentation of a citric acid attached to the second citric acid and a repetitive unit of PEG. The peak located at around 512 is related to five repetitive units of PEG conjugated to the citric acid molecules, and the peak around 696 m/z showed seven repetitive units of PEG along with two citric acid molecules. These peaks confirmed the conjugation of citric acid molecules with each other from the terminal carboxylic acid groups and the attachment of them with PEG molecules, which are completely matched with the intended structures of the citrate-PEG dendrimer. The higher intensity of these peaks observed in Fig. 4b clearly indicates the conversion of G2-dendrimers to G3-dendrimers. Fig. 4c also confirmed the conjugation of the dendrimers with folic acid.

© The Institution of Engineering and Technology 2020
FTIR spectroscopy was used to assess the synthesis and the conjugation processes of the dendrimers, and the results are shown in Fig. 5. The peak located at 1232 cm$^{-1}$ is related to the C–O groups of ester bonding between terminal citric acid of dendrimer-G2 and citric acid monomers indicating the formation of dendrimer-G3. The peak around 1726 cm$^{-1}$ is attributed to C=O groups of terminal citric acid and also indicated the formation of ester bonding. Moreover, C–O functional groups of PEG can be seen at 1084 cm$^{-1}$. The peaks around 3500 cm$^{-1}$ also are related to the OH functional groups of citric acid. Moreover, stretching vibration of the C–O functional groups can be observed around 2925 cm$^{-1}$. As shown in Fig. 5, the NH peak of dendrimer-G3 (3390 cm$^{-1}$) shifted to 3433 cm$^{-1}$ in dendrimer-G3-folic acid, indicating the formation of an amide bond between the carboxylic groups of folic acid and the terminal amine groups of dendrimer-G3. Chandrasekar et al. [50] showed that the shift in the position of the NH group could be attributed to the formation of amide bonds between folic acid and PEG.

The morphology of the synthesised dendrimers was visualised by TEM imaging (Fig. 6) and the size measured using Image J software. The TEM images showed that the synthesised dendrimers had a partially spherical shape with a diameter of 90 ± 3 nm for dendrimer-G3 and 100 ± 4 nm for folic acid-conjugated dendrimer-G3. These observations were consistent with DLS data, which showed that the hydrodynamic diameter of dendrimer-G3 was 115 nm with a poly disparity index (PDI) of 0.3 and these values for folic acid-conjugated dendrimer-G3 were 121 nm and 0.2, respectively. Moreover, the zeta potentials of dendrimer-G3 and dendrimer-G3-folic acid were −9.8 and −7.6 mV, respectively.

3.2 Stability test results

The stability of the fabricated nanocomplexes in the human body on the way to reach the target site is a vital requirement for effective molecular imaging. Serum protein adsorption around the nanocomplexes is the first event once the nanocomplexes are injected into the blood. This protein adsorption is called a protein corona formation, which is a critical and determinant factor. Inappropriate protein corona suppresses long term blood circulation time, as well as the efficacy of the administrated nanocomplexes. The stability of the synthesised 99mTc-radiolabeled dendrimers was evaluated in human serum and PBS solution for 24 h. As shown in Fig. 7, the nanoconjugates had acceptable stability in both serum and PBS and loss <15% of the radioactivity up to 24 h. These findings revealed that the 99mTc-radiolabelled dendrimers were suitable imaging in heterogeneous media such as human serum.

3.3 Toxicity results

The toxicity assessment was conducted on HEK-293 cells for the synthesised dendrimers at 0.25, 0.5, 1, 2, 4, and 8 mg/µl concentration (Fig. 8). The results implied that the synthesised 99mTc nanoconjugate did not induce any significant toxicity even at the highest concentration (8 mg/µl) for 24 h.
3.4 Scintigraphic images and biodistribution studies

SPECT scan was acquired from mice bearing the tumour to evaluate the efficacy of the targeting approach, as well as and the biodistribution. Fig. 9 indicates the accumulation of targeted dendrimers 60 min after injecting 3.7 MBq of radiolabelled-conjugated-dendrimer.

As shown in Fig. 9, the conjugated dendrimers were accumulated in the tumour site 60 min post-injection. The acquired image clearly indicates that the 99mTc radiolabelled dendrimers conjugated with folic acid provide a bright SPECT signal in vivo. Moreover, the further accumulation of the synthesised dendrimers was assessed with biodistribution evaluation.

3.5 Biodistribution results

The biodistribution of radiolabelled folate conjugated dendrimers was measured at 1, 2, and 3 h post-injections.

As shown in Fig. 10, the highest radioactivity was observed at the tumour site due to the implemented targeting approach. Furthermore, the injection dose percent of nanoconjugates was 4.68 ± 0.04% in the kidney 1 h after injection, which decreased to 2.48 ± 0.12% 3 h after injection.

4 Discussion

In this study, we developed PEG-citrate dendrimers decorated with 99mTc and conjugated with folate as the SPECT contrast agent for MI of breast cancer. This study is the first report on the fabrication of G3 dendrimer composed of PEG and citrate, which radiolabelled...
showed the highest dendrimer accumulation was in the tumour site. The synthesised G3 polyamidoamine dendrimer as the small interfering acid/PEG as the delivery system for naproxen confirmed by FT-IR. Considerable toxicity against human fibrosarcoma (HT1080 cell diameter, while DLS measures the hydrated particles, hence the size range of 16–50 nm. The drug load and lipophilicity of the fabricated nanocomplex. Moreover, the liver washout through the intestine. Our previous study [48] also revealed that the synthesised dendrimers did not induce significant toxicity and were stable in serum. The imaging studies showed that the dendrimers radiolabelled with

\[99mTc \]

and conjugated with folic acid for breast cancer detection. Our results showed that the synthesised dendrimers did not elicit significant toxic effects on the cells. Abdoli et al. [56] fabricated a multi-epitopic HIV-1 vaccine composed of PEG-citrate G2 dendrimer conjugated with four immunodominant epitopes of the HIV-1 genome. They also used DCC conjugation chemistry for both the synthesis and conjugation. They reported an increase in size and reduction of surface charge after conjugation with peptides. Their toxicity assessment confirmed the biocompatibility of the fabricated dendrimer, which is in agreement with our findings. Naemi et al. [57] fabricated triblock copolymers containing PEG and citric acid dendrimer and observed considerable toxicity against human fibrosarcoma (HT1080 cell line), while the dendrimers fabricated in this study were biocompatible. The biodistribution evaluation of the fabricated dendrimers showed a high level of radioactivity uptake at the first-hour post-injection, which can be related to a liver accumulation tendency of the synthesised nanocomplexes. As shown in Fig. 7, the high radioactivity observed in the intestine after 2 h indicates a quick washout through the intestine. Our previous study [48] also indicated that the kidney is the main clearance route of G2-dendrimers of PEG-citric acid. The fabricated dendrimers in this study showed the suitable biodistribution, which was in agreement with our previous work [48] and better than 18F-glutamine [58] dendrimers. The proper biodistribution observed in this study can be attributed to the stability, low molecular weight, and higher solubility of the fabricated dendrimers.

Interestingly, the fabricated dendrimers exhibited a substantial tumour accumulation pattern, which is related to the passive (size of dendrimers) and active (conjugated folic acid) targeting implemented in the dendrimers. The administered dendrimers can be cleared from the body via the kidney pathway and also participate in the tricarboxylic acid (TCA) cycle in the liver due to the presence of citric acid [48]. Lesniak et al. [59] fabricated Cy5-conjugated PAMAM dendrimer and observed accumulation of dendrimer in kidneys and bladder at 24 h, which is in agreement with our observation. In another study, Peng et al. [60] fabricated PEGylated dendrimer-entrapped gold nanoparticles as the composites to investigate the biodistribution of the dendrimer via intraperitoneal and intravenous routes and assessed the biodistribution. They observed the highest dendrimer accumulation in the spleen in both injection routes. Accumulation of a high amount of dendrimers in the tumour tissue in our study is related to the active targeting implemented by folate conjugation.

Our findings revealed the valuable prospects of PEG-citrate dendrimers radio-labelled with

\[99mTc \]

and conjugated with folic acid, including facile fabrication and conjugation chemistry, biocompatibility, stability in the biological fluids, proper cellular uptake, and bright SPECT signal in vivo. Overall, our results confirmed the potential of the fabricated dendrimers as the SPECT contrast agent for cancer detection. However, more studies need to be done to reveal every aspect of the contrast agent. For instance, the stability of the formulation should be evaluated in a longer time and the fate of the administered nanocomplex should be assessed in the body. Moreover, the possibility to formulate a theranostic agent based on the synthesised nanocomplex can be considered.

5 Conclusion

This study aimed to develop a targeted SPECT contrast agent composed of PEG-citrate dendrimer radio-labelled with

\[99mTc \]

and conjugated with folic acid for breast cancer detection. Our results revealed that the synthesised dendrimers did not induce significant toxicity and were stable in serum. The imaging studies showed that the dendrimers provided a bright SPECT image after injection into tumour-bearing mice. The biodistribution study confirmed that the dendrimers could accumulate into the tumour, and the kidney is the main clearance route. Our findings revealed the valuable prospects of PEG-citrate dendrimers radio-labelled with

\[99mTc \]

and conjugated with folic acid including, facile fabrication and conjugation chemistry, biocompatibility, stability in the biological fluids, proper cellular uptake, and bright SPECT signal in vivo. Overall, our results confirmed the potential of the fabricated dendrimers as the SPECT contrast agent for cancer detection. However, more studies are needed to reveal every aspect of the contrast agent.

6 Acknowledgments

This study was supported by Vice Chancellor for Research (grant no. 36365), Tehran University of Medical Sciences, Tehran, Iran. This research did not receive any other grant from funding agencies in the public, commercial, or not-for-profit sectors.

7 References

[1] Pearl, O.: ‘Breast intervention and breast cancer treatment options’, Radiol. Technol., 2015, 86, (5), pp. 555M–558M

Fig. 10 Biodistribution profile of nanoconjugate at 1, 2, and 3 time intervals (dose per gram of tissue). The nanocomplexes are accumulated into tumour tissue post-injection at all time points.
