The complete mitochondrial genome of the mealy plum aphid, *Hyalopterus pruni* (Hemiptera: Aphididae)

Yanxin Liang, Zhenyong Du, Fan Song and Jia He

ABSTRACT

This study completes the sequencing and annotation of the mitochondrial genome (mitogenome) of *Hyalopterus pruni* (Hemiptera: Aphididae) by using the high-throughput sequencing. The mitogenome is a typical circular DNA of 15,410 bp with 86.2% A+T content, and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, a repeat region between tRNA-Glu and tRNA-Phe, and a control region. The gene order follows the putative ancestral arrangements of insect mitogenome. All 13 protein-coding genes start with codon ATN and terminate with TAA or a single T. All tRNA genes have typical clover-leaf structure except for tRNA-Ser^{AGN}. The control region is 638 bp in length with 86.0% A+T content. The phylogenetic tree supports the monophyly of Aphidini and Macrosiphini in Aphidinae and the sister relationship between *Hyalopterus pruni* and *Schizaphis graminum*.

Mitochondrial genome; Aphididae; *Hyalopterus pruni*

CONTACT Jia He (hejiayc@126.com) Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management College of Plant Protection, China Agricultural University, Beijing, China

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
respectively. The control region was rich in A + T (86.0%) and 638 bp in length. There is a repeat region between tRNA-Glu and tRNA-Phe in H. pruni with 2 tandem repeats, which is an interesting feature and reported in aphid mitogenomes several times (Wang et al. 2014; Wang et al. 2015).

Phylogenetic analysis was generated by the maximum-likelihood (ML) method based on 16 aphid mitogenome sequences (Figure 1). The result supports the monophyly of Hormaphidinae, Eriosomatinae, Greenideinae, and Aphidinae. Meanwhile, the monophyly of Aphidini and Macrosiphini in Aphidinae are well recovered with high support values. The sister relationship between H. pruni and Schizaphis graminum is also highly supported.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by the Key Research and Development Program of Ningxia Province [2017BY080].

ORCID

Zhenyong Du http://orcid.org/0000-0002-4569-6713

Data availability statement

The mitogenome and raw sequencing data in this study are available in GenBank (https://www.ncbi.nlm.nih.gov/) under the accession numbers of MT898422 and PRJNA663207.

References

Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.

Boore JL. 1999. Animal mitochondrial genomes. Nucleic Acids Res. 27(8):1767–1780.

Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59:95–117.

Clary DO, Wolstenholme DR. 1985. The mitochondrial DNA molecular of Drosophila yakuba: nucleotide sequence, gene organization, and genetic code. J Mol Evol. 22(3):252–271.

Li H, Shi A, Song F, Cai W. 2016. Complete mitochondrial genome of the flat bug Brachyrhynchus hisaoi (Hemiptera: Aradidae). Mitochondrial DNA Part A. 27(1):14–15.

Li Y-Q, Chen J, Qiao G-X. 2017. Complete mitochondrial genome of the aphid Hormaphis betulae (Mordvilko) (Hemiptera: Aphididae: Hormaphidinae). Mitochondrial DNA Part A. 28(2):265–266.

Lozier JD, Roderick GK, Mills NJ. 2007. Genetic evidence from mitochondrial, nuclear, and endosymbiont markers for the evolution of host plant associated species in the aphid genus Hyalopterus (Hemiptera: Aphididae). Evolution. 61(6):1353–1367.

Peng Y, Leung HCM, Yiu SM, Chin FYL. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 28(11):1420–1428.
Schattner P, Brooks AN, Lowe TM. 2005. The tRNAscan-SE, snoscan and
snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic
Acids Res. 33(Web Server issue):W686–W689.
Trifinopoulos J, Nguyen LT, von Haeseler A, Minh BQ. 2016. W-IQ-TREE: a
fast online phylogenetic tool for maximum likelihood analysis. Nucleic
Acids Res. 44(W1):W232–W235.
Wang Y, Chen J, Jiang L-Y, Qiao G-X. 2015. The complete mitochondrial
genome of *Mindarus keteleerifoliae* (Insecta: Hemiptera: Aphididae)
and comparison with other Aphididae insects. Int J Mol Sci. 16(12):
30091–30102.
Wang Y, Huang X-L, Qiao G-X. 2014. The complete mitochondrial gen-
ome of *Cervaphis quercus* (Insecta: Hemiptera: Aphididae: Greenideinae). Insect Sci. 21(3):278–290.
Xu T-T, Jiang L-Y, Chen J, Qiao G-X. 2020. Host plants influence the sym-
biont diversity of Eriosomatinae (Hemiptera: Aphididae). Insects. 11(4):
217.