Hot Jupiters: Origins, Structure, Atmospheres

Jonathan J. Fortney, Rebekah I. Dawson, and Thaddeus D. Komacek

Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA, USA; Department of Astronomy and Astrophysics, Center for Exoplanets and Habitable Worlds, The Pennsylvania State University, University Park, PA, USA; Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, USA

Abstract

We provide a brief review of many aspects of the planetary physics of hot Jupiters. Our aim is to cover most of the major areas of current study while providing the reader with additional references for more detailed follow-up. We first discuss giant planet formation and subsequent orbital evolution via disk-driven torques or dynamical interactions. More than one formation pathway is needed to understand the population. Next, we examine our current understanding of the evolutionary history and current interior structure of the planets, where we focus on bulk composition as well as viable models to explain the inflated radii of the population. Finally, we discuss aspects of their atmospheres in the context of observations and 1D and 3D models, including atmospheric structure and escape, spectroscopic signatures, and complex atmospheric circulation. The major opacity sources in these atmospheres, including alkali metals, water vapor, and others, are discussed. We discuss physics that control the 3D atmospheric circulation and day-to-night temperature structures. We conclude by suggesting important future work for still-open questions.

Plain Language Summary

“Hot Jupiters” are gas giant planets, thought to be akin to Jupiter and Saturn, that orbit their parent stars with typical orbital periods of only a few days. These perplexing planets under strong stellar irradiation, found around 1% of Sun-like stars, have been extensively studied. Here, we review many aspects of the physics of hot Jupiters. First, we discuss the leading scenarios for the formation and orbital evolution of the planets, including the dominant ideas that these planets originally form much further from their parent stars. Next, we describe models to assess their interior structure and thermal evolution and how strong stellar irradiation leads to radii that are significantly larger than that of Jupiter itself. Finally, we discuss many aspects of their atmospheres, including the opacity sources that control the temperature structure, the mass-loss processes that drive a planetary wind, and the dynamical processes that control atmospheric circulation and day-to-night temperature contrasts.

1. Discovery of Hot Jupiters

In 1995, Mayor and Queloz shocked the scientific world with the discovery of a Jupiter-mass planet, 51 Pegasi b, in a 4-day orbit around a Sun-like star, found via high-precision stellar radial velocity monitoring (Mayor & Queloz, 1995). Soon after, Butler et al. (1997) found additional close-in orbiting giant planets, and the astrophysical study of “hot Jupiter” exoplanets was born. While it had been suggested on theoretical grounds that planetary orbital migration could occur due to interaction with the planet-forming disk (Goldreich & Tremaine, 1980; Lin & Papaloizou, 1986), there was no particular prediction that gas giant planets could be found on such extreme orbits. There were immediate questions regarding all aspects of these planets, including their past and ongoing tidal evolution (Guillot et al., 1996; Trilling et al., 1998), pathways through which the planets could settle in so close to their stars (Lin et al., 1996; Rasio & Ford, 1996; Weidenschilling & Marzari, 1999), atmospheric composition (Seager & Sasselov, 1998), and how strong stellar forcing could alter the structure of the planets (Guillot et al., 1996) and lead to mass loss (Burrows & Lunine, 1995).

Five years later, the detection of the transits of planet HD 209458b (Charbonneau et al., 2000; Henry et al., 2000), brought forth a new era in the physics of hot Jupiters, since planetary radii and densities could now be measured. The detection of transits motivated researchers to set up wide-field ground-based surveys (Bakos et al., 2006; Mandushev et al., 2005; Udalski et al., 2002), to complement radial velocity detections and increase hot Jupiter detections. Those transiting planets found around relatively bright nearby stars...
have proven to be best for detailed atmospheric follow-up. Occurrence rate studies from ground-based radial velocity and space-based transit surveys have revealed that of order 1/100 Sun-like stars host a hot Jupiter (e.g., Howard et al., 2012a; Wright et al., 2012). In this contribution, we will first explore the origins of these planets, before examining planetary structure and evolution, and then moving on to atmospheres, along the way pointing toward the many open questions still in need of exploration.

2. Origins and Orbital Evolution

Over the past 25 years astronomers have made significant progress in understanding how hot Jupiters came to reside so close to their host stars. Here, we summarize hypotheses for their origins (Section 2.1), constraints from orbital properties (Section 2.2) and stellar and companion (Section 2.3) properties, and takeaways (Section 2.4).

2.1. Origins Hypotheses

There are three main hypotheses for the origins of hot Jupiters: in situ formation, disk migration, and high eccentricity migration (Figure 1). In-situ formation posits that hot Jupiters grew or assembled their cores and accreted gaseous envelopes at their present-day locations. Alternatively, hot Jupiters may have formed much further out and migrated through the gaseous disk that surrounds a young star. After the gas disk dissipates, a hot Jupiter far from its star could be disturbed onto a highly elliptical orbit and migrate through tidal dissipation. Investigations of hot Jupiters’ origins have run parallel to those of giant planets in the Solar System, for which we also debate the roles of planetesimal (e.g., Malhotra, 1993) and gas disk migration (e.g., Walsh et al., 2011) and scattering to elliptical orbits (e.g., Thommes et al., 1999). From a theory standpoint, all three mechanisms are viable but lead to different expectations for hot Jupiter properties.

Giant planets are thought to form either by core accretion, in which a rocky proto-planet core accretes many times its mass in gas from the proto-planetary disk (e.g., Perri & Cameron, 1974; Pollack et al., 1996; see Chabrier et al., 2014 for a review), or gravitational instability, in which part of the proto-planetary disk fragments into bound clumps (e.g., Boss, 1997; see Durisen et al., 2007 for a review). Close to the star, gas conditions prevent formation by gravitational instability (Rafikov, 2005). Core accretion can operate close to the star (e.g., Batygin et al., 2016; Lee et al., 2014), but building a sufficiently large core (~10M⊕) is challenging. Feeding zones are small so the local available solids are insufficient (e.g., Schlichting, 2014), mergers of multiple smaller cores are prevented by the disk (e.g., Lee & Chiang, 2016), and accretion of radially transported pebbles stalls at a much lower mass (see Johansen & Lambrechts, 2017 for a review).

Hot Jupiters may form further out—where conditions for core accretion and/or gravitational instability are more achievable—and migrate in through torques from the gaseous disk (e.g., Goldreich & Tremaine, 1980; Lin & Papaloizou, 1986; Baruteau et al., 2014; for a review). The migration rate and direction are sensitive to disk conditions (e.g., Duffell et al., 2014; Paardekooper & Mellema, 2006). If the planet reaches its short orbital period before the disk dissipates, it could be tidally disrupted or engulfed by the star. However, tidal
interactions with the star (e.g., Valsecchi et al., 2015; Trilling et al., 1998) or stalling by a magnetocavity in the innermost disk (e.g., Chang et al., 2010; Rice et al., 2008) may preserve the hot Jupiter.

Tidal migration begins when a Jupiter is perturbed onto a highly elliptical orbit. Mechanisms include planet-planet scattering (e.g., Rasio & Ford, 1996; Weidenschilling & Marzari, 1996), cyclic secular interactions (e.g., Kozai-Lidov cycles; Fabrycky & Tremaine, 2007; Kozai, 1962; Lidov, 1962; Wu & Murray, 2003 see Naoz, 2016 for a review), or chaotic secular interactions (e.g., Wu & Lithwick, 2011). Tides raised by the star on the Jupiter shrink and circularize its orbit (e.g., Eggleton et al., 1998).

2.2. Constraints on Origins Hypotheses From Orbital Properties

Observed orbital properties of hot Jupiters can test hypotheses for their origins. They are found at host star separations where formation and migration can effectively deposit them, and their eccentricities and orbital alignment are relics of their orbital evolution. However, tidal effects complicate our interpretation of these properties.

Most hot Jupiters have typical orbital periods of ~3 days. For in-situ formation, we expect hot Jupiters to be located at or beyond the disk edge, corresponding to ~10 days (e.g., Lee & Chiang, 2017); therefore, observed hot Jupiters are a factor of several closer to their stars than expected. Hot Jupiters may arrive through disk migration to half the corotation period, more consistent with hot Jupiters' observed orbital periods. High eccentricity tidal migration should deliver surviving planets at or beyond twice a_{Roche}, the tidal disruption limit. Although many hot Jupiters are beyond $2a_{\text{Roche}}$, high eccentricity migration alone cannot easily account for those between 1 and 2 a_{Roche}. However, in all origins scenarios, hot Jupiters can later raise tides on their stars, further shrinking their semimajor axes (e.g., Jackson et al., 2008a, 2008b; Valsecchi et al., 2014).

Hot Jupiter eccentricities provide evidence that some arrived through the high eccentricity tidal migration channel. Out to ~3 days orbital periods, most hot Jupiters have circular orbits; if these closest-in hot Jupiters ever had elliptical orbits, they would likely quickly tidally circularize because of the strong dependence of tidal dissipation on host star separation (e.g., Hut, 1981). In the 3–10 days orbital period range, we observe a mixture of moderately elliptical ($0.2 < e < 0.6$) and circular orbits for hot Jupiters. If hot Jupiters form in situ or undergo disk migration, they would acquire these elliptical orbits at their present short orbital periods. However, proposed mechanisms for exciting eccentricities close to the star cannot account for many of the observed eccentricities (e.g., gas-disk interactions, Duffell & Chiang, 2015; planet-planet scattering, Petrovich et al., 2014; secular forcing from an outer planet). Under the high eccentricity tidal migration hypothesis, moderately elliptical hot Jupiters are expected; they are in the process of tidal circularization. We may observe a mixture of circular and eccentric hot Jupiters at the same host star separations because of different time scales for the initial eccentricity excitation, diverse tidal dissipation properties, or multiple formation channels (i.e., a mix of high eccentricity tidal migration with disk migration and/or in-situ formation).

Many hot Jupiters have orbits aligned to their host stars’ spin, but others are severely misaligned (e.g., Albrecht et al., 2012 and references therein). Planets form in circumstellar disks, so we might naively expect hot Jupiters that originate in situ or via disk migration to keep their orbits aligned. In contrast, the gravitational interactions that trigger high eccentricity tidal migration can also misalign planets’ orbits (e.g., Chatterjee et al., 2008; Fabrycky & Tremaine, 2007). However, tidal interactions may realign the hot Jupiter (Albrecht et al., 2012; Winn, 2010)—erasing evidence of high eccentricity tidal migration—and other physical processes can misalign the stellar spin from the circumstellar disk (e.g., Batygin, 2012; Rogers et al., 2012; Storch et al., 2014), so that Jupiters form misaligned. Therefore, spin-orbit alignments are not necessarily indicative of hot Jupiters’ origins channel.

2.3. Constraints From Stellar and Companion Properties

Characteristics of hot Jupiters’ host stars and the presence and properties of planetary or stellar companions in the system can test theories for hot Jupiters’ origins. The general giant planet occurrence rate increases with host star metallicity (Gonzalez, 1997; Fischer & Valenti, 2005; Santos et al., 2001), which is interpreted as solid-rich disks facilitating core accretion. There is some evidence that the correlation for hot Jupiters...
is even stronger (Jenkins et al., 2017), which most directly supports in-situ formation (mitigating the challenge of forming a massive core close to the star) or high eccentricity migration triggered by a planetary companion (which may be more abundant in disks that nurture core accretion). Hosts of moderately eccentric hot Jupiters—which in Section 2.2 we attributed to high eccentricity migration—tend to have higher metallicities (Dawson & Murray-Clay, 2013).

Hot Jupiters have an occurrence rate of about 1% (e.g., Wright et al., 2012), which is about 10% of the overall giant planet occurrence rate (e.g., Cumming et al., 2008). The occurrence rate of hot Jupiters in the Kepler transit survey is about a factor of three lower than radial velocity surveys (Howard et al., 2012b; Wright et al., 2012). The discrepancy cannot be fully explained by differences in host star metallicity (Guo et al., 2017) but may be the result of an overall suppression of planet formation by close binaries in the Kepler sample (Moe & Kratter, 2019). High eccentricity tidal migration scenarios have not been demonstrated to be efficient enough to produce all hot Jupiters (e.g., Muñoz et al., 2016). The efficiencies of in situ formation and disk migration could be high enough but are dependent on uncertain disk conditions (e.g., Coleman & Nelson, 2016; Lee & Chiang, 2016).

Host star ages have the potential to distinguish the contributions of different origins channels: hot Jupiters that form in situ or migrate through the gas disk should already be present during the gas disk stage. In contrast, high eccentricity tidal migration typically operates after the gas disk stage, spawning hot Jupiters throughout a star’s lifetime; however, time scales for eccentricity excitation and circularization enable most to arrive early. Therefore, we expect hot Jupiters produced by high eccentricity migration to be largely absent during the gas disk stage and somewhat less common around younger stars than older stars. Measuring the contribution of high eccentricity tidal migration to the hot Jupiter population requires a sample of very young stars or a large sample of main sequence stars with precise ages. Recently two hot Jupiters were discovered around T Tauri stars, which are still in the gas disk stage (Donati et al., 2016; Yu et al., 2017). Ongoing T Tauri occurrence surveys will help evaluate what fraction of hot Jupiters must arrive during the gas disk stage.

In-situ formation often leads to hot Jupiters with other planets nearby (e.g., Boley et al., 2016). Disk migration can deliver hot Jupiters in resonance with nearby planets (Lee & Peale, 2002; Malhotra, 1993) and/or with small planets that form nearby after the hot Jupiter’s migration. In contrast, tidal migration destroys small planets within the giant planet’s initial orbit (e.g., Mustill et al., 2015). Hot Jupiters generally have an absence of nearby planets (Latham et al., 2011; Steffen et al., 2012), supporting the tidal migration hypothesis, but a notable exception is WASP-47b (Becker et al., 2015).

While high eccentricity migration initiated by planet-planet scattering could eject the other planet (e.g., Rasio & Ford, 1996), secular eccentricity excitation retains the companion, which must have the right properties to have excited the eccentricity. Most hot Jupiters have planetary companions consistent with driven high eccentricity migration (Bryan et al., 2016; Knutson et al., 2014), but do not have a capable stellar companion (Ngo et al., 2016). These survey results point to fellow planets as the triggers of high eccentricity migration.

2.4. Summary

Multiple origins channels are needed to explain the observed range of orbital and companion properties for hot Jupiters. We refer readers to Dawson and Johnson (2018)’s review for a more detailed discussion of the evidence described here and constraints from radius inflation, atmospheric properties (e.g., Madhusudhan et al., 2014; Öberg et al., 2011), occurrence rates, and comparisons to warm Jupiters and smaller planets. High eccentricity tidal migration triggered by planet-planet secular interactions is likely one of the main origin channels, accounting for moderately eccentric hot Jupiters (and their increased host star metallicities), their general lack of small nearby planets, and the presence of distant planet companions capable of triggering high eccentricity migration. A second channel—disk migration or in-situ formation—can supplement the inefficiency of producing hot Jupiters through tidal migration and account for hot Jupiters with rare small nearby planets, orbiting T Tauri stars and lower metallicity stars, and within 1 − 2a_{Roche} (without requiring subsequent tidal evolution).
3. Internal Structure

Under intense stellar forcing, at a level of incident flux 10,000 times higher than Jupiter receives from the Sun, one may expect that the evolution of a hot Jupiter’s interior structure may differ significantly compared to Jupiter itself. Indeed, it was suggested early on that hot Jupiters would not cool off as efficiently, leading to hotter interiors, and larger planetary radii, at old ages (Guillot et al., 1996). While this prediction has proven true, it is the magnitude of these very large radii, or the planetary radius anomaly that has proven difficult to understand. In this section, we introduce constraints on, and models for, the internal structure of hot Jupiters (see Baraffe et al., 2010; Fortney et al., 2010, and Baraffe et al., 2014 for detailed reviews in the context of giant planet structure and evolution, outside and inside the solar system). We describe the observed radius distribution of hot Jupiters in Section 3.1, proposed mechanisms to enhance the radii of hot Jupiters in Section 3.2, and the bulk composition of hot Jupiters in Section 3.3.

3.1. Radius Anomaly

One can assess the observed radius distribution of hot Jupiters for clues regarding planetary structure. Figure 2, updated from Thorngren and Fortney (2018), shows planetary radii vs. incident stellar flux (bottom x axis) and the zero Bond albedo equilibrium temperature (top x axis). There is a clear rise in the distribution of radii, starting at \(\sim 2 \times 10^8 \) Gerg s\(^{-1}\) cm\(^{-2}\) in flux, or around 1,000 K in equilibrium temperature. For comparison, planetary evolution model predictions for a 4.5 Gyr, pure H/He, 1 \(M_J \) planet that undergoes various levels of incident stellar flux are shown in the slowly rising dashed red curve. Many hot Jupiters hotter than the \(\sim 1,000 \) K threshold have radii “above” the curve—this is the radius anomaly. Meanwhile, planets that lie below the red dashed curve likely just indicate planets that are relatively more enriched in heavy elements (Burrows et al., 2007; Fortney et al., 2007), often termed “metals” in an astrophysical context.

Figure 2 shows two important properties of the distribution of hot Jupiter radii that constrain models proposed to explain the radius anomaly (see Laughlin & Lissauer, 2015 and Laughlin, 2018 for recent reviews). First, Jupiter-mass planets that have equilibrium temperatures cooler than 1,000 K (termed “warm Jupiters”) are not observed to be inflated (Demory & Seager, 2011; Laughlin et al., 2011; Miller & Fortney, 2011). As a result, the mechanism(s) that cause the radius anomaly are likely not at work on these cooler Jupiters. Second, the radii of hot Jupiters appear to scale with their equilibrium temperature (Laughlin et al., 2011; Thorngren & Fortney, 2018; Weiss et al., 2013). This implies that the mechanism that causes the radius anomaly is linked to the incident flux from the host star.

Recent work has found avenues for better constraining the mechanism(s) that enhance radii. Thorngren and Fortney (2018) used a statistical analysis of hot Jupiter radii coupled to planetary structure models and found that the required conversion of incident flux to interior heating needed to explain the radius anomaly of the full sample of hot Jupiters peaks at an intermediate value of \(T_{eq} \sim 1,600 \) K. Additionally, Hartman et al. (2016) found that the radii of hot Jupiters increase with increasing fractional main sequence age of their host stars (and corresponding higher stellar luminosity as stars brighten on the main sequence), providing further evidence that the mechanism(s) that affect hot Jupiter radii are tied topose the incident stellar flux. As predicted by Lopez and Fortney (2016), it has been found that planets that were warm Jupiters when their host stars were on the main sequence “reinflate” as their host stars evolve off of the main sequence and their equilibrium temperatures exceed 1,000 K (Grunblatt et al., 2016, 2017, 2019). Further studies of both main sequence and post-main sequence reinflation will improve constraints on the mechanism(s) that cause the radius anomaly of hot Jupiters (Komacek et al., 2020).

Figure 2. The observed radius of extrasolar gas giants (from 0.1 to 13 MJ) plotted as a function of incident stellar flux and colored by planetary mass. The red dashed line shows an evolutionary model for a Jupiter-mass planet without any additional inflation effects at an age of 4.5 Gyr, and the vertical dashed line displays the flux cutoff below which no radius inflation is found. Figure courtesy of Daniel Thorngren.
3.2. Proposed Mechanisms to Explain the Observed Radius Distribution

A wide range of mechanisms have been proposed to explain the hot Jupiter radius anomaly (for previous summaries, see Baraffe et al., 2014; Weiss et al., 2013). These mechanisms can be separated into two main categories: keeping the interior of the planet warm by reducing the rate of cooling to space, and utilizing incident stellar radiation or tidal energy to heat the planet from within.

3.2.1. Reduction of Internal Cooling

Gas giant planets are expected to form hot with large initial radii and contract over time as their interiors cool off. As a result, mechanisms that reduce the cooling rate of the planet can keep the interior hot. Because the interior temperature of a gas giant is directly linked to its radius (Arras & Bildsten, 2006; Ginzburg & Sari, 2015; Hubbard, 1977) reducing the interior cooling rate is equivalent to reducing the rate that the planet radius shrinks during its evolution. Gas giants cool off rapidly, and without a reduction in the cooling rate hot Jupiters would not appear inflated after ~Gyr of evolution (Guillot & Showman, 2002).

Two mechanisms have been proposed to reduce the internal cooling. However, these mechanisms that rely on the reduction of cooling struggle to explain the increase in radius with increasing incident stellar flux shown in Figure 2.

The first mechanism to reduce the rate of cooling is invoking an enhanced atmospheric opacity that leads to longer time scales for radiative heat transport in the stably stratified envelope (Burrows et al., 2007). However, detailed calculations lead to only modest radius increases that cannot explain the entire population (Burrows et al., 2007). The second flavor of proposed mechanism to slow the cooling of hot Jupiters is for their interiors to not be fully convective, but experience double-diffusive layered convection (Chabrier & Baraffe, 2007; Kurokawa & Inutsuka, 2015). Double-diffusive convection occurs in the case of a molecular weight gradient that increases with increasing depth and stabilizes the envelope against convection. Both mechanisms above cannot explain the observed dependence of radius on incident flux for hot Jupiters. However semiconvection likely affects the interior evolution of a range of gas giant planets, as both Jupiter and Saturn experienced double-diffusive convection due to helium phase separation or post-formation composition gradients (Leconte & Chabrier, 2012; Mankovich et al., 2016; Nettelmann et al., 2015; Vazan et al., 2018).

3.2.2. Internal Deposition of Heat

Energy deposited into the interior of the planet can act to replace the cooling of the convective interior, reducing or even reversing the net loss of energy to space. The effect of internal heating on evolution is sensitive to both the depth and amount of energy deposited (Gu et al., 2004; Komacek & Youdin, 2017; Spiegel & Burrows, 2013), and only heating deep within the convective interior can fully offset interior cooling (Guillot & Showman, 2002). There are two classes of deposited heating mechanisms: tidal dissipation and conversion of incident stellar flux to deposited heat.

Tidal dissipation was the first mechanism proposed to heat the interior of hot Jupiters (Bodenheimer et al., 2001). Two types of mechanisms have been proposed to lead to tidal heating of hot Jupiters. The first is eccentricity tides due to the tidal circularization of hot Jupiters that formed through high eccentricity migration (Bodenheimer et al., 2001; Gu et al., 2003; Ibgui & Burrows, 2009; Jackson et al., 2008a, 2008b). It is unlikely that eccentricity tides can explain the inflated radii of all hot Jupiters, but they may play a key role for certain systems (Leconte et al., 2010; Miller et al., 2009).

The second type of tidal heating mechanism is thermal tides, which are tides driven by the spatial and temporal inhomogeneity of atmospheric column mass (which is linked to temperature), originally proposed to explain the slow spin rate of Venus (Gold & Soter, 1969). These atmospheric tides transfer angular momentum and energy from the orbit to the planetary rotation (Thompson, 1882), increasing the rotation rate and pushing hot Jupiters away from a synchronous state, leading to gravitational tidal dissipation. Thermal tides have been shown to provide a sufficient rotational perturbation and resulting dissipation to explain the radius anomaly (Arras & Socrates, 2010; Socrates, 2013), but the depth at which thermal tides deposit heat is uncertain (Gu et al., 2019).

The second class of mechanism proposed to heat hot Jupiters relies on converting a fraction of the incident stellar flux into deposited heating. Shear instabilities in the deep atmosphere leading to deposited heat were
the first of this class to be considered, and rely on dissipation of the \(\sim \) km s\(^{-1}\) winds in hot Jupiters (see Section 4) through fluid dynamic instabilities at interfaces where the winds quickly decay (Bodenheimer et al., 2003; Guillot & Showman, 2002). Another mechanism relating to the atmospheric circulation is large-scale vertical mixing in the deep atmosphere acting to force a downward heat flux that carries a fraction of incident stellar power to higher pressures, where it can affect the interior evolution (Sainsbury-Martinez et al., 2019; Tremblin et al., 2017; Youdin & Mitchell, 2010).

As the atmospheres of hot Jupiters are hot enough that species with low ionization potentials (e.g., Na, K) are partially ionized, Batygin and Stevenson (2010) proposed that the atmospheric current driven by the fast motions of a partially ionized fluid can penetrate into the interior of the planet, leading to “Ohmic dissipation” (i.e., electrical resistive heating) at depth. A variety of studies have examined Ohmic dissipation and found varying degrees of success in explaining the radius anomaly (e.g., Batygin et al., 2011; Ginzburg & Sari, 2016; Huang & Cumming, 2012; Menou, 2012; Perna et al., 2010b; Rauscher & Menou, 2013; Rogers & Komacek, 2014; Wu & Lithwick, 2013). Hot Jupiters are expected to have strong internal magnetic fields (Cauley et al., 2019; Yadav & Thorngren, 2017), which couple with the atmospheric currents to induce magnetic forces that act against the circulation (see Figure 3). These magnetic effects naturally reduce the Ohmic dissipation rate for hot planets with equilibrium temperatures \(\geq 1,500 \) K (Ginzburg & Sari, 2016; Menou, 2012; Rogers & Komacek, 2014), in agreement with the findings of Thorngren and Fortney (2018). However, Ohmic dissipation is not thought to provide sufficiently deep heating to lead to reinflation (Ginzburg & Sari, 2016; Wu & Lithwick, 2013).

While more work is required to fully determine the heating mechanism(s) that cause the radius anomaly of hot Jupiters, Thorngren and Fortney (2018) have shown that the additional radius inflation power has a characteristic magnitude as a function of incident flux. This strongly suggests that mechanisms in the three preceding paragraphs, that are coupled to this stellar heating, including thermal tides, shear instabilities or vertical mixing, and Ohmic dissipation, are the key contenders. Indeed, very recently Sarkis et al. (2020) have suggested that multiple mechanisms must be at play to explain the population.
3.3. Bulk Planetary Metallicities

While significant theoretical work has gone into examining mechanisms that lead to large radii and low densities for this class of planets, much less work has gone into understanding planets that are not inflated, or are “over-dense.” The discovery of HD 149026b (Sato et al., 2005), with a very high density compared to other known transiting planets at that time, suggested that the planet must be more metal-rich than Jupiter and Saturn (Burrows et al., 2007; Fortney et al., 2006; Sato et al., 2005). The fact that the planet’s parent star is quite metal-rich led to the first discussion of a potential star-planet composition connection (Guillot et al., 2006).

Only relatively recently has a large enough sample size of transiting giant planets become available that the bulk metallicities of the planets (as diagnosed from a combination of their bulk densities and planet thermal evolution models) can be evaluated. Thorngren et al. (2016), following up on preliminary work of Miller and Fortney (2011), find a clear relation between giant planet mass and bulk metallicity. This both confirms a key prediction of core-accretion planet formation (Mordasini et al., 2014), in a generic sense, but also gives a well-defined slope and scatter to this relation that future models of planet formation must aim to reproduce. The more massive giant planets are less metal-rich (reproducing the solar system’s trend), but the amount of metals within planets more massive than Jupiter is surprising, suggesting that massive “super-Jupiters” may often accrete well over 100 M_\oplus of metals. A recent new spin on this work is that the metal-richness of the planets does not appear to correlate with the metallicity of the parent star (Teske et al., 2019).

These kinds of investigations to assess bulk composition are entirely complementary to studies of hot Jupiter atmospheres, where one seeks the abundances of particular atoms and molecules. Interior structure and evolution modeling have the advantage of having a larger sample size to examine, and it does not require further characterization observations. However, these atmospheric abundance details are potentially a treasure trove of information, and it is to atmospheres that we next turn.

4. Atmospheres

The atmospheres of hot Jupiters lie in a unique thermal, chemical, and dynamical regime characterized by strong incident radiation, large horizontal temperature contrasts, species in the ionic, atomic, molecular, and condensate phases, and fast winds that approach or exceed the speed of sound. Due to their large radii and hot temperatures, hot Jupiters host the only class of exoplanet atmosphere that can currently be observationally characterized in detail with spectroscopic observations over an entire orbital phase.

These observations serve as a test bed for models of hot Jupiter atmospheres, which have largely been successful in explaining the large-scale observed climate of hot Jupiters. Here, we describe observational characterization of hot Jupiter atmospheres in Section 4.1, summarize our understanding of the atmospheric structure of hot Jupiters in Section 4.2, and describe theory for and modeling of the atmospheric circulation of hot Jupiters in Section 4.3.

4.1. Observational Characterization

Observations of hot Jupiter atmospheres have been an exciting aspect of exoplanet science over nearly 2 decades. Much of this work has utilized the Hubble and Spitzer Space Telescopes, which were designed and built before the dawn of the exoplanet atmosphere era. Observers have needed to be extremely creative and resourceful to use these telescopes for high-precision photometry and spectroscopy. See Winn (2010), Crossfield (2015), Sing (2018), and Deming et al. (2019) for a comprehensive introduction and review of these characterization techniques. In the past decade, high-resolution atmospheric characterization from the ground has been enabled with spectrographs on the world’s largest telescopes, which is covered in more detail in Birkby (2018) and Brogi and Line (2019).

4.1.1. Transmission Spectroscopy

Transmission spectroscopy was the first method used to characterize transiting planet atmospheres, and was first modeled by Seager and Sasselov (2000), Brown (2001), and Hubbard et al. (2001) and was observed
by Charbonneau et al. (2002) with Hubble for HD 209458b. With this method, during the transit some flux from the parent star passes through the planet’s thin outer atmosphere, imprinting small planetary absorption features on the stellar spectrum, during the transit. Precisions of 10^{-7} are necessary, as the area of the annulus of planetary atmosphere is $\sim 0.01 \times$ the area of the planet, which is again $\sim 0.01 \times$ the area of the star.

In transmission, atomic metals have been observed in the UV and the optical, with previous Na and K detections (Charbonneau et al., 2002; Nikolov et al., 2014; Redfield et al., 2008; Sing et al., 2011; Sing et al., 2015; Wytenbach et al., 2015) due to these species having particularly prominent features at 589 and 770 nm, respectively. The presence of these strong, very pressure broadened optical features give rise to the very low geometric albedos measured and inferred for hot Jupiters, often below 0.1 (Esteves et al., 2015; Parmentier et al., 2016), which is much lower than Jupiter’s ~ 0.5. In the near-IR, Hubble’s Wide-Field Camera three sits atop a water band from 1.1 to 1.7 μm, which has allowed for water vapor detections in many objects (Deming et al., 2013; Huíston et al., 2013; Kreidberg et al., 2014, 2015; Line et al., 2016; McCullough et al., 2014; Sing et al., 2016) (see Kreidberg, 2017 for a recent review covering molecular abundance constraints) with the signal-to-noise ratio sometimes high enough to determine the water mixing ratio. Spitzer allowed for photometry in the 3.6 and 4.5-μm bands, which has suggested roles for CO and CO$_2$ absorption in the 4.5-μm band (Desert et al., 2009; Madhusudhan et al., 2011a; Stevenson et al., 2017).

Transmission spectroscopy at higher resolution has yielded information on atmospheric dynamics, as subtle Doppler shifts of absorption lines can be used to assess the velocity and direction of atmospheric flow (Flowers et al., 2019; Miller-Ricci Kempton et al., 2012; Showman et al., 2013a). This has enabled planetary-scale wind determinations (Snellen et al., 2010), differential wind measurements between leading and trailing hemispheres (e.g., Louden & Wheatley, 2015), and constraints on the planetary rotation rate (Brogi et al., 2016). Ehrenreich et al. (2020) found evidence for strong (≈ 5.3 km s$^{-1}$) day-night winds in the ultrahot Jupiter WASP-76b, along with evidence for condensation of iron on the planetary nightside due to a hemispheric asymmetry in its absorption signal. Recently, Tabernero et al. (2020) confirmed this detection of day-night winds for WASP-76b over a broader range of atomic and molecular signatures, including ionized calcium, atomic manganese, magnesium, sodium, potassium, and lithium. These are just a handful of the broad range of atomic and ionized metallic species and molecules that have been detected in hot and ultrahot Jupiter atmospheres with high-resolution transmission spectroscopy (e.g., Birkby et al., 2013, 2017; Brogi et al., 2014; Hoeijmakers et al., 2018, 2020; Nugroho et al., 2017; Piskorz et al., 2017; Wytenbach et al., 2017; Seidel et al., 2019, for a recent review see Birkby, 2018).

4.1.2. Transmission Spectroscopy and Atmospheric Escape

A special case of transmission spectroscopy, including studies at both low (via Hubble) and high resolution (from the ground), is the study of atmospheric escape from hot Jupiters. The high X-ray and UV fluxes are typically absorbed by hydrogen and metals, via photoionization, quite high in the planetary atmosphere (the thermosphere), where infrared opacities are low and cooling is inefficient, such that temperatures can reach $\sim 10^6$ K. This can drive a hydrodynamic flow that can become unbound from the planet. The amount of escape driven by this heating depends on how quickly the thermosphere cools through collisionally excited atomic lines. Mass loss is considerable, and hot Jupiters may typically lose $\sim 1\%$ of their total mass, particularly at young ages when XUV fluxes are highest.

After nearly 20 years of observations (Ehrenreich et al., 2015; Vidal-Madjar et al., 2003, 2004) and theory (Murray-Clay et al., 2008; Owen & Adams, 2014; Yelle, 2004) a considerable literature has developed. A recent review can be found in Owen (2019). Escaping hydrogen has been found from both Lyman-α observations (Lecavelier Des Etangs et al., 2010; Vidal-Madjar et al., 2003) and observations of the hydrogen Balmer series (Cabot et al., 2020; Jensen et al., 2018; Wytenbach et al., 2020; Yan et al., 2020). Of particular recent interest has been the detection of escaping neutral helium (Ninan et al., 2020; Spake et al., 2018) via the 1,083 nm triplet. This helium is presumably a part of the bulk flow from the planets (Oklopčić & Hirata, 2018). The combination of more detailed modeling studies (Oklopčić et al., 2020) and high-spectral resolution observations from ground-based telescopes that resolve velocity information for the He triplet (Allart et al., 2019) make this an important area for growth.
4.1.3. Emission Spectroscopy

As the name implies, hot Jupiters are “hot” and hence have substantial thermal emission. For transiting planets, at the planetary occultation, or secondary eclipse, the planet passes behind the parent star. The combined amount of star + planet flux decreases for the duration of the occultation, as the planet is blocked from view. The power of emission spectroscopy, in principle, is that one could learn about atmospheric abundances (as in transmission spectroscopy) but also about the atmosphere’s temperature structure, which is typically quite difficult to probe in transmission.

The first emission detections were by Deming et al. (2005) and Charbonneau et al. (2005) for HD 209458b and TrES-1b, respectively. Over the years, particularly in the Warm Spitzer extended mission, large samples of 2-band emission photometry at 3.6 and 4.5 μm were obtained for dozens of planets. These growing samples are now being assessed for trends that may suggest changes in atmospheric chemistry or temperature structure, as a function of the stellar incident flux (Baxter et al., 2020; Garhart et al., 2020; Wallack et al., 2019). Furthermore, the idea of “eclipse mapping” uses differences in time-resolved ingress and egress light curves to create a brightness map, with latitude and longitude information, across the full dayside of the transiting planet (De Wit et al., 2012; Majeau et al., 2012; Rauscher et al., 2007).

Recently, it was discovered that the emission spectra of ultrahot Jupiters are distinct from those of cooler hot Jupiters. HST/WFC3 emission spectra from a wide range of ultrahot Jupiters (e.g., Arcangeli et al., 2018; Baxter et al., 2020; Beatty et al., 2017; Evans et al., 2017; Fu et al., 2020; Kreidberg et al., 2018; Haynes et al., 2015; Mansfield et al., 2018; Mikal-Evans et al., 2020; Stevenson et al., 2014a) show black-body like, almost featureless spectra, with much weaker water features than are commonly found for cooler hot Jupiters (see Figure 4). It has been suggested that the almost featureless emission spectra of ultrahot Jupiters is due to the dissociation of water molecules at the high temperatures on their daysides in concert with the formation of H−, which acts as a strong continuum opacity source (Kitzmann et al., 2018; Lothringer et al., 2018; Parmentier et al., 2018). Additionally, Spitzer photometry has shown that the ultrahot Jupiters generally have stratospheres with inverted temperature-pressure profiles (potentially due to TiO/VO), while cooler hot Jupiters do not host inversions (Baxter et al., 2020; Garhart et al., 2020). These observed differences in the atmospheric composition and thermal structure between hot and ultrahot Jupiters has led to the understanding that ultrahot Jupiters represent a distinct class of exoplanet from cooler hot Jupiters.

4.1.4. Phase Curves

Not long after the first detection of thermal emission from hot Jupiters, it was suggested that obtaining a phase curve of thermal emission over part of or all of a planetary orbit would be diagnostic of day-to-night temperature contrast and hot-spot offsets, first predicted in Showman and Guillot (2002). Knutson et al. (2007) published a half-orbit phase curve at 8 μm for planet HD 189733b, validating several aspects of these general circulation models. This paper, and later Cowan et al. (2009), described how phase curves could be inverted to understanding planetary brightness vs. longitude. Phase curves for eccentric hot Jupiters, which are rare, are especially valuable as they show the planet’s response near periapse, including the time scale of heating and subsequent cooling of the planetary atmosphere (de Wit et al., 2016; Laughlin et al., 2011; Lewis et al., 2013).

The first spectroscopic phase curve was of the planet WASP-43b (Stevenson et al., 2014) with Hubble from 1.1 to 1.7 μm. Importantly, it allowed one to probe atmospheric conditions and the hot-spot offset as a
function of atmospheric depth, as observations within the water band at 1.4 μm probe less-deeply into the atmosphere than neighboring wavelengths with lower opacity.

4.2. Temperature Structure, Clouds, and Composition

The temperature structure of the planetary atmosphere is sensitive to many factors, including the absorption of stellar flux as a function of depth and wavelength, the emission of the absorbed flux and any intrinsic flux as a function of depth, and wavelength, and advection of energy to cooler parts of the atmosphere, including the night side. This is a complex problem and a variety of 1D, 2D, and 3D models have been brought to bear.

Figure 5 shows a sampling of 1D atmospheric pressure-temperature ($P - T$) profiles for metal-enriched (10× solar, or Saturn-like) atmospheres at small orbital distances. The hottest models show a relatively shallow radiative-convective boundary (RCB) due to the high internal fluxes from whatever mechanism causes the radius anomaly (Thorngren et al., 2019). For slightly cooler planets the RCB may reach ∼1 kbar.

The potential for gaseous TiO and VO, which dominate the optical spectra of M stars, to be found in the hottest hot Jupiters deserves a specific mention. Hubeny et al. (2003) suggested that the high opacity of TiO and VO at low pressure, coupled with the lower opacity of coolants like water vapor, may drive a temperature inversion in these planets, which is not shown in Figure 5. Fortney et al. (2008) extended this work and suggest classifying planets in equilibrium temperature based on the presence or absence of TiO/VO. The role of TiO/VO in these hottest atmospheres is still not clear, since these heavy molecules could be difficult to mix into the upper atmosphere, or could be lost into refractory clouds on the planetary night (Parmentier et al., 2013; Spiegel et al., 2009). Significant additional work has gone to understand other aspects of how atmospheric chemistry and incident stellar flux changes the temperature structure, atmospheric abundances, and resulting spectra (e.g., Lothringer et al., 2018; Madhusudhan et al., 2011b; Mollière et al., 2015).
The equilibrium chemistry of these hot atmospheres has been explored by a number of authors, sometimes in conjunction with brown dwarf chemistry over this same P − T space (Blecic et al., 2016; Lodders & Fegley, 2002; Madhusudhan et al., 2011b; Visscher et al., 2010; Woitke et al., 2018). Figure 5 shows the equal-abundance curves for CO/CH$_4$ (dashed red) and N$_2$/NH$_3$ (dashed black), showing the expectation that the dominant carbon carrier for hot Jupiters is CO, the dominant nitrogen carrier is N$_2$, and oxygen is mostly found in CO and H$_2$O. A variety of atomic metals are found in the vapor phase, such as Na and K, which can dominate the optical opacity over a wide temperature range (Sudarsky et al., 2003). For the hottest profiles, abundances can be more akin to M-type (or even late K) stars, leading to even more atomic metals present in the ultrahot Jupiters (Kitzmann et al., 2018).

Studies of kinetic chemistry and photochemistry in hot Jupiters include Zahnle et al. (2009), Moses et al. (2011), Venot et al. (2012), Tsai et al. (2017), Hobbs et al. (2019), Venot et al. (2020), and others. Kinetic effects include the relevant chemical conversion and mixing time scales for these atmospheres. Thorngren et al. (2019) and Fortney et al. (2020) have stressed that understanding the temperature structure of the (not visible) deep atmosphere, from thermal evolution models, is important for understanding these time scales and the associated atmospheric abundances. Products that are typically enhanced compared to equilibrium chemistry, due to a variety of kinetic and photochemical effects, are molecules such as HCN, C$_2$H$_2$, and CO$_2$.

Within the framework of chemistry calculations, a wide range of refractory clouds were long expected to be found in hot Jupiter atmospheres (Marley et al., 1999; Sudarsky et al., 2000), in particular Mg-bearing silicates and iron, as shown in Figure 5. The chemistry of this condensation sequence is now reasonably well understood from the atmospheres of brown dwarfs over this similar temperature range (Ackerman & Marley, 2001; Helling & Casewell, 2014). One important aspect of the formation of condensates is that due to the loss of some elements from the gas phase, as they are sequestered in condensates, the atmospheric chemistry of remaining gases can be altered compared to simple expectations (Helling, 2019; Lodders & Fegley, 2002). Observationally, Sing et al. (2016) demonstrated the near-ubiquity of clouds in affecting transmission spectra, which is well matched by models that include silicate clouds (Gao et al., 2020). However, the role of clouds in emission spectra is lacking in data, and the role in phase-dependent reflection spectra is still emerging (Esteves et al., 2015; Heng & Demory, 2013; Hu et al., 2015; Oreshenko et al., 2016; Parmentier et al., 2016; Roman & Rauscher, 2017). Significant ongoing theoretical work is underway in combining 3D circulation models with cloud particle formation and transport, as discussed in Section 4.3.1.

The high atmospheric temperatures of hot Jupiters, compared to our solar system’s giant planets, make them fantastic laboratories for unveiling giant planet atmospheric abundances, as nearly all volatile species should be found in the vapor phase, rather than sequestered into clouds. Öberg et al. (2011) and Fortney et al. (2013) have suggested links between atmospheric abundances and giant planet formation, the former in terms of carbon-to-oxygen (C/O) ratios, and the latter in terms of overall metallicity enhancements. These ideas have been greatly developed by additional models, including Madhusudhan et al. (2014), Mordasini et al. (2016), and Cridland et al. (2019). The observational determination of C/O ratios have been hampered by the limited bandpass for Hubble spectroscopy. The determination of atmospheric metallicities, as a function of planet mass, began with Kreidberg et al. (2014) for the planet WASP-43b. Error bars on abundance determinations with current instruments have been large, and there are not necessarily robust trends in metal-enrichment as a function of planet mass (Fisher & Heng, 2018; Welbanks et al., 2019). A recent compilation of atmospheric abundances is shown in Figure 6 from Welbanks et al. (2019).

Several frameworks for simultaneously retrieving atmospheric abundances and temperature structure in a Bayesian framework, termed “retrieval,” are essential to this work, build on solar system heritage (Irwin et al., 2008; Line et al., 2013), and are reviewed in Madhusudhan (2018) and Barstow and Heng (2020). More comprehensive reviews of hot Jupiter models and their comparison with data can be found in Madhusudhan et al. (2016), Helling (2019), and Madhusudhan (2019).

4.3. Atmospheric Circulation

4.3.1. Numerical Simulations

Over the past 2 decades, a wide range of general circulation models (GCMs) have been developed to simulate the atmospheric circulation of hot Jupiters. GCMs solve the dynamical equations of fluid motion coupled to
a radiative transfer model that determines the radiative heating/cooling rate. The reader is referred to Showman et al. (2010), a detailed review of exoplanet atmospheric fluid dynamics, to Heng and Showman (2015) (see their Table 1) for a review of recent advances in the study of hot gas giant exoplanets, and to Zhang (2020) for an expansive review of the atmospheric circulation regimes of exoplanets. Many hot Jupiter GCMs solve the primitive equations of meteorology (e.g., Carone et al., 2020; Heng et al., 2011; Kataria et al., 2015; Lewis et al., 2014; Menou & Rauscher, 2009; Polichtchouk et al., 2014; Rauscher & Menou, 2010; Showman & Guillot, 2002), which are a simplified form of the Navier-Stokes equations relevant to thin, locally hydrostatic atmospheres (Holton & Hakim, 2013; Vallis, 2006). A subset of models solve the nonhydrostatic Euler or Navier-Stokes equation sets (e.g., Dobbs-Dixon & Agol, 2013; Mayne et al., 2014; Mendonça et al., 2016) that capture the propagation of sound waves, which is important because the winds in hot Jupiter atmospheres can approach or exceed the speed of sound.

Though hot Jupiter GCMs have quantitative differences in atmospheric climate and wind speeds, they show qualitatively similar large-scale atmospheric circulation patterns (see Figure 9 of Heng & Showman, 2015). GCMs find that the atmospheric circulations of hot Jupiters are characterized by large dayside-to-nightside temperature contrasts. The large dayside-to-nightside temperature gradient forces fast winds which manifest as eastward (propagating in the direction of rotation) jets with maximum speeds in equatorial regions (Hammond & Pierrehumbert, 2018; Showman & Polvani, 2011; Tsai et al., 2014). These fast winds lead to a shift in the temperature maximum (or “hot spot”) eastward (downwind) of the substellar point. The strong eastward flow near the equator of hot Jupiters is known as “superrotation” because the angular momentum of the atmospheric circulation exceeds the rotational angular momentum of the interior of the planet (Vallis, 2019).

Even though the overarching picture of hot Jupiter atmospheres has remained unchanged since Showman and Guillot (2002), there are many new frontiers that models are currently exploring. Cloud formation and evolution can have important radiative impacts on climate and observable properties (Gao et al., 2020; Helling et al., 2016; Powell et al., 2018; Wakeford et al., 2017), which can feedback onto atmospheric dynamics. Recent modeling efforts (e.g., Lee et al., 2016; Lines et al., 2019, 2018; Parmentier et al., 2020; Roman & Rauscher, 2019; Roman et al., 2020) have shown that cloud-radiative feedbacks can affect the climate and observable properties of hot Jupiters. Due to winds transporting species before they can relax to chemical
equilibrium, the effects of chemical disequilibrium are expected to impact the atmospheric composition and observable properties of hot Jupiters (Cooper & Showman, 2006; Drummond et al., 2018; Mendonça et al., 2018; Steinrueck et al., 2019; Zhang & Showman, 2018). It is also expected that magneto-hydrodynamic (MHD) effects play a role in the circulation of hot Jupiters. A wide range of efforts have included MHD effects in GCMs of hot Jupiter atmospheres (e.g., Batygin et al., 2013; Perna et al., 2010a; Rauscher & Menou, 2013; Rogers & Showman, 2014), and have shown that MHD can impact the strength and even direction of the equatorial jet. Due to the strong spatial dependence of winds, it is expected that shear instabilities and shocks play a role in the dissipation of the circulation of hot Jupiters (Fromang et al., 2016; Heng, 2012; Li & Goodman, 2010; Perna et al., 2012), but high-resolution nonhydrostatic global models are required to fully assess the impact of instabilities and shocks on the circulation. Additionally, long integration time scales are needed to properly model the impact of the deep atmospheric circulation of hot Jupiters on observable levels, as the time scale for radiative adjustment of the deep atmospheric layers is thousands of years at the ~100 bar pressures at the base of typical GCM models (Arras & Bildsten, 2006; Sainsbury-Martinez et al., 2019). Recent simulations that were run to an order of magnitude longer model time than was typical show a qualitatively different flow structure for both hot Jupiters and sub-Neptunes (Mayne et al., 2017; Mendonça, 2020; Wang & Wordsworth, 2020), pointing toward the need to characterize the deep flow of gaseous exoplanets.

4.3.2. Interpreting Observations With Dynamical Models

Numerical models of atmospheric circulation play a key role in understanding observations of exoplanet atmospheres. GCMs are uniquely suited to compare with phase curve observations, as understanding the longitudinal dependence of planetary flux requires a model for the atmospheric heat transport. GCMs have been directly compared to phase curve observations for a wide range of hot Jupiters (see Parmentier & Crossfield, 2018 for a recent review). As expected from GCM simulations, the majority of phase curves find large dayside-to-nightside temperature contrasts and eastward bright spot offsets. Additionally, GCMs have been shown to provide a good match to individual observed phase curves of hot Jupiters over a broad range of equilibrium temperature (e.g., Arcangeli et al., 2019; Dobbs-Dixon & Agol, 2013; Drummond et al., 2018; Kreidberg et al., 2018; Showman et al., 2009; Zellem et al., 2014).

Recent observations have found that the eastward hot-spot offsets predicted by standard GCMs may not be ubiquitous. Dang et al. (2018) found a westward phase offset in the Spitzer observations of CoRoT-2b, and there is tentative evidence for westward infrared phase offsets in the atmospheres of HD 149026b (Zhang et al., 2018) and HAT-P-7b (Wong et al., 2016). Additionally, time-variability in the phase offset has been detected on three planets to date: HAT-P-7b (Armstrong et al., 2016), Kepler-76b (Jackson et al., 2019), and WASP-12b (Bell et al., 2019). A range of mechanisms have been proposed to explain westward phase offsets, including clouds (Armstrong et al., 2016; Parmentier et al., 2016; Powell et al., 2018), MHD effects (Hindle et al., 2019; Rogers, 2017), and nonsynchronous rotation (Rauscher & Kempton, 2014).

Thanks to the sample of 26 exoplanets with observed Spitzer phase curves (Deming & Knutson, 2020), some of which have additional Hubble phase curves (e.g., Arcangeli et al., 2019; Kreidberg et al., 2018; Stevenson et al., 2014b), it is now possible to understand hot Jupiter atmospheric circulation through population-level studies. Both analytic theory (Cowan & Agol, 2011a; Komacek & Showman, 2016; Perez-Becker & Showman, 2013; Zhang & Showman, 2017) and GCMs (Kataria et al., 2016; Komacek et al., 2017; Parmentier & Crossfield, 2018; Tan & Komacek, 2019) predict that for hot Jupiters with equilibrium temperatures below 2,200 K, the phase curve amplitude increases and the phase curve offset decreases with increasing equilibrium temperature. This is because the large-scale wave motions that drive circulation and act to induce hot-spot offsets and reduce day-to-night temperature contrasts become increasingly damped with increasing equilibrium temperature due to radiative cooling (Perez-Becker & Showman, 2013; Showman et al., 2013a, 2013b).

The basic expectations of the increase in the phase curve amplitude and decrease in phase offset with increasing equilibrium temperature below 2,200 K appear to be borne out by observations (Cowan & Agol, 2011b; Keating et al., 2019; Perez-Becker & Showman, 2013; Schwartz & Cowan, 2015; Schwartz et al., 2017). Figure 7 shows joint constraints on the heat recirculation efficiency (which is inversely related to phase curve amplitude) and inferred Bond albedo for the sample of observed hot Jupiters with Spitzer, showing an apparent decrease in the heat recirculation with increasing planetary temperature as
expected from previous analytic theory. For ultrahot Jupiters with equilibrium temperatures in excess of 2,200 K, it is expected that the hydrogen that comprises the bulk of the atmosphere will become partially thermally dissociated, with a resulting net cooling on the dayside and latent heating on the nightside (Bell & Cowan, 2018). Both theoretical models (Bell & Cowan, 2018; Komacek & Tan, 2018) and GCMs (Tan & Komacek, 2019) predict that hydrogen dissociation and recombination leads to a reduction in the phase curve amplitude of ultrahot Jupiters, with phase curve observations of the ultrahot Jupiters WASP-103b (Kreidberg et al., 2018), WASP-33b (Zhang et al., 2018), and KELT-9b (Mansfield et al., 2020) showing tentative evidence for this effect. Additionally, both hot and ultrahot Jupiters generally have low Bond albedos relative to the value of 0.503 ± 0.012 measured for Jupiter (Li et al., 2018). This may suggest that silicate and other condensate clouds do not dominate the dayside optical opacity of hot gas giants to the same extent that thick ammonia clouds do so on Jupiter.

Determining if the trend in phase curve amplitude with equilibrium temperature is statistically significant requires further observations (Parmentier & Crossfield, 2018) and an improved understanding of detector systematics (Bell et al., 2020; May & Stevenson, 2020). Analysis of the growing sample of TESS phase curves (e.g., Daylan et al., 2019; Jansen & Kipping, 2020; Shporer et al., 2019; von Essen et al., 2020; Wong et al., 2019), unpublished Spitzer phase curves (Deming & Knutson, 2020), and future phase curve observations with ARIEL (Tinetti et al., 2018; Zellem et al., 2019) and JWST (Bean et al., 2018) will provide a more complete understanding of how observable properties of hot Jupiter atmospheres depend on their planetary parameters.

5. Conclusions and Prospects for Future Characterization

Hot Jupiters have been objects of intense study for 25 years, and vast strides have been made through the synergy between astronomical observations and astrophysical and geophysical models. There is evidence for at least two origins channels, with some hot Jupiters arriving through high eccentricity tidal migration and others through either disk migration or in-situ formation. Future observations will help distinguish the
importance of each channel. Better constraints on disk conditions and more detailed head-to-head comparisons on predicted occurrence rates and architectures will help distinguish whether in-situ formation vs. disk migration is the predominant second channel.

The TESS Mission is expected to provide longer period and/or smaller targets for ground-based spin-orbit alignment measurements that will clarify the interpretation of hot Jupiters’ spin-orbit alignments. TESS may also discover—in the mission itself or through ground-based radial velocity follow-up—more exceptional systems like WASP-47 featuring a hot Jupiter with nearby planets that likely originated through the second channel. The Gaia Mission will enable astrometry of hot Jupiters’ companions to measure the mutual inclination and further investigations of connections between hot Jupiter occurrence and host star properties. For example, Winter et al. (2020) recently found a correlation between hot Jupiters and present-day stellar clustering. If this present-day clustering reflects the early environment, the correlation suggests that dense stellar cluster environments facilitate processes that lead to hot Jupiters. Both missions will contribute to the goal of constructing large samples of hot Jupiters with a wide range of well-constrained host star ages to determine how often hot Jupiters have already formed or arrived during the gas disk stage vs. arriving via high eccentricity migration throughout the star’s lifetime. Further theoretical study is needed to understand whether hot Jupiters’ atmospheric properties can feasibly trace formation location despite the diversity of disk conditions, enabling interpretation of JWST’s measurements of atmospheric properties of a large sample of hot Jupiters.

In terms of planetary structure and evolution, the sheer number of planet detections means that we are firmly in the statistical era, where the large number of observed masses and radii strongly constrain evolution models. Only radius inflation mechanisms that are closely tied to the magnitude of the stellar incident flux can explain the population. Giant planet bulk metal-enrichment, as seen in the solar system, is the rule for giant exoplanets, and is itself a strongly inverse function of planet mass. Looking ahead, more detailed multidimensional simulations of processes that may affect the radius anomaly are needed. Additionally, detecting still more planets is definitely needed, in particular in two areas. First, a focus on hot Jupiters orbiting stars evolving off the main sequence, where the stellar forcing changes on relatively fast time scales, will give new insight into how planetary structure responds. Second, detections of planets <1,000 K around main sequence stars, below the radius anomaly threshold, are essential to understanding planetary bulk composition, to look for trends in planetary bulk composition with planetary and stellar properties (e.g., Teske et al., 2019).

In the realm of hot Jupiter atmospheres, broad trends have emerged. Albedos are typically low, due to alkali metal absorption and perhaps TiO vapor in the hottest objects. Silicate clouds appear to be an important opacity source across a wide temperature range. Trends in the day/night flux contrast are generally well-fit by models. In the near term detailed spectroscopy across a wide wavelength range with JWST and with large ground-based telescopes for benchmark objects is essential. It is quite likely that high-quality spectra will yield surprises in terms of atmospheric abundances and trends with planet mass and temperature. Entirely new paradigms may well emerge. Later, the field will move to the statistical assessment of exoplanet atmospheres with the European Space Agency’s ARIEL mission. This must be done in tandem with a hierarchy of modeling approaches, including those based on solar system and exoplanetary expertise. This is because we have likely only glimpsed at the true 3D nature of these atmospheres, and future observations will push models toward even higher levels of complexity. Very soon, JWST and high-resolution ground-based observations of the lower and upper atmosphere in transmission and emission will also pay large dividends in understanding atmospheric composition, circulation, and escape.

Appendix A: Glossary

Astrometry: The measurement of the positions, motions, and magnitudes of stars, which enables a measurement of their distance.

Atmospheric column mass: Mass per unit area of the atmosphere, equal to \(p/g \), where \(p \) is the atmospheric pressure and \(g \) is gravity.
Bayesian: A statistical approach that uses Bayes’ theorem to assign probabilities to events that are updated based on new data.

Bond albedo: The fraction of the total incident electromagnetic radiation upon a planet that is scattered back to space.

Corotation period: Orbital period of a planet at which its orbital period is equal to the stellar rotation period.

Double-diffusive convection: A form of convection driven by two different density gradients with separate diffusivities.

Embryo: A rocky building block of planets that is larger than 1,000 km in diameter.

Hydrostatic equilibrium: An atmosphere in which the force due to the decrease in pressure with height balances gravity.

Ionization potential: Energy necessary to remove an electron from a neutral atom.

Irradiation temperature: The temperature that the planet would have on the star-facing side if there were no horizontal heat transport. The irradiation temperature T_{irr} is related to the zero Bond albedo equilibrium temperature T_{eq} as $T_{\text{irr}} = 4^{1/4}T_{\text{eq}}$.

Kozai-Lidov cycles: An orbital cycle between the eccentricity and inclination that caused by the perturbation of a distant third body.

M star: The smallest and coolest type of star, with effective temperatures below 3,900 K.

Magnetocavity: The innermost region of the proto-planetary disk that is cleared out due to truncation by the stellar magnetic field.

Magneto-hydro-dynamics (MHD): The study of the motions of electrically conducting fluids.

Metallicity (astrophysical): Abundance of elements that are heavier than hydrogen and helium.

Migration: The radial movement of the orbit of a planet due to interactions with a disk or other planets.

Navier-Stokes equations: A set of differential equations that can be applied to study the motions of geophysical fluids.

Ohmic dissipation: Transfer of electrical energy to thermal energy when current flows through a resistance.

Opacity: The amount of absorption and scattering of incident electromagnetic radiation by a material.

Pebbles: Centimeter to meter sized particles in proto-planetary disks that undergo radial drift due to gas drag.

Phase amplitude: Difference between the maximum and minimum observed emergent planetary flux over a full orbital phase.

Phase offset: Shift in orbital phase between secondary eclipse and the maximum observed emergent planetary flux.

Photoionization: The loss of an electron from an atom or molecule due to absorption of electromagnetic radiation.

Planetesimal: Solid body that forms during the era of planet formation that is larger than 1 km.

Proto-planetary disk: A disk of gas and dust that surrounds a young star.

Radial Velocity: A method used to detect planets by observing the periodic effect that the gravity of a planet causes on the location of spectral lines of the host star.

Refractory: A solid material that is resistant to becoming gaseous at high temperatures.

Secular: Taken or averaged over many orbits.
Shear instability: A dynamical instability that occurs when there is sufficient velocity shear in a fluid.

Substellar point: The point on a planet’s surface where the host star is directly overhead and incident rays of light from the host star strike perpendicularly to the surface.

Superrotation: A phenomenon that occurs when a planetary atmosphere has greater angular momentum than the solid-body rotation of the interior.

T Tauri star: Pre-main sequence stars that vary in their emitted light and are (pp. 184–186).

Zero Bond albedo equilibrium temperature: The temperature a planet would have assuming that it does not reflect any incident stellar radiation and perfectly redistributed heat across its surface, equal to \(T_{\text{eq}} = \left(\frac{L_{\star}}{4\pi \sigma} \right)^{1/4} \), where \(L_{\star} \) is the incident stellar flux and \(\sigma \) is the Stefan-Boltzmann constant.

Data Availability Statement

Data were not used, nor created for this research.

References

Ackermann, A. S., & Marley, M. S. (2001). Precipitating condensation clouds in substellar atmospheres. The Astrophysical Journal, 556, 872. http://dx.doi.org/10.1086/321540

Aller, H. D., Wisniewski, J. N., Johnson, J. A., Howard, A. W., Marcy, G. W., Butler, R. P., & Hartman, J. D. (2012). Obliquities of hot Jupiter host stars: Evidence for tidal interactions and primordial misalignments. The Astrophysical Journal, 757, 18. https://doi.org/10.1088/0004-637X/757/1/18

Allart, P., Bourrier, V., Lovis, C., Ehrenreich, D., Aceituno, J., Guijaro, A., et al. (2019). High-resolution confirmation of an extended helium atmosphere around WASP-107b. Astronomy and Astrophysics, 623, A58. https://doi.org/10.1051/0004-6361/201834917

Arcangeli, J., Desert, J., Parmentier, V., Stevenson, K. B., Bean, J. L., Line, M. R., & et al. (2019). Climate of an ultra hot Jupiter. Spectroscopic phase curve of WASP-18b with hst/wfc3. Astronomy and Astrophysics, 625, A136.

Arcangeli, J., Desert, J.-M., Line, M. R., Bean, J. L., Parmentier, V., Stevenson, K. B., et al. (2018). \(\Gamma^+ \) opacity and water dissociation in the dayside atmosphere of the very hot gas giant WASP-18b. The Astrophysical Journal Letters, 855, L30.

Armstrong, D., de Mooij, E., Barstow, J., Osborn, H. P., Blake, J., & Fereshteh Saniee, N. (2016). Variability in the hot Jupiters planet HAT-P-7 b. Nature Astronomy, 1, 4.

Arras, P., & Bildsten, L. (2006). Thermal structure and radius evolution of irradiated gas giant planets. The Astrophysical Journal, 650, 394–407. https://doi.org/10.1086/506011

Arras, P., & Socrates, A. (2010). Thermal tides in fluid extrasolar planets. The Astrophysical Journal, 714, 1–12. https://doi.org/10.1088/0004-637X/714/1/1

Bakos, G., Noyes, R., Latham, D., Csák, B., Gálfí, G., & Pál, A. (2006). Extrasolar planet search with the HAT network. In L. Arnold, F. Bouchy, & C. Moutou (Eds.), Tenth anniversary of 51 Peg-b: Status of and prospects for hot Jupiter studies (pp. 184–186). Paris: Frontier Group.

Baraffe, I., Chabrier, G., & Barman, T. (2010). The physical properties of extra-solar planets. Reports on Progress in Physics, 73(1), 016901. https://doi.org/10.1088/0034-4885/73/1/016901

Baraffe, I., Chabrier, G., Fortney, J., & Sohlin, C. (2014). Protostars and planets VI. In H. Beuther, R. Klessen, C. Dullemond, & T. Henning (Eds.), Chap. Planetary internal structures. (914 pp.). Tucson, AZ: University of Arizona Press.

Barstow, J. K., & Heng, K. (2020). Outstanding challenges of exoplanet atmospheric retrievals. Space Science Reviews, 216(5), 82. https://doi.org/10.1007/s11214-020-00666-x

Baruteau, C., Crida, A., Paardekooper, S.-J., Masset, F., Guilet, J., Bitsch, B., & Papaloizou, J. (2014). Planet-disk interactions and early evolution of planetary systems. Protostars and Planets VI, 667–689. https://doi.org/10.2485/anzu_uapress_9780816531240-ch6029

Batygin, K. (2012). A primordial origin for misalignments between stellar spin axes and planetary orbits. Nature, 491, 418–420. https://doi.org/10.1038/nature11560

Batygin, K., Bodenheimer, P. H., & Laughlin, G. P. (2016). In situ formation and dynamical evolution of hot Jupiter systems. The Astrophysical Journal, 829, 114. https://doi.org/10.3847/0004-637X/829/2/114

Batygin, K., Stanley, S., & Stevenson, D. (2013). Magnetically controlled circulation on hot extrasolar planets. The Astrophysical Journal, 776, 53.

Batygin, K., Stevenson, D., & Bodenheimer, P. (2011). Evolution of Ohmically heated hot Jupiters. The Astrophysical Journal, 738, 1.

Batygin, K., & Stevenson, D. J. (2010). Inflating hot Jupiters with Ohmic dissipation. The Astrophysical Journal, 714, L238–L243. https://doi.org/10.1088/2041-8205/714/2/L238

Baxter, C., Désert, J., Parmentier, V., Line, M., Fortney, J., Arcangeli, J., et al. (2020). A transition between the hot and the ultra-hot Jupiter atmospheres. Astronomy and Astrophysics, 639, A36.
Bean, J., Stevenson, K., Batalha, N., Berta-Thompson, Z., Kreidberg, L., Crouzet, N., et al. (2018). The transiting exoplanet community early release science program for JWST. Publications of the Astronomical Society of the Pacific, 130, 114402.

Beatty, T. G., Madhusudhan, N., Tsiaras, A., Zhao, M., Gilliland, R. L., Knutson, H. A., et al. (2017). Evidence for atmospheric cold-trap processes in the noninverted emission spectrum of Kepler-13Ab using HST/WFC3. The Astrophysical Journal, 154, 158.

Becker, J. C., Vanderburg, A., Adams, F. C., Rappaport, S. A., & Schwengeler, H. M. (2015). WASP-47: A hot Jupiter system with two additional planets discovered by K2. The Astrophysical Journal, 812, L18. https://doi.org/10.1088/2041-8205/812/2/L18

Bell, T., & Cowan, N. (2018). Increased heat transport in ultra-hot Jupiter atmospheres through H2 dissociation and recombination. The Astrophysical Journal Letters, 857, L20.

Bell, T., Dang, L., Cowan, N., Bean, J., Désert, J. M., Fortney, J. J., et al. (2020). Submitted to Monthly Notices of the Royal Astronomical Society. arXiv:2010.06857. Retrieved from https://arxiv.org/abs/2010.06857

Bell, T., Zhan, M., Cubillos, P., Dang, L., Fossati, L., Todorov, K., & Line, M. (2019). Mass loss from the exoplanet WASP-12b inferred from Spitzer phase curves. Monthly Notices of the Royal Astronomical Society, 489, 1995–2013.

Birkby, J., de Kok, R., Brogi, M., de Mooij, E. J. W., Schwartz, H., Albrecht, S., & Snellen, I. A. G. (2013). Detection of water absorption in the day side atmosphere of HD 189733b using ground-based high-resolution spectroscopy at 3.2 μm. Monthly Notices of the Royal Astronomical Society, 436, L35.

Birkby, J. L. (2018). Exoplanet atmospheres at high spectral resolution. arXiv:1806.04617. Retrieved from https://arxiv.org/abs/1806.04617

Birkby, J. L., de Kok, R. J., Brogi, M., Schwartz, H., & Snellen, I. A. G. (2017). Discovery of water at high spectral resolution in the atmosphere of 51 Peg b. The Astrophysical Journal, 153, 138. https://doi.org/10.3847/1538-3881/aa5c87

Blecic, J., Harrington, J., & Bowman, M. O. (2016). TEE: A code calculating thermochemical equilibrium abundances. The Astrophysical Journal Supplement Series, 225(1), 1. https://doi.org/10.3847/0067-0049/225/1/1

Bodenheimer, P., Laughlin, G., & Lin, D. (2003). On the radii of extrasolar giant planets. The Astrophysical Journal, 592, 555–563.

Bodenheimer, P., Lin, D. N. C., & Mardling, R. A. (2001). On the tidal inflation of short-period extrasolar planets. The Astrophysical Journal, 548, 466–472.

Boley, A. C., Granados Contreras, A. P., & Gladman, B. (2016). The in situ formation of giant planets at short orbital periods. The Astrophysical Journal, 817, L17. https://doi.org/10.3847/2041-8205/817/2/L17

Boss, A. P. (1997). Giant planet formation by gravitational instability. Science, 276, 1836–1839. https://doi.org/10.1126/science.276.5320.1836

Brogi, M., de Kok, R., Albrecht, S., Snellen, I., Birkby, J., & Schwartz, H. (2016). Rotation and winds of exoplanet HD 189733b measured with high-dispersion transmission spectroscopy. The Astrophysical Journal, 817, 106.

Brogi, M., de Kok, R., Birkby, J., Schwartz, H., & Snellen, I. A. G. (2014). Carbon monoxide and water vapor in the atmosphere of the non-transiting exoplanet HD 179949b. Astronomy and Astrophysics, 565, A124.

Brogi, M., & Line, M. R. (2019). Retrieving temperatures and abundances of exoplanet atmospheres with high-resolution cross-correlation spectroscopy. The Astrophysical Journal, 157(3), 114. https://doi.org/10.3847/1538-3881/aafdf3

Brown, T. M. (2001). Transmission spectra as diagnostics of extrasolar giant planet atmospheres. The Astrophysical Journal, 553, 1006–1026.

Bryan, M. L., Knutson, H. A., Howard, A. W., Ngo, H., Batygin, K., Crepp, J. R., et al. (2016). Statistics of long period gas giant planets in known planetary systems. The Astrophysical Journal, 821, 89. https://doi.org/10.3847/0004-637X/821/2/89

Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. (2007). Possible solutions to the radius anomalies of transiting giant planets. The Astrophysical Journal, 661, 502–514. https://doi.org/10.1086/514326

Burrows, A., & Lunine, J. (1995). Astronomical questions of origin and survival. Nature, 378(6555), 333. https://doi.org/10.1038/378333a0

Butler, R. P., Marcy, G. W., Williams, E., Hauser, H., & Shu, F. (1997). Three new “51 Pegasi-type” planets. The Astrophysical Journal, 474, L15. https://doi.org/10.1086/310444

Cabot, S. H. C., Madhusudhan, N., Welbanks, L., Piette, A., & Gandhi, S. (2020). Detection of neutral atomic species in the ultra-hot Jupiter WASP-121b. Monthly Notices of the Royal Astronomical Society, 494, 363.

Carone, L., Baez, R., Moliere, P., Barth, P., Vazan, A., Dean, L., et al. (2020). Monthly Notices of the Royal Astronomical Society, 499(3), 3582–3614. https://doi.org/10.1093/mnras/staa1733

Cauley, P., Skolnik, E., Llama, J., & Lanza, A. (2019). Magnetic field strengths of hot Jupiters from signals of star-planet interactions. Nature Astronomy, 3, 1128.

Chabrier, G., & Baraffe, I. (2007). Heat transport in giant (exo)planets: A new perspective. The Astrophysical Journal Letters, 661, 81.

Chabrier, G., Johansen, A., Janson, M., & Rafikov, R. (2014). Giant planet and Brown dwarf formation. In H., Beuther, R. S., Klessen, C. P., Dullemond, & Th., Henning (Eds.), Protostars and planets VI. Tucson, AZ: University of Arizona Press, 619642. https://doi.org/10.2485/azu_uapress_9780816531240-ch027

Chabrier, G., & Baraffe, I. (2007). Heat transport in giant (exo)planets: A new perspective. The Astrophysical Journal Letters, 661, 81.

Charbonneau, D., Allen, L. E., Megeath, S. T., Torres, G., Alonso, R., Brown, T. M., et al. (2005). Detection of thermal emission from an extrasolar planet. The Astrophysical Journal, 626, 523–529.

Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. (2000). Detection of planetary transits across a Sun-like star. The Astrophysical Journal, 529, L45–L48.

Charbonneau, D., Brown, T. M., Noyes, R. W., & Gilliland, R. L. (2002). Detection of an extrasolar planet atmosphere. The Astrophysical Journal, 568, 377–384.

Chatterjee, S., Ford, E. B., Matsumura, S., & Rasio, F. A. (2008). Dynamical outcomes of planet-planet scattering. The Astrophysical Journal, 686, 580–602. https://doi.org/10.1086/590227

Coleman, G. A. L., & Nelson, R. P. (2016). Giant planet formation in radially structured protoplanetary discs. Monthly Notices of the Royal Astronomical Society, 460, 2779–2795. https://doi.org/10.1093/mnras/stw1177

Cooper, C., & Showman, A. (2006). Dynamics and disequilibrium carbon chemistry in hot Jupiter atmospheres, with application to HD 209458b. The Astrophysical Journal, 649, 1048.

Cowan, N., & Agol, E. (2011a). A model for thermal phase variations of circular and eccentric exoplanets. The Journal of Geophysical Research: Planets, 116, 10.1002/jgre.20062.

Cowan, N., & Agol, E. (2011b). The statistics of albedo and heat recirculation on hot exoplanets. The Astrophysical Journal, 759, 54.

Cowan, N., Agol, E., Meadows, V., Robinson, T., Livengood, T., Deming, D., et al. (2009). Alien maps of an ocean-bearing world. The Astrophysical Journal, 700, 91S.

Cridland, A. I., van Dishoeck, E. F., Alesi, M., & Pudritz, R. E. (2019). Connecting planet formation and astrochemistry. A main sequence for CO in hot exoplanetary atmospheres. Astronomy and Astrophysics, 632, A63. https://doi.org/10.1051/0004-6361/201936105
Crossfield, I. J. M. (2015). Observations of exoplanet atmospheres. *Publications of the Astronomical Society of the Pacific, 127*(956), 941. https://doi.org/10.1086/683115

Cumming, A., Butler, R. P., Marcy, G. W., Vogt, S. S., Wright, J. T., & Fischer, D. A. (2008). The keck planet search: Detectability and the minimum mass and orbital period distribution of extrasolar planets. *Publications of the Astronomical Society of the Pacific, 120*, 531. https://doi.org/10.1086/588487

Dang, L., Cowan, N. B., Schwartz, J. C., Rauscher, E., Zhang, M., Knutson, H. A., et al. (2018). Detection of a westward hotspot offset in the atmosphere of hot gas giant corot-2b. *Nature Astronomy*, 2, 220–227.

Dawson, R. I., & Johnson, J. A. (2018). Origins of hot Jupiters. *Annual Review of Astronomy and Astrophysics, 56*, 175–221. https://doi.org/10.1146/annurev-astro-081817-051853

Dawson, R. I., & Murray-Clay, R. A. (2013). Giant planets orbiting metal-rich stars show signatures of planet-planet interactions. *The Astrophysical Journal, 767*, L24. https://doi.org/10.1088/2041-8205/767/2/L24

Daylan, T., Gunther, M., Mikal-Evans, T., Sing, D., Wong, I., Shporer, A., et al. (2019). TESS observations of the WASP-121 b phase curve. arXiv:1909.00000.

Deming, D., Brown, T. M., Charbonneau, D., Harrington, J., & Richardson, L. J. (2005). A new search for carbon monoxide absorption in the transmission spectrum of the extrasolar planet HD 209458b. *The Astrophysical Journal, 622*, 1149–1159.

Deming, D., & Knutson, H. (2020). Highlights of exoplanetary science from Spitzer. *Nature Astronomy, 4*, 453.

Deming, D., Louie, D., & Sheets, H. (2019). How to characterize the atmosphere of a transiting exoplanet. *Publications of the Astronomical Society of the Pacific, 131*(955), 013001. https://doi.org/10.1088/1538-3873/aac5c5

Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., & Rice, W. K. M. (2007). Gravitational instabilities in gaseous protoplanetary disks. *The Astrophysical Journal*, 669, 478–485. https://doi.org/10.1086/510042

Duffell, P. C., & Chiang, E. (2015). Eccentric Jupiters via disk-planet interactions.

Duffell, P. C., Haiman, Z., MacFadyen, A. I., D’Orazio, D. J., & Farris, B. D. (2014). The migration of gap-opening planets is not locked to viscous disk evolution. *The Astrophysical Journal Letters, 786*, L24.

Donati, J. F., Moutou, C., Malo, L., Baruteau, C., Yu, L., Hébrard, E., et al. (2016). A hot Jupiter orbiting a 2-million-year-old solar-mass T Tauri star. *Nature, 534*, 662–666. https://doi.org/10.1038/nature18305

Drummond, B., Mayne, N. J., Manners, J., Baraffe, I., Goyal, J., Tremblin, P., et al. (2018). The 3D thermal, dynamical, and chemical structure of the atmosphere of HD 189733b: Implications of wind-driven chemistry for the emission phase curve. *The Astrophysical Journal*, 869, 28.

Duffell, P. C., & Chiang, E. (2015). Eccentric Jupiters via disk-planet interactions. *The Astrophysical Journal, 812*, 94. https://doi.org/10.1088/0004-637x/812/2/94

Duffell, P. C., Haiman, Z., MacFadyen, A. I., D’Orazio, D. J., & Farris, B. D. (2014). The migration of gap-opening planets is not locked to viscous disk evolution. *The Astrophysical Journal, 792*, L10. https://doi.org/10.1088/2041-8205/792/1/L10

Durisen, R. H., Boss, A. P., Mayer, L., Nelson, A. F., Quinn, T., & Rice, W. K. M. (2007). Gravitational instabilities in gaseous protoplanetary disks and implications for giant planet formation. *Protostars and Planets V*, 607–622.

Eggleton, P. P., Kiseleva, L. G., & Hut, P. (1998). The equilibrium tide model for tidal friction. *The Astrophysical Journal, 499*, 853–870. https://doi.org/10.1086/305670

EHrenreich, D., Bourrier, V., Wheatley, P. J., Lecavelier des Etangs, A., Hébrard, G., Udry, S., et al. (2015). A giant comet-like cloud of hydrogen escaping the warm Neptune-mass exoplanet Gl 436b. *Nature, 522*(7557), 459–461. https://doi.org/10.1038/nature14501

EHrenreich, D.,Lovis, C., Allart, R., Osorio, M. R. Z., Pepe, F., Cristiani, S., et al. (2020). Nightside condensation of iron in an ultrahot giant exoplanet. *Nature, 580*, 597–601.

Esteves, L., de Moutj, E., & Jayawardhana, R. (2015). Changing phases of Alien worlds: Probing atmospheres of Kepler planets with high-precision photometry. *The Astrophysical Journal, 804*, 150.

Evans, T. M., Sing, D. K., Kataria, T., Goyal, J., Nikolov, N., Wakeford, H. R., et al. (2017). An ultrahot gas-giant exoplanet with a stratosphere. *Nature, 548*, 58–61.

Fabrycky, D., & Tremaine, S. (2007). Shrinking binary and planetary orbits by Koziol cycles with tidal friction. *The Astrophysical Journal, 669*, 1298–1315. https://doi.org/10.1086/521702

Fischer, D. A., & Valenti, J. (2005). The planet-metallicity correlation. *The Astrophysical Journal, 622*, 1102–1117. https://doi.org/10.1086/428383

Fisher, C., & Heng, K. (2018). Retrieval analysis of 38 WFC3 transmission spectra and resolution of the normalization degeneracy. *Monthly Notices of the Royal Astronomical Society, 481*(4), 4698–4727. https://doi.org/10.1093/mnras/sty2550

Flowers, E., Brogi, M., Rauscher, E., Kempton, E., & Chiavassa, A. (2019). The high-resolution transmission spectrum of HD 189733b interpreted with atmospheric doppler shifts from three-dimensional general circulation models. *The Astronomical Journal, 157*, 209.

Fortney, J., Baraffe, I., & Millizer, B. (2010). Exoplanets. In S. Seager (Ed.), *Exoplanets*. Tucson, AZ: University of Arizona Press.

Fortney, J. J., Lodders, K., Marley, M. S., & Freedman, R. S. (2008). A unified theory for the atmospheres of the hot and very hot Jupiters: Two classes of irradiated atmospheres. *Acta Physiologica Japonica, 67*, 1419–1435. https://doi.org/10.5887/pj2008.1453

Fortney, J. J., Marley, M. S., & Barnes, J. W. (2007). Planetary radii across five orders of magnitude in mass and stellar insolation: Application to transits. *The Astrophysical Journal, 659*, 1661–1672. https://doi.org/10.1086/512120

Fortney, J. J., Mordasini, C., Nettelmann, N., Kempton, E. M.-R., Greene, T. P., & Zahnle, K. (2013). A framework for characterizing the atmospheres of low-mass low-density transiting planets. *The Astrophysical Journal, 775*, 80. https://doi.org/10.1088/0004-637x/775/1/80

Fortney, J. J., Saumon, D., Marley, M. S., Lodders, K., & Freedman, R. S. (2006). Atmosphere, interior, and evolution of the metal-rich transiting planet HD 149026B. *Acta Physiologica Japonica, 642*, 495–504.
Fortney, J. J., Vischer, C., Marley, M. S., Hood, C. E., Line, M. R., Thorngren, D. P., et al. (2020). Beyond equilibrium temperature: How the atmosphere/interior connection affects the onset of methane, ammonia, and clouds in warm transiting giant planets. The Astrophysical Journal, 806(6), 288. https://doi.org/10.3847/1538-3881/abc5bd

Fromang, S., Leconte, J., & Heng, K. (2016). Shear-driven instabilities and shocks in the atmospheres of hot Jupiters. Astronomy and Astrophysics, 591, A144.

Fu, G., Deming, D., Lothringer, J., Nikolov, N., Ding, S., Kempton, E., et al. (2020). The Hubble PanCET program: Transit and eclipse spectroscopy of the strongly irradiated giant exoplanet WASP-76b. arXiv:2005.00205.

Gao, P., Thorngren, D., Lee, G., Fortney, J. J., Morley, C. V., Wakeford, H. R., et al. (2020). Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes. Nature Astronomy, 4, 951–956.

Garhart, E., Deming, D., Mandell, A., Knutson, H. A., Wallack, N., Burrows, A., et al. (2020). Statistical characterization of hot Jupiter atmospheres using Spitzer’s secondary eclipses. The Astrophysical Journal, 159(4), 137. https://doi.org/10.3847/1538-3881/abceff

Ginzburg, S., & Sari, R. (2015). Hot-Jupiter inflation due to deep energy deposition. The Astrophysical Journal, 803, 111.

Ginzburg, S., & Sari, R. (2016). Extended heat deposition in hot Jupiters: Application to Ohmic heating. The Astrophysical Journal, 819, 116. https://doi.org/10.3847/1538-4357/819/2/116

Gold, T., & Soter, S. (1969). Atmospheric tides and the resonant rotation of Venus. Icarus, 11, 156.

Goldreich, P., & Tremaine, S. (1980). Disk-satellite interactions. The Astrophysical Journal, 241, 425–441. https://doi.org/10.1086/158356

Gonzalez, G. (1997). The stellar metallicity-giant planet connection. Monthly Notices of the Royal Astronomical Society, 285, 403–412. https://doi.org/10.1093/mnras/285.2.403

Grunblatt, S., Huber, D., Gaidos, E., Hon, M., Zinn, J., & Stello, D. (2019). Giant planet occurrence within 0.2 AU of low-luminosity red giant branch stars with K2. The Astronomical Journal, 158, 227.

Guillot, T., & Showman, A. P. (2015). Understanding trends associated with clouds in irradiated exoplanets. The Astrophysical Journal, 154, 254.

Guz, P., Bodenheimer, P., & Lin, D. (2004). The internal structural adjustment due to tidal heating of short-period irradiated giant planets. The Atmospheric Journal, 688, 1076.

Hammond, M., & Pierrehumbert, R. (2018). Wave-mean flow interactions in the atmospheric circulation of tidally locked planets. The Astrophysical Journal, 869, 65.

Hartman, J. D., Bakos, G. Á., Bhatti, W., Penek, K., Bieryla, A., Latham, D. W., & Sári, P. (2016). HAT-P-65b and HAT-P-66b: Two transiting inflated hot Jupiters and observational evidence for the reinflation of close-in giant planets. The Astrophysical Journal, 152, 182. https://doi.org/10.3847/0004-6256/152/6/182

Haynes, K., Mandell, A., Madhusudhan, N., Deming, D., & Knutson, H. (2015). Spectroscopic evidence for a temperature inversion in the day-side atmosphere of the hot Jupiter WASP-33b. The Astrophysical Journal, 806, 146–158.

Helling, C. (2019). Exoplanet clouds. Annual Review of Earth and Planetary Sciences, 47, 583–606. https://doi.org/10.1146/annurev-earth-053018-060401

Helling, C., & Casewell, S. (2014). Atmospheres of brown dwarfs. The Astronomy and Astrophysics Review, 22, 80. https://doi.org/10.1007/s00159-014-0080-0

Helling, C., Lee, G., Dobbs-Dixon, I., Mayne, N., Amundsen, D. S., Khaimova, J., et al. (2016). The mineral clouds on HD 209458b and HD 189733b. Monthly Notices of the Royal Astronomical Society, 460, 855.

Heng, K. (2012). On the existence of shocks in irradiated planetary atmospheres. The Astrophysical Journal Letters, 761, L1.

Heng, K., & Demory, B.-O. (2013). Understanding trends associated with clouds in irradiated exoplanets. The Astrophysical Journal, 777(2), 100. https://doi.org/10.1088/0004-637X/777/2/100

Heng, K., Frierson, D., & Phillips, P. (2011). Atmospheric circulation of tidally locked exoplanets: II. dual-band radiative transfer and convective adjustment. Monthly Notices of the Royal Astronomical Society, 418, 2669.

Heng, K., & Showman, A. P. (2015). Atmospheric dynamics of hot exoplanets. Annual Review of Earth and Planetary Sciences, 43, 509–540. https://doi.org/10.1146/annurev-earth-060614-105146

Henry, G. W., Marcy, G. W., Butler, R. P., & Vogt, S. S. (2000). A transiting “51 Peg-like” planet. The Astrophysical Journal, 538, L21–L24.

Hinode, A., Bushby, P., & Rogers, T. (2019). Shallow-water magnetohydrodynamics for westward hotspots on hot Jupiters. The Astrophysical Journal Letters, 872, L27.

Hobbs, R., Shorttle, O., Madhusudhan, N., & Rimmer, P. (2019). A chemical kinetics code for modelling exoplanetary atmospheres. Monthly Notices of the Royal Astronomical Society, 487(2), 2242–2261. https://doi.org/10.1093/mnras/stz1333

Hoeijmakers, H., Ehrenreich, D., Heng, K., et al. (2018). Atomic iron and titanium in the atmosphere of the exoplanet KELT-9b. Nature, 560, 453–455.

Hoeijmakers, H. J., Seidel, J. V., Pino, L., Kitzmann, D., Sindel, J. P., Ehrenreich, D., et al. (2020). HEARTS IV. A spectral inventory of atoms and molecules in the high-resolution transmission spectrum of WASP-121 b. Astronomy and Astrophysics, 641, A123.

Holton, J., & Hakim, G. (2013). An introduction to dynamic meteorology (5th ed.). New York, NY: Academic Press.

Howard, A. W., Marcy, G. W., Bryson, S. T., Jenkins, J. M., Rowe, J. F., Batalha, N. M., et al. (2012). Planet occurrence within 0.25 AU of solar-type stars from Kepler. The Astrophysical Journal Supplement Series, 201, 21. https://doi.org/10.1088/0067-0049/201/2/21

Hu, R., Demory, B., Seager, S., Lewis, N., & Showman, A. (2015). A semi-analytical model of visible-wavelength phase curves of exoplanets and applications to Kepler-7b and Kepler-10b. The Astrophysical Journal, 802, 51.
Huang, X., & Cummings, A. (2012). Ohmic dissipation in the interiors of hot Jupiters. The Astrophysical Journal, 757, 47.
Hubbard, W. B. (1977). The Jovian surface condition and cooling rate. Icarus, 30, 305–310.
Hubbard, W. B., Fortney, J. J., Lunine, J. I., Burrows, A., Sudarsky, D., & Pinto, P. (2001). Theory of extrasolar giant planet transits. The Astrophysical Journal, 560, 413–419.
Hubeny, I., Burrows, A., & Sudarsky, D. (2003). A possible bifurcation in atmospheres of strongly irradiated stars and planets. The Astrophysical Journal, 594, 1011–1018.
Hui, C., Sing, D., Pont, F., Foy, N., Burrows, A., Wilson, P., et al. (2013). An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: Detection of atmospheric water and likely absence of TiO. Monthly Notices of the Royal Astronomical Society, 434, 3252.
Hut, P. (1981). Tidal evolution in close binary systems. Astronomy and Astrophysics, 99, 126–140.
Ibgui, I., & Burrows, A. (2009). Coupled evolution with tides of the radius and orbit of transiting giant planets: General results. The Astrophysical Journal, 700, 1921.
Irwin, P. G. I., Tramby, N. A., de Kok, R., Fletcher, L. N., Howell, C. J. A., Tsang, C. C. C., et al. (2008). The NEMESIS planetary atmosphere radiative transfer and retrieval tool. Journal of Quantitative Spectroscopy and Radiative Transfer, 109, 1136–1150. https://doi.org/10.1016/j.jqsrt.2007.11.006
Jackson, B., Adams, E., Sandidge, W., Kreyche, S., & Briggs, J. (2019). Variability in the atmosphere of the hot Jupiter Kepler-76b. The Astronomical Journal, 157, 239.
Jackson, B., Greenberg, R., & Barnes, R. (2008a). Tidal evolution of close-in extrasolar planets. The Astrophysical Journal, 678, 1396-1406. https://doi.org/10.1086/529187
Jackson, B., Greenberg, R., & Barnes, R. (2008b). Tidal heating of extrasolar planets. The Astrophysical Journal, 681, 1631.
Jansen, T., & Kipping, D. (2020). Detection of the phase curve and occultation of WASP-108b with TESS. Monthly Notices of the Royal Astronomical Society, 494, 4077.
Jenkins, J. S., Jones, H. R. A., Tuomi, M., Diaz, M., Cordero, J. P., Aguayo, A., & Minniti, D. (2017). New planetary systems from the Calan-Hertfordshire extrasolar planet search. Monthly Notices of the Royal Astronomical Society, 466, 443–473. https://doi.org/10.1093/mnras/stw2811
Jensen, A., Cauley, P., Redfield, S., Cochran, W., & Endl, M. (2018). Hydrogen and sodium absorption in the optical transmission spectrum of WASP-12b. The Astronomical Journal, 156, 154.
Johansen, A., & Lambrechts, M. (2017). Forming planets via pebble accretion. Annual Review of Earth and Planetary Sciences, 45, 359–387. https://doi.org/10.1146/annurev-earth-063016-020226
Kataria, T., Showman, A., Fortney, J., Stevenson, K., Line, M., Krieger, L., & Desert, J. (2015). The atmospheric circulation of the hot Jupiter WASP-43b: Comparing three-dimensional models to spectrophotometric data. The Astrophysical Journal, 801, 86.
Kataria, T., Sing, D., Lewis, N., Vischer, C., Showman, A., Fortney, J., & Marley, M. (2016). The atmospheric circulation of a nine-planet sample: Probing circulation and chemistry over a wide phase space. The Astrophysical Journal, 821, 9.
Keating, D., Cowan, N., & Dang, L. (2019). Uniformly hot nightside temperatures on short-period gas giants. Nature Astronomy, 3, 1092.
Kitzmann, D., Heng, K., Rimmer, P., Hoeijmakers, H., Tsai, S.-M., Malik, M., et al. (2018). The peculiar atmospheric chemistry of KELT-9b. The Astrophysical Journal, 863, 183.
Knutson, H., Charbonneau, D., Allen, L., Fortney, J., Agol, E., Cowan, N., & Megeath, S. (2007). A map of the day-night contrast of the extrasolar planet HD 189733b. Nature, 447, 183.
Knutson, H. A., Fulton, B. J., Montet, B. T., Kao, M., Ngo, H., Howard, A. W., & Muirhead, P. S. (2014). Friends of hot Jupiters. I. A radiative velocity search for massive, long-period companions to close-in gas giant planets. The Astrophysical Journal, 785, 126. https://doi.org/10.1088/0004-637X/785/2/126
Komacek, T., & Youdin, A. (2019). Reinflation of warm and hot Jupiters. The Astrophysical Journal, 883, 101. https://doi.org/10.3847/1538-4357/ab4a37
Komacek, T., Showman, A., & Tan, X. (2017). Atmospheric circulation of hot Jupiters: Dayside-nightside temperature differences. The Astrophysical Journal, 821, 16.
Komacek, T., Showman, A., & Tan, X. (2017). Atmospheric circulation of hot Jupiters: Dayside-nightside temperature differences. ii. comparison with observations. The Astrophysical Journal, 835, 198.
Komacek, T., & Tan, X. (2018). Effects of dissociation/recombination on the day-night temperature contrasts of ultra-hot Jupiters. Research Notes of the American Astronomical Society, 2, 36.
Komacek, T., Thorngren, D., Lopez, E., & Ginzburg, S. (2020). Reinfation of warm and hot Jupiters. The Astrophysical Journal, 893, 36.
Komacek, T., & Youdin, A. (2017). Structure and evolution of internally heated hot Jupiters. The Astrophysical Journal, 844, 94.
Kozy, Y. (1962). Secular perturbations of asteroids with high inclination and eccentricity. The Astrophysical Journal, 67, 591. https://doi.org/10.1086/108790
Kreidberg, L. (2017). Exoplanet atmosphere measurements from transmission spectroscopy and other planet star combined light observations. In H. J. Deeg, & J. A. Belmonte (Eds.), Handbook of exoplanets (22 pp.). Berlin, Germany: Springer. 978-3-319-30648-3.https://doi.org/10.1007/978-3-319-30648-3_100-1
Kreidberg, L., Line, M. R., Fortney, J. J., Desert, J.-M., Line, M. R., Fortney, J. J., Madhusudhan, N., & Homeier, D. (2014). A precise water abundance measurement for the hot Jupiter WASP-43b. The Astrophysical Journal, 793, L27. https://doi.org/10.1088/2041-8205/793/2/L27
Kreidberg, L., Line, M. R., Beaulieu, J.-F., Stevenson, K. B., Desert, J.-M., Madhusudhan, N., & Showman, A. P. (2015). A detection of water in the transmission spectrum of the hot Jupiter WASP-12b and implications for its atmospheric composition. The Astrophysical Journal, 814, 66. https://doi.org/10.1088/0004-637X/814/1/66
Kreidberg, L., Line, M. R., Parmentier, V., Stevenson, K. B., Louden, T., Bonnefoy, M., et al. (2018). Global climate and atmospheric composition of the ultra-hot Jupiter WASP-103b from HST and Spitzer phase curve observations. The Astronomical Journal, 156, 17.
Kurokawa, H., & Inutsuka, S. (2015). On the radius anomaly of hot Jupiters: Reexamination of the possibility and impact of layered convection. The Astrophysical Journal, 815, 78.
Latham, D. W., Rowe, J. F., Quinn, S. N., Batalha, N. M., Borucki, W. J., Brown, T. M., & Wohler, B. (2011). A first comparison of Kepler planet candidates in single and multiple systems. The Astrophysical Journal, 732, L24. https://doi.org/10.1088/2041-8205/732/1/L24
Laughlin, G. (2018). Handbook of exoplanets. In H. Deeg, & J. Belmonte (Eds.), Chap. Mass-radius relations of giant planets: The radius anomaly and interior models. Cham: Springer.
Laughlin, G., Crismani, M., & Adams, F. C. (2011). On the anomalous radii of the transiting extrasolar planets. The Astrophysical Journal, 729, L7. https://doi.org/10.1088/2041-8205/729/1/L7
Laughlin, G., & Lissauer, J. (2015). Treatise on geophysics. In G. Schubert (Ed.), Chap. Exoplanetary geophysics: An emerging discipline (2nd ed.). Amsterdam, Netherlands: Elsevier.
Lecavelier Des Etangs, A., Ehrenreich, D., Vidal-Madjar, A., Ballester, G. E., Desert, J. M., Ferlet, R., & Udry, S. (2010). Evaporation of the planet HD 189733b observed in H I Lyman-α. *Astronomy and Astrophysics*, 514, A72. https://doi.org/10.1051/0004-6361/200913347

Leconte, J., & Chabrier, G. (2012). A new vision of giant planet interiors: Impact of double diffusive convection. *Astronomy and Astrophysics*, 540, A20. https://doi.org/10.1051/0004-6361/201117595

Leconte, J., Chabrier, G., Baraffe, I., & Levrand, B. (2010). Is tidal heating sufficient to explain bloated exoplanets? consistent calculations accounting for finite initial eccentricity. *Astronomy and Astrophysics*, 516, A64.

Lee, E. I., & Chiang, E. (2016). Breeding super-Earths and birthing super-pulls in transitional disks. *The Astrophysical Journal*, 817, 90. https://doi.org/10.3847/0004-637X/817/2/90

Lee, J. E., & Chiang, E. (2017). Magnetospheric truncation, tidal inspiral, and the creation of short-period and ultra-short-period planets. *The Astrophysical Journal*, 842, 40. https://doi.org/10.3847/1538-4357/aa6fb3

Lee, J. E., Chiang, E., & Ormel, C. W. (2014). Make super-Earths, not Jupiters: Accreting nebular gas onto solid cores at 0.1 AU and beyond. *The Astrophysical Journal*, 797, 95. https://doi.org/10.1088/0004-637X/797/2/95

Lee, G., Dobbs-Dixon, I., Helling, C., Bognar, K., & Woitke, P. (2016). Dynamic mineral clouds on HD 189733b I. 3D RHD with kinetic, non-equilibrium cloud formation. *Astronomy and Astrophysics*, 594, A48.

Lee, M. H., & Peale, S. J. (2002). Dynamics and origin of the 2:1 Orbital resonances of the GI 876 planets. *The Astrophysical Journal*, 567, 596–609. https://doi.org/10.1086/338504

Lewis, N. K., Knutson, H. A., Showman, A. P., Cowan, N. B., Burrows, A., et al. (2013). Orbital phase variations of the eccentric giant planet HAT-P-2b. *The Astrophysical Journal*, 766(2), 95. https://doi.org/10.1088/0004-637X/766/2/95

Lin, D. N. C., Showman, A., Fortney, J., Knutson, H., & Marley, M. (2014). Atmospheric circulation of the eccentric hot Jupiter HAT-P-2b. *The Astrophysical Journal*, 795, 150.

Li, J., & Goodman, J. (2010). Circulation and dissipation on hot Jupiters. *The Astrophysical Journal*, 725, 1146.

Li, L., Jiang, X., West, R. A., Gierasch, P. J., Perez-Hoyos, S., Sanchez-Lavega, A., et al. (2018). Less absorbed solar energy and more internal heat for Jupiter. *Nature Communications*, 9, 3709.

Lind, M. L. (1962). The evolution of orbits of artificial satellites of planets under the action of gravitational perturbations of external bodies. *Planetary and Space Science*, 9, 719–759. https://doi.org/10.1016/0032-0633(62)90129-9

Lin, D. N. C., Bodenheimer, P., & Richardson, D. C. (1996). Orbital migration of the planetary companion of 51 Pegasi to its present location. *Nature*, 380, 606–607. https://doi.org/10.1038/380606a0

Lin, D. N. C., & Papaloizou, J. (1986). On the tidal interaction between protoplanets and the protoplanetary disk. III—Orbital migration of protoplanets. *The Astrophysical Journal*, 309, 846–857. https://doi.org/10.1086/164653

Lince, M. R., Stevenson, K. B., Fortney, J. J., Knutson, H., & Marley, M. (2011a). A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b. *The Astrophysical Journal*, 731, 150.

Lodders, K. (1999). Alkalai element chemistry in cool dwarf atmospheres. *The Astrophysical Journal*, 519, 793–801.

Lodders, K., & Fegley, B. (2002). Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. *Icarus*, 153, 339–424.

Lopez, E., & Fortney, J. (2016). Re-inflated warm Jupiters around giant stars. *The Astrophysical Journal*, 818, 4.

Lovelock, J. D., Barman, T., & Koskinen, T. (2018). Extremely irradiated hot Jupiters: Non-oxide inversions, H₂ opacity, and thermal dissociation of molecules. *The Astrophysical Journal*, 866(1), 27. https://doi.org/10.3847/1538-4357/aadd9e

Louden, T., & Wheatley, P. J. (2015). Spatially resolved eastward winds and rotation of HD 189733b. *The Astrophysical Journal*, 814(2), L24. https://doi.org/10.1088/2041-8205/814/2/L24

Madhusudhan, N. (2018). Atmospheric retrieval of exoplanets. In H., Deeg & J., Belmonte (Eds.), *Handbook of exoplanets* (pp. 104). Cham: Springer. https://doi.org/10.1007/978-3-319-55333-7_104

Madhusudhan, N. (2019). Exoplanetary atmospheres: Key insights, challenges, and prospects. *Annual Review of Astronomy and Astrophysics*, 57, 617–663. https://doi.org/10.1146/annurev-astro-081817-051846

Madhusudhan, N., Agundez, M., Moses, J. I., & Hui, Y. (2016). Exoplanetary atmospheres—Chemistry, formation conditions, and habitability. *Space Science Reviews*, 205(1–4), 285–348. https://doi.org/10.1007/s11214-016-0254-3

Madhusudhan, N., Amin, M. A., & Kennedy, G. M. (2014). Toward chemical constraints on hot Jupiter migration. *The Astrophysical Journal*, 794, L12. https://doi.org/10.1088/2041-8205/794/1/L12

Madhusudhan, N., Harrington, I., Stevenson, K. B., Nymeyer, S., Campo, C. J., Wheatley, P. J., et al. (2011a). A high C/O ratio and weak thermal inversion in the atmospheric exoplanet WASP-12b. *Nature*, 469, 64–67. https://doi.org/10.1038/nature09062

Madhusudhan, N., Mousis, O., Johnson, T. V., & Lunine, J. I. (2011b). Carbon-rich giant planets: Atmospheric chemistry, thermal inversions, spectra, and formation conditions. *The Astrophysical Journal*, 743, 191. https://doi.org/10.1088/0004-637X/743/2/191

Majeau, C., Agol, E., & Cowan, N. B. (2012). A two-dimensional infrared map of the extrasolar planet HD 189733b. *The Astrophysical Journal*, 747(2), L20. https://doi.org/10.1088/2041-8205/747/2/L20

Malhotra, R. (1993). The origin of Pluto's peculiar orbit. *Nature*, 365, 819–821. https://doi.org/10.1038/365819a0

Mandushiev, G., Torres, G., Latham, D. W., Charbonneau, D., Alonso, R., White, R. J., et al. (2005). The challenge of wide-field transit surveys: The case of GSC 01944-02289. *The Astrophysical Journal*, 621(2), 1061–1071. https://doi.org/10.1086/427727

Mankovich, C., Fortney, J., & Moore, K. (2016). Bayesian evolution models for Jupiter with helium rain and double-diffusive convection show affiliations. *The Astrophysical Journal*, 832, 113.

Mansfield, M., Bean, J. L., Line, M. R., Parmentier, V., Kreidberg, L., Desert, J.-M., et al. (2018). An HST/WFC3 thermal emission spectrum of the hot Jupiter HAT-P-7b. *The Astronomical Journal*, 156, 10.

Mansfield, M., Bean, J. L., Stevenson, K., Komacek, T. D., Bell, T. J., Tan, X., et al. (2020). Evidence for H₂ dissociation and recombination heat transport in the atmosphere of KELT-9b, *The Astrophysical Journal Letters*, 888, L15.
Marley, M. S., Gelino, C., Stephens, D., Lunine, J. I., & Freedman, R. (1999). Reflected spectra and albedos of extrasolar giant planets. I. Clear and cloudy atmospheres. The Astrophysical Journal, 513, 879–893.

May, E. M., & Stevenson, K. (2020). Introducing a new Spitzer master bliss map to remove the instrument-systematic—Phase-curve-parameter degeneracy, as demonstrated by a reanalysis of the 4.5μm WASP-43b phase curve. The Astrophysical Journal, 160, 140. arXiv:2007.06618.

Mayne, N., Baraffe, I., Acreman, D., Smith, C., Browning, M., Amundsen, D., & Jackson, D. (2014). The unified model, a fully-compressible, non-hydrostatic, deep atmosphere global circulation model, applied to hot Jupiters: ENGDame for a HD 209458b test case. Astronomy and Astrophysics, 561, A1.

Mayne, N., Debras, F., Baraffe, I., Thuillier, J., Amundsen, D., Acreman, D., & Wood, N. (2017). Results from a set of three-dimensional numerical experiments of a hot Jupiter atmosphere. Astronomy and Astrophysics, 604, A79.

Mayor, M., & Queloz, D. (1995). A Jupiter-mass companion to a solar-type star. Nature, 378, 355.

McCullough, P., Crouzet, N., Deming, D., & Madhusudhan, N. (2014). Water vapor in the spectrum of the extrasolar planet HD 189733b. I. the transit. The Astrophysical Journal, 791, 55.

Mendonça, J. (2020). Angular momentum and heat transport on tidally locked Jupiter planets. Monthly Notices of the Royal Astronomical Society, 491, 1456.

Mendonça, J., Grimm, S., Grosheintz, L., & Heng, K. (2016). Thor: A new and flexible global circulation model to explore planetary atmospheres. The Astrophysical Journal, 829, 115.

Mendonça, J., Tsai, S., Malik, M., Grimm, S., & Heng, K. (2018). Three-dimensional circulation driving chemical disequilibrium in WASP-43b. The Astrophysical Journal, 869, 107.

Mennou, K. (2012). Magnetic scaling laws for the atmospheres of hot giant exoplanets. The Astrophysical Journal, 745, 138.

Mennou, K., & Rauscher, E. (2009). Atmospheric circulation of hot Jupiters: A shallow three-dimensional model. The Astrophysical Journal, 700, 887.

Mikal-Evans, T., Sing, D. K., Kataria, T., Wakeford, H. R., Mayne, N. J., Lewis, N. K., et al. (2020). Confirmation of water emission in the dayside spectrum of the ultrahot Jupiter WASP-121b. Monthly Notices of the Royal Astronomical Society, 496, 1638–1644.

Miller, N., & Fortney, J. J. (2011). The heavy-element masses of extrasolar giant planets, revealed. The Astrophysical Journal, 736, L29. https://doi.org/10.1088/2041-8205/736/2/L29

Miller, N., Fortney, J. J., & Jackson, B. (2009). Inflating and deflating hot Jupiters: Coupled tidal and thermal evolution of known transiting planets. The Astrophysical Journal, 702, 1413.

Miller-Ricci Kempton, E., Zahnle, K., & Fortney, J. J. (2012). The atmospheric chemistry of GJ 1214b: Photochemistry and clouds. The Astrophysical Journal, 745, 3. https://doi.org/10.1088/0004-637X/745/1/13

Moe, M., & Kratter, K. M. (2019). Impact of binary stars on planet statistics—1. Planet occurrence rates, trends with stellar mass, and wide companions to hot Jupiter hosts. arXiv:1912.01699.

Molière, P., van Boekel, R., Dullemond, C., Henning, T., & Mordasini, C. (2015). Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity. Astronomy & Astrophysics, arXiv:1403.5272.566. https://doi.org/10.1051/0004-6361/201321479

Mordasini, C., van Boekel, R., Dullemond, C., Henning, T., & Mordasini, C. (2015). Model atmospheres of irradiated exoplanets: The influence of stellar parameters, metallicity, and the C/O ratio. The Astrophysical Journal, 813, 47. https://doi.org/10.1088/0004-637X/813/1/47

Mordasini, C., Klahr, H., Alibert, Y., Miller, N., & Henning, T. (2014). Grain opacity and the bulk composition of extrasolar planets. I. Results from scaling the ISM opacity. Astronomy & Astrophysics, arXiv:1403.5272.566. https://doi.org/10.1051/0004-6361/201321479

Mordasini, C., van Boekel, R., Molière, P., Henning, T., & Benneke, B. (2016). The imprint of exoplanet formation history on observable present-day spectra of hot Jupiters. The Astrophysical Journal, 832, 41. https://doi.org/10.3847/0004-637X/832/1/41

Moses, J. L., Viúšec, C., Fortney, J. J., Showman, A. P., Lewis, N. K., Griffith, C. A., et al. (2011). Disequilibrium carbon, oxygen, and nitrogen chemistry in the atmospheres of the HD 189733b and HD 209458b. The Astrophysical Journal, 737(1), 15. https://doi.org/10.1088/0004-637X/737/1/15

Muñoz, D. J., Lai, D., & Liu, B. (2016). The formation efficiency of close-in planets via Lidov-Kozai migration: Analytic calculations. Monthly Notices of the Royal Astronomical Society, 460, 1086–1093. https://doi.org/10.1093/mnras/stw983

Murray-Clay, R., Chiang, E., & Murray, N. (2008). Atmospheric escape from hot Jupiters. The Astrophysical Journal, 693, 23–42.

Mustill, A. J., Davies, M. R., & Johansen, A. (2015). The destruction of inner planetary systems during high-eccentricity migration of gas giants. The Astrophysical Journal, 808, 14. https://doi.org/10.1088/0004-637X/808/1/14

Naoz, S. (2016). The eccentric Kozai-Lidov effect and its applications. Annual Review of Astronomy and Astrophysics, 54, 441–489. https://doi.org/10.1146/annurev-astro-081915-023315

Nettelmann, N., Fortney, J. J., Moore, K., & Mankovich, C. (2015). An exploration of double diffusive convection in Jupiter as a result of hydrogen-helium phase separation. Monthly Notices of the Royal Astronomical Society, 447, 3422–3441. https://doi.org/10.1093/mnras/stu2634

Ngo, H., Knutson, H. A., Hinckley, S., Bryan, M., Crepp, J. R., Batygin, K., et al. (2016). Friends of hot Jupiters. IV. Stellar companions beyond 50 au might facilitate giant planet formation, but most are unlikely to cause Kozai-Lidov migration. The Astrophysical Journal, 827, 8. https://doi.org/10.3847/0004-637X/827/1/8

Nikolov, N., Sing, D. K., Pont, F., Burrows, A. S., Fortney, J. J., Ballester, G. E., et al. (2014). Hubble Space Telescope hot Jupiter transmission spectral survey: A detection of Na and strong optical absorption in HAT-P-1b. Monthly Notices of the Royal Astronomical Society, 437, 46–66.

Ninan, J. P., Stefansson, G., Mahadevan, S., Bender, C., Robertson, P., Ramsey, L., et al. (2020). Evidence for He 110830 Å Absorption during the transit of a warm Neptune around the M-dwarf GI 3470 with the habitable-zone planet finder. The Astrophysical Journal, 894(2), 97. https://doi.org/10.3847/1538-4357/ab8559

Nugroho, S. K., Kawahara, H., Masuda, K., Hirano, T., Kotani, T., & Tajitsu, A. (2017). The American Astronomical Society, find out more high-resolution spectroscopic detection of TiO and a stratosphere in the day-side of WASP-33b.

Obers, Ë.& Murray-Clay, R., & Bergin, E. A. (2011). The effects of clouds on C/O in planetary atmospheres. The Astrophysical Journal, 743, L16. https://doi.org/10.1088/2041-8205/743/1/L16

Oklopcic, A., & Hirata, C. M. (2018). A new window into escaping exoplanet atmospheres: 10830 Å line of helium. The Astrophysical Journal, 855(1), L11. https://doi.org/10.3847/2041-8213/aaada9

Oklopcic, A., Silva, M., Montero-Camacho, P., & Hirata, C. M. (2020). Detecting magnetic fields in exoplanets with spectropolarimetry of the helium line at 1083 nm. The Astrophysical Journal, 890(1), 88. https://doi.org/10.3847/1538-4357/ab676c

Oreshenko, M., Heng, K., & Demory, B. (2016). Optical phase curves as diagnostics for aerosol composition in exoplanetary atmospheres. Monthly Notices of the Royal Astronomical Society, 457, 3420.
Owen, J. E. (2019). Atmospheric escape and the evolution of close-in exoplanets. *Annual Review of Earth and Planetary Sciences*, 47, 67–90. https://doi.org/10.1146/annurev-earth-053018-060246

Owen, J. E., & Adams, F. C. (2014). Magnetically controlled mass-loss from extrasolar planets in close orbits. *Monthly Notices of the Royal Astronomical Society*, 444(4), 3761–3779. https://doi.org/10.1093/mnras/stu1684

Paardekooper, S.-J., & Mellema, G. (2006). Halting type I planet migration in non-isothermal disks. *Astronomy and Astrophysics*, 459, L17–L20. https://doi.org/10.1051/0004-6361:20066304

Parmentier, V., & Crossfield, I. (2018). The exoplanet handbook. In *Chap. Exoplanet phase curves: Observations and theory*. Springer.

Parmentier, V., Fortney, J. J., Showman, A. P., Morley, C., & Marley, M. S. (2016). Transitions in the cloud composition of hot Jupiters. *The Astrophysical Journal*, 828, 22. https://doi.org/10.3847/0004-637X/828/1/22

Parmentier, V., Line, M. R., Bean, J. L., Mansfield, M., Kreidberg, L., Lpuru, R., et al. (2018). From thermal dissociation to condensation in the atmospheres of ultra hot Jupiters: WASP-121b in context. *Astronomy and Astrophysics*, 617, A110.

Parmentier, V., Showman, A., & Fortney, J. (2020). The cloudy shape of hot Jupiter thermal phase curves. *Monthly Notices of the Royal Astronomical Society*, 501(1), 78–108. https://doi.org/10.1093/mnras/staa3418

Parmentier, V., Showman, A., & Lian, Y. (2013). 3D mixing in hot Jupiters atmospheres. *Science*, 340, 589–591.

Pass, E., Cowan, N., Cubillos, P., & Sklar, J. (2019). Estimating dayside effective temperatures of hot Jupiters and associated uncertainties through Gaussian process regression. *Monthly Notices of the Royal Astronomical Society*, 489, 941.

Perez-Becker, D., & Showman, A. (2013). Atmospheric heat redistribution on hot Jupiters. *The Astrophysical Journal*, 776, 134.

Perna, R., Heng, K., & Pont, F. (2012). The effects of irradiation on hot Jovian atmospheres: Heat redistribution and energy dissipation. *The Astrophysical Journal*, 751, 59.

Perna, R., Menou, K., & Rauscher, E. (2010a). Magnetic drag on hot Jupiter atmospheric winds. *The Astrophysical Journal*, 719, 1421.

Perna, R., Menou, K., & Rauscher, E. (2010b). Ohmic dissipation in the atmospheres of hot Jupiters. *The Astrophysical Journal*, 724, 313.

Perri, F., & Cameron, A. G. W. (1974). Hydrodynamic instability of the solar nebula in the presence of a planetary core. *Icarus*, 22, 416–425. https://doi.org/10.1016/0019-1035(74)90074-8

Petrichov, C., Tremaine, S., & Rafikov, R. (2014). Scattering outcomes of close-in planets: Constraints on planet migration. *The Astrophysical Journal*, 786, 101. https://doi.org/10.1088/0004-637X/786/2/101

Piskorz, D., Benneke, B., Crockett, N. R., Lockwood, A. C., Blake, G. A., Barman, T. S., et al. (2017). Detection of water vapor in the thermal spectrum of the non-transiting hot Jupiter upsilon Andromedae b. *The Astronomical Journal*, 154, 78.

Polichtchouk, I., Cho, J., Watkins, C., Thrastarson, H., Umurhan, O., & de la Torre Juarez, M. (2014). Intercomparison of general circulation models for hot extrasolar planets. *Icarus*, 229, 355–377.

Pollack, J. B., Hubickyj, O., Bodenheimer, P., Lissauer, J. J., Podolak, M., & Greenzweig, Y. (1996). Formation of the giant planets by concurrent accretion of solids and gas. *Icarus*, 124, 62–85. https://doi.org/10.1006/icar.1996.0190

Powell, D., Zhang, X., Gao, P., & Parmentier, V. (2018). Formation of silicate and titanium clouds on hot Jupiters. *The Astrophysical Journal*, 860, 18.

Rafikov, R. R. (2005). Can giant planets form by direct gravitational instability? *The Astrophysical Journal*, 621, L69–L72. https://doi.org/10.1086/428899

Rasio, F. A., & Ford, E. B. (1996). Dynamical instabilities and the formation of extrasolar planetary systems. *Science*, 274, 954–956. https://doi.org/10.1126/science.274.5299.954

Rauscher, E., & Kempton, E. (2014). The atmospheric circulation and observable properties of non-synchronously rotating hot Jupiters. *The Astrophysical Journal*, 790, 79.

Rauscher, E., & Menou, K. (2010). Three-dimensional modeling of hot Jupiter atmospheric flows. *The Astrophysical Journal*, 714, 1334.

Rauscher, E., & Menou, K. (2013). Three-dimensional atmospheric circulation models of HD 189733b and HD 209458b with consistent magnetic drag and Ohmic dissipation. *The Astrophysical Journal*, 764, 103.

Rauscher, E., Menou, K., Seager, S., Deming, D., Cho, J. Y.-K., & Hansen, B. M. S. (2007). Toward eclipse mapping of hot Jupiters. *The Astrophysical Journal*, 664, 1199–1209. https://doi.org/10.1086/519213

Redfield, S., Endl, M., Cochran, W., & Koesterke, L. (2008). Sodium absorption from the exoplanet atmosphere of HD 189733b detected in the optical transmission spectrum. *The Astrophysical Journal Letters*, 673, L87.

Rice, W. K. M., Armitage, P. J., & Hogg, D. F. (2008). Why are there so few hot Jupiters? *Monthly Notices of the Royal Astronomical Society*, 384, 1242–1248. https://doi.org/10.1111/j.1365-2966.2007.12817.x

Rogers, T. (2017). Constraints on the magnetic field strength of HAT-P-7b and other hot giant exoplanets. *Nature Astronomy*, 1, 131.

Rogers, T., & Komacek, T. (2014). Magnetic effects in hot Jupiter atmospheres. *The Astrophysical Journal*, 794, 132.

Rogers, T. M., Lin, D. N. C., & Lau, H. H. B. (2012). Internal gravity waves modulate the apparent misalignment of exoplanets around hot stars. *The Astrophysical Journal*, 758, L6. https://doi.org/10.1088/2041-8205/758/1/L6

Rogers, T. M., & Showman, A. (2014). Magnetohydrodynamic simulations of the atmosphere of HD209458b. *The Astrophysical Journal Letters*, 782, L4.

Roman, M., & Rauscher, E. (2017). Modeling the effects of inhomogeneous aerosols on the hot Jupiter Kepler-7b's atmospheric circulation. *The Astrophysical Journal*, 850, 17.

Roman, M., & Rauscher, E. (2019). Modeled temperature-dependent clouds with radiative feedback in hot Jupiter atmospheres. *The Astrophysical Journal*, 872, 1.

Roman, M. T., Kempton, E. M.-R., Rauscher, E., Harada, C. K., Bean, J. L., & Stevenson, K. B. (2020). Clouds in three-dimensional models of hot Jupiters over a wide range of temperatures I: Thermal structures and broadband phase curve predictions. *arXiv*2010.06936.

Sainsbury-Martinez, F., Wang, P., Fromang, S., Tremblin, P., Dubos, T., Meurdesoif, Y., et al. (2019). Idealised simulations of the deep atmosphere of hot Jupiters: Deep, hot adiabats as a robust solution to the radius inflation problem. *Astronomy and Astrophysics*, 632, A114.

Sanlos, N. C., Israeli, G., & Mayor, M. (2001). The metal-rich nature of stars with planets. *Astronomy and Astrophysics*, 373, 1019–1031. https://doi.org/10.1051/0004-6361:20010648

Sarkis, P., Mordasini, C., Henning, T., Marleau, G. D., & Mollière, P. (2020). Evidence of three mechanisms explaining the radius anomaly of hot Jupiters. *Astronomy and Astrophysics*, 645, A79. arXiv:2009.04291.

Sato, B., Fischer, D. A., Henry, G. W., Laughlin, G., Butler, R. P., Marcy, G. W., et al. (2005). The NJK Consortium. II. A transiting hot Saturn around HD 149026 with a large dense core. *The Astrophysical Journal*, 633, 465–473. https://doi.org/10.1086/449306

Schlichting, H. E. (2014). Formation of close in super-Earths and mini-Neptunes: Required disk masses and their implications. *The Astrophysical Journal*, 795, L15. https://doi.org/10.1088/2041-8205/795/1/L15
Schwartz, J., & Cowan, N. (2015). Balancing the energy budget of short-period giant planets: Evidence for reflective clouds and optical absorbers. Monthly Notices of the Royal Astronomical Society, 449, 4192.

Schwartz, J., Kashner, Z., Jovmir, D., & Cowan, N. (2017). Phase offsets and the energy budgets of hot Jupiters. The Astrophysical Journal, 850, 154.

Seager, S., & Sasselov, D. D. (1998). Extrasolar giant planets under strong stellar irradiation. The Astrophysical Journal, 502, L157.

Seager, S., & Sasselov, D. D. (2000). Theoretical transmission spectra during extrasolar giant planet transits. The Astrophysical Journal, 537, 916–921.

Seidel, J. V., Ehrenreich, D., Wytenbach, A., Allart, R., Lendl, M., Pino, L., et al. (2019). Hearts II. A broadened sodium feature on the ultra-hot giant WASP-76b. Astronomy and Astrophysics, 623, A166.

Showman, A., Cho, J., & Menou, K. (2010). Exoplanets. In S. Seager (Ed.), Chap. Atmospheric circulation of exoplanets. Tucson, AZ: University of Arizona Press.

Showman, A., Fortney, J., Lewis, N., & Shabram, M. (2013). Doppler signatures of the atmospheric circulation on hot Jupiters. The Astrophysical Journal, 762, 24.

Showman, A. P., Fortney, J. J., Lian, Y., Marley, M. S., Freedman, R. S., Knutson, H. A., & Charbonneau, D. (2009). Atmospheric circulation of hot Jupiters: Coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. The Astrophysical Journal, 699, 564–584. https://doi.org/10.1088/0004-637X/699/1/564

Showman, A. P., & Guillot, T. (2002). Atmospheric circulation and tides of “51 Pegasus b-like” planets. Astronomy and Astrophysics, 385, 168–180.

Showman, A. P., & Polvani, L. M. (2011). Equatorial superrotation on tidally locked exoplanets. The Astrophysical Journal, 738, 71.

Showman, A. P., Tan, X., & Parmentier, V. (2020). Atmospheric dynamics of hot giant planets and brown dwarfs, arXiv:2007.15363. Space Science Reviews, 216(8), 139. https://doi.org/10.1007/s11214-020-00758-8

Shporer, A., Wong, I., Huang, C. X., Line, M. R., Stassun, K. G., Fetherolf, T., et al. (2019). TESS full orbital phase curve of the WASP-18b system. The Astronomical Journal, 157, 178.

Sing, D. K. (2018). Observational techniques for detecting and characterizing exoplanets. In Bozza, Valerio, Mancini, Luigi, Sozzetti, Alessandro (Eds.), Astrophysics of Exoplanetary Atmospheres 2nd Advanced School on Exoplanetary Science arXiv:1804.07357.

Sing, D. K., Desert, J.-M., Fortney, J. J., des Etangs, A. L., Ballester, G. E., Cepa, J., et al. (2011). Gran Telescopio Canarias ORSAN transiting exoplanet atmospheric survey: Detection of potassium in XO-2b from narrowband spectrophotometry. Astronomy and Astrophysics, 527, A73.

Sing, D. K., Fortney, J. J., Nikolov, N., Wakeford, H. R., Kataria, T., Evans, T. M., & Wilson, P. A. (2016). A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature, 529, 59–62. https://doi.org/10.1038/nature16008

Sing, D. K., Wakeford, H. R., Showman, A. P., Nikolov, N., Fortney, J. J., Burrows, A. S., et al. (2015). HST hot-Jupiter transmission spectral survey: Detection of potassium in WASP-31b along with a cloud deck and Rayleigh scattering. Monthly Notices of the Royal Astronomical Society, 446, 2428–2443.

Snellen, I., de Kok, R., de Mooij, E., & Albrecht, S. (2010). The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature, 465, 1049.

Socrates, A. (2013). Relationship between thermal tides and radial excess. arXiv e-prints. https://arxiv.org/abs/1304.4121

Spake, J. J., Sing, D. K., Evans, T. M., Oklopcic, A., Bourrier, V., & Madhusudhan, N. (2018). Helium in the exodisc atmosphere of an exoplanet. Nature, 557(7703), 68–70. https://doi.org/10.1038/s41586-018-0067-5

Spiegel, D., & Burrows, A. (2013). Thermal processes governing hot-Jupiter radii. The Astrophysical Journal, 772, 76.

Spiegel, D., Silverio, K., & Burrows, A. (2009). Can TIO explain thermal inversions in the upper atmospheres of irradiated giant planets? The Astrophysical Journal, 699, 1487.

Steffen, J. H., Ragazzine, D., Fabrycky, D. C., Carter, J. A., Ford, E. B., Holman, M. J., & Quinn, S. N. (2012). Kepler constraints on planets near hot Jupiters. Proceedings of the National Academy of Sciences of the United States of America, 109, 7982–7987. https://doi.org/10.1073/pnas.1120970109

Steinrueck, M. E., Parmentier, V., Showman, A. P., Lotharinger, J. D., & Lupu, R. E. (2019). The effect of 3D transport-induced disequilibrium carbon chemistry on the atmospheric structure, phase curves, and emission spectra of hot Jupiter HD 189733b. The Astrophysical Journal, 880, 14.

Stevenson, K. B., Bean, J. L., Madhusudhan, N., & Harrington, J. (2014a). Deciphering the atmospheric composition of WASP-12b: A comprehensive analysis of its dayside emission. The Astrophysical Journal, 791, 36.

Stevenson, K. B., Desert, J.-M., Line, M. R., Bean, J. L., Fortney, J. J., Showman, A. P., & Homeier, D. (2014b). Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy. Science, 346, 838–841. https://doi.org/10.1126/science.1256758

Stevenson, K. B., Line, M. R., Bean, J. L., Desert, J.-M., Fortney, J. J., Showman, A. P., & Feng, Y. K. (2017). Spitzer phase curve constraints for WASP-43b at 3.6 and 4.5 microns. The Astrophysical Journal, 153, 68.

Storch, N. I., Anderson, K. R., & Lai, D. (2014). Chaotic dynamics of stellar spin in binaries and the production of misaligned hot Jupiters. Science, 345, 1317–1321. https://doi.org/10.1126/science.1254358

Sudarsky, D., Burrows, A., & Hubeny, I. (2003). Theoretical spectra and atmospheres of extrasolar giant planets. The Astrophysical Journal, 588, 1121–1148.

Sudarsky, D., Burrows, A., & Pinto, P. (2000). Albedo and reflection spectra of extrasolar giant planets. The Astrophysical Journal, 538, 885–903.

Tabernero, H. M., Osorio, M. R. Z., Allart, R., Borsa, F., Casasayas-Barris, N., Demangeon, O., et al. (2020). Espresso high resolution transmission spectroscopy of WASP-76b. arXiv:2011.12197.

Tan, X., & Komacek, T. (2019). The atmospheric circulation of ultra-hot Jupiters. The Astrophysical Journal, 886, 26.

Teske, J. K., Thorngren, D. P., Fortney, J. J., Hinkel, N., & Brewer, J. M. (2019). Do metal-rich stars make metal-rich planets? New insights on giant planet formation from host star abundances. The Astrophysical Journal, 537, 239. https://doi.org/10.3847/1538-3881/ab47f9

Thommes, E. W., Duncan, M. J., & Levison, H. F. (1999). The formation of Uranus and Neptune in the Jupiter-Saturn region of the Solar System. Nature, 402, 635–638. https://doi.org/10.1038/45185

Thompson, W. (1882). On the thermodynamic acceleration of the earth’s rotation. Proceedings of the Royal Society of Edinburgh, 11, 396.

Thorngren, D. P., & Fortney, J. (2018). Bayesian analysis of hot Jupiter radius anomalies: Evidence for oblique dissipation? The Astronomical Journal, 155, 214.

Thorngren, D. P., Fortney, J. J., Murray-Clay, R. A., & Lopez, E. D. (2016). The mass-metallicity relation for giant planets. The Astrophysical Journal, 831, 64. https://doi.org/10.3847/0004-637X/831/1/64
Thongrern, D. P., Gao, P., & Fortney, J. J. (2019). The intrinsic temperature and radiative-convective boundary depth in the atmospheres of hot Jupiters. *The Astrophysical Journal, 884*(1), L6. https://doi.org/10.3847/2041-8213/ab43d0

Tinetti, G., Drossart, P., Eccleston, P., Hartogh, P., Heske, A., Leconte, J., & Zwart, F. (2018). A chemical survey of exoplanets with ARIEL. *Experimental Astronomy*, 46(1), 135–209. https://doi.org/10.1007/s10686-018-9598-x

Tremblin, P., Chabrier, G., Mayne, N., Amundsen, D., Baraffe, I., Debras, F., & Fromang, S. (2017). Advection of potential temperature in the atmosphere of irradiated exoplanets: A robust mechanism to explain radius inflation. *The Astrophysical Journal, 845*, 30.

Trilling, D. E., Benz, W., Guillot, T., Lunine, J. I., Hubbard, W. B., & Burrows, A. (1998). Orbital evolution and migration of giant planets: Modeling extrasolar planets. *The Astrophysical Journal, 500*, 428–439. https://doi.org/10.1086/305711

Tsai, S., Dobbs-Dixon, I., & Gu, P. (2014). 3D structures of equatorial waves and the resulting superrotation in the atmosphere of a tidally locked hot Jupiter. *The Astrophysical Journal, 793*, 141.

Tsai, S.-M., Lyons, J. L., Grosheintz, L., Rimmer, P. B., Nutter, D., & Kipping, D. Y. (2015). Tidally-driven Roche-lobe overflow of hot Jupiters with MESA. *The Astrophysical Journal, 813*, 101. https://doi.org/10.3847/0004-637X/813/2/101

Valsecchi, F., Kaspi, Y., & Saglia, R. P. (2015). From hot Jupiters to super-eartahs via Roche Lobe overflow. *The Astrophysical Journal, 793*, L3. https://doi.org/10.1088/2041-8205/793/1/L3

Vazan, A., Helled, R., & Guillot, T. (2018). Jupiter’s evolution with primordial composition gradients. *Astronomy and Astrophysics, 610*, L14.

Venot, O., Cavalé, T., Bounaceur, R., Tremblin, P., Brouillard, L., & Lhoussaine Ben Brahim, R. (2020). New chemical scheme for giant planet thermochemistry. Update of the methane chemical and new reduced chemical scheme. *Astronomy and Astrophysics, 634*, A78. https://doi.org/10.1051/0004-6361/201936697

Venot, O., Hébrard, E., Agúndez, M., Dobrijevic, M., Selsis, F., Hersant, F., et al. (2012). A chemical model for the atmosphere of hot Jupiters. *Astronomy and Astrophysics, 546*, A43. https://doi.org/10.1051/0004-6361/201219310

Vidal-Madjar, A., Lecavelier des Etangs, A., Ballester, G. E., Ferlet, R., Hébrard, G., & Mayor, M. (2003). An extended upper atmosphere around the extrasolar planet HD209458b. *The Astrophysical Journal, 604*, L69–L72.

Vidal-Madjar, A., Lecavelier des Etangs, A., Desert, J.-M., Ballester, G. E., Fekel, R., Hébrard, G., & Mayor, M. (2003). An extended upper atmosphere around the extrasolar planet HD209458b. *Nature*, 422, 143–146.

Visscher, C., Lodders, K., & Fegley, B. Jr. (2010). Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. *III. Iron, magnesium, and silicon. The Astrophysical Journal, 716*, 1060–1075. https://doi.org/10.1088/0004-637X/716/2/1060

von Essen, C., Mallonn, M., Borre, C. C., Antoci, V., Stassun, K. G., Khalafinejad, S., & Tautvaišienė, G. (2020). TESS unveils the phase density profile of the slowly rotating hot Jupiter HD 80606 b. *Astronomy and Astrophysics, 639*, A3. arXiv:2004.10767.

Wakeford, H. R., Visscher, C., Lewis, N. K., Kataria, T., Marley, M. S., Fortney, J. J., & Mandell, A. M. (2017). High-temperature condensate clouds in super-hot Jupiter atmospheres. *Monthly Notices of the Royal Astronomical Society, 464*, 4247.

Wallack, N. L., Knutson, H. A., Morley, C. V., Moses, J. I., Thomas, N. H., Thongrern, D. P., & et al. (2019). Investigating trends in atmospheric compositions of cool gas giant planets using Spitzer secondary eclipses. *The Astrophysical Journal, 158*(6), 217. https://doi.org/10.3847/1538-3881/ab2a05

Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P., & Mandell, A. M. (2011). A low mass for Mars from Jupiter’s early gas-driven migration. *Nature*, 475, 206–209. https://doi.org/10.1038/nature10201

Wang, H., & Wordsworth, R. (2020). Extremely long convergence times in a 3D GCM simulation of the sub-Neptune Gliese 1214b. *The Astrophysical Journal, 891*, 7.

Weidenschilling, S. J., & Marzari, F. (1996). Gravitational scattering as a possible origin for giant planets at small stellar distances. *Nature*, 384, 619–621. https://doi.org/10.1038/384619a0

Weiss, L. M., Marcy, G. W., Rowe, J. F., Howard, A. W., Isaacson, H., Fortney, J. J., & Seager, S. (2013). The mass of KOI-94d and a relation for planet radius, mass, and incident flux. *The Astrophysical Journal, 768*, 14. https://doi.org/10.1088/0004-637X/768/1/14

Wellbanks, L., Madhusudhan, N., Allard, N. F., Hueso, L., Spiegelman, F., & Leininger, T. (2019). Mass-metallicity trends in transiting exoplanets from atmospheric abundances of H2O, Na, and K. *The Astrophysical Journal, 887*(1), L20. https://doi.org/10.3847/2041-8213/ab5a89

Winn, J. N. (2010). Exoplanet transits and occultations. In S. Seager (Ed.), *Exoplanets* (pp. 55–77). Tucson, AZ: University of Arizona Press.

Winter, A. J., Kruijssen, J. M. D., Longmore, S. N., & Chevance, M. (2020). Stellar clustering shapes the architecture of planetary systems. *Monthly Notices of the Royal Astronomical Society, 506*, 526–532. https://doi.org/10.1093/mnras/staa1358

Woitek, P., Helling, C., Hunter, G. H., Millard, J. D., Turner, G. E., Worters, M., & Stock, J. W. (2018). Equilibrium chemistry down to 100 K. Impact of silicates and phyllosilicates on the carbon to oxygen ratio. *Astronomy and Astrophysics, 614*, A1. https://doi.org/10.1051/0004-6361/201732193

Wong, I., Knutson, H., Lewis, N., Kataria, T., Burrows, A., Fortney, J., & Todorov, K. (2016). 3.6 and 4.5 μm phase curves of the highly-irradiated hot Jupiters WASP-19b and HAT-P-7b. *The Astrophysical Journal, 823*, 122.

Wong, I., Shporer, A., Kitzmann, D., Morris, B. R., Heng, K., Hoeijmakers, H. J., et al. (2019). Exploring the atmospheric dynamics of the extreme ultra-hot Jupiter KELT-9b using TESS photometry. *The Astrophysical Journal, 180*, 88. arXiv:1910.01607

Wright, J. T., Marcy, G. W., Howard, A. W., Johnson, J. A., Morton, T. D., & Fischer, D. A. (2012). The frequency of hot Jupiters orbiting nearby solar-type stars. *The Astrophysical Journal, 753*, 160. https://doi.org/10.1088/0004-637X/753/2/160

Wu, Y., & Lithwick, Y. (2011). Secular chaos and the production of hot Jupiters. *The Astrophysical Journal, 735*, 109. https://doi.org/10.1088/0004-637X/735/2/109

Wu, Y., & Lithwick, Y. (2013). Olfanic heating suspends, not reverses, the cooling contraction of hot Jupiters. *The Astrophysical Journal, 763*, 13.

Wu, Y., & Murray, N. (2003). Planet migration and binary companions: The case of HD 80606b. *The Astrophysical Journal, 589*, 605–614. https://doi.org/10.1086/374598
Wyttenbach, A., Ehrenreich, D., Lovis, C., Udry, S., & Pepe, F. (2015). Spectrally resolved detection of sodium in the atmosphere of HD 189733b with the HARPS spectrograph. *Astronomy and Astrophysics*, 577, A62.

Wyttenbach, A., Lovis, C., Ehrenreich, D., Bourrier, V., Pino, L., Allart, R., et al. (2017). HEARTS I. Detection of hot neutral sodium at high altitudes on WASP-49b. *Astronomy and Astrophysics*, 602, A36.

Wyttenbach, A., Mollière, P., Ehrenreich, D., Cegla, H. M., Bourrier, V., Lovis, C., et al. (2020). Mass-loss rate and local thermodynamic state of the KELT-9 b thermosphere from the hydrogen Balmer series. *Astronomy and Astrophysics*, 638, A87.

Youdin, A. N., & Mitchell, J. L. (2010). The mechanical greenhouse: Burial of heat by turbulence in hot Jupiter atmospheres. *The Astrophysical Journal*, 721, 1113–1126. https://doi.org/10.1088/0004-637X/721/2/1113

Zahnle, K., Marley, M. S., Freedman, R. S., Lodders, K., & Fortney, J. J. (2009). Atmospheric sulfur photochemistry on hot Jupiters. *The Astrophysical Journal*, 701, L20–L24. https://doi.org/10.1088/0004-637X/701/1/L20

Zellem, R., Lewis, N., Knutson, H., Griffith, C., Showman, A., Fortney, J., & Langton, J. (2014). The 4.5 μm full-orbit phase curve of the hot Jupiter HD 209458b. *The Astrophysical Journal*, 790, 53.

Zhang, M., Knutson, H. A., Kataria, T., Schwartz, J. C., Cowan, N. B., Showman, A. P., et al. (2018). Phase curves of WASP-33b and HD 149026b and a new correlation between phase offset and irradiation temperature. *The Astronomical Journal*, 155, 83.

Zhang, X. (2020). Atmospheric regimes and trends on exoplanets and brown dwarfs. *Research in Astronomy and Astrophysics*, 20, 99.

Zhang, X., & Showman, A. (2017). Effects of bulk composition on the atmospheric dynamics of close-in exoplanets. *The Astrophysical Journal*, 836, 73.

Zhang, X., & Showman, A. P. (2018). Global-mean vertical tracer mixing in planetary atmospheres. II. Tidally locked planets. *The Astrophysical Journal*, 866(1), 2. https://doi.org/10.3847/1538-4357/aada7c