Plant parts of *Chrysophyllum albidium* is reported to possess antimalarial properties. However, knowledge gaps still exist in the antimalarial efficacy and safety of some solvent fractions of the fruit pulp. The aim of this study is to explore antimalarial potential of the methanol extract of the pulp of *C. albidium*, Prolylactic and curative antimalplasmodial activities of the methanol extract of the fruit pulp were evaluated using rodent malaria model. Repeated dose toxicity studies were conducted for 28 days using OECD 407 guidelines. The effect of the extract on animal weight, hematological and biochemical parameters were estimated. The oral acute toxic dose of the pulp extract was beyond 5000 mg/kg. The extract demonstrated prolylactic activities at 100 mg/kg (52.94%) and 200 (67.79%) mg/kg doses. The highest curative antimalarial activity was at 15 mg/kg dose on day 4 (74.43 %) and day 7 (83.80 %). The repeated dose toxicity assay did not show that the extract is harmful to the experimental animals. The extract reduced the PCV and hemoglobin level at 15 and 50 mg/kg dose, but not at 150 mg/kg. The Alanine aminotransferase (ALT) and Aspartate aminotransferase (AST) levels significantly decreased at levels.

Keywords: *Chrysophyllum albidium*, Parasitemia, Antimalarial, Antiplasmodium.

Introduction

Malaria control has become global due to monumental damages and mortality arising from poor control. The number of people infected with malaria in sub-Saharan Africa is estimated to be 114 million in 2015.\(^1\) Between 2013 and 2015, it was reported that about 510 million insecticide-treated nets (ITN) were distributed in sub-Saharan Africa.\(^1\) There are economic benefits that will be gained from reduced malaria morbidity and mortality.\(^1\)

Malaria is caused by *Plasmodium* species of *malariae*, *ovale*, *vivax*, and *falciparum*. Another species of *Plasmodium*, *P. knowlesi*, is gradually increasing its burden as a cause of human malaria.\(^2\) Of these, *P. falciparum* causes more maternal and infant mortality than non-*falciparum* infections.\(^3\) The parasite vector, the female Anophelidae mosquitoes, plays an important role in transmitting the infection. The parasite spends its lifecycle partly in the mosquito and partly in the human host. The mosquito injects parasites from its salivary glands into the human bloodstream as it attempts to take a blood meal. The parasites then enter the liver cells, reproduce and release one of its forms (merozoites) into the blood. The merozoites invade the red blood cells. Another Anophelidae mosquito taking a blood meal from an infected human will ingest these parasites and allow the parasites to complete their life cycle in the mosquito.

Malaria control has many challenges. Vector control measures including the use of barriers such as treated nets and insecticides have been deployed. Insecticide use has suffered vector resistance \(^4\) while the use of nets are associated with physical and psychological discomforts.\(^5\) Some users complain of increased sweating when sleeping under the nets while others feel “caged” and “imprisoned”. Parasite control in infected humans is usually by chemotherapy, which on its own has equally recorded treatment failures arising from parasite resistance.\(^6,7\) Chloroquine, me pracrine, sulphadoxine, pyrimethamine, lume fan tine and quinine are among popular drugs used previously in malaria chemotherapy. Current approved treatment is a combination therapy involving an artesomin and another antimalarial drug. Resistance to previously used drugs is one key reason for the new treatment approach. Unfortunately, there are reports of failure of the approved treatment regimen.\(^8\) This has created the need for the discovery of new, safer and effective antimalarial drugs. It has been suggested that drugs acting through a new mechanism of action might be preferred.\(^9\)

Use of herbs in disease control predate recorded history. Various herbs and herbal formulations have been used against malaria. Several reports have been made that several local medicinal plants possess antimalarial property.\(^10\) These include *Vernonia amygdalina* (Asteraceae), *Spathodea campanulata* (Bignoniaceae), *Ficus macrocarpa* (Moraceae), *Uvaria puguensis* (Annonaceae), and *Polygala senegalense* (Polygonaceae).\(^10\) *Chrysophyllum albidium*, commonly referred to as the African star apple, belongs to the family Sapotaceae. It grows in several tropical African countries including Nigeria, Uganda, Niger Republic, Cameroon and Cot d’Ivoire where it is found in lowland rain forest zones.\(^11\) In South East Nigeria, where it is called “Udara”, the fruit is commonly consumed especially by pregnant women. Elsewhere, the plant is used in ethnomedicine for treating malaria.\(^12\) The seed cotyledon possesses antinociceptive, anti-inflammatory and antioxidant activities\(^13\) while the leaf extract contains antiparasitic and hypoglycemic properties.\(^14\) The stem bark also possesses antimicrobial properties.\(^15\) The methanol bark extract contains antiplasmodial substances suggesting that antimalarial constituents may be found elsewhere in the plant.\(^16\) Compounds found in...
the seed cotyledon include three alkaloids: eleagnicine (1, 2, 3, 4-tetrahydro-1-methylβ-carboline); tetrahydro-2-methylharman (1, 2, 3, 4-tetrahydro-1, 2-dimethyl-β-carboline) and skatole (3-methylindol). Stigmasterol, epicatechin, epigallocatechin and epicatechin dimer (procyanidin B5) have been isolated from the stem bark. Previous preliminary studies have shown that the fleshy pulp of the fruit and ethanolic extract of the seed possess antimalarial constituents. The aim of this study is to explore the antimalarial and toxicological potentials of the methanol extracts of the pulp of C. albidum.

Materials and Methods

Plant material
Fresh leaves and fruits of C. albidum were harvested from a tree in August 2016 in Agalu, Anambra State, Nigeria, and were authenticated in the Department of Pharmacognosy and Traditional Medicine, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka, where a voucher specimen coded PCG474/A/043 was deposited.

Preparation of extract
The fruits were washed to remove debris or soil. The pulp were carefully removed and mashed. The mashed pulp (2 kg) was macerated in methanol for five days with intermittent stirring. The procedure for maceration was as follows: About 400 g of the mashed pulp was weighed and transferred into a clean bottle. About 350 mL of methanol was added to the bottle. The mixture was covered and allowed to stand and was agitated periodically for some minutes. This was done using five different containers which add up to 2 kg. The different portions of the extract were added together. The extract was filtered, concentrated in a water bath at 50°C and stored in a refrigerator.

Animals
Swiss albino mice of either sex were used for the study. All the animals were obtained from the animal house of the Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka. The experimental animals were housed under standard environmental conditions of temperature (26 - 30°C), a 12 h dark-light cycle and allowed free access to drinking water and food pellets (Vital feeds, Nigeria). The animals were acclimatized for seven days before use.

Acute toxicity
The acute toxicity test of the extract was carried out on 13 mice (17 - 28 g, 4-6 weeks old) using Lorke’s methods. The acute toxicity test was carried out using 21 dose levels of the extract. The animals (12 - 35 g) were divided into four groups (n = 5). Test groups received daily oral dose of extracts of either 15 mg/kg body weight (low dose), 50 mg/kg (intermediate dose) or 150 mg/kg bw (high dose) for 28 days. Using a cannula attached to a syringe. The control group received 0.09 mL distilled water. The mice were observed daily for mortality and morbidity until the completion of the experiment. Toxicity was assessed using body weight, hematological and biochemical analysis. Mean body weights of the mice were recorded on day 0, 7, 14, 21 and 28. Weight differences were calculated by subtracting the pretreatment weight from the post-treatment mean weight. The resulting value was expressed as a percentage of the pretreatment weight.

Biochemical analysis
Serum alanine aminotransferase (ALT) and serum aspartate aminotransferase (AST) were estimated by the method of Reitman and Frankel, using ALT and AST kit (Span Diagnostic Ltd). The absorbance of the samples was read at 546 nm using a UV spectrophotometer. The concentration values were extrapolated from a graph of concentration against wavelength absorbance of known concentrations.

Statistical analysis
The results were analyzed using GraphPad Instat Version 3.10 for Windows (GraphPad softwares Inc., San Diego, CA, USA). The results were presented as mean ± standard error of mean (SEM) and were subjected to one-way analysis of variance (ANOVA) followed by Dunnett multiple comparison test. Differences between means were considered significant at P < 0.05. The percentage parasitemia was calculated using the formula:

\[
\% \text{ Parasitemia} = \frac{\text{Total number of parasitized erythrocytes}}{\text{Total number of erythrocytes counted}} \times 100
\]

Average percentage of chemosuppression was calculated using the formula:

\[
\% \text{ Suppression} = \frac{\text{Parasitemia in negative control} - \text{Parasitemia in test group}}{\text{Parasitemia in negative control}} \times 100
\]

Results and Discussion

Acute toxicity
The yield of the methanol extract of the pulp was 16.44 %. The acute toxic dose of the pulp extract is beyond 5000 mg/kg per oral since all the animals survived even at 5000 mg/kg. This shows that the extract might be considered relatively safe at very high doses. This agrees with the large quantities of the fruit pulp eaten by consumers without any restraints. Previously, the oral LD50 of the methanol leaf extract (2739 mg/kg) and the expressed juice from the pulp (> 5000 mg/kg) have been reported. The methanol leaf extract is more toxic than the expressed juice from the pulp and methanol pulp extract (oral LD50 > 5000 mg/kg). This difference in toxicity between the leaf and fruit pulp reflects the distribution of phytoconstituents in the plant. It also follows that pharmacological activities observed for the plant might be different for different parts of the plant.
Prophylactic study

The methanol extract showed chemoprophylactic antimalarial activity against *P. berghei* infection in mice with a mean parasitemia of 9.44 ± 1.18 and 4.22 ± 0.26 at 100 and 200 mg/kg doses respectively. When compared to the negative control, it translates to 27.94 and 67.79% parasite inhibition at 100 and 200 mg/kg doses of the extract respectively (Table 1). Mean parasitemia for the positive and negative control values were 1.74 ± 0.06 (86.72%) and 13.1 ± 0.26 (0.00%), respectively. All the values were statistically significant (P < 0.01).

The pulp juice suppressed early infection by 72.97% at 500 mg/kg while 67.79% suppression was recorded at 200 mg/kg methanol pulp extract. The drop in the level of parasitemia in the prophylactic study shows the fruit pulp could prevent the development of clinical malaria. Drugs that have demonstrated such activities in preclinical studies are known to be useful clinically. The trend in its prophylactic activity suggests a dose-dependent activity.

Curative study

The crude extract exerted a considerable (P < 0.01) curative effect at the tested doses. Mean parasite counts (Tables 2) at day 4 were 8.80 ± 0.24 (500 mg/kg), 5.10 ± 0.73 (150 mg/kg), 4.15 ± 0.76 (50 mg/kg), and 4.00 ± 0.70 (15 mg/kg). Lower counts were obtained on day 7 with mean parasitemia of 3.20 ± 0.63 (500 mg/kg), 4.50 ± 0.52 (150 mg/kg), 3.95 ± 0.27 (50 mg/kg), and 2.35 ± 0.23 (15 mg/kg). The parasite percentage inhibition (Table 3) on day 4 and day 7 did not depend on the dose used. Results of day 4 showed an inverse relationship with the dose at the range 50 – 500 mg/kg; whereas on day 7, it appeared to be dose-dependent at that same range. The highest activity on day 4 (72.43%) and day 7 (83.80%) were exerted by the least dose (15 mg/kg) used. This dose inhibited more parasitemia than the positive control on both days. From the result, the methanol pulp extract had 30.16% (500 mg/kg) at day 4. Previous reports show that at day 4, the expressed juice of the pulp recorded 88.46% (500 mg/kg) and 92.31% (1000 mg/kg). The activity of expressed pulp juice is enhanced even at higher doses. Our result suggests that the methanol pulp extract does not have such property. It has been suggested that the expressed pulp juice, which is recommended traditionally for consumption during pregnancy may be serving as an intermittent preventive therapy against malaria infection.

From the curative study, the extract demonstrated a good to moderate activity even at doses as low as 15 mg/kg. Higher doses gave lower parasite clearance values. The doses used seem to suggest the extract might have potent activity at much lower doses.

Table 1: Chemoprophylactic antimalarial activity of the methanol extract of the pulp of *Chrysophyllum albidium*.

Treatment Group	Dose	Parasite Count	% Suppression
Group 1 (pulp)	100 mg/kg	9.44 ± 1.18**	27.94
Group 2 (pulp)	200 mg/kg	4.22 ± 0.26**	67.79
Positive control	22.5 mg/kg	1.74 ± 0.06**	86.72
(S/P)	Water	13.1 ± 0.26	0.00

Values are expressed as means ± SEM, n = 5, ** = significant at p < 0.01 compared to the negative control.

Repeated Dose Toxicity Study

Consumption of toxic substances or anti-nutritive phytoconstituent usually reduce total body weights, food consumption and activity. It may also alter circulating leukocyte counts. This occurs due to the presence of substances that are inhibitory or poisonous to normal metabolic activity. None of the animals died. There was no morbidly observed in any of the animals.

Mean Body Weight

The result of the body weight measurement is presented in Table 4. The body weight of the control and group treated with 15 mg/kg increased significantly (P < 0.05) but the groups treated with 50 mg/kg and 150 mg/kg did not increase significantly as shown in tables 4 and 5. The percentage body weight increase showed that as the dose increases there was a reduction in body weight. It does appear the extract did not affect the terminal weight of the animal. This opinion is supported by the values obtained from all the groups except the 150 mg/kg group. Their respective mean weights appear to normalize across the different dose levels at about the 28th day of treatment. Even though the result of the 150 mg/kg dose showed a negative growth, it could be that the animals were already mature at the pretreatment stage unlike the others and hence was not expected to gain weight. The slight weight loss (7.72%) may be due to age and may not be taken to suggest the extract is toxic.

Hematological analysis

The result of the PCV shows there were reduction in value at 15 and 50 mg/kg which was significant from the 14th day (Table 5). There was no observable effect of the extract at the 150 mg/kg dose. The same trend was observed in the hemoglobin level (Table 6). There were reductions in HB values at 15 and 50 mg/kg and there was no observable effect of the extract at the 150 mg/kg dose. The effect of the extract on PCV and hemoglobin share similar trends. The reduction in PCV on Day 14 at 15 and 50 mg/kg (but not 150 mg/kg) dose suggests this effect may be dose related. The WBC count shows there is a general increase for most of the test and control groups. This general increase implies that the extract may not adversely affect the WBC count. Table 7 shows that there is a general increase in the WBC count for all the test and control groups which began from day 7 up till the 28th day. On Day 28, the negative control had the highest count (5.66 ± 0.56) while the 15 mg/kg group had the lowest count (4.11 ± 0.17).

Biochemical analysis

The Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) significantly decreased at the end of the study (Tables 8 and 9). The results on Day 0 were compared with day 14 and day 28. There was no significant difference on day 14 for all the groups, unlike day 28 where there was a significant difference (P < 0.01) for most of the groups. However, for AST treated with 50 mg/kg and 150 mg/kg there was no difference (P < 0.01) throughout the study when compared to day 0. Increased ALT levels in the blood are associated with hepatocellular damage, while increased blood AST level is less specific than ALT as an indicator of liver problem. The decrease in the levels of the liver enzymes suggests the extract is safe for the organ. This is similar to the ethanol leaf extract which doses (250 - 1000 mg/kg) significantly reduced (p < 0.05) plasma levels of AST and ALT. This is unlike the fractions of the methanol leaf extract which were observed to be toxic to the liver.
There seems to be something unique about the 15 mg/kg dose. In the curative study, it recorded the highest parasite clearance rate both at day 4 (72.43%) and day 7 (83.80%). It showed more activity than the positive control drug. It also caused the lowest mean body weight (22.93 ± 1.74) recorded on day 28, lower than the negative control (25.65 ± 1.51). At the 15 mg/kg dose, the extract significantly reduced the PCV on days 14, 21 and 28 unlike at 50 mg/kg where there was a significant reduction only on days 14 and 21. A similar trend was seen on the HB level. On the other hand, the 15 mg/kg group had the lowest WBC count from day 14 till day 28.

Table 3: Percent chemosuppression (Curative) of malaria parasite by extract on day 4 and day 7.

Group	Day 4 (%)	Day 7 (%)
Group 1 (500 mg/kg)	30.16	74.60
Group 2 (150 mg/kg)	66.00	70.00
Group 3 (50 mg/kg)	67.06	68.65
Group 4 (15 mg/kg)	72.43	83.80
Positive control	63.74	72.89
A/L (8 mg/kg)	1.87	2.34

A/L - Artemether 20 mg plus Lumefantrine 120 mg (a co-formulation tablet).

Table 4: Effect of methanol extract of the fruit pulp of *C. albidium* pulp on mean body weight (g).

Groups	Day 0	Day 7	Day 14	Day 21	Day 28	% weight difference on Day 28
Control	12.86 ± 0.29	19.40 ± 0.96**	22.12 ± 1.01**	22.12 ± 0.95**	25.65 ± 1.51**	99.45
15 mg/kg	14.90 ± 0.33	19.36 ± 0.38**	22.02 ± 1.20**	21.70 ± 1.20**	22.93 ± 1.74**	53.69
50 mg/kg	20.72 ± 1.08	24.02 ± 1.66	25.63 ± 1.67	24.62 ± 1.10	24.85 ± 2.10	19.76
150 mg/kg	31.34 ± 1.22	25.86 ± 2.75	26.84 ± 2.47	27.34 ± 2.75	28.92 ± 2.64	-7.72

Values are expressed as means ± SEM, n = 5, ** = significant at p < 0.01 compared to day 0.

Table 5: Effect of methanol extract of the fruit pulp of *C. albidium* on Packed Cell Volume.

Groups	Day 0 (%)	Day 7 (%)	Day 14 (%)	Day 21 (%)	Day 28 (%)
Control	33.40 ±1.08	33.20 ± 0.80	34.20 ± 2.48	34.00 ± 1.30	31.60 ± 2.23
15 mg/kg	34.20 ± 0.73	32.20 ± 1.20	30.80 ± 0.37*	35.20 ± 1.02	27.20 ± 0.66**
50 mg/kg	34.60 ± 0.81	33.60 ± 1.29	26.00± 1.30**	29.40 ± 1.50*	30.40 ± 0.81
150 mg/kg	33.20 ± 0.86	31.80 ±1.91	32.00 ± 0.37	35.60 ± 0.75	33.00 ± 0.75

Values are expressed as means ± SEM, n = 5, ** = significant at p < 0.01 compared to day 0, *= significant at p < 0.05 compared to day 0.

Table 6: Effect of methanol extract of the fruit pulp of *C. albidium* on hemoglobin level.

Groups	Day 0 (%)	Day 7 (%)	Day 14 (%)	Day 21 (%)	Day 28 (%)
Control	11.13 ± 0.36	11.26 ± 0.27	11.40 ± 0.83	11.33 ± 0.43	10.33 ± 0.95
15 mg/kg	11.40 ± 0.24	10.73 ± 0.40	10.27 ± 0.13*	11.73 ± 0.34	9.25 ± 0.16**
50 mg/kg	11.53 ± 0.27	11.20 ± 0.43	8.67 ± 0.44**	9.80 ± 0.50*	10.17 ± 0.35
150 mg/kg	11.07 ± 0.29	10.6 ± 0.64	10.60 ± 0.13	12.13 ± 0.25	11.20 ± 0.25

Values are expressed as means ± SEM, n = 5, ** = significant at p < 0.01 compared to day 0, *= significant at p < 0.05 compared to the day 0.

Table 7: Effect of methanol extract of the fruit pulp of *C. albidium* on white blood cells.

Groups	Day 0 (x10⁹/L)	Day 7 (x10⁹/L)	Day14 (x10⁹/L)	Day21 (x10⁹/L)	Day28 (x10⁹/L)
Control	1.46 ± 0.08	3.07 ± 0.33**	3.7 ± 0.22**	5.50 ± 0.65**	5.66 ± 0.56**
15 mg/kg	1.95 ± 0.06	3.29 ± 0.16**	2.75 ± 0.16**	3.93 ± 0.05**	4.11 ± 0.17**
50 mg/kg	1.52 ± 0.08	4.43 ± 0.19**	3.21 ± 0.19**	4.10 ± 0.20**	4.71 ± 0.19**
150 mg/kg	1.50 ± 0.09	3.42 ± 0.11**	4.13 ± 0.210**	5.30 ± 0.59**	5.34 ± 0.53**

Values are expressed as means ± SEM, n = 5, ** = significant at p < 0.01 compared to day 0, *= significant at p < 0.05 compared to day 0.
The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

References

1. WHO. World Malaria Report.; 2016.
2. Barber BE, Rajahram GS, Grigg MJ, William T, Anstey NM. World Malaria Report: time to acknowledge Plasmodium knowlesi malaria. Malar J 2017; 16:13-15.
3. Rogerson SJ, Hviid L, Duffy PE, Leke RF, Taylor DW. Malaria in pregnancy: pathogenesis and immunity. Lancet Infect Dis. 2007; 7(2):105-117.
4. Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J 2016; 15(1):107.
5. Watanabe N, Kaneko A, Yamar S, Ménard D. A molecular marker of Plasmodium falciparum. Nature 2014; 505(7481):50-55.
6. Ihekwereme CP, Esimone CO, Nwanegbo EC. Hemozoin Inhibition and Control of Clinical Malaria. Advances in Pharmacological Sciences. 2014.
7. Ihekwereme CP, Agbata CA, Chukwaeze KO, Agu SC. In vivo evaluation of antiplasmodial activity of hydroethanolic stem bark extracts. African J Complement Altern Med. 2018; 11(1):35-41.
8. Adelbeyo AH, Obiakolok PO, Onaotou J, Botoke F, Obiakolok K. Effects of ethnol gel extract of Chrysophyllum albidum and Cinnamomum cassia on vancomycin-resistant Staphylococcus aureus. BMC Complement Altern Med. 2016; 16(1):105.
9. Adewoye EO, Salami AT, Alawo TO, Ogunjimi AO, Ogunjimi KO, Ogunjimi AO, Ogunjimi KO, Ogunjimi KO. The antimicrobial and antiplasmodial effects of methanolic stem extract of Chrysophyllum albidum. Eur J Med. 2018; 4(5):122-128.
10. Ihekwereme CP, Agbata CA, Chukwaeze KO, Agu SC. In vivo evaluation of antiprotozoal activity of hydroethanolic stem bark extract of Chrysophyllum albidum. Ihekwereme et al., 2018.
extract of Baphia pubescens in *Plasmodium berghei* infected albino mice. J Herb Med Pharmacol. 2016; 5(4):149-152.

20. Fidock DA, Rosenthal PJ, Croft SL, Brun R, Nwaka S. Antimalarial drug discovery: efficacy models for compound screening. Nat Rev Drug Discov. 2004; 3(6):509-520.

21. Ihekwereme CP, Agu SC, Nwanegbo EC. Therapeutic doses of Ciprofloxacin do not enhance parasite clearance of Artemether - Lumarfantrine or Artesunate-Amodiaquine combinations in mice. J Int Res Med Pharm Sci. 2017; 11(3):107-111.

22. World Health Organization. Guidelines For The Treatment of Malaria. 3rd edition. Geneva: World Health Organization; 2015.

23. Arrey Tarkang P, Okalebo F A, Ayong LS, Agbor G A, Guantai AN. Anti-malarial activity of a polyherbal product (Nefang) during early and established Plasmodium infection in rodent models. Malar J. 2014; 13(1):456.

24. Toma A, Deyno S, Fikru A, Eyado A, Beale A. In vivo antimalarial and toxicological effect of crude ethanol extract of *Echinops kebericho* traditionally used in treatment of malaria in Ethiopia. Malar J. 2015; 14:196.

25. OECD/OECD. Test No. 407: Repeated Dose 28-Day Oral Toxicity Study in Rodents. Paris; 2008.

26. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957; 28(1):56-63.

27. Everds NE, Snyder PW, Bailey KL, Bolon B, Creasy DM, Foley GL, Rosol TJ, Sellers T. Interpreting Stress Responses during Routine Toxicity Studies: A Review of the Biology, Impact, and Assessment. Toxicol Pathol. 2013; 41:560-614.

28. Abvwoe GI, Ihekwereme CP, Okonta JM, Anwachaep AU, Mbagwu SI. Evaluation of Acute and Sub-chronic toxicities of a Nigeria polyherbal formulation. Int J Phytopharm. 2017; 7(6):64-72.

29. Giannini EG, Testa R, Savarino V. Liver enzyme alteration: A guide for clinicians. CMAJ. 2005; 172(3):367-379.