Piezoelectric energy harvesting from a curved plate subjected to time-dependent loads using finite elements

Bendine Kouider1 and Rajan L Wankhade2*
1Mechanics of Structures and Solids Laboratory, Department of Mechanics, Faculty of Technology Djillali Liabès University of Sidi Bel-Abbès, Algeria
2*Applied Mechanics Department, Government College of Engineering, Nagpur, India
E-mail: kouider84@live.com, rajanw04@gmail.com

Abstract. The present paper focuses on the energy harvesting based piezoelectric material from curved plate (CP). Thus, a FEM Model of CP is equipped with piezoelectric patches act as harvesters and connected in parallel with load resistor. The harvester’s positions have been obtained using new technique based on modal analysis maximum voltage output. The idea is to distribute patches all over the plate and then performing modal analysis. The harvesters position are then chosen based on the maximum output voltage extracted from the results. This new approach not just save time by avoiding iterative optimizations but also helps to use the needed harvester according to the applied load and its frequency. The methodology are check in time and frequency domain.

1. Introduction

The present paper not just is the first contribution focusing on piezoelectric harvesting energy from curved plates but also propose new and easy method for choosing the optimal harvester positions. Modal analysis is performed to choose the optimal position of energy harvester. Energy harvesting from smart PZT sensors/actuators have been explored by investigators in the recent years as a substitute to conventional power sources. Sufficient amount of energy remains available in the form of vibration energy which can be derived from piezolaminated composites. This paper presents a energy-harvesting techniques derived from a curved plate with the use of piezoelectric patches. The piezoelectricity phenomenon is mostly used to transform mechanical energy to electricity, because of its direct and converse piezeoelectric effect, easy to implement. From the implementation point of view, we have developed model of PZT energy harvester to create adequate power under a dynamic excitation. Various designs and techniques of optimization for harvesting materials are studied and reviewed in literature. These piezoelectric transducers have intrinsic electromechanical coupling and much power density in comparison to that of electrostatic and electromagnetic transducers now a day’s widely employed to derive power from such sources of vibration energy.

Along the years, different solution techniques which derives ample amount of energy from sensors have emerged. From these, ambient renewable energy sources such as wind, sun and water have gain a quick growth in the last decade. Other available energy sources like ambient vibrations became a subject of vigorous research also. Indeed, structures such as beams and plates are subjected to loads of different nature that vibrates them. This energy can be harvested and converted into needful electrical power. The available main known mechanisms among the physical viz. electromagnetic, electrostatic
and piezoelectric are generally used to transform such released ambient energy into electrical power. The alternative in terms of PZT has an intrinsic preference over the two other mechanisms not only for its huge power densities but also for its ease of implementation. Cottone et al [1] emphasized on nonlinear energy harvesting and gave some information. Stanton et al [2] performed dynamic nonlinear analysis for broadband energy harvesting with its investigation of a piezoelectric inertial generator. Adhikari et al [3] derived energy from broadband random vibrations using piezoelectric energy harvester. Daqaq [4] studied response of harvesters comprised of uni-modal duffing-type undergone to random excitations due to forces. Wankhade [5] emphasized on geometric nonlinear analysis. Litak et al [6] used magneto-piezoelastic energy harvester driven by arbitrary excitations. Bajoria and Wankhade [7,8] performed free vibration of SSSS piezolaminated composites by the employment of FEM. Deshpande and Wankhade [9] provided solution for thick beams. Wankhade and Bajoria [10-11, 15, 18-19] worked on vibration and Stability of smart piezolaminated composite plates using higher order FEM. Wankhade et al [12-14] focused on buckling of composites with different parameters. Bendine et al [16-17] employed higher order theory for active vibration control of FG beams with piezoelectric substrates. Bendine and Wankhade[20] developed vibration control equations for FGM piezoelastic plate based on LQR genetic search. Bendine et al [21] used structural modelling for active vibration attenuation of smart FGM composites using ANSYS. Daraji et al [22] worked on doubly curved shells. Wankhade et al [23 and 26] put forth dynamics/buckling characteristic of laminated as well as piezolaminated composites. Bendine et al [24 and 25] proposed some part of energy harvesting using PZT. In this work the energy harvesting based on piezoelectric material from curved plate (CP) is developed. A FEM Model of CP is equipped with piezoelectric patches act as harvesters and connected in parallel with load resistor are shown with its response.

2. Problem Formulation and Modelling

2.1 Electro-Mechanical Coupling

Due to the direct and converse piezoelectric effect an electro-mechanical coupling between electrical and mechanical loading can be expressed by the virtue of following equations.

\[
\{D\} = \varepsilon \{\varepsilon\} + \sigma \{E^p\} \\
\{\sigma\} = \mathcal{C} \{\varepsilon\} - \varepsilon \{E^p\}
\]

(1)

In the above set of equations, \{D\} represents the electric displacement vector, \{\varepsilon\} shows dielectric permittivity matrix, \{\varepsilon\} is the strain vector, \{E^p\} is the dielectric matrix. \{\sigma\} is the stress vector and \mathcal{C} is the elastic matrix for constant electric field.

\[
[M]\{\dot{U}\} + [C_d]\{\ddot{U}\} + [K]\{U\} = \{F\}
\]

(2)

where \{U\} represents the structural displacement vector, and[M], [K], [C_d] and \{F\} represents the mass, the elastic stiffness, the damping matrices and the vector of external forces, respectively
2.2 Piezoelectric Harvester Modelling

\[
\begin{pmatrix}
\sigma_1 \\
\sigma_2 \\
\sigma_3 \\
D_3
\end{pmatrix} = \begin{pmatrix}
\tilde{C}_{11} & \tilde{C}_{12} & 0 & e_{31} \\
\tilde{C}_{21} & \tilde{C}_{22} & 0 & e_{32} \\
0 & 0 & \tilde{C}_{66} & 0 \\
e_{31} & e_{32} & 0 & e_{33}
\end{pmatrix} \begin{pmatrix}
\varepsilon_1 \\
\varepsilon_2 \\
\varepsilon_3 \\
E_3
\end{pmatrix}
\]

(3)

In above \(\varepsilon_i \), \(\sigma_i \) represents the strain and stress tensors and \(\tilde{C}_{ij} \), \(e_{ij} \) are the elastic, the piezoelectric coupling and the dielectric permittivity constants, respectively. It shall be noted that we have neglected electric field along the x and y directions (i.e. \(E_x = E_y = 0 \)) and thus only D3 is taken into account. Now, the vector of electric field ‘E’ constant along the thickness \(t_p \) can further be given as:

\[
E = \begin{pmatrix}
0 \\
0 \\
-1/t_p
\end{pmatrix}^T \quad \text{and} \quad V = B_p u_p
\]

(4)

For which \(V \) is the applied voltage. The GE equations for the FE electromechanical laminate can be extracted using Hamilton’s principle, which is now written as below:

\[
\int_{-t}^{t} \left[(k - \psi + We + W) \right] dt = 0
\]

(5)

In which, \(\kappa \) is the kinetic energy, \(\psi \) represents the strain energy, \(We \) gives the dielectric energy, and \(W \) shows the work of the applied loads. The Hamilton principle can also be reconstructed.

3. Problem description

The problem under consideration consists of a fully clamped curved plate aluminium made equipped with piezoelectric patches (CPP). The CPP is with dimension of 500×500×3 mm and an inner radius of 1500 mm. The searching CPP model has been decomposed into one hundred sub-areas each representing the piezoelectric patches possible locations with principal role to harvest the wasted vibration energy. All the harvesters used are with 1mm thickness as shown in Figure 2. Table 1 shows the properties of the piezoelectric harvesters used in the present study.

Parameters	Value
C11, C22 (GPa)	120.3
C12 (GPa)	75.2
C13, C23 (GPa)	75.1
C33 (GPa)	110.9
C66 (GPa)	22.7
Resistive value, R(Ω)	1e6
\(\alpha \) (rad/s)	4.886
\(\beta \) (s/rad)	1.2433 × 10^{-5}
Parameters	Value
--	-------
Young’s Modulus of the PZT (GPa)	66
Mass density of the PZT (Kg/m3)	7800
Piezoelectric constant e_{31}, e_{12} (C/m2)	-5.2
Piezoelectric constant e_{33} (C/m2)	15.9
Permittivity ε_{33} (nF/m)	15

3.1 Harvester’s locations decision

In order to choose the suitable positions for the harvesters, the CP was equipped with 25 piezoelectric patches regularly distributed. Then, a modal analysis has been performed. The three first mode with the corresponding potential output are presented in figure 1. The figure reveals clearly the distribution of the potential for each patch ranging from the best performing one (maximum) to the worst (Minimum). Thus, and based on, the best position were choosing for the harvesters. It is worth to noted here that this method presents high accuracy with low time consuming.

![Figure 1](image-url). FEM model of the proposed curved plate bounded with six piezoelectric harvesters coupling with a $10^6 \, \Omega$ resistor.
4. Results and discussions

The present section is used to check the results obtained by the previous section. Consequently, a CPP is equipped with six harvesters optimally positioned according to the previous Model based optimisation. The model with the harvesters is shown in figure 2.

![Figure 2](image)

Figure 2. FEM model of the proposed curved plate bounded with six piezoelectric harvesters coupling with a $10^5 \, \Omega$ resistor.

The model is then, subject to harmonic time and frequency based. First a harmonic analysis is performed in the range of $[0, 280]$ Hz to evaluate the voltage output for four different modes. In the present work the force has been on the model all nodes as a unit value equal 1. Figure 3 presents the corresponding results and as it can be noticed the maximum harvester voltage with the value of nearly 2V has been reached when the applied load frequency matches the model second natural frequency, this can be justified by the fact that the second mode has common harvesters with the other modes, consequently more harvesters are involved in this case.

![Figure 3](image)

Figure 3. Voltage output in frequency domain.
The next simulation is performed in time domain with holding the same conditions from the previous analysis. The applied load is taken as the following expression:

\[
\begin{align*}
F &= 0 & 0 < t < 0.3 \\
F &= A \sin(\omega_1 t) & 0.3 < t < 1 \\
F &= 0 & 1 < t < 1.3 \\
F &= A \sin(\omega_2 t) & 1.3 < t < 2 \\
F &= 0 & 2 < t < 2.3 \\
F &= A \sin(\omega_3 t) & 2.3 < t < 3
\end{align*}
\]

where \(A\) is the force amplitude, \(\omega_1, \omega_2, \omega_3\) are the first three natural frequencies of the model, \(t\) is the time step.

The loading and unloading have been divided into ranges to allow better distinguishing between the applied forces and the corresponding voltage output results. Three frequency has been investigated and the results are depicted in figure 4. It is noticed from the figure that more voltage can be harvested when the force taking the second frequency and that can be justify similarly as the previous analysis.

![Figure 4. Voltage output in Time domain.](image)

5. Conclusion

Hence the energy harvesting based piezoelectric material from curved plate (CP) is discussed in the present work. A FEM Model of CP is equipped with piezoelectric patches act as harvester which is connected in parallel with load resistor. To obtain the harvesters positions new technique based on modal analysis maximum voltage output is adopted. Firstly piezoelectric patches are distributed all over the plate and modal analysis is performed. The harvester’s position is then obtained based on the maximum output voltage received from the results. This new approach is effective in saving time by avoiding iterative optimizations. Also it helps to use the needed harvester according to the applied load and its frequency. The methodology is verified in time and frequency domain.
References

[1] Cottone F, Vocca H and Gammaitoni L 2009 Nonlinear energy harvesting. Phys. Rev. Lett. 102 (80601)
[2] Stanton S C, McGehee C C and Mann B P 2010 Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator. Phys. Nonlinear Phenom. 239 pp 640–653
[3] Adhikari S, Friswell M I and Inman D J 2009. Piezoelectric energy harvesting from broadband random vibrations Smart Mater. Struct. 18(115005)
[4] Daqqaq M F 2010 Response of uni-modal duffing-type harvesters to random forced excitations. J. Sound Vib. 329 pp 3621–3631
[5] Wankhade R L 2011 Geometric nonlinear analysis of skew plates using finite element method International Journal of Advanced Engineering Technology 2(2) pp 154-163
[6] Litak, G.; Friswell, M.I.; Adhikari, S.: Magnetoelectric energy harvesting driven by random excitations. Appl. Phys. Lett. 96, 214103 (2010)
[7] Bajoria K M and Wankhade R L 2012 Free vibration of simply supported piezolaminated composite plates using finite element method Advanced Materials Research 587 pp 52-56.
[8] Wankhade R.L andBajoria KM 2012 Stability of simply supported smart piezolaminated composite plates using finite element method. Proc. Int. Conf. Adv. Aeronautical Mech. Eng.AME I pp 14-19.
[9] Deshpande S.S. and Wankhade R.L. 2013 Analysis of thick beams using first order shear deformation theory International Conference on Structural Engineering and Mechanics December 20-22, 2013, Rourkela, India
[10] Wankhade R LBajoria KM 2013Free vibration and stability analysis of piezolaminated plates using finite element method Smart Mater. Struct. 22 (125040) pp 1-10.
[11] Wankhade, R.L.; Bajoria, K.M.; 2013. Buckling analysis of piezolaminated plates using higher order shear deformation theory. Int. J. Compos. Mater., 3, p. 92-99.
[12] Wankhade R.L. 2014 Buckling of Laminated Composite Plate Subjected to Axial Compressive Loading. International Conference on Recent Trends and Challenges in Civil Engineering December 12-14, 2014, MNNIT Allahabad, India
[13] Wankhade R.L. 2014 Stability of composite laminates subjected to compressive in-plane loading. International Conference on Advances in Civil and Mechanical Engineering Systems, at Government College of engineering, Amravati
[14] Patil D.B, Wankhade R.L., Deshpande P.K. 2015 Geometric Nonlinear Analysis of Laminated Composite Plates Using Finite Element Method International Journal of Emerging Science and Engineering (IJESE), 3 (9), p. 1-5
[15] Bajoria, K.M. and Wankhade, R.L., 2015. Vibration of cantilever piezolaminated beam with extension and shear mode piezo actuators. Proc. SPIE, 9431 (943122), p. 1-6.
[16] Kouider Bendine, Wankhade, R.L., 2016. Vibration control of FGM piezoelectric plate based on lqr genetic search. Open J. Civ. Eng., 6, p. 1-7.
[17] Bendine, K., Boukhoulda, F. B., Nouari, M., &Satla, Z. (2016). Active vibration control of functionally graded beams with piezoelectric layers based on higher order shear deformation theory. Earthquake Engineering and Engineering Vibration, 15(4), 611-620.
[18] Wankhade, R.L. and Bajoria, K.M., 2016. Shape control and vibration analysis of piezolaminated plates subjected to electro-mechanical loading, Open J. Civ. Eng. 6 335-345.
[19] Wankhade R.L. and Bajoria K.M., 2017. Numerical optimization of piezolaminated beams under static and dynamic excitations. Journal of Science: Advanced Materials and Devices, 2 (2), p. 255-262
[20] Bendine, Kouider and Wankhade R.L., 2017. Optimal shape control of piezolaminated beams with different boundary condition and loading using genetic algorithm. International Journal of Advanced Structural Engineering, 9 (4), p. 375-384.
[21] Bendine, K., Boukhoulda, B. F., Nouari, M., & Satla, Z. (2017). Structural modeling and active vibration control of smart FGM plate through ANSYS. *International Journal of Computational Methods*, 14(04), 1750042.

[22] Daraji, A. H., Hale, J. M., & Ye, J. (2018). Active Vibration Control of a Doubly Curved Composite Shell Stiffened by Beams Bonded With Discrete Macro Fiber Composite Sensor/Actuator Pairs. *Journal of Dynamic Systems, Measurement, and Control*, 140(12).

[23] Wankhade, R.L. and Bajoria, K.M., 2019. Vibration analysis of piezolaminated plates for sensing and actuating applications under dynamic excitation, *International Journal of Structural Stability and Dynamics*, 19(10), 1950121, p.1-23.

[24] Bendine, K., Boukhoulda, F. B., Haddag, B., & Nouari, M. (2019). Active vibration control of composite plate with optimal placement of piezoelectric patches. *Mechanics of Advanced Materials and Structures*, 26(4), p. 341-349.

[25] Bendine K, Mohamed Hamdaoui M and Boukhoulda B F 2019 Piezoelectric energy harvesting from a bridge subjected to time-dependent moving loads using finite elementsArabian Journal for Science and Engineering, 44 pp5743–5763

[26] Wankhade, R.L., Niyogi, S.B., 2020. Buckling analysis of symmetric laminated composite plates for various thickness ratios and modes. *Innov. Infrastruct. Solut.*, 5, 65. https://doi.org/10.1007/s41062-020-00317-8