SUPPLEMENTARY MATERIAL

Diversity of the diterpenes in the leaves of Xylopia laevigata (Annonaceae) and their cytotoxicities

Emmanoel V. Costa, Marília F. C. Sampaio, Leociley R. A. Menezes, Lívia M. Dutra, Cinara O. S. Costa, Maria Lúcia B. Pinheiro, Felipe M. A. da Silva, Milena B. P. Soares, Daniel P. Bezerra, Andersson Barison and Hector H. F. Koolen

*Corresponding author: emmanoelvc@gmail.com

Departamento de Química, Universidade Federal do Amazonas, 69080-900 Manaus – AM, Brasil
Departamento de Química, Universidade Federal de Sergipe, 49100-000 São Cristóvão – SE, Brasil
Centro de RMN, Universidade Federal do Paraná, Centro Politécnico, 81531-990 Curitiba – PR, Brasil
Núcleo de Estudos e Pesquisas de Plantas Medicinais, Universidade Federal do Vale do São Francisco, 56304-205 Petrolina – PE, Brasil
Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, 40296-710 Salvador – BA, Brasil
Centro de Biotecnologia e Terapia Celular, Hospital São Rafael, 41253-190 Salvador – BA, Brasil
Grupo de Pesquisa em Metabolômica e Espectrometria de Massas, Universidade de Estado do Amazonas, 69065-001 Manaus – AM, Brasil

*e-mail: emmanoelvc@gmail.com
Figure 1S. 1H NMR spectrum of abieta-7,13-dien-3-one (1) in CDCl$_3$ at 600 MHz
Figure 2S. 13C$[^1$H$]$ NMR spectrum of abieta-7,13-dien-3-one (1) in CDCl$_3$ at 150 MHz
Figure 3S. DEPT 135 NMR spectrum of abieta-7,13-dien-3-one (I) in CDCl$_3$ at 150 MHz
Figure 4S. 1H-1H correlation map from COSY NMR experiment of abieta-7,13-dien-3-one (I) in CDCl$_3$ at 600 MHz.
Figure 5S. One-bond $^1\text{H}$$-^{13}\text{C}$ correlation map from HSQC NMR experiment of abiet-7,13-dien-3-one (1) in CDCl$_3$ at 600 (^1H) and 150 MHz (^{13}C), respectively.
Figure 6S. Long-range 1H-13C correlation map from HMBC NMR experiment of abieta-7,13-dien-3-one (I) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively
Figure 7S. GC (above) and EI-MS of abiet-7,13-dien-3-one (1) (m/z 286 [M]+).
Figure 8S. 1H NMR spectrum of ent-7β-acetoxy-16β-hydroxy-kaurane (3) in CDCl$_3$ at 600 MHz
Figure 9S. 13C/1H) NMR spectrum of ent-7β-acetoxy-16β-hydroxy-kaurane (3) in CDCl$_3$ at 150 MHz.
Figure 10S. DEPT 135 NMR spectrum of ent-7β-acetoxy-16β-hydroxy-kaurane (3) in CDCl$_3$ at 150 MHz
Figure 11S. $^1H-^1H$ correlation map from COSY NMR experiment of ent-7β-acetoxy-16β-hydroxykaurane (3) in CDCl$_3$ at 600 MHz.
Figure 12S. One-bond 1H-13C correlation map from HSQC NMR experiment of ent-7β-acetoxy-16β-hydroxy-kaurane (3) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively
Figure 13S. Long-range 1H-13C correlation map from HMBC NMR experiment of ent-7β-acetoxy-16β-hydroxy-kaurane (3) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively.
Figure 14S. 1D NOE of ent-7β-acetoxoy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of the hydrogen H-7 at δH 4.62, in CDCl₃ at 600 MHz

Figure 15S. 1D NOE of ent-7β-acetoxoy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of CH₃ of acetoxoy group at δH 2.05, in CDCl₃ at 600 MHz
Figure 16S. 1D NOE of ent-7β-acetoxy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of the hydrogen H-17 at $\delta_H 1.29$, in CDCl$_3$ at 600 MHz.

Figure 17S. 1D NOE of ent-7β-acetoxy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of the hydrogen H-20 at $\delta_H 0.96$, in CDCl$_3$ at 600 MHz.
Figure 18S. 1D NOE of ent-7β-acetoxy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of the hydrogen H-19 at $\delta_H 0.80$, in CDCl$_3$ at 600 MHz

Figure 19S. 1D NOE of ent-7β-acetoxy-16β-hydroxy-kaurane (3), for the selective irradiation of the resonance frequency of the hydrogen H-18 at $\delta_H 0.78$, in CDCl$_3$ at 600 MHz
Figure 20S. HR-ESI(+)−MS spectrum of ent-7β-acetoxy-16β-hydroxy-kaurane (3) (m/z 371.2558 [M+Na]+)
Figure 21S. GC (above) and EI-MS of ent-7β-acetoxy-16β-hydroxy-kaurane (3) (m/z 270 [M−H2O−C2H3O2]+*)
Figure 22S. 1H NMR spectrum of 4-epi-cupressic acid (4) in CDCl$_3$ at 600 MHz.
Figure 23. 13C$[^1]$H NMR spectrum of 4-epi-cupressic acid (4) in CDCl$_3$ at 150 MHz
Figure 24S. DEPT 135 NMR spectrum of 4-epi-cupressic acid (4) in CDCl₃ at 150 MHz.
Figure 25S. $^1\text{H}-^1\text{H}$ correlation map from COSY NMR experiment of 4-epi-cupressic acid (4) in CDCl$_3$ at 600 MHz.
Figure 26S. One-bond 1H-13C correlation map from HSQC NMR experiment of 4-epi-cupressic acid (4) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively.
Figure 27S. Long-range 1H-13C correlation map from HMBC NMR experiment of 4-epi-cupressic acid (4) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively.
Figure 28S. HR-ESI(−)-MS spectrum of 4-epi-cupressic acid (4) (m/z 319.2262 [M−H]−)
Figure 29S. 1H NMR spectrum of powerol (5) in CDCl$_3$ at 600 MHz
Figure 30S. ^{13}C NMR spectrum of powerol (5) in CDCl$_3$ at 150 MHz
Figure 31S. DEPT 135 NMR spectrum of powerol (5) in CDCl₃ at 150 MHz
Figure 32S. $^1H-^1H$ correlation map from COSY NMR experiment of powerol (5) in CDCl$_3$ at 600 MHz.
Figure 33S. One-bond 1H-13C correlation map from HSQC NMR experiment of powerol (5) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively.
Figure 34S. Long-range 1H-13C correlation map from HMBC NMR experiment of powerol (5) in CDCl$_3$ at 600 (1H) and 150 MHz (13C), respectively.
Figure 35S. HR-ESI(−)-MS spectrum of powerol (5) (m/z 305.2129 [M−H]−)
Figure 36S. GC (above) and EI-MS of powerol (5) (m/z 288 [M-OH]+*)
Figure 37S. HR-ESI(+) - MS spectrum of powerol (5) (m/z 329.2453 [M+H]+)
Figure 38S. 1H NMR spectrum of labdorffic acid B (6) in CDCl$_3$ at 600 MHz
Figure 39S. 13C(1H) NMR spectrum of labdorffianic acid B (6) in CDCl$_3$ at 150 MHz
Figure 40S. DEPT 135 NMR spectrum of labdorffianic acid B (6) in CDCl₃ at 150 MHz.
Figure 41S. 1H-1H correlation map from COSY NMR experiment of labdorffianic acid B (6) in CDCl$_3$ at 600 MHz.
Figure 42S. One-bond 1H-^{13}C correlation map from HSQC NMR experiment of labdorffianic acid B (6) in CDCl$_3$ at 600 (1H) and 150 MHz (^{13}C), respectively.
Figure 43S. Long-range 1H-13C correlation map from HMBC NMR experiment of labdorffianic acid B (6) in CDCl\textsubscript{3} at 600 (1H) and 150 MHz (13C), respectively.
Figure 44S. LR-ESI(+) -MS (above) spectrum (m/z 319.13 [M−H₂O+H]⁺) and LR-ESI(−)-MS spectrum of labdorffianic acid B (6) (m/z 335.25 [M+H]⁺)
Figure 45S. 1H NMR spectrum of spathulenol (2) in CDCl$_3$ at 400 MHz
Figure 46S. 13C{H} NMR spectrum of spathulenol (2) in CDCl$_3$ at 100 MHz
Figure 47S. DEPT 135 NMR spectrum of spathulenol (2) in CDCl$_3$ at 100 MHz
Figure 48S. 1H-1H correlation map from COSY NMR experiment of spathulenol (1) in CDCl$_3$ at 400 MHz.
Figure 49S. One-bond 1H-13C correlation map from HSQC NMR experiment of spathulenol (2) in CDCl$_3$ at 400 (1H) and 100 MHz (13C), respectively.
Figure 50S. Long-range 1H-13C correlation map from HMBC NMR experiment of spathulenol (2) in CDCl$_3$ at 400 (1H) and 100 MHz (13C), respectively.