First Direct Mass Measurements of Nuclides around $Z = 100$ with a Multireflection Time-of-Flight Mass Spectrograph

Y. Ito,¹ P. Schury,² M. Wada,¹,² F. Arai,¹,³ H. Haba,¹ Y. Hirayama,² S. Ishizawa,¹,⁴ D. Kaji,¹ S. Kimura,¹,²,³ H. Koura,⁵ M. MacCormick,⁶ H. Miyatake,² J.Y. Moon,²,⁷ K. Morimoto,¹ K. Morita,¹,⁸ M. Mukai,²,³ I. Murray,¹ T. Niwase,⁸ K. Okada,¹,⁹ A. Ozawa,³ M. Rosenbusch,¹ A. Takamine,¹ T. Tanaka,¹,⁸ Y.X. Watanabe,² H. Wollnik,¹,¹⁰ and S. Yamaki¹,¹¹

¹RIKEN Nishina Center for Accelerator-Based Science, Wako 351-0198, Japan
²Wako Nuclear Science Center (WNSC), Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Wako 351-0198, Japan
³University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
⁴Graduate School of Science and Engineering, Yamagata University, Yamagata 990-8560, Japan
⁵Japan Atomic Energy Agency, Tokai, Ibaraki 319-1185, Japan
⁶Institut de Physique Nucl´ eaire, IN2P3-CNRS, Universit´ e Paris-Sud, Universit´ e Paris-Saclay, 91406 Orsay Cedex, France
⁷Rare Isotope Science Project, Institute for Basic Science (IBS), Daejeon 305-811, Korea
⁸Department of Physics, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
⁹Sophia University, Chiyoda-ku, Tokyo 102-8554, Japan
¹⁰Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, USA
¹¹Department of Physics, Saitama University, Sakura-ku, Saitama 338-8570, Japan

(Dated: April 5, 2018)

The masses of 246Es, 251Fm and the fermium nuclei $^{249−252}$Md, and 254No, produced by hot-and cold-fusion reactions, in the vicinity of the deformed $N = 152$ neutron shell closure, have been directly measured using a multireflection time-of-flight mass spectograph. The masses of 248Es and 249,250,252Md were measured for the first time. Using the masses of 249,250Md as anchor points for α decay chains, the masses of heavier nuclei, up to 261Bh and 266Mt, were determined. These new masses were compared with theoretical global mass models and demonstrated to be in good agreement with macroscopic-microscopic models in this region. The empirical shell gap parameter δ_2, derived from three isotopic masses was updated with the new masses and corroborate the existence of the deformed $N = 152$ neutron shell closure for Md and Lr.

![Nuclear chart above Californium (Z = 98). The squares indicate nuclei synthesized so far. Nuclei whose masses were determined in this work are indicated by the solid (direct) and the left-hatched (indirect) red squares. Similarly, nuclei whose masses were determined by SHIPTRAP measurements are indicated by the solid (direct) and the right-hatched (indirect) black squares.](image)

Precision mass measurements of unstable nuclei, providing a direct measure of the nuclear binding energy, are invaluable for the study of nuclear shell evolution and collective effects, such as deformations, far from stability ¹². For transfermium nuclei and the yet poorly investigated region towards the superheavy nuclei (SHN), where proton repulsion becomes a generally dominant feature, the description of nuclear lifetimes depends crucially on shell stabilization effects mainly driven by deformed shells ³⁻⁴. Theoretical studies with increasing particle numbers investigate the so-called “island of stability” ⁶, where features like the continuing decrease of energy gaps ⁴ and the emergence of shape coexistence ⁸ have crucial impact on the predicted position and localization of stability regions and the corresponding lifetimes of the nuclei. Although first experimental evidence for SHN has reached the region of the predicted sub-shell closure at $N = 162$ ⁹,¹¹, the deformed shell closure at $N = 152$ for transfermium nuclei (see e.g. ¹²) and, as recently pointed out, weaker shell effects in the vicinity ¹³, still represents the cutting edge for thorough experimental investigations. The transfermium nuclei, however, can only be produced online, in heavy-ion fusion and nucleon transfer reactions, and consequently only low yields are available for study, necessitating highly efficient techniques. Direct mass measurements of trans-
FIG. 2. Schematic view of the experimental setup. Dashed and solid arrows schematically depict the paths of reference and analyte ions, respectively. Curved lines in the cryogenic gas cell represent equipotential lines of the static field that focus ions onto the rf carpet, while arrows depict the nominal trajectories of ions in the static field.

(MRTOF-MS) for transernium nuclei as shown in Fig. 1 including new mass measurements of ^{246}Es, ^{251}Fm, $^{249-252}\text{Md}$, and ^{254}No, performed with sub-ppm precision. This represents the first determination of the masses of $^{249-250,252}\text{Md}$, closing a gap of unmeasured nuclei which could not be linked by corresponding decay chains. Through combining the masses of the dominantly β-decaying nuclei $^{249-250}\text{Md}$ with previously-known Q_α-values, the masses of nuclei up to ^{261}Bh and ^{266}Mt could be experimentally determined for the first time. These results support the existence of the $N = 152$ shell gap in Md and Lr, while also providing the first experimental data at the shell gap for Db isotopes.

As shown in Fig. 2 the MRTOF-MS [16, 17] was installed behind a cryogenic helium gas cell and ion trap system coupled with the gas-filled recoil ion separator GARIS-II [18]. Primary beams provided by the RIKEN heavy-ion linear accelerator RILAC impinged upon a rotating target to produce fusion-evaporation residues (ER). The stopping of high-energy ER in the gas cell was optimized by adjusting the thickness of a Mylar degrader while the gas cell was filled with 150 mbar helium at a temperature of 150 K. The ions were transported to a radiofrequency carpet (RFC) [19], located on the exit wall, by a static electric field and then extracted by means of a traveling-wave (TW) mode RFC technique [20, 22]. The extracted ions were transported through a differential pumping section by a sextupole ion guide (SPIG) and then accumulated in the first ion trap system. After accumulating and cooling in the flat trap, ion bunches were orthogonally ejected, accelerated to a kinetic energy of ≈ 1.7 keV by a pulsed drift tube (Acc-PDT), transported through an electrostatic multiple lens and a Bradbury-Nielsen gate (BN gate) [23] and decelerated to tens of electron-volts by a second pulsed drift tube (Dec-PDT) before being retracted in the second ion trap system, located in the experimental room underneath GARIS-II.

The first and second ion trap systems, each consisting of a pair of linear Paul traps on either side of a “flat” ion trap [24], have the same geometry and were filled with helium buffer gas at $\sim 10^{-2}$ mbar. In the first trap system, the fore and aft linear Paul traps accumulated the continuous ion beams from the gas cell and from a thermal ionization ion source, respectively, in order to pre-cool and pre-bunch the ion beam prior to transfer to the flat trap. The thermal ionization ion source in the first trap system provided both Cs$^+$ and Ba$^+$ ions for beam-line tuning. In the second trap system, the fore and aft linear Paul traps accumulated and pre-cooled the pulsed beam delivered from the first trap and the continuous beam from a reference ion source, respectively. The second trap system’s thermal ionization ion source provided reference Cs$^+$ ions for the mass measurements.

The novel flat trap geometry allowed implementation of a concomitant measurement scheme, shown in Fig. 3(a). While ions from the gas cell were being analyzed with the MRTOF-MS, reference ions stored in the second trap system’s aft linear Paul trap were transferred to the flat ion trap and cooled, while pulses of ions sent from the first trap system continue to accumulate in the lower trap system’s fore linear Paul trap. In this way, measurements of analyte ions from the gas cell were interleaved with measurements of reference ions within a 30 ms cycle (15 ms for each). In addition to providing a
nearly 100% duty cycle, the times-of-flight (ToF) of the reference ions provide precise corrections of ToF drifts for both reference ions and analyte ions.

The ToF drift correction was performed in a manner we refer to as the “Slice-by-Event” method (see Fig. 2(b)). Because analyte detection events were sparse, it was not necessary to consider all reference events. Rather, the reference ions detected 50 cycles (1.5 s) before and after each analyte detection event were combined to produce a reference spectrum. The centroid of reference events in each slice was used to determine the reference ToF $t_{r_{i}}$ for each analyte ToF t_{i}. Drift-corrected spectra can then be produced for reference and analyte by multiplying the ToF of each detected ion in subset i by $t_{r_{i}}/t_{i}$. A detailed review of this analytical method will be provided in a future publication. Spectra were fitted with an unbinned maximum-likelihood estimator using an asymmetric combined Gaussian-Lorentzian function [24].

Due to the multireflection nature of the MRT-TOF-MS, there is not a one-to-one correspondence between ToF and A/q: unambiguous identification cannot be made from a single spectrum. This is a consequence of the possibility that two ion species differing in mass-to-charge ratio by $\Delta A/q$ will also differ in number of laps made in the MRT-TOF-MS by Δn laps such that they have essentially the same ToF. To avoid misidentifications, therefore, we employed confirmation measurements of each analyte ion at different numbers of laps (generally ± 1 laps), and additionally for low count-rate measurements of 249,250Md further confirmations with a dummy target of lower Z which is unable to produce the desired ER but that can be presumed to provide otherwise similar conditions. Figure 4 demonstrates this process in the case of 250Md. After 6000 s, within ± 50 ns of the expected ToF of 250Md$^{2+}$, 7 and 5 counts, respectively, were observed at $n = 144$ and $n = 145$ laps while using natTl ($Z = 81$) targets; no counts were observed when using 197Au ($Z = 79$) targets in 4000 s for both. This provides strong evidence that the observed spectral peak truly belongs to 250Md$^{2+}$ with the probability of no detected events being only 0.03%. The raw and binned spectrum observed for 250Md at $n = 145$ laps, along with the resultant fitting curve by an unbinned maximum-likelihood routine [20], is shown in Fig. 5. This process was employed for each isotope measured.

Experimental conditions, reactions, and primary beam energies, for each measured isotopes are included in Table I [24]. 186Es, 251Fm and 252Md were produced with hot-fusion reactions using 18O and 19F primary beams with intensities of $\sim 3 \mu A$ on 232Th and natU targets. A 48Ca primary beam of $\sim 0.3 \mu A$ intensity was used to produce 249,250,251Md and 254No via cold-fusion reactions with natTl and 208Pb targets. All targets had a thickness of $\sim 500 \mu g/cm^2$ with 1.4-mg/cm2 Ti backings for actinide targets and 60- $\mu g/cm^2$ C backing for other targets, and were mounted on a 300-mm wheel [27] which rotated at 2000 rpm during irradiation.

![FIG. 4. ToF spectra in the anticipated vicinity of 250Md$^{2+}$ at $n = 144$ and 145 laps for natTl and 197Au targets.](image)

![FIG. 5. Fitted ToF spectrum of 250Md$^{2+}$ at $n = 145$ laps. The shape parameters of the fitting function were pre-determined with a high statistics reference (193Cs$^{2+}$) peak in the same measurement, at the same number of laps.](image)

Results for all isotopes measured are listed in Table I; the mass values are compared with AME16 [28] values in Fig. 6. The masses were derived using the single-reference analysis method described in [16]. The listed systematic uncertainties derive from ambiguity in the origin of the time-of-flight. As expected from the short measurement cycle, ToF spectra for 254No included a $\sim 30\%$ admixture of the $1.295(2)$ MeV isomer. While the isomer and ground state could only be partially resolved, the mass of 254No is consistent with prior direct measurements at the Penning trap mass spectrometer SHIPTRAP [14]. Furthermore, the masses of 251Fm and 251Md are in agreement with those determined by Q_{α} using SHIPTRAP values for the masses of 255Lr and 255No; this work provides the first direct mass measurements of 251Fm and 251Md. In the cases of 246Es and 249,250,252Md, no previous experimental mass data exist, however our values are consistent with extrapolated mass values in AME16 with similar or higher mass precisions.

One important test applied to theoretical models is
TABLE I. Measured isotopes, reactions, reaction energies at target center in laboratory frame (E_{lab}); recoil energies (E_{recoil}), cross sections (σ_{ER}), squares of analyte-reference ToF ratio (ρ^2), mass excesses from this work (M_E^{MRTOF}) and from the atomic mass evaluation 2016 (AME16) (M_E^{AME16}) [28], mass deviations (Δm = M_E^{MRTOF} − M_E^{AME16}), and the total number of detected ions (N_{ion}) in this work. Parenthetical values of σ_{ER} denote estimated values from a Monte Carlo code [29]. Extrapolated values of M_E^{AME16} denoted by #. Experimental statistical and systematic uncertainties are described in the first and second parentheses in M_E^{AME16}. Isotopes designated with superscript # have extrapolated mass values in AME16.

Isotope	Reaction	E_{lab} (MeV)	E_{recoil} (MeV)	σ_{ER} (mb)	ρ^2	M_E^{MRTOF} (keV/μc^2)	M_E^{AME16} (keV/μc^2)	Δm (keV/μc^2)	N_{ion} (counts)	
246Es	232Th(19F, 5n)	96.6	103	7.5, 7.8	800 (80)	0.92574351(44)	67812(109)(32)	-88(109)(32)	33	
254Fm	238U(19O, 5n)	93.9	6.9	400	4000 (40)	0.94458700(14)	75996(34)(25)	42(34)(25)	397	
246Md	250Ti(49Ca, 2n)	215	41.1	40	205	0.93706792(89)	77259(221)(26)	77232(205)	27(221)(26)	14
254Md	252Ti(49Ca, 3n)	223	42.3	200	205	0.94083491(56)	78472(138)(25)	78630(208)	158(138)(25)	29
251Md	250Ti(48Ca, 2n)	215	40.8	760	411	0.94459923(24)	79025(60)(23)	78967(19)	58(60)(23)	173
252Md	238U(19F, 5n)	98.6	7.3	500	205	0.94836715(36)	80467(89)(22)	80511(130)	-44(89)(22)	63
254No	208Pb(48Ca, 2n)	219	41.1	2000	32	0.95590832(17)	84675(42)(19)	84723.4(9.3)	-48(42)(19)	398

FIG. 6. Deviations between mass values determined in this work and AME16 [28] values. Error bars indicate 1σ standard uncertainty of our data, while solid lines indicate uncertainty of AME16. Isotopes designated with superscript # have extrapolated mass values in AME16.

Their ability to reproduce the shell gap parameter δ_{2n} [35] is calculated as

\[\delta_{2n}(N, Z) = S_{2n}(N, Z) - S_{2n}(N + 2, Z) = 2B(N, Z) - B(N - 2, Z) - B(N + 2, Z), \]

where \(S_{2n}(N, Z) \) and \(B(N, Z) \) are the two neutron separation energy and the total binding energy of nuclide \(N+Z \). Newly determined δ_{2n}(N, Z) values around \(N = 152 \) for mendelevium and lawrencium are compared with the theoretical values in Fig. 7. As described in Eq. (1), three isotopic masses – \(M(N, Z) \), \(M(N - 2, Z) \), and \(M(N + 2, Z) \) – are necessary to derive δ_{2n}. Using the new mass data in this work, we can make such a comparison between experimental and theoretical values for Md and Lr in the vicinity of the \(N = 152 \) subshell closure. For comparison to theory, we have selected global mass models representative of various common theoretical techniques: a shell model (DZ10 [36]), macroscopic-microscopic model (FRDM12 [37], and WS4RBF [38]), a self-consistent mean-field model (HFB32 [39]) and a phenomenological mass model (KTUY05 [40]). Both macroscopic-microscopic mass models (FRDM12 and WS4RBF) reasonably predict the experimentally determined δ_{2n} trends, although the peaking at \(N = 152 \) is best reproduced by the FRDM12 model. HFB32 and KTUY05 peak beyond \(N = 152 \), while DZ10 shows a flat trend with no peak. For lawrencium, WS4RBF agrees well with both the general trend and the peak at \(N = 152 \).

The location of the island of stability remains ambiguous. While experimental mass measurements of nuclei located within the hot-fusion superheavy island including the next deformed shell-closure predicted at \(N = 162 \) would be particularly valuable for this, in general more experimentally determined masses in the trans-uranium region will allow for improved extrapolation of mass values into the presumed region of the island of stability. By

TABLE II. Indirect determination of mass excess (ME) using α-decay Q-values (Q_α) taken from AME16 [28], along with the AME16 mass excesses (M_E^{AME16}) and our deviation (Δm) from them.

Isotope	Q_α (keV/μc^2)	M_E^{Indirect} (keV/μc^2)	M_E^{AME16} (keV/μc^2)	Δm (keV/μc^2)
251Lr	8918(20)	88602(222)	88575(202)	27(222)
254Lr	8816(12)	89713(141)	89871(301)	-158(141)
257Db	9207(20)	100234(224)	100206(203)	28(224)
259Pb	9500(50)	101638(149)	101797(306)	-159(149)
261Bk	10500(50)	113158(229)	113134(209)	25(229)
262Bk	10319(15)	114382(150)	114541(306)	-159(150)
266Mt	10996(25)	127803(152)	127962(306)	-159(152)
supplementing our precision, direct mass measurements with α-decay Q-values, we can provide mass values for nuclei up to 266Mt, as listed in Table I. For future efforts to approach to the island of stability, reliable theoretical predictions are crucial. Figure 8 shows the deviations between the various theoretical models and our experimental values. The best average agreement, with a mean deviation below 500 keV/c2, is obtained from the WS4 mass model, which is based on the WS4 mass model using a radial basis function approach for prediction. Except for the case of the KTUY05 model, general agreement within about 1 MeV/c2 is observed, although the deviations tend to increase with the mass.

In this study, we have directly measured the masses of 246Es, 251Fm, $^{249-252}$Md, and 254,258No. In the cases of 254No, 251Fm, and 251Md, the AME16 mass values were derived from Penning trap data; the excellent agreement of our measurement with this Penning trap derived data provides a high degree of confidence in our experimental technique. Combining these results with α-decay Q-values, the masses of 253,254Lr, 257,258Db, 261,262Bh, and 266Mt could be indirectly determined. Particularly robust agreement is seen with the WS4 mass model.

This work demonstrates the ability to perform direct mass measurements of both cold- and hot-fusion products, even with low recoil energy products ($E_{\text{recoil}} \approx 7$ MeV), by coupling a gas cell with GARIS-II. This technique could be applied to most nuclei produced with fusion-evaporation reactions in the SHN region. The overall system efficiency behind GARIS-II, excluding GARIS-II efficiency, from stopping in the gas cell to detection, was $\sim 2\%$ limited by the double trap system. In the near future, modification to a single trap setup at a new experimental location should provide improved system efficiency of more than 10% and shorter measurement time. This will allow us to measure the masses of hot-fusion SHN having cross sections on the order of ten picobarn.

We wish to express gratitude to the Nishina Center for Accelerator-based Research at RIKEN and the Center for Nuclear Science at the University of Tokyo for their support during the online experiments. This work was financially supported by the Japan Society for the Promotion of Science KAKENHI (Grant Nos. 2200823, 24224008, 24740142, 15H02096, 15K05116, and 17H06090).

* Present E-mail address: yito@physics.mcgill.ca Present address: Department of Physics, MacGill University, Montreal, Quebec H3A 2T8, Canada

1] D. Lunney, J. M. Pearson, and C. Thibault, Reviews Of Modern Physics 75, 1021 (2003).

2] O. Sorlin and M.-G. Porquet, Progress in Particle and Nuclear Physics 61, 602 (2008)

3] A. Sobczewski, F. Gareev, and B. Kalinkin, Physics Letters 22, 500 (1966)

4] Z. Patyk, A. Sobiczewski, P. Armbruster, and K.-H. Schmidt, Nuclear Physics A 491, 267 (1989)

5] Z. Patyk and A. Sobiczewski, Nuclear Physics A 533, 132 (1991)

6] G. T. Seaborg, Contemporary Physics 28, 33 (1987).

7] M. Bender, W. Nazarewicz, and P.-G. Reinhard, Physics Letters B 515, 42 (2001)

8] S. Ciwik, P.-H. Heenen, and W. Nazarewicz, Nature 433, 705 (2005)

9] Y. A. Lazarev, Y. V. Lobanov, Y. T. Oganessian, V. K.
