A simple methodology to estimate plant volume in nitrous oxide emission studies

Noemí Mateo-Marín | Ramón Isla | Dolores Quílez

Dep. of Soil and Irrigation (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragón (CITA), Avda. Montañana 930, Zaragoza, 50059, Spain

Correspondence
Noemí Mateo-Marín, Dep. of Soil and Irrigation (EEAD-CSIC Associated Unit), Agrifood Research and Technology Centre of Aragón (CITA), Avda. Montañana 930, 50059, Zaragoza, Spain.
Email: nmateo@cita-aragon.es

Funding information
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Grant/Award Numbers: FPI-INIA CPD-2015-0044, RTA2013-00057-C05-04; Fondo de inversión de Teruel

Assigned to Associate Editor Kate Congreves.

Abstract
Closed-chamber methodology is widely used for the estimation of greenhouse gas (GHG) emissions in agricultural systems. The volume displaced by plants inside chambers influences GHG flux estimation, although generally it is not discounted from chamber headspace in the calculation. A novel image analysis–based procedure is proposed to estimate plant volume and to assess its impact on nitrous oxide (N2O) flux estimations in a wheat (Triticum aestivum L. ‘Rimbaud’) crop. A maximum of 2.2% of the 13-L chambers was displaced by plants, leading to a systematic 0.9% overestimation in cumulative N2O emissions if plant volume was not considered. Thus, plant canopy volume should be taken into account for improving the accuracy of emissions.

1 | INTRODUCTION

Due to climate change concerns, the number of scientific publications related to greenhouse gas (GHG) emissions from agricultural systems has increased exponentially in recent years (Parkin, Venterea, & Hargreaves, 2012). Although a variety of techniques are available for GHG measurement (Holland, Robertson, Greenberg, Groffman, & Boone, 1999) and several recent reviews have made methodological recommendations (De Klein & Harvey, 2015; Olfés et al., 2018; Pavelka et al., 2018), there is no standard methodology for flux measurements. Most flux measurement studies are performed using chamber-based techniques, whereby gas samples are collected and subjected to infrared or gas chromato-

Abbreviations: GHG, greenhouse gas.
2 | MATERIALS AND METHODS

Irrigated bread wheat (*Triticum aestivum* L. ‘Rimbaud’) was grown (2016–2017) in a deep silty-loam textured soil classified as Typic Xeroﬂuvent (Soil Survey Staff, 2014). The experimental design was a randomized block with four treatments and four replicates. The treatments included a non-N-fertilized control and three pig slurry treatments with different additives at the same target rate (120 kg NH₄⁺–N ha⁻¹). Sixteen plots (2.0 m × 3.6 m) conﬁgured the trial; each had one static closed unvented chamber for GHG measurement. To meet the distinct objectives of this study, the experimental design as described was used as a framework for collecting plant volume and N₂O data.

The closed-chamber technique and the N₂O ﬂux measurement procedures were the same as those described by Mateo-Márín, Quílez, Guillén, and Isla (2020). Briefly, a collar (0.30 m i.d., 0.12 m height) was inserted 0.10 m into the soil. At the time of ﬂux measurements, an upper cover of 0.165-m height was located on top of each collar, creating a 13.1-L headspace volume. The height of the upper cover did not change during the course of the study; plants were folded when necessary to facilitate chamber closure. This strategy did not affect plants’ growth because of their ﬂexibility, although some stems were damaged on the last sampling date just before harvest. Inner air samples (15 ml) were drawn at 0 and 60 min after chamber closure using a polypropylene syringe and injected into 12-ml Exetainer borosilicate pre-evacuated glass vials (Labco Ltd.). Chambers were sampled on 12 dates between 7 Apr. and 20 June 2017; samplings occurred daily for the ﬁrst 5 d after fertilization (7 Apr. 2017) and decreased in the frequency afterward. Air samples were analyzed by gas chromatography with an Agilent 7890B equipped with an electron capture detector for determining N₂O concentration. The N₂O ﬂux was estimated as the difference between the ﬁnal and initial N₂O concentrations (corrected by air temperature) divided by the time interval between the two sampling times and multiplied by the ratio between the headspace and the area of soil covered by the chamber (MacKenzie, Fan, & Cadrin, 1998).

A novel, nondestructive procedure is proposed to estimate the volume displaced by the plants inside the chambers. The approach is based on the relationship between canopy image area (derived from zenithal images) and plant volume. Wheat plants located inside the collars were described periodically according to their phenological stage (Zadoks, Chang, & Konzak, 1974) and photographed. At the same time, in an area adjacent to the experimental plots, a secondary chamber collar was established to photograph wheat plants encompassed by it at the same phenological stage. All plants inside this secondary collar (0.071 m²) were cut, frozen (−30 °C), and placed into a glass test tube to determine their volume by water displacement. Three differently sized test tubes (500, 1,000, and 2,000 ml) were used throughout the trial, with sequentially larger tubes used as plant volumes expanded due to growth. Between two and six measurements were used at each phenological stage of plants to determine canopy image area and plant volume.

Zenithal photographs were managed according to the orthoimage technique for canopy image analysis described by Lordan et al. (2015) to obtain the area projected by the canopy. Photographs were taken (2.3 × 10³ pixels cm⁻²) with a compact camera (Canon PowerShot SX210 IS) at 1.20-m height over the soil surface. Plants outside the collar were covered (hidden) by a piece of cardboard to isolate all the canopy area projected outside the vertical projection of the collar. A ruler was added on the piece of cardboard to scale the image. The photographed green area was isolated (Photoshop CS5, Adobe Systems) and processed using ImageJ (Rasband, 1997–2018) to select all the wheat canopy pixels, obtaining the canopy image area (Figure 1), which was corrected by the image scale. The relation between plant volume and canopy image area was established using a linear regression model that pooled data from all phenological stages. Then, the volume of the plants within each collar located in the experimental plots was estimated from their canopy image area by using the linear model and solving for plant volume.

3 | RESULTS

Wheat plant volume can be precisely estimated through canopy image analysis using the equation presented in Figure 2, where there was a strong relationship between the two variables ($R^2 = .96; p < .001$; RMSE, 18.2 ml). The measured volume of the plants located inside the collar ranged from 0.6 to 2.2% of the chamber volume (CV, 1–11%) depending on the phenological stage. The maximum plant volume (2.2%) was measured at anthesis (stage 65 according to the Zadoks scale) (Figure 3).

When the N₂O emissions (Figure 4) were calculated by adjusting for the proportion of the chamber displaced...
by wheat plants (thereby changing the chamber headspace volume), the cumulative N₂O emissions were 0.9% lower (646.7 g N ha⁻¹ vs. 652.5 g N ha⁻¹; mean difference, 5.8 ± 0.5 g N ha⁻¹) than when plant volume was disregarded from the calculations.

4 | DISCUSSION

The image analysis proposed here is a viable methodology to adjust for changes in headspace volume due to plant growth inside chambers. There was a small error in plant volume estimation and a high correlation between the estimated canopy image area and the measured volume of plants. This image-based method fulfills the premises of Morton and Heinemeyer (2018) regarding the necessity of a simple, effective, and non-destructive method for assessing plant volume in chamber-based techniques for GHG measurements. In addition, it is a more objective methodology than the visual assessment of two observers proposed by Morton and Heinemeyer (2018). It is advisable to establish a relationship between plant volume and canopy image area for each experiment, even for crops similar to the one in this study, because differences in plant architecture are expected among cultivars with different growth habits. The determination of plant volumes by the water displacement method using test tubes could present a challenge when whole plants do not fit into test tubes, but it could be solved by breaking up the plants prior to freezing.

According to the results, cumulative N₂O emissions were slightly overestimated when disregarding plant volume in the calculations, which was a negligible but systematic error. The smaller contribution of plant volume to differences in cumulative N₂O emissions (0.9%) compared with the volume of chamber displaced by plants (0.6–2.2%) was a result of plant volume being low when emissions were at their greatest. Similar results were observed by Collier, Dean, Oates, Ruark, and Jackson (2016), who detected small but significant effects on calculated fluxes after adjusting for 1.4–2.2% the within-chamber alfalfa volume (variation of 0.7–1.7% in the flux rate). Disregarding plant volume may be more relevant for long-term experiments and for emission factor estimation because plant volume is lower in unfertilized than in fertil-
ACKNOWLEDGMENTS
This study was funded by the Spanish National Institute for Agricultural Research (RTA2013-00057-C05-04 and FPI-INIA CPD-2015-0044) and “Fondo de invesión de Teruel.” The authors thank V. Montilla for support with image analysis, S.O. Petersen and J.M. Mirás-Avalos for suggestions, and the field personnel of Department of Soil and Irrigation of CITA.

CONFLICT OF INTEREST
There are no conflicts of interest.

ORCID
Noemí Mateo-Marín https://orcid.org/0000-0002-1003-8294
Ramón Isla https://orcid.org/0000-0001-8913-853X
Dolores Quílez https://orcid.org/0000-0002-2638-9443

REFERENCES
Collier, S. M., Dean, A. P., Oates, L. G., Ruark, M. D., & Jackson, R. D. (2016). Does plant biomass manipulation in static chambers affect nitrous oxide emissions from soils? *Journal of Environmental Quality, 45*(2), 751–756. https://doi.org/10.2134/jeq2015.07.0377
Eugster, W., & Merbold, L. (2015). Eddy covariance for quantifying trace gas fluxes from soils. *Soil, 1*(1), 187–205. https://doi.org/10.5194/soil-1-187-2015
Holland, E. A., Robertson, G. P., Greenberg, J., Groffman, P. M., Boone, R. D., & J. R. Gosz (1999). Soil CO₂, N₂O, and CH₄ exchange. In G. P. Robertson, C. S. Bledsoe, D. C. Coleman, & P. Sollins (Eds.), *Standard soil methods for long-term ecological research* (pp. 185–201). New York: Oxford University Press.
De Klein, C., & Harvey, M. (2015). *Nitrous oxide chamber methodology guidelines*. Wellington, New Zealand: Ministry of Primary Industries.
Livingston, G., Hutchinson, G., Matson, P. A., & Harriss, R. (1995). Enclosure-based measurement of trace gas exchange: Applications and sources of error. In P. A. Matson & R. C. Harriss (Eds.), *Biogenic trace gases: Measuring emissions from soil and water* (pp. 14–51). Oxford, U.K.: John Wiley.
Lordan, J., Pascual, M., Fonseca, F., Montilla, V., Papió, J., Rufat, J., & Villa, J. M. (2015). An image-based method to study the fruit tree canopy and the pruning biomass production in a peach orchard. *HortScience, 50*(12), 1809–1817. https://doi.org/10.21273/HORTSCI.50.12.1809
MacKenzie, A. F., Fan, M. X., & Cadrin, F. (1998). Nitrous oxide emission in three years as affected by tillage, corn–soybean–alfalfa rotations, and nitrogen fertilization. *Journal of Environmental Quality, 27*(3), 698–703. https://doi.org/10.2134/jeq1998.00472425002700030029x
Mateo-Marín, N., Quílez, D., Guillén, M., & Isla, R. (2020). Feasibility of stabilised nitrogen fertilisers decreasing greenhouse gas emissions under optimal management in sprinkler irrigated conditions. *Agriculture Ecosystems and Environment*, 290, 106725. https://doi.org/10.1016/j.agee.2019.106725

Morton, P. A., & Heinemeyer, A. (2018). Vegetation matters: Correcting chamber carbon flux measurements using plant volumes. *Science of the Total Environment*, 639, 769–772. https://doi.org/10.1016/j.scitotenv.2018.05.192

Olfs, H.-W., Westerschulte, M., Ruoss, N., Federolf, C.-P., Zurheide, T., Hernandez, M. E. V., … Well, R. (2018). A new chamber design for measuring nitrous oxide emissions in maize crops. *Journal of Plant Nutrition and Soil Science*, 181(1), 69–77. https://doi.org/10.1002/jpln.201700008

Parkin, T. B., Venterea, R. T., & Hargreaves, S. K. (2012). Calculating the detection limits of chamber-based soil greenhouse gas flux measurements. *Journal of Environmental Quality*, 41(3), 705–715. https://doi.org/10.2134/jeq2011.0394

Pavelka, M., Acosta, M., Kiese, R., Altimir, N., Brümmer, C., Crill, P., … Kutsch, W. (2018). Standardisation of chamber technique for CO₂, N₂O and CH₄ fluxes measurements from terrestrial ecosystems. *International Agrophysics*, 32(4), 569–587. https://doi.org/10.1515/intag-2017-0045

Rasband, W. S. (1997–2018). ImageJ. U.S. National Institutes of Health. Retrieved from https://imagej.nih.gov/ij/

Soil Survey Staff. (2014). *Keys to soil taxonomy* (12th ed.). Washington, DC: USDA-NRCS.

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. *Weed Research*, 14(6), 415–421. https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

How to cite this article: Mateo-Marín N, Isla R, Quílez D. A simple methodology to estimate plant volume in nitrous oxide emission studies. *J. Environ. Qual.* 2020;49:769–773. https://doi.org/10.1002/jeq2.20077