Using Ellenberg-Pignatti values to estimate habitat preferences of wild food and medicinal plants: an example from northeastern Istria (Croatia)

Ivana Vitasović Kosić1, Josip Juračak2 and Łukasz Łuczaj3*

Abstract

Background: The paper presents the first ethnobotanical application of Ellenberg indicator values, which are widely used in European plant ecology. The aim of the study was to find out if Ellenberg values (indicating habitat preferences) differ for wild food and medicinal plants used in north-eastern Istria (Croatia). We used Ellenberg-Pignatti values (the version of Ellenberg values used in this part of Europe).

Methods: Fifty semi-structured interviews were carried out among local key informants, asking which wild food and medicinal plants they used.

Results: The mean number of food and medicinal plants mentioned per interview was 30. Altogether, 121 species were recorded as food or medicine used or previously used in the study area. Thirty-one species are used exclusively as food or everyday drink, 50 species are used exclusively as medicine and 40 species are used for both food and medicine. There were no significant differences between Ellenberg values for food and medicinal plants, apart from the Nitrogen indicator value – the plants used exclusively as food had a significantly higher index than those used in medicine. This probably stems from the fact that plants with soft fleshy shoots are attractive as food and they are more likely to come from nitrogen-rich ruderal habitats.

Conclusions: Food plants and medicinal plants are collected from a variety of habitats and no clear difference between the two categories of plants was detected, however further testing of Ellenberg values in ethnobotanical studies could be interesting.

Keywords: Ethnoecology, Quantitative ethnobotany, Ellenberg indicator values, Wild edible plants, Medicinal plants, Ćićarija, Phytoindication, Ethnobotany, Ethnomedicine

Background

Ellenberg values are indices given to each species in a flora to express the species’ environmental preferences [1, 2]. The system was first introduced by the prominent German phytosociologist Heinz Ellenberg (1913–1997), and applied to the vegetation of central Europe. It consists of the following indices: Light, Temperature, Continentality, Soil Moisture, Reaction, Nitrogen and Salinity. Later it was modified to incorporate local differences in species’ environmental preferences, e.g. in Switzerland, Poland, British Isles and Italy [3–6]. Ellenberg–Pignatti values from Italy are used in the Mediterranean part of Croatia, as the climate and vegetation zones of Croatia bear many similarities to those of the adjacent Italy.

The values are usually given on a ten grade scale (0–9), apart from Light, Temperature and Soil Moisture, expressed on a 0–12 scale and salinity on a 0–3 scale. They are based on the field experiences of ecologists. Although looking at single species values does not have much practical use, comparison of average values for different sites and habitats can be used for phytoindication and characterizing environmental conditions at a given
site [7, 8]. Some reductionist-oriented ecologists criticise the values for being based on biased choices and impressions and for mixing the absolute requirements of species with their ecological niches, which are the results of competition [9, 10]. Being aware of the constraints in using these values in our article, we aimed at applying them to ethnobotanical data.

The data matrix in an ethnobotanical study has many similarities with a phytosociological study. In the latter we obtain a data sheet composed of a species x releve matrix, whereas in the former we usually have a similar species x informant matrix which is later analysed. In both cases the same indices and tools may be used to describe the data: species frequency, diversity indices, ordination methods etc. Increasing quantification of ethnobotanical studies has been continuously advocated by some ethnobotanists, particularly by Ulysses de Albuquerque and his colleagues [11, 12]. This would strengthen the discipline and provide rigorous testing methods. Species frequency and diversity indices are probably used in at least half of ethnobotanical papers. However, other numerical methods and tools used in ecology, such as ordination techniques (see e.g. [13] from the similar study area), are used less frequently.

Traditional knowledge usually extends to different habitats surrounding human settlements. However, it has been noticed that it is not evenly distributed. For example ruderal “weedy” species tend to be over-utilized compared to the species of primary forest habitats [14, 15], although the opposite can be true in some cultures as well [16]. Writing this paper we wanted to explore the use of Ellenberg values to establish whether there are differences between the environmental preferences of wild medicinal and food plants. We assumed that some Ellenberg values would be different for food and medicinal plants, as medicinal plants are often rich in essential oils and alkaloids, so they would tend to grow in dry pastures and grasslands, while food plants should be gathered from more nutrient-rich and mesic habitats. An additional aim was to document the use of plants from the whole food-medicine spectrum in the area.

For our case study we used the area of Čičarija in the north-eastern part of the Istria peninsula. Only two ethnobotanical studies dealing with plant remedies had previously been carried out there, covering several villages in the core part of Čičarija [13, 17]. One of these studies concerned Croatians [13], another – Istro-Romanians [17]. In this paper we extended the research topic to food plants and included more villages from the area at the base of Čičarija. The study was made easier by the fact that the first authors had carried out long term phytosociological research in the same area between 2003 and 2015 [18–21] and acquired a good level of knowledge about the local community and available key informants over the years. Our study was restricted to inhabitants of Croatian nationality.

Study area

The study area (about 1000 ha) is part of the North Adriatic Karst and is located in Croatia at the north of the Istrian Peninsula, on the Čičarija (Ital. Cicceria, Monti della Vena) mountainous plateau (45° 29′ 56″–45° 30′ 00″N, 13° 59′ 54″–14° 00′ 29″E), ranging 250–900 m a.s.l (Figs. 1 and 2). The name Čičarija is derived from the South Slavic term Ćić, which refers to Istrians living north and north-east of the Učka mountain, originally referring to the Vlachs and Istro-Romanians of the area [22]. The area belongs to the Special Protection Area (SPA) of the Natura 2000 network (92/43/EEC Directive) as an important site for habitat 62A0 (Eastern sub-mediterranean dry grasslands Scorzoneraltia villosae H-ič 1975) and bird species conservation. The climate is transitional between Mediterranean and continental pre-Alpine, with cool, rainy winters and long, dry summers [23]. The mean annual temperature is 12.6 °C, the coldest in February (0–2 °C) and warmest in July or August (18–22 °C). Precipitation is about 1500 mm/year, most of which falls in autumn; a less pronounced secondary peak occurs as spring turns to summer. From a bioclimatic viewpoint, the study area belongs to the sub-Mediterranean belt [24] and the epi-Mediterranean mountain zone. The territory is characterised by karstic phenomena (dolines, caves, etc.); the bedrock consists of limestone; soils are generally brown, shallow and clast-rich. Pastures are for the most part under-grazed because of a low density of grazers (sheep) or abandoned (Fig. 3); meadows are irregularly mown, abandoned or, in some cases, derive from seeded forage meadows that have been abandoned [18]. In the past (pre-World War II) most of the Čičarija territory was karst and grassland. The pastoral landscape is characterized by pastures and meadows, belonging to the Scorzoneraltia villosae order (Festuco-Brometea class) and Arrhenatheretalia elatioris order (Molinio-Arrhenatheretea class; Fig. 4), respectively [18–21]. The potential natural vegetation of most of the area is composed of sub-Mediterranean forests of Quercetalia pubescentis Br.-Bl. (1931) 1932 order and, at higher elevations, Fagetalia sylvatica (Paw.) 1928 [21]. A complex mosaic of ruderal vegetation occurs in the villages (Fig. 5).

For many centuries Istria was at the cross-roads of cultural exchange and trade between the Austrian Empire and the Republic of Venice. Čičarija, especially, was an area of frequent migrations due to wars and other disastrous events like plague epidemics. Therefore, even today it is considered as an area of multicultural interactions between peoples that have settled here throughout history (Croatians, Istro-Romanians, Slovenians, Italians and Austrians), and many people are multilingual. These historical events have influenced the creation of traditions and the mentality of people on this mountain.
In this region sheep grazing and the herding way of life has been present for centuries. At the time of agrarian overpopulation (the 19th and the beginning of the twentieth century) large areas of the karst area in Ćićarija were turned into barren, rocky grasslands, almost desert regions which were later afforested (mostly with Pinus nigra). After World War II, traditional ways of farming have been abandoned and there is a movement towards the farmyard way of livestock breeding [26], as well as the termination of transhumance from the southern parts of Istria, or even from distant regions (Bosnia and Herzegovina and
Macedonia). Back in 1869 there were 160,000 sheep in Istria, whereas in 2003 there were only 12,000 [25]. Nowadays in the area described there are about 200 sheep (I.J., information from local farmers).

Therefore, today in the area of Ćićarija negative trends such as the abandonment of land, secondary succession, large-scale fires, reducing the number of population in distant areas, the disappearance of plant and animal species (loss of biodiversity) are present [26]. With the entry into force of the European “green” agricultural policy, agri-environmental measures have been taken to prevent further succession, to preserve the cultural landscape and biodiversity and to increase population density. Today the area of Ćićarija is populated by a predominantly elderly population, the younger people are employed in nearby towns, do not continue sheep husbandry, but either switch into agritourism or come to the mountains for the weekend or during the holidays.

Karst cultural landscape is characterized by fences with stone walls and fenced hay meadows. Some land is still jointly owned by members of the agricultural community, the so-called “komunete” or “gmajne” (from German die Gemeinde, in the translation community) [26].

Utilised arable land and meadows in the wider area (19,890 ha) occupy 1908 ha (75.8% of utilised agricultural land, and 8.6% of the total surface), and predominantly karst pastures of low quality cover 608 ha (24.2% of utilised agricultural land) [27, 28].

Most of the pasture land is undergoing further succession to woodlands, which occupy 13,611 ha (68.4% of the total surface) [28]. These are the data for the areas of Buzet, Lanišće and Lupoglav, which are the only available data. In the narrower area of Ćićarija the share of agricultural land, especially arable land, is expected to be significantly smaller. Local people even today use a mixture of three languages, Croatian, Slovenian and Italian, easily switching between them. Additionally there is a community of Istro-Romanians who have their own language and traditions (village of Žejane), they probably arrived in Istria in around the fourteenth century from the Carpathians.

The population of the Croatian villages of the Ćićarija speak both the Čakavian dialect of Croatian, which is also spoken in many other areas of Istria and along the Croatian Adriatic sea coast (Dalmatian littoral and islands) [13] and the Kajkavian dialect (near the border with Slovenia).

The northeastern border of Ćićarija follows the road Rijeka – Trieste, while the southwestern border follows the route Lupoglav – Buzet. There are 22 villages in the Croatian part, mostly in the municipality of Lanišće, with 1722 inhabitants registered during the Census of 2011 [27]. In a broader sense, the parts of Buzet and Lupoglav municipalities also belong to Ćićarija, and in that sense the total population in the area is about 5500. Today the higher mountain areas are almost abandoned, with less than 300 people remaining as permanent residents. Most of the population lives in the south eastern part of Ćićarija, in the proximity of Rijeka. However, in the higher, central part of Ćićarija there are 14 small villages with an average population of 24 people each. Only five of these villages have more than 20 inhabitants.

The population of Ćićarija is in decline, and the current population is about a third of that from 1931 (from 8445 to 1722 inhabitants). The depopulation process was the most severe in the municipality of Lanišće, where the population density is 2.7 inhabitants per square km and the proportion of older people (age > 60) is over 40% [27, 28]. The average age in the Lanišće municipality in 2011 was 49, which is 6.7 years more than in the Istria County as whole.

During the first half of the twentieth century the majority of active population on Ćićarija were working in agriculture, forestry and charcoal production. In every larger settlement there were craftsmen to provide necessary services: tailors, carpenters, blacksmiths, barbers, masons etc.
Scientific name	UR	Local names	Preparation method	Medicinal use	Parts Used	Purpose	Voucher no.
Achillea millefolium L.	26	milefiori, milefolium, stallsnik, tausendraž	dried for tea	against amenorrhea, digestive, to strengthen the body, to improve appetite, to treat women's menopausal symptoms, for the bladder, for the stomach	L, F	Md	40115
Alcea rosea L.	1	slez crveni	dried for tea	diuretic	F, Md	-	-
Allium ampeloprasum L.	11	čebula, čebûv, diblji česán, dibilji česen, dibilji luk, dvljii luk, dvljii luk, luk, poriluk diblji, purič	fried with eggs, raw as salad, raw for livestock		L, R	Fd	-
Allium ursinum L.	5	medvedka, medvedi luk	boiled, raw or dried as spice, fried with eggs, raw as salad		L	Fd	-
Allium sp.	4	česán, česăn, dvljii česan	raw, cooked		L, R	Fd	-
Althaea officinalis L.	10	beli slez, kapitvaničja, sirči, slez	dried for tea	to clean the sinuses, to calm coughing	F, R	Md	-
Amaranthus retroflexus L.	7	diblja blitva, dvljii ščir, ščir	boiled, boiled with fennel, dried for tea, soaked in water	veterinary: against diarrhea	S, L	Md & Fd	41804
Arctium lappa L.	2	ččak	dried for tea, macerated	for detoxification, for better hair growth	R, FR	Md	-
Armoracia rusticana P. Gaertn., B. Mey. et Scherb.	1	hren	raw as salad		R	Fd	-
Artemisia absinthium L.	15	pelein, pelin	boiled, dried for tea, raw in liqueur	against gastritis, against pneumonia, to treat women's problems, liver cleaning	L	Md	40142
Arum maculatum L.	1	kožac	dried for tea or ointment	against haemorrhoids, to treat laryngitis and bronchitis, anti-ulcer, anti-psoriatic	L	Md	41792
Asparagus acutifolius L.	39	dibiš šparge, šparate, šparoge, šparuge, šparuge	boiled with rice, cooked in pasta sauce, dried for tea, fried with eggs, raw or dried as spice	kidney stone relief	W	Md & Fd	-
Bellis perennis L.	2	margaretice, tratiččka	fried in pancakes		F	Fd	41803
Calendula officinalis L.	1	neven	raw in ointment	astringent, for healing the skin	F	Md	-
Carlina acaulis L.	2	beli trn, kravljjak, vilino sito	against ageing spots on the skin, for decoration		F, L	Md	-
Carum carvi L.	9	crni kimelj, dvljii kimelj, dvljii kimen, kimel, kimen dvljii, kimen	dried as spice, dried for tea, raw kimen, kimel, kimel dvljii, kimen	digestive, anti-flatulence, intestinal colic relief in children	S	Md & Fd	-
Castanea sativa Mill.	3	dvljii kostanj, kostanj, kostanj diblji	raw	anti-rheumatic	FR	Md	-
Centaurium erythraea Rafn	2	kičča, taulendroža	dried for tea, raw in liqueur	digestive	W	Md	36736
Chelidonium majus L.	4	mlč, rosopas	dried for tea, raw cellular juice	anti-warts, against dizziness, against skin cancer	W, L	Md	41799
Chenopodium album L.	29	loboda, lobodà, ljübdði			L, W	Fd	-
Species	Uses	Code	Notes				
--	--	----------	--				
Ochotrichum intybus L.	boiled, boiled with vegetables, fried, fried with eggs, raw as salad,						
	raw for livestock, raw or dried as spice						
	boiled, boiled with vegetables, fried, as a warm drink, fried with						
	eggs, raw as salad						
		R, L	Fd 40033				
Clematis vitalba L.	dried for weaving and making a kind of string for tying vineyards,						
	fried with eggs, raw, raw for livestock, raw for weaving						
		L, W	Fd 40134				
Clinopodium nepeta (L.) Kuntze (syn.	dried as spice, dried for tea						
Calamintha nepetoides Jord.)			sedative, good for stomach				
		L	Md & Fd 41807				
Cornus mas L.	cooked as compote or jam, distilled for brandy, dried for tea,						
	fermented as vinegar, processed in wine, raw, raw in liqueur, raw in						
	syrup						
		FR	Fd 41788				
Corylus avellano L.							
		S	Fd 40125				
Crataegus monogyna Jacq.	cooked as jam, dried for tea, pressed for juice drops, raw in						
	liqueur, raw in ointment		cardiac insufficiency treatment, blood				
		L, F, FR	Md & Fd 40113				
Daucus carota L.	cooked		healing “because of carotene”				
		R	Md & Fd 41792				
Descurainia communis L. Caddick & Wilkin (syn.	fried with eggs, raw as salad, raw for livestock, raw in						
Tornus communis L.)							
		W, R	Md & Fd 40040				
Diploptaxis tenuifolia (L.) DC.	boiled with vegetables, raw						
		L	Fd 40041				
Elymus repens (L.) Gould							
Equisetum arvense L.							
Euphorbia cyparissias L.							
Fagus sylvatica L.							
Foeniculum vulgare Mill.							
Fragaria vesca L.							
Table 1 Wild and feral species traditionally used for food and medicine in the study area (Continued)

Species	Common Name	Uses	Natural Medicinal Properties			
Gentiana lutea ssp. *symphyandra* (Murp.) Hayek			dissolved in water, raw in liquor	anti-gout, anti-rheumatic, anti-arthritis	R, Md	40028
Helianthus tuberosus L.	čemerika, enčan, lincura, srčanik, Suljan	raw (ground for salad)		anti-diabetes	R, Md	-
Helichrysum italicum (Roth) G.Don		in olive oil, for skin		for the skin	F, L, Md	34732
Humulus lupulus L.		boiled with rice, cooked in pasta sauce, raw or dried for soup seasoning, dried for tea, fried with eggs		sedative	L, Md & Fd	40056
Hypericum perforatum L.	gospina trava, ivanjska trava, ivanjsko cvijeće, kantarion, kantarion, rože sv. Ivana, rožice sv. Ivana, trava sv. Ivana, trava sv. Marije	dried for tea, macerated, raw in liquor, raw in oil, raw in ointment		against haemorrhoids, anti-arthritis, to treat burns, sedative, liver cleaning, for the skin, for wounds, for veins, for stomach	F, L, Md	40140, 40141
Ilex aquifolium L.	božikovina	dried for tea to treat the flu, digestive			L, Md	-
Iris germanica L.	špada	dried for tea			R, Md	41800
Iris illyrica Tomm.	lelje, perunka	dried, raw, mixed with other feed		to strengthen the organism of lactating livestock (cows, sheep)	R, Md	36804
Juglans regia L.	orah, oreh, orih	baked in cakes, boiled, raw in liquor		digestive, appetite stimulant, strengthening organism	L, FR, Md & Fd	40035
Juniperus communis L.	brinj, cupin, smeka, smekeva, smekeva plava, smirka, smirka crna, smirka plava, smirka, smirka plava	chopped raw, cooked in pasta sauce, dried for tea, raw, raw in cream, raw in liquor, raw in oil, raw or dried as spice, bundled for use as a broom		cold remedy, digestive, anti-diarrheal, anti-rheumatic, vermifuge	FR, Md & Fd	-
Juniperus oxycedrus L.	smirka crvena, Smirka crvena, Smirka krvava	raw in liquor		digestive, astringent (for digestion)	FR, Md	-
Lamium orvala L.	mrtva kopriva	boiled		cold remedy	W, Fd	41798
Laurus nobilis L.	lavrka, lovor	dried for tea, raw in syrup, raw or dried as spice		calms irritated skin	L, F, Md	40039
Lavandula angustifolia Mill.	lavanda	raw in oil		anti-stomach problems	L, F, Md	36792
Linum usitatissimum L.	lan	dried for tea		panacea	S, Md	-
Loranthus europaeus Jacq.	imela žuta	raw in liquor		cholesterol reduction	W, Md	-
Malus domestica Borkh.	jaboka, jabučići, jabuka	baked in cakes, fermented as vinegar, raw in syrup		cholesterol reduction	FR, Md & Fd	-
Malus sylvestris Mill.	dibje jaboke, diblji jabučići, dibli jabuki, divlja jabuka, divlje jabuzice, divlji jabučići, lesnjuke, lesnjake, lesnjauke, lisnjake, rušviči	cooked as compote, cooked as jam, fermented as vinegar, processed in fruit wine, raw as snack, raw for livestock, raw in liquor		blood pressure and cholesterol reduction	FR, Md & Fd	40029
Common Name	Scientific Name	Use	Properties	Reference		
-------------	-----------------	-----	------------	-----------		
Malva cf. neglecta L.	Malva neglecta L.	dried for tea, raw in liquor	anti-rheumatic	R, Md 40137		
Matricaria chamomilla L. (syn. Chamomilla recutita (L.) Rauschert)	Matricaria chamomilla L.	dried for tea	sedative, digestive	F, L, Md -		
Melissa officinalis L.	Melissa officinalis L.	dried as spice, dried for tea, fried with eggs, raw in syrup	sedative	L, Md & Fd -		
Mentha longifolia (L.) Huds.	Mentha longifolia (L.) Huds.	dried for tea, raw in syrup, raw with cheese	for digestion	L, Md & Fd 40051		
Mentha spicata L.	Mentha spicata L.	dried for tea, raw in syrup	anti-stomach problems	L, Md 40052		
Morus alba L.	Morus alba L.	baked in cakes, cooked as jam, raw, raw in liqueur, raw in syrup	as a laxative	FR, Md & Fd 40129		
M. nigra L.	Morus nigra L.	raw, raw for livestock	-	FR, L, Fd -		
Nasturtium officinale R. Br.	Nasturtium officinale R. Br.	dried for tea, raw	liver cleansing	L, F, Md -		
Neottia nidus-avis (L.) Rich.	Neottia nidus-avis (L.) Rich.	dried for tea	veterinary, for sheep to remain pregnant	L, F, Md -		
Nymphaea alba L.	Nymphaea alba L.	raw, on the skin	ulcer extractor	L, Md -		
Olea europaea L.	Olea europaea L.	dried for tea, pressed for oil, raw	for general health	L, FR, Md -		
Ononis spinosa L.	Ononis spinosa L.	dried for tea	diuretic (urine excretor)	R, FR, Md 35855		
Origanum majorana L.	Origanum majorana L.	dried for tea	sedative	L, Md -		
Origanum vulgare L.	Origanum vulgare L.	chopped raw, dried, dried for tea	sedative	L, Md 35619		
Paliurus spina-christi Mill.	Paliurus spina-christi Mill.	fried in fritters	-	F, Fd -		
Papaver rhoeas L.	Papaver rhoeas L.	for colouring food	-	F, Fd 41797		
Parietaria officinalis L.	Parietaria officinalis L.	dried for tea	for urinary tract, kidney cleansing, for suppression of bacteria in the urine	L, Md 40136		
Physalis alkekengi L.	Physalis alkekengi L.	raw, infused in honey, raw in liqueur, raw in syrup	anti-bronchitis, anti-cough, anticytarthrh in the throat, to treat colds and the flu	FR, Fd 40112		
Platanus nigra J.F. Arnold	Platanus nigra J.F. Arnold	raw, raw as salad, raw in syrup	anti-cough, antiseptic, for healing wounds, for toothache, healing wounds, ulcer extractor, for the bronchi	R, L, Md 41806		
Plantago lanceolata L.	Plantago lanceolata L.	raw, raw in syrup	anti-cough, antiseptic, cicatrising (for healing wounds), calms irritated skin	L, Md 41805		
Plantago major L.	Plantago major L.	raw, raw as salad, raw or dried as spice	anti-cough, for the bronchi	L, Md 40054		
Plantago media L.	Plantago media L.	raw	anti-septic, for healing wounds	L, Md 40054		
Polygala nicaea R. Risso ex Koch	Polygala nicaea R. Risso ex Koch	dried	anti-cough, for the bronchi	W, Md 39189		
Portulaca oleracea L.	Portulaca oleracea L.	raw, raw as salad, raw or dried as spice	anti-cough, antiseptic, for healing wounds, for toothache, healing wounds, ulcer extractor, for the bronchi	L, W, Fd -		
Table 1 Wild and feral species traditionally used for food and medicine in the study area (Continued)

Species	Common Names	Uses	Medicinal Properties	Reference
Primula veris ssp. columnae	jaglac, jaglac divlji	dried for tea, fried in pancakes	sedative	F Md & Fd 36761
Prunus avium	crna trešnja, črešnje, črvena, diva trešnja, divli trešnje, črvli trešnje	dried for tea, raw in liqueur	digestive	L, FR Md & Fd 40030
Prunus cerasus	višnja	raw in liqueur	digestive	FR Md & Fd 40038
Prunus domestica	amuli, amulini, bila čepa, kreke, kreke bijele, kreke plave, silva, šljive bijele, šljiva, šljive bijele, šršvići	cooked as compote, cooked as jam, distilled for brandy, raw, raw in liqueur		
Prunus dulcis	mandule, menduli, lišnjaki, lišnjak	dried for tea		S Fd -
Prunus mahaleb	rešeljka, rišeljka		digestive	FR Fd 40038
Prunus persica var. platycarpa	breskve, breskvice, vinogradarska breskva, vinogradarske breskve	raw in syrup		
Prunus spinosa	brombuli, brumbolje, brumbulje, ciborice, crni trn, črni trnj, črni trnj, divli trn, drinkalici, glog, potrni, silica plava, trnina, trnkice	cooked as compote, cooked as jam, raw in liqueur, raw in syrup	cardiac insufficiency treatment, digestive, anti-flu	FR, F Md & Fd 40044
Pteridium aquilinum	bujad, paprat	boiled		L Fd 41794
Pyrus amygdaliformis Vill.	dibje kruške, divlja kruška, divlje fruške, divlje fruški, divlje kruške, divlji krušči, fruške, fruški, fruščići, hrvičići, hrvičići, hrvičići, hrvičići	cooked as compote, raw in liqueur		FR Fd
Pyrus pyraster (L.) Burgsd.	dibje kršve, kruške, krušči, krušviči	baked in cakes, cooked as compote, cooked as jam, raw in liqueur, raw in syrup		FR Fd
Quercus pubescens Willd.	hrast, hrast dub, želod, želot, žir	dried for tea, raw for livestock, raw in juice	antidiarrhea, nutraceutical	bark, FR Md & Fd 40117
Robinia pseudoacacia L.	akacija, bagrem, diraka, drača, kacija, kacjca	cooked in fritters, dried for tea, fried, raw in juice, raw in syrup	digestive, anti-flu	F Md & Fd 40123, 40048
Rosa canina L.	lužar, ružar, ružari, sarbonić, šišak, šišak, šipok, šipok, tovorski bomboni, tovorski bomboni	cooked as jam, dried for tea, raw in syrup	anti-diarrhea	FR Md & Fd 40126
Rosmarinus officinalis L.	rožmarin, ružmarin	boiled, dried for tea, raw or dried as spice	cold remedy, anti-dandruff, rickets treatment	L Md & Fd 40034
Rubus caesius L.	črna jagoda, črna murga, črne maline, jagoda, kupina, kupina	cooked as jam, dried for tea, parboiled, raw in liqueur, raw in syrup	anti-diarrhea, ulcer treatment	L, FR Md & Fd 40119
Species	Uses	Medicinal Uses		
--	--	--		
Rubus idaeus L.	raw, raw in liqueur, raw in syrup	anti-diarrhea		
Rubus idaeus L.	boiled, dried for tea, raw for livestock	anti-diarrhea		
Ruscus aculeatus L.	for decoration, fried with eggs, raw as salad, raw in liqueur, raw or dried as spice	against dizziness, menstrual problems, nerve disorders, wheezing, stomach problems, rheumatism, gout, skin diseases		
Ruta graveolens L.	dried as spice, dried for tea, raw in liqueurs	anti-tussive, cold remedy, depurative, appetite stimulant		
Salvia officinalis L.	boiled in milk, carameised, dried, raw or dried as spice	cicatrising		
Sambucus nigra L.	fried in fritters, cooked as jam, for tea, processed in wine, raw in liqueur, raw in oil, raw in syrup	against blood clotting		
Sambucus nigra L.	dried for tea, raw as salad	for better circulation		
Sorbus aria (L.) Crantz	cooked as compote, cooked as jam, raw in liqueur, raw in syrup	for better circulation		
Sorbus aucuparia L.	boiled with vegetables	against earache, ulcer extractor, against haemorrhoids, against herpes zoster and warts		
Sorbus domestica L.	raw (against diarrhea)	sedative		
Sorbus torminalis (L.) Crantz	cooked as compote, cooked as jam, raw in liqueur, raw in syrup	sedative		

Table 1 Wild and feral species traditionally used for food and medicine in the study area (Continued)
Table 1 Wild and feral species traditionally used for food and medicine in the study area (Continued)

Species	Parts used	Uses						
Symphytum officinale L.	1	gavez	R, F,		L	Md	40133	
Taraxacum spp. sect. Ruderalia²	4	ribić, diviš, jajčar, konjiški radić	W, L	depurative, kidney stone relief	Md & Fd	40135		
Symphytum officinale L.	1	gavez	R, F,		L	Md	40133	
Thymus serpyllum agg.	21	majčina dušica, timijan, timo	L Md & Fd			36798		
Tilia platyphyllos Scop.	26	lipa	L Md			37031		
Tussilago farfara L.	4	lepuh, podbijel, repuh	L Md & Fd			41790		
Urtica dioica L.	41	kopriva, kupriva, pokriva, pukriva	L Md & Fd			40130		
Vaccinium vitis-idaea L.	1	brusnice	FR Fd			-		
Verbascum thapsus L.	4	diviza, kopuh, margarita	F, L Md			41795		
Viola odorata L.	1	ljubičca	F Md			41793		
Viscum album L.	8	imela, imela bijela	W Md			-		

Parts used: F flowers, FR fruits, L leaves or other green parts, R roots, W whole plants, Fd food use, Md medicinal use

²taxa which have also been recorded by Pieroni & Giusti (2006)
³Pieroni & Giusti recorded a similar species, Malva sylvestris
⁴Pieroni & Giusti recorded a similar species, Mentha arvensis
There were also families running small shops or inns [29]. After WWII, due to the slow post-war recovery, poor natural resources for agriculture and high tax burdens imposed on farmers, the structure of the economy and population started to change. In 1961 almost one third of the population in Istria (31.3%) was living from agriculture, and in 2001 the share was 2.6% [30].

At present, in most of the settlements there is no livestock and the last charcoal clamp was used at the beginning of 1970-ies. Many highland meadows, that used to be mown once a year and grazed, have become abandoned with the disappearance of livestock. Scarce pieces of fertile land are used mainly for subsistence farming, or as gardens. There is no need for traditional crafts any more, and because of the depopulation, even shops and inns do not exist in small villages. Employed persons mainly commute daily to workplaces in neighbouring towns [28, 29]. The majority of the population of the research area declared themselves as Croatians (76.5%), and the second largest group is regionally affiliated (15.2%). The rest are members of different nationalities (6.9% altogether) or non-affiliated (1.4%). However, in this study only Croatian people who were born in the study area and/or spent most of their lives there were interviewed. The interviewed people are mainly retired. All of them have farming backgrounds and were either farmers or worked in Buzet or Kopar and actively maintained gardens.

Methods

The research was carried out following the Principles of Professional Responsibility of the American Anthropological Association and the International Society of Ethnobiology Code of Ethics (2006) [31, 32]. Data were collected using semi-structured interviews, mainly applying the free listing method, accompanied by informal walks (and talks) with selected key informants, from May to September 2015. To help elicit answers, separate questions were asked about the food use of green parts and fruits as well as medicinal plants that had been personally used by the informants. Additional notes were taken, and audio recordings were made during the interviews when possible. Participants were approached outside, during their farm work, or selected based on recommendation as the most knowledgeable people in the village.

Altogether we obtained data from 50 interviews involving 76 local informants (33 single informant interviews and 17 interviews involving two or three people). There were 37 female and 39 male informants, with a mean age of 67 (age range: 33–101, median: 67).

The interviews were carried out on the territory of three municipalities: Buzet (7 settlements: Buzet, Gornja Nugla, Hum, Kompanj, Počekaji, Roč, Sveti Martin), Lanišće (11 settlements: Brest, Brugudac, Dane, Jelovice, Klenovšćak, Lanišće, Podgaće, Prapoče, Račja Vas, Slum, Vodice) and Lupoglav (1 settlement: Lupoglav).

Plant names used follow the Plant List [33].

The division between wild and domesticated species is often blurred. Several taxa (mainly fruits and aromatic herbs) listed by the informants occur both in wild and domesticated states. We included them in the species list if we observed significant wild or feral populations of these species in the study area, as in other studies on wild foods in Croatia [34–36].

Results

Altogether 121 species were recorded as food or medicine, used or previously used in the study area (Table 1). Thirty-one species are used exclusively as food or everyday drink, 50 species are used exclusively as medicine and the use of 40 species overlaps. The mean frequency of species mentioned per questionnaire was 30 (mean no. of exclusively medicinal species 5, exclusively food species 8, and 17 from the food-medicine spectrum).

The most commonly used exclusively food species are: *Cornus mas* L., *Cichorium intybus* L., *Chenopodium album* L., *Prunus domestica* L., *Pyrus amygdaliformis* Vill., *Rubus idaeus* L., *Clematis vitalba* L., *Diplotaxis tenuifolia* (L.) DC., *Fragaria vesca* L. and *Allium ampeloprasum* L. The most common species used exclusively as medicine are: *Achillea millefolium* L., *Tilia platyphyllos* Scop., *Hypericum perforatum* L., *Sempervivum tectorum* L., *Artemisia absinthium* L., *Plantago lanceolata* L., *Gentiana lutea* L. ssp. *symphyandra* (Murb.) Hayek, *Althaea officinalis* L., *Matricaria chamomilla* L., and *Pinus nigra* J.F.Arnold. The most commonly used food-medicine spectrum species are: *Rubus caesius* L., *Sambucus nigra* L., *Lr tica dioica* L., *Dioscorea communis* L., *Taraxacum* spp., *Asparagus acutifolius* L., *Rosa canina* L., *Foeniculum vulgare* Mill., *Prunus spinosa* L. and *Sorbus domestica* L.

Wild plants are used for food mainly in the form of preserves (jams, juice), wild vegetables served as salad, manestra soup (served with beans or dried meat) or with omelettes (fritaj), herbal teas or as aromatic additives to alcohol. The mixture of wild vegetables used for the soup is called zelenjava. Its commonest components are *Chenopodium*, *Cichorium*, *Diplotaxis*, *Foeniculum* and sometimes *Humulus* or *Urtica*. Medicinal plants are usually used in the form of infusions and decoctions ("herbal teas"). Such ways of administration were recorded for 52% of medicinal plant taxa.

Among the most commonly used food and food-medicinal plants woody species, particularly those of woodland edges are dominant, whereas among medicinal plants it is herbaceous plants from grassland that dominate (Table 2). However, the differences between Ellenberg-Pignatti values (Figs. 3 and 4; Table 3) in the
Food category \((P = 0.02)\). For Light and Continentality the highest indicator values were observed for medicinal plants and the lowest for food plants (Fig. 6). However median values for these two variables were identified in all three categories (Fig. 7). For Nitrogen the opposite trend was observed – the highest value (and the highest median) was observed for food plants (Figs. 6 and 7). For Temperature and Reaction (\(pH\)) the highest indicator values were observed for plants used both for food and medicine (Fig. 6).

Discussion

The small differences between Ellenberg values for medicinal and food plants can probably be explained by the fact that both these groups incorporate species with very diverse organs used and very diverse phytochemical composition. When designing this study we did however expect that the Light indicator values for medicinal plants would be higher than those of food plants, as many of the medicinal plants grow on dry pastures and roadsides and contain aromatic essential oils. Such a difference actually does occur in our data, but it is not significant. Dry-habitat plants from the Lamiaceae family (13 taxa in our study), rich in essential oils, are some of the basic elements of both local traditional pharmacopeias in the Mediterranean and in Central Europe, and the medicinal plants recommended by written official pharmacopeias. They are particularly useful in healing digestive problems and fighting microbial infection. However, these are usually a few species in a given set of locally used species, and their effect was not significant in a larger matrix of data with species containing different kinds of medicinally active substances. The significant difference in Nitrogen value probably arose due to the fact that several edible plants are nitrophilous weeds, whereas among medicinal plants, as previously mentioned, there are many dry grassland species growing on skeletal soils.

In the use of food the total caloric value is very important and it can be better achieved with higher biomass yields, which are obviously more likely in nitrogen-rich habitats. Most edible green vegetables are plants growing in cultivated crops, on field edges, road margins and other locations in the home yards which have been either intentionally manured, often for centuries, or unintentionally fertilized with human and animal excrements and urine. As a larger biomass of is needed, for food plants compared to medicinal plants, they are more likely to be gathered in a closer vicinity to the house than in these fertilized agro-ecosystems. The species used in the area are a mix of species typically used in the Mediterranean and in Central Europe, which reflects the character of the vegetation in the study area, intermediate between the two zones. All the

Table 2 Ten most commonly used species in each of three categories

Only food plants	Habitat in the studied area
Cornus mas L.	forest fringes and clearings
Cichorium intybus L.	road verges, ruderal habitats
Chenopodium album L.	ruderal habitats, e.g. arable fields
Prunus domestica L.	forest fringes (feral)
Pyrus amygdaliformis Vill.	forest fringes
Rubus idaeus L.	forest fringes
Clematis vitalba L.	forest fringes
Diplotriaxis tenuifolia (L.) DC.	road verges, ruderal habitats
Fragaria vesca L.	deciduous forests
Allium ampeloprasum L.	road verges, ruderal habitats

Plants from food – medicine spectrum
Rubus caesius L.
Sambucus nigra L.
Urtica dioica L.
Dioscorea communis L.
Taraxacum spp.
Asparagus acutifolius L.
Rosa canina L.
Foeniculum vulgare Mill.
Prunus spinosa L.
Sorbus domestica L.

Purely medicinal plants
Achillea millefolium L.
Tilia platyphyllos Scop.
Hypenicum perforatum L.
Sempervivum tectorum L.
Artemisia absinthium L.
Plantago lanceolata L.
Gentiana lutea L. ssp. *symphyandra* (Murb.) Hayek
Althaea officinalis L.
Matricaria chamomilla L.
Pinus nigra J.F.Arnold.

Three categories of useful plants were small and statistically insignificant (Mann-Whitney U test; \(P > 0.05\)) apart from the difference between Nitrogen indicator value between the Exclusively Medicinal and the Exclusively
Scientific name	Purpose	Light	Temperature	Continentality	Soil moisture	Reaction	Nitrogen	Salinity
Allium ampeloprasum L.	food	7	7	5	3	6	5	0
Allium ursinum L.	food	2	5	6	7	8	0	
Amaranthus retroflexus L.	food	9	9	7	4	9	0	
Armoracia rusticana P. Gaertn., B. Mey. et Scherb.	food	8	6	5	5	9	0	
Bells perennis L.	food	9	5	4				
Chenopodium album L.	food	7	7	5	4	5	7	0
Cichorium intybus L.	food	9	6	5	3	8	5	0
Clematis vitalba L.	food	7	7	4	5	7	7	0
Cornus mas L.	food	6	7	6	5	8	4	0
Corylus avellana L.	food	6	5	4	5	5	8	0
Diplotaxis tenuifolia (L.) DC.	food	8	7	5	4	6	5	0
Fagus sylvatica L.	food	3	5	4	5		7	0
Fragaria vesca L.	food	6	4	4	4		5	0
Lamium orvala L.	food	3	5	5	6	7	8	0
Morus nigra L.	food	8	7	5	5		5	5
Paliurus spinosa-christi Mill.	food	7	8	6	3	7	3	0
Papaver rhoas L.	food	6	6	5	5	7	7	0
Physalis alkekengi L.	food	6	7	5	7	5	6	0
Portulaca oleracea L.	food	7	8	5	4		7	7
Prunus domestica L.	food							
Prunus dulcis (Mill.) D.A. Webb	food							
Prunus mahaleb L.	food	7	5	6	3	8	2	0
Prunus persica L. var. platycarpa	food							
Pteridium aquilinum (L.) Kuhn	food	6	5	4	6	3	3	0
Pyrus arynthaliformis Vill.	food	7	8	4	4	7	3	0
Pyrus pyraster (L.) Burgsd.	food	6	5	5	6	7	7	0
Rubus idaeus L.	food	7	4	5	5	8	0	
Sonchus oleraceus L.	food	7	5	5	4	8	8	0
Tussilago farfara L.	food	8	5	5	6	8	7	0
Vaccinium vitis-idaea L.	food	5	3	5	4	2	2	0
Viola odorata L.	food	5	6	5	5	8	0	
Achillea millefolium L.	med.	8					5	0
Alcea rosea L.	med.	9	8	5	3	6	4	0
Althaea officinalis L.	med.	7	6	6	7	7	6	0
Arctium lappa L.	med.	9	5	5	5	7	9	0
Artemisia absinthium L.	med.	9	6	7	4		8	0
Anum maculatum L.	med.	3	6	5	7	7	8	0
Calendula officinalis L.	med.	8	7	5	4	5	4	0
Callinopsis variegata L.	med.	7					0	2
Castanea sativa Mill.	med.	5	8	6	4		0	
Centaurea erytraea Rafn	med.	8	6	5	5	6	0	
Chelidonium majus L.	med.	6	6	5		8	0	
Elymus repens (L.) Gould	med.	7	7	5		8	0	
Table 3 Ellenberg-Pignatti values used in the analysis. For some species and variables the values do not exist (Continued)

Species	med.	& food		
Equisetum arvense L.	6	6	3	0
Euphorbia cyparissias L.	7	7	5	0
Gentiana lutea L. ssp. symphyandra (Murb.) Hayek	8	4	5	0
Helianthus tuberosus L.	8	7	5	0
Helichrysum italicum (Roth) G.Don	8	8	5	0
Hypericum perforatum L.	7	8	6	0
Ilex aquifolium L.	4	5	4	5
Iris germanica L.	7	7	5	4
Iris illyrica Tomm.	7	7	5	4
Juniperus oxycedrus L.	11	10	4	1
Lavandula angustifolia Mill.	9	7	5	4
Linum usitatissimum L.	7	6	6	0
Loranthus europaeus Jacq.	8	6	4	5
Malva alcea L.	7	5	5	6
Matricaria chamomilla L.	7	6	5	8
Mentha spicata L.	7	6	5	8
Nasturtium officinale R. Br.	7	4	5	11
Neottia nidus-avis (L.) Rich.	2	5	5	7
Nymphaea alba L.	8	5	5	12
Olea europaea L.	11	10	4	1
Oronis spinosa L.	8	6	5	3
Origanum majorana L.	7	7	6	4
Origanum vulgare L.	7	6	5	3
Parietaria officinalis L.	4	8	4	5
Pinus nigra J.F.Arnold	7	7	4	9
Plantago lanceolata L.	6	7	5	0
Plantago major L.	8	5	7	0
Plantago media L.	7	7	4	8
Polygala nicaeensis Risso ex Koch	8	6	5	3
Satureja subspicata Vis.	8	5	7	4
Sedum sexangulare L.	7	5	4	7
Sempervivum tectorum L.	8	5	5	2
Solidago virgaurea L.	5	5	5	0
Symphytum officinale L.	7	6	4	8
Teucrium chamaedrys L.	7	6	5	2
Tilia platyphyllos Scop.	3	5	4	5
Verbascum thapsus L.	8	4	4	7
Viscum album L.	7	5	5	0
Atriplex retroflexa L.	9	9	7	5
Asparagus acutifolius L.	6	9	4	2
Carum carvi L.	8	4	5	5
Clinopodium nepeta (L.) Kuntze (syn. Calamintha nepetaeoides Jord.)	5	7	5	3
Crataegus monogyna Jacq.	6	7	5	4
Daucus carota L.	8	6	5	4
species used were reported in other ethnobotanical works from Croatia or neighbouring countries, e.g. [34–44]. A particular feature of the local cuisine is scrambled eggs (fritaja) prepared with young shoots of *Ruscus aculeatus* and *Cannabis sativa* seeds and oil, used against diabetes and high pressure, and to boost immunity. It is interesting that *Humulus lupulus* is still used as a vegetable, unlike on the north Adriatic island of Krk, where people used to use it, but it is now completely forgotten [36]. Previous studies also paid attention to a relatively "unoriginal" list of plant remedies used in Čićarija [13, 17]. However, this may be explained by the fact that phytotherapy was quite developed in this part of Europe, hence most medicinal plants in the area had already been described in detail in Renaissance herbals. A similar high correspondence between the written pharmacopeias and the present choice of plants used can be

Table 3	Ellenberg-Pignatti values used in the analysis. For some species and variables the values do not exist (Continued)
Dioscoraea communis (L.) Caddick & Wilkin (syn. *Tamus communis* L.)	med. & food 5 7 5 5 8 6 0
Foeniculum vulgare Mill.	med. & food 9 8 5 3 7 7 0
Humulus lupulus L.	med. & food 7 6 4 8 6 8 0
Juglans regia L.	med. & food 6 6 6 5 6 6 0
Juniperus communis L.	med. & food 8 0 0 4 0 4 0
Laurus nobilis L.	med. & food 2 7 4 8 4 6 0
Malus domestica Borkh.	med. & food 7 7 5 5 5 5 0
Malus sylvestris Mill.	med. & food 8 6 4 4 8 0
Melissa officinalis L.	med. & food 6 7 5 4 6 4 0
Mentha longifolia L. Huds.	med. & food 7 5 5 8 8 8 0
Morus alba L.	med. & food 8 7 5 5 5 5 0
Primula veris L. ssp. columnae (Ten.) Lüdi	med. & food 7 3 4 8 3 0
Prunus avium L.	med. & food 4 5 6 5 7 5 0
Prunus cerasus L.	med. & food 9 7 6 5 5 5 0
Prunus spinosa L.	med. & food 7 5 5 5 0
Quercus pubescens Willd.	med. & food 7 8 6 3 7 4 0
Robinia pseudoacacia L.	med. & food 5 7 5 4 8 0
Rosa canina L.	med. & food 8 5 5 4 0
Rosmarinus officinalis L.	med. & food 11 8 4 2 6 1 0
Rubus caesius L.	med. & food 7 5 5 7 7 9 0
Rumex acetosa L.	med. & food 4 8 5 4 5 5 0
Ruscus aculeatus L.	med. & food 8 6 5 4 5 0
Ruta graveolens L.	med. & food 9 7 6 3 7 2 0
Salvia officinalis L.	med. & food 11 6 6 2 7 1 0
Sambucus nigra L.	med. & food 7 5 4 5 9 0
Sanquisorba minor Scop.	med. & food 7 6 5 3 8 2 0
Satureja montana L.	med. & food 8 6 6 3 7 2 0
Sorbus aria (L.) Crantz	med. & food 6 5 5 4 7 3 0
Sorbus aucuparia L.	med. & food 6 0 0
Sorbus domestica L.	med. & food 4 7 5 3 8 3 0
Sorbus torminalis (L.) Crantz	med. & food 4 6 5 4 7 4 0
Taraxacum spp. sect. Ruderalia	med. & food 7 5 7 0
Thymus serpyllum agg. (e.g. *Thymus longicaulis* Presl)	med. & food 7 7 7 4 7 3 0
Urtica dioica L.	med. & food 6 8 0
found in other European countries as well [45–47]. Compared to the previous study of Croatian plant folk remedies in Ćićarija [13] we found more plant remedies used (even when the list was restricted to the same villages studied by Pieroni & Giusti). Pieroni and Giusti mentioned 25 plants. We confirmed the use of all the wild and semi-wild species mentioned by them (19 taxa), except for two taxa where we found the use of a different species but within the genus mentioned in their work (Malva and Mentha). In our study we found 54 species of plants mentioned by our respondents in the villages studied by those authors (Jelovice, Dane, Vodice, Trstenik, Račja Vas, Lanišće, Prapče, Brgudac). It is difficult to compare these studies as in this previous work the number of respondents and frequency of citation was not mentioned. We can however hypothesize that the larger number of species recorded in our study stems mainly from two factors. First of all the previous researchers were outsiders speaking Italian to local residents, who may not have been able to express everything in Italian. The first author of our study has spent twelve years researching Ćićarija and thus knows many people well, which may have given respondents more confidence. Secondly, in recent years more and more literature on herbal remedies has become available to the general public, which may result in some new uses, the re-invention of old uses or help in the remembrance of old uses [45, 46]. This may have happened even in spite of our intention not to record “literature” uses little ingrained in the habits of local people, or very recently acquired.

![Fig. 6](image1.png)

Fig. 6 Mean Ellenberg values for exclusively food species (black bars), food and medicinal species (grey bars) and exclusively medicinal species (white bars)

![Fig. 7](image2.png)

Fig. 7 Medians (black circles) and first and third quartiles for Ellenberg values (values indicated by line tips). F – exclusively food species, FM – food and medicinal species, M – exclusively medicinal species
Conclusions
The differences between Ellenberg values of medicinal and food plants collected in the study area are negligible. The only significant differences were detected for the nitrogen value. This is probably caused by the fact that edible green vegetables are mainly species of nitrogen-rich agro-ecosystems. It could be interesting to carry out a similar study in some other regions of Europe where Ellenberg values are accessible in order to see if the results we achieved show a typical pattern in the relation between food and medicinal plants.

Acknowledgments
Our special thanks go to the study participants from Mount Ćićarija who generously shared their knowledge, especially to the Zlatić and Tolušić families who gave us lodging.

Funding
The field research was financed privately with a small finance donation from the Town of Buzet. The publication of the paper was financed by the Institute of Applied Biotechnology and Basic Sciences, University of Rijeka.

Availability of data and materials
Voucher specimens were collected with informants, deposited and digitized in the herbarium of the Faculty of Agriculture of Zagreb University - ZAGR Virtual herbarium (http://herbarium.agr.hr/). The original matrix for calculating Ellenberg values is included as Table 2. The original data sheet with interviews is available upon reasonable request.

Authors’ contributions
Field work: IVK (all interviews) and LL (three interviews), data analysis and writing the text – all the authors. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The research adhered to the local traditions for such research and the Code of Ethics of the International Society of Ethnobiology (ISE 2008). Prior oral informed consent was obtained from all study participants. No ethical committee permits were required. No permits were required to collect voucher specimens.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1 Department of Agricultural Botany, University of Zagreb Faculty of Agriculture, Svetoslimunarska 25, 10000 Zagreb, Croatia. 2 Department of Management and Rural Entrepreneurship, University of Zagreb Faculty of Agriculture, Svetoslimunarska 25, 10000 Zagreb, Croatia. 3 Department of Botany, Institute of Biotechnology, University of Rijeka, Wenyria 502, 36-100 Kolbuszowa, Poland.

Received: 7 March 2017 Accepted: 17 May 2017
Published online: 02 June 2017

References
1. Ellenberg H. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scripta Geobotanica. 1974:91–97.
2. Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica. 1992;18(2):1–258.
3. Landolt E. Ökologische Zeigervertszur Schweizer Flora. Veröff. Geobot. Inst. ETH. Zurich. 1977:64:1–208.
4. Hill MO. Ellenberg’s indicator values for British plants. Huntingdon: Institute of Terrestrial Ecology; 1999.
5. Zarzycki K. Indicator values of vascular plants in Poland. Krakow: Instytut Botaniki Polska Akademia Nauk; 1984.
6. Pignatti S, Menegoni P, Petriacci S. Biocennizzazione attraverso le piante vascolari. Valori di indicazione secondo Ellenberg (Zeigerwerte) per le specie della Flora d’Italia. Braun-Blanquetia; 2005:391–97.
7. Hawkes JC, Pyatt DG, White IMS. Using Ellenberg indicator values to assess soil quality in British forests from ground vegetation: a pilot study. J Appl Ecol. 1997:34:375–87.
8. Ozonová Z. Assessment of light and soil conditions in ancient and recent woodlands by Ellenberg indicator values. J Appl Ecol. 2001:38:942–951.
9. Schaffers AP, Sýkora K. Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. J Veg Sci. 2000;11:225–44.
10. Želený D, Schaffers AP. Too good to be true: pitfalls of using mean Ellenberg indicator values in vegetation analyses. J Veg Sci. 2012;23:1419–31.
11. De Albuquerque UP. Quantitative ethnobotany or quantification in ethnobotany. Ethnobot Res Appl. 2009;7:1–4.
12. Albuquerque UP, Ramos MA, de Lucena RF, Alencar NL. Methods and techniques used to collect ethnobiological data. New York: Springer; 2014.
13. Pieroni A, Giusti ME. The remedies of the folk medicine of the Croatians living in Ćićarija, northern Istria. Coll Antropol. 2008;32(2):623–7.
14. Veis RL. Disturbance pharmacopoeia: medicine and myth from the humid tropics. Ann Assoc Amer Geogr. 2004;94(4):868–88.
15. Stepp JR, Moerman DE. The importance of weeds in ethnopharmacology. J Ethnopharmacol. 2001;75(1):119–23.
16. Castaneda H, Stepp JR. Ethnoeconomic importance value (EIV) methodology: assessing the cultural importance of ecosystems as sources of useful plants for the Guaymi people of Costa Rica. Ethnobot Res Appl. 2004;2(1):49–57.
17. Pieroni A, Giusti ME, Münz H, Lenzerini C, Turković G, Turković A. Ethnobotanical knowledge of the Istro-Romans of Zečine in Croatia. Fitoterapia. 2003;74(7):710–9.
18. Vitaso Kosić, Tarmella FM, Ružičić M, Catorc. A. Assessment of floristic diversity, functional composition and management strategy of North Adriatic pastoral landscape (Croatia). Pol J Ecol. 2011;59(4):76–76.
19. Vitaso Kosić, Tarmella FM, Grbića D, Skvorc Z, Catorc. A. Effects of abandonment on the functional composition and forage nutritive value of a North Adriatic dry grassland community (Ćićarija, Croatia). Appl Ecol Environ Res. 2014;12(1):285–99.
20. Vitaso Kosić, Tarmella FM, Catorc. A. Effect of management modification on the coenological composition of the North Adriatic pastoral landscape (Ćićarija, Croatia). Hacquetia. 2012;11(1):17–46.
21. Vitaso Kosić L. Grasslands Scorzonero-Chrysopogonetales order on the Ćićarija: Flora, Vegetation and Feed value. Zagreb: Doctoral Dissertation, University of Zagreb, Faculty of Agriculture; 2011.
22. Snoj M. Etimološki slovar slovenskih zemljepisnih imen. Ljubljana: Modrijan and Založba ZRC; 2009.
23. Poldini L. La vegetazione del Carso isontino e triestino. Studio del paesaggio vegetale tra Trieste, Gorizia e i territori adiacenti. Trieste: Edizioni; 1989.
24. Kalgarč M, Rastlinstvo primorske krasa in Slovenske Istre – Travniki in pašniki. Zgodovinsko društvo za župnjo primorsko. Koper: Znanstveno raziskovalno središče Republike Slovenije Koper; 1997.
25. Bertoša M, Matijašič R, editors. Itsarska enciklopedija. Zagreb: Leksikografski zavod Miroslav Križa; 2005.
26. Zadnik D, Sotlar M, Volšič M, Turković G, Šuša Z, editors. Kvrči slovar slovenskih zemljepisnih imen. Ljubljana: Modrijan and Založba ZRC; 2009.
27. Central Bureau of Statistics of the Republic of Croatia. Census of Population, Households and Dwellings. 2011. http://www.dzs.hr/Eng/census2011/results_frm/h01_01_47/hi01_01_47.html Accessed 8 Feb 2017.
28. Par V, Najmo H, Hadelin L, Šakš B. Strategisk program ruralnog razvoja. Istarske županije (2008–2013). County of Istria. http://www.iistra-istria.hr/uploads/media/Ruralni Razvoj_2008-2013studijda.pdf Accessed 10 Feb 2017.
29. Šklinja F. Iz svakodnevna života sela Žežane v dvadesetem stoletju (From everyday life in Žežane village in the 20th century). Hrsta: godišnjak Istarskog povijesnog društva. 2014; 4(4):141–170.
30. Zupanc I. Demogeografski razvoj Istre od 1945. do 2001. (Population Development of Istria in the Period 1945-2001). Hrvatski geografski glasnik. 2004;66(1):67–102.
31. Principles of Professional Responsibility. American Anthropological Association. http://ethics.americananthro.org/category/statement/. Accessed 24 May 2017.
32. International Society of Ethnobiology Code of Ethics (with 2008 additions). http://ethnobiology.net/code-of-ethics/. Accessed 10 Feb 2017.
33. The Plant List: a working list of all plant species. http://www.theplantlist.org/. Accessed 10 Feb 2017.
34. Dolina K, Lučzaj L. Wild food plants used on the Dubrovnik coast (southeastern Croatia). Acta Soc Bot Pol. 2014;83(3):175–81.
35. Lučzaj L, Fressel N, Perković S. Wild food plants used in the villages of the Lake Vrana Nature Park (northern Dalmatia, Croatia). Acta Soc Bot Pol. 2013;82(4):275–81.
36. Dolina K, Jug-Dujaković M, Lučzaj L, Vitasović-Kosić I. A century of changes in wild food plant use in coastal Croatia: the example of Krk and Poljica history. Acta Soc Bot Pol. 2016;85(3):350–8.
37. Paoletti MG, Dreon AL, Lorenzoni GG. Pistic, traditional food from western Friuli, N.E. Italy. Econ Bot. 1995;49(1):26–30.
38. Guarera PM. Usi e tradizioni della flora italiana. Aracne: Rome; 2004.
39. Ghirardini MP, Carli M, del Vecchio N, Rovati A, Cova O, Valigi F, et al. The importance of a taste. A comparative study on wild food plants consumption in twenty-one local communities in Italy. J Ethnobiol Ethnomed. 2007;3:22.
40. Hadjichambis AC, Paraseke-Hadjichambi D, Della A, Giusti ME, De Pasquale C, Lenzarini C, et al. Wild and semi-domesticated food plant consumption in seven circum-Mediterranean areas. Int J Food Sci Nutr. 2008;59(5):383–414.
41. Lučzaj L, Dolina K. A hundred years of change in wild vegetable use in southern Herzegovina. J Ethnopharmacol. 2015;166:297–304.
42. Dénes A, Papp N, Babai D, Czúcz B, Molnár Z. Wild plants used for food by Hungarian ethnic groups living in the Carpathian Basin. Acta Soc Bot Pol. 2012;81(4):381–96.
43. Grasser S, Schunko C, Vogl CR. Gathering “tea”–from necessity to connectedness with nature. Local knowledge about wild plant gathering in the biosphere reserve grosses Walsertal (Austria). J Ethnobiol Ethnomed. 2012;8(1):31.
44. Lumpert M, Kreft S. Folk use of medicinal plants in Karst and Gorjanci, Slovenia. J Ethnobiol Ethnomed. 2017;13(1):16.
45. Köhler P. The romantic myth about the antiquity of folk botanical knowledge and its fall: Józef Rostafinski’s case. Acta Baltica Historiae et Philosophiae scientiarum. 2015;3(1):99–108.
46. Leonti M. The future is written: Impact of scripts on the cognition, selection, knowledge and transmission of medicinal plant use and its implications for ethnobotany and ethnopharmacology. J Ethnopharmacol. 2011;134(3):542–55.
47. Dal Cero M, Saller R, Weckerle CS. The use of the local flora in Switzerland: a comparison of past and recent medicinal plant knowledge. J Ethnopharmacol. 2014;151(1):253–64.