Some optimal links between generations of correlation averages

GIOVANNI COPPOLA 1 - MAURIZIO LAPORTA

Abstract. For a real-valued and essentially bounded arithmetic function \(f \), i.e., \(f(n) \ll_{\varepsilon} n^\varepsilon, \forall \varepsilon > 0 \), we give some optimal links between non-trivial bounds for the sums \(\sum_{h \leq H} \sum_{N<n \leq 2N} f(n) f(n-h) \), \(\sum_{N<x \leq 2N} \left| \sum_{x<n \leq x+H} f(n) \right|^2 \) and \(\sum_{N<n \leq 2N} \left| \sum_{0 \leq |n-x| \leq H} (1 - \frac{|n-x|}{H}) f(n) \right|^2 \), with \(H = o(N) \) as \(N \to \infty \).

1. Introduction.

The correlation of a complex-valued arithmetic function \(f \) is a shifted convolution sum of the form

\[
\mathcal{C}_f(h) \overset{\text{def}}{=} \sum_{n \geq N} f(n) \overline{f(n-h)},
\]

where \(n \sim N \) means that \(n \in (N,2N] \cap \mathbb{N} \), while \(N \) and the shift \(h \) are integers such that \(|h| \leq N \). In particular, this allows restricting \(f \) to \(1 \leq n \leq 3N \) when dealing with \(\mathcal{C}_f(h) \). Further, note that

\[
\mathcal{C}_f(h) = \sum_{n \sim N} \sum_{m \sim N} f(n) \overline{f(m)} + O(\|f\|_\infty \|h\|), \quad \text{with} \quad \|f\|_\infty \overset{\text{def}}{=} \max_{1 \leq n \leq 3N} |f(n)|.
\]

In [CL1] and [CL3] we have investigated the connection between the correlations of \(f \) and its Selberg integral

\[
J_f(N,H) \overset{\text{def}}{=} \sum_{x \sim N} \left| \sum_{n \sim N \leq x+H} f(n) - M_f(x,H) \right|^2,
\]

where \(M_f(x,H) \) is the expected mean value of \(f \) in short intervals, with \(H = o(N) \) as \(N \to \infty \) (to avoid trivialities, hereafter we assume that \(H \to \infty \)). More in general, we extended such an investigation to weighted versions of \(J_f(N,H) \), that include, also, the so-called modified Selberg integral

\[
\tilde{J}_f(N,H) \overset{\text{def}}{=} \sum_{x \sim N} \left| \sum_n C_H(n-x) f(n) - M_f(x,H) \right|^2,
\]

where the Cesàro weight \(C_H(t) \overset{\text{def}}{=} \max(1 - |t|/H,0) \) allows taking the same mean value that appears in \(J_f(N,H) \). Indeed, in [CL1] (see Lemma 7 there), by means of an elementary Dispersion Method, it is shown that weighted Selberg integrals, for a wide class of arithmetic functions, are actually linked to averages of their correlations (see also the proof of Lemma 1 below). Mainly inspired by the prototype of the divisor function \(d_k \), we stuck to the case of a real-valued and essentially bounded \(f \), i.e. \(f(n) \ll_{\varepsilon} n^{\varepsilon} \ (\forall \varepsilon > 0) \). Here we recall that \(\ll \) is Vinogradov’s notation, synonymous to Landau’s O-notation. In particular, \(\ll_{\varepsilon} \) means that the implicit constant might depend on an arbitrarily small \(\varepsilon > 0 \), which might change at each occurrence. Moreover, we abbreviate \(A(N,H) \ll B(N,H) \) whenever \(A(N,H) \ll_{\varepsilon} N^\varepsilon B(N,H), \forall \varepsilon > 0 \).

In [CL1] we also searched for links between non-trivial bounds for \(J_f(N,H), \tilde{J}_f(N,H) \) and the so-called deviation of \(f \), that is defined as

\[
\mathbb{D}_f(N,H) \overset{\text{def}}{=} \sum_{h \leq H} \mathcal{C}_f(h) - \sum_{x \sim N} \frac{M_f(x,H)^2}{H}.
\]

\footnote{titolare di un Assegno “Ing.Giorgio Schirillo” dell’Istituto Nazionale di Alta Matematica (Fellow “Ing.Giorgio Schirillo” of the Istituto Nazionale di Alta Matematica).}

Mathematics Subject Classification (2010) : 11N37.
In this paper we focus on the special case of a real-valued and essentially bounded function \(f \) which is also balanced, that is \(M_f(x, H) \) vanishes identically. Therefore, this yields

\[
\mathbb{D}_f(N, H) = \sum_{h \leq H} C_f(h), \\
J_f(N, H) = \sum_{x \sim N} \left| \sum_{x < n \leq x + H} f(n) \right|^2, \\
\tilde{J}_f(N, H) = \sum_{x \sim N} \left| \sum_n C_H(n - x) f(n) \right|^2.
\]

In this regard, we have the following result that improves on the bounds given in [CL1].

Theorem. Let \(H, N \in \mathbb{N} \) with \(H = o(N) \) as \(N \to \infty \), and let \(f : \mathbb{N} \to \mathbb{R} \) be essentially bounded and balanced.

i) If there is \(A \in [-1, 1) \) such that \(J_f(N, H) \ll NH^{1+A} \) and \(J_f(N, H_1) \ll NH_1^{1+A} \) for \(H_1 = \left[H^{1-\frac{4(1-A)}{5-A}}\right] \), then

\[
\mathbb{D}_f(N, H) \ll (N + H^{2-A})H^{1-\frac{4(1-A)}{5-A}}.
\]

ii) If there is \(A \in [-3, 1) \) such that \(\tilde{J}_f(N, H) \ll NH^{1+A} \) and \(\tilde{J}_f(N, H_2) \ll NH_2^{1+A} \) for \(H_2 = \left[H^{1-\frac{4(1-A)}{5-A}}\right], \)

\[
J_f(N, H) \ll (N + H^{2-A})H^{2-\frac{4(1-A)}{5-A}}.
\]

Hereafter, \([t] \) denotes the integer part of \(t \in \mathbb{R} \).

Remarks.

1. Note that

\[
A \in [-1,1) \Leftrightarrow 1 + A \in [0,2) \Leftrightarrow 1 - \frac{2(1-A)}{3-A} \in [0,1) \Leftrightarrow (2-A)^{-1} \in [1/3,1),
\]

\[
A \in [-3,1) \Leftrightarrow 1 + A \in [-2,2) \Leftrightarrow 1 - \frac{2(1-A)}{5-A} \in [0,1) \Leftrightarrow (2-A)^{-1} \in [1/5,1).
\]

Finally, the minimal values \(-1 \) and \(-3 \) for \(A \), resp., in i) and ii), are sharp. To see this, it is enough to consider the function \(f(n) = (-1)^{n+1} \), which is essentially bounded and balanced (its Dirichlet series is known as *Dirichlet’s eta function*). Since its correlation is \(C_f(h) = (-1)^h N \), then

\[
\mathbb{D}_f(N, H) = N \sum_{h \leq H} (-1)^h = \begin{cases} -N & \text{if } H \text{ is odd} \\ 0 & \text{otherwise}, \end{cases} \\
J_f(N, H) = \sum_{x \sim N} \left| \sum_{x < n \leq x + H} (-1)^n \right|^2 = \begin{cases} N & \text{if } H \text{ is odd} \\ 0 & \text{otherwise}, \end{cases} \\
\tilde{J}_f(N, H) = \frac{1}{H^2} \sum_{x \sim N} \left| \sum_{h \leq H} \sum_{0 \leq |n-x| < h} (-1)^n \right|^2
\]

\[
= \frac{1}{H^2} \sum_{x \sim N} \left| \sum_{h \leq H} \sum_{0 \leq |n-x| < h} 1 \right|^2 = \begin{cases} N/H^2 & \text{if } H \text{ is odd} \\ 0 & \text{otherwise}, \end{cases}
\]

where we have used the Cesaro identity

\[
\sum_{0 \leq |n-x| \leq H} \left(1 - \frac{|n-x|}{H} \right) f(n) = \frac{1}{H} \sum_{h \leq H} \sum_{0 \leq |n-x| < h} f(n) .
\]

2. Through an application of the so-called *length inertia* (see [CL3] and [CL4]), it could be shown that the Theorem hypothesis on \(J_f(N, H) \) and \(\tilde{J}_f(N, H) \) might be dropped without affecting the result.
2. Lemmata.

First, let us introduce some notation and some auxiliary functions. For the unit step weight

\[u_h(a) \overset{\text{def}}{=} \begin{cases} 1 & \text{if } a \in [1, H] \cap \mathbb{N} \\ 0 & \text{otherwise,} \end{cases} \]

we set

\[U_h(h) \overset{\text{def}}{=} \sum_{a, b \leq H} u_h(b) u_h(a), \quad U_h(h) \overset{\text{def}}{=} \frac{1}{H^2} \sum_{a, b \leq H} U_h(b) U_h(a), \]

\[\hat{u}_h(\beta) \overset{\text{def}}{=} \sum_{h \leq H} e(h \beta), \quad \hat{U}_h(\beta) \overset{\text{def}}{=} \sum_{h \leq H} U_h(h) e(h \beta), \quad \forall \beta \in \mathbb{R}. \]

where \(e(\alpha) \overset{\text{def}}{=} e^{2\pi i \alpha} \). Moreover, for the function \(f \) under consideration we denote

\[\hat{f}(\beta) \overset{\text{def}}{=} \sum_{n \sim N} f(n) e(n \beta). \]

Next Lemma is a consequence of Lemma 7 from [CL1]. Somehow the formulæ (I)–(III) were already implicit between the lines of [CL1], where, however, the underlying assumption that \(f \) has to be also essentially bounded is, in fact, redundant.

Lemma 1. For every balanced \(f : \mathbb{N} \to \mathbb{R} \) one has

(I) \[D_f(N, H) = \int_0^1 |\hat{f}(\beta)|^2 \hat{u}_h(-\beta) d\beta + O(H^2 \|f\|_2^2), \]

(II) \[J_f(N, H) = \int_0^1 |\hat{f}(\beta)|^2 |\hat{u}_h(\beta)|^2 d\beta + O(H^3 \|f\|_2^3), \]

(III) \[\bar{J}_f(N, H) = \int_0^1 |\hat{f}(\beta)|^2 \frac{|\hat{u}_h(\beta)|^4}{H^2} d\beta + O(H^3 \|f\|_2^3). \]

Proof. Since

\[D_f(N, H) = \sum_{h \leq H} \mathcal{C}_f(h), \]

then (I) follows immediately because it is plain that

\[\mathcal{C}_f(h) = \sum_{n \sim N} \sum_{n \sim N} f(n) f(m) + O(\|f\|_2^2 |h|) = \int_0^1 |\hat{f}(\beta)|^2 e(-h \beta) d\beta + O(\|f\|_2^2 |h|). \]

In order to show (II) and (III) let us recall that the Selberg integral and the modified one for any real arithmetic function \(f \) are related to the correlation averages (see [CL1], Lemma 7), respectively as

\[J_f(N, H) = \sum_h U_h(h) \mathcal{C}_f(h) - \frac{2}{H} \sum_n f(n) \sum_{x \sim N} u_h(n-x) M_f(x, H) + \sum_{x \sim N} M_f(x, H)^2 + O(H^3 \|f\|_2^3), \]

\[\bar{J}_f(N, H) = \sum_h \bar{U}_h(h) \mathcal{C}_f(h) - \frac{2}{H} \sum_n f(n) \sum_{x \sim N} U_h(n-x) M_f(x, H) + \sum_{x \sim N} M_f(x, H)^2 + O(H^3 \|f\|_2^3). \]

In particular, by setting \(M_f(x, H) = 0 \) in these formulæ and by using the properties

\[U_h(h) = \sum_{a \leq H-|h|} 1, \quad \bar{U}_h(\beta) = |\hat{u}_h(\beta)|^2, \]

\[\hat{u}_h(\beta) \overset{\text{def}}{=} \sum_{h \leq H} e(h \beta), \quad \hat{U}_h(\beta) \overset{\text{def}}{=} \sum_{h \leq H} U_h(h) e(h \beta), \quad \forall \beta \in \mathbb{R}. \]
we get (II) and (III), because it is easily seen that
\[
\sum_{h} U_{n}(h) C_{f}(h) = \sum_{h \leq H} \sum_{0 \leq |a| < h} C_{f}(a) = \int_{0}^{1} |\hat{f}(\beta)|^{2} \tilde{U}_{n}(\beta) d\beta + O(H^{3}\|f\|_{\infty}^{2}),
\]

\[
\sum_{h} \tilde{U}_{n}(h) C_{f}(h) = \sum_{h} \sum_{b-a=h} \frac{U_{n}(b) U_{n}(a)}{H^{2}} C_{f}(h) = \frac{1}{H^{2}} \int_{0}^{1} |\hat{f}(\beta)|^{2} |\tilde{U}_{n}(\beta)|^{2} d\beta + O(H^{3}\|f\|_{\infty}^{2}).
\]

The Lemma is completely proved.

Remark. Consistently with the terminology introduced in [CL1], we refer to (I), (II) and (III) as a first, second and third generation formula, respectively. As transpires also from the above proof, such formulae correspond to iterations of correlations’ averages.

Next Lemma gives two versions of a Gallagher’s inequality (see [Ga], Lemma 1), that have been discussed in [CL2] and [CL4].

Lemma 2. Let \(N, h \in \mathbb{N} \) be such that \(h \to \infty \) and \(h = o(N) \) as \(N \to \infty \). If \(f : \mathbb{N} \to \mathbb{C} \) is essentially bounded and balanced, then

1) \[
h^{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{f}(\alpha)|^{2} d\alpha \ll J_{f}(N, h) + h^{3},
\]

2) \[
h^{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} |\hat{f}(\alpha)|^{2} d\alpha \ll \tilde{J}_{f}(N, h) + h^{3}.
\]

3. Proof of the Theorem.

In what follows, we will appeal to the well-known property

\[
|\hat{u}_{n}(\alpha)| = \frac{|\sin(\pi H\alpha)|}{\sin(\pi \alpha)} \leq \frac{1}{\sin(\pi \alpha)} < \frac{1}{2\alpha}, \quad \text{for } 0 < \alpha < \frac{1}{2}.
\]

In particular, this yields the implication

\[(*) \quad |\hat{u}_{n}(\alpha)| > h \quad \Rightarrow \quad |\alpha| < \frac{1}{2h}.
\]

Proof of i). Since \(f \) is essentially bounded and balanced, then from (I) of Lemma 1 we infer

\[
\mathbb{D}_{f}(N, H) \ll \int_{-\frac{1}{2}}^{1/2} \left| \hat{f}(\alpha) \right|^{2} |\hat{u}_{n}(\alpha)| d\alpha + H^{2}
\]

\[
\ll H^{1-\delta} \int_{|\hat{u}_{n}(\alpha)| \leq [H^{1-\delta}]} \left| \hat{f}(\alpha) \right|^{2} d\alpha + H^{1-\gamma} \int_{[H^{1-\delta}] < |\hat{u}_{n}(\alpha)| \leq H^{1-\gamma}} \left| \hat{f}(\alpha) \right|^{2} d\alpha
\]

\[
+ H^{\gamma-1} \int_{|\hat{u}_{n}(\alpha)| > H^{1-\gamma}} \left| \hat{f}(\alpha) \right|^{2} |\hat{u}_{n}(\alpha)|^{2} d\alpha + H^{2},
\]
where γ, δ are real numbers to be determined later, so that $0 < \gamma \leq \delta$. Thus, by applying ($*$), Parseval’s identity and (II) of Lemma 1, we get

$$
\mathbb{D}_f(N, H) \ll NH^{1-\delta} + H^{1-\gamma} \int_{|\alpha| \leq \frac{1}{2^{1/2}}} |\hat{f}(\alpha)|^2 \, d\alpha + J_f(N, H) H^{\gamma-1} + H^{2+\gamma},
$$

where we have set $H_1 = [H^{1-\delta}]$. Thus, by 1) of Lemma 2 and, then, assuming that $J_f(N, H_1) \ll NH_1^{1+A}$ and $J_f(N, H) \ll NH^{1+A}$, we write

$$
\mathbb{D}_f(N, H) \ll NH^{1-\delta} + H^{1-\gamma} H^{-2} J_f(N, H_1) + H^{1-\gamma} H_1 + J_f(N, H) H^{\gamma-1} + H^{2+\gamma}
$$

$$
\ll NH(H^{-\delta} + H^{-\gamma - (1-\delta)(1-A)} + H^{\gamma + A - 1}) + H^{2+\gamma}.
$$

Now, observe that $\delta = \gamma + (1 - \delta)(1 - A) = 1 - A - \gamma$ is satisfied by $\delta = \frac{2(1-A)}{3-A}$ and $\gamma = \frac{(1-A)^2}{2(3-A)}$, which obey the condition $0 < \gamma \leq \delta$ whenever $A \in [-1, 1)$. This yields the inequality for $\mathbb{D}_f(N, H)$ stated in i).

Proof of ii. Since we closely follow the proof of i), we skip some details. By using (II) and (III) of Lemma 1 and applying 2) of Lemma 2, as before we can write

$$
J_f(N, H) \ll NH^{2-2\delta} + H^{2-2\gamma} \int_{|\alpha| \leq \frac{1}{2^{1/2}}} |\hat{f}(\alpha)|^2 \, d\alpha + H^{2\gamma} \int_{-1/2}^{1/2} |\hat{f}(\alpha)|^2 \left|\frac{\hat{g}_n(\alpha)}{H^2}\right|^2 d\alpha + H^3
$$

$$
\ll NH^{2-2\delta} + H^{2-2\gamma} H^{-2} J_f(N, H_2) + H^{2-2\gamma} H_2 + H^{2\gamma} J_f(N, H) + H^{3+2\gamma},
$$

where $H_2 = [H^{1-\delta}]$. Thus, from $J_f(N, H) \ll NH^{1+A}$ and $J_f(N, H_2) \ll NH_2^{1+A}$, it follows

$$
J_f(N, H) \ll NH^2 (H^{-2\delta} + H^{-2\gamma - (1-A)(1-\delta)} + H^{A-1+2\gamma}) + H^{3+2\gamma}.
$$

The conclusion follows by taking $\delta = \frac{2(1-A)}{5-A}$ and $\gamma = \frac{(1-A)^2}{2(3-A)}$, noticing that $0 < \gamma \leq \delta$ whenever $A \in [-3, 1)$. The Theorem is completely proved.

References

[CL1] G. Coppola, M. Laporta, *Generations of correlation averages*, Journal of Numbers, Vol. 2014 (2014), Article ID 140840, 13 pages, http://dx.doi.org/10.1155/2014/140840 (draft at arxiv:1205.1706v3)

[CL2] G. Coppola, M. Laporta, *A modified Gallagher’s Lemma*, preprint at arxiv.org/abs/1301.0008v1

[CL3] G. Coppola, M. Laporta, *Symmetry and short interval mean-squares*, (submitted), preprint available at arXiv:1312.5701v1.

[CL4] G. Coppola, M. Laporta, *A generalization of Gallagher’s Lemma for exponential sums*, to appear on Siauliai Mathematical Seminar, (draft at arxiv.org/abs/1411.1739v1)

[Ga] P. X. Gallagher, *A large sieve density estimate near $\sigma = 1$*, Invent. Math. 11 (1970), 329–339. MR 43#4775

Giovanni Coppola
Università degli Studi di Napoli
Home address: Via Partenio 12 -
- 83100, Avellino(AV), ITALY
e-page: www.giovanicoppola.name
e-mail: giovanni.coppola@unina.it

Maurizio Laporta
Università degli Studi di Napoli
Dipartimento di Matematica e Appl.
Compl.Monte S.Angelo
Via Cinthia - 80126, Napoli, ITALY
e-mail: mlaporta@unina.it