Home-Based Disease Management Program to Improve Psychological Status in Patients With Heart Failure in Japan

Miyuki Tsuchihashi-Makaya, PhD; Hisashi Matsuo, MD, PhD; Shigeo Kakinoki, MD, PhD; Shigeru Takechi, MD, PhD; Shintaro Kinugawa, MD, PhD; Hiroyuki Tsutsui, MD, PhD for the J-HOMECARE Investigators

Background: A disease management program can reduce mortality and rehospitalization of patients with heart failure (HF), but little is known about whether it can improve psychological status. The purpose of this study was to determine the effects of home-based disease management on the psychological status of patients with HF.

Methods and Results: We randomly assigned patients hospitalized for HF to undergo either home-based disease management (n=79) or usual care (n=82). The mean age of the study patients was 76 years, 30% were female, and 93% were in NYHA class I or II. Home-based disease management was delivered by nurses via home visit and telephone follow-up to monitor symptoms and body weight and to educate patients. The primary endpoint was psychological status, including depression and anxiety assessed by the Hospital Anxiety and Depression Scale during follow-up of 1 year. Secondary endpoints included quality of life, all-cause death and hospitalization for HF. The intervention group had significantly lower depression (P=0.043) and anxiety (P=0.029) scores than the usual-care group. There were no significant differences in all-cause death [hazard ratio (HR) 1.02, 95% confidence interval (CI) 0.37–2.61, P=0.967]. However, hospitalization for HF was significantly lower in the intervention group than in the usual-care group (HR 0.52, 95% CI 0.27–0.96, P=0.037).

Conclusions: Home-based disease management improved psychological status and also reduced rehospitalization for HF in patients with HF. (Circ J 2013; 77: 926–933)

Key Words: Disease management; Heart failure; Prognosis; Psychological status; Quality of life

Psychological distress, including depression and anxiety, are common in patients with heart failure (HF), with a prevalence reaching approximately 30–40%.[1,4] In addition, quality of life (QOL) is low in HF patients when compared with the general population.[5] Physical and psychosocial functioning are severely impaired in HF, even when compared with other chronic illness such as arthritis and ischemic heart disease.[6] HF patients with depression or anxiety exhibit lower physical function, more severe HF symptoms, decremented daily activities, impaired health-related QOL, and poor outcomes, including mortality and morbidity.[7,9] Therefore, despite considerable advances in evidence-based medical therapy, psychological problems and low QOL remain critical issues in HF.[10–12] Even though improvement in survival is definitely important,[13,14] many HF patients need to have better QOL rather than longer length of life.[15]

Over the past 25 years, a number of disease management programs have been developed and tested for whether they could improve clinical outcomes in HF patients.[16–18] These programs include HF clinics, home-based intervention, and telemonitoring. Key components of all these interventions are education and counseling, symptom monitoring, accessibility to healthcare providers when there are problems, optimization of medication, and social support service after discharge. A meta-analysis of these trials demonstrated that they could decrease hospitalization for worsening HF, prolong the time to the first major event, decrease medical costs, and improve QOL.[19] However, there have been few studies regarding the
effects of disease management programs on the psychological status of HF patients.

We conducted a multicenter, randomized, controlled trial, the Japanese Heart Failure Outpatients Disease Management and Cardiac Evaluation (J-HOMECARE), to test the hypothesis that a home-based disease management program could improve the psychosocial status and QOL, as well as clinical outcomes including mortality and HF hospitalization, in Japanese patients with chronic HF.

Methods

Study Design and Patients

The design of this trial has been published. The study was registered for Clinicaltrials.gov (NCT01284400).

Patients were enrolled from December 2007 to March 2010 at 3 cardiology hospitals in Hokkaido, Japan. Hospitals were selected on the basis of their organizational capability and enthusiasm for participating in the study. Exclusion criteria of patients were end-stage HF defined as requiring mechanical support or continuous intravenous inotropic agents, serious life-threatening illness with a life-expectancy of less than 6 months, stroke within the past 3 months, cognitive dysfunction, and substance abuse or psychotic disorder. After informed consent had been obtained from eligible patients, they are randomized on a 1:1 basis to either usual care or a home-based disease management intervention. Patients were treated with standard medications in accordance with guidelines for the treatment of chronic HF in Japan.

Usual Care and Home-Based Disease Management Intervention

All enrolled patients received comprehensive discharge education by cardiologist, nurse, dietitian, and pharmacist using a booklet that provided information on pathophysiology, medical treatment, diet, physical activity, lifestyle modification, self-measurement of body weight, self-monitoring of worsening HF, and emergency contact methods. Follow-up assessments were performed 2, 6, and 12 months after discharge.

A home-based disease management program consisted of home visit by nurses to provide symptom monitoring, education, and counseling, and telephone follow-up by nurses in addition to routine follow-up by cardiologists. A home visit was made within 14 days after discharge from hospital. Nurses visited each patient’s home to assess how the patient was coping in the home environment, HF status, general health status, adherence to medication, lifestyle modification, daily activity, and social support needs. Home visits were made once every 2 weeks until 2 months after discharge. At the conclusion of home visiting, nurses then conducted monthly telephone fol-
Characteristic	Home-based intervention (n=79)	Usual care (n=82)	P value
Age (years, mean ± SD)	76.9±10.9	75.8±12.1	0.548
Female (%)	37 (46.8)	33 (40.2)	0.399
BMI (kg/m², mean ± SD)	22.0±4.3	22.0±3.6	0.945
Living alone (%)	11 (13.9)	16 (19.5)	0.343
Etiology of HF (%)			
Ischemic	22 (27.8)	22 (26.8)	0.885
Hypertensive	28 (35.4)	21 (25.6)	0.175
Valvular	21 (26.6)	25 (30.5)	0.583
Cardiomyopathic	20 (25.3)	24 (29.3)	0.574
Unknown	4 (5.1)	3 (3.7)	0.662
Other	15 (19.0)	11 (13.4)	0.337
Medical history (%)			
Prior admission for HF	22 (27.8)	21 (25.6)	0.748
Hypertension	41 (51.9)	41 (50.0)	0.810
Diabetes mellitus	20 (25.3)	18 (22.0)	0.615
Dyslipidemia	21 (26.6)	16 (19.5)	0.286
Hyperuricemia	35 (44.3)	35 (42.7)	0.836
Myocardial infarction	17 (21.5)	15 (18.3)	0.608
Stroke	14 (17.7)	12 (14.6)	0.595
COPD	8 (10.1)	4 (4.9)	0.205
Atrial fibrillation	34 (43.0)	51 (62.2)	0.030
PCI or CABG	12 (15.2)	10 (12.2)	0.580
Clinical status			
NYHA (%)			
I	8 (10.1)	14 (17.1)	0.403
II	67 (84.8)	63 (76.8)	
III	4 (5.1)	5 (6.1)	
SBP (mmHg, mean ± SD)	117.6±17.1	116.9±13.6	0.789
DBP (mmHg, mean ± SD)	66.6±15.5	65.7±10.3	0.694
Heart rate (beats/min, mean ± SD)	67.9±8.6	66.1±8.5	0.177
Serum creatinine (mg/dl, mean ± SD)	1.2±0.4	1.6±0.3	0.260
Hemoglobin (g/dl, mean ± SD)	12.4±2.3	12.7±2.1	0.398
Serum sodium (mEq/L, mean ± SD)	139.3±3.8	139.5±6.2	0.772
Serum albumin (g/dl, mean ± SD)	3.9±0.4	4.0±0.5	0.283
Plasma BNP (pg/ml, mean ± SD)	344.9±366.9	291.6±367.1	0.410
LVEF (%), mean ± SD	47.4±16.8	47.4±15.7	0.986
LVEF <40%	28 (35.4)	30 (36.6)	0.880
Medication (%)			
ACE inhibitor or ARB	58 (73.4)	65 (79.3)	0.382
β-blocker	37 (46.8)	37 (45.1)	0.827
Diuretic	74 (93.7)	79 (96.3)	0.436
Aldosterone antagonist	40 (50.6)	37 (45.1)	0.484
Digitalis	17 (21.5)	24 (29.3)	0.259
Calcium-channel blocker	8 (10.1)	5 (6.1)	0.348
Antiarrhythmic drug	19 (24.1)	26 (31.7)	0.279
Aspirin	32 (40.5)	30 (36.6)	0.609
Warfarin	24 (30.4)	29 (35.4)	0.501
Statin	12 (15.2)	18 (22.0)	0.271
Insulin	2 (2.5)	5 (6.1)	0.267
Antidepressant	1 (1.3)	1 (1.2)	0.979
Anxiolytic	5 (6.3)	4 (4.9)	0.689
Device therapy			
Pacemaker (%)	11 (13.9)	12 (14.6)	0.898
ICD (%)	1 (1.3)	2 (2.4)	0.582

ACE, angiotensin-converting enzyme; ARB, angiotensin-receptor blocker; BMI, body mass index; BNP, brain natriuretic peptide; CABG, coronary artery bypass graft; COPD, chronic obstructive pulmonary disease; SBP, systolic blood pressure; DBP, diastolic blood pressure; HF, heart failure; ICD, implantable cardioverter-defibrillator; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association; PCI, percutaneous coronary intervention.
low-up until 6 months after discharge. Nurses monitored HF symptoms, patient’s general health status, and requirement for other health and social support. Nurses consulted a multidisciplinary team during the intervention period to optimize the advice given to each patient. This multidisciplinary team consisted of a cardiologist, dietitian, pharmacist, and social worker. Other healthcare professionals were consulted as required.

Patients in the usual-care group received usual care and follow-up. After hospital discharge, patients assigned to the usual-care group continued to receive routine management by the cardiologist. No extra follow-up by a HF nurse or multidisciplinary team was provided.

Endpoints
The primary endpoint was the patient’s psychological status, including depression and anxiety assessed by using the Hospital Anxiety and Depression Scale at baseline, 2, 6 and 12 months of follow-up. The secondary endpoint included QOL, all-cause death, and hospitalization for HF. QOL was assessed by Short Form-8 at baseline and 2, 6, and 12 months of follow-up. All-cause death and hospitalization were analyzed as the time to the first event. Hospitalization for HF was defined as an unplanned overnight stay in a hospital because of progression in HF symptoms or directly related to HF.

Data Collection
Baseline data were collected from medical records by the investigators at each hospital. Information on depression, anxiety and QOL at baseline, 2, 6, and 12 months were collected directly or by phone interview by investigators. Prognostic data were reported based on medical records or follow-up by telephone.

Statistical Analysis
Patients’ baseline characteristics were summarized according to treatment group. Baseline characteristics between the 2 groups were compared by Welch’s t-test for continuous variables and chi-square test for discrete variables. The analysis of primary and secondary endpoints was prespecified to be performed in the per-protocol population, which included all patients who received usual care or home-based intervention (Figure 1). To evaluate the difference between groups, the psychological status and QOL from baseline to 2, 6, and 12 months after discharge were compared using 2-way analysis of variance (ANOVA) with repeated measure. We used a paired t-test to compare the scores between baseline and each time point, where α level was adjusted by the Bonferroni method.

To assess prognosis, we summarized the endpoints on the basis of treatment group and tested the primary hypothesis using a chi-square test of independence. Event rates of all-cause death and hospitalization for HF over time were summarized using Kaplan-Meier survival curves, and we also estimated the corresponding hazard ratio (HR) and 95% confidence interval (CI), using a Cox proportional-hazards model. All statistical analyses were performed with IBM SPSS Statistics version 20 (Chicago, IL, USA).
Results

Patients
A total of 384 potential participants were screened (Figure 1) and of these, 212 were ineligible and 4 declined to participate. The remaining 168 patients were enrolled: 84 were randomly assigned to undergo home-based intervention and 84 to receive usual care. A total of 95.8% of the study patients completed the follow-up of 1 year with no between-group difference in the rate of completion (94.1% vs. 97.6%, *P*=0.247).

The baseline characteristics were similar between groups (Table). The mean age was 76.3 years and 43.5% of the patients were female. The principal causes of HF were ischemic (27.3%), hypertensive (30.4%), and cardiomyopathic (27.3%). Hypertension and atrial fibrillation were the most common comorbidities; however, the home-based intervention group was less likely to have atrial fibrillation than the usual-care group (45.0% vs. 62.2%, *P*=0.030). In total, 80.1% of the patients were classified as NYHA class II. The mean left ventricular ejection fraction (LVEF) was 47.4% and the prevalence of reduced LVEF was 36.0%. Regarding medications, 76.4% of patients had received angiotensin-converting-enzyme inhibitor or angiotensin-receptor blocker, and 46.0% had received β-blocker. Antidepressant or anxiolytic drugs were used in 6 patients from the home-based intervention group and 5 patients from the usual-care group, which did not differ between groups.

Depression and Anxiety
Depression and anxiety scores were comparable between groups at baseline. The home-based intervention significantly improved both depression and anxiety compared with usual care (depression: *P*=0.043; anxiety: *P*=0.029, by repeated measure ANOVA) (Figure 2). Regarding score differences within the intervention group, the anxiety score at 6 months after discharge was significantly decreased compared with the baseline score (*P*=0.001), whereas it did not significantly change in the usual-care group. The depression score did not change significantly at each time point from baseline in either group. However, both depression and anxiety scores significantly increased from 6 to 12 months in the intervention group (depression: *P*=0.006; anxiety: *P*=0.003).

QOL
Physical and mental health QOL scores were comparable between groups at baseline. In the comparison between groups, physical health QOL changes did not differ (*P*=0.359) (Figure 3A). The physical health QOL score significantly increased from baseline to all follow-up time points in the intervention group (*P*≤0.001 at 2-months vs. baseline, *P*≤0.001 at 6 months, *P*≤0.001 at 12-months). It significantly increased only at 2 months (*P*≤0.001) and did not change at 6 (*P*≤0.041) or 12 months (*P*≤0.037) in the usual-care group.

The home-based intervention significantly improved mental health QOL compared with usual-care when analyzed by repeated measure ANOVA (*P*=0.046) (Figure 3B). The mental health QOL score significantly increased from baseline to 2, 6, and 12 months in the intervention group (*P*≤0.001 at 2 months vs. baseline, *P*≤0.001 at 6 months, *P*≤0.003 at 12-months), but was unchanged in the usual-care group.
Interaction between nurses and patients could help establish a firm “therapeutic alliance”, resulting in improved psychiatric status and QOL of the patient. Such an educative intervention could also contribute to improvements in self-care and self-efficacy of HF patients.

The present study demonstrated that depression and anxiety scores increased after 6 months (ie, after completion of the intervention), which suggests that the intervention needs to be continued for a longer time after discharge. Further investigations are needed to determine whether the duration of intervention may influence its effect on the psychological status of HF patients.

The home-based intervention in the present study effectively reduced the rate of hospitalization for worsening HF (Figure 4B), a finding that was consistent with previous studies. A meta-analysis showed that home-based disease management was effective in reducing the risk of rehospitalization because of HF or other cardiovascular disease (relative risk (RR)=0.61, 95% CI 0.46–0.79) and of rehospitalization for all types of reasons (RR=0.75, 95% CI 0.66–0.85). In contrast, our home-based disease management intervention did not reduce the number of all-cause deaths in the present study (Figure 4A). A meta-analysis by Roccaforte et al reported that disease management programs could reduce mortality by a pooled odds ratio of 0.80 (95% CI 0.69–0.93). The reasons for this discrepancy are not clear. However, a possible explanation might be the low annual mortality rate in the present study (10%) compared with recent clinical trials of disease management from Europe (27% in 18 months) and Australia (20%). Based on the findings that previous trials, especially small-scale trials, also failed to demonstrate efficacy of this type of intervention on mortality rates, further

All-Cause Death and Hospitalization for HF

In both the home-based intervention group and usual-care group, there were 8 cases of all-cause death (10% in each group) (Figure 4A). The risk of all-cause death in the intervention group was comparable to that in the usual-care group (HR=1.02, 95% CI 0.37–2.61, P=0.967). Hospitalization because of HF was required by 16 patients (20%) in the intervention group and 28 patients (34%) in the usual-care group (Figure 4B). Hospitalization for HF was significantly lower in the intervention group than in the usual-care group (HR=0.52, 95% CI 0.27–0.96, P=0.037).

Discussion

In the present study, a home-based disease management intervention improved depression and anxiety, as well as mental health QOL, in HF patients. It also significantly reduced the rate of hospitalization for HF. These results verify the efficacy on psychological status and QOL of home-based disease management by nurses via home visit and telephone follow-up. Therefore, such intervention can be effective also in Japan, where the medical care system is distinct from those in the United States and Europe.

There are several possible factors that might explain the effectiveness of this disease management program on psychological status and QOL (Figures 2,3). The intervention included provision of knowledge about HF to patients, symptom monitoring, and assessment of treatment adherence by nurses via home visit and telephone follow-up. Nurses could reduce the mental stress of patients living with their disease and their anxiety about the exacerbation of HF by providing knowledge and management strategies. In addition, the face-to-face interaction between nurses and patients could help establish a firm “therapeutic alliance”, resulting in improved psychiatric status and QOL of the patient. Such an educative intervention could also contribute to improvements in self-care and self-efficacy of HF patients.

The present study demonstrated that depression and anxiety scores increased after 6 months (ie, after completion of the intervention), which suggests that the intervention needs to be continued for a longer time after discharge. Further investigations are needed to determine whether the duration of intervention may influence its effect on the psychological status of HF patients.

The home-based intervention in the present study effectively reduced the rate of hospitalization for worsening HF (Figure 4B), a finding that was consistent with previous studies. A meta-analysis showed that home-based disease management was effective in reducing the risk of rehospitalization because of HF or other cardiovascular disease (relative risk (RR)=0.61, 95% CI 0.46–0.79) and of rehospitalization for all types of reasons (RR=0.75, 95% CI 0.66–0.85). In contrast, our home-based disease management intervention did not reduce the number of all-cause deaths in the present study (Figure 4A). A meta-analysis by Roccaforte et al reported that disease management programs could reduce mortality by a pooled odds ratio of 0.80 (95% CI 0.69–0.93). The reasons for this discrepancy are not clear. However, a possible explanation might be the low annual mortality rate in the present study (10%) compared with recent clinical trials of disease management from Europe (27% in 18 months) and Australia (20%). Based on the findings that previous trials, especially small-scale trials, also failed to demonstrate efficacy of this type of intervention on mortality rates. Therefore, further
investigation on larger scale is needed.

Study Limitations

First, we did not analyze medical care costs as an outcome. Recently, telemonitoring and teledicine have been proposed as cost-effective programs of disease management in HF. Therefore, it will be important to evaluate the medical care costs required for our home-based disease management program. Second, the present study was conducted in 3 hospitals specializing in cardiovascular treatment, which might limit the application of the present findings in general. Further studies need to be conducted in a larger number of hospitals to ensure the generalizability of the present results. We also could not determine whether the effects of the intervention differed among hospitals or among the methods of conducting the program. Therefore, this point needs to be assessed by a multi-institutional collaborative trial. Finally, improved adherence to medical treatment in the intervention group might affect the endpoints. However, the present study did not evaluate adherence to medical treatment. Adherence to medical treatment, as well as self-care behavior, needs to be assessed in future studies.

In conclusion, home-based disease management by nurses via home visit and telephone follow-up was effective in improving the quality of life: A cross-sectional study comparing common chronic elderly patients over 80 years hospitalized with heart failure: A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 2011; 75: 2403–2410.

11. Xiong GL, Fiuzat M, Kuchibhatla M, Krishnan R, O’Connor CM, Jiang W. Health status and depression remission in patients with chronic heart failure: Patient-reported outcomes from the SADHART-CHF Trial. Circ Heart Fail 2012; 5: 688–692.

12. Kato N, Kinugawa K, Seki S, Shiga T, Hatan M, Yao A, et al. Quality of life as an independent predictor for cardiac events and death in patients with heart failure. Circ J 2011; 75: 1661–1669.

13. Hamaguchi S, Kinugawa S, Sobirin MA, Goto D, Tsuchihashi-Makaya M, Yamada S, et al. Mode of death in patients with heart failure and reduced vs. preserved ejection fraction: Report from the registry of hospitalized heart failure patients. Circ J 2012; 76: 1662–1669.

14. Hamaguchi S, Kinugawa S, Goto D, Tsuchihashi-Makaya M, Yokota T, Yamada S, et al. Predictors of long-term adverse outcomes in elderly patients over 80 years hospitalized with heart failure: A report from the Japanese Cardiac Registry of Heart Failure in Cardiology (JCARE-CARD). Circ J 2011; 75: 2403–2410.

15. Lewis EF, Johnson PA, Johnson W, Collins C, Griffin L, Stevenson LW. Preferences for quality of life or survival expressed by patients with heart failure. J Heart Lung Transplant 2001; 20: 1016–1024.

16. Stewart S, Marley JE, Horowitz JD. Effects of a multidisciplinary, home-based intervention on unplanned readmissions and survival among patients with chronic congestive heart failure: A randomised controlled trial. Lancet 1999; 354: 1077–1083.

17. Rich MW, Beckham V, Wittenberg C, Leven CL, Freedland KE, Carney RM. A multidisciplinary intervention to prevent the readmission of elderly patients with congestive heart failure. N Engl J Med 1995; 333: 1190–1195.

18. Koornhof HM, Amatradu J, Smith GL, Mattera JA, Roumanis SA, Radford MJ, et al. Randomized trial of an education and support intervention to prevent readmission of patients with heart failure. J Am Coll Cardiol 2002; 39: 83–89.

19. McAlister FA, Stewart S, Ferrua S, McMurray JJ. Multidisciplinary strategies for the management of heart failure patients at high risk for admission: A systematic review of randomized trials. J Am Coll Cardiol 2004; 44: 810–819.

20. Martensson J, Stromberg A, Dahlstrom U, Karlsson JE, Fridlund B. Patients with heart failure in primary health care: Effects of a nurse-led intervention on health-related quality of life and depression. Eur Heart J 2005; 26: 391–403.

21. Tsuchihashi-Makaya M, Matsuho H, Kakinoki S, Takechi S, Tsutsui H. Rationale and design of the Japanese heart failure outpatients disease management and cardiac evaluation (J-HOMECARE). Circ J 2011; 75: 165–172.

22. Japanese Circulation Society Joint Working Group. Guidelines for treatment of chronic heart failure (JCS 2010). http://www.j-circ.or.jp/guideline/pdf/JCS2010_matsuzaki_b.pdf (2010 accessed January 18, 2013).

23. Barczak P, Kane N, Andrews S, Congdon AM, Clay JC, Betts T. Patterns of psychiatric morbidity in a genito-urinary clinic: A validation of the Hospital Anxiety Depression scale (HAD). Br J Psychiatry 1988; 152: 698–700.

24. Fukuhara S, Suzukamo Y. Instruments for measuring health-related quality of life: SF-8 and SF-36. Igaku no Ayumi 2005; 213: 133–136 (in Japanese).

25. Yeke PL, Plase KS. Self-efficacy and educational interventions in heart failure: A review of the literature. J Cardiovasc Nurs 2010; 25: 175–188.

26. Stanley MA, Madlax SE. Self-efficacy expectancy and depressed mood: An investigation of causal relationships. J Soc Behav Pers 1986; 1: 575–586.

27. Harrison MB, Browne GB, Roberts J, Tugwell P, Gafni A, Graham ID. Quality of life of individuals with heart failure: A randomized trial of the effectiveness of two models of hospital-to-home transitional care. Med Care 2000; 38: 1811–1817.

28. Blue L, Lang E, McMurray JJ, Davie AP, McDonagh TA, Murdoch

29. Circulation Journal Vol.77, April 2013

30. Hobbs FD, Kenkre JE, Roalf AE, Davis RC, Hare R, Davies MK. Impact of heart failure and left ventricular systolic dysfunction on quality of life: A cross-sectional study comparing common chronic cardiac and medical disorders and a representative adult population.
Home-Based Management of HF in Japan

DR, et al. Randomised controlled trial of specialist nurse intervention in heart failure. BMJ 2001; 323: 715–718.

29. Hughes SL, Weaver FM, Globbie-Hurder A, Manheim L, Henderson W, Kubal JD, et al. Effectiveness of team-managed home-based primary care: A randomized multicenter trial. JAMA 2000; 284: 2877–2885.

30. Nayler MD, Brooten D, Campbell R, Jacobsen BS, Mezey MD, Pauly MV, et al. Comprehensive discharge planning and home follow-up of hospitalized elders: A randomized clinical trial. JAMA 1999; 281: 613–620.

31. Gonseth J, Guallar-Castillon P, Banegas JR, Rodriguez-Artalejo F. The effectiveness of disease management programmes in reducing hospital re-admission in older patients with heart failure: A systematic review and meta-analysis of published reports. Eur Heart J 2004; 25: 1570–1595.

32. Roccaforte R, Demers C, Baldassarre F, Teo KK, Yusuf S. Effectiveness of comprehensive disease management programmes in improving clinical outcomes in heart failure patients: A meta-analysis. Eur J Heart Fail 2005; 7: 1133–1144.

33. Jaarsma T, van der Wal MH, Lesman-Leegte I, Lutnik ML, Hogenhuis J, Veeger NJ, et al. Effect of moderate or intensive disease management program on outcome in patients with heart failure: Coordinating Study Evaluating Outcomes of Advising and Counseling in Heart Failure (COACH). Arch Intern Med 2008; 168: 316–324.

34. Stewart S, Carrington MJ, Marwick TH, Davidson PM, Macdonald P, Horowitz JD, et al. Impact of home versus clinic-based management of chronic heart failure: The WHICH? (Which Heart Failure Intervention Is Most Cost-Effective & Consumer Friendly in Reducing Hospital Care) multicenter, randomized trial. J Am Coll Cardiol 2012; 60: 1239–1248.

35. Gohler A, Januzzi JL, Worrell SS, Osterziel KJ, Gazelle GS, Dietz R, et al. A systematic meta-analysis of the efficacy and heterogeneity of disease management programs in congestive heart failure. J Card Fail 2006; 12: 554–567.

36. Inglis SC, Clark RA, McAlister FA, Stewart S, Cleland JG. Which components of heart failure programmes are effective? A systematic review and meta-analysis of the outcomes of structured telephone support or telemonitoring as the primary component of chronic heart failure management in 8323 patients: Abridged Cochrane review. Eur J Heart Fail 2011; 13: 1028–1040.

Appendix

Steering Committee
Hiroyuki Tsutsui (Chair), Hokkaido University; Miyuki Tsuchihashi-Makaya (Co-chair), Kitasato University.

Endpoint Adjudication Committee
Members: Takayuki Inomata, Kitasato University; Shintaro Kinugawa, Hokkaido University; Kenichi Sagioka, Osaka City University.
Assistant: Mayumi Koasa, Hokkaido University.

Data and Safety Monitoring Committee
Members: Hisashi Kai, Kurume University; Tomomi Ide, Kyushu University.
Assistant: Erina Ninomiya, Hokkaido University.

Investigators: Hisashi Matsuo, Toru Kaji, Yoshiho Nishino, Reiko Omi, Noboru Asai, Mizue Takahashi, Keiwaiki Ebestu Hospital; Shigeo Kakinoki, Chika Takagi, Kazuhiko Nagai, Miki Takeuchi, Shuko Uchionbou, Otara Kyokai Hospital; Shigeru Takechi, Atsuko Namikoshi, Masumi Sakurada, Masumi Furuya, Yuki Heishi, Date Red Cross Hospital.