Endometrial cancer represents the 6th most commonly diagnosed malignancy among women, with over 417 000 new cases and 97 000 deaths in 2020(1).

Endometrial cancer primarily affects post-menopausal women(2). The use of oestrogenic hormone replacement therapy (HRT)(3), obesity(4–6) and physical inactivity(7,8) represent the main modifiable risk factors for the disease. With the ageing of the population and the rising prevalence of obesity and sedentary lifestyle, the burden of endometrial cancer is expected to increase globally(9); primary prevention of this neoplasm is therefore of paramount importance.

Dietary habits may influence endometrial cancer. High glycaemic load diet(10,11) and high consumption of red and processed meat(12–14) have been associated with the disease, while high consumption of coffee(15–17), fibres(18,19), fruit(20) and vegetables(20–22) may reduce the risk. However, evidence on dietary factors is still controversial(23).

In 2007, the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) published the following evidence-based recommendations aimed at cancer prevention: (1) be as lean as possible within the normal range of body weight, (2) be physically active as part of everyday life, (3) limit consumption of energy-dense foods, (4) eat mostly foods of plant origin, (5) limit intake of red meat and avoid processed meat, (6) limit consumption of alcoholic drinks, (7) limit consumption of salt and avoid mouldy cereals or pulses, (8) avoid dietary supplements for cancer prevention, and (9) breastfeed(24). In 2018, recommendations were updated with minor changes, including the avoidance of any alcohol and the avoidance of sugar-sweetened drinks as a separate recommendation(25). The 2007
recommendations on limiting salt consumption and avoiding mouldy cereals or pulses were removed in the 2018 version, as these are specific for selected populations.

In several cohort, case–control and cross-sectional studies, adherence to the WCRF/AICR recommendations was associated with reduced total and cardiovascular mortality, and reduced risks of overall and selected cancers, including those of the breast, colorectum, pancreas, prostate, and upper aerodigestive tract. However, to our knowledge, no previous investigation has analysed the association of adherence to these recommendations with the occurrence of endometrial cancer.

In the current study, we evaluated whether adherence to the WCRF/AICR cancer prevention recommendations may affect endometrial cancer risk using data from a multicentric case–control study conducted in Italy.

Materials and methods

Study population and data collection

We analysed data from a hospital-based case–control study on endometrial cancer conducted between 1992 and 2006 in three Italian areas, that is, the greater Milan area, the provinces of Udine and Pordenone in northern Italy and the urban area of Naples in southern Italy. Cases were 454 women (median age 60 years, range 18–79) diagnosed with incident histologically confirmed endometrial cancer according to the International Classification of Diseases (ICD-9-CM, code 182.4), admitted to major teaching and general hospitals of the study areas. Women diagnosed with endometrial cancer up to a year earlier and with no prior diagnosis of cancer were eligible. Controls were 908 women (median age 61 years, range 19–79) admitted to the same hospital network as cases for acute, non-neoplastic conditions, unrelated to long-term dietary modifications, that is, traumas (36%), orthopaedic disorders (32%), acute surgical conditions (9%) and miscellaneous illnesses including eye, nose, ear, or skin disorders (25%). Women with a history of hysterectomy or admitted for gynaecological or hormone-related conditions were excluded from the control group. Cases and controls were frequency matched by 5-year age group and study centre; we used a case to control ratio of 1:2 to increase the statistical power of the study. Comprising over 450 cases and 900 controls, our study has ~90% power to detect as statistically significant (at α = 0.05) an odds ratio (OR) equal or greater than 1.5 for an exposure with a prevalence of 25% in controls. Matching was achieved by sampling as controls twice the number of cases in each 5-years age group. This was done by periodically checking the age distribution of cases within each participating centre. More than 95% of eligible cases and a similar proportion of controls agreed to participate in the study and completed the questionnaire. This study was conducted according to the guidelines laid down in the Declaration of Helsinki and was approved by the Board of Ethics of each participating centre. Informed consent was obtained from all enrolled women.

Patients were interviewed by centrally trained personnel during their hospital stay using a standard structured questionnaire collecting information on socio-demographic characteristics and anthropometric measures (including self-reported weight before diagnosis/hospital admission), selected lifestyle habits (i.e., tobacco smoking, alcohol drinking, and physical activity), personal medical history of selected diseases, family history of cancer in first-degree relatives, menstrual and reproductive factors, and use of oral contraceptive and HRT. Body mass index (BMI) was calculated as weight divided by height² (kg/m²).

Occupational and leisure time physical activities at ages 12, 15–19, 30–39, and 50–59 were self-reported. Occupational physical activity was classified, based on the type of job, as sedentary (e.g., office worker, student), standing (e.g., shop assistant, teacher, laboratory worker), intermediate (e.g., waiter, cook, kindergarten teacher, housewife doing housework), heavy (e.g., farmer, heavy industry worker), and very heavy (e.g., construction bricklayer, athlete). As for leisure time physical activity, we asked subjects to report their usual number of hours of physical activities (including sport, cycling, etc.) per week (i.e., >7, 5–7, 2–4, and <2).

Information regarding the usual diet in the 2 years before cancer diagnosis (for cases) or hospital admission (for controls) was retrieved using a reproducible and valid food frequency questionnaire (FFQ) including seventy-eight food items or food groups and, for about half of them, their usual portion size. Subjects were asked to indicate their average weekly consumption of each item in the past 2 years. Intake of non-alcohol energy and selected nutrients was determined using an Italian food composition database.

World Cancer Research Fund/American Institute for Cancer Research score

We calculated a score measuring adherence to the 2018 version of the WCRF/AICR recommendations according to standard criteria proposed by Shams-White et al. We included seven of eight recommendations, that is, (1) be at a healthy weight, (2) be physically active, (3) eat a diet rich in vegetables, fruits and wholegrains, (4) limit consumption of fast foods and other processed foods high in fat, starches or sugars, (5) limit consumption of red and processed meat, (6) limit consumption of sugar sweetened, and (7) avoid consumption of alcohol. The recommendation number 3 was split into two sub-recommendations (as also suggested by the standard scoring system); one on vegetables and fruits (3a) and one on wholegrains (3b). The optional recommendation on breast feeding was not included. For each recommendation, participants were assigned 1 point for complete adherence, 0.5 for partial adherence, and 0 for non-adherence. For the two sub-recommendations (i.e., 3a and 3b), participants were assigned 0.5 points for complete adherence, 0.25 for partial adherence, and 0 for non-adherence; points on the two sub-recommendations were then, summed up.

Complete, partial, and non-adherence to the recommendations were defined, respectively, as follows: (1) BMI: 18.5–24.9, 25–29.9, ≤ 18.5, or ≥ 30 kg/m²; (data on waist circumference were not considered since the information was available only for a subset of women); (2) physical activity: very heavy/heavy job or ≥ 5 h/week of leisure time physical activity, medium job and ≤ 4 h/week of leisure time physical activity or standing/sedentary job and 2–4 h/week of leisure time physical activity;
sédentaire et < 2 h/semaine de loisirs physiques; (3a) consommation de fruits et de légumes ≥ 400, 200–
< 400, < 200 g/d; (3b) consommation de graisses totales ≥ 30, 15–< 30, < 15 g/diet; (4) consommation d’énergie dense de denrées
(exemple pour la consommation de fast foods et autres denrées
haut en sucres, stéarines ou édulcorants): ≤ 5230, 5230–
< 7322, ≥ 7322kJ/100 g/diet; (5) consommation de viande crue
et de viande cuite: rouge et de viande transformée; (6) consommation de
liquides : 0, > 0–≤ 250, > 250 g/semaine et (7) consommation
de l’alcool: 0, > 0–≤ 7, > 7 verres/semaine (voir détails dans
on ligne supplémentaire Table S1). La valeur WCRF/AICR score
était définie comme le point à partir duquel l’adéquation est
métaboliques et de consommation d’alcool; et éviter consomma-
action de consommation de fromage riche en graisses; et éviter consomma-
tion de viande rouge et de viande transformée; limit consommation d’alcool;
son de l’adresse de confirmer l’adéquation aux recommandations WCRF/AICR.
Nous avons également défini un score WCRF/AICR summin up only
tes recommandations concernant les habitudes alimentaires (i.e.,
edit riche en fruits, légumes et dérivés; limite consommation
de denrées de paléo; et éviter consomma-
tion de boissons sucrées; et éviter consomma-
tion de viande rouge et de viande transformée; limit consommation d’alcool;
son de l’adresse de confirmer l’adéquation aux recommandations WCRF/AICR.
Nous avons également défini un score WCRF/AICR summin up only
tes recommandations concernant les habitudes alimentaires (i.e.,
edit riche en fruits, légumes et dérivés; limite consommation
de paléo; et éviter consomma-
action de boissons sucrées; et éviter consomma-
action de viande rouge et de viande transformée; limit consommation d’alcool;
son de l’adresse de confirmer l’adéquation aux recommandations WCRF/AICR.
Nous avons également défini un score WCRF/AICR summin up only
tes recommandations concernant les habitudes alimentaires (i.e.,
edit riche en fruits, légumes et dérivés; limite consommation
de paléo; et éviter consomma-
action de boissons sucrées; et éviter consomma-
action de viande rouge et de viande transformée; limit consommation d’alcool;
son de l’adresse de confirmer l’adéquation aux recommandations WCRF/AICR.
Nous avons également défini un score WCRF/AICR summin up only
tes recommandations concernant les habitudes alimentaires (i.e.,
edit riche en fruits, légumes et dérivés; limite consommation
de paléo; et éviter consomma-
action de boissons sucrées; and avoid consumption

Statistical analysis
We derived the OR of endometrial cancer and the corresponding
95 % confidence intervals (CI) according to each WCRF/AICR
recommendation (in three categories for BMI, partial,
and non-adherence), to the overall WCRF/AICR score (in
approximate quartiles calculated among controls, i.e., < 3.25,
3.25–3.99, 4.00–4.49, ≥ 4.50, as well as for one-point increment)
and to the dietary WCRF/AICR score (in approximate tertiles
among controls: < 3–5, 2.25–2.99, ≥ 3.00, as well as for one-
point increment). We used multiple (adjusted) logistic regression
models, conditioned on 5-year age group and centre, and including
terms for years of education, year of interview, smoking, history
of diabetes, total energy intake, age at menarche, parity,
menopausal status, use of oral contraceptive and HRT. When
assessing the association of single recommendations and the
dietary WCRF/AICR score, we included in the model as adjustment
factors terms for BMI (in categories: < 21.00, 21.00–
25.99, 26.00–29.99, ≥ 30 kg/m², except for the analysis on the
recommendation on body fatness) and occupational and leisure
time physical activity (in categories defined as the recommendation
on physical activity included in WCRF score, except for the
analysis on the corresponding recommendation). A few missing
data on adjustment factors were replaced by the median value
(continuous variables) or mode category (categorical variables)
according to case/control status. In sensitivity analyses, we
excluded alternately each recommendation at a time from the
overall WCRF/AICR score in order to evaluate the relative impact
of the single recommendations included in the score, and we re-
ran the main analysis with a complete case approach.

Additionally, we estimated the OR for one-point increment in
the WCRF/AICR score across strata of age, BMI, menopausal sta-
tus, parity, oral contraceptive and HRT use. Heterogeneity across
strata was tested by a likelihood ratio test comparing the models
with and without the interaction term between the subgroup fac-
tor and the WCRF/AICR score variable. For the likelihood ratio
test, we considered as significant a P-value < 0.10.

All the analyses were conducted using SAS software version
9.4 (SAS Institute, Inc.).

Results
Table 1 shows the distribution of selected characteristics of endo-
metrial cancer cases and controls. By design, cases and controls
had a similar age and were hospitalised in the same centres.
Compared with controls, cases had a higher BMI, reported more
frequently a history of diabetes and had lower parity; they also
tended to report more frequently HRT use and less frequently
oral contraceptive use. No differences emerged according to
the other factors considered. In our database, the WCRF/AICR
score ranged from 0.5 to 6.5.

Table 2 provides the OR of endometrial cancer for each rec-
ommendation included in WCRF/AICR score. Complete adher-
ence (i.e., 1 point) to the recommendation on body fatness
reduced the risk of endometrial cancer by 72 % (OR = 0.28,
95 % CI 0.20, 0.39 v. non-adherence; P-value for trend < 0.001).
There was an inverse association with adherence to the recom-
recommendation on body fatness, higher BMI and lower parity; they also
tended to report more frequently HRT use and less frequently
on oral contraceptive use. No differences emerged according to
the other factors considered. In our database, the WCRF/AICR
score ranged from 0.5 to 6.5.

Table 3 shows the OR of endometrial cancer according to the
overall WCRF/AICR score and the dietary WCRF/AICR score.
After allowing for major confounders, high adherence to the
WCRF/AICR recommendations was inversely related to the risk
of endometrial cancer, with an OR of 0.42 (95 % CI 0.30, 0.61) for
the highest compared with the lowest score quartile (P-value for
trend < 0.001). The OR for one-point increment in the WCRF/
AICR score was 0.72 (95 % CI 0.63, 0.83). As for the dietary
WCRF/AICR score, the OR for the highest compared with the
lowest tertile was 0.67 (95 % CI 0.46, 0.96, P-value for trend = 0.017),
and that for one-point increment was 0.81 (95 % CI
0.68, 0.96). Results were virtually identical when using a com-
plete case approach (OR = 0.42, 95 % CI 0.30, 0.60 for the highest
and test, we considered as significant a P-value < 0.10.

In subgroup analyses (Table 4), the association was stronger
among women with a normal weight, those who were older, and
consequently those in post-menopause and those with ≥ 2

Discussion
In this large, multicentric Italian study, greater adherence to the
WCRF/AICR preventive cancer recommendations on body

Table 1 shows the distribution of selected characteristics of endo-
metrial cancer cases and controls. By design, cases and controls
had a similar age and were hospitalised in the same centres.
Compared with controls, cases had a higher BMI, reported more
frequently a history of diabetes and had lower parity; they also
tended to report more frequently HRT use and less frequently
on oral contraceptive use. No differences emerged according to
the other factors considered. In our database, the WCRF/AICR
score ranged from 0.5 to 6.5.

Table 2 provides the OR of endometrial cancer for each rec-
ommendation included in WCRF/AICR score. Complete adher-
ence (i.e., 1 point) to the recommendation on body fatness
reduced the risk of endometrial cancer by 72 % (OR = 0.28,
95 % CI 0.20, 0.39 v. non-adherence; P-value for trend < 0.001).
There was an inverse association with adherence to the recom-
recommendation on body fatness, higher BMI and lower parity; they also
tended to report more frequently HRT use and less frequently
on oral contraceptive use. No differences emerged according to
the other factors considered. In our database, the WCRF/AICR
score ranged from 0.5 to 6.5.

Table 3 shows the OR of endometrial cancer according to the
overall WCRF/AICR score and the dietary WCRF/AICR score.
After allowing for major confounders, high adherence to the
WCRF/AICR recommendations was inversely related to the risk
of endometrial cancer, with an OR of 0.42 (95 % CI 0.30, 0.61) for
the highest compared with the lowest score quartile (P-value for
trend < 0.001). The OR for one-point increment in the WCRF/
AICR score was 0.72 (95 % CI 0.63, 0.83). As for the dietary
WCRF/AICR score, the OR for the highest compared with the
lowest tertile was 0.67 (95 % CI 0.46, 0.96, P-value for trend = 0.017),
and that for one-point increment was 0.81 (95 % CI
0.68, 0.96). Results were virtually identical when using a com-
plete case approach (OR = 0.42, 95 % CI 0.30, 0.60 for the highest
and test, we considered as significant a P-value < 0.10.

In subgroup analyses (Table 4), the association was stronger
among women with a normal weight, those who were older, and
consequently those in post-menopause and those with ≥ 2

Discussion
In this large, multicentric Italian study, greater adherence to the
WCRF/AICR preventive cancer recommendations on body
fatness, physical activity, and diet was associated with an approximately 60% reduced risk of endometrial cancer. As expected\(^{(52)}\), body weight had the strongest influence on the risk; however, a score measuring adherence to the recommendations related to diet was inversely associated with the risk of endometrial cancer after adjusting for BMI. In addition, the inverse relation was stronger in normal weight women, reflecting the key role of overweight and obesity on endometrial cancer risk\(^{(52)}\).

Maintaining a healthy weight throughout life – of specific importance for endometrial cancer risk – being physically active, following a healthy eating pattern and avoiding alcohol use are the key recommendations for the prevention of cancer, also according to the American Cancer Society\(^{(53,54)}\).

Our results on body fatness reflect the well-established and strong association between overweight, obesity and endometrial cancer risk. Obesity (defined as BMI > 30 or < 35 kg/m\(^2\)) is associated with an over 2-fold increase in the risk of endometrial cancer and severe obesity (defined as BMI > 35 kg/m\(^2\)) with a 5-fold increase\(^{(55)}\). The relationship involves the hyper-oestrogenic state of obesity\(^{(56)}\), besides other mechanisms. Adipose tissue, functioning as an important endocrine organ, contributes to hormone production (such as oestrogens), maintenance of a pro-inflammatory state, and stimulation of cellular proliferation pathways. Such factors play a key role in carcinogenesis and endometrial proliferation. In addition, adiposity influences the metabolism and is associated with insulin resistance and hyper-insulinaemia, well-recognised risk factors for the endometrial cancer\(^{(57)}\). Intentional weight loss (self-reported or after bariatric surgery) and maintaining a stable weight were related to a significantly lower risk of endometrial cancer (relative risk ranging from 0.61 to 0.96)\(^{(58)}\). A study conducted in a cohort of severely obese women undergoing a weight loss intervention including diet and physical activity found that levels of cancer-associated biomarkers could be normalised with weight loss\(^{(59)}\).

As for physical activity, the WHO\(^{(60)}\) and the US Physical Activity Guidelines Advisory committee\(^{(61)}\), on the basis of their appraisal of a number of systematic reviews and meta-analyses, reported a moderate to high-certainty evidence that high physical activity levels are associated with a reduction in endometrial cancer risk. A systematic review and meta-analysis\(^{(62)}\) reported a significant inverse association between physical activity and endometrial cancer among overweight or obese women only, possibly due to the counterbalance function of physical activity against the unfavourable effects of obesity and the different composition of body mass. Further, since physical activity and BMI are strongly linked, when the benefit from physical activity in preventing endometrial cancer has been explored using a mediation analysis, it appeared that the majority of the protective role was mediated through a reduction in the risk of obesity\(^{(63)}\). Other mechanisms involved may be the decreasing oestrogens through reducing peripheral adipose tissue where the conversion of androgens to oestrogens occurs\(^{(64)}\), the improvement of insulin sensitivity\(^{(65)}\), the alteration of the insulin-like growth factor axis\(^{(66)}\), and the reduction of pro-inflammatory mediators\(^{(67)}\). We measured adherence to the recommendation on physical activity combining available questionnaire data on the level of physical activity at work and on the time spent in leisure time physical activity at age 30–39 years and adapted cut points for adherence proposed by the standard scoring system, which were expressed as min/week of moderate-vigorous physical activity, to our physical activity variable. With such an approach, less than 10% of cases and controls were categorised as ‘non-adherent’, and we did not find any relevant association with endometrial cancer. Whether higher levels of physical activity may favourably affect endometrial cancer risk cannot be excluded.

As for the WCRF/AICR recommendations on diet, various studies showed a favourable role of dietary fibre\(^{(18,19)}\), fruit\(^{(20)}\), and vegetables\(^{(20–22)}\) on endometrial cancer risk. Vegetables and fruit represent a source of a variety of micronutrients and

Table 1. Distribution of endometrial cancer cases and controls according to selected covariates, Italy, 1992–2006 (Numbers and percentages; mean values and standard deviations)

	Cases (n 454)	Controls (n 908)	\(P\)
Centre			
Naples	77	154	17.0
Pordenone	237	474	52.2
Age			
< 50	67	134	14.8
50–54	59	118	13.0
55–59	81	162	17.8
60–64	84	167	18.4
65–69	82	165	18.2
≥ 70	81	162	17.8
BMI (kg/m\(^2\))			
< 25	126	413	45.7
25–<29.9	160	351	38.8
≥ 30	168	140	15.5
History of diabetes			
No	401	854	94.1
Yes	53	60	6.0
Parity			
0	68	126	13.9
1	92	150	16.8
≥ 2	169	315	34.7
Menopausal status			
Pre/Peri	83	174	19.3
Post	360	726	80.7
Oral contraceptive use			
Never	408	790	87.0
Ever	46	118	13.0
Hormone replacement therapy			
Never	405	830	91.4
Ever	49	86	8.6
WCRF score			
Mean	3.65	3.93	< 0.001
so	0.87	0.96	

WCRF, World Cancer Research Fund.

* 4 (0.4%) missing values among controls.

† 11 (2.4%) missing values among cases and 8 (0.8%) among controls.
Table 2. Association between adherence to each recommendation included in the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) score and endometrial cancer risk, Italy, 1992–2006

(Odds ratios and 95 % confidence intervals; numbers and percentages)

Recommendations	Cases n	%	Controls n	%	OR*	95 % CI	
Be at a healthy weight†	0	172	37.9	158	17.4	1.00‡	
	0.5	155	34.1	344	38.1	0.39	0.29, 0.53
	1	127	28.0	402	44.5	0.28	0.20, 0.39
P_{trend}	< 0.001						
Be physically active†	0	42	9.3	64	7.1	1.00‡	
	0.5	217	47.9	503	55.8	0.68	0.43, 1.07
	1	194	42.8	335	37.1	0.94	0.57, 1.54
P_{trend}	0.325						
Eat a diet rich in whole grains, vegetables, fruit and beans	0	63	13.9	127	14.0	1.00‡	
	0.5	329	72.5	666	73.3	0.81	0.56, 1.19
	1	62	13.7	115	12.7	0.69	0.40, 1.19
P_{trend}	0.180						
Limit consumption of energy-dense food	0	71	15.6	129	14.2	1.00‡	
	0.5	280	61.7	529	58.3	0.91	0.64, 1.30
	1	103	22.7	250	27.6	0.78	0.52, 1.18
P_{trend}	0.219						
Limit consumption of red and processed meat	0	357	76.6	649	71.5	1.00‡	
	0.5	86	18.9	214	23.6	0.75	0.55, 1.02
	1	11	2.4	45	5.0	0.50	0.24, 1.03
P_{trend}	0.013						
Limit consumption of sugar-sweetened beverages†	0	27	5.9	50	5.5	1.00‡	
	0.5	176	38.8	332	36.7	1.15	0.67, 1.98
	1	251	55.3	523	57.8	1.05	0.62, 1.79
P_{trend}	0.727						
Avoid consumption of alcohol†	0	156	34.5	294	32.6	1.00‡	
	0.5	159	35.2	337	37.4	0.87	0.65, 1.18
	1	137	30.3	271	30.0	0.90	0.64, 1.25
P_{trend}	0.505						

* Estimated from logistic regression models conditioned on age and centre and including terms for year of interview, education, BMI, physical activity, smoking, total energy intake, history of diabetes, age at menarche, menopausal status, parity, use of oral contraceptives and hormone replacement therapy, unless the variable was part of the recommendation under evaluation.
† The sum does not add up to the total because of missing data.
‡ Reference category.

Table 3. Association of the overall World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) score and the WCRF/AICR diet score with endometrial cancer risk, Italy, 1992–2006

(Odds ratios and 95 % confidence intervals; numbers and percentages)

WCRF/AICR score, quartiles	Cases, n	%	Controls, n	%	OR*	95 % CI
I (≤ 3.25)						
	147	32.4	191	21.0	1†	
II (3.25–3.99)						
	158	34.8	307	33.8	0.70	0.51, 0.96
III (4.00–4.49)						
	70	15.4	170	18.7	0.57	0.39, 0.82
IV (≥ 4.50)						
	79	17.4	240	26.4	0.42	0.30, 0.61
P-value for trend	< 0.001					
One-point increment	0.72	0.63, 0.83				
WCRF/AICR diet score, tertiles						
I (≤ 2.25)						
	122	26.9	226	24.9	1†	
II (2.25–2.99)						
	210	46.3	357	39.3	1.05	0.77, 1.42
III (≥ 3.00)						
	122	28.9	325	35.8	0.67	0.46, 0.94
P-value for trend	0.017					
One-point increment	0.81	0.68, 0.96				

* Estimated from logistic regression models conditioned on age and centre and including terms for year of interview, education, smoking, total energy intake, history of diabetes, age at menarche, menopausal status, parity, use of oral contraceptives and hormone replacement therapy. OR according to the WCRF/AICR diet score were further adjusted for BMI and physical activity.
† Reference category.
other bioactive constituents that may protect from cancer through modulation of steroid hormone concentration and metabolism, antioxidant activities, modulation of detoxification enzymes, and stimulation of the immune system66. As for dietary fibres, the favourable role may be attributable to the decrease in plasma cholesterol levels and in postprandial glycaemia, and the bacterial fermentation of fibre to short-chain fatty acids66. Conversely, the intake of red and processed meat was directly associated with endometrial cancer risk in some12-14, but not all studies21,70; alcohol intake was not appreciably associated with the disease71,72 and the few studies investigating sugar-sweetened beverage consumption73-75 gave inconsistent results. In our study, a score reflecting adherence to a dietary pattern characterised by high consumption of vegetables, fruit and wholegrains and low consumption of energy-dense food, red and processed meat and sugar-sweetened and alcoholic drinks reduced the risk of endometrial cancer. Along this line, previous studies found inverse associations with healthy eating behaviours, including the Mediterranean diet76-78 and, more recently, a diet for diabetes prevention79, and direct associations with Western-style dietary patterns79,80.

We followed the standardised scoring system for the operationalization of the WCRF/AICR recommendations developed by a collaborative group including, among the others, researchers from the US National Cancer Institute and WCRF/AICR Continuous Update Project Expert Panel in order to improve comparability and consistency across studies50,51. We were unable to include information on waist circumference in the body fatness recommendation because the self-reported waist circumference measure was not available for 147 cases and 314 controls; we adapted the recommendation on physical activity according to data availability; we used energy density as a proxy for the consumption of fast foods and other processed foods high in fat, starchy or sugars, whose consumption was not specifically collected by the FFQ and we did not consider the optional recommendation on breastfeeding.

Selection bias should be limited in our study, as we excluded from the control group women admitted to hospitals for hormone-related or gynaecologic conditions or any disease leading to long-term modifications in diet. Moreover, a low refusal rate was observed and the recruitment areas were similar for cases and controls. With reference to information bias, it was limited through the direct interview of cases and controls by the same trained interviewers in similar hospital conditions. In addition, we analysed the impact of the adherence to the WCRF/AICR score excluding alternately each recommendation at a time, Italy, 1992–2006.

Table 4. Association between the overall World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) score and endometrial cancer risk in strata of selected covariates, Italy, 1992–2006 (Odds ratios and 95 % confidence intervals)

Strata	Cases:controls	OR* for One-point increment	95% CI	P-interaction
Age				
< 55	126:252	0.89	0.69, 1.15	
55–69	247:494	0.65	0.54, 0.78	
≥ 70	81:162	0.65	0.45, 0.94	0.024
BMI (kg/m2)†				
< 25	126:413	0.80	0.62, 1.04	
25–29.9	160:351	0.93	0.73, 1.20	
≥ 30	168:140	1.13	0.80, 1.59	0.061
Menopausal status				
Pre/Peri	83:174	0.90	0.66, 1.25	
Post	360:726	0.69	0.59, 0.81	0.091
Parity				
0–1	160:276	0.82	0.65, 1.02	
≥ 2	294:632	0.68	0.58, 0.82	0.093
Hormone replacement therapy use				
Never	405:830	0.72	0.63, 0.83	
Ever	49:78	0.77	0.42, 1.42	0.445

* Estimated from logistic regression models conditioned on age and centre and including terms for year of interview, education, smoking, total energy intake, history of diabetes, age at menarche, menopausal status, parity, use of oral contraceptives and hormone replacement therapy. The OR for the score calculated excluding the recommendation of body weight was further adjusted for BMI.
2006 in a population unaware of those recommendations. Weight and height were self-reported, and BMI tended, therefore, to be underestimated, but this is unlikely to be differential between cases and controls. Finally, among limitations, information on grade, stage and possible therapy of cancer cases was not available; however, these factors are unlikely to materially influence diet-related associations. The relatively large sample size, the satisfactory reproducibility(40,47) and validity(40) of the FFQ and the allowance for several potential confounding factors represented the strengths of the study.

In conclusion, in this study higher adherence to the WCRF/AICR recommendations was associated with about 60% reduced risk of endometrial cancer; while body weight had the strongest influence on the risk, a score considering only recommendations related to diet decreased the risk as well. Maintaining a healthy weight throughout life is the key recommendation for the prevention of this neoplasm. Being physically active and follow diet mechanisms: cancer metabolism. In conclusion, in this study higher adherence to the WCRF/AICR guidelines and endometrial cancer prospective investigation into cancer and nutrition. Int J Cancer 121, 547–555.

1. Sung H, Ferlay J, Siegel RL, et al. (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71, 209–249.

2. Lorret-Tieulent J, Ferlay J, Bray F, et al. (2018) International patterns and trends in endometrial cancer incidence, 1978–2013. J Natl Cancer Inst 110, 354–361.

3. Tempfer CB, Hidal Z, Kern P, et al. (2020) Menopausal hormone therapy risk and risk of endometrial cancer: a systematic review. Cancers 12, 2195.

4. Hopkins BD, Goncalves MD & Cantley LC (2016) Obesity and cancer mechanisms: cancer metabolism. J Clin Oncol 34, 4277–4283.

5. Kerr J, Anderson C & Lippman SM (2017) Physical activity, sedentary behaviour, diet, and cancer: an update and emerging new evidence. Lancet Oncol 18, e457–e471.

6. Lauby-Secrétan B, Scucciarini C, Loomis D, et al. (2016) Body fatness and cancer–viewpoint of the IARC working group. N Engl J Med 375, 794–798.

7. Friedenreich C, Cust A, Lahmann PH, et al. (2007) Physical activity and risk of endometrial cancer: the European prospective investigation into cancer and nutrition. Int J Cancer 121, 547–555.

8. Shen D, Mao W, Liu T, et al. (2014) Sedentary behavior and incident cancer: a meta-analysis of prospective studies. PLoS One 9, e105709.

9. Lacey JV Jr, Chia VM, Rush BR, et al. (2012) Incidence rates of endometrial hyperplasia, endometrial cancer and hysterectomy from 1980 to 2003 within a large prepaid health plan. Int J Cancer 131, 1921–1929.

10. Hatami Marbini M, Amini F & Sahaj Radezvez H (2021) Dietary glycemic index, glycemic load, insulin index, insulin load and risk of diabetes-related cancers: a systematic review of cohort studies. Clin Nutr ESPEN 22, 22–31.

11. Turati F, Galeone C, Augustin LSA, et al. (2019) Glycemic index, glycemic load and cancer risk: an updated meta-analysis. Nutrients 11, 2342.

12. Rosato V, Negri E, Parazzini F, et al. (2018) Processed meat and selected hormone-related cancers. Nutrition 49, 17–23.

13. Farvid MS, Sidhamed E, Spence ND, et al. (2021) Consumption of red meat and processed meat and cancer incidence: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol 36, 937–951.

14. Dunneram Y, Greenwood DC & Cade JE (2019) Diet and risk of breast, endometrial and ovarian cancer: UK women’s cohort study. Br J Nutr 122, 564–574.

15. Lukic M, Guha N, Lica J, et al. (2018) Coffee drinking and the risk of endometrial cancer: an updated meta-analysis of observational studies. Nutr Cancer 70, 513–528.

16. Di Maso M, Boffetta P, Negri E, et al. (2021) Caffeinated coffee consumption and health outcomes in the US population: a dose-response meta-analysis and estimation of disease cases and deaths avoided. Ado Nutr 11, 1160–1176.

17. Bravi F, Scotti L, Bosetti C, et al. (2009) Coffee drinking and endometrial cancer risk: a metaanalysis of observational studies. Am J Obstetrics Gynecology 200, 130–135.

18. Chen K, Zhao Q, Li X, et al. (2018) Dietary fiber intake and endometrial cancer risk: a systematic review and meta-analysis. Nutrients 10, 945.

19. Li H, Mao H, Yu Y, et al. (2020) Association between dietary fiber and endometrial cancer: a meta-analysis. Nutr Cancer 72, 959–967.

20. Bandera EV, Kushi LH, Moore DF, et al. (2007) Fruits and vegetables and endometrial cancer risk: a systematic literature review and meta-analysis. Nutr Cancer 58, 6–21.

21. Bravi F, Scotti L, Bosetti C, et al. (2009) Food groups and endometrial cancer risk: a case-control study from Italy. Am J Obstet Gynecol 200, 293.e291–297.

22. Turati F, Rossi M, Pelucchi C, et al. (2015) Fruit and vegetables and cancer risk: a review of southern European studies. Br J Nutr 113, S102–110.

23. Briel RK, Czimzadi I, Cook LS, et al. (2011) Risk of endometrial cancer in relation to individual nutrients from diet and supplements. Public Health Nutr 14, 1948–1960.

24. Wiseman M (2008) The second World Cancer Research Fund/American Institute for Cancer Research expert report. food, nutrition, physical activity, and the prevention of cancer: a global perspective. Proc Nutr Soc 67, 253–256.

25. Clinton SK, Giovannucci EL & Hursting SD (2020) The World Cancer Research Fund/American Institute for Cancer Research third expert report on diet, nutrition, physical activity, and cancer: impact and future directions. J Nutr 150, 663–671.

26. Vergnaud AC, Romaguela D, Peeters PH, et al. (2013) Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation
30. Kaledkiewicz E & Szostak-Wegierek D (2019) Current and past adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations in survivors of breast cancer. Rocz Panstw Zakl Hig 70, 295–305.
32. Barrios-Rodriguez R, Toledo E, Martinez-Gonzalez MA, et al. (2020) Adherence to the 2018 World Cancer Research Fund/American Institute for Cancer Research recommendations and breast cancer in the SUN project. Nutrients 12, 2076.
33. Petmar J, Smith-Warner SA, Rosner B, et al. (2019) Adherence to the World Cancer Research Fund/American Institute for Cancer Research 2018 recommendations for cancer prevention and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 28, 1469–1479.
34. Onyeghala G, Lintelman AK, Joshi CE, et al. (2020) Adherence to the World Cancer Research Fund/American Institute for Cancer Research cancer prevention guidelines and colorectal cancer incidence among African Americans and whites: the Atherosclerosis Risk in Communities study. Cancer 126, 1041–1050.
35. van Veen MR, Mols F, Bours MJL, et al. (2019) Adherence of the World Cancer Research Fund/American Institute for Cancer Research recommendations for cancer prevention is associated with better health-related quality of life among long-term colorectal cancer survivors: results of the PROFILES registry. Support Care Cancer 27, 4565–4574.
36. El Kinnany K, Kuybrchts I, Kampman E, et al. (2019) Concordance with the World Cancer Research Fund/American Institute for Cancer Research recommendations for cancer prevention and colorectal cancer risk in morocco: a large, population-based case-control study. Int J Cancer 145, 1829–1837.
37. Winkels RM, van Lee L, Beijer S, et al. (2016) Adherence to the World Cancer Research Fund/American Institute for Cancer Research lifestyle recommendations in colorectal cancer survivors: results of the PROFILES registry. Cancer Med 5, 2587–2595.
38. Turati F, Bravi F, Di Maso M, et al. (2017) Adherence to the World Cancer Research Fund/American Institute for Cancer Research recommendations and colorectal cancer risk. Eur J Cancer 85, 86–94.
39. Kenkhuis MF, van der Linden IWA, Breedveld-Peters JLL, et al. (2021) Associations of the dietary World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) recommendations with patient-reported outcomes in colorectal cancer survivors 2–10 years post-diagnosis: a cross-sectional analysis. Br J Nutr 125, 1188–1200.
loss in RENEW study participants: implications for cancer risk reduction. *Gynecol Oncol* **125**, 114–119.

60. Bull FC, Al-Ansari SS, Biddle S, *et al.* (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. *Br J Sports Med* **54**, 1451–1462.

61. Committee PAGA (2018) 2018 Physical Activity Guidelines Advisory Committee Scientific Report. Washington, DC: U.S. Department of Health and Human Services. F4–18.

62. Schmid D, Behrens G, Keimling M, *et al.* (2015) A systematic review and meta-analysis of physical activity and endometrial cancer risk. *Eur J Epidemiol* **30**, 397–412.

63. Saint-Maurice PF, Sampson JN, Michels KA, *et al.* (2021) Physical activity from adolescence through midlife and associations with body mass index and endometrial cancer risk. *JNCI Cancer Spectr* **5**, pkab065.

64. Kaaks R, Lukanova A & Kurzer MS (2002) Obesity, endogenous hormones, and endometrial cancer risk: a synthetic review. *Cancer Epidemiol Biomarkers Prev* **11**, 1531–1543.

65. Mann S, Beedie C, Balducci S, *et al.* (2014) Changes in insulin sensitivity in response to different modalities of exercise: a review of the evidence. *Diabetes Metab Res Rev* **30**, 257–268.

66. Gatti R, De Palo EF, Antonelli G, *et al.* (2012) IGF-I/IGFBP system: metabolism outline and physical exercise. *J Endocrinol Invest* **35**, 699–707.

67. Bruunsgaard H (2005) Physical activity and modulation of systemic low-level inflammation. *J Leukoc Biol* **78**, 819–835.

68. Lampe JW (1999) Health effects of vegetables and fruit: assessing mechanisms of action in human experimental studies. *Am J Clin Nutr* **70**, 475S–490S.

69. Slavin J (2013) Fiber and prebiotics: mechanisms and health benefits. *Nutrients* **5**, 1417–1435.

70. Cross AJ, Leitzmann MF, Gail MH, *et al.* (2007) A prospective study of red and processed meat intake in relation to cancer risk. *PloS Med* **4**, e325.

71. Fedirko V, Jenab M, Rinaldi S, *et al.* (2013) Alcohol drinking and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. *Ann Epidemiol* **23**, 93–98.

72. Turati F, Gallus S, Tavani A, *et al.* (2010) Alcohol and endometrial cancer risk: a case-control study and a meta-analysis. *Cancer Causes Control* **21**, 1285–1296.

73. Arthur RS, Kirsh VA, Mossavar-Rahmani Y, *et al.* (2021) Sugar-containing beverages and their association with risk of breast, endometrial, ovarian and colorectal cancers among Canadian women. *Cancer Epidemiol* **70**, 101855.

74. Inoue-Choi M, Robien K, Mariani A, *et al.* (2013) Sugar-sweetened beverage intake and the risk of type I and type II endometrial cancer among postmenopausal women. *Cancer Epidemiol Biomarkers Prev* **22**, 2384–2394.

75. Filomeno M, Bosetti C, Bidoli E, *et al.* (2015) Mediterranean diet and risk of endometrial cancer: a pooled analysis of three Italian case-control studies. *Br J Cancer* **112**, 1816–1821.

76. Ricceri F, Giraudo MT, Fasanelli F, *et al.* (2017) Diet and endometrial cancer: a focus on the role of fruit and vegetable intake, Mediterranean diet and dietary inflammatory index in the endometrial cancer risk. *BMC Cancer* **17**, 757.

77. Zhang YH, Li Z & Tan MZ (2021) Association between diet quality and risk of ovarian and endometrial cancers: a systematic review of epidemiological studies. *Front Oncol* **11**, 659185.

78. Esposito G, Bravi F, Serraino D, *et al.* (2021) Diabetes risk reduction diet and endometrial cancer risk. *Nutrients* **13**, 2630.

79. Si CJ, Shu L, Zheng PF, *et al.* (2017) Dietary patterns and endometrial cancer: a meta-analysis. *Eur J Cancer Prev* **26**, 336–345.

80. Alizadeh S, Djalalzadeh K, Alizadeh M, *et al.* (2020) The relation of healthy and Western dietary patterns to the risk of endometrial and ovarian cancers: a systematic review and meta-analysis. *Int J Vitam Nutr Res* **90**, 365–375.