Neuroprotective effects of *Paeonia lactiflora* and its active compound paeoniflorin against Aβ_{25-35}-induced neurotoxicity in SH-SY5Y cells

Mi Na Nam¹ · Ji-Hyun Kim¹ · Ah Young Lee²* · Eun Ju Cho¹

Received: 17 February 2021 / Accepted: 2 March 2021 / Published Online: 30 June 2021
© The Korean Society for Applied Biological Chemistry 2021

Abstract Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer’s disease (AD). *Paeonia lactiflora* (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ_{25-35}-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ_{25-35}-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 μg/mL) and PF (1, 5, and 10 μg/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ_{25-35} significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ_{25-35}-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.

Keywords Alzheimer’s disease · Amyloid beta · Neuronal · Paeonia · Paeoniflorin

Introduction

Alzheimer’s disease (AD) is one of the most common causes of dementia in the elderly people, and is characterized by a decline in memory ability. AD is also causing loss of language abnormalities and disturbances of motor function [1,2]. Qiu et al. [3] reported that approximately 20% of the global population aged >60 years are diagnosed with AD. It is estimated that this number will almost double every 20 years and will reach 74.7 million in 2030 and 131.5 million in 2050 [4]. In this respect, the prevention and treatment of the disease have become of vital importance to AD patients in recent years. Although many synthetic chemical treatments have been developed, the treatments are associated with several side effects and there is not yet a definitive cure for AD [5].

The composition of the brain is 10% of neurons responsible for the main functions of the nervous system and 90% of glial cells responsible for maintaining and nourishing the nerve cells. Recent research suggests that neuronal cell damage in the brain of AD patients is associated with free radicals (such as reactive oxygen species [ROS]) [6], oxidative stress [7], inflammation [8], and neurotoxic amyloid beta (Aβ) peptide [9]. In particular, hypothetical deposition of Aβ peptides as a senile plaque is one of the most
well-known pathological hallmarks of memory disturbances and instrumental signs in AD [10,11]. Amyloid precursor protein (APP) can be generated via at least two major proteolytic processing pathways: (A) the non-amyloidogenic, in which γ-secretase cleaves the middle of the Aβ sequence precluding formation of full length Aβ; and (B) the potentially amyloidogenic pathway in which β-secretase cleaves APP, resulting in secretion of soluble APP β (sAPPβ), and a second membrane-bound C-terminal fragment of APP (CTFβ). Further cleavage of CTFβ by γ-secretase generates Aβ [12]. In the normal brain, low levels of Aβ fibrils have various synaptic activities such as neuronal growth [13], synaptogenesis [14], and cell adhesion [15]. However, Aβ-induced oxidative stress and neurotoxicity have been reported to cause neurodegeneration, since Aβ accumulation leads to neuronal lipid peroxidation and DNA oxidation [16]. In addition, high concentrations of Aβ lead to neurotoxicity and result in cell death [17].

Paeonia lactiflora (PL) is a medicinal plant that is cultivated worldwide, including in Korea, China, Japan, and its root has also been used for medicinal purposes in various diseases [18,19]. PL has been reported as a beneficial agent for the treatment of inflammation [20], arthritis [21], and cognitive impairment [22]. Paeoniflorin (PF), the highest contained monoterpenes glycoside in PL, is known to elicit various pharmacological effects such as anti-oxidant [23], anti-inflammatory [24], and neuroprotective effects [25]. However, the protective effects of PL and PF against Aβ toxicity and the underlying mechanisms of APP processing in SH-SYSY neuronal cells have not yet been evaluated. Therefore, we aim to determine whether PL and the active compound, PF, exert neuroprotective effects and affect APP processing in a cellular system.

Materials and Methods

Preparation of samples
PL used in this research was contributed by the Gyeongnam Oriental Anti-aging Institute (Sancheong, Korea). PL was dried by hot air and stored at −5°C until extraction. PL was added to 20 times of purified water and heated for 3 h at 90°C for extraction. The extract is filtered by using No. 2 filter paper (Whatman, Kent, UK) and the purified water was evaporated at 40°C in a refrigerator. PF (purity >98%) were purchased from Cayman Chemical Co. (Ann Arbor, MI, USA). Prior to use, PL and PF were dissolved in dimethyl sulfoxide (DMSO) as the stock solution, and further diluted with Dulbecco’s modified eagle medium (DMEM) for experiment.

Instruments and reagents
DMEM, penicillin/streptomycin, fetal bovine serum (FBS) were supplied from Welgene (Daegu, Korea). 3-(4,5-Dimethylthiazol-2-yl)-2,3-diphenyl tetrazolium bromide (MTT), DMSO and dichlorofluorescin diacetate were purchased from Sigma Chemical Co. (St Louis, MO, USA). Lactate dehydrogenase (LDH) cytotoxicity detection kit was supplied from Takara Bio Co. (Shiga, Japan). Radioimmunoprecipitation assay (RIPA) buffer and 30% acrylamide bis solution were obtained from Elpis Biotech (Dajeon, Korea). Pre-stained protein size marker was obtained from GenDOPOT Inc. (Katy, TX, USA).

Preparation of Aβ25-35
Aβ25-35 peptide (Sigma Chemical Co.) was dissolved in sterile distilled water to achieve a concentration of 1 mM. Aβ25-35 stock solution was incubated to induce aggregation at 37°C for 3 days, and then stored at −20°C until use. For cell experiments, it was further diluted to 25 μM in culture medium.

Cell culture
SH-SYSY cells were obtained from KCLB (Korea Cell Line Bank, Seoul, Korea). The cells were maintained at 37°C in 5% CO2 incubator (Thermo Fisher Scientific Inc., Waltham, MA, USA) with DMEM containing 1% penicillin/streptomycin and 10% FBS. Cells were sub-cultured with 0.05% trypsin-EDTA in phosphate buffered saline (PBS). Cells were divided into the following groups: ‘Normal’ group represents the non-treated cells, ‘Control’ group represents the Aβ25-35-treated cells, ‘PL10’, ‘PL50’, or ‘PL100’ groups represent the three concentrations of Paeonia lactiflora treatment (10, 50, 100 μg/mL) in Aβ25-35-treated cells. ‘PF1’, ‘PF5’, or ‘PF10’ groups represent the three concentrations of paeoniflorin treatment (1, 5, 10 μg/mL) in Aβ25-35-treated cells.

MTT assay
After the cells approached confluence, the cells were seeded at 5 × 104 cells/well into 96-well plate for 24 h incubation. The cells were treated with various concentrations of PL (10, 50, and 100 μg/mL) and PF (1, 5, and 10 μg/mL) for 4 h. After then, the cells were stimulated with 25 μM of Aβ25-35 for 24 h. The MTT solution was added to each 96-well plate and incubated for 4 h at 37°C. After incubation, medium containing MTT was removed. The intracellular formazan product was dissolved in 200 μL of DMSO and absorbance was measured at 540 nm using a microplate reader (Thermo Fisher Scientific) [26].

LDH release assay
The LDH release assay was performed according to the manufacturer’s protocol using LDH cytotoxicity detection kit. When SH-SYSY cells reached 80-90% confluence, the cells were plated in 96-well plate at 5 × 104 cells/well and incubated for 24 h. The cells were pretreated with various concentrations of PL (10, 50, and 100 μg/mL) and PF (1, 5, and 10 μg/mL) for 4 h, and Aβ25-35 (25 μM) was added. After incubation 24 h, the supernatant (100 μL) and reaction mix (100 μL) were added to 96-well plate and incubated for 30 min at room temperature. The absorbance of
each well was read at 490 nm using a microplate reader (Thermo Fisher Scientific) [27].

Reactive oxygen species (ROS) production
The ROS scavenging activity was measured using DCFH-DA [28]. SH-SY5Y cells were seeded at 5×10^4 cells/well in 96-well plate and incubated for 24 h. The cells were pretreated with various concentrations of PL (10, 50, and 100 μg/mL) and PF (1, 5, and 10 μg/mL). After incubating 4 h, the cells were treated with 25 μM of Aβ_{25-35} for 24 h. The cells then incubated with 80 μM DCFH-DA for 30 min at 37°C. DCFH-DA was read by FLUOstar OPTIMA (BMG Labtech., Ortenberg, Germany) at the excitation absorbance of 480 nm and the emission absorbance of 535 nm.

Western Blot Analysis
SH-SY5Y cells were lysed according to the manufacturer’s instructions using RIPA buffer supplemented with 1× protease inhibitor cocktail (Sigma Chemical Co.). Proteins were separated by electrophoresis in a precast 10-13% SDS-PAGE and blotted onto polyvinylidene fluoride (PVDF) membranes (Millipore, Billerica, MA, USA). The PVDF membranes were incubated with 5% skim milk dissolved in PBS-Tween® for 60 min at room temperature. The membrane was incubated overnight at 4°C for 60 min at room temperature. The membrane was incubated overnight at 4°C for 60 min at room temperature. The membrane was incubated with primary antibodies (PS-1; 1:1000, Cell Signaling); presenilin-2 (PS-2; 1:1000, Cell Signaling); CTFβ (1:1000, Sigma Chemical Co.); and β-actin (1:1000, Cell Signaling). The membrane was washed and incubated with the appropriate horseradish peroxidase-conjugated secondary antibodies. Western bands were visualized using a chemiluminescent imaging system (Davinci Chemi, Seoul, Korea).

Statistical analysis
Statistical significance was verified by performing Duncan’s multiple range test using the program IBM SPSS version 23 (IBM Corporation, Armonk, NY, USA). Significance was set at p < 0.05. Results are expressed as mean ± standard deviation (SD).

Results
Effects of PL and PF on cell viability in Aβ_{25-35}-treated SH-SY5Y cells
We evaluated the protective activity of the PL and PF against oxidative stress induced by Aβ_{25-35}. The control group decreased to 41.49% compared to 100% of normal group, however cell viability was increased to 51.79% and 51.58%, in the presence of PL 100 μg/mL and PF 10 μg/mL, respectively (Fig. 1). This result suggests that PL and PF have the neuroprotective effect from Aβ_{25-35}-induced cell damage.

Effects of PL and PF on LDH release in Aβ_{25-35}-treated SH-SY5Y cells
When SH-SY5Y cells were exposed to 25 μM Aβ_{25-35} aggregates for 24 h, LDH release was increased from 92.53 to 100%. However, treatment with PL and PF reduced the LDH release in a concentration-dependent manner as illustrated in Fig. 2. In particular, at PL concentration of 100 μg/mL, LDH release was reduced as much as normal group (92.21%), showing that PF
protected neuronal cells from Aβ_{25-35} aggregates-induced neurotoxicity.

Effects of PL and PF on ROS production in Aβ_{25-35}-treated SH-SY5Y cells

We examined whether PL and PF inhibited ROS production induced by Aβ_{25-35} in SH-SY5Y cells. Fig. 3A and Fig. 3B show that the treatment of SH-SY5Y cells with Aβ_{25-35} significantly increased ROS levels in a time-dependent manner. As compared to control group (100%), the treatment with PL (100 μg/mL) and PF (10 μg/mL) significantly inhibited the excessive ROS production, by decreasing it to 91.75 and 91.71%, respectively. These results demonstrate that PL and PF were able to diminish oxidative stress by inhibiting ROS production (Fig. 3C), indicating that PL and PF have protective effect against Aβ_{25-35}-induced oxidative damage.

Effects of PL and PF on amyloidogenic pathway in Aβ_{25-35}-treated SH-SY5Y cells

We investigated the effect of PL and PF on the amyloidogenic pathway in SH-SY5Y cells by using the Western blotting. Our results showed that SH-SY5Y cells treated with Aβ_{25-35} increased BACE (Fig. 4A), CTFβ (Fig. 4B), PS-1 (Fig. 4C), and PS-2 (Fig. 4D) protein expression levels. However, the results indicated that the expression of these proteins was significantly inhibited after PL and PF treatment, compared with the Aβ_{25-35}-treated control group (Fig. 4). In particular, treatment of PF (5 and 10 μg/mL) significantly down-regulated the protein levels of CTFβ. Moreover, treatment of 10 μg/mL PF showed remarkable decrease in PS-1 protein expression compared with control group. These findings suggest that the inhibition of the amyloidogenic pathway in response to PF may provide the protective effect against Aβ neurotoxicity.

Results and Discussion

The Aβ peptide is a 38- to 48-amino acid residue peptide generated from APP (695- to 770-amino acids) cleaved by β-secretase and γ-secretase [29]. Overproduction of toxic Aβ leads to synaptic dysfunction and neuronal loss in the brain [30,31]. Several pieces of evidence demonstrated that accumulation of Aβ in the brain took an important role in oxidative stress causing the neuronal cell death [32]. Accumulation of oxidative stress in the brain of AD patients results in protein oxidation, lipid peroxidation, and free radical formation, which lead to cognitive impairment with memory and language dysfunction [7]. Here, we investigated protective effects of PL and PF against Aβ_{25-35}-induced neuronal apoptosis in SH-SY5Y cells.

A water/ethanol extract of PL is known as total glucosides of
Fig. 4 Effects of PL and PF on the levels of BACE (A), CTF-β (B), PS-1 (C), and PS-2 (D) protein expression in Aβ\textsubscript{25-35}-treated SH-SY5Y cells. Values are mean ± SD; Means with the different letters are significantly different (p < 0.05) by Duncan’s multiple range test. β-actin was used as a loading control. ‘Normal’ group represents the non-treated cells, ‘Control’ group represents the Aβ\textsubscript{25-35}-treated cells, ‘PL10’, ‘PL50’, or ‘PL100’ groups represent the three concentrations of *Paeonia lactiflora* treatment (10, 50, 100 μg/mL) in Aβ\textsubscript{25-35}-treated cells. ‘PF1’, ‘PF5’, or ‘PF10’ groups represent the three concentrations of paeoniflorin treatment (1, 5, 10 μg/mL) in Aβ\textsubscript{25-35}-treated cells.
peony (TGP), which contains more than 15 components, including PF, albiflorin, and benzoxylpeacontiflorin, etc. Among them, PF is most abundant compound and accounts for over 90% of TGP, thus concentration of PF is used for standardization of dose of PL [33]. The content of PF in PL is reported to possess ranging from 0.16 to 6.91% [34,35]. Based on these studies, we decided to use the concentration range 10-100 μg/mL of PL and 1-10 μg/mL of PF, respectively.

SH-SY5Y cell is considered as a widely used model system in neuronal research, hence its high sensitivity to environmental stimulation and importance for functional biomaterial [36,37]. In the SH-SY5Y cells, the treatment of Aβ25-35 group showed neuronal cell loss, whereas PL- and PF-treated groups significantly elevated the neuronal cell viability. This protective effect of PL and PF was also distinguished by LDH assay. LDH could be released when cell membrane permeability was increased in damaged cell. In addition, a study reported that the Aβ25-35 peptide was related to increase of LDH release [38]. As shown by our results, there is decreased LDH release at the treatment of PL and PF in Aβ25-35-treated SH-SY5Y cells. Furthermore, we also investigated ROS production. From our data, the treatment with Aβ25-35 in SH-SY5Y cells significantly increased ROS production compared with normal group, whereas the treatment of PL and PF significantly inhibited in ROS production. Butterfield et al. [39] demonstrated that neurotoxic Aβ25-35 is mediated an oxidative stress in neuronal cells, and these toxic fibrils can be attenuated by antioxidants and free radical scavengers [40]. PL has been used to treat dementia [41] and was known for neuroprotective effect of PL and PF is reported ranging from 0.16 to 6.91% [34,35]. Based on these studies, we decided to use the concentration range 10-100 μg/mL of PL and 1-10 μg/mL of PF, respectively.

To maintain the homeostasis in the body, APP is divided into two different pathways, named amyloidogenic pathway and non-amyloidogenic pathway. The APP clearance (non-amyloidogenic pathway) started with sequential degrade of full-length APP, is cleaved by α-secretase and generates non-toxic sAPPα and CTFα [46]. In contrast, Aβ accumulation (amyloidogenic pathway) is occurred with cleavage of the large molecular APP by β- and γ-secretase, sequentially. A major β-secretase in the brain, BACE, produces sAPPβ and CTFβ [47]. Next, γ-secretase, which consisting of four components that is PS-1, PS-2, nicastrin, and anterior pharynx-defective-1, produces Aβ and amino-terminal APP intracellular domain from CTFβ [48,49]. Toxic Aβ oligomers and fibrils generated through the APP processing lead to the overproduction of ROS and NO. As a result, these oxidative stress and neurotoxicity can damage to DNA, leading to neuronal cell loss [50]. Thus, regulating of these APP processing may be promising interventions in treatment of AD. In this regard, the inhibitory effect of PL and PF on amyloidogenic pathway was analyzed by Western blotting. Our results determined that PL and PF inactivate the amyloidogenic pathway by down-regulation of BACE, CTFβ, PS-1, and PS-2 protein expressions. Especially, PF strongly decreased in levels of CTFβ and PS-1 protein. CTFβ is further cleaved by γ-secretase to generate Aβ, and the overproduction of CTFβ took a crucial role in AD [51,52]. Additionally, several researchers reported that increasing levels of CTFβ can induce AD-like endosome dysfunction in various cell lines and mouse cortical neurons [53,54]. PS proteins are famous for the key enzymes in central hypothesis for the cause of AD due to its constituting the active site in γ-secretase [55]. Plus, PS-1 is involved in APP processing in neuronal cultures derived from PS-1-deficient mouse embryos, and this protein appears to facilitate a proteolytic activity that cleaves the integral membrane domain of APP [56]. Borchelt et al. [57] demonstrated that one pathogenic mechanism by which PS-1 causes AD is to accelerate the rate of Aβ deposition in the brain of transgenic mice. Also, they proved that lack of PS-1 showed a marked (70-80%) decrease of Aβ and their precursor protein, CTFβ. In our results, PL and PF, especially PF, significantly diminished the PS-1 protein as much as normal cells, and decreased CTFβ production. Therefore, our results suggest that protective effect of PL and PF on cell viability, LDH, and ROS production was correlated with regulation of amyloidogenic signaling pathway, particularly, PF inactivates the γ-secretase by downregulating the PS-1 protein and thereby decreasing the production of CTFβ. In summary, our results showed that PL- and PF-treated SH-SY5Y neuronal cells increase in cell viability, and decrease in LDH release as well as ROS production. In addition, PL and PF significantly down-regulated BACE, CTFβ, PS-1, and -2 protein expressions. Especially, the treatment of PF showed tendency of decrease of CTFβ production by inhibition of BACE. Moreover, PF inhibited PS-1 protein expression, which constitutes the γ-secretase that initiates the final step of Aβ production. These present findings indicate protective effects of PL and PF on oxidative stress and amyloidogenic pathway against Aβ deposition in the brain of transgenic mice. Also, they proved that lack of PS-1 showed a marked (70-80%) decrease of Aβ and their precursor protein, CTFβ. In conclusion, the results indicate that PF, an active compound of PL, may contribute to prevention and treatment of neurodegenerative diseases, especially AD.

Acknowledgments This work was supported by the research invigoration program of 2020 Gyeongnam National University of Science and Technology.

References
1. Piaceri I, Rinnoci V, Bagnoli S, Failli Y, Sorbi S (2012) Mitochondria and Alzheimer’s disease. J Neurol Sci 322: 31–34. doi: 10.1016/ j.jns.2012.05.033
2. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapies. Annu Rev Pharmacol Toxicol 43: 545–584. doi: 10.1146/annurev.pharmtox.43.100901.140248
3. Qiu C, Kivipelto M, von Strauss E (2009) Epidemiology of Alzheimer’s disease: occurrence, determinants, and strategies toward intervention. Dialogues Clin Neurosci 11: 111–128. doi: 10.31887/DCNS.2009.11.2/5cu
4. Prince M, Wimo A, Guerchet M, Ali GC, Wu YT, Prina M (2015) World
Alzheimer Report: The Global Impact of Dementia. Alzheimer’s Disease International (ADI), London.

5. Hansen RA, Gartlehner G, Webb AP, Morgan LC, Moore CG, Jonas DE (2008) Efficacy and safety of donepezil, galantamine, and rivastigmine for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Clin Interv Aging 3: 211–225.

6. Beal MF (1996) Mitochondria, free radicals, and neurodegeneration. Curr Opin Neurobiol 6: 661–666. doi: 10.1016/s0959-4388(96)80100-0.

7. Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Rad Biol Med 23: 134–147. doi: 10.1016/s0891-5849(96)00629-6.

8. Holmes C, Cunningham C, Zotova E, Woolford J, Dean C, Kerr S, Cullford D, Perry VH (2009) Systemic inflammation and disease progression in Alzheimer disease. Neurology 73: 768–774. doi: 10.1212/WNL.0b013e3181b6bb95.

9. Pettenmann B, Henderson CE (1998) Neuronal cell death. Neuron 20: 633–647.

10. Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9: 387–398. doi: 10.1038/nrd3386.

11. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368: 387–403.

12. Portelius E, Gustavsson MK, Zetterberg H, Andreasson U, Blennow K (2012) Evaluation of the performance of novel Aβ isoforms as theragnostic markers in Alzheimer’s disease: from the cell to the patient. Neurodegener Dis 10: 138–140. doi: 10.1159/000334537.

13. Luo Y, Sunderland T, Roth GS, Wolozin B (1996) Physiological levels of beta-amyloid peptide promote PC12 cell proliferation. Neurosci Lett 217: 125–128.

14. Moya KL, Benowitz LI, Schneider GE, Allinquant B (1994) The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Dev Biol 161: 597–603. doi: 10.1006/dbio.1994.1055.

15. Mileusnic R, Lancashire CI, Johnston AN, Rose SP (2000) APP is required during an early phase of memory formation. Eur J Neurosci 12: 4487–4495.

16. Butterfield DA, Lauderback CM (2002) Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32: 1050–1060. doi: 10.1016/s0891-5849(01)00433-2.

17. Jellinger KA (2006) Challenges in neuronal apoptosis. Curr Alzheimer Res 3: 377–391. doi: 10.2174/1567205067724934.

18. Zhu L, Wei W, Zheng YQ, Jia XY (2008) Paeoniflorin suppresses inflammatory mediator production and regulates G protein-coupled signaling in fibroblast-like synoviocytes from collagen induced arthritic rats. Inflamm Res 57: 388–395. doi: 10.1007/s00011-007-7240-x.

19. Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ (2006) Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 148: 314–325. doi: 10.1038/bj.2006.737.

20. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63. doi: 10.1016/0022-1759(83)90303-4.

21. Racher AJ, Looby D, Griffiths JB (1990) Use of lactate dehydrogenase release to assess changes in culture viability. Cytotechnology 3: 301–307. doi: 10.1007/BF00365494.

22. Cathcart R, Schwiers E, Ames BN (1983) Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134: 111–116. doi: 10.1016/0003-9861(83)90270-1.

23. Price DL, Sisodia SS, Gandy SE (1995) Amyloid beta amyloidosis in Alzheimer’s disease. Curr Opin Neurol 8: 268–274. doi: 10.1097/00019052-199508000-00004.

24. Shanker GM, Walsh DM (2009) Alzheimer’s disease: synaptic dysfunction and Aβ. Mol Neurodegener 4: 48. doi: 10.1186/1750-1326-4-48.

25. Selkoe DJ (1998) The cell biology of β-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 8: 447–453. doi: 10.1016/s0962-9884(98)01363-4.

26. Loo DT, Copani A, Pike CJ, Whittemore ER, Walencewicz AJ, Cotman CW (1993) Apotosis is induced by β-amyloid in cultured central nervous system neurons. Proc Natl Acad Sci USA 90: 7951–7955. doi: 10.1073/pnas.90.17.7951.

27. Zhang X, Wang G, Li X (2001) A study on the chemical constituents of Paeonia lactiflora Pall. Shengyang Yao Ke Da Xue Xue Bao 18: 30–32 [in Chinese].

28. Deng JL, Lei YH, Chiu TF, Qi M, Gan H, Zhang G, Peng ZD, Zhang DM, Chen YF, Chen JX (2019) The anticancer effects of paeoniflorin and its underlying mechanisms. Nat Prod Commun 14: 1–8. doi: 10.1177/1934575819876409.

29. Li X, De Sarno P, Song L, Beckman JS, Jope RS (1998) Peroxynitrite modulates tyrosine phosphorylation phosphoinositide signalling in human neuroblastoma SH-SY5Y cells: attenuated effects in human 1321N1 astrocytoma cells. Biochem J 331: 599–606. doi: 10.1042/bj331059.

30. Yamamoto T, Maruyama W, Kato Y, Yi H, Shimoto-Nagai M, Tanaka Sato Y, Naso M (2002) Selective nitration of mitochondrial complex I by peroxynitrite: involvement in mitochondria dysfunction cell death of dopaminergic SH-SY5Y cells. J Neurotransm 109: 1–13. doi: 10.1007/s00722-002-8232-1.

31. Preston JE, Higkiss AR, Hinowsorth DT, Romero JA, Abbott JN (1998) Toxic effects of β-amyloid (25–35) on immortalised rat brain endothelial cell: protection by carnosine, homocarnosine and β-alanine. Neurosci Lett 242: 105–108. doi: 10.1016/S0304-3940(98)00058-5.

32. Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 7: 548–554. doi: 10.1016/s1471-4914(01)02173-6.

33. Xiao X, Zhang H, Tang X (2002) Huperzine A attenuates amyloid beta-peptide fragment 25-35-induced apoptosis in rat cortical neurons via inhibiting reactive oxygen species formation and caspase-3 activation. J Neurosci Res 67: 30–36. doi: 10.1002/jnr.10075.

34. Zheng Q, Li L, Jin Y Chen Z, Duan L, Cao M, Ma M, Wu Z (2019) A network pharmacology approach to reveal the underlying mechanisms of Paeonia lactiflora Pall. On the treatment of Alzheimer’s disease. Evid Based Complement Alternat Med 2019: 1–8. doi: 10.1155/2019/5194862.
Kim SH, Lee MK, Lee KY, Sung SH, Kim J, Kim YC (2009) Chemical constituents isolated from Paeonia lactiflora roots and their neuroprotective activity against oxidative stress in vitro. J Enzyme Inhib Med Chem 24: 1138–1140. doi: 10.1080/14756360802667977

Li CR, Zhou Z, Zhu D, Sun YN, Dai JM, Wang SQ (2007) Protective effect of paeoniflorin on irradiation-induced cell damage involved in modulation of reactive oxygen species and the mitogen-activated protein kinases. Int J Biochem Cell Biol 39: 426–438. doi: 10.1016/j.biocel.2006.09.011

Fan X, Wu J, Yang H, Yan L, Wang S (2018) Paeoniflorin blocks the proliferation of vascular smooth muscle cells induced by platelet-derived growth factor-BB through ROS mediated ERK1/2 and p38 signaling pathways. Mol Med Rep 17: 1676–1682. doi: 10.3892/mmr.2017.8093

Wankun X, Wenzhen Y, Min Z, Weiyan Z, Huan C, Wei D, Xiaoxin L (2011) Protective effect of paeoniflorin against oxidative stress in human retinal pigment epithelium in vitro. Mol Vis 17: 3512–3522

O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34: 185–204. doi: 10.1146/annurev-neuro-061010-113613

Vassar R, Kandalepas PC (2011) The β-secretase enzyme BACE1 as a therapeutic target for Alzheimer’s disease. Alzheimers Res Ther 3: 20. doi: 10.1186/alzther.2011.10

Gandy S (2005) The role of cerebral amyloid β accumulation in common forms of Alzheimer disease. J Clin Invest 115: 1121–1129. doi: 10.1172/JCI25100

Li T, Wen H, Brayton C, Laird FM, Ma G, Peng S, Plascanica L, Wu TC, Crain BJ, Price DL, Eberhart CG, Wong PC (2007) Moderate reduction of gamma-secretase attenuates amyloid burden and limits mechanism-based liabilities. J Neurosci 27: 10849–10859. doi: 10.1523/JNEUROSCI.2152-07.2007

Chakraborti S, Sinha M, G. Thakurta I, Banerjee P, Chattopadhyay M (2013) Oxidative stress and amyloid beta toxicity in Alzheimer’s disease: Intervention in a complex relationship by antioxidants. Curr Med Chem 20: 4648–4664. doi: 10.2174/092986731320990152

Yankner, BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 245: 417–420. doi: 10.1126/science.2474201

Oster-Granite ML, McPhie DL, Greenan J, Neve RL (1996) Age-dependent neuronal and synaptic degeneration in mice transgenic for the C terminus of the amyloid precursor protein. J Neurosci 16: 6732–6741. doi: 10.1523/JNEUROSCI.16-21-06732.1996

Jiang Y, Mullaney KA, Peterhoff CM, Che S, Schmidt SD, Boyer-Boiteau A, Ginsberg GD, Cataldo AM, Matthews PM, Nixon RA (2010) Alzheimer’s-related endosome dysfunction in Down syndrome is Aβ-independent but requires APP and is reversed by BACE-1 inhibition. Proc Natl Acad Sci USA 107: 1630–1635. doi: 10.1073/pnas.090895107

Kim S, Sato Y, Mohan PS, Peterhoff C, Penasalfini A, Riggiosi A, Jiang Y, Nixon RA (2016) Evidence that the rab5 effector APPL1 mediates APP-βCTF-induced dysfunction of endosomes in Down syndrome and Alzheimer’s disease. Mol Psychiatry 21: 707–716

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s diseases: progress and problems on the road to therapeutics. Science 297: 353–356. doi: 10.1126/science.1072994

De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Ghebete G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390. doi: 10.1038/34910

Borchelt DR, Ratovitski T, Van Lare J, Lee MK, Gonzales V, Jenkins NA, Copeland NG, Price DL, Sisodia SS (1997) Accelerated amyloid deposition in the brains of transgenic mice coexpressing mutant presenilin 1 and amyloid precursor proteins. Neuron 19: 939–945. doi: 10.1016/s0896-6273(00)80974-5