Absence of Anaplasmataceae DNA in Wild Birds and Bats from a Flooded Area in the Brazilian Northern Pantanal

Luana Gabriela Ferreira dos Santos1, Tatiana Ometto2, Jansen de Araújo2, Luciano Matsumya Thomazelli2, Leticia Pinto Borges1, Dirceu Guilherme Ramos2, Edison Luís Durigon3, Joao Batista Pinho4 and Daniel Moura de Aguiar*1

1Laboratório de Virologia e Rickettsioses, Hospital Veterinário, Universidade Federal de Mato Grosso, Brazil
2Laboratório de Virologia Clínica e Molecular NB3+, Departamento de Microbiologia, Instituto de Ciências Biomédicas II, Universidade de Sao Paulo, Brazil
3Laboratório de Parasitologia e Doenças Parasitárias, Hospital Veterinário, Universidade Federal de Mato Grosso, Brazil
4Laboratório de Ecologia de Aves, Instituto de Biociências, Universidade Federal de Mato Grosso, Brazil

Abstract

Birds and bats can be considered potential transmitters of some tick-borne diseases, since eventually they carry infected ticks in areas where transit. Pantanal ecosystem is the largest tropical wetland area of the world with more than 582 recorded avian species, contributing to the maintenance of different tick species. The aim of this study was to examine altogether 152 blood samples of several bird and bat species collected in a large flooded area of Pantanal for the presence of genera *Ehrlichia*, *Anaplasma* and *Neorickettsia*. None PCR product was obtained, what suggest that wild, domestic birds and bats from Pantanal region are unlikely to play a significant role in the maintenance of tick-borne agents and DNA survey from this species in birds may not be a reliable indicator of exposure.

Keywords: Tick-borne disease; Anaplasmataceae; Fowl; Poconé; Brazil

Introduction

Birds and bats can act as reservoirs of several pathogens including those transmitted by ticks and flies. Some infections can be transmitted by trematode-vectors, which use freshwater snails and aquatic insects as intermediate hosts and insectivorous birds and bats as definitive hosts. They also can be considered as potential transmitters of some tick-borne diseases, mainly due to its migratory character, since eventually they carry the infected ticks in areas where transit. Agents that stand out are the bacteria from Anaplasmataceae family that already have been widely associated with disease in humans and animals, with cycle involving invertebrate vectors. Pathogens such as *Ehrlichia*, *Anaplasma* and *Neorickettsia* are being increasingly recognized around the world in order to elucidate the importance of its infections and ability to cause illness in animals and/or human beings [1-4].

Anaplasmataceae agents comprise obligate intracellular bacteria that can cause disease in humans and animals, whose cycle in the environment involves complex interactions between invertebrate vectors and vertebrate hosts [5]. There is ecological evidence that passerine birds, at least in principle, could be competent reservoirs for *A. phagocytophilum* as many avian species host larval and nymphal *I. scapularis* ticks [6,7]. Exposure of passerines to *A. phagocytophilum*-infected nymphs has been demonstrated [8], including infected larvae found attached to an American robin (*Turdus migratorius*) and a veery (*Catharus fuscescens*) [9]. However, direct evidence demonstrating birds as competent reservoirs of members from the family Anaplasmataceae are still scarce.

For instance in Brazil, Machado et al. [1] was the only one that reported molecular detection of *A. phagocytophilum* in carnivorous and migratory birds. Additionally they also reported for the first time DNA of *E. chaffeensis* and an *Ehrlichia* species, phylogenetically related to *E. canis* in birds sampled in Mato Grosso and Sao Paulo state.

Neorickettsia risticii (formerly *Ehrlichia risticii*) belongs to the Anaplasmataceae family and is the causative agent of Potomac Horse Fever (also known as Equine Monocytic Ehrlichiosis- EME), a severe febrile disease affecting horses, typically found in endemic countries during the warmest months. In the environment, *N. risticii* infects trematodes from the genus *Acanthatrium* and *Lechitodendrium*. The lifecycles of these trematodes are not very clear, both are known to involve several stages that range from free-living cercaria to forms that infect invertebrates such as the miracidia and sporocysts (that infect freshwater snails) and the metacercaria (that infect aquatic insects) [10].

In enzootic areas of USA, a common pleurocercoid snail, *Juga yrekaensis* is suspected to be involved in the life cycle of *N. risticii* [11]. Additionally, DNA from *N. risticii* has been detected in virgulate cercariae in limpneaid snails (*Stagnicola* spp.) in virgulate xiphidiocercariae isolated from pleurocercoid snails *Elmina livescens* and *Elmina virginica*, indicating that other species of freshwater snails may also harbor infected trematodes [12,13]. Adult forms of these trematodes develop in the intestine of insectivorous vertebrates such as bats and birds, therefore it has been suggested that certain species of bats and birds (swallows) may act as wild reservoirs of *N. risticii* [14,15]. Recently, molecular detection of *N. risticii* in bats of the species *Tadarida brasiliensis* was reported in Argentina [16].

In Brazil, spontaneous outbreaks of equine monocytic Ehrlichiosis (EME) were described in south region [17-19]. In Rio Grande do Sul state, snails from the genus *Helobia*, harboring *Parapleurolophocercus*...
cercarie, have been identified as carriers of *N. risticii* [18]. Three species are extremely abundant both in permanent streams and small rivers and on temporarily flooded areas of the Pantanal, namely *Marisa planogyra*, *Pomacea linearis* and *Pomacea scalaris* [20]. Apple snails *Pomacea lineata* are widespread in the tropical regions of Brazil as well as in the Pantanal wetland of Mato Grosso in the western part of the country. This species serve as food for many animals, mainly birds, fishes and caimans [21].

The Pantanal ecosystem is the largest tropical wetland area of the world, situated among two Brazilian states (Mato Grosso and Mato Grosso do Sul) and in portions of Bolivia and Paraguay. The Pantanal is characterized by an immense diversity, where more than 80 species of mammals [22] and 582 avian species, contributing to the maintenance of different tick species have already been recorded [23-25]. Furthermore, the aquatic environment can favor the establishment of different species of trematodes, metacercarias and snails which jointly with birds and bats support the occurrence of *N. risticii* in the area. Nevertheless, the role of birds and bats in the epidemiology of tick- and water-borne diseases has been poorly studied, and the connection between birds, dispersal of infected ticks, rickettsial agents and zoonosis outbreaks need to be clarified. The aim of this study was to evaluate blood samples of several birds and bats species collected in the northern Brazilian Pantanal for the presence of members from genera *Ehrlichia*, *Anaplasma* and *Neorickettsia*.

Materials and Methods

Samples of whole blood stored in cryopreserved bank were evaluated. Blood samples were collected in the Pocono municipality at the locality called Pirizal (16°15’12”S 56°22’12”W; Figure 1) during November 2012, totaling 152 samples from domestic and wild birds and bats. Regarding tick infestation, no information was obtained from the samples studied. Blood samples were subjected to DNA extraction protocol [26] using guanidine thiocyanate and DNA samples were tested individually for detection of *Ehrlichia* spp., *Anaplasma* spp. and *N. risticii*, according to the protocols described in Table 1.

All products obtained in the reactions were subjected to gel electrophoresis in horizontal 1.5% agarose gel stained with ethidium bromide (0.5 mL/ml - Invitrogen®) and 1X TBE running buffer pH 8.0 (44.58 M Tris-base, 0.44 M boric acid, 12.49 mM EDTA) to 110v/50mA with subsequent visualization under ultraviolet light (UV) in a darkroom. In order to prevent PCR contamination, DNA extraction, reaction set-up, PCR amplification and electrophoresis were performed in separate rooms. DNA of São Paulo strain of *E. canis*, *A. platys* from dog blood diagnosed with anaplasmosis and strain Illinois of *N. risticii* gently provide by Dr. S. Dumler was used as positive control in all reaction. Samples were collected under license granted by the Authorization System and Biodiversity Information - SISBIO number 33602-1.

Results and Discussion

One hundred and sixteen species of wild birds were captured and characterized [27-30]. Thirteen domestic fowl (*Gallus gallus*) were also evaluated, although there are no previous reports of Anaplasmataceae pathogens in this avian species. In addition, twenty-three blood samples were collected in the Pocone municipality at the locality called Pirizal (16°15’12”S 56°22’12”W; Figure 1) during November 2012, totaling 152 samples from domestic and wild birds and bats. Regarding tick infestation, no information was obtained from the samples studied. Blood samples were subjected to DNA extraction protocol [26] using guanidine thiocyanate and DNA samples were tested individually for detection of *Ehrlichia* spp., *Anaplasma* spp. and *N. risticii*, according to the protocols described in Table 1.

![Figure 1: Collection points at Pocono municipality, Pirizal region. November 2012.](image-url)
samples from nectar-feeding bat *Glossophaga soricina* (Phyllostomidae) [31] were collected. All wild birds collected and their main features are shown in the Table 2.

Wild birds may play a role as carriers of Anaplasmataceae agents in Brazil as previously described by Machado et al. [1], therefore the choice of collection points were intended to catch birds in different

Table 2: Primers and protocols used in the study of *Ehrlichia* spp., *Anaplasma* spp. and *Neorickettsia risticii* in birds and bats from the northern Brazilian pantanal.

Family	Nomenclature	Common name	Feeding	Character	N*
Columbidae	Columbina picul	Roliha-picuí	Granivorous and Frugivorous	Residents	2
	Patagioenas cayennensis	Pomba-galega	Granivorous and Frugivorous	Residents	1
Corvidae	Cyanocorax cyanomelas	Grahia-do-Pantanal	Omnivorous	Residents	1
Cuculidae	Coccyzus euleri	Papa-lagarta-de-euler	Insectivorous	INTRA	1
Dendrocolaptidae	Dendroplex picus	Arapaçu-de-bico-branco	Insectivorous	Residents	1
Emberizidae	Volatinia jacarina	Tuiu (Esporofilo)	Granivorous	INTRA	1
	Sporoptila caereaescens	Coleirinho	Granivorous	INTRA	1
	Sporoptila angolensis	Curió	Granivorous	INTRA	1
Furnariidae	Furnarius rufus	João-de-barro	Insectivorous	Residents	14
	Certhiaxis cinnomeus	Curuté	Insectivorous	Residents	5
	Cranioleuca vulpinio	Arredio-do-rio	Insectivorous	Residents	8
	Synallaxis alborea	João-do-pantanal	Insectivorous	Residents	8
Galbulidae	Galbula ruficauda	Ariramba-de-cauda-ruiva	Insectivorous	Residents	1
Icteridae	Cacicus cela	Xexeu (guaxo amarelo)	Omnivorous	Residents	2
	Ageiaoides badus	Asa-de-teilha	Frugivorous	Residents	4
Parulidae	Basiloreutus flaviceps	Canário-do-mato	Insectivorous	Residents	2
Passeridae	Gallus gallus	Galinha	Omnivorous	Residents	13
Picidae	Veniliornis passerinus	Picapauzinho-anão	Insectivorous	Residents	5
	Picumnus albosquamatus	Pica-pau-anão-escamado	Insectivorous	Residents	5
Pipridae	Antilophia galeata	Soldadinho	Frugivorous	Residents	8
	Neopelma palleces	Fruxo-do-cerradão	Frugivorous	Residents	8
Polioptilidae	Polioptila dumicola	Balança-rabo-de-máscara	Insectivorous	Residents	2
Rhynchocyclidae	Todirostrum cinereum	Ferreinho-relógio	Insectivorous	Residents	12
	Herpatolochmus longirostris	Chorozinho-de-bico-comprido	Insectivorous	Residents	12
	Poecilotriccus latistrix	Ferreinho-de-cara-parda	Omnivorous	Residents	12
	Hemitruculus margaritaeveintert	Olho-de-ouro	Insectivorous	Residents	12
Thamnophilidae	Cercocoma melanaria	Chororó-do-pantanal	Insectivorous	Residents	7
	Thamnophilus pelzeini	Chocha-do-planalto	Insectivorous	Residents	7
Thraupidae	Ramphocelus carbo	Pipa-vermelha	Omnivorous	Residents	21
	Saltator similis	Trinca-ferro	Omnivorous	Residents	21
	Paroaria capitata	Galo-da-campina-pantaneiro	Omnivorous	Residents	21
	Tachyphonus rufus	Pipa-preta	Omnivorous	Residents	21
	Lanio penicillatus	Pipa-da-taoca	Omnivorous	Residents	21
Tityridae	Tityra inquisitor	Anhambé-de-boina	Omnivorous	Residents	1
Turdidae	Turdus rubriventris	Sábiá-laranjeira	Omnivorous	Residents	1
Tyrannidae	Myiarchus tyrannulus	Maria-caveleira-de-rabo-enferrujado	Omnivorous	INTRA	27
	Elaenia chiensis	Guaracava-de-crista-branca	Omnivorous	INTRA	27
	Cinemotriccus fuscatus	Maria-caveleira	Omnivorous	INTRA	27
	Myiarchus ferox	Marluva-de-crista-alaranjada	Omnivorous	INTRA	27
	Myiarchus swainsonii	Myiopagis viridica	Omnivorous	INTRA	27
	Myiarchus vitellinus	Morcego-beija-flor	Nectar-feeding	-	23

* INTRA: Intracontinental migrant southern and northern South America.
N: collected number

Table 1: Family and nomenclature*.

Pathogen	Primer*	Sequence(5’ - 3’)	References
Ehrlichia spp.	dsb 330 (1’)	GATGATGTGGAGATGATSAAAAAAAT	[38]
	dsb 720 (1’+ 2’)	CATTATTTCTTCCTAAACCTTTAATGAT	
	dsb 380 (2’)	ATTTTAGGTTGGCATCCTTTAAG	
Anaplasma spp.	gE3a (1’)	CATGCTGAAGTGGCAGGATTCTTA	[39]
	gE10R (1’)	TCCCAGTTGAGGATGTAATCCTCC	
	gE2 (2’)	GAGCAGTATTTAAAAGCCGCTCCAGG	
	gE1F (2’)	AAGGGATATTCTTCTTAGCTGG	
Neorickettsia risticii	ER3 (1’)	ATTTGAAGTGGCATCCTTG	[40]
	ER2 (1’)	GGTAAAAATGCTAGTTTCATGG	
	ER3a (2’)	CTAGGGTAGGCTTACAC	
	ER2a (2’)	CACACCTAACTACCCGG	

* 1’ = first reaction (PCR), 2’ = second reaction (nPCR)
Machado et al. [1] reported the presence of DNA of *A. phagocytophilaum, E. chaffeensis* and an *Ehrlichia* species closely related to *E. canis* in carnivorous avian blood samples, but ectoparasites were not found parasitizing birds. Furthermore, the positive birds had carnivorous habits while no other one avian family were detected with Anaplasmataceae DNA. These finding infer that the absence of detection of pathogens in our study may be related to the fact that the birds were not able to develop bacteremia or did not have carnivorous habits, probably because feeding habits of birds may imply in differences in the occurrence of infection, once the eating habits can influence the willingness of birds to certain pathogens and these habits can vary widely between birds depending on the region studied [33]. Johnston et al. [4] in an experimental study showed that the American robin (*Turdus migratorius (L.)) are able to infect *I. scapularis* larval feeding ticks without developing bacteremia, specific antibodies or significant illness because of exposure.

Due to the fact of the samples were derived from cryopreserved blood banks, information on tick infestation could not be obtained. Studies regarding Anaplasmataceae agents injection in ticks collected from wild birds has been performed for a better understanding of the dynamics between birds and ticks and there is a concordance between the authors that the involvement of birds in the ecology and epidemiology of tick-borne diseases still unclear [34-37].

Bjoersdorff et al. [2] found a large number of migratory birds infested with *Ehrlichia* positive *I. ricinus* ticks and *Ehrlichia* 16S rRNA nucleotide sequences found in these ticks were identical to the HGE *Ehrlichia* found in humans in Sweden and Slovenia, what suggest that birds may play an important role in the dispersal of *I. ricinus* infected and may contribute to the distribution of granulocytic ehrlichiosis. Besides, none *I. ricinus* larvae infected were observed by Bjoersdorff et al. [2] which may suggest that migratory birds are incompetent reservoirs of *Ehrlichia* spp [38] and act just as long-distance carriers of infected ticks. Transovarial transmission of *Ehrlichia* and *Anaplasma* species [39] has not been demonstrated, so reservoir hosts are necessary to maintain the life cycle in the environment [5].

In the environment, *N. risticii* infects trematodes and adult forms may develop in the intestine of insectivorous vertebrates. Cicitun et al. [16] related the first detection of *N. risticii* in internal organs of insectivorous bats (Brazilian free-tailed bat *Tadarida brasiliensis* from Argentina and associated this species as reservoirs of these pathogens. *G. soricina* bats captured in the Pantanal region are known for nectar-feeding habits, thus this feature impairs contact with infected trematodes and this species may not act as wild reservoirs of *N. risticii*. In view of the potential presence of *N. risticii* [40] especially in the Pantanal area, further studies involving bats species in this region should elucidate the potential involvement in the transmission of this agent in Brazil. Nevertheless a more detailed study should be analyzed as the presence of species of trematodes and snail in the Pantanal, since snails of the genera reported in the Pantanal have been found in properties with the occurrence of EME in other regions of Brazil [18,19].

Our results suggest that wild and domestic birds and bats from Pantanal region are unlikely to play a significant role in the maintenance of Anaplasmataceae agents and DNA survey from this species may not be a reliable indicator of exposure. More studies investigating the ecological factors and ticks burden in avian or bats hosts are needed to improve the understanding on the dynamics of Anaplasmataceae diseases in the relative area. Future efforts should include ticks identification in birds and bats from the Pantanal and experimental evaluations to understand the mechanisms that drives bird exposure risk and susceptibility to ticks and tick-borne diseases.

Acknowledgment

We thank to Rafael W. Wolf for technical support. This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq research grant and scholarship to DMA), Ministério da Educação (MEC scholarships to LGFS), Coordenaço de Aperfeiçoamento de Pessoal de Nível Superior (CAPES graduating scholarships to LPB and DGR), Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP graduating scholarships to TO and JA).

References

1. Machado RZ, André MR, Werther K de Sousa E, Gavioli FA, et al. (2012) Migratory and carnivorous birds in Brazil: reservoirs for Anaplasma and *Ehrlichia* species? *Vector Borne Zoonotic Dis* 12: 705-708.

2. Bjoersdorff A, Bergström S, Massung RF, Haemig PD, Olsen B (2001) *Ehrlichia*-infected ticks on migrating birds. *Emerg Infect Dis* 7: 877-879.

3. Pusterla N, Hagerty D, Mapes S, Vangeem J, Groves LT, et al. (2013) Detection of *Neorickettsia risticii* from various freshwater snail species collected from an irrigation canal in Nevada County, California. *Vet J* 197: 489-491.

4. Johnston E, Tsao J, Muñoz JD, Owen J (2013) Anaplasma phagocytophilum infection in American robins and gray catbirds: an assessment of reservoir competence and disease in captive wildlife. *J Med Entomol* 50: 163-170.

5. Dumer JS, Barbet AF, Bekker CP, Dasch GA, Palmer GH, et al. (2001) Reorganisation of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of *Ehrlichia* with *Anaplasma*, *Cowdria* with *Ehrlichia* and *Neorickettsia*, descriptions of six new species combinations and designation of *Ehrlichia equi* and *‘HGE agent’ as subjective synonyms of *Ehrlichia phagocytophila*. *Int J Syst Evol Microbiol* 51: 2145-2165.

6. Stafford KC 3rd, Bladen VC, Magnarelli LA (1995) Ticks (*Acarida: Ixodidae*) infesting wild birds (Aves) and white-footed mice in Lyme, CT. *J Med Entomol* 32: 453-466.

7. Hamer SA, Tsao JI, Walker ED, Hickging GL (2010) Invasion of the Lyme disease vector *Ixodes scapularis*: implications for Borrelia burgdorferi endemicity. *Ecohealth* 7: 47-63.

8. Hildebrandt A, Franke J, Meier F, Sachse S, Dom W, et al. (2010) The potential role of migratory birds in transmission cycles of Babesia spp., *Anaplasma phagocytophilum*, and *Rickettsia* spp. Ticks Tick Borne Dis 1: 105-107.

9. Daniels TJ, Battaly GR, Liveris D, Falco RC, Schwartz I (2002) Avian reservoirs of the agent of human granulocytic ehrlichiosis? *Emerg Infect Dis* 8: 1524-1525.

10. Wilson J, Pusterla N, Bengford J, Arney L (2006) Incrimination of mayflies as a vector of Potomac horse Fever in an outbreak in Minnesota. *Medicine II AAEP Proceedings 52*: 324-329.

11. Barlough JE, Reubel GH, Madigan JE, Vredenwo EKJ, Miller PE, et al. (1998) Detection of *Ehrlichia risticii*, the agent of Potomac horse fever, in freshwater stream snails (*Pleuconeceridae: Juga spp.*) from northern California. *Appl Environ Microbiol* 64: 2886-2893.

12. Reubel GH, Barlough JE, Madigan JE (1998) Production and characterization of *Ehrlichia risticii*, the agent of Potomac horse fever, from snails (*Pleuconeceridae: Juga spp.*) in aquarium culture and genetic comparison to equine strains. *J Clin Microbiol* 36: 1501-1511.

13. Kanter M, Ohashi N, Fried B, Reed S, et al. (2000) Analysis of 16S rRNA and 51-kilodalton antigen gene and transmission in mice of *Ehrlichia risticii* in virulgate trematodes from *Elima livescens* snails in Ohio. *J Clin Microbiol* 38: 3349-3358.

14. Pusterla N, Johnson EM, Chae JS, Madigan JE (2003) *Digenean trematodes, Acanthatrium sp. and Lecithodendrium sp., as vectors of Neorickettsia risticii, the agent of Potomac horse fever*. *J Helminthol* 77: 335-339.

15. Gibson KE, Rikihisa Y, Zhang C, Martin C (2005) *Neorickettsia risticii* is vertically transmitted in the trematode *Acanthatherium oregonesense* and horizontally transmitted to bats. *Environ Microbiol* 7: 203-212.
16. Ciuculli G, Boeri E, Beltrán F, Gury D, Federico E (2013) Molecular detection of Neorickettsia risticii in Brazilian free-tailed bats (Tadarida brasiliensis) from Buenos Aires, Argentina. Pesq Vet Bras 33: 648-650.

17. Dutra F, Schuch LF, Delucchi E, Curylo BR, Coimbra H, et al. (2001) Equine monocytic Ehrlichiosis (Potomac horse fever) in horses in Uruguay and southern Brazil. J Vet Diagn Invest 13: 433-437.

18. Coimbra H, Schuch L, Veitenheimer-Mendes L, Meireles M (2005) Neorickettsia (Ehrlichia) risticii no sul do brasil: Heleobia spp. (Mollusca: Hydrobiidae) e Parapleurolophococcus cercanae (trematoda: digenea) como possíveis vetores. Anq Inst Biol São Paulo 72: 325-329.

19. Coimbra H, Fernandes C, Soares M, Meireles M, Radamés. R, et al. (2006) Equine monocytic Ehrlichiosis in Rio Grande do Sul: clinical, pathological and epidemiological aspects. Pesq Vet Bras 26: 97-101.

20. Beckman CW (1998) The Pantanal of Poconé: Biotick and Ecology of the Northern Section of the World’s Largest Pristine Wetland. Monographiae Biologicae 77, Kluwer Academic Publishers, Dordrecht.

21. Fellerhof Gwynne JA (2011) Quantas espécies de aves ocorrem no Pantanal brasileiro? Atualidades Ornitológicas On-line Nº 160.

22. A (2011) Absence of Anaplasmataceae DNA in Wild Birds and Bats from a Flooded Area in the Brazilian Northern Pantanal. Air Water Borne Diseases 2: 113. doi: 10.4172/2167-7719.1000113

Submit your next manuscript and get advantages of OMICS

Unique features:
- User friendly/feasible website-translation of your paper to 50 world’s leading languages
- Audio Version of published paper
- Digital articles to share and explore

Special features:
- 250 Open Access Journals
- 20,000 editorial team
- 21 days rapid review process
- Quality and quick editorial, review and publication processing
- Indexed at PubMed (partial), Scopus, Elsevier, Index Copernicus and Google Scholar etc
- Sharing Option: Social Networking Enabled
- Authors, Reviewers and Editors rewarded with online Scientific Credits
- Better discount for your subsequent articles

Submit your manuscript at: http://www.omicsonline.com/submission