LOCATING $\mathfrak{A}x$, WHERE \mathfrak{A} IS A SUBSPACE OF $\mathcal{B}(H)$

DOUGLAS S. BRIDGES

University of Canterbury, Christchurch, New Zealand
e-mail address: douglas.bridges@canterbury.ac.nz

ABSTRACT. Given a linear space of operators on a Hilbert space, any vector in the latter determines a subspace of its images under all operators. We discuss, within a Bishop-style constructive framework, conditions under which the projection of the original Hilbert space onto the closure of the image space exists. We derive a general result that leads directly to both the open mapping theorem and our main theorem on the existence of the projection.

1. Introduction

Let H be a real or complex Hilbert space, $\mathcal{B}(H)$ the space of bounded operators on H, and \mathfrak{A} a linear subspace of $\mathcal{B}(H)$. For each $x \in H$ write

$\mathfrak{A}x \equiv \{Ax : A \in \mathfrak{A}\},$

and, if it exists, denote the projection of H onto the closure $\overline{\mathfrak{A}x}$ of $\mathfrak{A}x$ by $[\mathfrak{A}x]$. Projections of this type play a very big part in the classical theory of operator algebras, in which context \mathfrak{A} is normally a subalgebra of $\mathcal{B}(H)$; see, for example, [10, 11, 13, 15]. However, in the constructive setting—the one of this paper—we cannot even guarantee that $[\mathfrak{A}x]$ exists. Our aim is to give sufficient conditions on \mathfrak{A} and x under which $[\mathfrak{A}x]$ exists, or, equivalently, the set $\mathfrak{A}x$ is located, in the sense that

$\rho(v, \mathfrak{A}x) \equiv \inf \{\|v - Ax\| : A \in \mathfrak{A}\}$

exists for each $v \in H$.

We require some background on operator topologies. Specifically, in addition to the standard uniform topology on $\mathcal{B}(H)$, we need

\triangleright the strong operator topology: the weakest topology on $\mathcal{B}(H)$ with respect to which the mapping $T \mapsto Tx$ is continuous for all $x \in H$;

\triangleright the weak operator topology: the weakest topology on $\mathcal{B}(H)$ with respect to which the mapping $T \mapsto \langle Tx, y \rangle$ is continuous for all $x, y \in H$.

2012 ACM CCS: [Theory of computation]: Constructive Mathematics.
2010 Mathematics Subject Classification: 03F60,46S30,47S30.
Key words and phrases: constructive, Hilbert space, space of operators, located.

1Our constructive setting is that of Bishop [2,3,6], in which the mathematics is developed with intuitionistic, not classical, logic, in a suitable set- or type-theoretic framework [11,12] and with dependent choice permitted.
These topologies are induced, respectively, by the seminorms of the form $T \mapsto \|Tx\|$ with $x \in H$, and $T \mapsto |\langle Tx, y \rangle|$ with $x, y \in H$. The unit ball of $B(H)$ is classically weak-operator compact, but constructively the most we can say is that it is weak-operator totally bounded (see [14]). The evidence so far suggests that in order to make progress when dealing constructively with a subspace or subalgebra A of $B(H)$, it makes sense to add the weak-operator total boundedness of $A_1 \equiv A \cap B_1(H)$ to whatever other hypothesis we are making; in particular, it is known that A_1 is located in the strong operator topology—and hence A_1x is located for each $x \in H$—if and only if it is weak-operator totally bounded [7, 14].

Recall that the metric complement of a subset S of a metric space X is the set $-S$ of those elements of X that are bounded away from X. When Y is a subspace of X, $y \in Y$, and $S \subseteq Y$, we define

$$\rho_Y(y, -S) \equiv \inf \{ \rho(y, z) : z \in Y \cap -S \}$$

if that infimum exists.

We now state our main result.

Theorem 1.1. Let A be a uniformly closed subspace of $B(H)$ such that A_1 is weak-operator totally bounded, and let x be a point of H such that Ax is closed and $\rho_{Ax}(0, -A_1x)$ exists. Then the projection $[Ax]$ exists.

Before proving this theorem, we discuss, in Section 2, some general results about the locatedness of sets like Ax, and we derive, in Section 3, a generalisation of the open mapping theorem that leads to the proof of Theorem 1.1. Finally, we show, by means of a Brouwerian example, that the existence of $\rho_{Ax}(0, -A_1x)$ cannot be dropped from the hypotheses of our main theorem.

2. Some General Locatedness Results for Ax

We now prove an elementary, but helpful, result on locatedness in a Hilbert space.

Proposition 2.1. Let $(S_n)_{n \geq 1}$ be a sequence of located, convex subsets of a Hilbert space H such that $S_1 \subseteq S_2 \subseteq \cdots$, let $S_\infty = \bigcup_{n \geq 1} S_n$, and let $x \in H$. For each n, let $x_n \in S_n$ satisfy $\|x - x_n\| < \rho(x, S_n) + 2^{-n}$. Then

$$\rho(x, S_\infty) = \inf_{n \geq 1} \rho(x, S_n) = \lim_{n \to \infty} \rho(x, S_n),$$

in the sense that if any of these three numbers exists, then all three do and they are equal. Moreover, $\rho(x, S_\infty)$ exists if and only if $(x_n)_{n \geq 1}$ converges to a limit $x_\infty \in H$; in that case, $\rho(x, S_\infty) = \|x - x_\infty\|$, and $\|x - y\| > \|x - x_\infty\|$ for all $y \in S_\infty$ with $y \neq x_\infty$.

Note that it is not constructively provable that every element T of $B(H)$ is normed, in the sense that the usual operator norm of T exists. Nevertheless, when we write $\|T\| \leq 1'$, we are using a shorthand for $\|Tx\| \leq \|x\|$ for each $x \in H$. Likewise, $\|T\| < 1'$ means that there exists $c < 1$ such that $\|Tx\| \leq c\|x\|$ for each $x \in H$; and $\|T\| > 1'$ means that there exists $x \in H$ such that $\|Tx\| > \|x\|$.

Proof. Suppose that \(\rho(x, S_\infty) \) exists. Then \(\rho(x, S_\infty) \leq \rho(x, S_n) \) for each \(n \). On the other hand, given \(\varepsilon > 0 \) we can find \(z \in S_\infty \) such that \(\|x - z\| < \rho(x, S_\infty) + \varepsilon \). Pick \(N \) such that

\[
\rho(x, S_\infty) \leq \rho(x, S_n) \leq \rho(x, S_N) \leq \|x - z\| < \rho(x, S_\infty) + \varepsilon.
\]

The desired conclusion (2.1) now follows.

Next, observe that (by the parallelogram law in \(H \)) if \(m \geq n \), then

\[
\|x_m - x_n\|^2 \leq \|(x_m - m) - (x_m - n)\|^2
\]

\[
= 2\|x - m\|^2 + 2\|x - n\|^2 - 4\left\|x - \frac{1}{2}(x_m + n)\right\|^2
\]

\[
\leq 2\left(\rho(x, S_m) + 2^{-m}\right)^2 + 2\left(\rho(x, S_n) + 2^{-n}\right)^2 - 4\rho(x, S_m)^2,
\]

since \(\frac{1}{2}(x_m + n) \in S_m \). Thus

\[
\|x_m - x_n\|^2 \leq 2\left(\rho(x, S_m) + 2^{-m}\right)^2 - \rho(x, S_m)^2
\]

\[
+ 2\left(\rho(x, S_n) + 2^{-n}\right)^2 - \rho(x, S_n)^2.
\]

(2.2)

If \(\rho(x, S_\infty) \) exists, then, by the first part of the proof, \(\rho(x, S_n) \to \rho(x, S_\infty) \) as \(n \to \infty \). It follows from this and (2.2) that \(\|x_m - x_n\|^2 \to 0 \) as \(m, n \to \infty \); whence \((x_n)_{n \geq 1} \) is a Cauchy sequence in \(H \) and therefore converges to a limit \(x_\infty \in S_\infty \). Then

\[
\rho(x, S_\infty) = \rho(x, \overline{S_\infty}) \leq \|x - x_\infty\|
\]

\[
= \lim_{n \to \infty} \|x - x_n\|
\]

\[
\leq \lim_{n \to \infty} \left(\rho(x, S_n) + 2^{-n}\right) = \rho(x, S_\infty).
\]

Thus \(\rho(x, S_\infty) = \|x - x_\infty\| \).

Conversely, suppose that \(x_\infty = \lim_{n \to \infty} x_n \) exists. Let \(0 < \alpha < \beta \) and \(\varepsilon = \frac{1}{3}(\beta - \alpha) \).

Pick \(N \) such that \(2^{-N} < \varepsilon \) and \(\|x_\infty - x_n\| < \varepsilon \) for all \(n \geq N \). Either \(\|x - x_\infty\| > \alpha + 2\varepsilon \) or \(\|x - x_\infty\| < \beta \). In the first case, for all \(n \geq N \),

\[
\rho(x, S_n) > \|x - x_n\| - 2^{-n}
\]

\[
\geq \|x - x_\infty\| - \|x_\infty - x_n\| - \varepsilon
\]

\[
> (\alpha + 2\varepsilon) - \varepsilon - \varepsilon = \alpha.
\]

In the other case, there exists \(\nu > N \) such that \(\|x - x_\nu\| < \beta \); we then have

\[
\rho(x, S_\nu) \leq \|x - x_\nu\| < \beta.
\]

It follows from this and the constructive least-upper-bound principle ([6], Theorem 2.1.18) that

\[
\inf \{\rho(x, S_n) : n \geq 1\}
\]

exists; whence, by (2.1), \(d = \rho(x, S_\infty) \) exists.
Finally, suppose that x_∞ exists, and consider any $y \in S_\infty$ with $y \neq x_\infty$. We have
\[
0 < \|y - x_\infty\|^2 = \|y - x - (x_\infty - x)\|^2
\]
\[
= 2\|y - x\|^2 + 2\|x_\infty - x\|^2 - 4\left(\frac{y + x_\infty}{2} - x\right)^2
\]
\[
= 2\left(\|y - x\|^2 - d^2\right) + 2\left(\|x_\infty - x\|^2 - d^2\right) = 2\left(\|y - x\|^2 - d^2\right),
\]
so $\|x - y\| > d$.

For each positive integer n we write
\[
\mathfrak{A}_n \equiv n\mathfrak{A}_1 = \{nA : A \in \mathfrak{A}_1\}.
\]
If \mathfrak{A}_1 is weak-operator totally bounded and hence strong-operator located, then \mathfrak{A}_n has those two properties as well.

Our interest in Proposition 2.1 stems from this:

Corollary 2.2. Let \mathfrak{A} be a linear subspace of $\mathcal{B}(H)$ with \mathfrak{A}_1 weak-operator totally bounded, and let $x, y \in H$. For each n, let $y_n \in \mathfrak{A}_n$ satisfy $\|y - y_n\| < \rho(x, \mathfrak{A}_n x) + 2^{-n}$. Then
\[
\rho(y, \mathfrak{A} x) = \inf_{n \geq 1} \rho(y, \mathfrak{A}_n x) = \lim_{n \to \infty} \rho(y, \mathfrak{A}_n x).
\]
Moreover, $\rho(y, \mathfrak{A} x)$ exists if and only if $(y_n)_{n \geq 1}$ converges to a limit $y_\infty \in H$; in which case, $\rho(y, \mathfrak{A} x) = \|y - y_\infty\|$, and $\|y - Ax\| > \|y - y_\infty\|$ for each $A \in \mathfrak{A}$ such that $Ax \neq y_\infty$.

One case of this corollary arises when the sequence $(\rho(y, \mathfrak{A}_n x))_{n \geq 1}$ stabilises:

Proposition 2.3. Let \mathfrak{A} be a linear subspace of $\mathcal{B}(H)$ such that \mathfrak{A}_1 is weak-operator totally bounded. Let $x, y \in H$, and suppose that for some positive integer N, $\rho(y, \mathfrak{A}_N x) = \rho(y, \mathfrak{A}_{N+1} x)$. Then $\rho(y, \mathfrak{A} x)$ exists and equals $\rho(y, \mathfrak{A}_N x)$.

Proof. By Theorem 4.3.1 of [6], there exists a unique $z \in \mathfrak{A}_N x$ such that $\rho(y, \mathfrak{A}_N x) = \|y - z\|$. We prove that $y - z$ is orthogonal to $\mathfrak{A} x$. Let $A \in \mathfrak{A}$, and consider $\lambda \in \mathbb{C}$ so small that $\lambda A \in \mathfrak{A}_1$. Since,
\[
z - \lambda Ax \in \overline{\mathfrak{A}_N x},
\]
we have
\[
\langle y - z - \lambda Ax, y - z - \lambda Ax \rangle \geq \rho(y, \mathfrak{A}_{N+1} x)^2
\]
\[
= \rho(y, \mathfrak{A}_N x)^2 = \langle y - z, y - z \rangle.
\]
This yields
\[
|\lambda|^2 \|Ax\|^2 + 2 \text{Re} (\lambda \langle y - z, Ax \rangle) \geq 0.
\]
Suppose that $\text{Re} \langle y - z, Ax \rangle \neq 0$. Then by taking a sufficiently small real λ with
\[
\lambda \text{Re} \langle y - z, Ax \rangle < 0,
\]
we obtain a contradiction. Hence $\text{Re} \langle y - z, Ax \rangle = 0$. Likewise, $\text{Im} \langle y - z, Ax \rangle = 0$. Thus $\langle y - z, Ax \rangle = 0$. Since $A \in \mathfrak{A}$ is arbitrary, we conclude that $y - z$ is orthogonal to $\mathfrak{A} x$ and hence to $\overline{\mathfrak{A} x}$. It is well known that this implies that z is the unique closest point to y in the closed linear subspace $\overline{\mathfrak{A} x}$. Since $\mathfrak{A} x$ is dense in $\overline{\mathfrak{A} x}$, it readily follows that $\rho(y, \mathfrak{A} x) = \rho(y, \overline{\mathfrak{A} x}) = \|y - z\|$.

\[\square\]
The final result in this section will be used in the proof of our main theorem.

Proposition 2.4. Let \mathfrak{A} be a linear subspace of $\mathcal{B}(H)$ with weak-operator totally bounded unit ball, and let $x \in H$. Suppose that there exists $r > 0$ such that

$$\mathfrak{A}_1x \supset B_{\mathfrak{A}x}(0, r) \equiv \mathfrak{A}x \cap B(0, r).$$

Then $\mathfrak{A}x$ is located in H; in fact, for each $y \in H$, there exists a positive integer N such that $\rho(y, \mathfrak{A}x) = \rho(y, \mathfrak{A}_N x)$.

Proof. Fixing $y \in H$, compute a positive integer $N > 2 \|y\|/r$. Let $A \in \mathfrak{A}$, and suppose that

$$\|y - Ax\| < \rho(y, \mathfrak{A}_N x).$$

We have either $\|Ax\| < Nr$ or $\|Ax\| > 2 \|y\|$. In the first case, $N^{-1}Ax \in B_{\mathfrak{A}x}(0, r)$, so there exists $B \in \mathfrak{A}_1$ with $N^{-1}Ax = Bx$ and therefore $Ax = NBx$. But $NB \in \mathfrak{A}_N$, so

$$\|y - Ax\| = \|y - NBx\| \geq \rho(y, \mathfrak{A}_N x),$$

a contradiction. In the case $\|Ax\| \geq Nr > 2 \|y\|$, we have

$$\|y - Ax\| \geq \|Ax\| - \|y\| > \|y\| \geq \rho(y, \mathfrak{A}_N x),$$

another contradiction. We conclude that $\|y - Ax\| \geq \rho(y, \mathfrak{A}_N x)$ for each $A \in \mathfrak{A}$. On the other hand, given $\varepsilon > 0$, we can find $A \in \mathfrak{A}_N$ such that $\|y - Ax\| < \rho(y, \mathfrak{A}_N x) + \varepsilon$. It now follows that $\rho(y, \mathfrak{A}x)$ exists and equals $\rho(y, \mathfrak{A}_N x)$.

\[\square\]

3. GENERALISING THE OPEN MAPPING THEOREM

The key to our main result on the existence of projections of the form $[\mathfrak{A}x]$ is a generalisation of the open mapping theorem from functional analysis ([6], Theorem 6.6.4). Before giving that generalisation, we note a proposition and a lemma.

Proposition 3.1. If C is a balanced, convex subset of a normed space X, then $V \equiv \bigcup_{n \geq 1} nC$ is a linear subspace of X.

Proof. Let $x \in V$ and $\alpha \in C$. Pick a positive integer n and an element c of C such that $x = nc$. If $\alpha \neq 0$, then since C is balanced, $|\alpha|^{-1}ac \in C$, so

$$\alpha x = anc = |\alpha| n |\alpha|^{-1}ac \in |\alpha| nC \subset (1 + |\alpha|) nC.$$

In the general case, we can apply what we have just proved to show that

$$(1 + \alpha) x \in (1 + |1 + \alpha|) nC \subset (2 + |\alpha|) nC.$$

Now, since C is balanced,

$$-x = n (-c) \in nC \subset (2 + |\alpha|) nC.$$

Hence, by the convexity of $(2 + |\alpha|) nC$,

$$\alpha x = 2 \frac{(1 + \alpha)x - x}{2} \in 2(2 + |\alpha|) nC.$$

Taking N as any integer $> 2(2 + |\alpha|) n$, we now see that $\alpha x \in NC \subset V$. In view of the foregoing and the fact that $(nC)_{n \geq 1}$ is an ascending sequence of sets, if x' also belongs to V
we can take N large enough to ensure that αx and x' both belong to NC. Picking $c, c' \in C$ such that $\alpha x = Nc$ and $x' = Nc'$, we obtain
\[
\alpha x + x' = 2N \left(\frac{c + c'}{2} \right) \in 2NC,
\]
so $\alpha x + x' \in V$. \hfill \Box

We call a bounded subset C of a Banach space X superconvex if for each sequence $(x_n)_{n \geq 1}$ in C and each sequence $(\lambda_n)_{n \geq 1}$ of nonnegative numbers such that $\sum_{n=1}^{\infty} \lambda_n$ converges to 1 and the series $\sum_{n=1}^{\infty} \lambda_n x_n$ converges, we have $\sum_{n=1}^{\infty} \lambda_n x_n \in C$. In that case, C is clearly convex.

Lemma 3.2. Let C be a located, bounded, balanced, and superconvex subset of a Banach space X, such that $X = \bigcup_{n \geq 1} nC$. Let $y \in X$ and $r > \|y\|$. Then there exists $\xi \in 2C$ such that if $y \neq \xi$, then $\rho(z, C) > 0$ for some z with $\|z\| < r$.

Proof. Either $\rho(y, C) > 0$ and we take $z = y$, or else, as we suppose, $\rho(y, C) < r/2$. Choosing $x_1 \in 2C$ such that $\|y - \frac{1}{2} x_1\| < r/2$ and therefore $\|2y - x_1\| < r$, set $\lambda_1 = 0$. Then either $\rho(2y - x_1, C) > 0$ or $\rho(2y - x_1, C) < r/2$. In the first case, set $\lambda_k = 1$ and $x_k = 0$ for all $k \geq 2$. In the second case, pick $x_2 \in 2C$ such that $\|2y - x_1 - \frac{1}{2} x_2\| < r/2$ and therefore $\|2^2 y - 2x_1 - x_2\| < r$, and set $\lambda_2 = 0$. Carrying on in this way, we construct a sequence $(x_n)_{n \geq 1}$ in $2C$, and an increasing binary sequence $(\lambda_n)_{n \geq 1}$ with the following properties.

- If $\lambda_n = 0$, then
 \[
 \rho \left(2^{n-1} y - \sum_{i=1}^{n} 2^{n-i-1} x_i, C \right) < \frac{r}{2}
 \]
 and
 \[
 \left\| 2^n y - \sum_{i=1}^{n} 2^{n-i} x_i \right\| < r.
 \]

- If $\lambda_n = 1 - \lambda_{n-1}$, then
 \[
 \rho \left(2^{n-1} y - \sum_{i=1}^{n} 2^{n-i-1} x_i, C \right) > 0
 \]
 and $x_k = 0$ for all $k \geq n$.

Compute $\alpha > 0$ such that $\|x\| < \alpha$ for all $x \in 2C$. Then the series $\sum_{i=1}^{\infty} 2^{-i} x_i$ converges, by comparison with $|\alpha| \sum_{i=1}^{\infty} 2^{-i}$, to a sum ξ in the Banach space X. Since $\sum_{i=1}^{\infty} 2^{-i} = 1$ and C is superconvex, we see that
\[
\sum_{i=1}^{\infty} 2^{-i} x_i = 2 \sum_{i=1}^{\infty} 2^{-i} \left(\frac{1}{2} x_i \right) \in 2C.
\]
If $y \neq \xi$, then there exists N such that
\[
\left\| y - \sum_{i=1}^{N} 2^{-i} x_i \right\| > 2^{-N} r.
\]
and therefore
\[\left\| 2^N y - \sum_{i=1}^{N} 2^{N-i} x_i \right\| > r. \]

It follows that we cannot have \(\lambda_N = 0 \), so \(\lambda_N = 1 \) and therefore there exists \(\nu \leq N \) such that \(\lambda_\nu = 1 - \lambda_{\nu-1} \). Setting
\[z \equiv 2^{\nu-1} y - \sum_{i=1}^{\nu-1} 2^{\nu-i-1} x_i, \]
we see that \(\rho(z, C) > 0 \) and \(\|z\| < r \), as required.

We now prove our generalisation of the open mapping theorem.

Theorem 3.3. Let \(X \) be a Banach space, and \(C \) a located, bounded, balanced, and superconvex subset of \(X \) such that \(\rho(0, -C) \) exists and \(X = \bigcup_{n\geq1} nC \). Then there exists \(r > 0 \) such that \(B(0, r) \subset C \).

Proof. Consider the identity
\[X = \bigcup_{n\geq1} nC. \]

By Theorem 6.6.1 of [6] (see also [3]), there exists \(N \) such that the interior of \(NC \) is inhabited. Thus there exist \(y_0 \in NC \) and \(R > 0 \) such that \(B(y_0, R) \subset NC \). Writing \(y_1 = N^{-1} y_0 \) and \(r = (2N)^{-1} R \), we obtain \(B(y_1, 2r) \subset C \). It follows from Lemma 6.6.3 of [6] that \(B(0, 2r) \subset C \). Now consider any \(y \in B(0, 2r) \). By Lemma 3.2, there exists \(\xi \in 2C \) such that if \(y \neq \xi \), then there exists \(z \in B(0, 2r) \) with \(\rho(z, C) > 0 \). Since \(B(0, 2r) \subset C \), this is absurd. Hence \(y = \xi \in 2C \). It follows that \(B(0, 2r) \subset 2C \) and hence that \(B(0, r) \subset C \).

Note that in Lemma 3.2 and Theorem 3.3 we can replace the superconvexity of \(C \) by these two properties: \(C \) is convex, and for each sequence \((x_n)_{n\geq1} \) in \(C \), if \(\sum_{n=1}^{\infty} 2^{-n} x_n \) converges in \(H \), then its sum belongs to \(C \).

We now derive two corollaries of Theorem 3.3.

Corollary 3.4 (The open mapping theorem) [6, Theorem 6.6.4]. Let \(X, Y \) be Banach spaces, and \(T \) a sequentially continuous linear mapping of \(X \) onto \(Y \) such that \(T \left(B(0, 1) \right) \) is located and \(\rho \left(0, -T \left(B(0, 1) \right) \right) \) exists. Then there exists \(r > 0 \) such that \(B(0, r) \subset T \left(B(0, 1) \right) \).

Proof. In view of Theorem 3.3 it will suffice to prove that \(C \equiv T \left(B(0, 1) \right) \) is superconvex. But if \((x_n)_{n\geq1} \) is a sequence in \(B(0, 1) \) and \((\lambda_n)_{n\geq1} \) is a sequence of nonnegative numbers such that \(\sum_{n=1}^{\infty} \lambda_n = 1 \), then \(\|\lambda_n x_n\| \leq \lambda_n \) for each \(n \), so \(\sum_{n=1}^{\infty} \lambda_n x_n \) converges in \(X \); moreover,
\[\left\| \sum_{n=1}^{\infty} \lambda_n x_n \right\| \leq \sum_{n=1}^{\infty} \lambda_n = 1, \]

This is but one version of the open mapping theorem; for another, see [5].
so, by the sequential continuity of T,

$$T \left(\sum_{n=1}^{\infty} \lambda_n x_n \right) \in C.$$

Thus C is superconvex.

Theorem 3.3 also leads to the proof of Theorem 1.1:

Proof. Taking $C \equiv \mathfrak{A}_1 x$, we know that C is located (since \mathfrak{A}_1 is weak-operator totally bounded and hence, by [7, 14], strong-operator located), as well as bounded and balanced. To prove that C is superconvex, consider a sequence $(A_n)_{n \geq 1}$ in \mathfrak{A}_1, and a sequence $(\lambda_n)_{n \geq 1}$ of nonnegative numbers such that $\sum_{n=1}^{\infty} \lambda_n$ converges to 1. For $k \geq j$ we have

$$\left\| \sum_{n=j}^{k} \lambda_n A_n \right\| \leq \sum_{n=j}^{k} \lambda_n,$$

so $\sum_{n=1}^{\infty} \lambda_n A_n$ converges uniformly to an element A of $\mathcal{B}_1(H)$. Since \mathfrak{A} is uniformly closed, $A \in \mathfrak{A}_1$, so $\sum_{n=1}^{\infty} \lambda_n A_n x = Ax \in \mathfrak{A}_1 x$. Thus C is superconvex. We can now apply Theorem 3.3 to produce $r > 0$ such that $B_{\mathfrak{A}_1}(0, r) \subset C$. The locatedness of $\mathfrak{A}_1 x$, and the consequent existence of the projection $[\mathfrak{A}_1 x]$, now follow from Proposition 2.4.

We now discuss further the requirement, in Theorem 1.1, that $\rho_{\mathfrak{A}_1 x}(0, \mathfrak{A}_1 x)$ exist, where \mathfrak{A}_1 is weak-operator totally bounded. We begin by giving conditions under which that requirement is satisfied.

If $\mathfrak{A}_1 x$ has positive, finite dimension—in which case it is both closed and located in H—then $\mathfrak{A}_1 x - \mathfrak{A}_1 x$ is inhabited, so Proposition (1.5) of [9] can be applied to show that $\mathfrak{A}_1 x - \mathfrak{A}_1 x$ is located in $\mathfrak{A}_1 x$. In particular, $\rho_{\mathfrak{A}_1 x}(0, -\mathfrak{A}_1 x)$ exists. On the other hand, if P is a projection in $\mathcal{B}(H)$ and $\mathfrak{A} \equiv \{ PTP : T \in \mathcal{B}(H) \}$, then \mathfrak{A} can be identified with $\mathcal{B}(P(H))$, so \mathfrak{A}_1 is weak-operator totally bounded. Moreover, if $x \neq 0$, then $\mathfrak{A}_1 x = P(H)$ and so is both closed and located, $\mathfrak{A}_1 x = \overline{B}(0, \|Px\|) \cap P(H)$, and $\rho_{\mathfrak{A}_1 x}(0, -\mathfrak{A}_1 x) = \|Px\|$.

We end with a Brouwerian example showing that we cannot drop the existence of $\rho_{\mathfrak{A}_1 x}(0, -\mathfrak{A}_1 x)$ from the hypotheses of Theorem 1.1. Consider the case where $H = \mathbb{R} \times \mathbb{R}$, and let \mathfrak{A} be the linear subspace (actually an algebra) of $\mathcal{B}(H)$ comprising all matrices of the form

$$T_{a,b} \equiv \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$

with $a, b \in \mathbb{R}$. It is easy to show that \mathfrak{A} is uniformly closed: if $(a_n), (b_n)$ are sequences in \mathbb{R} such that $(T_{a_n,b_n})_{n \geq 1}$ converges uniformly to an element $T \equiv \begin{pmatrix} a_\infty & p \\ q & b_\infty \end{pmatrix}$, then

$$a_n = T_{a_n,b_n} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rightarrow T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a_\infty,$$

Likewise, $b_n \rightarrow b_\infty$, $p = 0$, and $q = 0$. Hence $T = T_{a_\infty,b_\infty} \in \mathfrak{A}$.
Now, if \((x, y)\) is in the unit ball of \(H\), then
\[
\|T_{a,b} \left(\begin{array}{c} x \\ y \end{array} \right) \| = \left\| \begin{array}{c} ax \\ by \end{array} \right\| = a^2 x^2 + b^2 y^2
\]
\[
= a^2 (x^2 + y^2) + (b^2 - a^2) y^2
\]
\[
= a^2 + (b^2 - a^2) y^2.
\]
We see from this that if \(a^2 \geq b^2\), then \(\|T_{a,b}\| = a^2\); moreover, \(T_{a,b}(1,0) = a\), so \(\|T_{a,b}\| = a^2\).
If \(a^2 < b^2\), then a similar argument shows that \(\|T_{a,b}\| = b^2\). It now follows that \(\|T_{a,b}\|\)
exists and equals \(\max\{\|a\|, |b|\}\). Also, since, relative to the uniform topology on \(B(H)\), \(\mathfrak{A}_1\)
is homeomorphic to the totally bounded subset
\[
\{ (a, b) : \max\{\|a\|, |b|\} \leq 1 \}
\]
of \(\mathbb{R}^2\), it is uniformly, and hence weak-operator, totally bounded.

Consider the vector \(\xi \equiv (1, c)\), where \(c \in \mathbb{R}\). If \(c = 0\), then \(\mathfrak{A}_1 = \mathbb{R} \times \{0\}\), the projection
of \(H\) on \(\mathfrak{A}_1\) is just the projection on the \(x\)-axis, and \(\rho((0,1), \mathfrak{A}_1) = 1\). If \(c \neq 0\), then
\[
\mathfrak{A}_1 = \{ (a, cb) : a, b \in \mathbb{R} \} = \mathbb{R} \times \mathbb{R},
\]
the projection of \(H\) on \(\mathfrak{A}_1\) is just the identity projection \(I\), and \(\rho((0,1), \mathfrak{A}_1) = 0\). Suppose, then, that the projection \(P\) of \(H\) on \(\mathfrak{A}_1\) exists. Then either \(\rho((0,1), \mathfrak{A}_1) > 0\) or
\(\rho((0,1), \mathfrak{A}_1) < 1\). In the first case, \(c = 0\); in the second, \(c \neq 0\). Thus if \([\mathfrak{A}_1 x]\) exists for each
\(x \in H\), then we can prove that
\[
\forall x \in \mathbb{R} (x = 0 \lor x \neq 0),
\]
a statement constructively equivalent to the essentially nonconstructive omniscience principle \(\mathbf{LPO}\):

For each binary sequence \((a_n)_{n \geq 1}\), either \(a_n = 0\) for all \(n\) or else there exists
\(n\) such that \(a_n = 1\).

It follows from this and our Theorem 1.1 that if \(\rho_{\mathfrak{A}_1}(0, -\mathfrak{A}_1 x)\) exists for each \(x \in H\), then
we can derive \(\mathbf{LPO}\).

\section*{Acknowledgement}

This research was partially done when the author was a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences, in the programme \textit{Semantics & Syntax: A Legacy of Alan Turing}. The author thanks the referees for helpful comments that improved the presentation of the paper.

\section*{References}

[1] P. Aczel and M. Rathjen: \textit{Notes on Constructive Set Theory}, Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences, 2001.
[2] E. Bishop: \textit{Foundations of Constructive Analysis}, McGraw-Hill, New York, 1967.
[3] E. Bishop and D.S. Bridges: \textit{Constructive Analysis}, Grundlehren der Math. Wiss. 279, Springer Verlag, Heidelberg, 1985.
[4] D.S. Bridges: ‘On weak operator compactness of the unit ball of \(L(H)\)’, Zeit. math. Logik Grundlagen Math. 24, 493–494, 1978.
[5] D.S. Bridges, H. Ishihara: ‘A definitive constructive open mapping theorem?’, Math. Logic Quarterly 44, 545–552, 1998.
[6] D.S. Bridges and L.S. Viță: *Techniques of Constructive Analysis*, Universitext, Springer Verlag, Heidelberg, 2006.

[7] D.S. Bridges, H. Ishihara, L.S. Viță: ‘Computing infima on convex sets, with applications in Hilbert space’, Proc. Amer. Math. Soc. **132**(9), 2723–2732, 2004.

[8] D.S. Bridges, H. Ishihara, L.S. Viță: ‘A new constructive version of Baire’s Theorem’, Hokkaido Math. Journal **35**(1), 107–118, 2006.

[9] D.S. Bridges, A. Calder, W. Julian, R. Mines, and F. Richman: ‘Locating metric complements in \mathbb{R}^n’, in *Constructive Mathematics* (F. Richman, ed.), Springer Lecture Notes in Math. **873**, 241–249, 1981.

[10] J. Dixmier: *Les algèbres d’opérateurs dans l’espace hilbertien: algèbres de von Neumann*, Gauthier-Villars, Paris, 1981.

[11] R.V. Kadison and J.R. Ringrose: *Fundamentals of the Theory of Operator Algebras*, Academic Press, New York, 1983 (Vol 1) and 1988 (Vol 2).

[12] P. Martin-Löf: ‘An intuitionistic theory of types’, in *Twenty-five Years of Constructive Type Theory* (G. Sambin, J. Smith, eds), 127–172, Oxford Logic Guides **36**, Clarendon Press, Oxford, 1998.

[13] S. Sakai: *C^*-algebras and W^*-algebras*, Springer Verlag, Heidelberg, 1971.

[14] B. Spitters: ‘Constructive results on operator algebras’, J. Univ. Comp. Sci. **11**(12), 2096–2113, 2005.

[15] D.M. Topping: *Lectures on von Neumann Algebras*, van Nostrand Reinhold, London 1971.