Case Report: Dubin-Johnson Syndrome Presenting With Infantile Cholestasis: An Overlooked Diagnosis in an Extended Family

Naglaa M. Kamal1*, Omar Saadah2, Hamdan Alghamdi3, Ali Algarni4, Mortada H. F. El-Shabrawi1, Laila M. Sherief5 and Salma A. S. Abosabie6

1 Department of Pediatrics and Pediatric Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt, 2 Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia, 3 Department of Pediatrics, Alhada Armed Forces Hospital, Taif, Saudi Arabia, 4 Department of Pediatrics, Taif Children Hospital, Taif, Saudi Arabia, 5 Faculty of Medicine, Zagazig University, Zagazig, Egypt, 6 Faculty of Medicine, Julius-Maximilians-Universität Würzburg, Würzburg, Germany

Dubin-Johnson syndrome (DJS) is an often-missed diagnosis of neonatal cholestasis. We report two patients with DJS, who presented with neonatal cholestasis. The first patient underwent extensive investigations for infantile cholestasis with no definitive etiology reached; the diagnosis of DJS was missed until the age of 14 years old. The diagnosis was confirmed genetically with c.2273G > T, p.G758V mutation in exon 18 of the ABCC2 gene. The 2nd patient is a 7-day-old baby, the son of the 1st patient who gave birth to him at the age of 21 years old. He was diagnosed with DJS at the age of 2 weeks based on normal clinical and laboratory workup apart from direct hyperbilirubinemia. He had the same mutation as his mother in homozygous status. The husband was heterozygous for the same mutation. DJS is one of the often-missed differential diagnoses of neonatal cholestasis. It should be suspected in patients of infantile cholestasis, who have an, otherwise, normal physical examination, and laboratory investigations to avoid unnecessary lengthy, invasive, and expensive workups.

Keywords: Dubin-Johnson syndrome, infant, cholestasis, ABCC2 gene, mutation

INTRODUCTION

Dubin-Johnson syndrome (DJS) was first reported in 1954 by Dubin and Johnson (1) as a rare autosomal recessive disease with clinical features of chronic-conjugated hyperbilirubinemia due to a defect in the excretion of the anionic conjugate from the hepatocytes into the bile (2). Most patients manifest as intermittent or chronic jaundice aggravated by intercurrent illness (1). Physical examination is frequently unremarkable (1). Liver enzymes are usually within normal limits, while bilirubin levels fluctuate (1).

The syndrome occurs due to expression defects of the MRP2 gene, an ATP-dependent canalicular membrane transporter (3–5). The diagnosis is established by performing the bromsulphalein test, oral cholecystography, HIDA scan, and liver biopsy (6–8). Liver biopsy is the
gold standard diagnostic test for this syndrome. It shows
the presence of brown pigment granules in the centrilobular
hepatocytes (9–11). Molecular genetic testing of the ABCC2 gene
is the definitive diagnosis (12). We, herein, report a Saudi female
child who presented as having cholestasis at the age of 1 month
with a missed diagnosis of DJS until the age of 14 years. Her
molecular genetic testing revealed the c.2273G > T, p.G758V
mutation in Exon 18 of the ABCC2 gene.

CASE REPORT

A 14-year-old female child was born to consanguineous Saudi
first-degree cousins who are descents from a tribe with highly
consanguineous marriage. She was referred to a pediatric
gastroenterology clinic as a case of persistent conjugated
hyperbilirubinemia for investigations.

Tracing her history revealed that jaundice started at the
age of 4 days with elevated total bilirubin (350 µmol/L),
mainly indirect. Her direct bilirubin was 30 µmol/L with
normal alanine and aspartate transaminases (ALT and AST). Phototherapy was started, and the patient was discharged in good
condition after 3 days.

She returned to her primary physician at the age of 40 days
with unresolved jaundice and mild abdominal distension with
no organ enlargement. Her investigations revealed mild direct
hyperbilirubinemia. Her total and direct bilirubins were 50
and 35 µmol/L, respectively. Her ALT, AST, gamma-glutamyl
transpeptidase (GGT), prothrombin time/concentration, and
abdominal ultrasonography were all normal. Extensive workups
of cholestasis, including complete blood count, retics, coombs,
hemoglobin electrophoresis, urine and blood cultures, TORCH
screening, serum bile acids, thyroid profile, tandem metabolic
screening, and non-glucose-reducing substances in the urine,
were all normal. HIDA scan and MRCP were not available
in that hospital and were not done. Liver biopsy was refused
by the parents, and she was discharged against medical advice
in good general condition without a definitive diagnosis. Her
total and direct bilirubin at time of discharge was 48 and 40
µmol/L, respectively.

Since that time and until her presentation to our care at the age
of 14 years, the parents used to visit different health care facilities
when their child’s jaundice deepened with different intercurrent illnesses. Laboratory workups, including liver function tests and
hepatitis markers, were done many times with normal results
apart from direct hyperbilirubinemia.

On presentation to our hospital, she had tinge jaundice
with stable vital signs, normal abdominal examination with no
organomegaly, and normal assessment of different body systems.
Her laboratory investigation showed high total bilirubin of 32
µmol/L, mainly in the form of direct bilirubin (31 µmol/L), with
normal ALT, AST, GGT, complete blood picture, and a renal
profile with normal abdominal US. The diagnosis of DJS
was suspected, and a 99mTc-HIDA scan was requested. The HIDA
scan serial images revealed rapid clearance of blood pool activity
with a good hepatocyte function as evidenced by the adequate
ascending limb of the dynamic curve. However, there was a slow
excretion of radioactivity into the biliary radicles with retained
activity in the liver up to 6 h. The gall bladder was seen at 1 h and
the small intestine at 2 h. This good hepatocyte uptake function
with impairment of excretory function in absence of obstruction
was highly suggesting DJS. Urinary coproporphyrins were not
done (the test was not available in our hospital).

Molecular genetic testing for DJS, the ABCC2 gene, was
requested to confirm the diagnosis.

MOLECULAR GENETIC ANALYSIS OF
THE ABCC2 GENE

PCR amplification and direct sequencing of all coding exons
and flanking intronic sequence (ABCC2 gene, GenBank
NM_000392.3, NC_000010.10) gene dosage analysis by
quantitative real-time PCR (qPCR) with 5 amplifications
(in exons 1, 7, 15, 24, and 32) (13).

RESULTS

Unclassified variant c.2273G>T, pG785V in Exon 18 of the gene
ABCC2 gene in the homozygous state. By qPCR, no deletion or
duplication was detected, Figure 1.

INTERPRETATION

Molecular analysis confirmed the clinical suspicion of DJS
syndrome. The variant c.2273G>T, pG785V in Exon 18 of the gene
ABCC2 gene was detected in homozygous state.

The patient was diagnosed in 2014, and, at that time, this
mutation was a novel mutation, which has not been described
yet (HGMD professional 2014.2). “Polyphen2” (14) predicts the
consequence of pG785V for the ABCC2 protein as “probably
damaging” and “mutation taster” (15) called the variant “disease-
causing” At that time, we assumed that the variant represented
a pathogenic mutation, but the parents’ missed follow-up with
their child, and we failed to outreach to them to get consent for
publication. Hence, we could not publish our case report at the
time of detection of the novel mutation.

In October 2021, the parents presented to us once again
with the patient who was a 21-year young adult female. She
had married to her cousin, and she experienced an intermittent
deepening of her jaundice during pregnancy with no associated
pruritus or dark urine. Her liver biochemistry was within normal
values apart from direct hyperbilirubinemia.

She gave birth to a 3.5 kg male baby by normal vertex
delivery with uneventful antenatal and perinatal histories. Her
baby developed jaundice at the age of 1 week with no history of
pallor, blood transfusion, or medications intake.

At the age of 4 weeks, she thought about our medical
advice for her newly born jaundiced baby. On assessment, his
physical examination was normal apart from mild jaundice
with no organomegaly. His workup was assuring with normal
abdominal ultrasound, ALT, AST, albumin, prothrombin
time/concentration, and GGT with a high total bilirubin of 78 µmol/L and high direct bilirubin of 43 µmol/L, suggesting the diagnosis of DJS.

Sanger sequencing of the p.G785V variant detected in his mother was performed for him, which came out to be positive. The husband was also tested and was heterozygous for the same mutation.

In January 2022, we got the consent of the patient and her husband for publishing their family case series. The family pedigree is illustrated in Figure 2.
REFERENCES

1. Dubin IN, Johnson FB. Chronic idiopathic jaundice with unidentifed pigment in liver cells: new clinicopathologic entity with report of 12 cases. *Medicine.* (1954) 33:155–97. doi: 10.1097/00005792-195409000-00001

2. Kondo T, Kuchiba K, Ohtsuka Y, Yanagisawa W, Shiomura T, Taminato T. Clinical and genetic studies on Dubin-Johnson syndrome in a cluster area in Japan. *Jpn J Hum Genet.* (1974) 19:378–92.

3. Cebecauerova D, Irarasek T, Budisova L, Mandys V, Volf U, Novotna Z, et al. Dual hereditary jaundice: simultaneous occurrence of mutations causing Gilbert's and Dubin-Johnson syndrome. *Gastroenterology.* (2005) 129:315–20. doi: 10.1053/j.gastro.2004.10.009

4. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, Borg F, Sheper RJ, et al. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin-Johnson syndrome. *Hepatology.* (1997) 25:1539–42. doi: 10.1002/hep.510250635

5. Stapelbroek JM, Van Erpecum KI, Klomp LWJ, Hoven HJ. Liver disease associated with canalicular transport defects: current and future therapies. *J Hepatol.* (2010) 52:558–71. doi: 10.1016/j.jhep.2009.11.012

6. Kondo T, Yagy R, Kuchiba K. Dubin-Johnson syndrome in neonate. *N Engl J Med.* (1975) 292:1028–9. doi: 10.1056/nejm197505082921913

7. Rastogi A, Krishnani N, Pandey R. Dubin-Johnson syndrome, a clinicopathologic study of twenty cases. *Indian J PatholMicrobiol.* (2006) 49:500–4.

8. Dubin IN. Chronic idiopathic jaundice with a review of fifty cases. *Am J Med.* (1958) 24:268–92. doi: 10.1016/0002-9343(58)90315-2

9. Baba N, Ruppert RD. The Dubin-Johnson syndrome: electron microscopic observation of hepatic pigment—a case study. *Am J Clin Pathol.* (1972) 57:306–10. doi: 10.1093/ajcp/57.3.306

10. Sobaniec-Lotwska ME, Lebansztejn DM. Ultrastructure of Kupffer cells and hepatocytes in the Dubin-Johnson syndrome: a case report. *World J Gastroenterol.* (2006) 12:987–9. doi: 10.3748/wjg.v12.i6.987

11. Yasawy MI, Al-Karawi M, Coode P. Dubin-Johnson syndrome (black liver disease): report of two cases. *Ann Saudi Med.* (1988) 8:382–5. doi: 10.5144/0256-4947.1988.382

12. Dubin-Johnson Syndrome [DS], # 237500. *HYPERBILIRUBINEMIA, DUBIN-JOHNSON-TYPE; HBLRDJHYPERBILIRUBINEMIA II.* (2022). Available online at: https://www.omim.org/entry/237500 (accessed January 14, 2022).
Fedorov D, Boehm D, Leipoldt M, Wilhelm C, Reardon W, Clayton-Smith J, et al. SALL4 deletions are a common cause of Okihiro and acro-renal-ocular syndromes and confirm haploinsufficiency as the pathogenic mechanism. *Method Anal.* (2004) 41, 1–8. doi: 10.1136/jmg.2004.019901

14. PolyPhen-2. *Prediction of Functional Effects of Human nsSNPs.* (2014). Available online at: http://genetics.bwh.harvard.edu/pph2/ (accessed January 13, 2022).

15. Mutation Taster. *Mutation Taster.* (2014). Available online at: www.mutationtaster.org (accessed January 13, 2022).

16. Tanner S. *Jaundice in Paediatric Hepatology.* Edinburgh: Churchill Livingstone (1989).

17. Kanda D, Takagi H, Kawahara Y, Yata Y, Takakusagi T, Hatanaka T, et al. Novel large-scale deletion (whole exon 7) in the ABCC2 gene in a patient with the Dubin-Johnson syndrome. *Drug Metab Pharmacokinet.* (2009) 24:464–8. doi: 10.2133/dmpk.24.464

18. Al-Hussaini A, AlSaleem B, AlHomaidani H, Asery A, Alruwaithi M, Alameer M, et al. Clinical, biochemical, and molecular characterization of neonatal-onset Dubin-Johnson syndrome in a large case series from the Arabs. *Front Pediatr.* (2021) 9:741835. doi: 10.3389/fped.2021.741835

19. Nadroo AM, Al-Zaben A, Bilan M, Baez-Giangreco A. Dubin-Johnson syndrome in a Saudi neonate. *Ann Saudi Med.* (1996) 16:695–7. doi: 10.5144/0256-4947.1996.695

20. Bar-Meir S, Baron J, Seligson U, Gottesfeld E, Levy R, Gilat T. 99mTc-HIDA cholescintigraphy in Dubin-Johnson and Rotor syndromes. *Radiology.* (1982) 142:743–6. doi: 10.1148/radiology.142.3.7063695

21. Bujanover Y, Bar-Meir S, Hayman I, Baron J. 99mTc-HIDA cholescintigraphy in children with Dubin-Johnson syndrome. *J Pediatr Gastroenterol Nutr.* (1983) 2:311–2. doi: 10.1097/00005176-198305000-00017

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Kamal, Saadah, Alghamdi, Algarni, El-Shabrawi, Sherief and AboSabie. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.