Observation of the Rare Decay $B^+ \rightarrow K^+ \pi^0 \pi^0$

P. del Amo Sanchez, J. P. Lees, V. Poirier, E. Precipice, V. Tisserand, J. Garra Tico, E. Grauges, M. Martinelli, A. Palano, M. Pappalardo, G. Eigen, B. Stugu, L. Sun, M. Battaglia, D. N. Brown, B. Hooberman, L. T. Kerth, Y. Gu, G. Kolomensky, G. Lynch, I. L. Osipenkov, T. Tanabe, C. M. Hawkes, A. T. Watson, H. Koch, T. Schroeder, J. J. Asgeirsson, G. H. Hearty, T. S. Mattison, J. A. McKenna, A. Khan, A. Randle-Conde, V. E. Blinov, A. R. Buzykaev, V. P. Druzhinin, V. B. Golubev, A. P. Onuchin, S. I. Serednyakov, Yu. I. Skovpen, E. P. Solodov, K. Yu. Todyshev, A. N. Yushkov, M. Bondioli, S. Curry, D. Kirkby, A. J. Lankford, M. Mandelkern, E. C. Martin, D. P. Stoker, H. Atmacan, J. W. Gary, F. Liu, O. Long, G. M. Vitug, C. Campagnari, T. M. Hong, D. Kovalsky, J. D. Richman, A. M. Eisner, C. A. Heusch, J. Kroseberg, W. S. Lockman, A. J. Martinez, T. Schalk, B. A. Schumm, A. Seiden, L. O. Winstrom, C. H. Cheng, D. A. Doll, B. Echenard, D. G. Hitlin, P. Ongnongkulkul, F. C. Porter, A. Y. Rakitin, R. Andreassen, M. S. Dubrovin, G. Mancinelli, B. T. Meadows, M. D. Sokoloff, P. C. Bloom, W. T. Ford, A. Gaz, M. Nagel, U. Nauenberg, J. G. Smith, S. R. Wagner, R. Ayad, H. W. Toki, T. M. Karbach, J. Merkel, A. Petzold, B. Spahn, K. Wacker, M. J. Kobel, K. R. Schnibert, R. Schwierz, D. Bernard, M. Verderi, P. J. Clark, S. Playfer, J. E. Watson, M. Andrechini, D. Bettoni, C. Bozzi, R. Calabrese, A. Cecchi, G. Cibinetto, E. Fioravanti, P. Franchini, E. L. Uppili, M. Muserato, A. PETRELLA, L. Piemontesi, R. Baldini-Ferroli, A. Calcatera, R. de Sangro, G. Finocchiaro, M. Nicolaci, S. Pacetti, P. Patteri, I. M. Peruzzi, M. Piccolo, M. Rama, A. Zallo, R. Contiri, E. Guido, M. Lo Vetere, M. R. Monge, S. Passaggio, C. Patrignani, E. Robutti, S. Tosi, B. Bhuyan, V. Prasad, C. L. Lee, M. Morii, A. Adametz, J. Marks, S. Schenk, U. Uwer, F. U. Bernlochner, M. Ebert, H. M. Lacker, T. Lueck, A. Volk, P. D. Dauncey, M. Tibbetts, P. K. Behera, U. Mallik, C. Chen, J. Cochran, H. B. Crawley, D. Long, W. T. Meyer, S. Prell, E. I. Rosenberg, A. E. Rubin, Y. Y. Gao, A. V. Gritsan, Z. J. Guo, N. Aruna, M. Davier, D. Derkach, J. Firmino da Costa, G. Grosdidier, F. Le Diberder, A. M. Lutz, B. Malacescu, A. Perez, P. Roudeau, M. H. Schune, J. Serrano, V. Sordini, A. Stocchi, L. Wang, G. Wormser, J. D. Lange, D. M. Wright, I. Bingham, C. A. Chavez, J. P. Coleman, R. J. Fry, E. Gabathuler, R. Gamet, D. E. Hutchcroft, D. J. Payne, C. Touramanis, A. J. Bevan, F. D. Lodovico, R. Sacco, M. Sigamani, G. Cowan, S. Parameswaran, A. C. Wren, D. N. Brown, C. L. Davis, A. G. Denig, M. Fritsch, W. Gradl, H. A. Hahn, K. E. Alwyn, D. Bailey, J. R. Barlow, G. Jackson, D. L. A. Lafferty, J. T. West, J. Anderson, R. Cenci, A. Jawahery, D. A. Roberts, G. Simi, J. M. Tuggle, D. C. Dallapiccola, E. Salvati, R. Cowan, D. Dujmic, P. H. Fisher, G. Sciola, M. Zhao, D. Lindevang, P. M. Patel, S. H. Robertson, M. Schram, P. Bissoni, A. Lazzaro, V. Lombardo, F. Palombo, S. Stracka, L. Cremaldi, R. Godang, R. Kroeger, P. Sonnek, D. J. Summers, X. Nguyen, M. Simard, P. Taras, G. De Narde, Monorchio, G. Onorato, C. Sciaccia, G. Raven, H. L. Snoek, C. P. Jessop, J. K. J. Knoepfel, J. M. LoSecco, W. F. Wang, L. A. Corwin, K. Houscheid, R. Kass, J. P. Morris, A. M. Rahimi, L. Blount, J. Braun, R. Frey, O. Igokhina, J. A. Kolb, R. Rahmat, N. B. Sinev, D. Strom, J. Strube, E. Torrence, G. Castelli, E. Feltresi, N. Gagliardi, M. Margoni, M. Morandin, M. Posocco, M. Rotondo, F. Simonetti, R. Strolin, E. Ben-Haim, G. R. Bonneau, H. Briand, G. Calderini, J. Chauveau, O. Hamon, P. Ph. Leruste, G. Marchiori, J. Ocariz, J. Prendik, S. Sitt, M. Biasini, E. Manoni, A. Rossi, C. Angelini, G. Batignani, S. Bettarini, M. Carpinelli, G. Casarosa, A. Cervelli, F. Forti, M. A. Giorgi, A. Lusiani, N. Neri, E. Paoloni, G. Rizzo, J. J. Walsh, S. Lopes Pegna, C. Liu, J. Olsen, A. J. S. Smith, A. V. Telnov, E. Anulli, E. Baracchini, G. Cavoto, R. Facchini, F. Ferrarotto, F. Ferroni, M. Gaspero, L. Li Gioia, M. A. Mazzone, P. Piredda, F. Renga, T. Hartmann, T. Ledig, H. Schröder, R. Wald, T. Adye, B. Franek, E. O. Olaiya, F. F. Wilson, S. Emery, G. Hamel de Monchenault, G. Vasseur, Ch. Yèche, M. Zito, M. T. Allen, D. Aston, D. J. Bard, R. Bartoldus, J. F. Benitez, C. Cartaro, M. R. Convery.
We report an analysis of charmless hadronic decays of charged B mesons to the final state $K^+\pi^0\pi^0$, using a data sample of 470.9 ± 2.8 million $B\bar{B}$ events collected with the BABAR detector at the $\Upsilon(4S)$ resonance. We observe an excess of signal events with a significance above 10 standard deviations
\[(5.5 \pm 1.1 \pm 1.6) \times 10^{-6}, \] where the uncertainties are statistical and systematic, respectively.

Recent measurements of rates and asymmetries in $B \to K\pi$ decays have generated considerable interest because of possible hints of new physics contributions \[1, 2\]. Unfortunately, hadronic uncertainties prevent a clear interpretation of these results in terms of physics beyond the Standard Model (SM). A data driven approach, involving measurements of all observables in the $B \to K\pi$ system can in principle resolve the theoretical situation, but much more precise measurements (i.e. much larger data samples) will be needed \[3, 4\].

It is interesting to study the related decays to pseudoscalar-vector final states $B \to K^{*}\pi$ and $B \to K_{\rho} \pi$. In Table I, we review the existing experimental measurements of the channels in the $B \to K^{*}\pi$ system. It is evident that improved measurements of the $K^{*+}\pi^0$ decay are needed.

Due to the non-negligible width of the K^{*} resonances, the quasi-two-body modes are best studied in the analysis of the three-body Dalitz plot. The four $K^{*}\pi$ decays populate six $K\pi\pi$ Dalitz plots (the four K_{ρ} decays also produce four of the same six final states). Of these, Dalitz plot analyses of $K^{+}\pi^{+}\pi^{-}$ \[10, 17\], $K^{0}_{\rho}\pi^{+}\pi^{-}$ \[14, 20\] and
$K^+\pi^-\pi^0$ have been performed to date. The first two of these have shown the presence of a poorly-understood structure, dubbed the $f_X(1300)$, in the $\pi^+\pi^-$ invariant mass distribution. A study of the $K^+\pi^0\pi^0$ Dalitz plot would help to elucidate the nature of this peak, since even-spin states will populate both $K\pi\pi^-$ and $K\pi^0\pi^0$ (assuming isospin symmetry), while odd-spin states cannot decay to $\pi^0\pi^0$.

Knowledge of the $K^+\pi^0\pi^0$ Dalitz plot may also help to clarify the interpretation of the inclusive time-dependent analyses [21] of $B^0 \rightarrow K_s^0\pi^0\pi^0$ [22, 23]. Currently, these results show the largest deviation, albeit with a large uncertainty, among hadronic $b \rightarrow s$ penguin-dominated decays [10] from the naive Standard Model expectation that the time-dependent CP violation parameter should be given by $\sin(\Delta m_{CP}) \approx \eta_{CP} \sin(2\beta)$, where η_{CP} is the CP eigenvalue of the final state (+1 for $K^+\pi^0\pi^0$) and β is an angle of the Cabibbo-Kobayashi-Maskawa [24, 25] unitarity triangle. Such deviations could be caused by new physics, but in order to rule out the possibility of sizeable corrections to the Standard Model prediction, better understanding of the population of the $K^+\pi^0\pi^0$ Dalitz plots will be necessary.

In this article, we present the results of a search for the three-body decay $B^+ \rightarrow K^+\pi^0\pi^0$, including short-lived intermediate two-body modes that decay to this final state. This is the first step towards measuring the properties of contributing resonant modes. There is no existing previous measurement of the three-body branching fraction, but several quasi-two-body modes that can decay to this final state have been seen, with varying significances. These include $B^+ \rightarrow f_0(980)K^+$, observed in the $f_0(980) \rightarrow \pi^+\pi^-\pi^0$ channel [16, 17] and also seen in $f_0(980) \rightarrow K^+\pi^-\pi^0$ [26], $B^+ \rightarrow f_2(1270)K^+$, seen in $f_2(1270) \rightarrow \pi^+\pi^-\pi^0$ [16, 17], and $B^+ \rightarrow K^+(892)\pi^0$, seen in $K^+ \rightarrow K^+\pi^0\pi^0$ [15]. The decay $B^+ \rightarrow \chi_{c0}K^+$ has also been observed with $\chi_{c0} \rightarrow \pi^+\pi^-\pi^0$ [16, 17] and $\chi_{c0} \rightarrow K^+K^-\pi^0$ [26, 27].

The data used in the analysis, collected with the BaBar detector [28] at the PEP-II asymmetric energy e^+e^- collider at SLAC, consist of an integrated luminosity of 429 fb$^{-1}$ recorded at the $\Upsilon(4S)$ resonance (“on-peak”) and 45 fb$^{-1}$ collected 40 MeV below the resonance (“off-peak”). The on-peak data sample contains the whole BaBar dataset of 470.9 \pm 2.8 million $B\bar{B}$ events.

We reconstruct $B^+ \rightarrow K^+\pi^0\pi^0$ decay candidates by combining a K^+ candidate with two neutral pion candidates. The K^+ candidates are required to have a minimum transverse momentum of 0.05 GeV/c and to be consistent with having originated from the interaction region. Separation of charged kaons from charged pions is accomplished with energy-loss information from the tracking subdetectors, and the Cherenkov angle and number of photons measured by a ring-imaging Cherenkov detector. The efficiency for kaon selection is approximately 80% including geometrical acceptance, while the probability of misidentification of pions as kaons is below 5% up to a laboratory momentum of 4 GeV/c. Neutral pion candidates are formed from pairs of photons with laboratory energies above 0.05 GeV and lateral moments between 0.01 and 0.6. We require that the mass of the reconstructed π^0 is within the range 0.115 GeV/c$^2 < m_{\pi^+\pi^-} < 0.150$ GeV/c2 and that the absolute value of the cosine of the decay angle in the π^0 rest frame is less than 0.9. We exclude candidates that are consistent with the $B^+ \rightarrow K^+_S\bar{K}^+\pi^0$, $B^+ \rightarrow \pi^0\pi^0\pi^0$ decay chain by rejecting events that contain a candidate that satisfies $0.40 \text{ GeV}/c^2 < m_{\pi^+\pi^-} < 0.55 \text{ GeV}/c^2$. This veto has a signal efficiency of at least 96% for any charmless resonant decay and is almost 100% efficient for nonresonant $B^+ \rightarrow K^+\pi^0\pi^0$ and $B^+ \rightarrow \chi_{c0}K^+$ decays.

Due to the presence of two neutral pions in the final state, there is a significant probability for signal events to be misreconstructed, due to low momentum particles being exchanged with particles from the decay of the other B meson in the event. We refer to these as “self-cross-feed” (SCF) events, as opposed to correctly reconstructed (CR) events. Using a classification based on Monte Carlo information, we find that in simulated events the SCF fraction depends strongly on the Dalitz plot distribution of the signal, and ranges from 2% for $B^+ \rightarrow \chi_{c0}K^+$ decays to 30% for $B^+ \rightarrow f_2(1270)K^+$ decays.

To suppress the dominant background contribution, which arises from continuum $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events, we employ a neural network that combines four variables commonly used to discriminate jet-like $q\bar{q}$ events from the more spherical $B\bar{B}$ events. These are the ratio of the second to the zeroth order momentum-weighted angular moment, the absolute value of the cosine of the angle between the B direction and the beam axis, the absolute value of the cosine of the angle between the B thrust axis and the beam axis, and the absolute value of the output of a neural network used for “flavour tagging” (i.e. for distinguishing B from $B\bar{B}$ decays using inclusive properties of the decay of the other B meson in the $T(4S) \rightarrow B\bar{B}$ decay [29]). The first three quantities are calculated in the center-of-mass (CM) frame. We apply a loose criterion on the neural network output (NN$_{out}$) which retains approximately 90% of the signal while rejecting approximately 82% of the $q\bar{q}$ background.

In addition to NN$_{out}$, we distinguish signal from background events using two kinematic variables: the difference ΔE between the CM energy of the B candi-
date and $\sqrt{s}/2$, and the beam-energy-substituted mass
\[m_{ES} = \sqrt{s}/4 - \mathbf{p}_B^2, \]
where \sqrt{s} is the total CM energy and \mathbf{p}_B is the momentum of the candidate B meson in the CM frame. The signal m_{ES} distribution for CR events is approximately independent of the $B^+ \to K^+ \pi^0 \pi^0$ Dalitz plot distribution and peaks near the B mass with a resolution of about 3 MeV/c^2. We select signal candidates that satisfy 5.260 GeV/$c^2 < m_{ES} < 5.286$ GeV/c^2. The CR signal ΔE distribution peaks near zero, but has a resolution that depends on the signal Dalitz plot distribution, which is a priori unknown. To avoid possible biases \[[30] \] we apply tighter selection criteria, -0.15 GeV $< \Delta E$ < 0.05 GeV, which have an efficiency of about 80% for signal while retaining only about 30% of the background (both compared to the looser requirement $|\Delta E| < 0.30$ GeV), and do not use ΔE in the fit described below.

The efficiency for signal events to pass all the selection criteria is determined as a function of position in the Dalitz plot. Using a Monte Carlo (MC) simulation in which events uniformly populate the phase-space, we obtain an average efficiency of approximately 16%, though values as low as 8% are found near the corners of the Dalitz plot.

An average of 1.3 B candidates is found per selected event. In events with multiple candidates we choose the one with the smallest value of a χ^2 variable formed from the sum of the χ^2 values of the two π^0 candidate masses. This procedure has been found to select the best reconstructed candidate more than 90% of the time, and does not bias our fit variables.

We study residual background contributions from $B\bar{B}$ events using MC simulations. It is found that these events can be combined into four categories based on their shapes in m_{ES} and ΔE. The first category comprises two-body modes (mainly $B^+ \to K^+ \pi^0$); the second contains three-body modes (mainly $B^+ \to K^+ \pi^0 \gamma$ and $B^+ \to \pi^+ \pi^0 \pi^0$); the third and fourth are composed of higher multiplicity decays (many possible sources, with or without intermediate charmed states) with missing particles, and are distinguished by the absence or presence of a peak in the m_{ES} distribution respectively. Based on the MC-derived efficiencies, total number of $B\bar{B}$ events, and known branching fractions \[[10, 31] \], we expect 70 \pm 9, 39 \pm 18, 1090 \pm 40 and 170 \pm 30 events in the four respective categories.

To obtain the $B^+ \to K^+ \pi^0 \pi^0$ signal yield, we perform an unbinned extended maximum likelihood fit to the candidate events using two input variables: m_{ES} and N_{out}. For each component j (signal, $q\bar{q}$ background, and the four $B\bar{B}$ background categories), we define a probability density function (PDF)
\[P_j^i = P_j(m_{ES}^i)P_j(N_{out}^i), \tag{1} \]
where i denotes the event index. The signal component is further separated into CR and SCF parts
\[P_{sig}^i = (1 - f_{SCF})P_{CR}(m_{ES}^i)P_{CR}(N_{out}^i) + f_{SCF}P_{SCF}(m_{ES}^i)P_{SCF}(N_{out}^i), \tag{2} \]
where f_{SCF} is the SCF fraction. The extended likelihood function is
\[L = \prod_k \epsilon^{-n_k} \prod_i \left[\sum_j n_j P_j^i \right], \tag{3} \]
where $n_j(k)$ is the yield of the event category $j(k)$.

For the signal, the m_{ES} PDFs for CR and SCF are described by an asymmetric Gaussian with power-law tails and a third order Chebychev polynomial, respectively. Both CR and SCF N_{out} PDFs are described by one-dimensional histograms. We fix the shape parameters to the values obtained from the $B^+ \to K^+ \pi^0 \pi^0$ phase-space MC sample, after adjusting them to account for possible differences between data and MC simulations determined with a high statistics control sample of $B^+ \to \overline{D^0}\rho^+ \to (K^+\pi^-\pi^0) (\pi^+\pi^0)$ decays. For the continuum background, we use an ARGUS function \[[32] \] to parameterize the m_{ES} shape. The continuum N_{out} shape is modelled with a parametric step function function with 20 bins. One-dimensional histograms are used as nonparametric PDFs to represent all fit variables for the four $B\bar{B}$ background components. The free parameters of our fit are the yields of signal and continuum background together with the parameters of the continuum m_{ES} and N_{out} PDFs. All the yields and PDF shapes of the four $B\bar{B}$ background categories are fixed based on MC simulations.

The results of the fit are highly sensitive to the value of f_{SCF}, which depends strongly on the Dalitz plot distribution of signal events and cannot be determined directly from the fit. To circumvent this problem, we adopt an iterative procedure. We perform a fit with f_{SCF} fixed to an initial value. We then construct the signal Dalitz plot from the signal probabilities for each candidate event (\textit{sWeights}) calculated with the \textit{sPlot} technique \[[32] \], and determine the corresponding average value of f_{SCF}. We then fit again with f_{SCF} fixed to the new value, and repeat until the obtained values of the total signal yield (CR + SCF) and f_{SCF} are unchanged between iterations. This method was validated using MC and was found to return values of f_{SCF} that are accurate to within 3% of the nominal SCF fraction. Convergence is typically obtained within 3 iterations.

We cross-check our analysis procedure using the high statistics control sample described above. We impose selection requirements on the D and candidates’ invariant masses: 1.84 GeV/$c^2 < m_{K^+\pi^-\pi^0} < 1.88$ GeV/c^2 and 0.65 GeV/$c^2 < m_{\pi^+\pi^0} < 0.85$ GeV/c^2. We fit the data with a likelihood function that includes components for the control channel, and for backgrounds from $B\bar{B}$ and
We apply the fit method described above to the 31 673 selected candidate $B^+ \rightarrow K^+ \pi^0 \pi^0$ events. Convergence is obtained after four iterations with a yield of 1220 ± 85 signal events and a SCF fraction of 9.7%. The results of the fit are shown in Fig. 1. The statistical significance of the signal yield, given by $\sqrt{2\Delta \ln L}$ where $\Delta \ln L$ is the difference between the negative log likelihood obtained assuming zero signal events and that at its minimum, is 15.6 standard deviations (σ). Including systematic uncertainties (discussed below), the significance is above 10 σ.

The $B^+ \rightarrow K^+ \pi^0 \pi^0$ branching fraction is determined from the result of the fit, dividing the signal by event-by-event efficiencies that take the Dalitz-plot position dependence into account, and summing them to obtain an efficiency-corrected signal yield of 7427 ± 518 events. We further correct for the effect of the K^0_s veto and a bias in the fitted signal yield, as determined from Monte Carlo pseudoexperiments generated with a signal component with the same values of the yield and SCF fraction as found in the fit to data. Finally, we divide by the total number of $B\overline{B}$ events in the data sample to obtain our measurement of the branching fraction $B(B^+ \rightarrow K^+ \pi^0 \pi^0) = (15.5 \pm 1.1 \pm 1.6) \times 10^{-6}$, where the first uncertainty is statistical and the second is systematic.

We assign systematic uncertainties due to (i) uncertainties in CR signal m_{ES} PDF shapes (0.8%) evaluated using the $B^+ \rightarrow D\rho^+ \rightarrow (K^+ \pi^- \pi^0) (\pi^+ \pi^0)$ control sample; (ii) uncertainties in CR signal and $B\overline{B}$ background NN_{out} PDF shapes (4.9%) evaluated using uncertainties in the data/MC ratio determined from the control sample and applying them to all PDFs in a correlated manner; (iii) uncertainties in the SCF signal m_{ES} and NN_{out} PDF shapes (1.7% and 0.7%, respectively) evaluated considering a range of SCF shapes corresponding to different signal Dalitz plot distributions; (iv) uncertainty in the SCF fraction (2.5%) from varying the value used in the fit within a range of uncertainty determined from Monte Carlo pseudoexperiment tests of our iterative fitting procedure; (v) uncertainties in the $B\overline{B}$ background PDFs due to finite MC statistics (0.8%), determined by varying the contents of the bins of the histograms used to describe the PDFs within their errors; (vi) uncertainties in the $B\overline{B}$ background m_{ES} PDF shapes due to data/MC differences (1.6%), evaluated by smearing the PDFs with a Gaussian with parameters determined from the control sample; (vii) uncertainties in the fixed $B\overline{B}$ background yields (1.4%), evaluated by varying these within their uncertainties; (viii) uncertainty in the correction due to fit bias (1.8%), which corresponds to half the correction combined in quadrature with its error; (ix) uncertainties in the efficiency, with contributions from tracking (0.4%), kaon identification (1.0%), neutral pion reconstruction (3.0% per neutral pion, so 6.0% in total), ΔE (4.0%) and NN_{out} (3.0%) selection requirements, the K^0_s veto correction (2.0%); (x) uncertainty in the number of $B\overline{B}$ pairs in the data sample (0.6%). The total systematic uncertainty on the branching fraction is 10.4%. Including only systematic uncertainties that affect the yield, the total is 6.5%. Table II summarizes the systematic contributions.

In summary, using the full $B\overline{B}$ data sample of 429 fb$^{-1}$ collected at the $\Upsilon(4S)$ resonance, we observe charmless hadronic decays of charged B mesons to the final state $K^+ \pi^0 \pi^0$. The signal has a significance above 10σ, after taking systematic effects into account. We measure the branching fraction to be $B(B^+ \rightarrow K^+ \pi^0 \pi^0) = (15.5 \pm 1.1 \pm 1.6) \times 10^{-6}$. This is the first step towards understanding the composition of the Dalitz plot of this decay and measuring the properties of contributing quasi-two-body modes.

We are grateful for the extraordinary contributions of our PEP-II colleagues in achieving the excellent luminosity and machine conditions that have made this work possible. The success of this project also relies critically on the expertise and dedication of the computing organizations that support Babar. The collaborating institutions wish to thank SLAC for its support and the kind hospitality extended to them. This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l’Energie Atomique and Institut National de Physique Nucléaire et de Physique des Particules (France), the Bundesministerium für Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research
on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e Innovación (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

FIG. 1: Projections of candidate events onto m_{ES} (left) and NN_{out} (right), following requirements on the other fit variable in order to enhance signal visibility. Points with error bars show the data, the solid (blue) curves represent the total fit result, the dashed (green) curves show the total background contribution, and the dotted (red) curves are the $q\bar{q}$ component. The dash-dotted curves represent the signal contribution.

* Now at Temple University, Philadelphia, Pennsylvania 19122, USA
† Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
‡ Also with Università di Roma La Sapienza, I-00185 Roma, Italy
§ Now at University of South Alabama, Mobile, Alabama
¶ Also with Università di Sassari, Sassari, Italy

[1] B. Aubert et al. (BABAR Collab.), Phys. Rev. D76, 091102 (2007), arXiv:0707.2798 [hep-ex].
[2] S. W. Lin et al. (Belle Collab.), Nature 452, 332 (2008).
[3] R. Fleischer, S. Jager, D. Pirjol, and J. Zupan, Phys. Rev. D78, 111501 (2008), arXiv:0806.2900 [hep-ph].
[4] M. Gronau and J. L. Rosner, Phys. Lett. B666, 467 (2008), arXiv:0807.3080 [hep-ph].
[5] M. Ciuchini, E. Franco, G. Martinelli, M. Pierini, and L. Silvestrini, Phys. Lett. B674, 197 (2009), arXiv:0811.0341 [hep-ph].
[6] Q. Chang, X.-Q. Li, and Y.-D. Yang, JHEP 09, 038 (2008), arXiv:0807.4295 [hep-ph].
[7] C.-W. Chiang and D. London, Mod. Phys. Lett. A24, 1083 (2009), arXiv:0904.2235 [hep-ph].
[8] M. Gronau, D. Pirjol, and J. Zupan (2010), arXiv:1001.0702 [hep-ph].
[9] The inclusion of charge conjugate modes is implied throughout this paper.
[10] E. Barberio et al. (Heavy Flavor Averaging Group) (2008), arXiv:0808.1297 [hep-ex], URL http://www.slac.stanford.edu/xorg/hfag/
[11] B. Aubert et al. (BABAR Collab.), Phys. Rev. D78, 052005 (2008), arXiv:0711.4417 [hep-ex].
[12] B. Aubert et al. (BABAR Collab.) (2008), arXiv:0807.4567 [hep-ex].
[13] A. Garmash et al. (Belle Collab.), Phys. Rev. D75, 012006 (2007), hep-ex/0610081.
[14] J. Dalseno et al. (Belle Collab.), Phys. Rev. D79, 072004 (2009), arXiv:0811.3665 [hep-ex].
[15] B. Aubert et al. (BABAR Collab.), Phys. Rev. D71, 111101 (2005), hep-ex/0504009.
[16] B. Aubert et al. (BABAR Collab.), Phys. Rev. D78, 012004 (2008), arXiv:0803.4451 [hep-ex].
[17] A. Garmash et al. (Belle Collab.), Phys. Rev. Lett. 96, 251803 (2006), hep-ex/0512066.
[18] P. Chang (Belle Collab.), preliminary results presented at ICHEP 2008.
[19] P. Chang et al. (Belle Collab.), Phys. Lett. B599, 148 (2004), hep-ex/0406075.
[20] B. Aubert et al. (BABAR Collab.), Phys. Rev. D80, 112001 (2009), arXiv:0905.3615 [hep-ex].
[21] T. Gershon and M. Hazumi, Phys. Lett. B596, 163 (2004), hep-ph/0402097.
[22] B. Aubert et al. (BABAR Collab.), Phys. Rev. D76, 071101 (2007), hep-ex/0702010.
[23] K. Abe et al. (Belle Collab.) (2007), arXiv:0708.1845 [hep-ex].
[24] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
[25] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[26] B. Aubert et al. (BABAR Collab.), Phys. Rev. D74, 032003 (2006), hep-ex/0605003.
[27] A. Garmash et al. (Belle Collab), Phys. Rev. D71, 092003 (2005), hep-ex/0412066.
[28] B. Aubert et al. (BABAR Collab.), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[29] B. Aubert et al. (BABAR Collab.), Phys. Rev. D79, 072009 (2009), arXiv:0902.1708 [hep-ex].
[30] G. Punzi (2004), physics/0401045.
[31] C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008).
[32] H. Albrecht et al. (ARGUS Collab.), Phys. Lett. B241, 278 (1990).
[33] M. Pivk and F. R. Le Diberder, Nucl. Instrum. Meth. A555, 356 (2005), physics/0402083.