New results on existence of Atangana-Baleanu fractional differential equations with dependence on the Lipschitz first derivatives

V. Pandiyammal ¹ and U. Karthik Raja ²*

Abstract
We study on the existence and uniqueness of solutions for a Atangana-Baleanu fractional differential equations with dependence on the Lipschitz first derivative conditions. We develop a Gronwall inequality in the frame of Atangana-Baleanu fractional integral. An example is given to illustrate the main results and investigate the stability in the sense of Ulam.

Keywords
Fractional differential equations; Atangana-Baleanu fractional derivative; Lipschitz first derivatives; Gronwall inequality; Ulam-Hyers stability.

AMS Subject Classification
34A08, 34K37, 58C30.

1. Introduction
In the past decades, there has been a growing interest in the study of the fractional differential equations due to the rigorous growth of the fractional calculus theory itself and its applications in various fields such as chemistry, physics, engineering, control theory, aerodynamics, electrodynamics of complex medium and control of dynamical systems and so on. In consequence, fractional differential equations is obtaining much significance and attention. For details, we refer readers to [12, 18, 19, 23] and references therein.

There are some approaches to the fractional derivatives such as Riemann-Liouville, Caputo, Weyl, Hadamard and Grunwald-Letnikov, etc. The most well known fractional operator are perhaps the Riemann-Liouville fractional integral and derivatives. Fractional operators are act as an magnificent tools for the mathematical modeling of the real world problems. Later, Atangana and Baleanu proposed two new fractional derivatives based on the Caputo and the Riemann-Liouville definitions of fractional-order derivatives. Other kinds of fractional derivative that look like the Riemann-Liouville and Caputo ones can be seen in [6, 21].

In recent years, many researchers paid much attention to ABC-derivative with several conditions in various spaces. The Atangana-Baleanu fractional derivative is familiar to followings nonsingularity as well as nonlocality of the kernel, which acquires the generalized Mittag-Leffler function. Some of the latest studies on ABC-derivatives such as, Jarad et al. investigated a ODE’s in the form of AB-derivative [20]. Ravichandran et al. discussed in details the AB-fractional integro-differential equations. Atangana and Koca find the chaos in a simple nonlinear system with AB-fractional derivatives [10].

In recent years, many researchers paid much attention to ABC-derivative with several conditions in various spaces. The Atangana-Baleanu fractional derivative is familiar to followings nonsingularity as well as nonlocality of the kernel, which acquires the generalized Mittag-Leffler function. Some of the latest studies on ABC-derivatives such as, Jarad et al. investigated a ODE’s in the form of AB-derivative [20]. Ravichandran et al. discussed in details the AB-fractional integro-differential equations. Atangana and Koca find the chaos in a simple nonlinear system with AB-fractional derivatives [10].

More precisely in [11], Khan et al. investigated Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel. Sene discussed Stokes’ first problem for heated flat plate with AB-derivative [31]. Owolabi studied the modelling and simulation of a dynamical
system with the Atangana-Baleanu fractional derivative [30].

To be concise, in this paper we are concerned with the study of the existence and uniqueness of solutions of the Atangana-Baleanu fractional derivative equation in the sense of Caputo as follows

\[
\left(\frac{ABC}{a}D^{\alpha}u\right)(t) = \int_{0}^{t} \frac{\alpha - 1}{\Gamma(\alpha)} u'(s) ds, \quad 0 < \alpha \leq 2,
\]

\[
u(a) = u_0, \quad t \in [a, b],
\]

where \(t \in C[a, b] \), where \(a \) is the left Caputo AB fractional derivative, \(u(t), (\frac{ABC}{a}D^{\alpha}u) \), \(f \in C[a, b], f(a, u(a), u'(a, u(a))) = 0 \). Consider \(\mathcal{U} u(t) = u'(t, u(t)) \) Then (1.1) becomes

\[
\left(\frac{ABC}{a}D^{\alpha}u\right)(t) = f(t, u(t), \mathcal{U} u(t)), \quad 1 < \alpha \leq 2,
\]

\[
u(a) = u_0
\]

The rest of this paper is organized as follows: In Section 2, we review some useful properties, definitions, propositions and lemmas of fractional calculus. The existence and uniqueness of solutions for AB-fractional derivative results are proved in Section 3. In section 4 is devoted to illustrate an example numerically solved. Ulam-Hyers stability analysis is considered in section 5.

2. Preliminaries

In this section, we present some definitions, lemmas and propositions of fractional calculus, which will be used throughout this paper.

The definition of Riemann-Liouville fractional integral and derivatives are given as follows:

- For \(\alpha > 0 \), the left Riemann-Liouville fractional integral of order \(\alpha \) is given as [20]

\[
\left(\frac{AL}{a}I^{\alpha}u\right)(t) = \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-s)^{\alpha-1} u(s) ds.
\]

- For \(0 < \alpha < 1 \), the left Riemann-Liouville fractional derivative of order \(\alpha \) is given as [20]

\[
\left(\frac{AL}{a}D^{\alpha}u\right)(t) = \frac{d}{dt} \left(\frac{1}{\Gamma(1-\alpha)} \int_{a}^{t} (t-s)^{-\alpha} u(s) ds \right).
\]

- For \(0 \leq \alpha \leq 1 \), the Caputo fractional derivative of order \(\alpha \) is given as [20]

\[
\left(\frac{AL}{a}D^{\alpha}u\right)(t) = \frac{1}{\Gamma(1-\alpha)} \int_{a}^{t} (t-s)^{-\alpha} u'(s) ds.
\]

Definition 2.1. [7] Let \(u \in H^1(a, b), \ b < a < b \) and \(\alpha \in [0, 1] \). The Caputo Atangana-Baleanu fractional derivative of \(u \) of order \(\alpha \) is defined by

\[
\left(\frac{ABC}{a}D^{\alpha}u\right)(t) = \frac{B(\alpha)}{1-\alpha} \int_{0}^{t} u'(s) E_{\alpha} \left[-\alpha (t-s)^{\alpha} \right] ds,
\]

where \(E_{\alpha} \) is the Mittag-Leffler function defined by \(E_{\alpha}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(n+1)} \) [25, 32] and \(B(\alpha) > 0 \) is a normalizing function satisfying \(B(0) = B(1) = 1 \). The Riemann Atangana-Baleanu fractional derivative of \(u \) of order \(\alpha \) is defined by

\[
\left(\frac{ABR}{a}D^{\alpha}u\right)(t) = \frac{B(\alpha)}{1-\alpha} \int_{0}^{t} u(s) E_{\alpha} \left[-\alpha \frac{(t-s)^{\alpha}}{1-\alpha} \right] ds.
\]

The associative fractional integral is defined by

\[
\left(\frac{ABR}{a}I^{\alpha}u\right)(t) = \frac{1}{B(\alpha)} \int_{0}^{t} u(t) + \alpha B(\alpha) \left(\frac{AL}{a}D^{\alpha}u\right)(t)
\]

where \(d^{\alpha} \) is the left Riemann-Liouville fractional integral given in (2.1).

Lemma 2.2. [7] Let \(u \in H^1(a, b) \) and \(\alpha \in [0, 1] \). Then the following relation holds.

\[
\left(\frac{ABR}{a}D^{\alpha}u\right)(t) = \left(\frac{ABC}{a}D^{\alpha}u\right)(t) - \frac{B(\alpha)}{1-\alpha} u(a) E_{\alpha} \left[-\alpha \frac{(t-a)^{\alpha}}{1-\alpha} \right].
\]

Lemma 2.3. [20] Suppose that \(\alpha > 0 \), \(c(t)(1-\frac{\alpha}{B(\alpha)} d(t))^{-1} \) is a nonnegative, nondecreasing and locally integrable function on \([a, b] \), \(\frac{d(t)}{B(\alpha)}(1-\frac{\alpha}{B(\alpha)} d(t))^{-1} \) is non-negative and bounded on \([a, b] \) and \(u(t) \) is nonnegative and locally integrable \([a, b] \) with

\[
u(t) \leq c(t) + d(t) \left(\frac{ABR}{a}I^{\alpha}u\right)(t),
\]

then

\[
u(t) \leq \frac{c(t) B(\alpha)}{B(\alpha) - (1-\alpha) d(t)} E_{\alpha} \left(\frac{\alpha}{B(\alpha) - (1-\alpha) d(t)} \right).
\]

Theorem 2.4. (Ascoli-Arzela Theorem)[15] Let \(S \) be a compact metric space. Then \(M \subset C(\Omega) \) is relatively compact iff \(M \) is uniformly bounded and uniformly equicontinuous.

Theorem 2.5. (Krasnoselskii Fixed Point Theorem)[15] Let \(S \) be a closed, bounded and convex subset of a real Banach space \(X \) and let \(T_1 \) and \(T_2 \) be operators on \(S \) satisfying the following conditions

\[
T_1(s) + T_2(s) \subset S
\]

- \(T_1 \) is a strict contraction on \(S \), i.e., there exist a \(k \in [a, b] \) such that

\[
||T_1(u) - T_1(v)|| \leq k ||u - v|| \quad \forall u, v \in S
\]

- \(T_2 \) is continuous on \(S \) and \(T_2(s) \) is a relatively compact subset of \(X \).

Then, there exist a \(u \in S \) such that \(T_1 u + T_2 u = u \)

Proposition 2.6. [14] For \(0 \leq \alpha \leq 1 \),

\[
\left(\frac{ABR}{a}I^{\alpha}u\right)(t) = u(t) - u(a) E_{\alpha}(\lambda t^{\alpha}) - \frac{\alpha}{1-\alpha} u(a) E_{\alpha,\alpha+1}(\lambda t^{\alpha})
\]

\[
u(t) - u(a).
\]
Proposition 2.7. ([22, 28]) \(f'(u) \in D \) satisfy the Lipschitz condition, i.e., there exist a constant \(k > 0 \) such that
\[
\|f'(u) - f'(v)\| \leq k \|u - v\|, \quad u, v \in D.
\] (2.10)

Definition 2.8. A continuous function \(u : [a, b] \to \mathbb{R} \) is called a mild solution of the following Atangana-Baleanu fractional derivative equation in the sense of Caputo
\[
\begin{aligned}
(ABC^\alpha D^\alpha u)(t) &= g(t), \quad 1 < \alpha \leq 2, \\
u(a) &= u_0
\end{aligned}
\]
for each \(t \in C[a, b] \), \(u(t) \) satisfies the following integral equation
\[
u(t) = u_0 +_a AB I^\alpha g(t)
\]

3. Existence and Uniqueness

In this section, we prove the existence and uniqueness of (1.3) and (1.4).

We need the following assumptions to prove the existence and uniqueness results for the problem (1.3) and (1.4) by using the Banach contraction principle.

\textbf{A}_1 Let \(u \in C[a, b] \) and \(f \in (C[a, b] \times \mathbb{R} \times \mathbb{R}, \mathbb{R}) \) is continuous function and there exist a positive constants \(M_1, M_2 \) and \(M \) such that
\[
\|f(t, u_1, v_1) - f(t, u_2, v_2)\| \leq M_1 (\|u_1 - u_2\| + \|v_1 - v_2\|)
\]
for all \(u_1, v_1, u_2, v_2 \in Y \), \(M_2 = \max_{\lambda \in [a, b]} \|f(\lambda, 0, 0)\| \) and \(M = \max\{M_1, M_2\} \). Let \(Y = C[\mathbb{R}, X] \) be the set of continuous functions on \(\mathbb{R} \) with values in the Banach spaces \(X \).

\textbf{A}_2 Let \(u' \in C[a, b] \) satisfy the Lipschitz condition, i.e., there exist a positive constants \(N_1, N_2 \) and \(N \) such that
\[
\|D(t, u) - D(t, v)\| \leq N_1 (\|u - v\|),
\]
for all \(u, v \) in \(Y \). \(N_2 = \max_{t \in D} \|D(t, 0)\| \) and \(N = \max\{N_1, N_2\} \).

\textbf{A}_3 For each \(\lambda > 0 \), let \(B_1 = \{u \in Y : \|u\| \leq \lambda\} \subset Y \) where \(\lambda = ((1 - \rho)^{-1} \|u_0\|) \) and take \(\rho = (M(\|u\| + \|u_0\|)).

\textbf{A}_4 For each \(\lambda_0 > 0 \), let \(B_2 = \{u \in C([a, b], \mathbb{R}) : \|u\| \leq \lambda\} \) then \(B_2 \) is clearly bounded, closed and convex subset in \(C([a, b], \mathbb{R}) \).

Lemma 3.1. If \(\text{A}_1 \) and \(\text{A}_2 \) are satisfied, then the estimate
\[
\|D(u(t))\| \leq t(N_1 \|u\| + N_2), \quad \|D(u(t) - Dv(t))\| \leq N \|u - v\|,
\]
are satisfied for any \(t \in \mathbb{R} \), and \(u, v \in Y \).

Theorem 3.2. Let \(u(t) \in C[a, b] \) such that \((ABD_\alpha^\alpha D_\alpha^\alpha u)(t) \in C[a, b] \). Suppose that \(f \in C([a, b] \times \mathbb{R} \times \mathbb{R}, \mathbb{R}) \) satisfies \(\text{A}_1 - \text{A}_3 \). Then, if \(f(a, u(a), Du(a)) = 0 \) and
\[
\left(1 - \alpha \right) \left(\frac{1}{B(\alpha)} + \frac{\alpha^2}{B(\alpha)\Gamma(\alpha)}\right) \leq 1
\]
the problem (1.3) and (1.4) has an unique solution.

Proof. First, we have to prove that \(u(t) \) satisfies the problem (1.3) and (1.4) if and only if \(u(t) \) satisfies the integral equation
\[
u(t) = u_0 +_a AB I^\alpha f(t, u(t), Du(t))
\]
Now, constructing use of Proposition 2.6, we get
\[
u(t) - u(a) =_a AB I^\alpha f(t, u(t), Du(t))
\]
Since \(u(a) = u_0 \) from (1.4) and \(f(a, u(a), Du(a)) = 0 \), (3.1) is satisfied. If \(u(t) \) satisfies (3.1), then by using that \(f(a, u(a), Du(a)) = 0 \) it is obvious that \(u(a) = u_0 \).

To apply the Riemann-Liouville Atangana-Baleanu fractional derivative to both sides of (3.1), we get
\[
u(t) = u_0 +_a AB I^\alpha (ABD_\alpha^\alpha D_\alpha^\alpha u)(t)
\]
Thus, we have
\[
u(t) = u_0 E_\alpha \left(-\frac{\alpha}{1 - \alpha}(t - a)^\alpha\right) + f(t, u(t), Du(t))
\]
Then, the result is acquired by benefiting from theorem 3.2 in [7]. Now, we define the operator
\[
u(t) = u_0 +_a AB I^\alpha f(t, u(t), Du(t)).
\]
Then, by A_3, $\|u\| \leq \lambda$ we get
\[
\|Tu(t)\| \leq \|u_0\| + \|A^\alpha f(t, u(t), Du(t))\|
\leq \|u_0\| + \left\| \frac{1 - \alpha}{B(\alpha)} f(t, u(t), Du(t)) \right\|
+ \frac{\alpha}{B(\alpha)} D^\alpha f(t, u(t), Du(t))
\leq \|u_0\| + \frac{1 - \alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
+ \frac{\alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
\leq \|u_0\| + \|u\| + \|Du\|
\leq \lambda (1 - \rho) + \rho \lambda
\leq \lambda
\]
i.e., $\|Tu(t)\| \leq \lambda$. Now to prove uniqueness
\[
\|T(u) - T(v)\|
= \|A^\alpha f(t, u(t), Du(t)) - A^\alpha f(t, v(t), Dv(t))\|
\leq \left\| \frac{1 - \alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
+ \frac{\alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
\leq \|u\| + \|Du\|
\leq \lambda (1 - \rho) + \rho \lambda
\leq \lambda
\]
Next, we investigate the problem (1.3) and (1.4) has a fixed point by using another fixed point technique, namely Krasnoselskii’s fixed point theorem.

Theorem 3.3. If $A_1 - A_4$ are satisfied and
\[
q(t_2 - t_1) = \|M(\|u(t_2) - u(t_1)\| + \|Du(t_2) - Du(t_1)\|),
\]
then the problem (1.3) and (1.4) has a solution.

Proof. For any constant $\lambda_0 > 0$ and $u \in B_{\lambda_0}$, define two operator T_1 and T_2 on B_{λ_0} as follows
\[
(T_1 u)(t) = u_0
(T_2 u)(t) = \frac{AB}{\lambda_0} f(t, u(t), Du(t)).
\]
Obviously, u is a solution of (1.3) and (1.4) iff the operator $T_1 + T_2 = u$ has a solution $u \in B_{\lambda_0}$

Our proof will be divided into three steps.

Step 1. $\|T_1 u + T_2 u\| \leq \lambda_0$ whenever $u \in B_{\lambda_0}$.
For every $u \in B_{\lambda_0}$, we have
\[
\|T_1 u(t) + T_2 u(t)\| = \|Tu(t)\| + \|T_2 u(t)\|
\leq \|u_0\| + \|\frac{AB}{\lambda_0} f(t, u(t), Du(t))\|
\leq \|u_0\| + \frac{1 - \alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
+ \frac{\alpha}{B(\alpha)} (\|u\| + \|Du\|)(\alpha^\alpha(t - a)\alpha^\alpha)
\leq \|u\| + \|Du\|
\leq \lambda (1 - \rho) + \rho \lambda
\leq \lambda
\]
Hence, $\|T_1 u + T_2 u\| \leq \lambda_0$ for every $u \in B_{\lambda_0}$.

Step 2. T_1 is a contraction on B_{λ_0} for any $u, v \in B_{\lambda_0}$, according to A_4 and (3.6), we have
\[
\|T_1 u(t) - T_1 v(t)\| \leq \|u_0 - v_0\| = R\|u_0 - v_0\|
\]
which implies that $\|T_1 u - T_1 v\| \leq R\|u_0 - v_0\|$, since $R = 1$, T_1 is a contraction.

Step 3. T_2 is completely continuous operator.
First we have to prove that T_2 is continuous on B_{λ_0}. For any $u_n, u \in B_{\lambda_0}$, $n = 1, 2, 3, \ldots$ with $\lim_{n \to \infty} \|u_n - u\| = 0$, we get $\lim_{n \to \infty} u_n(t) = u(t)$, for $t \in [a, b]$. Thus by A_4, we have
\[
\lim_{n \to \infty} f(t, u_n(t), Du_n(t)) = f(t, u(t), Du(t))
\]
for $t \in [a, b]$.
We can conclude that
\[
\sup_{x \in [a, b]} \|f(t, u_n(t), Du_n(t)) - f(t, u(t), Du(t))\| \to 0 \text{ as } n \to \infty
\]
1837
On other hand, for $t \in [a, b]$

$$\| (T_2u_n)(t) - (T_2u)(t) \|$$

$$\leq \| a^{AB} f(t, u_n(t), DU_n(t)) - a^{AB} f(t, u(t), DU(t)) \|$$

$$\leq 1 - \frac{\alpha}{B(\alpha)} ||a^{AB} f(t, u_n(t), DU_n(t))||$$

$$- a^{AB} f(t, u(t), DU(t))||$$

$$+ \frac{\alpha}{B(\alpha)} ||a^{AB} f(t, u_n(t), DU_n(t))||$$

$$- a^{AB} f(t, u(t), DU(t))||$$

$$\sup_{t \in [a, b]} ||a^{AB} f(t, u_n(t), DU_n(t))||$$

$$- f(t, u(t), DU(t))||$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) \left(\frac{|t - a|^\alpha}{B(\alpha) \Gamma(\alpha)} \right)$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) \left(\frac{|t - a|^\alpha}{B(\alpha) \Gamma(\alpha)} \right)$$

$$\sup_{t \in [a, b]} ||a^{AB} f(t, u_n(t), DU_n(t))||$$

$$- f(t, u(t), DU(t))||$$

Hence $\| (T_2u_n)(t) - (T_2u)(t) \| \to 0$ as $n \to \infty$. Therefore T_2 is continuous on B_{λ_0}.

Now, we have to show that $T_2u, u \in B_{\lambda_0}$ is relatively compact which is sufficient to prove that the function $T_2u, u \in B_{\lambda_0}$ uniformly bounded and equicontinuous, and $\forall t \in [a, b]$

$\| T_2u \| \leq \lambda_0$, for any $u \in B_{\lambda_0}$, therefore $(T_2u)(t), u \in B_{\lambda_0}$ is bounded uniformly.

Now, we prove that $(T_2u)(t), u \in B_{\lambda_0}$ is a equicontinuous. For any $u \in B_{\lambda_0}$ and $a \leq t_1 \leq t_2 \leq t$, we get

$$\| (T_2u)(t_2) - (T_2u)(t_1) \|$$

$$\leq \| a^{AB} f(t_2, u(t_2), DU(t_2)) - a^{AB} f(t_1, u(t_1), DU(t_1)) \|$$

$$\leq 1 - \frac{\alpha}{B(\alpha)} ||a^{AB} f(t_2, u(t_2), DU(t_2))||$$

$$- a^{AB} f(t_1, u(t_1), DU(t_1))||$$

$$+ \frac{\alpha}{B(\alpha)} ||a^{AB} f(t_2, u(t_2), DU(t_2))||$$

$$- a^{AB} f(t_1, u(t_1), DU(t_1))||$$

$$\sup_{t \in [a, b]} ||a^{AB} f(t, u(t_2), DU(t_2))||$$

$$- f(t_1, u(t_1), DU(t_1))||$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) \left(\frac{|t_2 - t_1|^\alpha}{B(\alpha) \Gamma(\alpha)} \right)$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) \left(\frac{|t_2 - t_1|^\alpha}{B(\alpha) \Gamma(\alpha)} \right)$$

$$\sup_{t \in [a, b]} ||a^{AB} f(t, u(t_2), DU(t_2))||$$

$$- f(t_1, u(t_1), DU(t_1))||$$

$\| (T_2u)(t_2) - (T_2u)(t_1) \| \to 0$ as $t_2 \to t_1$. Therefore, the operator T_2 is an equicontinuous on B_{λ_0}. Hence, which implies T_2 is relatively compact on B_{λ_0}.

Therefore T_2 is relatively compact subset of X by theorem 2.4 and, by theorem 2.5 we can conclude that T_2 has at least one fixed point. Therefore the operator T has a fixed point u which is the solution of (1.3) and (1.4).

4. Ulam-Hyers stability

In this section, we study the Ulam-Hyers stability of (1.3) and (1.4). Now, we present the definition of Ulam-Hyers stability.

Definition 4.1. Equation (1.3) is Ulam-Hyers stable, if for all $v(t)$ satisfying the inequality

$$|\int_{a}^{B} D^\alpha v(t) - f(t, v(t), DU(t))| < \epsilon,$$

there exist a solution $u(t)$ of (1.3) and (1.4) satisfying

$$|v(t) - u(t)| < h_{f, \epsilon}, \quad h_{f, \epsilon} \in \mathbb{R}.$$ (4.2)

Theorem 4.2. Suppose that the hypothesis for existence of solutions to (1.3) and (1.4) are satisfied with

$$\mathfrak{M}(1 + \mathfrak{M}) \leq \frac{B(\alpha)}{1 - \alpha}.$$ (4.1)

Then (1.3) and (1.4) is Ulam-Hyers stable.

Proof. If $v(t)$ satisfies (4.1), there exists a function $\xi(t)$ satisfying $|\xi(t)| < \epsilon$ such that

$$\int_{a}^{B} D^\alpha v(t) - f(t, v(t), DU(t)) = \int_{a}^{B} D^\alpha \xi(t).$$ (4.3)

which is satisfies to

$$v(t) - v(a) - a^{AB} f(t, v(t), DU(t)) = a^{AB} \int_{a}^{B} D^\alpha \xi(t).$$ (4.4)

Therefore, we have

$$|v(t) - v(a) - a^{AB} f(t, v(t), DU(t))|$$

$$= \left| a^{AB} \int_{a}^{B} D^\alpha \xi(t) \right|$$

$$= \left| 1 - \frac{\alpha}{B(\alpha)} \xi(t) + \frac{\alpha}{B(\alpha)} \int_{a}^{B} D^\alpha \xi(t) \right|$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) |\xi(t)| + \frac{\alpha}{B(\alpha)} |\xi(t)|$$

$$\leq \left(1 - \frac{\alpha}{B(\alpha)} \right) |\xi(t)| + \frac{\alpha}{B(\alpha)} |\xi(t)|$$

$$\leq \epsilon \left(1 - \alpha + 1 \frac{b - a}{\Gamma(\alpha)} \right)$$

Now let $u(t)$ be the solution of (1.3) satisfies $u(a) = v(a)$.

Then, we have

$$u(t) = v(a) + a^{AB} f(t, u(t), DU(t)).$$ (4.5)
Therefore \(|v(t) - u(t)| \leq h_f \varepsilon\), where

\[
h_f = \left(\frac{1 - \alpha}{B(\alpha)} + \frac{1}{B(\alpha)} \frac{(b-a)^{\alpha}}{\Gamma(\alpha)}\right) \frac{B(\alpha)}{\Gamma(\alpha) - (1 - \alpha)\omega(1 + \frac{1}{\alpha})}.
\]

Hence (1.1) is Ulam-Hyers stable.

5. Example

Consider the following problem

\[
\left(\frac{ABC}{0} \right)^3 D^2 u(t) = \frac{t}{3 \sqrt{(\pi)}} \sin(u(t) + u'(t)), \quad t \in [1, 2],
\]

\[
B(\alpha) = 1 \tag{5.1}
\]

\[
u(0) = 1 \tag{5.2}
\]

Notice that

\[
f(0, u(0), \xi(0)) = 0
\]

and

\[
u'(t) \in C[1, 2]
\]

satisfy the Lipschitz conditions.

Let

\[
\frac{t}{3 \sqrt{(\pi)}} \sin(u + v), \quad t \in [1, 2].
\]

It is easy to see that

\[
\frac{t}{3 \sqrt{(\pi)}} (|u_1 - u_2| + |v_1 - v_2|),
\]

for all \(t \in [1, 2], u_1, u_2, v_1, v_2 \in \mathbb{R}\)

\[
\leq \frac{1}{3 \sqrt{(\pi)}} |u - v|
\]

Thus \(\rho = \frac{1}{3 \sqrt{(\pi)}}\). Now

\[
\rho \left(\frac{1 - \alpha}{B(\alpha)} + \frac{(b-a)^{\alpha}}{\Gamma(\alpha)\Gamma(\alpha)}\right)
\]

\[
= \frac{1}{3 \sqrt{(\pi)}} \left(1 - \alpha + \frac{1}{\Gamma(\alpha)}\right) < 1
\]

By theorem 3.2, (5.1) and (5.2) has a unique solution. It can be written as

\[
u(t) = \lim_{n \to 0} u_n(t),
\]

where

\[
u_n(t) = 1 + \frac{1}{3 \sqrt{(\pi)}} A_{\alpha} F'(tu_{n-1}(t)), \quad n = 0, 1, 2, \ldots
\]

or

\[
u_n(t) = 1 + (1 - \alpha)tu_{n-1}(t) + \alpha \frac{t}{\Gamma(\alpha)} (tu_{n-1}(t))
\]

\[
= 1 + (1 - \alpha)tu_{n-1}(t)
\]

\[
+ \frac{\alpha}{\Gamma(\alpha)} \int_{0}^{t} (t - s)^{\alpha - 1} s u_{n-1}(s) ds, \quad n = 1, 2, 3, \ldots
\]

Solving (5.1) and (5.2), we apply the method proposed by Mekkaoui and Atangana in [29], utilizing from the two-step Lagrange polynomial interpolation.
New results on existence of Atangana-Baleanu fractional differential equations with dependence on the Lipschitz first derivatives — 1840/1841

References

[1] T. Abdeljawad, A Lyapunov type inequality for fractional operators with non-singular Mittag-Leffler kernel, J Inequalities Appl., 2017(130)(2017), 1-11.
[2] T. Abdeljawad, QM. Al-Mdallal, Discrete Mittag-Leffler kernel type fractional difference initial value problems and Gronwall’s inequality, J Comput Appl Math, 339(1)(2018), 218-230.
[3] T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep Math Phys, 80(1)(2017), 11-27.
[4] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv Differ Equ., (2016), 1-18.
[5] T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J Nonlinear Sci Appl, 10(3)(2017), 1098-1107.
[6] Y. Adjabi, F. Jarad, T. Abdeljawad, On cauchy problems with Caputo Hadamard fractional derivatives, J Comput Anal Appl, 21(1)(2016), 661-681.
[7] A. Atangana, D. Baleanu, New fractional derivatives with non-local and non-singular kernel: theory and application to heat transfer model, Therm Sci, 20(2)(2016), 763-769.
[8] A. Atangana, JF. Gomez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer Methods Partial Differ Equ., 34(5)(2018), 1502-1523.
[9] A. Atangana, JF. Gomez-Aguilar, Hyperchaotic behaviour obtained via a nonlocal operator with exponential decay and Mittag-Leffler laws, Chaos Solitons Fractals, 102(2017), 285-294.
[10] A. Atangana, I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, Chaos, Solitons Fractals, (2016), 1-8.
[11] Aziz Khan, Hasib Khan, J.F. Gomez-Aguilar, Thabet Abdeljawad, Existence and Hyers-Ulam stability for a nonlinear singular fractional differential equations with Mittag-Leffler kernel, Chaos, Solitons Fractals, 127(2019), 422-427.
[12] Z. Ba, H. Lu, Positive solutions for boundary value problem of nonlinear fractional differential equation, J. Math. Anal. Appl., 311(2005), 495-505.
[13] D. Baleanu, M. Inc, A. Yusuf, AI. Aliyu, Space-time fractional Rosenou–Haynam equation: lie symmetry analysis, explicit solutions and conservation laws, Adv Differ Equ., 2018(46)(2018), 1-14.
[14] D. Baleanu, M. Inc, A. Yusuf, AI. Aliyu, Time fractional third-order evolution equation: symmetry analysis, explicit solutions and conservation laws, J Comput Nonlinear Dynam, 13(2)(2017), 021011.
[15] U. Cakan, I. Ozdemir, An application of Krasnoselskii fixed point theorem to some nonlinear functional integral equations, Nevsehir Bilim ve Teknoloji Dergisi 3(2)(2014), 66-73.
[16] JD. Djida, A. Atangana, I. Area, Numerical computation of fractional derivative with non-local and non-singular kernel, Math Model Nat Phenom, 12(3)(2017), 4-13.
[17] YY. Gambo, F. Jarad, T. Abdeljawad, D. Baleanu, On Caputo modification of the Hadamard fractional derivativ, Adv Differ Equ., 2014(10)(2014), 1-12.
[18] L. Gaul, P. Klein, S. Kempe, Damping description involving fractional operators, Mech. Systems Signal Processing., 5(1991), 81-88.
[19] M. Donatelli, M. Mazza, S.S. Capiziano, Spectral analysis and structure preserving preconditioners for fractional diffusion equations, J. Comput. Phy., 307(2016), 262-279.
[20] F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu derivative, Chaos Solitons Fractals, 117(2018), 16-20.
[21] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivative, Adv Differ Equ., 2012(142)(2012), 1-8.
[22] Daniela Lera, Yaroslav D Sergeyev, Acceleration of univariate global optimization algorithms working with lipschitz functions and lipschitz first derivatives, SIAM J. Optim, 23(1), 508-529.
[23] H. Li, Y. Jiang, Z. Wang, L. Zhang, Z. Teng, Global Mittag-Leffler stability of coupled system of fractional-order differential equations on network, Appl. Math. Comput., 270(2015), 269-277.
[24] I. Koca, Analysis of rubella disease model with non-local and non-singular fractional derivative, Int J Optim Control, 8(1)(2018), 17-25.
[25] A. Kilbas, HM. Srivastava, JJ. Trujillo, Theory and application of fractional differential equations, North Holland Mathematics Studies, 204(2006).
[26] I. Koca, A. Atangana, Solutions of Cattaneo-Hristov model of elastic heat diffusion with Caputo-Frbrizio and Atagana-Baleanu fractional derivatives, Therm Sci., 21(6A)(2017), 2299-2305.
[27] I. Koca, Modelling the spread of ebola virus with Atangana-Baleanu fractional operators, Eur Phys J Plus 133(3)(2018), 1-11.
[28] E. Dmitri Kvasov, D. Yaroslav Sergeyev, A univariate global search working with a set of Lipschitz constants for the first derivative, Optim Lett, 3(2009), 303-318.
[29] T. Mekkaoui, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur Phys J Plus, 132(10)(2017), 4.
[30] KM. Owolabi, Modelling and simulation of a dynamical system with the Atangana-Baleanu fractional derivative, Eur. Phys. J. Plus, 133(15)(2018), 1-13.
[31] Ndolane Sene, Stokes first problem for heated flat plate with Atangana–Baleanu fractional derivative, Chaos, Solitons and Fractals, 117(2018), 68-75.
[32] SG. Samko, AA. Kilbas, IO. Marichev, Fractional inte-
New results on existence of Atangana-Baleanu fractional differential equations with dependence on the Lipschitz first derivatives — 1841/1841

grals and derivatives: theory and applications. In: Gordon and Breach, Yverdon; (1993).

A. Yusuf, M. Inc, AI. Aliyu, D. Baleanu, Efficiency of the new fractional derivative with nonsingular Mittag Leffler kernel to some nonlinear partial differential equations, *Chaos Solitions Fractals*, 116(2018), 220-226.

ISSN(P):2319 – 3786
Malaya Journal of Matematik
ISSN(O):2321 – 5666
