Anyons as Dirac Strings, the $A_x = 0$ Gauge

John McCabe
Laboratoire de Physique Théorique, Université Bordeaux I
19 rue du Solarium, 33175 Gradignan FRANCE

ABSTRACT

We show how to quantize the anyon particle theory in a gauge, $A_x = 0$, where the statistical potential $\vec{A}(\vec{x})$ is a Dirac string. In this gauge, anyons obey normal statistics.
Attempts to study the non-relativistic anyon model [1] have centered on 2 methods. Either anyons are taken to be normal bosons (or fermions) interacting with a statistical potential in the coulomb gauge \((\partial^a A_a(\vec{x}) = 0)\), or anyons are taken to be free particles obeying exotic statistics, a singular gauge [1,2]. There exists a third possibility which may be more useful especially in systems having discrete translation symmetries (ex. anyonic crystals). It involves taking anyons to be bosons (or fermions) interacting with a statistical potential having the form of a Dirac string [3]. We will study this possibility which corresponds to the gauge \(A_x(\vec{x}) = 0\).

An anyon is a charged flux line in 2+1 dimensions. We start in constructing the vector potential for a unit flux line located at the origin. The associated vector potential satisfies the equation \(\vec{\partial} \times \vec{A}(\vec{x}) = \delta^2(x)\). The potential \((A_x(\vec{x}), A_y(\vec{x})) = (0, \frac{1}{2} \delta(y) \epsilon(x))\), \(\epsilon(x) = \pm 1\) for \(x > 0\), satisfies the gauge condition \(A_x(\vec{x}) = 0\) and gives the correct magnetic field. This potential has Dirac string singularities along the positive and negative \(x\)-axes and vanishes elsewhere. Thus, the \(A_x(\vec{x}) = 0\) gauge corresponds to treating anyons as pure Dirac strings. We can write the Hamiltonian for N-anyons by taking a combination of such Dirac strings. For N free non-relativistic anyons, it is given by:

\[
H_{\text{anyon}} = \frac{1}{2m} \sum_{i=1}^{N} \left[-\partial_{x_i}^2 + (-i\partial_{y_i} + \frac{\alpha}{2} \sum_{j \neq i} \delta(y_i - y_j) \epsilon(x_i - x_j))^2 \right] \tag{1}
\]

Our gauge choice is not a singular gauge in the sense that the N-particle wavefunction of (1) satisfies normal statistics. To see this more clearly, we will relate the \(A_x = 0\) gauge to the singular gauge\(^2\) \((\vec{A}(\vec{x}) = 0)\) and to the coulomb gauge \((\partial^a A_a = 0)\) where the potential has the form \(\vec{A}(r, \theta) = \frac{1}{2\pi} \vec{\partial} \theta\) [4]. We start by showing that the statistical potential in the \(A_x = 0\) gauge can also be written as the gradient of a ”singular” gauge transformation. The transformation is singular in the sense that the gauge parameter is not a single-valued function on the plane, i.e. periodic in \(\theta\). It is a well-defined function on \(\theta\)’s covering space, i.e. \(\theta \epsilon \mathbb{R}\). This was exactly the situation for the anyon model in the Coulomb gauge where \(\vec{A}(\vec{x}) = \vec{\partial}(\frac{1}{2\pi} \theta)\). The parameter \(\theta\) is a function on the covering space.

The potential, \(A_x(\vec{x}) = 0\) and \(A_y(\vec{x}) = \frac{1}{2} \delta(y) \epsilon(x)\) can be written as a gradient of a

\(^2\) In our conventions, \(\alpha = 0\) corresponds to bosons and \(\alpha = 2\pi\) to fermions.
staircase function $\Omega(\theta)$.

\[
\vec{A}(\vec{x}) = \vec{\partial}\Omega, \quad \Omega(\theta) \equiv \frac{+m}{2} \text{ for } \theta \epsilon [2m\pi, (2m + 1)\pi), \quad mc\mathbb{Z}
\]

To see this, write the gradient in angular coordinates, $(\partial_x, \partial_y) = (\cos\theta \partial_r - \sin\theta \partial_\theta, \sin\theta \partial_r + \cos\theta \partial_\theta)$. $\Omega(\theta)$ is a multi-valued function on the plane. We can make a singular transformation, $\vec{A}' = \vec{A} - \vec{\partial}\Omega \equiv 0$, to pass from the formulation of anyons as normal particles carrying Dirac strings to the formulation as free particles obeying exotic statistics (α will determine the statistics). We can also combine two gauge transformations, $\vec{A}'(\vec{x}) = \vec{A}(\vec{x}) + \vec{\partial}\omega(\theta)$, with $\omega(\theta) \equiv (\frac{1}{2\pi}\theta - \Omega(\theta))$, to transform from the $A_x = 0$ gauge to the $\partial^a A_a$ gauge. This does not effect the the statistics, because the parameter $\omega(\theta)$ satisfies $\omega(\theta \pm \pi) = \omega(\theta)$. Thus, the gauge of the Hamiltonian in (1) is not a singular gauge [1,2]. In what follows, we will suppose that the N-particle wavefunction is bosonic.

We will now illustrate the $A_x = 0$ gauge formulation by finding the spectrum of 2 anyons confined to a circular box [5]. Since the Hamiltonian of (1) is free for $x \neq 0$ ($\vec{x} \equiv \frac{1}{\sqrt{2}}(\vec{x}_1 - \vec{x}_2)$), we can write the eigenfunction for the relative problem as:

\[
\begin{align*}
\Psi_{\gamma k}(r, \theta) &= \exp(i\gamma\theta)J_{|\gamma|}(kr) \quad \text{for } y > 0, \\
\Psi_{\gamma k}(r, \theta) &= A \exp(i\beta\theta)J_{|\beta|}(kr) \quad \text{for } y < 0.
\end{align*}
\]

The energy, $E = \frac{k^2}{2m}$, is fixed by the boundary condition on the disc, $\Psi_{\gamma k}(r = R, \theta) = 0$, which implies that $J_{|\gamma|}(kR) = 0$.

To determine A and β, we must impose that the wavefunction is bosonic. Our choice of the statistical potential preserves the invariance of H_{anyon} under the exchange of two coordinates \vec{x}_i and \vec{x}_j. Thus, Bose statistics is implemented by requiring that $\Psi(\vec{x}) = \Psi(-\vec{x})$ or in angular coordinates that $\Psi(r, \theta) = \Psi(r, \theta + \pi)$ with $\theta \in [0, 2\pi)$. This condition determines the wavefunction for $y < 0$ in terms of the wavefunction for $y > 0$. The solutions are:

\[
\begin{align*}
\Psi_{\gamma k}(r, \theta) &= \exp(i\gamma\theta)J_{|\gamma|}(kr) \quad \text{for } y > 0, \\
\Psi_{\gamma k}(r, \theta) &= \exp(i\gamma\theta - i\tilde{\gamma}\pi)J_{|\gamma|}(kr) \quad \text{for } y < 0.
\end{align*}
\]

Where, $\tilde{\gamma} = \gamma - 2m$ with m any integer. The wavefunctions (4) satisfy all the constraints of statistics. The spectrum is determined by the quantum number γ. γ is fixed by the
equation of motion on the x-axis. To see how (4) solves the Hamiltonian equations on the x-axis, we remark that the wavefunction has phase discontinuities, $e^{-i\tilde{\gamma}\pi}$, in crossing the either the negative or positive x-axis in a clockwise sense. For example, in a neighborhood of the negative x-axis, we can write (4) as:

$$\exp\left[\frac{i\tilde{\gamma}\pi}{2}(\epsilon(y) - 1)\right]e^{i\gamma\theta} J_{|\gamma|}(kr)$$ \hspace{1cm} (5)

Substituting this form into (1), we find:

$$k^2 e^{i\gamma\theta} J_{|\gamma|}(kr) = \left[-\partial_x^2 + (-i\partial_y + [\tilde{\gamma}\pi + \frac{\alpha}{2}\delta(y)])^2\right] e^{i\gamma\theta} J_{|\gamma|}(kr)$$ \hspace{1cm} (6)

This equation only has a solution if the coefficient of the $\delta(y)$ vanishes. Thus, we arrive at a condition on $\tilde{\gamma}$,

$$\tilde{\gamma} = \frac{\alpha}{2\pi} \text{ or } \gamma = \frac{\alpha}{2\pi} + 2m.$$ \hspace{1cm} (7)

The equation of motion on the x-axis has determine the non-integer part of γ. This shows that the 2-anyon relative eigenfunctions, in the $A_x(\vec{x}) = 0$ gauge, are given by:

$$\Psi_{mk}(r, \theta) = \exp\left(i\frac{\alpha}{2\pi} + 2m|\theta\right)J_{|\frac{\alpha}{2\pi} + 2m|}(kr) \quad \text{for} \quad y > 0,$$

$$\Psi_{mk}(r, \theta) = \exp\left(i\frac{\alpha}{2\pi} + 2m|\theta - i\frac{\alpha}{2}\right)J_{|\frac{\alpha}{2\pi} + 2m|}(kr) \quad \text{for} \quad y < 0$$ \hspace{1cm} (7)

Here, the states have been labeled by the two traditional quantum numbers $m\epsilon\mathbb{Z}$ and k.

We would arrive at the same conclusions in substituting (4) in (1) on a neighborhood of the positive x-axis. The values of k and the energy eigenvalues are given by the zeros of the Bessel function.

$$E_m(k) = \frac{1}{2m} \left(\frac{z_{sm}}{R}\right)^2 \quad k = \frac{z_{sm}}{r} \quad \text{with} \quad J_{|\frac{\alpha}{2\pi} + 2m|}(z_{sm}) \equiv 0 \quad s = 1, 2, 3 \ldots$$ \hspace{1cm} (8)

This agrees with the results of [5] in the coulomb and singular gauges.

The $A_x(\vec{x}) = 0$ gauge has free particle wavefunctions with phase discontinuities, $e^{-i\tilde{\Phi}}$ when any 2 anyons have equal y-coordinates. This gauge may be more useful than the coulomb gauge in problems having discrete symmetries in the $x-$ and $y-$directions, ex. crystal of anyons (or flux tubes) where one may want to expand the anyonic interaction in a unit cell by a Fourier series. These possibilities are yet to be investigated.
REFERENCES

[1] J.M. Leinaas and J. Myrheim, Nuovo Cim. B 37 (1977) 1; J.M. Leinaas, Nuovo Cim. A 47 (1978) 1; M.G.G. Laidlaw and C.M. de Wit, Phys. Rev. D 3 (1971) 1375.

[2] F. Wilczek, Phys. Rev. Lett. 48 (1982) 1144; ibid 49 (1982) 957.

[3] P.A.M. Dirac, Proc. of the Royal Soc. of London A133 (1931) 60; ibid Phys. Rev. 74 (1948) 817; ibid Int. J. Theor. Phys. 17 (1978) 235.

[4] Y. Aharonov and D. Bohm, Phys. Rev. 115 (1959) 485.

[5] D.P. Arovas, R. Schrieffer, F. Wilczek, and A. Zee, Nucl. Phys. B251 (1985) 117; J.S. Dowker, J. Phys. A 18 (1985) 3521.