Group theory

A new canonical induction formula for \(p \)-permutation modules

Une nouvelle formule d’induction canonique pour modules de \(p \)-permutation

Laurence Barker, Hatice Mutlu

Department of Mathematics, Bilkent University, 06800 Bilkent, Ankara, Turkey

A R T I C L E I N F O
Article history:
Received 1 October 2018
Accepted after revision 9 April 2019
Available online 24 April 2019
Presented by the Editorial Board

A B S T R A C T
Applying Robert Boltje’s theory of canonical induction, we give a restriction-preserving formula expressing any \(p \)-permutation module as a \(\mathbb{Z}[1/p] \)-linear combination of modules induced and inflated from projective modules associated with subquotient groups. The underlying constructions include, for any given finite group, a ring with a \(\mathbb{Z} \)-basis indexed by conjugacy classes of triples \((U, K, E)\) where \(U \) is a subgroup, \(K \) is a \(p' \)-residue-free normal subgroup of \(U \), and \(E \) is an indecomposable projective module of the group algebra of \(U/K \).

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É
En application de la théorie de l’induction canonique de Robert Boltje, nous présentons une formule stable par restriction au moyen de laquelle tout module de \(p \)-permutation est exprimé sous forme de combinaison \(\mathbb{Z}[1/p] \)-linéaire des inductions des inflations des modules projectifs associés à des groupes de sous-quotients. Les constructions concernées comprennent, pour tout groupe fini, un anneau qui a une \(\mathbb{Z} \)-base indexée par les classes de conjugaison des triplets \((U, K, E)\) avec \(U \) un sous-groupe, \(O^p(K) = K \triangleleft U \) et \(E \) un module projectif indécomposable de l’algèbre de groupe de \(U/K \).

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We shall be applying Boltje’s theory of canonical induction \cite{Boltje} to the ring of \(p \)-permutation modules. Of course, \(p \) is a prime. We shall be considering \(p \)-permutation modules for finite groups over an algebraically closed field \(\mathbb{F} \) of characteristic \(p \). A review of the theory of \(p \)-permutation modules can be found in Bouc–Thévenaz \cite[Section 2]{Bouc-Thévenaz}.

E-mail addresses: barker@fen.bilkent.edu.tr (L. Barker), hatice.mutlu@bilkent.edu.tr (H. Mutlu).

https://doi.org/10.1016/j.crma.2019.04.004
1631-073X © 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
A canonical induction formula for p-permutation modules was given by Boltje [3, Section 4] and shown to be \mathbb{Z}-integral. It expresses any p-permutation module, up to isomorphism, as a \mathbb{Z}-linear combination of modules induced from a special kind of p-permutation module, namely, the 1-dimensional modules.

We shall be inducing from another special kind of p-permutation module. Let G be a finite group. We understand all $\mathbb{F}G$-modules to be finite-dimensional. An indecomposable $\mathbb{F}G$-module M is said to be exprojective provided the following equivalent conditions hold up to isomorphism: there exists a normal subgroup $K \leq G$ such that M is inflated from a projective $\mathbb{F}G/K$-module; there exists $K \leq G$ such that M is a direct summand of the permutation $\mathbb{F}G$-module G/K; every vertex of M acts trivially on M; some vertex of M acts trivially on M. Generally, an $\mathbb{F}G$-module X is called exprojective provided every indecomposable direct summand of X is exprojective.

The exprojective modules do already play a special role in the theory of p-permutation modules. Indeed, the parametrization of the indecomposable p-permutation modules, recalled in Section 2, characterizes any indecomposable p-permutation module as a particular direct summand of a module induced from an exprojective module.

We shall give a $\mathbb{Z}[1/p]$-integral canonical induction formula, expressing any p-permutation $\mathbb{F}G$-module, up to isomorphism, as a $\mathbb{Z}[1/p]$-linear combination of modules induced from exprojective modules. More precisely, we shall be working with the Grothendieck ring for p-permutation modules $T(G)$ and we shall be introducing another commutative ring $\mathbb{K}T(G)$ which, roughly speaking, has a free \mathbb{Z}-basis consisting of lifts of induced modules of indecomposable exprojective modules. We shall consider a ring epimorphism $\text{lin}_G : T(G) \to \mathbb{K}T(G)$ and its \mathbb{Q}-linear extension $\text{lin}_G : \mathbb{Q}T(G) \to \mathbb{Q}\mathbb{K}T(G)$. The latter is split by a \mathbb{Q}-linear map $\text{can}_G : \mathbb{Q}T(G) \to \mathbb{Q}\mathbb{K}T(G)$ which, as we shall show, restricts to a $\mathbb{Z}[1/p]$-linear map $\text{can}_G : \mathbb{Z}[1/p]\mathbb{K}T(G) \to \mathbb{Z}[1/p]\mathbb{K}T(G)$.

Let \mathbb{K} be a field of characteristic zero that is sufficiently large for our purposes. To motivate further study of the algebras $\mathbb{Z}[1/p]\mathbb{K}T(G)$ and $\mathbb{K}T(G)$, we mention that, notwithstanding the formulas for the primitive idempotents of $\mathbb{K}T(G)$ in Boltje [4, 36], Bouc–Thévenaz [6, 4.12] and [1], the relationship between those idempotents and the basis $\{[M^E_G : (P, E) \in \mathcal{P}(E)]\}$ remains mysterious. In Section 4, we shall prove that $\mathbb{K}T(G)$ is \mathbb{K}-semisimple as well as commutative, in other words, the primitive idempotents of $\mathbb{K}T(G)$ comprise a basis for $\mathbb{K}T(G)$. We shall also describe how, via lin_G, each primitive idempotent of $\mathbb{K}T(G)$ lifts to a primitive idempotent of $\mathbb{K}T(G)$.

2. Exprojective modules

We shall establish some general properties of exprojective modules.

Given $H \leq G$, we write $\mathcal{I}\text{Ind}_H$ and $\mathcal{I}\text{Res}_G$ to denote the induction and restriction functors between $\mathbb{F}G$-modules and $\mathbb{F}H$-modules. When $H \leq G$, we write $\mathcal{I}\text{Ind}_{G/H}$ to denote the inflation functor to $\mathbb{F}G$-modules from $\mathbb{F}G/H$-modules. Given a finite group L and an understood isomorphism $L \to G$, we write $\mathcal{I}\text{Iso}_G$ to denote the isogation functor from $\mathbb{F}G$-modules to $\mathbb{F}L$-modules, we mean to say, $\mathcal{I}\text{Iso}_G(X)$ is the $\mathbb{F}L$-module obtained from an $\mathbb{F}G$-module X by transport of structure via the understood isomorphism.

Let us classify the exprojective $\mathbb{F}G$-modules up to isomorphism. We say that G is p'-residue-free provided $G = O^{p'}(G)$, equivalently, G is generated by the Sylow p'-subgroups of G. Let $\mathcal{Q}(G)$ denote the set of pairs (K, F), where K is a p'-residue-free normal subgroup of G and F is an indecomposable projective $\mathbb{F}G/K$-module, two such pairs (K, F) and (K', F') being deemed the same provided $K = K'$ and $F \cong F'$. We define an indecomposable exprojective $\mathbb{F}G$-module $M^E_G = \mathcal{I}\text{Ind}_{G/K}(F)$. By considering vertices, we obtain the following result.

Proposition 2.1. The condition $M \cong M^E_G$ characterizes a bijective correspondence between:
(a) the isomorphism classes of indecomposable exprojective $\mathbb{F}G$-modules M,
(b) the elements (K, F) of $\mathcal{Q}(G)$.

In particular, for a p'-subgroup P of G, the condition $E \cong N_G(P)\mathcal{I}\text{Ind}_{N_G(P)/P}(E)$ characterizes a bijective correspondence between, up to isomorphism, the indecomposable exprojective $\mathbb{F}N_G(P)$-modules E with vertex P and the indecomposable projective $\mathbb{F}N_G(P)/P$-modules \mathcal{E}. It follows that the well-known classification of the isomorphism classes of indecomposable p-permutation $\mathbb{F}G$-modules, as in Bouc–Thévenaz [6, 2.9] for instance, can be expressed as in the next result. Let $\mathcal{P}(G)$ denote the set of pairs (P, E) where P is a p-subgroup of G and E is an exprojective $\mathbb{F}N_G(P)$-module with vertex P, two such pairs (P, E) and (P', E') being deemed the same provided $P = P'$ and $E \cong E'$. We make $\mathcal{P}(G)$ become a G-set via the actions on the coordinates. We define $M^E_{P, E}$ to be the indecomposable p-permutation $\mathbb{F}G$-module with vertex P in Green correspondence with E.

Theorem 2.2. The condition $M \cong M^E_{P, E}$ characterizes a bijective correspondence between:
(a) the isomorphism classes of indecomposable p-permutation $\mathbb{F}G$-modules M,
(b) the G-conjugacy classes of elements $(P, E) \in \mathcal{P}(G)$.

We now give a necessary and sufficient condition for $M^E_{P, E}$ to be exprojective.
Proposition 2.3. Let \((P, E) \in \mathcal{P}(G)\). Let \(K\) be the normal closure of \(P\) in \(G\). Then \(M_{P,E}^G\) is exprojective if and only if \(N_K(P)\) acts trivially on \(E\). In that case, \(K\) is \(p^i\)-residue-free, \(P\) is a Sylow \(p\)-subgroup of \(K\), we have \(G = N_G(P)K\), the inclusion \(N_G(P) \hookrightarrow G\) induces an isomorphism \(N_G(P)/N_K(P) \cong G/K\), and \(M_{P,E}^G \cong M_{K,F}^G\), where \(F\) is the indecomposable projective \(FG/K\)-module determined, up to isomorphism, by the condition \(E \cong N_G(P)/N_K(P)\). \(\text{ISO}_G(K)\). \(P\).

Proof. Write \(M = M_{P,E}^G\). If \(M\) is exprojective then \(K\) acts trivially on \(M\) and, perforce, \(N_K(P)\) acts trivially on \(E\).

Conversely, suppose \(N_K(P)\) acts trivially on \(E\). Then \(P\), being a vertex of \(E\), must be a Sylow \(p\)-subgroup of \(N_K(P)\). Hence, \(P\) is a Sylow \(p\)-subgroup of \(K\). By a Frattini argument, \(G = N_K(P)\) and we have an isomorphism \(N_G(P)/N_K(P) \cong G/K\) as specified. Let \(X = c\text{Ind}_{N_K(P)}(E)\). The assumption on \(E\) implies that \(X\) has well-defined \(FG\)-submodules

\[Y = \left\{ \sum_k k \otimes N_G(P) x : x \in E \right\}, \quad Y' = \left\{ \sum_k k \otimes N_K(P) x_k : x_k \in E, \sum_k x_k = 0 \right\} \]

summed over a left transversal \(kN_K(P) \subseteq K\). Making use of the well-definedness, an easy manipulation shows that the action of \(N_G(P)\) on \(X\) stabilizes \(Y\) and \(Y'\). Similarly, \(K\) stabilizes \(Y\) and \(Y'\). So \(Y\) and \(Y'\) are \(FG\)-submodules of \(X\). Since \(|K : N_K(P)|\) is coprime to \(p\), we have \(Y \cap Y' = 0\). Since \(|K : N_K(P)| = |G : N_G(P)|\), a consideration of dimensions yields \(X = Y \oplus Y'\).

Fix a left transversal \(L\) for \(N_K(P)\) in \(K\). For \(g \in N_G(P)\) and \(\ell \in L\), we can write \(g\ell = \ell h_g\) with \(\ell h_g \in L\) and \(h_g \in N_K(P)\). By the assumption on \(E\) again, \(h_g x = x\) for all \(x \in E\). So

\[g \sum_{\ell \in L} \ell \otimes x = \sum_{\ell \in L} g \ell \otimes gx = \sum_{\ell \in L} \ell \otimes gx \]

summed over \(\ell \in L\). We have shown that \(n_{G(P)} \text{Res}_G(Y) \equiv E\). A similar argument involving a sum over \(L\) shows that \(K\) acts trivially on \(Y\). Therefore, \(Y \cong M_{K,F}^G\). On the other hand, \(Y\) is indecomposable with vertex \(P\) and, by the Green correspondence, \(Y \equiv M_{P,E}^G\). \(\square\)

We shall be making use of the following closure property.

Proposition 2.4. Given exprojective \(FG\)-modules \(X\) and \(Y\), then the \(FG\)-module \(X \otimes_F Y\) is exprojective.

Proof. We may assume that \(X\) and \(Y\) are indecomposable. Then \(X\) and \(Y\) are, respectively, direct summands of permutation \(FG\)-modules having the form \(FG/K\) and \(FG/L\) where \(K \leq G \leq L\). By Mackey decomposition and the Krull–Schmidt Theorem, every indecomposable direct summand of \(X \otimes Y\) is a direct summand of \(FG/(K \cap L)\). \(\square\)

3. A canonical induction formula

Throughout, we let \(R\) be a class of finite groups that is closed under taking subgroups. We shall understand that \(G \in R\).

We shall abuse notation, neglecting to use distinct expressions to distinguish between a linear map and its extension to a larger coefficient ring.

Specializing some general theory in Boltje [2], we shall introduce a commutative ring \(T(G)\) and a ring epimorphism \(\text{lin}_G : T(G) \rightarrow T(G)\). We shall show that the \(\mathbb{Z}[1/p]\)-linear extension \(\text{lin}_G : \mathbb{Z}[1/p]T(G) \rightarrow \mathbb{Z}[1/p]T(G)\) has a splitting \(\text{can}_G : \mathbb{Z}[1/p]T(G) \rightarrow \mathbb{Z}[1/p]T(G)\). As we shall see, \(\text{can}_G\) is the unique splitting that commutes with restriction and isogation.

To be clear about the definition of \(T(G)\), the Grothendieck ring of the category of \(p\)-permutation \(FG\)-modules, we use the split short exact sequences are the distinguished sequences determining the relations on \(T(G)\). The multiplication on \(T(G)\) is given by tensor product over \(F\). Given a \(p\)-permutation \(FG\)-module \(X\), we write \([X]\) to denote the isomorphism class of \(X\). We understand that \([X] \in T(G)\). By Theorem 2.2,

\[T(G) = \bigoplus_{(P,E) \in \mathcal{P}(G)} \mathbb{Z}[M_{P,E}^G] \]

as a direct sum of regular \(Z\)-modules, the notation indicating that the index runs over representatives of \(G\)-orbits. Let \(T^{\text{ex}}(G)\) denote the \(Z\)-submodule of \(T(G)\) spanned by the isomorphism classes of exprojective \(FG\)-modules. By Proposition 2.4, \(T^{\text{ex}}(G)\) is a subring of \(T(G)\). By Proposition 2.1,

\[T^{\text{ex}}(G) = \bigoplus_{(K,F) \in \mathcal{Q}(G)} \mathbb{Z}[M_{G,F}^K] \].

For \(H \leq G\), the induction and restriction functors \(\text{ind}_H\) and \(\text{Res}_G\) give rise to induction and restriction maps \(\text{ind}_H\) and \(\text{Res}_G\) between \(T(H)\) and \(T(G)\). Similarly, given \(L \in R\) and an isomorphism \(\theta : L \rightarrow G\), we have an evident isogation map \(\text{iso}_G^L : T(L) \rightarrow T(G)\). In particular, given \(g \in G\), we have an evident conjugation map \(\sigma_g\). Boltje noted that, when \(\mathcal{R}\) is the set of subgroups of a given fixed finite group, \(T\) is a Green functor in the sense of [2, 1.1c]. For arbitrary \(\mathcal{R}\), a class of admitted isogations must be understood, and the isogations and inclusions between groups in \(\mathcal{R}\) must satisfy the
axioms of a category. Granted that, then T is still a Green functor in an evident sense whereby the conjugations replaced by isogations.

Following a construction in [2, 2.2], adaptation to the case of arbitrary \mathcal{R} being straightforward, we form the G-cofixed quotient \mathcal{Z}-module

$$\mathcal{T}(G) = \left(\bigoplus_{U \leq G} T^{ex}(U) \right)_G$$

where G acts on the direct sum via the conjugation maps $\xi \mapsto \xi U \cdot \xi$. Harnessing the Green functor structure of T, the restriction functor structure of T^{ex} and noting that $T^{ex}(G)$ is a subring of $T(G)$, we make \mathcal{T} become a Green functor much as in [2, 2.2], with the evident isogation maps. In particular, $\mathcal{T}(G)$ becomes a ring, commutative because $T(G)$ is commutative. Given $x_U \in T^{ex}(U)$, we write $[U, x_U]_G$ to denote the image of x_U in $\mathcal{T}(G)$. Any $x \in \mathcal{T}(G)$ can be expressed in the form

$$x = \sum_{U \leq G} [U, x_U]_G$$

where the notation indicates that the index runs over representatives of the G-conjugacy classes of subgroups of G. Note that x determines $[U, x_U]$ and x_G but not, in general, x_U. Let $\mathcal{R}(G)$ be the G-set of pairs (U, K, F) where $U \leq G$ and $(K, F) \in \mathcal{Q}(U)$. We have

$$\mathcal{T}(G) = \bigoplus_{U \leq G, (K, F) \in \mathcal{Q}(U)} \mathcal{Z}[U, [M^K_U, F]] = \bigoplus_{(U, K, F) \in \mathcal{R}(G)} \mathcal{Z}[U, [M^K_U, F]].$$

We define a \mathcal{Z}-linear map $\text{lin}_G : \mathcal{T}(G) \to \mathcal{T}(G)$ such that $\text{lin}_G[U, x_U] = c \text{ind}_U(x_U)$. As noted in [2, 3.1], the family $(\text{lin}_G : G \in \mathcal{R})$ is a morphism of Green functors $\text{lin} : \mathcal{T} \to \mathcal{T}$. In particular, the map $\text{lin}_G : \mathcal{T}(G) \to \mathcal{T}(G)$ is a ring homomorphism. Extending to coefficients in \mathcal{Q}, we obtain an algebra map

$$\text{lin}_G : \mathcal{Q} \mathcal{T}(G) \to \mathcal{Q} \mathcal{T}(G).$$

Let $\pi_G : \mathcal{T}(G) \to T^{ex}(G)$ be the \mathcal{Z}-linear epimorphism such that π_G acts as the identity on $T^{ex}(G)$ and π_G annihilates the isomorphism class of every indecomposable non-exprojective p-permutation $\mathcal{F}G$-module. By \mathcal{Q}-linear extension again, we obtain a \mathcal{Q}-linear epimorphism $\pi_G : \mathcal{T}(G) \to \mathcal{Q} T^{ex}(G)$. After [2, 5.3a, 6.1a], we define a \mathcal{Q}-linear map

$$\text{can}_G : \mathcal{Q} \mathcal{T}(G) \to \mathcal{Q} \mathcal{T}(G), \xi \mapsto \frac{1}{|G|} \sum_{U, V \leq G} |U| \text{mőb}(U, V) [U, \text{res}_V(\pi_V(\text{res}_G(\xi)))].$$

where $\text{mőb}()$ denotes the Möbius function on the poset of subgroups of G.

Theorem 3.1. Consider the \mathcal{Q}-linear map can_G.

1. We have $\text{lin}_G \circ \text{can}_G = \text{id}_{\mathcal{Q} \mathcal{T}(G)}$.
2. For all $H \leq G$, we have $\text{res}_H \circ \text{can}_G = \text{can}_H \circ \text{res}_G$.
3. For all $L \in \mathcal{R}$ and isomorphisms $\theta : L \to G$, we have $\text{iso}_L \circ \text{can}_G = \text{can}_L \circ \text{iso}_G$.
4. $\text{can}_G[X] = [X]$ for all exprojective $\mathcal{F}G$-modules X.

Those four properties, taken together for all $G \in \mathcal{R}$, determine the maps can_G.

Proof. By [2, 6.4], part (1) will follow when we have checked that, for every indecomposable non-exprojective p-permutation $\mathcal{F}G$-module M, we have $[M] \in \sum_{K \leq G} c \text{ind}_K([\mathcal{T}(K)]).$ By [3, 2.1, 4.7], we may assume that G is p-hypoelementary. By [3, 1.3(b)], M is induced from $N_G(P)$ where P is a vertex of M. But M is non-exprojective, so P is not normal in G. The check is complete. Parts (2), (3), (4) follow from the proof of [2, 5.3a]. □

Parts (2) and (3) of the theorem can be interpreted as saying that $\text{can}_G : T \to T$ is a morphism of restriction functors. It is not hard to check that, when \mathcal{R} is closed under the taking of quotient groups, the functors T, T^{ex}, \mathcal{T} can be equipped with inflation maps, and the morphisms lin_G and can_G are compatible with inflation.

The latest theorem immediately yields the following corollary.

Corollary. Given a p-permutation $\mathcal{F}G$-module X, then

$$[X] = \frac{1}{|G|} \sum_{U, V \leq G} |U| \text{mőb}(U, V) c \text{ind}_U \text{res}_V(\pi_V(\text{res}_G[X])).$$
Given p-permutation $\mathbb{F}G$-modules M and X, with M indecomposable, we write $m_G(M, X)$ to denote the multiplicity of M as a direct summand of X. We write $\pi_G(X)$ to denote the direct summand of X, well-defined up to isomorphism, such that $[\pi_G(X)] = \pi_G[X]$.

Lemma 3.3. Let p be a set of primes. Suppose that, for all $V \in \mathfrak{A}$, all p-permutation $\mathbb{F}V$-modules Y, all $U \triangleleft V$ such that V/U is a cyclic p-group, and all V-fixed elements $(K, F) \in \mathcal{Q}(U)$, we have

$$m_U(M^K_U, \pi_U(\mathcal{R}(Y))) = \sum_{(J,E) \in \mathcal{Q}(V)} m_U(M^K_U, \mathcal{R}(V)) m_V(M^J_V, \pi_Y(V)).$$

Then, for all $G \in \mathfrak{A}$, we have $|G|p'$ can$_C[Y] \in \mathcal{T}(G)$, where $|G|p'$ denotes the p'-part of $|G|$.

Proof. This is a special case of [2, 9.4]. □

We can now prove the $\mathbb{Z}[1/p]$-integrality of can$_G$.

Theorem 3.4. The \mathbb{Q}-linear map can$_C$ restricts to a $\mathbb{Z}[1/p]$-linear map $\mathbb{Z}[1/p]\mathcal{T}(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$.

Proof. Let p be the set of primes distinct from p. Let V, Y, U, K, F be as in the latest lemma. We must obtain the equality in the lemma. We may assume that Y is indecomposable. If Y is exprojective, then $\pi_U(\mathcal{R}(Y)) \cong Y$, and $\pi_Y(Y) \cong X$, whence the required equality is clear. So we may assume that Y is non-exprojective. Then $\pi_Y(Y)$ is the zero module. It suffices to show that M^K_U is not a direct summand of $\mathcal{R}(Y)$. For a contradiction, suppose otherwise. The hypothesis on $\mathcal{R}(V)$ implies that U contains the vertices of Y. So $Y \mid \mathcal{R}(X)$ for some indecomposable p-permutation $\mathbb{F}U$-module X. Bearing in mind that (K, F) is V-stable, a Mackey decomposition argument shows that $M^K_U \cong X$. The V-stability of (K, F) also implies that $K \triangleleft V$. So

$$Y \mid \mathcal{R}(X) \cong Y \mathcal{R}(X) \cong Y \mathcal{R}(X) \mathcal{R}(Y).$$

We deduce that Y is exprojective. This is a contradiction, as required. □

Proposition 3.5. The \mathbb{Z}-linear map $\text{lin}_C : \mathcal{T}(G) \to \mathcal{T}(G)$ is surjective. However, the $\mathbb{Z}[1/p]$-linear map $\text{can}_C : \mathbb{Z}[1/p]\mathcal{T}(G) \to \mathbb{Z}[1/p]\mathcal{T}(G)$ need not restrict to a \mathbb{Z}-linear map $\mathcal{T}(G) \to \mathcal{T}(G)$. Indeed, putting $p = 3$ and $G = SL_2(3)$, letting Y be the isomorphically unique indecomposable non-simple non-projective p-permutation $\mathbb{F}G$-module and X the isomorphically unique 2-dimensional simple $\mathbb{F}Q_8$-module, then the coefficient of the standard basis element $[Q_8, X]_C$ in $\text{can}_C([Y])$ is equal to $2/3$.

Proof. Since every 1-dimensional $\mathbb{F}G$-module is exprojective, the surjectivity of the \mathbb{Z}-linear map lin_C follows from Boltje [3, 4.7]. Routine techniques confirm the counter-example. □

4. The \mathbb{K}-semisimplicity of the commutative algebra $\mathbb{K}\mathcal{T}(G)$

Let $\mathcal{I}(G)$ be the G-set of pairs (P, s) where P is a p-subgroup of G and s is a p'-element of $N_G(P)/P$. Let \mathbb{K} be a field of characteristic zero such that \mathbb{K} has roots of unity whose order is the p'-part of the exponent of G. Choosing and fixing an arbitrary isomorphism between a suitable torsion subgroup of $\mathbb{K} - \{0\}$ and a suitable torsion subgroup of $\mathbb{F} - \{0\}$, we can understand Brauer characters of $\mathbb{F}G$-modules to have values in \mathbb{K}. For a p'-element $s \in G$, we define a species $\epsilon_{P,s}^G$ of $\mathbb{K}\mathcal{T}(G)$, we mean, an algebra map $\mathbb{K}\mathcal{T}(G) \to \mathbb{K}$, such that $\epsilon_{P,s}^G[M]$ is the value, at s, of the Brauer character of a p-permutation $\mathbb{F}G$-module M. Generally, for $(P, s) \in \mathcal{I}(G)$, we define a species $\epsilon_{P,s}^G$ of $\mathbb{K}\mathcal{T}(G)$ such that $\epsilon_{P,s}^G[M] = \epsilon_{s1,s}^N(C/P)$ $[M(P)]$, where $M(P)$ denotes the P-relative Brauer quotient of M^P. The next result, well-known, can be found in Bouc–Thévenaz [6, 2.18, 2.19].

Theorem 4.1. Given $(P, s), (P', s') \in \mathcal{I}(G)$, then $\epsilon_{P,s}^G = \epsilon_{P',s'}^G$ if and only if we have G-conjugacy $(P, s) =_G (P', s')$. The set $\{\epsilon_{P,s}^G : (P, s) \in \mathcal{I}(G)\}$ is the set of species of $\mathbb{K}\mathcal{T}(G)$ and it is also a basis for the dual space of $\mathbb{K}\mathcal{T}(G)$. The dual basis $\{\epsilon_{P,s}^G : (P, s) \in \mathcal{I}(G)\}$ is the set of primitive idempotents of $\mathbb{K}\mathcal{T}(G)$. As a direct sum of trivial algebras over \mathbb{K}, we have

$$\mathbb{K}\mathcal{T}(G) = \bigoplus_{(P, s) \in \mathcal{I}(G)} \mathbb{K}\epsilon_{P,s}^G.$$

Let $\mathcal{J}(G)$ be the G-set of pairs (L, t) where L is a p'-residue-free normal subgroup of G and t is a p'-element of G/L. We define a species $\epsilon_{L,t}^G$ of $\mathbb{K}T^e(G)$ such that, given an indecomposable exprojective $\mathbb{F}G$-module M, then $\epsilon_{L,t}^G[M] = 0$ unless M
is the inflation of an FG/L-module M, in which case, $e_G^{L,G}$ is the value, at t, of the Brauer character of M. It is easy to show that, given a p-subgroup $P \leq G$ and a p'-element $s \in N_G(P)/P$, then $e_{P,s}^G[M] = e_G^{L,G}[M]$ for all exprojective FG-modules M if and only if L is the normal closure of P in G and t is conjugate to the image of s in G/L. Hence, via the latest theorem, we obtain the following lemma.

Lemma 4.2. Given $(L, t), (L', t') \in J(G)$, then $e_G^{L,G} = e_{L'}^{L',t'}$ if and only if $L = L'$ and $t = G/L t'$, in other words, $(L, t) = G (L', t')$. The set \(\{ e_G^{L,G} : (L, t) \in G \} \) is the set of species of $K_{T^n(G)}$ and it is also a basis for the dual space of $K_{T^n(G)}$.

Let $K(G)$ be the G-set of triples (V, L, t) where $V \leq G$ and $(L, t) \in J(V)$. Given $(L, t) \in J(G)$, we define a species $e_G^{V, L, t}$ of $K_T(G)$ such that, for $x \in T(G)$ expressed as a sum as in Section 3,

$$e_G^{V, L, t}(x) = e_G^{L, t}(x_G).$$

Generally, for $(V, L, t) \in K(G)$, we define a species $e_G^{V, L, t}$ of $K_T(G)$ such that

$$e_G^{V, L, t}(x) = e_{V, L, t}(v \res_G(x)).$$

Using Lemma 4.2, a straightforward adaptation of the argument in [6, 2.18] gives the next result. This result also follows from Boltje–Raggi–Cárdenas–Valero-Elizondo [5, 7.5].

Theorem 4.3. Given $(V, L, t), (V', L', t') \in K(G)$, then $e_G^{V, L, t} = e_G^{V', L', t'}$ if and only if $(V, L, t) = G (V', L', t')$. The set \(\{ e_G^{V, L, t} : (V, L, t) \in K(G) \} \) is the set of species of $K_T(G)$ and it is also a basis for the dual space of $K_T(G)$. The dual basis \(\{ e_G^{V, L, t} : (V, L, t) \in K(G) \} \) is the set of primitive idempotents of $K_T(G)$. As a direct sum of trivial algebras over K, we have

$$K_T(G) = \bigoplus_{(V, L, t) \in K(G)} K e_G^{V, L, t}. $$

We have the following easy corollary on lifts of the primitive idempotents $e_G^{P,s}$.

Corollary 4.4. Given $(P, s) \in I(G)$, then $e_G^{P,s}$ is the unique primitive idempotent e of $K_T(G)$ such that $\lin_G(e) = e_G^{P,s}$.

References

[1] L. Barker, An inversion formula for the primitive idempotents of the trivial source algebra, J. Pure Appl. Math. (2019). https://doi.org/10.1016/j.jpaa.2019.04.008, in press.
[2] R. Boltje, A general theory of canonical induction formulae, J. Algebra 206 (1998) 293–343.
[3] R. Boltje, Linear source modules and trivial source modules, Proc. Symp. Pure Math. 63 (1998) 7–30.
[4] R. Boltje, Representation rings of finite groups, their species and idempotent formulae, preprint.
[5] R. Boltje, G. Raggi-Cárdenas, L. Valero-Elizondo, The $-^s$ and $-^{s'}$ constructions for biset functors, J. Algebra 523 (2019) 241–273.
[6] S. Bouc, J. Thévenaz, The primitive idempotents of the p-permutation ring, J. Algebra 323 (2010) 2905–2915.