Supplement of Atmos. Chem. Phys., 20, 10807–10829, 2020
https://doi.org/10.5194/acp-20-10807-2020-supplement
© Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

Supplement of

Measurements of carbonyl compounds around the Arabian Peninsula: overview and model comparison

Nijing Wang et al.

Correspondence to: Nijing Wang (nijing.wang@mpic.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1. Wind map of each area and ship cruise. The number on the left top of each map represents the mean ± standard deviation of the wind speed in each area. The data used for map plotting was from public domain GIS data found on the Natural Earth website (http://www.naturalearthdata.com) was read into Igor using the IgorGIS XOP beta.

Figure S2. Comparison of (a) benzene and (b) toluene measured by GC-FID and PTR-ToF-MS (data from PTR-Tof-MS was averaged to GC time resolution of 50 min).
Figure S3. Scatter plots between benzene and toluene mixing ratios for Arabian Gulf and Suez. Red dashed line represents the initial emission ratio (values with underlined numbers on the top right of each figure) determined for further OH exposure calculation.

Figure S4. Comparison of model results for carbonyls with and without input of the ethane and propane deep water source in the North Red Sea.

Figure S5. Scatter plots of carbonyls and ozone mixing ratios over the (a) Arabian Gulf (AG) and (b) Red Sea North (RSN).
Figure S6. Scatter plots between dimethyl sulfide (DMS) and acetaldehyde mixing ratios over the eight regions (10 minute average).

Figure S7. Estimated water concentration of acetaldehyde (nM) scaled according to solar radiation. The black dash line indicates the mean level 13.4 nM.
Figure S8. Scatter plots between measured and model simulated mixing ratios for acetaldehyde in different regions without ocean source (graph on the left side of each region labeled with No Ocean) and with ocean emission source (graph on the right side of each region labeled with Ocean E). The data points are further separated into day- and nighttime according to solar radiation.

Figure S9. Time series of ozone mixing ratios and measurement to model ratios of acetaldehyde, propene and ethene over the Arabian Gulf (shaded area represents daytime).
Table S1. Detection limit (LOD) and total uncertainty of standard gas calibrated trace gases during AQABA

Compounds	Protonated Masses	LOD (mean ± 3σ) (ppt)	LOD Range (ppt)	Total Uncertainty (%)
Methanol	33.0335	105 ± 40	31-302	17
Acetonitrile	42.0339	13 ± 3	4-23	6
Acetaldehyde	45.0335	52 ± 26	10-194	8
Acetone	59.0492	22 ± 9	6-122	6
DMS	63.0263	13 ± 4	2-30	12
Isoprene	69.0699	15 ± 10	2-98	6
Methacrolein/Methyl Vinyl Ketone	71.0492	7 ± 2	2-19	6
MEK	73.0648	9 ± 6	3-80	6
Benzene	79.0543	6 ± 2	2-16	7
Toluene	93.0699	4 ± 1	1-8	8
Xylene	107.0856	4 ± 1	1-10	7
1,3,5-Trimethylbenzene	121.1012	3 ± 1	1-13	7
α-pinene	137.1325	5 ± 3	2-38	7

Table S2. Protonated masses, chemical formula and limit of detection of carbonyl compounds.

Protonated Masses	Chemical Formula	LOD Average (ppt)	LOD Range (ppt)
Aliphatic CCs	**C₅H₁₀O⁺**		
87.0805	C₅H₁₀OH⁺	10	4-28
101.0961	C₆H₁₂OH⁺	11	3-34
115.1118	C₇H₁₄OH⁺	7	1-22
129.1274	C₈H₁₆OH⁺	6	1-24
143.1431	C₈H₁₈OH⁺	5	1-28
Unsaturated CCs	**C₆H₁₶₂OH⁺**		
85.0648	C₅H₁₀OH⁺	12	3-34
99.0805	C₆H₁₂OH⁺	12	3-39
113.0961	C₇H₁₄OH⁺	6	1-19
127.1118	C₈H₁₆OH⁺	5	1-9
141.1274	C₈H₁₈OH⁺	4	1-12
Aromatic CCs	**C₆H₁₆₃OH⁺**		
107.0492	C₇H₁₀OH⁺	10	3-31
121.0648	C₈H₁₂OH⁺	7	2-21
135.0805	C₈H₁₄OH⁺	12	2-45
Table S3. OH rate constant of hydrocarbons and carbonyls mentioned in the study

Formula	Compound	CAS	\(k \text{ (OH)} \) cm\(^3\) molecule\(^{-1}\)s\(^{-1}\) at 298K
Alkanes			
CH\(_4\)	methane\(^*\)	74-82-8	6.40E-15
C\(_2\)H\(_6\)	ethane\(^*\)	74-84-0	2.40E-13
C\(_3\)H\(_8\)	propane\(^*\)	74-98-6	1.10E-12
C\(_4\)H\(_10\)	i-butane\(^*\)	75-28-5	2.12E-12
C\(_4\)H\(_10\)	n-butane\(^*\)	106-97-8	2.35E-12
C\(_5\)H\(_12\)	i-pentane\(^*\)	78-78-4	3.60E-12
C\(_5\)H\(_12\)	n-pentane\(^*\)	109-66-0	3.80E-12
C\(_6\)H\(_14\)	i-hexane\(^*\)	107-83-5	5.20E-12
C\(_6\)H\(_14\)	n-hexane\(^*\)	110-54-3	5.20E-12
C\(_7\)H\(_16\)	n-heptane\(^*\)	142-82-5	6.76E-12
C\(_8\)H\(_16\)	octane\(^*\)	111-65-9	8.11E-12
Alkenes			
C\(_2\)H\(_4\)	ethene\(^*\)		8.52E-12
Aliphatic Carbonyls			
CH\(_2\)O	formaldehyde\(^*\)	50-00-0	8.50E-12
C\(_2\)H\(_4\)O	acetaldehyde\(^*\)	75-07-0	1.50E-11
C\(_3\)H\(_6\)O	acetone\(^*\)	67-64-1	1.80E-13
C\(_4\)H\(_8\)O	methyl ethyl ketone\(^*\)	78-93-3	1.10E-12
C\(_5\)H\(_10\)O	2-pentanone\(^*\)	107-87-9	4.40E-12
C\(_5\)H\(_10\)O	3-pentanone\(^*\)	96-22-0	2.00E-12
C\(_5\)H\(_10\)O	3-methyl-2-butanone\(^*\)	563-80-4	2.90E-12
C\(_6\)H\(_12\)O	2-hexanone\(^*\)	591-78-6	9.10E-12
C\(_6\)H\(_12\)O	3-hexanone\(^*\)	589-38-8	6.90E-12
C\(_6\)H\(_12\)O	4-methyl-2-pentanone\(^*\)	108-10-1	1.30E-11
C\(_6\)H\(_12\)O	3-methyl-2-pentanone\(^*\)	565-61-7	6.90E-12
C\(_7\)H\(_14\)O	2,4-dimethyl-3-pentanone\(^*\)	565-80-0	5.00E-12
C\(_7\)H\(_14\)O	2-heptanone\(^*\)	110-43-0	1.10E-11
C\(_7\)H\(_14\)O	5-methyl-2-hexanone\(^*\)	110-12-3	1.00E-11
C\(_8\)H\(_16\)O	2-octanone\(^*\)	111-13-7	1.10E-11

Compounds marked with \(^*\) represent \(k \text{(OH)} \) taken from Atkinson et.al. (2006). Otherwise \(k \text{(OH)} \) were taken from Atkinson and Arey (2003).
Calculation of acetaldehyde yield from pyruvic acid photolysis

In order to verify the contribution from the photolysis of pyruvic acid to acetaldehyde, we calculated the expected acetaldehyde produced through pyruvic acid photolysis over different regions assuming: (1) m/z 89.0234 is fully assigned to pyruvic acid; (2) the loss of pyruvic acid is only through photolysis; (3) 60% is the yield of acetaldehyde via pyruvic acid photolysis recommended by IUPAC (2019); (4) the loss of acetaldehyde is only through OH oxidation. The acetaldehyde produced via pyruvic acid photolysis can be calculated using following equation (consecutive reactions):

$$[\text{Acetaldehyde}] = [\text{Pyruvic acid}] \frac{J_{PA}}{k_{OH}[OH] - J_{PA}} \left[\exp(-J_{PA}\Delta t) - \exp(-k_{OH} \times [OH]\Delta t) \right]$$ \hspace{1cm} \text{Eq. S1}

$[\text{Pyruvic acid}]$ is the mean of pyruvic acid mixing ratio in each region. J_{PA} represents the mean photolysis rate constant of pyruvic acid during the daytime (dawn to dusk) in each region calculated from the wavelength resolved actinic flux data using quantum yield of 0.2 as suggested by IUPAC (2019). The k_{OH} is the rate constant of acetaldehyde reacting with OH radical ($1.5 \times 10^{-11} \text{ cm}^3 \text{ molecule}^{-1} \text{s}^{-1}$, Table S3). The $[OH]$ concentrations in each area were the mean values during the daytime obtained from the EMAC model. The maximum acetaldehyde level as well as the corresponding time (Δt) can be derived from Eq. S1 as Δt is the only variable. The results are shown in Table S4.

Table S4. Mean photolysis rate constant of pyruvic acid, OH concentrations, relative time (Δt) needed to reach the maximum acetaldehyde yield from pyruvic acid photolysis, maximum acetaldehyde and its fraction accounting the mean level over regions.

Regions	J_{PA} (s$^{-1}$)	OH (molecules cm$^{-3}$)	m/z 89.0234 pyruvic acid (H$^+$) (ppt)	Δt (h)	Acetaldehyde maximum (ppt)	Fractions (%)
MS	3.51×10^{-5}	6.52×10^6	39 ± 8	5.6	5.6	1.85
SC	3.44×10^{-5}	7.42×10^6	42 ± 9	5.2	5.3	0.85
RSN	3.52×10^{-5}	7.14×10^6	35 ± 14	5.2	4.7	0.92
RSS	3.00×10^{-5}	8.74×10^6	61 ± 15	4.9	6.2	1.98
GA	3.11×10^{-5}	7.20×10^6	57 ± 12	5.5	6.8	3.60
AS	2.74×10^{-5}	4.35×10^6	59 ± 12	7.8	9.4	5.88
GO	3.31×10^{-5}	7.89×10^6	65 ± 10	5.0	7.6	2.91
AG	3.29×10^{-5}	7.81×10^6	110 ± 53	5.1	12.9	0.75

References

Atkinson, R., and Arey, J.: Atmospheric Degradation of Volatile Organic Compounds, Chemical Reviews, 103, 4605-4638, 10.1021/cr0206420, 2003.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and Subcommittee, I.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625-4055, 10.5194/acp-6-3625-2006, 2006.

IUPAC Task Group on Atmospheric Chemical Kinetic Data Evaluation, (http://iupac.pole-ether.fr).