RESEARCH ARTICLE

Characteristics of back pain in young adults and their relationship with dehydration: a cross sectional study [version 1; peer review: awaiting peer review]

Faizan-ul-Haq, Uzair Yaqoob, Muniba Mehmood, Adeel Ahmed Siddiqui, Syed Muhammad Usama, Syed Zohaib Maroof Hussain, Muhammad Mannan Ali Khan

1Dow University of Health Sciences, Karachi, Pakistan
2Dr. Ruth K. M. Pfau Civil Hospital, Karachi, Pakistan
3Aga Khan University Hospital, Karachi, Pakistan
4Sindh Government Qatar Hospital, Karachi, Pakistan

Abstract

Background: Low back pain (LBP) is one of the major factors impairing the quality of life and is the most frequent cause of disability. Inadequate water intake is believed to be the predisposing factor for LBP particularly in the younger population. It is commonly seen that the incidence of LBP has been on the rise in people between 20-40 years of age. Thus, the basic aim of this study is to find a potential relationship between dehydration and LBP among young adults.

Methods: This cross-sectional study was conducted from the medical students and practicing doctors of 21-39 years from March-May 2019. Characteristics of pain along with the daily activities of patients were assessed. The severity was assessed by using the Graded Chronic pain scale (GCPS).

Results: Out of a total of 426 participants, 84.74% had LBP. Of these, 44.3% complained of having it more than once a week, with duration usually between 1-7 days. More than half of the patients had their routines disturbed because of this pain. Most of the participants complained of an episodic increase in summers. The majority (75.9%, n=274) drank 5-9 glasses of water a day, 64.5% of them were of opinion that their daily water consumption was enough, while 61.5% felt an association between dehydration and LBP. According to the GCPS, one-third of the population had chronic pain of grade I and the other third had grade IV.

Conclusion: It can be concluded that with the increase in the pace of life many individuals who belong to the above mentioned age group have a reduced intake of water, and due to a probable relationship between LBP and dehydration, this might be a reason of the increasing propensity of LBP in them. There is a need for further work in this regard.

Keywords
Back pain, Dehydration, Orthopedics, young adults
Corresponding author: Muniba Mehmood (munibamehmood26@gmail.com)

Author roles: ul-Haq F: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Yaqoob U: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Mehmood M: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Siddiqui AA: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Usama SM: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Hussain SZM: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Khan MMA: Conceptualization, Data Curation, Formal Analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Resources, Software, Supervision, Validation, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: The author(s) declared that no grants were involved in supporting this work.

Copyright: © 2020 ul-Haq F et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

How to cite this article: ul-Haq F, Yaqoob U, Mehmood M et al. Characteristics of back pain in young adults and their relationship with dehydration: a cross sectional study [version 1; peer review: awaiting peer review] F1000Research 2020, 9:159 (https://doi.org/10.12688/f1000research.22298.1)

First published: 03 Mar 2020, 9:159 (https://doi.org/10.12688/f1000research.22298.1)
Introduction

Low back pain (LBP) is a severely debilitating condition which not only impairs quality of life but also affects the productivity of an individual. In a study published by the World Health Organization (WHO), LBP was recognized as the leading cause of disability. Out of several causative reasons for LBP, some predominant ones are bad posture, obesity, and low physical activity. Back pain is emerging as a common complaint among the young population. A study conducted in Finland suggested it as a frequent problem in adults who are in their 30s, increasing in severity with age, evolving as a non-specific and radiating LBP, which results in reduced productivity and absence from the workplace. This is the reason why back pain has now emerged as a socioeconomic burden for both the individual and society as a whole.

It is believed that inadequate water intake is a predisposing factor for many acute medical conditions and a potential association with some chronic conditions exists. Even a short duration of fluid restriction can lead to loss of body mass, reduced levels of alertness and concentration, tiredness, headaches, and back pain. Secondly, a potential relationship is believed to exist between dehydration and LBP, and this hypothesis is somewhat supported by a study conducted on the hydration of nucleus pulposus and its relation to intervertebral disc derangement. It states that the proper functioning of an intervertebral disc depends upon the nucleus pulposus. Around 80–88% of the nucleus pulposus is composed of water in early life, which gradually decreases with age. The study also reveals that dehydration and degeneration of nucleus pulposus are linked. Suitable intake of water and maintaining adequate fluid intake is necessary as dehydration can affect the body’s working capacity in many ways, one of which is by the reduction of optimum blood flow to the body’s core muscle. Also relevant is the role of adequate hydration on postural control, which has a pivotal role in our daily life, especially in our biomechanical wellness, which can become a cause of musculoskeletal problems including LBP if not functioning properly. A study published in the International Journal of Neuroscience suggested that adequate fluid intake may help in maintaining posture by preserving the muscles responsible for postural control.

Water is a vital component for life, constituting 75% of the body weight of infants and 55% of the elderly. Body fluid and electrolyte homeostasis is dependent on the balance between water intake and output, and around 5–10% is renewed daily. Moreover, it is essential to maintain an adequate fluid balance, in order to carry out our vital bodily functions. Regulation of water balance is mainly by passing it through urine, as described by Engell D et al. Daily fluid consumption of a human body mostly exceeds its daily requirement and this may change in accordance with the level of physical exertion, climate, and several other factors that affect the water balance. The pace of modern life has generally led to it becoming more difficult to fulfill body water demands, which leads to dehydration. Clinically the term dehydration denotes body water loss, either without salt or along with it. It is observed that reduced thirst, reduced water intake, and thermal dehydration are the major predisposing factors for dehydration and the situation becomes worse when these factors are combined with reduced renal water-conservation capacity, especially in older subjects. This point was further emphasized in a study by Armstrong et al., where it was concluded that around 1–2% of pre-exercise body mass is lost, even after a small amount of body water loss.

Individuals of 20–40 years of age can be rightly termed as the workforce of our society. They are active in sports, aerobics, workouts, as well as other forms of physical activities, which makes them vulnerable to dehydration. Thus, the basic point on which this study is hinged upon is to establish if there is a potential relationship between dehydration and LBP among the individuals aged 20–40 in the general population; evidence of which may aid in alleviating the socioeconomic burden caused by LBP and improve quality of life.

Methods

This cross-sectional study was conducted at a medical college and a tertiary care hospital from from March to May 2019. Proformas were distributed during lectures and workshops. The sample size was calculated using OpenEpi software version 3.01. Considering an estimated prevalence of LBP in young adults as 42.4%, confidence level of 95%, and a design effect of 1, the minimum sample size was kept as 376 and in the assigned time period of three months, a total sample of 426 was collected.

Inclusion criteria was male and female medical students and young practicing doctors of 21–39 years of age. Those with a Vitamin D deficiency or a joint disease (if disclosed in history) were excluded. For vitamin D deficiency, the participants were sent to the institutional laboratory where blood samples (3–5 mL) were collected by an experienced phlebotomist in gel tubes. The serum was centrifuged at 3000 rpm for five minutes and stored at -80°C for subsequent analysis. Serum vitamin D levels were measured by commercially available enzyme linked immunosorbent assay (ELISA) kits (kit cat#KAP197 by DIA source immunoassays S.A. Belgium). Only ten patients had vitamin D deficiency (considered deficient when it was <12 ng/mL) out of 436, which lead to the final sample size of 426. Data was collected through a pre-designed proformas in English made by reviewing similar studies from the literature and a short pilot study conducted over two weeks, with 50 participants. Variables included sociodemographics (age, gender, height, and weight), those related to pain (frequency, duration in the last six months, effect on sleep and routine activities, measures to relieve pain and visits to a healthcare professional, and seasonal changes in pain), daily activities (driving, riding, consumption after strenuous activity, duration load of routine work, regular outdoor sports, and weight lifting or aerobic activities, and daily glasses of water drank). Patients’ opinion about their daily consumption of water and the relation of back pain with dehydration was also enquired. The severity of pain was assessed by using the Graded Chronic pain scale (GCPS). It is a seven-item instrument designed to evaluate the severity of chronic pain based on its intensity and disability, with three subscales i.e. characteristic pain intensity score (calculated by combining the current pain intensities, with the worst and average pain status in the last six months), disability score (mean score of the interference of daily living by the pain), and disability points (calculated by combining the number of disability days and
the disability score). Based on these scores a combined score of pain and disability is computed, categorizing patients into five categories as Grade 0, no pain; grade I, low intensity and low disability; grade II, low disability and high intensity; grade III, high disability and moderate limiting intensity; and grade V, high disability with severely limiting intensity. Participants filled the pro formas themselves during their lectures and workshops (with proper guidance of investigators) and weight and height were measured by the principal investigator using a scale and measuring tape. They were informed that all information was to be kept confidential. Questionnaires were given an identification number. The data collection procedure was supervised by the principal investigator. Data were entered and analyzed using SPSS v. 22 (IBM Corp., Armonk, NY, US). Frequency and percentages were calculated for all variables, while the mean and standard deviation for continuous variables.

Results

Out of a total of 426 participants, 361 (84.74%) had back pain at least once in the last six months. The proportion of males and females was almost equal and the majority (41.3%, n=176) were in the age group of 21–30 years as shown in Table 1 (See underlying data). Height and weight distribution can also be seen in the table.

Most of the individuals (44.3%, n=160) complained of having back pain more than once a week, with a duration usually (in 68.1%) between 1–7 days. Of these, 59.0% (n=213) of the participants had their sleep affected by the pain, and 59.6% (n=215) were unable to do their routine activities because of this pain. Early measures to reduce pain included medicine (61.77%, n=223) and rest (43.76%, n=158), and more than half of those participants visiting a healthcare professional to consult about back pain more than once a week, with a duration usually (in 61.5%) felt an association between dehydration and back pain (Table 2).

Table 1. Sociodemographic characteristics of participants (n=426).

Gender	Frequency	Percentage (%)
Female	223	52.3
Male	203	47.7

Age groups	Frequency	Percentage (%)
21–30 Years	250	58.7
31–39 Years	176	41.3

Height (Mean=5.51±0.39)	Frequency	Percentage (%)
≤5.0 ft	68	16.0
5.1–5.9 ft	267	62.7
≥6.0 ft	91	21.4

Weight (Mean=68.17±13.67)	Frequency	Percentage (%)
≤80 kg	373	87.6
81–99 kg	43	10.1
≥100 kg	10	2.3

The majority (64.5%) of the participants were of the opinion that their daily water consumption was adequate, and most (61.5%) felt an association between dehydration and back pain (Table 4).

We applied the graded chronic pain scale to assess the severity of back pain where around one-third of the population had chronic pain of grade I and the other third had that of grade IV (Figure 1).

Discussion

The effects of dehydration appear in many aspects of our lives. The National Academies of Sciences, Engineering, and Medicine of the United States of America has recommended a daily water intake of ≥3.7 liters for males and ≥2.7 liters for females. If we break it down into the number of glasses, it can be appreciated that our participants fall a bit short according to that recommendation. Considering the capacity of each glass of about 250 mL, most of the individuals with back pain in our study reported drinking 1.3–2.3 liters (5–9 glasses) of water daily. This is similar to the results by Lindeman RD et al., in which the majority (71%) of the participants were found to be drinking at least six glasses of water daily.

Dehydration has emerged as a separate risk factor for back pain and as mentioned above, disc degeneration may be the mechanism behind it. Interestingly back pain is a problem that was encountered more than once a week (44.3%) in our participants, the majority of whom were aged 21 to 30 years (58.7%), this data mirrors another study that states that back pain is common in the adolescent population, it is recurrent, increases with age and usually does not diminish with time. Most of the time it is regarded as a usual life experience. One possible reason may relate to the conclusions of Salminen JJ et al., they found a high risk (Relative risk: 16, Confidence interval: 95%) of recurrent back pain in individuals with disc degeneration compared to the ones without it, and this degeneration of the disc starts at around the age of 20, increasing through young adulthood.

We have presented the results in accordance with the standard guidelines, with back pain of more than 30 days in the last 12 months labeled as chronic LBP, and pain up to seven days labeled as mild or no back pain. While grading the severity
Table 2. Characteristics of back pain (n=361).

	Frequency	Percentage (%)
Frequency		
Once a week	58	16.1
More than once a week	160	44.3
Once a month	37	10.2
Occasional	106	29.4
Duration in the last six months		
0 days	29	7.8
1–7 days	246	68.1
8–30 days	31	8.6
More than 30 days, but not every day	41	11.4
Every Day	15	4.2
Problem falling asleep due to this pain		
No	148	41.0
Yes	213	59.0
Negative effect on routine activities		
No	146	40.4
Yes	215	59.6
Measures to relieve pain (Multiple choice)		
Take Medicine	223	61.77
Have Massage	103	28.53
Rest	158	43.76
Exercise	22	6.09
Herbal Treatment	7	1.93
None	20	5.54
Regular medication usage		
No	174	48.2
Yes	187	51.8
Seasonal changes in pain		
Episodes increase in summers	133	36.8
Episodes decrease in summers	1	0.3
Episodes increase in winters	94	26.0
Episodes decrease in winters	3	0.8
Remains the same throughout the year	130	36.0
Visit to a doctor or physiotherapist for this pain		
No	159	44.4
Yes	199	55.6

of chronic back pain we found that around one-third of the population had chronic pain of grade I (35%) and the other third had that of grade IV (32%).

In previous studies, the frequency of lower back pain was between 13–35% in males, and 17–38% in females. Moreover, female dominance is noted in this case overall. Similarly, in this study, a slight female preponderance was noted. As explained in the literature, one cause of this might be a lower pain threshold in females, a better ability to perceive and discriminate the pain stimulus, poor tolerance to pain (as compared to males), or earlier onset of puberty. Moreover, being
Table 3. Activities of patients with back pain (n=361).

Activity	Frequency	Percentage (%)
Driving		
No	155	42.9
Yes	206	57.1
Riding		
No	322	89.2
Yes	39	10.8
Consumption after strenuous physical work or workout		
Plain Water	276	76.5
Any meal	36	10.0
Tea	21	5.8
Fresh juice	14	3.9
Caffeinated beverage	7	1.9
Protein shake	7	1.9
Duration of routine work		
<8 hours	223	61.8
8–12 hours	104	28.8
>12 hours	34	9.4
Routine workload		
Light	170	47.1
Moderate	156	43.2
Strenuous	35	9.7
Playing outdoor sports regularly		
No	313	86.7
Yes	48	13.3
Regular weight lifting		
No	345	95.6
Yes	16	4.4
Regular aerobic activities		
No	283	78.4
Yes	78	21.6
Daily glasses of water		
≤4	47	13.0
5–9	274	75.9
≥10	40	11.1

Table 4. Attitude of participants about dehydration.

Attitude	Frequency	Percentage (%)
Do you feel your daily consumption of water is enough?		
No	128	35.5
Yes	233	64.5
Do you feel that there is an association between back pain and dehydration?		
No	139	38.5
Yes	222	61.5
female has been identified as an independent predisposing factor for dehydration3.

We have assessed the effects of back pain only in young adults and the difference in their daily activities. Further assessment should be performed in other age groups to evaluate the potential relationship of these activities with dehydration. Moreover, a comparative study across age groups, would allow the effect of aging to be determined. Our results cannot be generalized being collected from a single medical school and affiliated hospital, and from a single age group. We were also limited by the study design as the participants were not followed up to evaluate this back pain, especially the causes and outcomes.

Conclusion
In light of the results of the study, it can be concluded that with the increase in the pace of life many of the individuals who belong to the abovementioned age group have a reduced intake of water, and due to a probable relationship between LBP and dehydration, this might be a reason for the increasing propensity of LBP among them. There is an underlying need for further work in this regard.

Ethical approval and consent to participate
The study was assessed and approved by the Institutional Review Board of Department of orthopedic surgery, Dow University of Health Sciences and Dr. Ruth Pfau Civil Hospital (Ortho/015/2019) Karachi, Pakistan. Written informed consent was obtained from all participants prior to participation.

Data availability
Underlying data
Figshare: Characteristics of back pain in young adults and their relationship with dehydration. \url{https://doi.org/10.6084/m9.figshare.11786457.v4}3

This project contains the following underlying data:
- Untitled1.sav (Participant responses to study questionnaire)

Extended data
Figshare: Characteristics of back pain in young adults and their relationship with dehydration. \url{https://doi.org/10.6084/m9.figshare.11786457.v4}3

This project contains the following extended data:
- Questionnaire Final.docx (Study questionnaire)

Data are available under the terms of the Creative Commons Attribution 4.0 International license (CC-BY 4.0).
References

1. Kamper SJ, Henschke N, Hestbaek L, et al.: Musculoskeletal pain in children and adolescents. Braz J Phys Ther. 2016; 20(3): 275–84. PubMed Abstract | Publisher Full Text | Free Full Text

2. Jones GT, Macfarlane GJ: Epidemiology of low back pain in children and adolescents. Arch Dis Child. 2005; 90(3): 312–6. PubMed Abstract | Publisher Full Text | Free Full Text

3. Shiri R, Solovieva S, Hugasval-Pursiainen K, et al.: Incidence of nonspecific and radiating low back pain: followup of 24-39-year-old adults of the Young Finns Study. Arthritis Care Res (Hoboken). 2010; 62(4): 455–6. PubMed Abstract | Publisher Full Text

4. Andersson GB: Epidemiological features of chronic low-back pain. Lancet. 1999; 354(9178): 581–5. PubMed Abstract | Publisher Full Text | Free Full Text

5. Biering-Sørensen F, Kjøller M: [Musculoskeletal disorders]. Ugeskr Laeger. 2004; 166(14): 1331–3. PubMed Abstract

6. Keating R: Can Dehydration Cause Back Pain? 2015. Reference Source

7. Maughan RJ: Thirst, Physiological and Psychological approaches to fluid intake regulation. J Am Med Dir Assoc. 2007; 8(2): 1191–206. PubMed Abstract | Publisher Full Text

8. Ganesan S, Acharya AS, Chauhan R, et al.: Prevalence and Risk Factors for Low Back Pain in 1,355 Young Adults: A Cross-Sectional Study. Asian Spine J. 2017; 11(4): 610–7. PubMed Abstract | Publisher Full Text | Free Full Text

9. Dietary Supplement Fact Sheet: Vitamin D. Fact Sheet for Health Professionals. Office of Dietary Supplements, National Institutes of Health. 2019. Reference Source

10. Hasan MM, Yaqoob U, Ali SS, et al.: Frequency of Musculoskeletal Pain and Associated Factors among Undergraduate Students. Case Reports Clin Med. 2018; 7(2): 131–45. PubMed Abstract

11. Van der Helm S, Owziemko T, et al.: Standardised Nordic questionnaires for the analysis of musculoskeletal symptoms. Appl Ergon. 1987; 18(3): 233–7. PubMed Abstract | Publisher Full Text

12. Von Korff M, Ormel J, Keefe FJ, et al.: Grading the severity of chronic pain. Pain. 1992; 50(2): 133–49. PubMed Abstract | Publisher Full Text

13. Dunn KM, Jordan K, Croft PR: Characterizing the course of low back pain: a latent class analysis. Am J Epidemiol. 2000; 163(8): 754–61. PubMed Abstract | Publisher Full Text

14. Griffith LE, Shannar HS, Wells RP, et al.: Individual participant data meta-analysis of mechanical workplace risk factors and low back pain. Am J Public Health. 2012; 102(2): 309–18. PubMed Abstract | Publisher Full Text | Free Full Text

15. Petri F, Leclerc A, Boitel L, et al.: Low-back pain in commercial travelers. Scand J Work Environ Health. 1992; 18(1): 52–8. PubMed Abstract | Publisher Full Text

16. Smedley J, Egger P, Cooper C, et al.: Prospective cohort study of predictors of incident low back pain in nurses. BMJ. 1997; 314(7089): 1225–8. PubMed Abstract | Publisher Full Text

17. Eriksen W, Natvig B, Bruunsgaard D: Smoking, heavy physical work and low back pain: a four-year prospective study. Occup Med (Lond). 1999; 49(3): 155–60. PubMed Abstract | Publisher Full Text

18. Gyntelberg F: One year incidence of low back pain among male residents of Copenhagen aged 40–59. Dan Med Bull. 1974; 21(1): 30–6. PubMed Abstract

19. Kopec JA, Sayre EC, Esdale JM: Predictors of back pain in a general population cohort. Spine (Phila Pa 1976). 2004; 29(1): 70–7; discussion 77–8. PubMed Abstract | Publisher Full Text

20. Lake JK, Power C, Cole TJ: Back pain and obesity in the 1958 British birth cohort, cause or effect? J Clin Epidemiol. 2000; 53(3): 245–50. PubMed Abstract | Publisher Full Text

21. Riley JL 3rd, Robinson ME, Wise EA, et al.: Sex differences in the perception of nociceptive experimental stimuli: a meta-analysis. Pain. 1998; 74(2–3): 181–7. PubMed Abstract | Publisher Full Text

22. Berkley KJ: Sex Differences in Pain. Behav Brain Sci. 1997; 20(3): 371–80. PubMed Abstract | Publisher Full Text

23. Jeffries LJ, Milanese SF, Grimmer-Somers KA: Epidemiology of adolescent spinal pain: a systematic overview of the research literature. Spine (Phila Pa 1976). 2007; 32(23): 2630–7. PubMed Abstract | Publisher Full Text | Free Full Text

24. Rowat A, Graham C, Dennis M: Dehydration in hospital-admitted stroke patients: detection, frequency, and association. Stroke. 2012; 43(3): 857–9. PubMed Abstract | Publisher Full Text

Page 8 of 9
The benefits of publishing with F1000Research:

- Your article is published within days, with no editorial bias
- You can publish traditional articles, null/negative results, case reports, data notes and more
- The peer review process is transparent and collaborative
- Your article is indexed in PubMed after passing peer review
- Dedicated customer support at every stage

For pre-submission enquiries, contact research@f1000.com