Dietary Fiber Reduces the Concentrations of Certain Aldehydes in Serum

Shi Shi
Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital

Qingqing Zhu
Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital

Shengen Liao
Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital

Xu Zhu
Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital

Xiaosu Tang
Institution of Environmental Sciences

Yanli Zhou
Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital

Research Article

Keywords: Dietary fiber, Aldehydes, Exposure, NHANES, Nutrition therapy, US adults

Posted Date: September 3rd, 2021

DOI: https://doi.org/10.21203/rs.3.rs-817666/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Aldehydes have been shown to be potentially carcinogenic, mutagenic, and cardiotoxic to humans. Dietary fiber reduces exposure to certain environmental pollutants and has been widely used to improve various metabolic disorders. However, the effects of dietary fiber on serum concentrations of aldehydes remain unexplored. We collected data from the National Health and Nutrition Examination Survey (NHANES) 2013–2014. Generalized linear regression and restricted cubic spline models were performed to elucidate the association of dietary fiber intake with the serum concentration of aldehydes. After fully adjusting for age, sex, education level, race, smoking status, alcohol use, diabetes, hypertension, body mass index, energy intake, poverty-income ratio and physical activity, dietary fiber intake had a strong negative association with serum levels of isopentanaldehyde and propanaldehyde and a positive association with serum levels of benzaldehyde. The estimated increases in the mean log2-unit (ng/mL) of aldehydes for each fold increase in dietary fiber ranged from -0.155 (95% confidence intervals [CI]: -0.210 to -0.101) for isopentanaldehyde to -0.053 (95% CI: -0.094 to -0.011) for propanaldehyde and 0.156 (95% CI: 0.091 to 0.222) for benzaldehyde. No significant association was observed between dietary fiber intake and the concentration of any other aldehydes. These results demonstrate that dietary fiber reduces the concentration of certain aldehydes in serum.

Introduction

Exposureomics has revealed the interrelated interactions of physicochemical, human toxicity, ecotoxicological and exposure data (Fan et al. 2016; Jeliazkova et al. 2021). Aldehydes are common organic compounds produced from a variety of sources, such as e-cigarettes and tobacco smoke, environmental exposure, dietary intake and endogenous intermediary metabolism, to which organisms are frequently exposed (O’Brien et al. 2005; Silva et al. 2021). Studies have linked aldehydes to various human diseases (Uchida 2000) due to their cytotoxicity (Xie et al. 2016). Our previous studies have shown that serum isopentanaldehyde is associated with obesity (Liao et al. 2020), and that benzaldehyde and isopentanaldehyde are associated with CVD (Liao et al. 2020), and these findings have also been verified by another study (Xu et al. 2020).

Dietary fiber is widely recognized as a beneficial component derived from vegetables, fruits, legumes, nuts and various grains in plant-based foods. Evidence indicates that an increased proportion of energy-adjusted dietary fiber can improve glucose metabolic disorders (Lin et al. 2015; Sekgala et al. 2018), decrease visceral fat (Bajerska et al. 2018) and may protect against coronary artery disease (Basu et al. 2021). Additional evidence comes from recent studies showing that high dietary fiber can reduce the risk of intestinal diseases, such as colorectal cancer (Dahm et al. 2010) and Crohn's disease (Ananthakrishnan et al. 2013). In renal diseases, a high-fiber diet has also been shown to improve kidney function, reduce inflammation and lower the risk of mortality (Xu et al. 2014).

However, there are few data evaluating dietary fiber in regulating potentially harmful organic compounds. A large population-based study proved that exposure to environmental tobacco smoke (ETS) under workplace conditions was associated with low intake of fruits and vegetables (Emmons et al. 1995). Although ETS is a significant source of aldehydes, the direct relationship between the two has not been further investigated. The emerging field of precise nutrition can provide effective strategies for public health through high-dimensional data analysis (Wang and Hu 2018). Therefore, based on the established data, we should explore the role of precise regulation of nutrition to eliminate harmful components. Therefore, using national health examination surveys conducted in 2013–2014, we evaluated the effect of the energy-adjusted dietary fiber available in daily life on serum aldehyde concentration.

Materials And Methods

Study population

The National Health and Nutrition Examination Survey (NHANES) was designed and conducted to continuously monitor the nutritional status and health of American noninstitutionalized civilians by the National Centers for Disease Control and Prevention (CDC). The population was collected from the NHANES surveys in 2013–2014, which were provided online (https://www.cdc.gov/nchs/nhanes/index.htm). We included 10175 participants in total, while 7849 were excluded for missing serum aldehyde data. Participants without dietary fiber data (n = 5), aged under 18 (n = 224), and pregnant individuals (n = 18) were further excluded, leaving a total of 1877 people available for the final analysis (Fig. 1).

Aldehydes measurements

The CDC has developed an automated analytical method using solid phase microextraction (SPME) gas chromatography (GC) and high-resolution mass spectrometry (HRMS) with selected ion mass detection and isotope-dilution techniques to quantify the content of aldehydes in serum. Each sample was measured twice to reduce measurement errors in the laboratory. We selected aldehydes that were detected in > 80% of participants to explore their relationship between dietary fiber intake and the serum concentrations of aldehydes, including isopentanaldehyde, butraldehyde, hexanaldehyde, heptanaldehyde, propanaldehyde, and benzaldehyde.

Dietary fiber measurements

As one part of the NHANES survey, all participants were required to complete two 24 h dietary recall interviews. The first interview was administered by trained personnel in the mobile examination center, and the second interview was conducted by telephone 3 to 10 days later. Dietary fiber intake was calculated by the US Department of Agriculture (USDA) Food and Nutrient Databases for Dietary Studies (FNDDS) (https://www.cdc.gov/nchs/tutorials/dietary/SurveyOrientation/ResourceDietaryAnalysis/intro.htm). Daily dietary fiber intake was averaged based on the two 24 h recall data and adjusted by the total energy intake.

Covariates
Covariates included age, sex, education level (< 9th grade, 9–11th grade, high school graduate, college degree, college graduate or above), race (Mexican American, other Hispanic American, non-Hispanic white, and others), hypertension (yes or no) and diabetes (yes or no), body mass index (BMI, kg/m²), past smoking (at least 100 cigarettes in life or not) or alcohol use (at least 12 alcohol drinks per year or not), daily energy intake, physical activity and poverty-income ratio. Total daily energy intake was calculated by averaging the energy intake of diet and dietary supplements. Daily physical activity time was multiplied by the corresponding metabolic equivalent (MET) score to assess physical activity level. The poverty-income ratios were defined as the ratio of household income to the threshold adjusted by inflation and household size.

Statistical methods

Continuous variables are expressed as the mean (standard deviation, SD) and were compared using a t-test (normal distribution). Categorical variables presented as numbers (frequencies, %) were analyzed by the chi-squared test. Log2 transformation was used because of the skewed distribution of the energy-adjusted dietary fiber and all aldehydes. The energy-adjusted dietary fiber intake was calculated as grams per day according to the regression residuals of fiber on total energy intake. A generalized linear model and restricted cubic spline (3 knots located at the 10th, 50th, 90th) were performed to assess the associations of dietary fiber (both in quantiles and continuously) with the serum concentrations of aldehydes after adjusting for cofounding factors, including age, sex, education level, race, smoking status, alcohol use, diabetes, hypertension, body mass index, energy intake, poverty-income ratio and physical activity. All statistical analyses were performed with R software version 3.6.0. P < 0.05 was considered as significant.

Results

Baseline characteristics

The demographic characteristics are displayed in Table 1. Age, educational level, race, hypertension, BMI, smoking, alcohol consumption, physical activity and poverty-income ratio (all P < 0.01) showed significant differences in the groups with different levels of energy-adjusted dietary fiber intake. Participants with higher dietary fiber intake were older, had lower BMIs, had a higher poverty-income ratio, and had a lower likelihood of smoking, drinking and vigorous physical activity.

Association between dietary fiber intake and the serum concentrations of aldehydes

After fully adjusting for cofounding factors, including age, sex, education level, race, smoking, alcohol use, diabetes, hypertension, body mass index, energy intake, poverty-income ratio and physical activity, compared with the lowest quantile of dietary fiber, a high level of dietary fiber (>75th percentile) was associated with lower serum concentrations of isopentanaldehyde (β = -0.361, 95% confidence interval [CI]: -0.475 to -0.248) and propionaldehyde (β = 0.139, 95% CI 0.225 to 0.053) and higher serum concentrations of benzaldehyde (β = 0.334, 95% CI 0.198 to 0.470) (Table 2). The estimated increases in the mean log2-unit (ng/mL) of aldehydes for each 1-fold increase in dietary fiber ranged from -0.155 (95% confidence interval [CI]: -0.210 to -0.101) for isopentanaldehyde to -0.053 (95% CI: -0.094 to 0.011) for propionaldehyde and 0.156 (95% CI: 0.091 to 0.222) for benzaldehyde. There was no significant association between dietary fiber intake and the concentration of any other aldehydes.

The restricted cubic spline plots indicated that there was a linear and positive association between dietary fiber and benzaldehyde (P for nonlinearity = 0.635, Fig. 2A) and a linear and negative association between dietary fiber and isopentanaldehyde (P for nonlinearity = 0.561, Fig. 2B). There was also a nonlinear and negative association between dietary fiber and propionaldehyde (P for nonlinearity = 0.043, Fig. 2C). No linear or nonlinear association was found between dietary fiber intake and the concentration of any other aldehydes.

Discussion

To the best of our knowledge, we were the first to observe significant correlations between energy-adjusted dietary fiber and various serum aldehyde exposures. Dietary fiber was negatively associated with isopentanaldehyde and propionaldehyde but positively associated with benzaldehyde. Nonetheless, in the other 3 aldehydes, there was no significant trend toward an association with dietary fiber.

Previous studies have mainly focused on the involvement of aldehydes in human disease. Nonetheless, no experimental research has shown an effective approach to regulating these 6 aldehyde concentrations in the human body. According to a recent study, no dietary variables were associated with serum isopentanaldehyde and propionaldehyde concentrations (Silva et al. 2021). Our findings seem to contradict this. However, the study provided strict food consumption information from different sources, such as vegetable, fruit, legume, nut, and seed grain products. In contrast, our study provides a holistic analysis of dietary fiber and serum aldehyde. Therefore, this regulatory effect may be related to the increase in the diversity of dietary fiber intake sources, further suggesting a combination of dietary fiber from multiple sources to modulate serum aldehyde. In addition, our study supplemented the effect of dietary fiber on serum benzaldehyde that was not present in the abovementioned study.

The mechanisms by which dietary fiber affects the serum concentration of aldehydes may include the following aspects. First, dietary fiber reduces oxidative stress and inflammation by regulating beneficial metabolites and toxic molecules and increasing the metabolism of aldehyde substances. A previous study showed that dietary fiber reduces the accumulation of protein-bound uremia toxin (PBUT) in children with multiple chronic kidney diseases as renal function deteriorates, and a dose-effect relationship was observed between the potential benefit and dietary fiber (El Amouri et al. 2021). A randomized controlled trial also verified that dietary fiber increased the plasma concentrations of total alkylresorcinol (AR) (Donin et al. 2021), which has potential antioxidant effects, reduced the risk of hyperglycemia, and exerted neuroprotective effects on hippocampal neurons (Fan et al. 2020, Tryggyadottir et al. 2021). Previous studies have also shown that aldehydes are associated with tissue and cell damage caused by oxidative stress (Kuntic et al. 2020, Lin et al. 2021, Shafie et al. 2021, Vivarelli et al. 2021, Yusuf et al. 2020). Additionally, studies at the animal and human levels have shown that dietary fiber exerts an anti-inflammatory effect.
by presenting fiber-specific changes in their microbiomes, regulating the composition of the gut microbiome and increasing the production of microbiome-derived metabolites (Delannoy-Bruno et al. 2021; Tian et al. 2021).

Isopentanaldehyde is a methyl butyraldehyde formed by replacing the methyl group at the third position of butyraldehyde. According to the Human Metabolome Database, it has been shown to be associated with a substantial number of digestive disorders, such as ulcerative colitis, nonalcoholic fatty liver disease, and Crohn’s disease (http://www.hmdb.ca/metabolites/HMDB0006478). These diseases have been shown to be ameliorated by adding dietary fiber intake (Ananthakrishnan et al. 2013; Zhao et al. 2020). Therefore, this reflects that digestive disease conditions may be regulated by reduced dietary fiber, which may in turn reduce the absorption of isopentanaldehyde. Moreover, the specific mechanism has not been studied and is worth further exploration.

Propanaldehyde is commonly used in the manufacture of plastics and synthetic rubber chemicals and as a disinfectant and preservative. It can be absorbed into the body by inhaling its vapor and ingestion. Propanaldehyde, as a perinatal air poison, was positively associated with autism spectrum disorder (ASD) in high-risk families (Kalkbrenner et al. 2018). Environmental propanaldehyde is usually biodegraded to propionic acid, which is then further degraded to carbon dioxide and water (Urano and Kato 1986). Considering its unknown degradation pathway and harm in vivo, this study provides evidence for high-risk patients to increase dietary fiber intake.

The increased concentration of benzaldehyde with dietary fiber intake may be because benzaldehyde, as the second most useful flavoring agent in foods, is used in the postprocessing of dietary fiber (Duff and Murray 1989). The second reason is that the microbial biocatalyst can produce benzaldehyde (Jain et al.). Pichia pastoris can effectively convert benzyl alcohol to benzaldehyde through biotransformation (Duff and Murray 1989). Benzaldehyde can also be catalyzed to form phenylalanine in the presence of a cell extract of Lactobacillus plantarum (Nierop Groot and de Bont 1998); however, the conversion rate of benzaldehyde to benzyl alcohol is reduced in Escherichia coli expressing recombinant carboxylate reductase (Kunjapur et al. 2014). These possible paths may lead to a positive association between benzaldehyde and dietary fiber intake.

The limitations of this study include the following aspects. First, this cross-sectional study was designed to describe the association; hence, it cannot conclude and further explain causality. Second, given that this population is an American population, dietary habits exert regional differences. Moreover, due to the lack of potential bowel disturbances, we could not include it as one possible intermediate link. Further research is needed to determine whether these results can be extrapolated to other regions or other ethnicities.

Conclusions

Our study results demonstrated that dietary fiber intake was negatively correlated with serum concentrations of isopentanaldehyde and propanaldehyde. Further research is needed to elucidate the underlying mechanisms between dietary fiber intake and aldehyde metabolism.

Declarations

Author Information

Affiliations

Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, 210029, China

Shi Shi; Qingqing Zhu; Xu Zhu; Shengen Liao; Yanli Zhou

Jiangxi Environmental Engineering Vocational College, Ganzhou, 341000, China

Xiaosu Tang

Contributions

Yanli Zhou conceptualized the research. Shengen Liao conducted the data analysis. Shi Shi and Qingqing Zhu wrote and edited the original draft of the paper. Xu Zhu and Xiaosu Tang took responsibility for the integrity of the data and the accuracy of the data analysis. All authors contributed to the interpretation of the results and critical revision of the manuscript for important intellectual content. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Yanli Zhou.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable. There is no individual level data in our publication.

Availability of data and materials
The datasets used and analyzed during the current study are available from https://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm.

Competing interests

The authors declare that they have no competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

Not applicable. No funding was received to assist with the preparation of this manuscript.

Acknowledgements

The authors would like to thank the National Center for Health Statistics and the director of the NHANES.

References

1. Akinrinde AS, Oyagbemi AA, Omobowale TO, Asenuga ER, Ajabde TO (2016) Alterations in blood pressure, antioxidant status and caspase 8 expression in cobalt chloride-induced cardio-renal dysfunction are reversed by Ocimum gratissimum and gallic acid in Wistar rats J Trace Elem Med Biol 36:27-37 https://doi.org/10.1016/j.jtemb.2016.03.015

2. Ananthakrishnan AN, Khalili H, Konijeti GG, Higuchi LM, de Silva P, Korzenik JR, Fuchs CW, Willett WC, Richter JM, Chan AT (2013) A prospective study of long-term intake of dietary fiber and risk of Crohn’s disease and ulcerative colitis. Gastroenterology 145: 970-977. https://doi.org/10.1053/j.gastro.2013.07.050

3. Bajerska J, Chmurzynska A, Muzski A, Krzyzanowska P, Madyr E, Malinowska AM, Walkowiak J (2018) Weight loss and metabolic health effects from energy-restricted Mediterranean and Central-European diets in postmenopausal women: A randomized controlled trial. Scientific reports 8:11170 https://doi.org/10.1038/s41598-018-29495-3

4. Basu A, Chien LC, Alman AC, Snell-Begeon JK (2021) Associations of dietary patterns and nutrients with coronary artery calcification and pericardial adiposity in a longitudinal study of adults with and without type 1 diabetes. Eur J Nutr https://doi.org/10.1007/s00394-021-02564-6

5. Dahm CC, Keogh RH, Spencer EA, Greenwood DC, Key TJ, Fentiman IS, Shipley MJ, Brunner EJ, Cade JE, Burley VJ, Mishra G, Stephen AM, Kuh D, White IR, Luben R, Lntes MA, Khaw KT, Rodwell Bingham SA (2010) Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries. J Natl Cancer Inst 102:614-626 https://doi.org/10.1093/jnci/djiq092

6. Delannoy-Bruno O, Desai C, Raman AS, Chen RY, Hibberd MC, Cheng J, Han N, Castiljo JJ, Couture G, Lebrilla CB, Barve RA, Lombard V, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Hayashi DK, Meynier A, Vinoy S, Kirbach K, Wilmot T, Heath AC, Klein S, Barratt MJ, Gordon JI (2021) Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. Nature 595:91-95 https://doi.org/10.1038/s41586-021-03671-4

7. Donin AS, Nightingale CM, Perkin MR, Ussher M, Jubb SA, Landberg R, Walsh P, Sattar N, Owen CG, Rudnicka AR, Cook DG, Whincup PH (2021) Evaluating an Intervention to Increase Cereal Fiber Intake in Children: A Randomized Controlled Feasibility Trial. J Nutr 151:379-386 https://doi.org/10.1093/jn/nxa347

8. Duff SJ, Murray WD (1989) Oxidization of benzyl alcohol by whole cells of Pichia pastoris and by alcohol oxidase in aqueous and nonaqueous reaction media. Biotechnol Bioeng 34:153-159 https://doi.org/10.1002/bit.260340203

9. El Amouri A, Snauwaert E, Vande Moortel C, Van Dyck M, Van Hoeck K, Godefroid N, Glorieux G, Van Biesen W, Vande Walle J, Raes A, Elloot S (2021) Dietary Fibre Intake is Associated with Serum Levels of Uraemic Toxins in Children with Chronic Kidney Disease. Toxins (Basel) 13:225 https://doi.org/10.3390/toxins13030225

10. Emmons KM, Thompson B, Feng Z, Heimbinger J, Linnan L (1995) Dietary intake and exposure to environmental tobacco smoke in a worksite population. Eur J Clin Nutr 49:336-345

11. Fan F, Zou Y, Fang Y, Li P, Xia J, Shen X, Liu Q, Hu Q (2020) Potential neuroprotection of wheat alkylresorcinols in hippocampal neurons via Nrf2/ARE pathway. Food Funct 11:10161-10169 https://doi.org/10.1039/d0fo02285c

12. Fan S, Hansen ME, Lo Y, Tishkoff SA (2016) Going global by adapting local: A review of recent human adaptation. Science 354:54-59 https://doi.org/10.1126/science.aaf5098

13. Jain AN, Khan TR, Daugulis AJ (2010). Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris. Biotechnol Lett 32: 1649-1654 https://doi.org/10.1007/s10529-010-0353-2

14. Jeliazkova N, Apostoalova MD, Andreoli C, Barone F, Barrick A, Battistelli C, Bossa C, Botea-Petcu A, Chátel A, De Angelis I, Dusinska M, El Yamani N, Gheorghe D, Giusti A, Gómez-Fernández P, Graffström R, Gomezki M, Jacobsen NR, Jeliazkov L, Jensen KA, Kochev N, Kohonen P, Manier N, Mariussen E, Mech A, Navas JM, Paskaleva V, Precupas A, Puzyn T, Rasmussen K, Ritchie P, Llopis IR, Rundén-Pran E, Sandu R, Shandilya N, Tanasescu S, Haase A, Nymark P (2021) Towards FAIR nanosafety data. Nat Nanotechnol 16:644-654 https://doi.org/10.1038/s41565-021-00911-6

15. Kalkbrenner AE, Windham GC, Zheng C, McConnell R, Lee NL, Schauer JJ, Thayer B, Pandey J, Volk HE (2018) Air Toxics in Relation to Autism Diagnosis, Phenotype, and Severity in a U.S. Family-Based Study. Environ Health Perspect 126:037004 https://doi.org/10.1289/ehp1867

16. Kunjapur AM, Tarasova Y, Prather KL (2014) Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli. J Am Chem Soc 136:11644-11654 https://doi.org/10.1021/ja506664a

17. Kuntic M, Oelze M, Steven S, Kröller-Schön S, Stamm P, Kalinovic S, Frenis K, Vujacic-Mirski K, Bayo Jimenez MT, Kvandova M, Filippou K, Al Zuabi A, Brückl V, Jahad O, Daub S, Varveri F, Gori T, Huesmann R, Hoffmann T, Schmidt FP, Keany JF, Daiber A, Müenzel T (2020) Short-term e-cigarette vapour...
exposure causes vascular oxidative stress and dysfunction: evidence for a close connection to brain damage and a key role of the phagocytic NADPH oxidase (NOX-2). Eur Heart J 41:2472-2483 https://doi.org/10.1093/eurheartj/ehz772

18. Liao S, Wu N, Gong D, Tang X, Yin T, Zhang H, Li X (2020) Association of aldehydes exposure with obesity in adults. Ecotoxicol Environ Saf 201:110785 https://doi.org/10.1016/j.ecosaf.2020.110785

19. Liao S, Zhang J, Shi S, Gong D, Lu X, Cheang I, Zhang H, Li X (2020) Association of aldehyde exposure with cardiovascular disease. Ecotoxicol Environ Saf 206:111385 https://doi.org/10.1016/j.ecosaf.2020.111385

20. Lin LW, Denison MS, Rice RH (2021) Woodsmoke Extracts Cross-Link Proteins and Induce Cornified Envelope Formation without Stimulating Keratinocyte Terminal Differentiation. Toxicol Sci https://doi.org/10.1093/toxsci/kfba071

21. Lin Y, Huybrechts L, Vereecken C, Mouratidou T, Valtueña J, Kersting J, Gonzalez-Gross M, Bolca S, Wärnberg J, Cuenca-Garcia M, Grottrup F, Toti E, Gomez-Martinez S, Grammatikaki E, Labayen I, Moreno LA, Sjöström M, Van Camp J, Roccardo R, Patterson E, Manios Y, Molnar D, Kafatos A, Widhalm K, De Henauw S (2015) Dietary fiber intake and its association with indicators of adiposity and serum biomarkers in European adolescents: the HELENA study. Eur J Nutr 54:771-782 https://doi.org/10.1007/s00394-014-0756-2

22. Nierop Groot MN, de Bont JAM (1998) Conversion of phenylalanine to benzaldehyde initiated by an aminotransferase in lactobacillus plantarum. Appl Environ Microbiol 64:3009-3013 https://doi.org/10.1128/AEM.64.8.3009-3013.1998

23. O’Brien PJ, Siragaki AD, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609-662 https://doi.org/10.1080/1040840591002183

24. Sekgala MD, McHiza ZJ, Parker WA, Monyeki KD (2018) Dietary Fiber Intake and Metabolic Syndrome Risk Factors among Young South African Adults. Nutrients 10:504 https://doi.org/10.3390/nu10040504

25. Shafie B, Pourahmad J, Rezaei M (2021) N-acetylcysteine is more effective than ellagic acid in preventing acrolein induced dysfunction in mitochondria isolated from rat liver. J Food Biochem 45:e13775 https://doi.org/10.1111/jfbc.13775

26. Silva LK, Espenshied MF, Newman CA, Zhang L, Zhu W, Blount BC, De Jesus VR (2021) Assessment of Serum Concentrations of 12 Aldehydes in the U.S. Population from the 2013-2014 National Health and Nutrition Examination Survey. Environ Sci Technol 55:5076-5083 https://doi.org/10.1021/acs.est.0c07294

27. Tian M, Li D, Ma C, Feng Y, Hu X, Chen F (2021) Barley Leaf Insoluble Dietary Fiber Alleviated Dextran Sulfate Sodium-Induced Mice Colitis by Modulating Gut Microbiota. Nutrients 13:846 https://doi.org/10.3390/nu13030846

28. Tryggvadottir EA, Halldorsson TI, Landberg R, Hrolfsdottir L, Birgisdottir BE, Magnusdottir OK, Hreidarsdottir IT, Hardardottir H, Gunnarsdottir I (2021) Higher Alkylresorcinol Concentrations, a Consequence of Whole-Grain Intake, are Inversely Associated with Gestational Diabetes Mellitus in Iceland. J Nutr 151:1159-1166 https://doi.org/10.1093/jn/nxa449

29. Uchida K (2000) Role of reactive aldehyde in cardiovascular diseases. Free Radic Biol Med 28:1685-1696 https://doi.org/10.1016/s0891-5849(00)00226-4

30. Urano K, Kato Z (1986) A method to classify biodegradabilities of organic compounds. Journal of Hazardous Materials 13:135-145 https://doi.org/10.1016/0304-3894(86)80014-0

31. Vivarelli F, Canistro D, Cinillo S, Elias RJ, Granata S, Mussoni M, Burattini S, Falcieri E, Turrini E, Fimognario C, Buschini A, Lazzeretti M, Beghi S, Girotti S, Sangiorgi S, Bolelli L, Ghini S, Ferri EN, Franchi P, Lucarini M, Mercatante D, Rodriguez-Estrada MT, Lorenzini A, Marchionni S, Gabriele M, Vivarelli F, Canistro D, Cirillo S, Elias RJ, Granata S, Mussoni M, Burattini S, Falcieri E, Turrini E, Fimognario C, Buschini A, Lazzeretti M, Beghi S, Girotti S, Sangiorgi S, Bolelli L, Ghini S, Ferri EN, Franchi P, Lucarini M, Mercatante D, Rodriguez-Estrada MT, Lorenzini A, Marchionni S, Gabriele M, Longo V, Paolini M (2021) Unburned tobacco cigarette smoke alters rat ultrastructural lung airways and DNA. Nicotinic Tob Res https://doi.org/10.1093/ntr/ntab108

32. Wang DD, Hu FB (2018) Precision nutrition for prevention and management of type 2 diabetes. Lancet Diabetes Endocrinol 6:416-426 https://doi.org/10.1016/s2213-8587(18)30037-8

33. Xie M-Z, Shoulkamy MI, Salem AMH, Oba S, Goda M, Nakano T, Ide H (2016) Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets. Mutation Research/ Fundamental and Molecular Mechanisms of Mutagenesis 786:41-51 https://doi.org/10.1016/j.mrfmmm.2016.02.005

34. Xu C, Liang J, Xu S, Liu Q, Xu J, Gu A (2020) Increased serum levels of aldehydes are associated with cardiovascular disease and cardiovascular risk factors in adults. J Hazard Mater 400:123134 https://doi.org/10.1016/j.jhazmat.2020.123134

35. Xu H, Huang X, Risérus U, Krishnamurthy VM, Cederholm T, Arnlov J, Lindholm B, Sjögren P, Carrero JJ (2014) Dietary ber, kidney function, inflammation, and mortality risk. Clin J Am Soc Nephrol 9:2104-2110 https://doi.org/10.2215/cjn.02260314

36. Yusuf RZ, Saez B, Sharda A, van Gastel N, Yu WVC, Baryawno N, Scadden EW, Acharya S, Chattopadhyay S, Huang C, Viswanathan V, S'Aulis D, Cobert J, Sykes DB, Keibler MA, Das S, Hutchinson JN, Churchill M, Mukherjee S, Lee D, Mercier F, Doench J, Bullinger L, Logan DJ, Schreiber S, Stephanopoulos G, Rizzo WB, Scadden DT (2020) Aldehyde dehydrogenase 3a2 protects AML cells from oxidative death and the synthetic lethality of ferroptosis inducers. Blood 136:1303-1316 https://doi.org/10.1182/blood.2019001808

37. Zhao H, Yang A, Mao L, Quan Y, Cui J, Sun Y (2020). Association Between Dietary Fiber Intake and Non-alcoholic Fatty Liver Disease in Adults. Front Nutr 7: 593735 https://doi.org/10.3389/fnut.2020.593735

Tables

Table 1 Demographic characteristics of study population according to quartile of Energy adjusted dietary fiber

Page 6/9
Variable	Overall (N = 1877)	Energy adjusted dietary fiber (g/day)	≤10.1 (n=471)	10.2-13.9 (n=468)	14.0-19.2 (n=469)	≥19.3 (n=469)	P value
Age, years	46.5 (17.5)	42.9 (16.4)	44.7 (18.0)	48.6 (18.0)	49.6 (16.6)	<0.001	
Male, %	924 (49.2%)	248 (52.7%)	224 (47.9%)	226 (48.2%)	226 (48.2%)	0.397	
Education level, %	<0.001						
<9th grade	139 (7.4%)	23 (4.9%)	21 (4.5%)	28 (6.0%)	67 (14.3%)		
9–11th grade	269 (14.3%)	100 (21.2%)	77 (16.5%)	50 (10.7%)	42 (9.0%)		
High school	447 (23.8%)	137 (29.1%)	123 (26.3%)	111 (23.7%)	76 (16.2%)		
College	614 (32.7%)	166 (35.2%)	175 (37.4%)	150 (32.0%)	123 (26.2%)		
Graduate	408 (21.7%)	45 (9.6%)	72 (15.4%)	130 (27.7%)	161 (34.3%)		
Race/ethnicity, %	<0.001						
Mexican American	251 (13.4%)	33 (7.0%)	42 (9.0%)	71 (15.1%)	105 (22.4%)		
Other Hispanic	152 (8.1%)	30 (6.4%)	29 (6.2%)	38 (8.1%)	55 (11.7%)		
Non-Hispanic White	926 (49.3%)	253 (53.7%)	248 (53.0%)	236 (50.3%)	189 (40.3%)		
Non-Hispanic Black	329 (17.5%)	116 (24.6%)	104 (22.2%)	65 (13.9%)	44 (9.4%)		
Other race	219 (11.7%)	39 (8.3%)	45 (9.6%)	59 (12.6%)	76 (16.2%)		
Hypertension, %	649 (34.6%)	145 (30.8%)	190 (40.6%)	163 (34.8%)	151 (32.2%)	0.009	
Diabetes	198 (10.5%)	44 (9.3%)	49 (10.5%)	46 (9.8%)	59 (12.6%)	0.383	
Body mass index, kg/m²	29.0 (7.1)	29.4 (7.5)	29.7 (7.5)	28.7 (6.7)	28.2 (6.7)	0.009	
Smoker, %	1045 (55.7%)	345 (73.2%)	294 (62.8%)	230 (49.0%)	176 (37.5%)	<0.001	
Alcohol user, %	1428 (76.1%)	377 (80.0%)	371 (79.3%)	357 (76.1%)	323 (68.9%)	<0.001	
Energy intake, kcal/day	2080 (918)	2090 (1230)	2100 (899)	2110 (760)	2030 (681)	0.459	
Physical activity	<0.001						
Never	1120 (59.7%)	269 (57.1%)	261 (55.8%)	287 (61.2%)	303 (64.6%)		
Moderate	356 (19.0%)	69 (14.6%)	94 (20.1%)	105 (22.4%)	88 (18.8%)		
Vigorous	401 (21.4%)	133 (28.2%)	113 (24.1%)	77 (16.4%)	78 (16.6%)		
Poverty-income ratio	2.15 (1.55)	1.69 (1.31)	1.94 (1.46)	2.31 (1.57)	2.66 (1.67)	<0.001	

Data are presented as mean (standard deviation, SD) or n (%).

Table 2 Association between energy adjusted dietary fiber and serum concentration of several aldehydes.
Fiber	Benzaldehyde	Isopentanaldehyde	Propanaldehyde	Butyraldehyde	Hexanaldehyde
	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)	β (95% CI)
Q1	Ref.	Ref.	Ref.	Ref.	Ref.
Q2	0.107(-0.016 to 0.231)	-0.153(-0.256 to -0.050)	-0.166(-0.2444 to -0.088)	-0.091(-0.186 to 0.004)	-0.002(-0.083 to 0.079)
Q3	0.179(0.05 to 0.308)	-0.23(0.337 to -0.122)	-0.118(0.199 to -0.037)	0.054(-0.045 to 0.152)	-0.045(-0.13 to 0.039)
Q4	0.334(0.198 to 0.470)	-0.361(0.475 to -0.248)	-0.139(-0.225 to -0.053)	-0.063(-0.168 to 0.041)	-0.034(-0.123 to 0.054)
Continuously	0.156(0.091 to 0.222)	-0.155(0.210 to -0.101)	-0.053(-0.094 to -0.011)	-0.006(-0.045 to 0.056)	-0.023(0.065 to 0.020)
P-trend	<0.001	<0.001	0.006	0.740	0.320

Analyses were adjusted for age, sex, education level, race, smoker, alcohol user, diabetes, hypertension, body mass index, energy intake, poverty-income ratio and physical activity. Energy adjusted dietary fiber and all aldehydes were log2-transformed to fit the regression model. Q, quantile. **p < 0.01, ***p < 0.001.

Figures

Participants of NHANES from 2013-2014 (n=10175) -> Participants with missing data on aldehydes (n=7849)

Enrolled (n= 2326) -> Participants with missing data on dietary fiber (n=5)

Participants without missing data dietary fiber (n=2119) -> Excluded (n=242) • Participants with age<18 (n=224) • Participants who were pregnant (n=18)

Data for analyses (n=1877)

Figure 1
Flow diagram of recruitment in this study; NHANES: National Health and Nutrition Examination Survey, USA, 2013-2014

Figure 2

The restricted cubic spline plot of the association between energy adjusted dietary fiber and serum concentrations of (A) Benzaldehyde; (B) Isopentanaldehyde; (C) Propanaldehyde; (D) Butyraldehyde; (E) Hexanaldehyde; and (F) Heptanaldehyde. Energy adjusted dietary fiber is log2 transformed. The association was adjusted for age, sex, education level, race, smoking status, alcohol use, diabetes, hypertension, body mass index, energy intake, poverty-income ratio and physical activity.