Annotated Corpus for Sentiment Analysis in Odia Language

by

Gaurav Mohanty, Pruthwik Mishra, Radhika Mamidi

in

Language Resources and Evaluation Conference

Report No: IIIT/TR/2020/-1

Centre for Language Technologies Research Centre
International Institute of Information Technology
Hyderabad - 500 032, INDIA
May 2020
Annotated Corpus for Sentiment Analysis in Odia Language

Gaurav Mohanty, Pruthwik Mishra, Radhika Mamidi
Language Technologies Research Center
International Institute of Information Technology-Hyderabad
Telangana, India
{gaurav.mohanty, pruthwik.mishra}@research.iiit.ac.in, radhika.mamidi@iiit.ac.in

Abstract

Given the lack of an annotated corpus of non-traditional Odia literature which serves as the standard when it comes sentiment analysis, we have created an annotated corpus of Odia sentences and made it publicly available to promote research in the field. Secondly, in order to test the usability of currently available Odia sentiment lexicon, we experimented with various classifiers by training and testing on the sentiment annotated corpus while using identified affective words from the same as features. Annotation and classification are done at sentence level as the usage of sentiment lexicon is best suited to sentiment analysis at this level. The created corpus contains 2045 Odia sentences from news domain annotated with sentiment labels using a well-defined annotation scheme. An inter-annotator agreement score of 0.79 is reported for the corpus.

Keywords: Odia Corpus, Sentiment Analysis, Language Resource, Resource Creation

1. Introduction

Most of the research in sentiment analysis is focused on genres such as news data, customer reviews and tweets. Sentiment annotated corpus is useful to build models for the task of sentiment analysis. For these genres, annotation usually takes place at sentence and phrase level. Odia\(^1\), being a resource-poor language, does not have such an annotated corpus available for public use. However, we have attempted to create an annotated corpus for Odia poetry, previously in literature (Mohanty et al., 2018).

In this paper, we create a sentiment annotated corpus of Odia sentences in News domain. News data may have opinionated references along with factual data. Hence at a sentence level these can be classified into positive, negative and neutral categories. Moreover, sentence level sentiment analysis provides room for usage of a sentiment lexicon for identifying affective words. We built an Odia sentiment lexicon for the task of sentiment classification previously (Mohanty et al., 2017). This lexicon has been built by using resources available for three other Indian languages: Bengali, Telugu, Tamil (Das and Bandyopadhyay, 2010) which are similar to Odia. IndoWordNet (Bhattacharyya, 2010) was used for establishing language pairs between Odia and each of the three aforementioned Indian languages. Classification performance using the Odia sentiment lexicon should provide valuable insight on the usability of this sentiment lexicon.

We have created an annotated corpus of Odia sentences from the abundantly available data in news domain for the language. This has further been made publicly available to promote research in the field. Secondly, in order to test the usability the already present Odia sentiment lexicon, we experimented with various classifiers by training and testing on the sentiment annotated corpus while using identified affective words from the same as features. Annotation and classification are done at sentence level as the usage of sentiment lexicon is best suited to sentiment analysis at this level.

The created corpus contains 2045 Odia sentences from news domain annotated with sentiment labels. Furthermore, we have leveraged the vastly available data in news domain to compute Word Vector representations for Odia language. These can be used in the future as features for training models for the task of sentiment analysis.

2. Data Collection

2.1. Source

Though reviews on e-commerce websites and customer feedback are best suited for the task of sentiment analysis, such data is not available in sufficiently large quantities over the Internet for Odia language. There is, however, enormous amount of data available in news domain in many Indian languages including Odia. News articles contain opinions mixed with neutral/factual statements. They are available in several news genres and serve as one of the standard corpus domains. Moreover, in the news domain in Odia, availability of data is vast.

For collecting news articles we used the Samaaja News Archive. The Samaaja News adds articles to its archive on a daily basis and hence serves as an excellent source of Odia data, not only for sentiment analysis, but also several other natural language processing related tasks. Hence, we use Odia news data from this source to be able to create word vector representations for the language. We briefly elaborate the procedure for extraction of these articles in the pre-processing step below.

2.2. Pre-processing

Before the actual data in the articles can be used for the task at hand, it needs to go through some amount

\(^1\)https://en.wikipedia.org/wiki/Odia_language
of pre-processing. It is to be noted that the data available in the Samaja News Archive Website \(^2\) is available in an encoded format. A total of 100k articles were scrapped from the archive in the encoded format. These articles were then decoded to make the data available in Odia script (utf-8 encoding). Each article contained several meta-data information which did not serve the task at hand. Meta-data included author of the article, date of publication, news location, and title of the article. Title of the article was kept as a part of the final dataset as this may contain sentiment information. The rest of the meta-data was removed. We used 175 articles from this dataset for the annotation task.

Sentence segmentation was carried out for every single article. Even though the focus was sentence level annotation, each sentence was numbered with it’s corresponding article number and line number in order to help at document level analysis in the future. Classification of individual sentences in a given article may give a clearer picture of the overall sentiment of that article. This serves as a more granular option in comparison to direct document level sentiment classification.

3. Annotation

3.1. Annotation Scheme

Before annotation, a scheme was defined in order to help the annotators with labelling individual sentences. News domain contains several factual statements and sentences which do not have any positive/negative opinion to them as such. Hence, such sentences were classified as having neutral sentiment. Sentences were categorized into one of three classes: positive, negative or neutral.

Positive Sentences

These reflect positive opinion, emotion, feeling or sentiment such as expression of support, motivation, admiration, positive attitude, cheerfulness, forgiving nature, positive emotional state, etc. Positive sentences tend to have positive affective words present in them. A few examples are listed below.

- ସଫଳତା, ହାସଲ: bowling saha bhala batting karibaare parera sidhabhastha
 Transliteration: Se desabidesare Odissi nruthya paribesana kari saphalathaa haasala karithile
 Affective Words: ଭଲ, ସଫଳତା, ହାସଲ
 English: She has achieved success by performing Odissi dance both nationally and internationally.

- ସଳକାନା ବିକେଟ ହରାଇବା, ନିରାଶ: 69 ranre dalanku niraasa karithile
 Transliteration: 69 ranre dala hassi oh bjayanka wikel haraaibaa pare suresh raainaa 7 ranre dalanku niraasa karithile
 Affective Words: ସଳକାନା, ବିକେଟ, ହରାଇବା
 English: After the team lost the wickets of both Hussey and Vijay at 69 runs, Suresh Raina had disappointed the team with 7 runs only.

- ପୁଲିସ ବମାନ ସଳାହନାଳେ ପହିନାହଣ ମାକସ.rb
 Transliteration: Ehi anchalati maobaadi prabana hoithibaaru sabu jaatrinka madhyare bhaya hoithila
 Affective Words: ପୁଲିସ, ବମାନ
 English: Travellers have been terrified/fearful because of the infestation of maoists in this area.

Neutral Sentences

Certain sentences may have neither positive nor negative opinion. These are labelled under the Neutral category. Very few cases may have both positive and negative sentiment where one does not necessarily dominate the other. Certain neutral sentences may not even have positive and negative phrases present in them. These typically lack affective words in them. Named entities which have positive or negative meaning in the language should not be considered as affective words as these don’t contribute to the polarity of the sentence. Other than that, sentences which state a fact assuredly and which have an evidence to support the fact are also categorized under Neutral sentences. Factual statement occur regularly in news articles. These sentences express no feeling or emotion in them. A few examples of neutral sentences are listed below.

- ଏହି ମାଚି ସହ ଦ ୁ ବାଇର ଏହ ି ୨ ଦ ିନିଅା ସର ିଜ୍ ମଧ୍ୟ
 Transliteration: Ehi myatch saha dubaire ehi 2 diniyaa siriz madhyan samaaptha hoich
 Affective Words: None
 English: With this match, the two-day series

- ଏହି ଅଳଟି ମାଓବାଦୀ బଣ ହୋଇଥ ିବାରୁ ସବୁ ଯାରୀଲି ଭ୍ୟ ହୋଇଥ ିଲା
 Transliteration: Ehi anchalati maaobaadi prabana hoithibaaru sabu jaatrinka madhyare bhaya hoithila
 Affective Words: ମାଓବାଦୀ, ଭ୍ୟ
 English: The police has not arrived at the scene yet.

Negative Sentences

These reflect negative opinion, emotion, feeling or sentiment such as expressions of judgement, negative attitude, criticism, failure, sadness, negative emotional state etc. Negative sentences tend to have negative affective words present in them. A few examples are listed below.

- ୬୯ ରନେର ଦଳକୁ ନିରାଶ କରିଥିେଲ
 Transliteration: 69 ranre dalanku niraasa karithile
 Affective Words: ହୁଠୁଳ, ନିରାଶ
 English: Travellers have been terrified/fearful because of the infestation of maoists in this area.

\(^2\)http://www.thesaraja.com/news_archive.php
has ended/concluded in Dubai.

Key Points for Annotators:

- To annotate a given sentence as one of three labels: positive, negative or neutral. If the annotator was unsure about the label of a given sentence, they were advised to mark it as "unsure". Some of the sentences were marked as carrying negative sentiment.

- As expected, a good chunk of the sentences in the news corpus statistics were reported in Table 1. Corpus statistics are reported in Table 1.

- Inter-annotator agreement score was calculated to help estimate the reliability of these annotations.

- Fleiss' Kappa 3 Inter-annotator agreement score was calculated to help estimate the reliability of these annotations.

3https://en.wikipedia.org/wiki/Fleiss'_kappa
and

Accuracy

Precision

features and classifiers:

four metrics to evaluate performance of various features. We used

scikit-learn (Pedregosa et al., 2011) library. We used

on the dataset. Experiments were conducted using the

pended to the each TF-IDF vector representation for

expressing negative sentiment. This feature was ap-

plied to the positive sentiment and the number of words

icon contains two values: number of words referring

as features for the classifiers. The feature using the lex-

identify affective words at sentence-level and add these

then made use of Odia sentiment lexicon in order to

under the Odia sentiment lexicon. This helps pro-

vide an insight on the performance and reliability of

sentiment lexicon.

4. Classification Experiments

In order to determine the baseline for the created
dataset, we conducted a few experiments using Machine
learning techniques. We employed useful features from previous experiments (Mohanty et al., 2018) along with the Odia sentiment lexicon. This helps provide an insight on the performance and reliability of the sentiment lexicon.

4.1. Experimental Setup

We divided the task of sentiment analysis into two separate classification problems. Firstly, we conducted Binary Classification with classifiers trained only on sentences labelled as positive and negative. Then we conducted ternary classification with the classifiers trained on the complete dataset including neutral sentences. For each type of classification we first determined the baseline performance of various classifiers using a few of the best features from previous experiments. We then made use of Odia sentiment lexicon in order to identify affective words at sentence-level and add these as features for the classifiers. The feature using the lexicon contains two values: number of words referring to the positive sentiment and the number of words expressing negative sentiment. This feature was appended to the each TF-IDF vector representation for each sentence. 5 fold-cross validation was carried out on the dataset. Experiments were conducted using the scikit-learn (Pedregosa et al., 2011) library. We used four metrics to evaluate performance of various features and classifiers: Precision, Recall, F1-Score, and Accuracy.

4.2. Classifiers

We employed both Support Vector Machines and Logistic Regression as both performed reasonably well in baseline experiments. We also used Random Forest among the set of classifiers for the task sentence-level sentiment classification. Random Forest serves as an ensemble of Decision Trees. Random forests construct multiple decision trees, considering the scores of each tree before deciding the final output. Unlike decision trees, Random forests reduce over-fitting due to inclusion of multiple trees.

4.3. Features

Based on their performance in previous (Mohanty et al., 2018) experiments, the following features were used to train the aforementioned classifiers:

- TF-IDF Word-Level Features - We incorporated both unigrams and unigram-bigrams for word-level features. Trigrams were not used because of the relatively smaller size of the dataset which, as a result, led to the presence of a large number of sparse trigrams. Trigrams should work more effectively on a much larger dataset where the sparsity of trigrams is reduced to a great extent.

- TF-IDF Character-Level Features - Character-Level TF-IDF features have proven to show consistent improvement over word-level features and are therefore used to train classifiers in these experiments. For baseline, we used 2-6 character n-grams and 3-6 character n-grams as features.

- Affective Words from Odia Sentiment Lexicon - The major objective of this chapter is to estimate the performance and reliability of the created Odia Sentiment Lexicon for the task of sentence-level sentiment classification. We captured positive and negative affective words at sentence-level and used them as added features to the classifiers. The results of the experiment report how effective these features were for the task at hand.

5. Binary Classification

The following are results of performance of various classifiers using different features for binary classification.

5.1. Baseline Feature-wise Performance

Word-Level Features

Table 3 shows the results of using TF-IDF Word-Level features for Binary Classification. Linear-SVM performs slightly better than Logistic Regression with an average accuracy of 78.2% for unigram and 80.2% for unigram-bigram features. Moreover the Precision, Recall and F1-Score for Linear-SVM using unigram-bigram features shows the best results among the rest of the models.

Data Type	#
Total Articles	175
Initial Sentences	2087
Positive Sentences	559
Negative Sentences	574
Neutral Sentences	912
Removed(unsure) Sentences	42
Token Count	29419
Final Sentences	2045

Table 1: Statistics for News-domain Dataset

\[
\kappa = \frac{\hat{P} - \hat{P}_e}{1 - \hat{P}_e}
\]

\(\hat{P}\) is the sum of observed agreement and \(\hat{P}_e\) is the sum of agreement by chance. We took a sample set of 550 sentences from the dataset in order to determine the Inter-annotator agreement score. An agreement score of \(\kappa = 0.791\) is reported for the news domain dataset. This corresponds to substantial agreement.
Character-Level Features
As expected, TF-IDF Character-Level features show consistent improvement in comparison to Word-Level features for all classifiers. Linear-SVM outperforms Logistic Regression and Random Forest consistently as can be observed from Table 4.

5.2. Using Odia Sentiment Lexicon
We identify affective positive and negative words present at sentence-level with the help the Odia sentiment lexicon. It is to be noted that 559 sentences are labelled as positive and 574 sentences are labelled as negative. Table 2 shows the coverage of words, from the sentiment lexicon, in the sentences of the dataset. Given the relatively small size of the dataset, this coverage should suffice for experiments.

Positive Sentences	559
Negative Sentences	574
Positive Words Found	333/1803
Negative Words Found	408/2846

Table 2: Binary Classification: Odia Sentiment Lexicon Coverage

Inclusion of sentiment lexicon to word-level features has shown significant improvement in the performance of classifiers that can be observed in Table 5. Linear-SVM marginally outperforms Logistic Regression with an accuracy of 94.4%. Moreover, it can be observed that consistent performance improvements are seen for all the four three metrics of evaluation: Precision, Recall, F1-Score, and Accuracy. For example, Figure 1 helps comparing improvement in terms of accuracy when using the sentiment lexicon over baseline features. Similar improvements have been observed when using Odia sentiment lexicon with character-level TF-IDF features. Linear-SVM performs marginally better than Logistic Regression with the former having an accuracy of 95.2% and the latter having an accuracy of 94.4% as shown in Table 6. All four metrics show consistent improvement in performance when compared to baseline character-level features, across all classifiers. Figure 2 compares accuracy improvements between character-level baseline and the one including affective words from sentiment lexicon as features.

6. Ternary Classification
In case of Ternary Classification, sentences were classified into one of three categories: positive, negative or neutral. The following are results of performance of various classifiers using different features for ternary classification.

6.1. Baseline Feature-wise Performance

Word-Level Features
Table 8 shows the results of using TF-IDF Word-Level features for Ternary Classification. Logistic Regression performs slightly better than Linear-SVM with 57% accuracy. The former outperforms the latter in terms of Precision with Logistic Regression having a precision of 0.583 and Linear-SVM having a precision of 0.548. Linear-SVM performs marginally better than Logistic Regression when Recall and F1-Score are considered as metrics of evaluation. It is observed that Random Forest does not perform as well as the above two classifiers in case of Ternary Classification.

Character-Level Features
Linear-SVM outperforms Logistic Regression and Random Forest when using character-level features as observed in Table 9. Logistic Regression offers marginally better performance than Linear-SVM in terms of precision (Precision for LR is 0.675). However, the former fails to outperform the latter in the other three metrics of evaluation. Linear-SVM achieves highest accuracy of 62.8% for Ternary Classification using character-level TF-IDF features.

6.2. Using Sentiment lexicon
For ternary classification, the coverage of the Odia sentiment lexicon was measured and the results of the same are shown in Table 7. Comparing with coverage in Table 2 it is clear that a few positive and negative words have also been found among neutral sentences. It is observable that, even after having a large number of neutral sentences (44.5%
Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear	uni	0.783	0.782	0.781	78.2
SVM	uni-bi	0.803	0.802	0.802	80.2
Logistic	uni	0.787	0.786	0.786	78.7
Regression	uni-bi	0.795	0.794	0.794	79.4
Random	uni-bi	0.751	0.745	0.743	74.6
Forest	uni-bi	0.754	0.748	0.747	74.9

Table 3: Binary Classification: Using Only Word-Level TF-IDF Features

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear	(2-6)-gram	0.850	0.849	0.849	84.9
SVM	(3-6)-gram	0.849	0.848	0.848	84.8
Logistic	(2-6)-gram	0.832	0.831	0.831	83.1
Regression	(3-6)-gram	0.835	0.833	0.833	83.4
Random	(2-6)-gram	0.798	0.790	0.789	79.2
Forest	(3-6)-gram	0.784	0.779	0.778	78.0

Table 4: Binary Classification: Using Only Character-Level TF-IDF Features

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear	uni	0.944	0.943	0.943	94.4
SVM	uni-bi	0.941	0.940	0.940	94.1
Logistic	uni	0.939	0.938	0.938	93.8
Regression	uni-bi	0.940	0.939	0.939	94.0
Random	uni	0.902	0.900	0.901	90.1
Forest	uni-bi	0.874	0.871	0.872	87.2

Table 5: Binary Classification: Using Word-Level TF-IDF Features with Sentiment Lexicon

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear	(2-6)-gram	0.952	0.952	0.952	95.2
SVM	(3-6)-gram	0.951	0.951	0.951	95.1
Logistic	(2-6)-gram	0.944	0.943	0.943	94.4
Regression	(3-6)-gram	0.945	0.944	0.944	94.4
Random	(2-6)-gram	0.822	0.818	0.817	81.9
Forest	(3-6)-gram	0.805	0.802	0.802	80.3

Table 6: Binary Classification: Using Character-Level TF-IDF Features with Sentiment Lexicon

Sentiment	Coverage
Positive	559
Negative	574
Neutral	912
Neutral (No Affective)	417
Neutral (POS = NEG)	114
Neutral (POS > NEG > 0)	241
Neutral (NEG > POS > 0)	140
Positive Words Found	367/1803
Negative Words Found	446/2846

Table 7: Ternary Classification: Odia Sentiment Lexicon Coverage

Figure 3: Accuracy improvements using Odia Sentiment Lexicon with Word-Level Features for Ternary Classification

of dataset), coverage has not increased significantly. This is due to lack of such affective words in factual statements. We have also observed that about 60% of
Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear SVM	uni	0.545	0.517	0.519	56.5
Logistic Regression	uni-bi	0.548	0.519	0.522	56.6
Random Forest	uni-bi	0.509	0.498	0.487	33.4
	uni-bi	0.515	0.484	0.483	54.5

Table 8: Ternary Classification: Using Only Word-Level TF-IDF Features

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear SVM	(2-6)-gram	0.625	0.562	0.571	62.1
Logistic Regression	(3-6)-gram	0.640	0.567	0.576	62.8
Random	(2-6)-gram	0.556	0.522	0.523	55.8
Forest	(3-6)-gram	0.539	0.515	0.516	54.3

Table 9: Ternary Classification: Using Only Character-Level TF-IDF Features

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear SVM	uni	0.767	0.751	0.756	76.7
Logistic Regression	uni-bi	0.756	0.737	0.743	75.7
Random	uni-bi	0.749	0.724	0.730	74.5
Forest	uni-bi	0.745	0.715	0.723	73.7

Table 10: Ternary Classification: Using Word-Level TF-IDF Features with Sentiment Lexicon

Model	Features	Precision	Recall	F1-Score	Accuracy(%)
Linear SVM	(2-6)-gram	0.780	0.753	0.762	77.6
Logistic Regression	(3-6)-gram	0.778	0.753	0.761	77.4
Random	(2-6)-gram	0.756	0.725	0.733	74.7
Forest	(3-6)-gram	0.754	0.725	0.733	74.6

Table 11: Ternary Classification: Using Character-Level TF-IDF Features with Sentiment Lexicon

The icon does show consistent improvements for all word-level features across all three classifiers. Linear-SVM beats Logistic Regression and Random Forest consistently across all four metrics of evaluation. Precision, Recall and F1-Scores for Linear-SVM are highest with values of 0.767, 0.751 and 0.756 respectively. The highest accuracy for Linear-SVM is 76.7% followed by Logistic Regression with 74.5% accuracy. When comparing these with baseline word-level features for Ternary classification (Figure 3), the reliability of Odia sentiment lexicon can be deduced. For example, the figure shows a maximum improvement in accuracy of 20% for Linear-SVM with unigram features upon inclusion of identified affective words as features.

Similarly, inclusion of identified affective words as features along with character level features shows consistent improvements for Linear-SVM and Logistic Regression (Figure 4). The former comes on top with maximum accuracy of 77.6% whereas the latter shows a comparable accuracy of 74.7%. As observed in Table 11, in other three evaluation metrics, Linear-SVM consistently outperforms other classifiers with highest metric values of 0.78, 0.753 and 0.762 for Precision, Recall and F1-Score, respectively. Random Forest barely shows any increase in accuracy upon usage of sentiment lexicon with character-level features as can be seen in Figure 4.

7. Conclusion

This paper describes the creation of an annotated corpus of 2045 Odia sentences from articles in news domain. We discussed the annotation guidelines used to annotate these sentences into three categories: positive, negative and neutral. A substantial inter-annotator agreement score of 0.791 was obtained for the dataset. We performed baseline experiments using standard word and character-level features and machine learning techniques in order to conduct both binary and ternary sentiment classification. One major
The objective of this chapter was to test the performance of Odia sentiment lexicon. We included identified positive/negative words, present at sentence-level, as features to various classifiers. It was observed that usage of Odia sentiment lexicon showed consistent and significant improvements in the overall performance of classifiers for both binary and ternary sentiment classification. This testifies the reliability of Odia sentiment lexicon for sentiment analysis related tasks. As an extension to this work, we would like to leverage word vector representations for Odia language and hence create better sentiment analysis models.

8. Bibliographical References

Bhattacharyya, P. (2010). Indowordnet. In Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC’10).

Das, A. and Bandyopadhyay, S. (2010). Sentiwordnet for indian languages. In Proceedings of the Eighth Workshop on Asian Language Resources, pages 56–63, Beijing, China, August. Coling 2010 Organizing Committee.

Lin, W.-H., Wilson, T., Wiebe, J., and Hauptmann, A. G. (2006). Which side are you on? identifying perspectives at the document and sentence levels. In Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL-X), pages 109–116.

Mohanty, G., Kannan, A., and Mamidi, R. (2017). Building a SentiWordNet for Odia. In Proceedings of the 8th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 143–148, Copenhagen, Denmark, September. Association for Computational Linguistics.

Mohanty, G., Mishra, P., and Mamidi, R. (2018). Sad or glad?: Corpus creation for odia poetry with sentiment polarity information.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., VanderPlas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12:2825–2830.

Searle, J. R. (1975). A taxonomy of illocutionary acts.