Asymptomatic “twig-like” middle cerebral artery embryological anomaly

Dragoslav Nestorović1, Igor Nikolić2,3, Vladimir Cvetić1,3, Dušan Petrović1, Goran Tasić2,3
1University Clinical Center of Serbia, Center for Radiology and Magnetic Resonance Imaging, Belgrade, Serbia;
2University Clinical Center of Serbia, Clinic for Neurosurgery, Belgrade, Serbia;
3University of Belgrade, Faculty of Medicine, Belgrade, Serbia

INTRODUCTION

Anomalies of the middle cerebral artery (MCA) are very rare. They are less commonly seen than those of other major intracranial arteries [1, 2, 3]. Typically, three MCA anomalies (variations) are described: duplication (D-MCA), fenestration (F-MCA), and the presence of an accessory branch (A-MCA) [4]. “Rete MCA,” “twig-like MCA” (T-MCA), “aplastic MCA,” “unfused MCA,” and others are all synonyms for unilateral embryological anomaly of the M1 segment of the MCA, where, due to an unknown cause, fusion of primordial arteries of the M1 segment did not happen. As a result, the M1 segment of the affected side consists of a mesh of small arteries from which arise normal perforators and cortical branches. Moyamoya disease, moyamoya-like syndrome, atherosclerotic steno-occlusive disease, vasculitis, and dissection of the MCA should be considered in differential diagnosis.

A 60-year-old female patient was admitted to the Emergency Center, University Clinical Center of Serbia, due to persistent headaches six days prior to admission. Non-contrast computed tomography head examination was without peculiarities. Computed tomography angiography showed a network of small vessels in place of the left M1 segment, bridging internal carotid artery terminus with branches of the MCA bifurcation and giving rise to lenticulostriate arteries. Fourteen months later, on physical examination, the patient was in good general condition, without a neurological deficit, with occasional episodes of headache no stronger than 3–4/10 on the visual analogue scale.

CASE REPORT

We report a patient with extremely rare variation of the M1 segment of the left MCA, incidentally diagnosed due to headaches.
was obtained from the patient for the publication of this case report and any accompanying images.

DISCUSSION

The MCA is the largest and most complex artery supplying the brain, vascularizing the largest territory of neocortex [9, 10]. MCA develops after ACA, when fetal plexiform network of multiple small arteries fuse and regress in order to form perforating branches of the M1 segment and the main trunk of the MCA (M1 segment). Disruption of this process, by a still unknown cause, leads to MCA developmental anomalies [7]. Fukuyama reported one case of Ap/T-MCA associated with RNF213 mutations, which was previously believed to be associated exclusively with moyamoya [11]. In “T-MCA,” this plexiform network persists unilaterally in place of the M1 segment, while cortical and perforating branches, although filled with contrast agent with discrete delay, appear to be normal [6, 7]. Of all the MCA anomalies, T-MCA is the one least commonly seen. Reports range 0.1–4% prevalence, while Viso et al. [3] reported a prevalence of 0.088% in their cohort which included over 10,000 patients.

The possibility of hypoperfusion and, eventually, ischemic events has been described [6]. Uchiyama et al. [12] reported intracerebral hemorrhage in patient two years after transient ischemic attack and diagnosed T-MCA as the culprit. Also, there is an increased risk of aneurysm formation, due to hemodynamic stress and network vessels’ fragile histological architecture which can lead to rupture and hemorrhage [3, 5, 6, 13]. Sakai et al. [14] reported rupture of a de novo formed aneurysm arising from the twig-like network of an anomalous collateral artery associated with aplastic or twig-like MCA (Ap/T-MCA) in a patient who had ruptured aneurysm on the A1 segment four years earlier.

Moyamoya disease, moyamoya-like syndrome, atherosclerotic steno-occlusive disease, vasculitis, and dissection of the MCA should be considered in differential diagnosis [1, 3, 15].

Therapy options may vary depending on patient symptoms and angiographic findings, but no universal treatment has been established to this day [5]. If T-MCA is an asymptomatic, coincidental finding, the patient should be counseled and warned about the nature of the anomaly. Vessels in the mesh are functional but also fragile, so no intervention should be performed unless necessary [1]. It is still unclear if microsurgical superficial temporal artery bypass is beneficial in cases of recurrent ischemic events. In their case report, Matsunaga et al. [6] stated that postoperative magnetic resonance angiography showed a decrease of blood flow in aberrant network indicating that this approach may improve perfusion of affected MCA territory and lower hemodynamic stress in the aberrant network. On the other hand, Matsuo et al. [16] stated that there is no evidence that revascularization is an effective approach in preventing stroke on the affected side. Further studies on this anomaly are necessary to understand its nature and provide adequate therapy. Aneurysms in an anomalous MCA network have high risk of rupture and should be treated surgically or by endovascular embolization. Open surgery is more commonly used due to higher risk of endovascular approach through these fragile vessels [7].

Although uncommon, clinicians should recognize this vascular entity in order to avoid misdiagnosis and unnecessary treatment which can lead to catastrophic adverse events, especially in the era in which mechanical thrombectomies are becoming an everyday practice, and this entity could lead to confusion because of simulating a thromboembolic event. Less experienced neuroradiologist could easily overlook the subtle vessel network between the internal carotid artery and the distal part of the MCA.

In our opinion, the patient should be on lifelong preventive antiplatelet therapy (ASA) in order to avoid consequences of steno-occlusive and thromboembolic events. A follow-up physical examination, by a neurologist/neurosurgeon, should be performed every two years, while the neuroradiological examination is reserved only for patients with hemorrhagic or ischemic symptoms.

Conflict of interest: None declared.
REFERENCES

1. Akkan K, Ucar M, Kılıc K, Celtikci E, Ilgıt E, Oral B. Unfused or twig-like middle cerebral artery. Eur J Radiol. 2015;84(10):2013–8.
2. Goto Y, Oka H, Hiraizumi S, Okamoto T, Nishii S, Yamamoto H, et al. Aplastic or Twig-Like Middle Cerebral Artery Presenting with Intracerebral Hemorrhage During Pregnancy: Report of Two Cases. World Neurosurg. 2019;120:100018.
3. Viso R, Lylyk I, Albiña P, Lundquist J, Scrivano E, Lylyk P. Hemorrhagic events associated with unfused or twig-like configuration of the Middle cerebral artery: A rare vascular anomaly with clinical relevance. Interv Neuroradiol. 2021;27(2):285–90.
4. Seo BS, Lee YS, Lee HG, Lee JH, Ryu KY, Kang DG. Clinical and radiological features of patients with aplastic or twig-like middle cerebral arteries. Neurosurgery. 2012;70(6):1472–80; discussion 1480.
5. Cho KC, Kim JJ, Jang CK, Hong CK, Joo JY, Kim YB. Rete middle cerebral artery anomalies: a unifying name, case series, and literature review. J Neurosurg. 2018;131(2):453–61.
6. Matsuuna Y, Izumo T, Morofuji Y, Horie N, Hayashi K, Matsuo T. Revascularization for Aplastic or Twig-Like Middle Cerebral Artery: A Case Report. J Stroke Cerebrovasc Dis. 2018;27(5):e78–e79.
7. Hoshur B, Bhatia V, Kumar A, Karthigeyan M. Rete middle cerebral artery anomalies associated with unfused arterial twigs relevant to different vascular anomalies: embryologic and hemodynamic considerations. Acta Neurochir (Wien). 2014;156(9):1637–46.
8. Sakai K, Hiu T, Fukuda Y, Ozono K, Honda K, Kawahara I, et al. A Rare Case of a Ruptured De Novo Aneurysm Arising from the Twig-like Networks of an Anomalous Collateral Artery Associated with Hypoplasia of the M1 Segment of the Middle Cerebral Artery 4 Years after the Rupture of an A1 Aneurysm at the Origin of the Collateral Artery. No Shinkei Geka. 2018;46(8):713–22. [Article in Japanese]

Cerebral Infarction: Two Case Report and Brief Literature Review. Diagnos. 2021;11(2):205.
11. Fukuyama R, Yamamura K, Murata H, Miyatake S, Matsumoto N, Abe H. [Ruptured Aneurysm of an Aplastic or Twig-like Middle Cerebral Artery with Ring Finger Protein 213 Mutation: A Case Report]. No Shinkei Geka. 2020;48(6):533–40. [Article in Japanese]
12. Uchiyama T, Okamoto H, Koguchi M, Tajima Y, Suzuyama K. A Case of Aplastic or Twig-Like Middle Cerebral Artery Presenting with an Intracranial Hemorrhage Two Years after a Transient Ischemic Attack. No Shinkei Geka. 2016;44(2):143–8.
13. Shin HS, Lee SW, Ryu CW, Koh JS. Flow-related intracranial aneurysms associated with unfused arterial twigs relevant to different vascular anomalies: embryologic and hemodynamic considerations. Acta Neurochir (Wien). 2014;156(9):1637–46.
14. Sakai K, Hiu T, Fukuda Y, Ozono K, Honda K, Kawahara I, et al. [A Rare Case of a Ruptured De Novo Aneurysm Arising from the Twig-like Networks of a Collateral Artery Associated with Hypoplasia of the M1 Segment of the Middle Cerebral Artery 4 Years after the Rupture of an A1 Aneurysm at the Origin of the Collateral Artery]. No Shinkei Geka. 2018;46(8):713–22. [Article in Japanese]
15. Hosur B, Bhatia V, Kumar A, Karthigeyan M. Rete middle cerebral artery: a rare association with anterior cerebral artery aneurysm rupture. BMJ Case Rep. 2021;14(2):e240219.
16. Matsu a A, Hiu T, Ito T, Moritsuka T, Honda K, Kawahara I, et al. [Aplastic or Twig-like Middle Cerebral Artery with Ring Finger Protein 213 Mutation: A Case Report]. No Shinkei Geka. 2020;48(5):435–44. [Article in Japanese]
17. Fukuyama R, Yamamura K, Murata H, Miyatake S, Matsumoto N, Abe H. [Ruptured Aneurysm of an Aplastic or Twig-like Middle Cerebral Artery with Ring Finger Protein 213 Mutation: A Case Report]. No Shinkei Geka. 2020;48(6):533–40. [Article in Japanese]
18. Uchiyama T, Okamoto H, Koguchi M, Tajima Y, Suzuyama K. A Case of Aplastic or Twig-Like Middle Cerebral Artery Presenting with an Intracranial Hemorrhage Two Years after a Transient Ischemic Attack. No Shinkei Geka. 2016;44(2):143–8.
19. Shin HS, Lee SW, Ryu CW, Koh JS. Flow-related intracranial aneurysms associated with unfused arterial twigs relevant to different vascular anomalies: embryologic and hemodynamic considerations. Acta Neurochir (Wien). 2014;156(9):1637–46.
20. Sakai K, Hiu T, Fukuda Y, Ozono K, Honda K, Kawahara I, et al. [A Rare Case of a Ruptured De Novo Aneurysm Arising from the Twig-like Networks of a Collateral Artery Associated with Hypoplasia of the M1 Segment of the Middle Cerebral Artery 4 Years after the Rupture of an A1 Aneurysm at the Origin of the Collateral Artery]. No Shinkei Geka. 2018;46(8):713–22. [Article in Japanese]

Cerebral Infarction: Two Case Report and Brief Literature Review. Diagnos. 2021;11(2):205.

Srp Arh Celok Lek. 2021 Nov-Dec;149(11-12):722-724
DOI: https://doi.org/10.2298/SARH210718086N

Nestorović D. et al.