Privacy and modern cars through a dual lens

Giampaolo Bella*, Pietro Biondi*, Marco De Vincenzi♦, Giuseppe Tudisco♦
giamp@dmi.unict.it, pietro.biondi@phd.unict.it, marco.devincenzi@iit.cnr.it, giuseppe.tudisco@studium.unict.it

* Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
♦ Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy
Automotive cybersecurity

COMMUNICATION DOMAINS

V2V V2I IV U2V Car Maker Third parties Emergency services

CAR COMPONENTS
- CAN-Bus
- OBD-II port
- Sensors
- Electronic Control Units
- Autonomous vehicle imaging

CAR COMPONENTS
- Infotainment system
- E-call box / SIM Card
- GPS
- Smartphone integration
- Cabin monitoring system

TYPES OF DATA

VEHICLE: functioning of vehicle, maintenance status, ECU data and operations

DRIVER: physical characteristics, driving style, driver's behaviour

LOCATION: geographic location of a vehicle, history and route tracking, speed

ACCOUNT: personal accounts, personal and special category

Bella, Biondi, De Vincenzi, Tudisco
Art 12. GDPR “The controller of the data, has to provide information to the user in a concise, transparent, intelligible and easily accessible form, using clear and plain language”

Focus: Understand if the privacy policies are compliant with article 12 of the GDPR

Approach: Analysis of the privacy policies of twelve car manufacturers and study of readability indices evaluating the policy

Steps:

1. Privacy policy collection
2. Policy readability analysis
Privacy policy collection

Twelve carmakers company: the top ten most famous car companies in Europe plus Tesla and KIA.

We download the privacy policy by using two different channels:

- During the installation of the respective app
- From the company website and contacting the customer service
Policy readability analysis
Textstat, a Python library to calculate statistics from text, that allows also to compute readability indexes.

We calculate the Coleman-Liau index, the SMOG index, the Automated Readability Index and the Flesch Reading Ease Index.

The first three indexes use the U.S. school grade to label a text as “difficult” or “easy” to read.

Score/Grade	Education Level
1-4	Elementary School
5-8	Middle School
9-12	High School
13-16	Undergraduate
17+	Graduate
• **CLI**: depends on the complexity of the words, measured from the number of letters, and the complexity of the sentences.

• **SMOG**: uses the polysyllables (words of 3 or more syllables) in a certain number of sentences (at least 30).

• **ARI**: takes into consideration also the number of characters, in addition to the number of words and sentences.

• **FREI**: that differs from all the three previous indexes because it outputs a score instead of the school grade.

• **GIDR**: is calculated by combining the previous four indexes: the lowest value “0” indicates the most readable privacy policy, while the value “100” the most difficult among the selected documents.
Company	Number of Words	Number of Sentences	CLI	SMOG	ARI	FREI	GIDR
Ford	9744	1327	8.7	10.0	5.1	58.3	0.0
Peugeot	2151	437	9.0	9.0	6.0	47.7	3.6
Kia	22043	3096	9.6	10.4	5.8	49.8	10.7
Skoda	5831	860	9.9	9.9	6.1	49.7	12.5
Mercedes	8591	1387	10.0	10.0	6.0	44.0	14.3
Opel	2438	323	11.0	10.0	7.0	46.6	21.4
Audi	13661	1410	10.4	11.1	6.8	49.4	23.2
BMW	991	119	11.1	10.5	7.1	49.1	25.0
Tesla	13224	1453	10.8	11.1	7.0	49.5	25.0
Volkswagen	11742	1206	12.2	11.8	8.3	42.1	42.9
Toyota	3279	263	11.7	13.2	8.8	43.6	48.2
Renault	2568	94	12.7	17.3	15.9	37.3	100.0
Questionnaire design:
- Basic information
- Capturing concerns on privacy
- Capturing perceptions of trust

Participant
- Choice of the subjects
- Sample of 88 respondents

Essential sample statistics
Explanation of results and presentation in tables
A 7-point balanced Likert scale is used for most of the questions in the questionnaire.

Simplifying the analysis: grouping the 7 levels of agreement into 3 categories

Levels of agreement	Categories
Strongly agree	Agreeing
Agree	
Somewhat agree	
Neither agree nor disagree	Undecided
Somewhat disagree	
Disagree	Disagreeing
Strongly disagree	
● **Q1:** evaluates the driver's knowledge on modern cars.
● **Q2:** asks respondents whether or not they agree that modern cars are similar to modern computers.
● **Q3:** select all the categories of data they think a car collects.
● **Q4:** asks whether they think it is necessary to collect personal data to achieve full vehicle functionality.
● **Q5:** asks whether personal data collected by a modern car about its driver needs to be transmitted over the internet.
● **Q6:** asks whether participants agree that a modern vehicle safeguards the life of its driver.
● **Q7:** asks participants whether a modern car protects its driver's personal data better than its driver's life.
● **Q8:** asks whether the data collected from the vehicle is legitimately processed according to the relevant regulations.
● **Q9:** asks if participants believe that the personal data collected is systematically analysed and evaluated using automated processes (including profiling).
● **Q10:** asks whether the participants feel that the data transmitted over the Internet are protected by adequate technologies.
Analysis of findings

Knowledgeable about modern cars	Q1
Average knowledge	17%
Not knowledgeable about modern cars	13%

Personal data about the driver	Q3							
Public data about the driver	69							
Public data not about the driver	56							
Special categories of personal data about the driver	44							
Financial data about the driver	15							
No data at all	1							
	Q2	Q4	Q5	Q6	Q7	Q8	Q9	Q10
----------------	-----	-----	-----	-----	-----	-----	-----	-----
Agreeing	83%	32%	26%	80%	22%	50%	52%	51%
Disagreeing	6%	33%	48%	6%	41%	34%	31%	23%
Undecided	11%	35%	26%	14%	37%	16%	17%	26%
Conclusions

- Reading and understanding the twelve privacy policy documents requires a high level of education equal to the last years of high school or the first years of university to be comprehensible in every part.

- The interviewed sample feel quite informed about modern vehicles.

- Collection of personal data, the participants seem to be equally divided.

- Q9 tell us that half of the sample thinks that their data is analysed and studied by the vehicle systems in order to evaluate some personal aspects.

- Regarding the transmission of collected data just a few of the participants think it is truly necessary.
Privacy and modern cars through a dual lens

Thank you for your attention

Giampaolo Bella*, Pietro Biondi*, Marco De Vincenzi†, Giuseppe Tudisco*

giamp@dmi.unict.it, pietro.biondi@phd.unict.it, marco.devincenzi@iit.cnr.it, giuseppe.tudisco@studium.unict.it

* Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
† Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche, Pisa, Italy