VOLUME GROWTH AND PUNCTURE REPAIR IN CONFORMAL GEOMETRY

MICHAEL G. EASTWOOD AND A. ROD GOVER

Abstract. Suppose M is a compact Riemannian manifold and $p \in M$ an arbitrary point. We employ estimates on the volume growth around p to prove that the only conformal compactification of $M \setminus \{p\}$ is M itself.

1. Introduction

Though this article is primarily concerned with conformal differential geometry in dimension ≥ 3, the phenomenon we wish to describe also occurs in dimension 2 as follows.

Theorem 1. Suppose that M is a compact connected Riemann surface and $p \in M$. Suppose that N is a compact connected Riemann surface and $U \subset N$ an open subset such that $U \cong M \setminus \{p\}$ as Riemann surfaces. Then this isomorphism extends to $N \cong M$.

Stated more informally, there is no difference between the ‘punctured Riemann surface’ $M \setminus \{p\}$ and the ‘marked Riemann surface’ (M, p). In fact, although we have stated the theorem in terms of compact Riemann surfaces, the result itself is local:

In this picture the punctured open disc is assumed to be conformally isomorphic to the open set U (but nothing is supposed concerning the boundary ∂U of U in N). We may conclude that N must be, in fact, be the disc and $U \hookrightarrow N$ the punctured disc, tautologically included.

2010 Mathematics Subject Classification. 53A30.

We gratefully acknowledge support from the Royal Society of New Zealand via Marsden Grants 13-UOA-018 and 16-UOA-051. We also thank the Universities of Adelaide and Auckland for hospitality during various visits.
For simplicity, however, the results in this article will be formulated for compact manifolds, their local counterparts being left to the reader.

By a conformal manifold we shall mean a smooth manifold equipped with an equivalence class of Riemannian metrics $[g_{ab}]$ where the notion of equivalence is that $\hat{g}_{ab} = \Omega^2 g_{ab}$ for some positive smooth function Ω.

Theorem 2. Suppose M is a compact connected conformal manifold and $p \in M$. Suppose N is a compact connected conformal manifold and $U \subset N$ an open subset such that $U \cong M \setminus \{p\}$ as conformal manifolds. Then this isomorphism extends to $N \cong M$.

Since an oriented conformal structure in 2 dimensions is the same as a complex structure, Theorem 2 generalises Theorem 1. It is well known, however, that conformal geometry in dimensions ≥ 3 enjoys a greater rigidity than in 2 dimensions and so one expects a different proof. Such proofs of Theorem 2 (and beyond) can be found in [1]. In this article, however, we shall prove Theorem 2 by a method that also works (but much more easily so) in dimension 2.

2. Puncture repair in 2 dimensions

Proof of Theorem 1. With reference to picture (11), introducing polar coordinates (r, θ) on the disc and hence on U, we are confronted by a smooth positive function $\Omega(r, \theta)$ so that, if the η_{ab} denotes the standard metric $dr^2 + r^2 d\theta^2$ on the disc, then the metric $\hat{\eta}_{ab} = \Omega^2 \eta_{ab}$ extends to N. If $\partial U \subset N$ contains two or more points, then the concentric curves $\{r = \epsilon\}$ as $\epsilon \downarrow 0$ have length bounded away from zero in the metric $\hat{\eta}_{ab}$. In other words, for some $\epsilon > 0$ and $\ell > 0$, we have

$$\int_0^{2\pi} \Omega(r, \theta) r \, d\theta \geq \ell, \quad \forall 0 < r < \epsilon.$$

By the Cauchy-Schwarz inequality, for any fixed r,

$$\left(\int_0^{2\pi} \Omega(r, \theta) \, d\theta\right)^2 \leq 2\pi \int_0^{2\pi} \Omega^2(r, \theta) \, d\theta$$

and it follows that

$$\int_0^{2\pi} \Omega^2 \, d\theta \geq \int_0^\epsilon \frac{1}{2\pi} \left(\int_0^{2\pi} \Omega \, d\theta\right)^2 r \, dr \geq \frac{1}{2\pi} \int_0^\epsilon \frac{\ell^2}{r} \, dr = \infty.$$

However, the integral on the left is the area of $\{0 < r < \epsilon\} \subseteq U$ in the metric $\hat{\eta}_{ab}$, which must be finite if $\hat{\eta}_{ab}$ is to extend smoothly to N. \square
3. Puncture repair in Euclidean n-space

In 2 dimensions, the local existence of isothermal coordinates implies that it is sufficient to repair only the unit disc in \mathbb{R}^2 with its standard metric η_{ab}. Such a normalisation is unavailable in higher dimensions.

Proof of Theorem 2 in flat space. With reference to (1), now viewed as a picture in n dimensions, we shall suppose that the object on the left is a punctured ball in \mathbb{R}^n with its standard Euclidean metric and aim to conclude, just as we did in case $n = 2$, that $\partial U \subset N$ is a single point. To do this, we replace polar coordinates by spherical coordinates $R > 0 \times \Sigma \ni (r, x)$ mapping into $\mathbb{R}^n \setminus \{0\}$, where

$$\Sigma = \{x \in \mathbb{R}^n \mid \|x\| = 1\} \ni \mathbb{R}^n \setminus \{0\}$$

is the unit $(n - 1)$-sphere and investigate the behaviour of a smooth positive function $\Omega = \Omega(r, x)$ defined for r sufficiently small and having the property that the metric $\tilde{\eta}_{ab} = \Omega^2 \eta_{ab}$ extends to N. If $\partial U \subset N$ contains two or more points, then the concentric hypersurfaces $\{r = \epsilon\}$ as $\epsilon \downarrow 0$ have diameter bounded away from zero in the metric $\tilde{\eta}_{ab}$. In other words, for some $\epsilon > 0$ and $\ell > 0$, we have

$$\forall 0 < r < \epsilon, \quad \text{there are } \alpha, \beta \in \Sigma \quad \text{s.t. } \int^\beta_\alpha \Omega(r, x) r \geq \ell,$$

where the integral is along any path from α to β on the unit sphere Σ (with respect to the standard round metric on Σ).

Lemma 1. Suppose $\Omega : \Sigma \to \mathbb{R}_{>0}$ is smooth and there are two points $\alpha, \beta \in \Sigma$ such that $\int^\beta_\alpha \Omega \geq d > 0$ for all smooth paths on Σ joining α to β. Then

$$\int_\Sigma \Omega^n \geq C_n d^n,$$

where C_n is a universal constant, independent of the location of α, β.

The proof of this lemma is given in an appendix. To finish the proof of our theorem, we compute the volume of the collar $\{0 < r < \epsilon\}$ with respect to the metric $\tilde{\eta}_{ab} = \Omega^2 \eta_{ab}$ as

$$\int^\epsilon_0 \int_\Sigma \Omega^n r^{n-1} \, dr \geq \int^\epsilon_0 \int_0^\ell \frac{\ell^n}{r} \, r^{n-1} \, dr = C_n \ell^n \int^\epsilon_0 \frac{\ell^n}{r} \, dr = \infty,$$

which should be finite if $\tilde{\eta}_{ab}$ is to extend smoothly to N. □

Remark. By stereographic projection, conformally repairing a puncture in Euclidean \mathbb{R}^n is equivalent to conformally repairing a puncture in the round sphere S^n. It follows already that S^n is the unique conformal compactification of \mathbb{R}^n.

4. PUNCTURE REPAIR NEAR THE EUCLIDEAN METRIC

The estimates in the previous section are sufficiently robust that they apply for metrics sufficiently close to Euclidean. More specifically, suppose $g_{ab}(x) \, dx^a \, dx^b$ is a Riemannian metric on a punctured ball in \mathbb{R}^n centred on the origin and such that, in standard Cartesian coordinates $(x^1, x^2, \ldots, x^n) \in \mathbb{R}^n$ with standard Euclidean metric $\eta_{ab} \, dx^a \, dx^b$,

- the volume form for g_{ab} is the standard Euclidean one,
- the metrics $g_{ab}(x)$ and η_{ab} satisfy

\begin{equation}
\|X\|_{g(x)} \leq 2\|X\|_{\eta} \leq 4\|X\|_{g(x)}, \quad \forall \text{ vectors } X
\end{equation}

for all x near the origin, say for $\|x\|_{\eta} < \epsilon$.

Again working in spherical coordinates near the origin, if $\hat{g}_{ab} \equiv \Omega^2 g_{ab}$ on U extends to N, then the concentric hypersurfaces \{r = \epsilon\} as $\epsilon \downarrow 0$ have diameter bounded away from zero in the metric \hat{g}_{ab} and hence also in the commensurate metric $\hat{\eta}_{ab} \equiv \Omega^2 \eta_{ab}$. Therefore, according to the proof given in the previous section, the volume of the collar $\{0 < r < \epsilon\}$ with respect to the metric $\hat{\eta}_{ab}$ is infinite. But $\hat{\eta}_{ab}$ has the same volume form as \hat{g}_{ab}, which contradicts \hat{g}_{ab} extending to N.

5. PUNCTURE REPAIR IN n DIMENSIONS

Proof of Theorem 2 in general. We only need show that there are local coördinates on an arbitrary Riemannian manifold so that conditions (2) are satisfied. Certainly, we can arrange local coördinates so that g_{ab} agrees with η_{ab} at the origin. The volume form for g_{ab} is then

$$F(x^1, x^2 \cdots, x^n) \, dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$$

for some smooth function F with $F(0) = 1$, which can be absorbed by changing just the first coördinate. The condition that g_{ab} and η_{ab} are commensurate, as in (2), follows near the origin by continuity. \(\square\)

APPENDIX A. PROOF OF LEMMA 1

In fact, we shall prove the following minor generalisation.

Lemma 2. Let Σ denote the unit m-sphere with its usual round metric. Suppose $\Omega : \Sigma \to \mathbb{R}_{>0}$ is smooth and there are two points $\alpha, \beta \in \Sigma$ such that $\int_{\alpha}^{\beta} \Omega \geq d > 0$ for all smooth paths on Σ joining α to β. Then, for any $s > m$,

$$\int_{\Sigma} \Omega^s \geq C_{m,s} \, d^s,$$

where $C_{m,s}$ is a universal positive constant, independent of the location of α and β.
Proof. We shall calculate using stereographic coördinates on Σ. Recall that the round metric on the unit m-sphere may be written as

$$
\left(\frac{2}{1 + (u^1)^2 + \cdots + (u^m)^2} \right)^2 \left((du^1)^2 + \cdots + (du^m)^2 \right)
$$

in these coördinates. Translating the origin to $a \in \mathbb{R}^m$ gives

$$
\left(\frac{2}{1 + \|u+a\|^2} \right)^2 \left((du^1)^2 + \cdots + (du^m)^2 \right)
$$

instead and we may use such a translation to suppose that α and β are located at the origin and out at infinity in this stereographic projection. Let $v \in \mathbb{R}^m$ be a unit vector and consider the curve

$$(0, \infty) \ni \rho \mapsto \rho v$$

joining the origin to infinity. Then

$$d \leq \int_0^\infty \frac{2\Omega}{\int_0^\infty \frac{2\Omega}{1 + \|\rho v + a\|^2}} \frac{2\Omega}{1 + \|\rho v + a\|^2} \cdot \int_0^\infty \frac{2\Omega}{1 + \|\rho v + a\|^2} \cdot \int_0^\infty \frac{2\Omega}{1 + \|\rho v + a\|^2}$$

The Hölder inequality for conjugate exponents s and $s/(s-1)$ implies that

$$\left(\int_0^\infty fg d\mu \right)^s \leq \left(\int_0^\infty f^s d\mu \right) \left(\int_0^\infty g^{s/(s-1)} d\mu \right)^{s-1}$$

and if we take

$$f = \Omega, \quad g = \frac{(1 + \|\rho v + a\|^2)^{m-1}}{\rho^{m-1}}, \quad d\mu = \frac{\rho^{m-1} d\rho}{(1 + \|\rho v + a\|^2)^m}$$

then we conclude that

$$\left(\int_0^\infty \frac{2\Omega}{1 + \|\rho v + a\|^2} \right)^s \leq A_v^{s-1} \int_0^\infty \frac{\Omega^s \rho^{m-1} d\rho}{(1 + \|\rho v + a\|^2)^m},$$

where

$$A_v \equiv \int_0^\infty \frac{d\rho}{\rho^{(m-1)/(s-1)}(1 + \|\rho v + a\|^2)^{(s-m)/(s-1)}}.$$
Recall that \(v \) is an arbitrarily chosen unit vector in \(\mathbb{R}^m \). If we integrate over all such vectors, then the left hand side of this inequality yields \(\int \Omega^s \) whereas we already know that
\[
\int_0^\infty \frac{\Omega d\rho}{1 + \|\rho v + a\|^2} \geq \frac{d}{2}.
\]
Therefore \(\int \Omega^s \geq (S_{m-1}/(2^s B^{s-1})) \, ds \), where \(S_{m-1} \) denotes the area of the unit \((m-1)\)-sphere. This is a bound of the required form. \(\square \)

Lemma 3. If \(p, q > 1 \) are conjugate exponents, \(1/p + 1/q = 1 \), then
\[
\mathbb{R} \ni t \mapsto \int_0^\infty \frac{dx}{x^{1/p}(1 + (x + t)^2)^{1/q}}
\]
is bounded.

Proof. Firstly, note that \((q + 1)/2q > 1/2\), so
\[
\int_1^\infty \frac{dx}{(1 + (x + t)^2)^{(q+1)/2q}} \leq \int_{-\infty}^\infty \frac{dx}{(1 + x^2)^{(q+1)/2q}} < \infty.
\]
Since \(p \) and \(q \) are conjugate exponents, so are \(2p - 1 \) and \((q + 1)/2\), and we may apply Young’s inequality with these exponents to conclude that
\[
\frac{1}{x^{1/p}(1 + (x + t)^2)^{1/q}} \leq \frac{1}{2p - 1} \frac{1}{x^{(2p-1)/p}} + \frac{2}{q + 1} \frac{1}{(1 + (x + t)^2)^{(q+1)/2q}}.
\]
Also, observe that
\[
\int_0^1 \frac{dx}{x^{1/p}} = \int_1^\infty \frac{dx}{x^{(2p-1)/p}} = \frac{p}{p - 1}.
\]
Therefore,
\[
\int_0^\infty \frac{dx}{x^{1/p}(1 + (x + t)^2)^{1/q}} \leq \int_0^1 \frac{dx}{x^{1/p}} + \int_1^\infty \frac{dx}{x^{1/p}(1 + (x + t)^2)^{1/q}}
\]
\[
= \frac{p}{p - 1} + \int_1^\infty \frac{dx}{x^{1/p}(1 + (x + t)^2)^{1/q}}
\]
whilst Young’s inequality shows that the second integral is bounded above by
\[
\frac{1}{2p - 1} \int_1^\infty \frac{dx}{x^{(2p-1)/p}} + \frac{2}{q + 1} \int_1^\infty \frac{dx}{(1 + (x + t)^2)^{(q+1)/2q}}.
\]
Assembling these various estimates gives
\[
\frac{2p^2}{(2p - 1)(p - 1)} + \frac{2}{q + 1} \int_{-\infty}^\infty \frac{dx}{(1 + x^2)^{(q+1)/2q}}
\]
as a bound on the original integral. \(\square \)
Acknowledgement. We are extremely grateful to Ben Moore and Nick Buchdahl for helpful discussions concerning the proof of Lemma 3.

REFERENCES

[1] C. Frances, Removable and essential singular sets for higher dimensional conformal maps, Comment. Math. Helv. 89 (2014) 405–441.

School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
E-mail address: meastwoo@member.ams.org

Department of Mathematics, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
E-mail address: r.gover@auckland.ac.nz