Whole Exome and Transcriptome RNA-Sequencing Model for the Diagnosis of Prostate Cancer

Jason B. Nikas,* Nikos T. Mitanis, ‡ and Emily G. Nikas§

*Research & Development, Genomix Inc., Minneapolis, Minnesota 55364, United States
‡Department of Mathematics, University of the Aegean, Samos 83200, Greece
§School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455, United States

Supporting Information

ABSTRACT: In our previous study, we developed a genome-wide DNA methylation model for the diagnosis of prostate cancer, and we pointed out that a considerable average error is associated with the current method for the diagnosis of prostate cancer, which is predicated on pathological assessment of biopsied tissue. In this study, we utilized whole exome and transcriptome RNA-sequencing (RNA-seq) data that were derived from 468 tumor samples and 51 normal samples of prostatic tissue, and we analyzed over 20,000 genes per sample. We were able to develop a mathematical model that classified tumor tissue versus normal tissue with a high accuracy. The overall sensitivity was 97.01%, and the overall specificity was 94.12%. The input variables to the model were the mRNA expression values of the following nine genes: ANGPT1, MED21, AOX1, PLP2, HPN, HPN-AS1, EPHA10, NKX2-3, and LRFN1. The model was validated with unknown samples, with a 10-fold cross-validation, and a leave-one-out cross-validation. We present here a genomic model, based on a whole exome and transcriptome RNA-seq analysis of biopsied prostatic tissue, that could be utilized in the diagnosis of prostate cancer.

1. INTRODUCTION

1.1. Prostate Cancer. In our previous study,¹ we pointed out that the current diagnosis of prostate cancer, based on pathological analysis of biopsied tissue, is associated with an average error of 25−30% in connection with underdetection and an average error of 1.3−7.1% in connection with overdetection.² In some cases, the underdetection error is substantially higher.³ In addition, the error of a Gleason score—a pathological assessment scale used for grading biopsied prostate tumors—is estimated to be 39%.⁴ Those sources of error associated with the current method of prostate cancer diagnosis most likely stem from the fact that pathological assessment of tissue does not have the necessary resolution to detect—much less assess and monitor—those molecular processes, such as gene expression alterations, which initiate tumorigenesis and drive its early evolution and which occur at the molecular level. Furthermore, those molecular processes that initiate tumorigenesis and drive its early evolution begin to perturb a host of other molecular processes and mechanisms, such as DNA methylation and other gene expression alterations, years before cancer diagnosis,⁵ that is to say, years before cancer manifests itself at the tissue level.

1.2. Gene Expression and Cancer. Gene expression, the most fundamental cellular process, is driven by the nature and the state of cells and, equally importantly, by the environment in which they find themselves. That means that cell function and survival are the most dominant determinants of gene expression. Transcriptomics, the study of gene expression that relies on measurement of RNA molecules, is the most powerful and the most well-established method of assessing and monitoring the biology of cells.⁷ Moreover, transcriptomics affords the most expeditious means of observing changes imposed onto cells by their state or their environment. In the case of tumor cells, gene expression, like many other cellular processes, is appropriated, and it is used to activate or overexpress genes that are vital or beneficial to them and to suppress or silence genes that are detrimental to their survival. Following the advent of next-generation sequencing technologies, RNA sequencing (RNA-seq), with its unprecedented accuracy and sensitivity, quickly became the dominant...
Table 1. mRNA Expression Analysis Results of the Nine Input Variables of the Model Based on the Data of the Training Set*

var.	gene symbol	gene ID	M_T	SD_T	M_N	SD_N	FC	P
X_1	ANGPT1	284	237.857	214.325	953.763	487.196	-4.010	2.68×10^{-9}
X_2	MED21	9412	428.052	115.507	702.998	167.748	-1.642	4.97×10^{-9}
X_3	AOXI	316	407.088	436.165	2187.538	2056.420	-5.374	2.90×10^{-17}
X_4	PLP2	5355	751.555	429.088	1648.100	510.636	-2.193	5.34×10^{-17}
X_5	HPN	3249	5840.868	3401.767	1087.377	1031.123	5.372	2.24×10^{-15}
X_6	HPN-AS1	100,128,675	15.413	14.192	1.533	1.506	10.057	7.68×10^{-18}
X_7	EPHA10	284,656	236.742	129.399	53.527	31.985	4.423	6.04×10^{-19}
X_8	NKX2-3	159,296	36.437	39.944	1.935	4.306	18.831	7.68×10^{-18}
X_9	LRFN1	57,622	199.837	92.912	71.144	37.270	2.809	9.02×10^{-18}
X_{10}	TBP	6908	246.777	44.032	250.043	37.409	4.010	2.68×10^{-9}

*The fold change was calculated as follows: $R = M_T/M_N$. If $R \geq 1$, then $FC = R$; if $R < 1$, then $FC = -1/R$.

‡Control gene.

2. METHODS

2.1. Data. The data used in this study were the normalized data obtained from 468 prostatic tumor tissue samples and 51 normal prostatic tissue samples, generated from whole exome and transcriptome RNA-seq analysis of tissue using the Illumina HiSeq 2000 sequencer and downloaded from The Cancer Genome Atlas of the National Cancer Institute under the category PRAD.

2.2. Clinical Methods. All clinical methods used in this study were the same as the ones we employed in our previous study. Briefly, all tumor samples used in this study were primary tumors and had been obtained from subjects that did not have a history of prior and/or other malignancy. The Gleason scores of all 468 tumor samples ranged from 6 to 10 (Table S1).

2.3. Statistical Methods. The statistical methods used in this study were the same as the ones we used in our previous study and are presented in great detail there. Briefly, using only the data from the training set, a transcriptomic analysis was performed. Taking into account that the total number of variables (transcripts) per sample was 20,531 and utilizing the Bonferroni correction for multiple tests, the statistical significance level for the transcriptomic analysis was set at $\alpha = (0.05/20,531) = 2.43 \times 10^{-6}$ (two-tailed). Therefore, in order for any variable to be deemed statistically significant, it must have a P value of $< 2.43 \times 10^{-6}$.

2.4. Development of the Model. A random sample selection was performed to generate the training and validation sets so that the training set comprised approximately 70% of the total number of samples from each group and the validation set comprised the remaining approximately 30% of the samples. Furthermore, in accordance with the same methods as in our previous study, the random selection of the tumor samples was modified in order for the training set to comprise approximately 70% of the tumor samples with a particular Gleason score and in order for the validation set to comprise approximately 30% of the tumor samples with a particular Gleason score (Tables S2 and S3).

Of the 20,531 variables (transcripts) assessed during the transcriptomic analysis using the data from the training set, 4484 met the above-mentioned criterion of significance and provided the variable pool for the development of the model. Employing the same methodology as in our previous studies, we were able to develop the following multivariable function (eq 1). Equation 1 exhibited the best performance in terms of sensitivity and specificity in the training phase and was selected for validation.

$$F = \left[\frac{(X_i + 2)^{0.5} + (X_i + 2)^{0.5}}{(X_i + 2)^{0.5} + (X_i + 2)^{0.5}} \right]^{1/2}$$

In eq 1, X_i represents the mRNA expression value of the gene $ANGPT1$, X_i the gene $MED21$, X_i the gene $AOXI$, X_i the gene $PLP2$, X_i the gene HPN, X_i the gene $HPN-AS1$, X_i the gene $EPHA10$, X_i the gene $NKX2-3$, and X_i the gene $LRFN1$. Since X_i to X_{10} are the respective mRNA expression values of the aforementioned nine genes and since, theoretically, mRNA expression values belong in the continuous interval $[0, +\infty)$, the theoretical domain of F (eq 1) is the interval $[0, +\infty)$. Moreover, since X_i, X_i, X_i, X_i, and X_i are all ≥ 0, the function...
is continuous and is defined throughout its domain \([0, +\infty)\).

From eq 1, it can be seen that \(F\) attains its minimum value when \(X_1 = X_2 = X_3 = X_4 = 0\) and when, concomitantly, \(X_5, X_6, X_7, X_8, \) and \(X_9\) are very large. In this case, \(F \to 0\). Conversely, when \(X_1, X_2, X_3, \) and \(X_4\) are very large and when, concomitantly, \(X_5 = X_6 = X_7 = X_8 = X_9 = 0\), \(F\) attains its maximum value. In this case, \(F \to +\infty\). Therefore, the theoretical range of \(F\) is the interval \((0, +\infty)\). In practice, however, a very large value of mRNA expression may be in the order of \(10^6\). In fact, the largest expression value observed in this study was \(6.9 \times 10^6\). Assuming, therefore, a very large value of mRNA expression may be in the order of \(10^6\).

The transcriptomic analysis revealed that in the case of tumor cells, \(X_1\) to \(X_4\) were significantly underexpressed, whereas \(X_5\) to \(X_9\) were significantly overexpressed as compared with normal cells (Table 1). In view of this finding, the \(F_{\text{min}}\) represents theoretically the worst possible transcriptomic state in which normal cells could be: \(X_1\) to \(X_4\) are completely upregulated, while \(X_5\) to \(X_9\) are completely suppressed, a state that is the farthest from that of the tumor cells. The observed range of \(F\) based on all 519 samples of this study, was \([4.251, 44.127]\) (Table S1).

Using a receiver operating characteristic (ROC) curve analysis on the results of the \(F\) function in the training phase and taking into account the respective variances of the two groups (T vs N), the cut-off point (COP) that demarcates a score of a tumor sample from that of a normal sample was determined to be COP = 23.162. An \(F\) score less than the COP designates a tumor sample, whereas an \(F\) score greater than or equal to the COP designates a normal sample. Using an ROC curve analysis in a future clinical trial validation study, the COP can be adjusted to optimize the performance of the model.

3. RESULTS

3.1. Transcriptomic Analysis

The transcriptomic results in connection with the nine input variables of the model based on the data of the training set appear in Table 1. The variable name, the gene symbol, the NCBI gene ID, the mean mRNA expression value (\(M_T\)) of the T (tumor) group with its standard deviation (SDT), the mean mRNA expression value (\(M_N\)) of the N (normal) group with its standard deviation (SDN), the fold change (FC) (representing the mRNA expression change in the tumor cells as compared with that
in the normal cells), and the probability of significance (P) for all nine variables are listed.

3.2. Training. In the training phase, the model (eq 1) identified correctly 316/328 tumor samples and 34/36 normal samples (Table S2). Therefore, the sensitivity was 96.34%, and the specificity was 94.44%. The ROC area-under-the-curve (AUC) statistics were as follows: $AUC = 0.98044$, its standard error was $AUC SE = 0.00718$, z-value = 66.94, and the 95% confidence interval of the AUC value was $[0.95998, 0.99049]$ (Figure 1A). The T group had a mean F score and standard deviation of $F_T = 13.4045 \pm 4.9146$, and its median value was 12.4581. Based on 100,000 Monte Carlo and bootstrap simulations, the 99% confidence interval of the F_T was determined to be $[12.3270, 13.7350]$. The N group had a mean F score and standard deviation of $F_N = 28.7701 \pm 5.1239$, and its median value was 29.3081. Similarly, based on 100,000 Monte Carlo and bootstrap simulations, the 99% confidence interval of the F_N was determined to be $[26.5718, 30.9196]$. The Mann–Whitney U test statistics were as follows: $U_T = 231$, $U_N = 11,577$, z-value = 9.4652, and the approximate probability of significance with correction was $P = 2.93 \times 10^{-21}$ (Figure 2A,B).

3.3. Validation with Unknown Samples. In the validation phase, using the 155 preallocated unknown samples (140 tumor and 15 normal samples), the model (eq 1) identified correctly 138/140 tumor samples and 14/15 normal samples (Table S3). Therefore, the sensitivity was 98.57%, and the specificity was 93.33%. The unknown T samples had a mean F score and standard deviation of $F_T = 13.4263 \pm 4.2591$, and their median value was 12.8706. The unknown N samples had a mean F score and standard deviation of $F_N = 30.2478 \pm 7.2911$, and their median value was 30.5702. The Welch unequal-variance t-test statistics for the two groups of unknown samples in connection with their F scores were as follows: $t = 8.7764$, degrees of freedom = 15.04, and the probability of significance was $P = 2.65 \times 10^{-7}$. The F scores were as follows: $t = 8.7764$, degrees of freedom = 15.04, and the probability of significance was $P = 2.65 \times 10^{-7}$.

3.4. Overall Performance. When we pooled together the 364 samples (328 tumor and 36 normal) from the training phase with the 155 unknown samples (140 tumor and 15 normal) from the validation phase, the model’s overall performance was as follows: sensitivity = $454/468 = 97.01\%$ and specificity = $48/51 = 94.12\%$ (Figure 3 and Table S1). The ROC AUC statistics were as follows: $AUC = 0.97796$, its standard error was $AUC SE = 0.00901$, z-value = 53.06, and the 95% confidence interval of the AUC value was $[0.95113, 0.99014]$ (Figure 1B). The T group had a mean F score and standard deviation of $F_T = 13.1587 \pm 4.7268$, and its median value was 12.5619. Based on 100,000 Monte Carlo and bootstrap simulations, the 99% confidence interval of the F_T was calculated to be $[12.5949, 13.7157]$. The N group had a mean F score and standard deviation of $F_N = 29.2047 \pm 5.8073$, and its median value was 29.3748. Similarly, based on 100,000 Monte Carlo and bootstrap simulations, the 99% confidence interval of the F_N was calculated to be $[27.1356, 31.2805]$. The Mann–Whitney U test statistics were as follows: $U_T = 526$, $U_N = 23,342$, z-value = 11.2169, and the approximate probability of significance with correction was $P = 3.37 \times 10^{-22}$. The range of all $519 F$ scores was $[4.251, 44.217]$ (Figure 4A,B). Table 2 shows the mRNA expression results of the nine input variables of the model based on the combined data of the training and validation sets. The variable name, the gene symbol, the NCBI gene ID, the mean mRNA expression value (M_T) of the T (tumor) group with its standard deviation (SD_T), the mean mRNA expression value (M_N) of the N (normal) group with its standard deviation (SD_N), the FC, and the probability of significance (P) for all nine variables are listed.

3.5. Cross-Validations. The 10-fold cross-validation yielded a misclassification rate of 5.59% (29/519) and a mean-squared error of 0.0559. The sensitivity was 94.44%, and the specificity was 94.12%. The Matthews correlation coefficient (MCC) was 0.7540. The training and testing sets for each of the 10 rounds, as well as the confusion matrix and other statistical information, appear in Table S4. Similarly, the leave-one-out cross-validation yielded a misclassification rate of 5.59% (29/519) and a mean-squared error of 0.0559. The sensitivity was 94.44%, the specificity was 94.12%, and the MCC was 0.7540. The results of all 519 rounds, as well as the confusion matrix and other statistical information, appear in Table S5.

4. DISCUSSION

In this study, using whole exome and transcriptome RNA-seq, we developed and presented a genomic model that could be utilized in the diagnosis of prostate cancer. A subsequent clinical validation with a larger, multicenter retrospective study would constitute the next step for this model and would advance its application closer to the clinic. Such a multicenter study would be able to minimize the innate error of the current diagnostic method (reliance on morphology, that is, visual inspection of the tissue) to classify samples, and it would also provide more information about the few statistical outliers in this study. For example, in the T group, there were eight samples with the highest F scores for that group (from 26.323 to 31.580) (Figures 3 and 4A and Table S1), ranging from 2.79 to 3.90 standard deviations above the mean value of that group. All of those eight samples were determined to be statistical outliers, and they were misclassified by the model. If they were to be removed from the study as extreme outliers, then the performance of the model would increase considerably [sensitivity = $462/468 = 98.72\%$]. We should point out here that seven of those eight statistical outliers were also misclassified by the DNA methylation model in our previous study. This provides independent evidence and raises questions about the actual nature of those seven samples, all of which are misclassified by the model. If they were to be removed from the study as extreme outliers, then the performance of the model would increase considerably [sensitivity = $462/468 = 98.72\%$]. We should point out here that seven of those eight statistical outliers were also misclassified by the DNA methylation model in our previous study.
which were determined to be tumor samples by the pathology report. From the different perspectives of two different molecular analyses (gene expression and DNA methylation), those seven samples should be classified in the heart of the N group. Furthermore, in the N group, there were three samples with the lowest F scores for that group (19.352, 17.211, and 13.886) (Figures 3 and 4A and Table S1), being 1.70, 2.07, and 2.64 standard deviations below the mean value of that group, respectively. Those samples constituted the only three misclassifications of the model with respect to the N group (Table S1). Interestingly, two out of those three samples, the ones with the two lowest F scores (17.211 and 13.886), were also misclassified by the DNA methylation model in our previous study. This suggests that those two samples, which were deemed normal by the pathology report, should be classified as tumor samples according to both the gene expression analysis and the DNA methylation analysis. The results of this study, as well as those of the previous one, demonstrate the capability of genomic methods and modeling to improve current cancer diagnosis. Furthermore, genomic methods and modeling, based on molecular analyses, can be used to improve cancer prognosis as well; genomic models can be developed and trained to detect a characteristic signature of the most aggressive tumor cells and to make accurate predictions about the survival of patients and about the future course of the disease.12,13

According to the results of our transcriptomic analysis (Tables 1 and 2), the genes ANGPT1, MED21, AOX1, and PLP2 (variables X1 to X6) were significantly suppressed in the tumor cells compared with normal cells. Suppression of ANGPT1 has been observed to correlate with progression and metastasis of prostate cancer, as well as with patients’ reduced relapse-free survival.14 Suppression of AOX1 has been observed in prostate cancer and has been associated with reduced patients’ survival and disease recurrence.15 Our transcriptomic analysis (Tables 1 and 2) further revealed that the genes HPN, HPN-AS1, EPHA10, NKX2-3, and LRFN1 (variables X7 to X9) were significantly upregulated in the tumor cells compared with normal cells. A number of studies have described that HPN is an oncogene, the overexpression of which promotes tumorigenesis and invasiveness of tumor cells in various different types of cancer, particularly prostate cancer.16 EPHA10 has been found to be overexpressed in breast, colon, and prostate cancers,10 and its overexpression has been associated with stage progression and metastasis of tumor cells in breast cancer.20 Overexpression of the homeobox gene NKX2-3 has been linked to tumorigenesis in marginal-zone B-cell lymphomas.21 Finally, LRFN1 has been reported to be overexpressed in prostate cancer,22 and its suppression has been observed to decrease cell viability and survival of pancreatic tumor cells.23

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.9b02995.

Figure 4. (A) Combination graph (box plot, density plot, and dot plot) of the model F (overall performance). Red circles denote statistical outliers. (B) Comparative histogram of the model F (overall performance).

Table 2. mRNA Expression Results of the Nine Input Variables of the Model Based on the Combined Data of the Training and Validation Sets

var.	gene symbol	gene ID	M_F	SD_F	M_N	SD_N	FC	P
X1	ANGPT1	284	243.843	208.138	994.899	542.859	−4.080	5.38 × 10⁻²⁵
X2	MED21	9412	429.729	111.912	709.904	164.239	−1.652	2.59 × 10⁻²⁶
X3	AOX1	316	414.447	428.663	2216.079	1938.192	−5.347	4.18 × 10⁻²⁴
X4	PLP2	5355	743.570	411.813	1673.877	548.394	−2.251	2.19 × 10⁻²³
X5	HPN	3249	5721.015	3497.136	1066.070	1031.282	5.366	1.73 × 10⁻²⁵
X6	HPN-AS1	100,128,675	15,033	13,945	1,555	1,710	9,670	2.19 × 10⁻²⁴
X7	EPHA10	284,656	233.751	124.943	51.056	32.721	4.578	8.99 × 10⁻²⁷
X8	NKX2-3	159,296	35,180	38,607	1,871	4,075	18.799	1.63 × 10⁻²⁴
X9	LRFN1	57,622	197.464	93.427	69.171	36.344	2.855	5.60 × 10⁻²³

The fold change was calculated as follows: R = M_F/M_N. If R ≥ 1, then FC = R; if R < 1, then FC = −1/R. 8Control gene.
Overall performance of the model, training of the model, validation of the model with unknown samples, 10-fold cross-validation of the model, and leave-one-out cross-validation of the model (XLSX)

AUTHOR INFORMATION

Corresponding Author
E-mail: jbnikas@genomix-inc.com.

ORCID
Jason B. Nikas: 0000-0001-9703-0422

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
This study was supported by Genomix Inc. The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

REFERENCES

(1) Nikas, J. B.; Nikas, E. G. Genome-wide DNA methylation model for the diagnosis of prostate cancer. *ACS Omega* 2019, 4, 14985−14990.

(2) Ukimura, O.; Coleman, J. A.; de la Taille, A.; Emberton, M.; Epstein, J. I.; Freedland, S. J.; Giannarini, G.; Kibel, A. S.; Montironi, R.; Ploussard, G.; Roobol, M. J.; Scattoni, V.; Jones, J. S. Contemporary role of systematic prostate biopsies: indications, techniques, and implications for patient care. *Eur. Urol.* 2013, 63, 214−230.

(3) Grief, T.; Loeb, S.; Roehl, K. A.; Gashiri, S. N.; Griffin, C.; Xu, X.; Catalona, W. J. Under diagnosis and over diagnosis of prostate cancer. *J. Urol.* 2007, 178, 88−92.

(4) Pierp, M.; Montgomery, J.; Kunju, L. P.; Siddiqui, J.; Rogers, V.; Rajendiran, T.; Johnson, T. D.; Shao, X.; Davenport, M. S. 18F-Choline PET/MRI: The Additional Value of PET for MRI-Guided Transrectal Prostate Biopsies. *J. Nucl. Med.* 2016, 57, 1065−1070.

(5) Goodman, M.; Ward, K. C.; Osunkoya, A. O.; Datta, M. W.; Luthringer, D.; Young, A. N.; Marks, K.; Cohen, V.; Kennedy, J. C.; Haber, M. J.; Amin, M. B. Frequency and determinants of disagreement and error in Gleason scores: A population-based study of prostate cancer. *Prostate* 2012, 72, 1389−1398.

(6) van Veldhoven, K.; Polidoro, S.; Baglietto, L.; Severi, G.; Sacerdote, C.; Panico, S.; Mattiello, A.; Palli, D.; Masala, G.; Krogh, V.; Agnoli, C.; Tumino, R.; Frasca, G.; Flower, K.; Curry, E.; Orr, N.; Tomczyk, K.; Jones, M. E.; Ashworth, A.; Swerdlow, A.; Chadeau-Hyam, M.; Lund, E.; Garcia-Closas, M.; Sandanger, T. M.; Flanagan, J. M.; Vines, P. Epigenome-wide association study reveals decreased average methylation levels years before breast cancer diagnosis. *Clin. Epigenet.* 2015, 7, 67.

(7) Cieslik, M.; Chinnaiyan, A. M. Cancer transcriptome profiling at the juncture of clinical translation. *Nat. Rev. Genet.* 2018, 19, 93−109.

(8) Byron, S. A.; Van Keuren-Jensen, K. R.; Engeltalger, D. M.; Carpton, J. D.; Craig, D. W. Translating RNA sequencing into clinical diagnostics: opportunities and challenges. *Nat. Rev. Genet.* 2016, 17, 257−271.

(9) Costa, V.; Aprile, M.; Esposito, R.; Cuccidicola, A. RNA-Seq and human complex diseases: recent accomplishments and future perspectives. *Eur. J. Hum. Genet.* 2013, 21, 134−142.

(10) Nikas, J. B. Inflammation and immune system activation in aging: a mathematical approach. *Sci. Rep.* 2013, 3, 3254.

(11) Nikas, J. B.; Boylan, K. L. M.; Skubits, A. P. N.; Low, W. C. Mathematical prognostic biomarker models for treatment response and survival in epithelial ovarian cancer. *Cancer Inform.* 2011, 10, 233−247.

(12) Nikas, J. B. A mathematical model for short-term vs. long-term survival in patients with glioma. *Am. J. Cancer Res.* 2014, 4, 862−873.

(13) Nikas, J. B. Independent validation of a mathematical genomic model for survival of glioma patients. *Am. J. Cancer Res.* 2016, 6, 1408−1419.

(14) Ayala, G.; Morello, M.; Frolov, A.; You, S.; Li, R.; Rosati, F.; Bartolucci, G.; Danza, G.; Adam, R. M.; Thompson, T. C.; Lissanti, M. P.; Freeman, M. R.; Di Vizio, D. Loss of caveolin-1 in prostate cancer stroma correlates with reduced relapse-free survival and is functionally relevant to tumour progression. *J. Pathol.* 2013, 231, 77−87.

(15) Haldrup, C.; Mundbjerg, K.; Vestergaard, E. M.; Lamy, P.; Wild, P.; Schulz, W. A.; Arsov, C.; Visakorpi, T.; Borre, M.; Heyer, S.; Ørntoft, T. F.; Sørensen, K. D. DNA methylation signatures for prediction of biochemical recurrence after radical prostatectomy of clinically localized prostate cancer. *J. Clin. Oncol.* 2013, 31, 3250−3258.

(16) Xing, P.; Li, J. G.; Jin, F.; Zhao, T. T.; Liu, Q.; Dong, H. T.; Wei, X. L. Clinical and biological significance of hepsin overexpression in breast cancer. *J. Investig.* 2011, 19, 803−810.

(17) Tervonen, T. A.; Beliškin, D.; Pant, S. M.; Englund, J. L.; Marques, E.; Ala-Hongisto, H.; Nevalaita, L.; Sihto, H.; Heikkilä, P.; Leidenius, M.; Hewitson, K.; Ramachandra, M.; Moilanen, A.; Joensuu, H.; Kovaren, P. E.; Poso, A.; Klefström, J. Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion. *Oncogene* 2016, 35, 1832−1846.

(18) Valkenborg, K. C.; Hostetter, G.; Williams, B. O. Concurrent Hepsin overexpression and adenomatous polyposis coli deletion causes invasive prostate carcinoma in mice. *Prostate* 2015, 75, 1579−1594.

(19) Nagano, K.; Yamashita, T.; Inoue, M.; Higashisaka, K.; Yoshioka, Y.; Abe, Y.; Mukai, Y.; Kamada, H.; Tsutsumi, Y.; Tsunoda, S. Eph receptor A10 has a potential as a target for a prostate cancer therapy. *Biomed. Biophys. Res. Commun.* 2014, 450, 545−549.

(20) Nagano, K.; Kanasaki, S.; Yamashita, T.; Maeda, Y.; Inoue, M.; Higashisaka, K.; Yoshioka, Y.; Abe, Y.; Mukai, Y.; Kamada, H.; Tsutsumi, Y.; Tsunoda, S. Expression of Eph receptor A10 is correlated with lymph node metastasis and stage progression in breast cancer patients. *Cancer Med.* 2013, 2, 972−977.

(21) Robles, E. F.; Mena-Varas, M.; Barrio, L.; Merino-Cortes, S. V.; Balogh, P.; Du, M.-Q.; Akasaka, T.; Parker, A.; Roa, S.; Panizo, C.; Martin-Guerrero, I.; Siebert, R.; Segura, V.; Agire, X.; Macri-Pellizier, L.; Aldaz, B.; Vilas-Zornoza, A.; Zhang, S.; Moody, S.; Calasan, M.; Jou, T.; Toussen, T.; Broccardo, C.; Brouset, P.; Campos-Sanchez, E.; Cobaleda, C.; Sanchez-Garcia, I.; Fernandez-Luna, J. L.; Garcia-Munoz, R.; Pena, E.; Bellosillo, B.; Salar, A.; Baptista, M. J.; Hernandez-Rivas, J. M.; Gonzalez, M.; Terol, M. J.; Climent, J.; Fernandez, A.; Sagar, E.; Melnick, A. M.; Prosper, F.; Ossier, D. G.; Carrasco, Y. R.; Dyer, M. J. S.; Martinez-Climent, J. A. Homeobox NKX2-3 promotes marginal-zone lymphomagenesis by activating B-cell receptor signalling and shaping lymphocyte dynamics. *Nat. Commun.* 2016, 7, 11889.

(22) He, J. H.; Han, Z. P.; Zou, M. X.; Wang, L.; Lv, Y. B.; Zhou, J. B.; Cao, M. R.; Li, Y. G. Analyzing the LncRNA, miRNA, and mRNA Regulatory Network in Prostate Cancer with Bioinformatics Software. *J. Comput. Biol.* 2018, 25, 146−157.

(23) Kuuselo, R.; Savinainen, K.; Azorsa, D. O.; Basu, G. D.; Karhu, R.; Tuzmen, S.; Mousses, S.; Kallioniemi, A. Intersex-like (IXL) is a cell survival regulator in pancreatic cancer with 19q13 amplification. *Cancer Res.* 2007, 67, 1943−1949.