Questing functions and structures of hypothetical proteins from *Campylobacter jejuni*: a computer aided approach

Md. Amran Gazi1*, Sultan Mahmud2, Shah Mohammad Fahim1, Md. Rezaul Islam3, Subhasish Das1, Mustafa Mahfuz1,4, Tahmeed Ahmed1

1Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
2Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh
3International Max Planck Research School, Grisebachstraße 5, 37077 Göttingen, Germany
4Faculty of Medicine and Life Sciences, University of Tampere, Finland

Sultan Mahmud: sultanmahmud294@yahoo.com
Shah Mohammad Fahim: mohammad.fahim@icddrb.org
Md Rezaul Islam: rezaul.nayeem@gmail.com
Subhasish Das: subhasish.das@icddrb.org
Mustafa Mahfuz: mustafa@icddrb.org
Tahmeed Ahmed: tahmeed@icddrb.org

*Address for correspondence:
Md Amran Gazi
Nutrition and Clinical Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Bangladesh, GPO Box 128, Dhaka-1000, Bangladesh.

Email: amran.gazi@icddrb.org
Abstract:

Campylobacter jejuni (*C. jejuni*) is considered to be one of the most frequent causes of bacterial gastroenteritis globally, especially in young children. The genome of *C. jejuni* contains many proteins with unknown functions termed as hypothetical proteins (HPs). These proteins might have essential biological role to show the full spectrum of this bacterium. Hence, our study aimed to determine the functions of HPs, pertaining to the genome of *C. jejuni*. An *in silico* work flow integrating various tools were performed for functional assignment, three-dimensional structure determination, domain architecture predictors, sub-cellular localization, physicochemical characterization and protein-protein interactions. Sequences of 267 HPs of *C. jejuni* were analyzed and successfully attributed the function of 49 HPs with higher confidence. Here, we found proteins with enzymatic activity, transporters, binding and regulatory proteins as well as proteins with biotechnological interest. Assessment of the performance of various tools used in this analysis revealed an accuracy of 95% using ROC curve analysis. Functional and structural prediction and the results from ROC analyses provided the validity of *in-silico* tools used in this study. The approach used for this analysis leads us to assign the function of unknown proteins and relate them with the functions that have already been described in previous literature.

Keywords: Campylobacter; gastroenteritis; hypothetical protein; *in silico*; NCBI
Introduction

Campylobacter is the genus that comprises a diverse group of non-spore forming rod like or spiral shaped Gram-negative bacteria (1). In developing countries, infections with *Campylobacter* are common in children under 2 years of age and found to be associated with increased incidence of diarrheal diseases as well as mortality (1, 2). In industrialized nations, *Campylobacter* is the cause of diarrhea during early years of adulthood (3). *Campylobacter* infections are mostly acquired through consumption of contaminated water and food in resource poor environment (4). Two of the species, *C. jejuni* and *C. coli*, are primarily known to be responsible for human campylobacteriosis (4). Acute gastroenteritis and food poisoning can be induced by *C. jejuni* in infected patients. Usually, *C. jejuni* infection causes gastroenteritis without any complication but acute infection may results in abdominal cramps, fever or other ailments like Guillain-Barré syndrome or Miller Fischer syndrome (5). Recent studies also showed an association of *Campylobacter* infections with malnutrition, a condition highly prevalent in developing countries (2).

Although whole genome sequence of *C. jejuni* NCTC has been published, a detailed catalogue of prospective virulence is yet to be documented. Its complete genome contains a circular chromosome of 1,641,481 base pairs with GC content 30.6%. Several studies since then suggest *C. jejuni* exhibit high genomic diversity across strains. A shotgun DNA microRNA approach revealed 63kb long unique genomic DNA sequences in another *Campylobacter* strain, *C. jejuni* 81-176 when compared to fully sequenced *C. jejuni* NCTC 11168, implying genetic diversity between strains (6, 7). Overall, genome of *C. jejuni* strain 81-176 (total length 1.6 Mb) is available in NCBI encodes 1658 proteins (GC%: 30.4) (7). Among them 267 are yet to be experimentally determined, and are designated as hypothetical proteins (HPs). Similar to functionally annotated proteins, HP originates from an open reading frame (ORF), but lack functional annotations (8). Therefore, annotation of HPs of specific organism leads to the introduction of unique functions, and helps in listing auxiliary protein pathways (8).
Several contemporary bioinformatics tools, for instance, CDART, SMART, Pfam, INTERPROSCAN, MOTIF, SUPERFAMILY and SVMProt has been well established to specify the functions of many bacterial HPs (9-11). Besides, the exploration of protein-protein interaction (PPI) for instance, using STRING database (12), is crucial for comprehending the aspect of biological network. During cellular processes protein interactions plays an essential role. Thus, an understanding of HP function can be reached by studying the PPIs (13). Consequently, interaction of one protein and their function is proven to be dependent on the regulatory connection with other protein [54]. Three-dimensional modeling is also a great way to relate structural knowledge with the function of undetermined proteins (14). Protein structure is generally greater conserved than protein sequence (15). Therefore, structural determination is considered to be a strong indicator of similar function in two or more proteins. Moreover, evolutionary distant proteins and its function can also be identified through structural information (15).

Functional prediction of HPs by using in silico approaches has been successfully applied for various bacteria and parasites (10, 16, 17). In this study, we have chosen C. jejuni as a template to explore the functions of HPs from its genome with a higher accuracy using well optimized bioinformatics tools.

Materials and methods

Retrieval of genome data

Full genome of C. jejuni strain 81-176 was retrieved from NCBI (GCA_000015525.1, NC_008787.1). According to the repository this genome encodes 1658 proteins (http://www.ncbi.nlm.nih.gov/genome/), of which 267 are assigned as HPs. FASTA sequences of HPs were then retrieved for further analysis in this study (accessed February 27, 2019).

Functional analysis of hypothetical proteins

In order to assign the function using the databases depicted in S1 Table, firstly we submitted proteins to five publicly available free tools (CDD-BLAST, HmmScan, SMART, Pfam, and SCANPROSITE) (18-22). These databases can search for the conserved domains and subsequently helps in the categorization
of proteins. Analyses of HPs by five web tools revealed the distinct results. To find a composite result, different confidence levels were assigned on the basis of pooled results obtained from five web-tools. For instance, if we observed same results from the five distinct tools, the composite score was hundred (percentage of confidence). For downstream analyses, we filtered 50 out of 267 HPs that displayed sixty percent or above confidence (Table S2).

Next, we performed functional assignment of these 50 selected HPs using different tools (Fig 1). SMART and CDART (23) facilitated to look for functions using the domain architecture and conserved domain database, respectively. To classify HPs into functional families based on similarity, we employed SUPERFAMILY(24), Pfam (21), and SVMProt (25). Software such as InterPro and MOTIF search tool were also used to detect the motif in the proteins (26, 27). Default parameters were used for all these databases.

We further annotated HPs manually through searching for homologous proteins from related organisms. To do this, we used BLAST against the NCBI nonredundant (nr) database. If the two sequences were ≥ 90% identical, we considered it as homologues to each other. Query cover, score parameters and e-value of every hit are summarized in supplemental material S5.

Geptop 2.0 database was used to identify the essential genes among the HPs (28). Default essentiality score cutoff of 0.24 was adopted. Geptop is the essential gene identification tool based on phylogeny and orthology. In the present study, a similarity search was also done against DrugBank 3.0 for all the targets (29).

Prediction of physicochemical characteristics

Expasy's ProtParam server was used for extinction coefficient, isoelectric point (pI), molecular mass, instability index, aliphatic index, and grand average of hydropathicity (GRAVY) prediction (30).
Identification of sub-cellular localization

PSORTb (31) and CELLO (32) were applied to find the localization of HPs in the cell. PSORTb contains the information both from laboratory experimentations and *in silico* prediction. On the other hand, a support vector machine was used by CELLO database to generate the probable localization of protein in the cell. TMHMM (33), SOSUI (34), HMMTOP (35) and SignalP (36) were also applied to detect membrane protein and to verify the presence of cleavage sites for peptide.

Functional protein association networks

We had employed STRING software (37) to predict interactive partners of HPs in this investigation. This database computes the network based on physical and functional associations. Highest score network proteins were selected for this analysis in order to accord the reliability of the PPIs.

Determination of three-dimensional structures

Structure prediction of a protein from its sequences is a way that enables the identification of function. A template based online server PS2-v2 was used to predict the tertiary structure of the HPs in this study (38). This server uses a template of known protein structures and then applied the approaches of multiple and pair-wise alignments combining IMPALA, T-COFFEE and PSI-BLAST.

Performance assessment

A receiver operating characteristic (ROC) was implemented to confirm the accuracy of the predicted functions of HPs from *C. jejuni* genome. Firstly, we selected 40 proteins randomly with known functions of *C. jejuni* (S3 Table). These proteins were predicted for the functions using the same databases that used for the prediction of HPs. To classify the prediction, true positive (1) and true negative (0) were denoted as binary numerals. Six levels diagnostic efficacy was also evaluated where the integers "2", "3", "4" and "5" were used. A web-based calculator was applied to submit the classification data for ROC curve and is
utilized to calculate the sensitivity, specificity, ROC area, and accuracy of the tools used to speculate the function of HPs (39).

Results and discussion

Analysis of HPs from C. jejuni genome

With the ongoing developments of DNA sequencing technologies called high throughput sequencing techniques has enabled a substantial number of bacterial genome sequencing. Annotation of the genes generally depends on sequence homology techniques (40). However, a large number of genes have no assigned function. Therefore, only homology techniques cannot assign functions precisely and may lead to incorrect annotations (41). Multiple tools should be used to avoid this problem to assign functions of HPs. Hence, this study focused on the annotation of HPs from C. jejuni using assorted but effective bioinformatics tools.

Firstly, functional domains were identified from the sequences of all the 267 HPs using SCANPROSITE, SMART, Pfam, CDD-BLAST, and HmmScan. Specific domains could be identified using one, two, three, four or five of the above-stated tools and therefore, different confidence levels were assigned (e.g. 20%, 40%, 60%, 80% and 100%). In our previous studies, published elsewhere, we only considered the proteins with 100% confidence (10, 42). However, in the current study, HPs having 60% or above confidence level has been considered to gain the greater coverage. The analyses revealed 50 such proteins which were used for downstream analyses. For rest of the HPs (n = 217), domains were recognized from one or two of the mentioned tools. Further studies are needed to find the exact function for these proteins. Table S2 summarized protein lists with domain. The final pool of 50 proteins was examined employing CDD-BLAST, Pfam, SMART, MOTIF, InterPro, CDART, SUPERFAMILY, and SVMProt. Functional annotation was considered to be high for proteins that manifested same function from equal or more than three tools (Table S4). Thus, we inferred 49 such proteins with high confidence (Table 1) and classified them as highly confident proteins (Hconf), where 11 contain homologous sequences without product
function reported (S5 Table). Analyses of sequence were then accumulated and Hconf proteins were grouped into different functional categories. Functional classes of proteins consists of regulatory proteins, transporters, binding proteins, enzymes, proteins with biotechnological interest and proteins with other functions (Fig. 2). The categorization was selected based on the literature search and gene ontology. Enzyme classes were determined from enzyme data bank of Expasy (https://enzyme.expasy.org/cgi-bin/enzyme/enzyme-search-cl?).

Moreover, essential genes were predicted using Geptop, a database that accommodates already sequenced bacterial genomes. These genes are fundamental for survival of an organism and perform essential activities of the cell (43). Identification of essential genes is an important stride towards gaining better insight about the evolution (44). Time-absorbing and challenging experiential procedures like transposon mutagenesis, RNA interference, and single-gene knockouts were used to identify essential genes (28). However, in-silico approaches offer an alternative for predicting essential genes. In the current study, it was possible to identify 32 essential proteins by using Geptop database (Table S6). Besides, from the selected Hconf proteins, only one protein was found to be exhibited similarity with approved drugs. The test was done through protein BLAST against DrugBank. Protein WP_002868809.1 showed the similarity with fostamatinib that could act as inhibitors. Drug Bank contains 6816 FDA-approved and experimental drugs, 169 drug enzymes/carriers and 4326 drug targets.

Finally, ROC curve was calculated to identify the reliability of the tools used to predict the function. Average accuracy was found to be 95% for the used pipeline and area under the curve (AUC) was 0.97 (Table 2). It is recommended to use the AUC to summarize the overall accuracy of the tools in the diagnosis (45). The AUC value ranges from 0 to 1, and, the value greater than 0.7 is considered acceptable (45). The ROC analyses results provided the high reliability of in-silico tools used in our study (Table 2). However, predicting the functions of the “function-known” proteins and obtaining very high accuracy does not mean the prediction on “function-unknown” proteins would reproduce the same level of accuracy.
Enzymes

We found five oxidoreductases among these HPs of C. jejuni. These enzymes play key role in the pathogenesis. WP_002824979.1 is NADH-quinone oxidoreductase, an enzyme that involves in regulating the expression of virulence factors, electron transport and sodium translocation (46). This putative domain commonly found in Epsilonproteobacteria, chiefly in Helicobacter pylori (H. pylori) (47). Protein WP_002869225.1 is dimethyl sulphoxide reductase that acts as the terminal electron transfer enzyme in Escherichia coli (E. coli). This enzyme and the reaction it catalyzes could prove helpful on the climate control frontier (48). We also found four proteins as transferase those might involved in bacterial pathogenesis and virulence. Among them protein WP_002854524.1 is responsible for modifying the bacterial character in the presence of repellents and nutrients, found in chemotaxis phosphatase CheX (49). Hydrolases is the third class of enzymes where almost 50% proteins among all characterized enzymes representing this class. This class of proteins is generally membrane bound involved in various virulence factors associated with metal ion binding, transmembrane transport, cell wall degradation. We have found WP_002856630.1 that represents endonuclease-like domain involved in DNA repair and replication (50). WP_009883030.1 and WP_011187235.1 exhibit AAA ATPases (ATPases associated with diverse cellular activities) which plays a number of role in the cell including protein proteolysis and disaggregation, cell-cycle regulation, organelle biogenesis and intracellular transport (51). In addition WP_011187233.1 protein is a toprim (topoisomerase-primase) domain that is found in bacterial DnaG-type primases, involved in DNA strand breakage and rejoining (52).

Binding

We have identified nine proteins as binding among the functionally annotated HPs. These can further classified into RNA binding, DNA binding, protein binding, ion binding and adhesion proteins. Binding of proteins is important in the propagation and survival of pathogens in the host (53). For example, protein binding WP_002868888.1 is tetratricopeptide repeat (TPR) motifs, reported to be directly related to virulence-associated functions (54). WP_002853792.1 is the N-terminal domain of the bacterial
proteins (PgbA) that bind to host cell protein, plasminogen (55). This activity was identified in *H. pylori* where it is thought to contribute to the virulence of this bacterium (55). WP_011117588.1 is mRNA interferase PemK-like domain, a growth inhibitor in *E. coli*. It is responsible for mediating cell death through inhibiting protein synthesis (56). Besides, WP_009882239.1 is haemagglutination activity domain found in a number of large, repetitive proteins of bacteria. Filamentous haemagglutinin (FHA) is a secreted and surface-exposed protein that acts as main virulence attachment factor in childhood whooping cough caused by *Bordetella pertussis* (57). WP_002868809.1 is found to be ankyrin repeat (ANK), a typical protein-protein interaction motif in nature. A large number of bacterial pathogens mimic or manipulate various host functions through delivering ANK-containing proteins into eukaryotic cells (58). Finally, WP_009882608.1 is adhesion protein called surface-exposed lipoprotein JlpA, an early critical step in the pathogenesis of *C. jejuni* disease (59). This HP might provide new approach for the rational design of small molecule inhibitors against *C. jejuni* targeting JlpA efficiently (59).

Regulatory

There are six HPs found to be involved in regulatory and cellular mechanisms, and are essential for the pathogenesis of *C. jejuni*, hence can be treated as probable drug targets. WP_002869195.1 is found to be anti-sigma-28 factor that inhibits the activity of the sigma 28 transcription factor. This inhibition prevents the expression of genes from flagellar transcriptional class 3, which include genes for chemotaxis. Mechanism of action of anti-sigma factors has opened new door on the regulation of bacterial gene expression, as anti-sigma factors join another layer to transcriptional control via negative regulation. The bacteriophage T4 uses an anti-sigma factor in order to transcribe its own genes by sabotaging the *E. coli* RNA polymerase (60). WP_002797496.1 is a membrane-associated protein that affects chemotactic events. FliJ is a component of the flagellar export and has a chaperone-like activity. Mutations in FliJ result in failure to respond to chemotactic stimuli (61). Moreover, WP_011117549.1 is identified as conjugal transfer protein that bacteria utilise to export effector molecules during infection. For example, *H. pylori* use type IV machines to transport effectors to the extracellular environment or cell cytosol of
mammalian (62). A DnaA binding protein (WP_002855029.1) HobA, identified that is an essential regulator of DNA replication in *H. pylori* (63). WP_002790076.1 is Methyl-accepting chemotaxis protein (MCP) that allows bacteria to sense the concentrations of molecules (nutrients/toxins) in the extracellular milieu so that they can smooth swim or fall accordingly (64).

Transporters

Transporter proteins are involved various metabolic processes, are responsible for transportation of nutrients and hence, essential for survival of the organism. Besides, they accelerate the movement of virulence factors and are directly involved in pathogenesis (65). WP_002855458.1 is the magnesium transporters E (MgtE), found in eukaryotic proteins. Magnesium (Mg2+) is an essential element for growth and maintenance of living cells where MgtE transport magnesium across the cell membrane (66).

WP_002868880.1 is ABC-type transport, responsible for outer membrane biosynthesis in bacteria that can be an excellent drug targets (67). WP_002856180.1 is HMA domain (heavy-metal-associated domain) found in a number of detoxification proteins or in heavy metals transport. Proteins that involved in transporting heavy metals in bacteria, plant and mammals share similarities across the kingdoms in their structures and sequences. These proteins provide an important arena for research, some being involved in bacterial resistance to toxic metals, while others are responsible for acquired human diseases, such as Wilson's and Menke's diseases (68). WP_011117548.1 is the bacterial virulence protein VirB8 that is thought to be a constituent of DNA transporter. In addition, VirB8 is a potential drug target that targets its protein-protein interactions. X-ray structure has enabled a detailed structure-function analysis of VirB8, which identified VirB8 interaction with VirB4 and VirB10 (69). Our results also go in line with this as we observed VirB8 has strong interaction with VirB10.

Potential proteins with biotechnological application

We identified few proteins that can have biotechnological applications based on their functional process. For instance, WP_010790856.1 is pyridoxamine 5'-phosphate oxidase (pdxH), an enzyme involved in the
de novo synthesis of pyridoxal phosphate and pyridoxine (vitamin B6). Moreover, PdxH is evolutionary related to phzD (also known as phzG), one of the enzymes in the phenazine biosynthesis protein pathway (70). Only known source of phenazines are bacteria in nature. This is used as drug and also acts as biocounter agents to inhibit plant pests. For example, the phenazine pyocyanin contributes to its potential to colonise the lungs of cystic fibrosis patients (71). Similarly, phenazine-1-carboxylic acid, produced by a number of Pseudomonas, increases survival in soil and has been shown to be important for the biological control of certain strains (72). The protein WP_002869072.1 was predicted to be S-adenosyl-L-methionine-dependent methyltransferase (SAM-MTase). Methyltransferases transfer a methyl group from a donor to an acceptor during methylation of biopolymers (73). SAM-MT was used in the pharmaceutical industry as catechol, first as an anti-microbial and anti-cancer agent (73, 74).

Protein WP_024088174.1 is the nitrate reductases that produce nitrite from nitrate. Nitrate is the primary source of nitrogen in fertilized soils and the reaction is critical for the production of protein in crop plants. Nitrate reductase enzyme activity can also be used as a biochemical tool for predicting grain protein production and subsequent grain yield. For example, it promotes amino acid content in tea leaves (75). It is also reported that tea plants sprayed with various micronutrients (like Zn, Mn and B) along with Mo enhanced the amino acid production of tea and the crop yield (75). WP_002869028.1 is a phytase like domain that catalyzes the hydrolysis of phytic acid. Phytic acid is organic form of phosphorus and indigestible found in grains and oil seeds. Phytase is produced by bacteria found in the gut of ruminant animals is able to make phosphorus from phytic acid (76). But, non-ruminants like human cannot make phytase. Research in the field of animal nutrition has put the idea of supplementing feed with phytase to make sure the availability of phytate-bound nutrients like phosphorus, calcium, carbohydrates, proteins and other minerals (77).

Peptidases, an enzyme that is used as the ingredients of detergents, foods and pharmaceuticals (78). In this study, WP_009882583.1 was found to be cysteine peptidase that hydrolyses a peptide bond utilizing the thiol group of cysteine as nucleophile. These peptidases are often confined to acidic environments and
active at acidic pH such as the plant vacuole or animal lysosome. WP_002868905.1 is GDSL esterases and lipases are hydrolytic enzymes with broad substrate specificity. They have potential for use in the synthesis and hydrolysis of ester compounds of biochemical, food, pharmaceutical, and other biological interests (79).

Other proteins

WP_002856369.1 and WP_002856602.1 was found to be beta-lactamase-inhibitor, a group of enzymes responsible for bacterial resistance to beta-lactam antibiotics (80). WP_009883121.1 act as Flagellar FliS export co-chaperone. Previously, various FliS-associated proteins in *H. pylori* were identified by a yeast 2-hybrid study, but the implications are unknown (81). Chaperons are usually involved in various important processes such as protein degradation, folding, and polypeptide translocation (81).

Lastly, WP_002860117.1 protein family includes two enzymes involved in menaquinone (vitamin K2) biosynthesis. In prokaryotes, vitamin K2 serves as the sole quinone molecule in electron shuffling systems while menaquinone pathway is absent in humans (82). Therefore, novel antibacterial agents are possible to develop by targeting the bacterial enzymes responsible for menaquinone biosynthesis. It has been reported that inhibition of menaquinone showed significant growth inhibition against multidrug-resistant *Mycobacterium* and other gram-positive bacteria as well as effective in killing gram-negative bacteria (83).

Prediction of primary properties and protein localization

Sequences of amino acids of 49 HPs were analyzed to evaluate their primary properties, and their localization (Table S7). But, we paid attention to some proteins that showed functions important for the survival of Campylobacter and might have biotechnological interest. The proteins WP_024088174.1, WP_002869072.1, WP_010790856.1, WP_002868905.1, WP_002869028.1, WP_009882583.1 all had molecular weight (MW) values between 15792.47 and 52423.83. These proteins are referred as biotechnologically important in this study. Some proteins, essential for pathogenesis of Campylobacter
have MW ranged from 8773.25 to 39113.6. The isoelectric point is the pH where protein carries no net electrical charge. For the list of mentioned proteins, it ranged from 5.03 to 9.63.

The aliphatic index indicates the protein thermo stability (84). Protein WP_002856369.1, associated with beta-lactamase inhibition showed the highest values of 133.14. The grand average of hydropathy (GRAVY) of protein indicates its hydrophobicity or the interaction with water (85). In WP_002869028.1, WP_009882583.1 and WP_02408174.1, the scores are between -0.744, -0.439 and -0.393. Moreover, the instability index offers an assumption of the stability of protein in vitro. We used cutoff values >40 and <40 to discriminate between stable and unstable proteins respectively. From our listed proteins, WP_02408174.1 and WP_002868880.1 were considered to be stable.

Localization plays an essential role in determining function of unknown proteins (11). Protein WP_002868905.1 and WP_009882583.1 is located in outer membrane whereas other proteins of interest were predicted to be in the cytoplasm.

Protein-protein interaction network

Function of a completely unknown protein can be identified based on the evidence of their interactions with the known proteins of a particular organism (11). For example, PPI map and *in-vitro* proteome-wide interaction screens were applied to successfully assign the function of fifty unknown proteins for *Streptococcus pneumonia* (86). In our study protein WP_010790856.1, an oxidase (pdxH) showed a strong interaction with the Pyridoxine 5’-phosphate synthase that involved in vitamin B6 synthesis. WP_02408174.1 is interacted with formate dehydrogenase, an oxidoreductase that oxidizes formate to form carbon dioxide. WP_002868880.1 was found to be interacted with ABC transporter that functions to maintain the asymmetry of the outer membrane. All these predictions of functional partners have strengthened our findings of function predicted by using functional prediction tools (S8 Table).
Three-dimensional structures

Structural genomics has become a robust way to determine the novel structures of proteins, especially via X-ray crystallography (87). Determination of unannotated protein structures can often help us to discover unexpected family relationships, hence giving the idea of their probable functions. Proteins unrelated to existing PDB entries may represent new functions. In this case structures homologous to other organism have manifested as surrogates in drug discovery. For example, Nolatrexed an anti-cancer drug was discovered using the structure of E. coli thymidylate synthase (46% sequence identity with human homolog) (87). Kinase inhibitors to kill the Plasmodium falciparum were identified using structures of protein kinases from Cryptosporidium and Toxoplasma (61% and 74% sequence identity respectively) (88).

In our study, PS2-v2 online server was used to model the three dimensional structures of the Hconf proteins for Campylobacter. Among the 49 Hconf proteins, 24 proteins revealed same domain as function prediction tools used in this study. In contrast, 9 proteins showed discrepant results and no suitable templates were found for 16 proteins (Table S9). Identity of model was ranging from 54.5% to 91.6% and was constructed from closely related Campylobacter genus bacteria belonging to the H. pylori, E. coli, Bacillus and Clostridium.

Based on the resolution and identity, two best models were WP_002797496.1 and WP_002854991.1, which were annotated as Flagellar FliJ protein and FxsA cytoplasmic membrane protein respectively. The structure obtained for FliJ protein was determined by X-ray crystallography earlier and refined with diffraction data to 1.8 Å resolutions, which was solved by an ortholog isolated from Saccharomyces cerevisiae (PDB 2efrA). FxsA was determined by electron microscopy and refined with diffraction data to 4 Å resolutions and solved by an ortholog isolated from Torpedo marmorata (PDB 1oedB). Both of these proteins showed the same function as predicted by other function prediction tools. Proteins with shared sequence typically display similar functions in this way.
Conclusions

Protein function identification of a pathogen is an essential step to understand its cellular and molecular processes. In this study, we used a computer aided approach to assign the function of HPs from *C. jejuni*. We predicted the function to 49 HPs with a higher confidence. In addition, localization of protein and primary structure prediction were useful in supporting the specific characteristics of annotated proteins. Proteins were further explored for PPI and their tertiary structures. We have identified proteins with important functions including enzymes, transporters, binding and regulatory proteins as well as proteins with biotechnological interest. To summarize, our comprehensive analysis produces a better understanding of *C. jejuni* genome related HPs that would help to find novel therapeutic interventions and targets. Moreover, we have obtained an excellent result using the pipeline used in this study and the method can be used to annotate the function of unknown proteins.

However, biochemical and clinical investigations are required to confirm the function of predicted proteins. Several studies have been conducted previously using the cumulative *in-silico* and *in-vitro/in-vivo* approach to investigate the function of unknown proteins. For instance, *in silico* approaches were used to predict the biological function of some of the unknown *Mycobacterium* proteins. The chosen proteins posses the α/β-hydrolase topological fold, characteristic of lipases/esterases which were further validated by wet lab experiments (89). Combination of *in-silico* and *in-vitro/in-vivo* assays were also used to characterize the function of HPs from several other organisms (90-93). Moreover, *in-silico* structure prediction methods were applied for drug discovery in the absence of x-ray structure of the target protein and again confirmed by *in-vitro* assays. Nonetheless, functional prediction merely on *in silico* methods requires careful integration of several computational tools into a single streamlined process. We hope that the information of HPs in this study will be innovative for further *in-vitro/in-vivo* analysis on *C. jejuni*.
Author's contributions

MAG has made substantial contributions to conception, design and drafting the manuscript. SM, SMF, MRI, SD participated in the acquisition, analysis and interpretation of data. MM and TA conceived of the study, and participated in its design and coordination and helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgements

The authors are grateful to core donors which provide unrestricted support to icddr,b for its operations and research. Current donors providing unrestricted support include: Government of the People’s Republic of Bangladesh; Canadian International Development Agency (CIDA), Swedish International Development Cooperation Agency (Sida), and the Department for International Development, UK (DFID). We gratefully acknowledge these donors for their support and commitment to icddr,b’s research efforts.

Competing interests

The authors declare that they have no competing interests

Funding

No funding declared

References

1. Kaakoush NO, Castaño-Rodríguez N, Mitchell HM, Man SM. Global epidemiology of Campylobacter infection. Clinical microbiology reviews. 2015;28(3):687-720.

2. Platts-Mills JA, Kosek M. Update on the burden of Campylobacter in developing countries. Current opinion in infectious diseases. 2014;27(5):444.
3. Mehla K, Ramana J. Novel drug targets for food-borne pathogen Campylobacter jejuni: an integrated subtractive genomics and comparative metabolic pathway study. Omics: a journal of integrative biology. 2015;19(7):393-406.

4. Coker AO, Isokpehi RD, Thomas BN, Amisu KO, Obi CL. Human campylobacteriosis in developing countries. Emerging infectious diseases. 2002;8(3):237.

5. Takahashi M, Koga M, Yokoyama K, Yuki N. Epidemiology of Campylobacter jejuni isolated from patients with Guillain-Barré and Fisher syndromes in Japan. Journal of clinical microbiology. 2005;43(1):335-9.

6. Poly F, Threadgill D, Stintzi A. Genomic diversity in Campylobacter jejuni: identification of C. jejuni 81-176-specific genes. Journal of clinical microbiology. 2005;43(5):2330-8.

7. Parkhill J, Wren B, Mungall K, Ketley J, Churcher C, Basham D, et al. The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature. 2000;403(6770):665.

8. Nimrod G, Schushan M, Steinberg DM, Ben-Tal N. Detection of functionally important regions in “hypothetical proteins” of known structure. Structure. 2008;16(12):1755-63.

9. Shahbaaz M, ImtaiyazHassan M, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PloS one. 2013;8(12):e84263.

10. Gazi MA, Kibria MG, Mahfuz M, Islam MR, Ghosh P, Afsar MNA, et al. Functional, structural and epitopic prediction of hypothetical proteins of Mycobacterium tuberculosis H37Rv: an in silico approach for prioritizing the targets. Gene. 2016;591(2):442-55.

11. da Costa WLO, de Aragão Araújo CL, Dias LM, de Sousa Pereira LC, Alves JTC, Araújo FA, et al. Functional annotation of hypothetical proteins from the Exiguobacterium antarcticum strain B7 reveals proteins involved in adaptation to extreme environments, including high arsenic resistance. PloS one. 2018;13(6):e0198965.
12. Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic acids research. 2016:gkw937.

13. Snider J, Kotlyar M, Saraon P, Yao Z, Jurisica I, Stagljar I. Fundamentals of protein interaction network mapping. Molecular systems biology. 2015;11(12):848.

14. Jez JM. Revisiting protein structure, function, and evolution in the genomic era. Journal of invertebrate pathology. 2017;142:11-5.

15. Gherardini PF, Helmer-Citterich M. Structure-based function prediction: approaches and applications. Briefings in Functional Genomics and Proteomics. 2008;7(4):291-302.

16. Varma PBS, Adimulam YB, Kodukula S. In silico functional annotation of a hypothetical protein from Staphylococcus aureus. Journal of infection and public health. 2015;8(6):526-32.

17. Ravooru N, Ganji S, Sathyarayanan N, Nagendra HG. Insilico analysis of hypothetical proteins unveils putative metabolic pathways and essential genes in Leishmania donovani. Frontiers in genetics. 2014;5:291.

18. Marchler-Bauer A, Derbyshire MK, Gonzales NR, Lu S, Chitsaz F, Geer LY, et al. CDD: NCBI's conserved domain database. Nucleic acids research. 2014;43(D1):D222-D6.

19. Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic acids research. 2011;39(suppl_2):W29-W37.

20. Schultz J, Copley RR, Doerks T, Ponting CP, Bork P. SMART: a web-based tool for the study of genetically mobile domains. Nucleic acids research. 2000;28(1):231-4.

21. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, et al. Pfam: the protein families database. Nucleic acids research. 2013;42(D1):D222-D30.

22. De Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic acids research. 2006;34(suppl_2):W362-W5.
23. Geer LY, Domrachev M, Lipman DJ, Bryant SH. CDART: protein homology by domain architecture. Genome research. 2002;12(10):1619-23.

24. Wilson D, Madera M, Vogel C, Chothia C, Gough J. The SUPERFAMILY database in 2007: families and functions. Nucleic acids research. 2006;35(suppl_1):D308-D13.

25. Cai C, Han L, Ji ZL, Chen X, Chen YZ. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic acids research. 2003;31(13):3692-7.

26. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, et al. MEME SUITE: tools for motif discovery and searching. Nucleic acids research. 2009;37(suppl_2):W202-W8.

27. Finn RD, Attwood TK, Babbitt PC, Bateman A, Bork P, Bridge AJ, et al. InterPro in 2017—beyond protein family and domain annotations. Nucleic acids research. 2016;45(D1):D190-D9.

28. Wei W, Ning L-W, Ye Y-N, Guo F-B. Geptop: a gene essentiality prediction tool for sequenced bacterial genomes based on orthology and phylogeny. PloS one. 2013;8(8):e72343.

29. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, et al. DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic acids research. 2010;39(suppl_1):D1035-D41.

30. Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A. Protein identification and analysis tools on the ExPASy server. The proteomics protocols handbook: Springer; 2005. p. 571-607.

31. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26(13):1608-15.

32. Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein science. 2004;13(5):1402-6.
33. Krogh A, Larsson B, Von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of molecular biology. 2001;305(3):567-80.

34. Hirokawa T, Boon-Chieng S, Mitaku S. SOSUI: classification and secondary structure prediction system for membrane proteins. Bioinformatics (Oxford, England). 1998;14(4):378-9.

35. Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001;17(9):849-50.

36. Armenteros JJA, Tsirigos KD, Sønderby CK, Petersen TN, Winther O, Brunak S, et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nature biotechnology. 2019;1.

37. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids research. 2014;43(D1):D447-D52.

38. Chen C-C, Hwang J-K, Yang J-M. 2-v2: template-based protein structure prediction server. Bmc Bioinformatics. 2009;10(1):366.

39. Eng J. ROC analysis: web-based calculator for ROC curves. Baltimore: Johns Hopkins University [updated 2014 March 19]. Accessed 25/05/17. Available from: http://www.jrocfit.org; 2017.

40. Pearson WR. An introduction to sequence similarity (“homology”) searching. Current protocols in bioinformatics. 2013;42(1):3.1. -3.1. 8.

41. Schnoes AM, Brown SD, Dodevski I, Babbitt PC. Annotation error in public databases: misannotation of molecular function in enzyme superfamilies. PLoS computational biology. 2009;5(12):e1000605.

42. Gazi MA, Mahmud S, Fahim SM, Kibria MG, Palit P, Islam MR, et al. Functional Prediction of Hypothetical Proteins from Shigella flexneri and Validation of the Predicted Models by Using ROC Curve Analysis. Genomics & informatics. 2018;16(4).

43. Zhang Z, Ren Q. Why are essential genes essential?-The essentiality of Saccharomyces genes. Microbial Cell. 2015;2(8):280.
44. Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics. 2012;13(7):505.

45. Hajian-Tilaki K. Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian journal of internal medicine. 2013;4(2):627.

46. Verkhovsky MI, Bogachev AV. Sodium-translocating NADH: quinone oxidoreductase as a redox-driven ion pump. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2010;1797(6-7):738-46.

47. Wang G, Maier RJ. An NADPH quinone reductase of Helicobacter pylori plays an important role in oxidative stress resistance and host colonization. Infection and immunity. 2004;72(3):1391-6.

48. Kroneck PM, Torres MES. The metal-driven biogeochemistry of gaseous compounds in the environment: Springer; 2014.

49. Simon MI, Borkovich KA, Bourret RB, Hess JF. Protein phosphorylation in the bacterial chemotaxis system. Biochimie. 1989;71(9-10):1013-9.

50. Hosfield DJ, Mol CD, Shen B, Tainer JA. Structure of the DNA repair and replication endonuclease and exonuclease FEN-1: coupling DNA and PCNA binding to FEN-1 activity. Cell. 1998;95(1):135-46.

51. Kedzierska S. Structure, function and mechanisms of action of ATPases from the AAA superfamily of proteins. Postepy biochemii. 2006;52(3):330-8.

52. Aravind L, Leipe DD, Koonin EV. Toprim—a conserved catalytic domain in type IA and II topoisomerases, DnaG-type primases, OLD family nucleases and RecR proteins. Nucleic acids research. 1998;26(18):4205-13.

53. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Introduction to pathogens. Molecular Biology of the Cell 4th edition: Garland Science; 2002.

54. Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, et al. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infection and immunity. 2013;81(3):629-35.
55. Jönsson K, Guo BP, Monstein H-J, Mekalanos JJ, Kronvall G. Molecular cloning and characterization of two Helicobacter pylori genes coding for plasminogen-binding proteins. Proceedings of the National Academy of Sciences. 2004;101(7):1852-7.

56. Zhang J, Zhang Y, Zhu L, Suzuki M, Inouye M. Interference of mRNA function by sequence-specific endoribonuclease PemK. Journal of Biological Chemistry. 2004;279(20):20678-84.

57. Makhov A, Hannah J, Brennan M, Trus B, Kocsis E, Conway J, et al. Filamentous hemagglutinin of Bordetella pertussis: a bacterial adhesin formed as a 50-nm monomeric rigid rod based on a 19-residue repeat motif rich in beta strands and turns. Journal of molecular biology. 1994;241(1):110-24.

58. Al-Khodor S, Price CT, Kalia A, Kwaik YA. Functional diversity of ankyrin repeats in microbial proteins. Trends in microbiology. 2010;18(3):132-9.

59. Kawai F, Paek S, Choi K-J, Prouty M, Kanipes MI, Guerry P, et al. Crystal structure of JlpA, a surface-exposed lipoprotein adhesin of Campylobacter jejuni. Journal of structural biology. 2012;177(2):583-8.

60. Tlapák H, Rydzewski K, Schulz T, Weschka D, Schunder E, Heuner K. Functional analysis of the alternative sigma-28 factor FliA and its anti-sigma factor FlgM of the nonflagellated Legionella species L. oakridgensis. Journal of bacteriology. 2017;199(11):e00018-17.

61. Minamino T, Chu R, Yamaguchi S, Macnab RM. Role of FliJ in Flagellar Protein Export in Salmonella. Journal of Bacteriology. 2000;182(15):4207-15.

62. Christie PJ, Vogel JP. Bacterial type IV secretion: conjugation systems adapted to deliver effector molecules to host cells. Trends in microbiology. 2000;8(8):354-60.

63. Natraj G, Noirot-Gros MF, Zawilak-Pawlik A, Kapp U, Terradot L. The structure of a DnaA/HobA complex from Helicobacter pylori provides insight into regulation of DNA replication in bacteria. Proceedings of the National Academy of Sciences. 2009;106(50):21115-20.

64. Ud-Din AIMS, Roujeinikova A. Methyl-accepting chemotaxis proteins: a core sensing element in prokaryotes and archaea. Cellular and molecular life sciences. 2017;74(18):3293-303.
65. Yuan J, Zweers JC, Van Dijl JM, Dabey RE. Protein transport across and into cell membranes in bacteria and archaea. Cellular and Molecular Life Sciences. 2010;67(2):179-99.

66. Yan Y-W, Mao D-D, Yang L, Qi J-L, Zhang X-X, Tang Q-L, et al. Magnesium transporter MGT6 plays an essential role in maintaining magnesium homeostasis and regulating high magnesium tolerance in Arabidopsis. Frontiers in plant science. 2018;9:274.

67. Bugde P, Biswas R, Merien F, Lu J, Liu D-X, Chen M, et al. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert opinion on therapeutic targets. 2017;21(5):511-30.

68. Bull PC, Cox DW. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends in Genetics. 1994;10(7):246-52.

69. Bailey S, Ward D, Middleton R, Grossmann JG, Zambryski PC. Agrobacterium tumefaciens VirB8 structure reveals potential protein–protein interaction sites. Proceedings of the National Academy of Sciences. 2006;103(8):2582-7.

70. Pierson III LS, Gaffney T, Lam S, Gong F. Molecular analysis of genes encoding phenazine biosynthesis in the biological control bacterium Pseudomonas aureofaciens 30-84. FEMS microbiology letters. 1995;134(2-3):299-307.

71. Hunter RC, Klepac-Ceraj V, Lorenzi MM, Grotzinger H, Martin TR, Newman DK. Phenazine content in the cystic fibrosis respiratory tract negatively correlates with lung function and microbial complexity. American journal of respiratory cell and molecular biology. 2012;47(6):738-45.

72. Upadhyay A, Srivastava S. Phenazine-1-carboxylic acid is a more important contributor to biocontrol Fusarium oxysporum than pyrrolnitrin in Pseudomonas fluorescens strain Psd. Microbiological research. 2011;166(4):323-35.

73. Banco MT, Mishra V, Greeley SC, Ronning DR. Direct Detection of Products from S-Adenosylmethionine-Dependent Enzymes Using a Competitive Fluorescence Polarization Assay. Analytical chemistry. 2018;90(3):1740-7.
74. Martin JL, McMillan FM. SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Current opinion in structural biology. 2002;12(6):783-93.

75. Ruan J, Wu X, Ye Y, Härdter R. Effect of potassium, magnesium and sulphur applied in different forms of fertilisers on free amino acid content in leaves of tea (Camellia sinensisL). Journal of the Science of Food and Agriculture. 1998;76(3):389-96.

76. Frias J, Doblado R, Antezana JR, Vidal-Valverde C. Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chemistry. 2003;81(2):233-9.

77. Dersjant-Li Y, Awati A, Schulze H, Partridge G. Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. Journal of the Science of Food and Agriculture. 2015;95(5):878-96.

78. Harada J, Takaku S, Watanabe K. An on-demand metalloprotease from psychro-tolerant Exiguobacterium undae Su-1, the activity and stability of which are controlled by the Ca2+ concentration. Bioscience, biotechnology, and biochemistry. 2012;110997.

79. Akoh CC, Lee G-C, Liaw Y-C, Huang T-H, Shaw J-F. GDSL family of serine esterases/lipases. Progress in lipid research. 2004;43(6):534-52.

80. KONG KF, Schneper L, Mathee K. Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis. 2010;118(1):1-36.

81. Lam WWL, Woo EJ, Kotaka M, Tam WK, Leung YC, Ling TKW, et al. Molecular interaction of flagellar export chaperone FliS and cochaperone HP1076 in Helicobacter pylori. The FASEB Journal. 2010;24(10):4020-32.

82. Meganathan R. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitamins & Hormones. 2001;61:173-218.

83. Debnath J, Siricilla S, Wan B, Crick DC, Lenaerts AJ, Franzblau SG, et al. Discovery of selective menaquinone biosynthesis inhibitors against Mycobacterium tuberculosis. Journal of medicinal chemistry. 2012;55(8):3739-55.
84. Idicula-Thomas S, Balaji PV. Understanding the relationship between the primary structure of proteins and its propensity to be soluble on overexpression in Escherichia coli. Protein Science. 2005;14(3):582-92.

85. Jaspard E, Macherel D, Hunault G. Computational and statistical analyses of amino acid usage and physico-chemical properties of the twelve late embryogenesis abundant protein classes. PLoS One. 2012;7(5):e36968.

86. Meier M, Sit RV, Quake SR. Proteome-wide protein interaction measurements of bacterial proteins of unknown function. Proceedings of the National Academy of Sciences. 2013;110(2):477-82.

87. Chance MR, Bresnick AR, Burley SK, Jiang JS, Lima CD, Sali A, et al. Structural genomics: a pipeline for providing structures for the biologist. Protein Science. 2002;11(4):723-38.

88. Cardew EM, Verlinde CL, Pohl E. The calcium-dependent protein kinase 1 from Toxoplasma gondii as target for structure-based drug design. Parasitology. 2018;145(2):210-8.

89. Kumar A, Sharma A, Kaur G, Makkar P, Kaur J. Functional characterization of hypothetical proteins of Mycobacterium tuberculosis with possible esterase/lipase signature: a cumulative in silico and in vitro approach. Journal of Biomolecular Structure and Dynamics. 2017;35(6):1226-43.

90. Choi H-P, Juarez S, Ciordia S, Fernandez M, Bargiela R, Albar JP, et al. Biochemical characterization of hypothetical proteins from Helicobacter pylori. PLoS One. 2013;8(6).

91. Cort JR, Yee A, Edwards AM, Arrowsmith CH, Kennedy MA. NMR structure determination and structure-based functional characterization of conserved hypothetical protein MTH1175 from Methanobacterium thermoautotrophicum. Journal of structural and functional genomics. 2000;1(1):15-25.

92. Barta ML, Thomas K, Yuan H, Lovell S, Batalla KP, Schramm VL, et al. Structural and biochemical characterization of Chlamydia trachomatis hypothetical protein CT263 supports that menaquinone synthesis occurs through the futalosine pathway. Journal of Biological Chemistry. 2014;289(46):32214-29.
93. Zhang W, Culley DE, Gritsenko MA, Moore RJ, Nie L, Scholten JC, et al. LC–MS/MS based proteomic analysis and functional inference of hypothetical proteins in Desulfovibrio vulgaris. Biochemical and biophysical research communications. 2006;349(4):1412-9.

Figure Legends:

Fig. 1. Flow chart showing the overall design of the study

Fig. 2. Functional classification of 49 HPs into various groups

Table 1. HPs functionally annotated from *C. jejuni*.

No.	Protein IDs	Protein function
1	WP_002868767.1	Curli production assembly, transport component CsgG
2	WP_002854524.1	Chemotaxis phosphatase CheX
3	WP_009882162.1	SprA-related family
4	WP_010790856.1	Pyridoxamine 5'-phosphate oxidase
5	WP_009882239.1	Haemagglutination activity domain
6	WP_002854991.1	FxsA cytoplasmic membrane protein, FxsA
7	WP_002855029.1	DNA replication regulator, HobA
8	WP_002868905.1	GDSL-like Lipase
9	WP_002869356.1	Divergent polysaccharide deacetylase
10	WP_002856929.1	C4-type zinc ribbon domain
11	WP_002869028.1	Esterase-like activity of phytase
12	WP_011812736.1	Domain of unknown function DUF234
13	WP_002868809.1	Ankyrin repeats, Ank_2
14	WP_002869368.1	Type-1V conjugative transfer system mating pair stabilisation, TraN
15	WP_009882583.1	NLPC_P60 stabilising domain
16	WP_002853389.1	Jag, N-terminal domain superfamily
17	WP_009882608.1	Adhesin from Campylobacter
18	WP_002856369.1	Putative beta-lactamase-inhibitor-like
No.	Accession	Description
-----	-----------	-------------
19	WP_079254190.1	Beta-1,4-N-acetylglactosaminytransferase (CgtA)
20	WP_002856180.1	Heavy-metal-associated domain
21	WP_002831611.1	Transcription factor zinc-finger
22	WP_002790076.1	Methyl-accepting chemotaxis protein (MCP) signalling domain
23	WP_002853792.1	Plasminogen-binding protein pgbA N-terminal
24	WP_002869072.1	Putative S-adenosyl-L-methionine-dependent methyltransferase
25	WP_002869097.1	MaoC-like dehydratase domain
26	WP_002869326.1	Metallo-carboxypeptidase
27	WP_002869139.1	Pyruvate phosphate dikinase, PEP
28	WP_002869195.1	Anti-sigma-28 factor
29	WP_002856630.1	PD-(D/E)XK nuclease superfamily
30	WP_002855458.1	MgtE intracellular N domain
31	WP_002797496.1	Flagellar FliJ protein
32	WP_024088174.1	Nitrate reductase chaperone
33	WP_009883030.1	ATPase, AAA-type, core
34	WP_002824979.1	putative NADH-ubiquinone oxidoreductase chain E
35	WP_002869225.1	DMSO reductase anchor subunit (DmsC)
36	WP_002856602.1	Putative beta-lactamase-inhibitor-like
37	WP_002868888.1	Tetra-tricopeptide repeat, TPR_2
38	WP_002868880.1	ABC-type transport auxiliary lipoprotein component
39	WP_009883121.1	Flagellar FliS export co-chaperone
40	WP_002860117.1	Menaquinone biosynthesis
41	WP_002779704.1	T-antigen specific domain
42	WP_011187233.1	Toprim domain
43	WP_011187235.1	AAA domain, AAA_25
44	WP_002809111.1	TrbM Superfamily
45	WP_011117548.1	Bacterial virulence protein VirB8
46	WP_011117549.1	Conjugal transfer protein
47	WP_011117575.1	Type IV secretion system proteins,T4SS
48	WP_011799393.1	TrbM Superfamily
49	WP_011117588.1	mRNA interferase PemK-like
Table 2. ROC results of various tools used in this study

No.	Software	Accuracy (%)	Sensitivity (%)	Specificity (%)	ROC area
1	PFAM	95%	94.7%	100%	0.97
2	SMART	95%	94.9%	100%	0.97
3	MOTIF	95%	94.9%	100%	0.97
4	INTERPROSCAN	95%	94.9%	100%	0.97
5	CDART	97.5%	97.4%	100%	0.99
6	SUPERFAMILY	95%	94.1%	100%	0.97
7	SVMprot	90%	88.9%	100%	0.94
8	Average	95%	94.3%	100%	0.97
Full protein profile retrieved *Campylobacter jejuni* (1658)

Filter hypothetical proteins (267)

Domain identification by five different domain databases

Domain identified by three or more databases (60% or above confidence)

Yes (50)

Functional prediction: pfam, SMART, MOTIF, InterPro, CDART, SUPERFAMILY, SVMprot

HP with function predicted by three or more tools

Yes (49)

Manual curation by search of homologous sequences: Blast

Search for essential genes: Geptop

Characterization: Psortb, CELLO, signalP, HMMTOP, TMHMM, SOSUI, ProtParam, STRING, PS2-V2

Inference of protein function
S1 Table. List of bioinformatics tools and databases

Analyse	Bioinformatics tool	Version	URL
Functional analysis and conserved domain			
	Pfam	31.0	https://pfam.xfam.org/
	SMART	8.0	http://smart.embl-heidelberg.de/
	MOTIF	*	https://www.genome.jp/tools/motif/
	InterPro	66.0	https://www.ebi.ac.uk/interpro/
	CDART	*	https://www.ncbi.nlm.nih.gov/Structure/lexington/lexington.cgi
	SUPERFAMILY	1.75	http://supfam.org/SUPERFAMILY/index.html
	SVMProt	*	http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi
	CDD-Blast	3.16	https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi
	HmmScan	3.2.1	https://www.ebi.ac.uk/Tools/hmmer/search/hmmscan
	Scanprosite	*	https://prosite.expasy.org/scanprosite/
	Geptop	2.0	http://cefg.uestc.cn/geptop/
Sub-cellular localization of the protein			
	PSORTdb	3.0	http://db.psort.org/
	CELLO	2.5	http://cello.life.nctu.edu.tw/
	SignalP	5.0	http://www.cbs.dtu.dk/services/SignalP/
	HMMPROTEIN	*	http://www.enzim.hu/hmmtop/
	TMHMMP	2.0	http://www.cbs.dtu.dk/services/TMHMM/
	SOSUI	*	http://harrier.nagahama-i-bio.ac.jp/sosui/sosui_submit.html
Physical-chemical characterization			
	ProtParam	*	https://web.expasy.org/protparam/
Protein-protein interaction network	STRING	10.5	https://string-db.org/
Structure prediction	PS2-V2	3.0	http://ps2.life.nctu.edu.tw/
Performance assessment	ROC analysis calculator	*	http://www.rad.jhmi.edu/jeng/javara/roc/JROCFITi.html

Information not available
Table S2. Scores of conserved domain search for 267 HPs of *C. jejuni* strain 81-176 using CDD-Blast, Pfam, HmmScan, SMART and Scanprosite tools.

No.	Protein ID	CDD Blast	Pfam	HmmScan	SMART	Scanprosite	Percentage (%)
1	WP_002855595.1	1	0	0	0	0	20
2	WP_002868969.1	0	0	0	0	0	0
3	WP_002866317.1	0	0	0	0	0	0
4	WP_002824650.1	0	0	0	0	0	0
5	WP_009881605.1	0	0	0	0	0	0
6	WP_072238758.1	0	0	0	0	1	20
7	WP_024088096.1	0	0	0	0	0	0
8	WP_002857726.1	0	0	0	0	0	0
9	WP_002851763.1	0	0	0	0	0	0
10	WP_002857765.1	1	0	0	0	1	40
11	WP_002857751.1	0	0	0	0	0	0
12	WP_002868767.1	1	1	1	0	0	60
13	WP_009881781.1	0	0	0	0	0	0
14	WP_002868941.1	0	0	0	0	0	0
15	WP_002857300.1	0	0	0	0	0	0
16	WP_002851715.1	0	0	0	0	0	0
17	WP_002854663.1	0	0	0	0	0	0
18	WP_002851904.1	0	0	0	0	0	0
19	WP_002857297.1	0	0	0	0	0	0
20	WP_002870694.1	0	0	0	0	0	0
21	WP_011812694.1	0	0	0	0	1	20
22	WP_002869065.1	1	0	0	0	0	20
23	WP_002867117.1	0	0	0	0	0	0
24	WP_002854172.1	0	0	0	0	0	0
25	WP_002882716.1	0	0	0	0	0	0
26	WP_002854628.1	0	0	0	0	0	0
27	WP_079254179.1	0	0	0	0	0	0
28	WP_002851686.1	1	0	0	0	0	20
29	WP_002868751.1	0	0	0	0	0	0
30	WP_002859434.1	0	0	0	0	0	0
31	WP_002854718.1	0	0	0	0	0	0
32	WP_002854524.1	1	1	1	1	0	80
33	WP_002868919.1	0	0	0	0	0	0
34	WP_002857293.1	0	0	0	0	0	0
35	WP_002857540.1	0	0	0	0	0	0
36	WP_002854351.1	1	0	0	0	1	40
---	---	---	---	---	---	---	
117	WP_002869368.1	1	1	1	1	0	80
118	WP_002853267.1	0	0	0	0	0	0
119	WP_002868960.1	0	0	0	0	0	0
120	WP_009882583.1	1	1	1	1	1	100
121	WP_002853389.1	1	1	1	1	0	80
122	WP_002854139.1	1	0	0	0	0	20
123	WP_002855981.1	0	0	0	0	1	20
124	WP_009882608.1	1	1	1	1	1	100
125	WP_011812755.1	0	1	1	0	0	40
126	WP_009882621.1	0	0	0	0	0	0
127	WP_002865636.1	1	1	1	1	0	80
128	WP_024088204.1	0	0	0	0	0	0
129	WP_002869126.1	0	0	0	0	0	0
130	WP_002869124.1	1	0	0	0	1	40
131	WP_002853000.1	0	0	0	0	0	0
132	WP_002853832.1	1	0	0	0	0	20
133	WP_002869121.1	1	0	0	0	0	20
134	WP_002856015.1	1	0	0	0	0	20
135	WP_002855841.1	1	0	0	0	0	20
136	WP_002866103.1	0	0	0	0	1	20
137	WP_002869049.1	0	0	0	0	0	0
138	WP_002856019.1	0	0	0	0	0	0
139	WP_002852822.1	0	0	0	0	0	0
140	WP_079254190.1	1	1	1	1	0	80
141	WP_002856180.1	1	1	1	1	1	100
142	WP_002831611.1	1	1	1	1	0	80
143	WP_002825005.1	0	0	0	0	0	0
144	WP_002852900.1	1	0	0	0	0	20
145	WP_002790076.1	1	1	1	1	1	100
146	WP_002868861.1	0	0	0	0	0	0
147	WP_002853792.1	1	1	1	1	0	80
148	WP_002859287.1	0	0	0	0	0	0
149	WP_002868857.1	0	0	0	0	0	0
150	WP_002853180.1	0	0	0	0	0	0
151	WP_002869072.1	1	1	1	1	0	80
152	WP_002866237.1	0	0	0	0	0	0
153	WP_002869074.1	0	0	0	0	0	0
154	WP_002869076.1	0	0	0	0	0	0
155	WP_002869078.1	1	0	0	0	0	20
156	WP_002869097.1	1	1	1	1	0	80
---	---	---	---	---	---	---	
197	WP_002860117.1	1	1	1	1	0	
198	WP_079254198.1	0	0	0	0	0	
199	WP_002882243.1	1	0	0	0	1	
200	WP_002869298.1	0	0	0	0	0	
201	WP_002853105.1	0	0	0	0	0	
202	WP_002790440.1	1	0	0	0	0	
203	WP_002790442.1	0	0	0	0	0	
204	WP_002790713.1	0	0	0	0	0	
205	WP_002779702.1	0	0	0	0	0	
206	WP_002779703.1	0	0	0	0	0	
207	WP_002779704.1	0	1	1	1	0	
208	WP_002790730.1	1	0	0	0	0	
209	WP_002804244.1	0	1	1	0	0	
210	WP_011271766.1	0	0	0	0	0	
211	WP_002779777.1	0	0	0	0	0	
212	WP_002809140.1	0	0	0	0	0	
213	WP_002826068.1	0	0	0	0	0	
214	WP_002804272.1	0	0	0	0	0	
215	WP_011187233.1	1	1	1	1	1	
216	WP_011187234.1	1	0	0	0	1	
217	WP_002844160.1	0	0	0	0	0	
218	WP_011815226.1	0	0	0	0	0	
219	WP_011187235.1	1	1	1	1	0	
220	WP_002809051.1	1	0	0	0	0	
221	WP_002809052.1	0	0	0	0	0	
222	WP_002842869.1	0	0	0	0	0	
223	WP_011187239.1	0	0	0	0	1	
224	WP_032592775.1	0	0	0	0	20	
225	WP_002809111.1	1	1	1	1	0	
226	WP_002809110.1	0	0	0	0	0	
227	WP_002809107.1	0	0	0	0	0	
228	WP_002834241.1	0	0	0	0	0	
229	WP_002779751.1	0	0	0	0	0	
230	WP_002909884.1	1	0	0	0	0	
231	WP_008976813.1	0	0	0	0	0	
232	WP_002801797.1	0	0	0	0	0	
233	WP_011117548.1	1	1	1	1	0	
234	WP_011117549.1	1	1	1	1	0	
235	WP_011117551.1	0	0	0	0	0	
236	WP_002815556.1	0	0	0	0	0	
---	-----	-----	-----	-----	-----	-----	-----
237	WP_011117559.1	0	0	0	0	0	0
238	WP_011117563.1	0	0	0	0	0	0
239	WP_010398003.1	0	0	0	0	0	0
240	WP_024088118.1	1	0	0	0	0	20
241	WP_024088119.1	0	0	0	0	0	0
242	WP_011117567.1	0	0	0	0	0	0
243	WP_011799391.1	0	0	0	0	1	20
244	WP_011117569.1	0	0	0	0	0	0
245	WP_011117570.1	0	0	0	0	0	0
246	WP_011117573.1	0	0	0	0	0	0
247	WP_011117574.1	1	0	0	0	0	20
248	WP_011117575.1	1	1	1	0	0	60
249	WP_011799393.1	1	1	1	1	0	80
250	WP_011117576.1	0	0	0	0	0	0
251	WP_011117578.1	0	0	0	0	0	0
252	WP_011117579.1	0	0	0	0	0	0
253	WP_011117580.1	0	0	0	0	0	0
254	WP_011799395.1	0	0	0	0	0	0
255	WP_011117582.1	0	0	0	0	0	0
256	WP_011117583.1	0	0	0	0	0	0
257	WP_002815407.1	0	0	0	0	0	0
258	WP_004306057.1	0	0	0	0	0	0
259	WP_011117585.1	0	0	0	0	0	0
260	WP_011117586.1	0	0	0	0	0	0
261	WP_079254173.1	0	0	0	0	0	0
262	WP_011117587.1	0	0	0	0	0	0
263	WP_011117588.1	1	1	1	1	0	80
264	WP_011117589.1	0	0	0	0	1	20
265	WP_011799397.1	0	0	0	0	0	0
266	WP_011799398.1	0	0	0	0	0	0
267	WP_011117593.1	0	0	0	0	0	0

Note: 0 = 0%, 1 = 25%
Table S3. List of annotated functions of 40 proteins with known function from C. jejuni using Pfam, SMART, MOTIF, INTERPROSCAN, CDART, SUPERFAMILY and SVMprot for ROC analysis.

No.	Protein ID	Protein Name_Known function	PFAM Prediction	PFAM Score	SMART Prediction2	SMART Score2	MOTIF Prediction3	MOTIF Score3	INTERPROSCAN Prediction4	INTERPROSCAN Score4	CDART Prediction5	CDART Score5	SUPERFAMILY prediction6	SUPERFAMILY Score6	SVMprot prediction7	SVMprot Score7
1	WP_009881324.1	DNA polymerase III subunit beta	DNA polymerase III subunit beta	1 (5)	DNA polymerase III subunit beta	1 (5)	DNA polymerase III subunit beta	1 (5)	DNA polymerase III subunit beta	1 (5)	DNA polymerase III subunit beta	1 (5)	Zinc-binding, All DNA-binding	1 (4)		
2	WP_009881354.1	glutamate synthase	glutamate synthase	1 (5)	Manganes e-binding, Zinc-binding	1 (4)										
3	WP_002855601.1	CTP synthase	CTP synthase	1 (5)	Nitrogenase iron protein-like, Class I glutamine amidotransferases (GAT)	1 (2)										
4	WP_011812682.1	cytochrome c biogenesis protein	cytochrome c biogenesis protein	1 (5)	No result	0 (2)										
5	WP_009881534.1	transglycosylase	transglycosylase	1 (5)	All lipid-binding proteins, Transferases - Glycosyltransferases	1 (2)										
6	WP_009881539.1	Bcr/CfIA family efflux MFS transporter	Bcr/CfIA family efflux MFS transporter	1 (5)	Bcr/CfIA family efflux MFS transporter	1 (5)	Bcr/CfIA family efflux MFS transporter	1 (5)	Bcr/CfIA family efflux MFS transporter	1 (5)	Bcr/CfIA family efflux MFS transporter	1 (5)	Electrochemical Potential-driven transporters - Porters	1 (5)		
	WP_002 854281.1	uracil-DNA glycosylase	uracil-DNA glycosylase	1 (5)	Transferases - Glycosyltransferases	1 (5)										
----	------------------	------------------------	------------------------	-------	------------------------	-------	------------------------	-------	------------------------	-------	------------------------	-------	------------------------	-------	------------------------	-------
8	WP_002 853939.1	acetylglutamate kinase	acetylglutamate kinase	1 (5)	Electrochemical Potential-driven transporters	1 (4)										
9	WP_002 854336.1	molybdate ABC transporter permease	molybdate ABC transporter permease	1 (5)												
10	WP_002 859852.1	multidrug efflux SMR transporter	multidrug efflux SMR transporter	1 (5)	multidrug efflux SMR transporter	1 (4)	multidrug efflux SMR transporter	1 (5)	Metal-binding	1 (3)						
11	WP_009 882032.1	prephenate dehydratase	prephenate dehydratase	1 (5)	Phosphate binding protein-like	1 (2)										
															Zinc-binding, Forming Carbon-Oxygen Bonds	1 (2)
12	WP_002 858694.1	lysine- tRNA ligase	tRNA synthetases	1 (5)	rRNA synthetases	1 (5)	Forming Carbon-Oxygen Bonds	1 (3)								
13	WP_009 882169.1	YigZ family protein	UPF0029	1 (2)	YigZ family protein	1 (2)	YigZ family protein	1 (5)	Transferring Phosphorus-Containing Groups	1 (2)						
14	WP_002 857383.1	FAD-binding protein	FAD-binding protein	1 (5)	Fumarate reductase flavoprotein C-term	1 (4)	FAD-binding protein	1 (5)	Acting on the CH-CH group of donors	1 (4)						
15	WP_002 782934.1	ribosomal protein S12	ribosomal protein S12	1 (5)	Nucleic acid-binding proteins	0 (2)										
															rRNA-binding proteins	1 (4)
16	WP_002 857290.1	HIT domain-containing protein	HIT domain-containing protein	1 (5)	Transferases - Acyltransferases	1 (3)										
	ID	Description	Action	X-Coord	Y-Coord	X-width	Y-width	X-max	Y-max							
---	----------	--------------------------------------	--------------	---------	---------	---------	---------	-------	-------							
17	WP_002 869243.1	ferrochelatase	Proton	1	1	1	1	1	1							
		ferrochelatase		(3)	0	(3)	0									
18	WP_002 854879.1	flagellar basal body protein FlgB	No result	0	0	0	0	0	0							
		flagellar basal body protein FlgB		(2)	(2)	(2)	(2)									
19	WP_002 880964.1	endolytic transglycosylase MltG	No result	0	0	0	0	0	0							
		endolytic transglycosylase MltG		(2)	(2)	(2)	(2)									
20	WP_002 856958.1	ATP-binding cassette domain-containing protein	No result	0	0	0	0	0	0							
		ATP-binding cassette domain-containing protein		(2)	(2)	(2)	(2)									
21	WP_002 868904.1	TolC family protein	No result	0	0	0	0	0	0							
		TolC family protein		(2)	(2)	(2)	(2)									
22	WP_002 869361.1	carbamoyltransferase HypF	No result	0	0	0	0	0	0							
		carbamoyltransferase HypF		(2)	(2)	(2)	(2)									
23	WP_002 869360.1	hydrogenase formation protein HypD	No result	0	0	0	0	0	0							
		hydrogenase formation protein HypD		(2)	(2)	(2)	(2)									
24	WP_002 869354.1	aspartate--tRNA ligase	No result	0	0	0	0	0	0							
		aspartate--tRNA ligase		(2)	(2)	(2)	(2)									
25	WP_002 869349.1	MFS transporter	No result	0	0	0	0	0	0							
		MFS transporter		(2)	(2)	(2)	(2)									

Phosphorus-Oxygen Lyases

	ID	Description	Action	X-Coord	Y-Coord	X-width	Y-width	X-max	Y-max					
17	WP_002 869243.1	ferrochelatase	Proton	1	1	1	1	1	1					
		ferrochelatase		(3)	0	(3)	0							
18	WP_002 854879.1	flagellar basal body protein FlgB	No result	0	0	0	0	0	0					
		flagellar basal body protein FlgB		(2)	(2)	(2)	(2)							
19	WP_002 880964.1	endolytic transglycosylase MltG	No result	0	0	0	0	0	0					
		endolytic transglycosylase MltG		(2)	(2)	(2)	(2)							
20	WP_002 856958.1	ATP-binding cassette domain-containing protein	No result	0	0	0	0	0	0					
		ATP-binding cassette domain-containing protein		(2)	(2)	(2)	(2)							
21	WP_002 868904.1	TolC family protein	No result	0	0	0	0	0	0					
		TolC family protein		(2)	(2)	(2)	(2)							
22	WP_002 869361.1	carbamoyltransferase HypF	No result	0	0	0	0	0	0					
		carbamoyltransferase HypF		(2)	(2)	(2)	(2)							
23	WP_002 869360.1	hydrogenase formation protein HypD	No result	0	0	0	0	0	0					
		hydrogenase formation protein HypD		(2)	(2)	(2)	(2)							
24	WP_002 869354.1	aspartate--tRNA ligase	No result	0	0	0	0	0	0					
		aspartate--tRNA ligase		(2)	(2)	(2)	(2)							
25	WP_002 869349.1	MFS transporter	No result	0	0	0	0	0	0					
		MFS transporter		(2)	(2)	(2)	(2)							
Gene Accession	Description	Entry Type	Domain	Superfamily	Patch Type	Mapping Function	Additional Comments							
----------------	---	--------------	----------	-------------	-------------	------------------	---------------------							
WP_002 869372.1	molecular chaperone DnaK	molecular	1	(5)										
WP_009 882420.1	nucleotide exchange factor GrpE	nucleotide	1	(5)										
WP_002 857174.1	serine O-acetyltransferase	Hexapeptide	1	(2)										
WP_011 812734.1	ATP-dependent helicase	ATP-dependent	1	(5)										
WP_002 867950.1	alpha/beta hydrolase	alpha/beta	1	(5)										
WP_002 869103.1	c-type cytochrome	c-type cytochrome	1	(5)										
WP_011 812744.1	DNA translocase FtsK	DNA translocase FtsK	1	(5)										
WP_002 853404.1	GNAT family N-acetyltransferase	GNAT family N-acetyltransferase	1	(5)										
WP_002 853451.1	RNA polymerase sigma factor	RNA polymerase sigma factor	1	(5)										
	RpoD													
---	--------------	--------------	--------------	--------------	--------------	--------------	--------------	---						
35	WP_002856550.1	potassium transporter TrkA	potassium transporter TrkA	1 (5)	Glycosyltransferases, Acting on Ester Bonds	1 (3)								
36	WP_002852861.1	SsrA-binding protein SmpB	SsrA-binding protein SmpB	1 (5)	RNA-binding proteins	1 (3)								
37	WP_002855885.1	FAD-binding protein	FAD-binding protein	1 (5)	Acting on the CH-OH group of donors, Manganese-binding	1 (3)								
38	WP_002856003.1	riboflavin synthase	riboflavin synthase	1 (5)	Transferring Alkyl or Aryl Groups, Other than Methyl Groups	1 (3)								
39	WP_002855731.1	bacterioheme merythrin	bacterioheme merythrin	1 (5)	Zinc-binding, All DNA-binding domains	1 (3)								
40	WP_002869409.1	GDP-L-fucose synthase	NAD-dependent epimerase	0 (2)	GDP-L-fucose synthase	1 (5)	GDP-L-fucose synthase	1 (5)	Short-chain dehydrogenases/reductases (SDR)	0 (2)	ADP-binding Rossmann-fold domains	0 (2)	server error	0 (2)
No.	Protein ID	PFAM	SMART	MOTIF	INTERPROSCAN	CDART	SUPERFAMILY	SVMProt						
-----	---------------------	-----------------------------	----------------	--------------------------------	--------------------------------------	---------------------------	--------------	------------------						
1	WP_002868 767.1	TolB amino-terminal domain	CsgG	Curli production assembly, transport component CsgG	Curli production assembly, transport component CsgG	TolB amino-terminal domain	CC0632-like	All lipid-binding proteins						
2	WP_002854 524.1	Chemotaxis phosphatase CheX	CheX	Chemotaxis phosphatase CheX	Chemotaxis phosphatase cheX-like domain	CheC-like family	CheC-like	Transferring Phosphorus-Containing Groups						
3	WP_009882 162.1	SprA-related family	SprA-related	SprA-related family	SprA-related family	SprA-related family	No result	Zinc-binding						
4	WP_010790 856.1	Pyridoxamine 5'-phosphate oxidase	Pyridox_oxi dase	Pyridoxamine 5'-phosphate oxidase	Pyridoxamine 5'-phosphate oxidase	Pyridoxine 5'-phosphate (PNP) oxidase-like	PNP-oxidase like	Zinc-binding						
5	WP_009882 239.1	haemagglutination activity domain	Haemagg_act	haemagglutination activity domain	Filamentous haemagglutinin, N-terminal	haemagglutination activity domain	Filamentous hemagglutinin, FhaB, secretion domain	All lipid-binding proteins						
6	WP_002854 991.1	FxsA cytoplasmic membrane protein, FxsA	FxsA	FxsA cytoplasmic membrane protein	FxsA cytoplasmic membrane protein	No result	No result	TC1.E Channels						
7	WP_002855 029.1	DNA replication regulator, HobA	HobA	DNA replication regulator	DNA replication regulator, HobA	DNA replication regulator, HobA	SM11	All lipid-binding proteins						
8	WP_002868 905.1	GDSL-like Lipase	Lipase_GDSL	GDSL-like Lipase	GDSL lipase	SGHN-hydrolase Superfamily/esterases and lipases	SGHN hydrolase/esterases and lipases	Zinc-binding						
9	WP_002869 356.1	Divergent polysaccharide deacetylase	Polysacc_de ac_2	Divergent polysaccharide deacetylase	Divergent polysaccharide deacetylase	Divergent polysaccharide deacetylase	Divergent polysaccharide deacetylase	EC3.1 Hydrolases - Acting on Ester Bonds						
10	WP_002856 929.1	C4-type zinc ribbon domain	zf-RING_7	C4-type zinc ribbon domain	C4-type zinc ribbon domain	C4-type zinc ribbon domain	Tropomyosin	All DNA-binding						
11	WP_002869 028.1	Esterase-like activity of phytase	Phytase-like	Esterase-like activity of phytase	Phytase-like domain	SdiA-regulated Superfamily	No result	Zinc-binding						
12	WP_011812 736.1	DUF234	DUF234	Domain of unknown function DUF234	DUF4143 Superfamily	Restriction endonuclease-like	Zinc-binding							
	Accession	Description												
---	-----------	--	-----------	--	-----------	--	-----------	--	-----------	--	-----------	--	-----------	--
13	WP_002868 809.1	Ankyrin repeats, Ank_2	WP_002868 Ankyrin repeats, Ank_2	Ankyrin repeats- containing domain	ANK Superfamily	Ankyrin repeat	EC3.2	Hydrolases - Glycosylases						
14	WP_002869 368.1	Type-1V conjugative transfer system mating-pair stabilisation, TraN	WP_002869 Type-1V conjugative transfer system mating-pair stabilisation, TraN	Type-F conjugative transfer system mating-pair stabilisation protein	TraN	Type-1V conjugative transfer system mating-pair stabilisation, TraN	TB module	All lipid-binding proteins						
15	WP_009882 583.1	NLPC_P60	WP_009882 NLPC_P60 stabilising domain, N term	NLPC_P60, N-terminal domain	NlpC/P60 family	NlpC/P60 family	Forming	Carbon-Oxygen Bonds						
16	WP_002853 389.1	Jag_N-termminus	WP_002853 Jag N-termminus	Jag N-terminal domain superfamily	Jag N-termminus	No result	Transferring	One-Carbon Groups						
17	WP_009882 608.1	Adhesin from Campylobacter	WP_009882 Adhesin from Campylobacter	Adhesin JlpA, Campylobacter	JLPASA	JLPASA Superfamily, Adhesin from Campylobacter	No result	Zinc-binding						
18	WP_002856 369.1	Putative beta-lactamase-inhibitor-like	WP_002856 PepSY-like Putative beta-lactamase-inhibitor-like	Putative beta-lactamase-inhibitor-like, PepSY-like	Putative beta-lactamase-inhibitor-like, PepSY-like	BT0923-like, Sodium-binding								
19	WP_079254 190.1	Betal-4-N-acetylgalactosaminyltransferase (CgtA)	WP_079254 Beta-1,4-N-acetylgalactosaminyltransferase (CgtA)	Beta-1,4-N-acetylgalactosaminyltransferase (CgtA)	Beta-1,4-N-acetylgalactosaminyltransferase (CgtA)	No result	Magnesium-binding							
20	WP_002856 180.1	No result	WP_002856 No result	No result	No result	Heavy-metal-associated domain	Copper-binding							
21	WP_002831 611.1	Transcription factor zf-TFIIB	WP_002831 Transcription factor zfc-finger	Transcription factor zfc-finger	Transcription factor zfc-finger	No result	Magnesium-binding							
22	WP_002790 076.1	Methyl-accepting chemotaxis protein (MCP) signalling domain	WP_002790 Methyl-accepting chemotaxis protein (MCP) signalling domain	Methyl-accepting chemotaxis protein (MCP) signalling domain	Methyl-accepting chemotaxis protein (MCP) signalling domain	Methyl-accepting chemotaxis protein (MCP) signalling domain	P-P bond-hydrosynthesis-driven transporters							
23	WP_002853 792.1	Plasminogen-binding protein pgPA N-terminal	WP_002853 Plasminogen-binding protein pgPA N-terminal	Plasminogen-binding protein pgPA N-terminal	Plasminogen-binding protein pgPA N-terminal	No result	Manganese-binding							
24	WP_002869 072.1	Putative S-adenosyl-L-methionine-dependent methyltransferase	WP_002869 Methyltransf _28 Putative S-adenosyl-L-methionine-dependent methyltransferase	S-adenosyl-L-methionine-dependent methyltransferase	SAM-dependent methyltransferase, MidA family	S-adenosyl-L-methionine-dependent methyltransferases	Zinc-binding							
25	WP_002869 097.1	MaoC like domain	WP_002869 MaoC_dehydratases MaoC like domain	MaoC-like dehydratase domain	Short-chain dehydrogenases	MaoC-like Transferring Phosphorus-								
Nr	Accession	Description	Domain	Subunit	Domain	Containing Groups								
----	-----------	-------------	--------	---------	--------	-------------------								
26	WP_002869 326.1	Carboxypeptidase controlling helical cell shape catalytic	Peptidase_M99	Carboxypeptidase controlling helical cell shape catalytic	Metallo-carboxypeptidase, C-terminal domain	Zn-dependent exopeptidases								
27	WP_002869 139.1	Pyruvate phosphate dikinase, PEP	PPDK_N	Pyruvate phosphate dikinase, PEP	Pyruvate phosphate dikinase, PEP	Forming Carbon-Oxygen Bonds								
28	WP_002869 194.1	No result	Rod-binding	Rod binding protein	Uncharacterised conserved protein	No result								
29	WP_002869 195.1	Anti-sigma-28 factor	FlgM	Anti-sigma-28 factor	Anti-sigma-28 factor FlgM superfamily	Sodium-binding								
30	WP_002856 630.1	PD-(D/E)XK nuclease superfamily	PDDEKX1	PD-(D/E)XK nuclease superfamily, PDDEKX1	PD-(D/E)XK endonuclease-like domain, AddAB-type	Forming Carbon-Oxygen Bonds								
31	WP_002855 458.1	MgtE intracellular N domain	MgtE_N	MgtE intracellular N domain	Flagellar motility protein MotE, a chaperone for MotC folding	ATP-binding cassette (ABC) family								
32	WP_002797 496.1	Flagellar FliJ protein	FliJ	Flagellar FliJ protein	Flagellar FliJ protein	Magnesium-binding								
33	WP_024088 174.1	Nitrate reductase delta subunit	Nitrate_red_del	Nitrate reductase delta subunit	Nitrate reductase chaperone	TorD-like								
34	WP_009883 030.1	AAA domain, putative AbiEII toxin, Type IV TA system, AAA_21	AAA_21	AAA domain, putative AbiEII toxin, Type IV TA system, AAA_21	AAA domain, putative AbiEII toxin, Type IV TA system, AAA_21	ABC transporter ATPase domain-like								
35	WP_002824 979.1	putative NADH-ubiquinone oxidoreductase chain E	NADH_UOR_E	putative NADH-ubiquinone oxidoreductase chain E	putative NADH-ubiquinone oxidoreductase chain E	SirA-like								
36	WP_002869 225.1	DMSO reductase anchor subunit (DmsC)	DmsC	DMSO reductase anchor subunit (DmsC)	DMSO reductase anchor subunit (DmsC)	No result								
37	WP_002856 602.1	Putative beta-lactamase-inhibitor-like	PepSY_like	Putative beta-lactamase-inhibitor-like	Putative beta-lactamase-inhibitor-like, PepSY-like	BT0923-like								

Legend:
- **Domain:** The domain is associated with the protein and indicates its functional role.
- **Subunit:** The subunit is a specific part of the protein.
- **Domain:** The domain is associated with the protein and indicates its functional role.
- **Containing Groups:** The containing groups are specific complexes or pathways associated with the protein.
| No. | Accession | Description | Biochemistry | Function | Remarks |
|-----|------------|-------------|--------------|----------|---------|
| 38 | WP_002868 888.1 | No result | TPR_2/TPR_8 | Tetrapricleptide repeat, TPR_2 | Lipopolysaccharide biosynthesis regulator YciM, contains six TPR domains and a predicted metal-binding C-terminal domain |
| 39 | WP_002868 880.1 | ABC-type transport auxiliary lipoprotein component | ABC_trans_aux | ABC-type transport auxiliary lipoprotein component | ABC-type transport auxiliary lipoprotein component |
| 40 | WP_009883 121.1 | Flagellar FLIS export co-chaperone | FLIS_cochap | Flagellar FLIS export co-chaperone, HP1076 | Flagellar FLIS export co-chaperone, HP1076 |
| 41 | WP_002860 117.1 | Menaquinone biosynthesis | VitK2biosynth | Menaquinone biosynthesis | Member of the type 2 periplasmic binding fold protein superfamily |
| 42 | WP_002779 704.1 | T-antigen specific domain | Papo_T_anti | T-antigen specific domain | No result |
| 43 | WP_011187 233.1 | Toprim domain | TOPRIM | Toprim domain | Uncharacterized domain associated with phage |
| 44 | WP_011187 235.1 | AAA domain, AAA_25 | AAA_25 | AAA domain, AAA_25 | P-loop containing nucleoside triphosphate hydrolase |
| 45 | WP_002809 111.1 | TrbM | TrbM | TrbM | TrbM Superfamily |
| 46 | WP_011117 548.1 | VirB8 protein | VirB8 | VirB8 protein | Bacterial virulence protein VirB8 |
| 47 | WP_011117 549.1 | Conjugation transfer protein | CagX | Conjugation transfer protein | CagX |
| 48 | WP_011117 575.1 | Type IV secretion system proteins, T4SS | T4SS | Type IV secretion system proteins, T4SS | Type IV secretion system, VirB5 |
| 49 | WP_011799 393.1 | TrbM | TrbM | TrbM | TrbM |
| 50 | WP_011117 588.1 | PemK-like, MazF-like toxin of type II toxin-antitoxin system | PemK_toxin | PemK-like, MazF-like toxin of type II toxin-antitoxin system | mRNA interferase |

Downloaded from https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20193939/882282/bsr-2019-3939.pdf by guest on 27 May 2020

Bioscience Reports. This is an Accepted Manuscript. You are encouraged to use the Version of Record that will replace this version. The most up-to-date version is available at https://doi.org/10.1042/BSR20193939
S5 Table. Results of the blastp search for similar sequences against non-redundant (nr) database

No.	Protein ID	Organism	Query cover	e-value	Score (bits)	Identity	Product	
1	WP_002868767.1	Campylobacter jejuni subsp. jejuni 129-258	100%	0.0	798	100%	hypothetical protein	
		Campylobacter jejuni CVM 41974	100%	0.0	795	99%	hypothetical protein	
		Campylobacter jejuni BJ-CJG85377	100%	0.0	793	99%	hypothetical protein	
		Campylobacter jejuni subsp. jejuni 84-25	100%	0.0	793	99%	hypothetical protein	
		Campylobacter jejuni X	100%	0.0	792	99%	hypothetical protein	
	WP_002854524.1	Campylobacter jejuni subsp. jejuni 327	100%	5.00E-97	285	100%	hypothetical protein	
		Campylobacter jejuni subsp. jejuni CG8486	100%	6.00E-97	284	100%	hypothetical protein	
		Campylobacter jejuni subsp. jejuni M1	100%	7.00E-97	284	100%	hypothetical protein	
		Campylobacter jejuni RM1221	100%	1.00E-96	283	100%	hypothetical protein	
		Campylobacter jejuni subsp. jejuni LMG 23211	100%	3.00E-96	282	99%	hypothetical protein	
3	WP_009882162.1	Campylobacter jejuni subsp. jejuni 81-176-DRH212	100%	6.00E-174	487	100%	hypothetical protein	
		Campylobacter sp. BCW_4319	100%	1.00E-172	484	99%	hypothetical protein	
		Campylobacter sp. BCW_4319	100%	3.00E-171	480	97%	hypothetical protein	
		Campylobacter jejuni subsp. jejuni CF93-6	100%	3.00E-169	475	97%	hypothetical protein	
4	WP_010790856.1	Campylobacter jejuni subsp. jejuni 109	100%	1.00E-96	283	99%	pyridoxamine 5’-phosphate oxidase	
		Campylobacter sp. 109	100%	3.00E-96	282	99%	pyridoxamine 5’-phosphate oxidase	
		Campylobacter sp. 3	100%	5.00E-96	281	99%	pyridoxamine 5’-phosphate oxidase	
		Campylobacter sp. BCW_8713	100%	6.00E-96	281	99%	pyridoxamine 5’-phosphate oxidase	
		Campylobacter jejuni subsp. doylei	100%	6.00E-96	281	99%	pyridoxamine 5’-phosphate oxidase	
5	WP_009882239.1	Campylobacter jejuni subsp. jejuni	100%	0.0	1096	99%	filamentous hemagglutinin N-terminal domain-containing protein	
		Campylobacter jejuni BJ-CJG861114	100%	0.0	1093	99%	filamentous hemagglutinin N-terminal domain-containing protein	
		Campylobacter jejuni subsp. jejuni 81-176-UMCW9	100%	0.0	1093	99%	filamentous hemagglutinin N-terminal domain-containing protein	
No.	Accession Number	Organism	Description	Identity	E-Value	Length	Coverage	Function
-----	------------------	----------	-------------	----------	---------	--------	----------	----------
6	WP_002854991.1	*Campylobacter jejuni* RM1221	integral membrane protein	100%	8.00E-83	247	99%	
		Campylobacter jejuni subsp. jejuni 260.94	integral membrane protein	100%	1.00E-82	247	99%	
		Campylobacter jejuni subsp. jejuni H893-13	integral membrane protein	100%	2.00E-82	246	99%	
		Campylobacter jejuni subsp. jejuni D2600	integral membrane protein	100%	2.00E-82	246	99%	
		Campylobacter jejuni subsp. jejuni LMG 23264	integral membrane protein	100%	2.00E-82	246	98%	
7	WP_002855029.1	*Campylobacter jejuni* subsp. jejuni 260.94	hypothetical protein	100%	2.00E-124	357	99%	
		Campylobacter jejuni subsp. jejuni ICDC107001	hypothetical protein	100%	6.00E-124	355	99%	
		Campylobacter jejuni subsp. jejuni 129-258	hypothetical protein	100%	6.00E-124	355	99%	
		Campylobacter jejuni K1	hypothetical protein	100%	6.00E-124	355	98%	
8	WP_002868905.1	*Campylobacter jejuni* subsp. jejuni 129-258	hypothetical protein	100%	0.0	787	100%	
		Campylobacter jejuni subsp. jejuni 81-176-DRH212	hypothetical protein	100%	0.0	786	99%	
		Campylobacter jejuni subsp. jejuni CG8486	hypothetical protein	100%	0.0	784	99%	
9	WP_002869356.1	*Campylobacter jejuni* subsp. jejuni 129-258	polysaccharide deacetylase	100%	0.0	718	99%	
		Campylobacter jejuni subsp. jejuni 2008-872	polysaccharide deacetylase	100%	0.0	716	99%	
		Campylobacter jejuni subsp. jejuni 1997-11	polysaccharide deacetylase	100%	0.0	716	99%	
		Campylobacter jejuni subsp. jejuni 1798	polysaccharide deacetylase	100%	0.0	716	99%	
		Campylobacter jejuni K1	polysaccharide deacetylase	100%	0.0	716	99%	
10	WP_002856929.1	*Campylobacter jejuni* RM1221	zinc ribbon domain protein	100%	3.00E-167	470	100%	
		Campylobacter jejuni subsp. jejuni 53	zinc ribbon domain protein	100%	1.00E-166	468	99%	
		Campylobacter jejuni subsp. jejuni 327	zinc ribbon domain protein	100%	1.00E-166	468	99%	
		Campylobacter jejuni CVM 41910	zinc ribbon domain protein	100%	1.00E-166	468	99%	
		Campylobacter jejuni CVM 41927	zinc ribbon domain protein	100%	2.00E-166	468	99%	
11	WP_002869028.1	*Campylobacter jejuni* subsp. jejuni 81-176-DRH212	glycerophosphodiester	100%	0.0	884	100%	
Accession	Description	Identity	Similarity	E-value	Description			
-----------	-------------	----------	------------	---------	-------------			
176-DRH212	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	0.0	883	99%	phosphodiesterase		
	Campylobacter sp. BCW_4319	100%	0.0	882	99%	phosphodiesterase		
	Campylobacter sp. 1	100%	0.0	882	99%	phosphodiesterase		
	Campylobacter jejuni 30318	100%	0.0	881	99%	phosphodiesterase		
12 WP_011812736.1	Campylobacter sp. 114	100%	0.0	565	100%	hypothetical protein		
	Campylobacter sp. BCW_8709	100%	0.0	565	99%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni 260.94	100%	0.0	564	99%	hypothetical protein		
13 WP_002868809.1	Campylobacter jejuni subsp. jejuni 129-258	100%	0.0	816	100%	ankyrin repeat-containing protein		
	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	0.0	815	99%	ankyrin repeat-containing protein		
	Campylobacter jejuni subsp. jejuni 1213	100%	0.0	814	99%	ankyrin repeat-containing protein		
	Campylobacter jejuni K1	100%	0.0	813	99%	ankyrin repeat-containing protein		
	Campylobacter jejuni subsp. jejuni 1997-11	100%	0.0	813	99%	ankyrin repeat-containing protein		
14 WP_002869368.1	Campylobacter jejuni subsp. jejuni 81-176-DRH212	100%	7.00E-103	300	100%	mating pair stabilization protein		
	Campylobacter sp. BCW_4319	100%	2.00E-101	296	98%	mating pair stabilization protein		
	Campylobacter jejuni subsp. jejuni HB93-13	100%	1.00E-100	294	98%	mating pair stabilization protein		
	Campylobacter jejuni K1	100%	2.00E-100	294	98%	mating pair stabilization protein		
	Campylobacter jejuni CVM 41974	100%	4.00E-100	293	97%	mating pair stabilization protein		
15 WP_009882583.1	Campylobacter jejuni subsp. jejuni LMG 9217	100%	0.0	905	99%	SH3_6 and SH3_7 domain-containing protein		
	Campylobacter sp. BCW_7460	100%	0.0	904	99%	SH3_6 and SH3_7 domain-containing protein		
	Campylobacter jejuni subsp. jejuni 129-258	100%	0.0	904	99%	SH3_6 and SH3_7 domain-containing protein		
	Accession	Species	Id	Description				
---	-----------------	-----------------	------	--				
16	WP_002853389.1	Campylobacter jejuni subsp. jejuni CF93-6	100%	902 99% SH3_6 and SH3_7 domain-containing protein				
			100%	0.0 99% SH3_6 and SH3_7 domain-containing protein				
		Campylobacter jejuni subsp. jejuni 84-25	100%	99% RNA-binding protein				
		Campylobacter jejuni subsp. jejuni 1336	100%	99% RNA-binding protein				
		Campylobacter jejuni subsp. jejuni JA3902	100%	99% RNA-binding protein				
		Campylobacter jejuni subsp. jejuni 305	100%	99% RNA-binding protein				
17	WP_009882608.1	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	727 99% lipoprotein				
		Campylobacter jejuni subsp. jejuni 81-176-UMCW9	100%	727 99% lipoprotein				
		Campylobacter sp. BCW_4319	100%	725 99% lipoprotein				
		Campylobacter jejuni subsp. jejuni HB93-13	100%	724 99% lipoprotein				
		Campylobacter jejuni subsp. jejuni 2008-894	100%	724 99% lipoprotein				
18	WP_002856369.1	Campylobacter jejuni subsp. jejuni 260.94	100%	272 99% Putative beta-lactamase-inhibitor-like, PepSY-like				
		Campylobacter jejuni subsp. jejuni 81116	100%	271 99% Putative beta-lactamase-inhibitor-like, PepSY-like				
		Campylobacter jejuni subsp. jejuni M1	100%	270 99% Putative beta-lactamase-inhibitor-like, PepSY-like				
		Campylobacter jejuni subsp. jejuni ICDCCJ07001	100%	270 99% Putative beta-lactamase-inhibitor-like, PepSY-like				
		Campylobacter jejuni subsp. jejuni 327	100%	269 99% Putative beta-lactamase-inhibitor-like, PepSY-like				
19	WP_079254190.1	Campylobacter jejuni subsp. jejuni 81-176	100%	110 100% hypothetical protein				
		Campylobacter sp. USS54	100%	110 100% hypothetical protein				
20	WP_002856180.1	Campylobacter jejuni subsp. jejuni 81-176-DRH212	100%	124 100% heavy-metal-associated domain				
		Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	123 98.44% heavy-metal-associated domain				
	Accession Number	Organism Name	Identity	Similarity	Length	E-value	Domain Description	
-----	------------------	------------------------------------	----------	------------	--------	---------	--	
21	WP_002831611.1	Campylobacter jejuni subsp. jejuni LMG 23211	100%	96.88%	122	3.00E-35	heavy-metal-associated domain	
		Campylobacter sp. CH186	100%	98.85%	185	3.00E-35	hypothetical protein	
		Campylobacter sp. US55	100%	98.85%	184	6.00E-35	hypothetical protein	
	WP_002790076.1	Campylobacter jejuni subsp. jejuni LMG 9872	100%	98.85%	185	3.00E-35	hypothetical protein	
		Campylobacter sp. US53	100%	98.85%	184	7.00E-35	hypothetical protein	
22	WP_002790076.1	Campylobacter jejuni subsp. jejuni LMG 9872	100%	99.56%	918	0.0	methyl-accepting chemotaxis protein	
		Campylobacter jejuni subsp. jejuni 2008-1025	100%	99.78%	918	0.0	methyl-accepting chemotaxis protein	
		Campylobacter jejuni subsp. jejuni 260.94	100%	99.78%	918	0.0	methyl-accepting chemotaxis protein	
23	WP_00283792.1	Campylobacter jejuni CVM 41973	100%	100.00%	486	1.00E-173	exporting protein	
		Campylobacter jejuni CVM 41910	100%	99.59%	486	2.00E-173	exporting protein	
		Campylobacter jejuni CVM 41922	100%	99.59%	485	2.00E-173	exporting protein	
		Campylobacter jejuni CVM 41914	100%	99.59%	484	3.00E-173	exporting protein	
		Campylobacter jejuni CVM 41936	100%	99.59%	484	6.00E-173	exporting protein	
24	WP_002869072.1	Campylobacter sp. BCW_4319	100%	100.00%	629	0.0	hypothetical protein	
		Campylobacter jejuni subsp. jejuni str. RM3420	100%	99.68%	627	0.0	hypothetical protein	
		Campylobacter jejuni BJ-CJD101	100%	99.68%	627	0.0	hypothetical protein	
		Campylobacter jejuni CVM 41974	100%	99.37%	623	0.0	hypothetical protein	
		Campylobacter jejuni subsp. jejuni 140-16	100%	98.10%	621	0.0	hypothetical protein	
25	WP_002869097.1	Campylobacter jejuni subsp. jejuni LMG 9872	100%	100.00%	895	0.0	MaoC like domain	
		Campylobacter sp. BCW_4319	100%	99.78%	892	0.0	MaoC like domain	
		Campylobacter sp. US54	100%	99.78%	892	0.0	MaoC like domain	
Accession	Description	Identity	Similarity	E-value	Description			
---------------	--	----------	------------	---------	--			
WP_002869326.1	Campylobacter jejuni CVM 41974	100%	99.34%	0.0	MaoC like domain			
WP_002869139.1	Campylobacter jejuni subsp. jejuni 129-258	100%	100.00%	0.0	hypothetical protein			
WP_002869195.1	Campylobacter jejuni subsp. jejuni 129-258	100%	100.00%	5.00E-37	flagellar biosynthesis anti-sigma factor FlgM			
WP_002856630.1	Campylobacter jejuni subsp. jejuni str. RM3420	100%	100.00%	0.0	helicase AddB			
WP_002855458.1	Campylobacter jejuni RM1221	100%	100.00%	6.00E-117	nucleosidase			
	Campylobacter jejuni subsp. jejuni S3	100%	99.42%	9.00E-117	nucleosidase			
	Campylobacter jejuni CJ2	100%	99.42%	2.00E-116	nucleosidase			
	Campylobacter jejuni 20176	100%	99.42%	2.00E-116	nucleosidase			
Accession	Description	Identity	E-value	Length	Coverage	Description		
-------------	-----------------------------------	----------	---------	--------	----------	----------------------------------		
WP_002797496.1	Campylobacter jejuni RM1221	100%	2.00E-116	336	99.42%	nucleosidase		
WP_024088174.1	Campylobacter jejuni subsp. jejuni M129	100%	2.00E-95	280	100.00%	hypothetical protein		
	Campylobacter jejuni RM1221	100%	2.00E-95	279	99.30%	hypothetical protein		
	Campylobacter coli 15-537360	100%	6.00E-95	280	100.00%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni R14	100%	8.00E-95	279	99.30%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni M129	100%	8.00E-95	279	99.30%	hypothetical protein		
WP_009883030.1	Campylobacter jejuni 81-176-UMCW7	100%	0.0	865	100.00%	ATP/GTP-binding protein		
WP_002824979.1	Campylobacter jejuni subsp. doylei	100%	5.00E-45	148	100.00%	NADH-ubiquinone oxidoreductase		
	Campylobacter jejuni subsp. jejuni 81116	100%	9.00E-45	147	98.67%	NADH-ubiquinone oxidoreductase		
	Campylobacter jejuni subsp. jejuni S3	100%	9.00E-45	147	98.67%	NADH-ubiquinone oxidoreductase		
	Campylobacter jejuni subsp. jejuni PT14	100%	9.00E-45	147	98.67%	NADH-ubiquinone oxidoreductase		
	Campylobacter coli CVM 41944	100%	0.0	865	100.00%	ATP/GTP-binding protein		
	Peptoniphilus sp. HMSC075B08	100%	0.0	863	99.77%	ATP/GTP-binding protein		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	0.0	865	100.00%	ATP/GTP-binding protein		
	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	0.0	865	100.00%	ATP/GTP-binding protein		
	Campylobacter jejuni subsp. jejuni 81-176-UMCW7	100%	0.0	863	99.77%	ATP/GTP-binding protein		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
	Campylobacter jejuni subsp. jejuni D42a	100%	5.00E-166	467	99.58%	formate dehydrogenase-specific chaperone		
Accession	Description	Identity	E-value	Length	Percent Identity	Function		
-----------	--	----------	---------	--------	------------------	--		
36 WP_002856602.1	Campylobacter jejuni subsp. jejuni HB93-13	100%	0.0	574	99.65%	dimethylsulfoxide reductase		
	Campylobacter jejuni CVM 41974	100%	0.0	573	99.31%	dimethylsulfoxide reductase		
36 WP_002856602.1	Campylobacter jejuni subsp. jejuni 81116	100%	2.00E-94	278	100%	periplasmic protein		
	Campylobacter jejuni subsp. jejuni M1	100%	3.00E-94	277	99.28%	periplasmic protein		
	Campylobacter jejuni subsp. jejuni ICDC107001	100%	3.00E-94	277	99.28%	periplasmic protein		
	Campylobacter jejuni subsp. jejuni str. RM3420	100%	5.00E-94	276	99.28%	periplasmic protein		
37 WP_002868888.1	Campylobacter jejuni subsp. jejuni 1336	100%	5.00E-94	276	98.55%	periplasmic protein		
	Campylobacter jejuni subsp. jejuni S3	100%	0.0	655	100.00%	periplasmic protein		
	Campylobacter sp. BCW_6461	100%	0.0	654	99.70%	periplasmic protein		
	Campylobacter sp. BCW_4319	100%	0.0	654	99.70%	periplasmic protein		
	Campylobacter sp. BCW_6871	100%	0.0	654	99.70%	periplasmic protein		
	Campylobacter jejuni subsp. jejuni 1213	100%	0.0	653	99.70%	periplasmic protein		
38 WP_002868880.1	Campylobacter jejuni subsp. jejuni 260.94	100%	3.00E-139	395	100%	ABC transporter		
	Campylobacter jejuni subsp. jejuni 81-176	100%	1.00E-138	394	98.99%	ABC transporter		
	Campylobacter jejuni K1	100%	2.00E-138	394	99.50%	ABC transporter		
	Campylobacter sp. BCW_4319	100%	2.00E-138	394	99.50%	ABC transporter		
	Campylobacter sp. US54	100%	2.00E-138	394	99.50%	ABC transporter		
39 WP_009883121.1	Campylobacter jejuni subsp. jejuni 81-176	100%	4.00E-116	335	100.00%	hypothetical protein		
	Campylobacter jejuni 32488	100%	9.00E-116	334	99.40%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni 260.94	100%	2.00E-115	333	98.80%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni 1854	100%	2.00E-115	333	98.80%	hypothetical protein		
	Campylobacter jejuni subsp. jejuni 1893	100%	3.00E-115	332	98.80%	hypothetical protein		
40 WP_002860117.1	Campylobacter jejuni CVM 41927	100%	0.0	583	100.00%	S-ribosylhomocysteine lyase		
Accession	Species	Identity	Expect	Length	Bit Score	BLAST Description		
--------------	--------------------------------	----------	--------	--------	-----------	---------------------------------		
WP_002779704.1	Campylobacter jejuni subsp. jejuni 81-176	100%	5.00E-56	176	100.00%	cpp11 like protein		
WP_011187233.1	Campylobacter jejuni subsp. jejuni 81-176	100%	0.0	828	100%	cpp22 like protein		
WP_011187235.1	Campylobacter jejuni subsp. jejuni 81-176	100%	0.0	826	99.75%	cpp22 like protein		
WP_002809111.1	Campylobacter jejuni subsp. jejuni 81-176	100%	0.0	524	100.00%	conjugal transfer protein TrbM		
WP_01117548.1	Campylobacter jejuni subsp. jejuni IA3902	100%	3.00E-162	456	100.00%	virulence protein		
Campylobacter jejuni CVM 41900	Campylobacter jejuni subsp. jejuni 1997-1	100%	0.0	582	99.65%	S-ribosylhomocysteine lyase		
Campylobacter sp. CH246	Campylobacter sp. BCW_6462	100%	0.0	582	99.65%	S-ribosylhomocysteine lyase		
Campylobacter sp. BCW_6462	Campylobacter jejuni subsp. jejuni S3	100%	8.00E-56	176	100.00%	cpp22 like protein		
Campylobacter coli CVM N29710	Campylobacter coli 2553	98%	6.00E-55	174	100.00%	cpp22 like protein		
Campylobacter coli 1148	Campylobacter jejuni subsp. jejuni M129	100%	0.0	1196	100.00%	cpp26 like protein		
Campylobacter coli 317/04	Campylobacter jejuni subsp. jejuni D42a	100%	0.0	1193	99.83%	cpp26 like protein		
Campylobacter coli 86119	Campylobacter jejuni subsp. jejuni IA3902	100%	9.00E-162	455	99.56%	virulence protein		
Campylobacter coli 1148	Campylobacter jejuni subsp. jejuni IA3902	100%	0.0	523	99.61%	conjugal transfer protein TrbM		
Campylobacter coli 317/04	Campylobacter jejuni subsp. jejuni IA3902	100%	0.0	523	99.61%	conjugal transfer protein TrbM		
Campylobacter coli 1148	Campylobacter jejuni subsp. jejuni IA3902	100%	0.0	521	99.61%	conjugal transfer protein TrbM		
Campylobacter sp. BCW_6462	Campylobacter jejuni subsp. jejuni IA3902	100%	3.00E-162	455	99.56%	virulence protein		
Protein Name	Percentage	Start	End	Description				
--------------	------------	-------	-----	-------------				
Campylobacter coli 132-6	100%	2.00E-161	454	99.56% virulence protein				
Campylobacter jejuni X	100%	4.00E-160	451	98.67% virulence protein				
Campylobacter coli RM1875	100%	6.00E-159	448	97.78% virulence protein				
WP_011117549.1	46	Campylobacter jejuni subsp. jejuni 81-176	100%	0.0	727	100.00% type IV secretion system protein VirB9		
WP_011117575.1	47	Campylobacter jejuni subsp. jejuni IA3902	100%	0.0	725	99.72% type IV secretion system protein VirB10		
WP_011799393.1	48	Campylobacter jejuni subsp. jejuni IA3902	100%	0.0	536	100.00% TrbM-like protein		
WP_011117588.1	49	Campylobacter jejuni subsp. jejuni 81-176	100%	7.00E-88	261	100.00% toxin-antitoxin system protein		

Helicobacter canis NCTC 12740 | 71% | 5.00E-61 | 191 | 100.00% toxin-antitoxin system protein |
S6 Table. Result of essential protein prediction using Geptop.

Sl no	Protein ID	Score
1	WP_002854524.1	1
2	WP_002854991.1	0.6004
3	WP_002855029.1	1
4	WP_002868905.1	0.9991
5	WP_002856929.1	0.4441
6	WP_011812736.1	1
7	WP_002869368.1	0.7991
8	WP_009882583.1	0.3995
9	WP_002853389.1	1
10	WP_009882608.1	0.799
11	WP_002856369.1	0.4539
12	WP_002831611.1	0.3632
13	WP_002853792.1	0.4539
14	WP_002869072.1	1
15	WP_002869097.1	0.4539
16	WP_002869326.1	0.2739
17	WP_002869139.1	0.3632
18	WP_002856630.1	0.3632
19	WP_002855458.1	0.285
20	WP_002797496.1	0.285
21	WP_024088174.1	0.4274
22	WP_002824979.1	0.4291
23	WP_002856602.1	0.5699
24	WP_002868888.1	1
25	WP_002868880.1	0.285
26	WP_002860117.1	0.5716
27	WP_002779704.1	0.4274
28	WP_011187233.1	0.5699
29	WP_011187235.1	0.5698
30	WP_002809111.1	1
31	WP_011117575.1	1
32	WP_011799393.1	1
S7 Table. List of predicted physicochemical parameters, sub-cellular localization for the HPs from *C. jejuni*.

No	Protein IDs	No of Amino acid	MW	PI	Extinction coefficient	Instability Index	Classification	Alphabetic index	Grand average of Hydropathicity (GRAVY)	Sub-cellular localization	Signal Peptide (Signal P)	Trans membrane helices prediction	HMMT OP	TMH MM	SOSUI	
1	WP_0028687	67.1	400	9.1	1	22350	26.24	Stable	87.52	OuterMemb rane	OuterMembrane	YES	No	No	Membra ne, 1 TM helix	
2	WP_0028545	24.1	140	4.7	5	19285	29.26	Stable	93.43	Cytoplasmic	Cytoplasmic	No	No	No	Soluble	
3	WP_0098821	62.1	241	4.9	5	11920	35.93	Stable	43.9	-1.31	Extracellular	Unknown	No	No	No	Soluble
4	WP_0107908	56.1	136	8.8	8	9190	28.8	Stable	77.5	-0.201	Cytoplasmic	Unknown	No	No	No	Soluble
5	WP_0098822	39.1	553	4.7	9	33935	19.93	Stable	82.19	-0.41	Extracellular	OuterMemb rane	YES	No	No	Soluble
6	WP_0028549	91.1	129	5.3	1	11460	22.6	Stable	123.88	0.924	InnerMemb rane	CytoplasmicMembrane	No	3 TM Helices	3 TM Helice s	Membra ne, 3 TM helix
7	WP_0028550	29.1	178	4.9	3	34045	53.4	Unstable	101.4	-0.07	Cytoplasmic	Unknown	No	No	No	Soluble
8	WP_0028689	05.1	392	9.6	3	52830	28.08	Stable	96.33	-0.377	OuterMemb rane	Unknown	YES	No	No	Membra ne, 1 TM helix
9	WP_0028693	56.1	360	7.6	8	17880	31.74	Stable	98.06	-0.489	OuterMemb rane	Cytoplasmic	No	1 TM Helices	1 TM Helice s	Membra ne, 1 TM helix
10	WP_0028569	29.1	238	5.6	4	19160	40.81	Unstable	90.5	-0.789	Cytoplasmic	Cytoplasmic	No	No	No	Soluble
11	WP_0028690	28.1	441	6.5	3	41385	23.72	Stable	70.27	-0.744	Cytoplasmic	Cytoplasmic	No	No	No	Soluble
12	WP_0118127	36.1	292	9.3	3	29590	30.81	Stable	100.82	-0.395	Cytoplasmic	Cytoplasmic	No	No	No	Soluble
13	WP_0028688	09.1	408	5.3	9	54125	24.69	Stable	92.89	-0.256	OuterMemb rane	Unknown	YES	No	No	Soluble
14	WP_0028693	68.1	150	6.5	8	7615	27.75	Stable	64.33	-0.486	Cytoplasmic	OuterMemb rane	No	No	No	Soluble
15	WP_0098825	448	52423.9	9.2	6	66365	36.19	Stable	85.8	-0.439	OuterMemb rane	Unknown	No	No	No	Membra ne

Downloaded from https://portlandpress.com/bioscirep/article-pdf/doi/10.1042/BSR20193939/882282/bsr-2019-3939.pdf by guest on 27 May 2020
	Accession	Start	End	Score	Unstable	Cytoplasmic Region	Membrane Helices	Membrane, Soluble								
16	WP_0028533	272	87	9.0	Unstable	Cytoplasmic	1 TM helix	Soluble								
17	WP_0098826	372	61	4.8	Unstable	Cytoplasmic	TM helix	Soluble								
18	WP_0028563	138	31	5.0	Stable	Cytoplasmic	Unknown	Soluble								
19	WP_0792541	57	31	10.39	Stable	Cytoplasmic	1 TM helix	Soluble								
20	WP_0028651	64	55	6.0	Stable	Cytoplasmic	Unknown	Soluble								
21	WP_0028316	87	35	4.4	Stable	Cytoplasmic	Unknown	Soluble								
22	WP_0027900	459	29	5.2	Unstable	Cytoplasmic	2 TM helices	Membra ne, Soluble								
23	WP_0028537	241	29	5.1	Stable	Cytoplasmic	Unknown	Soluble								
24	WP_0028690	316	84	6.2	Stable	Cytoplasmic	Unknown	Soluble								
25	WP_0028690	452	74	9.4	Stable	Cytoplasmic	Unknown	Soluble								
26	WP_0028693	464	9	7.1	Stable	Cytoplasmic	1 TM helices	Membra ne, Soluble								
27	WP_0028691	779	39	5.7	Unstable	Cytoplasmic	1 TM helix	Soluble								
28	WP_0028691	65	29	7.9	Stable	Cytoplasmic	Unknown	Soluble								
29	WP_0028566	788	24	5.5	Stable	Cytoplasmic	1 TM helices	Membra ne, Soluble								
30	WP_0028554	172	46	5.3	Stable	Cytoplasmic	1 TM helices	Membra ne, Soluble								
31	WP_0027974	142	95	9.0	Unstable	Cytoplasmic	1 TM helices	Soluble								
32	WP_0240881	237	16	5.4	Unstable	Cytoplasmic	1 TM helices	Soluble								
33	WP_0098830	439	55	5.6	Unstable	Cytoplasmic	1 TM helices	Soluble								
	Accession	ID	M	%	V	%	B	%	Stability	Location	Subcellular Localization	CD	TM Helices	Location	Subcellular Localization	
---	-----------	----	---	---	---	---	---	---	-----------	----------	------------------------	----	-------------	----------	------------------------	
34	WP_0028249	75	8773.2	6.2	7	5500	23.41	Stable	105.07	-0.167	Cytoplasmic	Unknown	No	No	No	Soluble
35	WP_0028692	75	32725.77	7.1	30.26	Stable	113.75	0.844	InnerMembrane	CytoplasmicMembrane	No	8 TM Helices	8 TM Helices	Membrane, 8 TM helix		
36	WP_0028566	75	15376.93	7.8	3	11460	17.73	Stable	98.91	-0.201	Periplasmic	Unknown	YES	No	No	Soluble
37	WP_0028688	75	39113.6	6.2	3	25370	26.75	Stable	95.43	-0.159	Cytoplasmic	Cytoplasmic	No	2 TM Helices	1 TM Helices	Membrane, 8 TM helix
38	WP_0028688	75	23051.39	8.9	5	24535	44.54	Unstable	101.01	-0.158	Extracellular	Unknown	No	2 TM Helices	No	Soluble
39	WP_0098831	75	18730.48	4.7	3	6085	23.14	Stable	99.94	-0.131	Cytoplasmic	Unknown	No	No	No	Soluble
40	WP_0028601	75	32643.66	5.1	9	37360	28.98	Stable	103.78	-0.095	Cytoplasmic	Cytoplasmic	No	No	No	Soluble
41	WP_0027797	75	10623.3	7.5	3	17795	57.44	Unstable	81.93	-0.601	Cytoplasmic	Unknown	No	No	No	Soluble
42	WP_0111872	75	47059.95	9.1	4	48025	28.47	Stable	79.39	-0.746	Cytoplasmic	Cytoplasmic	No	No	No	Soluble
43	WP_0111872	75	69031.68	7.9	4	51020	29.19	Stable	91.57	-0.431	OuterMembrane	Cytoplasmic	No	No	No	Soluble
44	WP_0028091	75	29365.92	8.8	8	39475	41.3	Unstable	79.84	-0.534	Periplasmic	Cytoplasmic	YES	No	No	Soluble
45	WP_0111175	75	25915.78	7.7	8	18910	24.92	Stable	93.16	-0.18	OuterMembrane	Unknown	No	2 TM Helices	1 TM Helices	Membrane, 1 TM helix
46	WP_0111175	75	40874.42	8.8	3	32320	34.91	Stable	80.06	-0.613	OuterMembrane	Unknown	YES	No	No	Soluble
47	WP_0111175	75	33294.59	5.6	7	19495	34.99	Stable	69.18	-0.692	Periplasmic	Unknown	YES	1 TM Helices	1 TM Helices	Soluble
48	WP_0117993	75	30029.93	8.5	4	60445	30.85	Stable	70.15	-0.637	OuterMembrane	Unknown	YES	1 TM Helices	No	Soluble
49	WP_0111175	75	15715.47	9.8	2	16960	38.64	Stable	90.82	-0.587	Cytoplasmic	Unknown	No	1 TM Helices	1 TM Helices	Soluble
Table S8. PPI of the predicted proteins from C. jejuni

SL	Protein ID	Interacted protein	Score						
1	WP_002868767.1	Lipoprotein, putative (207 aa)	0.945						
2	WP_002854524.1	Flagellar motor switch protein FlIN (102 aa)	0.87						
3	WP_009882162.1	HIT family protein (120 aa)	0.634						
4	WP_010790856.1	Pyridoxine 5'-phosphate synthase	0.9						
5	WP_009882239.1	Putative outer-membrane protein (508 aa)	0.908						
6	WP_002854999.1	Porphobilinogen deaminase (EC 2.5.1.61)	0.861						
7	WP_002855029.1	DNA polymerase III, delta prime subunit, homolog (199 aa)	0.964						
8	WP_002868905.1	Uncharacterized protein (336 aa)	0.973						
9	WP_002856929.1	Membrane protein insertase YidC	0.889						
10	WP_002869028.1	Sulfate-binding protein precursor (348 aa)	0.884						
11	WP_011812736.1	Sensor protein ZraS (EC-2.7.13.3) (339 aa)	0.859						
12	WP_002868809.1	NADP-dependent 3-hydroxy acid dehydrogenase YdfG (EC-1.1.1.-) (249 aa)	0.888						
13	WP_002869368.1	Hermonuclease precursor (EC-3.1.31.1) (175 aa)	0.533						
14	WP_009882583.1	ATP-dependent RecD-like DNA helicase (EC-3.6.4.12) (447 aa)	0.674						
15	WP_002853389.1	Membrane protein insertase YidC	0.889						
16	WP_009882608.1	ABC transporter glutamine-binding protein GlnH precursor (279 aa)	0.643						
17	WP_002856369.1	Rhomboid protease AarA (EC-3.4.21.105) (157 aa)	0.614						
18	WP_002856180.1	Cadmium, cobalt and zinc/H(+)-K(+)-antiporter (316 aa)	0.875						
19	WP_002831611.1	Uncharacterized protein (64 aa)	0.681						
20	WP_002853792.1	Plasminogen-binding protein PgbB (332 aa)	0.904						
21	WP_002869072.1	Mune DD-endopeptidase MepM (EC-3.4.24.-) (273 aa)	0.859						
22	WP_002790076.1	Chemotaxis protein CheA (EC-2.7.13.3) (769 aa)	0.978						
23	WP_002853792.1	Plasminogen-binding protein PgbB (332 aa)	0.904						
24	WP_002853792.1	Mune DD-endopeptidase MepM (EC-3.4.24.-) (273 aa)	0.859						
25	WP_002856630.1	ATP-dependent helicase/nuclease subunit A (EC-3.1.-.-) (921 aa)	0.991						
26	WP_002855458.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
27	WP_002856630.1	ATP-dependent helicase/nuclease subunit A (EC-3.1.-.-) (921 aa)	0.991						
28	WP_002855458.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
29	WP_002856630.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
30	WP_002856630.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
31	WP_002856630.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
32	WP_002856630.1	Adenylosuccinate synthetase (EC-6.3.4.4)	0.883						
	Accession	Description	Similarity						
---	---------------	--	------------						
38	WP_002868880.1	ABC transporter, periplasmic substrate-binding protein, putative (296 aa)	0.867						
39	WP_009883121.1	Lipoprotein, putative (199 aa)	0.676						
40	WP_002860117.1	Aminodeoxyfutalosine synthase (EC-2.5.1.-)	0.988						
41	WP_002779704.1	No result	NA						
42	WP_011187233.1	No result	NA						
43	WP_011187235.1	No result	NA						
44	WP_002809111.1	No result	NA						
45	WP_011117548.1	No result	NA						
46	WP_011117549.1	VirB10	0.994						
47	WP_011117575.1	No result	NA						
48	WP_011799393.1	No result	NA						
49	WP_011117588.1	No result	NA						
SL No	Accession No	Templates	Domain and function in (PS)2-v2	% Identity	Organism	Method	Resolution	R-value free	R-value work
-------	--------------	-----------	---------------------------------	------------	----------	--------	------------	-------------	-------------
1	WP_002868767.1	1efcA	PROTEIN (ELONGATION FACTOR)	51.58%	Escherichia coli	X-RAY DIFFRACTION	2.05 Å	0.268	0.203
2	WP_002854524.1	1squB	Chemotaxis phosphatase CheX	71.52%	Thermotoga maritima	X-RAY DIFFRACTION	2.4 Å	0.320	0.239
3	WP_009882162.1	No results							
4	WP_010790856.1	2ig6A	NimC/NimA family protein	87.88%	Clostridium acetobutylicum	X-RAY DIFFRACTION	1.8 Å	0.198	0.168
5	WP_009882239.1	No results							
6	WP_002854991.1	1oedB	ACETYLCHOLINE RECEPTOR PROTEIN, ALPHA CHAIN	89.19%	Torpedo marmorata	ELECTRON MICROSCOPY	4 Å		
7	WP_002855029.1	2uvpC	DNA replication regulator HOBA	68.48%	Helicobacter pylori	X-RAY DIFFRACTION	1.7 Å	0.214	0.180
8	WP_002868905.1	1yzfA	lipase/acylhydrolase	79.01%	Enterococcus faecalis	X-RAY DIFFRACTION	1.9 Å	0.239	0.184
9	WP_002869356.1	No results							
10	WP_002856929.1	No results							
11	WP_002869028.1	1l3wA	EP-cadherin	62.14%	Xenopus laevis	X-RAY DIFFRACTION	3.08 Å	0.276	0.243
12	WP_011812736.1	2e52A	Type II restriction enzyme HindIII	71.07%	Haemophilus influenzae	X-RAY DIFFRACTION	2 Å	0.217	0.175
13	WP_002868809.1	1n11A	Ankyrin	77.69%	Homo sapiens	X-RAY DIFFRACTION	2.7 Å	0.303	0.319
14	WP_002869368.1	1eemA	GLUTATHIONE-S-TRANSFERASE	67.95%	Homo sapiens	X-RAY DIFFRACTION	2 Å	0.271	0.219
15	WP_009882583.1	No results							
16	WP_002853389.1	No results							
17	WP_009882608.1	2cSuA	RNA LIGASE	54.57%	Enterobacteria phage T4	X-RAY DIFFRACTION	2.21 Å	0.258	0.198
18	WP_002856369.1	3dueA	Putative periplasmic protein	88.80%	Bacteroides vulgatus	X-RAY DIFFRACTION	1.85 Å	0.233	0.192
19	WP_079254190.1	No result							
20	WP_002856180.1	1osdA	hypothetical protein MerP	70.49%	Cupriavidus metallidurans	X-RAY DIFFRACTION	2 Å	0.268	0.192
21	WP_002831611.1	2a2pA	Selenoprotein M	64.71%	Mus musculus	SOLUTION NMR			
22	WP_002790076.1	2ch7A	METHYL-ACCEPTING	89.94%	Thermotoga maritima	X-RAY DIFFRACTION	2.5 Å	0.297	0.259
No.	Accession	Description	Percentage	Species	Technique	Resolution	d-factor	e-factor	
-----	------------	-------------	------------	---------	-----------	------------	----------	----------	
23	WP_002853792.1	CHEMOTAXIS PROTEIN	73.10%	Rhodopseudomonas palustris	X-RAY DIFFRACTION	2.1 Å	0.258	0.223	
24	WP_002869072.1	1kDa	DUF185	73.10%	Rhodopseudomonas palustris	X-RAY DIFFRACTION	2.1 Å	0.258	0.223
25	WP_002869097.1	No result							
26	WP_002869326.1	No results							
27	WP_002869139.1	No results							
28	WP_002869195.1	No result							
29	WP_002856630.1	1w36F	EXODEOXYRIBONUCLEASE V BETA CHAIN	62.78%	Escherichia coli	X-RAY DIFFRACTION	3.1 Å	0.296	0.242
30	WP_002855458.1	1c1gA	TROPOMYOSIN	86.59%	Sus scrofa	X-RAY DIFFRACTION	7 Å	0.316	0.237
31	WP_002797496.1	2efrA	General control protein GCN4 and Tropomyosin 1 alpha chain	91.67%	Saccharomyces cerevisiae, Oryctolagus cuniculus	X-RAY DIFFRACTION	1.8 Å	0.316	0.237
32	WP_024088174.1	1n1cA	TorA specific chaperone	84.46%	Shewanella massilia	X-RAY DIFFRACTION	2.4 Å	0.255	0.224
33	WP_009883030.1	No results							
34	WP_002824979.1	1r8sA	ADP-ribosylation factor 1	77.78%	Bos taurus, Homo sapiens	X-RAY DIFFRACTION	1.46 Å	0.170	0.159
35	WP_002869225.1	2dyrA	Cytochrome c oxidase subunit 1	80.54%	Bos taurus	X-RAY DIFFRACTION	1.8 Å	0.227	0.202
36	WP_002856602.1	3db7A	putative calcium-regulated periplasmic protein	88.00%	Bacteroides thetaiotaomicron	X-RAY DIFFRACTION	1.4 Å	0.198	0.160
37	WP_002868888.1	No results							
38	WP_002868880.1	2iqiF	Hypothetical protein XCC0632	82.94%	Xanthomonas campestris	X-RAY DIFFRACTION	2.7 Å	0.275	0.209
39	WP_009883121.1	1quuA	HUMAN SKELETAL MUSCLE ALPHA-ACTININ 2	76.51%	Homo sapiens	X-RAY DIFFRACTION	2.5 Å	0.310	0.229
40	WP_002860117.1	3ebmA	hypothetical protein AF1704	79.92%	Archaeoglobus fulgidus	X-RAY DIFFRACTION	2.3 Å	0.265	0.212
41	WP_002779704.1	3cm5A	RABPHILIN-3A	72.22%	Rattus norvegicus	X-RAY DIFFRACTION	1.28 Å	0.194	
42	WP_011117231.1	2au3A	DNA primase	58.81%	Aquifex aeolicus	X-RAY DIFFRACTION	2 Å	0.238	0.203
43	WP_011117235.1	No results							
44	WP_002809111.1	3ec1A	YqeH GTPase	53.75%	Geobacillus stearothermophilus	X-RAY DIFFRACTION	2.36 Å	0.287	0.254
45	WP_011117548.1	No results							
46	WP_011117549.1	2ofqA	TraO	79.38%	Salmonella	SOLUTION NMR			
	WP_011117575.1	2ch7A	METHYL-ACCEPTING CHEMOTAXIS PROTEIN	81.99%	Thermostoga maritima	X-RAY DIFFRACTION	2.5 Å	0.297	0.259
---	----------------	-------	-----------------------------------	--------	----------------------	------------------	-------	-------	-------
47	WP_011799393.1	1zsoB	hypothetical protein	73.97%	Plasmodium falciparum	X-RAY DIFFRACTION	2.17 Å	0.233	0.183
48	WP_011117588.1	1ne8A	conserved hypothetical protein YDCE	56.56%	Bacillus subtilis	X-RAY DIFFRACTION	2.1 Å	0.210	0.159