Abstract

In this paper one presents a new fuzzy clustering algorithm based on a dissimilarity function determined by three parameters. This algorithm can be considered a generalization of the Gustafson-Kessel algorithm for fuzzy clustering.

Keywords: fuzzy clustering, Gustafson-Kessel algorithm, dissimilarity function, cluster density, cluster volume.

1 Introduction

The Gustafson-Kessel [4] algorithm is an important algorithm for fuzzy clustering. Although there has been developed a more efficient algorithm (Gath-Geva [3]), the Gustafson-Kessel algorithm remains the most utilized, because it does not need the utilization of the exponential function [3]. One of the limits of the Gustafson-Kessel is the fact that it supplies unsatisfactory results when clusters having very different volumes are to be separated [5], [6], and [7].

In this paper one presents an algorithm that can eliminate this insufficiency. The algorithm presented in this paper can be considered as a generalization of the Gustafson-Kessel algorithm.

Further the paper has the following structure: section 2 does a short presentation of the Gustafson-Kessel algorithm; section 3 presents the new algorithm; section 4 presents experimental results; section 5 presents some conclusions.

2 The Gustafson-Kessel Algorithm

The Gustafson-Kessel algorithm was proposed in [4] as an improvement of the fuzzy C-means clustering algorithm [1, 2]. Let there be the objective function:

\[
J(W, M) = \sum_{i=1}^{N} \sum_{j=1}^{c} (w_{ij})^\alpha D_j(x_i)
\]

where \(X = \{ x_i \in R^k | i \in [1, N] \} \) is a set containing \(N \) unlabelled vectors; \(M = \{ m_j \in R^k | j \in [1, c] \} \) is the set of centers of clusters; \(W = [w_{ij}] \) is the \(N \times c \) fuzzy c-partition matrix, containing the membership values of all \(x_i \) in all clusters; \(D_j(x_i) \) is a dissimilarity measure between the vector \(x_i \) and the center \(m_j \) of a specific cluster \(j \) defined by:

\[
D_j(x_i) = \left(\lambda_j \cdot \text{det}(C_j) \right)^{\frac{1}{2}} \cdot d^2_{ij}
\]

where \(C_j \) is the fuzzy covariance matrix of the \(j \) cluster defined by:

\[
C_j = \frac{\sum_{i=1}^{N} (w_{ij})^\alpha \cdot (x_i - m_j) \cdot (x_i - m_j)^T}{\sum_{i=1}^{N} (w_{ij})^\alpha}
\]

\(d_{ij} \) is the Mahalanobis distance

\[
d^2_{ij} = (x_i - m_j)^T \cdot C_j^{-1} \cdot (x_i - m_j)
\]

and \(\lambda_1, \lambda_2, ..., \lambda_c \) are \(c \) positive constants. Usually \(\lambda_j = 1 \); \(\alpha \in (1, \infty) \) is a control parameter of fuzziness. Usually \(\alpha = 2 \). The clustering problem can be defined as the minimization of \(J \) under the following constraint:
The Gustafson-Kessel algorithm consists in the iteration of the following formulae:

\[m_j = \frac{\sum_{i=1}^{N} (w_{ij})^\alpha \cdot x_i}{\sum_{i=1}^{N} (w_{ij})^\alpha} \] \hspace{1cm} (6)

and

\[w_{ij} = \frac{1}{\sum_{i=1}^{c} \left(\frac{D_j(x_i)}{D_j(x_i)} \right)^{\alpha-1}} \] \hspace{1cm} (7)

The major drawback is that Gustafson-Kessel algorithm is restricted to constant volume clusters due to the fixed a priori values \(\lambda_j \).

3 The New Fuzzy Clustering Algorithm

3.1 The 3-parameter Dissimilarity Function

Let there be the vector set \(X = \{x_1, x_2, \ldots, x_N\} \) where \(x_i \in \mathbb{R}^k \) and let \(c \) be the number of clusters that must be obtained. The cluster \(j \) will be described by the parameters: \(m_j \) the cluster center, \(C_j \) the fuzzy covariance matrix, \(f_j \) a parameter that shows how large or how small is the cluster \(j \) in comparison to the other clusters, \(w_{ij} \) the fuzzy membership degree of the element \(x_i \). One denotes:

\[n_j = \sum_{i=1}^{N} (w_{ij})^\alpha \] \hspace{1cm} (8)

\[V_j = \sqrt{\det(C_j)} \] \hspace{1cm} (9)

\[\rho_j = \frac{n_j}{V_j} \] \hspace{1cm} (10)

\(n_j \) is very close to the cluster cardinality, \(V_j \) can be considered as a measure for cluster volume and \(\rho_j \) a measure for cluster density. In the framework of this algorithm the dissimilarity function of the element \(x_i \) to the cluster \(j \) is defined by the relation:

\[D_j = \left(\frac{V_j}{f_j} \right)^2 \cdot d_{ij}^2 \] \hspace{1cm} (11)

where the distance \(d_{ij} \) is defined by relation (4).

In order to solve the problem there will be used the following objective function:

\[J(W, M, F) = \sum_{j=1}^{c} \sum_{i=1}^{N} (w_{ij})^\alpha \cdot D_j(x_i) \] \hspace{1cm} (12)

where \(F = \{ f_j \in (0,1) \mid j \in [1, c] \} \) and \(M, W \) have the same definition used by the Gustafson-Kessel algorithm. The parameters \(f_j \) verify the following constraint:

\[\sum_{j=1}^{c} f_j = 1 \] \hspace{1cm} (13)

In addition to this, there are the well-known constraints for the membership degrees \(w_{ij} \).

\[\forall i = 1, 2, \ldots, N \hspace{1cm} \sum_{j=1}^{c} w_{ij} = 1 \] \hspace{1cm} (14)

In this paper there will be presented only the determination of formulae for the parameter \(f_j \), due to the fact that the parameters \(m_j \) and \(w_{ij} \) are computed using formulae that are similar to those used by the Gustafson-Kessel algorithm.

3.2 An Equivalent Form for the Objective Function \(J \)

In this section we will prove the following equivalent form for the objective function \(J \).

\[J = \sum_{j=1}^{c} \left(\frac{V_j}{f_j} \right)^2 \cdot k \cdot n_j \] \hspace{1cm} (15)

This form will be used in the section 3.3. To prove this it is necessary to demonstrate the following relation:

\[\sum_{i=1}^{N} (w_{ij})^\alpha \cdot d_{ij}^2 = k \cdot n_j \] \hspace{1cm} (16)
Let there be H_j the orthogonal matrix that diagonalizes the covariance matrix C_j and $\sigma_{j1}^2, \sigma_{j2}^2, \ldots, \sigma_{jk}^2$ the eigenvalues of the matrix C_j.

There will be:

$$H_j^{-1} = H_j^T$$ \hspace{1cm} (17)

$$C_j^{-1} = H_j^T \cdot S_j^{-1} \cdot H_j$$ \hspace{1cm} (18)

$$S_j = H_j \cdot C_j \cdot H_j^T$$ \hspace{1cm} (19)

where S_j is the following diagonal matrix:

$$S_j = \text{diag}(\sigma_{j1}^2, \sigma_{j2}^2, \ldots, \sigma_{jk}^2)$$ \hspace{1cm} (20)

Denoting:

$$y_i = H_j \cdot x_i$$ \hspace{1cm} (21)

$$\mu_j = H_j \cdot m_j$$ \hspace{1cm} (22)

it results:

$$y_i - \mu_j = H_j \cdot (x_i - m_j)$$ \hspace{1cm} (23)

From (4), (18) and (23) it results:

$$d_j^2 = (y_i - \mu_j)^T \cdot S_j^{-1} \cdot (y_i - \mu_j)$$ \hspace{1cm} (24)

or

$$d_j^2 = \sum_{i=1}^k \frac{(y_i - \mu_j)^2}{\sigma_{ji}^2}$$ \hspace{1cm} (25)

From (19) and (3) it results:

$$S_j = \sum_{i=1}^N (w_{ij})^a \cdot H_j (x_i - m_j) (x_i - m_j)^T \cdot H_j^T$$ \hspace{1cm} (26)

Using (23) the relation (26) becomes:

$$S_j = \sum_{i=1}^N (w_{ij})^a \cdot (y_i - \mu_j) \cdot (y_i - \mu_j)^T$$ \hspace{1cm} (27)

From (27) and (20) it results for $t = 1, 2, \ldots, k$:

$$\sigma_{jt}^2 = \sum_{i=1}^N (w_{ij})^a \cdot (y_{it} - \mu_{jt})^2$$ \hspace{1cm} (28)

Using (8) relation (28) becomes:

$$\sum_{i=1}^N (w_{ij})^a \cdot (y_{it} - \mu_{jt})^2 = \frac{n_j}{\sigma_{jt}^2}$$ \hspace{1cm} (29)

From (25) it results:

$$\sum_{i=1}^N (w_{ij})^a \cdot d_j^2 = k \cdot n_j$$ \hspace{1cm} (30)

namely the relation (16) that might be demonstrated.

3.3 The Calculus of the Parameters f

In this section it is presented the determination of the parameters f_j. There will be considered the objective function:

$$J = \sum_{j=1}^c \left(\frac{V_j}{f_j} \right)^2 \cdot k \cdot n_j + \omega \left(\sum_{j=1}^c f_j - 1 \right)$$ \hspace{1cm} (32)

where ω is the Lagrange multiplier.

We must solve the equation:

$$\frac{\partial J}{\partial f_j} = 0$$ \hspace{1cm} (33)

From (32) and (33) it results:

$$-2 \frac{1}{k} \cdot \frac{V_j}{f_j^2} \cdot k \cdot n_j \cdot V_j^2 + \omega = 0$$ \hspace{1cm} (34)

From (34) it results:

$$f_j = \left(\frac{1}{\omega} \right) \cdot \left(n_j \cdot V_j^2 \right)^{\frac{1}{k+2}}$$ \hspace{1cm} (35)

Taking into account the relations (13) and (35) it results:
\[
\left(\frac{2}{\omega}\right)^k = \frac{1}{\sum_{t=1}^k (n_t \cdot V_t^2)^{\frac{1}{k+2}}}
\]

(36)

and

\[
f_j = \frac{\left(n_j^k \cdot V_j^2\right)^{\frac{1}{k+2}}}{\sum_{t=1}^c \left(n_t^k \cdot V_t^2\right)^{\frac{1}{k+2}}}
\]

(37)

From (10) and (37) it results the following equivalent formula for the parameter \(f_j\):

\[
f_j = \frac{\rho_j \cdot V_j}{\sum_{t=1}^c \rho_t \cdot V_t}
\]

(38)

3.4 The Calculus of the Parameters \(m\)

The calculus formulae for the cluster centers \(m_j\) are similar to those used by the Gustafson-Kessel algorithm, namely:

\[
m_j = \frac{\sum_{i=1}^N (w_{ij})^\alpha \cdot x_i}{\sum_{i=1}^N (w_{ij})^\alpha}
\]

(39)

3.5 The Calculus of the Parameters \(w\)

The calculus formulae for the membership degrees \(w_{ij}\) are similar to those used by the Gustafson-Kessel algorithm, namely:

\[
w_{ij} = \frac{1}{\sum_{i=1}^c \left(D_j(x_i)\right)^{\frac{1}{\alpha-1}}}
\]

(40)

But from (38) it results:

\[
\frac{V_j}{f_j} = \frac{\rho_j \cdot V_j}{\sum_{t=1}^c \rho_t \cdot V_t}
\]

(41)

Using (41) relation (11) becomes:

\[
D_{ij} = \left(\sum_{t=1}^c \left(\frac{\rho_t}{\rho_j}\right)^{\frac{k}{k+2}} \cdot V_t\right)^{\frac{2}{k}} \cdot d_{ij}^2
\]

(42)

From (40) and (42) one can obtain the following equivalent formulae for \(w_{ij}\):

\[
w_{ij} = \frac{\left(\frac{2}{k+2} \cdot \frac{1}{\rho_j \cdot d_{ij}^2}\right)^{\frac{1}{\alpha-1}}}{\sum_{t=1}^c \left(\frac{2}{k+2} \cdot \frac{1}{\rho_t \cdot d_{it}^2}\right)^{\frac{1}{\alpha-1}}}
\]

(43)

4 Experimental Results

One presents the using of the new algorithm for the two test sets shown in the figures 1 and 5. The first set was obtained by a random generation of some points inside two ellipses (figure 1). The second set was obtained by a random generating of some points inside three ellipses (figure 5). The obtained results using the new algorithm can be seen in the figures 3 and 7 respectively, those obtained using the Gustafson-Kessel algorithm in the figures 2 and 6, and those obtained using Gath-Geva algorithm in figures 4 and 8. One can see that while the Gustafson-Kessel algorithm has generated clusters having approximately the same size (figures 2 and 6), the new algorithm (figures 3 and 7) has generated clusters that are very close to the ideal clustering (figures 1 and 5). The results obtained using the proposed algorithm are very close to those obtained using the Gath-Geva algorithm.

5 Conclusions

This paper has presented an algorithm that can be considered a generalization of Gustafson-Kessel algorithm. There has been used a dissimilarity function having three parameters and a new constraint. In this way there it was eliminated one of the main insufficiency of the Gustafson-Kessel algorithm regarding to the obtaining of some clusters having very different sizes. The experimental results stand as proof of the new algorithm superiority in comparison to the Gustafson-Kessel one.
Figure 1. The test set (I).

Figure 2. The Gustafson-Kessel clustering

Figure 3. The generalized Gustafson-Kessel clustering.

Figure 4. The Gath-Geva clustering

Figure 5. The test set (II).

Figure 6. The Gustafson-Kessel clustering
References

[1] J. C. Bezdek, *Fuzzy mathematics in pattern classification*, Ph.D. dissertation, Cornell Univ., Ithaca, NY, 1973.

[2] J. C. Bezdek, *Pattern recognition with fuzzy objective function algorithms*, New York: Plenum Press, 1981.

[3] I. I. Gath and A. B. Geva, “Unsupervised optimal fuzzy clustering”, *IEEE Trans. Pattern And Machine Intell.*, Vol. 2, no. 7, pp. 773-781, 1989.

[4] E. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a fuzzy covariance matrix”, *Proc. IEEE CDC*, San-Diego, CA, pp. 761-766, 1979.

[5] R. A. Keller and F. Klawonn, “Adaptation of cluster sizes in objective function based fuzzy clustering”, In T.Leondes, editor. Intelligent Systems: Techniques and Applications – Database and Learning Systems, vol. 4, pp. 181-191. CRC Press, 2002.

[6] R. Krishnapuram and J. Kim, “Clustering algorithms based on volume criteria”. *IEEE Transactions on Fuzzy Systems*, 8(2), pp. 228-236, 2000.

[7] M. Setnes and U. Kaymak, “Extended fuzzy c-means with volume prototypes and cluster merging”, In Proc. Of 6th European Congress on Intelligent Techniques and Soft Computing, pp. 1360-1364, 1998.