CONFLICT-FREE INCIDENCE COLORING OF OUTER-1-PPLANAR GRAPHS

Mengke Qi
School of Mathematics and Statistics
Xidian University
Xi’an 710071, China
mkqi@stu.xidian.edu.cn

Xin Zhang *
School of Mathematics and Statistics
Xidian University
Xi’an 710071, China
xzhang@xidian.edu.cn

ABSTRACT
An incidence of a graph G is a vertex-edge pair (v, e) such that v is incidence with e. A conflict-free incidence coloring of a graph is a coloring of the incidences in such a way that two incidences (u, e) and (v, f) get distinct colors if and only if they conflict each other, i.e., (i) $u = v$, (ii) uv is e or f, or (iii) there is a vertex w such that $uw = e$ and $vw = f$. The minimum number of colors used among all conflict-free incidence colorings of a graph is the conflict-free incidence chromatic number. A graph is outer-1-planar if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. In this paper, we show that the conflict-free incidence chromatic number of an outer-1-planar graph with maximum degree Δ is either 2Δ or $2\Delta + 1$ unless the graph is a cycle on three vertices, and moreover, all outer-1-planar graphs with conflict-free incidence chromatic number 2Δ or $2\Delta + 1$ are completely characterized. An efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph is given.

Keywords: outer-1-planar graph; incidence coloring; combinatorial algorithm; channel assignment problem.

1 Introduction

For groups of geographically separated people who need to keep in continuous voice communication, such as aircraft pilots and air traffic controllers, two-way radios are widely used [20]. This motivates us to investigate how to design a two-way radio network efficiently and economically.

*Supported by the Fundamental Research Funds for the Central Universities (No. QTZX22053) and the National Natural Science Foundation of China (No. 11871055).
†Corresponding author.
In a two-way radio network, each node represents a two-way radio that can both transmit and receive radio waves and there is a link between two nodes if and only if they may contact each other. Waves can transmit between two linked two-way radios in two different directions simultaneously. For a link L connecting two nodes N_i and N_j in a two-way radio network, it is usually assigned with two channels $C(N_i, N_j)$ and $C(N_j, N_i)$. The former one is used to transmit waves from N_i to N_j and the latter one is used to transmit waves from N_j to N_i. The associated channel box $B(N_i)$ of a node N_i in a two-way radio network is a multiset of channels $C(N_i, N_j)$ and $C(N_j, N_i)$ such that N_i is linked to N_j. An efficient way to avoid possible interference is to assign channels to links so that every radio receives a rainbow associated channel box (in other words, every two channels in $B(N_i)$ for every node N_i in the network are apart). For the sake of economy, while assigning channels to a two-way radio network, the fewer channels are used, the better. This can be modeled by the conflict-free incidence coloring of graphs.

From now on, we use the language of graph theory and then define conflict-free incidence coloring. We consider finite graphs and use $V(G)$ and $E(G)$ to denote the vertex set and the edge set of a graph G. The degree $d_G(v)$ of a vertex v in a graph G is the number of edges incident with v in G. We use $d(v)$ instead of $d_G(v)$ whenever the graph G is clear from the content. We call $\Delta(G) = \max\{d_G(v) \mid v \in V(G)\}$ and $\delta(G) = \min\{d_G(v) \mid v \in V(G)\}$ the maximum degree and the minimum degree of a graph G. Other undefined notation is referred to [4].

Let v be a vertex of G and e be an edge incident with v. We call the vertex-edge pair (v, e) an incidence of G. For an edge $e = uv \in E(G)$, let $\text{Inc}(e) = \{(u, e), (v, e)\}$, and for a vertex $v \in V(G)$, let $\text{Inc}(v) = \cup_{e \ni v} \text{Inc}(e)$. For a subset $U \subseteq E(G)$, let $\text{Inc}(U) = \{\text{Inc}(e) \mid e \in U\}$. Two incidences (u, e) and (v, f) are conflicting if (i) $u = v$, (ii) uw is e or f, or (iii) there is a vertex w such that $uw = e$ and $vw = f$. In other words, two incidences are conflicting if and only if there is a vertex w such that both of them belong to $\text{Inc}(w)$.

A conflict-free incidence k-coloring of a graph G is a coloring of the incidences using k colors in such a way that every two conflicting incidences get distinct colors. The minimum integer k such that G has a conflict-free incidence k-colorable is the conflict-free incidence chromatic number of G, denoted by $\chi'_i(G)$. For a conflict-free incidence coloring φ of a graph G and an edge $e = uv \in E(G)$, we use $\varphi(\text{Inc}(e))$ to denote the set $\{\varphi(u, e), \varphi(v, e)\}$. For a subset $U \subseteq E(G)$, let $\varphi(\text{Inc}(U)) = \{\varphi(\text{Inc}(e)) \mid e \in U\}$.

We look back into the channel assignment problem of two-way radio networks and explain why the conflict-free incidence coloring of graphs can model it. Let G be the graph representing the two-way radio network and let $L = N_iN_j$ be an arbitrary link, i.e, $L \in E(G)$. Assigning two channels $C(N_i, N_j)$ and $C(N_j, N_i)$ to L is now equivalent to coloring the incidences (N_i, L) and (N_j, L). The goal of assigning every radio N_i a rainbow associated channel box is translated to coloring the incidences of G so that every two incidences in $\text{Inc}(N_i)$ receive distinct colors. This is exactly what we shall do while constructing a conflict-free incidence coloring of G.

From a theoretical point of view, one may be interested in a fact that the conflict-free incidence coloring relates to the b-fold edge-coloring, which is an assignment of sets of size b to edges of a graph so that adjacent edges receive disjoint sets. An $(a : b)$-edge-coloring is a b-fold edge coloring out of a available colors. The b-fold chromatic index $\chi'_b(G)$ is the least integer a such that an $(a : b)$-edge-coloring of G exists. It is not hard to check that $\chi'_i(G) = \chi'_2(G)$ for every graph G. However, there are hard problems related to $\chi'_2(G)$, among which the
most famous one is the Berge-Fulkerson conjecture [9], which states that every bridgeless cubic graph has a
collection of six perfect matchings that together cover every edge exactly twice. This is equivalent to conjecture
that every bridgeless cubic graph G has a $(6 : 2)$-edge-coloring, i.e., $\chi'_2(G) \leq 6$. This conjecture is still widely
open [8, 10, 13, 15] and was generalized by Seymour [18] to γ-graphs.

The structure of this paper organizes as follows. In Section 2, we establish fundamental results for the conflict-
free incidence chromatic number of graphs. In Section 3, we investigate the conflict-free incidence coloring of
outer-1-planar graphs by showing that $2\Delta \leq \chi^c_i(G) \leq 2\Delta + 1$ for outer-1-planar graphs G with maximum degree
Δ unless $G \sim C_3$, and moreover, characterizing outer-1-planar graphs G with $\chi^c_i(G)$ equal to 2Δ or $2\Delta + 1$. An
efficient algorithm for constructing an optimal conflict-free incidence coloring of a connected outer-1-planar graph
is also given. We end this paper with an interesting open problem relative to the complexity in Section 4.

2 Fundamental results

Let $\chi'(G)$ be the chromatic index of G, the minimum integer k such that G admits an edge k-coloring so that
adjacent edges receive distinct colors. The following is an interesting relationship between $\chi^c_i(G)$ and $\chi'(G)$.

Proposition 1. $2\Delta(G) \leq \chi^c_i(G) \leq 2\chi'(G)$.

Proof. Since $|\text{Inc}(v)| = 2\Delta(G)$ for a vertex v with maximum degree, $\chi^c_i(G) \geq 2\Delta(G)$ for every graph G. If φ is
a proper edge coloring of G using the colors $\{1, 2, \ldots, \chi'(G)\}$, then one can construct a conflict-free incidence
$2\chi'(G)$-coloring of G such that $\varphi(\text{Inc}(e)) = \{\varphi(e), \varphi(e) + \chi'(G)\}$ for every edge $e \in E(G)$. It follows that
$\chi^c_i(G) \leq 2\chi'(G)$.

The well-known Vizing’s theorem (see [4, p128]) states that $\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1$ for every simple
graph G. This divides simple graphs into two classes. A simple graph G belongs to class one if $\chi'(G) = \Delta(G)$,
and belongs to class two if $\chi'(G) = \Delta(G) + 1$. The following are immediate corollaries of Proposition 1.

Proposition 2. If G is a class one graph, then $\chi^c_i(G) = 2\Delta(G)$.

Proposition 3. If G is simple graph, then $\chi^c_i(G) \in \{2\Delta(G), 2\Delta(G) + 1, 2\Delta(G) + 2\}$.

The well-known Kőnig’s theorem (see [4, p127]) states that every bipartite graph is of class 1. So the following
is immediate by Proposition 1.

Theorem 2.1. If G is a bipartite graph, then $\chi^c_i(G) = 2\Delta(G)$.

Now that we have Proposition 2, it would be worth determining the conflict-free incidence chromatic number
of a certain class of graphs of class two. We first look into a cycle C_n of length n.

Theorem 2.2.

$$
\chi^c_i(C_n) = \begin{cases}
4 & \text{if } n \text{ is even}, \\
5 & \text{if } n \geq 5 \text{ is odd}, \\
6 & \text{if } n = 3.
\end{cases}
$$
Algorithm 1: COLOR-CYCLE(n)

/* This algorithm constructs an optimal conflict-free incidence coloring of C_n in linear time. */

Input: The length n of a cycle C_n;
Output: A conflict-free incidence $\chi^c_n(C_n)$-coloring φ of C_n.

/* Vertices of C_n are v_1, v_2, \ldots, v_n in this ordering. */

if $n = 3$ then
 $\varphi(\text{Inc}(v_1 v_2)) \leftarrow \{1, 2\}$;
 $\varphi(\text{Inc}(v_2 v_3)) \leftarrow \{3, 4\}$;
 $\varphi(\text{Inc}(v_3 v_1)) \leftarrow \{5, 6\}$;
 return;

$p \leftarrow$ the quotient of n divided by 2;
$r \leftarrow$ the remainder of n divided by 2;

if $r = 0$ then
 $v_{2p+1} \leftarrow v_1$;
 for $i = 1$ to $2p$ do
 if $i \equiv 1 \pmod{2}$ then
 $\varphi(\text{Inc}(v_i v_{i+1})) \leftarrow \{1, 2\}$;
 else
 $\varphi(\text{Inc}(v_i v_{i+1})) \leftarrow \{3, 4\}$;
 end
else
 for $i = 1$ to $2p - 2$ do
 if $i \equiv 1 \pmod{2}$ then
 $\varphi(\text{Inc}(v_i v_{i+1})) \leftarrow \{1, 2\}$;
 else
 $\varphi(\text{Inc}(v_i v_{i+1})) \leftarrow \{3, 4\}$;
 end
 $\varphi(\text{Inc}(v_{2p-1} v_{2p})) \leftarrow \{1, 5\}$;
 $\varphi(\text{Inc}(v_{2p} v_{2p+1})) \leftarrow \{2, 3\}$;
 $\varphi(\text{Inc}(v_{2p+1} v_1)) \leftarrow \{4, 5\}$;
Algorithm 2 is

Theorem 2.3.

To analyze the complexity of the algorithm, we need look into its lines 4 and 11. If

we first show that

Proof. One can easily see that C_n admits neither a conflict-free incidence 3-coloring for any integer $n \geq 3$, and nor a conflict-free incidence 4-coloring for any odd $n \geq 3$. Moreover, C_3 does not admit a conflict-free incidence 5-coloring. Hence Algorithm 1 outputs a conflict-free incidence coloring of C_n using the least number of colors in linear time and the result follows.

We now pay attention to the n-order complete graph K_n. The famous result of Fiorini and Wilson [6] states that K_n is of class 1 provided n is even. Hence Proposition 2 directly imply the following.

Proposition 4. $\chi^c_i(K_{2n}) = 2\Delta(K_{2n}) = 4n - 2$.

Fiorini and Wilson [6] also showed that K_n is of class 2 provided n is odd, and thus Proposition 2 cannot be applied to such a K_n. Nevertheless, we can determine the conflict-free incidence chromatic number of K_n with n being odd from another view of point.

Proposition 5. If G is the graph derived from K_{2n+1} by removing less than $n/2$ edges, then $\chi^c_i(G) = 2\Delta(G) + 2 = 4n + 2$.

Proof. We first show that $\chi^c_i(G) \geq 4n + 2$. Suppose for a contradiction that φ is a conflict-free incidence $(4n + 1)$-coloring of G. Since G totally has more than $4n^2 + 2n - n = (4n + 1)n$ incidences, there is a color of φ, say 1, that has been used at least $n + 1$ times. Since every two strong incidences of a vertex are differently colored, there are $n + 1$ vertices of G, say $v_1, v_2, \ldots, v_{n+1}$, such that for each $1 \leq i \leq n + 1$, $\varphi(v_i, v_i u_i) = 1$, where u_i is one neighbor of v_i. Since every two weak incidences of a vertex are also differently colored, each u_i is different from every u_j with $j \neq i$. If u_i coincides with some v_j with $j \neq i$, then $\varphi(v_i, v_i u_i) = \varphi(u_i, u_i u_j)$, a contradiction as $(v_i, v_i u_i)$ conflicts $(u_i, u_i u_j)$. Hence each u_i is different from every v_j with $j \neq i$. It follows that $V(G) \supseteq \bigcup_{i=1}^{n+1} \{u_i, v_i\}$ and thus $|V(G)| \geq 2n + 2$, a contradiction. To show the equality, we apply proposition 3 to G. It follows that $\chi^c_i(G) \leq 2\Delta(G) + 2 = 4n + 2$, as desired.

Combining Propositions 4 and 5 together, we conclude the following.

Theorem 2.3.

$$\chi^c_i(K_n) = \begin{cases} 2n - 2 & \text{if } n \text{ is even,} \\ 2n & \text{if } n \text{ is odd.} \end{cases}$$

We use the polygon method to construct an optimal conflict-free incidence coloring of K_n by Algorithm 2. To analyze the complexity of the algorithm, we need look into its lines 4 and 11. If n is even, then for each $1 \leq i \leq n - 1$, $E_i = \{v_{i-j}v_{i+j} | j = 1, \ldots, \frac{n-2}{2}\} \cup \{v_iv_n\}$ by line 4 where the subscripts are taken module n and v_0 is recognized as v_{n-1}. If n is odd, then for each $1 \leq i \leq n$, $E_i = \{v_{i-j}v_{i+j+1} | j = 0, 1, \ldots, \frac{n-2}{2}\}$ according to line 11 where the subscripts are taken module n and v_0 is recognized as v_n. It follows that the complexity of Algorithm 2 is $O((n - 1)n/2) = O(n^2)$.
Algorithm 2: COLOR-COMPLETE-GRAPH(n)

/* This algorithm constructs an optimal conflict-free incidence coloring of \(K_n \) in quadratic time */

Input: The order \(n \) of a complete graph \(K_n \);

Output: A conflict-free incidence \(\chi^c_{ci}(K_n) \)-coloring \(\varphi \) of \(K_n \).

/* Vertices of \(K_n \) are \(v_1, v_2, \ldots, v_n \). */

1 if \(n \equiv 0 \pmod{2} \) then

2 \(G \leftarrow \) an \((n-1)\)-sided regular polygon formed by placing \(v_1, v_2, \ldots, v_{n-1} \) on a circle, with \(v_n \) at the center of the circle, and connecting every pair of vertices by straight line;

/* \(G \) now is a special drawing of \(K_n \) in the plane. */

3 for \(i = 1 \) to \(n - 1 \) do

4 \(E_i \leftarrow \) the set of all edges that lie on lines perpendicular to \(v_i v_n \) in \(G \) along with the edge \(v_i v_n \) itself;

5 for each edge \(e \in E_i \) do

6 \(\varphi(\text{Inc}(e)) \leftarrow \{2i - 1, 2i\} \);

7 else

8 \(G \leftarrow \) an \(n \)-sided regular polygon formed by placing \(v_1, v_2, \ldots, v_n \) on a circle and connecting every pair of vertices by straight line;

9 \(v_{n+1} \leftarrow v_1 \);

10 for \(i = 1 \) to \(n \) do

11 \(E_i \leftarrow \) the set of all edges that lie on lines parallel to \(v_i v_{i+1} \) in \(G \) along with the edge \(v_i v_{i+1} \) itself;

12 for each edge \(e \in E_i \) do

13 \(\varphi(\text{Inc}(e)) \leftarrow \{2i - 1, 2i\} \);

3 Outer-1-planar graphs

In this section we determine the conflict-free incidence chromatic numbers of outer-1-planar graphs, a subclass of planar partial 3-trees [1], which serve many applications ranging from network reliability to machine learning. Formally speaking, a graph is **outer-1-planar** if it can be drawn in the plane so that vertices are on the outer-boundary and each edge is crossed at most once. The notion of outer-1-planarity was first introduced by Eggleton [5] and outer-1-planar graphs are also known as **outerplanar graphs with edge crossing number one** [5] and **pseudo-outerplanar graphs** [19, 22, 27]. The coloring of outer-1-planar graphs were investigated by many authors including [3, 12, 14, 16, 19, 22–27].

The most popular result on the edge coloring of planar graphs is that planar graphs with maximum degree at least 7 is of class one [17, 21]. Since there exist class two planar graphs with maximum degree \(\Delta \) for each \(\Delta \leq 5 \),
the remaining problem is to determine whether every planar graph with maximum degree 6 is of class one, and this is still quite open (see survey [2]). Therefore, investigating the edge coloring of subclasses of planar graphs is natural and interesting. Fiorini [7] showed that every outerplanar graph is of class one if and only if it is not an odd cycle, and this conclusion had been generalized to the class of series-parallel graphs by Juvan, Mohar, and Thomas [11]. Zhang, Liu, and Wu [27] showed that outer-1-planar graphs with maximum degree at least 4 are of class one. The chromatic indexes of outer-1-planar graphs with maximum degree at most 3 was completely determined by Zhang [23].

We restate Zhang’s definition [23] as follows. Let G_2, G_4, G_8, and H_t be configurations defined by Figure 1. For any solid vertex v of a configuration and any graph G containing such a configuration, the degree of v in G is exactly the number of edges that are incident with v in the picture.

A graph belongs to the class \mathcal{P}, if it is isomorphic to K_4^+ (equal to K_4 with one edge subdivided) or derived from a graph $G \in \mathcal{P}$ by one of the following operations:

$G \sqcup_z G_t$ with $t = 2, 4, 8$ remove a vertex z of degree two from G, and then paste a copy of G_2, or G_4, or G_8 on the current graph accordingly, by identifying x and y with z_1 and z_2, respectively, where z_1 and z_2 are the neighbors of z (see Figure 2 for an example);

$G \vee_{z_1z_2} H_t$ with $t \geq 1$ remove an edge z_1z_2 from G, and then paste a copy of H_t on the current graph by identifying x_t and y_t with z_1 and z_2, respectively (see Figure 3 for an example).

Let \mathcal{P}^+ be the class of connected outer-1-planar graphs with maximum degree 3 that contains some graph in \mathcal{P} as a subgraph. Now we summarize the result of Zhang [23] and Zhang, Liu, and Wu [27] as follows.
Figure 2: The graph on the left shows G and the one on the right shows $G \sqcup_2 G_2$

Figure 3: The graph on the left shows G and the one on the right shows $G \vee_{z_1, z_2} H_1$

Theorem 3.1.
\[
\chi'(G) = \begin{cases}
\Delta(G) & \text{if } G \notin \mathcal{P}^+ \text{ and } G \text{ is not an odd cycle}, \\
\Delta(G) + 1 & \text{otherwise},
\end{cases}
\]
if G is a connected outer-1-planar graph.

Remark on Theorem 3.1: Zhang [23] claimed that every connected outer-1-planar graph with maximum degree 3 is of class one if and only if $G \notin \mathcal{P}$. However, this statement is incorrect. Indeed, Zhang showed that every graph in \mathcal{P} is of class two. This further implies that every outer-1-planar graph with maximum degree 3 that contains some graph in \mathcal{P} is of class two. In other words, every graph in \mathcal{P}^+ is of class two. Using the same proof of Theorem 3.3 in [23], one can show that if G is a connected outer-1-planar graph with maximum degree 3 not in \mathcal{P}^+ then it is of class one (note that the minimal counterexample to this statement is 2-connected and thus Zhang’s original proof works now). Conclusively, every connected outer-1-planar graph with maximum degree 3 is of class one if and only if $G \notin \mathcal{P}^+$. Combining this with the result of Zhang, Liu, and Wu [27] that every outer-1-planar graph with maximum degree at least 4 is of class one, we have Theorem 3.1.

The following is an immediate corollary of Theorem 3.1 and Proposition 1.

Theorem 3.2. If G is a connected outer-1-planar graph such that $G \notin \mathcal{P}^+$ and G is not an odd cycle, then $\chi^c_i(G) = 2\Delta(G)$.

The next goal of this section is to prove $\chi^c_i(G) = 2\Delta(G) + 1$ if $G \in \mathcal{P}^+$ or G is an odd cycle unless $G \cong C_3$. Theorem 2.2 supposes this conclusion while G is an odd cycle of length at least 5. Hence in the following we assume that $G \in \mathcal{P}^+$. Note that K^+_4 is the smallest graph (in terms of the order) in \mathcal{P}^+. Now we prove $\chi^c_i(G) = 7$ for every graph $G \in \mathcal{P}^+$ by a series of lemmas.

Lemma 3.3. $\chi^c_i(K^+_4) = 7$.

8
Proof. Figure 4 shows a conflict-free incidence 7-colorable of K^+_4, so it is sufficient to show that 6 colors are not enough to create a conflict-free incidence coloring of K^+_4.

Figure 4: A conflict-free incidence 7-colorable of K^+_4

Suppose for a contradiction that φ is a conflict-free incidence 6-coloring of K^+_4. Since K^+_4 has 7 edges and 14 incidences, there is a color, say 1, such that $\varphi(x_1, x_1x_1') = \varphi(x_2, x_2x_2') = \varphi(x_3, x_3x_3') = 1$. If $x_i = x_j$ or $x_i' = x_j'$ or $x_i = x_j'$ for some $1 \leq i < j \leq 3$, then (x_i, x_i') and (x_j, x_j') are conflicting and thus they cannot in a same color. Hence $|\{x_1, x_2, x_1', x_2', x_3, x_3'\}| = 6$, contradicting the fact that $|K^+_4| = 5$. □

From now on, if we say coloring a graph or a configuration we mean coloring its incidences so that every two conflicting ones receive distinct colors.

Lemma 3.4. If the configuration G_2 is colored with 6 colors under φ, then $\varphi(\text{Inc}(vx)) \cap \varphi(\text{Inc}(wy)) = \emptyset$.

Proof. If φ is a conflict-free incidence 6-coloring of G_2, then $\varphi(u, uv), \varphi(v, uv), \varphi(u, uw), \varphi(w, uw), \varphi(v, vw)$ and $\varphi(w, vw)$ are pairwise distinct, so we assume, without loss of generality, that they are $1, 2, 3, 4, 5,$ and 6, respectively. This forces that $\varphi(\text{Inc}(vx)) = \{3, 4\}$ and $\varphi(\text{Inc}(wy)) = \{1, 2\}$, as desired. □

Lemma 3.5. If the configuration G_4 is colored with 6 colors under φ, then $\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset$.

Proof. If φ is a conflict-free incidence 6-coloring of G_4, we have three cases: $\varphi(\text{Inc}(u_1x)) = \varphi(\text{Inc}(v_1y))$, or $\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset$, or $|\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y))| = 1$. If $\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset$, then we win. So it is sufficient to show contradictions for another two cases. Without loss of generality, we assume $\varphi(\text{Inc}(u_1x)) = \{1, 2\}, \varphi(\text{Inc}(u_1v_0)) = \{3, 4\},$ and $\varphi(\text{Inc}(u_0u_1)) = \{5, 6\}$.

Case 1. $\varphi(\text{Inc}(u_1x)) = \varphi(\text{Inc}(v_1y))$.

Now $\varphi(\text{Inc}(v_1y)) \cup \varphi(\text{Inc}(u_0u_1)) = \{1, 2, 5, 6\}$ and $\varphi(\text{Inc}(v_1y)) \cup \varphi(\text{Inc}(v_0v_1)) = \{1, 2, 3, 4\}$ forces $\varphi(\text{Inc}(u_0v_1)) = \{3, 4\}$ and $\varphi(\text{Inc}(v_0v_1)) = \{5, 6\}$, respectively. It follows $\varphi(\text{Inc}(u_0u_1)) = \varphi(\text{Inc}(u_0v_0, v_0v_1)) = \{3, 4, 5, 6\}$ and thus $\varphi(\text{Inc}(v_0w)) = \varphi(\text{Inc}(v_0w)) = \{1, 2\}$, which is impossible.

Case 2. $|\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y))| = 1$.

Assume, by symmetry, that $\varphi(\text{Inc}(v_1y)) = \{1, a\}$, where $a \in \{3, 4\}$. It follows that $\varphi(\text{Inc}(v_1y)) \cup \varphi(\text{Inc}(u_0u_1)) = \{1, a, 5, 6\}$, forcing $\varphi(\text{Inc}(v_0v_1)) = \{2, b\}$, $b \in \{3, 4\} \setminus \{a\}$. Now $\varphi(\text{Inc}(u_0v_1)) = \{2, b, 5, 6\}$ and $\varphi(\text{Inc}(v_1y)) \cup \varphi(\text{Inc}(u_0u_1)) = \{1, 2, 3, 4\}$, which implies $\varphi(\text{Inc}(v_0w)) = \{1, a\}$ and
\(\varphi(\text{Inc}(v_0v_1)) = \{5, 6\} \), respectively. It follows that \(\varphi(\text{Inc}(u_1v_0, v_0v_1, u_0w)) = \{1, 3, 4, 5, 6\} \) and thus \(\text{Inc}(uv_0) \)

have to be colored with 2, which is impossible.

\[\Box \]

Lemma 3.6. If the configuration \(G_8 \) is colored with 6 colors under \(\varphi \), then \(\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y)) \) = \(\emptyset \).

Proof. If \(\varphi \) is a conflict-free incidence 6-coloring of \(G_8 \), we have three cases: \(\varphi(\text{Inc}(u_2x)) = \varphi(\text{Inc}(v_1y)) \), or \(\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset \), or \(|\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y))| = 1 \). If \(\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset \), then we win. So it is sufficient to show contradictions for another two cases. Without loss of generality, we assume \(\varphi(\text{Inc}(v_1y)) = \{1, 2\}, \varphi(\text{Inc}(u_0v_1)) = \{3, 4\} \), and \(\varphi(\text{Inc}(v_0v_1)) = \{5, 6\} \).

Case 1. \(\varphi(\text{Inc}(u_2x)) = \varphi(\text{Inc}(v_1y)) \).

Now \(\varphi(\text{Inc}(u_2x)) \cup \varphi(\text{Inc}(v_0v_1)) = \{1, 2, 5, 6\} \) and \(\varphi(\text{Inc}(u_0v_0, v_0v_1)) = \{3, 4\} \) forces \(\varphi(\text{Inc}(u_2v_0)) = \{3, 4\} \) and \(\varphi(\text{Inc}(u_0v_0)) = \{1, 2\} \), respectively. It follows \(\varphi(\text{Inc}(u_0v_0, u_0v_1)) = \varphi(\text{Inc}(u_2x)) \cup \varphi(\text{Inc}(u_2v_0)) = \{1, 2, 3, 4\} \) and thus \(\varphi(\text{Inc}(u_0u_1)) = \varphi(\text{Inc}(u_1u_2)) = \{5, 6\} \), which is impossible.

Case 2. \(|\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y))| = 1 \).

Assume, by symmetry, that \(\varphi(\text{Inc}(u_2x)) = \{1, a\} \), where \(a \in \{5, 6\} \). It follows that \(\varphi(\text{Inc}(u_0v_1)) \cup \varphi(\text{Inc}(v_0v_1)) = \{3, 4, 5, 6\} \) and \(\varphi(\text{Inc}(v_0v_1)) = \{3, 4\} \) forces \(\varphi(\text{Inc}(u_2v_0)) = \{1, 2\} \) and \(\varphi(\text{Inc}(u_2v_0)) = \{3, 4\} \). Now \(\varphi(\text{Inc}(u_0v_0, u_0v_1)) = \{1, 2, 3, 4\} \) which implies \(\varphi(\text{Inc}(u_0u_1)) = \{5, 6\} \). It follows that \(\varphi(\text{Inc}(u_0u_1, u_2x, u_2v_0)) = \{1, 3, 4, 5, 6\} \) and thus \(\text{Inc}(u_1u_2) \) have to be colored with 2, which is impossible.

\[\Box \]

Lemma 3.7. If the configuration \(H_t \) with some \(t \geq 1 \) is colored with 6 colors under \(\varphi \), then \(\varphi(\text{Inc}(x_{t-1}x_t)) = \varphi(\text{Inc}(y_{t-1}y_t)) \).

Proof. We prove it by induction on \(t \). If \(\varphi \) is a conflict-free incidence 6-coloring of \(H_1 \), then we assume, without loss of generality, \(\varphi(x', x'y'), \varphi(y', x'y'), \varphi(x', x'y'), \varphi(y_0, x'y_0), \varphi(x', x'x_0), \) and \(\varphi(x_0, x'x_0) \) are \(1, 2, 3, 4, 5, \) and 6, respectively. Since \(\varphi(\text{Inc}(x'y', x'x_0)) = \{1, 2, 5, 6\} \) and \(\varphi(\text{Inc}(x'y', x'y_0)) = \{1, 2, 3, 4\} \), we have \(\varphi(\text{Inc}(x_0y')) = \{3, 4\} \) and \(\varphi(\text{Inc}(y_0y')) = \{5, 6\} \), which imply \(\varphi(\text{Inc}(x_0x_1)) = \varphi(\text{Inc}(y_0y_1)) = \{1, 2\} \). This completes the proof of the base case. Now suppose that the lemma holds for \(H_{t-1} \) with some \(t \geq 2 \) and prove that it also holds for \(H_t \). By the induction hypothesis, \(\varphi(\text{Inc}(x_{t-2}x_{t-1})) = \varphi(\text{Inc}(y_{t-2}y_{t-1})) \). This implies \(\varphi(\text{Inc}(x_{t-1}x_t)) = \{1, 2, 3, 4, 5, 6\} \setminus \{\varphi(\text{Inc}(x_{t-2}x_{t-1})) \cup \varphi(\text{Inc}(x_{t-1}y_{t-1}))\} \) and \(\varphi(\text{Inc}(y_{t-1}y_t)) = \{1, 2, 3, 4, 5, 6\} \setminus \{\varphi(\text{Inc}(y_{t-2}y_{t-1})) \cup \varphi(\text{Inc}(x_{t-1}y_{t-1}))\} \), and thus \(\varphi(\text{Inc}(x_{t-1}x_t)) = \varphi(\text{Inc}(y_{t-1}y_t)) \), as desired.

\[\Box \]

Lemma 3.8. If \(\varphi \) is a partial incidence coloring of the configuration \(G_2 \) such that \(\varphi(\text{Inc}(vx)) \cap \varphi(\text{Inc}(wy)) = \emptyset \), then \(\varphi \) can be extended to a conflict-free incidence 6-coloring of the configuration \(G_2 \).

Proof. Suppose \(\varphi(\text{Inc}(vx)) = \{1, 2\} \) and \(\varphi(\text{Inc}(wy)) = \{3, 4\} \). It is easy to see that we can extend \(\varphi \) to a conflict-free incidence 6-coloring of \(G_2 \) by coloring \(\text{Inc}(uw, uw, vw) \) so that \(\varphi(\text{Inc}(uv)) = \{3, 4\} \), \(\varphi(\text{Inc}(uw)) = \{1, 2\} \) and \(\varphi(\text{Inc}(vw)) = \{5, 6\} \).

\[\Box \]
Lemma 3.9. If \(\varphi \) is a partial incidence coloring of the configuration \(G_4 \) such that \(\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset \), then \(\varphi \) can be extended to a conflict-free incidence 6-coloring of the configuration \(G_4 \).

Proof. Suppose \(\varphi(\text{Inc}(u_1x)) = \{1, 2\} \) and \(\varphi(\text{Inc}(v_1y)) = \{3, 4\} \). It is easy to see that we can extend \(\varphi \) to a conflict-free incidence 6-coloring of \(G_4 \) by coloring \(\text{Inc}(u_0v_1, v_0w, u_0w, u_1v_0, u_0u_1, v_0v_1) \) so that \(\varphi(\text{Inc}(u_0v_1)) = \varphi(\text{Inc}(v_0w)) = \{1, 2\}, \varphi(\text{Inc}(u_0w)) = \varphi(\text{Inc}(u_1v_0)) = \{3, 4\}, \) and \(\varphi(\text{Inc}(u_0u_1)) = \varphi(\text{Inc}(v_0v_1)) = \{5, 6\} \).

Lemma 3.10. If \(\varphi \) is a partial incidence coloring of the configuration \(G_8 \) such that \(\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset \), then \(\varphi \) can be extended to a conflict-free incidence 6-coloring of the configuration \(G_8 \).

Proof. Suppose \(\varphi(\text{Inc}(u_2x)) = \{1, 2\} \) and \(\varphi(\text{Inc}(v_1y)) = \{3, 4\} \). We can extend \(\varphi \) to a conflict-free incidence 6-coloring of \(G_4 \) by coloring the incidences on \(v_0v_1, u_0u_1, u_0v_0, u_1u_2, u_0v_1, \) and \(u_2v_0 \) so that \(\varphi(\text{Inc}(u_0v_1)) = \varphi(\text{Inc}(u_0u_1)) = \{1, 2\}, \varphi(\text{Inc}(u_0v_0)) = \varphi(\text{Inc}(u_1u_2)) = \{3, 4\}, \) and \(\varphi(\text{Inc}(u_0v_1)) = \varphi(\text{Inc}(u_2v_0)) = \{5, 6\} \).

Lemma 3.11. If \(\varphi \) is a partial incidence coloring of the configuration \(H_t \) with some \(t \geq 1 \) such that \(\varphi(\text{Inc}(x_{t-1}x_t)) = \varphi(\text{Inc}(y_{t-1}y_t)) \), then \(\varphi \) can be extended to a conflict-free incidence 6-coloring of the configuration \(H_t \).

Proof. We prove it by induction on \(t \). If \(\varphi \) is a partial incidence coloring of the configuration \(H_1 \) such that \(\varphi(\text{Inc}(x_0x_1)) = \varphi(\text{Inc}(y_0y_1)) = \{1, 2\} \), then \(\varphi \) can be extended to a conflict-free incidence 6-coloring of \(H_t \) by coloring \(\text{Inc}(x'y', x'y_0, x_0y', x'x_0, y'y_0) \) so that \(\varphi(\text{Inc}(x'y')) = \{1, 2\}, \varphi(\text{Inc}(x'y_0)) = \varphi(\text{Inc}(x_0y')) = \{3, 4\}, \) and \(\varphi(\text{Inc}(x'x_0)) = \varphi(\text{Inc}(y'y_0)) = \{5, 6\} \). This completes the proof of the base case. Now suppose that the lemma holds for \(H_{t-1} \) with some \(t \geq 2 \) and prove that it also holds for \(H_t \). Assume, without loss of generality, that \(\varphi(\text{Inc}(x_{t-1}x_t)) = \varphi(\text{Inc}(y_{t-1}y_t)) = \{1, 2\} \). We extend \(\varphi \) by coloring \(\text{Inc}(x_{t-2}x_{t-1}, y_{t-2}y_{t-1}, x_{t-1}y_{t-1}) \) so that \(\varphi(\text{Inc}(x_{t-2}x_{t-1})) = \varphi(\text{Inc}(y_{t-2}y_{t-1})) = \{3, 4\} \) and \(\varphi(\text{Inc}(x_{t-1}y_{t-1})) = \{5, 6\} \). This constructs a partial incidence coloring of the configuration \(H_{t-1} = H_t - \{x_{t-1}y_{t-1}, x_{t-1}x_t, y_{t-1}y_t\} \) such that \(\varphi(\text{Inc}(x_{t-2}x_{t-1})) = \varphi(\text{Inc}(y_{t-2}y_{t-1})) \). Since any incidence of \(\text{Inc}(x_{t-1}y_{t-1}, x_{t-1}x_t, y_{t-1}y_t) \) is conflict-free to any incidence of \(\text{Inc}(H_{t-1}) \), by the induction hypothesis, the extended \(\varphi \) can be further extended to a conflict-free incidence 6-coloring of the configuration \(H_t \).

Proposition 6. If \(G \in \mathcal{P} \), then \(\chi^*_5(G) = 7 \).

Proof. We proceed by induction on \(|G| \). Since the smallest graph in \(\mathcal{P} \) is \(K_4^+ \), and \(\chi^*_5(K_4^+) = 7 \) by Lemma 3.3, the proof of the base case has been done. Now assume \(|G| > 5 \). By the construction of \(\mathcal{P} \), we meet four cases. Here and elsewhere, once \(G \) contains a configuration as shown in Figure 11, we use the same labelling of any vertex appearing on the configuration as the one marked in the corresponding picture.

Case 1. There is a graph \(G' \in \mathcal{P} \) and a degree 2 vertex \(z \) of \(G' \) such that \(G = G' \cup z G_2 \) (or \(G = G' \cup z G_4 \), or \(G = G' \cup z G_8 \), respectively).
By the induction hypothesis, $\chi^c_i(G') = 7$. Let z_1, z_2 be two neighbors of z in G' and let φ be a conflict-free incidence 7-coloring of G'. Clearly, $\varphi(\text{Inc}(zz_1)) \cap \varphi(\text{Inc}(zz_2)) = \emptyset$. We construct a conflict-free incidence 7-coloring ϕ of G as follows. Let $\phi(\text{Inc}(vx)) = \varphi(\text{Inc}(zz_1))$ and $\phi(\text{Inc}(wy)) = \varphi(\text{Inc}(zz_2))$ (or $\phi(\text{Inc}(u_1x)) = \varphi(\text{Inc}(zz_1))$ and $\phi(\text{Inc}(v_1y)) = \varphi(\text{Inc}(zz_2))$, respectively). This makes a partial incidence coloring of the configuration G_2 (or G_4, or G_8, respectively) such that $\varphi(\text{Inc}(vx)) \cap \varphi(\text{Inc}(wy)) = \emptyset$ (or $\varphi(\text{Inc}(u_1x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset$, or $\varphi(\text{Inc}(u_2x)) \cap \varphi(\text{Inc}(v_1y)) = \emptyset$, respectively). By Lemma 3.8 (or Lemma 3.9 or Lemma 3.10, respectively), ϕ can be extended to a conflict-free incidence 7-coloring of the incidences of $I(E(G) \setminus E(G'))$ receive distinct colors. Now for every edge $e \in E(G) \cap E(G')$, let $\phi(\text{Inc}(e)) = \varphi(\text{Inc}(e))$. This completes a 7-coloring of the incidences of G and it is easy to check that this coloring is conflict-free.

On the other hand, we show that G admits no conflict-free incidence 6-coloring. Suppose, for a contradiction, that ϕ is a conflict-free incidence 6-coloring of G. By Lemma 3.4 (or Lemma 3.5 or Lemma 3.6, respectively), $\phi(\text{Inc}(vx)) \cap \phi(\text{Inc}(wy)) = \emptyset$ (or $\phi(\text{Inc}(u_1x)) \cap \phi(\text{Inc}(v_1y)) = \emptyset$, or $\phi(\text{Inc}(u_2x)) \cap \phi(\text{Inc}(v_1y)) = \emptyset$, respectively). This makes us possible to construct a conflict-free incidence 6-coloring φ of G' by setting $\varphi(\text{Inc}(zz_1)) = \phi(\text{Inc}(vx)), \varphi(\text{Inc}(zz_2)) = \phi(\text{Inc}(wy))$, (or $\varphi(\text{Inc}(zz_1)) = \phi(\text{Inc}(u_1x)), \varphi(\text{Inc}(zz_2)) = \phi(\text{Inc}(v_1y))$, or $\varphi(\text{Inc}(zz_1)) = \phi(\text{Inc}(u_2x)), \varphi(\text{Inc}(zz_2)) = \phi(\text{Inc}(v_1y))$, respectively) and $\varphi(\text{Inc}(e)) = \phi(\text{Inc}(e))$ for every edge $e \in E(G') \setminus E(G)$. This is a contradiction.

Case 2. There is a graph $G' \in \mathcal{P}$ and an edge z_1z_2 of G' such that $G = G' \cup z_1z_2 H_i$.

By the induction hypothesis, $\chi^c_i(G') = 7$. Let φ be a conflict-free incidence 7-coloring of G'. We construct a conflict-free incidence 7-coloring ϕ of G as follows. Let $\phi(\text{Inc}(x_{i-1}x_i)) = \phi(\text{Inc}(y_{i-1}y_i)) = \varphi(\text{Inc}(z_1z_2))$. This makes a partial incidence coloring of the configuration H_i such that $\phi(\text{Inc}(x_{i-1}x_i)) = \phi(\text{Inc}(y_{i-1}y_i))$. By Lemma 3.11, ϕ can be extended to a conflict-free incidence 7-coloring of the configuration H_i. Now for every edge $e \in E(G) \cap E(G')$, let $\phi(\text{Inc}(e)) = \varphi(\text{Inc}(e))$. This completes a 7-coloring of the incidences of G and it is easy to check that this coloring is conflict-free.

On the other hand, we show that G admits no conflict-free incidence 6-coloring. Suppose, for a contradiction, that ϕ is a conflict-free incidence 6-coloring of G. By Lemma 3.7, $\phi(\text{Inc}(x_{i-1}x_i)) = \phi(\text{Inc}(y_{i-1}y_i))$. This makes us possible to construct a conflict-free incidence 6-coloring φ of G' by setting $\varphi(\text{Inc}(z_1z_2)) = \phi(\text{Inc}(x_{i-1}x_i))$ and $\varphi(\text{Inc}(e)) = \phi(\text{Inc}(e))$ for every edge $e \in E(G') \setminus E(G)$. This is a contradiction.

Algorithm 3 summarises the idea of proving Theorem 6, showing how we can construct a conflict-free incidence 7-coloring of a graph in \mathcal{P} efficiently. Now we are ready to prove a more general result as follows.

Theorem 3.12. If $G \in \mathcal{P}^+$, then $\chi^c_i(G) = 7$.

Proof. We proceed by induction on $|G|$. Note that the base case is supported by Lemma 3.3. By the definition of \mathcal{P}, every graph in \mathcal{P} has exactly one vertex of degree 2, besides which all vertices are of degree 3. By Proposition 6, we assume $G \in \mathcal{P}^+ \setminus \mathcal{P}$.
Algorithm 3: COLOR-CLASS-P(G)

Input: A graph $G \in \mathcal{P}$;

Output: A conflict-free incidence 7-coloring φ of G.

1. $i \leftarrow 0;
2. G_0 \leftarrow G;
3. \textbf{while } G_i \not\simeq K_4^- \textbf{ do }
4. \quad \textbf{if there is a graph } G' \in \mathcal{P} \text{ with a degree 2 vertex } z \text{ such that } G_i = G' \sqcup_z G_t \text{ for some } t \in \{2, 4, 8\};
5. \quad \text{ then }
6. \quad \quad G_{i+1} \leftarrow G';
7. \quad \quad \text{sign}_i \leftarrow t;
8. \quad \textbf{else }
9. \quad \quad \text{Find a graph } G' \in \mathcal{P} \text{ with an edge } z_1 z_2 \text{ such that } G_i = G' \lor z_1 z_2 \text{ for some integer } t;
10. \quad \quad G_{i+1} \leftarrow G';
11. \quad \quad \text{sign}_i \leftarrow 0;
12. \quad i \leftarrow i + 1;

/* We obtain a series G_0, G_1, \ldots, G_i of graphs in \mathcal{P} where $G_0 = G$ and $G_i = K_4^-$. */

13. Construct a conflict-free 7-coloring φ_i of G_i by Lemma 3.3;
14. \textbf{for } j = i - 1 \textbf{ to } 0 \textbf{ do }
15. \quad Extend φ_{j+1} to a conflict-free 7-coloring φ_j of G_j by Lemma 3.8, 3.9, 3.10, or 3.11 whenever sign$_j$ equals to 2, 4, 8, or 0, respectively;
16. \quad $\varphi \leftarrow \varphi_0$;

Suppose that G contains a graph $H \in \mathcal{P}$ as a proper subgraph. Let u be the unique vertex of degree 2 of H and let v and w be the two neighbors of u in H. Since $\Delta(G) \leq 3$ and G is connected, the degree of u in G must be 3. Let x be the third neighbor of u in G. Since every vertex in $V(H) \setminus \{u\}$ has degree 3 in H (and thus in G), u is a cut-vertex of G.

Let H' be the subgraph of G containing u such that $V(H') \cap V(H) = \{u\}$ and $V(H') \cup V(H) = V(G)$. Since u has degree 1 in H', H' is not an odd cycle. Therefore, if $H' \in \mathcal{P}^+$, then $\chi_c^G(H') = 7$ by the induction hypothesis, and if $H' \not\in \mathcal{P}^+$, then $\chi_c'(H') = \Delta(H') \leq 3$ by Theorem 3.1 and thus $\chi_c^G(H') \leq 6$ by Proposition 1. In each case, there is a conflict-free incidence 7-coloring ϕ' of H'.

Since $H \in \mathcal{P}$, there is a conflict-free incidence 7-coloring ϕ of H by Proposition 6. We permute (if necessary) the colors of ϕ so that $\phi(Inc(uv)), \phi(Inc(uw))$, and $\phi'(Inc(ux))$ are pairwise disjoint, and then obtain a conflict-free incidence 7-coloring of G by combining ϕ' with ϕ. This implies $\chi_c^G(H) \leq 7$.

On the other hand, $\chi_c^G(G) \geq \chi_c^G(H) = 7$. Hence $\chi_c^G(G) = 7$. \qed
Algorithm 4: COLOR-CLASS-P-PLUS(G)

Input: A graph $G \in \mathcal{P}^+$;
Output: A conflict-free incidence 7-coloring φ of G.

1. if $G \in \mathcal{P}$ then
2. \hspace{1em} COLOR-CLASS-P(G);
 \hspace{1em} /* The coloring outputted by line 2 is denoted by φ. */
3. else
4. \hspace{1em} Find a subgraph $H \in \mathcal{P}$ of G with a vertex u that has exactly two neighbors v and w in H;
5. \hspace{1em} $H' \leftarrow$ the graph with vertex set $V(G) \setminus (V(H) \setminus \{u\})$ and edge set $(E(G) \setminus E(H)) \cup \{ux\}$;
6. \hspace{1em} $x \leftarrow$ the unique neighbor of u in H';
7. \hspace{1em} if $H' \in \mathcal{P}^+$ then
8. \hspace{2em} COLOR-CLASS-P-PLUS(H');
 \hspace{2em} /* The coloring outputted by line 8 is denoted by φ'. */
9. else
10. \hspace{2em} Find a proper edge 3-coloring φ' of H' by Theorem 3.1;
11. \hspace{2em} for each edge $e \in H'$ do
12. \hspace{3em} $\varphi'(\text{Inc}(e)) \leftarrow \{\varphi'(e), \varphi'(e) + 3\}$;
13. \hspace{1em} COLOR-CLASS-P(H);
 \hspace{1em} /* The coloring outputted by line 13 is denoted by ϕ. */
14. \hspace{1em} Exchange (if necessary) the colors of ϕ so that $\phi(\text{Inc}(uw)), \phi'(\text{Inc}(uw))$, and $\varphi'(\text{Inc}(ux))$ are pairwise disjoint;
15. \hspace{1em} $\varphi \leftarrow$ the coloring obtained via combing ϕ' with ϕ;

Algorithm 4 shows the idea of constructing a conflict-free incidence 7-coloring of a given graph in \mathcal{P}^+. Now that we have Theorems 2.2, 3.2, and 3.12 the conflict-free incidence chromatic number of connected outer-1-planar graphs (and thus all outer-1-planar graphs) can be completely determined by Theorem 3.13. Algorithm 5 shows an approach to efficiently construct a conflict-free incidence $\chi_i(G)$-coloring φ of a connected outer-1-planar graph G.

Theorem 3.13.

$$
\chi_i^c(G) = \begin{cases}
6 & \text{if } G \cong C_3, \\
2\Delta(G) & \text{if } G \not\in \mathcal{P}^+ \text{ and } G \text{ is not an odd cycle}, \\
2\Delta(G) + 1 & \text{otherwise}
\end{cases}
$$

for every connected outer-1-planar graph G.

14
Algorithm 5: COLOR-O1P(G)

Input: A connected out-1-planar graph G;

Output: A conflict-free incidence $\chi_i(G)$-coloring φ of G.

/* This algorithm constructs an optimal conflict-free incidence coloring of a connected outer-1-planar graph G. */

1. if G is a cycle then
 2. COLOR-CYCLE($|G|$);
3. else
4. if $G \in \mathcal{P}^+$ then
5. COLOR-CLASS-P-PLUS(G);
6. else
7. Find a proper edge $\Delta(G)$-coloring ϕ of G by Theorem 3.1
8. for each edge $e \in G$ do
9. $\varphi(\text{Inc}(e)) \leftarrow \{\phi(e), \phi(e) + \Delta(G)\}$;

4 Open problem

To end this paper, we leave an open problem relative to the complexity of the conflict-free incidence coloring. As one can know from Proposition 3 that $\chi^c_i(G) \in \{2\Delta(G), 2\Delta(G) + 1, 2\Delta(G) + 2\}$ for every simple graph G, an interesting problem is to investigate the complexity of the following question.

CONFLICT-FREE INCIDENCE COLORING PROBLEM (CFICP)

Input: A graph G and a positive integer k.

Question: Is there a conflict-free incidence k-coloring of G?

We conjecture that CFICP is NP-Complete.

References

[1] C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer, D. Neuwirth, and J. Reislhuber, Recognizing outer 1-planar graphs in linear time, Graph drawing, 2013, pp. 107–118. MR3162015

[2] Y. Cao, G. Chen, G. Jing, M. Stiebitz, and B. Toft, Graph edge coloring: a survey, Graphs Combin. 35 (2019), no. 1, 33–66. MR3898375

[3] Q. Chen, Adjacent vertex distinguishing total colorings of outer 1-planar graphs, J. Combin. Math. Combin. Comput. 108 (2019), 221–230. MR3967165

[4] R. Diestel, Graph theory (fifth edition), Springer Berlin Heidelberg, Berlin, Heidelberg, 2017. ↑2, 3

[5] R. B. Eggleton, Rectilinear drawings of graphs, Utilitas Math. 29 (1986), 149–172. MR846198

[6] S. Fiorini and R. J. Wilson, Edge-colourings of graphs, Research Notes in Mathematics, No. 16, Pitman, London; distributed by Fearon-Pitman Publishers, Inc., Belmont, Calif., 1977. MR0543798

[7] S. Fiorini, On the chromatic index of outerplanar graphs, J. Combinatorial Theory Ser. B 18 (1975), 35–38. MR0366724
