THE SUB-SATURN MASS TRANSITING PLANET HAT-P-12b

JAE WOO LEE, JAE-HYUCK YOUN, SEUNG-LEE KIM, CHUNG-UK LEE, AND TOBIAS CORNELIUS HINSE

Optical Astronomy Division, Korea Astronomy and Space Science Institute, Daejon 305-348, Republic of Korea; jwlee@kasi.re.kr, jhyoon@kasi.re.kr, skim@kasi.re.kr, leeuc@kasi.re.kr, tchinse@gmail.com

Received 2011 November 30; accepted 2012 January 30; published 2012 March 15

ABSTRACT

We present new photometric data of the transiting planet HAT-P-12b observed in 2011. Our three transit curves are modeled using the JKTEBOP code and adopting the quadratic limb-darkening law. Including our measurements, 18 transit times spanning about 4.2 yr were used to determine the improved ephemeris with a transit epoch of 2,454,187.85506 ± 0.00011 BJD and an orbital period of 3.2130596 ± 0.0000035 days. The physical properties of the star–planet system are computed using empirical calibrations from eclipsing binary stars and stellar evolutionary models, combined with both our transit parameters and previously known spectroscopic results. We found that the absolute dimensions of the host star are $M_A = 0.73 ± 0.02 M_\odot$, $R_A = 0.70 ± 0.01 R_\odot$, log $g_A = 4.61 ± 0.02$, $\rho_A = 2.10 ± 0.09 \rho_\odot$, and $L_A = 0.21 ± 0.01 L_\odot$. The planetary companion has $M_b = 0.21 ± 0.01 M_{\text{Jup}}$, $R_b = 0.94 ± 0.01 R_{\text{Jup}}$, log $g_b = 2.77 ± 0.02$, $\rho_b = 0.24 ± 0.01 \rho_{\text{Jup}}$, and $T_{eq} = 960 ± 14$ K. Our results agree well with standard models of irradiated gas giants with a core mass of $11.3 M_\odot$.

Key words: planetary systems – stars: individual (HAT-P-12) – techniques: photometric

Online-only material: color figures, machine-readable and VO tables

1. INTRODUCTION

Transiting exoplanets are interesting objects to study because the coupling of radial velocity and photometric measurements allows a determination of stellar and planetary parameters and thus gives us an important constraint on fundamental models of planet formation and evolution. For that purpose, we need to precisely measure the physical properties of both the stars and planets in these systems from a detailed analysis of transit curves obtained with high-precision photometry. Basically, it is possible to regard the star–planet systems as detached eclipsing binaries with extremely low-mass ratios (<0.001). Therefore, the methods and tools that are used to model the binary stars could be applied to analyze the light curves of transiting exoplanets and then to determine their physical parameters (Southworth 2008, 2009; Lee et al. 2011).

The transiting nature of HAT-P-12b was detected with the HAT-5 telescope of the Hungarian-made Automated Telescope Network (Bakos et al. 2004) in 2006. Hartman et al. (2009) conducted follow-up photometry of four transits together with spectroscopic observations and reported that the transit features come from a Saturn mass planet with a mass of 0.21 ± 0.01 M_{Jup} and a radius of 0.94 ± 0.01 R_{Jup} in a 3.2 day circular orbit. Its host star is a K4 dwarf GSC 3033-706 (2MASS J13573347+4329367; $V = +12.84$) with $M_A = 0.73 ± 0.02 M_\odot$, $R_A = 0.70 ± 0.01 R_\odot$, and [Fe/H] = −0.29 ± 0.05. Since HAT-P-12b is one of the lowest-density planets orbiting metal-poor host stars, the physical properties of the system are important for irradiation models. In this work, we report and analyze three new high-precision transits of HAT-P-12 and refine the physical parameters of the transiting planetary system.

2. NEW OBSERVATIONS

We obtained new photometric data from observing three transits of HAT-P-12b. Observations were carried out between 2011 March and May, using an ARC 4K CCD camera and a Cousins R filter attached to the 1.0 m reflector at the Mt. Lemmon Optical Astronomy Observatory (LOAO) in Arizona, USA. The telescope was significantly defocused, because it is expected to minimize random and flat-fielding errors (see, e.g., Southworth et al. 2009). The e2v CCD chip has 4096 × 4096 pixels and a pixel size of 15.28 arcmin2 at the f/7.5 Cassegrain focus of the telescope. A summary of the observations is given in Table 1, where we present observing interval, filter, binning mode, exposure time, numbers of observed points, and weather condition. During the first run, a gap before the transit ingress was caused by technical problems. With the customary IRAF package, we processed the CCD frames to correct for bias level, dark noise, and pixel-to-pixel inhomogeneities of quantum efficiency (flat-field correction). We applied simple aperture photometry to obtain instrumental magnitudes.

For each transit event, we constructed an artificial comparison star by monitoring field stars imaged on the chip. Following the method described in Lee et al. (2011), we selected and followed field stars from a set of artificial reference stars. Then, the differential magnitudes from the artificial reference were normalized by fitting a linear function to the out-of-transit data to remove time-varying atmospheric effects (detrending). Resultant transit curves are plotted in Figure 1 and listed in Table 2, where times are Barycentric Julian Dates (BJD) in the Barycentric Dynamical Time (TDB) system (Eastman et al. 2010).

3. LIGHT CURVE ANALYSIS AND TRANSIT TIMES

To determine the planetary and orbital parameters, three LOAO transits of HAT-P-12 were analyzed simultaneously in a manner almost identical to that for the transiting planetary system TrES-3 (Lee et al. 2011) using the JKTEBOP code (Southworth et al. 2004a, 2004b), which is a code for modeling the light curves of detached eclipsing binary stars using biaxial spheroids. The main parameters of the model are the orbital period (P), the ephemeris epoch (T_0), the fractional radii of the star ($r_A = R_A/a$, where a is the orbital semimajor axis).
and planet ($r_b = R_b/a$), the orbital inclination (i), and the limb-darkening coefficients (LDCs). Actually, r_A and r_b are incorporated as their sum ($r_A + r_b$) and ratio ($k = r_b/r_A$). Throughout this paper, we refer to the star and planet with the subscripts “A” and “b,” respectively.

In the transit analysis, we used $r_A + r_b$ and k as the fitting parameters, because these parameters are more weakly correlated than r_A and r_b (Southworth 2008). Initial quadratic LDCs were taken from the tables of Claret (2000), using the atmospheric parameters of $T_A = 4650 \pm 60$ K, $\log g_A = 4.61 \pm 0.01$, and $[\text{Fe/H}] = -0.29 \pm 0.05$ (Hartman et al. 2009). Final results are obtained from fitting the linear LDC (u_A) but fixing the nonlinear LDC (v_A), because the two LDCs suffer from strong correlations between them (Southworth 2008; Johnson et al. 2008). These are summarized in Table 3, together with the stellar density (ρ_A) and the planetary surface gravity (g_b) and zero-albedo equilibrium temperature defined as $T_{\text{eq}} = T_A \sqrt{R_A / R}$ (Southworth 2010). The lower three values were directly calculated from those transit parameters and the stellar velocity amplitude ($K_A = 35.8 \pm 1.9 \text{ m s}^{-1}$) of Hartman et al. (2009). In order to assess the uncertainties of the fitted parameters, we ran 10,000 Monte Carlo simulations and a residual permutation algorithm (Jenkins et al. 2002) implemented into JKTEBOP, respectively. On these occasions, the nonlinear LDC was perturbed by ± 0.1 around the fixed value. The error estimates presented in Table 3 are the 1σ values adopted from the larger of the two results. Figure 2 displays the light curves with our best-fitting model and residuals.

Table 1: Observing Log of HAT-P-12

Transit	UT Date	Observing Interval (BJD+2,455,000)	Filter	Binning Mode	Exposure Time (s)	N_{obs}	Weather Condition
1	2011 Mar 29	649.67–649.95	RC	2 × 2	50–70	224	Clear
2	2011 Apr 14	665.74–665.97	RC	2 × 2	50–70	273	Partly cloudy
3	2011 May 13	694.65–694.93	RC	2 × 2	40–60	314	Clear

Table 2: R_C-band Photometry of HAT-P-12

BJD	Diff. Mag	σ_{mag}	Relative Flux
2455649.67120	+0.0005	0.0021	0.9995
2455649.67207	-0.0043	0.0021	1.0039
2455649.67293	-0.0004	0.0021	1.0003
2455649.67380	+0.0009	0.0021	0.9991
2455649.67467	+0.0019	0.0021	0.9982
2455649.67554	+0.0011	0.0021	0.9990
2455649.67641	+0.0011	0.0021	0.9990
2455649.67729	-0.0038	0.0021	1.0035
2455649.67815	-0.0001	0.0021	1.0001
2455649.67902	+0.0001	0.0021	0.9999

Notes.

a BJD 2,455,000 is suppressed.
b rms scatter of residuals.

Table 3: Transit Parameters of HAT-P-12

Parameter	Value
$r_A + r_b$	0.0969 ± 0.0012
$k (=r_b/r_A)$	0.1370 ± 0.0019
i (deg)	89.915 ± 0.098
u_A	0.739 ± 0.069
v_A	0.177 perturbed
T_0 (BJD)	649.79751 ± 0.00036
P (days)	3.213089 ± 0.000037
r_A	0.0852 ± 0.0012
r_b	0.01168 ± 0.00005
σ (mmag)	2.1269
K_{rad}	0.9920
ρ_A (ρ_{\odot})	2.100 ± 0.089
g_b (g_{eq})	0.257 ± 0.014
T_{eq} (K)	960 ± 14

Figure 1. Transit light curves of HAT-P-12 observed between 2011 March and May.
Figure 2. Phased light curves of HAT-P-12. The continuous curves represent the solutions obtained with the best-fit parameters listed in Table 3. The residuals from the fit are offset from zero and plotted at the bottom in the same order as the transit curves.

(A color version of this figure is available in the online journal.)

Table 4

BJD	Uncertainty	E	$O - C_{tr}$	Referencesa
(2,450,000+)	±0.00020	0	0.00095	Hartman et al. (2009)
4,187.85655b	±0.00014	9	−0.00049	Hartman et al. (2009)
4,216.77265b	±0.00017	212	−0.00027	Hartman et al. (2009)
4,897.94225b	±0.00024	221	0.00048	Hartman et al. (2009)
4,952.56398	±0.00080	238	0.00019	Gregorio (AXA)
4,965.41639	±0.00046	242	0.00036	Kucakova (TRESCA)
4,965.41748	±0.00090	242	0.00145	Ayoimanitis (AXA)
4,984.69368	±0.00060	248	−0.00070	Gary (AXA)
5,312.42673	±0.00032	350	0.00027	Vilagi & Gajdos (TRESCA)
5,630.51896	±0.00049	449	−0.00040	Ivanov & Sokov (TRESCA)
5,646.58477	±0.00059	454	0.00011	Nicolas (TRESCA)
5,646.58486	±0.00040	454	0.00020	Gajdos & Vilagi (TRESCA)
5,649.79769	±0.00020	455	−0.00003	Salas (TRESCA)
5,659.43563	±0.00038	458	−0.00127	Ruiz (TRESCA)
5,665.86234	±0.00031	460	−0.00068	This paper (LOAO)
5,675.49947	±0.00064	463	−0.00273	Zinoviev & Sokov (TRESCA)
5,694.78089	±0.00024	469	0.00033	This paper (LOAO)
5,704.42185	±0.00038	472	0.00211	Salas (TRESCA)

Notes.

a AXA (Amateur eXoplanet Archive), TRESCA (TRansiting ExoplanetS and Candidates).

b Newly determined by us from the individual measurements.

4. RESULTS AND DISCUSSION

We can compute the absolute dimensions of transiting planetary systems by combining photometric and spectroscopic results. Currently, there are two main methods of obtaining stellar and planetary parameters from the observed quantities. The first method is to use the empirical relations from eclipsing binary stars and the second is to apply the isochrones from stellar evolutionary models. For this procedure, we used the planet velocity amplitude K_0 as a key parameter governing the solution process to find the best match between the observations and predictions, which is the same approach as in Southworth (2009) and Lee et al. (2011).

First of all, we calculated the physical properties of the HAT-P-12 system using the new calibrations of stellar masses and radii expressed as T_A, $\log m_A$, and $[\text{Fe/H}]$ (Enoch et al. 2010, hereafter ECPH), which are originally defined by Torres et al. (2010) from 95 well-studied eclipsing binaries and replaced $\log R_A$ with $\log m_A$. The process is to look for K_0 satisfying simultaneously the stellar mass and radius from the two relations. The calibrated mass and radius of $M_{A,\text{ECPH}} = 0.765 \pm 0.012 M_\odot$ and $R_{A,\text{ECPH}} = 0.686 \pm 0.012 R_\odot$ were used
to minimize the χ^2 expressed as

$$\chi^2 = \left[\frac{M_{A,\text{ECPH}} - M_{A,\text{pred}}}{\sigma_{M_{A,\text{ECPH}}}} \right]^2 + \left[\frac{R_{A,\text{ECPH}} - R_{A,\text{pred}}}{\sigma_{R_{A,\text{ECPH}}}} \right]^2,$$

where $M_{A,\text{pred}}$ and $R_{A,\text{pred}}$ are the relation-predicted mass and radius from the observations and the K_s values. The results are given in the second column of Table 5. The quantity Θ denotes the Safronov (1972) number.

By considering both the metallicities allowed by the observational errors in $[\text{Fe}/\text{H}]$ and the ages for each metallicity, we use three different sets of the stellar evolutionary models: Yongse–Yale (Demarque et al. 2004), Padova (Girardi et al. 2000), and Baraffe et al. (1998), hereafter BCAH. This method also aims to find the velocity amplitude K_s for which the measured values $[\text{Fe}/\text{H}]$, r_A, and T_A are best fitted to the radius $R_{A,\text{pred}}$ and temperature $T_{A,\text{pred}}$ predicted from the model isochrones for each metallicity. This consists of calculating the χ^2 fitting statistic,

$$\chi^2 = \left[\frac{[\text{Fe}/\text{H}] - [\text{Fe}/\text{H}]_{\text{model}}}{\sigma_{[\text{Fe}/\text{H}]}} \right]^2 + \left[\frac{r_A - (R_{A,\text{pred}}/a)}{\sigma_{r_A}} \right]^2 + \left[\frac{T_A - T_{A,\text{pred}}}{\sigma_{T_A}} \right]^2,$$

where $\sigma_{[\text{Fe}/\text{H}]}, \sigma_{r_A}$, and σ_{T_A} are the uncertainties corresponding to the measurements. Our process obtained a best-fit model when the BCAH isochrones with $[\text{Fe}/\text{H}] = -0.25$ were used; both the Yongse–Yale and Padova isochrones cannot constrain the age of the planetary system and favor the metal-rich stellar models.

The isochrones from the BCAH models are plotted in Figure 4 along with the position of HAT-P-12A and the results are listed in the third column of Table 5. The mass and radius from BCAH are somewhat smaller than those derived from the empirical calibration of eclipsing binary stars, although the physical parameters between the two methods agree with each other within their uncertainties. Similar situations are found for WASP-21 (Bouchy et al. 2010; Barros et al. 2011), WASP-37 (Simpson et al. 2011), and WASP-39 (Faedi et al. 2011). As is the case for HAT-P-12, the three planet host stars are metal-poor with metallicities $[\text{Fe}/\text{H}]$ of -0.46 ± 0.11, -0.40 ± 0.12, and -0.12 ± 0.10, respectively. On the other hand, 11 eclipsing binaries sampled by Torres et al. (2010) are low-metallicity systems ($[\text{Fe}/\text{H}] < 0.0$). Among these only one component star (V636 CenB) is smaller than $1 M_{\odot}$. From this it follows that the physical properties from the BCAH model for metal-poor low-mass stars seem to be more reliable than those from the empirical calibrations. We chose the BCAH solutions as our final results of HAT-P-12.

The location of HAT-P-12b in the mass–radius diagram is shown in Figure 5, together with 10 known Saturn mass transiting exoplanets with masses in the range $0.15 M_{\text{Saturn}} < M < 0.4 M_{\text{Saturn}}$, wherein Kepler-16b is a circumbinary transiting planet on a nearly circular 229 day orbit around its two parent stars (Doyle et al. 2011). In the same figure, we show constant density contours for 0.1, 0.25, 0.5, and 1.0 ρ_{Saturn}. The physical properties obtained in this study indicate that HAT-P-12b is a low-density sub-Saturn mass planet with a mass of $0.21 M_{\text{Saturn}}$, a radius of $0.94 R_{\text{Saturn}}$, and a mean density of $0.24 \rho_{\text{Saturn}}$. The results are most similar to those $(M_b = 0.20 M_{\text{Saturn}}, R_b = 1.00 R_{\text{Saturn}}, \rho_b = 0.19 \rho_{\text{Saturn}})$ of the transiting exoplanet HAT-P-18b (Hartman et al. 2011). However, HAT-P-12 is younger and more metal-poor than HAT-P-18 with an age of 12.4 Gyr and a metallicity of $[\text{Fe}/\text{H}] = +0.10$. Furthermore, a classification of transiting close-in planets has recently been suggested by Hansen & Barman (2007). The derived equilibrium temperature of $T_{\text{eq}} = 960 K$ and Safronov number of 0.023 would classify HAT-P-12b to be of class II. However, it was recently shown by Southworth (2010) that a correlation between T_{eq} and Θ appears to have little statistical significance. Therefore, this classification seems to be of little importance. In addition, future observations of secondary transits (or occultations) of HAT-P-12b might prove to be difficult due to the planet’s low equilibrium temperature.

We compared our mass and radius to the predicted values from theoretical models of Fortney et al. (2007) with various core masses. For these, their models were interpolated to the age of 3.2 Gyr and the solar equivalent semimajor axis of 0.0843 ± 0.0029 AU calculated from $a = \sqrt{T_A}$ and were plotted in Figure 5 as solid curves. We conclude that HAT-P-12b is a H/He-dominated gas giant planet with a core mass of $11.3^{+2.6}_{-1.0} M_{\oplus}$ and is moderately irradiated by its low-metallicity host star. Of the 10 circumsolar transiting planets, 8 exoplanets including HAT-P-12b follow a suggestive correlation between the inferred core mass and host star’s metallicity (Guillot et al. 2006; Burrows et al. 2007), while the recently discovered planets HAT-P-18b and HAT-P-19b (Hartman et al. 2011) with

Parameter	ECPH Model	BCAH Model
K_s (km s$^{-1}$)	131.5 ± 3.0	129.7 ± 1.5
M_A (M_{\odot})	0.757 ± 0.038	0.727 ± 0.019
R_A (R_{\odot})	0.711 ± 0.019	0.702 ± 0.013
log A (mag)	4.613 ± 0.032	4.607 ± 0.020
L_A (L_{\odot})	0.212 ± 0.016	0.206 ± 0.013
$M\text{S,		
A (mag)}$	6.434 ± 0.080	6.463 ± 0.069
M_B (M_{Jup})	0.216 ± 0.015	0.210 ± 0.012
R_B (R_{Jup})	0.949 ± 0.022	0.936 ± 0.012
ρ_B (ρ_{Jup})	0.236 ± 0.016	0.240 ± 0.012
a (AU)	0.03887 ± 0.00088	0.03829 ± 0.00046
Age (Gyr)	3.2 ± 3.8	

Figure 4. Isochrones from the BCAH models for log ages = 8.0 (bottom), 8.3, 8.7, 9.0, 9.3, 9.5, 9.6, 9.7, 9.8, and 9.9 yr (top). The observed values of χ^2 and a/R_b for HAT-P-12A are shown together with their error bars. (A color version of this figure is available in the online journal.)
negligible core masses but super-solar metalicities disagree with the prediction. Further discoveries will help to identify and understand the possible correlation between planetary parameters such as metallicity, core mass, radius, and equilibrium temperature.

The authors wish to thank the staffs of LOAO for assistance with our observations. We appreciate the careful reading and valuable comments of the anonymous referee. We have used the Simbad Database maintained at CDS and the Exoplanet Transit Database in this research. This work was supported by the KASI (Korea Astronomy and Space Science Institute) grant 2012-1-410-02.

REFERENCES

Bakos, G. A., Noyes, R. W., Kovács, G., et al. 2004, PASP, 116, 266
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P. H. 1998, A&A, 337, 403 (BCAH)
Barros, S. C. C., Pollacco, D. L., Gibson, N. P., et al. 2011, MNRAS, 416, 2593
Bouchy, F., Hebb, L., Skillen, L., et al. 2010, A&A, 519, A98
Burrows, A., Hubeny, I., Budaj, J., & Hubbard, W. B. 2007, ApJ, 661, 502
Carter, J. A., & Winn, J. N. 2009, ApJ, 704, 51
Claret, A. 2000, A&A, 363, 1081
Demarque, P., Woo, J.-H., Kim, Y.-C., & Yi, S. K. 2004, ApJS, 155, 667
Doyle, L. R., Carter, J. A., Fabrycky, D. C., et al. 2011, Science, 333, 1602
Eastman, J., Siverd, R., & Gaudi, B. S. 2010, PASP, 122, 935
Enoch, B., Cameron, A. C., Parley, N. R., & Hebb, L. H. 2010, A&A, 516, A33 (ECPH)
Faedi, F., Barros, S. C. C., Anderson, D. R., et al. 2011, A&A, 531, A40
Fortney, J. J., Marley, M. S., & Barnes, J. W. 2007, ApJ, 659, 1661
Girardi, L., Bressan, A., Bertelli, G., & Chiosi, C. 2000, A&AS, 141, 371
Guillot, T., Santos, N. C., Pont, F., et al. 2006, A&A, 453, L21
Hansen, B. M. S., & Barman, T. 2007, ApJ, 671, 861
Hartman, J. D., Bakos, G. Á., Torres, G., et al. 2009, ApJ, 706, 785
Hartman, J. D., Bakos, G. Á., Sato, B., et al. 2011, ApJ, 726, 52
Jenkins, J. M., Caldwell, D. A., & Borucki, W. J. 2002, ApJ, 564, 495
Johnson, J. A., Winn, J. N., Narita, N., et al. 2008, ApJ, 686, 649
Lee, J. W., Youn, J.-H., Kim, S.-L., Lee, C.-U., & Koo, J.-R. 2011, PASI, 63, 301
Lee, J. W., Youn, J.-H., Lee, C.-U., Kim, S.-L., & Koch, R. H. 2009, AJ, 138, 478
Poddany, S., Brijt, L., & Pejcha, O. 2010, New Astron., 15, 297
Safronov, V. S. 1972, Evolution of the Protoplanetary Cloud and Formation of the Earth and Planets (Jerusalem: Israel Program for Scientific Translation)
Simpson, E. K., Faedi, F., Barros, S. C. C., et al. 2011, AJ, 141, 8
Southworth, J. 2008, MNRAS, 386, 1644
Southworth, J. 2009, MNRAS, 394, 272
Southworth, J. 2010, MNRAS, 408, 1689
Southworth, J., Hinse, T. C., Jorgensen, U. G., et al. 2009, MNRAS, 396, 1023
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004a, MNRAS, 349, 547
Southworth, J., Maxted, P. F. L., & Smalley, B. 2004b, MNRAS, 351, 1277
Torres, G., Andersen, J., & Giménez, A. 2010, A&AR, 18, 67