Galaxy gas as obscurer: I. GRBs x-ray galaxies and find a $N_H^3 \propto M_\star$ relation

Johannes Buchner1,2,*, Steve Schulze2,1, Franz E. Bauer2,1,3

1Millenium Institute of Astrophysics, Vicaña Mackenna 4860, 7820436 Macul, Santiago, Chile
2Pontificia Universidad Católica de Chile, Instituto de Astrofísica, Vicaña Mackenna 4860, 7820436 Macul, Santiago, Chile
3Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado 80301

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
An important constraint for galaxy evolution models is how much gas resides in galaxies, in particular at the peak of star formation $z = 1 – 3$. We attempt a novel approach by letting long-duration Gamma Ray Bursts (LGRBs) x-ray their host galaxies and deliver column densities to us. This requires a good understanding of the obscurer and biases introduced by incomplete follow-up observations. We analyse the X-ray afterglow of all 844 Swift LGRBs to date for their column density N_H. To derive the population properties we propagate all uncertainties in a consistent Bayesian methodology. The N_H distribution covers the $10^{20–23}$cm$^{-2}$ range and shows no evolutionary effect. Higher obscurations, e.g. Compton-thick columns, could have been detected but are not observed. The N_H distribution is consistent with sources randomly populating an ellipsoidal gas cloud of major axis $N_{H}\text{major} = 10^{23}cm^{-2}$ with 0.22 dex intrinsic scatter between objects. The unbiased SHOALS survey of afterglows and hosts allows us to constrain the relation between Spitzer-derived stellar masses and X-ray derived column densities N_H. We find a well-constrained powerlaw relation of $N_H = 10^{21.7}$cm$^{-2}\times(\times M_\star/10^{5} M_\odot)^{1/3}$ with 0.5 dex intrinsic scatter between objects. The Milky Way and the Magellanic clouds also follow this relation. From the geometry of the obscurer, its stellar mass dependence and comparison with local galaxies we conclude that LGRBs are primarily obscured by galaxy-scale gas. Ray tracing of simulated Illustris galaxies reveals a relation of the same normalisation, but a steeper stellar-mass dependence and mild redshift evolution. Our new approach provides valuable insight into the gas residing in high-redshift galaxies.

Key words: Keywords: gamma-ray burst: general – galaxies: general – X-rays: galaxies – galaxies: structure – galaxies: ISM – X-rays: ISM – Magellanic Clouds – dust, extinction

1 INTRODUCTION

Galaxies radiate because of gas condensed into stars and accretion onto objects. Reconciling that emission with the gas actually present in galaxies is important to understand processes of galaxy evolution, including the efficiency of star formation and accretion processes and the in-fall of cosmological gas into galaxy halos. Most interesting are constraints at the peak of star formation ($z = 1 – 3$, Madau & Dickinson 2014) and at the peak of the accretion history ($z = 0.5 – 3$, Aird et al. 2010; Ueda et al. 2014; Buchner et al. 2015; Aird et al. 2015). At that time, the gas content in galaxies was probably higher, as indicated by molecular gas measurements (e.g. Tacconi et al. 2013), the current primary tracer of galaxy gas at high redshifts.

The gas in galaxies in turn can attenuate the radiation by absorption along the line of sight (LOS). This allows one to constrain some properties of the galaxy gas (e.g., reddening in the UV; Boquien et al. 2013). Because only the total LOS absorbing column can be measured, it remains unclear in individual galaxies at which scales the absorption is acting, and thus its density remains undetermined. The alternative is to find a statistical average over many sight-lines which probe galaxies under random viewing angles. A further challenge is that the underlying sources must be detected even in galaxies with the largest gas contents, and the measurement for absorption must remain sensitive at high column densities.

This work uses Gamma Ray Bursts (GRBs) as beacons inside high-redshift (primarily $z = 0.5 – 3$) galaxies to estimate the importance of galaxy-scale gas obscuration. Long-duration GRBs (LGRBs, duration > 2s) are thought to be caused by the death of massive stars (Woosley & Bloom 2006; Hjorth & Bloom 2012), and thus approximately trace star formation but with a bias towards metal-poor galaxies (see Krührer 2015; Perley et al. 2016a, for recent reviews). LGRB detection via their prompt gamma ray emission avoids detection biases due to absorption. The afterglow of
LGRBs emits X-rays which can be used to assess the column density through photo-electric absorption, primarily from electrons in O and Fe atoms along the LOS\(^1\). This work uses the distribution of LOS column densities to reconstruct the galactic gas of GRB host galaxies at high redshift.

Three major methodological contributions lead up to this work: 1) The launch of the *Swift* satellite (Gehrels 2004) resulted in a wealth of GRB data with accurate positioning and timely afterglow spectroscopy. A series of papers by Campana and collaborators already exploited these data using best-fit column densities (Campana et al. 2006, 2010a, 2012). 2) By 2012 it was appreciated that current redshift determination practices introduce systematic sample biases that tend to exclude dusty, massive host galaxies, potentially under-estimating the entire column density distribution of the GRB population (see e.g. Fynbo et al. 2009; Krühler et al. 2011; Perley et al. 2013). This work thus also investigates the nature of that bias (see also Campana et al. 2012, for a bright sample analysis). 3) Reichart (2001) and Reichart & Price (2002) developed a hierarchical Bayesian inference framework for GRB population analysis which incorporates the uncertainties of each individual X-ray spectral analysis. We use this framework to also consistently include GRBs without redshift information, and provide a more advanced statistical analysis for potential redshift evolution of the GRB population.

This work begins with describing the statistical framework in Section 2. We describe the LGRB samples used in this work, the data reduction and spectral analysis procedures in Section 3. Section 4 presents the results of the spectral analysis and population properties. There we begin with empirical models and in turn investigate more physical models, redshift evolution, host mass dependence and the effect of redshift-incomplete samples. We discuss our results in Section 5, putting our results in the context of previous investigation of LGRB obscurers (5.2) and comparing our results to local galaxies. Finally we look inside simulated galaxies to investigate their gas columns (Section 5.5) before summarising our conclusions in Section 6.

2 METHODOLOGY

To analyse the GRB population we consider several parameterised models. Each model \(M\) predicts the distribution of column densities, \(p(N_\text{H}|M, \theta)\), between the GRB and the observer. The parameters \(\theta\) of each model are constrained with X-ray spectral data of a GRB sample, described in the next section, which is a (Poisson) draw from the general GRB population. We define the likelihood of observing data \(D\) for objects \(n\) as

\[
 \mathcal{L}_M(\theta) = \prod_{i=1}^{n} p(D_i|N_i, \phi_i) \cdot p(N_i, \phi_i|M, \theta) d\log N_i d\phi_i, \tag{1}
\]

where \(p(D_i|\cdot)\) is the likelihood of object \(i\) to have column density \(N_i\) and other properties \(\phi_i\) relevant for the X-ray spectrum, such as redshift and the photon index \(\Gamma\) (see below in Section 3.3). That likelihood \(p(D_i|\cdot)\) is discussed in more detail Section 3.3, but briefly speaking it is a Poisson likelihood due to the count nature of X-ray photon detections. The sample and its X-ray data are discussed in the section below.

The distribution of properties within the population is described by the \(p(N_i, \phi|M, \theta)\), which is the product of the column density distribution \(p(\log N_i|M, \theta)\), the photon index distribution and further distributions assumed for the remaining spectral parameters (defined below). The photon index distribution is assumed to be Gaussian, with the mean and standard deviation free parameters in \(\theta\) and determined simultaneously. Models for the column density distribution, which are focus of this paper, \(p(N_i|M, \theta)\) are presented in Section 4.1.

To illustrate the meaning of Equation 1 consider the case of objects with no information, i.e., a flat \(p(D_i|N_i)\). Any population model \(p(\log N_i)\) is then equally probable, including delta functions that predict a constant \(N_i\) for all objects. This follows from \(p(\log N_i)\) being normalised in \(\log N\) space. In contrast, if an object has a well-constrained likelihood \(p(D_i|N_i)\), the integral will be maximised by population models with some probability there. If two objects have well-constrained, but mutually exclusive \(N_i\) constraints, then the population model \(p(\log N_i)\) has to distribute its probability weight, thereby representing scatter in the population. Objects without data constraints are effectively “wildcards”: their integral mass is concentrated wherever the specific population model \(p(\log N_i)\) is concentrated, creating degenerate solutions of equal likelihood \(\mathcal{L}\).

Equation 1 defines the likelihood which can be explored with maximum likelihood methods or a Bayesian approach by varying the population model parameters \(\theta\). This likelihood is well-known in luminosity function works (e.g., Marshall et al. 1983; Loredo 2004; Kelly et al. 2008\(^3\)) and has also been used in previous studies of the column density of GRBs (Reichart 2001; Reichart & Price 2002). To compare various models, the Akaike information criterion (AIC; Akaike 1974) is adopted. The AIC prefers the model with the highest maximum likelihood \(\mathcal{L}_M(\theta_{\text{max}})\), but punishes by the number of parameters \(m\) according to \(\text{AIC} := 2 \cdot \mathcal{L}_M(\theta_{\text{max}}) - 2 \cdot m\) (higher AIC is better).

3 DATA

3.1 Sample Selection

The *Swift* satellite (Gehrels 2004) is a dedicated GRB mission which features on-board detection of GRBs with a wide field γ-ray detector and automatic followup using X-ray and optical/UV telescopes for determining the source position to arcsec accuracy. We analysed the X-ray spectrum of all GRBs in the *Swift* Burst Analyser (Evans et al. 2010) archive\(^1\) up to June 24th, 2015. Our parent sample is 920 GRBs detected by *Swift*.

This work ultimately aims to constrain the intrinsic column density distribution of GRB host galaxies. We select all detected long-duration GRB, which are associated with the death of massive stars, and therefore can be expected to trace the galactic gas content through star formation. To illustrate our sample selection, Figure 1 shows the distribution of all *Swift*-detected GRBs on the sky. The positions of GRBs are constrained on-board by combining the gamma-ray, X-ray and optical/UV telescopes. Bursts of short duration (green star symbols, \(T_{\text{90}} < 2\)) were excluded. These have been identified through mentions of short duration in associated GRB Coordinates Network (GCN) Circulars. This leaves 844 LGRBs,

\(^1\) The alternative hypothesis of a He-dominated, ionised absorber (Watson et al. 2013) is discussed extensively in Section 5.4.

\(^2\) See the Appendix of Buchner et al. 2015 for a derivation and how intermediate priors are handled.

\(^3\) http://www.swift.ac.uk/
Figure 1. Distribution of the GRB sample in Galactic coordinates (points). To avoid Galactic absorption the Galactic latitude $|b| < 20^\circ$ and regions with $N_H > 10^{21}$ cm$^{-2}$ are excluded from the sample (circles). A smoothed Galactic column density map is shown in the background (Kalberla et al. 2005).

Table 1. Sample selection.

Sample name	Parent sample	Size	Criteria		
Swift	http://www.swift.ac.uk/, including non-detected afterglows	920	Swift-detected GRBs		
Long	Swift	844	$T_{90} > 2$		
Complete sample	Long	512	$N_H^{MW} < 10^{21}$ cm$^{-2}$ and $	b	> 20^\circ$.
Redshift subsample	Complete sample	163	redshift known and $z = 0.3 \pm 3.2$		
SHOALS	-	119	Perley et al. (2016b)		
unbiased sample	SHOALS	119	$N_H^{MW} < 10^{21}$ cm$^{-2}$ and $	b	< 20^\circ$.
High-mass subsample	unbiased sample	25	Spitzer 3.6μm band < -22 mag		
Low-mass subsample	unbiased sample	94	Spitzer 3.6μm band > -22 mag, or uncertain		

Figure 2. Redshift distribution. The histogram of redshifts is shown in black. The grey dotted line indicates a fitted Beta distribution. The red dotted line shows the redshift distribution of the SHOALS unbiased sample, which peaks at slightly higher redshifts (filled circles indicate the respective medians). Most LGRBs are found in the redshift interval $z = 0.5 \pm 3$.

indicated as squares and circles in Figure 1. Regions where the Milky Way contributes substantial column densities (over-plotted shades) have to be excluded. We exclude positions with Galactic column densities $N_H^{MW} > 10^{21}$ cm$^{-2}$ and Galactic latitudes $|b| < 20^\circ$. We call this sample with 512 objects the complete sample (see Table 1) as it is unbiased against obscuration.

The availability of redshift information is important to constrain the obscuring column density from the X-ray spectrum. For 208 LGRBs, redshifts have been determined previously and are indicated by red squares in Figure 1. Those 163 objects with redshifts in the range $z = 0.3 \pm 3.2$ are called the redshift subsample (see Table 1). This criterion excludes very high-redshift afterglows for which the imprint of absorption is not observable, and low-luminosity LGRBs at low redshifts which may have different progenitors or emission mechanisms (see Dereli et al. 2015, and references therein).

Whether a redshift has been successfully determined for a particular LGRB depends on many factors and thus the LGRBs with available redshifts constitute a biased subsample, showing higher fluxes, lower absorption than carefully constructed samples with dedicated follow-up (Fynbo et al. 2009). Working with unbiased samples is thus important to determine the underlying distribution (e.g. Campana et al. 2012). Such samples are pre-selected by...
GRB position relative to the Sun, Moon, galactic plane and available observatories, but importantly not by afterglow detection or magnitude. The sample is then followed up with deep ground-based observations to determine redshifts and host properties (e.g. Jakobsson et al. 2006a; Fynbo et al. 2009; Greiner et al. 2011; Krühler et al. 2012; Jakobsson et al. 2012; Schulze et al. 2015; Perley et al. 2016b). The largest unbiased sample to date is the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (SHOALS, Perley et al. 2016b). Their redshift distribution is depicted in Figure 2 as a red dotted line. In comparison, the redshift distribution of the complete sample, where redshifts are available, peaks at lower redshifts than the redshift subsample (black histogram).

To overcome the biases of redshift selection, two approaches are followed: (a) The entire sample is used, including objects without determined redshift. This sample does then not have a redshift selection bias, but has low redshift completeness (~40%). The distribution in the sky of this sample is shown in Figure 1 with square symbols. (b) The SHOALS sample is adopted with the same Milky Way absorption criteria. The resulting 105 objects form an unbiased sample with ~90% redshift completeness. For objects with known spectroscopic redshift we fix the redshift during spectral analysis, for objects without redshifts or photometric redshifts we adopt as a redshift prior the unbiased distribution of SHOALS. Perley et al. (2016c) investigated the masses of GRB host galaxies. They obtained Spitzer follow-up observations of the SHOALS sample in the 3.6µm band, where ~22 mag corresponds to a stellar mass of $10^{10} M_\odot$. We split our unbiased sample further into low-mass and high-mass subsamples using this criterion (see Table 1). These subsamples have 94 and 25 objects, respectively.

3.2 Data reduction

X-ray observations were taken using the XRT instrument on-board Swift (Burrows et al. 2005) which is sensitive in the 0.2–10 keV energy range. To minimise pile-up, XRT is operated in Window Timing (WT) mode for high-flux GRB afterglows. Otherwise, Photon Counting mode (PC) is used. GRBs show strong evolution in their light curve and spectral hardness. This work focuses on the emission of the X-ray afterglow, which is assumed here to be intrinsically a powerlaw, and to have a time-invariant spectral shape. However, the early evolution of an afterglow ($t \lesssim 1000$ s) can be affected by prompt emission. This phase can be easily identified by its rapid decay ($t^{-\alpha}$ with $\alpha > 2$) and spectral softening. For this we turn to the Swift Burst Analyser, which analyses the light curve as described in Evans et al. (2009). Briefly speaking, the light curve is approximated by piece-wise powerlaw evolutions. We discard the initial two time intervals if either show a powerlaw decline with a slope steeper than ~2, and any immediately following intervals that also abide by this criterion. Flare intervals are also discarded. The remaining time segmentation was checked and corrected by individually inspecting each light curve and hardness ratio. The final time segmentation is listed for each source in the catalogue released with this paper (see below).

The spectra from the chosen time segmentation was then extracted using the Swift Burst Analyser, which automatically screens event files, selects appropriate energy ranges, applies grade filtering, and chooses spectral extraction regions to avoid pile-up while maximising S/N. Background spectra were extracted from appropriate surrounding areas. Ancillary Response Files (ARFs) and Response Matrix Files (RMFs) were computed. The 0.5 – 5 keV data were used in the spectral analysis below, as XRT is most sensitive there with the background well-behaved and sub-dominant. Because XRT automatically observes bright sources in WT mode, but faint sources and late-time observations in PC mode, two data sets may be available for any GRB. For the majority of GRBs, WT mode is not or only very briefly used. Brief WT observations were not analysed here as it is difficult to constrain the background and in practice they do not improve constraints over the PC mode observations. The criterion for including WT spectra was that the background spectrum must contain more than 150 counts. The PC mode data are always used, if available.

In some cases, no time interval can be safely used. This can occur if only the prompt emission is bright enough to be detected. Furthermore there are sources with no detected afterglow. These sources lacking X-ray data were included (if Swift-triggered) in our analysis nevertheless, as they could be heavily obscured, and comprise part of the unbiased sample.

3.3 X-ray spectral analysis

The intrinsic afterglow spectrum is thought to be due to synchrotron radiation (Piran 2005). We model the relevant portion for the $0.5 – 5$ keV energy range as a power law $\phi(E) = A \times E^{-\Gamma}$, which is then photo-electrically absorbed: once by an intrinsic absorption within the host galaxy N_H (see below), and once with a Galactic absorption N_H^MW using the TRABS ISM absorption model (Wilms et al. 2000, with cross-sections from Verner et al. 1996). The source model parameters are thus the normalisation A, the photon index Γ, and the absorbing column densities N_H and N_H^MW. The intrinsic power law is assumed to remain constant with time: hardness ratio variations where not found (see above) and luminosity variations do not affect the Poisson fit when we are only interested in the spectral shape. The background spectrum is empirically modelled as described in Appendix B.

Towards Compton-thick densities, here $N_H > 10^{23}$cm$^{-2}$ for simplicity, effects beyond photo-electric absorption become important. Such columns in a dense GRB environment or host galaxy gas could block even the X-ray afterglow emission. Therefore we search for evidence of high column densities. We adopt the SPHERE model of Brightman & Nandra (2011), which describes photo-electric absorption, Compton-scattering and line fluorescence computed self-consistently in a spherical, constant-density obscurer geometry with a powerlaw source in the centre. The SPHERE model supports column densities up to $N_H = 10^{26}$cm$^{-2}$. Solar metallicities (Anders & Ebihara 1982) are assumed when deriving the neutral hydrogen-equivalent column densities N_H. However, LGRBs appear to be often found in low-metallicity environments (Graham & Fruchter 2013). Derived column densities should thus be primarily considered as metal column densities as relevant for photo-electric absorption of X-rays. We also repeated our entire analysis using the spectral analysis the TRABS ISM absorption model (Wilms et al. 2000, with cross-sections from Verner et al. 1996) and find consistent column densities within the uncertainties. However, in high-obscuration sources ($N_H > 10^{22}$cm$^{-2}$) TRABS (and other photo-absorption models) sometimes produces a secondary, Compton-thick solution of lower probability. This solution is not physical as it is not present when analysing with the more appropriate SPHERE model. We therefore use the SPHERE model throughout.

To obtain probability distributions for the column density N_H, 4 Listed separately on the http://www.swift.ac.uk/ website
a Bayesian methodology is adopted for analysing the X-ray spectrum (van Dyk et al. 2001; Buchner et al. 2014). The Bayesian X-ray Analysis (BXA) software, which connects the Sherpa X-ray spectral analysis tool (Freeman et al. 2001) to the MultiNest algorithm (Feroz et al. 2009, 2013), is used with a Poisson likelihood (Cash 1979). This methodology has the benefit of exploring the full parameter space and propagating correlated uncertainties, e.g., between redshift, obscuring column and the powerlaw slope.

The Bayesian approach requires the explicit specification of priors. They are listed for each parameter separately in Table 2. For the Galactic column density N_{H}^{MW}, a informative normal prior is adopted around the value measured by the Leiden/Argentine/Bonn (LAB) Survey of Galactic HI (Kalberla et al. 2005) at the source position. This estimate may be slightly off in unfortunate conditions, if the Galactic gas is very structured and/or the position is not precisely known. This uncertainty is allowed by putting a Gaussian prior around N_{H}^{MW} with a standard deviation of $\sigma = 1.3$ log 3, i.e., allowing a three sigma deviation of a factor of 3 in N_{H}^{MW}. This only broadens our uncertainties in N_{H}, especially when $N_{H}^{MW} \approx N_{H}$. The uninformative priors adopted for N_{H} and Γ are later replaced by the populations’ column density distribution and thus do not influence the results. For completeness, we include GRBs without redshift information. For these we adopt as a redshift prior the distribution of SHOALS sample (see Figure 2, red dotted line), which encodes the assumption that these GRBs stem from the same underlying distribution. Perley et al. (2016b) tested the influence of their fluence cut on the redshift distribution and found it to be negligible.

Table 2. Parameters of the spectral model and their priors.

Parameter	Symbol	Prior
Normalisation	A	log-uniform $10^{-19} - 10^{0} \text{keV}^{-1}\text{cm}^{-2}\text{s}^{-1}$
Powerlaw Slope	Γ	uniform $1 - 3$
Column density (intrinsic)	N_{H}	log-uniform $10^{19} - 10^{26}\text{cm}^{-2}$
Galactic column density	N_{H}^{MW}	log-normal around LAB value; standard deviation $\frac{1}{3}$ ln 3
Redshift	z	fixed if spectroscopy available; otherwise SHOALS distribution (Figure 2)

Figure 3 shows an example of a fitted X-ray spectrum in both PC and WT mode of a highly obscured GRB. None of the objects show contradictory constraints between the two modes, which could occur due to poor fits of the source or background spectrum. As we have analysed the WT and PC mode spectra separately, no assumptions about the two spectra having the same luminosity or photon index are made. Finally, the constraints for column density N_{H} from the WT and PC mode spectra are merged (if both available) by multiplying the PC mode probability distributions (in N_{H} and Γ) by the WT N_{H} probability distribution, thus tightening the constraints on N_{H}. The photon index Γ can show degeneracies with N_{H} in low-count spectra, so its probability distribution is carried along as described in Section 2. The population distributions of Γ, N_{H} and z are constrained simultaneously. The photon index distribution is reported in Appendix A.

4 RESULTS

Before inferring the population properties of GRB obscurers, we briefly describe the spectral analysis results of the sample. Their distribution in column density and redshift is shown in Figure 4 for the redshift subsample at $z < 3.2$. Out of the 163 objects, 28 can be securely identified as intrinsically obscured ($N_{H} > 10^{22}\text{cm}^{-2}$ with 90% probability), and four can be securely identified as intrinsically unobscured ($N_{H} < 10^{21}\text{cm}^{-2}$ with 90% probability). GRB 080207 shows the highest obscuration with $N_{H} \approx 10^{24}\text{cm}^{-2}$. In the complete sample, which comprises all LGRB detections of Swift, all sources with X-ray data are constrained to $N_{H} < 2 \times 10^{23}\text{cm}^{-2}$. A large portion of the sample only has upper limits for the column density distribution. The lowest upper limit is $N_{H} < 10^{20.54}\text{cm}^{-2}$ (90% quantile) in GRB 061021. A catalogue of the sample analysis results of all GRBs is released with this paper. Its columns are described in Table 3.

To test whether we might have missed any heavily obscured (dark) LGRB, we simulate PC mode spectra for all sources with $z = 1 - 3$, focusing on the bulk of the sample redshift distribution. We use the same spectral parameters (normalisation, photon index) but set the obscuring column to $N_{H} = 10^{22}\text{cm}^{-2}$. This reduces the median number of detected counts in the $0.5 - 5\text{keV}$ range from...
10266 (of which 2 are expected to be background counts) to 66 counts. Therefore there would still be enough contrast to detect and characterise the X-ray emission of such heavily obscured sources via their extremely hard spectra, which at these redshifts exposes the FeKα feature and the low-energy end of the Compton-hump.

4.1 Empirical Population Models

To analyse the population properties, specifically the obscurer column density distribution (CDD), models are adopted which predict the CDD. To start, we simply want to visualise the data constraints, which contain large uncertainties and upper limits (shown before in Figure 4).

Figure 5 shows the CDD fitted with several models. The points with error bars are derived by adopting 11 bins (the last bin extends up to 10^{26}cm^{-2}). We find that the column densities are confined to the 10^{20}-10^{26}cm^{-2} range. Two models have been adopted in the literature to describe the CDD empirically, and are shown in Figure 5. Reichart & Price (2002) and Campana et al. (2010a) define a broken powerlaw model (dashed line fit) as:

$$p(N_H|\alpha, b, c) = \ln(10) \cdot \frac{b \cdot c}{c - b} \cdot \frac{(N_H/a)^b}{(N_H/a)^b} \cdot \frac{(N_H/a)^c}{(N_H/a)^c}$$

if $N_H \leq a$

$$p(N_H|\alpha, b, c) = \ln(10) \cdot \frac{b \cdot c}{c - b} \cdot \frac{(N_H/a)^b}{(N_H/a)^b} \cdot \frac{(N_H/a)^c}{(N_H/a)^c}$$

if $N_H > a$ \hspace{1cm} (2)

The parameters b and c give the powerlaw slopes at the low and high-obscuration ends respectively, separated at the break a. Alternatively, a Gaussian distribution of log N_H (solid line fit in Figure 5) has been used (e.g. Campana et al. 2010a, 2012)

$$p(N_H|\mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \cdot \exp \left\{ -\frac{(\log N_H - \mu)^2}{2\sigma^2} \right\}$$

The parameters are the centre of the distribution μ and its width σ.

![corresponding galactic obscuration obscuration constraints](image)

The constrained parameter values for the two models are listed in Table 4. The parameters are constrained by sampling the posterior distribution using MultiNest (Feroz et al. 2009, 2013) through PyMultiNest (Buchner et al. 2014). Flat priors have been

5 In previous works the normalising factor $\ln(10)$ is erroneously divided, which is important for model comparison.
assumed on \(\mu, \log \sigma \) and \(v \), \(\log a, b \), and \(c \). In general we find the distribution to be centred at \(N_H \approx 10^{21.8} \) and effectively spreading two orders of magnitude (see Figure 5). The Gaussian model yields a higher likelihood and since it also has one parameter fewer, is preferred through a lower AIC value. One possibly important difference is that the Gaussian has lighter tails (declining square-exponential) than the broken powerlaw model.

4.2 SingleEllipsoid: A simplistic physically motivated model

While we can model the CDD empirically, we ultimately would like to understand the gas clouds which give rise to the observed column densities. To this end, we present a simple model of a cloud population, which could represent the star-forming region the GRB originated in or the host galaxy. The considered models are gross over-simplifications of the real scenario, which may include multiple absorbers with sub-structure and density gradients sampled in a biased fashion by GRBs. However, as we will show, the simple models are useful to understand the width and shape of the arising distribution.

As an initial toy model, consider a sphere of constant density (radius 1, density 1). For sources distributed uniformly like the gas, the emerging CDD\(^6\) is plotted in Figure 6 (black solid line). The largest possible LOS column density is 2 in these units, corresponding to a full crossing. The most probable column to be observed under random orientations is around 1, with a long tail down to one order of magnitude lower. This scenario is illustrated in the top right corner of Figure 6, with blue crosses indicating the randomly placed sources. Now consider a flatter geometry, an ellipsoid of relative height \(h/R = 0.1 \) in cylindrical coordinates, illustrated in red in Figure 6. The red curve in the plot shows the corresponding CDD. Here, the distribution is centred at much lower values, around 0.1 (i.e., close to the vertical extent), and it is also very broad, spanning almost three orders of magnitude.

Such a ellipsoid, representing gas that simultaneously observes GRBs and hosts their progenitors, forms the baseline model of our approach (inspired by, but a generalisation of Reichart & Price 2002, see also Vergani et al. 2004). But this model cannot

\(^6\) Numerical details of the computation can be found in Appendix C.
match the data: the derived CDD in Figure 5 is broader and less peaked than those of Figure 6). Actually, it would be very surprising if it did match, because that would imply that all gas clouds in which GRBs reside have the same mass and geometry. We thus define the first physical model to be a population of ellipsoids with the same height/radius ratio, but with a Gaussian distribution of total gas densities. The variance of the population in their column density along the major axis is defined through the parameter \(\sigma = \sqrt{\text{var}(\log N_{H_{\text{major}}})} \). This is mathematically equivalent to convolving the distributions of Figure 6 with a Gaussian of width \(\sigma \). Subsequently, this model is referred to as the SingleEllipsoid model. The parameters are summarised in Table 5. We constrain them from the redshift subsample in the same fashion as in the previous section.

The parameters exhibit strong degeneracies between the \(z/R \) ratio and \(N_{H} \) along the major axis, illustrated in the left panel of Figure 7. The black and red dots indicate the sphere and disk geometries discussed before in Figure 6. However, all the possibilities in this degeneracy yield relatively similar CDDs, shown in Figure 8. The population scatter \(\sigma \) is constrained to 0.22 ± 0.14. This makes the distribution as broad as the empirical model shown in Figure 5. This simple model (SingleEllipsoid) is already a better fit to the data than the empirical Gaussian mixture or Broken Power-law models, and is also preferred by the AIC.

More importantly, however, the SingleEllipsoid model allows us to derive the CDD as it would be seen from the centre of the cloud. This is shown in Figure 9. The central CDD spans the \(N_{H} = 10^{21} - 10^{24} \) cm\(^{-2} \) range, with no Compton-thick lines of sight. Under this SingleEllipsoid geometry, up to 50% of the sky would appear obscured with \(N_{H} > 10^{22} \) cm\(^{-2} \).

We also investigated possible density gradients by using several co-centred ellipses, each having free shape and density parameters. Such a model can, given enough components, reproduce any monotonically declining density profile. It should also be noted that by embedding a small, dense component arbitrarily large cent-

Table 5. Parameters of SingleEllipsoid model

Name	Description	Range	Prior
\(N_{H}\)	\(N_{H} \) along major axis	\(10^{20} - 10^{25} \) cm\(^{-2} \)	log-uniform
\(\sigma \)	scatter of \(N_{H_{\text{major}}} \)	\(10^{-3} - 1 \)	log-uniform
\(z/R \)	height/radius ratio	\(10^{-3} - 1 \)	log-uniform
4.3 Redshift evolution

We investigate evolutionary trends with redshift by adopting independent column density distributions in each of five redshift bins.

\[
p(N_H; M_z, \theta) = \begin{cases}
 p(N_H|M_z, \phi_1) & z < 0.3 \\
 p(N_H|M_z, \phi_2) & 0.3 < z < 1 \\
 p(N_H|M_z, \phi_3) & 1 < z < 2 \\
 p(N_H|M_z, \phi_4) & 2 < z < 4 \\
 p(N_H|M_z, \phi_5) & z > 4
\end{cases}
\] (4)

In each redshift bin we adopt the Gaussian or Broken Powerlaw empirical models. This is chosen despite the above finding that the SingleEllipsoid model is a better fit; the empirical models provide a sufficient characterisation of the CDD and are faster to evaluate. Their parameters are also easier to understand and to compare with other works. The constrained parameter values, using the complete sample, are listed in Table 4 on page 7. The last column lists the AIC model comparison values relative to the single broken powerlaw model (lower is better). The redshift-independent broken powerlaw is preferred over the redshift-dependent variant. For the Gaussian model, the redshift-dependent variant is preferred. This is caused by the significantly lower average column density in the lowest redshift bin \(z < 0.3 \). Such very local LGRBs are dominated by low-luminosity afterglows which may be a distinct population (Dereli et al. 2015). Uncertainties however remain substantial as few LGRBs exist at low redshifts. At higher redshifts we find no evidence of any redshift evolution, with the CDD always centred at \(N_H \approx 10^{21.4-21.8} \text{ cm}^{-2} \) with small uncertainties. If any redshift evolution exists there, its effect on the mean column is less than a factor of 3. At very high redshifts (\(z > 4 \)) the evolution is again uncertain because the imprint of absorption is redshifted below the X-ray regime. The uncertainties in Table 4 indeed highlight that the strongest constraints come from the \(z = 0.3 - 4 \) redshift range. If we replace the model in that range with a SingleEllipsoid model, the uncertainties of Figure 7 shrink and the spherical obscurer is ruled out with 99% probability. We also note that the redshift-independent models are always preferred, i.e., no significant redshift evolution is found, when adopting the SHOALS sample.

4.4 Host mass dependence of the \(N_H \) distribution

Perley et al. (2016c) investigated the galaxy mass of LGRB hosts and found that above \(M_\odot = 10^{10} M_\odot \) virtually all of their LGRBs had dusty/obscured afterglows. Their SHOALS sample was constructed only using observability criteria, i.e., quantities that are unrelated to the host galaxy mass and LGRB obscuration (see Perley et al. 2016b, for details). This subsample selection was then targeted with very deep follow-up observations to derive redshifts and host galaxy masses. We adopt their highly redshift-complete sample and split it at \(M_\odot = 10^{10} M_\odot \) into a low-mass and high-mass subsample (data are described in more detail in Section 3). We analysed each subsample with the Gaussian model. We find that the column densities are drastically different between the low-mass and...
high-mass samples, as illustrated in Figure 10: The high-mass subsample shows a five times higher mean column density. In other words, high-mass host galaxies are preferentially associated with obscured LGRBs, while a sizeable fraction of low-mass host galaxies have unobscured LGRBs. The corresponding parameter values are listed in Table 6.

4.5 A mass - column density relationship

We have now established that the primary driver of the diversity of LGRB column densities is host galaxy mass, not evolution with redshift. Consequently we fit a model for the distribution that is stellar mass dependent. We convert the Spitzer 3.4μm magnitudes given in Perley et al. (2016c) to masses according to their model. Adopting instead the relation of Meidt et al. 2014 does not change our results significantly.

Figure 11 shows our data in stellar mass - N_{HI} space. A clear increase in the column density with mass can be observed, with no LGRBs in host galaxies of $M_* < 10^9 M_\odot$ exhibiting $N_{\text{HI}} > 10^{23}\text{cm}^{-2}$, while such sources exist for more massive hosts. However, there is substantial scatter in the diagram. We first fit a power-law model including a systematic Gaussian scatter for log N_{HI}. Our fitting method is as before and takes into account the upper limits, but the CDD model is now mass-dependent. Our relationship can be written as:

$$\log N_{\text{HI}} = 21.7 + 0.38 \cdot \log (M_*/M_\odot - 9.5)$$

Figure 11 plots the relation (red dashed line) with its data uncertainties (grey shading). The data uncertainties are for the intercept $N_{\text{HI}} = 21.67 \pm 0.06$ and the slope 0.38 ± 0.06. The determined exponent of approximately $\frac{1}{3}$ is noteworthy. The powerlaw relation of equation 5 connects the line integral N_{HI} on the left with the volume integral M_* on the right hand side. If both simply scale geometrically with galaxy size ($N_{\text{HI}} \sim r$, $M_* \sim r^3$), and the obscuration is primarily due to the host galaxy, an exponent of $\frac{1}{3}$ is expected.

We have simultaneously constrained the remaining intrinsic scatter as a normal distribution. Its standard deviation is $\sigma = 0.49 \pm 0.05$ around the relation, shown as a blue error bar on the right of Figure 11. If instead of a normal distribution we adopt the SingleEllipse model, the scatter is consistent with zero. In other words, the observed scatter can be fully explained by the mass distribution and geometric effects.

4.6 Redshift incompleteness bias

Many previous works have only considered LGRBs with determined redshifts, which is liable to introduce a bias against faint, dust-extincted hosts. To investigate the nature of this redshift incompleteness bias, we analyse the redshift subsample, i.e., limit ourselves to LGRBs with determined redshifts in the $z = 0.3 - 3.2$ range. The derived Gaussian model parameters are listed in Table 6. Compared with the complete sample, the N_{HI} distribution is centred at lower column densities. This indicates a bias against obscured LGRBs. In fact, the derived parameter values are most similar to the low-mass subsample, with the break and low-N_{HI} slope having the exact same values, and the high-N_{HI} slope falling within 1σ of the uncertainty. This finding reproduces early works which used only LGRBs with determined redshifts and found that these only occur in low-mass host galaxies: The bias on the log N_{HI} distribution appears as if only low-mass host galaxies had been selected.

5 DISCUSSION

5.1 The column densities of the GRB population

We have analysed the column density distribution of GRBs as probes of the gas distribution in their host galaxies. We used state-of-the-art statistical methods to propagate uncertainties in the spectral analysis and redshift into the population analysis, while remaining careful of biases from incomplete redshift information.

In the complete sample, most of the 512 GRBs have column densities below 10^{21}cm^{-2}, with the most extreme spectrum showing 10^{23}cm^{-2} (see Figure 4). The population can be empirically fitted using a broken powerlaw distribution which shows a steep decline towards high obscurations (slope of ~ -1.2) and a long tail towards low obscurations (slope of 0.75), spanning the 10^{20-23}cm^{-2} range. Thus, heavily obscured (e.g. Compton-thick) LGRBs, if they exist at all, must be extremely rare. They have not been seen although XRT is sensitive enough to detect and characterise them (see Section 4). Using model selection we concluded that a better empirical description is provided by a normal distribution centred at log $N_{\text{HI}} = 21.6$ with intrinsic scatter of $\sigma = 0.6$.

In a series of papers, Campana and collaborators investigated the column density distribution of LGRBs as a population. Campana et al. (2010a) updated the results of Campana et al. (2006)
and analysed a sample of 93 Swift-detected LGRBs with redshift measurements. They performed a broken powerlaw fit and find the break of the distribution at $a = 21.71^{+0.14}_{-0.15}$, with slopes $b = 1.59^{+0.41}_{-0.37}$ and $c = -0.78^{+0.42}_{-0.31}$. This is approximately the same peak as found in this work, but they find a steeper decline towards low-N_H (b) and a shallower decline towards high-N_H (c) in the population. This difference is probably due to the handling of the uncertainties in X-ray spectra and the population analysis. Many sources in their as well as our analysis show large uncertainties in N_H as derived from spectral analysis. Errors such as in $2.4^{+3.2}_{-1.9} \times 10^{22}$ cm$^{-2}$ are common, and essentially include the possibility of negligible intrinsic obscuration. Notably the lower error estimate often includes values one or two orders of magnitude lower, while the upper error only doubles the value. In log-space, the best-fit N_H estimator is thus biased towards the upper limit. This work adopts a Bayesian methodology to propagate the uncertainties into the population analysis, which also allows us to treat upper limits consistently.

The obscuration of LGRBs depends strongly on their host galaxies. LGRBs in high-mass galaxies show higher absorbing columns by ~ 0.7 dex versus those originating in low-mass galaxies, as shown in Figure 10. This agrees with the findings at optical wavelengths of Perley et al. (2016c), where massive host galaxies are virtually always associated with absorbed/dusty afterglows. This suggests that the obscurer may be primarily the host galaxy itself, with high-mass galaxies being capable of attracting and holding larger quantities of gas (see more discussion in the next section). Importantly, this biases the results when incomplete samples are used: Campana et al. (2012) noted the bias of Campana et al. (2010a), which appears when considering only LGRBs where the redshift is determined, as dust-extincted afterglows are fainter and often are harder to obtain spectra of. They use an unbiased sample of 58 bright LGRBs and find similar results to Campana et al. (2010a), when comparing a Gaussian fit. This work adopted the SHOALS sample, which is similar in spirit but larger in size (112 objects, Perley et al. 2016b). Using newer spectral models which incorporate effects relevant at high obscuring columns and improved spectral analysis methodology we are able to make stronger inferences in the derived column density distribution (Table 4). We find that the bias of considering only LGRBs with determined redshifts is severe, and that it approximates the exclusion of all massive host galaxies (see Table 6). The aforementioned effects can be seen in the left panel of Figure 12, where we compare the redshift sample to the complete sample.

Campana et al. (2010a) and Campana et al. (2012) also investigated a possible redshift evolution of the obscuration. This is interesting because star forming regions at high redshift, particularly at the peak of star formation at $z = 1 - 3$, may be more compact. They claimed that high-redshift GRBs ($z > 4$) are more obscured than low-redshift GRBs. This is based on a KS-test which yields a p-value of 0.08 that the best-fit column densities are drawn from the same distribution. P-values are uniform random variates, such that the frequency of yielding such a result or a more extreme one is high (10%, but increasing with the number of tests performed), indicating a substantial probability of a false positive. Campana et al. (2012) makes more cautious claims due to the smaller sample size of their unbiased sample. Even if significant, the best-fit N_H values cannot be drawn from the same distribution in principle, because the spectral window probed is different. Furthermore, splitting the sample is problematic because a high percentage of GRBs have uncertain redshifts. To overcome the limitations of the KS test, in this work we simultaneously fitted independent distributions in 5 redshift intervals ($z < 0.3, z = 0.3 - 1, 1 - 2, 2 - 4, z > 4$) and compared their parameters. We find consistent parameters (see Table 4) in the relevant redshift bins, indicating no redshift evolution around the
peak of star formation. If any redshift evolution of the obscurer is present, it is limited to modifying the obscuring columns by a factor of 3, and thus less important than the host galaxy mass. An exception is the $z < 0.3$ redshift bin, which shows lower obscuration on average. This may be explained by a dominant low-luminosity GRB population in that redshift range, which form a distinct population (Dereli et al. 2015). Alternatively, it could be a side-effect of galaxy-mass downsizing, which is more pronounced in GRBs (Schulze et al. 2015; Perley et al. 2016c) than in the general galaxy population (e.g. Fontanot et al. 2009).

5.2 LGRB obscurer models

Reichart & Price (2002, RP02 hereafter) developed a obscurer model based on the distribution of molecular clouds in the Milky Way. Their mean radial column densities are $N_H^{\text{mol}} \approx 10^{23}\text{cm}^{-2}$ with a scatter of 0.2 dex in their population. Such a cloud distribution, when including random placement and orientation in such clouds, was found to be consistent with observations in the analysis of RP02 with 15 GRBs, and also in the analysis of Campagna et al. (2006) and Campagna et al. (2010a) which included Swift observations. Vergani et al. (2004) developed a multi-component gas model of the Milky Way and simulated the LGRB column density distribution with ray-tracing. They however assumed that a large portion of LGRBs may occur in diffuse gas. This includes the disk, leading to a high percentage of LGRBs with low column densities. Campagna et al. (2006) ruled out that model based on their derived column density distribution, and concluded that LGRBs likely originate in molecular clouds (the remaining model). A limitation of the RP02 molecular cloud model is that it is based on the Milky Way, which is atypical in mass and metallicity for LGRB host galaxies. In this we developed a more general approach by deriving the properties of the LGRB obscurer population from the data.

We find that the column density distribution of LGRBs can be well-described by a simple model: a single gas component of uniform density, in which LGRBs are randomly located. The geometry and major axis column density of the cloud population were tentatively constrained (see Figure 7) to a flat disk with a height-to-radius ratio of $r_a = 20$ and a major axis column density of $N_H^{\text{mol}} \approx 10^{23}\text{cm}^{-2}$. To explain the broadness of the column density distribution, the best-fit model has a scatter in $\log N_H^{\text{mol}}$ of $\sigma \approx 0.22 \pm 0.14$ (the 10% quantile is at 0.03). For comparison, the RP02 model used an essentially flat distribution of scatter $\sigma = 0.2$ dex between molecular clouds in the Milky Way. The clouds in the RP02 model have a density gradient, are spherical and therefore match the data with a lower maximal column density. The right panel of Figure 12 shows the RP02 Milky Way model in comparison to our results using the high-mass and low-mass subsamples, which probe stellar masses comparable to, and below that of the Milky Way. The RP02 model falls in between the constraints from those samples, implying that LGRBs in Milky Way-size galaxies are more obscured than what the RP02 Milky Way model predicts. Figure 12 also compares the multi-component model of the Milky Way gas components by Vergani et al. (2004). That model assumes that GRBs can also originate in the atomic hydrogen of the thin disk, which leads to many GRBs with low column densities. This model is clearly ruled out, leaving the origin of GRBs in galactic molecular clouds as a plausible scenario. In that case however the column density of the molecular clouds would have to increase with galaxy host mass, which is not the case in nearby galaxies (Larson 1981; Bolatto et al. 2008; Lombardi et al. 2010). The geometry constraints suggest another possibility however: giant molecular clouds could be arranged in a relatively flat disk in which the GRBs are produced. The number of clouds (and thus the major axis density) should then scale with the size of the galaxy, as more massive galaxies can hold larger quantities of gas. This scenario of the galaxy acting as the primary obscurer appears more likely due to the $N_H \propto M_\ast$ relation found (Equation 5 in Section 4.5).

5.3 Local Galaxies as Obscurers

We verify the mass dependence of the obscurer by determining how well local galaxies act as obscurers. The Milky Way, the Large Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) cover a large stellar mass range and their column density of N_H is well mapped. Our relationship depicted in Figure 11 predicts that at Milky Way stellar masses, $M_\ast = 6 \times 10^{10} M_\odot$ (McMillan 2011), the average galaxy should have some LOS column densities above $N_H > 10^{21}$ cm$^{-2}$. Galactic column density maps of the Milky Way, as depicted in Figure 1, show that a small fraction of the sky (~ 1%) is indeed obscured with $N_H > 10^{21}$ cm$^{-2}$ as seen from our vantage point. The fraction may be larger from more central regions of the Galaxy, or from the vicinity of blue, star forming regions where LGRBs are typically found (Bloom et al. 2002; Fruchter et al. 2006). The Milky Way however lies at the massive extreme when compared with the host galaxies of LGRBs. The LMC is perhaps a more appropriate galaxy to consider, with a stellar mass of $M_\ast \sim 3 \times 10^{9} M_\odot$. Its observed LOS column density reaches values up to $N_H \approx 3 \times 10^{22}$ cm$^{-2}$; with the star-forming region 30 Dor reaching $N_H \approx 9 \times 10^{21}$ (Bruns et al. 2005). Using the ellipticity ($\epsilon \approx 0.3$) and inclination ($i \approx 30^\circ$) of the LMC (see van der Marel 2006, for a review of various measurements) the major axis column density should be lower than the observed column density by a factor of 60%. Therefore, from the centre of the LMC the entire sky has LOS column densities below $N_H < 10^{22}$ cm$^{-2}$.

Figure 13. Column densities of local galaxies. We derived the densest column densities seen in the LMC and SMC, by taking the 99% highest values from HI radio maps and correcting for metal abundances to derive a N_H as would be seen by X-ray observations. For the Milky Way (MW) we use the map of Dickey & Lockman (1990). The obscuration of galaxy gas of each of these local galaxies falls exactly on the relationship we derive from GRB obscuring column densities (black line).
N_{\text{HI}} is higher than in the LMC, reaching N_{\text{HI}} = 10^{22}\text{cm}^{-2} (Br"{u}ns et al. 2005). One should keep in mind that for the SMC and LMC we relied on HI columns derived from radio observations, whereas everywhere else in this paper we consistently use X-ray determined metal columns converted into N_{\text{HI}} assuming solar abundances. Therefore the N_{\text{HI}} values we should compare with for the SMC and LMC – their metal columns – actually should be lower given their low gas metallicity of 0.2 and 0.5 solar, respectively (Tchernyshyov et al. 2015). Taking the metal abundance into account, we contrast these three local galaxies (MW, LMC and SMC) in Figure 13 against our relationship and find excellent agreement.

5.4 A Helium-dominated, circum-burst absorber?

An open issue in the understanding of LGRB afterglow is the inconsistency between optically and X-ray-derived absorption. The rest-frame UV extinction, A_V, and the X-ray derived column density, N_{\text{HI}}, show a tendency toward lower-than-galactic ratios and broad scatter (e.g. Schady et al. 2011; Watson et al. 2013). This can be caused by deviations in abundances, dust-to-gas ratios and/or ionisation states compared to the galactic ISM. To resolve this inconsistency goes beyond the scope of this work. However, we study one recently proposed explanation in detail. Watson et al. (2013, W13 hereafter) postulated that gas in the vicinity (< 30pc) of the burst provides the bulk of the X-ray absorption. The powerful burst emission can destroy dust, fully ionise all hydrogen atoms (which have a low ionisation energy) and O and Fe atoms (which are few in number) along the LOS. These atoms would therefore not absorb X-rays. However, for certain luminosities, not all He atoms would become ionised, because of their large number. W13 showed that a He-dominated X-ray absorption spectrum is observationally indistinguishable from one with local ISM abundances in typical X-ray spectra.

In a few cases where photon statistics are robust, the effective abundance of metals and helium can be constrained directly. We set the helium and metal abundances each as free parameters in our fit (TBVARABS model, Wilms et al. 2000), and analysed all LGRB XRT spectra with more than 5000 counts (42 sources). The normalisation, photon index and column density were also free parameters. In seven cases, shown in Figure 14, the abundances could be constrained. These have more than 30000 photon counts each. We comment on some individual sources in Figure 14 in detail: We note that Giuliani & Mereghetti (2014) found a metal-free solution (Z/Z_{\odot} < 0.05) when analysing a XMM-Newton spectrum of GRB 120711A. The difference may be because we use a slightly higher galactic column density of 1.06 \times 10^{21}\text{cm}^{-2} following Evans et al. (2009) and more recent absorption model and cross-sections in our fit. Our abundance contours for GRB 090618 are consistent with those from the XMM-Newton spectral analysis of Campana et al. (2011). They could also place a lower limit of Z/Z_{\odot} > 0.2. For GRB 130925A and GRB 130907A we additionally excluded the (early-time) WT mode spectra that may still be, despite our efforts of Section 3.2, slightly contaminated by prompt emission. Nevertheless we obtain constraints with the (late-time) PC mode data alone. For GRB 130925A, we note that Schady et al. (2015) derived super-solar metallicity from optical spectroscopy. Particular noteworthy is GRB 130702A. This LGRB is associated with a supernova hosted by a dwarf galaxy with M_* = 10^6 M_\odot (Kelly et al. 2013), and hence represents a typical LGRB. In all cases, the constraints exclude a He-dominant absorber but are consistent with the abundances of the local ISM.

Additionally, if the LGRB is responsible for ionising substantial fractions of the absorber, the effective absorbing column
should be reduced for more energetic bursts. Campana et al. (2012) find no significant difference in the column distribution of bright bursts. In Figure 15 we show the distribution of sources in isotropic energy and effective column density N_{H} for sources with redshift information. The isotropic energies were computed using the method of Bloom et al. (2003). Effective column densities were derived using a local ISM abundance, neutral absorber model. The SPHERE model is used, which is valid also for the highest absorbing columns, as discussed in Section 3.3. There does not appear to be a burst energy-dependence in the absorber properties. If the burst energy ionised metals and hydrogen, reducing the effective column density by a factor of seven (example calculation in W13, red arrows), we would expect a deficit of sources in the upper right quadrant of the plot. However, no deficit of high-obscuration sources at the luminous end is apparent in Figure 15, and the column density distribution appears independent of energy. In Figure 15, only GRBs for which redshifts have been determined are shown, which reduces the number of faint, obscured bursts (lower right quadrant). To avoid such biases, black crosses show LGRB from the SHOALS survey. Additionally, metals have been detected in highly-absorbed, energetic bursts: Orange circles in Figure 15 show the same sources as in Figure 14.

The correlation of column density and stellar mass dependence is a strong argument that the X-ray column density is predominately due to the host galaxy-scale gas. The lack of energy-dependence of the absorber support the dominance of a distant obscurer. Abundance measurements suggest that the X-ray obscurer can be modelled similar to the local ISM. Under local ISM abundances, the dominant absorbers are Fe and O. Partial ionisation of metals may still be present and account for deviations in A_V, but its effect on the X-ray spectrum appears negligible. Furthermore, relatively low galaxy-scale column densities can occur if the LOS does not pass through the galaxy (left tail in Figure 6, particularly objects below the $M_\ast - N_{\text{H}}$ relation in Figure 11). In these cases, the dominant obscurer could be the local environment, where hard burst radiation destroying dust may reduce the A_V/N_{H} ratio. However, fully resolving the discrepancy between N_{H} and A_V measurements is beyond the scope of this work.

5.5 Obscuration in simulated galaxies

At higher redshifts the gas content of galaxies is not easily accessible through observations. Instead we turn to simulated galaxies from hydrodynamic cosmological simulations. This exercise is potentially predictive because the amount of gas inside galaxies is constrained by the simulation’s requirement to start with the Big Bang’s density and to reproduce today’s stellar mass function. In galaxy evolution models, the massive end of the existing stellar population expels metals into the galaxy. The metal gas produced per stellar mass is determined by the chosen IMF and the metal yield, with the latter tuned to reproduce the stellar mass function (Lu et al. 2015). The total metal gas mass residing in galaxies further depends on the chosen feedback models, which can expel gas out of the galaxy. Typically the metal gas mass inside galaxies follows a $M_\ast/M_\ast = 1 : 30 – 1 : 100$ relation in semi-analytic models at $z = 0 – 3$ (e.g. Croton et al. 2006, 2016). The crucial remaining question surrounds the arrangement of that gas inside galaxies, as the concentration of gas defines its column density – this requires hydrodynamic simulations.

The Illustris simulation (Vogelsberger et al. 2014b,a) is a cosmological hydrodynamic simulation which attempts to reproduce the galaxy population using state-of-the-art star formation, supernovae and AGN feedback mechanisms inside dark matter haloes. Illustris reproduces many observed quantities; most relevant for this work it reproduces roughly the stellar mass distribution of galaxies, their morphology, and gas content from CO observations (Vogelsberger et al. 2014b; Genel et al. 2014). The gas particle resolution in Illustris is adaptive, with some cells being as small as 48pc in the highest resolution simulation (Illustris-1) used here, indicating that today’s cosmological simulations indeed resolve galaxies into small substructures. We apply ray-tracing, treating each simulated galaxy...
predict a diversity of galaxies with a scatter of 10 in dense regions of galaxies. We also find that the simulations agree well with the simulations under the assumption that LGRBs originate from massive galaxies. If remaining concerns e.g., regarding absorber geometry and substructure can be addressed, our X-ray tomography measurements reach heavily obscured column densities of $N_{\text{H}} > 10^{23}\text{cm}^{-2}$.

The first question to address is whether the gas in simulated galaxies reproduces the same N_{H} values as observed. The left panel of Figure 16 shows several individual LGRBs from the SHOALS sample, specifically those with host mass and N_{H} measurements. Overlaid are the results of the simulation snapshots, redshift-weighted according to the SHOALS redshift distribution. Grey shading represents the distribution of the median N_{H} of individual simulated galaxies. We find that the observations overlap well with the simulations under the assumption that LGRBs originate in dense regions of galaxies. We also find that the simulations predict a diversity of galaxies with a scatter of ~0.5 dex in N_{H}, in agreement with our observations. We test the importance of the immediate vicinity to the N_{H} by excluding the inner 100 pc radius, which reduces N_{H} by a factor of 2 on average. This indicates that distant, i.e., galaxy-scale obscuration is important.

In both the observations and simulations, some rare objects occupy the upper left quadrant of Figure 16, showing high obscurations $N_{\text{H}} > 10^{22}\text{cm}^{-2}$ despite low masses $M_* < 10^{10}\text{M}_\odot$. In the simulations, these galaxies have high star formation rates, with the majority being starburst galaxies and many having recently experienced mergers. Figure 16 indicates the relevant range with an ellipse for $z = 0$ (other redshifts are slightly higher).

The right panel of Figure 16 depicts the redshift evolution of simulated galaxies. In Illustris, $z = 1 - 3$ galaxies have a slightly higher specific gas content, which affects the median column densities. At low redshifts ($z = 0 - 1$), massive galaxies in particular lose gas by strong feedback from active galactic nuclei to avoid over-production of massive galaxies. From our observations we ruled out a redshift-dependent trend of LGRBs in Section 4.4. Furthermore, at each redshift the slope of the $N_{\text{H}} - M_*$ relation derived from Illustris is substantially steeper than $1/3$.

These two issues indicate that the Illustris simulation may not represent the gas in galaxies correctly, because it predicts substantially more obscured LGRBs and higher columns for LGRBs in massive galaxies. If remaining concerns e.g., regarding absorber geometry and substructure can be addressed, our X-ray tomography of galaxy gas could be used in the future to distinguish (the strength of) feedback models and star formation efficiencies (see also Paper II). Alternatively, the lower observed obscuration may be due to a environmental preferences of LGRBs inside galaxies, such as a metal/dust aversion.

6 SUMMARY

We analysed a large sample of Swift-detected long-duration Gamma-Ray Bursts using modern statistical techniques, incorporating the uncertainties from spectral analysis and investigating the effect of redshift incompleteness from dust-extinct/dark LGRBs. Our findings can be summarised as follows:

(i) The column density of the LGRB population lies in the 10^{20-22}cm^{-2} range and can be described by a normal distribution.

(ii) A well-suited model for the column density distribution is a axisymmetric ellipsoid of gas with randomly placed GRBs within. This set-up generalises previous models based on the giant molecular clouds of the Milky Way. Those in fact have lower column densities than observed from GRBs in host galaxies of similar mass. Permitted solutions for the obscuring clouds include a degenerate range of densities and flatness (~1:20). Additionally it is necessary that the gas ellipsoid population has a distribution in its total gas density of about 0.22 dex.

(iii) We systematically search the Swift archive for evidence of heavily-obscured LGRBs. We note that such LGRB could have been detected and characterised by Swift/XRT given their intrinsic X-ray luminosities, but are not observed. LGRBs therefore do not reach heavily obscured column densities of $N_{\text{H}} > 10^{23}\text{cm}^{-2}$.

(iv) The column density of LGRBs shows no significant evolution with redshift. If present its effect is at most a factor of 3.

(v) LGRBs in galaxies of high stellar mass show substantially more obscuration. We find a novel relation: $N_{\text{H}} = 10^{21.7}\text{cm}^{-2} \times \left(\frac{M_*}{10^{5.5}\text{M}_\odot}\right)^{1/3}$

(vi) The scatter in column densities can be fully explained by the mass-dependence (v) and geometric effects (ii).

(vii) We argue based on the mass-dependence of the obscuration and the derived geometry of the obscurer as well as analysis of well-mapped local galaxies, that the obscurer is predominantly the GRB host galaxy itself.

(viii) This conclusion is corroborated by investigating the metal mass in simulated galaxies. These predict the same magnitude of obscuring X-ray column densities, similar scatter as well as a mass-dependence, although of a steeper slope.

ACKNOWLEDGEMENTS

JB thanks David Rosario, Patricia Schady, Hendrik van Eerten, Jochen Greiner, Antonis Georgakakis, Kirpal Nandra and Dave Alexander for insightful conversations, and Pierre Maggi and Sergio Molinari for insightful input on the obscuration in the Magellanic clouds and in the CMZ. JB thanks Klaus Dolag, Sergio Contreras and Torsten Naab for conversations about hydrodynamic simulations.

We acknowledge support from the CONICYT-Chile grants Basal-CATA PFB-06/2007 (JB, FEB, SS), FONDECYT Regular 1141218 (SS, FEB), FONDECYT Postdoctorados 3160439 (JB) and 3140534 (SS), “EMBIGGEN” Anillo ACT11101 (FEB), and the Ministry of Economy, Development, and Tourism’s Millennium Science Initiative through grant IC120009, awarded to The Millennium Institute of Astrophysics, MAS (JB, FEB, SS).

We thank the builders and operators of Swift. This work made extensive use of data supplied by the UK Swift Science Data Centre at the University of Leicester. This research has made use of software provided by the Chandra X-ray Center (CXC) in the applica-

The same result occurs when adding a redshift-dependence to the $N_{\text{H}} - M_*$ relation; the individual constrained SHOALS LGRBs also do not appear to follow that redshift evolution.
tion package CIAO and Sherpa. Additionally, the BXA10, PyMultiNest11, Astropy (Astropy Collaboration et al. 2013) and CosmoLoPy12 software packages were used.

References

Aird J., et al., 2010,

Aird J., Coil A. L., Georgakakis A., Nandra K., Burro G., Perez-Gonzalez P. G., 2015, preprint, (arXiv:1503.01129)

Akaia H., 1974, Automatic Control, IEEE Transactions on, 19, 716

Anders E., Elnhara M., 1982, Geochimica Cosmochimica Acta, 46, 2363

Antonelli L. A., et al., 2010, GRB Coordinates Network, 10620

Aoki K., Hattori T., Kawabata K. S., Kawai N., 2006, GRB Coordinates Network, 4703

Astropy Collaboration et al., 2013, A&A, 558, A33

Barthelmy S. D., et al., 2009, GRB Coordinates Network, 9756

Barthelmy S. D., et al., 2012, GRB Coordinates Network, 13910

Berger E., Gladders M., 2006, GRB Coordinates Network, 5170

Berger E., Rauch M., 2008, GRB Coordinates Network, 7389

Berger E., Soderberg A. M., 2005, GRB Coordinates Network, 4384

Berger E., Gladders M., Oemler G., 2005a, GRB Coordinates Network, 4201

Berger E., Geha M., Thompson L., 2005b, GRB Coordinates Network, 3753

Berger E., Price P. A., Fox D. B., 2006a, GRB Coordinates Network, 4622

Berger E., Kulkarni S. R., Rau A., Fox D. B., 2006b, GRB Coordinates Network, 4815

Berger E., Casen B. S., Rau A., 2006c, GRB Coordinates Network, 5071

Berger E., Morrell N., Roth M., 2007a, GRB Coordinates Network, 7151

Berger E., Morrell N., Roth M., 2007b, GRB Coordinates Network, 7154

Berger E., Fox D. B., Cucchiara A., Casen B. S., 2008, GRB Coordinates Network, 8335

Bissaldi E., McBreen S., 2008, GRB Coordinates Network, 8715

Bolatto A. D., Leroy A. K., Rosolowsky E., Walter F., Blitz L., 2008, ApJ, 686, 948

Bolmer J., Graham J., Knust F., Greiner J., 2015a, GRB Coordinates Network, 18598

Bolmer J., Knust F., Greiner J., 2015b, GRB Coordinates Network, 18603

Boquien M., et al., 2013, A&A, 554, A14

Brightman M., Nandra K., 2011, MNRAS, 413, 1206

Brünn C., et al., 2005, A&A, 432, 45

Buchner J., et al., 2014, A&A, 564, A125

Buchner J., et al., 2015, ApJ, 802, 89

Burrows D. N., et al., 2005, Space Sci. Rev., 120, 165

Butler N. R., Bloom J. S., Poznanski D., 2010, ApJ, 711, 495

Campana S., 2015, GRB Coordinates Network, 18483

Campana S., et al., 2006, A&A, 449, 61

Campana S., Thöne C. C., de Ugarte Postigo A., Tagliaferri G., Moretti A., Covino S., 2010a, MNRAS, 402, 2429

Campana S., Starling R. L. C., Evans P. A., Sakamoto T., 2010b, GRB Coordinates Network, 11195

Campana S., D’Avanzo P., Lazzati D., Covino S., Tagliaferri G., Panagia N., 2011, MNRAS, 418, 1511

Campana S., et al., 2012, MNRAS, 421, 1697

10 https://johannesbuchner.github.io/8XA/
11 https://johannesbuchner.github.io/PyMultiNest/
12 http://roban.github.com/CosmoLoPy/
The heavier tails, including approximation in the bulk of the population. However the data show the various samples. The Gaussian distribution provides a good approximation of the distribution is much narrower (the full range of $\Gamma = 1$). We approximate the constraints on the slope of the intrinsic powerlaw. The constraints for GRB afterglows, which is a side-products of our analysis. The Gaussian distribution is much narrower than the complete sample is shown in Figure A1. We approximate the constraints on the slope of the intrinsic powerlaw. The constraints for GRB afterglows, which is a side-products of our analysis. The Gaussian distribution provides a good approximation of the distribution is much narrower (the full range of $\Gamma = 1$) and the distribution spreads in most cases. Nevertheless, if that is assumed, we find $p = 2$ for the electron density distribution index distribution with a standard deviation of 0.15, which is consistent with our results.

APPENDIX A: PHOTON INDEX DISTRIBUTION

For completeness, we report the intrinsic photon index distribution of GRB afterglows, which is a side-products of our analysis. The X-ray spectrum of the complete sample was analysed to obtain constraints on the slope of the intrinsic powerlaw. The constraints for the complete sample is shown in Figure A1. We approximate the distribution by a Gaussian distribution, plotted in red. The overall distribution is centred at $\Gamma = 1.94$ with a width of $\sigma = 0.20$. Table A1 shows the mean and standard deviations obtained from the various samples. The Gaussian distribution provides a good approximation in the bulk of the population. However the data show heavier tails, including $\Gamma < 1.5$ and $\Gamma > 2.4$. The individual spectra show no obvious signs of bad fits in either extreme. The high-mass subsample and redshift subsample show steeper slopes with a narrower distribution, but the difference is smaller than the uncertainties.

Curran et al. (2010) investigate the photon index distribution based on the automatic fitting results of Evans et al. (2009) of 301 GRBs. They find a peak at $\Gamma \approx 2.1$, and the distribution spreads the full range of $1 - 3$. In contrast, we find that the standard deviation of the distribution is much narrower ($\sigma = 0.2$) than the analysis suggests ($\sigma \approx 0.5$). This is probably because of their use of best-fit values, which introduce additional scatter, and the fact that the completely automated analysis of Evans et al. (2009) sometimes choose time windows affected by prompt emission while we manually verify each time window. Wang et al. (2015) performed temporally resolved fitting of X-ray and optical data and found $\Gamma = 1.98$ with standard deviation $\sigma = 0.15$, which is consistent with our results.

APPENDIX B: X-RAY BACKGROUND MODEL

The shape of the XRT background has been analysed by Pagani et al. (2007) (see Figure 2 there). It shows a steep increase below 0.5 keV and several bumps. The background spectra analysed in this work show the same shape. We fit the background spectrum with a broken powerlaw model and four Gaussian components at $\beta = 1$, $\beta = 2$, and $\beta = 3$, by order of importance. The parameters of this model are optimised according to the Poisson likelihood. In further analysis, the background model parameters are held fixed, and the background model is added to the source spectral fit, scaled.
APPENDIX C: NUMERICAL DETAILS ON FITTING THE ELLIPSOIDS MODELS

This section describes how the SingleEllipse model is computed. Monte Carlo ray-tracing simulations are used to compute the column density distribution \(p(N_{\text{H}}|M, \theta) \).

First, random points inside the ellipsoid are generated. The ellipsoids equation,

\[
\left(\frac{p_x}{r_x}\right)^2 + \left(\frac{p_y}{r_y}\right)^2 + \left(\frac{p_z}{r_z}\right)^2 \leq 1,
\]

(C1)
describes whether a point \(\mathbf{p} = (p_x, p_y, p_z) \) is inside the ellipsoid. The radii are \(r_x = r = R \) and \(r_z = z \) under cylindrical symmetry. For constant density sampling, \((p_x, p_y, p_z) \) are first drawn uniformly in \(p_x \sim U(-R,R), p_y \sim U(-R,R), p_z \sim U(-z,z) \) and the vector \(\mathbf{p} \) is rejected if outside the ellipsoid.

Second, a random unit direction vector is generated. Three unit normal variates are combined to a vector \(\mathbf{d} \sim (N(0,1), N(0,1), N(0,1)) \) which is then normalised to unit length \(\mathbf{n} = \mathbf{d}/|\mathbf{d}| \).

Third, the length \(l \) of the ray inside the ellipsoid needs to be computed, which is the distance between \(\mathbf{p} \) and the point where the ray exits the ellipsoid, \(\mathbf{q} \). The coordinates of \(\mathbf{q} \) are governed by Equation C1 and the line equation,

\[
\mathbf{q} = \mathbf{p} + l \cdot \mathbf{n},
\]

(C2)

which yield the quadratic equation

\[
\left(\frac{p_x + l \cdot n_x}{r_x}\right)^2 + \left(\frac{p_y + l \cdot n_y}{r_y}\right)^2 + \left(\frac{p_z + l \cdot n_z}{r_z}\right)^2 = 1
\]

(C3)

with \(l \) unknown. Equation C3 has two solutions for \(l \) (one for the positive, one for the negative direction). Only the positive one is considered. With

\[
b = \frac{p_x \cdot n_x}{r_x} \cdot \frac{p_y \cdot n_y}{r_y} + \frac{p_y \cdot n_z}{r_z} \\
ac = \frac{p_x^2}{r_x^2} + \frac{p_y^2}{r_y^2} + \frac{p_z^2}{r_z^2} \\
d = b^2 - a \\
l = \begin{cases}
0 & \text{if } d < 0 \\
\sqrt{d}/a & \text{otherwise}
\end{cases}
\]

(C4) \quad (C5) \quad (C6) \quad (C7) \quad (C8)

we can finally write the column probed by the ray as \(N_{\text{H}} = N_{\text{H}}^{\text{major}} \cdot l \), where \(N_{\text{H}}^{\text{major}} \) is the column density of the ellipsoid in a unit length.

The problem is fundamentally degenerate \((N_{\text{H}}^{\text{major}} \text{ and size}) \), so \(R = 1 \) is assumed for the SingleEllipse model.

To compute the column density distribution, \(p(N_{\text{H}}|M, \theta) \), 400000 random rays are generated. A histogram of their \(N_{\text{H}} \) between \(10^{19} - 10^{26} \text{cm}^{-2} \) with 100 logarithmically spaced bins provides a well-sampled approximation. A problem may occur with less obscured column densities in the simulation, which can never be measured due to Milky Way absorption. For simplicity, the column density of each ray is modified as \(N_{\text{H}} = N_{\text{H}} + 10^6 \) with the random number \(u \sim U(19,20) \) to ensure all rays have \(N_{\text{H}} > 10^{19} \text{cm}^{-2} \). This redistributes unobscured rays to the range \(10^{19} - 10^{25} \text{cm}^{-2} \), uniformly, and, although done primarily for numerical reasons, may be interpreted as placing the ellipsoid in a low-density gas with \(N_{\text{H}} < 10^{20} \text{cm}^{-2} \).

The arising distribution (see Figure 6) cannot be approximated by simple analytic formulas. Towards low \(N_{\text{H}} \) values, the distribution rises exponentially. For very low \(z/R \) ratios, the distribution declines exponentially toward high \(N_{\text{H}} \) values, but the peak is too wide/narrow to be fitted by a broken/bending powerlaw. Additionally, for moderate \(z/R \) ratios, there is a steep truncation at \(N_{\text{H}} = 2 \) (see Figure 6) which declines faster than an exponential cut-off.

To emulate a dispersion in the population of \(\log N_{\text{H}}^{\text{major}} \) of standard deviation \(\sigma \), the histogram is convolved with a Gaussian. Finally, linear interpolation of the histogram is used to evaluate \(p(N_{\text{H}}|M, \theta) \) at arbitrary \(N_{\text{H}} \) values.

The MultiEllipsoid model generates points proportional to the mass in each ellipsoid, which is

\[
M \propto N_{\text{H}}^{\text{major}} \cdot r_x \cdot r_y \cdot r_z.
\]

The ellipsoid to draw from is chosen randomly in proportion to its masses \(M \). Rays now may probe multiple ellipsoids, and the final \(N_{\text{H}} \) is the sum of all ellipsoids encountered. The definition of \(l \) has to be modified because some rays may not originate inside the ellipsoid at hand (checked with Equation C1), but cross it. In that case the distance \(l \) is between the two quadratic solutions, giving

\[
l_{\text{cross}} = 2 \cdot \sqrt{a}/a.
\]

Otherwise, the same procedure as in the SingleEllipse model is applied.

To simulate the column density from the centre, \(\mathbf{p} = (0,0,0) \) is set fixed, and the procedure of generating random rays is applied in the same fashion.

This paper has been typeset from a TeX/LaTeX file prepared by the author.