Optical Radii
of Galaxy Clusters

M. Girardi1,2, A. Biviano3, G. Giuricin1,2, F. Mardirossian1,2, and M. Mezzetti1,2

(1) SISSA, via Beirut 4, 34013 - Trieste, Italy
(2) Dipartimento di Astronomia, Università degli Studi di Trieste, Trieste, Italy
(3) Institut d’Astrophysique de Paris, 98bis bd Arago, 75014 Paris, France

E-mail:
girardi@tsmi19.sissa.it;
biviano@iap.fr;
giuricin@tsmi19.sissa.it;
mardirossian@tsmi19.sissa.it;
mezzetti@tsmi19.sissa.it
Abstract

We analyze the density profiles and virial radii for a sample of 90 nearby clusters, using galaxies with available redshifts and positions. Each cluster has at least 20 redshifts measured within an Abell radius, and all the results come from galaxy sets of at least 20 members.

Most of the density profiles of our clusters are well fitted by hydrostatic-isothermal-like profiles. The slopes we find for many cluster density profiles are consistent with the hypothesis that the galaxies are in equilibrium with the binding cluster potential.

The virial radii correlate with the core radii at a very high significance level. The observed relationship between the two size estimates is in agreement with the theoretical one computed by using the median values of the density profile parameters fitted on our clusters.

After correcting for incompleteness in our cluster sample, we provide the universal distributions functions of core and virial radii (obtained within half an Abell radius).

Subject headings: galaxies: clusters of – galaxies: clustering
1 Introduction

The distribution functions of observational cluster quantities, such as radii, velocity dispersions, masses, luminosities and X-ray temperatures, can provide strong constraints both on cosmological scenarios and on the internal dynamics of these systems. Theoretical as well as observational estimates of these distribution functions are presently being debated.

In previous papers (Girardi et al. 1993, hereafter GBGMM; Biviano et al. 1993), we have addressed the distributions of cluster velocity dispersions and virial masses. Here, we deal with the spatial distribution of member galaxies in clusters. Existing relations between the linear sizes and other physical quantities of bound systems of galaxies have been investigated in the literature, both observationally and theoretically (see, e.g., Oemler 1974: Bahcall 1975; Peebles 1976; Dressler 1978; Sarazin 1980; Giuricin, Mardirossian, & Mezzetti 1984; West, Dekel, & Oemler 1987; West, Oemler, & Dekel 1989; Peebles, Daly, & Juszkiewicz 1989; Lilje, & Lahav 1991; Cavaliere, Colafrancesco, & Scaramella 1991; Edge, & Stewart 1991; Inagaki, Itoh, & Saslaw 1992; Kashlinsky 1992; and references therein).

Several size estimates are present in the literature: the core radius, the effective radius, the virial radius, the harmonic radius, the gravitational radius, the mean radius, etc. (see, e.g., Bahcall 1977, and references therein). In the present paper we deal with virial and core radii.

Relaxation processes naturally lead to the formation of physical cores in clusters of galaxies (see, e.g., King 1966; Lynden-Bell 1967; Peebles 1970; Sarazin 1986). Generally, in order to fit the galaxy distribution of clusters, the following surface density profile has been assumed (see, e.g., Bahcall 1977, Sarazin 1980, and references therein):

\[\sigma(r) = \frac{\sigma_0}{[1 + (r/R_c)^2]^\alpha} \]

(1)

where \(\sigma_0 \) is the central projected galaxy density and \(R_c \) is the core radius. This model corresponds for \(r \gg R_c \) to a volume – density \(\rho(r) \propto r^{-2\alpha-1} \).

Many authors (see, e.g., Bahcall 1975, Dressler 1978, Sarazin 1986) have used the King (1962) model to fit the cluster profiles; this corresponds to the model of Eq.(1) with \(\alpha = 1 \). For instance, Bahcall (1975) found an average value of \(King - R_c \approx 0.12 \pm 0.02 \ h^{-1} \ Mpc \) (the Hubble constant is \(H_0 = \ h \ 100 \ km \ s^{-1} \ Mpc^{-1} \)) on a sample of 15 rich regular clusters; on the contrary,
Dressler (1978) found an average value of \(\text{King} - R_c \approx 0.24 \pm 0.06 \, h^{-1} \, \text{Mpc} \) on another sample of 12 clusters. From the large compilation by Sarazin (1986), it may be noted that very different values of King \(R_c \) for the same cluster have been obtained by different authors.

Core-radii have also been derived for the X-ray surface brightness distributions, by fitting these profiles to hydrostatic-isothermal models (see, e.g., Abramopoulous & Ku 1983; Jones & Forman 1984; Lubin & Bahcall 1993; Bahcall & Lubin 1993; and references therein). An average value of \(\sim 0.05 - 0.15 \, h^{-1} \, \text{Mpc} \) is suggested for X-ray core radii, although both smaller (Durret et al. 1993) and larger (Jones & Forman 1992) values have been found.

Attempts to evaluate the core-radius of the cluster dark matter component have been made (see, e.g., Eyles et al. 1991; Gerbal et al. 1992; Kneib et al. 1993; Miralda-Escudé 1992; Soucail 1992). The results are still preliminary.

In this paper we use the hydrostatic-isothermal models in order to fit the cluster density profiles. In particular, this choice is corroborated by the recent results of Bahcall & Lubin (1993; see also Gerbal, Durret, Lachièze-Rey 1994), who claim that the so-called “\(\beta \)–discrepancy” can be solved by fitting the galaxy density profiles with models having \(\alpha = 0.7 \pm 0.1 \) in Eq.(1), i.e. \(\rho(r) \propto r^{-2.4 \pm 0.2} \) at large values of \(r \), instead of using the classical King models. We remind that the \(\beta \)-discrepancy is the difference between the observed values of \(\beta_{\text{spec}} \), determined from cluster X-ray temperatures and velocity dispersions, and \(\beta_{\text{fit}} \), determined from the gas and the galaxy density profiles in galaxy clusters (see, e.g., Sarazin 1986).

The virial radius has been extensively used in the literature to evaluate the sizes and masses (via the Virial Theorem) of galaxy systems (see, e.g., Limber & Mathews 1960; Smith 1980; Fernley & Bhavsar 1984; West, Oemler, & Dekel 1989; Perea, del Olmo, & Moles 1990; Pisani et al. 1992; Biviano et al. 1993). In the present paper we consider the 2D-projected virial radius (i.e. not de-projected by the classical value of \(\pi/2 \)),

\[
R_v = \frac{N^2}{\sum_{i \neq j} R_{ij}},
\]

where \(N \) is the number of cluster members and \(R_{ij} \) is the projected distance between the \(i \) and the \(j \) member.

In this framework, we deemed it interesting to obtain estimates of cluster sizes using a large data-sample of 90 clusters, and we examine the relation-
ships between these sizes and other cluster properties. In § 2 we describe our data-sample; in § 3 we consider the method of analysis; in § 4 we provide the results and the relevant discussion; and in § 5 we list our conclusions.

2 The Data-Sample

We based our analysis on a sample of 90 nearby \((z < 0.15)\) clusters, each one with at least 20 measured redshifts of cluster members within \(1.5 \ h^{-1} \ Mpc\). In this compilation we included some poor clusters (or rich groups) in order to enlarge our range of cluster-richness.

The problem of foreground and background contamination may be severe when redshift information is not available for all the galaxies considered. In fact, different corrections have been adopted in the literature, leading to very different estimates for the sizes of the same clusters (see, e.g., Bahcall 1975; Dressler 1978; Fitchett & Merritt 1988; West, Dekel, & Oemler 1987).

On the contrary, using observed redshifts and positions for all our cluster galaxies, we have been able to assign the cluster membership. Therefore, our sample should be considered quite free from contamination. The procedure adopted to reject non-cluster members is similar to that described in GBGMM. However, in this paper we have decided to adopt a somewhat stricter selection criterion, which is described below.

In order to reject interlopers in the clusters, we make use of the distance of a galaxy from the cluster center in the coordinates and in the velocity space. The center is defined as a biweight mean of the velocities, right ascensions and declinations (see, e.g., Beers, Flynn, & Gebhardt 1990, GBGMM).

A first selection is performed to separate obvious groups which are projected in the same cluster field. First, we identify all groups separated by a weighted gap larger than 4 in the velocity space. A weighted gap in the space of the ordered velocities is defined as the difference between two contiguous velocities, weighted according to their rank in the ordered distributions: the closer to the center of the distribution is the gap, the higher is its weight (for further details see, e.g., Beers et al. 1990). We then select as our cluster the larger of these groups. Of the remaining galaxies, we subsequently reject all of them lying outside a circle of \(3 \ h^{-1} \ Mpc\) from the cluster center. This rejection is made in an iterative way, recomputing the center after each iteration and thus redefining the \(3 \ h^{-1} \ Mpc\) circle and the rejected galaxies,
until convergence is reached.

This defines the main cluster body. Further selection requires the exclusion of galaxies more distant than 4000 km s\(^{-1}\) from the cluster mean velocity (as in Beers et al. 1991, GBGMM), and further rejection of galaxies separated from the main cluster body by a weighted gap larger than 4 in the velocity space. The greatest difference with respect to GBGMM is in the last selection in the coordinate-space: we reject all galaxies more distant than 1.5 \(h^{-1}\) Mpc from the cluster center, once again in an iterative way. Since the size estimators are not as robust as the estimators of velocity dispersions used in GBGMM, we believe that restricting the analysis to galaxies within 1.5 \(h^{-1}\) Mpc is a very simple but efficient method to reduce the problem of interlopers, since the higher the aperture the larger the ratio between background/foreground galaxies and cluster members. Thus it is more conservative to consider the inner cluster regions.

Problems of magnitude incompleteness may cause errors in the size estimates (e.g., Dressler 1978). In particular, if a deeper sampling of galaxies (in terms of magnitudes) has been made by observers in the central regions, the shape of the density profile will look steeper than it is in reality. We have therefore analysed all our clusters with available galaxy magnitudes, by looking at the galaxy magnitudes as a function of clustercentric distance. We have noted that some clusters are sampled more deeply close to the center than they are outside. We have rejected the fainter galaxies of these clusters so as to erase any trend of the limiting magnitude with clustercentric distance.

Yet another sort of bias may be present, if some regions in the cluster are not covered observationally (generally, in the outer parts). As for the previous case, the shape of the density profile will look artificially steeper than it is in reality. There is no easy way to eliminate this sort of bias \textit{a priori}, but a signature of it may be the steepening of the density profile with increasing apertures. As a consequence, we look with more confidence on those results obtained from the central regions of our clusters, where problems of incompleteness should not be so strong (see §3).

Yet another problem is the presence of substructures which may bias the determination of cluster sizes, and in particular of the core radii (see, e.g., Sarazin 1980). When the cluster has several density clumps, one density profile might not adequately fit the galaxy distribution; and large, spurious values of the core radius are expected when a single profile is forced to fit
all the data. In order to investigate the possible presence of subclustering in our sample, we performed the test of Dressler & Schectman (1988a). This test gives the probability, $1 - P_{DS}$, that some subclustering exists in the cluster (1000 simulations were run, according to the prescriptions of the above-mentioned Authors). Actually this method (like others available in the literature) is not efficient when the number of galaxies considered is low ($N < 40$). As a consequence, we considered the subsample of our clusters, with $N \geq 40$ members and no evidence of subclustering, in order to check our results. As detailed in §4, our results do not seem to be biased by subclustering.

The sample of the 90 clusters considered is listed in Table 1, together with the number N of galaxy members inside $1.5 \, h^{-1} \, Mpc$ from the cluster center, the Abell counts C, the richness R, the Bautz & Morgan and the Rood & Sastry classes (BM type and RS type), the probability P_{DS} that observed structures in the cluster are chance fluctuations (i.e. low values of P_{DS} indicate a high probability of subclustering), and the relevant reference sources.

3 The Method of Analysis

In order to obtain the values of R_c, we fitted the observed galaxy distributions to hydrostatic-isothermal models on the hypothesis of spherical symmetry. Although clusters are not spherical symmetric (their flattening may indeed be quite large, see, e.g., Rhee, van Haarlem, & Katgert 1992), we prefer not to include ellipticity as a free parameter in our fits, because it would be poorly constrained in many clusters of our data-set, where we do not have enough data, and because inhomogeneous sampling during observing may result in artificial shapes for some clusters. We nonetheless performed Montecarlo realizations of distributions of 25, 50, 100 and 200 points extracted from King density profiles with varying R_c and ellipticity, and we analyzed how the derived values of R_c depend on the assumption of spherical symmetry. Not surprisingly, these values are intermediate between the values of the major and minor axis core-radii, and consistent with both within the formal errors. Therefore, we think that the assumption of spherical symmetry is a good working hypothesis.

The fitting was performed using the Maximum Likelihood technique which
takes directly into account the positions of individual galaxies, and does not require any binning of the data (see, e.g., Sarazin 1980). This method is very efficient, since it does not introduce any artificial scales, and it allows the simultaneous fitting of \(R_c \) and \(\alpha \). On the basis of the discussion of the previous section about interlopers, we assumed that the background galaxy density was negligible, and we set it at zero.

We allowed \(R_c \) and \(\alpha \) to vary from 0 to 1 and from 0.5 to 1.5, respectively; we rejected values of \(R_c \) larger than 1 \(h^{-1} Mpc \) and values of \(\alpha \) outside the above mentioned interval. Moreover, we did not consider size-estimates for clusters whose fitted profiles are rejected by a Kolmogorov-Smirnov test (hereafter KS test) at 90\% of probability. However, fitting both \(R_c \) and \(\alpha \) at the same time is not an easy task, especially when the data-set is poor. In a second stage of the investigation (see §4), we therefore decided to fix the value of \(\alpha \) at the median value obtained in the two-parameter-fitting procedure. By reducing the free parameters to one, \(R_c \), we were able to better constrain the size-estimates.

The errors on our \(R_c \) were estimated by following the prescriptions of Avni (1976), while the errors on our \(R_v \) were obtained via the Jacknife technique (see, e.g., Efron 1979, Geller 1984).

4 Core and Virial Radii

We obtained both the virial radii and the best fits of cluster profiles with three increasing apertures, i.e. 0.5, 0.75, and 1 \(h^{-1} Mpc \).

In Table 2 we give the virial radii for our sample of clusters; in col.(1) we list the cluster name; in cols. (2), (3), and (4) the values of \(R_{v,0.5}, R_{v,0.75}, R_{v,1} \) and their errors, computed within the increasing apertures 0.5, 0.75, 1 \(h^{-1} Mpc \) for each cluster (if at least 20 members are contained within the respective aperture).

In Table 3 we give the median values of the core radii \(R_{c,0.5}, R_{c,0.75}, R_{c,1} \), and of the \(\alpha \)'s \(\alpha_{0.5}, \alpha_{0.75}, \alpha_1 \) for our clusters, computed within the apertures of 0.5, 0.75, and 1 \(h^{-1} Mpc \), respectively. The numbers of cluster fittings, the core radii, and the values of \(\alpha \) are listed in cols. (1), (2), and (3). The fittings were performed only if at least 20 members are contained within the respective aperture. Only the good fits were considered (see §3).

The fitted profiles seem to be steeper when apertures larger than 0.50
$h^{-1} Mpc$ are considered. This trend may be explained either by sampling incompleteness, or by a true difference between the profiles of the inner and the outer cluster regions (see, e.g. Bahcall & Lubin 1993). When we restrict our analysis to the inner regions, we note that the distributions of $\alpha_{0.5}$ and $\alpha_{0.75}$ do not differ significantly, according to KS- and Sign-test; the same holds for $R_{c,0.5}$ and of $R_{c,0.75}$. The profiles seem to be well-defined within $0.75 h^{-1} Mpc$; therefore, we restricted our analysis to this inner region.

Fixing the α parameter in the fitting procedure makes it possible to reduce the formal errors on the derived values of the core radii. Our median value of $\alpha_{0.5}$ is $0.8^{+0.3}_{-0.1}$. It does not differ, within the errors, from 0.7 ± 0.1, which is the α-value suggested by Bahcall & Lubin (1993) (see also Bahcall 1977) to resolve the β-discrepancy for clusters of galaxies. So, we chose the value of 0.8 in our α-fixed models.

In Table 4 we list the core radii obtained with the fixed $\alpha = 0.8$ profiles; in col.(1) we list the cluster name; in col. (2) we list the values of $R_{c,0.5,\alpha=0.8}$ and their errors, computed within the apertures of $0.5 h^{-1} Mpc$, and in col. (3) the corresponding confidence levels (in percent) $P_{0.5,\alpha=0.8}$ of the profile fittings (obtained by using the KS-test); in col. (4) we list the values of $R_{c,0.75,\alpha=0.8}$ and their errors, computed within the apertures of $0.75 h^{-1} Mpc$, and in col. (3) the corresponding confidence levels (in percent) $P_{0.75,\alpha=0.8}$ of the profile fittings (obtained by using the KS-test).

As usual, the fits were performed only on samples with at least 20 galaxies contained within the aperture considered.

The median values and the distributions of $R_{c,0.5,\alpha=0.8}$ and $R_{c,0.75,\alpha=0.8}$ do not differ, according to the KS- and Sign-test. This suggests that our estimates of the core-radii are quite stable within half an Abell radius.

In order to detect a possible effect of subclustering on the radii estimates, we considered the subsample of our clusters with $N \geq 40$ members (for the reasons outlined in §2). On this sample we compared the distributions of R_c (and R_v) for clusters with and without evidence of subclustering: there is no difference, according to the KS-test. We caution that this result cannot be considered neither general, since our cluster sample is not volume-complete, nor conclusive, since different tests for subclustering may yield different results (see, e.g. West & Bothun 1990). In fact, a detailed analysis of 16 well-sampled cluster (Escalera et al. 1994) has shown that the estimates of cluster virial radii do decrease when galaxies belonging to subclusters are identified and removed from the sample. However, the changes are not sta-
tistically significant in most cases, being important only when the cluster has a bimodal configuration, and this happens for only 4 out of the 16 clusters considered. In most cases the masses of the substructure are \(\sim 10\% \) of their parent cluster masses, so it is not surprising that subclustering does not have a very large influence on the size determination.

The analysis of the errors of \(R_v \) and \(R_c \) suggests that the dispersion of the values of \(R_v \) and \(R_c \) is partially intrinsic, and not mainly induced by the errors involved.

4.1 Core Radii vs. Virial Radii, and Other Relations

Both the core and the virial radius describe the galaxy distribution inside the cluster, so the existence of a relation between these two quantities is quite natural. This functional dependence can be easily derived when one knows the density profile.

On the hypothesis that the models we use fit cluster density distributions, we obtain the following relation

\[
R_v = R_c \cdot F(A/R_c),
\]

where \(A \) is the aperture considered. See the Appendix for details.

In our data-sample the values obtained for the core and virial radii are very well correlated, at \(> 99.99\% \) significance level, for both the aperture of 0.5 and 0.75 \(h^{-1} \) Mpc. Fig. 1 shows log \(R_{c,0.5,\alpha=0.8} \) vs. log \(R_{v,0.5} \) (panel a), and log \(R_{c,0.75,\alpha=0.8} \) vs. log \(R_{v,0.75} \) (panel b). This correlation is not induced by obvious observational biases (i.e., the radii do not correlate with the cluster distance, or with the number of cluster members we use, etc.). These relations remain practically unchanged if clusters with significant subclustering are removed. The theoretical curves derived from Eq. 3 are superimposed on the data in Fig. 1.

As can be seen, the observational relations between core and virial radii are in good agreement with the respective theoretical relations, described via eq.(3) and obtained with our (\(\alpha = 0.8 \)) profiles. This strongly supports the choice of these profiles in the description of cluster density distributions.

Moreover, it is possible to compare the measured \(R_v \) with the corresponding values \(R_{v,comp} \) computed from the observed \(R_c \) and the respective apertures using Eq.3. \(\hat{R}_v \) correlates with \(R_{v,comp} \) at a significance level higher
than 99.99%. For the virial radii the regression bisector line (see e.g. Isobe et al., 1990) is

\[R_{v,0.75,\text{comp}} = 0.02(\pm0.04) + 0.96(\pm0.06) \cdot R_{v,0.75}. \]

(4)

Fig. 2 shows \(R_{v,0.75,\text{comp}} \) versus \(R_{v,0.75} \). Obviously, it is also possible to compare the measured \(R_c \) with the corresponding values \(R_{c,\text{comp}} \) computed from the observed \(R_v \) and the respective apertures using Eq.3, and the result is quite similar.

As a consequence of this analysis, since the estimate of \(R_v \) is usually more straightforward than that of \(R_c \), one can evaluate \(R_c \) when \(R_v \) and the corresponding aperture are known.

We also investigated the existence of a correlation between \(R_v \) (and \(R_c \)) and other optical cluster quantities, such as the Abell richness, the morphological types by Bautz-Morgan and by Rood-Sastry, as reported in Table 1, and the robust velocity dispersions computed as in GBGMM: we found no strong evidence of correlation.

The comparison between optical and X-ray core radii has been extensively discussed with controversial results (see, e.g., Lea, Silk & Kellogg 1973; Smith, Mushotzky & Selermitos 1979, Abramopoulos & Ku 1983). Detailed optical analyses of few clusters (see, e.g., Ku et al. 1983, Henry & Henriksen 1986) suggest that optical and X-ray core radii are comparable within observational errors (see also David et al. 1990). We considered the X-ray core radii, \(R_x \), of Jones & Forman (1984); the median value of \(\alpha \) in their fits is \(\sim 0.7 \pm 0.1 \), which agrees with our optical \(\alpha = 0.8 \). The distribution function of \(R_x \) does not differ (according to the KS-test) from that of our \(R_{c,0.75,\alpha=0.8} \), when the common subsample of 18 clusters is considered. Fig. 3 shows these distributions.

4.2 Radii Distributions

Our cluster set is not volume-complete. Therefore, in order to estimate the cosmic distributions for our cluster core and virial radii, we should normalize our observational distributions to a complete cluster sample. For this purpose, we considered the Cluster Catalogue of Abell, Corwin & Olowin (1989; hereafter ACO), which is nominally complete for clusters with redshift \(z \leq 0.2 \) and richness class \(R \geq 1 \).
In GBGMM and Biviano et al. (1993) we used the Abell richness distribution to normalize the distributions of cluster velocity dispersions and, respectively, of cluster virial masses. The normalization makes sense because the richnesses is available for all ACO clusters, and both velocity dispersion and virial mass correlates with richness. Since there is no significant correlation between cluster size and richness, it is no obvious that a similar normalization would work in this case. On the other hand, the same lack of correlation suggests that the cluster size distribution should not depend critically on completeness. We decided to perform the normalization to richness, anyway.

The normalization was accomplished by randomly extracting 1000 values of R_c and R_v from the corresponding values measured in our clusters, in such a way as to reproduce the richness distribution of ACO’s cluster sample (poor sample statistics forced us to consider clusters with $R \geq 3$ as belonging to the same class).

We considered the values of $R_{c,0.75,\alpha=0.8}$, listed in Table 4, having excluded the $R = 0$ clusters (ACO is complete for $R \geq 1$). The corresponding ACO-normalized cumulative distributions is shown in Fig.4; the median value of this distribution is $0.17^{+0.04}_{-0.05} h^{-1} Mpc$ (where the 99% interval limits of the median are indicated).

Since the virial radii depend on the apertures used, we cannot provide a single cosmic distribution of virial radii. So, we chose the aperture 0.75 $h^{-1} Mpc$ (half an Abell radius) and the values of $R_{v,0.75}$ given in Table 2. The ACO-normalized cumulative distributions for $R_{v,0.75}$ are shown in Fig.5. The median value (with 99% interval limits) is $0.67^{+0.04}_{-0.06} h^{-1} Mpc$.

5 Conclusions

The cluster sample considered here is the most extensive one in the literature for the evaluation of virial radii and the fitting of galaxy density profiles, but it is not volume-complete.

Most of our cluster profiles (~90%) are fitted by hydrostatic-isothermal-like profiles with $\alpha = 0.8$; this result is, therefore, quite general.

Our optical results are consistent with the hypothesis that many clusters, within the errors and the apertures considered, are satisfactory described by isothermal models. In fact, the slope of our best-fit profiles is similar to that
of X-ray cluster profiles (e.g., Jones & Forman 1984). Therefore we agree with the analysis of Bahcall and Lubin (1993), who suggested a value of $\alpha = 0.7 \pm 0.1$ in order to resolve the β-discrepancy.

This result may seem surprising in view of the mounting evidence that subclustering is ubiquitous in clusters (see, e.g., Bird 1994). However, as discussed by West (1990), evidence for subclustering does not necessarily imply dynamical youth for the cluster. Classical tests for subclustering do not make any distinction between the case of simple geometrical projection of a group onto a cluster field, the case of a group that is falling into an otherwise relaxed cluster, and the case of real substructure, i.e. a true perturbation of the cluster dynamical potential. Moreover, subcluster masses are often an order of magnitude lower than their parent cluster masses (Escalera et al. 1994), and therefore their influence on the main cluster properties need not to be huge.

Our virial radii correlate with our core radii at a very high significance level. The relationship between these two size-estimates obeys the theoretical relationship which links the virial radius to the density profile with $\alpha = 0.8$.

We provide the distribution functions of R_v and R_c obtained within a fixed aperture of half an Abell radius. The analysis of the radii errors allows us to claim that the dispersion of the values of the cluster radii is partially intrinsic. The median value of our core radii is $0.17\, h^{-1}\, Mpc$ and the median value of our virial radii (within half an Abell radius) is $0.67\, h^{-1}\, Mpc$.

We thank Craig Sarazin for kindly providing us with his FORTRAN code for the Maximum Likelihood analysis of density profiles, John Hill for giving us an electronic copy of his cluster data, and Michael West, the Referee, for his useful suggestions. This work was partially supported by the Ministero per l’Università e per la Ricerca scientifica e tecnologica, and by the Consiglio Nazionale delle Ricerche (CNR-GNA).
Appendix

Both our core and virial radii (R_c and R_v, respectively) describe the galaxy distribution inside the cluster, so the existence of a relation between these two quantities is quite natural. This functional dependence can be derived when one knows the density profile.

The 3D virial radius $R_{v,3D}$ of a distribution of N cluster galaxies of masses m_i on the sky plane, within a circular aperture of radius A, is given by the usual relation expressing the total potential energy of the system. Since only projected positions are known for the galaxies, a de-projection factor (usually $\pi/2$) is used to deduce $R_{v,3D}$ from its projected value R_v, which is derived from the relation

$$-\frac{G}{R_v} \left(\sum_{i=1}^{N} m_i \right)^2 = -G \sum_{i=1}^{N} \sum_{j \neq i} m_i m_j R_{ij}, \quad (A1)$$

which becomes our Eq.(2) on the hypothesis that galaxy masses do not correlate with galaxy positions in clusters. This hypothesis is largely assumed in the literature and it is justified by the absence of pronounced luminosity segregation in galaxy clusters (see, e.g., Biviano et al. 1992).

The relation (A1) describes the total potential energy of the 2D distribution of masses. It is thus possible to evaluate R_v for a given surface-density profile $\sigma(r/R_c)$ ($r \leq A$), knowing the total potential energy $W_{2D}(A)$ of the disk of radius A. This energy is:

$$W_{2D}(A) = \frac{1}{2} 2\pi \int_0^A \Phi(r) \sigma(r/R_c) r \, dr; \quad (A2)$$

in (A2) the factor $1/2$ avoids counting twice the same couples of mass elements in the disk, and the gravitational potential $\Phi(r)$ (using polar coordinates (r', ϕ)) is:

$$\Phi(r) = -G \int_0^A \int_0^{2\pi} \frac{\sigma(r'/R_c) r'}{r^2 + r'^2 - 2r r' \cos \phi} \, d\phi \, dr' = -G R_c I(r/R_c). \quad (A3)$$

The function $I(r/R_c) = I(x)$ (where $x = r/R_c$) may be expressed, using the complete elliptical integral of first kind $K(y)$ (see Binney and Tremaine, pg.73, 1987), as

$$I(x) = 4 \int_0^{A/R_c} \frac{\sigma(u) u}{x + u} K \left[\frac{4 \sqrt{u \, x}}{(u + x)^2} \right] \, du, \quad (A4)$$
where \(u = r'/R_c \), and \(K(y) \) is defined by

\[
K(y) = \int_0^1 \frac{1}{\sqrt{(1 - t^2)(1 - y t^2)}} dt. \quad (A5)
\]

From these relations it is possible to obtain the relation between \(R_v \) and \(R_c \), for a given profile and aperture:

\[
R_v = R_c \left(\frac{4\pi}{\int_0^{A/R_c} I(x) \sigma(x) x \, dx} \right)^2 = R_c F(A/R_c). \quad (A6)
\]

The function \(F(A/R_c) \) can be evaluated for any given surface density profile \(\sigma(r/R_c) \). For the profile

\[
\sigma(r/R_c) = \frac{\sigma_0}{\left[1 + (r/R_c)^2 \right]^{0.8}}. \quad (A7)
\]

\(F(A/R_c) \) is well represented, for \(0.01 \leq (A/R_c) \leq 100 \) and with an accuracy better than 3%, by the relation

\[
F(A/R_c) = 1.193 \left(\frac{A}{R_c} \right) \frac{1 + 0.032 (A/R_c)}{1 + 0.107 (A/R_c)}. \quad (A8)
\]
References

bell, G.O., Corwin, H.G.Jr., & Olowin, R.P. 1989, ApJS, 70, 1 (ACO)

bramopoulous, F., & Ku, W.H. 1983, ApJ, 271, 446

vni, Y. 1976, ApJ, 210, 642

ahcall, N.A. 1975, ApJ, 198, 249

ahcall, N.A. 1977, ARA&A, Vol.15, 505

ahcall, N.A., & Lubin, L.M. 1993, ApJ in press

eers, T.C., Flynn, K., & Gebhardt, K. 1990, AJ, 100, 32

eers, T.C., Forman, W., Huchra, J.P., Jones, C., & Gebhardt, K. 1991, AJ, 102, 1581

eers, T.C., Gebhardt, K., Huchra, J.P., Forman, W., Jones, C., & Bothun, G.D. 1992, ApJ, 400, 410

ell, M., Whitmore, B.C. 1989, ApJS, 70, 139

inggeli, B., Sandage, A., & Tammann, G.A. 1985, AJ, 90, 1681

inney, J., & Tremaine, S. 1987, Galactic Dynamics, Princeton Univ. Press

iviano, A., Girardi, M., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1992, ApJ, 396, 35

iviano, A., Girardi, M., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1993, ApJ, 411, L13

othun, G.D., Aaronson, M., Schommer, B., Mould, J., Huchra, J., & Sullivan, W.T. III 1985, ApJS, 57, 423

othun, G.D., Geller, M.J., Beers, T.C., & Huchra, J.P. 1983, ApJ, 268, 47

towers, R.G., Ellis, R.S., & Efstatthiou, G. 1988, MNRAS, 234, 725

ivaliere, A., Colafrancesco, S., & Scaramella, R. 1991, ApJ, 380, 15

hapman, G.N.F., Geller, M.J., & Huchra, J.P. 1987, AJ, 94, 571

hapman, G.N.F., Geller, M.J., & Huchra, J.P. 1988, AJ, 95, 999

hincarini, G., & Rood, H.J. 1976, PASP, 88, 388

olless, M., & Hewett, P. 1987, MNRAS, 224, 453

ristiani, S., de Souza, R., D’Odorico, S., Lund, G., & Quintana, H. 1987, A&A, 179, 108

avid, L.P., Arnaud, K.A., Forman, W., & Jones, C. 1990, ApJ, 356, 32
	ickens, R.J., Currie, M.J., & Lucey, J.R. 1986, MNRAS, 220, 679
Dickens, R.J., & Moss, C. 1976, MNRAS, 174, 47
Pressler, A. 1978, ApJ, 226, 55
Pressler, A., & Shectman, S.A. 1988b, AJ, 95, 284
Pressler, A., & Shectman, S.A. 1988a, AJ, 95, 985
urret, F., Gerbal, D., Lachièze-Rey, M., Lima-Neto, G., Sadat, R. 1993, A&A in press
Edge, A.C., & Stewart, G.C. 1991, MNRAS, 252, 428
frown, B., 1979, S.I.A.M. Rev, 21, 460
scalera, E., Biviano, A., Girardi, M., Giuricin, G., Mardirossian, F., Mazure, A., & Mezzetti, M. 1994, ApJ, 423, 539
yles, C.J., Watt, M.P., Bertram, D., Church, M.J., Ponman, T.J., Skinner, G.K., & Willmore, A.P. 1991, ApJ, 376, 23
aber, S.M., & Dressler, A. 1977, AJ, 82, 187
abricant, D.G., Kent, S.M., & Kurtz, M.J. 1989, ApJ, 336, 77
abricant, D., Kurtz, M., Geller, M., Zabludoff, A., Mack, P., & Wegner, G. 1993, AJ, 105, 788
ernley, J.A., & Bhavsar, S.P. 1984, MNRAS, 210, 883
itchett, & Merritt, D. 1988, ApJ, 335, 18
avazzi, G. 1987, ApJ, 320, 96
erbal, D.G., Durret, F., Lachièze-Rey, M. 1994, A&A, in press
erbal, D., Durret, F., Lima-Neto, G., & Lachièze-Rey, M. 1992, A&A, 253, 77
iovaneli, R., Haynes, M.P., & Chincarini, G.L. 1982, ApJ, 262, 442
irardi, M., Biviano, A., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1993, ApJ, 404, 38 (GBGMM)
iricin, G., Mardirossian, F., & Mezzetti, M. 1984, A&A, 141, 419.
regory, S.A., & Thompson, L.A. 1978, ApJ, 222, 784
regory, S.A., & Thompson, L.A. 1984, ApJ, 286, 422
regory, S.A., Thompson, L.A., & Tiitt, W.G. 1981, ApJ, 243, 411
enry, J.P., & Henriksen, M.J. 1986, ApJ, 301, 689
ill, J.M., & Oegerle, W.R. 1993, AJ, 106, 831
intzen, P., Hill, J.M., Lindley, D., Scott, J.S., & Angel, J.R.P. 1982, AJ, 87, 1656
intzen, P., Oegerle, W.R., & Scott, J.S. 1978, AJ, 83, 478
nagaki, S., Itoh, M., & Saslaw W.C. 1992, ApJ, 386, 9
sobe, T., Feigelson, E.D., Akritos, M.G., & Babu, G.J. 1990, ApJ, 364, 104
ones, C., & Forman, W. 1984, ApJ, 276, 38
ones, C., & Forman, W. 1992, in Clusters and Superclusters of Galaxies, A.C. Fabian ed., Kluwer Academic Pub., The Netherlands, p.49
ashlinsky, A. 1992, ApJ, 386, L37
ent, S.M., & Gunn, J.E. 1982, AJ, 87, 945
ent, S.M., & Sargent, W.L.W. 1983, AJ, 88, 697
ing, I.R. 1962, AJ, 67, 471
ing, I.R. 1966, AJ, 71, 64
neib, J.-P., Mellier, Y., Fort, B., Mathez, G. 1993, A&A, 273, 367
u, W.F., Abramopoulos, F., Nulsen, P.E.J., Fabian, A.C., Stewart, G.C., Chincarini, G., Tarenghi, M. 1983, MNRAS, 203, 253
urztz, M.J., Huchra, J.P., Beers, T.C., Geller, M.J., Gioia, I.M., Mac-cacaro, T., Schild, R.E., & Stauffer, J.R. 1985, AJ, 90, 1665
auberts, A., & Valentjin, E.A. 1989, The Surface Photometry Catalogue of the ESO-Uppsala Galaxies, Garching bei Muenchen: ESO
ea, S., Silk, J., Kellogg, E., & Murray, S. 1973, ApJ, 184, L105
ilje, P.B., & Lahav, O. 1991, ApJ, 374, 29
imber, D.N., & Matthews, W.G. 1960, ApJ, 132, 286
ubin, L.M., & Bahcall, N.A. 1993, ApJ, 415, L17
ynden-Bell, D. 1967, MNRAS, 136, 101
alumuth, E.M., & Kriss, G.A. 1986, ApJ, 308, 10
alumuth, E.M., Kriss, G.A., Van Dyke Dixon, W., Ferguson, H.C., & Ritchie, C. 1992, AJ, 104, 495
etcalfe, N., Godwin, J.G., & Spenser, S.D. 1987, MNRAS, 225, 581
ralda-Escudé, J. 1992, ApJ, 390, L65
oss, C., & Dickens, R.J. 1977, MNRAS, 178, 701
egerle, W.R., & Hill, J.M. 1993, AJ, 104, 2078
emler, A.Jr. 1974, ApJ, 194, 1
striker, E.C., Huchra, J.P., Geller, M.J., & Kurtz, M.J. 1988, AJ, 96, 177
eebles, P.J. 1970, AJ, 75, 13
eebles, P.J. 1976, ApJ, 205, L109
eebles, P.J., Daly, R.A., & Juszkiewicz, R. 1989, ApJ, 347, 563
erea, J., Del Olmo, A., & Moles, M. 1990, A&A, 237, 319
isani, A., Giuricin, G., Mardirossian, F., & Mezzetti, M. 1992, ApJ, 389, 68
ostman, Huchra, J.P., M., & Geller, M.J. 1986, AJ, 92, 1238
roust, D., Quintana, H., Mazure, A., da Souza, R., Escalera, E., Sodrè, L.Jr., & Capelato, H.V. 1992, A&A, 258, 243
uintana, H., Melnick, J., Infante, L., & Thomas, B. 1985, AJ, 90, 410
uintana, H., & Ramirez, A. 1990, AJ, 100, 1424
hee, G., van Harleem, M., & Katgert, P. 1992, AJ, 103, 1721
ichter, O.G., 1987, A&AS, 67, 237
ichter, O.G., 1989, A&AS, 77, 237
ichter, O.G., & Huchtmeier, W.K. 1982, A&A, 109, 155
arazin, C.L. 1980, ApJ, 236, 75
arazin, C.L. 1986, Rev.Mod.Phys., 58, 1
harples, R.M., Ellis, R.S., & Gray, P.M. 1988, MNRAS, 231, 479
mith, H. Jr. 1980, ApJ, 241, 63
mith, B.W., Mushotzky, R.F., & Serlemitos, P.J. 1979, ApJ, 227, 37
odrè, L., Capelato, H.V., Steiner, J.E., Proust, D., & Mazure, A. 1992, MNRAS, 259, 233
oucail, G. 1992, in Clusters and Superclusters of Galaxies, A.C. Fabian ed., Kluwer Academic Pub., The Netherlands, p.199
aufer, J., Spinrad, H., & Sargent, W.L.W. 1979, ApJ, 228, 379
tepanyan, Dzh.A. 1984, Astrophysics, 20, 478
areghini, M., Tifft, W.G., Chincarini, G., Rood, H.J., & Thompson, L.A., 1979, ApJ, 234, 793
eague, P.F., Carter, D., & Gray, P.M. 1990, ApJS, 72, 715
ifft, W.G. 1978, ApJ, 222, 54
ully, R.B. 1988, Nearby Galaxy Catalog, Cambridge Univ. Press
est, M.J. 1990, in Clusters of Galaxies, W.R.Oegerle & M.J.Fitchett Eds., Cambridge Univ.Press
est, M.J., Dekel, A., & Oemler, A., 1987, ApJ, 316, 1
est, M.J., Oemler, A., & Dekel, A. 1989, ApJ, 327, 1
illmer C.N.A., Focardi P., Chan R., Pellegrini P.S., & Nicolaci Da Costa L. 1991, AJ, 101, 57
Illmer C.N.A., Focardi P., Nicolaci Da Costa L., & Pellegrini P.S. 1989, AJ, 98, 1531
Abrudoff, A.I., Huchra, J.P., & Geller, M.J. 1990, ApJS, 74, 1
Captions to the Figures

Fig. 1:

$log R_{c,0.5,\alpha=0.8}$ vs. $log R_{v,0.5}$ (panel a), and $log R_{c,0.75,\alpha=0.8}$ vs. $log R_{v,0.75}$ (panel b). The superimposed curves are derived from Eq.3.

Fig. 2:

$R_{v,\text{comp}}$ versus R_v. The superimposed regression line (Eq.4) does not significantly differ from the bisector line.

Fig. 3:

The cumulative distributions of $R_{c,0.75,\alpha=0.8}$ (solid line) and of the X-ray core radii of Jones & Forman (1984) for the common subsample of clusters.

Fig. 4:

The ACO-normalized cumulative distribution of the core radii.

Fig. 5:

The ACO-normalized cumulative distribution of the virial radii, evaluated within half an Abell radius.
Table 1 (continued)

Col.(1): Cluster name;
Col.(2): Number of member galaxies within 1.5 h^{-1} Mpc from the cluster centre;
Col.(3): Abell number counts, C;
Col.(4): Richness class, R;
Col.(5): Bautz-Morgan type;
Col.(6): Roods-Sastry type;
Col.(7): Probability of absence of substructure;
Col.(8): Reference to velocities.

[1] Malumuth et al. (1992); [2] Fabricant et al. (1993); [3] Proust et al. (1992); [4] Hill & Oegerle (1993); [5] Chapman, Geller, & Huchra (1988); [6] Giovanelli et al. (1982); [7] Gregory, Thompson, & Tifft (1981); [8] Moss & Dickens (1977); [9] Beers et al. (1992); [10] Kent & Sargent (1983); [11] Colless & Hewett (1987); [12] Quintana & Ramirez (1990); [13] Ostriker et al. (1988); [14] Dressler & Shectman (1988b); [15] Hintzen et al. (1982); [16] Stepanyan (1984); [17] Kurtz et al. (1985); [18] Zabludoff, Huchra, & Geller (1990); [19] Hintzen, Oegerle, & Scott (1978); [20] Beers et al. (1991); [21] Chapman, Geller, & Huchra (1987); [22] Richter (1987); [23] Richter (1989); [24] Geller et al. (1984); [25] Teague, Carter, & Gray (1990); [26] Gavazzi (1987); [27] Gregory & Thompson (1978); [28] Tifft (1978); [29] Dickens & Moss (1976); [30] Kent & Gunn (1982); [31] Faber & Dressler (1977); [32] Bowers, Ellis, & Efstathiou (1988); [33] Quintana et al. (1985); [34] Postman, Huchra, & Geller (1986); [35] Oegerle & Hill (1993); [36] Tarenghi et al. (1979); [37] Gregory & Thompson (1984); [38] Stauffer, Spinrad, & Sargent (1979); [39] Fabricant, Kent, & Kurtz (1989); [40] Sharples, Ellis, & Gray (1988); [41] Dickens, Currie, & Lucey (1986); [42] Lauberts & Valentijn, E.A. (1989); [43] Cristiani et al. (1987); [44] Metcalfe, Godwin, & Spenser (1987); [45] Willmer et al. (1991); [46] Sodre’ et al. (1992); [47] Beers et al. (1984); [48] Bothun et al. (1983); [49] Willmer et al. (1989); [50] Malumuth & Kriss (1986); [51] Richter & Huchtmeyer (1982); [52] Bothun et al. (1985); [53] Chincarini & Rood (1976); [54] Bell & Whitmore (1989); [55] Tully (1988); [56] Binggeli, Sandage & Tammann (1985).