Centriolar Satellites: Molecular Characterization, ATP-dependent Movement Toward Centrioles and Possible Involvement in Ciliogenesis

Akiharu Kubo,*‡§ Hiroyuki Sasaki,‡ Akiko Yuba-Kubo,* Shoichiro Tsukita,*‡ and Nobuyuki Shiina*

*Tsukita Cell Axis Project, Exploratory Research for Advanced Technology, Japan Science and Technology Corporation, Kyoto Research Park, Shimogyo-ku, Kyoto 600-8813, Japan; ‡Department of Cell Biology, Kyoto University Faculty of Medicine, Sakyo-ku, Kyoto 606-8501, Japan; §Department of Dermatology, Osaka University School of Medicine, Suita 565-0871, Japan; †Laboratory of Cell Biology, KAN Research Institute Inc., Kyoto Research Park, Shimogyo-ku, Kyoto 600-8815, Japan; and ¶Department of Molecular Cell Biology, Institute of DNA Medicine, Jikei University School of Medicine, Minato-ku, Tokyo 105-0003, Japan

Abstract. We identified Xenopus pericentriolar material-1 (PCM-1), which had been reported to constitute pericentriolar material, cloned its cDNA, and generated a specific pAb against this molecule. Immunolabeling revealed that PCM-1 was not a pericentriolar material protein, but a specific component of centriolar satellites, morphologically characterized as electron-dense granules, ~70–100 nm in diameter, scattered around centrosomes. Using a GFP fusion protein with PCM-1, we found that PCM-1–containing centriolar satellites moved along microtubules toward their minus ends, i.e., toward centrosomes, in live cells, as well as in vitro reconstituted asters. These findings defined centriolar satellites at the molecular level, and explained their pericentriolar localization. Next, to understand the relationship between centriolar satellites and centriolar replication, we examined the expression and subcellular localization of PCM-1 in ciliated epithelial cells during ciliogenesis. When ciliogenesis was induced in mouse nasal respiratory epithelial cells, PCM-1 immunofluorescence was markedly elevated at the apical cytoplasm. At the electron microscopic level, anti-PCM-1 pAb exclusively labeled fibrous granules, but not deuterosomes, both of which have been suggested to play central roles in centriolar replication in ciliogenesis. These findings suggested that centriolar satellites and fibrous granules are identical novel nonmembranous organelles containing PCM-1, which may play some important role(s) in centriolar replication.

Key words: centriole • centriolar satellites • fibrous granule • pericentriolar material-1 • ciliogenesis

The centrosome functions as an organizing center for cytoskeletal components, especially microtubules (MTs) (Kimble and Kuriyama, 1992; Kalt and Schliwa, 1993; Kellogg et al., 1994; Zimmerman et al., 1999). This structure usually has a centriole pair at its center, surrounded by fibrous material known as the pericentriolar material. In addition to these structures, early electron microscopic observations identified electron-dense spherical granules, ~70–100 nm in diameter, localized around centrosomes in many types of vertebrate cells (Bernhard and De Harven, 1960; de-Thé, 1964; Berns et al., 1977; Attner, 1992). These granules have been termed massules (Bessis and Breton-Gorius, 1958) or satellites (Bernhard and De Harven, 1960). They were occasionally shown to be associated with MTs radiating from centrosomes (de-Thé, 1964), and their number decreased and increased during mitosis and interphase, respectively (Attner, 1992). However, mainly due to the lack of information regarding their molecular components, these granular structures have since attracted little attention.

The molecular mechanism behind the replication of centrosomes has attracted increasing interest (for reviews see Marshall and Rosenbaum, 1999; Zimmerman et al., 1999). At the G1/S transition, nascent centrioles appear and grow perpendicularly on the side of mother centrioles. Although in most cells, centrosomes are duplicated once per cell cycle, in ciliated epithelial cells, each of which bears
hundreds of basal bodies, i.e., centrioles (Rhodin and D al-
hamn, 1956), numerous replicating centrioles were simulta-
nuously observed during ciliogenesis (Sorokin, 1968; Stein-
man, 1968; A nderson and Brenner, 1971; Dirksen, 1991). Therefore, ciliogenesis was thought to provide an advantage-
some system to examine the molecular mecha-
nism of centriolar replication. Conventional ultrathin-
EM identified two distinct pathways for ciliogenesis in ci-
lated cells: centriolar and acentriolar pathways (A nderson
and Brenner, 1971). In the centriolar pathway, multiple
daughter centrioles grow out from mother centrioles, but
this pathway appears to explain only a small fraction of
centriolar replication during ciliogenesis (A nderson
and Brenner, 1971). The acentriolar pathway is now thought
to be more dominant for basal body replication. When cil-
iogenesis is induced in ciliated epithelial cells, so-called
fibrous granules (A nderson and Brenner, 1971), non-
membranous electron-dense granules, ∼70–100 nm in di-
ameter, first appear in the cytoplasm (Sorokin, 1968;
Steinman, 1968; A nderson and Brenner, 1971; Dirksen,
1991). These granules occasionally aggregate together
with fibrous materials to form a fibrogranular area in the
apical cytoplasm of ciliogenic cells. In the next step, deu-
terosomes (Sorokin, 1968), larger nonmembranous elec-
tron-dense spherical structures (∼75–400 nm in diame-
ter), appear within or close to the fibrogranular area.
There is debate over whether deuterosomes are gen-
erated by aggregation and fusion of fibrous granules (So-
rokin, 1968; A nderson and Brenner, 1971; Y ouson, 1982;
Dirksen, 1991) or independently from fibrous granules
(Loots and Nel, 1989). Multiple procentrioles grow out
from deuterosomes, and mature daughter centrioles are
separated from deuterosomes to travel toward the apical
region where centrioles function as ciliary basal bodies.
The binding of basal bodies to the plasma membrane then
appears to initiate the elongation of axoneme. Interest-
ingly, fibrous granules also exist around basal bodies dur-
ing the elongation of axoneme (Steinman, 1968). The lack
of information of the molecular components of these fi-
brous granules, as well as deuterosomes, however, has
hampered the direct assessment of identity and functions
of these structures in multiple centriolar replication and
axonemal elongation during ciliogenesis.

During the course of our studies to identify centrosome-
specific molecules in X enopus oocytes, we identified the
X enopus homologue of pericentriolar material-1 (PC M-1)
with a molecular mass of ∼230 kD (Balczon et al., 1994).
This molecule was initially identified as an antigen of hu-
man autoimmune sera. In Hela cells, PC M-1 was re-
ported to be associated with centrosomes in interphase,
but dissociated in metaphase (Balczon et al., 1994). In this
study, we identified PC M-1 as the first component of cen-
triori satelles, and found that PC M-1-containing centri-
orl satelles moved along M Ts toward centrosomes in an
ATP-dependent manner. Furthermore, we showed that
PC M-1 was also concentrated in fibrous granules,
but not in deuterosomes, in ciliogenic cells. These find-
ings indicated the existence of a novel type of nonmem-
branous organelle containing PC M-1, previously called
centriolar satelles or fibrous granules, and suggested the
possible association of these organelles with centriolar
replication.

Materials and Methods

Generation of Monoclonal Antibodies

Centrosomes were isolated from mouse L5178Y cells and treated with 1 M
KCl (O hta et al., 1993). X enopus egg extracts were prepared as described
previously (Shiina et al., 1992). Centrosomes (1 ml) were incubated with
X enopus egg extracts (5 ml) for 30 min at 20°C. After dilution with 15 ml
of buffer A (10 mM PIPES, pH 7.2, 1 mM EDTA, 1 mM MgCl 2, 0.5 M gly-
cerol, 12.5 mM p-glycerophosphate, 1 mM DTT, 4 μg/ml cytochalasin B,
and 7 μg/ml nocodazole), centrosomes were recovered by centrifugation
through a 40% sucrose cushion at 50,000 g for 30 min at 2°C. The precipi-
tate was suspended in 5 ml of buffer A and centrifuged again through the
same sucrose cushion. The precipitate was then extracted with 200 μl of 1 M
KCl in buffer B (20 mM PIPES, pH 6.8, 1 mM EDTA, 1 mM MgCl 2) on ice
for 30 min, followed by centrifugation at 22,000 g for 20 min at 2°C. The
supernatant, containing pericentriolar material from the egg extracts,
was dialyzed against PBS and used as an antigen for mAb production. Hybrid-
omas were produced and screened as described previously (Shiina et al.,
1992). We obtained several independent clones producing mAbs includ-
ing W8C3, which recognized centrosomes of A 6 cells on immunofluo-
rescence microscopy.

Cloning of Xenopus and Mouse PCM-1 cDNA

A X zAP II cDNA expression library of X enopus embryo (Stratagene)
was screened using mAb W8C3, and several positive clones including
clon e n1 (2.3-kb cDNA fragment) were obtained. A apGI1 X enopus oo-
cyte cDNA library (Clontech Laboratories, Inc.) was then screened by hy-
bridization with the clone n1 as a probe. Finally, the full-length X enopus
PC M-1 cDNA (X PCM-1; clone 23a) was obtained. The predicted open
reading frame (ORF) contained 6,093 nucleotides encoding a protein of
2,031 amino acids (aa) with a calculated molecular mass of 228 kD, which
showed 56.8% identity to human PCM-1 (hPCM-1) at the amino acid se-
quence level.

A mouse cDNA library constructed from F9 cells was screened by hy-
bridization with the coding region of X PCM-1 cDNA, and the full-length
cDNA for mouse PC M-1 (mpCM-1; clone 16-111) was isolated. The pre-
dicted ORF contained 6,075 nucleotides encoding a protein of 2,025 aa
with a calculated molecular mass of 229 kD, which showed 57.2% and
87.3% identity to X PCM-1 and hPC M-1 at the amino acid sequence level,
respectively.

SDS-PAGE and Immunoblotting

SD S-PA GE (7.5%) was performed according to the method of L ammler
(1970), and proteins were stained with Coomassie brilliant blue. For im-
munoblotting, proteins were electrophoretically transferred onto polyvi-
nyldifluoride (PVDF) membranes (M illipore C o., Inc.), which were sub-
sequently incubated with the first antibodies. Bound antibodies were
detected with biotinylated second antibodies and streptavidin-conjugated
alkaline phosphatase (N ycom East mers h Inc.). Nitroblue tetracyclo-
and bromochloroindolyl phosphate were used as substrates for detection of
alkaline phosphatase.

Generation of Polyclonal Antibodies

The cDNA encoding aa 1,346-2,031 of X PCM-1 (clone n1) or aa 1,299-
2,025 of mpCM-1 was subcloned into pGEX-4T-1 and pGEX-X5-3 (Phar-
macia B iotech Sverige), respectively, to produce fusion proteins with glu-
thionine S-transferase (GST). These GST fusion proteins were expressed
in E. coli, purified using glutathione Sepharose 4B columns (Pharmacia
B iotech Sverige; Smith and Johnson, 1988), and used as antigens to gener-
ate polyclonal antibodies (pAbs) in rabbits. These pAbs were affinity-puri-
fied on PVDF membranes with the bands of respective fusion proteins.

Constructs for GFP-XPCM-1 Fusion Proteins

Full-length X PCM-1 (aa 1-2031) and its middle portion (aa 745-1271)
were fused with GFP at their COOH termini (GFP-FX and GFP-MX, re-
spectively). To construct the expression vector for GFP-FX, Xbal sites
were introduced into both ends of the ORF of X PCM-1 cDNA by site-
directed mutagenesis using a Transformer Site-Directed Mutagenesis
Kit (C lonte ch Laboratories, Inc.) with primers 5’-TG CAAA-CC
CATGTCTAGAGGAGGTCC-3’ and 5’-G CCA TCCACCTG-
CATCTAGAAGAACTGACAAACAG-3'. The X-bal–X-bal fragment was subcloned into the NheI site of the pQ9125 GFP expression vector (Quantum Biotechnologies, Inc.). To construct the expression vector for GFP-M, MluI sites and KpnI sites were introduced into both ends of the regions encoding aa 1–744 and aa 1272–2031, respectively, in the G-FP-FX expression vector by site-directed mutagenesis with primers 5’-CCGCGCAAGAAATGAGCTGAGGAGGTTCCAC-3’-5’-CCAAAATTAAACCAGCCGCTCAATGCTC-3’ and 5’-CTTTCGACGAGGCTGACGACTTCAAGGCGCAACTTGCAGGAGGG-3’, followed by self-ligation, and then digested with MluI, followed by self-ligation, to generate the GFP-M expression vector. A II expression vectors were confirmed by sequencing.

Observation of GFP Fusion Proteins in Live Cells
A6 cells were transfected with the GFP-FX or GFP-MX expression vector, and stable transfectants were obtained (GFX-A6 and GMX-A6 cells, respectively) as described previously (Shiina and Tsukita, 1999). These transfectants were observed using a DeltaVision microscope (Aplified Precision, Inc.) equipped with an Olympus IX70 microscope and a cooled charge-coupled device (CCD) system. Each image was acquired with 1-s exposure of the CCD camera.

In Vitro Motility Assay
Centrosomes were isolated from A6 cells, and rhodamine-labeled tubulin was obtained from bovine brain as described previously (Mitchison and Kirschner, 1984; Bornens et al., 1987; Hymann et al., 1991). G M X-A6 cells were collected and homogenized in PEM 35 buffer (35 mM Pipes, pH 7.1, 1 mM EGTA, 0.5 mM MgCl$_2$) containing 0.2 M sucrose, 1 mM DTT, 0.4 μg/ml nucodazole, 10 μg/ml pepstatin, 10 μg/ml leupeptin, and 1% aprotinin, and were then layered onto a 0.3–1.2 M linear sucrose density gradient. The mixture was incubated at room temperature for 30 min, processed for immunoelectron microscopy as described previously (Wittmann et al., 1998). For preembedding immunoelectron microscopy of mouse nasal epithelial samples, samples were prepared as follows. The fraction enriched in centriolar satellites was prepared from nontransfected A6 cells as described above. This fraction was resuspended in the supernatant of X enopu egg extract, and then 1/10 vol of isolated centrosomes was added. The mixture was incubated at room temperature for 20 min and processed for immunoelectron microscopy as described previously (Wittmann et al., 1998). For postembedding immunoelectron microscopy of mouse nasal epithelium, small pieces fixed in 1% paraformaldehyde were incubated with 2.3 M sucrose containing 20% polyvinylpyrrolidone at 4°C overnight, and then rapidly frozen in liquid nitrogen. Ultrathin cytoslices were cut and processed for immunolabeling, according to the method developed by Tokuyasu (1980; Fujimoto et al., 1992). Goat anti–rabbit IgG coupled to 10-nm gold (Nycomed Amersham Inc.) was used as a secondary antibody. Samples were examined with an electron microscope (JEM 1010; JEOL) at an accelerating voltage of 100 kV.

Online Supplemental Material
A movie file corresponding to Fig. 4 a is available online (http://www.jcb.org/cgi/content/147/5/969/F1/D1/C1). Time-lapse images collected using DeltaVision were processed with A dobe Photoshop software and converted to a QuickTime movie (JPEG compression) with A dobe Pre miere Software. This movie contains the time-lapse images from the first to the last panel in the corresponding figures. Images were recorded for 3 min at 5-6 intervals.

Results
Localization of PCM-1 in Centriolar Satellites
To analyze the molecular components of centrosomes, we raised mA bs against pericentriolar material isolated from X enopu egg extracts. Since one of these mA bs, W8C3, stained centrosomes of cultured X enopu epithelial A6 cells, we isolated a full-length cdNA encoding its antigen by screening a cdNA expression library. D NA sequencing revealed that its product encoded a protein of 2,031 aa with significant similarity to human PCM-1 (hPCM-1; 56.8% identity at the amino acid sequence level), indicating that W8C3 recognized a X enopu homologue of PCM-1 (X PCM-1; sequence data are available from GenBank/EMBL/DDBJ under accession number A B 025414). A s this mA b showed some cross-reactivity with α-tubulin, we then raised a pAb against re-
combinant X PCM-1 produced in E. coli. As shown on immunoblots, this pAb specifically recognized a 230-kD band in A 6 cell lysates, as well as X enopus egg extracts (Fig. 1 a). Judging from the molecular mass of human PCM-1 (~230 kD) and from the reactivity of this pAb with recombinant X enopus PCM-1, we concluded that this pAb specifically recognized X PCM-1.

Next, to examine the subcellular localization of X PCM-1 by immunofluorescence microscopy, cultured A 6 cells were doubly stained with the anti-X PCM-1 pAb and anti-γ-tubulin mA b (Fig. 2, a-c). The γ-tubulin signal was exclusively detected in centrosomes, whereas X PCM-1 was concentrated on and/or around γ-tubulin–positive centrosomes in large amounts, and was also scattered in the cytoplasm in a punctate manner in small amounts. In metaphase, its concentration around centrosomes became obscure as previously described in HeLa cells (Balccon et al., 1994; data not shown). Interestingly, when these X PCM-1–positive granular structures were examined in Triton X-100–treated A 6 cells by immunoelectron microscopy, anti-X PCM-1 pAb specifically labeled electron-dense spherical granules 80–90 nm in diameter located around centrosomes (Fig. 2 d). Some of these granules appeared to be associated with MTs. Conventional EM of A 6 cells also identified similar electron-dense granules gathering around centrosomes, which were not surrounded by membranes (Fig. 2 e). Judging from their morphological characteristics, we concluded that these granules were identical to the previously described structures designated as centriolar satellites (Bercnahr and D e Harven, 1960; de-Thé, 1964; Berns et al., 1977). As shown in Fig. 2, d and e, pale granules with a similar diameter were also observed around centrioles, but these granules were not labeled with anti–X PCM-1 pAb.

MT-dependent Localization of Centriolar Satellites around Centrosomes

Occasional association of PCM-1–containing granules with MTs led us to examine whether MTs are required to determine their pericentriolar localization, i.e., whether their localization is affected by the MT-depolymerizing agent nocodazole. When A 6 cells were treated with 0.4 μg/ml nocodazole for 2 h, followed by immunostaining doubly with anti–X PCM-1 pAb and anti- ⡵-tubulin mA b, most of the centriolar satellites (X PCM-1–positive dots) were released from centrosomes and were scattered into the cytoplasm with concomitant destruction of MT networks (data not shown). When the nocodazole was washed out from these cells, within 9 min MTs began to elongate from centrosomes and concomitantly centriolar satellites increased in number around centrosomes. At 12 min after washing out of nocodazole, most of the centriolar satellites were re-concentrated around centrosomes, from which a well-developed MT network was reorganized. In contrast, the ac-tin-depolymerizing agent cytochalasin B (1–10 μg/ml) did not affect the localization of centriolar satellites (data not shown). These findings indicated that centriolar satellites are concentrated around centrosomes in a manner dependent on the MT network.

Behavior of Centriolar Satellites in Living Cells

To examine the interaction between centriolar satellites and MTs in more detail, we observed the behavior of centriolar satellites in live A 6 cells. We constructed cDNA encoding fusion proteins of GFP with the full-length (aa 1–2031) or middle portion (aa 745–1271) of X PCM-1 (designated as GFP-FX and GFP-MX, respectively), and introduced them into A 6 cells to obtain stable transfectants (designated as G FX-A 6 and G MX-A 6 cells, respectively). In both transfectants, GFP–derived fluorescence was detected as small granules in large numbers around centrosomes and in small numbers scattered in the cytoplasm (G FX-A 6, data not shown; G MX-A 6, see Fig. 3 a). Since the anti–X PCM-1 pAb described above was raised against the COOH-terminal region of X PCM-1 (aa 1346–2031), this pAb recognized endogenous X PCM-1, but not GFP-MX. However, when GMX-A 6 cells were stained with this pAb, the GFP fluorescence signal overlapped the region of staining with the anti–X PCM-1 pAb (Fig. 3, a–c). These findings indicated that each centriolar satellite contains multiple X PCM-1 molecules, and that the middle portion of the X PCM-1 is sufficient for incorporation into centriolar satellites.

Since G MX-A 6 cells gave stronger GFP fluorescence signals than G FX-A 6 cells, we used the former transfectants to examine the movement of centriolar satellites in live cells. As shown in Fig. 3 a, in these cells, individual granules were not resolved around centrosomes, but were readily detected in the cytoplasm. These single granules moved linearly at maximum rates of ~0.7–0.8 μm/s. They frequently changed their velocity, as well as direction of movement, and repeatedly cycled through moving and sta-
tionary states. In cultured G M X -A6 cells, single centriolar satellites in the cytoplasm appeared to move not only toward centrosomes, but also toward the cell periphery (Fig. 3, d-g). Nocodazole (0.4 μg/ml), but not cytochalasin B (1-10 μg/ml), affected these directional movements of centriolar satellites (data not shown).

MT-dependent Movement of Centriolar Satellites In Vitro

Observations in live cells suggested that centriolar satellites moved along MTs. Therefore, we next examined the interaction of MTs and centriolar satellites in vitro. GFP-tagged centriolar satellites were partially purified from G M X-A6 cells. Asters were reconstituted in vitro from centrosomes isolated from A6 cells, rhodamine-labeled tubulin purified from porcine brain, and 200,000 g supernatant of X enopus egg extracts. Then, the isolated centriolar satellites were mixed with reconstituted asters in the presence of ATP. A s shown in Fig. 4 a and the movie, at the beginning of observation by fluorescence microscopy, numerous GFP-tagged centriolar satellites were already gathered in the center of reconstituted asters, but close inspection revealed single granules moving along MTs. These granules moved toward the minus end of MTs, i.e., toward the centrosomes. No granules were observed moving toward the plus end of MTs. Similarly to the in vivo observations, these granules repeatedly alternated between the stationary and moving states. Their maximum velocity was 0.7 μm/s, which was compatible to that in vivo. A s shown in Fig. 4 a, these granules had frequent changes of MTs.

We then examined the centriolar satellites gathered around centrosomes in the in vitro reconstituted system by immuno-electron microscopy. Numerous electron-dense nonmembranous granules, ~80-90 nm in diameter, were observed around centrosomes, and these were labeled with anti-X PCM-1 pAb (Fig. 4 b). O f course, no granules were observed in asters that were reconstituted in the absence of isolated centriolar satellites (data not shown). A t the periphery of asters, anti-X PCM-1 pAb-labeled elec-
tron-dense granules were occasionally seen to be associated with MTs, which may have been on the way to centrosomes (data not shown).

To identify the motor protein responsible for this in vitro movement of GFP-tagged centriolar satellites, we examined the effects of some inhibitors of motor proteins (Fig. 5). At 10 μM vanadate, the accumulation of centriolar satellites around centrosomes was abolished. This finding suggested that dynein was involved, since dynein, but not kinesin, is inhibited by low concentrations of vanadate (10–20 μM; Schroer and Sheetz, 1989). AMP-PNP did not affect centriolar satellite accumulation at a concentration of 100 μM, whereas at higher concentrations, such as 2 mM, AMP-PNP showed complete suppression. This again favored the notion that dynein is responsible for the centriolar satellite movement, since 100 μM AMP-PNP inhibits kinesin, but not dynein (2 mM AMP-PNP inhibits both; Schroer and Sheetz, 1989). In good agreement with these observations, antidynein intermediate chain mAb (m70.1; 60 μg/ml) completely abolished the accumulation of GFP-tagged centriolar satellites around centrosomes, while control IgG had no effect.

PCM-1 in Fibrous Granules Associated with Ciliogenesis

The pericentriolar localization of PCM-1-containing centriolar satellites and their disappearance in mitotic cells (Balczon et al., 1994) suggested some association of these granules with the replication cycle of centrioles. During experimentally induced ciliogenesis, numerous centrioles (ciliary basal bodies) were known to be replicated in a synchronized manner within individual cells, providing a good system to examine centriolar replication (Anderson and Brenner, 1971). We then examined the expression and behavior of PCM-1 in mouse nasal respiratory epithelium, since ciliogenesis can be induced simply by irritation with 1% aqueous ZnSO₄ (Matulionis, 1975).

First, full-length cDNA encoding mouse PCM-1 (mPCM-1) was isolated. Its product encoded a protein of 2,025 aa with significant similarity to hPCM-1 and XPCM-1 (87.3% and 57.2% identity at the amino acid sequence level, respectively; the sequence data are available from GenBank/EMBL/DDBJ under accession number AB029291). Then, using recombinant mPCM-1 produced in E. coli as an antigen, a pAb was generated. This pAb specifically recognized an ~230-kD band in the total lysate of mouse Eph4 cells on immunoblots (Fig. 1 b) and exclusively labeled centriolar satellites of Eph4 cells at the electron microscopic level (data not shown). Interestingly, when cryosections of mouse nasal respiratory ciliated epithelium were immunofluorescently stained with this pAb, the mPCM-1 signal was specifically detected at their apical cytoplasm in a granular pattern (Fig. 6, a and c). Four days after irritation of the nasal epithelia with 1% aqueous ZnSO₄ in situ, cilia were completely removed from their apical surface (Fig. 6 d) and, interestingly, the mPCM-1 signal was markedly elevated at the apical cytoplasm (Fig. 6 e).
6, b and d). Then, we examined the ZnSO₄-induced morphological changes of these ciliated epithelia at the electron microscopic level.

Conventional ultrathin EM revealed that in nontreated ciliated cells, electron-dense granules ~100 nm in diameter were scattered beneath the layer of basal bodies of cilia (Fig. 7 a). Curiously, these granules were morphologically indistinguishable from centriolar satellites. As shown in Fig. 7, b and c, both preembedding and postembedding immunolabeling revealed that these granules were exclusively labeled with anti–mPCM-1 pAb. When cilia were removed from these respiratory epithelia by ZnSO₄ treatment, these granules appeared to increase in number and aggregated extensively (Fig. 7 d). In previous reports, these granules were called fibrous granules and were thought to be absent in nonciliogenic cells (Sorokin, 1968; Steinman, 1968; Anderson and Brenner, 1971; Dirksen, 1991), but this was not likely. This will be confirmed by the subsequent immunoelectron microscopy. In or close to the aggregation of these granules called fibrogranular area, so-called deuterosomes with multiple replicating procentrioles appeared (Fig. 7 d). These morphological characteristics indicated that synchronized multiple centriolar replication and subsequent ciliogenesis were induced in these cells. Preembedding immunoelectron microscopy revealed that these aggregated fibrous granules, but not deuterosomes, were heavily labeled with anti–mPCM-1 pAb (Fig. 7 e). Since deuterosomes were very large electron-dense structures, it was possible that antibodies cannot access the antigen within deuterosomes. However, postembedding immunolabeling did not detect mPCM-1 within deuterosomes, excluding this possibility (Fig. 7 f). Taken together, we concluded that so-called fibrous granules, which had been intensively examined from the viewpoint of centriolar replication, may be identical to PCM-1-containing centriolar satellites.

Discussion

Various types of membranous and nonmembranous organelles have been described in eukaryotic cells, and their structures and functions have been analyzed in detail. However, there are likely to be many organelles that have not been identified or characterized. The centriolar satellite, electron-dense spherical granules ~70–100 nm in diameter, occurring around centrioles in most types of cells,
is one such uncharacterized type of nonmembranous organelle. In this study, we identified PCM-1 as the first component of the centriolar satellite in *Xenopus A6* and mouse Eph4 cells. Transfection experiments of a truncated form of XPCM-1 showed that multiple XPCM-1 molecules were incorporated into each granule, and our preliminary experiments showed that these molecules bind directly to each other to form dimers or oligomers, suggesting that PCM-1 is a kind of scaffold protein constituting the centriolar satellites. Fibrous granules also constitute an uncharacterized type of nonmembranous organelle. These granules were thought to appear in ciliated cells only during ciliogenesis, but we found that they were also distributed close to ciliary basal bodies in nonciliogenic phase. These granules also had the appearance of electron-dense spherical granules ~80–90 nm in diameter, and were indistinguishable morphologically from the centriolar satellites, although this resemblance has not been described previously. Interestingly, we found that these granules also contained PCM-1. Therefore, we propose here that centriolar satellites and fibrous granules can be regarded as the same novel nonmembranous organelles, defined by their specific component, PCM-1.

One of the most characteristic features of centriolar satellites (so probably also fibrous granules) is their ability to move along MTs; they moved along MTs toward their minus ends, i.e., toward centrosomes, in reconstituted asters in vitro in the presence of ATP. The effects of AMP-PNP, vanadate, and antidynein intermediate chain mAb (m70.1), also completely suppressed the accumulation. When the accumulation was suppressed, the movement of individual granules itself was always affected. Bar, 10 μm. b, The number of centriolar satellites, which were accumulated around centrosomes during 10-min incubation, were counted per individual centrosomes. A stariks, F-test showed significant inhibition (P < 0.001).
PCM-1, i.e., the centriolar satellites (and also fibrous granules) are considered to have a dual role in the positioning of cilia and the regulation of centriole number. This study using CHO cells, which established whether centriolar replication begins near the G1/S boundary, confirmed that PCM-1 was detected in fibrous granules, but not in deuterosomes (Fig. 7, e and f). The experimentally induced ciliogenesis examined in this study will be an advantageous system to further analyze the relationship between PCM-1-containing granules and centriolar replication in future studies.

Previous studies on PCM-1 itself also suggested its possible association with centriolar replication. It is widely accepted that centriolar replication begins near the G1/S boundary, continues through S phase, and is completed during G2 phase (Robbins et al., 1968; Brinkley, 1985; Vénard and Borisy, 1989). In good agreement, PCM-1 at centrosomes is released into the cytoplasm on the entry to M phase, and on the entry to interphase this molecule is relocalized at centrosomes (Rattner, 1992; Balczon et al., 1994). PCM-1 mRNA levels increase through G1 and S phases, and became undetectable during G2 and M phases in CHO cells (Balczon et al., 1995). Interestingly, PCM-1 mRNA levels remained elevated during multiple rounds of centrosome replication in CHO cells arrested at the G1/S boundary by hydroxyurea with a concomitant increase in number of centriolar satellites (see Figure 4 in Balczon et al., 1995).

On the other hand, fibrous granules were also suggested to function as axonemal precursors (Steinman, 1968). Recent studies using Chlamydomonas identified intraflagellar transport (IFT) particles as large preassembled precursors for various axonemal structures in cytoplasm that were concentrated around centrosomes (Cole et al., 1998; Rosenbaum et al., 1995). However, it is not likely that fibrous granules are the counterparts of IFT particles; IFT particles are lollipop-shaped electron-dense granules, 14–19 nm in diameter (see Figure 3 in Kozminski et al., 1993), which is much smaller than fibrous granules. IFT particles were detected at flagella, while fibrous granules or PCM-1 was not observed within cilia. Furthermore, PCM-1 immunofluorescence was abundant in the apical cytoplasm of nonciliated epithelial cells, such as intestinal and gastric epithelial cells (Kubo, A., A. Yuba-Kubo, S. Tsukita, and N. Shiina, unpublished data). These findings are against the notion that fibrous granules function as axonemal precursors. Further identification of other components of fibrous granules/centriolar satellites will answer these questions more clearly.

In this study, we identified pericentriolar satellites and fibrous granules as PCM-1-containing novel nonmembranous organelles, which were accumulated around centrosomes and ciliary basal bodies, respectively, through their minus end-directed movement along MTs. These findings then suggested the possible association of these PCM-1-containing organelles with centriolar replication. Further detailed analyses of these organelles, as well as PCM-1 molecules, will lead to a better understanding of the molecular mechanism of centriologenesis in general.
Figure 7.
We thank Y. Matsumoto and E. Nishida (Kyoto University) for their collaboration in X PCM-1 CDNA screening. Thanks are also due to M. Kajin Matsuura for technical support in E.M., and Drs. Y. Mimori-Kiyosue and S. Yonemura for technical advice and helpful discussions.

Submitted: 29 July 1999
Revised: 28 September 1999
Acepted: 14 October 1999

References

Anderson, R.G.W., and R.M. Brenner. 1971. The formation of basal bodies (centrioles) in the rhesus monkey oviduct. J. Cell Biol. 50:10–34.

Bacallao, R., C. Antony, C. Dotti, E. Karsenti, E.H. Stelzer, and K. Simons. 1989. The subcellular organization of M-adin-D arby canine kidney cells during the formation of a polarized epithelium. J. Cell Biol. 109:2817–2832.

Balczon, R., L. Bao, and W.E. Zimmer. 1994. PCM-1, A 228-kD centrosome autoantigen with 1% aqueous ZnSO4 (d–f). a, Conventional ultrathin EM. Electron-dense spherical granules (arrowheads), 70–100 nm in diameter, which were morphologically indistinguishable from centriolar satellites, were scattered close to ciliary basal bodies (asterisks). Open arrow, microtubules. b, Preembedding immunoelectron microscopy. Nasal epithelial tissues were treated with 0.5% Triton X-100, fixed with glutaraldehyde, then labeled with anti–mPCM-1 pAb. The centriolar satellite-like granules were specifically labeled (arrowheads). c, Postembedding immunoelectron microscopy. U Itralin cryosections of nasal epithelial tissues were labeled with anti–mPCM-1 pAb. The centriolar satellite-like granules were specifically labeled (arrowheads). d, Conventional ultrathin EM. Cilia were completely removed, and at the apical cytoplasm numerous fibrous granules (arrowheads), as well as deutoesomes (arrows), appeared. e, Preembedding immunoelectron microscopy. Samples were treated with 0.5% Triton X-100, fixed with glutaraldehyde, then labeled with anti–mPCM-1 pAb. Fibrous granules (arrowheads), but not deutoesomes (arrow), were heavily labeled. Both centriolar and acentriolar pathways for centriole replication were observed (see details in the text). f, Postembedding immunoelectron microscopy. U Itralin cryosections were labeled with anti–mPCM-1 pAb. Fibrous granules (arrowheads), but not deutoesomes (arrow), were specifically labeled. Bars, 200 nm.

Kozminski, K.G., K.A. Johnson, P. Fischer, and J.L. Rosenbaum. 1993. A motility in the eukaryotic flagellum unrelated to flagellar beating. Proc. Natl. Acad. Sci. USA. 90:5519–5523.

Lemml, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227:680–685.

Liénard, F., and P.P.C. Néel. 1989. Early stages of ciliogenesis in the respiratory epithelium of the nasal cavity of rabbit embryos. Cell Tissue Res. 255:589–594.

Marshall, W.F., and J.L. Rosenbaum. 1999. Cell division: the renaissance of the centrosome. Curr. Biol. 9:218–R220.

Mullerlin, D.H. 1975. Light and electron microscopic study of the effects of ZnSO4 on mouse nasal respiratory epithelium and subsequent responses. Anat. Rec. 183:63–82.

Michelson, T.J., and M.W. Kirschner. 1984. Microtubule assembly nucleated by isolated centrosomes. Nature. 312:232–237.

Mogensen, M.M., J.B. Tucker, and H. Stebbings. 1989. Microtubule polarities indicate that nucleation and capture of microtubules occurs at cell surfaces in Drosophila. J. Cell Biol. 108:1445–1452.

Ohta, K., N. Shima, E. Okumura, S. Hisanaga, T. Kishimoto, S. Endo, Y. Go-toh, E. Nishida, and H. Sakai. 1993. Microtubule nucleating activity of centrosomes in cell-free extracts from Xenopus eggs: Involvement of phosphorylation and accumulation of pericentriolar material. J. Cell Sci. 104:125–137.

Ratto, J.B. 1992. Ultrastructure of centrosomes domains and identification of their protein components. In The Centrosome. V.I. Kalinsin, editor. A cademic Press, Inc., San Diego, CA. 45–69.

Rhodin, J., and D. Dahmann. 1956. Electron microscopic of the tracheal ciliated mucosa in rat. Z. Zellforsh. Mikrosk. 4:309–342.

Robbins, E., G. jentzsch, and A. Micali. 1968. The centriole cycle in synchronized HEA cells. J. Cell Biol. 36:329–339.

Rosenbaum, J.L., D.G. Cole, and D.R. Diener. 1999. Intraflagellar transport: the eyes have it. J. Cell Biol. 144:385–388.

Schoen, T.A., and C.P. Sheetz. 1998. Role of kinesin and kinesin-associated proteins in motile apparatus formation. In Cell. Movement. Vol. 2. J. D. Warner and R.L. McIntosh, editors. Academic Press, San Diego, CA. 39–75.

Shiina, N., T. Moriguchi, K. Ohta, Y. Go-toh, and E. Nishida. 1992. Regulation of a major microtubule-associated protein by M PF and MAP kinase. EMBO J. (Eur. Mol. Biol. Organ.) 11:9797–9804.

Shira, N., and S. Sukita. 1999. Mutations at phosphorylation sites of Xenopus microtubule-associated protein 4 affect its microtubule- binding ability and chromosome movement during mitosis. Mol. Biol. Cell. 10:597–608.

Smith, D.B., and K.S. Johnson. 1988. Single-step purification of polyepptides expressed in E. cherichia coli as fusions with glutathione S-transferase. Gene. 67:31–40.

Sorkin, S.P. 1968. Reconstructions of centriole formation and ciliogenesis in mammalian lungs. J. Cell Biol. 3:297–310.

Steinman, R.M. 1968. A n electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of X. enus laevis. An. J. Nat. 122:19–56.

Takaoka, K., T. 1980. Immunoochemistry on ultrathin frozen sections. His tochem. J. 12:381–403.

Vandere, D.D., and G.G. Bortis. 1989. The centriole cycle in animal cells. In Mitosis: Molecules and Mechanisms. J.S. Hyams and B.R. Britinkle, editors. Academic Press, Inc., San Diego, CA. 45–69.

Wittmann, T., C. Joliet, C. Antony, E. Karsenti, and G. Vernos. 1998. Localization of the kinesin-like protein X klp2 to spindle poles requires a leucine zipper, a microtubule-associated protein, and dynin. J. Cell Biol. 143:673–685.

Yonemura, S., M. Itoh, A. Nagafuchi, and S. Tsukita. 1995. Cell-to-cell adhesion: an extension formation and actin filament organization: similarities and differences between non-polarized fibroblasts and polarized epithelial cells. J. Cell Biol. 107:174–182.

Yonemura, S. 1992. A replication of basal bodies and ciliogenesis in a ciliated epithelium of the lamprey. Cell Tissue Res. 223:255–266.

Zimmerman, W.C., G.J. Sparks, and S.J. Docksey. 1999. A morphous no longer: the centrosome comes into focus. Curr. Opin. Cell Biol. 11:122–128.

Figure 7. Localization of mPCM-1 in nasal respiratory epithelial cells at four days after exposure to distilled water (a–c) or irrigation with 1% aqueous ZnSO4 (d–f). a, Conventional ultrathin EM. Electron-dense spherical granules (arrowheads), 70–100 nm in diameter, which were morphologically indistinguishable from centriolar satellites, were scattered close to ciliary basal bodies (asterisks). Open arrow, microtubules. b, Preembedding immunoelectron microscopy. Nasal epithelial tissues were treated with 0.5% Triton X-100, fixed with glutaraldehyde, then labeled with anti–mPCM-1 pAb. T...