On a question by Corson about point-finite coverings

A. Marchese and C. Zanco

To appear in Israel J. Math.

Abstract

We answer in the affirmative the following question raised by H. H. Corson in 1961: "Is it possible to cover every Banach space X by bounded convex sets with nonempty interior in such a way that no point of X belongs to infinitely many of them?"

Actually we show the way to produce in every Banach space X a bounded convex tiling of order 2, i.e. a covering of X by bounded convex closed sets with nonempty interior (tiles) such that the interiors are pairwise disjoint and no point of X belongs to more than two tiles.

2000 Mathematics Subject Classification: 46B20, 52A45.

Key words and phrases: coverings of Banach spaces, point-finite coverings, tilings.

Research of the first author was supported by the GNAMPA of the Istituto Nazionale di Alta Matematica of Italy; research of the second author was supported in part by the GNAMPA of the Istituto Nazionale di Alta Matematica of Italy and in part by the Center for Advanced Studies in Mathematics at the Ben-Gurion University of the Negev, Beer-Sheva, Israel.
1 Introduction, notation, main statement

Throughout the paper, by covering of a Banach space X we mean a family $\{A_\lambda\}_{\lambda \in \Lambda}$ of proper subsets of X (Λ any set of indices) such that $X = \cup_\lambda A_\lambda$. By body in X, we mean a nonempty proper subset of X that is contained in the closure of its connected interior. A covering of X is called a tiling of X whenever its members (tiles) are closed bodies with pairwise disjoint interiors. A covering τ of X is said to be point-finite if no point of X belongs to infinitely many members of τ; the (possibly infinite) order of τ is the supremum of those n in \mathbb{N} such that there exist n members of τ with a common point. A covering τ of X is said to be locally finite if every point in X has a neighborhood that meets only finitely many members of τ (equivalently, if every compact subset of X meets only finitely many members of τ). It is easy to produce examples of point-finite coverings (even by convex bodies, even tilings) that are not locally finite: for an exhaustive discussion of this topic in the general setting of spaces of any dimension see the nice paper [K1] by V. Klee; see also [N] and [Z].

A great contribution to the study of coverings of infinite-dimensional Banach spaces was given in 1961 by H. H. Corson in his classical paper [C], motivated by topological reasons. The main result of that paper states that, if a Banach space X contains some infinite-dimensional reflexive subspace, then X admits no locally finite covering by bounded convex sets. Such a result has been recently improved in several directions by V. P. Fonf and the second author. In fact in [FZ1] it is proved that, if every compact subset of X meets only finitely many members of some covering of X by bounded w-closed subsets, then X is c_0-saturated. Moreover, in order that there exist a (algebraically) finite-dimensional compact set that meets infinitely many members of any covering τ of X by closed convex bounded (in short CCB) sets, it is enough for X to contain an infinite-dimensional separable dual space (see [FZ2]). In particular, in this case even a segment exists that meets infinitely many members of τ whenever the members of τ are CCB rotund or smooth bodies (see [FZ3]), or simply CCB bodies if τ is a tiling and X itself is (infinite-dimensional) reflexive (see [N]).

Despite these results, an interesting question asked by Corson in [C] still remains unanswered. After proving his theorem, he essentially asks whether some infinite-dimensional reflexive space exists that admits a point-finite covering by CCB bodies. Note that, without any assumption on the infinite-dimensional Banach space X, even
locally finite tilings by CCB bodies can be exhibited, like the “lattice” tiling of c_0
by suitable translates of the unit ball (see [F] for a significant characterization of the
separable Banach spaces admitting such tilings as those being isomorphically poly-
hedral). Moreover, in special non-separable spaces even (not locally finite) tilings of
order 1 can be found by CCB bodies: see the surprising construction given by V.
Klee in [K2] of a tiling of $l_1(\Gamma)$ for suitable Γ by pairwise disjoint translates of the
closed unit ball.

The aim of this paper is to answer Corson’s question in the affirmative. In fact
we prove the following

Theorem Every Banach space X admits a tiling of order 2 by closed convex
bounded bodies.

Our proof is obtained by combining in a suitable way two main ideas. The first
one allowed V. P. Fonf, A. Pezzotta and the second author to prove in [FPZ] that
any Banach space can be tiled by CCB bodies. Via the second one, A. H. Stone
constructed in [S] a tiling of order 2 of \mathbb{R}^n, n any natural number, by CCB bodies.

Throughout the paper we use standard Geometry of Banach Spaces notation as
in [JLH]. All the Banach spaces under consideration are assumed to be real.

2 Proof of the Theorem

For finite-dimensional spaces a construction can be found in [S] (the bodies produced
there are also uniformly bounded), so we can work only in the infinite-dimensional
setting.

We recall that, for a normed space X with norm $\| \cdot \|$ and $0 < \alpha \leq 1$, a set
$M \subset S_{X^*}$ is called α–norming if $\sup\{|f(x)| : f \in M\} \geq \alpha |x| \quad \text{for every } x \in X$.
A *norming set* for X is a subset of S_{X^*} which is α–norming for some α. Moreover,
$\text{norm}(X)$ is the smallest cardinal number c such that there exists a norming set M
for X with $|M| = c$.

Finally, $\text{dens}(X)$ is the smallest cardinal number c such that there exists a set
$W \subset X$, with $|W| = c$, that is (strongly) dense in X.
It easy to see that $\text{norm}(X) \leq \text{dens}(X)$ for every Banach space X; the equality holds whenever X is weakly compactly generated (see [L], Prop. 2.2).

We split our proof into four steps.

Step 1 Let us begin producing a special covering $\tilde{\sigma}$ by pairwise disjoint convex bounded bodies of $l_\infty(\Gamma)$, Γ any infinite set. Given any family $\{[a_\nu, b_\nu]\}_{\nu \in \Gamma}$ of bounded closed non trivial real intervals indexed on Γ with $\inf\{b_\nu - a_\nu : \nu \in \Gamma\} > 0$, we say that the CCB body

$$S = \{t \in l_\infty(\Gamma) : t(\nu) \in [a_\nu, b_\nu], \; \nu \in \Gamma\} \quad (2.1)$$

is a “box” in $l_\infty(\Gamma)$.

Following Stone (see [S]), if in (2.1) exactly for one value of $\nu \in \Gamma$ the closed interval $[a_\nu, b_\nu]$ is replaced by the left-open interval $(a_\nu, b_\nu]$, we say that the corresponding set S is a “lidless box”.

We can assume that the set Γ is well-ordered, i.e.

$$\Gamma = \{\nu : 1 \leq \nu < \gamma\}, \; \gamma \text{ a limit ordinal.}$$

Our construction of $\tilde{\sigma}$ is totally inspired by the work that was already done in proving Proposition 1.6 in [FPZ]. Practically, we repeat that construction just replacing boxes by lidless boxes. It is worthwhile to present it again, since it will be used in Step 2 and some more work on it will be done in Step 3. A picture giving an idea of how the construction works can be found in that paper.

Put $A_0 = B_{l_\infty(\Gamma)}$ and, for $\nu \in \Gamma$ and $n = 0, 1, 2, \ldots$

$$A_\nu^{(n)} = \{t \in l_\infty(\Gamma) : |t(\mu)| \leq 2^n \text{ if } \mu < \nu, \; 2^n < t(\nu) \leq 2^{n+1}, \; |t(\mu)| \leq 2^{n+1} \text{ if } \mu > \nu\} \quad (2.2)$$

The collection

$$\tilde{\sigma} = \{A_0, \; \pm A_\nu^{(n)} : \nu \in \Gamma, \; n = 0, 1, 2, \ldots\}$$

covers $l_\infty(\Gamma)$ and its members are pairwise disjoint. In fact, trivially any point in $B_{l_\infty(\Gamma)}$ belongs to no member of $\tilde{\sigma}$ different from A_0. Moreover, let $t \in l_\infty(\Gamma)$ with $\|t\| > 1$ and
- in case \(\log_2|t| \) is not an integer, let \(\delta \) the first index in \(\Gamma \) such that \(|t(\delta)| > 2^{\log_2|t|} \);

- in case \(\log_2|t| \) is an integer, let \(\delta \) the first index in \(\Gamma \) such that \(|t(\delta)| > |t|/2 \).

Clearly \(t \) belongs to (\(\text{sgn} t(\delta) \)) \(A^{|\log_2|t(\delta)|}\) (resp. to (\(\text{sgn} t(\delta) \)) \(A^{|\log_2|t(\delta)|-1}\) if \(\log_2|t(\delta)| \) is not an integer (resp. \(\log_2|t(\delta)| \) is an integer) and to no other member of \(\tilde{\sigma} \).

Step 2 Let us show how the covering \(\tilde{\sigma} \) that we have built in Step 1 plays a crucial role in providing a covering \(\sigma \) by pairwise disjoint convex bounded bodies for any Banach space. We need to recall here under the chief headings what has been done in [FPZ], Sect. 2, where detailed proofs are available.

Let \(X \) be a normed space. For a suitable \(\Gamma \) with \(|\Gamma| = \text{norm}(X) \), we want to construct an isomorphic embedding

\[
T : X \to l_{\infty}(\Gamma)
\]

such that the family

\[
\{T^{-1}(A) : A \in \tilde{\sigma}\}
\]

provides the desired covering \(\sigma \) for \(X \).

Let \(M \) be a norming set for \(X \) with \(|M| = \text{norm}(X) \); passing to the equivalent norm \(||x|| = \sup\{|f(x)| : f \in M\} \), we may assume that \(M \) is 1–norming. With the aid of Zorn’s lemma, for some ordinal \(\gamma \) with \(|\gamma| \leq \text{dens}(X) \) we construct a totally ordered set of pairs \(\{(x_{\nu}, f_{\nu})\}_{1 \leq \nu < \gamma} \) (which, in some sense, apes a biorthogonal system) such that

1. \(x_{\nu} \in S(X) \) and \(f_{\nu} \in M, 1 \leq \nu < \gamma \);
2. \(|f_{\mu}(x_{\nu})| \leq 1/2, 1 \leq \mu < \nu < \gamma \);
3. \(f_{\nu}(x_{\nu}) \geq 3/4, 1 \leq \nu < \gamma \);
4. the set \(\{f_{\nu}\}_{1 \leq \nu < \gamma} \) is \((1/2)\)-norming for \(X \).

Set \(\Gamma = \{f_{\nu} : 1 \leq \nu < \gamma\} \). Since \(\Gamma \) is a norming set for \(X \), it follows that \(|\Gamma| = |M| = \text{norm}(X) \). The map \(T : X \to l_{\infty}(\Gamma) \) defined as follows

\[
(T(x))(f_{\nu}) = f_{\nu}(x), \ 1 \leq \nu < \gamma, \ x \in X
\]

actually is an isomorphic embedding of \(X \) into \(l_{\infty}(\Gamma) \), since we have \((1/2)||x|| \leq ||T(x)|| \leq ||x|| \) for every \(x \in X \).
Now, let us consider the covering $\tilde{\sigma}$ of $l_\infty(\Gamma)$ that has been constructed in Step 1. It is obvious that $A_0 \cap T(X)$ has nonempty interior relative to $T(X)$. Moreover, it can be easily seen (see [FPZ]) that, for fixed $1 \leq \nu < \gamma$ and $n = 0, 1, 2, \ldots$, the point

$$z_\nu^{(n)} = (2^{n+1} - 0.4)T(x_\nu)$$

is an interior point of $A_\nu^{(n)} \in \tilde{\sigma}$, so it is an interior point of $A_\nu^{(n)} \cap T(X)$ relative to $T(X)$ too.

Hence, for every $A \in \tilde{\sigma}$, the set $T^{-1}(A)$ is a convex bounded body in X, so the family

$$\sigma = \{T^{-1}(A) : A \in \tilde{\sigma}\}$$

provides a covering of X by pairwise disjoint convex bounded bodies.

Step 3 Following A. H. Stone (see [S]), we now produce a refinement $\tilde{\tau}$ of $\tilde{\sigma}$ of order 2, that turns out to be a tiling of $l_\infty(\Gamma)$ by CCB bodies. To do that, it is enough to express each lidless box $A_\nu^{(n)} \in \tilde{\sigma}$ as a countable union of boxes, in such a way that any point of $A_\nu^{(n)}$ belongs to at most two of them.

For n, ν fixed, let $\epsilon_\nu^{(n)}$ be a positive number such that

$$\epsilon_\nu^{(n)} < 1, \quad z_\nu^{(n)} + 2\epsilon_\nu^{(n)} B_{T(X)} \subset A_\nu^{(n)}.$$

(2.3)

Let $\{a_\nu^{(n,j)}\}_{j=0}^{\infty}$ a strictly decreasing null sequence of positive numbers such that

$$a_\nu^{(n,0)} = 2^n$$

and

$$z_\nu^{(n)} + \epsilon_\nu^{(n)} B_{T(X)} \subset \{t \in A_\nu^{(n)} : 2^n + a_\nu^{(n,1)} < t(\nu) \leq 2^{n+1}\}.$$

For $j = 0, 1, 2, \ldots$ let us set

$$A_\nu^{(n,j)} = \{t \in A_\nu^{(n)} : 2^n + a_\nu^{(n,j+1)} \leq t(\nu) \leq 2^n + a_\nu^{(n,j)}\}.$$

(2.4)

Reasoning as in step 1, it is easy to see that the collection of CCB bodies

$$\tilde{\tau} = \{A_0, \pm A_\nu^{(n,j)} : \nu \in \Gamma, \ n, j \in \mathbb{N} \cup \{0\}\}$$

gives the desired tiling of $l_\infty(\Gamma)$ of order 2.
For $\Gamma = \{1, 2\}$, the figure gives an idea of how the construction works.

Step 4 Finally, we have only to follow the same procedure used in Step 2, just replacing $\tilde{\tau}$ by $\tilde{\tau}$ when defining the isomorphic embedding T. It remains only to prove that, for any value of ν, n, j, also the CCB body $A_{\nu}^{(n,j)}$ has nonempty interior relative to $T(X)$. This is clear for $j = 0$. For $j = 1, 2, \ldots$, it is easy to show that the segment S of $T(X)$, having the origin and $z_{\nu}^{(n)}$ as its endpoints, meets the interior of $A_{\nu}^{(n,j)} \cap T(X)$ relative to $T(X)$. In fact set

$$r_{\nu}^{(n,j)} = \frac{1}{2} (a_{\nu}^{(n,j)} - a_{\nu}^{(n,j+1)})$$

and let $z_{\nu}^{(n,j)}$ be the point in S such that

$$z_{\nu}^{(n,j)}(\nu) = 2^n + a_{\nu}^{(n,j+1)} + r_{\nu}^{(n,j)}.$$
From (2.2), (2.3) and (2.4) it easily follows that

$$z^{(n,j)}_\nu + \min\{1, r^{(n,j)}_\nu\} \epsilon^{(n)} \mathcal{B}_T(X) \subset A^{(n,j)}_\nu.$$

Hence, for every $A \in \overline{\tau}$, the set $T^{-1}(A)$ is a CCB body in X, so the family

$$\tau = \{T^{-1}(A) : A \in \overline{\tau}\}$$

is a tiling of X of order 2. \(\Box\)

Remark Clearly our construction cannot lead anyway to a tiling τ uniformly bounded from above or from below, i.e. we cannot get that the members of τ are uniformly bounded or that there exists some positive r such that all of them contain some ball of radius r. So, while the choice of coefficients 2^n in [FPZ] was suggested by the possibility to get all members of τ uniformly bounded from below, in our Step 1 it has been made just in order to refer quickly to that paper for those proofs that have been omitted here. It is worthwhile to notice that in [FL] (Prop. 2.8) it is suggested the way to obtain, in any Banach space with the Radon-Nykodym property, a tiling uniformly bounded from above just applying a cutting procedure to each member of a given tiling in a straightforward transfinite way. This can obviously be done on the members of our tiling τ. After that, to each slice that we have obtained, we can apply a new cutting procedure as described in Step 3, just referred to the linear continuous functional we used to produce the slice.

References

[C] H. H. Corson: *Collections of convex sets which cover a Banach space*, Fund. Math. 49 (1961), 143–145.

[F] V. P. Fonf: *Three characterizations of polyhedral Banach spaces*, Ukrainian Math. J. 42 (1990), 1286–1290.

[FL] V. P. Fonf and J. Lindenstrauss: *Some results on infinite-dimensional convexity*, Israel J. Math. 108 (1998), 13–32.
[FPZ] V. P. Fonf, A. Pezzotta and C. Zanco: *Tiling infinite-dimensional normed spaces*, Bull. London Math. Soc. **29** (1997), 713-719.

[FZ1] V. P. Fonf and C. Zanco: *Covering a Banach space*, Proc. Amer. Math. Soc. **134** (2006), 2607-2611.

[FZ2] V. P. Fonf and C. Zanco: *Finitely locally finite coverings of Banach spaces*, J. Math. An. Appl. (2) **350** (2009), 640-650.

[FZ3] V. P. Fonf and C. Zanco: *Coverings of Banach spaces: beyond the Corson theorem*, Forum Math. **21** (2009), no. 3, 533–546.

[K1] V. Klee: *Do infinite-dimensional Banach spaces admit nice tilings?*, Stud. Sci. Math. Hungar. **21** (1986), 415-427.

[K2] V. Klee: *Dispersed Chebyshev sets and coverings by balls*, Math Ann. **257** (1981), 251-260.

[L] J. Lindenstrauss: *Weakly compact, their topological properties and the Banach spaces they generate*, Symposium on infinite-dimensional topology, Ann. of Math. Stud. **69** (ed. R. D. Anderson, Princeton University Press, Princeton, NJ, 1973), 235-273.

[JLH] W. B. Johnson and J. Lindenstrauss: *Basic Concepts in the Geometry of Banach Spaces*, Handbook of the Geometry of Banach Spaces, Volume 1, W.B. Johnson and J. Lindenstrauss Editors, North-Holland Elsevier, 2001.

[N] M. J. Nielsen: *Singular points of a convex tiling*, Math. Ann. **284** (1989), 601-616.

[S] A. H. Stone: *Closed tiling of Euclidean spaces*, Rend. Circ. Mat. Palermo (2) Suppl. No. 8 (1985), 321-324.

[Z] C. Zanco: *Even infinite-dimensional Banach spaces can enjoy carpeting and tiling*, Proc. of the 13th. Seminar on Analysis and Its Applications, Isfahan Univ. Press, Iran, 2003, 121-141.

Andrea Marchese
Dipartimento di Matematica
Università degli Studi
Largo B. Pontecorvo, 5
56127 Pisa PI, Italy
E-mail address: marchese@mail.dm.unipi.it
ph: ++39 050 2213 229

Clemente Zanco
Dipartimento di Matematica
Università degli Studi
Via C. Saldini, 50
20133 Milano MI, Italy
E-mail address: clemente.zanco@unimi.it
ph. ++39 02 503 16164 fax ++39 02 503 16090