Agroforests, swiddening and livelihoods between restored peat domes and river: effects of the 2015 fire ban in Central Kalimantan (Indonesia)

Y.A. SILVIANINGSIH, K. HAIRIAH, D. SUPRAYOGO, M. van NOORDWIJK

Faculty of Agriculture, University of Palangka Raya. Kampus UPR Tanjung Nyaho, Jalan Yos Sudarso, Palangka Raya, Indonesia
Graduate Studies Program, Faculty of Agriculture, Brawijaya University, Malang, Indonesia
Agroforestry Research Group, Faculty of Agriculture, Brawijaya University, Jl. Veteran no 1, Malang
World Agroforestry Centre, ICRAF, Indonesia Office, Bogor, Indonesia
Plant Production Systems, Wageningen University, the Netherlands

Email: yosefin_ari@for.upr.ac.id, kurniatunhairiah@gmail.com, suprayogo09@yahoo.com, m.vannoordwijk@cgiar.org

HIGHLIGHTS
• Dayak Ngaju villagers have traditionally combined agroforest and swidden/fallow rotations on riverbanks and shallow peat.
• Rich ethnobotanical knowledge, local soil quality indicators and ceremonies reflect long-term presence in this landscape.
• The 2015 fire ban has effectively stopped local rice cultivation as technical alternatives are not attractive.
• The agroforests, with durian and rubber as marketed products, continue to support livelihoods, but are not sufficient.
• Temporary jobs on canal blocking for the peatland restoration agency have filled the gap, but are not expected to last.

SUMMARY
If 150 years of continued use counts as a sustainability indicator, the river-bank agroforests in the peat landscapes of Central Kalimantan suggest solutions for current challenges. The 2015 fire season in Indonesian peatlands triggered a fire ban and peatland restoration response, prioritizing canal blocking and rewetting. However, sustainable livelihood options remain elusive. We report local ecological knowledge of soils and vegetation applied in land use choices in swiddens and agroforests in five Dayak Ngaju villages in Jabiren Raya and Kahayan Hilir subdistrict (Pulang Pisau, C. Kalimantan, Indonesia) on the banks of the Kahayan river and discuss impacts of fire-ban policies. Plots accessible from the river with no or shallow peat were traditionally preferred for swiddening, with various indicator plants and soil characteristics underpinning the choices. Without swiddening farmers depend on off-farm jobs and agroforests for income. More policy attention for non-peat riparian-zone agroforestry as part of peat landscape livelihood systems is warranted.

Keywords: agroforestry, ethnobotany, fire ban, local knowledge, peatlands, soil indicators, swidden

Agroforêts, cultures sur brûlis et moyens d’existence entre tourbières bombées et rivière: effets de l’interdiction des feux de 2015 au Kalimantan Central (Indonésie)

Y.A. SILVIANINGSIH, K. HAIRIAH, D. SUPRAYOGO et M. van NOORDWIJK

Si 150 années d’usage continu comptent comme un indicateur de durabilité, les ripisylves agroforestières dans les paysages de tourbières du Kalimantan central suggèrent des solutions pour les défis actuels. La saison d’incendies de 2015 dans les tourbières indonésiennes déclencha une réponse d’interdiction des feux et de restauration des tourbières, en priorisant le blocage des canaux et le remouillage. Cependant, les possibilités de revenus durables demeurent plutôt insaisissables. Nous rapportons la connaissance écologique locale des sols et de la végétation appliquée aux choix d’utilisation de la terre dans les cultures itinérantes sur brûlis et les agroforêts dans cinq villages Dayak Ngaju dans les sous-distRICTS de Jabiren Raya et Kahayan Hilir (Pulang Pisau, C. Kalimantan, Indonésie) sur les rives de la rivière Kahayan, et nous discutons les impacts des politiques d’interdiction des feux. Les parcelles accessibles de la rivière avec peu, ou pas de tourbe, ont été traditionnellement préférées pour la culture sur brûlis, avec diverses plantes-indicateurs et caractéristiques du sol guidant les choix. Sans culture sur brûlis, les exploitants dépendent d’emplois hors ferme ou de l’agroforesterie pour leurs revenus. Il est nécessaire de porter plus d’attention dans les politiques sur l’agroforesterie de bord de rivière sans tourbe comme faisant partie des systèmes de revenus des paysages de tourbières.
INTRODUCTION

As elsewhere in Southeast Asia, livelihoods strategies and land use systems at the forest/agriculture interface in Kalimantan have gradually increased in intensity due to the interactions with global markets, followed by a ‘dual economy’ track at local scale of providing for local needs as well as income (Dove 2011). In a subsequent national-scale interpretation of a dual economy, logging concessions became a source of income primarily for stakeholders outside the landscape, while getting into conflict with local swiddening traditions as basis of local needs. Swiddening has for millennia of human existence been the basis for local food security strategies, through both its cropping and fallow phases (Cramb et al. 2009, Mizuno et al. 2013). In response to market demand for ‘forest products’, the fallows in many parts of southeast Asia transformed into agroforests that complemented remaining old-growth forests as a source of marketable products and local food (de Foresta et al. 2000, van Noordwijk et al. 2008a).

Depending on accessibility and the terms of trade, transitions occurred to ‘outsourcing’ rice as a staple food that can be obtained from trading canoes as well as from swiddens, while other parts of the diet and the fuel needed to cook it remained locally sourced (van Noordwijk et al. 2014a). A switch from periodically shifting villages to permanent settlements with access to health and education services as well as government control, coincided with a greater role of the agroforests around settlements as provider of income though products such as rubber or durian. When land away from the river became claimed as ‘state forest’ (Galudra et al. 2011), the river-based economy became enriched with sawmills fed from commercial logging concessions, supporting the dual economy.

Changes in agricultural patterns from swidden to permanent cultivation occurred in many regions in Indonesia at various points in time (van Noordwijk et al. 2008a,b, Haryadi and Ticktin 2012, Li et al. 2014, Dressler et al. 2017). A review of the declining role of swiddening in Southeast Asia (Fox et al. 2009) identified seven contributing factors, including the division of landscapes into forest and permanent agriculture, treatment of swiddeners as ethnic minorities within nation-states, privatization and commoditization of land and land-based production, and expansion of market infrastructure and the promotion of industrial agriculture. In a global assessment van Vliet et al. (2012) concluded that despite decline, swidden cultivation remains an important element of tropical forest-agriculture frontiers. In the context of climate change policies, van Noordwijk et al. (2015) distinguished between contexts where A) swiddening is still the locally preferred land use, B) contexts where there has been a voluntary shift to other sources of local and/or off-farm livelihoods, and C) contexts where policies, such as no-burn policies, are actively enforced and farmers urgently need alternatives. The use of fire for land clearing in landscapes with tropical peats is now in that third category and livelihood transitions are imposed on local communities. The challenge for public policies is to turn a type-C imposed abandonment of fire as traditional tool for re-opening swiddens into a type-B voluntary choice as there are attractive alternatives. Our case study delved into these issues.

Several of the large rivers of Borneo and Sumatra have an extensive lowland section where peat domes developed in the interfluvial areas. These peat areas did not support human settlement, but their low-intensity use complemented the river-bank agriculture and fishing. Only in the 1990’s when more favourable areas had been logged and in part converted to plantations (either fast-growing trees under forestry rules or oil palm as an agricultural crop), attention shifted to these peatlands, where a lack of local claims meant less conflicts than on mineral soils. Conversion of large areas of Indonesian peatland into agricultural lands for estate crop production and plantation forest brought short-term economic gains, but also posed major environmental, health and economic risks and loss of globally significant biodiversity contained in natural peat swamp forests (Uda et al. 2017). Peat-based communities in Central Kalimantan had to adapt their livelihoods to changing peatland conditions and management policies (Jewitt et al. 2014). The most striking case is the Mega Rice Project, which logged and transformed a million hectares for resettling farmers from elsewhere to grow irrigated rice. Currently known as the Ex Mega Rice Project.
(EMRP), technical and social failure of the resettlement scheme has shifted attention back to the original inhabitants of the peatland landscape and to efforts to restore ecosystem services (provisioning, regulating, cultural; Law et al. 2015a).

Under President Joko Widodo’s first administration period, the government prioritized restoration and rehabilitation of peatlands by establishing the Peat Restoration Agency (BRG), based on Government Regulation No.1 of 2016, to accelerate the recovery of integrated functions of peat hydrology and avoid future fire episodes like the one experienced in 2015. One of the priorities of BRG activities in Central Kalimantan Province is in Pulang Pisau District, in the form of canal blocking to reduce the rate of drainage and keep the peat dome wetter at the start of a dry period and making bore holes (wells) to have water readily available to extinguish fire if needed. The aim of these activities is to restore a shallow groundwater level and reduce the fire risk in remaining forests and agricultural land. Both state-sponsored efforts that tried to undo the failed projects together with locally fire ban for agricultural purposes have created new challenges for existing swidden practices.

Previously, internationally funded efforts to control carbon emissions from the landscape had revealed that the area is a ‘hot spot’ for contested claims and conflicts between forest authorities and local communities over the forest designation of riparian-zone lands that had previously been respected as under ‘adat’ (customary law) control (Galudra et al. 2011). Project documents and planned interventions did not refer to agroforests as part of the traditional land use or conceive them as part of a desirable solution.

The absence of ‘agroforest’ categories in the legal frameworks for land use planning and the lack of interest in the production plus conservation properties of these systems (Fay & Michon 2005, Fay & Sirait 2005, Michon et al. 2007), has led to a conceptual dichotomy between agriculture and forestry that has discouraged gradual transitions and intermediate systems. De Foresta et al. (2000) described agroforests in Indonesia as based on planting beneficial trees on farm (often starting with swiddens), with tree canopy structures that resemble tree structures in forests, providing a home to many forest organisms. Van Noordwijk et al. (2019) discussed how interpretations of agroforestry as a dynamic system of natural resource management, through integration of various types of trees species on land and in agricultural landscapes, requires policy change to secure the economic, social and environmental benefits it can provide to various segments of society. These benefits can be understood as four type of ecosystem services i.e. (a) provisioning of foods, timber, fibre, fruit and medicines, (b) regulating the flow of clean water and clean air (Mainka at al. 2008), (c) supporting the development of biodiversity, soil formation, and (d) preserving culture, landscapes beauty, and maintaining germplasm (MFA 1994).

Recent land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes (Clough et al. 2016), as the more profitable oil palm and rubber monocultures replace forests and agroforests critical for maintaining above- and below-ground ecological functions and the diversity of most taxa. According to their analysis, strategies to achieve an ecological-economic balance and a sustainable management of tropical smallholder landscapes must be prioritized to avoid further environmental degradation. Such strategies will have to start from a stocktaking of what exists.

Analysis of land use plans for the area surrounding the EMRP (Law et al. 2015a, 2015b) have considered ‘smallholder agriculture’ and ‘riparian forest’ but not the ‘riparian agroforest’ that can be seen in the Jabiren Raya sub district along the Banjarasin – Palanga Raya road. Government documents attributed the fires to ‘slash-and-burn’ practices by local communities(also known as swidden re-opening) and to land clearing to support land claims (Medril zam et al. 2014). Unintentional spread of such fire use, without effective control, was seen as part of the cause in the fires culminating in the 2015 event (Ardhian et al. 2016, Lohberger et al. 2018). In response, the fire ban that previously had exempted small-scale farmers was reframed to apply landscape-wide to all actors (Page and Hooijer 2016). Where prior to the 2015 fires a lack of commitment to act had been the bottleneck (van Noordwijk et al. 2014b), the agenda shifted to finding practical, operational solutions after the Peatland Restoration Agency (BRG) had been constituted. Together with the canal blocking and rewetting that tried to undo the failed projects of the 1990’s, the fire ban created new challenges for existing swidden practices. Economically attractive forms of ‘paludiculture’ and agroforestry not requiring extensive drainage (ASEAN Secretariat 2013, Wetlands 2016, Widy atayi et al. 2016, Medril zam et al. 2017) are urgently needed in these landscapes, both for the riparian edges and the peat domes.

Paludiculture is a productive use of peat swamp to protect peatlands without drainage or canal blocking so that the peat stays wet. Paludiculture (Tata 2019) can provide fruits such as durian (Durio sp.) or mango (Mangifera sp.), commercial wood species like kahui (Shorea blangeran), and medicinal plants such as papar buhu (Antidesma coriaceum Tul). Existing agroforests close to the river and their historical interaction with swiddens may offer traditional knowledge of soil and water management (Barrios et al. 2012) that is relevant in the current discussions. Ethnobotanical surveys may reveal which plants are considered to have local indicator value of environmental conditions, beyond any direct use value.

The current exploration of local knowledge and practices in the area between the Kahayan river and the peat domes to its West and East was initiated to answer the following questions:

1. How are land use practices including swiddening and agroforests positioned in the river-peat dome gradient and associated with local knowledge of soil and water management?
2. How is land use associated with ethnobotanical knowledge of plants as indicators of land quality and as sources of livelihoods?
3. In what way did the ‘fire ban’ of 2015 affect existing land use practices and food production by the local communities and what alternative options do they currently have?
FIGURE 1 Google.Earth image of the landscape in Pulang Pisau regency southeast of the provincial capital Palangka Raya along the road to Banjarmasin, with the riparian agroforest in Jabiren along the Kahayan river, intact peat swamp forest to the West (left) and areas affected by the Ex-Mega-Rice project to the East

METHODS

Geographical context

Central Kalimantan is dominated by river deltas and wetlands that are now understood to be part of Peat Hydrology Units (KHG = Kesatuan Hidrologi Gambut). A large area of wetlands (around 440,000 ha) is located in the Pulang Pisau Regency. It became known as ‘Block C’ in the EMRP (Lestari 2016). The economic wheel in Pulang Pisau Regency depends on the agricultural sector (Pemerintah Kabupaten Pulang Pisau 2015), while the availability of agricultural land area is still limited; therefore, the potential for conversion of forest land remains a key interest. Five villages on the Kahayan river were selected for this study, three (Pilang, Henda, Sakakajang) in Jabiren Raya Sub-District (Pulang Pisau District), two (Gohong and Anjir Pulang Pisau) in the Kahayan Hilir Sub-District (Pulang Pisau District), (Figure 2).

The study area (1°32′00″-3°28′00″ South, 113°30′00″-120°00′00″ East) borders Gunung Mas Regency in the North, Kapuas Regency in the East, the Java Sea in the South and Katingan Regency and Palangka Raya City in the West. The five study villages are: area of Pilang (area about 180 km², 1320 inhabitants, 7.3 km⁻²), Sakakajang (60 km², 768 inhabitants, 12.8 km⁻²), Henda (538 km², 648 inhabitants, 1.2 km⁻²), Gohong (60 km², 1808 inhabitants, 30.1 km⁻²), Anjir Pulang Pisau (22 km², 4407 inhabitants, 200.3 km⁻²) (BPS 2018a, 2018b). Henda Village, the oldest among the five, with the most extensive land area and widest range of land uses, in the middle of the study landscape was chosen for more detailed observations.

Collection and analysis of data

The local communities along the Kahayan river identify themselves as Dayak Ngaju. Various groups of migrants, under the government-sponsored transmigration program as well as spontaneous migrants, have also settled in the area, coming from Bali, Java, Flores and elsewhere in Kalimantan. Only villages that described themselves as of Dayak Ngaju ethnic origin were considered in this research, as we wanted to document local ecological knowledge with historical roots in this landscape. Permission for research was obtained from the village elders, and the first author, with five years’ experience in the area was welcomed in the homes of many villagers, with follow-up interviews in the field, and participation in village events. Data collection was carried out by surveys, field observations, and in-depth interviews with 20 key informants (purposive sampling) consisting of 18 men and 2 women.
FIGURE 2 (A) Five study sites in Pulang Pisau District, South Kalimantan, (B) Land use types in the peat landscape (BRG 2018)
Key informants were land-owners with deep knowledge of the land history from forest-land clearing stage to land cultivation, had knowledge about various types of beneficial plants and/or have been managing land in these villages. Further knowledge was shared by women who joined in the collection of biophysical data. In-depth interviews were conducted in the Dayak Ngaju language and Bahasa Indonesia. The interviews were recorded, fully transcribed and interpreted into Bahasa Indonesia. Where interviews appeared to provide conflicting information, joint field visits were made to ensure information was correctly interpreted and was related to field data. Data on shallow-peat tree indicators and useful ethnobotanical plants were then matched with the tree flora for Kalimantan edited by Whitmore et al. (1990).

A quick soil assessment was carried out using Munsell Soil Color (1994) charts. In-depth interviews and joint field visits explored local ecological knowledge of indigenous farmers. Some of the information gathered was related to soil quality, an indicator of vegetation on peatlands. Problems faced by farmers related to the implementation of government policies in preventing fires were a common topic of discussion, as well as the impact of socio-economic changes on community cultivation on peatlands. All data obtained were described in a qualitative descriptive manner (Miles et al. 2014, Robertson et al. 2017, Schüler and Noack 2019), and are presented in an anonymized way and in summary form in this paper to respect the privacy of respondents.

RESULTS

Land use patterns

Part of the current agroforestry lands managed by Dayak Ngaju farmers were passed down from three or four generations before the current owner. Allocation and management of those lands, as well as the use of communal land rights and land conflict resolution always refer to the customary leader called Mantir Adat, who is elected by villagers within the customary community. Agricultural activities in the Dayak Ngaju culture are described through four important stages, namely land selection, carrying out traditional ceremonies, planting and harvesting (Table 1). Traditional ceremonies contain ritual elements in social life which are believed to provide success and safety for farmers.

Implementation	Stages	Activity
Before clearing the forest for cultivation	Ritual (salvation)	Ceremony of salvation and success by securing agreement from supernatural beings in the prospective land. Activities led by adat leaders or shamans, by washing offerings in the Kahayan river, in containers made of bamboo (kelangkang). The upright position of the kelangkang when it is washed away, signifies nature allows the land to be cleared. All customary rule violations, will attract a curse (pahuni).
July	Open land	Conducted in groups and led by someone considered an elder
July–August	Land clearing	Cutting down small trees and herbs (mandirik) and cutting down large trees (maneweng).
September	1. Burning the cut biomass (manusal)	Slash and burn activity after making firebreaks (around the plot) and keeping fire from creeping or jumping to other areas (pusuuk menyawung), guarded in groups by working together (handep).
September	Planting rice (manugal)	Planting upland rice varieties (mountain rice, ‘iwau’, ‘geragai’, ‘kawung’ and red rice). Rice seeds are obtained from the old generation, bought or borrowed (manalisih) from farmers who still have them. After 10 days, rice will be replanted (maneseng) to replace dead rice plants. This activity is in conjunction with growing vegetables (nimbul sayur), to fulfil daily needs; types of vegetables planted include beans, karwila (Luffa acutangula), hot pepper (Capsicum frutescens), cucumber (Cucumis sativus), bitter gourd (Momordica charantia) and eggplant (Solanum melongena).
November–December	Weeding (membawau)	Weeding is carried out when the rice is 2 months old, to avoid damage on main crops.
March	Harvesting rice (menggetem)	Weeding is carried out when the rice is 2 months old, to avoid damage on main crops.
Subsequent years	Subsequent rice crops, or transition into agroforest	Repeated rice planting activities for up to 3 or 4 times depend on soil fertility. If soil fertility decreases, shown by a decline in rice production, then land management shifts to (inter)planting (sisiapan) rubber and local fruits such as various mangoes (Mangifera sp.), cempedak (Artocarpus integer), durian (Durio sp), mangosteen (Garcinia mangostan), tambutan (Nephelium lappaceum) and ‘rambai’ or ‘buah menteng’ (Baccaurea motleyana).
Local knowledge of ‘improved fertility’ by the traditional and controlled use of fire in land clearing, locally termed ‘manusul’, is supported by soil science. Ash produced from wood and litter burning during this manusul provides soil nutrients and increases soil pH (Rodenburg et al. 2003, Huotari et al. 2015), as it has high concentration of K, Ca and Mg (Hairiah et al. 2011), while organic P can be mobilized (Ketterings et al. 2002). Rice can be planted for 3–4 years only and is followed by planting of rubber and fruit trees, after which land is left as ‘fallow’ for several years until a multistrata agroforestry is formed (Figure 3A).

Utilization of land for agriculture in Henda historically started from the Kahayan riverbank (both on the right and left side of the river). More recent agricultural land uses continued to develop at increasing peat depths and distances to the river (Figure 3B).

Local knowledge of soil fertility

Peat swamp land use for agriculture along the banks of the Kahayan river needs to take the tidal pattern of the river into account, some 50 km from the sea, as access by canoe is best during high tide. An important aspect of local knowledge used by Ngaju Dayak farmers and passed on from generation to generation relates to site selection, land suitability and vegetation that indicates land suitability for farming. Indicators used for land selection for farming are summarized in Table 2.

The location for farming in the study area is along the Kahayan riverbank and close to the settlements. The type of land management on peaty land is selected based on the level of water saturation, soil acidity, and nutrient availability for plants. This land is not entirely flat; there are parts in the form of higher basins and surfaces. Farmers prefer higher land surface with peat thickness less than 20 cm (which is also just a mineral soil), which is suitable for annual crops such as upland rice and vegetables. Farmers will plant trees (rubber and various local fruits) in the third or fourth year of cropping and leave it to become an agroforest. The land is called high land/hanging plot/embankment land or meaning high land/transition lands/embankment land, characterized by being located near the river and unflooded even at the peak of the rainy season or at the highest tides. On the other hand, there are also land conditions that are avoided by farmers, namely petak rendah, hapu, luwau. These lands are positioned in low-lying land so that they can be flooded during the rainy season and the highest tides. Peat thickness in such lands was observed to be 20 to 50 cm.

There are various terms in local use for the maturity of peat, such as “raw” peat, “half mature” or “half-cooked”, and “mature” or “cooked” peat. “Raw” peat is found in all peatlands that have never been managed or cultivated before. Farmers choose peatlands for farming mostly based on peat depth, preferring shallow (thicknesses <20cm) or medium (thickness 20 to 50cm) peatlands. The half-mature peat does not exist on peatland with a thickness of <20cm but is still sometimes found on peat land with a thickness of 20–50cm.

The mature peat commonly called as “petak asli, petak murni” or “original” or “pure” plot implies that the land has no (or no more) peat; what remains is a clay or loamy soil, with lumpy soil structure. The colour of the mature peat soil

FIGURE 3 (A) Four stages of activities in the formation of agroforests with forest-like structures, (B) Development of various land uses at various distances to the Kahayan river and at various peat depths in the village of Henda.
TABLE 2 Indicators used in selecting plots for swiddening

No	Desired condition	Unwanted condition
1.	Agricultural land along the riverbank. The selected land is within 2 km from the river (which aligns with historical land rights).	A distance to the river of more than 3 km.
2.	* Peat thickness <20cm, “the length of a hoe, knife blade, or ankle”.	
 * High-lying plots on or close to embankments (also “hanging plots”) because at the peak of the rainy season or at high tides they will not be flooded.
 * The soil is called “petak bervitamin, petak dingin, tanah protein” meaning plot has a lot of vitamin, soil is cool and has a lot of protein |
 * Peat thickness in the range of 20–50cm.
 * Low-lying land, “petak rendah, hapu, luwau”, because it is flooded in the rainy season or during the highest tide.
 * Plots where plant growth is not optimal, so called “petak kerdil, petak kurang protein, petak panas” meaning plot that has dwarfed plants, poor nutrient supply and is prone to droughts. |
| 3 | Soil that can form lumps “bagumpal” when squeezed, indicating it contains clay, and may have a good structure | The soil is lumpy, but easily collapses when squeezed and is likely unable to store water. |
| 4 | Presence of positive indicator plants (see Table 3) | Presence of negative indicator plants (see Table 3) |

is dark brown (7.5 YR 3/2 dark brown), yellowish (10 YR 4/4 or dark yellowish brown) or greyish (10 YR 4/2 dark greyish brown); the condition of the mature peat is shown in Figure 4. Half-mature peat sometimes can still be found in peat land that has a thickness of 20–50cm (shown in figure 4d and 4e), the colour is black “babilien” (5 YR 2.5 / 1 black), with a crumbly structure; it is unable to store water and dries quickly. The process of changing half-mature peat into mature peat requires a very long time, because it must go through the process of repeated combustion and drying of the land. The land is commonly used for planting rubber, fruit trees and oil palms. Burning plant biomass is a major part of peatland farming. It produces ash “kawu baputi”; farmers call the ashes as “pupuk kompos ladang” or “field compost”. As shown in Figure (4f) ash from burning land in 1994 was still recognizable. Field observation in the mature-peat, half-mature, and pupuk kompos ladang is shown in Figure 4.

The main transportation in the peat landscape is based on Jukung, a traditional boat used to bring agricultural product from the garden to the market (Figure 4g). The “handel” canal is a transportation route that also has a function to dry up the inundated land. Canals are dug and maintained by groups of farmers (baring harung).

Ethnobotanical knowledge of plants

Farmers recognize various indicator crops for cultivation in the local context, as shown in Table 3 and Figure 5. Seven types of indicator plants for “tanah tinggi /petak gantung/ tanah pematang” were commonly used, while the condition of “rendah, hapu” or “luwau” plots or peat swamp is indicated primarily by the presence of a type of fern (Stenochlaena palustris), grass (Leersia hexandra) or a specific tree (Melaleuca leucadendron). Some of these indications may not be valid outside of the local context.

Agroforestry in Pulang Pisau district is generally rubber-based, with local fruits as additional sources of income. The oldest agroforest is still actively maintained and is more than 150 years old. The land was the site of former homesteads and homegardens that transformed into an agroforest. The next generation benefitted and sought to preserve local species such as binjai (Mangifera caesia), dehuyan (Durio zibethinus), paken (Durio kutejensis), kasturi (Mangifera casturi) and non-cultivated, volunteer plants such as sunkai (Peronema canescens), mahang (Macaranga sp.), Kahu (Shorea balangeran).

Table 4 provides information about local plants found in agroforest, which are both cultivated and spontaneously established (rather than planted). Most of them come from Anacardiaceae (22.7%) and Moraceae (13.6%) families, where the rest come from other 20 botanical families. The life forms of those plants are mostly in trees (93.9%), and others are ferns (3%) and herbs (3%). Local people use those plants as source of food, fruits, side dishes, medicines and building materials. They still are important in local livelihoods, especially because natural forest is not accessible.

Economic Status of Local Agroforestry

Rubber and fruit-based agroforestry is the most important source of income for local farmers. Rubber prices (at the farmgate) have fluctuated over the past decades, with a high price level at Rp. 17,000/kg in 2010 to Rp. 8,000/kg in 2018. Farmers can get around 15 kg of rubber/tapping day, coming from around 300 trees (approximately 1 ha at common stand densities). Income from rubber sales (at 2018 prices) was around Rp. 360,000/week for three tapping days. However, rubber farmers’ income from agroforestry will decrease during the rainy season, when trees are tapped only once a week. As rubber prices plummeted, farmers became interested in trying new options, which are promoted by the local government, namely planting sengon (Parasenianthes falcataria) for local pulp and paper mills. With an expected price of Rp. 400,000/m³, sengon grown in monoculture tends to replace rubber trees. However, not all farmers participated in such programs because they have to provide the land for it and
FIGURE 4 Indicators of soil quality: a), b) and c) Fertile soil, “with vitamin”, “protein”, “cool”, indicating “well-cooked” or mature peat, d) and e) “half-cooked” peat soil, f) ash, g) preferred position relative to canal (“handel”) for easy access.

FIGURE 5 Plants used as soil fertility indicators: (a) Simpur (Dillenia sp.), (b) Mahang (Macaranga sp.), (c) Lepu (Korthalsia flagellaris), (d) Suli (Hedychium coronarium).

capital for land preparation. Hence, only some joined the program. To date, no data on sengon production is available, because it was just planted three years ago, and could, supposedly, be harvested at the age of five years.

Many farmers felt they could not make ends meet, arguing that farmers needed an estimated monthly rice consumption of 30 kg for a family consisting of two adults. The income of farmers from fruit tree production is influenced by the year and fruiting season. This is not worth the expenditure for rice, whose prices vary between Rp. 7,000 kg to Rp. 14,000 per kg in 2017 and 2018 (Disperindakop UKM, 2018). In the harvest season, some types of fruit are sold to traders who come to the garden, but durian species will be prioritized to be distributed in large families by a father who determines the management...
of the garden (inheritance) and selling the fruit. Durian is a
favourite fruit that has a high selling price compared to other
fruit yields so harvesting durian fruit will be a priority.

The average durian weight is 3 kg at the price of Rp.
30,000 per piece. Some fruits can reach a weight of 7 kg,
which is worth Rp. 70,000 per piece. Each durian tree can
produce 100–500 fruits. One farmer stated his experience that
durian trees will bear more fruit if they reach 100 years of age,
which can produce 600 durians/tree. This is the main reason
for maintaining the durian tree for the next generation.

Durian harvest is a customary event to be maintained
alongside cultivation activities by the Dayak Ngaju tribe.
When taking turns caring for and waiting for the durian
harvest, families will gather from various villages once a year
to remember their heritage and genealogy. They realize that
the durian crop, which has a high sale value, must be managed
to avoid conflict in the family. Joint harvests are carried out
in turn according to schedule and agreement, and the harvest
yield of each family depends on the amount of durian that falls
to the ground because it has ripened.

In addition to the harvested fruit, farmers also get benefit
during the season of durian flowering. Farmers repel insect
pests by burning litter piles obtained from cleaning the soil
around the durian tree. At this time, farmers often catch
bats that pollinate the durian flowers using nets to be then
consumed as a traditional family dish (NB this observation
was before the global SARS-COV2 pandemic attributed to
bat consumption).

Effects of the 2015 fire ban

In an effort to prevent forest fires, a fire ban was issued by
the Governor of Central Kalimantan in Regulation No. 49 of
2015. The ban impacts farmers in the study area, who are
prevented from opening land for swiddens in their traditional
way because there are legal sanctions. Farmers are accus-
tomed to slash-and-burn land clearing techniques in farming
(lying on a swidden-fallow rotation), with strict controls on
escaping fire and local sanctions if accidents happen.

Previously farmers never bought rice but instead sold it for
additional income. Now, farmers reported that they had to
become rice buyers, instead of being rice sellers. This meant
a lot to them, as in the prevailing norms it is only farmers who
do not work that do not have rice for their family consumption
with some surplus to sell.

Farmers generally acquire agroforests from previous genera-
tions, so farmers can still get income other than farming
swiddens. However, since the living standards and associated
expenditure are increasing, the yield from agroforestry is no
longer sufficient. Farmers’ land which was previously used
for cultivation, has been sold at high prices to adjacent oil
palm plantations East of the river. Those (ex)farmers are now
looking for off-farm jobs, including temporary jobs under
BRG programs (canal blocking and rewetting), gold mining,
fishig, and sometimes as labourers on oil palm plantations.
However, they still work in, and take care of the agroforests.

A government program has been introduced for “Rice
Fields Development” (Program Cetak Sawah Baru), empha-
sizing cultivation without burning. The farmers are equipped
with tractors, seeds and fertilizers. However, when land
clearing is done by heavy equipment instead of fire, it leaves
woody stems and roots on the soil surface (which used to be
burnt). The use of tractors is also still considered to be too
expensive for farmers, while for many their swiddens are
across the river from where the village is located, so that many
farmers decided not to cultivate their land anymore. Also,
rice seeds that are given to farmers are not local seeds that
are commonly planted by farmers. Based on these reasons,
local farmers considered the government program not to be
suitable.

The culture of growing rice (manugal) in mutual coopera-
tion (handep hapakat) is related to rituals as part of the social
life of the Ngaju Dayak tribe. However, manugal culture
cannot be carried out anymore because slash and burn activi-
ties have been banned. Farmers expect that there are solutions
and guidance on sustainable land management without burn-
ing, because the old method of slash and burn management
that has been carried out from generation to generation, is
considered practical and inexpensive and is related to culture.
Changes to agricultural habits that have been applied for
many generations are not easy to implement. Furthermore,
farmers wish the government to examine the ban and allow

Local name	Botanical name	Family	Life form	Type of Land
Lepu, dahaben	Korthalsia flagellaris	Areaceae	Palm	Shallow peatland (peat
				thickness <20 cm) in land
				described as “pematang, tanah
				tinggi, petak gantung”
Simpur	Dillenia sp.	Dilleniacae	Tree	
Mahang	Macaranga trilobal	Euphorbiaceae	Tree	
Tiapanggang	Adenanthera pavonina	Fabaceae	Tree	
Hampauck	Baccaurea bracteata	Phyllanthaceae	Tree	
Papar buhu	Antidesma coriaceum	Phyllanthaceae	Tree	
Sali	Hedychium coronarium	Zingiberaceae	Herb	
Kalakai	Stenochlaena palastris	Blechnaceae	Herb	Inundated land, peat thickness
Gerigit	Leersia hexandra	Poaceae	Grass	20 to 50cm in “petak rendah,
Galam	Melaleuca leucadendron	Myrtaceae	Tree	hapu, luwau”
TABLE 4 Useful plants (arranged by botanical plant family) in (agro)forests, according to local informants

Local Name	Botanical name	Family	Plant type	Use	Actively managed?
Barania	Bouea macrophilla	Anacardiaceae	Tree	Fruits, side dishes	Yes
Binjai	Mangifera caesia	Anacardiaceae	Tree	Fruits, side dishes	Yes
Hampalam*	Mangifera sp.	Anacardiaceae	Tree	Fruits, side dishes	Yes
Kasturi	Mangifera casturi	Anacardiaceae	Tree	Fruits, Building materials	Yes
Tarantang	Campnosperma coriaceum	Anacardiaceae	Tree	Medicine for uric acid (bark), building materials	No
Jelutung	Dyera costulata	Apocynaceae	Tree	Latex, Building materials	Yes
Kalakai	Stenochaena palustris	Blechnaceae	Fern	Food supply after giving birth	No
Jinjit	Calophyllum hosei	Calophyllaceae	Tree	Building materials, menstrual medicine	No
Manggis	Garcinia mangostana	Clusiaceae	Tree	Fruit medicine for skin disease (latex)	Yes
Simpar	Dillenia sp	Dilleniaceae	Tree	Medication for dysentery (young shoots)	No
Sungkai	Peronema canescens	Verbenaceae	Tree	Building material	No
Kahu	Shorea balangeran	Dipterocarpaceae	Tree	Furniture	No
Tamang	Elaeocarpus glaber	Elaeocarpaceae	Tree	Food ingredients (fruit)	No
Karaf#	Hevea brasiliensis	Euphorbiaceae	Tree	Latex, Building material	Yes
Mahang	Macaranga trilobal	Euphorbiaceae	Tree	Building material	No
Petai	Parkia speciosa	Fabaceae	Tree	Vegetable	Yes
Tapanggang	Adenanthera pavonina	Fabaceae	Tree	Black colouring (rattan woven)	No
Rambai	Baccauranta motleyana	Hyllanthaceae	Tree	Fruits, vegetable (rind)	Yes
Tabulus (kalangkala)	Litsea angulate	Lauraceae	Tree	Ingredients	No
Putat	Barringtonia asiatica	Lecythidaceae	Tree	Ingredients (vegetables)	No
Dehuyan	Durio zibethinus	Malvaceae	Tree	Fruits, side dishes (tempuyak), timber, the root used as a medicine after childbirth	Yes
Paken	Durio katejensis	Malvaceae	Tree	Fruit	Yes
Kambasulan	Pternandra galeata	Melastomataceae	Tree	Skin medicine	No
Ruku	Lansium domesticum	Meliaceae	Tree	Fruit, side dishes, vegetable (rind)	Yes
Cempedak	Artocarpus integer	Moraceae	Tree	Fruit, side dishes, vegetable	Yes
Nangka	Artocarpus heterophyllus	Moraceae	Tree	Fruit, vegetable	Yes
Talayar	Ficus septica	Moraceae	Tree	Fodder, hemorrhoids medicine	No
Hampuak	Baccauranta bracteate	Phyllanthaceae	Tree	Building material, shoots (as vegetable)	No
Papar buhu	Antidesma coriaceae	Phyllanthaceae	Tree	Medication for delivery (root)	No
Mangkudu	Morinda citrifolia	Rubiaceae	Tree	Medication for kidney stones, high blood pressure	No
Rambutan	Nephelium lappaceum	Sapindaceae	Tree	Fruits	Yes
Kalapapa	Vitex pinnata	Verbenaceae	Tree	Blood pressure medication (shoots), wood for canoes and charcoal	No
Suli	Hedychium coronarium	Zingiberaceae	Herb	Young shoots (vegetables)	No

* See: Noor et al. 2015
Non-native, but naturalized
the use of fire for agricultural activities as before, with good village-level control within the customary rules.

Farmers expressed hope that the government could review the fire ban as a policy and allow controlled use of fire, as before. They also expect government officials to provide solutions and guidance on sustainable land management before regulations are imposed on them.

DISCUSSION

In relation to our first research question, our results confirmed a close relationship between a swidden-fallow rotation at some distance from the village, but accessible by canoe, and agroforests on the riverbank closer to the village. Livelihoods centred on the river but interacted with the edges of the peat dome. Land use practices were part of a rich local knowledge of soil and water management transferred from one generation to the next within the customary institutions. The Ngaju Dayak people living in peat landscapes (and peat hydrological units) focused on rivers, riverbanks and non-peat or shallow peat areas. In the past groups could settle anywhere along the river system that they claimed to be their homelands. They selected locations that were considered to be suitable because of soil fertility, accessibility, ease of management, peat thickness, being free from flooding, and the presence of indicator plants. This knowledge is well kept across generations. Local knowledge in recognizing soil quality with diverse indicator plants is the most important thing learned by local farmers for their agricultural success (Barrios and Trejo 2003, Lima et al. 2011, Pauli et al. 2012). The Dayak Ngaju people usually choose peaty soil (with insufficient peat depth to be classified as peat soil) or shallow peat for agricultural purposes. The land was used for many years and as a result it contains no peat anymore. Locally this is known as mature peat. However, the definition of mature peat by the Ngaju Dayak tribe is quite different from the one commonly used by researchers. Agus and Subiksa (2008) from the Indonesian Soil Research Institute, for instance, defined mature peat as weathered peat, with its original material unrecognizable, and a colour ranging from dark brown to black, with a fibre content less than 15% when squeezed. A similar definition is used by Agus et al. (2011) with the addition of fibre content of less than one-third of all amounts when kneaded. The farmers use an agricultural viewpoint while defining peatland. They always choose land with thin peat layers and prefer soils that contain a layer of clay so that after undergoing soil processing, when the peat will be exhausted, it is still fertile. Farmers believe that mature peat is the best soil phase for agriculture. On the other hand, the researchers differentiate peat maturity based on the weathering process of original material. This indicates that farmers only utilize peaty land, not peatlands. Farmers perpetually consider soil fertility, ease of land management, as well as operational costs. Hence, they have indirectly protected the peat ecosystem, although, due to increased economic pressure, farmers have begun to cultivate peat with a maximum thickness of 50 cm.

Regarding our second question, land use was closely associated with ethnobotanical knowledge of plants as indicators of land quality beyond their roles in livelihoods. While new market-oriented horticulture activities, such as growing watermelon close to the main access road, have become part of the land use system, the adoption of short-cycle tree plantations (sengon) cannot yet be evaluated. The traditional fruits from the agroforests still provide a safety-net. The results obtained in our study villages on the first two questions thus confirmed that most of the traditional human presence in the peat landscapes (and peat hydrological units) has been focussed on the rivers, riverbanks and its non-peat or shallow peat soils. Our results align with the view that when land use for agricultural activities in Kalimantan is to be reconciled with restoration of peat domes (Fuge et al. 2009), a livelihoods perspective is needed, rather than a focus on the peat soils per se.

Our findings on the consequences of the ‘fire ban’ of 2015, the third research question, indicated that it affected existing land use practices and food production by the local communities, and also had implications for local culture and agricultural traditions that could no longer be followed. The existing government programs that were supposed to ease the transition to new ways of farming did not work for the villages where we did the interviews. Temporary off-farm jobs offered by the peatland restoration agency provided some relief, but beyond that migration to the urban areas seemed to be the most attractive alternative option. Such responses call for a further reconsideration of the prevailing policies, as social consequences may not have been fully weighed when the policy was designed. The government support for mechanized ‘modern’ styles of rice farming did not make this option in the local circumstances.

Forest and land fires in Indonesia in 2015 in Sumatra and Central Kalimantan followed earlier episodes in 1991, 1994 and 1997 that put Indonesia at the receiving end of international criticism (Field et al. 2016). The current Indonesian government approach prioritized restoration and rehabilitation of peatlands by establishing the Peat Restoration Agency (BRG – based on PP. No.1 of 2016), to accelerate the recovery of integrated functions of peat hydrology. One of the priorities of BRG activities in Central Kalimantan Province is in Pulang Pisau District, in the form of canal blocking and making bore holes (wells) to have water available to extinguish fire if needed. The aim of these activities is to restore a shallow ground water level and reduce the fire risk in remaining forests and agricultural land. Farmers expressed hope that controlled use of fire for their land clearing system using fire for swiddens can be allowed again, once the landscape has been rewetted. The important element for them is that adat customs can be maintained, including the rituals around land clearing and rice planting, but changing the farming pattern challenges those aspects. There are many benefits from slash and burn land clearing methods, as it is fast and practical, and, most importantly, it reinforces the sense of community through traditional ceremonies. The knowledge and norms of behaviour that prevented swidden fires from escaping may get lost from the local knowledge if it is no longer practised.
As elsewhere, land management in the study area is influenced by socio-economic factors (Takele et al. 2015, Handayu et al. 2019). Changes in cropping patterns are adjusted to farmers’ needs, policies, markets and environmental concerns (El Benni et al. 2012, Suprayogo 2017). Shifting cultivation in the tropics, generally has had to convert to swidden rotations with a short fallow period. The efforts of Ngaju Dayak farmers to maintain their agricultural land in the form of agroforest has worked for at least 150 years. They manage ‘internal rejuvenation’ and gap-level interplanting form of agroforest has worked for at least 150 years. They manage ‘internal rejuvenation’ and gap-level interplanting or sisipan management (Joshi et al. 2003), avoiding field clearing and replant as is common in tree crop monocultures. These land use practices need to be better understood as part of the peat ecosystem restoration program. The interaction of farmers with peatland over a long time, has provided local knowledge to find indicators of land selection and types of plants species. The success of peatland management is strongly dependent on the skills of farmers and local knowledge. The location of this research along the Kahayan river is close to the Banjarmasin – Palangka Raya road that forms one of the gateways to change. This change has proved to be a threat of damage to the peat ecosystem, with the economic wheels of supposed progress in Pulang Pisau District blocked by the public health disaster of the smoke and haze episodes in years with a long dry season when drained peat is vulnerable to fire risk. For this reason, changes in socio-economic conditions of farmers need to be given attention from the local government, especially when the temporary job opportunities for canal blocking and rewetting provided by BRG are coming to an end. The villagers repeatedly asked us to convey this message to the outside world.

ACKNOWLEDGEMENTS

This research was supported by the Indonesian Ministry of Research, Technology and Higher Education. Our deep gratitude to the people in Pilang, Sakakajang, Henda, Gohong and Anjir Pulang Pisau villages, especially to the Lambung and Dillin family who hosted and facilitated the senior author during her fieldwork. Kitso Kusin from Cimtrop (Center for International Co-Operation in Sustainable Management of Tropical Peatland) helped to process this research. Dr. Maswar and Pordamanta assisted in the research survey activities. Endri Martini and Subekti Rahayu commented on an earlier draft of the manuscript; we thank anonymous reviewers for further suggestions.

We thank the IFR editors, Alexandre Meybeck and Liliana Bravo for help with the French and Spanish titles and abstracts.

REFERENCES

ARDHIAN, D., ADIWIBOWO, S., and WAHYUNI, E.S. 2016. Peran dan Strategi Organisasi Non Pemerintah dalam Arena Politik Lingkungan Hidup. Jurnal Sosiologi Pedesaan 4(3): 210–216.

AGUS, F., and SUBIKSA, I.M. 2008. Lahan Gambut: Potensi untuk pertanian dan aspek lingkungan. Balai Penelitian Tanah dan World Agroforestry Centre (ICRAF), Bogor.

AGUS, F., HAIRIAH, K., and MULYANI, A. 2011. Pengukuran cadangan karbon tanah gambut. Petunjuk Praktik. World Agroforestry Centre-(ICRAF), SEA Regional Office and Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian (BSDLP). Bogor. Indonesia.

ASEAN SECRETARIAT. 2013. Asean peatland management strategy 2006–2020. ASEAN secretariat, Jakarta, Indonesia.

BADAN PUSAT STATISTIK (BPS). 2018a. Kecamatan Jabiren Raya dalam Angka.

BADAN PUSAT STATISTIK (BPS). 2018b. Kecamatan Kahayan Hilir dalam Angka.

BARRIOS, E., COUTINHO, H.L., and MEDEIROS, C.A. 2012. InPaC-S: participatory knowledge integration on indicators of soil quality: methodological guide. World Agroforestry Centre (ICRAF), Nairobi, Kenya.

BRG (BADAN RESTORASI GAMBUT). 2018. Profil Desa Peduli Gambut: Desa Henda Kecamatan Jabiren Raya Kabupaten Pulang Pisau Provinsi Kalimantan Tengah. BRG, Jakarta, Indonesia.

CLOUGH, Y., KRISHNA, V.V., CORRE, M.D., DARRAS, K., DENMEAD, L.H., MEIJIDE, A., and SCHEU, S. 2016. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nature Communications 7: 13137.

CRUMB, R.A., PIERCE COLFER, C.J., DRESSLER, W.L., LAUNGARAMSRI, P., LE, Q.T., MULYOUTAMI, E., and WADLEY, R.L. 2009. Swidden transformations and rural livelihoods in southeast Asia. Human Ecology 37(3): 323–346.

DE FORESTA, H., A. KUSWORO., G. MICHON and W.A. DJATMIKO. 2000. Ketika Kebun Berupa Hutan: Agroforest Khas Indonesia Sebuah Sumbangan Masyarakat Indonesia. International Centre for Research in Agroforestry (ICRAF), Bogor, Indonesia.

DOVE, M. 2011. The Banana Tree at the Gate. A History of Marginal Peoples and Global Markets in Borneo. Human Ecology 40(1): 165–166.

DRESSLER, W.H., WILSON, D., CLENDENNING, J., CRAMB, R., KEENAN, R., MAHANTY, S., BRUUN, T.B, MERTZ, O. and LASCO, R.D. 2017. The impact of swidden decline on livelihoods and ecosystem services in Southeast Asia: A review of the evidence from 1990 to 2015. Ambio 46(3): 291–310.

EL BENNI, N., FINGER, R., and MANN, S. 2012. Effects of agricultural policy reforms and farm characteristics on income risk in Swiss agriculture. Agricultural Finance Review 72(3): 301–324.

FAY, C., and MICHON, G. 2005. Redressing forestry hegemony when a forestry regulatory framework is best replaced by an agrarian one. Forests, Trees and Livelihoods 15(2): 193–209.

FAY, C., and SIRAIT, M. 2005. Kerangka hukum negara dalam mengatur agraria dan kehutanan Indonesia: Mempertanyakan sistem gawai kewenangan atas penguasaan tanah. International Centre for Research in Agroforestry (ICRAF). Bogor, Indonesia.
FOX, J., FUJITA, Y., NGIDANG, D., PELUSO, N., POTTER, L., SAKUNTALADEWI, N., and THOMAS, D. 2009. Policies, political-economy, and Swidden in southeast asia. *Human Ecology* **37**(3): 305–322.

FIELD, R.D., VAN DER WERF, G.R., FANIN, T., FETZER, E.J., FULLER, R., JETHVA, H., and WORDEN, H.M. 2016. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. *Proceedings of the National Academy of Sciences* **113**(33): 9204–9209.

GALUDRA, G., VAN NOORDWIJK, M., SUYANTO, S., SARDI, I., PRADHAN, U., and CATAUCUTAN, D. 2011. Hot spots of confusion: Contested policies and competing carbon claims in the peatlands of central Kalimantan, Indonesia. *International Forestry Review* **13**(4): 431–441.

HAIRIAH, K., UTAMI, S.R., SUPRAYOGO, D., SUNARYO, SITOMPUL, S.M., LUSIANA, B., MULIA, R., VAN NOORDWIJK, M., and CADISCH, G. 2000. Pengelolaan Tanah Masam secara Biologi. Refleksi Pengalaman dari Lampung Utara. International Centre for Research in agroforestry (ICRAF), Bogor, Indonesia.

HARIYADI, B., and TICKTN, T. 2012. From shifting cultivation to Cinnamon agroforestry: changing agricultural practices among the Serampas in the Kerinci Seblat National Park, Indonesia. *Human Ecology* **40**(2): 315–325.

HUOTARI, N., TILLMAN-SUTELA, E., MOILANEN, M., and LAIHO, R. 2015. Recycling of ash – For the good of society and the environment? *Forest Ecology and Management* **348**: 226–240. https://doi.org/10.1016/j.foreco.2015.03.008

JEWITT, S.L., NASIR, D., PAGE, S.E., RIELEY, J.O., and KHANAL, K. 2014. Indonesia’s contested domains. Deforestation, rehabilitation and conservation-with-development in Central Kalimantan’s tropical peatlands. *International Forestry Review* **16**(4): 405–420.

JOSHI, L., WIBAWA, G., BEUKEMA, H.J., WILLIAMS, S.E., and VAN NOORDWIJK, M. 2003. Technological change and biodiversity in the rubber agroecosystem. pp 133–157, in: VANDERMEER, J. (Eds.) *Tropical Agroecosystems: New Directions for Research*. CRC Press, Boca Raton (Florida, USA).

KETTERINGS, Q.M., VAN NOORDWIJK, M., and BIGHAM, J.R. 2002. Soil phosphorus availability after slash-and-burn fires of different intensities in rubber agroforests in Sumatra, Indonesia. *Agriculture, Ecosystems and Environment* **92**(1): 37–48.

LAW, E.A., BRYAN, B.A., MEIJAARD, E., MALLAWAARACHCHI, T., STRUEBIG, M., and WILSON, K.A. 2015a. Ecosystem services from a degraded peatland of Central Kalimantan: Implications for policy, planning, and management. *Ecological Applications* **25**(1): 70–87.

LAW, E.A., MEIJAARD, E., BRYAN, B.A., MALLAWAARACHCHI, T., KOH, L.P. and WILSON, K.A. 2015b. Better land-use allocation outperforms land sparing and land sharing approaches to conservation in Central Kalimantan, Indonesia. *Biological conservation* **186**: 276–286.

LESTARI (USAID). 2016. Kajian Cepat Hidrologi Gambut. Kesatuan Hidrologis Gambut #14 Blok C Eks-PLG. USAID, Jakarta.

LI, P., FENG, Z., JIANG, L., LIAO, C., and ZHANG, J. 2014. A review of swidden agriculture in Southeast Asia. *Remote Sensing* **6**(2): 1654–1683.

LIMA, A.C.R., HOOGMOED, W.B., BRUSSAARD, L., and DOS ANJOS, F.S. 2011. Farmers’ assessment of soil quality in rice production systems. *NJAS-Wageningen Journal of Life Sciences* **58**(1–2): 31–38.

LOHBERGER, S., STÄNGEL, M., ATWOOD, E.C., and SIEGERT, F. 2018. Spatial evaluation of Indonesia’s 2015 fire-affected area and estimated carbon emissions using Sentinel-1. *Global Change Biology* **24**(2): 644–654.

MAINKA, S.A., MCNEELY, J.A., and JACKSON, W.J. 2008. Depending on nature: Ecosystem services for human livelihoods. *Environment* **50**(2): 42–55.

MEDRILZAM, M., DARGUSCH, P., HERBOHN, J., and SMITH, C. 2014. The socio-ecological drivers of forest degradation in part of the tropical peatlands of Central Kalimantan, Indonesia. *Forestry* **87**(2): 335–345.

MEDRILZAM, M., SMITH, C., AZIZ, A.A., HERBOHN, J., and DARGUSCH, P. 2017. Smallholder Farmers and the Dynamics of Degradation of Peatland Ecosystems in Central Kalimantan, Indonesia. *Ecological Economics* **136**(C): 101–113.

MICHON, G., DE FORESTA, H., LEVANG, P., and VERDEAUX, F. 2007. Domestic forests: a new paradigm for integrating local communities’ forestry into tropical forest science. *Ecology and Society* **12**(2).

MILES, M.B., HUBERMAN, A.M., and SALDAÑA, J. 2014. Qualitative data analysis: A methods sourcebook. 3rd.

MIZUNO, K., MUGNIESYAH, S.S., HERIANTO, A.S., and TSUJI, H. 2013. Talun-huma, swidden agriculture, and rural economy in West Java, Indonesia. *Southeast Asian Studies* **2**(2): 351–381.

MUNSELL COLOR COMPANY. 1994. Munsell soil color charts. Baltimore, USA.

NOOR, A., NINGSIH, R.D., HASBIANTO, A., and SABUR, A. 2015. Sebaran dan keragaman plasma nutfah mangga di Kalimantan Selatan. *Prosiding Seminar Nasional Sumber Daya Genetik Pertanian* 208–218.

PAGE, S.E., and HOOIJER, A. 2016. In the line of fire: the peatlands of Southeast Asia. *Philosophical Transactions of the Royal Society B: Biological Sciences* **371**(1696): 20150176.

PAGE, S., HOSCILO, A., WÖSTEN, H., JAUHIAINEN, J., SILVIUS, M., RIELEY, J., and LIMIN, S. 2009. Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. *Ecosystems* **12**(6): 888–905.

PAULI, N., BARRIOS, E., CONACHER, A.J., and OBERTHÜR, T. 2012. Farmer knowledge of the relationships among soil macrofauna, soil quality and tree species in a smallholder agroforestry system of western Honduras. *Geoderma* **189**: 186–198.

PEMERINTAH KABUPATEN PULANG PISAU. 2015. Strategi Pertumbuhan Ekonomi Hijau. Pulang Pisau. Kalimantan Tengah.
ROBERTSON, E., O’GRADY, Á., BARTON, J., GALLOWAY, S., EMMANUEL-YUSUF, D., LEACH, M., and FOXON, T. 2017. Reconciling qualitative storylines and quantitative descriptions: An iterative approach. Technological Forecasting and Social Change 118: 293–306.

RODENBURG, J., STEIN, A., VAN NOORDWIJK, M., and KETTERINGS, Q.M. 2003. Spatial variability of soil pH and phosphorus in relation to soil run-off following slash-and-burn land clearing in Sumatra, Indonesia. Soil and Tillage Research 71(1): 1–14.

SCHÜLER, S., and NOACK, E.M. 2019. Does the CAP reflect the population’s concerns about agricultural landscapes? A qualitative study in Lower Saxony, Germany. Land use policy. The International Journal Covering All Aspects of Land Use 83: 240–255.

SUPRAYOGO, D., WIDIANTO., KURNIATUN HAIRIAH and ISTIKA NITA. 2017. Manajemen Daerah Aliran Sungai: Tinjauan Hidrologi Akibat Perubahan Tutupan Lahan Dalam Pembangunan. UB press. Malang. Indonesia.

TAKELE, L., CHIMDI, A., and ABEBAW, A. 2015. Socio-economic Factors Affecting Soil Fertility Management Practices in Gindeberet Area, Western Ethiopia. Science, Technology and Arts Research Journal 4(1): 149–153.

TATA, H.L. 2019. Mixed farming systems on peatlands in Jambi and Central Kalimantan provinces, Indonesia: should they be described as paludiculture? Mires & Peat 25: 8.

UDA, S.K., HEIN, L., and SUMARGA, E. 2017. Towards sustainable management of Indonesian tropical peatlands. Wetlands Ecology and Management 25(6): 683–701.

VAN NOORDWIJK, M., MULYOUTAMI, E., SAKUNTA-LADEWI, N., and AGUS, F. 2008a. Swiddens in transition: shifted perceptions on shifting cultivators in Indonesia. ICRAF, Bogor.

VAN NOORDWIJK, M., SUYAMTO, D.A., LUSIANA, B., EKADINATA, A., and HAIRIAH, K. 2008b. Facilitating agroforestation of landscapes for sustainable benefits: Tradeoffs between carbon stocks and local development benefits in Indonesia according to the FALLOW model. Agriculture, Ecosystems and Environment 126(1–2): 98–112.

VAN NOORDWIJK, M., BIZARD, V., WANGPAKAPAT-TANAWONG, P., TATA, H.L., VILLAMOR, G.B., and LEIMONA, B. 2014a. Tree cover transitions and food security in Southeast Asia. Global Food Security 3(3–4): 200–208.

VAN NOORDWIJK, M., MATTHEWS, R., AGUS, F., FARMER, J., VERCHOT, L., HERGOUALC’H, K., and DEWI, S. 2014b. Mud, muddle and models in the knowledge value-chain to action on tropical peatland conservation. Mitigation and Adaptation Strategies for Global Change 19(6): 887–905.

VAN NOORDWIJK, M., MINANG, P.A., and HAIRIAH, K. 2015. Swidden transitions, in an era of climate change. In: CAIRNS, M. (Ed.) Shifting Cultivation and Environmental Change: Indigenous People, Agriculture and Forest Conservation. Earthscan, Oxon (UK), pp 261–280.

VAN NOORDWIJK, M., DUGUMA, L.A., DEWI, S., LEIMONA, B., CATACUTAN, D.C., LUSIANA, B., and MINANG, P.A. 2019. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: reinventing agroforestry? Current Opinion in Environmental Sustainability 34: 33–42.

VAN VLIET, N., MERTZ, O., HEINIMANN, A., LANGANKE, T., PASCUAL, U., SCHMÖCK, B., and ZIEGLER, A.D. 2012. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: A global assessment. Global Environmental Change 22(2): 418–429.

WETLANDS. 2016. Can Peatland Landscapes be Drained Sustainably? An assessment of the “Ekohidro” Water Management Approach. Jakarta, Indonesia: Wetlands International; Bogor, Indonesia: Tropenbos International.

WHITMORE, T.C., TANTRA, I.G.M., and SUTISNA, U. 1990. Tree flora of Indonesia check list for Kalimantan, parts I and II. Agency for Forestry Research and Development. Bogor. Indonesia: Forest Research and Development Centre.

WIDAYATI, A., TATA, H.L., and VAN NOORDWIJK, M. 2016. Agroforestry on peatlands: combining productive and protective functions as part of restoration. Policy Brief No. 70. Agroforestry options for ASEAN series No. 4. World Agroforestry Centre (ICRAF). Bogor. Indonesia.