ORIGINAL ARTICLE

Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases

Zhen Zhou1*, Zichuan Liu2*, Qiuxiang Ou3, Xue Wu3, Xiaonan Wang4, Yang Shao3,5, Hongyan Liu6#, Yu Yang7#
1Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China; 2Section No. 2 Internal Medicine, Cancer Center of Guangzhou Medical University, Guangzhou 511436, China; 3Translational Medicine Research Institute, Geneseeq Technology Inc., Toronto M5G1L7, Canada; 4Nanjing Geneseeq Technology Inc., Nanjing 211500, China; 5School of Public Health, Nanjing Medical University, Nanjing 211166, China; 6Department of Respiratory Medicine, The Second Hospital of Anhui Medical University, Hefei 230031, China; 7Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin 150086, China

ABSTRACT

Objective: Dysfunction in fibroblast growth factor receptor (FGFR) signaling has been reported in diverse cancer types, including non-small cell lung cancer (NSCLC). The frequency of FGFR aberrations in Chinese NSCLC patients is therefore of great clinical significance.

Methods: A total of 10,966 NSCLC patients whose tumor specimen and/or circulating cell-free DNA (cfDNA) underwent hybridization capture-based next-generation sequencing were reviewed. Patients’ clinical characteristics and treatment histories were also evaluated.

Results: FGFR aberrations, including mutations, fusions, and gene amplifications, were detected in 1.9% (210/10,966) of the population. FGFR abnormalities were more frequently observed in lung squamous cell carcinomas (6.8%, 65/954) than lung adenocarcinomas (1.3%, 128/9,596). FGFR oncogenic mutations were identified in 19 patients (~0.17%), of which, 68% were male lung squamous cell carcinoma patients. Eleven out of the 19 patients (58%) had concurrent altered PI3K signaling, thus highlighting a potential combination therapeutic strategy of dual-targeting FGFR and PI3K signaling in such patients. Furthermore, FGFR fusions retaining the intact kinase domain were identified in 12 patients (0.11%), including 9 FGFR3-TACC3, 1 FGFR2-INA, 1 novel FGFR4-RAPGEFL1, and 1 novel fusion between the FGFR1 and SLC20A2 5′-untranslated regions, which may have caused FGFR1 overexpressions. Concomitant EGFR mutations or amplifications were observed in 6 patients, and 4 patients received anti-EGFR inhibitors, in whom FGFR fusions may have mediated resistance to anti-EGFR therapies. FGFR amplification was detected in 24 patients, with the majority being FGFR1 amplifications. Importantly, FGFR oncogenic mutations, fusions, and gene amplifications were almost always mutually exclusive events.

Conclusions: We report the prevalence of FGFR anomalies in a large NSCLC population, including mutations, gene amplifications, and novel FGFR fusions.

KEYWORDS

FGFR; oncogenic mutation; fusion; gene amplification; targeted therapy

Introduction

The fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) signaling pathway plays important roles in a variety of biological processes, including development, differentiation, cell proliferation, migration, angiogenesis, and carcinogenesis via several intracellular pathways, including the Ras/Raf/MEK and the phosphatidylinositol 3-kinase (PI3K)-AKT pathways. The FGF family contains 22 members, which are
usually divided into 7 subfamilies according to their sequence similarities, biochemical functions, and evolutionary relationships. All 4 FGFRs, including FGFR1, FGFR2, FGFR3, and FGFR4 are structurally homologous to vascular endothelial growth factor receptors (VEGFRs), platelet-derived growth factor receptor (PDGFR), and other tyrosine kinase receptors, and represent therapeutic targets of great potential.

Previous studies have shown that FGFR2/3 gene alterations, including FGFR3 activating mutations that affect either the extracellular (R248C and S249C) or transmembrane (G370C, S371C, Y373C, and G380R) domains of the protein, and gene fusions such as FGFR3-TACC3, are common in patients with urothelial carcinoma and cause constitutively activated FGF signaling, resulting in carcinogenesis. Multiple FGFR inhibitors, including erdafitinib6,7 have shown antitumor activities in preclinical models and in early phase clinical trials involving patients with FGFR alterations. A recent study by Loriot et al.8 reported that the use of erdafitinib was associated with an objective tumor response in 40% of previously treated patients who had locally advanced and unresectable or metastatic FGFR alteration-positive urothelial carcinomas. Such findings were superior to prior observations of an objective response rate of approximately 10% using second-line, single agent chemotherapy in an advanced urothelial carcinoma population9-11.

Activation of FGF signaling has also been described in lung cancer, including non-small cell lung cancer (NSCLC). As previously described, the incidence of FGFR alterations, particularly FGFR1 amplification, was higher in squamous cell carcinoma (SCC) of the lung than in adenocarcinoma. Moreover, FGFR2 mutations were also reported in NSCLC patients, including the extracellular domain mutations, W290C and S320C, and the kinase domain mutation, K660E/N. In this study, we investigated the landscape of FGFR aberrations in a large Chinese NSCLC population by comprehensive genomic profiling using next-generation sequencing (NGS), to identify potential therapeutic options for FGFR-mutated NSCLC patients.

Materials and methods

Patients

A total of 15,150 consecutive clinical lung cancer patients were analyzed using comprehensive genomic profiling targeting 400+ cancer-relevant genes, including all the exons of FGFR genes (FGFR1-4), as well as flanking intronic regions, and other introns selected by a Clinical Laboratory Improvement Amendments-certified, and College of American Pathologists-accredited laboratory (Nanjing Geneseeq Technology, Jiangsu, China), as previously described14. We identified patients with FGFR alterations using a natural language search tool in the laboratory information management system database. Relevant demographic and clinical data were extracted from the database, including age, gender, date of diagnosis, histology, pathological stage, and evaluation of treatment response based on reports by clinical investigators.

For tumor tissue samples, the pathological diagnosis and tumor content of each case was confirmed by pathologists. Peripheral blood (8–10 mL) was collected in EDTA-coated tubes (BD Biosciences, San Jose, CA, USA) and centrifuged at 1,800 × g for 10 min within 2 h of collection to isolate the plasma for circulating tumor DNA (ctDNA) extraction, and white blood cells for genomic DNA extraction as the germline control.

DNA extraction and targeted enrichment

The ctDNA from plasma was purified using a Circulating Nucleic Acid Kit (Qiagen, Hilden, Germany) following the manufacturer’s protocol. Genomic DNA from white blood cells was extracted using the DNeasy Blood and Tissue Kit (Qiagen), while genomic DNA from formalin-fixed paraffin-embedded (FFPE) samples was purified using the QIAamp DNA FFPE Tissue Kit (Qiagen). All DNA was quantified using the dsDNA HS Assay Kit using a Qubit Fluorometer (Life Technologies, Carlsbad, CA, USA). Sequencing libraries were prepared using the KAPA Hyper Prep Kit (Roche, Basel, Switzerland), as described previously14. Indexed DNA libraries were pooled for probe-based hybridization capture of the targeted gene regions covering over 400 cancer-related genes for all solid tumors; all of which contained all exons of FGFR genes and selected introns for the detection of FGFR fusions.

Sequencing data processing

Sequencing was performed using the Illumina HiSeq4000 platform (Illumina, San Diego, CA, USA), followed by data analysis as previously described15. In brief, sequencing data were analyzed by Trimmomatic16 to remove low quality (quality < 15) or n bases, and were then mapped to the human reference genome, hg19, using the Burrows-Wheeler Aligner.
were identified by FACTERA18. Based on a normal pool of whole blood samples. Gene fusions was further filtered using an in-house list of recurrent artifacts (ExAC) 65,000 exome database. The resulting mutation list Genomes Project or the Exome Aggregation Consortium they were present in > 1% population frequency in the 1,000 Genomes Project or the Exome Aggregation Consortium (ExAC) 65,000 exome database. The resulting mutation list was further filtered using an in-house list of recurrent artifacts based on a normal pool of whole blood samples. Gene fusions were identified by FACTERA18.

Ethical approval

The study was approved by the Ethics Committee of Guangdong General Hospital, China (Approval No. GDREC2016262H). Shanghai Chest Hospital served as one of the hospitals participating in the research project. The study was conducted in accordance with the tenets of the Declaration of Helsinki, and written informed consent was collected from each patient prior to sample collection.

Results

The incidence of FGFR aberrations in NSCLC patients

From December 2016 to February 2019, a total of 15,150 individual clinical lung cancers were successfully evaluated by comprehensive genomic profiling using hybrid capture-based NGS. This work was based on the validated dataset for a total of 10,966 patients in our database system. Lung cancer tumor samples and liquid biopsies, if applicable, were compared to matched normal whole blood controls. A total of 87% of NSCLC samples examined were lung adenocarcinomas [lung adenocarcinoma (LUAC), n = 9,596], 9% were lung squamous cell carcinoma (LUSC, n = 954), and the remainder (4%) were of either mixed adenocarcinomas and squamous cell carcinomas or were missing sub-histological information in the database. Approximately 40% of the entire study population had only liquid biopsy specimens for genetic testing. A total of 210 patients (1.9%, 210/10,966) were identified with somatic aberrations of FGFRs (FGFR1–4), including mutations, gene rearrangements, and gene amplifications (Figure 1A). Fifty-one patients (roughly 24%) had liquid biopsy samples including only plasma and pleural effusion samples. The median age of the cohort was 62 years of age (range: 34–84 years of age). Approximately 72% (152/210) of the patients were male. Approximately 61% of FGFR-positive patients were LUAC (n = 128), 31% were LUSC (n = 65), and the remaining 7 cases were of either mixed or unknown histology. Thus, FGFR alterations were more frequent in LUSC patients (6.8%, 65/954) than in LUAC patients (1.3%, 128/9,596). The majority of the FGFR aberrations were gene mutations (75%) with gene amplification and gene rearrangements being observed in similar frequencies (10% and 15%, respectively) (Figure 1A). FGFR1 alterations were slightly more abundant than alterations in FGFR2–4 (Figure 1B). Notably, we observed more amplification events in FGFR1 than in other FGFRs, and over 90% of FGFR4 alterations were mutations (Figure 1C).

Enrichment of the activated PI3K pathway in the FGFR mutant cohort

We identified a total of 187 patients with somatic point mutations and indels in FGFRs. The most frequent amino acid replacements across all FGFRs were FGFR3 S249C and R248C (Supplementary Figure S1). In particular, 19 patients representing ~0.17% (19/10,966) of the NSCLC population were identified with FGFR1–4 oncogenic or likely oncogenic mutations according to the OncoKB database19 (Figure 1D, Table 1, and Supplementary Table S1). The majority of these patients (68%, 13/19) had lung squamous cell carcinoma, and two-thirds were male. Intriguingly, more than half of the 19 patients (58%, 11/19) had co-occurring PIK3CA aberrations, including PIK3CA E545K (n = 3), E453K (n = 1), H1049R (n = 1), A1035T (n = 1), PIK3CA amplifications (n = 4), and PIK3R2 G373R (n = 1) mutations. One patient had a concurrent activating EGFR ex19del, 4 patients had KRAS G12D/V or Q61L mutations, and the remaining 6 patients had no other known driver mutations (Table 1). A majority of the 19 patients with FGFR1–4 oncogenic mutations (68%, 13/19) were systemic treatment-naïve, with the exception that 1 patient progressed on multiple lines of EGFR tyrosine kinase inhibitors 9TKIs0, including gefitinib, osimertinib, and afatinib, and 5 patients either received multiple lines of chemotherapy or
chemotherapy in combination with radiotherapy or VEGFR antibody therapy (Table 1). Notably, the patient (P2) who received multiple EGFR TKIs likely acquired FGFR3 R248C and/or G380R to overcome the anti-tumor activity of TKIs, including osimertinib and afatinib, although pretreatment samples were unfortunately not available (Table 1).

The identification of novel FGFR fusions in NSCLC patients

FGFR fusions retaining the intact kinase domain were identified in 0.11% (12/10,966) of NSCLC patients examined (Figure 1D and Table 2). A majority of these patients (75%,
Table 1 The demographical and clinicopathological characteristics of patients who had FGFR oncogenic mutations

ID	Subtype	Gender	Age	Stage	Treatment history	Gene	AAChange	AF	Concurrent alteration	AF_concurrent alt	CNV	Sample type
P1	LUSC	M	56	NA	Chemo, radiotherapy	FGFR3	c.746C>G(p.S249C)	2.51%	–	–	–	Plasma
P2	LUAC	F	52	IV	Gefitinib (21 m), chemo plus VEGFR ab (4 m), osimertinib (5 m), afatinib (5 m)	FGFR3	c.742C>T(p.R248C), c.1138G>A(p.G380R)	5.52%, 4.94%	FGFR c.2240_2257delTAAGAAGAAGCAACATCTC (p.L747_F753delinsS), EGFR T790M	4.3%, 1.3%	–	Plasma (post gefitinib)
P3	LUSC	F	66	NA	Surgery	FGFR3	c.746C>G(p.S249C)	31.64%	–	–	–	FFPE
P4	LUSC	M	67	NA	Chemo	FGFR3	c.746C>G(p.S249C)	33.33%	PTEN p.K147Rfs*6, PIK3CA amplification	50%	1.7	FFPE
P5	LUSC	M	66	IV	Treatment-naive	FGFR3	c.746C>G(p.S249C)	36.85%	PIK3CA amplification	–	2.08	FFPE
P6	LUAC	M	74	IV	Treatment-naive	FGFR3	c.746C>G(p.S249C)	0.86%	PIK3R2 c.1117G>A(p.G373R)	2.35%	–	FFPE
P7	LUSC	F	67	NA	Treatment-naive	FGFR3	c.746C>G(p.S249C)	17.34%	PIK3CA c.1633G>A(p.E545K), c.2176G>A (p.E726K)	17.84%, 19.76%	–	FFPE
P8	LUSC	F	50	NA	Treatment-naive	FGFR3	c.742C>T(p.R248C)	0.67%	–	–	–	FFPE
P9	LUSC	M	77	NA	Treatment-naive	FGFR3	c.742C>T(p.R248C)	44.29%	–	–	–	FFPE
P10	LUAC	M	78	IV	Chemo, VEGFR antibody	FGFR3	c.742C>T(p.R248C)	0.62%	KRAS c.35G>A(p.G12D), HRAS c.38G>T (p.G13V), PIK3CA amplification	0.7%, 38.11%	1.9	FFPE
P11	LUAC	M	57	NA	Surgery	FGFR3	c.746C>G(p.S249C)	1.42%	KRAS c.35G>A(p.G12D), PIK3CA c.3103G>A(p.A1035T)	2.67%, 1.67%	–	FFPE
P12	LUSC	F	59	NA	Treatment-naive	FGFR3	c.1138G>A(p.G380R)	8.52%	–	–	–	Plasma
P13	LUSC	M	55	NA	Treatment-naive	FGFR3	c.746C>G(p.S249C)	15.18%	PIK3CA c.1633G>A(p.E545K)	18.82%	–	FFPE
P14	LUSC	M	61	NA	Treatment-naive	FGFR3	c.1118A>G(p.Y373C)	87.37%	PIK3CA c.1633G>A(p.E545K)	46.84%	–	FFPE
P55	LUSC	M	65	NA	Chemo	FGFR2	c.1975A>G(p.K659E)	78.90%	PIK3CA amplification	–	3.63	FFPE
P56	LUSC	M	71	IV	Treatment-naive	FGFR2	c.1977G>C(p.K659N)	2.86%	–	–	–	FFPE
P57	LUSC	M	74	NA	Treatment-naive	FGFR2	c.1977G>C(p.K659N)	34.39%	PIK3CA c.3145G>C(p.G1049R)	21.98%	–	Plasma
P58	LUAC	F	64	NA	Chemo	FGFR2	c.868T>C(p.W290R)	17.12%	KRAS c.35G>T(p.G12V)	19.49%	–	FFPE
P59	LUAC	F	78	NA	Treatment-naive	FGFR1	c.1638C>A(p.N546K)	3.15%	NRAS c.35G>A(p.G12D), NRAS c.182A>T (p.Q61L), PIK3CA c.2702G>T(p.C901F), c.323G>A (p.R108H), c.1357G>A (p.E453K), PTEN p.Y16X	0.385%, 1.22%, 1.7%, 0.54%, 2.06%, 4.05%	–	FFPE

LUAC, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TKI, tyrosine kinase inhibitor; PFS, progression-free survival; NA, not available; AF, allele frequency; CNV, copy number variation.
Table 2 The demographical and clinicopathological characteristics of patients who carried FGFR fusions encoding intact kinase domains

ID	Subtype	Gender	Age	Stage	Treatment history	Gene Fusion	AF	Concurrent alteration	AF_concurrent alt	CNV	Pre-treatment concurrent alt	Sample type
P15	LUAC	M	44	IV	Treatment-naive	FGFR1	3.44%	-	-	-	-	Plasma
P16	LUAC	F	65	IV	Osimertinib	FGFR2	16.07%	EGFR p.746,750del, EGFR T790M, EGFR C797S	6.35%, 1.53%	-	EGFR p.746,750del, EGFR T790M	Plasma (post osimertinib)
P17	LUSC	M	54	IV	Chemo, icotinib	FGFR3	1.70%	EGFR p.746,750del, EGFR T790M, EGFR amplification	4.8%, 0.2%	1.82	EGFR p.746,750del	Plasma (post osimertinib)
P18	LUSC	M	57	II/III	Treatment-naive	FGFR3	26.72%	-	-	-	-	FFPE
P19	LUAC	F	40	IV	Treatment-naive	FGFR3	2.28%	-	-	-	-	Plasma
P20	LUSC	M	68	IV	Treatment-naive	FGFR3	23.81%	EGFR T790M	0.43%	-	-	FFPE
P21	LUAC	F	34	III	Gefitinib	FGFR3	1.17%	EGFR p.E746_A750del	6.52%	-	-	Plasma (post osimertinib)
P22	LUAC	M	44	IV	Chemo, erlotinib	FGFR3	30.30%	EGFR p.L747_P753delinsS, EGFR T790M, PIK3CA H1047R, EGFR amplification	80.5%, 2.83%, 3.3	-	-	Plasma (post erlotinib)
P23	LUAC	M	38	IV	Treatment-naive	FGFR3	2.74%	-	-	-	-	Plasma & Tissue
P24	LUSC	F	58	III	Surgery	FGFR3	7.12%	-	-	-	-	FFPE
P25	LUSC	M	68	NA	Treatment-naive	FGFR3	1.38%	-	-	-	-	Plasma
P26	LUAC	F	48	IV	Treatment-naive	FGFR4	4.04%	EGFR p.L747_E749del	21.71%	-	-	FFPE

LUAC, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TKI, tyrosine kinase inhibitor; PFS, progression-free survival; NA, not available; AF, allele frequency; CNV, copy number variation.
9/12) were positive for FGFR3-transforming acidic coiled-coil containing protein 3 gene (TACC3) fusions (FGFR3-TACC3), which were mostly reported in solid tumors\(^{20}\). Four of the 9 (45%) patients with FGFR3-TACC3 fusions had 5’ breakpoints in FGFR3 exon 17 and the remaining 55% were in exon 18, while TACC3 exons 10 and 11 were the most common 3’ breakpoint locations (Figure 2A). We observed 1 case of FGFR3 exon 17 fused to TACC3 exon 14 that may have resulted in a fusion protein with compromised dimerization capacity due to a truncated coiled-coil domain (Figure 2A).

We also observed 1 gene rearrangement event involving FGFR2 and an internexin neuronal intermediate filament protein α gene (INA) fusion (FGFR2 F17: INA I2) in a patient (P16) with stage IV lung adenocarcinoma (Figure 2B). The FGFR2-INA fusion was previously reported in low grade gliomas that drove oncogenesis via MAPK and PI3K/mTOR pathway activation\(^{21}\). Our observations represented the first case of a FGFR2-INA fusion in NSCLC, in particular, lung adenocarcinoma. Furthermore, 1 gene fusion event involving fibroblast growth factor receptor 4 (FGFR4) and the Rap guanine nucleotide exchange factor like 1 gene (RAPGEFL1) (FGFR4 F17: RAPGEFL1 R4) was detected in a lung adenocarcinoma patient (P26) (Figure 2C), which has not been previously documented, and therefore further validation of its function is necessary in future research. Notably, a concurrent activating EGFR ex19del mutation was also detected at an allele frequency of 21.71% in this patient. In addition, we observed 1 patient with a 5’-untranslated region of the Solute Carrier Family 20 Member 2 gene (SLC20A2) fused to FGFR1 exon 17 (Figure 2D).

Of note, concomitant EGFR mutations or EGFR amplifications were observed in 6 of the 12 FGFR fusion patients

Figure 2 Visualization of FGFR fusions, including fusion partners, using the Integrative Genomics Viewer Browser. (A) The frequency of FGFR3-TACC3 fusions in the cohort. (B-D) The IGV screenshots display the reads from next generation sequencing and reveal FGFR fusions of (B) FGFR2-INA (F17:I2), (C) FGFR4-RAPGEFL1 (F17:R4), and (D) SLC20A2-FGFR1.
(Table 2), 4 of which were previously treated with EGFR TKIs, but the disease had progressed prior to NGS tests. Although half the patients (n = 2) did not have pretreatment samples, the remaining 2 patients (P16 and P17) likely acquired FGFR fusions as alternative mechanisms to combat the anti-tumor activity of EGFR TKIs (Table 2). Furthermore, a concurrent PIK3CA H1047R mutation was observed in 1 patient (P22) and may also have acted as a mechanism of acquired resistance to prior therapies including TKIs (Table 2). No other known dominant driver mutations were detected in the remaining 6 patients (Table 2).

Amplification of the FGF19 and FGFR genes in NSCLC patients

As previously mentioned, we observed more amplification events in FGFR1 than other FGFRs (Figure 1B). FGFR amplification was detected in a total of 24 patients, a majority of which (87.5%, 21/24) were FGFR1 amplifications (Figure 1D). Similarly, the majority of FGFR-amplified patients (67%) were LUSC and 92% were male (Table 3). Notably, 25 patients (12%, 25/210) had multiple alterations in FGFR genes, but oncogenic FGFR mutations, fusions, or gene amplifications were almost mutually exclusive events, with the exception that 4 FGFR3-mutant patients had concurrent FGFR1 amplifications (Figure 1D). Two patients had concurrent EGFR activating mutations and received prior EGFR-TKI treatments. However, no pretreatment samples were available for mutation profiling for these patients. The remaining patients (92%, 22/24) had no other dominant driver mutations and were either chemotherapy-refractory or treatment naïve (Table 3).

We also identified 9 patients (0.08%, 9/10,966) who had amplifications of FGF19 (Figure 1D), which encodes a unique, high affinity ligand that specifically binds to FGFR4 in a heparin-dependent manner. Our observations were consistent with previous studies reporting on the role of the FGF19-FGFR4 signaling axis in human cancers, including hepatocellular carcinoma22 and lung squamous cell carcinoma23. Two patients had concomitant aberrations of the PI3K signaling pathway, including PIK3CA amplification and the PIK3R2 G373R missense mutation (Table 3). All patients were either chemotherapy-refractory or treatment naïve.

Discussion

This study represented the first comprehensive survey of FGFR aberrations in a large population of Chinese patients with NSCLC. Approximately 1.9% of the population had FGFR aberrations, including point mutations, gene rearrangements, and amplifications, with the most common abnormality being FGFR point mutations. The prevalence of FGFR alterations in this Chinese NSCLC population was relatively lower than that of a prior study (5.7%), as reported by Helsten et al.24 in which the study population was unlikely to be only Chinese. Currently, there are a number of FGFR inhibitors approved by the Federal Drug Administration (FDA), including ponatinib, regorafenib, pazopanib, lenvatinib, and nintedanib, which were included in a trial specifically targeting NSCLC patients25. All these FGFR inhibitors are multi-kinase inhibitors that also exhibit nonspecific anti-tumor activities against other tyrosine kinases, including VEGFR, PDGFR, ROS1, and/or RET. However, there are also specific FGFR inhibitors in clinical development. Notably, erdafitinib, a functionally selective pan-FGFR inhibitor, has been approved by the FDA to treat advanced metastatic urothelial cancers6,8. Different FGFR abnormalities responded differently to erdafitinib, with the highest response rate seen for patients with FGFR point mutations8. Another selective FGFR inhibitor, pemigatinib, was also recently granted accelerated approval for treatment of late stage FGFR2+ cholangiocarcinoma patients26. It is definitely of great clinical interest to study these FGFR inhibitors in NSCLC patients, so future trials may be warranted.

Unlike lung adenocarcinomas, no targeted molecular therapies have been developed for squamous cell lung cancers because targetable oncogenic aberrations are scarce in this tumor type. Here, we report that FGFR aberrations were present in approximately 6.8% of the LUSC cohort of this study, which was higher than the frequency (1.3%) in LUAC patients. Notably, over 75% of FGFR1 amplification events were observed in LUSC patients, which is consistent with previous findings24,27. More than half of the patients who carried FGFR activating/transforming mutations had concurrent dominant mutations in PI3K pathway genes, including PIK3CA and PIK3R2, consistent with previous reports28-30. Furthermore, we reported the overlapping of activated FGFR genes and genetic alterations of the PI3K pathway in NSCLC, including both LUAC and LUSC. A prior study by Packer et al.31 revealed that PI3K inhibitors enhanced the anti-tumor efficacies of anti-FGFR inhibitors in vitro in endometrial cancers in which the activation of the PI3K pathway was observed in > 90% of FGFR2-mutated cases. The activation of the PI3K pathway was also reported to be enriched in breast cancer patients with activated FGFR/FGF signaling32. Together, our findings...
Table 3: The demographical and clinicopathological characteristics of patients who had FGFR and FGF19 amplifications

ID	Subtype	Gender	Age	Stage	Treatment history [TKI (PFS)]	Gene	CNV	Concurrent alteration	AF_concurrent_alt	Sample type
P27	LUAC	F	48	IV	Chemo, icotinib (quick PD), osimertinib	FGFR4	1.72	-		Plasma (post osimertinib)
P1	LUSC	M	56	NA	Surgery, chemo	FGFR1	1.88	-		Plasma
P28	LUAC	M	73	NA	Surgery, gefitinib (17 m), osimertinib (quick PD), afatinib (5 m)	FGFR2	2.3	EGFR p.E746_S752delinsA, EGFR p. G724S, PIK3CA p.E545K	16.22%, 17.27%, 18.44%	FFPE (post afatinib)
P29	LUAC	M	62	IV	Treatment-naive	FGFR1	1.78	-		FFPE
P30	LUSC	M	70	NA	Treatment-naive	FGFR1	6.56	-		FFPE
P31	LUAC	M	62	NA	Treatment-naive	FGFR1	1.71	-		FFPE
P32	LUAC	M	60	IV	Treatment-naive	FGFR1	5.14	-		FFPE
P33	LUSC	M	52	NA	Chemo, radiotherapy, anlotinib (PR)	FGFR1	2.19	-		Plasma
P34	LUSC	M	52	NA	Chemo, radiotherapy, anlotinib (PR)	FGFR1	2.75	-		FFPE
P35	LUSC	M	60	NA	Chemo, nivolumab (quick PD)	FGFR3	2.08	-		FFPE
P5	LUSC	M	66	IV	Treatment-naive	FGFR1	3.48	-		FFPE
P36	LUSC	M	53	NA	Surgery, chemo	FGFR1	2.45	-		FFPE
P37	LUSC	M	65	III	Treatment-naive	FGFR1	2.55	-		Tissue
P38	LUAC	M	69	NA	NA	FGFR1	2.73	-		FFPE
P39	LUSC	M	73	NA	Chemo	FGFR1	4.15	-		FFPE
P9	LUSC	M	77	NA	Treatment-naive	FGFR1	7.24	-		FFPE
P10	LUAC	M	78	IV	Chemo, VEGFR mAb	FGFR1	1.99	-		FFPE
P40	LUAC	F	48	IV	Chemo, gefitinib (5 m, PD), osimertinib (10 m, PD)	FGFR1; FGFR4	2.33; 2.51	EGFR p.E746_A750del, p. T790M, p. C797S	72.43%, 3.91%, 29.68%	Pleural effusion (post osimertinib)
P41	LUSC	M	70	NA	Chemo	FGFR1	3.51	-		FFPE
P42	LUAC/SC	M	72	NA	Treatment-naive	FGFR1	1.93	-		FFPE
P43	LUSC	M	68	NA	Treatment-naive	FGFR1	2.33	-		FFPE
P44	LUSC	M	55	NA	Treatment-naive	FGFR1	2.06	PTEN p.L316NfsX4	60.41%	Tissue
P45	LUSC	M	68	NA	Treatment-naive	FGFR1	2.09	PIK3CA p.D843Y, p.F1039L, p.M1043I, EGFR p.G796C	1.29%, 1.33%, 0.82%, 0.88%	FFPE
P46	LUSC	M	52	NA	Treatment-naive	FGFR1	3.17	-		FFPE
highlighted an intriguing molecular feature and potential therapeutic target for combination therapies targeting the FGFR and PI3K pathways in FGFR-positive NSCLC patients exhibiting activated PI3K and MAPK pathways.

Furthermore, we identified a total of 12 FGFR gene rearrangements in the NSCLC population that maintained intact FGFR kinase domains. FGFR fusions did not segregate well by histology or sex, as was previously reported by Wang et al.33 which was likely due to the restricted cohort size. The majority of these patients were FGFR3-TACC3 positive, but we also observed 1 case of a FGFR2-INA fusion that was originally described in gliomas, and 2 novel FGFR fusions, including SLC20A2-FGFR1 and FGFR4-GAPGEFL1. A prior study by Wu et al.34 reported a case of prostate cancer with the SLC45A3 non-coding exon 1 fused to the intact coding region of FGFR2, in which the SLC45A3-FGFR2 fusion was predicted to drive the overexpression of wildtype FGFR2. Thus, the SLC20A2-FGFR1 fusion observed in the current study may also have been able to drive the overexpression of wildtype FGFR1, although additional studies are needed to test this possibility. It is worth noting that half (n = 6) of the FGFR fusion patients carried EGFR aberrations, including EGFR ex19del, T790M, C797S, and EGFR amplifications. Two-thirds of those patients received prior EGFR TKI therapies. Reminiscent of a prior report by Ou et al.35, this observation suggested that FGFR fusions may act as a mechanism of acquired resistance to EGFR inhibitors in patients (P16, P17, P21, and P22) who were previously treated with EGFR TKIs.

Aside from point mutations and gene rearrangements, approximately 15% of all FGFR aberrations were amplifications, with FGFR1 amplifications being the most common anomalies. FGFR amplifications predominated in LUSC patients at a prevalence of 1.6%, in contrast to that of < 0.1% in the LUAC population. These frequencies were relatively lower than those reported by Helsten et al.24 (9% and 4%, respectively), which could be attributed to a number of reasons including the ethnic differences underlying these two study populations, the restricted NSCLC cohort size of Helsten et al., as well as the inclusion of cases who had only liquid biopsy ctDNA samples in this work.

Previous studies have shown that FGFR1 amplification was common in breast cancer patients with early relapses and poor clinical outcomes36. Therefore, antibodies targeting FGFR represent a valid therapeutic strategy to treat breast cancer or other cancer histologies, including NSCLC.
we also observed a low frequency of FGF19 amplifications in our NSCLC population. FGF19 encodes the ligand for FGFR4, and it was previously shown that FGF19 amplifications corresponded with constitutive activation of FGF receptor 4 (FGFR4)-dependent ERK/AKT-p70S6K-S6 signaling activation in head and neck squamous carcinoma cells; thus, raising the question as to whether the FGF19/FGFR4 axis also acts as an oncogenic driver in these NSCLC patients and represents a therapeutic target.

Conclusions

This study reported the frequency of FGFR aberrations, including activating mutations, gene rearrangements, and gene amplifications in a large population of Chinese NSCLC patients, and revealed the potential clinical utility of targeting FGFR aberrations with FGFR inhibitors in NSCLC patients. We also reported novel FGFR fusion events in NSCLC patients, including SLC20A2-FGFR1, FGFR2-INA, and FGFR4-GAPGEFL1; thus, highlighting potential therapeutic targets for the management of such patients.

Acknowledgements

We thank the patients and their family members who provided consent to present their data in this study, as well as the investigators and research staff at all research sites involved. Sincere thanks to Dr. Ryan Lamers for his professional editing and proofreading of the manuscript.

Grant support

This work was supported by the National Key R&D Program of China (Grant No. 2016YFC1303800).

Conflict of interest statement

Qiuxiang Ou, Xue Wu, and Yang Shao are employees of Geneseeq Technology Inc. Canada. Xiaonan Wang is an employee of Nanjing Geneseeq Technology Inc. China. The remaining authors have no conflicts of interest to declare.

References

1. Katoh M, Nakagama H. FGF receptors: cancer biology and therapeutics. Med Res Rev. 2014; 34: 280-300.
2. Presta M, Chiodelli P, Giacomini A, Rusnati M, Ronca R. Fibroblast growth factors (FGF5) in cancer: FGF traps as a new therapeutic approach. Pharmacol Ther. 2017; 179: 171-87.
3. Hubbard SR, Till JH. Protein tyrosine kinase structure and function. Annu Rev Biochem. 2000; 69: 373-98.
4. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast growth factor receptors in carcinogenesis. Mol Cancer Res. 2010; 8: 1439-52.
5. Desai A, Adjei AA. FGFR signaling as a target for lung cancer therapy. J Thorac Oncol. 2016; 11: 9-20.
6. Perera TPS, Jovcheva E, Mevellec L, Vialard J, De Lange D, Verhulst T, et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule fgfr family inhibitor. Mol Cancer Ther. 2017; 16: 1010-20.
7. Tabernero J, Bahleda R, Dienstmann R, Infante JR, Mita A, Italiano A, et al. Phase I dose-escalation study of JNJ-42756493, an oral pan-fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J Clin Oncol. 2015; 33: 3401-8.
8. Loriot Y, Necchi A, Park SH, Garcia-Donas J, Huddart R, Burgess E, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med. 2019; 381: 338-48.
9. Bellmunt J, Theodore C, Demkov T, Komyakov B, Sengelov L, Daugaard G, et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol. 2009; 27: 4454-61.
10. McCaffrey JA, Hilton S, Mazumdar M, Sadan S, Kelly WK, Scher HI, et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J Clin Oncol. 1997; 15: 1853-7.
11. Vaughn DJ, Broome CM, Hussain M, Gutheil JC, Markowitz AB. Phase II trial of weekly paclitaxel in patients with previously treated advanced urothelial cancer. J Clin Oncol. 2002; 20: 937-40.
12. Tiseo M, Gelsomino F, Alfieri R, Cavazzoni A, Bossetti C, De Giorgi AM, et al. FGFR as potential target in the treatment of squamous non small cell lung cancer. Cancer Treat Rev. 2015; 41: 527-39.
13. Liao RG, Jung J, Tchaicha J, Wilkerson MD, Sivachenko A, Beauchamp EM, et al. Inhibitor-sensitive FGFR2 and FGFR3 mutations in lung squamous cell carcinoma. Cancer Res. 2013; 73: 5195-205.
14. Shu Y, Wu X, Tong X, Wang X, Chang Z, Mao Y, et al. Circulating tumor DNA mutation profiling by targeted next generation sequencing provides guidance for personalized treatments in multiple cancer types. Sci Rep. 2017; 7: 583.
15. Yang Z, Yang N, Ou Q, Xiang Y, Jiang T, Wu X, et al. Investigating novel resistance mechanisms to third-generation egfr tyrosine kinase inhibitor osimertinib in non-small cell lung cancer patients. Clin Cancer Res. 2018; 24: 3097-107.
16. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics. 2014; 30: 2114-20.
17. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. Varscan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 2012; 22: 568-76.
18. Newman AM, Bratman SV, Stehr H, Lee LJ, Liu CL, Diehn M, et al. Factera: a practical method for the discovery of genomic rearrangements at breakpoint resolution. Bioinformatics. 2014; 30: 3390-3.

19. Chakravarty D, Gao J, Phillips S, Kundra R, Zhang H, Wang J, et al. Oncokb: A precision oncology knowledge base. JCO Precis Oncol. 2017; 1-16.

20. Costa R, Carneiro BA, Taxter T, Tavora FA, Kalyan A, Pai SA, et al. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget. 2016; 7: 55924-38.

21. Jain P, Surrey LF, Straka I, Luo M, Lin F, Harding B, et al. Novel FGFR2-INA fusion identified in two low-grade mixed neuronal-glial tumors drives oncogenesis via MAPK and PI3K/mTOR pathway activation. Acta Neuropathol. 2018; 136: 167-9.

22. Gao L, Wang X, Huang S, Hu CA, Teng Y. FGFR1/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J Exp Clin Cancer Res. 2017; 36: 8.

23. Zhang X, Kong M, Zhang Z, Xu S, Yan F, Wei L, et al. FGFR19 genetic amplification as a potential therapeutic target in lung squamous cell carcinomas. Thorac Cancer. 2017; 8: 655-65.

24. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res. 2016; 22: 259-67.

25. Reck M, Kaiser R, Mellemgaard A, Douillard JY, Orlov S, Krajewski M, et al. Docetaxel plus nintedanib versus docetaxel plus placebo in patients with previously treated non-small-cell lung cancer (LUME-Lung 1): a phase 3, double-blind, randomised controlled trial. Lancet Oncol. 2014; 15: 143-55.

26. Abou-alfa GK, Sahai V, Vollebergh A, Vaccaro G, Melisi D, Al-Rajabi R, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020; 21: 671-84.

27. Hashemi-Sadraei N, Hanna N. Targeting FGFR in squamous cell carcinoma of the lung. Target Oncol. 2017; 12: 741-55.

28. Singleton KR, Hinz TK, Kleczcuk EK, Marek LA, Kwak J, Harp T, et al. Kinome RNAi screens reveal synergistic targeting of MTOR and FGFR1 pathways for treatment of lung cancer and HNSCC. Cancer Res. 2015; 75: 4398-406.

29. Weeden CE, Solomon B, Asselin-Labat ML. FGFR1 inhibition in lung squamous cell carcinoma: questions and controversies. Cell Death Discov. 2015; 1: 15049.

30. Wynes MW, Hinze TK, Gao D, Martini M, Marek LA, Ware KE, et al. FGFR1 mRNA and protein expression, not gene copy number, predict FGFR TKI sensitivity across all lung cancer histologies. Clin Cancer Res. 2014; 20: 3299-309.

31. Ouzeki M, Geng X, Bonazzi VF, Ju RJ, Mahon CE, Cummings MC, et al. PI3K inhibitors synergize with FGFR inhibitors to enhance antitumor responses in FGFR2(mutant) endometrial cancers. Mol Cancer Ther. 2017; 16: 637-48.

32. Wheler JJ, Atkins JT, Janku F, Moulder SL, Stephens PJ, Yelensky R, et al. Presence of both alterations in FGFR/FGF and PI3K/AKT/mTOR confer improved outcomes for patients with metastatic breast cancer treated with PI3K/AKT/mTOR inhibitors. Oncoscience. 2016; 3: 164-72.

33. Wang R, Wang L, Li Y, Hu H, Shen L, Shen X, et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin Cancer Res. 2014; 20: 4107-14.

34. Wu YM, Su F, Kalyana-Sundaram S, Khazanov N, Ateeq B, Cao X, et al. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov. 2013; 3:636-47.

35. Ou SI, Horn L, Cruz M, Vafai D, Lovly CM, Spradlin A, et al. Emergence of FGFR3-TACC3 fusions as a potential by-pass resistance mechanism to EGFR tyrosine kinase inhibitors in EGFR mutated NSCLC patients. Lung Cancer. 2017; 111: 61-4.

36. Reis-Filho JS, Simpson PT, Turner NC, Lambros MB, Jones C, Mackay A, et al. FGFR1 emerges as a potential therapeutic target for lobular breast carcinomas. Clin Cancer Res. 2006; 12: 6652-62.

37. Gao L, Lang L, Zhao X, Shao Y, et al. FGFR amplification reveals an oncogenic dependency upon autocrine FGF19/FGFR4 signaling in head and neck squamous cell carcinoma. Oncogene. 2019; 38: 2394-404.

Cite this article as: Zhou Z, Liu Z, Ou Q, Wu X, Wang X, Shao Y, et al. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases. Cancer Biol Med. 2021; 18: 490-501. doi: 10.20892/j.issn.2095-3941.2020.0120