Genetic analysis reveals candidate species in the *Scinax catharinae* clade (Amphibia: Anura) from Central Brazil

Lídia Nogueira¹, Mirco Solé², Sérgio Siqueira³, Paulo Roberto Antunes de Mello Affonso³, Christine Strüssmann⁴ and Iracilda Sampaio⁵

¹Instituto Federal de Educação, Ciência e Tecnologia, Valença, BA, Brazil.
²Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Ilhéus, BA, Brazil.
³Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil.
⁴Departamento de Ciências Básicas e Produção Animal, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
⁵Instituto de Estudos Costeiros, Universidade Federal do Pará, Bragança, PA, Brazil.

Abstract

Scinax (Anura: Hylidae) is a species-rich genus of amphibians (113 spp.), divided into five species groups by morphological features. Cladistic analyses however revealed only two monophyletic clades in these groups: *Scinax* *catharinae* and *Scinax ruber*. Most species from the *S. catharinae* clade are found in Atlantic rainforest, except for *Scinax canastrensis*, *S. centralis*, *S. luizotavioi*, *S. machadoi*, *S. pombali* and *S. skaios*. In the present work, specimens of *Scinax* collected in Chapada dos Guimarães, central Brazil, were morphologically compatible with species from the *S. catharinae* group. On the other hand, genetic analysis based on mitochondrial (16S and 12S) and nuclear (rhodopsin) sequences revealed a nucleotide divergence of 6 to 20% between *Scinax* sp. and other congeners from the Brazilian savannah (Cerrado). Accordingly, Bayesian inference placed *Scinax* sp. in the *S. catharinae* clade with high support values. Hence, these findings strongly indicate the presence of a new species in the *S. catharinae* clade from the southwestern portion of the Brazilian savannah. To be properly validated as a novel species, detailed comparative morphological and bioacoustic studies with other taxa from Brazil such as *S. canastrensis*, *S. centralis*, *S. luizotavioi*, *S. machadoi*, *S. pombali* and *S. skaios* are required.

Keywords: Amphibians, DNA barcode, Cerrado, rDNA.

Received: February 06, 2014; Accepted: August 24, 2015.

The genus *Scinax* encompasses 113 species with a widespread distribution from southern Mexico to Argentina, Uruguay, St. Lucia and Trinidad and Tobago islands (Frost, 2015). Duellman and Wiens (1992) recognized seven species groups in this genus by means of morphological analyses (*S. catharinae*, *S. perpusillus*, *S. rizibilis*, *S. rostratus*, *S. ruber*, *S. staufferi* and *S. x-signatus*). Later, the groups *S. rizibilis* and *S. x-signatus* were regarded as synonyms of *S. catharinae* and *S. ruber*, respectively (Pombal et al., 1995a). Cladistic inferences however recovered only two monophyletic clades: *S. catharinae* (including the groups *S. catharinae*, *S. staufferi* and *S. perpusillus*) and *S. ruber* (encompassing the groups *S. rostratus*, *S. ruber* and some species within *S. staufferi*) (Faivovich, 2002; Faivovich et al., 2005).

The *S. catharinae* group (Frost, 2015) is characterized by the lack of an anterior process in the suprascapula, *m. depressor mandibulae* without an origin at the dorsal fascia of the *m. dorsalis scapulae*, distal division of the middle branch of the *m. extensor digitorum comunis longus*, and insertion of this muscle at the medial side on the tendon of the *m. extensor brevis medius digit I* (Faivovich, 2002). The vocalization of frogs from this group is usually composed of short notes and, sometimes, displays harmonic structure (Pombal et al., 1995a, b).

Most species in this group are distributed throughout the Atlantic rainforest (Faivovich et al., 2005). The only exceptions reported so far include *S. canastrensis*, *S. centralis*, *S. luizotavioi*, *S. machadoi*, *S. pombali* and *S. skaios*, which were observed in gallery forests within the Brazilian savannah (Cerrado) and in central and southeastern Brazil (Pombal and Bastos, 1996; Pombal et al., 2010; Lourenço et al., 2013).

During inventories of herpetofauna carried out for the Management Plan of Chapada dos Guimarães National...
Park in the southwestern Cerrado, some samples of *Scinax* morphologically compatible with species of *S. catharinae* group were collected, but these specimens were differentiated from all other species described so far. Therefore, the goal of the present study was to perform a molecular analysis of these samples as an additional tool to their taxonomic identification, besides verifying the presence of a putative new representative in the *S. catharinae* clade in areas distant from their center of origin.

Eight individuals of *Scinax* sp. were collected on April 04, 2006 in deep gallery forests alongside headwaters of the Coxipó River, in Chapada dos Guimarães, state of Mato Grosso, Brazil (Figure 1, Table 1). The specimens were deposited in the Vertebrate Collection of the Universidade Federal de Mato Grosso (UFMT). Approximately 25 mg of muscle were removed from the inner thigh of each specimen and preserved in ethanol 95% at -20 °C for molecular analyses.

Total DNA was extracted by using the Wizard® Genomic Purification kit (Promega), following manufacturer’s instructions. The primer pairs used to amplify 16S, 12S, and rhodopsin, respectively, were: L1 – 5’GCCCTCGC TTGTATTACAAAAAC ‘3 (Palumbi, 1996) and H1 – 5’CCGGTCTGAACCTACGATCGT 3’ (Varela et al.,

Table 1 - Description of anuran samples used in the present study.

Voucher	Species	Clade	Country/Location/State	Coordinates	GenBank Accession Number
MACN 36999	Hypsiboas faber		Argentina: San Vicente, Misiones	26°37'S 54°08'W	AY549533 AY549532 AY844607
ZMUESC 9759	Scinax agilis	S. catharinae	Brazil: Conceição da Barra, Espirito Santo	18°25' S, 39°42'W	KT438894 KT438883 KT438886
ZMUESC 14857	Scinax berthae	S. catharinae	Argentina: Buenos Aires	34°36'S 58°22'W	KT438889 KT438877 KT438880
MACN 38650	Scinax catharinae	S. catharinae	Brazil: São Francisco de Paula, Rio Grande Do Sul	29°26'S 50°35'W	AY843756 AY843756 AY844742
MACN 39035	Scinax elaeochroa	S. ruber	Costa Rica: Heredia	10°07'N 83°33'W	AY843757 AY843757 DQ283759
MCP3734	Scinax garbei	S. ruber	Ecuador: Riobamba, Chimborazo	01°40'S 78°38'W	AY326033 AY326033 DQ283759
MACN 38650	Scinax nasicus	S. ruber	Argentina: Buenos Aires	34°36'S 58°22'W	AY843759 AY843759 AY844745
MACN 39035	Scinax sp.	S. catharinae	Brazil: Chapada dos Guimarães, Mato Grosso	15°28'S 55°48'W	KT438887 KT438875 KT438898
ZMUESC 11079	Scinax strigilatus	S. catharinae	Brazil: Camacan, Bahia	15°24'S 39°30'W	KT438895 KT438884 KT438896
MVZFC 14457	Scinax uruguayus	S. ruber	Brazil: Cambará do Sul, Rio Grande do Sul	29°02'S 50°08'W	AY843681 AY843681 AY844674

Figure 1 - Map of Brazil showing the collection sites of *Scinax* sp. in Chapada dos Guimarães, Mato Grosso, Brazil (red triangle).
2007); L1- 5’AAAAAGCTTCAAACTGGGATTAGAT ACCCCACTAT 3’ and H1- 5’TGACTGCGAGGGTGA CGGGCGTTGTT 3’ (Kocher et al., 1989), and Rhod-L1 5’ACCATGACGGAACAGAAAGYCYCC 3’ and Rhod- H1 5’GTAGCGGAAGAARCTTTAAMGTA 3’ (Bossuyt and Milinkovitch, 2000).

The PCR conditions consisted of an initial denaturation step at 95 °C for 5 min, followed by 35 cycles of denaturation at 94 °C for 40 s, annealing at 55 °C (12S and 16S) or 49 °C (rhodopsin) for 40 s and extension at 72 °C for 30 s, plus a final extension step at 72 °C for 7 min. Subsequently, the reaction products were purified and sequenced in an ABI 3500XL Genetic Analyzer automatic sequencer (Applied Biosystems). Sequencing reactions were carried out by using terminal dideoxynucleotides (Sanger et al., 1977). The sequences were then aligned with Clustal W available in the software BioEdit v. 5.09 (Hall, 1999). The software GBlocks 0.91 (Castresana, 2000) was used to eliminate poorly aligned positions and divergent region portions of 16S, according to the following parameters: minimum number of sequences for a flank position to 10, maximum number of contiguous nonconserved positions to 08, minimum length of a block to 2, and allowed gap positions to within half.

To estimate the divergence matrix and phylogeny we added sequences of seven other anuran species from GenBank to our data set: S. catharinae, Scinax berti,ae, Scinax uruguayus, Scinax garbei, Scinax elaechroa, Scinax nasicus and Hypsiboas faber (outgroup). Two other species from the S. catharinae clade collected in Bahia, northeastern Brazil and Espirito Santo, southeastern Brazil, were also included in our analysis: Scinax strigilatus and Scinax agilis (Table 1).

Genetic divergence was estimated using the Kimura-2-parameter (K2P) substitution model (Kimura, 1980) in the software MEGA v. 5.0 (Tamura et al., 2011). The 16S, 12S and rhodopsin sequences were concatenated in the software DnaSP, v. 4.0 (Librado and Rozas, 2009). A Bayesian phylogeny was inferred using the software MrBayes 3.1 (Ronquist and Huelsenbeck, 2003). The best mutation model was estimated according to Akaike Information Criteria – AIC in the software jModel Test 0.1 (Posada, 2008). Two runs (four chains each) with 20 million generations were performed with trees being sampled at every 1000 generations. Adequate burn-in was determined by examining likelihood scores of the heated chains for convergence on stationarity, as well as the effective sample size of values in Tracer 1.5 (Rambaut and Drum-
We considered relationships strongly supported when posterior probabilities were equal to or higher than 0.95.

Eighteen sequences of 16S and 12S were obtained from each of the nine Scinax species, comprising 423 bp (164 variable sites) and 386 bp (131 variable sites) for each fragment respectively. For rhodopsin, 13 sequences of 316 bp with 51 variable sites were obtained from eight Scinax representatives.

The intraspecific nucleotide divergence in Scinax sp. was 0.2% for 16S, 0.3% for 12S, 0.2% for combined 12S+16S, and 0% for the rhodopsin. The nucleotide divergence of Scinax sp. in relation to the other species ranged from 6 to 13%, 7 to 20%, 6 to 18% and 0.6 to 6% for 16S, 12S, 16S+12S and rhodopsin, respectively (Table 2).

The Bayesian consensus phylogeny (16S + 12S + rhodopsin) placed Scinax sp. as a distinct clade with strong support, being closely related to S. berthae, S. catharinae, S. strigilatus and S. agilis, all belonging to the S. catharinae clade (Figure 2 and Table 2). The four species from the S. ruber clade also formed a monophyletic group with strong support.

Even though the cytochrome C oxidase I (COI) gene has been elected as a universal DNA barcode in animals (Hebert et al., 2003), the 16S gene seems to be more effective to discriminate amphibian species (Vences et al., 2005), thus being used in the present study. Indeed, the genetic distances of 7 to 10% in 16S rDNA observed between Scinax sp. and the other known species in the S. catharinae clade (S. berthae, S. catharinae, S. strigilatus and S. agilis) (Table 2) are higher than the minimum value of 3% in nucleotide divergence proposed by Fouquet et al. (2007) to discriminate anuran species. Moreover, sequences of 12S and rhodopsin (nuclear) were also included to provide additional support to our hypothesis of a new species in the S. catharinae clade occurring in the Chapada dos Guimarães region, central Brazil. However, further morphological and bioacoustical analyses should be performed and focused on comparative data with other species from the S. catharinae clade from Brazilian savannah, such as S. canastrensis, S. centralis, S. luizotavioi, S. machadoi, S. pombali and S. skaios.

Table 2 - Interspecific nucleotide divergence within Scinax (Anura: Hylidae) based on K2P model of 16S (above diagonal), combined 12S+16S (above diagonal in parentheses), 12S (below diagonal) and Rhodopsin (below diagonal in parentheses) genes. The species 1 to 5 belong to the S. catharinae clade, while the species 6 to 9 belong to the S. ruber clade. H. faber (10) was used as outgroup.

Species	1	2	3	4	5	6	7	8	9	10
S. catharinae clade										
S. agilis	0.10	0.11	0.10	0.10	0.12	0.13	0.13	0.19	0.18	0.16
(0.05)										
2. S. berthae	0.10	0.05	0.06	0.05	0.10	0.12	0.17	0.15	0.15	0.15
(0.10)										
3. S. catharinae	0.10	0.04	-	0.05	0.06	0.10	0.12	0.18	0.14	0.15
(0.10)										
4. Scinax sp.	0.10	0.06	0.06	-	0.07	0.12	0.15	0.21	0.16	0.15
(0.10)										
5. S. strigilatus	0.10	0.06	0.06	0.07	-	0.10	0.13	0.17	0.15	0.16
(0.10)										
S. ruber clade										
6. S. uruguayus	0.15	0.13	0.12	0.11	0.12	0.10	0.17	0.13	0.15	0.15
(0.13)										
7. S. elaeochrous	0.13	0.13	0.13	0.13	0.12	0.11	0.16	0.12	0.15	0.15
(0.13)										
8. S. nasicus	0.12	0.13	0.13	0.13	0.12	0.14	0.07	-	0.16	0.21
(0.15)										
9. S. garbei	0.14	0.13	0.14	0.12	0.13	0.11	0.10	0.13	-	0.20
(0.15)										
10. Outgroup	0.16	0.15	0.15	0.15	0.16	0.17	0.14	0.16	0.15	-
(0.16)										

Acknowledgments

The authors are grateful to CAPES and CNPq for the financial support and the Brazilian Environmental Agency ICMBio for the logistic support during field trips. The biological material was collected with permission of IBAMA (license 223/2005 from Sept. 14, 2005). CS, IS and MS
thank CNPq for research fellowships (Bolsa de Produtividade em Pesquisa; processes # 309541/2012-3, # 306416/2013-1 and # 307165/2012-4).

References

Bossuyt F and Milinkovitch MC (2000) Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Prot Natl Acad Sci USA 97:6585-6590.

Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540-552.

Dayrat B (2005) Integrative taxonomy. Biol J Linn Soc 85:407-415.

Duellman WE and Wiens JJ (1992) The status of the hyloid frog genus Oloolygon and the recognition of Scinax Wagler, 1830. Occas. Pap Mus Nat Hist Univ Kansas 151:1-23.

Faivovich J (2002) A cladistic analysis of Scinax (Anura: Hylidae). Cladistics 18:367-393.

Faivovich J, Haddad CFB, Garcia PC, Frost DR, Campbell JA and Wheeler WC (2005) Systematic review of the frog family Hylidae, with special reference to Hylinae: phylogenetic analysis and taxonomic revision. Bull Am Mus Nat Hist 294:6-229.

Fouquet A, Gilles A, Vences M and Marty C (2007) Underestimation of species richness in Neotropical frogs revealed by mtDNA analyses. PLoS One 10:e1109.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids. Symp Ser 41:95-98.

Hebert PDN, Cywinska A, Ball SL and Waard JR (2003) Biological identifications through DNA barcodes. Proc R Soc Lond 270:313-321.

Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111-120.

Kocher TD, Thomas WK, Meyer A, Edwards SV, Päbo S, Villablanca FX and Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196-6200.

Librado P and Rozas J (2009) DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1415-1422.

Lourenço ACC, Carvalho ALG, Baêta D, Pezzuti TL and Leite FSB (2013) A new species of the Scinax catharinae group (Anura, Hylidae) from Serra da Canastra, southwestern state of Minas Gerais, Brazil. Zootaxa 3613:573-588.

Padial JM, Miralles AD, De la Riva I and Vences M (2010) The integrative future of taxonomy. Front Zool 7:1-14.

Palumbi SR (1996) Nucleic acids II: The polymerase chain reaction. In: Hillis DM, Moritz C and Mable BK (eds) Molecular systematics. Sinauer Associates, Inc, Sunderland, MA, pp 205-247.

Pombal JJ and Bastos RP (1996) Nova espécie de Scinax Wagler, 1830 do Brasil Central (Amphibia, Anura, Hylidae). Bol Mus Nac 371:1-11.

Pombal JJ, Haddad CFB and Kasahara S (1995a) A new species of Scinax (Anura: Hylidae) from southeastern Brazil, with comments on the genus. J Herpetol 29:1-6.

Pombal JJ, Bastos RP and Haddad CFB (1995b) Vocalizações de algumas espécies do gênero Scinax (Anura, Hylidae) do sudeste do Brasil e comentários taxonômicos. Naturalia 20:213-225.

Pombal JJ, Carvalho RRJ, Canelas MAS and Bastos RP (2010) A new Scinax of the S. catharinae species group from Central Brazil (Amphibia: Anura: Hylidae). Zoologia 27:795-802.

Posada D (2008) jModelTest: Phylogenetic Model Averaging. Mol Biol Evol 25:1253-1256.

Ronquist F and Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.

Sanger F, Nicklen S and Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 12:5463-5467.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony methods. Mol Biol Evol 28:2731-2739.

Varela ES, Beasley CR, Schneider H, Sampaio I, Marques-Silva NS and Tagliaro CH (2007) Molecular phylogeny of mangrove oysters (Crassostrea) from Brazil. J Molluscan Stud 73:229-234.

Vences M, Thomas M, Bonett RM and Vieites DR (2005) Deciphering amphibian diversity through DNA barcoding: chances and challenges. Phil Trans R Soc B 360:1859-1868.

Vieites DR, Wollenberg KC, Andreone F, Köhler J, Glaw F and Vences M (2009) Vast underestimation of Madagascar’s biodiversity evidenced by an integrative amphibian inventory. Proc Natl Acad Sci USA 106:8267-8272.

Internet Resources

Frost DR (2015) Amphibian Species of the World: An Online Reference. Version 6.0. American Museum of Natural History, New York, USA. http://research.amnh.org/herpetology/amphibia/index.html (accessed July 27, 2015).

Rambaut A and Drummond A (2007) TRACER. MCMC Trace Analysis Tool, Version 1.4. University of Oxford. http://tree.bio.ed.ac.uk/software/tracer.

Associate Editor: Antonio Mateo Solé

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License (type CC-BY), which permits unrestricted use, distribution and reproduction in any medium, provided the original article is properly cited.