Lipopolysaccharide (LPS), an essential component of the surface of Gram-negative bacteria [1], has potent pro-inflammatory properties in many cell types [2-4], including endothelial cells [5,6]. A major consequence of the LPS action on endothelial cells is the upregulation of genes specifically involved in recruiting and adhering leukocytes [7]. The firm adhesion of leukocytes to the vessel wall occurs via interaction of the CD11a/CD18 (β2) integrins to endothelial ligands such as intercellular adhesion molecule-1 (ICAM-1). ICAM-1, an inducible cell transmembrane glycoprotein, acts as a key component in inflammatory response for recruiting leukocytes to the sites of inflammation and is implicated in the pathogenesis of numerous inflammatory diseases such as rheumatoid arthritis [8], uveitis [9], and atherosclerosis [10,11]. Thus, it is suggested that modulation of adhesion molecule expression and reduction of aberrant leukocyte adhesion to the endothelium may be an attractive approach for treating inflammation-related vascular complications, including inflammatory ocular disorders [12].

We previously demonstrated that the peptide GC31, which is derived from C-type lectin-like domain (CTLD) of human thrombomodulin (TM), has a potent anti-inflammatory effect on endotoxin-induced uveitis (EIU) by reducing leukocyte infiltration and proinflammatory mediator expression [13]. Uveitis is characterized by an increase in leukocyte rolling, sticking, and adhesion molecule expression, and breakdown of the blood–retinal barrier, which subsequently leads to transendothelial migration of leukocytes and recruitment of large numbers of cells to the retina [14-16]. GC31 intravitreal injection could reduce leukocyte counts in aqueous humor and leukocyte infiltration in the anterior chamber, iris-ciliary bodies, and posterior vitreous according to histological examination. In addition, it has been reported that TM CTLD dampens the inflammatory response by interfering with leukocytes adhesion through inhibiting adhesion molecule expression [17]. Despite those studies, it is still unknown whether the effect of GC31 on EIU is mediated by inhibiting leukocyte-endothelium adhesion. Thus, the aim of the present study was to investigate the ability of...
GC31 to modulate the expression of ICAM-1 in LPS-induced HUVECs and to identify the underlying mechanism(s).

METHODS

Reagents: Rosewell Park Memorial Institute (RPMI) 1640, fetal bovine serum (FBS), and antibiotics were from Gibco-BRL (Grand Island, NY). LPS (E. coli 055:B5) was purchased from Sigma (St. Louis, MO). The polyclonal antibodies against p38 mitogen-activated protein kinase (MAPK), phospho-p38 (p-p38) MAPK, extracellular signal-regulated kinase-1/2 (ERK1/2), phospho-ERK1/2 (p-ERK1/2), inhibitor of nuclear factor kappa B alpha (IκBα), phospho-IκBα (p-IκBα), and phosphonuclear factor kappa B (NF-κB) p65 (p–NF-κB p65) were obtained from Cell Signaling Technology, Inc. (Beverly, MA). The rabbit monoclonal antibodies against ICAM-1 and Lamin A/C were obtained from Epitomics, Inc. (Burlingame, CA). Horseradish peroxidase (HRP)-conjugated monoclonal mouse antiglyceraldehyde-3-phosphate dehydrogenase (GAPDH) was from Kangchen Biotech (Shanghai, China). Goat antirabbit immunoglobulin G (Ig G) was from R&D Systems (Minneapolis, MN).

Synthesis of peptide: Peptide GC31 and control peptide VP30 were synthesized using high-efficiency solid-phase peptide synthesis with an automatic peptide synthesizer (Symphony; Protein Technologies, Tucson, AZ) and performed by China-Peptides Co., Ltd. in Shanghai, PR China. The purity over 95% was characterized by analytical high-performance liquid chromatography and mass spectrometry. All the synthesized peptides were freeze-dried and stored at −20 °C until used. The peptides were dissolved in culture medium and sterilized by filtration through a 0.2 μm filter. All the synthesized peptides were freeze-dried and stored at −20 °C until used. The peptides were dissolved in culture medium and sterilized by filtration through a 0.2 μm filter.

Cell culture and treatment: Human umbilical vein endothelial cells (HUVECs) were obtained from ScienCell (San Diego, CA). The cells were maintained in endothelial cell medium (ECM; ScienCell) consisting of 500 ml of basal medium, 25 ml of fetal bovine serum, 5 ml of endothelial cell growth supplement, and 5 ml of penicillin/streptomycin in a humidified incubator at 37 °C with an atmosphere of 5% CO₂. HUVECs were used at passages 3–8 and allowed to grow to subconfluence before treatment. Before the treatment with LPS or peptides, the culture medium was replaced by fresh medium, and LPS was added at a final concentration of 1 μg/ml. GC31 (0.1–10 μM) or VP30 (10 μM) peptides were added to the culture medium simultaneously with LPS. The monocyte U937 cell lines (human monocytic leukemia cell line U937) were purchased from the Cell Bank of Shanghai Institutes for Biologic Sciences (Shanghai, China). Cells were maintained in RPMI 1640 supplemented with 10% FBS, 100 IU/ml penicillin, and 100 μg/ml streptomycin in a humidified incubator at 37 °C with an atmosphere of 5% CO₂.

Cell viability assay: The cell viability of the HUVECs was assessed using the CellTiter 96 aqueous one solution cell proliferation assay (MTS) kit (Promega Corporation, Madison, WI). Briefly, 2×10⁴ cells in 100 μl of medium were seeded in each well of a 96-well plate and allowed to adhere for 48 h. Then cells were treated with various concentrations of peptides or LPS (1 μg/ml) in ECM with 0.1% FBS for 24 h. Cells in the control group were left untreated. Afterwards, 20 μl of MTS solution was added in each well and incubated for another 3 h at 37 °C. Absorbance was detected at 490 nm with a microplate reader (Model 680; Bio-Rad, Hercules, CA).

Monocytoid cell adhesion assays: The effect of GC31 on the adhesion of U937 cells to LPS-activated HUVECs was evaluated as previously described [18, 19]. For the adhesion assays, HUVECs were grown to confluence in 24-well tissue culture plates, pretreated with various concentrations of GC31 or VP30 for 18 h, and then cells were treated with LPS with a final concentration of 1 μg/ml for an extra 6 h. U937 cells were suspended overnight in RPMI 1640 medium containing 0.1% FBS and freshly harvested and labeled with CM-H2DCFDA (10 μM, Invitrogen, Grand Island, NY) in 0.1% FBS RPMI 1640 medium at 37 °C for 30 min. Fluorescence-labeled U937 cells were washed three times with fresh RPMI 1640 medium, and then added at a density of 5×10⁴ cells/well onto the 24-well plate containing pretreated HUVECs. After incubation at 37 °C for 30 min, non-adhered U937 cells were removed by gentle washing with PBS (NaCl 8.0 g, KCl 0.2 g, Na₂HPO₄ 12H₂O 2.9 g, KH₂PO₄ 0.2 g, and distilled water 1 L), and the monolayers were fixed with 4% paraformaldehyde in PBS. The number of adhered U937 cells was counted in five random fields (10× objective) per well in a masked fashion and expressed as the number of adhered cells per field. The images were captured under a confocal fluorescence microscope (LSM 510; Carl Zeiss, Gottingen, Germany). Experiments were performed in triplicate and repeated at least three times.

Western blot analysis for intercellular adhesion molecule-1: Crude proteins were extracted from HUVECs treated with 1 μg/ml LPS in the presence or absence of GC31 (0.1–10 μM) or VP30 (10 μM) for 12 h. Protein concentration was determined using the Bio-Rad protein assay (Bio-Rad Lab). Proteins were then resolved on 10% sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE; Bio-Rad) gels. After electrophoresis, the proteins were electrotransferred to polyvinylidene fluoride (PVDF) membrane
(Millipore, Billerica, MA). The membrane was then blocked with 5% skim milk in Tween-20/PBS and incubated with primary antibodies: rabbit anti-ICAM-1 (1:1,000) and mouse anti-GAPDH (1:1,000). The blots were then incubated with HRP-conjugated secondary antibodies. The bands were visualized using the ECL system detection system (Pierce, Rockford, IL) and quantified with Image J software (NIH; Bethesda, MD) with a fixed rectangular box covering each band. The software automatically plots the lanes and provides an average intensity of pixels with a graphical peak. The band intensity was acquired after the peak area was closed off.

Real-time polymerase chain reaction: Confluent HUVECs in 6 cm plates were incubated with LPS (1 μg/ml) for 6 h in the presence or absence of GC31 (0.1–10 μM) or VP30 (10 μM). Total RNA was extracted with TRIzol reagent (Invitrogen, Grand Island, NY), according to the manufacturer’s instructions. Total RNA (2 μg) of each sample was reverse-transcribed into cDNA, and the fluorescence quantitative real-time PCR (RT-PCR) was performed on the Rotor-Gene 3000 (Corbett Research, Mortlake, Australia) instrument with a One-Step SYBR PrimeScript RT-PCR kit (TaKaRa Bio Inc., Shiga, Japan) according to the protocol. Specific sense and antisense primers used were as follows: ICAM-1, sense: 5′-CAG TGA CCA TCT ACA GCT TTC CGG-3′, antisense: 5′-GCT GCT ACC ACA GTG ATG ATG ACA A-3′; GAPDH, sense: 5′-ACC ACA GTC CAT GCC ATC AC-3′; antisense: 5′-TCC ACC ACC CTG TTG CTG TA-3′. GAPDH was chosen as a housekeeping gene to compare the amount of total mRNA of each sample. The transcript number was calculated using a 2 −△CT method (relative) [20].

Western blot analysis for nuclear factor kappa B and mitogen-activated protein kinase pathways: HUVECs were pretreated with GC31 (0.1–10 μM) or VP30 (10 μM) for 30 min and then incubated with LPS (1 μg/ml) for 30 min or 1 h. After treatment, cells were washed twice in PBS and rapidly harvested using a cell scraper. Nuclear and cytoplasmic extracts were prepared on ice with ProteoJET cytoplasmic and nuclear protein extraction kit (Fermentas Life Science, Opelstrasse, Germany). The whole cell lysates (40 μg) and nuclear extracts (30 μg) were separated with 10% SDS–PAGE and electrotransferred to PVDF membranes. After being blocked with 5% bovine serum albumin (BSA), the membranes were probed with primary antibodies, including IκBα, phospho-IκBα, p38, p-p38, ERK1/2, p-ERK1/2, or p-NFκB-p65 (Ser536). Each membrane was further incubated with HRP-conjugated goat antirabbit IgG (1:1000) secondary antibodies. Lamin A/C (1:1000) was chosen as a nuclear housekeeping protein in the nuclear extract. The bands were visualized using the ECL system detection system, and the band density was determined with Image J software.

Statistical analysis: All experiments were repeated at least three times. The results were expressed as mean ± standard deviation (SD) and analyzed with one-way analysis of variance (ANOVA) followed by Bonferroni’s post hoc test using SPSS 16.0 (SPSS; Chicago, IL) software for multiple comparisons of mean values. p<0.05 was considered statistically significant.

RESULTS

Few effects of GC31 on the viability of human umbilical vein endothelial cells: To evaluate the effects of GC31, VP30, and LPS treatment on the growth of HUVECs, cell viability upon different concentration treatment was analyzed with MTS assay. Twenty-four hours post treatment with GC31 (0.1–10 μM), VP30 (10 μM), or LPS (1 μg/ml), compared to the control group treated with culture medium only, the absorbance of all treated groups showed no significant difference, suggesting GC31, VP30, and LPS have few inhibitory effects on HUVECs (p>0.05, Figure 1). Since MTS assay can also be used to evaluate cell proliferation, the insignificant toxic effect also indicated that the modulatory activities of peptides on HUVECs were irrelevant to inhibiting cell proliferation.

GC31 treatment reduced U937 cell adhesion to lipopolysaccharide-induced human umbilical vein endothelial cells: Our previous study showed that GC31 treatment could effectively prevent leukocyte infiltration in EIU [13] and it was demonstrated that the earliest infiltrated inflammatory cells into ocular tissue of EIU rats were mononuclear cells [21].
Accordingly, we next examined the adhesion of monocytes to LPS-activated HUVECs pretreated with GC31. The U937 cell line is a human cell line established from a diffuse histiocytic lymphoma and displaying many monocytic characteristics. It serves as an in vitro model to study the behavior and differentiation of monocytes and macrophages. With 1 μg/ml of LPS treatment alone for 6 h, the number of U937 cell adhesion to HUVECs was significantly increased 12.45-fold compared to the control group (p<0.01; Figure 2A,B). When HUVECs were pretreated with indicated concentrations of GC31 for 18 h before exposure to LPS, the number of adhered U937 cells was strikingly decreased in a dose-dependent manner (0.1 μM, 0.77 fold, p<0.05; 1 μM, 0.45 fold, p<0.01; 10 μM, 0.28 fold, p<0.01 compared with the LPS-treated group). Though VP30 (10 μM) pretreatment reduced the number of adhered U937 cells slightly, the difference was not statistically significant (Figure 2B, p>0.05).

GC31 suppressed lipopolysaccharide-induced intercellular adhesion molecule-1 expression in human umbilical vein endothelial cells: To investigate the mechanism in which GC31 decreased the binding of monocytes to HUVECs, we examined the expression of ICAM-1 in LPS-activated HUVECs, which is well known to mediate the firm binding of monocytes [9,22]. HUVECs were stimulated with 1 μg/ml of LPS in the presence or absence of GC31 or VP30 for 12 h. As indicated by the results of western blot analysis, exposure of cells to LPS (1 μg/ml) evoked a strong increase in ICAM-1 expression compared with unstimulated cells (Figure 3A). However, GC31 treatment resulted in a significant reduction in LPS-induced ICAM-1 expression in a dose-dependent manner, indicating that peptide GC31 was effective in blocking ICAM-1 expression in LPS-activated HUVECs. To further explore the effect of GC31 on modulating the transcriptional level of adhesion molecules, total cellular RNAs were isolated and analyzed with RT–PCR. Similar results were obtained that treatment with GC31 significantly suppressed the induction of ICAM-1 mRNA in HUVECs stimulated with LPS for 6 h (Figure 3B). Altogether, these results suggested that the ICAM-1 expression induced by LPS is post-transcriptionally prevented by GC31.

GC31 inhibited lipopolysaccharide-induced inhibitor of nuclear factor kappa B alpha degradation and nuclear factor kappa B p65 nuclear translocation: NF-κB is a crucial transcription factor for expression of adhesion molecules [23,24]. The phosphorylation of NF-κB p65 (Ser536) plays an important role in regulating NF-κB activation and transcription of many inflammatory genes [24]. Therefore, we determined the effect of GC31 on NF-κB transcriptional activation. HUVECs were treated with various concentrations of GC31 for 30 min

Figure 2. GC31 treatment reduced U937 cell adhesion to lipopolysaccharide-induced human umbilical vein endothelial cells. Human umbilical vein endothelial cells (HUVECs) were pretreated with GC31 (0.1, 1, and 10 μM), VP30 (10 μM), or vehicle for 18 h, exposed to lipopolysaccharide (LPS) (1 μg/ml) for 6 h, and then incubated with CM-H2DCFDA-labeled U937 cells for 30 min as described in Methods. **A:** Typical images of U937 cells adhered to HUVECs are shown. Green fluorescence represents adhered U937 cells. Scale bar=50 μM. **B:** Quantification of monocyte adhesion is presented by the number of adhered U937 cells per field counted under microscope. Data are expressed as means±SD (n=3). * p<0.05, ** p<0.01 compared to the LPS-treated group.
before stimulation with LPS for 1 h. Pretreatment with GC31 dose-dependently reduced the translocation of phosphorylated p65 NF-κB to the nuclear fraction compared to the LPS group (Figure 4A). Translocation of NF-κB from cytoplasm to the nucleus was preceded by the phosphorylation, ubiquitination, and proteolytic degradation of IκBα [25]. To explore whether GC31 affected LPS-induced degradation of IκBα, western blot analysis was performed. As Figure 4B shows, stimulation with LPS treatment for 30 min caused rapid phosphorylation and degradation of IκBα, while pretreatment with GC31 for 30 min inhibited the LPS-induced phosphorylation and degradation of IκBα in a dose-dependent fashion (Figure 4B). Taken together, the data suggested that GC31 inhibited LPS-induced NF-κB activation, which might be associated with the blockade of LPS-induced adhesion molecule production by GC31.

GC31 reduced lipopolysaccharide-induced activation of mitogen-activated protein kinase pathways in human umbilical vein endothelial cells: Of the signaling pathways activated by LPS in endothelial cells, the p44/42 MAPK and p38 MAPK pathways have been shown to be directly involved in producing cytokines and adhesion molecules [26,27]. Hence, we examined the effect of GC31 on LPS-induced MAPK activation. As shown in Figure 5, 30 min after LPS treatment, the levels of activated p38 MAPK and ERK1/2 in the untreated cells were markedly increased. However, GC31 pretreatment moderately inhibited p38 MAPK activity in a dose-dependent manner and mildly reduced ERK1/2 activity in the LPS-stimulated HUVECs (Figure 5). These results suggested that GC31 may suppress LPS-induced ICAM-1 expression, at least in part, by reducing the activation of the p38 MAPK and ERK1/2 pathways.

DISCUSSION

Leukocyte-endothelial adhesion is an early step in many inflammatory disorders including sepsis [28], ischemia-reperfusion injury [29], atherosclerosis [30], and some ocular disorders including diabetic retinopathy [31,32] and uveitis [9,15]. The adhesion of monocytes to the endothelium is well established as a major early step in the development of atherosclerosis [33] as well as experimental uveitis [21]. In addition, it has been observed that preferential location of leukocyte adhesion occurs mainly in the endothelium of retinal veins and venules [14,16] while the sensitivity of arterial endothelium on LPS and tumor necrosis factor-α induction is much slower than that of venous endothelium [34]. In the present study, we investigated the effect of GC31 on monocyte U937-cell adhesion to LPS-activated HUVECs. We demonstrated that GC31 inhibited the elevated mRNA and protein production of ICAM-1 in LPS-activated HUVECs and reduced monocyte adhesion to LPS-activated HUVECs. The effects of GC31 were possibly due to its blockade of the NF-κB, p38 MAPK, and ERK1/2 signaling pathways.

ICAM-1 and leukocyte function-associated antigen-1 have been shown to play an important role in the pathogenesis of EIU and experimental autoimmune uveitis (EAU) [9,35]. It has also been reported that the expression of adhesion molecules increased progressively as EAU developed, with the increased ICAM-1 expression starting earlier and more closely associated with the sites of blood–retinal barrier
breakdown [16]. In our present work, great overexpression of ICAM-1 was found in HUVECs treated with LPS (1 μg/mL). However, treatment with GC31 significantly and dose-dependently inhibited the mRNA and protein expression of ICAM-1. Meanwhile, similar results were obtained in the monocyte-endothelium adhesion assay. These results are in accordance with the observation that the recombinant lectin-like domain of TM can attenuate endothelial adhesion molecule expression and adhesion of polymorphonuclear leukocytes [17]. We have reported that GC31 peptide could reduce the level of monocyte chemoattractant protein (MCP)-1 in the aqueous humor of EIU rats [13]. MCP-1 is uniquely essential for monocyte recruitment and can direct migration of adherent cells across the endothelium [36, 37]. Taken together, all the results suggested that GC31 has an important effect on preventing leukocyte-endothelium interaction under inflammatory conditions.
The architecture of ICAM-1 promoter contains a large number of binding sites for inducible transcription factors, including AP1, C/EBP, TFIID, Ets, NF-κB, etc [38]. The proximal NF-κB binding site located about 200 bp upstream of the translation start site has been shown to be particularly important for the induction of ICAM-1 transcription [39]. In resting cells, NF-κB exists in its canonical form as a p50/p65 heterodimer bound to the inhibitor factor-κB (IκB) in the cytoplasm. In response to extracellular stimulation such as LPS and tumor necrosis factor-α, the degradation of IκB through proteolysis is initiated, which allows the translocation of NF-κB from the cytoplasm into the nucleus [23, 24]. Once translocated to the nucleus, p50/p65 binds to the κB sites in various genes, including elements in the E-selectin, vascular cell adhesion protein 1, and ICAM-1 promoters [23]. In the present study, GC31 pretreatment suppressed LPS-induced NF-κB activation by reducing the levels of NF-κB p65 in the nuclei of HUVECs and inhibiting the degeneration of IκBα in the cytoplasm, consistent with its effects on LPS-induced RAW264.7 cells [13]. Previous studies demonstrated that two different NF-κB inhibitors, PDTC and BAY11–7082, inhibited the expression of these adhesion molecules, thus preventing monocyte adhesion to endothelial cells [34,40]. Therefore, we speculate that the inhibitory effect of GC31 on ICAM-1 mRNA and protein production and monocyte-endothelium interaction in LPS-induced HUVECs may result from the suppression of NF-κB activation.

It has been reported that the MAPK family is involved in LPS-mediated signaling in endothelial cells and ICAM-1 expression [26,41-43]. Hence, we assessed the effect of GC31 on LPS-induced phosphorylation of p38 MAPK and ERK1/2. Our findings suggested that GC31 pretreatment mildly to moderately suppressed the phosphorylation of both proinflammatory kinases in LPS-stimulated HUVECs, and the inhibitory effect on p38 MAPK activation is more prominent. In endothelial cells, p38 MAPK can mediate cellular responses through translocating to nucleus, where it phosphorylates and activates transcription factors, i.e., AP1 [44] and NF-κB [45]. Carter et al. [45] found that the p38 MAP kinase regulates NF-kB-dependent gene transcription, in part, by modulating activation of TATA-binding protein, and a dominant-negative p38 MAPK expression vector reduces NF-κB-dependent gene expression but has no impact on NF-κB activation at any levels. Thus, inhibition of p38 MAPK activation may further restrict other transcriptional factors’ effect, such as NF-κB, and then prevent the inflammatory signaling cascade.

In some ocular surface inflammatory diseases, such as dry eye and pterygium, ICAM-1 was found to be upregulated on lymphocytes and/or vascular endothelial cells resulting in lymphocytic diapedesis to the lacrimal and conjunctival tissues, and may serve as a signaling molecule for predisposition of ocular surface inflammation [46,47]. Because of its small size, the GC31 peptide may be promising for topical application. In addition, increased leukocyte adhesion and expression of proinflammatory cytokines and adhesion molecules have characterized several other ocular diseases, including diabetic retinopathy [48], retinal vessel occlusions, and ischemic-reperfusion injury [49]. The current findings about the novel peptide GC31 may be helpful in these conditions and deserves further investigation.

In conclusion, our results demonstrated that GC31 interfered with U937 monocyte adhesion to LPS-induced...
HUVECs by suppressing endothelial ICAM-1 mRNA and protein expression, through inhibiting the nucleus translocation of NF-κB, and partially by reducing the phosphorylation of p38 MAPK and ERK1/2. These findings underscore a role of GC31 in ameliorating endothelial dysfunction by exogenous insults and raise the possibility that GC31 plays a protective role in the pathophysiology of vascular inflammation and uveitis.

ACKNOWLEDGMENTS

This work was supported by National Natural Science Foundation of China (No. 81273424) and National Specialized Science and Technology Projects for “Significant New Drugs Creation” (2011ZX09302–007–02).

REFERENCES

1. Raetz CR. Biochemistry of endotoxins. Annu Rev Biochem 1990; 59:129-70. [PMID: 1695830].
2. Frasca G, Cardile V, Puglia C, Bonina C, Bonina F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin Exp Gastroenterol 2012; 5:61-7. [PMID: 22629114].
3. Erdinest N, Shmueli O, Grossman Y, Ovadia H, Solomon A. Anti-inflammatory effects of alpha linolenic Acid on human corneal epithelial cells. Invest Ophthalmol Vis Sci 2012; 53:4396-406. [PMID: 22669722].
4. Suzuki M, Tachibana I, Takeda Y, He P, Minami S, Iwasaki T, Kida H, Goya S, Yoshida M, Kumagai T, Osaki T, Kawase I. Tetraspanin CD9 negatively regulates lipopolysaccharide-induced macrophage activation and lung inflammation. J Immunol 2009; 182:6485-93. [PMID: 19414803].
5. Bierhaus A, Chen J, Liliensiek B, Nawroth PP. LPS and cytokine-activated endothelium. Semin Thromb Hemost 2000; 26:571-87. [PMID: 1129414].
6. Bannerman DD, Goldblum SE. Endotoxin induces endothelial barrier dysfunction through protein tyrosine phosphorylation. Am J Physiol 1997; 273:L217-26. [PMID: 9252559].
7. Haraldsen G, Kyle D, Lien B, Farstad IN, Brandtzæg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 1996; 156:2558-65. [PMID: 8786319].
8. Yang CM, Luo SF, Hsieh HL, Chi PL, Lin CC, Wu CC, Hsiao LD. Interleukin-1beta induces ICAM-1 expression enhancing leukocyte adhesion in human rheumatoid arthritis synovial fibroblasts: involvement of ERK, JNK, AP-1, and NF-kappaB. J Cell Physiol 2010; 224:516-26. [PMID: 20432452].
9. Becker MD, Garman K, Whitcup SM, Planck SR, Rosenbaum JT. Inhibition of leukocyte sticking and infiltration, but not rolling, by antibodies to ICAM-1 and LFA-1 in murine endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 2001; 42:2563-6. [PMID: 11581199].
10. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 1998; 18:842-51. [PMID: 9598845].
11. Hsu WY, Chao YW, Tsai YL, Lien CC, Chang CF, Deng MC, Ho LT, Kwok CF, Juan CC. Resistin induces monocyte-endothelial cell adhesion by increasing ICAM-1 and VCAM-1 expression in endothelial cells via p38MAPK-dependent pathway. J Cell Physiol 2011; 226:2181-8. [PMID: 21520070].
12. Panes J, Perry M, Granger DN. Leukocyte–endothelial cell adhesion: avenues for therapeutic intervention. Br J Pharmacol 1999; 126:537-50. [PMID: 10188959].
13. Jin H, Yang X, Liu K, Gu Q, Xu X. Effects of a novel peptide derived from human thrombomodulin on endotoxin-induced uveitis in vitro and in vivo. FEBS Lett 2011; 585:3457-64. [PMID: 22001200].
14. Koizumi K, Poulaki V, Doehmen S, Welsandt G, Radetzky S, Lappas A, Kociok N, Kirchhoff B, Joussen AM. Contribution of TNF-alpha to leukocyte adhesion, vascular leakage, and apoptotic cell death in endotoxin-induced uveitis in vivo. Invest Ophthalmol Vis Sci 2003; 44:2184-91. [PMID: 12714660].
15. Miyamoto K, Ogura Y, Hamada M, Hishiwaki H, Hiroshima N, Honda Y. In vivo quantification of leukocyte behavior in the retinal microcirculation during endotoxin-induced uveitis. Invest Ophthalmol Vis Sci 1996; 37:2708-15. [PMID: 8977486].
16. Xu H, Forrester JV, Liversidge J, Crane IJ. Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci 2003; 44:226-34. [PMID: 12506079].
17. Conway EM, Van de Wouwer M, Pollefeyt S, Jurk K, Van Aken H, De Vries A, Weitz JI, Weiler H, Hellings PW, Schaeffer P, Herbert JM, Collen D, Theilmeier G. The lectin-like domain of thrombomodulin confers protection from neutrophil-mediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen-activated protein kinase pathways. J Exp Med 2002; 196:565-77. [PMID: 12208873].
18. DiCorleto PE, de la Motte CA. Characterization of the adhesion of the human monocyte cell line U937 to cultured endothelial cells. J Clin Invest 1985; 75:1153-61. [PMID: 3988935].
19. Liu HT, Huang P, Ma P, Liu QS, Yu C, Du YG. Chitosan oligosaccharides suppress LPS-induced IL-8 expression in human umbilical vein endothelial cells through blockade of p38 and Akt protein kinases. Acta Pharmacol Sin 2011; 32:478-86. [PMID: 21468084].
20. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(Delta Delta C(T)) Methods 2001; 25:402-8. [PMID: 11846609].
21. McMenamin PG, Crewe J. Endotoxin-induced uveitis. Kinetics and phenotype of the inflammatory cell infiltrate and the response of the resident tissue macrophages and dendritic cells in the iris and ciliary body. Invest Ophthalmol Vis Sci 1995; 36:1949-59. [PMID: 7657537].

22. Hsu Y, Ley K. Adhesion molecules and atherogenesis. Acta Physiol Scand 2001; 173:35-43. [PMID: 11678724].

23. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappa B and cytokine-inducible enhancers. FASEB J 1995; 9:899-909. [PMID: 7542214].

24. Baeuerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12:141-79. [PMID: 801280].

25. Pahl HL. Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 1999; 18:6853-66. [PMID: 10602461].

26. Schumann RR, Pfeil D, Lamping N, Kirschning C, Scherzinger H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J Pharmacol Sci 2010; 113:208-13. [PMID: 20562517].

27. Hashimoto S, Gon Y, Matsumoto K, Maruoka S, Takeshita I, Hayashi S, Asai Y, Jibiki I, Machino T, Hori T. Selective inhibitor of p38 mitogen-activated protein kinase inhibits lipopolysaccharide-induced interleukin-8 expression in human pulmonary vascular endothelial cells. J Pharmacol Exp Ther 2000; 293:370-5. [PMID: 10773004].

28. Xu H, Gonzalo JA, St Pierre Y, Williams IR, Kupper TS, Cotran RS, Springer TA, Gutierrez-Ramos JC. Leukoeytosis and resistance to septic shock in intercellular adhesion molecule 1-deficient mice. J Exp Med 1994; 180:95-109. [PMID: 7911822].

29. Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leukoc Biol 1994; 55:662-75. [PMID: 8182345].

30. Steinberg D. Lipoproteins and the pathogenesis of atherosclerosis. Circulation 1987; 76:508-14. [PMID: 3621517].

31. Miyamoto K, Ogura Y. Pathogenetic potential of leukocytes in diabetic retinopathy. Semin Ophthalmol 1999; 14:233-9. [PMID: 10758224].

32. Adamis AP. Is diabetic retinopathy an inflammatory disease? Br J Ophthalmol 2002; 86:363-5. [PMID: 11914197].

33. Cybulsky MI, Gimbrone MA Jr. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science 1991; 251:788-91. [PMID: 1990440].

34. Kalogeris TJ, Kevil CG, Laroux FS, Coe LL, Phifer TJ, Alexander JS. Differential monocyte adhesion and adhesion molecule expression in venous and arterial endothelial cells. Am J Physiol 1999; 276:L9-19. [PMID: 9887050].

35. Whitcup SM, DeBarge LR, Caspi RR, Harning R, Nussenblatt RB, Chan CC. Monoclonal antibodies against ICAM-1 (CD54) and LFA-1 (CD11a/CD18) inhibit experimental autoimmune uveitis. Clin Immunol Immunopathol 1993; 67:143-50. [PMID: 8100190].

36. Johnston B, Butcher EC. Chemokines in rapid leukocyte adhesion triggering and migration. Semin Immunol 2002; 14:83-92. [PMID: 11978080].

37. Gerszten RE, Garcia-Zepeda EA, Lim YC, Yoshida M, Ding HA, Gimbrone MA Jr, Luster AD, Luscinaskas FW, Rosenzweig A. MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature 1999; 398:718-23. [PMID: 10227295].

38. Hou J, Baichwal V, Cao Z. Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci USA 1994; 91:11641-5. [PMID: 7972116].

39. Kim JD, Lee JL, Park JH, Lee JM, Kim YH, Kim SJ. Induction of ICAM-1 and HLA-DR expression by IFN-gamma in malignant melanoma cell lines. Yonsei Med J 1995; 36:15-25. [PMID: 7740833].

40. Tsubosaka Y, Murata T, Yamada K, Uemura D, Hori M, Ozaki H. Halichlorine reduces monocyte adhesion to endothelium through the suppression of nuclear factor-kappaB activation. J Pharmacol Sci 2010; 113:208-13. [PMID: 20562517].

41. Arditi M, Zhou J, Torres M, Durden DL, Stins M, Kim KS. Lipopolysaccharide stimulates the tyrosine phosphorylation of mitogen-activated protein kinases p44, p42, and p41 in vascular endothelial cells in a soluble CD14-dependent manner. Role of protein tyrosine phosphorylation in lipopolysaccharide-induced stimulation of endothelial cells. J Immunol 1995; 155:3994-4003. [PMID: 7561108].

42. Yan W, Zhao K, Jiang Y, Huang Q, Wang J, Kan W, Wang S. Role of p38 MAPK in ICAM-1 expression of vascular endothelial cells induced by lipopolysaccharide. Shock 2002; 17:433-8. [PMID: 12022767].

43. Tamura DY, Moore EE, Johnson JL, Zallen G, Aiboshi J, Silliman CC. p38 mitogen-activated protein kinase inhibition attenuates intercellular adhesion molecule-1 up-regulation on human pulmonary microvascular endothelial cells. Surgery 1998; 124:403-7. [PMID: 9706165].

44. Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. Philos Trans R Soc Lond B Biol Sci 1996; 351:127-34. [PMID: 8650258].

45. Carter AB, Knudtson KL, Monick MM, Hunninghamke GW. The p38 mitogen-activated protein kinase is required for NF-kappaB-dependent gene expression. The role of TATA-binding protein (TBP). J Biol Chem 1999; 274:30858-63. [PMID: 10521478].

46. Tekelioglu Y, Turk A, Avunduk AM, Yulug E. Flow cytometrical analysis of adhesion molecules, T-lymphocyte subpopulations and inflammatory markers in pterygium. Ophthalmologica 2006; 220:372-8. [PMID: 17095882].

47. Gao J, Morgan G, Tieu D, Schwab TA, Luo JY, Wheeler LA, Stern ME. ICAM-1 expression predisposes ocular tissues to immune-based inflammation in dry eye patients and
Sjögrens syndrome-like MRL/lpr mice. Exp Eye Res 2004; 78:823-35. [PMID: 15037117].

48. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res 2011; 30:343-58. [PMID: 21635964].

49. Ogura Y. In vivo evaluation of leukocyte dynamics in the retinal and choroidal circulation. Nippon Ganka Gakkai Zasshi 1999; 103:910-22. [PMID: 10643293].