Cumulants of net-charge distribution from particle-antiparticle sources

IGOR ALTSYBEEV

Saint-Petersburg State University
Universitetskaya nab. 7/9, St. Petersburg, 199034, Russia
i.altybee@spb.edu

It is shown how high-order cumulants of net-charge distribution in hadronic collisions at LHC energies can be expressed via lower-order terms under the assumption that particle-antiparticle pairs are produced in independent local processes. It is argued and tested with HIJING model that this assumption is typically valid for net-proton fluctuations in case when no critical behaviour is present in the system. Values estimated in such a way can be considered as baselines for direct measurements of high-order net-charge fluctuations in real data.

1. Introduction

In heavy-ion collision experiments, measurements of high-order fluctuations of conserved quantities, such as net-charge, net-baryon, net-strangeness, are of great importance since they should increase in the vicinity of the critical point of the QCD diagram [1] and may serve as a signature of the transition between the hadronic and partonic phases. These expectations are confirmed also by lattice QCD calculations [2]. At LHC energies, a smooth crossover between a hadron gas and the QGP is expected [2, 3]. Studies of the net-particle cumulant ratios are of a special interest because of their direct connection to susceptibilities theoretically calculable in the lattice QCD. In particular, net-proton fluctuations have been extensively studied experimentally [4, 5].

The net-charge is defined as $\Delta N = N^+ - N^-$, where N^+ and N^- are the numbers of positively and negatively charged particles measured in an event within rapidity acceptance Y (i.e. $y \in -Y/2, Y/2$). For example, the second cumulant of net-charge distribution is given by

$$\kappa_2(\Delta N) = \langle (\Delta N - \langle \Delta N \rangle)^2 \rangle = \langle (\Delta N)^2 \rangle - \langle \Delta N \rangle^2,$$

(1)

*Presented at Excited QCD 2020.
where angular brackets denote averaging over events. Expressions for higher-order cumulants are increasingly more complicated.

If fluctuations of both N^+ and N^- are Poissonian, ΔN has the Skellam distribution, with cumulants $\kappa_r(\Delta N) = \langle N^+ \rangle + (-1)^r \langle N^- \rangle$, $r = 1, 2, ...$, such that, for instance, ratio $\kappa_4/\kappa_2 = 1$. The Poissonian particle production is usually considered as a baseline model. However, in reality the cumulants of particle distributions are very sensitive to two so-called non-dynamical contributions that are not related to criticality in the system. The first contribution comes from the fluctuations of a number of emitting sources – the so-called "volume fluctuations" (VF) [6, 7]. The second contribution is due to charge conservation laws, for example, from neutral resonances decaying into pairs of oppositely charged particles. These two effects make interpretation of experimental measurements of the cumulants highly non-trivial, especially for higher-order cumulants. Both of them should be taken into account when one tries to extract signals of critical behaviour from measured observables [6, 8, 9]. At LHC energies, however, it is possible to construct a simple baseline model that include both these effects, if one assumes production of oppositely charged pairs that are nearly uncorrelated in rapidity. This is demonstrated in Section 2, and tested with HIJING event generator in Section 3 for the case of net-proton fluctuations. More details can be found in [10].

Yet another caveat about ordinary cumulants κ_r is that they get trivial contributions to all orders due to self-correlations. It was shown in [11, 12] that self-correlations can be removed systematically by constructing factorial cumulants. This is briefly considered in Section 4.

2. Decomposition of cumulants for two-particle sources

Creation of oppositely charged particle pairs is governed by a local charge conservation. The simplest case of a pair production process is a two-body neutral resonance decay, where integer +1 and −1 charges are produced, and net-charge contribution to cumulants from a resonance is determined solely by its decay kinematics and resonance spectra. Another process is string fragmentation that produces fractional charges at each breaking point (quarks, diquarks), which then combine with partons from next breaking points. That may lead to a correlation between hadrons coming from several adjacent parts of a string, and, therefore, influence net-charge fluctuations in a complicated way.

In case of protons and antiprotons, however, there are no resonances that decay into p and \bar{p} pair. Such $p-\bar{p}$ pairs are produced mainly in string breaking (each of them may be produced directly or via a decay of a short-lived resonance). Moreover, a probability of production of two or more
baryon pairs from adjacent parts of the same string is low. Registration of p-\bar{p} pairs from jets in a low transverse momentum (p_T) range (typically one takes $p_T \lesssim 2$ GeV/c) should be low as well. Therefore, if there are no processes other than resonance decays and string fragmentation, the p-\bar{p} pairs visible in an event may be considered as nearly independent. This allows one to write simplifying expressions for the cumulants of net-charge fluctuations as it is described below.

Decompositions of cumulants for a system of N_S independent sources up to the fourth order are provided in [6] and up to the eighth order – in [10]. At LHC energies, where $\langle N^+ \rangle = \langle N^- \rangle$, the second and the fourth cumulants of net-charge distribution decompose as

$$\kappa_2(\Delta N) = k_2(\Delta n)\langle N_S \rangle,$$

$$\kappa_4(\Delta N) = k_4(\Delta n)\langle N_S \rangle + 3k_2^2(\Delta n)K_2(N_S),$$

where $\Delta n = n^+ - n^-$ is a net-charge of a single source, and different notations for cumulants κ, k and K serve only for better visual distinction which distribution they are referred to. The ratio of the fourth to the second cumulant reads as

$$\frac{\kappa_4}{\kappa_2}(\Delta N) = \frac{k_4}{k_2}(\Delta n) + 3k_2^2(\Delta n) \frac{K_2(N_S)}{\langle N_S \rangle}.$$

The VF enter this equation via the second term that is proportional to the variance of the number of sources. The formulae above are valid for any types of sources, in particular, in [6] “wounded nucleons” are considered. Instead, we may treat the sources as particle-antiparticle pairs, for instance, p-\bar{p}. Note that these sources may be correlated to a certain extent (for example, due to radial and azimuthal flow) provided that swapping of the charges in each produced pair does not affect the physics of the whole event. The fourth cumulant for a single two-particle source simplifies to

$$k_4(\Delta n) = k_2(\Delta n) - 3k_2^2(\Delta n).$$

We may now recall the argument that p-\bar{p} pairs are nearly uncorrelated in rapidity and the fact that the distribution of $p(\bar{p})$ is nearly flat at mid-rapidity $|y| \lesssim 1$ at LHC energies. It turns out that in this case it is possible to rewrite the cumulant ratio (4) using quantities that are measurable in an experiment [10]:

$$\frac{\kappa_4}{\kappa_2}(\Delta N) = 1 + 3\kappa_2(\Delta N)R_2(N^+),$$
where $R_2(N^+) = \langle N^+(N^+ - 1) \rangle / \langle N^+ \rangle^2 - 1$ is the so-called robust variance of a number of positive particles measured within acceptance Y (equivalently, $R_2(N^-)$ could be used instead). Values of the cumulant ratio calculated with (6) could be considered as baselines for experimental measurements of the ratios (instead of, for instance, the Skellam baseline). Possible signals from critical phenomena would be indicated by some deviations from these baselines.

3. Application to realistic model

Validity of the assumptions about charged pair production done above was put into test using HIJING monte-carlo generator, which simulates multiple jet production and fragmentation of quark-gluon strings [13]. For that, analysis of net-proton fluctuations in Pb-Pb collisions simulated in HIJING was performed [10]. Protons and antiprotons within $y \in (-2, 2)$ and transverse momentum range $0.6–2$ GeV/c were selected. Figure 1 (a) shows the dependence on rapidity acceptance Y of the κ_4/κ_2 ratios calculated directly (circles) and by expression (6) (lines) in several centrality classes. Centrality was determined using multiplicity distribution in two symmetric $3 < |\eta| < 5$ ranges, which emulates the way of centrality determination in real experiments. A good agreement between the calculations can be seen in all classes, indicating that the assumption about the $p-\bar{p}$ pairs as nearly independent sources is approximately valid in HIJING. Slopes of the lines

Fig. 1. Dependence of the net-proton κ_4/κ_2 ratio on the size of the rapidity acceptance Y in HIJING in Pb-Pb events at $\sqrt{s_{NN}} = 2.76$ TeV [10]. Direct calculations are shown by circles, analytical calculations with (6) – by dashed lines. Panel (a) – results in several centrality classes of the class width 10% are shown, (b) – dependence on the width of centrality class (20%, 10% and 5%) is demonstrated. Note that in each graph there are point-by-point correlations as Y increases.
for different centrality classes reflect changes in VF via the second term in (6). Panel (b) demonstrates a decrease of \(\kappa_4/\kappa_2 \) values with the width of a centrality class (when the width changes from 20% down to 5%), which is explained by a reduction of the volume fluctuations with the narrowing of the class. It was checked also that the robust variance \(R_2(N^+) \) as a function of \(Y \) stays constant, which is essential for calculations with (6). More details of this study, in particular, a decomposition expression for the \(\kappa_6/\kappa_2(\Delta N) \) ratio can be found in [10].

4. Factorial cumulants

The fourth-order factorial cumulant of net-charge distribution is given by

\[
f_4 = \kappa_4 - 6(\langle NQ^2 \rangle - \langle N \rangle \langle Q^2 \rangle - 2 \langle NQ \rangle \langle Q \rangle + 2 \langle N \rangle \langle Q \rangle^2) \\
+ 8(\langle Q^2 \rangle - \langle Q \rangle^2) + 3(\langle N^2 \rangle - \langle N \rangle^2) - 6\langle N \rangle, \quad (7)
\]

where \(N = N^+ + N^- \) and \(\Delta N \) is denoted as \(Q \) for clarity [12]. It is interesting to check the behaviour of this observable in realistic models. As an example, Pb-Pb collisions from HIJING were analyzed in the present work. Values of the factorial cumulant \(f_4 \) of net-proton distribution and the conventional \(\kappa_4/\kappa_2 \) ratios are shown in Figure 2 as a function of the acceptance width \(Y \) in two centrality classes 70-80% and 80-90\%\(^1\). The \(\kappa_4/\kappa_2 \) values are shown for two peripheral centrality classes only, since for more central classes statistical uncertainties for \(f_4 \) are much larger.

\(^1\) Results are shown for two peripheral centrality classes only, since for more central classes statistical uncertainties for \(f_4 \) are much larger.

Fig. 2. Dependence net-proton cumulant ratio \(\kappa_4/\kappa_2 \) (closed markers) and factorial cumulant \(f_4 \) (open markers) on \(Y \) in HIJING. Pb-Pb collisions at \(\sqrt{s_{NN}} = 2.76 \) TeV, centrality classes 70-80% and 80-90%.
ratios are the same as in Fig. 1, and the values are above unity (i.e. above the Skellam baseline) due to the VF, as it was discussed above. Moreover, values in class 70-80% are higher than in 80-90% since the VF in the former class are larger. In contrast, factorial cumulants f_4 are compatible with zero for both centralities. This is because factorial cumulants of order k remove contributions of lower orders $r < k$, which means, in particular, that net-proton f_4 should be suppressed in HIJING. Factorial cumulants are also much less sensitive to theVF than ordinary cumulants [12]. However, in distinction from ordinary cumulants, factorial cumulants cannot be directly compared with the lattice data [11,12], therefore their usefulness in studies of the QCD diagram is under question.

5. Summary

It was shown that high-order cumulants of net-charge distribution can be decomposed into lower-order terms under the assumption of independent production of particle-antiparticle pairs. At LHC energies, this should be a good approximation for net-proton fluctuations at mid-rapidity in case if there is no critical behaviour in the system, as it was demonstrated for the κ_4/κ_2 ratio in HIJING. Such reduced expressions for high-order cumulants can be considered as baselines for direct experimental measurements. It was shown also that the fourth net-proton factorial cumulant in HIJING is compatible with zero, which also indicates that there are no sources of genuine high-order net-proton correlations in this generator.

Acknowledgements

This work is supported by the Russian Science Foundation, grant 17-72-20045.

REFERENCES

[1] M.A. Stephanov, K. Rajagopal and E.V. Shuryak, Phys. Rev. D60 (1999) 114028, hep-ph/9903292.
[2] A. Bazavov et al., Phys. Rev. D85 (2012) 054503, 1111.1710.
[3] S. Borsanyi et al., JHEP 10 (2018) 205, 1805.04445.
[4] STAR, X. Luo, PoS CPOD2014 (2015) 019, 1503.02558.
[5] ALICE, S. Acharya et al., (2019), 1910.14396.
[6] P. Braun-Munzinger, A. Rustamov and J. Stachel, Nucl. Phys. A 960 (2017) 114, 1612.00702.
[7] T. Sugiuira, T. Nonaka and S. Esumi, Phys. Rev. C100 (2019) 044904, 1903.02314.
[8] A. Bzdak, V. Koch and V. Skokov, Phys. Rev. C87 (2013) 014901, 1203.4529.
[9] P. Braun-Munzinger, A. Rustamov and J. Stachel, (2019), 1907.03032.
[10] I. Altsybeev, (2020), arXiv:2002.11398.
[11] M. Kitazawa and X. Luo, Phys. Rev. C 96 (2017) 024910, 1704.04909.
[12] R. Rogly, G. Giacalone and J.Y. Ollitrault, Phys. Rev. C 99 (2019) 034902, 1809.00648.
[13] X.N. Wang and M. Gyulassy, Phys. Rev. D 44 (1991) 3501.