ORGANIC CHEMISTRY | RESEARCH ARTICLE

One-pot, solvent-free, and efficient synthesis of 2,4,6-triarylpyridines using CoCl₂.6H₂O as a recyclable catalyst

Mahmood Kamali

Abstract: A one-pot, three components coupling of aryl aldehyde, acetophenone, and ammonium acetate was performed to afford the corresponding 2,4,6-triarylpyridines (TAP_{1-17}). The TAP_{1-17} were synthesized in the presence of cobalt(II) chloride hexahydrate (CoCl₂.6H₂O) via an improved Chichibabin pyridine synthesis protocol. This study has shown that CoCl₂.6H₂O promotes this reaction in comparison to other transition metal salt such as with FeCl₃, NiCl₂.6H₂O, CuCl₂.2H₂O, CdCl₂.H₂O, SbCl₃, SnCl₂.2H₂O, and ZnCl₂. This method has several advantages, for example, excellent yields, short reaction times, easy work up, and solvent-free condition. Also, this catalyst was recyclable for four consecutive runs.

Keywords: 2,4,6-triarylpyridine; chichibabin pyridine synthesis; kröhnke pyridines; cobalt(ii) chloride hexahydrate

1. Introduction
Pyridine ring systems are of interest because of their wide range of pharmacological activities such as antimalarial, vasodilator, anesthetic, anticonvulsant, antiepileptic, and agrochemicals such as fungicidal, pesticidal, and herbicidal (Enyedy, Sakamuri, Zaman, Johnson, & Wang, 2003; Kim et al., 2004; Klimesová, Svoboda, Waisserr, Pour, & Kaustová, 1999; Pillai et al., 2003). Recent studies have highlighted the biological activity of triarylpyridines as a pyridine derivative, providing impetus for further studies in utilizing this scaffold in new therapeutic drug classes (Bonse, Richards, Ross, Lowe, & Kraut-Siegel, 2000; Lowe et al., 1999; Zhao et al., 2001, 2004). Due to their π-stacking ability, triarylpyridines are commonly used as building blocks in supramolecular chemistry (Cave, Hardie, Roberts, & Raston, 2001; Constable et al., 2000; Jetti, Nagia, Xue, & Mak, 2001; Watson, Bampos, & Sanders, 1998). Therefore, there has been increasing interest to develop new methods for the synthesis of 2,4,6-triarylpyridines, Kröhnke pyridines. Previously, 2,4,6-triarylpyridines have been
prepared by the condensation of 1,5-diketones with formamide-formic acid (Chubb, Hay, & Sandin, 1953) and by other synthetic procedures including the Chichibabin method (Frank & Seven, 1949; Zecher & Kröhnke, 1961), and reaction of N-phenacylpyridinium salts with α,β-unsaturated ketones in the presence of ammonium acetate (Kröhnke, 1976; Kröhnke & Zecher, 1962). Recently, several new improved methods and procedures for preparation of 2,4,6-triarylpyridines have been reported, for example, the reaction of α-ketoketene dithioacetals with methyl ketones in the presence of NH₄OAc (Potts, Cipullo, Ralli, & Theodoridis, 1981), the reaction of N-phosphinylethanamines with aldehydes (Kobayashi, Kakiuchi, & Kato, 1991), solvent-free reaction of chalcones with ammonium acetate (Adib, Tahermansouri, Koloogani, Mohammadi, & Bijan zadeh, 2006). Also, there are a number of methods reported for synthesis of these compounds using various catalysts, for example, Preyssler-type heteropolyacid (H₄[NaP₅W₃₀O₁₁₀]) (Heravi, Bakhtiari, Daroogheha, & Bamoharram, 2007), HClO₄–SiO₂ (Nagarapu, Peddiraju, & Apuri, 2007), AlPO₄ (Rajput, Subhashini, & Shivaraj, 2010), Bi(OTf)₃ (Shinde, Labade, Gujar, Shingate, & Shingare, 2012), I₂ (Ren & Cai, 2009), ionic liquid ([HO₃S(CH₂)₄MIM][HSO₄]) (Davoodnia, Bakavoli, Moloudi, Tavakoli-Hoseini, & Khashi, 2010), nanoparticles (Safari, Zarnegar, & Borujeni, 2013; Shafiee & Moloudi, 2011), and without catalyst (Tu et al., 2005; Wang, Yang, Song, & Wang, 2015).

Herein, we would like to report an efficient procedure for the preparation of 2,4,6-triarylpyridines through a one-pot condensation reaction including aldehydes, acetophenones, and NH₄OAc in the presence of cobalt(II) chloride hexahydrate (CoCl₂·6H₂O) under solvent-free conditions.

Catalyst	Isolated yield (%)
FeCl₃	10
CoCl₂·6H₂O	90
NiCl₂·6H₂O	38
CuCl₂·2H₂O	53
ZnCl₂	68
CdCl₂·H₂O	65
SnCl₂·2H₂O	67
SbCl₃	56

*Benzaldehyde (1 mmol), acetophenone (2 mmol), NH₄OAc (1.5 mmol), catalyst, 20% mol, Solvent Free, 120°C, 5 h.

Temperature (°C) of React.	Catalyst (mol%)	CoCl₂·6H₂O as catalyst	
90	20	4	35
100	20	4	83
110	20	4	90
120	20	4	90
110	20	5	90
110	0.5	4	55
110	1	4	75
110	2.5	4	89
110	5	4	90
110	10	4	90
2. Results and discussion

In order to study the efficiency of new methods, acetophenone (1), benzaldehyde (2), ammonium acetate (3), and a range of different metal salt were investigated and were heated to give 2,4,6-triphenylpyridine (TAP) (Scheme 1), under solvent-free conditions. Initially, the reactions were carried out using different catalysts (CoCl$_2$.6H$_2$O, FeCl$_3$, NiCl$_2$.6H$_2$O, CuCl$_2$.2H$_2$O, CdCl$_2$.H$_2$O, SbCl$_3$, SnCl$_2$.2H$_2$O). CoCl$_2$.6H$_2$O was selected as the best catalyst of those investigated with an initial yield of 90% (Table 1). The reaction was performed at different temperatures, times, and differing amounts of CoCl$_2$.6H$_2$O. The results from this study are presented in Table 2, whereby the best yields were obtained when the temperature was at 110°C with 4 h reaction time and 2.5 mol% of CoCl$_2$.6H$_2$O.

Several activated and deactivated aromatic aldehydes, and acetophenones derivatives underwent the reaction to give the corresponding TAPs in high yields. The results are shown in Table 3. The experimental procedure was very simple, convenient, and had the ability to tolerate a variety of other functional groups such as methoxy, nitro, hydroxyl, and halides under the reaction conditions (Table 3).

Interestingly, the catalyst can be recycled for four consecutive runs without significant loss of activity (Table 4). For this purpose, after completion of the reaction, the reaction mixture was cooled to room temperature, and then, water was added. The precipitated solid was isolated by filtration;

Table 3. Details 2,4,6-triarylpyridine synthesis

Entry	Ar	Ar'	Product	Isolated yield (%)	mp°C	
				Found	Lit.	
1	Ph	Ph	TAP$_{1}$	89	135–137	134–135a
2	Ph	4-Cl-Ph	TAP$_{2}$	91	124–127	124–126b
3	Ph	4-NO$_2$-Ph	TAP$_{3}$	92	196–198	195–197b
4	Ph	2-Me-Ph	TAP$_{4}$	86	122–124	120–122b
5	Ph	4-Me-Ph	TAP$_{5}$	87	121–123	123–124b
6	Ph	4-HO-Ph	TAP$_{6}$	89	194–196	197b
7	Ph	4-MeO-Ph	TAP$_{7}$	90	99–101	98b
8	Ph	4-Br-Ph	TAP$_{8}$	92	103–105	102–104b
9	Ph	2-Thienyl	TAP$_{9}$	84	162–164	165–166b
10	Ph	2-Furyl	TAP$_{10}$	83	169–170	170–171b
11	4-Cl-Ph	Ph	TAP$_{11}$	84	177–189	188–190b
12	4-Cl-Ph	2-Cl-Ph	TAP$_{12}$	76	165–169	168–170b
13	4-Me-Ph	Ph	TAP$_{13}$	90	159–160	159–160b
14	4-Me-Ph	4-MeO-Ph	TAP$_{14}$	86	154–156	156–157b
15	4-Me-Ph	4-Me-Ph	TAP$_{15}$	89	178–179	178–180b
16	4-Me-Ph	4-Cl-Ph	TAP$_{16}$	91	199–201	200–202b
17	4-MeO-Ph	4-NO$_2$-Ph	TAP$_{17}$	92	142–144	143–144b

aAdib et al. (2006); bRen and Cai (2009); cHerovi et al. (2007); dShinde et al. (2012); eKobayashi et al. (1991); fChiu, Tang, and Ellingboe (1998); gSafari et al. (2013); hmaleki et al. (2010); iKröhnke and Zecher (1962); jShafiee and Moloudi (2011).
the catalyst was recovered from the filtrate by evaporation of the water at room temperature, and reused for the similar reaction.

3. Experimental
All reactions were carried out in an efficient hood. The starting materials were purchased from Merck and Fluka chemical companies. Melting points were determined with a Branstead Electrothermal model 9200 apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer RX1 Fourier transform infrared spectrometer. The \(^1\)H and \(^13\)C NMR spectra were recorded in DMSO-d\(_6\), on Bruker Avance 300-MHz spectrometers. Elemental analyses were carried out by a Perkin Elmer 2400 series II CHN/O analyzer.

3.1. Synthesis of TAP\(_1\) as general procedure
A mixture of benzaldehyde (0.21 mL, 2 mmol), acetophenone (0.47 mL, 4 mmol), \(\text{NH}_4\text{OAc}\) (0.23 gr, 3 mmol), and \(\text{CoCl}_2\cdot6\text{H}_2\text{O}\) (0.12 gr, 2.5 mol%) was heated on oil bath with stirring at 110°C for 4 h (Tables 1 and 2). After cooling, the reaction mixture was poured in ice water (10 mL) and the precipitated solid was collected by filtration, washed with distilled water (40 mL), and dried. The crude product was recrystallized from 95% ethanol (10 mL) to give the corresponding pure product (TAP\(_1\)). Colorless crystals in 89% yield, mp 135–137°C, IR (KBr) \(\nu\): 3,071, 1,585, 1,583, 1,496, 1,476, 1,384, 1,054, 1,011, 742, 665 cm\(^{-1}\). \(^1\)H NMR (300 MHz, DMSO-d\(_6\)): \(\delta\): 7.40–7.60 (9H, m), 8.03 (d, \(J = 7.6\) Hz, 2H), 8.17 (s, 2H), 8.28 (d, \(J = 7.6\) Hz, 2H), 8.35 (d, \(J = 7.3\) Hz, 2H) ppm. \(^13\)C NMR (75 MHz, DMSO-d\(_6\)): \(\delta\): 117.2, 127.4, 127.7, 128.8, 129.0, 129.4, 129.5, 139.0, 139.5, 150.2 and 157.3 ppm. Anal. Calcd for \(\text{C}_{23}\text{H}_{17}\text{N}\): C, 89.87; H, 5.57; N, 4.56. Found: C, 89.53; H, 5.49; N, 4.89.

4. Conclusion
In conclusion, we have successfully developed a quick, convenient, and efficient method for the synthesis of TAPs under solvent-free conditions. The environmental advantages include omitting organic solvent, generality and simplicity of procedure, shorter reaction time, simple workup, reusable catalyst condition, and pure products in excellent yields.

Table 4. Recycled of CoCl\(_2\cdot6\)H\(_2\)O in the synthesis of TAP\(_1\) reactions

Catalyst type	Runs	1	2	3	4	5	6
Product yield (%)		89	88	86	82	80	75

Funding
Mahmood Kamali appreciates the Research Council of the Kharazmi University for financial support.

Author details
Mahmood Kamali
E-mails: kamali.mahmood@ymail.com, Mkamali@khu.ac.ir

1 Faculty of Chemistry, Kharazmi University, 49-Mofetteh Ave., Tehran, Iran.

Citation information
Cite this article as: One-pot, solvent-free, and efficient synthesis of 2,4,6-triarylpyridines using \(\text{CoCl}_2\cdot6\text{H}_2\text{O}\) as a recyclable catalyst, Mahmood Kamali, Cogent Chemistry (2016), 2: 1171123.

References
Adib, M., Tahermansouri, H., Koloogani, S. A., Mohammadi, B., & Bijanzadeh, H. R. (2006). Kröhnke pyridines: An efficient solvent-free synthesis of 2,4,6-triarylpyridines. Tetrahedron Letters, 47, 5957–5960. doi:10.1016/j.tetlet.2006.01.162

Bose, S., Richards, J. M., Ross, S. A., Lowe, G., & Kratow-Siegel, R. L. (2002). \(\text{J}2,2\cdot2,2\cdot\text{Terpyridine}+\text{Platinum (II)}\) complexes are irreversible inhibitors of Trypanosoma cruzi trypanothione reductase but not of human glutathione reductase. Journal of Medicinal Chemistry, 43, 4812–4821. doi:10.1021/jm010219o

Cave, G. W. V., Hardie, M. J., Roberts, B. A., & Raston, C. L. (2001). A versatile six-component molecular capsule based on benign synthons selective confinement of a heterogeneous molecular aggregate. European Journal of Organic Chemistry, 2001, 3227–3231. doi:10.1002/1099-0690(200109)

Chiu, C. F., Tong, Z. L., & Ellingsoe, J. W. (1998). Solid-phase synthesis of 2,4,6-trisubstituted pyridines. Journal of Combinatorial Chemistry, 1, 73–77. doi:10.1021/ cc980005g

Chubb, F., Hay, A. S., & Sandin, R. B. (1953). The Leuckart reaction of some 1,5-diketones. Journal of the American Chemical Society, 75, 6042–6044. doi:10.1021/ja011190s

Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., ... Zimmermann, Y. (2000). Development of supramolecular structure through alkylation of pendant pyridyl functionality. Journal of the Chemical Society, Dalton Transactions, 2219–2228. doi:10.1039/B000940G

Davoodnia, A., Bokavoli, M., Moloudi, R., Tavakoli-Hoseini, N., & Khashi, M. (2010). Highly efficient, one-pot, solvent-free
synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatshefte für Chemie-Chemical Monthly, 141, 867–870. doi:10.1007/s00706-010-0329-x

Engediy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M., & Wang, S. I. (2003). Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorganic & Medicinal Chemistry Letters, 13, 513–517. doi:10.1016/S0960-8944(02)00594-5

Frank, R. L., & Seven, R. P. (1949). Pyridines. IV. A study of the

Heravi, M. M., Bakhtiari, K., Daroogheha, Z., & Bamoharram, F. F. (2007). An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solvent-free conditions. Catalysis Communications, 8, 1991–1994. doi:10.1016/j.catcom.2007.03.028

Jetti, K. R. R., Nagia, A., Xue, F., & Mak, T. C. W. (2001). Mesoporous noncrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chemical Papers, 55, 688–695. doi:10.2174/157017811799304214

Klimesova, V., Svoboda, M., Waissker, K., Pour, M., & Kastová, J. (1999). New pyridine derivatives as potential antimicrobial agents. Farmacia, 54, 666–672. doi:10.1016/S0001-287X(99)00078-6

Kobayashi, T., Kakiuchi, H., & Kato, H. (1991). On the reaction of N-(diphenylphosphinyl)-1-phenylethanimine with aromatic aldehydes giving 4-aryl-2,6-diphenylpyridine derivatives. Bulletin of the Chemical Society of Japan, 64, 392–395. doi:10.1246/bcsj.64.392

Krohnke, F. (1976). The specific synthesis of pyridines and oligopyridines. Synthesis, 1976(1), 1–24. doi:10.1055/s-1976-23941

Krohnke, F., & Zecher, W. (1963). Syntheses using the Michael addition of pyridinium salts. Angewandte Chemie International Edition in English, 1, 626–632. doi:10.1002/anie.196206261

Lowe, G., Droz, A. S., Vilaivan, T., Weaver, G. W., Tweedale, L., Pratt, J. M., ... Croft, S. L. (1999). Cytotoxicity of 2,2′-terpyridine derivatives and oligopyridines. Journal of Medicinal Chemistry, 42, 907–910. doi:10.1021/jm981074c

Maleki, B., Azarifar, D., Veisi, H., Hojati, S. F., Salehobadi, N., & Nejo Yami, R. (2010). Wet 2,4,6-trichloro-1,3,5-trizine (TCT) as an efficient catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chinese Chemical Letters, 21, 1346–1349. doi:10.1016/j.ccl.2010.06.028

Nagarapu, L., Peddiraju, A. R., & Apuri, S. (2007). HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catalytic Communications, 8, 1973–1976. doi:10.1016/j.catcom.2007.08.003

Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivarsarkar, M., Vasu, V., ... Sudarsanam, V. (2003). Novel drug designing approach for dual inhibitors as anti-inflammatory agents: implication of pyridine template. Biochemical and Biophysical Research Communications, 301, 183–186. doi:10.1016/S0006-291X(02)021996-0

Potts, K. T., Cipullo, M. J., Rall, P., & Theodoridis, G. (1981). Ketene dithio acetal as synthetic intermediates. Synthesis of unsaturated 1,5-diketones. Journal of the American Chemical Society, 103, 3584–3585. doi:10.1021/ja00402a061

Rajput, P., Subhashini, N. J. P., & Shivaraj, J. (2010). Synthesis of 2,4,6-triarylpyridines using AlPO4 under solvent-free conditions. Journal of Scientific Research, 2, 337–342. doi:10.3329/jrs.v2i2.3859

Ren, Y. M., & Cai, C. (2009). Three-components condensation catalyzed by molecular iodine for the synthesis of 2,4,6-triarylpyridines and 5-unsubstituted-3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Monatshefte für Chemie-Chemical Monthly, 140, 49–52. doi:10.1007/s00706-008-0011-8

Safro, J., Zarnegar, Z., & Borujeni, M. B. (2013). Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chemical Papers, 55, 909–914. doi:10.2174/157017811799304214

Shinde, P. V., Labade, V. B., Gujar, J. B., Shingate, B. B., & Shivaraj, J. (2010). Synthesis and antitumor cytotoxicity of 2,2′,2″-Terpyridine derivatives. Bioorganic & Medicinal Chemistry, 18, 1135–1138. doi:10.1016/j.bmc.2009.11.057

Zhao, L. X., Kim, T. S., Ahn, S. H., Kim, T. H., Kim, E. K., Cho, W. J., Jung, J. W., ... Lee, E. S. (2001). Synthesis, topoisomerase I inhibition and structure–activity relationship study of N-(diphenylphosphinyl)-1-phenylethanimine with trihalobenzene (halo = bromo, iodo). Chemical Communications, 392–395. doi:10.1246/bcsj.64.392

Zhao, L. X., Moon, Y. S., Basnet, A., Kim, E. K., Jahng, Y., Park, J. G., ... Lee, E. S. (2004). Synthesis, topoisomerase I inhibition and structure–activity relationship study of 2,4,6-trisubstituted pyridine derivatives. Bioorganic & Medicinal Chemistry Letters, 14, 1333–1337. doi:10.1016/j.bmcl.2003.11.084
