Schröder Paths and Pattern Avoiding Partitions

Sherry H.F. Yan
Department of Mathematics, Zhejiang Normal University
Jinhua 321004, P.R. China
huifangyan@hotmail.com

Abstract. In this paper, we show that both 12312-avoiding partitions and 12321-avoiding partitions of the set \([n+1]\) are in one-to-one correspondence with Schröder paths of semilength \(n\) without peaks at even level. As a consequence, the refined enumeration of 12312-avoiding (resp. 12321-avoiding) partitions according to the number of blocks can be reduced to the enumeration of certain Schröder paths according to the number of peaks. Furthermore, we get the enumeration of irreducible 12312-avoiding (resp. 12321-avoiding) partitions, which are closely related to skew Dyck paths.

AMS Classification: 05A15, 05A19

Keywords: Schröder path, pattern avoiding partition, skew Dyck path.

1. Introduction and notations

A Schröder path of semilength \(n\) is a lattice path on the plane from \((0, 0)\) to \((2n, 0)\) that does not go below the \(x\)-axis and consists of up steps \(U = (1, 1)\), down steps \(D = (1, -1)\) and horizontal steps \(H = (2, 0)\). They are counted by the larger Schröder numbers (A006318 in [7]). A UH-free Schröder path is a Schröder path without up steps followed immediately by horizontal steps. A UH-free Schröder path of semilength 12 is illustrated as Figure 1.

![Figure 1: A UH-free Schröder path](image)

An up step followed by a down step in a path is called a peak. The level of an up step (a horizontal step) is defined as the larger \(y\) coordinate of the step. The level of a peak is defined as the level of the up step in the peak. Denote by \(\mathcal{S}_n\) and \(\mathcal{S}_n\) the set of Schröder paths of semilength \(n\) without peaks at even level and the set of UH-free Schröder paths of semilength \(n\), respectively.

A partition \(\pi\) of the set \([n] = \{1, 2, \ldots, n\}\) is a collection \(B_1, B_2, \ldots, B_k\) of nonempty disjoint subsets of \([n]\). The elements of a partition are called blocks. We assume that \(B_1, B_2, \ldots, B_k\) are listed in the increasing order of their minimum elements, that is \(\min B_1 < \min B_2 < \cdots < \min B_k\). A partition \(\pi\) of \([n]\) with \(k\) blocks can also be represented by a sequence \(\pi_1 \pi_2 \ldots \pi_n\) on the set \(\{1, 2, \ldots, k\}\) such that \(\pi_i = j\) if and only if \(i \in B_j\). Such a representation is called the Davenport-Schinzel sequence or the canonical sequential form. In this paper, we will always represent a partition by its canonical sequential form.
In the terminology of canonical sequential forms, we say that a partition \(\pi \) avoids a partition \(\tau \), or it is \(\tau \)-avoiding, if there is no subsequence which is order-isomorphic to \(\tau \) in \(\pi \). In such context, \(\tau \) is usually called a pattern. The set of \(\tau \)-avoiding partitions of \([n]\) is denoted \(P_n(\tau) \). The enumeration on pattern avoiding partitions has received extensive attention from several authors, see [1, 2, 3, 5, 6] and references therein.

By using kernel method, Mansour and Severini [5] deduced that the number of 12312-avoiding partitions of \([n+1]\) is equal to the number of Schröder paths of semilength \(n \) without peaks at even level (A007317 in [7]). Recently, Jelinek and Mansour[3] proved that the cardinality of \(P_n(12312) \) is equal to that of \(P_n(12321) \). In this paper, we will provide a bijection between the set of 12312-avoiding partitions of \([n+1]\) and the set of UH-free Schröder paths of semilength \(n \). By making a simple variation of this bijection, we get a bijection between the set of 12321-avoiding partitions of \([n+1]\) and the set of UH-free Schröder paths of semilength \(n \). A bijection between the set of UH-free Schröder paths of semilength \(n \) and the set of Schröder paths of semilength \(n \) without peaks at even level is also provided, which leads to a bijection between 12312-avoiding (resp. 12321-avoiding) partitions of \([n+1]\) and the set of Schröder paths of semilength \(n \) without peaks at even level. As a consequence, the refined enumeration of 12312-avoiding (resp. 12321-avoiding) partitions according to the number of blocks can be reduced to the enumeration of certain Schröder paths according to the number of peaks. Furthermore, we also get the enumeration of irreducible 12312-avoiding (resp. 12321-avoiding) partitions, which are closely related to skew Dyck paths.

2. Bijection between \(P_{n+1}(12312) \) and \(SE_n \)

In this section, we will provide a bijection between the set of 12312-avoiding (resp. 12321-avoiding) partitions of \([n+1]\) and the set of UH-free Schröder paths of semilength \(n \). A bijection between the set of UH-free Schröder paths of semilength \(n \) and the set of Schröder paths of semilength \(n \) without peaks at even level is also given, which leads to a bijection between the set of 12312-avoiding (resp. 12321-avoiding) partitions of \([n+1]\) and the set of Schröder paths of semilength \(n \) without peaks at even level.

Let \(\pi \) be a nonempty partition of \([n+1]\) with \(k \) blocks. Then \(\pi \) can be uniquely decomposed as

\[
1w_12w_2\ldots iw_i\ldots kw_k,
\]

where \(1,2,\ldots,k \) are the left-to-right maxima of \(\pi \) and each \(w_i \) is a possibly empty word on \([i]\). For, \(1 \leq i \leq k \), denote by \(w_i \setminus \{i\} \) the word obtained from \(w_i \) by deleting all the \(i \)'s. The following property of 12312-avoiding (resp. 12321-avoiding) partitions can be verified easily and we omit the proof here.

Lemma 2.1 A partition \(\pi \) is 12312-avoiding (resp. 12321-avoiding) partition with \(k \) blocks if and only if the word \(w_1 \setminus \{1\}w_2 \setminus \{2\}\ldots w_k \setminus \{k\} \) is in weakly decreasing (increasing) order.

Now, we proceed to construct a map \(\sigma \) from \(P_{n+1}(12312) \) to \(SH_n \). Given a 12312-avoiding partition \(\pi \) of \([n+1]\) with \(k \) blocks, if \(\pi = 1 \), then let \(\sigma(\pi) \) be the empty path. Otherwise, suppose that \(\pi \) is decomposed as (2.1) and for \(i = 1,2,\ldots,k-1 \), denote by \(d_i \) the number of occurrences of \(i \) which are right to the first occurrence of \(i+1 \). We read the decomposition from left to right and generate a path \(\sigma(\pi) \) as follows: when a left-to-right maximum \(i \) (\(i \geq 2 \)) is read, we adjoin \(d_{i-1}+1 \) successive up steps followed by one down step; when each element less than \(i \) in any word \(w_i (1 \leq i \leq k) \) is read, we adjoin one down step; when each element \(i \) in any word \(w_i (1 \leq i \leq k) \) is read, we adjoin one horizontal step. Lemma 2.1 ensures that
the obtained path \(\sigma(\pi) \) is a well defined UH-free Schröder path of semilength \(n \). For instance, a 12312-avoiding partition \(\pi = 1123343411 \) of \([11]\) can be decomposed as \(1w_12w_23w_34w_4 \), where \(w_1 = 1, w_3 = 23, w_4 = 3411, d_1 = 2, d_2 = 1, d_3 = 1 \), and \(w_2 \) is empty. The corresponding UH-free Schröder path \(\sigma(\pi) \) of semilength 10 is illustrated as Figure 2.

![Figure 2: A UH-free Schröder path of semilength 10.](image)

Conversely, we can get a 12312-avoiding partition of \([n + 1]\) from a UH-free Schröder path \(P \) of semilength \(n \). If \(P \) is empty, then let \(\sigma^{-1}(P) = 1 \), otherwise suppose that \(P \) has \(k \) peaks. Then we can get a word \(\sigma^{-1}(P) \) as the following procedure.

Step 1. Firstly, add a peak at the very beginning of \(P \) and denote by \(P' \) the obtained path;

Step 2. Secondly, label all the up steps in peaks of \(P' \) with the alphabet \(\{1, 2, \ldots, k + 1\} \) from left to right and label each remaining up step \(s \) and each horizontal step \(h \) with the maximum alphabet which are left to the steps \(s \) and \(h \), respectively;

Step 3. Thirdly, if a down step \(s \) is in a peak, label \(s \) with the same label as the label of the up step in the same peak; Otherwise, suppose that \(L^U \) (resp. \(L^D \)) is the multiset of all the labels of the up (resp. down) steps left to the step \(s \). Then label \(s \) with the maximum element of the multiset obtained from \(L^U \) by removing all the elements of \(L^D \);

Step 4. Lastly, let \(\sigma^{-1}(P) \) be a word obtained by reading the labels of all the down steps and horizontal steps of \(P' \) successively.

Obviously, the obtained word \(\sigma^{-1}(P) \) is a 12312-avoiding partition of \([n + 1]\). An example of the reverse map of \(\sigma \) is shown in Figure 3.

![Figure 3: An example of the reverse map of \(\sigma \).](image)

Theorem 2.2 The map \(\sigma \) is a bijection between the set of 12312-avoiding partitions of \([n + 1]\) and the set of UH-free Schröder paths of semilength \(n \).
We define a map ϕ from $\mathcal{P}_{n+1}(12321)$ to \mathcal{SH}_n the same as the map σ and define the reverse of ϕ the same as the reverse of σ except that in Step 3 we label the down step s not in a peak by the minimum element of the multiset obtained from L_U by removing all the elements of L_D. It is easy to check that ϕ is a bijection between the set of 12321-avoiding partitions of $[n+1]$ and the set of UH-free Schröder paths of semilength n. An example of the reverse map of ϕ is illustrated as Figure 4.

\begin{figure}[h]
\centering
\includegraphics[width=0.6\textwidth]{figure4}
\caption{An example of the reverse map of ϕ.}
\end{figure}

\begin{theorem}
The map ϕ is a bijection between UH-free Schröder paths of semilength n and $\mathcal{P}_{n+1}(12321)$.
\end{theorem}

In order to get a bijection between $\mathcal{P}_{n+1}(12312)$ and \mathcal{SE}_n, we should provide a bijection between \mathcal{SH}_n and \mathcal{SE}_n. Now we proceed to construct the map ψ from \mathcal{SH}_n and \mathcal{SE}_n. Given a UH-free Schröder path $P \in \mathcal{SH}_n$, if it is empty, then let $\psi(P)$ be an empty path. Otherwise, we can get $\psi(P)$ recursively as follows:

- If $P = HP'$, then let $\psi(P) = H\psi(P')$, where P' is a possibly empty UH-free Schröder path;
- If $P = UDP'$, then let $\psi(P) = UD\psi(P')$, where P' is a possibly empty UH-free Schröder path;
- If $P = U^kDP_1DP_2\ldots DP_k$, where $k \geq 2$, U^k denotes k consecutive up steps and for $1 \leq i \leq k$, each P_i is a possibly empty UH-free Schröder path, then let $\psi(P) = UP_1'P_2'\ldots P_{k-1}'D\psi(P_k)$ such that for $1 \leq i \leq k-1$, each $P_i' = H$ if P_i is empty and $P_i' = U\psi(P_i)D$, otherwise.

Obviously, the obtained path $\psi(P)$ is a Schröder path of semilength n without peaks at even level. It is easy to check that the map ψ is reversible. For the convenience of simplicity, we omit the reverse map of ψ.

\begin{theorem}
The map ψ is a bijection between the set of UH-free Schröder paths of semilength n and the set of Schröder path of semilength n without peaks at even level.
\end{theorem}

Combining Theorems 2.2, 2.3 and 2.4, we have the following results.

\begin{theorem}
The map $\psi \cdot \sigma$ (resp. $\psi \cdot \phi$) is a bijection between the set of 12312-avoiding (resp. 12321-avoiding) partitions of $[n+1]$ and the set of Schröder paths of semilength n without peaks at even level.
\end{theorem}
3. Refined enumerations

In this section, we aim to get the refined enumeration of 12312-avoiding (resp. 12321-avoiding) partitions according to the number of blocks. By restricting the peaks in Schröder paths, we get the enumeration of irreducible 12321-avoiding (resp. 12321-avoiding) partitions. From the construction of the maps σ and ϕ, we get that each block apart from the first block in a 12312-avoiding (resp. 12321-avoiding) partition π brings up a peak in its corresponding UH-free Schröder path $\sigma(\pi)$ (resp. $\phi(\pi)$). Hence, we get the following result.

Corollary 3.6 Let π be a 12312-avoiding (resp. 12321-avoiding) partition on $[n+1]$ with $k+1$ blocks, then $\sigma(\pi)$ (resp. $\phi(\pi)$) is a UH-free Schröder path of semilength n with k peaks.

A Dyck path of semilength n is a lattice path on the plane from $(0,0)$ to $(2n,0)$ that does not go below the x-axis and consists of up steps $U = (1,1)$ and down steps $D = (1,-1)$. The number of Dyck paths of semilength n with k peaks is counted by the Narayana number

$$N_{n,k} = \frac{1}{n} \binom{n}{k} \binom{n}{k-1}.$$

Note that any UH-free Schröder path of semilength n with k peaks can be obtained from a Dyck path of semilength j ($0 \leq j \leq n$) with k peaks by inserting $n - j$ horizontal steps into the positions after down steps and the position at the very beginning of the Dyck path. The number of such arrangement is equal to $\binom{n}{j}$. Hence, the number of UH-free Schröder paths of semilength n with k peaks is counted by $\sum_{j=k}^{n} \frac{1}{j} \binom{j}{k} \binom{j}{k-1} \binom{n}{j}$. From Corollary 3.6, we get the following result.

Corollary 3.7 The number of 12312-avoiding (resp. 12321-avoiding) partitions on $[n+1]$ with $k+1$ ($k \geq 1$) blocks is equal to

$$\sum_{j=k}^{n} \frac{1}{j} \binom{j}{k-1} \binom{j}{k} \binom{n}{j}.$$

A partition P of $[n]$ is called an irreducible partition if for any $m \in [n-1]$, P can not be reduced to two smaller partitions P_1 and P_2 such that P_1 is a partition of $[m]$ and P_2 is a partition of $\{m+1,m+2,\ldots,n\}$. Irreducible partitions have been studied by Lehner [4]. In fact, a partition π of $[n]$ is irreducible if and only if for any element $i \in [n]$, there is at least one occurrence of an element j which is less than i and right to the first occurrences of i. Hence, by the construction of the maps σ and ϕ, we see that if π is irreducible, then its corresponding Schröder path $\sigma(\pi)$ (resp. $\phi(\pi)$) has no peaks at level one.
Corollary 3.8 The map σ (resp. ϕ) is a bijection between the set of irreducible 12312-avoiding (resp. 12321-avoiding) partitions on $[n+1]$ and the set of UH-free Schröder paths of semilength n without peaks at level one.

Denote by \mathcal{SH}'_n the set of UH-free Schröder paths of semilength n without peaks at level one. Let s_n and s'_n the cardinality of \mathcal{SH}_n and \mathcal{SH}'_n, respectively. Let $f(x) = \sum_{n=0}^{\infty} s_n x^n$ and $f'(x) = \sum_{n=0}^{\infty} s'_n x^n$ where $s_0 = 1$ and $s'_0 = 1$. Then, it is easy to get the following recurrence relations:

$$f(x) = 1 + 2xf(x) + xf(x)(f(x) - 1 - xf(x)),$$ and $$f'(x) = 1 + xf'(x) + xf'(x)(f(x) - 1 - xf(x)).$$

Hence, we have

$$f(x) = \frac{1 - x - \sqrt{1 - 6x + 5x^2}}{2(x - x^2)},$$

and

$$f'(x) = \frac{1}{1 - x(1 - x)f(x)} = \frac{2}{1 + x + \sqrt{1 - 6x + 5x^2}},$$

which is the generating function for skew Dyck paths of length n ending with a down step, see [7, A033321]. A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps $U = (1, 1)$, $D = (1, -1)$, and $L = (-1, -1)$ so that never lie below the x-axis and up and left steps do not overlap.

Corollary 3.9 The number of irreducible 12312-avoiding (resp. 12321-avoiding) partitions of $[n+1]$ is equal to the number of skew Dyck paths of semilength n ending with a down step.

References

[1] W.Y.C. Chen, T. Mansour and S.H.F. Yan, Matchings avoiding partial patterns, Electron. J. Combin. 13(2006) R112.
[2] A.M. Goyt, Avoidance of partitions of a three-element set, Adv. Appl. Math. 41(2008) 95–114.
[3] V. Jelinek, T. Mansour, On pattern-avoiding partitions, Electron. J. Combin. 15(2008) R39.
[4] F. Lehner, Free cumulants and enumeration of connected partitions, Europ. J. Combin. 23(2002) 1025–1031.
[5] T. Mansour, S. Severini, Enumeration of $(k, 2)$-noncrossing partitions, Discrete Math. 308 (2008) 4570-4577.
[6] B.E. Sagan, Pattern avoidance in set partitions, arXiv: Math.CO 0604292.
[7] N.J.A. Sloane, The On-Line Encyclopedia of Integer Sequences, http://www.research.att.com/~njas/sequences.