LETTER TO THE EDITOR

A Note on the Potential BCG Vaccination – COVID-19 Molecular Link

Alex Y. Strongin¹, Alex Sloutsky¹ and Piotr Cieplak¹,*

¹Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA

Abstract: Objective: Our goal was to elucidate a potential molecular link between the past and current tuberculosis vaccine Bacillus Calmette-Guérin (BCG; a live attenuated strain of Mycobacterium bovis) immunization policies and COVID-19.

Methods: Our sequence homology analyses have demonstrated that there is an intriguing level of sequence homology between a few of the BCG and Sars-CoV-2 proteins.

Results: The data suggest that the BCG-specific memory B-cells that are preserved in BCG-vaccinated patients cross-recognize SARS-CoV-2 and that this cross-recognition may affect the virus proliferation and COVID-19 severity.

Conclusion: Our results can stimulate the sharply focused follow-up experimental studies.

Keywords: Covid-19, BCG vaccination, Sars-CoV-2 B-cell epitopes, bioinformatics analysis, tuberculosis vaccine, Mycobacterium bovis.

1. INTRODUCTION

The goal of our report is to stimulate the sharply focused follow-up experimental studies of the Bacillus Calmette-Guérin (BCG) - COVID-19 axis. The emerging data suggest that there is a previously unrecognized link between the past and current tuberculosis vaccine BCG (a live attenuated strain of Mycobacterium bovis) immunization policies (summarized in The BCG World Atlas, www.bcgatlas.org) and COVID-19. Mandatory BCG vaccination appears to alleviate the severity of SARS-CoV-2 pathology in infected patients [1]. Most probably, SARS-CoV-2, a betacoronavirus originated from either bats and/or pangolins [2-5], is a causative agent of COVID-19 pandemic. The most recent studies using publicly available data of COVID-19 in 199 countries/regions suggested that BCG vaccination may have hindered the overall spread of the virus or clinical manifestation of the disease or both [6]. As of today, there is no plausible molecular explanation of this phenomenon. We hypothesized that, in addition to a general immunity boost caused by BCG vaccination, there is a level of sequence homology between the viral and BCG proteins and that this homology contributes to the disease alleviation in BCG-vaccinated patients relative to a non-immune cohort.

2. RESULTS

To elucidate a possible mechanism that links BCG vaccination with SARS-CoV-2, we determined the level of homology between the proteins encoded by the viral and BCG genomes using the blastx program. In contrast with other sequence regions of the bacteria and the virus, there was a substantial level of homology of the N-terminal region of M. bovis BCG lipoprotein lppD sequence (NAANTRL/HAG-GVAAAA/ARAGGPE/LQRESTE 208-238, numbering starts from the N-end of Uniprot A0A0H3M501_MYCBP) with the NAAVYLKHGGGVAALKNATNNAM/QVESDD sequence of macrodomain 1 (an ADP-ribosylhydrolase, PDB 6VXS; Fig. 1A, Fig. 2 left) [7, 8] of the SARS-CoV-2 orf1a,b/ns3 (identical and similar residues are in bold and italics, respectively). An additional intriguing homology was recorded between the C-terminal NNAAILQLPQ-GTTLPKGF (bat) or NNAATVLPQQTTLPKGF (human) region of the RNA-binding domain of the SARS-CoV-2 nucleocapsid N phosphoprotein; PDB 6VYO; Fig. 2 right) [9-11], which represents a recently identified SARS-CoV-2 B-cell epitope [12, 13], and the sequence regions from the three different proteins in M. bovis BCG. These regions are as follows: the ATVTLIPNGLPKRP region of dehydrogenase/reductase, the ATVLQLPF region of putative drug-transport integral membrane protein and the ATFLQ-RNLPRGTT region of putative secreted protein (Fig. 1B). Partial overlap of these BCG sequences with the viral B-cell epitope implies that the BCG-specific memory B-cells may cross-recognize the viral proteins and that this cross-recognition may affect the virus proliferation and disease severity.

Because a 15-year long post-vaccination protection against tuberculosis is highly credible, this may explain a low clinical manifestation, if any, of COVID-19 in children in China, a country with universal and long-standing BCG vaccination, and, on the contrary, a higher clinical manifestation in certain European countries where BCG programs are no longer deployed. Accordingly, the vaccinated elderly with a low residual level of the cross-reactive memory B-cells may be more susceptible to the virus relative to the freshly vaccinated youth. On the other hand, the vaccinated elderly
A Note on the Potential BCG Vaccination Coronaviruses, 2020, Vol. 1, No. 1

Fig. (1). (A) Sequence alignment of the N-terminal region of *M. bovis* BCG lipoprotein LppD (range 208-238) with the macrodomain 1 of the SARS-CoV-2 orf1a,b/nsp3. (B) Sequence alignment of the C-terminal region of the RNA-binding domain of the SARS-CoV-2 nucleocapsid N phosphoprotein (these two sequences differ by a single mutation in bats versus humans), representing the recently identified SARS-CoV-2 B-cell epitope [12], with the three sequences of *M. bovis* BCG proteins: dehydrogenase/reductase, the putative drug-transport integral membrane protein and the putative secreted protein.

Fig. (2). Potential epitopes in SARS-CoV-2. Left - Dimeric structure of the SARS-CoV-2 ADP-ribosylhydrolase 1025-1190 fragment (PDB 6VXS) with the NAANVYLKHKGGGVAGALNKATNNAMQVESDD 1059-1089 epitope. Right - Structure of the SARS-CoV-2 nucleocapsid N phosphoprotein (PDB 6VYO) with the NNAIQLQPQTTLPKF 153-171 epitope. Epitopes are in red.
is likely to be more resilient to SARS-CoV-2 than the non-vaccinated elderly of similar age. These associations support the notion that BCG vaccination may provide specific protection against SARS-CoV-2 and that the protection level may directly be proportional to the residual cross-reactive B-cells, in addition to the general immunity boost caused by BCG. Furthermore, we speculate that the administration of the Purified Protein Derivative (PPD)/the Mantoux tuberculin skin test normally used for the detection of *M. tuberculosis* infection may be feasible for screening patients at risk of COVID-19. The test results may then serve as a surrogate marker for the prediction of the viral disease morbidity and mortality as well as to generate valuable information for the subsequent epidemiological studies.

CONSENT FOR PUBLICATION

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

We are grateful to Dr. Alexander V. Peskin (University of Otago, New Zealand) for his valuable comments and suggestions. Alex Y. Strongin – designed the research, analyzed the data, and wrote the manuscript, Alex Sloutsky – designed the study, and collected the data, and Piotr Cieplak – performed the research, and wrote the manuscript.

REFERENCES

[1] Miller A, Reandeler MJ, Fasciglione K, Roumenova V, Li Y, Otazu GH. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. MedRxiv 2020.

[2] Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med 2020; 26(4): 450-2. http://dx.doi.org/10.1038/s41591-020-0820-9 PMID: 32284615

[3] Zhang C, Zheng W, Huang X, Bell EW, Zhou X, Zhang Y. Protein structure and sequence reanalysis of 2019-nCoV genome refutes snakes as its intermediate host and the unique similarity between its spike protein insertions and HIV-1. J Proteome Res 2020; 19(4): 1351-60.

[4] Zhang T, Wu Q, Zhang Z. Probable pangolin origin of SARS-CoV-2 associated with the COVID-19 outbreak. Curr Biol 2020; 30(7): 1346-1351.e2. http://dx.doi.org/10.1016/j.cub.2020.03.022 PMID: 32197085

[5] Zhou P, Yang XL, Wang XG, Hu B, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3. http://dx.doi.org/10.1038/s41586-020-2012-7

[6] Sala G, Miyakawa T. Association of BCG vaccination policy with prevalence and mortality of COVID-19. MedRxiv 2020.

[7] Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein Antiviral Res 2018; 149: 58-74.

[8] Kim Y, Jedrzejczak R, Mal'tseva N, et al. Crystal Structure of ADP ribose phosphatase of NSP3 from SARS CoV-2. bioRxiv 2020.

[9] Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus nucleocapsid protein–forms and functions Antiviral Res 2014; 103: 39-50.

[10] Huang Q, Yu L, Petros AM, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry 2004; 43(20): 6059-63. http://dx.doi.org/10.1021/bi036155b PMID: 15147189

[11] Chang C, Michalska K, Jedrzejczak R, et al. Crystal structure of RNA binding domain of nucleocapsid phosphoprotein from SARS coronavirus 2. 2020. doi: 10.2210/pdb6VYO/pdb

[12] Grifoni A, Sidney J, Zhang Y, Scheuermann RH, Peters B, Sette A. A Sequence Homology and Bioinformatic Approach Can Predict Candidate Targets for Immune Responses to SARS-CoV-2. Cell Host Microbe 2020; 27(4): 671-680.e2. http://dx.doi.org/10.1016/j.chom.2020.03.002 PMID: 32183941

[13] Martini S, Nielsen M, Peters B, Sette A. The Immune Epitope Database and Analysis Resource Program 2003-2018: reflections and outlook. Immunogenetics 2020; 72(1-2): 57-76.