Single-cell mRNA profiling reveals the hierarchical response of miRNA targets to miRNA induction

Andrzej J Rzepiela¹†, Souvik Ghosh¹, Jeremie Breda¹, Arnau Vina-Vilaseca², Afzal P Syed¹, Andreas J Gruber¹, Katja Eschbach², Christian Beisel², Erik van Nimwegen¹ & Mihaela Zavolan¹*†

Abstract

miRNAs are small RNAs that regulate gene expression post-transcriptionally. By repressing the translation and promoting the degradation of target mRNAs, miRNAs may reduce the cell-to-cell variability in protein expression, induce correlations between target expression levels, and provide a layer through which targets can influence each other's expression as “competing RNAs” (ceRNAs). However, experimental evidence for these behaviors is limited. Combining mathematical modeling with RNA sequencing of individual human embryonic kidney cells in which the expression of two distinct miRNAs was induced over a wide range, we have inferred parameters describing the response of hundreds of miRNA targets to miRNA induction. Individual targets have widely different response dynamics, and only a small proportion of predicted targets exhibit high sensitivity to miRNA induction. Our data reveal for the first time the response parameters of the entire network of endogenous miRNA targets to miRNA induction, demonstrating that miRNAs correlate target expression and at the same time increase the variability in expression of individual targets across cells. The approach is generalizable to other miRNAs and post-transcriptional regulators to improve the understanding of gene expression dynamics in individual cell types.

Keywords ceRNA; Michaelis–Menten constant; miRNA regulation; scRNA-Seq; target down-regulation

Subject Categories Quantitative Biology & Dynamical Systems; RNA Biology

DOI 10.15252/msb.20188266 | Received 6 February 2018 | Revised 31 July 2018 | Accepted 3 August 2018

Mol Syst Biol. (2018) 14: e8266

Introduction

miRNAs guide Argonaute proteins to mRNA targets, repressing their expression post-transcriptionally (Huntzinger & Izaurralde, 2011). Measurements of transcript and protein levels following perturbations in the levels of individual miRNAs showed that the fundamental molecular mechanism of mammalian miRNAs is target destabilization, through the recruitment of factors that promote mRNA decay (Lim et al, 2005; Haussler et al, 2009; Guo et al, 2010; Bartel, 2009). However, time series of mRNA and protein-level measurements after miRNA transfection also revealed that repression of target translation precedes the increase in its degradation rate (Bazzini et al, 2012; Haussler et al, 2013; Eichhorn et al, 2014). A miRNA typically has hundreds of evolutionarily conserved target sites (Lewis et al, 2005; Grün et al, 2005; Gaidatzis et al, 2007), yet only very few predicted targets are down-regulated more than twofold in miRNA transfection experiments (Haussler & Zavolan, 2014). Whereas disruption of miRNA biogenesis impairs the ability of embryonic stem cells to differentiate (Kanellopoulou et al, 2005), and some miRNAs such as the founders of the class, the lin-4 and let-7 miRNA of Caenorhabditis elegans have striking developmental phenotypes (Ha et al, 1996; Wightman et al, 1993; Reinhart et al, 2000), most miRNA genes are individually dispensable for development and viability, at least in the worm (Miska et al, 2007). These observations suggested that strong repression may not be the primary function of miRNAs and that other functions should be investigated (Ebert & Sharp, 2012).

A computational study of small RNA-dependent gene regulation in bacteria initially proposed that post-transcriptional regulators impose thresholds on the protein levels of their targets in response to transcriptional induction, conferring robustness to transcriptional noise (Levine et al, 2007). Experiments with target reporters in mammalian systems demonstrated that miRNAs could play a similar role (Mukherji et al, 2011). Gene expression being a stochastic process, the number of protein molecules expressed from a given gene varies between cells in a cell population. The ratio of variance to mean of the number of protein molecules per cell (the “noise” in protein expression) is predicted to be proportional to the ratio of miRNA translation and mRNA degradation rates (Shahrezaei & Swain, 2008). Intriguingly, these are the rates that miRNAs modulate so as to decrease protein expression noise. Indeed, a recent study reported increased variability in CD69 protein expression across miRNA-deficient, developing mouse thymocytes (Blevins et al, 2015). However, as the reduction in target protein noise is predicted to scale as the square root of the miRNA-induced change in protein level (Osella et al, 2011; Schmiedel et al, 2015), which is small for the vast majority of evolutionarily conserved miRNA targets (Haussler et al, 2013; Eichhorn et al, 2014; Haussler &
Zavolan, 2014), it is unlikely that many of the predicted miRNA targets are regulated in this manner.

It has also been proposed that at the cellular level, miRNAs provide a “channel” through which the many predicted miRNA targets “communicate” as “competing RNAs” (ceRNAs; Poliseno et al, 2010; Figliuzzi et al, 2013; Cesana et al, 2011; Karreth et al, 2015; Wang et al, 2013). Rough estimates of the number of potential binding sites for a miRNA (also called miRNA “target abundance”) are in the range of ~10^5 sites per cell, much higher than the number of cognate miRNA molecules (Denzler et al, 2014). In this regime, where the targets are already in high excess relative to the miRNAs, overexpressing a single target could not appreciably affect the expression of the other targets. Yet, examples of ceRNAs continue to emerge (Poliseno et al, 2010; Figliuzzi et al, 2013; Cesana et al, 2011; Karreth et al, 2015; Wang et al, 2013). These estimates of target abundance did not consider the possibility that targets may not be equivalent in their ability to bind and sequester miRNAs. Indeed, a computational analysis suggested that miRNA targets have asymmetric relationships, high-affinity targets being able to sequester miRNAs from low-affinity targets, at comparable target concentrations, but not the other way around (Figliuzzi et al, 2013).

In vitro measurements indicate that miRNA target sites can have widely different affinities for the miRNA–Argonaute complex (Wee et al, 2012), an observation that is supported by measurements of Argonaute-dwelling times on individual miRNA target sites (Chandradoss et al, 2015). However, estimates of in vivo miRNA–target interaction constants are lacking.

Taking advantage of a system in which the expression of a single miRNA precursor can be induced over a wide concentration range, we measured the transcriptomes of thousands of individual cells and assessed how the expression levels of miRNA targets relate to the expression level of the miRNA. We obtained experimental evidence for behaviors that were previously suggested by computational models or evaluated only with miRNA target reporters. These include the non-linear, ultrasensitive response of miRNA targets to changes in the miRNA concentration as well as the dependency of the variability in target levels between cells on the concentration of the miRNA. Furthermore, we found that only a small fraction of predicted targets are highly sensitive to changes in miRNA expression. With a computational model, we illustrate how these targets can influence the expression of other targets as competing RNAs. Our approach is applicable to other post-transcriptional regulators of mRNA stability, allowing the analysis of their concentration-dependent impact on the transcriptome.

Results

A system to study the impact of miRNA expression on the transcriptome of individual cells

miRNA target reporters are widely used to study miRNA-dependent gene regulation. However, these reporters are often expressed at much higher levels than when expressed from their corresponding genomic loci. Furthermore, these reporters do not respond to the regulatory influences to which the endogenous transcripts respond. To circumvent these issues and investigate the crosstalk of miRNA targets in their native expression context, we used a human embryonic kidney (HEK) 293 cell line, i199 (Hausser et al, 2013), in which the expression of the hsa-miR-199a miRNA precursor and of the green fluorescent protein (GFP) can be simultaneously induced by doxycycline, from a pRTS1 episomal vector (Fig 1A). To assess the reproducibility of the inferred sensitivity parameters for miRNA targets, we used a related cell line, i199-KTN1 (Hausser et al, 2013), derived from i199 through the stable integration of a target of hsa-miR-199a-3p. This target consisted of the Renilla luciferase coding region followed by the 3’ untranslated region (UTR) of kinectin 1 (KTN1). We reasoned that these similar but not identical cell lines should allow us to assess the reproducibility of the inferred parameters, which we do expect to vary between more distant cell types due to differences in the expression of regulatory factors.

The processing of hsa-miR-199a gives rise to two mature miRNAs, hsa-miR-199a-5p and hsa-miR-199a-3p. These miRNAs have distinct “seed” sequences (at positions 2–7 of the miRNA) and therefore largely non-overlapping target sets; only seven of the top 100 targets predicted (Gumienny & Zavolan, 2015) for each miRNA are shared. The bidirectional nature of the promoter in the pRTS1 vector was characterized before, by fluorescence-activated cell sorting (Borkkamm et al, 2005). In our construct, the luciferase protein-coding sequence has been replaced by a pri-miRNA. As no method is currently available for simultaneously measuring the expression of a miRNA and of a protein-coding gene in single-cells, we assessed whether the two bi-directionally transcribed RNAs have correlated expression in cell populations. Indeed, by RT–PCR we found that the expression of hsa-miR-199a-5p and expression of the GFP mRNA, in cell populations induced with different concentrations of doxycycline, were highly correlated (Fig 1B, Spearman’s r = 0.91, P = 1.74E-07). Furthermore, the expression of both mature miRNAs processed from the hsa-miR-199a precursor increased in parallel to the concentration of the inducer, as expected (Appendix Fig S1A). Altogether, these data indicate that the level of GFP mRNA can serve as a “proxy” for the miRNA levels in studying the response of miRNA targets to the miRNA in individual cells. Carrying out Argonaute 2 protein crosslinking and immunoprecipitation in fully induced (1 µg/ml doxycycline) HEK 293 cells, we confirmed that hsa-miR-199a-5p and hsa-miR-199a-3p were incorporated into the miRNA effector complex and were among the highest represented miRNAs (Appendix Fig S1B).

We then induced cells with doxycycline concentrations spanning the 0–1 µg/ml range (as described in Materials and Methods), pooled the cells and carried out mRNA 3’ end sequencing of 3,280 distinct i199 and 3,143 i199-KTN1 cells, on a 10x Genomics platform. In parallel, we carried out bulk mRNA sequencing from both non-induced i199 cells and cells that were fully induced (1 µg/ml doxycycline). The distribution of the number of distinct transcripts obtained from individual single-cells is shown in Appendix Fig S1C. GFP mRNAs were captured from 43% of the i199 cells, in which the mean GFP mRNA expression was 32 transcripts per million (TPM; Fig 1C). miRNA expression levels inferred either by averaging over single-cells (SCs) with no GFP mRNA or from bulk sequencing of non-induced cell populations (CP) were highly correlated (Spearman’s r of log2 expression values = 0.89, P < 1E-15, Fig 1D). The expression of the top 100 MIRZA-G-C-predicted targets of the two miRNAs (Gumienny & Zavolan, 2015) was significantly lower in cells with high GFP mRNA expression (> 6.8
TPM) compared to cells with no GFP expression (0 TPM, Fig 1E).

Importantly, the expression of predicted targets decreased in parallel with the increase in GFP mRNA levels, further indicating that the GFP mRNA is a good proxy for the miRNA expression in individual cells (Appendix Fig S1D and E). Finally, the miRNA-induced changes in target expression, inferred either from bulk or from single-cell sequencing of strongly induced and uninduced cells were significantly correlated (Fig 1F). The results were reproduced in the related i199-KTN1 cell line (Appendix Fig S2). Results of a parallel analysis with miRNA targets predicted by TargetScan (Garcia et al., 2011) are shown in Appendix Figs S6–S12. Altogether, these results indicate that the system behaves as expected and can be used for further analysis of miRNA-dependent gene regulation in single-cells.

miRNA targets follow theoretically predicted behaviors in response to miRNA induction

The dynamics of small networks composed of miRNAs, and targets have been investigated computationally, with stochastic models (Bosia et al., 2013; Figliuzzi et al., 2013). Bosia et al (2013) predicted that the coefficient of variation (Cv) of miRNA targets increases with the transcription rate of the miRNA, showing a local maximum in the region where the miRNA and targets are in equimolar ratio. The correlation of expression levels of mRNAs that are targeted by the same miRNA was predicted to exhibit a maximum around the same threshold. We used a similar simple model of miRNA-dependent gene regulation to predict the behavior of targets in our experimental system. Briefly, we considered M mRNA targets of a given miRNA,

Figure 1. Design and characterization of the experimental system.

A. Schematic representation of the construct used to express hsa-miR-199a-5p (red), hsa-miR-199a-3p (blue), and the reporter GFP mRNA from a bidirectional promoter. Shown are also the "seed" sequences (nucleotides 2–7) of the two miRNAs.

B. The expression levels of hsa-miR-199a-5p and GFP mRNA, measured from cell populations by quantitative PCR, are highly correlated. Error bars show standard deviations from two replicates.

C. Histogram of normalized GFP mRNA expression (TPM) in individual i199 cells.

D. Correlation of miRNA expression levels estimated from SC sequencing (1,875 T_i cells (see text for definition) from which no GFP mRNA was captured) and from CP mRNA-Seq (six replicates of non-induced cell populations).

E. Cumulative distribution of expression differences of the top 100 targets of hsa-miR-199a-5p (red), of top 100 targets of hsa-miR-199a-3p (blue), and of 7,347 remaining, "background" genes (black) between cells expressing highest and lowest GFP levels (1,875 T_i cells with >6.8 TPM GFP ("ind") vs. 1,875 T_0 cells with 0 TPM GFP ("ctrl")). Boxplots of log$_2$-fold change of non-targets, top 100 miR-199a-3p, and top 100 miRNA-199a-5p targets are shown in the inset. P-values of the rank-sum test comparing targets and non-targets are also shown. Horizontal line is a mean, box shows where 50% of data points are (interquartile range, IQR), whiskers show points within 1.5 * IQR from 25/75-percentile border of the box.

F. Scatter plot of expression differences of the top 100 targets of each miRNA, estimated from bulk sequencing (CP) or from single-cell sequencing (T_i and T_0 cells defined as for previous panel).
each with a specific transcription rate a_i, decay rate d_i, and level m_i, with $i \in \{1, \ldots, M\}$. Target i could bind a miRNA-containing Argonaute (Ago) complex at rate k_{on} and dissociate from the complex at rate k_{off}. Because in our experimental system we induced miRNA expression to specific stable levels before carrying out the mRNA sequencing, we neglected the dynamics of the miRNA and assumed that the total number N of Ago-miRNA complexes in a given cell was constant, though varying between cells. The number of free Ago-miRNA complexes is then given by $A_F = N - \sum_{j=1}^{M} A_j$. Finally, we assumed that Ago-miRNA-bound mRNAs decay at rates k_{cat}. Under this simple model (see also Hauser and Zavolan, 2014), free mRNAs (m_i) and miRNA-bound mRNAs (A_{mi}) follow the dynamics described by the system of $2M$ differential equations

$$\frac{\partial m_i(t)}{\partial t} = a_i - d_i m_i(t) - k_{on} m_i(t) \left(A - \sum_{j=1}^{M} A_{mj}(t) \right) + k_{off} A_{mi}(t)$$

$$\frac{\partial A_{mi}(t)}{\partial t} = k_{on} m_i(t) \left(A - \sum_{j=1}^{M} A_{mj}(t) \right) - k_{off} A_{mi}(t) - k_{cat} A_{mi}(t).$$

(1)

We carried out stochastic simulations of a system with four miRNA targets (Fig 2A), choosing parameters of target expression and interaction with the miRNA such that (i) target expression spanned a broad range, (ii) they underwent miRNA-dependent down-regulation at either low (targets a and b) or high (targets c and d) miRNA levels, and (iii) down-regulation of all targets was moderate, as generally observed in experiments. The response of individual in silico targets to miRNA induction is shown in Fig 2A. Figure 2B and C shows the variability of target expression between simulated cells and the pairwise correlations of target expression levels across all simulated cells, as functions of the total miRNA level. Similar to the predictions of Bosia et al. (2013), the targets in our in silico system also experience destabilization, increased correlation, and increased expression noise, all within a limited range of miRNA expression, i.e. at a specific threshold. Figure 2B also shows that for each target, the coefficient of variation increases in function of miRNA expression level, as the target expression level is reduced by the miRNA, and that targets with low expression level have higher coefficients of variation compared to highly expressed targets. Furthermore, there is a noticeable spike in the coefficient of variation of each target, in the region where the target experiences a hypersensitive down-regulation in response to the miRNA (see also Appendix Fig S3A). The miRNA also induces correlated changes in its targets (Fig 2C); targets with high sensitivity to the miRNA that are repressed at low miRNA concentrations (a and b in our example) exhibit the highest correlation coefficient, and over a widest range of miRNA concentrations. However, targets that differ strongly in concentration of the miRNA that triggers their response or in the magnitude of miRNA-induced decay appear uncorrelated (c with respect to the others in our example).

We then turned to the experimental data. For both miRNAs and both cell lines, the total target level (see Materials and Methods for target selection) exhibited the expected threshold decrease in function of the GFP expression level, which we used as proxy for the miRNA expression (Fig 2D and G, and Appendix Fig S3D). The C_V and r_p values, computed as ratios to the corresponding values for a similarly sized set of non-targets, also showed the expected behaviors; namely, the coefficient of variation in target expression across individual cells increased with the GFP expression (Fig 2E and H, see also Appendix Fig S3B and E), while the mean pairwise correlation coefficient of target expression in individual cells peaked at an intermediate level of GFP mRNA expression (Fig 2F and I, see also Appendix Fig S3C and F). Randomizations showed that in spite of the large noise, indicated by the size of the error bars, the C_V of targets remained larger than that of non-targets and the correlation of target expression larger than that of non-target expression. Thus, even though the noise of single-cell experiments is large and mRNA capture is incomplete, the experimental data follow the theoretical predictions and the simulations.

The sensitivity of individual targets to miRNA regulation can be inferred from their expression in cells with varying miRNA level

We used the computational model described in equation (1) to derive two measures of target sensitivity to miRNA regulation. First, we derived the Michaelis–Menten-like constant (Wee et al., 2012) $K_M = \frac{k_{off}}{k_{on} - k_{off},}$ defined as the ratio of the dissociation rate of miRNA i from the miRNA-primed Argonaute protein (whether or not accompanied by Ago-catalyzed decay) and their rate of binding. We further derived the level of free Ago-miRNA complexes at which a specific target i is halfway between its maximum level T^0_i, realized when the miRNA is not expressed, and its minimum level T^c_i, realized when the miRNA is in high excess relative to all targets. As shown in Materials and Methods, this critical concentration is given by

$$A_{Fi}^c = \frac{K_M}{T^c_i}.$$

We then devised a procedure for inferring these two parameters for each miRNA target from the experimental data, which has a high level noise (total target levels vary almost twofold in individual cells with similar GFP expression (Fig 2D and G), for reasons that may include the low mRNA capture rate and the imperfect coupling of miRNA and GFP mRNA levels). We used the system described in equation (1) to test procedures for analyzing noisy single-cell data such that we can infer target-specific parameters at the limit of accuracy afforded by the single-cell experiments. Relevant for the inference are the expression levels of targets in the absence of the miRNA, the expression levels when the miRNA is present at maximal concentration, and the expression levels in all cells in which the miRNA has intermediate expression. Thus, we generated in silico data with the computational model (Fig 3A), added noise in target levels comparable to the noise observed in vivo (Fig 3B), and then experimented with the selection of cells to use in the inference and with the smoothing of the target levels (Fig 3B and C) to most accurately recover the input parameters (see also Materials and Methods and Appendix Fig S4). In particular, different miRNA targets respond at different miRNA concentration, and only cells in which the miRNA concentration is in the relevant range for that target could be used for inferring the shape of the target’s response. Thus, to select cells that are relevant for the inference of parameters of all targets in parallel, we examined the dependence of average target level as a function of the miRNA concentration in a cell. As even the average target level varies quite widely between cells with similar miRNA concentration (Fig 3B), we explored procedures for smoothing average expression levels as a function of miRNA expression.
before the selection of cells for the inference, as described in Materials and Methods. The region of target sensitivity to the miRNA is indicated by the red line in Fig 3B, and the gradient in mean target level as a function of miRNA concentration is shown in Fig 3C. The free miRNA levels inferred from these in silico data showed that only when the total miRNA level is sufficiently high to occupy all the available target sites (Fig 3D) does free miRNA accumulate, as expected. The correlation between target-specific input and recovered parameters (Fig 3E, Pearson’s $r = 0.56$, P-value $= 3.0 \times 10^{-20}$) was at the upper bound set by the level of noise in the simulated data, as shown by correlation between the parameters recovered from two simulations that only differed in the measurement error added to the target expression levels in the simulated cells (Fig 3F).

A limited number of targets exhibit high sensitivity to miRNA induction

We then turned to estimating the sensitivities of the predicted miRNA targets from the experimental data. For each miRNA, we selected the 300 MIRZA-G-C-predicted targets with highest

![Figure 2. Expected and observed response of miRNA targets to miRNA induction in single-cells.](image-url)
prediction scores (Gumienny & Zavolan, 2015) that had an expression level of at least ~8 TPM when the miRNA was not expressed, and underwent at least 8% down-regulation at the highest miRNA concentration ($\log_2 \frac{T_0}{T_i} < 0.12$). We used cells with log2 GFP expression of 0 TPM (1,875 and 1,629 cells for i199 and i199-KTN1 cells, respectively) to infer target levels T_0, when the miRNA is not expressed, cells with more than 6.8 TPM GFP (216 cells for i199 and 205 for i199-KTN1) to infer target levels T_1 at saturating miRNA concentration, and all other cells to construct the T matrix of individual target expression levels in single-cells with intermediate miRNA expression. Applying the inference described in Materials and Methods, we obtained A_F (Fig 4A) and K_M (Fig 4B) parameters for all targets and found that their distributions covered a fourfold to eightfold range. The average response of the 20 targets with lowest and highest values of these two parameters to miRNA induction is shown in Fig 4C. For both hsa-miR-199a-5p and hsa-miR-199a-3p miRNAs, target parameters inferred independently from the two cell lines were significantly correlated (Fig 4D and E), indicating the robustness of our results. For hsa-miR-199a-3p, Pearson’s correlation coefficients were 0.49 (P-value = 2.6×10^{-11}) for A_F and 0.4 (P-value = 5.9×10^{-8}) for K_M, while for hsa-miR-199a-5p, they were 0.43 (P-value = 3.6×10^{-8}) for A_F and 0.34 (P-value = 2.2×10^{-5}) for K_M. Especially apparent on the scatter plot of A_F values is a small group of targets that respond at low miRNA concentrations and thus have low A_F in both cell lines (see also Fig 4C). These low A_F targets have higher prediction scores and are enriched in DNA-binding factors compared to the high A_F targets (Appendix Tables S1 and S2, and Fig S5A). The measure that is most broadly used to validate computational target predictions is the change in expression...
that predicted targets experience upon strong miRNA induction (Fig 4F). Sorting targets by their MIRZA-G-C scores and computing the average fold change [between cells with high (T*1i) and no (T*0i) miRNA expression] of the top x targets as a function of x, we indeed found that the highest scoring targets undergo the largest down-regulation (Fig 4F, dotted lines), as expected. Similar patterns of stronger down-regulation of top targets were also apparent when we sorted targets based on their sensitivity to the miRNA reflected in the AC_F parameter (Fig 4F, dashed lines). However, the best indicator of the degree of down-regulation of a predicted target was its inferred KM (Fig 4F, full lines). This could indicate that the inferred KM values are dominated by k_cat, the rate of target degradation when complexed to the miRNA, while the rates of miRNA–target association and dissociation vary less between targets. Finally, we examined what features of the predicted miRNA binding site were most informative for the AC_F, KM, and fold change of the target (Appendix Fig S5B). For this, we selected only the 231 targets with a single binding site (for either of the miRNAs), to ensure that the site context effects could be attributed unambiguously. Consistent with prediction models being trained to predict mRNA level changes upon miRNA transfection, the prediction scores correlate best (in absolute value) with the fold change of the predicted targets in cells with high miRNA expression compared with low miRNA expression. Measures related to the A/U content in the vicinity of sites and their relative location in 3’ UTR are most predictive for AC_F and KM, whereas the degree of evolutionary conservation is most informative for the fold change of the target.

Figure 4. Parameters describing the response of individual targets to changes in miRNA expression.

A, B Histograms of AC_F (A) and KM (B) log2-values of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets, inferred from the i199 cell line. The lines indicate the best-fitting Gaussian distributions.

C Response of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets to the miRNAs in i199 cells. Targets were selected based on AC_F (dashed lines) or KM (full lines) values, targets with low values of the respective parameters are shown in strong color, and those with high values are shown in faded colors. Twenty targets were summed up for each category. Dots show the point where the targets have undergone ½ of their maximal down-regulation.

D Scatter plot of log2 AC_F values inferred for individual targets from the i199 and i199-KTN1 cell lines. Shown are also Pearson’s correlation coefficients and corresponding P-values.

E Scatter plot of log2 KM values inferred for individual targets from the i199 and i199-KTN1 cell lines. Shown are also Pearson’s correlation coefficients and corresponding P-values.

F Average log2 fold change of hsa-miR-199a-5p (red) and hsa-miR-199a-3p (blue) targets as a function of the number of top targets considered, where predictions are made based on either KM values (highest to lowest, full lines), AC_F values (lowest to highest, dashed lines) or MIRZA-G-C scores (highest to lowest, dotted lines).
Implications for the ceRNA function of miRNA targets

To evaluate the implications of our results for the debate about the prevalence of competing endogenous RNAs (Denzler et al., 2014; Bosson et al., 2014), we used again our computational model with realistic K_M values and explored the effect of one miRNA target (the ceRNA) on the expression of all other targets. Target parameters were set as described in section “In silico analysis”, to cover the range inferred from various experimental systems. We note that a ceRNA is only one species of RNAs expressed in a cell and, for the vast majority of parameter values that are in the range determined for other RNAs in the cell, the ceRNA is predicted to cause expression changes that are very low, below 1%. Nevertheless, we illustrate some of the more interesting scenarios below. We set the decay rate of the free ceRNA to 0.1/h, its $k_{on} = 0.2/h$, similar to that of other targets, and we varied the k_{off} and k_{cat} to achieve either low or high K_M. We then asked how much the expression of the pool of targets with either low (less than 0.02 M) or high (greater than 2 M) K_M targets changes, when the ceRNA is expressed at different levels.

As shown in Fig 5, we found that highly expressed ceRNAs with low K_M can induce the up-regulation of low and especially high K_M targets. However, substantial up-regulation of other targets, larger than a few percent, is only achievable when the ceRNA has very high transcription rate and does not decay when in complex with the miRNA. This is what one intuitively expects, namely that a ceRNA can influence the expression of other targets when its expression is comparable to that of all other targets taken together. On the other hand, if the ceRNA has high K_M, its influence on the expression of other targets will be negligible. These results strongly suggest that ceRNAs that were observed so far are highly expressed transcripts that are relatively resistant to degradation. These would be able to “sponge” miRNAs from targets which the miRNA strongly destabilizes, which have high k_{cat} and high K_M. Good candidates seem to be the relatively recently described circular RNAs (Memczak et al., 2013; Hansen et al., 2013). However, given the multiple constraints that a transcript has to fulfill to be able to function as a ceRNA (very high transcription and/or stability, low K_M), this mode of regulation should be rare.
Discussion

Single-cell RNA sequencing has opened a new route to the quantitative understanding of cell behaviors. This technology has been used to characterize transcript isoforms and gene expression (Shalek et al., 2013), to improve classification of cell types (Buettner et al., 2015) and to discover new, particularly rare types of cells (Grun et al., 2015). The relatively low rate of mRNA capture and the large technical noise remain important issues for single-cell sequencing, particularly with droplet-based methods, which rarely use spike-ins for normalization (Ziegenhain et al., 2018; Gao, 2018). However, developments such as unique molecular identifiers (Grun et al., 2014) push the boundary toward ever increasing accuracy. Although data analysis methods are still in flux, in our study, we used known properties of miRNA targets to gauge whether our processing of the data is appropriate. For example, we showed that miRNA target down-regulation computed from the inferred target levels in single-cells is similar to the down-regulation inferred from bulk sequencing. Single-cell analysis has also been used to infer parameters of gene expression (see Munsky et al., 2015 for a recent review).

Although it was proposed that miRNAs buffer stochastic fluctuations in gene expression between cells (Hornstein & Shomron, 2006), experimental data pertaining to expression of miRNA targets in individual cells with different levels of miRNA expression are very limited. Some studies estimated the effect of endogenous miRNAs on the protein expression noise of target reporters with multiple miRNA-complementary sites (Mukherji et al., 2011; Schmiedel et al., 2015). The reduction in protein expression noise has been related to the degree of miRNA-induced down-regulation, which is generally limited, except for reporters that carry multiple perfectly complementary miRNA binding sites in their 3’ UTR. Additional studies are needed to evaluate the extent to which miRNAs regulate the expression noise of their targets in their native context (see also Schmiedel et al., 2015). Target reporters have also been used to investigate whether miRNAs induce correlations in the expression levels of their targets (Bosia et al., 2017). However, how endogenous miRNA targets simultaneously respond to miRNA induction in individual cells is insufficiently understood, leading to ongoing debates about the influence that one target can have on the expression of others.

In this study, we developed a methodology to characterize the regulatory effects of a miRNA on its hundreds of targets in single-cells. We constructed an experimental system in which the expression of a miRNA precursor can be induced with doxycycline together with that of GFP from a bidirectional promoter. This system was initially tested with two protein-coding genes, one for the nerve growth factor and the other for eGFP, which showed good, though not perfect correlation at single-cell level (Bornkamm et al., 2005). In our case, absolute quantification of the miRNA and GFP mRNA in cell populations indicated that expression of the two RNAs was highly correlated in response to doxycycline induction, and we thus used the GFP mRNA as a proxy for the miRNA. It is likely that a direct measurement of miRNA expression in the cells whose miRNAs are sequenced would further increase the accuracy of the results of our model, and we expect the technology to become available in the near future. We showed that this system exhibits predicted behaviors such as a peak in target noise as well as a peak in the correlation of target levels, in the region of maximal sensitivity to the miRNA. The construct can be easily modified to enable inducible expression of other miRNAs. We further developed a methodology for the variational fitting of Michaelis–Menten-type constants (KM) characterizing individual miRNA targets. This method takes advantage of the variability in transcriptional activity that leads to variability in miRNA expression levels between cells. For the first time, we have uncovered the hierarchy of targets of a miRNA, defined by the miRNA concentrations at which these targets respond within the context of all other targets in the cell as well as by the Michaelis–Menten-type constants. We found that high KM targets undergo the largest down-regulation, indicating that this parameter reflects primarily their kcat, the rate of decay in the presence of the miRNA. Some targets were particularly sensitive to the miRNA, requiring relatively low miRNA concentrations to respond and having reproducibly low A50 values. Their higher prediction scores and enrichment in DNA-binding factors suggest that these are prototypical miRNA targets (Gruber & Zavolan, 2013). Simulations indicate that targets with low KM and low A50 values could sequester the miRNA from other targets if they are highly expressed and do not decay substantially when they interact with the miRNAs. Current approaches for studying miRNA–target interactions that measure miRNA level changes upon miRNA overexpression to uncover the most relevant targets likely overlook these targets. Thus, it would be interesting to apply our approach to systems in which functional ceRNAs have been reported (Poliseno et al., 2010; Cesana et al., 2011; Cheng & Lin, 2013). Interestingly, early analyses of miRNA and target expression found that many miRNA targets are expressed at relatively high level in the tissue in which the miRNA is expressed (Farh et al., 2005). However, this has been attributed to miRNAs optimizing the protein output of their targets rather than entirely suppressing it. Our analysis also suggests that targets with low A50, which bind the miRNAs but do not undergo substantial down-regulation in response to it, could impose a threshold for miRNA-dependent regulation, which would otherwise affect a large fraction of the transcriptome.

To demonstrate the robustness of our approach, we have inferred parameters of individual targets from two closely related cell lines. However, it is likely that the sensitivity of a target to miRNA regulation is context-dependent (Erhard et al., 2014). Because we wanted to map the parameters of miRNA–target interaction in a native context of miRNA expression, we induced the miRNA expression from an exogenous construct in HEK 293 cells. Although a large number of studies of miRNA-dependent gene regulation have similar designs, it remains possible that the “true” targets of the miRNA are not naturally expressed in the cell type in which the experiment is carried out. To fully address this possibility, one would perhaps have to progressively remove a highly abundant, cell type-specific miRNA, which would be more challenging than inducing miRNA expression. miR-122 in liver cells could be a good candidate for this type of experiment (see also Denzler et al., 2014).

The miRNA target parameters that we inferred in our study will enable an improved understanding of the dynamics of networks containing many competing miRNA targets. Furthermore, the approach can be easily extended to RNA-binding protein regulators of mRNA stability as well as to other types of regulators such as transcription factors.
Materials and Methods

A model to describe the dynamics of miRNA targets

We used the model from equation (1) in the main text and also shown below, which considers M targets of a miRNA, each being described by a transcription rate x_i, decay rate δ_i, rate of binding the Ago-complexed miRNA k_{on}, rate of dissociating from this complex k_{off}, and rate of degradation when in the complex k_{cat}. With m_i being the concentration of the free target, A_m the concentration of the miRNA-bound target, and A the total concentration of Ago-miRNA complexes, we have the following system of $2M$ differential equations

$$
\frac{\partial m_i(t)}{\partial t} = x_i - \delta_i m_i(t) - k_{on}m_i(t) \left(A - \sum_{j=1}^{M} A_m(t) \right) + k_{off}A_m(t),
$$

$$
\frac{\partial A_m(t)}{\partial t} = k_{on}m_i(t) \left(A - \sum_{j=1}^{M} A_m(t) \right) - k_{off}A_m(t) - k_{cat}A_m(t).
$$

(1)

Denoting the total concentration of mRNA i (either free or bound to the miRNA) by T_i, and summing the two equations corresponding to mRNA i, the dynamics of T_i is described by

$$
\frac{\partial T_i(t)}{\partial t} = x_i - \delta_i (1 - f_i) T_i(t) - k_{cat} f_i T_i(t),
$$

or, in terms of the fraction f_i of molecules of mRNA i that are bound to miRNAs,

$$
\frac{\partial T_i(t)}{\partial t} = x_i - \delta_i (1 - f_i) T_i(t) - k_{cat} f_i T_i(t).
$$

(3)

Defining the total concentration of mRNA i when no miRNA is present as $T_i^0 = \frac{x_i}{\delta_i}$ and when the miRNA is in high excess as $T_i^\infty = \frac{x_i}{k_{on}}$, we obtain the total concentration of mRNA i at a steady state as

$$
T_i = \frac{x_i}{\delta_i (1 - f_i)} + \frac{1}{k_{cat} f_i} \frac{T_i^0}{1 + \frac{T_i^0}{T_i^\infty} - 1}.
$$

(4)

Note that the concentration of the miRNA is reflected in the fraction of bound targets. In our experimental system, we vary the expression of the miRNA from very low to very high levels and we can therefore estimate T_i^0 and T_i^∞. However, the fraction of mRNA i that is bound to the miRNA depends not only on the constants of interaction of this mRNA with Ago-miRNA complexes, but also on all other targets that are present in the system. To determine the interaction constants, we first derive for each mRNA i the fraction f_i that is bound to the miRNA, as follows. At equilibrium, we have

$$
m_i k_{on} A_F = A_m \left(k_{off} + k_{cat} \right),
$$

$$
\frac{m_i}{A_m} = \frac{1 - f_i}{f_i} = \frac{k_{off} + k_{cat}}{k_{on} A_F},
$$

and thus

$$
f_i = \frac{1}{1 + \frac{k_{on} A_F}{k_{off} A_F}}.
$$

(7)

with the Michaelis-Menten parameter defined as $K_M = \frac{k_{on} + k_{cat}}{k_{on}}$. Considering all cells $j \in \{1, \ldots, N\}$, each with a different concentration of free Ago-miRNA complexes A_F, and substituting f_i in equation (4), we obtain

$$
T^\infty_i = \frac{T_i^0}{1 + \frac{T_i^0}{T_i^\infty} - 1} = \frac{K_M}{A_F}.
$$

(8)

where T^∞_i is the total concentration of mRNA i in cell j, which can be computed from the measured target levels. We isolate the ratio K_M/A_F and rewrite

$$
\frac{T_i^0}{T_i^\infty} - 1 = \frac{K_M}{A_F},
$$

or equivalently, in vector form, substituting the left-hand side of the equation by \tilde{T},

$$
\tilde{T} = A_F^{-1} K_M.
$$

(10)

Here, K_M is a $(1 \times M)$ matrix of Michaelis-Menten constants for individual mRNAs, A_F^{-1} is a $(N \times 1)$ matrix of free Ago-miRNA complexes in individual cells, and \tilde{T} is a $(N \times M)$ matrix of expression levels of individual mRNAs in individual cells. \tilde{T} can be viewed as a Kronecker product of the two vectors K_M and A_F^{-1} written in a more general form as

$$
B = xy^T.
$$

(11)

Determining the vectors x and y becomes the reverse Kronecker product problem and has a known solution satisfying

$$
\min_{x,y} \|B - xy^T\|_F,
$$

(12)

where $\| \cdot \|_F$ denotes the Frobenius norm. The solution is obtained from the singular value decomposition (SVD) $B = UD\Sigma V^T$ as

$$
x_i = \sqrt{\Sigma} U_{i1}, \quad y_i = \sqrt{\Sigma} V_{1i}.
$$

(13)

From equation (9), we see that the SVD provides us the solution (A_F, K_M), up to a scaling factor $a_i \frac{a_{ik}}{a_{ij}} = \sqrt{\Sigma_{ii}} \forall i \in \mathbb{R}$. In principle, it is possible to determine the factor a_i, which explains the data best, using the total concentration of Ago-miRNA complexes A in all cells.

Fitting the vectors A_F and K_M on data generated from simulations of model (1), we found that the correlation of the fitted A_F with the input value was significantly higher than for K_M. This is explained by the fact that we use the total concentration of the miRNA in the cells to sort the cells and smoothen the mRNA expression. A_F being a monotonic, strictly increasing, continuous function of A, smoothing the data along the cell dimension (i.e., along the j index in equation (8)) leads to a reduction in noise in the direction of the mRNA levels A_F but not in the mRNA dimension K_M. Therefore, the vector A_F is inferred more precisely compared to K_M. Using the more precisely inferred A_F values and averaging over cells, we can
increase the precision of K_M values; relation (10) always holds, and after fitting, we use the values of A_F to compute the values K_M by averaging $A_F \hat{T}_{ji}$ over all cells $j = 1...N$

$$K_M = \frac{1}{N} \sum_{j=1}^{N} A_F \hat{T}_{ji}, \ j = 1...N. \quad (14)$$

We define A_F^* the concentration of free Ago at which the target will be exactly halfway between T^0_ij and T^∞_ij.

$$\frac{1}{1 + \frac{1}{T^0_\text{ij}} \left(\frac{T^\infty_\text{ij}}{T^0_\text{ij}} - 1 \right)} = \frac{T^0_\text{ij} + T^\infty_\text{ij}}{2} \Rightarrow A_F^* = \frac{K_M}{T^\infty_\text{ij}}.$$

In silico analysis

Stochastic simulations based on equation (1) were used to verify the solution obtained in equation (8). Stochastic simulations were performed using StochKit v.2.0.11 (Sanft et al, 2011) with a tau-leaping algorithm. For each in silico cell, six simulations of length 100,000 (arbitrary time units) were carried out to ensure convergence. The first 10,000 steps were considered the “burning phase” and were discarded before the analysis. Means and standard deviations were calculated from the values obtained in the independent simulations.

To test the K_M inference method, we constructed an in silico data set as follows. We considered a regulatory network of 300 miRNA targets. Each target was characterized by parameters x_i, δ_i, k_{cat_i}, k_{off_i}, whose values were assumed to be in the ranges provided by our previous literature survey (Haussler & Zavolan, 2014). For each target, we chose a set of parameters from log-normal distributions, which are shown in Appendix Fig S4. Similar to the experimental data set, we considered 4,000 virtual cells, each with a distinct concentration of free Ago-miRNA complexes, chosen from a uniform distribution on the log2 range of 40 to 14, such as ~50% of cells end up with no miRNA expression, as observed in the experiment. The expression of all targets as a function of the miRNA increase the precision of K_M values; relation (10) always holds, and after fitting, we use the values of A_F to compute the values K_M by averaging $A_F \hat{T}_{ji}$ over all cells $j = 1...N$

$$K_M = \frac{1}{N} \sum_{j=1}^{N} A_F \hat{T}_{ji}, \ j = 1...N. \quad (14)$$

We define A_F^* the concentration of free Ago at which the target will be exactly halfway between T^0_ij and T^∞_ij.

$$\frac{1}{1 + \frac{1}{T^0_\text{ij}} \left(\frac{T^\infty_\text{ij}}{T^0_\text{ij}} - 1 \right)} = \frac{T^0_\text{ij} + T^\infty_\text{ij}}{2} \Rightarrow A_F^* = \frac{K_M}{T^\infty_\text{ij}}.$$

In silico analysis

Stochastic simulations based on equation (1) were used to verify the solution obtained in equation (8). Stochastic simulations were performed using StochKit v.2.0.11 (Sanft et al, 2011) with a tau-leaping algorithm. For each in silico cell, six simulations of length 100,000 (arbitrary time units) were carried out to ensure convergence. The first 10,000 steps were considered the “burning phase” and were discarded before the analysis. Means and standard deviations were calculated from the values obtained in the independent simulations.

To test the K_M inference method, we constructed an in silico data set as follows. We considered a regulatory network of 300 miRNA targets. Each target was characterized by parameters x_i, δ_i, k_{cat_i}, k_{off_i}, whose values were assumed to be in the ranges provided by our previous literature survey (Haussler & Zavolan, 2014). For each target, we chose a set of parameters from log-normal distributions, which are shown in Appendix Fig S4. Similar to the experimental data set, we considered 4,000 virtual cells, each with a distinct concentration of free Ago-miRNA complexes, chosen from a uniform distribution on the log2 range of 40 to 14, such as ~50% of cells end up with no miRNA expression, as observed in the experiment. The expression of all targets as a function of the miRNA increase the precision of K_M values; relation (10) always holds, and after fitting, we use the values of A_F to compute the values K_M by averaging $A_F \hat{T}_{ji}$ over all cells $j = 1...N$

$$K_M = \frac{1}{N} \sum_{j=1}^{N} A_F \hat{T}_{ji}, \ j = 1...N. \quad (14)$$

We define A_F^* the concentration of free Ago at which the target will be exactly halfway between T^0_ij and T^∞_ij.

$$\frac{1}{1 + \frac{1}{T^0_\text{ij}} \left(\frac{T^\infty_\text{ij}}{T^0_\text{ij}} - 1 \right)} = \frac{T^0_\text{ij} + T^\infty_\text{ij}}{2} \Rightarrow A_F^* = \frac{K_M}{T^\infty_\text{ij}}.$$

In silico analysis

Stochastic simulations based on equation (1) were used to verify the solution obtained in equation (8). Stochastic simulations were performed using StochKit v.2.0.11 (Sanft et al, 2011) with a tau-leaping algorithm. For each in silico cell, six simulations of length 100,000 (arbitrary time units) were carried out to ensure convergence. The first 10,000 steps were considered the “burning phase” and were discarded before the analysis. Means and standard deviations were calculated from the values obtained in the independent simulations.

To test the K_M inference method, we constructed an in silico data set as follows. We considered a regulatory network of 300 miRNA targets. Each target was characterized by parameters x_i, δ_i, k_{cat_i}, k_{off_i}, whose values were assumed to be in the ranges provided by our previous literature survey (Haussler & Zavolan, 2014). For each target, we chose a set of parameters from log-normal distributions, which are shown in Appendix Fig S4. Similar to the experimental data set, we considered 4,000 virtual cells, each with a distinct concentration of free Ago-miRNA complexes, chosen from a uniform distribution on the log2 range of 40 to 14, such as ~50% of cells end up with no miRNA expression, as observed in the experiment. The expression of all targets as a function of the miRNA increase the precision of K_M values; relation (10) always holds, and after fitting, we use the values of A_F to compute the values K_M by averaging $A_F \hat{T}_{ji}$ over all cells $j = 1...N$

$$K_M = \frac{1}{N} \sum_{j=1}^{N} A_F \hat{T}_{ji}, \ j = 1...N. \quad (14)$$

We define A_F^* the concentration of free Ago at which the target will be exactly halfway between T^0_ij and T^∞_ij.

$$\frac{1}{1 + \frac{1}{T^0_\text{ij}} \left(\frac{T^\infty_\text{ij}}{T^0_\text{ij}} - 1 \right)} = \frac{T^0_\text{ij} + T^\infty_\text{ij}}{2} \Rightarrow A_F^* = \frac{K_M}{T^\infty_\text{ij}}.$$

In silico analysis

Stochastic simulations based on equation (1) were used to verify the solution obtained in equation (8). Stochastic simulations were performed using StochKit v.2.0.11 (Sanft et al, 2011) with a tau-leaping algorithm. For each in silico cell, six simulations of length 100,000 (arbitrary time units) were carried out to ensure convergence. The first 10,000 steps were considered the “burning phase” and were discarded before the analysis. Means and standard deviations were calculated from the values obtained in the independent simulations.

To test the K_M inference method, we constructed an in silico data set as follows. We considered a regulatory network of 300 miRNA targets. Each target was characterized by parameters x_i, δ_i, k_{cat_i}, k_{off_i}, whose values were assumed to be in the ranges provided by our previous literature survey (Haussler & Zavolan, 2014). For each target, we chose a set of parameters from log-normal distributions, which are shown in Appendix Fig S4. Similar to the experimental data set, we considered 4,000 virtual cells, each with a distinct concentration of free Ago-miRNA complexes, chosen from a uniform distribution on the log2 range of 40 to 14, such as ~50% of cells end up with no miRNA expression, as observed in the experiment. The expression of all targets as a function of the miRNA increase the precision of K_M values; relation (10) always holds, and after fitting, we use the values of A_F to compute the values K_M by averaging $A_F \hat{T}_{ji}$ over all cells $j = 1...N$

$$K_M = \frac{1}{N} \sum_{j=1}^{N} A_F \hat{T}_{ji}, \ j = 1...N. \quad (14)$$

We define A_F^* the concentration of free Ago at which the target will be exactly halfway between T^0_ij and T^∞_ij.

$$\frac{1}{1 + \frac{1}{T^0_\text{ij}} \left(\frac{T^\infty_\text{ij}}{T^0_\text{ij}} - 1 \right)} = \frac{T^0_\text{ij} + T^\infty_\text{ij}}{2} \Rightarrow A_F^* = \frac{K_M}{T^\infty_\text{ij}}.$$
700 cells/µl after straining with a cell strainer to avoid clumps. This is performed so as to partition the input cells across tens of thousands of droplets (GEMs) for the purpose of lysis and barcoding. GEM Generation and Barcoding was performed according to manufacturer’s instructions (Chromium™ Single-Cell 3’ Reagent Kits v2, Part No-120234, 10x Genomics). Subsequently, reverse transcription (RT) and post-GEM-RT cleanup were done exactly as per manufacturer’s protocol. The purified GEM-RT product was then pre-amplified for 10 cycles, purified with SPRI select (Beckman Coulter), and analyzed on a High Sensitivity Bioanalyzer.

Library preparation and sequencing

Library construction including Fragmentation, End Repair, and A-tailing was performed as per manufacturer’s protocol (Chromium™ Single-Cell 3’ Reagent Kits v2, Part No-120234, 10x Genomics). Subsequently, the fragments were purified with a double-sided size selection with SPRI select (Beckman Coulter) and ligated to adapters. After ligation, the samples were purified once more with SPRI select prior to the steps of sample index PCRs. The end product was finally obtained with another round of double-sided SPRI selection of the PCR. Quality control of the libraries was done on an Agilent Bioanalyzer High Sensitivity Chip. Libraries were then sequenced (Paired End) on a NextSeq 500 system [NextSeq 500/550 High Output v2 Kit (75 cycles)], and the reads were obtained according to the following parameters:

(i) Seq Read 1, 26 cycles;
(ii) Seq Read 2, 58 cycles;
(iii) IDX Read, 8 cycles;
(iv) Illumina base-calling software version: bcl2fastq v2.19.0.316; and
(v) Demultiplexing software version: cellranger mkfastq (2.0.0).

The library preparation and sequencing were performed at the Genomics Facility Basel. The sequencing data have been deposited to the Sequence Read Archive (www.ncbi.nlm.nih.gov/sra/) under the accession number SRP067502.

Computation of the coefficient of variation of target expression

Given the set of cells sorted by their GFP expression, we calculated the coefficient of variation (C_V, standard deviation/mean) of a specific target as follows. We traversed the list of cells from those with lowest to those with highest GFP expression, and for each cell, we considered the 199 cells with closest GFP level to the reference cell and calculated the C_V of each target. We then log$_2$-transformed the C_V of individual targets and determined the mean (and standard error) over all 100 selected low A_F^C targets. We applied the same procedure to all non-targets (genes targeted neither by hsa-miR-199-3p nor by hsa-miR-199-5p). We then subtracted the log, mean C_V of targets and non-targets, repeated this procedure for the entire GFP expression range and show the normalized C_V as a function of the log$_2$ GFP level in the reference cell.

PAGODA variance normalization

The i199 and i199-KTN1 single-cell data sets were divided into 100 cell batches, grouped according to GFP expression level in the cells. A random sample of 100 cells was subsampled from the cell population with no GFP expression. Next, the PAGODA data preparation, error modeling, and variance normalization functions were used with standard parameters, on the raw data sets, as specified in the PAGODA tutorial, http://hms-dbmi.github.io/scde/pagoda.html. The normalized variance used for the analysis is shown in Appendix Fig S3B and E.

Computation of the pairwise correlation coefficients of target expression levels

Given a population of cells sorted by their GFP expression, we calculated the Pearson correlation of log$_2$ expression levels for all pairs of 100 targets, in function of GFP level (as for C_V, average values were computed over 199 cells with GFP expression closest to that in the reference cell). Thus, we started from those cells with lowest GFP expression and moved by one cell at a time to cells with the highest GFP expression, computing the mean correlation coefficient (and standard error of the mean) over all pairs of genes within a cell. We repeated the procedure for 50 evaluations of 100 random genes that were not predicted as targets. Finally, we divided the mean correlation coefficients of targets and non-targets and shown this as function of GFP level in the cell.

Computation of GO enrichment

The hyperGTest function from GOstats package (R Bioconductor repository) was used to find enriched GO terms. The maximum “PvalueCutoff” for reporting was set to 0.1, “conditional” to “TRUE”, and “testDirection” to “Over”.

Cell population mRNA-Seq

Total RNA isolation

Total RNA was extracted with TRI Reagent® (Sigma-Aldrich) following manufacturer’s instructions. Briefly, cells were detached from the plate by 5-min incubation with Trypsin–EDTA solution (T3924; Sigma-Aldrich), conditioned media were added, and whenever necessary, cells were counted with a Countess® Cell Counter (Thermo Fisher Scientific). A defined number of cells were pelleted and either snap-frozen for future use or resuspended right away in TRI Reagent® (#T9424; Sigma-Aldrich). Total RNA was resuspended in nuclease-free water (#AM9937; Thermo Fisher Scientific). Samples were always kept on ice or at −80°C.

mRNA purification

To select the Poly(A)$^+$ RNA, a double purification with Dynabeads® Oligo (dT)25 (Dynabeads® mRNA DIRECT™ Kit, Ambion™) was performed, using the manufacturer’s manual and recommendations. Since the starting material was purified total RNA, only buffer B was used for the washing steps.

Library preparation

Purified mRNA was fractionated with alkaline hydrolysis buffer at 95°C for 5 min. Fractionated mRNA was selected with RNeasy MinElute Cleanup Kit (Qiagen, Inc.). Purified mRNA fragments were dephosphorylated with FastAP (Life Technologies, Inc.) and 5’-phosphorylated with PNK (Life Technologies, Inc.) following manufacturer’s instructions for optimal conditions of the enzymatic reaction. After another round of RNeasy MinElute Cleanup Kit (Qiagen, Inc.), a pre-adenylated DNA adapter (5’-TGGAATTTTCGCAGGGC-3’) was ligated to the 3’ end of the mRNA fragments at 4°C overnight using the T4 RNA ligase 2, truncated K227Q (New England Biolabs, Inc.), in 1× T4 RNA ligase buffer (no ATP) and 15% DMSO. The next day, after another round of RNeasy MinElute
Cleanup Kit (Qiagen, Inc.), an RNA adapter (5'-GUUCAGAGUUCUA CAGUCCGAGAU-3') was ligated to the 5' end of the RNA fragments at 4°C overnight using the T4 RNA ligase 1 (Life Technologies, Inc.), in 1× T4 RNA ligase buffer (1 mM ATP) and 15% DMSO. Next day, after another round of RNasey MinElute Cleanup Kit (Qiagen, Inc.), reverse transcription was performed using SuperScript III (Invitrogen, Inc.) and RTP primer (5'-CCTTGGACCCGAGAATT CCA-3') following manufacturer's instructions. cDNA was then amplified by 12 cycles of PCR using NEBNext® High-Fidelity 2× PCR Master Mix (NEB, Inc.) and Illumina TruSeq® Small RNA PCR compatible primers.

Library sequencing

The library was sequenced in the Genomics Facility Basel, on Illumina HiSeq 2000 or HiSeq 2500 instruments using TruSeq-compatible primers. Reads of 50 nt were generated along with 8 nt index reads corresponding to the sample-specific barcode.

Read mapping and data preprocessing

Reads from single-cell and cell population mRNA-Seq were mapped to the transcriptome (Ensembl, GRCh38.re188) with Cellranger-1.3.1, the software provided by 10x Genomics to map the reads produced by the Chromium™ Single-Cell 3’ solution. Cellranger processes the cell and transcript barcodes, uses STAR 2.5.1b to align the reads, and counts the number of transcripts observed from each gene to provide a table of unique molecular identifier (UMI) counts per gene and per cell. The sequence of the eGFP mRNA that was expressed from the exogenous pRTS1 vector was added to the transcriptome before mapping. After summing the counts for all Ensembl entries for a given Entrez gene ID, the gene counts were normalized to have in each cell one million counts. Next, a pseudo-count, 0.001, was added to each gene (and 1.0 to GFP gene for clarity of visualization). In all of the analyses, genes with very low final estimated expression (mean TPM < 7 across cells) were discarded.

Targets selection

If not specified otherwise, we used in analyses the 300 highest probability targets predicted by MIRZA-G-C (Gumienny & Zavolan, 2015) that were down-regulated at least 8% at the maximum miRNA expression (mean TPM across cells) were discarded.

mRNA and miRNA qPCR

Cells were induced with various concentrations of doxycycline (as indicated in the figure) for 8 days. After counting the cells, total RNA was extracted with TRI Reagent® (Sigma-Aldrich) following manufacturer’s instructions. cDNA of the targets of interest was generated from the exogenous pRTS1 vector was added to the transcriptome before mapping. After summing the counts for all Ensembl entries for a given Entrez gene ID, the gene counts were normalized to have in each cell one million counts. Next, a pseudo-count, 0.001, was added to each gene (and 1.0 to GFP gene for clarity of visualization). In all of the analyses, genes with very low final estimated expression (mean TPM < 7 across cells) were discarded.

mRNA and miRNA qPCR

RNA-Seq, scRNA-Seq, and CLIP-Seq data: NCBI Sequence Read Archive with accession SRP150046 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP150046).

Expanded View for this article is available online.

Acknowledgements

We are grateful to Andrea Riba, Alexander Kanitz, Joao Guimaraes, Andreas R. Gruber, and the other members of the Zavolan group for providing input and feedback during the project and for the careful reading of the manuscript.

Data availability

The data sets produced in this study are available in the following databases:

- RNA-Seq, scRNA-Seq, and CLIP-Seq data: NCBI Sequence Read Archive with accession SRP150046 (https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP150046).

© 2018 The Authors

Molecular Systems Biology 14 e8266 | 2018 13 of 15
miRNA target hierarchy from single cells

Andrzej J Rzepiela et al

The work was supported by the European Research Council Starting grant 310510-WHYMIR and by the SystemX.ch systems biology initiative in Switzerland through the RTD grants 51RT-0_146580 (StoNoTs) and 51RT-0_145728 (NeuroStemX).

Author contributions
AJR co-developed the mathematical model and carried out the simulations and computational analysis of the experimental data; SG generated the single-cell sequencing data and carried out experiments to validate miRNA expression; JB developed the experimental system and carried out the CLIP experiments; APS developed the i199 and i199-KTN1 cell lines and helped with the CLIP experiments; AJG analyzed the down-regulation of miRNA targets in bulk populations; KE and CB provided technical help with the single-cell experiments; EvN contributed to the mathematical model; MZ designed the study; contributed to data analysis, and supervised the work; AJR and MZ wrote the manuscript with help from all authors.

Conflict of interest
The authors declare that they have no conflict of interest.

References

Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136: 215–233
Bazzini AA, Lee MT, Giraldez AJ (2012) Ribosoma profiling shows that miR-430 reduces translation before causing miRNA decay in zebrafish. Science 336: 233–237
Blevins R, Bruno L, Carroll T, Elliott J, Marcais A, Loh C, Hertweck A, Krek A, Tramontano A, Bozzoni I (2011) A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 145: 139–150
Cheng E-C, Lin H (2013) Repressing the repressor: a lincRNA as a MicroRNA sponge in embryonic stem cell self-renewal. Dev Cell 25: 1–2
Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54: 766–776
Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515–524
Eichhorn SW, Guo H, McGeary SE, Rodriguez-Miras RA, Shin C, Baek D, Hsu S-H, Ghoshal K, Villén J, Bartel DP (2014) miRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56: 104–115
Erhard F, Haas J, Lieber D, Malterer G, Jasikiewicz L, Zavolan M, Délikén L, Zimmer R (2014) Widespread context dependency of microRNA-mediated regulation. Genome Res 24: 906–919
Farh KK-H, Crisson A, Jan C, Lewis BP, Johnston WK, Lim LP, Burge CB, Bartel DP (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310: 1817–1821
Figuiluzi M, Marinini E, De Martino A (2013) MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. Biophys J 104: 1203–1213
Gaidatzis D, van Nimwegen E, Hauser J, Zavolan M (2007) Inference of miRNA targets using evolutionary conservation and pathway analysis. BMC Bioinformatics 8: 69
Gao S (2018) Data analysis in single-cell transcriptome sequencing. Methods Mol Biol 1754: 311–326
Garcia DM, Baek D, Shin C, Bell GW, Grimson A, Bartel DP (2010) Weak seed-pairing stability and high target-site abundance decrease the proficiency of Isy-6 and other miRNAs. Nat Struct Mol Biol 17: 1139–1146
Ghosh S, Bose M, Ray A, Bhatacharyya SN (2015) Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells. Mol Biol Cell 26: 1072–1083
Gruber AJ, Zavolan M (2013) Modulation of epigenetic regulators and cell fate decisions by miRNAs. Epigenetics 6: 671–683
Grün D, Wang Y-L, Langenberger D, Günsalus KC, Rajewsky N (2005) microRNA target predictions across seven Drosophila species and comparison to mammalian targets. PLoS Comput Biol 1: e13
Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11: 637–640
Grün D, Lyubimova A, Kester L, Wiebrants K, Basak O, Sasaki N, Clevens H, van Oudenaarden A (2015) Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525: 251–255
Gumireddy R, Zavolan M (2015) Accurate transcriptome-wide prediction of miRNA targets and small interfering RNA off-targets with MIRZA-G. Nucleic Acids Res 43: 1380–1391
Guo H, Ingolia NT, Weissman JS, Bartel DP (2010) Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466: 835–840
Ha I, Wightman B, Ruvkun G (1996) A bulged lin-4/in-14 RNA duplex is sufficient for Caenorhabditis elegans lin-14 temporal gradient formation. Genes Dev 10: 3041–3050
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient miRNA sponges. Nature 495: 384–388
Hauser J, Landthaler M, Jaskiewicz L, Gaidatzis D, Zavolan M (2009) Relative contribution of sequence and structure features to the miRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Res 19: 2009–2020
Hausser J, Syed AP, Selevsek N, van Nimwegen E, Jaskiewicz L, Aebersold R, Zavolan M (2013) Timescales and bottlenecks in miRNA-dependent gene regulation. Mol Syst Biol 9: 711

Hausser J, Zavolan M (2014) Identification and consequences of miRNA-target interactions - beyond repression of gene expression. Nat Rev Genet 15: 599 – 612

Horvitz HR, Ruvkun G (1993) Gene expression. MicroRNA control of protein expression noise. Science 348: 128 – 132

Hautanen A, Haikara S, Schauer I, Scherer SE, Vihtonen A et al (2007) Quantitative characteristics of gene regulation by small RNA. PLoS Biol 5: e229

Lewis RP (2011) Conservation of seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 145: 9–11

Lim LP, Lau NC, Garrett-Engele P, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM (2005) Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433: 769 – 773

Mcmiczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loever A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495: 333 – 338

Miska EA, Alvarez-Saavedra E, Abbott AL, Lau NC, Hellman AB, McGonagle SM, Bartel DP, Ambros VR, Horvitz HR (2007) Most Caenorhabditis elegans microRNAs are individually not essential for development or viability. PLoS Genet 3: e215

Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43: 854 – 859

Munsky B, Fox Z, Neuert G (2015) Integrating single-molecule experiments and discrete stochastic models to understand heterogeneous gene transcription dynamics. Methods 85: 12 – 21

Oselia M, Bosca C, Corá D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7: e1001101

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-independent function of gene and pseudogene microRNAs regulates tumour biology. Nature 465: 1033 – 1038

Reinhart BJ, Slack Fj, Basson M, Pasquinelli AE, Bettinger JC, Rouvgie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403: 901 – 906

Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR (2011) StochKit2: software for discrete stochastic simulation of biochemical systems with events. Bioinformatics 27: 2457 – 2458

Schmiedel J M, Klemm SL, Zheng Y, Sahay A, Blüthgen N, Marks DS, van Oudenaarden A (2013) Gene expression. MicroRNA control of protein expression noise. Science 348: 128 – 132

Shahrezaei V, Swain PS (2008) Analytical distributions for stochastic gene expression. Proc Natl Acad Sci USA 105: 17256 – 17261

Shalek AK, Satija R, Adiconis X (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498: 236 – 240

Wang Y, Xu Z, Jiang J, Xu C, Kang J, Xiao L, Wu M, Xiong J, Guo X, Liu H (2013) Endogenous miRNA sponge lincRNA-Ror regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. Dev Cell 25: 69 – 80

Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD (2012) Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 151: 1055 – 1067

Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75: 855 – 862

Ziegenhain C, Vieth B, Parekh S, Hellmann I, Enard W (2018) Quantitative single-cell transcriptomics. Brief Funct Genomics 17: 220 – 232

License: This is an open access article under the terms of the Creative Commons Attribution 4.0 License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.