FORECASTING THE FINANCIAL RETURNS FOR USING MULTIPLE REGRESSION BASED ON PRINCIPAL COMPONENT ANALYSIS

Nop Sopipan

Program of Mathematics and Applied Statistics, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, Thailand

Received 2012-08-30, Revised 2013-01-11; Accepted 2013-04-17

ABSTRACT

The aim of this study was to forecast the returns for the Stock Exchange of Thailand (SET) Index by adding some explanatory variables and stationary Autoregressive order p (AR (p)) in the mean equation of returns. In addition, we used Principal Component Analysis (PCA) to remove possible complications caused by multicollinearity. Results showed that the multiple regressions based on PCA, has the best performance.

Keywords: SET Index, Forecasting, Principal Component Analysis, Multicollinearity

1. INTRODUCTION

In order to forecast the return r_t for specific purposes, many researchers have made different assumptions for μ_t as appears in Equation (2). Kyimaz and Berument (2001) assume μ_t to be a regression model with a one-week delay; Supoj (2003) assumes μ_t to be an autoregressive process; Ozturk (2008) assumes μ_t to be a constant and Sattayatham et al. (2012) assume μ_t to be an ARMA process with a one-week delay.

The financial returns $r_t (t=100 \times \ln(P_t/P_{t-1})$ for $t = 1, 2, \ldots, T-1$, P_t denoting the financial price at time t depend concurrently and dynamically on many economic and financial variables. Since the returns have a statistically significant autocorrelation themselves, lagged returns might be useful in predicting future returns. In order to model these financial returns assumes that r_t follows a simple time series model such as a stationary AR (p) model with some explanatory variables X_t. In other words, r_t satisfies the following Equation 1:

$$r_t = \mu_t + \varepsilon_t,$$

Where Equation 2:

$$X_t = 100 \times \ln \left(\frac{P_t}{P_{t-1}} \right).$$

Here P_i denotes the financial price asset i for $i = 1, 2, \ldots, n$ at time t, r_{t-j}, $j = 1, 2, \ldots, p$ is the returns at lag j-th, ε_t represents errors assumed to be a white noise series with an i.i.d. mean of zero and a constant variance σ^2, μ_0, α_i and β_j are constants and n, p are positive integers.

Note that the variance of errors ε_t in the model (2) is assumed to be a constant; some authors use this assumption in the modeling of ground-level ozone (Agirre-Basurko et al., 2006; Pires et al., 2008).

The objective of this study is to forecast returns for the SET Index by using model (1). We vary the process μ_t using four different types and compare the performance of the different types.

In the next section, we present the basics of principal component analysis to remove possible complications caused by the multicollinearity of explanatory variables. The empirical study and methodology is discussed in section 3. Forecasting the returns is described in section 4 and the conclusions are presented in section 5.
2. PRINCIPAL COMPONENT ANALYSIS

An important topic in multivariate time series analysis is the study of the covariance (or correlation) structure of the series. For example, the covariance structure of a vector return series plays an important role in portfolio selection. In what follows, we discuss some statistical methods useful in studying the covariance structure of a vector time series.

Given a m-dimensional random variable $R = (X_1, X_2, \ldots, X_m)'$ with covariance matrix Σ_R, a Principal Component Analysis (PCA) is concerned with using a few linear combinations of R to explain the structure of R. If R_t denotes the monthly log returns of m assets, then PCA can be used to study the source of variations of these m asset returns. Here the keyword is few so that simplification can be achieved in multivariate analysis.

PCA applies to either the covariance matrix Σ_R or the correlation matrix (ρ_R) of R. Since the correlation matrix is the covariance matrix of the standardized random vector $R/\sqrt{\Sigma_R}$, we use covariance matrix in our theoretical discussion. Let $\delta_i = (\delta_{i1}, \ldots, \delta_{im})'$ be a m-dimensional vector, where $1 = 1, \ldots, m$.

Then $Z_i = \delta_i R = \sum_{j=1}^{m} \delta_{ij} R_j$ is a linear combination of the random vector R. If R_t consists of the simple returns of m stocks, then Z_it is the return of a portfolio that assigns weight δ_{ij} to the jth stock. Since multiplying a constant to δ_i does not affect the proportion of allocation to the jth stock, we standardize the vector δ_i so that $\delta_i = \sum_{j=1}^{m} \delta_{ij} = 1$. Using properties of a linear combination of random variables, we have $\text{Var}(Z_i) = \delta_i \Sigma \delta_i$, $\text{Cov}(Z_i, Z_j) = \delta_i \Sigma \delta_j$, for $i, j = 1, 2, \ldots, m$.

The idea of PCA is to find linear combinations δ_i such that Z_i and Z_j are uncorrelated for $i \neq j$ and the variances of Z_k are as large as possible. More specifically:

- The first principal component of R is the linear combination $Z_1 = \delta_1 R$, that maximizes $\text{Var}(Z_1)$ subject to the constraint $\delta_1 \delta_1 = 1$.
- The second principal component of R is the linear combination $Z_2 = \delta_2 R$, that maximizes $\text{Var}(Z_2)$ subject to the constraints $\delta_1 \delta_2 = 1$ and $\text{Cov}(Z_1, Z_2) = 0$.
- The ith principal component of R is the linear combination $Z_i = \delta_i R$, that maximizes $\text{Var}(Z_i)$ subject to the constraints $\delta_1 \delta_i = 1$ and $\text{Cov}(Z_i, Z_j) = 0$ for $j = 1, \ldots, i - 1$.

Since the covariance matrix Σ_R is non-negative definite, it has a spectral decomposition. Let $(\lambda_1, e_1), \ldots, (\lambda_m, e_m)$ be the eigenvalue-eigenvector pairs of Σ_R, where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m \geq 0$. We have the following statistical result as follow: The ith principal component of r is $Z_i = e_i R = \sum_{j=1}^{m} e_{ij} R_j$ for $i = 1, \ldots, m$. Moreover:

$$\text{Var}(Z_i) = e_i \Sigma e_i = \lambda_i, \quad i = 1, \ldots, m, \quad \text{Cov}(Z_i, Z_j) = e_i \Sigma e_j = 0, \quad i \neq j$$

If some eigenvalues λ_i are equal, the choices of the corresponding eigenvectors e_i are not unique. In addition, we have $\sum_{i=1}^{m} \text{Var}(Z_i) = n \Sigma \lambda_i = \sum_{i=1}^{m} \lambda_i = \sum_{i=1}^{m} \text{Var}(Z_i)$.

The result says that:

$$\frac{\text{Var}(Z_i)}{\sum_{j=1}^{m} \text{Var}(Z_j)} = \lambda_i / \lambda_1 + \ldots + \lambda_m$$

Consequently, the proportion of total variance in R_t explained by the ith principal component is simply the ratio between the ith eigenvalue and the sum of all eigenvalues of Σ_R. One can also compute the cumulative proportion of total variance explained by the first i principal components (i.e., $\sum_{j=1}^{i} \lambda_j / \sum_{j=1}^{m} \lambda_j$). In practice, one selects a small i such that the prior cumulative proportion is large.

In order to cope with the problem of multicollinearity, we transform the explanatory variables in model (1) into the principal components. Then the new model for forecasting r_t is Equation 3:

$$r_t = \mu_0 + \sum_{i=1}^{m} \alpha_i Z_{it} + e_t,$$

where, $Z_{it}, i = 1, 2, \ldots, m$ are i-th principal components of explanatory variables at time t.

Nop Sopipan /Journal of Mathematics and Statistics 9 (1): 65-71, 2013
We follow Tsay (2005) by assuming that the asset return series r_t is a weekly stationary process.

3. EMPIRICAL STUDIES AND METHODOLOGY

Naturally, the Thai stock market has unique characteristics, so the factors influencing the price of stocks traded in this market are different from the factors influencing other stock markets (Chaigusin et al., 2008). Examples of factors that influence the Thai stock market and the statistics used by researchers who have studied these factors in forecasting the SET Index are shown in Table 1.

3.1. Data

The data sets used in this study are the daily return closing prices for the SET Index at time t (dependent variables) and the daily return closing prices for twelve factors (explanatory independent variables). These twelve factors are the following:

- The Dow Jones Index at time $t-1$ (DJIA)
- The Financial Times 100 Index at time $t-1$ (FSTE)
- The S&P 500 Index at time $t-1$ (SP)
- The Nikkei225 Index at time t (NIX)
- The Hang Seng Index at time t (HSKI)
- The Singapore Straits Times Industrial Index at time t (SES009)
- The Taiwan Stock Weighted Index at time t (TWII)
- The South Korea Stock Exchange Index at time t (KOSPI)
- The Oil Price in the New York Mercantile Exchange at time t (OIL)
- The Gold Price in the New York Mercantile Exchange at time t (GOLD)
- The Currency Exchange Rate in Thai Baht for one US dollar at time t (THB/USD)
- The Currency Exchange Rate in Thai Baht for one Hong Kong dollar at time t (THB/HKD)

The actual closing prices for these twelve factors were obtained from http://www.efinance.thai.com. We used data sets from April 5, 2000, to July 5, 2012. We divided these data into two disjoint sets. The first set, from April 5, 2000, to December 30, 2011, was used as a sample (2,873 observations). The second set, from January 3, 2012, to July 5, 2012, was used as out-of-sample (125 observations). The plot for the SET Index closing prices and returns is given in Fig. 1.

Descriptive statistics and the correlations matrix are given in Table 2 and 3. As can be seen from Table 3, there are highly significant correlations ($p<0.01$) between the dependent variables and the explanatory variables. Therefore, these explanatory variables were used to predict the SET Index. Also, there are highly significant correlations ($p<0.01$) among the explanatory variables. From Table 4 there are significant correlations between SET and lagged returns of the SET with first and second lags. These correlations provide a measure for the linear relations between two variables and also indicate the existence of multicollinearity between the explanatory variables. However, multiple regression analysis based on this dataset also shows that there was a multicollinearity problem with the variance inflation factor (VIF > 5.0) as shown in Table 2. One approach to avoid this problem is PCA. Hence, we used twelve explanatory variables to find the principal components and overall descriptive statistics for selected Principal Components (PCs), as shown in Table 5 and 6, respectively.

Table 1. Impact factors on the Stock Exchange of Thailand Index (SET Index)

Factors	Researchers
The Nasdaq Index	X
The Dow Jones Index	X X X X X X X X
The S&P 500 Index	X
The Nikkei Index	X X X X X X X X
The Hang Seng Index	X X X X X X
The Straits Times Industrial Index	X X X X X
The Currency Exchange Rate in Thai Baht to one US dollar	X X X
The Currency Exchange Rate in Thai Baht to 100 Japan Yen	X X
The Currency Exchange Rate in Thai Baht to one Hong Kong dollar	X
The Currency Exchange Rate in Thai Baht to one Singapore dollar	X
Gold Prices	X X X X X X X X
Oil Prices	X X X X X X X X
Minimum Loan Rates	X X X X X X X X

* X is selected in multiple regression
3.2. Results of Principal Component Analysis

Bartlett’s sphericity test for testing the null hypothesis where the correlation matrix is an identity matrix was used to verify the applicability of PCA. The value of Bartlett’s sphericity test for the SET Index was 18,167.07, which implies that the PCA is applicable to our datasets (Table 2). Moreover, Kaiser’s measure of sampling adequacy was also computed as 0.788, which indicates that the sample sizes were sufficient for us to apply the PCA. The results for PCA (Table 5) indicate that there are twelve Principal Components (PCs) for multiple regression analysis.
Table 2. Descriptive statistics of the SET Index and explanatory variables

Variables	Mean	Std. Deviation	Skewness	Kurtosis	Correlation with SET close	VIF
SET	0.0373	1.4644	-0.690	9.194	1.00	1.00
DJIA	0.0047	1.2792	-0.017	7.626	0.219**	14.5810
FSTE	-0.0043	1.3280	-0.169	5.718	0.166**	1.5270
SP	-0.0031	1.3647	-0.128	7.764	0.239**	15.1970
NIX	-0.0273	1.5986	-0.499	7.609	0.369**	2.0100
HSI	0.0053	1.6593	-0.067	8.960	0.495**	2.4050
SES900	0.0122	1.3011	-0.337	7.674	0.507**	2.1500
TWII	-0.0096	1.5716	-0.202	3.348	0.351**	1.6180
KOSPI	0.0272	1.7733	-0.867	9.737	0.410**	2.1520
OIL	0.0413	2.5662	0.007	7.578	0.119**	1.0570
GOLD	0.0581	1.1831	0.137	6.383	0.077**	1.0680
THB/USD	-0.0063	0.4258	0.511	20.223	-0.152**	2.1970
THB/HKD	-0.0059	0.5304	0.570	32.596	-0.107**	2.1750

Significant at the 0.01 level (2-tailed)

Table 3. Correlation matrix of the SET Index and explanatory variables

Correlations	SET	DJIA	FSTE	SP	NIX	HSI	SES900	TWII	KOSPI	OIL	GOLD	THB/USD	THB/HKD				
SET	1.00																
DJIA	0.22**	1.00															
FSTE	0.17**	0.55**	1.00														
SP	0.24**	0.96**	0.56**	1.00													
NIX	0.37**	0.45**	0.39**	0.47**	1.00												
HSI	0.50**	0.37**	0.29**	0.40**	0.59**	1.00											
SES900	0.51**	0.33**	0.20**	0.35**	0.53**	0.70**	1.00										
TWII	0.35**	0.30**	0.23**	0.32**	0.45**	0.49**	0.47**	1.00									
KOSPI	0.41**	0.31**	0.26**	0.34**	0.59**	0.61**	0.57**	0.57**	1.00								
OIL	0.12**	0.01	-0.01	0.01	0.06**	0.10**	0.11**	0.06**	0.06**	1.00							
GOLD	0.08**	0.04	0.03	0.05**	0.07**	0.09**	0.07**	0.02	0.07**	0.20**	1.00						
THB/USD	-0.15**	-0.07**	-0.05**	-0.08**	-0.08**	-0.12**	-0.12**	-0.10**	-0.13**	-0.04**	-0.13**	1.00					
THB/HKD	-0.11**	0.00	-0.01	-0.02	0.00	-0.07**	-0.10**	-0.11**	-0.08**	-0.12**	-0.02	-0.10**	1.00				

Correlation significant at the 0.01 level (2-tailed)

Table 4. Correlation matrix of the SET Index and lagged returns of the SET

Correlations	SET	SET_{t-1}	SET_{t-2}	SET_{t-3}	SET_{t-4}	
SET	1.00					
SET_{t-1}	0.036*	1.00				
SET_{t-2}	0.073**	0.036*	1.00			
SET_{t-3}	0.007	0.073**	0.036*	1.00		
SET_{t-4}	0.018	0.073**	0.036*	0.073**	1.00	

, Significant at the 0.05, 0.01 level (2-tailed) respectively.

4. FORECASTING THE RETURNS THE SET INDEX BY MEAN EQUATIONS

In this section, we forecast the returns for the SET Index \((r_t := \mu_t + \varepsilon_t)\) using three mean equations \((\mu_t)\): constant, AR \((2)\) and multiple regression based on PCA. Afterwards, we compare error using two loss functions, i.e. Mean Square Error (MSE) and Mean Absolute Error (MAE). The parameters for mean equations for forecasting the SET Index and the value of loss functions are shown in Table 6. We found that the mean equation ARMA \((1,1)\) that includes multiple regression based on PCAs (Table 6) has the best performance \((MSE = 0.8886, MAE = 0.7463)\). So, we use this mean equation for forecasting the returns for the SET Index.
Table 5. Descriptive statistics of selected PCs

PC	Total % of Var	Sum	DJIA	FSTE	SP	NIX	HSKI	SES900
1	4.285	30.606	0.171	0.134	0.176	0.181	0.181	0.170
2	1.743	12.449	-0.365	-0.307	-0.353	0.104	0.223	0.254
3	1.487	10.625	0.066	0.051	0.066	-0.036	-0.037	-0.046
4	1.169	8.350	-0.047	-0.015	-0.053	-0.053	-0.023	-0.012
5	1.001	7.149	0.181	0.045	0.045	-0.014	-0.014	-0.033
6	0.954	6.812	0.181	0.122	0.126	0.045	0.045	0.104
7	0.789	5.633	0.012	0.012	0.012	-0.062	0.087	0.051
8	0.606	4.331	0.024	0.024	0.024	-0.024	0.031	-0.379
9	0.570	4.070	0.047	0.047	0.047	-0.047	0.047	-0.047
10	0.448	3.198	0.074	0.074	0.074	-0.074	0.074	-0.074
11	0.353	2.521	0.074	0.074	0.074	-0.074	0.074	-0.074
12	0.298	2.127	0.074	0.074	0.074	-0.074	0.074	-0.074
13	0.263	1.882	0.181	0.181	0.181	-0.181	0.181	-0.181
14	0.035	0.246	0.181	0.181	0.181	-0.181	0.181	-0.181

Table 6. Mean equations for returns of the SET Index and loss functions

Model	Mean Equation	MSE	MAE
1. Constant mean.	$\mu_t = E[r_t], \mu_0 = 0.0373$	0.8914	0.7576
2. AR (2)	$\mu_t = \mu_0 + \alpha_1 r_{t-1} + \alpha_2 r_{t-2} + \mu_1 = 0.34 r_{t-1} + 0.72 r_{t-2}$	0.8900	0.7570
3. Multiple regressions based on PCA.	$\mu_t = \mu_0 + \sum_{i=1}^{3} \beta_i Z_i$ $\mu_1 = 0.718 Z_{t1} - 0.132 Z_{t2} + 0.319 Z_{t3} - 0.147 Z_{t4} + 0.141 Z_{t5} - 0.063 Z_{t6}$	0.8886	0.7463

5. CONCLUSION

We considered the problem of forecasting returns for the SET Index by using a stationary Autoregressive order p (AR (p)) with some explanatory variables. After considering four types of mean equations, we transformed AR and explanatory variables to PC. We found that multiple regressions based on PCA, has the best performance (MSE = 0.8886, MAE = 0.7463).

6. REFERENCES

Agorre-Basurko, E., G. Ibarra-Berastegi and I. Madariaga, 2006. Regression and multilayer perceptron-based models to forecast hourly O_3 and NO$_2$ levels in the Bilbao area. Environ. Model. Software, 21: 430-446. DOI: 10.1016/j.envsoft.2004.07.008
Chaigusin, S., C. Chirathamjaree and J. Clayden, 2008. Soft computing in the forecasting of the Stock Exchange of Thailand (SET). Proceedings of the 4th IEEE International Conference on Management of Innovation and Technology, Sept. 21-24, IEEE Xplore Press, Bangkok, pp: 1277-1281. DOI: 10.1109/ICMIT.2008.4654554

Kyimaz, H. and H. Berument, 2001. The day of the week effect on Stock Market Volatility. J. Econ. Finance, 25: 181-193.

Ozturk, M., 2008. Genetic aspects of hepatocellular carcinogenesis. Semin. Liver Dis., 19: 235-242. DOI: 10.1055/s-2007-1007113

Pires, J.C.M., F.G. Martins, S.I.V. Sousa, M.C.M. Alvim-Ferraz and M.C. Pereira, 2008. Selection and validation of parameters in multiple linear and principal component regressions. Environ. Model. Software, 23: 50-55. DOI: 10.1016/j.envsoft.2007.04.012

Sattayatham, P., Sopipan, N. and B. Premanode, 2012. Forecasting the stock exchange of Thailand uses day of the week effect and markov regime switching GARCH. Am. J. Econ. Bus. Admin., 4: 84-93. DOI: 10.3844/ajebasp.2012.84.93

Supoj, C., 2003. Investigation on Regime Switching in Stock Market. Thammasat University, Bangkok, Thailand.

Tsay, S., 2005. Analysis of Financial Time Series. 2nd Edn., Wiley, Hoboken, New Jersey, ISBN-10: 0471746185, pp: 605.