Retrospective Cohort Study

Somatic mutations in FAT cadherin family members constitute an underrecognized subtype of colorectal adenocarcinoma with unique clinicopathologic features

Liang-Li Wang, Wei Zheng, Xiu-Li Liu, Feng Yin

Specialty type: Oncology
Provenance and peer review: Invited article; Externally peer reviewed.
Peer-review model: Single blind
Peer-review report’s scientific quality classification
Grade A (Excellent): A
Grade B (Very good): B
Grade C (Good): C
Grade D (Fair): 0
Grade E (Poor): 0
P-Reviewer: Aktekin A, Turkey; Osera S, Japan; Yang Z, China
Received: July 26, 2022
Peer-review started: July 26, 2022
First decision: August 18, 2022
Revised: August 25, 2022
Accepted: September 15, 2022
Article in press: September 15, 2022
Published online: October 24, 2022

BACKGROUND
The FAT cadherin family members (FAT1, FAT2, FAT3 and FAT4) are conserved tumor suppressors that are recurrently mutated in several types of human cancers, including colorectal carcinoma (CRC).

AIM
To characterize the clinicopathologic features of CRC patients with somatic mutations in FAT cadherin family members.

METHODS
We analyzed 526 CRC cases from The Cancer Genome Atlas PanCancer Atlas dataset. CRC samples were subclassified into 2 groups based on the presence or absence of somatic mutations in FAT1, FAT2, FAT3 and FAT4. Individual clinicopathological data were collected after digital slide review. Statistical analysis was performed using t tests and chi-square tests.

RESULTS
This CRC study cohort had frequent mutations in the FAT1 (10.5%), FAT2 (11.2%), FAT3 (15.4%) and FAT4 (23.4%) genes. Two hundred CRC patients (38.0%) harbored somatic mutations in one or more of the FAT family genes and were grouped into the FAT mutated CRC subtype. The FAT-mutated CRC subtype was more commonly located on the right side of the colon (51.0%) than in the rest of the colon.

Abstract

Liang-Li Wang, Feng Yin, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO 65212, United States
Wei Zheng, Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, United States
Xiu-Li Liu, Department of Pathology and Immunology, Washington University, St. Louis, MO 63110, United States
Corresponding author: Feng Yin, MD, PhD, Assistant Professor, Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, One Hospital Drive, Columbia, MO 65212, United States. fengyin@health.missouri.edu
For instance, upregulation of the cancer (squamous cell carcinoma (melanomas (Hippo pathway mutation appears to be a recurrent event in human cancers in association with dysregulation of the pathway, the atypical cadherin FAT acts as a receptor to activate the Hippo pathway. The Hippo pathway is an emerging tumor suppressor pathway. As a proposed upstream component of the Hippo activation of Wnt/β-catenin signaling, is an essential and early event in the development of CRC[2,3]. Despite the well-defined genetic and epigenetic alterations in CRC initiation and progression, recent studies have shown that the Hippo pathway may interact with Wnt/β-catenin signaling and play a crucial role in controlling intestinal stem cell proliferation and CRC development[4]. The Hippo pathway is an emerging tumor suppressor pathway. As a proposed upstream component of the Hippo pathway, the atypical cadherin FAT acts as a receptor to activate the Hippo pathway[5], and its mutation appears to be a recurrent event in human cancers in association with dysregulation of the Hippo pathway[6]. The human FAT cadherin gene family comprises the FAT1, FAT2, FAT3 and FAT4 genes[7-10]. The encoded proteins FAT1-4 are human homologs of Drosophila FAT, of which FAT1 and FAT4 have been reported to be involved in the regulation of planar cell polarity[11] and tumor suppression[12,13]. FAT1 also promotes actin-mediated cell migration[14,15] and plays a role in epithelial mesenchymal transition [16]. Somatic mutations of FAT family genes have been detected in different human cancers, including squamous cell carcinoma of the head and neck (FAT1, FAT2 and FAT4)[17-20], breast cancer (FAT1)[21], melanomas (FAT4)[22], leukemia (FAT1)[23,24], hepatocellular cancer (FAT1, FAT4)[25,26], esophageal squamous cell carcinoma (FAT1)[27-29], pancreatic cancer (FAT1, FAT3 and FAT4)[30,31], and gastric cancer (FAT4)[32,33]. Alterations in FAT family genes are associated with tumorigenesis and prognosis. For instance, upregulation of the FAT1 gene is associated with poor prognosis and early relapse in acute
lymphoblastic leukemia patients[24] and invasive progression of ductal carcinoma in situ[21], while loss of FAT4 is associated with invasiveness in gastric cancer[34]. Until now, the role of FAT family genes in CRC tumorigenesis has not been well studied. In this study, we characterized the clinicopathologic features of FAT family gene mutations in CRC patients.

**MATERIALS AND METHODS**

**Study design**

In total, 526 CRC cases were selected from The Cancer Genome Atlas (TCGA) PanCancer Atlas dataset. cBioPortal (https://www.cbioportal.org/) was used to download whole-exome somatic mutation data and clinical information. There are certain sample inclusion criteria for the TCGA PanCancer Atlas on colorectal adenocarcinoma. The biospecimens were collected from newly diagnosed colorectal adenocarcinoma patients undergoing surgical resection, regardless of histologic grade or tumor stage. The patients had not received prior chemoradiation therapy. The histological sections contained an average of 60% tumor cells with less than 20% necrosis[35].

In the TCGA PanCancer Atlas dataset, the somatic mutation profiles of FAT1, FAT2, FAT3 and FAT4 were analyzed for each tumor. Furthermore, the CRC cases were categorized into two groups based on their mutational status on FAT family genes: The cases with mutant FAT1-4 and the cases with wild-type FAT1-4. Standard demographic and clinicopathological data were retrieved for each patient, including age, sex, tumor location, pT stage, pN stage, pM stage, differentiation grade, tumor type, lymphovascular invasion, month of disease-free survival (DFS) and overall survival (OS).

**Statistical analyses**

Demographic and clinicopathological details were stratified according to FAT1-4 mutation. Quantitative and qualitative variables were expressed as the means ± SD and the frequencies. Comparisons between the groups were analyzed with t tests and chi-square tests. DFS and OS were analyzed using the Kaplan-Meier method, and the log-rank test was used to assess differences. The figure was prepared using GraphPad Prism 9 software (GraphPad Software, San Diego, California, United States). P values less than 0.05 were considered statistically significant.

**RESULTS**

**Patient characteristics**

The study included 526 patients with CRC from TCGA PanCancer Atlas Dataset. The mean age of the patients was 65.8 years (SD 13.0 years; range: 31-90 years). Based on the available clinicodemographic information, two hundred fifty-two patients were female, and two hundred seventy-two patients were male. Of them, 254 (48.3%) patients had left-sided colon cancer, and 197 (37.5%) patients had right-sided colon cancer. The majority (72.4%) of the CRCs were moderately differentiated adenocarcinomas. The detailed demographics, histopathologic stage and features are summarized in Table 1.

**Somatic mutations of FAT family genes in CRC**

Among the 526 CRC cases, 200 (38.0%) patients harbored one or more somatic mutations of the FAT cadherin family genes, including mutations in the FAT1 (10.5%), FAT2 (11.2%), FAT3 (15.4%), and FAT4 (23.4%) genes. The somatic mutation types of the FAT family genes include missense mutation, nonsense mutation, splicing mutation, frameshift deletion, frameshift insertion and in-frame deletion, with missense mutation being the most common somatic mutation type (Table 2). Interestingly, these somatic mutations were significantly enriched in the extracellular cadherin domain (FAT1, 49.0%; FAT2, 63.4%; FAT3, 40.1%; FAT4, 57.8%) (Table 2).

Based on the presence or absence of somatic mutations in FAT1-4 genes, these cases were subclassified into 2 groups in our study. The clinicopathologic features of these 2 subtypes are summarized in Table 3. In the FAT-mutated CRC subtype, the median patient age was 66.5 years (range: 33-90 years), and 102 (51.0%) patients were male. Compared with the rest of the cohort, the FAT-mutated CRC subtype was more commonly located on the right side of the colon (51.0% vs 30.1%, P < 0.001) and more commonly associated with favorable histopathologic features, including lower pathological nodal stage (pN0: 66.5% vs 52.8%, P = 0.005), lower rate of metastasis to another site or organ (pM1: 7.5% vs 16.3%, P = 0.006), and a trend of lower pathological tumor stage (pT1-2: 25.0% vs 18.7%, P = 0.093).

**FAT somatic mutations are enriched in microsatellite-instable CRC**

Human FAT family genes encode large atypical cadherin proteins with a large number of cadherin repeats. Given the overlapping features found in the FAT-mutated CRC subtype and microsatellite-instable (MSI) CRC (right sided with favorable clinicopathological features), we further explored the association between FAT mutations and MSI. Interestingly, FAT somatic mutations were significantly

https://www.wjnet.com
| Feature                      | Level       | Number    | MSS number |
|------------------------------|-------------|-----------|------------|
| Age (yr), mean ± SD          |             | 65.8 ± 13.0 | 65.4 ± 12.7 |
| Gender                       | Female      | 252 (47.9%) | 218 (47.1%) |
|                              | Male        | 272 (51.7%) | 243 (52.5%) |
|                              | Unknown     | 2 (0.4%)    | 2 (0.4%)    |
| Histopathologic differentiation | Well       | 19 (3.6%)   | 18 (3.9%)   |
|                              | Moderate    | 381 (72.4%) | 351 (75.8%) |
|                              | Poor        | 114 (21.7%) | 83 (17.9%)  |
|                              | Unknown     | 12 (2.3%)   | 11 (2.4%)   |
| Tumor location               | Left        | 254 (48.3%) | 248 (53.6%) |
|                              | Right       | 197 (37.5%) | 149 (32.2%) |
|                              | Left and right | 3 (0.6%) | 3 (6.5%) |
|                              | Unknown     | 72 (13.7%)  | 63 (13.6%)  |
| Tumor staging (pT)           | T1          | 18 (3.4%)   | 17 (3.7%)   |
|                              | T2          | 94 (17.9%)  | 83 (17.9%)  |
|                              | T3          | 355 (67.5%) | 310 (67.0%) |
|                              | T4          | 57 (10.8%)  | 52 (11.2%)  |
|                              | TX          | 2 (0.4%)    | 2 (0.4%)    |
| Nodal staging (pN)           | N0          | 305 (58.0%) | 255 (55.1%) |
|                              | N1          | 128 (24.3%) | 120 (25.9%) |
|                              | N2          | 90 (17.1%)  | 85 (18.4%)  |
|                              | NX          | 3 (0.6%)    | 3 (6.5%)    |
| Metastasis (pM)              | M0          | 388 (73.8%) | 338 (73.0%) |
|                              | M1          | 66 (12.9%)  | 66 (14.3%)  |
|                              | MX          | 70 (13.3%)  | 59 (12.7%)  |
| Lymphovascular invasion      | Present     | 178 (33.8%) | 157 (33.9%) |
|                              | Absent      | 230 (43.7%) | 202 (43.6%) |
|                              | Unknown     | 118 (22.4%) | 104 (22.5%) |
| Ethnicity                    | Caucasian   | 273 (51.9%) | 236 (51.0%) |
|                              | African-American | 60 (11.4%) | 51 (11.0%) |
|                              | Asian       | 12 (2.3%)   | 11 (2.4%)   |
|                              | Unknown     | 181 (34.4%) | 165 (35.6%) |
| Subtype                      | CIN         | 328 (62.4%) |             |
|                              | MSI         | 63 (12.0%)  |             |
|                              | GS          | 58 (11.0%)  |             |
|                              | POLE        | 10 (1.9%)   |             |
|                              | Unknown     | 57 (10.8%)  |             |
| Total                        |             | 526         | 463         |

CIN: Chromosomal instability; MSI: Microsatellite instability; GS: Genomically stable; POLE: Polymerase epsilon mutation; MSS: Microsatellite stable.

enriched in MSI CRC (28.0% vs 2.1%, P < 0.001) (Table 3).
### Table 2 Genetic mutation types and numbers in FAT family genes in colorectal adenocarcinoma (PanCancer Atlas)

| Gene | Missense mutation | Nonsense mutation | Splicing mutation | Frame shift deletion | Frame shift insertion | Inframe deletion | Total mutation | Mutation in Cadherin domains |
|------|-------------------|-------------------|------------------|---------------------|----------------------|-----------------|---------------|-----------------------------|
| FAT1 | 85                | 5                 | 2                | 3                   | 2                    | 1               | 98            | 48 (49.0%)                  |
| FAT2 | 90                | 2                 | 3                | 5                   | 1                    | 0               | 101           | 64 (63.4%)                  |
| FAT3 | 124               | 6                 | 0                | 5                   | 2                    | 0               | 137           | 55 (40.1%)                  |
| FAT4 | 198               | 19                | 0                | 10                  | 4                    | 0               | 230           | 133 (57.8%)                 |

To control for confounding in the analysis, we focused on cases of microsatellite-stable (MSS) CRC. As shown in Table 1, the MSS CRC cases showed similar clinicodemographic and histologic features as the entire cohort. We also categorized the MSS CRC cases into 2 groups based on the mutation status of FAT family genes. Similar to the entire cohort we described earlier, the FAT-mutated MSS CRC subtype was also more commonly located on the right side of the colon (39.6% vs 28.8%, $P = 0.038$) and more commonly associated with favorable histopathologic features, such as a lower rate of metastasis to another site or organ (pM1: 9.0% vs 16.6%, $P = 0.038$). It also showed a trend of lower pathological tumor stage (pT1-2: 26.4% vs 19.1%, $P = 0.083$) and lower pathological nodal stage (pN0: 60.4% vs 52.7%, $P = 0.079$) (Table 3). Therefore, even though it is enriched in MSI CRC, the FAT somatic mutation is a potentially independent prognostic factor in CRC.

The median DFS for CRC patients was 26.0 mo (0.5-148.0 mo), and the OS was 21.0 mo (0-148.0 mo). Consistent with the favorable pathologic features, the FAT-mutated MSS CRC subgroup showed a trend toward a better DFS rate [hazard ratio (HR) = 0.539; 95% confidence interval (CI): 0.301-0.967; log-rank $P = 0.073$]. However, FAT mutation status did not show a significant impact on the OS rate (HR = 1.198; 95%CI: 0.770-1.864; log-rank $P = 0.440$) (Figure 1).

### DISCUSSION

To our knowledge, this is the first study to assess the impact of somatic mutations in FAT family genes on clinicopathologic features, with an emphasis on prognosis in CRC patients. Our study shows that somatic mutations in FAT family genes are associated with favorable clinicopathologic features, including a lower rate of lymph node and distal metastasis. It also showed a trend toward a lower tumor stage with a relatively favorable DFS.

In addition to the APC-β-catenin pathway, which represents the most prominent signaling pathway in CRC, components of the Hippo pathway have been reported to be involved in CRC tumorigenesis[36-40] and have been proposed as prognostic factors in CRC[41-44]. As an upstream organizer and activator of the Hippo pathway[6], FAT family genes have emerged as an important mechanism that orchestrates epithelial development as well as human cancer initiation and progression. The FAT family genes (FAT1-4) encode atypical cadherins that contain multiple extracellular cadherin repeats, laminin G motifs and EGF-like motifs[45]. Among these, FAT1 and FAT4 are relatively well studied. Loss of FAT4 expression has been reported in some primary breast cancers and breast cancer cell lines[46]. Low FAT4 expression was also observed in gastric cancers and was associated with a poor prognosis, including high pathologic T stage, an increase in perineural invasion, high lymph node metastasis and reduced DFS[47]. Similarly, a study reported recurrent FAT1 mutations in multiple human cancers, including glioblastoma, CRC, and head and neck cancer, and FAT1 mutations affected patient survival by promoting Wnt signaling and tumorigenesis[48]. Our study demonstrates that somatic mutations in FAT family genes are frequent recurrent events in CRC and that FAT mutations are associated with favorable clinicopathologic features. These somatic mutations are highly enriched in the extracellular cadherin domains (Table 2). FAT proteins are large single transmembrane receptors characterized by 32-34 extracellular cadherin repeats. These cadherin repeats contain highly conserved binding sites for proteins, such as beta-catenin and p120-catenin, which are important for the FAT protein to execute its role in migration, polarity and cell adhesion by linking it to the actin cytoskeleton.

Our study also revealed the significant enrichment of FAT-mutated CRC (28.0%) in the MSI subgroup. However, the clinicopathologic characteristics in FAT-mutated MSS CRC are quite compatible with the entire FAT-mutated CRC cohort in our study, suggesting that MSI only partially contributes to its pathologic features and clinical outcomes. Interestingly, FAT-mutated MSS CRC cases showed a trend of favorable DFS but not OS. The underlying mechanisms of this discrepancy are currently unclear. Notably, DFS does not always correlate with OS in CRC, such as in the case of liver-only metastatic CRC[49].

Similar to the findings in our study, Wang et al.[33] reported a superior prognosis in gastric adenocarcinoma with FAT family gene mutations. In their study, FAT gene mutations were significantly associated with better progression-free survival and OS, which was likely attributed to the significantly
higher tumor mutational burden and an inflamed tumor microenvironment\[33\]. Whether the tumor microenvironment plays a similar role in CRC still awaits further investigation.

Our study has several limitations. First, our findings were obtained from a bioinformatics study on somatic mutation profiles through the TCGA PanCancer Atlas dataset. The protein expression levels of individual FAT family members were not systemically examined in the study, and the underlying molecular mechanisms related to the prognostic role of the FAT family in colorectal cancer need further experimental validation. Second, all the patients in the study were untreated, with no therapy response data and a short follow-up. Therefore, the evaluation of advanced-stage CRC is relatively limited. Third, we tried to address the impact of MSI status, a confounding factor, by analyzing the MSS samples. However, there are still additional potential confounding factors, such as histopathological subtypes, TP53 mutation status, and intratumoral spatial and temporal heterogeneity. The ability of our study to address these potential confounding factors is hampered by intrinsic limitations of the TCGA database, the landmark cancer program heavily focused on cancer genomics datasets. A randomized, large-scale clinical cohort is necessary to validate our conclusion and to establish somatic mutations in FAT family

### Table 3 Association of clinicopathologic features with FAT somatic mutations in colorectal adenocarcinoma (PanCancer Atlas)

| Clinicopathologic features | Mutated FAT genes | Wildtype FAT genes | \(P\) value | Mutated FAT genes (MSS) | Wildtype FAT genes (MSS) | \(P\) value |
|----------------------------|-------------------|--------------------|-------------|------------------------|--------------------------|-------------|
| Mean age (mean ± SD)       | 66.5 ± 12.9       | 65.3 ± 13.0        | 0.912       | 65.6 ± 12.1            | 65.3 ± 12.9              | 0.825       |
| Sex                        |                   | 0.689              |             |                        |                          |             |
| Female                     | 98 (49.0%)        | 154 (47.2%)        | < 0.001*    | 67 (46.5%)             | 151 (47.3%)             | 0.038*      |
| Male                       | 102 (51.0%)       | 170 (52.1%)        |             | 77 (53.5%)             | 166 (52.0%)             |             |
| Location                   |                   |                    |             |                        |                          |             |
| Left side                  | 65 (32.5%)        | 181 (55.5%)        |             | 70 (48.6%)             | 178 (55.8%)             |             |
| Right side                 | 102 (51.0%)       | 98 (30.1%)         |             | 57 (39.6%)             | 92 (28.8%)              |             |
| pT stage                   |                   | 0.093              |             |                        |                          | 0.083       |
| pT1-2                      | 50 (25.0%)        | 61 (18.7%)         |             | 38 (26.4%)             | 61 (19.1%)              |             |
| pT3-4                      | 150 (75.0%)       | 263 (80.7%)        |             | 106 (73.6%)            | 256 (80.3%)             |             |
| pN stage                   |                   | 0.005*             |             |                        |                          | 0.079       |
| pN0                        | 133 (66.5%)       | 172 (52.8%)        |             | 87 (60.4%)             | 168 (52.7%)             |             |
| pN1                        | 44 (22.0%)        | 84 (25.8%)         |             | 39 (27.1%)             | 81 (25.4%)              |             |
| pN2                        | 23 (11.5%)        | 67 (20.6%)         |             | 18 (12.5%)             | 67 (21.0%)              |             |
| pM stage                   |                   | 0.006*             |             |                        |                          | 0.038*      |
| pM0                        | 153 (76.5%)       | 235 (72.1%)        |             | 110 (76.4%)            | 228 (71.5%)             |             |
| pM1                        | 15 (7.5%)         | 53 (16.3%)         |             | 13 (9.0%)              | 53 (16.6%)              |             |
| Differentiation grade      |                   | 0.332              |             |                        |                          | 0.172       |
| G1-2                       | 145 (72.5%)       | 255 (78.2%)        |             | 117 (81.3%)            | 252 (79.0%)             |             |
| G3                         | 47 (23.5%)        | 67 (20.6%)         |             | 20 (13.9%)             | 63 (19.7%)              |             |
| Subtype                    |                   | < 0.001*           |             |                        |                          |             |
| CIN                        | 92 (46.0%)        | 236 (72.4%)        |             |                        |                          |             |
| MSI                        | 56 (28.0%)        | 7 (2.1%)           |             |                        |                          |             |
| GS                         | 25 (12.5%)        | 33 (10.1%)         |             |                        |                          |             |
| Lymphovascular invasion    |                   | 0.313              |             |                        |                          | 0.516       |
| Positive                   | 61 (30.5%)        | 117 (35.9%)        |             | 44 (30.6%)             | 113 (35.4%)             |             |
| Negative                   | 90 (45.0%)        | 140 (42.9%)        |             | 63 (43.8%)             | 139 (43.6%)             |             |
| Total                      | 200 (38.0%)       | 326 (62.0%)        |             | 144 (31.1%)            | 319 (68.9%)             |             |

*\(P < 0.05\).

CIN: Chromosomal instability; MSI: Microsatellite instability; GS: Genomically stable; MSS: Microsatellite stable.
CONCLUSION
In summary, our study shows that somatic mutations in FAT family genes are recurrent genetic events detected in approximately 38% of CRC cases and therefore represent an underrecognized subtype of CRC. The FAT-mutated CRC subtype shows unique clinicopathologic features, including a right-side location, a lower rate of positive lymph nodes, a lower rate of metastasis to another site or organ, and a trend toward favorable DFS. Our study suggests that somatic mutations in FAT family genes are potential prognostic biomarkers for CRC.

ARTICLE HIGHLIGHTS
Research background
The human FAT cadherin gene family comprises the FAT1, FAT2, FAT3 and FAT4 genes. Somatic mutations of FAT family genes have been detected in different human cancers.

Research motivation
Until now, the role of FAT family genes in colorectal carcinoma (CRC) tumorigenesis has not been well studied. In this study, we characterized the clinicopathologic features of FAT family gene mutations in CRC patients.

Research objectives
In total, 526 CRC cases were selected from The Cancer Genome Atlas PanCancer Atlas dataset.

Research methods
CRC cases were categorized into two groups based on their mutational status on FAT family genes: The cases with mutant FAT1-4 and the cases with wild-type FAT1-4. Standard demographic and clinicopathological data were retrieved for each patient, including age, sex, tumor location, pT stage, pN stage, pM stage, differentiation grade, tumor type, lymphovascular invasion, month of disease-free survival and overall survival.

Research results
The FAT-mutated CRC subtype is more commonly located on the right side of the colon and shows favorable clinicopathologic features, including a lower rate of positive lymph nodes and a lower rate of metastasis to another site or organ.
Research conclusions
FAT cadherin family genes are frequently mutated in CRC, and their mutation profile defines a subtype of CRC with favorable clinicopathologic characteristics.

Research perspectives
FAT somatic mutation is a potentially independent prognostic factor in CRC.

FOOTNOTES
Author contributions: Wang LL, Zheng W, Liu XL and Yin F collected and analyzed the data, made the tables and figures, and wrote and finalized the manuscript; and all authors have approved the final manuscript.

Institutional review board statement: This study is solely based on the publicly available TCGA PanCancer Atlas database. The Institutional Review Board Approval is not applicable.

Informed consent statement: This study is solely based on the publicly available TCGA PanCancer Atlas database. The Informed Consent Statement is not applicable.

Conflict-of-interest statement: All the authors report no relevant conflicts of interest for this article.

Data sharing statement: No additional data are available.

STROBE statement: The authors have read the STROBE Statement-checklist of items, and the manuscript was prepared and revised according to the STROBE Statement-checklist of items.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: United States

ORCID number: Liang-Li Wang 0000-0002-8145-0243; Wei Zheng 0000-0003-3193-2655; Xiu-Li Liu 0000-0001-5791-2017; Feng Yin 0000-0002-6444-1123.

REFERENCES
1 Sung H, Ferlay J, Siegel RL, Yabro F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021; 71: 209-249 [PMID: 33538338 DOI: 10.3322/caac.21660]
2 Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16: 9-18 [PMID: 29928381 DOI: 10.3892/ol.2018.8679]
3 Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature 1998; 396: 643-649 [PMID: 9872311 DOI: 10.1038/25292]
4 Wierzbicki PM, Rybarczyk A. The Hippo pathway in colorectal cancer. Folia Histochem Cytobiol 2015; 53: 105-119 [PMID: 26160882 DOI: 10.5603/FHC.a2015.0015]
5 Wilkeche M, Hamaratoglu F, Kango-Singh M, Udan R, Chen CL, Tao C, Zhang X, Halder G. The fat cadherin acts through the hippo tumor-suppressor pathway to regulate tissue size. Curr Biol 2006; 16: 2090-2100 [PMID: 16996265 DOI: 10.1016/j.cub.2006.09.005]
6 Martin D, Degese MS, Vitale-Cross L, Iglesias-Bartolome R, Valera JLC, Wang Z, Feng X, Yeema H, Vadhmal V, Moroishi T, Thorne RF, Zaida M, Siegely B, Cheong SC, Molinolo AA, Samuels Y, Tanay P, Guan KL, Lippman SM, Lyons JG, Guttman JS. Assembly and activation of the Hippo signalome by FAT1 tumor suppressor. Nat Commun 2018; 9: 2372 [PMID: 29985391 DOI: 10.1038/s41467-018-04590-1]
7 Katoh Y, Kato M. Comparative genomics on FAT1, FAT2, FAT3 and FAT4. Int J Mol Med 2006; 18: 523-528 [PMID: 16865240]
8 Hoeng JC, Ivanov NV, Hodor P, Xia M, Wei N, Blevins R, Gerhold D, Borodovsky M, Liu Y. Identification of new human cadherin genes using a combination of protein motif search and gene finding methods. J Mol Biol 2004; 337: 307-317 [PMID: 15003449 DOI: 10.1016/j.jmb.2004.01.026]
9 Wu Q, Maniatis T. Large exons encoding multiple ectodomains are a characteristic feature of protocadherin genes. Proc
Cancers revealed by global genomic analyses.

Jones S

10.1007/s11010-022-04475-4
cisplatin resistance in esophageal squamous cell carcinoma.

Zhai Y

E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma.

Wang Y

Hu X

Piao Z

acute lymphoblastic leukemia.

de Bock CE

Blood Cancer J

Schwartz S, Hoelzer D, Greif PA, Baldus CD. FAT1 expression and mutations in adult acute lymphoblastic leukemia.

139 [PMID: 26209645] DOI: 10.1242/dev.123539

Pastushenko I, Mauri F, Song y, de Cock F, Meeusen B, Swildendrups B, Impens F, Van Haver D, Opitz M, Thery M, Barache Y, Lapouge G, Veermeersch M, Van Eycke YR, Balsat C, Decaestecker C, Sokolow Y, Hassid S, Perez-Bustillo A, Agreda-Moreno B, Rios-Buceta L, Jaen P, Redondo P, Steirea-Gil R, Milan-Cayetano JF, Summartrn O, D'Haese N, Moers V, Rozzi M, Blondeau J, Lemaire S, Scozziaro S, Jansens V, De Troya M, Dubois C, Perez-Morga D, Saloum I, Soiritia C, Helmbacher F, Blasinska C. Fat1 deletion promotes hybrid deletion EMT state, tumour stemness and metastasis. Nature 2021;

1806-1820 [PMID: 21798897] DOI: 10.1126/science.1206923

Kim KT, Kim BS, Kim JH. Association between FAT1 mutation and overall survival in patients with human papillomavirus-negative head and neck squamous cell carcinoma. Head Neck 2016;

38 Suppl 1: E2021-E2029 [PMID: 26876381] DOI: 10.1002/hed.24372

Nishikawa Y, Miyazaki T, Nakashiro K, Yamagata H, Isokane M, Goda H, Tanaka H, Oka R, Hamakawa H. Human FAT1 cadherin controls cell migration and invasion of oral squamous cell carcinoma through the localization of β-catenin. Oncol Rep 2011;

26: 587-592 [PMID: 21617878] DOI: 10.3892/or.2011.1324

Hsu TN, Huang CM, Huang CS, Huang MS, Yeh CT, Chao TY, Bamodu A. Targeting FAT1 Inhibits Carcinogenesis, Induces Oxidative Stress and Enhances Cisplatin Sensitivity through Deregulation of LR5P/WNT2/GSS Signaling Axis in Oral Squamous Cell Carcinoma. Cancers (Basel) 2019;

11: 31735851 DOI: 10.3390/cancers11211883

Lee S, Stewart S, Nagtegaal I, Luo J, Wu Y, Colditz G, Medina D, Alfred DC. Differentially expressed genes regulating the progression of ductal carcinoma in situ to invasive breast cancer. Cancer Res 2012;

72: 4574-4586 [PMID: 22751464] DOI: 10.1158/0008-5472.CAN-12-0636

Nikolaev SI, Rimoldi D, Iseli C, Valsesia A, Orth S, Harms E, Goebel K, Harshman K, McNeil H. The tumor-suppressor gene fat controls tissue growth upstream of the Wnt/beta-catenin signaling pathway. New insights into Fat cadherins. Science 2011;

333: 1154-1157 [PMID: 21798897] DOI: 10.1126/science.1206923

de Bock CE, Arjmand A, Molloy TJ, Bone SM, Johnstone D, Campbell DM, Shipman KL, Yeadon TM, Holst J

24972153 DOI: 10.1038/bjc.2014.44

debock CE, Arjmand A, Molloy TJ, Bone SM, Johnstone D, Campbell DM, Shippman KL, Yeadon TM, Holst J, Spannevelo MD, Nolmes G, Catchpole DR, Linz LF, Boyd AW, Burns GF, Thorne RF. The FAT1 cadherin is overexpressed and an independent prognostic factor for survival in paired diagnosis-relapse samples of precursor B-cell acute lymphoblastic leukemia. Leukemia 2012;

26: 918-926 [PMID: 22116550] DOI: 10.1038/leu.2011.319

Piao Z, Park C, Park JH, Kim H. Deletion mapping of chromosome 4q in hepatocellular carcinoma. Int J Cancer 1998;

79: 356-360 [PMID: 9699526] DOI: 10.1002/(sici)1097-0215(19980821)79:4<356::aid-ijc8>3.0.co;2-u

Zhuyi H, Cao GY, Wang SP, Chen Y, Liu GD, Gao YJ, Hu JP. POU2F1 promotes growth and metastasis of hepatocellular carcinoma through the FAT1 signalling pathway. Am J Cancer Res 2017;

7: 1665-1679 [PMID: 28861323]

Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang J, Bi Y, Yan T, Ma Y, Zhang L, Liu Y, Li G, Zhang M, Cui Y, Kong P, Cheng X. FAT1 Inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep 2018;

39: 2136-2146 [PMID: 29265465] DOI: 10.3892/or.2018.6328

Wang Y, Wang G, Ma Y, Teng J, Wang Y, Cui Y, Dong Y, Shao S, Zhan Q, Liu X, FAT1, a direct transcriptional target of E2F1, suppresses cell proliferation, migration and invasion in esophageal squamous cell carcinoma. Chin J Cancer Res 2019;

31: 609-619 [PMID: 31564804] DOI: 10.21177/jc.2019.04.05

Zhaint Y, Shan C, Zhang H, Kong P, Zhang L, Wang Y, Hu X, Cheng X. FAT1 downregulation enhances stemness and cisplatin resistance in esophageal squamous cell carcinoma. Mol Cell Biochem 2022;

3560602 [PMID: 10.1007/s11010-022-04474-5]

Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM,

Fubin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffe EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;

321: 1801-1806 [PMID: 18772397] DOI:
Wang LL et al. FAT genes mutation in colorectal adenocarcinoma

10.1126/science.1164368

31 Furukawa T, Sakamoto H, Takeuchi S, Ameri M, Kuboki Y, Yamamoto T, Hatori T, Yamamoto M, Sugiyama M, Ohike N, Yamaguchi H, Shimizu M, Shibata N, Shimizu K, Shiratori K. Whole exome sequencing reveals recurrent mutations in BRCA2 and FAT genes in acinar cell carcinomas of the pancreas. Sci Rep 2015; 5: 8829 [PMID: 25743105 DOI: 10.1038/srep08829]

32 Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A, Lim KH, Ong CK, Huang D, Chin SY, Tan IB, Ng CC, Yu W, Wu Y, Lee M, Wu J, Poh D, Wan WK, Rha SY, So J, Salto-Tellez M, Yeoh KG, Wong WK, Zha YJ, Futreal PA, Pang B, Ruan Y, Hillmer AM, Bertrand D, Nagarajan N, Rozen S, Teh BT, Tan P. Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 2012; 44: 570-574 [PMID: 22484628 DOI: 10.1038/ng.2246]

33 Wang Q, Cui L, Li P, Wang Y. Somatic Mutation of FAT Family Genes Implicated Superior Prognosis in Patients With Stomach Adenocarcinoma. Front Med (Lausanne) 2022; 9: 873836 [PMID: 35836939 DOI: 10.3389/fmed.2022.873836]

34 Jung HY, Cho H, Oh MH, Lee JH, Lee JJ, Jang SH, Lee MS. Loss of FAT Atypical Cadherin 4 Expression Is Associated with High Pathologic T Stage in Radically Resected Gastric Cancer. J Gastric Cancer 2015; 15: 39-45 [PMID: 25861521 DOI: 10.5230/jgc.2015.15.1.39]

35 Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330-337 [PMID: 22810696 DOI: 10.1038/nature11252]

36 Yang R, Cai TT, Wu XJ, Liu YN, He J, Zhang XZ, Ma G, Li J. Tumour YAP1 and PTEN expression correlates with tumour-associated myeloid suppressor cell expansion and reduced survival in colorectal cancer. Immunology 2018; 155: 263-272 [PMID: 29770434 DOI: 10.1111/imn.12949]

37 Bhat IP, Rather TB, Bhat GA, Maqbool I, Akhtar K, Rashid G, Parray FQ, Besina S, Mudassar S. TEAD4 nuclear localization and regulation by miR-4269 and miR-1343-3p in colorectal carcinoma. Pathol Res Pract 2022; 228(3): 153791 [PMID: 35124548 DOI: 10.1016/j.prp.2022.153791]

38 Pan J, Liu F, Xiao X, Xu R, Dai L, Zhu M, Xu H, Yu X, Zhao A, Zhou W, Dang Y, Ji G. METTL3 promotes colorectal carcinoma progression by regulating the m6A-CRB3-Hippo axis. J Exp Clin Cancer Res 2022; 41: 19 [PMID: 35012593 DOI: 10.1186/s13046-021-02227-x]

39 Jiao S, Li C, Hao Q, Miao H, Zhang L, Li L, Zhou Z. VGLL4 targets a TCF4-TEAD4 complex to coregulate Wnt and Hippo signalling in colorectal cancer. Nat Commun 2017; 8: 14058 [PMID: 28051067 DOI: 10.1038/ncomms14058]

40 Konsavage WM Jr, Kyler SL, Rennoll SA, Jin G, Yoshum GS. Wnt/b-catenin signalling regulates Yes-associated protein (YAP) gene expression in colorectal cancer cells. J Biol Chem 2012; 287: 11730-11739 [PMID: 22373891 DOI: 10.1074/jbc.M111.327767]

41 Yuen HF, McCruden CM, Huang YH, Tham JM, Zhang X, Zeng Q, Zhang SD, Hong W. TAZ expression as a prognostic indicator in colorectal cancer. PLoS One 2013; 8: e54211 [PMID: 23372686 DOI: 10.1371/journal.pone.0054211]

42 Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A, Wen W, Zhu Q. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 2013; 8: e65539 [PMID: 23762387 DOI: 10.1371/journal.pone.0065539]

43 Xu Z, Wang H, Gao L, Zhang H, Wang X. YAP Levels Combined with Plasma CEA Levels Are Prognostic Biomarkers for Early-Clinical-Stage Patients of Colorectal Cancer. Biomed Res Int 2019; 2017: 21078030 [PMID: 31886181 DOI: 10.1155/2019/21078030]

44 Yang C, Xu W, Meng X, Zhou S, Zhang M, Cui D. SCC-S2 Facilitates Tumor Proliferation and Invasion via Activating Wnt Signaling and Depressing Hippo Signaling in Colorectal Cancer Cells and Predicts Poor Prognosis of Patients. J Histochrom Cytochrom 2019; 67: 65-75 [PMID: 30216108 DOI: 10.1369/0022155418799957]

45 Zhang X, Liu J, Liang X, Chen J, Hong J, Li L, He Q, Cai X. History and progression of Fat cadherins in health and disease. Onco Targets Ther 2016; 9: 7337-7343 [PMID: 27942226 DOI: 10.2147/ott.S111767]

46 Qi C, Zhu YT, Hu L, Zhu YJ. Identification of Fat4 as a candidate tumor suppressor gene in breast cancers. Int J Cancer 2019; 124: 793-798 [PMID: 19048595 DOI: 10.1002/ijc.23775]

47 Jiang X, Liu Z, Xia Y, Luo J, Xu J, He X, Tao H. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients. Oncotarget 2018; 9: 5137-5154 [PMID: 29435168 DOI: 10.18632/oncotarget.23702]

48 Morris LG, Kaufman AM, Gong Y, Ramaswami D, Walsh LA, Turcan S, Eng S, Kannan K, Zou Y, Peng L, Banuchi VE, Paty P, Zeng Z, Vakiani E, Solit D, Singh B, Ganyl I, Liu A, Cloughesy TS, Miscel PS, Mellingerhoff IK, Chan TA. Recurrent somatic mutation of FAT1 in multiple human cancers leads to aberrant Wnt activation. Nat Genet 2015; 47: 253-261 [PMID: 23354438 DOI: 10.1038/ng.2538]

49 Kanemitsu Y, Shimizu Y, Mizusawa J, Inaba Y, Hamaguchi T, Shida D, Ohue M, Komori K, Shimoi A, Shiozawa M, Watanabe J, Suto T, Kinugasa Y, Takii Y, Bando H, Kobatake T, Inomata M, Shimada Y, Katayama H, Fukuda H. JCOG Colorectal Cancer Study Group. Hepatectomy Followed by mFOLFOX6 Versus Hepatectomy Alone for Liver-Only Metastatic Colorectal Cancer (JCOG0603): A Phase II or III Randomized Controlled Trial. J Clin Oncol 2021; 39: 3789-3799 [PMID: 34520230 DOI: 10.1200/JCO.21.01032]
