INTRODUCTION

The incidence of brain metastases is increasing, likely due to the improved systemic therapies resulting in prolonged overall survival[19,39] and improved radiological techniques, leading to increased diagnosis.[4,5,8,9,31,37,43] On the other hand, improved medical therapies can potentially decrease the incidence of brain metastases[19]. The most common malignancy, leading to brain metastasis, is nonsmall cell lung cancer (NSCLC),[4,5,9,11,28,37,45] followed by breast adenocarcinoma,
melanoma, renal cell carcinoma, and colorectal adenocarcinoma.[4,5,8,9,11,14,19,20,28,30-33,37,41,43,45]

Craniotomy and resection of a brain metastasis can prolong overall survival in select patients.[1,4,7,10,11,14,20,26-28,34,41,43,45] Neurosurgeons may also resect metastatic lesions located intraventricularly, those which are durally based, within the pituitary gland and intrasosseous within cranial bone. Ideal candidates for surgery include patients with a good performance status diagnosed with a solitary metastasis in a noneloquent area, associated with stable systemic disease.[8,11,27,28,45] Additional advantages of surgical resection include instant relief from symptoms of raised intracranial pressure due to mass effect, treatment of obstructive hydrocephalus without the need for cerebrospinal fluid diversion,[4,26,36,45] to provide histological diagnosis, reduce the need for Dexamethasone, improve functional performance status,[28,35] and facilitate stereotactic radiosurgery (STRS).[35] Surgical resection may not be required in patients with a metastasis <3 cm in maximal diameter, as these lesions can successfully be treated through STRS.[4,21]

MATERIALS AND METHODS

The aim of this study was to identify prognostic factors associated with resection of intracranial metastases. Before data collection, this study was formally registered with the local audit department, the ethics and methodology of the study were reviewed and signed off by the clinical governance lead. A retrospective study was carried out at a single centre, Hull Royal Infirmary. Data collection occurred from May 12, 2021, to July 19, 2021. All patients who underwent attempted neurosurgical resection of a cranial metastasis between March 2014 and April 2021 were included in the study. Clinic letters, radiology and histology reports, and operation notes were used for data collection. One hundred and twenty-six patients were identified. However, 14 patients were excluded from the study and the reasons included; no available information, nonmetastatic histological diagnosis such as glioblastoma or lymphoma, biopsy of metastasis, treated through cyst aspiration, and insertion of Ommaya reservoir. Therefore, 112 patients were included who underwent a total of 124 resections. The diagnosis was concluded from the neurosurgical histological result and imaging available to the neuro-oncology multidisciplinary team. Biopsy results for any systemic lesions targeted were not available for analysis as these procedures would have been performed at a different hospital.

Neurosurgery clinic letters describing referral for consideration of whole-brain radiotherapy (WBRT) or STRS were not adequate to be recorded as having received treatment. The treatment reports stating the radiation dose (Gy) and fractions (WBRT) or number of target lesions (STRS) were reviewed to confirm adjuvant radiation administered. The extent of surgical resection was defined as unclear in patients where MRI was contraindicated, if they were too unwell for appropriate investigations, if no MRI was available, or if unable to distinguish residual from recurrent disease. Gross-total resection included cases where a postcontrast MRI did not demonstrate any residual enhancing material whereas cases were classified as sub-total resection if there was a tiny or small volume of enhancing material at the surgical site. Debulking included cases where there was either a large residual or limited resection performed. The extent of surgical resection was formally reported by a neuroradiologist and reviewed by a neurosurgeon.

Statistical analysis was carried out using GraphPad Prism 9.2.0 and P < 0.05 was deemed statistically significant. For the survival analysis, 1 month was defined as 28 days. Kaplan–Meier graphs were used and the statistical significance was calculated through the Log rank (Mantel–Cox) test.

RESULTS

The median age was 65 years old (24 to 84). The male-to-female ratio was 1:1.54 with 44 (39%) males and 68 (61%) females. There were 81 patients (72%) with a solitary cranial metastasis, 29 (26%) with multiple intracranial metastases, and in 2 (2%), MRI was contraindicated with only a preoperative CT available. The metastasis location most frequently involved the frontal lobe (frontal, frontoparietal, and frontotemporal [53 patients, 47%]), [Table 1]. Ninety-five (85%) were supratentorial intraparenchymal metastases,

Patients (n=112)
Left
Right

Intrinsc		
Frontal	23	24
Frontoparietal	2	2
Frontotemporal	1	1
Parietal	7	9
Parieto-occipital	3	1
Temporal	3	5
Temporoparietal	2	0
Occipital	7	5
Cerebellar	3	2

Extrinsic		
Cerebelloptine angle	1	1
Supratentorial dural based	6	5
Extradural/intraventricular	1	1
4th ventricle	1	1
Left lateral ventricle	1	1
Pituitary	1	1
Multiple	1	1
Right parietal bone and left temporal brain	1	1
Henderson, et al.: Prognostic factors following resection of intracranial metastases

5 (6%) were dural based, 2 (2%) were intraventricular, and 1 (1%) was within the pituitary gland. The most common presenting symptoms before dexamethasone treatment included: headaches (32%), motor deficit (31%), speech disturbance (31%), visual deterioration (15%), and seizures (13%), [Table 2].

The primary histological diagnosis was NSCLC in 63 patients (56%) which included one patient with an adenocarcinoma metastasis within a gliosarcoma, breast adenocarcinoma in 14 (12%), melanoma in 7 (6%), colorectal adenocarcinoma in 7 (6%), renal cell carcinoma in 6 (5%), esophageal adenocarcinoma in 4 (4%), endometrial sarcoma in 2 (2%), endometrial adenocarcinoma in 1 (1%), ovarian adenocarcinoma in 2 (2%), bladder transitional cell carcinoma in 1 (1%), anal squamous cell carcinoma in 1 (1%), prostate adenocarcinoma in 1 (1%), ethmoid air sinus adenocarcinoma in 1 (1%), and small cell lung cancer in 2 (2%).

Postoperative MRI with contrast was carried out within 48 hours of surgery in 63 patients (56%), between 3 and 7 days in 6 (5%) and was delayed or not performed at all in 41 patients (37%). MRI scanning was contraindicated in 2 patients (2%). Gross-total resection was achieved in 46 patients (41%), sub-total in 26 (23%), debulking in 9 (8%), and the extent of surgical resection was unclear in 31 patients (28%). Adjuvant STRS to the resection cavity was not carried out. However, 46 (41%) underwent radiation treatment for residual, recurrent, or additional intracranial metastatic disease. This included 27 (24%) who received WBRT, 18 (16%) received STRS, and 1 (1%) who received both WBRT and STRS [Supplementary Figure 1].

Of the total 112 patients, 10 (9%) underwent further resections of brain metastases, including 10 redo resections for recurrence at the surgical site and two resections of discrete lesions at a different intracranial site [Table 3]. Of the 124 tumor resections, 9 (7%) returned to theater for emergency neurosurgical intervention which included evacuation of intracranial hematoma (3, 2%), washout of brain abscess or subdural empyema (5, 4%), and decompressive craniectomy (1, 1%). There were 3 (2%) arterial territory cerebral infarcts and 4 (3%) new symptomatic venous thromboembolic events [Table 4]. The surgical mortality (death within 30 days due to an operative complication) was 1/124 (<1%).

At the time of data collection, 26/112 (23%) were still alive and the median follow-up for those patients was 1070 days (68–2484). Including the total patient cohort, the rates of overall survival were as follows: 1 month = 93%, 6 months = 58%, 1 year = 35%, and 5 years = 17%, with a median survival of 233 days [Figure 1]. Of the 19 patients who died within 90 days of surgery, 5 (26%) had respiratory failure (causes included pneumonia, pulmonary embolism, and mediastinal lymphadenopathy), 5 (26%) had cancer progression (three had new systemic metastases and two had new intracranial metastases), and 6 (32%) had an unknown cause of death [Table 5].

Of the 10 patients who underwent redo resection and/or resection of an additional cranial metastatic lesion [Table 3], 5 (50%) were alive at the time of data collection with a median follow-up of 1377 days (1099–2848). The median overall survival including all 10 patients was 1101 days (101–2848).

Age was significantly associated with survival (Log rank [Mantel–Cox] \(P = 0.009 \)), with an age >70 being a negative prognostic predictor of survival [Table 6]. Extent of neurosurgical resection was significantly associated with survival (Log rank [Mantel–Cox] \(P = 0.022 \)), with gross-total resection being a positive predictor of survival. Squamous subtyping of NSCLC was a negative predictor of survival (Log rank [Mantel–Cox] \(P = 0.048 \)) [Figures 1 and 2]. On recursive partitioning analysis [Figure 3] using extent of resection and age, age <70 and confirmed gross-total resection yield a median survival of 27.5 months which was statistically significant (Log rank [Mantel–Cox] \(P = 0.0001 \)).

Table 2: Preoperative clinical presentation.

Symptoms	Patients (n=108)*
Motor deficit**	34 (31%)
Facial asymmetry	8 (7%)
Limb weakness	31 (29%)
Visual field deficit	16 (15%)
Reduced visual acuity	4 (4%)
Seizures	14 (13%)
Tonic–clonic seizures	4 (4%)
Focal seizures	8 (7%)
Absence seizures	1 (1%)
Nocturnal seizure	1 (1%)
Speech disturbance	33 (31%)
Dysphasia	14 (13%)
Confusion	14 (13%)
Dysarthria	4 (4%)
Reduced mobility	19 (18%)
Ataxia	2 (2%)
Gait disturbance	3 (3%)
Impaired limb coordination	5 (5%)
Impaired balance	3 (3%)
Falls	7 (6%)
Headaches	35 (32%)
Vomiting	4 (4%)
Nystagmus	1 (1%)
Dysgraphia	1 (1%)
Hearing loss	1 (1%)
Sensory deficit	3 (3%)
Low conscious level	2 (2%)
Personality change	10 (9%)
Memory loss	7 (6%)
Unintentional weight loss	1 (1%)
Reduced appetite	1 (1%)

**Missing information on the clinical presentation of 4/112 (4%) patients from the total sample size. *Neurological deficits were before administration of dexamethasone.
DISCUSSION

Our study demonstrated that achieving gross-total resection can lead to prolonged survival. However, there was a large number of patients (37%) where MRI scanning was either delayed or not performed at all, resulting in patients with an unclear extent of surgical resection. Neurosurgical services in England are commissioned by the National Health Service (NHS) based on guidelines written by the National Institute for Health and Care Excellence (NICE). At present, NICE recommends MRI scanning within 72 hours of resection of malignant gliomas; however, this is not the case for brain metastases. It is common practice at Hull Royal Infirmary to perform an intraoperative ultrasound to evaluate the extent of resection; however, these results were not available for analysis. The long-term radiological follow-up was not assessed in our study. Our current protocol is MRI scanning every 3 months if residual disease is identified; however, once adjuvant STRS is completed the radiological follow-up is managed by the primary oncologist.

Schackert et al. found in their series of 127 patients; gross-total resection was associated with a longer duration of survival when compared to those with a residuum and median survivals of 10.6 and 5.8 months, respectively. Olesrud et al. found in their study of 68 patients; no residual tumor, nonmeasurable residual tumor, and measurable residual tumor were associated with median survivals on 12.0, 9.5, and 5.6 months, respectively. Sivasanker et al. found in their series of 124 patients; those who achieved gross-total resection had a median survival of 12.5 months and those who did not survived for a median of 4.2 months; however, this did not reach statistical significance. Tendulkar et al. showed in their study of 271 patients; a median survival of 10.6 months following gross-total resection compared to 8.7 following subtotal resection; however, this did not reach statistical significance. On the other hand, Jünger et al. found no difference in overall survival when comparing gross-total versus subtotal resection in 197 patients.

Fluorescence-guided surgery using 5-aminolevulinic acid (5-ALA) has been shown to increase the likelihood of achieving gross-total resection in glioblastoma multiforme. 5-ALA-guided resection of cerebral metastases has been attempted; however, the rate of tumor fluorescence is variable and its utility remains unclear. Supramarginal resection can also be performed to reduce the probability of residual tumor; however, this is not common.

Table 3: Redo resection for recurrent intracranial metastatic disease.

Age	Primary cancer	Secondary location	Extent of primary resection	Radiation treatment	Days from primary resection to further neuro-oncological surgery	Overall survival (days)
54	Colorectal adenocarcinoma	Left frontal	Unknown*	None	157	2484 (Alive)
69	Breast adenocarcinoma	Left occipital	Unknown**	None (Was referred for WBRT)	884, 1236	1402 (Deceased)
66	NSCLC	Right frontal	Gross total	Yes (WBRT after 2nd surgery)	126	1700 (Alive)
57	NSCLC	Right frontal	Sub-total	None (was referred for STRS)	50	101 (Deceased)
69	NSCLC	Right temporal	Gross total	None	238	1377 (Alive)
42	Breast	Right occipital	Gross total	None	1068	1103 (Alive)
37	Esophageal adenocarcinoma	Right cerebellum	Debulking	Yes (STRS after primary surgery, received 6x STRS in total)	483	1099 (Alive)
60	Renal cell carcinoma	Right frontoparietal	Debulking	None (Not suitable for STRS as tumor invaded into wound)	76	195 (Deceased)
84	Endometrial adenocarcinoma	Left frontal	Sub-total	None	628	972 (Deceased)
70	NSCLC	Right temporal	Gross total	Yes (WBRT after 2nd surgery)	206	345 (Deceased)

NSCLC: nonsmall cell lung cancer, WBRT: whole-brain radiotherapy, STRS: stereotactic radiosurgery. *MRI demonstrating metastatic disease was performed at day 45 postoperatively, therefore unable to determine if this was residual disease following sub-total resection or recurrent disease following gross-total resection. **No postoperative MRI
practice in the UK. Intraoperative imaging modalities such as ultrasound can be used to facilitate gross-total resection. Our study demonstrates that redo resection can be safely performed in patients with recurrent intracranial metastases with good overall survival. However, earlier detection of recurrent disease and treatment with STRS could obviate the need for redo resection. 2/10 patients who underwent redo resection had an unknown extent of resection following their primary surgery. On the other hand, 4/10 of those who underwent redo resection had an MRI scan demonstrating a higher incidence of infection.

Tumor resections (n=124)	Details	Postoperative day	Duration of survival (days)
Arterial territory infarct*	Left posterior cerebral	2	160 (Deceased)
Intracranial hemorrhage	Left anterior cerebral	2	1147 (Alive)
Intracranial hemorrhage	Right anterior cerebral	1	56 (Deceased)
Surgical site infection**	Extracerebral hematoma	2	252 (Deceased)
Surgical site infection**	Intracerebral hematoma	1	88 (Deceased)
Surgical site infection**	Intracerebral and intraventricular hematoma	0	11 (Deceased)
Cerebral edema	Brain abscess	44	56 (Deceased)
Cerebral edema	Brain abscess	69	124 (Deceased)
Cerebral edema	Brain abscess	47	129 (Deceased)
Cerebral edema	Subdural empyema	28	1377 (Alive)
Cerebral edema	Subdural empyema	12	145 (Deceased)
Cerebral edema	Intraoperative brain swelling, prophylactic craniectomy. Returned for autologous bone cranioplasty	8	125 (Alive)
Ventricleloperitoneal shunt inserted for hydrocephalus	Location of metastasis excised	3	97 (Alive)
Ventricleloperitoneal shunt inserted for hydrocephalus	4th ventricle	12	129 (Deceased)
Ventricleloperitoneal shunt inserted for hydrocephalus	Left temporal	303	1377 (Alive)
Ventricleloperitoneal shunt inserted for hydrocephalus	Right cerebellar	265	303 (Deceased)
Ventricleloperitoneal shunt inserted for hydrocephalus	Lateral ventricle	49	97 (Alive)
Venous thromboembolism**	Pulmonary embolism	6	56 (Deceased)
Venous thromboembolism**	Pulmonary embolism	8	37 (Deceased)
Venous thromboembolism**	Deep vein thrombosis	3	208 (Deceased)
Venous thromboembolism**	Deep vein thrombosis	34	100 (Deceased)

*As stated by the postoperative MRI. Extent of neurological deterioration not documented. Does not include patients with small areas of restricted diffusion adjacent to the surgical resection site. **All patients returned to theater for drainage of intracranial pus and removal of infected bone flap. ***Does not include two patients who were diagnosed and anti-coagulated preoperatively and one patient who was found to have an incidental, asymptomatic pulmonary embolism on a staging CT chest/abdomen/pelvis scan 59 days following surgery. The same patient, the same patient, the same patient

The dose and duration of dexamethasone administration are missing. Dexamethasone can provide symptomatic relief and reduce the risk of neurological deterioration while awaiting surgery. Hutchinson et al. showed in a randomized controlled clinical trial that dexamethasone was associated with a higher incidence of unfavorable outcome (moderately severe disability to dead) in patients with chronic subdural hematoma; in particular, dexamethasone was associated with a higher incidence of infection. While these results may
not be applicable to neuro-oncology patients; in our study, 4% died within 90 days of surgery due to pneumonia and 4% returned to theater due to surgical site infection. Data on cigarette smoking were missing from our study. Concurrent cigarette smoking increases the risk of surgical site infection, pneumonia, and perioperative

Age (Years)	Extent of intracranial disease	Secondary location	Extent of resection	Primary cancer	Survival (days)	Cause of death
70	Multiple	Left occipital	No postoperative MRI	Small cell lung cancer	37	Respiratory failure. Pulmonary embolism with community acquired pneumonia. Intracranial metastatic disease progression
71	Solitary	Right frontal	Gross total	Small cell lung cancer	89	Unknown
67	Multiple	Left cerebellum	Gross total	NSCLC	47	Unknown
63	Solitary	Right frontoparietal	No postoperative MRI	NSCLC	88	Unknown
58	Multiple	Left temporoparietal	Increased tumor volume	NSCLC	52	Intracranial metastatic disease progression
70	Solitary	Left frontal	Gross total	NSCLC	19	Acute pancreatitis
72	Solitary	Left temporal	No postoperative MRI	NSCLC	13	Bowel perforation, peritonitis, and sepsis
74	Solitary	Right parietal	Gross total	NSCLC	39	Respiratory failure. Community acquired pneumonia on a background of pulmonary fibrosis
74	Solitary	Right frontotemporal	Sub-total	NSCLC	81	Unknown
59	Solitary	Left frontal	No postoperative MRI	NSCLC	20	Respiratory failure. Hospital acquired pneumonia with ongoing heavy cigarette smoking
68	Solitary	Right frontal	No postoperative MRI	NSCLC	10	Respiratory failure. Hospital acquired pneumonia on a background of severe COPD. Developed atrial fibrillation due to sepsis.
60	Solitary	Right frontal	No postoperative MRI	NSCLC	87	Unknown
62	Solitary	Left occipital	Gross total	NSCLC	76	Systemic disease progression with metastases to liver and myocardium and intracranial disease progression
46	Multiple	Right frontal	Gross total	Melanoma	56	Postoperative complication. Anterior cerebral artery territory infarct, surgical site infection with intracerebral abscess, venous thromboembolism
78	Multiple	Right frontal	Gross total	Esophageal adenocarcinoma	27	Unknown
74	Multiple	Left temporal	Gross total	Breast adenocarcinoma	23	Systemic disease progression with liver, spleen, kidney, and lung metastases
63	Solitary	Pituitary	Debulking	Colorectal adenocarcinoma	57	Systemic disease progression with liver metastasis and diabetes insipidus due to pituitary dysfunction
71	Solitary	Left parietal	No postoperative MRI	Renal cell carcinoma	54	Respiratory failure. Mediastinal lymphadenopathy and pleural effusion
62	Solitary	Left frontal	No postoperative MRI	Endometrial sarcoma	11	Postoperative complication. Intracerebral hematoma with intraventricular extension

NSCLC: Nonsmall cell lung cancer
Cigarette smoking can also cause other medical comorbidities such as chronic obstructive pulmonary disease which could contribute to poor clinical outcome. In our study, squamous NSCLC carried a shorter duration of survival than nonsquamous NSCLC \((P = 0.048)\), this could potentially be explained by the greater association between cigarette smoking in squamous NSCLC than adenocarcinoma.

Table 6: Survival analysis.

	Patients	Median survival	\(P\) value	
	Days	Months (28 day)	Log rank (Mantel-Cox)	
Total sample	112	233	8.3	-
Gender				
Male	44 (39%)	160	5.7	0.051
Female	68 (61%)	259	9.3	
Age				
<50	14 (13%)	272	9.7	0.009
50–59	22 (20%)	320	11.4	
60–69	43 (38%)	319	11.4	
>70	33 (29%)	151	5.4	
Intrinsic cerebral lesions				
Preoperative seizures				
Yes	13 (12%)	215	7.7	0.980
No	83 (74%)	235	8.4	
Location				
Frontal	48 (43%)	215	7.7	0.065
Frontoparietal	4 (4%)	145	5.2	
Frontotemporal	2 (2%)	170	6.1	
Parietal	15 (13%)	1033	36.9	
Parieto-occipital	4 (4%)	171	6.1	
Occipital	12 (11%)	181	6.5	
Temporal	9 (8%)	330	11.8	
Temporoparietal	2 (2%)	315	11.2	
Hemisphere				
Left	49 (44%)	215	7.7	0.575
Right	47 (42%)	241	8.6	
Primary cancer histology				
NSCLC*	64 (65%)	208	7.4	0.849
Breast adenocarcinoma	14 (14%)	303	10.8	
Colorectal adenocarcinoma	7 (7%)	349	12.5	
Melanoma	7 (7%)	160	5.7	
Renal cell carcinoma	6 (6%)	326	11.6	
NSCLC				
Nonsquamous	56 (87%)	214	7.6	0.048
Squamous	8 (13%)	152	5.4	
Number of intracranial metastases				
Solitary	81 (74%)	259	9.3	0.165
Multiple	29 (26%)	160	5.7	
Radiation treatment				
STRS or WBRT	41 (37%)	319	11.4	0.129
None	71 (63%)	185	6.6	
Extent of resection				
Gross total	46 (41%)	330	11.8	0.022
Sub-total	26 (23%)	160	5.7	
Debulking	9 (8%)	195	7.0	
Unclear	31 (28%)	252	9.0	

Included one patient with a lung adenocarcinoma which had metastasized into a CNS gliosarcoma. NSCLC: Nonsmall cell lung cancer, STRS: stereotactic radiosurgery, WBRT: whole-brain radiotherapy
Death due to an unknown cause within 90 days of surgery occurred in 5% of the patients. These patients could have potentially died of a preventable cause such as surgical site infection, seizures, or venous thromboembolism. However, these patients may have chosen to not undergo further hospital admission, to focus on palliative symptomatic relief in their home. Furthermore, postmortem investigations are seldom performed in patients with metastatic cancer.

Figure 1: Kaplan–Meier graphs for survival analysis including all patients and then stratified by gender, age, and multiplicity of intracranial disease (median survivals and P values are displayed in Table 6).

Figure 2: Kaplan–Meier graph for survival analysis stratified by histological diagnosis, adjuvant radiation treatment, and extent of neurosurgical resection (median survivals and P values are displayed in Table 6).
because it often does not add helpful information to the family members and can cause distress. While this is understandable, it is difficult to improve our service when there is missing information on the causes of postoperative death.

During the time period of data collection, there has been a change in the preferred adjuvant radiation treatment in our service. In 2017, Brown et al. demonstrated that when compared against WBRT, STRS is associated with a longer duration of cognitive-deterioration-free survival and no difference in overall survival for patients undergoing adjuvant radiation treatment to the surgical cavity following resection of a solitary brain metastasis. Our study includes patients who underwent surgery between March 2014 and April 2021, and in the early years, WBRT was common practice; however, currently, STRS is most frequently used. As our study was retrospective, it did not include cognitive-deterioration-free survival as an outcome. A significant number of patients did not receive cranial radiation treatment and potential explanations for this include; the patient died before treatment was administered, patient choice, radiation treatment not offered in cases where a solitary metastasis had been completely resected as this is not recommended by NHS England, and logistical errors as the service transitioned from WBRT to STRS as these treatments are carried out by different clinical teams working in separate hospitals.

Given the impact of the COVID-19 pandemic on neuro-oncology services in the UK, this could have led to a reduction in overall survival for some patients in this study.

CONCLUSION

Cranial metastatic disease represents a heterogeneous patient population with multiple factors influencing the clinical outcome, therefore, when considering neurosurgical intervention, each case should be considered on an individual basis. There are ongoing advancements, with new medical therapies becoming available for different types of cancer in which neurosurgeons may not be aware of. Therefore, input from oncologists who treat the primary disease is crucial when selecting patients who would be suitable candidates for neurosurgical intervention.
scanning is recommended to identify residual tumor or new discrete lesions which could benefit from adjuvant STRS. If required, redo resection can successfully be performed with benefits to overall survival. In our study, age and extent of surgical resection were prognostic predictors of survival.

Declaration of patient consent

Patient’s consent not required as patient’s identity is not disclosed or compromised.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Al-Shamy G, Sawaya R. Management of brain metastases: The indispensable role of surgery. J Neurooncol 2009;92:275-82.
2. Banfill KE, Bownes PJ, St Clair SE, Loughrey C, Hatfield P. Stereotactic radiosurgery for the treatment of brain metastases: Impact of cerebral disease burden on survival. Br J Neurosurg 2012;26:674-8.
3. Brown PD, Ballman KV, Cerhan JH, Anderson SK, Carrero XW, Whitton AC, et al. Postoperative stereotactic radiosurgery compared with whole brain radiotherapy for resected metastatic brain disease (NCCTG N107C/CEC·3): A multicentre, randomised, controlled, phase 3 trial. Lancet Oncol 2017;18:1049-60.
4. D’Andrea G, Palombi L, Minniti G, Pesce A, Marchetti P. Brain metastases: Surgical treatment and overall survival. World Neurosurg 2017;97:169-77.
5. Davis FG, Doleck TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol 2012;14:1171-7.
6. de Lima Oliveira M, Picarelli H, Menezes MR, Amorim RL, Teixeira MJ, Bor-Seng-Shu E. Ultrasonography during surgery to approach cerebral metastases: Effect on Karnofsky index scores and tumor volume. World Neurosurg 2017;103:557-65.
7. Du YJ, Palernik S, Hadaschik B, Teber D, Duensing S, Jäger D, et al. Impact of resection and systemic therapy on the survival of patients with brain metastasis of metastatic renal cell carcinoma. J Neurooncol 2016;130:221-8.
8. Fox BD, Cheung VJ, Patel AJ, Suki D, Rao G. Epidemiology of metastatic brain tumors. Neurosurg Clin N Am 2011;22:1-6.
9. Gavrilovic IT, Posner JB. Brain metastases: Epidemiology and pathophysiology. J Neurooncol 2005;75:5-14.
10. Gupta S, Dawood H, Larsen AG, Fandino L, Knelson EH, Smith TR, et al. Surgical and peri-operative considerations for brain metastases. Front Oncol 2021;11:662943.
11. Hall WA, Djalilian HR, Nussbaum ES, Cho KH. Long-term survival with metastatic cancer to the brain. Med Oncol 2000;17:279-86.
12. Hussein A, Rohde V, Wolfert C, Hernandez-Duran S, Fiss I, Bleckmann A, et al. Survival after resection of brain metastases with white light microscopy versus fluorescence-guidance: A matched cohort analysis of the Metastasys study data. Oncotarget 2020;11:3026-34.
13. Hutchinson PJ, Edlmann E, Bulters D, Zolnourian A, Holton P, Suttner N, et al. Trial of dexamethasone for chronic subdural hematoma. N Engl J Med 2020;383:2616-27.
14. Jung M, Ahn JB, Chang JH, Suh CO, Hong S, Roh JK, et al. Brain metastases from colorectal carcinoma: Prognostic factors and outcome. J Neurooncol 2011;101:49-55.
15. Jünger ST, Pennig L, Schöbel P, Goldbrunner R, Friker L, Kocher M, et al. The debatable benefit of gross-total resection of brain metastases in a comprehensive treatment setting. Cancers (Basel) 2021;13:1435.
16. Kamp MA, Fischer I, Bühner J, Turowski B, Cornelius JF, Steiger HJ, et al. 5-ALA fluorescence of cerebral metastases and its impact for the local-in-brain progression. Oncotarget 2016;7:66776-89.
17. Kamp MA, Munoz-Bendix C, Mijderwijk HJ, Turowski B, Dibue-Adjei M, von Saß C, et al. Is 5-ALA fluorescence of cerebral metastases a prognostic factor for local recurrence and overall survival? J Neurooncol 2019;141:547-53.
18. Lau D, Ziewacz JE, Siddiqi HK, Pelly A, Sullivan SE, El-Sayed AM. Cigarette smoking: A risk factor for postoperative morbidity and 1-year mortality following craniotomy for tumor resection. J Neurosurg 2012;116:1204-14.
19. Massard C, Zonierek J, Gross-Goupil M, Fizazi K, Szczyluk C, Escudier B. Incidence of brain metastases in renal cell carcinoma treated with sorafenib. Ann Oncol 2010;21:1027-31.
20. McCutcheon IE. Colorectal carcinoma and brain metastasis: Distribution, treatment, and survival. Ann Surg Oncol 1996;3:451-63.
21. Minniti G, Clarke E, Lanzetta G, Osti MF, Trasimeni G, Bozzao A, et al. Stereotactic radiosurgery for brain metastases: Analysis of outcome and risk of brain radionecrosis. Radiat Oncol 2011;385:650-1.
22. NHS England. Clinical Commissioning Policy: Stereotactic Radiosurgery (SRS) and Stereotactic Radiotherapy (SRT) to the Surgical Cavity Following Resection of Cerebral Metastases (All ages) [P200902P] (URN: 1857); 2021.
23. NICE, National Institute for Health and Care Excellence. Brain Tumours (Primary) and Brain Metastases in Adults Guidance NICE. NICE Clinical Guidelines; 2018.
24. Nolan MB, Martin DP, Thompson R, Schroeder DR, Hanson AC, Warner DO. Association between smoking status, preoperative exhaled carbon monoxide levels, and postoperative surgical site infection in patients undergoing elective surgery. JAMA Surg 2017;152:476-83.
25. Olesrud IC, Schulz MK, Marcovic L, Kristensen BW, Pedersen CB, Kristiansen C, et al. Early postoperative MRI after resection of brain metastases complete tumour resection associated with prolonged survival. Acta Neurochir (Wien) 2019;161:555-65.
26. Paek SH, Audu PB, Sperling MR, Cho J, Andrews DW. Reevaluation of surgery for the treatment of brain metastases: Review of 208 patients with single or multiple
brain metastases treated at one institution with modern neurosurgical techniques. Neurosurgery 2005;56:1021-34; discussion 1021-34.

27. Patchell RA, Tibbs PA, Regine WF, Dempsey RJ, Mohiuddin M, Kryscio RJ, et al. Postoperative radiotherapy in the treatment of single metastases to the brain: A randomized trial. J Am Med Assoc 1998;280:1485-9.

28. Patchell RA, Tibbs PA, Walsh JW, Dempsey RJ, Maruyama Y, Kryscio RJ, et al. A randomized trial of surgery in the treatment of single metastases to the brain. N Engl J Med 1990;322:494-500.

29. Pessina F, Navarria P, Cozzi L, Ascolese AM, Maggi G, Rossi M, et al. Role of surgical resection in patients with single large brain metastases: Feasibility, morbidity, and local control evaluation. World Neurosurg 2016;94:6-12.

30. Pestalozzi BC, Zahrieh D, Price KN, Holmberg SB, Lindtner J, Collins J, et al. Identifying breast cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). Ann Oncol 2006;17:935-44.

31. Robert C, Karaszewska B, Schachtier J, Rutkowski P, Mackiewicz A, Stroiakovski D, et al. Improved overall survival in melanoma with combined dabrafenib and trametinib. N Engl J Med 2015;372:30-9.

32. Sampson WE, Moon J, Witter M, Atkins MB, Kirkwood JM, Othus M, et al. High frequency of brain metastases after adjuvant therapy for high-risk melanoma. Cancer Med 2017;6:2576-85.

33. Sampson JH, Carter JH, Friedman AH, Seigler BF. Demographics, prognosis, and therapy in 702 patients with brain metastases from malignant melanoma. J Neurosurg 1998;88:11-20.

34. Schackert G, Lindner C, Petschke S, Leimert M, Kirsch M. Retrospective study of 127 surgically treated patients with multiple brain metastases: Indication, prognostic factors, and outcome. Acta Neurochir (Wien) 2013;155:379-87.

35. Schödel P, Jünger ST, Wittersheim M, Reinhardt HC, Schmidt NO, Goldbrunner R, et al. Surgical resection of symptomatic brain metastases improves the clinical status and facilitates further treatment. Cancer Med 2020;9:7503-10.

36. Schödel P, Scheschek KM, Brawanski A, Proescholdt MA. Surgical resection of brain metastases-impact on neurological outcome. Int J Mol Sci 2013;14:8708-18.

37. Schouten LJ, Rutten J, Huveneers HA, Twijnstra A. Incidence of brain metastases in a cohort of patients with carcinoma of the breast, colon, kidney, and lung and melanoma. Cancer 2002;94:2698-705.

38. Sivasanker M, Madhugiri VS, Moiyadi AV, Shetty P, Subi TS. Surgery for brain metastases: An analysis of outcomes and factors affecting survival. Clin Neurol Neurosurg 2018;168:153-62.

39. Sperduto PW, Yang TJ, Beal K, Pan H, Brown PD, Bangdiwala A, et al. Estimating survival in patients with lung cancer and brain metastases an update of the graded prognostic assessment for lung cancer using molecular markers (Lung-molGPA). JAMA Oncol 2017;3:827-31.

40. Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme utilizing 5-ALA-induced porphyrins: A prospective study in 52 consecutive patients. J Neurosurg 2000;93:1003-13.

41. Suarez-Sarmiento A, Nguyen KA, Syed JS, Nolte A, Ghabili K, Cheng M, et al. Brain metastasis from renal-cell carcinoma: An institutional study. Clin Genitourin Cancer 2019;17:e1163-70.

42. Tendulkar RD, Liu SW, Barnett GH, Vogelbaum MA, Toms SA, Jin T, et al. RPA classification has prognostic significance for surgically resected single brain metastasis. Int J Radiat Oncol Biol Phys 2006;66:810-7.

43. Vosoughi E, Lee JM, Miller JR, Nosrati M, Minor DR, Abendroth R, et al. Survival and clinical outcomes of patients with melanoma brain metastasis in the era of checkpoint inhibitors and targeted therapies. BMC Cancer 2018;18:490.

44. Yagi R, Kawabata S, Ikeda N, Nonoguchi N, Furuse M, Katayama Y, et al. Intraoperative 5-aminolevulinic acid-induced photodynamic diagnosis of metastatic brain tumors with histopathological analysis. World J Surg Oncol 2017;15:179.

45. Yoo H, Kim YZ, Nam BH, Shin SH, Yang HS, Lee JS, et al. Reduced local recurrence of a single brain metastasis through microscopic total resection: Clinical article. J Neurosurg 2009;110:730-6.
Supplementary Figure 1: Bar charts showing multiplicity of intracranial disease, day postoperative MRI performed and extent of resection and adjuvant radiation treatment.