Pharmacological and therapeutic potential of *Cordyceps* with special reference to Cordycepin

Hardeep S. Tuli · Sardul S. Sandhu · A. K. Sharma

Received: 1 October 2012 / Accepted: 2 February 2013 / Published online: 19 February 2013 © The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract An entomopathogenic fungus, *Cordyceps* sp. has been known to have numerous pharmacological and therapeutic implications, especially, in terms of human health making it a suitable candidate for ethno-pharmacological use. Main constituent of the extract derived from this fungus comprises a novel bio-metabolite called as Cordycepin (3'-deoxyadenosine) which has a very potent anti-cancer, antioxidant and anti-inflammatory activities. The current review discusses about the broad spectrum potential of Cordycepin including biological and pharmacological actions in immunological, hepatic, renal, cardiovascular systems as well as an anti-cancer agent. The article also reviews the current efforts to delineate the mechanism of action of Cordycepin in various bio-molecular processes. The study will certainly draw the attention of scientific community to improve the bioactivity and production of Cordycepin for its commercial use in pharmacological and medical fields.

Keywords *Cordyceps militaris* · Infection · Cordycepin · Mechanism · Pharmacological effect

Introduction

Medicinal mushrooms have been known for thousands of years to produce biometabolites which are used or studied as possible treatment for diseases. Over two-third of cancer-related deaths could be prevented or reduced by modifying our diet with mushrooms, as they contain antioxidants (Borchers et al. 2004; Zaidman et al. 2005). *Cordyceps* have a history of medicinal use spanning millennia in parts of Asia (Gu et al. 2007). The name *Cordyceps* has been derived from two Latin words, i.e., *cord* and *ceps* meaning club and head, respectively. *Cordyceps militaris* belongs to the phylum Ascomycota classified in the order hypocreales, as spores are produced internally inside a sac, called ascus (Wang et al. 2008). It is an entomopathogenic fungus having an annual appearance which often grows parasitically on lepidopteron larvae and pupae of insects and spiders. It normally inhabits on the surface of insects pupae in winters and leading to the formation of fruiting body in summers justifying its name as “winter-worm summer-grass”.

Cordyceps has been found mainly in North America, Europe and Asia (Mains 1958; Winkler 2010; Panda and Swain 2011). In India, it is prominently found in subalpine regions of grassy lands of Himalayas commonly known as “Keera Ghas”. Recently it has been reported from Sutol and Kanol villages of Chamoli district of Uttarakhand (Singh et al. 2010). The ethnopharmacological use of *Cordyceps sinensis* has been reported from western Nepal for the cure of different diseases like diarrhea, headache, cough, rheumatism, liver disease, etc. This herb is also referred as “Himalayan Viagra” or “Himalayan Gold” due to its broad clinical and commercial value (Devkota 2006). *Cordyceps* requires specific set of conditions for its growth and has small size; therefore, the large-scale collection of this mushroom is a daunting task. However, people within the age group 15–65 years including men, women, young boys and girls are the main collectors of this fungus and price for 1 kg of wild-collected mushroom in the market of...
Nepal varies from 30,000 to 60,000 Nepali Rupees while in India it costs about Rupees 100,000 (Sharma 2004). Past 5 years have seen tremendous exploitation of *Cordyceps* which has significantly reduced its wild occurrence (Negi et al. 2006; Winkler 2008). Efforts have been made to artificially cultivate this mushroom by surface and submerged fermentation techniques.

There have been a variety of pharmacologically active compounds (e.g., Cordycepin) reported from *Cordyceps* sp. *Cordyceps* (Fig. 1) has received much attention due to its broad-spectrum biological activity. It is known to interfere with various biochemical and molecular processes including purine biosynthesis (Fig. 2) (Overgaard 1964; Rottman and Guarino 1964), DNA/RNA synthesis (Fig. 3) (Holbein et al. 2009) and mTOR (mammalian target of rapamycin) signaling transduction (Fig. 4) (Wong et al. 2010). *Cordyceps* has been included as one of the growing numbers of fungal traditional Chinese medicine (FTCM) used as cures for modern diseases with many products available commercially. Due to recent advancements in pharmaceutical biotechniques, it is possible to isolate bioactive compounds from *Cordyceps* and make it available in powder as well as in capsular form (e.g., Didanosine). *Cordyceps* and its product have remarkable clinical health effects including action on hepatic, renal, cardiovascular, respiratory, nervous, sexual, immunological systems, besides having anti-cancer, anti-oxidant, anti-inflammatory and anti-microbial activities (Zhou et al. 2008; Wang et al. 2011; Lee et al. 2011a, b; Zhang et al. 2012; Patel and Goyal 2012; Yue et al. 2012).

Keeping in view of the above facts, the current review updates us with the recent research pertaining to *Cordyceps* and the bioactive compounds isolated from it; especially for its ethno-pharmacological use. The study brings together a variety of mechanisms of Cordycepin at one platform and more importantly the broad spectrum pharmacological, clinical or biological activities associated with *Cordyceps*.

Infection to the host

Cordyceps usually infects insects at different stages of their development ranging from insect larvae to adult. Insect’s epidermis is covered with a thick layer of cuticle (procuticle and epicuticle) which is also known as integument. Insect’s integument comprises chitin, proteins and lipids. Besides this, it also contains variety of enzymes and phenolic compounds (Leger et al. 1991). Epidermis is formed by a single layer of epithelial cells followed by a thick layer of procuticle. Procuticle is differentiated into an inner soft part known as an endocuticle while the outer hard part is called exocuticle. Epicuticle and wax are known to constitute the outermost covering of the cuticle. This not only serves as a protective barrier against pathogenic organisms but also prevents water loss and acting as an interface between insect and its environment. Out of all these components, chitin which is a kind of heteropolysaccharide made with the polymerization of N-acetyl glucosamine through 1–4 β-linkage constitutes an important structural component of insect’s integument. Pathogen has to invade this tough integument covering to gain entry into the host.

Infection begins with the dispersion of fungus conidia on insect’s surface. Once conidia get settled, they start germinating within a few hours under suitable conditions. To get protection from the environmental ultraviolet radiations, protective enzymes like Cu–Zn superoxide dismutase (SOD) and peroxidases are secreted by the fungal conidia. These enzymes provide protection to the conidia from reactive oxygen species (ROS) generated due to UV rays and heat in the environment (Wanga et al. 2005). Besides this, conidia secrete certain hydrolytic enzymes like proteases, chitinases and lipases which lead to the dissolution of the integument and play a very important role in promoting fungal invasion.
role in infection to the host. These enzymes not only provide a penetration path to the conidia but also provide nutrition to the germinating conidia (Ali et al. 2010).

Further a short germ tube protruding out of the conidia starts thickening at the distal end which is known as appressorium. This appressorium maintains a kind of mechanical pressure on the germinating germ tube further improving the penetration effect of germ tube so as to reach into the insect’s haemolymph (Hajek and Leger 1994). As the germ tube penetrates the epicuticle layer of insect’s integument, it starts forming a plate-like structure called penetration plate. The penetration plate further produces secondary hyphae, which cross the epidermal layer and reach into the haemocoel of insect’s body. From these hyphae, protoplast bodies bud off and start circulating into the insect’s haemocoel. Fungus now starts growing into a filamentous mode invading internal organs and tissues of the host. During growth inside the host, fungus produces various kinds of toxic secondary metabolites, which are insecticidal. These secondary metabolites take the insect to its final life stage and ultimately insect dies out. Fungal mycelium emerges out through the cuticle and lead to the formation of fruiting body under suitable environmental conditions (Webster 1980). Morphological features of fruiting body include stipitate, yellowish-orange to orange to reddish-orange fruiting stroma which is cylindrical to slightly clavate in shape. Stipes of 1.5- to 3-mm thickness with fertile clava terminal (2.0- to 6.0-mm wide) are also commonly seen in the fruiting body with overall stroma of about 1.5- to 7.0-cm tall which can vary in length depending on the size of the host.

Cordyceps diversity and cultivation

There are more than 1,200 entomopathogenic fungi reported (Humber 2000) in the literature out of which the
Cordyceps constitutes one of the largest genus containing approximately 500 species and varieties (Hodge et al. 1998; Hywel 2002; Muslim and Rahman 2010). Many different species of Cordyceps are being cultivated for their medicinal and pharmaceutical properties including O. sinensis, C. militaris, C. ophioglossoides, C. sobolifera, C. liangshanensis, and C. cicadicola. Similarly many other species of Cordyceps have been documented like C. tuberculata, C. sub sessilis, C. minuta, C. myrmecophila, C. Canadensis, C. agriota, C. gracilis, C. ishikariensis, C. konnoana, C. nigrella, C. nutans, C. pruinosa, C. scabraica, C. sphecocephala, C. tricentri, etc., although the molecular evidence for their proper phylogenetic placement is still lacking (Shrestha and Sung 2005; Zhou et al. 2009).

Nearly 80–85 % of all medicinal mushroom products are extracted from their fruiting bodies while only 15 % are derived from mycelium culture (Lindequist et al. 2005). Fructifying body of Cordyceps is a very small blade-like structure, making its collection difficult and expensive. Since there is a huge requirement of medicinal mushroom bio-metabolites, it is necessary to cultivate mycelium biomass artificially for which variety of methods for its cultivation have been proposed by many research groups (Masuda et al. 2006; Das et al. 2008, 2010a). Cordyceps mycelium can grow on different nutrients containing media, but for commercial fermentation and cultivation, insect larvae (silkworm residue) and various cereal grains have been used in the past. It has been seen consistently that from both insect larvae and cereal grains, fruiting body of fungus can be obtained with almost comparable medicinal properties (Holliday et al. 2004).

There are basically two fermentation techniques by which the cultivation of mycelium biomass of Cordyceps can be achieved including surface and submerged fermentation. In surface fermentation, the cultivation of microbial biomass occurs on the surface of liquid or solid substrate. This technique, however, is very cumbersome, expensive, labor intensive and rarely used at the industrial scale. While in submerged fermentation, micro-organisms are cultivated in liquid medium aerobically with proper agitation to get homogenous growth of cells and media components. However, there is a loss of extra-cellular compounds (after harvesting mycelium) from the broth which makes it necessary to improve the culture medium composition and downstream processing technology to get large-scale production of the secondary bio-metabolites (Ni et al. 2009). It has been observed that the highest productivity can be achieved by repeated batch culture technique in which waste medium is removed at the end of the process and further refreshing the medium gives higher productivity of cells and bio metabolites.

Nutritional value of Cordyceps

In Cordyceps, there occurs a wide range of nutritionally important components including various types of essential amino acids, vitamins like B1, B2, B12 and K, different kinds of carbohydrates such as monosaccharide, oligosaccharides and various medicinally important polysaccharides, proteins, sterols, nucleosides, and other trace elements (Hyun 2008; Yang et al. 2009, 2010; Li et al. 2011). In the fruiting body and in the corpus of C. militaris, the reported total free amino acid content is 69.32 and 14.03 mg/g, respectively. The fruiting body harbors many abundant amino acids such as lysine, glutamic acid, proline and threonine as well. The fruiting body is also rich in unsaturated fatty acids (e.g., linoleic acid), which comprises of about 70 % of the total fatty acids. There are differences in adenosine (0.18 and 0.06 %) and Cordycepin (0.97 and 0.36 %) contents between the fruiting body and the corpus, respectively (Hyun 2008).

Bio-metabolites isolated from Cordyceps

Cordyceps, especially its extract has been known to contain many biologically active compounds like Cordycepin, cordycepic acid, adenosine, exo-polysaccharides, vitamins, enzymes etc. (Table 1). Out of these, Cordycepin, i.e., 3’-deoxyadenosine (Fig. 1) isolated from ascomycetes fungus C. militaris, is the main active constituent which is most widely studied for its medicinal value having a broad spectrum biological activity (Cunningham et al. 1950).

Cordycepin: mechanism of action

The structure of Cordycepin is very much similar with cellular nucleoside, adenosine (Fig. 1) and acts like a nucleoside analogue.

Inhibition of purine biosynthesis pathway

Once inside the cell, Cordycepin gets converted into 5’ mono-, di- and tri-phosphates that inhibit the activity of enzymes like ribose-phosphate pyrophosphokinase and 5-phosphoribosyl-1-pyrophosphate amidotransferase which are used in de novo biosynthesis of purines (Fig. 2) (Klenow 1963; Overgaard 1964; Rottman and Guarino 1964).

Cordycepin provokes RNA chain termination

Cordycepin lacks 3’ hydroxyl group in its structure (Fig. 1), which is the only difference from adenosine. Adenosine is a nitrogenous base and acts as cellular nucleoside, which is needed for the various molecular processes in cells like synthesis of DNA and/or RNA.
During the process of transcription (RNA synthesis), some enzymes are not able to distinguish between an adenosine and Cordycepin which leads to incorporation of 3'-deoxyadenosine or Cordycepin, in place of normal nucleoside, leading to premature termination of transcription (Fig. 3) (Chen et al. 2008; Holbein et al. 2009).

Cordycepin interferes in mTOR signal transduction

Cordycepin has been reported to shorten the poly A tail of m-RNA which further affects its stability inside the cytoplasm. It was observed that inhibition of polyadenylation with Cordycepin of some m-RNAs made them more sensitive than the other mRNAs. At higher doses, Cordycepin with Cordycepin of some m-RNAs made them more sensitive. Cordycepin interferes in mTOR signal transduction inhibiting translation and further cell proliferation and growth (Fig. 4).

Molecular studies of genes isolated from Cordyceps sp.

It is necessary to understand the genetic makeup and molecular biology of Cordyceps not only to enhance the production of Cordycepin and exopolysaccharides but also to figure out the biochemical synthetic pathway of the above bio-metabolites. Cordycepin and exopolysaccharides are some of the major pharmacologically active constituents of Cordyceps. There exists a variety of valuable genes encoding enzymes isolated and subsequently cloned from this medicinally important insect fungus. Isolation and cloning of FK51 gene has been carried out successfully from Cordyceps which encodes for an integral membrane protein acting as a catalytic subunit for enzyme β-1,3 glucan synthase and responsible for the biosynthesis of a potent immunological activator, i.e., β-glucan (Ujita et al. 2006). Another group isolated Cu, Zn SOD 1 gene (SOD 1) from Cordyceps militaris which not only acts as an antioxidant and anti-inflammatory agent but also neutralizes free radicals which could be a potential anti-aging drug (Park et al. 2005). From Cordyceps sinensis, two cuticle degrading serine protease genes, i.e., csp 1 and csp 2 have been cloned and expressed in yeast Pichia pastoris. The genes, csp1 and csp 2 were further characterized using synthetic substrate N-suc-AAPF-p-NA to understand the pathobiology and infection to the host (Zhang et al. 2008). Similar studies were carried out to clone and analyse glyceraldehyde-3-phosphate-dehydrogenase (GPD) gene from Cordyceps militaris. GPD is an important enzyme used in

S. no	Bioactive compounds	References
1	Cordycepin	Cunningham et al. (1950)
2	Cordycepic acid	Chatterjee et al. (1957)
3	N-acetylglalactosamine	Kawaguchi et al. (1986)
4	Adenosine	Guo et al. (1998)
5	Ergosterol and ergosterol esters	Yuan et al. (2007)
6	Bionoxanthacenes	Isaka et al. (2001)
7	Hypoxanthe	Huang et al. (2003)
8	Acid deoxyribonuclease	Ye et al. (2004)
9	Polysaccharide and exopolysaccharide	Yu et al. (2007, 2009), Xiao et al. (2010), Yan et al. (2010)
10	Chitinase	Lee and Min (2003)
11	Macrolides (C_{10}H_{14}O_{4})	Rukachaisirikul et al. (2004)
12	Cisadapeptins and myriocin	Krasnoff et al. (2005)
13	Superoxide dismutase	Wanga et al. (2005)
14	Protease	Hattori et al. (2005)
15	Naphthaquinone	Unagul et al. (2005)
16	Cordyheptapeptide	Rukachaisirikul et al. (2006)
17	Dipicolinic acid	Watanabe et al. (2006)
18	Fibrynotylcical enzyme	Kim et al. (2006)
19	Lectin	Jung et al. (2007)
20	Cordymin	Wonga et al. (2011)
the glycolytic pathway, which catalyses the phosphorylation of glyceraldehyde-3-phosphate to form 1, 3-diphosphoglycerate, an important reaction to maintain life activities in a cell for the generation of ATP (Gong et al. 2005). Further studies could be directed toward improving Cordyceps sp. by developing an effective transformation system.

Pharmaceutical and therapeutic potential of Cordyceps sp.

Cordyceps species is also known as traditional Chinese medicine (TCM) as it has wide applications in pharmaceutical (Table 2) and health sector (Ng and Wang 2005; Russell and Paterson 2008). This medicinal mushroom was in the limelight during the Chinese National Games in 1993, when a group of women athletes broke nine world records, committed that they had been taking Cordyceps regularly. It has been seen previously reported that Cordyceps also enhances physical stamina making it very useful for the elderly people and athletes. Recent literature further confirms that Cordyceps enhances cellular energy in the form of ATP (adenosine tri-phosphate). Upon hydrolysis of phosphates from ATP, lots of energy is released which is further used by the cell (Dai et al. 2001; Siu et al. 2004). The studies by many researchers in the past on Cordyceps have demonstrated that it has anti-bacterial, anti-fungal, larvicidal, anti-inflammatory, anti-diabetic, anti-oxidant, anti-tumor, pro-sexual, apoptotic, immunomodulatory, anti-HIV and many more activities (Table 2).

Cordyceps has a long history of use as a lung and kidney tonic, and for the treatment of chronic bronchitis, asthma, tuberculosis and other diseases of the respiratory system. The cardiovascular effects of *Cordyceps* are being noticed more frequently by researchers as it works through variety of possible ways either by lowering high blood pressure via direct dilatory effects or mediated through M-cholinergic receptors resulting in improvement in the coronary and cerebral blood circulation (Zhu et al. 1998b). Thus, *Cordyceps* has implications at the therapeutic level as well by rectifying the abnormalities in rhythmic contractions (also known as cardiac arrhythmia). *Cordyceps* extract has also been found as a promising source to increase cardiac output up to 60 % in augmentation with conventional treatment of chronic heart failure (Chen 1995). The product from wild type and cultured *Cordyceps* has also been shown to significantly decrease blood viscosity and fibrinogen levels preventing myocardial infarction (Zhu et al. 1998b). Another study showed that the fermentation products of Cs-4 reduce myocardial oxygen consumption in animals under experimental lab conditions revealing dramatic anti-anoxic effects (Zhu et al. 1998a). These studies provide strong evidence that Cs-4 and its fermentative solution prevent platelet aggregation stimulated by collagen or adenosine di-phosphate (ADP). An intravenous injection of concentrated *Cordyceps* extract (90 μg/kg per min, i.v.) resulted in 51–71 % reduction in 51Cr-labeled platelet aggregation in the endothelial abdominal aorta in rabbit (Zhu et al. 1998b).

Toxicological and dosage related studies of Cordyceps

Cordyceps is one of the best medicinal fungi known for numerous positive aspects in terms of pharmacological effects and considered to be safe. Some reports are published on its adverse gastrointestinal behaviors like dry mouth, nausea and diarrhea (Zhou et al. 1998). In some patients, allergic response has been seen during treatment with a strain of Cordyceps, i.e., CS-4 (Xu 1994). Patients, who suffer from autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus and multiple sclerosis, are generally suggested to avoid its use. Reports are still lacking on pregnant and lactating women but some animal studies in mice have revealed that Cordyceps have effects on plasma testosterone levels (Huang et al. 2004; Wong et al. 2007). There has been couple of reports on lead poisoning in patients taking Cordyceps herbal medicine for treatment. The lead content in the Cordyceps powder in these cases was significantly high (20,000 ppm) (Wu et al. 1996). However, the blood lead levels returned to normal upon termination of the product consumption.

Besides few negatively published data, *Cordyceps* is relatively considered to be a non-toxic medicinal mushroom. *Cordyceps* dose in patients suffering from long-term renal failure was demonstrated up to 3–6 g/day (Zhu et al. 1998b). In clinical studies involving lung cancer, chemotherapy was carried out with the combination of *Cordyceps* (Holliday and Cleaver 2008). In another clinical trial, results of *Cordyceps* (3.15 g for 5 weeks) were compared with placebo to evaluate its effects on physical performance (Parcell et al. 2004). In general, researchers demonstrated that 3–4.5 g of *Cordyceps*/day is sufficient except in patients suffering from severe liver disease (Mizuno 1999). However, no human toxicity report was found and even animal models were failed to determine median lethal dose. *Cordyceps* dosage up to 80 g/kg body weight/day for 7 days was injected intraperitoneally in mice and even then it did not cause any fatality (Li et al. 2006). In another study, rabbits fed through mouth for 3 months at a dose of 10 g/kg/day did not show any deviancy in blood reports, or in kidney, liver functioning (Huang et al. 1987). Even water extract of *Cordyceps sinensis* was found to be non-toxic on macrophage cells line RAW264.7 proliferation...
Pharmacological effect	Active content of *Cordyceps*	Animal/tissue studied	Active dose	Experimental time period	References
Anti-angiogenic	Cordyceps militaris Extract (CME)	HUVECs	100–200 mg/L	After 3–6 h	Yoo et al. (2004)
Anti-tumor/anti-proliferatory	Cordyceps militaris protein (CMP)	MCF-7 (breast cancer), 5637 (bladder cancer) and A-549 (lung cancer)	15 μM	72 h	Park et al. (2009a, b, c)
	Aqueous extract of *C. militaris*	Nude mice with NCI-H460 cell	At 150 and 300 mg/kg/day	4 weeks	Park et al. (2009a, b, c)
	BuOH extracts of *C. militaris* grown on germinated soybean (GSC)	HT-29 human colon cancer	100 μg/ml	48 h	Mollah et al. 2012
	Cordycepin	Mice	150 mg/kg body weight	7 days	Jagger et al. (1961)
		5637 and T-24 (bladder cancer) KB and HSC3 (oral squamous cell carcinoma)	200 μm	24 h	Lee et al. (2011a, b)
Anti metastasis	WE of *C. sinensis*	LLC and B16 cells	100 mg/kg in LLC, 100 or 200 mg/kg in B16	20 and 26 days	Nakamura et al. (1999)
Induce apoptosis	etOAc extract of *C. sinensis*	HL-60 cells	EDS50 ≤25 μg/ml	2 days	Zhang et al. (2004)
	Aqueous extract of *C. militaris*	MDA-MB-231	0.8 mg/ml	24 h	Jin et al. (2008)
	Paecilomyces hepiali (derivative of *C. sinensis*) extract	A549	2–4 mg/ml	48–72 h	Thakur et al. (2011)
	Water extract of *C. militaris*	A549	2 μg/ml	48 h	Park et al. (2009a, b, c)
	Cordycepin	MA-10	100 μM to 5 mM	24 h	Jen et al. (2008)
		SW480 & SW620	2 and 0.72 mmol/L, respectively	72 h	He et al. (2010)
		MDA-MB-231	100 μM	24 h	Choi et al. (2011)
		U937 and THP-1	30 μg/ml	24 h	Jeong et al. (2011)
		SK-NBE(2)-C and SK-Mel-2 (HTB-68)	120 and 80 μM, respectively	24 h	Baik et al. (2012)
Anti fatigue	Polysaccharide	Mice	200 mg/kg	For 21 days	Li and Li (2009)
Anti malaria	Cordycepin	Erythrocytic stages of *P. knowlesi* (in vitro) and *P. berghei* (in vivo)	In vitro 106 M and in vivo 50 mg/kg	In vitro 4 h	Trigg et al. (1971)
Anti fungal	Cordycepin	Murine Model	1.5 mg/kg/day	30 days	Sugar and McCaffrey (1998)
Hypolipidemic	Exo polysaccharide	Rats	50–100 mg/kg	2 weeks	Yang et al. (2000)
Increase hepatic energy	*Cordyceps sinensis* Extract	Mice	200 mg/kg/daily	4 weeks	Manabe et al. (2000)
metabolism and blood flow					
Pharmacological effect	Active content of *Cordyceps*	Animal/tissue studied	Active dose	Experimental time period	References
--------------------------------------	--	---	-------------	--------------------------	-----------------------------
Immunomodulatory	Polysaccharide from *C. sinensis*	Human peripheral blood	0.025–0.1 mg	–	Kuo et al. (2007)
Anti inflammatory	Purified Cordycep from *C. militaris*	Mouse splenocytes	5 µg/ml	72 h	Ho et al. (2012)
	C. militaris water extract	Murine macrophage	1.250 µg/ml	24 h	Jo et al. (2010)
	Constituents isolated from *C. militaris*	LPS/IFN-γ stimulated Macrophage cells	Ranging from 6.3 to 20 µg/ml	24 h	Rao et al. (2010)
Anti Diabetic/Hypoglycemic	*C. militaris* extract reduce oxidative stress, induced by high glucose concentration	HUVECs	25 µg/ml	12–36 h	Chu et al. (2011)
	Fractions of *C. militaris* as CMESS and Cordycepin	Mice	50 and 0.2 mg/kg, respectively	7 days	Yun et al. (2003)
	Crude extract and polysaccharide rich fraction	Rat	10 mg/kg of polysaccharide and 100 mg/kg body weight of crude extract	4 days	Zhang et al. (2006)
Spermatogenic	CM mycelium powder	Sub fertile boars	10 g/boar	2 months	Lin and Tsai (2007)
Steroidogenesis	CS	Normal mouse Leydig cells	3 mg/ml	2–3 h	Huang et al. (2001)
	Cordycepin	MA-10 mouse Leydig tumor cells	100 µM	24 h	Pan et al. (2011)
Anti-aging	CSE	Mice	2.0, 4.0 g/kg	6 weeks	Ji et al. (2009)
	Cordycepin	Human dermal fibroblasts	50–100 µM	24 h	Lee et al. 2009a, 2009b
Anti-fibrotic	EPC from *C. militaris*	Rats	30 mg/kg/day	4 weeks	Nan et al. (2001)
Cardiovascular effects	Cs-4	Isolated aorta	50 µg/ml	1–15 min	Zhu et al. (1999b)
Relax aorta		Dogs	60 mg/kg		
Lower blood pressure		Dogs	0.425 g/kg		
Increase coronary blood flow		Dogs	0.425 g/kg		
Lower heart rate		Dogs	0.25–0.5 g/kg		
Against arrhythmia		Rabbits	150 mg/kg		
Against myocardial ischemia		Platelet	2–4 mg/ml		
Against platelet aggregation		Rabbits	30 µg/kg/min		
Against thrombosis	*Cordyceps* Powder	LN Patients	2–4 g/day cordyceps powder, and artemisin 0.6 g/day	3 years and observed consecutively for 5 years	Lu (2002)
Renal protection		LACA Mouse, in vivo and vitro	>150 mg/kg (vivo) 150–200 µg/ml (vitro)	5 consecutive daily treatment	Li et al. (1993)
Erythropoiesis	*Cordyceps sinensis* crystal (CS-Cr)				
Future perspective

Cordyceps is a natural medicinal mushroom which is well liked by people nowadays as they believe more in natural therapy than chemotherapy because of lesser side effects. Growth characteristics of Cordyceps militaris have to be studied in-depth to cultivate this mushroom for its mass-scale production so that one could collect enough bio-metabolites from its mycelium extract. There is a strong urge to use interdisciplinary biotechnological and chemical tools to isolate and enhance the bioactivity of the metabolites from this entomopathogenic fungus. The structure of Cordycepin suggests that it has five N and three O atoms which one can imagine could form transition metal complexes in the form of di-, tri- and tetra-dentate ligands as metals can accommodate donor atom’s lone pair of electrons into their empty d orbital (Fig. 5). Complexity of the resulting compound and its molecular mass can be predicted with the help of spectroscopic tools like IR and mass spectroscopy, respectively, which can further improve the bioactivity of the compounds.

The remaining pharmacologically active compounds apart from Cordycepin also need to be identified and elucidate their structure–function relationship.

Conclusions

The usage of natural/herbal medicines over the synthetic ones has seen an upward trend in the recent past. Cordyceps being an ancient medicinal mushroom used as a crude drug for the welfare of mankind in old civilization is now a matter of great concern because of its unexplored potentials obtained by various culture techniques and being an excellent source of bioactive metabolites with more than 21 clinically approved benefits on human health including anti-diabetic, anti-tumor, anti-oxidative, immunomodulatory, sexual potentiator and anti-ageing effects (Das et al. 2010b). Cordycepin alone has been widely explored for its anti-cancer/anti-oxidant activities, thus, holding a strong pharmacological and therapeutic potential to cure many dreadful diseases in future. Further investigations need to be focused on to study the mechanistic insight into the mysterious potential of this medicinal mushroom on human health and promoting its cultivation strategies for commercialization and ethno-pharmacological use of this wonderful herb.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Ali S, Ren S, Huang Z, Wu J (2010) Purification of enzymes related to host penetration and pathogenesis from entomopathogenic fungi. In: Mendez-Vilas A (ed) Current Research, Technology and Education Topics in Applied Microbiology and Microbial Biotechnology, Formatex Research Center, Spain, pp 15–22
Baik JS, Kwon HY, Kim KS, Jeong YK, Cho YS, Lee YC (2012) Cordycepin induces apoptosis in human neuroblastoma SK-N-BC(2)-C and melanoma SK-MEL-2 cells. Indian J Biochem Biophys 49:86–91
Borchers AT, Keen CL, Gershwin ME (2004) Mushroom, tumor, and immunity: an update. Exp Biol Med 229:393–406
Chatterjee R, Srinivasan KS, Maiti PC (1957) Cordyceps sinensis (Berkeley) saccardo: structure of cordycepic acid. J Am Pharm Assoc 46:114–122
Chen DG (1995) Effects of JinShuiBao capsule on the quality of life of patients with heart failure. J Admin Tradit Chin Med 5:40–43
Chen LS, Stellrecht CM, Gandhi V (2008) RNA-directed agent, cordycepin, induces cell death in multiple myeloma cells. Brit J Haematol 140:391–682
Choi S, Lim MH, Kim KM, Jeon BH, Song Wo, Kim TW (2011) Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of estrogen receptor. Toxicol Appl Pharmacol 257:165–173
Chu HL, Chien JC, Duh PD (2011) Protective effect of Cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Food Chem 129:871–876
Cunningham KG, Manson W, Spring FS, Hutchinson SA (1950) Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (L.) Link. Nature 166:949–954
Dai G, Bao T, Xu C, Cooper R, Zhu JX (2001) CordyMax™ Cs-4 improves steady-state bioenergy status in mouse liver. J Altern Complement Med 7:231–240
Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2008) A new approach for improving cordycepin productivity in surface liquid culture of Cordyceps militaris using high-energy ion beam irradiation. Lett Appl Microbiol 47:534–538
Das SK, Masuda M, Hatashita M, Sakurai A, Sakakibara M (2010a) Effect of inoculation on production of anti-cancer...
drug-cordycepin in surface liquid culture using *Cordyceps militaris* mutant: a minor factor may greatly affect the result. Indian J Biotechnol 9:427–430

Das SK, Masuda M, Sakurai A, Sakakibara M (2010b) Medicinal uses of the mushroom *Cordyceps militaris*: current state and prospects. Fitoterapia 81:961–968

Devkota S (2006) Yarsagumba [Cordyceps sinensis (Berk.) Sacc.]; traditional utilization in Dolpa district, western Nepal. Our Nat 4:48–55

Gong Z, Fu Y, Huang L, Lin J, Tang K, Zhou X (2009) Cloning and analysis of glyceraldehyde-3-phosphate dehydrogenase gene from *Cordyceps militaris*. Afr J Agric Res 4:402–408

Gu YY, Wang ZS, Li SX (2007) Effect of multiple factors on accumulation of nucleosides and bases in *Cordyceps militaris*. Food Chem 102:1304–1309

Guo C, Zhu J, Zhang C, Zhang L (1998) Determination of adenosine and 3’-deoxyadenosine in *Cordyceps militaris* (L.) Link by HPLC. Chin J Chinese Material Medica 23:236–243

Hajek AE, Leger RJS (1994) Interactions between fungal pathogens and insects hosts. Annu Rev Entomol 39:293–322

Hattori M, Isomura S, Yokoyama U, Uijita M, Hara A (2005) Extracellular trypsin-like protease produced by *Cordyceps militaris*. J Biosci Bioeng 100:631–636

He W, Zhang MF, Ye J, Jiang TT, Fang X, Song Y (2010) Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 apoptotic molecules. J Zhejiang Univ Sci B 11:654–660

Ho JM, Seo MJ, Park JU, Kang BW, Kim KS, Lee JY, Kim SY, Jo WS, Choi YJ, Kim HJ, Lee JD, Lee SW, Seo SY, Jeong MH (2010) The anti-inflammatory effects of water extract from *Cordyceps militaris* in murine macrophage. Mycology 38:46–51

Jung EC, Kim KD, Bai CH, Kim JC, Kim DK, Kim HH (2007) A mushroom lectin from ascomyce *Cordyceps militaris*. BBA-Gen Subj 1770:833–841

Kawaguchi N, Ohmori T, Takeda Y, Kawamishii G, Katayama S, Yamada H (1986) Occurrence of Gal beta (1–3) GalNAc-Ser/Thr in the linkage region of polysaccharas containing fungal glycoprotein from *Cordyceps ophioglossoides*. Biochem Biophys Res Commun 140:350–356

Kim JS, Sakupota K, Park SE, Choi BS, Kim S, Nguyen TH, Kim CS, Choi HS, Kim MK, Chun HS, Park Y, Kim SJ (2006) A fibrinolytic enzyme from the medicinal mushroom *Cordyceps militaris*. J Microbiol Biotechnol 44:622–631

Klenow H (1963) Formation of the mono-, di- and triphosphate of Klenow H (1963) Formation of the mono-, di- and triphosphate of *Cordyceps militaris* mutant: a minor factor may greatly affect the result. Indian J Biotechnol 9:427–430

Das SK, Masuda M, Sakurai A, Sakakibara M (2010b) Medicinal uses of the mushroom *Cordyceps militaris*: current state and prospects. Fitoterapia 81:961–968

Devkota S (2006) Yarsagumba [Cordyceps sinensis (Berk.) Sacc.]; traditional utilization in Dolpa district, western Nepal. Our Nat 4:48–55

Gong Z, Fu Y, Huang L, Lin J, Tang K, Zhou X (2009) Cloning and analysis of glyceraldehyde-3-phosphate dehydrogenase gene from *Cordyceps militaris*. Afr J Agric Res 4:402–408

Gu YY, Wang ZS, Li SX (2007) Effect of multiple factors on accumulation of nucleosides and bases in *Cordyceps militaris*. Food Chem 102:1304–1309

Guo C, Zhu J, Zhang C, Zhang L (1998) Determination of adenosine and 3’-deoxyadenosine in *Cordyceps militaris* (L.) Link by HPLC. Chin J Chinese Material Medica 23:236–243

Hajek AE, Leger RJS (1994) Interactions between fungal pathogens and insects hosts. Annu Rev Entomol 39:293–322

Hattori M, Isomura S, Yokoyama U, Uijita M, Hara A (2005) Extracellular trypsin-like protease produced by *Cordyceps militaris*. J Biosci Bioeng 100:631–636

He W, Zhang MF, Ye J, Jiang TT, Fang X, Song Y (2010) Cordycepin induces apoptosis by enhancing JNK and p38 kinase activity and increasing the protein expression of Bcl-2 apoptotic molecules. J Zhejiang Univ Sci B 11:654–660

Ho JM, Seo MJ, Park JU, Kang BW, Kim KS, Lee JY, Kim SY, Jo WS, Choi YJ, Kim HJ, Lee JD, Lee SW, Seo SY, Jeong MH (2010) The anti-inflammatory effects of water extract from *Cordyceps militaris* in murine macrophage. Mycology 38:46–51

Jung EC, Kim KD, Bai CH, Kim JC, Kim DK, Kim HH (2007) A mushroom lectin from ascomyce *Cordyceps militaris*. BBA-Gen Subj 1770:833–841

Kawaguchi N, Ohmori T, Takeda Y, Kawamishii G, Katayama S, Yamada H (1986) Occurrence of Gal beta (1–3) GalNAc-Ser/Thr in the linkage region of polysaccharas containing fungal glycoprotein from *Cordyceps ophioglossoides*. Biochem Biophys Res Commun 140:350–356

Kim JS, Sakupota K, Park SE, Choi BS, Kim S, Nguyen TH, Kim CS, Choi HS, Kim MK, Chun HS, Park Y, Kim SJ (2006) A fibrinolytic enzyme from the medicinal mushroom *Cordyceps militaris*. J Microbiol Biotechnol 44:622–631

Klenow H (1963) Formation of the mono-, di- and triphosphate of cordycepin in Ehrlich ascites-tumor cells in vitro. Biochim Biophys Acta 76:347–353

Krasnoff SB, Reategui RF, Wagenaar MM, Gloor JB, Gibson DM (2005) Cicadapetins I and II: new Aib-containing peptides from the entomopathogenic fungus *Cordyceps heteropoda*. J Nat Prod 68:50–55

Kuo MC, Chang CY, Cheng TL, Wu MJ (2007) Immunomodulatory effect of exo-polysaccharides from submerged cultured *Cordyceps sinensis*: enhancement of cytokine synthesis, CD11b expression, and phagocytosis. Appl Microbiol Biotechnol 75:769–775

Lee KH, Min TJ (2003) Purification and characterization of a chitinase in culture media of *Cordyceps militaris* (L.) Link. Korean J Med Mycol 31:168–174

Lee SJ, Kim SK, Choi WS, Kim WJ, Moon SK (2009a) Cordycepin causes p21WAF1/mediated G2/M cell-cycle arrest by regulating c-Jun N-terminal kinase activation in human bladder cancer cells. Arch Biochem Biophys 490:103–109

Lee YK, Noh EM, Jeong EY, Yun SK, Jeong YJ, Kim YJ, Kwon KB, Kim BS, Lee SH, Park CS, Kim JS (2009b) Cordycepin inhibits UBV-induced matrix metalloproteinase expression by suppressing the NF-kB pathway in human dermal fibroblasts. Exp Mol Med 41:548–554

Lee EJ, Kim WJ, Moon SW (2010) Cordycepin suppresses TNF-alpha-induced invasion, migration and matrix metalloproteinase-9 expression in human bladder cancer cells. Phytother Res 24:1755–1761

Lee B, Park J, Park J, Shin HJ, Kwon S, Yeom M, Sur B, Kim S, Kim M, Lee H, Yoon SH, Hahm DH (2011a) *Cordyceps militaris* improves neurite outgrowth in neuro2A cells and reverses memory impairment in rats. Food Sci Biotechnol 20:1599–1608
Lee JH, Hong SM, Yun JY, Myoung H, Kim MJ (2011b) Anti-cancer effects of cordycepin on oral squamous cell carcinoma proliferation and apoptosis in vitro. J Cancer Ther 2:224–234

Leger RJS, Bidochka MJ, Staples RC (1991) Preparation events during infection of host cuticle by Metarhizium anisopliae. J Invertebr Pathol 58:168–179

Li T, Li W (2009) Impact of polysaccharides from Cordyceps on antifatigue in mice. Sci Res Essays 4:705–709

Li Y, Chen GZ, Jiang DZ (1993) Effect of Cordyceps sinensis on erythropoiesis in mouse bone marrow. Chinese Med J 106:313–316

Li SP, Yang FQ, Tsim KW (2006) Quality control of Cordyceps sinensis, a valued traditional Chinese medicine. J Pharm Biomed Anal 41:1571–1584

Li S, Li P, Ji H (2011) RP-HPLC determination of ergosterol in natural and cultured Cordyceps. Chin J Mod Appl Pharm 18:297–299

Lin WH, Tsai MT (2007) Improvement of sperm production in subfertile Boars by Cordyceps militaris supplement. Am J Chin Med 35:631–641

Lindequist U, Niedermeyer TH, Julich WD (2005) The pharmacological potential of mushrooms. Evid Based Complement Alternat Med 2:285–299

Lu L (2002) Study on effect of Cordyceps sinensis and artemisinin in preventing recurrence of lupus nephritis. Chin J Integr Med 22:169–171

Mains EB (1958) North American entomogenous species of Cordyceps. Mycologia 50:169–222

Manabe N, Azuma Y, Sugimoto M, Uchio K, Miyamoto M, Taketomo N, Tsuchita H, Miyamoto H (2000) Effects of the mycelial extract of cultured Cordyceps sinensis on in vivo hepatic energy metabolism and blood flow in dietary hypoferric anaemic mice. Br J Nutr 83:197–204

Masuda M, Urabe E, Sakurai A, Sakakibara M (2006) Production of cordycepin by surface culture using the medicinal mushroom Cordyceps militaris. Enzyme Microb Tech 39:641–646

Mizuha Y, Yamamoto H, Sato T, Tsuji M, Masuda M, Uchida M, Sakai K, Takehata Y, Yasutomo K, Sasaki H, Takeda E (2007) The inhibition of phosphoribosylpyrophosphate amidotransferase activity by cordycepin mono—adenosine (cordycepin). Antimicrob Agents Chemother 47:1667–1675

Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2:1–15

Rao YK, Fang SH, Wu WS, Tseng YM (2010) Constituents isolated from Cordyceps militaris suppress enhanced inflammatory mediator’s production and human cancer cell proliferation. J Ethnopharmacol 131:363–367

Rottman F, Guarino AJ (1964) The inhibition of phosphoribosylpyrophosphate amidotransferase activity by cordycepin mono phosphate. Biochim Biophys Acta 89:465–472

Rukachaisirikul V, Pramjit S, Pakawatchai C, Isaka M, Supothina S (2004) 10-membered macrolides from the insect pathogenic fungus Cordyceps militaris. J Nat Prod 67:1953–1956

Sakai K, Taketani Y, Yasutomo K, Sasaki H, Takeda E (2007) Antifatigue in mice. Sci Res Essays 4:705–709

Singh N, Pathak R, Singh AK, Rautela D, Dubey A (2010) Collection and characterization of one new record of Xylaria species from Ginseng Camp, Maliau Basin, Sabah, Malaysia. Int J Med Mushrooms 12:1–7

Muslim N, Rahman H (2010) A possible new record of Cordyceps species from Ginseng Camp, Maliau Basin, Sabah, Malaysia. JTBCC 6:39–41

Nakamura K, Yamaguchi Y, Kagota S, Kwon YM, Shinozuka K, Kunitomo M (1999) Inhibitory effects of Cordyceps sinensis on spontaneous liver metastasis of Lewis lung carcinoma and B16 melanoma cells in syngeneic mice. Jpn J Pharmacol 79:335–341

Nan JX, Park EJ, Yang BK, Song CH, Ko G, Sohn DH (2009a) Anti-fungal and -cancer activities of a protein from the mushroom Cordyceps militaris. Korean J Physiol Pharmacol 13:49–54

Park SE, Kim J, Lee YW, Yoo HS, Cho CK (2009b) Antitumor activity of water extracts from Cordyceps militaris in NCI-H460 cell xenografted nude mice. J Acupunct Meridian Stud 2:294–300

Park SE, Yoo HS, Jin CY, Hong SH, Lee YW, Kim BW, Lee SH, Kim WJ, Cho CK, Choi YH (2009c) Induction of apoptosis and inhibition of telomererase activity in human lung cancer cells by the water extract of Cordyceps militaris. Food Chem Toxicol 47:1667–1675

Patel S, Goyal A (2012) Recent developments in mushrooms as anti-cancer therapeutics: a review. 3 Biotech 2:1–15

Sharma S (2004) Trade of Cordyceps sinensis from high altitudes of the Indian Himalaya: conservation and biotechnological priorities. J Curr Sci 86:1614–1619

Shrestha B, Sung JM (2005) Notes on Cordyceps species collected from the central region of Nepal. Mycobiology 33:235–239

Singh N, Pathak R, Singh AK, Rautela D, Dubey A (2010) Collection of Cordyceps sinensis (Berk.) Sacc. in the interior villages of Chamoli district in Garhwal Himalaya (Uttarakhand) and its social impacts. J Am Sci 6:5–9

Siu KM, Poon KTM, Mak HFD, Chiu PY, Poon Y, Ko KM (2004) Pharmacological basis of ‘Yin-nourishing’ and ‘Yang-invigorating’ actions of Cordyceps, a Chinese tonifying herb. Life Sci 76:385–395

Sugar AM, Mccaffrey RP (1998) Antifungal activity of 3'-deoxyadenosine (cordycepin). Antimicrob Agents Chemother 42:1424–1427

Ni H, Zhou XH, Li HH, Huang WF (2009) Column chromatographic extraction and preparation of cordycepin from Cordyceps militaris water medium. J Chromatogr B 877:2135–2141

Overgaard KH (1964) The inhibition of 5-phosphoribosyl-1-pyrophosphate formation by Cordyceps triphosphate in extracts of Ehrlich ascites tumor cells. Biochim Biophys Acta 80:504–507
Thakur A, Hui R, Hongyan Z, Tian Y, Tianjun C, Mingwei C (2011) Pro-apoptotic effects of Paecilomyces hepalii, a Cordyceps sinensis extract on human lung adenocarcinoma A549 cells in vitro. J Can Res and Ther 7:421–426
Trigg P, Gutteridge WE, Williamson J (1971) The effect of Cordycepin on malarial parasites. T Roy Soc Trop Med H 65:514–520
Ujita M, Katsuno Y, Suzuki K, Sugiyama K, Takeda E, Yokoyama E, Hara A (2006) Molecular cloning and sequence analysis of the beta-1,3-glucan synthase catalytic subunit gene from a medicinal fungus, Cordyceps militaris. Mycoscience 47:98–105
Unagul P, Wongsa P, Kittakop P, Intamans S, Srikittikulchai P, Tanticharoen M (2005) Production of red pigments by the insect pathogenic fungus Cordyceps unilateralis BCC 1869. J Ind Microbiol Biot 32:135–140
Wang L, Zhang WM, Hu B, Chen YQ, Qu LH (2008) Genetic variation of Cordyceps militaris and its allies based on phylogenetic analysis of rDNA ITS sequence data. Fungal Divers 31:147–156
Wang ZM, Peng X, Lee KLD, Tang JCO, Cheung PCK, Wu JY (2011) Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1. Food Chem 125:637–643
Wanga Z, Heb Z, Lib S, Yuanb Q (2005) Purification and partial characterization of Cu, Zn containing superoxide dismutase from entomogenous fungal species Cordyceps militaris. Enzyme Microb Tech 36:862–869
Watanabe N, Hattori M, Yokoyama E, Isomura S, Ujita M, Hara A (2006) Entomogenous fungi that produce 2, 6-pyridine dicarboxylic acid (dipicolinic acid). J Biosci Bioeng 102:365–373
Webster J (1980) Introduction to fungi, 2nd edn. Cambridge University Press, Cambridge, p 355
Winkler D (2008) Yartsa Gunbu (Cordyceps sinensis) and the fungal commodification of the rural economy in Tibet AR. Econ Bot 63:291–305
Winkler D (2010) Cordyceps sinensis—a precious parasitic fungus infecting Tibet. Field Mycol 11:60–67
Wong KL, So EC, Chen CC, Wu RS, Huang BM (2007) Regulation of steroidogenesis by Cordyceps sinensis mycelium extracted fractions with (hCG) treatment in mouse Leydig cells. Arch Androl 53:75–77
Wong YY, Moon A, Duffin R, Barthet-Barateig A, Meijer HA, Clement MJ, Moor CH (2010) Cordycepin inhibits protein synthesis and cell adhesion through effects on signal transduction. J Biol Chem 285:2610–2621
Wonga JH, Nga TB, Wangb H, Szec SCW, Zhange KY, Lid Q, Lue X (2011) Cordymin, an antifungal peptide from the medicinal fungus Cordyceps militaris. Phytomedicine 18:387–392
Wu TN, Yang KC, Wang CM, Lai JS, Ko KN, Chang PY, Liou SH (1996) Lead poisoning caused by contaminated Cordyceps, a Chinese herbal medicine: two case reports. Sci Total Environ 182:193–195
Xiao JH, Xiao DM, Xiong Q, Liang ZQ, Zhong JJ (2010) Nutritional requirements for the hyperproduction of bioactive exopolysaccharides by submerged fermentation of the edible medicinal fungus Cordyceps taii. Biochem Eng J 49:241–249
Xu Y (1994) Drug allergy occurred in a patient after orally taken Cordyceps. J Altern Complem Med 4:289–303
Yang BK, Ha JY, Jeong SC, Das S, Yun JW, Lee YS, Choi JW, Song CH (2000) Production of exo-polymers by submerged mycelial culture of Cordyceps militaris and its hypolipidemic effect. J Microbio Biotecnol 10:784–788
Yang FQ, Feng K, Zhao J, Li SP (2009) Analysis of sterols and fatty acids in natural and cultured Cordyceps by one-step derivatization followed with gas chromatography mass spectrometry. J Pharm Biomed Anal 49:1172–1178
Yang FQ, Li DQ, Feng K, Hu DJ, Li SP (2010) Determination of nucleotides, nucleosides and their transformation products in Cordyceps by ion-pairing-reversed-phase liquid chromatography-mass spectrometry. J Chromatogr A 1217:5501–5510
Ye MQ, Hu Z, Fan Y, He L, Xia FB, Zou GL (2004) Purification and characterization of an acid deoxyribonuclease from the cultured mycelia of Cordyceps sinensis. J Biochem Mol Biol 37:466–473
Yoo HS, Shin JW, Cho JH, Son CG, Lee YW, Park SY, Cho CK (2004) Effects of Cordyceps militaris extract on angiogenesis and tumor growth. Acta Pharm Sinic 25:657–665
Yu RM, Yang W, Song LY, Yan CY, Zhang Z, Zhao Y (2007) Structural characterization and antioxidant activity of a polysaccharide from the fruits bodies of cultured Cordyceps militaris. Carbohydr Polym 70:430–436
Yu R, Yin Y, Yang W, Ma W, Yang L, Chen X, Zhang Z, Ye B, Song L (2009) Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris. Carbohydr Polym 75:166–171
Yuan JP, Wang JH, Liu X, Kuang HC, Zhao SH (2007) Simultaneous determination of free ergosterol and ergosterol esters in Cordyceps sinensis by HPLC. Food Chem 105:1755–1759
Yue K, Ye M, Zhou Z, Sun W, Lin X (2012) The genus Cordyceps: a chemical and pharmacological review. J Pharm Pharmacol. doi: 10.1111/j.2042-7158.2012.01601.x
Yun Y, Han S, Lee S, Ko S, Lee C, Ha N, Kim K (2003) Anti-diabetic effects of CCCA, CMESS, and cordycepin from Cordyceps militaris and the immune responses in streptozotocin-induced diabetic mice. Nat Prod Sci 9:291–298
Zaidman BZ, Yassin M, Mahajna J, Wasser SP (2005) Medicinal mushroom modulators of molecular targets as cancer therapeutics. Appl Microbiol Biotechnol 67:453–468
Zhang Q, Wu J, Hu Z, Zhang D (2004) Induction of HL-60 apoptosis by ethyl acetate extract of Cordyceps sinensis fungal mycelium. Life Sci 75:2911–2919
Zhang G, Huang Y, Bian Y, Wong JH, Ng TB, Wang H (2006) Hypoglycemic activity of the fungi Cordyceps militaris, Cordyceps sinensis, Tricholoma mongolicum, and Omphalia lapidescens in streptozotocin-induced diabetic rats. Appl Microbiol Biotecnol 72:1152–1158
Zhang Y, Liu X, Wang M (2008) Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Res Microbiol 159:462–471
Zhang XL, Cheng LB, Assaf SA, Phillips GO, Phillips AO (2012) Cordyceps sinensis decreases TGF-b1 dependent epithelial to mesenchymal transdifferentiation and attenuates renal fibrosis. Food Hydrocolloids 28:200–212
Zhou HS, Halpern G, Jones K (1998) The scientific rediscovery of an ancient Chinese herbal medicine: cordyceps sinensis. J Altern Complem Med 4:429–457
Zhou X, Luo L, Dressel W, Shadler G, Krumbiegel D, Schmidtke P, Zepp F, Meyer CU (2008) Cordycepin is an immunoregulatory active ingredient of Cordyceps sinensis. Am J Chin Med 36:967–980
Zhou X, Gong Z, Su Y, Lin J, Tang K (2009) Cordyceps fungi: natural products, pharmacological functions and developmental products. J Pharm Pharmacol 61:279–291
Zhu JS, Halpern GM, Jones K (1998a) The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J Altern Complem Med 4:289–303
Zhu JS, Halpern GM, Jones K (1998b) The scientific rediscovery of a precious ancient Chinese herbal regimen: Cordyceps sinensis: part II. J Altern Complem Med 4:429–457