Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum

Kun Huang1,2,3,*, Hong Liu2,*, Sara Restuccia4,*, Muhammad Q Mehmood5, Sheng-Tao Mei1,6, Daniel Giovannini7, Aaron Danner1, Miles J Padgett4, Jing-Hua Teng2 and Cheng-Wei Qiu1,6,8,9

Quantum entanglements between integer-order and fractional-order orbital angular momentums (OAMs) have been previously discussed. However, the entangled nature of arbitrary rational-order OAM has long been considered a myth due to the absence of an effective strategy for generating arbitrary rational-order OAM beams. Therefore, we report a single metadevice comprising a bilaterally symmetric grating with an aperture, creating optical beams with dynamically controllable OAM values that are continuously varying over a rational range. Due to its encoded spiniform phase, this novel metagrating enables the production of an average OAM that can be increased without a theoretical limit by embracing distributed singularities, which differs significantly from the classic method of stacking phase singularities using fork gratings. This new method makes it possible to probe the unexplored niche of quantum entanglement between arbitrarily defined OAMs in light, which could lead to the complex manipulation of microparticles, high-dimensional quantum entanglement and optical communication. We show that quantum coincidence based on rational-order OAM-superposition states could give rise to low cross-talks between two different states that have no significant overlap in their spiral spectra. Additionally, future applications in quantum communication and optical micro-manipulation may be found.

Light: Science & Applications (2018) 7, 17156; doi:10.1038/lsa.2017.156; published online 9 March 2018

Keywords: metasurface; nanophotonics; orbital angular momentum; superposition state

INTRODUCTION

Light has many different properties that are described by its electromagnetic nature. One of the most interesting properties of light is its ability to carry orbital angular momentum (OAM), which manifests itself as a helical wavefront with a phase singularity on the beam axis. Since its discovery in 19921, the OAM of light has excited interest because it allows a new degree of freedom and a potentially unbounded number of quantum states for a light beam. The current commonly used technology has resulted in investigations using discrete integer OAMs for applications such as optical trapping and manipulation2–8, photon entanglement9–12, astronomy13, microscopy14,15, remote sensing and detection16,17, optical communications18–20 and even integrated photonics21–30. The rapidly developing exploitation of such diverse areas requires further development of OAM generation technology.

Hitherto, the devices for OAM generation have been primarily concerned with producing integer values of OAM states, even though one can theoretically continuously tune the OAM by changing the topological charges (TCs) of LG and Bessel beams31–33 or tailoring the ellipticity of Ince–Gaussian modes34. An OAM carrying beam has a helical phase eιφ (where ϵ and φ are the winding numbers of the helical phase and angular coordinate, respectively)1, giving rise to an intensity annulus (i.e., doughnut) that is uniform for the integer ϵ, while for fractional ϵ, the intensity annulus is discontinuous with a phase step along ψ = 0. This smoothness leads to a similar influence on the design of the kinoform for generating the diffractive optical component, for example, fork gratings have smoothly varying fringes for integer ϵ and cutoff fringes with a discontinuity along ψ = 0 for fractional ϵ35,36. This distinction makes it fundamentally difficult to transition between integer OAM and fractional OAM in a static device, resulting in poor reconfigurability since different OAM states must be individually addressed by separate devices or phase profiles21–23,27–40. Digital devices such as spatial light modulators (SLMs)41 and digital micromirror devices (DMDs)32 have been used to generate different OAM values. However, their pixel resolution limits lead to spatial phase jumps and account for inaccuracies of fractional OAM (see

1Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore; 2Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634, Singapore; 3Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei 230026, China; 4SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G128QG, UK; 5Information Technology University of the Punjab, Lahore 54000, Pakistan; 6NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore 117456, Singapore; 7The Edward S Rogers Department of Electrical and Computer Engineering, University of Toronto, Toronto M5S 3G4, Canada; 8SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Shenzhen University, Shenzhen 518060, China and 9NUS Suzhou Research Institute (NUSRI), Suzhou 215123, China

*These authors contributed equally to this work.

Correspondence: JH Teng, Email: jh-teng@imre.a-star.edu.sg; CW Qiu, Email: eleqc@nus.edu.sg

Received 12 May 2017; revised 9 November 2017; accepted 9 November 2017; accepted article preview online 16 November 2017

The accepted article preview was available with the details: Light: Science & Applications (2018) 7, e17156; doi: 10.1038/lsa.2017.156.
Section 1 in Supplementary Materials). Therefore, the community has to explore the applications of such digital devices (such as those for quantum entanglement) on the basis of the integer or fractional-order OAMs\(^\text{12,43,44}\).

Furthermore, tunable or continuous OAMs have recently received increasing attention for applications like path-OAM-interfaced quantum entanglement\(^\text{45}\) and optical successive micromanipulation\(^\text{46}\). Attempts have been made to generate tunable OAMs using indirect methods such as, as the weighted superposition of two cross-polarized beams\(^\text{47}\), the interference of two vortices\(^\text{47}\), internal conical diffraction\(^\text{48}\) and optical geometric transformations\(^\text{45,49-51}\). Although these methods offer a new degree of control for the OAM of light, they are intrinsically accompanied by either poor beam quality, very limited tunable ranges or complicated transformations that require optical correction after long-distance propagation. Novel approaches are highly desired for exploring and extending the applications of OAMs in a rational-order manner.

Here, we report a continuous OAM transmitter including bilaterally symmetric gratings with an aperture that produces arbitrary rational-order vortex beams carrying OAMs without any theoretical limit. The transmitter consists of two gratings with a tilting angle, its diameter is placed above the metagratings, and its diameter continues to increase\(^\text{52}\). The simulated intensity profile after a low-pass filter (see Section 2 in the Supplementary Materials) in Figure 1c, removing the phase jump along the \(y\)-axis. Due to its linear \(y\)-dependence, a phase difference between both sides occurs periodically along the interface, leading to phase singularities at equal spacings of the spatial interval \(\tau\). Within one cycle of the \(2\pi\) phase, the number of phase jumps reaches its maximum of \(\pi\) at a phase singularity twice, which means that the phase difference spanning a distance of \(\tau\) along \(y\) is \(\beta\pi\).

As a regulator, the aperture smoothly changes its diameter along the \(y\)-axis of symmetry to precisely control the linear output of phase. To quantify this output, we introduce a dimensionless parameter: the singularity strength \(q\equiv d_y/\tau\). Because the aperture size \(d_y\) can be smoothly tuned, \(q\) smoothly varies its integral and fractional values to realize the continuous generation of optical vortices by a single transmitter. We plot the phase along the circumference of the aperture for different \(q\) values in Figure 1d, showing a phase change of \(2\pi q\), where \(q\) denotes the round of \(q\) and is equal to the number of encircled phase singularities. As expected, our results in Figure 1e reveal that this vortex beam has an average OAM of \(Q\hbar\) (\(\hbar\) is the reduced Planck constant) for a photon with

\[
Q = q = \sin\left(\frac{\pi q}{2}\right)\sin\left(\frac{\pi q}{2}\right)/2
\]

which will be discussed in detail later.

RESULTS AND DISCUSSION

Considering the operating wavelength \((\lambda<\Lambda)\) and fabrication issues, we experimentally applied the following specifications to the sample fabrication: \(\Lambda = 1\ \mu m\), \(\gamma = \tan^{-1}\left(1/(240)\right)\) and, correspondingly, \(\tau = 120\ \mu m\). This transmitter was patterned on a 100-nm thick chromium film deposited on a quartz substrate via electron beam lithography and a dry etching process. To achieve high-fidelity experimental results, the apertures were directly fabricated on transmitters, leaving the individual samples with different \(q\) values. Two groups of specimens with integer \(q = 1-4\) and fraction \(q = 1.1-1.5\) values were fabricated to exemplify the analog generation concept of rational OAMs. The scanning electron microscopy (SEM) images of the fabricated samples are provided in Section 3 of the Supplementary Materials.

Figure 2 shows the simulated and experimental results of the integer group \((q = 1-4)\) at a wavelength of 532 nm. Under the assumption of uniform illumination, the simulated intensity and phase profiles of the light from the first-order diffraction in the Fraunhofer region are shown in Figure 2a. At \(q = 1\), an elliptical transverse profile is formed with a single phase singularity, which splits into a two-lobed shape from \(q = 2\) onwards due to the spatial mismatch of the singularities. As \(q\) increases, the central darkness expands to accommodate more phase singularities, moving the two lobes farther apart. Meanwhile, these two lobes shrink due to gradually weakening diffractions when the aperture continues to increase\(^\text{52}\). The simulated intensity profiles are well validated by the measurements in Figure 2b. Such an intensity profile originates from the interactions between the spiniform phase and operating circular aperture during its paraxial propagation, which
act as low-pass filters in the Fraunhofer region; see Section 4 in the Supplementary Materials.

The optical wavefronts were experimentally revealed in Figure 2c by the interference with a reference Gaussian beam via a Mach–Zehnder interferometer. The dislocated fringes of the plane-wave case and the spiral arms of the spherical-wave case have been revealed in the interferograms. The respective TC is quantified through the number of dislocated fringes for the plane-wave case or through the number of interferograms. The curves denote the phase values for \(q \) (distinguished by the curve colors).

(e) The average OAM (\(Q_M \)) of a photon as a function of \(q \). The fitting curve (solid red line) of the simulated results (black square boxes) exhibits a root mean square error of 0.04, while the experimental results are denoted by greenish asterisks. Inset: Zoom-in of the data between \(q = 1 \) and \(q = 1.5 \).

Figure 1 Mechanism of the analog vortex transmitter. (a) Light obtains a helical wavefront with spatially separated phase singularities (black dots) by passing through four transversely located SPPs. (b) Sketch of the transmitter composed of two inclined (inclination angle of \(\gamma \)) gratings with a period of \(A \) at both sides and a circular aperture of varying diameter (\(d_q \)), which geometrically acts as an excircle (red dashed circles) tangent to the x-axis at a reference point \(O \). (c) Phase profile encoded into the vortex transmitter. \(r \) denotes the spatial distance between two neighboring phase singularities. \(\varphi \) is the angle coordinate of the circular aperture and increases anticlockwise from \(\varphi = 0 \) (negative y-axis) to \(2\pi \). (d) Phase along the circumference (dashed circle in (d)) of the circular aperture for its corresponding \(q \). The phase at \(\varphi + \pi \) is unwrapped by adding \(2\pi \). The curves denote the phase values for \(q \) (distinguished by the curve colors).

To show the connection between our vortex beam and LG beams, we decompose the spiniform phase in Equation (2) in terms of the angular-dependent helical phase

\[
\chi(x,y) = \lim_{M \to \infty} \sum_{m=-M}^{M} a_m e^{-im\phi} \tag{4}
\]

where the coefficient

\[
a_m = \sum_{k=0}^{M-|m|} \frac{|m|!}{k!(|m|+1-k)!} \frac{(-1)^k m!}{2^{|m|+1-k}} \]

denotes the integer part of \((M-|m|)/2\). Equation (4) implies that our vortex beam can be written as a weighted superposition of spiral

\[
\Phi_x(\xi) = \frac{1}{\pi a_0} \int_{-\infty}^{\infty} e^{i\phi(\xi)} e^{-i\phi(\xi_0)} e^{i\pi|\xi_0|} \]

\[
\phi(x,y) = \frac{\pi}{\alpha} \left(1 - \frac{x^2}{\alpha^2} \right) \]

\[
f(x,y) = \frac{1}{\pi a_0} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} \]

\[
\Phi(\xi) = \frac{1}{\pi a_0} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} \]

\[
|\psi(\xi)|^2 = \frac{1}{\pi a_0^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} e^{-i\phi(x_0',y_0')} \]

\[
\Phi(\xi) = \frac{1}{\pi a_0} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} \]

\[
\Phi(\xi) = \frac{1}{\pi a_0} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} \]

\[
|\psi(\xi)|^2 = \frac{1}{\pi a_0^2} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i\phi(x,y)} e^{-i\phi(x_0,y_0)} e^{i\pi|x_0|} e^{-i\phi(x_0',y_0')} \]
modes and possesses the average OAM per photon, which is similar to the Ince–Gaussian modes33 and fractional-order LG modes36.

To quantify its analog effect, the average OAM carried by this vortex beam has been investigated theoretically (see Section 7 in Supplementary Materials) and experimentally in Figure 1e. The experimental amplitude and phase profiles of our vortex beam in the far field could be obtained with the phase retrieval method, as sketched in Supplementary Fig. S7 of the Supplementary Materials. The average OAM (Q in units of ħ) per photon of the vortex beam is evaluated by using Supplementary Equation (S17) of the Supplementary Materials and is finally correlated as a function of q via Equation (3), which is a fit of the simulated results. Due to the coupling of the sine and sinc functions, this result shows nonlinearity within the interval of [0, +2], beyond which quasilinearity governs the relation between Q and q in the rational range. This is distinct from the pure nonlinear relationship of the LG and Bessel beams31–33. Thus,
where \(\mu \) is the intensity and phase profile in a reflective SLM. Change the intensity and phase profile in a rigorous continuous OAM. However, this difference will not

c. Quantum spiral spectrum of the generated vortex beam. (d) Quantum coincidences between a vortex beam with \(q_B \) in the signal beam and that with \(q_B \) in the idler beam. Inset: Line-scan simulated coincidence as a function of \(q_A \) when \(q_B = 0 \). (e) The experimental and simulated width \(w \) as a function of \(q_B \). (f) Quantum coincidences between our vortex beams with discrete \(q_A \) and \(q_B \) (=0, \pm 1, \pm 2, \pm 3). (g) The cross-talk of the quantum coincidences for the different state intervals of 1, 2 and 3.

The average OAM of such a novel vortex beam has been validated as continuously addressable in rational states without any theoretical limit.

Quantum spiral spectrum

In spontaneous parametric downconversion, OAM-entangled photon pairs have the quantum state\(^54,55\)

\[
|\psi\rangle = \sum_{m} C_m |m\rangle_A \otimes |{-m}\rangle_B
\]

where \(C_m \) is the probability amplitude of finding one photon in the signal mode \(|m\rangle_A \) and one photon in the idler mode \(|{-m}\rangle_B \); \(l \) indicates the optical mode that has one photon with a quantized OAM of \(m \) in the signal (idler) arm and \(\langle \varphi | m \rangle = \exp(\imath m \varphi) \).

Since our fabricated vortex transmitter has a largest diameter of 480 µm, it is quite challenging to select our vortex beam by using an additional aperture. Thus, the signal beam in the experimental setup is a vortex beam imaged on SLM1 is imparted with the spiniform phase for generating an OAM eigenstate \(|B(n)\rangle = |n\rangle \). Both resulting beams are separately imaged at the facets of single-mode fibers and are then coupled to avalanche photodiodes for detection. The photodiodes are connected to a coincidence circuit that will allow the recording of the coincidence rate as a function of the states specified by the SLM, thus, by scanning the OAM eigenstate in the idler beam. Thus, one can obtain the coincidence probability

\[
P(q_A, n) = |\langle A(q_A) \otimes B(n) | \psi \rangle|^2 = |C_n q_A|^2
\]

where the superscript “*” indicates the complex conjugate. Equation (6) can also be taken as the quantum spiral spectrum due to the existence of \(C_n \). For a maximum entanglement\(^55\), \(C_n \) is taken as a constant for all the simulations in this paper.

Figure 4c shows the measured and simulated quantum spiral spectra with good agreements. To decrease the experimental error caused by the limited photon flux\(^58-60\), the measured spiral spectrum is calculated using the quantum contrast for each coincidence measurement, which allows us to express our results as a function of
the strength of the quantum correlation. The quantum contrast is defined as the ratio of the recorded coincidence rate to the expected accidental coincidence rate, where the accidental coincidences are calculated by multiplying the time resolution (refer to Ref. 59) of our coincidence counting electronics with the count rates detected by detectors A and B (see Figure 4a)59,60. In Figure 4c, the experimental quantum contrast gets smaller at larger \(qA \) values, which is mainly attributed to the limited quantum spiral bandwidth of the system58 and the increasing noise. As \(qA \) changes in our experiment, the smooth spiral spectrum confirms that the proposed mechanism is valid for manipulating the OAM at the single-photon level.

Quantum coincidence

Quantum coincidence is carried out by generating two vortex beams with \(qA \) and \(qB \) in the signal and idler arms. The vortex beam in the idler arm has an OAM-superposition state \(|B(qB)\rangle = \sum_{n} \lambda^n |n\rangle \). The coincidence rate, as a function of \(qA \) and \(qB \), can be obtained by

\[
P(qA, qB) = \langle A(qA)| \otimes |B(qB)\rangle |\psi\rangle^2 = \sum C_n (\lambda^n)^* (\lambda^n)^* (7)
\]

The experimental coincidence per 4 s is provided in Figure 4d, which is consistent with the simulation results. The diagonal elements with \(qA = -qB \) are nearly uniform for the maximum values from both the simulations and experiments. These results indicate that the total angular momentum is also conserved in the spontaneous parametric downconversion process for the OAM-superposition states, which behaves like the case of the OAM eigenstates6.

The coincidence rates decrease gradually when both the \(qA \) and \(qB \) parameters deviate from \(qA = -qB \). To incorporate this effect, a line-scan simulated coincidence at \(qB = 0 \) is shown with a width of \(w \) (which is evaluated by the full-width at half-maximum) in the inset of Figure 4d. For a given \(qB \), the width \(w \) determines the range of \(qA \) where the coincidence is high. The simulated and experimental widths as functions of \(qB \) are located at \(\sim 0.925 \), see Figure 4e. The significance of this result is twofold. First, the vortex beams with discrete \(q \) values are preferred to avoid the strong cross-talks between two neighboring states. Second, the state interval (i.e., the minimum difference in OAMs between two states) should be larger than 0.925 to decrease the cross-talk.

Figure 4f shows the simulated and experimental coincidences between these discrete states \((qA,B = 0, \pm 1, \pm 2, \pm 3)\) with intervals of 1. Similarly, the maximum coincidence occurs when the diagonal elements obey \(qA = -qB \) as confirmed in both the simulated and experimental results. The coincidence rate of the non-diagonal case stands for the noise and should be suppressed to achieve a low cross-talk. The maximum probability among these non-diagonal cases is 0.0711 (the cross-talk is 10log10(0.0711) = −11.48 dB) in the simulations and 0.1952 (indicating a cross-talk of −7.7 dB) in the experiments. This discrepancy mainly originates from the imperfect generation of our vortex beam caused by SLM pixilation (i.e., the pixel pitch of 15 \(\mu \)m in our SLMs) and the small aperture (0.6 mm in diameter) of the efficient phase of the SLM, which leads to increased noise due to the decreased photon flux used for detection (see Section 8 in the Supplementary Materials). When the state interval is greater, the cross-talk could be further suppressed due to the overlapping of the spiral spectra between two neighboring states becoming smaller. Figure 4g shows that the experimental cross-talks are \(-10.24 \)dB for the interval 2 (with \(qA,B = \pm 1, \pm 3 \)) and \(-10.56 \)dB for the interval 3 (with \(qA,B = 0, \pm 3 \)), which are comparable to the pure-OAM-based communication requirements18,51,61. The experimental and simulated results for intervals 2 and 3 are provided in Section 8 and Supplementary Fig. S9 of the Supplementary Materials.

From the simulated and experimental results, one can find that our vortex beam is able to select the superposition states of OAMs for quantum operations, although this selection is realized by using a phase-type SLM. We have to emphasize that a rigorously continuous generation of rational OAM must refer to the proposed mechanism of our metagratings combined with a smoothly tunable aperture. We also note that two issues should be addressed when carrying out quantum operations using continuous OAMs. First, the total size of the metagratings should be large so that a tunable aperture is available in practice. In this work, the largest diameter of our metagratings is \(\sim 480 \) \(\mu \)m, which is too small for a commonly used aperture. The fabrication of large-scale metagratings can be achieved by using laser direct-writing techniques. Second, the pump laser in the spontaneous parametric downconversion process should be strong enough to enhance the signal-to-noise ratio of the quantum coincidence because the total efficiency of our binary-amplitude gratings has a theoretical value of \(\sim 10\% \).

CONCLUSIONS

We have rigorously demonstrated the concept of continuous OAM. The generating optical element is based on periodic gratings of bilateral symmetry with tunable apertures. In addition, the mechanism tailoring the OAM of light via the number of involved phase singularities provides unique insights for investigating the superposition states of OAMs in quantum physics and singular optics. We have demonstrated the feasibility of realizing quantum coincidence by using the OAM-superposition state, which might benefit quantum physics and technology62–64. Arbitrarily manipulating OAM across rational states makes an attractive method for enriching electron vortex beams65, spiral imaging techniques66,67 and optical continuous manipulation for the effective sorting or selection of microparticles66.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

We thank Prof Michad V Berry, Prof Etienne Brasselet and Prof Liangxiang Chen for their valuable discussions and Dr Yuxuan Ren for his instructive suggestions in the experimental measurements. This research is supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (CRP Award No. NRF-CRP15-2015-03). This work is also supported by the National Research Foundation, Prime Minister’s Office, Singapore, under its Competitive Research Programme (CRP Award No. NRF-CRP15-2015-01). The work is partially supported by the Institute of Materials Research and Engineering (IMRE) and the Agency for Science, Technology and Research (A*STAR) under Grants 1521480031 and 1527000014. SR and MJP acknowledge support from ECR Advance grant (TWISTS). KH thanks the One-hundred-person Project of the Chinese Academy of Sciences for its support.

1 Allen L, Beijersbergen MW, Spreeuw RJC, Woerdman JP. Orbital angular-momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A 1992; 45: 5185–5189.
2 Santamato E, Daino B, Romagnoli M, Settembre M, Shen YR. Collective rotation of molecules driven by the angular momentum of light in a nematic film. Phys Rev Lett 1996; 75: 826–829.
3 He H, Friese MEJ, Heckenberg NR, Rubinsztein-Dunlop H. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys Rev Lett 1995; 75: 826–829.
4 Friese MEJ, Enzer J, Rubinsztein-Dunlop H, Heckenberg NR. Optical angular-momentum transfer to trapped absorbing particles. Phys Rev A 1996; 54: 1593–1596.
