Convolutional Neural Networks for cytoarchitectonic brain mapping at large scale - supplementary material

Christian Schiffer1,2, Hannah Spitzer3, Kai Kiwitz4, Nina Unger4, Konrad Wagstyl5, Alan C. Evans6, Stefan Harmeling7, Katrin Amunts1,4, and Timo Dickscheid1,2

1Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Germany
2Helmholtz AI, Research Centre Jülich, Germany
3Institute of Computational Biology, Helmholtz Zentrum München, Germany
4Cécile & Oscar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Germany
5Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
6Department of Neurology & Neurosurgery, Montréal Neurological Institute (MNI), McGill University, Montréal, Canada
7Institute of Computer Science, Heinrich-Heine-University Düsseldorf, Germany

Screenshots of the web-based interactive mapping tool

Figure 1: Main page of the web-based interactive mapping tool. The tool extends the web-based annotation tool \textit{microdraw}, reusing its rich capabilities for creating and managing annotations. Users can create and save annotations in their user account. Alternatively, an import function can be used to import annotations created using other annotation tools.
Figure 2: *Left:* The web interface enables organization of mapping tasks into projects (e.g. one project per brain area). *Right:* Each project can consist of multiple tasks. One task corresponds to the training of one neural network model.

Figure 3: *Left:* User interface used to associate annotations with a task. Annotations added to a task will be used as training data for neural network training. Filters assist the user in selecting the wanted annotations, and automatic renaming ensures consistent naming. *Right:* User interface to control jobs running on a connected HPC system. Users can submit training jobs or trigger predictions for already trained models. Users can further monitor the status of running jobs or cancel them. Requests to the connected HPC system are relayed through a backend service.
Figure 4: Predictions created by a trained neural network model displayed as overlay within *microdraw*. Predictions associated with a task can be accessed directly through the user interface.

Figure 5: The import function enables automatic import of annotations created using other annotation tools. It further enables users to import predictions created by models of arbitrary tasks as editable annotations into *microdraw*, which allows manual refinement and correction of predictions for later use.
Figure 6: Predictions of a trained model shown in Fig. 4 which were imported as editable annotations into microdraw using the import functionality shown in Fig. 5. Imported predictions can be modified to correct errors, or to be used as input for the training of further models.