Original research

Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography

Sven P R Luijten,1 Lennard Wolff,1 Martijn H C Duvekot,2,3 Pieter-Jan van Doormaal,1 Walid Moudrous,4 Henk Kerkhoff,3 Geert J Lycklama a Nijeholt,5 Reinoud P H Bokkers,6 Lonneke S F Yo,7 Jeannette Hofmeijer,8 Wim H van Zwam,9,9 Adriaan C G M van Es,10 Diederik W J Dippel10,2 Bob Roozenbeek,1,2 Aad van der Lugt,1 on behalf of the MR CLEAN Registry and PRESTO investigators

ABSTRACT

Background Machine learning algorithms hold the potential to contribute to fast and accurate detection of large vessel occlusion (LVO) in patients with suspected acute ischemic stroke. We assessed the diagnostic performance of an automated LVO detection algorithm on CT angiography (CTA).

Methods Data from the MR CLEAN Registry and PRESTO were used including patients with and without LVO. CTA data were analyzed by the algorithm for detection and localization of LVO (intracranial internal carotid artery (ICA)/ICATerminus (ICA-T), M1, or M2). Assessments done by expert neuroradiologists were used as reference. Diagnostic performance was assessed for detection of LVO and per occlusion location by means of sensitivity, specificity, and area under the curve (AUC).

Results We analyzed CTAs of 1110 patients from the MR CLEAN Registry (median age (IQR) 71 years (60–80); 584 men; 1110 with LVO) and of 646 patients from PRESTO (median age (IQR) 73 years (62–82); 358 men; 141 with and 505 without LVO). For detection of LVO, the algorithm yielded a sensitivity of 89% in the MR CLEAN Registry and a sensitivity of 72%, specificity of 78%, and AUC of 0.75 in PRESTO. Sensitivity per occlusion location was 88% for ICA/ICAT, 94% for M1, and 72% for M2 occlusion in the MR CLEAN Registry, and 80% for ICA/ICAT, 95% for M1, and 49% for M2 occlusion in PRESTO.

Conclusion The algorithm provided a high detection rate for proximal LVO, but performance varied significantly by occlusion location. Detection of M2 occlusion needs further improvement.

INTRODUCTION

CT angiography (CTA) is currently the most widely used imaging modality for detection of a large vessel occlusion (LVO) in patients presenting with suspected acute ischemic stroke. For acute ischemic stroke due to LVO in the anterior circulation, endovascular treatment (EVT) is considered the most effective therapy.1 However, technical success and, more importantly, individual patient benefit are strongly dependent on the time between symptom onset and initiation of treatment.2,3 Fast and accurate detection of LVO on CTA can therefore contribute to the likelihood of a good clinical outcome.

In general, experienced (neuro)radiologists are well-capable of identifying LVOs on CTA, enabling prompt diagnosis of acute ischemic stroke due to LVO.4,5 Yet, such expertise is not always readily available, for instance in hospitals with lower case-loads and during off-hours when dedicated neuroradiologists are not on call. This may hamper fast and accurate CTA assessment.6,7 At the same time, the number of CTA examinations for suspected acute ischemic stroke is increasing due to optimization of stroke management and prolonged treatment windows.8,9

To support fast and accurate CTA assessment, diagnostic tools applying artificial intelligence algorithms are being developed. These tools are aimed at screening CTAs for LVOs and, in case of a positive finding, notifying not only local radiologists but also the stroke team at the nearest EVT-capable stroke center.10–14 Determining the performance of such algorithms is needed to estimate their potential clinical utility.

The aim of this study was to assess the diagnostic performance of an automated LVO detection algorithm in patients with and without anterior circulation LVO, and to assess the impact of scan acquisition parameters on performance.

METHODS

Study design and patient selection

This study was performed in accordance with the STARD guidelines for reporting diagnostic accuracy.15 We used data from the first part of the Multicenter Randomized Clinical Trial of Endovascular Treatment for Acute Ischemic Stroke (MR CLEAN) Registry16 and from the Prehospital triage of patients with suspected stroke (PRESTO) study.17 The MR CLEAN Registry is a multicenter prospective registry including patients (n=1627) with acute ischemic stroke undergoing EVT from March 18, 2014 until June 15, 2016. PRESTO is
a multicenter prospective observational cohort study including patients (n=1334) with suspected stroke in the ambulance from August 13, 2018 until September 2, 2019. All patients who underwent baseline CTA were eligible for inclusion. Imaging parameters required for inclusion were: axial series; slice thickness 0.2–3 mm; slice increment equal to or smaller than slice thickness (ie, no excess z-spacing); matrix size of 512×512 or above; full head coverage. The evaluated algorithm was developed and trained only to detect intracranial internal carotid artery (ICA)/ICA terminus (ICA-T), M1, and M2 occlusions, but not isolated extracranial ICA, A1/A2, M3/M4, and posterior circulation (vertebral artery, basilar artery, or posterior (P1/P2) cerebral artery) occlusions. The latter group will be evaluated when implementing the current algorithm in a clinical setting. Therefore, we chose to include patients from our real-world PRESTO cohort with occlusions other than ICA, ICA-T, M1 or M2, but classified them as patients without LVO in order to assess whether they interfere with real-world diagnostic performance. CTA data that were used for algorithm training were not included in the current assessment of diagnostic performance. A complete overview of patient inclusion and exclusion criteria is outlined per cohort in online supplemental figure 1.

Reference LVO definition
CTAs were evaluated for the presence and location of LVO by imaging core labs consisting of 3 neuroradiologists and 10 interventional neuroradiologists (5–20 years of experience) who were blinded for algorithm output and all clinical data with the exception of the symptomatic side of stroke symptoms. The most proximal occlusion sites scored by core lab observers were defined as follows: extracranial ICA from the cervical segment to the clinoïd segment; intracranial ICA from the clinoïd segment to the ICA terminus; ICA terminus (ICA-T); M1-middle cerebral artery (MCA) from the ICA bifurcation to the MCA bifurcation; M2-MCA from the MCA bifurcation to where the vessels turn from the insula or exit the Sylvian fissure. Proximal occlusion sites used as reference location in this study included the extracranial ICA/ICA-T, M1-MCA, and M2-MCA. In patients with an extracranial ICA occlusion and concomitant intracranial tandem lesion, the most proximal intracranial occlusion site was taken as the reference location.

Automated LVO detection
The commercially available LVO detection algorithm (StrokeV-viewer v2.1.22, NICO.LAB, Amsterdam, The Netherlands) evaluated here is based on a deep learning convolutional neural network and runs within a web-based application hosted on a cloud platform. All CTA series were uploaded in Digital Imaging and Communications in Medicine (DICOM) format and processed separately. The algorithm indicated whether an occlusion was present via a binary output (ie, LVO detected: ‘Yes’ or ‘No’). In case of a positive LVO finding, an occlusion box was centered around the proximal occlusion site and shown using maximum intensity projection reconstructions in axial, coronal and sagittal views (figure 1). The threshold for detection of LVO was fixed at a single cut-off value by the developers of the algorithm and could not be adjusted.

Algorithm outcome and image quality assessment
All results generated by the algorithm were inspected by an independent observer who was blinded for all core lab imaging assessments and clinical data. In case of a positive LVO finding, the observer noted the hemisphere and the vessel segment (intracranial ICA/ICA-T, M1, or M2) on which the occlusion box was placed. Cases in which the occlusion box was not correctly placed (eg, in brain parenchyma or in the unaffected hemisphere) were classified separately (figure 2). Processing time was recorded as the time between receiving messages that the CTA series were successfully uploaded and receiving the results.

The CTA scan phase was classified into one of five phases using a previously described method for which interobserver agreement has also been determined (weighted κ 0.87). For the current study, scans were grouped into arterial (early arterial and peak arterial), equilibrium, or venous (peak venous and late venous) phase. Information on slice thickness, slice overlap, and peak kilovoltage was extracted from DICOM tags.

Statistical analysis
Diagnostic performance for correct detection of LVO and correct assessment of the exact occlusion location was evaluated within each cohort. Performance was reported by means of sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and area under the curve (AUC) as appropriate. In order to assess the impact of image quality on detection of LVO, we pooled data from the MR CLEAN Registry and PRESTO, and reported diagnostic performance stratified by scan acquisition parameters. Performance per occlusion location stratified by scan acquisition parameters could only be reliably assessed in the MR CLEAN Registry due to the large sample of patients with LVO and heterogeneity of scan protocols used in this cohort. To allow comparison between performance of the current algorithm with those described in prior studies, we performed a sensitivity analysis in which we excluded patients with M2 occlusions and assessed performance for detection of LVO based on correct identification of the affected hemisphere but not exact occlusion location. Statistical differences in AUC were evaluated using
Sensitivity, specificity, PPV and NPV are presented as percentages.

Sensitivity per occlusion location

For ICA/ICA-T occlusion, the algorithm yielded a sensitivity of 88% (243/276; 95% CI 84% to 92%) in the MR CLEAN Registry and 80% (12/15; 95% CI 52% to 96%) in PRESTO (table 2). The highest detection rate was observed for M1 occlusion with a sensitivity of 94% (636/676; 95% CI 92% to 96%) in the MR CLEAN Registry and 95% (58/61; 95% CI 86% to 99%) in PRESTO. For M2 occlusion, a lower detection rate was observed than for other vessel segments and differed between the two study cohorts with a sensitivity of 72% (113/158; 95% CI 64% to 79%) in the MR CLEAN Registry and 80% (12/15; 95% CI 44% to 79%) in PRESTO. In patients who had an extracranial ICA occlusion with a concomitant intracranial tandem lesion, the algorithm correctly detected 35/40 (87.5%) intracranial lesions.

Impact of scan acquisition parameters on performance

Slice thickness of ≥2 mm had a negative impact on diagnostic performance of the algorithm compared with <1 mm (AUC 0.71 vs 0.83, p<0.01) and 1–2 mm scans (AUC 0.71 vs 0.85, p<0.01) (online supplemental table 4). Lower diagnostic performance was also observed for the venous scan phase compared with equilibrium (AUC 0.75 vs 0.87, p=0.02), but not compared with the arterial scan phase (AUC 0.75 vs 0.82, p=0.14). Sensitivity per occlusion location within different subgroups was only evaluated within the MR CLEAN Registry. This revealed that increasing slice thickness, no slice overlap, and later scan phase resulted in a lower sensitivity for detection of M2 occlusion but not for detection of ICA/ICA-T and M1 occlusion (online supplemental table 5).

DISCUSSION

This study evaluated the diagnostic performance of an automated LVO detection algorithm based on deep learning in a large cohort of patients with and without LVO, demonstrating...
an overall high performance for the detection of intracranial LVOs. Differences in detection rate were seen between occlusion sites and based on image acquisition parameters.

Studies on the diagnostic performance of human readers generally show a high detection rate for occlusions in the ICA/ICA-T and M1 segments, with sensitivities ranging from 89% to 97%, which is comparable to the sensitivity found here. Human diagnostic error for more distal, in particular M2 occlusions, is notably higher with a reported sensitivity of only 65% in one study, similar to the sensitivity of local radiologists in PRESTO. This indicates a large potential for improvement of detection of M2 occlusion. For the algorithm evaluated here, we found a clear difference in detection of M2 occlusion between both cohorts. This was most likely the result of the selection of the MR CLEAN Registry population, where all occlusions, including M2 occlusions, were already identified by human readers and where patients were referred for EVT. In contrast, PRESTO represents a real-world stroke cohort including patients prior to imaging assessment and reflects the distribution of LVOs as encountered in daily clinical practice. As a consequence, a broader spectrum of M2 occlusions is included in PRESTO, even those more difficult to detect for human readers. This makes it a more suitable target population for evaluating the diagnostic performance of the algorithm in a real-world setting. The sensitivity of the algorithm for detection of M2 occlusion in PRESTO was lower than that of human readers.

The algorithm also provided a lower specificity than human readers (78% vs 86–97%). When evaluating the diagnostic performance of LVO detection algorithms, however, it is important to put performance measures into a clinical context and thereby also consider the prior probability of LVO in patients undergoing CTA due to suspected acute ischemic stroke. For LVO detection, a false positive result means the radiologist and stroke team wrongly receive an alert of a potential LVO finding on CTA prompting fast imaging assessment. A false negative result wrongly indicates no LVO is present, potentially providing false reassurance and delaying further CTA evaluation by a radiologist. While false positives may be a nuisance for clinicians, false negatives may delay initiation of treatment and possibly be harmful for patients. Efforts should therefore be aimed at achieving a high sensitivity for detecting LVOs along with an acceptable specificity. On the other hand, previous studies including PRESTO have shown that the prior probability of anterior circulation LVO on CTA in patients with suspected acute ischemic stroke is relatively low and lies within the range of 16–21%. This means that, despite the specificity of 78% of the current algorithm, true positives will occur just as frequently as false positives when implementing this algorithm in a real-world setting, as indicated by the PPV of 47% in PRESTO.

An elegant feature of the current algorithm mitigating this issue is placement of a box around the exact location where it detects an occlusion. This direct detection method allows inspection of what triggered the algorithm to come to its decision, providing users with transparency and directing them to (pathological) features that led to the output. By doing so, users can quickly distinguish true positive from false positive results. Other algorithms notify users in case of a positive LVO finding and provide more indirect information (eg, brain regions with reduced vessel density) on how the decision was reached. The current algorithm thus has the potential to aid in locating the exact occlusion site. This can be especially useful for less experienced readers and possibly aid in the early detection of LVO, thereby also accelerating diagnosis. It further allows remote access to output both at the primary stroke center and also the nearest EVT-capable intervention center. This may help to expedite decision-making about EVT and enrollment in clinical trials. Such algorithms thus hold the potential to increase patient benefit of EVT as the treatment of LVO is known to be highly time sensitive.

Recent studies have reported performance metrics of other commercially available LVO detection algorithms. For detection of LVO, a sensitivity of 96% and specificity of 98% have been reported for the RAPID-LVO, a sensitivity of 82% and specificity of 90% for Viz LVO, and a sensitivity of 84% and specificity of 96% for e-CTA. However, direct comparisons of performance of these algorithms with the current algorithm are difficult to make due to discrepancies in study design. Studies evaluating RAPID-LVO and Viz LVO excluded M2 occlusions in their analyses, for which it has been shown that these algorithms yield lower detection rates. In addition, diagnostic performance was based on either the presence or absence of LVO with or without correct identification of the affected hemisphere, whereas we assessed performance based on correct identification of the exact location of LVO or the absence of LVO. Not including M2 occlusion as LVO and assessment of performance not based on the exact location of the occlusion leads to higher detection rates of LVO as shown in our sensitivity analysis. Other factors contributing to differences in performance are varying inclusion criteria and patient populations. Some studies used curated datasets and others a real-world stroke population. This may lead to differences in the distribution of LVO locations and, because of varying detection rates by occlusion location, overall performance measures. As demonstrated in the current study, the sensitivity of the algorithm for detection of LVO was considerably higher in the MR CLEAN Registry compared with PRESTO, mainly due to the higher proportion and broader spectrum of M2 occlusions in the latter cohort.

However, diagnostic performance of LVO detection algorithms should preferably be assessed in a real-world stroke population such as PRESTO as it provides a more reliable estimation of the potential of the algorithm in a clinical setting. Nevertheless, benefits of using the MR CLEAN Registry here was that CTAs were acquired with a variety of acquisition protocols. This allowed us to show that image acquisition parameters such as slice thickness and CTA scan phase significantly impact algorithm performance, and that high-quality input data are a prerequisite for adequate diagnostic performance. This was most evident for the detection of M2 occlusions, likely due to the smaller caliber, branching
pattern, and tortuosity of these vessels, making vascular segmentation more susceptible to errors. Especially for M2 occlusions, it is possible that other acquisition schemes such as multiphase CTA lead to better detection by automated algorithms, as is seen for M2 occlusion detection by human readers.

The strengths of this study include the large sample size of LVOs, allowing us to assess diagnostic performance both for overall detection of an LVO and per individual occlusion location with sufficient precision. By including CTAs from a variety of hospitals (>50) using different acquisition protocols, we were able to investigate the impact of scan acquisition parameters on performance. Also, the current evaluation was conducted independently of commercial developers and their affiliates. A limitation of this study is that the evaluation was carried out retrospectively and we were therefore not able to assess the impact of the current LVO detection algorithm on decision-making and treatment parameters. Also, we were not able to reliably compare performance of the current algorithm to those described by others mainly due to the use of different test sets. If feasible, head-to-head comparisons of different algorithms within the same test set will ultimately allow for more unbiased and reliable comparisons.

CONCLUSIONS
The algorithm we evaluated here has a high sensitivity for the detection of proximal anterior circulation LVOs (ICA/ICA-T and M1) on CTA. The sensitivity for M2 occlusion is lower than human assessment in a real-world setting and future efforts should specifically target improvement of M2 occlusion detection. Together with the lower specificity of the algorithm than human readers, critical CTA evaluation by radiologists remains crucial irrespective of algorithm output.

Author affiliations
1Radiology & Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
2Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
3Neurology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
4Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
5Radiology, Catharina Hospital, Eindhoven, The Netherlands
6Radiology, HMC Westeinde, Den Haag, Zuid-Holland, The Netherlands
7Neurology, Rijnstate Hospital, Arnhem, The Netherlands
8Radiology, Catharina Hospital, Eindhoven, The Netherlands
9Radiology, HMC Westeinde, Den Haag, Zuid-Holland, The Netherlands
10Vascular neurology, MR CLEAN Registry and PRESTO Investigators: Robert J van Oostenbrugge; Jels Boiten; Charles B.L.M. Majoie; Yvo BWEM Roos; Jan Albert Vos; Ivo GH Jansen; Maxim JHL Mulder; Robert-Jan B Goldhoorn; Kars CJ Compagne; Manon Kappelhof; Wouter J Schoneveld; Jonathan M Coutinho; Marijke JH Vermeer; Marianne AA van Walderveen; Julie Staals; Jasper M Martens; Bart J Emmer; Sebastian F de Bruijn; Lukas C van Dijk; Bart van der Worp; Rob H Lo; Ewoud J van Dijk; Hieronymus D Boogaarts; Paul LM de Kort; Julia van Fujii; Tjitse GM Jenniskens; Rene van den Berg; Albert J Yoo; Ludo FM Beenen; Alida A Postma; Bastiaan T van Eijkelenburg; Marileen Biekart; MLWilleboer; Bianca Buijck; Jeannette Bakker; Stefan D Roosendaal; Bas FW van der Kallen; Ido R van den Wijngaard; Joost Bot; Pieter-Jan van Doormaal; Zwenzeke Flach; Hester F Lingsma; Nazila e Ghannouli; Martin Sterenberg; Corina Puppels; Wilma Pelikaan; Ria Sprenger; Marjan Elfrink; Joke de Meris; Tamara Vermeer; Annet Geerlings; Gina van Velden; Tiny Simons; Cathelijn van Rijswijk; Gert Meschendorpf; Hester Bongenaar; Karin Bodde; Sandra Kleijn; Jasmin Lodico; Hanneke Droste; M Wollaert; D Jeurnissen; Ernas Bos; Yvonne Drabbe; Nicoline Aaldering; Berber Zweedijk; Mostafa Khalilizada; Esme Venema; Vicky Chalos; Ralph R Geuskens; Tim van Straaten; Salihà Ergezen; Roger RM Harmsema; Daan Muirjes; Anouk de Jong; Wouter Hinsenveld; Olvert A Berkhemer; J Huget; PFC Groot; Marijke A Mens; Katinka R Kranendonk; Kilian M Treumtel; Marlon L Tolhuissen; Heitor Alves; Anouk D Rozeman; Frédérique H. Vermeij; Kees CL Alblas; Luuk JMM Mulder; Anne-Marie M Wijnhoud; Lisette Maasland; Roeland PJ van Eijkelenburg; Marileen Bekart; ML Willeboer; Bianca Buijck; Jeanneke Bakker; Jan-Hein Hensersen, Aarnout Plaisier; Amber Hoek; Erick Oskam; Mandy MA van der Zon; Egon D Ziets; Willem Kuiper; Bruno JM van Mol; Mirjam Woudenberg; Arnoed M de Leeuw; Anja Noordam-Reijm; Timo Bevelander; Vicky Chalos; Eveline JA Wiegers; Dennis C van Kalkeren; Jochem van den Biggelaar.

Contributors SPRL, LW and AvdL were responsible for study concept and design. SPRL, LW, AvdL, MHCd, PvdW, WM, HK, GilaAN, RPHB, LSFJ, JH, WHvZ, ACGMV, DWID, BR were responsible for or contributed to data acquisition. SPRL, LW and AvdL were responsible for analysis and interpretation of the data and drafting the manuscript. MHCd, PvdW, WM, HK, GilaAN, RPHB, LSFJ, JH, WHvZ, ACGMV, DWID, BR were responsible for critical revision of the manuscript.

Funding The MR CLEAN Registry was partly funded by TWIN Foundation, Erasmus MC University Medical Center, Maastricht University Medical Center, and Amsterdam University Medical Center. PRESTO was funded by BeterKeten Collaboration and Theia Foundation (Zilveren Kruis).

Competing interests WHvZ reports grants from Stryker and Cerevans, all paid to the institution. DWID reports funding from the Dutch Heart Foundation, Brain Foundation Netherlands, The Netherlands Organisation for Health Research and Development, Health Holland Top Sector Life Sciences and Health, and unrestricted grants from Penumbra, Stryker, Medtronic, Thrombolytic Science, LLC, and Cerenovus, all paid to the institution. AvdL reports grants from Penumbra, Stryker; Cerevans, and Medtronic, all paid to the institution.

Patient consent for publication Not required.

Ethics approval The Institutional Review Board of the Erasmus MC University Medical Center evaluated the MR CLEAN Registry study protocol and granted permission to carry out the study as a registry (MEC-2014–235), and approved PRESTO (MEC-2018–1012). Necessity of written informed consent was waived for both the MR CLEAN Registry and PRESTO.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement No data are available. Individual participant data cannot be made available, as no patient approval has been obtained for sharing coded data. However, analytical methods such as the R syntax and output files of the analyses will be made available on request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Sven P R Luijtten http://orcid.org/0000-0002-6905-3296
Wim H van Zwam http://orcid.org/0000-0003-1631-7056
Diederik W J Dippel http://orcid.org/0000-0002-9234-3515

REFERENCES
1 Goyal M, Menon BK, van Zwam WH, et al. Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 2016;387:1723–31.
2 Bouricius R, Goyal M, Liesebkind DS, et al. Association of time from stroke onset to groin puncture with quality of reperfusion after mechanical thrombectomy: a meta-analysis of individual patient data from 7 randomized clinical trials. JAMA Neurol 2019;76:405–11.
3 Mulder MIH, Jansen IGH, Goldhoorn RJ-B, et al. Time to endovascular treatment and outcome in acute ischemic stroke: MR CLEAN Registry results. Circulation 2018;138:232–40.
et al
Luijten SPR, et al. J NeuroIntervent Surg 2022;14:794–798. doi:10.1136/neurintsurg-2021-017842

Vascular neurology

4 Wagemans BAIM, van Zwan WH, Nelemans PJ, et al. 4D-CTA improves diagnostic certainty and accuracy in the detection of proximal intracranial anterior circulation occlusion in acute ischemic stroke. PloS One 2017;12:e0172336.
5 Bekts MJ, Mannionig R, Vister J, et al. Brain CT perfusion improves intracranial vessel occlusion detection on CT angiography. J Neuroradiol 2019;46:124–9.
6 Hinsenfeld WH, de Ridder IR, van Oostenbrugge RJ, et al. Workflow intervals of endovascular acute stroke therapy during on- versus off-hours: the MR CLEAN Registry. Stroke 2019;50:2842–50.
7 Fasen BACM, Heijboer RJ, Hulsmans F-JH, et al. CT angiography in evaluating large-vessel occlusion in acute anterior circulation ischemic stroke: factors associated with diagnostic error in clinical practice. AJNR Am J Neuroradiol 2020;41:607–11.
8 Albers GW, Marks MP, Kemp S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med 2018;378:708–18.
9 Nogueira RG, Jadhav AP, Haussen DC, et al. Thrombectomy for stroke at 6 to 16 hours: the MR CLEAN Registry. 2019;50:2842–50.
10 Little M, Vasehavap, Dong MP, et al. Detecting large vessel occlusion at multiphase CT angiography by using a deep convolutional neural network. Radiology 2020;297:640–9.
11 Murray NM, Umberath M, Hager GD, et al. Artificial intelligence to diagnose ischemic stroke and identify large vessel occlusions: a systematic review. J Neurointerv Surg 2020;12:156–64.
12 Dehkhargani S, Lansberg M, Venkatsubramanian C, et al. High-performance automated anterior circulation CT angiographic clot detection in acute stroke: a multireader comparison. Radiology 2021;298:665–70.
13 Yavrov-Dorat A, Saban M, Merhav G, et al. Evaluation of artificial Intelligence-powered identification of large-vessel occlusions in a comprehensive stroke center. AJNR Am J Neuroradiol 2021;42:247–54.
14 Seker F, Pfaff JAR, Mokli Y. EXPRESS: diagnostic accuracy of automated occlusion detection in CT angiography using e-CTA. Int J Stroke 2021;16:493021992592.
15 Bossuyt PM, Reitsma JB, Bruns DE, et al. STARD 2015: an updated list of essential items for reporting diagnostic accuracy studies. Radiology 2015;277:826–32.
16 Jansen IGH, Mulder MHH, Goldhoorn R-JB, et al. Endovascular treatment for acute ischemic stroke in routine clinical practice: prospective, observational cohort study (MR CLEAN Registry). BMJ 2018;360:k949.
17 Venema E, Duvokot MHC, Lingma HE, et al. Prehospital triage of patients with suspected stroke symptoms (PRESTO): protocol of a prospective observational study. BMJ Open 2019;9:e028810.
18 Goyal M, Menon BK, Krings T, et al. What constitutes the M1 segment of the middle cerebral artery? J Neurointerv Surg 2016;8:1273–7.
19 Rodriguez-Luna D, Dowlatchahi D, Aviv R, et al. Venous phase of computed tomography angiography increases spot sign detection, but intracerebral hemorrhage expansion is greater in spot signs detected in arterial phase. Stroke 2014;45:734–9.
20 Jansen IG, Mulder MJ, Goldhoorn R-JB, et al. Impact of single phase CT angiography collateral status on functional outcome over time: results from the Mr clean registry. J NeuroInterv Surg 2019;11:866–73.
21 DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988;44:837–45.
22 Boyd CA, Jayaraman MV, Baird GL, et al. Detection of emergent large vessel occlusion stroke with CT angiography is high across all levels of radiology training and grayscale viewing methods. Eur Radiol 2020;30:4447–53.
23 Duvokot MHC, Venema E, Rozeman AD, et al. Comparison of eight prehospital stroke scales to detect intracranial large-vessel occlusion in suspected stroke (PRESTO): a prospective observational study. Lancet Neurol 2021;20:213–21.
24 Park SH, Han K. Methodologic guide for evaluating clinical performance and effect of artificial intelligence technology for medical diagnosis and prediction. Radiology 2018;286:800–9.
25 Genders TSS, Sproun S, Stijnen T, et al. Methods for calculating sensitivity and specificity of clustered data: a tutorial. Radiology 2012;265:910–6.
26 Fasen BACM, Heijboer RJ, Hulsmans F-JH, et al. Radiology workload in clinical implementation of thrombectomy for acute ischemic stroke: experience from the Netherlands. Neuroradiology 2020;62:877–82.
27 Liu X, Faes L, Kall AU, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digit Health 2019;1:e271–97.
28 Amokutra WA, Stroka M, Smith H, et al. Automated detection of intracranial large vessel occlusions on computed tomography angiography: a single center experience. Stroke 2019;50:2790–8.
29 Yu AYX, Zerna C, Assiz Z, et al. Multiphase CT angiography increases detection of anterior circulation intracranial occlusion. Neurology 2016;87:609–16.
30 Hassan AE, Ringneau VM, Rabah RR, et al. Early experience utilizing artificial intelligence shows significant reduction in transfer times and length of stay in a hub and spoke model. Inter Neuroradiol 2020;26:615–22.
Supplementary Figure 1. Patient inclusion and exclusion flowchart. EVT indicates endovascular treatment; CTA, computed tomography angiography; LVO, large vessel occlusion; ICA, internal carotid artery; ICA, internal carotid artery terminus; M1, M1 segment of the middle cerebral artery; M2, M2 segment of the middle cerebral artery; A1/A2, A1 or A2 segment of the anterior cerebral artery; M3/M4, M3 or M4 segment of the middle cerebral artery; MIP, maximum intensity projection; mm, millimeters.
Supplementary Table 1. Patient characteristics per cohort

	MR CLEAN Registry (n=1110)	PRESTO (n=646)
Age, median (IQR)	71 (60-80)	73 (62-82)
Sex, male (%)	584 (52.6)	358 (55.4)
NIHSS at baseline, median (IQR)	16 (12-20)	4 (2-9)
ASPECTS, median (IQR)	9 (7-10)	n/a*
Occlusion side, left (%)	586 (52.8)	74 (45.7)†
Occlusion location (%)		
Extracranial ICA (isolated)	n/a	2 (1.2)†
Extracranial ICA (with tandem lesion)	37 (3.3)	3 (1.9)†
Intracranial ICA	19 (1.7)	5 (3.1)†
ICA-T	256 (23.1)	10 (6.2)†
M1	651 (58.6)	60 (37.0)†
M2	147 (13.2)	63 (38.9)†
M3/M4	n/a	2 (1.2)†
A1/A2	n/a	4 (2.5)†
Vertebral artery	n/a	2 (1.2)†
Basilar artery	n/a	6 (3.7)†
P1/P2	n/a	5 (3.1)†
No occlusion	0 (0.0)	484 (74.9)
Slice thickness, mm (%)		
<1	503 (45.3)	453 (70.1)
1-2	304 (27.4)	128 (19.8)
≥2	303 (27.3)	65 (10.1)
Slice overlap (%)		
Yes	821 (74.0)	481 (74.5)
No	289 (26.0)	165 (25.5)
Peak Kilovoltage, kV (%)		
≥120	553 (49.8)	319 (49.4)
<120	557 (50.2)	327 (50.6)
Scan phase (%)		
Early arterial	295 (26.6)	177 (27.4)
Peak arterial	187 (16.8)	316 (48.9)
Equilibrium	296 (26.7)	120 (18.6)
Peak venous	230 (20.7)	28 (4.3)
Late venous	102 (9.2)	5 (0.8)

*ASPECTS was not assessed in PRESTO

†Numbers between parentheses are percentages of total amount of patients with an occlusion (n=162)

NIHSS indicates National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of the middle cerebral artery; M2, M2 segment of the middle cerebral artery; mm, millimeters; kV, kilovoltage.
Supplementary Table 2. Cross-table with occlusion location indicated by the algorithm (rows) versus reference (columns) in the MR CLEAN Registry

	Intracranial ICA/ICA-T	M1	M2	No LVO	Total
Intracranial ICA/ICA-T	243	5	0	0	248
M1	3	636	4	0	643
M2	0	0	113	0	113
No LVO	8	13	25	0	46
Box in affected hemisphere, but not on vessel	11	14	11	0	36
Box in unaffected hemisphere	11	8	5	0	24
Total	276	676	158	0	1110

ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; LVO, large vessel occlusion.
Supplementary Table 3. Cross-table with occlusion location indicated by the algorithm (rows) versus reference (columns) in PRESTO

	Extracranial ICA	Intracranial ICA/ICA-T	M1	M2	M3/M4	A1/A2	Vertebral artery	Basilar artery	P1/P2	No LVO	Total
Intracranial ICA/ICA-T	1	12	0	0	0	0	0	0	0	4	17
M1	1	0	58	0	0	0	0	0	0	20	79
M2	0	0	0	32	0	1	0	0	0	60	93
No LVO	0	2	0	27	2	3	1	6	4	376	421
Box in affected hemisphere, but not on vessel	0	1	0	3	0	0	0	0	1	0	29
Box in unaffected hemisphere	0	0	3	3	0	0	1	0	0	24†	7
Total	2	15	61	65	2	4	2	6	5	484	646

†Patients without LVO and no affected hemisphere

ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; LVO, large vessel occlusion.
Supplementary Table 4. Diagnostic performance for LVO detection according to imaging quality in pooled cohort (MR CLEAN Registry and PRESTO)

	LVO present/ LVO absent	Sensitivity (95% CI)	Specificity (95% CI)	AUC (95% CI)
Slice thickness, mm				
<1	603/353	86 (83-89)	80 (75-84)	0.83 (0.81-0.86)
1-2	331/101	89 (85-92)	81 (72-88)	0.85 (0.81-0.89)
≥2	317/51	88 (84-91)	55 (40-69)	0.71 (0.64-0.78)
Slice overlap				
Yes	932/370	87 (85-89)	80 (75-84)	0.84 (0.81-0.86)
No	319/135	88 (84-91)	72 (63-79)	0.80 (0.76-0.84)
Peak Kilovoltage, kv				
<120	633/251	87 (84-90)	78 (72-83)	0.82 (0.80-0.85)
≥120	618/254	88 (85-90)	78 (72-83)	0.83 (0.80-0.86)
Scan Phase				
Arterial	589/386	88 (85-90)	77 (72-81)	0.82 (0.80-0.85)
Equilibrium	323/93	90 (86-93)	84 (75-91)	0.87 (0.83-0.91)
Venous	339/26	84 (80-88)	65 (44-83)	0.75 (0.65-0.84)

Sensitivity and specificity are presented as percentages. LVO indicates large vessel occlusion; AUC, area under the curve; mm, millimeters; kv, kilovoltage.
Supplementary Table 5. Sensitivity per occlusion according to imaging quality in the MR CLEAN Registry

	ICA/ICA-T	M1	M2			
	N	Sensitivity (95% CI)	N	Sensitivity (95% CI)	N	Sensitivity (95% CI)
Slice thickness, mm						
<1	117	89 (82-94)	303	93 (89-95)	83	78 (68-87)
1-2	78	83 (73-91)	187	96 (92-98)	39	72 (55-85)
≥2	81	89 (80-95)	186	94 (90-97)	36	56 (38-72)
Slice overlap						
Yes	191	87 (82-92)	508	94 (92-96)	122	75 (66-82)
No	85	89 (81-95)	168	93 (89-97)	36	61 (43-77)
peak Kilovoltage, kV						
<120	132	86 (79-92)	344	94 (90-96)	81	74 (63-83)
≥120	144	90 (83-94)	332	95 (92-97)	77	69 (57-79)
Scan phase						
Arterial	108	89 (81-94)	298	96 (93-98)	76	79 (68-87)
Equilibrium	68	91 (82-97)	183	95 (90-97)	45	73 (58-85)
Venous	100	85 (76-91)	195	91 (86-95)	37	54 (37-71)

Sensitivity is presented as percentage. ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; mm, millimeters; kV, kilovoltage.
MR CLEAN Registry Investigators

Executive committee
Diederik W.J. Dippel\(^{1,2}\); Aad van der Lugt\(^{3}\); Charles B.L.M. Majoie\(^{3}\); Yvo B.W.E.M. Roos\(^{4}\); Robert J. van Oostenbrugge\(^{5}\); Wim H. van Zwam\(^{6}\); Jelis Boiten\(^{14}\); Jan Albert Vos\(^{8}\)

Study coordinators
Ivo G.H. Jansen\(^{3}\); Maxim J.H.L. Mulder\(^{1}\); Robert-Jan B. Goldhoorn\(^{5,6}\); Kars C.J. Compagne\(^{3}\); Manon Kappelhof\(^{3}\)

Local principal investigator
Wouter J. Schonewille\(^{7}\); Jan Albert Vos\(^{8}\); Charles B.L.M. Majoie\(^{3}\); Jonathan M. Coutinho\(^{6}\); Marieke J.H. Wermers\(^{3}\); Marianne A.A. van Walderveen\(^{10}\); Julie Staals\(^{5}\); Wim H. van Zwam\(^{6}\); Jeannette Hofmeijer\(^{14}\); Jasper M. Martens\(^{12}\); Geert J. Lycklama à Nijeholt\(^{13}\); Jelis Boiten\(^{14}\); Bob Roozenbeek\(^{1}\); Bart J. Emmer\(^{2}\); Sebastiaan F. de Bruijn\(^{15}\); Lukas C. van Dijk\(^{16}\); H. Bart van der Worp\(^{17}\); Rob H. Lo\(^{18}\); Ewoud J. van Dijk\(^{19}\); Hieronymus D. Boogaarts\(^{20}\); Paul L.M. de Kort\(^{21}\); Julia van Tuijll\(^{23}\); Jo J.P. Peluso\(^{26}\); Jan S.P. van den Berg\(^{22}\); Boudewijn A.A.M. van Hasselt\(^{13}\); Leo A.M. Aarden\(^{24}\); René J. Dallinga\(^{25}\); Maarten Uyttenboogaart\(^{26}\); Omid Eshghi\(^{29}\); Reinoud P.H. Bokkers\(^{26}\); Tobien H.C.M.L. Schreuder\(^{10}\); Roel J.J. Heijboer\(^{11}\); Koos Keizer\(^{12}\); Lonneke S.F. Yo\(^{30}\); Heleen M. den Hertog\(^{22}\); Emiel J.C. Sturm\(^{35}\)

Imaging assessment committee
Charles B.L.M. Majoie\(^{3}\); Wim H. van Zwam\(^{6}\); Aad van der Lugt\(^{2}\); Geert J. Lycklama à Nijeholt\(^{13}\); Marianne A.A. van Walderveen\(^{10}\); Marieke E.S. Sprengers\(^{1}\); Sjoerd F.M. Jenniskens\(^{27}\); René van den Berg\(^{3}\); Albert J. Yoo\(^{37}\); Ludo F.M. Beenen\(^{5}\); Alida A. Postma\(^{8}\); Stefan D. Roosendaal\(^{1}\); Bas F.W. van der Kallen\(^{13}\); Ido R. van den Wijngaard\(^{14}\); Adriaan C.G.M. van Es\(^{2}\); Bart J. Emmer\(^{2,3}\); Jasper M. Martens\(^{12}\); Lonneke S.F. Yo\(^{30}\); Jan Albert Vos\(^{8}\); Joost Bot\(^{36}\); Pieter-Jan van Doormaal\(^{2}\)

Writing committee
Diederik W.J. Dippel\(^{1}\); Aad van der Lugt\(^{2}\); Charles B.L.M. Majoie\(^{3}\); Yvo B.W.E.M. Roos\(^{4}\); Robert J. van Oostenbrugge\(^{5}\); Wim H. van Zwam\(^{6}\); Geert J. Lycklama à Nijeholt\(^{13}\); Jelis Boiten\(^{14}\); Jan Albert Vos\(^{8}\); Wouter J. Schonewille\(^{7}\); Jeannette Hofmeijer\(^{11}\); Jasper M. Martens\(^{12}\); H. Bart van der Worp\(^{17}\); Rob H. Lo\(^{18}\)

Adverse event committee
Robert J. van Oostenbrugge\(^{5}\); Jeannette Hofmeijer\(^{11}\); H. Zwenneke Flach\(^{13}\)

Trial methodologist
Hester F. Lingsma\(^{38}\)

Research nurses / local trial coordinators
Naziha el Ghannouti\(^{1}\); Martin Sterrenberg\(^{1}\); Corina Puppels\(^{5}\); Wilma Pellikaan\(^{7}\); Rita Sprengers\(^{1}\); Marjan Elfrink\(^{1}\); Joke de Meris\(^{1}\); Tamara Vermeulen\(^{14}\); Annet Geerlings\(^{19}\); Gina van Vemde\(^{22}\); Tiny Simons\(^{30}\); Cathelijn van Rijswijk\(^{11}\); Gert Messchendorp\(^{28}\); Hester Bongenaar\(^{32}\); Karin Bodde\(^{24}\); Sandra Kleijn\(^{34}\); Jasmin Lodico\(^{34}\); Hanneke Droste\(^{34}\); M. Wollaert\(^{4}\); D. Jeurrissen\(^{9}\); Ernas Bos\(^{9}\); Yvonne Drabbe\(^{15}\); Nicoline Aldering\(^{11}\); Berber Zweedijk\(^{17}\); Mostafa Khalilzada\(^{15}\).

PhD / Medical students
Esmee Venema\(^{38}\); Vicky Chalos\(^{1,38}\); Ralph R. Geuskens\(^{5}\); Tim van Straaten\(^{19}\); Salih Ergezen\(^{5}\); Roger R.M. Harmsma\(^{1}\); Daan Muijres\(^{1}\); Anouk de Jong\(^{1}\); Wouter Hinsenveld\(^{5,6}\); Olvert A. Berkhemer\(^{1,3,6}\); Anna M.M.
Boers; J. Huguet; P.F.C. Groot; Marieke A. Mens; Katinka R. van Kranendonk; Kilian M. Treurniet; Manon L. Tolhuijsen; Heitor Alves.

List of affiliations

Department of Neurology, Radiology, Public Health, Erasmus MC University Medical Center; Department of Radiology and Nuclear Medicine, Neurology, Biomedical Engineering & Physics, Amsterdam UMC, University of Amsterdam, Amsterdam; Department of Neurology, Radiology, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM); Department of Neurology, Radiology, Sint Antonius Hospital, Nieuwegein; Department of Neurology, Radiology, Leiden University Medical Center; Department of Neurology, Radiology, Rijnstate Hospital, Arnhem; Department of Radiology, Neurology, Haaglanden MC, the Hague; Department of Neurology, Radiology, HAGA Hospital, the Hague; Department of Neurology, Radiology, University Medical Center Utrecht; Department of Neurology, Neurosurgery, Radiology, Radboud University Medical Center, Nijmegen; Department of Neurology, Radiology, Elisabeth-TweeSteden ziekenhuis, Tilburg; Department of Neurology, Radiology, Isala Klinieken, Zwolle; Department of Neurology, Radiology, Reinier de Graaf Gasthuis, Delft; Department of Neurology, Radiology, University Medical Center Groningen; Department of Neurology, Radiology, Atrium Medical Center, Heerlen; Department of Neurology, Radiology, Catharina Hospital, Eindhoven; Department of Neurology, Radiology, Medisch Spectrum Twente, Enschede; Department of Radiology, Amsterdam UMC, Vrije Universiteit van Amsterdam, Amsterdam; Department of Radiology, Texas Stroke Institute, Texas, United States of America.

PRESTO Investigators

Executive committee
Diederik W.J. Dippel; Bob Roozenbeek; Henk Kerkhoff; Hester F. Lingsma; Aad van der Lugt; Adriaan C.G.M van Es; Anouk D. Rozeman; Walid Moudrous; Frédérique H. Vermeij

Study Coordinators
Esmee Venema; Martijne H.C. Duvekot

Steering committee
Diederik W.J. Dippel; Bob Roozenbeek; Hester F. Lingsma; Aad van der Lugt; Adriaan C.G.M. van Es; Henk Kerkhoff; Anouk D. Rozeman; Walid Moudrous; Frédérique H. Vermeij; Kees C.L. Alblas; Laus J.M.M. Mulder; Annemarie D. Wijnhoud; Lisette Maasland; Roeland P.J. van Eijkelenburg; Marileen Biekart; M.L. Willeboer; Bianca Buijck

Imaging committee
Bob Roozenbeek; Henk Kerkhoff; Aad van der Lugt; Adriaan C.G.M. van Es
Imaging core laboratory
Aad van der Lugt1; Adriaan C.G.M. van Es2; Pieter Jan van Doormaal2; Jeannette Bakker15; Jan-Hein Hensen16, Aarnout Plaisier17; Geert Lycklama à Nijeholt18

Local principal investigators
Diederik W.J. Dippel1; Bob Roozenbeek1,2; Aad van der Lugt2; Amber Hoek19; Henk Kerkhoff19; Anouk D. Rozeman3; Jeannette Bakker15; Erick Oskam20; Walid Moudrous6; Jan-Hein Hensen16; Frédérique H. Vermeij15; Mandy M.A. van der Zon21; Egon D. Zwets22; Kees C.L. Alblas7; Laus J.M.M. Mulder8; Jan Willem Kuiper11; Annemarie D. Wijnhoud5; Bruno J.M. van Moll18; Aarnout Plaisier17; Lisette Maasland19; Mirjam Woudenberg24; Roeland P.J. van Eijkelenburg11; Arnoud M. de Leeuw25

Local trial coordinators
Anja Noordam-Reijm12; Timo Bevelander13

PhD / Medical students
Vicky Chalos1,2,3; Eveline J.A. Wiegers4; Lennard Wolff2; Dennis C. van Kalkeren1; Jochem van den Biggelaar1

List of affiliations
Department of Neurology1, Radiology & Nuclear Medicine2, Public Health4, Emergency Medicine19, Erasmus MC University Medical Centre, Rotterdam;
Department of Neurology7, Radiology15, Emergency Medicine20, Albert Schweitzer hospital, Dordrecht;
Department of Radiology5, Leiden University Medical Center, Leiden;
Department of Neurology18, Radiology16, Maassluis hospital, Rotterdam;
Department of Neurology1, Radiology21, Emergency Medicine21, Franciscus Gasthuis & Vlietland, Rotterdam;
Department of Neurology8, Radiology23, IJZia hospital, Rotterdam;
Department of Neurology9, Radiology17, IJsselland hospital, Rotterdam;
Department of Neurology10, Radiology24, van Weel Bethesda hospital, Dirksland;
Department of Neurology11, Radiology25, Rivas Zorggroep Beatrix hospital, Gorinchem;
Ambulance service Rotterdam-Rijnmond12, Barendrecht;
Ambulance service Zuid-Holland Zuid13, Papendrecht;
Rotterdam Stroke Service14, Rotterdam;
Department of Radiology18, Haaglanden Medical Center, The Hague.
ICMJE DISCLOSURE FORM

Date: _11-08_ 2021

Your Name: Sven P.R. Luijten

Manuscript Title: Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography

Manuscript number (if known): __ neurintsurg-2021-017842.R1__

In the interest of transparency, we ask you to disclose all relationships/activities/interests listed below that are related to the content of your manuscript. “Related” means any relation with for-profit or not-for-profit third parties whose interests may be affected by the content of the manuscript. Disclosure represents a commitment to transparency and does not necessarily indicate a bias. If you are in doubt about whether to list a relationship/activity/interest, it is preferable that you do so.

The following questions apply to the author’s relationships/activities/interests as they relate to the current manuscript only.

The author’s relationships/activities/interests should be defined broadly. For example, if your manuscript pertains to the epidemiology of hypertension, you should declare all relationships with manufacturers of antihypertensive medication, even if that medication is not mentioned in the manuscript.

In item #1 below, report all support for the work reported in this manuscript without time limit. For all other items, the time frame for disclosure is the past 36 months.

	Name all entities with whom you have this relationship or indicate none (add rows as needed)	Specifications/Comments (e.g., if payments were made to you or to your institution)
Time frame: Since the initial planning of the work		
1	All support for the present manuscript (e.g., funding, provision of study materials, medical writing, article processing charges, etc.) No time limit for this item.	_X__ None
Time frame: past 36 months		
2	Grants or contracts from any entity (if not indicated in item #1 above).	_X__ None
3	Royalties or licenses	_X__ None
---	---	
4	Consulting fees	_X__ None
5	Payment or honoraria for lectures, presentations, speakers bureaus, manuscript writing or educational events	_X__ None
6	Payment for expert testimony	_X__ None
7	Support for attending meetings and/or travel	_X__ None
8	Patents planned, issued or pending	_X__ None
9	Participation on a Data Safety Monitoring Board or Advisory Board	_X__ None
10	Leadership or fiduciary role in other board, society, committee or advocacy group, paid or unpaid	_X__ None
11	Stock or stock options	_X__ None
12	Receipt of equipment, materials, drugs, medical writing, gifts or other services	_X__ None
13	Other financial or non-financial interests	_X__ None

Please place an “X” next to the following statement to indicate your agreement:

_X__ I certify that I have answered every question and have not altered the wording of any of the questions on this form.
Supplementary Figure 1. Patient inclusion and exclusion flowchart

EVT indicates endovascular treatment; CTA, computed tomography angiography; LVO, large vessel occlusion; ICA, internal carotid artery; ICA, internal carotid artery terminus; M1, M1 segment of the middle cerebral artery; M2, M2 segment of the middle cerebral artery; A1/A2, A1 or A2 segment of the anterior cerebral artery; M3/M4, M3 or M4 segment of the middle cerebral artery; MIP, maximum intensity projection; mm, millimeters
Supplementary Table 1. Patient characteristics per cohort

	MR CLEAN Registry (n=1110)	PRESTO (n=646)
Age, median (IQR)	71 (60-80)	73 (62-82)
Sex, male (%)	584 (52.6)	358 (55.4)
NIHSS at baseline, median (IQR)	16 (12-20)	4 (2-9)
ASPECTS, median (IQR)	9 (7-10)	n/a*
Occlusion side, left (%)	586 (52.8)	74 (45.7)†
Occlusion location (%)		
Extracranial ICA (isolated)	n/a	2 (1.2)†
Extracranial ICA (with tandem lesion)	37 (3.3)	3 (1.9)†
Intracranial ICA	19 (1.7)	5 (3.1)†
ICA-T	256 (23.1)	10 (6.2)†
M1	651 (58.6)	60 (37.0)†
M2	147 (13.2)	63 (38.9)†
M3/M4	n/a	2 (1.2)†
A1/A2	n/a	4 (2.5)†
Vertebral artery	n/a	2 (1.2)†
Basilar artery	n/a	6 (3.7)†
P1/P2	n/a	5 (3.1)†
No occlusion	0 (0.0)	484 (74.9)
Slice thickness, mm (%)		
<1	503 (45.3)	453 (70.1)
1-2	304 (27.4)	128 (19.8)
≥2	303 (27.3)	65 (10.1)
Slice overlap (%)		
Yes	821 (74.0)	481 (74.5)
No	289 (26.0)	165 (25.5)
Peak Kilovoltage, kV (%)		
≥120	553 (49.8)	319 (49.4)
<120	557 (50.2)	327 (50.6)
Scan phase (%)		
Early arterial	295 (26.6)	177 (27.4)
Peak arterial	187 (16.8)	316 (48.9)
Equilibrium	296 (26.7)	120 (18.6)
Peak venous	230 (20.7)	28 (4.3)
Late venous	102 (9.2)	5 (0.8)

*ASPECTS was not assessed in PRESTO

†Numbers between parentheses are percentages of total amount of patients with an occlusion (n=162)

NIHSS indicates National Institutes of Health Stroke Scale; ASPECTS, Alberta Stroke Program Early CT Score; ICA, internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of the middle cerebral artery; M2, M2 segment of the middle cerebral artery; mm, millimeters; kV, kilovoltage.
Supplementary Table 2. Cross-table with occlusion location indicated by the algorithm (rows) versus reference (columns) in the MR CLEAN Registry

	Intracranial ICA/ICA-T	M1	M2	No LVO	Total
Intracranial ICA/ICA-T	243	5	0	0	248
M1	3	636	4	0	643
M2	0	0	113	0	113
No LVO	8	13	25	0	46
Box in affected hemisphere, but not on vessel	11	14	11	0	36
Box in unaffected hemisphere	11	8	5	0	24
Total	276	676	158	0	1110

ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; LVO, large vessel occlusion.
Supplementary Table 3. Cross-table with occlusion location indicated by the algorithm (rows) versus reference (columns) in PRESTO

	Extracranial ICA	Intracranial ICA/ICA-T	M1	M2	M3/M4	A1/A2	Vertebral artery	Basilar artery	P1/P2	No LVO	Total
Intracranial ICA/ICA-T	1	12	0	0	0	0	0	0	0	4	17
M1	1	0	58	0	0	0	0	0	0	20	79
M2	0	0	0	32	0	1	0	0	0	60	93
No LVO	0	2	0	27	2	3	1	6	4	376	421
Box in affected hemisphere, but not on vessel	0	1	0	3	0	0	0	1	0	29	
Box in unaffected hemisphere	0	0	3	3	0	1	0	0	0	24†	7
Total	2	15	61	65	2	4	2	6	5	484	646

†Patients without LVO and no affected hemisphere

ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; LVO, large vessel occlusion.
Supplementary Table 4. Diagnostic performance for LVO detection according to imaging quality in pooled cohort (MR CLEAN Registry and PRESTO)

	LVO present/ LVO absent	Sensitivity (95% CI)	Specificity (95% CI)	AUC (95% CI)
Slice thickness, mm				
<1	603/353	86 (83-89)	80 (75-84)	0.83 (0.81-0.86)
1-2	331/101	89 (85-92)	81 (72-88)	0.85 (0.81-0.89)
≥2	317/51	88 (84-91)	55 (40-69)	0.71 (0.64-0.78)
Slice overlap				
Yes	932/370	87 (85-89)	80 (75-84)	0.84 (0.81-0.86)
No	319/135	88 (84-91)	72 (63-79)	0.80 (0.76-0.84)
Peak Kilovoltage, kv				
<120	633/251	87 (84-90)	78 (72-83)	0.82 (0.80-0.85)
≥120	618/254	88 (85-90)	78 (72-83)	0.83 (0.80-0.86)
Scan Phase				
Arterial	589/386	88 (85-90)	77 (72-81)	0.82 (0.80-0.85)
Equilibrium	323/93	90 (86-93)	84 (75-91)	0.87 (0.83-0.91)
Venous	339/26	84 (80-88)	65 (44-83)	0.75 (0.65-0.84)

Sensitivity and specificity are presented as percentages. LVO indicates large vessel occlusion; AUC, area under the curve; mm, millimeters; kv, kilovoltage.
Supplementary Table 5. Sensitivity per occlusion according to imaging quality in the MR CLEAN Registry

	ICA/ICA-T	M1	M2			
	N	Sensitivity (95% CI)	N	Sensitivity (95% CI)	N	Sensitivity (95% CI)
Slice thickness, mm						
<1	117	89 (82-94)	303	93 (89-95)	83	78 (68-87)
1-2	78	83 (73-91)	187	96 (92-98)	39	72 (55-85)
≥2	81	89 (80-95)	186	94 (90-97)	36	56 (38-72)
Slice overlap						
Yes	191	87 (82-92)	508	94 (92-96)	122	75 (66-82)
No	85	89 (81-95)	168	93 (89-97)	36	61 (43-77)
peak Kilovoltage, kV						
<120	132	86 (79-92)	344	94 (90-96)	81	74 (63-83)
≥120	144	90 (83-94)	332	95 (92-97)	77	69 (57-79)
Scan phase						
Arterial	108	89 (81-94)	298	96 (93-98)	76	79 (68-87)
Equilibrium	68	91 (82-97)	183	95 (90-97)	45	73 (58-85)
Venous	100	85 (76-91)	195	91 (86-95)	37	54 (37-71)

Sensitivity is presented as percentage. ICA indicates internal carotid artery; ICA-T, internal carotid artery terminus; M1, M1 segment of middle cerebral artery; M2, M2 segment of middle cerebral artery; mm, millimeters; kV, kilovoltage.
MR CLEAN Registry Investigators

Executive committee
Diederik W.J. Dippel; Aad van der Lugt; Charles B.L.M. Majoie; Yvo B.W.E.M. Roos; Robert J. van Oostenbrugge; Wim H. van Zwam; Jelis Boiten; Jan Albert Vos

Study coordinators
Ivo G.H. Jansen; Maxim J.H.L. Mulder; Robert-Jan B. Goldhoorn; Kars C.J. Compagne; Manon Kappelhof

Local principal investigator
Wouter J. Schonewille; Jan Albert Vos; Charles B.L.M. Majoie; Jonathan M. Coutinho; Marieke J.H. Wermers; Marianne A.A. van Walderveen; Julie Staals; Wim H. van Zwam; Jeanette Hofmeijer; Jasper M. Martens; Geert J. Lycklama à Nijeholt; Jelis Boiten; Bob Roozenbeek; Bart J. Emmer; Sebastiaan F. de Bruijn; Lukas C. van Dijk; H. Bart van der Worp; Rob H. Lo; Ewoud J. van Dijk; Hieronymus D. Boogaarts; Paul L.M. de Kort; Julia van Tuin; Jo J.P. Peluso; Jan S.P. van den Berg; Boudewijn A.A.M. van Hasselt; Leo A.M. Aerden; René J. Dallinga; Maarten Uyttenboogaart; Omid Eshghi; Reinou P.H. Bokkers; Tobien H.C.M.L. Schreuder; Roel J.J. Heijboer; Koos Keizer; Lonneke S.F. Yo; Heleen M. den Hertog; Emiel J.C. Sturm

Imaging assessment committee
Charles B.L.M. Majoie (chair); Wim H. van Zwam; Aad van der Lugt; Geert J. Lycklama à Nijeholt; Marianne A.A. van Walderveen; Marieke E.S. Sprengers; Sjoerd F.M. Jenniskens; René van den Berg; Albert J. Yoo; Ludo F.M. Been; Alida A. Postma; Stefan D. Roosendaal; Bas F.W. van der Kallen; Ido R. van den Wijngaard; Adriaan C.G.M. van Es; Bart J. Emmer; Jasper M. Martens; Lonneke S.F. Yo; Jan Albert Vos; Joost Bot; Pieter-Jan van Doormaal.

Writing committee
Diederik W.J. Dippel (chair); Aad van der Lugt; Charles B.L.M. Majoie; Yvo B.W.E.M. Roos; Robert J. van Oostenbrugge; Wim H. van Zwam; Geert J. Lycklama à Nijeholt; Jelis Boiten; Jan Albert Vos; Wouter J. Schonewille; Jeanette Hofmeijer; Jasper M. Martens; H. Bart van der Worp; Rob H. Lo

Adverse event committee
Robert J. van Oostenbrugge (chair); Jeanette Hofmeijer; H. Zwenneke Flach

Trial methodologist
Hester F. Lingsma

Research nurses / local trial coordinators
Naziha el Ghannouti; Martin Sterenberg; Corina Puppels; Wilma Pellikaan; Rita Sprengers; Marjan Elfrink; Joke de Meris; Tamara Vermeulen; Annet Geerlings; Gina van Vemde; Tiny Simons; Cathelijn van Rijswijk; Gert Messchendorp; Hester Bongenaar; Karin Bodde; Sandra Kleijn; Jasmin Lodico; Hanneke Droste; M. Wollaert; D. Jeurrissen; Ernas Bos; Yvonne Drabbe; Nicoline Aaldering; Berber Zweedijk; Mostafa Khalilzada

PhD / Medical students
Esmee Venema; Vicky Chalos; Ralph R. Geuskens; Tim van Straaten; Salih Ergezen; Roger R.M. Harmsma; Daan Muijres; Anouk de Jong; Wouter Hinsenveld; Olver A. Berkhemer; Anna M.M.
Boers 3; J. Huguet 3; P.F.C. Groot 3; Marieke A. Mens 3; Katinka R. van Kranendonk 3; Kilian M. Treurniet 3; Manon L. Tolhuijsen 3; Heitor Alves 3.

List of affiliations
Department of Neurology 1, Radiology 2, Public Health 3, Erasmus MC University Medical Center; Department of Radiology and Nuclear Medicine 4, Neurology 5, Biomedical Engineering & Physics 6, Amsterdam UMC, University of Amsterdam, Amsterdam; Department of Neurology 7, Radiology 8, Maastricht University Medical Center and Cardiovascular Research Institute Maastricht (CARIM); Department of Neurology 9, Radiology 10, Leiden University Medical Center; Department of Neurology 11, Radiology 12, Rijnstate Hospital, Arnhem; Department of Radiology 13, Neurology 14, Haaglanden MC, the Hague; Department of Neurology 15, Radiology 16, HAGA Hospital, the Hague; Department of Neurology 17, Radiology 18, University Medical Center Utrecht; Department of Neurology 19, Neurosurgery 20, Radiology 21, Radboud University Medical Center, Nijmegen; Department of Neurology 22, Radiology 23, Elisabeth-TweeSteden ziekenhuis, Tilburg; Department of Neurology 24, Radiology 25, Isala Klinieken, Zwolle; Department of Neurology 26, Radiology 27, Reinier de Graaf Gasthuis, Delft; Department of Neurology 28, Radiology 29, University Medical Center Groningen; Department of Neurology 30, Radiology 31, Atrium Medical Center, Heerlen; Department of Neurology 32, Radiology 33, Catharina Hospital, Eindhoven; Department of Neurology 34, Radiology 35, Medisch Spectrum Twente, Enschede; Department of Radiology 36, Amsterdam UMC, Vrije Universiteit van Amsterdam, Amsterdam; Department of Radiology 37, Texas Stroke Institute, Texas, United States of America.

PRESTO Investigators

Executive committee
Diederik W.J. Dippel 1; Bob Roozenbeek 1,2; Henk Kerkhoff 3; Hester F. Lingsma 4; Aad van der Lugt 2; Adriaan C.G.M van Es 5; Anouk D. Rozeman 3; Walid Moudrous 6; Frédérique H. Vermeij 7

Study Coordinators
Esmee Venema 1,4; Martijne H.C. Duvekot 1,3

Steering committee
Diederik W.J. Dippel 1; Bob Roozenbeek 1,2; Hester F. Lingsma 4; Aad van der Lugt 2; Adriaan C.G.M. van Es 5; Henk Kerkhoff 3; Anouk D. Rozeman 3; Walid Moudrous 6; Frédérique H. Vermeij 7; Kees C.L. Alblas 3; Laus J.M.M. Mulder 8; Annemarie D. Wijnhoud 9; Lisette Maasland 10; Roeland P.J. van Eijkelenburg 11; Marileen Biekart 12; M.L. Willeboer 13; Bianca Buijck 14

Imaging committee
Bob Roozenbeek 1,2; Henk Kerkhoff 3; Aad van der Lugt 1; Adriaan C.G.M. van Es 5
Imaging core laboratory
Aad van der Lugt2; Adriaan C.G.M. van Es5; Pieter Jan van Doormaal2; Jeannette Bakker15; Jan-Hein Hensen16, Aarnout Plaisier17; Geert Lycklama à Nijeholt18

Local principal investigators
Diederik W.J. Dippel1; Bob Roozenbeek1,2; Aad van der Lugt2; Amber Hoek19; Henk Kerkhoff20; Anouk D. Rozeman6; Jeannette Bakker15; Erick Oskam19; Walid Moudrous6; Jan-Hein Hensen16; Frédérique H. Vermeij21; Mandy M.A. van der Zon22; Egon D. Zwets22; Kees C.L. Alblas23; Laus J.M.M. Mulder20; Jan Willem Kuiper23; Annemarie D. Wijnhoud1; Bruno J.M. van Moll6; Aarnout Plaisier17; Lisette Maasland24; Mirjam Woudenberg24; Roeland P.J. van Eijkelenburg11; Arnoud M. de Leeuw25

Local trial coordinators
Anja Noordam-Reijm12; Timo Bevelander13

PhD / Medical students
Vicky Chalos1,2,3; Eveline J.A. Wiegers4; Lennard Wolff2; Dennis C. van Kalkeren1; Jochem van den Biggelaar1

List of affiliations
Department of Neurology1, Radiology & Nuclear Medicine2, Public Health4, Emergency Medicine19, Erasmus MC University Medical Centre, Rotterdam;
Department of Neurology2, Radiology15, Emergency Medicine20, Albert Schweitzer hospital, Dordrecht;
Department of Radiology3, Leiden University Medical Center, Leiden;
Department of Neurology4, Radiology16, Maasstad hospital, Rotterdam;
Department of Neurology5, Radiology21, Emergency Medicine21, Franciscus Gasthuis & Vlietland, Rotterdam;
Department of Neurology5, Radiology23, Ikazia hospital, Rotterdam;
Department of Neurology6, Radiology24, van Weel Bethesda hospital, Dirksland;
Department of Neurology15, Radiology25, Rivas Zorggroep Beatrix hospital, Gorinchem;
Ambulance service Rotterdam-Rijnmond12, Barendrecht;
Ambulance service Zuid-Holland Zuid13, Papendrecht;
Rotterdam Stroke Service14, Rotterdam;
Department of Radiology18, Haaglanden Medical Center, The Hague.
ICMJE DISCLOSURE FORM

Date:_11-08_2021___
Your Name: Sven P.R. Luijten__
Manuscript Title:_Diagnostic performance of an algorithm for automated large vessel occlusion detection on CT angiography___
Manuscript number (if known):__ neurintsurg-2021-017842.R1__

In the interest of transparency, we ask you to disclose all relationships/activities/interests listed below that are related to the content of your manuscript. “Related” means any relation with for-profit or not-for-profit third parties whose interests may be affected by the content of the manuscript. Disclosure represents a commitment to transparency and does not necessarily indicate a bias. If you are in doubt about whether to list a relationship/activity/interest, it is preferable that you do so.

The following questions apply to the author’s relationships/activities/interests as they relate to the current manuscript only.

The author’s relationships/activities/interests should be defined broadly. For example, if your manuscript pertains to the epidemiology of hypertension, you should declare all relationships with manufacturers of antihypertensive medication, even if that medication is not mentioned in the manuscript.

In item #1 below, report all support for the work reported in this manuscript without time limit. For all other items, the time frame for disclosure is the past 36 months.

	Name all entities with whom you have this relationship or indicate none (add rows as needed)	Specifications/Comments (e.g., if payments were made to you or to your institution)	
Time frame: Since the initial planning of the work			
1	All support for the present manuscript (e.g., funding, provision of study materials, medical writing, article processing charges, etc.)	_X___ None	
	No time limit for this item.		
Time frame: past 36 months			
2	Grants or contracts from any entity (if not indicated in item #1 above).	_X___ None	
3	Royalties or licenses	_X___ None	
	Description	X	None
---	--	----	------
4	Consulting fees	X	None
5	Payment or honoraria for lectures, presentations, speakers bureaus,	X	None
	manuscript writing or educational events		
6	Payment for expert testimony	X	None
7	Support for attending meetings and/or travel	X	None
8	Patents planned, issued or pending	X	None
9	Participation on a Data Safety Monitoring Board or Advisory Board	X	None
10	Leadership or fiduciary role in other board, society, committee or	X	None
	advocacy group, paid or unpaid		
11	Stock or stock options	X	None
12	Receipt of equipment, materials, drugs, medical writing, gifts or other	_X__	None
	services		
13	Other financial or non-financial interests	X	None

Please place an “X” next to the following statement to indicate your agreement:

_X__ I certify that I have answered every question and have not altered the wording of any of the questions on this form.