Cancer Biomarkers in Liquid Biopsy for Early Detection of Breast Cancer: A Systematic Review

Galo Duque1,2, Carlos Manterola1,3, Tamara Otzen1,3, Cristina Arias2, Dennise Palacios2, Miriann Mora1,2, Bryan Galindo2, Juan Pablo Holguín1,2 and Lorena Albarracín1,2

1Medical Sciences PhD Program, Universidad de La Frontera, Temuco, Chile. 2Faculty of Medicine, Universidad del Azuay, Cuenca, Ecuador. 3Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco, Chile.

ABSTRACT

BACKGROUND: Breast cancer (BC) is the most common neoplasm in women worldwide. Liquid biopsy (LB) is a non-invasive diagnostic technique that allows the analysis of biomarkers in different body fluids, particularly in peripheral blood and also in urine, saliva, nipple discharge, volatile respiratory fluids, nasal secretions, breast milk, and tears. The objective was to analyze the available evidence related to the use of biomarkers obtained by LB for the early diagnosis of BC.

METHODS: Articles related to the use of biomarkers for the early diagnosis of BC due to LB, published between 2010 and 2022, from the databases (WoS, EMBASE, PubMed, and SCOPUS) were included. The MinCir diagnostic scale was applied in the articles to determine their methodological quality (MQ). Descriptive statistics were used, as well as determination of weighted averages of each variable, to analyze the extracted data. Sensitivity, specificity, and area under the curve values for specific biomarkers (individual or in panels) are described.

RESULTS: In this systematic review (SR), 136 articles met the selection criteria, representing 17,709 patients with BC. However, 95.6% were case-control studies. In 96.3% of cases, LB was performed in peripheral blood samples. Most of the articles were based on microRNA (miRNA) analysis. The mean MQ score was 25/45 points. Sensitivity, specificity, and area under the curve values for specific biomarkers (individual or in panels) have been found.

CONCLUSIONS: The determination of biomarkers through LB is a useful mechanism for the diagnosis of BC. The analysis of miRNA in peripheral blood is the most studied methodology. Our results indicate that LB has a high sensitivity and specificity for the diagnosis of BC, especially in early stages.

KEYWORDS: Breast neoplasms, liquid biopsy, early diagnosis, microRNAs, sensitivity and specificity, breast cancer

RECEIVED: April 19, 2022. ACCEPTED: October 10, 2022.

TYPE: Systematic Review

FUNDING: The author(s) received no financial support for the research, authorship, and/or publication of this article.

DECLARATION OF CONFLICTING INTERESTS: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

CORRESPONDING AUTHOR: Galo Duque, Faculty of Medicine, Universidad del Azuay. Postal address: Av. 24 de Mayo y Hernán Malo, Cuenca, Ecuador 010107. Email: galoduque@uazuay.edu.ec

Introduction

Breast cancer (BC) is the most frequently diagnosed malignancy and the leading cause of cancer-related deaths in women worldwide. In 2020, more than 2.2 million new cases were diagnosed and 684,996 deaths were reported globally.1 This neoplasm originates in the epithelial cells that line the mammary ducts responsible for transporting milk to the nipple or in the lobules, which are the glandular structures that produce milk.

Despite recent developments for early detection of this disease, additional innovative and effective diagnostic methods in the early stages are needed to obtain the best possible outcomes during treatment. To date, progress in this area has been slow and continues to be an important challenge.2-3

Although ultrasound and mammography are the most widely used methods, both procedures depend on the radiologist’s expertise, as well as the quality and technology of the equipment used during these procedures. Furthermore, as mammography applies ionizing radiation, the ability to use in patients younger than 30 years of age is limited.1-5 During the last decade, nuclear magnetic resonance of the mammary glands has been used as a complementary method, with high sensitivity in the detection of small lesions. This approach, however, is an expensive procedure with a significant rate of false-positives.6

Nevertheless, to confirm the diagnosis of BC, all of the above methods require a tissue biopsy as an adjunct, which is an invasive procedure. The development of non-invasive techniques and methods that allow early diagnosis of BC is highly relevant, and several methods are being studied and researched worldwide. An example of the above would be the use of serum markers such as carcinoembryonic antigen (CEA) and Ca153, which may be interesting strategies, but show low sensitivity and specificity.7

Liquid biopsy (LB) is an approach that has also recently emerged. It identifies circulating biomarkers that can serve as a valuable and promising tool for early diagnosis of BC. This procedure, which is non-invasive, can be performed on blood and other body fluids such as urine, saliva, nipple discharge,
volatile respiratory fluids, nasal secretions, breast milk, and tears. Cellular components, such as circulating tumor nucleic acids (ctDNA), circulating tumor cells (CTC), vesicle-encapsulated extracellular RNA (EV-mRNA), and circulating microRNA (miRNA) molecules, are among the major components identified.8

The molecular classification of the disease based on the expression of estrogenic hormone receptors (ER), progesterone receptors (PR), human epidermal growth factor 2 (HER2), and Ki-67 proliferative index allows the following BC subtypes to be identified: luminal A (ER and/or PR+, Her2−, Ki-67 low), luminal B (ER and/or PR+, Her2−, Ki-67 high) or (ER and/or PR+ Her2+), Her2-enriched (ER and PR− Her2+), and triple-negative (ER− PR− Her2−), each of which is related to a specific gene expression and useful in the diagnosis of neoplasia.9 In addition to molecular classification, the histological grade and stage of the disease are being investigated to determine their benefit in the early diagnosis of BC.

The aim of this study was to analyze the available evidence on the use of biomarkers obtained by LB in the early diagnosis of BC.

Materials and Methods

This study was written following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA 2020) statement10 and is registered as a protocol in the PROSPERO database (ID: CRD42021255596).

Design

Systematic Review (SR).

Eligibility criteria

Articles related to LB and BC early detection in humans were included, without language restriction; the articles were published between January 2010 and June 2022. Review articles, letters to the editor, case reports, conference abstracts, and duplicate articles were excluded.

Information sources

A systematic search of related literature was conducted from the following sources: WoS, EMBASE, PubMed, SCOPUS. In addition, a manual cross-reference search was performed.

Search strategy

MeSH terms and free words were used: "circulating cell-free DNA," or "plasma cell-free DNA," or "serum cell-free DNA," or "liquid biopsy" or "biomarkers," or "circulating tumor cells," or circulating tumor DNA," or "detection of cancer DNA," or serum microRNA" and "breast cancer" or "early breast cancer detection" or "screening of breast cancer." In addition, Boolean operators "AND" and "OR" were used. The searches were adapted to each source of information and the corresponding language.

Selection process. The eligibility assessment of the primary articles was performed by 2 groups of 2 reviewers each (G.D.-C.A. and B.G.-J.P.H.), who worked independently and blinded. Disagreements between review groups were resolved by consensus. Item recruitment closed on May 30, 2022.

Data collection process. For data extraction, an Excel sheet (PC Excel, version 15.24; 2016 Microsoft Corporation) was created. Five authors extracted data from the included studies (G.D., C.A., D.P., J.P.H., and B.G.) and 2 additional authors checked the extracted data (M.M. and L.A.). Disagreements between the reviewers were resolved by consensus.

Variables studied

The variables considered were year of publication, country, number of cases, type of design, body fluid used for LB (peripheral blood, saliva, fluid aspirated from the nipple, sweat, urine, tears, and volatile compounds in the breath), type of biomarkers in the blood (CTC, ctDNA, circulating free DNA [cfDNA], circulating miRNA, circulating extracellular RNA vesicles [EV-RNA], and others), type of biomarkers in other body fluids (CTC, EV-RNA, miRNA, ctDNA, cfDNA, and others), determined biomarkers, sensitivity, specificity, and methodological quality (MQ) of the primary studies.

Study risk of bias assessment. The internal validity (MQ) of the primary studies was assessed using the MInCir-Dg scale11 (MQ assessment scale for diagnostic studies), composed of 9 items grouped into 3 domains, with a minimum and maximum score of 9 and 45 points, and a cut-off point of 20 points, which defines the dichotomy of the MQ construct for diagnostic studies.

Effect measures

Descriptive statistics (percentages, frequencies) and determination of variable weighted means (weighting of the result of each variable by the MQ of the primary study from which it originated) were used to analyze the extracted data.

Synthesis methods

The identified documents were filtered by duplication between databases. Titles and abstracts were screened using selection criteria. Finally, an in-depth analysis of each of the selected primary articles was performed; critical reading guides were applied, thus organizing the synthesis of the information.
Assessment of reporting bias

Potentially missing studies were identified by cross-reference searches.

Certainty assessment

Not considered.

Ethics

The authors and centers of the primary studies used were masked.

Results

Study selection

In total, 16,142 articles were identified in the aforementioned databases (Table 1). However, 234 articles were retained for full reading, following the elimination of duplicates and articles whose title and abstract did not meet the eligibility criteria; of these, only 13612-147 met the inclusion criteria and are the basis of the qualitative and quantitative analysis of this SR (Figure 1).

Study characteristics

Of the 136 primary articles, 130 (95.6\%) were case-control studies and 6 (4.4\%) were cohort studies. The population
Results of individual studies

Evidence on the early diagnosis of BC through LB came from 31 countries. China (n = 45) and Egypt (n = 18) were the countries that contributed the most articles (Figure 2).

The molecular classification of BC (Figure 3) was not described in 59 articles, while 73 articles included patients with various types, based on the molecular classification (luminal A, luminal B, HER2-enriched, and triple-negative). In addition, 2 articles studied only patients with triple-negative BC, and 2 included patients with HER2-enriched BC.

In reference to the disease stage, 57.4% of the articles detailed the stages that the patients were in at the time. In 43 articles, patients in all stages (I, II, III, and IV) were included, representing a population of 5382 patients with BC (stage II was the most frequent, representing 3230 patients). The details are available in Table 3.

The histological grade was identified in 40.4% of the articles, which represents 5102 patients. Patients with all grades (1-3) were included in 51 articles. In 3 articles, grades 2 and 3 were included, and 1 article included only grade 3 patients (Table 4).

Diagnostic role of LB in BC

The body fluids in which LB was analyzed are detailed in Table 5 emphasizing that in 96.3% of the studies, it was performed in peripheral blood. Additional body fluids analyzed included urine and saliva.

Regarding the different LB methods, miRNA analysis (56.8%) predominated, followed by cfDNA (20.5%), in the studies that used blood samples. In those that analyzed saliva or urine, the diagnosis was performed by miRNA analysis.

The validity of the different tools for early diagnosis of BC described by the primary studies (markers obtained in DNA or RNA) is noted in Tables 6 to 8. It is noteworthy that the sensitivity of most is higher than 70% (Table 6).

Table 2. Characterization of the primary articles on the diagnosis of BC by means of LB (n = 136).

TYPE OF BC	N	%
Several	73	53.7
Not specified	59	43.4
Triple-negative	2	1.5
HER2-enriched	2	1.5

PUBLICATION YEAR	NO. OF ARTICLES	%
2022	11	8.1
2021	35	25.7
2020	17	12.5
2019	14	10.3
2018	10	7.4
2017	49	2.9
2016	12	8.8
2015	8	5.9
2014	8	5.9
2013	2	1.5
2012	9	6.6
2011	2	1.5
2010	4	2.9

Abbreviations: BC, breast cancer; HER2, human epidermal growth factor 2; LB, liquid biopsy.

Figure 2. Main countries of origin of articles on BC diagnosis through LB.

BC indicates breast cancer; LB, liquid biopsy.
As shown in Table 6, highlighted in gray, 28 biomarkers presenting a Sensitivity greater than 90% were identified: miR-17-5p, miR-155, miR-222, PTEN, SMAD4, APC, RARB2, miRNA-222, miRNA-373, miR-202, PTEN, SMAD4, APC, RARB2, miRNA-222, miRNA-373, miR-27a, cfDNA methylation score, HER2 mRNA, miR-21, polymorphism -31G/C in survivin promoter gene, hsa-miR-25-3p, hsa-miR-548ar-5p, miR-495, telomeric sequences in cfDNA, miR-30c, miR-148a, miR-185-3p, miR-34a, miR10b, miR21, and miRNA-373.

As shown in Table 7, highlighted in gray, 16 biomarker panels in peripheral blood can be observed and 2 biomarker panels in saliva with a sensitivity greater than 90%.

As shown in Table 8, highlighted in gray, 8 individual biomarkers and 7 panel biomarkers taken from peripheral blood had statistically significant area under the curve (AUC) values (greater than 0.80). However, 21 studies (20 in peripheral blood and 1 in urine) presented statistically significant P values (less than .05).

Sensitivity, specificity, AUC, or P value of the test analyzed was not described in 17 of the articles studied. These articles, however, did address frequencies and associations with patients’ clinical pathological characteristics.

Methodological quality. The average MQ of the articles was 24.7 points (Table 9). Most of the articles were cases and control studies. None of the studies validate the sample size used, and from a methodological standpoint, there is a lack of homogeneity throughout all of the articles reviewed. Furthermore, not all studies describe the inclusion and exclusion criteria; and in some, the study population involves less than 100 patients. However, the study test is described in sufficient detail in all of these studies, and regardless of the results, the same reference standard was applied to all study subjects. Furthermore, in most of the articles, the objectives of the study were clear and precise.

Table 3. Characterization of primary articles based on the stage of the disease.

STAGES	NO. OF ARTICLES	NO. OF PATIENTS BY STAGES	TOTAL	I	II	III	IV	I AND II	I, II, AND III	III AND IV
I and II	15	1291	428	637	–	–	226	–	–	–
I, II, and III	20	1842	544	793	365	–	114	26	–	–
I, II, III, and IV	43	5382	1259	1800	846	406	625	–	446	–
Unknown	–	91	–	–	–	–	–	–	–	–
Total	78	8606	2231	3230	1211	406	965	26	446	–

Table 4. Characterization of primary articles based on the histological grade.

HISTOLOGICAL GRADE	NO. OF ARTICLES	NO. OF PATIENTS BY GRADE	TOTAL	1	2	3	1 AND 2	2 AND 3
1, 2, and 3	51	4695	646	2049	1676	274	50	
2 and 3	3	153	–	110	43	–	–	–
3	1	5	–	–	5	–	–	–
Unknown	–	249	–	–	–	–	–	–
Total	55	5102	646	2159	1724	274	50	
The primary use of serum markers CA-153, CA27-29, CA-125, and CEA is applied to monitor response to treatment. However, these markers are not recommended as screening methods in light of their low diagnostic sensitivity in early disease, and their lack of specificity.148 Despite scientific technological advancements, LB has not yet been standardized as a routine diagnostic method in the clinical setting.

It is expected that the sequencing of the genetic material obtained through LB and the significant amount of research being conducted in this area will prompt the implementation of this diagnostic tool for diagnosis, early detection, and follow-up of BC patients.

Our study found that only 4 primary articles researched the determination of biomarkers in urine and saliva, in such a way that although the use of LB in different bodily fluids has been described in BC, peripheral blood is still the most frequently used.

Contrary to what we reported in our previous review, in which most of the primary articles applied the determination of biomarkers using ctDNA,149 in this SR, miRNA expressions were researched in 56 studies, with the aim of identifying biomarkers that differentiated between tumor tissue, healthy tissue, benign tumor breast tissue, and BC. This could be explained because the levels of cfDNA and ctDNA are significantly low in the preclinical stages, which reduces the sensitivity for screening.152 Thus, the Yong Tay study determined that although ctDNA had a specificity greater than 99% for detecting BC, its sensitivity was only 33%.153

The explanation may be related to the miRNA biomarker normal signals derived from active metabolic processes occurring in all living, growing cells, increasing the pool of cellular biomarkers in earlier stages. The expressions obtained from ctDNA originate from tumor cells that detach from a tumor at an advanced stage of its development.154

In 29 articles,23-25,28,29,30,60,68,73,79,80,85,89,92,95,96,99,103,105,108,109,115,117,119,121,126,128,129,136,141 sensitivity and specificity were reported individually for a single biomarker. In 21 of these, sensitivity was greater than 70%. However, in 10 of the studies in which sensitivity was less than 70%, and in one, 80% greater specificity was reported. In contrast, 26 articles reported sensitivity and specificity figures greater than 70% for combined biomarkers in the form of panels27,29,30,61,76,77,81,82,87,90,93,94,97,98,101,104,106,111-114,118,123,124,132,147 leaving only 6 panels with figures lower than 70%, 61,76,93,114,124,132 Finally, 27 articles reported AUC and P values,26,62,63,67,71,72,78,83,84,88,102,103,106,110,116,120,121,122,125,127,129,130,133,135,137,139,140,142,143,145,146 and of these, AUC was lower than 0.767,133,135 only in 3 articles. In contrast, 2 articles reported AUC values above 0.926,88

A study worth noting is by Hua Zhao, in which 31 miRNA biomarkers were found in White patients, and 18 in African Americans, all with adequate sensitivity and specificity to discriminate between BC and healthy subjects.145 Despite the above, to be considered useful, a biomarker must meet a set of analyses and clinical criteria. The benefit provided by the biomarker is underscored in the clinical setting to reduce mortality from BC and clinical validity (the ability to accurately identify a patient with BC).155,156

Consequently, even though research results are increasingly promising, the use of biomarkers for the early diagnosis of BC requires time to better understand the mechanisms related to circulating tumor material and to achieve adequate reproducibility.157,158

Discussion

There are 3 SRs related to this issue. One of them studied circulating tumor ctDNA with disease-free survival in patients with BC,148 another described the clinical uses of LB in BC,149 and the last one reported the validity of HER2/ERBB2 copy number variation in LB from BC patients.150 This is the first SR aimed at establishing the main biomarkers obtained by LB, useful for the early diagnosis of BC. This evidence is highly relevant because the identification of biomarkers in the early diagnosis of BC would undoubtedly be valuable in reducing mortality rates resulting from this neoplasm.

The LB approach shows promise, given that the standard BC screening technology is limited. For instance, the sensitivity of mammography depends on age, ethnic origin, personal history, the experience of the radiologist, and the quality of the technique applied.151 In addition, ultrasound imaging of the breast also depends on the radiologist’s expertise.148

The explanation may be related to the miRNA biomarker normal signals derived from active metabolic processes occurring in all living, growing cells, increasing the pool of cellular biomarkers in earlier stages. The expressions obtained from ctDNA originate from tumor cells that detach from a tumor at an advanced stage of its development.154

Table 5. Characterization of LB analyzed in primary articles.

BODY FLUIDS	NO. OF ARTICLES (N=136)
Peripheral blood	131 (96.3%)
Urine	3 (2.2%)
Saliva	1 (0.7%)
Saliva and peripheral blood	1 (0.7%)

BIOMARKERS USED IN PERIPHERAL BLOOD	NO. OF ARTICLES (N=132)
miRNA	75 (56.8%)
cfDNA	27 (20.5%)
ctDNA	8 (6.1%)
RNA	8 (6.1%)
DNA	5 (3.8%)
cfRNA	4 (3.0%)
Vesicles	4 (3.0%)
Others	1 (0.8%)

BIOMARKERS IN OTHER BODY FLUIDS	NO. OF ARTICLES (N=4)
miRNA	4 (100%)

Abbreviation: LB, liquid biopsy.
Table 6. Individually tested biomarkers for early diagnosis of BC in peripheral blood.

AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Guo et al103	miR-155	84.2	88.1	NR
Garrido-Cano et al104	miR-99a-5p	68.8	65.3	NR
Swellam et al109	miR-17-5p	100	75.5	0.87
	miR-155	97.4	94.4	0.99
	miR-222	91.2	78.6	0.86
Kim et al105	miR-202	90	93	NR
Adam-Artigues et al23	miR-30b-5p	78.3	72.3	NR
Swellam et al24	PTEN	100	94	0.99
	SMAD4	100	100	0.85
Swellam et al115	APC	93.4	95.4	0.95
	RARB2	95.5	92.4	0.94
Zhao et al126	miR-195	69	89.2	0.86
El-Ashmawy et al136	LncRNA-ATB	80	90	0.91
	FAM83H-AS1	70	76.7	0.74
Swellam et al115	miRNA-21	70.8	91.8	0.86
	miRNA-222	97.8	75.5	0.83
	miRNA-373	93.4	99	0.99
Guo and Zhang136	miR-181a	70.7	59.9	0.67
Swellam et al92	miR-27a	92	92	0.96
Bozhenko et al108	Mammaglobin	60.6	92.3	NR
Zhang et al109	LncRNA H19	56.7	86.7	0.81
Xia et al126	mtDNA	77	83	0.82
Zhang et al99	miR-30b-5p	80	100	NR
	miR-96-5p	53.3	100	NR
	miR-182-5p	53.3	92.3	NR
	miR-374b-5p	86.7	69.2	NR
	miR-942-5p	66.7	100	NR
Yousif et al73	miR-99a	76.7	95	0.93
Liu et al125	cfDNA methylation score	93	73.5	0.81
Wu et al195	HER2 mRNA	90	50	0.72
Hussein et al96	ALU-247	70	100	0.80
	ALU-115	67.5	100	0.78
	cfDNA integrity	77.5	90	0.83
Diansyah et al28	miR-21	92.3	81.2	0.92
Motaw et al79	Polymorphism -31G/C in survivin promoter gene	92.7	86.9	0.89
Souza et al80	hsa-miR-25-3p	92	83	0.92

(Continued)
AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
hsa-miR-548a-5p		83	83	0.85
hsa-miR-888-5p		83	75	0.86
hsa-miR-548ar-5p		100	77	0.97
Fu et al¹⁰⁵	miR-382-3p	52	92.5	0.74
	miR-598-3p	95	85	0.94
	miR-1246	93	75	0.90
	miR-184	87.5	71	0.74
Mishra et al¹¹⁷	miR-195-5p-5p	77.8	100	0.90
	miR-495	100	66.7	0.90
Matamala et al¹¹⁹	miR-505-5p	75	60	0.72
	miR-96-5p	73	66	0.72
Wu and Tanaka¹²¹	Telomeric sequences in cfDNA	91.5	76.2	0.87
Wang-Johanning et al¹²⁹	HERV-K type (HML-2) levels	80	84.6	0.89
Sun et al¹⁴¹	miR-155	65	81.8	0.80
Bartkowiak et al¹³³	CCN1	80	99	0.90
Canatan et al³⁷	Delta181CTmir155	83.3	82.4	0.86
	Delta181CTmir125a	83.3	64.7	0.85
	Delta192CTmir155	77.8	64.7	0.77
	Delta181CTmir21	72.2	64.7	0.70
El-Fattah et al³⁸	Hotair	76	76	0.77
	Neat1	80	80	0.73
	Pai-1	64	68	0.71
	Opn	80	76	83.00
Elhelaly et al¹⁴	ccfDNA	67	90	0.86
	DNA integrity index	51	90	0.73
	VEGF	74	34	0.55
Elhelbawy et al³⁹	miR-30c	97.3	96.4	0.99
	miR-148a	94.7	90.9	0.99
Mahmoud et al⁴⁹	miR-185-3p	95	66	0.84
	miR-301a-3p	85	78	0.90
Majumder et al⁵¹	pri-miR526b	86	71.8	NR
Mohamed et al¹⁷	miR-155	86	90	0.94
	miR-373	85	100	0.95
	miR-10b	60	93	0.77
	miR-34a	91	75	0.89
Ali et al¹²	miR10b	97.1	100	0.99
	miR21	95.7	98.5	0.97

(Continued)
Table 6. (Continued)

AUTHOR	BIOMARKERS	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Ameli-Mojarad et al\(^{33}\)	hsa_circ_0005046	85	51	0.77
	hsa_circ_0001791	10	87	100
Bakr et al\(^{34}\)	miRNA-373	90.8	98.4	0.98
Han et al\(^{47}\)	cfdNA	70	76	0.77
Liu et al\(^{46}\)	hsa-miR-423-5p	66	68	68
Liu et al\(^{47}\)	hsa-miR-21-5p	86.7	93.3	0.96

Abbreviations: AUC, area under curve; BC, breast cancer; cfdNA, circulating cell-free DNA; HER2, human epidermal growth factor 2; miRNA, microRNA; NR, not reported.

Table 7. Biomarker panels tested in LB for early diagnosis of BC.

FLUID	AUTHOR	BIOMARKER	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Peripheral	Shan et al\(^{104}\)	HOXD13, SFN, RASSF1A, P16, PCDHGB7, Hmlh1	79.6	72.4	NR
Blood	Fan et al\(^{90}\)	c-miR-16, c-miR21, c-miR155, c-miR195	88.9	86.7	0.936
	Luo et al\(^{123}\)	miR-451, miR-148a, miR-27a, miR-30b	94.7	82.8	0.953
	Li et al\(^{76}\)	miR-23a-3p	86.5	45.9	0.699
		miR-130a-5p, miR-144-3p, miR-148a-3p, miR-152-3p			
	Li et al\(^{81}\)	miR let-7b-5p, miR-122-5p, miR-146b-5p, miR-210-3p, miR-215-5p	94.4	88.9	0.978
	Kodahl et al\(^{24}\)	miR-15a, miR-18a, miR-107, miR-133a, miR-139-5p, miR-143, miR-145, miR-365, miR-425	83.3	41.2	0.665
	Fang et al\(^{82}\)	hsa-miR-324-3p/hsa-miR-382-5p, hsa-miR21-3p/ hsa-miR-24-3p, hsa-miR-30a-5p/hsa-miR-30e-5p, hsa-miR-221-3p/hsa-miR-324-3p	89.0	92.5	0.901
	Liu et al\(^{25}\)	PD-1 + IL-10 + IL-2R\(\alpha\) + CA15-3	93.3	61.4	0.811
	Salta et al\(^{124}\)	APC, FOXA1, RASSF1A	81.8	76.9	NR
	Ozawa et al\(^{81}\)	EV-miR-142-5p, miR320a, miR-443b-5p	93.3	68.8	0.8387
	Liu et al\(^{101}\)	ANRIL, HIF1A-AS2, UCA1	76.0	97.1	0.934
	Murillo Carrasco et al\(^{27}\)	PUM1 y RNasa P	100	93.8	0.989
	Raheem et al\(^{87}\)	miR-34a y CA15-3	77.7	83.3	0.842
	Shimomura et al\(^{111}\)	miR1246, miR1307-3p, miR4634, miR6861-5p, miR6875-5p	97.3	82.9	0.971
Peripheral	Thakur et al\(^{132}\)	miR21, miR-221, miR-210	100	100	1
Blood	Nunes et al\(^{27}\)	Methylation cfdNA APC, FOXA1, RASSF1A (PanCancer)	72.4	73.5	NR
	Wang et al\(^{92}\)	Methylation GCM2, ITPRIPL1 and CCDC181	92.9	87.5	0.961
	Jang et al\(^{30}\)	miR-1246, miR6, miR-24, miR-373	98.0	96.0	0.992
	Mijnes et al\(^{27}\)	SPAG6 - PER1 - ITIH5 - NKX2-6	70.0	79.0	0.842
	Yu et al\(^{86}\)	miR-21-3p, miR-21-5p, miR-99a-5p	97.9	73.5	0.895
	Uehiro et al\(^{113}\)	Methylation RASGRF1, CPX1M1, HOXA10 and DACH1	86.2	82.7	0.876

(Continued)
FLUID	AUTHOR	BIOMARKER	SENSITIVITY (%)	SPECIFICITY (%)	AUC
Li et al	EGFR + PPM1E	Li et al114	77.9	50.7	0.734
Wang et al	Survivin + VEGF	Wang et al106	95.4	84.0	0.898
Zhang et al	miR-199a, miR-29c y miR-424	Zhang et al118	77.2	88.9	0.905
Kloten et al	RASSF1A, ITIH5 y DKK3	Kloten et al132	67.0	69.0	0.697
Aaroe et al	738 gene expression profile	Aaroe et al147	80.6	78.3	0.88
Adam-Artigues	miR-30b-5p, miR-99a-5p	Adam-Artigues et al11	82.3	87.5	0.92
Itani et al	miR-145, miR-425-5p, miR-139-5p, miR-130a	Itani et al42	97.0	91.0	0.97
Jang et al	miR-1246, miR-202, miR-21, and miR-219B	Jang et al43	85.3	93.3	0.96
Kim et al	miR-9, miR-16, miR-21, and miR-429	Kim et al144	96.8	80.0	0.88
Lopes et al	miR-210, miR-152	Lopes et al148	83.3	68.0	0.75
Panjeh et al	Panel 6 (Adipinsin, Leptin, Syndecan-1, Basic fibroblast growth factor, Interleukin 17B and Dickopff-3)	Panjeh et al19	65.0	80.0	NR
Sadeghi et al	hsa-miR-106b-5, –126-3p, –140-3p, –193a-5p, –10b-5p	Sadeghi et al52	67.0	80.0	74.0
Yu et al	hsa_circ_0000091, hsa_circ_0067772, and hsa_circ_0000512	Yu et al22	97.0	90.0	0.97
Zhang et al	miR-185-5p, miR-362-5p	Zhang et al156	92.7	92.3	0.96
Zhang et al	cg00594560, cg01348584, cg04541366, cg07458308, cg08279008, cg08402365, cg08599259, cg09760908, cg13973436, cg14140881, cg14868703, cg15321298, cg15634980, cg16304215, cg17632299, cg18087672, cg18786873, cg20072171, cg20631750, cg21501525, cg22778178, cg23035715, cg23566568, cg25756435, cg25924096, cg26371731	Zhang et al56	89.0	100	0.97
Zou et al	let-7b-5p, miR-106a-5p, miR-19a-3p, miR-19b543 3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-425-544 5p, miR-451a, miR-92a-3p, miR-93-5p, and miR-16-545 5p	Zou et al57	87.2	89.3	0.94
Saliva	miR.21 y MMP1/CD63	Saliva Ando et al86	95.0	79.0	NR
Hirschfeld et al	miR-424, miR-423, miR-660, let7-i	Hirschfeld et al74	98.6	100	0.995

Abbreviations: AUC, area under curve; BC, breast cancer; cfDNA, circulating cell-free DNA; LB, liquid biopsy; NR, not reported.
Table 8. Analysis through AUC values or P values of different individual biomarkers and panel biomarkers in peripheral blood and urine. (Sensitivity and specificity were not reported in these primary articles.).

FLUID	AUTHOR	BIOMARKERS	AUC	P
Peripheral blood	Cuk et al^{133}	miR-148b, miR-376c, miR-409-3p, miR-801	0.69	
	Guo et al^{67}	miR-21-5p, miR-1273g-3p	0.51	
	Madhavan et al^{125}	cfDNA integrity	0.75	
	Yan et al^{83}	Vesicles mR-375, mRNA-655-3p, mR-548b-5p	0.81	
	Shin et al^{116}	miR-16	0.79	
		miR-21	0.87	
		miR-199a-5p	0.88	
	Zhao et al^{45}	hsa-miRNA-595	0.75	
		hsa-miRNA-493	0.70	
		hsa-miRNA-155	0.72	
	Huang et al^{84}	tDR-7816, tDR-5334, tDR-5236, tDR-6954 y tDR-4733	0.86	
	Schrauder et al^{137}	miR375, miR655-3p, miR548b-5p, miR24-2-5p	0.68	
	Bao et al^{26}	genomic instability MIR421, MIR128-1 y MIR128-2	0.92	
	Tahmouresi et al^{62}	LncRNAs DSCAM-AS1 y MANCR	0.76	
	Loke et al^{46}	miR-3162-5p, miR-6869-5p, miR-6781-5p, miR-1249, miR-7108-5p, miR-6804-5p, let-7e-3p y miR-1306-5p	0.95	
	Farina et al^{102}	hsa-miR-3124-5p, hsa-miR-1184, hsa-miR-4423-3p, hsa-miR-4529-3p, hsa-miR-7855, hsa-miR-766-3p	0.89	
	Cappetta et al^{58}	CYFIP1	0.73	
	Giussani et al^{40}	hsa-miR-423-5p-002340; hsa-miR-181c-000482; hsa-miR-625-002431; hsa-miR-301b-002392	0.71	
		hsa-miR-423-5p-002340; hsa-miR-181c-000482; hsa-miR-301b-002392	0.68	
		hsa-miR-181c-000482; hsa-miR-625-002431; hsa-miR-301b-002392	0.70	
		hsa-miR-423-5p-002340; hsa-miR-625-002431; hsa-miR-301b-002392	0.68	
		hsa-miR-423-5p-002340; hsa-miR-625-002431; hsa-miR-301b-002392	0.66	
		hsa-miR-181c-000482; hsa-miR-301b-002392	0.66	
		hsa-miR-181c-000482; hsa-miR-301b-002392	0.66	
		hsa-miR-181c-000482; hsa-miR-301b-002392	0.66	
		hsa-miR-181c-000482; hsa-miR-301b-002392	0.63	
	Lin et al^{45}	circRNAs in plasma EVs	0.83	

(Continued)
The studies by Ming et al70 and Yoshinami et al64 also evaluated gene profiles and the presence of mutations, coinciding with Jimenez et al75 and Duque et al,149 in which the most frequently found mutations affected these loci: PIK3CA, TP53, and AKT1.

MiRNA-34a expression was low and miRNA-155 expression was elevated in BC vs controls with a significant P value. In addition, a correlation was demonstrated between the expression of miRNA-155 or miRNA-34a and TNM, presence of nodes, and histological grade.107 Similarly, the Nadeem study agrees with this result by showing that low miRNA-195 expression was correlated with clinical stage, nodes, and histological grade.100

However, the studies of Delmonico et al120 and Ritter et al,69 which analyzed methylation promoters in DNA in saliva and blood, as well as miRNA in urine and blood, did not find significant associations.

As is noted in Figure 2, 45 studies from China (33%), 18 from Egypt, 8 from the United States, and 8 from Germany representing more than half of the primary articles were found. The figures clearly indicate considerable interest in ongoing research by these countries, regarding this area.
Table 9. MQ scores of the primary articles studied by year (n = 136).

YEAR	NO. OF CASES	MQ SCORE	M (SD)	MEDIAN (MAX-MIN)
2022	114-22	25.6 (3.17)	26.0 (20-30)	
2021	353-57	26.5 (3.11)	27.0 (18-34)	
2020	174-74	22.4 (3.94)	22.0 (17-30)	
2019	14.75-88	24.5 (3.20)	24.5 (19-29)	
2018	10.89-98	24.2 (2.57)	24.5 (20-28)	
2017	4.99-102	22.8 (2.99)	22.0 (20-27)	
2016	12.103-114	25.0 (3.52)	25.5 (19-31)	
2015	8.115-122	23.1 (2.42)	23.0 (20-26)	
2014	8.152-130	23.6 (3.07)	24.5 (18-27)	
2013	2.153-132	27.5 (2.12)	27.5 (26-29)	
2012	9.155-141	25.4 (4.64)	25.0 (19-34)	
2011	2.242-143	23.5 (0.71)	23.5 (23-24)	
2010	4.144-147	23.3 (6.12)	23.0 (18-29)	

Abbreviations: MQ, methodological quality; SD, standard deviation.

Finally, and in reference to the MQ analysis of the primary studies (applying the MINCir-Dg scale), it is important to emphasize that the median score was 25 points (17-34 points) and the average was 24.7 points, which represents a regular MQ. It should be highlighted that the lowest scores were associated with the type of design (most of the studies correspond to cases and controls) and not having estimated the sample size, which determines that the level of evidence of the primary articles is 2b and 3b for diagnostic studies, with a grade B recommendation.

Regarding the limitations of this study, the heterogeneity of the primary studies should be highlighted, as various methods are used, both for the identification of different biomarkers through LB (CTCs, ctDNA, cfDNA, miRNA, and EV-RNA), as well as the fact that some studies evaluate biomarkers individually, while others do so through combinations, establishing biomarker panels under evaluation. Another important limitation of the study was that none of the primary studies performed a sample size calculation, and in the articles, the number of participants varied and was inconsistent. In addition, some primary studies established sensitivity and specificity, while others only reported AUC values, and some only reported P values. These variables are made for a difficult analysis and comparison. Despite these limitations, the strengths of the primary studies are that a significant number maintained a methodological strategy to perform the analyses in test cohorts, and then in validation cohorts, maintaining groups of cases and control groups in each of the studies.

Conclusions

Integrating LB in clinical practice as part of the process for early diagnosis of BC is a promising alternative. The biomarkers, obtained from samples obtained through LB, consisting of miRNA molecules, were the most frequently investigated biomarkers in the early diagnosis of BC. MiR-21, miR-155, and miR-195 have the greatest potential to discriminate between healthy individuals, BC, and benign breast tumors. There are panels of combined biomarkers, with the potential to increase diagnostic sensitivity. Our results reflect that LB has a high sensitivity and specificity for the diagnosis of BC, especially in early stages.

Author Contributions

GD and CM contributed to the concept and design of the research. TO reviewed and approved the study design. GD, CA, JPH, and BG performed the selection process for article recruitment. GD, CA, DP, JPH, and BG extracted the data from the studies included, and MM and LA verified the extracted data. GD, CM, CA, and BG collaborated in the analysis of the results and presentation of data. GD and BG contributed to final revisions. Data sharing is not applicable to this article as no new data were created or analyzed in this study. All authors contributed in the drafting of the article.

ORCID iDs

Galo Duque https://orcid.org/0000-0003-1306-9392
Cristina Arias https://orcid.org/0000-0002-8737-5109
Lorena Albarracín https://orcid.org/0000-0001-8902-1040

REFERENCES

1. Ferlay J, Ervik M, Lam F, et al. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; 2020. https://gco.iarc.fr/today.
2. Welch HG, Prook PC, O’Mallely AJ, Kramer BS. Breast-cancer tumor size, overdiagnosis, and mammography screening effectiveness. N Engl J Med. 2016;375:1438-1447. doi:10.1056Neillmoj.6600249.
3. Jacklyn G, McGeechan K, Irving L, et al. Trends in stage-specific breast cancer incidence in New South Wales, Australia: insights into the effects of 25 years of screening mammography. Breast Cancer Res Treat. 2017;166:843-854. doi:10.1007/s10549-017-4443-x.
4. Inagaki M, Ota D, Tsuji M, Kobayashi Y, Mori M, Fukuchi A. Using ultrasound findings to predict high tumor-infiltrating lymphocytes in triple negative breast cancer. Cancer Res. 2017;77:P4-02-04.
5. Pijpe A, Andrieu N, Easton D, et al. Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ. 2012;345:e5660. doi:10.1136/bmj.e5660.
6. Saslow D, Boetes C, Burke W, et al. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin. 2007;57:75-89. doi:10.3322/canjclin.57.2.75.
7. An X, Quan H, Lv J, et al. Serum microRNA as potential biomarker to detect breast atypical hyperplasia and early-stage breast cancer. Future Oncol. 2018;14:3145-3164. doi:10.2217/fon-2018.
8. Tellez M, Knutsen E, Perander M. Current status of circulating tumor cells, circulating tumor DNA, and exosomes in breast cancer liquid biopsies. Int J Mol Sci. 2020;21:9457. doi:10.3390/ijms21249457.
9. Harbeck N, Penauf E, Cortes J, et al. Breast Cancer. Nat Rev Dis Prim. 2019;5:66. doi:10.1038/s41575-019-0111-2.
10. Page MJ, McKenzie JE, Bosuuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi:10.1136/bmj.n71.
11. Mantelera C, Cartes-Velasquez R, Otzen T. Instructions for using the MiCisCal scale to assess methodological quality in diagnostic accuracy studies. Int J Morphol. 2016;34:78-84. doi:10.4067/S0717-95292016000100012.

12. Ali M, El Gayar D, Hany N, Ezzat AH, Zeyada R. MicroRNA 21 and microRNA 10b: early diagnostic biomarkers of breast cancer in Egyptian females. J Egypt Natl Canc Inst. 2022;34:16. doi:10.1186/s40406-022-00115-9.

13. Bartkowiak K, Heidrich I, Kwiatkowski M, et al. Circulating cellular communication network factor 1 protein as a sensitive liquid biopsy marker for early detection of breast cancer. Clin Chem. 2022;68:339-351. doi:10.1093/clinchem/hhz153.

14. Ethelbawy R, Effaf N, Hegazy MAEF, et al. Circulating cell free DNA and DNA integrity index as discriminating tools between breast cancer and benign breast disease. Asian Pac J Cancer Prev. 2022;23:545-552. doi:10.3357/japc.21029.

15. Lan J, Zhou YH, Zhang MX, Chen DQ, Wu MY, Yu ZY. Molecular profiles and circulating tumor DNA detected in Chinese early stage breast cancer. Gland Surg. 2022;11:319-329. doi:10.21037/gs-2021-0112.

16. Li X, Tang X, Li K, Lu L. Evaluation of serum microRNAs (miR-9-5p, miR-17-5p, and miR-148a-3p) as potential biomarkers of breast cancer. Biomed Res Int. 2022;2022:99412. doi:10.1155/2022/99412.

17. Mohamed AA, Alass AE, Aref AM, et al. Evaluation of expressed microRNAs as prospective biomarkers for detection of breast cancer. Diagnostics. 2022;12:789. doi:10.3390/diagnostics12040789.

18. Panagopoulou M, Drosoumi A, Fanidis D, et al. ENPP2 promoter methylation correlates with disease-free survival in women with hormone receptor-negative breast cancer. Genome Biol. 2022;23:100. doi:10.1186/s13059-022-02081-x.

19. Wang M, Liu H, Wu W, et al. Identification of differentially expressed plasma microRNAs as potential biomarkers for early breast cancer diagnosis. J Clin Lab Anal. 2021;35:e24010. doi:10.1002/jcla.24010.

20. Yu Y, Zheng W, Ji C, et al. Tumor-derived circRNAs as circulating biomarkers for breast cancer. Front Pharmacol. 2022;13:811856. doi:10.3389/fphar.2022.811856.

21. Adam-Ariguettes A, Garrido-Canjo I, Simón S, et al. Circulating miR-30b-5p levels are associated with hormone receptor-negative breast cancer in women: implementation as a liquid biopsy biomarker. Int J Mol Sci. 2022;23:3717. doi:10.3390/ijms23073717.

22. Rajkumar T, Amritha S, Sridevi V, et al. Identification and validation of plasma microRNA signatures as biomarkers for early breast cancer diagnosis. Front Oncol. 2021;11:6121. doi:10.3389/fonc.2021.6121.

23. Liu D, Li B, Shi X, et al. Cross-platform genomic identification and clinical validation of breast cancer diagnostic biomarkers. Aging (Albany NY). 2021;13:4258-4273. doi:10.18632/ageing.102388.

24. Liu M, Mo F, Song X, et al. hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PLoS One. 2019;14:e21127. doi:10.1371/journal.pone.021127.

25. Lopes BC, Braga CZ, Ventura FY, et al. MI-210 and miR-152 as biomarkers by liquid biopsy in invasive ductal carcinoma. J Pers Med. 2021;11:51. doi:10.3390/jpm11010031.

26. Mahmoud MM, Sanad EF, Elishmy RAA, Hamdy NM. Competitive endogenous role of the LINCO0511/miR-185-3p axis and miR-301a-3p from liquid biopsy as molecular markers for breast cancer diagnosis. Front Oncol. 2021;11:75261. doi:10.3389/fonc.2021.75261.

27. Liu D, Li B, Shi X, et al. Cross-platform genomic identification and clinical validation of breast cancer diagnostic biomarkers. Aging (Albany NY). 2021;13:4258-4273. doi:10.18632/ageing.102388.

28. Li M, Mo F, Song X, et al. hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PLoS One. 2019;14:e21127. doi:10.1371/journal.pone.021127.

29. Liu M, Mo F, Song X, et al. hsa-miR-21-5p is a biomarker for breast cancer diagnosis. PLoS One. 2019;14:e21127. doi:10.1371/journal.pone.021127.

30. Bakr NM, Mahmoud MS, Nahil R, Boushnik H, Swellam M. Impact of circulating miRNA-373 on breast cancer diagnosis through targeting VEGF and cyclin D1 genes. J Genev Eng Biotechnol. 2021;19:84. doi:10.1186/s43141-021-00174-7.

31. Bandini E, Rossi T, Scarpì E, et al. Early detection and investigation of extracellular vesicles biomarkers in breast cancer. Front Mol Biosci. 2021;8:732900. doi:10.3389/fmolb.2021.732900.

32. Basit Z, Gull I, Tipu I, Abbas Z, Iqbal MM, Aslam MS. Quantitative analysis of plasma circulating cell-free nucleic acid based biomarkers in patients with breast cancer. Mol Genet Proteom. 2021;6:523-528. doi:10.3103/S1556816X19030016.

33. Canatan D, Yilmaz Ö, Sönmez Y, et al. Circulating microRNAs as potential non-invasive biomarkers for breast cancer detection. Acta Biomed. 2021;92:202108. doi:10.2372/theab.92176.

34. El-Fattah AA, Siddik NAH, Shaker OG, Kamal AM, Shalhin NN. Serum long non-coding RNAs PTY1, HOTAIR, and NEAT1 as potential biomarkers in Egyptian women with breast cancer. Biomedicines. 2021;11:301. doi:10.3390/biom11020310.

35. Ethelbawy NG, Zaid IF, Khalifa AA, Gohar SF, Fouda EA. microRNA-148a and miRNA-3l0c expressions as potential biomarkers in breast cancer patients. Bio- med Life Sci. 2021;54:100166. doi:10.1002/bmb.21060.

36. Giussani M, Cissimelli CM, De Cecco L, et al. Circulating microRNAs as novel non-invasive biomarkers to aid the early diagnosis of suspicious breast lesions for which biopsy is recommended. Cancers (Basel). 2021;13:4028. doi:10.3390/cancers13114028.

37. Han BW, Cai GX, Zhao D, et al. Noninvasive discrimination of benign and malignant breast lesions using genome-wide nucleosome profiles of plasma cell-free DNA. Clin Chin Acta. 2021;520:95-100. doi:10.1016/j.cca.2021.06.008.

38. Jin Y, Chen Y, Zhao D, et al. Circulating miRNAs in blood of breast cancer patients: potential biomarkers for early breast cancer stage. J Genev Eng Biotechnol. 2021;12:2314-2323. doi:10.3390/jgeb12032314.

39. Zou X, Xia T, Li M, et al. MicroRNA profiling in serum: potential signatures for breast cancer. J Genev Eng Biotechnol. 2021;12:2314-2323. doi:10.3390/jgeb12032314.
for breast cancer diagnosis. Cancer Biomark. 2021;30:41-53. doi:10.3233/CBM-201547.

58. Cappetta M, Fernandez L, Brignoni L, et al. Discovery of cell-free circulating microRNAs for the detection of early-stage breast cancer in the Latino population. Mol Oncol. 2020;15:473-486. doi:10.1016/j.molonc.2018.02.011.

59. Garrido-Cano I, Constâncio V, Adam-Artigues A, et al. Circulating mir-99a-5p expression in plasma: a potential biomarker for early diagnosis of breast cancer. Int J Mol Sci. 2020;21:7427. doi:10.3390/ijms2107427.

60. Kim, P, Park, S, Hwang, D, Kim, S, Lee, H. Diagnostic value of circulating miR-202 in early-stage breast cancer in South Korea. Medicina. 2020;56:340.

61. Ozawa P, Vieira E, Lemos D, et al. Identification of miRNAs enriched in extracellular vesicles derived from serum samples of breast cancer patients. Biomolecules. 2020;10:150. doi:10.3390/biom10010150.

62. Tahmouresi F, Razmara E, Pakravan G, et al. Upregulation of the long noncoding RNA ENCAM-AS1 and MANCNC is a potential diagnostic predictor for breast carcinoma. Biotechnol Appl Biochem. 2020;68:1250-1256. doi:10.1093/baob/bab048.

63. Hohubeiko V, Kolkova Z, Grendar M, et al. Pathway analysis of selected circulating miRNAs in plasma of breast cancer patients: a preliminary study. Int J Mol Sci. 2020;21:7288. doi:10.3390/ijms21117288.

64. Yoshihama T, Kaga N, Motooaka D, et al. Detection of ctdRNA with personalized molecular barcode NGS and its clinical significance in patients with early breast cancer. Transl Oncol. 2019;13:100787. doi:10.1016/j.tranon.2019.100787.

65. Duque et al. Discovery of potential serum and urine-based microRNAs as minimally-invasive biomarkers for breast and gynecological cancers. Cell Mol Biol. 2020;66:44-55. doi:10.1515/cmb-2020-0678.

66. Guo H, Zeng X, Li H, et al. Plasma mir-1273-3p acts as a potential biomarker for early breast ductal cancer diagnosis. An Acad Bras Cienc. 2020;92:e20181203. doi:10.1590/0001-3765202001203.

67. El-Aswany NE, Hassan EZ, El-Feky OA, Hamouda SM, Al-Aswany GM. Serum LncRNA-ATB and FAM83H-AS1 as diagnostic/prognostic non-invasive biomarkers for breast cancer. Life Sci. 2020;259:118193. doi:10.1016/j.lfs.2020.118193.

68. Ritter A, Hirschfeld M, Berner K, et al. Discovery of potential serum and urine-based microRNAs as minimally-invasive biomarkers for breast and gynecological cancer. Cancer Biomark. 2020;27:225-242. doi:10.3233/CBM-190575.

69. Ming C, Takahashi Y, Chan HT, et al. Ultra deep targeted sequencing of circulating tumor DNA in plasma of early and advanced breast cancer. Cancer Sci. 2020;112:454-464. doi:10.1111/cas.14697.

70. Barta M, Morgenstern G, Nevo Y, et al. Splicing factor transcript abundance in saliva as a diagnostic tool for breast cancer. Gene. 2021;8:180. doi:10.3390/genes110808080.

71. Habeeb WH, Suleiman AA, Al-Hitawee HT. Exploration of the beta-actin DNA integrity index as an early genetic marker of presence of development. Cancer J. 2020;26:17-25. doi:10.1093/jjen/gem1761.

72. Yousif AA, Eisa HA, Nawar AM, Abd El-latif MS, Behiry EG. Study of serum miRNA-195 expression as a diagnostic marker for breast cancer patients. J Clin Exp Pathol. 2020;13:100787. doi:10.1016/j.tranon.2020.100787.

73. Furtado P, Souza M, Brito C, et al. Identification of selected serum miRNAs as potential diagnostic nucleic markers for breast cancer patients. Gene Rep. 2020;17:2-5. doi:10.29333/ejgm/7618.

74. Liu C, Sun B, Xu B, et al. A circulating miRNA signature for stratifying breast cancer patients with abnormal screening mammograms. Cancers (Basel). 2019;11:1872. doi:10.3390/cancers11121872.

75. Swellam M, Zahran RKF, Abu El-Sadat Taha H, El-Khazragy N, Abdel-Malak C. Role of some circulating miRNAs on breast cancer diagnosis. Arch Biochem Biophys. 2020;128:138-152. doi:10.1016/j.abb.2020.07.031.

76. Fan T, Mao Y, Sun Q, et al. Branched rolling circle amplification method for measuring serum circulating microRNA levels for early breast cancer detection. Cancer Sci. 2019;109:2897-2906. doi:10.1111/cas.14325.

77. Parrett HI, Song Y, Zhang J, et al. miRNA expression in saliva as a diagnostic tool for breast cancer. J Cell Physiol. 2019;235:2809-2824. doi:10.1002/jcp.29185.

78. Swellam M, Zahran RKF, Abu El-Sadat Taha H, El-Khazragy N, Abdel-Malak C. A circulating miRNA signature for stratification of early breast cancer patients. J Biol Chem. 2019;294:10793-10799. doi:10.1074/jbc.RA119.007041.

79. Raheem AR, Abdul-Rasheed OF, Al-Naqsha MA. The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. Saudi Med J. 2019;40:1218-1224. doi:10.15537/smj.2019.12.4712.

80. Loke SY, Mumusamy P, Koh GL, et al. A circulating miRNA signature for stratifying breast cancer patients. Breast. 2019;73:105-111. doi:10.1016/j.breast.2019.02.002.

81. Fang R, Zhu Y, Hu L, et al. Plasma microRNA pair panels as novel biomarkers for detection of early stage breast cancer. Front Physiol. 2019;9:1879. doi:10.3389/fphys.2018.01879.

82. Yan C, Hu J, Yang Y, et al. Plasma extracellular vesicle-packaged microRNAs as candidate diagnostic biomarkers for early-stage breast cancer. Mol Med Rep. 2019;20:1-6. doi:10.3892/mmr.2019.9066.

83. Huang Y, Ge H, Zheng M, et al. Serum miRNA-derived fragments (RFs) as potential candidates for diagnosis of nontriple negative breast cancer. J Cell Physiol. 2019;235:2809-2824. doi:10.1002/jcp.29185.

84. Swellam M, Zahran RKF, Abu El-Sadat Taha H, El-Khazragy N, Abdel-Malak C. A circulating miRNA signature for stratification of early breast cancer patients. J Biol Chem. 2019;294:10793-10799. doi:10.1074/jbc.RA119.007041.

85. Raheem AR, Abdul-Rasheed OF, Al-Naqsha MA. The diagnostic power of circulating micro ribonucleic acid 34a in combination with cancer antigen 15-3 as a potential biomarker of breast cancer. Saudi Med J. 2019;40:1218-1224. doi:10.15537/smj.2019.12.4712.
108. Bozhenko VK, Kharchenko NV, Vaskevich EF, et al. Mammmoglobin in peripheral blood and tumor in breast cancer patients. Biomed Res. 2016;37;45-57. doi:10.14358/BMR201604453.

109. Zhang K, Luo Z, Zhang Y, et al. Circulating IncRNA H19 in plasma as a novel biomarker for breast cancer. Cancer Biomark. 2016;17;187-194. doi:10.3233/CBM-160630.

110. Hamam R, Ali A, Alsaheb K, et al. microRNA expression profiling on individual breast cancer patients identifies novel panel of circulating microRNA for early detection. Sci Rep. 2016;6;25597. doi:10.1038/srep25597.

111. Shimomura A, Shino T, Kawauchi J, et al. Novel combination of serum miR-205 and miR-146a in male breast cancer in the early stage. Cancer Sci. 2016;107;326-334. doi:10.1111/cas.12880.

112. Thakur S, Grover RK, Gupta S, Yadav AK, Das BC. Identification of specific miRNA signature in paired sera and tissue samples of Indian women with triple negative breast cancer. PLoS ONE. 2016;11;e0158946. doi:10.1371/journal.pone.0158946.

113. Uehara N, Sato F, Fu F, et al. Circulating cell-free DNA-based epigenetic assay can detect early breast cancer. Breast Cancer Res. 2016;18;1219. doi:10.1186/s13058-016-0786-x.

114. Li Z, Gao X, Tang L, et al. Methylation analysis of plasma cell-free DNA for breast cancer detection using bisulfite next-generation sequencing. Tumour Biol. 2016;37;13111-13119. doi:10.1007/s13277-016-5190-z.

115. Swalam M, Abdelmaksoud MD, Sayed Mahmoud M, Ramadan A, Abdel-Moneem W, Helmy MM. Aberrant methylation of APC and RARβ genes in breast cancer patients. Pathol. 2016;67;669-676. doi:10.1016/j.ajp.2015.13.033.

116. Shin V, Su J, Cheuk I, Ng E, Kwong A. Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. Br J Cancer. 2015;115;1751-1759. doi:10.1038/bjc.2015.143.

117. Mishra S, Srivastava AK, Suman S, Kumar V, Shukla Y. Circulating miRNAs released as surrogate molecular signatures for the early detection of breast cancer. Cancer Lett. 2015;369;67-75. doi:10.1016/j.canlet.2015.07.045.

118. Zhao H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE. 2015;10;e0137556. doi:10.1371/journal.pone.0137556.

119. Liu L, Sun L, Li C, et al. Quantitative detection of methylation of FHIT and RASSF1A (p14ARF/p16INK4a) gene promoter sequences in mammary carcinoma detected in extracellular tumor DNA. Mol Biol Rep. 2015;42;1450-1457. doi:10.1007/s11033-015-3831-0.

120. Wu X, Tanaka H. Aberrant reduction of telomere repetitive sequences in plasma DNA of breast cancer patients. Cancer Sci. 2014;105;38-45. doi:10.1111/cas.12880.

121. Liu L, Sun L, Li C, et al. Methylation profiling in peripheral blood DNA: a potential non-invasive multi-marker test in ER-positive early-stage breast cancer. Breast Cancer Res Treat. 2014;146;163-174. doi:10.1007/s10549-014-2774-6.

122. Verschoor N, Deger T, Jager A, Sleijfer S, Wilting SM, Martens JWM. Validity of DNA methylation in tissue and serum samples from breast cancer patients. Virchows Arch. 2011;459;383-390. doi:10.1007/s00428-012-1260-9.

123. Luo J, Zhao Q, Zhang W, et al. Decreased serum miR-181a is a potential new tool for breast cancer screening. Int J Mol Med. 2015;36;680-686. doi:10.3892/ijmm.2015.2021.

124. Madhavan D, Wallwiener M, Bents K, et al. Plasma DNA integrity as a bio -marker to track disease in breast cancer. PLoS ONE. 2012;7;e47003. doi:10.1371/journal.pone.0047003.

125. Zhou J, Nagarkatti PS, Zhong Y, Zhang J, Nagarkatti M. Implications of single nucleotide polymorphisms in CD44 exon 2 for risk of breast cancer. Eur J Cancer Prev. 2011;20;396-402. doi:10.1097/CEJ.0b013e3283463943.

126. Kim GE, Lee KH, Choi YD, et al. Detection of Slit2 promoter hypermethylation in tissue and serum samples from breast cancer patients. Breast Cancer Res. 2012;14;R5. doi:10.1186/bcr3375.

127. Sochor M, Basova P, Pesta M, et al. Oncogenic microRNAs: miR-155, miR-19a, miR-19b as a potential non-invasive diagnostic tool for breast cancer. Clin Genet. 2012;82;334-339. doi:10.1111/j.1399-0004.2012.01586.x.

128. Xia P, Wang HJ, Geng TT, et al. Mitochondrial DNA levels in blood and tissue samples from breast cancer patients of different stages. Asian Pac J Cancer Prev. 2012;13;221-229. doi:10.7314/APJCP.2012.13.1.221.

129. Madhavan D, Wallwiener M, Bents K, et al. DNA methylation in pre-diagnostic serum samples of breast cancer cases: results of a nested case-control study. Cancer Epidemiol. 2010;34;773-777. doi:10.1016/j.canep.2010.05.006.

130. Zhou H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE. 2015;10;e0137556. doi:10.1371/journal.pone.0137556.

131. Ahmed IA, Puch CM, Hamed T, et al. Epigenetic alterations by methylation of RASSF1A and DAPK1 promoter sequences in mammary carcinoma detected in extracellular tumor DNA. Cancer Genet Cytopathol. 2010;199;96-100. doi:10.1016/j.cancergencyto.2010.02.007.

132. Aazor J, Lindahl T, Dumeaux V, et al. Gene expression profiling of peripheral blood cells for early detection of breast cancer. Breast Cancer Res. 2010;12;R7. doi:10.1186/bcr2844.

133. Bossuyt PM. Clinical validity: defining biomarker performance. Clin Genet. 2010;80;1-9. doi:10.1111/j.1399-0004.2010.01375.x.

134. Zhou H, Shen J, Medico L, Wang D, Ambrosone CB, Liu S. A pilot study of circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS ONE. 2015;10;e0137556. doi:10.1371/journal.pone.0137556.

135. Cheng C, Fleming C, Leaney WP, et al. Association of circulating tumor DNA with disease-free survival in breast cancer: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e2020921. doi:10.1001/jamanetworkopen.2020.26921.

136. Duque G, Manterola C, Orten T, et al. Clinical utility of liquid biopsy in breast cancer: a systematic review. Clin Genet. 2022;101;285-295. doi:10.1111/cge.13843.

137. Heidrich I, Ackar L, Mossahebi P, Pantel K. Liquid biopsies: potential and challenges. Breast Cancer Res Treat. 2021;161;1401-1420. doi:10.1007/s10549-021-07655-x.

138. Chi K. The tumour trail left in blood. Nature. 2016;532;269-271. doi:10.1038/nature17277.

139. Centre for Evidence-based Medicine (CEBM)-levels of evidence. (March 2009). [Online]. ISBN: www.cebm.ox.ac.uk/resources/levels-of-evidence/oxford-centre-for-evidence-based-medicine-levels-of-evidence-march-2009. Accessed November 12, 2021.