Abstract. [Purpose] This study observed the plantar pressure between flexible flatfoot and normal foot on different walking conditions to find out if flexible flatfoot needs the treatment and how the plantar pressure change while walking upstairs and downstairs. [Subjects and Methods] Fifteen adults with mild flexible flatfoot, fifteen adults with severe flexible flatfoot and fifteen adults with normal foot were examined while walking on a level surface, walking up and down 10 cm and 20 cm stairs. The max force and the arch index were acquired using the RSscan system. The repeated measures ANOVA was performed to analyze the data. [Results] Compared with normal foot, both max force and arch index of severe flatfoot were significantly increased on different walking conditions. When walking down 10 cm and 20 cm stairs, the plantar data of both normal foot and flatfoot were significantly increased. [Conclusion] The plantar pressure of severe flexible flatfoot were significantly larger than that of normal foot on different walking conditions. In addition, the arches of both normal foot and flatfoot were obviously deformed when walking downstairs. It is therefore necessary to be treated for severe flexible flatfoot to prevent further deformation. Key words: Flexible flatfoot, Plantar pressure

INTRODUCTION

Flexible flatfoot is a common disease in lower limb deformities\(^1\) that is characterized by the low medial longitudinal arch\(^2\). It is the deformed structure of the foot bones\(^3\) that would cause calcaneal eversion, talar adduction with plantarflexion and dorsolateral forefoot subluxation. The plantar pressure distribution and the gait will be changed by the deformity of foot structure over the time\(^4\), potentially influencing the life of the patients.

There are two kinds of flatfoot: rigid flatfoot and flexible flatfoot\(^5\). Regarding the former, the arch of the foot was always missing either in the weight-bearing position or non-weight-bearing position\(^6\) and it needs operation to restore the missing arch\(^7\). As far as concerned the latter, the arch was missing only in the weight-bearing position, while in non-weight-bearing position, the arch is as the same as that of normal foot\(^8\). Due to the arch’s flexibility, the methods of the treatment and whether the flexible flatfoot needs the treatment, have always been controversial\(^9\).

Flexible flatfoot can be further divided into mild flexible flatfoot and severe flexible flatfoot\(^10\). So far, previous studies did
not observe the plantar pressure of both kinds respectively and they had only focused on the plantar pressure of walking on the level surface\textsuperscript{11, 12}. However, the differences between mild flexible flatfoot and severe flexible flatfoot, and how the plantar pressure changes while walking upstairs or downstairs has not been studied.

In this study, we examined the plantar pressure of mid flexible flatfoot, severe flexible flatfoot and normal foot while walking on a level surface, walking up and down 10 cm and 20 cm stairs to estimate how plantar pressure changed and further to find out if flexible flatfoot needs the treatment.

**SUBJECTS AND METHODS**

The study protocol was approved by the Institutional Review Board of The First Affiliate Hospital of Xi’an Jiaotong University. All the participants signed the written informed consent prior to the study participation. Fifteen college students with mild flexible flatfoot, fifteen college students with severe flexible flatfoot and fifteen college students with normal foot were subjected to collecting the footprints by RSscan force plate. All the subjects were female students and there was no significant difference between flatfoot and normal foot in age, height, weight and foot length. None of the participants had suffered from any lower limb diseases in the past 6 months. For the normal foot, the arch was always present either in weight-bearing position or non-weight-bearing position. The footprint ratio of solid and hollow area is 1/2. For the flatfoot, the arch was present only in non-weight-bearing position and it was flattened in weight-bearing position. For mild flexible flatfoot, the footprint ratio of solid and hollow area is more than 1/1 and less than 2/1, for severe flexible flatfoot, the ratio is more than 2/1.

Before the measurement, all the subjects need to take off their shoes, wear the unified socks and do the walking exercises at the speed of one step per second. Then the subjects were firstly told to walk on the level RSscan force plate; then, they were instructed to walk up or walk down 10 cm or 20 cm stairs on the instrument respectively. The max force and arch index of the foot were recorded by the RSscan system on those walking conditions. To ensure the accuracy, data were measured 3 times and an average was obtained. At last, the repeated measures ANOVA with a level of significance of $p<0.05$ was performed using spss 13.0. The 95% confidence intervals (CIs) ($p<0.05$) was considered statistically significant.

| Group | Mean difference | Std.error | Sig.(a) | 95% confidence interval for difference(2) |
|-------|----------------|-----------|---------|------------------------------------------|
|       | Lower bound    | Upper bound|         |                                          |
| Mild  | −90.5 (*)      | 10.5      | 0.0     | −111.6 −69.3                             |
| Severe| 7.7            | 10.5      | 0.5     | −13.5 28.8                               |
| Normal| 90.5 (*)       | 10.5      | 0.0     | 69.3 111.6                                |
| Mild  | 98.1 (*)       | 10.5      | 0.0     | 77.0 119.3                                |
| Severe| −7.7           | 10.5      | 0.5     | −28.8 13.5                                |
| Normal| −98.1 (*)      | 10.5      | 0.0     | −119.3 −77.0                              |

**Table 1. Max force of 3 groups**
ter was used to measure the dynamic data of max force and arch index on different walking conditions. When the subject was walking on the force plate, the foot was divided into 10 parts automatically including toe 1, toe 2–5, first metatarsal, second metatarsal, third metatarsal, forth metatarsal, fifth metatarsal, mid foot, medial heel and lateral heel.

In addition, there is a main difference of plantar pressure in midfoot region between a normal foot and a flatfoot. For the normal foot, the main load-bearing regions include the metatarsal area and the heel area, but for the flatfoot, it not only includes the metatarsal and heel areas, but also includes the midfoot. This is why the pressure of midfoot that differs the flatfoot from normal foot. Therefore, we only focused on the data of mid foot.

This study measured two kinds of dynamic data, max force and arch index. With the progression of the disease, the arch will become flat further result in an increase of max force and arch index. Max force, with the unit of Newton, is defined as the maximum of plantar pressure of one part of the foot. Arch index, a proportion of the midfoot area and the whole foot area, is useful in determining the prevalence of flatfoot and possibly predicting pathologic foot conditions.

We focused on the max force of mid foot and the arch index. All the data were divided into 3 groups: mild flexible flatfoot, severe flexible flatfoot and normal foot. Each group was further divided into 5 conditions: walking on a level surface, walking up 10 cm stairs, walking up 20 cm stairs, walking down 10 cm stairs, walking down 20 cm stairs.

**RESULTS**

The significant differences were found in max force and arch index between severe flexible flatfoot and normal foot (p<0.01), and between severe flexible flatfoot and mild flexible flatfoot (p<0.01). While there was no significant difference between mild flexible flatfoot and normal foot in both data (p>0.05) (Tables 1 and 2).

In addition, there was no intersection of the 95% CIs of both data between severe flexible flatfoot and normal foot on 5 different walking conditions. Furthermore, no intersection of arch index could be found between mild flexible flatfoot and normal foot when walking downstairs. However, there was an intersection between mild flexible flatfoot and normal foot in both data when walking on the level surface and walking upstairs (Tables 3 and 4).

Furthermore, the 95% CIs of downstairs of both data did not intersect with any other walking conditions not only in flatfoot but also in normal foot (Tables 3 and 4).

### Table 2. Arch index of 3 groups

| Left foot | Group | Group | Mean difference | Std.error | Sig.(a) | 95% confidence interval for difference(2) |
|-----------|-------|-------|-----------------|-----------|---------|----------------------------------------|
|           |       |       |                 |           |         | Lower bound | Upper bound |
| Mild      | Mild  |       | −3.93(*)        | 0.39      | 0.00    | −4.73 | −3.14 |
|           | Severe |       | 0.79            | 0.39      | 0.05    | 0.00 | 1.59 |
|           | Normal |       | 3.93(*)         | 0.39      | 0.00    | 3.14 | 4.73 |
| Severe    | Mild  |       | 4.73(*)         | 0.39      | 0.00    | 3.93 | 5.52 |
|           | Severe |       | −0.79           | 0.39      | 0.05    | −1.59 | 0.00 |
| Normal    | Mild  |       | −4.73(*)        | 0.39      | 0.00    | −5.52 | −3.93 |
|           | Severe |       | −0.79           | 0.39      | 0.05    | −1.59 | 0.00 |

| Right foot | Group | Group | Mean difference | Std.error | Sig.(a) | 95% confidence interval for difference(2) |
|------------|-------|-------|-----------------|-----------|---------|----------------------------------------|
|            |       |       |                 |           |         | Lower bound | Upper bound |
| Mild       | Mild  |       | −4.46(*)        | 0.28      | 0.00    | −5.02 | −3.91 |
|           | Severe |       | 0.39            | 0.28      | 0.17    | −0.17 | 0.95 |
|           | Normal |       | 4.46(*)         | 0.28      | 0.00    | 3.91 | 5.02 |
| Severe     | Mild  |       | 4.85(*)         | 0.28      | 0.00    | 4.29 | 5.41 |
|           | Severe |       | −0.39           | 0.28      | 0.17    | −0.95 | 0.17 |
| Normal     | Mild  |       | −4.85(*)        | 0.28      | 0.00    | −5.41 | −4.29 |
|           | Severe |       | −0.39           | 0.28      | 0.17    | −0.95 | 0.17 |

Based on estimated marginal means.

*The mean difference is significant at the 0.05 level.

Mild: mild flexible flatfoot; Severe: severe flexible flatfoot; Normal: normal foot
The results implied that the plantar pressure of severe flexible flatfoot were significantly larger than that of normal foot. Although there was no difference between mild flexible flatfoot and normal foot when walking on the level surface and walking upstairs, the arch index of mild flexible flatfoot did differ from the normal foot when walking downstairs. Additionally, the arches of both normal foot and flatfoot were obviously deformed when walking down 10 cm and 20 cm stairs.

**DISCUSSION**

The results showed that the max force and arch index of severe flexible flatfoot were significantly increased, which was in accordance with previous studies. As the foot arch of severe flexible flatfoot was not steady enough, the height of the foot arch would be lower in load-bearing-position and the structure of the foot bones was deformed, which increased the max force and arch index. Previous study had already estimated the plantar pressure of flatfoot when walking on a level surface. However, it has not been examined how the plantar pressure changes when walking upstairs and downstairs. In this study, the max force and arch index of severe flexible flatfoot were significantly larger than that of normal foot not only when walking on a level surface but also when walking upstairs and downstairs. The results showed that the max force and arch index of severe flexible flatfoot were significantly increased, which was in accordance with previous studies. As the foot arch of severe flexible flatfoot was not steady enough, the height of the foot arch would be lower in load-bearing-position and the structure of the foot bones was deformed, which increased the max force and arch index. Previous study had already estimated the plantar pressure of flatfoot when walking on a level surface. However, it has not been examined how the plantar pressure changes when walking upstairs and downstairs. In this study, the max force and arch index of severe flexible flatfoot were significantly larger than that of normal foot not only when walking on a level surface but also when walking upstairs and downstairs.

### Table 3. Max force of 5 walking conditions

| Left foot | Group   | Conditions          | Mean difference | Std.error | 95% confidence interval for difference(2) |
|-----------|---------|---------------------|-----------------|----------|------------------------------------------|
|           |         |                     |                 |          | Lower bound | Upper bound |
| Mild      | Level   | 191.9               | 5.7             | 179.6    | 202.4        |
|           | Up 10 cm stairs | 182.6               | 6.2             | 170.2    | 195.0        |
|           | Up 20 cm stairs | 182.7               | 6.0             | 170.5    | 194.9        |
|           | Down 10 cm stairs | 236.6               | 9.5             | 217.4    | 255.8        |
|           | Down 20 cm stairs | 285.9               | 12.7            | 260.3    | 311.5        |
| Severe    | Level   | 285.2               | 5.7             | 273.8    | 296.7        |
|           | Up 10 cm stairs | 274.0               | 6.2             | 261.6    | 286.4        |
|           | Up 20 cm stairs | 268.7               | 6.0             | 256.5    | 280.9        |
|           | Down 10 cm stairs | 330.0               | 9.5             | 310.8    | 349.2        |
|           | Down 20 cm stairs | 373.2               | 12.7            | 347.6    | 398.8        |
| Normal    | Level   | 188.7               | 5.7             | 177.2    | 200.1        |
|           | Up 10 cm stairs | 176.8               | 6.2             | 164.4    | 189.2        |
|           | Up 20 cm stairs | 178.4               | 6.0             | 166.2    | 190.6        |
|           | Down 10 cm stairs | 230.8               | 9.5             | 211.6    | 250.0        |
|           | Down 20 cm stairs | 265.9               | 12.7            | 240.3    | 291.5        |
| Right foot| Group   | Conditions          | Mean difference | Std.error | 95% confidence interval for difference(2) |
|           |         |                     |                 |          | Lower bound | Upper bound |
| Mild      | Level   | 192.4               | 5.6             | 181.1    | 203.8        |
|           | Up 10 cm stairs | 184.8               | 5.8             | 173.1    | 196.6        |
|           | Up 20 cm stairs | 183.0               | 5.7             | 171.5    | 194.5        |
|           | Down 10 cm stairs | 242.0               | 8.1             | 225.6    | 258.3        |
|           | Down 20 cm stairs | 293.6               | 10.5            | 272.3    | 314.8        |
| Severe    | Level   | 291.7               | 5.6             | 280.4    | 303.1        |
|           | Up 10 cm stairs | 282.8               | 5.8             | 271.1    | 294.6        |
|           | Up 20 cm stairs | 280.3               | 5.7             | 268.8    | 291.9        |
|           | Down 10 cm stairs | 337.1               | 8.1             | 320.7    | 353.4        |
|           | Down 20 cm stairs | 389.7               | 10.5            | 368.5    | 411.0        |
| Normal    | Level   | 187.7               | 5.6             | 176.3    | 199.0        |
|           | Up 10 cm stairs | 177.9               | 5.8             | 166.2    | 189.7        |
|           | Up 20 cm stairs | 179.5               | 5.7             | 168.0    | 191.0        |
|           | Down 10 cm stairs | 232.7               | 8.1             | 216.4    | 249.1        |
|           | Down 20 cm stairs | 266.1               | 10.5            | 244.8    | 287.3        |

Mild: mild flexible flatfoot; Severe: severe flexible flatfoot; Normal: normal foot
surface, but also when walking upstairs and downstairs. This result indicated that the structure of severe flexible flatfoot was
deformed badly due to the instability of its foot arch. The largest values of max force and arch index were in walking down 20 cm stairs, the second largest ones were in walking down 10 cm stairs, which may be due to the fact that the plantar pressure will be influenced not only by the body weight but also by the acceleration of gravity when a person walks downstairs. Therefore, with the increase of the gravity, the plantar pressure would increase as well.

According to this study, the data of both normal foot and flexible flatfoot were obviously larger when walking downstairs, illustrating that the arches of both normal foot and flatfoot were apparently deformed whenever walking down 10 cm stairs or 20 cm stairs. As the arch of normal foot needs certain elasticity to protect plantar vessels and nerves from compression, the arch could be influenced by the impact of downstairs. The arch of flatfoot were more easily influenced due to the weak stability. In other words, it is harmful to the foot arch when walking downstairs. This is important because people prefer to taking a lift when walking upstairs, as for downstairs, as long as the floor is not much high, they would rather walk downstairs than wait for the lift.

The plantar pressure of severe flexible flatfoot were significantly larger than that of normal foot not only when walking on

| Table 4. Arch index of 5 walking conditions |
|--------------------------------------------|
| Left foot Group | Conditions     | Mean difference | Std.error | 95% confidence interval for difference(2) |
|                |                |                 |          | Lower bound | Upper bound |
| Mild Level     | Up 10 cm stairs | 27.0            | 0.3      | 26.5       | 27.6        |
|                | Down 10 cm stairs | 30.4            | 0.3      | 29.8       | 31.0        |
|                | Down 20 cm stairs | 32.1            | 0.4      | 31.3       | 32.8        |
| Mild Level     | Up 10 cm stairs | 31.5            | 0.3      | 30.9       | 32.1        |
|                | Down 10 cm stairs | 33.3            | 0.3      | 32.7       | 33.9        |
|                | Down 20 cm stairs | 35.8            | 0.4      | 35.0       | 36.5        |
| Severe Level   | Up 10 cm stairs | 31.2            | 0.3      | 30.5       | 31.8        |
|                | Down 10 cm stairs | 33.3            | 0.3      | 32.7       | 33.9        |
|                | Down 20 cm stairs | 35.8            | 0.4      | 35.0       | 36.5        |
| Normal Level   | Up 10 cm stairs | 26.8            | 0.3      | 26.2       | 27.4        |
|                | Down 10 cm stairs | 29.2            | 0.3      | 28.6       | 29.7        |
|                | Down 20 cm stairs | 30.5            | 0.4      | 29.7       | 31.2        |
| Right foot Group | Conditions     | Mean difference | Std.error | 95% confidence interval for difference(2) |
|                |                |                 |          | Lower bound | Upper bound |
| Mild Level     | Up 10 cm stairs | 26.7            | 0.2      | 26.2       | 27.2        |
|                | Down 10 cm stairs | 30.9            | 0.2      | 30.5       | 31.5        |
| Normal Level   | Level          | 26.7            | 0.2      | 26.2       | 27.2        |
|                | Up 10 cm stairs | 26.6            | 0.3      | 26.1       | 27.1        |
|                | Down 10 cm stairs | 34.5            | 0.2      | 34.1       | 34.9        |

Mild: mild flexible flatfoot; Severe: severe flexible flatfoot; Normal: normal foot
a level surface but also when walking upstairs and downstairs. Additionally, the arch of both normal foot and flexible flatfoot were deformed whenever walking down 10 cm or 20 cm stairs. Therefore, adults with severe flexible flatfoot may need treatment to prevent further deformation. However, further studies are necessary to analyze the plantar pressure of adults with flatfoot in other situations.

Conflict of interest
The authors declare that there have no conflicts of interest.

ACKNOWLEDGEMENT

This study was supported by The National Science Fund, numbered H81371943.

REFERENCES

1) Chen MJ, Chen CP, Lew HL, et al.: Measurement of forefoot varus angle by laser technology in people with flexible flatfoot. Am J Phys Med Rehabil, 2003, 82: 842–846. [Medline] [CrossRef]
2) Pehlivan O, Cilli F, Mahirogullari M, et al.: Radiographic correlation of symptomatic and asymptomatic flexible flatfoot in young male adults. Int Orthop, 2009, 33: 447–450. [Medline] [CrossRef]
3) Chang JH, Wang SH, Kuo CL, et al.: Prevalence of flexible flatfoot in Taiwanese school-aged children in relation to obesity, gender, and age. Eur J Pediatr, 2010, 169: 447–452. [Medline] [CrossRef]
4) Needleman RL: Current topic review: subtalar arthroereisis for the correction of flexible flatfoot. Foot Ankle Int, 2005, 26: 336–346. [Medline] [CrossRef]
5) Francisco R, Chiado CP, Wilson MG: Management of the rigid adult acquired flatfoot deformity. Foot Ankle Clin, 2007, 12: 317–327, vii. [Medline] [CrossRef]
6) Luhmann SJ, Rich MM, Schoenecker PL: Painful idiopathic rigid flatfoot in children and adolescents. Foot Ankle Int, 2000, 21: 59–66. [Medline] [CrossRef]
7) Demetracopoulos CA, Nair P, Malzberg A, et al.: Outcomes of a stepcut lengthening calcaneal osteotomy for adult-acquired flatfoot deformity. Foot Ankle Int, 2015, 36: 749–755. [Medline] [CrossRef]
8) Giza E, Cush G, Schon LC: The flexible flatfoot in the adult. Foot Ankle Clin, 2007, 12: 251–271, vi. [Medline] [CrossRef]
9) Haendlmayer KT, Harris NJ: Flatfoot deformity: an overview. Orthop Trauma, 2009, 23: 395–403. [CrossRef]
10) Haddad SL, Myerson MS, Younger A, et al.: Symposium: adult acquired flatfoot deformity. Foot Ankle Int, 2011, 32: 95–111. [Medline] [CrossRef]
11) Lee HJ, Lim KB, Yoo J, et al.: Effect of custom-molded foot orthoses on foot pain and balance in children with symptomatic flexible flat feet. Ann Rehabil Med, 2015, 39: 903–913. [Medline] [CrossRef]
12) Liao S: The effect of orthotic insole on coupling mechanism of flatfoot in Gait. Foot Ankle Surg, 2016, 22: 111–111. [CrossRef]
13) Imhauser CW, Siegler S, Abidi NA, et al.: The effect of posterior tibialis tendon dysfunction on the plantar pressure characteristics and the kinematics of the arch and the hindfoot. Clin Biomech (Bristol, Avon), 2004, 19: 161–169. [Medline] [CrossRef]
14) Leung AK, Cheng JC, Mak AF: A cross-sectional study on the development of foot arch function of 2715 Chinese children. Prosthet Orthot Int, 2005, 29: 241–253. [Medline] [CrossRef]
15) Wearing SC, Hills AP, Byrne NM, et al.: The arch index: a measure of flat or fat feet? Foot Ankle Int, 2004, 25: 575–581. [Medline] [CrossRef]
16) Begg L, McLaughlin P, Vicaretti M, et al.: Total contact cast wall load in patients with a plantar forefoot ulcer and diabetes. J Foot Ankle Res, 2016, 9: 2. [Medline] [CrossRef]
17) Igbigbi PS, Mammari AT, Shariff MB: Arch index as a predictor of pes planus: a comparative study of indigenous Kenyans and Tanzanians. J Am Podiatr Med Assoc, 2005, 95: 271–276. [Medline] [CrossRef]
18) Aminian G, Safaeezadeh M, Farhoodi M, et al.: Immediate effect of prefabricated and proprietary foot orthoses on plantar pressure distribution in patients with flexible flatfoot during walking. Prosthet Orthot Int, 2013, 37: 227–232. [Medline] [CrossRef]
19) Abouatarabi A, Saeedi H, Kamali M, et al.: The effect of prefabricated and proprietary foot orthosis on center of pressure displacement and gait parameters in juvenile flexible flat foot. Prosthet Orthot Int, 2014, 38: 218–223. [Medline] [CrossRef]
20) Chia K, Suresh S, Kuah A, et al.: Comparative trial of the foot pressure patterns between corrective orthotics, formthotics, bone spur pads and flat insoles in patients with chronic plantar fasciitis. Ann Acad Med Singapore, 2009, 38: 869–875. [Medline] [CrossRef]
21) Havenhill TG, Tootan BC, Dragnich LF: Effects of a UCBL orthosis and a calcaneal osteotomy on tibiotar contact characteristics in a cadaver flatfoot model. Foot Ankle Int, 2005, 26: 607–613. [Medline] [CrossRef]
22) Kuhn DR, Shibley NJ, Austin WM, et al.: Radiographic evaluation of weight-bearing orthotics and their effect on flexible pes planus. J Manipulative Physiol Ther, 1999, 22: 221–226. [Medline] [CrossRef]
23) Kido M, Ikoma K, Harai Y, et al.: Effect of therapeutic insoles on the medial longitudinal arch in patients with flatfoot deformity: a three-dimensional loading computed tomography study. Clin Biomech (Bristol, Avon), 2014, 29: 1095–1098. [Medline] [CrossRef]
24) Shih YF, Chen CY: Effect of insole application on lower extremity kinematics in children with flexible flatfoot. Gait Posture, 2009, 30: 151. [CrossRef]
25) Rao S, Carter S: Regional plantar pressure during walking, stair ascent and descent. Gait Posture, 2012, 36: 265–270. [Medline] [CrossRef]
26) Xiong S, Grootenelleke RS, Witanza CP, et al.: Foot arch characterization: a review, a new metric, and a comparison. J Am Podiatr Med Assoc, 2010, 100: 14–24. [Medline] [CrossRef]
27) Catanzariti AR, Mendicino RW: Adult acquired flatfoot deformity. Clin Podiatr Med Surg, 2014, 31: xiii–xiv. [Medline] [CrossRef]