Comparative structures and evolution of vertebrate lipase H (LIPH) genes and proteins: a relative of the phospholipase A1 gene families

Roger S. Holmes · Laura A. Cox

Received: 26 July 2012 / Accepted: 23 August 2012 / Published online: 25 September 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract Lipase H (LIPH) is a membrane-bound phospholipase generating 2-acyl lysophosphatidic acid (LPA) in the body. LPA is a lipid mediator required for maintaining homeostasis of diverse biological functions and in activating cell surface receptors such as P2Y5, which plays an essential role in hair growth. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures, and gene locations for LIPH genes and encoded proteins using data from several vertebrate genome projects. Vertebrate LIPH genes contained ten coding exons transcribed on either the positive or negative DNA strands. Evidence is presented for duplicated LIPH genes for the chicken and zebra fish genomes. Vertebrate LIPH protein subunits shared 56–97 % sequence identities and exhibited sequence alignments and identities for key LIPH amino acid residues as well as extensive conservation of predicted secondary and tertiary structures with those previously reported for horse pancreatic lipase (LIPP), with ‘N-signal peptide’, ‘lipase,’ and ‘plat’ structural domains. Comparative studies of vertebrate LIPH sequences with other phospholipase A1-like lipases (LIPI and PS-PLA1), as well as vascular and pancreatic lipases, confirmed predictions for LIPH N-terminal signal peptides (residues 1–18); a conserved vertebrate LIPH N-glycosylation site (66NVT for human LIPH); active site ‘triad’ residues (Ser 154; Asp 178; His 248); disulfide bond residues (233–246; 270–281; 284–292; 427–446), and a ‘short’ 12 residue ‘active site lid’, which is comparable to other phospholipases examined. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate LIPH family of genes related to, but distinct from other phospholipase A1-like genes (LIPI and PS-PLA1), and from vascular lipase and pancreatic lipase gene families.

Keywords Vertebrates · Amino acid sequence · Lipase H · Evolution · Phylogeny

Introduction

Lipase H (LIPH; E.C.2.7.11.30; also known as phosphatidic acid-selective phospholipase A1α or PA-PLA1alpha) is a membrane-bound phospholipase catalyzing the production of fatty acids and lysophosphatidic acid (LPA) (Jin et al. 2002; Sonoda et al. 2002; Aoki et al. 2007, 2008). LPA is a lipid mediator involved in diverse biological functions in the body (Moolenaar 1995). Most of these functions are mediated by G protein-coupled receptors (GPCRs) specific to LPA, for which six GPCRs have been described (Hama and Aoki 2010). Of these, PLA(6) (or P2Y5) (Yanagida et al. 2009) and LIPH have been...
identified as playing a major role in hair follicle cells, with autosomal recessive hypotrichosis (ARH) resulting from LIPH mutations, leading to the woolly hair hypotrichosis phenotype in human populations and sparse hair on the scalp (Aoki et al. 2008; Shimomura et al. 2009; Shinkuma et al. 2010). Two other related phospholipase A1-like enzymes have been reported in vertebrates, including lipase I (LIPi; E.C.2.7.11.34), also known as phosphatidic acid-selective phospholipase A1β, PA-PLA1β, cancer-testis antigen 17 (CT17) or LPD lipase (PLDL), which is a membrane-associated phospholipase catalyzing the production of fatty acids and lysophosphatidic acid (LPA) from phosphatidic acid (Hiramatsu et al. 2003; Wen et al. 2003), and a phosphatidylerine-specific phospholipase A1 (PS-PLA1), which hydrolyzes fatty acids at the sn-1 position of phosphatidylserine and 1-acyl-2-lysophosphatidylserine (Sato et al. 1997; Wen et al. 2003).

Other lipases are known to function in triglyceride metabolism in the body including lipoprotein lipase (LPL) (Wion et al. 1987; Holmes et al. 2011a), hepatic lipase (HL) (Martin et al. 1988; Holmes et al. 2011b), and endothelial lipase (EL) (Jaye et al. 1999; Cilingiroglu and Ballantyne 2004; Holmes et al. 2011c). These three enzymes are commonly referred to as the vascular lipase gene family due to their roles in triglyceride metabolism of circulating lipoproteins and in facilitating lipoprotein uptake into cells and tissues of the body (Brown and Rader 2007; Annema and Tietge 2011). Pancreatic lipase (PL) and related PL-like enzymes are a second major group of triglyceride lipases secreted from the exocrine pancreas playing major roles in lipid digestion (see Lowe 2002). Moreover, at least six mammalian acid lipase genes and proteins have also been described which represent a third group of triglyceride lipases including lysosomal lipase (LIPA), gastric lipase (LIPF), and epidermal cell lipases (LIPK, LIPM and LIPN) (see Holmes et al. 2010).

Human LIPH is expressed in several tissues of the body, including the intestine, lung, pancreas (Jin et al. 2002), prostate, testis, ovary, and platelets (Sonoda et al. 2002), and hair follicle cells, where a critical role for LPA signaling has been identified, facilitated by LIPH and the LPA receptor, P2Y5 (Inoue et al. 2011). Studies of genes controlling hair growth and scalp hair loss for several human populations (Ali et al. 2007; Jelani et al. 2008; Horev et al. 2009; Naz et al. 2009) have confirmed a link between LIPH mutations, genetically inherited hair loss, and congenital woolly hair/hypotrichosis (Shimomura et al. 2009; Shimomura 2012). Moreover, specific human founder gene LIPH mutations have been identified which involve key LIPH amino acid substitutions (Shinkuma et al. 2010), including a partial LIPH exon two duplication or an exon four deletion/insertion (Pasternack et al. 2009) and missense mutations causing autosomal recessive hypotrichosis (LAH2) (Naz et al. 2009). Knock-out Liph mice exhibited wavy hairs due to the aberrant formation of the hair follicle inner root sheath (Inoue et al. 2011) which confirmed the genetic link of LIPH with hair follicle development in this organism. In addition, an exon nine deletion of the LIPH gene has been shown to be responsible for the ‘rex’ hair coat phenotype in rabbits (Diribarne et al. 2011).

Structures for several human and animal LIPH genes and cDNA sequences have been determined, including human (Homo sapiens) (Jin et al. 2002; Sonoda et al. 2002; Hiramatsu et al. 2003), mouse (Mus musculus) (Wen et al. 2003; Carninci et al. 2005; Inoue et al. 2011), rat (Rattus norvegicus) (Gerhard et al. 2004), cow (Bos taurus) (Zimin et al. 2009), and chicken (Gallus gallus) (Hesse et al. 2012) LIPH genes. Human LIPH, which spans 44.4 kilobases (kbps) and comprises ten coding exons on the reverse strand, is localized on chromosome 3, near MAP3K13, encoding a member of the serine/threonine protein kinase family, and SENP2, encoding sentrin-specific peptidase 2 (Kent et al. 2003). Mouse Liph encodes also ten exons, spans 41.7 kbps on chromosome 16, and is expressed in high levels in placenta and colon (Su et al. 2004; Carninci et al. 2005).

There have been few biochemical and structural studies of mammalian LIPH; however, Jin et al. (2002) have reported amino acid sequences for human and mouse LIPH, derived from cDNA sequences, encoding 451 amino acids containing N-terminal and lipase domains in each case. Human LIPH exhibited 85 % identity with mouse LIPH and 46–47 % identity with vascular lipase sequences (LPL, EL and HL) and phosphatidic acid-preferential PLA1β (Lipi or PS-PLA1beta). Studies of amino acid sequences arising from LIPH founder mutations from individuals with autosomal recessive hypotrichosis have enabled the identification of key residues for this enzyme, including the active site and cysteine residues, forming intramolecular disulphide bonds (Shinkuma et al. 2010).

This paper reports the predicted gene structures and amino acid sequences for several vertebrate LIPH genes and proteins, the predicted secondary and tertiary structures for vertebrate LIPH protein subunits, and the structural, phylogenetic and evolutionary relationships for these genes and enzymes with related vertebrate phospholipase A1-like enzymes (LIPI and PS-PLA1), and with vascular and pancreatic lipase gene families.

Methods

Vertebrate LIPH gene and protein identification

Basic local alignment search tool (BLAST) studies were undertaken using web tools from the National Center for Biotechnology Information (NCBI) (http://www.blast.
Comparative human (LIPH) and mouse (Liph) tissue expression

The UCSC genome browser (http://www.genome.ucsc.edu) (Kent et al. 2003) was used to examine GNF1 expression atlas 2 data using various expression chips for human LIPH and mouse Liph genes, respectively (http://www.biogps.gnf.org) (Su et al. 2004). Gene array expression ‘heat maps’ were examined for comparative gene expression levels among human and mouse tissues showing high (red), intermediate (black), and low (green) expression levels.

Phylogenetic studies and sequence divergence

Alignments of vertebrate LIPH, LIP1, PS-PLA1, human, mouse, and zebrafish HL (hepatic lipase), LPL (lipoprotein lipase), EL (endothelial lipase) protein sequences, as well as human, mouse, and frog pancreatic lipases (PL) sequences were assembled using BioEdit v.5.0.1, as previously described (Holmes et al. 2011a). Alignment ambiguous regions were excluded prior to phylogenetic analysis yielding alignments of 349 residues for comparisons of sequences (Table 1). Evolutionary distances were calculated using the Kimura option as previously described (Holmes et al. 2011a). Phylogenetic trees were constructed from evolutionary distances using the neighbor-joining method (Saitou and Nei 1987). Tree topology was reexamined by the boot-strap method (100 bootstraps were applied) of resampling and only values that were highly significant (≥95) are shown.

Results and discussion

Alignments of human and other vertebrate LIPH subunits

The deduced amino acid sequences for orangutan (Pongo abelii), rabbit (Oryctolagus cuniculus), cow (Bos taurus), and chicken (Gallus gallus) LIPH subunits and for zebrafish (Danio rerio) LIPH1 and LIPH2 subunits are shown in Fig. 1 together with the previously reported sequences for human (Homo sapiens) and mouse (Mus musculus) LIPH subunits (Table 1) (Jin et al. 2002; Sonoda et al. 2002). Alignments of the human and other vertebrate LIPH subunits examined in this figure showed between 47 and 99% sequence identities (Table 2), suggesting that these are products of the same family of genes and proteins (Table 2). The amino acid sequence for human LIPH contained 451 residues while other vertebrate LIPH subunits contained 442 (lizard LIPH: Anolis carolensis) to 460
Vertebrate	Species	Gene	RefSeq ID prediction	GeneBank ID	Chromosome location	Coding exons (stand)	Gene size (bps)	UNIPROT ID	Amino acids	Subunit MW	PI
Human	Homo Sapiens	LIPH	NM_139248.2	BC064941	3:186,709,275–186,752,953	10 (+ve)	44,800	Q5WW8	50,859	7.2	
Chimp	Pan troglodytes	LIPH	XP_516924.2	NA	3:191,061,117–191,090,382	10 (–ve)	29,266	Na	50,859	7.2	
Orangutan	Pongo abelii	LIPH	ENSPPTT16713	NA	3:189,387,154–189,421,133	10 (–ve)	33,980	Na	50,897	7.1	
Rhesus	Macaca mulatta	LIPH	XP_00109044.1	NA	2:101,085,592–101,143,667	10 (+ve)	57,876	Na	51,582	8.8	
Mouse	Mus musculus	Liph	NM_001083894.1	BC037489	16:21,956,166–21,984,342	10 (–ve)	28,177	Q8CIV3	50,675	6.8	
Rat	Rattus norvegicus	Liph	NM_001044279	BC062045	11:77,895,628–77,940,437	Na (+ve)	44,809	Q32PY2	50,826	8.3	
Guinea Pig	Cavia porcellus	LIPH	XP_003476975.1	NA	7:50,635,497–50,661,027	10 (–ve)	25,531	Na	51,718	7.5	
Horse	Equus caballus	LIPH	XP_001497826.1	NA	19:23,706,899–23,736,710	10 (–ve)	29,812	Na	50,649	7.9	
Dog	Canis familiaris	LIPH	XP_545236.2	NA	34:278,826–21,305,983	10 (–ve)	27,358	Na	51,393	8.9	
Panda	Ailuropoda melanoleuca	LIPH	XP_002917505.1	NA	GL192,440,723–749,447	10 (+ve)	25,723	Na	50,948	8.8	
Cow	Bos taurus	LIPH	XP_589466.3	NA	1:83,522,271–83,560,671	10 (+ve)	38,401	Na	50,348	7.1	
Rabbit	Oryctolagus cuniculus	LIPH	NM_001082106.1	AF351188	14:80,045,888–80,094,405	10 (+ve)	48,518	Q9BDJ4	51,136	8.4	
Opossum	Monodelphis domestica	LIPH	ENSMOPD3338	NA	2:541,400,320–541,423,098	10 (–ve)	39,845	Na	50,518	8.6	
Chicken	Gallus gallus	LIPH	XP_416675.2	NA	1:101,409,883–101,425,858	10 (–ve)	15,976	Na	53,927	8.4	
Chicken	Gallus gallus	LIPH2	XP_422687.3	NA	9:4,675,149–4,684,014	10 (–ve)	8,866	Na	51,109	6.5	
Lizard	Anolis carolensis	LIPH	XP_003220481.1	NA	GL343,231,157,716–1,604,227	11 (–ve)	32,512	Na	44,229	7.9	
Frog	Xenopus tropicalis	LIPH	NP_001011988.1	BC084493	9:15,825–32,184	10 (–ve)	16,360	Q5XGE9	52,170	6.6	
Zebrafish	Danio rerio	LIPH1	NM_00103499.1	BC078354	21:33,911,120–33,933,839	10 (–ve)	22,720	Q6DBU8	51,811	8.4	
Zebrafish	Danio rerio	LIPH2	NM_001342691.1	NA	24:22,665,923–22,680,183	10 (+ve)	14,261	Na	50,663	7.2	
Human	Homo Sapiens	LIPI	NM_198996.2	BC140336	2:14,403,188–14,501,115	10 (–ve)	98,120	Q6XZB0	55,318	9.2	
Mouse	Mus musculus	Lipi	NM_177142	BC147403	17:65,541,302–75,586,195	11 (–ve)	44,894	Q8BV7	54,234	8.9	
Rat	Rattus norvegicus	Lipi	NM_001058999.1	NA	11:14,336,907–14,375,937	11 (–ve)	39,031	Na	54,257	9.0	
Horse	Equus caballus	LIP	XP_00149634.2	NA	26:13,392,409–13,454,321	10 (+ve)	62,352	Na	51,703	8.7	
Human	Homo Sapiens	PS-PLA1	NM_001206960.1	BC044703	3:119,316,761–119,348,312	11 (+ve)	31,552	Q53H76	49,715.0	7.1	
Mouse	Mus musculus	Ps-Pla1	NM_134102.4	BC003470	16:38,396,540–38,432,956	11 (–ve)	36,417	Q8V178	49,983.0	8.3	
Rat	Rattus norvegicus	Ps-Pla1	NM_138882.1	BC07827	11:64,099,850–64,137,017	11 (+ve)	37,168	P97355	50,202.0	8.3	
Chicken	Gallus gallus	PS-PLA1	XP_001233532.1	NA	17:9,608,797–79,625,612	11 (–ve)	16,816	Na	50,069.0	8.8	
Zebrafish	Danio rerio	PS-PLA1	NM_207056.1	BC155819	9:22,248,524–22,257,714	11 (+ve)	9,191	A9JRW4	51,225.0	6.1	

RefSeq NCBI reference sequence, 1 predicted NCBI sequence, 2 predicted UCSC Genome Browser sequence, NA not available, GL gene scaffold ID, pI isoelectric point, bps base pairs of nucleotide sequence
residues (frog LIPH: *Xenopus tropicalis*) (Fig. 1; Table 1). Several key amino acid residues for vertebrate LIPH were recognized (sequence numbers refer to human LIPH) (Fig. 1). These include the hydrophobic N-terminus signal peptide (residues 1–18), as reported for rat hepatic lipase (Laposata et al. 1987); the catalytic triad for the active site (Ser 154; Asp 178; His 248) (Fig. 1s) forming a charge relay network for substrate hydrolysis, similar to human lipoprotein lipase (Emmerich et al. 1992); a predicted phospholipid binding site containing the active site Ser 154 (Fig. 2s); and disulfide bond forming residues (Cys233/Cys246; Cys270/Cys281; Cys284/Cys292; and Cys427/Cys446) (Jin et al. 2002). Identical residues were observed for each of the vertebrate LIPH subunits for the active site triad and disulfide bond forming residues; however, the N-terminus 18-residue signal peptide underwent changes in sequence but retained predicted signal peptide properties (Fig. 1; Table 1). One of the N-glycosylation sites (designated as site 5) predicted for human LIPH at Asn 66–Val 67–Thr 68 was retained for each of the 18 vertebrate LIPH sequences examined; however, predicted N-glycosylation sites were observed at other positions for some sequences, including for example, Asn 50–Leu 51–Thr 52 (site 2) and Asn 357–Thr 358–Thr 359 (site 14), for human LIPH (Table 2). Given the reported role of the N-glycosylated carbohydrate group in contributing to the stability and maintaining catalytic efficiency of a related enzyme (human carboxylesterase or CES1) (Kroetz et al. 1993), this property may be shared by vertebrate LIPH as well, especially for those containing multiple predicted sites for N-glycosylation, such as dog LIPH, which contains four such sites.

Alignments of human LIPH with other lipase subunits

Alignments of human LIPH (Jin et al. 2002), lipase I (LIPI) (Hiramatsu et al. 2003; Wen et al. 2003), phosphatidylerine-specific phospholipase A1 (PS-PLA1) (Sato et al. 1997; Wen et al. 2003) and pancreatic lipase (PL) (Winkler et al. 1990; Lowe 2002) sequences are shown in Fig. 2. The following key amino acid residues were observed for each of these lipases consistent with those observed for the mammalian LIPH sequences (see Table 1). These included the N-terminal signal peptide sequences, which were distinct for each lipase but retained the predicted signal peptide functional role; the active site triad residues aligning with LIPH Ser 154, Asp 178, and His 248; the human LIPH disulfide cysteine residues (Cys 233/Cys 246; Cys 270/Cys 281; Cys 284/Cys 292; and Cys 427/Cys 446); however, human PS-PLA1 did not contain the last disulfide pair, while additional disulfide bonds were observed for human pancreatic lipase (corresponding to human PL Cys 20/Cys 26; Cys 106/Cys 118); distinct N-glycosylation sites were predominantly observed for each of the lipase sequences examined, although the human LIPH Asn 66–Val 67–Thr 68 N-glycosylation site was also shared with the human PS-PLA1 sequence; the active site ‘lid’ sequences showed that LIPH contained fewer residues (12 amino acids) (Fig. 1s), in comparison with other lipases [EL (19 residues); LPL and HL (22 residues); and PL (23 residues); and a high basic amino acid content region was observed for human LIPH residues (Lys 303 → Lys 315)] which aligned proximate to a heparin-binding site (human EL 324 Lys → 333 Lys) reported for human EL, which binds this lipase to the heparan sulfate proteoglycans on the luminal side of endothelial cells (Hill et al. 1998). This high basic amino acid content region for the human LIPH sequence may contribute to heparin binding reported for this enzyme (Hiramatsu et al. 2003).

Predicted secondary and tertiary structures of vertebrate LIPH subunits

Predicted secondary structures for vertebrate LIPH sequences were compared in Fig. 1, and similar β-helix and β-sheet structures were observed for all of the vertebrate LIPH subunits examined. Consistent structures were particularly apparent near key residues or functional domains including the β-sheet and z-helix structures near the active site Ser 154 (β4/z3); the active site His 248 (z4) residue; and the conserved N-glycosylation site at Asn 66–Val 67–Thr 68 (near β2). The primary structures for vertebrate LIPH sequences were also screened for candidate amphiphilic z-helices for forming of protein-phospholipid contacts using a bioinformatics method for predicting phospholipid-binding sites for smooth muscle caldesmon and calponin (Bogatcheva and Gusev 1995). Residues 147–167 for mouse LIPH (containing the active site Ser 154) were identified with an z-helical structure showing a high level of hydrophobicity which is a likely binding region at the active site for binding phospholipid substrates and in binding LIPH to membranes (Fig. 2s). Twelve amino acids were also identified near the active site histidine (His 248) and between two residues (Cys 233/Cys 246) forming disulfide intramolecular bonds as the proposed ‘active site lid’ structure for vertebrate LIPH. In addition, eight β-sheets were observed at the LIPH C-terminus end, which is consistent with PLAT domain structures previously reported for horse pancreatic lipase (PTL) (Bourne et al. 1994). It is also apparent from these studies that the LIPH subunits examined have highly similar secondary structures to those of the other A1-like phospholipases (LIPI and PS-PLA1) examined.
Figure 3 describes predicted tertiary structures for rabbit, chicken, and zebrafish LIPH sequences, in comparison with horse pancreatic lipase (PL) (Bourne et al. 1994). Identification of specific structures within the predicted LIPH sequences were based on the reported structure for horse PL which identifies a sequence of twisted β-sheets interspersed with several α-helical structures which are typical of the alpha–beta hydrolase super-family. The active site LIPH triad was centrally located which is similar to that observed for other lipases (Bourne et al. 1994) and carboxylesterase (human CES1) (Bencharit et al. 2003). The major difference between LIPH and other lipases examined (Fig. 3) is the much smaller size of the ‘lid’ region at positions 234–246, which may act as a surface loop that partially covers the opening to the catalytic triad and allows access to the active site by LIPH substrates. This ‘lid’ structure is readily apparent in the predicted structures for rabbit, chicken, and zebrafish LIPH. These comparative studies of vertebrate LIPH proteins suggest that the properties, structures, and key sequences are substantially retained for the vertebrate sequences examined.

Figure 1 Amino acid sequence alignments for human and other vertebrate LIPH subunits. See Table 1 for sources of LIPH sequences; asterisk shows identical residues for LIPH subunits—similar alternate residues; dissimilar alternate residues; N-signal peptide residues are in red; N-glycosylation residues are in green; active site triad residues Ser; Asp; and His are in pink; disulfide bond Cys residues are in blue; predicted helix; predicted sheet; bold font shows known or predicted exon junctions; exon numbers refer to human LIPH gene; predicted ‘lid’ covering the active site (human LIPH residues 234–245) are shown hashes; Hu human LIPH; Or orangutan LIPH; Mo mouse LIPH; Rb rabbit LIPH; Co cow LIPH; Ch chicken LIPH; Z1 zebrafish LIPH1; and Z2 zebrafish LIPH2

Predicted gene locations and exonic structures for vertebrate LIPH genes

Table 1 summarizes the predicted locations for vertebrate LIPH genes based upon BLAT interrogations of several vertebrate genomes using the reported sequences for human and mouse LIPH (Jin et al. 2002; Sonoda et al. 2002) and the predicted sequences for other vertebrate LIPH proteins and the UCSC genome browser (Kent et al. 2003). Human and mouse LIPH genes were located on human chromosome 3 and mouse chromosome 16, with distinct gene locations to those for other phospholipases, including lipase I (LIP1) (human chromosome 21 and also on mouse chromosome 16) and phosphatidylycerine-specific phospholipase A1 (PS-PLA1) (also on human chromosome 3 and mouse chromosome 16) (Table 1; Table 1s). The chicken (Gallus gallus) and zebrafish (Danio rerio) genome showed evidence of duplicated LIPH genes, with predicted LIPH1 and LIPH2 genes being located on separate chromosomes, in each case (Table 1). This is consistent with many other gene duplication events during zebrafish evolution that have occurred predominantly by
Table 2 Known or predicted N-glycosylation sites for vertebrate LIPH subunits

Vertebrate	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10	Site 11	Site 12	Site 13	Site 14	Site 15	No of sites
LIPH																
Human	50NLT	58NSS	66NVT													357NTT 3
Chimp	50NLT	58NSS	66NVT													357NTT 3
Orangutan	50NLT	58NSS	66NVT													357NTT 3
Rhesus	53NLT	61NSS	69NVT													361NTT 3
Mouse		58NST	66NVT													262NCS 357NTT 1
Rat	58NST	66NVT														262NCS 357NTT 1
Cow		54NST	62NVT													258NCT 353NTT 2
Horse	58NPT	66NVT	122NKT													357NTT 2
Dog	55NQT	63NST	71NMT													267NCS 362NIT 4
Rabbit	50NYT	58NST	66NVT	122NKT												263NCT 340NKS 358NTT 4
Opossum	60NVT															365NYT 1
Chicken 1	62NCS	71NVT	79NVS													277NIT 351NKS 3
Chicken 2	59NST	75NVT	120NAS													265NIT 389NIT 1
Lizard	68NLT	76NVT	79NLT	87NVT												255NVT 348NTT 379NIS 4
Frog	67NST	75NVT	177NGS	289NCT												366NVT 2
Zebrafish 1	73NVS	137NLT	151NLS	267NGC												358NGT 3
Zebrafish 2	25NFT	62NFT	70NVT	134NIT	264NRT											358NTT 4
Tetraodon	71NFS	95NIT	135NLT	173NGS												315NQT 4

The identified N-glycosylation site is for human LIPH (Jin et al. 2002)

Amino acid residues are shown for known or predicted N-glycosylation sites: N Asn; A Ala; T Thr; S Ser; M Met; L Leu; D Asp; G Gly; F Phe; I Ile; V Val

Sites with high probabilities for N-glycosylation are highlighted in bold.
polyploidisation or duplication of large chromosomal segments (Postlethwait et al. 1998).

Figure 1 summarizes the predicted exonic start sites for several vertebrate LIPH genes with each having ten exons, in identical or similar positions to those reported for the human LIPH and mouse Liph genes (Thierry-Mieg and Thierry-Mieg 2006). Human LIP1, PL1A1, and PL (encoding pancreatic lipase) genes contained 10, 11, and 12 exons, respectively, which are in similar positions for several exons of vertebrate LIPH genes, suggesting that these are related genes (Fig. 2). Figure 4 illustrates the structures for human LIPH and mouse Liph transcripts,
with the major transcript isoforms being designated as NM_139248 and NM_001083894, respectively (Kent et al. 2003). The transcripts were 2.5 and 3.8 kb in length, respectively, with nine introns and ten exons in each case. The human \textit{LIPH} genome sequence contained three microRNA sites (miR23ab; miR-7/98; and miR-874) located in the 3'-untranslated region, whereas the mouse \textit{Liph} gene sequence contained five such sites (miR-335; miR-27ab; miR-7/98; miR-202; and miR-874). These microRNA-binding sites are potentially of major significance for the regulation of this gene. MicroRNAs are small noncoding RNAs that regulate mRNA and protein expression and have been implicated in regulating gene expression during embryonic development (Stefani and Slack 2008). Important associations for miRNAs have been recently reported for psoriasis, a chronic inflammatory human skin disease (Zibert et al. 2010). One such association included an overexpression of miR-221/2, leading to decreased TIMP3 (metalloproteinase inhibitor) (Uría et al. 1994) levels in the skin. Zibert et al. (2010) have also identified 42 upregulated miRNAs and five downregulated miRNAs in psoriatic skin, although \textit{LIPH} mRNA targets were not among those differentiated between healthy and diseased skin.

Figure 3s shows a UCSC genome browser comparative genomics track that shows evolutionary conservation and alignments of the nucleotide sequences for the human \textit{LIPH} gene, including the 5'-flanking, 5'-untranslated, intronic, exonic, and 3'-untranslated regions of this gene, with the corresponding sequences for eight vertebrate genomes, including four eutherian mammals (e.g. mouse, dog), a marsupial (opossum), a bird (chicken), frog, and zebrafish genomes. Extensive conservation was observed among these genomic sequences, particularly for the rhesus \textit{LIPH} gene and for other eutherian mammalian genomes. In contrast with the eutherian mammalian genomes examined, other vertebrate genomes retained conserved sequences only within several of the exonic \textit{LIPH} regions, particularly for exons two–six, which are conserved within zebrafish \textit{LIPH} genes. It would appear that exon one, which encodes the ‘signal peptide’ domain \textit{LIPH} nucleotide sequences, has undergone more extensive divergence than for the other exons, which have been predominantly conserved throughout vertebrate evolution.
Comparative human and mouse \textit{LIPH} tissue expression

Figure 4s presents ‘heat maps’ showing comparative \textit{LIPH} gene expression for various human and mouse tissues obtained from GNF expression atlas data using the GNF1H (human) and GNF1M (mouse) chips (http://www.genome.ucsc.edu; http://www.biogps.gnf.org) (Su et al. 2004). These data supported a wide tissue expression for human \textit{LIPH} and mouse \textit{Liph} and a higher expression level in mouse pancreas, intestine, stomach, placenta, prostate, and thyroid tissues. Previous studies have reported significant human \textit{LIPH} expression in various tissues, including the intestine, lung, pancreas (Jin et al. 2002), prostate, testis, ovary, and platelets (Sonoda et al. 2002), and hair follicle cells, where a critical role for LPA signaling has been identified, facilitated by LIPH and the LPA receptor, P2Y5 (Inoue et al. 2011). Diribarne et al. (2011) have examined \textit{LIPH} expression in rabbit skin and hair follicles and reported higher expression levels in the outer hair root sheath than in the inner hair root sheath.

Phylogeny and divergence of vertebrate \textit{LIPH} and other lipase sequences

A phylogenetic tree (Fig. 5) was calculated by the progressive alignment of human and other vertebrate \textit{LIPH} amino acid sequences with human, horse, rat, and mouse \textit{LIPI} sequences: human, mouse, rat, chicken, and zebrafish PS-PLA1 sequences; human, mouse and zebrafish hepatic lipase (HL), and endothelial lipase (EL) sequences; human, mouse, and stickleback (a bony fish species) lipoprotein lipase (LPL) sequences; and human, mouse, and frog pancreatic lipase (PL) sequences. The phylogram showed clustering of the vertebrate \textit{LIPH} sequences which were distinct from the mammalian \textit{LIPI} sequences and the vertebrate PS-PLA1 sequences, as well as the vertebrate vascular lipase (HL, EL and LPL) and pancreatic lipase (PL) vertebrate lipase families. In addition, the zebrafish \textit{LIPH1} and \textit{LIPH2} sequences showed clustering within the fish \textit{LIPH} sequences examined, which is consistent with these genes being products of a recent duplication event.
during fish evolution. Overall, these data suggest that the vertebrate LIPH gene arose from a gene duplication event of an ancestral phospholipase-like gene, resulting in at least three separate lines of phospholipase gene evolution, namely LIPH, LIPI, and the PS-PLA1 genes. In addition, it is proposed that the mammalian LIPI gene may have arisen from a LIPH gene duplication event for which duplicated LIPHI and LIPH2 genes were observed for the chicken genome. It is also suggested that these A1-like phospholipase genes (LIPH, LIPI and PS-PLA1) may have shared a common evolutionary ancestor with the vascular gene families (hepatic lipase, endothelial lipase and lipoprotein lipase) and the pancreatic lipase gene family. This is supported by the comparative biochemical and genomic evidence for vertebrate LIPH, LIPI, PS-PLA1, and the vascular and pancreatic lipase-like genes and encoded proteins, which share several key features of protein and gene structure, including having similar alpha–beta hydrolase secondary and tertiary structures.

Conclusions

The results of this study suggest that vertebrate LIPH genes and encoded LIPH enzymes represent a distinct alpha–beta hydrolase-like gene and enzyme family which share key conserved sequences with other A1-like phospholipases (LIPI and PS-PLA1) and with structures that have been reported for the human lipase gene families, namely hepatic lipase, endothelial lipase, lipoprotein lipase and pancreatic lipase. LIPH is a major membrane-bound phosphatidic acid-selective phospholipase catalysing the production of fatty acids and lysophosphatidic acid. Bioinformatic methods were used to predict the amino acid sequences, secondary and tertiary structures and gene locations for LIPH genes and encoded proteins using data from several vertebrate genome projects. Evidence is presented for duplicated LIPH genes for the zebrafish and chicken genomes. Vertebrate LIPH protein subunits shared 56–97 % sequence identities and exhibited sequence alignments and identities for key LIPH amino acid residues as well as extensive conservation of predicted secondary and tertiary structures with those previously reported for mammalian pancreatic lipases, with ‘N-signal peptide’, ‘lipase’ and ‘plat’ structural domains. Phylogenetic analyses demonstrated the relationships and potential evolutionary origins of the vertebrate LIPH family of genes from a common ancestral gene with other A1-like phospholipase genes (LIPI and PS-PLA1), and with vascular lipase genes, hepatic lipase (HL), endothelial lipase (EL), and lipoprotein lipase (LPL), which were related to, but distinct from pancreatic lipase gene families. These studies also indicated that LIPH genes appeared early in vertebrate evolution prior to the teleost fish common ancestor and may have served as a source for the mammalian LIPI gene following an earlier gene duplication event.

Dedication to Emeritus Professor Colin Masters

Emeritus Professor Colin Masters passed away recently following an extended illness with cancer on 6th April 2012. Colin had published extensively in internationally peer reviewed journals and other respected monograph publishing houses in biochemistry, molecular biology and biotechnology. Colin Masters has left a rich legacy and an outstanding research record for his former graduate students, postdoctoral researchers and collaborators to follow and admire. An obituary for Emeritus Professor Colin Masters is published in this three biotech volume outlining his research career and several of his achievements in academia and scientific research. One of us (RSH) benefited from his calm and expert research postgraduate and postdoctoral supervision and remained a friend, colleague and collaborator for nearly 50 years. This paper on vertebrate lipase H (LIPH) is dedicated to his memory, to an outstanding research career in Australian biochemistry and biotechnology and to the dedication and friendship he showed to so many of us who were supervised, helped and nurtured during his long and productive life.

Conflict of interest The authors declare that they have no conflicts of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Ali G, Chishi MS, Raza SI, John P, Ahmad W (2007) A mutation in the lipase H (LIPH) gene underlie autosomal recessive hypotri-choisis. Hum Genet 121:319–325
Altschul F, Vyas V, Cornfield A, Goodin S, Ravikumar TS, Rubin EH, Gupta E (1997) Basic local alignment search tool. J Mol Biol 215:403–410
Annema W, Tietge UJ (2011) Role of hepatic and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol trans-port. Curr Atheroscler Rep 13:257–265
Aoki J, Inoue A, Makide K, Saiki N, Arai H (2007) Structure and function of extracellular phospholipase A1 belonging to the pancreatic lipase gene family. Biochimie 89:197–204
Aoki J, Inoue A, Okudaira S (2008) Two pathways for lysophospha-tidic acid production. Biochim Biophys Acta 1781:513–518
Bogatcheva NV, Gusev NB (1995) Computer-assistant prediction of phospholipid binding sites of caldesmon and calponin. FEBS Lett 363:269–272
Bencharit S, Morton CL, Xue Y, Potter PM, Redinbo MR (2003) Structural basis of heroin and cocaine metabolism by a
promiscuous human drug-processing enzyme. Nature Struct Biol 10:349–356

Bourne Y, Martinez C, Kerfelec B, Lombardo D, Chapus C, Cambillau C (1994) Horse pancreatic lipase. The crystal structure refined at 2.3-A resolution. J Mol Biol 238:709–732

Brown RJ, Rader DJ (2007) Lipases as modulators of atherosclerosis in murine models. Curr Drug Targets 8:1307–1309

Caminci P, Kasukawa T, Katayama S, Gough J, Frith MC et al (2005) The transcriptional landscape of the mammalian genome. Science 309:1559–1563

Clingingrøl M, Ballantyne C (2004) Endothelial lipase and cholesterol metabolism. Curr Atheroscler Rep 6:126–130

Dirbarne M, Mata X, Chantry-Darmon C, Vaiman A, Auvinet G, Bouet S, Deretz S, Criqui EP, de Rochambeau H, Allain D, Guérin G (2011) A deletion in exon 9 of the LIPH gene is responsible for the rex hair coat phenotype in rabbits (Oryctolagus cuniculus). PLoS ONE 6:e19281

Emmerich J, Beg OU, Peterson J, Previali L, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S (1992) Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser-132, Asp-156, and His-241. J Biol Chem 267:4161–4165

Gerhard DS, Wagner L, Feingold EA, Shenman CM, Grouse LH, Schuler G, Klein SL et al (2004) The status, quality, and expansion of the NIH full-length cDNA project: the mammalian gene collection (MGC). Genome Res 14(10B):2121–2127

Hama K, Aoki J (2010) LPA(3), a unique G protein-coupled receptor for lysophosphatidic acid. Prog Lipid Res 49:335–342

Hesse M, Willischer E, Schmiedel BJ, Posch S, Golbik RP, Staeger MS (2012) Sequence and expression of the chicken membrane-associated phospholipases A1 alpha (LIPH) and beta (LIPJ). Mol Biol Rep 39:761–769

Hill JS, Yang D, Nikazy J, Curtiss LK, Sparrow JT, Wong H (1998) Subdomain chimeras of hepatic lipase and lipoprotein lipase. Localization of heparin and cofactor binding. J Biol Chem 273:30979–30984

Hiramatsu T, Sonoda H, Takanezawa Y, Morikawa R, Ishida M, Kasahara K, Sanai Y, Taguchi R, Aoki J, Arai H (2003) Biochemical and molecular characterization of two phosphatic acid-selective phospholipase A1s, mPA-PLA1alpha and mPA-PLA1beta. J Biol Chem 278:49348–49447

Holmes RS, Cox JL, VandeBerg JL (2010) Comparative studies of mammalian acid lipases: evidence for a new gene family in mouse and rat. Comp Biochem Physiol Part D 5:217–226

Holmes RS, VandeBerg JL, Cox LA (2011a) Vertebrate endothelial lipase: comparative studies of an ancient gene and protein in vertebrate evolution. Genetica 139:291–304

Holmes RS, VandeBerg JL, Cox LA (2011b) Comparative studies of vertebrate lipoprotein lipase: a key enzyme of very low density lipoprotein metabolism. Comp Biochem Physiol Part D 6:224–234

Holmes RS, VandeBerg JL, Cox LA (2011c) Vertebrate hepatic lipase genes and proteins: a review supported by bioinformatic studies. Open Access Bioinform 3:1–11

Horev L, Tosti A, Nagai Y, Dohmae N, Takio K, Doi T, Arai H, Inoue K (2011) Localization of heparin and cofactor binding. J Biol Chem 286:12949–12953

Jelani M, Wasif N, Ali G, Chishti M, Ahmad W (2008) A novel deletion mutation in LIPH gene causes autosomal recessive hypotrichosis (LAH2). Clin Genet 74:184–188

Jin W, Broedl UC, Monajemi H, Glick JM, Rader DJ (2002) Lipase H, a new member of the triglyceride lipase family synthesized by the intestine. Genomics 80:268–273

Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D (2003) The human genome browser at UCSC. Genome Res 13:994–1006

Kopp J, Schwede T (2004) The SWISS-MODEL repository of annotated three-dimensional protein structure homology models. Nucleic Acids Res 32:D230–D234

Kroetz DL, McBride OW, Gonzalez FJ (1993) Glycosylation-dependent activity of Baculovirus-expressed human liver carboxylesterases: cDNA cloning and characterization of two highly similar enzyme forms. Biochem 32:11606–11617

Laposata EA, Laboda HM, Glick JM, Strauss JF 3rd (1987) Hepatic lipase. Synthesis, processing, and secretion by isolated rat hepatocytes. J Biol Chem 262:5333–5338

Lowe ME (2002) The triglyceride lipases of the pancreas. J Lipid Res 43:2007–2016

Martin GA, Busch SJ, Meredith GD, Cardin AD, Blankenship DT, Mao SJT, Rechtein AE, Woods CW, Racke MM, Schafer MP, Fitzgerald MC, Burke DM, Flanagan MA, Jackson RL (1988) Isolation and cDNA sequence of human postheparin plasma hepatic triglyceride lipase. J Biol Chem 263:10907–10914

McGuirn LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

Moolenaar WH (1995) Lysophosphatic acid, a multifunctional phospholipid messenger. J Biol Chem 270:12949–12952

Nag Z, Khan B, Ali G, Azzeem Z, Wali A, Ansar M, Ahmad W (2009) Novel missense mutations in lipase H (LIPH) gene causing autosomal recessive hypotrichosis (LAH2). J Dermatol Sci 54:12–16

Pasternack SM, von Kugelgen I, Müller M, Oji V, Traupe H, Sprecher E, Nöthen MM, Janecke AR, Betz RC (2009) In vitro analysis of LIPH mutations causing hypotrichosis simplex: evidence confirming the role of lipase H and lysophosphatic acid in hair growth. J Invest Dermatol 129:2772–2776

Postlethwait JH, Yan YL, Gates MA, Horne S, Amores A, Brownlie A, Donovan A, Egan ES, Force A, Gong Z, Goutel C, Fritz A, Kelsch R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelic P, Beier D, Joly JS, Lurhammer D, Rosa F, Westerfield M, Zon LI, Johnson SL, Talbot WS (1998) Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345–349

Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–411

Sato T, Aoki J, Nagai Y, Dohmae N, Takio K, Doi T, Arai H, Inoue K (1997) Serine phospholipid-specific phospholipase A1 that is secreted from activated platelets. J Biol Chem 272:2192–2198

Shinomura Y (2012) Congenital hair loss disorders: rare, but not too rare. J Dermatol 39:3–10

Shinomura Y, Wajid M, Petukhova L, Shapiro L, Christiano AM (2009) Mutations in the lipase H gene underlie autosomal recessive woolly hair/hypotrichosis. J Invest Dermatol 129:622–628

Shinkuma S, Akiyama M, Inoue A, Aoki J, Natsuga K, Nomura T, Arita K, Abe R, Ito K, Nakamura H, Ujiie H, Shibaki A, Sugah A, Tsunemi Y, Nishie W, Shimizu H (2010) Prevalent LIPH founder mutations lead to loss of P2Y5 activation ability of LIPH. Hum Mutat 31:602–610

Sonoda H, Aoki J, Hiramatsu T, Ishida M, Bandoh K, Nagai Y, Taguchi R, Inoue K, Arai H (2002) A novel phosphatidic acid-selective phospholipase A1 that produces lysophosphatidic acid. J Biol Chem 277:34254–34263

Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KR, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, Cooke MP, Walker JR, Hogenesch JB (2004) A gene atlas of the human and mouse protein encoding transcriptomes. Proc Natl Acad Sci USA 101:6062–6067

Thierry-Mieg D, Thierry-Mieg J (2006) AceView: a comprehensive cDNA-supported gene and transcripts annotation. Genome Biol 7:S12

Uría JA, Ferrando AA, Velasco G, Freije JM, López-Otín C (1994) Structure and expression in breast tumors of human TIMP-3, a new member of the metalloproteinase inhibitor family. Cancer Res 54:2091–2094

Wen XY, Hegele RA, Wang J, Wang DY, Cheung J, Wilson M, Yahyapour M, Bai Y, Zhuang L, Skaug J, Young TK, Connelly PW, Koop BF, Tsui LC, Stewart AK (2003) Identification of a novel lipase gene mutated in lpd mice with hypertriglyceridemia and associated with dyslipidemia in humans. Hum Mol Genet 12:1131–1143

Winkler FK, D-Arcy A, Hunziker W (1990) Structure of human pancreatic lipase. Nature 359:159–162

Wion KL, Kirchgesner TG, Lusis AJ, Schotz MC, Lawn RM (1987) Human lipoprotein lipase complementary DNA sequence. Science 235:1638–1641

Yanagida K, Masago K, Nakanishi H, Kihara Y, Hamano F, Tajima Y, Taguchi R, Shimizu T, Ishii S (2009) Identification and characterization of a novel lysophosphatidic acid receptor, p2y5/LPA6. J Biol Chem 284:17731–17741

Zibert JR, Løvendorf MB, Litman T, Olsen J, Kaczkowski B, Skov L (2010) MicroRNAs and potential target interactions in psoriasis. J Dermatol Sci 58:177–185

Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, Pertea G, Van Tassell CP, Sonstgård TS, Marcais G, Roberts M, Subramanian P, Yorke JA, Salzberg SL (2009) A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol 10:R42