Nonperturbative transverse-momentum-dependent effects in dihadron and direct photon-hadron angular correlations in p+p collisions at $\sqrt{s} = 200$ GeV

C. Aidala,9 Y. Akiba,50,51 M. Alfred,22 V. Andrieux,39 N. Apadula,27 H. Asano,32,50 B. Azmoun,7 V. Babintsev,23 A. Bagoly,16 N.S. Bandara,38 K.N. Barish,8 S. Bathe,5,51 A. Bazilevsky,7 M. Beaumier,8 R. Belmont,12 A. Berdnikov,53 Y. Berdnikov,53 D.S. Blau,31,42 M. Boer,34 J.S. Bok,43 M.L. Brooks,34 J. Byslawskij,5,8 V. Bunumzhov,23 S. Campbell,13 V. Canoan Roman,56 R. Cervantes,56 C.Y. Chi,13 M. Chiu,7 I.J. Choi,24 J.B. Choi,10,18 Z. Citron,61 M. Connors,20,51 N. Cronin,56 M. Csanád,16 T. Čsörö,17,62 T.W. Danley,45 M.S. Daugherty,1 G. David,7,56 K. DeBiasio,43 K. Dehmelt,56 A. Denisov,23 A. Deshpande,51,56 E.J. Desmond,7 A. Dion,56 D. Dixit,56 J.H. Do,63 A. Drees,56 K.A. Drees,6 J.M. Durham,34 A. Durum,23 A. Enokizono,50,52 H. Enyo,50 S. Esumi,29 B. Fadem,80 W. Fan,56 N. Feege,56 D.E. Fields,43 M. Finger,9 M. Finger, Jr,9 S.L. Fokin,31 J.E. Frantz,45 A. Franz,7 A.D. Frawley,19 Y. Fukuda,59 C. Gal,56 P. Gallus,14 P. Garg,3,56 H. Ge,56 F. Giordano,24 Y. Goto,50,51 N. Grau,2 S.V. Greene,60 M. Grosse Perdekamp,24 T. Gunji,11 H. Guragain,20 T. Hachiya,50,51 J.S. Haggerty,7 K.I. Hahn,18 H. Hamagaki,11 H.F. Hamilton,1 S.Y. Han,18 J. Hank,56 S. Hasegawa,28 T.O.S. Haseler,20 X. He,20 T.K. Hemmick,56 J.C. Hill,27 K. Hill,12 A. Hodges,20 R.S. Hollis,8 K. Homma,21 B. Hong,30 T. Hoshino,21 N. Hotvedt,27 J. Huang,7 S. Huang,60 K. Imai,28 M. Inaba,9 A. Iordanova,9 D. Isenhower,1 D. Ivanishchev,49 B.V. Jacak,56 M. Jezghani,20 Z. Ji,56 X. Jiang,34 B.M. Johnson,7,29 D. Jouan,67 D.S. Jumper,24 J.H. Kang,67 D. Kapukchyan,8 S. Karthas,56 D. Kawaall,38 A.V. Kazantzsev,31 V. Khachatryan,60 A. Khanzadeev,49 C. Kim,8,30 E.-J. Kim,10 M. Kim,54 D. Kinces,6 E. Kistenev,7 J. Klatsky,19 P. Kline,56 T. Koblesky,12 D. Kotov,49,53 S. Kudo,59 K. Kurita,52 Y. Kwon,63 J.G. Lajoie,27 A. Lebedev,27 S. Lee,53 S.H. Lee,27,56 M.J. Leitch,34 Y.H. Leung,56 N.A. Lewis,39 X. Li,34 S.H. Lim,34,63 M.X. Liu,34 V.R. Loggins,24 S. Lőkös,16,17 K. Lovasz,15 D. Lynch,7 T. Majoros,15 Y.I. Makdisi,9 M. Makek,7 D.V. Manko,31 E. Mannel,7 M. McCumber,34 P.L. Maeghaey,34 D. McGlincey,12,34 C. McKenzie,24 M. Mendoza,8 A.C. Mignerey,37 D.E. Mihalik,56 A. Milov,61 D.K. Mishra,4 J.T. Mitchell,7 G. Mitsuka,51 S. Miyasaka,50,58 S. Mizuno,50,59 P. Montuenga,24 T. Moon,63 D.P. Morrison,7 E.I. Morrow,60 T. Murakami,32,50 J. Murata,50,52 K. Nagai,58 K. Nagashima,21 T. Nagashima,52 J.L. Nagle,12 M.I. Nagy,16 I. Nakagawa,50,51 K. Nakano,50 C. Nattrass,57 T. Niida,59 R. Nowic,7,51 T. Noval,17,62 N. Novitzky,56 A.S. Nyani,31 E. O’Brien,7 C.A. Ogilvie,27 J.D. Orjuela Koop,12 J.D. Osborn,39 A. Oskarsson,35 G.J. Ottino,43 K. Ozawa,59,59 V. Pantuev,25 V. Papavassiliou,44 J.S. Park,54 S. Park,50,54,56 S.F. Pate,44 M. Patel,27 W. Peng,60 D.V. Perepelitsa,7,12 G.D.N. Perera,44 D.Yu. Peressounko,31 C.E. PerezLara,56 J. Perry,27 R. Petti,7 M. Phipps,7,24 C. Pinkenburg,7 R.P. Pisani,7 M.L. Purschke,7 P.V. Radzевич,53 K.F. Red,16,57 D. Reynolds,55 V. Riabov,42,49 Y. Riabov,49,53 D. Richford,5 T. Rinn,27 S.D. Rolnick,8 M. Rosati,27 Z. Rowan,5 J. Runchey,27 A.S. Safonov,53 T. Sakaguchi,7 H. Sako,28 V. Samonssov,42,49 M. Sarsour,20 S. Sato,28 B. Schafer,60 B.K. Schmoll,57 K. Sedgwick,8 R. Seidl,50,51 A. Sen,27,57 R. Seto,8 A. Sexton,37 D. Sharma,56 I. Shlein,23 T.A. Shibata,50,58 K. Shigaki,21 M. Shimomura,71 T. Shioya,59 P. Shukla,4 A. Sickles,24 C.L. Silva,34 D. Silvermyr,35 B.K. Singh,3 C.P. Singh,3 V. Singh,30 M.J. Skoby,9 M. Sznećka,3 M. Snowball,34 R.A. Solt,33 W.E. Sondheim,34 S.P. Sorenson,57 I.V. Sourikova,7 P.W. Stankus,46 S.P. Stoll,7 T. Sugitate,21 A. Sukhanov,7 T. Sunita,50 J. Sun,56 Z Sun,15 Z. Sun,15 J. Szilágyi,62 K. Tanida,28,51,54 M.J. Tannenbaum,7 S. Tarafdar,60,61 A. Taranenko,42 A. Taranenko,42,55 G. Tarnai,15 R. Tievet,20,36 A. Timilsina,27 T. Todoroki,59 M. Tomášek,14 C.L. Towell,1 R.S. Towell,1 I. Tserruya,61 Y. Ueda,61 B. Ujvari,15 H.W. van Hecke,34 J. Velkovska,60 M. Viroi,14 V. Vrba,14,26 N. Vukan,44 X.R. Wang,44 Y.S. Watanabe,13 C.P. Wong,20 C.L. Woody,7 C. Xu,44 Q. Xu,60 L. Xue,20 S. Yalcin,56 Y.L. Yamaguchi,51,56 H. Yamamoto,59 A. Yanovich,23 J.H. Yoo,30 I. Yoon,54 H. Yu,44,48 I.E. Yushmanov,31 V. Zajc,13 A. Zelenksi,8 S. Zharko,33 and L. Zou8

(PHENIX Collaboration)

1 Abilene Christian University, Abilene, Texas 79699, USA
2 Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA
3 Department of Physics, Banaras Hindu University, Varanasi 221005, India
4 Bhabha Atomic Research Centre, Bombay 400 085, India
5 Baruch College, City University of New York, New York, New York, 10010 USA
6 Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
7 Department of Physics, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
8 University of California-Riverside, Riverside, California 92521, USA
9 Charles University, Ovocny trh 5, Praha I, 116 36, Prague, Czech Republic
10 Chonbuk National University, Jeonju, 561-756, Korea
11 Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
Dihadron and isolated direct photon-hadron angular correlations are measured in $p+p$ collisions at $\sqrt{s} = 200$ GeV. The correlations are sensitive to nonperturbative initial-state and final-state transverse momentum k_T and j_T in the azimuthal nearly back-to-back region $\Delta \phi \sim \pi$. In this region, transverse-momentum-dependent evolution can be studied when several different hard scales are measured. To have sensitivity to small transverse momentum scales, nonperturbative momentum

(Dated: August 13, 2019)
widths of p_{out}, the out-of-plane transverse momentum component perpendicular to the trigger particle, are measured. These widths are used to investigate possible effects from transverse-momentum-dependent factorization breaking. When accounting for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle, the widths are found to increase with the hard scale; this is qualitatively similar to the observed behavior in Drell-Yan and semi-inclusive deep-inelastic scattering interactions. The momentum widths are also studied as a function of center-of-mass energy by comparing to previous measurements at $\sqrt{s} = 510$ GeV. The nonperturbative jet widths also appear to increase with \sqrt{s} at a similar x_T, which is qualitatively consistent to similar measurements in Drell-Yan interactions. To quantify the magnitude of any transverse-momentum-dependent factorization breaking effects, calculations will need to be performed to compare to these measurements.

I. INTRODUCTION

Quantum chromodynamics (QCD) research has entered a period in which the focus of nucleon structure has shifted from a one-dimensional to a multidimensional picture. To take into account additional degrees of freedom besides the longitudinal momentum of partons within hadrons, the transverse-momentum-dependent (TMD) framework has been developed which also accounts for partons’ transverse momentum. Rather than parton distribution functions (PDFs) and fragmentation functions (FFs) being integrated over transverse momentum degrees of freedom, TMD PDFs and TMD FFs contain explicit dependence on the nonperturbative transverse momentum of the parton within the nucleon. This dependence offers a way to describe the three dimensional momentum distribution of unpolarized partons within unpolarized hadrons, in addition to a variety of spin-spin and spin-momentum correlations when the parton and nucleon spin states are considered.

In the past decade, significant effort has been placed on measuring asymmetries that are sensitive to PDFs and FFs within the TMD framework. Semi-inclusive deep-inelastic scattering (SIDIS) and Drell-Yan (DY) measurements have shown empirical evidence for nonzero spin momentum correlations in the initial state $[1,5]$. Additionally, e^+e^- annihilation and SIDIS measurements have shown nonzero spin-momentum correlations in the final-state hadronization process $[6,8]$. With the development of robust and theoretically interpretable jet finding algorithms, there have also been several measurements studying nonperturbative hadronization in unpolarized $p+p$ collisions $[9,10]$ as well as spin-momentum correlations in polarized $p+p$ collisions $[11,12]$. Transverse single spin asymmetries of inclusive hadron production in $p+p$ collisions of up to $\sim 40\%$ also indicate large spin-momentum correlations within the nucleon and/or the process of hadronization $[13]$; however, these measurements cannot probe functions within the TMD framework directly because there is not a simultaneous measurement of a small and hard transverse momentum scale.

The focus on multidimensional parton structure has brought the importance of soft gluon exchanges in hard interactions to the forefront of QCD research. In particular, the role of color exchanges due to soft gluon interactions with remnants of the hard scattering has brought to light fundamental predictions about QCD as a gauge-invariant quantum field theory. For example, the Sivers TMD PDF $[13,15]$, which correlates the partonic transverse momentum with the nucleon spin, is predicted to exhibit modified universality when measured in the SIDIS and DY processes $[16]$. The underlying physical cause of this prediction is the interference between color fields in the two processes when an initial-state gluon is exchanged in DY vs. a final-state gluon in SIDIS. The Sivers function has already been measured to be nonzero in SIDIS $[1]$. The first measurements of the DY-like W boson and DY transverse single spin asymmetry were recently reported $[17,18]$, and are consistent with the predicted sign change of the Sivers function. However, the uncertainties on the measurements are still large enough that a definitive conclusion cannot be drawn; more data will ultimately be necessary as the prediction is for the entire Sivers distribution as a function of the partonic longitudinal and transverse momentum x and k_T.

In leading order perturbative QCD processes where a colored parton is exchanged in the hard interaction, and thus color is necessarily present in both the initial and final states, soft gluon exchanges can lead to new effects in a TMD framework similarly to the predicted modified universality of certain TMD PDFs. In hadronic collisions where a final-state hadron is measured and the process is sensitive to a small transverse momentum scale, factorization breaking has been predicted $[19,22]$. These processes can offer sensitivity to the non-Abelian nature of QCD. In processes where factorization is broken, the nonperturbative objects can no longer be factorized into a convolution of TMD PDFs and TMD FFs due to the complex color flows that are possible throughout the hard scattering and remnants of the collision and thus connect the initial and final state hadrons. In both cases of factorization breaking and modified universality of certain TMD PDFs, gluon exchanges with the remnants cannot be eliminated via gauge transformations. There have also been recent studies showing that factorization is broken for certain processes even at the collinear multi-loop level $[23,24]$, however, the focus of this work is to probe TMD factorization breaking effects.

* PHENIX Spokesperson: akiba@rcf.rhic.bnl.gov

† Deceased
In the past decade, the role of color in hadronic interactions has also been explored in several different types of observables in $p+p$ collisions. The measurement of collective behavior in high multiplicity $p+p$ collisions has prompted new studies of global observables in addition to interference effects between necessarily color connected multiple partonic interactions \cite{25,27}. Measurements of dijet+jet and direct photon-jet+jet correlations at the Large Hadron Collider studying color-coherence effects have found effects from color-radiation patterns specific to hadronic collisions \cite{28,29}. New dijet observables which rely on jet substructure have been shown to be sensitive to color flow in $t\bar{t}$ events \cite{30}. With theoretical advances in jet substructure techniques that may be more sensitive to factorization breaking effects, such as within soft-collinear effective theory \cite{31}, future measurements involving jet substructure may be an effective way to probe soft radiation patterns that allow quantification of color flow effects similarly to Ref. \cite{30}. The advancement of both experimental and theoretical techniques has allowed the magnitude of effects from color flow and color connections to be probed in a variety of ways across various subfields of QCD.

A previous measurement \cite{32} in $p+p$ collisions at $\sqrt{s} = 510$ GeV found that nonperturbative momentum widths in dihadron and direct photon-hadron angular correlations binned in a fixed range of the away-side associated hadron p_T decreased with the hard scale of the interaction, which is qualitatively opposite to what is expected from Collins-Soper-Sterman (CSS) evolution \cite{32} which comes directly out of the derivation of TMD factorization \cite{33}. This study is intended to extend the analysis of Ref. \cite{32} for processes which are predicted to violate factorization; however, this measurement is made at $\sqrt{s} = 200$ GeV. It supplants the previous PHENIX analysis at $\sqrt{s} = 200$ GeV \cite{34} with an approximately four times increase in integrated luminosity. The two different center-of-mass energies of Ref. \cite{32} and this analysis allow TMD effects to be studied as a function of \sqrt{s} in processes predicted to violate factorization.

II. EXPERIMENT DETAILS

In 2015 the PHENIX experiment collected data from $p+p$ collisions at $\sqrt{s} = 200$ GeV. A total minimum bias integrated luminosity of 60 pb$^{-1}$ was used for the analysis of dihadron and direct photon-hadron angular correlations, from which data quality assurance and cuts of $|\eta| < 5$, $p_T < 10$ GeV were used for the analysis of dihadron and direct photon-hadron angular correlations, from which data quality assurance and cuts of $|\eta| < 5$ and $p_T < 10$ GeV were applied. The PHENIX detector measures two particle angular correlations via its electromagnetic calorimeter (EMCal) and drift chamber (DC) plus pad chamber (PC) tracking system located in two central-rapidity arms. The central arms are nearly back-to-back in azimuth and each cover approximately $\Delta \phi \sim \pi/2$ radians in azimuthal angle and $\Delta \eta \sim 0.7$ units in pseudorapidity centered about midrapidity. A schematic diagram of the two central arms is shown in Fig. 1. Detailed descriptions of the PHENIX central arm spectrometers can be found in Refs. \cite{35,36}. Fig. 1. Detailed descriptions of the PHENIX central arm spectrometers can be found in Refs. \cite{35,36}.

The PHENIX EMCal \cite{36} comprises eight sectors, four in each arm. Six of the sectors are lead-scintillator sampling calorimeters, and the other two are lead-glass Cerenkov calorimeters. A high-energy-photon trigger in the EMCal is used to identify events with a high-p_T photon. Photons are identified with a shower shape cut that removes charged hadrons as well as most high energy clusters that overlap closely with another photon, which helps eliminate π^0 merging effects at high p_T. The granularity of the EMCal as well as the shower shape cuts allow for π^0 and η reconstruction up to ~ 20 GeV in the diphoton channel, which allows for direct photon measurements as well. In this analysis isolated photons are measured between $5 < p_T < 15$ GeV/c, and neutral pions are measured between $4 < p_T < 15$ GeV/c. Previous π^0, η, and direct photon cross sections as well as π^0-hadron or direct photon-hadron correlation can be found in Refs. \cite{32,34,37,39}.

The PHENIX tracking system \cite{35} measures unidentified charged hadrons with a DC and PC tracking system. The PC1, located radially behind the drift chamber, and PC3, located radially in front of the EMCal, allow for tracks identified in the DC to be matched with PC hits. The track matching condition in the PC1 and especially the PC3 reduces secondary tracks from conversions or decays. The ring-imaging Cerenkov system, located radially behind the DC in Fig. 1 is also used to remove electrons from the charged hadron sample. The tracking system is also used to suppress hadronic shower contamination when identifying photons by matching tracks in the DC and PC to showers in the EMCal and subsequently removing them. In this analysis charged hadrons are collected from $0.5 < p_T < 10$ GeV/c. A previous unidentified charged hadron cross section from PHENIX can be found in e.g. Ref. \cite{40}.
III. ANALYSIS

Dihadron and direct photon-hadron correlation functions are constructed following the methods of Refs. [32, 34]. The correlation functions are constructed by measuring the raw number of correlated trigger particles and associated hadrons, where the trigger particle refers to either a leading π^0 or isolated photon. To account for the PHENIX acceptance, the yields are corrected by a mixed-event distribution by constructing correlations between trigger particles from one event and associated hadrons from a different event. The mixed event distribution is constructed on a run-by-run basis to quantify any changing efficiencies of the detector with time. The correlation functions are additionally corrected by a charged hadron efficiency to quantify the inefficiency of the DC and PC tracking system. The charged hadron efficiency is determined by simulating single particle hadrons in a GEANT3-based description of the PHENIX detector [41]. After corrections the correlation functions are divided by the total number of trigger particles to construct a per-trigger yield. In this analysis a 9% uncertainty is assigned to the charged hadron efficiency, which amounts to an overall normalization uncertainty on the per-trigger yields. In total the correlation functions correspond to yields within full azimuthal coverage and $|\eta| < 0.35$. The correlations are constructed similarly to previous PHENIX analyses in Refs. [32, 33, 42–44].

A. Statistical subtraction of decay photons

The correlation functions can be constructed for any generic trigger-associated hadron combination. To identify direct photon-hadron correlations, an additional statistical subtraction must be applied to account for the background due to decay photon-hadron correlations. Reference [44] used a method which statistically subtracts the decay photon-hadron per-trigger yield component from a total inclusive photon-hadron per-trigger yield component with the following equation

$$Y_{\text{direct}} = \frac{1}{R_\gamma - 1} (R_\gamma Y_{\text{inclusive}} - Y_{\text{decay}})$$ (1)

In this equation Y is the per-trigger yield of a particular component denoted by the subscript, and R_γ is the relative contribution of direct photons to decay photons defined as $R_\gamma \equiv N_{\text{inclusive}}/N_{\text{decay}}$. In Ref. [44], direct photons are defined as any photon not from a decay process, and includes next-to-leading order fragmentation photons.

To reduce the presence of fragmentation photons, Refs. [32, 34] implemented an isolation cone criterion in the method, which we also use in this analysis. This has the added benefit of also reducing the decay photon background and thus providing a larger signal to background ratio for the direct photons. Additionally, photons that could be tagged as coming from π^0 or η decays were removed. Because the tagging procedure does not remove all decay photons, Eq. (1) was modified to include these cuts and introduce isolated photon quantities

$$Y_{\text{direct}}^{\text{iso}} = \frac{1}{R_\gamma^{\text{iso}} - 1} (R_\gamma^{\text{iso}} Y_{\text{inclusive}}^{\text{iso}} - Y_{\text{decay}}^{\text{iso}})$$ (2)

where again the trigger particles are noted in the subscripts for the various per-trigger yields and “iso” refers to both “isolated” and not tagged as coming from a π^0 decay. Here R_γ^{iso} is the relative contribution of isolated direct photons to isolated decay photons, defined in a similar way to R_γ, except with isolated quantities. While the subtraction procedure of Ref. [44] removes all decay photons, the modified isolated subtraction procedure removes background due to isolated decay photon-hadron correlations, which, in the PHENIX acceptance, are due most often to isolated neutral pion decays which decay asymmetrically such that the low-p_T photon is not detected.

To implement the isolated statistical subtraction procedure, isolation and tagging cuts are applied at the event-by-event level in the data analysis. Inclusive photon candidates are removed from the analysis if a partner photon with $p_T > 500$ MeV/c is found such that the invariant mass of the pair falls within the π^0 or η invariant mass regions, $0.118 < m_{\gamma\gamma} < 0.162$ and $0.5 < m_{\gamma\gamma} < 0.6$ GeV/c2. In addition to the tagging cuts, an isolation cut is implemented. The isolation criterion is that the sum of EMCal energy and p_T of charged tracks within a cone radius of 0.3 radians must be less than 10% of the candidate photons energy, similar to Ref. [34]. To reduce the effects of the detector acceptance, candidate isolated photons are also required to be ~ 0.1 radians from the edge of the detector in both ϕ and η. This forces a large portion of the cone to fall within the PHENIX acceptance.

The number of isolated decay photon-hadron pairs are not known a priori because an unknown fraction of the isolated photons still come from decay processes. The isolated decay photon-hadron correlations are determined with a Monte Carlo generated probability density function that quantifies the probability of an isolated π^0 to decay to an isolated photon within the PHENIX acceptance such that the photon was not able to be tagged as coming from a decay process. The functions are used to map the isolated π^0-hadron correlations to the corresponding daughter isolated photon-hadron correlations for use in the statistical subtraction procedure, where the isolation criterion for the π^0 meson is the same as described above for single photons. In total a 4% systematic uncertainty was assigned for the statistical subtraction process, which includes additional background coming from higher mass state decays. With the probability functions, the decay
photon-hadron per-trigger yields can be determined by

$$Y_{\text{iso}}^{\gamma \text{decay}} = \frac{\sum N_{\text{iso}}^{\gamma \text{decay}} P(p_T^\gamma, p_T^\gamma) N_{\text{inclusive}}^{\gamma \text{decay}}}{\sum N_{n\text{iso}}^{\gamma \text{decay}} P(p_T^\gamma, p_T^\gamma) N_{\text{inclusive}}^{n\text{iso}}}$$ \hspace{1cm} (3)$$

where \(P(p_T^\gamma, p_T^\gamma)\) is the probability density function described above and \(N\) are the number of isolated \(\pi^0\)-hadron pairs or isolated \(\pi^0\) triggers measured as indicated in the subscripts.

To determine \(R_{\gamma}^{\text{iso}}\), the quantity \(R_{\gamma}\) must be corrected for the isolation and tagging cuts. The \(R_{\gamma}\) was previously measured in Ref. [34], so these values are used and corrected with the measured isolation and tagging efficiencies of this analysis. The quantity is the ratio of isolated inclusive photons to isolated decay photons, is dependent only on the photon \(p_T\), and can be written as

$$R_{\gamma}^{\text{iso}}(p_T^\gamma) = \frac{N_{\text{inclusive}}^{\gamma \text{iso}}}{N_{\text{decay}}^{\gamma \text{iso}}}$$

$$= \frac{R_{\gamma}}{(1 - \epsilon_{\text{tag}}^{\gamma \text{decay}})(1 - \epsilon_{\text{iso}}^{\gamma \text{decay}})}$$

$$\times \frac{N_{\text{inclusive}} - N_{\text{decay}}^{\gamma \text{tag}} - N_{\text{inclusive}}^{n\text{iso}}}{N_{\text{inclusive}}}$$

where “niso” refers to “not isolated,” \(\epsilon_{\text{tag}}^{\gamma \text{decay}}\) is the tagging efficiency, \(\epsilon_{\text{iso}}^{\gamma \text{decay}}\) is the isolation efficiency, and the various \(N\) values are the number of photons that correspond to the subscript and superscript with which they are associated. The bottom-most fraction in Eq. (4) is simply the number of isolated inclusive photons divided by the total number of inclusive photons and can be determined by just counting the photons that pass the necessary cuts. The decay photon tagging efficiency can be written as

$$\epsilon_{\text{tag}}^{\gamma \text{decay}} = R_{\gamma}^{\gamma \text{tag}} N_{\text{inclusive}}^{\gamma \text{tag}}$$

and can also be determined by counting the number of photons that pass the cuts. To determine the isolation efficiency, the isolation cut is applied at the level of the parent \(\pi^0\) and the decay probability functions are used to map the effect to the daughter photons. The isolation efficiency can be written as

$$\epsilon_{\text{iso}}^{\gamma \text{decay}} = \left(1 + \sum \frac{\pi P(p_T^\gamma, p_T^\gamma) N_{\text{inclusive}}^{\gamma \text{iso}}}{\sum \pi P(p_T^\gamma, p_T^\gamma) N_{\text{inclusive}}^{n\text{iso}}}\right)^{-1}$$

Therefore, all of the necessary components can be determined to calculate \(R_{\gamma}^{\text{iso}}\). Figure 2 shows the measured values of \(R_{\gamma}^{\text{iso}}\) as a function of \(p_T^\gamma\) in this analysis compared to the previous PHENIX publication [34] at the same \(\sqrt{s}\). The values show consistency with the previous analysis and are all larger than unity, indicating the signal-to-background of the isolated direct photons to decay photons. These can also be compared to the values of \(R_{\gamma}\) in Refs. [34] [44] showing that the tagging and isolation cuts increase the signal-to-background.

IV. RESULTS

A. Azimuthal correlations

Figure 3 shows the correlation functions measured in various \(p_T^{\gamma\text{assoc}}\) and \(p_T^{\pi\text{assoc}}\) bins. In the figure the red open points are the dihadron correlations, while the filled blue points are the isolated direct photon-hadron correlations. A black dashed line estimates the underlying event pedestal to emphasize the jet yields. The per-trigger yields as a function of \(\Delta\phi\) show the expected visual features of dihadron and direct photon-hadron correlations. The dihadron correlations have two peaks at \(\Delta\phi \sim 0\) and \(\pi\) corresponding to intrajet and back-to-back jet correlations, respectively. The isolated direct photon-hadron correlations show away-side yields that are consistently smaller than the corresponding \(\pi^0\)-hadron yields, which is to be expected because the \(\pi^0\)-hadron correlations probe larger hard scales due to the \(\pi^0\) being a fragment of the jet. Note that a 9% charged hadron normalization uncertainty is not explicitly shown on any of figures displaying the per-trigger yields; this is denoted in each of the captions where the uncertainty applies.

B. \(p_{\text{out}}\) distributions

The hard scattering quantity \(p_{\text{out}} = p_T^{\gamma\text{assoc}} \sin \Delta\phi\), the transverse momentum component of the associated hadron with respect to the trigger particle axis, is defined kinematically in Fig. 4. Rather than constructing the per-trigger yields as a function of \(\Delta\phi\), they are instead constructed as a function of \(p_{\text{out}}\) in a similar way to the \(\Delta\phi\) correlations. These distributions are the quantity of interest because the nonperturbative TMD structure can be observed from the correlation functions; additionally they have the advantage that the nonperturbative com-
The per-trigger yields are shown as a function of \(\Delta \phi \) in several \(p_{T}^{\text{trig}} \otimes p_{T}^{\text{assoc}} \) bins. The black dashed line shows an estimation of the underlying event yield to more clearly show the away-side jet yield. The 9\% charged hadron normalization uncertainty is not explicitly shown on the figure.

Component of the away-side jet width can be separated from the perturbative component in momentum space with a transition region between the two components.

Reference [34] found that the nonperturbative momentum widths of the \(p_{\text{out}} \) distributions binned in a fixed range of \(p_{T}^{\text{assoc}} \) decreased with the hard scale \(p_{T}^{\text{trig}} \), contrary to what is qualitatively expected from CSS evolution. The \(p_{\text{out}} \) distributions were binned in a fixed \(p_{T}^{\text{assoc}} \) range only, which means that the longitudinal momentum fraction \(z \) of the away-side hadron with respect to the away-side jet was generally decreasing as the hard scale increased. Here we bin the \(p_{\text{out}} \) correlation distributions as a function of the quantity \(x_{E} \), which is defined in Ref. [34] as

\[
x_{E} \equiv -\frac{p_{T}^{\text{trig}} \cdot p_{T}^{\text{assoc}}}{|p_{T}^{\text{trig}}|^{2}} = -\frac{|p_{T}^{\text{assoc}}|}{|p_{T}^{\text{trig}}|} \cos \Delta \phi \tag{6}
\]

and is geometrically shown in Fig. 4. Because full jet reconstruction within PHENIX severely limits available statistics due to the limited acceptance, this quantity can be used as a proxy for \(z \), the longitudinal momentum fraction of the associated away-side hadron with respect to the away-side jet. Although \(x_{E} \) is an approximation for \(z \), this alternative binning allows for a clearer comparison of the \(p_{\text{out}} \) distributions between hard scales as the associated hadrons are then binned in a similar kinematic way that is normalized by the near-side \(p_{T}^{\text{trig}} \).

Because \(x_{E} \) is only a proxy for \(z \), there is an embedded dependence on the correlation between these two quantities for both the \(\pi^{0} \)-hadron and direct photon-hadron correlations. Previous correlations measurements from PHENIX have shown that the quantity \(\tilde{z}_{h} = \frac{p_{T}^{\text{assoc}}}{p_{T}^{\text{trig}}} \), where quantities with a hat indicate partonic quantities, is on average less than unity [34], and this has also been shown in direct photon-jet correlations [45]. Thus for direct-photon hadron correlations, \(z > x_{E} \). For \(\pi^{0} \)-hadron correlations, there is an additional dependence
FIG. 4. A diagram which shows the hard scattering kinematics of a nearly back-to-back correlation for (a) dihadron and (b) direct photon-hadron events, adapted from Ref. [32]. Two hard-scattered partons, shown in red, are acoplanar due to the initial-state \vec{k}_T^1 and \vec{k}_T^2 of the colliding partons. The partons result in a trigger and associated jet fragment p_T^trig and p_T^assoc with a transverse momentum component perpendicular to the jet axis $\Delta \phi$ and j_{assoc} in the transverse plane, which are assumed to be Gaussian such that $\sqrt{\langle \Delta y^2 \rangle} = \sqrt{\langle j_{T,\text{assoc}}^2 \rangle} = \sqrt{\langle j_{T,\text{assoc}}^2 \rangle}$. For direct photons (b) p_T^trig corresponds to the hard scattering vector because the direct photon is produced from the hard scattering. In each figure the quantity x_E is labeled as the green vector and approximates the momentum fraction z of the final-state away-side hadron.

on $\langle z_T \rangle = p_T^\text{trig}/p_T^\text{trig}$, which is roughly 0.6 at Relativistic-Heavy-Ion-Collider (RHIC) energies [33]. Thus, for π^0-hadron correlations, on average $z < x_E$; therefore the dihadron and direct photon-hadron correlations are on average probing different values of the away-side hadron momentum fraction z.

FIG. 5. The p_{out} distributions are shown for dihadron and direct photon-hadron correlations, binned in x_E. The 9% charged hadron normalization uncertainty is not explicitly shown on the figure.

The p_{out} distributions for $p+p$ collisions at $\sqrt{s} = 200$ GeV binned in $0.1 < x_E < 0.5$ are shown in Fig. 3. The open points are the π^0-hadron correlations, while the filled points are the direct photon-hadron correlations. In constructing the correlations, the underlying event was statistically subtracted following a method similar to Ref. [32]. The functions used to statistically subtract the underlying event are shown as fits to the away-side distributions in Fig. 3. Although the correlation functions are binned in x_E instead of p_T^assoc, there is still a clear transition from nonperturbative to perturbative sensitivity in the distributions. This is highlighted by the Gaussian fits to the small p_{out} region [-1.1,1.1] GeV/c in the figure, where the fits clearly fall at describing the correlations at large p_{out}. We also note that Ref. [32] found that the large p_{out} region was described reasonably well with a Kaplan fit; here the distributions are not described by a Kaplan fit due to the smaller center-of-mass energy. When \sqrt{s} is smaller, it is less likely that a high p_T gluon radiation will occur such that p_{out} is large. This causes the p_{out} distributions to fall more quickly towards zero at large p_{out}.

The widths of the Gaussian fits are extracted to quantify the evolution of the nonperturbative away-side jet widths as a function of p_T^trig. Systematic uncertainties are evaluated by adjusting the fit region by ± 0.2 GeV/c and taking the absolute difference of the resulting Gaussian width. The values are shown in Fig. 6 and Table 1 and clearly demonstrate that the widths increase with p_T^trig. This is in contrast to Ref. [32], where the widths decreased as a function of p_T^trig when the p_{out} distributions were binned in a fixed p_T^assoc range and thus not in a way to account for the longitudinal momentum fraction of the away-side hadron with respect to the near-side trigger particle.

TABLE I. Gaussian widths of p_{out} for direct photon-hadron and dihadron correlations in $p+p$ collisions at $\sqrt{s} = 200$ GeV. Units are [GeV/c] for both p_T^trig and the Gaussian widths.

Trigger Type	(p_T^trig)	Gaussian Width	Stat.	Sys.
π^0	4.44	0.429	0.001	+0.016
	5.69	0.449	0.001	+0.024
	6.71	0.534	0.002	+0.022
	7.71	0.545	0.004	+0.031
	10.1	0.534	0.012	+0.018
	13.1	0.534	0.012	+0.031
Direct photon	5.65	0.46	0.01	+0.02
	7.71	0.53	0.02	+0.01
	10.1	0.60	0.04	+0.06
	13.2	0.73	0.15	+0.09

To study the dependence of the nonperturbative momentum widths on the fragmentation quantity x_E, the p_{out} distributions were constructed as a function of x_E. To have sufficient statistical precision, and to compare
to the $\sqrt{s} = 510$ GeV data which is described later, the distributions were integrated over a larger range of
$7 < p_{T}^{\text{trig}} < 12$ GeV/c. The p_{out} distributions are shown in Fig. 7 and the nonperturbative structure is fit with a
Gaussian function, shown as dashed lines and solid lines for π^0 and direct photon triggered correlations, respectively.

The nonperturbative to perturbative transition is
dependent on the x_E because the nonperturbative structure strongly de-

FIG. 6. The nonperturbative away-side jet widths as a function of p_{T}^{trig} at $\sqrt{s} = 200$ GeV for both direct photon-hadron
and dihadron correlations.

The nonperturbative away-side jet widths are also shown here. The nonperturbative momentum widths are
eextracted from Gaussian fits to the small p_{out} region and the widths from both center-of-mass energies are shown as a function of p_{T}^{trig} in Fig. 6. Note that only the π^0-h-

FIG. 8. The Gaussian widths of p_{out} as a function of x_E are shown for both π^0 and direct photon triggered correlations.

hadrorn correlations with $p_{T}^{\text{trig}} > 7$ GeV/c were reanalyzed;
this is because, due to detector capabilities, there was a minimum p_{T}^{assoc} limit of 0.7 GeV/c in the $\sqrt{s} = 510$

GeV analysis [32]. For the minimum x_E cut of 0.1 to be unbiased, we require that the $p_{T}^{\text{trig}} > 7$ GeV/c in the
$\sqrt{s} = 510$ GeV data. The values at the two different center-of-mass energies are consistent with one another at a similar p_{T}^{trig} within uncertainties. Figure 10 shows the nonperturbative Gaussian widths as a function of x_E

at the two different center-of-mass energies. The nonper-
turbative Gaussian widths also show little dependence as

FIG. 7. The p_{out} distributions are shown in several bins of
x_E, integrated over a range of p_{T}^{trig}. The 9% charged hadron
normalization uncertainty is not explicitly shown on the fig-

ture.

To compare the results measured here to the previ-
ouss PHENIX data at $\sqrt{s} = 510$ GeV, the data from Ref. [32] were rebinned in x_E similarly to the results
shown here. The nonperturbative momentum widths are
eextracted from Gaussian fits to the small p_{out} region and the widths from both center-of-mass energies are shown as a function of p_{T}^{trig} in Fig. 6. Note that only the π^0-h-
hadrorn correlations with $p_{T}^{\text{trig}} > 7$ GeV/c were reanalyzed;
this is because, due to detector capabilities, there was a minimum p_{T}^{assoc} limit of 0.7 GeV/c in the $\sqrt{s} = 510$

GeV analysis [32]. For the minimum x_E cut of 0.1 to be unbiased, we require that the $p_{T}^{\text{trig}} > 7$ GeV/c in the
$\sqrt{s} = 510$ GeV data. The values at the two different center-of-mass energies are consistent with one another at a similar p_{T}^{trig} within uncertainties. Figure 10 shows the nonperturbative Gaussian widths as a function of x_E

at the two different center-of-mass energies. The nonper-
turbative Gaussian widths also show little dependence as

FIG. 7. The p_{out} distributions are shown in several bins of
x_E, integrated over a range of p_{T}^{trig}. The 9% charged hadron
normalization uncertainty is not explicitly shown on the fig-

ture.

To compare the results measured here to the previ-
ouss PHENIX data at $\sqrt{s} = 510$ GeV, the data from Ref. [32] were rebinned in x_E similarly to the results
shown here. The nonperturbative momentum widths are
eextracted from Gaussian fits to the small p_{out} region and the widths from both center-of-mass energies are shown as a function of p_{T}^{trig} in Fig. 6. Note that only the π^0-h-
hadrorn correlations with $p_{T}^{\text{trig}} > 7$ GeV/c were reanalyzed;
this is because, due to detector capabilities, there was a minimum p_{T}^{assoc} limit of 0.7 GeV/c in the $\sqrt{s} = 510$

GeV analysis [32]. For the minimum x_E cut of 0.1 to be unbiased, we require that the $p_{T}^{\text{trig}} > 7$ GeV/c in the
$\sqrt{s} = 510$ GeV data. The values at the two different center-of-mass energies are consistent with one another at a similar p_{T}^{trig} within uncertainties. Figure 10 shows the nonperturbative Gaussian widths as a function of x_E

at the two different center-of-mass energies. The nonper-
turbative Gaussian widths also show little dependence as

FIG. 7. The p_{out} distributions are shown in several bins of
x_E, integrated over a range of p_{T}^{trig}. The 9% charged hadron
normalization uncertainty is not explicitly shown on the fig-

ture.

To compare the results measured here to the previ-
ouss PHENIX data at $\sqrt{s} = 510$ GeV, the data from Ref. [32] were rebinned in x_E similarly to the results
shown here. The nonperturbative momentum widths are
eextracted from Gaussian fits to the small p_{out} region and the widths from both center-of-mass energies are shown as a function of p_{T}^{trig} in Fig. 6. Note that only the π^0-h-
hadrorn correlations with $p_{T}^{\text{trig}} > 7$ GeV/c were reanalyzed;
this is because, due to detector capabilities, there was a minimum p_{T}^{assoc} limit of 0.7 GeV/c in the $\sqrt{s} = 510$

GeV analysis [32]. For the minimum x_E cut of 0.1 to be unbiased, we require that the $p_{T}^{\text{trig}} > 7$ GeV/c in the
$\sqrt{s} = 510$ GeV data. The values at the two different center-of-mass energies are consistent with one another at a similar p_{T}^{trig} within uncertainties. Figure 10 shows the nonperturbative Gaussian widths as a function of x_E

at the two different center-of-mass energies. The nonper-
turbative Gaussian widths also show little dependence as

FIG. 7. The p_{out} distributions are shown in several bins of
x_E, integrated over a range of p_{T}^{trig}. The 9% charged hadron
normalization uncertainty is not explicitly shown on the fig-

ture.

To compare the results measured here to the previ-
ouss PHENIX data at $\sqrt{s} = 510$ GeV, the data from Ref. [32] were rebinned in x_E similarly to the results
To better interpret the possible factorization breaking effects that were studied in Ref. [32], the p_{out} distributions were binned in the hard scattering variable x_E to provide more control over the fragmentation dependence as a function of the hard scale of the interaction. When accounting for the away-side hadron p_T^{assoc} with respect to the near-side p_T^{trig}, the nonperturbative momentum widths are found to increase with the hard scale of the interaction p_T^{trig}. This is qualitatively similar to DY interactions in that nonperturbative momentum widths sensitive to a small transverse momentum scale increase with the hard scale of the interaction. This behavior has been verified phenomenologically in both DY and SIDIS processes [47,51], and this measurement shows that this behavior is similar in processes which are predicted to break factorization.

For the time being, the only obvious way to quantify factorization breaking effects is to compare data in processes that are predicted to violate factorization and calculations assuming factorization holds. Such calculations
are not available at this time, largely due to the fact that even for unpolarized observables TMD PDFs and TMD FFs are not yet well constrained due to a lack of data. The first global fit of TMD data was very recently reported \cite{52}, and in particular the study calls for more data covering a broader range of kinematic variables to constrain future global fits. Future comparisons of magnitudes, shapes, and evolution of these observables to calculations should be made to quantify the magnitude of factorization breaking effects; for example, the rate at which TMD observables evolve in processes predicted and not predicted to break factorization may be different.

Nonetheless, additional observables can be identified to provide more data to quantify effects from factorization breaking. For example, spin asymmetries in the direct photon-jet channel have been predicted to arise due to factorization breaking effects \cite{53}; polarized $p+A$ collisions have also been proposed as an avenue to quantify factorization breaking effects in the same hard scattering channel \cite{54}. Unpolarized processes still have the potential to quantify factorization breaking effects; for example, nearly back-to-back direct photon-quarkonium production could be used to quantify factorization breaking effects as well, depending on whether or not the quarkonium state is produced in a color singlet or color octet state. Measuring processes that may be sensitive to factorization breaking effects, including those presented here, will be important for better understanding the characteristics of QCD as a non-Abelian gauge-invariant field theory. The exploration of the role of color in hadronic interactions is deeply connected to the unique properties of QCD, and future measurements will continue to constrain the magnitudes of these effects.

ACKNOWLEDGMENTS

We thank the staff of the Collider-Accelerator and Physics Departments at Brookhaven National Labora-

tory and the staff of the other PHENIX participating institutions for their vital contributions. We also thank J. C. Collins for valuable discussions regarding the interpretation of these results. We acknowledge support from the Office of Nuclear Physics in the Office of Science of the Department of Energy, the National Science Foundation, Abilene Christian University Research Council, Research Foundation of SUNY, and Dean of the College of Arts and Sciences, Vanderbilt University (U.S.A.), Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science (Japan), Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil), Natural Science Foundation of China (People's Republic of China), Croatian Science Foundation and Ministry of Science and Education (Croatia), Ministry of Education, Youth and Sports (Czech Republic), Centre National de la Recherche Scientifique, Commissariat à l'Énergie Atomique, and Institut National de Physique Nucléaire et de Physique des Particules (France), Bundesministerium für Bildung und Forschung, Deutscher Akademischer Austausch Dienst, and Alexander von Humboldt Stiftung (Germany), J. Bolyai Research Scholarship, EFOP, the New National Excellence Program (ÚNKP), NKFIH, and OTKA (Hungary), Department of Atomic Energy and Department of Science and Technology (India), Israel Science Foundation (Israel), Basic Science Research Program through NRF of the Ministry of Education (Korea), Physics Department, Lahore University of Management Sciences (Pakistan), Ministry of Education and Science, Russian Academy of Sciences, Federal Agency of Atomic Energy (Russia), VR and Wallenberg Foundation (Sweden), the U.S. Civilian Research and Development Foundation for the Independent States of the Former Soviet Union, the Hungarian American Enterprise Scholarship Fund, the US-Hungarian Fulbright Foundation, and the US-Israel Binational Science Foundation.

\begin{thebibliography}{99}

[1] A. Airapetian et al. (HERMES Collaboration), “Single-spin asymmetries in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target,” Phys. Rev. Lett. 94, 012002 (2005).

[2] C. Adolph et al. (COMPASS Collaboration), “Sivers asymmetry extracted in SIDIS at the hard scales of the Drell-Yan process at COMPASS,” Phys. Lett. B 770, 138 (2017).

[3] J. Huang et al. (Jefferson Lab Hall A Collaboration), “Beam-Target Double Spin Asymmetry A_{LT} in Charged Pion Production from Deep Inelastic Scattering on a Transversely Polarized He-3 Target at $1.4 < Q^2 < 2.7$ GeV2,” Phys. Rev. Lett. 108, 052001 (2012).

[4] L. Y. Zhu et al. (NuSea Collaboration), “Measurement of Angular Distributions of Drell-Yan Dimuons in $p+p$ Interactions at 800-GeV/c,” Phys. Rev. Lett. 102, 182001 (2009).

[5] M. Guanziroli et al. (NA10 Collaboration), “Angular Distributions of Muon Pairs Produced by Negative Pions on Deuteron and Tungsten,” Z. Phys. C 37, 545 (1988).

[6] R. Seidl et al. (Belle Collaboration), “Measurement of azimuthal asymmetries in inclusive production of hadron pairs in e^+e^- annihilation at Belle,” Phys. Rev. Lett. 96, 232002 (2006).

[7] J. P. Lees et al. (BaBar Collaboration), “Measurement of Collins asymmetries in inclusive production of charged pion pairs in e^+e^- annihilation at BABAR,” Phys. Rev. D 90, 052003 (2014).

[8] C. Adolph et al. (COMPASS Collaboration), “Collins and Sivers asymmetries in muonproduction of pions and kaons off transversely polarised protons,” Phys. Lett. B 744, 250 (2015).

\end{thebibliography}
[46] A. S. Ito et al., “Measurement of the Continuum of Dimuons Produced in High-Energy Proton-Nucleus Collisions,” Phys. Rev. D 23, 604 (1981).

[47] F. Landry, R. Brock, P. M. Nadolsky, and C. P. Yuan, “Tevatron Run-1 Z boson data and Collins-Soper-Sterman resummation formalism,” Phys. Rev. D 67, 073016 (2003).

[48] A. V. Konychev and P. M. Nadolsky, “Universality of the Collins-Soper-Sterman nonperturbative function in gauge boson production,” Phys. Lett. B 633, 710 (2006).

[49] P. Schweitzer, T. Teckentrup, and A. Metz, “Intrinsic transverse parton momenta in deeply inelastic reactions,” Phys. Rev. D 81, 094019 (2010).

[50] C. A. Aidala, B. Field, L. P. Gamberg, and T. C. Rogers, “Limits on transverse momentum dependent evolution from semi-inclusive deep inelastic scattering at moderate Q,” Phys. Rev. D 89, 094002 (2014).

[51] P. M. Nadolsky, D. R. Stump, and C. P. Yuan, “Semi-inclusive hadron production at HERA: The Effect of QCD gluon resummation,” Phys. Rev. D 61, 014003 (2000). [Erratum: Phys. Rev.D64,059903(2001)].

[52] A. Bacchetta, F. Delcarro, C. Pisano, M. Radici, and A. Signori, “Extraction of partonic transverse momentum distributions from semi-inclusive deep-inelastic scattering, Drell-Yan and Z-boson production,” J. High Energy Phys. 06 (2017) 081.

[53] T. C. Rogers, “Extra spin asymmetries from the breakdown of transverse-momentum-dependent factorization in hadron-hadron collisions,” Phys. Rev. D 88, 014002 (2013).

[54] A. Schäfer and J. Zhou, “Color entanglement for \gamma-jet production in polarized pA collisions,” Phys. Rev. D 90, 094012 (2014).