Numerical range of weighted composition operators which contain zero

Mahsa Fatehi and Asma Negahdari

January 24, 2019

Abstract

In this paper, we study when zero belongs to the numerical range of weighted composition operators $C_{ψ,ϕ}$ on the Fock space F^2, where $ϕ(z) = az + b$, $a, b \in \mathbb{C}$ and $|a| \leq 1$. In the case that $|a| < 1$, we obtain a set contained in the numerical range of $C_{ψ,ϕ}$ and find the conditions under which the numerical range of $C_{ψ,ϕ}$ contain zero. Then for $|a| = 1$, we precisely determine the numerical range of $C_{ψ,ϕ}$ and show that zero lies in its numerical range.

1 Introduction

The Fock space F^2 consists of all entire functions on the complex plane \mathbb{C} which are square integrable with $dμ(z) = π^{-1}e^{-|z|^2}dA(z)$ that dA is the Lebesgue measure on \mathbb{C}. For f, g in F^2, the inner product on the Fock space is given by

$$\langle f, g \rangle = \int_{\mathbb{C}} f(z)\overline{g(z)}dμ(z).$$

The set $\{e_m(z) = z^m/\sqrt{m!} : m \geq 0\}$ is an orthonormal basis for F^2. The reproducing kernel at w in \mathbb{C} for F^2 is given by $K_w(z) = e^{wz}$. Let k_w denote the normalized reproducing kernel given by $k_w = K_w/\|K_w\|$, where $\|K_w\| = e^{\|w\|^2/2}$. Fock space is a very important tool for quantum stochastic calculus in the quantum probability. For more information about the Fock space, see [18].

Through this paper, for a bounded operator T on F^2, the spectrum of T and the point spectrum of T are denoted by $σ(T)$ and $σ_p(T)$; respectively.

1 AMS Subject Classifications. Primary 47B33.

Key words and phrases: Fock space, Weighted composition operator, Numerical range.
For an entire function φ, the composition operator C_φ on \mathcal{F}^2 is defined by the rule $C_\varphi(f) = f \circ \varphi$ for each $f \in \mathcal{F}^2$. For an entire function ψ, the weighted composition operator $C_{\psi,\varphi} : \mathcal{F}^2 \to \mathcal{F}^2$ is given by $C_{\psi,\varphi} h = \psi \cdot (h \circ \varphi)$. There is a vast literature on composition operators on the other spaces (see [5] and [13]). Moreover, recently many authors have worked on the weighted composition operators on the Fock spaces (see [3], [7], [11], [15], [16] and [17]). Bounded and compact composition operators on the Fock space over \mathbb{C}^n were characterized in [3] by Carswell et al. They showed that C_φ is bounded on the Fock space if and only if $\varphi(z) = az + b$, where $|a| \leq 1$ and if $|a| = 1$, then $b = 0$. In [14], Ueki found a necessary and sufficient condition for $C_{\psi,\varphi}$ to be bounded and compact. After that in [11], Le gave the easier characterizations for the boundedness and compactness of $C_{\psi,\varphi}$. Moreover, he found normal and isometric weighted composition operators on \mathcal{F}^2. Unitary weighted composition operators and their spectrum on the Fock space of \mathbb{C}^n were characterized by Zhao in [15]. Note that there are some interesting papers [3], [15] and [17] which were written in another Fock space (see [18]), but their results hold for \mathcal{F}^2 by the same idea. Then we use them frequently in this paper.

For T a bounded linear operator on a Hilbert space H, the numerical range of T is denoted by $W(T)$ and is given by $W(T) = \{ \langle Tf, f \rangle : \|f\| = 1 \}$. The set $W(T)$ is convex, its closure contains $\sigma(T)$ and $\sigma_p(T) \subseteq W(T)$. There are some papers that the numerical range of composition operators and weighted composition operators on the Hardy space H^2 were investigated (see [1], [2], [9] and [12]).

In Section 2, we investigate $W(C_{\psi,\varphi})$, where $\varphi(z) = az + b$ with $0 < |a| < 1$. In Proposition 2.1, we find a subset contained in $W(C_{\psi,\varphi})$, where $\psi(\frac{b}{1-\alpha}) \neq 0$. In Theorem 2.2, we show that if $C_{\psi,az+b}$ is compact, where $\psi(\frac{b}{1-\alpha}) \neq 0$ and a is not a positive real number, then $W(C_{\psi,\varphi})$ contains zero. Then in Theorem 2.3, for $C_{\psi,\varphi}$ with $\psi(\frac{b}{1-\alpha}) = 0$, we show that $W(C_{\psi,\varphi})$ contains a closed disk with center at 0. Moreover, in Remark 2.4, for a constant function φ, we show that $W(C_{\psi,\varphi})$ contains zero.

In Section 3, for $\varphi(z) = az + b$, with $|a| = 1$, we find the numerical range of $C_{\psi,\varphi}$ and see that $W(C_{\psi,\varphi})$ contains zero.

2 $\varphi(z) = az + b$, whith $|a| < 1$

Suppose that ψ is an entire function and $\varphi(z) = az + b$, where $|a| < 1$. If $C_{\psi,\varphi}$ is a bounded operator on \mathcal{F}^2, then by [16] Theorem 1, $0 \in \sigma(C_{\psi,\varphi})$.

2
Hence, \(0 \in W(C_{\psi, \varphi}) \). In this section, we study when \(0 \) belongs to \(W(C_{\psi, \varphi}) \) and we work on the numerical range of bounded weighted composition operator \(C_{\psi, \varphi} \), where \(\varphi(z) = az + b \) with \(|a| < 1 \). In this section, we assume that \(q(z) = e^{\overline{\varphi}(a-1)z} \psi(z + p) \), where \(p = \frac{b}{1-a} \) is the fixed point of \(\varphi \). In the proof of Proposition 2.1, we will see that \(q \) belongs to \(\mathcal{F}^2 \) and we assume that \(\sum_{j=0}^{\infty} \hat{q}_j \frac{z^j}{\sqrt{j!}} \) is the representation series of \(q \) in \(\mathcal{F}^2 \).

Proposition 2.1. Suppose that \(\psi \) is an entire function and \(\varphi(z) = az + b \), where \(0 < |a| < 1 \). Let \(C_{\psi, \varphi} \) be bounded on \(\mathcal{F}^2 \). Suppose that \(\psi(p) \neq 0 \), where \(p = \frac{b}{1-a} \) is the fixed point of \(\varphi \). Let \(n \) be a non-negative integer and \(m \) be a positive integer. Then \(W(C_{\psi, \varphi}) \) contains the ellipse with foci at \(a^n \) and \(a^{n+m} \) and a major axis

\[
\sqrt{|a^n - a^{n+m}|^2 + \frac{|\hat{q}_n a^n \sqrt{(m+n)!}|^2}{m!n!}}
\]

and a minor axis

\[
\frac{|\hat{q}_n a^n \sqrt{(m+n)!}|}{\sqrt{m!n!}}.
\]

Proof. By [15, Corollary 1.2], \(C_{k_p, z-p} \) is unitary and [11, Proposition 3.1] implies that \(C_{k_p, z-p} = C_{k_{z-p}, z+p} \). Since \(\varphi(z+p) - p = a(z+p) + b - p = az \) and

\[
k_{z-p}(z)k_p(\varphi(z+p))\psi(z+p) = e^{\overline{\varphi}(a-1)z} \psi(z+p),
\]

we obtain that

\[
C_{k_p, z-p}C_{\psi, \varphi}C_{k_p, z-p} = C_{k_{z-p}, z+p}C_{\psi, \varphi}C_{k_p, z-p} = C_{q, az},
\]

where \(q = e^{\overline{\varphi}(a-1)z} \psi(z+p) \) (since \(C_{q, az} \) is a bounded operator on \(\mathcal{F}^2 \), \(q = C_{q, az}(1) \) belongs to \(\mathcal{F}^2 \)). It shows that \(C_{\psi, \varphi} \) is unitary equivalent to \(C_{q, az} \). Thus, \(W(C_{\psi, \varphi}) = W(C_{q, az}) \) and so we investigate the numerical range of \(C_{q, az} \). Let \(M = \text{span}\{e_1, e_2\} \), when \(e_1(z) = \frac{z^n}{\sqrt{n!}} \) and \(e_2(z) = \frac{z^{n+m}}{\sqrt{(n+m)!}} \). We can see that

\[
C_{q, az}(e_1)(z) = (1 + \hat{q}_1 z + \frac{\hat{q}_2 z^2}{\sqrt{2!}} + \cdots) \frac{a^n z^n}{\sqrt{n!}}
\]

\[
= \left(\frac{a^n z^n}{\sqrt{n!}} + \hat{q}_1 a^n \frac{z^{n+1}}{\sqrt{2!}} + \frac{\hat{q}_2 a^n z^{n+2}}{\sqrt{2!n!}} + \cdots + \frac{\hat{q}_m a^n z^{n+m}}{\sqrt{m!n!}} + \cdots \right)
\]

\[
= \left(\frac{a^n z^n}{\sqrt{n!}} + \frac{\hat{q}_1 a^n z^{n+1}}{\sqrt{2!n!}} + \frac{\hat{q}_2 a^n z^{n+2}}{\sqrt{2!n!}} + \cdots + \frac{\hat{q}_m a^n z^{n+m}}{\sqrt{m!n!}} + \cdots \right)
\]

3
and

\[C_{q,az}(e^2)(z) = (1 + \hat{q}_1 z + \hat{q}_2 \frac{z^2}{\sqrt{2!}} + \cdots) \frac{a^{n+m} z^{n+m}}{\sqrt{(n+m)!}} \]

\[= a^{n+m} \frac{z^{n+m}}{\sqrt{(n+m)!}} + \hat{q}_1 a^{n+m} \frac{z^{n+m+1}}{\sqrt{(n+m)!}} + \cdots. \]

Let \(T \) be the compression of \(C_{q,az} \) to \(M \). Then the matrix representation of \(T \) is

\[\begin{bmatrix} a^n \sqrt{n!} & 0 \\ \hat{q}_m a^n \sqrt{(n+m)!} \cdot n! \end{bmatrix}. \]

By \([10, p.3-4]\), \(W(T) \) is an ellipse with foci at \(a^n, a^{n+m} \) and the minor axis \(|a^n \hat{q}_m| \frac{\sqrt{(n+m)!}}{\sqrt{m!n!}} \) and the major axis \(\sqrt{|a^n - a^{n+m}|^2 + |\hat{q}_m a^n \sqrt{(n+m)!}|^2}. \) Since \(W(T) \subset W(C_{\psi,\varphi}) \), the result follows. \(\Box \)

Let \(\varphi(z) = az \), where \(0 < a < 1 \). Since \(C_{az} \) is normal (see \([11, Theorem 3.3]\), \([3, Theorem 2]\), \([17, Proposition 2.6]\) and \([10, Theorem 1.4-4, p.16]\) state that \(W(C_{az}) = [0,1] \). By the Open Mapping Theorem, 0 is not an eigenvalue for \(C_{az} \). Invoking \([10, Theorem 1.5-5, p.20]\), \(W(C_{az}) = (0,1] \) and so 0 dose not belong to \(W(C_{az}) \). In the next theorem, we prove that 0 belongs to the numerical range of compact weighted composition operator \(C_{\psi,az+b} \), where \(a \) is not a positive real number. In the proof of Theorem 2.2, we use the notation \(\mathbb{D} \) which is the open unit disk in the complex plane \(\mathbb{C} \). Moreover, some ideas of the proof of the next theorem is similar to \([12, Proposition 2.1]\).

Theorem 2.2. Suppose that \(\psi \) is an entire function and \(\varphi(z) = az + b \), where \(0 < |a| < 1 \). Let \(\psi(\frac{b}{1-a}) \neq 0 \). Assume that \(C_{\psi,\varphi} \) is compact on \(\mathbb{F}^2 \). If \(a \) is not a positive real number, then \(W(C_{\psi,\varphi}) \) contains zero and it is closed.

Proof. We know that \(W(C_{\psi,\varphi}) = \psi(p)W(C_{\psi,\varphi}) \), where \(p = \frac{b}{1-a} \) is the fixed point of \(\varphi \). By \([17, Proposition 2.6]\), \(\sigma(C_{\psi,\varphi}) = \{0, 1, a, a^2, \ldots\} \) and by \([4, Theorem 7.1, p. 214]\), \(\sigma_p(C_{\psi,\varphi}) = \{1, a, a^2, \ldots\} \). Since \(\sigma_p(C_{\psi,\varphi}) \subset W(C_{\psi,\varphi}) \), the convex hull of some arbitrary elements of \(\sigma_p(C_{\psi,\varphi}) \) is a subset of \(W(C_{\psi,\varphi}) \). We claim that there is a set \(M \) that \(M \subset W(C_{\psi,\varphi}) \) and \(0 \in M \). We break the problem into three cases.

(a) Assume \(a = |a|e^{i\theta} \) and \(e^{i\theta} \) is not a root of 1. Then \(\{e^{in\theta} : n \geq 0\} \) is dense.
in $\partial \mathbb{D}$. We can find n_1, n_2, n_3, n_4 such that $|a|^{n_1} e^{i\theta_1}, |a|^{n_2} e^{i\theta_2}, |a|^{n_3} e^{i\theta_3}, |a|^{n_4} e^{i\theta_4}$ lie in the quadrants I, II, III, IV; respectively. It is not hard to see that 0 is contained in the interior of the polygonal region P whose vertices are $|a|^{n_1} e^{i\theta_1}, |a|^{n_2} e^{i\theta_2}, |a|^{n_3} e^{i\theta_3}, |a|^{n_4} e^{i\theta_4}$. Let M be the union of P and its interior region.

(b) Assume that $a = |a| e^{i\theta}$ that $e^{i\theta}$ is a primitive root of 1 of order $n > 2$. Let P be the polygonal region whose vertices are $1, |a| e^{i\theta}, |a|^2 e^{2i\theta}, ..., |a|^{n-1} e^{(n-1)i\theta}$ (note that $e^{i\theta}, e^{2i\theta}, ..., e^{(n-1)i\theta}$ are the nth root of 1). Since $n > 2$, the argument of a is not 0 or π and so there are at least three vertices which are non-colinear points. It is not hard to see that none of sides of P contains zero and so 0 belongs to the interior of the polygonal region P. Again let M be the union of P and its interior region.

(c) Assume that $a = -|a|$. As we know, the convex hull of $\sigma_p(C_{\psi,\varphi})$ is a subset of $W(C_{\psi,\varphi})$. Then $[a, 1] \subseteq W(C_{\psi,\varphi})$. Let M be the closed line segment with end points a and 1. Since in these three cases, $M \subseteq W(C_{\psi,\varphi})$ and 0 $\in M$, 0 $\in W(C_{\psi,\varphi})$. Moreover, invoking [6, Theorem 1], $W(C_{\psi,\varphi})$ is closed. \hfill \Box

Note that if φ and ψ satisfy the hypotheses of Theorem 2.2 and the argument of a is not 0 or π, then by the proof of Theorem 2.2, 0 lies in the interior of $W(C_{\psi,\varphi})$. In the next theorem, we show that 0 belongs to the interior of $W(C_{\psi,az+b})$, where $0 < |a| < 1$ and $\psi(\frac{b}{1-a}) = 0$.

Theorem 2.3. Suppose that ψ is an entire function and $\varphi(z) = az + b$, where $0 < |a| < 1$. Let n be a non-negative integer and m be a positive integer. Assume that $C_{\psi,\varphi}$ is bounded on \mathbb{F}^2. Suppose that $\psi(p) = 0$, where $p = \frac{b}{1-a}$ is the fixed point of φ. Then $W(C_{\psi,\varphi})$ contains a closed disk with center at 0 and radius $|\frac{a^n a^{n+m} \sqrt{n!}}{m!}|/2$.

Proof. As we saw in the proof of Proposition 2.1, $W(C_{\psi,\varphi}) = W(C_{\psi,az})$, so we investigate the numerical range of $C_{\psi,az}$. We assume that $M =$ span\{e_1, e_2}, where $e_1(z) = \frac{z^n}{\sqrt{n!}}$ and $e_2(z) = \frac{z^{n+m}}{\sqrt{(n+m)!}}$. We have

\[
C_{\psi,az}(e_1) = (\hat{q}_1 z + \hat{q}_2 \frac{z^2}{\sqrt{2!}} + \cdots + \hat{q}_n \frac{z^n}{\sqrt{n!}})
\]

\[
= \hat{q}_1 \frac{a^n z^{n+1}}{\sqrt{n!}} + \hat{q}_2 a^n \frac{z^{n+2}}{\sqrt{2!n!}} + \cdots + \hat{q}_m a^n \frac{z^{n+m}}{\sqrt{n!m!}} + \cdots
\]
and
\[C_{q,az}(e_2) = (\tilde{q}_1 z + \tilde{q}_2 \frac{z^2}{\sqrt{2!}} + \cdots) a^{n+m} \frac{z^{n+m}}{\sqrt{(n+m)!}} \]
\[= \tilde{q}_1 a^{n+m} \frac{z^{n+m+1}}{\sqrt{(n+m)!}} + \cdots. \]

Let \(T \) be the compression of \(C_{\psi,\varphi} \) to \(M \). Then the matrix representation of \(T \) is
\[
\begin{bmatrix}
0 & 0 \\
\tilde{q}_m a^n \sqrt{(n+m)!} & 0
\end{bmatrix}.
\]

By [10, Example 1, p. 1],
\[W(T) = \left\{ z : |z| \leq \frac{|\tilde{q}_m a^n \sqrt{(n+m)!}|}{2\sqrt{n!}m!} \right\}. \]

Since \(W(T) \subseteq W(C_{\psi,\varphi}) \), \(W(C_{\psi,\varphi}) \) contains a closed disk with center at 0 and radius \(\frac{|\tilde{q}_m a^n \sqrt{(n+m)!}|}{2\sqrt{n!}m!} \). \qed

Remark 2.4. Suppose that for some complex number \(b \), \(\varphi \equiv b \) and \(\psi \) is a non-zero entire function. Then \(C_{\psi,\varphi} f = f(b) \psi = \langle f, \|\psi\|K_b \rangle \frac{\psi}{\|\psi\|} \). By [2, Proposition 2.5], we can find \(W(C_{\psi,\varphi}) \) as follows.
(a) If \(K_b = \frac{c}{\|\psi\|} \psi \) for some non-zero complex number \(c \), then \(W(C_{\psi,\varphi}) \) is the closed line segment from 0 to \(\overline{c} \).
(b) If \(K_b \perp \psi \), then \(W(C_{\psi,\varphi}) \) is the closed disk centered at the origin with radius \(\frac{\|\psi\| \|b\|^2}{2} \).
(c) Otherwise \(W(C_{\psi,\varphi}) \) is a closed ellipse with foci at 0 and \(\psi(b) \).
Then we can see that in the case that \(\varphi \) is constant, \(W(C_{\psi,\varphi}) \) contains zero.

In the first part of the following example, we give a compact weighted composition operator \(C_{\psi,az+b} \), where \(a \) is a positive real number and \(0 \in W(C_{\psi,az+b}) \) (see Theorem 2.2). Also in the second part, we give an example which satisfy the conditions of Theorem 2.3.

Example 2.5. (a) Suppose that \(\varphi(z) = \frac{1}{2} z - \frac{1}{2} \) and \(\psi(z) = e^z \). By [17, Corollary 2.4], \(C_{\psi,\varphi} \) is compact. It is easy to see that 1 is the fixed point of
\(\varphi \) and \(q(z) = e^{K_{1/2}(z)} \). The representation series of \(q \) in \(\mathcal{F}^2 \) is

\[
\sum_{j=0}^{\infty} \frac{e^{2j}}{2^j \sqrt{j!} \sqrt{j!}} z^j.
\]

Let \(n = m = 1 \). By Proposition 2.1, \(W(C_{\psi,\varphi}) \) contains the ellipse with foci at 1/2 and 1/4 and the major axis \(\sqrt{\frac{1}{16} + \frac{e^2}{8}} \). It states that 0 belongs to \(W(C_{\psi,\varphi}) \).

(b) Let \(\varphi(z) = \frac{1}{2} z + \frac{1}{2} \) and \(\psi(z) = K_{1}(z) - e^{-1} \). Note that \(C_{\psi,\varphi} = C_{K_{1},\varphi} - e^{-1} C_{\varphi} \) and so by [11] Theorem 2 and [13] Proposition 2.2, \(C_{\psi,\varphi} \) is bounded. We have \(\psi(-1) = 0 \) and \(q(z) = e^{z/2}(e^{z-1} - e^{-1}) = e^{-1}(e^{z-1} - e^{z}) \).

It is not hard to see that the representation series of \(q \) in \(\mathcal{F}^2 \) is

\[
\sum_{j=0}^{\infty} \frac{3^j - 1}{2^j \sqrt{j!} \sqrt{j!}} z^j.
\]

Let \(n = 0 \) and \(m = 1 \). By Theorem 2.3, \(W(C_{\psi,\varphi}) \) contains the closed disk with center at 0 and radius \(\frac{1}{2e} \).

3 \(\varphi(z) = az + b, \text{ whit } |a| = 1 \)

In this section, we completely find the numerical range of \(C_{\psi,az+b} \), where \(|a| = 1 \). Let \(S \) be a subset of complex plane \(\mathbb{C} \). For \(a \in \mathbb{C} \), we define \(aS = \{as : s \in S\} \); we use this definition in the next theorem.

Theorem 3.1. Suppose that \(\varphi(z) = az + b \), where \(|a| = 1 \). Let \(C_{\psi,\varphi} \) be a bounded weighted composition operator on \(\mathcal{F}^2 \). Then

(a) If \(a \neq 1 \) and \(a \) is a primitive root of 1 of order \(n \), then \(W(C_{\psi,\varphi}) = \psi(0)e^{a|b|^2} P \), where \(P \) is the union of the polygon with \(n \) sides and vertices at \(1, a, ..., a^{n-1} \) and its interior region.

(b) If \(a \) is not a root of 1, then \(W(C_{\psi,\varphi}) = \psi(0)e^{a|b|^2} \mathbb{D} \cup \{\psi(0)e^{a|b|^2}a^m : m \geq 0\} \).

(c) If \(a = 1 \), then \(W(C_{\psi,\varphi}) = \psi(0)e^{|b|^2} \mathbb{D} \).

Proof. Suppose that \(a \neq 1 \). By [10], Proposition 2.1, \(\psi(z) = \psi(0)e^{-abz} = \psi(0)K_{-\overline{b}}(z) \). Let \(u = \overline{\psi(0)} \). We have
\[
C_{ka,z-u}C_{\psi,\varphi}C_{k-u,z+u} = \frac{1}{\|K_u\|^2}C_{e^{\pi z-u}C_{\psi,\varphi}C_{e^{-\pi z+u}}} \\
= \frac{1}{\|K_u\|^2}e^{\pi z} \cdot \psi(z-u) \cdot e^{(-\pi(az+b))(z-u)}C_{(z+u)(az+b)(z-u)} \\
= \frac{1}{\|K_u\|^2}e^{\pi z} \cdot \psi(z-u) \cdot e^{-\pi(az-au+b)}C_{az+u(1-a)+b} \\
= C_{\tilde{\varphi},\tilde{\psi}},
\]
where
\[
\tilde{\varphi}(z) = az + \frac{-ab}{a-1}(1-a) + b = az
\]
and
\[
\tilde{\psi}(z) = e^{-|u|^2}e^{\pi z} \cdot \psi(z-u) \cdot e^{-\pi(az-au+b)} = \psi(0)e^{\frac{u|b|^2}{a-1}}.
\]

Then \(C_{\psi,\varphi}\) is unitary equivalent to \(\psi(0)e^{\frac{u|b|^2}{a-1}}C_{az}\) (see [15, Corollary 1.2]). We try to find \(W(C_{az})\). We prove that \(\sigma_p(C_{az}) = \{1, a, a^2, \ldots\}\). It is easy to see that \(C_{az}(z^j) = a^jz^j\) for each non-negative integer \(j\). Then \(\{1, a, \ldots\} \subseteq \sigma_p(C_{az})\). Since by [3, Lemma 2], \(C_{az}^* = C_{az}\), \(C_{az}\) is an isometry. We infer from [4, Exercise 7, p.213] that \(\sigma_p(C_{az}) \subseteq \partial \mathbb{D}\) (note that \(C_{az}\) is invertible). Assume that there is \(\lambda \in \sigma_p(C_{az})\) such that \(|\lambda| = 1\) and \(\lambda\) does not belong to \(\{a^m : m \geq 0\}\). Thus, there exists a non-zero function \(f \in F^2\) that
\[
C_{az}(f) = \lambda f.\tag{2}
\]
It shows that \(f(0) = \lambda f(0)\). Hence \(f(0) = 0\). Assume that for each \(j < k\), \(f^{(j)}(0) = 0\). We prove that \(f^{(k)}(0) = 0\). Taking \(k\)th derivatives on the both sides of Equation (2) yields \(a^k f^{(k)}(0) = \lambda f^{(k)}(0)\). Then \(f^{(k)}(0) = 0\). Thus, \(f \equiv 0\) which is a contradiction. It states that \(\sigma_p(C_{az}) = \{1, a, a^2, \ldots\}\). Moreover, by [15, Corollary 1.4], \(\sigma(C_{az}) = \{a^m : m = 0\}^\infty\).

(a) Suppose that \(a \neq 1\) and \(a\) is a primitive root of \(1\) of order \(n\). If \(n = 2\), then \(\sigma(C_{az}) = \{-1, 1\}\). Invoking [10, Theorem 1.4-4, p.16], \(W(C_{az})\) is the convex hull of \(\sigma(C_{az})\) which is equal to \([-1, 1]\). Since \(-1, 1 \in \sigma_p(C_{az})\), we conclude that \(W(C_{az}) = [-1, 1]\). Now assume that \(n > 2\). Let \(P\) be the convex hull of \(\{1, a, \ldots, a^{n-1}\}\) which is the union of polygon with \(n\) sides and vertices at \(1, a, \ldots, a^{n-1}\) and its interior region. We can see that \(P\) is a subset of \(W(C_{az})\) (note that \(\sigma_p(C_{\psi,\varphi}) = \{1, a, \ldots, a^{n-1}\}\) and \(\sigma_p(C_{az}) \subseteq W(C_{az})\)). We show that \(W(C_{az}) = P\). By [10, Theorem 1.4-4, p.16], \(W(C_{az}) = P\). Since all vertices of \(P\) belong to \(\sigma_p(C_{az})\), \(W(C_{az}) = P\) (see also [10, Corollary 1.5-7, p.20]). It shows that \(W(C_{\psi,\varphi}) = \psi(0)e^{\frac{u|b|^2}{a-1}}P\).
(b) Assume that a is not a root of 1. Since $\sigma_p(C_{az}) = \{a^m\}_{m=0}^\infty$ and
$\{a^m : m \geq 0\}$ is a dense subset of the unit circle, we get
$\{a^m : m \geq 0\} \cup \mathbb{D}$ is a subset of $W(C_{az})$. Moreover, since C_{az} is an isometry,
$\|C_{az}\| = 1$ and so $W(C_{az}) \subseteq \mathbb{D}$. Now we show that for each $\lambda \in \partial \mathbb{D}$ that $\lambda \notin \{a^m : m \geq 0\}$, $\lambda \notin W(C_{az})$. Suppose that there is $\lambda \in \partial \mathbb{D}$ which does not belong to
$\{a^m : m \geq 0\}$ and $\lambda \in W(C_{az})$. By [10] Theorem 1.3-3, p.10], $\lambda \in \sigma_p(C_{az})$
which is a contradiction. Then $W(C_{az}) = \{a^m : m \geq 0\} \cup \mathbb{D}$ and so
$W(C_{\psi,\varphi}) = \psi(0)e^{\frac{\alpha |h|^2}{2}} \mathbb{D} \cup \{\psi(0)e^{\frac{\alpha |h|^2}{2}} a^m : m \geq 0\}$.

(c) Assume that $a = 1$. By [11] Proposition 2.1], $\psi(z) = \psi(0)K_{-b}(z)$. We
know that $C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}$ is unitary (see [15] Corollary 1.2). Then $W(C_{\psi, z+b}) =
\psi(0)\|K_{-b}\|W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$. We try to find $W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$. Since $\sigma(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}) =
\partial \mathbb{D}$ (see [15] Corollary 1.4]), [10] Theorem 1.4-4, p. 16] implies that $W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}) = \mathbb{D}$. Since $W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$ is convex, it is not hard to see that $\mathbb{D} \subseteq W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$.

Because $C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}$ is unitary, $\|C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}\| = 1$. Hence by [10] Theorem
1.3-3, p.10], if $\lambda \in \partial \mathbb{D}$ is an element of $W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$, then λ must
belong to $\sigma_p(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$. We claim that $\sigma_p(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}) = \emptyset$. Assume that
$\lambda \in \sigma_p(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b})$. Let μ be an arbitrary unimodular number. It is not
hard to see that there exists $u \in \mathbb{C}$ such that $e^{2\text{Im}(u\lambda)} = \mu$. By Equation
(1), we get

$$C_{k_u, z-u} C_{\frac{\kappa - b}{\|K_{-b}\|} z + b} C_{k_u, z + u} = C_{\tilde{\psi}, z + b},$$

where $\tilde{\psi}(z) = \mu \psi(z)$. Then $C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}$ is unitary equivalent to $\mu C_{\psi, \varphi}$. It
states that $\lambda \mu^{-1}$ is an eigenvalue of $C_{\psi, \varphi}$. Thus, $\sigma_p(C_{\psi, \varphi}) = \partial \mathbb{D}$. Since $C_{\psi, \varphi}$ is normal (see [11] Theorem 3.3]) and the Fock space is sparable, by [4] Proposition
5.7, p.47], $C_{\psi, \varphi}$ cannot have an uncountable collection of eigenvalues which is a contradiction. Therefore, $\sigma_p(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}) = \emptyset$ and it shows that

$W(C_{\frac{\kappa - b}{\|K_{-b}\|} z + b}) = \mathbb{D}$. Thus, $W(C_{\psi, \varphi}) = \psi(0)e^{\frac{\alpha |h|^2}{2}} \mathbb{D}$. \hfill \Box

In Theorem 3.1, we saw that 0 lies in the interior of the numerical range of
$C_{\psi, az+b}$, where $|a| = 1$. In the next example, we compute the numerical
range of some weighted composition operators using Theorem 3.1.

Example 3.2. (a) Let $\varphi(z) = iz + 3$ and $\psi(z) = K_{3i}(z)$. By Theorem
3.1(a), \(W(C_{\psi, \varphi}) = e^{\frac{9}{i} \pi} P \), where \(P \) is the union of the polygon with \(n \) sides and vertices at \(1, i, -1, -i \) and its interior region.

(b) Let \(\varphi(z) = e^{\frac{\sqrt{3}}{i}} z + 2 \) and \(\psi(z) = K_{-2e^{-\sqrt{3}}}(z) \). Theorem 3.1(b) implies that \(W(C_{\psi, \varphi}) = t\mathbb{D} \cup \{t(e^{\sqrt{3}i})^m : m \geq 0\} \), where
\[
t = e^{4e^{\sqrt{3}} - 1}.
\]

(c) Let \(\varphi(z) = z + 2 \) and \(\psi(z) = K_{-2}(z) \). We infer from Theorem 3.1(c) that \(W(C_{\psi, \varphi}) = e^{2\mathbb{D}} \).

References

[1] P. S. Bourdon and J. H. Shapiro, The numerical ranges of automorphic composition operators, J. Math. Anal. Appl. 251 (2000), 839-854.
[2] P. S. Bourdon and J. H. Shapiro, When is zero in the numerical range of a composition operator?, Integral Equations Operator Theory 44 (2002), 410-441.
[3] B. J. Carswell, B. D. MacCluer and A. Schuster, Composition operators on the Fock space, Acta Sci. Math. (Szeged) 69 (2003), 871-887.
[4] J. B. Conway, A Course in Functional Analysis, Second Edition, Springer-Verlag, New York, 1990.
[5] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1995.
[6] G. De Barra, J. R. Giles and B. Sims, On the numerical range of compact operators on Hilbert spaces, Journal of the London Mathematical Society 5 (2) (1972), 704-706.
[7] M. Fatehi, Weighted composition operators on the Fock space, arXiv preprint.
[8] M. Fatehi, Numerical ranges of weighted composition operators, to appear.
[9] G. Gunatillake, M. Jovovic and W. Smith, Numerical ranges of weighted composition operators, J. Math. Anal. Appl. 413 (2014), 458-475.
[10] K. E. Gustafson, and K. M. Rao, The Numerical Range, The field of Values of Linear Operators and Matrices, Springer, New York, 1997.
[11] T. Le, Normal and isometric weighted composition operators on the Fock space, Bull. London Math. Soc. 46 (2014), 847-856.
[12] V. Matache, Numerical ranges of composition operators, Linear Algebra Appl. 331 (2001), 61-74.
[13] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
[14] S. Ueki, Weighted composition operator on the Fock space, Proc. Amer. Math. Soc. 135 (2007), 1405-1410.
[15] L. Zhao, Unitary weighted composition operators on the Fock space of \(C^n \), Complex Anal. Oper. Theory 8 (2014), 581-590.
[16] L. Zhao, Invertible weighted composition operators on the Fock space of \mathbb{C}^n, *J. Funct Spaces* 2015. Art. ID 250358.

[17] L. Zhao and C. Pang, A class of weighted composition operators on the Fock space, *Journal of Mathematical Research with Applications*, 35 (3) (2015), 303-310.

[18] K. Zhu, Analysis on Fock Spaces, Graduate Texts in Mathematics 263, Springer, New York, 2012.

M. Fatehi, Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
E-mail: fatehimahsa@yahoo.com

A. Negahdari, Department of Mathematics, Shiraz Branch, Islamic Azad University, Shiraz, Iran.
E-mail: asma.negahdari9219@gmail.com