The Derived Category Analogue of the Hartshorne-Lichtenbaum Vanishing Theorem

Marziyeh HATAMKHANI and Kamran DIVAANI-AAZAR
Az-Zahra University
(Communicated by Y. Nakamura)

Abstract. Let a be an ideal of a local ring (R, m) and X a d-dimensional homologically bounded complex of R-modules whose all homology modules are finitely generated. We show that $H^d_a(X) = 0$ if and only if $\dim \hat{R}/a\hat{R} + \nu > 0$ for all prime ideals p of \hat{R} such that $\dim \hat{R}/p - \inf X \otimes_R \hat{R}_p = d$.

1. Introduction

The Hartshorne-Lichtenbaum Vanishing Theorem is one of the most important results in the theory of local cohomology modules. There are several proofs known now of this result; see e.g. [BH], [CS] and [Sc]. Also, there are several generalizations of this result. The second named author, Naghipour and Tousi [DNT] have extended it to local cohomology with support in stable under specialization subsets. Takahashi, Yoshino and Yoshizawa [TYY] have extended it to local cohomology with respect to pairs of ideals. Also, more recently, the Hartshorne-Lichtenbaum Vanishing Theorem is extended to generalized local cohomology modules; see [DH]. Our aim in this paper is to establish a generalization of the Hartshorne-Lichtenbaum Vanishing Theorem which contains all of these generalizations. We do this by establishing the derived category analogue of the Hartshorne-Lichtenbaum Vanishing Theorem. For giving the precise statement of this result, we need to fix some notation.

Throughout, R is a commutative Noetherian ring with nonzero identity. The derived category of R-modules is denoted by $D(R)$. We use the symbol \simeq for denoting isomorphisms in $D(R)$. For a complex $X \in D(R)$, its supremum and infimum are defined, respectively, by $\sup X := \sup \{i \in \mathbb{Z} | H_i(X) \neq 0 \}$ and $\inf X := \inf \{i \in \mathbb{Z} | H_i(X) \neq 0 \}$, with the usual convention that $\sup \emptyset = -\infty$ and $\inf \emptyset = \infty$. Also, amplitude of X is defined by $\text{amp} X := \sup X - \inf X$. Recall that $\dim_R X$ is defined by $\dim_R X := \sup \{\dim R/p - \inf X_p | p \in \text{Spec} R \}$.

Received October 11, 2011; revised March 7, 2012

2010 Mathematics Subject Classification: 13D45, 13D02, 14B15

Key words and phrases: Attached prime ideals; derived categories; local cohomology; stable under specialization subsets

The second author was supported by a grant from IPM (No. 90130212).
and we define $\text{Assh}_R X$ by

$$\text{Assh}_R X := \{ p \in \text{Spec } R \mid \dim R/p - \inf X_p = \dim R X \}.$$

Any R-module M can be considered as a complex having M in its 0-th spot and 0 in its other spots. We denote the full subcategory of homologically left bounded complexes by $\mathcal{D}_<^L(R)$. Also, we denote the full subcategory of complexes with finitely generated homology modules that are homologically bounded (resp. homologically left bounded) by $\mathcal{D}_<^L(R)$ (resp. $\mathcal{D}_<^L(R)$).

Let a be an ideal of R and $X \in \mathcal{D}_<^L(R)$. A subset Z of Spec R is said to be stable under specialization if $V(p) \subseteq Z$ for all $p \in Z$. For any R-module M, $\Gamma_Z(M)$ is defined by

$$\Gamma_Z(M) := \{ x \in M \mid \text{Supp}_RX \subseteq Z \}.$$

The right derived functor of the functor $\Gamma_Z(-)$ exists in $\mathcal{D}(R)$ and the complex $R\Gamma_Z(X)$ is defined by $R\Gamma_Z(X) := \Gamma_Z(I)$, where I is any injective resolution of X. Also, for any integer i, the i-th local cohomology module of X with respect to Z is defined by $H_i^Z(X) := H_{\I}(R\Gamma_Z(X))$. To comply with the usual notation, for $Z := V(a)$, we denote $R\Gamma_Z(-)$ and $H_i^Z(-)$ by $\Gamma_a(-)$ and $H_i^a(-)$, respectively. By [F3, Corollary 3.7 and Proposition 3.14 d], for any complex $X \in \mathcal{D}_<^L(R)$, we know that

$$\sup \{ i \in Z \mid H_i^a(X) \neq 0 \} \leq \dim_R X$$

with equality if R is local and a is its maximal ideal. Denote the set of all ideals b of R such that $V(b) \subseteq Z$ by $F(Z)$. Since for any R-module M, $\Gamma_Z(M) = \bigcup_{b \in F(Z)} \Gamma_b(M)$, one can easily check that $H_i^Z(X) \cong \lim_{\longrightarrow b \in F(Z)} H_i^b(X)$ for all integers i. Hence $H_i^Z(X) = 0$ for all $i > \dim_R X$.

Let (R, m) be a local ring, Z a stable under specialization subset of Spec R and $X \in \mathcal{D}_<^L(R)$. We prove that $H_{\dim_R X}^Z(X) = 0$ if and only if for any $p \in \text{Assh}_R(X \otimes_R \hat{R})$, there is $q \in Z$ such that $\dim \hat{R}/q\hat{R} + p > 0$. Yoshino and Yoshizawa [YY, Theorem 2.10] have showed that for any abstract local cohomology functor $\delta : \mathcal{D}_<^L(R) \rightarrow \mathcal{D}_<^L(R)$, there is a stable under specialization subset Z of Spec R such that $\delta \cong R\Gamma_Z$. Thus our result may be considered as the largest generalization possible of the Hartshorne-Lichtenbaum Vanishing Theorem. In fact, we show that it includes all known generalizations of the Hartshorne-Lichtenbaum Vanishing Theorem.

2. Results

Let Z be a stable under specialization subset of Spec R and $X \in \mathcal{D}(R)$. The Propositions 2.1 and 2.3 below determine some situations where the local cohomology modules $H_i^Z(X)$ are Artinian. Recall that Supp_RX is defined by $\text{Supp}_RX := \{ p \in \text{Spec } R \mid X_p \neq 0 \}$ ($= \bigcup_{i \in Z} \text{Supp}_RX_i(X)$).
Proposition 2.1. Let Z be a stable under specialization subset of $\text{Spec } R$ and $X \in D_f^I(R)$. Assume that $\text{Supp}_R X \cap Z$ consists only of finitely many maximal ideals. Then $H^i_Z(X)$ is Artinian for all $i \in \mathbb{Z}$.

Proof. Let p be a prime ideal and $E(R/p)$ denote the injective envelope of R/p. Since, p is the only associated prime ideal of $E(R/p)$, it turns out

$$\Gamma_Z(E(R/p)) = \bigoplus_{p \in \text{Spec } R} (p, p \notin Z).$$

For each integer i, the R_p-module $\text{Ext}^i_{R_p}(R_p/pR_p, X_p)$ is finitely generated, and so

$$\mu^i(p, X) := \text{Vdim}_{R_p}(\text{Ext}^i_{R_p}(R_p/pR_p, X_p)) < \infty.$$

By [F2, Proposition 3.18], X possesses an injective resolution I such that $I_i \cong \bigoplus_{p \in \text{Spec } R} E(R/p)^{(\mu^i(p, X))}$ for all integers i. Let $i \in \mathbb{Z}$. Then

$$\Gamma_Z(I_i) = \bigoplus_{p \in \text{Spec } R} \Gamma_Z(E(R/p)^{(\mu^i(p, X))}) = \bigoplus_{p \in \text{Supp}_R X \cap Z} E(R/p)^{(\mu^i(p, X))}.$$

By the assumption, $\text{Supp}_R X \cap Z$ consists only of finitely many maximal ideals. This yields that $\Gamma_Z(I_i)$ is an Artinian R-module, and so $H^i_Z(X) = H_{-i}(\Gamma_Z(I))$ is Artinian too.

We record the following immediate corollary which extends [Z, Theorem 2.2]. We first recall some definitions. The left derived tensor product functor $- \otimes^L_R -$ is computed by taking a projective resolution of the first argument or of the second one. Also, the right derived homomorphism functor $R \text{Hom}_R(-, \sim)$ is computed by taking a projective resolution of the first argument or by taking an injective resolution of the second one. Let a be an ideal of R and M, N two R-modules. The notion of generalized local cohomology modules $H^i_a(M, N) := \lim_{\rightarrow} \text{Ext}^i_R(M/a^nM, N)$ was introduced by Herzog in his Habilitationsschrift [He]. When M is finitely generated, [Y, Theorem 3.4] yields that $H^i_a(M, N) \cong H_{-i}(R \Gamma_a(R \text{Hom}_R(M, N)))$ for all integers i.

Corollary 2.2. Let a be an ideal of R and M and N two finitely generated R-modules. Assume that $\text{Supp}_R M \cap \text{Supp}_R N \cap V(a)$ consists only of finitely many maximal ideals. Then $H^i_a(M, N)$ is Artinian for all $i \in \mathbb{Z}$.

Proposition 2.3. Let Z be a stable under specialization subset of $\text{Spec } R$. Assume that for any finitely generated R-module M of finite dimension, $H^\text{dim}_Z M(M)$ is Artinian. Then for any finite dimensional complex $X \in D^I_R(R)$, $H^\text{dim}_Z X(X)$ is Artinian.
PROOF. Set $d := \dim_R X$ and $s := \sup X$. Clearly, we may assume that $X \not\cong 0$, and so $n := \amp X$ is a non-negative integer. We argue by induction on n. Let $n = 0$. Then $X \cong \Sigma^s H_s(X)$, and so

$$H^d_\mathbb{Z}(X) = H^d_\mathbb{Z}(\Sigma^s H_s(X)) = H^{d+s}_\mathbb{Z}(H_s(X)).$$

On the other hand, by [F3, Proposition 3.5], $d = \sup \{\dim_R H_i(X) - i | i \in \mathbb{Z}\}$. Hence $\dim_R H_s(X) = d + s$, and so $H^{d+s}_\mathbb{Z}(H_s(X))$ is Artinian by our assumption. Now, assume that $n \geq 1$ and let $W := \tau_{\geq n} X$ and $Y := \tau_{s-1} X$ be truncated complexes of X; see [C, A.1.14]. Since $\amp W = 0$ and $\amp Y \leq n - 1$, these complexes satisfy the induction hypothesis. Next, one has

$$\dim_R X = \sup \{\dim_R H_i(X) - i | i \in \mathbb{Z}\} = \max \{\sup \{\dim_R H_i(X) - i | i \in \mathbb{Z} - \{s\}\}, \dim_R H_s(X) - s\} = \max \{\dim_R Y, \dim_R W\}.$$

Thus by Grothendieck’s Vanishing Theorem and induction hypothesis, we deduce that $H^d_\mathbb{Z}(W)$ and $H^d_\mathbb{Z}(Y)$ are Artinian. Now, by [F1, Theorem 1.41], there is a short exact sequence

$$0 \rightarrow W \rightarrow X \rightarrow Y \rightarrow 0$$

of complexes which induces a long exact sequence

$$H^{d-1}_\mathbb{Z}(Y) \rightarrow H^d_\mathbb{Z}(W) \rightarrow H^d_\mathbb{Z}(X) \rightarrow H^d_\mathbb{Z}(Y) \rightarrow 0.$$

It implies that $H^d_\mathbb{Z}(X)$ is Artinian. \hfill \Box

COROLLARY 2.4. Let Z be a stable under specialization subset of $\text{Spec } R$, a an ideal of R and $X \in D^f_\square (R)$.

i) If R is local, then $H^\dim_R X(X)$ is Artinian.

ii) If $\dim_R X$ is finite, then $H^\dim_R X(X)$ is Artinian.

PROOF. In view of the above proposition, i) follows by [DNT, Theorem 2.6 and Lemma 3.2] and ii) follows by [BS, Exercise 7.1.7]. \hfill \Box

Let A be an Artinian R-module. Recall that the set of attached prime ideals of A, $\text{Att}_R A$, is the set of all prime ideals p of R such that $p = \text{Ann}_R L$ for some quotient L of A. Clearly, $A = 0$ if and only if $\text{Att}_R A$ is empty. If R is local with the maximal ideal m, then $\text{Att}_R A = \text{Ass}_R (\text{Hom}_R (A, E(R/m)))$. Also, for an exact sequence $0 \rightarrow U \rightarrow V \rightarrow W \rightarrow 0$ of Artinian R-modules, one can see $\text{Att}_R U \subseteq \text{Att}_R V \subseteq \text{Att}_R U \cup \text{Att}_R W$. For proving our theorem, we need to the following lemmas.

LEMMA 2.5. Let (R, m) be a local ring and $X \in D^f_\square (R)$. Then $\text{Att}_R (H^\dim_R m X(X)) = \text{Ass}_R X$.

Proof. Set \(d := \dim_R X \). By Proposition 2.1, \(H^d_m(X) \) is an Artinian \(R \)-module. Hence, we have a natural isomorphism \(H^d_m(X) \cong H^d(X) \otimes_R \hat{R} \), and so [L, Corollary 3.4.4] provides a natural \(\hat{R} \)-isomorphism \(H^d_m(X) \cong H^d(X) \otimes_R \hat{R} \). From the definition of attached prime ideals, it follows that

\[
\text{Att}_R(H^d_m(X)) = \{ q \cap R | q \in \text{Att}_R(H^d_m(X) \otimes_R \hat{R}) \}.
\]

Let \(q \) be a prime ideal of \(\hat{R} \), \(p := q \cap R \) and \(M \) an \(R \)-module. We have the natural isomorphism \(M_p \otimes_R (\hat{R})_q \cong (M \otimes_R \hat{R})_q \). Since, the natural ring homomorphism \(R_p \rightarrow (\hat{R})_q \) is faithfully flat, \(M_p = 0 \) if and only if \((M \otimes_R \hat{R})_q = 0 \). This implies that \(\inf_X = \inf(X \otimes_R \hat{R})_q \). On the other hand, one can easily check that \(\dim_X = \dim_X \otimes_R \hat{R} \). Thus, we can immediately verify that

\[
\text{Assh}_R X = \{ q \cap R | q \in \text{Assh}_R(X \otimes_R \hat{R}) \}.
\]

Therefore, we may and do assume that \(R \) is complete, and so it possesses a normalized dualizing complex \(D \). By [Ha, Chapter V, Theorem 6.2], there is a natural isomorphism

\[
H^i_m(X) \cong \text{Hom}_R(\text{Ext}_R^{-d}(X, D), E(R/m))
\]

for all integers \(i \). Since all homology modules of \(X \) and of \(D \) are finitely generated, \(X \) is homologically bounded and the injective dimension of \(D \) is finite, it follows that \(\text{RHom}_R(X, D) \in D^f(R) \). In particular, \(\text{Ext}_R^{-d}(X, D) \) is a finitely generated \(R \)-module for all \(i \in \mathbb{Z} \). Thus we have

\[
\text{Att}_R(H^d_m(X)) = \text{Att}_R(\text{Hom}_R(\text{Ext}_R^{-d}(X, D), E(R/m)))
\]

\[
= \text{Ass}_R(\text{Hom}_R(\text{Ext}_R^{-d}(X, D), E(R/m))), E(R/m))
\]

\[
= \text{Ass}_R(\text{Ext}_R^{-d}(X, D))
\]

\[
= \text{Ass}_R(\text{H}(\text{RHom}_R(X, D)))
\]

[F1, Theorem 16.20] implies that \(\sup(\text{RHom}_R(X, D)) = d \). Let \(p \in \text{Spec } R \). By [F1, Theorem 12.26], \(p \in \text{Ass}_R(\text{H}_d(\text{RHom}_R(X, D))) \) if and only if \(\text{depth}_{R_p} \text{RHom}_R(X, D)_p = -d \). But, [C, Lemma A.6.4 and A.6.32] and [F1, Theorem 15.17], yield that

\[
\text{depth}_{R_p} \text{RHom}_R(X, D)_p = \text{depth}_{R_p} \text{RHom}_R(X_p, D_p)
\]

\[
= \text{depth}_{R_p} D_p + \inf X_p
\]

\[
= - \dim \frac{R}{p} + \inf X_p.
\]

Therefore, \(p \in \text{Ass}_R(\text{H}_d(\text{RHom}_R(X, D))) \) if and only if \(\text{dim} \frac{R}{p} - \inf X_p = \dim_X X \). This means \(\text{Att}_R(H^d_m(X)) = \text{Assh}_R X \), as desired. \(\square \)
LEMMA 2.6. Let \((R, m)\) be a local ring, \(Z\) a stable under specialization subset of \(\text{Spec } R\) and \(X \in D^f(R)\). Then \(H^\dim(X) \otimes_R Z(X)\) is a homomorphic image of \(H^\dim(X) \otimes_R Z(X)\).

PROOF. Let \(a\) be an ideal of \(R\) and \(x \in m\). Let \(I\) be an injective resolution of \(X\). Then \(I_x\), the localization of \(I\) at \(x\), provides an injective resolution of \(X_x\) in \(D^f(R_x)\). Now, [BS, Lemma 8.1.1] yields the following exact sequence of complexes

\[0 \to \Gamma_{a+(x)}(I) \to \Gamma_a(I) \to \Gamma_{a}(I_x) \to 0\]

where the maps are the natural ones. Set \(d := \dim R X\). We deduce the long exact sequence

\[\cdots \to H^d_{a+(x)}(X) \to H^d_a(X) \to H^d_{a,R_x}(X_x) \to 0\]

By Corollary 2.4, \(H^d_a(X)\) is Artinian. Hence \(H^d_a(X)\) is supported at most at \(m\), and so

\[H^d_{a,R_x}(X_x) \cong H^d_a(X)_x = 0\]

Hence, the natural homomorphism \(H^d_{a+(x)}(X) \to H^d_a(X)\) is epic.

We may choose \(x_1, x_2, \ldots, x_n \in R\) such that \(m = a + (x_1, x_2, \ldots, x_n)\). Set \(a_i := a + (x_1, \ldots, x_i-1)\) for \(i = 1, \ldots, n + 1\). By the above argument, the natural homomorphism \(H^d_{a_{i+1}}(X) \to H^d_{a_i}(X)\) is epic for all \(1 \leq i \leq n\). Hence \(H^d_a(X)\) is a homomorphic image of \(H^d_m(X)\). This completes the proof, because \(H^d_a(X) \cong \varprojlim_b H^d_b(X)\), where the direct limit is over all ideals \(b\) of \(R\) such that \(V(b) \subseteq Z\).

LEMMA 2.7. Let \(M\) be a finitely generated \(R\)-module and \(X \in D^f(R)\).

i) \(\dim_R(M \otimes_R L X) \leq \dim_R X\).

ii) If \(\text{Supp}_R M \cap \text{Assh}_R X \neq \emptyset\), then \(\dim_R(M \otimes_R L X) = \dim_R X\) and

\[\text{Assh}_R(M \otimes_R L X) = \text{Supp}_R M \cap \text{Assh}_R X\]

PROOF. For any Noetherian local ring \(S\) and any two complexes \(V, W \in D^f(S)\), Nakayama’s Lemma for complexes asserts that \(\inf(V \otimes_R^L W) = \inf V + \inf W\); see e.g. [C, Corollary A.4.16]. In particular, this yields that \(\text{Supp}_R(V \otimes_R^L W) \subseteq \text{Supp}_R V \cap \text{Supp}_R W\). Now, by noting that for any complex \(Y \in D(R)\), we have

\[\dim_R Y = \sup \{\dim_R/P - \inf_Y P | P \in \text{Supp}_R Y\}\]

both assertions follow immediately.

Next, we conclude our theorem.

THEOREM 2.8. Let \((R, m)\) be a local ring, \(Z\) a stable under specialization subset of \(\text{Spec } R\) and \(X \in D^f(R)\). Then \(\text{Att}_R(H^\dim(X) \otimes_R Z(X)) = \{p \in \text{Assh}_R(X \otimes_R \hat{R}) | \dim \hat{R}/q \hat{R} + p = 0\text{ for all } q \in Z\}\).
PROOF. Set \(d := \dim_R X \) and \(s := \sup X \). We may assume that \(n := \amp X \) is a non-negative integer. First, by induction on \(n \), we prove the inclusion \(\subseteq \). If \(n = 0 \), then \(X \cong \Sigma^s H_s(X) \), and so

\[
H^d_\Z(X) = H^d_\Z(\Sigma^s H_s(X)) = H^{d+s}_\Z(H_s(X)) .
\]

In the proof of Proposition 2.3, we saw that \(\dim H_s(X) = d + s \), hence [DNT, Corollary 2.7] implies that

\[
\Att_\hat{\R}(H^d_\Z(X)) = \Att_\hat{\R}(H^{d+s}_\Z(H_s(X)))
\]

= \{ p \in \Assh_\hat{\R}(H_s(X) \otimes_\R \hat{\R}) | \dim \hat{\R}/q \hat{\R} + p = 0 \text{ for all } q \in \Z \}.

Now, assume that \(n \geq 1 \) and \(p \in \Att_\hat{\R}(H^d_\Z(X)) \). By Lemma 2.6, \(H^d_\Z(X) \) is an homomorphic image of \(H^d_m(X) \), and so Lemma 2.5 yields that

\[
\Att_\hat{\R}(H^d_\Z(X)) \subseteq \Att_\hat{\R}(H^d_m(X)) = \Assh_\hat{\R}(X \otimes_\R \hat{\R}) .
\]

Thus \(p \in \Assh_\hat{\R}(X \otimes_\R \hat{\R}) \). Let \(W := \tau_{\geq n} X \) and \(Y := \tau_{s-1} X \) be truncated complexes of \(X \). We have a short exact sequence

\[
0 \rightarrow W \rightarrow X \rightarrow Y \rightarrow 0
\]

of complexes and from the proof of Proposition 2.3, we know that \(\dim_R X = \max\{ \dim_R W, \dim_R Y \} \). From the long exact sequence

\[
\cdots \rightarrow H^d_\Z(W) \rightarrow H^d_\Z(X) \rightarrow H^d_\Z(Y) \rightarrow 0 ,
\]

we deduce that

\[
\Att_\hat{\R}(H^d_\Z(X)) \subseteq \Att_\hat{\R}(H^d_\Z(W)) \cup \Att_\hat{\R}(H^d_\Z(Y)) .
\]

Thus, either \(p \in \Att_\hat{\R}(H^d_\Z(W)) \) or \(p \in \Att_\hat{\R}(H^d_\Z(Y)) \). By Grothendieck’s Vanishing Theorem, the first case implies that \(\dim_R W = d \) and the second case implies that \(\dim_R Y = d \). Since \(\amp W = 0 \) and \(\amp Y \leq n - 1 \), in both cases, the induction hypothesis yields that \(\dim \hat{\R}/q \hat{\R} + p = 0 \) for all \(q \in \Z \).

Now, we prove the inclusion \(\supseteq \). Let \(p \in \Assh_\hat{\R}(X \otimes_\R \hat{\R}) \) be such that \(\dim \hat{\R}/q \hat{\R} + p = 0 \) for all \(q \in \Z \). We have to show that \(p \in \Att_\hat{\R}(H^d_\Z(X)) \). Since \(H^d_\Z(X) \) is an Artinian \(R \)-module, we have the natural isomorphism \(H^d_\Z(X) \cong H^d_\Z(X) \otimes_\R \hat{\R} \). On the other hand, by [L, Corollary 3.4.4], for any ideal \(a \) of \(R \), there is a natural \(\hat{\R} \)-isomorphism \(H^d_a(X) \otimes_\R \hat{\R} \cong H^d_{a\hat{\R}}(X \otimes_\R \hat{\R}) \). Let \(\hat{\Z} := \{ q \in \Spec \hat{\R} | q \cap R \in \Z \} \), which can be easily checked that is a stable under specialization subset of \(\Spec \hat{\R} \). It is straightforward to see that the two families \(\{ a\hat{\R} | a \text{ is an ideal of } R \text{ with } V(a) \subseteq \Z \} \) and \(\{ b\hat{\R} | b \text{ is an ideal of } \hat{\R} \text{ with } V(b) \subseteq \hat{\Z} \} \) are
cofinal. This implies that \(H^d_\text{d}(X) \cong H^d_\text{d}(X \otimes_R \hat{R}) \). Also, we have \(\dim_{\hat{R}}(X \otimes_R \hat{R}) = \dim_R X \) and \(\dim \hat{R}/q + p = 0 \) for all \(q \in \hat{Z} \). Therefore, we may and do assume that \(R \) is complete.

Since \(R \) is complete, there is a complete regular local ring \((T, n)\) and a surjective ring homomorphism \(f : T \rightarrow R \). One can easily check that \(X \in D^f_{\square}(T) \) and \(\dim_T X = \dim_R X \). Set \(\hat{Z} := \{ f^{-1}(q) | q \in \mathcal{Z} \} \), which is clearly a stable under specialization subset of \(\text{Spec } T \).

By [L, Corollary 3.4.3], for any ideal \(b \) of \(T \), there is a natural \(T \)-isomorphism \(H^d_\text{d}(X) \cong H^d_\text{d}(\hat{X}) \). From this, we can conclude a natural \(T \)-isomorphism \(H^d_\text{d}(X) \cong H^d_\text{d}(X) \). For any Artinian \(R \)-module \(A \) and any \(q \in \text{Spec } R \), it turns out that \(A \) is also Artinian as a \(T \)-module and \(q \in \text{Att}_T A \) if and only if \(f^{-1}(q) \in \text{Att}_T A \). Finally, we have \(\dim T/\bar{q} + f^{-1}(p) = 0 \) for all \(\bar{q} \in \hat{Z} \) and \(\text{Assh } X = \{ f^{-1}(q) | q \in \text{Assh}_R X \} \). Thus from now on, we can assume that \(R \) is a complete regular local ring.

Lemma 2.7 yields that \(\dim_R(p \otimes^L_R X) \leq \dim_R X \) and \(\dim_R(R/p \otimes^L_R X) = \dim_R X \). Let \(P \) be a projective resolution of \(X \). Applying \(- \otimes_R P \) to the short exact sequence

\[
0 \rightarrow p \rightarrow R \rightarrow R/p \rightarrow 0,
\]
yields the following exact sequence of complexes

\[
0 \rightarrow p \otimes^L_R X \rightarrow X \rightarrow R/p \otimes^L_R X \rightarrow 0.
\]

It yields the following exact sequence

\[
\cdots \rightarrow H^d_\text{d}(p \otimes^L_R X) \rightarrow H^d_\text{d}(X) \rightarrow H^d_\text{d}(R/p \otimes^L_R X) \rightarrow 0.
\]

As \(R \) is regular, the projective dimension of any \(R \)-module is finite, and so for any finitely generated \(R \)-module \(M \), one has \(M \otimes^L_R X \in D^f_{\square}(R) \). Since \(\dim R/q + p = 0 \) for all \(q \in \mathcal{Z} \), it follows that \(\Gamma_\mathcal{Z}(\Gamma_p(M)) = \Gamma_m(M) \) for all \(R \)-modules \(M \). Let \(I \) be an injective resolution of \(R/p \otimes^L_R X \). Since

\[
\text{Supp}_R I = \text{Supp}_R(R/p \otimes^L_R X) \subseteq V(p),
\]
by [L, Corollary 3.2.1], \(\Gamma_p(I) \cong I \), and so

\[
\Gamma_\mathcal{Z}(I) \cong \Gamma_\mathcal{Z}(\Gamma_p(I)) = \Gamma_m(I).
\]

In particular, there is an isomorphism \(H^d_\text{d}(R/p \otimes^L_R X) \cong H^d_\text{d}(R/p \otimes^L_R X) \). Therefore, by Lemmas 2.7 and 2.5, we deduce that \(p \in \text{Att}_R(H^d_\text{d}(R/p \otimes^L_R X)) \subseteq \text{Att}_R(H^d_\text{d}(X)) \).

Now, we are ready to establish the derived category analogue of the Hartshorne-Lichtenbaum Vanishing Theorem.

Corollary 2.9. Let \((R, m)\) be a local ring, \(\mathcal{Z} \) a stable under specialization subset of \(\text{Spec } R \) and \(X \in D^f_{\square}(R) \). The following are equivalent:

\[\text{i) } H^d_{\dim \mathcal{Z}} X(X) = 0. \]
ii) For any $p \in \text{Assh}_{\hat{R}}(X \otimes_{\hat{R}} \hat{R})$, there is $q \in \mathbb{Z}$ such that $\dim \hat{R}/q\hat{R} + p > 0$.

Corollary 2.10. Let a be an ideal of the local ring (R, m) and $X \in \mathcal{D}_{f\square}(R)$.

1) $\text{Att}_{\hat{R}}(\dim_{\hat{R}} X) = \{ p \in \text{Assh}_{\hat{R}}(X \otimes_{\hat{R}} \hat{R}) \mid \dim \hat{R}/a\hat{R} + p = 0 \}$.

2) The following are equivalent:
 i) $\dim_{\hat{R}} X = 0$.
 ii) $\dim \hat{R}/a\hat{R} + p > 0$ for all $p \in \text{Assh}_{\hat{R}}(X \otimes_{\hat{R}} \hat{R})$.

Corollary 2.11. Let (R, m) be a local ring, \mathcal{Z} a stable under specialization subset of $\text{Spec } R$ and M, N two finitely generated R-modules. Assume that $R\text{Hom}_{\hat{R}}(M, N) \in \mathcal{D}_{f\square}(R)$ and set $d := \dim_R(R\text{Hom}_{\hat{R}}(\hat{M}, \hat{N}))$. The following are equivalent:
 i) $H^d_{\mathcal{Z}}(M, N) = 0$.
 ii) For any $p \in \text{Assh}_{\hat{R}}(R\text{Hom}_{\hat{R}}(\hat{M}, \hat{N}))$, there is $q \in \mathbb{Z}$ such that $\dim \hat{R}/q\hat{R} + p > 0$.

Proof. Note that $R\text{Hom}_{\hat{R}}(M, N) \otimes_{\hat{R}} \hat{R} \cong R\text{Hom}_{\hat{R}}(\hat{M}, \hat{N})$, and so the result follows by Corollary 2.9. \qed

Remark 2.12. Let \mathcal{Z} be a stable under specialization subset of $\text{Spec } R$ and $X \in \mathcal{D}_{\square}(R)$.

1) Suppose that dimension of X is finite. Then $H^d_{\mathcal{Z}}(X) = \lim_{\rightarrow a} H^d_{a\mathcal{Z}}(X)$, where the direct limit is over all ideals a of R such that $V(a) \subseteq \mathcal{Z}$. But, $H^d_{\mathcal{Z}}(X)$ is not Artinian in general. To this end, let R be a finite dimensional Gorenstein ring such that the set $\mathcal{Z} := \{ m \in \text{Max } R \mid \text{ht } m = \dim R \}$ is infinite. Clearly, \mathcal{Z} is a stable under specialization subset of $\text{Spec } R$. The minimal injective resolution of R has the form

$$0 \rightarrow \bigoplus_{\text{ht } p = 0} E(R/p) \rightarrow \bigoplus_{\text{ht } p = 1} E(R/p) \rightarrow \cdots \rightarrow \bigoplus_{\text{ht } p = \dim R} E(R/p) \rightarrow 0.$$

Hence $H^d_{\mathcal{Z}}(R) = \bigsqcup_{m \in \mathcal{Z}} E(R/m)$, which is not Artinian.

2) Suppose that R is local with the maximal ideal m and I, J two ideals of R. In [TYY], Takahashi, Yoshino and Yoshizawa considered the following stable under specialization subset of $\text{Spec } R$

$$W(I, J) = \{ p \in \text{Spec}(R) \mid I^n \subseteq p + J \text{ for a natural integer } n \}.$$

For each integer i, they called $H^i_{I, J}(-) := H^i_{W(I, J)}(-)$, i-th local cohomology functor with respect to (I, J). For the ring R itself, they extended the Hartshorne-Lichtenbaum Vanishing Theorem; see [TYY, Theorem 4.9]. Namely, they showed that $H^d_{I, J}(R) = 0$ if and only if for any prime ideal $p \in \text{Assh}_{\hat{R}} \hat{R} \cap V(J \hat{R})$, we
have \(\dim \hat{R}/I \hat{R} + p > 0 \). On the other hand by [DNT, Theorem 2.8], \(H^{\dim}_{\hat{R},J}(R) = 0 \) if and only if for any prime ideal \(p \in \text{Assh}_{\hat{R}} \hat{R} \), there is \(q \in W(I, J) \) such that \(\dim \hat{R}/q \hat{R} + p > 0 \). Hence the following statements are equivalent:

i) For any prime ideal \(p \in \text{Assh}_{\hat{R}} \hat{R} \cap V(J \hat{R}) \), we have \(\dim \hat{R}/I \hat{R} + p > 0 \).

ii) For any prime ideal \(p \in \text{Assh}_{\hat{R}} \hat{R} \), there is \(q \in W(I, J) \) such that \(\dim \hat{R}/q \hat{R} + p > 0 \).

As Takahashi, Yoshino and Yoshizawa [TYY, Remark 4.10] have mentioned, it is not so easy to check the equivalence of these statements directly. Here, we do this under the extra assumption that \(R \) is complete. (In fact this assumption is not needed for the implication \(\text{ii) } \implies \text{i) } \).) Suppose \(\text{ii) } \) holds and let \(p \in \text{Assh}_{\hat{R}} \hat{R} \cap V(J) \). By the assumption there is \(q \in W(I, J) \) such that \(\dim \hat{R}/q \hat{R} + p > 0 \). Since \(q \in W(I, J) \), there is a natural integer \(n \), such that \(I^n \subseteq q + J \). This yields that \(I^n + p \subseteq q + p \), and so

\[
\dim R/I + p = \dim R/I^n + p \geq \dim R/q + p > 0.
\]

Conversely, suppose that \(\text{i) } \) holds and let \(p \in \text{Assh}_{\hat{R}} \hat{R} \). First, assume that \(J \subseteq p \). Then by the assumption, \(\dim R/I + p > 0 \), and so there is \(q \in V(I + p) \) such that \(\dim R/q > 0 \). Then \(I + J \subseteq I + p \subseteq q \). Hence \(q \in W(I, J) \) and \(\dim R/q + p = \dim R/q > 0 \). Thus \(\text{ii) } \) follows when \(J \subseteq p \). Now, assume that \(J \nsubseteq p \).

3) Suppose that \(R \) is local and \(F(Z) \) denote the set of all ideals \(b \) of \(R \) such that \(V(b) \subseteq Z \). As we mentioned in the introduction \(H^i_Z(X) \cong \lim_{\rightarrow b \in F(Z)} H^i_b(X) \) for all integers \(i \). The relationship between \(H^{\dim R}_{Z}(X) \) and \(H^{\dim R}_{b}(X) \)'s is more deeper. In fact by Theorem 2.8, we have

\[
\text{Att}_{\hat{R}}(H^{\dim R}_{Z}(X)) = \bigcap_{b \in F(Z)} \text{Att}_{\hat{R}}(H^{\dim R}_{b}(X)).
\]

This implies that \(H^{\dim R}_{Z}(X) = 0 \) if and only if \(H^{\dim R}_{b}(X) = 0 \) for an ideal \(b \in F(Z) \).

ACKNOWLEDGMENT. Part of this research was done during the second author visit of the Department of Mathematics at the University of Nebraska-Lincoln. He thanks this department for its kind hospitality.
References

[BH] M. Brodmann and C. Huneke, A quick proof of the Hartshorne-Lichtenbaum vanishing theorem, *Algebraic geometry and its applications*, (West Lafayette, IN, 1990), 305–308, Springer, New York, 1994.

[BS] M. Brodmann and R. Y. Sharp, *Local cohomology: An algebraic introduction with geometric applications*, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge, 1998.

[CS] F. W. Call and R. Y. Sharp, A short proof of the local Lichtenbaum-Hartshorne theorem on the vanishing of local cohomology, Bull. London Math. Soc. 18(3), (1986), 261–264.

[C] L. W. Christensen, *Gorenstein dimensions*, Lecture Notes in Mathematics, 1747, Springer-Verlag, Berlin, 2000.

[DH] K. Divaani-Aazar and A. Hajikarimi, *Generalized local cohomology modules and homological Gorenstein dimensions*, Comm. Algebra 39(6), (2011), 2051–2067.

[DNT] K. Divaani-Aazar, R. Naghipour and M. Tousi, The Lichtenbaum-Hartshorne theorem for generalized local cohomology and connectedness, Comm. Algebra 30(8), (2002), 3687–3702.

[F1] H-B. Foxby, Hyperhomological algebra & commutative rings, in preparation.

[F2] H-B. Foxby, A homological theory of complexes of modules, Preprint Series no. 19 a & 19 b, Department of Mathematics, University of Copenhagen, 1981.

[F3] H-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15(2), (1979), 149–172.

[Ha] R. Hartshorne, *Residues and duality*, Lecture Notes in Mathematics 20, Springer-Verlag, Berlin-New York, 1966.

[He] J. Herzog, *Komplex Auflösungen und Dualität in der lokalen Algebra*, Habilitationsschrift, Universität Regensburg, (1974).

[L] J. Lipman, Lectures on local cohomology and duality, Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math. 226, Dekker, New York, (2002), 39–89.

[Sc] P. Schenzel, Explicit computations around the Lichtenbaum-Hartshorne vanishing theorem, Manuscripta Math. 78(1), (1993), 57–68.

[TYY] R. Takahashi, Y. Yoshino and T. Yoshizawa, Local cohomology based on a nonclosed support defined by a pair of ideals, J. Pure Appl. Algebra 213(4), (2009), 582–600.

[Y] S. Yassemi, Generalized section functors, J. Pure Appl. Algebra 95(1), (1994), 103–119.

[YY] Y. Yoshino and T. Yoshizawa, Abstract local cohomology functors, Math. J. Okayama Univ. 53 (2011), 129–154.

[Z] N. Zamani, On graded generalized local cohomology, Arch. Math. (Basel) 86(4), (2006), 321–330.

Present Addresses:

M. Hatamkhani
DEPARTMENT OF MATHEMATICS,
AZ-ZAHRA UNIVERSITY,
VANAK, POST CODE 19834, TEHRAN, IRAN.
e-mail: hatamkhani9@yahoo.com

K. Divaani-Aazar
DEPARTMENT OF MATHEMATICS,
AZ-ZAHRA UNIVERSITY,
VANAK, POST CODE 19834, TEHRAN, IRAN.

SCHOOL OF MATHEMATICS,
INSTITUTE FOR RESEARCH IN FUNDAMENTAL SCIENCES (IPM),
P.O. BOX. 19395–5746, TEHRAN, IRAN
e-mail: kdivaani@ipm.ir