Cardiovascular mortality risk among patients with gastroenteropancreatic neuroendocrine neoplasms: a registry-based analysis

Shenghong Sun
Yijishan Hospital, Wannan Medical College

Wei Wang (✉ wwww@wnmc.edu.cn)
Yijishan Hospital of Wannan Medical College https://orcid.org/0000-0001-9963-5062

Chiyi He
Yijishan Hospital, Wannan Medical College

Research

Keywords: gastroenteropancreatic neuroendocrine neoplasms, cardiovascular mortality, standardized mortality ratio, competing risk model, predictor

DOI: https://doi.org/10.21203/rs.3.rs-280448/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

The research aimed to explore mortality patterns and quantitatively assess risks of cardiovascular mortality (CVM) in patients with primary gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs).

Methods

We extracted data from the Surveillance, Epidemiology and End Results (SEER) database for patients diagnosed with GEP-NENs between 2000 and 2015. Standardized mortality ratio (SMR) and the absolute excess risk were obtained based on the reference of general US population. The cumulative incidence function curves were constructed by all causes of death. Predictors for CVM were identified using multivariate competing risk model.

Results

Overall, 42027 patients were enrolled from the SEER database, of which 1598 (3.8%) died from cardiovascular disease (CVD). The SMR for CVM was 1.20 (95%CI: 1.14–1.26) among GEP-NENs patients. The cumulative mortality of CVD was the lowest in all causes of death, including primary cancer, other cancer, and other non-cancer disease. Furthermore, age of diagnosis, race, Hispanic origin, gender, marital status, year of diagnosis, grade, education level, region, SEER stage, primary site, surgery and chemotherapy were identified as independent predictors of CVM in GEP-NENs patients.

Conclusions

GEP-NENs patients have a significantly increased risk of CVM in contrast to the general population. Better cardioprotective interventions might be considered as a preferred method to protect heart for GEP-NENs patients.

Introduction

Neuroendocrine neoplasms (NENs) are a collection of fairly rare neoplasms, which used to be named as “carcinoid” on account of their heterogeneous and indolent clinical nature [1]. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) originate from neuroendocrine cells throughout the body constituting two-thirds of NENs [2]. In the past 40 years, the incidence of GEP-NENs has been steadily growing, with an increase of 3.65 times in the United States and 3.8–4.8 times in the UK [3]. The recently reported annual age-adjusted incidence of GEP-NENs is approximately 3.56/100,000 in the United States and 4.60/100,000 in England, respectively [4, 5]. Advanced in diagnostic endoscopy, physician awareness and treatment of cancers, the outcome of GEP-NENs patients had improved considerably, with 3- and 5-
year overall survival rates of 79.4% and 74.7%, respectively [6, 7]. Cardiovascular disease (CVD) has become one of the leading causes of non-cancer death [8].

A previous study reported that the cardiovascular mortality (CVM) had increased by 21.1% from 2007 to 2017 in global [9]. In 2016, approximately 17.9 million people died of CVD globally, accounting for 31% of the total global deaths, while roughly 9 million death caused by cancer [10, 11]. In the United States, Kochanek et al. reported that 647457 deaths arose from diseases of heart, more than 599108 deaths from primary malignant neoplasms in 2017 [12].

Prior studies have shown that patients with colorectal cancer and endometrial cancer have an 11.7 and 8.8 folds higher risk of CVM than the general population, respectively [13, 14]. Fang et al. have concluded that the risk of prostate cancer patients developing CVM in the first month and 7–12 months after diagnosis is 2.05 and 0.92 folds that of the general population, respectively [15]. Weberpals and colleagues have shown that the risk of CVM for breast cancer patients is 0.84 times that of the general population [16]. To sum up, the risk of CVM varies significantly among tumor patients depending on different primary sites and time after diagnosis compared with the general population. To our knowledge, there have been no reports focus on CVM of patients with GEP-NENs. Hence, we described the risk assessment and patterns for causes of death, and identified independent predictors for CVM in GEP-NENs patients in this study.

Methods

Data source

We extracted data of patients patients with primary GEP-NENs between 2000 and 2015 from the Surveillance, Epidemiology, and End Results (SEER) database using the SEER*Stat software (version 8.3.6) [17]. The SEER program, including incidence, survival and mortality data, is a system of population-based cancer registries sponsored by National Cancer Institute covering around 27.8% of the total US population (based on the 2010 census) [18]. The US mortality of the reference cohort (representing the general population) reported in the National Vital Statistics System also can be collected through the SEER program [19]. Ethical approval of this publicly available information provided by the SEER program was not required.

Study population

Patients histologically diagnosed with GEP-NENs at the first primary tumor aged ≥ 18 years were retrieved from the SEER database. The following International Classification of Diseases for Oncology, the third edition (ICD-O-3) histological codes were used: 8013, 8041–8044, 8150–8153, 8155, 8156, 8240–8046, 8249. The primary site codes were used for stomach (C16.0-C16.9), small intestine (C17.0-C17.9, C24.1), appendix (C18.1), colon (C18.0, C18.2-C18.9), rectum (C19.9, C20.9) and pancreas (C25.0-C25.9). Patients with a diagnosis at autopsy or death certificate only and variables (race, age and cause of death) with incomplete data were excluded (Fig. 1).
The main outcome of interest was CVM, defined by the six death causes in the SEER database (International Classification of Diseases, 10th Revision [ICD-10] codes): diseases of heart (I00-I09, I11, I13, I20-I51), hypertension without heart disease (I10, I12), cerebrovascular diseases (I60-I69), atherosclerosis (I70), aortic aneurysm and dissection (I71), and other diseases of arteries, arterioles, and capillaries (I72-I78) [20].

Study Variables

Data were summarized as mean ± standard deviation (SD) or median and interquartile range (IQR) for continuous variables, and number (percent) for categorical variables.

The variables involved in this study included age at diagnosis, attained age, year of diagnosis, gender, SEER stage (localized, regional, and distant), race, Hispanic origin, marital status, grade (well differentiated as grade I, moderately differentiated as grade II, poorly differentiated as grade III, and undifferentiated as grade IV), region (Midwest, West, South, Northeast), education level, mean household income, histologic subtype, primary site, surgery, chemotherapy, radiotherapy, cause of death and survival time.

Since there is no personal data on education level and household income in the SEER database, we used 2000 US Census data to obtain county-specific average educational level and household income [15]. Survival time refers to the interval from the diagnosis of cancer to the death of patients ascribed to any causes or the last day of the available survival information [21].

Statistical analysis

The relative risk of CVM for GEP-NENs patients was compared to all US residents and presented as the standardized mortality ratio (SMR) [22]. SMR is the ratio of observed to expected number of CVM [20, 21]. Expected numbers were calculated by multiplying the mortality rate in the reference cohort by the person years (PYs) in the cancer cohort [23]. The absolute excess risk (AER, per 10,000 PYs) was calculated as follows: AER = ([observed deaths - expected deaths] /PYs of observation) × 10,000 [20, 21]. CVM was described as the primary event of interest, while competing events refer to death causes by primary cancer, other cancer and other non-cancer. The crude cumulative incidence function (CIF) is used to express the probability of developing primary and competing events using Fine-Gray competing risk model [24, 25]. Multivariate competing risk survival analyses were performed to identify independent predictors of CVM. Data analyses were performed by R software (version 3.6.3). All tests are 2-sided, and P-value < 0.05 signified statistical significance.

Results

Patient characteristics

A total of 42027 qualified GEP-NENs patients were adopted for subsequent analyses. The mean age at diagnosis was 58.57±13.74 years and the median follow-up time was 54 (22-103) months. The majority of patients were White (74.2%), non-Hispanic (88.2%), married (56.4%), age at diagnosis ≥ 50 (77.6%),
had only one neoplasm (88.3%), lived in the Western region (48.8%) and with localized tumor stage (53.3%). The proportion of female patients (21281 cases, 50.6%) was similar to that of male patients (20746 cases, 49.4%). The most common primary site was rectum (30.0%), followed by small intestine (27.8%) and pancreas (14.1%). Histologic types for GEP-NENs consisted of neuroendocrine tumor (74.9%) and neuroendocrine carcinoma (25.1%). 32265 (76.8%) patients underwent surgery, 4337 (10.3%) patients received chemotherapy, only 985 (2.3%) patients underwent radiotherapy. Among 42027 patients, 1598 (3.8%) patients died of CVD, in which the main cause was diseases of heart (75.3%), followed by cerebrovascular diseases (16.9%) and hypertension without heart disease (4.2%). The baseline characteristics were detailed in Table 1 and 2.

Standardized mortality ratio and absolute excess risk

The SMR for CVM was 1.20 (95%CI: 1.14-1.26) and the AER was 12.63/10,000 PYs in GEP-NENs patients. In the subgroup analyses stratified by different variables, patients were Non-Hispanic; lived in the South, Midwest and West regions; aged at diagnosis ≤ 39, 40-44, 45-49, 55-59, 65-69, 70-74 and 85+; with attained age ≤ 39, 40-44, 45-49, 50-54, 65-69, 70-74 and 75-79; with primary site of stomach, small intestine and colon; with localized and distant stage; with latency of 0-1, 2-5 and 6-11 months; with unmarried, Grade III/IV, lower educational level, lower household income, no chemotherapy, and no radiotherapy had significantly elevated SMRs and increased AERs compared with that of the general population, regardless of race, gender, year of diagnosis, subtype and surgery (Tab.1).

Cumulative mortality of CVD

The results of CIF curves for all causes of death in GEP-NENs patients using Fine-Gray competing risk model were illustrated in Figure 2. The cumulative mortality (CM) of CVD was the lowest in all causes of death. At the follow-up time of 200 months, the CMs of CVD, primary cancer, other cancer, and other non-cancer disease were 9.4%, 12.3%, 16.9%, and 13.8%, respectively. In the early follow-up period, the highest CM was caused by primary cancer. The CMs of other cancer and non-cancer disease exceeded that of primary cancer at around 90 and 170 months after diagnosis, respectively.

In the subgroup analyses stratified by age at diagnosis, we observed that the CM of CVD steadily increased with the age at diagnosis (Tab. 3). The CM of CVD was the lowest in all causes of death in subgroups of aged < 50 years (3.1%) and 50-64 years (5.5%) (Tab. 3, Fig. 3A and B). In subgroups of aged 65-79 years and ≥ 80 years, the CM of CVD exceeded that of primary cancer at around 180 months and 120 months after diagnosis, respectively (Fig. 3C and D). In the subgroup analyses stratified by primary site, pancreas and small intestine NENs patients had the lowest (4.12%) and highest (13.26%) CM of CVD, respectively (Tab. 3). We observed that the CM of CVD was the lowest in all causes of death in subgroups of the primary site of colon (9.09%), appendix (4.84%) and pancreas (4.12%) (Tab. 3, Fig. 4A-C). In subgroups of the primary site of stomach and rectum, the CM of CVD exceeded that of primary cancer at around 160 months and 90 months after diagnosis, respectively (Fig. 4D and E). Interestingly, the CM of CVD in the subgroup of the primary site of small intestine was higher than that of primary cancer across all follow-up periods (Fig. 4F).
Predictors of cardiovascular disease deaths

We identified indicators associated with CVM in GEP-NENs patients using multivariate competing risk model (Tab. 4). We found that patients were Black (HR: 1.307; 95%CI: 1.160-1.472), non-Hispanic (HR: 1.370; 95%CI: 1.137-1.651); with older age (HR: 4.799; 95%CI: 4.313-5.341), unmarried (HR: 1.562; 95%CI: 1.410-1.173), no surgery (HR: 1.346; 95%CI: 1.188-1.519), no chemotherapy (HR: 1.610; 95%CI: 1.220-2.125) were independently associated with higher risks of CVM; meanwhile, patients were female (HR: 0.790; 95%CI: 0.717-0.869), diagnosed from 2005 to 2009 (HR: 0.798; 95%CI: 0.717-0.888) and 2010-2015 (HR: 0.575; 95%CI: 0.502-0.659); with regional (HR: 0.815; 95%CI: 0.714-0.931) and distant tumor stage (HR: 0.456; 95%CI: 0.382-0.544), grade III/IV (HR: 0.701; 95%CI: 0.533-0.923), college level > 25% (HR: 0.798; 95%CI: 0.706-0.902); lived in the Northeast region (HR: 0.813; 95%CI: 0.699-0.945); with primary site of appendix (HR: 0.698; 95%CI: 0.531-0.918), rectum (HR: 0.550; 95%CI: 0.468-0.646) and pancreas (HR: 0.506; 95%CI: 0.401-0.638) had independent association with lower risks of CVM.

Discussion

Multiple studies have confirmed that the risk of CVM among cancer patients varies considerably in different countries. In a population-based study of 21634 adult cancer patients, Ye et al. concluded that the risk of CVM has no significant differences between cancer patients and the general population in Australian (SMR: 0.97; 95% CI: 0.90–1.04) [26]. Oh et al. reported that compared with the general population in Korea, cancer patients have a lower risk of developing CVM (men, SMR: 0.73; 95% CI: 0.70–0.75; women, SMR: 0.83; 95% CI: 0.80–0.87), although they found a 20-fold increase in CVM among cancer patients from 2000 to 2016 [27]. Sturgeon et al. confirmed that the risk of CVM among 28 of types cancer patients was significantly increased by contrast with that of the general population in the United States, especially in the first year after diagnosis (SMR: 3.93; 95% CI: 3.89–3.97) [8]. A recent study based on the SEER database showed that 1680 (5.6%) NENs patients died from heart diseases and 545 (1.8%) NENs patients died from other CVD (hypertension without heart disease, cerebrovascular diseases, atherosclerosis, aortic aneurysm and dissection, and other diseases of arteries/arterioles/capillaries), with SMRs of 2.31 (95%CI: 2.20–2.42) and 2.36 (95%CI: 2.17–2.57), respectively [28]. Most NENs are primarily located in the GEP (67.5%) and bronchopulmonary system (25.3%) [29]; however, the 5-year overall survival rates between GEP-NENs (74.7%) and bronchopulmonary NENs (33.7%) patients were significantly different [7, 30]. These findings suggested NENs patients had various natures and characteristics depend on different primary sites. Hence, we focus exclusively on the GEP-NENs in the present study.

In this study, we comprehensively assessed the risk of all causes of death among more than 42 thousand GEP-NENs patients from the SEER database, and found the risk of CVM in GEP-NENs patients was 20% higher than that of the general US population (SMR: 1.20; 95%CI: 1.14–1.26).

According to the competing risk analyses, we found that the CM of CVD was the lowest among all causes of death including primary cancer, other cancer and other non-cancer disease.
In addition, we identified age of diagnosis, race, Hispanic origin, gender, marital status, year of diagnosis, grade, education level, region, SEER stage, primary site, surgery and chemotherapy were independent predictors of CVM in GEP-NENs patients.

NENs were previously known as carcinoid tumours, in which approximately 50% of patients developed carcinoid syndrome [31]. Around 60% NENs patients with carcinoid syndrome developed carcinoid heart disease (CHD) which was characterized by development of valvular dysfunction, in particular right heart failure [32]. In addition, several researches have found that NENs patients are prone to depression and anxiety [33, 34], which may aggravate state of cardiovascular physiology [15, 35]. These results may explain the high risk of CVM in patients with NENs to some extent.

In terms of the time after cancer diagnosis, we confirmed that GEP-NENs patients within the first two-month after diagnosis had the highest risk of CVM (SMR: 3.64; 95% CI: 3.05–4.30). This finding was similar to previous conclusions reported by Sturgeon et al. and Zaorsky et al. [8, 36]. Moreover, Ye et al. and Fang et al. showed that the recent diagnosis of cancer could be a major psychological stressor and lead to a negative effect on cardiovascular physiology [15, 26, 35]. These results suggested that psychiatric evaluation and psychological support could be indispensable for GEP-NENs patients with recent diagnosis of cancer. In terms of age at diagnosis, we observed that the CM of CVD steadily increased with the age at diagnosis. This phenomenon resembled previous findings reported by Weberpals et al. and Ye et al. [16, 26]. In general, death from primary cancer was the most common cause of death in cancer patients; however, the CM of CVD exceeded that of primary cancer in patients aged ≥ 65 during follow-up time (Fig. 3C and D). These results implied that surveillance efforts should not only include assessment of primary cancer but also control of modifiable risk factors for CVD in elderly cancer patients. In terms of primary site, we observed that pancreas NENs patients and small intestine NENs patients had the lowest (4.12%) and highest (13.26%) CM of CVD, respectively. One possible reason was that CHD occurs most frequently in small intestine NENs patients, accounting for 72% [32]. Another plausible explanation was that pancreas NENs patients had so advanced tumor stage that they might have not enough life expectancy to die of CVD [28, 37, 38], which may be explainable for the lower risk of CVM in patients with grade III/IV (HR: 0.701; 95%CI: 0.533–0.923) or distant tumor stage (HR: 0.456; 95%CI: 0.382–0.544).

The multivariate competing risk analysis was used to identify independent indicators of CVM in GEP-NENs patients in current study. We found that aged patients at diagnosis were inclined to die due to CVD (HR: 4.799; 95%CI: 4.313–5.341). Interestingly, patients with younger age at diagnosis (≤ 39 years) had the highest SMR 3.20 (95%CI: 1.93–4.99), which similar with the results reported by Zaorsky et al. [36]. Male patients had a high probability of CVM compare with female patients, as previous reports of colorectal cancer and non-Hodgkin's lymphoma [13, 39]. A plausible reason is that males have worse health behaviors, such as smoking and drinking, which were confirmed as independent risk factors of CVD [40–42]. Our study showed that Black patients were significantly associated with the higher CVM risk compared with other races. Although patients with different ethnicities had a difference in receiving cancer therapy in the United States, this difference alone cannot explain the discrepancies of cancer
patients in death due to non-cancer causes [43]. Hence, further investigations on this subject remained warranted. Patients with unmarried status showed propensity to die of CVD in contrast to married patients, as previously reported in non-Hodgkin's lymphoma [39]. A reasonable explanation was that married patients were more likely to feel cared for and encouraged and supported physically and spiritually in contrast to unmarried patients [44]. Other studies also had revealed that marriage could help to improve cardiovascular, endocrine, immune function and cancer prognosis [45-47]. Sturgeon et al. reported that individuals with low socioeconomic status were prone to have a high risk of CVM in cancer survivors [8]. In our study, patients with low education level commonly gave rise to higher risk of CVM, which was consistent with results of prior studies [15, 21].

In the present study, a majority (76.8%) of patients underwent surgery, 10.3% patients received chemotherapy, and only 2.3% patients received radiotherapy. Notably, multivariate analysis indicated that patients received chemotherapy had a reduced CVM risk compared with patients not received chemotherapy. This result seemed to be inconsistent with the known cardiotoxic effect of chemotherapy, but conformed with the finding reported by Low et al. [28]. A possible reason was that patients who received chemotherapy have not enough life expectancy to occur CVM events (median survival time: chemotherapy 18 months vs surgery 61 months). We concluded that patients without surgery had an increased CVM risk compared with patients received surgery, which was consistent to the results from prior studies [13, 14, 44]. In respect of radiotherapy, prior study reported that radiation-induced macrovascular damages accelerated age-related atherosclerosis and microvascular damages, and reduced capillary density [48], however, radiotherapy was not an independent predictor for CVM in our study. In the SEER program, radiotherapy was defined as the first-course radiation treatment but lack of detailed regimen. Therefore, further investigation is required to clarify the effect of radiotherapy on the risk of CVM in patients with GEP-NENs.

Limitations still exist in our study. First, some information associated with CVD were not available in the SEER registry, such as comorbidities, smoking and alcohol use, doses of radiotherapy and chemotherapy agents. Second, this study is a retrospective study, which might lead to a potential selection bias in the participants. Third, causes of death may be subject to misclassification ascertained from death certificates, and there was evidence indicating that causes on death certificates about CVM may be overestimated [49].

Conclusions

In conclusion, GEP-NENs patients were found to show an upward trend risk toward CVM in contrast to the general population, especially during the first two-month after diagnosis. The CM of CVD was the lowest among all causes of death including primary cancer, other cancer and other non-cancer disease. In addition, age of diagnosis, race, Hispanic origin, gender, marital status, year of diagnosis, grade, education level, region, SEER stage, primary site, surgery and chemotherapy were independent predictors of CVM in GEP-NENs patients. These results suggested that patients after diagnosis of GEP-NENs should be screened for CVD timely and undergo more extensive control of modifiable risk factors of CVM.
Abbreviations

CVM: cardiovascular mortality; GEP-NENs: gastroenteropancreatic neuroendocrine neoplasms; SEER: Surveillance, Epidemiology and End Results; SMR: Standardized mortality ratio; CVD: cardiovascular disease; NENs: Neuroendocrine neoplasms; ICD-O-3: International Classification of Diseases for Oncology, the third edition; ICD-10: International Classification of Diseases, 10th Revision; SD: standard deviation; IQR: interquartile range; PYs: person years; AER: absolute excess risk; CIF: cumulative incidence function.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

The datasets analyzed in this study are available in the SEER repository and can be obtained from: https://seer.cancer.gov/data/.

Competing Interest

None.

Funding

This work was supported by Wannan Medical College (WK2017F20), Yijishan Hospital of Wannan Medical College (YR201608) and Anhui Province Key Research and Development Program Project (201904a07020028).

Authors' contributions

SHS: Writing-original draft, Investigation, Methodology, Data collection. **WW**: Resources, Visualization, Writing - review & editing, Conceptualization, Data curation, Validation, Supervision. **CYH**: Resources, Conceptualization, Data curation, Validation, Supervision.

Acknowledgements

The authors acknowledge contributions from SEER program.

References
1. Zheng M, Li Y, Li T, Zhang L, Zhou L. Resection of the primary tumor improves survival in patients with gastro-entero-pancreatic neuroendocrine neoplasms with liver metastases: A SEER-based analysis. Cancer Med. 2019; 8:5128-36.

2. Verbeek WH, Korse CM, Tesselaar ME. GEP-NETs UPDATE: Secreting gastro-enteropancreatic neuroendocrine tumours and biomarkers. Eur J Endocrinol. 2016; 174:R1-7.

3. Fraenkel M, Kim M, Faggiano A, de Herder WW, Valk GD. Incidence of gastroenteropancreatic neuroendocrine tumours: a systematic review of the literature. Endocr Relat Cancer. 2014; 21:R153-63.

4. Dasari A, Shen C, Halperin D, Zhao B, Zhou S, Xu Y, et al. Trends in the Incidence, Prevalence, and Survival Outcomes in Patients With Neuroendocrine Tumors in the United States. JAMA Oncol. 2017; 3:1335-42.

5. Genus TSE, Bouvier C, Wong KF, Srirajaskanthan R, Rous BA, Talbot DC, et al. Impact of neuroendocrine morphology on cancer outcomes and stage at diagnosis: a UK nationwide cohort study 2013-2015. Br J Cancer. 2019; 121:966-72.

6. Lawrence B, Gustafsson BI, Chan A, Svejda B, Kidd M, Modlin IM. The epidemiology of gastroenteropancreatic neuroendocrine tumors. Endocrinol Metab Clin North Am. 2011; 40:1-18.

7. Fang C, Wang W, Feng X, Sun J, Zhang Y, Zeng Y, et al. Nomogram individually predicts the overall survival of patients with gastroenteropancreatic neuroendocrine neoplasms. Br J Cancer. 2017; 117:1544-50.

8. Sturgeon KM, Deng L, Bluethmann SM, Zhou S, Triletti DM, Jiang C, et al. A population-based study of cardiovascular disease mortality risk in US cancer patients. Eur Heart J. 2019; 40:3889-97.

9. GBD 2017 Causes of Death Collaborators. Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392:1736-88.

10. World Health Organization. Cardiovascular diseases. 2017. http://www.who.int/mediacentre/factsheets/fs317/en/. Accessed 26 Dec 2020.

11. World Health Organization. Cancer. 2018. http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 26 Dec 2020.

12. Kochanek KD, Murphy SL, Xu J, Arias E. Deaths: Final Data for 2017. Natl Vital Stat Rep. 2019; 68:1-77.

13. Gaitanidis A, Spathakis M, Tsalikidis C, Alevizakos M, Tsaroucha A, Pitiakoudis M. Risk factors for cardiovascular mortality in patients with colorectal cancer: a population-based study. Int J Clin Oncol. 2019; 24:501-7.

14. Felix AS, Bower JK, Pfeiffer RM, Raman SV, Cohn DE, Sherman ME. High cardiovascular disease mortality after endometrial cancer diagnosis: Results from the Surveillance, Epidemiology, and End Results (SEER) Database. Int J Cancer. 2017; 140:555-64.

15. Fang F, Keating NL, Mucci LA, Adami HO, Stampfer MJ, Valdimarsdóttir U, et al. Immediate risk of suicide and cardiovascular death after a prostate cancer diagnosis: cohort study in the United States.
16. Weberpals J, Jansen L, Müller OJ, Brenner H. Long-term heart-specific mortality among 347 476 breast cancer patients treated with radiotherapy or chemotherapy: a registry-based cohort study. Eur Heart J. 2018; 39:3896-903.

17. National Cancer Institute. Surveillance, Epidemiology, and End Results Program. SEER*Stat software. Version 8.3.6. 2018. https://www.seer.cancer.gov/seerstat. Accessed 1 Apr 2019.

18. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Incidence - SEER 18 Regs excluding AK Custom Data (with additional treatment fields), Nov 2018 Sub (2000-2016) for SMRs - Linked To County Attributes - Total U.S., 1969-2017 Counties, National Cancer Institute, DCCPS, Surveillance Research Program. 2019.

19. Surveillance, Epidemiology, and End Results (SEER) Program (www.seer.cancer.gov) SEER*Stat Database: Mortality-All COD, Aggregated Total U.S. (1969-2017) <Katrina/Rita Population Adjustment>, National Cancer Institute, DCCPS, Surveillance Research Program. 2019. Underlying mortality data provided by NCHS (www.cdc.gov/nchs).

20. Wang Q, Jiang C, Zhang Y, Yue B, Zheng-Lin B, et al. Cardiovascular mortality among chronic myeloid leukemia patients in the pre-tyrosine kinase inhibitor (TKI) and TKI eras: a surveillance, epidemiology and end results (SEER) analysis. Leuk Lymphoma. 2020; 61:1147-57.

21. Zaorsky NG, Zhang Y, Tuanquin L, Bluethmann SM, Park HS, Chinchilli VM. Suicide among cancer patients. Nat Commun. 2019; 10:207.

22. Yang K, Zheng Y, Peng J, Chen J, Feng H, Yu K, et al. Incidence of Death From Unintentional Injury Among Patients With Cancer in the United States. JAMA Netw Open. 2020; 3:e1921647.

23. Andersen PK, Keiding N. Interpretability and importance of functionals in competing risks and multistate models. Stat Med. 2012; 31:1074-88.

24. Ye Y, Otahal P, Marwick TH, Wills KE, Neil AL, Venn AJ. Cardiovascular and other competing causes of death among patients with cancer from 2006 to 2015: An Australian population-based study. 2019; 125:442-52.

25. Oh CM, Lee D, Kong HJ, Lee S, Won YJ, Jung KW, et al. Causes of death among cancer patients in the era of cancer survivorship in Korea: Attention to the suicide and cardiovascular mortality. Cancer Med. 2020; 9:1741-52.

26. Low SK, Giannis D, Bahaie NS, Trong BLH, Moris D, Huy NT. Competing Mortality in Patients With Neuroendocrine Tumors. Am J Clin Oncol. 2019; 42:668-74.

27. Modlin IM, Lye KD, Kidd M. A 5-decade analysis of 13,715 carcinoid tumors. Cancer. 2003; 97:934-59.
30. Man D, Wu J, Shen Z, Zhu X. Prognosis of patients with neuroendocrine tumor: a SEER database analysis. Cancer Manag Res. 2018; 10:5629-38.

31. Patel C, Mathur M, Escarcega RO, Bove AA. Carcinoid heart disease: current understanding and future directions. Am Heart J. 2014; 167:789-95. doi: 10.1016/j.ahj.2014.03.018

32. Grozinsky-Glasberg S, Grossman AB, Gross DJ. Carcinoid Heart Disease: From Pathophysiology to Treatment - ‘Something in the Way It Moves’. Neuroendocrinology. 2015; 101:263-73.

33. Beaumont JL, Cella D, Phan AT, Choi S, Liu Z, Yao JC. Comparison of health-related quality of life in patients with neuroendocrine tumors with quality of life in the general US population. Pancreas. 2012; 41:461-6.

34. Pezzilli R, Campana D, Morselli-Labate AM, Fabbri MC, Brocchi E, Tomassetti P. Patient-reported outcomes in subjects with neuroendocrine tumors of the pancreas. World J Gastroenterol. 2009; 15:5067-73.

35. Fang F, Fall K, Mittleman MA, Sparén P, Ye W, Adami HO. Suicide and Cardiovascular Death after a Cancer Diagnosis. N Engl J Med. 2012; 366:1310-8.

36. Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, et al. Causes of death among cancer patients. Ann Oncol. 2017; 28:400-7. doi: 10.1093/annonc/mdw604.

37. Gudmundsdottir H, Möller PH, Jonasson JG, Björnsson ES. Gastroenteropancreatic neuroendocrine tumors in Iceland: a population-based study. Scand J Gastroenterol. 2019; 54:69-75.

38. Pape UF, Böhmig M, Berndt U, Tiling N, Wiedenmann B, Plöckinger U. Survival and clinical outcome of patients with neuroendocrine tumors of the gastroenteropancreatic tract in a german referral center. Ann N Y Acad Sci. 2004; 1014:222-33.

39. Kamel MG, El-Qushayri AE, Thach TQ, Huy NT. Cardiovascular mortality trends in non-Hodgkin s lymphoma: a population-based cohort study. Expert Rev Anticancer Ther. 2018; 18:91-100.

40. Wong MD, Chung AK, Boccardin WJ, Li M, Hsieh HJ, Ettner SL, et al. The contribution of specific causes of death to sex differences in mortality. Public Health Rep. 2006; 121:746-54.

41. Levenson J, Simon AC, Cambien FA, Beretti C. Cigarette smoking and hypertension. Factors independently associated with blood hyperviscosity and arterial rigidity. Arteriosclerosis. 1987; 7:572-77.

42. Briasoulis A, Agarwal V, Messerli FH. Alcohol consumption and the risk of hypertension in men and women: a systematic review and meta-analysis. J Clin Hypertens. 2012; 14:792-8.

43. Gad MM, Saad AM, Al-Husseini MJ, Abushouk AI, Salaliah S, Rehman KA, et al. Temporal trends, ethnic determinants, and short-term and long-term risk of cardiac death in cancer patients: a cohort study. Cardiovasc Pathol. 2019; 43:107147.

44. Du B, Wang F, Wu L, Wang Z, Zhang D, Huang Z, et al. Cause-specific mortality after diagnosis of thyroid cancer: a large population-based study. Endocrine. (2020) doi: 10.1007/s12020-020-02445-8

45. Aizer AA, Chen MH, McCarthy EP, Mendu ML, Koo S, Wilhite TJ, et al. Marital status and survival in patients with cancer. J Clin Oncol. 2013; 31:3869-76.
46. Gallo LC, Troxel WM, Matthews KA, Kuller LH. Marital status and quality in middle-aged women: associations with levels and trajectories of cardiovascular risk factors. Health Psychol. 2003; 22:453-63.

47. Herberman RB, Ortaldo JR. Natural killer cells: their roles in defenses against disease. Science. 1981; 214:24-30.

48. Darby SC, Cutter DJ, Boerma M, Constine LS, Fajardo LF, Kodama K, et al. Radiation-related heart disease: current knowledge and future prospects. Int J Radiat Oncol Biol Phys. 2010; 76:656-65.

49. Lloyd-Jones DM, Martin DO, Larson MG, Levy D. Accuracy of death certificates for coding coronary heart disease as the cause of death. Ann Intern Med. 1998; 129:1020-6.

Tables

Table 1. Baseline features and standardized mortality ratios of cardiovascular mortality in patients with GEP-NENs.
Age at diagnosis	Observed deaths (%)	Expected deaths	SMR (95% CI)	Excess Risk per 10,000 Persons (%)	Persons at risk		
Total	1598 (100.0)	1335.17	1.20 (1.14-1.26)	12.63 (100.0)	208158.81		
≤39	19 (1.2)	5.94	3.20 (1.93-4.99)	7.04 (8.2)	18551.09		
40-44	22 (1.4)	11.93	1.84 (1.16-2.79)	7.20 (5.7)	13975.98		
45-49	42 (2.6)	28.08	1.50 (1.08-2.02)	6.82 (8.6)	20403.40		
50-54	85 (5.3)	80.47	1.06 (0.84-1.31)	1.15 (17.0)	39442.59		
55-59	120 (7.5)	98.91	1.21 (1.01-1.45)	6.62 (14.1)	31881.72		
60-64	148 (9.3)	125.91	1.18 (0.99-1.38)	8.20 (13.0)	26923.19		
65-69	216 (13.5)	160.04	1.35 (1.18-1.54)	25.18 (11.6)	22225.34		
70-74	248 (15.5)	196.42	1.26 (1.11-1.43)	32.69 (8.6)	15780.00		
75-79	245 (15.3)	243.41	1.01 (0.88-1.14)	1.49 (6.5)	10680.86		
80-84	249 (15.6)	239.02	1.04 (0.92-1.18)	17.09 (4.2)	5837.49		
85+	204 (12.8)	145.04	1.41 (1.22-1.61)	239.97 (2.6)	2457.14		
Attained age							
≤39	7 (0.4)	1.75	4.00 (1.61-8.24)	4.71 (4.6)	11150.06		
40-44	15 (0.9)	4.18	3.59 (11.66)	1349 (9279.41)			
Age Group	Cases (In%)	Mean (95% CI)	Standard Deviation	Median (95% CI)	Mean (95% CI)	Median (95% CI)	
-----------	-------------	---------------	--------------------	-----------------	---------------	----------------	
45-49	24 (1.5)	12.04	1.99 (1.28-2.97)	8.10	2279 (5.4)	14764.25	
50-54	54 (3.4)	36.68	1.47 (1.11-1.92)	6.44	4192 (10.0)	26890.15	
55-59	85 (5.3)	69.65	1.22 (0.97-1.51)	4.61	5628 (13.4)	33270.87	
60-64	117 (7.3)	100.68	1.16 (0.96-1.39)	5.13	6135 (14.6)	31835.12	
65-69	160 (10.0)	126.93	1.26 (1.07-1.47)	12.12	6208 (14.8)	27279.73	
70-74	219 (13.7)	154.03	1.42 (1.24-1.62)	30.87	4832 (11.5)	21043.16	
75-79	243 (15.2)	187.69	1.29 (1.14-1.47)	36.37	3927 (9.3)	15210.00	
80-84	245 (15.3)	223.75	1.09 (0.96-1.24)	21.06	2775 (6.6)	10086.80	
85+	429 (26.8)	417.80	1.03 (0.93-1.13)	15.24	2738 (6.5)	7349.26	
Race							
White	1163 (72.8)	1009.42	1.15 (1.09-1.22)	10.01	31176 (74.2)	153405.55	
Black	354 (22.2)	265.91	1.33 (1.20-1.48)	23.74	7411 (17.6)	37101.01	
Other	81 (5.1)	59.84	1.35 (1.07-1.68)	11.99	3440 (8.2)	17652.26	
Hispanic origin	Non-Hispanic	1486 (93.0)	1228.03	1.21 (1.15-1.27)	13.93	37063 (88.2)	185214.91
	Hispanic	112 (7.0)	107.14	1.05 (0.86-1.26)	2.12	4964 (11.8)	22943.89
Gender	Male	Female	1.14 (1.07-1.23)	10.00	20746 (49.4)	101446.47	
-----------------	-----------	------------	------------------	-------	-------------	------------	
	807 (50.5)	791 (49.5)	1.26 (1.17-1.35)	15.13	21281 (50.6)	106712.34	
Marital status	Married	720 (45.1)	1.00 (0.93-1.07)	-0.10	23712 (56.4)	123646.41	
	Unmarried 734 (45.9)	487.62	1.51 (1.40-1.62)	39.29	14133 (33.6)	62709.18	
	Unknown 144 (9.0)	126.33	1.14 (0.96-1.34)	8.10	4182 (10.0)	21803.21	
Year of diagnosis	2000-2004 726 (45.4)	627.07	1.16 (1.08-1.25)	12.11	9143 (21.8)	81692.92	
	2005-2009 567 (35.5)	468.04	1.21 (1.11-1.32)	12.66	12281 (29.2)	78179.06	
	2010-2015 305 (19.1)	240.05	1.27 (1.13-1.42)	13.45	20603 (49.0)	48286.83	
Latency (months)	0-1 137 (8.6)	37.67	3.64 (3.05-4.30)	147.80	2216 (5.3)	6720.98	
	2-5 142 (8.9)	68.03	2.09 (1.76-2.46)	58.97	1762 (4.2)	12543.23	
	6-11 125 (7.8)	94.40	1.32 (1.10-1.58)	17.73	1809 (4.3)	17263.08	
	12-59 600 (37.5)	580.04	1.03 (0.95-1.12)	2.04	16636 (39.6)	97633.01	
	60-119 434 (27.2)	410.15	1.06 (0.96-1.16)	4.16	11781 (28.0)	57388.46	
	120+ 160 (10.0)	144.88	1.10 (0.94-1.29)	9.10	7823 (18.6)	16610.05	
Grade	I/II 362 (22.7)	329.90	1.10 (0.99-1.22)	5.51	16601 (39.5)	58249.56	
III/IV	Mean household income	Education level	Region	Subtype	SEER stage		
------------	-----------------------	-----------------	------------	---------	------------		
	71 (4.4)	1165 (72.9)	College level ≤ 25%	976 (61.1)	203 (12.7)		
	53.70	951.57	College level > 25%	622 (38.9)	738 (46.2)		
	1.32 (1.03-1.67)	1.22 (1.15-1.30)	Midwest	203 (12.7)	203 (12.7)		
	29.16	14.82	West	738 (46.2)	738 (46.2)		
	3183 (7.6)	22243 (52.9)	South	433 (27.1)	433 (27.1)		
	5932.23	143977.02	Northeast	224 (14.0)	224 (14.0)		
			Midwest	203 (12.7)	203 (12.7)		
≤ $50,000 USD	1129 (70.7)	469 (29.3)	West	738 (46.2)	738 (46.2)		
> $50,000 USD	898.10	436.54	South	433 (27.1)	433 (27.1)		
	1.26 (1.18-1.33)	1.07 (0.98-1.18)	Midwest	203 (12.7)	203 (12.7)		
	17.09	4.45	West	738 (46.2)	738 (46.2)		
	27540 (65.5)	14472 (34.4)	South	433 (27.1)	433 (27.1)		
	135144.75	72944.13	Midwest	203 (12.7)	203 (12.7)		
			West	738 (46.2)	738 (46.2)		
NEC	264 (16.5)	2134 (13.0)	NET	1334 (83.5)	1334 (83.5)		
	208.69	1126.48	1126.48	1126.48	1126.48		
	1.27 (1.12-1.43)	1.18 (1.12-1.25)	1.20 (1.12-1.28)	1.20 (1.12-1.28)	1.20 (1.12-1.28)		
	16.96	11.82	11.75	11.75	11.75		
	10558 (25.1)	31469 (74.9)	22388 (53.3)	22388 (53.3)	22388 (53.3)		
	32606.72	175552.09	125886.88	125886.88	125886.88		
				Regional	Distant		
			Region	316 (19.8)	187 (11.7)		
			Distant	187 (11.7)	187 (11.7)		
			292.87	157.80	157.80		
			1.08 (0.96-1.20)	1.19 (1.02-1.37)	1.19 (1.02-1.37)		
			5.93	11.87	11.87		
			7818 (18.6)	8546 (20.3)	8546 (20.3)		
			39005.99	24586.25	24586.25		
----------------	--------	------	------	------	------		
	Unstage						
Primary site							
Stomach	258(16.1)	160.09	1.61 (1.42-1.82)	49.03	4287 (10.2)	19969.91	
Small intestine	683(42.7)	529.00	1.29 (1.20-1.39)	25.57	11672 (27.8)	60214.91	
Appendix	58 (3.6)	46.12	1.26 (0.96-1.63)	8.78	3272 (7.8)	13535.66	
Colon	173(10.8)	146.15	1.18 (1.01-1.37)	14.16	4256 (10.1)	18959.30	
Rectum	330 (20.7)	353.74	0.93 (0.83-1.04)	-3.11	12595 (30.0)	76355.76	
Pancreas	96 (6.0)	100.07	0.96 (0.78-1.17)	-2.13	5945 (14.1)	19123.27	
Surgery							
Yes	1145(71.7)	1062.40	1.08 (1.02-1.14)	4.80	32265 (76.8)	172182.46	
No	438 (27.4)	261.23	1.68 (1.52-1.84)	52.03	9316 (22.2)	33977.78	
Unknown	15 (0.9)	11.54	1.30 (0.73-2.14)	17.31	446 (1.1)	1998.57	
Chemotherapy							
Yes	60 (3.8)	55.03	1.09 (0.83-1.40)	4.43	4337 (10.3)	11236.04	
No/Unknown	1538 (96.2)	1280.14	1.20 (1.14-1.26)	13.09	37690 (89.7)	196922.77	
Radiotherapy							
Yes	13 (0.8)	12.69	1.02 (0.55-1.75)	1.22	985 (2.3)	2530.49	
No/Unknown	1585 (99.2)	1322.48	1.20 (1.14-1.26)	12.77	41042 (97.7)	205628.32	
I: Well differentiated, II: Moderately differentiated, III: Poorly differentiated, IV: Undifferentiated; Race: Other (American Indian & AK Native & Asian & Pacific Islander); Marital status: Unmarried (Single & Separated & Divorced & Widowed & Unmarried or Domestic Partner); Attained age was defined as the age of the patient at the time of death or end of follow-up.

Abbreviation: SMR, standardized mortality ratio; CI, confidence interval; AER, Absolute Excess Risk; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma.

Table 2. The standardized mortality ratios of all causes of cardiovascular mortality in patients with GEP-NENs.

CVD	Observed deaths (%)	Expected deaths	SMR (95% CI)	AER per 10,000
Total	1598 (100)	1335.17	1.20 (1.14-1.26)	12.63
Diseases of heart	1204 (75.3)	1018.14	1.18 (1.12-1.25)	8.93
Hypertension without heart disease	67 (4.2)	47.14	1.42 (1.10-1.81)	0.95
Cerebrovascular diseases	271 (16.9)	223.69	1.21 (1.07-1.36)	2.27
Atherosclerosis	9 (0.6)	12.13	0.74 (0.34-1.41)	-0.15
Aortic aneurysm and dissection	20 (1.2)	18.59	1.08 (0.66-1.66)	0.07
Other diseases of arteries, arterioles, capillaries	27 (1.7)	15.49	1.74 (1.15-2.54)	0.55

Abbreviation: CVD, cardiovascular disease; SMR, standardized mortality ratio; CI, confidence interval; AER, absolute excess risk.

Table 3. Cumulative mortality stratified by age at diagnosis and primary site at 200 months follow-up.
Characteristics	Cumulative morality of all causes of death				
	Primary cancer	Cardiovascular disease	Other cancer	Other non-cancer disease	
Age at diagnosis (years)	<50	9.58	3.10	10.84	6.94
	50-64	10.63	5.47	15.13	10.12
	65-79	14.90	16.32	23.44	21.71
	≥80	21.94	25.89	22.36	26.78
Primary site	Stomach	11.41	12.56	15.49	20.75
	Small intestine	4.74	13.26	25.12	18.42
	Appendix	15.79	4.84	10.99	10.52
	Colon	25.37	9.09	18.96	10.76
	Rectum	2.92	7.65	10.35	10.07
	Pancreas	41.81	4.12	17.20	11.47

Table 4. Multivariate competing risk analysis for predictors of cardiovascular mortality in patients with GEP-NENs.
Characteristics	adjusted HR	95% CI	P
Age at diagnosis (years)			
< 65	Ref		
≥ 65	4.799	4.313-5.341	<0.001
Race			
White	Ref		
Black	1.307	1.160-1.472	<0.001
Other	0.784	0.626-0.982	0.034
Hispanic origin			
Hispanic	Ref		
Non-Hispanic	1.370	1.137-1.651	<0.001
Gender			
Male	Ref		
Female	0.790	0.717-0.869	<0.001
Marital status			
Married	Ref		
Unmarried	1.562	1.410-1.173	<0.001
Unknown	1.171	0.984-1.394	0.076
Year of diagnosis			
2000-2004	Ref		
2005-2009	0.798	0.717-0.888	<0.0001
2010-2015	0.575	0.502-0.659	<0.0001
Grade			
I/II	Ref		
III/IV	0.701	0.533-0.923	0.011
Unknown	1.116	0.985-1.265	0.085
Education level			
College level≤25%	Ref		
College level>25%	0.798	0.706-0.902	<0.001
Mean household income			
≤$50,000 USD	Ref		
>$50,000 USD	1.024	0.895-1.171	0.73
Region			
West	Ref		
Midwest	1.011	0.870-1.176	0.88
South	0.943	0.834-1.065	0.34
Northeast	0.813	0.699-0.945	<0.01
Subtype			
NET	Ref		
NEC	0.984	0.842-1.150	0.84
SEER stage	Localized	Ref	
--------------	-----------	-----------	
Regional	0.815	0.714-0.931	<0.01
Distant	0.456	0.382-0.544	<0.001
Unstage	0.990	0.840-1.167	0.9

Primary site	Stomach	Ref	
Small intestine	1.055	0.911-1.222	0.48
Appendix	0.698	0.531-0.918	0.01
Colon	0.844	0.698-1.020	0.079
Rectum	0.550	0.468-0.646	<0.001
Pancreas	0.506	0.401-0.638	<0.001

Surgery	Yes	Ref	
No/Unknown	1.346	1.188-1.519	<0.001

Chemotherapy	Yes	Ref	
No/Unknown	1.610	1.220-2.125	<0.001

Radiotherapy	Yes	Ref	
No/Unknown	1.514	0.881-2.602	0.13

I: Well differentiated; II: Moderately differentiated; III: Poorly differentiated; IV: Undifferentiated; Race: Other (American Indian & AK Native & Asian & Pacific Islander); Marital status: Unmarried (Single & Separated & Divorced & Widowed & Unmarried or Domestic Partner).

Abbreviation: HR, hazard ratio; CI, confidence interval; NET, neuroendocrine tumor; NEC, neuroendocrine carcinoma.