FILTER: An Enhanced Fusion Method for Cross-lingual Language Understanding

Yuwei Fang*, Shuohang Wang*, Zhe Gan, Siqi Sun, Jingjing Liu

Microsoft Dynamics 365 AI Research

(*: Equal contribution)
Agenda

• Background on Cross-Lingual Tasks
• Motivation of FILTER
• Our FILTER Framework
 • Fusion in the Intermediate Layers of Transformer
 • A general framework for cross-lingual language model finetuning
• Experiments and Analysis
 • State-of-the-arts on XTREME and XGLUE benchmarks
 • Model Analysis
Distribution of Labelled Data

- English
- French, Spanish, Chinese, etc.
- Indonesian, Hindi, Urdu, Basque, Greek, Persian, etc.

High resource (more labelled data)

How do AI models understand all?

6,900 languages
Who is Turing?
Who is Turing?
Two mountains to Climb

- Machine Translation (MT)
- Cross-lingual language modeling (XLM)
Cross-lingual Language Understanding

• What is Cross-lingual Language Understanding?
 • Models trained in one language can solve tasks in other languages
Cross-lingual Language Understanding

• What is Cross-lingual Language Understanding?
 • Models trained in one language can solve tasks in other languages

• What tasks need Cross-lingual models?
 • All tasks with text
 • NLP tasks:
 • Question Answering (QA), Information Retrieval (IR)
 • Name Entity Recognition (NER), Part-of-Speech tagging (POS)
 • Natural Language Inference (NLI), Paraphrase Identification
 • Benchmarks: XGLUE & XTREME
Cross-lingual Language Understanding

- What is Cross-lingual Language Understanding?
 - Models trained in one language can solve tasks in other languages
Preliminary: Translate-train

English (labeled) ⟷ 阿 ⟷ Korean
All languages (un-labeled)

Preliminary: XLM

• Read more books in all languages
• Cross-lingual language model pre-training
FILTER: Fusion in the **Intermediate Layers of Transformer**

- A general, simple and effective finetuning method based on machine translator and pretrained cross-lingual language model (XLM)
Why do We Need FILTER?

• Machine translator is still not good enough
Why do We Need FILTER?

• Find the balance between pivot language (English) and other languages
How does FILTER Work?

“Contrastive learning” on translated text pairs

Q: Who is Turing? A: Alan Turing was a British scientist and a pioneer in computer science.

Q: Quem é Turing? A: Alan Turing foi um cientista britânico e um pioneiro na ciência da computação.
Agenda

• Background on Cross-Lingual Tasks
• Motivation of FILTER
• Our FILTER Framework
 • Fusion in the Intermediate Layers of Transformer
 • A general framework for cross-lingual language model finetuning
• Experiments and Analysis
 • State-of-the-arts on XTREME and XGLUE benchmarks
 • Model Analysis
Who is Turing? + Context Quem é Turing? + Contexto
FILTER Architecture

Transformer-XLM (m layers) → Transformer-XLM (m layers)

Who is Turing? + Context → Quem é Turing? + Contexto
FILTER Architecture

Transformer-XLM
(*k* layers)

Transformer-XLM
(*m* layers)

Transformer-XLM
(*m* layers)

Who is Turing? + Context

Quem é Turing? + Contexto
FILTER Architecture

Answer
 Transformer-XLM (24-\(m-k\) layers)
 Transformer-XLM (24-\(m-k\) layers)
 Transformer-XLM (\(k\) layers)
 Transformer-XLM (\(m\) layers)

Who is Turing? + Context

Responda
 Transformer-XLM (24-\(m-k\) layers)
 Transformer-XLM (24-\(m-k\) layers)
 Transformer-XLM (\(k\) layers)
 Transformer-XLM (\(m\) layers)

Quem é Turing? + Contexto
FILTER Architectures

Answer

Transformer-XLM (24-m-k layers)

Transformer-XLM (24-m-k layers)

Transformer-XLM (k layers)

Transformer-XLM (m layers)

Transformer-XLM (m layers)

Who is Turing? + Context

Quem é Turing? + Contexto

Answer

Transformer-XLM

Transformer-XLM

Transformer-XLM

Transformer-XLM

Transformer-XLM

Who is Turing? + Context

Quem é Turing? + Contexto
A General Framework for Cross-lingual Fine-tuning

Who is Turing? + Context

Transformer-XLM (m layers)

Transformer-XLM (k layers)

Transformer-XLM (24-m-k layers)

k=0, m=24
Translate train

Who is Turing? + Context

Transformer-XLM (m layers)

Quem é Turing? + Contexto

Transformer-XLM (m layers)

Transformer-XLM (k layers)

Transformer-XLM (24-m-k layers)

Responder

Answer

Transformer-XLM (m layers)

Transformer-XLM (k layers)

Transformer-XLM (24-m-k layers)

Who is Turing? + Context

Transformer-XLM (m layers)

Quem é Turing? + Contexto

Transformer-XLM (m layers)

Transformer-XLM (k layers)

Transformer-XLM (24-m-k layers)
A General Framework for Cross-lingual Fine-tuning

Answer

Transformer-XLM (24-m-k layers)

Transformer-XLM (k layers)

Transformer-XLM (m layers)

Who is Turing? + Context

Quem é Turing? + Contexto

Responda

Transformer-XLM (24-m-k layers)

Transformer-XLM (k layers)

Transformer-XLM (m layers)

k=24, m=0

Simple concatenation

Answer

Transformer-XLM (24-m-k layers)

Transformer-XLM (k layers)

Transformer-XLM (m layers)

Who is Turing? + Context

Quem é Turing? + Contexto
How To Train?

This label may not be accurate for QA task and not available for structure prediction task.
How To Train?

Algorithm 1 FILTER Training Procedure.

1: # Teacher model training
2: # S, l^s: text and label in the source language
3: # T, l^t: text and label in the target language
4: for all S, l^s do
5: $T = \text{Translation} (S)$;
6: $l_t = \text{Transfer from } l_s \text{ if available}$;
7: Train FILTER_{tea} with (S, l^s) and (T, l^t);
8: end for
9: # Self-teaching, i.e., student model training
10: for all S, l^s, T, l^t do
11: $p_t^{tea}, p_t^{tea} = \text{FILTER}_{tea} (S, T)$
12: Train FILTER_{stu} with (S, l^s), (T, l^t) and (T, p_t^{tea})
13: end for
Experiments and Results
XTREME Leaderboard Results

- Established new SOTA on all tasks in XTREME benchmark
- Improvement: +2.8 on Classification, +1.5 on Structure Prediction, +1.3 on Question Answering, +3.9 on Sentence Retrieval

Rank	Model	Participant	Affiliation	Attempt Date	Avg	Sentence-pair Classification	Structured Prediction	Question Answering	Sentence Retrieval
0	Human	-	-	-	93.3	95.1	97.0	87.8	-
1	FILTER	Dynamics 365 AI Research	Microsoft	Sep 8, 2020	77.0	87.5	71.9	68.5	84.4
2	VECO	DAMO NLP Team	Alibaba	Aug 31, 2020	74.8	84.7	70.4	67.2	80.5
3	Anonymous1	Anonymous1	Anonymous1	Jun 17, 2020	73.5	83.9	69.4	67.2	76.5
4	XLM-R	XTREME Team	Alphabet, CMU	-	68.2	82.8	69.0	62.3	61.6
5	mBERT	XTREME Team	Alphabet, CMU	-	59.6	73.7	66.3	53.8	47.7
6	MMTE	XTREME Team	Alphabet, CMU	-	59.3	74.3	65.3	52.3	48.9
7	XLM	XTREME Team	Alphabet, CMU	-	55.8	75.0	65.6	43.9	44.7

XTREME: https://arxiv.org/pdf/2003.11080.pdf
XGLUE Leaderboard Results

• Established new SOTA on all tasks in XGLUE benchmark

Rank	Model	Submission Date	NER	POS	NC	MLQA	XNLI	PAWS-X	QADSM	WPR	QAM
1	FILTER (Microsoft Dynamics	2020-09-14	82.6	81.6	83.5	76.2	83.9	93.8	71.4	74.7	73.4
	365 AI Research)										
									+2.9	+2.0	+10.2
									+8.6	+3.7	+3.0
									+3.0	+0.8	+4.5
2	Unicoder Baseline (XGLUE	2020-05-25	79.7	79.6	83.5	66.0	75.3	90.1	68.4	73.9	68.9
	Team)										

• XGLUE: https://arxiv.org/pdf/2004.01401.pdf
Results on Different Tasks

- Both FILTER and self-teaching loss further boost the performance

Model	Pair sentence	Structured prediction	Question answering	Cross-lingual zero-shot transfer (models are trained on English data)	Translate-train (models are trained on English training data and its translated data on the target language)		
	XNLI	PAWS-X	POS	XQuAD	MLQA	TyDiQA-GoldP	
mBERT	65.4	81.9	70.3	62.2	64.5 / 49.4	61.4 / 44.2	59.7 / 43.9
XLM	69.1	80.9	70.1	61.2	59.8 / 44.3	48.5 / 32.6	43.6 / 29.1
XLM-R	79.2	86.4	72.6	65.4	76.6 / 60.8	71.6 / 53.2	65.1 / 45.0
InfoXLM	81.4	-	-	-	- / -	73.6 / 55.2	- / -
Phang et al. (2020)	80.4	87.7	74.4	63.4	77.2 / 61.3	72.3 / 53.5	- / -
mBERT, multi-task	74.0	86.3	-	-	70.0 / 56.0	65.6 / 48.0	55.1 / 42.1
mBERT, multi-task (Ours)	85.1	88.9	-	-	72.4 / 58.3	67.6 / 49.8	64.2 / 49.3
XLM-R, multi-task (Ours)	82.6	90.4	-	-	80.2 / 65.9	72.8 / 54.3	66.5 / 47.7
FILTER (Ours)	83.6	91.2	75.5	66.7	82.3 / 67.8	75.8 / 57.2	68.1 / 49.7
FILTER + Self-Teaching (Ours)	**83.9**	**91.4**	**76.2**	**67.7**	**82.4 / 68.0**	**76.2 / 57.7**	**68.3 / 50.9**
A Closer Look at XNLI for Each Language

• FILTER outperforms all baselines on each language

Model	en	ar	bg	de	el	es	fr	hi	ru	sw	th	tr	ur	vi	zh	avg
mBERT	80.8	64.3	68.0	70.0	65.3	73.5	73.4	58.9	67.8	49.7	54.1	60.9	57.2	69.3	67.8	65.4
MMTE	79.6	64.9	70.4	68.2	67.3	71.6	69.5	63.5	66.2	61.9	66.2	63.6	60.0	69.7	69.2	67.5
XLM	82.8	66.0	71.9	72.7	70.4	75.5	74.3	62.5	69.9	58.1	65.5	66.4	59.8	70.7	70.2	69.1
XLM-R	88.7	77.2	83.0	82.5	80.8	83.7	82.2	75.6	79.1	71.2	77.4	78.0	71.7	79.3	78.2	79.2
XLM-R (translate-train)	88.6	82.2	85.2	84.5	84.5	85.7	84.2	80.8	81.8	77.0	80.2	82.1	77.7	82.6	82.7	82.6
FILTER	89.7	83.2	86.2	85.5	85.1	**86.6**	85.6	80.9	83.4	78.2	**82.2**	83.1	77.4	83.7	83.7	83.6
FILTER + Self-Teaching	89.5	**83.6**	**86.4**	**85.6**	**85.4**	**86.6**	**85.7**	**81.1**	**83.7**	**78.7**	81.7	**83.2**	**79.1**	**83.9**	**83.8**	**83.9**

Table 2: XNLI accuracy scores for each language. Results of mBERT, MMTE, XLM and XLM-R are from XTREME (Hu et al. 2020). mtl denotes translate-train in multi-task version.
Analysis in FILTER Zoo

• Which FILTER to use towards different tasks?
 • The number of intermediate fusion layers (k)
 • The number of local transformer layers (m)
Analysis in FILTER Zoo

• Which FILTER to use towards different tasks?
 • The number of intermediate fusion layers (k)
 • The number of local transformer layers (m)

• Effect of Intermediate Fusing Layers
 • For PAWS-X and POS, the performance drops significantly when the number of intermediate fusion layers increases. (e.g., k from 1 to 20, m=1)
 • For MLQA, performance is consistently improved with the number of intermediate fusion layers increasing (e.g. k from 1 to 20, m=1)
Analysis in FILTER Zoo

• Which FILTER to use towards different tasks?
 • The number of intermediate fusion layers (k)
 • The number of local transformer layers (m)

• Effect of Local Transformer Layers
 • For PAWS-X, FILTER performs better when using less local transformer layers (e.g., m from 0 to 10, k=10)
 • For POS and MLQA, FILTER performs better when using more local transformer layers (e.g., m from 0 to 10, k=10)
Key Observations

- Different tasks need different numbers of “local” transformer layers (m) and intermediate fusion layers (k)
- Use more local layers for complex tasks such as QA and structured prediction;
- Use fewer local layers for classification tasks
Analysis

• Cross-Lingual Transfer Gap
 • Calculating the difference between the performance on English test set and the average performance of other target languages
 • FILTER reduces the cross-lingual gap significantly compared to the baseline
 • Still a large gap for structure prediction tasks demands stronger cross-lingual transfer

Model	XNLI	PAWS-X	XQuAD	MLQA	TyDiQA-GoldP	Avg	POS	NER
mBERT	16.5	14.1	25.0	27.5	22.2	21.1	25.5	23.6
XLM-R	10.2	12.4	16.3	19.1	13.3	14.3	24.3	19.8
Translate-train	7.3	9.0	17.6	22.2	24.2	16.1	-	-
FILTER	**6.0**	**5.2**	**7.3**	**15.7**	**9.2**	**8.7**	**19.7**	**16.3**

Table 3: Analysis on cross-lingual transfer gap of different models on XTREME benchmark. Note that a lower gap indicates a better cross-lingual transfer model. For QA datasets, we compare EM scores. The average score (Avg) is calculated on all classification and QA tasks. Results on mBERT, XLM-R and Translate-train are from Hu et al. (2020).
Conclusions

• FILTER is a general framework for fine-tuning cross-lingual tasks

• Self-teaching loss is helpful on all tasks, especially on tasks lacking labels in the target languages.

• FILTER can achieve less than 6.0 for cross lingual transfer gap on classification tasks indicates zero-shot can also achieve comparable performance on these tasks.

• FILTER achieves SOTA performance on XTREME and XGLUE benchmark
Rank	Model	Participant	Affiliation	Attempt Date	Avg	Sentence-pair Classification	Structured Prediction	Question Answering	Sentence Retrieval
0	Human	-	-	-	93.3	95.1	97.0	87.8	-
1	T-ULRv2 +	Turing	Microsoft	Oct 7, 2020	80.7	88.8	75.4	72.9	89.3
	StableTune								
2	VECO	DAMO NLP Team	Alibaba	Sep 29, 2020	77.2	87.0	70.4	68.0	88.1
3	FILTER	Dynamics 365 AI	Microsoft	Sep 8, 2020	77.0	87.5	71.9	68.5	84.4
4	X-STILTs	Phang et al.	New York University	Jun 17, 2020	73.5	83.9	69.4	67.2	76.5
5	XLM-R (large)	XTREME Team	Alphabet, CMU	-	68.2	82.8	69.0	62.3	61.6
6	mBERT	XTREME Team	Alphabet, CMU	-	59.6	73.7	66.3	53.8	47.7
7	MMTE	XTREME Team	Alphabet, CMU	-	59.3	74.3	65.3	52.3	48.9
8	RemBERT	Anonymous2	Anonymous2	-	56.1	84.1	73.3	68.6	-
9	XLM	XTREME Team	Alphabet, CMU	-	55.8	75.0	65.6	43.9	44.7

Congrats @Turing team!
Thanks @Microsoft Azure Translator team!

- Microsoft Translator: https://azure.microsoft.com/en-us/services/cognitive-services/translator/
Thank You

Multimodal AI Group: http://aka.ms/mmai