Occurrence of Spontaneous Polyembryony in Lilium lancifolium Thunb.

Ye-Su, Song
Department of Horticultural Science, Kangwon National University | Oriental Bio-herb Research Institute, Kangwon National University | Laboratory of Horticultural Science, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University

Kim, Jong-Hwa
Department of Horticultural Science, Kangwon National University | Oriental Bio-herb Research Institute, Kangwon National University | Laboratory of Horticultural Science, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University

Wakana, Akira
Laboratory of Horticultural Science, Department of Agro-environmental Sciences, Faculty of Agriculture, Kyushu University

https://doi.org/10.5109/1854005
Occurrence of Spontaneous Polyembryony in *Lilium lancifolium* Thunb.

Song Ye–Su¹, Jong–Hwa Kim¹²* and Akira Wakana

Laboratory of Horticultural Science, Department of Agro–environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, 812–8581, Japan

(Received April 28, 2017 and accepted May 10, 2017)

We examined spontaneous polyembryony in *Lilium lancifolium* Thunb. by determining the occurrence of polyembryonic seeds in intraspecific crosses and open pollination, and by analyzing the genetic origins of polyembryos with simple–sequence repeat (SSR) markers. Forty–one polyembryonic seeds (0.2% of total) were detected from 17,583 seeds. Of the polyembryonic seeds, 36 were duplets and five were triplets. Eighteen seedling sets (three triplets and 15 duplets) were cultured and grown to maturity. Flow cytometry revealed that all were diploids, and results of analyses with SSR markers indicated that all the multiple embryos, except for two triplet seeds, originated from a zygotic embryo through cleavage embryony. The SSR profiles confirmed that the seedlings from polyembryos resulted from cross–fertilizations and did not from unfertilized somatic embryos. Six seedlings rescued from the two triplets occurring in 2x × 3x combinations were heterozygous with respect to SSR, and thus they may have their origin in multiple embryo sacs and/or polyspermy. The occurrence of polyembryonic seeds was remarkably greater in one accession collected from Wan–do (Wan island) than the others. This suggested that the frequency of polyembryony depends on the genotypes of *L. lancifolium*.

Key words: polyspermy, SSR marker, Tiger lily, triplet embryos, twin embryos

INTRODUCTION

Polyembryony results when two or more embryos develop from a single fertilized egg and/or somatic cells within a single seed. The phenomenon occurs regularly in many plants and animals. The goal of this work was to describe and characterize polyembryony in *Lilium lancifolium* Thunb., and to understand its variability among the natural accessions.

Species of *Lilium* have been used as experimental model plants for more than a century. Indeed, double fertilization was first discovered in this genus (Navashin, 1898). With regard to polyembryony in lily, Overton (1891) described the development of a synergid embryo in *L. martagon*, and considered to be the result of fertilization of one of the synergids (two cells of the embryo sac that flank the egg) by a sperm cell delivered by a second pollen tube. Seeds with two embryos, one haploid and one diploid, were observed in several species of lily by Cooper (1943), presumably due to development of one of the haploid embryo sac cells into an embryo, without fertilization. Also, X–ray–irradiated lily pollen resulted in increase of the frequency of seeds with twin embryos; i.e., the frequency increased in plants pollinated with this pollen than those pollinated with untreated pollen (Morgan and Rappleye 1951).

Khedvynich and Kravets (1991) proposed fertilization of synergids in interspecific crosses. Kravets and Khvedynich (2008) mentioned the possibility of antipodal polyspermy in *L. regale* and *L. henryi* and suggested that several pollen tubes may enter the embryo sac from the antipodal end and fertilize one or more antipodal cells. Recently, authors found that polyembryonic seeds occurred spontaneously in *L. lancifolium* in the case of crossing between the strains.

Based on this background, the occurrence of polyembryony and polyspermy may be common in some *Lilium* species. The observations described above were made during the early pro–embryonic stages and lacked following genetic studies. Confirmation of the genetic origin of polyembryos usually relied on isozyme analysis (Iglesias et al., 1974; Torres et al., 1978; Ashari et al., 1988; Mestre et al., 1997); however, the analysis is limited because of the lack of detectable isozyme variation and the available isozyme loci.

Simple–sequence repeats (SSR) gains credibility as tools for the determination of the origin of plant embryos (Tautz, 1989; Morgante & Olivieri, 1993; Russell et al., 1997; Ruiz et al., 2000; Horning et al., 2003; Yildiz et al., 2013; Trapero et al., 2014). This method relies on the existence of repeated regions in DNA that are susceptible to mutation, but are flanked by conserved regions, making them useful as markers. We have employed SSR markers in this study of polyembryony in *L. lancifolium* and its variability.

MATERIALS AND METHODS

Plant materials and hybridization

Diploid *L. lancifolium* plants are narrowly distributed in west and south coastal regions of Korea (Kim et al., 2006). We selected six diploid accessions from islands of the West Sea area and six from islands of the South Sea area of the Korean peninsula (Table 1). Their accession numbers were registered in the Agricultural Gene Bank of Rural Development and Administration,
Korea. The region and accessions were Acha–do (282192), Boleum–do (282465), Jumoon–do (282968), Duckjeok–do (282266), Mo–do (282443), Ahnmyeon–do (282346), Jin–do (282378), Wan–do (282907), Oenaro–do (GWL1374), Goheung (282383), Keum–O–do (282756), and Yokji–do (GWL1127).

Crosses were conducted using standard procedures. Anthers were collected from selected plants, stigmas were capped with aluminum foil to prevent unwanted pollination, selected pollinations were performed, and then pollinated stigmas were capped. Crosses were performed mainly between populations from either the West or South Sea areas. Non–crossed flowers were open pollinated in the Gene–Bank field of Kangwon National University, Chuncheon, Korea. This field includes both diploid and triploid groups of *Lilium lancifolium*. Cross–and open–pollinated fruits were collected in each combination before the capsules were open (Table 2).

Morphological observations

Morphological observations of mature seeds were conducted for three years, from 2013 to 2016, after collecting the capsules at the end of September in the open field. Dried papery seeds were observed to put them on a light box, which allows us to determine if the thin and semi–transparent *Lilium* seeds are mono– or polyembryonic, without dissection (Morgan and Rappleye, 1951; Nguyen et al., 2015). Occasionally when it was ambiguous whether a seed was polyembryonic due to a small additional embryo, it was necessary to confirm their status under a dissecting microscope.

Polyembryonic seed culture

In previous breeding experiments (Nguyen et al., 2015), we discovered that underdeveloped embryos of *L. lancifolium* were difficult to germinate in soil. Consequently, all polyembryonic seeds that had small or underdeveloped embryos were cultured on the modified Murashige–Skoog (MS) charcoal medium (3% sucrose, 3 g charcoal L⁻¹, pH 6.8). The seeds were surface sterilized in 70% ethanol and subsequently sterilized in 0.5% sodium hypochlorite solution for 15 minutes, rinsed three times in distilled water, placed on MS complete medium, and germinated under 12 h light followed by 12 h dark at 23°C.

DNA extraction

Genomic DNA was isolated from young leaves using the DNeasy Plant Maxi kit (Qiagen, USA) according to the manufacturer’s instructions. DNA quantity was adjusted to 50ng/μL and then subjected to 0.8% agarose gel electrophoresis. We used 35 expressed sequence tag–simple sequence repeat (EST–SSR) markers for analysis. These 35 EST–SSRs were selected from 76 EST–SSRs that were developed previously in Lilium (Lee et al., 2011; Song et al., 2012).

PCR and electrophoresis

PCR analyses were conducted in a 25–μL reaction mix containing 20 ng of template DNA, 2.5 μL of 10 × reaction buffer (50 mM KCl, 20 mM Tris–HCl, pH 8.0 and 2.0 mM MgCl₂), 2.5 μM of each deoxyribonucleotide triphosphate, 0.1 μM primers, 20 ng template DNA, and 0.5 U Taq DNA polymerase (Intron Bio, Korea). The

Table 1. *Lilium lancifolium* accessions used in this experiment

Accession No.*	Location of island where the plant was collected	Ploidy
282192 (AC)	Acha–do, Seodomyeon, Incheon city	2x
282465 (BO)	Boleum–do, Seodomyeon, Incheon city	2x
282968 (JU)	Jumoon–do, Seodomyeon, Incheon city	2x
282266 (DU)	Duckjeokdo, Duckjeok–myeon, Incheon city	2x
282443 (MO)	Mo–do, Duckjeok–myeon, Incheon city	2x
282346 (AH)	Ahnmyeon–do, Ahnmyeongun, Chungcheongnamdo	2x
282378 (JI)	Jin–do, Jindogun, Jeollanamdo	2x
282907 (WA)	Wan–do, Wando–up, Jeollanamdo	2x
GWL1374 (OE)	Oenaro–do, Wando–up, Jeollanamdo	2x
282383 (GO)	Goheung, Goheunggun, Jeollanamdo	2x
282756 (KE)	Keum–O–do, Nammyeon, Jeollanamdo	2x
GWL1127 (YO)	Yokji–do, Yokjimyeon, Jeollanamdo	2x
Total	12 populations	

*Accession numbers are registered numbers of the Gene Bank of Rural Development and Administration, Korea.
reaction conditions were as follows: 94°C for 2 minutes; and then 35 cycles of 94°C for 30 seconds, 55°C for 30 seconds, and 72°C for 1 minute; with a final extension at 72°C for 5 minutes. The amplified products were analyzed by electrophoresis using a 6% denaturing polyacrylamide gel and a conventional PAGE apparatus for 2 hours at 1,800 V, or a LiCor 4300 automatic electrophoresis system for 4 hours. The DNA fragments separated by conventional PAGE were visualized by silver staining (Promega, USA).

Difference in the frequency of polyembryony

The differences in the frequency of polyembryony events between the 12 evaluated accessions were analyzed by Pearson’s Chi–squared nonparametric test at \(p = 0.05 \), reflecting the observed and expected frequencies of polyembryonic seeds in each accession. Statistical analysis of the data was carried out using the Excel.

RESULTS

Occurrence of polyembryonic seeds

Polyembryony has been observed in the germination of large numbers of hybrid progenies in an edible lily breeding program in *L. lancifolium* (Nguyen et al., 2015). We detected polyembryonic seeds in seven of the 12 accessions screened. The rate of polyembryonic seeds ranged from 0% in most accessions to 1.2% in the accession 282907(WA) (Table 3). Accession 282907(WA) produced significantly more polyembryonic seeds than the other accessions, according to the Chi–square test at \(p = 0.05 \) (Table 3).

Morphology of polyembryonic seeds

Various types of duplet embryos were observed among the polyembryonic seeds. They could be grouped into four types based on the morphology of the embryos. These groups were as follows: Group I: embryos were unattached and approximately equal in size (Fig. 1a), Group II: embryos were fused or conjoined and one of the members was much smaller than the others (Fig. 1b), Group III: embryos were conjoined and abnormally curved (Fig. 1c), and Group IV: embryos were attached and underdeveloped (Fig. 1d). The most frequent embryo type belonged to Group II. Seeds with duplet embryos of equal size (Group I) germinated normally in soil (Fig. 1f). Seeds belonging to Group II and containing a small embryo attached to the original zygotic embryo did not germinate easily in soil (Fig. 1g). Four duplet seeds were separated into three embryos (Fig. 1h) at an early germination stage. These seeds were referred to as “triplets” (Table 2). Many underdeveloped embryos of duplets (Fig. 1g) and triplets (Fig. 1h) died early in germination, leading us to “rescue” 15 duplet and three triplet seeds (Fig. 1i) from 41 polyembryonic seeds through *in vitro* culture (Table 4).

Ploidy and confirmation of polyembryony

Eighteen seedling sets (15 duplets, three triplets) rescued were analyzed by flow cytometry to determine their ploidy. All of these seedlings of duplets and triplets were diploids (Table 4). The survived 39 seedlings from these embryos and their parents were analyzed by expressed–sequence tags (EST)–SSR to trace their genetic origin. Of 35 SSR primers (Lee et al., 2011; Song et al., 2012), 22 produced maternal–parent–specific amplicons and 25 produced paternal–parent–specific amplicons. Of the 25 paternal–specific primer sets, we selected 14 (L01, L04, L05, L09, L50, L59, L60, L61,
eL16, eL34, eL61, eL65, eL75, eL81) that produced reproducible allelic bands in polyembryonic seedlings. Consistent results were obtained from genotyping the 39 polyembryonic seedlings using the maternal–specific 14 SSR markers. The SSR profiles permit us to conclude that both duplet embryos developed from zygotic embryos, based on the presence of both maternal and paternal bands, and the SSR profiles were identical among them (Fig. 2, L05, eL65). We concluded that these duplets are equivalent to the so–called ‘zygotic polyembryony’ found in other species (Tisserat et al., 1979; Schnell and Knight 1992; Martínez–Gómez and Gradziel

Table 3. Maternal effect on the frequency of polyembryony in natural accessions

Accession	No. of seeds tested	No. of polyembryonic seeds	Type of polyembryony	Rate of polyembryonic seeds (% of total)	Chi square value
282192 (AC)	3,834	5	duplet	0.1	1.6
282465 (BO)	1,479	0	–	0	3.4
282968 (DU)	567	0	–	0	1.3
282266 (DU)	756	0	–	0	1.7
282443 (MO)	1,371	1	duplet	0.07	1.5
282346 (AH)	456	3	duplet	0.07	3.7
282378 (JH)	2,733	3	duplet	0.1	1.7
282907 (WA)	1,981	23	duplet + 4 triplets	1.2	75.5**
GWL1374 (OE)	2,240	5	duplet	0.2	0.003
282383 (GO)	574	1	triplet	0.2	0.074
282756 (KE)	945	0	–	0	2.2
GWL1127 (YO)	1,019	0	–	0	2.3
Total of 12 accessions	17,955	41			

Overall Chi square value = 94.9 (p = 0.05); **, Chi square, χ² = 19.68 (p = 0.05)

Fig. 1. Photographs of polyembryonic seeds and seedlings. a: equal–sized duplets; b: unequal duplets; c: abnormal duplets; d: underdeveloped duplets; f: germination of duplet embryos of equal size in soil; g: germination of unequal duplets indicated by arrows; h: germination of triplets indicated by arrows; i: seedlings of triplets.
Spontaneous Polyembryony in Lilium Lancifolium

2003; Aleza et al., 2010; Zenkteler et al., 2012; Trapero et al., 2014), and result from monozygotic cleavage and/or suspensor embryony after normal fertilization. Genetically identical triplet seedlings were also found in No. 33 triplet seed (Table 4, Fig. 2, L05, eL65). The seedlings from the other two triplet seeds derived from open pollinations were genetically different, with paternal SSR bands. Figure 2 shows the SSR profiles of L01, L04, L09, L50, L59, L60, eL16, and eL61, with bands that reveal heterozygosity between the parents in seeds No. 34 and 43. The SSR profiles of these seeds indicate that they were derived from independent fertilization: one plant may have resulted from fertilization of the egg, while the other plants may have arisen from fertilization of synergid. Interestingly, these two polyspermic seeds were obtained from open pollination of 2x × 3x, their accessions of paternal parents were confirmed by SSR profiles (Fig. 2) to 282907(2x) × 282360(3x) and 282382(2x) × 282396(3x) combinations (Table 3).

DISCUSSION

In this study, we analyzed accessions of *L. lancifolium* for polyembryony. Its occurrence was invariably

Accessions	No. of polyembryonic seeds in indicated type (Given seed number)	Rescued seed in vitro in indicated type	Ploidy* and SSR confirmation of seedling sets	
282192 (AC)	5 (1, 2, 3, 4, 5)	0	1, 3	2x, zygotic twin
282443 (MO)	1 (6)	0	6	2x, zygotic twin
282346 (AH)	3 (7, 8, 9)	0	9	2x, zygotic twin
282378 (JI)	3 (10, 11, 12)	0	11	2x, zygotic twin
282907 (WA)	19 (13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31)	4 (32, 33, 34, 35)	13, 14, 16, 19, 22, 25, 29, 31	2x, zygotic twin
GWL1374 (OE)	5 (36, 37, 38, 39, 40, 41)	0	37, 40	2x, zygotic twin
282383 (GO)	0	1(43)	–	2x, all different

Table 4. Confirmation of ploidy and genetic nature of surviving seedling sets

*Confirmed by flow cytometry.
* Obtained from 2x × 2x cross between 282907 and 282192 accessions.
* Obtained from open pollination of 282907(2x) × 282360(3x) combination.

Fig. 2. Expressed-sequence tag simple-sequence repeat (EST-SSR) profiles in polyembryonic seedlings of duplet (No. 13) and triplets (No. 33, 34, 43), and their parents. Seedlings of seed No. 13 (duplet) and 33 (triplet) appeared to be genetically identical in SSR markers L05 and eL65. Seedlings of seed No. 34 and 43 appear to be heterozygous in eight SSR markers (L01, L04, L09, L50, L59, L60, eL16, and eL61), indicating three independent fertilizations.
low in this study, with a mean of 0.2% of the seeds that produced polyembryos. There was one notable exception: accession 282907(WA), collected from a remote coastal area locating at south of the Korean peninsula, showed remarkably more frequent (1.2%) polyembryony than the other accessions. Polyembryony has also been noted to be genetically determined in other horticultural species (Aron et al., 1988; Batygina and Vinogradova, 2007; Kishore et al., 2012; Trapero et al., 2014). Another peculiarity of this accession has been noted: it produced 2n gametes in intraspecific crosses (Nguyen et al., 2015).

Although we confirmed that all polyembryonic seedlings were diploid, we cannot rule out the possibility of haploid embryos, as they have been shown to be present at early proembryo stages in other Lilium species (Cooper, 1943). If it was, we failed to rescue small embryos in 21 dried duplet seeds that might contain haploids (Table 4). Additionally, small seedlings (Fig. 1g) of duplets did not survive in spite of early germination, suggesting the possibility that these were also haploid. These postulations remain unanswered as further studies.

In this study, the parent gametophyte mating combinations and the genotypes of polyembryonic plants of each cross combination were validated through SSR analysis (Fig. 2 and Table 4). Seedlings of the two triplet seeds (no. 34, 43) were shown to be heterozygous in various EST–SSR profiles (Fig. 2). These polyembryonic seedlings were obtained from open pollination of 2x × 3x combinations (see Table 4), These polyspermic seedlings were diploid, we cannot rule out the possibility of haploids (Table 4). Additionally, small seedlings (Fig. 1g) of duplets did not survive in spite of early germination, suggesting the possibility that these were also haploid. These postulations remain unanswered as further studies.

This study was carried out with the support of the GSP Project No. 213007051CGM00, the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and 2015 Research Grant from Bio–herb research Institute and Kangwon National University (No. 520160134).

ACKNOWLEDGEMENT

This study was carried out with the support of the GSP Project No. 213007051CGM00, the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea, and 2015 Research Grant from Bio–herb research Institute and Kangwon National University (No. 520160134).

REFERENCES

Amez, P., J. Juárez, P. Ollitrault and L. Navarro 2010 Polyembryony in non–apomictic citrus genotypes. *Annals of Botany*, **106**: 533–545

Aron, Y. H. Gazit and C. Degani 1998 Polyembryony in Mango (*Mangifera indica L.*) is controlled by a single dominant gene. *HortScience*, **33**: 1241–1242

Ashari, S., D. Aspinall and M. Sedgley 1988 Discrimination of syngentic and nucellar seedlings of five polyembryonic citrus root stocks by isozyme analysis and seedling morphology. *J. Hort. Sci.*, **63**: 695–703

Batygina, T. B. and G. Y. Vinogradova 2007 Phenomenon of polyembryony. Genetic heterogeneity of seeds. (Biological plant development) *Russian Journal of Developmental Biology*, **38**: 126–151

Cooper, D. C. 1934 Development of the embryo sac of *Lilium henryi*. *Proc. Nat. Acad. Sci.*, **20**: 163–164

Cooper, D. C. 1935 Macrosporogenesis and development of the embryo sac of *Lilium henryi*. *Botanical Gazette*, **97**: 346–355

Cooper, D. C. 1943 Haploid–diploid twin embryos in *Lilium* and *Nicotiana*. *Amer. J. Bot.*, **30**: 408–413

Horning, M. E., S. C. Maloney and M. S. Webster 2003 Isolation and characterization of variable microsatellite loci in *Lilium philadelphicum* (Liliae). *Mol. Ecol. Notes*, **3**: 412–413

Iglesias, L., H. Lima and J. P. Simon 1974 Isozyme identification of syngentic and nucellar seedlings in *Citrus*. *J. Hered.*, **65**: 81–84

Khvedynich O. A. and E. A. Kravets 1991 Fertilization of synergid in Lily. *Bot. Zhurn. SSR*, **76**: 236–240

Kim, J. H., H. Y. Kyung, Y. S. Choi, J. K. Lee, M. Hiramatsu and H. Okubo 2006 Geographic distribution and habitat differentiation in diploid and triploid *Lilium lancifolium* from South Korea. *J. Fac. Agr., Kyushu Univ.*, **51**: 239–243

Kim, J. H., N. X. Truong, Y. S. Song and N. S. Kim 2011 Annual triploid *Lilium leichtlinii var. maximowiczii* populations in Korea. *Plant Species Biology*, **36**: 98–106

Kishore K., N. Mouka, D. Rinchen, B. Lepecha and B. Pandey 2012 Polyembryony and seedling emergence traits in apomictic citrus. *Scientia Horticulturae*, **138**: 101–107

Kravets, E. A. and O. A. Khvedynich 2008 Polyembryony and fertilization of antipodals in *Lilium L.* Species *Cytology and genetics*, **42**: 174–178

Lee, S. I., C. G. Park, Y. S. Song, J. H. Son, S. B. Kwon, J. K. Na, J. H. Kim and N. S. Kim 2011 Development of expressed sequence tag derived–simple sequence repeats in the genus *Lilium*. *Genes & Genomics*, **33**: 727–733

Lim, K. B., J. Wennekes, J. H. De Jong, E. Jacobsen and J. M. Van Tuyl 2001 Karyotype analysis of *Lilium longiforum* and *Lilium rubelum* by chromosome banding and fluorescence in situ hybridization. *Genome*, **44**: 911–918

Maheshwari, P. 1948 An introduction to the embryology of angiosperms (New York: Mc–Graw Hill)

Martínez-Gómez P. and T. M. Gradziel 2003 Sexual polyembryony in almond. *Sex Plant Reprod.*, **16**: 135–139

Mestre, P. F., M. J. Asins, J. A. Pina, E. A. Carbonell and L. Navarro 1997 Molecular markers flanking citrus tristeza virus resistance gene from *Poncirus trifoliata* (L.) Raf. *Theor. Appl.
Spontaneous Polyembryony in Lilium Lancifolium

Genet., 94: 458–464
Morgan, D. T. Jr. and R. D. Rappleye 1951 Polyembryony in maize and lily. Following X-irradiation of the pollen. J. Hered., 42: 91–93

Morgante, M. and A. M. Olivieri 1993 PCR-amplified micro satellite as markers in plant genetics. The Plant J., 3: 175–182

Navashin, S. G. 1898 Results of a Review of Processes of Fertilization in Lilium martagon and Fritillaria tenella, in Izbrannye trudy, Moscow–Leningrad, 1951, vol. 1, pp. 188–192

Nguyen T., Y. S. Song, N. S. Kim, J. W. Park, J. H. Kim and A. Wakana 2015 Occurrence and survival of autotriploids in natural diploid populations. J. Fac. Agr., Kyushu Univ., 60: 73–80

Overton, E. 1891 Beitrag zur Kenntnis der Entwicklung und Vereinigung der Geschlechtsprodukte bei Lilium Martagon, Desh. Bot. Zentralblatt., vol. 50, pp. 336–337

Ruiz C., M. P. Breto and M. J. Asins 2000 A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica, 112: 89–94

Russell, J. R., J. D. Fuller, M. Macaulay, B. G. Hatz, A. Jahoor, W. Powell and R. Waugh 1997 Direct comparison of levels of genetic variation among barley accessions detected by RFLPs, AFLPs, SSRs and RAPDs. Theor. Appl. Genet., 95: 714–722

Schnell, R. J., R. J. Jr. Knight 1992 Frequency of zygotic seedling from five polyembryonic Mango rootstocks. HortScience, 27: 174–176

Song, Y. S., T. N. Xuan, N. S. Kim and J. H. Kim 2012 Analysis of genetic variation in native Korean tiger lily (Lilium lancifolium Thunb.) by EST–SSRs. Flower Res. J., 20: 75–82

Tautz, D. 1989 Hypervariability of simples sequences as a general source for polymorphic DNA markers. Nucleic Acids Res., 17: 6463–6471

Torres, A. M., R. K. Soost and V. Diedenhofen 1978 Leaf isozymes as genetic markers in citrus. Amer. J. Bot., 65: 869–881

Trapero C., M. P. Breto and M. J. Asins 2014 Occurrence and variability of sexual polyembryony in olive cultivars. Scientia Horticulturae, 177: 43–46

Tisserat, B., E. B. Esan and T. Murashige 1979 Somatic embryogenesis in angiosperms. Hortic. Rev., 1: 1–7

Yildiz, E., M. Kaplankiran, T. Demirkeser, A. Uzun and C. Toplu 2013 Identification of zygotic and nucellar individuals produced from several citrus crosses using SSRs markers. Not. Bot. Horti. Agrobo., 41: 478–484

Zenkteler, M., W. Debowiska, M. Knaflewski and E. Zenkteler 2012 Screening of Asparagus officinalis L. Seeds for occurrence and ploidy of twin embryos. Acta Biologica Cracoviensia Series Botanica, 54: 121–128

Zhou, S., G. Zhou and K. Li 2011 Euploid endosperm of Triploid xDiploid/tetraploid crosses results in aneuploid embryo survival in Lilium. HortScience, 46: 558–562