PREMIER - PRobabilistic Error-correction using Markov Inference in Errored Reads

Xin Yin∗, Zhao Song†, Karin Dorman∗‡ and Aditya Ramamoorthy†
∗Dept. of Statistics, Iowa State University, Ames, IA 50011
†Dept. of Electrical & Computer Eng. Iowa State University, Ames, IA 50011
‡Dept. of Genetics, Development & Cell Biology Iowa State University, Ames, IA 50011
{xinyin, zhaosong, kdorman, adityar}@iastate.edu

Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT PAPER AWARD. In this work we present a flexible, probabilistic and reference-free method of error correction for high throughput DNA sequencing data. The key is to exploit the high coverage of sequencing data and model short sequence outputs as independent realizations of a Hidden Markov Model (HMM). We pose the problem of error correction of reads as one of maximum likelihood sequence detection over this HMM. While time and memory considerations rule out an implementation of the optimal Baum-Welch algorithm (for parameter estimation) and the optimal Viterbi algorithm (for error correction), we propose low-complexity approximate versions of both. Specifically, we propose an approximate Viterbi and a sequential decoding method, our methods consistently achieve superior performances when compared with Reptile, a state-of-the-art error correction based algorithm for the error correction. Our results show that we propose an approximate Viterbi and a sequential decoding method, our methods consistently achieve superior performances on both simulated and real data sets.

I. INTRODUCTION

DNA sequencing is the process of finding the identity and order of nucleotides or bases, adenine (A), guanine (G), cytosine (C) and thymine (T), in DNA molecules. It is used widely in biological and medical research to determine the genomes of diverse organisms ranging from microbes to humans. In recent years the advent of low cost, high throughput DNA sequencing [1] has made it feasible to sequence multiple individuals, even entire populations of organisms. This technological advance may be the key to achieving truly personalized medicine, and several other grand goals in biology.

The summed length of the DNA molecules that need to be sequenced can vary from a few thousand bases to hundreds of gigabases. Sequencing operates by breaking the DNA double helix molecules at random locations and generating incomplete "reads" that start at one end of the resulting fragments and read contiguous bases along one of the two strands. Read lengths are quickly increasing, but vary from thirty base pairs (bp) in the past to over a thousand bp on some platforms [2].

A critical issue in DNA sequencing is the elevated error rate in reads from the current technology [3]. While the throughput rate is high, substitution errors, e.g., base A called as C, and insertion/deletion errors where spurious bases are included or valid bases are left out, are frequent. Errors in reads pose a serious problem for downstream uses of sequence data, including sequence assembly [4], where the full-length sequence is inferred from the short reads, and variant identification [5], for detecting genetic heterogeneity in a population.

The primary approach for dealing with errors is to capitalize on the high throughput of the sequencing technology. Such an excess of fragments are sequenced that each base in the DNA molecules is covered by multiple reads. However, because the starting location of each read is random, there is no alignment information to indicate which reads cover a particular base. This lack of alignment information makes the problem different from classical error correction [6]. Indeed if alignment information were available, the problem would roughly reduce to the decoding of a repetition code.

Error correction of noisy reads has received significant attention in the bioinformatics community in recent years [7]. We briefly review the methods most closely related to our proposed method. Many methods begin by counting the occurrence of all kmers in the reads. A kmer is a substring of length k. Euler [8] corrects a read via the smallest set of corrections that make all kmers in the read common, i.e. have high occurrences. Hammer [9] identifies cliques by linking similar kmers, then corrects all members to the clique’s consensus kmer. FreClu [10] corrects full-length reads if it finds a significantly more frequent read differing at just one position. Quake [11] iteratively corrects bases by maximizing a posterior probability of the true sequence given the observed read until all kmers are common. Two other methods use a probability model to correct a read [12] or kmer [13] to the most likely true sequence. In all these methods the focus must turn to kmers when the read length is long to guarantee sufficient repetition to distinguish error and true bases. So as read lengths increase, even read-based methods must become kmer-based. All kmer-based methods ignore the fact that kmers are dependently read as contiguous substrings within reads. Moreover, while some allow arbitrarily complex error models, either all error parameters must be provided a priori or the parameter estimation procedure is ad hoc.

The work of [14], modeled a genome as the output of a discrete memoryless source and determined the coverage levels required to guarantee correct sequence assembly under a noiseless read process. Approaches based on statistical modeling of the sequencing process have been used [15, 16] for basecalling, but not for error correction of reads.

Main contributions. In this work we address the problem of correcting errors in noisy reads from a signal processing and error control coding viewpoint. We consider reads from the Illumina DNA sequencer that is known to exhibit substitution errors (but essentially no insertion/deletion errors) [17]. We demonstrate that Illumina reads can be modeled as symbols emitted from a Hidden Markov Model (HMM). To overcome...
the unmanageably large state space, we use constraints and penalties to estimate the HMM parameters. Given the parameters of this HMM, we pose the problem of error correction of reads as a maximum likelihood sequence detection problem. While time and memory considerations rule out an implementation of the optimal Baum-Welch algorithm (for parameter estimation) and the optimal Viterbi algorithm (for error correction), we propose low-complexity approximate versions of both. This approach is successful in identifying many errors. In addition we propose a sequential decoding algorithm that achieves even better performance. Our results on real, publicly available sequencing data for the E. coli genome demonstrate a 9% improvement in error correction rates over a current state of the art technique.

II. PROBLEM FORMULATION

Let G denote the genome to sequence. It is a 4-ary sequence of length $|G|$, where each letter is in $\Omega = \{A,C,G,T\}$; we call these letters bases or nucleotides. Sequencing operates by breaking the genome into fragments, from which length L reads are made. The sequencer has access to multiple copies of G and produces up to billions of reads. The starting point of the fragment within G is random and unknown. The sequencer processes the fragment and outputs a read (x, y), where x is the sequencer’s best guess of L bases in the fragment and y are the corresponding quality scores; the quality scores are discrete measures of confidence in the base calls x. A given base location will typically be covered by multiple reads. Let N denote the total number of reads obtained in this process. The coverage level is defined to be $NL/|G|$.

A. HMM modeling

We model the sequencer as a Hidden Markov Model (HMM); each read is an independent realization of the HMM. Given s, the unknown true read of length L, we define $s[i]$ as the i-th character of s and $s[i...j]$ as the substring from position i to j (both $s[i]$ and $s[j]$ are included). Let $s_t = s[t-k+1...t]$ be the t-th state. In the discussion below we will also refer to the states as kmers. Similarly, $x_t = x[t-k+1...t]$ will be referred to as the tth observed kmer and $y_t = y[t-k+1...t]$ will denote the corresponding quality scores. We model the sequencer as transitioning between the states s_{t-1} to s_t. On the tth transition it emits the output (x_t, y_t). To specify the model completely, we need to define:

- State space \mathcal{K}, where $|\mathcal{K}| \leq 4^k$,
- Transition distribution $p(s_{t+1}|s_t)$, where
 $$\sum_{\beta \in \Omega} p(\beta|\alpha) = 1, \quad \forall \alpha \in \mathcal{K}. $$
- Emission distribution $f_t(x_t, y_t | s_t)$ with
 $$f_t(x_t, y_t | s_t) = q_t(y_t | x_t, s_t) g_t(x_t | s_t), $$
 where we assume the following simple forms.

\begin{align}
q_t(y_t | x_t, s_t) &= \begin{cases} q_{00}(y_t | x_t) & x_t = s_t, \\ q_{01}(y_t | x_t) & x_t \neq s_t, \end{cases}, \\
g_t(x_t | s_t) &= 1 \{s_t \in N^d(x_t)\} g_t(x_t | s_t),
\end{align}

with

$$\sum_{\beta \in \Omega} g_t(\beta | \beta') = 1, \quad \forall \beta' \in \Omega. $$

Our modeling philosophy is guided by the following considerations. It is well recognized that nucleotides in genomes display strong local dependence, and Markov models, like the one we use for s, have long been used to model this dependence [19]. Like most error correction correction methods, we start with a simple error model. Both $q_t(\beta | \beta')$, the probability of (mis)reading base β as β', and $q_t(q|j), j = 0, 1$, the quality score probability mass functions, depend on position t. We expect that $q_t(q|j)$ is shifted right of $q_t(q)$, for all t, because the sequencer should assign higher quality scores to error free bases. We defer discussion of the role of the indicator function $1\{\cdot\}$ in eq. (2) (see near eq. (3) below).

The choice of kmer length k and state space \mathcal{K} are guided by several considerations. In principle, given k, one could choose all possible 4^k states as \mathcal{K}, but even for moderate k (around 15), such \mathcal{K} is too big. Thus, for a given set of reads, we restrict \mathcal{K} to contain only observed kmers. Even though \mathcal{K} includes erroneous kmers, we hope to identify them during estimation of the HMM. The choice of k depends on two conflicting requirements. On the one hand, we want an accurate model. If k is too small, say $k = 3$, then each kmer, say ATC, will exist in several locations in the original G. Our model will tend to “correct” uncommon downstream bases to common downstream bases. For example, if ATCG occurs twice and ATCT occurs once, then true read ATCT may be erroneously corrected to ATCG. On the other hand, very large k (though it cannot exceed the read length L), may lead to decreased kmer coverage and eventually an overparameterized, estimable model. Thus, there is an ideal value of k that achieves uniqueness an an estimable model. In our experiments, we choose k to optimize performance.

To reduce computational complexity, we further constrain the emission distribution. As errors are relatively rare, we only allow kmers within a small Hamming distance of an observed kmer x_t to have non-zero emission distributions. If we define the d-neighborhood of observed kmer x_t as

$$N^d(x_t) = \{w : w \in \mathcal{K} \text{ and } D(x_t, w) \leq d\},$$

where $D(\cdot, \cdot)$ is the Hamming distance function, this assumption reduces the overall number of parameters since $g_t(x_t | s_t) \equiv 0$ if $s_t \notin N^d(x_t)$.

The HMM is fit to the read data using the iterative Expectation-Maximization (EM) algorithm (Baum-Welch). Subsume all model parameters into vector θ. The EM locally maximizes the likelihood and produces parameter estimate $\hat{\theta}$. The initial parameters $\theta^{(0)}$ for the EM are computed as follows. For transition probabilities, we count the occurrence, $n(\alpha, \beta)$, of α followed by β in all reads and set

$$p^{(0)}(\beta|\alpha) = \frac{n(\alpha, \beta)}{\sum_{\beta' \in \Omega} n(\alpha, \beta')}, \alpha \in \mathcal{K}, \beta \in \Omega. $$

As for the emission part, we initialize

$$q_t^{(0)}(\beta) = \frac{1}{Q_{\text{max}}}, \quad q \in \{1, \ldots, Q_{\text{max}}\}, $$

$$g_t^{(0)}(\beta|\beta') = \frac{1}{4}, \quad \beta, \beta' \in \Omega, $$

where Q_{max} is the maximum quality score the sequencer can produce, $j \in \{0, 1\}$ indicates presence of an error, and $t \in \ldots$
\{k, k + 1, \ldots, L\} is read position. We tried multiple random initializations and found the EM insensitive to choice of \(\theta^{(0)}\).

B. Penalized Estimation

While the HMM reasonably captures the local dependence present in genomic sequences and the error characteristics of modern sequencers, it fails to recapitulate the finite genome length. To impose our certainty that the vast majority of kmers are unique, we use the approximate \(l_0\) penalty proposed in [20],

\[
J(\theta) = \sum_{\alpha \in K, \beta \in \Omega} \frac{\log(1 + p(\beta|\alpha)/\gamma)}{\log(1 + 1/\gamma)},
\]

that penalizes small transition probabilities and drives them to zero. Given the set of observed reads \(R\), the EM can be adapted to maximize the penalized log-likelihood

\[
l(\theta|R) - \lambda J(\theta),
\]

where \(\lambda\) and \(\gamma\) are user specified tuning parameters. In general, increasing \(\lambda\) or decreasing \(\gamma\) strengthens the penalty. Desirable values for \(\lambda\) and \(\gamma\) could be determined by imposing a level of sparsity consistent with a prior estimate of genome length. In the experiments reported here, we seek a strong penalty to push small transition probabilities to zero and eventually eliminate kmers with suspiciously low coverage. Therefore, we choose \(\gamma = 10^{-4}\) and vary \(\lambda\) over the rough grid \(\{100, 150, 200, 250, 300\}\) to optimize performance.

III. ERROR CORRECTION ALGORITHM

Given a fitted HMM for the data, we now discuss the actual error correction algorithm. One naturally turns to the Viterbi algorithm to estimate the maximum likelihood “true read” \(s\), given the pair \((x, y)\). However, the state space \(K\), even for modest \(k\) and relatively small genome size \(|G|\), is formidable and prevents exact Baum-Welch and Viterbi algorithms. Accordingly, we use an approximate Viterbi-like decoding and sequential decoding as discussed below.

A. An approximate Viterbi Algorithm

For computational reasons, the Viterbi is limited, like the HMM, to only consider true sequences, \(s\), constrained by our assumptions on the emission distribution. While it propagates likelihoods of survivor paths, if a survivor path contains a state \(s_i\) differing at more than \(\Delta\) locations from \(x_i\), then state \(s_i\) is deemed implausible and the survivor path is not extended. The same restriction is applied during the Baum-Welch parameter estimation described in Section II-A. We call this decoding method A-Viterbi.

B. Sequential Decoding on HMM with Fano Algorithm

Sequential decoding was proposed as a way to decode convolutional codes (prior to the optimal Viterbi algorithm) [18], [21]. For codes with high constraint lengths, it serves as a good low-complexity alternative to the Viterbi algorithm. In our work we adapt the Fano algorithm for determining the maximum likelihood state sequence in the HMM. Our discussion here is based on the description in [22] (see Fig. 1). In the Fano algorithm at any given stage there is only one active path, where a path is defined to be a sequence of states \(s_1, \ldots, s_t\) that have a non-zero probability of occurrence. Let the path labels of the predecessor path, the current path, and the successor path be \(\nu_p\), \(\nu_c\), and \(\nu_s\). The corresponding Fano metrics are denoted as \(M_p\), \(M_c\), and \(M_s\). A given candidate successor path \(\nu_s\) corresponds to appending a new state to \(\nu_c\) such that the new state has a positive probability of being reached from the last state of \(\nu_c\). The probability of choosing \(\nu_s\) as the successor path can be computed from the transition distribution of the HMM; we denote it as \(a(\nu_c, \nu_s)\) below. Likewise the emission distribution specifies the probability of the emitted base and quality score corresponding to this transition; this is denoted by \(\xi_s\) below (to avoid complicated notation). The Fano metrics are updated as follows.

\[
M_s = M_c + \log_2 [a(\nu_c, \nu_s)] + \log_2(\xi_s) + B.
\]

Here \(B\) represents the bias whose value is chosen with the purpose that the Fano metric will keep increasing as long as we are on the correct path [22].

IV. EXPERIMENTAL RESULTS

We compared the performance of the A-Viterbi and Fano decoding algorithms to Reptile on one simulated and one real dataset (Table I). Reptile is a top-performing method in a recent survey of error correction methods [7]. All the results we present here assume we know the first true kmer. Since we use simulation or resequencing experiments of known genomes, we can reliably infer this information. In practice, a known primer sequence is often attached to both ends of the DNA fragment being sequenced, so the assumption is not restrictive. All methods include model complexity parameters, such as \(k\) and \(d\), that can be difficult to choose when the true sequence is unknown. In our experiments, with the true sequence available, we can tune these parameters for optimal performance. We emphasize that we have tuned \emph{all} methods to achieve their respective best performance.

For each dataset, maximum likelihood estimates of the HMM parameters were estimated using the penalized likelihood (\(\gamma = 0.0001, \lambda = 250\)) for various kmer lengths, \(k = 13, 14, 15\), and maximum Hamming distance, \(d = 4\). Then, A-Viterbi and Fano were used to perform the decoding at each chosen \(k\). The A-Viterbi algorithm was run using the same \(d\) used to estimate the HMM parameters. For the Fano algorithm, parameter \(B\) in Eq. (5) was set to be 2 and 10 for the simulated and real dataset, respectively; we tried both \(\Delta = 0.5\) or 1.0. Note, the Fano algorithm places no constraints on the kmer Hamming distances.

Reptile uses a “tile” formed by concatenating two kmers of length \(k\) with overlap of length \(k - \text{step}\). Corrections are made if the observed tile is uncommon and there is a substantially more common tile in the neighborhood of the observed tile. The tile neighborhood is formed by allowing up to \(d\) errors in each kmer. Tile counts are computed from high quality reads only. We chose the best parameters \((k, \text{step})\) using a grid-search over \(7 \leq \text{step} \leq k \leq 12\). Given \((k, \text{step})\), thresholds for error correction decisions were automatically selected, following the instructions in the software manual and \emph{MaxBadQPerKmer} was left at the default 4. The maximum
Algorithm 1: Sequential Decoding with Fano Metric on HMM

Input: kmers obtained from the read sequence, step size \(\Delta \), bias \(B \), parameters for HMM

Output: corrected read (or path \(\nu^* \)) and Fano metric \(M^* \)

Initialization: threshold \(T = 0 \), \(\nu_p = \text{dummy}, \ M_p = -\infty \), \(\nu_s = k\text{mer} \) in the first stage, \(M_c = 0 \), stage \(t = 1 \).

1. Choose the successor path which has the largest Fano metric based on the transition probability of \(\nu_c \) and emission probability of the \(t + k \)th base. Denote this path label as \(\nu_s \) and corresponding Fano metric as \(M_s \).

2. if \(M_s \geq T_s \) then
 3. Move one base forward and update \(\nu_p = \nu_c, \ M_p = M_c; \nu_c = \nu_s, \ M_c = M_s \); set \(t \leftarrow t + 1 \).

4. if \(t = L - k + 1 \) then
 5. Stop algorithm and output \(\nu^*, \ M^* = M_c \).
 6. else
 7. if \(M_p < T + \Delta \) then
 8. Tighten threshold \(T \) such that \(T \leq M_c < T + \Delta \). Go to step \(\mathbf{1} \).
 9. end if
 10. Go to step \(\mathbf{1} \).
 11. end if
 12. else
 13. if \(M_p \geq T \) then
 14. Move one base back and update \(\nu_s = \nu_c, \ M_s = M_c; \nu_c = \nu_p, \ M_c = M_p, \ t \leftarrow t - 1 \) and re-compute \(M_p \) and \(M_c \).
 15. Attempt to find the non-visited successor path of \(\nu_c \) which has the largest Fano metric. Denote this path as \(\nu_t \) and its Fano metric as \(M_t \).
 16. if \(\nu_t \) is empty then
 17. Go to Step \(\mathbf{13} \).
 18. else
 19. Update \(\nu_s = \nu_t, \ M_s = M_t \) and go to Step \(\mathbf{12} \).
 20. end if
 21. else
 22. Lower threshold as \(T \leftarrow T - \Delta \) and go to Step \(\mathbf{11} \).
 23. end if
 24. end if

Table I

Benchmark sequencing datasets
Dataset
D1
D2

Errors allowed per kmer was set to \(d = 4 \). All remaining parameters were left at their defaults.

Let \(e \) be the total number of ground truth errors in the sequencing reads excluding those in the first kmer (or tile for Reptile). The probability of error correction is defined as \(\zeta \triangleq ce/e \) and gain is defined as \(\eta \triangleq (ce - fa)/e \), measuring the effective number of errors removed from the dataset [23].

A. D1: Simulated Dataset

To create the simulated dataset, one million reads were generated by randomly sampling 36bp sequences from a 250Kbp region (1000Kbp — 1250Kbp) of the \textit{E. coli} genome (Accession NC.000913). From the real dataset (see [V-B]), we estimated empirical distributions of quality scores given read positions, and used these to generate quality scores for every position of each simulated read. We assumed the simulated quality scores indicated the true error probabilities and replaced the true base \(\beta_t \) at position \(t \) with error base \(\beta_e \) with probability \(\eta(t) = q_t(\nu) \), where \(q_t \) is the quality score.

Table II

k	**ce**	**\(\zeta \)**	**fa**	**\(\eta \)**		
Fano	\[\Delta = 0.5\]	13	430391	0.9981	100	0.9979
	14	428324	0.9993	21	0.9975	
	15	425442	0.9996	6	0.9996	
A-Viterbi		13	430834	0.9967	227	0.9962
	14	427839	0.9978	102	0.9975	
Reptile		15	424881	0.9984	75	0.9997

\(\dagger\) For Reptile, this column is reported as \((k, step)\).

B. D2: Real Experimental Dataset

To test the performance of our model on a real Illumina dataset, we used the data of an \textit{E. coli} resequencing experiment (Accession SRX000429). Knowing the reference genome allows us to identify the “ground truth” errors as long as we can identify the position of the read in the reference genome. To align the reads to the reference genome, we used the Burrows-Wheeler Aligner [24] with default parameters. We selected all reads with a unique match to a 500Kbp region (1000Kbp — 1500Kbp) on the reference genome and tallied the true errors as mismatches between the selected reads and the reference sequence. There are cases of erasure where the nucleotide is recorded as “N” for “not determined” in the reads. For Reptile and A-Viterbi, all \(N \) bases were replaced by \(A \), but we left intact for Fano, which can directly correct base \(N \).

The error correction results on dataset D2 are summarized in Table [III]. The superiority of the Fano algorithm is accentuated...
in this real data. We presume that Fano outperforms A-Viterbi by exploring parts of the 4-ary tree ruled out by A-Viterbi due to the neighborhood constraint (cf. Section III-A). The Quake-recommended \(k \) for this dataset is 14; Reptile recommends 9.

C. Parameter Selection and Sensitivity

While not as sensitive as Reptile to choice of \(k \), the HMM-based methods are sensitive to other parameter choices. We mention only the strongest effects here as we have not yet completed a thorough analysis. Most striking, A-Viterbi achieved gain of only 0.857 with \(\gamma = 0.001 \) and \(\lambda = 500 \). The Fano algorithm is most sensitive to \(B \). In the real dataset, the HMM parameters were such that a larger value of the bias \(B \) needed to be chosen; otherwise there was excessive backtracking in the running of the algorithm.

Since we had roughly optimized the A-Viterbi and Fano algorithms over \(\lambda, \gamma, \Delta, \), and \(B \), we attempted to optimize Reptile over two of its parameters. Through much experimentation, we could improve Reptile performance to \(\eta = 0.9234 \) when \(T_{\text{expGoodCnt}} = 28 \) and \(T_{\text{card}} = 13 \) on the real dataset, which is very close yet marginally inferior, to the best Fano performance. However, neither HMM-based method was allowed quite the same diligent exploration of its parameter space. It is clearly imperative that we develop methods to choose \(\lambda, \gamma, \Delta, \), and \(B \) without reference to a test genome, so all methods can be compared on equal footing. Our current set of experiments leads us to conclude that HMM-based methods are substantially easier to tune, less sensitive to parameter settings, and more flexible when it comes to adopting more realistic emission distributions.

V. CONCLUSION

We establish the HMM for the problem of noisy DNA read correction and develop the approximate Viterbi algorithm and the sequential decoding algorithm with Fano metric to execute the error correction. Based on our test results for both simulated and real data, the proposed algorithms often outperform another state of the art method in this field. Our future work will include development of systematic procedures for choosing the parameters of the algorithms, an investigation of more complex, context dependent error emission distributions and an exhaustive comparison with respect to competing methods.

ACKNOWLEDGMENT

This work was funded in part by NSF awards DMS-1120597 and CCF-1149860.

References

[1] M. L. Metzker, “Sequencing technologies - the next generation,” Nat Rev Genet, vol. 11, pp. 31–46, 2010.
[2] M. A. Quail, M. Smith, P. Coupland, T. D. Otto, S. R. Harris, T. R. Connor, A. Bertoni, H. P. Swherdow, and Y. Gu, “A tale of three next generation sequencing platforms: comparison of ion torrent, pacific biosciences and illumina miseq sequencers.” BMC Genomics, vol. 13, p. 341, 2012.
[3] E. Y. Chan, “Next-generation sequencing methods: impact of sequencing accuracy on SNP discovery.” Methods Mol Biol, vol. 578, pp. 95–111, 2009.
[4] S. L. Salzberg, A. M. Phillippy, A. Zimin, S. Koren, T. J. Treangen, M. C. Schatz, A. L. Delcher, M. Roberts, G. Marais, M. Pop, and J. A. Yorke, “Giga: A critical evaluation of genome assemblies and assembly algorithms.” Genome Res, vol. 22, pp. 557–567, 2012.
[5] A. Wilm, P. P. K. Aw, D. Bertrand, G. H. T. Yeo, S. H. Ong, C. H. Wong, C. L. Khor, R. Petsch, M. L. Hibberd, and N. Nagarajan, “Lofreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cell population heterogeneity from high-throughput sequencing datasets.” Nucleic Acids Res, vol. 40, pp. 11189–11201, 2012.
[6] J. M. Wozencraft and B. Reiffen, “Error Control Coding,” 2nd Ed. Prentice Hall, 2004.
[7] X. Yang, S. P. Chockalingam, and S. Aluru, “A survey of error-correction methods for next-generation sequencing.” Brief Bioinform, 2012.
[8] M. J. Chaisson, D. Brinza, and P. A. Pevzner, “De novo fragment assembly with short mate-paired reads: Does the read length matter?” Genome Res, vol. 19, pp. 336–346, 2009.
[9] P. Medvedev, E. Scott, B. Kakaradov, and P. Pevzner, “Error correction of high-throughput sequencing datasets with non-uniform coverage.” Bioinformatics, vol. 27, pp. i137–i141, 2011.
[10] W. Qu, S.-I. Hashimoto, and S. Morishita, “Efficient frequency-based de novo short-read clustering for error trimming in next-generation sequencing.” Genome Res, vol. 19, pp. 1309–1315, 2009.
[11] D. R. Kelley, M. C. Schatz, and S. L. Salzberg, “Quake: quality-aware detection and correction of sequencing errors.” Genome Biol, vol. 11, p. R116, 2010.
[12] E. Wijaya, M. C. Frith, Y. Suzuki, and P. Horton, “Recount: expectation maximization based error correction tool for next generation sequencing data.” Genome Informatics, vol. 23, pp. 189–201, 2009.
[13] X. Yang, S. Aluru, and K. S. Dorman, “Repeat-aware modeling and correction of short read errors.” BMC Bioinformatics, vol. 12 Suppl 1, p. S52, 2011.
[14] A. Motahari, G. Bresler, and D. Tse, “Information theory for dna sequencing: Part i: A basic model,” in IEEE International Symposium on Information Theory (ISIT), July 2012, pp. 2741 –2745.
[15] S. Das and H. Vikalo, “Onlinecall: fast online parameter estimation and base calling for illumina’s next-generation sequencing.” Bioinformatics, vol. 28, pp. 1677–1683, 2012.
[16] T. Wu and H. Vikalo, “Joint parameter estimation and base-calling for pyrosequencing systems,” IEEE Transactions on Signal Processing, vol. 60, pp. 4376 –4386, Aug. 2012.
[17] C. Ledergerber and C. Dessimoz, “Base-calling for next-generation sequencing platforms.” Brief Bioinform, vol. 12, pp. 489–497, 2011.
[18] R. M. Fano, “A heuristic discussion of probabilistic decoding,” IEEE Trans. Inform. Theory, vol. 9, pp. 64–74, 1963.
[19] E. Picardi and G. Pesole, “Computational methods for ab initio and comparative gene finding,” vol. 609, 2010.
[20] D. H. Alexander and K. Lange, “Enhancements to the ADMIXTURE algorithm for individual ancestry estimation,” BMC Bioinformatics, vol. 12, p. 246, 2011.
[21] J. M. Woecnraeft and B. Reiffen, “Sequential Decoding.” MIT Press, 2010.
[22] Y. Han and P. N. Chen, “Sequential decoding of convolutional codes,” Encyclopedia of Telecommunications (Editor: John Proakis), Wiley, pp. 2140–2164, 2002.
[23] X. Yang, K. S. Dorman, and S. Aluru, “Reptile: Representative scaffolding for short read error correction,” Bioinformatics, vol. 26, pp. 2526–2533, 2010.
[24] H. Li and R. Durbin, “Fast and accurate long-read alignment with burrows–wheeler transform.” Bioinformatics, vol. 26, pp. 589–595, 2010.