Supporting Information.

Surfactant-assisted hydrothermal synthesis of rGO/SnIn$_4$S$_8$ nanosheets and its application in complete removal of Cr(VI)

P. F. Xu, a S. Y. Huang, b Y. C. Lv, b Y. C, a,c M. H. Liu, * b and H. J. Fan* a,c

a National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China.

b College of Environment & Resource, Fuzhou University, Fuzhou 350116, P. R. China.

c Light industry, textile and Food Institution, Sichuan University, Chengdu 610065, China.

*Corresponding authors. E-mail: fanhaojun@scu.edu.cn (H. J. Fan), mhliu2000@fzu.edu.cn (M. H. Liu)

Fig. S1. Nitrogen adsorption-desorption isotherm of rGO, In$_4$SnS$_8$ and rGO/SnIn$_4$S$_8$.
Table S1: Comparison of photocatalytic activity between rGO/SnIn$_4$S$_8$ and other reported photocatalysts under visible light irradiation

Sample	Cr(VI) Concentration (mg/L)	Catalyst Concentration (g/L)	Irradiation time (min)	Result (%)	Reference
TiO$_2$(P25)	10	0.67	180	50	1
TiO$_2$(pure)	10	0.67	180	30	2
TiO$_2$/rGO	10	0.67	180	98	2
CuO/ZrO$_2$-MCM-41	20	1	30	99	3
CdS	10	1	250	79	4
CdS/rGO	10	1	250	92	4
SnS$_2$	50	1	150	36	5
SnS$_2$/rGO	50	1	150	90	5
SnIn$_4$S$_8$	50	0.2	60	89	Present
rGO/SnIn$_4$S$_8$	50	0.2	30	99	Present

Fig. S2: Recycled photocatalytic reduction of Cr(VI) over the rGO/SnIn$_4$S$_8$. Experimental conditions: 50mg/L initial Cr(VI) concentration, 0.5mM citric acid, 0.1g/L catalyst, pH 2, N$_2$ purging.
Fig. S3 The XRD analysis of rGO/SnIn$_4$S$_8$ before and after 5 times photocatalytic reaction.

Fig. S4 The FTIR Spectra of rGO/SnIn$_4$S$_8$ before and after 5 times photocatalytic reaction.
References

1. L. Wang, X. Li, W. Teng, Q. Zhao, Y. Shi, R. Yue and Y. Chen, *J. Hazard. Mater.*, 2013, **244-245**, 681-688.
2. L. Liu, C. Luo, J. Xiong, Z. Yang, Y. Zhang, Y. Cai and H. Gu, *J. Alloy. Compd.*, 2017, **690**, 771-776.
3. B. Nanda, A. C. Pradhan and K. M. Parida, *Chem. Eng. J.*, 2017, **316**, 1122-1135.
4. X. Liu, L. Pan, T. Lv, G. Zhu and Z. Sun, *Chem. Commun.*, 2011, **47**, 11984-11986.
5. H. Liu, L. Deng, Z. Zhang, J. Guan, Y. Yang and Z. Zhu, *J. Mater. Sci.*, 2015, **50**, 3207-3211.