Flavonoids: Biosynthesis, Metabolism, Mechanism of Antioxidation and Clinical Implications: A Review

Shashank Garg

ABSTRACT

Flavonoids are the molecules derived from a core molecule flavan which are synthesized in plants and microbes by a complex process catalyzed by enzymes located in endoplasmic reticulum. These exist in human body in association with glycosides which can be absorbed in small intestine and are metabolized further in liver. This review consolidates the Biosynthesis of flavonoids in plant systems, its metabolism in human body, the role of different rings and groups on the antioxidant potential of flavonoids, the chemical mechanisms of its actions and finally clinical implications of these molecules against Alzheimer’s disease, Parkinson’s disease, cardiovascular diseases, diabetes, Osteoarthritis and Rheumatoid Arthritis and cancers.

Key words: Alzheimer’s disease, Antioxidant, Arthritis, Cardiovascular diseases, Diabetes, Flavonoids, Parkinson’s disease.

Flavonoids are small, plant derived, polyphenolic compounds based on the flavan core (Fig 1). Basic structure of flavan molecule is a C6-C3-C6 frame consisting of benzopyran group attached to a phenyl ring. The three rings in the molecule are regarded to as the A, B and C rings. Flavonoids are differentiated by the arrangement of functional groups (hydroxyl, methoxy and glycosidic side group) and in the relative position of the C and B rings which gives rise to a large number of compounds which are classified accordingly to the groups present.

Based on the position of the attachment of the carbon atom of the C ring through which B ring is attached these phytochemicals are classified as Flavonoids (2 phenyl benzopyran), Isoflavonoids (3 benzopyran) and Neoflavonoids (4 benzopyran). Additionally, aromatic and aliphatic acids, sulphate, prenyl or methylenedioxy groups also attach to flavonoid nucleus and their glycosides. Flavonoids are present in conjugation with sugar residues and polymers as 3-O-glycosides. Physiochemical and functional properties of the flavonoids and its derivatives are significantly affected by the relative position of different functional groups around the core nucleus.

The biochemical activities of the flavonoids in the cells in which they are produced in plants and in the cells of human beings are varied. In plants they play a central role in the protection against ultraviolet radiation, exhibit antipathogenic activity and are proven deterrent to the animals ingesting it by inhibiting digestive enzymes and preventing absorption of proteins. Many of the flavonoids act as colored pigments (anthocyanin) and attractants for pollination, as well as oviposition stimulants (e.g. naringenin and hesperetin-7-O-rutinoside) which help in attracting and stimulating insects to lay egg over them while some act as feeding attractant (e.g. isoquercetrin and morin) others are used by plants as feeding deterrents against harmful insects (e.g. genistein and luteone) (Iwashina 2003). Flavonoids are also found in flour as a functional compound (Verma et al. 2018). One of the exciting features of flavonoids is found in form of allelopathy which is described as ‘biochemical interactions between all types of plants and include both deleterious and advantageous interactions’. Some of the flavanone, flavonol and dihydroflavonols have been reported by some authors, which act as allelopathic. Plants produce certain chemicals at the time of infection by microorganisms which ward off the disease causing organism from the plants called as “Phytolexin”. Flavonoid compounds reported to act as phytolexin (Iwashina 2003). Although a lot of these compounds have been identified and characterized in plants but the biological roles they play are still not elucidated for all. Dietary flavonoids are found to display a wide range of effects on the biochemical pathways of human body. They are found to have antioxidant, antihypertensive, anticarcinogenic, anti-inflammatory effects and play therapeutic roles against pathological, metabolic, life style diseases like diabetes, ageing and dermatological problems.

The antioxidative and proven anticarcinogenic properties of dietary polyphenols have attracted interest of several researchers. The anticarcinogenic properties are hypothesized to be arising mainly due to its antioxidative properties. These polyphenolic compounds inhibit events of cancer development at various stages of initiation,
promotion and progression. It is also found that isoflavones and lignans affects the estrogen related activities that influences tumor formation (Yang et al. 2001).

Galati et al. (2004) suggested that the chemopreventive activity exhibited by these compounds in vivo experiments can be attributed to its property of checking the initialization of carcinogenesis by inhibiting phase I and phase II carcinogen metabolizing enzymes. The promotion of carcinogenesis may also be reduced by several mechanisms like inhibiting enzymes responsible for oxygen radical formation or DNA synthesis. These compounds may also induce tumor cell apoptosis by inhibition of DNA topoisomerase II and downregulation of p53 or mitochondrial toxicity (Galati and O’Brien 2004). Ross et al. (2002) have comprehended the roles of flavonoids and related compounds on cardiovascular diseases and found a positive effect of flavonoids on these diseases. Ren et al. 2003 also reported a positive effect of flavonoids on chemoprevention. They reported several mechanisms and their combination may be responsible for the observed chemopreventive activity (Ren et al. 2003).

Kanadaswami et al. (2005) reviewed the reports on in vivo activity of flavonoids and has found that inhibition of kinase activity and suppression of secretion of matrix metalloproteinases are the most common mechanisms of chemopreventive action (Kanadaswami et al. 2005). It shall be emphasized here that these are not the only mechanisms which may be responsible for anticancerous activity and new mechanisms may be elucidated with time.

So, to showcase the importance of flavonoids, this article comprehends the role of active groups and its mechanism of action that imparts important functions to a particular flavonoid. This article also includes the clinical implications of these active groups in alleviating several diseases.

Biosynthesis of flavonoids

Biosynthesis of flavonoids is a complex process as given in the schematic in Fig 2. Earlier work for elucidation of flavonoid biosynthetic pathway was done using the mutants having alteration in genes affecting flavonoid biosynthesis. Maize, Snapdragon, Petunia were first developed as model systems for the study and most recently Arabidopsis is being used because of the feature that all the enzymes except one of the central flavonoid metabolism are coded by single copy genes. These genes are scattered all over the genome of Arabidopsis. The alteration in pigment pattern in the seed coat is studied for the identification of these genes.

Biosynthetic metabolism of flavonoid molecules is catalyzed by an endoplasmic reticulum localized enzyme complex. This has been validated by experimental studies (Hrazdina and Wagner 1985, Burbulis and Winkel-Shirley 1999).

Metabolism

Flavonoids exist as O-glycosides in the human body with glucose being the most common residue joined by β-linkage. Glycosides are those molecules which are metabolized to their respective aglycones by bacterial activity in lower intestine but some of this may be metabolized in oral cavity as well (Walle 2004, Walle et al. 2003). It is generally accepted that flavonoid glycosides are absorbed in small intestine with the help of a sodium dependent glucose transporter, which are cleaved by a broad-specific β-glicosidase enzyme or by lactase phloridzin hydrolase (LPH). After absorption of the flavonoids they are transported to liver for further metabolism which includes conjugation by O-methylation, sulfation and glucuronidation. The flavonoids may also undergo oxidative metabolism as shown with the study using microsomes which is mediated by cytochrome P450 (CYP) enzymes. Metabolism of flavonoids is also known to be carried out by bacteria in the colon that

Fig 1: Structure of major flavonoid classes (a) Core structure (b) Flavonoids (c) Isoflavonoids (d) Neoflavonoids.
Flavonoids: Biosynthesis, Metabolism, Mechanism of Antioxidation and Clinical Implications: A Review

![Biosynthetic pathway of flavonoids.]

Fig 2: Biosynthetic pathway of flavonoids.

ANS: Anthocyanin synthase; AS, Aureusidin synthase; C4H, cinnamate-4-hydroxylase; CHR, chalcone reductase; DFR, dihydroflavonol 4-reductase; DMID, 7,2'-dihydroxy 4'-methoxyisoflavonol dehydratase; F3H, flavanone 3-hydroxylase; F3'H, flavonoid 3' hydroxylase; F3'5'H, flavonoid 3'5' hydroxylase; FS1/FS2, flavone synthase; I2'H, isoflavone 2'-hydroxylase; IFR, isoflavone reductase; IFS, isoflavone synthase; IOMT, isoflavone O-methyltransferase; LCR, leucoanthocyanidin reductase; LDOX, leucoanthocyanidin dioxygenase; OMT, O-methyltransferase; VR, vestitone reductase.

that hydrolyses flavonoid glycosides and flavonoid glucuronides and sulfates (Griffiths and Barrow 1972). The further hydrolysis may go on and lead to catabolism of flavonoid backbone to its constituent phenolic and carboxylic acid products and finally to carbon dioxide (Rechner et al. 2002). Nevertheless the metabolism due to oxidation by ROS is one of the major pathways leading to formation of different metabolites.

Antioxidant action

Antioxidants are chemical species which reacts with free radicals and terminate the chain reaction before the radicals damages the other functional molecules like proteins, DNA and lipid in membranes. There are several enzyme systems like catalase, superoxide-dismutase etc. and molecules that scavenge free radicals e.g. glutathion. Cells can also obtain antioxidants through the circulation after consumption of antioxidant rich beverages and food in diet. However, several chemicals, which normally cannot be obtained from food, have also been found to possess antioxidant property (Kasote et al. 2005).

The dietary components of vegetables, fruit and nuts and seeds are rich source of antioxidants which are able to reverse the effects of oxidative stress towards cells e.g. water soluble antioxidant Vitamin C possesses a good antioxidant and is able to quench a variety of ROS. Vitamin E displays a high biological activity related to its antioxidant power. It is a lipid soluble antioxidant in human. Polyphenols include the flavonoids, lignans, glucosinolates, trihydroxystilbenes (resveratol and polydatin) and phenolic acids. Over 9000 different flavonoids have been isolated from plants. These directly modify the redox status of cells and also interfere with cellular functions like cell cycle and apoptosis (Cipak et al. 2003).

ROS or RNS are regularly produced as an activity of normal human metabolism and has both beneficial and deleterious effects in various diseases. ROS and RNS play a bimodal role in cellular functions by functioning beneficial as cytotoxic agents against bacteria and parasites while on other hand they are able to induce damage to normal tissue. The balance between prooxidant (chemicals that induce oxidative stress) and antioxidant is found to be crucial for normal functioning of biological systems and an imbalance generally leads to damage that’s defined as oxidative stress (Di Meo et al. 2016). Oxidative stress is special feature of these agents (ROS and RNS) causing significant loss of redox sensitive cellular components like proteins, lipids and nucleic acids. ROS and RNS were recognized as key players for host defense mechanism...
Flavonoids: Biosynthesis, Metabolism, Mechanism of Antioxidation and Clinical Implications: A Review

including the respiratory burst of neutrophils and of the NADP oxidase complex.

Mechanism of antioxidant action

Flavonoids exert their antioxidative actions by a number of mechanisms like (i) direct radical scavenging; (ii) scavenging of peroxynitrite; (iii) inhibition of pro-oxidant enzymes; (iv) regulation of genes; (v) metal chelation.

Direct radical scavenging

Flavonoids stabilizes the free radical species and terminates the further formation of free radicals by the following ways, (i) by transfer of a hydrogen atom to the radical (Fig 3) by which radical becomes stabilized and (ii) electron transfer (Fig 4) in which an electron is transferred to radical so that its reactivity due to single electron is reduced. Fig 5 shows the structural mechanism of radical scavenging of quercetin.

The hydroxyl groups on the B ring are able to form intramolecular hydrogen bond which can be stabilized in different ways (Zhang 1999).

Scavenging of peroxynitrite ion and nitric oxide

Peroxynitrite (sometimes called peroxonitrite) is the anion with the formula ONOO⁻. It is an oxidant and due to its property it can cause lot of damage to the biomolecules. It is produced by the chemical reaction between unstable radical superoxide and nitric oxide. Nitric oxide and superoxide are produced during the inflammation process by nitric oxide synthase. It has been shown that not only peroxynitrite but nitric oxide as well can cause a lot of tissue injury as it is also a potent oxidizing radical.

Flavonoids can scavenge free radical like superoxide and hence can stop the formation of peroxynitrite ion which leads to reduction in oxidative damage. Also it has been established that flavonoid can directly lead to scavenging of nitric oxide which blocks the further formation of peroxynitrite. Quercetin was found to be most active in scavenging of peroxynitrite ion with 0.93 μM as the concentration for producing 50% inhibition of reaction producing the ion (Zhang 1999).

Inhibition of enzymes

Several enzymes are responsible for generation of intermediates which are implicated in oxidative loss of tissue. Xanthine oxidoreductase is an enzyme complex which helps in oxidation of hypoxanthine to xanthine and can further oxidize xanthine to uric acid. This enzyme complex, which
exists as different moiety which can exist in interconvertible forms xanthine dehydrogenase and xanthine oxidase, is responsible for generating reactive oxygen species (ROS), which is known to involved in development of ischemic injury and also in some other diseases (van Acker et al. 1996a). Inhibition of the enzyme XO is used to treat various diseases of the system. Flavonoids are found to inhibit the XO and thereby reduction in production of ROS (Van Acker et al. 1996b).

Cyclooxygenase (COX) is an enzyme which is involved in synthesis of important biological mediators including prostacyclin, prostaglandins and thromboxane. Lipoxigenases (LOX) are a family of iron containing enzymes containing which catalyze the deoxygenating of polyunsaturated fatty acids (PUFA) in lipids. It has been shown that free radicals are generated during the biochemical activity of COX and LOX. Green tea flavonoids were found to inhibit the COX and LOX based metabolic activities. EGCG and ECG displayed noncompetitive inhibition against COX-1 (Russo et al. 2000).

Regulation of genes
As already stated above, the role of Nitric oxide (NO) is crucial in production of oxidative stress. NO is produced by induction of inducible nitric oxide synthase (iNOS) and black tea flavonoids EGCG are found to reduce the induction of iNOS expression in macrophages by down-regulating NF-kB (Burd and Oleszek 2001).

Metal chelation
Metal ions (mainly copper and iron) are found to act as catalyst in the reaction producing free radicals. Hydrogen peroxide is found to produce hydroxyl radical in presence of metal at low oxidation state. Metal chelating compounds can bond with the free metal ions and render them stable in terms of their redox potential and thus preventing them to participate in the reaction generating free radicals. Flavonoids are found to be effective metal ion chelators that attribute to their antioxidant mechanisms (Pasha et al. 2007). Metal binding efficacy of Quercetin and its potential to inhibit the radical formation of studied and it is found that it can chelate iron(ii) in different hydration states (Tripoli et al. 2007). Electrospray mass spectroscopy study of flavonoid-metal complexes has revealed that for the flavonoid naringenin and few flavones, the chelating site is preferentially located at the 5-OH and 4-oxo groups (Wolfe and Liu 2008).

Role of particular groups on the activity
The antioxidant activity of flavonoid is particularly related to their structure. Among the various mechanisms, terminating the chain reaction leading to formation of stable molecule is the most important. In general many factors, such as positions of OH groups, properties of substituent group and hydrogen bond formation, influences the antioxidant activity The different rings of the flavonoid displays varied functional properties in relation to antioxidation.

A ring
The effect of substituent is very low for the antioxidant activity of flavonoids but can show considerable significance when the B and C ring are lacking the active groups. Catechol group is found to be effective when present on A ring (e.g. 7, 8-dihydroxyflavone and 8-hydroxyacacetin). The low contribution of A ring to the antioxidative nature is due to its low accessibility to the radical.

Glycosylation of the free hydroxyl reduces the activity of flavonoid towards radical scavenging and metal chelation. The steric tension developed due to addition of sugar residue reduces the ability to chelate ions. The importance of sugar residue on the activity of flavonoids can be seen with studies on luteolin and rutin, which has the same base structure (Van Acker et al. 1996b).

B ring
B ring of flavonoid is the more active in the antioxidant property as compared to A and C ring. Its hydroxy groups are preferentially attacked to abstract hydrogen or electron transfer (Wolfe and Liu 2008). The B ring acts as a proton donor, which attributes significantly to its activity. It also enables the formation of a relatively stable radical through electron delocalization between the functional groups. The catechol (ortho dihydroxy) group of B ring is the found to be important antioxidant activity. It is involved in the abstraction of hydrogen and chelation of metal ions (Leopoldini et al. 2006). Substantial difference in the activities of Morin and Myricetin suggests the importance of ortho dihydroxy group (Wolfe and Liu 2008). Flavonoids containing two hydroxyl groups at B ring are found to possess antioxidative potential as they are able to form intramolecular hydrogen bonding between the 3' - and 4' -hydroxyls and stabilized radical due to electron delocalization (Van Acker et al. 1996b). A very low activity is shown by flavanones (naringin and naringenin), which possess hydroxyl group at C4' in B ring and single bond at C2-C3 position in C ring. Methylated flavanone hesperetin (5, 7, 3'-trihydroxy-4'-methoxyflavanone) shown certain activity which suggests that methoxy substitution at certain position increases the antiradical activity (Burd and Oleszek 2001). When B ring is pyrogallol (o-m-p trihydroxy), as in Myricetin, the antioxidant activity is found to decrease which is attributed to the pro-oxidant activity of additional C5' hydroxyl group (Van Acker et al. 1996b). The position of B ring w.r.t. benzopyran is also a determinant factor for antioxidative activity as studies of isoflavones reveals their poor hydrogen donor capacity and higher antioxidant activity (Wolfe and Liu 2008). Genistein is found to be a poor antioxidant when used in liposome and miceller systems, however, it was shown to be an effective antioxidant in assays involving hydrogen peroxide or iron, despite it is not a good metal chelator. It may be due to the absence of a 2, 3-double bond, which is a significant determinant of isoflavone antioxidant activity.

C ring
Presence of C2-C3 double bond, C4-oxo group and C3-
hydroxyl are the most important structural features for the activity of flavonoids. The flavonoids containing C3 hydroxyl groups e.g. kaempferol, fisetin, galangin, robinetin, quercetin, morin and kaempferide show comparable antioxidant activity with the synthetic antioxidant BHT (2,6-bis (1,1-dimethyl-4-methylphenol) and D,L-R-tocopherol which have high antioxidant property and this property is lost when the C ring is devoid of C3 hydroxyl group (Burda and Oleszek 2001). Studied on flavonoids of Chorizante diffusa have shown that the flavonols with a free hydroxyl group at 3rd position possesses better antioxidant potential than its derivatives (Chung et al. 1999). Flavonol 3-O-glycosides do not possess free C-3 hydroxyl group which results in their inability to inhibit oxidation. Favoronoids devoid of any hydroxyl group e.g. flavone, flavanone and 8-methoxyflavone, or having free hydroxyl groups only at C-5 or C-7 e.g. 5-hydroxyflavone, 7-hydroxyflavone and 5,7-dihydroxyflavone, does not scavenge free radicals (Burda and Oleszek 2001). In flavonoids, such as quercetin, luteolin, taxifolin and catechin, loss of any of the functional groups from C-ring, 4-keto group, the 2, 3-double bond, or 3-hydroxy group, is shown to cause reduction of antioxidant activity (van Acker et al. 1996a). Structurally, when a flavonoid loosed a 3-OH group, a change in bond angles of B ring relative to A and C ring takes place, which may be responsible for causing loss in electron delocalization efficiency and hence the antioxidant activity. Also, 4 keto-3/5hydroxyl bonds, which are responsible for flavonoid radical stabilization contributes to the importance of C ring in antioxidant activity(Guo et al. 2002).

Clinical implications

The role of free radicals in development of diseases like Alzheimer’s disease (AD), Wilson’s disease, Parkinson’s disease, joint diseases, chronic hepatitis C, dermatological diseases, cancers and diabetes have been reported by several authors. Action of free radicals is implicated in ageing and is also reported to be involved in development of epilepsy. Flavonoids have been shown to reduce ischemic-reperfusion injury in the rats as well (Zhang et al. 2017). Shahanas et al. 2019 have reviewed the health benefits of flavonoids obtained from cocoa plant.

Alzheimer’s disease (AD)

It is found that some of the processes leading to free radical formation, e.g., brain trauma, ageing, are critical risk factors for AD (Benzi and Moretti 1995). Also Down’s syndrome, where the accumulation of free radicals is observed to increase, has some symptom similarities with AD. The brains of AD patients show a marked increase in amyloid-β peptide (Aβ), the main constituent of senile plaques and cerebrovascular amyloid deposits, which can be associated with oxidative damage to brain cells (Boh 1996). Oligomeric Aβ induces the formation of fibrils of Aβ (fAβ) and exerts oxidative stress. fAβ increases accumulation of Aβ through induction of BACE-1 (β-site AβPP Cleaving Enzyme) expression and activation, which may contribute towards toxicity of fAβ. The significant amount of lipid peroxidation in brain of AD patients has been implicated with production of ROS and AD pathogenesis (Droge 2002). Multiple factors, such as amyloid-β peptide and tau protein aggregation, oxidative stress, excessive transition metals and reduced acetylcholine (ACh) level, also contribute towards development of AD (Ji and Zhang 2006). The drug designing strategy for combating the AD aims at targets like acetylcholinesterase (AChE), monoamine oxidase (MAO), β-secretase and ROS. Flavonoids which able to bind and sequester metal ions and scavenge ROS are therefore prospective start points for drug development strategies for AD. Flavonoids like quercetin, gossypetin, myricetin are found to block Aβ- or tau-aggregation and can also inhibit MAO (isoenzymes A and B) (Kim et al. 2005). Mie Hirohata has reported the molecular mechanisms underlying the anti-amyloidogenic effects of five flavonoids (myricetin, quercetin, morin, kaempferol, (+) - catechin and (-) -epicatechin). They found that Myricetin and other flavonoids, binds preferably and reversibly to the amyloid fibril (fAβ) and exerts its anti-amyloidogenic effects (Hirohata et al. 2007). Another study involved Epigallocatechin-3-Gallate (EGCG) establishes it as modulator of Amyloid Precursor Protein cleavage that reduces the formation of Aβ production and reduction of β-amyloid plaques in the brain (Rezai-Zadeh et al. 2005). Bakhtiari et. al. has recently reviewed the effect of flavonoids against AD and other related neural dysfunctions (Bakhtiari et al. 2017). They analyzed that, Phosphatidylinositol 3-kinase (PI3K)/AKT and mitogen activated protein kinase (MAPK) pathways, both are affected by flavonoids. Recently, Zaplatic and coworkers have have reviewed the molecular mechanisms involved in attenuation of AD by flavonoid quercetin (Zaplatic et al. 2019).

Parkinson’s disease (PD)

PD is characterized by loss of neurons in the midbrain called as substantia nigra. The reduction in levels of nigral dopamine (neurotransmitter) results in a decrease in stratal dopamine that generates PD symptoms. The relationship between the oxidative stress and the dopamine cell degeneration and the process cascade in between has been well studied (Tretter et al. 2004). The level of oxidative stress in the substantia nigra pars compacta (SNc) region of the PD patients is found to be higher as compared to normal people. The SN region of PD patients also shows markers for lipid oxidative damage, glutathione content reduction, increase level of iron which catalyzes the production of highly reactive OH radicals from hydrogen peroxide. These all factors are ultimately contributing to neural cell death in PD patients. In vivo study on mouse treated with the dopaminergic neurotoxin N-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP), shows increased oxygen free radical production and antioxidant enzyme activities (Cassarino et al. 1997).

Among the various approaches for protection of nigrostriatal neurons against oxidative stresses, antioxidants have been suggested as an important and effective way. Studies conducted by Vitamin E supplementation as natural antioxidant revealed that the treatment significantly alleviates
1993, Baynes 1991). The role of flavonoids is also found in vasodilation where they induce relaxation in smooth muscles of blood vessels. This is determined to be mediated through protein kinase C inhibition, phosphodiesterase inhibition, or reduction in calcium uptake (Duarte et al. 1993).

Diabetes

Diabetes is a metabolic disorder characterized by hyperglycemia, an increase in blood glucose level and elevated levels of ROS have been implicated in diabetes mellitus. There are several mechanisms which are proposed for the association of diabetes with high levels of ROS examined in biological systems.

Generation of superoxide radicals due to glucose auto-oxidation and the interaction of glycated proteins with cell surface receptors stimulate ROS production and intracellular glutathione level reduction (Van Dam et al. 1995). The elevated levels of ROS have been a major factor contributing towards the development of other complications like atherosclerosis etc. (Aragno et al. 2000, Baynes 1991). Hyperglycemia also induces peroxidation of LDL in endothelial cells which may be associated with increased ROS levels (Maziere et al. 1995).

Insulin is produced by β-cells in pancreas and ROS is found to destroy these cells and that is one of the main reasons which cause type1 diabetes. The activity of enzymes, like SOD, catalase, GPX, which are responsible for alleviating oxidative stress, are found to be low in islets β-cells than in other tissues that may lead to cell death by oxidative stresses (Yazdanparast et al. 2007, Matsuda et al. 2005). In a study involving in vivo expression of the antioxidant enzymes protected the β-cells from streptozotocin (STZ)-induced diabetes in animal model (Yazdanparast et al. 2007). Another work also revealed that Quercetin and Epicatechin, widely distributed plant flavonoids, are capable of inhibiting the negative effects of STZ on the pancreatic β-cells (Coskun et al. 2005, Kim et al. 2003). Another flavonoid, silymarin, has been found to suppress the production of inflammatory cytokines, such as IL-1β, IFN-γ and TNF-α which are supposed initiate the destruction of β-cells (Matsuda et al. 2005). Complexes for certain elements like Vanadium (IV) with naturally occurring glycosylated flavonoids, kaempferol-3-neohesperidoside and kaempferitin are capable to mimic activity of insulin (Cazarolli et al. 2006). Kaempferitin was found to decrease blood glucose levels in normal and diabetic rats effectively and interestingly this effect was not related to reduced intestinal absorption of glucose (de Sousa et al. 2004). Rezabaksh et al. have proved that quercetin plays a positive role in high glucose induced damage of endothelial cells thus saving them from effects of hyperglycemia (Rezabaksh et al. 2019).

Cardiovascular diseases

Several studies have shown that ROS is involved in development of various cardiovascular diseases (Kukreja and Hess 1992). Atherosclerosis is marked by elevated plasma LDL cholesterol concentrations and oxidized LDL is found to be associated with elevated levels of cholesterol in macrophages and atherogenesis. LDL is oxidized by free radicals which cause physical and chemical changes which are supposed to initiate and promote atherogenesis in several ways. Experimental reports have suggested a positive effect of intakes of phenolic antioxidants on LDL oxidation (Gaziano and Hennekens 1993) and a several dietary factors, including flavonoids, acts as effective antioxidants and helps in the prevention of Coronary Heart Disease (CHD). Study by Hertog et al. (Hertog et al. 1993) examined the relative occurrence of CHD and intake of flavonoids and they concluded a significant association between flavonoid intake and CHD development.

Flavonoids are shown to inhibit oxidative modification of LDL in vitro caused by activity of macrophages or copper ions. The in vivo capacity of the antioxidant depends upon their absorption and bioavailability and in particular the association of flavonoids with lipoproteins. There have been a number of mechanisms proposed by which the flavonoids act as inhibitors of LDL oxidation. Flavonoids inhibit the generation of free radicals or by preferentially being oxidized than α-tocopherol hence delaying the start of peroxidation (de Whalley et al. 1990). They regenerate α-tocopherol by donating hydrogen atom to α-tocopherol and inhibit the formation of free radicals by chelating metal ions. Flavonoids such as catechin, rutin and quercetin strongly inhibits oxidation of LDL, inhibits lactose peroxidase (LPO) and the associated toxicity of oxidized LDL towards the cells. Also, cells treated, in prior, with these flavonoids shows resistant towards the cytotoxic effects of previously oxidized LDL (Afanas’ev et al. 1989, Cholbi et al. 1991).

Plant flavonoids are also found to inhibit platelet aggregation and adhesion which are implicated in thrombosis and atherosclerosis (Duarte et al. 1993, Tzeng et al. 1991). There is more than one pathway involved in this property of flavonoids. Several reports have suggested the role of flavonoids in inhibiting platelet aggregation by stimulating adenylyl cyclase or by inhibiting cAMP phosphodiesterase (PDE) activity (Duarte et al. 1993, Kuppusamy and Das 1992). Also Flavonoids may inhibit platelet aggregation by estranging the formation of thromboxane and thromboxane receptor function (Yazdanparast et al. 2007).
Osteoarthritis and Rheumatoid Arthritis

Osteoarthritis (OA) is condition which is characterized by loss of the extracellular matrix (ECM) of articular cartilage (also called hyaline cartilage) in the affected joints. Investigations have shown that role of free radicals in the pathogenesis of articular cartilage degradation. This pathogenesis involves complex mechanism with multiple pathways. They act as integral factors for intracellular signaling mechanism and modulate the gene expression which is required for cartilage tissue homeostasis. Any imbalance in the free radicals metabolism can lead to deleterious effects to these tissues. In RA the process of angiogenesis is affected and newly formed blood capillaries aid in destruction of articular cartilage.

Several studies involving intake of flavonoids and their correlation with reduced inflammation in OA and RA have given an insight of the possible role of the antioxidant activity of the compounds and its effect disease. Hesperidin has shown to suppress the collagen induced arthritis in rats (Kawaguchi et al. 2006). Apigenin, which is found to act as inhibitor for COX-2 and NF-κB can be valuable in disease like RA (Kang et al. 2009). Activation of these factors (COX-2 and NF-κB) has been associated in pathogenesis of arthritis.

Cancer

The epidemiological studies regarding the flavonoid intake and cancer prevention has been documented in a review by Block (Block et al. 1992) which suggested that by increasing the flavonoid components in food a significant effect in health can be achieved. Flavonoids have anticarcinogenic, antimutagenic, antiproliferative effects. These compounds also induce apoptosis in cancerous cells. Dysregulation of apoptosis plays a critical role in oncogenesis. In recent, flavanone Naringenin found in tomato and citrus food is found to exert inhibitory effects on oncogenesis (Guerreiro et al. 2007). Protoapigenone, a novel flavonoid, showed a significant anti-ovarian cancer activity with low toxicity both in vitro and in vivo (Chang et al. 2008). Patil et al. (2009) with their studies on lime flavonoids proposed that the antiproliferative activity is proportional to flavonoid content of the sample (Patil et al. 2009). Pittella et al. established that the level of flavonoids, antioxidant and antitumor activities are positively correlated in the aqueous extract of Centella asiatica (Pittella et al. 2009). Wogonin is found effective in inhibiting cell growth and induction of apoptosis in both in vitro and in vivo models (Chung et al. 2008). Aqueous charomomile extract (a traditional medicinal plant) containing apigenin 7-O-glucoside, luteolin, patuletin, quercetin, myricetin and rutin is found to inhibit COX-2 enzyme activity and inhibited the release of LPS-induced prostaglandin E(2) (Srivastava et al. 2009). Das et al. showed that apigenin, (-)epigallocatechin, EGCG and genistein induce apoptosis in human glioblastoma cells but not in normal normal astrocytes. The apoptosis is found to be induced by increase in ROS (Das et al. 2010). Anthocyanins induced apoptosis in human colon cancer cells in part through activating p38 MAPK and suppressing Akt (Shin et al. 2009). The most comprehensive work for the effect of flavonoids on mammalian cells and its implication in various diseases is done by (Middleton et al. 2000). Sun et al. 2019 have used a modified quercetin and have shown that it has better bioavailability which can be used as a potential drug against breast cancer.

Others diseases

Apart from the above discussed diseases flavonoids can exert their effect on other ROS mediated diseases like skin diseases. UV radiations (UVR) generate ROS which causes cutaneous damage. Acute exposure of UVR results in a range of developments in the biological systems including edema and pruritus, followed by tanning and thickening of epidermis and further exposure may lead to aging and carcinogenesis which are found to be partly mediated by ROS (Boh 1996). Aging is also found to be related to deleterious side effects of free radicals (Harman 2002). Free radicals have been associated with disease damage in chronic hepatitis C (De Maria et al. 1996). Flavonoids are also found to have antimicrobial activity (Chacha et al. 2005, Kosalec et al. 2005). They possess antifungal activity as well (Kuster et al. 2009, Affili et al. 1991).

Significant statement

Natural compounds have been found beneficial in alleviation complex disorders like AD, PD, CHD, Diabetes, OA, RA and cancers. Role of structural moieties of flavonoids have been correlated with the mechanisms through which these compounds exerts their effects in physiological complications. It is implicated through structural comparison that presence of certain structural features at a position may be responsible for the activity of that compound. E.g. presence of hydroxyl group in flavonoid 3’ or 4’ “B” ring is associated with anti amyloidogenic activity which alleviates AD symptoms. Further confirmation and better insights can be made by SAR studies and wet lab experiments.

This work is helpful in extracting the information for performing SAR studies and validation experiments. The future scope lies in development of new drugs based on structures of natural compounds.

ACKNOWLEDGEMENT

The author is thankful to various authors for making their articles available wherever it is not free for access. No funding was taken to prepare this article.

Conflict of interest

The author declares that there is no conflict of interest.

REFERENCES

Afanas’ev I.B., Drozhko A.I., Brodskii A.V., Kostyuk V.A., Potapovitch A.I. (1989). Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochemical Pharmacology. 38(11): 1763-1769.
Flavonoids: Biosynthesis, Metabolism, Mechanism of Antioxidation and Clinical Implications: A Review

Afifi F.J., Al Khalil S., AbdulHaq B.K., Mahasneh A., Al Eisawi D.M., Sharaf M., Wong L.K., Schiff Jr P.L. (1991). Antifungal flavonoids from Varthemia iphionoides. Phytotherapy Research. 5(4): 173-175.

Aragno M., Parola S., Tamagno E., Brignardello E., Manti R., Danni O., Bocuzzi G. (2000). Oxidative derangement in rat synaptosomes induced by hyperglycaemia: restorative effect of dehydroepiandrosterone treatment. Biochemical Pharmacology. 60(3): 389-395.

Bakhtiari M., Panahi Y., Ameli J., Darvishi B. (2017). Protective effects of flavonoids against Alzheimer’s disease-related neural dysfunctions. Biomedicine and Pharmacotherapy. 93: 218-229.

Baynes J.W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes. 40(4): 405-412.

Benzi G., Moretti A. (1995). Are reactive oxygen species involved in Alzheimer’s disease? Neurobiology of Aging. 16(4): 661-674.

Beretz A., Cazenave J.P. (1988). The effect of flavonoids on blood-vessel wall interactions. Progress in Clinical and Biological Research. 280: 187-200.

Block G., Patterson B., Subar A. (1992). Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutrition and Cancer. 18(1): 1-29.

Boh E.E. (1996). Role of reactive oxygen species in dermatologic diseases. Clinics in Dermatology. 14(4): 343-352.

Burbulis I.E., Winkel-Shirley B. (1999). Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proceedings of the National Academy of Sciences. 96(22): 12929-12934.

Burda S., Oleszek W. (2001). Antioxidant and antiradical activities of flavonoids. Journal of Agricultural and Food Chemistry. 49(6): 2774-2779.

Cassarino D.S., Fall C.P., Swerdrow R.H., Smith T.S., Halvorsen E.M., Miller S.W., Parks J.P., Parker Jr W.D., Bennett Jr J.P. (1997). Elevated reactive oxygen species and antioxidant enzyme activities in animal and cellular models of Parkinson’s disease. Biochimica et Biophysica Acta (BBA): Molecular Basis of Disease. 1362(1): 77-86.

Cazaroli L.H., Zanatta L., Jorge A.P., de Sousa E., Zanatta L., Seifriz I., Creczynski-Pasa T., Pizzolatti M.G., Szpoganicz B., Silva F.t.R.M.B. (2004). Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7-O-[r]-dirhamnoside from Bauhinia f orficata Leaves. Journal of Natural Products. 67(5): 829-832.

de Souza E., Zanatta L., Seifriz I., Creczynski-Pasa T.B., Pizzolatti M.G., Szpoganicz B., Silva F.t.R.M.B. (2004). Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7-O-[r]-dirhamnoside from Bauhinia f orficata Leaves. Journal of Natural Products. 67(5): 829-832.

de Souza E., Zanatta L., Seifriz I., Creczynski-Pasa T.B., Pizzolatti M.G., Szpoganicz B., Silva F.t.R.M.B. (2004). Hypoglycemic Effect and Antioxidant Potential of Kaempferol-3,7-O-[r]-dirhamnoside from Bauhinia f orficata Leaves. Journal of Natural Products. 67(5): 829-832.

Di Meo S., Reed T.T., Venditti P., Victor V.M. (2016). Harmful and beneficial role of ROS. Oxidative Medicine and Cellular Longevity.

Droge W. (2002). Free radicals in the physiological control of cell function. Physiological Reviews. 82(1): 47-95.

Duarte J., Vizzaino F.P., Utrilla P., Jimenez J., Tamargo J., Zarzuelo A. (1993). Vasodilatory effects of flavonoids in rat aortic smooth muscle. Structure-activity relationships. General Pharmacology. 24(4): 857-862.

Fariss M.W., Zhang J.G. (2003). Vitamin E therapy in Parkinson’s disease. Toxicology. 189(1-2): 129-146.

Galali G., O’Brien P.J. (2004). Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radical Biology and Medicine. 37(3): 287-303.

Gaziano J.M., Hennekens C.H. (1993). The epidemiology of dietary antioxidants and atherosclerotic disease. Asian Pac. J. Clin. Nutr. 2: 27-31.

Griffiths L.A., Barrow A. (1972). Metabolism of flavonoid compounds in germ-free rats. Biochemical Journal. 130(4): 1161.

Guerreiro S., Monteiro R.R., Calhau C.Á.O., Azevedo I., Soares R. (2007). Naringenin inhibits cell growth and migration in human breast cancer cell lines. Federation of American Societies for Experimental Biology.

Guo Q., Rimbach G., Moini H., Weber S., Packer L. (2002). ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicology. 179(1-2): 171-180.
Harman D. (2002). Aging: a theory based on free radical and radiation chemistry. Science's SAGE KE. (37): 14.

Hertog M.G.L., Feskens E.J.M., Kromhout D., Hollman P.C.H., Katan M.B. (1993). Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. The Lancet. 342(8878): 1007-1011.

Hirohata M., Hasegawa K., Tsutsumi-Yasuhara S., Ohhashi Y., Ookoshi T., Ono K., Yamada M., Nakii H. (2007). The anti-amyloidogenic effect is exerted against alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry. 46(7): 1888-1899.

Hrazdina G., Wagner G.J. (1985). Metabolic pathways as enzyme complexes: evidence for the synthesis of phenylpropanoids and flavonoids on membrane associated enzyme complexes. Archives of Biochemistry and Biophysics. 237(1): 88-100.

Iwashina T. (2003). Flavonoid function and activity to plants and other organisms. Biological Sciences in Space. 17(1): 24-44.

Ji H.-F., Zhang H.-Y. (2006). Theoretical evaluation of flavonoids as multipotent agents to combat Alzheimer’s disease. Journal of Molecular Structure: Theochem. 767(1-3): 3-9.

Kanadaswami C., Lee L.-T., Lee P.-P.H., Hwang J.-J., Ke F.-C., Huang Y.-T., Lee M.-T. (2005). The antitumor activities of flavonoids. In vivo. 19(5): 895-909.

Kang H.-K., Ecklund D., Liu M., Datta S.K. (2009). Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Research and Therapy. 11(2): R59.

Kasote D.M., Katyare S.S., Hegde M.V., Bae H. (2005). Significance of antioxidant potential of plants and its relevance to therapeutic applications. International Journal of Biological Sciences. 11(8): 982.

Kawaguchi K., Maruyama H., Kometani T., Kumazawa Y. (2006). Suppression of collagen-induced arthritis by oral administration of the citrus flavonoid hesperidin. Planta Medica. 72(05): 477-479.

Kim H., Park B.S., Lee K.G., Choi C.Y., Jiang S.S., Kim Y.H., Lee S.-E. (2005). Effects of naturally occurring compounds on fibroblast formation and oxidative stress of l-α-amyloid. Journal of Agricultural and Food Chemistry. 53(22): 8537-8541.

Kim M.-J., Ryu G.R., Chung J.S., Sim S.S., Rhee D.J., Yoon S.H., Hahn S.J., Kim M.S., Jo Y.H. (2003). Protective effects of epicatechin against the toxic effects of streptozotocin on rat pancreatic islets: in vivo and in vitro. Pancreas. 26(3): 292-299.

Kosalec I., Pepelnjak S., Bakmaz M., Vladimir-Knezevic S. (2005). Flavonoid analysis and antimicrobial activity of commercially available propolis products. Acta Pharmaceutica. 55(4): 423-430.

Kukreja R.C., Hess M.L. (1992). The oxygen free radical system: from equations through membrane-protein interactions to cardiovascular injury and protection. Cardiovascular Research. 26(7): 641-655.

Kuppusamy U.R., Das N.P. (1992). Effects of flavonoids on cyclic AMP phosphodiesterase and lipid mobilization in rat adipocytes. Biochemical Pharmacology. 44(7): 1307-1315.

Kuster R.M., Arnold N., Wessjohann L. (2009). Anti-fungal flavonoids from Tibouchina grandifolia. Biochemical Systematics and Ecology. 37(1): 63-65.

Leopoldini M., Russo N., Chiodo S., Toscano M. (2006). Iron chelation by the powerful antioxidant flavonoid querceatin. Journal of Agricultural and Food Chemistry. 54(17): 6343-6351.

Levites Y., Weinreb O., Maor G., Youdim M.B.H., Mandel S. (2001). Green tea polyphenol Epigallocatechin-3-Gallate prevents MPTP induced dopaminergic neurodegeneration. Journal of Neurochemistry. 78(5): 1073-1082.

Matsuda T., Ferrari K., Todorov I., Kuroda Y., Smith C.V., Kandeel F., Mullin Y. (2005). Silymarin protects pancreatic β-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways. Endocrinology. 146(1): 175-185.

Maziere C., Auclair M., Rose-Robert F., Leffon P., Maziere J.C. (1995). Glucose-enriched medium enhances cell-mediated low density lipoprotein peroxidation. FEBS letters. 363(3): 277-279.

Middleton E., Kanadaswami C., Theoharides T.C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacological reviews. 52(4): 673-751.

Pasha F.A., Cho S.J., Beg Y., Tripathi Y.B. (2007). Quantum chemical QSAR study of flavones and their radical-scavenging activity. Medicinal Chemistry Research. 16(7-9): 408-417.

Patil J.R., Chidambaram Murthy K.N., Jayaprakash G.K., Chetti M.B., Patil B.S. (2009). Bioactive compounds from Mexican lime (Citrus aurantifolia) juice induce apoptosis in human pancreatic cells. Journal of Agricultural and Food Chemistry. 57(22): 10933-10942.

Pittal et al., Dutra R.C., Junior D.D., Lopes M.T.P., Barbosa N.D.R. (2009). Antioxidant and cytotoxic activities of Centella asiatica (L.) Urb. International Journal of Molecular Sciences. 10(9): 3713-3721.

Rechner A.R., Kuhnle G., Bremmer P., Hubbard G.P., Moore K.P., Rice-Evans C.A. (2002). The metabolic fate of dietary polyphenols in humans. Free Radical Biology and Medicine. 33(2): 220-235.

Ren W., Qiao Z., Wang H., Zhu L., Zhang L. (2003). Flavonoids: promising anticancer agents. Medicinal Research Reviews. 23(4): 519-534.

Rezabakhsh A., Rahbarghazi R., Malekinajad H., Fathi F., Montaseri A., Garjani A. (2019). Quercetin alleviates high glucose-induced damage on human umbilical vein endothelial cells by promoting autophagy. Phytochemistry. 56: 183-193.

Rezai-Zadeh K., Shytle D., Sun N., Mori T., Hou H., Jeanniton D., Ehrhart J., Townsend K., Zeng J., Morgan D. (2005). Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. Journal of Neuroscience. 25(38): 8807-8814.

Ross J.A., Kasum C.M. (2002). Dietary flavonoids: bioavailability, metabolic effects and safety. Annual Review of Nutrition. 22(1): 19-34.

Russo N., Toscano M., Uccella N. (2000). Semiempirical molecular modeling into quercetin reactive site: structural, conformational and electronic features. Journal of Agricultural and
Food Chemistry. 48(8): 3232-3237.
Shahanas E., Panjikkaran S.T., Aneena E.R., Sharon C.L., Remya P.R. (2019). Health Benefits of Bioactive Compounds from Cocoa (Theobroma cacao). Agricultural Reviews. 40(2): 143-149.
Shin D.Y., Lee W.S., Lu J.N., Kang M.H., Ryu C.H., Kim G.Y., Kang H.S., Shin S.C., Choi Y.H. (2009). Induction of apoptosis in human colon cancer HCT-116 cells by anthocyanins through suppression of Akt and activation of p38-MAPK. International Journal of Oncology. 35(6): 1499-1504.
Srivastava J.K., Pandey M., Gupta S. (2009). Chamomile, a novel and selective COX-2 inhibitor with anti-inflammatory activity. Life Sciences. 85(19-20): 663-669.
Sun H., Jin H., Pang B., Zhao H., Yang R., Lu Y., Shao D., Jiang C., Shi J. (2019). The mechanism of quercetin anti-breast cancer and nano-modification enhancing the anti-tumor effect of quercetin. BIBE 2019; The Third International Conference on Biological Information and Biomedical Engineering. VDE. 1-5.
Tretter L., Sipos I., Adam-Vizi V. (2004). Initiation of neuronal damage by complex I deficiency and oxidative stress in Parkinson’s disease. Neurochemical Research. 29(3): 569-577.
Tripoli E., La Guardia M., Giammanco S., Di Majo D., Giammanco M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chemistry. 104(2): 466-479.
Tzeng S.H., Ko W.C., Ko F.N., Teng C.M. (1991). Inhibition of platelet aggregation by some flavonoids. Thrombosis Research. 64(1): 91-100.
van Acker S.A.B.E., de Groot M.J., van den Berg D.-J., Tromp M.I.N.J.L., DonnÅs-Op den Kelder G., van der Vijgh W.J.F., Bast A. (1996a). A quantum chemical explanation of the antioxidant activity of flavonoids. Chemical Research in Toxicology. 9(8): 1305-1312.
Van Acker S.A.B.E., Tromp M.I.N.J.L., Griffioen D.S.E.H., Van Bennekum W.P., Van Der Vijgh W.J.F., Bast A. (1996b). Structural aspects of antioxidant activity of flavonoids. Free Radical Biology and Medicine. 20(3): 331-342.
Van Dam P.S., Gispen W.H., Bravenboer B., Van Asbeck B.S., Erkens D.W., Marx J.J.M. (1995). The role of oxidative stress in neuropathy and other diabetic complications. Diabetes/ metabolism reviews. 11(3): 181-192.
Verma R., Prasad R., Gupta A. (2018). Assessment of nutritional and phytochemical composition of composite flour rich in functional compounds. Asian Journal of Dairy and Food Research. 37(2): 149-153.
Walle T. (2004). Absorption and metabolism of flavonoids. Free radical biology and medicine. 36(7): 829-837.
Walle T., Alston T., Browning A., Reed S., Walle U.K. (2003). Effect of dietary flavonoids on oral cancer cell proliferation: bioactivation by saliva and antiproliferative mechanisms. Second Annual AACR International Conference Frontiers in Cancer Prevention Research. Phoenix, AZ.
Wolfe K.L., Liu R.H. (2008). Structure-activity relationships of flavonoids in the cellular antioxidant activity assay. Journal of Agricultural and Food Chemistry. 56(18): 8404-8411.
Yang C.S., Landau J.M., Huang M.-T., Newmark H.L. (2001). Inhibition of carcinogenesis by dietary polyphenolic compounds. Annual Review of Nutrition. 21(1): 381-406.
Yazdanparast R., Ardestani A., Jamshidi S. (2007). Experimental diabetes treated with Achillea santolina: effect on pancreatic oxidative parameters. Journal of Ethnopharmacology. 112(1): 13-18.
Zaplatic E., Bule M., Shah S.Z.A., Uddin M.S., Niaz K. (2019). Molecular mechanisms underlying protective role of quercetin in attenuating Alzheimer’s disease. Life Sciences. 224: 109-119.
Zhang D., Jiang R., Hong E.-K., Tan G., Lu D. (2017). The pharmacologically active components of Oxytropis falcata bunge reduce ischemic-reperfusion injury in the rat heart. Legume Research-An International Journal. 40(2): 264-270.
Zhang H. (1999). Theoretical elucidation of structure-activity relationship of flavonoid antioxidants. Science in China Series B: Chemistry. 42(1): 106-112.
Zhao B. (2009). Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochemical Research. 34(4): 630-638.