Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model

Li-Wei Chou¹²³†, John Wang⁴⁵†, Pei-Lin Chang¹ and Yueh-Ling Hsieh¹*

Abstract

Introduction: Hypoxia is a feature of the inflamed synovium in rheumatoid arthritis (RA). Intra-articular injection of hyaluronan (HA) may be considered a potential way to treat RA. However, the exact molecular mechanism of HA on decreased cellular responses to hypoxic environment is unclear. The present study has been designed to use the adjuvant-induced arthritis model to examine the effects of HA on the changes of immunohistochemical expressions of hypoxia-inducible factor-1alpha (HIF-1alpha), inducible nitric oxide synthase (iNOS), and matrix metalloproteinase-3 (MMP3) in the synovial tissues at the early phase of arthritic inflammation.

Methods: Monoarthritis was induced in adult male Sprague-Dawley (250-300 g) via intraarticular injection of complete Freund’s adjuvant (CFA) into the tibiotarsal joint. The CFA-induction arthritis animals were divided into three groups: treatment (intraarticular injection of HA), placebo (intraarticular injection of saline) and controls (no treatments). Functional evaluations of edema and pain behavior, histology, and HIF-1alpha, iNOS, and MMP3 immunohistochemistry were performed before, after the first injection, three injections, and on the follow-up injection of the treatments.

Results: Intra-articular injection of HA also significantly suppressed the mechanical allodynia ($p < 0.001$) and overexpressions of HIF-1alpha ($p < 0.001$), iNOS ($p = 0.004$) and MMP3 ($p < 0.001$) immunoreactivity in synovium.

Conclusions: This study demonstrated that early intervention of HA is an effective protection against accumulation of inflammation-induced HIF-1alpha, iNOS, and MMP3 to limit erosive damage in CFA-induced model of arthritis.
(iNOS) is primarily responsible for producing large amounts of NO and its overexpression has been linked to the progressive inflammation and tissue destruction observed in hypoxic experimental arthritis [9,10] and human rheumatoid synovium [11,12]. Matrix metalloproteinases (MMPs), the most important matrix-degrading enzymes in RA, act as key mediators of the resorption of cartilage, bone, synovial fluid, and adjacent soft tissue, and this resorption occurs as part of the pathological destruction of joint tissue [13]. Among dozens of MMPs, MMP3 (stromelysin 1) has been reported to be the major enzyme produced by fibroblasts and macrophage-like cells in the synovium, and the level of MMP3 has been reported to be significantly higher in synovial fluids from patients with RA [14-16]. Under the inflammatory conditions of RA, the levels of HIF-1α, iNOS, and MMP3 are significantly higher in synovial fluids in previous studies and thus are implicated in the pathogenesis of RA. Expressions of iNOS and MMP3 are probably regulated by HIF-1α in the cellular response to hypoxic and inflammatory environments [11,17,18]. Therefore, inhibition or downregulation of these molecules (or both) may exert anti-hypoxic and anti-inflammatory effects.

Hyaluronan (HA) is a polymer of disaccharides and has a high capacity for holding water and possesses high viscoelasticity [11]. The intra-articular supplementation of HA can replace synovial fluid, which has lost its viscoelastic properties. HA has been widely used for the treatment of osteoarthritis (OA) [19]. HA not only is a lubricating agent but its exogenous administration can suppress the expression of inflammatory cytokines, MMPs, and free oxygen radicals to reduce inflammation in a post-laminectomy rat model [20] and patients with RA [21]. Therefore, it has been expected that the intra-articular injection of HA is more efficacious in treating RA, which principally characterizes articular synovitis [21,22]. However, for RA joint treatment, the clinical use of HA is still rare because its immunoregulatory action is still debatable.

Complete Freund’s adjuvant (CFA)-induced arthritis shares some characteristics of RA. This model mirrors much of the pathology of RA, including hyperplasia of the synovial tissues, inflammatory infiltration of the joints, and destruction of bone and cartilage in the synovial joint [23]. The present study has been designed to use the adjuvant-induced arthritis model to examine the effects of HA on the changes of immunohistochemical expressions of HIF-1α, iNOS, and MMP3 in the synovial tissues in the early phase of arthritic inflammation. We hypothesize that the addition of HA will alleviate inflammatory nociception and impede the accumulation of arthritis-induced HIF-1α, iNOS, and MMP3 production in the early phase of the experimental arthritic inflammatory joint. This hypothesis, if correct, will offer at least a partial explanation for the efficacy of topical HA application in the subsequent inhibition of hypoxic inflammation in this preclinical model.

Materials and methods

General design

Arthritis was induced in all animals by intra-articular injection of CFA. After a day of CFA induction, the arthritic animals were randomly divided into one of three groups (n = 30 per group) according to the treatment administered: (a) the ‘no treatment’ (No-tr) group, which consisted of controls that received a sham injection by needling (that is, no solution was administered); (b) the SA, or placebo, group, which received 50 μL of saline; and (c) the HA group, which received 50 μL of HA. Injections for all three groups were intra-articularly administered. Injections of HA or saline were given every 2 days (days 2, 4, and 6). The evaluation instruments were edematous swelling of the paw, pain behavioral assessments, histology, and immunohistochemistry. Assessments were performed at day 0 (pre-arthritic), day 1 (post-arthritic), 3 hours after the treatment of one injection (one dose, 1D) on day 2, after three injections (three doses, 3D) on day 6, and 6 days after three doses (3D6d) on day 12. A flow diagram is presented in Figure 1.

![Figure 1](http://arthritis-research.com/content/13/3/R90)

Figure 1 Experimental design of the sequence of events for the entire course of the experiment. After evaluations that included measurements of paw edematous swelling and pain threshold, the animals were sacrificed for histology and immunohistochemistry. 1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses; CFA, complete Freund’s adjuvant; HA, hyaluronan; No-tr, no treatment; SA, saline.
Animal preparation

Ninety adult male Sprague-Dawley (SD; purchased from BioLASCO Taiwan Co., Ltd., Taiwan, Republic of China) rats weighing 250 to 300 g were kept in the Laboratory Animal Center of China Medical University. An effort was made to minimize discomfort and to reduce the number of animals used. All animal experiments were conducted with the approval of the Animal Care and Use Committee of China Medical University in accordance with the Guidelines for Animal Experimentation.

Induction of monoarthritis

Monoarthritis was induced by an injection of CFA into the unilateral ankle articular cavity. The rats were briefly anesthetized with 4% isoflurane (AERRANE; Baxter Healthcare Corporation, San Juan, Puerto Rico). A 28-gauge needle was vertically inserted distally into the articular cavity from the gap between the tibiofibular and tarsus bone. CFA with a volume of 50 μL (10 mg of mycobacterium, F5881; Sigma-Aldrich, St. Louis, MO, USA) was then injected. The monoarthritic animals were placed separately in clear acrylic containers (10.5-inch width × 19-inch diameter × 8-inch height), and free movement was allowed for at least 24 hours to let the animals adjust to these conditions before any experimentation was performed.

Ultrasound-guided hyaluronan injection

While the animals were under brief isoflurane anesthesia, ultrasound (Terason t3000™ Ultrasound System; Terason Division, Teratech Corporation, Burlington, MA, USA)-guided injection was performed on the lateral side of the tibiotarsal joint, and the transducer in the sagittal plane showed the distal end of the tibia and proximal part of the tarsus in the image plane. Needle insertion was performed perpendicularly to the transducer. HA injection (molecular weight of 1.2 to 1.4 × 10^6 Da; Ostenil®, 10 mg/mL sodium hyaluronate; TRB Chemedica AG, München, Germany) was documented by recording an image clip during injection with the needle tip in the image plane.

Pain threshold assessment

The pain thresholds were determined by nociceptive thresholds to mechanical stimulation. The test consisted of evoking a hind paw flexion reflex with a handheld force transducer (electronic von Frey anesthesiometer; IITC Inc., Woodland Hills, CA, USA) adapted with a 0.5 mm^2 polypropylene tip. In a quiet room, the rats were placed in acrylic cages (32 × 22 × 27 cm high) with a wire grid floor for 15 to 30 minutes of habituation prior to testing. The polypropylene tip was applied perpendicularly to the central area of the hind paw with sufficient force to bend the filaments into an ‘S’ shape for 3 to 4 seconds. The test consisted of poking a hind paw to provoke a flexion reflex followed by a clear flinch response after paw withdrawal. Testing was initiated with the filament corresponding to 20 log of force (g). The filaments were applied with a gradual increase in pressure until a withdrawal reflex response was finally detected from the animal. The response to this filament is defined if a series of weaker or stronger filaments would be tested. The weakest filament able to elicit a response was taken to be the paw withdrawal threshold (g). The intensity of the pressure was recorded, and the final value for the response was obtained by averaging five measurements.

Measurement of edematous swelling of the paw

The extent of peripheral swelling was assessed by measuring the circumference of the paw at intact and CFA-injected sites with a flexible tape. The paw circumference was obtained by averaging three measurements. The difference in the ankle circumference between the initial value (pre-arthritic data) and that at each time point after injection is expressed as change (percentage) = 100% x [(post-arthritic circumference)-(pre-arthritic circumference)]/(pre-arthritic circumference). All assessments, including paw withdrawal and swelling measurements, were performed with the assessor blinded with respect to treatment.

Histology and immunohistochemistry

Animals were killed by anesthetic overdose after treatments of 1D (n = 10 for each group), 3D (n = 10 for each group), and 3D6d (n = 10 for each group) on days 2, 6, and 12. Hind ankles were collected for histological and immunohistochemical analysis. The formalin-fixed, paraffin-embedded joint tissues (including synovium and cartilage tissues) were cut at a thickness of 5 μm for histology and immunohistochemistry. Histological confirmation of the arthritic pathology was performed with hematoxylin and eosin-stained sections. Sections were deparaffinized in 200 mL of Trilogy (Cell Marque Corporation, Rocklin, CA, USA) and incubated with 3% H2O2 in methanol for 20 minutes at room temperature. Subsequently, sections were treated with proteinase K (Sigma-Aldrich) at 0.1 mg/mL for 20 minutes at room temperature to unmask epitopes and this was followed by phosphate-buffered saline (PBS) rinse. Sections were incubated with blocking buffer (Power Block™; Biogenex, Fremont, CA, USA) for 2 hours at room temperature followed by incubation overnight at 4°C with the mouse monoclonal antibody anti-HIF-1α (diluted 1:100; Thermo, Fremont, CA, USA) and with the following rabbit polyclonal antibodies: anti-iNOS (diluted 1:200;
Abbiotec, San Diego, CA, USA). After three washes with PBS containing 0.05% Tween-20 for 10 minutes, sections were incubated with biotinylated anti-rabbit and anti-mouse immunoglobulins (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA, USA) followed by a 30-minute peroxidase-conjugated streptavidin incubation (Jackson ImmunoResearch Laboratories, Inc.). Sections were incubated with 3,3'-diaminobenzidine (Biogenex), dehydrated, and cover-slipped with Permount (Sigma-Aldrich, St. Louis, MO, USA). Negative controls were performed by substituting the primary antibody with non-immune serum.

The histopathology of synovium was analyzed by the non-parametric scoring system described by Smith and colleagues [24]. The scores ranged from 0 to 3 for each of the tissue criteria, including intimal hyperplasia, lymphocytic infiltration, subintimal fibrosis, and vascularity. The higher aggregate score was considered to reflect increased pathological changes. Five randomly selected sections were scored and repeated two times for statistical analysis. Quantitative analysis of immunostainings was carried out by light microscopy in synovial tissue lining the joint cavity and synovial tissue attached to the cartilage. The number of HIF-1α, iNOS, and MMP3 immunoreactive cells was counted among at least five alternate sections in the more representative fields by using a microscope. Positive nuclei and cytoplasm staining cells for HIF-1α, iNOS, and MMP3 were counted in high-power fields (× 200 magnification) that contained synovial lining cells. The area sizes of high-power fields were calculated by using a stage micrometer (with 100 gradations of 0.01 mm each) when viewed using a × 200 objective. Ten fields of each slide were counted for all samples and repeated three times for statistical analysis. Results were expressed as the proportion (percentage) of labeled cells per square millimeter of synovium. For statistical analysis, the mean value obtained from the repeated counts was used. All of the scoring and quantitative analyses were assessed by two independent observers who were blinded to the origin of the sections to avoid bias from interobserver variability.

Statistical analysis

The differences of value in each assessment between pre- and post-arthritis evaluations were analyzed by Student t test. The differences among the HA, SA, and No-tr groups on each dosage (1D, 3D, and 3D6d) were analyzed using analysis of variance and later were analyzed further by a Bonferroni post hoc method. Similar statistical analysis methods were used to test the differences among dosages in each group. Non-parametric data (histological synovial scoring) were analyzed using the Kruskal-Wallis test for multiple groups and Mann-Whitney U tests for between-group comparisons. The Pearson correlation test was applied to study the correlations between pain withdrawal threshold and expressions of immunoreactivities. A P value of less than 0.05 was considered statistically significant. All data were analyzed using SPSS version 10.0 for Windows (SPSS Inc., Chicago, IL, USA).

Results

Effect of hyaluronan on complete Freund’s adjuvant-induced edema

The serial alterations of the percentage of edema (mean ± standard error of the mean, or SEM) throughout the whole experiment for each group are shown in Figure 2A. After a day of CFA induction, all animals developed severe monoarthritis in the injected paw. There were no significant differences in the non-injected intact paw on circumference among pre- and post-arthritis and post-treatment conditions for each group (P >0.05, data not shown). The edema of the CFA-injected paw gradually increased, reaching a maximal swelling of 65.51%, whereas there were significant differences in edema between pre- and post-arthritis conditions (P <0.001).

After treatment, the significant time-dependent differences in edema development were observed in each group (HA group: P <0.001; SA group: P <0.001; and No-tr group: P <0.001). However, there was no difference in the edema of arthritic paws among the HA, SA, and No-tr groups after treatments of 1D (P = 0.22), 3D (P = 0.41), and 3D6d (P = 0.31). Therefore, intra-articular injections of HA, regardless of different dosages for 1D, 3D, and 3D6d, did not ameliorate joint swelling compared with either the SA or the No-tr group.

Effect of hyaluronan on complete Freund’s adjuvant-induced inflammatory mechanical nociception

The serial alterations of the paw withdrawal threshold (mean ± SEM) throughout the whole experiment for each group are shown in Figure 2B. The mean threshold was 25.07 ± 4.68 g at pre-arthritic conditions. However, after CFA induction, it decreased to 9.32 ± 3.16 g. There was a significant difference with pre-arthritis conditions (P <0.001).

The significant differences in paw withdrawal threshold were shown among the HA, SA, and No-tr groups after treatment of 1D (P = 0.008), 3D (P <0.001), and 3D6d (P <0.001). A significantly lower threshold existed after treatment of 1D, 3D, and 3D6d in the SA and No-tr groups compared with those in the HA group (HA versus SA, P = 0.04; HA versus No-tr, P = 0.01 for 1D; HA versus SA, P < 0.001; HA versus No-tr, P <0.001 for 3D; HA versus SA, P <0.001; HA versus No-tr, P = 0.001 for 3D6d). The analysis also showed that there was a significantly lower threshold in the No-tr group compared with the SA group after treatment of 3D (P =
Figure 2 Results of edema (a) and pain behavioral (b) assessments. Data were calculated before treatment at the conditions of pre-complete Freund's adjuvant (CFA)-induced and post-CFA-induced arthritis and after treatment at conditions of one dose (1D), three doses (3D), and follow-up at the 6th day after three doses (3D6d) in hyaluronan (HA), saline (SA), and 'no treatment' (No-tr) groups. Each bar represents the mean ± standard deviation in body weight and mean ± standard error of the mean in paw circumference and withdrawal threshold. *P < 0.05, Student t test for comparison of pre- and post-arthritis conditions before treatment. *P < 0.05, Bonferroni post hoc test for comparison of difference between groups at dosages of 1D, 3D, and 3D6d after treatment.
0.03) and 3D6d (P = 0.01). However, no significant difference was observed between these groups after treatment of 1D (P = 1.0).

There were significant differences among three dosages in the HA group (P < 0.001) but not in the SA (P = 0.84) and No-tr (P = 0.56) groups. After HA treatment, the paw withdrawal threshold showed a significant increase in 3D and 3D6d treatments compared with 1D treatment (1D versus 3D, P < 0.001; 1D versus 3D6d, P < 0.001). However, no difference was observed between the 3D and 3D6d of HA treatments (P = 0.05).

Histopathological assessments

Widening of the synovial cavity, infiltration of inflammatory cells, thickening of the synovial membrane, narrowing of the synovial space, disruption of the cartilaginous tissue, and bone erosion were apparent in control rats of the No-tr group (Figure 3A, 3a) and SA group (Figure 3B, 3b). The tibiotalar joints of rats treated with 1D, 3D, and 3D6d of HA were less inflamed, as revealed by a decreased number of inflammatory cells, synovial membrane thickening, and cartilage destruction (Figure 3C, 3c). There were significant differences in lymphocytic infiltration and aggregate score of non-parametric criteria observed among ankle joint synovium from the HA, SA, and No-tr groups treated with 1D, 3D, and 3D6d (P < 0.05) (Table 1). Lymphocytic infiltrations in synovium were significantly reduced after HA treatment when compared with those treated with SA or No-tr (HA versus SA, HA versus No-tr, P < 0.05 in all doses). There were no significant differences in intimal hyperplasia, subintimal fibrosis, and vascularity among the three groups (P > 0.05).

Immunohistochemical assessments on location of HIF-1α, iNOS, and MMP3

Overexpressions of HIF-1α, iNOS, and MMP3 immunoreactivities were found within the synovial tissue in the No-tr group (Figures 4A, 5A, and 6A) and the SA group (Figures 4B, 5B, and 6B). At higher-power magnification, it is evident that these positive immunoreactivities were clearly localized in both the nucleus and cytoplasm of arthritic synovium (Figures 4a, 5a, 6a, 4b, 5b, and 6b). The primary cells exhibiting specific HIF-1α, iNOS, and MMP3 immunoreactivities were morphologically consistent with macrophages, mainly in inflammatory infiltrate and invasive pannus of the inflamed synovial joint. Synovial lining cells and some chondrocytes were also found to be positive for HIF-1α, iNOS, and MMP3. After treatment with HA, the HIF-1α,
Table 1 Results of histopathological scores of synovium for sections in arthritic ankle joint sampled from three treatment groups

Dose	Group	Intimal hyperplasia	Subintimal fibrosis	Lymphocytic infiltration	Vascularity	Aggregate score
1D	HA	2.45 ± 0.11	2.60 ± 0.11	1.50 ± 0.11	2.05 ± 0.11	7.80 ± 0.26
	SA	2.60 ± 0.11	2.60 ± 0.11	2.50 ± 0.11	2.10 ± 0.12	9.10 ± 0.31
	No-tr	2.65 ± 0.11	2.65 ± 0.10	2.95 ± 0.05	2.20 ± 0.12	9.75 ± 0.24

3D	HA	2.50 ± 0.11	2.70 ± 0.11	1.40 ± 0.13	2.20 ± 0.09	8.05 ± 0.31
	SA	2.80 ± 0.09	2.70 ± 0.10	2.55 ± 0.11	2.15 ± 0.11	9.55 ± 0.28
	No-tr	2.80 ± 0.09	2.70 ± 0.11	2.85 ± 0.08	2.20 ± 0.14	9.95 ± 0.32

3D6d	HA	2.50 ± 0.11	2.50 ± 0.11	1.40 ± 0.11	2.15 ± 0.11	7.85 ± 0.25
	SA	2.70 ± 0.11	2.60 ± 0.10	2.77 ± 0.10	2.20 ± 0.14	9.6 ± 0.36
	No-tr	2.70 ± 0.11	2.70 ± 0.11	2.85 ± 0.08	2.40 ± 0.11	10.05 ± 0.33

Sections were stained with hematoxylin and eosin. Values are presented as mean ± standard error of the mean. *P < 0.05, showed statistically significant differences between hyaluronan (HA) and saline (SA) groups; †P < 0.05, showed statistically significant differences between HA and ‘no treatment’ (No-tr) groups; Mann-Whitney U ranked tests were used for between-group comparisons. *Tested with Kruskal-Wallis test. 1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses.

Discussion

The results of this study demonstrate that lymphocytic/plasmocytic infiltration in the synovium and accumulation of HIF-1α, iNOS, and MMP3 were suppressed after intra-articular administration of HA at the early phase of adjuvant-induced inflammation. The extent of HIF-1α, iNOS, and MMP3 immunoreactivities was significantly reduced compared with those of HA treatment (HIF-1α: 3D versus 1D, *P < 0.001; 3D6d versus 1D, *P = 0.99). After 3D and 3D6d of HA treatment, the extent of HIF-1α and iNOS immunoreactive expressions significantly reached maximum reduction compared with those of 1D treatment (HIF-1α: 3D versus 1D, *P < 0.001; 3D6d versus 1D, *P = 0.03) (Figure 4D); iNOS: 3D versus 1D, *P = 0.01; 3D6d versus 1D, *P = 0.03 (Figure 5D). However, no difference was exhibited between the 3D and 3D6d of HA treatment (HIF-1α: 3D versus 3D6d, *P = 0.15; iNOS: 3D versus 3D6d, *P = 1.0). For expression of MMP3 immunoreactivity, significant reduction was found after 3D treatment (3D versus 1D, *P = 0.01; 3D versus 3D6d, *P < 0.001) (Figure 6D). However, the expression of MMP3 immunoreactivity recovered after 3D6d treatment (3D6d versus 1D, *P = 1.0).

Association of pain withdrawal threshold with immunoreactivity results

A significant linear correlation was found between pain withdrawal threshold and immunoreactivity of HIF-1α, iNOS, and MMP3 (Pearson correlation coefficients, *P < 0.05) (Table 2). There were strong negative associations of pain withdrawal threshold with HIF-1α, iNOS, and MMP3 after 3D treatment and with HIF-1α and MMP3 after 3D6d treatment (0.75 < |Pearson γ| < 1).
Figure 4 Representative immunohistochemical sections of hypoxia-inducible factor-1-alpha (HIF-1α) immunoreactivity. Sections obtained from the arthritic synovium treated with intra-articular injections of ‘no treatment’ (No-tr) (A), saline (SA) (B) and hyaluronic (HA) (C). At higher-power magnification, it is evident that these positive (brown stained) immunoreactivities were clearly localized in both the nucleus and cytoplasm of arthritic synovium in the sections from No-tr (a) and SA (b) animals. Administration of HA (c) to adjuvant-induced rat produced a marked reduction in the immunostaining for HIF-1α. Quantitative analysis (D) of positive-labeled cells in synovium for HIF-1α immunohistochemistry at the early phase of inflammation of each group was presented in the average proportion of labeled neurons (mean ± standard error of the mean). *P < 0.05, showed significant differences between groups when either SA or No-tr is compared with HA group using Bonferroni post hoc test. Significant differences were found between HA versus SA groups and HA versus No-tr groups. #P < 0.05, showed significant differences between dosages tested by Bonferroni post hoc test. 1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses; cart, cartilage; syn, synovial tissue.
Figure 5 Representative immunohistochemical sections of inducible nitric oxide synthase (iNOS) immunoreactivity. Sections obtained from the arthritic synovium treated with intra-articular injections of 'no treatment' (No-tr) (A), saline (SA) (B), and hyaluronan (HA) (C). At higher-power magnification, it is evident that these positive (brown staining) immunoreactivities were clearly localized in both the nucleus and cytoplasm of arthritic synovium in the sections from No-tr (a) and SA (b) animals. Administration of HA (c) to adjuvant-induced rat produced a marked reduction in the immunostaining for iNOS. Quantitative analysis (D) of positive-labeled cells in synovium for iNOS immunohistochemistry at the early phase of inflammation of each group was presented in the average proportion of labeled neurons (mean ± standard error of the mean). *P < 0.05, showed significant differences between groups when either SA or No-tr is compared with HA group using Bonferroni post hoc test. Significant differences were found between HA versus SA groups and HA versus No-tr groups. #P < 0.05, showed significant differences between dosages tested by Bonferroni post hoc test. 1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses; cart, cartilage; syn, synovial tissue.
Figure 6 Representative immunohistochemical sections of matrix metalloproteinase-3 (MMP3) immunoreactivity. Sections obtained from the arthritic synovium treated with intra-articular injections of ‘no treatment’ (No-tr) (A), saline (SA) (B), and hyaluronan (HA) (C). At higher-power magnification, it is evident that these positive (brown staining) immunoreactivities were clearly localized in both the nucleus and cytoplasm of arthritic synovium in the sections from No-tr (a) and SA (b) animals. Administration of HA (c) to adjuvant-induced rat produced a marked reduction in the immunostaining for inducible nitric oxide synthase. Quantitative analysis (D) of positive-labeled cells in synovium for MMP3 immunohistochemistry at the early phase of inflammation of each group was presented in the average proportion of labeled neurons (mean ± standard error of the mean). *P<0.05, showed significant differences between groups when either SA or No-tr is compared with HA group using Bonferroni post hoc test. Significant differences were found between HA versus SA groups and HA versus No-tr groups. #P<0.05, showed significant differences between dosages tested by Bonferroni post hoc test. 1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses; cart, cartilage; syn, synovial tissue.
consistent with the results of pain behavioral assessment, which demonstrated an elevation of the mechano-
 nocceptive threshold after administration of HA. To the
best of our knowledge, these findings have never been
reported by other researchers.

In this model, the early phases of adjuvant-induced
arthritis seem to be characterized by acute cytokine-
induced inflammation [25]. Owing to infiltration of the
injured tissues by immune cells and responses, swelling is
a major sign during acute inflammation and might also be
considered an important parameter on evaluation of the
potential anti-inflammatory effects of compounds [26]. However, as shown in the results of our
study, the levels of edematous swelling were not changed
after HA treatment in acute inflammation at the
early phase of adjuvant-induced arthritis, suggesting the
weaker activity against edema of HA in an acute inflam-
matory animal model. This result is consistent with the
aminal study with collagen-induced arthritis [27] and
human study with OA [28]. The reason is probably due
to a HA-induced swelling adverse effect at the injection
site occurring. Previous studies revealed that HA may
act as either a primary irritant or an inflammatory medi-
ator to induce acute adverse events characterized by
 transient swelling of the injected joint in some patients
[28-30]. The prevalence of adverse effects was noted in
47% of patients after HA supplementation and in 22%
of patients treated with saline injections [31]. In this
study, the observation time of edema measurement
started 3 hours after HA administration, when an
adverse effect of a transient increase in swelling at the
injection site occurred. Therefore, further study with
long-term observations of joint swelling after ceasing
HA was needed to clarify the effect of exogenous HA on resolving RA-induced joint edema.

It has been well established by animal behavioral and
human clinical studies that elastoviscous solutions of
HA could have an analgesic effect when injected into
arthritic joints and if appropriately applied to patients
with acute arthritic pain [32]. There was significantly
less bradykinin found in the crystal-induced arthritic
joint after injection of HA [33]. Electrophysiological
 studies also demonstrated that the rates of neural dis-
charges of the nociceptive afferent fibers innervating the
synovial tissue were significantly attenuated and reached a constant rate 2 to 3 hours after injection [32,34,35]. Treatment of HA showed an analgesic effect after the
onset of cartilage destruction and pain in a rabbit OA
model [36]. To the best of our knowledge, our beha-
vioral study is the first report on the analgesic effect of
HA at decreased mechanical allodynia in a rat RA
model and is consistent with the findings of previous
studies. The intra-articular injection of HA also resulted in
elevation of the mechanonociceptive threshold, which
was in accordance with the results of immunohisto-
chemistry in this study. HA has been demonstrated to
possess a therapeutic effect on OA and this effect has
been studied by many researchers. Macroscopic and
microscopic evaluations revealed that HA has chondro-
protective effects in a rabbit model of OA [37]. Our
results showed that HA reduced pathohistological signs,
including the degree of infiltration of the synovial mem-
brane by plasma and lymphocytes, in collagen-induced
arthritis animals, and are consistent with findings from
a previous study [38]. The tendency for decreased cellu-
lar infiltration during the early phase of arthritis sup-
ports the assumption that HA provides a temporary
protective barrier over the cartilage and thereby protects it against CFA insults. HA has also been shown to sig-
ificantly suppress NO production and inhibit IL-1β-
induced MMP3 production from OA synovial tissue in
vitro and in vivo [39-42]. As far as we know, few English
language studies of the role of HA on suppression of
HIF-1α-mediated hypoxic and inflammatory responses
have been conducted in OA models. Owing to less
inflammation in OA synovial tissue, there is minor HIF-
1α expression in these tissues [5]. However, there is
higher expression of HIF-1α immunohistochemistry in
RA synovial tissues compared with OA tissues because
the latter tissue, by nature, is inflammatory and angio-
genic in RA [7]. Therefore, HIF-1α has the potential to
serve as an anti-rheumatic drug activity biomarker in
the clinic and is expected to significantly affect/acceler-
ate the clinical development of treatment for RA.

The possible important role of HIF-1α in RA has been
extensively discussed [43,44]. The presence of both
hypoxia and inflammatory proteins in RA synovium,
which both lead to HIF-1α stabilization and subsequent
HIF-1 activation, seems to highlight the important role
of HIF-1α [44]. Elevated synovial angiogenesis is a key
event during the course of RA. The modulation and
blockade of angiogenesis via drug interventions have
been shown to contribute to therapeutic efficacy in rat
models of arthritis [45]. HIF-1α probably has a crucial
involvement in the angiogenic process of synovium in

| Table 2 Association of pain withdrawal threshold with the immunoreactivity results given as gamma values |
|---|---|---|---|
| Pain withdrawal threshold | 1D | 3D | 3D6d |
| HIF-1α | -0.378* | -0.848* | -0.869* |
| iNOS | -0.280* | -0.782* | -0.765* |
| MMP3 | -0.420* | -0.823* | -0.856* |

Correlations were analyzed by Pearson correlation coefficients. *P < 0.01; **P < 0.05.
1D, one dose; 3D, three doses; 3D6d, follow-up at the 6th day after three doses; HIF-1α, hypoxia-inducible factor-1-alpha; iNOS, inducible nitric oxide synthase; MMP3, matrix metalloproteinase-3.
RA by regulation of its target gene, vascular endothelial growth factor (VEGF) [43]. Inhibition of HIF-1α protein expression and VEGF production by SMP-114, a disease-modifying anti-rheumatic drug, has been shown to be of therapeutic benefit in RA [46]. Oral administration of the inhibitor of heat shock protein 90 (Hsp90), which has been shown to potentely reduce HIF-1α-related signaling and VEGF production, has also been found to decrease inflammation and cartilage damage in in vivo models of RA [47]. Therefore, suppression of HIF-1α may have key implications in the development of novel therapeutic strategies revolutionizing the treatment of RA. Results showed that HA suppressed the adjuvant-induced overexpression of iNOS and MMP3, and this is consistent with findings from previous studies. To the best of our knowledge, our study is the first to report that HA suppresses HIF-1α. This study revealed the reduction in accumulation of HIF-1α expression in the synovium of an adjuvant-induced RA model after intra-articular HA administration. The suppressive effects on accumulation of inflammation-induced HIF-1α, iNOS, and MMP3 expressions in the synovium may be involved in the therapeutic mechanism of HA intervention used in the treatment of RA. Further molecular studies on expressions of VEGF will be needed to fully support the issue of anti-angiogenic effects of HA.

Conclusions
Suppression of HIF-1α may be one of the major targets of the therapeutic approach in RA. This study demonstrated that early intervention of HA is an effective protection against accumulation of inflammation-induced HIF-1α, iNOS, and MMP3 and might limit the erosive joint damage of arthritis. The findings suggest that modulation of HIF-1α as a ‘master switch’ may be used as a therapeutic target in the anti-inflammatory treatment of RA.

Abbreviations
1D: one dose; 3D: three doses; 3D6d: follow-up at the sixth day after three doses; CFA: complete Freund’s adjuvant; HA: hyaluronan; HIF-1α: hypoxia-inducible factor-1-alpha; iNOS: inducible nitric oxide synthase; MMP: matrix metalloproteinase; NO: nitric oxide; NOS: nitric oxide synthase; No-tr: no treatment; OA: osteoarthritis; PBS: phosphate-buffered saline; RA: rheumatoid arthritis; SA: saline; SEM: standard error of the mean; VEGF: vascular endothelial growth factor.

Acknowledgements
The authors gratefully acknowledge the technical expertise of Shih-Chung Chen in counting immunohistochemical-labeled cells and Pin-Wen Tu in recording data of the animals’ functional evaluations. This work was supported by a grant from China Medical University and Hospital (grants CMU-98-S-10 to Y-LH and DMR-96-073 to L-WC).
21. Saito S, Momohara S, Taniguchi A, Yamanaka H: Inhibition of oxygen sensors as a therapeutic strategy for ischemic and inflammatory disease. Nat Rev Drug Discov 2009, 8:139-152.

15. Yoshihara Y, Nakamura H, Obata K, Yamada H, Hayakawa T, Fujikawa K, Okada Y: Matrix metalloproteinases and tissue inhibitors of metalloproteinases in synovial fluids from patients with rheumatoid arthritis or osteoarthritis. Ann Rheum Dis 2000, 59:455-461.

16. Keyser G, Lambi I, Nagel R, Keyser C, Keyser M, Grimmnica-Brie E, Franz J, Burmester GR, Jung K: Circulating levels of matrix metalloproteinases MMP-3 and MMP-1, tissue inhibitor of metalloproteinases 1 (TIMP-1), and MMP-1/TIMP-1 complex in rheumatic disease. Correlation with clinical activity of rheumatoid arthritis versus other surrogate markers. J Rheumatol 1999, 26:251-258.

17. Fraisl P, Aragones J, Carmeliet P: Inhibition of oxygen sensors as a therapeutic strategy for ischemia and inflammatory disease. Nat Rev Drug Discov 2009, 8:139-152.

18. Chen W, Ostrowski RP, Oberauns A, Zhang JH: Prodearth or prosurvival: two facets of hypoxia-inducible factor-1 in peripheral brain injury. Exp Neurol 2009, 216:7-15.

19. Miltner O, Schneuder U, Siebert CH, Niedhart C, Niethard FU: Efficacy of intraarticular hyaluronic acid in patients with osteoarthritis-a prospective clinical trial. Osteoarthr Cartilag 2002, 10:680-686.

20. Schimizzi AL, Massie JB, Murphy M, Perry A, Kim CW, Garfin SR, Akeson WH: High-molecular-weight hyaluronan inhibits macrophage proliferation and cytokine release in the early wound of a preclinical osteoarthritis rat model. J Orthop Res 2006, 24:550-556.

21. Saito S, Momohara S, Taniguchi A, Yamaka H: The intra-articular efficacy of hyaluronate injections in the treatment of rheumatoid arthritis. Mod Rheumatol 2009, 19:643-651.

22. Oliveira PG, Brenol CV, Edelweiss MI, Brenol JC, Petronilho F, Roessel R, Dal-Pozzol F, Schwartzmann G, Xavier RM: Effects of an antagonist of the bombesin/gastrin-releasing peptide receptor on complete Freund's adjuvant-induced arthritis in rats. Peptides 2008, 29:1706-1713.

23. Rau R, Kittlck PD, Thoss K, Henzgen S: Different immunological mechanisms contribute to cartilage degradation in antigen-induced arthritis. Exp Tissue Pathol 1994, 46:383-386.

24. Smith MM, Cake MA, Ghosh P, Schiavinato A, Read RA, Little CB: Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronic acid therapy. Rheumatology (Oxford) 2008, 47:1172-1178.

25. Ferraccioli G, Bracci-Laudiero L, Alivernini S, Gremese E, Tolusso B, De Gaudio M, D’Anna MR, Aringhieri MR, Longaretti G, Caretti M, Pugliese G, Grisenti A: Hyaluronic acid derivative. J Med Invest 2004, 51:486-496.

26. Morris CJ: Significant synovial pathology in a meniscectomy model of osteoarthritis: roles in the early phase of transition from the acute to chronic inflammation and relevance for human rheumatoid arthritis. Mol Med 2010, 16:552-557.

27. Morris CJ: Carrageenan-induced paw edema in the rat and mouse. Methods Mol Biol 2003, 225:115-121.

28. Campo GM, Avenoso A, Campo S, Feruzzo AM, Averill D, Calatroni A: Efficacy of treatment with glycosaminoglycans on experimental osteoarthritis: a review of product-specific safety profiles. J Rheumatol 2003, 30:296-309.

29. Petrozza RJ: Hyaluronic acid for the treatment of knee osteoarthritis: long-term outcomes from a naturalistic primary care experience. Arthritis Care Res 2005, 57:138-144.

30. Hamburger MI, Lakhanpal S, Mooar PA, Oster D: Intra-articular hyaluronans: a review of product-specific safety profiles. Semin Arthritis Rheum 2003, 32:299-309.

31. Balazs EA: Analgesic effect of elastoviscous hyaluronan solutions and the treatment of arthritic pain. Cells Tissues Organs 2003, 174:49-62.

32. Aihara S, Murakami N, Ishii R, Kariya K, Azuma Y, Hamada K, Umemoto J, Maeda S: Effects of sodium hyaluronate on the nociceptive response of rats with experimentally induced arthritis. Nippon Yakurigaku Zasshi 1992, 100:349-355.

33. Pozo MA, Balazs EA, Belmonte C: Reduction of sensory responses to passive movements of inflamed knee joints by hylan, a hyaluronan derivative. Exp Brain Res 1997, 116:3-9.

34. Comis A, Pawlik M, Balazs EA, Schmidt RF, Belmonte C: Effects of different molecular weight elastoviscous hyaluronan solutions on articular nociceptive afferents. Arthritis Rheum 2004, 50:314-326.

35. Hashizume M, Koike N, Yoshida H, Suzuki M, Mihara M: High molecular weight hyaluronic acid relieved joint pain and prevented the progression of cartilage degeneration in a rabbit osteoarthritis model after onset of arthritis. Mod Rheumatol 2010, 20:432-438.

36. Ozkan FU, Ozkan K, Ramadan S, Guven Z: Chondroprotective effect of N-acetylgalactosamine and hyaluronate in early stages of osteoarthritis-an experimental study in rabbits. Bull WRU Hosp J 2009, 67:352-357.

37. Roth A, Mollenhauer J, Wagner A, Fuhrmann R, Kraub A, Venbrocks RA, Petrow P, Brauer R, Schubert H, Ozegowski J, Peschel G, Muller PJ, Kinne RW: Intra-articular injections of high-molecular-weight hyaluronic acid induce biphasic effects on joint inflammation and destruction in rat antigen-induced arthritis. J Rheumatol Res 2005, 7:677-686.

38. Tung JT, Venta PJ, Caron IP: Inducible nitric oxide expression in equine articular chondrocytes: effects of antiinflammatory compounds. Osteoarthr Cartilag 2002, 10:5-12.

39. Takahashi K, Hashimoto S, Kubo T, Hirasawa Y, Lotz M, Arnel D: Hyaluronan suppressed nitric oxide production in the mesenchus and synovium of rabbit osteoarthritis model. J Orthop Res 2001, 19:500-503.

40. Lee YT, Shao HJ, Wang JH, Liu HC, Hou SM, Young TH: Hyaluronic acid modulates gene expression of connective tissue growth factor (CTGF), transforming growth factor-beta1 (TGF-beta1), and vascular endothelial growth factor (VEGF) in human fibroblast-like synovial cells from advanced-stage osteoarthritis in vitro. J Orthop Res 2010, 28:492-496.

41. Waddell DD, Kolomytkin OV, Dunn S, Marino AA: Hyaluronan suppresses IL-1beta-induced metalloproteinase activity from synovial tissue. Clin Orthop Relat Res 2007, 465:241-248.

42. Gaber T, Dzialka R, Trippacher B, Burmester GR, Buttgeert F: Hypoxia inducible factor (HIF) in rheumatology: low O2? See what HIF can do! Ann Rheum Dis 2005, 64:971-980.

43. Muz B, Khan MN, Kriakidis S, Paleolog EM: Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Res Ther 2009, 11:201.

44. Issekutz AC, Sapru K: Modulation of adjuvant arthritis in the rat by 2-methoxyestradiol: an effect independent of an anti-angiogenic action. Int Immunopharmacol 2008, 8:708-716.

45. Westra J, Brouwer E, van Rosmalen IA, Doornbos-van der Meer B, van Leeuwen MA, Posthumus MD, Kalkenberg CG: Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; significant reduction of VEGF by CAxKII inhibitor. BMC Musculoskelet Disord 2010, 11:61.

46. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbert SR, Silinski MA, Steed PM, Hall SE: Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 2008, 58:3763-3775.

Cite this article as: Chou et al: Hyaluronan modulates accumulation of hypoxia-inducible factor-1 alpha, inducible nitric oxide synthase, and matrix metalloproteinase-3 in the synovium of rat adjuvant-induced arthritis model. Arthritis Research & Therapy 2011 13:R90.