A novel multichoice touchscreen paradigm for assessing cognitive flexibility in mice

Patrick T. Piantadosi, Abby G. Lieberman, Charles L. Pickens, Hadley C. Bergstrom, and Andrew Holmes

Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse (NIAAA), National Institutes of Health, Bethesda, Maryland 20892, USA

Cognitive flexibility refers to various processes which enable behaviors to be modified on the basis of a change in the contingencies between stimuli or responses and their associated outcomes. Reversal learning is a form of cognitive flexibility which measures the ability to adjust responding based on a switch in the stimulus–outcome contingencies of, typically two, perceptually distinct stimuli. Reversal tasks have provided valuable insight into the neural basis of cognitive flexibility, implicating brain regions including the lateral orbitofrontal cortex (lOFC) and dorsomedial prefrontal cortex (dmPFC). However, with two-stimulus reversal, it is difficult to determine whether response errors are due excessive perseveration, deficient learning, or other problems with updating. To address this limitation, we developed a mouse three-choice touchscreen-based visual reversal task, in which the contingencies of two stimuli were switched on reversal but a third, simultaneously presented, stimulus was never reinforced. We found that, in male C57BL/6J mice, responding at the previously rewarded stimulus predominated over the newly and never-reinforced stimuli during early reversal. Next, we showed that acute pharmacological inhibition of lOFC, but not dmPFC, impaired early reversal performance, relative to noninactivated controls. Interestingly, however, lOFC inactivation deficits were characterized by increased choice of the never-reinforced stimulus and a decrease in perseverative-like responding at the previously rewarded stimulus. These effects are inconsistent with the historical notion of lOFC mediating response inhibition and closer to recent views of the lOFC's role in response/outcome tracking. Overall, these findings provide initial support the utility of this novel paradigm for studying cognitive flexibility and its underlying neural substrates.

Cognitive inflexibility in addictions including alcohol use disorders (AUDs) can prevent effective disengagement from destructive patterns of drug-seeking (Jentsch and Taylor 1999; Belin et al. 2016). In laboratory settings, measures of cognitive flexibility such as reversal learning are slowed in AUD patients (Vanes et al. 2014; Le Berre et al. 2017), while rodents chronically exposed to alcohol or other drugs of abuse (e.g., cocaine), exhibit abnormalities in reversal performance and other forms of cognitive flexibility, including attentional set-shifting (Schoenbaum et al. 2004; Coleman et al. 2012; DePoy et al. 2013; Trantham-Davidson et al. 2014; Hu et al. 2015; Varodayan et al. 2018). In turn, these behavioral disturbances have been attributed to drug-induced adaptations in certain cortical and striatal regions that are known substrates for these cognitive processes (Schoenbaum and Shaham 2008; Moormann 2018).

Prior studies in the rodent and nonhuman primate have shown that neurons in the lateral orbitofrontal cortex (lOFC) exhibit correlates of successful reversal learning, while experimentally induced disruptions of lOFC function impair reversal (Iversen and Mishkin 1970; Jones and Mishkin 1972; Dias et al. 1996, 1997; Rolls 1996; Tremblay et al. 1998; Schoenbaum et al. 2002, 2003; Chudasama and Robbins 2003; Izquierdo et al. 2004; Walton et al. 2004, 2010; Kim and Ragozzino 2005; Stalnaker et al. 2006; Boulougouris et al. 2007; Clarke et al. 2008; Ghods-Sharifi et al. 2008; Brigman et al. 2013; Bissonette et al. 2014; Dalton et al. 2016; Marquardt et al. 2017). However, although IFC disruptions reliably disrupt reversal, differing views regarding what this reflects about the function of the region exist. Early hypotheses suggested the lOFC was important for response inhibition (Jones and Mishkin 1972), while more recent accounts posit a role in tracking response and outcome histories to guide decisions, and in using stimuli-associated specific outcomes to make choices among the available options (Balleine et al. 2011; Noonan et al. 2012; Rudebeck and Murray 2014; Costa et al. 2015; Stalnaker et al. 2015; Izquierdo et al. 2016).

In addition to the prominent role ascribed to the lOFC, the medial prefrontal cortex (mPFC), as well as a number of other brain regions such as the dorsal striatum, have been shown to subserve reversal (Palencia and Ragozzino 2004, 2006; Ragozzino and Choi 2004; Tzavos et al. 2004; Brown et al. 2010; Graybeal et al. 2011; Amodeo et al. 2017; Gросе et al. 2018). For example, IOFC inactivation deficits were characterized by increased choice of the never-reinforced stimulus and a decrease in perseverative-like responding at the previously rewarded stimulus. These effects are inconsistent with the historical notion of IOFC mediating response inhibition and closer to recent views of the IOFC's role in response/outcome tracking. Overall, these findings provide initial support the utility of this novel paradigm for studying cognitive flexibility and its underlying neural substrates.

Brief Communication

Corresponding author: patrick.piantadosi@nih.gov

Article is online at http://www.learnmem.org/cgi/doi/10.1101/lm.048264.118.

This is a work of the US Government.

26:24–30; Published by Cold Spring Harbor Laboratory Press
ISSN 1549-5485/19; www.learnmem.org

Learning & Memory
then switched on reversal. Because both stimuli have well-established antecedent reward versus nonreward associations at reversal, it is difficult to disambiguate perseverative responding from impaired learning about the new contingencies or other problems, such as deficient on-task response/outcome tracking. This method also lacks the possibility to evaluate the presence of irrelevant/distraction stimuli that are known to potently influence human decision-making in a manner related to OFC and mPFC recruitment (Chau et al. 2014).

One approach to circumventing some of these problems is to expand the range of choices available on reversal by adding a third (or more) stimulus that is never rewarded (Bussey et al. 1997; Ragozzino et al. 2003; Kim and Ragozzino 2005; Lee et al. 2007; Ragozzino and Rozman 2007; Rudebeck et al. 2008; Seu et al. 2009; Walton et al. 2010; D’Cruz et al. 2011; Kosaki and Watanabe 2012; Noonan et al. 2012, 2017; Riceberg and Shapiro 2012). Yet despite rapid advances in the availability of powerful genetic tools to monitor and manipulate neural substrates of higher-order behaviors in mice, there is currently a lack of multistimulus reversal paradigms to test cognitive flexibility in this species.

The goal of the present study was to first develop a novel, three-choice, version of a previously described mouse visual discrimination and reversal touchscreen paradigm (Izquierdo et al. 2006; Mar et al. 2013), and then to evaluate the effects on early reversal performance after inactivating the IOFC and dorsomedial prefrontal cortex (dmPFC). We began by assessing a cohort of male C57BL/6J mice (a commonly used inbred strain) using a modified version of the Bussey-Saksida Touch Screen System (Graybeal et al. 2014) with three response windows on a touchscreen panel, within each of which was presented a single two-dimensional visual stimulus (Fig. 1A; see Supplemental Material for full experimental procedures).

To characterize the task, mice were first pretrained to reliably make a single touch at one response window to obtain a food-pellet reward (~10 sessions). During discrimination sessions, three novel stimuli were simultaneously presented on each trial, with responses at one stimulus (S’, “bars” or “dots” counterbalanced across mice) producing reward at a continuous rate of reinforcement, followed by another trial in which the stimuli were presented in a randomly selected spatial configuration (Fig. 1B). Responses at either of the other two stimuli (S1–, S2–) produced no reward and a 15-sec timeout period (signaled by extinguishing the house lights), followed by a correction trial in which the stimuli were presented in the same spatial configuration. Correction trials were repeated until a correct response was made. Testing proceeded on daily sessions comprising either 36 (for task characterization) or 30 (for inactivation) trials (excluding correction trials) until a criterion of >75% correct performance on two consecutive sessions was attained (~11.9 ± 1.4 sessions).

Reversal began on the next session after discrimination criterion was achieved. Here, the same three stimuli were presented, but the previously rewarded stimulus was now unrewarded (S’ now Sreversal), while one of the previously unrewarded stimuli (“moon” for all mice) was now rewarded (S1– now Snew) and the other stimulus remained unrewarded (S2– now Snew) (Fig. 1B). The procedure was otherwise the same as for discrimination (including use of correction trials). Testing proceeded until a >75% correct performance on two consecutive sessions criterion was met (~11.2 ± 1.2 sessions). For each mouse, sessions to discrimination criterion and, separately, reversal criterion were tallied and subdivided into early, mid, and late phases (Bergstrom et al. 2018). Of the total responses made during each phase, the percentage of responses at each of the three stimuli was calculated. In addition, to evaluate the microstructure of responding at each phase, the average length of unbroken strings of responding at the same stimulus was also analyzed for each phase (Brigman et al. 2013).

Results showed that choice of the S’Sreversal stimulus increased significantly from early to late discrimination and remained high at early reversal before decreasing across subsequent reversal training (Fig. 1D; e.g., behavioral raster plots, see Fig. 1C). Conversely, selection of the S1–/Snew decreased from early to late discrimination and progressively increased over reversal, while S2–/Snew choice was low by late discrimination and spiked during mid-reversal—apparently reflecting sampling of both previously unrewarded options at this mid-stage (Fig. 1E,F). The patterns evident in overall percent responding were substantiated by the trial-by-trial analysis showing that strings of consecutive S’Sreversal responses increased over discrimination and decreased over reversal. Strings of S1–/Snew responses, in contrast, were low by late discrimination before increasing across reversal, whereas S2–/Snew strings were also reduced by late discrimination and remained flat across reversal (Fig. 1G–I). The number of Sreversal (r = 0.72, P < 0.003) and Snew (r = 0.55, P < 0.044), but not Snew (r = 0.39), responses made at early reversal positively correlated with Sreversal choice at late reversal—suggesting that greater negative feedback early in the task led to superior performance later (Supplemental Fig. S1A–C). Lastly, choice latencies for all three stimuli quickened across the phases of discrimination and again at reversal (Supplemental Fig. S2).

These initial data establish the feasibility of assessing multi-choice reversal in mice using a touchscreen-based procedure. They also demonstrate this paradigm’s value in dissociating patterns of errors that are perseverative in nature (Sreversal > Snew) from those reflecting random responding or exploration of the alternative stimulus options (Sreversal = Snew). On the basis of these findings, we next evaluated the consequences of pharmacologically inactivating either the IOFC or dmPFC during early reversal, given the known contributions of these regions to cognitive flexibility (Fig. 2A). Following pretraining, male C57BL/6J mice were implanted with indwelling guide cannula into the IOFC (Fig. 2B) or dmPFC (Fig. 2E) and trained to the discrimination criterion in 12–15 sessions. To inhibit neuronal activity during early reversal, the GABA receptor agonist, muscimol (MUS), or saline (SAL) vehicle was bilaterally infused into the IOFC or dmPFC prior to each of the first two reversal sessions (capturing early reversal). IOFC inactivation produced significant alterations in the pattern of responding during early reversal, as well as a reduction in the number of trials performed overall, relative to saline-infused controls (SAL = 72.2 ± 4.9, MUS = 33.4 ± 8.2, t(16) = 4.03, P < 0.0010). Specifically, mice with the IOFC inactivated made significantly fewer errors at the Sreversal than controls but showed a significant increase in choices at the Snew as a percentage of total trials completed. Selection of the Snew option was equivalently low across the inactivated and saline groups (Fig. 2C). Microstructural analysis of trial-by-trial responding revealed that IOFC-inactivated mice made significantly shorter strings of consecutive Sreversal responses, with a corresponding increase in Snew strings (and no change in Snew strings) (Fig. 2D). Lastly, the latency to choose the Sreversal, but not Snew or Sreversal stimulus, was longer after IOFC inactivation (Supplemental Fig. S2). The fact that choice latency was selectively higher for the Sreversal stimulus after IOFC inactivation argues against the kind of general loss of response vigor that has been reported in rats studies (St Onge and Floresco 2010; Dalton et al. 2016). It could instead reflect deliberation or hesitancy at the Sreversal option. Why this would be greater after IOFC inactivation is unclear; one intriguing possibility is that this renders animals more sensitive to the Sreversal’s strong violation of outcome expectancies.

These data demonstrate that early reversal performance in this three-choice task was disrupted by IOFC inactivation. However, the pattern of effects does not fit with the historically favored notion that the IOFC mediates response inhibition—which would be expected to produce an increase, not a decrease, in
perseverative-like responding at the Sprior. Rather, these data are more readily explained by more recent views that the lOFC integrates a record of choices and their respective outcomes to guide the optimal response based on the calculated value of relative options available (Noonan et al. 2012; Rudebeck and Murray 2014; Stalnaker et al. 2015; Izquierdo et al. 2016). For example, multi-choice reversal studies in nonhuman primates find that, without the normal contribution of the IOFC (or mPFC), animals do not perseverate more, but instead more frequently shift between choices (Walton et al. 2010; Noonan et al. 2012, 2017; Chau et al. 2014).
Figure 2. Inactivation of the lOFC, but not dmPFC, disrupts early three-choice reversal performance. (A) Experimental timeline for pretraining, discrimination testing, and early reversal inactivation. (B) Ventral extent of the infusion located in lOFC. (C) Inactivation of IOFC resulted in a decrease in the percentage of trials ending in S_{prior} choices (left panel; corrected $t_{(16)} = 3.09, P < 0.0210$), without affecting the percentage of S_{new} trials (middle panel; corrected $t_{(16)} = 0.80, P > 0.05$). In contrast, the percentage of trials ending in S_{never} choices were increased following IOFC inactivation (right panel; corrected $t_{(16)} = 2.56, P < 0.0412$). (D) IOFC inactivation decreased the average length of strings of S_{prior} (left panel; $t(16) = 2.72, P = 0.0151$) without affecting strings of S_{new} responses (middle panel; $t_{(16)} = 0.24, P = 0.8157$). The length of strings of S_{never} responses tended to be increased by IOFC inactivation (right panel; $t_{(16)} = 2.12, P = 0.0502$). (E) Ventral extent of the infusion located in dmPFC. (F,G) Inactivation of the dmPFC did not significantly affect any measure (all t-values < 1.5, all P-values > 0.15). $n = 9–10$ per group. Data are means ± SEM. (*) *$P < 0.05$.

This effect has been explained by an inability to integrate recent and historical choice-outcomes—which are mixed and conflicting during reversal—to support decisions, leading to the misattribution of positive outcomes to the unrewarded stimuli ("deficient credit assignment"). While a deficiency of this kind could conceivably contribute to the reversal abnormalities observed in the current study, it cannot adequately account for the specific pattern we see. In particular, if mice had difficulty with credit assignment per se, then we would expect to see an increase in responding at the S_{new} as well as the S_{never}, because credit misattributed to the latter would derive from more frequent choice of the former. To decipher the nature of the effects we do see, it could be informative to inactivate the IOFC at the mid-reversal stage, when S_{new} responding is higher than at early reversal, and ask whether S_{never} responding is still excessively high after inactivation.

The current data also bear comparison with prior rodent studies of IOFC inactivation in reversal tasks that vary in stimulus number (two or more), stimulus type (visual, olfactory, or spatial) and/or reinforcement schedule (deterministic or probabilistic). In rats, IOFC inactivation has been found to impair performance of a probabilistic spatial reversal, without affecting performance on a deterministic version (Dalton et al. 2016). Conversely, rat or mouse IOFC inactivation or NMDA receptor antagonism was reported to increase putative perseverative-like errors in two-choice odor (Kim and Ragozzino 2005) and visual touchscreen (Chudasama and Robbins 2003; Brigman et al. 2013) reversals, but cause a general increase in perseverative, regressive and irrelevant errors in a four-choice odor reversal (Kim and Ragozzino 2005; Ragozzino 2007). One preliminary conclusion to draw from these studies is that the manner in which IOFC disruptions behaviorally manifest critically depends on the range of options available and their relative reinforcement histories.

There are also some noteworthy differences between the current visual reversal task and prior studies that use olfactory, tactile and visual stimuli, often in compound. In the touchscreen procedure, mice perform many more trials to reach discrimination and reversal criteria than rats typically do in, for example, digging tasks (i.e., hundreds versus tens). As such, all the stimuli are highly familiar by reversal in our task, whereas rats are sometimes introduced to novel stimuli across serial discriminations and reversals. These differing levels of stimulus-familiarity could have important consequences for how reversals are performed and recruit the IOFC. Indeed, Tait and Brown (2007) found that juxtaposing two reversal stimuli based on their familiarity and relative reinforcement histories markedly affected the nature of IOFC loss-of-function effects in a rat digging task. IOFC-lesioned rats displayed poor learning and increased omissions ("refusals to dig") when required to select the previously unrewarded stimulus over a novel option, but actually had superior learning when rewarded for choosing a novel stimulus over the previously reward option (Tait and Brown 2007). One interesting avenue for future studies will be dissecting the influence of these parameters. As a behavioral platform, the
touchscreen provides a tractable means to do so, given that the number, familiarity, and reinforcement histories of the choices-options can be varied, and their influence examined across single as well as potentially serial reversals.

In contrast to the marked effects of IOFC inactivation, inactivating the dmPFC was without any discernible effect (Fig. 2E–G). Prior reports of dmPFC inactivation effects on reversal tasks (including multichoice) in rats have been mixed, with examples of improvement, impairment and, as in the current case, no change in performance (cf. Becker et al. 1981; Bussey et al. 1997; Ragazzino et al. 2003; Boulougouris et al. 2007; Ragazzino and Rozman 2007; Floresco et al. 2008; Dalton et al. 2016). Again, this might reflect important variants in task parameters. Tasks that require cross-modal cognitive flexibility and resolution of rule-conflict appear to be particularly sensitive to mPFC disruption (Ragazzino et al. 2003; Floresco et al. 2008; Bissonette and Roesch 2017). For example, rats with dmPFC lesions exhibited deficits in a Y-maze reversal after previously learning a strategy shift: an effect attributed to a deficit in maintaining performance under conditions of conflicting strategies (Oualian and Gisquet-Verrier 2010).

Following early reversal inactivation in the current study, mice were trained to reversal criterion (without further infusions). Groups took an equivalent number of sessions to reach reversal criterion (IOFC: SAL = 15.0 ± 2.8, MUS = 13.7 ± 1.1; mPFC: SAL = 10.3 ± 0.9, MUS = 10.3 ± 1.4), indicating that the initial manipulation left no residual effects on performance when the cortical regions were back “online.” The IOFC or dmPFC was then inactivated during a single post-criterion session to test for effects on the expression of the now well-learned stimulus–reward contingencies (Fig. 3A), but neither inactivation significantly affected overall percent stimulus-choice (Fig. 3B,D). IOFC, but not dmPFC, inactivation did produce a modest increase in the length of Snew strings, while decreasing consecutive selections of the Snew option (Fig. 3C, E) and increasing the number of trials performed overall (SAL = 35.0 ± 1.2, IOFC = 45.1 ± 4.2; t(16) = 2.27, P < 0.0378). Also, and in contrast to the selective increase in Snew choice latency after early reversal IOFC inactivation, inactivation at late reversal increased latencies generally (Supplemental Fig. S3).

The slight shift in favor of the Snew after late reversal IOFC inactivation could reflect partial reversion to the discrimination associations (Delamater 2007) which, as noted above, could be expressed by other brain regions. However, the fact that correct choice was reduced and both error types were increased (not just the Snew) suggests a problem with maintaining the stimulus–reward/nonreward associations formed during reversal. This is somewhat surprising considering that IOFC is typically implicated when behaviors are being adjusted (as in early reversal), rather than after adjustments have been made (as in late reversal) (Boulougouris et al. 2007). However, the IOFC was also found to support established reversal performance on a probabilistically reinforced reversal task conducted in rats (Dalton et al. 2016). It may be that the multichoice and probabilistic reversals are especially taxing on the IOFC’s capacity for predicting and tracking stimulus–outcome associations, such that the region retains a hand in maintaining performance even after behavior has successfully adjusted to the new stimulus–reward contingencies. To address this question

Figure 3. Effects of IOFC and dmPFC inactivation on late three-choice reversal performance. (A) Experimental timeline for post-reversal criterion inactivation. (B) IOFC inactivation did not significantly affect the percentage of Sprev (left panel; corrected t(16) = 2.03, P = 0.1160), Snew (middle panel; corrected t(16) = 2.39, P = 0.0856), or Snew (right panel; corrected t(16) = 1.99, P = 0.1160) choices. (C) The average length of Sprev strings was increased by IOFC inactivation (left panel; t(16) = 2.61, P = 0.0196), while the average Snew string length was diminished by IOFC inactivation (middle panel; t(16) = 2.45, P = 0.0261). In contrast, Snew string length was not altered by IOFC inactivation (right panel; t(16) = 0.98, P = 0.3450). (D,E) Inactivation of the dmPFC at late reversal did not significantly affect any measure (all t-values < 1.5, all P-values > 0.15). n = 9–10 per group. Data are means ± SEM. (*) P < 0.05.
going forward, it would be valuable to chronically measure (e.g., via neuronal recordings or imaging) the sustained engagement of the IOFC across reversal learning in the three-choice task.

In conclusion, the current three-choice touchscreen task represents novel paradigm for assessing murine reversal learning and cognitive flexibility that may be useful for translational research given its overt similarity to cognitive testing procedures used in higher species, including humans (Mar et al. 2013; Akaishi et al. 2016; Izquierdo et al. 2016; Noonan et al. 2017). Further speaking to this potential, we show that the reversal task is highly sensitive to disruption of the IOFC, a brain region subserving the modification of choices to accommodate new outcome contingencies, and implicated in narrowed, intransigent patterns of behavior characteristic of AUDs and other addictions.

Acknowledgments

We are very grateful to Miss Julia Schaffer for generating the behavioral results. This work was supported by the NIAAA Intramural Research Program.

References

Akaishi R, Kolling N, Brown JW, Rushworth M. 2016. Neural mechanisms of credit assignment in a multicide environment. J Neurosci 36: 1096–1112. doi:10.1523/JNEUROSCI.3519-15.2016

Amodeo DA, Rivera E, Cook EH Jr, Sweeney JA, Ragozzino ME. 2017. SHT2A receptor blockade in dorsomedial striatum reduces defeat behaviors in BTBR mice. Genes Brain Behav 16: 342–351. doi:10.1111/gbb.12343

Balleine BW, Leung BK, Ostlund SB. 2011. The orbitofrontal cortex, predicted value, and choice. Ann N Y Acad Sci 1239: 43–50. doi:10.1111/j.1749-6632.2011.06270.x

Becker JT, Olton DS, Anderson CA, Breitinger EK. 1981. Cognitive mapping in rats: the role of the hippocampal and frontostral system in retention and reversal. Behav Brain Res 3: 1–22. doi:10.1016/0166-4328(81)90025-5

Belin D, Belin-Rauscent A, Everitt BJ, Dalley JW. 2016. In search of predictive neural basis of reversal learning: an updated perspective. J Neurosci 36: 996–1011. doi:10.1523/JNEUROSCI.3566-15.2016

Bissonette GB, Roesch MR. 2017. Neurophysiology of rule switching in the medial prefrontal cortex. J Neurosci 37: 8712–8720. doi:10.1523/JNEUROSCI.23-25-08771.2003

Clarke HF, Robbins TW, Roberts AC. 2008. Lesions of the medial striatum in monkeys produce perseverative impairments during reversal learning similar to those produced by lesions of the orbitofrontal cortex. J Neurosci 28: 10972–10982. doi:10.1523/JNEUROSCI.1521-08.2008

Coleman LG Jr, He J, Lee J, Styner M, Crews FT. 2012. Adolescent binge drinking alters adult brain neurotransmitter gene expression, behavior, brain regional volumes, and neurochemistry in mice. Alcohol Clin Exp Res 35: 671–688. doi:10.1111/j.1530-0277.2010.01385.x

Costa VS, Tran VL, Turci JH, Averbeck BB. 2015. Reversal learning and dopamine: a Bayesian perspective. J Neurosci 35: 2407–2416. doi:10.1523/JNEUROSCI.1989-14.2015

Dalley JW, Wang NY, Phillips J, Floresco SB. 2016. Multiaffected contributions by different regions of the orbitofrontal and medial prefrontal cortex to probabilistic reversal learning. J Neurosci 36: 996–2006. doi:10.1523/JNEUROSCI.3566-15.2016

D’Cruz AM, Ragozzino ME, Mosconi MW, Pavuluri MN, Sweeney JA. 2011. Human reversal learning under conditions of certain versus uncertain outcomes. Neuroimage 56: 315–322. doi:10.1016/j.neuroimage.2011.01.068

Delamater AR. 2007. The role of the orbitofrontal cortex in sensory-specific encoding of associations in pavlovian and instrumental conditioning. Ann N Y Acad Sci 1121: 152–173. doi:10.1196/annals.1401.030

DePoy L, Daut R, Brigman JL, Macpherson K, Crowley N, Gunduz-Cinar O, Pickens CL, Cinar R, Sakida LM, Kunes G, et al. 2013. Chronic alcohol produces neuroadaptations to prime dorsal striatal learning. Proc Natl Acad Sci 110: 14783–14788. doi:10.1073/pnas.1308198110

Dias R, Robbins TW, Roberts AC. 1996. Dissociation in prefrontal cortex of affective and attentional shifts. Nature 380: 69–72. doi:10.1038/380069a0

Dias R, Robbins TW, Roberts AC. 1997. Dissociable forms of inhibitory control within prefrontal cortex with an analog of the Wisconsin Card Sort Test: restriction to novel situations and independence from “on-line” processing. J Neurosci 17: 9285–9297. doi:10.1523/JNEUROSCI.17-23-09285.1997

Floresco SB, Block AE, Tse MT. 2008. Inactivation of the medial prefrontal cortex of the rat impairs strategy set-shifting, but not reversal learning, using a novel, automated procedure. Behav Brain Res 190: 85–96. doi:10.1016/j.bbr.2008.02.008

Ghods-Shafiri S, Haluk DM, Floresco SB. 2008. Differential effects of inactivation of the orbitofrontal cortex on strategy set-shifting and reversal learning. Neurol Learn Mem 5: 567–573. doi:10.1016/j.nlm.2011.07.007

Graybeal C, Feyder M, Schulman E, Sakida LM, Bussey TJ, Brigman JL, Holmes A. 2011. Paradoxical reversal learning enhancement by stress or prefrontal cortical damage: rescue with BDNF. Nat Neurosci 14: 1507–1509. doi:10.1038/nn.2954

Graybeal C, Bachu M, Mozhui K, Sakida LM, Bussey TJ, Sagaly E, Williams RW, Holmes A. 2014. Strains and stressors: an analysis of touchscreen learning in genetically diverse mouse strains. PLoS One 9: e87745. doi:10.1371/journal.pone.0087745

Grospe GM, Baker PM, Ragozzino ME. 2018. Cognitive flexibility deficits following 6-OHDA lesions of the rat dorsomedial striatum. Neuroscience 374: 80–90. doi:10.1016/j.neuroscience.2018.01.032

Hu W, Morris B, Carrasco A, Kroener S. 2015. Effects of acamprosate on attentional set-shifting and cellular function in the prefrontal cortex of chronic alcohol-exposed mice. Alcohol Clin Exp Res 39: 953–961. doi:10.1111/acer.12722

Iversen SD, Mishkin M. 1970. Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11: 376–386. doi:10.1007/BF00257911

Izquierdo A, Suda RK, Murray EA. 2004. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J Neurosci 24: 7540–7548. doi:10.1523/JNEUROSCI.2192-04.2004

Izquierdo A, Wiedholz LM, Millslev RA, Yang RJ, Bussey TJ, Sakida LM, Holmes A. 2006. Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171: 181–188. doi:10.1016/j.bbr.2006.03.029

Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. 2016. The neural basis of reversal learning: an updated perspective. Neurosci 345: 12–26. doi:10.1016/j.neuroscience.2016.03.021
