Abstract: A review of the Mexican rotifer species diversity is presented here. To date, 402 species of rotifers have been recorded from Mexico, besides a few infraspecific taxa such as subspecies and varieties. The rotifers from Mexico represent 27 families and 75 genera. Molecular analysis showed about 20 cryptic taxa from species complexes. The genera *Lecane*, *Trichocerca*, *Brachionus*, *Lepadella*, *Cephalodella*, *Keratella*, *Ptygura*, and *Notommata* accounted for more than 50% of all species recorded from the Mexican territory. The diversity of rotifers from the different states of Mexico was highly heterogeneous. Only five federal entities (the State of Mexico, Michoacán, Veracruz, Mexico City, Aguascalientes, and Quintana Roo) had more than 100 species. Extrapolation of rotifer species recorded from Mexico indicated the possible occurrence of more than 600 species in Mexican water bodies, hence more sampling effort is needed. In the current review, we also comment on the importance of seasonal sampling in enhancing the species richness and detecting exotic rotifer taxa in Mexico.

Keywords: rotifera; distribution; checklist; taxonomy

1. Introduction

Taxonomical studies involving species richness provide information on the global patterns of species distribution and are helpful to detect changes associated with climate or global trade. For example, in Mexico, the number of exotic and thus invasive species has been steadily increasing during the last two decades [1,2]. The existence of taxonomic checklists is helpful to confirm this.

Mexico is one of the megadiverse countries and accounts for about 10% of the world’s biodiversity [3]. Despite well-classified geographical regions of Mexico [4], the description of the distribution of different groups of animal species is still fragmentary, especially with reference to invertebrates, including rotifers. Freshwater zooplanktonic groups are mainly composed of ciliates, rotifers, cladocerans, and copepods. Rotifers, being important trophic links in aquatic ecosystems, have been the focus of basic research, such as taxonomy and autecology, and applied aspects, such as ecotoxicology, aquaculture, and water quality indicators [5].

Studies on the rotifer species richness in Mexico have been steadily gaining importance during the last 25 years. Earlier studies were mainly sporadic and, at times, biased, with a limnological perspective [6]. Species checklists of rotifers from the Mexican territory are available only for selected regions. For example, information about the distribution of rotifers exists for the State of Mexico, Aguascalientes, Michoacán, Mexico City, and a few regions of the Yucatan Peninsula [7–13]. However, larger parts of the Mexican territory still lack such information. The first national checklist of rotifers from Mexico was produced during the late 1990s [14]. Since then, considerable progress has been made on the distribution of rotifers in different regions, although no attempts have been made to update the checklist.
Numerous models and computer programs are available to predict the possible number of species in a region or nation based on species accumulation and rarefaction curves, the presence or absence of given taxa, etc. For example, for understanding the state of biodiversity, models such as ICE, Chao 2, Jackknife, and Bootstrap are traditionally used to obtain species estimates for different groups of organisms [15]. Significant errors may still occur if the published reports of species are not corrected or weak data with large sampling gaps are used. In Mexico, the National Commission for the Knowledge and Use of Biodiversity (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, CONABIO) contains data on the biodiversity of different groups of organisms, yet information on patterns of distribution of groups such as rotifers within its territorial jurisdiction are limited.

This work aimed to provide a comprehensive list of rotifer species recorded and document their distributional patterns from different regions of Mexico.

2. Materials and Methods

A bibliographic review of rotifer diversity studies from Mexico was conducted using the standard databases in the Web of Science using the search words “rotifer*”, “Mexic*” and “diversity” during the entire period available in each database (retrieved during May 2021). The records were then consulted in the full text, and we checked each work for the records of rotifer species. We also consulted works from other non-indexed journals but avoided contributions that contained only genus-level descriptions for rotifers. The data were sorted out into Excel files according to the geographical entities of Mexico. In addition, the documents available from CONABIO were also considered. For species nomenclature, we followed standard works on Rotifera [16,17]. The checklist provided here does not contain a listing of the infraspecific taxa. Therefore, only species were enumerated. However, infraspecific taxa were reported in the checklist without assigning an additional number.

Due to the increased accessibility of molecular tools in the study of systematics of rotifers, several cryptic taxa of commonly distributed species within genera such as Brachionus, Keratella, Asplanchna, and Lecane have been documented. However, cryptic species without formal description were not included in the checklist, although references to such studies are made in a separate table. When a known species was already reported from Mexico (e.g., Philodina roseola), the same taxon with conferatur status (e.g., Philodina cf. roseola) was not numbered. However, if a taxon was reported only with conferatur, it was considered for numbering (e.g., Notholca cf. liepetterseni). Further, taxa that have been identified as having potential species status but not described are not included here, for example, Brachionus sp. “Mexico” [18] and Hexarthra sp. [19]. In addition, as far as possible, we used published reports of species. When necessary, we checked the species identifications based on the illustrations provided in the articles with those from standard literature [20–23]. Yet, some taxa with species inquirenda status (e.g., Polyarthra trigla) were retained as such pending further studies. The species checklist was not arranged based on phylogeny of Rotifera. Rotifer families were arranged alphabetically, and within each family and genus, the species were all in alphabetic order. This facilitated reporting new records in future research.

A nonparametric analysis of species richness of Rotifera reported from Mexico was performed using the updated checklist. Models/computer simulations based on Chao 2, Jackknife 2, and Bootstrap were performed using Estimates S9 [24]. From the diversity estimators, we derived the efficiency percentage of each estimator with the following formula:

\[
\frac{S_{\text{observed}}}{S_{\text{estimated}}} \times 10
\]

3. Results

Mexico has 31 states and a capital, Mexico City. The total number of rotifer species reported from Mexico was 402, besides a few infraspecific taxa such as subspecies and
varieties. The list of consulted works is available in Supplementary 1 with coordinates for each federal entity obtained from the Mexican National Institute of Statistics and Geography (INEGI). The database, created using published works from Mexican Rotifera, is presented in Supplementary 2. Rotifers from Mexico represented 27 families and 75 genera (Table 1). Only eight genera, viz., *Lecane*, *Trichocerca*, *Brachionus*, *Cephalodella*, *Lepadella*, *Keratella*, *Ptygura*, and *Notommata*, of rotifers had more than 50% of the total species recorded from the Mexican territory. Each of these genera had at least 10 species, while the remaining genera had less than 10 species each. Of the 15 species recorded with *conferatur* status, 11 were from Chihuahua and Quintana Roo. To date, molecular analysis has revealed the existence of 17 taxa as species complexes consisting of cryptic species (Table 2).

Table 1. Checklist of rotifer species recorded from Mexico.

Subclass: Bdelloidea Hudson, 1884
Order: Adinetida Melone & Ricci, 1995
Family: Adinetidae Hudson & Gosse, 1886
1. *Adineta vaga* (Davis, 1873)
Order: Philodinida Melone & Ricci 1995
Family: Philodinidae Ehrenberg, 1838
2. *Dissotrocha aculeata* (Ehrenberg, 1830)
3. *Macrotachela sonorensis* Orstan, 1995
4. *Philodina acuticornis* Murray, 1902
5. *Philodina megalotrocha* Ehrenberg, 1832
6. *Philodina roseola* Ehrenberg, 1832
7. *Pleuretra africana* Murray, 1911
9. *Rotaria elongata* (Weber, 1888)
10. *Rotaria magnacalcarata* (Parsons, 1892)
11. *Rotaria neptuni* (Ehrenberg, 1830)
12. *Rotaria rotatoria* (Pallas, 1766)
Subclass: Monogononta Plate, 1889
Order: Collothecacea Harring, 1913
Family: Atrochidae Harring, 1913
13. *Atrochus tentaculatus* Wierzejski, 1893
14. *Cupelopagis vorax* (Leidy, 1857)
Family: Collothecidae Harring, 1913
15. *Collotheca ambigua* (Hudson, 1883)
16. *Collotheca campanulata* (Dobie, 1849)
17. *Collotheca coroneta* (Cubitt, 1869)
18. *Collotheca crateriformis* Offord, 1934
19. *Collotheca ornata* (Ehrenberg, 1832)
20. *Collotheca pelagica* (Rousselet, 1893)
21. *Collotheca riverai* Vilaclara & Sládeček, 1989
22. *Collotheca tenulobata* (Anderson, 1889)
23. *Collotheca trilobata* (Collins, 1872)
24. *Stephanoceros millsii* (Kellicott, 1885)
Order: Flosculariacea Harring, 1913
Family: Conochilidae Harring, 1913
25. *Conochilus coenobasis* (Skorikov, 1914)
26. *Conochilus dossuartius* Hudson, 1885
27. *Conochilus hippocrepis* (Schrank, 1803)
28. *Conochilus natans* (Seligo, 1900)
29. *Conochilus unicornis* Rousselet, 1892
Family: Flosculariidae Ehrenberg, 1838
30. *Beauchampia crucigere* (Dutrochet, 1812)
31. *Floscularia melicerta* (Ehrenberg, 1832)
32. *Limnias ceratophylli* Schrank, 1803
33. *Limnias melicerta* Weisse, 1848
34. *Octotrocha speciosa* Thorpe, 1893
Table 1. Cont.

	Species	Author, Year
35	Ptygura beauchampi	Edmondson, 1940
36	Ptygura brachiata	(Hudson, 1886)
37	Ptygura brevis	Rousselet, 1893
38	Ptygura crystallina	(Ehrenberg, 1834)
39	Ptygura furcillata	(Kellicott, 1889)
40	Ptygura libera Myers	(Myers, 1934)
41	Ptygura cf. linguata	Edmondson, 1939
42	Ptygura longicornis	(Davis, 1867)
43	Ptygura melicerta	Ehrenberg, 1832
44	Ptygura pedunculata	Edmondson, 1939
45	Ptygura tacita	Edmondson, 1940
46	Ptygura tridorsicornis	Summerfield-Wright, 1957
47	Ptygura velata	(Gosse, 1851)
48	Sinantherina arripres	Edmondson, 1939
49	Sinantherina semibullata	(Thorpe, 1893)
50	Sinantherina socialis	(Linnaeus, 1758)
51	Hexarthra fennica	(Levander, 1892)
52	Hexarthra intermedia	(Wiszniewski, 1929)
	Hexarthra intermedia f. braziliensis	Hauer, 1953
53	Hexarthra jenkinae	(de Beauchamp, 1932)
54	Hexarthra mira	(Hudson, 1871)
55	Hexarthra oxyuris	(Sernov, 1903)
56	Hexarthra polyodonta	(Hauer, 1957)
57	Pompolyx complanata	Gosse, 1851
58	Pompolyx sulcata	Hudson, 1885
59	Testudinella caca	Parsons, 1892
60	Testudinella emarginula	Stenroos, 1898
61	Testudinella incisa	Ternetz, 1892
62	Testudinella mucronata	Gosse, 1886
63	Testudinella paroa	Ternetz, 1892
64	Testudinella patina	(Hermann, 1783)
65	Testudinella reflexa	(Gosse, 1887)
66	Filinia brachiata	(Rousselet, 1901)
67	Filinia cornuta	Weisse, 1847
68	Filinia longiseta	(Ehrenberg, 1834)
69	Filinia opolensis	Zacharias, 1898
70	Filinia pejleri	Hutchinson, 1964
71	Filinia saltator	(Gosse, 1886)
72	Filinia terminalis	(Plate, 1886)
73	Horaella thomassoni	Koste, 1973
74	Trochosphaera reflexa	(Gosse, 1887)

Order: Plloima Hudson & Gosse, 1886

Family: Asplanchnidae Eckstein, 1883

	Species	Author, Year
75	Asplanchna brightwellii	Gosse, 1850
76	Asplanchna girodi de Guerne	(Gosse, 1888)
77	Asplanchna herrickii de Guerne	(Gosse, 1888)
78	Asplanchna intermedia	Hudson, 1886
79	Asplanchna priodonta	Gosse, 1850
80	Asplanchnia sieboldii	Leydig, 1854
81	Asplanchnia silvestrii	Daday, 1902
82	Asplanchnopus multicorps	(Schrank, 1793)

Family: Brachionidae Ehrenberg, 1838

	Species	Author, Year
83	Anuraeopsis fissa	Gosse, 1851
84	Anuraeopsis quadriantennata	(Koste, 1974)
85	Brachionus ahlstromi	Lindeman, 1939
86	Brachionus angularis	Gosse, 1851
Table 1. Cont.

	Taxon
87	Brachionus araceliae Silva-Briano, Galván-De la Rosa, Pérez-Legaspi & Rico-Martínez, 2007
88	Brachionus bidentatus Anderson, 1889
89	Brachionus budapestinensis Daday, 1885
90	Brachionus calyciflorus Pallas, 1766
91	Brachionus caudatus Barrois & Daday, 1894
92	Brachionus dimidiatus Bryce, 1931
93	Brachionus dolabratus Harring, 1914
94	Brachionus durgae Dhanapathi, 1974
95	Brachionus falcatus Zacharias, 1898
96	Brachionus forficula Wierzejski, 1891
97	Brachionus havanaensis Rousselet, 1911
98	Brachionus josefinae Silva-Briano & Segers, 1992
99	Brachionus leydigii Cohn, 1862
100	Brachionus paranguensis Guerrero-Jiménez, Vannucchi, Silva-Briano, Adabache-Ortiz, Rico-Martínez, Roberts, Neilson & Elías-Gutiérrez, 2019
101	Brachionus plicatilis Müller, 1786
102	Brachionus pterodinoides Hermann, 1783
103	Brachionus quadridentatus quadridens herman, 1783
104	Brachionus rotundiformis Tschugunoff, 1921
105	Brachionus rubens Ehrenberg, 1838
106	Brachionus urceolatis Müller, 1773
107	Brachionus variabilis Hempel, 1896
108	Kellicottia bostoniensis (Rousselet, 1908)
109	Kellicottia longispina (Kellicott, 1879)
110	Keratella americana Carlin, 1943
111	Keratella cochlearis (Gosse, 1851)
112	Keratella hiemalis Carlin, 1943
113	Keratella irregularis (Lauterborn, 1898)
114	Keratella lenzi Hauer, 1953
115	Keratella mexicana Kutikova & Silva-Briano, 1995
116	Keratella morenoi Modenutti, Diéguez & Segers, 1998
117	Keratella procura Thorpe, 1891
118	Keratella quadra (Müller, 1786)
119	Keratella serrulae (Ehrenberg, 1838)
120	Keratella taurocephala Myers, 1938
121	Keratella tecta Gosse, 1851
122	Keratella ticinensis (Callerio, 1921)
123	Keratella tropica (Apstein, 1907)
124	Keratella valga (Ehrenberg, 1834)
125	Notholca acuminata (Ehrenberg, 1832)
126	Notholca bipalium Müller, 1786
127	Notholca foliaceae (Ehrenberg, 1838)
128	Notholca cf. liepetterseni Godske Björklund, 1972
129	Notholca squamula (Müller, 1786)
130	Notholca striata (Müller, 1786)
131	Platynus patulus (Dayad, 1905)
132	Platynus patulus macracanthus (Müller, 1786)
133	Platynus polyacanthus (Ehrenberg, 1834)
134	Platyias leloupi Gillard, 1967
135	Aspelta angusta Harring & Myers, 1928
136	Aspelta curvidactyla Bérzinš, 1949
137	Aspelta lestes Harring & Myers, 1928

Family: Dicranophoridae Harring, 1913
Table 1. Cont.

No.	Genus and Species	Author(s) and Year
138	Dicranophoroides caudatus	Ehrenberg, 1834
139	Dicranophoroides claviger	Hauer, 1965
140	Dicranophorus epicharis	Harring & Myers, 1928
141	Dicranophorus forcipatus	Müller, 1786
142	Dicranophorus grandis	Ehrenberg, 1832
143	Dicranophorus prionacis	Harring & Myers, 1928
144	Dicranophorus robustus	Harring & Myers, 1928
145	Encentrum cf. cruentum	Harring & Myers, 1928
146	Encentrum saundersae	Hudson, 1885
147	Encentrum uncinatum	Milne, 1886
148	Paradicranophorus sordidus	Donner, 1968
149	Cyrtonia tuba	Ehrenberg, 1834
150	Epiphanes brachionus	Ehrenberg, 1837
151	Epiphanes clavulata	Ehrenberg, 1832
152	Epiphanes macronota	Barrois & Daday, 1894
153	Epiphanes senta	Müller, 1773
154	Prolides subtilis	Rodewald, 1940
155	Prolides tentaculatus	de Beauchamp, 1907
156	Beuchampiella eudactylota	Gosse, 1886
157	Dipleuchlanis elegans	Wierzejski, 1893
158	Dipleuchlanis propatula	Gosse, 1886
159	Euchlanis calpida	Myers, 1930
160	Euchlanis deflexa	Gosse, 1851
161	Euchlanis dilatata	Ehrenberg, 1832
162	Euchlanis incisa	Carlin, 1939
163	Euchlanis lyra	Hudson, 1886
164	Euchlanis cf. mikropous	Koch-Althaus, 1962
165	Euchlanis oropha	Gosse, 1887
166	Euchlanis pyriformis	Gosse, 1851
167	Euchlanis triquetra	Ehrenberg, 1838
168	Tripleuchlanis plicata	Levander, 1894
169	Ascomorpha ecaudis	Perty, 1850
170	Ascomorpha ovalis	Bergendal, 1892
171	Ascomorpha saltans	Bartsch, 1870
172	Gastropus hyptopus	Ehrenberg, 1838
173	Gastropus stylifer	Imhof, 1891
174	Itura aurita	Ehrenberg, 1830
175	Itura chamadis	Harring & Myers, 1928
176	Itura myersi	Wulfert, 1935
177	Lecane aculeata	Jakubski, 1912
178	Lecane aeganea	Harring, 1914
179	Lecane arculata	Bryce, 1891
180	Lecane arcula	Harring, 1914
181	Lecane aspasia	Myers, 1917
182	Lecane bifurca	Bryce, 1892
183	Lecane bulla	Gosse, 1851
184	Lecane candida	Harring & Myers, 1926
185	Lecane clara	Bryce, 1892
186	Lecane closterocerca	Schmarda, 1859
187	Lecane cornuta	Müller, 1786
188	Lecane crepida	Harring, 1913
189	Lecane crepida	Harring, 1914
190	Lecane curvicornis	Murray, 1913
Table 1. Cont.

191	Lecane decipiens (Murray, 1913)
192	Lecane doryssa Harring, 1914
193	Lecane elasma Harring & Myers, 1926
194	Lecane elegans Harring, 1914
195	Lecane elsa Hauer, 1931
196	Lecane flexilis (Gosse, 1886)
197	Lecane furcata (Murray, 1913)
198	Lecane grandis (Murray, 1913)
199	Lecane haliclysta Harring & Myers, 1926
200	Lecane hamata (Stokes, 1896)
201	Lecane hastata (Murray, 1913)
202	Lecane cf. hastata (Murray, 1913)
203	Lecane hornemanni (Ehrenberg, 1834)
204	Lecane inermis (Bryce, 1892)
205	Lecane inopinata Harring & Myers, 1926
206	Lecane latissima Yamamoto, 1955
207	Lecane leontina (Turner, 1892)
208	Lecane ludwigii (Eckstein, 1883)
209	Lecane luna (Müller, 1776)
210	Lecane lunaris (Ehrenberg, 1832)
211	Lecane margaretae Segers, 1991
212	Lecane monostyla (Daday, 1897)
213	Lecane nana (Murray, 1913)
214	Lecane nelsoni Segers, 1994
215	Lecane obtusa (Murray, 1913)
216	Lecane ohiensis (Herrick, 1885)
217	Lecane papuana (Murray, 1913)
218	Lecane perpusilla (Hauer, 1929)
219	Lecane pertica Harring & Myers, 1926
220	Lecane punctata (Murray, 1913)
221	Lecane pyriformis (Daday, 1905)
222	Lecane quadridentata (Ehrenberg, 1830)
223	Lecane rhenana Hauer, 1929
224	Lecane rhymida Harring & Myers, 1926
225	Lecane rugosa (Harring, 1914)
226	Lecane ruttneri Hauer, 1938
227	Lecane satyrus Harring & Myers, 1926
228	Lecane scutata (Harring & Myers, 1926)
229	Lecane signifera (Jennings, 1896)
230	Lecane sola Hauer, 1936
231	Lecane spinulifera Edmondson, 1935
232	Lecane stenroosi (Meissner, 1908)
233	Lecane stichaea Harring, 1913
234	Lecane stokesii (Pell, 1890)
235	Lecane subtilis Harring & Myers, 1926
236	Lecane subulata (Harring & Myers, 1926)
237	Lecane tenuiseta Harring, 1914
238	Lecane thalera (Harring & Myers, 1926)
239	Lecane thienemanni (Hauer, 1938)
240	Lecane uenoi Yamamoto, 1951
241	Lecane undulata Hauer, 1938
242	Lecane unguiculata (Padoev, 1925)
243	Lecane unguiculata (Gosse, 1887)
244	Lecane venusta Harring & Myers, 1926
245	Lecane yatseni Wei & Xu, 2010

Family: Lepadellidae Harring, 1913

246	Colurella adriatica Ehrenberg, 1831		
247	Colurella colurus (Ehrenberg, 1830)		
	Species	Author	
---	---	-----------------	
248	Colurella hindenburgi Steinecke, 1917		
249	Colurella oblonga Donner, 1943		
250	Colurella obtusa (Gosse, 1886)		
251	Colurella uncinata (Müller, 1773)		
	Colurella uncinata bicuspidata (Ehrenberg, 1832)		
252	Lepadella acuminata (Ehrenberg, 1834)		
253	Lepadella apsidula Harring, 1916		
254	Lepadella astacicolona Hauer, 1926		
255	Lepadella benjamini Harring, 1916		
256	Lepadella biloba Hauer, 1958		
257	Lepadella cf. cornuta Koste & Shiel, 1989		
258	Lepadella cristata (Rousselet, 1893)		
259	Lepadella dactyliseta (Stenroos, 1898)		
260	Lepadella discoidea Segers, 1993		
261	Lepadella donneri Koste, 1972		
262	Lepadella ehrenbergii (Perty, 1850)		
263	Lepadella heterostyla (Murray, 1913)		
264	Lepadella latusinus (Hilgendorf, 1899)		
265	Lepadella ovalis (Müller, 1786)		
266	Lepadella patella (Müller, 1773)		
	Lepadella patella patella (Müller, 1786)		
267	Lepadella punctata Wulfert, 1939		
268	Lepadella quadricarinata (Stenroos, 1898)		
269	Lepadella quinquecostata (Lucks, 1912)		
	Lepadella quinquecostata quinquecostata (Lucks, 1912)		
270	Lepadella rhomboidea (Gosse, 1886)		
271	Lepadella triba Myers, 1934		
272	Lepadella triptera (Ehrenberg, 1832)		
273	Squatinella lamellaris (Müller, 1786)		
	Family: Lindiidae Harring & Myers, 1924		
274	Lindia ecela Myers, 1933		
275	Lindia tecusa Harring & Myers, 1922		
276	Lindia turulosa Dujardin, 1841		
277	Lindia truncata (Jennings, 1894)		
	Family: Mytilinidae Harring, 1913		
278	Lophocharis oysternon (Gosse, 1851)		
279	Lophocharis salpina (Ehrenberg, 1834)		
280	Mytilina acanthophora Hauer, 1938		
281	Mytilina bisulcata (Lucks, 1912)		
282	Mytilina mucronata (Müller, 1773)		
	Mytilina mucronata spinigera (Ehrenberg, 1830)		
283	Mytilina ventralis (Ehrenberg, 1830)		
	Mytilina ventralis brevispina (Ehrenberg, 1830)		
	Mytilina ventralis ventralis (Ehrenberg, 1830)		
	Family: Notommatidae Hudson & Gosse, 1886		
284	Cephalodella apocolea Myers, 1924		
285	Cephalodella calosa Wulfert, 1956		
286	Cephalodella catellina Müller, 1786		
287	Cephalodella exigua (Gosse, 1886)		
288	Cephalodella forficula (Ehrenberg, 1830)		
289	Cephalodella gibba (Ehrenberg, 1830)		
290	Cephalodella gigantea Remane, 1933		
291	Cephalodella globata (Gosse, 1887)		
292	Cephalodella gracilis (Ehrenberg, 1830)		
293	Cephalodella cf. graciosa Wulfert, 1956		
294	Cephalodella hoodii (Gosse, 1886)		
295	Cephalodella macroductyla (Stenroos, 1898)		
296	Cephalodella cf. marina Myers, 1924		
297	Cephalodella megalocephala (Glascott, 1893)		
298	Cephalodella misgurnus Wulfert, 1937		
Page	Name	Author	Year
------	--	--------------	----------
299	Cephalodella panarista	Myers, 1924	
300	Cephalodella physalis	Myers, 1924	
301	Cephalodella rotunda	Wulfert, 1937	
302	Cephalodella stenroosi	Wulfert, 1937	
303	Cephalodella sterea	Gosse, 1887	
304	Cephalodella tenuiseta	Burn, 1890	
305	Cephalodella ventripes	Dixon-Nuttall, 1901	
306	Enteroplea lacustris	Ehrenberg, 1830	
307	Eosphora anthadis	Harring & Myers, 1922	
308	Eosphora ehrenbergi	Weber & Montet, 1918	
309	Eosphora najas	Ehrenberg, 1830	
310	Eosphora thou	Harring & Myers, 1830	
311	Eosphora thoides	Wulfert, 1935	
312	Eosphora carogaensis	Myers, 1937	
313	Eosphora elongata	Ehrenberg, 1832	
314	Monommata actices	Remane, 1933	
315	Monommata diaphora	Myers, 1930	
316	Notommata aurita	Müller, 1786	
317	Notommata cerberus	Gosse, 1886	
318	Notommata copreus	Ehrenberg, 1834	
319	Notommata cyrtopus	Gosse, 1886	
320	Notommata falcinella	Harring & Myers, 1922	
321	Notommata glyphura	Wulfert, 1935	
322	Notommata haueri	Wulfert, 1939	
323	Notommata pachyra	Gosse, 1886	
324	Notommata saccigera	Ehrenberg, 1830	
325	Notommata tripus	Ehrenberg, 1838	
326	Pleurotrocha petromyzon	Ehrenberg, 1830	
327	Reticula gelida	Harring & Myers, 1922	
328	Reticula melanocus	Gosse, 1887	
329	Reticula nyssa	Harring & Myers, 1924	
330	Sphagrias lofauna	Rousselet, 1910	
331	Taphrocampia annulosa	Gosse, 1851	
332	Taphrocampia sealenura	Gosse, 1887	

Family: Proalidae Harring & Myers, 1924

Page	Name	Author	Year
333	Proales cognitaa	Myers, 1940	
334	Proales daphnicola	Thompson, 1892	
335	Proales decipiens	Ehrenberg, 1832	
336	Proales fallacioida	Wulfert, 1937	
337	Proales globulifera	Hauer, 1921	
338	Proales sigmoidea	Skorikov, 1896	
339	Proales similis de Beauchamp	1907	
340	Proales sordida	Gosse, 1886	
341	Proales cf. wesenbergi	Wulfert, 1960	
342	Wulfertia ornata	Donner, 1943	

Family: Scaridiidae Manfredi, 1927

Page	Name	Author	Year
343	Scaridium botsjani	Daems & Dumont, 1974	
344	Scaridium longicaudatum	Müller, 1786	

Family: Synchaetidae Hudson & Gosse, 1886

Page	Name	Author	Year
345	Ploesoma hudsoni	Imhof, 1891	
346	Polyarthra dolichoptera	Idelson, 1925	
347	Polyarthra euryptera	Wierzejski, 1891	
348	Polyarthra lingiremis	Carlin, 1943	
349	Polyarthra luminosa	Kutikova, 1962	
350	Polyarthra major	Burckhardt, 1900	
351	Polyarthra remata	Skorikov, 1896	
352	Polyarthra trigla	Ehrenberg, 1834 (species inquirenda)	
Page	Species	Authors	
------	---	--------------------	
353	*Polyarthra vulgaris* Carlin, 1943		
354	*Synchaeta bicornis* Smith, 1904		
355	*Synchaeta elsteri* Hauer, 1963		
356	*Synchaeta hyperborea* Smirnov, 1932		
357	*Synchaeta longipes* Gosse, 1887		
358	*Synchaeta oblutra* Ehrenberg, 1832		
359	*Synchaeta pectinata* Ehrenberg, 1832		
360	*Synchaeta stylata* Wierzejski, 1893		
361	*Synchaeta tremula* (Müller, 1786)		
362	*Synchaeta tremuloida* Pourriot, 1965		
	Family: Tetrasiphonidae Harring & Myers, 1924		
363	*Tetrasipho hydrocora* Ehrenberg, 1840		
	Family: Trichoceridae Harring, 1913		
364	*Ascomorphella volvocicola* (Plate, 1886)		
365	*Trichocerca bicristata* (Gosse, 1887)		
366	*Trichocerca bidens* (Lucks, 1912)		
367	*Trichocerca brachyura* (Gosse, 1851)		
368	*Trichocerca braziliensis* (Murray, 1913)		
369	*Trichocerca capucinu* (Wierzejski & Zacharias, 1893)		
370	*Trichocerca collaris* (Rousselet, 1896)		
371	*Trichocerca cylindrica* (Imhof, 1891)		
372	*Trichocerca dixonnuttalli* (Jennings, 1903)		
373	*Trichocerca elongata* (Gosse, 1886)		
374	*Trichocerca iennis* (Gosse, 1887)		
375	*Trichocerca insignis* (Herrick, 1885)		
376	*Trichocerca insulana* (Hauer, 1937)		
377	*Trichocerca cf. intermedia* (Stenroos, 1898)		
378	*Trichocerca longiseta* (Schrank, 1802)		
379	*Trichocerca marina* (Daday, 1890)		
380	*Trichocerca mollis* Edmondson, 1936		
381	*Trichocerca mucosa* (Stokes, 1896)		
382	*Trichocerca multirinis* (Kellicott, 1897)		
383	*Trichocerca musculus* (Hauer, 1937)		
384	*Trichocerca porcellus* (Gosse, 1851)		
385	*Trichocerca pusilla* (Jennings, 1903)		
386	*Trichocerca ratus* (Müller, 1776)		
387	*Trichocerca rosea* (Stenroos, 1898)		
388	*Trichocerca rousseleti* (Voigt, 1902)		
389	*Trichocerca ruttneri* Donner, 1953		
390	*Trichocerca similis* (Wierzejski, 1893)		
391	*Trichocerca stylista* (Gosse, 1851)		
392	*Trichocerca tenuior* (Gosse, 1886)		
393	*Trichocerca tigris* (Müller, 1786)		
394	*Trichocerca vernalis* (Hauer, 1936)		
395	*Trichocerca weberi* (Jennings, 1903)		
	Family: Trichotriidae Harring, 1913		
396	*Macrochaetus collinsii* (Gosse, 1867)		
397	*Macrochaetus longipes* Myers, 1934		
398	*Macrochaetus sericus* (Thorpe, 1893)		
399	*Macrochaetus subquadratus* (Perty, 1850)		
400	*Trichotria pocillum* (Müller, 1776)		
401	*Trichotria tectatis* (Ehrenberg, 1830)		
402	*Wolga spinifera* (Western, 1894)		
The faunal diversity of rotifers from the different states of the country was highly heterogeneous. Only five federal entities (the State of Mexico, Michoacán, Veracruz, Mexico City, and Quintana Roo) had more than 100 species. The total number of genera per state followed the same trend of species richness (Table 3). Thus, seven federal entities (the State of Mexico, Michoacán, Veracruz, Mexico City, Quintana Roo, Aguascalientes, and Chihuahua) had more than 30 genera.

Table 3. Number of genera and species of rotifers reported from different States of Mexico. The states are represented by bold numbers. 1: Aguascalientes, 2: Campeche, 3: Chiapas, 4: Chihuahua, 5: Colima, 6: Guanajuato, 7: Guerrero, 8: Hidalgo, 9: Jalisco, 10: Mexico City, 11: Michoacán, 12: Morelos, 13: Nayarit, 14: Oaxaca, 15: Puebla, 16: Quintana Roo, 17: San Luis Potosí, 18: Sinaloa, 19: Sonora, 20: State of Mexico, 21: Tabasco, 22: Tlaxcala, 23: Veracruz, 24: Yucatán, 25: Zacatecas. Other states do not have published records of rotifers, and these were not included.

| Species/States | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|----------------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| Ascomorpha ovalis [25] |
| Asplanchna brightwelli [26] |
| Asplanchna girodi [27] |
| Brachionus calyciflorus [25] |
| Brachionus plicatilis [18,28] |
| Brachionus quadridentatus [25] |
| Euchlanis dilata |
| Keratella cochlearis |
| Lecane bulbula |
| Lecane cornuta |
| Lecane crepida |
| Lecane curvicornis |
| Lecane hastata |
| Lecane lunaris |
| Mytilina ventralis |
| Platyiias quadricornis |
| Testudinella patina |

Table 2. Some species complexes and cryptic species of rotifers reported from Mexico.
Table 3. Cont.

Species/States	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	
Plationus	2	1	1	1	0	1	0	1	1	0	0	0	0	0	0	0	0	1	0	0	2	0	0	1	0	
Phyllosoma	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		
Planorhabda	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Polyarthra	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Ptychura	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Rotaria	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Proales	1	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Proalides	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Taphrocampa	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Testudinella	1	1	1	1	0	0	0	0	0	1	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Trochosphaera	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Wolga	0	0	0	1	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wulfertia	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		

Seasonally collected samples offered a higher number of species than those collected sporadically. Data on the species richness of rotifers collected seasonally from selected water bodies are presented in Table 4.

Table 4. The number of rotifer species reported from selected waterbodies through seasonal sampling.

Waterbody	Total Species	Reference
Valle de Bravo Reservoir (Mexico)	50	[31]
Madin reservoir (Mexico)	28	[32]
Llano reservoir (Mexico)	84	[33]
Iturbide reservoir (Mexico)	55	[34]
Lake Zumpango (Mexico)	33	[35]
Chimaliapan wetland (Mexico)	75	[36]
Lake Xochimilco (Mexico City)	81	[37]
Lake Cantera Oriente (Mexico City)	68	[38]
Benito Juarez Reservoir (Mexico City)	80	[39]
River Antigua (Veracruz State)	125	[40]
Amacuzac River Basin (Morelos)	65	[41]
Valero Trujano Reservoir (Guerrero State)	64	[42]

Biogeographic distribution of selected species recorded from Nearctic and Neotropical regions of Mexico showed some of them to be out of known range based on global patterns. More than 20 taxa distributed in Palearctic region were reported from Nearctic or Neotropical regions (Table 5).
Table 5. Out of known range distribution of Rotifera recorded from Mexico. The known range from different geographical regions was based on [16], and for the national biogeographic provinces, Ref. [4] was followed. Afr: Afrotropical region; Ant: Antarctic region; Aus: Australian region; Nea: Nearctic region; Neo: Neotropical region; Ori: Oriental region; Pac: Pacific region and Pal: Palearctic region.

Species and Distribution	Records from Mexico
Adineta vaga	African - Tlaxcala: Neo; Mexico City: Nea
Atrochus tentaculatus	Australian - Pacific, Pal; Morelos, Veracruz and Nayarit: Neo, Guanajuato: Neo
Collotheca crateriformis	African - Chihuahua: Neo; Tlaxcala: Neo; Morelos, Veracruz and Nayarit: Neo
Colurella colurus	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Colurella oblonga	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Dicranophorus forcipatus	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Epiphanes brachionus	African - Baja California: Neo; Mexico City: Nea
Horaella thomassoni	African - Baja California: Neo
Keratella procurva robusta	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Lecane unguiculata	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Lepadella discoides	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Lepadella punctata	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Mytilina mucronata spinigera	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Mytilina ventralis	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Notholca acuminata	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Notommata baueri	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Paradicranophorus sordidus	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Philodina acuticornis	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Plotionus polyacanthus	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Proales globulifera	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Ptygura brevis	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Ptygura tridorsicornis	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Sphyrias lofana	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Squatinella lamellaris	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Synchaeta elsteri	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Synchaeta hyperborea	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo
Synchaeta tremuloides	African - Baja California: Neo; Mexico City: Nea; Morelos, Veracruz and Nayarit: Neo

Different estimators of species diversity indicated the asymptote in all cases (Figure 1). The efficiency percentage of species estimates varied between 62% and 86% (Chao 2 and Bootstrap, respectively). In addition, these estimators indicated that the potential richness of rotifers from Mexico could be from 450 to 600 species.
4. Discussion

Taxonomical studies on Mexican rotifers date back more than 100 years. However, increased awareness of their role in limnological studies began only during the last 25 years. Figure 2 shows some of the interesting rotifer species from Mexico. Conventional limnological investigations in Mexico included rotifers as part of plankton [6], yet rarely quantified their abundances. One of the earliest studies on the seasonal variations of freshwater rotifers showed just seven rotifer taxa [43]. Thereafter, many studies on the seasonal variations of rotifers have been carried out from different water bodies such as ponds, lakes, reservoirs, and rivers. For certain freshwater ecosystems, zooplankton sampling was carried out for many years, for example, in the Valle de Bravo reservoir [44]. Long-term studies of riverine plankton are rare in Mexico, although the country has more than 200 rivers. Seasonal studies from River Antigua in the State of Veracruz have revealed 125 species REF. The importance of seasonal studies in understanding the rotifer species richness began receiving considerable attention after it became clear that certain exotic taxa appear only in certain months of the year. For example, *Notholca* cf. *liepetterseni* and *Lecane yatseni* have been recorded in River Antigua, Veracruz sporadically [40], although these species are native to the Scandinavian region and China, respectively.
The first comprehensive list of Mexican rotifers was documented about 3 decades ago and contained 283 species [14]. Since then, many studies on Mexican freshwaters have reported the presence of 120 additional rotifer taxa. This, however, does not include close to 20 cryptic taxa, which require formal description. From the mean of species estimators, it appears that there is a possibility of encountering more than 600 species in Mexico. This may be a sub-estimation of the actual reality, since it is based on the diversity of rotifers which have been well studied only in 5–7 of the 32 federal entities in the country. This number is not unreasonable if one considers the numerous habitats that exist in Mexico which confer it a megadiverse status (CONABIO), as well as the existence of cryptic taxa within Rotifera. For example, the *Brachionus plicatilis* complex has as many as 15 cryptic species [45]. Several species complexes have already been reported in Mexico [25,28–30]. The geographic location of Mexico (as a corridor between South and North America) [46] also supports the possible occurrence of diverse rotifer species in different federal entities. This is further evidenced by the poor sampling in certain regions, especially in states such as Baja California, Durango, and Coahuila. Mexico has 70 large lakes (area: 1000 to 10,000 hectares), 14,000 reservoirs (85% with <10 hectares), and >200 rivers [6]. The rotifer species list presented in this work was based on only a handful of waterbodies and many more are yet to be studied.

Desert temporary ponds, rivers, and marine ecosystems have great potential for enhancing the species richness of rotifers to the Mexican fauna. For example, ephemeral waterbodies from the desert states in Mexico have yielded more than 100 rotifer species [47]. Yet, many temporary water bodies in Mexico have not been sampled even once. Rotifer fauna in riverine habitats have been rarely studied, although the species richness in these aquatic systems is high [40]. Mexico is bestowed with 9330 km of coastline. Yet, knowledge on the marine rotifers from Mexico is more fragmentary than inland saline waters [48]. For example, seasonal sampling efforts from the brackish water ecosystem in the State of Tabasco showed the presence of more than 35 rotifer species [49]. Of the three classes of rotifers, Bdelloidea, Monogononta, and Seisonacea, the last is represented by two marine genera, *Seison* and *Paraseison*. *Seison* is epizoic on the crustacean genus *Nebalia* but has not been so far reported from marine waters of Mexico, although *Nebalia* occurs in these waters [50]. Therefore, further studies on marine rotifers may be oriented for identifying *Seison* from *Nebalia*.

Figure 2. Some interesting rotifers from Mexico. (1) *Lecane yatseni*, (2) *Lecane rhytida*, (3) *Notholca cf. liepetterseni*, (4) *Brachionus bidentatus*, (5) *Dipleuchlanis propatula*; (6) *Euchlanis cf. mikropous*, (7) *Brachionus dimidiatus*, (8) *Plationus patulus macracanthus* and (9) *Testudinella patina*. All photos from authors’ previous works.
An aspect often overlooked in taxonomic studies is the culture of rotifer species, which is important for many reasons. The first is that, when studying the molecular taxonomy of predatory taxa, prey in the stomach contents may interfere with the analysis [26]. The second reason is that culturing species may reveal the presence of different phenotypes from the same genotype as observed in the case of Euchlanis cf. mikropous [51]. Third, some descriptions are vague and incomplete. For example, culturing a rare taxon with appearance of Collotheca monerosus [52] resolved the issue, showing that it was a regeneration by Stephanoceros millsii. Fourth, cryptic species have different life histories which cannot be identified from fixed samples [53]. Finally, for certain analysis of taxonomic characters such as measurements of trophi on SEM, culturing is needed to obtain sufficient quantity for the description of size range [54].

The occurrence of some rotifer species known from the geographic regions such as the Palearctic, Afrotropical, and Oriental were reported from Nearctic region and Neotropical regions of Mexico. For example, Lecane yatseni, typical to the Oriental region, was recorded from Mexico. Similarly, Sphyrias lofauna, common to Afrotropical and Pacific regions, was documented from Nearctic region of Mexico [14]. This suggests not only extensive sampling, but also distributional aspects, including the possible roles that global climatic changes and trade involving aquatic species play a role in the dispersion of rotifers.

5. Conclusions

A taxonomic survey of rotifers so far has revealed the occurrence of about 400 species of rotifers from Mexico. Many Mexican states still do not have formal rotifer checklists. Only a few states in Mexico have some information on the diversity of rotifers. Yet, the species richness reported in this work is based on only a few selected water bodies. Species estimators have predicted the possible occurrence of about 600 rotifer species within the Mexican territory. Thus, further studies are still needed to understand rotifer diversity in Mexico.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/d13070291/s1, supplementary 1. List of consulted works for works on rotifer taxonomy and supplementary 2. Database compiled by the authors on the occurrence of different rotifer species from Mexico.

Author Contributions: Conceptualization, S.S.S.S.; formal analysis, M.A.J.-S.; interpretation, original draft preparation, S.N. All authors have prepared the final manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by PAPIIT-IG 200820.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All the data were taken from literature and are available from the publishers. Authors will provide data on request.

Acknowledgments: MAJC thanks Posgrado en Ciencias del Mar y Limnología (UNAM) and CONACyT (582568). Three anonymous reviewers have improved our presentation.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Weber, D.; Hintermann, U.; Zangger, A. Scale and trends in species richness: Considerations for monitoring biological diversity for political purposes. Glob. Ecol. Biogeogr. 2004, 13, 97–104. [CrossRef]
2. Llorente-Bousquets, J.; Oceguera, S. Estado del conocimiento de la biota. In Capital Natural de México. Conocimiento Actual de la Biodiversidad; Conabio: Mexico City, Mexico, 2008; Volume 1, pp. 283–322.
3. Ramírez-Albores, J.E.; Badano, E.I.; Flores-Flores, J.; Yáñez-Espinosa, L. Scientific literature on invasive alien species in a megadiverse country: Advances and challenges in Mexico. NeoBiota 2019, 48, 113–127. [CrossRef]
4. Morrone, J.J.; Escalante, T.; Rodriguez-Tapia, G. Mexican biogeographic provinces: Map and shapefiles. Zootaxa 2017, 4277, 277–279. [CrossRef]
5. Wallace, R.L.; Snell, T.W.; Ricci, C.; Nogrady, T. Rotifera. In *Biology, Ecology and Systematics*, 2nd ed.; Segers, H., Ed.; Guides to the Identification of the Microinvertebrates of the Continental Waters of the World; Kenobi Productions: Ghent, Belgium; Backhuys Publishers: Leiden, The Netherlands, 2006; Volume 23.

6. De la Lanza, E.G.; García, C.J.L. *Lagos y Press de México*; AGT Editor S.A.: México City, Mexico, 2002; p. 680.

7. Rico-Martínez, R.; Silva-Briano, M. Contribution to the knowledge of the rotifera of Mexico. *Hydrobiologia* **1993**, *255/256*, 467–474. [CrossRef]

8. Rico-Martínez, R. Rotiferos. In *La Biodiversidad en Aguascalientes: Estudio de Estado*; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): Aguascalientes, Mexico; Instituto del Medio Ambiente del Estado de Aguascalientes (IMAE): Aguascalientes, Mexico, 2008.

9. Segers, H. *Die Rädertiere Mitteleuropas. Ein Bestimmungswerk Begründet von Max Voigt*; 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2006; Volume 23.

10. Arroyo-Castro, J.L.; Alvarado-Flores, J.; Uh-Moo, J.C.; Koh-Pasos, C.G. Monogonont rotifers species of the island Cozumel, Quintana Roo, México. *Biodivers. Data J.* **2019**, *7*, e34719. [CrossRef]

11. Ortega-Murillo, M.d.R.; Alvarado-Villanueva, R.; Sánchez-Heredia, J.D.; Muñoz-Gaytán, A.A.; Morales, R.H. El Plancton de Agua dulce. In *La Biodiversidad en México*; Estudio de Estado 2. CONABIO; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (CONABIO): México, Mexico, 2019.

12. Delgado-Saucedo, J.J.; Silva-Briano, M.; Sigala-Rodríguez, J.J. Rotiferos. In *La Biodiversidad en Zacatecas*; Estudio de Estado. CONABIO; Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): México, Mexico; Gobierno del Estado de Zacatecas: México, Mexico, 2020.

13. Sarma, S.S.S.; Serranía-Soto, C.; Nandini, S. Diversity of Rotiferos. In *La Diversidad Biológica del Estado de México*; Ceballos, G.R., Ed.; Gobierno del Estado de México y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO): México, Mexico, 2009.

14. Castellanos-Páez, M.E.; Zamora-Garcia, M.; Benítez-Díaz-Mirón, M.I.; Mouriño, G.G.; Contreras-Tapia, R.A. Abundancy and biomass of the community of rotiferos and its relation with parameters ambiental in three stations of the Canal Cuemanco, Xochimilco. *Soc. Rural. Prod. Medio Ambiente* **2014**, *14*, 10–21.

15. Arroyo-Castro, J.L.; Alvarado-Flores, J.; Uh-Moo, J.C.; Koh-Pasos, C.G. Monogonont rotifers species of the island Cozumel, Quintana Roo, México. *Biodivers. Data J.* **2019**, *7*, e34719. [CrossRef]

16. Ortega-Murillo, M.d.R.; Alvarado-Villanueva, R.; Sánchez-Heredia, J.D.; Muñoz-Gaytán, A.A.; Morales, R.H. El Plancton de Agua dulce. In *La Biodiversidad en México*; Estudio de Estado 2. CONABIO; Comisión Nacional Para el Conocimiento y Uso de la Biodiversidad (CONABIO): México, Mexico, 2019.

17. Wallace, R.L.; Snell, T.W.; Ricci, C.; Hoyer, M.V.; Beesley, L.S. Evaluating estimators of species richness: The importance of considering statistical error rates. *Methods Ecol. Evol.* **2016**, *7*, 294–302. [CrossRef]

18. Segers, H. Annotated checklist of the rotifers (Phylum Rotifer), with notes on nomenclature, taxonomy and distribution. *Zootaxa* **2007**, *1564*, 1–104. [CrossRef]

19. Jersabek, C.D.; Leitner, M.F. The Rotifer World Catalog. World Wide Web Electronic Publication. 2013. Available online: http://www.rotifera.hausdernatur.at/ (accessed on 20 May 2021).

20. Alcántara-Rodriguez, J.A.; Ciroz-Pérez, J.; Ortega-Mayagoitia, E.; Serranía-Soto, C.R.; Piedra-Ibarra, E. Local adaptation in populations of a Brachionus group *plicatilis* cryptic species inhabiting three deep crater lakes in Central Mexico. *Freshw. Biol.* **2012**, *57*, 728–740. [CrossRef]

21. Brown, P.D.; Schröder, T.; Ríos-Arana, J.V.; Rico-Martínez, R.; Silva-Briano, M.; Wallace, R.L.; Walsh, E.J. Patterns of rotifer diversity in the Chihuahuan desert. *Diversity 2020*, *12*, 393. [CrossRef]

22. Koste, W. Rotatoria. In *Die Rädiertiere Mitteleuropas. Ein Bestimmungswerk Begründet von Max Voigt*; Bornträger: Stuttgart, Germany, 1978; Volume 1–2, pp. 234, 673.

23. Segers, H. *Rotifera 2: The Lecanidae Monogononta*; Guides to the Identification of Microinvertebrates of the Continental Waters of the World Series; Balogh Scientific Books: The Hague, The Netherlands, 1994; Volume 6.

24. Wallace, R.L.; Snell, T.W. Rotifera. Chapter 8. In *Ecology and Classifications of North American Freshwater Invertebrates*, 3rd ed.; Thorp, J., Covich, A., Eds.; Elsevier: Oxford, UK, 2010.

25. Wallace, R.L.; Snell, T.W.; Walsh, E.J.; Sarma, S.S.S.; Segers, H. Chapter 8. Phylum Rotifera. Keys to Palaeartic Fauna. In *Thorpe and Covich's Freshwater Invertebrates*, 4th ed.; Academic Press: Cambridge, MA, USA; Elsevier: Amsterdam, The Netherlands, 2019; Volume 4, pp. 219–267. [CrossRef]

26. Colwell, R.K.; Mao, C.X.; Chang, J. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. *Ecology* **2004**, *85*, 2717–2727. [CrossRef]

27. García-Morales, A.E.; Etlas-Gutiérrez, M. DNA barcoding of freshwater rotifera in Mexico: Evidence of cryptic speciation in common rotifers. *Mol. Ecol. Resour.* **2013**, *13*, 1097–1107. [CrossRef][PubMed]

28. Jiménez-Contreras, J.; Sarma, S.S.S.; Piedra-Ibarra, E.; Calderón-Torres, M.; Nandini, S. Morphological, morphometrical and molecular (COI and ITS) analysis of the rotifer *Asplanchna brightwellii* from selected freshwater bodies in Central Mexico (Mexico). *J. Environ. Biol.* **2013**, *34*, 1039–1046.

29. Jiménez-Contreras, J.; Sarma, S.S.S.; Piedra-Ibarra, E.; Nandini, S. Morphometric and molecular (COX 1) variations of *Asplanchna girodi* clones from Central Mexico. *J. Environ. Biol.* **2017**, *38*, 1229–1239. [CrossRef]

30. Nandini, S.; Peña-Aguado, F.; Arregui-Relbolledo, U.; Sarma, S.S.S.; Murugan, G. Molecular identity and demographic responses to salinity of a freshwater strain of *Brachionus plicatilis* from the shallow Lake Pátzcuaro, Mexico. *Fundam. Appl. Limnol.* **2019**, *192*, 319–329. [CrossRef]

31. Kordbacheh, A.; Shapiro, A.N.; Walsh, E.J. Reproductive isolation, morphological and ecological differentiation among cryptic species of *Euchlanis dilatata*, with the description of four new species. *Hydrobiologia* **2019**, *844*, 221–242. [CrossRef]
30. Walsh, E.J.; Schröder, T.; Wallace, R.L.; Rico-Martínez, R. Cryptic speciation in *Lecone bulla* (Monogononta: Rotifera) in Chihuahuan Desert waters. *Int. Ver. Für Theor. Angew. Limnol. Verh.* **2009**, *30*, 1046–1050.

31. Nandini, S.; Merino-Ibarra, M.; Sarma, S.S.S. Seasonal changes in the zooplankton abundances of the reservoir Valle de Bravo (State of Mexico, Mexico). *Lake Reser. Manag.* **2008**, *24*, 321–330. [CrossRef]

32. Moreno-Gutiérrez, R.M.; Sarma, S.S.S.; Sobrino-Figueroa, A.S.; Nandini, S. Population growth potential of rotifers from a high altitude eutrophic waterbody, Madín reservoir (State of Mexico, Mexico): The importance of seasonal sampling. *J. Limnol.* **2018**, *77*, 441–451. [CrossRef]

33. Muñoz-Colmenares, M.E.; Sarma, S.S.S.; Nandini, S. Seasonal variation of rotifers from the high altitude Llano reservoir (State of Mexico, Mexico). *J. Environ. Biol.* **2017**, *38*, 1171–1181. [CrossRef]

34. Sarma, S.S.S.; Osnaya-Espinosa, L.R.; Aguilar-Acosta, C.R.; Nandini, S. Seasonal variations in zooplankton abundances in the Iturbide reservoir (Isidro Fabela, State of Mexico, Mexico). *J. Environ. Biol.* **2011**, *32*, 473–480.

35. Figueroa-Sánchez, M.A.; Nandini, S.; Sarma, S.S.S. Zooplankton community structure in the presence of low levels of cyanotoxins: A case study in a high altitude tropical reservoir (Valle de Bravo, Mexico). *J. Limnol.* **2014**, *73*, 157–166. [CrossRef]

36. García-García, G.; Nandini, S.; Sarma, S.S.S.; Martínez-Jeronómino, F.; Jiménez-Contreras, J. Impact of chromium and aluminium pollution on the diversity of zooplankton: A case study in the Chimalapan wetland (Ramsar site) (Lerma basin, Mexico). *J. Environ. Sci. Health Part. A* **2012**, *47*, 534–547. [CrossRef]

37. Jiménez-Contreras, J.; Nandini, S.; Sarma, S.S.S. Diversity of Rotifera (Monogononta) and egg ratio of selected taxa in the canals of Xochimilco (Mexico City). *Wetlands* **2018**, *38*, 1033–1044. [CrossRef]

38. Gutiérrez, S.G.; Sarma, S.S.S.; Nandini, S. Seasonal variations of rotifers from a high altitude urban shallow water body, La Cantera Oriente (Mexico City, Mexico). *Chin. J. Oceanol. Limnol.* **2017**, *35*, 1387–1397. [CrossRef]

39. Espinosa-Rodríguez, C.A.; Sarma, S.S.S.; Nandini, S. Zooplankton community changes in relation to different macrophyte species: Effects of *Egeria densa* removal. *Ecolhydrol. Hydrobiol.* **2021**, *21*, 153–163. [CrossRef]

40. Nandini, S.; Sarma, S.S.S.; Gulati, R.D. A seasonal study reveals the occurrence of exotic rotifers in the river Antigua, Veracruz, close to the Gulf of Mexico. *River Res. Appl.* **2017**, *33*, 970–982. [CrossRef]

41. Nandini, S.; Ramírez-Garcia, P.; Sarma, S.S.S.; Gutiérrez-Ochoa, R.A. Planktonic indicators of water quality: A case study in the Amacuzac River Basin (State of Morelos, Mexico). *River Res. Appl.* **2019**, *35*, 268–279. [CrossRef]

42. Vázquez-Sánchez, A.; Reyes-Vanegas, G.; Nandini, S.; Sarma, S.S.S. Diversity and abundance of rotifers (Rotifera) during an annual cycle in the reservoir Valerio Trujano (Tepeacoaculco, Mexico). *Inland Waters* **2004**, *4*, 293–302. [CrossRef]

43. Suárez-Moraless, E.; Vázquez-Mazy, A.; Solis, M.E. Preliminary investigations on the zooplankton community of a Mexican eutrophic reservoir, a seasonal survey. *Hydrobiollogica* **1993**, *3*, 71–80.

44. Ramírez-Garcia, P.; Nandini, S.; Sarma, S.S.S.; Robles-Valderrama, E.; Cuesta, I.; Hurtado-Maria, D. Seasonal variations of zooplankton abundance in the freshwater reservoir Valle de Bravo (Mexico). *Hydrobiologia* **2002**, *467*, 99–108. [CrossRef]

45. Mills, S.J.; Alcántara-Rodriguez, A.; Ciros-Pérez, J.; Gómez, A.; Hagiwara, A.; Galindo, K.H.; Jersabek, C.D.; Malekzadeh-Viayeh, R.; Leasi, F.; Lee, J.-S.; et al. Fifteen species in one: Deciphering the *Brachionus plicatilis* species complex (Rotifera, Monogononta) through DNA taxonomy. *Hydrobiologist* **2017**, *76*, 39–58. [CrossRef]

46. Elias-Gutiérrez, M.; Suárez-Moraless, E.; Sarma, S.S.S. Diversity of freshwater zooplankton in the neotropics: The case of Mexico. *Verh. Internat. Verein. Limnol.* **2001**, *27*, 4027–4031. [CrossRef]

47. Ríos-Arana, J.V.; del Carmen Agüero-Reyes, L.; Wallace, R.L.; Walsh, E.J. Limnological characteristics and rotifer community composition of Northern Mexico Chihuahuan desert springs. *J. Arid. Environ.* **2019**, *160*, 32–41. [CrossRef]

48. Walsh, E.J.; Schröder, T.; Wallace, R.L.; Ríos-Arana, J.V.; Rico-Martinez, R. Rotifers from selected inland saline waters in the Chihuahuan Desert of México. *Saline Syst.* **2008**, *4*, 7. [CrossRef]

49. Sarma, S.S.S.; Nandini, S.; Ramírez-Garcia, P.; Cortés-Muñoz, J.E. New records of brackish water Rotifera and Cladocera from Mexico. *Hydrobiologia* **2000**, *10*, 121–124.

50. Escobar-Briones, E.; Villalobos-Hiarti, J.L. *Nebalia lagartensis* (Leptottracca) a new species from the Yucatán Peninsula, Mexico. *Crustaceana* **1995**, *68*, 6–11.

51. Nandini, S.; Sarma, S.S.S. Adaptive toe morphology of *Euchlanis cf. mikropous* Koch-Althaus, 1962 (Rotifera: Euchlanidae) exposed directly and indirectly to invertebrate predators. *Limnologica* **2019**, *78*, 125693. [CrossRef]

52. Sarma, S.S.S.; Jiménez-Santos, M.A.; Nandini, S.; Wallace, R.L. Review on the ecology and taxonomy of sessile rotifers (Rotifera) with special reference to Mexico. *J. Environ. Biol.* **2020**, *41*, 3–12. [CrossRef]

53. Gabaldón, C.; Fontaneto, D.; Carmona, M.J.; Montero-Pau, J.; Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the *Brachionus plicatilis* complex. *Hydrobiologia* **2017**, *796*, 7–18. [CrossRef]

54. Kordbacheh, A.; Wallace, R.L.; Walsh, E.J. Evidence supporting cryptic species within two sessile microinvertebrates, *Limnias melicerta* and *L. ceratophylli* (Rotifera, Gnesiotrocha). *PLoS ONE* **2018**, *13*, e0205203. [CrossRef]