BACKGROUND: In the CHAMPION PHOENIX trial, cangrelor reduced the primary composite end point of death, myocardial infarction (MI), ischemia-driven revascularization, or stent thrombosis at 48 hours. This study aimed to explore the impact of event adjudication and the prognostic importance of MI reported by a clinical events committee (CEC) or site investigators (SIs).

METHODS AND RESULTS: Data from the CHAMPION PHOENIX trial of patients undergoing elective or nonelective percutaneous coronary intervention were analyzed. A CEC systematically identified and adjudicated MI using predefined criteria, a computer algorithm to identify suspected events, and semilogarithmic plots to review biomarker changes. Thirty-day death was modeled using baseline characteristics. Of 10,942 patients, 462 (4.2%) patients had at least 1 MI by 48 hours identified by the CEC (207 [3.8%] cangrelor; 255 [4.7%] clopidogrel; odds ratio [OR] 0.80; 95% CI, 0.67–0.97; P=0.022), and 143 patients had at least 1 MI by 48 hours reported by the SI (60 [1.1%] cangrelor; 83 [1.5%] clopidogrel; OR, 0.72; 95% CI, 0.52–1.01; P=0.053). Of the 462 MIs identified by the CEC, 92 (20%) were reported by SI, and 370 (80%) were not. Of the 143 MI reported by the SI, 51 (36%) were not confirmed by CEC. All categories were associated with an increased adjusted risk for 30-day death (CEC: OR, 5.35; 95% CI, 2.56–11.2; P<0.001; SI: 9.08 [4.01–20.5]; P<0.001; CEC and SI: 10.9 [3.23–36.6]; P<0.001; CEC but not SI: 4.69 [1.94–11.3]; P<0.001; SI but not CEC: 15.4 [5.26–44.9]; P<0.001).

CONCLUSIONS: In patients undergoing percutaneous coronary intervention, CEC procedures identified 3 times as many MIs as the SI reported. Compared with clopidogrel, cangrelor significantly reduced MIs identified by the CEC with a qualitatively similar relative risk reduction in MIs reported by the SI. MIs identified by CEC or reported by SI were independently associated with worse 30-day death. Central adjudication identified additional, prognostically important events.

VISUAL OVERVIEW: A visual overview is available for this article.

CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. Unique identifier: NCT01156571.

Key Words: biomarker ■ clopidogrel ■ myocardial infarction ■ percutaneous coronary intervention ■ thrombosis

© 2019 The Authors. Circulation: Cardiovascular Interventions is published on behalf of the American Heart Association, Inc., by Wolters Kluwer Health, Inc. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited and is not used for commercial purposes.

https://www.ahajournals.org/journal/circinterventions
WHAT IS KNOWN

- In the CHAMPION PHOENIX trial (Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition), cangrelor reduced the primary composite end point of death, myocardial infarction (MI), stroke, ischemia-driven revascularization, or stent thrombosis at 48 hours.
- Previous reports have shown that in similar patient populations, a clinical events committee identified more myocardial infarction events than site investigators.

WHAT THE STUDY ADDS

- Central adjudication identifies additional, prognostically important events.
- The use of strategies to screen patients for possible periprocedural myocardial infarction is an efficient operational approach to identify important events.

In the CHAMPION PHOENIX trial (Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition), cangrelor reduced the primary composite end point of death, myocardial infarction (MI), stroke, ischemia-driven revascularization, or stent thrombosis at 48 hours compared with clopidogrel in patients undergoing either urgent or elective percutaneous coronary intervention (PCI) without increased risk of severe or life-threatening bleeding. A reduction in MI was observed with cangrelor.1,2

A clinical events committee (CEC) systematically identified and adjudicated the components of the primary composite end point including MI. Previous reports have shown that in similar populations a CEC identified more MIs than site investigators (SI)—particularly PCI-related MIs.3

In this report, we investigate the type of MI events that occurred in the CHAMPION PHOENIX trial to explore the effect of cangrelor on MI outcomes including different types of MI, the impact of event adjudication and the prognostic importance of events identified by the CEC or reported by SIs.

METHODS

The CHAMPION PHOENIX trial design, patient population, protocol procedures, outcome definitions, and results have been published.1,4 The protocol was approved by the national and institutional regulatory authorities and ethics committees. All patients provided written informed consent. Patients with stable angina or acute coronary syndrome were randomly assigned to receive cangrelor or clopidogrel before PCI in a double-dummy, double-blind manner. Patients randomized to cangrelor received placebo capsules and cangrelor as a bolus of 30 µg/kg and infusion with 4 µg/kg per minute for the procedure duration (but at least 2 hours) followed by 600 mg clopidogrel. Patients randomized to clopidogrel received 600 or 300 mg clopidogrel before or after the procedure at the discretion of the SI followed by a placebo infusion and capsules after the procedure. Decisions about coronary angiography, revascularization procedures, and pharmacotherapy were left to the discretion of the treating physician. All patients received aspirin and clopidogrel maintenance dose for the first 48 hours.

MIs were identified by a comprehensive strategy. A computer program queried key data elements on the electronic case report form and identified suspected events. These data elements included specific yes/no questions about MI occurrence as well as information that could suggest a possible event such as electrocardiographic changes or urgent catheterizations. Cardiac biomarkers before and after the procedure were interrogated by a computer algorithm to identify elevations possibly related to the PCI or to a postrandomization event separate from the index event. To assess periprocedural MI, each patient was classified by baseline status based on a combination of troponin, ischemic symptoms, and electrocardiographic changes (Table I in the Data Supplement). If patients had missing or elevated baseline values, data were summarized on a plot (examples in Figure I in the Data Supplement). Two physicians (Drs Mahaffey and Leonardi) who were blinded to the treatment independently reviewed each plot of centrally assessed CK-MB (creatine kinase-MB) and troponin values in relation to time of randomization and PCI or coronary artery bypass graft. They identified patients with stable or failing biomarkers before revascularization and those with postrandomization CK-MB elevations. If there was an alteration suggesting an MI indicated by either physician, the data were sent to the CEC for further adjudication. The definition of periprocedural MI (type 4a) is shown in Table II in the Data Supplement. MIs unrelated to PCI were defined based on the Universal Definition of MI.4,5 Two physicians of the CEC independently adjudicated the events. If both agreed, the adjudication was completed. If the physicians disagreed, a committee of at least 3 physicians reevaluated the event and determined a final result by consensus. SIs completed standard case report forms that collected information about each event. Yes/no questions were asked for each event and if Yes was recorded for a particular event then more information was requested. Report by SI did not include type of MI.

The individual data will not be made available to other researchers for purposes of reproducing the results.

We analyzed the modified-intention to treat population of patients who underwent PCI and received study drug. We determined the odds ratios (OR) and 95% CI of treatment effect (cangrelor compared with clopidogrel) by type and category of identification (CEC) or reporting (SI) of MI at 48 hours using logistic regression. We calculated the unadjusted ORs and 95% CI of 30-day events between patients with and without CEC MI at 48 hours. For multivariate modeling of 30-day mortality, variables (Table III in the Data Supplement) were selected based on statistical significance of univariate analyses and clinical importance including information from prior studies in which these variables have been associated with 30-day mortality.6

Categorical variables are expressed as frequencies and percentages and continuous variables as medians and quartiles. ORs and 95% CI between randomized treatments data were calculated with SAS (version 9.2, SAS Institute, Cary, NC). Significance levels were not adjusted for multiplicity.
RESULTS

Reporting of MI

Of 10,942, 462 patients had at least 1 MI at 48 hours identified by the CEC and 143 patients had at least 1 MI reported by the SIs. In 92 (19.9%) of the 462 CEC-identified MIs, the SIs also reported an MI and in 370 (80.1%) not. Of the 143 MI events reported by the SIs, CEC confirmed MI in 92 (64.3%) patients and did not confirm in 51 (35.7%) patients. Figure II in the Data Supplement illustrates the distribution of MIs identified by the CEC or reported by the SIs according to assigned treatment. The baseline and procedural characteristics by CEC-identified or SI-reported MI at 48 hours are shown in Table IV in the Data Supplement.

Types of MI and Treatment Effect

Of the 462 MIs identified by the CEC, 29 (6.3%) were nonprocedural and 433 (93.7%) were procedural related. Twenty-four (5.2%) were associated with stent thrombosis. The incidence of different types of MI and the effect of treatment are shown in Table 1. Fewer MI was identified by CEC for patients receiving cangrelor compared with clopidogrel (207/5472 [3.8%] cangrelor; 255/5470 [4.7%] clopidogrel; OR, 0.80; 95% CI [0.67–0.97]; P=0.022). SIs reported an MI in 60 of 5472 patients (1.1%) randomized to cangrelor and in 83 of 5470 patients (1.5%) randomized to clopidogrel (OR, 0.72; 95% CI [0.52–1.01]; P=0.053).

Association of MI With 30-Day Mortality

Table 2 summarizes the occurrence of 30-day events and the unadjusted risk for patients with CEC-identified MI compared with patients without CEC-identified MI. The risk for 30-day death was 3.2% in patients with CEC-identified MI compared with 1.0% in patients without CEC-identified MI (OR, 3.48; 95% CI [2.00–6.03]).

The association of MI with 30-day mortality is shown in Table 3. After multivariable adjustment, CEC-identified MI was associated with an increased risk for 30-day death (OR, 5.35; [2.56–11.17]; P<0.001). All categories were significantly associated with an increased risk for 30-day death (SI-reported MI: OR, 9.08; [4.01–20.5]; P<0.001; CEC-identified and SI-reported MI: OR, 10.9; [3.23–36.6]; P<0.001; CEC-identified but not SI-reported MI: OR, 4.69; [1.94–11.3]; P<0.001; SI-reported but not CEC-identified MI: OR, 15.4; [5.26–44.9]; P<0.001).

DISCUSSION

The main findings of this analysis are that (1) the CEC identified more MIs than the SIs reported, (2) cangrelor reduced MI identified by CEC compared with clopidogrel, (3) CEC adjudication in ACS and PCI population adds sensitivity and specificity to MI assessment, and (4) CEC-identified and SI-reported MIs were independently associated with an increased mortality at 30 days.

More MIs Identified by CEC

CEC identified more MIs than the SIs (462 versus 143) which is consistent with previous reports.3,7,8 In CHAMPION PHOENIX, biomarkers were assessed
systematically. A computer algorithm identified suspected events, and a novel approach was implemented to review plots of biomarkers to detect MI. This enabled the CEC to identify many events not reported by the SIs. The majority of the CEC-identified MIs were classified as periprocedural. Although data from SIs about the type of MI were not collected, we hypothesize that SIs underreported many of the periprocedural MIs that were triggered for CEC review through biomarker elevations missed by the SIs. Often periprocedural biomarkers are not assessed routinely after procedures. However, periprocedural MI is an important complication as it is significantly associated with an increased long-term mortality.

Treatment Effect—Sensitivity and Specificity of CEC Adjudication

Cangrelor significantly reduced the occurrence of MI compared with clopidogrel using data from the CEC. A qualitatively similar, statistically non-significant effect was observed when analyses were performed using only SI-reported MIs. This suggests that CEC adjudication adds sensitivity in the assessment of MI capturing more events with potential treatment effect signal such as small MIs and thus increasing the power to detect such effect. In the case of periprocedural MI, specificity is limited by the capability to differentiate the periprocedural MI from the index MI. The repeated measurements of troponin before PCI enabled the detection of rising levels of biomarkers. The thorough assessment of cardiac biomarkers along with an independent review of the summarized data in a semilogarithmic plot allowed the CEC to maximize the discrimination between periprocedural MI and the index MI.

CEC-Identified and SI-Reported MI Predictive of 30-Day Outcomes

Studies showed that events identified by CECs are associated with subsequent events. In the present study, all MIs whether reported by the SIs or identified by the CEC were associated with an increased risk for death at 30 days. The mortality of patients with SI-reported MIs was higher compared with the CEC-identified MI group (7.0% versus 3.2%). This might be explained by the higher sensitivity of the CEC ascertainment of MIs, which detected even small MIs. The prognostic importance of these periprocedural MI particularly if defined by smaller magnitudes of biomarker elevation has been controversial. This study showed that the events that were additionally identified through CEC are prognostically important.

Implications for Future Research

Some have suggested that CEC efforts might be overly complex and associated with lower cost-efficiency. It has been shown that CEC procedures do not delay end point ascertainment and are responsible for only 3% to 6% of trial costs. Our results highlight the need to account for methods of event identification as well as MI definitions in the design of trials. To avoid bias, systematic standardized approaches to MI identification and adjudication should be used. The use of strategies to screen patients for possible periprocedural MI is an efficient operational approach and should be considered for future programs to increase sensitivity of MI detection. Rigorous application of definitions that may not be universally agreed on is needed with CEC processing of MI events, particularly post-PCI. Electronic health records could add efficiency to CEC processes. Hlatky et al showed that
行政数据可能可靠地识别MI和类似治疗效果。这可能对实际临床试验设计和延长随访期的参与者特别有利。介人MI，然而，往往被频繁编码和事件可能被遗漏。有些事件被标准程序遗漏，它们不依赖于索赔数据。这表明结合两个方法可能更优选增加准确性。

我们的分析集中在介人相关的MI。CEC对其他终点事件，也已经评估。^{26} 如果某些特定的死亡原因在介人相关心血管事件中占16%，是由于不确定的死亡原因。^{21} 一个CEC可能减少未定原因的死亡率。终点事件在介人患者中，心力衰竭死亡率通常在对比剂和介人事件中增加。介人在透析人群中，需要理解CEC辨识这些事件的必要性。

Clinical Implications

系统收集生物标志物和介人临床背景下的经验人员认为，介人在CHAMPION PHOENIX中重要的是支持一个完整的CEC过程。这支持了生物标志物在临床介入前和介人后用来辨识介人相关的MI，介人PCI相关事件。

Limitations

CHAMPION PHOENIX试验没有被设计用于检测介人治疗对MI亚型的影响。我们没有系统性地收集介人的MI，我们无法客观地识别CEC和SI报告的MI类型。我们得知CEC识别的MI，介人过程定义的MI，和心电图变化。我们的研究可能帮助在中止的SI介人MI事件在未来的试验中潜在地改善我们的理解介人不同观察到的CEC和SI。

Conclusions

在CHAMPION PHOENIX中，介人PCI的患者有20%的相对降低，介人在MI中与对心肌和与结果一致的介人-非介人相关MI，有更低的48小时MI终点事件。介人在介人患者，介人PCI与CEC过程的MI终点事件一致。介人PCI中CEC-识别的MI和介人SI报告的MI终点事件一致。介人PCI和介人SI报告的MI独立地与介人后30天死亡相关。中央
REFERENCES

1. Bhatt DL, Stone GW, Mahaffey KW, Gibson CM, Steg PG, Hamm CW, Price MJ, Leonard S, Prats J, Delargyris EN, Mahaffey KW, Harrington RA; CHAMPION PHOENIX Investigators. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med. 2013;368:1303–1313. doi: 10.1056/NEJMoa1300815

2. Covender MA, Bhatt DL, Stone GW, White HD, Steg PG, Gibson CM, Hamm CW, Price MJ, Leonard S, Prats J, Delargyris EN, Mahaffey KW, Harrington RA; CHAMPION PHOENIX Investigators. Consistent reduction in periprocedural myocardial infarction with cangrelor as assessed by multiple definitions: findings from CHAMPION PHOENIX (Cangrelor Versus Standard Therapy to Achieve Optimal Management of Platelet Inhibition). Circulation. 2016;134:723–733. doi: 10.1161/CIRCULATIONAHA.115.020829

3. Mahaffey KW, Held C, Wojdyla DM, James SK, Katus HA, Husted S, Steg PG, Cannon CP, Becker RC, Storey RF, Khurmi NS, Nicolau JC, Yu CM, Ardissino D, Budaj A, Morais J, Montgomery D, Himmelmann A, Harrington RA, Wallentin L; PLATO Investigators. Ticagrelor effects on myocardial infarction and the impact of event adjudication in the PLATO effects (Platelet Inhibition and Patient Outcomes) trial. J Am Coll Cardiol. 2014;63:1493–1499. doi: 10.1016/j.jacc.2013.10.038

4. Leonard S, Mahaffey KW, White HD, Gibson CM, Stone GW, Steg GW, Hamm CW, Price MJ, Todd M, Dietrich M, Gallup D, Liu T, Skerjanec J, Harrington RA, Bhatt DL. Rationale and design of the Cangrelor versus standard therapy to achieve optimal management of Platelet InhibitON PHOENIX trial. Am Heart J. 2012;163:768–776.e2. doi: 10.1016/j.ahj.2012.02.018

5. Thygesen K, Alpert JS, HD; Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction. Universal definition of myocardial infarction. J Am Coll Cardiol. 2007;50:2173–2195. doi: 10.1016/j.jacc.2007.09.011

6. Généreux P, Stone GW, Harrington RA, Gibson CM, Steg PG, Brener SJ, Angiolillo DJ, Price MJ, Prats J, LaSalle L, Liu T, Todd M, Skerjanec J, Harrington RA, White HD, Bhatt DL; CHAMPION PHOENIX Investigators. Impact of intraprocedural stent thrombosis during percutaneous coronary intervention: insights from the CHAMPION PHOENIX Trial (Clinical Trial Comparing Cangrelor to Clopidogrel Standard of Care Therapy in Subjects Who Require Percutaneous Coronary Intervention). J Am Coll Cardiol. 2014;63:619–629. doi: 10.1016/j.jacc.2013.10.022

7. Mahaffey KW, Roe MT, Dyke CK, Newby JK, Kleiman NS, Connolly P, Berdan LG, Sparrapan R, Lee KL, Armstrong PW, Topol EJ, Califf RM, Harrington RA. Misreporting of myocardial infarction end points: results of adjudication by a central clinical events committee in the PARAGON-B trial. Second Platelet IIb/IIIa Antagonist for the Reduction of Acute Coronary Syndrome Events in a Global Organization Network Trial. Am Heart J. 2002;143:242–248. doi: 10.1067/mhj.2002.11445

8. Mahaffey KW, Harrington RA, Akkerhuis M, Kleiman NS, Berdan LG, Crenshaw BS, Tardiff BE, Granger CB, Dejong I, Bhapkar M, Widimsky P, Corbalon R, Lee KL, Deckers JW, Simoons ML, Topol EJ, Califf RM; For the PURSUIT Investigators. Disagreements between central clinical events committee and site investigator assessments of myocardial infarction end points in an international clinical trial: review of the PURSUIT (Purification of Ultrasound for Reduction of Platelet IIb/IIIa) Trial. Circ Cardiovasc Interv. 2011;4:217–224. doi: 10.1161/CIRCINTERVENTIONS.111.962390

9. Leonard S, Truffa AA, Neely ML, Tricoci P, White HD, Gibson CM, Wilson M, Stone GW, Harrington RA, Bhatt DL, Mahaffey KW. A novel approach to systematically implement the universal definition of myocardial infarction: insights from the CHAMPION PLATFORM trial. Heart. 2013;99:1282–1287. doi: 10.1136/heartjnl-2012-303103

10. Park DW, Kim YM, Yun SC, Ahn JM, Lee JY, Kim WI, Kang SJ, Lee SW, Lee CW, Park SW, Park SJ. Frequency, causes, predictors, and clinical significance of per-procedural myocardial infarction following percutaneous coronary intervention. Eur Heart J. 2013;34:1662–1669. doi: 10.1093/eurheartj/eht048

11. Jatene T, Harrington RA, Stone GW, Steg PG, Gibson CM, Hagedorn CW, Price MJ, Prats J, Delargyris EN, Mahaffey KW, White HD, Bhatt DL; CHAMPION PHOENIX Investigators. Investigator-reported bleeding versus post hoc adjudication of bleeding: lessons from the CHAMPION PHOENIX trial. J Am Coll Cardiol. 2016;67:596–598. doi: 10.1016/j.jacc.2015.11.027

12. Vijayaraghavan R, Yan AT, Tan M, Fitchett DH, Georgescu AA, Hassan Q, Langer A, Goodman SG; Canadian Acute Coronary Syndromes Registry Investigators. Local hospital vs. core-laboratory interpretation of the admission electrocardiogram in acute coronary syndromes: increased mortality in patients with unrecognized ST-elevation myocardial infarction. Eur Heart J. 2008;29:31–37. doi: 10.1093/eurheartj/ehn503

13. Tjandrawidjaja MC, Fu Y, Al-Khalidi H, Todaro TG, Adams P, Van der Werf FB, Granger CB, Armstrong PW; APEX-AMI Investigators. Failure of investigator
adherence to electrocardiographic entry criteria is frequent and influences clinical outcomes: lessons from APEX-AMI. *Eur Heart J.* 2007;28:2850–2857. doi: 10.1093/eurheartj/ehm453

14. Stone GW. Periprocedural myocardial infarction: the “SCAI” is the limit. *JACC Cardiovasc Interv.* 2016;9:2229–2231. doi: 10.1016/j.jcin.2016.09.015

15. Brener SJ. Should we measure biomarkers for myonecrosis before and after PCI? *J Am Coll Cardiol.* 2016;68:2269–2271. doi: 10.1016/j.jacc.2016.08.057

16. Granger CB, Vogel V, Cummings SR, Held P, Fiedorek F, Lawrence M, Neal B, Reides L, Santarelli L, Schroyer R, Stockbridge NL, Feng Zhao. Do we need to adjudicate major clinical events? *Clin Trials.* 2008;5:56–60. doi: 10.1177/1740774507087972

17. Mahaffey KW, Wampole JL, Stebbins A, Berdan LG, McAfee D, Ronick TL, French JK, Kleinman NS, O’Connor CM, Cohen EA, Granger CB, Armstrong PW. APEX-AMI Investigators. Strategic lessons from the clinical event classification process for the Assessment of Pexelizumab in Acute Myocardial Infarction (APEX-AMI) trial. *Contemp Clin Trials.* 2011;32:178–187. doi: 10.1016/j.cct.2010.12.013

18. Eisenstein EL, Lemons PW II, Tardiff BE, Schulman KA, Jolly MK, Califf RM. Reducing the costs of phase III cardiovascular clinical trials. *Am Heart J.* 2005;149:482–488. doi: 10.1016/j.ahj.2004.04.049

19. Hlatky MA, Ray RM, Bunwen DR, Margolis KL, Johnson KC, Kucharska-Newton A, Manson JE, Robinson JG, Safford MM, Allison M, Assimes TL, Bavy AA, Berger J, Cooper-DeHoff RM, Heckbert SR, Li W, Liu S, Martin LW, Perez MV, Tindle HA, Winkelmayer WC, Stefanick ML. Use of Medicare data to identify coronary heart disease outcomes in the Women’s Health Initiative. *Circ Cardiovasc Qual Outcomes.* 2014;7:157–162. doi: 10.1161/CIRCOUTCOMES.113.000373

20. Papma CJ, Sheng S, Korjan S, Daaboul Y, Chi G, Tricoci P, Huang Z, Molterno DJ, White HD, Van de Werf F, Harrington RA, Wallentin L, Held C, Armstrong PW, Aylward PE, Strony J, Mahaffey KW, Gallentin CM. Lack of concordance between local investigators, angiographic core laboratory, and clinical event committee in the assessment of stent thrombosis: results from the TRACER angiographic substudy. *Circ Cardiovasc Interv.* 2016;9:e003114. doi: 10.1161/CIRCINTERVENTIONS.115.003114

21. Fanaroff AC, Clare R, Pieter KS, Mahaffey KW, Mellon C, Green JB, Alexander JH, Jones WS, Harrison RW, Mehta RH, Povsic TJ, Moreira HG, Al-Khatib SM, Roe MT, Kong DF, Mathews R, Tricoci P, Holman RR, Wallentin L, Held C, Califf RM, Alexander KP, Lopes RD. Frequency, regional variation, and predictors of undetermined cause of death in cardiometabolic clinical trials: a pooled analysis of 9259 deaths in 9 trials. *Circulation.* 2019;139:863–873. doi:10.1161/CIRCULATIONAHA.118.037202