Seismic attenuation technology for the advanced Virgo gravitational waves detector

Mark Beker (mbeker@nikhef.nl), Mathieu Blom, Jo van den Brand, Henk Jan Bulten, Eric Hennes, Frans Mul.

9 June 2011
TIPP 2011, Chicago
Virgo is a 3 km arm-length interferometer designed to measure gravitational waves.

Global detector network:

LIGO - USA:
- 4 km Hanford
- 4 km Livingston

GEO 600 m - Germany
(LCGT 3 km - Japan)
(AIGO 4 km - Australia)
Virgo is a 3 km arm-length interferometer designed to measure gravitational waves.

Global detector network:

LIGO - USA:
- 4 km Hanford
- 4 km Livingston

GEO 600 m - Germany
(LCGT 3 km - Japan)
(AIGO 4 km - Australia)
Virgo is a 3 km arm-length interferometer designed to measure gravitational waves.

Strain, $h = \Delta L/L \approx 10^{-22}$

Global detector network:

LIGO - USA:
- 4 km Hanford
- 4 km Livingston

GEO 600 m - Germany
(LCGT 3 km - Japan)
(AIGO 4 km - Australia)
Seismic noise limits low frequency sensitivity of Virgo through vibration of optical components

- Main optical components suspended by “Super-attenuators”
  - $10^{14}$ suppression $> 10$ Hz

- To improve strain by factor of 10:
  - Optical benches also need seismic suppression
    - 4 external
    - 2 internal
  - Requirement: 40 dB $> 10$ Hz
Seismic noise limits low frequency sensitivity of Virgo through vibration of optical components

- Main optical components suspended by “Super-attenuators”
  - $10^{14}$ suppression $> 10$ Hz

- To improve strain by factor of 10:
  - Optical benches also need seismic suppression
    - 4 external
    - 2 internal
  - Requirement: $40$ dB $> 10$ Hz
Seismic noise limits low frequency sensitivity of Virgo through vibration of optical components

- Main optical components suspended by "Super-attenuators"
  - $10^{14}$ suppression > 10 Hz

- To improve strain by factor of 10:
  - Optical benches also need seismic suppression
  - 4 external
  - 2 internal
  - Requirement: 40 dB > 10 Hz
Seismic isolation systems also needed for future high-energy experiments

Figure 7: Layout of the $e^+$ and $e^-$ parts of a linear collider near interaction region.
Seismic isolation systems also needed for future high-energy experiments

- Linear Colliders CLIC / ILC
  - *Sub nano-meter interaction points*
  - *Quadrupole movement (ATL law)*

Figure 7: Layout of the $e^+$ and $e^-$ parts of a linear collider near interaction region.

[Sery A.A., Naploy O., 1995]
Seismic isolation systems also needed for future high-energy experiments

- Linear Colliders CLIC / ILC
  - Sub nano-meter interaction points
- Quadrupole movement (ATL law)
- Synchrotrons
  - ESRF e-beam and X-ray vibration stability
Seismic isolation systems also needed for future high-energy experiments

- Linear Colliders CLIC / ILC
  - Sub nano-meter interaction points
- Quadrupole movement (ATL law)
- Synchrotrons
  - ESRF e-beam and X-ray vibration stability

[Sery A.A., Naploy O., 1995]

[Zang L., Lesourd M., 2010]
Seismic isolation systems also needed for future high-energy experiments

- Linear Colliders CLIC / ILC
  - *Sub nano-meter interaction points*
- Quadrupole movement (ATL law)
- Synchrotrons
  - *ESRF e-beam and X-ray vibration stability*
- Free electron lasers
  - DESY
  - FLASH Groningen

![Diagram of particle interaction](attachment:image.png)

[Sery A.A., Naploy O., 1995]

[Zang L., Lesourd M., 2010]
Seismic Attenuation System

- Passive
- Active
Seismic Attenuation System

- Passive
- Active
A passive isolation system utilizes the transfer function of harmonic oscillators

- Harmonic oscillator is a 2nd order low pass filter
- Transfer function:
  - \( = 1 \) at low frequencies
  - \( > 1 \) at \( \omega_0 = \sqrt{\frac{g}{l}} \) / \( \omega_0 = \sqrt{\frac{k}{M}} \)
  - \( \sim 1/f^2 \) above resonance frequency
- Virgo/LIGO measure from 10 Hz
  - Want 40 dB suppression > a few Hz
  - Need \( f_0 \approx 0.3 \text{ Hz} \Rightarrow l \approx 3 \text{ m} \)
  - Long pendulum / low stiffness and high mass
- Or, use short inverted pendulum and geometric anti-springs
Inverted pendulum are used for the horizontal attenuation stage

- Gravity acts as an anti-spring
- Maraging steel flex joints provide stiffness, $k$
- Tunable in eigenfrequency by adjusting the supported mass
- Counter weights can be tuned to adjust center of percussion

$$\omega_0 = \sqrt{\frac{k}{M} - \frac{g}{l}}$$
Geometrical anti-springs are used to provide vertical attenuation

- 8 maraging steel blades in pairs
- Opposite blades push against each other
  - High pressure in radial direction
  - Low **vertical stiffness** in equilibrium position
- Low eigenfrequency (~300 mHz)
- Still capable of supporting high masses (~320 kg)
- Strong filtering (>40 dB @ 10 Hz)

A. Di Cintio et al
Geometrical anti-springs are used to provide vertical attenuation

- 8 maraging steel blades in pairs
- Opposite blades push against each other
  - High pressure in radial direction
  - Low vertical stiffness in equilibrium position
  - Low eigenfrequency (~300 mHz)
  - Still capable of supporting high masses (~320 kg)
  - Strong filtering (>40 dB @ 10 Hz)
Movie GAS resonance
Feed-back control system used to actively damp resonant frequencies

- Order of magnitude damping of resonant frequencies required
- Calculations performed on Linux PC
- Feed-back done with electromagnetic actuators
- Sensing relies on displacement sensors and accelerometers
Feed-back control system used to actively damp resonant frequencies

- Order of magnitude damping of resonant frequencies required
- Calculations performed on Linux PC
- Feed-back done with electromagnetic actuators
- Sensing relies on displacement sensors and accelerometers
Sensing of bench motion for resonance damping

- Linear Voltage Displacement Transducers (LVDT)
  - DC -> a few Hz
  - ~ 1 nm sensitivity
Sensing of bench motion for resonance damping

- Linear Voltage Displacement Transducers (LVDT)
  - DC -> a few Hz
  - ~ 1 nm sensitivity

- Accelerometers (Geophones)
  - Eigenfrequency ~ 1 Hz
  - 0.1 -> 100 Hz
  - Motion 4 orders of mag. above noise level
Putting it all together...

Optical bench

Balance mass

6 x LVDT

Inverted pendulum

Vertical filters

6 x geophones

Realtime linux PC

Virgo 18 bit ADC

Cabling
Peaks at higher frequencies are understood internal modes that can be damped

- Eddy-current dampers
- Horizontal and vertical dampers tunable to mode frequencies
Eddy-current dampers reduce internal mode vibrations below requirements.
Active control system can damp resonant frequencies by an order of magnitude.
Summary

- Seismic motion
  - *Induces noise in gravitational waves detectors*
  - *Seismic noise also an issue in (future) high-energy experiments*

- Optical bench - Seismic attenuation system
  - *Passive*
  - *Based on harmonic oscillator transfer functions*
  - *Inverted pendulum and anti-springs used at low $f_0$*
  - *Attenuation of 40 dB available above 10 Hz*
  - *Resonant frequencies damped by active feedback system*
  - *Internal modes removed by tunable eddy-current dampers*
Summary

- Seismic motion
  - *Induces noise in gravitational waves detectors*
  - *Seismic noise also an issue in (future) high-energy experiments*
- Optical bench - Seismic attenuation system
  - *Passive*
  - *Based on harmonic oscillator transfer functions*
  - *Inverted pendulum and anti-springs used at low $f_0$*
  - *Attenuation of 40 dB available above 10 Hz*
  - *Resonant frequencies damped by active feedback system*
  - *Internal modes removed by tunable eddy-current dampers*

**Installation in Virgo ⇒ September 2011**