Approaches to urinary detection of prostate cancer

Jillian N. Eskra1 · Daniel Rabizadeh1 · Christian P. Pavlovich1 · William J. Catalona2 · Jun Luo1

Received: 23 October 2018 / Revised: 6 December 2018 / Accepted: 26 December 2018 / Published online: 17 January 2019
© Springer Nature America, Inc. 2019

Abstract
Background Prostate cancer is the most common cancer in American men that ranges from low risk states amenable to active surveillance to high-risk states that can be lethal especially if untreated. There is a critical need to develop relatively non-invasive and clinically useful methods for screening, detection, prognosis, disease monitoring, and prediction of treatment efficacy. In this review, we focus on important advances as well as future efforts needed to drive clinical innovation in this area of urine biomarker research for prostate cancer detection and prognostication.

Methods We provide a review of current literature on urinary biomarkers for prostate cancer. We evaluate the strengths and limitations of a variety of approaches that vary in sampling strategies and targets measured; discuss reported urine tests for prostate cancer with respect to their technical, analytical, and clinical parameters; and provide our perspectives on critical considerations in approaches to developing a urine-based test for prostate cancer.

Results There has been an extensive history of exploring urine as a source of biomarkers for prostate cancer that has resulted in a variety of urine tests that are in current clinical use. Importantly, at least three tests have demonstrated high sensitivity (~90%) and negative predictive value (~95%) for clinically significant tumors; however, there has not been widespread adoption of these tests.

Conclusions Conceptual and methodological advances in the field will help to drive the development of novel urinary tests that in turn may lead to a shift in the clinical paradigm for prostate cancer diagnosis and management.

Introduction
In recent decades, the most prevalent method of prostate cancer detection has been serum prostate-specific antigen (PSA) testing [1]. Elevated PSA levels in the serum can indicate prostate cancer, but, as a screening tool, PSA lacks adequate specificity, as elevation of serum PSA is not exclusive to prostate cancer [2]. Prostatitis, digital rectal examination (DRE), and benign prostate hyperplasia (BPH) all have been linked to increased serum PSA levels. PSA test results are especially problematic when values fall in the range of 4.0–10.0 ng/mL, leading to unnecessary procedures and potential overdiagnosis and overtreatment. In the United States, about one million men undergo prostate biopsies annually because of an elevated serum PSA, of which ~70% do not detect prostate cancer [3]. The biopsy procedure also may detect indolent tumors that are unlikely to cause morbidity and mortality, often resulting in needless interventions for patients with low-grade cancer.

Some patients diagnosed with prostate cancer have advanced disease at diagnosis or progress to an advanced stage over time. As PSA also is routinely used for disease monitoring purposes, a rising PSA often triggers additional aggressive local or systemic interventions. A key drawback of PSA is that it provides limited information beyond its utility as a disease indicator. Biomarkers that are more effective are needed to inform the management of prostate cancer patients, particularly those on active surveillance.

To address these issues, there has been great interest in identifying more specific and sensitive biomarkers for detecting and monitoring prostate cancer as well as treatment-specific markers that can indicate benefit or lack of benefit from clinical interventions. Urine has emerged as a promising non-invasive source of biomarkers. Recent exploration of urinary analytes, including DNA, RNA,
proteins, exosomes, and cellular metabolites has revealed numerous promising candidate markers. In this review, we provide an overview on the current state of urine biomarker research for prostate cancer, discuss the approaches that have been implemented to detect potential markers, and highlight some of the ongoing challenges facing development of urinary biomarker tests. We provide our perspective on development of urinary markers with a pathway to the clinic.

Urine as a source of biomarkers

Urine is a complex medium, containing a variety of substances, some of which are filtered from the circulation, such as metabolic waste products and small proteins (<20 kDa) secreted by numerous cell types, as well as larger proteins and cells that originate from urogenital organs downstream of glomerular filtration [4]. Solid components of urine can easily be separated from the liquid fraction by low-speed centrifugation (Fig. 1). The resulting pellet contains formed elements such as cells, casts, mucin, and debris; whereas, the supernatant retains the soluble components including proteins, exosomes, biochemicals, and cell-free nucleic acids (cfNA). The composition of urine is highly dynamic and exhibits high variability both within and across individuals owing to numerous factors such as age, diet, gender, and physical activity [5].

There are several advantages to using urine for clinical assays. Collection of urine is a non-invasive form of liquid biopsy without any risk of harm to the patient. Specimens can be obtained at frequent intervals and in large quantities, making urine amenable to repeat sampling procedures. Urine contains numerous substrates that can be used as biomarkers. Urine may contain prostatic secretions and exfoliated prostate epithelial cells owing to the anatomic proximity of the prostate to the bladder and urethra (Fig. 2). Various types of prostate biomarkers are released into urine, including cell-associated markers and secreted cell-free markers. Moreover, prostate material in urine can be enriched by physical manipulation of the gland during digital rectal examination. This procedure promotes mobilization of fluids and cells that drain from prostatic ducts into the urethra and then are carried out during micturition. As a source of biomarkers for localized and early-stage prostate cancer, urine may be better suited than blood that contains markers from virtually all body tissues, leading to high background interference that can hinder detection ability. In contrast, urine is enriched in material coming directly from the prostate gland; it does not require crossing blood-tissue barriers; and it contains fewer confounding elements.

Clinical application of urine tests for prostate cancer

Urinary prostate biomarkers could be applied to various scenarios in which they may guide clinical decision-making (Fig. 3). In the diagnostic setting, an ideal biomarker would discriminate normal and benign prostate conditions from malignancy. There has been considerable interest in urinary markers as a supplement to serum PSA measurements with the goal of reducing unnecessary biopsies, as a complementary tool to be used in conjunction with biopsy, or as a means of replacing the biopsy procedure entirely [6]. Numerous strategies have been implemented in an effort to use urine as a source of prostate cancer biomarkers that have led to the development of several clinical urine tests for prostate cancer detection (Table 1).

Reliable prognostic and predictive markers are sorely needed. Urinary markers have the potential to improve detection of clinically significant prostate cancers. For example, at least three tests have demonstrated high sensitivity (~90%, Table 1) and ~95% negative predictive value for Gleason pattern 4 tumors. Improvement in detecting significant cancer using urine biomarkers may come at the cost of over-detecting clinically insignificant prostate cancer, a scenario similar to the outcome of widespread PSA testing. A urinary prostate marker that merely detects any prostate cancer (including significant cancer) will not be sufficient to improve patient care. To optimize clinical management of prostate cancer, an ideal urine test would help to improve the detection of significant cancer and in the meantime decrease the detection of clinically insignificant cancer. For patients with early, localized prostate cancer, urine biomarkers that are associated with high-risk features may fulfill this objective by distinguishing patients harboring aggressive tumors who might benefit from interventions from those with indolent tumors that might be managed with active surveillance.

Biochemical and metabolic markers

Secreted prostate fluid is an intriguing source of biomarkers that can be obtained non-invasively via collection of urine. The composition and content of prostatic secretions have been shown to mirror those of prostate tissue, presenting an opportunity to gain insight into the health of gland, which may be particularly useful for cancer detection since alterations in prostate secretory function and fluid composition are associated with malignancy [7, 8]. Biochemical urine tests generally require few processing steps and results can be obtained rapidly. The advantage of a simple workflow and easy interpretation associated with biochemical urine assays raises the possibility of inexpensive point-of-care testing (Fig. 4).
Secreted components of prostatic fluid

The earliest demonstration that prostate fluids could be detected in urine specimens was reported in a 1942 publication by Scott & Huggins who demonstrated the prostatic origin of urinary acid phosphatase [9]. These observations were validated in subsequent studies by others [10–12], providing a foundation for future investigations into biochemical analysis of urine as a way to measure biomarkers derived from prostate secretions.

Tumors in the prostate gland disrupt the homeostatic regulation of prostate fluid composition. Under normal conditions, prostate glandular cells accumulate and secrete exceptionally high levels of zinc [13]. With prostate cancer, both tissue and secreted levels of zinc are markedly reduced compared with benign prostate tissue [14]. Numerous reports have established a strong association zinc secretory output and malignancy, indicating that decreased zinc is a hallmark characteristic of prostate cancer [15]. As a urine biomarker, low zinc levels could be used for detection of malignancy, whereas normal urinary zinc levels may help rule out prostate cancer for patients with PSA values in the

Fig. 1 Analytical approaches associated with the various fractions of urine following centrifugation

Fig. 2 Prostatic components detectable in urine
gray zone (4–10 ng/mL). In spite of the abundant evidence supporting zinc as a prostate biomarker, only few studies have explored urinary zinc measurements for non-invasive detection of malignancy. Medarova et al. [16] proposed urinary zinc concentrations could be used as a risk stratification tool [17]. They developed a novel assay that involves rapid quantification of mobile zinc in urine samples using a fluorescent Zn$^{2+}$ sensor measured using a fluorescent spectrophotometer. “Zinc scores” were calculated by multiplying the zinc concentration (µM) by the creatinine concentration (µg/mL) to adjust for variance in urine volumes. When they applied a cutoff zinc score ≤7 as criteria for malignancy, only 24 (63%) samples were correctly classified as either benign or malignant. Nine of the misclassified samples were falsely identified as positives, and five were false-negatives. Despite the disappointing performance of zinc as a urinary biomarker in this study, additional and larger studies are necessary before drawing conclusions on its clinical utility.

Metabolites

Over the past decade, urinary metabolites have gained considerable attention as potential markers for prostate cancer. Metabolomic profiling of cancer is an attractive approach to biomarker discovery, because it provides insight into the current physiological or pathophysiological conditions by measuring end products of biochemical reactions from cells and tissues [18]. The prostate gland has a unique metabolism that is associated with the production PSA, spermine, citrate, zinc, and other components of the prostatic fluid [19]. Perturbations in the composition of prostate fluid that commonly occur in malignancy are attributed to metabolic alterations that could be captured through metabolic profiling of urine samples for cancer detection. Proof-of-concept for this was reported in a landmark study by Sreekumar et al. in 2009. They analyzed 1126 urine metabolites in 100 urine samples and identified sarcosine as a lead candidate [20]. They reported that urinary sarcosine levels were increased in prostate cancer and could distinguish benign samples from those obtained from prostate cancer patients. However, follow-up studies reported mixed results. Some investigators were unable to validate diagnostic utility of sarcosine and reported no significant differences in urinary sarcosine between prostate cancer cases and controls [21, 22], whereas others reported findings supporting the initial observations [23, 24]. Several explanations for the discrepancies across studies have been...
proposed [25], including sample selection, urine handling, normalization methods, and analytical techniques.

Volatile organic compounds

Other investigations of urine biochemicals have included a series of studies involving the detection of volatile organic compounds (VOCs) as urinary biomarkers for prostate cancer. VOCs are end products of cellular metabolism that are excreted from cells and tissue; alterations in normal VOC production occur in pathological conditions and reflect metabolic disturbances that occur in numerous disease states [26]. Interest in VOCs as biomarkers gained momentum following a publication in 2008 by Gordon et al. [27] who trained sniffer dogs to discriminate between healthy patients and those with prostate cancer. This report was followed by several subsequent studies using dogs [28–30]. Varying degrees of animal proficiency were reported across these studies, which is likely attributable to differences in study design, dog breeds, canine training methods, and specimens included for analysis (Table 2).

Research on cancer detection using trained animals has garnered much media attention despite limited scientific enthusiasm. Impracticality for large-scale clinical application, flaws in design of published studies, insufficient diagnostic accuracy, and other criticisms have been discussed elsewhere [30–34]. Although controversial, these observations have raised important questions on the nature of VOCs in biofluids and the possibility of their utility in diagnosis of cancer. In an effort to further research urinary VOCs and avoid the limitations of training and using dogs as VOC detectors, some groups have begun testing instrumental methods to analyze and generate odorant signatures for biological samples [35]. Several studies reported utility of electronic nose technology to discriminate between urine from patients with prostate cancer from control urine specimens [36–38]. These preliminary studies suggest that the diagnostic potential of VOC detection using electronic noses is promising.

Cytology

Conventional cytology

Prostate cells in urine are considered to be luminal epithelial cells that have shed from the gland (Fig. 2), but the precise nature of urinary prostate cells and means by which they are released into urine is not fully understood. Presumably, some shedding of prostate cells occurs during normal cell turnover. Alternatively, exfoliation of prostate cells can be achieved mechanically by performing prostate massage. The prevalence of intact prostate cells in urine sediment has

Table 1 Clinical urine tests for prostate cancer

Test	Marker description	Indication	Clinical value	Performance Available as	References
PCa3	PCA3 & PSA mRNA	Post-DRE urine	Reduction in the number of prostate biopsies	Se: 42–54%	CLIA-approved LDT (Hologic) [54, 94, 95]
Pro diagnostics PCA3	ERG, PCA3, SPDEF, ETS-related gene	Pre-DRE urine	Reduction in the number of prostate biopsies	Sp: 74–91%	FDA approved (Halcyon) [90]
SelectMDx	HOXC6, DLX1, KLK3	Post-DRE urine	Reduction in the number of prostate biopsies	Se: 92%	CLIA-approved LDT (Endocrine Diagnostics) [64, 65]
Mi-Prostate Score (MiPS)	PCA3 and TMPRSS2, ERG, HOXC6, prostate cancer signature	Post-DRE urine, serum PSA, serum PSA mRNA	Reduction in the number of prostate biopsies, diagnosis of recurrence	Sp: 91%	CLIA-approved LDT (University of Michigan, MDx Health) [70, 90]
Prostarix Risk Score	Sarcosine, alanine, glycine, glutamate	Post-DRE urine, blood serum	Reduction in the number of prostate biopsies, prediction of recurrence	Sp: 90–93%	CLIA-approved LDT (Exosome Diagnostics) [80, 90]

Se, sensitivity; Sp, specificity
been little investigated, and as such, normal rates of prostate cell shedding into urine has not been documented for healthy or diseased prostate tissue. Nevertheless, the morphological features of prostate cells have been well defined in several cytological studies [39–41]. Prostate cells found in the urine sediment have a distinct appearance that can be identified microscopically using conventional cytology staining methods; they generally are round with a high nuclear to cytoplasm ratio, prominent nucleoli, and often present in small clusters. Despite these characteristic features, identifying prostate cells solely based on morphology is difficult even for trained cytopathologists because of their overlapping appearance with other cell types found in the urine sediment as well as their scarcity in regularly voided urine specimens.

As a clinical tool for numerous diagnostic scenarios, performance of cytology consistently demonstrates high specificity. The main advantage of a cytological approach to prostate cancer detection in urine is the ability to visualize cells of interest. This provides a distinct benefit over urine tests for prostate cancer currently under investigation, nearly all of which involve measurement of soluble markers and detection methods that do not provide information about their cellular origin (e.g., PCR-based assays). Alternatively, by using a cytological approach, single prostate cells can be examined and evaluated within a highly heterogeneous cell population, an advantage over other detection methods that allows for discrimination of cells originating in the prostate gland from those of non-prostate origin (Fig. 4). In this regard, the consistently high specificity of cytological tests is likely a consequence of the need to visually identify and confirm presence of malignant cells [42, 43].

Unfortunately, urine cytology for detection of prostate cancer suffers from having a very low sensitivity [43]. The performance of cytology as a highly specific test with low detection sensitivity is a common problem in the diagnostic setting for many other conditions in addition to prostate cancer. This limitation has long been established [44] and renders cytology unacceptable for clinical use in prostate cancer detection. Several possibilities may account for the poor sensitivity. First, there may not be sufficient cellular shedding of prostate cells into urine; successful recognition of malignancy by cytology requires presence of intact

Fig. 4 Strengths and limitations of the various approaches to urinary biomarker detection
prostate cells that are rare in urine, even when specimens are collected immediately following prostatic massage. Second, passage of cells from prostatic ducts into urine may be hindered by anatomical locations of tumors that are distant from the urethra. Further causes of low sensitivity may arise as a result of specimen acquisition and processing procedures. Slide preparation of urine sediment usually involves several centrifugation steps, increasing the likelihood that these rare cells are lost during processing. Reported cell recovery rates for urine sediments ranges from 30 to 85%, depending on technique [45, 46]. Cells not lost during the processing steps could be missed during analysis; urine sediment contains a number of elements and cell types that can obscure detection of rare cell populations; or prostate cells could be mistaken for other types of cells. Cytology is also limited by intra-observer variability and the need for specialized laboratory personnel and training. Moreover, urine is an inhospitable environment for cells, thus improper sample handling or prolonged storage at room temperature before processing can cause rapid deterioration of cellular components [47].

Molecular cytology

An ongoing area of investigation to overcome the shortcomings of conventional cytology is the integration of molecular techniques such as immunolabeling, in situ hybridization, and specialty stains into standard cytological methods. Molecular markers can enhance the ability to visually detect and differentiate cell types during analysis of cytology slides by providing additional disease- or tissue-specific information. Regarding urine cytology for prostate cancer detection, immunolabeling for prostate-specific markers has been investigated in a few studies. Successful immunostaining of urine slides for PSA and prostatic acid phosphatase as way to confirm the cellular origin of malignant cells during routine cytology was reported in two small studies [41, 48]. Although the aim of these studies was not to determine whether prostate markers could be used alone as diagnostic tools, they provided early evidence that immunostaining, a technique primarily performed using histological sections, for prostate markers could successfully be applied to urine cytology slides and may aid in clinical decision making. Expanding on these observations, Fujita et al. [49] investigated prostate cancer in urine specimens by performing multiplex fluorescent immunostaining for AMACR, NKX3-1 and nucleolin. Urine samples were collected from healthy patients (n = 23) and those with biopsy-confirmed prostate cancer (n = 27). Sediments were scored for positivity by multiplex immunostaining followed by independent scoring after Papanicolaou staining and conventional cytology. They reported 100% specificity and an increase in detection sensitivity with immunostaining
based urine test for prostate cancer [51]. While there was only a modest improvement in sensitivity, this study validates the concept that performance of urine cytology for prostate cancer detection can be enhanced by incorporation of modern technologies and newly identified biomarkers.

Although low sensitivity has led to the loss of enthusiasm for urine cytology in the detection of prostate cancer, it may still hold promise. High-throughput genomic and proteomic approaches have gained recent popularity over cytotological methods, but have failed to achieve a comparably high specificity. It is conceivable that current performance deficits regarding the sensitivity of cytology could be dramatically improved through optimization and incorporation of novel technologies. For example, platforms under development for detection of rare cell populations in blood could be adapted and applied to urine, potentially enhancing the ability to find and isolate urinary populations of prostate cells. Identifying and implementing effective methodologies could allow for a more strategic cytological approach to detecting exfoliated prostate cancer cells in urine that increases sensitivity without compromising specificity. Further preclinical investigation and assessment of potential technologies is warranted.

Nucleic acid biomarkers

Nucleic acids are normal constituents of urine in both healthy individuals and those with cancer. They are found in the cellular fraction of urine after centrifugation as well as extracellularly in the supernatant as cfRNA or may be contained within extracellular vesicles [50, 51]. Profiling urinary nucleic acids represents a promising means of prostate cancer detection. Qualitative and quantitative alterations in nucleic acids are hallmark characteristics of prostate carcinogenesis, and therefore genetic, transcriptional, and epigenetic profiling of urine offers a potential method for non-invasive detection. Substantial effort has been invested in profiling urinary nucleic acids in the search for prostate cancer biomarkers. Numerous studies have demonstrated their clinical value as biomarkers for prostate cancer leading to successful development and FDA-approval of an RNA-based urine test for prostate cancer [52].

DNA and RNA

Urinary RNAs are detectable in all fractions of urine and consist of many RNA varieties including mRNAs, long non-coding RNAs, and microRNAs. To date, RNA-based biomarkers have been the most widely investigated subtype of urinary nucleic acids for prostate cancer detection, among which PCA3 and TMPRSS2 fusions are the most extensively studied [53]. PCA3 is a long non-coding RNA that is highly prostate-specific and is overexpressed in prostate cancer [54]. The first and only FDA-approved urinary biomarker for prostate cancer is the Progensa PCA3 assay (Hologic, Inc) that measures the concentration of PCA3 and PSA mRNA levels by transcription-mediated amplification using 2.5 mL post-digital rectal examination urine. A “PCA3 Score” is generated by calculating the ratio of PCA3 and PSA mRNA, the latter being used as a method of normalizing for the amount of prostate material within the total volume of urine. Another prominent urinary RNA marker is the TMPRSS2:ERG fusion transcript [55] that is known to be a prostate cancer-specific marker [56] that can be measured in urine [57]. Other noteworthy RNA markers include several mRNAs known to be overexpressed in prostate cancer (Table 3), such as α-methylacyl-coenzyme A racemase (AMACR) [58, 59], golgi membrane protein 1 (GOLM1) [60, 61], human telomerase reverse transcriptase (hTERT) [62, 63], homeobox C6 (HOXC6) [64, 65], and prostate-specific membrane antigen (PSMA) [66], as well as numerous microRNAs and long non-coding RNAs [53]. Urinary DNA-based markers include single nucleotide polymorphisms (SNPs), copy number variations, loss of heterozygosity, gene amplification, microsatellite instability, and alteration in promoter-region methylation [67]. Measurement of epigenetic alterations in glutathione S-transferase pi 1 (GSTP1) is the most extensively studied urinary DNA marker for prostate cancer. Additional investigational DNA-based urine markers are listed in Table 4.

From a technical perspective, several factors need to be considered when analyzing urine for nucleic acid markers. Urine contains a high level of nucleases, including DNases I/II and RNases I/II. DNase I is the major DNA-hydrolyzing enzyme present in urine. Its activity is reported to be 100-fold higher in urine than in blood, thus providing a potential explanation for the high level of DNA fragmentation that has been observed in urine samples. It is critical that urine used for analysis of nucleic acids is immediately processed with a preservative after collection. Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is the most commonly used method for measuring expression of candidate markers, but analytical protocols for transcript quantification vary between studies with some report performing cDNA preamplification [66, 68], whereas others do not [69], and some use transcription-mediated amplification [60, 70] or droplet digital PCR [71]. In addition, lack of consistent urine sampling and processing procedures exists across different studies. The benefits of a PCR-based approach include quantitative measurements and high reproducibility (Fig. 4). Robust clinical performance, low inter- and intra-run variance, and high informative rates (>92%) have been demonstrated for the Progensa PCA3
The greatest limitation of this approach is the inability to determine the cellular origin of biomarker expression in a nucleic acid study. Numerous cell types are found in urine, including normal prostate cells, leukocytes, urothelial cells, and renal cells, which can confound results. Because of this cellular diversity, suitable markers for analysis have been limited to those that are highly prostate cancer-specific (e.g., PCA3), reducing the number of potential candidates.

Cell-free nucleic acids

cfNA have been established as a normal constituent of urine [75]. They can originate from any tissues along the urinary tract and may be derived from apoptotic and/or necrotic cells found in nucleocomplexes or can be contained within extracellular vesicles [76]. Using urinary cfNA for analysis may overcome the limited sensitivity of biomarker detection using urine sediment, as it does not require of presence of cells. In addition, preparing urine specimens for analysis of cfNA requires fewer initial processing steps, thus reducing errors and confounding factors. Reports of urinary cfNAs as biomarkers for prostate cancer detection are limited and have been primarily restricted to investigating DNA rather than RNA, presumably because RNA is not well preserved in urine owing to its relative instability compared with DNA and the presence of RNA-hydrolyzing enzymes in urine. However, because of their small size (20–25 nucleotides), cell-free microRNAs are more resistant to nuclease degradation compared with longer chain mRNAs, and they can be detected in urine specimens. Casadio et al. [75] reported concentrations of cfDNA in urine ranging from 2–36 ng/μl that did not significantly differ between healthy controls and cancer patients, but DNA fragmentation patterns could differentiate between prostate cancer patients and controls.

Table 3 RNA markers (other than PCA3 and TMPRSS2-ERG)

Marker	Cases	Controls	Sens (%)	Spec (%)	AUC	DRE	Urine	Method	Normalization	References	
AMACR	43	49	70	71	0.65	POST	Sediment	RT-qPCR	RNA levels of KLK3	[69]	
	138	96		-	-	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[60]	
	7	6		-	-	POST	Sediment	RT-qPCR	RNA levels of KLK3	[59]	
	10	9	77–88	85–100	0.65	POST	Sediment	RT-qPCR	RNA levels of KLK3	[101]	
	91	85	65	65	0.65	POST	Sediment	RT-qPCR	RNA levels of KLK3	[68]	
ERG	138	96		-	-	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[60]	
GalNAC-T3	97	140	31	84	0.59	POST	Sediment	RT-qPCR	RNA levels of KLK3	[102]	
GOLPH2	44	46		-	-	0.64	POST	RT-qPCR	RNA levels of KLK3	[103]	
	138	96		-	-	0.66	POST	RT-qPCR	RNA levels of KLK3 and GAPDH	[60]	
	195	124	59	71	0.62	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[61]	
Hepsin	44	46		-	-	0.48	POST	Sediment	RT-qPCR	RNA levels of KLK3	[103]
MALAT1	81	135	65	67	-	0.62	POST	Sediment	RT-qPCR	RNA levels of KLK3	[104]
PSGR1	57	97	63	64	0.65	POST	Sediment	RT-qPCR	RNA levels of KLK3	[66]	
	73	142	59	73	0.68	POST	Sediment	RT-qPCR	RNA levels of KLK3	[105]	
PSMA	57	97	81	41	0.62	POST	Sediment	RT-qPCR	RNA levels of KLK3	[66]	
	44	46		-	-	0.64	POST	Sediment	RT-qPCR	RNA levels of KLK3	[103]
SPINK1	138	96		-	-	0.64	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[60]
TFF3	138	96		-	-	0.82	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[60]
TTTY15-USP9Y gene fusion	75	151	84	78	-	-	POST	Sediment	RT-qPCR	RNA levels of KLK3 and GAPDH	[106]

*Specifies if urine samples were collected pre- or post-digital rectal exam (DRE) AMACR, α-methylacyl-CoA racemase; ERG, ETS-related gene; GalNAC-T3, N-acetylgalactosaminyltransferase 3; GOLPH2, golgi phosphoprotein 2; MALAT1, metastasis associated lung adenocarcinoma transcript 1; PSGR, prostate-specific G-coupled receptor; PSMA, prostate-specific membrane antigen; SPINK1, serine peptidase inhibitor, Kazal type 1; TFF3, trefoil factor 3; TTTY15, testis-specific transcript, Y-linked 15; USP9Y, ubiquitin specific peptidase 9 Y-linked
Marker	Cases	Controls	Sens (%)	Spec (%)	AUC	DRE	Urine	Method	Normalization	References
APC	117	47	Pre: 17 Post: 42	Pre: 94 Post: 94	-	PRE & POST Cells isolated by filtration	ddPCR	Copies per μL	[71, 107]	
APC	12	5	-	-	0.59–0.62	PRE & POST Cells isolated by filtration	Sediment Methylation specific PCR	Not specified	[107]	
APC	113	128	36–51	83–91	0.59–0.62	POST Sediment Methylation specific PCR	ACTB	Not specified	[108]	
APC	178	159	-	-	0.59	POST Sediment Methylation specific PCR	Not specified	[109]		
APC	232	238	-	-	0.63	POST Sediment Methylation specific PCR	Not specified	[110]		
C1orf114	117	47	Pre: 6 Post: 26	Pre:100 Post: 100	-	PRE & POST Cells isolated by filtration	ddPCR	Copies per μL	[71]	
GSTP1	40	45 BPH + 7 PIN	73	98	-	POST Sediment Methylation specific PCR	Not specified	[111]		
GSTP1	28	0	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[109]		
GSTP1	69	31 BPH	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[112]		
GSTP1	18	27	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[113]		
GSTP1	12	5	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[114]		
GSTP1	31	34 BPH	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[107]		
GSTP1	24	69 BPH + 8 HGPIN	75	98	-	POST Sediment Methylation-specific PCR	Ratio of GSTP1 to ACTB	[116]		
GSTP1	113	128	33–36	91–95	0.64–0.65	POST Sediment Methylation specific PCR	ACTB	Not specified	[108]	
GSTP1	178	159	-	-	0.66	POST Sediment Methylation-specific PCR	Not specified	[109]		
GSTP1	117	47	Pre: 21 Post: 42	Pre: 77 Post: 82	Post-biopsy Sediment Methylation-specific PCR	Not specified	[110]			
GSTP1	232	238	-	-	0.68	POST Sediment Methylation-specific PCR	Not specified	[111]		
GSTP1	91	51	21–78	50–95	0.69	POST Sediment Methylation-specific PCR	Not specified	[117]		
PITX2	117	47	Pre: 4 Post: 16	Pre: 100 Post: 100	-	PRE & POST Cells isolated by filtration	ddPCR	Copies per μL	[71]	
RARB2	113	128	29–40	84–91	0.59–0.64	POST Sediment Methylation-specific PCR	ACTB	Not specified	[108]	
RARB2	178	159	-	-	0.71	POST Sediment Methylation-specific PCR	Not specified	[109]		
RARB2	232	238	-	-	0.64	POST Sediment Methylation-specific PCR	Not specified	[110]		
RASSF1	253	32 BPH	45	84	-	POST Sediment Methylation-specific PCR	ACTB	Not specified	[118]	
RASSF1	117	47	Pre: 47 Post: 65	Pre: 41 Post: 35	-	PRE & POST Cells isolated by filtration	ddPCR	Copies per μL	[71]	

Table 4 DNA methylation markers

Approaches to urinary detection of prostate cancer 371
Extracellular vesicles

In addition to cellular and cell-free forms, urinary nucleic acids can be found extracellularly enclosed within small, membrane-bound vesicles. Extracellular vesicles are secreted by most cell types. They contain secreted proteins, lipids and nucleic acids [77]. Extracellular vesicles are found in most bodily fluids, including urine, as a heterogeneous mixture consisting of exosomes, microvesicles, or apoptotic bodies [78]. Urinary extracellular vesicles can originate from any epithelial cells within the urinary tract. Extracellular vesicles have gained interest as a source of biomarkers because their content reflects that of their parent cells. They are particularly valuable for investigating miRNAs and other small RNAs due to the enrichment of this subset of RNAs. As a biomarker source, isolating and evaluating vesicles originating from the prostate could provide a way screen for prostate-specific nucleic acid markers, while reducing analytical interference from other cell types in urine [79]. McKiernan et al. [80] reported development of ExoDx, a diagnostic test measuring exosome markers for prediction of high-grade prostate cancer in men with PSA 2–10 ng/mL in the initial biopsy setting. Their test measures expression of three exosomal RNAs (ERG, PCA3, and SPDEF) in voided urine specimens collected without a prior prostate massage. Other promising exosome markers with potential clinical utility include several different proteins and miRNAs [53].

Prostate-derived extracellular vesicles are a good source of biomarkers owing to their stability in urine. Their contents are encapsulated by a membrane that protects against degradation, and they can withstand vortexing and multiple freeze–thaw cycles [81]. However, it is important to rapidly preserve urine specimens using standardized collection and storage procedures to preserve biomarker integrity. At present, the largest drawback of utilizing extracellular vesicles is collection and isolation. A variety of methods have been developed for the isolation of extracellular vesicles from bodily fluids. The most established method for exosome isolation is differential centrifugation that consists of sequential centrifugation steps. Other methods include density gradient-based isolation, use of precipitating solutions, and column-based assays. Procedural differences in processing of urinary extracellular vesicles have been shown to impact isolation and detection of certain subpopulations. A comparative study by Royo et al. [82] evaluated various methods for the isolation of urinary extracellular vesicles. By profiling CD exosome markers, they observed differential enrichment of exosome subpopulations, depending the isolation procedure.
Protein biomarkers

Early initiatives to identify urine protein biomarkers for prostate cancer were impeded by challenges associated with their relatively low abundance and a lack of high-throughput detection assays. However, recent advances in proteomic technologies are enabling high throughput, reproducible and quantitative profiling of urine biomarkers on a comprehensive scale [83]. Urine is well suited as a source of protein biomarkers owing to minimal proteolytic activity in addition to harboring a highly diverse protein landscape from small peptides and metabolites to larger proteins and macromolecular complexes. The total protein content of urine is low (typically <150 mg per day)—approximately 1000-fold lower by comparison with blood. This makes analysis simpler in comparison to serum to plasma [84, 85]. On the other hand, the composition of urine is highly variable. Using quantitative proteomic techniques, Nagaraj and Mann [86] demonstrated high variability in the proteome for both inter-person (47.1%) and intra-person (45.5%) urine specimens.

Proteins and peptides are found in all fractions of urine. They originate from cellular components, filtration of blood plasma, proteolytic cleavage of cell surface proteins, apoptosis, and secretion of extracellular vesicles [87]. Approximately 30% of the urinary proteome is derived from glomerular filtration, whereas 70% originates from the urogenital tract, indicating the urine proteome is an abundance source of biomarkers related to urogenital health and malignancy [88]. Prostate-specific protein markers in urine include cellular antigens from exfoliated prostate cells as well as proteins contained within extracellular vesicles or secreted into prostatic fluid. Secreted proteins and peptides may prove to be particularly advantageous urinary analytes, as they are not limited by the presence of cellular material. Candidate protein biomarkers that have been investigated include PSA, AMACR, IL18BP, annexin A3, engrailed-2, and ZAG (Table 5). Numerous methods for detecting urine proteins have been reported, including ELISAs, western blotting, gelatin zymography, and capillary electrophoresis-mass spectrometry.

Considerations for study design and experimental conditions

Urinary biomarkers have the potential to transform the way prostate cancer is diagnosed and treated. Yet, there are numerous inherit challenges and practical issues associated with using urine as a biospecimen that need to be addressed moving forward. In this section, we highlight some pertinent concerns facing detection that are specific to urinary prostate markers.

Digital rectal examination prior to sample collection

A prostate massage at the time of digital rectal examination is often conducted in studies for prostate biomarkers before urine collection to increase the amount of prostate-derived material. Collection of specimens following massage is generally emphasized as a critical factor when collecting urine for identification of prostate biomarkers, because it enriches for the volume of prostate secretions. This has been consistently demonstrated across numerous studies for RNA, DNA, exomes, exfoliated prostate cells, and protein-based prostate markers. Most recently, the positive effect of prostate massage on urinary biomarker levels was observed in a study comparing levels of PCA3, ERG, and KLK3 in which there was approximately a 10-fold increase in expression following digital rectal examination [89]. However, some evidence suggests massage may not be necessary for detection of urinary markers. Exosome expression of PCA3 and ERG [90, 91] and cellular DNA methylation markers [71] have been successfully measured in urine samples collected without a prior digital rectal examination or massage. Given this information, whether or not a DRE must be performed prior to urine collection is unresolved. On one hand, evidence is clear that prostate massage increases the amount of the prostatic secretions detectable in urine that aids in marker detection and may be especially beneficial for low-abundance biomarkers. Conversely, this process adds an element of variability that needs to be accounted for in data analysis using validated methods of normalization. Omission of the digital rectal examination in the urine collection process (if validated and does not negatively influence detection sensitivity) would be advantageous for standardizing collection procedures and could allow for routine monitoring prostate markers at increased frequencies. It also makes the test more practical and acceptable to patients because it does not require a visit to a health-care provider to obtain the urine sample.

Study design

Despite the considerable amount of research involving urinary prostate biomarkers, guidelines for the many procedural issues for urine biomarker studies have not been defined. These include which part of the void to use, how much volume to collect, which fraction to analyze, preservative fluids to be added, and the performance of digital rectal examination. The procedures used have been highly variable across urine biomarker studies. There is no uniformity regarding specimen collection, preparation, analytical methods, or data evaluation. The lack of a standardized approach adds further complications to working with an innately complex specimen and prohibits comparisons of biomarker performance across different laboratories. The
Marker	Cases	Controls	Sens (%)	Spec (%)	AUC	DRE	Urine	Method	Normalization	References
5-alpha reductase	16	91	-	-	-	PRE	Not specified	Western blot, dot blot & ELISA	Not specified	[119]
ADIRF	16	15	81	100	-	PRE	Exosomes; first morning urine	Mass spectrometry	Not normalized	[120]
AMACR	12	12+2 atypia	100	58	-	Post biopsy	Sediment	Western blot	Not specified	[58]
Annexin A3	368	223	-	-	0.82	POST	Sediment	Western blot	Volume & density	[121]
B-2-microglobulin	90	83 BPH	-	-	0.66	PRE	Whole urine	iTRAQ, LC-MS/MS	Not specified	[122]
Bladder tumor fibronectin	21	8+13 BPH	-	-	PRE	Voided and catheterized urine	Chemiluminescent immunoassay	Creatinine	[123]	
Bradicin	51	14	-	-	-	PRE	Not specified	Immuno-chromatographic membrane strip tests	Not specified	[124]
c-Met	75 (localized PCa)	81 (metastatic PCa)	-	-	0.90	PRE	Supematant	Electrochemi-luminescent immunoassay	Creatinine	[125]
CRISP3	47 localized PCa, 39 metastatic	48 BPH	79	84	0.87	POST	Supematant	iTRAQ, ELISA & western blot	Not specified	[126]
Delta-catenin	16	15	88	83	-	PRE	Prostasomes	Western blot	Not specified	[127]
Endoglin (CD105)	67	52	34-85	50-94	-	POST	Supematant	ELISA	Total protein and creatinine	[128]
Engrailed-2	82	102	66	88	-	PRE	Supematant	ELISA	Not specified	[129]
	58	67	-	-	-	PRE	Supematant, midstream catch	ELISA	Not specified	[130]
Fibronectin	267	140	67	89	-	PRE	Supematant	ELISA	Not specified	[131]
GCNT1	35	-	-	0.76	POST	-	-	Dot blotting	Not specified	[132]
GOLPH2	195	124	75	72	0.79	POST	Sediment	Western blot	PSA and GAPDH	[61]
IL18BP	67	32	69	56	0.65	POST	Supematant	ELISA	Not normalized	[133]
Intestinal mucin 3	90	83 BPH	-	-	0.61	PRE	Whole urine	iTRAQ, LC-MS/MS	Not specified	[122]
MCM-5	12	131 + 70 BPH	92	82	-	PRE	Sediment	Immunofluorometric assay	Not specified	[134]
MMP-9	103	86	58	82	-	PRE	Whole urine	Gelatin Zymography	Not specified	[135]
MRP-14	6	6	-	-	-	POST	Supematant	2D-MALDI-TOF	Not specified	[136]
	32	74	38	73	-	PRE	Not specified	ELISA	Not specified	[137]
MSMB	25	27 BPH	96	26	-	POST & PRE	Supematant	MALDI-TOF	Creatinine	[138]
PCYOX1	16	15	25	100	-	PRE	Exosomes; first morning urine	Mass spectrometry	Not normalized	[120]
	90	83 BPH	-	-	0.62	PRE	Whole urine	iTRAQ, LC-MS/MS	Not specified	[122]
Table 5 (continued)

Marker	Cases	Controls	Sens (%)	Spec (%)	AUC	DRE	Urine	Method	Normalization	References
Pepsinogen 3, group 1	42	51 + 77 BPH	93	36	-	PRE	Whole urine	ELISA	Not specified	[140]
	9	11	-	-	-	PRE	First void and midstream urine	ELISA	Not specified	[141]
	13	18 + 8 BPH	31	100	-	PRE	24-hour urine	Radioimmunoassay	Creatinine	[142]
Fucosylated PSA	49	20	77	80	-	POST	Supernatant	ELISA	Not specified	[143]
C-terminal PSA fragment	50	19	-	-	-	POST	Supernatant	MALDI-TOF	Not specified	[144]
PSAP	37	24	-	-	-	POST	Supematant	Mass spectrometry	Not specified	[145]
Prostatic inhibin-like peptide	10	0	-	-	-	PRE	Exosomes, early morning urine	Western blot	Creatinine	[146]
Scatter factor	25	24 + 17 BPH	84	100	-	PRE	24-hour urine	ELISA	Creatinine	[147]
Survivin	21	20	81	100	-	PRE	24-hour urine	ELISA	Creatinine	[148]
Tissue factor	49	24 + 14 BPH	-	-	-	PRE	24-hour urine	ELISA	Creatinine	[149]
	19	45	0	91	-	PRE	Random clean catch or straight catheter	Western blot	Not specified	[150]
	53	20 + 37 BPH	57	75	-	PRE	Supematants; early morning urines, midstream catch	Chromogenic uTF assay	Not specified	[151]
Transferrin	106	87 + 67 BPH	65	75	-	PRE	Sediment	Chromogenic uTF assay	Creatinine	[152]
	22	19 + 4 BPH	36	95	-	PRE	Not specified	Immunoturbidimetric assay	Creatinine	[153]
TMEM256	34	36 + 28 BPH + 5 prostatitis	75	30	-	PRE	Not specified	Immunoturbidimetric assay	Creatinine	[154]
Thymosin b15	16	15	94	100	0.87	PRE	Exosomes; first morning urine	Mass spectrometry	Not normalized	[120]
Zinc α2-glycoprotein	121	221	41	92	-	PRE	Supematant	ELISA	Total protein and creatinine	[155]
	42	56 + 29 PIN	79	60	0.68	POST	Supematant	Western blot	Creatinine	[156]

* Specifies if urine samples were collected pre- or post-digital rectal exam (DRE)

ADIRF, adipogenesis regulatory factor; AMACR, α-methylacyl-CoA racemase; CRISP3, cysteine-rich secretory protein 3; GCNT1, Core 2 β-1,6-N-acetylglucosaminyltransferase-1; GOLPH2, golgi phosphoprotein 2; IL18BP, interleukin-18-binding protein; MCM-5, mini-chromosome maintenance-5; MMP, matrix metalloprotease; MRP-14, Myeloid-related protein-14; MSMB, microseminoprotein beta; PCYOX1, Prenylcysteine oxidase 1; PSA, prostate-specific antigen; PSAP, prostatic acid phosphatase; PSMA, prostate-specific membrane antigen; TMEM256, Transmembrane Protein 256
adverse consequences of this problem are evident in publications on urinary sarcosine, in which the lack of reproducibility across studies is likely due the absence of standardized procedures. Moving forward, careful attention to collection procedures included in study design will be necessary in order to attain high quality and clinically meaningful information.

Normalization

How best to normalize urinary prostate markers is perhaps the largest unresolved problem spanning all detection platforms. Normalization is a critical step in urine biomarker studies due to wide inter- and intra-person fluctuations in urine composition and volume, in addition to variations in prostatic secretory output. Yet, currently there are no guidelines or standard methods indicated for standardizing prostate urine markers and the selection of a given methodology is at the discretion of the investigator. Consequently, there has been no consistency across publications regarding the kind of normalization method employed. PSA expression is frequently used in studies of RNA-based markers (Table 3), whereas creatinine is common for standardization in proteomic studies (Table 5). Some of the other reported strategies include normalizing with SPDEF transcript levels, osmolality, urine volume, or total protein concentration. Furthermore, sufficient evidence to support utilization of any of the commonly used normalization approaches is lacking. Although some of the methods have been validated for other kinds of urine biomarkers or for tissue-based biomarker detection, there has not been verification that these are appropriate when investigating prostate markers. Ultimately, the lack of evidence-based guidelines for appropriate methods increases the likelihood of introducing bias into a study and misinterpreting the results.

Pathway to the clinic

Although numerous promising urine biomarkers have emerged in recent years (Table 1), a non-invasive assay with high sensitivity and specificity for clinically significant prostate cancer has yet to be identified and the diagnosis of prostate cancer continues to be a major clinical challenge. To improve the path to large-scale clinical implementation, careful consideration must be taken in study design of preclinical trials to adequately validate emerging urine markers. The relevant clinical question that a urinary biomarker can address should be clearly defined at the start of a study, as the nature of the question being addressed will have direct implications for sample acquisition and analysis. Standardized procedures need to be implemented to reduce potential confounding factors owing to pre-analytical variables. The determination of best-suited procedures should be established after careful consideration of downstream analytical requirements and subsequently should be validated before moving into large clinical trials. In addition, consideration should be given to optimizing a workflow that is amenable to clinical practice, both at the point-of-care setting and in the clinical laboratory.

Development of urinary tests may benefit from improved pathological risk stratification and adoption of reporting standards [92]. For example, the cribriform morphology is recognized as an aggressive pattern of prostate cancer and a contraindication for active surveillance if detected on biopsy [93]. All cribriform tumors are now categorized as Gleason pattern 4 [92]. However, cribriform Gleason pattern 4 tumors are under-detected by modern biopsy approaches [93]. It is tantalizing to speculate that urinary biomarkers may be more effective in detecting this increasingly recognized diagnostic entity. Studies designed to address this question will certainly benefit from reporting standards endorsed by ISUP and WHO [93].

Conclusions

Clinical application of urinary biomarkers holds great promise in the management of early and late-stage prostate cancer patients. Although several challenges must be addressed before prostate urine markers reach large-scale clinical applicability, urine tests represent a valuable tool for non-invasive cancer detection that may greatly improve upon existing methods. Future implementation of urinary biomarkers in routine clinical testing has the potential to revolutionize management of prostate cancer.

Acknowledgements We acknowledge funding support from the Prostate Cancer Foundation, Urological Research Foundation, and NIH grants U54CA199091, P50CA180995, and X01HG009642 to WJC.

Compliance with ethical standards

Conflict of interest WJC is a consultant/advisory board member for Beckman Coulter and has received commercial research support from Beckman Coulter, DeCode Genetics, and Ohmx. JL, CPP, JNE, and DR declare no conflict of interest.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

1. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987;317:909–16.
2. Lilja H, Ulmert D, Vickers AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer. 2008;8:268.

3. Blute ML Jr, Abel EJ, Downs TM, Kelcz F, Jarrard DF. Addressing the need for repeat prostate biopsy: new technology and approaches. Nat Rev Urol. 2015;12:435.

4. Julian BA, Suzuki H, Suzuki Y, Tomino Y, Spasovsky G, Novak J. Sources of urinary proteins and their analysis by urinary proteomics for the detection of biomarkers of disease. Proteom Clin Appl. 2009;3:1029–43.

5. Emwas AH, Luchinat C, Turano P, Tenori L, Roy R, Salek RM, et al. Standardizing the experimental conditions for using urine in NMR-based metabolomic studies with a particular focus on diagnostic studies: a review. Metabolomics. 2015;11:872–94.

6. Frenssner JR, Rubin MA, Wei JT, Chinnaiyan AM. Beyond PSA: the next generation of prostate cancer biomarkers. Sci Transl Med. 2012;4:127–13.

7. Kavanagh JP, Darby C, Costello CB. The response of seven prostatic fluid components to prostatic disease. Int J Androl. 1982;5:487–96.

8. McCallum KA, Kavanagh JP, Farragher EB, Blacklock NJ. Ratio of post-prostatic massage urinary zinc concentration to initial urinary zinc concentration. Improv Method Assess prostate Funct Br J Urol. 1988;62:565–70.

9. Scott WW, Huggins C. The acid phosphatase activity of human urine, an index of prostatic secretion. Endocrinology. 1942;30:107–12.

10. Breul J, Pickl U, Hartung R. Prostate-specific antigen in urine. Eur Urol. 1994;26:18–21.

11. Daniel O, Kind PRN, King EJ. Urinary excretion of acid phosphatase. BMJ. 1951:19–21.

12. Moberg PJ, Lizana J, Eneroth P. Analysis of prostatic acid phosphatase in urine voided before and after massage of the prostate in infertile men. Urol Int. 1984;39:189–92.

13. Grayhack JT, Lee C, Oliver L, Schaeffer AJ, Wendel EF. Biochemical profiles of prostatic fluid from normal and diseased prostate glands. Prostate. 1980;1:227–37.

14. Costello LC, Franklin RB. Prostatic fluid electrolyte composition for the screening of prostate cancer: a potential solution to a major problem. Prostate Cancer Prost. Dis. 2009;12:17–24.

15. Costello LC, Franklin RB. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys. 2010;611:100–12.

16. Medarova Z, Ghosh SK, Vangel M, Drake R, Moore A. Risk stratification of prostate cancer patients based on EPS-urine zinc content. Am J Cancer Res. 2014;4:385–93.

17. Zhang X-a, Hayes D, Smith SJ, Friedle S, Lippard SJ. New strategy for quantifying biological zinc by a modified zinpyr fluorescence sensor. J Am Chem Soc. 2008;130:15788–9.

18. Lima AR, Bastos Mde L, Carvalho M, Guedes de Pinho P. Biomarker discovery in human prostate cancer: an update in metabolomics studies. Transl Oncol. 2016;9:357–70.

19. Kelly RS, Vander Heiden MG, Giovannucci E, Mucci LA. Metabolomic biomarkers of prostate cancer: prediction, diagnosis, progression, prognosis, and recurrence. Cancer Epidemiol, Biomark Prev. 2016;25:887–906.

20. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, et al. Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009;457:910–4.

21. Jenzniuk F, Stephan C, Miller K, Schrader M, Erborsdodler A, Kristiansen G, et al. Sarcosine in urine after digital rectal examination fails as a marker in prostate cancer detection and identification of aggressive tumours. Eur Urol. 2010;58:12–18.

22. Wu H, Liu T, Ma C, Xue R, Deng C, Zeng H, et al. GC/MS-based metabolomic approach to validate the role of urinary sarcosine and target biomarkers for human prostate cancer by microwave-assisted derivatization. Anal Bioanal Chem. 2011;401:635–46.

23. Cao DL, Ye DW, Zhu Y, Zhang HL, Wang YX, Yao XD. Efforts to resolve the contradictions in early diagnosis of prostate cancer: a comparison of different algorithms of sarcosine in urine. Prostate Cancer Prost. Dis. 2011;14:166–72.

24. Jiang Y, Cheng X, Wang C, Ma Y. Quantitative determination of sarcosine and related compounds in urinary samples by liquid chromatography with tandem mass spectrometry. Anal Chem. 2010;82:9022–7.

25. Issaq HJ, Veenstra TD. Is sarcosine a biomarker for prostate cancer?. J Sep Sci. 2011;34:3619–21.

26. Shirasu M, Touhara K. The scent of disease: volatile organic compounds of the human body related to disease and disorder. J Biochem. 2011;150:257–66.

27. Gordon RT, Schatz CB, Myers LJ, Kosty M, Gonczy C, Kroener O. Olfactory detection of prostate cancer by dogs sniffing urine: a step forward in early diagnosis. Eur Urol. 2011;59:197–201.

28. Taverna G, Tidu L, Grizzi F, Torri V, Mandressi A, Sardella P, et al. Olfactory system of highly trained dogs detects prostate cancer in urine samples. J Urol. 2015;193:1382–7.

29. Elliker KR, Sommerville BA, Broom DM, Neal DE, Armstrong S, Williams HC. Key considerations for the experimental training and evaluation of cancer odor detection dogs: lessons learnt from a double-blind, controlled trial of prostate cancer detection. BMC Urol. 2014;14:22.

30. Lippi G, Cervellin G. Canine olfactory detection of cancer versus laboratory testing: myth or opportunity?. Clin Chem Lab Med. 2012;50:435–9.

31. Jeziorski T, Walczak M, Ligor T, Rudnicka J, Buszewski B. Study of the art: canine olfaction used for cancer detection on the basis of breath odour. Perspectives and limitations. J Breath Res. 2015;9:027001.

32. Hackner K, Pfeil J. Canine olfaction as an alternative to analytical instruments for disease diagnosis: understanding ‘dog personality’ to achieve reproducible results. J Breath Res. 2017;11:012001.

33. Pirrone F, Albertini M. Olfactory detection of cancer by trained sniffer dogs: a systematic review of the literature. J Vet Behav: Clin Appl Res. 2017;19:105–17.

34. Bax C, Taverna G, Eusebio L, Sironi S, Grizzi F, Guazzoni G, et al. Innovative diagnostic methods for early prostate cancer detection through urine analysis: a review. Cancers. 2018;10: pii: E123.

35. Bernabei M, Pennazza G, Santonico M, Corsi C, Roscioni C, Paulesse R, et al. A preliminary study on the possibility to diagnose urinary tract cancers by an electronic nose. Sens Actuators B. 2008;130:15788–9.

36. Roine A, Veskimae E, Tuokko A, Kumpulainen P, Koskimaki J, Keinanen TA, et al. Detection of prostate cancer by an electronic nose: a proof of principle study. J Urol. 2014;192:230–4.

37. Asimakopoulos AD, Del Fabbro D, Miano R, Santonico M, Capuano R, Pennazza G, et al. Prostate cancer diagnosis through electronic nose in the urine headspace setting: a pilot study. Prostate Cancer Prost. Dis. 2014;17:206–11.

38. Krishnan B, Truong LD. Prostatic adenocarcinoma diagnosed by morphologic features of prostatic adenocarcinoma on ThinPrep(R) urinary cytology. Diagn Cytopathol. 2009;37:101–4.
41. Varma VA, Fekete PS, Franks MJ, Walther MM. Cytologic features of prostatic adenocarcinoma in urine: a clinicopathologic and immunocytochemical study. Diagn Cytopathol. 1988;4:300–5.

42. Seybolt JF. Cytology of the urinary tract and prostate. CA Cancer J Clin. 1960;10:129–39.

43. Sharifi R, Shaw M, Ray V, Rhee H, Nagubadi S, Guinan P. Evaluation of cytologic techniques for diagnosis of prostate cancer. Urology. 1983;21:417–20.

44. Foot NC, Papanicolaou GN, Holmquist ND, Seybolt JF. Exfoliative cytology of urinary sediments; a review of 2,829 cases. Cancer. 1958;11:127–37.

45. Nickens KP, Ali A, Scoggin T, Tan SH, Ravindranath L, Foot NC, Papanicolaou GN, Holmquist ND, Seybolt JF. Cytology of the urinary tract and prostate. CA Cancer J Clin. 2010;64:1–12.

46. Kobayashi TK, Ueda M, Yamaki T, Yashikii M. Evaluation of cytology centrifuge apparatus with special reference to the cellular recovery rate. Diagn Cytopathol. 1992;8:420–3.

47. Echeverry G, Horta GL, Rai AJ. Introduction to urinalysis: historical perspectives and clinical application. Methods Mol Biol (Clifton, NJ). 2010;641:1–12.

48. Rupp M, O’Hara B, McCullough L, Saxena S, Olchiewski J. Prostatic carcinoma cells in urine specimens. Cytopathology. 1994;5:164–70.

49. Fujita K, Pavlovich CP, Netto GJ, Konishi Y, Isaacs WB, Ali S, et al. Specific detection of prostate cancer cells in urine by multiplex immunofluorescence cytology. Hum Pathol. 2009;40:924–33.

50. Rall a, Stephan C, Meller S, Dietrich D, Kristiansen G, Jung K. Nucleic acid-based biomarkers in body fluids of patients with urologic malignancies. Crit Rev Clin Lab Sci. 2014;51:200–31.

51. Tizmagiorgis G, Michaelidou EZ, Kritsis A, Markopoulos AK, Koudou S. Recovering circulating extracellular or cell-free RNA from bodily fluids. Cancer Epidemiol. 2011;35:580–9.

52. Hendriks RJ, van Oort IM, Schalken JA. Blood-based and urinary prostate cancer biomarkers: a review and comparison of novel biomarkers for detection and treatment decisions. Prostate Prostatic Dis. 2017;20:12–19.

53. Martignano F, Rossi L, Maugeri A, Galla V, Conteduca V, De Giorgi U, et al. Urinary RNA-based biomarkers for prostate cancer detection. Clin Chim Acta. 2017;473:96–105.

54. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, et al. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59:5975–9.

55. Sanguedolce F, Cormio A, Brunelli M, D’Amuri A, Carriero G, Bufo P, et al. Urine TMPRSS2: ERG fusion transcript as a biomarker for prostate cancer: literature review. Clin Genitourin Cancer. 2016;14:117–21.

56. Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Sci (New Y, NY). 2005;310:644–8.

57. Laxman B, Tomlins SA, Mehra R, Morris DS, Wang L, Helgeson BE, et al. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia. 2006;8:885–8.

58. Rogers CG, Yan G, Zha S, Gonzalgo ML, Isaacs WB, Luo J, et al. Prostate cancer detection on urinalysis for alpha methylacyl coenzyme A racemase protein. J Urol. 2004;172:1501–3.

59. Zehentner BK, Secrist H, Zhang X, Hayes DC, Ostenson R, Goodman G, et al. Detection of alpha-methylacyl-coenzyme A racemase transcripts in blood and urine samples of prostate cancer patients. Mol Diagn Ther. 2006;10:397–403.

60. Laxman B, Morris DS, Yu J, Siddiqui J, Cao J, Mehra R, et al. A first-generation multiplex biomarker analysis of urine for the early detection of prostate cancer. Cancer Res. 2008;68:645–9.

61. Varambally S, Laxman B, Mehra R, Cao Q, Dhanasekaran SM, Tomlins SA, et al. Golgi protein GOLM1 is a tissue and urine biomarker of prostate cancer. Neoplasia. 2008;10:1285–94.

62. Crocetto LE, Korns D, Kretzner L, Shevchuk T, Blair SL, Wilson TG, et al. Prostate cancer molecular markers GSTP1 and hTERT in expressed prostate secretions as predictors of biopsy results. Urology. 2004;64:821–5.

63. Meid FH, Gygi CM, Leisinger HJ, Bosman FT, Benhattach T. The use of telomerase activity for the detection of prostate cancer cells after prostate massage. J Urol. 2001;165:1802–5.

64. Leyten GH, Hessels D, Smit FP, Jannink SA, de Jong H, Melchers WJ, et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin Cancer Res. 2015;21:3061–70.

65. Van Neste L, Hendriks RJ, Dijkstra S, Trooskens G, Cornel EB, Jannink SA, et al. Detection of high-grade prostate cancer using a urinary molecular biomarker-based risk score. Eur Urol. 2016;70:740–8.

66. Rigau M, Ortega I, Mir MC, Ballesteros C, Garcia M, Llaurado M, et al. A three-gene panel on urine increases PSA specificity in the detection of prostate cancer. Prostate. 2011;71:1736–45.

67. Rigau M, Olivan M, Garcia M, Sequeiros T, Montes M, Colas E, et al. The present and future of prostate cancer urine biomarkers. Int J Mol Sci. 2013;14:12620–49.

68. Jamaspishvili T, Kral M, Komeri K, Vynhankova V, Mgebhishvili M, Student V, et al. Quadruple model enhances urine-based detection of prostate cancer. Prostate Cancer Prostatic Dis. 2011;14:354–60.

69. Ouyang B, Bracken B, Burke B, Chung E, Liang J, Ho SM. A duplex quantitative polymerase chain reaction assay based on quantification of alpha-methylacyl-CoA racemase transcripts and prostate cancer antigen 3 in urine sediments improved diagnostic accuracy for prostate cancer. J Urol. 2009;181:2508–13.

70. Salami SS, Schmidt F, Laxman B, Regan MM, Rickman DS, Scherr D, et al. Combining urinary detection of TMPRSS2:ERG and PCA3 with serum PSA to predict diagnosis of prostate cancer. Urol Oncol. 2013;31:566–71.

71. Larsen LK, Jakobsen JS, Abdul-Al A, Guldberg P. Noninvasive detection of high grade prostate cancer by dna methylation analysis of urine cells captured by microfiltration. J Urol. 2018;200:749–57.

72. Sokoll LJ, Ellis W, Lange P, Noteboom J, Elliott DJ, Deras IL, et al. A multicenter evaluation of the PCA3 molecular urine test: pre-analytical effects, analytical performance, and diagnostic accuracy. Clin Chim Acta. 2008;389:1–6.

73. Shappell SB, Fulmer J, Arguello D, Wright BS, Oppenheimer JR, Putzi MJ. PCA3 urine mRNA testing for prostate carcinoma: patterns of use by community urologists and assay performance in reference laboratory setting. Urology. 2009;73:363–8.

74. Wang G, Szeto C-C. Quantification of gene expression in urinary sediment for the study of renal diseases. Nephrology. 2007;12:494–9.

75. Casadio V, Calistris D, Salvi S, Gunelli R, Carretta E, Amadori D, et al. Urine cell-free DNA integrity as a marker for early prostate cancer diagnosis: a pilot study. Biomed Res Int. 2013;2013:270457.

76. Rykova EY, Morozkin ES, Ponomaryova AA, Loseva EM, Zaporozhchenko IA, Cherdyntseva NV, et al. Quadriplex model enhances urine-based detection of high grade prostate cancer. Biomed Res Int. 2013;2013:270457.

77. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–83.

78. Crescitielli R, Lasser C, Szabo TG, Kittel A, Eldh M, Dianzani I, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J Extracell Vesicles. 2013;2:1–16.
Approaches to urinary detection of prostate cancer

79. Principe S, Jones EE, Kim Y, Sinha A, Nyalwidhe JO, Brooks J, et al. In-depth proteomic analyses of exosomes isolated from expressed prostatic secrections in urine. Proteomics. 2013;13:1667–71.

80. McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, et al. A novel urinary exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol. 2016;2:882–9.

81. Zhou H, Yuen PS, Psitikun T, Gonzales PA, Yasuda H, Dear JW, et al. Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int. 2006;69:1471–6.

82. Royo F, Zuniga-Garcia P, Sanchez-Mosquera P, Egia A, Perez A, Loizaga A, et al. Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles 2016, https://doi.org/10.3402/jev.v3405.29497.

83. Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteom. 2016;13:609–26.

84. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7:R80.

85. Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteom Clin Appl. 2016;10:358–70.

86. Nagaraj N, Mann M. Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome. J Proteome Res. 2011;10:637–45.

87. Psitikun T, Johnstone R, Knapper MA. Discovery of urinary biomarkers. Mol Cell Proteom. 2006;5:1760–71.

88. DeCrane S, Gonzalez de Peredo A, Breuil B, Mischak H, Monsarrat B, Bascands JL, et al. Urine in clinical proteomics. Mol Cell Proteom. 2006;5:1760–71.

89. Hendriks Rianne J, Dijkstra S, Jannink Sander A, Steffens Martijn G, van Oort Inge M, Mulders Peter FA, et al. Comparative analysis of prostate cancer specific biomarkers PCA3 and ERG in whole urine, urinary sediments and exosomes. Clin Chem Lab Med. 2016;54:483.

90. Donovon MJ, Noerholm M, Bentink S, Belzer S, Skog J, O’Neill V, et al. A molecular signature of PCA3 and ERG exosomal RNA from non-DRE: urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis. 2015;18:370–5.

91. Nilsson J, Skog J, Nordstrand A, Baranov V, Mincheva-Nilsson L, Breakefeld XO, et al. Prostate cancer-derived urine exosomes: a novel approach to biomarkers for prostate cancer. Br J Cancer. 2009;100:1603–7.

92. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Egevad L, et al. Multicenter evaluation of a research prostate cancer diagnosis. Clin Chem. 2008;54:874–82.

93. Zhu Y, Ren S, Jiang Z, Blute RD, Ho SM. A novel diagnostic test for prostate cancer emerges from the determination of α-methylacyl-coenzyme A racemase in prostate secretions. J Urol. 2004;172:1130–3.

94. Rice KR, Chen Y, Ali A, Whitman EJ, Blase A, Ibrahim M, et al. Evaluation of the ETS-related gene mRNA in urine for the detection of prostate cancer. Clin Cancer Res. 2010;16:1572–6.

95. Talesa VN, Antognelli C, Del Buono C, Stracci F, Serva MR, Cottini E, et al. Diagnostic potential in prostate cancer of a panel of urinary molecular tumour markers. Cancer Biomark: Sect A Dis Markers. 2009;5:241–51.

96. Wang F, Ren S, Chen R, Lu J, Shi X, Zhu Y, et al. Development and prospective multicenter evaluation of the long noncoding RNA MALAT-1 as a diagnostic urinary biomarker for prostate cancer. Oncotarget. 2014;5:11091–102.

97. Rigau M, Morote J, Mir MC, Ballesteros C, Ortega I, Sanchez A, et al. PSGR and PCA3 as biomarkers for the detection of prostate cancer in urine. Prostate. 2010;70:1760–7.

98. Zhu Y, Ren S, Jing T, Cai X, Liu Y, Wang F, et al. Clinical utility of a novel urine-based gene fusion TTTY15-USP9Y in predicting prostate biopsy outcome. Urol Oncol. 2015;33:384–389; e389–e390.

99. Rogers CG, Gonzalgo ML, Yan G, Bastian PJ, Chan DY, Nelson WG, et al. High concordance of gene methylation in post-diagnostic rectal examination and post-biopsy urine samples for prostate cancer detection. J Urol. 2006;176:2280–4.

100. Vener T, Derecho C, Baden J, Wang H, Rajpurohit Y, Skelton J, et al. Development of a multiplexed urine assay for prostate cancer diagnosis. Clin Chem. 2008;54:874–82.

101. Baden J, Green G, Painter J, Curtin K, Markiewicz J, Jones J, et al. Multicenter evaluation of an investigational prostate cancer methylation assay. J Urol. 2009;181:1186–93.

102. Baden J, Adams S, Astacio T, Jones J, Markiewicz J, Painter J, et al. Predicting prostate biopsy result in men with prostate specific antigen 2.0 to 10.0 ng/ml using an investigational prostate cancer methylation assay. J Urol. 2011;186:2101–6.

103. Goessl C, Müller M, Heicappel R, Krause H, Straub B, Schrader M, et al. DNA-based detection of prostate cancer in urine after prostatic massage. Urology. 2001;58:335–8.

104. Cains P, Esteller M, Herman JG, Schoenberger M, Jeronimo C, Sanchez-Cespedes M, et al. Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res. 2001;7:2727–30.

105. Jernimo C, Usadel H, Henriques R, Silva C, Oliveira J, Lopes C, et al. Quantitative GSTP1 hypermethylation in bodily fluids of patients with prostate cancer. Urology. 2002;60:1131–5.

106. Gonzalgo ML, Pavlovich CP, Lee SM, Nelson WG. Prostate cancer detection by GSTP1 methylation analysis of postbiopsy urine specimens. Clin Cancer Res. 2003;9:2673–7.
body fluids using methylation-specific PCR (MS-PCR) method. Clin Lab. 2016;62:1183–6.

116. Woodson K, O’Reilly KJ, Hanson JC, Nelson D, Walk EL, Tangrea JA. The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer. J Urol. 2008;179:508–12.

117. Payne SR, Serth J, Schostak M, Kamradt J, Strauss A, Thelen P, et al. DNA methylation biomarkers of prostate cancer: confirmation of candidates and evidence urine is the most sensitive body fluid for non-invasive detection. Prostate. 2009;69:1257–69.

118. Dzanineta K, Jarmalaite S, Kalinauskaite N, Petroska D, Laurinavius A, Lazutka JR, et al. Prognostic value of RASSF1 promoter methylation in prostate cancer. J Urol. 2014;192:1849–55.

119. Lombardo ME, Hudson PB. Preliminary evaluation of Sα-reductase type 2 in urine as a potential marker for prostate disease. Steroids. 1997;62:682–5.

120. Overbye A, Skotland T, Koehler CJ, Thiede B, Seierstad T, Messinger D, et al. Novel non-invasive biomarkers that distinguish between benign prostate hyperplasia and prostate cancer. BMC Cancer. 2015;15:259.

121. Sánchez-Carbayo M, Urrutia M, de Buitrago JMG, Navajo JA. Evaluation of two new urinary tumor markers: bladder tumor fibronectin and cytokeratin 18 for the diagnosis of bladder cancer. Clin Cancer Res. 2000;6:3585–94.

122. Tanaka M, Tanaka T, Matsuzaki S, Seto Y, Matsuda T, Komori K, et al. Rapid and quantitative detection of human septic family Bradenon as a practical diagnostic method of colorectal and urologic cancers. Med Sci Monit. 2003;9:Mt61–68.

123. Russo AL, Jedlicka K, Kernick M, McNally D, Kirk M, Sproull M, et al. Urine analysis and protein networking identify α as a marker of metastatic prostate cancer. Clin Cancer Res. 2009;15:4292–8.

124. Zhang M, Chen L, Yuan Z, Yang Z, Li Y, Shan L, et al. Combined serum and EPS-urine proteomic analysis using iTRAQ technology for discovery of potential prostate cancer biomarkers. Discov Med. 2016;22:281–95.

125. Lu Q, Zhang J, Allison R, Gay H, Yang W-X, Bhowmick NA, et al. Identification of extracellular δ-catenin accumulation for prostate cancer detection. Prostate. 2008;69:411–8.

126. Fujita K, Ewing CM, Chan DY, Mangaard LA, Partin AW, Isaacs WB, et al. Identiﬁcation of prostate cancer biomarker candidates in expressed prostatic secretions as a source for biomarkers of prostatic disease. J Proteom. 2009;72:907–18.

127. Fujita K, Hayashi T, Matsuzaki K, Nakata W, Masuda M, Kawashima A, et al. Decreased fucosylated PSA as a urinary marker for high Gleason score prostate cancer. Oncotarget. 2016;7:56643–9.

128. Nakayama K, Inoue T, Sekiya S, Terada N, Miyazaki Y, goto T, et al. The C-Terminal fragment of prostate-specific antigen and between 2.5 ng/mL and 10 ng/mL. Clin Cancer Res. 2008;14:3585–94.

129. Drake RR, White KY, Fuller TW, Iwakiri J, Grande BM, et al. Urinary exosomes as a diagnostic tool for the early detection of prostate cancer. J Proteom. 2009;72:907–17.

130. Mitchell PJ, Welton J, Staffurth J, Court J, Mason MD, Tabi Z, et al. Proteomic analysis of voided urine after prostatic massage from patients with prostate cancer: a pilot study. Urology. 2004;64:1238–43.

131. Müller H, Haug U, Rothenbacher D, Stegmaier C, Brenner H, et al. Evaluation of serum and urinary myeloid related protein-14 as a marker for early diagnosis of prostate cancer. J Urol. 2008;180:1309–13.

132. Flatley B, Wilmott KG, Malone P, Cramer R. MALDI MS profiling of post-DRE urine samples highlights the potential of β-microseminoprotein as a marker for prostatic diseases. Prostate. 2013;74:103–11.

133. Bolduc S, Lacombe L, Naud A, Greigore M, Fradet Y, Tremblay RR. Urinary PSA: a potential useful marker when serum PSA is between 2.5 ng/mL and 10 ng/mL. Can Urol Assoc J. 2007;1377–81.

134. Rehman I, Azzouzi AR, Catto JWF, Allen S, Cross SS, Feeley K, et al. Role of engrailed-2 (EN2) as a prostate cancer detection biomarker in genetically high risk men. Sci Rep. 2013;3:2059.

135. Flatley B, Wilmott KG, Malone P, Cramer R. MALDI MS profiling of post-DRE urine samples highlights the potential of β-microseminoprotein as a marker for prostatic diseases. Prostate. 2013;74:103–11.

136. Breda J, Frenette G, Tremblay RR, Dupont A, Thabet M, Dube JY. Excretion of three major prostatic secretory proteins in the urine of normal men and patients with benign prostatic hypertrophy or prostate cancer. Prostate. 1987;10:235–43.

137. Fujita K, Hayashi T, Matsuzaki K, Nakata W, Masuda M, Kawashima A, et al. Decreased fucosylated PSA as a urinary marker for high Gleason score prostate cancer. Oncotarget. 2016;7:56643–9.

138. Nakayama K, Inoue T, Sekiya S, Terada N, Miyazaki Y, Goto T, et al. The C-Terminal fragment of prostate-specific antigen and between 2.5 ng/mL and 10 ng/mL. Clin Cancer Res. 2008;14:3585–94.

139. Teni TR, Sheth AR, Kamath MR, Sheth NA. Serum and urinary Multiple biomarker candidates for the accurate detection of prostate cancer. PLoS ONE. 2014;9:e107234.

140. Teni TR, Sheth AR, Kamath MR, Sheth NA. Serum and urinary prostatic inhibit-in-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Lett. 1997;125:63–70.

141. Teni TR, Sheth AR, Kamath MR, Sheth NA. Serum and urinary prostatic inhibit-in-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Lett. 1997;125:63–70.

142. Teni TR, Sheth AR, Kamath MR, Sheth NA. Serum and urinary prostatic inhibit-in-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Lett. 1997;125:63–70.

143. Teni TR, Sheth AR, Kamath MR, Sheth NA. Serum and urinary prostatic inhibit-in-like peptide in benign prostatic hyperplasia and carcinoma of prostate. Cancer Lett. 1997;125:63–70.
150. Smith SD, Wheeler MA, Plescia J, Colberg JW, Weiss RM, Alteri DC. Urine detection of survivin and diagnosis of bladder cancer. JAMA. 2001;285:324–8.

151. Adamson AS, Francis JL, Witherow RON, Snell ME. Urinary tissue factor levels in prostatic carcinoma: a potential marker of metastatic spread?. Br J Urol. 1993;71:587–92.

152. Lwaleed BA, Francis JL, Chisholm M. Urinary tissue factor levels in patients with bladder and prostate cancer. Eur J Surg Oncol. 2000;26:44–49.

153. Fernandez C, Rifai N, Wenger AS, Mickey DD, Silverman LM. A preliminary study of urinary transferrin as a marker for prostatic cancer. Clin Chim Acta. 1986;161:335–9.

154. van Dieijen-Visser MP, Hendriks MW, Delaere KP, Gijzen AH, Brombacher PJ. The diagnostic value of urinary transferrin compared to serum prostatic specific antigen (PSA) and prostatic acid phosphatase (PAP) in patients with prostatic cancer. Clin Chim Acta. 1988;177:77–80.

155. Hutchinson LM, Chang EL, Becker CM, Shih M-C, Brice M, DeWolf WC, et al. Use of thymosin β15 as a urinary biomarker in human prostate cancer. Prostate. 2005;64:116–27.

156. Katafigiotis I, Tyritzis SI, Stravadimos KG, Alamanis C, Pavlakis K, Vlahou A, et al. Zinc alpha2-glycoprotein as a potential novel urine biomarker for the early diagnosis of prostate cancer. BJU Int. 2012;110:E688–693.