Quantum behavior of a classical particle subject to a random force

Can Gokler*

Abstract

We give a partial answer to the question whether the Schrödinger equation can be derived from the Newtonian mechanics of a particle in a potential subject to a random force. We show that the fluctuations around the classical motion of a one dimensional harmonic oscillator subject to a small random force can be described by the Schrödinger equation for a period of time depending on the frequency and the energy of the oscillator. We achieve this by deriving the postulates of Nelson’s stochastic formulation of quantum mechanics for sufficiently small random forces. We show that the same result applies to small potential perturbations around the harmonic oscillator as long as the total potential preserves the periodicity of motion with a small shift in frequency. We discuss heuristics to generalize the result for a particle in one dimension in a potential where the motion can be described using action-angle variables.

1 Introduction

Despite the successes of quantum theory there remains the solution of the measurement problem and its unification with general relativity. Much effort has been spent assuming quantum mechanics is fundamental and applies to smallest and largest possible scales. At the smallest scales where quantum effects in gravity should take place, although we can form mathematically consistent quantum gravity theories, we have no experimental guidance yet and have extreme conceptual difficulties making sense of a quantum description of space-time. At large scales we observe that nature behaves classically which is not possible to understand within the standard postulates of quantum mechanics since those do no pretense to explain the measurement processes and the quantum to classical transition in a fundamental fashion. Perhaps the best way we know today to solve the measurement problem is to introduce ad hoc spontaneous collapse theories.

Regardless of the successes and failures of quantum mechanics, in this paper we would like to retain the Newtonian-Einsteinian notions. We try to answer the simplest possible question: Can a single non-relativistic quantum particle in a potential in one dimension can be described by Newtonian mechanics? A lot of effort has been put in deriving hidden variable theories but the answer to this question is still missing: there is no proof that it is impossible and there is no proof that all quantum effects described by a general solution of the Schrödinger equation can be accounted classically. Indeed the latter seems almost impossible since it is very hard to imagine how a classical particle would exhibit quantum interference. We do not dogmatically believe that nature is fundamentally classical or quantum but find that it is important to explore the boundaries of existing theories. The least we can expect

*Harvard University, Cambridge MA, USA
by answering such a question is a reformulation of quantum theory irrespective of whether
the Newtonian description is physically fundamental or not.

Here we set aside the question of many particles which would involve Bell’s theorem. It
is widely believed that it is impossible to have a local Newtonian-Ensteinian explanation
of entangled states. Although the mostly forgotten rigorous analysis of Bell inequalities
by Nelson[1, 2, 3] distinguishes between passive and active locality and makes it possible
for stochastic field theories to be in principle able to explain entangled states. We believe
that even the explanation of superposition states for a single particle presents an enormous
challenge and we do not yet worry about many particle states.

In this paper we are not able to answer the general question nor we can explain superpo-
sition states but we give a partial answer. We show that when a classical harmonic oscillator
is subject to a specific random force, its fluctuating motion around the classical trajectory
can be described by the Schrödinger equation for a range of values of frequency, energy and
time. We show that this generalizes to potential perturbations around the harmonic oscilla-
tor as long as the periodic motion is preserved with a small shift in frequency. We further
discuss a way to generalize the result to potentials admitting action-angle variables. The
mathematical tools that we use to achieve this are the method of stochastic averaging and
Nelson’s formulation of Schrödinger equation in terms of stochastic particle trajectories.

Before the significant discovery of Nelson[4] that it is possible to give a stochastic account
of Schrödinger equation, it had been widely believed this was impossible because diffusions
are dissipative but there is a notion of conserved energy in the quantum mechanical evolution.
Nelson showed that it is possible to construct conservative diffusions which are equivalent to
the Schrödinger equation. However Nelson’s formulation is not Newtonian: the particle is
subject to random motion in its position space contrary to that the random effects should
appear as forces in a Newtonian theory. Here we attempt to answer whether Nelson’s formu-
lation can be derived from a phase space stochastic process where the random term appears
as a force. Indeed this is the first and perhaps the most important of the open problems
stated in his book[5]. This question was most openly investigated by Smolin[6] who gave
sufficient conditions for a cosmological theory to reduce to Nelson’s theory.

The same type of questions have been asked and were tried to be answered mostly by the
stochastic electrodynamics community[7]. There one assumes that an electrically charged
particle is coupled to a background stochastic electric field with a specific spectrum and is
also subject to electromagnetic radiation reaction. One is able to show that in equilibrium
one can choose the spectrum to match with all the energy eigenstates of a harmonic oscil-
lator. However there lacks a universal spectrum working for all energy eigenstates and the
superposition states seem to be elusive. There are two main lines of attempted derivations of
Schrödinger equation both running into difficulties. In the first approach by integrating out
the velocity evolution one tries to reduce to a position space process. Schrödinger equation
holds if one can neglect certain radiative terms in the equations but there is no justification
for how the system reaches a state such that those terms can be neglected and how long the
system stays in that state such that the approximation is valid. In the second approach it
is shown that if one assumes that there are multiple ergodic energy states then stochastic
variables can be described by matrix variables and one obtains Heisenberg’s theory. However
it seems very difficult to construct a stochastic system exhibiting classical multiple ergodic
energy states which matches with the quantum energy eigenvalues and to describe the transi-
tion between energy eigenstates in such a framework. Perhaps the most important objection
against stochastic electrodynamics is that it only applies to charged particles and lacks uni-
versality. However we think the questions asked and attempted to be answered in this model are valuable and give insights for further developments.

The paper is organized as follows. In Section 2 we briefly review Ito calculus and stochastic differential equations—the mathematical framework that we use in the rest of the paper. In Section 3 we give an account of Nelson’s stochastic formulation of the Schrödinger equation for a non-relativistic particle in one dimension. We introduce the two postulates of Nelson which are equivalent to the Schrödinger equation in Madelung form. In Section 4 we show that the Newton-Nelson law is satisfied by a particle subject to a small random force proportional to white noise. In Section 5 we introduce the method of stochastic averaging to be used in the following section to derive Nelson’s first postulate. In Section 6 we show that Nelson’s first postulate is satisfied for a time interval depending on the energy and the frequency of the oscillator by choosing a suitable spectrum for random force. We further show how a colored spectrum can work for oscillators of all frequencies. We discuss how this result generalizes to small potential perturbations around the harmonic oscillator as long as the periodic motion is preserved with a small shift in frequency. In Section 7 we give heuristics to generalize the result to arbitrary potentials admitting action angle variables. In Section 8 we discuss the results, comment on open problems and alternative approaches.

2 Review of stochastic differential equations

We give a brief review of Ito stochastic calculus and stochastic differential equations. We will only state results formally which are relevant for our purposes and refer the reader to standard textbooks on the subject (e.g. [8, 9]). Let $\xi(t)$ be the Gaussian process with zero mean and unit variance (also known as white noise), i.e.

$$\langle \xi(t) \rangle = 0, \quad \forall t$$

and for times $(t_1, t_2, ..., t_n)$, $(\xi(t_1), \xi(t_2), ..., \xi(t_n))$ are Gaussian correlated random variables with co-variance

$$\langle \xi(t_1)\xi(t_2) \rangle = \delta(t_1 - t_2)$$

(2)

Note that for $t_1 \neq t_2$, $\xi(t_1)$ and $\xi(t_2)$ are independent. We define the Wiener process $W(t)$ as the formal time integral of $\xi(t)$:

$$W(t) = \int_0^t \xi(s)ds$$

(3)

where we set the initial time to $t = 0$ without loss of generality. We can also write this as $dW(t) = \xi(t)dt$. The Wiener process is again Gaussian since it is a linear combination of independent Gaussian random variables. Its mean is zero as can be directly seen from the definition. Its co-variance is calculated as

$$\langle dW(t_1)dW(t_2) \rangle = \int_{t_1}^{t_2} \int_{t_1}^{t_2} \langle \xi(s_1)\xi(s_2) \rangle ds_1ds_2 = \min(t_1, t_2)$$

(4)

From this we see that formally $dW(t)$ is of order \sqrt{dt}. We will be dealing with stochastic differential equations in the rest of the paper. Suppose we would like to make sense of the
following initial value problem for the scalar variable \(x(t) \):

\[
\frac{dx(t)}{dt} = f(x(t)) + g(x(t))\xi(t)
\]

(5)

with \(p(x, t = 0) = p_0(x) \) for some initial probability distribution \(p_0(x) \). An ambiguity arises when we would like to make sense of the product \(g(x(t))\xi(t) \). We know that since \(\xi(t) \) is independent of \(\xi(s) \) for \(s < t \), it is independent of \(g(x(s)) \) for \(s < t \). But the product concerns the same times. In order to remedy this difficulty we will write the equation in differential form:

\[
dx(t) = f(x(t))dt + g(x(t))dW(t)
\]

(6)

which is a formal way to write the integral equation:

\[
x(t) = x_0 + \int_0^t f(x(s))ds + \int_0^t g(x(s))dW(s)
\]

(7)

Now if we can make sense of the integral that includes \(dW(s) \) term we can define the stochastic differential equation in terms of the integral equation. There are more than one ways to define a stochastic integral. In this paper we will operate with the Ito definition. For the other famous (Stratonovich) definition see [8, 9]. We adopt the following definition:

\[
\int_0^t g(x(s))dW(s) = \lim_{\Delta s \to 0} \sum_i g(x(s_i))(dW(s_{i+1}) - dW(s_i))
\]

(8)

where \(\Delta s = s_{i+1} - s_i \), \(\forall i \). Therefore the increment \(dW(s_{i+1}) - dW(s_i) \) is independent of \(g(x(s_i)) \). However with this definition we need to update the chain rule of calculus. Suppose that we would like to calculate the equation that is obeyed by a function of \(x \), say \(y = f(x) \). Remember that \(dW(t) \) is of order \(\sqrt{dt} \). Thus in order to correctly calculate \(dy \) we should expand it up to second order. Without proof we state the Ito’s lemma:

\[
dy = \frac{df}{dx}dx + \frac{1}{2} \frac{d^2f}{dx^2}(dx)^2 = \frac{df}{dx}dx + \frac{1}{2} \frac{d^2f}{dx^2}g^2(x)dt
\]

(9)

Note that in the expansion of \((dx)^2 \) we omitted terms of order \(dt^{3/2} \) and only kept those of order \(dt \) and \(\sqrt{dt} \). We will also need the two dimensional version of this. Suppose we have two processes \(x_1 \) and \(x_2 \) with independent Wiener processes \(dW_1(t) \) and \(dW_2(t) \):

\[
dx_1(t) = f_1(x_1, x_2)dt + g_1(x_1, x_2)dW_1(t)
\]

(10)

If \(y = f(x_1, x_2) \) then we can write the differential \(dy \) as

\[
dy = \frac{\partial f}{\partial x_1}dx_1 + \frac{\partial f}{\partial x_2}dx_2 + \frac{1}{2} \left(\frac{\partial^2 f}{\partial x_1^2}g_1^2 + \frac{\partial^2 f}{\partial x_2^2}g_2^2 \right) dt
\]

(11)

We will frequently invoke these results in the following sections.
3 Review of Nelson’s stochastic mechanics

We give a review of Nelson’s stochastic formulation of non-relativistic quantum mechanics in one dimension. For more details see Nelson’s original paper[4], his two books[10, 5] and Guerra’s review[11]. Consider the Schrödinger equation:

\[i\hbar \frac{\partial \psi(x,t)}{\partial t} = \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + U(x) \right) \psi(x,t) \]

(12)

Putting \(\psi(x,t) = \sqrt{\rho(x,t)} e^{\frac{i}{\hbar} S(x,t)} \) we get the Madelung equations:

\[\frac{\partial \rho}{\partial t} = -\frac{\partial}{\partial x} \left(\rho \frac{1}{m} \frac{\partial S}{\partial x} \right) \]

(13)

\[\frac{\partial S}{\partial t} = -\frac{1}{2m} \left(\frac{\partial S}{\partial x} \right)^2 - U(x) + \frac{\hbar^2}{2m} \frac{1}{\sqrt{\rho}} \frac{\partial^2}{\partial x^2} \sqrt{\rho} \]

(14)

where \(\rho(x,t) \) is the probability of finding the particle at \((x,t)\) and \(S(x,t) \) is the phase of the wave function. We recognize first of the equations as the continuity equation with velocity \(\frac{1}{m} \frac{\partial S}{\partial x} \). The second of the equations apart from the last term (quantum potential) on the right hand side is the Hamilton-Jacobi equation. Thus if \(\hbar = 0 \), we have the classical ensemble of particles. The Newton’s equations of motion are then the equations that characteristic curves obey corresponding to this set of Madelung partial differential equations. Since the quantum potential term depends on the probability \(\rho(x,t) \), giving deterministic characteristics seems not possible. However as Nelson proved[4, 10, 5], it is possible to give a Markovian stochastic process associated to the solution of Madelung equations in position space. We start by assuming that a particle obeys the following stochastic differential equation:

\[dx(t) = b(x(t),t)dt + \sqrt{\frac{\hbar}{m}} dW(t) \]

(15)

where \(b(x(t),t) \) is a general function and \(dW \) is the Wiener process. We call this as Nelson’s first postulate. The diffusion equation associated to this is

\[\frac{\partial \rho(x,t)}{\partial t} = -\frac{\partial}{\partial x} \left(b(x,t) \rho(x,t) \right) + \frac{\hbar^2}{2m} \frac{1}{\rho} \frac{\partial^2}{\partial x^2} \rho(x,t) \]

(16)

where \(\rho(x,t) \) is the probability of finding the particle at \(x \) at time \(t \). In order to match with the continuity equation we define

\[\frac{\partial}{\partial x} S(x,t) = m(b(x,t) - \frac{\hbar}{2m} \frac{\partial}{\partial x} \log \rho(x,t)) \]

(17)

where we assumed that \(\rho(x,t) \) is nowhere zero. For a discussion of what happens at zeros see [5]. We want \(S(x,t) \) just defined in this way to satisfy the quantum Hamilton-Jacobi equation. We could postulate it as a partial differential equation but Nelson found a way to write this solely in terms of the stochastic particle trajectory. The quantum Hamilton-Jacobi equation can be shown to be equivalent to the following equation:

\[\frac{1}{2} (D_+ D_- + D_- D_+) x(t) = -\frac{1}{m} \frac{\partial U(x)}{\partial x} \big|_{x(t)} \]

(18)

where \(D_+ \) and \(D_- \) are forward and backward derivatives which will be defined below, the right hand side is the classical acceleration of the particle evaluated on the stochastic trajectory.
and the left hand side is the time-symmetric stochastic acceleration. This is the stochastic analogue of Newton’s second law. Thus we call this as Newton-Nelson law or Nelson’s second postulate. The forward and backward derivatives are defined to be

\[D_+ x(t) = \lim_{\Delta t \to 0^+} E \left[\frac{x(t + \Delta t) - x(t)}{\Delta t} \right] \]

\[D_- x(t) = \lim_{\Delta t \to 0^+} E \left[\frac{x(t) - x(t - \Delta t)}{\Delta t} \right] \]

where \(E[f|x(t)] \) denotes the expectation of \(f \) conditioned on \(x(t) \). For any function \(F(x,t) \) we can write its forward and backward derivatives explicitly as follows

\[(D_+ F)(x,t) = \frac{\partial}{\partial t} F(x,t) + b(x,t) \frac{\partial}{\partial x} F(x,t) + \frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} F(x,t) \]

\[(D_- F)(x,t) = \frac{\partial}{\partial t} F(x,t) + (b(x,t) - \frac{\hbar}{m} \frac{\partial}{\partial x} \log \rho(x,t)) \frac{\partial}{\partial x} F(x,t) - \frac{\hbar}{2m} \frac{\partial^2}{\partial x^2} F(x,t) \]

The derivation of the formula for \(D_+ \) is straightforward but the calculation of \(D_- \) is subtler\(^{[10, 5, 11]} \). Using these formulas it is straightforward to show that the Newton-Nelson law is equivalent to the \(x \) derivative of the second Madelung equation (eq. 14). It has been shown that for each solution of the Schrödinger equation there is an associated stochastic process satisfying Nelson’s postulates and if Nelson’s postulates are satisfied that one can construct a wave function which satisfies the Schrödinger equation with its absolute square the probability density of the position of particle. The stochastic formulation can be generalized to particles propagating in higher dimensions, multiple particles, fields and particles with spin\(^{[5, 11]} \).

4 Newton-Nelson law

In this section we will show that the Newton-Nelson law is satisfied by a particle in a potential in one dimension subject to a random force. Consider a particle of mass \(m \) in a potential \(U(x) \) subject to a random force:

\[dx(t) = v(t)dt \]

\[dv(t) = a(x(t))dt + \sigma dW(t) \]

where \((x, v)\) denotes the position and velocity variables, \(dW \) is the Wiener process, \(\sigma \) is a positive constant and

\[a(x) = - \frac{U'(x)}{m} = - \frac{1}{m} \frac{dU(x)}{dx} \]

We will make use of the following formulas for forward and backward derivatives conditioned on fixed \((x(t), v(t))\) of a function \(G(x, v, t) \) which can be found in section 5 of Guerra’s review\(^{[11]} \):
\[(D_G)(x, v, t)|_{(x(t), v(t))} = \lim_{\Delta t \to 0^+} E\left[\frac{G(x(t + \Delta t), v(t + \Delta t), t + \Delta t) - G(x(t), v(t), t)}{\Delta t}\right] |_{(x(t), v(t))}
\]

\[= \frac{\partial G}{\partial t} + v \frac{\partial G}{\partial x} + a(x) \frac{\partial G}{\partial v} + \frac{\sigma^2}{2} \frac{\partial^2 G}{\partial v^2}
\]

\[(D-G)(x, v, t)|_{(x(t), v(t))} = \lim_{\Delta t \to 0^+} E\left[\frac{G(x(t), v(t), t) - G(x(t - \Delta t), v(t - \Delta t), t - \Delta t)}{\Delta t}\right] |_{(x(t), v(t))}
\]

\[= \frac{\partial G}{\partial t} + v \frac{\partial G}{\partial x} + (a(x) - \sigma^2 \frac{\partial}{\partial v} \log \rho(x, v, t)) \frac{\partial G}{\partial v} - \frac{\sigma^2}{2} \frac{\partial^2 G}{\partial v^2}
\]

where \(\rho(x, v, t)\) is the probability of finding the particle at \(x\) with velocity \(v\) at time \(t\). We also need the following result on conditional expectations for a set of random variables \((x, y, z)\):

\[E[F(z)|x] = \int E[F(z)|x,v]p(v|x)dv
\]

for any function \(F(z)\). To derive Newton-Nelson law we will calculate the stochastic acceleration \(\frac{1}{2}(D_+D_- + D_-D_+)x\). From eqs. 21 and 22 we see that

\[D_+x(t) = D_-x(t) = v(t)
\]

where conditioning on \(v(t)\) does not matter. Next we calculate \(D_+D_-x(t)\) and \(D_-D_+x(t)\) conditioned on \((x(t), v(t))\) using eqs. 23 and 26

\[D_+D_-x(t) = D_+|(x(t), v(t))v(t) = a(x(t))
\]

\[D_-D_+x(t) = D_-|(x(t), v(t))v(t) = a(x(t)) - \sigma^2 \frac{\partial}{\partial v} \log \rho(x, v, t)
\]

Hence

\[\frac{1}{2}(D_+D_- + D_-D_+)x(t)|_{(x(t), v(t))} = a(x(t)) - \frac{\sigma^2}{2} \frac{\partial}{\partial v} \log \rho(x, v, t)
\]

In order the calculate the stochastic acceleration, which is conditioned only on \(x(t)\), we use eq 27:

\[\frac{1}{2}(D_+D_- + D_-D_+)x(t)|_{x(t)} = \int \frac{1}{2}(D_+D_- + D_-D_+)x(t)|_{(x(t), v(t))} p(t|v|x)dv
\]

\[= a(x(t)) - \frac{\sigma^2}{2} \int \frac{\partial p_t(v|x)}{\partial v} dv = a(x(t))
\]

Thus we have shown that the Newton-Nelson law is satisfied by the process given by eq 23. This result was stated without proof in [10] for the particle in a potential subject to linear friction in equilibrium.
5 Method of stochastic averaging

In this section we introduce the method of averaging of stochastic differential equations. There are several formulations of stochastic averaging though we will only consider the theorem due to Khas'minskii\cite{12, 13, 14, 15, 16} applied to two dimensional systems in Itô form. Consider the process \((x,y)\):

\[
\begin{align*}
 dx(t) &= \varepsilon f_1(x(t), y(t), t)dt + \varepsilon g_1(x(t), y(t), t)dW(t) \\
 dy(t) &= \varepsilon f_2(x(t), y(t), t)dt + \varepsilon g_2(x(t), y(t), t)dW(t)
\end{align*}
\]

where \(dW\) is the Wiener process and \(0 < \varepsilon \ll 1\) which means that \((x,y)\) are slowly varying in time as compared to \(f_i\) and \(g_i\). We assume that \(f_i\) and \(g_i\) are sufficiently continuously differentiable and bounded. Then for times of order \(O(\frac{1}{\varepsilon^2})\) the dynamics can be approximated with an error vanishing as \(\varepsilon \to 0\) by the following averaged system:

\[
\begin{align*}
 dx(t) &= \varepsilon^2 \bar{f}_1(x(t), y(t))dt + \varepsilon \bar{g}_1(x(t), y(t))dW_1(t) \\
 dy(t) &= \varepsilon^2 \bar{f}_2(x(t), y(t))dt + \varepsilon \bar{g}_2(x(t), y(t))dW_2(t)
\end{align*}
\]

where \(dW_1\) and \(dW_2\) are independent Wiener processes and the averaged functions are given by:

\[
\begin{align*}
 \bar{f}_i(x, y) &= \lim_{T \to \infty} \frac{1}{T} \int_0^T f_i(x, y, t)dt \\
 \bar{g}_i(x, y) &= \sqrt{\lim_{T \to \infty} \frac{1}{T} \int_0^T g_i^2(x, y, t)dt}
\end{align*}
\]

For applications below we need the periodic version of averaging. For periodic systems we can write

\[
\begin{align*}
 \bar{f}_i(x, y) &= \frac{1}{T} \int_0^T f_i(x, y, t)dt \\
 \bar{g}_i(x, y) &= \sqrt{\frac{1}{T} \int_0^T g_i^2(x, y, t)dt}
\end{align*}
\]

where \(T\) is the period of oscillations which correspond to \(dx = dy = 0\). The way that \(dx = dy = 0\) corresponds to a periodic deterministic solution is clarified in the examples in the following sections. The stochastic averaging principle is a generalization of its deterministic version which can be found in \cite{17}. For deterministic averaging of a one dimensional system in action-angle variables see \cite{18}. For more on stochastic averaging see the review\cite{15} and the books \cite{14, 16}.

8
6 Nelson’s first postulate for a harmonic oscillator

Consider the harmonic oscillator with frequency ω and mass m subject to a small random force with position and velocity variables (x, v):

$$
\begin{align*}
\frac{dx(t)}{dt} &= v(t) \\
\frac{dv(t)}{dt} &= -\omega^2 x(t) + \epsilon \omega dW(t)
\end{align*}
$$

(41)

Assume that the initial energy of the oscillator is E_0 is probability 1. We will show that we can make the choice $\epsilon = \sqrt{\frac{2\hbar}{m}}$ such that the position process $x(t)$ is approximately Markovian and satisfies Nelson’s first postulate for a time interval depending on \hbar, E_0 and ω. The dynamics in phase space is not in standard form for averaging. Therefore apply the coordinate transformation

$$
\begin{align*}
x &= r \cos(\omega t + \phi) \\
v &= -\omega r \sin(\omega t + \phi)
\end{align*}
$$

(42)

or

$$
\begin{align*}
r &= \sqrt{x^2 + \frac{v^2}{\omega^2}} \\
\phi &= -\arctan\left(\frac{v}{\omega x}\right) - \omega t
\end{align*}
$$

(43)

To calculate the differential of r and ϕ we use Ito’s lemma and obtain

$$
\begin{align*}
\frac{dr}{dt} &= \frac{x}{r} dx + \frac{v}{\omega r^2} dv + \frac{1}{2} \frac{x^2}{\omega^2 r^3} (dv)^2 = \frac{(\epsilon \omega)^2}{2} \frac{x^2}{\omega^2 r^3} dt + \epsilon \omega \frac{v}{\omega^2 r} dW \\
\frac{d\phi}{dt} &= \frac{v}{\omega r^2} dx - \frac{x}{\omega r^2} dv + \frac{1}{2} \frac{2 x v}{\omega^3 r^4} (dv)^2 - \omega dt = (\epsilon \omega)^2 \frac{x v}{\omega^3 r^4} dt - \epsilon \omega \frac{x}{\omega r^2} dW
\end{align*}
$$

(44)

We see that both r and ϕ are slowly varying. Therefore we apply the method of averaging over one period $T = \frac{2\pi}{\omega}$ of the harmonic oscillator. This amounts to fixing r and averaging over the angle variable. Denote the time average of a function $f(x, v)$ by

$$
\langle f(x, v) \rangle_T = \frac{1}{T} \int_0^T f(x(t), v(t)) dt
$$

(45)

The evolution equations can be approximated by the following averaged equations over time intervals of order $O(1/\epsilon^2)$:

$$
\begin{align*}
\frac{dr}{dt} &= \frac{(\epsilon \omega)^2}{2} \frac{1}{\omega^2 r^3} \langle x^2 \rangle_T dt + \epsilon \omega \frac{1}{\omega^2 r} \sqrt{\langle v^2 \rangle_T} dW_1 \\
\frac{d\phi}{dt} &= (\epsilon \omega)^2 \frac{1}{\omega^3 r^4} \langle x v \rangle_T dt + \epsilon \omega \frac{1}{\omega r^2} \sqrt{\langle x^2 \rangle_T} dW_2
\end{align*}
$$

(46)

where dW_1 and dW_2 are independent Wiener processes. The averaged quantities are calculated to be
\[\langle x^2 \rangle_T = \frac{1}{2\pi} \int_0^{2\pi} r^2 \cos^2 \theta d\theta = \frac{r^2}{2} \]
\[\langle v^2 \rangle_T = \frac{\omega^2}{2\pi} \int_0^{2\pi} r^2 \sin^2 \theta d\theta = \frac{\omega^2 r^2}{2} \]
\[\langle xv \rangle_T = -\frac{\omega}{2\pi} \int_0^{2\pi} r^2 \sin \theta \cos \theta d\theta = 0 \]

Substitute the averaged quantities in the averaged equations to get:

\[dr = \epsilon \frac{1}{4} \frac{1}{r} dt + \epsilon \frac{1}{\sqrt{2}} dW_1 \]
\[d\phi = \epsilon \frac{1}{\sqrt{2}r} dW_2 \]

Note that the averaged evolution of the amplitude of oscillations \(r \) is independent of \(\phi \) and the evolution of \(\phi \) is determined by the evolution of \(r \). Using averaged equations we can derive the averaged evolution of the position variable \(x \) using eqs. 42 and 48:

\[dx = dr \cos(\omega t + \phi) - r \sin(\omega t + \phi)(\omega dt + d\phi) - \frac{1}{2} r \cos(\omega t + \phi)(d\phi)^2 \]
\[= v dt + \epsilon \frac{1}{\sqrt{2}r} (xdW_1 + \frac{v}{\omega} dW_2) \]

We can simplify the stochastic term noting that given \(x(t) \) and \(v(t) \), \(dW_1(t) \) and \(dW_2(t) \) are independent Gaussian processes. A linear combination

\[a(x(t), v(t))dW_1(t) + b(x(t), v(t))dW_2(t) \]

of independent zero mean Gaussian processes is again a zero mean Gaussian process with variance \(a^2(x(t), v(t)) + b^2(x(t), v(t)) \). Therefore the equation for the position variable can be written as:

\[dx = v dt + \frac{\epsilon}{\sqrt{2}} dW \]

where \(dW \) is the Wiener process. In general this is not a Markov process since \(v \) itself is fluctuating and is dependent on \(x \). However if we somehow we can assume that the amplitude \(r \) is constant then we can express \(v \) in terms of \(x \) as

\[v = \pm \omega \sqrt{r^2 - x^2} \]

obtaining the Markov process

\[dx = \pm \omega \sqrt{r^2 - x^2} dt + \frac{\epsilon}{\sqrt{2}} dW \]

Now to match with Nelson’s first postulate (eq. 15) we must choose

\[\epsilon = \sqrt{\frac{2\hbar}{m}} \]
With this choice of ϵ we can justify the assumption that r remains constant as follows. Assume that the initially $r = r_0$ with probability 1. For sufficiently small times we can assume that r is well approximated by r_0. To see this introduce the energy variable

$$E = \frac{1}{2} m \omega^2 r^2$$ \hspace{1cm} (55)

Using Ito’s lemma its dynamics is calculated to be:

$$dE = (\epsilon \omega)^2 \frac{m}{2} dt + \epsilon \omega \sqrt{mE} dW_1$$ \hspace{1cm} (56)

with $E_0 = \frac{1}{2} m \omega^2 r_0^2$. Set $E(t) = E_0 + \delta E(t)$. Roughly $\delta E(t)$ grows as

$$\max(\epsilon^2 \omega^2 m t, \epsilon \omega \sqrt{mE_0} t)$$ \hspace{1cm} (57)

where \sqrt{t} dependence arises from the Wiener term. For times t such that $t \ll \frac{1}{\hbar \omega^2}$ and $t \ll \frac{1}{\hbar \omega E_0}$ which are satisfied for sufficiently small ω and E_0, we can assume that $\delta E(t)$ is small therefore $E(t) \approx E_0$ and $r(t) \approx r_0$. We can write the dynamics in the following suggestive form

$$dx = v(x, E_0) dt + \sqrt{\frac{\hbar}{m}} dW$$ \hspace{1cm} (58)

where $v(x, E_0) = \pm \sqrt{\frac{2}{m}(E_0 - \frac{1}{2} m \omega^2 x^2)}$ is the classical velocity of the particle with energy E_0. If the stochastic term is absent then this equation would be the classical equation of motion for the particle. Hence the phase space diffusion process gives rise to a position space Markov process as a small random fluctuation around the classical trajectory.

We initially made the assumption that the random force depends on the frequency of the oscillator. Then it is natural to ask whether we can choose a universal random force term which would give the same result for an arbitrary frequency. Such a choice is indeed possible. So instead of the Markovian model start from

$$\dot{x}(t) = v(t)$$ \hspace{1cm} (59)

$$\dot{v}(t) = -\omega^2 x(t) + \xi(t)$$

Let $\xi(t)$ be a zero mean Gaussian process with covariance

$$\langle \xi(t) \xi(t + \tau) \rangle = c(\tau)$$ \hspace{1cm} (60)

with its Fourier transform, the power spectrum

$$S(\Omega) = \int_{-\infty}^{\infty} c(\tau) e^{-i\Omega \tau} d\tau$$ \hspace{1cm} (61)

It can be shown that upon averaging the (r, ϕ) evolution over the period of the oscillator, only the resonant term corresponding to $\Omega = \omega$ contributes to the averaged equations[15]:

$$dr = \frac{\pi S(\omega)}{2} \frac{1}{\omega^2 r} dt + \sqrt{\frac{\pi S(\omega)}{\omega}} dW_1$$ \hspace{1cm} (62)

$$d\phi = \sqrt{\frac{\pi S(\omega)}{\omega r}} dW_2$$
Thus if we choose $S(\Omega) = \frac{\hbar}{m\pi} \Omega^2$, we recover the previous result. Note that after averaging one can show that also Newton-Nelson law is satisfied so that one can skip the derivation of forward and backward derivatives for colored random forces.

Now we consider small potential perturbations around the harmonic oscillator:

$$dx(t) = v(t)dt$$

$$dv(t) = -\omega^2 x(t)dt - \eta \frac{1}{m} \frac{dU(x)}{dx}|_{x=x(t)} + \epsilon \omega dW(t)$$

where $\frac{dU(x)}{dx}$ is $O(1)$ and $\eta \ll 1$. We assume that $U(x)$ preserves the periodic structure where the new frequency $\tilde{\omega}(E)$ is a small perturbation of that of the harmonic oscillator:

$$\tilde{\omega}(E) = \omega + \eta \delta \omega$$

Since $\eta \delta \omega$ induces $O(\epsilon \eta)$ correction in the stochastic term we can approximately write after repeating the steps for the pure harmonic oscillator:

$$dq = v(x, E_0)dt + \frac{\epsilon}{\sqrt{2}} dW$$

where this time $v(q, E_0)$ is the velocity associated to the perturbed potential:

$$v(x, E_0) = \pm \sqrt{\frac{2}{m} (E_0 - \frac{1}{2} m \omega^2 x^2 - \eta U(x))}$$

7 Nelson’s first postulate for a general potential

We would like to generalize the results for the harmonic oscillator to a general potential. However we will be able to show much less. Due to the difficulty in calculating averages explicitly for general potentials we will be only able to show that we can choose the random force dependent on energy (unlike the harmonic oscillator case where the random force is independent of coordinates) such that Nelson’s first law is satisfied using a heuristic averaging procedure. We will restrict to potentials for which the motion can be described using action-angle variables. Therefore consider a particle of mass m in one dimension in a potential $U(x)$ subject to a small random force:

$$dx(t) = \frac{p(t)}{m} dt$$

$$dp(t) = -U'(x(t))dt + \epsilon dW(t)$$

where $(x, p = mv)$ denotes the position and momentum variables and $U'(x) = \frac{dU(x)}{dx}$. We first perform the coordinate transformation from (x, p) to (x, E) where E is the energy of the particle defined by

$$E(x, p) = \frac{p^2}{2m} + U(x)$$

Using Ito’s lemma we calculate dE as

$$dE = U'(x)dx + \frac{p}{m} dp + \frac{1}{2m} (dp)^2 = \frac{\epsilon^2}{2m} dt + \frac{\epsilon p(x, E)}{m} dW$$
Note that if the stochastic term is absent then the energy would be conserved. We can also express \(dx \) in terms of \((x, E) \) by solving for \(p \) in terms of \((x, E) \) in the definition of energy:

\[
dx = \pm \frac{1}{m} \sqrt{2m(E - U(x))} \, dt
\] (70)

We now assume that the classical motion can be described by action-angle variables \((\phi, I)\). In terms of the action-angle variables the classical deterministic equations of motion can be written as

\[
d\phi = \omega(I) \, dt
\] (71)

\[
dI = 0
\]

where the frequency is

\[
w(I) = \frac{dE(I)}{dI}
\] (72)

and the energy is a function of the action variable alone. Instead of the action variable we will use the energy variable since the energy is a function of the action but not the angle variable. We further assume that this mapping is one-to-one. Define the action function (not the action variable) as

\[
S(I, x) = \int_{x_0}^{x} p(x', E) \, dx'
\] (73)

for an arbitrary initial point \(x_0 \). Then the action variable is defined to be proportional to the action function \(S \) over one period of motion:

\[
I = \frac{1}{2\pi} \int p \, dx'
\] (74)

and the angle variable is

\[
\phi = \frac{\partial S(I, x)}{\partial I} = \int_{x_0}^{x} \frac{\partial p(x', E)}{\partial I} \, dx'
\] (75)

Taking the derivative inside the integral we have

\[
\phi = \omega(I) \int_{x_0}^{x} \frac{\partial p(x', E)}{\partial E} \, dx' = m\omega(I) \int_{x_0}^{x} \frac{1}{p} \, dx'
\] (76)

We define

\[
f(x, E) = \int_{x_0}^{x} \frac{1}{p} \, dx'
\] (77)

so that

\[
\phi(x, E) = m\omega(I(E)) f(x, E)
\] (78)

Having defined the angle variable we are ready to perform the change of coordinates from \((x, E)\) to \((\phi, E)\). Using Ito’s lemma we calculate \(d\phi \) as
\[d\phi = m \frac{\partial}{\partial E}(\omega f)dE + \frac{m}{2} \frac{\partial^2}{\partial E^2}(\omega f)(dE)^2 + m\omega \frac{\partial f}{\partial x} dx \]

\[= \omega dt + \frac{\epsilon^2}{2} \left(\frac{\partial}{\partial E}(\omega f) + \frac{p^2}{m} \frac{\partial^2}{\partial E^2}(\omega f) \right) dt + \epsilon \frac{\partial}{\partial E}(\omega f)p dW \]

We see that \(\phi \) is slowly varying except the \(\omega dt \) term. In order to have all the right hand side terms small we further introduce the new angle variable \(\theta \) as

\[\theta = \phi - \omega t \]

and compute its differential as

\[d\theta = d\phi - \frac{d\omega}{dE} t dE - \frac{1}{2} \frac{d^2\omega}{dE^2} (dE)^2 - \omega dt \]

\[= \frac{\epsilon^2}{2} \left(\frac{\partial}{\partial E}(\omega f) + \frac{p^2}{m} \frac{\partial^2}{\partial E^2}(\omega f) - t \frac{d^2\omega}{dE^2} + \frac{\epsilon^2}{2m} \frac{d\omega}{dt} \right) dt \]

\[+ \epsilon \left(\frac{p}{m} \frac{\partial}{\partial E}(\omega f) - \frac{d\omega}{dE} \right) dW \]

We have finalized the set of coordinate transformations which yielded slowly varying \((\theta, E)\) coordinates. Next we average the dynamics over a period \(T = \frac{2\pi}{\omega(E)} \) fixing \(E \) in \((x(t), p(t))\) to obtain the approximate averaged equations. The averaged equation for \(E \) is

\[dE = \frac{\epsilon^2}{2m} dt + \epsilon \sqrt{\frac{\omega I}{m}} dW_1 \]

The time average \(\langle p^2 \rangle \) is given by

\[\langle p^2 \rangle_T = \frac{1}{T} \int_0^T p^2 dt = \frac{m}{T} \int p dx = m\omega I \]

where we invoked the change of variables \(dx = \frac{p}{m} dt \) to evaluate the integral. Therefore the averaged equations become

\[dE = \frac{\epsilon^2}{2m} dt + \epsilon \sqrt{\frac{\omega I}{m}} dW_1 \]

\[d\theta = \frac{\epsilon^2}{2} F(E) dt + \epsilon G(E) dW_2 \]

where \(dW_1 \) and \(dW_2 \) are independent Wiener processes and \(F(E) \) and \(G(E) \geq 0 \) are the averages:

\[F(E) = \langle \frac{\partial}{\partial E}(\omega f) + \frac{p^2}{m} \frac{\partial^2}{\partial E^2}(\omega f) - t \frac{d^2\omega}{dE^2} + \frac{1}{m} \frac{d\omega}{dE} \rangle_T \]

\[G^2(E) = \langle \left(\frac{p}{m} \frac{\partial}{\partial E}(\omega f) - \frac{d\omega}{dE} \right)^2 \rangle_T \]
We can further simply $F(E)$ and $G(E)$ by noting that the averages are taken using deterministic trajectories which satisfy $dx = \frac{p}{m} dt$ so $t = mf$. Using this we get

$$F(E) = \left\langle \omega \frac{\partial f}{\partial E} + \frac{p^2}{m} \left(2 \frac{d\omega}{dE} \frac{\partial f}{\partial E} + \omega \frac{\partial^2 f}{\partial E^2} \right) \right\rangle_T$$

$$G^2(E) = \omega^2 \left\langle p^2 \left(\frac{\partial f}{\partial E} \right)^2 \right\rangle_T$$

In the remaining we will go back to the dynamics of x. To check Nelson’s first postulate, we are interested in the stochastic part of it so we will not be explicitly calculating the dt terms. First we calculate $d\phi$ using the averaged equations for (E, θ):

$$d\phi = \frac{d\omega}{dE} t dE + \frac{1}{2} \frac{d^2\omega}{dE^2} t (dE)^2 + \omega dt$$

$$= \omega dt + \epsilon^2 H(E) dt + \epsilon \left(\frac{d\omega}{dE} t \sqrt{\frac{\omega I}{m}} dW_1 + G(E)dW_2 \right)$$

for some function $H(E)$. Using the expression of ϕ in terms of (q, E) (eq. 76), we can calculate the first order differential:

$$dq = \frac{p}{m \omega} (d\phi - \frac{\partial \phi}{\partial E} dE)$$

Since we are only interested in stochastic terms we omit $(dE)^2$ and $(d\phi)^2$ terms. Using the averaged equations for (E, ϕ) we obtain:

$$dq = \frac{p}{m} dt + \epsilon^2 K(x, p) + \epsilon \frac{p}{m \omega} \left(\frac{\omega I}{m} \frac{\partial f}{\partial E} \sqrt{\frac{\omega I}{m}} dW_1 + G(E)dW_2 \right)$$

for some function $K(x, p)$. The stochastic term is dependent on coordinates. We invoke without rigorous justification a heuristic averaging procedure although dq is not in the standard form. We fix E and average the small terms over the angles. First this amounts to the substitution $t = mf$ so q obeys:

$$dq = \frac{p}{m} dt + \epsilon^2 K(E) + \epsilon \sqrt{\left\langle p^2 \left(\frac{\partial f}{\partial E} \right)^2 \right\rangle_T} \sqrt{\frac{\omega I}{m}} (dW_1 + dW_2)$$

Then we average the small terms using the expression for $G(E)$ (eq.89) and eq.83:

$$dq = \frac{p}{m} dt + \epsilon^2 \tilde{K}(E) + \epsilon \left(\frac{2\omega I}{m} \right)^{1/2} dW$$

where $\tilde{K}(E)$ is the averaged $K(x, p)$.

Since $dW_1(t)$ and $dW_2(t)$ are independent Gaussian processes conditioned on $(E(t), \phi(t))$ we can write:

$$dq = \frac{p}{m} dt + \epsilon^2 \tilde{K}(E) + \epsilon \left(\frac{2\omega I}{m} \right)^{1/2} dW$$

where dW is the Wiener process. Now as in the harmonic oscillator case for sufficiently small times E is almost constant. The final equation has the form:

$$dq = \frac{p}{m} dt + \epsilon^2 \tilde{K}(E) + \epsilon M(E) dW$$
We are not able to calculate $M(E)$ explicitly in terms of E and $\omega(E)$ since the average $\langle p^2 (\partial f / \partial E)^2 \rangle_T$ seems to be difficult to evaluate analytically. Therefore unlike the harmonic oscillator case we have the weaker result: one can choose

$$\epsilon M(E) = \sqrt{\frac{\hbar}{m}}$$

(97)

to satisfy Nelson’s first postulate. However in this case we need to choose ϵ dependent on E and this is unfavorable regarding universality. We saw in the harmonic oscillator case that choosing the colored random force with spectrum proportional to ω^2 we can satisfy Nelson’s first postulate for all oscillator frequencies. On general grounds we expect that for a general potential upon averaging still only the resonant frequency of the random force corresponding to the generalized frequency $\omega(E)$ will be relevant. If one could evaluate $M(E)$ explicitly one can check whether the same random force spectrum gives rise to Nelson’s first law for arbitrary potentials admitting action-angle description.

8 Scholia

We have shown that it is possible to choose a random force such that fluctuations around the classical trajectory can be described by the Schrödinger equation for the harmonic oscillator. However the force depends on the mass of the particle. Therefore it does not universally apply to particles with different masses. Then it is natural to ask if there is a random force which works universally for all a range of frequency and mass values. It seems that it is not possible to obtain such a result within the present framework. There is an alternative route to reduction of a phase space process to a position space process. This is the well known reduction in the case of high friction[10] and the standard way how Einstein-Smoluchowski equation was obtained from the Ornstein-Uhlenbeck process. If we introduce a linear friction term which is dominant then effectively the velocity process is frozen and we can solve for the velocity by setting its time derivative to zero. Equating this velocity to the time derivative of the position one obtains an equation in the form of Nelson’s first postulate. However the deterministic part of the velocity obtained by this method is the limiting velocity and is proportional to the force. Also it seems physically unreasonable to expect that the frictive forces are dominant over the potential if one seeks to adopt this as a fundamental description where physical systems should be subject to small frictive and random forces. One can imagine that there exists a phase space process with small frictive and random forces such that its fluctuations around the classical process are highly damped therefore subject to such reduction. However the realization of a such force terms seems to be hard. Another alternative is to bypass Nelson’s description and instead try to derive the Schrödinger equation directly from a phase space process by integrating out the velocity process in the spirit of stochastic electrodynamics. Nelson’s first postulate is overly restrictive and in general a non-Markovian process is easier to be attained after integrating the velocity degree of freedom out. We also would like to remark that Nelson’s derivation can be generalized to different diffusion coefficients (possibly position and time dependent) by modifying the Newton-Nelson law (for the constant diffusion coefficient case see [19]). In this paper we did not touch the issue of superposition states. Although Nelson’s formulation is equivalent to the Schrödinger equation and describes superposition states there is no guarantee that the Nelson’s process associated to a superposition state could be derived from a phase space process. The simplest idea is to let the particle assume two energies with their respective
probabilities. Then the position space process should approximate the superposition state of the respective energies. However this does not work since we are not superposing quantum states but rather considering an ensemble of states and we end up in a mixed states. Thus we do not know whether superpositions and the most general quantum states can be described within the framework we presented here. We attempted to generalize the results for the harmonic oscillator to a general potential admitting action-angle variables. However due to the difficulty in evaluating averages and the need for an heuristic averaging principle we are only able to show that there is a random force depending on energy, mass and frequency of the system such that we can obtain Nelson’s first postulate. As for the harmonic oscillator case we ideally would like to have a universal force working independently of the system variables.

References

[1] E. Nelson. The locality problem in stochastic mechanics. *Annals of the New York Academy of Sciences*, 480:533–538, 1986.

[2] E. Nelson. Stochastic mechanics and random fields. In: Hennequin PL, (eds) *École d’Été de Probabilités de Saint-Flour XV–XVII*, 1985–87. Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1362.

[3] B. Schulz. Review of Nelson’s analysis of Bell’s theorem. *Arxiv quant-ph/1302.4180*, 2013.

[4] Edward Nelson. Derivation of the Schrödinger equation from Newtonian mechanics. *Phys. Rev.*, 150:1079–1085, Oct 1966.

[5] Edward Nelson. *Quantum fluctuations*. Princeton Univesity Press, 1985.

[6] L. Smolin. Could quantum mechanics be an approximation to another theory? *Arxiv quant-ph/0609109*, 2006.

[7] Luis de la Pena, Ana Maria Cetto, and Andrea Valdes Hernandez. *The emerging quantum: the physics beyond quantum mechanics*. Springer International, 2015.

[8] Avner Friedman. *Stochastic differential equations and applications*. Academic Press, 1975.

[9] Ludwig Arnold. *Stochastic differential equations: theory and applications*. John Wiley and Sons, 1974.

[10] Edward Nelson. *Dynamical Theories of Brownian motion*. Princeton Univesity Press, 1967.

[11] F. Guerra. Structural aspects of stochastic mechanics and stochastic field theory. *Physics Reports*, 77:263–312, 2006.

[12] R. Z. Khasminskii. A limit theorem for the solutions of differential equations with random right-hand sides. *Theory Probab. Appl.*, 11:390–406, 1966.

[13] L Stratonovich, R. *Topics in the theory of random noise-Vol. 1-2*. Gordon and Breach, 1963.

[14] M. I. Freidlin and A. D. Wentzell. *Random perturbations of dynamical systems 3rd ed*. Springer, 2012.
[15] J. B. Roberts and P. D. Spanos. Stochastic averaging: An approximate method of solving random vibration problems. *International Journal of Non-Linear Mechanics*, 21:11–134, 1986.

[16] G. A. Pavliotis and A. M. Stuart. *Multiscale methods: averaging and homogenization*. Springer Science, 2008.

[17] J. A. Sanders, F. Verhulst, and J. Murdock. *Averaging methods in nonlinear dynamical systems 2nd ed*. Springer Science, 2007.

[18] V. I. Arnold. *Mathematical Methods of Classical Mechanics 2nd ed*. Springer Science, 1989.

[19] M. Davidson. A generalization of the Fényes-Nelson stochastic model of quantum mechanics. *Letters in Mathematical Physics*, 3:271–277, 1979.