Kinematics of Crab Giant Pulses

https://arxiv.org/abs/2105.08851

Akanksha Bij, Hsiu-Hsien Lin, Dongzi Li, Marten H. van Kerkwijk, Ue-Li Pen, Wenbin Lu, Robert Main, Jeffrey B. Petterson, Brendan Quine, Keith Vanderlinde

University of Toronto
Canadian Institute of Theoretical Astrophysics

Sixteenth Marcel Grossmann Meeting - MG16
July 9 2021

Contact me: a.bij@queensu.ca
Overview

First Direct Measurement
Lorentz Factor

\[\gamma \sim 10^4 \]
Highly Relativistic motion
Relatively cold plasma

Theoretical Predictions

\[\gamma = 1 - 10^7 \]
Introduction: Crab Nebula & Pulsar

Remnant of SN 1054

PSR B0531 +21
Giant Radio Pulse Behaviour

Can reach brightness temperatures of 10^{37} K

Jessner et al. 2005

Bochenek et al. 2020

July 9 2021
Variations in electron density n_e of size a

Phase shift

$$\delta \Phi = \Delta k \ a$$

$$k = \left(\frac{2\pi}{c}\right) \mu \ f$$

Model as bending by screen

$$\theta_0 \approx \frac{\Delta \Phi / k}{a} \propto f^{-2}$$

Frequency dependent
Scattering in Observations

\[c \tau_s = \frac{d}{\cos \delta} - d \]

\[\delta \propto f^{-2} \]

\[\tau_s \approx \frac{\delta^2 d}{2c} \]

\[\tau_s \propto f^{-4} \]
Crab Giant Pulses at High frequencies

"nanoshot" emission

Hankins et. al 2016
1-43 GHz

"spectral band" emission
Pulse Gallery and Categorization

Regular

Double-Peak

Partial

Banded

Drifting
Observed shifts in frequency
Ruling out other interpretations

Instrumentation effect?

Scattering Environment?

Scintillation?

A. Bij | MG16
July 9 2021
Observed shifts in frequency
Proposed Model – Doppler Shift

Doppler Shift

\[D = \frac{f_r}{f_s} = \frac{1}{\gamma (1 - \beta \cos \theta_r)} \]

\[\beta = \frac{v}{c} \]

\[\gamma = \frac{1}{\sqrt{1 - \beta^2}} \]

Relativistic Beaming

\[L_r = D^3 L_s \]

Small Angle Approximation

\[D = \frac{f_r}{f_s} \approx \frac{2\gamma}{1 + \gamma^2 \theta_r^2} \]

\[\gamma \gg 1 \]
Proposed Model – Doppler Shift + Scattering

\[D = \frac{f_r}{f_s} \approx \frac{2\gamma}{1 + \gamma^2 \theta_r^2} \]

Scattering from Crab Nebula

\[\frac{\Delta f_r}{f_r} = \frac{\Delta D}{D} = -\gamma^2 \frac{2\theta_r \delta + \delta^2}{1 + \gamma^2 (\theta_r + \delta)^2} \]

Center of beam

\[\theta_r \approx 0 \quad \Delta f_r / f_r \approx -\gamma^2 \delta^2 \]

Edge of beam

\[\theta_r \approx 1/\gamma \quad \Delta f_r / f_r \approx \gamma \delta \]
Proposed Model – Estimating Lorentz Factor

\[\frac{\Delta D}{D} = \frac{\Delta f_r}{f_r} \approx \gamma \delta \]

\[c\tau = \frac{d}{\cos \delta} - d \simeq \frac{d}{2} \delta^2 \]

\[\tau \simeq 0.5 \text{ ms} \]
\[\delta \simeq 0.6'' \]

\[\frac{\Delta f_r}{f_r} \simeq 0.04 \]

\[\gamma \approx 10^4 \]

\(d \approx 1 \) pc

(Lawrence et al. 1995, Martin et al. 2021)
Does the model match the data?

\[\Delta f_r \approx \gamma \delta \quad \delta \propto \sqrt{t} \]

\[\frac{\Delta f_r}{f_r} \propto \sqrt{t} \]

\[I(t, f) = I(0, f/D_{rel}(t)) \cdot D_{rel}^3(t) \cdot e^{-t/\tau(f)} \]

\[D_{rel}(t) = \frac{D(t)}{D(0)} = 1 + a \sqrt{t/\tau_{ref}} \]

\[\tau(f) = \tau_{ref}(f/f_{ref})^{-4} \]

\[a \approx 0.028 \]
Does the model match the data?

\[I(t, f) = I(0, f/D_{\text{rel}}(t)) \ D_{\text{rel}}^3(t) \ e^{-t/\tau(f)} \]
Proposed Model – Range in Lorentz Factor

\[\frac{\Delta D}{D} = \frac{\Delta f_r}{f_r} \approx \gamma \delta \]

\[\gamma \approx 10^4 \]

\[\Delta \nu \approx 20 \text{ MHz} \]

\[\Delta \gamma / \gamma \lesssim \Delta \nu / \nu \approx 4\% \]

Relatively cold plasma
Alternative Interpretations

Interference between multiple nanoshots

\[x_{\perp} \delta \approx 0.5\lambda \]
\[\lambda \approx 0.5 \text{m} \]
\[\delta \approx 0.6'' \]
\[x_{\perp} \sim 100 \text{km} \]

Figure Credit: Wenbin Lu
Implications + Model Predictions

- Different scattering geometries – upward + downward drift
- Small range in γ – cold plasma
- Boost in intensity in scattering tail by $\sim 10\%$
- Physical separation 20 lt-ns
Implications for FRBs?

Hessels et al. 2019

CHIME 2019

DM=349.1

A. Bij | MG16

July 9 2021
Crab Giant Pulses at High frequencies

Hankins et. al 2016

1-43 GHz
Next Steps

• Look for more “drifting” pulses – CHIME, LOFAR

• Lower frequency data where change in viewing angle is larger

• Downward drift or boosting?

• Statistical analysis of giant pulse characteristics

• FRBs with large scattering
Summary

Crab Pulsar

400-800 MHz

Doppler Shift

Scattering screen

Lorentz Factor

Direct Measurement

\[\gamma \sim 10^4 \]

Theoretical Predictions

\[\gamma = 1 - 10^7 \]
Thank you!
Any questions?
$F_{GP}(f) = F_{neb}(f) \frac{I_{GP}(f)}{I_{neb}(f)}$
Table 1. Giant pulse categorization.

Feature	\(N \)	Fraction (%)	IP (%)
All	148	100	10
Regular	129	87	10
Multi-peak	9	6	0
Partial	7	5	30
Banded	3	2	0
Drifting\(^a\)	2	1.3	0

\(^a\) ‘Drifting’ is a sub-category of ‘Banded’.

NOTE—\(N \) is the number of pulses that have a given feature, fraction the relative occurrence rate, and IP is the fraction that occurred in the interpulse phase.
Appendix - Ruling out other physical interpretations

- Interplanetary Scintillation
 - Expected De-correlation bandwidth 500 MHz

- Interstellar Scintillation
 - Expected De-correlation bandwidth 30 kHz
 - Not a point source
Appendix: Drifting Pulse Before de-dispersion