Understanding dissolution rates via continuous flow systems with physiologically relevant metal ion saturation in lysosome – Supplementary Material

Johannes Keller1,2, Willie Peijnenburg3,4, Kai Werle1, Robert Landsiedel1, and Wendel Wohlleben 1,*

1 BASF SE, Dept. Experimental Toxicology and Ecology and Dept. Advanced Materials Research, 67056 Ludwigshafen, Germany; johannes-georg.keller@basf.com, kai.werle@basf.com
2 Institute of Pharmacy, Faculty of Biology, Chemistry & Pharmacy, Freie Universität Berlin, 14195, Berlin, Germany
3 National Institute of Public Health and the Environment RIVM, P.O. Box 1, Bilthoven, The Netherlands; willie.peijnenburg@rivm.nl
4 Institute of Environmental Sciences (CML), Leiden University, PO Box 9518, Leiden, The Netherlands
* Correspondence: wendel.wohlleben@basf.com; Tel.: +49-621-609-5339

Table S1: Descriptors and properties of tested engineered nanomaterials. Reproduced from Wohlleben et al. (Nanoscale, 2019).

Substance	PSF pH4.5
NaCl	6650
Na2HPO4	142
Na2SO4	71
CaCl2 2H2O	29
KH-Phthalate	4085
Glycine	450
alkylbenzyldimethylammonium chloride (ABDC)	50

Table S2: Chemical composition of phagolysosomal simulant fluid (PSF) as reproduced from Keller et al. (Sci. Rep., 2020)

Substance	PSF pH4.5
NaCl	6650
Na2HPO4	142
Na2SO4	71
CaCl2 2H2O	29
KH-Phthalate	4085
Glycine	450
alkylbenzyldimethylammonium chloride (ABDC)	50
Figure S3: Dissolution kinetic of three different Aluminosilicates. Grey indicates the dissolution of Si ions, whereas red indicates the dissolution kinetic of Al ions. A) Bentonit NM600, B) Kaolin JRC-IRMM385, C) Kaolin (from nanoGRAVUR).
Figure S3: Comparison of SA/V vs. dissolution rate k between the fixed flow-rate dissolution setup (orange) and the ramped flow-rate dissolution setup (blue) for A BaSO$_4$ NM220, B CuO, C ZnO NM110 and D ZnO NM111. Unfilled circles indicate points with low reliability due to remaining mass <10%.