A Paired Phase and Magnitude Reconstruction for Advanced Diffusion-Weighted Imaging

Chen Qian, Zi Wang, Xinlin Zhang, Boxuan Shi, Boyu Jiang, Ran Tao, Jing Li, Yuwei Ge, Taishan Kang, Jianzhong Lin, Di Guo, and Xiaobo Qu

Abstract—Objective: Multi-shot interleaved echo planer imaging (Ms-iEPI) can obtain diffusion-weighted images (DWI) with high spatial resolution and low distortion, but suffers from ghost artifacts introduced by phase variations between shots. In this work, we aim at solving the Ms-iEPI DWI reconstructions under inter-shot motions and ultra-high b-values. Methods: An iteratively joint estimation model with paired phase and magnitude priors is proposed to regularize the reconstruction (PAIR). The former prior is low-rankness in the k-space domain. The latter explores similar edges among multi-b-value and multi-direction DWI with weighted total variation in the image domain. The weighted total variation transfers edge information from the high SNR images (b-value = 0) to DWI reconstructions, achieving simultaneously noise suppression and image edges preservation. Results: Results on simulated and in vivo data show that PAIR can remove inter-shot motion artifacts very well (8 shots) and suppress the noise under the ultra-high b-value (4000 s/mm²) significantly. Conclusion: The joint estimation model PAIR with complementary priors has a good performance on challenging reconstructions under inter-shot motions and a low signal-to-noise ratio. Significance: PAIR has potential in advanced clinical DWI applications and microstructure research.

Diffusion-weighted image (DWI) is a non-invasive tool for imaging water molecules diffusion [1]. It has been widely employed in the clinical diagnosis of acute stroke [2], [3] and cancer [4], [5], [6] and the scientific research of brain fiber tractography [7], [8]. To achieve high spatial resolution and low distortion DWI, multi-shot interleaved echo planer imaging has become increasingly popular [6], [9]. This imaging scheme samples different segments of k-space uniformly along phase encoding direction in different shots. However, during the data acquisition of each shot, subject or physiological motions are easily introduced, leading to strong phase variations of each shot image and finally producing ghosting image artifacts [10].

Phase variations can be corrected by navigator-based [10], [11], [12], [13] and navigator-free methods [14], [15], [16], [17], [18], [19], [20], [21]. The former requires extra navigator echo acquisition, and geometric mismatches between the navigator echo and target image echo need to be compensated [11], [13]. Navigator-free methods have been attached with increasing attention recently [14], [15], [16], [17], [18], [19], [20], [21]. They can be classified into three categories: implicit phase [14], [15], [16], [17], explicit phase [18], [22], and joint estimation of phase and magnitude [19], [20], [21].

 Implicit phase reconstructions recover the image of each shot and then combine them into a magnitude image by the sum of squares (SOS) [14], [15], [16], [17]. These approaches avoid the estimation of the phase of each shot image, i.e., the shot phase. Recently, inspired by models and priors in fast magnetic resonance imaging [23], [24], many state-of-the-art methods exploit low-rank properties in multi-shot interleaved echo planer imaging DWI. In MUSSELS [15], cross-shot annihilating filter relations deduced from smooth phase modulations are exploited, and the missing samples are interpolated from multi-shot data by a structured low-rank matrix completion formulation [15]. In PLRHM [17], intra-shot annihilating filter relations are employed for low-rank matrix construction.

Explicit phase methods have two steps. Firstly, they estimate the each shot phase from individual shot image using parallel imaging such as SENSE. Then, all shot data are incorporated to build an integrated reconstruction problem for estimation of
magnitude image, assuming that different shot images share the same magnitude \cite{18}. A representative explicit phase method is MUSE. Compared with implicit phase reconstruction, once the shot phase is estimated, the explicit phase strategy decreases the number of unknowns, which improves matrix inversion conditioning \cite{18,19}. This strategy can bring benefits in low signal-to-noise ratio (SNR) imaging scenarios, such as high b-value DWI \cite{18}.

However, an accurate phase estimation is not easy for explicit phase reconstruction. The step-by-step estimation of shot phase and magnitude in MUSE can hardly get reliable shot phases, when the shot number is high, say eight \cite{15}. The low-quality shot phases will decrease the final reconstruction performance.

The joint estimation methods \cite{19,20,21} iteratively solve the shot phase and magnitude image. POCS-ICE is one of representative method, which could reliably estimate shot phase in both Ms-iEPI and multi-shot spiral DWI \cite{20}. PR-SENSE introduces total variation (TV) as a regularization for the reconstruction of magnitude image in the iterations \cite{21}.

In this work, we propose a joint estimation model PAIR with paired phase and magnitude priors to regularize the shot phase and magnitude reconstruction, respectively (Fig. 1). The former prior is derived from the smoothness of the shot phase and enforced with low-rankness in the k-space domain. The latter explores similar edges among multi-b-value and multi-direction DWI with weighted total variation in the image domain. The weighted TV transfers edge information from the high SNR images (b-value = 0) to DWI reconstructions, achieving simultaneously noise suppression and image edges preservation.

Extensive simulated and in vivo results show that PAIR can remove inter-shot (8 shots) motion artifacts very well even when the partial shot data are corrupted; suppress the noise significantly under the ultra-high b-value (4000 s/mm\(^2\)); obtain high-fidelity reconstruction under both uniform and partial Fourier undersampling; achieve nice robustness on multi-vendor multi-center data.

II. RELATED WORKS

A. Shot Phase Constrained Low-Rankness in PLRHM

The \(j\)-th shot DWI image \(I_j\) can be represented as \cite{18}:

\[
I_j = P_j m = P_j^\phi P^\star m,
\]

where \(P_j^\phi\) is the motion-induce phase of \(j\)-th shot, \(P^\star\) is the background phase of DWI images, \(P_j\) is a diagonal matrix, representing the shot phase, and \(m\) is the magnitude image shared by all shot images \cite{18}.

In our previous work PLRHM \cite{17}, we get:

\[
P_j P_j^\star m - P_j P_j^\star m = 0,
\]

where superscript * is the complex conjugate.

Substitute shot image \(I_j = P_j m\) and the complex conjugate of the shot image \(I_j^\star = (P_j m)^\star = P_j^\star m = P_j^\star m\) into (2), we get:

\[
P_j I_j^\star = P_j^\star I_j.
\]

Transform the left and right of (3) into k-space:

\[
\tilde{P}_j \otimes X_j^\star = \tilde{P}_j^\star \otimes X_j,
\]

where \(\otimes\) is convolution, \(X_j \in \mathbb{C}^{N \times M}\) and \(\tilde{P}_j \in \mathbb{C}^{N \times M}\) are the Fourier transform of \(I_j\) and \(P_j\), \(M\) and \(N\) are the columns and rows of k-space. Rewrite (4) into a multiplication form:

\[
\sum_{(p,q) \in \mathbb{Z}} \tilde{P}_j (p,q) X_j^\star (-x-p,-y-q) - \sum_{(p,q) \in \mathbb{Z}} \tilde{P}_j^\star (p,q) X_j (x-p,y-q) = 0,
\]
where \((x, y)\) is the coordinate of \(X_{j,x} \in [0, N] \) and \(y \in [0, M]\).

\((p, q) \in Z\) is the coordinate of \(\hat{P}_j\) and \(Z\) is the region where \(\hat{P}_j(p, q)\) is nonzero.

The nonzero value of \(\hat{P}_j\) in k-space is concentrated in the limited support due to the smoothness of \(P_j\) in the image. Thus, \(Z\) can be approached by a radius \(R\) circle region \(Z_R\).

With this approximate representation, (5) holds an annihilation relationship \([23]\):

\[
\sum_{(p,q) \in Z_R} X_j^p(-x-p, -y-q)\hat{P}_j(p,q) - \sum_{(p,q) \in Z_R} X_j^p(x-p, y-q)\hat{P}_j^i(p,q) \approx 0, \tag{6}
\]

Split the real and imaginary parts of (6), we get:

\[
\sum_{(p,q) \in Z_R} X_j^p(-x-p, -y-q)\hat{P}_j^r(p,q) + \hat{P}_j^i(p,q) \approx 0, \tag{7}
\]

where the superscript \(r\) and \(i\) represent real and imaginary part, respectively. The real and imaginary part of (7) could be split into two equations (Fig. 2), and the matrix multiplication is:

\[
\begin{cases}
(X_j^{r+} - X_j^{r-})\hat{P}_j^r + (X_j^{i+} - X_j^{i-})\hat{P}_j^i \approx 0, \\
(X_j^{i+} + X_j^{i-})\hat{P}_j^r - (X_j^{r+} - X_j^{r-})\hat{P}_j^i \approx 0,
\end{cases} \tag{8}
\]

where \(c \in [1, (N - R) \times (M - R)]\) and \(f \in [1, N_R], N_R\) is the number of elements in \(Z_R\). Thus, we get \(P_j\) the operator that converts a single shot k-space data into a Hankel matrix (in the under-braces and Fig. 2). The (8) implies that this Hankel matrix is rank-deficient \([23]\).

\[
P_j X_j \approx 0. \tag{10}
\]

Moreover, Hankel matrix \(P(X_j)\) lifted from shots can be concatenated into a larger Hankel matrix \(P(X)\):

\[
P(X) = [P(X_1), \ldots, P(X_j)]. \tag{11}
\]

PLRHM employs the above phase constrained low-rankness to build an implicit phase reconstruction model \([17]\):

\[
\text{PLRHM} \min_{X_j} \frac{\lambda}{2} \sum_{h=1}^{H} \| Y_h - U F C_h F^{-1} X_h \|_F^2 + \sum_{j=1}^{J} \| P X_j \|_F \tag{12}
\]

where \(Y_h \in \mathbb{C}^{M \times N + J}\) denotes the sampled and vectorized \(h\)-th channel multi-shot k-space data, \(C_h \in \mathbb{C}^{M \times N + J}\) is the \(h\)-th channel coil sensitivity maps, \(\lambda\) is the regularization parameter and \(\| \cdot \|_F\) is the nuclear norm. \(U\) is an under-sampling operator that fills zeros on non-acquired data points, \(F\) is the Fourier transform operator, \(F^{-1}\) is the inverse Fourier transform operator.

III. PROPOSED METHOD

In this work, we propose a joint estimation model of shot phase and magnitude in an alternating fashion for ms-iEPI DWI.
reconstruction. The paired shot phase (P) and magnitude (m) priors is incorporated to regularize the updates of shot phase and magnitude, respectively. The whole process is summarized in Fig. 1.

A. Joint Estimation Model With Shot Phase Prior (PHASE)

Firstly, we improve PLRHM into a joint estimation model PHASE by separating I_j into shot phase P_j and magnitude m. The shot phase smoothness prior in PLRHM is similarly used in PHASE to constrain the shot phase update.

$$\text{(PHASE)} \min_{P,m} \sum_{h=1}^{H} \sum_{j=1}^{J} \left\| Y_{hj} - UC_h P_j m \right\|_F^2 + \sum_{j=1}^{J} \left\| P_F P_j m \right\|_1, \quad (13)$$

where $Y_{hj} \in \mathbb{C}^{MN}$ donates the sampled h-th channel and j-th shot k-space data.

The alternating fashion of PHASE brings two improvements over PLRHM. Firstly, when the shot phases are estimated and combined with sensitivity maps, all shot data can be incorporated together to estimate magnitude. This is a similar multiplexed sensitivity-encoding strategy as MUSE, which may help suppress the noise [18] (Fig. 3). Secondly, the prior that all shot images share the same magnitude are utilized explicitly in PHASE, while shot images in PLRHM have different magnitudes (Fig. 4(a)).

We conducted simulation and in vivo reconstructions to explain the advantages of the first and second improvements:

- nice noise suppression under low SNR scenarios (Fig. 3) and robustness under partially corrupted shot data (Fig. 4).

For simulation comparison, a toy comparison is conducted on a simulated four-shot eight-channel phantom. The whole procedure of simulated multi-shot DWI data is generated as follows: (1) Get a Shepp-Logan phantom image (Fig. 3(a)). (2) Multiply this image with eight-channel coil sensitivity maps (Fig. 3(b)) that are simulated by the Biot-Savart law [21]. (3) Multiply each channel image with the simulated shot phase (Fig. 3(c)), which is generated by steps in [21]. (4) Transform each channel image into its k-space with Fourier transform and then add Gaussian noise to k-space.

PHASE with accurate shot phase (P is given by simulated shot phase), and PHASE with estimated shot phase are compared with PLRHM. The implicit phase method, PLRHM, loses the image structure and has a large noise residual (Fig. 3(d)). With the proposed PHASE method, this loss is reduced significantly and the noise is suppressed very well (Fig. 3(d)), if the estimated phase is accurate. Even with the estimated phase, the proposed PHASE (Fig. 3(f)) still outperforms PLRHM in lower loss of image structures and better noise suppression. These observations indicate the good potential of PHASE.

The in vivo experiment shows that different shot images reconstructed by PLRHM have different magnitudes (Fig. 4(a)). The 8-th shot data is corrupted by common zipper artifacts [25] (yellow arrows in Fig. 4(a)), leading to the same artifacts residual in the SOS magnitude combined from all shot images (Fig. 4(b)). If data rejection [22], [26] is used as a post-processing to exclude the 8-th shot image before SOS, the artifacts in the magnitude image will be suppressed (Fig. 4(c)).

Compared with PLRHM, PHASE shows good robustness to the partially corrupted data (Fig. 4(d)) without post-processing.
Reconstructions of the simulated four-shot eight-channel phantom and \(m \) adjusts all weights to the range \((0, 1]\), and makes sure that \(\parallel m \parallel_\text{wTV} \) is the diffusion-weighted, \(m \) is defined as:
\[
W_k = e^{\lambda (x,y)}
\]

\(\parallel m \parallel_\text{wTV} \) is defined as:
\[
W_{\perp} = \sum_{x,y} \left(W^x_{\perp} (m^x_{\perp} - m^{x-1,y})^2 \right)
\]

\(W^x_{\perp} = \) weights in vertical and horizontal directions, and represent consistent edges among multi-b-value and multi-direction DWI. Its derivations are represented as:
\[
\frac{\partial}{\partial m} W^x_{\perp} = \frac{W^x_{\perp} (m^{x-1,y} - m^{x-1,y-1})}{(W^x_{\perp} (m^{x,y} - m^{x-1,y})^2 + W^x_{\perp} (m^{x,y-1} - m^{x-1,y-1})^2)^{1/2}}
\]

\((\lambda) \) is a small denominator to enlarge the difference between neighbor pixels.

Specifically, for a smooth region, the value of \(m_0(x,y) - m_0(x-1,y) \) is close to 0, leading to \(W_{\perp} \) approach to 1. At image edges, the value of \(m_0(x,y) - m_0(x-1,y) \) is relatively large, leading to \(W_{\perp} \) smaller than 1. Thus, the exponential function in (18) adjusts all weights to the range \((0, 1]\), and makes sure that \(W_{\perp} \) and \(W_{=\perp} \) are large in smooth regions (blue arrows in Fig. 11) but small on edges (white arrows in Fig. 11). Then, through minimizing the objective function in (15), the target image will be penalized heavily at smooth regions and slightly or even not be penalized at edges. Therefore, the weighted TV can simultaneously suppress noise and avoid edge blurring.

To show the benefits of the edge preserving prior, the methods including PHASE, PAIR with total variation, and PAIR with weighted total variation, are compared in Fig. 5. PAIR with total variation could greatly suppress the noise but results in loss of edge intensities (white arrow in Fig. 5(b)). PAIR with weighted total variation shows good tolerance to noise and preserves edges much better (Fig. 5(c)). In the following sections, PAIR with weighted total variation is abbreviated as PAIR for short.

C. Numerical Algorithm

We adopt the Projections Onto Convex Sets (POCS) algorithm to solve the PAIR in (15) [20, 30, 31, 32]. The iterative reconstruction is consisting of data consistency, phase update with low-rankness constraint, and magnitude update with weighted total variation (Fig. 1). In the iterative process, the phases become increasingly smooth (upper row in Fig. 1) and artifacts in magnitude image gradually decrease (lower row in Fig. 1).

The \(k \)-th \((k = 1, 2, \ldots, K)\) iteration is shown as follows:

1) Data Consistency:
\[
G_{h_j}^k = C_h P_j^k m^k + \lambda \mathcal{F}^\ast (Y_{h_j} - \mathcal{H}_\mathcal{F} C_h^k P_j^k m^k),
\]

2) Magnitude Image
\[
I_{j}^k = \sum_{h=1}^{H} C_h G_{h_j}^k, j = 1, 2, \ldots, J.
\]
TABLE I
IMAGING PARAMETERS OF FOUR DATASETS

Dataset	Vendor/Center	Channel	Shot	Matrix Size	Resolution (mm³)	B-values (s/mm²)	Signal average	Diffusion directions
I	Philips 3.0T/Beijing, China.	8	8	230x232	1.0x1.0x4	0, 800	1	15
II	UI 3.0T/Shanghai, China	17	4/8	160x160, 230x224	1.5x1.0x5, 1.0x1.0x5	0, 1000, 2000, 3000, 4000	1	3
III	Philips 3.0T/Xiamen, China	32	4	180x180	1.2x1.2x5	0, 1000	2	12
VI	XinGaoYi 1.5T/Yuyao, China	16	4	140x192	/	0, 1000	2	3

2) Phase Update With Low-Rankness Constraint:
\[I_{j+1}^{k+1} = F^*P^* \left(\text{SVT}_\varepsilon(PF(I_j^k), \sigma) \right), j = 1, 2, \ldots, J, \]
\[P_{j+1}^{k+1} = \frac{I_{j+1}^{k+1}}{||I_{j+1}^{k+1}||}, j = 1, 2, \ldots, J, \]
where \(\text{SVT}_\varepsilon(Z, \sigma) \) is the singular value thresholding operator on a matrix \(Z \) [33], [34]. The first \(\varepsilon \) singular values are saved and others minus a proper threshold \(\sigma \).

3) Magnitude Update With Weighted Total Variation:
Firstly, the averaged magnitude \(m_{avg}^k \) of all shot images are obtained by:
\[m_{avg}^k = \frac{1}{J} \sum_{j=1}^{J} P_j^{k+1} I_j^k, \]
Then, weighted TV is performed on the averaged magnitude:
\[m_{wTV}^k = m_{avg}^k - \beta \frac{\partial}{\partial m_{wTV}} \left(||m_k||_{wTV} \right), \]
\[m^{k+1} = m^k + \eta \left(m_{wTV}^k - m^k \right), \]
where \(\eta \in [1, 2) \) controls convergence speed.

IV. EXPERIMENTS

A. In Vivo Datasets
Comprehensive experiments are conducted to evaluate the performance of PAIR. Four datasets acquired on three vendors from four centers are employed for in vivo experiments. Their imaging parameters are shown in Table I. All the in vivo data collected by ourselves in this study are approved by the institutional review board.

For all datasets, odd-even EPI shifts have been corrected carefully. Coil sensitivity maps are calculated by ESPIRIT using \(m_0 \) [35]. The directionally encoded color maps are produced using a Matlab toolbox1.

B. Experiments Settings
For comparative study, navigator-based (IRIS [11]) and navigator-free (MUSE [18], POCS-ICE [20], MUSSELS-IRLS-CS [16], PLRHM [17]) methods are adopted. MUSE is a widely accepted two-step explicit method. POCS-ICE is a joint phase and magnitude reconstruction method. MUSSELS-IRLS-CS and PLRHM are implicit phase reconstruction methods which introduce the low-rankness priors into reconstruction. All the reconstructed multi-shot images by implicit phase methods are displayed after combining by the SOS. MUSE, POCS-ICE and PLRHM are implemented by ourselves, and MUSSELS-IRLS-CS is provided by Dr. Mathews Jacob online2. All methods are implemented in MATLAB and the parameters are optimized for best performance in terms of least artifacts.

We take average angular error (AAE) and peak signal-to-noise (PSNR) [15] as objective criteria:
\[\text{AAE (degree)} := \frac{1}{L} \sum_{l=1}^{N} \cos^{-1} \left(\langle v_l \cdot \hat{v}_l \rangle \right) \ast 180/\pi, \]
\[\text{PSNR (dB)} := 10 \cdot \log_{10} \left(\frac{NM}{||\hat{m} - m||_2^2} \right), \]
where \(|| \cdot ||_2 \) is the \(l_2 \) norm, \(\hat{m} \) and \(m \) are vectorized reference and reconstructed images, respectively. \(v_l \) and \(\hat{v}_l \) represent the primary diffusion direction vector of reference and reconstructed maps. \(L \) is the number of vectors. The higher PSNR and lower AAE indicate a lower noise level and smaller angular error, respectively.

C. High-Resolution DWI
Reconstructed results of navigator-based method IRIS are employed as references (Fig. 6(a)), because the shot phase is accurately estimated by the navigator and the reconstructed images have no obvious artifact. Some obvious artifacts can be observed in the results of POCS-ICE and MUSSELS-IRLS-CS.

1https://www.mathworks.com/matlabcentral/fileexchange/34008-dti-fiber-tractography-streamline-tracking-technique
2https://github.com/sajanglingala/data_adaptive_recon_MRI
Fig. 6. Reconstructions of high-resolution DWI images and color fractional anisotropy images estimated from 15 diffusion directions. (a)–(e) are reconstructed by IRIS, POCSICE, MUSSELS-IRLS-CS, PLRHM, and PAIR, respectively. The data from Dataset I are 8-shot, 8-channel, 1.0 × 1.0 mm², 1000 s/mm². The top row are the first direction DWI and the bottom row are directionally encoded color maps. Artifacts and blurred edge have been remarked with yellow and white arrows, respectively. AAEs are in the upper right corner.

Fig. 7. Reconstructions of ultra-high b-values data. (a)–(e) are reconstructed by IRIS, POCS-ICE, MUSSELS-IRLS-CS, PLRHM, and PAIR, respectively. The data from Dataset II are 8-shot, 17-channel, 1.0 × 1.0 mm², 3000 and 4000 s/mm². The proposed PAIR outperforms other methods on much better tolerance to artifacts and noise.

(yellow arrows in Fig. 6(b) and (c)). PLRHM and PAIR have a good tolerance to artifacts. PLRHM shows a relatively low SNR. Some edges have been blurred, such as the posterior horn of lateral ventricles (Fig. 6(d)). The result of the proposed PAIR achieves a lower noise level and more clear edges (Fig. 6(e)).

Directionally encoded color maps are estimated with fifteen diffusion directions. They are calculated by fractional anisotropy images times the primary diffusion direction. Some color mismatches with reference maps could be observed in Fig. 6(a)–(d). The result of PAIR is closest to the reference maps visually and achieves the lowest angular error AAE.

Thus, PAIR outperforms other state-of-the-art navigator-free methods on high-resolution DWI reconstruction.

D. Ultra-High B-Values DWI

The ultra-high b-values DWI data (3000 and 4000 s/mm²) have a significantly low SNR, which poses a severe challenge for reconstruction. The navigator-based IRIS can hardly reconstruct the image (Fig. 7(a)), which may be caused by the low SNR and geometric mismatch between the navigator and image echo. POCS-ICE introduces obvious ghosting artifacts (Fig. 7(b)). Both MUSSELS-IRLS-CS and PLRHM better remove artifacts but suffer from relatively low SNR (Fig. 7(c) and (d)). The proposed PAIR outperforms other methods on much better tolerance to artifacts and noise (Fig. 7(e)).

These results show that the PAIR is applicable for ultra-high b-values DWI reconstruction and does not need navigator signals.
Fig. 8. Reconstructions of fully sampling and undersampling data. (b)–(e) are reconstructed by POCS-ICE, MUSSELS-IRLS-CS, PLRHM, and PAIR, respectively. The data from Dataset II are 4-shot, 17-channel, $1.5 \times 1.5 \text{mm}^2$, 1000 s/mm2. Note: Solid and dotted lines represent sampled shot and unsampled shot data, respectively. Different colors represent different shots.

E. Accelerated DWI

For accelerated DWI with undersampling, the four-shot data in Dataset II is reconstructed with retrospectively uniform and partial Fourier undersampling. The sampling rate of them are 0.5 and 0.6, respectively. For evaluation, the fully sampled four-shot data are reconstructed as references (first row in Fig. 8).

On the fully sampled data, all the methods show comparable performances (first row in Fig. 8). Two explicit phase methods POCS-ICE and PAIR have relatively better resistance to zipper artifacts than MUSSELS-IRLS-CS and PLRHM.

On the undersampled data, error maps corresponding to the fully sampling references are calculated. Compared with other methods, PAIR provides the highest fidelity results on both uniform and partial Fourier undersampling reconstructions (Fig. 8).

F. Comparison Study With Explicit Phase Method MUSE

In this section, we compare the PAIR with a classical two-step explicit method MUSE to illustrate the advantages of joint estimation over the simple explicit method.

Fig. 9 shows the performance of PAIR and MUSE on 4-shot DWI reconstruction. Both MUSE and PAIR could remove motion artifacts well in magnitude images. However, noise residue on magnitudes of MUSE are relatively large, and some zipper artifacts can also be observed. PAIR has better noise suppression, especially in high b-value reconstructions (3000 s/mm2).

The increased b-values lead to an increase in phase winding in Fig. 9. For MUSE, the shot phases are estimated from each shot by SENSE reconstruction, and then will be fixed as known variables to estimate magnitude. However, in PAIR, the shot phase is updated in iterations. The shot phases reconstructed by PAIR have more structure details, especially in cerebrospinal fluid region (Fig. 9). Even though the true shot phase can never be known, the shot phases estimation by PAIR may be more precise because it can provide higher quality magnitudes.

G. Comparison Study on the Weighted TV

In Fig. 10, the high resolution ($1.0 \times 1.0 \text{mm}^2$) and high b-values (3000 s/mm2) reconstructions show that, compared with PHASE, weighted TV provides PAIR better noise suppression while preserving edges.

To further illustrate how weighted TV works, we draw the weights extracted from m_0 under the different δ (Fig. 11). The weights are large in the smooth regions, while small in the image edges. Compared with PAIR with TV (equivalent to the case where the weights are all 1), PAIR with weighted TV could similarly suppress noise in the smooth region (white arrows in Fig. 11), and preserve texture details (blue arrows in Fig. 11).

V. DISCUSSIONS

A. Discussion on Parameter Settings

The effect of parameter settings in the singular value thresholding operator $\text{SVT}_c(Z, \sigma)$ is discussed in the simulation and in vivo experiments here. The operator is performed on the
QIAN et al.: PAIRED PHASE AND MAGNITUDE RECONSTRUCTION FOR ADVANCED DIFFUSION-WEIGHTED IMAGING 3433

Fig. 9. Reconstructed magnitudes and shot phases of multi b-values DWI data by MUSE and PAIR. The data are 4-shot, 17-channel, in-plane resolution $1.5 \times 1.5 \text{mm}^2$ from Dataset II. The b-value of (a)-(c) are 1000, 2000, and 3000 s/mm2, respectively.

Fig. 10. Reconstructions by (a) PHASE, (b) PAIR with TV, and (c) PAIR with weighted TV. The data from Dataset II are 4-shot, 17-channel, $1.0 \times 1.0 \text{mm}^2$, b-value 1000 and 3000 s/mm2. Note: $\delta = 0.02$, and weighted TV and TV have the same $\beta = 0.3$.

structured low-rank matrix Z to constrain phase smoothness. The first ε singular values are saved and others minus a proper threshold σ.

In the simulation study, the radius of limited support R is 2, and the size of Z is 104×98550. PAIR achieves nice PSNR when ε is in the range of 20-30, under a proper σ (0.3-0.9) (Fig. 12(a)).

Fig. 11. Reconstructions with different TV. The data is 4-shot, 17-channel, in-plane resolution $1.0 \times 1.0 \text{mm}^2$, b-value 1000 s/mm2 DWI in Dataset II. (a) is the reference image m_0 (b-value = 0); (b)-(d) are results of PAIR with wTV ($\delta = 0.01$), PAIR with wTV ($\delta = 0.02$), and PAIR with TV. The up, middle and down row of (b) and (c) are reconstruction results, corresponding zoom in regions, and the weights W are calculated from m_0. Note: Weighted TV and TV have the same $\beta = 0.3$.

Fig. 12. PAIR reconstructions on simulation and in vivo data with different ε and σ. (a) The simulation data is 4-shot, 8-channel. (b) The in vivo data from Dataset II is 4-shot, 17-channel, $1.5 \times 1.5 \text{mm}^2$, 1000 s/mm2, and σ is 0.6. When σ is too large (≥ 1.2), only singular values larger than σ are saved, resulting in invariant PSNR (second half of the purple and green curve in Fig. 12(a)).

In in vivo study, the radius of limited support R is 2, and the size of Z is 104×48050 and σ is 0.6. In a wide range of ε (10-30), PAIR has comparable results (Fig. 12(b)). When ε becomes larger (40-60), some artifacts will remain in the images (yellow arrows in Fig. 12(b)). The above experiments indicate PAIR is insensitive to parameters and has robust performance.

Other typical parameters are $\lambda = 1$, $\eta = 1.5$, $\beta \in [10^{-4}, 5 \times 10^{-1}]$. The initialization of shot phase P and magnitude m are I and 0, respectively. the iteration stop condition is $\|m^{k+1} - m^k\|_F^2 / \|m^k\|_F^2 \geq 10^{-5}$, and the max iteration is 1000.
PAIR reconstructions on the multi-center multi-vendor in vivo data. (a) is from Dataset I: Philips 3.0T scanner in Beijing, China. 8-shot, 8-channel, b-value 800 s/mm², in-plane resolution 1.0 × 1.0 mm². (b) is from Dataset II: United imaging 3.0T scanner in Shanghai, China. 4-shot, 17-channel, b-value 1000 s/mm², in-plane resolution 1.5 × 1.5 mm². (c) is from Dataset III: Philips 3.0T scanner in Xiamen, China. 4-shot, 32-channel, b-value 1000 s/mm², in-plane resolution 1.2 × 1.2 mm². (d) is from Dataset VI: XinGaoYi 1.5T scanner in Yuyao, China. 4-shot, 8-channel, b-value 1000 s/mm².

TABLE II

Dataset	Matrix size (RO×PE×Channel×Shot)	Iterations when stop	Time (s)
II	160×160×17×4	22	12.4
II	230×224×17×4	27	26.1
III	180×180×32×4	45	34.3

B. Discussion on Reconstruction Time of PAIR

The reconstruction time of PAIR is tested on the three kinds of DWI data (Table II). The iteration stop condition is

\[\| \mathbf{m}^{k+1} - \mathbf{m}^k \|_F^2 / \| \mathbf{m}^k \|_F^2 \geq 10^{-5}, \]

and the max iterations is 1000. In all tests, PAIR could reach convergence and complete reconstruction quickly (Table II).

All the computation procedures are executed by MATLAB, running on a CentOS 7 computation server with twenty Intel Core i9-9900X CPUs of 3.5 GHz and 125 GB RAM. No parallel computing is employed.

C. Discussion on Multi-Vendor Multi-Center Reconstruction

Multi-center data harmonization is an important issue for healthcare studies [36], [37]. We test the performance of PAIR on diverse DWI data acquired by scanners from 3 vendors in 4 centers (Fig. 13).

PAIR shows robust performance on the above multi-vendor multi-center data, and the motion artifacts could be removed well (Fig. 13).

VI. CONCLUSION AND OUTLOOK

In this work, we aim at solving the multi-shot DWI reconstructions under inter-shot motions and ultra-high b-values. A joint phase and magnitude estimation model with paired low-rank and weighted TV priors is proposed to regularize the reconstruction. The joint estimation model ensures that all shots share the same magnitude strictly. The weighted TV in the image domain explores similar edges among multi-b-value and multi-direction DWI. Comprehensive experiments show that PAIR has faithful shot phase estimation and can remove inter-shot (8 shots) motion artifacts very well even when the partial shot data are corrupted. Compared with state-of-the-art methods, it shows much better and more robust performance on some low SNR scenarios, such as the undersampling (uniform and partial Fourier) and ultra-high b-values DWI (4000 s/mm²). Moreover, reconstructions on multi-vendor multi-center DWI data indicate its nice robustness.

The good performance and nice robustness of PAIR on high-resolution, ultra-high b-value and accelerated DWI reconstructions show great potential for advanced clinical DWI applications and brain function research.

In the future, we will develop PAIR to solve abdomen DWI reconstructions, such as high-resolution prostate and liver DWI. These reconstructions suffer from lower SNR and non-smooth shot phase, which may be challenging for PAIR and need great improvements.

In addition, to make it easier to use PAIR, we have implemented and deployed PAIR on the open-access cloud platform, CloudBrain-ReconAI [38], [39], [40], [41]. (please visit https://csrc.xmu.edu.cn/CloudBrain.html). On the CloudBrain-ReconAI, we also provide physics-informed deep DWI reconstruction methods and comparison algorithms to PAIR reconstructions.

ACKNOWLEDGMENT

The authors would like to thank Yiman Huang, Diceng Chen for the discussions on the MRI reconstruction, Dr. Hua Guo, and Yi Xiao for their assistances in data acquisition and image analysis, Yu Hu for creating video tutorials on CloudBrain-ReconAI usage, and Dr. Mathews Jacob for sharing the IRLS-MUSSELCS code online. The authors would also like to thank the editors and reviewers for the valuable suggestions.

REFERENCES

[1] D. K. Jones, Diffusion MRI, Oxford, U.K.: Oxford Univ. Press, 2010.
[2] M. G. Lansberg et al., “Comparison of diffusion-weighted MRI and CT in acute stroke,” Neurology, vol. 54, no. 8, pp. 1557–1561, 2000.
[3] M. Changiotoglou et al., “The utility of high b-value DWI in evaluation of ischemic stroke at 3 T,” Eur. J. Radiol., vol. 78, no. 1, pp. 75–81, 2011.
[4] C. K. Kim, B. K. Park, and B. Kim, “High-b-value diffusion-weighted imaging at 3 T to detect prostate cancer: Comparisons between b values of 1,000 and 2,000 s/mm²,” Amer. J. Roentgenol., vol. 194, no. 1, pp. 33–37, 2010.
[5] Y. Ohgiya et al., “Diagnostic accuracy of ultra-high-b-value 3.0-T diffusion-weighted MR imaging for detection of prostate cancer,” Clin. Imag., vol. 36, no. 5, pp. 526–531, 2012.
[6] G. C. Baxter et al., “Improving the image quality of DWI in breast cancer: Comparison of multi-shot DWI using multiplexed sensitivity encoding to conventional single-shot echo-planar imaging DWI,” Brit. J. Radiol., vol. 94, no. 1119, 2021, Art. no. 20200427.
[7] P. Mukherjee et al., “Diffusion tensor MR imaging and fiber tractography: Theoretic underpinnings,” Amer. J. Neuroradiol., vol. 29, no. 4, pp. 632–641, 2008.
[8] M. M. Thurnher and M. Law, “Diffusion-weighted imaging, diffusion-tensor imaging, and fiber tractography of the spinal cord,” Magn. Reson. Imag. Clin. North Amer., vol. 17, no. 2, pp. 225–244, 2009.
[9] H. An et al., “Qualitative and quantitative comparison of image quality between single-shot echo-planar and interleaved multi-shot echo-planar diffusion-weighted imaging in female pelvis,” Eur. Radiol., vol. 30, no. 4, pp. 1876–1884, 2020.

[10] A. W. Anderson and J. C. Gore, “Analysis and correction of motion artifacts in diffusion weighted imaging,” Magn. Reson. Med., vol. 32, no. 3, pp. 379–387, 1994.

[11] H. - K. Jeong, J. C. Gore, and A. W. Anderson, “High-resolution human diffusion tensor imaging using 2-D navigated multishot SENSE EPI at 7 T,” Magn. Reson. Med., vol. 69, no. 3, pp. 793–802, 2013.

[12] X. Ma et al., “Improved multi-shot diffusion imaging using GRAPPA with a compact kernel,” Neuroimage, vol. 138, pp. 88–99, 2016.

[13] L. Guo et al., “eIRIS: Eigen-analysis approach for improved spine multi-shot diffusion MRI,” Magn. Reson. Imag., vol. 50, pp. 134–140, 2018.

[14] S. Skare et al., “Clinical multishot DW-EPI through parallel imaging with considerations of susceptibility, motion, and noise,” Magn. Reson. Med., vol. 57, no. 5, pp. 881–890, 2010.

[15] M. Mani et al., “Multi-shot sensitivity-encoded diffusion data recovery using structured low-rank matrix completion (MUSSELS),” Magn. Reson. Med., vol. 78, no. 2, pp. 494–507, 2017.

[16] M. Mani et al., “Improved MUSSELS reconstruction for high-resolution multi-shot diffusion weighted imaging,” Magn. Reson. Med., vol. 83, no. 6, pp. 2253–2263, 2020.

[17] Y. Hu et al., “Phase-constrained reconstruction of high-resolution multi-shot diffusion weighted image,” J. Magn. Reson., vol. 312, 2020, Art. no. 106600.

[18] N. Chen et al., “A robust multi-shot scan strategy for high-resolution diffusion weighted MRI enabled by multiplexed sensitivity-encoding (MUSE),” Neuroimage, vol. 72, pp. 41–47, 2013.

[19] M. L. Chu et al., “POCS-based reconstruction of multiplexed sensitivity encoded MRI (POCMUSE): A general algorithm for reducing motion-related artifacts,” Magn. Reson. Med., vol. 74, no. 5, pp. 1336–1348, 2015.

[20] H. Guo et al., “POCS-enhanced inherent correction of motion-induced phase errors (POCS-ICE) for high-resolution multishot diffusion MRI,” Magn. Reson. Med., vol. 75, no. 1, pp. 169–180, 2016.

[21] Z. Hu et al., “Phase-updated regularized SENSE for navigator-free multi-shot diffusion imaging,” Magn. Reson. Med., vol. 78, no. 1, pp. 172–181, 2017.

[22] Z. Zhang et al., “Self-feeding MUSE: A robust method for high resolution diffusion imaging using interleaved EPI,” Neuroimage, vol. 105, pp. 552–560, 2015.

[23] J. P. Haldar, “Low-rank modeling of local k-space neighborhoods (LO-RAKS) for constrained MRI,” IEEE Trans. Med. Imag., vol. 33, no. 3, pp. 668–681, Mar. 2013.

[24] K. H. Jin et al., “A general framework for compressed sensing and parallel MRI using annihilating filter based low-rank Hankel matrix,” IEEE Trans. Comput. Imag., vol. 2, no. 4, pp. 480–495, Dec. 2016.

[25] K. H. Jin et al., “MRI artifact correction using sparse low-rank decomposition of annihilating filter-based Hankel matrix,” Magn. Reson. Med., vol. 78, no. 1, pp. 327–340, 2017.