Treatment of allergic asthma: Modulation of Th2 cells and their responses

Berislav Bosnjak¹, Barbara Stelzmueller¹, Klaus J Erb² and Michelle M Epstein¹*

Abstract

Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophylline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression.

Introduction

Asthma is a serious chronic inflammatory lung disease characterised by recurrent episodes of wheezy laboured breathing with prolonged expiration accompanied by dry coughing and viscous mucus. These symptoms result from bronchoconstriction, bronchial mucosal thickening by oedema, eosinophilic infiltration, bronchial wall remodelling and excessive mucus production with plugging of the conducting airways in the lungs. These airway changes lead to increased bronchial hyperreactivity to a variety of allergic and non-allergic stimuli. Obstruction is usually reversible, either spontaneously or in response to appropriate therapy. Asthma affects approximately 300 million people worldwide and can be fatal. Atopic or allergic asthma generally occurs in childhood or young adulthood (under the age of 40) in about 70-80% of cases and is caused by common allergens e.g. pollens, house dust, animal dander, inhalants, foods, drugs and occupationally encountered dust. Atopic asthma is characterised by detectable allergen-specific IgE and a positive skin test upon allergen provocation. The most severe chronic refractory asthma accounts for 5-10% of adults with asthma and is characterised by persistent symptoms and frequent exacerbations, despite treatment with high dose inhaled and/or oral corticosteroids and inhaled β2 adrenoceptor agonists. These patients are at greater risk of fatal and near-fatal exacerbations and display serious unremitting symptoms, resulting in a considerable impact on quality of life, disproportionate use of health care resources and adverse effects from regular systemic steroid use.

The allergic immune response is a complex process beginning with the activation of allergen-specific Th2 cells by antigen presenting cells (APCs) followed by their proliferation, cytokine production, helper functions and the emergence of memory cells (Figure 1). The resulting pathophysiological response includes lung eosinophilic inflammation, oedema, smooth muscle contraction and increased mucus production, resulting in airway obstruction and eventual lung damage. Numerous experimental models and clinical studies support a central role of allergen-specific Th2 cells in pathophysiological responses [1-4]. Although much is known about the pathogenesis of the disease, the mechanisms underlyng Th2 cell differentiation and perpetuation remain unclear. Allergen-specific memory Th2 cells take up long-term residence within experimental mice after recovering from a single episode allergic asthma [5].
illustrated by the maintenance of elevated serum allergen-specific IgG1 and persistent inflammatory chronic lung infiltrates. Asthma exacerbations are induced by respiratory tract allergen challenge leading to pathology resembling patients [6-8]. A reduction or elimination of specific Th2 responses permits the treatment of disease without causing generalised immunosuppression and makes it a prime target for disease abrogation. Although current asthma therapies (especially inhaled corticosteroids and β2-agonists) efficiently control the disease, development of novel drugs is crucial for disease control in patients with severe, corticosteroid-insensitive asthma, as well as for improvement of existing therapies in terms of a more favourable side effect profile [9]. Additionally, the use of highly active drugs that reduce disease in the early stages may obviate the need for high dose steroids later on and may reduce the potential for unremitting, steroid-resistant disease. Current asthma therapies do not cure the disease and symptoms return soon after treatment is terminated. Treatment in the late stages of chronic, severe, unremitting allergic asthma may be too late. It is therefore, important to start treatment early to reduce disease. In the early stages of disease, allergen-specific Th2 memory cells appear to play an important role in initiating the immune response against the offending allergen. Eliminating these pathogenic cells at an early stage may lead to complete disease remission. There is a myriad of strategies to eliminate Th2 memory cells that are promising. This review focuses on these targets during the evolution of the Th2-mediated allergic immune response from allergen presentation to activation and survival of Th2 memory cells (Figure 1).

Figure 1 Helper Th2 cells play a central role in allergic asthma and could be targeted through individual allergic immune processes. (1) Allergen handling and presentation by activated APC to naive CD4+ T cells induces their activation. (2) Activated naive CD4+ T cells differentiate to Th2 cells, or (3) possibly to other types of helper T cells e.g. Th1, Th17 or Treg cells. (4) Secondary exposure to allergen leads to Th2 cell activation, (5) as well as their migration into the lungs. (6) Activated Th2 cell-mediated asthma is caused in part by the secretion of interleukins e.g. IL-4, IL-5 and IL-13. These cytokines stimulate B cell activation and IgE secretion. Th2 cell cytokines and IgE activate cells of the innate immune system e.g. eosinophils, mast cells, etc. causing the release of vasoactive, pro-inflammatory mediators, smooth muscle contraction, mucus hypersecretion, oedema and, eventually, airway remodelling. (7) Homeostasis and survival of memory T cells in the lymph nodes and lungs perpetuates disease. Interruption of these molecular and cellular targets may reduce symptoms and pathological consequences of allergic asthma.

Improvement of existing anti-Th2 cell therapies

Inhaled and oral corticosteroids, leukotriene modifiers, theophylline, anti-IgE and specific allergen immunotherapy (AI) are well-established treatments for asthma [10]. Of these therapies, only AI specifically targets Th2 cells [11]. AI is thought to function by either skewing the allergic Th2 response towards Th1 immunity or generating regulatory T cells (Tregs) [12,13]. While the mechanism remains controversial, AI is effective in a subset of patients. Classical immunotherapy or “allergy shots” in the last years is evolving towards non-injectable forms like subcutaneous and sublingual immunotherapy [13,14]. Progress in AI focuses on the dose and nature of the allergens, with higher allergen doses improving AI effectiveness [15] and chemically modified allergens (allergoids) increasing efficacy [14,16]. The production of recombinant allergens of common allergens from DNA sequences that can be mutated, fragmented or chimerised leads to efficient hypoallergenic mixtures of allergens for treatment [14,17,18]. Additionally important is the ability of producing T cell epitopes without B cell epitopes, which reduces adverse reactions [12,16,17] or new technologies like covalently linked T cell epitopes [14], DNA vaccines encoding allergens [19], production of fusion proteins to increase allergen presentation [20], or expression of recombinant allergens in lactic bacteria able to colonise the gut [21]. Equally promising is the production of random peptide libraries to determine structural equivalents, so called mimotopes [14], producing shorter peptides [16,22], though patients may develop de novo IgE antibodies.
against the treatment peptide. Although some novel adjuvants such as monophosphoryl lipid A from Salmo-
nella minnesota [12,23] or heat killed or live Mycobact-
erium tuberculosis did not meet expectations in clinical
trials [14], other adjuvants like fusion proteins with bac-
terial surface layer components [14] and cytosine-gua-
nine dinucleotides (CpG) oligonucleotides (CpG-ODNs)
[9,12,23], as well as routes of allergen delivery, in oral
microencapsulated forms [24] or embedded in nanopar-
ticles [23], are being explored.

Strategies to modulate antigen presentation and Th2 cell activation

Dendritic cells (DCs) expressing CD11c⁺CD11b⁺ [25],
CD16⁺ [26], CD141⁺ [27] or CD8α [28] predispose to
allergic asthma. Sputum and bronchial biopsies of asth-
matics contain higher DC numbers in comparison
to healthy individuals [29,30] and are increased after
allergen exposure [31]. Asthmatic DCs differ in cytokine,
prostaglandin (PG), and chemokine synthesis and costi-
mulatory molecule expression compared to healthy con-
trols [32-34]. In addition, allergen-pulsed DCs from
asthmatic patients, but not healthy controls, preferen-
tially stimulate T- cells to produce IL-4 [35]. DCs from
asthmatics produce high amounts of PGE2 [34], which
decreases IL-12 [36] and increases CCL17 and CCL22
production [37] from DCs causing the polarisation of
DCs, which promote Th2 cell differentiation and
recruitment. Recently, thymic stromal lymphopoietin
(TSLP) has emerged as a key mediator, which promotes
DC-induced Th2 differentiation through the interaction
of OX40:OX40L [38,39]. Inhibition of DC-mediated
antigen presentation represents a suitable treatment
option for allergic diseases. While DCs are the most
potent APCs, other cells also contribute to antigen pre-
tentation and may provide useful targets. Table 1 illus-
trates examples of cytokines secreted by Th2 cells,
which polarise the immune system of 42 molecules and 19 receptors that orches-
trate leukocyte migration in physiologic and pathologic
conditions [47]. Among CKRs, CCR4, CCR8, CXCR4
and CCR3 appear to be selectively expressed on Th2
lymphocytes [48,49] making them potentially important
specific Th2 cell targets. CCR4 regulates chemotaxis of
Th2 cells and its ligands CCL17 and CCL22 are elevated
in allergic asthma [50,51]. Hence, selective CCR4
antagonists, such as bipiperidinyl carboxylic acid amides,
or antibodies directed against CCR4 ligands could be
promising treatments [9,50,51]. However, CCR4 is also
expressed on Tregs and cells with either Th1 or Th2
potential [52] leading to CCR4 inhibitors causing immu-
nosuppressive effects. CCR8 expression also appears to
be increased in lung and airway Th2 cells in asthmatic
patients [53]. Airway eosinophilia and airway hyperre-
sponsiveness (AHR), however, are not diminished in
CCR8⁻/⁻ mice [54] and adoptively transferred Th2 cells
not expressing CCR8 accumulate in the lungs [55].

Modulation of effector cytokines
The interplay between cells and cytokines involved in
Th2-mediated disease is complex. Th2 cells secrete and
express a variety of cytokines and receptors [40]. In the
past decade, mAbs targeting the most prominent Th2
cytokines, IL-4, IL-5 and IL-13 have had variable success in
clinical trials and the perception is that effectiveness
will be improved by inhibiting two or all of them simulta-
neously. Furthermore, additional cytokines including
IL-9 and IL-31 are secreted by Th2 cells and might
represent novel or additive targets. Moreover, cytokines
secreted by other cells such as Th1, Th17 and Tregs
may suppress Th2 cell function. Importantly, augment-
ing suppressive effects and inhibiting disease-promoting
effects of T cells may lead to new compounds. Table 4
illustrates examples of cytokines secreted by Th2 cells,
have direct effects on Th2 differentiation or are involved in
differentiation of other helper T cell subtypes that
could inhibit Th2 cells.

Interference with Th2 differentiation and adhesion

Antigen presentation induces clonal expansion and dif-
ferentiation of naïve Th cells into mature Th1, Th2,
Th17 or inducible Tregs [reviewed in [40]]. Th2 cell
polarisation is mediated by transcription factors, includ-
ing GATA-3, which are crucial for Th2 lineage com-
mitment. Initial signals that drive Th2 differentiation
induce expression of the GATA-3 [41], which mediates
Th2 differentiation by inducing chromatin remodelling
of Th2 gene loci, direct transactivation of Th2 gene
expression and inhibition of IFNγ expression [42].
Furthermore, GATA-3 expression must be sustained to
maintain a Th2 phenotype [42,43]. Beside other impor-
tant factors, microRNAs have recently emerged as
regulators of gene expression during differentiation and
function [reviewed in [44,45]]. Numerous microRNAs
play important roles in asthma [46] and selective inhibi-
tion of these molecules can be utilised to specifically tar-
get development of Th2 cells. Examples of other signal
transduction pathway targets and their inhibitors are
listed in Tables 2 and 3. Unfortunately, most of these
targets are not selectively expressed in Th2 cells and
their inhibitors have broad immunosuppressive effects.
CXCR4 is also involved in Th2 cell migration into the lungs [58] and treatment of allergic mice with selective CXCR4 inhibitors significantly reduces AHR and inflammatory responses [59,60], supporting the further development of CXCR4 antagonists for asthma treatment. CCR3, which regulates eosinophil and mast cell accumulation into the lungs [61], is expressed on Th2 lymphocytes [62]. CCR3 inhibition is a promising Th2 cell target that reduces innate and adaptive allergic inflammation [63]. TPI ASM8 is a compound that contains modified antisense oligonucleotides targeting CCR3 and the common beta chain of the receptors of GM-CSF, IL-5 and IL-13, decreases airway inflammation in humans after allergen exposure and is under clinical evaluation [64]. Other CKRs that appear to regulate CD4+ T cell homing to the lungs in asthma include CCR5, CCR6, CCR7 and CXCR3 [65-67]. CCR7 is a CKR expressed on a large number of naïve and memory T cells [47] and therefore does not represent suitable target. Expression of CCR5, CCR6 and CXCR3 is related to Th1 (CXCR3 and CCR5) [48,49] or Th17 (CCR6) cells [68]. Thus, it is possible that CKR agonists, rather than antagonists, might inhibit Th2 cells in asthma. Importantly, the chemokine system is highly redundant with promiscuous chemokine-CKR interactions, suggesting that a single chemokine or CKR could have compensatory mechanisms leading to unexpected side effects. Moreover, blocking of a single chemokine or

Cell type	Target	Intervention example	Mechanism of action and effects	Comments
Dendritic cell	Peroxisome proliferator-activated	Rosiglitazone and cigitazone	Decrease CCR7 expression on DCs and diminishes migration [144,145]	
	receptor receptor gamma			
	Sphingosine 1-phosphate inhibitor	FTY720	Sequesters lymphocytes in secondary lymphoid organs; inhibits T cell migration to the draining lymph nodes [146-] suppresses eosinophilic airway inflammation and AHR, reduced Th2 cell generation [147,148], generalised immunosuppression [149]	In clinical study for moderate asthma (ClinicalTrials.gov identifier: NCT0075083)
	Thymic stromal lymphopoietin	Anti-TSLP antibodies [39]	TSLP skews DCs to express high levels of OX40 ligand, which promotes the generation of Th2 cells [38]; its inhibition prevents Th2-mediated airway inflammation in mice [39]	
	TSLP			
	CCL2	CCR2 antagonists [150]	Overexpressed in lung and increased DC recruitment in allergic asthma [151,152]	CCR2 is involved in migration of other immune cells as well
	CD80/86 costimulation	D prostanoid 1 receptor agonist [153], aerosolised CD86 antisense oligonucleotide [154] or suplatast tosilate [155].	Reduce allergic disease in mice models of acute asthma	CDB80/86 co-stimulation does not contribute to recall responses of effector Th2 cells [156] and might not be useful for the treatment of established disease
	OX40L	Anti-OX40L Ab	Blocks Th2 cell infiltration, cytokine secretion, IgE production and Th2 inflammation in mouse and non-human primate models [157]	
	Programmed death-1 (PD-1) and PD1 ligands	None so far	PD-1 and its ligands regulate T cell activation and differentiation and affect asthmatic responses [158]	
Macrophage	Anti-A1 adenosine receptor modulators	A1 adenosine receptor modulators	Anti-inflammatory [159]	
	Unknown	Water-soluble chitosan	Suppresses allergic asthma in mice [161]	Gene expression and function depends on polarisation (classical vs. alternative activation) [160]
	Unknown	Mycolic acid	Modulates airway macrophage function to suppress allergic inflammation in mice [162]	
Basophil	Specific target unknown so far	N/A	CD49b~~FcR~~R basophils migrate from blood to lymph nodes, where they present processed antigen to T cells in the context of MHC class II molecules and induce Th2 type polarisation through secretion of IL-4 [163-166]	Recently, the role of basophils in Th2 immunity was disputed in favour of inflammatory DCs [167,168]
CRTH2 is a mediator involved in the migration and activation of basophils, eosinophils and Th2 cells [69,70]. CRTH2 inhibition leads to attenuated airway hyperreactivity and inflammation in animal models [71]. Ramatroban, a dual thromboxane A2 receptor (TP) and CRTH2 receptor antagonist, suppresses eosinophil chemotaxis in vitro and in vivo and is approved for the treatment of allergic rhinitis in Japan [72]. Numerous other CRTH2 antagonists, such as 4-aminotetrahydronic derivatives or indoleacetic acid derivatives, are currently under development [69,70,72] and OC000459 is in clinical trials for the treatment of allergic asthma (ClinicalTrials.gov identifier: NCT01057927, NCT00890877). The CRTH2 receptor is a DP2 receptor. Biological effects of PGD2 and PGH2 are mediated by D prostanoid receptor 1 (DP1) and CRTH2 (DP2). PGD2 activates DP1, thereby affecting NK cells and their cytokine production into a profile more favourable for Th2 skewing [73]. PGH2 is implicated in the accumulation of CRTH2+ cells at sites of inflammation [74]. Additionally, as discussed above, PGE2 polarises DCs to promote Th2 cell differentiation and recruitment [34,36,37]. These effects of PGE2 seem to be mediated by PGE2 receptor type 2 (EP2) and type 4 (EP4) [75]. Therefore, PGs and CRTH2 appear to be promising Th2 cell-specific targets.

While homing receptors are important for Th2 cell migration, several adhesion molecules also play a role. For example, intercellular adhesion molecule (ICAM)-1 and ICAM-2 play important roles in T cell migration in the lungs [76] and ICAM-1 deficiency reduces leukocyte infiltration into the airways, as well as IL-4 and IL-5 concentration in bronchoalveolar lavage fluid [77]. Additionally, VCAM-1 plays a role in eosinophil migration and activation in addition to T cell trafficking [78]. There are no clinical data to date for mAbs against ICAM-1 or VCAM-1 in the treatment of asthma. Other potential adhesion targets include VLA-4 (α4β1

Target	Mechanism	Intervention example	Effect	Comment
GATA-3	Development of Th2 cells	Local treatment with GATA-3 antisense oligonucleotides or RNA interference delivered by a lentiviral vector	Inhibits allergen-induced asthma	Important for T cell development, its inhibition could cause immunosuppression [169]
STAT3	Important for differentiation of Th2 cells	Selective small molecule inhibitors or RNA interference	Inhibits allergen-induced asthma	-
STAT5a	Important for differentiation of Th2 cells	None known	STAT-5a deficient mice have decreased IL-5 production and Th2 and eosinophil recruitment in mouse model of asthma [174]	Also important for development of inducible Tregs [175]
STAT6	Important for differentiation of Th2 cells	Selective small molecule inhibitors or RNA interference	Suppresses Th2 responses in vitro and in animal models	-
Notch	Binds to the promoter of GATA-3 and regulates its transcription	Gamma-secretase inhibitor (GSI)	Selective inhibition of Th2, but not Th1 responses	Involved in development of many other leukocytes and organs [182,183]
c-Maf	Transcription factor expressed at high levels in Th2 cells	So-Cheong-Ryong-Tang (a Korean traditional medicine) or KR62890 (agonist of peroxisome proliferator-activated receptor γ)	Inhibits Th2 cell functions	Inhibits Th-17 and Treg function
Gfi-1, Dec2, ROG and Bcl-6	Transcription repressors important for Th2 cell development	None known	N/A	-
SOCS-3	Inhibitor of cytokine signalling pathways	None known	SOCS-3 blocks Th1 cell development and is preferentially expressed in Th2 cells [194]	Appears to be involved in Treg and/or Th17 cell development [195]
SOCS-5	Inhibitor of cytokine signalling pathways	None known	Preferentially expressed in Th1 cells and prevents Th2 cell development [196]	Its over-expression in T cells enhances airway inflammation and AHR [197]
miRNA-16, miRNA-21, miRNA-126	Up-regulated in lung tissue after allergen challenge in mouse models of asthma	Anti-miRNA-126 antagonist (small synthetic RNA molecule with modified backbone for degradation prevention)	Prevents allergen-induced airway hyperreactivity and reduces allergic inflammation	-
inhibitor) [79] or P-, E- and L-selectins [80]. Natalizumab blocks both α4β1 and α4β7 integrins, but was discontinued due to severe side-effects [81]. Novel α4 integrin mAb LLP2A reduces AHR and inflammation in mouse allergic asthma [82]. Unfortunately, initial results with VLA-4 antagonist GW559090 were disappointing [83], but newer and safer alternative VLA-4 antagonists are in development [84-86]. Lastly, a pan-selectin inhibitor is currently in phase IIa clinical trials for COPD, might also be promising for asthma [81]. None of these adhesion molecules is selectively expressed on Th2 cells.

The anticoagulant heparin has anti-inflammatory properties that inhibit leukocyte extravasation [87]. IVX-0142 is a heparin-derived hypersulfated disaccharide that appears to be well-tolerated and shows a trend towards attenuation of asthmatic responses, but does not affect AHR [88]. Additional studies are needed to evaluate effects of these molecules on Th2 cells.

Inhibition of long-lived Th2 memory cells

It is possible that long-lived Th2 memory cells establish anti-apoptotic mechanisms for long-term maintenance, which when inhibited may result in cell death. Interfering with mechanisms for their longevity in the lungs may eliminate Th2 cells. Corticosteroids [89], calcineurin inhibitors [90] and the cysteine leukotriene receptor antagonist montelukast [89] have pro-apoptotic effects on activated T cells, one of the many mechanisms that lead to their effectiveness in asthma. CX3CR1 seems to provide a survival signal for lung Th2 and Th1 cells, which when inhibited reduces allergic inflammation [67]. T cells from p53-deficient mice have decreased apoptosis and increased Th2 differentiation [91], cytoxic lymphocyte antigen-2 (CTLA-4) promotes T cell apoptosis [92,93] and CTLA-4-deficient Th cells are directed towards Th2 differentiation [94]. Additionally, the ratio of anti-apoptotic protein Bcl-2 over pro-apoptotic protein Bax in peripheral blood lymphocytes of asthmatic patients is increased in comparison to healthy controls [95]. Interestingly, Th2 cells express less Fas ligand (FasL) and are more resistant to apoptosis than other Th subtypes [96,97]. Moreover, the Th2 cytokine IL-4 reduces FasL, while Th1 cytokines IFNγ, TGfβ and IL-2 increase FasL expression [89]. Regulation of FasL plays an important role because FasL-expressing T cells are pivotal during the resolution of airway inflamation [98] and intratracheal delivery of DCs co-transfected with FasL and allergen genes before

Table 3 Interference with Th2 signal transduction pathway and their inhibitors

Class	Examples of inhibitor(s)	Effect	Reference*
EGFR receptor inhibitors	Gefitinib	Reduces the cell counts and Th2 cytokine levels in an OVA-challenged mouse model of allergic asthma	[200]
Syk inhibitors	BAY 61-3606, R112	Inhibits disease signs in a mouse model of asthma	[201]
JAK3 inhibitors	CP690550, WHI-P131 and WHI-P97	Blocks expression and signalling of IL-2, IL-4 and IL-13	[202]
p38 MAPK/ERK inhibitor	U0126	Inhibits airway and lung inflammation in mouse model of asthma	[203]
p3α kinase inhibitors	ISIS101757	Inhibits allergic immunity in mice	[204]
JNK inhibitor	SP600125	Inhibits T cell cytokine production and lung inflammation in mouse models of asthma	[211,212]
Inhibitor of adenosine A1, A2b and A3 receptors, p38 MAPK and PDE4D	CGH2466	Inhibits allergic asthma in mice	[213]
PBK inhibitors	Wortmannin and Ly294002	Inhibits allergic asthma in mice	[214,215]
Inhibitor of IkappaB kinase-2 (IKK-2)	N/A	Reduces allergen-induced airway inflammation and AHR in animal models of asthma	[216,217]
IkappaB ubiquitination inhibitor	GS143	Represses Th2, but not Th1 differentiation after allergen challenge in a mouse model of allergic asthma	[218]
Selective PDE4 inhibitors	GSK256066, MK-0359	Inhibits the fall in lung function in patients with asthma caused by inhaled allergen challenge	[219,220]
PDE3 and PDE4 inhibitors	RPL554	Inhibits eosinophil recruitment following antigen challenge in guinea pigs	[221]

* Numbers starting with NTC represent clinical study code from http://clinicaltrials.gov/*
| Cytokine | Relation to Th2 cells in asthma | References | Was the target used in clinical trials in asthma? | Clinical study, Reference* |
|----------|---------------------------------|------------|---|-----------------------------|
| IL-2 | Important for survival of mature Tregs Required for generation of effector and survival of memory T cells | [175] [222] | Yes, daclizumab targeting its soluble IL-2 receptor CD25, improves FEV1 and reduced daily asthma symptoms | NCT00028288 |
| IL-3 | Secreted by Th2 cells, regulates eosinophil and basophil differentiation, migration and survival Inhibition of IL-3/IL-5/GM-CSF common β receptor inhibits Th2 differentiation | [223,224] [225] | No | - |
| IL-4 | Crucial for Th2 cell differentiation Induction of IgE production of B cells | [226] | Yes, numerous mAbs and other compounds, development of most mAbs was discontinued, pitrakinra (IL-4 mutant protein binding to IL-4 and IL-13 receptors) improves lung function, stabilises asthma symptom scores and reduces beta-agonist use | [9,11,227-229], NCT00801853, NCT00941577 |
| IL-5 | Th2 cell cytokine involved in eosinophil differentiation, maturation, recruitment and survival | [230,231] | Yes, does not inhibit eosinophilia or AHR, but new indications suggest use in difficult-to-treat and severe asthma | [232-234], NCT01000506, NCT00292877 |
| IL-6 | Polarises CD4+ T cells to Th2 or Th17 subtype Soluble IL-6 receptor induces apoptosis of Th2 cells in the lungs & induces Tregs | [235,236] [237] | No | - |
| IL-9 | Secreted by Th2 cells Over expression in mice enhances inflammation and AHR | [238] [239,240] | Yes, appears to have acceptable safety profile and to decrease FEV1 | [241,242] |
| IL-10 | Secreted by Th2 cells and some Tregs, plays multiple roles in the immune processes | [243] | No | - |
| IL-12 | Essential for differentiation, proliferation and activation of Th1 cells Suppresses Th2 immune responses in murine models | [244] [245] | Yes, reduction in the number of circulating blood eosinophils, but not sputum eosinophilia, the late-phase response or airway hyper-responsiveness | [246] |
| IL-13 | Involved in lung inflammation, mucus hypersecretion, subepithelial fibrosis and eotaxin production | [247] | Yes, clinical trials for numerous mAbs are in progress; pitrakinra (IL-4 mutant protein binding to IL-4 and IL-13 receptors) improves lung function, stabilises asthma symptom scores and reduces beta-agonist use | [229,248,249], NCT00873860, NCT00801853, NCT00941577 |
| IL-15 | Th1 cytokine that appears to counterbalance Th2 immune response | [250] | No | - |
| IL-17A | Implicated in infiltration of neutrophils after allergen exposure Might regulate established Th2 response | [251] [252] | No | - |
| IL-17F | Implicated in infiltration of neutrophils after allergen exposure | [251] | No | - |
| IL-18 | Cytokine involved in Th1 and Th2 immunity Delivery of IL-18 gene reduced allergic inflammation in a mouse asthma model | [253] [254] | No | - |
| IL-19 | Produced by epithelial cells and mediates IL-4, IL-5, IL-10 and IL-13 production | [255,256] | No | - |
| IL-21 | Secreted by CD4+ T cells Involved in proliferation, differentiation and regulation of T cells, B cells, DCs and natural killer cells Stimulates IgG responses instead of IgE | [23,257] | No | - |
| IL-22 | Required for the onset of allergic asthma in mice, but negatively regulates acute inflammation in lungs | [258] | No | - |
| IL-23 | Lung-specific expression enhances allergen-induced inflammation, mucus hyperproduction and AHR Its inhibition protects against allergic asthma in mice | [259] [260] | No | - |

Bosnjak et al. Respiratory Research 2011, 12 :114
http://respiratory-research.com/content/12/1/114
allergen challenge-induced T cell apoptosis and decreased airway inflammation in mice [99]. Induction of Fas expression on Th2 cells might be a possible treatment approach that would decrease their survival in the lungs despite the fact that Th2 cells are somewhat resistant to Fas-induced apoptosis. An additional important pathway for apoptosis in T cells involves granzyme B, which is critical for activation-induced cell death [100]. Inhibition of granzyme B rescues Th2 cells from apoptosis [100], suggesting that selective activation of granzyme B in Th2 cells might be a novel target. Another possibility is that increased apoptosis of Tregs and their protection from apoptosis might be a method of treating disease but there is little information related to cell death of Tregs in allergic diseases and it is possible that dysregulated apoptosis of Tregs may contribute to allergic asthma [90].

New categories of targets: Statins and Rho kinases; TIM proteins; Galectins; Siglec; Arginases; Histone deacetylase inhibitors; Pathogens and Toll-like receptors

Statins are a class of cholesterol lowering drugs that also possess anti-inflammatory and immune properties [101,102]. Simvastatin, Lovastatin and Pravastatin reduced eosinophilia and Th2 cytokines in animal models of asthma [103-105]. Clinical trials evaluating Simvastatin (NCT00792337), Lovastatin (NCT00689806) and Atorvastatin (NCT00463827), are ongoing or completed, but data are not yet available. Some statins exert their action through regulation of Rho kinases [106], which are expressed at high levels in airway smooth muscle and regulate their contractility [107], but inhibition appears to impair lymphocyte cytokine secretion [108].

The genes for the T cell immunoglobulin domain and mucin domain (TIM) proteins are encoded in the T cell and airway phenotype regulator region on chromosome 11 [109]. Initial results indicate that although TIM-1 is involved in Th2 cell differentiation and is associated with Th2-mediated diseases [110], it also regulates Th17 and Treg development. Furthermore, TIM proteins are expressed by other immune-cell types [111]. Because TIM proteins do not exclusively regulate Th2 cells, they are less useful as targets than originally anticipated.

Galectins are β-galactoside-binding proteins that bind to glycan residues on the surface of mammalian cells [112]. Examples are Galectin-3 and -9, which appear to have numerous functions in T cell activation, differentiation and apoptosis [112]. Airway inflammation and challenge is decreased in Galectin-3 knockout mice [113] and intranasal administration of a plasmid encoding Galectin-3 abates chronic airway inflammation in a murine model of asthma [114]. Galectin-9 binds to TIM-3, which is expressed on Th1 cells and is important for protective immunity against microbes [111] and intravenous administration of Galectin-9 suppresses AHR and airway inflammation in a mouse model of asthma [115].

SiglecS are sialic acid-recognising Ig-superfamily lectins [116]. CD33-related SiglecS, which in humans

Table 4 Effector cytokines as targets (Continued)

Cytokine	Function	Studies	Note
IL-25	Induces Th2 immunity, enhances Th2 cell survival and stimulates Th2 cytokine secretion	[261,262]	No
IL-27	Th1 cytokine decreases Th2 response in murine models of asthma	[263]	No
IL-31	Secrety by Th2 cells, expressed at higher levels in asthmatic patients	[264,265]	No
IL-33	IL-33 receptor, ST2, is a marker for Th2 cells	[266,267]	No
IFN-γ	Th1 cytokine that inhibits Th2 cell polarization in vitro. Appears to be involved in pathogenesis of severe allergic asthma	[269,270]	Yes, but treatment did not improve monitored clinical parameters
TGF-β	TGF-β inhibits expression of transcription factor GATA-3. Its neutralization exacerbates or has no effect on inflammatory responses in mouse models of asthma	[271]	No
TNF-α	Pleiotropic cytokine, chemoattractant for eosinophils and contributes to the activation of T cells	[275]	Yes, divergent results, severe side-effects

* Numbers starting with NTC represent clinical study code from http://clinicaltrials.gov/
include Siglec-3 and Siglec-5 through -11, are predominantly found on human leukocytes and involved in innate immunity [116,117]. Mouse Siglec-F, the equivalent of human Siglec-8, is expressed on eosinophils and regulates their apoptosis [118]. Blocking Siglec-F function with a mAb reduces airway and lung eosinophilia in mice [119]. Although Siglec-8 is a promising target directed against eosinophils, human T lymphocytes express little or no siglec molecules [120] and do not appear to be a candidate for inhibiting Th2 cells.

Arginase I and II are cationic amino acid transporters involved in the metabolism of basic amino acids expressed in inflammatory lesions of patients with allergic asthma [121-123]. Arginase gene expression and enzyme activity are enhanced by IL-4 and IL-13 [122,123]. Inhibition of arginase I by RNA interference suppresses IL-13-mediated AHR in a murine model of asthma [124] and inhalation of an arginase inhibitor decreases AHR and airway inflammation in a guinea pig model of asthma [122]. Conversely, deletion of arginase in macrophages impairs their ability to suppress Th2-dependent inflammation and fibrosis [125]. Further research is needed in order to clarify the role of arginases in Th2 immunity.

Histone deacetylases (HDAC) appear to play an important role in cytokine transcription [126]. Corticosteroid signalling requires HDAC2 to suppress inflammatory gene products and HDAC2 activity is diminished in corticosteroid-resistance [9]. HDAC inhibitor Trichostatin A reduces allergic airway inflammation by decreasing expression of the Th2 cytokines, IL-4, IL-5 and IgE [127]. In contrast, HDAC1 appears to be a negative regulator of Th2 cytokine expression [128]. Chromatin modification enzymes might be potential targets for inhibition of Th2-mediated diseases.

Many microbials or their proteins inhibit Th2 immune responses in murine models of asthma by polarising towards Th1 immunity [129-131] or by generating suppressive Tregs [132,133]. Interestingly, microbial agents have both time- and dose-dependent effects on allergic asthma [134,135]. Certain allergens such as dust mite Der p2 and Der f2, bind LPS and are related to the MD-2 protein of the LPS-binding component of the TLR4 signalling complex [136,137], which might influence the induction of Th2 responses demonstrating a potential for microbials augmenting rather than reducing Th2 responses. Alternatively, bacterial DNA or chemically synthesised de novo unmethylated CpG are immunostimulatory ligands that bind to TLR9 and induce strong Th1 immune responses [reviewed in [138]]. Such bacterial and synthetic DNA immunostimulatory oligonucleotides (ISS-ODNs) containing CpG motifs suppress Th2 responses during the sensitisation phase or immediately before challenge in experimental asthma [reviewed in [139]]. They have therapeutic and prophylactic properties [140], including suppression of DC migration and co-stimulatory molecule expression and inhibition of IgE-dependent Th2 cytokine release from mast cells and basophils [141,142]. Moreover, ISS-ODNs added to allergen immunotherapy significantly reduce clinical symptoms in patients with asthma [143].

Conclusions

Th2 cells and/or their secreted effector molecules mediate the immune response to allergens and are triggered by exposure to specific allergens leading to allergic asthma. Thus, inhibiting or eliminating Th2 cells is a beneficial strategy for treating asthma as long as generalised immunosuppression is avoided. Additionally, it is especially important to consider targeting Th2 cells early in disease because when disease is chronic additional factors may cause perpetuation. Although there are a myriad of potential Th2 targets (Figure 2), the

![Figure 2](http://respiratory-research.com/content/12/1/114/57x753)
optimal, most effective anti-Th2 cell target for the clinic remains elusive.

Aside from anti-IgE therapy for severe asthma, there are no major new drugs for the treatment of asthma in the last 20 years. The latest research in allergic asthma that has elucidated key factors governing Th2 immunity and identified potential targets is predominantly from animal models. Now, the challenge is to discover candidates, which best translate from animal models to patients. However, choosing the most effective new drug target candidate is especially difficult because human data is often lacking or incomplete. Additionally, the use of accurate, predictive biomarkers to evaluate Th2-modulating drugs such as FEV1, Quality of Life, reduction in steroid use, decrease allergen-induced late phase response and others are important to ensure that the efficacy/adverse effect profiles are standardised and enable easier decision-making for the best candidates. We would argue that the most promising new compounds for the clinic are those in which proof of concept in patients is established e.g. anti-IL-13 antibodies and CRTH2 antagonists. Other candidates currently tested in the clinic are anti-IL-5, anti-IL-4 and anti-IL-9 compounds and CCR4 antagonists. However, based on available human data, we suggest that the epithelial cell-derived cytokines TSLP, IL-25 and IL-33, which drive Th2 responses are the most promising candidates, with TLSP the clear frontrunner.

Steroids are efficient for treating asthma because they inhibit numerous pro-inflammatory responses and induce numerous anti-inflammatory pathways. Thus, targeting a single mediator may not suffice for the treatment of allergic asthma because of the redundant immune and inflammatory pathways involved upon allergen challenge. Thus, we suggest that targeting more than one molecule simultaneously using dual specific antibody/protein platforms to engineer new drugs will be the next major approach in drug discovery. However, while this approach creates a scenario in which numerous targets can be combined, the caveat is that optimal candidates must be carefully chosen. Another important consideration for the therapeutic strategy for allergic asthma is that drugs may need to be developed for specific subtypes of disease in which particular cellular and molecular pathways drive the disease. One example is the anti-IL-5 mAb, which is only effective in asthmatics with very high sputum and lung eosinophil numbers. This example suggests that it is beneficial to better categorise patients and consider personalised medicine based on a clear classification of disease.

These are exciting times for Th2 cell immunology as the results of basic research are defining key molecular and cellular components in the response to allergens. This information is already being converted to targets that are being tested in the clinic. Currently, irrespective of approach, we consider that a successful strategy for the treatment of allergic asthma will include a selective inhibition of Th2 cells with the ultimate aim of eliminating allergen-specific Th2 immune responses. We anticipate that new candidates will be approved in the near future and offer treatment options for patients suffering with asthma and other allergic diseases.

List of abbreviations
AHR: Airway hyperresponsiveness; AI: Allergen immunotherapy; APC: Antigen presenting cell; Bcl: B cell lymphoma; Th: CD4+ T helper; CR: Chemokine receptor; CRTH2: Chemokine receptor-homologous molecule expressed on TH2 cells; CpG: Cytosine-guanine dinucleotides; CpG-ODN: Cytosine-phosphate-guanine oligonucleotides; CTLA-4: Cytotoxic lymphocyte antigen-4; DC: Dendritic cell; DP1: D prostanoid receptor 1; EGF: Epidermal growth factor; ERK: Extracellular signal regulated kinase FasL: Fas ligand; GM-CSF: Granulocyte-macrophage colony-stimulating factor; HDAC: Histone deacetylases; Ig: Immunoglobulin; ISS-ODNs: Immunostimulatory oligodeoxynucleotides; ICAM: Intercellular adhesion molecule; IFN: Interferon; IL: Interleukin; JAK: Janus kinase; JNK: Jun kinase; mAb: monoclonal antibody; MAPK: Mitogen-activated protein kinases; PDE: Phosphodiesterase; P38K: Phosphoinositol-3-kinase; PD-1: Programmed death-1; PG: Prostaglandin; Siglec: Sialic acid binding Ig-like lectin; STAT: Signal transducer and activator of transcription; SOCS: Suppressor of cytokine signalling; Treg: Regulatory T cell; TSLP: Thymic stromal lymphopoietin; TLR: Toll-like receptor; TGFB: Transforming growth factor; TNF: Tumour necrosis factor; VCAM: Vascular cell adhesion molecule; VLA: Very late antigen.

Acknowledgements
We would like to thank Drs. P. Stuetz and O. Hoffmann for their critical reading of the manuscript, discussions and support. We acknowledge the support for Berislav Bosnjak from the P3AGI project funded by the European Commission through an FP7- IAPP Marie Curie Action - (GA 230739).

Author details
1Department of Dermatology, DIAID, Experimental Allergy Laboratory, Medical University of Vienna, Vienna, Austria. 2BoehringerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany.

Authors’ contributions
BB – was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
BS - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
KE - made substantial contributions to conception of the review; was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.
ME - made substantial contributions to conception of the review, was involved in drafting the manuscript, revising it critically for important intellectual content; and has given final approval of the version to be published.

Competing interests
Berislav Bosnjak – was employee of GlaxoSmithKline Research Centre Zagreb Ltd until December 2008. No other competing interests. Barbara Stelzmüller – none
Klaus J. Erb – is an employee of BoehringerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany
Michelle M. Epstein – received funding from BoehringerIngelheim Pharma, Respiratory Diseases Research, Biberach an der Riss, Germany for collaborative project.
42. Yamashita M, Uki-Akadenuma M, Miyamoto T, Sugaya K, Hosokawa H, Hasegawa A, Kimura M, Taniguchi M, DeGregori J, Nakayama T. Essential role of GATA3 for the maintenance of type 2 helper T (Th2) cytokine production and chromatin remodeling at the Th2 cytokine gene loci. J Biol Chem. 2004;279:26965-26969.

43. Pais SY, Trutt ML, Ho IC. GATA-3 deficiency abrogates the development and maintenance of Th2 helper type 2 cells. Proc Natl Acad Sci USA 2004;101:1993-1998.

44. Bi Y, Liu G, Yang R. MicroRNAs: novel regulators during the immune response. J Cell Physiol. 2009;218:467-472.

45. Lodish HF, 2004. Z. Liu G, Chen CZ. Micromanagement of the immune system by microRNAs. Nat Rev Immunol. 2008;8:130-139.

46. Garbaci D, N Valentin A, Huynh-Thu VA, Geurts P, Irrthum A, Crahay C, Kuhn CF, Bazin M, Philippe L, Zhang J, Tylaska L, Miret J, Bauer PH: T-cell responses to allergens. J Immunol 2007;179:1901-1912.

47. Bonecchi R, Galliera E, Bonorotto EM, Corsi TM, Locati M, Mantovani A: Chemokines and chemokine receptors: an overview. Front Biosci. 2009;14:540-551.

48. Annunziato F, Cosmi L, Galli G, Beltrame C, Romagnani S, Maggi E. Assessment of chemokine receptor expression by human Th1 and Th2 cells in vitro and in vivo. J Leukoc Biol. 1999;65:691-699.

49. Heijink HV, Van Oosterhout AJ: Strategies for targeting T-cells in allergic diseases and asthma. Pharmacol Ther. 2006;112:489-500.

50. Kuhn CF, Bazin M, Philippe L, Zhang J, Tylaska L, Miret J, Bauer PH: MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with miRNAs targets. PLoS One 2011;6:e16509.

51. Volyanov D, Duran K, Hartmann G, Morjana J, Seumos G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH. et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol 2010;184:4568-4574.

52. Woodfolk JA, Bellettato C, Casoni G, Mariani M, Di Lucia P, Papi A, Panina-Bordignon P: Strategies for targeting T-cells in allergic asthma. Pharmacol Ther. 2006;112:489-500.

53. Panina-Bordignon P, Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Strainich T, Lauritzen J, Matsumoto K, et al: CRTH2 in promoting allergic responses. J Pharmacol Exp Ther 2008;153:Suppl 1:S191-199.

54. Royer JF, Trachet P, Carrillo JJ, Lippert P, Strainich T, Lauritzen J, Maggi L, Parente E, Forni S, Frossi F, et al: Phenotypic and functional features of Th17 cells. J Exp Med. 2007;204:1849-1861.

55. Pattegrew R: The roles of the prostat gland 9 receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 2006;148:268-272.

56. Volyanov D, Duran K, Hartmann G, Morjana J, Seumos G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH. et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol 2010;184:4568-4574.

57. Woodfolk JA, Bellettato C, Casoni G, Mariani M, Di Lucia P, Papi A, Panina-Bordignon P: Strategies for targeting T-cells in allergic asthma. Pharmacol Ther. 2006;112:489-500.

58. Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Strainich T, Lauritzen J, Matsumoto K, et al: CRTH2 in promoting allergic responses. J Pharmacol Exp Ther 2008;153:Suppl 1:S191-199.

59. Royer JF, Trachet P, Carrillo JJ, Lippert P, Strainich T, Lauritzen J, Maggi L, Parente E, Forni S, Frossi F, et al: Phenotypic and functional features of Th17 cells. J Exp Med. 2007;204:1849-1861.

60. Pattegrew R: The roles of the prostat gland 9 receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 2006;148:268-272.

61. Volyanov D, Duran K, Hartmann G, Morjana J, Seumos G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH. et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol 2010;184:4568-4574.

62. Woodfolk JA, Bellettato C, Casoni G, Mariani M, Di Lucia P, Papi A, Panina-Bordignon P: Strategies for targeting T-cells in allergic asthma. Pharmacol Ther. 2006;112:489-500.

63. Papi A, Mariani M, Di Lucia P, Casoni G, Bellettato C, Strainich T, Lauritzen J, Matsumoto K, et al: CRTH2 in promoting allergic responses. J Pharmacol Exp Ther 2008;153:Suppl 1:S191-199.

64. Royer JF, Trachet P, Carrillo JJ, Lippert P, Strainich T, Lauritzen J, Maggi L, Parente E, Forni S, Frossi F, et al: Phenotypic and functional features of Th17 cells. J Exp Med. 2007;204:1849-1861.

65. Pattegrew R: The roles of the prostat gland 9 receptors DP(1) and CRTH2 in promoting allergic responses. Br J Pharmacol 2006;148:268-272.

66. Volyanov D, Duran K, Hartmann G, Morjana J, Seumos G, Staples KJ, Hall D, Bessant C, Bartholomew M, Howarth PH. et al: Chemokine receptor 4 plays a key role in T cell recruitment into the airways of asthmatic patients. J Immunol 2010;184:4568-4574.

67. Woodfolk JA, Bellettato C, Casoni G, Mariani M, Di Lucia P, Papi A, Panina-Bordignon P: Strategies for targeting T-cells in allergic asthma. Pharmacol Ther. 2006;112:489-500.
83. Ravensberg AJ, Luik B, Westers P, Hietema PS, Sterk PJ, Lammers JW, Rabe NF: The effect of a single inhaled dose of a VLA-4 antagonist on allergen-induced airway responses and airway inflammation in patients with asthma. *Allergy* 2006, 61:1097-1103.

84. Davenport RJ, Munday JR: Alpha4-integrin antagonism—an effective approach for the treatment of inflammatory diseases? *Drug Discov Today* 2007, 12:569-576.

85. Muro F, Imura S, Yoneda Y, Chiba J, Watanabe T, Setoguchi M, Takayama G, Yokoyama M, Takashi T, Nakayama H, Machinaga N: A novel and potent VLA-4 antagonist based on trans-4-substituted cyclohexanecarboxylic acid. *Bioorg Med Chem* 2009, 17:1232-1243.

86. Saku O, Ohta K, Arai E, Nomoto Y, Miura H, Nakamura H, Fuse E, Nakasto Y: Synthetic study of VLA-4-VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. *Bioorg Med Chem Lett* 2008, 18:1053-1057.

87. Li JP, Vlodavsky I: Heparin, heparan sulfate and heparanase in inflammatory reactions. *Thromb Haemost* 2009, 102:823-838.

88. Duong M, Cockcroft D, Boulet LP, Ahmed T, Iverson H, Atkinson DC, Ge XN, Bahaie NS, Kang BN, Hosseinikhani MR, Ha SG, Frenzel EM, Liu FT, Rao SP, Sirimarrao P: Allergen-induced airway remodeling is impaired in galecinin-3-deficient mice. *J Immunol* 2010, 184:1205-1214.

89. Spinozzi F, de Benedictis D, de Benedictis FM: Astrocytes in the brain: an update on their role in allergic and neurodegenerative diseases. *Front Immunol* 2014, 5:384.

90. Robinson AJ, Kashanin D, Ohta K, Arai E, Nomoto Y, Miura H, Nakamura H, Fuse E, Nakasto Y: Synthetic study of VLA-4-VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. *Bioorg Med Chem Lett* 2008, 18:1053-1057.

91. Wang Y, Bi Y, Wu K, Wang C: Synthetic study of VLA-4-VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. *Bioorg Med Chem Lett* 2008, 18:1053-1057.

92. Lee KM, Chuang E, Griffin M, Khattri R, Hong DK, Zhang W, Straus D, Stahl EG, Watson R, Davis B, Milot J, Samelson LE, Thompson CB, Bluestone JA: Differential ability of Th1 and Th2 T cells to express Fas ligand and to death.

93. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. *Immunity* 2006, 25:237-247.

94. Hothersall E, McCarty C, Thomson NC: Potential therapeutic role for statins in respiratory disease. *Thorax* 2006, 61:729-734.

95. Robinson AJ, Kashanin D, O'Dowd F, Fitzgerald K, Williams JW, Hoffman LM, Hamann KJ, Shilling RA, et al: Fas ligand expression on T Cells is sufficient to prevent prolonged airway inflammation and remodeling by galectin-3 gene therapy in a murine model. *J Immunol* 2006, 176:1943-1950.

96. Kuchroo VK, Dandhalon V, Xiao S, Anderson AC: New roles for TIM family members in immune regulation. *Nat Rev Immunol* 2008, 8:577-580.

97. Grigorion A, Torosian S, Demetriou M: T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. *Physiol Rev* 2009, 99:230-246.

98. Tong J, Clay BS, Ferreira CM, Bandukwala HS, Moore TV, Blaine KM, Dowd F, Fitzgerald K, Williams V, Walsh GM: Potential therapeutic role for statins in respiratory disease. *Thorax* 2006, 61:729-734.

99. Wang Y, Bi Y, Wu K, Wang C: Synthetic study of VLA-4-VCAM-1 inhibitors: synthesis and structure-activity relationship of piperazinylphenylalanine derivatives. *Bioorg Med Chem Lett* 2008, 18:1053-1057.

100. Aihara M, Dobashi K, Iizuka K, Nakazawa T, Mori M: Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. *Int Immunopharmacol* 2004, 4:557-562.

101. Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Application of VLA-4 antagonists in asthma pathogenesis. *J Clin Invest* 2003, 111:1863-1874.

102. Yang M, Rangasamy D, Matthaei KI, Frew AJ, Zimmermann N, King NE, Zimmermann N, Varki A: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. *Proceedings of the National Academy of Sciences of the United States of America* 2004, 101:13251-13256.

103. Muro F, Iimura S, Yoneda Y, Chiba J, Watanabe T, Setoguchi M, Takayama G, Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. *Immunity* 2006, 25:237-247.

104. Hothersall E, McCarty C, Thomson NC: Potential therapeutic role for statins in respiratory disease. *Thorax* 2006, 61:729-734.

105. Robinson AJ, Kashanin D, O'Dowd F, Fitzgerald K, Williams JW, Hoffman LM, Hamann KJ, Shilling RA, et al: Fas ligand expression on T Cells is sufficient to prevent prolonged airway inflammation and remodeling by galectin-3 gene therapy in a murine model. *J Immunol* 2006, 176:1943-1950.

106. Kuchroo VK, Dandhalon V, Xiao S, Anderson AC: New roles for TIM family members in immune regulation. *Nat Rev Immunol* 2008, 8:577-580.

107. Grigorion A, Torosian S, Demetriou M: T-cell growth, cell surface organization, and the galectin-glycoprotein lattice. *Physiol Rev* 2009, 99:230-246.

108. Aihara M, Dobashi K, Iizuka K, Nakazawa T, Mori M: Effect of Y-27632 on release of cytokines from peripheral T cells in asthmatic patients and normal subjects. *Int Immunopharmacol* 2004, 4:557-562.

109. Kim DY, Ryu SY, Lim JE, Lee YS, Ro JY: Application of VLA-4 antagonists in asthma pathogenesis. *J Clin Invest* 2003, 111:1863-1874.

110. Yang M, Rangasamy D, Matthaei KI, Frew AJ, Zimmermann N, King NE, Zimmermann N, Varki A: Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. *Proceedings of the National Academy of Sciences of the United States of America* 2004, 101:13251-13256.
Use of CpG oligonucleotides in treatment of asthma and allergic disease. Adv Drug Deliv Rev 2009; 61:256-262.

Sur S, Wild JS, Choudhry BK, Sur N, Alam R, Klinman DM. Long-term prevention of allergic lung inflammation in a mouse model of asthma by CpG oligodeoxynucleotides. J Immunol 1999; 162:6284-6293.

Constabel H, Stankov MV, Hartwig C, Tschernig T, Behrens GM. Impaired lung dendritic cell migration and T cell stimulation induced by immunostimulatory oligonucleotides contribute to reduced allergic airway inflammation. J Immunol 2009; 183:5443-5453.

Hessel EM, Chu M, Lizcano JO, Chang B, Herman N, Kell SA, Wills-Karp M. Dose-dependent effects of A20 recombinant protein on macrophage activation and the attenuation of mite allergen-induced inflammatory molecules. Am J Respir Crit Care Med 2006, 174:2173-2182.

Korf JE, Pynaert G, Tournoy K, Boonefaes T, Van Oosterhout A, Kemeny DM, Walker C. Impaired function as antigen-presenting cells for an allergen-induced T helper type 2 responses. J Immunol 2009, 183:3868-3878.

Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci 2010.

Chen CL, Wang YM, Liu CF, Wang YJ. The effect of water-soluble chitosan on macrophage activation and the attenuation of mite-allergen-induced airway inflammation. Biomaterials 2008, 29:2173-2182.

FYY720 to the lung abrogates experimental asthma by altering dendritic cell function. J Clin Invest 2006, 116:2935-2944.

Nishimura T, Nishimura Y, Okada T, Kuramoto E, Kotani Y, Yahangier S, Nakamura S. Inhalation of spinocholin kinase inhibitor attenuates airway inflammation in asthmatic mouse model. Am J Physiol Lung Cell Mol Physiol 2008, 294:L1085-1093.

Savicka E, Zauy-Amorci C, Manius C, Trifileff A, Brinkmann V, Kernen DM, Walker C. Inhibition of Th1- and Th2-mediated airway inflammation by the spinocholin 1-phosphate receptor agonist FYY720. J Immunol 2003, 171:6206-6214.

Xia M, Su Z. Recent developments in COR2 antagonists. Expert Opin Ther Pat 2009, 19:299-303.

Pichavant M, Charbonnier AS, Tarot S, Briche A, Wallaert B, Pestel J, Tonneil AB, Gossot P. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J Allergy Clin Immunol 2005, 115:771-778.

Ip WK, Wong CK, Lam CW. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin Exp Immunol 2006, 145:162-172.

Hammad H, Kool M, Soullie T, Narumiya S, Trottein F, Hoogsteden HC, Lambrecht BN. Activation of the pro d 2 receptor 1 sodium channels by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med 2007, 204:357-367.

Coffman RL. Synthesis of oligonucleotides as modulators of inflammation. J Leukoc Biol 2008, 84:958-964.

Tajima K, Liu YJ, Ito T, Fukuhara S. Enhanced of Th1 Lung Immunity Induced by Recombinant Mycobacterium bovis BCG Attenuates Airway Allergic Disease. Am J Respir Cell Mol Biol 2009, 41:257-261.

Angeli V, Hammad H, Staels B, Capron M, Lambrecht BN, Trottein F, Hammad H. Kool M, Soullie T, Narumiya S, Trottein F, Hoogsteden HC, Lambrecht BN. Activation of the pro d 2 receptor 1 sodium channels by modulation of lung dendritic cell function and induction of regulatory T cells. J Exp Med 2007, 204:357-367.

Korf JE, Pynaert G, Tournoy K, Boonefaes T, Van Oosterhout A, Kemeny DM, Walker C. Impaired function as antigen-presenting cells for an allergen-induced T helper type 2 responses. J Immunol 2009, 183:3868-3878.

Singh AK, Stock P, Akbari O. Role of PD-L1 and PD-L2 in allergic asthma and disease. Allergy 2011, 66:155-162.

Tilley SL, Boucher RC. A1 antagonism in asthma: better than coffee? J Clin Invest 2005, 115:13-16.

Lopez-Castejon G, Banja-Mazo A, Pelegri P. Novel macrophage polarization model: from gene expression to identification of new anti-inflammatory molecules. Cell Mol Life Sci 2010.

Chen CL, Wang YM, Liu CF, Wang YJ. The effect of water-soluble chitosan on macrophage activation and the attenuation of mite-allergen-induced airway inflammation. Biomaterials 2008, 29:2173-2182.
necessary and sufficient for induction of Th2 immunity to inhaled house dust mite allergen. J Exp Med 2010, 207:2097-2111.

168. Kim S, Prout M, Ramshaw H, Lopez AF, LeCros G, Min B. Cutting edge: basophils are transiently recruited into the draining lymph nodes during helminth infection via IL-3, but infection-induced Th2 immunity can develop without basophil lymph node recruitment or IL-3. Journal of immunology 2010, 184:1143-1147.

169. Ho IC, Tai TS, Pai SY: GATA3 and the T-cell lineage: essential functions before and after Thelper-2-cell differentiation. Nat Rev Immunol 2009, 9:125-135.

170. Finotto S, De Sanctis GT, Lehr HA, Herz U, Buerke M, Schopp M, Bartsch B, Atrey A, Schmitt E, Galle PR et al. Treatment of allergic airway inflammation and hyperresponsiveness by antisense-induced local blockade of GATA-3 expression. J Exp Med 2001, 193:1247-1260.

171. Lee CC, Huang HY, Chiang BL: More complicated than it looks: assembly of Notch pathway transcription complexes. J Exp Med 2005, 202:1037-1042.

172. Stritesky GL, Muthukrishnan R, Sehra S, Goswami R, Pham D, Travers J, Ho IC, Tai TS, Pai SY: Inhibition of Th2 differentiation and maintenance of TH2-mediated allergic responses. Nat Med 2003, 9:1047-1054.

173. Taleb S, Romain M, Ramkalwar B, Uttenhoeve C, Pasterkamp G, Herbin O, Esposito B, Perez N, Yasukawa H, Van Snick J et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in autoimmunity. J Exp Med 2009, 206:2067-2077.

174. Seki Y, Hayakishi K, Matsumoto A, Seki N, Tsukada J, Ransoms J, Naka T, Kishimoto T, Yoshimura A, Kubo M. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA 2002, 99:13003-13008.

175. Shimizu Y, Takeshita K, Shichijo M, Kokubo T, Sato M, Nakashima K, Koseki H, Gejyo F, Nakayama T: Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment. Nat Immunol 2009, 10:1260-1266.

176. Shinnakasu R, Yamashita M, Kuvahara M, Hasegawa H, Hasegawa A, Motohashi S, Nakayama T: Gfi1-mediated stabilization of GATA3 protein is required for Th2 cell differentiation. J Biol Chem 2008, 283:28216-28225.

177. Hirahara K, Yamashita M, Iwamura C, Shinoda K, Hasegawa A, Yoshizawa H, Koseki H, Gejyo F, Nakayama T: Repressor of GATA regulates TH2-driven allergic airway inflammation and airway hyperresponsiveness. J Allergy Clin Immunol 2008, 122:513-520, e511.

178. Kuem S, Toney LM, Sato H, Dent AL: Inhibition of Th2 differentiation and GATA-3 expression by BCL-6. J Immunol 2003, 170:2435-2441.

179. Yoshimura A, Naka T, Kubo M: SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007, 7:454-465.

180. Seki Y, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, Komine O, Hamano S, Hirano K, Inagaki-Obara K et al. SOCS-3 regulates onset and maintenance of TH2-mediated allergic responses. Nat Med 2003, 9:1047-1054.

181. Tu L, Fang TC, Artis D, Shestova O, Pross SE, Maillard I, Pear WS: Expression of c-maf promotes T helper cell type 2 (Th2) and basophilic responses and modulating Th1 and Th2 responses. J Exp Med 2008, 205:1037-1042.

182. Kovall RA: Cutting edge: c-maf is responsible for tissue-specific expression of interleukin-4. J Cell Biol 1996, 135:973-983.

183. Fortini ME, Narasimhan V, Brown LP: Notch signaling: the core pathway and its posttranslational regulation. Dev Cell 2009, 16:633-647.

184. Ho IC, Hodge MR, Rooney JW, Glomcher LH: The proto-oncogene c-maf is responsible for tissue-specific expression of interleukin-4. J Cell Biol 1996, 135:897-903.

185. Ho IC, Lo D, Glomcher LH: c-maf promotes T helper cell type 2 (Th2) and attenuates Th1 differentiation by both interleukin 4-dependent and -independent mechanisms. J Exp Med 1998, 188:1859-1866.

186. Ko E, Rho S, Cho C, Choi H, Ko S, Lee Y, Hong MC, Shin MK, Jung SG, Bae H: So-Cheong-Ryong-Tang, traditional Korean medicine, suppresses Th2 lineage development. Biochem Pharmacol 2004, 27:739-743.

187. Won HS, Min HJ, Ahn JH, Yoo SE, Bae MA, Hong JH, Hwang ES: Anti-allergic function and regulatory mechanisms of KM62980 in allergen-induced airway inflammation. Biochem Pharmacol 2009.

188. Liu Z, Li Z, Mao K, Zou J, Wang Y, Tao Z, Lin G, Tian L, Ji Y, Wu X, et al: Dec2 promotes Th2 cell differentiation by enhancing IL-2R signaling. J Immunol 2009, 183:6320-6329.
208. Adcock IM, Chung KF, Caramori G, Ito K: Kinase inhibitors and airway inflammation. Eur J Pharmacol 2006, 533:118-132.

209. Barnes PJ: Novel signal transduction modulators for the treatment of airway diseases. Pharmacol Ther 2006, 109:238-245.

210. Gneuhaus LM, Schwartz R, Woskar J, Jr, DeLeon RP, Peet GW, Warren TC, Capolino A, Mara L, Morelock MM, Shrutkowski A, et al: Inhibition of pro-inflammatory cytokine production by the dual p38/JNK inhibitor BIRB796 correlates with the inhibition of p38 signaling. Biochem Pharmacol 2009, 77:422-452.

211. Chiala L, Zhang M, Brune K, Pahl A: Inhibition of mitogen-activated protein kinases differentially regulate costimulated T cell cytokine production and mouse airway eosinophilia. Respir Res 2005, 6:36.

212. Nuth P, Eynott P, Leung SY, Adcock IM, Bennett BL, Chung KF: Potential role of c-Jun NH2-terminal kinase in allergic airway inflammation and remodelling: effects of SP600125. Eur J Pharmacol 2005, 506:273-283.

213. TrifilettI A, Keller TH, Presi N, Howe T, Gedek P, Beer D, Walker C: CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Br J Pharmacol 2005, 144:1002-1010.

214. Lee KS, Park SJ, Kim SR, Min RH, Lee KY, Choe YH, Hong SH, Lee YR, Kim JS, Hong SJ, Lee YC: Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 2010, 36:523-531.

215. Park SJ, Min KH, Lee YC: Phosphoinositide 3-kinase delta inhibitor as a novel therapeutic agent in asthma. Respir Physiol Neuro 2008, 163:74-771.

216. Birell MA, Hardaker E, Wong S, McCluskie K, Catley M, De Alba J, Newton R, Trifiletti A, Keller TH, Press NJ, Howe T, Gedeck P, Beer D, Walker C: CGH2466, a combined adenosine receptor antagonist, p38 mitogen-activated protein kinase and phosphodiesterase type 4 inhibitor with potent in vitro and in vivo anti-inflammatory activities. Br J Pharmacol 2005, 144:1002-1010.

217. Ziegelbauer K, Gantner F, Lukacs NW, Berlin A, Fuchkami K, Niki T, Sakai K, Inibe H, Tahakaira K, Ishimori M, et al: A selective novel low-molecular-weight inhibitor of iNKK alpha kinase-2 (IKK-beta) prevents pulmonary inflammation and shows broad anti-inflammatory activity. Br J Pharmacol 2005, 145:178-192.

218. Hirose K, Wakahara H, Oku M, Kogami S, Suto A, Ikeka K, Watanabe N, Iwashimo Y, Fujisaki Y, Nakajima H: GS153, an iNKK alpha ubiquitination inhibitor, inhibits allergic airway inflammation in mice. Biochem Biophys Res Commun 2008, 357:504-511.

219. Lu S, Liu N, Dass SB, Reiss TJ, Knorr BA: Randomized, placebo-controlled study of a selective PDE4 inhibitor in the treatment of asthma. Respir Med 2009, 103:342-347.

220. Singh D, Petavy F, Macdonald AJ, Lazarat O, Connor BJ: The inhaled phosphodiesterase 4 inhibitor GS526506 reduces allergic challenge responses in asthma. Respir Res 2010, 11:26.

221. Boswell-Smith V, Dooms H, Barron L, Abbas AK: Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2006, 206:19-28.

222. Rothenberg ME, Oettgen FH, Silberstein DS, Woods J, Oberman RL, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. The Journal of clinical investigation 1998, 81:1986-1992.

223. Valenti P, Dahlen CA: Role of interleukins in the regulation of basophil development and secretion. Current opinion in hematology 2010, 17:70-76.

224. Asquith KL, Ramshaw HS, Hansbro PM, Beagley KW, Beagley KW, Hansbo AG, Hawrylczcz C: Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 2006, 213:114-131.

225. Trinchieri G: Proinflammatory and immunoregulatory functions of interleukin-12. Int Rev Immunol 1998, 16:355-365.

226. Gavin SH, O’Heam D, Li X, Huang SK, Finkelman FD, Wills-Karp M: Interleukin 12 inhibits antigen-induced airway hyperresponsiveness, inflammation, and Th2 cytokine expression in mice. J Exp Med 1995, 182:1527-1536.

227. Bryan SA, OConnor BJ, Mattie S, Leckie MJ, Kanabar V, Khan J, Warrington SJ, Renzetti L, Acheson JA, et al: Effects of recombinant human interleukin-12 on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet 2000, 356:2144-2148.

228. Busse WW, Canil R, Gossage D, Sani S, Wang B, Bolbeck R, Coyle AJ, Koike M, Spitalny GL, Kienar PA, et al: Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma. J Allergy Clin Immunol 2010, 125:1237-1244, e1232.

229. Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, Marshall RP, Bradding P, Green RH, Wardlaw AJ, Pavord ID: Mepolizumab and exacerbations of refractory eosinophilic asthma. The New England journal of medicine 2009, 360:973-984.

230. Nair P, Pizichinni MM, Kjaergaard M, Inman MD, Efthimiadis A, Pizzichini E, Hargreave F, O’Byrne PM: Mepolizumab for prednisone-dependent asthma with spumon eosinophilia. N Engl J Med 2009, 360:985-993.

231. Rincon M, Anguita J, Nakamura T, Fikrig E, Flavell RA: Interleukin(IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 1997, 185:461-469.

232. Mucida D, Salek-Ardakani S: Regulation of TH17 cells in the mucosal surfaces. J Allergy Clin Immunol 2009, 123:997-1003.

233. Weinstenbach M, Caillot T, Weber C, Spiteri D, Wirth D, Versteerde D, Heinrich PC, Schaper F: Interleukin-6 is a direct mediator of T cell migration. Eur J Immunol 2004, 34:2895-2906.

234. Renaud JC, Goethals A, Houssiau F, Meir H, Van Roost E, Van Snick J: Human P40/IL-9. Expression in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 1999, 164:4235-4241.

235. McLane MP, Haczku A, van de Rijn M, Weiss C, Ferrante V, MacDonald D, Washko GR, Yee AJ, Amundson S, Schnitt JJ: Safety, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in phase I dose-escalation studies in subjects with mild asthma. J Allergy Clin Immunol 2006, 117:963-971.

236. White B, Leon F, White WI, White B, Molfino NA: Expression of interleukin 9 in activated CD4+ T cells, genomic organization, and comparison with the mouse gene. J Immunol 1999, 164:4235-4241.

237. Parker JM, Okh CF, Larence C, Miller SD, Pearman DS, Le C, Robbie GJ, White WI, White B, Molinno NA: Safety profile and clinical activity of multiple subcutaneous doses of MEDI-528, a monoclonal antibody against interleukin-9, in healthy adult volunteers. Clin Ther 2009, 31:728-740.

238. Rothenberg ME, Oettgen FH, Silberstein DS, Woods J, Oberman RL, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. The Journal of clinical investigation 1998, 81:1986-1992.

239. Valenti P, Dahlen CA: Role of interleukins in the regulation of basophil development and secretion. Current opinion in hematology 2010, 17:70-76.

240. Boswell-Smith V, Dooms H, Barron L, Abbas AK: Interleukin-2 in the development and control of inflammatory disease. Immunol Rev 2006, 206:19-28.

241. Rothenberg ME, Oettgen FH, Silberstein DS, Woods J, Oberman RL, Austen KF, Stevens RL: Human eosinophils have prolonged survival, enhanced functional properties, and become hypodense when exposed to human interleukin 3. The Journal of clinical investigation 1998, 81:1986-1992.
Cite this article as: Bosnjak et al. Treatment of allergic asthma: Modulation of Th2 cells and their responses. Respiratory Research 2011 12:114