Using multi-relational data mining to discriminate blended therapy
efficiency on patients based on log data

Artur Rochaa,*, Rui Camachob, Jeroen Ruwaardc, Heleen Riperc

a INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Porto, Portugal
b DEI & Faculdade de Engenharia & LIAAD-INESC TEC, Universidade do Porto, Portugal
c Vrije Universiteit Amsterdam, Department of Clinical Psychology, De Boelelaan 1081, Amsterdam 1081 HV, Netherlands

ARTICLE INFO

Keywords:
Multi-relational data mining
Internet intervention
Moodbuster
Log data
Ecological momentary assessment

ABSTRACT

Introduction: Clinical trials of blended Internet-based treatments deliver a wealth of data from various sources, such as self-report questionnaires, diagnostic interviews, treatment platform log files and Ecological Momentary Assessments (EMA). Mining these complex data for clinically relevant patterns is a daunting task for which no definitive best method exists. In this paper, we explore the expressive power of the multi-relational Inductive Logic Programming (ILP) data mining approach, using combined trial data of the EU E-COMPARED depression trial.

Methods: We explored the capability of ILP to handle and combine (implicit) multiple relationships in the E-COMPARED data. This data set has the following features that favor ILP analysis: 1) Time reasoning is involved; 2) there is a reasonable amount of explicit useful relations to be analyzed; 3) ILP is capable of building comprehensible models that might be perceived as putative explanations by domain experts; 4) both numerical and statistical models may coexist within ILP models if necessary. In our analyses, we focused on scores of the PHQ-8 self-report questionnaire (which taps depressive symptom severity), and on EMA of mood and various other clinically relevant factors. Both measures were administered during treatment, which lasted between 9 to 16 weeks.

Results: E-COMPARED trial data revealed different individual improvement patterns: PHQ-8 scores suggested that some individuals improved quickly during the first weeks of the treatment, while others improved at a (much) slower pace, or not at all. Combining self-reported Ecological Momentary Assessments (EMA), PHQ-8 scores and log data about the usage of the ICT4D platform in the context of blended care, we set out to unveil possible causes for these different trajectories.

Discussion: This work complements other studies into alternative data mining approaches to E-COMPARED trial data analysis, which are all aimed to identify clinically meaningful predictors of system use and treatment outcome. Strengths and limitations of the ILP approach given this objective will be discussed.

1. Introduction

E-COMPARED (Kleiboer et al., 2016) is a European multi-centre trial, comparing face-to-face cognitive behavior therapy (cbt) for depression with so-called blended cbt, in which treatment is provided through a mix of face-to-face and online contact1. At 5 out of 8 research sites of E-COMPARED (DE, FR, NL, UK & PL), the on-line component of the blended treatment was delivered through an internet-based system called Moodbuster/ICT4D (Warmerdam et al., 2012; Rocha et al., 2012), through which detailed logs of system usage were systematically collected, as well as Ecological Momentary Assessments (EMA) (Shiffman et al., 2008).

The wealth of data collected in trials such as E-COMPARED may be key in the development of personalized treatments. To understand the different ways in which patients use the system and how this translates to better (or worse) outcomes, detailed patient-level data such as collected in the E-COMPARED trial are crucial. At present, however, it is not clear what analytic techniques are most suitable to identify relevant patterns in the data. Mining these complex data for clinically relevant patterns is a daunting task for which, at present, no ‘silver bullet’ method exists.

This paper describes the use of Inductive Logic Programming (ILP;
Muggleton, 1991), a data mining method that focuses strongly on implicit relationships between multi-relational data. In our models, we set out to identify links between factors such as the number of hours spent in on-line therapy, the number of messages exchanged with the therapist, or the number of EMA ratings, to explain observed differences in treatment outcomes.

2. Inductive Logic Programming Framework

Inductive Logic Programming (ILP) (Muggleton and De Raedt, 1994) is a flavor of multi-relational learning (Džeroski and Lavrač, 2001) and, therefore, also a sub-area of Machine Learning (ML). ILP is in the intersection of Statistics and Logic Programming (LP). From LP it inherits the representation scheme for both data and models—a subset of First Order Logic (FOL). It is a supervised ML method. ILP addresses the problem of inducing hypotheses (as predicate definitions) from examples and background knowledge. According to (Lavrač and Flach, 2001), an ILP learner requires an initial theory BK (background knowledge) and evidence E (examples), to induce a theory H (hypothesis) that, together with BK, explains some properties of E.

In traditional ILP, E comes in two forms: positive and negative. In this setting ILP is applied to binary classification problems. Positive examples (E+) are instances of the concept to learn, whereas negative examples are not. Negative examples are used to avoid over-generalization.

Due to the use of FOL to encode both data and BK, structured data can be easily handled in ILP. The third ingredient, H, is also encoded in FOL and can therefore represent highly complex models. Traditional ILP systems transform the induction process into a search over a very large space (sometimes infinite) which may cause efficiency problems when dealing with complex problems. To address this problem, the user may constrain the language of H and use a set of parameters for that purpose.

ILP’s logic representation of the induced models has been used to leverage several scientific applications. Although, in general, ILP does not perform much better that “propositional” learners like Support Vector Machines, Decision Trees, etc., the goal of its use is to get comprehensible models that contribute to explain the phenomena that produced the data.

ILP systems like Aleph Srinivasan (2001), April Fonseca et al. (2006) or Indlog Camacho (1998) have a highly powerful expressive language to verify the constraints mentioned above to constrain the hypothesis’ language. In our study we have used the Aleph (Srinivasan, 2001) ILP system that implements the MDIE (see Muggleton, 1995) method to induce hypotheses.

3. Related work

Other data analysis and prediction works have been performed in the scope of E-COMPARED (see e.g. van Breda et al., 2016b; Becker et al., 2016; van Breda et al., 2016a), mostly focused in the short term prediction of important traits for depression such as mood. Some of these works have made use of data like the one used for the BK in this experiment to attempt to improve the accuracy of the aforementioned models, but they did not focus on trying to understand which factors had impact on the outcome of the therapy.

ILP has relevant applications to problems in complex domains like natural language and molecular computational biology (Muggleton, 1999). An initial and major work were ILP was used in a scientific setting with the goal of building understandable models was in a rational drug design domain were ILP was used to predict the mutagenicity of a set of drugs (Srinivasan et al., 1994). The data set had been previously studied using a statistics approach (Debnath et al., 1991), with good predictive results but no clue was provided to understand why the drugs were mutagenic. The ILP algorithm identified a set of substructures that the domain experts found relevant for the explanation of mutagenicity.

4. Experiments

4.1. Data

For this experiment we considered a dataset containing anonymous log data from 201 patients from different test sites using the ICT4D/Moodbuster platform in 5 different countries.

Planned treatment durations were different across research sites. In DE, PL, and the UK, treatment was delivered to patients who were recruited in primary care, in a scheduled treatment duration of approximately 6 to 13 weeks. In FR and NL, patients were recruited in specialized treatment settings. At these sites, the scheduled treatment duration was 16 to 20 weeks.

In spite of these differences (treatments lasted between 9 to 16 weeks), sites followed a common trial protocol, which makes results comparable. Even though most patients improved along the treatment, it was observed that some patients performed particularly well, achieving significant improvement before the expected treatment duration. Other patients did not recover as much, even when considering the full extent of the therapy.

Considering that improvement takes into account the difference between the final and initial scores, records with less than two PHQ-8 assessments were purged, resulting in a final data set comprising data for 179 unique patients. Table 1 summarizes base data for this experiment considering participants with at least 2 PHQ-8 evaluations.

The features in Table 2, derived from the log data and EMA datasets, have been used to write ILP background knowledge — set of predicates to encode the ILP model.

4.2. Data preparation

In order to setup the ILP model, a set of positive and negative examples (E) needs to be provided. For this setting we will use the PHQ-8 score as an index accepted by experts to measure the severity of depression. Therefore, if we consider the difference between the final and the initial PHQ-8 scores a measure for the outcome of the therapy, we need to define a cutoff value to distinguish successful from unsuccessful interventions.

A simplistic approach is to consider a positive outcome a reduction of at least 1 point in the PHQ-8 score. However, most clinicians will disregard this approach as an effective measure of outcome since it does not take into account the error inherent to the associated evaluation instrument (the PHQ-8 questionnaire). As a rule of thumb, several practitioners will consider an intervention successful if there is a decrease of at least 50% relative to the first PHQ score.

It is possible, however, to determine a clinical significant change using statistical methods (Jacobson and Truax, 1991). According to this method a reliable change index (RC) of at least 1.96 means that the post-test score (x) is likely to reflect a real change from a pretest score (x), where:

Table 1
Number of: participants per country, Weblog events, Messages, PHQ assessments.

Country	Participants	Weblog events	Messages	EMA Ratings	PHQ assessments
DE	82	23,613	1861	20,779	439
FR	23	8907	214	3915	102
NL	25	5479	250	3989	88
PL	26	7309	236	4256	120
UK	23	4103	30	2359	103
Total N	179	49,411	2591	35,298	852
RC = \frac{X_f - X_i}{S_{diff}}

Therefore we can calculate the standard error \(SE = S_{dev} \sqrt{1 - \frac{1}{n_{xx}}} \), where \(S_{dev} \) is the standard deviation for the initial PHQ-8 score in the whole population \((S_{dev} = 4.48) \) and \(n_{xx} \) is the test-retest reliably score for the questionnaire\(^2\) \((r_{xx} = 0.85) \), calculating the value of \(S_{diff} \) defined as \(\sqrt{2(SE)^2} \). Then, in order to obtain an RC index of at least 1.96, the minimum change \((X_f - X_i) \) with clinical significance is 4.81. In this case, a negative change is sought.

Last but not the least, we can define a cutoff for patients that experienced a significant change and finished their treatments with mild to no depression — final PHQ8 inferior to 10.

In summary, the following cutoffs have been defined for this experiment:

- **Positive change**: patients that improved at least one point in the PHQ-8 score \((X_f - X_i \geq -1) \);
- **50% Improvement**: patients whose final PHQ-8 score is at least 50% less than the initial one \((X_f \leq \frac{1}{2} X_i) \);
- **Significant change**: patients that improved at least 5 points in the PHQ-8 scale \((X_f - X_i > -4.81) \);
- **Clinically Improved**: patients that improved at least 5 points and finished with \(< 10 \) in the PHQ-8 scale \((X_f - X_i < 4.81; X_i < 10) \).

According to the defined cutoffs, Table 3 summarizes patient improvements by country and in total.

4.3. ILP experiments

When using ILP as a data analysis tool we had two goals in mind: i) to induce a comprehensible model that could be interpreted as a plausible explanation for the fast recovering of some of the patients encoded in the data set and; ii) to determine which features of the treatment may have a relevant impact in the recovery speed.

We have divided the Background Knowledge (BK) concerning patients data into three sets: predicates analyzing patient and EMA metadata (further referred to as EMA); predicates analyzing Moodbuster usage logs by patient (LOG); and predicates analyzing the exchanged messages between patients and caretakers (MSG). We then setup seven data analysis studies, using each of the background knowledge subsets separately and combinations between these.

Given time constraints and the heavy ILP run times, instead of running the model for all the cutoff conditions, we have chosen one of the most strict cutoff condition for improvement — **clinically improved**, which seems also the most sensible criteria for clinicians.

In all of the studies the following Aleph parameter’s values were set. The hypothesis space was bound to a limit of 2 million clauses. The maximum clause length was set to 14, meaning that a clause could not have more than 14 literal (including the head literal). The sample size was set to 3, meaning that 3 positive examples were used to seed 3 searches across the corresponding hypothesis space and only after the 3 search procedures the best clause found was accepted. With the above parameters set we have carried out a search for a good theory varying two other parameters that have high impact on the theory quality: \(minpos \) and \(noise\). \(minpos \) avoids Aleph to accept clauses that “explain” less than \(minpos \) positive examples. \(noise \) specifies that an acceptable clause may “explain” \(noise \) negative examples. We have experimented with the following set of \(minpos \) percentage values: 5; 6; 7; 8; 10; and 15. We have used the following \(noise \) values: 3; 4; and 5. Models were assessed using a 10-fold Cross Validation (CV) procedure. Accuracy and \(F\)-measure were the metrics used to estimate the model’s quality. The total number of Aleph runs was \(7 (BK\ sub\ sets) \times 5 (minpos\ values) \times 3 (noise\ values) \times 10 \) (CV folds) giving a total of 1050 runs.

4.4. Results

Table 4 summarizes the performance of the ILP model according to the most clinically relevant cutoff conditions, used to distinguish between patients that improved and that did not improve.

The number of patients that improved according to this cutoff condition was 86 out of a total of 179, meaning that 93 patients did not clinically improve (although they may have improved to some extent). This means that the majority class accounts for 52% (93/179) of the patients, which sets a base line for the accuracy of each set of BK.

The precision (a sort of accuracy considering only the positive values) is calculated as the number of true positives (positives correctly predicted by the model) divided by the number of cases the model predicted as positive. The recall is a measure of sensitivity, calculated by dividing the true positives by the total number of effective positives. \(F\)-measure is a harmonic mean between precision and recall.

4.5. Discussion

Considering the LOG and EMA BK separately, the accuracy of the model is merely 8% above the majority class. While this a positive result, it is not expressive enough to afford that the usage of the Internet-based platform and associated App, collectively designated as Moodbuster, predicts the clinical improvement of the patient per se. The predicates for messages exchanged (MSG BK) account for an average of nearly 66% across all cross-validations which seems to suggest that a higher engagement between patient and therapist has a positive effect on the outcome of the therapy. However, combining MSG either with LOG (Web platform adherence) or with EMA (Mobile App adherence)

\(^2\) http://patienteducation.stanford.edu/research/phq.pdf.
does not improve the performance of the model (60% in both cases).

In addition there is a high standard deviation in the accuracy of all the BK subsets, associated to relatively low values of precision, recall and F-measure. We have to say also that the size of the data set is small if we consider the number of origin of the patients. The representatives of each country in the “test block” of a 10-fold cross validation might be rather small or non existent (Ex: if one has only 5 representatives of each country in the validation might be rather small or non existent (Ex: if one has only 5 countries of origin of the patients. The BK subsets, associated to relatively low values of precision, recall and F-measure. We have to say also that the size of the data set is small.

As an example of the understandability of the rules resulting from ILP, we would like to point out two examples:

- Polish patients that spent at least 58.1 min online up to the first PHQ assessment and were in treatment for a total of at least 48 days, clinically improved. [Rule covering 12 positive cases out of 15 possible and only 2 negative cases].
- German patients that spent < 85 min online up to the first PHQ assessment and were in treatment for a total of at least 83 days, clinically improved. [Rule covering 12 positive cases out of 46 possible and only 1 negative case].

Seemingly contradictory rules such as the previous ones, associated to the fact that no outstanding rules emerged from the runs (combinations of predicates that explain a high percentage of the results), led us to perform a few summaries on the data to obtain an explanation of why that happened.

The first insight comes from the last column of Table 3, which shows that the number of positive examples according to the chosen cutoff condition is not very high, when divided by country.

Additionally, when looking at Table 5, containing the summary of usage data for the patients that clinically improved (labeled Y) and the ones that did not (labeled N) — considering the whole dataset (last row of the table), there is a very dim variation in terms of usage between the two groups. There are some large differences when considering individual countries such as FR, NL or UK, which are attenuated by an inverse tendency in the most representative group of the population from DE. In addition to the previous results, Table 6 focuses only on the clinically improved group and provides a summary of patient data when the cutoff condition clinically improved was met, in comparison with the full length of the treatment.

In average, when patients could be considered clinically improved, they had already recovered 90% of their total improvement, done around 60% of the modules (3 in 5 modules, excluding introduction) and spent 60% of the total intervention time (< 8 of 12 weeks).

It is worth mentioning that no big differences were found in terms of therapy performance across the countries. For example, the patients that crossed the CI threshold in DE did so even faster than the average. The high engagement found in the LOG BK for the group that did not clinically improve, maps to the patients that kept using the platform even though they did not meet the threshold.

Table 3	Summary of improvements according to predefined cutoff conditions.				
Country	Participants (at least 2 PHQ-8 scores)	Positive change ($x_i - x_{i-1}$)	50% Improvement ($\frac{x_i - x_{i-1}}{x_{i-1}} \leq 0.5$)	Significant change ($x_i - x_{i-1}$)	Clinically Improved ($x_i - x_{i-1}$)
DE	82	73 (89%)	38 (46%)	57 (70%)	46 (56%)
FR	23	19 (83%)	7 (30%)	9 (39%)	7 (30%)
NL	25	22 (88%)	8 (32%)	13 (52%)	9 (36%)
PL	26	21 (81%)	14 (54%)	18 (69%)	15 (58%)
UK	23	19 (83%)	9 (39%)	13 (57%)	9 (39%)
Total N	179	154 (86%)	76 (42%)	110 (61%)	86 (48%)

Table 4	Performance results for the combination of background subsets of predicates. The pos/neg criteria used was clinically improved.			
BK subset	Accuracy (%)	Precision (%)	Recall (%)	F-measure (%)
LOG	60.1 (18)	58.3 (13.1)	63.8 (16.8)	59.9 (12.0)
MSG	65.7 (16.6)	68.1 (21.3)	57.5 (23.4)	60.8 (20.0)
EMA	60.2 (15.9)	60.2 (16.9)	53.5 (19.4)	56.1 (17.6)
LOG + MSG	59.7 (7.6)	60.3 (9.8)	51.4 (14.3)	54.7 (10.2)
EMA + MSG	60.4 (13.8)	60.4 (15.6)	52.5 (15.3)	55.4 (14.5)
EMA + LOG	62.1 (8.2)	62.4 (11.5)	52.0 (16.7)	56.0 (15.9)
EMA + LOG + MSG	62.5 (10.3)	59.6 (2.6)	58.0 (13.0)	57.6 (6.0)

Table 5	Summary of Moodbuster platform usage for Clinically Improved (CI) vs Not Clinically Improved.
CN CI? Page visits Minutes online Sessions Exercises Distinct pages Days from first to last visit	
DE Y 263 346 16 114 121 98	
N 320 405 17 136 118 98	
FR Y 586 527 27 262 124 163	
N 300 333 15 122 98 100	
NL Y 325 317 20 142 104 128	
N 160 187 9 62 76 86	
PL Y 292 332 14 109 120 94	
N 267 411 18 109 94 46	
UK Y 257 342 13 97 125 117	
N 128 173 6 45 86 76	
Tot. Y 300 355 17 127 119 108	
N 254 321 14 104 99 87	

Table 6	Patient data when Clinically Improved (CI) vs Not Clinically Improved.
Country Improvement Modules complete Days in treatment	
Total CI Total CI Total CI	
DE 9 8 (90%) 3 63 (63%) 81 46 (56%)	
FR 10 8 (84%) 5 3 (57%) 119 60 (54%)	
NL 9 7 (91%) 5 3 (69%) 114 68 (63%)	
PL 11 10 (91%) 5 3 (62%) 65 43 (66%)	
UK 9 8 (92%) 4 65 (65%) 84 62 (70%)	
Total N 9 8 (90%) 5 3 (63%) 85 51 (60%)	
5. Conclusions and future work

Insight from the ILP model suggests adherence to the use of the Moodbuster platform (Web, App and messaging) has a positive influence on the outcome of the treatment, even though the numbers are modest: 60% accuracy. The strict conditions of the clinically improved cutoff filter out lighter improvements (see Table 3), which can still mean that patients have greatly benefited from the intervention, even if they did not finish the treatment with mild to no depression. This is also consistent with the fact that the data used for this experiment is not final data, so several patients were still in treatment.

Results from the previous section also show that patients classified under the clinically improved group not only achieved the treatment goals, but have converged to their goal rather fast — roughly 90% of the total improvement occurred in 60% of the full intervention time. The reasons behind this fast improvement could be further studied with a larger dataset enabling the application of induction only on the clinically improved group.

Other future work includes running the models with the complete datasets for the whole E-COMPARED trials data and using different cutoff criteria, with the aim of unveiling higher accuracy background knowledge (BK). Another possible research direction is fine-tuning BK sets to include only the most promising predicates.

Acknowledgements

Publication costs of this article are financed by the ERDF – European Regional Development Fund through the Operational Programme for Competitiveness and Internationalisation – COMPETE 2020 Programme within project «POCI-01-0145-FEDER-006961», and by National Funds through the FCT – Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) as part of project UID/EIA/50014/2013.

References

Becker, D., Reemer, V., Funk, B., Asselbergs, J., Riper, H., Ruwaard, J., 2016. How to predict mood? Delving into features of smartphone-based data.

Camacho, R., 1998. Inducing Models of Human Control Skills. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 107–118. http://dx.doi.org/10.1007/BFb0026679.

Debnath, A.K., Lopez de Compadre, R.L., Debnath, G., Shusterman, A.J., Hansch, C., 1995. Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. J. Med. Chem. 34 (2), 786–797.

Džeroski, S., Lavrač, N. (Eds.), 2001. Relational Data Mining, 1st ed. Springer-Verlag.

Fonseca, N.A., Silva, F., Camacho, R., 2006. April - An Inductive Logic Programming System. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 481–484. http://dx.doi.org/10.1007/11853886_42.

Jacobson, N.S., Truax, P., 1991. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J. Consult. Clin. Psychol. 59 (1), 12.

Kleiboer, A., Smit, J., Bosmans, J., Ruwaard, J., Andersson, G., Topoco, N., Berger, T., Krieger, T., Botella, C., Bairos, R., et al., 2016. European comparative effectiveness research on blended depression treatment versus treatment-as-usual (e-compared): study protocol for a randomized controlled, non-inferiority trial in eight European countries. Trials 17 (1), 387.

Lavrač, N., Flach, P.A., 2001. An extended transformation approach to inductive logic programming. ACM Trans. Comput. Log. (TOCL) 2 (4), 458–494.

Muggleton, S., 1991. Inductive logic programming. N. Gener. Comput. 8 (4), 295–318.

Muggleton, S., 1995. Inverse entailment and Progol. N. Gener. Comput. 13 (3-4), 245–286.

Special issue on Inductive Logic Programming.

Muggleton, S., 1999. Inductive logic programming: issues, results and the challenge of learning language in logic. Artif. Intell. 114 (1), 283–296. http://www.sciencedirect.com/science/article/pii/S0004370299000673.

Muggleton, S., De Raedt, L., 1994. Inductive logic programming: theory and methods. JLP 19/20, 629–679.

Rocha, A., Henriques, M.R., Lopes, J.C., Camacho, R., Klein, M., Modena, G., Van de Ven, P., McGovern, E., Tousset, E., Gauthier, T., et al., 2012. Ict4depression: service oriented architecture applied to the treatment of depression. In: Computer-Based Medical Systems (CBMS), 2012 25th International Symposium on IEEE, pp. 1–6.

Shiffman, S., Stone, A.A., Huffer, M.R., 2008. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32.

Srinivasan, A., 2001. The Aleph Manual.

Srinivasan, A., Muggleton, S.H., King, R., Sternberg, M., 1994. Mutagenesis: Ilp experiments in a non-determinate biological domain. In: Proceedings of the 4th International Workshop on Inductive Logic Programming, volume 237 of GMD-Studien, pp. 217–232.

van Breda, W., Hoogendoorn, M., Eiben, A., Andersson, G., Riper, H., Ruwaard, J., Vernmark, K., 2016a. A feature representation learning method for temporal datasets. In: Computational Intelligence (SSCI), 2016 IEEE Symposium Series on IEEE, pp. 1–8.

van Breda, W., Pastor, J., Hoogendoorn, M., Ruwaard, J., Asselbergs, J., Riper, H., 2016b. Exploring and comparing machine learning approaches for predicting mood over time. In: Innovation in Medicine and Healthcare 2016. Springer, pp. 37–47.

Warmerdam, L., Riper, H., Klein, M.C., van de Ven, P., Rocha, A., Henriques, M.R., Tousset, E., Silva, H., Andersson, G., Cuijpers, P., 2012. Innovative ICT solutions to improve treatment outcomes for depression: the ICT4depression project. Ann. Rev. Cybertherapy Telemed. 181 (1), 539–543.