Multivariable Bergman shifts and Wold decompositions

Jörg Eschmeier and Sebastian Langendörfer

Let $H_m(\mathbb{B})$ be the analytic functional Hilbert space on the unit ball $\mathbb{B} \subset \mathbb{C}^n$ with reproducing kernel $K_m(z, w) = (1 - \langle z, w \rangle)^{-m}$. Using algebraic operator identities we characterize those commuting row contractions $T \in L(H)^n$ on a Hilbert space H that decompose into the direct sum of a spherical coisometry and copies of the multiplication tuple $M_z \in L(H_m(\mathbb{B}))^n$. For $m = 1$, this leads to a Wold decomposition for partially isometric commuting row contractions that are regular at $z = 0$. For $m = 1 = n$, the results reduce to the classical Wold decomposition of isometries. We thus extend corresponding one-variable results of Giselsson and Olofsson [5] to the case of the unit ball.

2010 Mathematics Subject Classification: 47A13, 47A45, 47B32, 46E22
Key words and phrases: Wold decomposition, multivariable Bergman shifts, analytic models

§1 Introduction

By the classical Wold decomposition theorem each isometry $T \in L(H)$ on a Hilbert space H is a direct sum $T = T_0 \oplus T_1 \in L(H_0 \oplus H_1)$ of a unitary operator $T_0 \in L(H_0)$ and an operator $T_1 \in L(H_1)$ which is unitarily equivalent to a Hardy space shift $M_z \in L(H^2(\mathbb{D}, D))$. Isometries are characterized by the the operator identity $T^*T = 1_H$, and the Hardy space is the analytic functional Hilbert space on the unit disc with reproducing kernel $K(z, w) = (1 - z\overline{w})^{-1}$. Our aim is to prove corresponding decomposition theorems for commuting tuples $T \in L(H)^n$ of Hilbert space operators which satisfy higher order operator identities related to the reproducing kernel $K_m(z, w) = (1 - \langle z, w \rangle)^{-m}$ on the unit ball.

An operator $T \in L(H)$ on a Hilbert space H is unitarily equivalent to a Hardy space shift $M_z \in L(H^2(\mathbb{D}, D))$ if and only if it is an isometry which is pure in the sense that $\bigcap_{k=0}^{\infty} T^kH = \{0\}$. We replace the Hardy space $H^2(\mathbb{D})$ on the unit disc by the analytic functional Hilbert spaces $H_m(\mathbb{B})$ on the open unit ball $\mathbb{B} \subset \mathbb{C}^n$ defined by the reproducing kernels $K_m(z, w) = (1 - \langle z, w \rangle)^{-m}$, where $m \geq 1$ is a positive integer. It is well known that the multiplication tuple $M_z = (M_{z_1}, \ldots, M_{z_n}) \in L(H_m(\mathbb{B}))^n$ is a row contraction such that its Koszul complex

$$K(M_z, H_m(\mathbb{B})) \xrightarrow{\epsilon_\lambda} \mathbb{C} \rightarrow 0$$

augmented by the point evaluations $\epsilon_\lambda : H_m(\mathbb{B}) \rightarrow \mathbb{C}, f \mapsto f(\lambda)$, at arbitrary points $\lambda \in \mathbb{B}$, is exact [7] (Proposition 2.6). In particular, the row operators

$$H_m(\mathbb{B})^n \rightarrow H(\mathbb{B}), (h_i)_{i=1}^n \mapsto (\lambda - M_z)(h_i)_{i=1}^n = \sum_{i=1}^n (\lambda_i - M_{z_i})h_i$$

have closed range and the operator-valued map $\mathbb{B} \rightarrow L(H_m(\mathbb{B})^n, H(\mathbb{B})), \lambda \mapsto \lambda - M_z$, is regular in the sense of [9] (Theorem II.11.4).

The reciprocal of the kernel K_m is given by the binomial sum

$$K_m(z, w)^{-1} = \sum_{j=0}^{m} (-1)^j \binom{m}{j} \langle z, w \rangle^j.$$
Since the row operator $M_z : H_m(\mathbb{B})^n \to H_m(\mathbb{B})$ has closed range, the operator $M_z^*M_z : \text{Im}M_z^* \to \text{Im}M_z^*$ is invertible. In [2] it was shown that its inverse satisfies the identity

$$(M_z^*M_z)^{-1} = \left(\bigoplus_{j=0}^{m-1} (-1)^j \sigma_{M_z}(1_H) \right) \text{Im}M_z^*, $$

where $\sigma_{M_z}(X) = \sum_{i=1}^n M_{z^i}X M_{z^i}$. We show that the commuting row contractions $T \in L(H)^n$ for which the operator-valued function $\mathbb{B} \to L(H^n, H)$, $\lambda \mapsto \lambda - T$, is regular at $z = 0$ and which satisfy the operator identity

$$(T^*T)^{-1} = \left(\bigoplus_{j=0}^{m-1} (-1)^j \right) \sigma_{T}(1_H) \text{Im}T^*$$

are precisely the commuting tuples which decompose into an orthogonal direct sum

$$T = T_0 \oplus T_1 \in L(H_0 \oplus H_1)^n$$

of a spherical coisometry $T_0 \in L(H)^n$ and a tuple $T_1 \in L(H_1)^n$ which is unitarily equivalent to the m-shift $M_z \in L(H_m(\mathbb{B}, D))$ for some Hilbert space D. We show that the coisometric part T_0 is absent if and only if

$$\bigcap_{k=0}^\infty \sum_{|\alpha| = k} T_0 \cap \{0\}. $$

We thus extend corresponding one-variable results proved by Giselsson and Olafsson [5] for the standard weighted Bergman spaces on the unit disc to the case of the analytic Besov spaces $H_m(\mathbb{B})$ on the unit ball.

For $m = 1$, the space $H_1(\mathbb{B})$ is the Drury-Arveson space and the validity of the above operator identity means precisely that the row operator $T : H^n \to H$ is a partial isometry. Thus up to unitary equivalence, the commuting tuples $T \in L(H)^n$ that are regular at $z = 0$ and for which the row operator $T : H^n \to H$ is a partial isometry, are precisely the direct sums $T = T_0 \oplus T_1 \in L(H_0 \oplus H_1)^n$ of a spherical coisometry T_0 and a Drury-Arveson shift T_1. Specializing further to the case $n = 1$ one obtains Wold-type decompositions for partial isometries that contain the classical Wold decomposition theorem and are closely related to corresponding results of Halmos and Wallen [8] for power partial isometries.

§2 Analytic models

Let $T \in L(H)^n$ be a commuting tuple of bounded operators on a complex Hilbert space H such that $\sum_{1 \leq i \leq n} T_iH \subset H$ is a closed subspace. As usual we call the space $W(T) = H \oplus \sum_{1 \leq i \leq n} T_iH_i$ the wandering subspace of T. If the context is clear, we denote by T also the induced row operator $T : H^n \to H$, $(h_i)_{i=1}^n \mapsto \sum_{i=1}^n T_i h_i$, and we write $T^* : H \to H^n, h \mapsto (T^* h)_{i=1}^n$, for its adjoint. Since $T : H^n \to H$ has closed range, the operator $T^*T : \text{Im}T^* \to \text{Im}T^*$ is invertible. We denote its inverse by $(T^*T)^{-1}$.

Consider the column operator $L = (T^*T)^{-1}T^* \in L(H, H^n)$. Then $LT = P_{\text{im}T^*}$ and

$$L(1_H - ZL)^{-1}(T - Z) = LT - L \sum_{k=0}^\infty (ZL)^k Z(1_{H^n} - LT)$$
Using this algebraic decomposition one obtains the identity

\[T \text{ is regular at } z = 0 \text{ if and only if the operator-} \]

\[\text{cohomology groups of the Koszul complex } K^{-}(T, H) \text{ of } T \text{ (see Section 2.2 in [3]). It is well known and elementary to prove that the following conditions suffice to guarantee the regularity of } T \text{ at } z = 0. \]

1 Lemma. Under either of the following three conditions:

1. \(TH^n = H \),
2. \(TH^n \subset H \) is closed and \(H^{n-1}(T, H) = \{0\} \),
3. there are an integer \(N \geq 1 \) and a real number \(\delta > 0 \) such that

\[\dim H/(T - Z)H^n = N \text{ for all } z \in B_\delta(0), \]

the tuple \(T \) is regular at \(z = 0 \).

Proof. We sketch the well known proofs. If \(TH^n = H \), then \((T - Z)H^n = H \) for \(z \) in a suitable neighbourhood of \(z = 0 \) and hence \(T \) is regular at \(z = 0 \). Condition (ii) means precisely that the sequence

\[\Lambda^{n-2}(\sigma, H) \xrightarrow{(\delta^n_0-2)} \Lambda^{n-1}(\sigma, H) \xrightarrow{(\delta^{n-1}_0-\cdot \cdot \cdot)} W(T) \xrightarrow{P} \Lambda^n(\sigma, H) \rightarrow 0, \]

for \(z \in \mathbb{C}^n \) with \(\|z\| < 1/\|L\| \). Here \(Z : H^n \to H,(h_1)^{\mathbb{C}} \mapsto \sum_{i=1}^n z_i h_i, \) denotes the row operator induced by the complex \(n \)-tuple \(z \) and \(\|z\| = (\sum_{1 \leq i \leq n} |z_i|^2)^{1/2} \) is the Euclidean norm of \(z \). Since \(\Im L \subset \Im T^* = (\Ker T)^\perp \), it follows that \(P(z) \in (T - Z)H^n \subset H \) is a projection with \(\Im P(z) \subset \Im(T - Z) \) for \(z \in \mathbb{C}^n \) as above. The identity \(TL = T(T^*T)^{-1}T^* = P_{\Im T} \) yields that

\[1_H - P(z) = 1_H - (T - Z)L(1_H - ZL)^{-1} \]

\[= (1_H - TL)(1_H - ZL)^{-1} = P_W(T)(1_H - ZL)^{-1} \]

and hence that \((1_H - P(z))H = W(T) \) for \(z \in \mathbb{C}^n \) with \(\|z\| < 1/\|L\| \).

We call \(T \) regular at \(z = 0 \) if there is a positive real number \(\epsilon > 0 \) such that, for \(\|z\| < \epsilon \), the subspace \((T - Z)H^n \subset H \) is closed and \(H \) decomposes into the algebraic direct sum

\[H = (T - Z)H^n \oplus W(T). \]

Using this algebraic decomposition one obtains the identity

\[(1_H - P(z))(T - Z) = 0 \text{ for } \|z\| < \min(\epsilon, 1/\|L\|). \]

But then the identity theorem implies that \(\Im(T - Z) \subset \Im P(z) \) for \(\|z\| < 1/\|L\| \). Thus we find that

\[(1_H - P(z))H = W(T) \quad \text{and} \quad P(z)H = (T - Z)H^n \]

for \(\|z\| < 1/\|L\| \).
where \(i : W(T) \to H \) denotes the inclusion map and the operators \(\delta^j_{z-T} \) are the boundary maps of the Koszul complex of \(-T\) (Section 2.2 in \(\mathbb{H} \)), is exact at \(z = 0 \).
By Lemma 2.1.3 in \(\mathbb{H} \) there is a positive real number \(\epsilon < 1/\|L\| \) such that this sequence remains exact for every \(z \in \mathbb{C}^n \) with \(\|z\| < \epsilon \). But then

\[
(T - Z)H^n \oplus W(T) = H
\]

and \(\text{Im}(T - Z) = P(z)H \subset H \) is closed for \(\|z\| < \epsilon \).

Condition (iii) means that \(\text{Cowen-Douglas tuple} \) on \(B_\delta(0) \) in the sense of \(\mathbb{H} \). By the proof of Theorem 1.6 in \(\mathbb{H} \) the tuple \(T \) is regular at \(z = 0 \). □

In the following let \(T \in L(H)^n \) be a commuting tuple that is regular at \(z = 0 \). We denote by \(L_i \in L(H) \) \((1 \leq i \leq n) \) the components of the column operator \(L = (T^*T)^{-1}T^* \in L(H, H^n) \) and we use the notation \(L_i = L_{i_1} \cdots L_{i_k} \) for arbitrary index tuples \(i = (i_1, \ldots, i_k) \in \{1, \ldots, n\}^k \). To simplify the notation we write \(\Omega_T = B_1/\|L\| \) for the open Euclidean ball with radius \(1/\|L\| \) at \(z = 0 \). We equip the space \(\mathcal{O}(\Omega_T, W(T)) \) of all analytic \(W(T) \)-valued functions on \(\Omega_T \) with its usual Fréchet space topology of uniform convergence on all compact subsets.

2 Theorem. Let \(T \in L(H)^n \) be regular at \(z = 0 \). Then the map

\[
V : H \to \mathcal{O}(\Omega_T, W(T)), \quad (Vx)(z) = (1_H - P(z))x
\]

is continuous linear with \(Vx \equiv x \) for \(x \in W(T) \) and

(i) \(VT_i = M_zV \quad (i = 1, \ldots, n) \),

(ii) \(\text{Ker} V = \cap_{k=0}^\infty \sum_{|\alpha|=k} T^\alpha H = \cap_{z \in \Omega_T} (T - Z)H^n \).

Proof. By construction, for \(z \in \Omega_T \) and \(x \in H \), the vector

\[
x(z) = (1_H - P(z))x = P_{W(T)}(1_H - ZL)^{-1}x
\]

is the unique element in \(W(T) \) such that \(x - x(z) \in \text{Im}(T - Z) \). Obviously the vector \(x(z) \) depends analytically on \(z \) and the map \(V \) is continuous linear with \(Vx \equiv x \) for \(x \in W(T) \). Since for \(z \) and \(x \) as above,

\[
T_i x - z_i x(z) = T_i (x - x(z)) + (T_i - z_i) x(z) \in \text{Im}(T - Z),
\]

the map \(V \) intertwines the tuples \(T \) on \(H \) and \(M_z \) on \(\mathcal{O}(\Omega_T, W(T)) \) componentwise. To calculate the kernel of \(V \), note that, for \(x \in H \) and \(z \in \Omega_T \),

\[
Vx(z) = \sum_{k=0}^\infty P_{W(T)}(ZL)^k x = \sum_{k=0}^\infty \sum_{|\alpha|=k} (P_{W(T)} \sum_{i \in I(\alpha)} L_i x) z^\alpha,
\]

where for each \(k \in \mathbb{N} \) and \(\alpha \in \mathbb{N}^n \) with \(|\alpha| = k \), the set \(I(\alpha) \) consists of all index tuples \(i = (i_1, \ldots, i_k) \in \{1, \ldots, n\}^k \) such that, for each \(j = 1, \ldots, n \), exactly \(\alpha_j \) of the indices \(i_1, \ldots, i_k \) equal \(j \). The map \(\Sigma_T : L(H) \to L(H), X \mapsto \sum_{i=1}^n T_i X L_i \), is continuous linear with \(P_{W(T)} = 1_H - TL = 1_H - \Sigma_T(1_H) \) and

\[
\sum_{j=0}^{k-1} \Sigma_T^j(P_{W(T)}) = 1_H - \Sigma_T^k(1_H) \quad (k \geq 0).
\]
Hence for \(x \in \ker V \) and \(k \geq 0 \),

\[
0 = \sum_{j=0}^{k-1} \sum_{|\alpha|=j} T^\alpha (P_{W(T)} \sum_{i \in I(\alpha)} L_i x)
\]

\[
= \sum_{j=0}^{k-1} \sum_{|\alpha|=k} T^\alpha \left(\sum_{i \in I(\alpha)} L_i x \right).
\]

Thus \(\ker V \subset \bigcap_{k=0}^{\infty} \sum_{|\alpha|=k} T^n H \). Conversely, if a vector \(x \in H \) belongs to the intersection on the right-hand side, then

\[
Vx \in \bigcap_{k=0}^{\infty} \sum_{|\alpha|=k} VT^n H \subset \bigcap_{k=0}^{\infty} \sum_{|\alpha|=k} M^\alpha \mathcal{O}(\Omega_T, W(T)) = \{0\}.
\]

Thus the first equality in part (ii) has been shown. The second equality is obvious, since \(\ker (1_H - P(z)) = \im P(z) = (T - Z)H^n \) for all \(z \in \Omega_T \).

Elementary, even finite dimensional, examples show that Theorem 2 need not be true if instead of the regularity at \(z = 0 \) one only demands that the space \(TH^n \subset H \) is closed.

Condition (ii) in Theorem 2 implies that \(W(T) \subset (\ker V)^\perp \). An elementary argument shows that \(W(T) \) coincides with the wandering subspace of the compression of \(T \) to \((\ker V)^\perp \).

In the following we use the notation \(H_\infty = \bigcap_{k=0}^{\infty} \sum_{|\alpha|=k} T^n H \). We call a commuting tuple \(T \in L(H)^n \) analytic if \(H_\infty = \{0\} \). If a commuting tuple \(T \in L(H)^n \) is unitarily equivalent to the multiplication tuple \(M_z \in L(\mathcal{H})^n \) on a functional Hilbert space \(\mathcal{H} \subset \mathcal{O}(\Omega, D) \) on a connected open zero neighbourhood \(\Omega \subset \mathbb{C}^n \), then \(T \) is necessarily analytic. The next result shows that, under the additional hypothesis that \(T \) is regular at \(z = 0 \), also the converse implication holds.

Let \(H/\ker V \cong (\ker V)^\perp \) be the quotient space of \(H \) modulo the kernel of \(V \). We denote the elements of \(H/\ker V \) by \(x + \ker V \).

3 Corollary. Let \(T \in L(H)^n \) be regular at \(z = 0 \) and let

\[
V : H \to \mathcal{O}(\Omega_T, W(T))
\]

be the map from Theorem 2. Then \(\mathcal{H} = \im V \subset \mathcal{O}(\Omega_T, W(T)) \) equipped with the norm \(\|x\| = \|x + \ker V\| \) is a functional Hilbert space such that

(i) \(P_{(\ker V)^\perp} T((\ker V)^\perp) \) is unitarily equivalent to \(M_z \in L(\mathcal{H})^n \) via the unitary operator \(V : (\ker V)^\perp \to \mathcal{H} \),

(ii) the reproducing kernel \(K_T : \Omega_T \times \Omega_T \to L(W(T)) \) of \(\mathcal{H} \) is given by

\[
K_T(z, w) = P_{W(T)}(1_H - ZL)^{-1}(1_H - L^*W^*)^{-1}|W(T)|.
\]

Proof. For \(f \in \mathcal{H} \), there is a unique vector \(x(f) \in (\ker V)^\perp \) with \(f = Vx(f) \). Since \(\lim_{k \to \infty} f_k = f \) in \(\mathcal{H} \) if and only if \(\lim_{k \to \infty} x(f_k) = x(f) \) in \(H \), all point evaluations on \(\mathcal{H} \) are continuous. Thus \(\mathcal{H} \) is a functional Hilbert space. For \(y \in W(T) \) and \(z \in \ker V \),

\[
\langle (1_H - L^*W^*)^{-1}y, z \rangle = \langle y, (Vz)(w) \rangle = 0
\]
for every \(w \in \Omega_T \). Let \(f \in \mathcal{H} \), \(y \in W(T) \) and \(w \in \Omega_T \) be given. Define \(x = x(f) \). Then

\[
(f(w), y)_{W(T)} = (P_{W(T)}(1_H - W L)^{-1} x, y)_{\mathcal{H}} = \langle x, (1_H - L^* W^*)^{-1} y \rangle_{(\text{Ker } V)^\perp}
\]

and hence \(K_T \) is the reproducing kernel of the analytic functional Hilbert space \(\mathcal{H} \). By construction the compression of \(T \) to \((\text{Ker } V)^\perp \) and \(M_z \in L(\mathcal{H})^n \) are unitarily equivalent via the unitary operator induced by \(V \). □

In particular we obtain that each analytic tuple \(T \in L(H)^n \) which is regular at \(z = 0 \) is unitarily equivalent to a multiplication tuple \(M_z \in L(\mathcal{H})^n \) on a suitable analytic functional Hilbert space \(\mathcal{H} \) defined on a ball with center \(0 \in \mathbb{C}^n \). For single left invertible analytic operators, Corollary 3 is due to Shimorin [11].

In the setting of Corollary 3 the functional Hilbert space \(\mathcal{H} \subset \mathcal{O}(\Omega_T, W(T)) \) contains all polynomials \(p(z) = \sum_{|\alpha| \leq m} x_{\alpha} z^\alpha \) with coefficients in \(W(T) \). The polynomials with coefficients in \(W(T) \) are dense in \(\mathcal{H} \) if and only if the space \((\text{Ker } V)^\perp \) is generated (as an invariant subspace) by the wandering subspace of \(P_{(\text{Ker } V)^\perp} T |(\text{Ker } V)^\perp \).

§3 Characterizations of Bergman shifts

Let \(T \in L(H)^n \) be a commuting tuple that is regular at \(z = 0 \). As before we denote by \(\sigma_T : L(H) \to L(H) \) the positive linear map acting as \(\sigma_T(X) = \sum_{1 \leq i \leq n} T_i X T_i^* \). We suppose in addition that \(T \) satisfies the identity

\[
(T^* T)^{-1} = (\oplus \Delta_T) \text{Im } T^*,
\]

where \(\Delta_T \in L(H) \) is the operator defined by

\[
\Delta_T = \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_j^* (1_H).
\]

Let us define \(\delta_T \in L(H) \) by

\[
\delta_T = (\text{Im } T^* \to \text{Im } T^*)^{-1} (T^* T)^{-1} T^*.
\]

Then \(\text{Im } \delta_T = \text{Im } T \) and

\[
T_i^* \delta_T = \Delta_T T_i^* \quad (i = 1, \ldots, n).
\]

Using these intertwining relations, we find that \((\Delta_T T_i^*)(\Delta_T T_j^*) = \Delta_T T_i^* T_j^* \delta_T = (\Delta_T T_i^*) (\Delta_T T_j^*)\) for \(i, j = 1, \ldots, n \). In the following we use the same notation for the column operator \(L : H \to H^n, x \mapsto (T^* T)^{-1} T^* x = (\Delta_T T_i^* x)_{i=1}^n \), and the commuting tuple \(L = (\Delta_T T_i^*)_{i=1}^n \in L(H)^n \). Since \(L \) is commuting, the representation of the map \(V \) obtained in the proof of Theorem 2 simplifies to

\[
(V x)(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z^\alpha \quad (x \in H, \ z \in \Omega_T),
\]

where \(\gamma_\alpha = |\alpha|! / \alpha! \) for \(\alpha \in \mathbb{N}^n \).
4 Lemma. For $\alpha, \beta \in \mathbb{N}^n$, we have
\[\gamma_\alpha P_{W(T)} L^\alpha T^\beta = \gamma_{\alpha-\beta} P_{W(T)} L^{\alpha-\beta}, \]
where the right-hand side has to be read as zero whenever $\alpha - \beta$ has negative components.

Proof. For $\beta \in \mathbb{N}^n$, $x \in H$ and $z \in \Omega_T$,
\[\sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha P_{W(T)}(L^\alpha x) z^{\alpha+\beta} = z^\beta (Vx)(z) = (VT^\beta x)(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha P_{W(T)}(L^\alpha T^\beta x) z^\alpha. \]
The proof follows by comparing the coefficients of these convergent power series. \square

Let us apply the above constructions to the particular case of the multiplication tuple $T = M_z \in L(H_m(\mathbb{B}))^n$. By definition $H_m(\mathbb{B})$ is the analytic functional Hilbert space with reproducing kernel $K_m : \mathbb{B} \times \mathbb{B} \rightarrow \mathbb{C}$, $K_m(z, w) = (1 - \langle z, w \rangle)^{-m}$. We consider only the case where the exponent $m \geq 1$ is a positive integer. The commuting tuple $M_z = (M_{z_1}, \ldots, M_{z_n}) \in L(H_m(\mathbb{B}))^n$, consisting of the multiplication operators $M_{z_i} : H_m(\mathbb{B}) \rightarrow H_m(\mathbb{B})$, $f \mapsto z_i f$, with the coordinate functions, is regular at $z = 0$. Indeed, for each point $\lambda \in \mathbb{B}$, the Koszul complex $K(\lambda - M_z, H_m(\mathbb{B}))$ is exact in degree $p = 0, \ldots, n - 1$ and $\dim H^n(K(\lambda - M_z, H_m(\mathbb{B}))) = 1$ (see e.g. Proposition 2.6 in [7]).

By Lemma 1 and Lemma 3 in [2] (see also the proof of Lemma 3 in [2]) we know that
\[(M_z^* M_z)^{-1} = (\oplus \Delta_{M_z}) \operatorname{Im} M_z^*, \]
where $\Delta_{M_z} = \sum_{j=0}^{m-1} (-1)^j m! \sigma^j_{M_z} 1_{H_m(\mathbb{B})}$ acts as the diagonal operator
\[\Delta_{M_z} \sum_{k=0}^{\infty} \left(\sum_{|\alpha| = k} f_\alpha z^\alpha \right) = \sum_{k=0}^{\infty} \frac{m+k}{1+k} \left(\sum_{|\alpha| = k} f_\alpha z^\alpha \right). \]
In this particular example, $W(M_z) = \mathbb{C}$ and $P_{W(M_z)} \in L(H_m(\mathbb{B}))$ is the orthogonal projection onto the closed subspace $\mathbb{C} \subset H_m(\mathbb{B})$ consisting of all constant functions. Furthermore, the intertwining relation $M_z^* \delta = (\oplus \Delta_{M_z}) M_z^*$ holds with the diagonal operator $\delta = \delta_{M_z} : H_m(\mathbb{B}) \rightarrow H_m(\mathbb{B})$,
\[\delta \sum_{k=0}^{\infty} \left(\sum_{|\alpha| = k} f_\alpha z^\alpha \right) = f_0 + \sum_{k=1}^{m+k-1} \frac{m+k-1}{k} \left(\sum_{|\alpha| = k} f_\alpha z^\alpha \right), \]
(see the proof of Lemma 3 in [2]).

5 Lemma. The commuting tuple $L_{M_z} = (\Delta_{M_z} M_z^*, \ldots, \Delta_{M_z} M_{z_n}^*) \in L(H_m(\mathbb{B}))^n$ satisfies the identities
\[P_{W(M_z)} L_{M_z}^\alpha = \binom{m + |\alpha| - 1}{|\alpha|} P_{W(M_z)} M_{z_\alpha} \quad (\alpha \in \mathbb{N}^n). \]

Proof. For $\alpha = 0$, the identity obviously holds. Suppose that the result has been shown for each multiindex $\alpha \in \mathbb{N}^n$ with $|\alpha| \leq k$ and fix an $\alpha \in \mathbb{N}^n$ with $|\alpha| = k$ as
Hence we may conclude that

\[P_{W(M_z)} L_{M_z}^{α+ε_i} = \binom{m+k-1}{k} P_{W(M_z)} M_z^{α} \Delta M_z M_z^{ε_i} \]

\[= \binom{m+k-1}{k} P_{W(M_z)} M_z^{(α+ε_i)i} \]

\[= \binom{m+k-1}{k} \frac{m+k}{k+1} P_{W(M_z)} M_z^{(α+ε_i)i} \]

\[= \binom{m+k-1}{k+1} P_{W(M_z)} M_z^{(α+ε_i)i}. \]

Thus the assertion follows by induction on \(|α|\).

We use the result proved in Lemma 4 for \(M_z \in L(H_m(\mathbb{B}))^n\) to prove the corresponding result for the commuting tuple \(T\) fixed at the beginning of Section 3.

6 Lemma. For \(α \in \mathbb{N}^n\), the identity

\[P_{W(T)} L^α = \binom{m + |α| - 1}{|α|} P_{W(T)} T^{α} \]

holds.

Proof. Again we use induction on \(|α|\). Suppose that the result holds for \(|α| \leq k\). Let \(α \in \mathbb{N}^n\) be a multiindex with \(|α| = k\) and let \(i \in \{1, \ldots, n\}\) be arbitrary. Using Lemma 4 and the induction hypothesis we obtain

\[P_{W(T)} L^{α+ε_i} = P_{W(T)} L^α \Delta T_i T^{-α}_i \]

\[= P_{W(T)} L^α \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sum_{|β|=j, α ≥ β} \gamma_β T^{-β} T^{α} \]

\[= \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sum_{|β|=j, α ≥ β} \frac{γ_β γ_α - γ_β}{γ_α} P_{W(T)} L^{α-β} T^{α+ε_i} \]

\[= \left(\sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sum_{|β|=j, α ≥ β} \frac{γ_β γ_α - γ_β}{γ_α} \left(\frac{m + |α-β| - 1}{|α-β|} \right) \right) P_{W(T)} T^{α+ε_i}. \]

Here by definition \(α ≥ β\) means that \(α_i ≥ β_i\) for \(i = 1, \ldots, n\). Next observe that the preceding chain of equalities remains true if \(T, Δ T\) and \(L\) are replaced by \(M_z, Δ M_z\) and \(L_{M_z}\). But in this case we know from Lemma 4 that

\[P_{W(M_z)} L_{M_z}^{α+ε_i} = \binom{m + |α|}{|α| + 1} P_{W(M_z)} M_z^{(α+ε_i)i}. \]

Hence we may conclude that

\[\sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sum_{|β|=j, α ≥ β} \frac{γ_β γ_α - γ_β}{γ_α} \left(\frac{m + |α-β| - 1}{|α-β|} \right) = \binom{m + |α|}{|α| + 1}. \]

This observation completes the inductive proof. \(□\)
Since \(V : H \to \mathcal{O}(\Omega_T, W(T)) \), \(V x(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z^\alpha \), is a continuous linear map that intertwines the tuples \(T \) on \(H \) and \(M_z \) on \(\mathcal{O}(\Omega_T, W(T)) \) componentwise, the kernel of \(V \) is a closed invariant subspace for \(T \). Much more than this is true.

7 Lemma. The kernel of \(V \) is reducing for \(T \) with

(a) \(\ker V = H_\infty = \{ x \in H; P_{W(T)} T^{*\alpha} x = 0 \text{ for all } \alpha \in \mathbb{N}^n \} \),

(b) \(\langle \ker V \rangle^\perp = \bigvee_{\alpha \in \mathbb{N}^n} T^\alpha W(T) \).

Proof. The first equality in part (a) holds by Theorem 2. Since \(x \) for part (b) follows from (a). Both parts together imply that \(\ker V \) is a reducing subspace for \(T \).

In the following we write \([M] \subset H\) for the smallest closed linear subspace of \(H \) which contains a given subset \(M \subset H \). For a complex Hilbert space \(\mathcal{E} \), we denote by \(H_m(\mathbb{B}, \mathcal{E}) \) the \(\mathcal{E} \)-valued analytic functional Hilbert space with reproducing kernel

\[
K_m^\mathcal{E} : \mathbb{B} \times \mathbb{B} \to L(\mathcal{E}), K_m^\mathcal{E}(z, w) = \frac{1_{\mathcal{E}}}{(1 - \langle z, w \rangle)_m}
\]
on \(\mathbb{B} \). A well known alternative description of the space \(H_m(\mathbb{B}, \mathcal{E}) \) is given by

\[
H_m(\mathbb{B}, \mathcal{E}) = \{ f = \sum_{\alpha \in \mathbb{N}^n} f_\alpha z^\alpha \in \mathcal{O}(\mathbb{B}, \mathcal{E}); \| f \|^2 = \sum_{\alpha \in \mathbb{N}^n} \| f_\alpha \|^2 \rho_m(\alpha) < \infty \},
\]
where \(\rho_m(\alpha) = \frac{\lfloor m + |\alpha| \rfloor !}{\alpha ! (m - 1 !_m !)} \).

8 Theorem. Let \(T \in L(H)^n \) be a commuting tuple that is regular at \(z = 0 \) and satisfies the identity \((T^* T)^{-1} = (\oplus \Delta_T) |\Im T^*| \). Then the map

\[
U : [W(T)] \to H_m(\mathbb{B}, W(T)), U x(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z^\alpha
\]
is a unitary operator which componentwise intertwines the tuples \(T |[W(T)] \) and \(M_z \in L(H_m(\mathbb{B}, W(T)))^n \).

Proof. For \(N \in \mathbb{N} \) and \(x_\alpha \in W(T) (|\alpha| \leq N) \), we have

\[
\| \sum_{|\alpha| \leq N} T^\alpha x_\alpha \|^2 = \sum_{|\alpha|, |\beta| \leq N} \langle P_{W(T)} T^{*\beta} T^\alpha x_\alpha, x_\beta \rangle = \sum_{|\alpha|, |\beta| \leq N} \langle x_\alpha, P_{W(T)} T^{*\alpha} T^\beta x_\beta \rangle.
\]
Using first Lemma 6 and then twice Lemma 4 we find that

\[\| \sum_{|\alpha| \leq N} T^\alpha x_\alpha \|^2 = \sum_{|\alpha| \leq N} \left(m + |\alpha| - 1 \right)^{-1} \langle P_{W(T)} L^\alpha T^\alpha x_\alpha, x_\alpha \rangle \]

\[= \sum_{|\alpha| \leq N} \left(m + |\alpha| - 1 \right) \gamma_{\alpha}^{-1} \| x_\alpha \|^2 \]

\[= \sum_{|\alpha| \leq N} \| x_\alpha \|^2 \rho_m(\alpha) = \sum_{|\alpha| \leq N} x_\alpha z_\alpha^\alpha \| T^m(z_\alpha)^2 \|_{H_m(\mathbb{B}, W(T))}. \]

Since the polynomials with coefficients in \(W(T) \) are dense in \(H_m(\mathbb{B}, W(T)) \), there is a unique unitary operator \(U : [W(T)] \to H_m(\mathbb{B}, W(T)) \) with \(U(\sum_{|\alpha| \leq N} T^\alpha x_\alpha) = \sum_{|\alpha| \leq N} x_\alpha z_\alpha^\alpha \) for all finite families \((x_\alpha)_{|\alpha| \leq N} \) in \(W(T) \). In particular it follows that, for \(h \in \text{span}\{T^\alpha x; \alpha \in \mathbb{N}^n \text{ and } x \in W(T)\} \), the analytic functions \(U h \in \mathcal{O}(\mathbb{B}, W(T)) \) and \(V h \in \mathcal{O}(\Omega_T, W(T)) \) have the same Taylor coefficients at \(z = 0 \). The continuity of the maps \(U : [W(T)] \to \mathcal{O}(\mathbb{B}, W(T)) \) and \(V : [W(T)] \to \mathcal{O}(\Omega_T, W(T)) \) implies that \(Ux \) and \(Vx \) have the same Taylor coefficients at \(z = 0 \) for every \(x \in [W(T)] \). But then

\[Ux(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z_\alpha \]

for \(x \in [W(T)] \) and \(z \in \mathbb{B} \). Since \(V \) intertwines \(T \in L(H)^n \) and \(M_z \) on \(\mathcal{O}(\Omega_T, W(T)) \), the identity theorem implies that \(U \) satisfies the same intertwining relation.

For a commuting tuple \(S \in L(H)^n \) its \(k \)th order defect operators are defined by

\[\Delta_S^{(k)} = (I - \sigma_S)^k(1_H) = \sum_{j=0}^k (-1)^j \binom{k}{j} \sigma_S^j(1_H) \quad (k \in \mathbb{N}). \]

The tuple \(S \) is called an \(m \)-hypercontraction if \(\Delta_S^{(1)} \geq 0 \) and \(\Delta_S^{(m)} \geq 0 \). A commuting tuple \(S \in L(H)^n \) is said to be of type \(C_0 \) if \(\text{SOT-}\lim_{k \to \infty} \sigma_S^k(1_H) = 0 \).

9 Corollary. Let \(T \in L(H)^n \) be as in Theorem 8. The following conditions on \(T \) are equivalent:

(i) \(T \) is analytic,

(ii) \(\|x\|^2 = \| \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z_\alpha^\alpha \|^2 \|_{H_m(\mathbb{B}, W(T))} \) for all \(x \in H \),

(iii) \(T \) is of type \(C_0 \).

(iv) \(T \) is unitarily equivalent to \(M_z \in L(H_m(\mathbb{B}, D))^n \) for some Hilbert space \(D \).

Proof. The equivalence of (i) and (ii) follows from Lemma 7 and Theorem 8.

The implication (i) to (iv) follows from Theorem 8. It is well known that \(M_z \in L(H_m(\mathbb{B}, D))^n \) satisfies the \(C_0 \)-condition

\[\text{SOT-} \lim_{k \to \infty} \sigma_{M_z}^k(1_{H_m(\mathbb{B}, D)}) = 0. \]

Since this condition is preserved under unitary equivalence, the implication (iv) to (iii) holds.
Let us suppose that T satisfies condition (iii). To complete the proof note first that

$$P_{W(T)} = 1_H - T(T^* T)^{-1} T^* = 1_H - T(\oplus \Delta_T) T^*$$

$$= 1_H - \sigma_T \left(\sum_{k=0}^{m-1} (-1)^k \binom{m}{k+1} \sigma_T^k (1_H) \right)$$

$$= 1_H + \sum_{k=1}^m (-1)^k \binom{m}{k} \sigma_T^k (1_H)$$

$$= (I - \sigma_T)^m (1_H).$$

It is well known that a commuting tuple $T \in L(H)^n$ of type C_0 for which the mth order defect operator $\Delta_T^{(m)} = (I - \sigma_T)^m (1_H)$ is positive is an m-hypercontraction (see [2] [10]). Thus it follows from the dilation theory for m-hypercontractions (see e.g. [2]) that the map

$$j : H \to H_m(\mathbb{B}, H) \quad jx = \sum_{\alpha \in \mathbb{N}^n} \rho_m(\alpha) ((\Delta_T^{(m)})^{1/2} T^{* \alpha} x) z^\alpha$$

defines an isometric intertwiner between the tuples T^* on H and M_z^* on $H_m(\mathbb{B}, H)$. Using Lemma [3] we find that

$$(Vx)(z) = \sum_{\alpha \in \mathbb{N}^n} \gamma_\alpha (P_{W(T)} L^\alpha x) z^\alpha = \sum_{\alpha \in \mathbb{N}^n} \rho_m(\alpha) (P_{W(T)} T^{* \alpha} x) z^\alpha = (jx)(z)$$

for $x \in H$ and $z \in \Omega_T$. Hence $\text{Ker} V = \text{Ker} j = \{0\}$ and the proof is complete. □

Let $S \in L(H)^n$ be an m-hypercontraction. Since

$$0 \leq \sigma_S^{k+1} (1_H) \leq \sigma_S^k (1_H) \leq 1_H \quad (k \geq 0),$$

the strong limit $S_\infty = \text{SOT} \lim_{k \to \infty} \sigma_S^k (1_H)$ exists. It is well known that the map

$$j : H \to H_m(\mathbb{B}, H), \quad jx = \sum_{\alpha \in \mathbb{N}^n} \rho_m(\alpha) ((\Delta_S^{(m)})^{1/2} S^{* \alpha} x) z^\alpha$$

defines a contraction that intertwines the tuples $S^* \in L(H)^n$ and $M_z^* \in L(H_m(\mathbb{B}, H))^n$. More precisely one can show that

$$\|jx\|^2 + \|S_\infty x\|^2 = \|x\|^2$$

for every vector $x \in H$.

Let us recall that a commuting tuple $S \in L(H)^n$ is called a spherical isometry if

$$\sum_{1 \leq i \leq n} S_i^* S_i = 1_H$$

or, equivalently, if $\sum_{1 \leq i \leq n} \|S_i x\|^2 = \|x\|^2$ for each vector $x \in H$. By a result of Athavale [11] each spherical isometry $S \in L(H)^n$ is subnormal and its minimal normal extension is a spherical unitary, that is, a commuting tuple $N \in L(K)^n$ of normal operators such that $\sum_{1 \leq i \leq n} N_i^* N_i = 1_K$. A spherical coisometry is a commuting tuple $S \in L(H)^n$ such that its adjoint $S^* \in L(H)^n$ is a spherical isometry.

10 Theorem. Let $T \in L(H)^n$ be a commuting row contraction that is regular at $z = 0$. Then T satisfies the operator identity

$$(T^* T)^{-1} = \left(\oplus \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_T^j (1_H) \right) \text{Im} T^*$$
if and only if \(T = T_0 \oplus T_1 \in L(H_0 \oplus H_1)^n \) is the direct sum of a spherical coisometry \(T_0 \in L(H_0)^n \) and a tuple \(T_1 \in L(H_1)^n \) which is unitarily equivalent to \(M_z \in L(H_m(\mathbb{B}, D))^n \) for some Hilbert space \(D \).

Proof. Suppose that \(T \) satisfies the above operator identity. Then by Lemma \([7]\) the space \(H \) is the orthogonal sum \(H = H_\infty \oplus [W(T)] \) of closed subspaces reducing \(T \). According to Theorem \([5]\) the restriction \(T_1 = T|[W(T)] \) is unitarily equivalent to \(M_z \in L(H_m(\mathbb{B}, W(T)))^n \). The proof of Corollary \([9]\) shows that

\[
\Delta_T^{(m)} = (1 - \sigma_T)^m(1_H) = P_{W(T)} \geq 0.
\]

Since \(T \) is a row contraction, also \(\Delta_T^{(1)} = 1_H - \sum_{1 \leq i \leq n} T_i T_i^* \geq 0 \). Thus the tuple \(T \) is an \(m \)-hypercontraction. Using the remarks following Corollary \([9]\) as well as Lemma \([9]\) we obtain that the map \(j : H \to H_m(\mathbb{B}, H) \),

\[
jx = \sum_{\alpha \in \mathbb{N}_n} \rho_m(\alpha)(P_{W(T)}T^* x)z^\alpha = \sum_{\alpha \in \mathbb{N}_n} \gamma_\alpha(P_{W(T)}L^nx)z^\alpha
\]

is a well defined contraction with \(\|jx\|^2 + \langle T_\infty x, x \rangle = \|x\|^2 \) for all \(x \in H \). Since \(T_\infty \leq \sigma_T(1_H) \leq 1_H \), it follows that

\[
\sum_{i=1}^n \|T_i^* x\|^2 = \langle \sigma_T(1_H)x, x \rangle = \|x\|^2
\]

for \(x \in \text{Ker } j = \text{Ker } V = H_\infty \). Thus \((T|H_\infty)^* \) is a spherical isometry.

To prove the converse let us first consider a commuting tuple \(T \in L(H)^n \) such that \(T^* \) is a spherical isometry. Since \(\sigma_T(1_H) = TT^* = 1_H \), it follows that \(T^* T = P_{\text{im } T^*} \) and

\[
\sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_T^j(1_H) = \left(\sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \right) 1_H = 1_H.
\]

On the other hand, by Lemma 1 and Lemma 3 in \([2]\) it follows that, for any Hilbert space \(D \), the tuple \(M_z \in L(H_m(\mathbb{B}, D))^n \) satisfies the operator identity

\[
(M_z^* M_z)^{-1} = \left(\oplus \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_{M_z}^j(1_{H_m(\mathbb{B}, D)}) \right) \text{Im } M_z^*.
\]

Since the validity of this operator identity is preserved under unitary equivalence and the passage to direct sums, also the reverse implication follows. \(\square \)

In the single-variable case \(n = 1 \) Theorem \([10]\) implies that the left invertible contractions that satisfy the operator identity

\[
(T^* T)^{-1} = \sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_T^j(1_H)
\]

are precisely the operators \(T \in L(H) \) that decompose into the orthogonal direct sum \(T = T_0 \oplus T_1 \) of a unitary operator \(T_0 \) and an operator \(T_1 \) which is unitarily equivalent to an \(m \)-shift \(M_z \in L(H_m(\mathbb{D}, D)) \). This is a slight variant of the main result of \([5]\).

In the particular case \(m = 1 \) the result stated in Theorem \([10]\) takes the form.
11 Corollary. Let $T \in L(H)^n$ be a commuting tuple that is regular at $z = 0$. Then $T : H^n \to H$ is a partial isometry if and only if $T = T_0 \oplus T_1 \in L(H_0 \oplus H_1)^n$ is the direct sum of a spherical coisometry $T_0 \in L(H_0)^n$ and a tuple $T_1 \in L(H_1)^n$ which is unitarily equivalent to $M_z \in L(H_1(B, D))^n$ for some Hilbert space D.

Proof. For $m = 1$, we have $\sum_{j=0}^{m-1} (-1)^j \binom{m}{j+1} \sigma_j^2(1_H) = 1_H$. Thus in this case the operator identity from Theorem 10 means precisely that $T : H^n \to H$ is a partial isometry. Hence the assertion follows immediately from Theorem 10. □

In the case $m = 1 = n$ the preceding results yield a Wold decomposition for partial isometries $T \in L(H)$ that are regular at $z = 0$ which contains the classical Wold decomposition for isometries. Corollary 11 implies that all powers T^k of partial isometries $T \in L(H)$ that are regular at $z = 0$ are partial isometries again. Thus partial isometries that are regular at $z = 0$ are power partial isometries in the sense of Halmos and Wallen [8]. In [8] a Wold-decomposition theorem for general power partial isometries is proved.

Since a non-unitary partial isometry on a finite dimensional Hilbert space cannot admit a decomposition as in Corollary 11 Corollary 11 and Theorem 11 cannot be expected to hold without the hypothesis that the given tuple T is regular at $z = 0$.

References

[1] A. Athavale, *On the intertwining of joint isometries*, J. Operator Theory 23 (1990), 339-350.

[2] J. Eschmeier, *Bergman inner functions and m-hypercontractions*, J. Funct. Anal., to appear.

[3] J. Eschmeier, S. Langendörfer, *Cowen-Douglas tuples and fiber dimensions*, J. Operator Theory 78 (2017), 21-43.

[4] J. Eschmeier, M. Putinar, *Spectral decompositions and analytic sheaves*, London Math. Monograph Series, Vol. 20, Clarendon Press, Oxford, 1996.

[5] O. Giselsson, A. Olofsson, *On some Bergman shift operators*, Complex Anal. Oper. Theory 6 (2012), 829-842.

[6] J. Gleason, St. Richter, *m-Isometric commuting tuples of operators on a Hilbert space*, Integrals Equations Operator Theory 56 (2006), 181-196.

[7] J. Gleason, St. Richter, C. Sundberg, *On the index of invariant subspaces in spaces of analytic functions of several complex variables*, J. reine angew. Math. 587 (2005), 49-76.

[8] P. R. Halmos, L. J. Wallen, *Powers of partial isometries*, Journal of Mathematics and Mechanics 19 (1970), 657-663.

[9] V. Müller, *Spectral theory of linear operators and spectral systems in Banach algebras*, Operator Theory Advances and Applications, Vol. 139, Birkhäuser, Basel, 2007.
[10] V. Müller, F.-H. Vasilescu, *Standard models for some commuting multioperators*, Proc. Amer. Math. Soc. 117 (1993), 979-989.

[11] S. Shimorin, *Wold-type decompositions and wandering subspaces close to isometries*, J. reine angew. Math. 531 (2001), 147-189.

J. Eschmeier
Fachrichtung Mathematik
Universität des Saarlandes
Postfach 151150
D-66041 Saarbrücken, Germany

S. Langendörfer
Fachrichtung Mathematik
Universität des Saarlandes
Postfach 151150
D-66041 Saarbrücken, Germany
eschmei@math.uni-sb.de, langendoerfer@math.uni-sb.de