FAMILIES OF REDUCED ZERO-DIMENSIONAL SCHEMES

JUAN C. MIGLIORE

Abstract. A great deal of recent activity has centered on the question of whether, for a given Hilbert function, there can fail to be a unique minimum set of graded Betti numbers, and this is closely related to the question of whether the associated Hilbert scheme is irreducible or not. We give a broad class of Hilbert functions for which we show that there is no minimum, and hence that the associated Hilbert scheme is reducible. Furthermore, we show that the Weak Lefschetz Property holds for the general element of one component, while it fails for every element of another component.

Contents

1. Introduction 1
2. Preliminaries 4
3. Basic Construction 5
4. Main results 10
References 17

1. Introduction

In a fixed projective space \(\mathbb{P}^n \), let \(Z \) be a zero-dimensional scheme. We denote by \(h_Z \) the Hilbert function of \(Z \):

\[
h_Z(t) = \dim(R/I_Z)_t
\]

for all \(t \). We also use the analogous notation \(h_{R/I_Z}(t) \) or, if \(A \) is a graded ring (e.g. Artinian), \(h_A(t) \).

Consider the possible zero-dimensional schemes in \(\mathbb{P}^n \) having a fixed Hilbert function, \(H \). Recall [7] that the necessary and sufficient condition for the existence of \(H \) is that \(H \) be a differentiable O-sequence that stabilizes at some value \(d \); i.e. not only \(H \) but also its first difference \(\Delta H \) has to satisfy Macaulay’s growth condition [13] (see the next section for a review), and \(\Delta H(t) = 0 \) for all sufficiently large \(t \). Conversely, for any such function there always exists a reduced zero-dimensional scheme with Hilbert function \(H \).

Part of the work for this paper was done while the author was sponsored by the National Security Agency under Grant Number MDA904-03-1-0071.

Keywords: postulation Hilbert scheme, graded Betti numbers, liaison addition, Weak Lefschetz Property, Hilbert function, minimal free resolution

MSC2000: 13D02, 13D40, 14C05, 13H10, 14M05.
We first review some notation (mostly from [17]). We denote by \(\text{Hilb}^H(\mathbb{P}^n) \) the \textit{postulation Hilbert scheme associated to} \(H \), i.e. the Hilbert scheme parameterizing zero-dimensional schemes with Hilbert function \(H \). We define \(\text{Hilb}^H(\mathbb{P}^n) \) to be the open subscheme of \(\text{Hilb}^H(\mathbb{P}^n) \) parameterizing the \textit{reduced} zero-dimensional schemes with Hilbert function \(H \). If \(I \) is the ideal of a zero-dimensional scheme such that \(R/I \) has Hilbert function \(H \), suppose that \(R/I \) has minimal free resolution

\[
0 \to \bigoplus_j R^{\beta_{0,j}}(-j) \to \cdots \to \bigoplus_j R^{\beta_{1,j}}(-j) \to R \to R/I \to 0,
\]

with \(\beta_{i,j} \in \mathbb{N} \). We denote by \(\beta^I \) the set of graded Betti numbers of \(R/I \) (or equivalently, the set of graded Betti numbers of \(I \)). We then write

\[
\mathbb{B}_H := \{ \beta^I : I \subset R \text{ and } h_{R/I} = H \},
\]

and

\[
\mathbb{B}'_H := \{ \beta^I : I \subset R, h_{R/I} = H \text{ and } I \text{ is reduced} \}.
\]

\(\mathbb{B}_H \) (resp. \(\mathbb{B}'_H \)) is a partially ordered set under the inequality \(\leq \), where we write \(\beta^I \leq \beta'^I \) if \(\beta_{i,j} \leq \beta'_{i,j} \) (using the usual inequality for integers) for all \(i, j \).

Two (related) questions may be asked, for a given Hilbert function \(H \). First, is \(\text{Hilb}^H(\mathbb{P}^n) \) reducible? Second, what can we say about \(\mathbb{B}_H \) and \(\mathbb{B}'_H \); and in particular, is there a unique minimum \(\beta^I \in \mathbb{B}_H \) (resp. \(\beta^I \in \mathbb{B}'_H \)) under the partial ordering \(\leq \)? One can also ask similar questions for Hilbert functions and graded Betti numbers of graded Artinian algebras.

The two questions are related by the following theorem of Ragusa and Zappalà:

Theorem 1.1 ([17]). If \(\mathbb{B}_H \) (resp. \(\mathbb{B}'_H \)) has no unique minimum element then \(\text{Hilb}^H(\mathbb{P}^n) \) (resp. \(\text{Hilb}^H(\mathbb{P}^n) \)) is reducible.

The point of this theorem is that the graded Betti numbers obey semicontinuity for ideals in an irreducible family (cf. [17], Lemma 1.2), and within such a family cancelation of Betti numbers can only come in consecutive terms in the resolution (cf. [16]). So we can make the following rephrasing of Theorem 1.1: Let \(I \) and \(I' \) be ideals of zero-dimensional schemes with the same Hilbert function, \(H \), and assume that \(\beta^I \) and \(\beta'^I \) are incomparable under the partial ordering. If no ideal \(J \) exists with \(\beta^J \) obtainable both from \(\beta^I \) and \(\beta'^I \) by consecutive cancelation, then \(I \) and \(I' \) correspond to different components of \(\text{Hilb}^H(\mathbb{P}^n) \), which is thus reducible. If \(I \) and \(I' \) are both reduced then \(\text{Hilb}^H(\mathbb{P}^n) \) is reducible. We will use this idea without comment in the following sections.

Definition 1.2. We say that the Betti diagrams of \(I \) and \(I' \) are \textit{strongly incomparable} if the conditions of the previous paragraph are satisfied.

It is known that \(\text{Hilb}^H(\mathbb{P}^2) \) is smooth and irreducible [9] and that sometimes even \(\text{Hilb}^H(\mathbb{P}^n) \) is irreducible [10]. On the other hand, recently there has been a great deal of activity in this area, giving examples of many different kinds to show that sometimes \(\text{Hilb}^H(\mathbb{P}^n) \) and \(\text{Hilb}^H(\mathbb{P}^n) \) (or related objects in the Artinian situation) are reducible, or that \(\mathbb{B}_H \) has no minimum element (cf. for instance [2], [3], [5], [6], [11], [17], [18], [19], [20]). Some of these examples are isolated, and some (e.g. [2], [18], [19]) are infinite families.
While we present a new large class of Hilbert functions for which $H_{\text{red}}(\mathbb{P}^3)$ is reducible, the overlap with any of these previous results is minimal.

To describe the results in this paper, we first recall some notions.

Definition 1.3. An Artinian graded algebra, A, has the Weak Lefschetz Property (WLP) if, for a general linear form L, the induced multiplication $\times L : A_i \to A_{i+1}$ has maximal rank, for all i. A zero-dimensional scheme is said to have WLP if its general Artinian reduction does. A reduced zero-dimensional scheme Z has the Uniform Position Property (UPP) if all subsets of the same cardinality have the same Hilbert function.

In the expository paper [14], the author discussed the Weak Lefschetz Property (WLP) and the Uniform Position Property (UPP), describing both as open conditions. He showed in Example 3.4 that if H is the Hilbert function with first difference $(1, 3, 6, 9, 11, 11, 11)$ (corresponding to a set of 52 points in \mathbb{P}^3), then $H_{\text{red}}(\mathbb{P}^3)$ is reducible. Furthermore, in one component no element has WLP, while in another component the general element has WLP (and in fact also UPP).

The purpose of this paper is to put this example into a much more general framework, in the process giving a much larger class of Hilbert functions for which $H_{\text{red}}(\mathbb{P}^3)$ is reducible. In addition, one component has general element with WLP, and another has no element with WLP. We also recall (see above) that the Hilbert function, H, of a zero-dimensional scheme is a differentiable O-sequence. To specify H, it is equivalent to specify its first difference, ΔH. This is also known as the associated h-vector.

Our main result is the following (cf. Corollary 4.4):

Theorem Let H be a Hilbert function in four variables, for which the first difference is of the form

$$\Delta H = \{1, 3, b_2, b_3, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, b_{s+3}, \ldots, b_r, 0\}.$$

Here t is simply the first degree for which the value is $= d$, and $s := \lfloor \frac{d-2}{2} \rfloor$. We assume that $(1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d)$ is again a differentiable O-sequence, and that

$$\begin{cases}
 b_{s+2} \leq d - 2 & \text{if } d \text{ is even;} \\
 b_{s+2} \leq d - 1 & \text{if } d \text{ is odd}
\end{cases}$$

and $b_i \geq b_{i+1}$ for all $i \geq s + 2$. Assume furthermore that there are “the right number” of d’s in the middle. More precisely, we require that

$$t \leq s - 1 = \left\lfloor \frac{d - 3}{2} \right\rfloor.$$

Then $H_{\text{red}}(\mathbb{P}^3)$ is reducible. Furthermore, on one component no element has WLP, while on another component the general element has WLP.

To put this in a different context, recall the following result:

Theorem 1.4 ([12], Proposition 3.5). Let $\underline{h} = (1, b_1, b_2, \ldots, b_r)$ be a finite sequence of positive integers. Then \underline{h} is the Hilbert function of a graded Artinian k-algebra R/J having WLP if and only if \underline{h} is a unimodal O-sequence such that the positive part of the first difference is also an O-sequence.
Notice that the conditions on ΔH in our result above are very similar to this necessary and sufficient condition for WLP. The only differences are the requirement that we have “the right number” of d’s, and that $b_{i+2} \leq d-2$ (instead of $d-1$) when d is even. However, the condition on the right number of d’s can be restrictive – see Example 4.6 where we also discuss how one might extend this result. Nevertheless, we have the nice fact that the first difference of the Hilbert function can begin with any differentiable O-sequence, and end with any non-increasing sequence that goes to zero. This degree of freedom is surprising: it is not difficult to construct different-looking sets of points with the same Hilbert function, but to show that they have strongly incomparable Betti diagrams is difficult in general.

2. Preliminaries

Let $R = k[x_0, \ldots, x_n]$, where k is an algebraically closed field. We first recall some basic facts about Hilbert functions, especially those of arithmetically Cohen-Macaulay (ACM) curves in \mathbb{P}^3.

Definition 2.1. Let $Z \subset \mathbb{P}^{n-1}$ be any closed subscheme with defining (saturated) ideal $I = I_Z$. We say that Z is *arithmetically Cohen-Macaulay* (ACM) if the coordinate ring R/I_Z is a Cohen-Macaulay ring. Note that if Z is a zero-dimensional scheme then it is automatically ACM. □

Definition 2.2. The *i-binomial expansion* of the integer a ($a > 0$) is the unique expression

$$a = \binom{m_i}{i} + \binom{m_{i-1}}{i-1} + \cdots + \binom{m_j}{j},$$

where $m_i > m_{i-1} > \cdots > m_j \geq j \geq 1$. □

Definition 2.3. If $a \in \mathbb{Z}$ ($a > 0$) has i-binomial expansion as in Definition 2.2 then we set

$$a^{(i)} = \binom{m_i+1}{i+1} + \binom{m_{i-1}+1}{i} + \cdots + \binom{m_j+1}{j+1}.$$

Note that this defines a collection of functions $^{(i)} : \mathbb{Z} \to \mathbb{Z}$. □

For example, the 5-binomial expansion of 76 is

$$76 = \binom{8}{5} + \binom{6}{4} + \binom{4}{3} + \binom{2}{2},$$

so

$$76^{(5)} = \binom{9}{6} + \binom{7}{5} + \binom{5}{4} + \binom{3}{3} = 111.$$

Definition 2.4. A sequence of non-negative integers $\{a_i : i \geq 0\}$ is called an *O-sequence* if

$$a_0 = 1 \text{ and } a_{i+1} \leq a_i^{(i)},$$

for all i. An O-sequence is said to have *maximal growth from degree i to degree $i+1$* if $a_{i+1} = a_i^{(i)}$. □

Theorem 2.5 ([13]). The following are equivalent:
(i) \{a_i : i \geq 0\} is an O-sequence;
(ii) \{a_i : i \geq 0\} is the Hilbert function of a standard graded \(k\)-algebra.

Definition 2.6. Given a sequence of non-negative integers \(a = \{a_i : i \geq 0\}\), the first difference of this sequence is the sequence \(\Delta a := \{b_i\}\) defined by \(b_i = a_i - a_{i-1}\) for all \(i\).

(We make the convention that \(a_{-1} = 0\), so \(b_0 = a_0 = 1\).) We say that \(a\) is a differentiable O-sequence if \(\Delta a\) is again an O-sequence. By taking successive first differences, we inductively define the \(k\)-th difference \(\Delta^k a\).

Recall that if \(H = \{h_i : i \geq 0\}\) is the Hilbert function of an arithmetically Cohen-Macaulay subscheme of \(\mathbb{P}^n\) of dimension \(r\) (so the coordinate ring \(R/I\) has Krull dimension \(r + 1\)) then the sequences \(\Delta^i H\), \(1 \leq i \leq r + 1\), are all O-sequences. We say that \(H\) is \((r + 1)\)-times differentiable.

In particular, let \(H\) be the Hilbert function of a non-degenerate ACM curve, \(C\), of degree \(d\) in \(\mathbb{P}^3\). Then \(\Delta H\) is the Hilbert function of a proper hyperplane section of \(C\), which is a zero-dimensional scheme of degree \(d\) in the hyperplane \(\mathbb{P}^2\).

Another result that we will need is the following. Let \(V\) be any reduced subscheme of \(\mathbb{P}^n\) (not necessarily ACM) with Hilbert function \(H = \{1, n + 1, h_2, h_3, \ldots\}\). Let \(e\) be any positive integer, and define a new sequence \(\{e_i : i \geq 0\}\) by \(e_i = \min\{h_i, e\}\). It is shown in [7] that \(\{e_i\}\) is the Hilbert function of some reduced set of points on \(V\). The sequence \(\{e_i\}\) is called the truncation of \(H\) at \(e\).

A useful way of presenting the graded Betti numbers occurring in the minimal free resolution of a graded module is by the so-called Betti diagram, introduced in the computer algebra program macaulay [11], a program which was used to generate many examples that contributed to the theorems in this paper. Specifically, for a standard graded algebra \(R/I\) we have the diagram

\[
\begin{array}{cccc}
0 & : & 1 & \beta_{1,1} & \beta_{2,2} & \beta_{3,3} \\
1 & : & - & \beta_{1,2} & \beta_{2,3} & \beta_{3,4} \\
2 & : & - & \beta_{1,3} & \beta_{2,4} & \beta_{3,5} \\
3 & : & - & \beta_{1,4} & \beta_{2,5} & \beta_{3,6} \\
\vdots & : & \vdots & \vdots & \vdots & \vdots \\
\end{array}
\]

Note that the minimal free resolution has redundant, or “ghost” terms if and only if two non-zero entries are adjacent diagonal (with slope 1); for instance, if \(\beta_{2,5}\) and \(\beta_{3,5}\) are both non-zero, then there is a copy of \(R(-5)\) in both the second and third free modules in the resolution.

3. Basic Construction

For most of the remainder of this paper we will work in the ring \(R = k[x_0, x_1, x_2, x_3]\) but we will also need the ring \(S = k[x_1, x_2, x_3]\). The main results of this paper are all built on the construction that we will describe in this section. There are certain invariants that we will need.

Notation 3.1. Consider a twice differentiable O-sequence, \(H = \{h_i : i \geq 0\}\) and assume that \(h_1 = 4\) and that \(\Delta H\) levels off at the value \(d\). So \(H\) is the Hilbert function of an ACM curve, \(C\), in \(\mathbb{P}^3\) and \(\Delta H\) is the Hilbert function of its general hyperplane section.
Let $\Delta H = \{b_i : i \geq 0\}$ and let $\Delta^2 H = \{c_i : i \geq 0\}$. Then we define the integer t by

$$\Delta H = (1, 3, b_2, \ldots, b_{t-1}, b_t = d, d, \ldots)$$

where $b_2 < b_3 < \cdots < b_{t-1} < b_t = d$, and we note that

$$\Delta^2 H = (1, 2, c_2, \ldots, c_{t-1}, c_t, 0)$$

with $c_i > 0$ and $\sum_{i=0}^{t} c_i = d$. The integer t has been given many different names in the literature, and we have $\text{reg}(I_C) = t + 1$. The finite sequence $\Delta^2 H$ is also known as the h-vector of C.

Now we set

$$s := \left\lfloor \frac{d-1}{2} \right\rfloor$$

and we let CI be the Hilbert function of a complete intersection of type $(2, s)$ in four variables. That is,

$$\Delta CI = (1, 3, 5, \ldots, 2s - 3, 2s - 1, 2s) \quad \text{and} \quad \Delta^2 CI = (1, 2, 2, \ldots, 2, 2, 1)$$

and note that $\Delta^2 CI$ ends in degree s.

We make the following key assumptions:

(3.1) \hspace{1cm} d > 3 \quad \text{and} \quad t \leq s - 1 = \left\lfloor \frac{d-3}{2} \right\rfloor.

We will assume that d is even. The case d odd is entirely analogous and will be left to the reader (but we make comments from time to time about this case). Note that if d is even then we have $2s = d - 2$.

Claim 1: $b_2 = 6$.

Suppose otherwise. Recall that H is twice differentiable, i.e. $\Delta^2 H$ is an O-sequence. We have:

- $b_2 \geq 3$ since ΔH is differentiable;
- if $b_2 = 3$ then $d = 3$ (again using differentiability), contradicting our assumption;
- if $b_2 = 4$ then $\Delta^2 H$ is the sequence
 $$1, 2, 1, \ldots$$
 and by Macaulay’s growth condition each subsequent entry must be 1 until degree t, so $d = t + 2$, which clearly violates (3.1);
- if $b_2 = 5$ then $\Delta^2 H$ is the sequence
 $$1, 2, 2, c_3, \ldots,$$
 where each c_i is ≤ 2 and $c_{t+1} = 0$. Hence $d \leq 2t + 1$, so combining with (3.1), we get
 $$\frac{d-1}{2} \leq t \leq \left\lfloor \frac{d-3}{2} \right\rfloor,$$
 a contradiction.
Therefore we have finished Claim 1.

As noted, CI is the Hilbert function of a complete intersection in R of type $(2, \frac{d-2}{2})$, $\Delta^2 CI$ ends in degree $\frac{d-2}{2} = s$, and $2s = d - 2$. Consider the following table, where the last line is obtained by taking the difference $\Delta H - \Delta CI$.

	0	1	2	3	4	\ldots	$t-1$	t	$t+1$	$s-2$	$s-1$	s	$s+1$	\ldots	
ΔH	1	3	6	b_3	b_4	\ldots	b_{t-1}	d	d	\ldots	d	d	d	d	\ldots
ΔCI	1	3	5	7	9	\ldots	$2t-1$	$2t+1$	$2t+3$	\ldots	$2s-3$	$2s-1$	$2s$	$2s$	\ldots
	1	e_1	e_2	\ldots	e_{t-3}	e_{t-2}	e_{t-1}	\ldots	5	3	2	2	\ldots		

Since $t \leq s - 1$, we verify that the sequence $\{e_i : i \geq 0\}$ ends with the subsequence $(\ldots, 3, 2, 2, 2, \ldots)$, although the columns between t and $s-1$ could be redundant. (When d is odd, the sequence $\{e_i : i \geq 0\}$ ends with $(\ldots, 2, 1, 1, 1, \ldots)$.)

Claim 2: $\{e_i : i \geq 0\}$ is an O-sequence.

Note that $e_1 \leq 3$. We want to show that for any i, the growth from e_i to e_{i+1} does not violate Macaulay’s theorem.

Case 1: $i \geq t - 2$.

Then $i + 2 \geq t$ so $b_{i+2} = d$ and it follows that $e_i \geq e_{i+1}$ (and in fact $e_i > e_{i+1}$ for $t-2 \leq i \leq s-3$). Hence e_i is an O-sequence in this range.

Case 2: $i \leq t - 3$.

Note that under this assumption we have

$$b_{i+2} = e_i + 2(i + 2) + 1 = e_i + 2i + 5$$

and

$$b_{i+2} = \binom{i+4}{2}$$

if and only if $e_i = \binom{i+2}{2}$.

Now note that

$$b_{i+3} - b_{i+2} = e_{i+1} - e_i + 2.$$

What is the i-binomial expansion of e_i? We have

$$e_i = \binom{m_i}{i} + \binom{m_{i-1}}{i-1} + \cdots + \binom{m_j}{j}$$

for some $m_i > m_{i-1} > \cdots > m_j \geq j \geq 1$. Since $\binom{a}{b} = \binom{a}{a-b}$ for $a > b$, and taking into account (3.4), we see that without loss of generality we may write

$$e_i = \left[\binom{i+1}{1} + \binom{i}{1} + \cdots + \binom{k}{1}\right] + \left[\binom{k-1}{0} + \cdots + \binom{k-l}{0}\right]$$

for some k, l. Then from (3.3) we get

$$b_{i+2} = [(i+3) + (i+2) + (i+1) + i + \cdots + k] + l.$$
Similarly we obtain
\[e_{i+1} = [(i + 2) + \cdots + k'] + l' \]
\[b_{i+3} = [(i + 4) + (i + 3) + (i + 2) + \cdots + k'] + l'. \]

Now, we know that \(\Delta H \) is an O-sequence, so the growth from \(b_{i+2} \) to \(b_{i+3} \) satisfies Macaulay’s bound. That is,
\[(i + 4) + (i + 3) + \cdots + k' + l' \leq b_{i+2}^{(i+2)} \]
\[= [(i + 4) + (i + 3) + \cdots + (k + 1)] + l. \]

Then
\[e_{i+1} = b_{i+3} - (2i + 7) \]
\[\leq b_{i+2}^{(i+2)} - (2i + 7) \]
\[= e_{i}^{(i)} \]

proving that \(\{e_i: i \geq 0\} \) is an O-sequence as claimed. This complete the proof of Claim 2.

Now we have that all three sequences in \(\{e_i\} \) are infinite O-sequences. Let \(J \) be the lex-segment ideal in \(S \) with Hilbert function \(\{e_i: i \geq 0\} \). Note that since \(J \) is lex-segment and \(e_i = 2 \) for all \(i \) sufficiently large, we have that \(J_i = \langle x_1, x_2 \rangle_i \), for all \(i \) sufficiently large.

Let \(Y \) be the reduced subscheme of \(\mathbb{P}^3 \) obtained by “lifting” the monomial ideal \(J \) (cf. for instance \cite{15}). \(Y \) is reduced, the reduction modulo \(x_0 \) of \(I_Y \) is \(J \), and the top dimensional part, \(\bar{Y} \), of \(Y \) is a reduced curve of degree 2. Note that the Betti diagram for \(I_Y \) is the same as the Betti diagram for \(J \). The first difference of the Hilbert function of \(Y \) is precisely \(\{e_i: i \geq 0\} \).

The next claim is not needed for the rest of the proof, but is an interesting observation.

Claim 3: \(\bar{Y} \) is ACM, and in fact it is a plane curve consisting of two lines meeting in a point.

(Note that when \(d \) is odd, \(\bar{Y} \) is just a line and there is nothing to prove here. But when \(d \) is even, \(\bar{Y} \) could in principle be two skew lines. We have to prove that regardless of the sequence \(\{e_i: i \geq 0\} \), the curve \(\bar{Y} \) obtained in this way consists of two lines meeting in a point.)

The reduction of \(I_Y \) modulo \(x_0 \) is the ideal of a zero-dimensional scheme of degree 2 (not necessarily saturated, a priori, if \(\bar{Y} \) is not ACM), and this reduction contains \(J \). But in large degree \(J \) agrees with the ideal \(\langle x_1, x_2 \rangle_i \), which is the saturated ideal of a zero-dimensional scheme of degree 2. Therefore the reduction of \(I_Y \) modulo \(x_0 \) agrees with \(\langle x_1, x_2 \rangle \) in all sufficiently large degrees, and hence its saturation is \(\langle x_1, x_2 \rangle \). But this ideal is supported at a point, so the curve \(\bar{Y} \) meets the hyperplane defined by \(x_0 \) in one point (up to multiplicity). Hence \(\bar{Y} \) is the union of two lines meeting at this point, and we have proved Claim 3.

We now choose polynomials \(F \in (I_Y)_s \) and \(Q \in R \) such that \(Q \) is a quadric and \((F,Q) \) is a regular sequence. Let \(V \) be the complete intersection defined by \((F,Q) \). Note that
The ideal I is formed by a special case of Generalized Liaison Addition \[8\]. The following can easily be deduced using \[8\].

1. I is a saturated ideal defining a curve, X, of degree d.
2. The Hilbert function of X is H. (This comes directly from \[32\], using the methods of \[8\].)
3. X is reduced, and as sets, we have $X = Y \cup V$. Since Q can be chosen freely, V avoids any 0-dimensional components of Y.
4. F can be chosen to be a union of planes, as can Q, in which case X is a union of lines and reduced points.
5. There is an exact sequence

$$0 \rightarrow R(-s - 2) \rightarrow I_Y(-2) \oplus R(-s) \rightarrow I \rightarrow 0.$$

Now we can say something about the Betti diagram of I. Suppose that I_Y has minimal free resolution

$$0 \rightarrow \mathbb{F}_3 \rightarrow \mathbb{F}_2 \rightarrow \mathbb{F}_1 \rightarrow I_Y \rightarrow 0.$$

Notice that because of the values of $\{e_i : i \geq 0\}$ in degrees $s - 3$ (recall the shift in \[32\]), we obtain from \[11\] that S/J (the reduction of R/I_Y by x_0) has a non-zero socle element in degree $s - 3$ (where the “3” is), and in fact the socle in this degree is 1-dimensional. Hence since I_Y and J have the same Betti diagram, we get

$$\mathbb{F}_3 = R(-s) \oplus A$$

for some free module A. Because the Hilbert function of S/J, $(\ldots, 3, 2, 2, \ldots)$ (with the 3 in degree $s - 3$) has maximal growth from degree $s - 2$ to degree $s - 1$, the ideal $J_{\leq s - 2}$ generated by the components of degrees $\leq s - 2$ has regularity $s - 2$. In fact, since the value of the Hilbert function of S/J is 2 from that point on, there are no further generators and without loss of generality we may substitute J for $J_{\leq s - 2}$. Hence we also have that A has no summands $R(-s - 1)$ or higher, and that \mathbb{F}_2 has no summand $R(-s)$ or higher. We get the commutative diagram

$$\begin{array}{cccccc}
& & & [R(-s - 2) \oplus A(-2)] & \oplus 0 \\
& & & \downarrow & \\
& & 0 & \mathbb{F}_2(-2) & \oplus 0 \\
& & \downarrow & \downarrow & \\
R(-s - 2) & \xrightarrow{a'} & \mathbb{F}_1(-2) & \oplus R(-s) \\
& \downarrow & \downarrow & \\
0 & \rightarrow & R(-s - 2) & \xrightarrow{a} & I_Y(-2) & \oplus R(-s) \rightarrow I \rightarrow 0 \\
& \downarrow & \downarrow & \\
& & 0 & & 0
\end{array}$$
where $\alpha = (F, Q)$. From the associated mapping cone and the observations above, we get the following Betti diagram for R/I:

\begin{equation}
\begin{array}{c|c}
0 & 1 \ast \ast \ast \\
1 & - \ast \ast \ast \\
\vdots & \\
s-2 & - \ast \ast \ast \\
s-1 & - \ast \ast 1 \\
s & - - 1 - \\
s+1 & - - - - \\
\end{array}
\end{equation}

Note that in particular, I has no minimal generators in degree $s + 2$.

Remark 3.2. Because of the way that the maps go in the commutative diagram, the two 1’s in the Betti diagram do not cancel (i.e. the corresponding terms in the free resolution do not split).

However, if I_Y had a minimal generator in degree s, and if we chose F such that it were such a generator, then α' would map $R(-s - 2)$ isomorphically onto a summand of $F_1(-2)$ (corresponding to this generator). In this case, there would be a term $R(-s - 2)$ in the first free module in the free resolution of I coming from the mapping cone, and it would split off with the copy of $R(-s - 2)$ that we have described in the second free module. Of course I_Y does not have a minimal generator of degree s, but in the next section we will modify things so that such a generator does exist. □

Again, the case d odd is entirely analogous, and is left to the reader. (This time we use a complete intersection of type $(2, \frac{d-1}{2})$.

4. **Main results**

In this section we make minor modifications on the construction of the last section in order to get our results.

Theorem 4.1. Let $H = \{h_i : i \geq 0\}$ be a twice differentiable O-sequence over R, with invariants d, t, s as in Notation 3.1; in particular, we continue to assume that $t \leq s - 1 = \left\lfloor \frac{d - 3}{2} \right\rfloor$.

Let \tilde{H} be the truncation at the value h_{s+1}, so \tilde{H} is the Hilbert function of some set of h_{s+1} points in \mathbb{P}^3. Then $\mathbb{B}'_\tilde{H}$ does not have a unique smallest element, and the postulation scheme $\mathbb{H}_{\text{red}}(\tilde{H}(\mathbb{P}^3))$ is reducible. Furthermore, on one component, \mathcal{H}_1, the general point corresponds to a set of points with WLP, while on another component, \mathcal{H}_2, no point corresponds to a set of points with WLP.

Proof. We continue to assume that d is even, leaving the case d odd for the reader (but occasionally remarking on the case of d odd). Notice that the first difference of \tilde{H} is

$$\Delta \tilde{H} = (1, 3, 6, b_3, \ldots, b_{t-1}, d, \ldots, d, 0)$$

where the last d occurs in degree $s+1$.
Consider the sequence \(\{e'_i : i \geq 0\} \) defined by

\[
e'_i = \begin{cases}
e_i & \text{if } i \leq s - 1 \\
0 & \text{if } i \geq s.
\end{cases}
\]

Note that \(\{e'_i\} \) ends with the subsequence \((\ldots, 3, 2, 2, 0)\). Let \(J' \) be the lexsegment ideal in \(S \) with Hilbert function \(\{e'_i : i \geq 0\} \). Note that \(J' \) has two minimal generators in degree \(s \). Let \(Y' \) be the reduced (but now zero-dimensional) subscheme of \(\mathbb{P}^3 \) obtained by “lifting” the monomial ideal \(J' \). Note that \(J' \) agrees with the ideal \(J \) described above in degrees \(\leq s - 1 \), so the same is true of \(I_{Y'} \) and \(I_Y \), respectively. The first difference of the Hilbert function of \(Y' \) is \(\{e'_i : i \geq 0\} \). Since the ideal \(I_Y \) has no generator in degree \(s \), \(I_{Y'} \) must have exactly two minimal generators in degree \(s \). (When \(d \) is odd, \(I_{Y'} \) has one minimal generator in degree \(s \).)

Now we choose \(F \in (I_{Y'})_s \) and \(Q \in R_2 \) as above, but we choose \(F \) to be a minimal generator of \(I_{Y'} \). We form the ideal \(I' = QI_{Y'} + (F) \). This is again a saturated ideal, defining a reduced subscheme, \(X' \), of \(\mathbb{P}^3 \) which consists of the disjoint union of the curve defined by \((F, Q)\) (which has degree \(d - 2 \)) and \(Y' \). Let \(H' \) be the Hilbert function of \(X' \). We make the following Hilbert function calculation using (3.2):

\[
\begin{array}{c|cccccccccccc}
\text{deg} & 0 & 1 & 2 & 3 & 4 & \ldots & t - 1 & t & t + 1 & \ldots & s - 1 & s & s + 1 & s + 2 & s + 3 & \ldots \\
\hline
\Delta CI & e_{t-2} & e_1 & e_2 & \ldots & e_{t-3} & e_{t-2} & e_{t-1} & \ldots & 3 & 2 & 2 & 0 & 0 & \ldots \\
\Delta H & 1 & 3 & 5 & 7 & 9 & \ldots & 2t - 1 & 2t - 1 & 2t + 1 & 2t + 3 & \ldots & 2s - 1 & 2s & 2s & 2s & 2s & \ldots \\
\end{array}
\]

Note that \(I' = I_{X'} \) agrees with \(I_X \) in degrees \(\leq s + 1 \), and its Hilbert function is \(H \) up to and including degree \(s + 1 \). Note also that \(I_{X'} \) has only one minimal generator in degree \(s + 2 \) (thanks to Remark 3.2), rather than the two that one might guess by looking at (4.1).

Thanks to [7], there exists a set of points, \(Z' \), on \(X' \) whose Hilbert function is the truncation of \(h_{X'} \) at level \(h_{s+1} \), i.e. whose Hilbert function is \(\bar{H} \). The table (4.1) shows that \(I_{Z'} \) has \(d - 2 \) more generators in degree \(s + 2 \) than does \(I_{X'} \), so in fact \(I_{Z'} \) has \(d - 1 \) minimal generators in degree \(s + 2 \).

Thanks to the Betti diagram (3.5) and Remark 3.2 we have the following Betti diagram for \(R/I_{Z'} \):

\[
\begin{array}{c|ccccc}
\text{deg} & 0 & 1 & \ldots & s - 2 & s - 1 & s \quad s + 1 \\
\hline
0 & 1 & \ast & \ast & \ast & \ast & \ast \\
1 & \ldots & \ast & \ast & \ast & \ast & \ast \\
\vdots & \ast & \ast & \ast & \ast & \ast & \ast \\
\hline
s - 2 & \ast & \ast & \ast & \ast & \ast & \ast \\
s - 1 & \ast & \ast & \ast & \ast & \ast & \ast \\
s & \ast & \ast & \ast & \ast & \ast & \ast \\
s + 1 & \ast & \ast & \ast & \ast & \ast & \ast \\
\end{array}
\]
Now we let C be an ACM curve with Hilbert function H. Since $\text{reg}(I_C) = t + 1$, R/I_C has Betti diagram
\[
\begin{align*}
0 & : 1 \ast \ast \ast \\
1 & : - \ast \ast \ast
\end{align*}
\]
(4.3)
\[
\begin{align*}
t - 1 & : - \ast \ast \ast \\
t & : - \ast \ast \ast \\
t + 1 & : - - - -
\end{align*}
\]
Let Z be a finite subset of C whose Hilbert function is the truncation of H at level h_{s+1}, i.e. $h_Z = \bar{H}$; note that as before I_Z agrees with I_C in degrees $\leq s + 1$. Since $t \leq s - 1$, the Betti diagram of R/I_Z is
\[
\begin{align*}
0 & : 1 \ast \ast \ast \\
1 & : - \ast \ast \ast \\
t - 1 & : - \ast \ast \ast \\
t & : - \ast \ast \ast \\
t + 1 & : - - - -
\end{align*}
\]
(4.4)

Comparing the Betti diagrams (4.2) and (4.4), one sees that $\beta'_{3,s+2} > \beta_{3,s+2}$ and $\beta'_{1,s+2} > \beta_{1,s+2}$. In fact it is clear that the diagrams are strongly incomparable (in the sense of Definition 1.2), since there can be no element smaller than both. The non-existence of a unique smallest element and the reducibility of the postulation scheme then follow immediately. Z corresponds to a point in \mathcal{H}_1 and Z' corresponds to a point in \mathcal{H}_2.

The assertion about WLP comes from the observation (from the Betti diagram) that the Artinian reduction of R/I_Z' has a socle element in degree $s - 1$. But the value of the Hilbert function of this Artinian reduction in both degrees $s - 1$ and s is d, so the map induced by a general linear form can be neither injective nor surjective (since it has a one-dimensional kernel). Hence this Artinian reduction does not have WLP. On the other hand, the Artinian reduction of R/I_Z does have WLP – it follows from the Cohen-Macaulay property of R/I_C and the fact that R/I_C agrees with R/I_Z in all degrees $\leq s+1$.

Again, the case d odd is almost identical and is left to the reader. □

Corollary 4.2. Under the assumptions of Theorem 4.1, if H is of decreasing type (i.e. Δ^2H is strictly decreasing once it starts to decrease, so H is the Hilbert function of an irreducible ACM curve in \mathbb{P}^3) then the general element of \mathcal{H}_1 also satisfies UPP.

Proof. It is clear from the proof of Theorem 4.1. We simply choose C to be an irreducible ACM curve and Z to be a general set of points on C of the right cardinality. We do not know if the general element of \mathcal{H}_2 has UPP, although we believe that it does not. □
Example 4.3. Let
\[\Delta H = (1, 3, 6, 10, 14, 16, 17, \ldots). \]
Then \(t = 6, d = 17 \) and \(s = 8 \), so Theorem 4.1 considers the Hilbert function
\[\Delta \bar{H} = (1, 3, 6, 10, 14, 16, 17, 17, 17, 0). \]
That is,
\[\bar{H} = (1, 4, 10, 20, 34, 50, 67, 84, 101, 118, \ldots). \]
The corresponding postulation scheme \(\text{Hilb}^\bar{H}(\mathbb{P}^n) \), parameterizing sets of 118 points in \(\mathbb{P}^3 \) with Hilbert function \(\bar{H} \), is reducible. \(\square \)

Corollary 4.4. Let \(H = \{h_i : i \geq 0\} \) be a twice differentiable O-sequence, with invariants \(d, t, s \) as in Notation 3.1; in particular, we assume that
\[t \leq s - 1 = \left\lfloor \frac{d - 3}{2} \right\rfloor. \]
Write \(\Delta H = \{1, 3, b_2, b_3, \ldots, b_{t-1}, d, d, \ldots\} \). Let \(\bar{H} \) be the Hilbert function whose first difference is
\[\Delta \bar{H} = \{1, 3, b_2, b_3, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, b_{s+3}, \ldots, b_r, 0\} \]
where
\[\begin{align*}
& b_{s+2} \leq d - 2 & \text{if } d \text{ is even} \\
& b_{s+2} \leq d - 1 & \text{if } d \text{ is odd}
\end{align*} \]
and \(b_i \geq b_{i+1} \) for all \(i \geq s + 2 \). Then all the conclusions of Theorem 4.1 continue to hold for \(\bar{H} \).

Proof. As before, we prove the case where \(d \) is even, leaving to the reader the case of \(d \) odd. Our approach here is similar to that taken in [12], Proposition 3.5.

We return to the monomial ideal \(J' \) and the reduced subscheme \(X' \) obtained at the beginning of the proof of Theorem 4.1. By the mechanism of liftings of monomial ideals (cf. [15]), we may assume that \(F \in (I_{X'})_s \) is a union of planes. Clearly \(Q \) can also be chosen to be a (general) union of planes. Hence \(X' \) is the disjoint union of \(2s = d - 2 \) lines (defined by the complete intersection of \(F \) and \(Q \)) and a finite set of points \((Y') \) whose regularity is \(s \). We saw that the Hilbert function of \(X' \) has first difference
\[(1, 3, 6, b_3, \ldots, b_{t-1}, d, \ldots, d, d - 2, d - 2, \ldots) \]
with the last \(d \) occurring in degree \(s + 1 \).

Note that the union, \(A_i \), of \(2s = d - 2 \) lines is a complete intersection of type \((2, s) \); in particular it is ACM. Its Hilbert function has first difference
\[(1, 3, 5, \ldots, d - 5, d - 3, d - 2, d - 2 \ldots) \]
where the first \(d - 2 \) occurs in degree \(s \). It is easy to check (e.g. by considering liftings) that we may order the lines \(\lambda_1, \lambda_2, \ldots, \lambda_{d-2} \) such that for each \(i \), \(A_i := \lambda_1 \cup \cdots \cup \lambda_i \) is ACM. Notice that the Hilbert function of \(A_i \) has first difference which reaches value \(i \) in degree \(< s \), except for \(A_{d-2} \), which reaches value \(d - 2 \) in degree exactly \(s \).

For any \(\i \), the base locus of the linear system \(|(I_{X'})_i|\) includes all the lines \(\lambda_j \). Furthermore, in degrees \(\geq s + 2 \), the reduction of \(R/I_{X'} \) modulo \(x_0 \) agrees with the reduction of \(R/(F, Q) \) modulo \(x_0 \).
We will proceed inductively. Consider the Hilbert function

\[1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, b_{s+2}, \ldots. \]

This can be obtained by the ideal

\[I_{X_{s+2}} := I_{Z'} \cap I_{\lambda_1} \cap \cdots \cap I_{\lambda_{b_{s+2}}} \]

i.e. by taking the ideal of \(X_{s+2} := Z' \cup A_{b_{s+2}} \), where \(Z' \) is the reduced zero-dimensional scheme obtained in Theorem 4.1. Indeed, since \(\lambda_1, \ldots, \lambda_{b_{s+2}} \) are contained in the base locus of \(I_{Z'} \) in degrees \(\leq s + 1 \), they impose no additional conditions in those degrees. And in degrees \(\geq s + 2 \) the reduction modulo \(x_0 \) sees only the \(b_{s+2} \) lines. We choose a finite set of points \(Z_{s+2} \) whose Hilbert function is the truncation, i.e. whose Hilbert function has first difference

\[1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, 0. \]

For the next step we proceed as we have done here, but substituting \(X_{s+2} \) for \(X' \) and \(Z_{s+2} \) for \(Z' \), and we produce in the end a finite set of points with Hilbert function having first difference

\[1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, b_{s+3}, 0. \]

After a finite number of steps, we are finished. Let us denote by \(W' \) this reduced zero-dimensional scheme with the desired Hilbert function.

For the scheme \(W \) (analogous to \(Z \) in Theorem 4.1) having the same Hilbert function as \(W' \) but strongly incomparable Betti diagram, we first note that a curve \(C \) can be constructed with Hilbert function having first difference \(\{1, 3, b_2, \ldots, b_{t-1}, d, d, \ldots\} \) and such that \(C \) is ACM, and as before, it is a union of lines \(\lambda_1 \cup \lambda_2 \cup \cdots \cup \lambda_d \) such that \(\lambda_1 \cup \cdots \cup \lambda_i \) is ACM for all \(i \). We then proceed exactly as we did above, considering truncations and slowly removing lines, to produce a reduced zero-dimensional scheme with the desired Hilbert function.

Now we have to check that these zero-dimensional schemes \(W \) and \(W' \) have strongly incomparable Betti diagrams. Note that the Betti diagram for \(R/I_C \) is the same as that in (4.3), by construction.

Recall that in Theorem 4.1 we produced zero-dimensional schemes \(Z \) and \(Z' \) with Hilbert function having first difference

\[1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d, 0 \]

where the last \(d \) occurs in degree \(s + 1 \). We saw that the Betti diagram for \(R/I_{Z'} \) was

\[
\begin{array}{cccc}
0 & : & 1 & * & * \\
1 & : & - & * & * \\
\vdots \\
s - 2 & : & - & * & * \\
s - 1 & : & - & * & 1 \\
s & : & - & - & - \\
s + 1 & : & - & d - 1 & * & *
\end{array}
\]
while the Betti diagram for R/I_Z was

\[
\begin{align*}
0 & : 1 * * - \\
1 & : - * * - \\
& \vdots \\
t - 1 & : - * * - \\
t & : - * * - \\
t + 1 & : - - - - \\
& \vdots \\
s & : - - - - \\
s + 1 & : - d * *
\end{align*}
\]

Now instead we have constructed reduced zero-dimensional schemes W and W' with Hilbert function having first difference

\[1, 3, b_2, \ldots, b_{t-1}, d, \ldots, d, b_{s+2}, \ldots.\]

In particular, $I_{Z'}$ (resp. I_Z) agrees with $I_{W'}$ (resp. I_W) in all degrees $\leq s + 1$. It follows that the Betti diagram for $R/I_{Z'}$ (resp. R/I_Z) agrees with the Betti diagram for $R/I_{W'}$ (resp. R/I_W) in all rows above the one labelled s. The fact that the Hilbert function in degree $s + 2$ is now b_{s+2} rather than 0 means that instead of having $d - 1$ and d minimal generators in degree $s + 2$, respectively (in the above two diagrams), we instead have $d - 1 - b_{s+2}$ and $d - b_{s+2}$, respectively. But the incomparability of the diagrams is preserved. \[\Box\]

Example 4.5. In Example 3.4 of [14] it was shown that if \bar{H} is the Hilbert function with first difference $(1, 3, 6, 9, 11, 11, 11, 0)$ (corresponding to a set of 52 points in \mathbb{P}^3), then $\mathbb{H}_{\text{red}}(\bar{H}(\mathbb{P}^3))$ is reducible. Since here $d = 11, t = 4$ and $s = 5$, this is easily seen to follow immediately from Theorem 4.1. Furthermore, by Corollary 4.4 also the Hilbert function H' with first difference

\[(1, 3, 6, 9, 11, 11, 11, 9, 6, 3, 1)\text{ or } (1, 3, 6, 9, 11, 11, 11, 10, 8, 8, 5, 5, 4, 3, 3, 1)\]

has the property that $\mathbb{H}_{\text{red}}(H'(\mathbb{P}^3))$ is reducible.

Example 4.6. Richert shows that even when the Hilbert function is one of a complete intersection, the conclusions about not having a unique minimum element of \mathbb{B}_H (or about the reducibility of $\mathbb{H}_{\text{red}}(H(\mathbb{P}^n))$) may hold. His infinite family of examples deals with the Hilbert function of a complete intersection of type $(m, m + 1, 2m + 1)$. More generally, in [18] Ragusa and Zappalà show that if \bar{H} is the Hilbert function of a complete intersection of type (a, b, c) with $a \leq b \leq c$ and $b + 3 \leq c \leq ab$, and if $(a, b, c) \neq (4, 4, 7)$, then \mathbb{B}_H does not have a unique minimum element. Using our methods it is also possible to obtain the Hilbert function of a complete intersection, but the “flat part” of the Hilbert function becomes rather large. For example, taking $a = b = 7$ requires $c = 26$, and we obtain the Hilbert function

\[(1, 3, 6, 10, 15, 21, 28, 34, 39, 43, 46, 48, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 48, 46, 43, \\
39, 34, 28, 21, 15, 10, 6, 3, 1).\]
One might wonder if we could improve the method using a different kind of complete intersection \(CI \) in our construction (recall that we used one of type \((2, \lfloor \frac{d-1}{2} \rfloor)\)). The idea would be to try to diminish the number of copies of \(d \) in the first difference of the Hilbert function. If our goal were some restricted class of Hilbert functions, such as those of complete intersections of type \((a, b, c)\), experimental evidence suggests that it might be possible. But since this case is known \([18]\), we have to explore the general case.

Suppose, for instance, that we wanted to show that the Hilbert function with first difference \(\Delta H = (1, 3, 6, 10, 15, 19, 23, 26, 27, 28, 29, \ldots, 0) \) corresponds to a postulation scheme \(\text{H} \text{red}^H(\mathbb{P}^3) \) which is reducible. Using the method of this paper, we use a complete intersection of type \((2, 14)\) and study the table

\[
\begin{array}{ccccccccccccccc}
\text{deg} & | & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & \ldots \\
\Delta H & | & 1 & 3 & 6 & 10 & 15 & 19 & 23 & 26 & 27 & 28 & 29 & 29 & 29 & 29 & 29 & 29 & \ldots \\
\Delta CI & | & 1 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 26 & 27 & 28 & 28 & 28 & 28 & 28 & \ldots \\
\end{array}
\]

Here \(t = 10 \) and \(s = 14 \). Note that the bottom row is indeed an O-sequence. Theorem \ref{thm} then draws a conclusion about the Hilbert function with first difference \(\Delta H = (1, 3, 6, 10, 15, 19, 23, 26, 27, 28, 29, 29, 29, 29, 29, 29, 29, \ldots, 0) \).

But if we tried to reduce the number of 29's by choosing, for instance, a complete intersection of type \((4, 7)\), we obtain the diagram

\[
\begin{array}{ccccccccccccccc}
\text{deg} & | & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \ldots \\
\Delta H & | & 1 & 3 & 6 & 10 & 15 & 19 & 23 & 26 & 27 & 28 & 29 & 29 & \ldots \\
\Delta CI & | & 1 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 26 & 27 & 27 & 27 & 27 & \ldots \\
\end{array}
\]

and the bottom line is not an O-sequence.

However, in \(\text{(4.6)} \) if we instead use a complete intersection of type \((3, 9)\) then we obtain

\[
\begin{array}{ccccccccccccccc}
\text{deg} & | & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & \ldots \\
\Delta H & | & 1 & 3 & 6 & 10 & 15 & 19 & 23 & 26 & 27 & 28 & 29 & 29 & \ldots \\
\Delta CI & | & 1 & 3 & 6 & 9 & 12 & 15 & 18 & 21 & 24 & 26 & 27 & 27 & \ldots \\
\end{array}
\]

One might think that the method of this paper would allow us to start with the O-sequence \((1, 3, 4, 5, 5, 3, 2, 2, 0) \) and proceed as before to obtain a result about the Hilbert function with first difference \((1, 3, 6, 10, 15, 19, 23, 26, 27, 28, 29, 0) \). But recall that the complete intersection needs to include a minimal generator for \(I_{Y'} \), and the O-sequence \((1, 3, 4, 5, 5, 3, 2, 2, 0) \) does not allow a minimal generator of degree 9. So in fact we have to start with the O-sequence \((1, 3, 4, 5, 5, 3, 2, 2, 2, 0) \) and then we can indeed draw a conclusion about the Hilbert function with first difference \((1, 3, 6, 10, 15, 19, 23, 26, 27, 28, 29, 29, 0) \). This is not covered by Theorem \ref{thm}.

Another obstruction to extending this technique is that if \(CI \) is the Hilbert function of a complete intersection of type \((a, b)\), then in order for the sequence \(\{e_i\} \) to begin with a 1 we need \(a < b \), and also we need that \(a \) be strictly smaller than the initial degree of \(H \) (or some small variant which we need not make explicit here). If we impose this
condition, and also the condition that \(a + b \geq t + 3 \) and that \(ab \) is smaller than \(d \) but “not too much smaller” (so that we have maximal growth of the first difference of the Hilbert function) then very likely the technique could be extended, as illustrated above. But the gain would only be to shorten the string of \(d \)'s in the middle of the \(h \)-vector. Given the complicated nature of these numerical conditions (we have not even addressed what we would need to ensure that \(\{e_i : i \geq 0\} \) is an O-sequence), and the fact that already our result gives a very large new class of Hilbert functions for which the postulation scheme is reducible, it does not seem worthwhile to pursue this. □

References

[1] D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra. Source and object code available for Unix and Macintosh computers. Contact the authors, or download from ftp://math.harvard.edu via anonymous ftp.

[2] M. Brignone and G. Valla, On the resolution of certain level algebras, Comm. Algebra 32 (2004), no. 11, 4221–4245.

[3] H. Charalambous and G. Evans, Resolutions with a given Hilbert function, in: Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA, 1992), 19–26, Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994.

[4] Y. Cho and A. Iarrobino, Hilbert functions and level algebras, J. Algebra 241 (2001), 745–758.

[5] E.G. Evans and B. Richert, Possible resolutions for a given Hilbert function, Comm. Algebra 30 (2002), no. 2, 897–906.

[6] C. Francisco and B. Richert, Lex-plus-powers ideals, preprint.

[7] A.V. Geramita, P. Maroscia and L. Roberts, The Hilbert Function of a Reduced k-Algebra, J. London Math. Soc. 28 (1983), 443–452.

[8] A.V. Geramita and J. Migliore, A Generalized Liaison Addition, J. Alg. 163 (1994), 139–164.

[9] G. Gotzmann, A stratification of the Hilbert scheme of points in the projective plane. Math. Z. 199 (1988), no. 4, 539–547.

[10] G. Gotzmann, Some irreducible Hilbert schemes, Math. Z. 201 (1989), no. 1, 13–17.

[11] J. Kleppe, Maximal families of Gorenstein algebras, to appear in Trans. Amer. Math. Soc.

[12] T. Harima, J. Migliore, U. Nagel and J. Watanabe, The Weak and Strong Lefschetz Properties for Artinian k-algebras, J. Algebra 262 (2003), 99-126.

[13] F.S. Macaulay, Some properties of enumeration in the theory of modular systems, Proc. Lond. Math. Soc. 26 (1927) 531–555.

[14] J. Migliore, The geometry of Hilbert functions, preprint.

[15] J. Migliore and U. Nagel, Lifting Monomial Ideals, Comm. Algebra 28 (2000) (special volume in honor of Robin Hartshorne), 5679-5701.

[16] I. Peeva, Consecutive cancellations in Betti numbers, Proc. Amer. Math. Soc. 132 (2004), no. 12, 3503–3507.

[17] A. Ragusa and G. Zappalà, On the reducibility of the postulation Hilbert scheme, to appear in Rend. Circ. Mat. Palermo.

[18] A. Ragusa and G. Zappalà, Looking for minimal graded Betti numbers, preprint.

[19] B. Richert, Smallest graded Betti numbers, J. Algebra 244 (2001), 236–259.

[20] M. Rodriguez, Ideals attaining a given Hilbert function, Illinois J. Math. 44 (2000), no. 4, 821–827.

Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA

E-mail address: Juan.C.Migliore.1@nd.edu