Genetic Associations with Diabetes: Meta-Analyses of 10 Candidate Polymorphisms

Linlin Tang1,2*, Lingyan Wang3*, Qi Liao1*, Qinwen Wang1, Leiting Xu1, Shizhong Bu1, Yi Huang1, Cheng Zhang1, Huadan Ye1, Xuting Xu1, Qiong Liu1, Meng Ye2*, Yifeng Mai2*, Shiwei Duan1*

1 Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China, 2 The Affiliated Hospital, Ningbo University, Ningbo, Zhejiang, China, 3 Bank of Blood Products, Ningbo No.2 Hospital, Ningbo, Zhejiang, China

Abstract

Aims: The goal of our study is to investigate the combined contribution of 10 genetic variants to diabetes susceptibility.

Methods: Bibliographic databases were searched from 1970 to Dec 2012 for studies that reported on genetic association study of diabetes. After a comprehensive filtering procedure, 10 candidate gene variants with informative genotype information were collected for the current meta-analyses. Using the REVMAN software, odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the combined contribution of the selected genetic variants to diabetes.

Results: A total of 37 articles among 37,033 cases and 54,716 controls were involved in the present meta-analyses of 10 genetic variants. Three variants were found to be significantly associated with type 1 diabetes (T1D): NLRP1 rs12150220 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01), IL2RA rs11594656 (OR = 0.86, 95% CI = 0.82–0.91, P < 0.00001), and CLEC16A rs725613 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). APOA5 –1131T/C polymorphism was shown to be significantly associated with type 2 diabetes (T2D, OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). No association with diabetes was showed in the meta-analyses of other six genetic variants, including SLC2A10 rs2335491, AT66 rs2070150, KLF11 rs35927125, CASQ1 rs2275703, GNB3 C825T, and IL12B 1188A/C.

Conclusion: Our results demonstrated that IL2RA rs11594656 and CLEC16A rs725613 are protective factors of T1D, while NLRP1 rs12150220 and APOA5 –1131T/C are risky factors of T1D and T2D, respectively.

Introduction

The prevalence of diabetes is soaring up in the recent decades. The global number of diabetes patients was 173 million in 2002 and will increase to 350 million by 2030. As a group of metabolic diseases characterized with high blood sugar, most diabetes is caused by either a lack of insulin for type 1 diabetes (T1D) or a blockage in the insulin signaling pathway for type 2 diabetes (T2D). The classical symptoms of diabetes consist of polyuria, polyphagia, and weight loss. Diabetes also causes damages to blood vessels and capillaries that may eventually lead to coronary heart diseases and blindness, respectively.

T1D and T2D are two major types of diabetes [1]. Microbial exposures and sex hormones together with lifestyle factors have been shown to be important to the development of this complex disease [2,3]. Besides environmental factors, twin studies have demonstrated a strong heritability for diabetes [4,5] and insulin related phenotypes [6–8]. A handful of candidate genes have been found for both the risk and complex traits of the two major types of diabetes [3,9–12].

T1D is an autoimmune disease. Little or no insulin is produced by pancreatic beta cells that may be mistakenly attacked after an infection or some other triggers. The present meta-analyses of T1D focus on four immunomodulatory genes including IL2RA, NLRP1, IL12B and CLEC16A. IL2RA gene encodes the α-chain of IL-2 receptor (IL-2R) complex which acts as an important modulator to regulate T-cell immune response [13]. NLRP1 gene encodes a member of the Ced-4 family of apoptosis proteins that can stimulate innate immunity [14]. IL12B gene encodes a subunit of an important immunomodulatory cytokine, IL-12. IL-12 induces production from NK and T cells of interferon γ (IFN-γ) which favors Th1 cell differentiation [15]. CLEC16A encodes C-type lectin domain family 16 (CLEC16A) protein highly expressed on B-lymphocytes, natural killer (NK) and dendritic cells [16].
The impairment of insulin signaling in T2D is complex. Insulin signaling is involved in both glucose and lipid metabolism. In the present meta-analyses of T2D, we selected 2 genes in glucose metabolism (SLC2A10 and CASQ1), 2 genes in lipid metabolism (APOA5 and KLF11), and 2 genes in signal transduction (ATF6 and GNB3). SLC2A10 gene encodes a member of the facilitative glucose transporters.
transporter family with an effect on maintaining glucose homeostasis. CASQ1 gene encodes acidic glycoprotein calsequestrin 1 (CASQ1) that is a calcium storage protein and calcium is considered to regulate the expression of the insulin-responsive glucose transporter GLUT4 [17]. APOA5 is located on human chromosome 11q23, in the APOA1/APOC3/APOA4 gene cluster [18]. KLF11 encodes Kruppel-like factor 11 with the function of regulating hepatic lipid metabolism [19]. ATF6 encodes UPR transducer unfolded protein that is related to the endoplasmic reticulum stress in the β-cell pathogenesis of type 2 diabetes [20]. GNB3 encodes the β3 subunit of hetero-trimeric G proteins in insulin signaling [21].

Associations between single-nucleotide polymorphisms (SNPs) of the above 10 genes and diabetes (including T1D and T2D) have been reported in different ethnic populations [16,22–57]. Here we performed a series of meta-analyses for these SNPs whose allelic frequencies are often substantially different among multiple ethnic populations. The goal of our study is to evaluate the overall contribution of these SNPs to diabetes susceptibility in combined populations using a meta-analysis approach.

Materials and Methods

Search Strategy and Study Selection

An initial search was performed through online databases including PubMed, Embase, SpringerLink, Web of Science, Chinese National Knowledge Infrastructure (CNKI), and Wanfang. The keywords comprise the terms including “diabetes” together with “SNP” or “polymorphism” or “variants” or “mutation”. The selection of studies in our meta-analysis was abided by the criteria as follows: (1) case-control studies; (2) selected studies have sufficient data to calculate ORs with the corresponding 95% CIs; (3) every polymorphism has at least 3 independent datasets from the retrieved articles; (4) selected polymorphisms have not been addressed in previous meta-analysis of diabetes. Finally, the current meta-analysis involved a total of 10 genetic variants comprising NLRP1 rs12150220, IL2RA rs11594656, CLEC16A rs725613, APOA5 −1131T/C, SLC2A10 rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1 rs2275703, GNB3 C825T, and IL12B 1188A/C.

Statistical Analysis

All the analyses were performed in Review Manager (version 5.0, The Cochrance Collaboration [58]). The combined ORs and the corresponding 95% CIs were calculated and demonstrated in the forest plots using the fixed or the random effects model. Heterogeneity was measured in our meta-analysis using Cochran’s Q and the inconsistency index (I²) statistic [59]. Funnel plots were used to detect whether there were obvious publication bias among the involved studies. An I² value of equal to or greater than 50% indicates a substantial heterogeneity among the studies in the meta-analysis that used a random-effect model for the analysis. For I² value less than 50%, a fixed-effect model will be applied for the meta-analysis. The combined ORs and the corresponding 95% CIs were calculated using the fixed-effect model or the random-effect model if I² is less than 50%. P values less than 0.05 were considered to be significant.

Results

As shown in Figure 1, our initial search for the genetic studies of diabetes retrieved 6,452 articles from PubMed, Embase, Web of Science, CNKI and Wanfang from 2000 to 2012. Among them, 4,021 studies were involved with genes reported in previous meta-analyses and thus discarded for further analysis. A total of 504 articles were again filtered out because they failed to accumulate at

Gene	SNP	Year	Author	Ethnic Group	Case/Control (n)	Allele 1 (Case/Control)	Allele 2 (Case/Control)
IL2RA	rs11594656	2007	Christopher E Lowe	Caucasian	2874/2484	4482/3726	1266/1242
		2007	Christopher E Lowe	Caucasian	5259/6809	8199/10248	2319/3370
		2008	Deborah J Smyth	Caucasian	8064/9339	12548/14083	3580/4595
		2009	Eiji Kawasaki	Japanese	881/606	1715/1175	47/37
		2012	M. Fichna	Caucasian	445/671	701/994	189/348
NLRP1	rs12150220	2009	NF Magitta	Caucasian	1067/3177	929/2987	1205/3367
		2010	A. PONTILLO	Brazilian	196/192	248/255	144/129
		2011	Magdalena Zurawek	Caucasian	221/254	230/270	212/238
IL12B	1188 A/C	2002	Lorenza Nistico	Caucasian	470/544	662/787	278/301
		2002	RM McCormack	Caucasian	120/330	194/533	46/127
		2005	José L. Santiago	Caucasian	300/516	453/773	147/259
		2010	A.E.Altinova	Turks	91/87	133/120	49/54
CLEC16A	rs725613	2007	Hakon Hakonarson	Caucasian	561/1143	785/1395	337/891
		2009	M. Zoledziewska	Caucasian	1037/1706	969/1473	1105/1939
		2009	Xiao pan Wu	Chinese	205/422	352/643	58/201

doi:10.1371/journal.pone.0070301.t001
least three independent genotypic datasets for the same genetic variants. Among the rest 1,927 studies, 1,882 studies with unconcerned SNPs were removed. At last, there were 42 case-control studies from 37 articles (including 35 articles in English and 2 in Chinese) for the current meta-analyses. There were four SNPs of T1D (Table 1) and six SNPs of T2D (Table 2) involved in our present study.

No evidence of statistical heterogeneity was observed for 7 SNPs (Figures 2 and 3, and Table 3), including rs11594656 of IL2RA gene ($I^2 = 0\%$), rs12150220 of NLRP1 gene ($I^2 = 0\%$), 1188A/C of IL12B gene ($I^2 = 0\%$), 21131T/C of APOA5 gene ($I^2 = 1\%$), rs2335491 of SLC2A10 gene ($I^2 = 0\%$), rs2070150 of ATF6 gene ($I^2 = 0\%$), and rs35927125 of KLF11 gene ($I^2 = 7\%$). No visual bias was showed in the meta-analyses of these 7 SNPs (Figure 4 and Table 3). Our data also demonstrated a significant heterogeneity of the rest 3 SNPs that comprise rs725613 of CLEC16A gene ($I^2 = 69\%$), rs2235491 of CASQ1 gene ($I^2 = 65\%$), and C825T of GNB3 gene ($I^2 = 82\%$). Therefore random-effect tests were applied for the meta-analyses of the above 3 SNPs. Their funnel plots were demonstrated in Figure 4 and no visual bias was observed for the 3 meta-analyses.

Meta-analysis of rs12150220 of NLRP1 gene was involved with 3 studies [23,25,32] among 833 T1D cases and 3,623 controls. As shown in Figure 2, our result indicated that rs12150220 of NLRP1 gene was significantly associated with T1D risk in the Caucasian and Brazilian populations (the overall OR = 0.71, 95% CI = 0.55–0.92, $P = 0.01$). Meta-analysis of rs11594656 of IL2RA gene among 17,523 T1D cases and 19,909 controls [22,30,31,37] indicated that rs11594656 of IL2RA gene was significantly associated with T1D risk in the Caucasian and Japanese populations (Figure 2, the overall OR = 0.86, 95% CI = 0.82–0.91, $P < 0.00001$). Meta-analysis of rs725613 of CLEC16A gene [16,28,38] included 1,803 T1D cases and 3,271 controls. As shown in the Figure 2, there was significant association between rs725613 of CLEC16A
gene and T1D in Caucasian and Chinese populations (the overall OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). Meta-analysis of −1131T/C of APOA5 gene [27,29,39,44,50] among 795 T2D cases and 3210 controls indicated that −1131T/C of APOA5 gene was associated with T2D in Chinese and Caucasian populations (Figure 3, the overall OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). For the rest 6 SNPs, our meta-analyses were unable to find significant associations of them with T1D or T2D.

Discussion

In the present study, a comprehensive systematic overview of genetic association studies was performed for the susceptibility of T1D and T2D. We scrutinized all the candidate case-control studies to identify the eligible SNPs with at least three independent datasets. Our meta-analyses of 10 polymorphisms showed significant evidence for 3 T1D-associated SNPs (NLRP1 rs12150220, IL2RA rs11594656, and CLEC16A rs725613) and 1 T2D-associated SNP (APOA5 −1131T/C). Our meta-analyses were unable to find significant associations of the rest 6 SNPs with T1D or T2D. Moreover, power analysis showed that there might be a lack of power for the meta-analysis of SLC2A10 rs2335491 (1,455 cases and 1,083 controls, 39%) under a moderate risk of diabetes (OR = 1.2). These might partly explain our failure to observe significant results for the meta-analyses of some polymorphisms.

After Bonferroni correction, only the association of SNP rs11594656 with T2D remains significant. However, false discovery rate (FDR) test, a less conservative correction for multiple hypothesis testing, shows that the q values are 5.11E-5 for IL2RA rs11594656, and CLEC16A rs725613 and 1 T2D-associated SNP (APOA5 −1131T/C). Our meta-analyses were unable to find significant associations of the rest 6 SNPs with T1D or T2D. Moreover, power analysis showed that there might be a lack of power for the meta-analysis of SLC2A10 rs2335491 (1,455 cases and 1,083 controls, 39%) under a moderate risk of diabetes (OR = 1.2). These might partly explain our failure to observe significant results for the meta-analyses of some polymorphisms.

Figure 2. Forest plots of the association studies between four SNPs and T1D.
doi:10.1371/journal.pone.0070301.g002

Gene	SNP	Ethnic Group	Odds Ratio M.H, Fixed, 95% CI	Odds Ratio M.H, Fixed, 95% CI
IL2RA	rs11594656	Caucasian	0.85 [0.75, 0.96]	0.86 [0.79, 0.94]
		Caucasian	0.87 [0.81, 0.94]	0.87 [0.87, 1.59]
		Japanese	0.78 [0.58, 1.03]	
		Total	0.86 [0.82, 0.91]	
		Test for overall effect: Z = 5.91 (P = 0.00001)		
NLRP1	rs12150220	Brazilian	1.13 [0.75, 1.72]	
		Caucasian	1.05 [0.73, 1.50]	
		Caucasian	1.15 [1.00, 1.32]	
		Total	1.14 [1.00, 1.29]	
		Test for overall effect: Z = 2.03 (P = 0.04)		
IL12B	1188 A/C	Turks	0.84 [0.44, 1.61]	
		Caucasian	0.97 [0.70, 1.35]	
		Caucasian	1.09 [0.83, 1.44]	
		Caucasian	0.99 [0.58, 1.67]	
		Total	1.02 [0.84, 1.23]	
		Test for overall effect: Z = 0.17 (P = 0.86)		
CLEC16A	rs725613	Caucasian	0.67 [0.54, 0.84]	
		Caucasian	0.87 [0.74, 1.01]	
		Chinese	0.52 [0.33, 0.82]	
		Total	0.71 [0.55, 0.92]	
		Test for overall effect: Z = 2.58 (P = 0.010)		
Figure 3. Forest plots of the association studies between six SNPs and T2D.

doi:10.1371/journal.pone.0070301.g003
suggests the robustness of our positive results in the meta-analyses, although we can’t exclude a chance of false positive results for NLRP1 rs12150220, CLEC16A rs725613 and APOA5 21131T/C. Sensitivity analysis demonstrated there were no significant differences of four significant genetic variants after exclusion, suggesting that the results of our meta-analyses was robust. In addition, we have performed a comprehensive analysis for the Fst values of the involved SNPs. Our results show there are moderate ethnic differences for ATF6 rs2070150 (Fst = 0.13), although there are minimal heterogeneity among the involved studies from different ethnic groups (I² = 0). And KLF11 rs35927125 is monomorphic in Asians, however, its minor allele frequency in Caucasian populations ranges from 8.8–12.2% (Fst = 0.0232). On the contrary, there were little ethnic difference for CLEC16A rs725613 and GNB3 rs5443 (Fst <0.1), although there exist large heterogeneity in the involved studies (I² >60%). For CASQ1 rs2275703, the heterogeneity might come from the discrepancies of the samples in the case-control studies.

Pancreatic β-cell inflammation and apoptosis plays a pivotal role in the pathogenesis of T1D [60]. As a member of the Ced-4 family of apoptosis proteins, NLRP1 is an important mediator of programmed cell death [61]. NLRP1 plays a pivotal role in the pathogenesis of some inflammatory diseases [62,63]. In the present research, we combined three independent datasets and performed a meta-analysis to evaluate the association between NLRP1 rs12150220 polymorphism and T1D susceptibility. Although large ethnic differences of allele frequency were found for NLRP1 rs12150220 (T allele frequency: 47–53.1% in Caucasians versus 66.4% in Brazilians), minimal heterogeneity was observed in the meta-analysis of this polymorphism (I² = 0%). Our results support NLRP1 rs12150220 as a protective genetic factor of T1D and

Table 3. Additional characteristics of individual T1D and T2D studies in the meta-analyses.

T1D Gene	SNP	Model	Heterogeneity index	P values
IL2RA	rs11594656	Fixed effect model	0%	<0.00001
NLRP1	rs12150220	Fixed effect model	0%	0.04
IL12B	1188 A/C	Fixed effect model	0%	0.86
CLEC16A	rs725613	Random effect model	69%	0.01

T2D Gene	SNP	Model	Heterogeneity index	P values
APOA5	–1131 T/C	Fixed effect model	1%	0.03
SLC2A10	rs2235491	Fixed effect model	0%	0.48
ATF6	rs2070150	Fixed effect model	0%	0.26
KLF11	rs35927125	Fixed effect model	7%	0.27
CASQ1	rs2275703	Random effect model	65%	0.53
GNB3	rs5443	Random effect model	82%	0.82

doi:10.1371/journal.pone.0070301.g004

doi:10.1371/journal.pone.0070301.t003

doi:10.1371/journal.pone.0070301.t003

Figure 4. Funnel plots of the studies involved in the 10 meta-analyses.
provide hints to clarify the mechanistic role of \textit{NLRP1} in the pathogenesis of T1D.

Evidence from both genetic and animal model studies has shown a crucial role of IL-2/IL-2RA in the pathogenesis of T1D [37,64–67]. IL-2/IL-2RA regulates CD4$^+$CD25$^+$ regulatory T cells so as to maintain immune homeostasis [67]. IL-2RA rs12722495 was shown to contribute to the risk of T1D by lowering IL-2 signaling and diminishing the function of CD4$^+$CD25$^+$ regulatory T cells [64]. Interestingly, there is a significant association of \textit{IL-2RA} rs11594656 as a protective factor with the risk of T1D in Polish population [22]. These two SNPs were 24,726 kb away and not in the same linkage disequilibrium block. Expansion of CD4$^+$CD25$^+$FOX3$^+$ regulatory T cells through maternal insulin treatment was shown to reduce the risk of T1D in children [68]. Increased resistance to CD4$^+$CD25hi regulatory T cell-mediated suppression was showed in T1D patients [69]. Our meta-analysis established a significant association between \textit{IL-2RA} rs11594656 polymorphism and T1D, although the influence of rs11594656 polymorphism on the regulation of IL-2RA gene remains to be unveiled in the future.

\textit{CLEC16A} gene is located in the major histocompatibility complex class II region (16p13), and it encodes a member of the C-type lectin domain containing family. \textit{CLEC16A} gene variants were associated with multiple autoimmune diseases such as T1D [38,70–72]. \textit{CLEC16A} gene variants were shown to be associated with the alternative splicing event in the \textit{CLEC16A} transcription [73]. Our results suggested a significant association between \textit{CLEC16A} rs725613 and T1D among 5,074 samples from Caucasian and Chinese populations ($P = 0.01$). A significant heterogeneity ($I^2 = 69\%$) among these ethnic samples warrants a replication in additional populations.

High level of glucose was shown to induce expression of \textit{APOA5} [74,75] that is an efficient regulator of plasma triglycerides (TGs) by enhancing the catalytic activity of TG-rich lipoproteins [76] and prohibiting the transportation of TGs [77]. \textit{APOA5} could probably play a role in the pathogenesis of T2D by regulating the cholesterol homeostasis [44,76]. \textit{APOA5} gene variants were also reported to be associated with the lipid levels [50,78,79] and the risk of coronary heart disease [80,81] in T2D patients. Since both environmental factors [82,83] and other genes [84] interact with \textit{APOA5} gene, our significant observation for \textit{APOA5} $−1131T/C$ polymorphism may only partly explain the risk of T2D. Minimal heterogeneity among the involved studies in our meta-analysis ($I^2 = 1\%$), however, along with previous results [85,86], in which ethnic differences were observed for the T allele frequency of \textit{APOA5} $−1131T/C$ among the studies in our meta-analysis (60.8–76\% in Chinese versus 93.7\% in Caucasians).

There are some limitations in the present study. Firstly, publishing bias might exist in this meta-analysis. Case-control studies with a lack of significant results were much harder to be published than those with positive findings. In addition, only publications in English and Chinese were included in the current meta-analyses. All these may distort the results in our meta-analyses. Secondly, some of the involved case-control studies [22–24,26,28,31,34,35,37–39,41,43–46,49,51–57] didn’t provide information on the exclusion of other diseases (such as coronary artery diseases, hypertension, and etc.) during recruitment. Thirdly, the effects of genetic factors on diabetes risk were confounded by other phenotypic parameters such as body mass index. Therefore, case-control studies with better design are warranted to avoid these confounding factors and replicate our findings in future. Fourthly, due to a lack of enough independent datasets, subgroup analysis and meta-regression were not applied to identify differences in effect and sources of heterogeneity. Lastly, our meta-analysis focused on gene loci with at least three independent studies, and this might prevent those gene loci in two large scale case-control studies from being included in the current meta-analysis.

In conclusion, we identify significant associations between 4 SNPs (\textit{NLRP1} rs12150220, \textit{IL2RA} rs11594656, \textit{CLEC16A} rs725613 and \textit{APOA5} $−1131T/C$) and diabetes. Meta-analysis among 4,456 samples has confirmed that rs12150220 of \textit{NLRP1} gene is a risk factor of T1D in Caucasian and Brazilian populations. Meta-analysis among 37,432 samples has confirmed that rs11594656 of \textit{IL2RA} gene is a risk factor of T1D in Caucasian and Japanese populations. \textit{CLEC16A} meta-analysis among 5,074 samples has confirmed that rs725613 of \textit{CLEC16A} gene is a risk factor of T1D in Caucasian and Chinese populations. Another meta-analysis among 4,005 samples indicates that $−1131T/C$ of \textit{APOA5} gene is a risk factor of T1D/T2D in Chinese and Caucasian populations.

\section*{Author Contributions}
Conceived and designed the experiments: SD MY YM. Performed the experiments: LT LW QL QW LX SB YH CZ HY XX QL. Wrote the paper: LT SD MY YM XX QL. Contributed reagents/materials/analysis tools: LT LW QL QW LX SB YH CZ HY XX QL. 10 Meta-Analyses in Diabetes

\section*{References}
1. WHO (2011) Burden: mortality, morbidity and risk factors - Chapter 1 of the latest WHO report “Global status report on NCDs 2010”.
2. Markle JG, Frank DN, Mortin-Toth S, Robertson CE, Feazel LM, et al. (2013) Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339: 1084–1088.
3. Ashcroft FM, Rorsman P (2012) Diabetes mellitus and the beta cell: the last ten years. Cell 148: 1160–1171.
4. Hyttinen V, Kajosaari M, Koskenuos M, Tuomilehto J (2000) Genetic liability of type 1 diabetes and the onset age among 22,650 young Finnish twin pairs: a nationwide follow-up study. Diabetes 52: 1052–1055.
5. Jenkins AB, Samaras K, Carey DG, Kelly P, Campbell LV (2000) Improved tools: LT LW QL QW LX SB YH CZ HY XX QL. Contributed reagents/materials/analysis tools: LT LW QL QW LX SB YH CZ HY XX QL. Wrote the paper: LT SD MY YM XX QL.
40. Meex SJ, van Greevenbroek MM, Ayoubi TA, Vlietinck R, van Vliet-36. Sparso T, Hussain MS, Borch-Johnsen K, Jorgensen T, Madsbad S, et al. (2007)
34. Ma L, Hanson RL, Que LN, Mack JL, Franks PW, et al. (2008) Association
33. Daimon M, Sato H, Sasaki S, Toriyama S, Emi M, et al. (2008) Salt
31. Smyth DJ, Plagnol V, Walker NM, Cooper JD, Downes K, et al. (2008) Shared
30. Kawasaki E, Awata T, Ikegami H, Kobayashi T, Maruyama T, et al. (2009)
29. Li X, Xu Y, Ding Y, Qin C, Dai Z, et al. (2008) Polymorphism of apolipoprotein
27. Qiao Y, Liu R, Tian HM, Liu Y, Qiang O, et al. (2008) [Association of
26. Altinova AE, Engin D, Akbay E, Akturk M, Toruner F, et al. (2010) Association
25. Pontillo A, Brandao L, Guimaraes R, Segat L, Araujo J, et al. (2010) Two SNPs
24. Hu C, Zhang R, Wang C, Ma X, Wang J, et al. (2011) Lack of association
23. Zurawek M, Fichna M, Fichna P, Januszewicz D, Nowak J (2012) Polymorphic
22. Fichna M, Zurawek M, Fichna P, Januszewicz D, Nowak J (2011) No evidence for
association of the polymorphisms in NLRP1 gene with type 1 diabetes. Diabetes Res Clin Pract 92: e49–e51.
21. Chang L, Chiang SH, Saltiel AR (2004) Insulin signaling and the regulation of
daughter cells. J Cell Physiol 207: 945–950.
20. Suzuki Y, Miyake J, Hishiki Y, Ohashi Y, Arahata K, et al. (2009) Lack of association
between NOD2 gene polymorphism and type 1 diabetes in the Japanese population. J Clin Immunol 29: 239–243.
19. Zhang H, Chen Q, Yang M, Zhu B, Cui Y, et al. (2012) Mouse KLF11 regulates
pre-diabetic traits. Diabetes 56: 856–862.
18. Hayakawa T, Takamura T, Ate T, Kaneko S (2007) Association of the CR25T polymorphism of the G-protein beta3 subunit gene with hypertension, obesity,
hyperlipidemia, insulin resistance, diabetes, diabetic complications, and diabetic therapies among Japanese. Metabolism 56: 44–48.
17. Lamer JT, Katz A, Tavi P, Sandstrom ME, Zhang SJ, et al. (2006) The role of Ca2+ influx for insulin-mediated glucose uptake in skeletal muscle. Diabetes 55: 2077–2083.
16. Zoledziewska M, Costa G, Pitzalis M, Coco E, Melis G, et al. (2009) Variation within the CLEC16A gene shows consistent disease association with both multiple sclerosis and type 1 diabetes in Sardinia. Genes Immun 10: 15–17.
15. Lintala JT, Aalto J, Virtanen M, Hovatta O, Alm A, et al. (2008) Association of the F alleles of the platelet CYP4F2 gene with type 1 diabetes in Finland. Hum Immunol 69: 539–544.
14. Tuomi T, Weineck E, Trottmann-Graf K, Norrby S, Siltia O, et al. (2007) Association of the A-1294G polymorphism of the VEGF-A gene with type 1 diabetes. Diabetologia 50: 1500–1503.
13. Luopajarvi K, Nieminen JK, Ilonen J, Akerblom HK, Knip M, et al. (2012) Selective IgA deficiency in autoantibody-positive, but healthy, type 1 diabetes patients with type II diabetes mellitus in the old order Amish. Diabetes 61: 2077–2083.
12. McCormack RM, Maxwell AP, Carson DJ, Patterson CC, Middleton D, et al. (2005) Identification of IL-23 p19 and IL-17A as novel mediators of diabetes in the old order Amish. Diabetes 54: 3260–3266.
11. Dowling JK, O'Neill LA (2012) Biochemical regulation of the inflammasome. Biochim Biophys Acta 1824: 2077–2083.
10. Thameem F, Farook VS, Bogardus C, Prochazka M (2006) Association of amino acid variants in the activating transcription factor 6 gene (ATF6) on Iq1q1-q3 with type 2 diabetes in Pima Indians. Diabetes 55: 839–842.
9. Bento JL, Bowden DW, Mychaleckyj JC, Hizakawa S, Rich SS, et al. (2005) Genetic analysis of the GLUT2 gene transporter (SLC2A1) polymorphisms in Caucasian American type 2 diabetes. BMC Med Genet 6: 42.
8. Anderssen G, Overgaard J, Allbrechsen A, Glumer C, Borgh-Johnsen K, et al. (2006) Studies of the association of the GNB3 T26C polymorphism with components of the metabolic syndrome in white Danes. Diabetologia 49: 73–79.
7. Santiago JL, Martinez A, De La Calle H, Fernandez-Arquero M, De La Concha EG, et al. (2005) Thy1 cytokine polymorphisms in Spanish patients with type 1 diabetes. Hum Immunol 66: 978–982.
6. Van SK, Cheng NQ, Song YH, Xiao NH, Bi N, et al. (2005) Apolipoprotein A5 gene polymorphism -1131T>C: association with plasma lipids and type 2 diabetes mellitus with coronary heart disease in Chinese. Clin Chem Lab Med 43: 667–672.
5. Moller KL, Skol AD, Scott LJ, Valle TT, Bergman RN, et al. (2005) Evaluation of SLCA20A1 (GLUT10) as a candidate gene for type 2 diabetes and related traits in Finns. Mol Genet Metab 85: 323–327.
4. Kiam JG, Saeed M, Parvez SH, Frossard PM (2005) Association of G-protein beta3 subunit gene (GNB3) T825 allele with Type II diabetes. Neuro Endocrinol Lett 26: 88–90.
3. Neve B, Fernandez-Zapico ME, Askhenazi-Katalyan V, Dina C, Hamid YH, et al. (2005) Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A 102: 4807–4812.
2. Das SK, Chu W, Zhang Z, Hasstedt SJ, Elbein SC (2004) Calsquestrin 1 (CASQ1) gene polymorphisms with type 1 diabetes susceptibility to T1D in the Han Chinese population. Clin Endocrinol (Oxf) 71: 46–49.
1. Daimon M, Sato H, Sasaki S, Toriyama S, Emi M, et al. (2008) Lack of association between the intercellular-3 receptor-alpha gene and mode of onset of type 1 diabetes in the Japanese population. J Clin Endocrinol Metab 94: 947–950.

10 Meta-Analyses in Diabetes
71. Martínez A, Perdigones N, Cenit MC, Espino I, Varade J, et al. (2010) Chromosomal region 16p13: further evidence of increased predisposition to immune diseases. Ann Rheum Dis 69: 309–311.

72. Iones R, Botella C, García-Placicas A, Villa H, Perpina C, et al. (1999) Psychological variables and reality judgment in virtual environments: the roles of absorption and dissociation. Cyberpsychol Behav 2: 143–148.

73. Mero HI, Ban M, Lorentzen AR, Smestad C, Celius EG, et al. (2011) Exploring the CLEC16A gene reveals a MS-associated variant with correlation to the relative expression of CLEC16A isoforms in thymus. Genes Immun 12: 191–198.

74. Nowak M, Helleboid-Chapman A, Jakel H, Moitrot E, Rommens C, et al. (2008) Glucose regulates the expression of the apolipoprotein A5 gene. J Mol Biol 380: 789–798.

75. Pruneta-Deloche V, Ponsin G, Grousne I, Fruchtart-Najb J, Lagarde M, et al. (2005) Postprandial increase of plasma apoAV concentrations in Type 2 diabetic patients. Atherosclerosis 181: 403–405.

76. Jakel H, Nowak M, Helleboid-Chapman A, Fruchtart-Najb J, Fruchtart JC (2006) Is apolipoprotein A5 a novel regulator of triglyceride-rich lipoproteins? Ann Med 38: 2–10.

77. Garelnabi M, Lor K, Jin J, Chai F, Santanam N (2013) The paradox of ApoA5 modulation of triglycerides: evidence from clinical and basic research. Clin Biochem 46: 12–19.

78. Soter MO, Gomes KB, Fernandes AP, Carvalho M, Pinheiro PS, et al. (2012) −1131T>C and SW19 polymorphisms in APOA5 gene and lipid levels in type 2 diabetic patients. Mol Biol Rep 39: 7541–7546.

79. Esteve E, Faure E, Calvo F, Aguillot E, Blasco C, et al. (2004) SNP3 polymorphism in apo A-V gene is associated with small dense LDL particles in Type 2 diabetes. Diabetologia 47: 355–356.

80. Bhaskar S, Ganesan M, Chandak GR, Mani R, Idris MM, et al. (2011) Association of PON1 and APOA5 gene polymorphisms in a cohort of Indian patients having coronary artery disease with and without type 2 diabetes. Genet Test Mol Biomarkers 15: 507–512.

81. Charriere S, Bernard S, Aguillot M, Merlin M, Billon S, et al. (2008) Association of APOA5−1131T>C and SW19 gene polymorphisms with both mild hypertriglyceridemia and hyperchylomicronemia in type 2 diabetic patients. Clin Chim Acta 394: 99–103.

82. Grarup N, Anderson G (2007) Gene-environment interactions in the pathogenesis of type 2 diabetes and metabolism. Curr Opin Clin Nutr Metab Care 10: 420–426.

83. Jiang YD, Yen C, Chou WL, Kuo SS, Lee KC, et al. (2005) Interaction of the G182C polymorphism in the APOA5 gene and fasting plasma glucose on plasma triglycerides in Type 2 diabetic subjects. Diabet Med 22: 1690–1695.

84. Hiramatsu M, Oguri M, Kato K, Horibe H, Fujimaki T, et al. (2012) Synergistic effects of genetic variants of APOA5 and BTN2A1 on dyslipidemia or metabolic syndrome. Int J Mol Med 30: 183–192.

85. Dorfmeister B, Cooper JA, Stephens JW, Ireland H, Hurel SJ, et al. (2007) The effect of APOA5 and APOC3 variants on lipid parameters in European Whites, Indian Asians and Afro-Caribbeans with type 2 diabetes. Biochim Biophys Acta 1772: 355–363.

86. Chandak GR, Ward KJ, Yajnik CS, Pandit AN, Bavekar A, et al. (2006) Triglyceride associated polymorphisms of the APOA5 gene have very different allele frequencies in Pune, India compared to Europeans. BMC Med Genet 7: 76.