Increasing the Minimum Distance of Polar-Like Codes with Pre-Transformation

Samet Gelincik*, Philippe Mary†, Anne Savard‡ and Jean-Yves Baudais*

* Univ Rennes, INSA Rennes, CNRS, IETR-UMR 6164, F-35000 Rennes, France
† IMT Nord Europe, Institut Mines Télécom, Centre for Digital Systems, F-59653 Villeneuve d’Ascq, France
‡ Univ. Lille, CNRS, Centrale Lille, UPHF, UMR 8520 - IEMN, F-59000 Lille, France

Abstract—Reed Muller (RM) codes are known for their good minimum distance. One can use their structure to construct polar-like codes with good distance properties by choosing the information set as the rows of the polarization matrix with the highest Hamming weight, instead of the most reliable synthetic channels. However, the information length options of RM codes are quite limited due to their specific structure. In this work, we present sufficient conditions to increase the information length by at least one bit for some underlying RM codes and in order to obtain pre-transformed polar-like codes with the same minimum distance than lower rate codes. Moreover, our findings are combined with the method presented in [1] to further reduce the number of minimum weight codewords. Numerical results show that the designed codes perform close to the meta-converse (MC) bound at short blocklengths and better than the polarized adjusted convolutional polar codes with the same parameters.

Index Terms—Polar codes, Reed Muller codes minimum distance, code extension

I. INTRODUCTION

Polar codes are the first provably capacity achieving error correction codes with explicit construction and a low complexity decoder, based on successive cancellation for binary input memoryless channels [2]. Thanks to their low complexity decoding, polar codes are now used for control channels in the 5G networks [3] and may be used for other usages in the future wireless network generations, such as ultra-reliable low-latency communications and massive machine-type communications [4]. Eventhough, polar codes are asymptotically capacity achieving, they do not show outstanding performance for short-to-moderate blocklengths due to their poor minimum distance and a non-complete polarization.

To overcome this issue, several methods such as enhanced-Bose-Chaudhuri-Hocquenghem subcodes [5] and low-weight-bit polar codes [6] have been proposed to improve the distance spectrum. Moreover, cyclic-redundancy-check (CRC) aided successive cancellation list (SCL) decoding, which boosts the performance by choosing the best decoding paths in a hierarchical tree, has been proposed in [7]. The later has even been enhanced by optimizing the used CRC polynomial in order to improve the minimum distance [8], [9], and has been considered as the best code construction up to the introduction of polarized adjusted convolutional (PAC) polar codes in [10].

The PAC polar codes, proposed by Arikan [10], perform very close to the second-order approximation of the binary-input additive white Gaussian noise (BIAWGN) in short blocklength regime. The performance gain comes by choosing the information set of the polar code with the Reed-Muller (RM) rule, i.e. the rows of the polarization matrix that have the highest Hamming weights. Moreover, the convolutional pre-transformation allows to decrease the number of minimum weight codewords. The effect of pre-transformation is justified in [11], where it is proved that any pre-transformation with upper-triangular matrix, which is the case for PAC codes, does not reduce the minimum distance and can reduce the number of minimum weight codewords if properly designed. Based on [12], authors in [13] proposed a genetic algorithm tailored to PAC code construction that achieves higher rates than the ones authorized by RM rule and it performs better than the original Arikan’s PAC codes.

We recently proposed another way to improve the performance of polar codes in the short blocklength regime by encoding some information bits with the sum of two or three rows of the polar encoding matrix [1]. The pairs and triplets of merged rows are determined via the connection between the binary representations of the selected row indices and their common 1 bits. The designed codes achieve the same performance as PAC codes with same parameters, and without extra computational complexity.

In this work, we extend the method proposed in [1], and state sufficient conditions to increase the information length of some polar-like codes with RM information set, i.e. to increase the rate for a given codeword length, and we explicitly give the corresponding pre-transformation matrix to sustain the same minimum distance as the RM code. We do the analysis by partitioning the indices of the encoding matrix rows with respect to the recursive structure projected in binary representation of row indices. Our proposed design is shown to perform close to the meta-converse (MC) bound, thanks to the decrease of number of minimum weight codewords achieved by [1] Algorithm 1, and outperforms the PAC codes with the same parameters.

II. PRELIMINARIES

A. Notations

The positions of elements in a vector of length N is indexed from 0 to $N-1$. Any vector of length N is considered as a row vector and is denoted by \mathbf{x} or x_{N-1}. The j^{th} entry of the vector \mathbf{x} is denoted as x_j. The set of positive integers is \mathbb{N}.
and the binary field is \mathbb{F}_2. The set of integers from j to $k - 1$ is represented by $[j, k)$ or $[j, k - 1]$. Uppercase calligraphic letters, such as \mathcal{A}, are reserved to index sets. Any index set is sorted in the ascending order and $\mathcal{A}(i), i \in [0, |\mathcal{A}|)$ denotes the i-th element of \mathcal{A}. Specifically, we set $\mathcal{N} := \{0, N\}$. For any given two index sets \mathcal{A} and \mathcal{B}, $\mathcal{A} \supset \mathcal{B}$ denotes that any element of \mathcal{A} is larger than any element of \mathcal{B}, i.e., $\mathcal{A}(i) > \mathcal{B}(j) \forall i \in [0, |\mathcal{A}|)$ and $\forall j \in [0, |\mathcal{B}|)$. For a given binary vector $x \in \mathbb{F}_2^{1 \times N}$ and index set $\mathcal{A} \subset \mathcal{N}$, $x_{\mathcal{A}}$ denotes the vector consisting of the elements of x at the positions indexed by \mathcal{A}. The matrices are denoted by uppercase sans serif font, e.g., \mathbb{G}. Uppercase boldface letters denote set of vectors, e.g., \mathbb{C}. The indicator function is $\mathbb{I}\{\cdot\}$. The sets $\mathcal{P}_1(\cdot)$ and $\mathcal{P}_0(\cdot)$ denote the indices of 1’s and 0’s of a given vector, respectively.

For any $0 \leq j < 2^n$, its n-bit binary representation is denoted by the vector b_j^n, or b_j if it is clear enough from the context. The ℓ-th bit position of b_j is denoted by $b_{j,\ell}$, $0 \leq \ell < n$ and the indexing is started from the least significant bit, which is placed at the rightmost. The number of 1’s and 0’s in a vector is represented by $i_1(\cdot)$ and $i_0(\cdot)$, respectively.

The operator $\hat{\cup}$ represents the element-wise ‘OR’ operation of binary vectors such that, for all $(j_1, j_2) \in [0, 2^n)^2$:

$$b_{j_1,\ell} \hat{\cup} b_{j_2,\ell} = 1, \text{ if } b_{j_1,\ell} = 1 \text{ or } b_{j_2,\ell} = 1$$

(1)

The operator $\hat{\cap}$ represents the element-wise ‘AND’ operation of binary vectors such that

$$b_{j_1,\ell} \hat{\cap} b_{j_2,\ell} = 1, \text{ if } b_{j_1,\ell} = b_{j_2,\ell} = 1$$

(2)

The operator \otimes denotes binary addition in \mathbb{F}_2.

B. Properties of the Polar Encoding Matrix

For any given $N = 2^n$, $n \in \mathbb{N}$, the polarization matrix is $\mathbb{G} = \mathbb{G}_2^{\otimes n}$ where

$$\mathbb{G}_2 := \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$

(3)

is the corresponding kernel matrix and \otimes is Kronecker product. The jth row g_j of \mathbb{G} can be represented by

$$g_j = \hat{g}_{b_j, n-1} \otimes \hat{g}_{b_j, n-2} \otimes \cdots \otimes \hat{g}_{b_j, 0}$$

(4)

where $\hat{g}_0 = [1 \ 0]$ and $\hat{g}_1 = [1 \ 1]$. By (4), for a given $n \in \mathbb{N}$, the jth row of \mathbb{G} can be divided into n disjoint regions, i.e.

$$r_{j,\ell} = \begin{cases} 0^{2^{\ell-1}} & \text{if } b_{j,\ell} = 0 \\ [r_{j,0}, r_{j,1} \cdots r_{j,\ell-1}] & \text{if } b_{j,\ell} = 1 \end{cases}$$

(5)

for $\ell \in [1, n)$ and $r_{j,0} = \hat{g}_{b_j, 0}$. Close inspection of the recursive nature of $r_{j,\ell}$ reveals that each bit position $\ell \in [0, n)$ of b_j is associated with a set of positions at g_j denoted by the index set $\mathcal{M}_\ell \subset \mathcal{N}$

$$\mathcal{M}_\ell := \{k : b_{k,\ell} = 1, k \in \mathcal{N}\}$$

(6)

and $\mathcal{M}_\ell^c := \mathcal{N} \setminus \mathcal{M}_\ell$. The fact that $g_{j,\mathcal{M}_\ell} = 0^{N/2-1}$ if $b_{j,\ell} = 0$ implies that $g_j,_{\mathcal{M}_\ell^c}$ is independent from the value of $b_{j,\ell}$.

Definition 1. The projection of a row g_j of the polar encoding matrix onto indices of \mathcal{M}_ℓ^c is denoted by g_j^ℓ and given as

$$g_j^\ell := \hat{g}_{b_j, n-1} \otimes \cdots \otimes \hat{g}_{b_j, \ell+1} \otimes \hat{g}_{b_j, \ell-1} \cdots \otimes \hat{g}_{b_j, 0}$$

(7)

Note that, by (5), $b_{j,\ell}$ is 1 if $r_{j,\ell} = [r_{j,0}, r_{j,1} \cdots r_{j,\ell-1}]$ is copied to $r_{j,\ell}$ and $r_{j,\ell+1}$ is obtained with respect to corresponding bit values. Hence, the projection of g_j onto \mathcal{M}_ℓ is the same as $g_j,_{\mathcal{M}_\ell^c}$ if $b_{j,\ell} = 1$

$$g_j,_{\mathcal{M}_\ell} = \begin{cases} 0^N & \text{if } b_{j,\ell} = 0 \\ g_j^\ell & \text{if } b_{j,\ell} = 1 \end{cases}$$

(8)

The following definition is the generalization of Definition 1.

Definition 2. The projection of row g_j of the polar encoding matrix onto $\cap_{\ell \in \mathcal{B}} \mathcal{M}_\ell^c$ is denoted by $g_j^\mathcal{B}$ and $g_j \cap_{\ell \in \mathcal{B}} \mathcal{M}_\ell^c$ is given as

$$g_j^\mathcal{B} := g_j \cap_{\ell \in \mathcal{B}} \mathcal{M}_\ell^c$$

$$= \hat{g}_{b_j, W(|W|-1)} \otimes \hat{g}_{b_j, W(|W|-2)} \otimes \cdots \otimes \hat{g}_{b_j, W(0)}$$

(9)

where $W := \{0, n\} \setminus \mathcal{B}$.

Note that, similar to (3), for any subset $\mathcal{B} \subset \mathcal{B}$, the projection of g_j onto $\cap_{\ell \in \mathcal{B}} \mathcal{M}_\ell$ is given by

$$g_j \cap_{\ell \in \mathcal{B}} \mathcal{M}_\ell = \begin{cases} 0^N & \text{if } \cap_{\ell \in \mathcal{B}} b_{j,\ell} = 0 \\ g_j^\mathcal{B} & \text{if } \cap_{\ell \in \mathcal{B}} b_{j,\ell} = 1 \end{cases}$$

(10)

C. Row Merging Pre-transformed Polar-like Codes and RM Codes

A polar-like code $(N = 2^n, k) \in \mathbb{N}^2$, is constructed as

$$\mathcal{C} = \{c = u\mathbb{G} : u \in \mathbb{F}_2^k, u_{\mathcal{F}} = 0\}$$

(11)

where \mathcal{F} is the index set of the frozen bit positions, and $\mathcal{A} = \mathcal{N} \setminus \mathcal{F}$ is the information set. For classical polar codes under SC decoding, the set \mathcal{A} is the set of the most reliable bit sub-channels [2]. However in this paper, we allow to choose the information set differently. From this perspective, a RM(n, r) code of degree r can be seen as a polar-like code of information set

$$\mathcal{A} = \bigcup_{p=n-r}^{n} \mathcal{N}_p, \quad \mathcal{N}_p := \{t : i_1(b_t) = p, t \in \mathcal{N}\}$$

(12)

In [14], the minimum distance of a polar-like code is given by

$$d(\mathcal{C}) = \min_{i \in \mathcal{A}} i_1(g_i) (a) 2^{\min_{i \in \mathcal{A}} i_1(b_i)}$$

(13)

where (a) is due to [11] Theorem 2).

The pre-transformed polar-like codes [11] is obtained through a pre-transformation matrix $T \in \mathbb{F}_2^{N \times N}$

$$\mathbb{C}_P = \{c = uTG : u \in \mathbb{F}_2^k, u_{\mathcal{F}} = 0\}$$

(14)

where T is an upper triangular matrix with $T_{i,i} = 1, i \in \mathcal{N}$ and $F_{\mathcal{D}} := \{j : T_{i,j} = 1, i \in \mathcal{N}, j > i\}$ is the set of dynamic frozen bits. If T is restricted such that $\{i : T_{i,j} = 1, i \in \mathcal{N}\}$ \in
For any \(T \subseteq \mathcal{N} \) the Hamming weight of the set of rows of the polarization matrix, the Hamming weight results of this paper. It basically states that for any given \(T \), then \(T \) turns out to be a row merging pre-transformation matrix since some information bits are encoded with more than one row of the polarization matrix but any frozen row can be associated with at most one information row

\[
c = uTG = uG
\]

with

\[
\tilde{g}_i = g_i \oplus \bigoplus_{j \in \mathcal{P}_1(\tilde{r}_i)} g_j
\]

where \(\tilde{r}_i \) is the \(i \)-th row of \(T \).

III. ADDING INFORMATION BITS TO RM INFORMATION

SET BY SUSTAINING THE SAME MINIMUM DISTANCE

In this section, we present how to obtain triples of polarization matrix rows to keep the same minimum distance as the underlying RM code and state the size of information length increment for some given parameters. Let \(T \subseteq \mathcal{N} \) be any subset of row indices of the polarization matrix \(G \). Then, by \(g_T \), we denote

\[
g_T = \bigoplus_{i \in T} g_i
\]

A. Preliminary Theorems

Let us first state a corollary of [1, Theorem 2] that will be exploited later on in the paper.

Corollary 1. Let \(\Pi : \mathbb{F}_2^n \rightarrow \mathbb{F}_2^n \) be a permutation on binary representations of \(j \in \mathcal{N} \) and \(T \) be the index set obtained by applying permutation \(\Pi \) to the binary representations of elements of \(T \): \(b_j = \Pi(b_j), j \in T \) and \(j \in \mathcal{T} \). Then,

\[
i_1(g_T) = i_1(\tilde{g}_T)
\]

Proof. The intersection pattern does not change for any subset \(T' \subseteq T \), then

\[
i_1(\bigcap_{j \in T'} b_j) = i_1(\bigcap_{j \in T'} \Pi(b_j)) = i_1(\bigcap_{j \in \Pi^{-1}(T')} b_j)
\]

\[
= i_1(\bigcap_{j \in T''} b_j)
\]

The following theorem is also used to obtain subsequent results of this paper. It basically states that for any given set of rows of the polarization matrix, the Hamming weight of the sum of all rows is lower bounded by the maximum Hamming weight of the sum of a subset of rows whose binary representations are zero at the corresponding binary indices.

Theorem 1. For any given \(T \subseteq \mathcal{N} \) the Hamming weight of \(g_T \) is lower bounded by

\[
i_1(g_T) \geq \max_{\ell \in \{0,1\}} i_1(g_T^{\ell})
\]

where \(T^{\ell}_\ell := \{ k : b_{k,\ell} = 0, k \in T \} \).

Proof. For any \(u, v \in \mathbb{F}_2^{1 \times N} \), we have

\[
i_1(u \oplus v) + i_1(v) = i_1(u) + i_1(v) - 2 \cdot i_1(u \triangledown v) + i_1(v)
\]

\[
= i_1(u) + 2 \cdot (i_1(v) - i_1(u \triangledown v))
\]

\[
\geq i_1(u).
\]

Then, note that for any \(j \in \mathcal{N} \)

\[
i_1(\tilde{g}_j) = \begin{cases} i_1(g_j) & \text{if } b_{j,\ell} = 0 \\ 2 \cdot i_1(g_j) & \text{if } b_{j,\ell} = 1 \end{cases}
\]

for any \(\ell \in \{0, n\} \) due to [7] and [8]. Therefore, for any \(\ell \in \{0, n\} \) we can write

\[
i_1(g_T) = (g_T|M_T^\ell) + (g_T|M_T^\ell)
\]

\[
= i_1(\bigoplus_{j \in T} g_j^{\ell} \{b_{j,\ell} = 0\} \bigoplus g_j^{\ell} \{b_{j,\ell} = 1\})
\]

\[
+ i_1(\bigoplus_{j \in T} g_j^{\ell} \{b_{j,\ell} = 1\})
\]

\[
\geq i_1(\bigoplus_{j \in T} g_j^{\ell} \{b_{j,\ell} = 0\}) = i_1(\bigoplus_{j \in T^0_\ell} g_j) + i_1(\bigoplus_{j \in T^1_\ell} g_j)
\]

where (a) is due to [7] and [8], (b) is due to [21] and (c) is due to [22].

Theorem 2. Let \(C \) be a polar-like code with information set \(\mathcal{A} = \bigcup_{p=\ell+1}^{\infty} \mathcal{N}_p \) and \((i,j,k) \) be a triple such that \((i,j) \in \mathcal{N}_\ell, \ell \geq 2 \), \(k \in \mathcal{N}_2 \) and \(i_1(b_i \cap b_j) = i_1(b_j \cap b_k) = i_1(b_i \cap b_k) = 0 \). Moreover, let \(\tilde{C} \) be another polar-like code that encode an additional information bit by \(g_i \oplus g_j \oplus g_k \), i.e.

\[
\tilde{C} := \{ C \} \cup \{ c : c = g_{i,j,k} \oplus g_T, T \subseteq \mathcal{A} \}.
\]

Then, the minimum distance of \(\tilde{C} \) is the same as \(C \), i.e.

\[
d(\tilde{C}) = \min \left\{ d(C), \min_{T \subseteq \mathcal{A}} i_1(g_{i,j,k} \oplus g_T) \right\}
\]

\[
d(\tilde{C}) = d(C) = 2^\ell + 1
\]

Proof. The proof is given in Appendix VII-A.

B. Merging Three Rows with Common 1-bit Positions

The following theorem is a generalization of Theorem 2 and states the sufficient conditions on the rows of a triple with some common 1–bit positions in their binary representations, to be merged together such that the minimum distance of the underlying RM code is preserved.

Theorem 3. Let \(C \) be a polar-like code with information set \(\mathcal{A} = \bigcup_{p=\ell+1}^{\infty} \mathcal{N}_p \) and \((i,j,k) \) be a triple such that

\[
\mathcal{P}_1(b_i \cap b_j) = \mathcal{P}_1(b_j \cap b_k) = \mathcal{P}_1(b_i \cap b_k) = \emptyset, (i,j,k) \in \mathcal{N}_\ell, k \in \mathcal{N}_2, \ell \geq i_1(b_k).
\]

Let the code \(\tilde{C} \) be:

\[
\tilde{C} := \{ C \} \cup \{ c : c = g_{i,j,k} \oplus g_T, T \subseteq \mathcal{A} \}
\]

Then,

\[
d(\tilde{C}) = d(C) = 2^\ell + 1
\]
Proof. Since
\[d(C) = \min\{d(C), \min_{\mathcal{T} \subseteq \mathcal{A}} i_1_1(g(i,j,k) \oplus g) \} \] (28)
it is sufficient to prove the following statement
\[i_1_1(g(i,j,k) \oplus g) \geq 2^{t+1}, \quad \forall \mathcal{T} \subseteq \mathcal{A}. \] (29)

For any \(\mathcal{T} \subseteq \mathcal{A} \), the index set can be divided into two subsets such that
\[\mathcal{T} \setminus \tilde{\mathcal{T}} := \{ t : \mathcal{P}_1(b_{\mathcal{T}}) \cap \mathcal{P}_0(b_1 \cup b_2 \cup b_3) \neq \emptyset, t \in \mathcal{T} \} \] (30)
and \(\tilde{\mathcal{T}} = \mathcal{T} \setminus \mathcal{T} \). Then,
\[i_1(g(i,j,k) \oplus g) \geq \max_{p_0 \in \mathcal{P}_0(b_1 \cup b_2 \cup b_3)} i_1(g(i,j,k) \oplus g) + \max_{t \in \mathcal{T}} g \{ b_{t, p_0} = 0 \} \] (a)
\[= \max_{p_1 \in \mathcal{P}_1(b_1 \cup b_2 \cup b_3)} i_1(g(i,j,k) \oplus g) + \max_{t \in \mathcal{T}} g \{ b_{t, p_0} = b_{t, p_1} = 0 \} \] (b)
\[\quad \geq \max_{i \in \mathcal{I}} \left(\hat{g} \{ b_{t, p_0} = b_{t, p_1} = \cdots = b_{t, p_{n-1}} = 0 \} \right) \] (c)
\[= \max_{i \in \mathcal{I}} \left(\hat{g} \{ b_{t, p_0} = b_{t, p_1} = \cdots = b_{t, p_{n-1}} = 0 \} \right) \] (d)

where \(\{ p_0, p_1, \ldots, p_{n-2} \} = \mathcal{P}_0(b_1 \cup b_2 \cup b_3) \), where (a), (b) and (c) follow from the repeated application of Theorem 1 and (d) comes from (30), which implies that there is no \(t \in \mathcal{T} \) such that \(\mathcal{P}_1(b_t) \cap \{ p_0, p_1, \ldots, p_{n-2} \} = \emptyset \). This means that the Hamming weight of \(g(i,j,k,\mathcal{T}) \) is lower bounded by the Hamming weight of \(g(i,j,k,\tilde{\mathcal{T}}) \). Therefore, in the following, we will proceed the proof for \(\tilde{\mathcal{T}} \).

Now, assume that \(\mathcal{W} = \mathcal{P}_1(b_1 \cap b_2) \), which is the index set of common one bit positions of \(b_1 \), \(b_2 \) and \(b_3 \). Then, by partitioning the row indices of the polar encoding matrix, we obtain the following expression
\[i_1(g(i,j,k) \oplus g) = i_1(g(i,j,k) \oplus g) \cup \mathcal{M}_2^{c}(\mathcal{W} \mid \mathcal{W} \setminus \mathcal{W}_{\mathcal{T}+1}) \cup \mathcal{M}_0^{c}(\mathcal{W} \setminus \mathcal{W}_{\mathcal{T}+1}) \cup \mathcal{M}_0^{c}(\mathcal{W}) \]
\[\cdots \]
\[= i_1(g(i,j,k) \oplus g) \cup \mathcal{M}_2^{c}(\mathcal{W} \mid \mathcal{W} \setminus \mathcal{W}_{\mathcal{T}+1}) \cup \mathcal{M}_0^{c}(\mathcal{W} \setminus \mathcal{W}_{\mathcal{T}+1}) \cup \mathcal{M}_0^{c}(\mathcal{W}) \]
\[\leq \max_{i \in \mathcal{I}} \left(\hat{g} \{ b_{t, p_0} = b_{t, p_1} = \cdots = b_{t, p_{n-1}} = 0 \} \right) \]
\[= \max_{i \in \mathcal{I}} \left(\hat{g} \{ b_{t, p_0} = b_{t, p_1} = \cdots = b_{t, p_{n-1}} = 0 \} \right) \] (32)

where (a) is due to (9) and (10). Since \(\mathcal{P}_1(b_1) \setminus \mathcal{P}_1(b_1 \cap b_2), \mathcal{P}_1(b_2) \setminus \mathcal{P}_1(b_1 \cap b_2) \) and \(\mathcal{P}_1(b_3) \setminus \mathcal{P}_1(b_1 \cap b_2) \) comply with the conditions of Theorem 2 each term of the partition is lower bounded by \(2^{t+1} \). Then,
\[i_1(g(i,j,k) \oplus g) \geq 2^{i_1(b_{t, p_0})} + \left(2^{t+1} \right) \]
\[= 2^{t+1} \] (33)
where \(|\mathcal{W}| = i_1(b_{t, p_0}) \).

In the following, we state the sufficient conditions to increase the information length by multiple bits for a fix code-word length. Thanks to the symmetry imposed by Corollary 1 we apply a permutation \(\Pi \) to any given row triple satisfying the conditions of Theorem 3 to have the following form
\[\mathcal{P}_1(b_1 \cup b_2) \setminus \mathcal{P}_0(b_1 \cup b_2) \]
and
\[\mathcal{P}_1(b_1 \cap b_2) \setminus \mathcal{P}_0(b_1 \cap b_2) \]
and
\[\mathcal{P}_1(b_1) \setminus \mathcal{P}_0(b_1) \]
Moreover, let \(\Pi_p \) be a left-circular shift permutation on the index set of binary representation of \(p \in \mathcal{N} \), with \(\theta \in [0, t_0 + t_1] \), \(t_0 = i_0(b_1 \cup b_2 \cup b_3) \) and \(t_1 = i_1(b_{t, p_0} \cap b_2) \). We have
\[b_{t, \Pi_p} = b_{p, \theta + n} \] (mod \(n \))

The following theorem is the main result of this paper.

Theorem 4. Let \(\mathcal{C} \) be a polar-like code with information set \(\mathcal{A} = \bigcup_{p \in \mathcal{N}} \mathcal{N}_p \). Let \((i,j,k) \) be a triple satisfying the conditions of Theorem 3 and (34), (35), (36) and (37). Let \(\mathcal{C} \) be a code obtained by encoding each of the extra \(m \leq t_0 + t_1 + 1 \) information bits with a merged row triple \(g(i,j,k,\mathcal{T}) \). Then,
\[d(C) = d(C) \] (39)

Proof. The proof is given in Appendix VII-B.

The following section explains how Theorem 4 is used in order to increase the information length of a polar-like code with RM information set by preserving the minimum distance.

IV. CODE CONSTRUCTION

Let us consider a triple \((i,j,k) \) that satisfies the conditions of Theorem 3 (34), (35), (36) and (37). For any \(m \in [1, t_0 + t_1 + 1] \),
- \(m-1 \) triples, \(\{ (i_0, j_0, k_0), \ldots, (i_{m-2}, j_{m-2}, k_{m-2}) \} \), are obtained from the left-circular shift of \((i, j, k) \).
- For all triples, the permutation of their binary representations such that the smallest element among all the triples is maximized, is searched. This prevents from adding more badly polarized bit sub-channels to the information set. Indeed, with Corollary 1 the code constructed by
any permutation of \(m \)-triples has in the same distance spectrum since the underlying information set is chosen by RM rule.

- Algorithm 1 of [1] is applied to obtain the pairs \((t, v)\), where \(t \in \mathcal{N}_{t+1} \), \(v \in \mathcal{N}_{t} \), \(v > t \), \(\ell = i_{1}(b_{t}) \), to decrease the number of minimum weight codewords.

Remark 1. Even though we have verified experimentally that the application of the third step does not decrease the minimum distance, an explicit proof of this evidence is complex and remains to be done.

The pre-transformation matrix is constructed by adding the smallest index of each of \(m \)-triple to the information set and the other two indices are considered as dynamic frozen bits. For any obtained pair \((t, v)\), \(v \) is considered as dynamic frozen bit. The pre-transformation matrix \(T \), is such that

\[
T_{a,a} = T_{a,b} = T_{a,c} = T_{t,v} = 1
\]

where \(a \in \mathcal{N} \) is the minimum of the triples, and \(v \in \mathcal{N}_{t} \) is the associated index to any \(t \in \mathcal{N}_{t+1} \) by the application of Algorithm 1 of [1] to obtain pairs instead of triples.

V. Simulation Results

We numerically compare in Figure 1 our proposed design (PD) with PAC codes and the saddle-point approximation of the MC (SMC) bound [1] for BIAWGN channel. Our construction for the code \((128, 66)\) is obtained by first adding two extra bits to the \((128, 64)\) polar-like code with RM information set and then by applying [1, Algorithm 1] to obtain \((t, v)\) pairs such that \(i_{1}(b_{t}/b_{v}) = 1 \). Similarly, the code \((128, 100)\) is obtained by first adding one extra bit to the polar-like code \((128, 99)\) with RM information set and then by applying [1, Algorithm 1] to obtain \((t, v)\) pairs such that \(i_{1}(b_{t}/b_{v}) = 0 \).

For PAC codes, the additional information indices are chosen as the most reliable bit subchannel indices from the set \(\mathcal{N}_{t} \), which are the highest indices due to partial ordering [10]. We optimize the polynomial of the convolutional code with memory length 7 to minimize the number of minimum weight codewords. We implemented the algorithm [17] with a large list size, i.e., \(5 \cdot 10^{4} \), and we choose the one that leads to the minimal number of second minimum weight codewords since the number of minimum weight codewords does not change for a few increment of the information length.

It is seen that our design performs better than PAC codes for the entire range of SNR, since, at short blocklengths, the minimum distance plays an important role in the SCL decoding with large list sizes. Moreover, our design performs close to the MC bound especially at high \(E_{b}/N_{0} \).

VI. Concluding Remarks

In this work, we proposed a method to increase the information length of a polar-like code while keeping the same minimum distance with the underlying RM code. Algorithm 1 in [1] is used along with our results to reduce the number of minimum weight codewords that allows to design codes that perform closer to the MC bound than PAC codes with the same system parameters. We believe that this work allows a better understanding of the polarization matrix properties, which may lead to more efficient code design, particularly for short blocklengths. The extension of this work to moderate blocklengths is under investigation.

References

[1] S. Gelincik, P. Mary, J.-Y. Baudais, and A. Savard, “Achieving pac code performance without extra computational complexity,” to appear in IEEE ICC 2022, Seoul, Korea, 2022.

[2] E. Arikan, “Channel polarization: A method for constructing capacity-achieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, 2009.

[3] 3rd Generation Partnership Project (3GPP), “Multiplexing and Channel Coding,” 3GPP 38.212 V.15.3.0, 2018.

[4] V. Bioglio, C. condo, and I. Land, “Design of polar codes in 5G new radio,” IEEE Commun. Surveys Tutorials, vol. 23, no. 1, pp. 29–40, 2021.

[5] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on Selected Areas in Communications, vol. 34, no. 2, pp. 254–266, 2016.

[6] P. Yuan, T. Prinz, G. Boecherer, O. Iscan, R. Boehnke, and W. Xu, “Polar code construction for list decoding,” in SCC 2019: 12th International ITG Conference on Systems, Communications and Coding, 2019, pp. 1–6.

[7] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2213–2226, 2015.

[8] Q. Zhang, A. Liu, X. Pan, and K. Pan, “Crc code design for list decoding of polar codes,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1229–1232, 2017.

[9] J. Piao, K. Niu, J. Dai, and C. Dong, “Approaching the normal approximation of the finite blocklength capacity within 0.025 dB by short polar codes,” IEEE Wireless Commun. Lett., vol. 9, no. 7, pp. 1089–1092, 2020.

[10] E. Arikan, “From sequential decoding to channel polarization and back again,” arXiv 1908.09594, September 2019.

[11] B. Li, H. Zhang, and J. Gu, “On pre-transformed polar codes,” arXiv 1912.06359, September 2019.

[12] A. Elkelesh, M. Ebada, S. Cammerer, and S. t. Brink, “Decoder-tailored polar code design using the genetic algorithm,” IEEE Trans. Commun., vol. 67, no. 7, pp. 4521–4534, 2019.

[13] T. Tonnellier and W. J. Gross, “On systematic polarization-adjusted convolutional (PAC) codes,” IEEE Commun. Lett., vol. 25, no. 7, pp. 2128–2132, 2021.

[14] S. H. Hassani, R. Mori, T. Tanaka, and R. L. Urbanke, “Rate-dependent analysis of the asymptotic behavior of channel polarization,” IEEE Transactions on Information Theory, vol. 59, no. 4, pp. 2267–2276, 2013.
A. Proof of Theorem 2

The proof of this theorem is based on Theorem 5 given at the end of the appendices. Theorem 5 states that, for any given pair of rows with the same Hamming weight and no intersection in their binary representations, the Hamming weight of combination of the given pair with any subset of rows with higher Hamming weights is lower bounded by Hamming weight of the given pair.

Since
\[d(C) = \min \{d(C), \min_{T \subseteq A} i_1(g_{i,j,k} + g_T) \} \]
(41)

it is sufficient to prove the following statement
\[i_1(g_{i,j,k} + g_T) \geq 2^\ell + 1, \quad \forall T \subseteq A \]
(42)
to prove the theorem.

We can divide the index set into two subsets such that
\[\tilde{T} := \{ t : P_1(b_t) \cap P_0(b_t \cup b_b \cup b_k) \neq \emptyset, t \in T \} \]
(43)
and \(\check{T} = T / \tilde{T} \). Then by Theorem 1
\[i_1(g_{i,j,k} + g_T + g_{\tilde{T}}) \geq \max_{p_0 \in P_0(b_t \cup b_b)} i_1(g_{i,j,k} + g_T + g_{\tilde{T}}) \geq \max_{p_0 \in P_0(b_t \cup b_b)} i_1(g_{i,j,k} + g_T + g_{\tilde{T}}) \geq 2^\ell + 1 \]
(44)
where \(\{p_0, p_1, \ldots, p_{n-2\ell-1}\} = P_0(b_t \cup b_b \cup b_k) \) and (a) comes from (43), which implies for any \(t \in \tilde{T}, P_1(b_t) \cap P_0(b_t \cup b_b \cup b_k) \neq \emptyset \). This result means that the Hamming weight of \(g_{i,j,k,T} \) is lower bounded by the Hamming weight of \(g_{i,j,k,\tilde{T}} \). Therefore, in the following, we proceed the proof for \(\check{T} \).

We divide \(\check{T} \) into three subsets
\[\hat{T}_{k,1} = \{ t : P_1(b_t) \cap P_1(b_k) \neq \emptyset \} \]
(45)
\[\hat{T}_{k,2} = \{ t : |P_1(b_t) \cap P_1(b_k)| = 1 \} \]
(46)
and
\[\check{T} = \hat{T}_{k,1} \cup \hat{T}_{k,2} \]
(47)
In the following, we proceed the proof for each of the cases \(\hat{T}_{k,1} \) and/or \(\hat{T}_{k,2} \) are empty or not. Except the first case, we benefit from Theorem 5.

First, assume that neither \(\hat{T}_{k,1} \) nor \(\hat{T}_{k,2} \) is empty, and \(\{p_1, p_2\} = P_1(b_k) \). Then, by partitioning the row indices of the polar encoding matrix, we obtain the following expression:
\[
i_1(g_{1} + g_{j} + g_{k} + g_{\check{T}})
= i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(M_{p_1} \cap M_{p_2})
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(M_{p_1} \cap M_{p_2})
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(M_{p_1} \cap M_{p_2})
(a)
= i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
(b)
\geq i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
(c)
\geq i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
+ i_1(g_{1} + g_{j} + g_{k} + g_{\tilde{T}})(g_{p_1} + g_{p_2}) \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2} \oplus g_{p_1} + g_{p_2}
(d)
\geq 2^\ell + 1
\]
(48)
where (a) comes from Theorem 5, i.e., g_{i_1, p_1}, g_{j_1, p_1} and g_{k_1, p_1} satisfies with the corresponding conditions, and hence, $i_1(g_{i_1, j_1, k_1}; T) \geq 2^{\ell+1} - 2$, and $2 \cdot i_1(g_{k_1, p_1}) = 2$.

The same result can be shown for other options of $T_{k, 1}$, $T_{k, 2}$ by following similar steps.

B. Proof of Theorem 2

The proof of this theorem is based on Theorem 1 and Theorem 9, whose proof is based on Theorem 5. Theorem 9 is also given at the end of the appendices, is a generalization of Theorem 5 for the case there are some common 1-bits in the intersection of binary representations of the pair.

The proof is done for $m = t_0 + t_1 + 1$, since this implies that the theorem holds for $m < t_0 + t_1 + 1$.

For $m = t_0 + t_1 + 1$, the code C is given as

$$C = \bigcup_{D \subseteq [0, t_0 + t_1]} \{ c : c = \bigoplus_{\theta \in D} g_{i_{\theta, p_{\theta}}} \oplus g_{T, \theta}, \ T \subseteq A \}$$

and hence, it is sufficient to prove the following statement

$$i_1\left(\bigoplus_{\theta \in D} g_{(i_\theta, p_\theta)} \oplus g_T \right) \geq 2^{\ell+1}$$

for any $D \subseteq [0, t_0 + t_1]$ and $T \subseteq A$.

The proof is done for the whole set $\{g_{[i_\theta, p_\theta]} \oplus g_T\}$, $\theta \in D$, in $[0, t_0 + t_1]$ and the case $i_0(b_1 \cup b_2 \cup b_3) > i_1(b_1 \cap b_2 \cap b_3)$. The same result can be found by following similar steps for any combination of $\{g_{[i_\theta, p_\theta]} \oplus g_T\}$, $\theta \in [0, t_0 + t_1]$ and other cases such as $i_0(b_1 \cup b_2 \cup b_3) = i_1(b_1 \cap b_2 \cap b_3)$ or $i_0(b_1 \cup b_2 \cup b_3) = 0$.

For the considered case, the main steps are located on top of the following page, (52), where (a) is due the fact that minimum Hamming weight of any row involving with the right side of the equation is $2^{\ell-1}$, (b) is due to Theorem 1 (c) is due to (53), (55) and (56), (d) is since $\Pi_1 \cdot \Pi_1$ is such that $\{ t : b_{t, 0} = b_{t, 0} = b_{t, 0} = \cdots = b_{t, 0} = 0, t \in T \}$ satisfies with the conditions of Theorem 6 (e) is due to (1) Theorem 2) and (f) is due to the assumption $i_1(b_{k, t_0}) \leq \ell - 2$.

Theorem 5. For any pairs $i, j \in N$, $N_t := \{ t : i_1(b_t) = \ell, t \in N \}$, such that $i_1(b_{i, 0}) = 0$, the combination of $g_i \oplus g_j$ with higher Hamming weight rows of polar encoding matrix is lower bounded by Hamming weight of $g_i \oplus g_j$:

$$i_1(g_i \oplus g_j \oplus g_T) \geq i_1(g_i \oplus g_j)$$

$$= 2^{\ell+1} - 2$$

where $T \subseteq \cup_{t_0=\ell+1} N_t$.

Proof. For $\ell = 1$, the statement of the theorem turns to be trivial due to the fact that $i_1(g_{i, j}; T) \geq \min_{k \in \{0, \ell \}} i_1(b_k) = i_1(g_i \oplus g_j)$ for $\ell = 1$. Hence, in the following, we proceed the proof for $\ell \geq 2$.

Due to symmetry imposed by Corollary 1 without losing generality we assume that $T_1(b_{k_1}) = [0, \ell - 1]$ and $T_1(b_1) = [\ell, 2\ell - 1]$. In the following we use this assumption for the simplicity of presentation.

We can divide the index set into two subsets such that

$$\widehat{T} := \{ k : P_1(b_{k_1}) \cap [2, \ell, n) \neq \emptyset, k \in T \}$$

and $\bar{T} = T \setminus \widehat{T}$. Then, by Theorem 1

$$i_1(g_i \oplus g_j \oplus g_k \oplus g_\theta)$$

$$\geq \max_{p_0 \in [2, \ell, n] \cap \widehat{T}} i_1(g_i \oplus g_j \oplus g_k \oplus g_\theta \{ b_{t, p_0} = 0 \})$$

for $\ell \geq 2$.

Note that for any $t \in \widehat{T}$, $\exists p_0 \in P_0(b_{k_1}) \cap P_0(b_i)$ and $t \in P_0(b_{k_1}) \cap P_0(b_{k_1})$ such that

$$i_1(g_i \oplus g_j \oplus g_T)$$

$$\geq i_1(g_i \oplus g_j \oplus g_\theta)$$

$$\oplus g_j \{ b_{t, p_0} = 0 \} \oplus g_\theta \{ b_{t, p_0} = 0 \} \oplus g_k \{ b_{k_1, t_0} = 0 \}$$

where $T \subseteq \cup_{t_0=\ell+1} N_t$. Theorem 6, (e) is due to [1, Theorem 2] and (f) is due to the
We can write (60) in a more compact form by representing projections to subset of row indices as a binary vector by denoting \mathcal{M}_ℓ^c with 0 and \mathcal{M}_ℓ with 1 for $\ell \in [0, \ell]$, then

$$i_1(g_i \oplus g_j \oplus g_k) = i_1(g_i \oplus g_j | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0) + i_1(g_j \oplus g_k | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

$$+ i_1(g_k \oplus g_l | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

We can write (50) in a more compact form by representing projections to subset of row indices as a binary vector by denoting \mathcal{M}_ℓ^c with 0 and \mathcal{M}_ℓ with 1 for $\ell \in [0, \ell]$, then

$$i_1(g_i \oplus g_j \oplus g_k) = i_1(g_i \oplus g_j \oplus g_k | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

where (a) and (b) come from Theorem 1 and (c) is due to the fact that $i_1(g_k) \geq 2^{\ell+1}$. Note that if the set \mathcal{T}_{t+1}^0 is not empty the following statement

$$i_1(g_i \oplus g_j \oplus g_k \oplus g_{\mathcal{T}_{t+1}^0}) \geq 2^{t+1}$$

(59)
can be proven with similar steps. Therefore, when we prove

$$i_1(g_i \oplus g_j \oplus g_k \oplus g_{\mathcal{T}_{t+1}^0}) \geq 2^{t+1} - 2$$

the proof of Case 1 will be completed.

Let t be any element of \mathcal{T}_{t+1}^0. Due to symmetry, assume that $\mathcal{P}_1(b_i) = [0, \ell]$. Then, we can obtain the total Hamming weight by partitioning the indices of rows into 2^{t+1}

$$i_1(g_i \oplus g_j \oplus g_k) =$$

$$i_1(g_i \oplus g_j \oplus g_k | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

$$+ i_1(g_j \oplus g_k | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

$$+ i_1(g_k \oplus g_l | M_\ell \cap M_{\ell-1} \cap \ldots \cap M_0)$$

(60)
where (a) is by Theorem 1. Note that for any \(\hat{T}_{\ell+1} \subseteq \hat{T}_{\ell+1} \setminus \{t, t_0\} \),
\[
i_1(g_i \oplus g_j \oplus g_{t_0} \Theta g_{\hat{T}_{\ell+1}}) \geq i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\}) \\
= \sum_{k=0}^{2^{\ell+1}} i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\})
\]
(62)

where (a) is by Theorem 1. Note that for any \(\hat{T}_{\ell+1} \subseteq \hat{T}_{\ell+1} \setminus \{t, t_0\} \),
\[
i_1(g_i \oplus g_j \oplus g_{t_0} \Theta g_{\hat{T}_{\ell+1}}) \geq i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\}) \\
= \sum_{k=0}^{2^{\ell+1}} i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\})
\]
(63)

where (a) is by Theorem 1. Note that for any \(\hat{T}_{\ell+1} \subseteq \hat{T}_{\ell+1} \setminus \{t, t_0\} \),
\[
i_1(g_i \oplus g_j \oplus g_{t_0} \Theta g_{\hat{T}_{\ell+1}}) \geq i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\}) \\
= \sum_{k=0}^{2^{\ell+1}} i_1(g_i \Theta \{b_{t,p_0} = 0\} \oplus g_j \Theta \{b_{t,p_0} = 0\} \oplus g_{t_0} \Theta \{b_{t,p_0} = 0\})
\]
(64)

where (a) is due to Theorem 1 and (b) is due the conditions imposed by related subsets.
Note that, if \(\ell \neq 0 \), the following statement
\[
i_1(g_i \Theta g_j \Theta g_{\hat{T}_{\ell+1}}) \geq 2^{\ell+2}
\]
(71)

can be shown by following similar steps to (63). Hence, when we prove the statement of Theorem 5 for \(\hat{T}_{\ell+2} \), the proof for Case 2 will be done.

Let start with \(|\hat{T}_{\ell+1}| = 1 \), and assume that for \(t \in \hat{T}_{\ell+1} \),
\[
\exists t_0 \in \hat{T}_{\ell+2} \text{ such that } P_1(t_0) \supseteq P_1(t).
\]
By symmetry, without losing generality, assume \(P_1(t_0) = [0, \ell + 1] \). Then, for any \(p \in [\ell + 2, 2 \ell - \ell - 1] \)
\[
i_1(g_i \Theta g_j \Theta g_{\hat{T}_{\ell+2}})
\]
(65)

where (a) is due to Theorem 1 and (b) is due the conditions imposed by related subsets.
Note that, if \(\ell \neq 0 \), the following statement
\[
i_1(g_i \Theta g_j \Theta g_{\hat{T}_{\ell+2}}) \geq 2^{\ell+2}
\]
(71)

can be shown by following similar steps to (63). Hence, when we prove the statement of Theorem 5 for \(\hat{T}_{\ell+2} \), the proof for Case 2 will be done.

Let start with \(|\hat{T}_{\ell+1}| = 1 \), and assume that for \(t \in \hat{T}_{\ell+1} \),
\[
\exists t_0 \in \hat{T}_{\ell+2} \text{ such that } P_1(t_0) \supseteq P_1(t).
\]
By symmetry, without losing generality, assume \(P_1(t_0) = [0, \ell + 1] \). Then, for any \(p \in [\ell + 2, 2 \ell - \ell - 1] \)
\[
i_1(g_i \Theta g_j \Theta g_{\hat{T}_{\ell+2}})
\]
(65)
\[
\begin{align*}
&= \sum_{k=1}^{2^\ell-1} i_1(g_t^{[0,\ell]} \oplus g_t^{[0,\ell]} \oplus g_t^{[0,\ell]}) \\
&= 2^{\ell+1} + 2^\ell
\end{align*}
\]
(72)

where (a) is due to Theorem 1. Note that, for any \(\mathcal{T}_{\ell+2} \subseteq \mathcal{T}_{\ell+1} \setminus \{t_0\} \), the statement of Theorem 5 can be proven by following similar steps to (63), i.e.,

\[
\begin{align*}
i_1(g_i \oplus g_j \oplus g_t \oplus g_{\mathcal{T}_{\ell+2}})
&\geq i_1(g_i \oplus g_t \oplus g_{\mathcal{T}_{\ell+2}}) \\
&= i_1(g_i \oplus g_t) \\
&= 2^{t+2} - 2^\ell \\
&= 2^{t+2} + 2^\ell
\end{align*}
\]
(73)

Now assume that \(\exists t_0 \in \mathcal{T}_{\ell+2} \) such that \(P_1(b_{t_0}) \neq P_1(b_t) \), i.e., \(\exists p \in P_1(b_t) \cap P_0(b_j) \cap P_1(b_j) \cap P_0(b_{t_0}) \). Then,

\[
\begin{align*}
i_1(g_i \oplus g_j \oplus g_t \oplus g_{\mathcal{T}_{\ell+2}})
&\geq i_1(g_i \oplus g_j \oplus g_t \oplus g_{\mathcal{T}_{\ell+2}}) \\
&= i_1(g_i \oplus g_j \oplus g_t) \\
&= 2^{t+2} - 2^\ell \\
&= 2^{t+2} + 2^\ell
\end{align*}
\]
(74)

where (a) is by Theorem 1. Note that for any \(\mathcal{T}_{\ell+2} \subseteq \mathcal{T}_{\ell+1} \setminus \{t_0\} \), the following inequality

\[
i_1(g_i \oplus g_j \oplus g_t \oplus g_{\mathcal{T}_{\ell+2}}) \geq 2^{t+1} + 2^\ell
\]
(75)
can be shown by following similar steps to (63).

Now, let's assume \(|\mathcal{T}_{\ell+1}| > 1 \), and note that there are only two possible cases such that either binary bit positions of any element of \(\mathcal{T}_{\ell+1} \) coincides with only \(P_1(b_t) \) (or \(P_1(b_j) \)). or there is at least one element of \(\mathcal{T}_{\ell+1} \) whose binary bit positions coincides with \(P_1(b_j) \) (or \(P_1(b_t) \)). We will consider the following two cases without losing generality due to the symmetry:

Case 2.1: In this case, \(\exists (t_0, t_1) \in \mathcal{T}_{\ell+1} \) such that \(P_1(b_{t_0}) \supset P_1(b_t) \) and \(P_1(b_{t_1}) \supset P_1(b_t) \). Then, assume that \(\exists t_2 \in \mathcal{T}_{\ell+2} \) such that

\[
P_1(b_{t_2}) \supset P_1(b_{t_0}) \cup P_1(b_{t_1}) \cup P_0(b_{t_2})
\]
(76)

In that case, \(\exists p \in P_0(b_{t_2}) \cup P_1(b_{t_2}) \cap P_0(b_{t_0}) \cap P_0(b_{t_1}) \cap P_0(b_{t_2}) \), then

\[
\begin{align*}
i_1(g_i \oplus g_j \oplus g_{t_2})
&\geq i_1(g_i \oplus g_j \oplus g_{t_2}) \\
&= i_1(g_i \oplus g_j \oplus g_{t_2}) \\
&= 2^{t+1} - 2^\ell \\
&= 2^{t+1} + 2^\ell
\end{align*}
\]
(77)

where (a) is by Theorem 1. For any \(\mathcal{T}_{t_2+1} \subseteq \mathcal{T}_{t_2+1} \setminus \{t_0, t_1\} \) and \(\mathcal{T}_{t_2+2} \subseteq \mathcal{T}_{t_2+1} \setminus \{t_2\} \), the following statement

\[
i_1(g_i \oplus g_j \oplus g_{t_0} \oplus g_{t_1} \oplus g_{t_2} \oplus g_{T_{\ell+1}^2} \oplus g_{T_{\ell+2}^2}) \geq 2^{t+1} + 2^\ell
\]
(78)
can be proven by following similar steps to (63).

If there is no \(t_2 \in \mathcal{T}_{\ell+2} \) satisfying (76), i.e.,

\[
P_1(b_{t_2}) \neq P_1(b_{t_0}) \cup P_1(b_{t_1})
\]
(79)

\[
\exists p \in P_0(b_{t_2}) \cap P_1(b_{t_1}) \cap P_0(b_{t_1}) \cap P_0(b_{t_2}) \cap P_1(b_{t_1}) \cap P_1(b_{t_2})
\]

Then, for any \(\mathcal{T}_{t_2+1} \subseteq \mathcal{T}_{t_2+1} \setminus \{t_0, t_1\} \), the following statement

\[
i_1(g_i \oplus g_j \oplus g_{t_0} \oplus g_{t_1} \oplus g_{T_{\ell+1}^2} \oplus g_{T_{\ell+2}^2}) \geq i_1(g_i \oplus g_{T_{\ell+1}^2} \oplus g_{T_{\ell+2}^2}) \geq 2^{t+1} + 2^\ell
\]
(80)
can be shown by following similar steps to (63) and where (a) is by (62).

Case 2.2: In this case, \(\exists (t_0, t_1) \in \mathcal{T}_{\ell+1} \) such that \(P_1(b_{t_0}) \supset P_1(b_t) \) and \(P_1(b_{t_1}) \supset P_1(b_t) \). For any \(t_2 \in \mathcal{T}_{\ell+2} \) either \(P_1(b_{t_2}) \supset P_1(b_{t_0}) \) or \(P_1(b_{t_2}) \supset P_1(b_{t_1}) \). Then, by (72),

\[
i_1(g_i \oplus g_j \oplus g_{t_0} \oplus g_{t_1} \oplus g_{t_2}) \geq 2^{t+1} + 2^\ell
\]
(81)

And, for any \(\mathcal{T}_{t_2+1} \supset \mathcal{T}_{t_2+1} \setminus \{t_0, t_1\} \) and \(\mathcal{T}_{t_2+2} \supset \mathcal{T}_{t_2+1} \setminus \{t_2\} \), either conditions of (63) or conditions of (79) is satisfied. Hence the statement of the Theorem 5 can be proven by following similar steps to (63) as in the cases (77) and (80), respectively.

Theorem 6. For any pairs \((i, j) \in \mathcal{N}_t \), \(\ell \geq 2 \), the combination of \(g_i \oplus g_j \) with higher hamming weight rows of polar encoding matrix is lower bounded by Hamming weight of \(g_i \oplus g_j \).

\[
i_1(g_i \oplus g_j) \geq i_1(g_i \oplus g_j) \geq i_1(g_i \oplus g_j)
\]
(82)

where \(\mathcal{T} \subseteq \bigcup_{p=\ell+1}^{n-1} \mathcal{N}_p \).

Proof. We can divide the index set into two subsets such that

\[
\mathcal{T} = \{k : P_1(b_k) \cap P_0(b_k) \neq \emptyset, k \in \mathcal{T}\}
\]
(83)

and \(\mathcal{T} = \mathcal{T} \setminus \mathcal{T} \).

Due to the same reasoning as shown in Theorem 5 by (63), in the following, we will proceed the proof for \(\mathcal{T} \).

The proof for the case \(i_1(b_i \cap b_j) = \ell - 1 \) is trivial since

\[
i_1(g_{\mathcal{T} \cup (i, j)}) \geq \min_{k \in \mathcal{T} \cup (i, j)} 2^{i_1(b_k)} = 2^{i_1(b_k)} = 2^{\ell-1}
\]
(84)

and \(i_1(g_i \oplus g_j) = 2^\ell \) by (1) Theorem 2 if \(i_1(b_i \cap b_j) = \ell - 1 \).

Now assume that \(i_1(b_i \cap b_j) = \ell - 2 \) and let \(\mathcal{W} = P_1(b_i \cap b_j) \), which is the index set of common one bit positions of \(b_i \) and \(b_j \). Then, by partitioning the row indices of polar encoding matrix, we obtain the following expression

\[
\begin{align*}
i_1(g_i, g_j) \oplus g_{\mathcal{T}}
&= i_1(g_i, g_j) \oplus g_{\mathcal{T}} \mid M_{\mathcal{W}}(\mathcal{W} \setminus \{1\}) \cap M_{\mathcal{W}}(\mathcal{W} \setminus \{1\}) \cap \cdots \cap M_{\mathcal{W}}(0)
\end{align*}
\]
(85)
\[
\begin{align*}
&+ i_1(g_{i,j} \oplus g_{\bar{f}} |M_W(|W|-1) \cap M_W(|W|-2) \cap \cdots \cap M_W(0)) \\
&= i_1(g_W^{|W|-1} \bigoplus_{k \in \hat{T}} g_k^W) + i_1(g_{i,j} \bigoplus_{k \in \hat{T}} g_k^W \1(b_k, W(0) = 1)) \\
&+ \cdots \\
&= i_1(g_{i,j} \bigoplus_{k \in \hat{T}} g_k^W \1(b_k, W(|W|-2) = b_k, W(|W|-1) = b_k, W(|W|-2) \\
&= \cdots = b_k, W(0) = 1))
\end{align*}
\]

where (a) is due to \cite{9} and \cite{10}. By Theorem 5, each term of the partition is greater than \(2^\ell - |W| + 1 - 2\) since \(|P_1(b_k) \cap P_1(b_i \oplus b_j)| > \ell - |W|\) for any \(k \in \hat{T}\). Then,

\[
i_1(g_i \oplus g_j \oplus g_{\bar{f}}) \geq 2^{i_1(b_i \cap b_j)} \cdot (2^{\ell-i_1(b_i \cap b_j) + 1} - 2) = 2^{\ell + 1} - 2^{i_1(b_i \cap b_j) + 1}
\]

(86)

where (a) is due to \cite{1} Theorem 2]. ■