Harun N, Chaudhry AS, Shaheen S, Ullah K, Khan F.
Ethnobotanical studies of fodder grass resources for ruminant animals, based on the traditional knowledge of indigenous communities in Central Punjab Pakistan.

Journal of Ethnobiology and Ethnomedicine 2017, 13, 56.

Copyright:
© The Author(s). 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

DOI link to article:
https://doi.org/10.1186/s13002-017-0184-5

Date deposited:
19/01/2018

This work is licensed under a Creative Commons Attribution 4.0 International License
Ethnobotanical studies of fodder grass resources for ruminant animals, based on the traditional knowledge of indigenous communities in Central Punjab Pakistan

Nidaa Harun1,2, Abdul Shakoor Chaudhry2, Shabnum Shaheen1*, Kifayat Ullah3 and Farah Khan1

Abstract

Background: Traditional knowledge of indigenous plants is pivotal in developing strategies to feed livestock sustainably in low input systems. Likewise, in Pakistan the indigenous people of Central Punjab have been using their regional grasses as a ruminant fodder for centuries. This study evaluated the indigenous traditional knowledge to ascertain the value of various fodder grasses to optimise their use to feed livestock in Central Punjab.

Methods: The snowball technique was employed to identify key informants who had relevant knowledge about different grasses in the study area. Semi-structured questionnaires, face-to-face interviews and site visits were used for describing the fodder grasses. The data were then analysed by using relative frequency citation and pairwise comparison methods to determine the order of priority among the listed fodder grasses. Furthermore, SPSS 22 software was used for descriptive statistics and interpretation of associations among studied parameters. Microsoft Excel was used to present data as % values and graphs.

Results: Overall, 53 grasses were described with ethnobotanical information regarding their uses for fodder, ethnoveterinary and other purposes. All these grasses belonged to the family Poaceae where the subfamily Panicoideae had the maximum number of 30 grasses. We categorized these grasses into high (A), medium (B) and low priority (C) groups where the group A grasses were reported as not only the most abundant but also the most palatable forages to all ruminants. Their higher demand was reflected by the feeding systems of both ad libitum grazing and feeding after cutting and mixing with other feeds. The study also revealed 37 previously unreported ethnoveterinary uses of these grasses.

Conclusions: The results have reinforced the value of conserving ethnobotanical knowledge, being poorly documented previously, in developing strategies to feed livestock. It indicated the preferred fodder grasses as well as the possible reasons of their preference. The reported data need to be validated for nutritional and health benefits. This information could help the smallholder farmers in association with regional governments to propagate suitable fodder grasses for their use in sustainable livestock feeding to produce safe and healthy food for indigenous communities.

Keywords: Traditional knowledge, Central Punjab, Fodder grasses, Ruminants
Background

The agriculture and livestock industry are playing a predominant role in Pakistan’s economy. Around 43.5% individuals are linked with this industry with its 21% contribution in Gross Domestic Product (GDP). In this sector the most protuberant role has been made by the Punjab province in comparison to all other provinces of Pakistan [1].

Geographically Punjab is subdivided into south, north, west and central regions [2]. Amongst all the regions of Punjab the Central region is primarily involved in the production of milk and meat from ruminants. Although this area is blessed with diversified fodders (trees, shrubs, herbs and grasses), grasses are conventionally the most common and reliable fodder source for ruminant animals. The indigenous people prefer to use grass as a fodder because grasses are observed to be more palatable than shrubby fodders by ruminant animals [3–6]. Moreover the grasses have massive growth abilities around different seasons and these are conveniently more accessible. Therefore, this study aimed to provide comprehensive information on the traditionally used fodder grasses of Central Punjab Pakistan.

Indigenous communities which have been involved in livestock handling possess a significant knowledge about potential forage resources [7]. Many countries (e.g. India, Ethiopia, Nigeria, Mexico, China and Uganda) around the world understand the worth of this traditional knowledge and therefore they had documented this classic data about fodder plants from various ethnic groups [7–10]. Even in Pakistan multiple ethnobotanical studies have been carried out in different cities of Central Punjab but the previous studies were more focussed on the ethnomedicinal values rather than the fodder significance of indigenous plants. Additionally, these studies seemed to be mostly engaged with fodder trees, herbs or shrubs and not with grasses [11–15]. However grasses are one of most promising fodder resources of this region. While a few ethnobotanical studies involving grasses were conducted in some regions of Pakistan, their main focus was to evaluate the significance of those grasses for human health [16]. Inadequate records about the traditionally used fodder grasses of this region indicated the vulnerability of particular traditional knowledge to being vanished and overlooked. Therefore it is crucial to manuscript this traditional knowledge about the preference for fodder grasses by the rural communities of Central Punjab, Pakistan.

This ethno botanical survey based study not only aimed to describe many traditionally used fodder grasses but also to set out an order of priority on the basis of their usage for different ruminant animals. The study also evaluated the relative abundance, medicinal worth, delectableness, and feeding systems of these grasses for ruminants.

Fig. 1 Map of study area showing all major cities of Central Punjab, Pakistan and encircled cities covered by this study
Methods

Study area
The southern boundary of River Jhelum down to River Sutlej surrounds the planes of Central Punjab. This region is comprised of 19 districts which are grouped into 3 agro-ecological zones. Among these 3 zones 6 representative cities i.e. Kasur, Faisalabad, Vehari (Northern irrigated zone), Sargodha (Sandy deserts zone), Gujrat, and Narowaal (Barani zone) were selected. As the northern irrigated zone is the largest zone, maximum numbers of 3 targeted areas were selected from it. These areas are not only the main producers of ruminant milk and meat but also these are distantly apart from each other which helped the collection of diversified ethnobotanical data from this region. In these districts, the remote rural areas were actually targeted due to their reliance on conventional fodder grasses as a feed for raising their ruminant animals (Fig. 1).

Ethnobotanical survey and data collection
The primary goal of this survey was to collect ethnobotanical information about fodder grasses from local ruminant caretakers. Before collecting the data, formal ethical permission was obtained from the chairperson of local government and individual informants of selected study areas. The data were collected between the months of March 2014 to February 2015 from remote and less developed villages of targeted cities. A total of 137 informants were chosen by employing snowball sampling technique. The informants included male and female village leaders, shepherds, ruminant caretakers who worked in indigenous farms and some senior domestic animal caretakers in each of the selected areas (Table 1). Group discussions and individual ethnobotanical semi-structured interviewing techniques were used for data collection [17, 18]. The questionnaires were constructed in English. However, for ease in communicating with the local people during interviews and group discussions their indigenous language (different dialects of Punjabi) was used and the answers were translated back to English. The questionnaire included the following questions: (1) Which fodder grasses are most likely to be fed to their ruminant animals? (2) What is the palatability of their chosen grasses? (3) Which part did the animals consume? (4) What are their feeding mode, were they free grazing alone or supplemented or offered as cut grass mixed with other feeds? (5) Do the listed fodder grasses have any ethno veterinary use? (6) What are their other indigenous uses apart from the fodder and ethno veterinary uses?

Fodder grass sampling and authentication
For the identification and collection of fodder grass samples, several site visits were made with some knowledgeable indigenous people. They helped the surveyor in identification and collection of particular fodder grass from its habitat. The details of each specimen i.e. date of collection; habitat, local names and flowering periods were also recorded during each site visit. After their collection, each fodder grass sample was identified by comparing their morphological characters with already available grass specimens in the herbariums of Lahore College for Women University, Lahore and the Quaid i Azam University, Islamabad. Along these two herbaria, online available plant databases like flora of Pakistan (http://www.efloras.org/index.aspx), flora of India (https://sites.google.com/site/efloraofindia/) and some other grass flora identification keys [19, 20] were also consulted for their identification and authentication. Afterward the voucher numbers were allotted to all specimens, which were then submitted to the Botany Herbarium of Lahore College for Women University (LCWU).

Estimation of relative abundance
The most commonly used method of visual assessment was employed for measuring the relative abundance of ethnobotanically enlisted grass species in study area [21]. In this method number of plots randomly selected in study area and the presence of each listed species were counted and recorded. Afterwards percentage relative abundance was calculated by using the following formula:

\[
\text{Relative Abundance} = \frac{\text{Number of plots having species}}{\text{Total number of plots}} \times 100
\]
The species were then grouped into different categories i.e. Abundant, Common, Frequent, Occasional and Rare (ACFOR) by using relevant scales of abundance (Table 2).

Data analysis
All the recorded data values were tabulated by using Microsoft excel 2013. Two data analysis methods i.e., Relative Frequency of Citation and Pairwise comparison method were applied to find out the priority order of their grass utilization as described below:

a) Relative frequency of citation (RFC)
This tool helped us to set up the priority order among the listed fodder grasses. Its value depended upon the numbers of respondents that had mentioned a particular grass species as a good fodder indicating its significance. The RFC was estimated by using the following eq. [22].

\[
RFC = \frac{FC}{N} (0 < RFC < 1)
\]

where

\[FC = \text{number of respondents who stated that particular grass species as a good fodder}, \quad N = \text{total number of respondents included in study}\]

b) Pairwise comparison method (PC)
In combination to RFC another data analysis tool called PC method was also employed to establish a priority order among listed fodder grasses [23]. In this method a comparative matchup chart (Table 3) was constructed between different fodder grasses and then each informant was asked to vote their preferable fodder grass among those. Each species got 1 point if the respondents preferred it over the other fodder grass. The half point was allotted to each of them if they were ranked equal by the respondents. Finally, all points were added for each grass species to predict their priority order of utilization.

c) Cluster analysis & descriptive Statistics
For making groups of high and low priority fodder grasses, Hierarchical Cluster Analysis (Squared Euclidean distance method) in the SPSS 22 software was applied to the RFC values. Moreover, descriptive statistical analysis (frequency and cross tabulation) was also employed to find out the association between different parameters of the survey.
Subfamily	Voucher no.	Binomial name	Local name	Palatable to	Fodder part	Feeding method	Ethno veterinary uses	Other uses	RA	FC(n)	RFC
Pooideae	LCWU-0360	Agrostis gigantea Roth.	Lamba gaah	Ca, Sh	Leaves	FG, MF	used against allergic reactions	NR	C	85	0.62
	LCWU-0385	Avena sativa L.	Jai	Ca, Bu, Sh, Go	Aerial	FG, MF	Detoxifier	Part of human food	F	51	0.372
	LCWU-0364	Bromus japonicus Thunb.	Joukai	Go, Sh	Aerial	FG, MF	Treat constipation	Crop cover during harsh winters	C	82	0.599
	LCWU-0386	Dactylis glomerata L.	Gadu	Go, Sh	Leaves	FG	Diuretic	NR	O	33	0.241
	LCWU-0387	Lolium temulentum Linn.	Cockle	Sh, Go	Leaves	FG	Nervous disorders	NR	O	33	0.241
	LCWU-0377	Phlaxis minor Retz.	Dumbi sitti	Sh, Go	Aerial	FG	Extract helpful to cure animal cough	keep mouse at bay from wheat storage areas	A	76	0.555
	LCWU-0389	Poa annua L.	Poa	Ca	Whole	FG	Remove debris from wounded area	NR	F	51	0.372
	LCWU-0388	Poa infirma Kunth.	Wakh	Ca, Go	Whole	FG	NR	NR	F	49	0.358
	LCWU-0391	Polygono monspeliensis (L.) Desf.	Malhar	Sh, Go	Aerial	FG	Infusions used to normalize the increased heart palpitations	NR	F	47	0.348
Arundinoideae	LCWU-0361	Arundo donax L.	Nara bans, Nal	Ca, Bu	Leaves	FG, MF	Diuretic, Antiseptic	Dried plant parts used as fuel and shelters. Stems also used to make flutes	A	74	0.54
	LCWU-0390	Phragmites australis (Cav.) Trin. ex Steud.	Dila	Ca, Sh	Leaves	MF	Digestive disorders	Used in construction of adobe houses. The mature and dried stems also used in making of musical instruments.	O	31	0.226
Aristidoideae	LCWU-0391	Aristida adscensionis Linn.	Lumb Gaah	Ca, Sh	Aerial	FG	Controls itching	Revegetation, stabilizes sand dunes	F	43	0.314
Chloridoideae	LCWU-039	Acrachne racemosa (Heyne ex Roth) Ohwi	Chinki	Ca	Whole	FG	NR	Grain used by people in food scarcity	O	29	0.212
	LCWU-0369	Gymnodon dactylon (Linn.) Pers.	Khabbal, Tala, Chaber	Ca, Bu, Sh, Go	Whole	FG, MF	Paste of leaves controls dysentery and anti-inflammatory to wounded areas of animal's body	NR	A	95	0.693
	LCWU-0370	Dactyloctenium aegyptium (L.) Wild.	Koooa, Madanah	Ca, Sh	Whole	FG	Used to reduce after birth abdominal pains	NR	A	78	0.569
	LCWU-0371	Dermoschista bipinnata (L.) Stapf	Kusa, Dab	Ca, Bu	Aerial	FG, MF	Digestive disorders, Dysentery	Used as roof covers and in making of brooms	A	76	0.555
	LCWU-0373	Desmostachya bipinnata (L.) Stapf	Chezi	Ca	Aerial	FG, MF	Cure digestive disorders	Used in making ropes and mats	A	91	0.664
	LCWU-0392	Enneapogon persicus Boiss.	Jiu	Ca	Whole	FG	NR	NR	F	46	0.336
	LCWU-0395	Eragrostis japonica (Thunb.) Trin.	Panghas	Ca, Bu, Sh, Go	Whole	FG, MF	NR	NR	F	48	0.35
Subfamily	Voucher no.	Binomial name	Local name	Palatable to	Fodder part	Feeding method	Ethno veterinary uses	Other uses	RA	FC(n)	RFC
-----------	-------------	---------------	------------	--------------	-------------	----------------	---------------------	------------	----	-------	-----
Panicoideae	LCWU-0374	Eragrostis minor Host.	Choti ghas	Ca, Bu, Sh, Go	Whole	FG, MF	Digestive disorders	seeds used as food in food scarcity times	A	90	0.657
	LCWU-0393	Eragrostis pilosa (L.) P. Beauv.	Nika sanwak	Ca, Bu, Sh, Go	Whole	FG	Help to cure contusion	NR	O	52	0.38
	LCWU-0398	Leptochloa panicea (Retz.) Ohwi	Paja	Ca	Whole	FG	NR	Basketry material	R	33	0.241
	LCWU-0399	Tetrapogon villosus Desf.	Sager	Ca	Aerial	FG	NR		R	39	0.285
	LCWU-0400	Apluda mutica L.	Tachuli	Ca	Aerial	FG	Disinfectant, Digestive disorders	used for thatching with combination of other grass materials	R	30	0.219
	LCWU-0363	Bothriochloa bladhii (Retz.) S.T. Blake	Palvan	Ca, Bu, Sh, Go	Aerial	FG, MF	Improves digestion	helps in re vegetation	A	91	0.664
	LCWU-0366	Brachiaria ramosa (Linn.) Stapf	Sawari, Jhanda	Ca	Whole	FG	Leaves work as antiseptic	NR	F	51	0.372
	LCWU-0397	Brachiaria reptans (Linn.) Gardner & Hubbard	Hausa	Ca	Whole	FG	Leaves juice helps to cure anaemia, also used as laxatives	Sometime seeds used as food	C	84	0.613
	LCWU-0407	Cenchrus biformis Steud.	Bhurat	Ca, Bu	Aerial	FG	Diuretic	NR	F	52	0.38
	LCWU-0408	Cenchrus ciliaris Steud.	Dhaman	Ca, Bu	Aerial	FG, MF	Diuretic		A	88	0.642
	LCWU-0409	Cenchrus setiger Vahl	Kala dhaman	Ca	Aerial	FG	Antiseptic	NR	R	35	0.255
	LCWU-0410	Chrysopogon aucheri (Boiss.) Stapf	Khar, Chorkanda	Ca, Bu, Sh, Go	Aerial	FG, MF	Digestive disorders	NR	A	78	0.569
	LCWU-0411	Chrysopogon zizanioides (L.) Roberty	Vetiver, Khuss	Ca	Leaves	FG, MF	Antiseptic, anti-inflammatory	Used in rehabilitation of land, also for making barriers around territories	A	78	0.569
	LCWU-0412	Cymbopogon jwarancusa (Jones.) Schult	Khavi, Kathori	Ca, Bu, Sh, Go	Whole	FG	Diuretic and improve fertility in bull	Extract used as mosquito repellent	O	28	0.204
	LCWU-0372	Dichanthium annulatum (Forsk) Stapf	Palwan, Murgha	Ca, Bu, Sh, Go	Whole	FG, MF	Digestive disorders	Considered herbicidal	A	91	0.664
	LCWU-0403	Digitaria ciliaris (Retz) Koeler	Shamokha	Sh, Go	Whole	FG		NR	O	50	0.365
	LCWU-0404	Digitaria longiflora (Retz) Pers.	Daeta	Sh, Go	Whole	FG		NR	O	45	0.328
	LCWU-0405	Echinochloa colona (L.) Link	Jungli chowol	Ca, Bu, Sh, Go	Whole	FG	Digestive disorders	Stems are used for weaving mats and sometime used as food.	F	52	0.38
	LCWU-0406	Echinochloa crus-galli (L.) P. Beauv.	Sanwak	Ca	Whole	FG	Digestive disorders	Seldom used for reclamation of alkaline soils	O	48	0.35
Subfamily	Voucher no.	Binomial name	Local name	Palatable to	Fodder part	Feeding method	Ethno veterinary uses	Other uses	RA	FC (n)	RFC
-----------	-------------	---------------	------------	--------------	-------------	---------------	----------------------	-----------	----	--------	-----
LCWU-0375	Heteropogon contortus (L.) P Beauv. ex. Roem & Schult.	Pili, Butto jara	Ca	Aerial	FG, MF	Digestive disorders	handicrafts and thatching	C	73	0.533	
LCWU-0376	Imperata cylindrica (L.) R. Br.	Siru	Ca, Bu, Sh, Go	Whole	FG	Fumigant for Piles	biological pesticide	A	83	0.606	
LCWU-0405	Ottokloa compressa (Forsk.) Hillu	Chimbar, Phalwan	Ca	Aerial	FG	NR	NR	R	35	0.255	
LCWU-0406	Ranieum antidotale Retz.	Gharam	Ca	Whole	FG	Disinfectant	NR	O	61	0.445	
LCWU-0409	Rassadum distichum L.	Knot grass	Ca	Whole	FG	NR	NR	O	53	0.387	
LCWU-0501	Pennisetum orientale Rich.	Haathi ghaa	Ca	Whole	FG	Oral infections	NR	O	60	0.438	
LCWU-0378	Saccharum bengalense Retz.	Kana, Sarkand A	Ca, Bu, Sh, Go	Leaves	FG, MF	Leaves used to treat oral problems of ruminants	Dried plants used as fuel, thaching and making of writing pens	C	78	0.569	
LCWU-0379	Saccharum spontaneum L.	Kaa	Ca	Leaves	MF, FG	Root help to relieve in inflammation and urinary problems	Used as paper pulp as well as in making of ropes, baskets and brooms.	C	76	0.555	
LCWU-0381	Setaria purata (Borr) Roem. & Schult.	Ban kangni	Ca	Aerial	FG, MF	Oral infections	Used to tie knot bundles of grain together	A	85	0.62	
LCWU-0500	Setaria verticillata (L.) P. Beauv.	Barchitas	Sh, Go	Leaves	FG	Flatulence problem	Used in making of baskets	O	27	0.197	
LCWU-0380	Setaria viridis (L.) P. Beauv.	Kangni	Ca, Bu, Sh, Go	Whole	FG, MF	Seeds used to treat bruises and also effective as diuretic.	NR	A	91	0.664	
LCWU-0382	Sorghum bicolor (L.) Moench	Jowar	Ca, Bu, Sh, Go	Aerial	FG, MF	Help to cure wounds, anaemia and constipation	Part of human food and also used to make sweet syrups	C	78	0.569	
LCWU-0383	Sorghum halepense (L.) Pers.	Baru	Ca, Bu, Sh, Go	Aerial	FG, MF	Decotion of root used to reduce the swelling of mammary glands	As fuel	A	86	0.628	
LCWU-0384	Zea mays L.	Makai	Ca, Bu, Sh, Go	Leaves	FG, MF	Treat sores and skin problems	Kernel and oil used as food for humans	A	87	0.635	

NR: Not Reported, FG: Free grazing, MF: Mixed with feed, Ca: Cattle, Bu: Buffalo, Sh: Sheep, Go: Goat, RA: Relative abundance, A: Abundant, C: Common, F: Frequent, O: Occasional, R: Rare
d) Graphical illustrations

Microsoft Excel was used to convert selected data items into different types of graphical illustrations.

Results and discussions

Demography of study area

The informants of this study were divided into 3 major age groups i.e. 25–35 years, 36–50 years and 51–65 years. The maximum number of informants was local shepherds (41%) because they were the key users of these fodder grasses. It was also observed that in this category most informants were males (84%) and the rest were females (16%). Similarly, in farms there were more men (72%) than women (28%). The less number of females as shepherds and farmers showed the cultural pattern of the study area where females were not expected to work in an outdoor environment in this region.

![Fig. 3 Number of fodder grass species in each subfamily](image1)

![Fig. 4 Prioritizing of fodder grasses on the bases of RFC](image2)
higher (60%) number of females was recorded for the category of domestic animal caretakers (Table 1). Regarding their education level, most respondents had completed either 5 years of primary (70%) or 8 years of middle (21%) level education and a few with no education (7%) alongside 2% with incomplete education (Fig. 2). The animal caretakers working in farms were different from the domestic animal caretakers in terms of their education. Most of those had 8 years of education with additional training in animal handling and hygiene control measures. It was interesting to note that almost all the informers who were relying on wild grasses as a fodder for their animals, were financially not very sound. Therefore, one of the possible reason for them to utilize these grasses, could be that these grasses were a cost free fodder resource for them to use as a feed for their ruminant animals.

Taxonomic diversity of fodder grasses

This study revealed that ruminants of Central Punjab Pakistan were fed on a diversified range of wild grasses. As expected, the grass types and their availability did vary between and within the 3 agro-ecological zones of Central Punjab. However, no distinction for this variation was made between these zones when assessing the data for this comprehensive report on 53 ethnobotanical fodder grasses of Central Punjab, Pakistan (Table 4). It appeared during the taxonomic identification process that all of these documented fodder grass species were members of the family Poaceae which is well known for its fodder significance. The value of Poaceae family as fodder is recognized by various ethnobotanical studies from various regions such as those in Africa, India, China and even in the lesser Himalayan and Thal desert of Pakistan [7, 24–28] These ethnobotanically listed species belonged to 39 genera which had links with 8 different tribes and 5 subfamilies i.e. Aristidoideae (Aristideae), Arundinoideae (Arundineae), Panicoideae (Paniceae, Andropogoneae), Chloridoideae (Eragrostideae, Chlorideae) and Pooideae (Aveneae, Bromea). Among these subfamilies, Panicoideae was ranked as the top with 30 fodder members and subfamily Aristidoideae attained the least position because it had only 1 member grass being used as a fodder (Fig. 3). Similar fodder value of subfamily Panicoideae has been well supported by the literature [29].

Prioritizing fodder grasses on the basis of RFC and PC

The priority determined by the RFC value of 0.693 to 0.197 showed the variable eminence of grasses as a fodder at different sites of study area (Fig. 4). For the sake of data management and comprehensive analysis of listed fodder grasses, they were clustered into high (A), medium (B) and low (C) priority groups on the basis of RFC (Fig. 5). However, when the groups were closely observed it was found that many of the grasses had the same RFC value even within the same group. So the question about their actual priority level was resolved by...
applying PC method and those fodder grasses which had similar RFC were reorganised in their priority order (Table 5).

The RFC of group A (high priority) ranged from 0.693 to 0.533 and this group comprised of 25 grasses (Fig. 5). However, the group B (medium priority) ranged from 0.445–0.314 with 17 species and group C was extended from 0.285–0.197 RFC, with 11 species of fodder grasses (Figs. 5 and 6). The higher RFC of top most priority groups (A) depicted that these fodder grasses were probably more dominant in the study area and indigenous people had more familiarity with this group of grasses [30]. So it can be said that all those fodder grass species belonging to high priority group A (n = 25) were the most likely and most preferably utilized fodder grasses by the indigenous communities. These fodder grasses were preferred because of their availability, palatability, ability to satisfy animal hunger, ease in availability, positive effects on milk production and shelf life during a dry season (Fig. 7 a-d). Despite the fact that these fodder grasses were valued by local people as a ‘quality’ fodder, it is essentially required to assess the nutritional potential of these fodder grasses for the sustainability of healthy and efficient livestock industry.

Table 5 Pairwise comparison for fodder grasses having similar RFC

Fodder grasses	Total gained % points	Rank
GROUP A (RFC =0.664)		
Bothiachloa Bladhi	87.5	1st
Dicanthium annulatum	85.5	2nd
Setaria Viridis	84.5	3rd
Eleusine indica	84	4th
GROUP B (RFC =0.554)		
Setaria pumila	87	1st
Agrostis gigantea	79	2nd
GROUP B (RFC = 0.518)		
Dactyloctenium aegyptium	89.2	1st
Chrysopogon auchenii	88	2nd
Chrysopogon zizanioides	86	3rd
Saccharum bengalense	80	4th
Sorghum bicolor	79.6	5th
GROUP C (RFC = 0.474)		
Phalaris minor	92.6	1st
Saccharum spontaneum	90.6	2nd
Desmostachya bipinnata	87.3	3rd
GROUP D (RFC = 0.379)		
Echinochloa colona	59	1st
Cenchrus biflorus	55	2nd
Eragrostis pilosa	54	3rd
GROUP D (RFC = 0.372)		
Brachiaria ramosa	36	1st
Avena sativa	35.3	2nd
Poa annua	34.6	3rd
GROUP D (RFC = 0.35)		
Echinochloa crus-galli	31.3	1st
Eragrostis japonica	30	2nd
GROUP E (RFCs = 0.255)		
Cenchrus setiger	27	1st
Ottochloa compressa	29	2nd
GROUP E (RFC = 0.24)		
Dactylis glomerata	30	1st
Lolium temulentum	29.3	2nd
Leptochloa panicea	27.3	3rd

Palatability, part used and feeding methods of listed fodder grasses
Palatability is the dietary characteristics which can elicit a specific response from an animal [31, 32]. Statistical analysis of palatability frequency analysis showed that all of these fodder grasses were most commonly palatable for cattle i.e. cumulatively 77% (Table 6). However, the cross tabulated results showed that grasses of group A were palatable to all categories of locally found ruminants i.e. cattle, buffalo, sheep and goat (Fig. 8). The high palatability of group
A members for all types of ruminants indicated their more wide acceptance and significance as highly preferable fodders.

It appeared that most of these fodder grasses were used as a whole plant i.e. 45%, followed by the use of aerial parts 35.8% and leaves 18.9% (Table 6). The maximum reported percentage for the whole plant use was probably due to the fact that majority of these grasses were small in height, herbaceous in nature with non woody fibrous and shallow roots which were easily pulled out of soil by the animals. However cross tabulation between priority groups and fodder parts indicated that the group A grasses were mostly eaten by their aerial parts. This is because 9 out of 25 grasses (i.e., *Sorghum halepense, Desmostachya bipinnata, Saccharum spontaneum, Saccharum bengalense, Chrysopogon zizanioides, Arundo donax, Sorghum bicolor, Agrostis gigantean, Zea mays*) of this group were above the 200 cm or 400 cm in heights and these grew well in vigour and density that animal didn’t need to pull up the whole plant to satisfy its hunger (Fig. 9).

The current results revealed that overall all the ethno botanically listed grasses were most frequently fed to ruminant animals through ad libitum grazing (cumulatively 96.2%) (Table 6). Ruminants were probably comfortable with ad libitum grazing due to the fact that they have the natural capability to either avoid the ingestion or utilization of the ingested toxic plants [33, 34]. The provision of grass also plays a valuable role in the production of good quality meat from cattle. Indeed the beef from grass fed animals would be rich in polyunsaturated fatty acids with lower cholesterol content than the beef from animal fed high grain diet [35]. It is interesting to report that the members of group A were fed by either grazing or cut and mixed with other type of feeds (Fig. 10). This can be attributed to the high demand and speedy regrowth of these high priority grasses of group A in different regions of this study.
Relative abundance of fodder grasses

The results of relative abundance showed that most of the listed fodder grasses were abundant in study area i.e. 32.1%, while least number of fodder grasses was found to be rare (9.4%) (Table 6). Also an interesting relevance was observed between abundance and priority levels (Fig. 11). The fodder grasses of group A were mostly observed as abundant (17) and common (8) however the medium priority level fodder grasses (B) were recorded as frequent (10) or occasional (7). The lower priority level fodder grasses (C) were customarily in the occasional (6) or rare (5) category. This revealed that the abundance of fodder grasses directly affects their priority of utilization. The grasses which were more abundant in this study area were more preferably used as compared to the others which were less abundant.

Ethno veterinary and other indigenous uses of listed fodder grasses

Since ancient times the human beings are using plant resources for medicinal purpose for not only themselves but also their livestock [36]. This use of plants for animal health care is termed as ethnoveterinary which was evolved alongside animal domestication [37]. The use of these indigenous plants to address multiple health issues of their livestock facilitated animal keepers to decrease the unaffordable cost of certain veterinary medicines [38]. This traditional ethnoveterinary practice is playing a compelling role in maintaining animal production around the globe where rural communities mainly rely on livestock for their livelihood [39–45].

Among all ethno botanically listed fodder grasses, 43 grasses were found with ethno veterinary significance (Table 4). This data showed that local people not only feed their animals on these grasses but also use them to treat the mild health disorders of ruminant animals. Grasses like *Bromus japonicus*, *Phragmites australis*, *Cynodon dactylon*, *Desmostachya bipinnata*, *Eleusine indica*, *Eragrostis minor* were used to treat the multiple digestive disorders like dysentery, constipation and flatulence problems. However, some served as antiseptics e.g. *Arundo donax*, *Brachiaria ramose*, *Sorghum bicolor*, *Panicum antidotale* and *Chrysopogon zizanioides*. The reported ethnoveterinary uses of all grasses were compared with other published data from different regions of Pakistan. Some studies stated similar ethnoveterinary uses for *Cynodon dactylon* [46, 47] while few documented different ethnoveterinary usages of same grasses like *Arundo donax*, *Saccharum spontaneum*, *Saccharum bengalense*, *Sorghum halepense* and *Zea mays* [47–51]. However rest of the fodder grasses never reported for their ethnoveterinary use either in Central Punjab or other regions of Pakistan.

Apart from their ethno veterinary value, 25 grasses were also reported for their other indigenous uses (Table 4). Like majority of them are utilized for thatching or making baskets and to cover the crops for protection from harsh weather such as cold winters (*Bromus japonicus*, *Arundo donax*, *Phragmites australis*, *Desmostachya bipinnata*, *Apluda mutica* and *Heteropogon contortus*). However, *Phalaris minor* and *Cymbopogon jwarancusa* were interestingly also used as mouse and mosquito repellents respectively.

Conclusion

This ethnobotanical study is the first of its kind which not only describes 53 naturally grown indigenous fodder grasses of Central Punjab Pakistan, but...
also provides an inventory which manuscript their local names, most commonly used parts for fodder, diversity in palatability and feeding systems, abundance category and unreported ethnoveterinary uses as well. In addition this research also established 3 fodder grass categories based upon their utilization value. The data analysis highlighted the possible motives behind the greater acceptability ratio of high priority fodder grasses i.e. diversity in their palatability for major ruminant species (cattle, buffalo, goat, sheep), abundant availability in the study area and versatile feeding methods (ad libitum grazing or cut, carry and mixed with other feeds). This data enriched study is not only significant for the conservation of ethnobotanical knowledge but also it may help in facilitating the sustainable livestock feeding
for ruminants. Subsequently, the information may play a major role in improving the livelihood of smallholder farmers.

Although these high priority grasses have been used for fodder purpose for centuries by indigenous people, the recorded traditional data were never verified on experimental grounds. So there is a chance that drastic climatic changes in the past centuries would have also altered the soil properties which could ultimately affect the nutritional and medicinal value of these grasses. It is quite possible that actual nutritional as well as pharmacological facts and figures would show entirely a different picture about these conventionally used fodder grasses. Hence, a blend of traditional and scientific knowledge is essentially required to produce worthwhile selection criterion for these fodder grasses. Moreover, if some of these grasses show promising nutritional and pharmacological values then the relevant policy makers should take necessary steps for their enhanced but economical cultivation by providing much needed support to the traditional farmers of the study regions. We believe that further support for the small holder farmers who are working hard despite the challenging environment is needed in this region enriched with traditional knowledge. Otherwise, this natural biodiversity of beneficial grasses could be damaged due to over and unregulated grazing risking the achievement of food security in these and other similar neglected regions of great significance.

![Fig. 10](image1.png) Association between feeding method and priority groups of grasses through cross tabulated method

![Fig. 11](image2.png) Association between abundance and priority groups of grasses through cross tabulated method
Abbreviations
A: Abundant; Bu: Buffalo; C: Common; Ca: Cattle; F: Frequent; FC: Focal person count; FG: Free grazing; Go: Goat; MF: Mixed with feed; N: total number of informants; NR: Not Reported; O: Occasional; PC: Pairwise comparison; R: Rare; RA: Relative abundance; RFC: Relative frequency citation; Sh: Sheep; SPSS: Statistical Package for the Social Sciences

Acknowledgements
We acknowledge Dr. Musttaq Ahmed and Dr. Muhammad Zafar, Department of Plant Sciences, Quaid I Azam University Islamabad for authorizing us to use their herbarium. Nidaa Harun also thanks Higher Education Commission of Pakistan for travel funding to cover the cost of processing the data and writing the manuscript alongside Abdul Shakoor Chaudhry at Newcastle University, UK.

Funding
No external funding resources were available for this particular study. All project costs were managed by either personally or resources of LCWU Pakistan.

Availability of data and materials
Voucher specimens were submitted to the Herbarium of LCWU Pakistan for forthcoming uses (Table 1).

Authors’ contributions
The ethnobotanical survey and fodder grass sample collection was done by NH, SS, KU and FK. NH and ASC did the statistical analysis and wrote the manuscript by providing critical interpretation of the outputs. SS supervised the whole study as well as helped along with FK in the identification of specimens. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Ethical approval was taken from the chairpersons of local government of all study areas of Central Punjab, Pakistan to visit the specific site and collect fodder grass samples. Also we obtained permission from each informant before conducting the interview. However, all the participants were anonymised and so their personal details are not disclosed in this paper.

Consent for publication
Not applicable.

Competing interests
Authors undoubtedly declared that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Department of Botany, Lahore College for Women University, Lahore 54000, Pakistan. 2School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK. 3Department of Biosciences, COMSATS Institute of Information Technology, Islamabad 45320, Pakistan.

Received: 26 July 2017 Accepted: 19 September 2017
Published online: 04 October 2017

References
1. Government of Pakistan-Ministry of Finance, Pakistan Economic Survey (2014–15). 2015. http://www.finance.gov.pk/survey/chapter_10/02_Agriculture.pdf
2. Wilder A. The Pakistani Voter, Electoral Politics and Voting Behaviour in the Punjab. Karachi: Oxford University Press; 1999. p. 190.
3. Wilson AD, Leigh JH, Hindley NL, Mulham WE. Comparison of the diets of goats and sheep on a Eucalyptus crispata -Heterodendrum oleifolium woodland community in Western New South Wales. Austr J Ex Agric Anim Hub. 1995;15:45–53.
4. Huston JE. Symposium. Dairy goats. Forage utilization and nutrient requirements of the goats. J Dairy Sci. 1978;61:986–93.
5. Gunwaldt EG, Pedrani AR, Vich AI. Goat grazing in arid piedmont of Argentina. Small Ruminant Res. 1994;13:211–6.
6. Khan IL. Biodiversity depletion with respect to Human and livestock population in Indian Desert. In: Proc. Rangelands. In a sustainable biosphere. (Ed): N.E. West. 5th International Congress 1995, Salt Lake City Utah. 1996. pp. 286–287.
7. Geng Y, Hu G, Ranjitkar S, Wang Y, Bu D, Pei S, Xu J. Prioritizing fodder species based on traditional knowledge: a case study of mithun (Bos frontalis) in Dulongjiang area, Yunnan Province, Southwest China. J Ethnobiol Ethnomed. 2017;13(1):24–38.
8. Nunes AT, Lucena RFP, dos Santos MWF, Albuquerque UP. Local knowledge about fodder plants in the semi-arid region of Northeastern Brazil. J Ethnobiol Ethnomed. 2015;11(1):12–23.
9. Okoli IC, Ebere CS, Uchegbu MC, Udah CA, Ibeawuchi IL. A survey of the diversity of plants utilized for small ruminant feeding in south-eastern Nigeria. Agric Ecosyst Environ. 2003;96(1):147–54.
10. Nahed J, Villafuerte L, Grande D, Pérez-Gil F, Alemán T, Carmona J. Fodder shrub and tree species in the Highlands of southern Mexico. Anim Feed Sci Tech. 1997;68(3–4):2123–23.
11. Hussain K, Nisar MF, Majeed A, Nawaz K, Bhatti KH. Ethnomedicinal survey for important plants of Jalālpur. Jattan, District Gujrat, Punjab. Pakistan Ethnobot Leaflets. 2010;14(7):807–25. http://openstic.lib.csu.edu/cgi/viewcontent.cgi?article=1670&context=ebtl
12. Zahoor M, Yousaf Z, Aqsa T, Haroon M, Saleh N, Afzal A, Ramazan H. An ethnopharmacological evaluation of Navapind and Shapur Virkan district Sheikupura, Pakistan for their herbal medicines. J Ethnobiol Ethnomed. 2017;13(1):27–52.
13. Parvaiz M. Ethnobotanical studies on plant resources of Mangowal, District Gujrat, Punjab, Pakistan. AJP. 2014;4(5):364–70. http://ajp.mums.ac.ir/article_2158_323278632e6b723b3591a621a5bf28ca.pdf
14. Singh A, Nautiyal MC, Kunwar RM, Busmann RW. Ethnomedicinal plants used by local inhabitants of Jalkholi block, Rudraprayag district, western Himalaya, India. J Ethnobiol Ethnomed. 2017;13(1):49–77.
15. Malik ZA, Bhat JA, Ballabha R, Busmann RW, Bhatt AB. Ethnemedicinal plants traditionally used in health care practices by inhabitants of Western Himalaya. J Ethnopharmacol. 2015;172:133–44.
16. Ahmad F, Khan MA, Ahmad M, Zafar M, Mahmood T, Jabeen A, Marwat SK. Ethnomedicinal uses of grasses in the Salt Range Region of Northern Pakistan. J Med Plants Res. 2010;4(5):362–9.
17. Martin GJ. In: Walters M, editor. Ethnobotany: A Methods Manual. London: Chapman and Hall; 1995.
18. Cotton CM. Ethnobotany: Principles and Applications Chicester. New York: John Wiley and Sons Ltd; 1996.
19. Kellogg EA. Poaceae. The Families and Genera of Vascular Plants. Kubitzki K, editor. Springer, New York; 2014.
20. Wooten G. Draft Key to the Grasses of Okanogan County, Washington. 2008 http://www.okanoganag.com/botany/flora/key-to-grasses-of-okanogan-county-2008-b.pdf
21. Kent M. description CPV, analysis d. A practical approach. London: Belhaven Press; 1992. p. 363.
22. Vitalini S, Iriti M, Puricelli C, Cuchi D, Segale A, Fico G. Traditional knowledge on medicinal and food plants used in Val San Giacomo (Sondrio, Italy) an alpine ethnobotanical study. J Ethnopharmacol. 2013;145:517–29.
23. Martin GJ. Ethnobotany-A methods manual. Sterling, VA: Earthscan, London; 2014.
24. Zizka A, Thiombiano A, Dressler S, Nacoulma BM, Ouédraogo A, Ouédraogo 70. http://ajp.mums.ac.ir/article_2158_323278632e6b723b3591a621a5bf28ca.pdf
25. Bahru T, Asfaw Z, Demissew S. Ethnobotanical study of forage/fodder plant species in and around the semi-arid Awash National Park, Ethiopia. J For Res. 2014;25(2):445–54.
26. Singh V, Gaur RD, Bohra BA. survey of fodder plants in mid-altitude Himalayan rangelands of Uttarakhand, India. J Mt Sci. 2008;5(3):265–78.
27. Abbasi AM, Khan MA, Ahmad M, Zafar M. Medicinal plant biodiversity of lesser Himalayas-Pakistan. Springer Science & Business. Media. 2011;
28. Chaudhari SK, Arshad M, Ahmad E, Mustafa G, Fatima S, Akhtar S, Amjad MS. Ethnopharmacological evaluation of grasses from Thal Desert, Pakistan. Arch Sci. 2013;66(4):248–55.
29. Gaur H, Pankaj S. Forage crops and grasses. In: Handbook of Agriculture; 2009. p. 1357.
30. Amjad MS, Faisal QM, Ahmad I, Khan SU, Chaudhari SK, Malik NZ, Khan AM. Descriptive study of plant resources in the context of the ethnopharmaceutical
relevance of indigenous flora: A case study from Toli Peer National Park, Azad Jammu and Kashmir, Pakistan. PLoS One. 2017;12(2):1–31.
31. Gherardi SG, Black JL. Effect of palatability on voluntary feed intake by sheep. 1. Identification of chemicals that alter the palatability of a forage. Aust J Agric Res. 1991;42:571–84.
32. Church DC. The Ruminant animals. In: Digestive physiology and nutrition. Prospect Heights, IL: Waveland Press; 1993.
33. Provenza FD, Villalba JJ, Dziba I, Atwood SB, Banner RE. Linking herbivore experience, varied diets, and plant biochemical diversity. Small Rumin Res. 2003;49(2):257–74.
34. Rogosic J. The role of secondary compounds in foraging on Mediterranean rangelands. In: Bouche R, Derkimba A, Casabianca F, editors. New trends for innovation in the Mediterranean animal production. Netherland: Wageningen Academic Publishers; 2012.
35. Garcia PT, Pensela NA, Sancho AM, Latimori NJ, Kloster AM, Amigone MA, Casal JJ. Beef lipids in relation to animal breed and nutrition in Argentina. Meat Sci. 2008;79:500–8.
36. Khan MA, Khan SA, Qureshi MA, Ahmed G, Khan MA, Hussain M, Ghulam GM. Ethnobotany of some useful plants of Poonch Valley Azad Kashmir. J Med Plants Res. 2011;5(26):6140–51. http://www.academicjournals.org/journal/JMPR/article-full-text-pdf/BS800D421550
37. Moreki JC. Documentation of ethnoveterinary practices used in family poultry in Botswana. Vet World. 2013;6(1):18–21.
38. Hoareau L, Da Silva EJ. Medicinal plants: a re-emerging health aid. Electron J Biotechnol. 1999;2(2):56–70. http://www.ejbiotechnology.info/index.php/ejbiotechnology/article/view/v2n2/2819
39. Pieroni A, Rexhepi B, Nedelcheva A, Hajdari A, Mustafa B, Kolosova V, et al. One century later: the folk botanical knowledge of the last remaining Albanians of the upper Reka Valley, Mount Korab, Western Macedonia. J Ethnobiol Ethnomed. 2013;9:22–40.
40. Piroi A. Local plant resources in the ethnobotany of Theth, a village in the Northern Albanian Alps. Genet Resour Crop Evol. 2008;55:1197–214.
41. Leporatti ML, Impieri M. Ethnobotanical notes about some uses of medicinal plants in Alto Tirreno Cosentino area Calabria, Southern Italy. J Ethnobiol Ethnomed. 2007;3:34–9.
42. Guarrera PM, Leporatti LM. Ethnobotanical remarks on Central and Southern Italy. J Ethnobiol Ethnomed. 2007;3:23–33.
43. Guarrera PM, Lucchese F, Medori S. Ethnophytotherapeutical research in the high Molise region Central-Southern Italy. J Ethnobiol Ethnomed. 2008;4:7–17.
44. Montesano B, Negro D, Sarli G, Sarli AD, Laghetto G, Hammer K. Notes about the uses of plants by one of the last healers in the Basilicata Region South Italy. J Ethnobiol Ethnomed. 2012;8:15–24.
45. Di Sanzo P, De Martino L, Mancini E, De Feo V. Medicinal and useful plants in the tradition of Rotonda, Pollino National Park, Southern Italy. J Ethnobiol Ethnomed. 2013;9:19–22.
46. Abbasi AM, Khan SM, Ahmad M, Khan MA, Quave CL, Pieroni A. Botanical ethnoveterinary therapies in three districts of the Lesser Himalayas of Pakistan. J Ethnobiol Ethnomed. 2013;9:84–104.
47. Tanir A, Mussarat S, Adran M, Abdelsalam NM, Ullah R, Khan AL. Ethnoveterinary study of medicinal plants in a tribal society of Sulaiman range. Scientific World J. 2014; https://doi.org/10.1155/2014/127526
48. Sindhu Z, Iqbal Z, Khan MN, Jonsson NN, Siddique M. Documentation of ethnoveterinary practices used for treatment of different ailments in a selected hilly area of Pakistan. Int J Agr Biol. 2010;12(3):353–8. http://www.fspublishers.org/published_papers/79762_.pdf
49. Badar N, Iqbal Z, Sadid MS, Rezwan HM, Jabbar A, Babar W, Khan MN, Ahmed A. Documentation of ethnoveterinary practices in District Jhang, Pakistan. J Anim. Plant Sci. 2017;27(2):398–406. http://www.thejaps.org.pk/docs/e-27-2-07.pdf
50. Khan MA, Ullah A, Rashid A. Ethnoveterinary medicinal plants practices in district Peshawar, Khyber Pakhtunkhwa Pakistan. Pak J Bot. 2015;47(5):105–14.
51. Khan MCM, Hamid W. Ethnoveterinary medicinal uses of plants from Samahri valley Dist. Bhimber, (Azad Kashmir) Pakistan. Asian J Plant Sci. 2006;5(2):390–6.