Advantages of vitrification preservation in assisted reproduction and potential influences on imprinted genes

Huanhuan Chen¹,², Lei Zhang¹,², Li Meng¹,², Linlin Liang¹,²* and Cuilian Zhang¹,²*

Abstract
Cryopreservation has important application in assisted reproductive technology (ART). The vitrification technique has been widely used in the cryopreservation of oocytes and embryos, as a large number of clinical results and experimental studies have shown that vitrification can achieve a higher cell survival rate and preimplantation development rate and better pregnancy outcomes. Ovarian tissue vitrification is an alternative method to slow freezing that causes comparatively less damage to the original follicular DNA. At present, sperm preservation mainly adopts slow freezing or rapid freezing (LN2 vapor method), although the vitrification method can achieve higher sperm motility after warming. However, due to the use of high-concentration cryoprotectants and ultra-rapid cooling, vitrification may cause strong stress to gametes, embryos and tissue cells, resulting in potentially adverse effects. Imprinted genes are regulated by epigenetic modifications, including DNA methylation, and show single allele expression. Their accurate regulation and correct expression are very important for the placenta, fetal development and offspring health. Considering that genome imprinting is very sensitive to changes in the external environment, we comprehensively summarized the effect of cryopreservation—especially the vitrification method in ART—on imprinted genes. Animal studies have found that the vitrification of oocytes and embryos can have a significant impact on some imprinted genes and DNA methylation, but the few studies in humans have reported almost no influence, which need to be further explored. This review provides useful information for the safety assessment and further optimization of the current cryopreservation techniques in ART.

Keywords: Assisted reproduction, Vitrification, Epigenetics, Imprinted genes, DNA methylation
osmotic pressure and temperature changes. In addition, the high-concentration cryoprotectants used have cytotoxic effects. The possible adverse effects have been investigated by embryologists and reproductive specialists, including the impact of vitrification on epigenetic modifications [12–15]. The epigenetic modification of the genome is very important for regulating gene expression, cell differentiation and function.

An imprinted gene describes one where two alleles from parents are subject to different epigenetic modifications, resulting in the silencing of one parent allele—that is, the state of single allele expression. One hundred and forty-nine imprinted genes are known in mouse, and 128 imprinted genes were found in humans. The presence of imprinted genes explains why both paternal and maternal genomes are required for eutherian and marsupial mammals [16–18]. The single-parent expression of imprinted genes is essential for normal embryonic development, placental differentiation and prenatal and postpartum growth, in addition to normal neurobehavioral processes and metabolism [19–22]. Imprinting abnormalities are associated with human imprinting syndromes such as Beckwith–Wiedemann syndrome (BWS), Prader–Willi syndrome (PWS) and Angelman syndrome (AS), as well as cancers [23, 24]. The establishment and maintenance of genome imprinting depend on normal epigenetic modifications (DNA methylation, post-translational histone modification, chromatin structure and non-coding RNAs) and their interactions. DNA methylation is the most typical epigenetic modification that controls genomic imprinting [25, 26]. There are differentially methylated regions (DMRs) between the two alleles of imprinted genes, that is, a specific gene sequence has DNA methylation modification in one allele, while the other allele is not modified. The methylation difference between alleles is acquired at gamete stage, and most imprinted DMRs are methylated on the maternally inherited allele [27]. The imprinting of mature gametes is maintained by a specific mechanism during fertilization and the whole preimplantation development [28, 29]. However, a recent study showed that DMRs regulating some imprinted genes exist demethylation and rapid imprinting stabilization during preimplantation embryo development of pigs [30]. In mammals, after the primordial germ cells (PGCs) arrive at the embryonic gonad, the imprinting marks are removed and then reestablished in a sex-specific manner during subsequent gamete development [31, 32]. The timeline and acquisition of DNA methylation at male and female differ considerably. Imprints are established prenatally in pro spermatogonia, whereas, in female gametes, imprint establishment occurs after birth in the growing oocyte as in de novo methylation of other regions [33].

The majority of imprinted genes in human are largely conserved with respect to methylation status and allelic expression in mouse although there are some exceptions. The protection of DNA methylation at imprinting control regions (ICRs) is required in both human and mouse, but the epigenetic modifiers implicated in this maintenance have evolved distinct roles between species [34].

Genome imprinting is sensitive to changes in environmental factors [35]. A number of conventional assisted reproductive technologies, such as hormone stimulation, in vitro culture, cryopreservation and embryo transfer, cause abnormal methylation of imprinted genes [36, 37]. Genomic imprinting can reflect the impact of assisted reproductive technology (ART) on epigenetic stability, to a certain extent [38, 39]. Recent researches show that ART may be associated with an increased incidence rate of human imprinting syndromes AS and BWS, and most ART patients with AS also showed imprinting defect [40–42]. Although the children born with ART had a normal clinical phenotype, they may have carried abnormal methylation in the imprinting control region [43]. At present, the relationship between ART and imprinting disorder is still controversial, which may be related to the low detection rate of imprint disorder, different assisted reproduction schemes and the lack of appropriate control [44, 45].

Cryopreservation of gametes, embryos and tissues, especially by the vitrification method, has been widely used in the field of assisted reproduction, but related safety assessments remain to be conducted. They may interfere with the normal establishment and maintenance of genomic imprinting, lead to abnormal expression of imprinted genes, affect the normal development and function of fetus and placenta, cause adverse pregnancy outcomes and may pose a potential threat to the health of postnatal offspring. Therefore, the relationship between cryopreservation techniques and imprinting disorder should be paid more attention and studied further. This review mainly summarizes the application and advantages of vitrification preservation in assisted reproduction, and its influences on imprinted genes according to the current reports.

Development of vitrification technique

In assisted reproduction, cryopreservation techniques include slow cooling and rapid cooling. The slow freezing method uses programmable freezers to achieve controlled freezing rates. It relies on the balance between the formation rate of ice crystals and the dehydration rate of cells to prevent the formation of ice crystals in cells. The rapid cooling method requires the use of high concentration of cryoprotectants and additives to quickly dehydrate cells, and then, the device containing cells is...
Sperm cryopreservation is an important part of ART and male fertility preservation. It can avoid repeated biopsy in patients with azoospermia and oligozoospermia [52]. Cancer patients can also use this technique to maintain their fertility before receiving chemotherapy or radiotherapy. Due to the small volume and large number of mature sperm and good tolerance to freezing conditions, the conventional freezing technique can obtain an acceptable survival rate. E. Isachenko and V. Isachenko et al. have repeatedly explored the vitrification of sperm. It was not until the improvement in plastic containers and the use of sucrose as a cryoprotectant in 2008 that an acceptable survival rate after warming was achieved [53]. In recent years, the vitrification method of sperm has been continuously optimized and can now obtain a higher survival rate and reduce the degree of DNA damage compared with slow-freezing [54, 55]. High-concentration permeable cryoprotectants are cytotoxic and cannot be used for sperm vitrification due to the uniqueness of sperm [56]. The nonpermeable protectant sucrose can be used for rapid freezing and vitrification of sperm, and vitrification can achieve higher sperm motility [57, 58]. At present, studies discussing sperm vitrification are focused on the selection of cryoprotectants and optimization of the cooling process [59]. In the future, we can expect that the vitrification technique is applied to sperm cryopreservation effectively and safely.

Oocyte and embryo cryopreservation

The vitrification technique has been widely used in oocyte and embryo cryopreservation in recent years and can achieve better clinical outcomes compared with slow-freezing [60, 61]. The method of vitrification and warming of human oocytes was first in the theoretical and highly experimental stage at the end of the last century and entered the stage of practice and experimental test after 2000. It has been applied in assisted reproduction as a standard therapy to preserve fertility since 2013 [62]. Because the growing number of children is conceived by oocyte vitrification without birth defects [63, 64], it appears to be the gold standard technique of preserving fertility in young women [65]. People have recognized many clinical uses and practical advantages of oocyte vitrification, including the following: (1) the fertility preservation of women at risk of fertility loss due to chronic diseases and/or treatment (including Turner syndrome treated with gonadal toxin or radiation, autoimmune diseases and cancer); (2) in the process of assisted reproduction—if appropriate sperm is not obtained, the treatment cycle can be carried out flexibly [66]; (3) reducing the management burden during the treatment cycle of oocyte donation; (4) providing possibilities for patients who choose or need to postpone childbearing age [67]; (5) reducing the cost of infertility treatment; and (6) providing options for patients who are concerned about ethical or legal issues of embryo cryopreservation. Embryo vitrification is the most commonly used method of fertility preservation in ART [68]. If extra embryos are obtained and are of good quality, or when the patient is not suitable for fresh embryo transfer (poor uterine environment, chemotherapy, etc.), the remaining embryos can be cryopreserved and directly transferred after thawing in the next cycle, so as to avoid embryo waste and increase the chance of pregnancy. Embryo vitrification also helps to reduce the rate of multiple births and avoid the occurrence of ovarian hyperstimulation syndrome (OHSS).

Ovarian tissue cryopreservation (OTC)

According to the GLOBOCAN 2020 database, there were 19.3 million new cancer patients in world in 2020. The
new rate of breast cancer has exceeded that of lung cancer, with an estimated 2.3 million new cases, becoming the first cancer to do so, and the mortality rate of breast cancer and cervical cancer is high [69]. With continuous improvements in the medical field, the survival rate of cancer patients has significantly improved [70], but radiotherapy and chemotherapy cause serious fertility damage [71, 72]. How to meet the reproductive needs of such patients has become a global concern. Compared with oocyte and embryo cryopreservation, ovarian tissue cryopreservation does not require ovulation induction and can be directly used before cancer treatment without delaying the treatment time. The cryopreservation of ovarian tissue is not to remove the whole ovary, but generally to cut part of ovarian tissue. Ovarian cortical slices are then cryopreserved through slow freezing or vitrification, which is similar to the principle of oocyte or embryo cryopreservation. Currently, slow freezing is the most frequently used method for cryopreserving human ovarian tissue. OTC is the only fertility preservation method for prepubertal girls, women who cannot delay radiotherapy and chemotherapy and patients with hormone-sensitive tumors [73, 74]. After the transplantation of cryopreserved ovarian tissue, most patients can restore endocrine function. However, only one quarter of women can obtain live birth and the fertilization rate for the obtained oocytes is low. Therefore, relevant cryopreservation methods must be further studied and optimized [75].

Compared with slow freezing, ovarian tissue vitrification causes less damage to the original follicular DNA [76] and has simple operation, low cost and high efficiency. At present, there is no standard method and solution formula for vitrification of ovarian tissue; the size of ovarian tissue, the type and concentration of cryoprotectant and equilibrium time are important factors affecting its efficiency [77]. By 2019, more than 130 infants had obtained live birth through transplantation after ovarian tissue cryopreservation [78], of which two were obtained after vitrification [79, 80]. The effect of vitrification was evaluated by observing the ovarian tissue structure, follicular morphology, intracellular ultrastructure (nucleus, mitochondria, lysosome, etc.), DNA fragment rate of primordial follicles and endocrine function. It was found that the vitrification and transplantation of ovarian tissue were feasible and effective. The specific improvement effect requires further research and long-term follow-up [6].

Influences of the vitrification technique on imprinted genes in animals and human

Effects of sperm cryopreservation on imprinted genes

It is very important to establish correct methylation markers at imprinted gene sites during spermatogenesis; abnormal methylation will affect spermatogenesis [81–83]. At present, the main techniques applied to sperm cryopreservation are slow freezing and rapid freezing (LN2 vapor method). Both rapid freezing and slow freezing of porcine sperm can lead to changes in the expression of imprinted gene Igf2 and DNA-methylation-related genes Dnmt3a and Dnmt3b, and the addition of cryoprotectants can improve them [84]. The slow freezing of porcine sperm affected the structure of the nucleoprotein and its binding with DNA [85]. It has been found that rapid freezing of mouse sperm hinders the normal DNA demethylation process of fertilized embryos, resulting in abnormal methylation level higher than that in the control group [86]. There was no significant difference in DNA methylation in early embryos obtained by ICSI fertilization of fresh mouse sperm and frozen sperm (without cryoprotectant and placed at −20 °C) [87]. The short-term refrigeration of horse sperm has little effect on DNA methylation [88], but the DNA methylation level increases abnormally after slow freezing and can be used as a potential index for sperm quality evaluation [89]. Therefore, although non-vitrification techniques are widely applied to sperm cryopreservation, they can have adverse impacts on the imprinted gene and DNA methylation, which need to be further clarified. It is necessary to further optimize the sperm vitrification technique as an alternative to traditional freezing methods.

There are few studies on the effect of human sperm freezing on imprinted genes. Slow freezing of human sperm does not affect the DNA methylation pattern of DMRs related to imprinted genes, including maternal imprinted genes KCNQ1OT1, SNRPN and MEST, and paternal imprinted genes MEG3 and H19 [90]. Rapid freezing of human sperm had no significant effect on the methylation of DMRs related to imprinted genes SNURF, SNRPN and UBE3A contained in chromosome 15q11-q13 [91]. In short, no adverse effect of sperm freezing on imprinted genes was found and there are no relevant studies on sperm vitrification.

Effects of oocyte vitrification on imprinted genes

Although the survival rate of mature oocytes after vitrification is very high [60, 92], there are still some problems, including the depolymerization of microtubules and spindles [93, 94], premature release of cortical particles [95, 96] and polyspermy fertilization [97]. In recent years, some reports have discussed the effects of oocyte vitrification on imprinted genes. It was found that oocyte vitrification can significantly affect the imprinted genes of oocytes and embryos in mouse, bovine and other animals (Table 1). After the vitrification and warming of mouse MII oocytes, the expression of the imprinted gene Kcnq1ot1 decreased significantly [98]. Our previous study
found that after vitrification of bovine MII oocytes, the expression of imprinted genes Peg10, Kcnq1ot1 and Xist in blastocysts obtained by ICSI increased abnormally [99]. We also found that vitrification of mouse MII oocytes affected the expression of some imprinted genes, including maternal imprinted genes Peg3 and Peg10 and paternal imprinted gene Gtl2 in IVF 2-cell embryos [100]. However, some studies have reported no significant change in the expression of imprinted genes Igf2r and Gtl2 in 2-cell embryos and blastocysts obtained by parthenogenetic activation after vitrification and warming of mouse MII oocytes [101].

DNA methylation is an important modification to regulate imprinted genes. A study has found that DMRs methylation of imprinted genes H19, Peg3 and Snrpn is decreased in blastocysts obtained by in vitro fertilization of vitrified mouse oocytes [102]. Single-cell genome-wide methylation sequencing identified 151 DMRs between the control IVF blastocysts and those obtained after vitrification of bovine MII oocytes, including a DMR located in the maternal imprinted gene Peg3, whose methylation level was abnormally reduced by oocyte vitrification [103]. Studies have shown that vitrification of mouse oocytes leads to a decrease in the overall DNA methylation level in oocytes and early embryos [104]. Single-cell whole-genome methylation sequencing (scWGBS) combined with single-cell RNA sequencing (scRNA-seq) also showed that, after the vitrification and warming of mouse MII oocytes, the overall methylation level of the genome decreased abnormally and the expression of the DNA methyltransferase Dnmt1 decreased significantly [98]. DNMTs expression in vitrified oocytes and the expression of Dnm3b in blastocysts derived from vitrified oocytes were significantly reduced [102]. Therefore, oocyte vitrification may affect the normal expression of imprinted genes by changing the DNA methylation level of the whole and the regulatory region of imprinted genes.

Table 1	Effect of gamete cryopreservation on imprinted genes				
Reference	Species	Materials	Technology of assessment	Targeted imprinted genes	Conclusions
Kläver et al. [90]	Human	Spermatozoa	Bisulfite conversion	MEG3, H19, Kcnq1ot1, SNRPN, MEST, ALU, LINE1, VASA, MTHFR	No significant differences
Khosravizadeh et al. [91]	Human	Spermatozoa	Quantitative methylation specific PCR	SNURF, SNRP and UBE3A	No significant differences
Al-Khtib et al. [105]	Human	MII oocytes that were vitrified at the GV stage, warmed and matured in vitro	Bisulfite mutagenesis and sequencing	H19 and Kcnq1ot1	Oocyte vitrification at the GV stage does not affect the methylation profiles of H19-DMR and Kcnq1ot1-DMR of the in vitro matured oocytes
Zeng et al. [84]	pPig	Spermatozoa	q-PCR and ELISA	Igf2	Igf2 was significantly decreased after vitrification
Zhao et al. [103]	Bovine	Vitrified MII oocytes from matured in vitro	Single-cell whole-genome methylation sequencing	Global analysis	Peg3 methylation level was significantly decreased in derived blastocysts
Chen et al. [99]	Bovine	Vitrified MII oocytes from matured in vitro	q-PCR	Peg3, Peg10, Kcnq1ot1, Xist, Igf2r	Peg3, Peg10, Kcnq1ot1, Xist were significantly increased after vitrification
Chen et al. [100]	Mouse	MII oocytes and 2-cell embryos	q-PCR and bisulfite sequencing	Gtl2, H19, Igf2, Peg3, Peg10, Igf2r	Peg3, Peg10, Igf2r were significantly different in MII oocytes and 2-cell embryos after vitrification
Cantatore et al. [101]	Mouse	2-cell and blastocyst from vitrified metaphase II oocytes	q-PCR	Igf2r and Gtl2	No significant differences
Cheng et al. [102]	Mouse	Blastocysts from vitrified MII oocytes	Bisulfite sequencing	H19, Peg3, Snrpn	No significant differences in oocytes. Decrease in blastocysts after oocyte vitrification
Ma et al. [98]	Mouse	Mature metaphase II (MII) oocytes	WGBS combined with RNA-seq	Kcnq1ot1 was significantly down regulated in the vitrified oocytes	
Different from animal research results, few studies have investigated the effect of human oocyte vitrification on imprinted genes, mainly due to the limited number of human oocytes for research and ethical restrictions on fertilization and embryo processing, which affect the scope and depth of detection. Current studies on vitrification of human oocytes suggest that imprinted genes and DNA methylation are not significantly affected (Table 1). The pyrosequencing method found that the methylation of imprinted genes \(H19 \) and \(KCNQ1OT1 \) was not affected in in vitro matured MII oocytes derived from vitrified GV oocytes [105]. Immunofluorescence using anti-5-methylcytosine antibody has shown that vitrification and warming of MII oocytes matured in vitro did not affect the overall methylation level of oocytes [106]; further, it found that there was no significant change in the overall DNA methylation level of in vitro cultured 8-cell embryos derived from vitrified oocytes [107]. In a word, the current detection methods have low accuracy and resolution and further research is required.

Effects of embryo vitrification on imprinted genes

In recent years, many studies have found that the vitrification of embryos has a great impact on imprinted genes in preimplantation embryos, placenta and fetal tissues (Table 2). Porcine blastocyst vitrification leads to a decrease in the expression of imprinted genes \(Igf2 \) and \(Igf2r \) [108]. In the blastocysts obtained after mouse 2-cell embryo vitrification, the expression of \(Gtl2 \) was down-regulated and the expression of \(Dlk1, H19 \) and \(Mest \) were up-regulated [109, 110]. After the mouse 8-cell embryo’s vitrification, the transcription and ICR methylation levels of the imprinted gene \(Grb10 \) were both reduced [111]. \(Grb10 \) is an imprinted gene that regulates social behavior [112]; it can encode growth factor receptor binding protein 10, and its expression is very important for

Table 2 Effects of embryo cryopreservation on imprinted genes

Reference	Species	Materials	Technology of assessment	Targeted imprinted genes	Conclusions
Derakhshan-Horeh et al. [115]	Human	Blastocysts	Bisulfite sequencing PCR	\(H19 \) and \(IGF2 \)	No significant differences
Yao et al. [116]	Human	Placenta from vitrified embryos	q-PCR, western blot and pyrosequencing	\(SNRPN \)	The expression level of \(SNRPN \) increased after vitrification
Barberet et al. [118]	Human	Placenta	Pyrosequencing and q-PCR	\(H19, IGF2, KCNQ1OT1, SNURF \)	The placental DNA methylation levels of \(H19/IGF2 \) were lower in the fresh embryo transfer group than in the control (\(H19/IGF2\)-seq1) and frozen embryo transfer (\(H19/IGF2\)-seq2) groups
Bartolac et al. [108]	Pig	Blastocysts	q-PCR	\(Igf2 \) and \(Igf2r \)	\(Igf2 \) and \(Igf2r \) were significantly decreased after vitrification
Movahed et al. [109]	Mouse	Blastocysts from vitrified 2-cell embryos	q-PCR	\(Gtl2 \) and \(Dlk1 \)	\(Gtl2 \) was down-regulated and \(Dlk1 \) was up-regulated after vitrification
Jahangiri et al. [110]	Mouse	Blastocysts from vitrified 2-cell embryos	q-PCR	\(H19 \) and \(Mest \)	Significantly increased after vitrification
Yao et al. [111]	Mouse	8-cell embryos	q-PCR and bisulfite sequencing PCR	\(Grb10 \)	The methylation level and gene expression of \(Grb10 \) decreased
Ma et al. [113]	Mouse	Fetuses and placentas from vitrified eight-cell embryos	q-PCR	\(Dlk1, Igf2, KCNQ1OT1, Mest, Ndn, Peg3, Plag1, Sgce, Snrpn, Cad81, Cadknc, Dcen, Gatm, Gnin, Grb10, Gtl2, H19, Igf2r, Mash2, Osbp15, Phlda2, Sic22a18, Ube3a, Zim1 \)	A majority of maternally expressed genes were upregulated in fetuses
Wang et al. [114]	Mouse	Fetuses and placentas from vitrified embryos	q-PCR and pyrosequencing	\(H19 \) and \(Igf2 \)	The expression of \(H19 \) was significantly increased after vitrification, whereas \(Igf2 \) was significantly decreased. Methylation levels were decreased

fetal growth. After vitrified mouse embryo transfer, the expression of imprinted genes in the E9.5-day fetus and placenta were detected. It was found that the expression of imprinted genes in fetus (Sgce, Dcn, Gatm, Gtl2) and placenta (Kcnq1ot1, Sgce, Gatm) had changed, and the methylation level of the KvDMR1 in fetus and placenta was changed [113]. Another study also detected the effect of mouse embryo vitrification on H19/Igf2 in the fetus and placenta; they found that the expression of H19 was abnormally increased and the expression of Igf2 was abnormally decreased [114]. After the mouse 8-cell embryo’s vitrification, it was found that the overall DNA methylation level decreased abnormally in the warmed 8-cell embryos and the developed blastocysts [111]. After vitrified mouse embryo transfer, the expression of DNA-methylation-related enzymes (Dnmt1, Dnmt3b, Tet2, Tet3) was abnormal in the E9.5-day fetus and placenta [113]. Therefore, animal embryo vitrification affects the whole DNA methylation, which may lead to abnormal expression and methylation of some imprinted genes in preimplantation and postimplantation fetus and placenta.

Due to the small number of human embryos and ethical restrictions, it is difficult to obtain enough embryos and tissue materials for research purposes, which hinders study of the impact of human embryo vitrification on imprinted genes. Studies have shown that the vitrification of day-3 human embryos has no significant effect on the DNA methylation status of H19/IGF2 DMR at the blastocyst stage [115], but the vitrification of human embryos leads to an abnormal increase in the expression of SNRPN in placenta [116]. A follow-up study from France showed that, compared with the natural pregnant group, fresh embryo transfer (Fresh-ET) significantly increased the risk of imprint-related diseases (1.6 times higher), but frozen embryo transfer (FET) reduced this risk, which was not statistically different from the natural pregnant group (1.2 times higher) [117]; this may be because the FET cycle can avoid endometrial exposure to high concentrations of gonadotropins, thereby reducing placental dysfunction and pathological changes. However, it is a study based on an epidemiological study. The cases counted as imprinting abnormalities in this study include uniparental disomy, chromosomal structural abnormalities and epimutations. In addition, it is unclear whether the results are based on genetic testing. Uniparental disomy is a chromosomal abnormality, and the usage of controlled ovarian stimulation may increase the frequency of uniparental disomy. A recent study showed that, compared with the natural pregnancy group, the methylation levels of imprinted gene H19/IGF2 and transposon element LINE-1 in the placenta of the fresh embryo transfer group were abnormally reduced, but there was no significant abnormality in the FET group [118]. In the future, we need to obtain more preimplantation embryos, placental tissues and aborted fetuses within the scope of ethics without affecting the reproductive needs of patients to clarify the potential adverse effects of embryo vitrification on genomic imprinting through microsample analysis.

Effects of ovarian tissue cryopreservation on imprinted genes

At present, a few studies on the effects of ovarian tissue cryopreservation on imprinted genes exist (Table 3). After slow freezing and transplantation of mouse ovarian tissue, the ICRs methylation of imprinted genes H19 and Kcnq1ot1 in offspring tissue is not affected [119]. After vitrification and warming of ovarian tissues from 10-day-old female mouse, the expression of DNA methyltransferase Dnmt1 was decreased while imprinted gene Grb10 was increased [120]. Allogeneic heterotopic transplantation after the vitrification and warming of prepubertal mouse ovarian tissue can restore puberty and fertility, and this process does not affect the DMR methylation of imprinted gene Snrpn in GV oocytes [121]. After vitrification and warming of mouse follicles, the DMR

Reference	Species	Materials	Technology of assessment	Targeted imprinted genes	Conclusions
Sauvat et al. [119]	mouse	ovarian tissue	Southern blotting	H19 and Kcnq1ot1	No significant differences
He et al. [120]	mouse	ovarian tissue	Western blot and q-PCR	Grb10	Grb10 was significantly increased after vitrification
Wang et al. [121]	mouse	ovarian tissue	Bisulfite sequencing PCR	Snrpn	Freezing of ovarian tissue did not affect the methylation status of Snrpn-DMR of imprinted genes in GV oocytes
Trapphoff et al. [122]	mouse	pre-antral follicles	pyrosequencing	H19, Igf2 and Snrpn	The methylation of DMR of imprinted gene H19 and Igf2 in mature oocytes was not affected, and Snrpn changed slightly
methylcytosine of imprinted genes $H19$ and $Igfl2$ in mature oocytes was not affected, and Snrpn changed slightly [122]. Vitrification and warming of mouse ovarian tissue affected follicular growth, and the promoter methylation level of Inhba in granulosa cells decreased [123]. In summary, there are limited studies investigating the influences of ovarian tissue vitrification on imprinted genes in mouse and there is still a lack of research on human ovarian tissue.

Conclusion

At present, oocyte and embryo vitrification is widely used in ART. Although ovarian tissue cryopreservation is developed late and slowly, the vitrification method has developed rapidly. Currently, strategies for sperm cryopreservation are still mainly slow or rapid freezing, and the vitrification technique requires further development and evaluation. Compared with traditional freezing methods, the vitrification process is time-consuming and convenient. Most importantly, it can minimize the damage to the ultrastructure and cellular DNA in gametes, embryos and follicles and improve the survival and clinical outcomes.

Vitrification can significantly affect the expression and methylation of some imprinted genes in animal oocytes and embryos, and the few studies in humans have reported almost no influence. The slow or rapid freezing of human sperm does not affect the DNA methylation related to imprinted genes, but the effect of vitrification is unknown. There is still a lack of research on the effect of vitrification on imprinted genes in human ovarian tissue. In summary, vitrification can adversely affect imprinted genes in animals, but the impacts of vitrification on human imprinted genes have not been fully studied. It is necessary to strengthen the detection of the effects of vitrification on imprinted genes in human gametes, embryos and tissues and to conduct a long-term follow-up study to evaluate the safety for their offspring.

Abbreviations

ART: Assisted reproductive technology; BWS: Beckwith–Wiedemann; PWS: Prader–Willi syndrome; AS: Angelman syndrome; PGCs: Primordial germ cells; ICRs: Imprinting control regions; DMRs: Differentially methylated regions; OTC: Ovarian tissue cryopreservation; scWGBS: Single-cell whole-genome methylation sequencing; scRNA-seq: Single-cell RNA SEQ; FET: Frozen embryo transfer; SmIC: 5-Methylcytosine.

Acknowledgements

We thank MDPI (https://www.mdpi.com/authors/english) for its linguistic assistance during the preparation of this manuscript.

Author contributions

HC undertook the initial systematic search and screening of the literature. LL summarized the findings from articles. LZ drafted the manuscript. LM and CZ substantively contributed to revisions to manuscript drafts. All authors read and approved the final manuscript.
13. Barberet J, Barry F, Choux C, Guilleman M, Karoui S, Simonot R, Bruno C, Fauque P. What impact does oocyte vitrification have on epigenetics and gene expression? Clin Epigenet. 2020;12(1):1–15.

14. Yodrug T, Pampal R, Hirao Y, Somfair T. Effect of vitrification at different meiotic stages on epigenetic characteristics of bovine oocytes and subsequently developing embryos. Anim Sci J. 2021;92(1):e13596.

15. Moulavi F, Saadeldin I, Swelum A, Tasdighi F, Hosseini-Fahraji H, Hosseini S. Oocyte vitrification induces loss of DNA methylation and histone acetylation in the resulting embryos derived using ICSI in dromedary camel. Zygote. 2021;66:1–10.

16. Renfree MB, Hore TA, Shaw G, Graves JA, Pask AJ. Evolution of genomic imprinting: insights from marsupials and monotremes. Annu Rev Genomics Hum Genet. 2009;10:241–62.

17. Anvar Z, Chakchouk I, Demond H. DNA methylation dynamics in the female germline and maternal-effect mutations that disrupt genomic imprinting. Zygote. 2021;128:66.

18. Kaneko-Ishino T, Ishino F. The evolutionary advantage in mammals of the complementary nonallelic expression mechanism of genomic imprinting and its emergence from a defense against the insertion into the host genome. Front Genet. 2022;13:832983.

19. Isles AR. The contribution of imprinted genes to neurodevelopmental and neuropsychiatric disorders. Transl Psychiatry. 2022;12(1):210.

20. Sandovici I, Georgopoulou A, Pérez-García V, Huñagaf A, López-Tello J, Lam BYH, Schier SN, Gaudreau C, Santos F, Hoelle K, Ye Y, Burling K, Reiterer M, Fowden AL, Burton GJ, Branco CM, Sferruzzi-Perri AN, Constance M. The imprinted Igf2-Igf2r axis is critical for matching placental microvasculature expansion to fetal growth. Dev Cell. 2022;57(1):63–79.

21. Smith FM, Garfield AS, Ward A. Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res. 2006;113(1–2):279–91.

22. Millership SJ, Van de Pette M, Withers DJ. Genomic imprinting and its effects on postnatal growth and adult metabolism. Zygote. 2019;76(20):4009–21.

23. Mangiapacchi PM, Caldas-Bussiere MC, Mendonça MDS, Dias AJB, Rios AFL. Multi-locus imprinting disturbances of Beckwith–Wiedemann and large offspring syndrome/abnormal offspring syndrome: a brief review. Theriogenology. 2021;173:193–201.

24. Lim DH, Maher ER. Genomic imprinting syndromes and cancer. Adv Genet. 2010;70:145–75.

25. Elhamamy AR. Role of DNA methylation in imprinting disorders: an updated review. J Assist Reprod Genet. 2017;34(5):549–62.

26. Hanna CW, Kelsey G. Features and mechanisms of canonical and noncanonical genomic imprinting. Adv Genet. 2021;35(1–12):821–34.

27. Kelsey G, Fiehler NJ, New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond Ser B Biol Sci. 2013;368(1609):20130336.

28. Monk D. Germ-line-derived DNA methylation and early embryo epigenetic reprogramming: the selected survival of imprints. Int J Biochem Cell Biol. 2015;67:128–38.

29. Sanmiguel JM, Bartolomei MS. DNA methylation dynamics of genomic imprinting in mouse development. Biol Reprod. 2018;99(1):252–62.

30. Ivanova E, Canovas S, Garcia-Martinez S, Romar R, Lopes JS, Rizos D, Sanchez-Calabuig MJ, Krueger F, Andrews S, Perez-Sanz F, Kelsey G, Coy P. DNA methylation changes during preimplantation development reveal inter-species differences and reprogramming events at imprinted genes. Biol Reprod. 2020;120(1):164.

31. Szabó PE, Hübner K, Scholer H, Mann JR. Allele-specific expression of imprinted genes in mouse mammary gland and germ cells. Mech Dev. 2002;115(1–2):157–60.

32. Lee J, Inoue K, Ono R, Ogonuki N, Kohda T, Kaneko-Ishino F, Erasing genomic imprinting memory in mouse clone embryos. 2002.

33. Stewart KR, Veselovska L, Kelsey G. Establishment and functions of DNA methylation in the germline. Epigenomics. 2016;18(10):1399–413.

34. Hanna CW, Demond H. Genomic imprinting and early embryo epigenetic reprogramming: the selected survival of imprints. Int J Biochem Cell Biol. 2015;67:128–38.

35. Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, AM. Cryoprotectant agents for ovarian tissue vitrification: systematic review. Cryobiology. 2021;66:5.

36. Li J, Xiong S, Zhao Y, Li C, Han W, Huang G. Effect of the re-vitrification of embryos at different stages on embryonic developmental potential. Front Endocrinol. 2021;12:66.

37. Nourakas F, Bulguurzoglu Kuran S, Solakoğlu S. Effect of curcumin on sperm parameters after the cryopreservation. Eur J Obstet Gynecol Reprod Biol. 2021;267:161–6.

38. Isachenko E, Isachenko V, Weiss JM, Kreienberg R, Katkov II, Schulz M, Lulat AG, Risopatron MJ, Sanchez R. Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrose. Reprod 2004;75(3):526–8.

39. Nakagata N. High survival rate of unfertilized mouse oocytes after vitrification. J Reprod Fertil. 1989;87(2):279–83.

40. El Cury-Silva T, Nunes ME, Casalech M, Comim FV, Rodrigues JK, Reis FM. Cryoprotectant agents for ovarian tissue vitrification: systematic review. Fertil Steril. 2021;115(5):1091–101.

41. Koohestanidehaghi Y, Torkamanghi M, Shirmohamadi Z, Lorian K, Vatanikh M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia. 2021;53(1):13870.

42. Navarro PM, Buelgurzoglu Kuran S, Solakoğlu S. Effect of curcumin on sperm parameters after the cryopreservation. Eur J Obstet Gynecol Reprod Biol. 2021;200:161–2.

43. Riva NS, Ruhmann C, Jaiyet RS, Mariscal Lopez CA, Martinez AG. Comparative analysis between slow freezing and ultra-rapid freezing for human sperm cryopreservation. JBRB assisted reproduction. 2018;22(4):331–7.

44. Alizpoura J, Medrano L, Enciso M, Sarasa J, Romero A, Fernandez MA, Gomez-Tores MJ. New permeable cryoprotectant-free vitrification method for native human sperm. Hum Reprod. 2017;32(10):2007–15.

45. Sharma R, Kattoor AJ, Gulmiyayih J, Agarwal A. Effect of sperm storage and selection techniques on sperm parameters. Syst Biol Reprod Med. 2015;61(1):1–12.

46. Hu H, Ji G, Shi X, Liu R, Zhang J, Zhang H, Yuan X, Zhang G, Yuan W, Li M. Comparison of rapid freezing versus vitrification for human sperm cryopreservation using sucrose in closed straw systems. Cell Tissue Bank. 2020;21(4):667–73.

47. Amer M, Ismail N, Gamal EI, Sfikas G, Ehrlich E, Abol El Hakim W, Ragab A. 2019 Effect of cryoprotectant-free vitrification versus...
conventional freezing on human testicular sperm motility: a prospective comparative study. Hum Fertil. 2019;66:1–6.
59. Li Y-X, Zhou L, Lv M-Q, Ge P, Liu Y-C, Zhou D-X. Vitrification and conventional freezing methods in sperm cryopreservation: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2019;233:84–92.
60. Rienzi L, Gracia C, Maggiori L, LaBarbera AR, Kaser DJ, Ulbaldi FM, Vanderpoel S, Racoyski C. Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Hum Reprod Update. 2017;23(2):139–55.
61. Debrock S, Peru L, Fernández Gallardo E, De Neubourg D, Spiessens C, D’Hooghe TM. Vitrification of cleavage stage day 3 embryos results in higher live birth rates than conventional slow freezing: a RCT. Hum Reprod. 2015;30(8):1820–30.
62. Mature oocyte cryopreservation in high-gamma modification. Fertil Steril. 2013;99(1):37–43.
63. Cobo A, Serra V, Garrido N, Olmo J, Pellicer A, Remohi J. Obstetric and perinatal outcome of babies born from vitrified oocytes. Fertil Steril. 2014;102(4):1006–1015.e4.
64. Martínez M, Rabadán S, Domingo J, Cobo A, Pellicer A, García-Velasco JA. Obstetric outcome after oocyte vitrification and warming for fertility preservation in women with cancer. Reprod Biomed Online. 2014;29(6):722–8.
65. Henry L, Labied S, Jouan C, Nisolle M. Preservation of female fertility: the current therapeutic strategy. Int J Gynaecol Obstet. 2022;156(1):3–9.
66. Maggiori L, Vairaelli A, Cinamodona D, Giancana A, Taconni F, Ulbaldi FM, Rienzi L. Fertility preservation through oocyte vitrification: clinical and laboratory perspectives. J Vis Exp. 2021;175:66.
67. Dolmans MM. More efficient and safer in vitro fertilization treatment. Fertil Steril. 2020;113(2):241–7.
68. Sung H, Ferlay J, Siegel RL, Laversanne M, Soeimjomararam I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2021;71(3):209–49.
69. Bray F, Ferlay J, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin. 2018;68(6):307–25.
70. Sonigo C, Beau J, Binart N, Grybnev M. The impact of chemotherapy on the ovaries: molecular aspects and the prevention of ovarian damage. Int J Mol Sci. 2019;20(21):5342.
71. Gargus E, Deans R, Anazodo A, Woodruff TK. Management of primary ovarian insufficiency symptoms in survivors of childhood and adolescent cancer. J Natl Compr Canc Netw. 2018;16(9):1137–49.
72. Donnez J, D’Oliveira RA, Scarlet D, Ille N, Aurich C. Cooled-storage of equine spermatozoa is safe—evidence from the DNA damage pattern of nine spermatozoa genes. J Assist Reprod Genet. 2012;29(9):943–50.
73. Khosravizadeh Z, Hassanzadeh G, Tavakkoly Bazzaz J, Atalazhe F, Totoni-chi M, Salehi E, Khodamoradi K, Khanzadeh M, Hosseini SR, Abolhassani F. The effect of cryopreservation on DNA methylation patterns of the chromosome 15q11–q13 region in human spermatozoa. Cell Tissue Bank. 2020;21(3):433–45.
74. Park JK, Lee JH. Development of optimized vitrification procedures using closed carrier system to improve the survival and developmental competence of vitrified mouse oocytes. Cell. 2021;107(6).
75. Viana IGR, Vireque AA, Navarro PA. Comparing the effects of a commercial and a prototype vitrification medium on meiotic spindle morphology and survival rate of mouse oocytes. Cell. 2022;666.
76. Girka E, Gatenby L, Gutierrez EJ, Bondioli KR. The effects of microtubule stabilizing and recovery agents on vitrified bovine oocytes. Theriogenology. 2022;1829–16.
77. Khalili MA, Maione M, Palmerini MG, Bianchi S, Macchiarelli G, Nottola SA. Ultrastructure of human mature oocytes after cryopreservation. Eur J Histochem. 2022;56(3):38.
78. Palmerini MG, Antinoni M, Maione M, Cerasuolo F, Versaci C, Nottola SA, Macchiarelli G, Khalili MA, Antinoni S. Ultrastructure of immature and mature human oocytes after cryopreservation. J Reprod Dev. 2014;60(6):411–20.
79. Hwang J-S, Kwon D-J, Im G-S, Tashima K, Hoshii S, Hwang S. High incidence of polysemic fertilization in bovine oocytes matured in vitro after Cryoprot vitrification. CryoLetters. 2016;37(1):27–33.
80. Chen H, Zhang L, Deng T, Zou P, Wang Y, Quan F, Zhang Y. Effects of oocyte vitrification on epigenetic status in early bovine embryos. Theriogenology. 2016;86(3):686–7.
101. Cantatore C, George JS, Depalo R, D’Amato G, Moravek M, Smith GD. Mouse oocyte vitrification with and without dimethyl sulfoxide: influence on cryo-survival, development, and maternal methylated gene expression. J Assist Reprod Genet. 2021;66:1–10.

102. Cheng XB, Fu WM, Zhang RN, Jia GX, Hau YP, Zhu SE. Effect of oocyte vitrification on deoxyribonucleic acid methylation of H19, Peg3, and Snprn differentially methylated regions in mouse blastocysts. Fertil Steril. 2014;102(4):1183–1190.e3.

103. Zhao YH, Wang JJ, Zhang PP, Hao HS, Wang HY, Du WH, Zhao SJ, Ruan WM, Zou HY, Hao T, Zhu HB, Zhao XM. Oocyte IVM or vitrification significantly impairs DNA methylation patterns in blastocysts as analysed by single-cell whole-genome methylation sequencing. Reprod Fertil Dev. 2020;32(7):676–89.

104. Ying L, Xiang-Wei F, Jun-Jie L, Dian-Shuai Y, Shi-En Z. DNA methylation pattern in mouse oocytes and their in vitro fertilized early embryos: effect of oocyte vitrification. Zygote. 2014;22(2):138–45.

105. Al-Khtib M, Perret A, Khoueiry R, Ibala-Romdhane S, Blachère T, Greze M, Sain B, Jing X, Dalley JW, Hurst LD. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 2011;469(7331):534–8.

106. Liu M-H, Zhou W-H, Chu D-P, Fu L, Sha W, Li Y. Ultrastructural changes and methylated pattern of human oocyte vitrified at the germinal vesicle stage and matured in vitro after thawing. Gynecol Obstet Invest. 2017;82(3):252–61.

107. DeMunck N, Petrusa L, Verheyen G, Staessen C, Vandeselde Y, Sterckx J, Bocken G, Jacobs K, Stoop D, De Rycke M. Chromosomal meiotic segregation, embryonic developmental kinetics and DNA (hydroxy)methylation analysis consolidate the safety of human oocyte vitrification. Basic Sci Reprod Med. 2015;2(6):535–44.

108. Bartolac LK, Lowe JL, Koustas G, Grupen CG, Sjöblom C. Vitrification, not cryoprotectant exposure, alters the expression of developmentally important genes in in vitro produced porcine blastocysts. Cryobiology. 2018;80:70–6.

109. Movahed E, Shabani R, Hosseini S, Shahidi S, Salehi M. Interfering effects of in vitro fertilization and vitrification on expression of Gt2 and Dlk1 in human oocytes vitrified at the germinal vesicle stage. Int J Fertil Steril. 2020;14(2):110.

110. Jahangiri M, Shahoseini M, Movaghar B. H19 and MEST gene expression and histone modification in blastocysts cultured from vitrified and fresh two-cell mouse embryos. Reprod Biomed Online. 2014;29(5):559–66.

111. Yao J, Geng L, Huang R, Peng W, Chen X, Jiang X, Yu M, Li M, Huang Y, Yang X. Effect of vitrification on in vitro development and imprinted gene Grb10 in mouse embryos. Reproduction. 2017;154(3):197–205.

112. Garfield AS, Michael C, Smith FM, Kim M, Stewart-Cox JE, Kerry G, Sian B, Jing X, Dalley JW, Hurst LD. Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature. 2011;469(7331):534–8.

113. Ma X, Ma Y, Wen L, Lei H, Chen S, Wang X. Changes in DNA methylation and imprinting disorders in E9.5 mouse fetuses and placentas derived from vitrified 8-cell embryos. Mol Reprod Dev. 2019;666.

114. Wang Z, Xu L, He F. Embryo vitrification affects the methylation of the H19/igf2 differentially methylated domain and the expression of H19 and igf2. Fertil Steril. 2010;93(8):2729–33.

115. Derakhshan-Horeh M, Abolhassani F, Jafarpour F, Moini A, Karbalaie K, Hosseini SM, Nasr-Esfahani MH. Vitrification at Day3 stage appears not to affect the methylation status of H19/IGF2 differentially methylated region of in vitro produced human blastocyst. Cryobiology. 2016;73(2):168–74.

116. Yao J-F, Huang Y-F, Huang R-F, Lin S-X, Guo C-Q, Hua C-Z, Wu P-Y, Hu J-F, Li Y-F. Effects of vitrification on the imprinted gene Snrpn in neonatal placental tissue. Reprod Dev Med. 2020;4(1):25.

117. Fauche P, De Mouzon J, Devaux A, Epelboin S, Gervoise-Boyer MJ, Levy R, Valentin M, Viot G, Berger A, DeVienne C, Jonveaux P, Pessione F. Reproductive technologies, female infertility, and the risk of imprinting-related disorders. Clin Epigenet. 2020;12(1):191.

118. Barbarot J, Romain G, Binquet C, Guillaume M, Bruno C, Gineo P, Chapatou C, Coux F, Fauche P. Do frozen embryo transfers modify the epigenetic control of imprinted genes and transposable elements in newborns compared with fresh embryo transfers and natural conceptions? Fertil Steril. 2021;116(6):1468–80.

119. Sauvat F, Capito C, Sarnacki S, Poiriot C, Bachelot A, Meduri G, Dandolo L, Binart N. Immature cryopreserved ova restores puberty and fertility in mice without alteration of epigenetic marks. PLoS ONE. 2008;3(4):1972.

120. He Z-Y, Wang H-Y, Zhou X, Liang X-Y, Yan B, Wang R, Ma L-H, Wang Y-L. Evaluation of vitrification protocol of mouse ovarian tissue by effect of DNA methyltransferase-1 and paternal imprinted growth factor receptor-binding protein 10 on signaling pathways. Cryobiology. 2018;80:89–95.

121. Wang HY, Li YH, Sun L, Gao X, You L, Wang Y, Ma JL, Chen ZJ. Allotransplantation of cryopreserved prepupal mouse ovaries restored puberty and fertility without affecting methylation profile of Snrpn-DMR. Fertil Steril. 2013;99(1):241-247.e4.

122. Trapphoff T, El Hajj N, Zechner U, Haaf T, Eichenlaub-Ritter U. DNA integrity, growth pattern, spindle formation, chromosomal constitution and imprinting patterns of mouse oocytes from vitrified pre-antral follicles. Hum Reprod. 2010;25(12):3025–42.

123. Damavandi M, Farrokh P, Zavareh S. Effect of mouse ovarian vitrification on promoter methylation of inihba and inihb in granulosa cells of follicles. Cryo Lett. 2021;42(2):67–72.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.