ABSTRACT

Aim: The aim of this study is to represent the prevalence of non-communicable diseases risks among patients of family medicine practices in the Federation of Bosnia and Herzegovina. Risks prevalence was obtained from an organized massive screening being performed by 100 family medicine teams in four cities of the Federation of B&H during 2013. Material and Methods: Our concept of “preventive treatment of a patient” included detecting and monitoring the following chronic non-communicable diseases risk factors: (a) hypertension; (b) obesity; (c) smoking; (d) physical inactivity; and (e) dyslipidemia; (f) diabetes mellitus. Our sample of examined patients was 46,638. Results: Highest risk prevalence within entire F B&H is observed for dyslipidemia (90.3%) and physical inactivity (64.7%). Lowest prevalence was found for blood sugar and hypertension at 19.2% and 21.6%, respectively. Smoking prevalence of the examined patients was 28.4%. Prevalence of the obesity as health risk (ITM > 30) was 25.5 %. It is of interest that statistically significant differences of individual risk prevalence among cities are evident. Risk distribution among cities ranked from highest to lowest prevalence, shows clearly that Sarajevo is leading in four risks compared to the other cities, while Zenica is ranked lowest for four risk factors. The examined population of the four cities can be ranked from lowest to highest prevalence of the examined risk factors as follows: Sarajevo, Mostar, Tuzla, and Zenica. Key words: non-communicable diseases risks prevalence, regional differences, preventive-promotive program, family medicine, Bosnia and Herzegovina.

1. INTRODUCTION

There is general trend of increased overall mortality rate, rates of malignant and cardiovascular diseases, as well as unhealthy lifestyles in Bosnia and Herzegovina (1). Very often it is explained by the consequences of the latest war, as well as unhealthy lifestyles (2, 3). A study of Marmot (4) on how social standing affects our health and longevity is based on theory that there is a link between socio-economic determinants of health and level of stress. Stress itself could affect life styles or could be harmful to the health status directly through the influence of adrenalin and cortico-steroids. However status syndrome could protect human organism from harmful influence of hormones. Overall social transition in B&H after the war has created lower socio-economic conditions for the great majority of the population in comparison to the pre-war period. Our recent study refers to statistical correlation between social status, related to income and education, to prevalence of risk factors of non-communicable diseases, such as high blood pressure, dyslipidemia, body mass index, lack of physical activity and blood glucose level (5). A phenomenon of social exclusion and high unemployment rate are remarkably spread throughout our society (6). In addition to these processes, there is psychological effect of a continuous political and economic environment instability in the country.

The aim of this study is to represent the prevalence of non-communicable diseases risks among patients of family medicine practices in the Federation of Bosnia and Herzegovina. This study presents the overall risks prevalence, as well as regional differences. In order to carry out this research we had to develop a bonus payment schemes, as well as a set of preventive-promotional services adjusted for family medicine practices as an organized massive screening for entire population being registered with famil-
for January-December 2013 period is presented against the following variables: (a) risk prevalence for total number of the examined patients; (b) risk prevalence by Health Center. The said risk prevalence correlation is presented only on annual basis, without distribution by quarters, because of the relevance of the received results.

The Table 1 shows risk prevalence distribution for the examined patients in F B&H during January-December 2013 period. Highest risk prevalence is observed for dyslipidemia (90.3%) and physical inactivity (64.7%). Lowest prevalence was found for blood sugar and hypertension at 19.2% and 21.6%, respectively. Smoking prevalence of the examined patients was 28.4%. Prevalence of the obesity as health risk (ITM > 30) was 25.5%.

Risk Factor	No. of Processed Patients (N)	No. of Patients at Risk (N)	Patients at Risk (% of Processed)
Hypertension	38006	8211	21.6 %
Obesity	29865	7619	25.5 %
Smoking	32030	9102	28.4 %
Physical Inactivity	30908	19995	64.7 %
Dyslipidemia	19298	17421	90.3 %
Sugar blood	11983	2300	19.2 %

Table 1. Risk Prevalence of the Examined Patients in F B&H for January – December 2013 period

The Table 2 shows risk prevalence distribution of the examined patients at Mostar Health Center during 2013. Highest risk prevalence is observed for dyslipidemia (94.5%) and physical inactivity (63.9%). Lowest prevalence was identified for blood sugar and obesity at 22.2% and 23.7%, respectively. Smoking prevalence among the examined patients was 31.4%, and hypertension prevalence was 27.8%.

Risk Factor	No. of Processed Patients (N)	No. of Patients at Risk (N)	Patients at Risk (% of Processed)
Hypertension	2687	802	27.8 %
Obesity	2152	510	23.7 %
Smoking	2261	709	31.4 %
Physical Inactivity	2345	1499	63.9 %
Dyslipidemia	1851	1749	94.5 %
Sugar blood	1995	443	22.2 %

Table 2. Risk Prevalence of the Examined Patients at Mostar Health Center during January- December 2013 period

The Table 3 shows risk prevalence distribution of the examined patients at Sarajevo Health Center during 2013. Highest risk prevalence is observed for dyslipidemia (93.0%) and physical inactivity (70.7%). Lowest prevalence was identified for hypertension and obesity at 22.1% and 27.8%, respectively. Smoking prevalence among the examined patients was 28.4%.

Risk Factor	No. of Processed Patients (N)	No. of Patients at Risk (N)	Patients at Risk (% of Processed)
Hypertension	8637	1911	22.1 %
Obesity	6585	1832	27.8 %
Smoking	7191	2315	32.2 %
Physical Inactivity	6877	4859	70.7 %
Dyslipidemia	5477	5092	93.0 %
Sugar blood	1339	381	28.5 %

Table 3. Risk Prevalence of the Examined Patients at Sarajevo Health Center during January- December 2013 period

3. RESULTS

Risk prevalence distribution for massive chronic non-communicable diseases of the examined patients in F B&H for January-December 2013 period is presented against the following variables: (a) risk prevalence for total number of the examined patients; (b) risk prevalence by Health Center. The said risk prevalence correlation is presented only on annual basis, without distribution by quarters, because of the relevance of the received results.

The Table 1 shows risk prevalence distribution for the examined patients in F B&H during January-December 2013 period. Highest risk prevalence is observed for dyslipidemia (90.3%) and physical inactivity (64.7%). Lowest prevalence was found for blood sugar and hypertension at 19.2% and 21.6%, respectively. Smoking prevalence of the examined patients was 28.4%. Prevalence of the obesity as health risk (ITM > 30) was 25.5%.
patients was 32.2%, and blood sugar prevalence was 28.5%.

The Table 4 shows risk prevalence distribution of the examined patients at Tuzla Health Center during 2013. Highest risk prevalence is observed for dyslipidemia (96.7%) and physical inactivity (62.7%). Lowest prevalence was identified for blood sugar and hypertension at 14.0% and 18.1%, respectively. Smoking prevalence among the examined patients was 27.5%, and obesity prevalence was 23.4%.

Table 4. Risk Prevalence of the Examined Patients at Tuzla Health Center during January-December 2013 period

Risk Factor	No. of Processed Patients (N)	No. of Patients at Risk (N)	Patients at Risk (% of Processed)
Hypertension	15117	3442	22.8%
Obesity	12089	2827	23.4%
Smoking	12804	3393	26.5%
Physical Inactivity	12660	7935	62.7%
Dyslipidemia	7989	6730	84.2%
Sugar blood	4343	874	20.1%

Table 5. Risk Prevalence of the Examined Patients at Zenica Health Center during January-December 2013 period

Risk Factor	No. of Processed Patients (N)	No. of Patients at Risk (N)	Patients at Risk (% of Processed)
Hypertension	11365	2056	18.1%
Obesity	9039	2450	27.1%
Smoking	9774	2685	27.5%
Physical Inactivity	9026	5702	63.2%
Dyslipidemia	3981	3850	96.7%
Sugar blood	4306	602	14.0%

Table 6. Risk Distribution by Cities from Highest to Lowest Prevalence with Noted Statistically Significant Difference (*), *there is statistically significant difference at confidence level of p<0.05

Risks	Risk Distribution by Cities from Highest to Lowest Prevalence with Noted Statistically Significant Difference (*)
Hypertension	Mostar (27.8%) > * Zenica (22.8%) > Sarajevo (22.1%) > * Tuzla (18.1%)
Obesity	Sarajevo (27.8%) > Tuzla (27.1%) > * Mostar (23.7%) > * Zenica (23.4%)
Smoking	Sarajevo (32.2%) > Mostar (31.4%) > Tuzla (27.5%) > * Zenica (26.5%)
Physical Inactivity	Sarajevo (70.7%) > * Mostar (63.9%) > Tuzla (63.2%) > * Zenica (62.7%)
Dyslipidemia	Tuzla (96.7%) > * Mostar (94.5%) > Sarajevo (93.0%) > * Zenica (84.2%)
Sugar blood	Sarajevo (28.5%) > * Mostar (22.2%) > Zenica (20.1%) > * Tuzla (14.0%)

Table 6. Risk Distribution by Cities from Lowest to Lowest Prevalence with Noted Statistically Significant Difference (*), *there is statistically significant difference at confidence level of p<0.05

4. DISCUSSION

Economic development is strongly associated with agricultural mechanization and urbanization. Between the years 2000 and 2030 it is estimated that the percentage of the world’s population living in urban centers will increase from 47% to 60%. Urban living is often associated with lower levels of physical activity than traditional rural living, increasing the risk of overweight and obesity, metabolic syndrome, diabetes, cardiovascular disease and certain cancers. The trends towards increased consumption of energy dense foods, high in saturated fat, sugar and salt, that is associated with urbanization in the vast majority of low- and middle-income countries has been referred to as the „nutrition transition“ (9).

Some groups have much higher rates of diabetes than others. For example, at a country level it is estimated that over 30% of adults in Nauru, 20% in the United Arab Emirates and 10% in Mexico have diabetes, compared to 2.9% in the United Kingdom (9). Some reported data for diabetes prevalence in Bosnia & Herzegovina refer to the values around 7% of the general population (1). Remarkably high percentage of high blood glucose prevalence in our study within the examined family medicine patients of 19.2 could be explained by a phenomena of “bad-risk selection” during our process of patients recruiting for preventive screenings. Actually, a great majority of examined persons often visits family medicine practices due to some chronic conditions. Therefore, it is rational to expect higher risk factor prevalence compared to healthy population living in the settlements and not asking for any medical care. Also there could be a bias due to low number of glucose measurement (11,983 patients) in comparison to blood pressure measurement (38,006 patients) for instance. In addition, lower sample for glucose measurement was most likely determined by some clinical indications for the possibility for higher glucose values or less healthy people completed the test in laboratory and provided a feedback to a physician. Anyway, our finding refers that blood glucose level screening is very cost-effective due to high prevalence of positive results. Also, there is much variation within each WHO region, with over 70% known in North America and only around 20-30% in the few countries representing Africa, there is no strong association between level of development and the proportion of people with known diabetes (9).

Latest data collected by the FB&H population health status surveys (1) are interesting to be discussed in this paper, however it should be kept in mind that survey was conducted on a sample of population in communities/households, not health center patients. Percentage of population to which...
Likewise, incidence of the identified risk factors as well as prevalence or risk severity in line with risk categorization. Effectiveness of prevention services in terms of reduced risk possible, by using software possibilities, to compare effectiveness of year one and year two, and that would give false picture of variables, such as education, income, employment status, etc. Recent results obtained in Mostar (5) refer to high differences in non-communicable diseases risks prevalence between social classes taking into account education status, as well as income level. Higher prevalence of risks within lower social groups was accompanied by higher level of stress. These findings strongly support thesis of Marmot (4) being based on the role of stress, apart from life style, and protective role of population group social standing. Also, our findings on regional differences of risks prevalence could not be elaborated now without evaluation of a number of variables, such as stress level, geographical differences, cultural differences and mentality, climate differences, etc.

Analysis of risk category structure would be possible in our survey for certain period of time only e.g. during the year one of screening. During the year two, such analysis would provide only arithmetical value of behavioral, cultural and mental health status. These findings strongly support thesis of Marmot (4) being based on the role of stress, apart from life style, and protective role of population group social standing. Also, our findings on regional differences of risks prevalence could not be elaborated now without evaluation of a number of variables, such as stress level, geographical differences, cultural differences and mentality, climate differences, etc.

REFERENCES
1. Zavod za javno zdravstvo FBiH. Istraživanje zdravstvenog stanja stanovništva u Federaciji Bosne i Hercegovine sa usporedbom istraživanja provedenog u 2002.godini. Finalni izvještaj, Sarajevo, oktobar 2013. godine, 139 str.
2. Ivanković A, Ravlija J, Skobić H, Vasilj I. Health status of population in Federation of Bosnia and Herzegovina in 15 years of transitional period. Coll Antropol. 2010; 34: 325-33.
3. Smajčić A, Hrabac B, et al. Health Status of the Population and Health Care System in Transition. Bosnia and Herzegovina Report for 2003. Council of Ministers, Ministry of Civil Affairs, Institute for Public Health of Bosnia and Herzegovina, 2004, pp.21.
4. Marmot M. The Status Syndrome: How Social Standing Affects Our Health and Longevity. New York: Owl Books, 2004.
5. Vasilj I, Vasilj M, Babić D, Curić I, Sarić Belma, Sarić B, Pehar D, Marinac M, Bevanda M. The impact of socio-economic processes on the health of the adult population. Medicina Academica Mostariensia. 2014; 2(1-2): 31-8.
6. Papić Ž, Hrabac B, i sur. Socijalna uključenost u Bosni i Hercegovini. Izvještaj o humanom razvoju. UNDP, Sarajevo, 2007, 210 str.
7. Hrabac B, Huseinagic S, Bosnjak R. Prevention and promotion program performance-based payment effects on the Federation of Bosnia and Herzegovina family medicine teams’ work. Mater Sociomed. 2015 Oct; 27(5): 300-304.
8. Hrabac B, i sur. Tehnički priručnik za implementaciju projektnih aktivnosti. Projekt jačanja zdravstvenog sektora. Komponenta projekta: „Testiranje nagrađivog plaćanja za sprovedbu standardiziranog seta preventivno-promotivnih usluga tima". Federalno ministarstvo zdravstva, Sarajevo, 30.06.2012., 16 str.
9. Blas E, Sivasankara Kurup A. Equity, social determinants and public health programmes. World Health Organization (ISBN 978-92-4-156397-0), 2010, 291.

Non-Communicable Chronic Diseases Risk Prevalence of Family Medicine Patients in the Federation of Bosnia and Herzegovina

early detection of certain diseases, could indicate positive trends of variables in the process of monitoring dynamic system of health and diseases.

5. CONCLUSION

Unfortunately, our study could not take into account differences in social status of our patients because software application was not designed to support that kind of analysis. Within patient data the following data should have been included, such as education, income, employment status, etc. Recent results obtained in Mostar (5) refer to high differences in non-communicable diseases risks prevalence between social classes taking into account education status, as well as income level. Higher prevalence of risks within lower social groups was accompanied by higher level of stress. These findings strongly support thesis of Marmot (4) being based on the role of stress, apart from life style, and protective role of population group social standing. Also, our findings on regional differences of risks prevalence could not be elaborated now without evaluation of a number of variables, such as stress level, geographical differences, cultural differences and mentality, climate differences, etc.

• Author’s contribution: All authors in this paper have contributed in all phases in it’s preparing. First author made final proof reading.

• Conflict of interest: none declared.

Mater Sociomed. 2016 Feb; 28(1): 8-11. ORIGINAL PAPER