Assessment of Partial Peat Substitutes for the Production of *Camellia japonica*

Federica Larcher¹ and Valentina Scarlot
Department of Agronomy, Forestry and Land Management, University of Turin, Via Leonardo da Vinci, 44-10095 Grugliasco (TO), Turin, Italy

Abstract. Peat is widely used for container plant production. As a result of its high costs, decreasing availability, and environmental concerns, alternative substrates for potting ornamentals are needed. In the present study, five peat substitute materials (local green compost, pumice, coconut fibers, coconut “peat,” and pine bark) were evaluated to assess their suitability for containerized acidophilus ornamental plant production. Camellia was chosen as the indicator crop and, to verify the influence of genotype on cultivation response, three different cultivars were used. The main physical, chemical, and biological properties of the substrates were determined before and at the end of the culture and were in general within the acceptable ranges. Except for the negative effect of green compost, during the cultivation period (2 years), the alternative materials did not affect or slightly improved the plant development and the ornamental characteristics compared with the standard substrate. Among the materials tested, considering both technical and economical factors, coconut fibers were a good partial peat substitute for potted camellia production.

Peat is widely used in the ornamental nursery industry as a major constituent of growing media for container plant production. In recent years, environmental concerns about peat extraction in wetland ecosystems have risen. Conservation of existing biodiversity in agricultural landscapes and the adoption of biodiversity-based practices have been proposed as ways of improving the sustainability of agricultural production through greater reliance on ecological goods and services with less damaging effects on environmental quality and biodiversity (Jackson et al., 2007). Furthermore, in southern Europe, peat is imported and its cost has become more expensive and its properties more variable (Ribeiro et al., 2007). Thus, the availability of environmentally friendly substrates with good quality, low cost, and obtainable in great quantity is attracting more attention.

Recently, several formulations of alternative materials for potting ornamental plants are being developed, in particular for herbaceous and annual species. The use of alternative growing media requires knowledge of their physical and chemical properties responsible for providing adequate support and a reservoir for air, water, and nutrients. The influence of the alternative substrates on plant growth and ornamental traits needs to be evaluated during the entire cultivation period. Studies have indicated that various organic substitutes can be used effectively as support media. Among these, coco fibers are increasingly used as substrate because they have many characteristics in common with peat (Lennartsson, 1997). This material is now being successfully used as a peat substitute for several container-grown ornamental plants such as *Dyiefenbachia* (Stamps and Evans, 1997) and *Grevillea* (Offord et al., 1998). The feasibility of using pine bark mixtures in substrate formulation was shown in *Ninus* and *Cupressus* by Guerrero et al. (2002) and Hernández-Apapalaza et al. (2005). The effect of adding composted waste to a peat-growing media is both economically and environmentally attractive (Erhart et al., 2005; Hargreaves et al., 2008). Studies on the use of green waste as a partial substitute for peat in growing media have been carried out, for example, in *Gerbera* (Pinamonti et al., 1997), *Impatiens* and *Antirrhinum* (Klock, 1997), *Calendula* and *Calceolaria* (Prasad and Maher, 2001), *Cyclamen* and *Begonia* (van der Gaag et al., 2007), and *Philodendron* (Grigatti et al., 2007). In *Gerbera*, coco peat was also successfully used (Barreto and Jagtap, 2006). Several studies concern the use of inorganic materials as peat substitutes for ornamental pot plant production. Expanded perlite appears to be the most used (Guerrin et al., 2001; Marfà et al., 2002). Other inorganic substrates may also act as peat substitutes, like expanded clay, volcanic lapilli, and pumice (Fascella et al., 2003).

However, little literature is available on the effect of peat alternatives in the production of containerized woody ornamentals (Scagel, 2003), especially those which in nature grow in acidic soils (such as camellia, rhododendron, and azalea).

This study aimed to evaluate the suitability of four organic and one inorganic materials as partial peat substitutes for sustainable production of *Camellia japonica*. To verify the influence of genotype on cultivation response, three cultivars were used.

Materials and Methods

Experimental design. The study was carried out in a commercial nursery devoted to producing acidophilus ornamental plants located in the Piedmont district (northern Italy), which tested the alternative substrates compared with the standard (S) currently used in production.

The substrates were composed of five peat substitutes (local green compost, pumice, coconut husk processed into fibers, composted coconut “peat,” and pine bark) mixed with the standard substrate (commercial *Sphagnum* peat and agripellet) at 30% by volume. Coconut fibers are byproducts of coir factory obtained by separating the coconut husk from the shell and processing the husk into fibers. Coconut peat, also known as coco pith or coco dust, is a byproduct of extracting fibers from the husk of coconuts, heat-treated, and partially decomposed with similar cation exchange capacity as sphaugnum peat. Commercial *Sphagnum* peat (Alce and Silver Torf) was supplied by Agrochimica (Bolzano, Italy), whereas coconut fibers, coconut peat, and pine bark were supplied by Tref Ego Substrate BV (Moerdijk, The Netherlands). Green compost (waste mainly originating from gardens and parks) and pumice were obtained by local producers (Cooperativa Sociale Risorse, San Bernardino Verbano, Italy). Both substrate denomination (acronym) and composition as well as relative costs based on mean European prices are presented in Table 1.

A completely randomized greenhouse experiment with three replications with eight rooted cuttings was carried out from Feb. 2005 to May 2007. Six substrates were tested for three camellia cultivars selected according to their commercial and ornamental value: ‘Charles Cobb’’, ‘Nuccio’s Pearl’, and ‘Dr. Burnside’.

Physical, chemical, and biological characterization. Substrate’s characteristics were assessed by measuring appropriate indicators and comparing them with desired values before and at the end of the experiment (Arshad and Martin, 2002).

The physicochemical parameters were determined according to the European (EN) standards (EN13037, EN13038, EN13041, and EN13652) as described by Beke and Wever (2005). Bulk density (BD), particle density (PD), porosity (PB), free air space (AS), and water holding capacity (WC) were evaluated using the EN13041 method. pH, electrical conductivity (EC), and soluble chemical elements were determined in aqueous...
extract (substrate/water ratio: 1/5 v/v) using the EN13037, EN13038, and EN13652 methods with minor modifications, respectively. N-NO₃ and P₂O₅ were evaluated by ultraviolet–VIS spectrophotometry. K⁺, Ca²⁺, and Mg²⁺ were measured by atomic emission spectrophotometry. Ammonia nitrogen (NH₃) was measured by Kjeldahl digestion.

Seed germination assay was carried out following Italian standards for compost analysis (UNI 10780). Seed germination and radicle length tests were carried out on water extracts obtained by centrifuging (2340 g for 30 min) and filtering, through 0.45-μm membrane filters, the fresh samples at a solid–distilled water of 1:10 (w/v dry weight basis). The water extracts were then diluted with distilled water (50% and 75%). A total of 1.0 mL of each pure and diluted extract was pipetted into a sterilized plastic petri dish lined with Whatman No. 1 filter paper. Ten cress seeds (Lepidium sativum L.) were scattered on the filter paper and incubated at 27 °C in the dark for 72 h. Five replicates were analyzed for each sample. Treatments were evaluated by counting the number of germinated seeds and measuring the length of the radicles. The responses were calculated after 24, 48, and 72 h by a germination index (GI) according to the following formula (Zucconi et al., 1981):

$$GI = \frac{(G_s \times RL_s)}{(G_c \times RL_c)} \times 100$$

where:
- \(G_s\) = average number of germinated seeds on water extract of the substrate pure or diluted at 50% or 75% (sample);
- \(RL_s\) = radicle length of germinated seeds on water extract of the substrate pure or diluted at 50% or 75% (sample);
- \(G_c\) = average number of germinated seeds on distilled water (control); and
- \(RL_c\) = radicle length of germinated seeds on distilled water (control).

Table 1. Composition of the substrates tested and their relative cost referred to the standard.

Substrate	Composition (% v/v)	Relative cost
S	89% Sphagnum peat + 11% agriperlite (standard substrate)	100
SGC	70% standard substrate + 30% green compost	81
SP	70% standard substrate + 30% pumice	111
SCF	70% standard substrate + 30% coconut fibers	102
SCP	70% standard substrate + 30% coconut peat	102
SPB	70% standard substrate + 30% pine bark	133

Cultivation of camellias and growth and flowering control. Cultivation of C. japonica cultivars lasted 2 years (2005 to 2007). Before planting, the substrates were added with: 2.25 kg·m⁻³ CaCO₃, 1.12 kg·m⁻³ Osmocote Exact® (15-9-9 + micronutrients, 8–9 months; Scotts, Marysville, OH), 0.5 kg·m⁻³ Cornunghia, a nitrogenous organic fertilizer, a byproduct of a meat factory (Manna Italia, Andriano, Italy), and 0.5 kg·m⁻³ Scorie Thomas, a phosphatic inorganic fertilizer, a byproduct of the iron and steel industry (Timaç Italia, Ripalta Arpina, Italy). Then, plants were watered and fertigated with 20N–20P₂O₅–20K₂O Peter Professional hydrosoluble fertilizer (Scotts) at 0.8 to 0.9 g·L⁻¹ about once every 2 weeks from March to October, according to weather conditions. In February, camellia rooted cuttings were planted in plastic pots (9 cm in diameter), two in each. After 9 months in cultivation, plants were transplanted in 15-cm diameter pots and pruned. In June 2006, plants were induced to branch using paclobutrazol (Cultar®, Syngenta Agro S.A., Madrid, Spain) and dimamotozide (Alar®; Unioyral Chemicals Ltd, Slough, U.K.), sprayed twice (100 + 100 ppm and 80 + 100 ppm, respectively) at an interval of 10 d. The cultivation ended in May 2007, when the flowered pots were suitable for the market.

Plant growth and ornamental characteristics were evaluated during the different cultivation phases (potting, before repotting, and after and branching, and at the end of the experiment).

Plant height and diameters (w₁ across the plants obtained turning it 90°) and number of branches produced were recorded per each pot. Plant height and diameters were used to calculate the growth index = \(\pi \frac{\left(\left[w_1 + w_2\right] / 2\right)}{\left[w_1 + w_2\right]}\) h, according to Hidalgo and Harkess (2002).

To indirectly measure leaf chlorophyll content and plant health (Smith et al., 2004), the Chlorophyll Meter SPAD-502 Konica Minolta (Nieuwegein, The Netherlands) was used. Measurements were performed on four leaves randomly chosen within each replicate, with each measure being the mean value of two measures on the same leaf.

When the plants reached commercial size, the aerial part of each plant was oven-dried at 90 °C until a constant weight was obtained and dry weight was determined. For evaluating root quality, the density of the visible roots at the substrate surfaces (side and bottom) was visually estimated by three referees using four classes of roots covering: 1 = 0% to 25%, 2 = 26% to 50%, 3 = 51% to 75%, and 4 = 76% to 100%.

Referring to the aesthetic value, the width of four flowers randomly chosen within each replicate was measured.

Statistical analyses. To analyze camellia growth, health and ornamental data, and also the interaction between cultivar and substrate, results were subjected to an univariate analysis of variance. Germination index data were subjected to a one-way analysis of variance. All data were tested using Student-Newman–Keuls using the SPSS statistical package (Version 13.0; SPSS Inc., Chicago, IL).

Results

Characteristics of growing media. Many factors affect the level of nutrients available for plant uptake from container media during cultivation, including temperature, moisture, losses to leaching and volatilization, microbial activity, and the physical, biological, and chemical attributes of the media. This study focused on media characteristics and plant response.

Physical properties that must be considered in preparing potting substrates include BD, PD, total porosity, AS, and WC (Moldes et al., 2007). Bulk and particle densities presented highest values for substrates containing green compost and pumice, respectively (Table 2). Other important properties for plant growth are pH, EC, and nutrients (Table 3). Camellias are calcifuge plants that grow naturally in acid soils. The pH of standard substrate was 3.95. In the other media, the pH was higher, ranging from 4.12 (SCF) to 5.84 (SGC). During the course of the experiment, pH increased in all substrates but remained within the range considered suitable for camellia plant container production; likewise for previous studies (Hernández-Apoalaiza et al., 2005; Meerow, 1994, 1995). EC was also well within the acceptable range (Abad et al., 2001) both before and at the end of cultivation. Coconut and bark typically contribute few soluble salts to growing media. Pumice does not contain water-soluble salts and nutrients. Differently, green compost has a high salt content, especially potassium. So in the tested media, the major contribution to the EC was related to the peat, except in SGC. At the end of cultivation, increase in EC and in the amount of available nutrients was detectable in all substrates equally fertigated. Table 4 shows results of the germination bioassay after 48 and 72 h of incubation. GI, which combines the measurement of seed germination and radicle elongation of cress seed relative to the control, is the most sensitive parameter used to evaluate the toxicity of composts (Gutiérrez-Miceli et al., 2007; Zucconi et al., 1981). It was also used to determine the biological characteristics of other substrates (lake sediments, Beltrami et al., 1999; cattle dung, Hoekstra et al., 2002) because it is an easy and inexpensive screening test. Peat usually promotes germination in a few hours, but, being poor in nutritive elements, can have negative effects on plantlet development after 2 to 3 d. Therefore, the GI estimated after 72 h of incubation can often give a more comprehensive representation of the substrate’s properties. All substrates evaluated showed high GI (greater than 50%). After 2 d, GI mean values of the substrates containing peat or coconut peat, S (135) and SCP (129), were significantly higher than SGC (94), SP (95), and SPB (82). After 3 d, more significant differences in GI responses among substrates were detected: SGC (86), SP (81), and SPB (70) continued to show comparable results, lower than SCP (117) and S (153). In particular, the latter statistically outperformed SCP.

Camellia plant development. Plant growth responses to different media types are usually based on biomass measurement. In ornamentals, this parameter alone may not adequately

Substrate	Composition (% v/v)	Relative cost
S	89% Sphagnum peat + 11% agriperlite (standard substrate)	100
SGC	70% standard substrate + 30% green compost	81
SP	70% standard substrate + 30% pumice	111
SCF	70% standard substrate + 30% coconut fibers	102
SCP	70% standard substrate + 30% coconut peat	102
SPB	70% standard substrate + 30% pine bark	133
Table 2. Physical properties of the six substrates tested in the research before and at the end of cultivation based on the method of analysis EN13037, EN13038, and EN13652 (de Kreij and Wever, 2005) with minor modifications.

Substrates	Bulk density (kg m⁻³)	Particle density (mg m⁻³)	Total porosity (% v/v)	Free air space (% v/v)	Water holding capacity (% v/v)
Before cultivation					
S	80	1,710	95.2	26.0	69.3
SGC	230	2,010	88.7	22.2	66.4
SP	180	2,300	92.3	33.3	59.0
SCF	80	1,570	94.7	35.9	58.9
SCP	80	1,800	95.4	25.8	69.6
SPB	120	1,690	93.0	29.3	63.7
End of cultivation					
Cultivar CC					
S	120	1,960	93.9	27.1	66.8
SGC	270	2,220	87.9	16.7	71.2
SP	220	2,340	90.5	39.1	51.4
SCF	110	1,710	93.3	33.0	60.4
SCP	90	1,710	94.9	37.8	57.1
SPB	140	1,770	92.0	33.8	58.3
Cultivar NP					
S	120	2,050	94.1	12.4	81.7
SGC	250	2,300	89.3	12.8	76.6
SP	220	2,290	90.2	36.8	53.4
SCF	120	1,720	93.0	29.3	63.7
SCP	120	1,760	93.2	15.3	77.9
SPB	120	1,760	92.9	37.5	55.4
Cultivar DB					
S	100	1,930	94.9	39.9	55.0
SGC	270	2,090	87.3	16.9	70.4
SP	220	2,250	90.4	47.1	43.3
SCF	110	1,720	93.7	31.2	62.5
SCP	100	1,820	94.8	33.3	61.5
SPB	120	1,680	92.6	37.5	55.2

Values refer to aqueous extract (substrate/extractant ratio: 1/5 v/v).

Table 3. Chemical properties of the six substrates tested in the research before and at the end of cultivation based on the method of analysis EN13037, EN13038, and EN13652 (de Kreij and Wever, 2005) with minor modifications.

Substrates	pH	Electrical conductivity (dS m⁻¹)	N(NO₃)₃ (mg L⁻¹)	N(NH₄) (mg L⁻¹)	P₂O₅ (mg L⁻¹)	K⁺ (mg L⁻¹)	Ca²⁺ (mg L⁻¹)	Mg²⁺ (mg L⁻¹)	
Before cultivation									
S	3.95	0.04	1.00	5.00	15.00	0.62	1.10	0.05	
SGC	5.84	0.17	5.65	4.00	15.00	39.00	11.10	2.80	
SP	5.09	0.02	1.00	4.00	1.50	2.40	2.30	0.06	
SCF	4.12	0.04	1.00	6.00	9.00	0.95	1.50	0.09	
SCP	4.30	0.05	1.00	7.00	1.00	0.47	0.64	0.13	
SPB	4.15	0.04	1.00	2.50	1.00	0.35	0.21	0.13	
End of cultivation									
S	4.18	0.22	8.00	10.00	24.00	24.00	4.00	3.00	
SGC	6.53	0.30	12.00	10.00	21.00	32.00	12.00	4.00	
SP	5.70	0.32	10.00	12.00	25.00	41.00	2.00	2.00	
SCF	5.07	0.15	3.00	10.00	18.00	18.00	2.00	1.00	
SCP	5.37	0.17	5.00	10.00	24.00	21.00	3.00	1.20	
SPB	5.05	0.20	5.00	10.00	26.00	26.00	2.00	1.00	

Values refer to aqueous extract (substrate/extractant ratio: 1/5 v/v).

Table 4. Germination index (GI) of cress seed as affected by water extracts of the studied substrates in three concentrations after 48 and 72 h.

Substrates	50% Water extract	75% Water extract	100% Water extract	Mean	Incubation 48 h	Mean	Incubation 72 h	Mean
S	50%	133	85	89	116	71		
	75%	136	89	101	132	86		
	100%	136	108	95	140	89		
	Mean	135 a	94 b	95 b	129 a	82 b		
SGC	50%	155	78	77	110	73		
	75%	152	86	82	123	62		
	100%	150	94	83	119 and 73			
	Mean	153 a	86 c	81 cd	117 b	70 d		

In each row, means followed by the same letter do not differ significantly at P ≤ 0.05 according to the Student-Newman-Keuls test.

Discussion

Characteristics of growing media. The evaluation of the suitability of peat substitutes for growing containerized ornamental plants was based on physicochemical and biological analyses. In general, the physical properties evaluated were within acceptable ranges (Abad et al., 2001). At the end of
c VCC 1,143.6.30 a 21.51 a 6.82 a 77.16 b 2.18 c 9.97 b

HORTSCIENCE VOL. 44(2) APRIL 2009 315

lished limit for an ideal substrate (Abad et al.,
containing green compost and pumice, the
expiration. More in detail, in the substrates
cultivar differences in roots and evapotrans-
the AS and WC. This could be the result of
Fig. 1. Changes in growth index of the three
Camellia japonica cultivars during cultivation
on the six tested growing media (S = standard;
peat; SPB = S + pine bark). Mean and standard
deviation of 12 replicates are shown.

Concerning the phytotoxicity, all sub-
strates evaluated showed GI higher than
50%, which means they are acceptable for
being used for potted plant production (Urrestarazu et al., 2001).

Camellia plant development. Plants in all
the media appeared healthy throughout the
cultivation period and did not show symptoms of
nutrient deficiency or toxicity at any time.

Results concerning plant growth and
ornamental value of camellias (Table 5)
varied significantly among both substrates and
cultivars, pointing out the influence of
the genotype on cultivation response, espe-
cially for SPAD and root quality.

As shown in Figure 1, for each cultivar,
the effect of the substrates on plant growth
was different in relation to the cultivation phase. About 40 weeks after plantation, prun-
ing and transplanting affected the plant
growth. After these operations, especially
‘Nuccio’s Pearl’ and ‘Dr. Burnside’ plants,
showed differences related to their attitude to
start their vegetative growth again. The
composting and by adapting fertilizer doses
to the medium. In fact, the use of partial peat
substitutes in horticultural crop production
needs to determine fertilizer requirements in
these new substrates compared with the
traditional medium. In addition, specific irri-
gation programs have to be defined to max-
imize plant performances and minimize
nutrient waste and loss in the environment.

Conclusions

It can be concluded that peat can be
partially substituted by coconut fibers, cocon-
ut peat, pine bark, or pumice, whereas the
use of green compost can negatively affect
plant growth. The choice of which peat sub-
stitute to use depends on their costs and
availability. Considering both technical and
economical factors, coconut fibers can be a
good alternative for camellia potted plant
production. Fertilizer and irrigation recom-
mendation for growing camellias in this
substrate will help growers increase plant growth
and quality and minimize fertilizer and water
use, reducing both costs and losses to the

Literature Cited

Abad, M., P. Noguera, and S. Bures. 2001. National
inventory of organic wastes for use as growing
media for ornamental potted plant production:
Case study in Spain. Bioresour. Technol. 77:197–200.

Arshad, M.A. and S. Martin. 2002. Identifying
critical limits for soil quality indicators in
agro-ecosystems. Agric. Ecosyst. Environ. 88:153–160.

Barreto, M.S. and K.B. Jagtap. 2006. Assessment of
substrates for economical production of
gerbera (Gerbera jamesonii Bolus ex Hooker F.)
flowers under protected cultivation. J. Orna-
mantal Hort. 9:136–138.

Beltrami, M., D. Rossi, and R. Baudo. 1999. Phyto-
toxicity assessment of Lake Orta sediments.
Aquat. Ecosyst. Health Manage. 2:391–401.

Castillo, J.E., F. Herrera, R.J. López-Bellido, F.J.
López-Bellido, L. López-Bellido, and E.J. Fern-
ández. 2004. Municipal solid waste (MSW)
composts as a tomato transplant medium.
Compost Sci. Util. 12:86–92.

de Kreij, C. and G. Wever. 2005. Proficiency
testing of growing media, soil improvers, soils,
and nutrient solutions. Commun. Soil Sci. Plant
Anal. 36:81–88.

Erhart, E.W. Hartl, and B. Putz. 2005. Biowaste
compost affects yield, nitrogen supply during
the vegetation period and crop quality of
agricultural crops. Eur. J. Agron. 23:305–314.

Fascella, G., G.V. Zizzo, C.V. Costantino, and
S. Agnello. 2003. Effect of different substrates
on soilless cultivation of Ruscus hypoglossum for
cut foliage production. Acta Hortic. 614:211–215.

Garcia-Gomez, A., M.P. Bernal, and A. Roig.
2002. Growth of ornamental plants in two
composts prepared from agroindustrial wastes.
Bioresour. Technol. 83:81–87.

Grigatti, M., M.E. Giorgioni, L. Cavanl, and C.
Ciavatta. 2007. Vector analysis in the study of
the nutritional status of Philodendron cultivated
in compost-based media. Sci. Hortic. 112:448–
455.
Guérin, V., F. Lemaire, O. Marfá, R. Caceres, and F. Giuffrida. 2001. Growth of *Viburnum tinus* in peat-based and peat-substitute growing media. Sci. Hort. 89:129–142.

Guerrero, F., J.M. Gascó, and L. Hernández-Apaolaza. 2002. Use of pine bark and sewage sludge compost as components of substrates for *Pinus pinea* and *Cupressus arizonica* production. J. Plant Nutr. 25:129–141.

Gutierrez-Miceli, F., J. Santiago-Borraz, J.A. Mon-tes Molina, C.C. Nafate, M. Abud-Archila, M.A. Oliva Llaven, R. Rinco´n-Rosales, and L. Dendooven. 2007. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (*Lycopersicum esculentum*). Bioresearch. Technol. 98:2781–2786.

Hargreaves, J.C., M.S. Adl, and P.R. Warman. 2008. A review of the use of composted municipal solid waste in agriculture. Agr. Ecosyst. Environ. 123:1–14.

Hernández-Apaolaza, L., A.M. Gascó, J.M. Gasco´, and F. Guerrero. 2005. Reuse of waste materials as growing media for ornamental plants. Bioresearch. Technol. 96:125–131.

Hidalgo, P.R. and R.L. Harkess. 2002. Earthworm castings as a substrate for *Posidetia produc- tion*. HortScience 37:304–308.

Hockstra, H.J., T. Bosker, and E.A. Lantinga. 2002. Effects of cattle dung from farms with different feeling strategies on germination and initial root growth of cress (*Lepidium sativum* L.). Agr. Ecosyst. Environ. 93:189–196.

Jackson, L.E., U. Pascual, and T. Hodgkin. 2007. Utilizing and conserving agrobiodiversity in agricultural landscapes. Agr. Ecosyst. Environ. 121:196–210.

Klock, K.A. 1997. Growth of salt sensitive bedding plants in media amended with composted urban waste. Compost Sci. Util. 5:55–59.

Lennartsson, M. 1997. The peat conservation issue and the need for alternatives. In: Proc. of the IPS International Peat Conference on Peat in Horticulture. Schmielewski, Amsterdam. p. 112–121.

Marfá, O., F. Lemaire, R. Caceres, F. Giuffrida, and V. Guerin. 2002. Relationships between growing media fertility, percolate composition and fertigation strategy in peat-substitute sub- strates used for growing ornamental shrubs. Sci. Hort. 94:309–321.

Meerow, A.W. 1994. Growth of two subtropical ornamentals using coir (coconut mesocarp pith) as a peat substitute. HortScience 29:1484–1486.

Meerow, A.W. 1995. Growth of two tropical foliage plants using coir dust as a container media amendment. HortTechnology 5:237–239.

Moldes, A., Y. Cendon, and M.T. Barral. 2007. Evaluation of municipal solid waste compost as a plant growing media component, by applying mixture design. Bioresearch. Technol. 98:3069–3075.

Offord, C.A., S. Muir, and J.L. Tyler. 1998. Growth of selected Australian plants in soiless media using coir as substitute for peat. Aust. J. Exp. Agr. 38:879–887.

Pinamonti, F., G. Stringari, and G. Zorzi. 1997. Use of compost in soiless cultivation. Compost Sci. Util. 5:38–46.

Prasad, M. and M.J. Maher. 2001. The use of composted green waste (CGW) as a growing medium component. Acta Hort. 549:107–113.

Ribeiro, H., A.M. Romero, H. Pereira, P. Borges, F. Cabral, and E. Vasconcelos. 2007. Evaluation of a compost obtained from forestry wastes and solid phase of pig slurry as a substrate for seedlings production. Bioresearch. Technol. 98:3294–3297.

Sánchez-Monedero, M.A., A. Roig, J. Cegarra, M.P. Bernal, P. Noguer, M. Abad, and A. Anton. 2004. Compost as media constituents for vegetable transplant production. Compost Sci. Util. 12:161–168.

Scagel, C.F. 2003. Growth and nutrient use of ericaceous plants grown in media amended with sphagnum moss peat or coir dust. HortScience 38:46–54.

Smith, B.R., P.R. Fisher, and W.R. Argo. 2004. Growth and pigment content of container-grown *Impatiens* and *Petunia* in relation to root substrate pH and applied micronutrient concentra- tion. HortScience 39:1421–1425.

Stamps, R.H. and M.R. Evans. 1997. Growth of *Dieffenbachia maculata* ‘Camille’ in growing media containing *Sphagnum* peat or coconut coir dust. HortScience 32:844–847.

Taylor, H.M. and L.F. Ratliff. 1969. Root elongation rates of cotton and peanuts as a function of soil strength and soil water content. Soil Sci. 108:113–119.

Urrestarazu, M., M.C. Salas, M.I. Padilla, J. Moreno, M.A. Elorrieta, and G.A. Carrasco. 2001. Evaluation of different composts from horticultural crop residues and their uses in greenhouse soilless cropping. Acta Hort. 549:147–152.

van der Gaag, D.J., F.R. van Noort, L.H.M. Stapel-cuijpers, C. de Kreij, A.J. Termorshuizen, E. van Rijn, S. Zmora-Nahum, and Y. Chen. 2007. The use of green waste compost in peat-based potting mixtures: Fertilization and suppressive- ness against soilborne diseases. Sci. Hort. 114:289–297.

Zucconi, F., A. Pera, M. Forte, and M. De Bertoldi. 1981. Evaluating toxicity of immature com- post. BioCycle 22:54–57.