SUPPLEMENTAL MATERIAL
Data S1. Supplemental Methods

Input Impedance of Uniform Tube Models

Model A. Uniform Elastic Tube with a Resistive Load

Input impedance of this model is expressed in its most general form as

$$Z_{in,\text{INF}}(j\omega) = Z_c \frac{1+\Gamma_{LA}(j\omega)e^{-j2\omega\tau_A}}{1-\Gamma_{LA}(j\omega)e^{-j2\omega\tau_A}} \quad (1)$$

where Z_c is characteristic impedance of the tube and τ_A is the one-way wave transit time to the reflection site at the terminal end of the tube.

$\Gamma_{LA}(j\omega)$ is the load reflection coefficient seen at the termination, where $Z_L(j\omega)$ is the terminal load impedance:

$$\Gamma_{LA}(j\omega) = \frac{Z_{LA}(j\omega)-Z_c}{Z_{LA}(j\omega)+Z_c} \quad (2)$$

In the case of a purely resistive load, the load impedance $Z_L(j\omega)$ is frequency-independent and is simply equal to total peripheral resistance R_p. This reduces the load reflection coefficient to a purely real number in the mathematical sense (i.e. frequency-independent).

$$\Gamma_{LA} = \frac{R_p-Z_c}{R_p+Z_c} \quad (3)$$

Input impedance can then be expressed in its final form:

$$Z_{in,\text{INF}}(j\omega) = Z_c \frac{1+\Gamma_{LA}e^{-j2\omega\tau_A}}{1-\Gamma_{LA}e^{-j2\omega\tau_A}} \quad (4)$$

With values of three parameters {R_p, Z_c, τ_A}, a continuous input impedance spectrum can be obtained.

In the case of time to inflection point on the pressure waveform (T_{INF}), τ_A is one half this value, $\tau_A = 0.5*T_{\text{INF}}$. Z_c is characteristic impedance of the aorta, estimated from pressure-flow data using standard methods, and R_p is the ratio of mean arterial pressure to cardiac output.

Use of the quarter wavelength formula to estimate “effective length” (L_{eff}) of the arterial system or equivalently, “effective reflection distance” (ERD), assumes this particular input impedance model, where PWV is pulse wave velocity and f_{min} is the frequency at the first minimum of the impedance modulus.²

$$L_{\text{eff,INF}} = ERD_{\text{INF}} = \frac{PWV}{4f_{\text{min}}} \quad (5)$$

In this model, the first zero-crossing of impedance phase occurs at the same frequency (f_{∞}) as f_{min}.

Since use of equation (5) requires both pressure and flow waveforms to determine f_{min} (impedance analysis), attempts have been made to determine a surrogate of f_{min} from analysis of the pressure waveform alone (i.e. T_{INF}). It has been reported that T_{INF} determined from analysis...
of the pressure waveform alone correlates well to \(f_{\text{min}} \) from impedance data, such that the following relation can be substituted for \(f_{\text{min}} \):

\[
f_{\text{min}} = \frac{1}{2T_{\text{INF}}} \]

Upon substitution into equation (5), this leads to the commonly used equation for effective reflection distance, using pressure-waveform-only analysis along with a measurement of PWV:

\[
L_{\text{eff, INF}} = ERD_{\text{INF}} = \frac{\text{PWV}}{2} T_{\text{INF}}
\]

The reported high correlation between \(T_{\text{INF}} \) and \(f_{\text{min}} \) is important so long as the input impedance implied by the underlying model can suitably approximate measured arterial input impedance. Figure S2A shows input impedance implied by this model for each decade of age in the healthy aging sample.

It can be appreciated that there are strong dissimilarities with patterns of reported arterial input impedance in the literature.\(^2,4,5\) Note the strong oscillation in the impedance modulus plot. This would indicate very strong reflections in the higher frequencies, which is inconsistent with patterns encountered \textit{in vivo}. Furthermore, the phase angle of Figure S2A oscillates strongly between very negative to very positive values.

Model B. Uniform Elastic Tube with a (Complex) Frequency-Dependent Load

In order to better match the classical tube models to the complex and frequency-dependent reflection coefficients encountered \textit{in vivo}, a terminal load that accounts for the low-pass filtering features of the distal circulation can be incorporated.\(^6\)

Load impedance can then be expressed in terms of \(R_p \), load compliance (\(C_l \)), and a high-frequency resistive element (\(R_d \)). Input impedance of this model (\(Z_{\text{in,B}} \)) can be made to match aortic \(Z_c \) with increasing frequency, as encountered \textit{in vivo}, if \(R_d \) is expressed as follows:

\[
R_d = \frac{R_p Z_c}{R_p - Z_c}
\]

Load impedance of this model, \(Z_{L,B}(j\omega) \) is expressed as

\[
Z_{L,B}(j\omega) = R_p \frac{1 + j\omega \tau_n}{1 + j\omega \tau_d}
\]

where the time constants (\(\tau_n, \tau_d \)) are defined as

\[
\tau_n = R_d C_l \\
\tau_d = (R_p + R_d) C_l
\]

The reflection coefficient seen at load is thus frequency-dependent

\[
\Gamma_{L,B}(j\omega) = \frac{Z_{L,B}(j\omega) - Z_c}{Z_{L,B}(j\omega) + Z_c}
\]

and input impedance of this model can be fully expressed as

\[
Z_{\text{in,TL}}(j\omega) = Z_c \frac{1 + \Gamma_{L,B}(j\omega)e^{-j\omega \tau_B}}{1 - \Gamma_{L,B}(j\omega)e^{-j\omega \tau_B}}
\]
τ_B is the one-way wave transit time to the reflection site in this model, equal to one half of $RWTT_{TL}$ used in the current study.

ERD can then be calculated as

$$L_{eff,TL} = ERD_{TL} = PWV \times \tau_B = PWV \frac{RWTT_{TL}}{2} \quad (11)$$

Figure S2B shows input impedance implied by this model for each decade of age in the healthy aging sample. These patterns resemble much more closely the reported arterial input impedance patterns with aging.2,4,5,7,8

Data S2. Supplemental Discussion

Quarter Wavelength Formula Overestimates Effective Reflection Distance

As clarified by Burattini *et al*6,9,10, when the effective reflection site is more suitably represented by a complex reflection coefficient, the ERD can be computed as

$$ERD = \frac{PWV}{4 f_{zc}} \left(1 + \frac{\varphi(f_{zc})}{\pi}\right),$$

where f_{zc} is the frequency at which the input impedance angle crosses zero and $\varphi(f_{zc})$ is the phase of the effective (load) reflection coefficient at frequency of f_{zc}; note that the quarter wavelength formula emerges when $\varphi(f_{zc})$ is set to zero. Because the phase of reflection $[\varphi(f_{zc})]$ is generally negative in vivo9,11–13, ERD calculations that account for the phase of reflection will necessarily be less than values computed by the quarter wavelength formula. This explains why the frequently reported values of ERD employing the quarter wavelength formula4,14,15,5,16 are significantly higher than values we report here using tube-load modeling. The general acceptance and frequent reporting of ERD estimates5,17 of around 0.5 m computed by the quarter wavelength formula may indeed be consensus-based (since 0.5 m from the heart is close to the terminal aortic bifurcation and apparently plausible) rather than on appropriate use of a suitable reduced model of the arterial system.

Early-Systolic (Before Peak Flow) Reflections

In regards to the apparent reflection-free early-systole implied by T_{INF}, the hemodynamic literature provides support for the existence of early-systolic effects of wave reflections. In a study of seven mongrel dogs in which invasive and simultaneous measurements of aortic pressure and flow were analyzed6, Burattini and Di Carlo found that one-way wave transit times (to an effective reflection site) averaged 14 msec (calculated as $\sqrt{(ld)(cd)}$ from their Table I), giving a $RWTT_{TL}$ of 28 msec. This timing precedes time of peak flow and the inflection point observed on the aortic pressure waveforms, which occurred around 50 msec. In another study combining a large-scale model of the systemic arterial tree based on Womersley’s theory and dog experiments, $RWTT_{TL}$ averaged 37.2 msec.18 Although the studies employed the same tube-load model we use in the present study (for estimating $RWTT_{TL}$), it can be appreciated that both their invasive and numerical and our noninvasive studies agree that significant effects of reflection can precede time of peak flow (and T_{INF}).
With the additional measurement of descending thoracic aortic flow, studies of wave reflection can be extended to the modified asymmetric T-tube model. Applying this model to dogs, Shroff et al. found one-way transit times to effective reflection sites in the head-end and body-end circulations of approximately 25 msec and 55 msec, respectively, during control conditions; peak flow occurred around 60 msec and calculated RWTT from the head-end circulation (~50 msec) preceded peak flow. Burattini and Campbell, applying the same model, similarly found times of 26.5 msec and 68.5 msec for head-end and body-end circulations, with peak flow similarly occurring at around 60 msec. Consistent with these invasive studies, when the timing of arterial wave reflections is assessed using both pressure and flow measurements (as opposed to pressure-only analysis), along with a suitable arterial system model, there is no theoretical support for a reflection-less state until the time of peak, nor there is a need to make this assumption.

Reports evaluating time-domain techniques to estimate aortic characteristic impedance from early-systolic pressure-flow relationships also lend support for reflections that can occur prior to time of peak flow. Estimations of aortic Zc vary depending on the region chosen on the early-systolic pressure-flow waveforms, with various authors invoking different criteria to minimize the effects of reflections (e.g. first 60 msec of ejection, period up to 95% of peak flow, peak derivatives, etc.). Evidence of early-systolic wave reflections have also been found when estimating local pulse wave velocity in both in vivo and in 3D fluid-structure interaction simulation studies. It was shown that an apparent linear early-systolic relation between pressure and flow (velocity) is insufficient to conclude a reflection-free period in early-systole; wave reflections can cause under- and over-estimation of local pulse wave velocity. Therefore, applying methods that purportedly track timing of wave reflections but are apparently blind to early-systolic wave reflections should be discouraged, since they lead to artificial asymptotes when studied across a large range of age.

Modeling Study: RWTT_{WSA}/ERD_{WSA} Confounded by the Phase of Reflection

We note that the pattern of changes in RWTT_{WSA} with aging roughly parallels that of RWTT_{TL} across the age spectrum studied. We conducted a modeling study (below), which confirmed that the apparent discrepancy in absolute RWTT values is due to the fact that RWTT_{WSA} does not account for complex nature of the reflection coefficient (i.e. frequency-dependent in magnitude and phase) encountered in vivo, whereas tube-load modeling implicitly does. Therefore, time delay measures between P_f and P_b represent an accurate estimate of RWTT if phase shifts at the reflection site are assumed to be absent. RWTT_{TL} emerges as the most logically consistent and theoretically justifiable measure of RWTT.

A model of the left ventricle (LV) coupled to the aorta terminating in a complex load was used to demonstrate the effects of the phase of reflection on RWTT_{WSA} and ERD_{WSA}. This model incorporates a single (complex) reflecting site at a known distance from the heart (28 cm).

The parameters characterizing the LV model: E_{max} = 1.53 mmHg•mL^{-1}; E_{min} = 0.08 mmHg•mL^{-1}; EDV = 157 mL; HR = 75 bpm; k = 0.0005 s•mL^{-1}.
The parameters used in the arterial system model: \(PWV = 700 \text{ cm/s} \); \(d = 28 \text{ cm} \); \(Z_0 = 0.079 \text{ mmHg s mL}^{-1} \); \(R_p = 0.85 \text{ mmHg s mL}^{-1} \); \(C = 1.21 \text{ mL mmHg}^{-1} \).

Aortic input impedance of the model is shown in Figure S4. The vertical red line indicates the frequency of the impedance modulus minimum. The vertical purple line indicates the frequency at which the phase crosses zero. Consistent with impedance patterns observed \textit{in vivo}, these two frequencies are not identical.6,30

Aortic pressure and flow waveforms from the model are shown in Figure S5A. After wave separation analysis, the forward and backward pressure waves are shown in Figure S5B. The dashed vertical red and green lines indicate the zero-crossings of the backward and forward pressure waves, respectively.

\(\text{RWTT}_{\text{WSA}} \) was calculated as 160 msec and with use of the known \(PWV=700 \text{ cm/s} \), \(\text{ERD}_{\text{WSA}} \) is estimated as 56 cm. In this case, length of the aorta is overestimated by 100\% (known length of the aorta is 28 cm), due to the phase shift caused by reflection at the complex load. This is the same limitation encountered by using \(T_{\text{INF}} \) as reflection timing; \(\text{RWTT}_{\text{WSA}} \) and \(T_{\text{INF}} \) will provide accurate estimates of reflection timing only if reflection coefficients encountered \textit{in vivo} are purely real (e.g. that vascular compliance and wave transmission phenomena are non-existent outside the aorta). It is interesting to note that the overestimation of \(\text{ERD} \) by \(\text{ERD}_{\text{WSA}} \) of this example is on the same order of magnitude observed in the younger adults of the present study (Figure 2); accounting for the different phases of reflection for each subject, as implicit in the \(\text{RWTT}_{\text{TL}} \) and \(\text{ERD}_{\text{TL}} \) procedure used in the present study, resolves the overestimation.
Figure S1. Example of a case in which the zero-crossing of P_b is poorly defined. Due to the presence of noise, particularly on high-frequency features of pressure and flow waveforms, single-point landmarks (e.g. zero-crossing, ‘foot’) may be ambiguous. Note that there is no apparent ‘foot’ to the backward wave (due to the presence of multiple reflection sites in vivo). Empirically imposing a ‘foot’ to P_b may amplify the significance of high-frequency artefacts (e.g. due to pressure-flow alignment processes, use of surrogate waveforms, etc.).
Figure S2. Arterial input impedance implied by (A) T_{INF} and the quarter wavelength formula, and (B) tube-load modeling with a complex and frequency-dependent load for each decade of age in the clinical sample. Vertical lines correspond to the frequencies of impedance modulus minimum and phase angle zero-crossings.
Figure S3. Arterial input impedance implied by (A) T_{INF} and the quarter wavelength formula, and (B) tube-load modeling with a complex and frequency-dependent load for each decade of age in the general sample. Vertical lines correspond to the frequencies of impedance modulus minimum and phase angle zero-crossings.
Figure S4. Aortic input impedance from the model-based study. The vertical red and purple lines correspond to the frequencies at which the impedance modulus is minimum and the phase angle crosses zero degrees, respectively. As generally encountered in vivo, these two frequencies are not identical.
Figure S5. (A) Aortic pressure and flow waveform from the model-based study. (B) Aortic pressure separated into its forward and backward traveling components. The vertical dashed green and red lines correspond to the zero-crossings of the forward and backward waves, respectively.
Figure S6. Carotid-radial PWV measurements were available in the clinical population sample. The reported15 trend of carotid-femoral PWV surpassing muscular artery PWV is reproduced in our clinical sample. Contrary to the age-related impedance-matching interpretation of this PWV-gradient cross-over, pressure-flow analyses reveal earlier effects of reflection.
References:

1. Burattini R, Campbell KB. Physiological Relevance of Uniform Elastic Tube-Models to Infer Descending Aortic Wave Reflection: A Problem of Identifiability. *Annals of Biomedical Engineering*. 2000;28:512–523.

2. Latham RD, Westerhof N, Sipkema P, Rubal BJ, Reuderink P, Murgo JP. Regional wave travel and reflections along the human aorta: a study with six simultaneous micromanometric pressures. *Circulation*. 1985;72:1257–1269.

3. Bos GCVD, Westerhof N, Elzinga G, Sipkema P. Reflection in the systemic arterial system: effects of aortic and carotid occlusion. *Cardiovascular Research*. 1976;10:565–573.

4. Murgo JP, Westerhof N, Giolma JP, Altobelli SA. Aortic input impedance in normal man: relationship to pressure wave forms. *Circulation*. 1980;62:105–116.

5. Nichols WW, Nichols WW, McDonald DA eds. *McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles*. 6th ed. London: Hodder Arnold; 2011.

6. Burattini R, Di Carlo S. Effective length of the arterial circulation determined in the dog by aid of a model of the systemic input impedance. *IEEE Transactions on Biomedical Engineering*. 1988;35:53–61.

7. Kelly R, Fitchett D. Noninvasive determination of aortic input impedance and external left ventricular power output: A validation and repeatability study of a new technique. *Journal of the American College of Cardiology*. 1992;20:952–963.

8. Segers P, Rietzschel ER, De Buyzere ML, Vermeersch SJ, De Bacquier D, Van Bortel LM, De Backer G, Gillebert TC, Verdonck PR, on behalf of the Asklepios investigators. Noninvasive (Input) Impedance, Pulse Wave Velocity, and Wave Reflection in Healthy Middle-Aged Men and Women. *Hypertension*. 2007;49:1248–1255.

9. Burattini R. Downstream from the Heart Left Ventricle. In: *Modelling Methodology for Physiology and Medicine*. Elsevier; 2014:503–525.

10. Burattini R, Knowlen GG, Campbell KB. Two arterial effective reflecting sites may appear as one to the heart. *Circulation Research*. 1991;68:85–99.

11. Li JK, Melbin J, Noordergraaf A. Directional disparity of pulse reflection in the dog. *The American Journal of Physiology*. 1984;247:H95–99.

12. Milnor WR. *Hemodynamics*. 2nd ed. Baltimore: Williams & Wilkins; 1989.

13. Milnor WR, Bertram CD. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo. *Circulation Research*. 1978;43:870–879.

14. Mitchell GF, Parise H, Benjamin EJ, Larson MG, Keyes MJ, Vita JA, Vasan RS, Levy D. Changes in Arterial Stiffness and Wave Reflection With Advancing Age in Healthy Men and Women: The Framingham Heart Study. *Hypertension*. 2004;43:1239–1245.

15. Mitchell GF, Wang N, Palmisano JN, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS. Hemodynamic Correlates of Blood Pressure Across the Adult Age Spectrum: Noninvasive Evaluation in the Framingham Heart Study. *Circulation*. 2010;122:1379–1386.

16. Torjesen AA, Wang N, Larson MG, Hamburg NM, Vita JA, Levy D, Benjamin EJ, Vasan RS, Mitchell GF. Forward and Backward Wave Morphology and Central Pressure Augmentation in Men and Women in the Framingham Heart Study. *Hypertension*. 2014;64:259–265.

17. Izzo JL. Brachial vs. Central Systolic Pressure and Pulse Wave Transmission Indicators: A Critical Analysis. *American Journal of Hypertension*. 2014;27:1433–1442.
18. Burattini R, Gnudi G. Computer identification of models for the arterial tree input impedance: Comparison between two new simple models and first experimental results. *Medical & Biological Engineering & Computing*. 1982;20:134–144.

19. Burattini R, Campbell KB. Modified asymmetric T-tube model to infer arterial wave reflection at the aortic root. *IEEE Transactions on Biomedical Engineering*. 1989;36:805–814.

20. Shroff SG, Berger DS, Korcarz C, Lang RM, Marcus RH, Miller DE. Physiological relevance of T-tube model parameters with emphasis on arterial compliances. *The American Journal of Physiology*. 1995;269:H365–374.

21. Dujardin J-PL, Stone DN. Characteristic impedance of the proximal aorta determined in the time and frequency domain: a comparison. *Medical & Biological Engineering & Computing*. 1981;19:565–568.

22. Lucas CL, Wilcox BR, Ha B, Henry GW. Comparison of time domain algorithms for estimating aortic characteristic impedance in humans. *IEEE Transactions on Biomedical Engineering*. 1988;35:62–68.

23. Li JK-J. *The arterial circulation physical principles and clinical applications*. Totowa, N.J.: Humana Press; 2000.

24. Mitchell GF, Tardif J-C, Arnold JMO, Marchiori G, O’Brien TX, Dunlap ME, Pfeffer MA. Pulsatile Hemodynamics in Congestive Heart Failure. *Hypertension*. 2001;38:1433–1439.

25. Chirinos JA, Segers P. Noninvasive Evaluation of Left Ventricular Afterload: Part 2: Arterial Pressure-Flow and Pressure-Volume Relations in Humans. *Hypertension*. 2010;56:563–570.

26. Swillens A, Taelman L, Degroote J, Vierendeels J, Segers P. Comparison of Non-Invasive Methods for Measurement of Local Pulse Wave Velocity Using FSI-Simulations and In Vivo Data. *Annals of Biomedical Engineering*. 2013;41:1567–1578.

27. Segers P, Swillens A, Taelman L, Vierendeels J. Wave reflection leads to over- and underestimation of local wave speed by the PU- and QA-loop methods: theoretical basis and solution to the problem. *Physiological Measurement*. 2014;35:847–861.

28. Shroff SG, Janicki JS, Weber KT. Evidence and quantitation of left ventricular systolic resistance. *The American Journal of Physiology*. 1985;249:H358–370.

29. Reymond P, Merenda F, Perren F, Rufenacht D, Stergiopulos N. Validation of a one-dimensional model of the systemic arterial tree. *AJP: Heart and Circulatory Physiology*. 2009;297:H208–H222.

30. Westerhof N, Stergiopulos N, Noble MIM. *Snapshots of hemodynamics an aid for clinical research and graduate education*. New York: Springer; 2010.