Can we debug the Universe?

Apostolos Syropoulos
Greek Molecular Computing Group
366, 28th October Str.
GR-671 00 Xanthi, GREECE
asyropoulos@yahoo.com
October 26, 2009

Abstract

Roughly, the Church-Turing thesis is a hypothesis that describes exactly what can be computed by any real or feasible conceptual computing device. Generally speaking, the computational metaphor is the idea that everything, including the universe itself, has a computational nature. However, if the Church-Turing thesis is not valid, then does it make sense to expect the construction of a computer program capable of simulating the whole Universe? In the lights of hypercomputation, the scientific discipline that is about computing beyond the Church-Turing barrier, the most natural answer to this question is: No. This note is a justification of this answer and its deeper meaning based on arguments from physics, the philosophy of the mind, and, of course, (hyper)computability theory.

1 Introduction

Alan Mathison Turing is considered by many as the father of modern computer science because he set the mathematical foundation of the rough notion of computation. In the 1930s he published his trail-blazing paper entitled “On Computable Numbers with an Application to the Entscheidungsproblem” [28] in which he introduced a conceptual computing device that now bears his name. The Turing machine is a simple and elegant device that consists of a scanning head that can move on top of an infinite tape, which is divided into cells. The scanning head can read symbols from or print symbols on each cell, but it is not specified how it can recognize symbols, how it can erase symbols, etc. Also, the machine’s actions are predetermined by a set of rules called the controlling device. Despite the machine’s simplicity, one can easily see that Turing machines can compute a great number of natural numbers and natural number functions. In fact, Turing proved that the functions computable by his machine are precisely the recursive functions (for example, see [22] for an excellent introduction to the theory of recursive functions).

Of course the Turing machine is not the only approach to the problem of representing/computing natural numbers and natural number functions. Nevertheless, a number of different approaches can be used to compute/describe at most the recursive functions. This observation has led Alonzo Church to formulate a thesis, the so-called Church-Turing thesis. This thesis, which should be better called a hypothesis since it is not amenable to direct proof, roughly states that only the recursive functions are computable. And since only recursive functions are computable

*An early version of this paper was read in the “Future Trends in Hypercomputation” Workshop held in Sheffield U.K., 11-13 September 2006.
by a Turing machine, if one cannot construct a Turing machine to compute a number or a function value, then it is *incomputable* according to the Church-Turing thesis.

In their long quest for a *mechanistic* explanation of the mind-body problem, advocates of mechanism saw the Turing machine as a savior! Indeed, by supporting the idea that the brain is a realization of a Turing machine, they concluded that mental states are just computational states. Thus, one can easily “show” that the capabilities of anybody’s mind are delimited by the Church-Turing barrier. This approach is known in the literature as the *computational metaphor*. This metaphor has been used to “solve” so many and different problems that is almost heretical to speak against its validity and its ability to really solve problems related to the functionality of the human brain. In addition, any idea challenging the core of the computational metaphor (i.e., any attempt to disconnect the capabilities of the mind from the computational capabilities of the Turing machine), is considered by many as an unorthodox way of thinking.

In this context, it was extremely difficult to put forth the idea that the Church-Turing thesis is not valid. Anyone defending such an idea would have to face the scepticism and, in many cases, the sarcasm of the majority of the scientific community. Nevertheless, Jack Copeland and Diane Proudfoot made a bold move forward and openly defended *hypercomputation* in [5], that is, the idea that there are both real and feasible conceptual machines that can compute more than the Turing machine does. Not so surprisingly, Copeland and Proudfoot’s hypercomputation did not harm the computational metaphor. On the contrary, Copeland proposed in [4] the so-called “wide mechanism,” that is, roughly the idea that the brain might be a hypercomputer and not just a computer.

As was noted above, the computational metaphor was *applied* in so many fields, that it was just a matter of time to be applied in physics. For example, Brian Hayes has investigated in [9] the possibility to construct a computer program written in some ordinary computer programming language (e.g., Java or C) capable of simulating the Universe (whatever one perceives as such). He has reached the conclusion that although this is a particularly difficult task, nevertheless, it is a feasible one. Nonetheless, this conclusion has a number of interesting consequences: Let us assume that we have at our disposal a computer capable of running such a computer program. Then, after some time, one will witness the emergence of intelligent life forms in this virtual universe, which, quite possibly, one (virtual) day will construct a (virtual) computer program and a (virtual) computer capable of simulating their own universe, etc. I am convinced that this story is ideal for scripts for sci-fi movies (e.g., the movie “The Thirteenth Floor,” see http://www.imdb.com/title/tt0139809/ for movie details, is based on a very similar idea), but it has nothing to do with reality. Nevertheless, there are many who actually believe that we do live in a computer simulation. Going one step further, Nick Bostrom has suggested in [2] that the human race will be able to reach the “posthuman” stage if and only if we are living in a computer simulation! Of course, one may argue that this idea and hypercomputation are equally absurd. However, such an argument is unfair to hypercomputation. First, hypercomputation is about what can be computed—it is the idea that we cannot pose artificial limits to what can be computed unless we fully understand the cosmos. In addition, it is not some sort of obsession against the validity of the Church-Turing thesis—it is the idea that *computable* does not necessarily mean *Turing computable*. Second, the idea that we live in a computer simulation is closer to theology than science. After all, one may argue that we indeed live in a “computer simulation” operated by God. But, this is an entirely different problem, which should concern theologians and, then, probably, science fiction authors.

Plan of the paper After this introduction, I will argue against the plausibility of the idea that our universe is a computer program running on some cosmic computer (whatever this may mean). In particular, I will argue against the computational metaphor and against the common
belief that all physical phenomena are computational in their nature. In the end there is a short section presenting our conclusions and ideas for future research.

2 Is the Human Mind a Turing Machine?

My son knows how to add, to subtract, to multiply and to divide numbers—this is something millions, if not billions, of people can do. Indeed, any average person can do (simple) arithmetic operations, while some more gifted people can perform very complicated mathematical operations without using paper and pencil. Nevertheless, observations like this are a proof that the human brain (that is, the brain of an average person) has computational capabilities. But, this is certainly not a proof that the human brain is merely a computing device. In addition, it is interesting to see what is the computational power of the brain, when considered as a biological machine that has computational capabilities.

In the light of hypercomputation, the Church-Turing barrier does not exist and, more generally, there is no barrier to what can be computed simply because we do not have a full understanding of our cosmos. Thus, it is only possible to compare computational devices and classify their respective computational power. But, first, it is more than necessary to define what computation means. In general, one may define computation as a symbol manipulation process performed by a computational system. More specifically, a computational system consists of a processor, which performs the computation, and a machinery to encode data in a form manipulable by the processor. The partial or final result of the computation should be decoded back to a human readable form. Sometimes, the encoding and the decoding processes are trivial, but, in other cases, they may involve quite sophisticated procedures (e.g., think of DNA computing). Obviously, computing devices with similar computing power should be able to perform the same computing tasks regardless of the very nature of each computing task. The symbol manipulation process is a dull and unintelligent process as it involves the processing of symbols that completely lack meaning. To make this point clear, let us consider a simple C program:

```c
#include <stdio.h>
define write printf
int main(){
    write("10");
}
```

First of all, when this program will be executed it will print on a computer screen the string 10, but, obviously, as end users we do not have a way to tell whether this is a number or just a numeric string. In addition, by introducing a variable (i.e., write) to have the value printf, we are making write a new output command. So is there any meaning attached to the string printf? Not really—the compiler has been “instructed” to output the various literals (numbers, strings, etc.) and/or the value of variables that are surrounded by parentheses and separated by commas when it encounters the following sequence of characters:

```
p, r, i, n, t, and f.
```

In addition, what counts here is the outer shape of the letters (symbols), or, better, their ASCII or Unicode character codes, not the sound they represent. Clearly, any a C programmer knows that he/she has to use the string printf when in need to specify that something has to be

\footnote{Strictly speaking, this program cannot be executed. Nevertheless, one can compile it and then execute the resulting binary program or one can directly “executed” by feeding it to a C interpreter.}
Definition 2.1 Computation is an implementation-independent, systematically interpretable, symbol manipulation process.

From the discussion so far it is clear that meaning is more than computation. Naturally, one may object by saying that in science meaning is attached to objects of computation. But the physical objects, forces, etc. are there regardless of what we compute or not. In different words, the existence of physical things is independent from the computations that are possibly attached to them. Now, having a definition of computation, it is now possible to compare the computational power of a brain and the Turing machine.

Admittedly, it is not an easy task to compare the computational power of the human mind and the Turing machine. Nevertheless, it is known what is the computational power of the Turing machine—it can compute at most the recursive functions. Thus, it suffices to see whether the mind is capable of doing things no Turing machine can do. Typically, Turing incomputable problems are decision problems that demand an infinite number of tryouts to produce a definitive answer, while a typical Turing machine must produce an answer in a finite number of steps. The reason why Turing machines fail to compute such problems is mainly because they operate in an unintelligent way. In particular, Turing machines employ a brute-force search method to solve problems (i.e., the machine enumerates all possible candidates for the solution and checks whether each candidate satisfies the problem’s statement). Clearly, this is not the optimal way to solve any kind of problem. Nevertheless, this is the most general approach to the problem of checking whether an element belongs to a set.

The statement that the equation $x^n + y^n = z^n$ has no non-zero integer solutions for all x, y, and z, when $n > 2$, is known in the literature as Fermat’s last theorem. As is obvious, this problem cannot be solved by a Turing machine since it has an infinite solution space. Nevertheless, it is in principle possible to construct a Turing machine to verify that for some $n > 0$, the equation $x^n + y^n = z^n$ has no non-zero solutions for all natural numbers x, y, and z. Needless to say, this machine will never halt as it has to check that all x, y, and z satisfy the given condition. Mathematically speaking, this problem is a co-recursively enumerable decision problem within set theory under ZF (see [22, p. 322]). In 1995, Andrew John Wiles proved Fermat’s last theorem by using tricks from algebraic geometry. In other words, a human gave a definitive answer to a problem for which no Turing machine can give a definitive answer. Note that the Riemann hypothesis (i.e., the conjecture that the Riemann ζ function has no zeroes with real part between 0 and 1 other than those with real part equal to $\frac{1}{2}$) is similar in nature to Fermat’s last theorem. This means that sooner or later this problem will be solved by a human. Also, note that it is possible even today to “construct” a Turing machine to verify particular cases, but no Turing machine can give a definitive answer. These facts show that minds can hypercompute, since at least one of them can do things no Turing machine can do. In general, if the mind has computational capabilities beyond the Church-Turing barrier, its functional structure must reflect these capabilities.

Peter Kugel has proposed in [10] a hypercomputational model of the mind, according to which the mind consists of four different units, one of them being a trial-and-error machine (see [7, 20]). These machines are conceptual computing devices that can solve the Turing machine halting problem (i.e., the problem of determining whether a given Turing machine M operating on its input I will eventually stop or not) and, thus, are a feasible model of hypercomputation as it
will be demonstrated below. Typically, a trial-and-error machine is a kind of a Turing machine, which can be used to determine whether an element x belongs to a set $X \subset \mathbb{N}$, where \mathbb{N} denotes the set of positive integers including zero. More generally, a machine can decide whether a tuple (x_1, \ldots, x_n) belongs to a relation $R \subset \mathbb{N}^n$. In the course of its operation, a machine continuously prints out a sequence of responses (e.g., a sequence of ones and zeros with the intended meaning for each response). Always the last response is the correct one. Thus, if a machine has most recently printed “1,” then we know that its input element or tuple belongs to a set or a relation, respectively, unless the machine is going to change its mind; but we have no procedure for telling whether the machine will change again its mind or not. When a trial-and-error machine has printed out an infinite number of responses, after a certain point it will converge to a particular response and, thus, it will continuously print out the same response (i.e., either “1” or “0”).

Despite Kugel’s reliance on hypercomputation to describe the functionality of the brain, even though the term was not known at the time he was working on his model, the proposed model is in spirit with Copeland’s wide mechanism. Nevertheless, this model refutes Hayes’s conclusion, which is equivalent to the statement that the universe is computable. On the other hand, this model implicitly introduces the idea that the universe is hypercomputable. Still, this is a crude approach to the problem of the functionality of the brain. ARNNs have been introduced by Hava Siegelmann and are a form of neural networks with hypercomputational capabilities (see [25] for a thorough presentation of ARNNs). And since analog computers are fundamentally more powerful than Turing machines (see [13] for thorough discussion), Lee Albert Rubel’s the-mind-as-an-analog-computer model, which is described in [23], completely refutes Hayes’s conclusion.

Common phenomena and everyday practices follow a trial-and-error “behavioral pattern.” For example, ordinary people learn how to solve problems by unconsciously “invoking” a trial-and-error problem-solving strategy. In addition, evolution, the most important biological process is roughly a trial-and-error process. Figuratively speaking, nature continuously creates new species by evolving existing ones. The new species, which are more adaptable and more sophisticated compared to their predecessors, replace their predecessors. Nevertheless, these are not pure trial-and-error procedures as both are affected by “external” parameters (e.g., any kind of climatological change affects the evolutionary process). In this respect, these phenomena and practices are more general and might be characterized as interactive trial-and-error procedures. Such procedures are even more expressive than trial-and-error machines, since it has been shown that interactive systems are more powerful than Turing machines (see [30] for more details). So, one can safely conclude that evolution is an incomputable process. Furthermore, one may argue that any other evolutionary process is incomputable. In particular, based on the idea that culture is an evolutionary process, an idea that was put forth by Donald Campbell in [3], one may argue that culture is a process that is neither computable nor incomputable. I call any process that is not hypercomputable a paracomputational process.

In general, I call paracomputational any process that cannot be described algorithmically. In addition, paracomputational processes cannot be simulated by any computing device, though in principle it should be possible to simulate parts of such a process. Obviously, even a hypercomputer cannot simulate a paracomputational process. The most striking example of a paracomputational process is an orgasm, something that was pointed out to the author by Jaak Panksepp in a private communication. Now, I classify culture as a paracomputational process since it involves the communication of human minds. As was suggested by the famous Chinese Room Argument (CRA for short), which was put forth by John Searle in [24] (but see also [29]),

\[^2\text{Recent research results, presented in [26], contest this last part of the commonly accepted evolutionary process by providing evidence that two particular homo species, a predecessor and a successor, actually co-existed longer than expected.}\]
for a fresh look to the CRA), the mind is not a realization of a Turing machine. As might be expected, not everybody shares this view of things (for example, see [19] for a recent collection of papers discussing the CRA). Roughly, the argument goes as follows: a person who neither speaks Chinese nor understands the Chinese writing system is inside a room and is equipped with a rule-book. He receives questions in Chinese printed on piece of paper by a person fluent in Chinese. Using the rule-book, the person inside the room can type in responses on piece of paper. The outsider establishes a communication with the person inside the room and thinks that he actually speaks Chinese, but, as we have noted, he does not. The core of this argument is that dull symbol manipulation does not require intelligence to be carried out. As it was noted above computation is just this—dull manipulation of meaningless symbols. Obviously, an average mind can achieve more than any computing device, since, for example, it is capable of understanding the meaning associated to printed words. In other words, reading is not merely a symbol manipulation process, but something more. So culture is a paracomputational process, since it can be viewed as an entity consisting of minds that interact and, consequently, continuously change it.

I have showed that even if we accept wide mechanism the Universe is incomputable. However, the Universe is not just incomputable it is paracomputational since minds, which are parts of this Universe, have such properties. In conclusion:

Thesis 2.1 The Universe when viewed as an entity is incomputable and paracomputable.

3 Is the Universe a Turing Machine?

Pierre-Simon Laplace was probably the first thinker who advocated that the Universe is computable. Laplace’s daemon is a naïve explanation of why it is possible to know everything that goes on in the Universe. Essentially, Laplace’s daemon is no different from Haye’s computer program. A more sophisticated theory of a computable Universe was presented by Conrad Zuse in his monograph “Rechnender Raum” (Calculating Space [32]), which was published in 1969. Zuse advocated that one should be able to answer physical questions using the tools of automata theory. In a nutshell, Zuse supported the idea that everything physical is granular in nature as what we perceive as continuum can be divided into discrete cellular automata. Cellular automata are computing devices that do not violate the Church-Turing thesis, thus, it is in principle possible to compute all physical phenomena and, consequently, to compute the future. Naturally, this “conclusion” does not take into consideration conclusions such as these that was presented in the previous section. Of course, thinkers who try to show that the Universe is computable, take it for granted that everything in this Universe is actually a computable entity. Although, this view is definitely wrong, the general argument about the computational nature of the Universe is based on the assumption that space and time are granular.

Stephen Wolfram’s is another thinker who advocates that the Universe is computable. He has introduced in [31] the so-called principle of computational equivalence. This principle states that “almost all processes that are not obviously simple can be viewed as computations of equivalent sophistication.” As an application of this principle, Wolfram has used it in order to explain the phenomenon of free will. In particular, he argues that “[f]or even though all the components of our brains presumably follow definite laws, I strongly suspect that their overall behavior corresponds to an irreducible computation whose outcome can never in effect be found by reasonable laws.” From this, Wolfram goes one step further and concludes that free will

3 At http://mathworld.wolfram.com/CellularAutomaton.html one reads that “[a] cellular automaton is a collection of ‘colored’ cells on a grid of specified shape that evolves through a number of discrete time steps according to a set of rules based on the states of neighboring cells.”
is just an illusion! Clearly, Wolfram provides no proof for what he claims. Based on a vague principle and by assuming something about our brains, for which there is no scientific evidence, he actually dares to conclude that free will is an illusion! Fortunately, not all physicists deal with such delicate issues in such a reckless way. For example, Kip Thorne in his lucid account of the nature of black holes points out that “free will is a terribly difficult thing for physicists to deal with. We usually try to avoid it. It just confuses issues that otherwise might be lucid” [27 p. 507].

If cellular automata can explain free will, they can also explain life as a physical phenomenon. Indeed, Wolfram asserts that biological systems are the outcome of some simple programs (i.e., cellular automata). It is true that certain biological phenomena have an algorithmic nature. For example, the pigmentation of sea shells is a process that can be simulated by a computer (see [15] for more details). One the other hand, as was shown in the previous section, evolution, which is the most important aspect of life, is an incomputable process. Therefore, biological systems cannot possibly be the outcome of some simple (or even quite complex!) programs. Of course Wolfram does not stop here. He actually proposes that everything in this Universe is the outcome of a simple program! But this cannot be possibly true since there are incomputable phenomena. On the other hand, this seems to me like a digital theology, where God is replaced by a computer.

Norman Morgolus is another thinker who believes that the Universe and everything contained in it are computers. In particular, he advocates that “Nature is more like a spatially distributed Cellular Automaton than like a conventional von Neumann machine” [14]. In different words, he totally agrees with Wolfram. Clearly, if the Universe is not granular, then these theories will become groundless. So what is known about the nature of space and time?

Richard Lieu and Lloyd Hillman presented in [11] evidence that space and time are not discrete. In particular, they used images of a distant galaxy taken by the Hubble Space Telescope to directly test whether time continues to have its usual meaning on scales of \(t_p = \sqrt{\hbar G/c^3} \approx 10^{-44} \) s, where \(t_p \) is the Plank time formed by the speed of light \(c \), the quantum scale \(\hbar \), and the gravitational constant \(G \). Also, Roberto Ragazzoni, Massimo Turatto, and Wolfgang Gaessler using similar techniques reached identical results that are described in [21]. Nevertheless, these findings did not remain immune to challenges. In particular, Jack Ng and his colleagues cannot conclude in [17] “that modern theories of quantum gravity have been observationally ruled out.” Interestingly enough, Ng and his colleagues have used the techniques developed by Lieu and Hillman to rule out two of the three theories of quantum gravity!

If there are (strong?) indications that space and time are not granular but continuous, does it make any sense to try to find the ultimate limits of computation? Of course not! In spite of this, there are attempts to specify first the limits of computation and then to describe the ultimate computing device. The most striking examples of such devices are Seth Lloyd’s ultimate laptop, which is described in [12], and Ng’s black-hole-as-a-computer, which is described in [16].

In particular, Ng without providing a definition of what is computation argues that if \(\nu \) is the number of operations per unit time and \(I \) the number of bits of information in the memory space of a black hole, then it holds that \(I \nu^2 \lesssim t_p^2 \). The number \(\tilde{\nu} \) of operations per unit of time is given by \(\tilde{\nu} = I \nu \). Of course, when Ng says that a black hole computes, this implies that he is in a position to interpret certain sequences of events that take place inside a black hole as computation. More generally, it seems that Ng accepts universal realizability (i.e., the claim that anything can be described as implementing a computer program). Also, it is obvious that Ng and Lloyd do accept the validity of the Church-Turing thesis. Now, in the light of hypercomputation, one could argue that black holes are hypercomputers. But if black holes hypercompute, then no one can say anything about the capacity of their “memory” or their “computational” capabilities. So, no one can say anything about ultimate computing devices,
even if universal realizability is correct.

When one claims that a black hole computes, then of course it makes sense to claim that a chair computes, a house computes and even the paper you are reading right now computes. But if they compute, what do they compute? Following, Wolfram one would argue that all things physical compute the future. Also, one may argue that the Universe is a gigantic analog computer consisting of zillions computers, each of them computing its own future. However, the problem with such a thesis is that it contradicts with the definition of computation presented in Definition 2.1. It does make sense to ask: what are the symbols being processed and what are the rules that are followed? In addition, one should note that even modern digital computers do compute just because we have designed them to do computations. And of course when we switch off any computing device it stops processing information. So it is pure mysticism to claim that a material object (e.g., a book, a chair, or the Universe itself) computes something.

For the moment let us ignore all objections that presented so far and let us accept that space and time are granular and that the Universe is computable. Clearly, this would mean that all phenomena that take place in the Universe will be computable. But, if one could show that there are incomputable phenomena taking place in the Universe, then we would have a direct proof that the Universe is not computable—an otherwise computable Universe cannot possibly have incomputable constituents. So are there any incomputable physical phenomena?

Marian Pour-El and Jonathan Richards have shown in [18] that non-computability emerges naturally in wave propagation. In particular, they considered the wave propagation

$$\nabla^2 \psi = \frac{1}{v^2} \frac{\partial^2 \psi}{\partial t^2}$$

on compact domains and managed to find an incomputable function there. In addition, N.C.A. da Costa and F.A. Doria have managed to express the halting function in the language of calculus (for example see [6]). The essence of this discovery is that the halting function is in principle computable, if we agree that everything that can be given an explicit mathematical expression can be computed in some way. Moreover, Alisa Bokulich showed in [1] how to perform an infinite number of quantum mechanical measurements in a finite amount time, thus, implicitly showing that non-computability is an essential ingredient of a quantum mechanical world.

Although, I cannot accept the idea that the Universe is a finite entity, still it is pedagogically useful to think that what the majority of the scientific community considers as Universe is a gigantic analog machine. But the Universe is incomputable and events take place non-deterministically:

Thesis 3.1 When viewed as an entity the Universe is an incomputable analog machine that operates in a non-deterministic way.

4 Conclusions

I have argued why we cannot construct a computer program capable of simulating the universe. First of all, I have explained that conscious beings have both hypercomputational and para-computational capabilities. Thus, it is not possible to “(hyper-)compute” the mind of conscious beings. The Universe cannot possibly be granular, that is, space and time cannot be possibly discrete and so the Universe is analog in its very nature. Also, there are purely physical phenomena that are incomputable, which clearly implies that the Universe cannot be computed. In other words, we cannot debug the Universe!
Acknowledgments

I thank Bruno Scarpellini, Joseph Vidal-Rosset, and Francisco Antonio Doria for their many comments and suggestions that I have used to substantially improve the arguments presented in this paper.

References

[1] Bokulich, A. Quantum measurements and supertasks. International Studies in the Philosophy of Science 17, 2 (2003), 127–136.
[2] Bostrom, N. Are You Living in a Computer Simulation? Philosophical Quarterly 53, 211 (2003), 243–255.
[3] Campbell, D. T. Variation and Selective Retention in Socio-Cultural Evolution. In Social Change in Developing Areas: A Reinterpretation of Evolutionary Theory, H. R. Barringer, G. I. Blanksten, and R. W. Mack, Eds. Schenkman Publishing Company, Cambridge, MA, 1965, pp. 19–49.
[4] Copeland, B. J. Narrow versus Wide Mechanism: Including a Re-Examination of Turing’s Views on the Mind-Machine Issue. The Journal of Philosophy 97, 1 (2000), 5–32.
[5] Copeland, B. J., and Proudfoot, D. Alan Turing’s forgotten ideas in computer science. Scientific American 280 (1999), 76–81.
[6] da Costa, N. C. A., and Doria, F. A. Some thoughts on hypercomputation. Applied Mathematics and Computation 176, 1 (2006), 83–92.
[7] Gold, E. M. Limiting Recursion. The Journal of Symbolic Logic 30, 1 (1965), 28–48.
[8] Harnad, S. Computation Is Just Interpetable Symbol Manipulation; Cognition Isn’t. Minds and Machines 4, 4 (1995), 379–390.
[9] Hayes, B. Debugging the Universe. International Journal of Theoretical Physics 42, 2 (2003), 277–295.
[10] Kugel, P. Thinking may be more than computing. Cognition 22 (1986), 137–198.
[11] Lieu, R., and Hillman, L. W. The Phase Coherence of Light from Extragalactic Sources: Direct Evidence against First-Order Planck-Scale Fluctuations in Time and Space. The Astrophysical Journal Letters 585, 2 (2003), 77–80.
[12] Lloyd, S. Ultimate Physical Limits to Computation. Nature 406 (2000), 1047–1054.
[13] MacLennan, B. J. Natural computation and non-Turing models of computation. Theoretical Computer Science 317, 1–3 (2004), 115–145.
[14] Margolus, N. Looking at Nature as a Computer. International Journal of Theoretical Physics 42, 2 (2003), 309–327.
[15] Meinhardt, H. The Algorithmic Beauty of Sea Shells, 3rd ed. Springer-Verlag, Berlin, 2003.
[16] Ng, Y. J. From Computation to Black Holes and Space-Time Foam. Physical Review Letters 86, 14 (2001), 2946–2949.
[17] Ng, Y. J., Christiansen, W., and van Dam, H. Probing Planck-scale physics with Extragalactic Sources? The Astrophysical Journal Letters 591, 2 (2003), 83–86. Electronic version available from http://arxiv.org/astro-ph/0302372.
[18] Pour-El, M. B., and Richards, J. I. Computability in Analysis and Physics. Springer-Verlag, Berlin, 1989.
[19] Preston, J., and Bishop, M., Eds. Views into the Chinese Room (Oxford, UK, 2002), Oxford University Press.
[20] Putnam, H. Trial and Error Predicates and the Solution to a Problem of Mostowski. The Journal of Symbolic Logic 30, 1 (1965), 49–57.

[21] Ragazzoni, R., Turatto, M., and Gaessler, W. The Lack of Observational Evidence for the Quantum Structure of Spacetime at Planck Scales. The Astrophysical Journal Letters 587 (2003), L1–L4.

[22] Rogers, Jr., H. Theory of Recursive Functions and Effective Computability. The MIT Press, Cambridge, MA, USA, 1987.

[23] Rubel, L. A. The Brain as an Analog Computer. Journal of Theoretical Neurobiology 4 (1985), 73–81.

[24] Searle, J. R. Minds, Brains and Programs. Behavioral and Brain Sciences 3 (1980), 417–424.

[25] Siegelmann, H. T. Neural Networks and Analog Computation: Beyond the Turing Limit. Birkhäuser, Boston, 1999.

[26] Spoor, F., Leakey, M. G., Gathogo, P. N., Brown, F. H., Antón, S. C., McDougall, I., Kiarié, C., Manthi, F. K., and Leakey, L. N. Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya. Nature 448 (2007), 688–691.

[27] Thorne, K. S. Black Holes & Time Warps. W.W. Norton & Company, Inc., New York, 1994.

[28] Turing, A. M. On Computable Numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 42 (1936), 230–265. The paper is available on-line as http://www.abelard.org/turpap2/tp2-ie.asp and as http://www.thocp.net/biographies/papers/turing_oncomputablenumbers_1936.pdf.

[29] Wakefield, J. C. The Chinese Room Argument Reconsidered: Essentialism, Indeterminacy, and Strong AI. Minds and Machines 13 (2003), 285–319.

[30] Wegner, P. Interactive foundations of computing. Theoretical Computer Science 192 (1998), 315–351.

[31] Wolfram, S. A New Kind of Science. Wolfram Media, Inc., Champaign, IL, USA, 2002.

[32] Zuse, K. Rechnender Raum. Friedrich Vieweg & Sohn, Braunschweig, Germany, 1969. English translation available as ftp://ftp.idsia.ch/pub/juergen/zuserechnenderraum.pdf.