BMJ Open

Structural brain changes in hyperthyroid Graves’ disease: protocol for an ongoing longitudinal, case-controlled study in Göteborg, Sweden—the CogThy project

Mats Olof Holmberg, Helge Malmgren, Peter Berglund, Lina Bunketorp-Käll, Rolf A Heckemann, Birgitta Johansson, Niklas Klasson, Erik Olsson, Simon Skau, Helena Nystrom Filipsson

ABSTRACT

Introduction Cognitive impairment and reduced well-being are common manifestations of Graves' disease (GD). These symptoms are not only prevalent during the active phase of the disease but also often prevail for a long time after hyperthyroidism is considered cured. The pathogenic mechanisms involved in these brain-derived symptoms are currently unknown. The overall aim of the CogThy study is to identify the mechanism behind cognitive impairment to be able to recognise GD patients at risk.

Methods and analysis The study is a longitudinal, single-centre, case-controlled study conducted in Göteborg, Sweden on premenopausal women with newly diagnosed GD. The subjects are examined: at referral, at inclusion and then every 3.25 months until 15 months. Examinations include: laboratory measurements; eye evaluation; neuropsychiatric and neuropsychological testing; structural magnetic resonance images of medial temporal lobe structures. Use of a novel functional technique, functional near-infrared spectroscopy, to determine correlates of mental fatigue.

Strengths and limitations of this study

Prospective case-controlled study.
Extensive neuropsychological and neuropsychiatric assessment.
State-of-the-art manual and automatic analysis of structural magnetic resonance images of medial temporal lobe structures.
Use of a novel functional technique, functional near-infrared spectroscopy, to determine correlates of mental fatigue.
A limitation is that only women are studied.

INTRODUCTION

Cognitive dysfunction is a common late complication of Graves’ disease (GD), but the pathogenic mechanisms involved are currently unknown. Advanced imaging methods that provide new perspectives into the central nervous system are being increasingly used for functional and structural studies of neurological and psychiatric disorders. The CogThy project is investigating neural correlates of GD in a longitudinal study to expand understanding of the underlying pathogenic mechanisms of brain involvement in the disease.

GD: a disease with immune system dysregulation

GD is the most common form of hyperthyroidism in Sweden with an incidence of 21 per 100 000 inhabitants. The lifetime risk is 3% for women and 0.5% for men. In GD, stimulating autoantibodies directed against the thyroid-stimulating hormone (TSH) receptor result in elevated levels of circulating thyroid hormones (thyroxine (T4) and tri-iodothyronine (T3)) and reduced levels of circulating TSH. The high thyroid hormone

To cite: Holmberg MO, Malmgren H, Berglund P et al. Structural brain changes in hyperthyroid Graves' disease: protocol for an ongoing longitudinal, case-controlled study in Göteborg, Sweden—the CogThy project. BMJ Open 2019;9:e031168. doi:10.1136/bmjopen-2019-031168

Correspondence to Dr Mats Olof Holmberg; mats.holmberg@sll.se

© Author(s) (or their employer(s)) 2019. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.

For numbered affiliations see end of article.

Protocol
levels affect most organ systems through genomic pathways, although there are also non-genomic effects of T3 on membrane receptors\(^3\) (eg, on mitochondria and on the receptors of sympathetic nerves).\(^1\)

GD may occur at any age, but the peak incidence is between 30 and 50 years of age.\(^2\)\(^5\) Hence, it often affects people of working age and leads, in many cases, to months of lost productivity.\(^6\) Moreover, GD may be complicated by extrathyroidal autoimmune manifestations, such as thyroid-associated ophthalmopathy (TAO) with an incidence of 4.9\%,\(^7\) thyroid dermopathy occurring in 1\%–4\% of patients and acropachy (swelling of the hands and clubbing of the fingers).\(^2\)

**Thyroid hormones affect brain function**

Thyroid hormones are essential for normal brain development and adult brain function. Substantial iodine deficiency during critical periods of brain development results in hypothyroidism, leading to severe and irreversible cognitive, neurological and IQ impairments.\(^3\) Acquired adult overt hypothyroidism also entails mental signs and symptoms with reduced information processing speed, reduced efficiency of executive functions and learning difficulties. Furthermore, hypothyroidism is associated with an increased risk of depression and lower health-related quality of life (QoL). These symptoms generally improve with levothyroxine replacement treatment.\(^9\)

Conversely, in hyperthyroidism, the psychiatric symptoms are often striking with unrest, stress intolerance, fatigue, memory impairment and compromised well-being.\(^10\)\(^11\) Patients may also experience anxiety and depression,\(^15\) and cognitive impairment.\(^14\)

**Psychiatric signs and symptoms in GD**

Many studies indicate that hyperthyroid patients suffer from affective symptoms\(^10\)\(^13\)\(^15\)\(^19\)\(^22\)\(^23\) and some provide evidence for hypothyroidism being associated with cognitive dysfunction.\(^10\)\(^13\)\(^19\)\(^22\)\(^23\) The main cognitive dysfunction seen in patients with GD may be described as an astheno-emotional disorder,\(^24\)\(^25\) which is characterised by difficulty in maintaining attention during cognitively demanding tasks, with a consequent tendency to develop fatigue, memory difficulties, irritability and emotional lability. Episodes of secondary depression are often seen late in the course. Astheno-emotional disorder, often called mental fatigue,\(^26\) is present in many pathological conditions including traumatic brain injury, brain tumours, stroke\(^27\) and endocrine diseases such as Cushing’s disease and GD. Possible alternative labels to astheno-emotional disorder/mental fatigue are mild cognitive disorder,\(^28\) and mild neurocognitive disorder.\(^29\) However, descriptions of the latter two conditions do not emphasise the characteristic mental fatigability in astheno-emotional disorder/mental fatigue and, importantly, do not include emotional signs and symptoms.

Although euthyroidism is usually achieved rapidly under treatment, recovery of well-being is delayed for months in many patients, and some never regain full pre-morbid health.\(^10\)\(^12\)\(^13\)\(^30\) Approximately 20\% of patients experience reduced QoL for as long as 1 year after treatment\(^4\) and many are not fully recovered after 3 years.\(^16\) A randomised, prospective study\(^31\) found patients who received treatment for GD with antithyroid drugs (ATDs), radioactive iodine or surgery still had decreased vital and mental QoL 17–21 years later compared with the general population. Several prospective studies\(^10\)\(^11\)\(^13\)\(^32\) in patients with GD indicate a short-term negative impact on QoL as measured by a 36-item short-form health survey and, more recently, a thyroid-specific questionnaire (ThyPRO).

Sick leave is more prevalent in GD patients 1 year after diagnosis than in the general population.\(^16\)\(^33\) Patients with hyperthyroidism have a doubled risk for being absent from work during the first year after start of treatment and fewer return to work even during subsequent years.\(^6\) These observations are in agreement with a previous report\(^34\) where more than 30\% of patients reported complete or partial inability to work 6 years after GD diagnosis. It is unknown whether the dominant reason for the prolonged inability to return to full-time work is impaired mental health or somatic symptoms.

**Thyroid hormones, thyroid antibodies and autoimmunity**

Thyroid hormones, especially T4, are actively transported into the brain.\(^35\) Most of the active thyroid hormone, T3, is converted locally in the brain from T4 by deiodinase type 2 (D2),\(^36\) which regulates tissue-specific intracellular T3 production and thereby protects tissues from hyperthyroidism and hyperthyroidism. D2 activity is lower in hyperthyroidism.\(^37\) T3 interacts with T3 receptors (TRs) distributed throughout most brain regions, with the highest levels found in the olfactory bulbs, the hippocampus and the cerebellar cortex.\(^38\)\(^39\)\(^40\) Two distinct genes, \(TR\alpha\) and \(TR\beta\), encode several receptor isoforms with specific functions that define the tissue-specific action of thyroid hormone in the brain.\(^41\)\(^42\)\(^43\)

Besides TR activation and non-genomic pathways of thyroid hormones, TSH receptors may be involved in the effects on the brain present in GD, as TSH receptors are stimulated by TSH-Receptor autoantibody (TRAb). TSH receptors are seen in the hippocampi and in the neocortex,\(^44\) and their action is different from that of TRs.\(^45\) Moreover, the production of autoantibodies in GD is not limited to those directed against the TSH receptor. Autoantibodies against thyroglobulin, thyroperoxidase and insulin-like growth factor 1 receptor,\(^46\) angiotensin II receptor type 1\(^47\) and \(\beta\)-adrenergic and \(M\)\(_2\) muscarinic receptors\(^48\) have all been described as elevated in GD, with proposed cardiovascular pathogenic effects.\(^49\)\(^50\) Hence, brain pathology related to GD may be caused by intracerebral hyperthyroidism, thyroid-related antibodies and/or, more directly, the autoimmunity per se.\(^6\) Supporting the latter two alternatives is the fact that depression and anxiety appear more prevalent in GD than with toxic nodular goitre.\(^13\)
Knowledge gaps and background to the CogThy study

Reduced grey matter volume of the hippocampus has been described in adult hypothyroidism using MRI. The mechanism behind this was thought to be related to a reduction in hippocampal neurogenesis, as evidenced by animal studies.

Another study in adult hyperthyroidism has provided evidence that excess thyroid hormones influence brain function and lead to reduced hippocampal volume. In contrast, animal studies of hyperthyroidism found no effect on hippocampal progenitor cell proliferation, survival or differentiation. In elderly humans, higher T4, but within the normal range, is correlated with hippocampal and amygdalar atrophy, but no association has been identified between medial temporal brain volumes and polymorphisms of D2 that converts T4 to T3.

Claims that medial temporal lobe (MTL) structures are implicated in cognitive impairment in GD are supported by observations in TRα1 knockout mice. These findings indicate that TRα1 is involved in the regulation of hippocampal structure and function, as the mice present considerable behavioural changes. Improved hippocampus-dependent learning and memory have been reported after T4 substitution in thyrectomised rats.

Human studies on structural brain changes in hypothyroidism have been cross-sectional. However, it is unknown whether structural and/or functional changes in the brain accompany the achieved euthyroidism and whether the brain’s morphological changes are correlated with changes in cognitive functioning. Furthermore, it is largely unclear whether patients’ psychiatric diagnoses influence outcome and whether biological markers can be used to predict recovery from cognitive impairment. In addition, whether MTL structures, other than the hippocampus, are affected remain to be investigated. Finally, only a few GD studies have addressed the functioning of the frontal lobes, which are generally regarded as being crucial for cognition. The CogThy project aims to fill these gaps in knowledge.

Hypotheses

It was hypothesised that patients with GD exhibit reversible neuroplastic changes in the MTL and/or the prefrontal regions of the brain but the changes are persistent in those with sustained cognitive impairment.

Objectives

The primary objectives are to study structural and functional brain changes in patients with GD. Secondary objectives are to investigate neural correlates of neuropsychological, neuropsychiatric, hormonal and autoantibody findings, with the aim of being able to identify GD patients at risk of developing cognitive impairment and, subsequently, to adapt their treatment schedule accordingly.

METHODS AND ANALYSIS

Design of the CogThy study

The CogThy study is a prospective, longitudinal, case-controlled, observational study with an open treatment period for hyperthyroidism of ≥15 months in 65 female patients with GD and newly diagnosed hyperthyroidism. The reason for only including women is, in part, to minimise variables that might affect MTL volume, as there may be sex differences in these brain areas. In addition, there is also a more practical reason: both GD and affective disorders such as depression and anxiety are more common in women than in men. The patients undergo assessment at referral when ATDs are instituted and when hyperthyroidism develops. After inclusion, they are followed every 3.25 months and, finally, at 15 months, allowing for a period of euthyroidism ≥6 months (figure 1). Euthyroidism is defined as a serum TSH concentration between 0.4 and 2.0 mIU/L combined with normal free T4 (fT4) (12–22 pmol/L) and T3 (1.3–3.1 nmol/L) levels. Treatment of hyperthyroidism is in accordance with the local treatment scheme for non-elderly, female, adult patients with GD where all patients receive ATDs or surgery, in addition to previous
ATD treatment, avoiding radioactive iodine treatment if possible. Hypothyroidism is prevented by starting T4 treatment early.

The study visits at inclusion and at 15 months include somatic and eye evaluations, laboratory hormonal and antibody measurements, neuropsychological and neuropsychiatric evaluation, self-administered QoL questionnaires, magnetic resonance (MR) scanning of the brain (full coverage, and focal scanning of the MTL and orbits) and functional near-infrared spectroscopy (fNIRS). A 7.5-month evaluation includes only somatic and eye evaluations, laboratory measurements, full coverage MRI of the brain and focal MRI of the orbits. Evaluations at 3.25 and 10.75 months include only laboratory measurements (figure 1).

Patient and public involvement
For clinicians, mental fatigue is a well-known symptom among patients. Equally, patients are eager to understand the underlying pathogenic mechanism in brain symptoms. Patients were not involved in the design of the study but are involved by being recruited into the study. Participating patients will be informed about results by mail. Patient organisations will also be involved in the study results in due time.

Setting and participants
The study includes 65 consecutive, premenopausal, adult women with newly diagnosed GD presenting with fT4 ≥50 pmol/L (reference range: 12–22 pmol/L) and/or T3 ≥6.0 nmol/L (reference range: 1.3–3.1 nmol/L) at the Thyroid Unit of Sahlgrenska University Hospital, Göteborg or Kungälvs Hospital, Kungsåra, Sweden. The GD diagnosis is verified by positive TRAb and/or a homogeneous uptake on technetium scintigraphy. Inclusion and exclusion criteria are presented in box 1.

Control subjects with matching age and sex are selected from a random sample from the general population in Göteborg provided by the Swedish Tax Registry, who were contacted by regular mail. When a control subject has accepted participation, she is also matched regarding smoking status and educational level. In addition to the exclusion criteria stated for patients, controls are excluded if they have thyroid hormone levels outside the normal reference range, previous or ongoing thyroid disease, or TAO.

Inclusion
After referral to the hospital, eligible patients are approached either at or before the first clinical visit (which is when ATD treatment is started) to schedule an inclusion visit within 2 weeks after the first visit. In Sweden, ATD treatment is always prescribed by hospital endocrinologists. Earlier, the patient has often seen a general practitioner, who has prescribed beta-blocking agents and referred the patient. The time from referral to the first clinical visit is usually 1–2 weeks.

Dropouts
The sample size estimate allows for a substantial number of dropouts. The patients included are young or middle-aged women, some of whom will move away from the region or will not prioritise follow-up visits, even though the person recruiting the patient at inclusion carefully stresses the importance of attendance. Reasons for leaving the study are recorded, if known, and a sensitivity analysis will be performed to compare baseline data between dropouts and those included in the study.

Measures
The outcome measures are specified as follows. The primary outcome is the change in MTL brain volume. Secondary outcomes are regional cerebral blood flow, QoL, mental fatigue and other cognitive variables, psychiatric diagnoses, thyroid hormones, autoantibodies and D2 polymorphisms.

Assessment of background variables
Information is collected about ethnicity, socioeconomic status, use of alcohol and tobacco products, stress, pregnancy, family history of disease, previous low-dose irradiation to the head and neck region, head trauma, other previous and current diseases and ongoing medications.

Endocrine assessment
Blood specimens are analysed at the Department of Clinical Chemistry, Sahlgrenska University Hospital, Göteborg, Sweden, for serum T4, fT4, T3, free T3 (fT3) and TSH by electrochemiluminescence, and thyroperoxidase antibodies by electrochemiluminescence immunoassay.
(Roche Elecsys ECL, Roche Diagnostics International AG, Rotkreuz, Switzerland). Total TRAb is analysed by radio-receptor analysis using Brahms Kryptor (Thermo Fisher Scientific, Waltham, MA) and Roche Cobas e411 automated assay system (Roche Diagnostics International AG). Thyroid-stimulating immunoglobulin (TSI) is analysed using Siemens IMMULITE 2000/2000 XPi TSI assay (Siemens Healthcare GmbH, Erlangen, Germany). Analyses of several other autoantibodies and D2 polymorphisms are also underway.

Somatic and eye assessments
The clinical visits include assessments of physical status, body weight, height and electrocardiography. Clinical scoring of TAO is with the Mourtis clinical activity score and Hertel exophthalmometry. MRI of the orbits, with both a standard ophthalmologic sequence and a targeted multi-echo sequence, is used to track TAO.

Psychiatric assessment
Depressive and anxiety symptoms are assessed by self-evaluation based on the Comprehensive Psychopathological Rating Scale for depression and anxiety. This is followed by the Swedish version of the Structured Clinical Interview for DSM-IV-Axis I Disorders (SCID-I) to diagnose previous and present psychiatric disorders. SCID-I is a semi-structured interview constructed, so the interviewer uses both direct as well as open questions. The patient answers the questions in a more or less detailed manner in their own words and is not thereby limited to a simple yes or no answer. The purpose is to systematically collect relevant clinical information, so the interviewer can test several DSM criteria as the interview proceeds. SCID-I is widely used in both the clinic and research, and the interviews are performed by a neuropsychiatrist familiar with SCID-I. To control for selection bias, information about psychiatric disorders will be obtained from registers at the Swedish National Board of Health regarding patients who declined inclusion in the study.

Neuropsychological assessment
The neuropsychological examination comprises assessments of processing speed, attention, working memory and verbal fluency. The tests are administered in a standardised sequence (table 1).

- Self-evaluation of mental fatigue and associated symptoms is through the Mental Fatigue Scale (MFS) questionnaire.

QoL assessment
Self-reported questionnaires, ThyPRO and Psychological General Well Being (PGWB), are used on admission to the trial and at the final visit of the study. ThyPRO, a thyroid-specific QoL self-assessment questionnaire, measures QoL using 13 scales covering physical and mental symptoms, well-being, function, the impact of thyroid disease on participation (ie, social and daily life) and overall QoL. ThyPRO consists of 84 items and takes 14 min to complete on average: each scale ranges from 0 to 100, with increasing scores indicating decreasing QoL (ie, more symptoms or greater impact of disease). The Swedish translation developed in 2011 is used.

The PGWB questionnaire is a validated 22-question QoL measure widely used in clinical trials and epidemiological research to provide a general evaluation of self-perceived psychological health and well-being. The Swedish version has also been validated.

Brain morphology assessment
MR images are acquired with a 3 T MR scanner (Philips Gyroscan Achieva 3T, Philips Healthcare, Best, the Netherlands) at the Department of Radiology, Sahlgrenska University Hospital, Göteborg, Sweden. A focal T2w TSE sequence with high in-plane resolution (at 0 and 15 months) is used for manual segmentation of MTL structures and a 3D-FFE T1w sequence with ≤1 mm cubic voxels for automatic segmentation. A targeted multi-echo MRI of the orbits is performed to track TAO. Whole-brain transversal T1w and sagittal T2w sections (3–5 mm slices) are used to exclude other pathology and to enable standard ophthalmological assessment. An experienced radiologist inspects the MR images for visually apparent structural changes of the brain.

Manual volumetry of the MTL structures uses T2w TSE images with a reconstruction voxel size of 0.35×0.35×2 mm. All images are N4 corrected to smooth varying intensity inhomogeneity. Sharper local slice intensity distortion and inter-acquisition intensity variations are corrected with a custom method developed by our group (Olsson E, Holmberg MO, et al. BMJ Open 2019;9:e031168. doi:10.1136/bmjopen-2019-031168

| Table 1 | Neuropsychological examination | Function | References |
|---------|--------------------------------|----------|------------|
| Order   | Test                           |          |            |
| 1       | Trail Making Test A, B+two extended versions with higher load on divided attention | Speed, visual scanning, flexibility and divided attention | 104 105 |
| 2       | Digit symbol coding            | Processing speed WAIS-III | 106 |
| 3       | Digit span                     | Auditory working memory WAIS-III | 106 |
| 4       | F-A-S                          | Verbal fluency D-KEFS | 107 |
| 5       | Reading speed                  | Reading speed | 108 |

D-KEFS, Delis-Kaplan Executive Function System; WAIS-III, Wechsler Adult Intelligence Scale, third edition.
unpublished). After intensity inversion and contrast optimisation, the images are randomised regarding right/ left orientation to eliminate the possibility of perceptual rater bias. The hippocampus and amygdala are manually segmented with a protocol70 modified from Convit et al71 and Malykhin et al72 Subregional segmentation of the hippocampus is according to the harmonising efforts by Wisse et al.73 An experienced imaging expert blinded to all patient information will do the manual segmentations and segment the image sets as one single batch in random order. The hippocampus and its subregions, the amygdala and, possibly, other MTL structures are also analysed with automatic segmentation with Freesurfer v. 674 and multi-atlas propagation with enhanced registration (MAPER).75 For MAPER, the Hammersmith atlas database, the largest publicly available set (n=30) of single-investigator brain image segmentation data,76,77 is used.

For automatic brain extraction and intracerebral volume (ICV) masking, pincram78 is used with two atlas databases, one containing the ICV segmentations, described in Klasson et al,79 and the other based on the IXI database, as discussed in Heckemann et al.80 The imaging specialist is blinded to patient identity and the order of the images. The MTL volumes found are normalised by total ICV measured both manually and automatically.

**Regional cerebral blood flow**

Cerebrovascular changes are measured during repeated administration of the animal Stroop test, which is modelled after the test employed by Wright et al.80 Changes in cerebral blood oxygenation are measured by a continuous wave fNIRS device (NTS Optical Imaging System, Gowerlabs, London, UK).81 fNIRS is being increasingly used to elucidate brain function abnormalities in patients with neurological and psychiatric disorders,82 and non-invasively measures the concentration changes of oxygenated, deoxygenated and total haemoglobin in the cerebral cortex. The technique is based on the changes in absorption of light emitted by sources on the surface of the head and measured by detectors. Near-infrared light of two wavelengths is injected at 16 points through laser diode sources placed on the subject’s forehead and the diffused light is measured at 16 co-located detectors (figure 2). Images of animals are shown to the subject every 12 s on the left and right sides of a computer screen. The participant presses the right or left button to indicate which animal is the largest in reality, even though it may appear smaller on the computer screen. The fNIRS assessment is repeated after 30 min of testing the patient’s reading comprehension. This approach specifically taxes the tenacity that is deficient in many of these patients, enabling assessment of the neurophysiological correlates of their mental fatigability.

**Time frame for the study actions**

This study started in September 2012. fNIRS was added as an outcome measure in May 2015. MR hardware and software were upgraded in April 2014. To assess possible bias resulting from this change, an American College of Radiology MRI phantom83 was scanned just before the MRI upgrade and again in August 2017. The resulting phantom images were compared with quantile differences in geometric distortion and intensity mapping. Other possible differences due to the scanner upgrade will be evaluated by comparing the MAPER data from the baseline scans before the upgrade with those from the scans taken after upgrade. The last patient was included in March 2018 and the final evaluation will take place in June 2019. The longitudinal variability of the first 30 controls will be evaluated during September 2019 and the last control subject assessment is planned for October 2019.

**Considerations of study design**

This study focuses on the potential involvement of brain structure and function in hyperthyroidism and euthyroidism. To assess eye involvement, MR imaging of the orbits and TAO evaluation are performed in parallel and at an additional appointment between the neuroimaging assessments. Moderately severe and severe TAO impair QoL considerably84 and intravenous or oral glucocorticoid treatment in TAO management may affect brain structure volume and cognitive performance, as in Cushing’s disease.85,86 Patients on glucocorticoid treatment at baseline are therefore excluded. The orbital MRI and TAO assessments will make it possible to isolate TAO as a factor if it occurs during follow-up. More importantly, the orbital measurements may provide a biomarker (among others) for prediction of both TAO and failed cognitive recovery.

Figure 2 A fNIRS cap. Photo of a person wearing an fNIRS cap with laser diode sources and detectors. fNIRS, functional near-infrared spectroscopy.
Psychiatric diseases are excluded only if there is an ongoing or recent psychosis that might interfere with full compliance and/or informed consent to participate. However, previous and current psychiatric diseases are carefully explored as psychiatric diseases are more prevalent than in a normal population, even before the onset of GD, and a common cause cannot be excluded. In addition, psychiatric symptoms often worsen during the phase of hyperthyroidism. Finally, it is important to assess the relevance of pre-existing psychiatric morbidity for cognitive prognosis.

Recovery from hyperthyroidism may take several months and many of those affected by GD still have impaired QoL after 1 year of treatment. As most patients are treated with ATD for 12–18 months, patients are re-evaluated after 15 months, but not later, to avoid possible effects of any recurrent GD disease. Moreover, although the CogThy study protocol accepts all treatments, only one patient had radioactive iodine treatment. This will simplify the interpretation of the results, as radioactive iodine treatment is associated with a worse QoL outcome and this could interfere with the study outcome.

One inclusion criterion in the CogThy study is marked hyperthyroidism at the first visit, with \( fT4 \geq 50 \text{ pmol/L} \) or \( T3 \geq 6.0 \text{ nmol/L} \). These rather high thyroid hormone levels were chosen to ensure that the patient is still hyperthyroid at the time of study inclusion. For ethical reasons, ATD treatment in a hyperthyroid patient cannot be delayed, and the inclusion and first study assessments always follow a few days after the clinical visit. These high thyroid hormone levels also make it more likely that the patient really has GD, although inclusion also requires a positive TRAb or diffuse uptake on scintigraphy.

Considerations regarding structural neuroimaging

Previous attempts to visualise and understand thyroid–brain interaction combined neuroimaging with neurophysiological and neuropsychiatric investigations. Cognition is complex and, as such, involves widely distributed functional systems and several brain regions, among which the MTL and the prefrontal cortex are generally recognised as being of central importance. The hippocampus is, however, not the only MTL structure recognised as being of central importance. The extended hippocampal system, a recent improvement in executive control, anticipation and/or memory be assessed and many specific theories about their function are proposed. However, Carlén has issued a note of caution, arguing that the often unclear definition of the ‘prefrontal’ cortex ‘... warrants a renewed focus on what the prefrontal area is and does.’ This provides extra motivation for the fNIRS study, as the sensors with FNIRS and functional MRI probe the same physical tissue properties and give highly correlated results in cognitive tasks. Hitherto, FNIRS has had its main application in studies of the developing brain but has also been used in adults. Brain structures lying within a few centimetres from the skull can be assessed with FNIRS. This means many of the relevant frontal regions generally considered important for cognition can be assessed and many specific theories about their function in executive control, anticipation and/or memory have been proposed. However, Carlén has issued a note of caution, arguing that the often unclear definition of the ‘prefrontal’ cortex ‘... warrants a renewed focus on what the prefrontal area is and does.’ This provides extra motivation for the fNIRS study, as the sensors with FNIRS are arranged in a helmet so that the patient can perform many activities during the testing, which is not possible with MRI. The ability to undertake advanced psychological testing during FNIRS is an advantage that is exploited in this study.

Considerations regarding the neuropsychological evaluation

MFS is the main neuropsychological assessment tool used in the study. It is a scale developed to capture mental fatigue, also described as astheno-emotional disorder, that is prevalent after acquired brain injury regardless of the cause. MFS has been validated for traumatic brain injury and stroke patients and is not affected by gender, education and age in patients between 18 and 65 years. The questions included in the scale have adequate internal consistency, with Cronbach’s alpha at 0.944. A cutoff at 10.5 is suggested, with higher values indicating more severe symptoms. In this study, MFS is used to assess mental fatigue at 0 and 15 months, with other standard neuropsychological tests being used as a complement to MFS.
Considerations regarding mechanistic factors
Apart from thyroid hormones, TRAb and other autoimmune factors, stress hormones secreted in connection with hyperthyroidism may affect the brain. Adrenal hyperactivity is noted in hyperthyroidism, but the metabolic clearance of cortisol increases and cortisol-binding globulins are at a low level. The net effect on the brain is unclear. Moreover, physiological responses to catecholamines are enhanced in hyperthyroidism, although the adrenergic effects from increased thyroid hormone levels on the brain have been insufficiently examined.

The possible parallel effects from glucocorticoids and the adrenergic system are difficult to disentangle within the present study, but information on treatment with beta-adrenergic blockers is collected and will be added to the model of confounding factors. In order to minimise interference from other hormonal confounders, only premenopausal women were included, as oestrogens also influence brain function.

Thyroid hormone levels are very high in the GD patients participating in the study, although some reduction will have occurred at inclusion following the start of ATD therapy. It has been proposed that thyroid hormones may act optimally at euthyroid levels, as hyperthyroidism does not influence hippocampal neurogenesis in adult rats. Hippocampal metabolism may be affected by hyperthyroidism, as glucose metabolism in the limbic system is reduced and is negatively correlated with both serum fT3 and fT4 levels in hyperthyroid patients. ATD treatment corrects this hypometabolism.

D2 activity is thought to be reduced in hyperthyroidism in order to protect tissues from thyroid hormone overexposure. However, this mechanism may be different in GD. Sera from GD patients with high TRAb stimulate D2 activity, which partially explains why GD patients have more severe mental symptoms than patients with other forms of hyperthyroidism.

The problem of long-term cognitive dysfunction has been addressed in a study on twins concordant or discordant for earlier hyperthyroidism. Although there were no differences, the authors noted that the study may have been underpowered due to the small number of twin pairs discordant for hyperthyroidism. Finally, it has been suggested that hyperthyroidism accelerates the ageing process, but this hypothesis has not been evaluated.

Power calculation and statistical considerations
Changes over time and differences between groups concerning volumetric and functional imaging data will primarily be analysed with univariate statistical methods. Due to a lack of previous studies on this topic when the study was conceived, the power calculation for the volumetric analysis was based on changes in hippocampus volume in patients with Cushing’s disease scanned with a 1.5 T scanner. A sample of approximately 40 subjects was considered sufficient for within-individual comparison to detect a mean volumetric change of 10% with an 80% probability and 5% significance. With a 3 T scanner, smaller changes can be reliably detected. Allowing for expected attrition, at least 60 patients need to be included to have sufficient power. We will follow the dropout frequency regularly and adjust sample size to attain sufficient power. These numbers relate to paired comparisons of successive manual segmentations of the hippocampus.

It is generally agreed that longitudinal comparisons with serial registration methods are more sensitive and such methods may be included. Despite the lack of published longitudinal MRI studies of MTL structures in thyroid disease, we are confident that the study power will be sufficient to detect any clinically meaningful changes in hippocampal volume over time.

For the fNIRS power calculation, data from an ongoing fNIRS study at Sahlgrenska University Hospital, Göteborg on a similar patient group (traumatic brain injury) and with the same study design as the current one have been used. It was assumed that the general trend of the blood flow changes would be similar in the two studies. Based on an unpaired one-sided t-test with a significance level of 0.05 and a power of 0.8, the required sample size for detecting the same difference between groups, as in the traumatic brain injury study, is 21 patients and 26 controls. With equal distribution, 23 subjects are needed in each group. The controls and patients are matched according to age, sex, smoking and educational level. A paired t-test will be used and the power of the paired test is expected to be higher than that of the unpaired test (and it cannot be lower), in which case the sample size needed will be smaller.

The associations between the volumetric data and the other study variables such as MFS score, QoL, laboratory data and psychiatric assessments will be analysed with both univariate and multivariate statistics. Principal component analysis and similar methods will be used to trace common causal factors. No independent power calculations have been performed for these analyses.

The research group has a general aim to suggest a causal and predictive model for mental fatigue in GD. The formulation of this model will take background knowledge from neuropsychiatry, neuroimaging, neuroendocrinology and neuroimmunology as its point of departure. Data from the present project, a planned continuation of it and published data will be used as inputs. The final model will be framed as a hypothesis to be validated in further studies.

SUMMARY
Impaired well-being in GD patients is a long-term problem and is frustrating for both patients and healthcare. It is not understood why this happens and it cannot be predicted at an early stage which patients will develop long-term cognitive impairment. Hence, the CogThy project addresses a considerable clinical problem. This project will: (1) identify morphological brain features associated with psychiatric outcome and thyroid hormone function in GD patients and (2) use fNIRS to study cognition in...
GD patients. Planned future achievements of this project are: (1) to develop a risk factor model that will weight all possible factors for identifying subjects with the highest risk of developing persistent cognitive impairment and (2) the identification of biomarkers for cognitive deterioration that can be used for risk evaluation and monitoring.

Author affiliations
1 ANOVA, Karolinska University Hospital, Stockholm, Sweden
2 Institute of Medicine, University of Gothenburg, Sahlgrenska Academy, Göteborg, Sweden
3 MedTech West, University of Gothenburg, Sahlgrenska University Hospital, Göteborg, Sweden
4 Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
5 Department of Health and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Göteborg, Sweden
6 Division of Brain Sciences, Department of Medicine, Faculty of Medicine, Imperial College London, London, UK
7 Department of Radiation Physics, Institute of Clinical Sciences, Sahlgrenska Academy, Göteborg, Sweden
8 Department of Endocrinology, Sahlgrenska University Hospital, Göteborg, the other Sweden

Contributors MOH has written the manuscript with input from all the other authors. HM is responsible for the statistics and has broad knowledge about mental syndromes. As a psychiatrist, PB will perform psychiatric evaluations and, as a neuropsychologist, BJ will perform psychological testing. LB and SS will perform and evaluate fMRI investigations, and EO, RAH and NK are responsible for volumetric evaluations. MOH is a PhD student in the project and will see all patients in collaboration with HNF, who is the principal investigator of the CogThy project.

Funding
The following sponsors supported this study. The study was financed by grants from: the Swedish state under an agreement between the Swedish government and county councils, the ALF agreement (ALFGBG-717311); regional research funding, Region Västra Götaland; the Healthcare Sub-committee, Region Västra Götaland; the Healthcare Board, Region Västra Götaland; Sahlgrenska University Hospital research funds; the Gothenburg Medical Society; the Swedish Medical Society; the Swedish Society for Medical Research; The Swedish Endocrine Society; The Fredrik and Ingrid Thuring’s Foundation; The Fredrick and Ingrid Thuring’s Foundation; The Albin and Gunnar von很是’s Foundation; the Pharmacist Hedberg’s Foundation and the Åke Wiberg’s Foundation. A psychiatric and neuropsychiatric study of patients with untreated Graves’ disease.

Conflict of interest
No competing interests declared.

Provenance and peer review
Not commissioned; externally peer reviewed.

Open access
This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Mats Olof Holmberg http://orcid.org/0000-0003-2884-9981
Rolf A Heckemann http://orcid.org/0000-0003-3582-3683

REFERENCES
1. Abraham-Nordling M, Byström K, Töring Ö, et al. Incidence of hypothyroidism in Sweden. Eur J Endocrinol 2011;165:899–905.
2. Smith TJ, Hegedüs L. Graves’ disease. N Engl J Med 2016;375:1552–55.
3. Harvey CB, Williams GR. Mechanism of thyroid hormone action. Thyroid 2002;12:441–6.
4. Silva JE, Bianco SDC. Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid 2008;18:157–65.
5. Nyström HR, Jansson S, Berg G. Incidence rate and clinical features of hypothyroidism in a long-term iodine sufficient area of Sweden (Gothenburg) 2003-2005. Clin Endocrinol 2013;78:768–76.
6. Nexo MA, Watt T, Pedersen J, et al. Increased risk of long-term sickness absence, lower rate of return to work, and higher risk of unemployment and disability pensioning for thyroid patients: in a Danish register-based cohort study. J Clin Endocrinol Metab 2014;99:3184–92.
7. Laurborg P, Berman DC, Bülow Pedersen I, et al. Incidence and clinical presentation of moderate to severe Graves’ orbitopathy in a Danish population before and after iodine fortification of salt. J Clin Endocrinol Metab 2012;97:2355–32.
8. Bleichrodt NB MP. A metaanalysis of research on iodine and its relationship to cognitive development. In: Stanbury JB, ed. The damaged brain of iodine deficiency. New York: Cognizant Communication Corporation, 1994: 195–200.
9. Davis JD, Tromp O. Neuropsychological aspects of hypothyroidism and treatment reversibility.. Minerva Endocrinol 2007;32:49–69.
10. Watt T, Groenvold M, Rasmussen AK, et al. Quality of life in patients with benign thyroid disorders. A review. Eur J Endocrinol 2006;154:501–10.
11. Elberling TV, Rasmussen AK, Feldt-Rasmussen U, et al. Impaired health-related quality of life in Graves’ disease. A prospective study. Eur J Endocrinol 2004;151:549–55.
12. Berg G, Michanek A, Holmberg E, et al. Clinical outcome of radioidine treatment in hyperthyroidism: a follow-up study. J Intern Med 1996;239:165–71.
13. Bové KB, Watt T, Vogel A, et al. Anxiety and depression are more prevalent in patients with Graves’ disease than in patients with nodular goitre. Eur Thyroid J 2014;3:173–8.
14. Fukui T, Hasegawa Y, Takenaka H. Hyperthyroid dementia: clinicoradiological findings and response to treatment. J Neurol Sci 2001;184:81–8.
15. Vogel A, Elberling TV, Hording M, et al. Affective symptoms and cognitive functions in the acute phase of Graves’ thyrotoxicosis. Psychoneuroendocrinology 2007;32:36–43.
16. Töring O, Tallstedt L, Wallin G, et al. Graves’ hyperthyroidism: treatment with antithyroid drugs, surgery, or radioiodine—a prospective, randomized study. Thyroid Study Group. J Clin Endocrinol Metab 1996;81:2986–93.
17. Miau O, Zhang S, Guan YH, et al. Reversible changes in brain glucose metabolism following thyroid function normalization in hypothyroidism. AJNR Am J Neuroradiol 2011;32:1034–42.
18. Schreckenberger MF, Egle UT, Drecker S, et al. Positron emission tomography reveals correlations between brain metabolism and mood changes in hypothyroidism. J Clin Endocrinol Metab 2006;91:4786–91.
19. Trzepacz PT, McCue M, Klein I, et al. A psychiatric and neuropsychological study of patients with untreated Graves’ disease. Gen Hosp Psychiatry 1988;10:270–75.
20. Gulseren S, Gulseren L, Hekimsoy Z, et al. Depression, anxiety, health-related quality of life, and disability in patients with overt and subclinical thyroid dysfunction. Arch Med Res 2006;37:133–9.
21. Chattopadhyay C, Chakrabarti N, Ghosh S. An assessment of psychiatric disturbances in Graves disease in a medical college in eastern India. Niger J Clin Pract 2012;15:276–9.
22. Li L, Zhi M, Hou Z, et al. Abnormal brain functional connectivity leads to impaired mood and cognition in hypothyroidism: a resting-state functional MRI study. Oncotarget 2017;8:56023–94.
23. Yudziarto FL, Muladi L, Moeljanto D, et al. Neuropsychological findings in hypothyroid patients. Acta Med Indones 2006;38:6–10.
24 Lindqvist/Malmgren, Organisisk Psykiatri (organic psychiatry). Stockholm: Almqvist & Wikells, 1990.
25 Rödholm M, Starmark JE, Svensson E, et al. Asthenos-emotional disorder after aneurysmal SAH: reliability, symptomatology and relation to outcome. Acta Neurol Scand 2010;123:579–85.
26 Johansson B, Ronnback L. Long-Lasting mental fatigue after traumatic brain injury—a major problem most often neglected—diagnosis.
27 Johansson B, Starmark A, Berglund P, et al. A self-assessment questionnaire for mental fatigue and related symptoms after neurological disorders and injuries. Brain Inj 2014;28:2–12.
28 Manual of the International. Statistical classification of diseases, injuries, and causes of death, tenth revision. Geneva; Switzerland: World Health Organization, 1992.
29 Diagnostic, And statistical manual of mental disorders. 5th ed. Arlington, VA: American Psychiatric Association, 2013.
30 Perrild H, Hansen JM, Arning K, et al. Intellectual impairment after hyperthyroidism. Acta Endocrinol 1986;112:185–91.
31 Abraham-Nordling M, Torring O, Hamberger B, et al. Graves' disease: a long-term quality-of-life follow-up of patients randomized to treatment with antithyroid drugs, radioiodine, or surgery. Thyroid 2005;15:1279–86.
32 Cramon P, Winther KH, Watt T, et al. Quality-of-life impairments persist six months after treatment of Graves’ hyperthyroidism and toxic nodular goiter: a prospective cohort study. Thyroid 2016;26:1010–8.
33 Ljunggren JG, Torring O, Wallin G, et al. Quality of life aspects and costs in treatment of Graves’ hyperthyroidism with antithyroid drugs, surgery, or radioiodine: results from a prospective, randomized study. Thyroid 2001;11:759–65.
34 Fahrenfort JJ, Witterdink AM, van de Veen EA. Long-term residual complaints and psychosocial sequelae after remission of hyperthyroidism. Psychoendocrinology 2000;25:201–11.
35 Kapoor R, Fanibunda SE, Desouza LA, et al. Perspectives on thyroid hormone receptor alpha1 protein expression in human fetal brain and lung. Neurosci Lett 2015;533:59–66.
36 Gerber B, Zöld M, Dentic M, et al. Activation and inactivation of thyroid hormone by deiodinases: local action with general consequences. Cell Mol Life Sci 2008;65:570–90.
37 Peeters RP, Visser TJDe Groot LJ, Chrousos G, Dungan K, eds. Metabolism of thyroid hormone. Endotext. South Dartmouth (MA): MDText.com, Inc, 2000.
38 Peeters R, Fekete C, Goncalves C, et al. Regional physiological adaptation of the central nervous system deiodinases to iodine deficiency. Am J Physiol Endocrinol Metab 2001;281:E54–61.
39 de Escobar GM, Obregón MJ, del Rey FE. Iodine deficiency and brain development in the first half of pregnancy. J Neurol Sci 1987;86:73–5.
40 Corb KB, Koenig RJ. Expression of eRα alpha and beta mRNAs in regions of adult rat brain. Mol Cell Endocrinol 1990;70:13–20.
41 Wallis K, Dudaey S, van Hogerlinden M, et al. The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 2010;24:1904–16.
42 Bradley DJ, Young WS, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A 1986;83:7290–4.
43 Moodley K, Botha J, Raidoo DM, et al. Immuno-localisation of anti-thyroid antibodies in adult human cerebral cortex. J Neurol Sci 2011;302:114–7.
44 Mount A, Holditch Y, Narusawa S, et al. Thyrotropin receptor knockout changes monoaminergic neuronal system and produces methylphenidate-sensitive emotional and cognitive dysfunction. Psychoneuroendocrinology 2014;48:147–61.
45 Pritchard J, Han R, Horst N, et al. Immunoglobulin activation of T cell chemotaxinistant expression in fibrolasts from patients with Graves’ disease is mediated through the insulin-like growth factor I receptor pathway. J Immunol 2003;170:6348–54.
46 Xu J, Zhao L, Xiang G, et al. Relationship between autoantibody to the angiotensin II-1 receptor and cardiovascular manifestations of Graves’ disease. Thyroid 2007;17:1122–25.
47 Stavrias S, Yu X, Patterson E, et al. Activating autoantibodies to the beta-1 adrenergic and M2 muscarinic receptors facilitate atrial fibrillation in patients with Graves’ hyperthyroidism. J Am Coll Cardiol 2009;54:1309–16.
48 Bunevicius R, Prange AJ. Thyroid disease and mental disorders: cause or effect and only comorbidity? Curr Opin Psychiatry 2010;23:817–20.
49 Cooke GE, Mullally S, Correia N, et al. Hippocampal volume is decreased in adults with hypothyroidism. Thyroid 2014;24:433–40.
50 Desouza LA, Ladiwala U, Daniel SM, et al. Thyroid hormone regulates hippocampal neurogenesis in the adult rat brain. Mol Cell Neurosci 2005;29:414–26.
51 Zhang W, Song L, Yin X, et al. Grey matter abnormalities in untreated hyperthyroidism: a voxel-based morphometry study using the DARTEL approach. Eur J Radiol 2014;83:e43–8.
52 Ambrogini P, Cappini R, Ferri P, et al. Thyroid hormones affect neurogenesis in the dentate gyrus of adult rat. Neuroendocrinology 2005;81:244–53.
53 de Jong FJ, den Heijer T, Visser TJ, et al. Thyroid hormones, dementia, and atrophy of the medial temporal lobe. J Clin Endocrinol Metab 2006;91:2569–73.
54 de Jong FJ, Peeters RP, den Heijer T, et al. The association of polymorphisms in the type 1 and 2 deiodinase genes with circulating thyroid hormone parameters and atrophy of the medial temporal lobe. J Clin Endocrinol Metab 2007;92:636–40.
55 Guadalupe-Ferraz A, Benavides-Piccione R, Venero C, et al. Lack of thyroid hormone receptor alpha1 is associated with selective alterations in behavior and hippocampal circuits. Mol Psychiatry 2003;8:30–8.
56 Atzouhi KB, Gerges NZ, Aleisa AM, et al. Levothyroxine restores hypothryroidism-induced impairment of hippocampus-dependent learning and memory in behavioral, electrophysiological, and molecular studies. Hippocampus 2009;19:66–78.
57 Bhartara VS, Tripathi RP, Sankar R, et al. Frontal lobe proton magnetic-resonance spectroscopy in Graves’ disease: a pilot study. Psychoneuroendocrinology 1998;23:605–12.
58 Cosgrove KM, Mazziotti CM, Staley JK. Evolving knowledge of sex differences in brain structure, function, and chemistry. Biol Psychiatry 2007;62:847–55.
59 Syme NR, Toft AD, Stoddart M, et al. Clinical performance of the Roche Cobas e411 automated assay system for thyrotopin-receptor antibodies for the diagnosis of Graves’ disease. Ann Clin Biochem 2011;48:471–3.
60 Tozzoli R, D’Aurizio F, Villalta D, et al. Evaluation of the first fully automated immunossay method for the measurement of stimulating TSH receptor autoantibodies in Graves’ disease. Clin Chem Lab Med 2017;55:58–64.
61 Mourits MP, Prummel MF, Wiersinga WM, et al. Clinical activity score as a guide in the management of patients with Graves’ ophthalmopathy. Clin Endocrinol 1997;47:9–14.
62 Svanborg F, Åsberg M. A new self-rating scale for depression and anxiety symptoms based on the comprehensive psychopathological rating scale. Acta Psychiatr Scand 1994;89:21–8.
63 First MB, Spitzer RL, Miriam G, et al. Structured clinical interview for DSM-IV-TR axis I disorders, research version, patient edition. New York, USA: Biometrics Research, New York State Psychiatric Institute, 2002.
64 Watt T, Hegedüs L, Grevonfeld M, et al. Validity and reliability of the novel thyroid-specific quality of life questionnaire, ThyPRO. Eur J Endocrinol 2010;162:161–7.
65 Ryff CD, Keyes CL. The structure of psychological well-being revisited. J Pers Soc Psychol 1995;69:719–27.
66 Watt T, Barbesino G, Bjørn JB, et al. Cross-cultural validity of the thyroid-specific quality-of-life patient-reported outcome measure, ThyPRO. Qual Life Res 2015;24:789–80.
67 Winklten I, Karberber E. Evaluation of quality of life in clinical trials, selecting quality-of-life measures. Control Clin Trials 1991;12:2045–16.
68 Tuustion NJ, Avants BB, Cook PA, et al. N4ITK: improved N3 bias correction. IEEE Trans Med Imaging 2010;29:1310–20.
69 Ecksteinb CM, Olsen B, Bøhnsen M, et al. Small baseline volume of left hippocampus is associated with subsequent conversion of MCI to dementia: the Göteborg MCI study. J Neurol Sci 2008;272:48–59.
70 Cottov A, De Leon MJ, Tarshish C, et al. Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiol Aging 1997;18:131–8.
71 Malicky NV, Bouchard TP, Ogilvie CJ, et al. Three-dimensional volumetric analysis and reconstruction of amygdala and hippocampal head, body and tail. Psychiatry Res 2003;125:79–85.
72 Wisse LEM, Daugherty AM, Olsen RK, et al. A harmonized segmentation protocol for hippocampal and parahippocampal...
subregions: why do we need one and what are the key goals? Hippocampus 2017;27:3–11.

74 Fischl B, Salat DH, Busa E, et al. Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002;33:31–41.

75 Heckemann RA, Keihaninejad S, Aljabar P, et al. Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage 2012;51:221–7.

76 van Essen D, Drury K, Ugurbil K. Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Hum Brain Mapp 2003;19:224–47.

77 Wild HM, Heckemann RA, Studholme C, et al. Gyri of the human parietal lobe: volumes, spatial extents, automatic labelling, and probabilistic atlases. PLOS One 2017;12:e0180866.

78 Heckemann RA, Ledig C, Gray KR, et al. Brain extraction using label propagation and group agreement: Pincram. PLoS One 2015;10:e0129211.

79 Klasson N, Nilsson G, Rudemo M, et al. Valid and efficient manual estimates of intracranial volume from magnetic resonance images. BMC Med Imaging 2015;15:5.

80 Wright I, Waterman M, Prescott H, et al. A new Stroop-like measure of inhibitory function development: typical developmental trends. J Child Psychol Psychiatry 2003;44:561–75.

81 Everdell NL, Gibson AP, Tullis IDC, et al. A frequency multiplexed near-infrared topography system for imaging functional activation in the brain. Rev Sci Instrum 2005;76.

82 Kim HY, Seo K, Jeon HJ, et al. Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol Cells 2017;40:523–32.

83 Clarke GD. Overview of the ACR MRI accreditation phantom; 2004.

84 Wiersinga WM. Quality of life in Graves’ ophthalmopathy. Best Pract Res Clin Endocrinol Metab 2012;26:359–70.

85 Starkman MN, Giordani B, Gebaršek SS, et al. Decrease in cortisol reverses human hippocampal atrophy following treatment of Cushing’s disease. Biol Psychiatry 1999;46:1595–602.

86 Starkman MN, Giordani B, Gebaršek SS, et al. Improvement in learning associated with increase in hippocampal formation volume. Biol Psychiatry 2003;53:293–8.

87 Brandt F, Thvilum M, Almind D, et al. Hyperthyroidism and psychiatric morbidity: evidence from a Danish nationwide register study. Eur J Endocrinol 2014;170:341–8.

88 Šprah L, Dernovšek MZ, Wahlbeck K, et al. Psychiatric readmissions and their association with physical comorbidity: a systematic literature review. BMC Psychiatry 2017;17:2.

89 Torring O, Watt T, Spjøt G, et al. Impaired quality of life after radiodiode therapy compared with antithyroid drugs or surgical treatment for Graves’ hyperthyroidism. A long-term follow-up with ThyPRO and SF-36. Thyroid 2019.

90 Göbel A, Heldmann M, Sartorius A, et al. Mild thyrotoxicosis leads to brain perfusion changes: an arterial spin labelling study. J Neuroendocrinol 2017;29.

91 Aggleton JP, Brown MW. Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behav Brain Sci 1999;22:425–44.

92 Zhang W, Liu X, Zhang Y, et al. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI. Eur J Radiol 2014;83:1907–13.

93 Cui X, Bray S, Bryant DM, et al. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. Neuroimage 2011;54:2808–21.

94 Shalinsky MH, Kovelman I, Berens MS, et al. Exploring cognitive functions in babies, children & adults with near infrared spectroscopy. J Vis Exp 2014(98):52261.

95 Eichenbaum H. Prefrontal–hippocampal interactions in episodic memory. Nat Rev Neurosci 2017;18:547–58.

96 Carlén M. What constitutes the prefrontal cortex? Science 2017;358:478–82.

97 Lindqvist O, Malmgren H. Classification and diagnosis in organic psychiatry. Acta Psychiatr Scand 1993;88.

98 Johansson B, Ronnback L. Evaluation of the mental fatigue scale and its relation to cognitive and emotional functioning after traumatic brain injury or stroke. Int J Phys Med Rehabil 2013;2.

99 Hoshino M, Ohno Y, Masaki H, et al. Comprehensive study of urinary cortisol metabolites in hyperthyroid and hypothyroid patients. Clin Endocrinol 2006;64:37–45.

100 Mishra SK, Gupta N, Goswami R. Plasma adrenocorticotropic (ACTH) values and cortisol response to 250 and 1 µg ACTH stimulation in patients with hyperthyroidism before and after carbimazole therapy: case–control comparative study. J Clin Endocrinol Metab 2007;92:1993–6.

101 Hamson DK, Roes MM, Galea LAM, et al. Sex hormones and cognition: neuroendocrine influences on memory and learning. Compr Physiol 2016;6:1295–337.

102 Molnár I, Szemtuniklo JÁ, Somogyiné-Vári Éva. Hyperthyroidism in patients with Graves’ ophthalmopathy, and thyroidal, skeletal and eye muscle specific type 2 deiodinase enzyme activities. Exp Clin Endocrinol Diabetes 2017;125:514–21.

103 Lillevang-Johansen M, Petersen I, Christensen K, et al. Is previous hyperthyroidism associated with long-term cognitive dysfunction? A twin study. Clin Endocrinol 2014;80:290–5.

104 Lezak MD, Howieson DB, Loring DW, eds. Neuropsychological assessment. 4th ed. New York: Oxford University Press, 2004.

105 Johansson B, Berglund P, Rönnbäck L. Mental fatigue and impaired information processing after mild and moderate traumatic brain injury. Brain Injury 2009;23:1027–40.

106 Wechsler D, ed. Wechsler Adult Intelligence Scale—third edition, WAIS-III. Swedish version: Pearson Assessment, 2003.

107 Ellis DC, Kaplan E, Kramer JH, eds. Delis-Kaplan Executive Function System—D-KEFS. San Antonio, TX: The Psychological Corporation, 2001.

108 Madison S. Läsdianox. Lund: Läs och skrivcentrum, 2003.