A combinatorial action of GmMYB176 and GmbZIP5 controls isoflavonoid biosynthesis in soybean (Glycine max)

Arun Kumaran Anguraj Vadivel1,2, Tim McDowell1, Justin B. Renaud1 & Sangeeta Dhaubhadel1,2✉

GmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein–protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoalexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.
Isoflavonoids are biologically active legume-specific specialized metabolites with pharmacological properties. They play an important role in the interaction between plants and their environment. Isoflavonoids act as chemotactants to rhizobia and facilitate their symbiotic relationship with legume plants. In response to pest and pathogen attack, soybean plants produce isoflavonoid phytoalexins that inhibit pathogen growth and provide broad resistance against them.

Soybean seeds contain three main isoflavone aglycones (genistein, daidzein, and glycitein) and their corresponding glycosides and malonylglycosides. Isoflavonoids are derived from the central flavonone intermediates naringenin and liquiritigenin, which in turn are derived from tetrahydroxycalcone (naringenin chalcone) and trihydroxycalcone (isoliquiritigenin chalcone), respectively. The enzyme Chalcone synthase (CHS) is involved in the condensation of p-coumaroyl-CoA with three acetate moieties, derived from malonyl-CoA, to form naringenin chalcone, and is the first step in the branched pathway for the synthesis of flavonoids and isoflavonoids. Soybean contains 14 GmCHS genes (GmCHS1–GmCHS14) that play various roles during plant development or in response to environmental stimuli. The members of GmCHS family show differential temporal and spatial expression. Among them, GmCHS7 and GmCHS8 are widely studied as GmCHS8 transcript abundance is directly associated with isoflavonoid levels in soybean seeds. Furthermore, the transcript level of GmCHS7/GmCHS8 in seed coats determines yellow or black color soybean.

In eukaryotes, transcriptional regulation is often mediated by multi-protein complex or the concerted action of several proteins. Such proteins are part of an interactome where members of the complex may bind DNA directly or facilitate the interaction of other proteins within the complex. For example, the interaction of bZIP and DoF transcription factors regulate GST6 and 22-kDa class of zein genes in Arabidopsis and maize, respectively. The protein complex containing maize C1 and R transcription factors has been shown to regulate anthocyanin biosynthesis in Arabidopsis and tobacco. Genes involved in flavonoid biosynthesis are well conserved in higher plants and are regulated by a combinatorial action of transcriptional regulatory factors expressed in temporal and spatially controlled fashion. The expression of early biosynthetic genes involved in flavonoid biosynthesis, such as Phenylalanine ammonia-lyase (CHS), Chalcone isomerase (CHI), Flavonol 3’-hydroxylase, Flavonol synthase (FLS) is regulated by MYB transcription factors in a coordinated manner while the late biosynthetic genes are regulated by an MBW ternary complex consisting of a R2R3 MYB transcription factor, a basic helix-loop-helix (bHLH) transcription factor and a WD repeat protein. Previously we discovered that the expression of GmCHS8 and isoflavonoid biosynthesis is regulated by an R1 MYB transcription factor GmMYB176. Using the transcriptomic and metabolomic analysis, we uncovered that GmMYB176 regulates multiple steps in isoflavonoid biosynthesis. Furthermore, detailed functional analysis of GmMYB176 revealed that it requires additional factor(s) such as another transcription factor or enhancers/repressors or a scaffold protein to activate GmCHS8 gene expression and isoflavonoid biosynthesis.

In this study, we identified GmMYB176 interacting factors, validated their protein–protein interaction in planta, and determined their DNA binding activity. RNAi silencing of the GmMYB176 interacting candidates, GmbZIP4 and GmbZIP5, and overexpression of the translational fusion of GmMYB176-GmbZIP4 and GmMYB176-GmbZIP5 in soybean hairy roots identified GmbZIP5, a basic leucine zipper family protein, as an interacting partner of GmMYB176 with a role in isoflavonoid biosynthesis. Our results demonstrate that both GmMYB176 and GmbZIP5 are co-expressed in soybean roots and their combined action is critical to activate isoflavonoid biosynthesis in soybean roots. Results

Identification of GmMYB176-interacting proteins. To identify the GmMYB176 interactome in soybean, translational fusions of GmMYB176 with a yellow fluorescent protein (YFP) at either the N- or C-terminal (YFP-GmMYB176 or GmMYB176-YFP) were created and overexpressed in soybean hairy roots. The fusion proteins were created to use YFP as a tag in the co-immunoprecipitation (Co-IP) experiments. Despite the YFP tag position, both GmMYB176-YFP and YFP-GmMYB176 were localized to the nucleus and the cytoplasm (Fig. 1a).

GmMYB176 interacting proteins from soybean hairy roots overexpressing either GmMYB176-YFP or YFP-GmMYB176 were precipitated in two separate Co-IP experiments. The presence of the bait in the crude protein sample and in the eluate was confirmed by Western blot analysis (Fig. 1b). A total of 802 proteins were identified in the eluate of all three replicates for both GmMYB176-YFP and YFP-GmMYB176 fusion protein baits. Previously, we showed that some soybean hairy root proteins interact with YFP, and co-elute with it in Co-IP. Therefore, to remove non-specific YFP interactors and to obtain GmMYB176-specific interacting candidates, YFP-interacting proteins from soybean hairy roots were subtracted from the list containing GmMYB176-YFP and YFP-GmMYB176 interacting proteins (Fig. 1c). This process identified a total of 716 candidate proteins where 105 candidates were common in both GmMYB176-YFP and YFP-GmMYB176 fusion baits (Fig. 1c, Supplementary Data 1). The candidates identified exclusively with GmMYB176-YFP (242 proteins) or YFP-GmMYB176 (369 proteins) were also included in the study as it is possible that some interactors may have been missed in one of the baits due to the position of YFP in the fusion protein. The biological activity and domain enrichment of the 716 candidate proteins were retrieved from GO annotation, and grouped into the categories based on their biological process, cellular component, and molecular function (Fig. 1d).

In silico analysis of 30 bp GmCHS8 promoter region (23 bp with 7 bp flanking sequence) for regulatory elements binding sites as this region is critical for GmMYB176-mediated gene expression. This process uncovered 23 transcription factors belonging to six families (Supplementary Data 2). Comparison of candidate transcription factors obtained through these two analyses identified two transcription factor families: bZIP [Glyma.04G222200 (GmbZIP4) and Glyma.05G122400 (GmbZIP5)] and R1 MYB (Fig. 2a). As a component of the MBW ternary complex, MYB and bHLH transcription factors have been shown to regulate flavonoid biosynthesis in many plants. Therefore, three bHLH proteins [Glyma.05G134400 (GmbHLH5), Glyma.15G005100 (GmbHLH15), and Glyma.07G205800 (GmbHLH7)] were also chosen from the Co-IP list for the validation of their protein-protein interaction with GmMYB176.

To validate the GmMYB176 interacting candidates, bimolecular fluorescence complementation (BiFC) assay was used. The assay was conducted using split YFPs, where translational fusions of N- or C-terminal halves of YFP were fused with the two proteins under investigation and transiently co-expressed in Nicotiana
benthamiana leaves. As shown in Fig. 2b, the BiFC assay confirmed that GmMYB176 interacts with GmbZIP4, GmbZIP5, GmbHLH5, and GmbHLH15 in the nucleus. However, no interaction was observed between GmMYB176 and GmbHLH7 in planta. We previously demonstrated that GmMYB176 is a phosphoprotein and its phosphorylation state determines protein–protein interaction24. Therefore, protein–protein interaction using the phospho-site mutant of GmMYB176, GmMYB176S29A, was also performed. The results demonstrated that GmMYB176S29A interacts with GmbZIP4 and GmbZIP5 in the nucleus. Based on the intensity of fluorescence, the interaction of GmMYB176S29A with GmbZIP4 and GmbZIP5 appeared stronger compared to their interaction with GmMYB176 (Fig. 2b). Furthermore, GmMYB176S29A did not interact with GmbHLH5 and GmbHLH15 in planta.

Fig. 1 Co-immunoprecipitation of GmMYB176 interacting proteins from soybean hairy roots. a Subcellular localization of GmMYB176-YFP and YFP-GmMYB176 in hairy roots. Both GmMYB176-YFP and YFP-GmMYB176 fusion proteins were localized in the nucleus and the cytoplasm of soybean hairy root cells as observed by confocal microscopy. Scale bar = 50 μm. b Crude protein extracts were subjected for Co-IP assay using anti-GFP microbeads and μMAC epitope tag protein isolation system. Samples from each step were separated on an SDS-PAGE and visualized by silver staining (top gel). The bottom image shows Western blot analysis using anti-GFP monoclonal antibody. The arrow indicates the estimated size of GmMYB176-YFP protein in the eluate. Crude: crude protein extract from soybean hairy roots; Flow through: crude extract incubated with anti-GFP microbeads and applied to μMAC column, with the flow through collected; Wash: sequential wash steps with lysis buffer; Eluate: elution of bound proteins from the column; -ve control: crude extract from control hairy roots. c Venn diagram showing the overlap of GmMYB176-YFP, YFP-GmMYB176, and YFP-only interacting candidate proteins in soybean hairy roots identified by LC-MS/MS analysis. The YFP interacting protein candidates were obtained from our previous study21. d ‘GO’ annotations of the 716 candidate GmMYB176-interacting proteins. List of soybean genes encoding the candidate proteins was used in PhytoMine22 to generate annotations regarding the biological process, cellular component, and the molecular function of the candidates.
the GmMYB176 interactors validated in planta were assessed for their DNA binding ability using 30 bp tandem repeat of GmCHS8 promoter (GmCHS8-30bpTR) in a yeast one-hybrid (Y1H) assay. The result revealed that both GmbZIP4 and GmbZIP5 bind with GmCHS8-30bpTR (Fig. 2c, Table 1). Even though GmbHLH5 and GmbHLH15 showed protein–protein interaction with GmMYB176, they lacked GmCHS8-30bpTR binding activity. GmMYB176 and empty prey vector (pGAD7) were used as positive and negative controls, respectively. Since relatively stronger protein–protein interaction was observed between GmMYB176S29A and GmbZIP4/GmbZIP5 compared to GmMYB176 and GmbZIP4/GmbZIP5, we also examined the DNA binding ability of GmMYB176S29A and discovered that the DNA binding activity of GmMYB176 does not depend on its phosphorylation state. Based on the protein–protein and protein–DNA interactions (Fig. 2, Table 1), we conclude that...
GmMYB176 transcriptional complex contains GmbZIP4 and/or GmbZIP5 for GmCHS8 gene regulation. Investigation of tissue-specific expression of GmbZIP4, GmbZIP5, and GmMYB176 revealed that they are co-expressed in roots (Fig. 2d, Supplementary Fig. 1).

Table 1 Protein–protein interaction and protein–DNA binding activities of GmMYB176 interactome.

Candidate	Glyma Id	In planta interaction with GmMYB176	Binding to GmCHS8-30 bp promoter fragment
GmMYB176	Glyma.05G032200.1.p	Yes (homo-dimer)	Yes
GmMYB176S29A	Glyma.05G032200.1.p	Yes (homo-dimer)	Yes
GmbZIP4	Glyma.04G222200.1.p	Yes	Yes
GmbZIP5	Glyma.05G124400.1.p	Yes	Yes
GmbHLH5	Glyma.05G134400.1.p	Yes	No
GmbHLH7	Glyma.07G205800.1.p	No	nd
GmbHLH15	Glyma.15G005100.1.p	Yes	No

nd not determined.

Discussion

We previously discovered that GmMYB176 regulates isoflavonoid biosynthesis by activating GmCHS8 gene expression. Furthermore, we demonstrated SGF14 proteins (14–3–3) bind with the phosphorylated GmMYB176 and regulate its shuttling from cytoplasm to the nucleus. The phospho-mutant GmMYB176S29A was unable to interact with SGF14s and localized to the nucleus. Despite that GmMYB176 is necessary for isoflavonoid biosynthesis in soybean roots, it alone is not sufficient for this function.

Our main objective in this study was to identify the GmMYB176 interactome and delineate their role in isoflavonoid biosynthesis. Here, we discovered that the unphosphorylated GmMYB176 (GmMYB176S29A) possesses DNA binding activity, interacts with GmbZIP5 in the nucleus (Fig. 2b, c), and that this interaction is critical for isoflavonoid biosynthesis in soybean roots.

Activation of gene transcription by the unphosphorylated transcription factors has been previously reported. In Arabidopsis, three bHLH transcription factors (AKS1, AKS2, and AKS3) in their unphosphorylated state, activate the genes for stomatal opening. Similar to GmMYB176, both phosphorylated and unphosphorylated forms of human Forkhead box O3 (FOXO3) transcription factor bind to the target promoter; however, only the unphosphorylated FOXO3 serves as the activator. Since both GmMYB176 and GmMYB176S29A are able to bind to the GmCHS8 promoter (Fig. 2b), it is not yet known if the transcriptional complex for its regulation contains phosphorylated or unphosphorylated state of GmMYB176. However, the
strength of YFP signal in the protein–protein interaction between GmbZIP5 and GmMYB176S29A (Fig. 2c) suggests the possibility of unphosphorylated GmMYB176 as the activator. Among the GmMYB176 interactors obtained from the Co-IP experiment, several protein kinase and phosphatase family members were detected (Supplementary Data 1) and 29 candidates were categorized as “Transcription, DNA-dependent” by GO annotation. We recently reported that alteration in GmMYB176 expression leads to a substantial alteration in metabolite production stretching beyond the phenylpropanoid pathway in soybean hairy roots.
Table 2 Differentially accumulated isoflavonoid features in GmMYB176–GmbZIP5 overexpressing soybean hairy roots compared to control roots.

m/z	Average intensity in control	Average intensity in GmMYB176–GmbZIP5 (control)	Fold change
273.075075	1.94E+06	2.37E+07	2.30
295.087594	2.93E+06	3.95E+07	1.36
327.095157	3.68E+06	5.83E+07	2.74
520.110727	4.24E+06	7.09E+07	1.59
722.127707	5.91E+06	1.39E+08	2.39
924.144687	7.58E+06	1.54E+08	2.02
1126.161667	9.25E+06	1.78E+08	2.02
1328.178647	1.09E+07	2.04E+08	1.86
1530.195627	1.26E+07	2.30E+08	1.83
1732.212607	1.43E+07	2.79E+08	1.91
1934.229587	1.60E+07	3.18E+08	1.96

Overexpression of GmMYB176 increases the level of only a single (iso) flavonoid precursor, liquiritigenin, suggesting that other isoflavonoid genes were not activated by GmMYB176 alone. RNAi silencing of GmbZIP5 and co-overexpression of GmMYB176–GmbZIP5 altered isoflavonoid levels demonstrating a direct influence of GmbZIP5 on isoflavonoid biosynthesis in soybean hairy roots (Fig. 3b, d). Plant bZIPs bind to specific promoter regions that contain an ACGT core, such as A-box, C-box, G-box, GCPBP-box, C/G-box, or C/A-box motif. Genetic and biochemical analyses in multiple plant species have indicated that bZIP transcription factors act predominantly in stimulus-dependent gene activation. There are related flavonoid pathways in other plant species that are synergistically regulated by MYB and bZIP partners. Combinatorial action of a bZIP and a R2R3 MYB factors regulates the light-dependent transcription of the early flavonoid biosynthesis genes such as CHS, CHI, and FLS. Both tissue-specific and stress-responsive expression of the French bean CHS1 promoter is regulated by MYB and bZIP-type factors. A synergistic regulation of CHS gene by a bZIP factor and an LKDKW type R1 MYB, PcMYB, was reported long ago, however, GmMYB176 is a SHAQKYF type R1 MYB. Involvement of a transcriptional complex involving and a bZIP and a SHAQKYF type R1 MYB transcription factors has been reported in barley for endosperm-specific gene expression. Nonetheless, the presence of such a complex and its role in plant specialized metabolism was unknown. This is the first evidence of association of a SHAQKYF type R1 MYB and a bZIP (GmMYB176–GmbZIP5) in plant specialized metabolism. The GmCHS8 promoter contains 12 GmMYB176 binding sites and 5 predicted bZIP binding sites. Despite the presence of multiple GmMYB176 and bZIP binding regions, only the deletion of a 23 bp motif-containing GmMYB176 binding site with a predicted bZIP binding motif within GmCHS8 alters the promoter activity. The increase in total isoflavonoid level in the hairy roots overexpressing both GmMYB176 and GmbZIP5 in the present study confirms that GmbZIP5 is the interacting partner of GmMYB176 (Fig. 3d). Furthermore, co-expression of GmMYB176 and GmbZIP5 in soybean roots (Fig. 2d) suggests that GmMYB176–GmbZIP5 complex possibly regulates phytoalexin biosynthesis in soybean roots.

The metabolomics analysis of soybean hairy roots overexpressing GmMYB176–GmbZIP5 revealed an increase in the accumulation of multiple isoflavonoids such as glyceollins, isovitexin, and O-methylhydroxy isoflavones with confirmed or possible roles in plant defense (Table 2). Figure 4 illustrates the proposed biosynthetic pathways of these metabolites where substrate flux is tightly controlled to produce the end products in the pathway. Glyceollins are phytoalexins with key established roles in soybean defense mechanism and human health benefits. They are synthesized de novo from the isoflavone daidzein in response to biotic or abiotic stress, and are induced rapidly in the resistant soybean genotypes compared to the susceptible ones. Even though, isovitexine, a 3′-prenylgenistein has been found in some plant species with antimicrobial activity and its presence in soybean was not reported prior to this study. A considerably higher accumulation of O-methylhydroxy isoflavone and its conjugates were also observed in GmMYB176–GmbZIP5 roots. O-methylhydroxy isoflavones such as afrormosin and alfalone have been shown to accumulate in Medicago truncatula cell cultures at increased levels upon elicitation. Accumulation of afrormosin has also been linked with insect resistance in soybean. The O-methylhydroxy isoflavone found in this study.

roots.
is a different metabolite and not aformosin or alfalone (Supplementary Fig. 2). The dominant fragmentation pathway of both aformosin and alfalone is the neutral loss of CH₃. As the only structural difference between these two compounds is relative positions of the hydroxy and O-methyl groups, the energetics of this fragmentation process are also similar, and thus, the intensity of the m/z 284.06 product ion relative to the precursor ion are nearly identical (Supplementary Fig. 2). In contrast to both aformosin and alfalone, the methylhydroxy isoflavone of this study has a much higher product ion intensity relative to the precursor ion. This was confirmed by carefully performing the MS/MS experiment at multiple collision energies. Relative intensities of product ions are linked to the energetics and entropics of the specific unimolecular dissociation. The increased intensity of the m/z 284.04 product ion of the methylhydroxy isoflavone found in this study suggests that although it is highly structurally similar to aformosin and alfalone, there is likely a key, positional difference. Its similarity to aformosin or alfalone suggests its role in plant defense and the fact that it and its conjugates are at substantially higher levels in afrormosin or alfalone suggests its role in plant defense and the lone, there is likely a key, positional difference. Its similarity to GmMYB176 iso glucosyl O-methylhydroxy isoflavone synthesis in soybean roots. This study also reports the identification of the three unique isoflavonoids—O-methylhydroxy isoflavone, glucosyl O-methylhydroxy isoflavone, and malonyl glucosyl O-methylhydroxy isoflavone in soybean roots. Since root isoflavonoids affect nodulation and resistance against diseases due to soil-borne pathogens such as P. sojae, identification of the structure and function of the O-methylhydroxy isoflavone identified in this study may provide information on novel biological or biochemical phenomena. Our findings could be utilized to develop biotechnological or traditional breeding strategies to manipulate isoflavonoid levels either for the enhancement of nutritional value or for protection against plant diseases in soybean or other agronomical important crops.

Methods

Plant materials and growth conditions. *Nicotiana benthamiana* plants were grown in Pro-Mix BX Mycorrhizal soil (Riviere-du-Loup, Canada) under 16-h light at 25 °C and 8-h dark at 20 °C with 60–70% relative humidity and the light intensity of 80 μmol photons m⁻²s⁻¹. To obtain soybean cotyledons for hairy root transformation, soybean (*Glycine max* L. Merr.) cv. Harosoy63 seeds were surface sterilized with 70% ethanol (v/v) containing 3% H₂O₂ (v/v) for 2 min and then rinsed with sterile water prior to planting. Seeds were planted in vermiculite and grown for 6 days in a growth chamber under the condition described earlier.

Plasmid construction. All plasmid constructions were performed using Gateway technology (Invitrogen, USA). For the PPI study, genes of interest (GOI) were cloned into Gateway destination vectors, pEarleyGate201-YN and pEarleyGate202-YC. For Co-IP, the GmMYB176 was cloned into pEarleyGate101 and pEarleyGate104 to obtain pEarleyGate101-GFP and pEarleyGate104-GFP-GmMYB176, respectively. For RNAi, GmZIP genes were cloned into pk7GW1WG2D (II). For overexpression, GmMYB176–GmZIP gene fusion was created using an 18 bp linker (AGCACAA CATTCCAACCA) by fusion PCR using the primers listed in Supplementary Data 4. The PCR products were cloned into the Gateway vector pk7GW2GD. All the plasmid constructs were transformed individually into *Agrobacterium tumefaciens* GV3101 by electroporation.

For Y1H assay, 30 bp GmCHS8 promoter fragments in three tandem repeats (107 bp) were synthesized (Supplementary Table 4) and cloned into a pAbAi vector to obtain p30bpTr. AbAi. The prey GOI were cloned into pGADT7 using Gateway technology (Invitrogen, USA).

Generation of soybean hairy roots. Six-day-old soybean cotyledons were harvested for hairy root generation. *A. rhizogenes* K599 containing GOI in destination vector was inoculated into soybean cotyledons. Transgenic hairy roots were selected 20–30 days post inoculation, using a Leica M2 F III fluorescence stereo microscope with a YFP filter (excitation 510/520 nm; barrier filter 560/540 nm) and flash frozen and stored at −80 °C until use.

Subcellular localization and BiFC assay. The leaves of 4–6 week old *N. benthamiana* plants were infiltrated with *A. tumefaciens* culture containing GOI in the appropriate destination vectors. To verify PPI, constructs in pEarleyGate201-geneA and pEarleyGate202-geneB were co-transformed in a 1:1 mixture. Confocal microscopy was carried out 48 h post infiltration using a Leica TCS SP2 inverted confocal microscope. The excitation and emission of YFP were 514 nm and 530–560 nm, respectively.

Protein extraction, Co-IP assay, in-gel digestion, and LC-MS/MS. Proteins were extracted from soybean hairy roots overexpressing GmMYB176–YFP or YFP-GmMYB176, and co-IP was performed as previously described. The GmMYB176–YFP and YFP-GmMYB176 fusion proteins were identified by Western blot analysis after sequential incubation of the blot with the Living Colors® A. v. (anti-GFP) Monoclonal Antibody (Clontech, USA) at a dilution of 1:3000 followed by the HRP-conjugated goat anti-mouse secondary antibody (Pierce, USA) at a dilution of 1:5000. HRP detection was performed using Super Signal West Femto (Thermo Scientific, Canada).

The protein eluates (1 µg) were separated by SDS-PAGE followed by silver staining using ProteoSilver kit (Sigma, USA). Protein bands were excised from gels and destained with 30 mM K₂[Fe(CN)₆] and 100 mM Na₂S₂O₄ solution followed by in-gel trypsin digestion using a MassPREP automated digestor (PerkinElmer, USA). Peptides were extracted using a buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, and analyzed by LC–MS/MS (Waters NanoAcuity UPLC coupled with Thermo Orbitrap Elite ETD) in Biological Mass Spectrometry Laboratory (London Regional Proteomics Centre, Canada). MS/MS data were analyzed by MassLynx 4.1 software with Mascot (http://www.mATRIXscience.com) and compared against the soybean protein database in Phytozome with parameters of monoisotopic peptide mass adopted, mass window ranged from 1 kDa to 100 kDa, mass tolerance set as 50 ppm and allowance of one missed cleavage. Prolines were detected to the PeptideExchange Consortium via the PRIDE partner repository with the dataset identifier PXD023931.
YIH assay. YIH assays were carried out by following the Matchmaker® Gold Yeast One-Hybrid Library Screening System User Manual (Clontech, USA). The recombinant plasmid pGADT7-Chitinase was transformed into yeast. (YIH Gold strain) using the Yeastmaker® Yeast Transformation System 2 (Clontech, USA) and grown on SD/-Ura media at 30 °C for 3 days. The transformed colonies were screened by colony PCR using Matchmaker Insert Check PCR Mix 1 (Clontech, USA). YIH assays were performed by following the Matchmaker YIH user manual (Clontech, USA). The minimum inhibitory concentration of 300 µg/mL of obasidin A (ABA) for yeasts carrying 30bpTR promoter bait was 150 mg/mL. The prey constructs (pGADT7-GOI) were transformed into yeast carrying a promoter bait fragment, plated on SD/-Leu/AbAi150, and incubated at 30 °C for 3–5 days.

Quantitative RT-PCR analysis. RNA was isolated from soybean hairy roots using RNasey Plant Mini Kit (Qiagen, USA). Total RNA (1 µg) was used for cDNA synthesis using the TranscripterTM RT-PCR Systems (InviGen, USA). Gene-specific primer sequences for qPCR are listed in Supplementary Data 4. All reactions were performed in three technical replicates, and the expression was normalized to the reference gene CON557. The data were analyzed using Bio-Rad CFX Maestro (Bio-Rad, USA) (Supplementary Data 5).

Metabolite extraction, HPLC, and LC-MS/MS analysis. Total isoflavonoid extraction and HPLC analysis from soybean hairy roots were performed as previously described57 for metabolomics analysis, frozen hairy roots were ground with liquid nitrogen and extracted in methanol-water (80:20, v/v). The samples were sonicated on an ice water bath for 15 min followed by centrifugation at 11,000 × g for 10 min at ambient temperature. The supernatant (350 µL) was dried under nitrogen gas. The dried pellet was dissolved in 200 µL of 50% methanol containing 10 µg caffeine as an internal standard and filtered through a 0.45 µm syringe filter (Millipore, United States).

Of 100 to 1000 in both positive and negative ionization were used for differential analysis. Compounds were identified as previously described57. The data were analyzed using Bio-Rad CFX Maestro (Bio-Rad, USA) (Supplementary Data 5).

Statistics and reproducibility. Statistical analyses were performed using Microsoft Office Excel. Values were expressed as means ± standard error (SE). Statistically significant between two samples were determined by comparing means using Student’s t-test (one-tail, unequal) with P < 0.01. All experiments were performed at least four times with similar results.

Reporting summary. Further information on research design in this article is provided in the Nature Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article either in the Source Data file, via respective repository entry, or Supplementary Information files and are available from the corresponding author on reasonable request and are available from the corresponding author on reasonable request. The metabolomics LC-MS data can be accessed from Metabolomics workbench study ST001634 (https://www.metabolomicsworkbench.org/data/DRCMPubData.php?Mode=Study&StudyID=ST001634&StudyType=MS&ResultType=5). The Co-IP mass spectrometry (MS) proteomics data have been deposed to the ProteomeXchange Consortium via the PRIDE partner repository (Identifier PXD002391).

References
1. Lapick, O. Isoflavonoids in non-leguminous taxa: a rarity or a rule? Phytochemistry 68, 2909–2916 (2007).
2. Ferguson, J. A. & Mathies, U. Signalling interactions during nodule development. J. Plant Growth Regul. 22, 47–72 (2003).
3. Aoki, T., Akashi, T. & Ayabe, S. Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J. Plant Res. 113, 475–488 (2000).
4. Otsuka, R. et al. The phenylpropanoid pathway and plant defence—a genomics perspective. Mol. Plant Pathol. 3, 371–390 (2002).
5. Graham, M. Y. & Graham, T. L. Wound associated competency factors are required for the proximal cell responses of soybean to the Phytophthora sojae wall glucan elicitor. Plant Physiol. 105, 571–578 (1994).
6. Halibrock, K. & Scheel, D. Physiology and molecular biology of phenylpropanoid metabolism. Annu. Rev. Plant Biol. 40, 347–369 (1989).
7. Anguraj Vadivel, A. K., Krysiak, K., Tian, G. & Dhaubhadel, S. Genome-wide identification and localization of chalcone synthase family in soybean (Glycine max [L] [Merr]). BMC Plant Biol. 18, 325 (2018).
8. Yi, J., Derynck, M. R., Chen, L. & Dhaubhadel, S. Differential expression of CHS7 and CHS8 genes in soybean. Planta 234, 741–753 (2010).
9. Dhaubhadel, S., Gijzen, M., Poy, M. & Faranghkhooe, M. Transcriptome analysis reveals a critical role of CHS7 and CHS8 genes for isoflavonoid synthesis in soybean seeds. Plant Physiol. 143, 326–338 (2007).
10. Tuteja, J. H., Clough, S. J., Chan, W.-C. & Vodkin, L. O. Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Arabidopsis. Plant Cell 16, 819–835 (2004).
11. Chen, W., Chao, G. & Singh, K. B. The promoter of a H2O2-inducible, Arabidopsis glutathione S-transferase gene contains closely linked OBf- and OBf-binding sites. Plant J. 10, 955–966 (1996).
12. Vicente-Carbajosa, J., Moore, S. P., Parsons, R. L. & Schmidt, R. J. A maize zinc-finger protein binds the prolamin box in zea gene promoters and interacts with the basic leucine zipper domain of the transcriptional activator Opaque2. Proc. Natl Acad. Sci. USA 94, 7685–7690 (1997).
13. Lloyd, A., Walbot, V. & Davis, R. Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258, 1773–1775 (1992).
14. Lepiniec, L. et al. Genetics and biochemistry of seed flavonoids. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev.arplant.57.032905.105252 (2006).
15. Xu, W., Dubos, C. & Lepiniec, L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci. 20, 176–185 (2015).
16. Stracke, R. et al. Differential regulation of closely related R2R3-MYB transcription factors controls flavonoid accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 50, 660–677 (2007).
17. Xu, W. et al. Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB-bHLH-WDR complexes and their targets in Arabidopsis seed. New Phytol. 202, 132–144 (2014).
18. Ramsay, N. A. & Glover, B. J. MYB-bHLH-WD40 protein complex and the evolution of cellular diversity. Trends Plant Sci. 10, 63–70 (2005).
19. Yi, J. et al. A single-repeat MYB transcription factor, GmMYB176, regulates CHS8 gene expression and affects isoflavonoid biosynthesis in soybean. Plant J. 62, 1019–1034 (2010).
20. Anguraj Vadivel, A. K., Renaud, J., Kapale, S. & Dhaubhadel, S. GmMYB176 regulates multiple steps in isoflavonoid biosynthesis in soybean. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.00562 (2019).
21. Dastmalchi, M., Bernards, M. A. & Dhaubhadel, S. T. Twin anchors of the soybean isoflavonoid metabolism: evidence for tethering of the complex to the endoplasmic reticulum by IFS and C4H. Nucleic Acids Res. 40, D1178–D1186 (2012).
22. Bracha-Drori, K. et al. Detection of protein-protein interactions in plants using bimolecular fluorescence complementation. Plant J. 40, 419–427 (2004).
23. Li, X., Chen, L. & Dhaubhadel, S. 14-3-3 proteins regulate the intracellular localization of the transcriptional activator GmMYB176 and affect isoflavonoid synthesis in soybean. Plant J. 71, 239–250 (2012).
24. Jimenez-Gonzalez, A. S., Fernandez, N., Martinez-Salas, E. & Sanchez de Jimenez, E. Functional and structural analysis of maize hsp101 IRES. PLoS ONE 9, e107459 (2014).
25. Caballero, P., Smith, C. M., Fromczek, P. R. & Fischer, N. H. Isoflavones from an insect-resistant variety of soybean and the molecular structure of afermosin. J. Nat. Prod. 49, 1126–1129 (1986).
26. Kim, T. W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260 (2009).
27. Takahashi, Y. et al. bHLH transcription factors that facilitate K+ uptake during stomatal opening are repressed by abscisic acid through phosphorylation. Sci. Signal. 6, ra48 (2013).
29. Li, Z. et al. Serine S74 phosphorylation alters transcriptional programming of FOXO3 by selectively enhancing apoptotic gene expression. Cell Death Differ. 23, 583–595 (2016).
30. Song, Y. H. et al. DNA-binding study identifies C-box and hybrid C/G-box or C/A-box motifs as high-affinity binding sites for STFI and LONG HYPOCOTYL5 proteins. Plant Physiol. 146, 1862–1877 (2008).
31. Jakoby, M. et al. bZIP transcription factors in Arabidopsis. Trends Plant Sci. 7, 106–111 (2002).
32. Izawa, T., Foster, R. & Chua, N. H. Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230, 1131–1144 (1993).
33. Hartmann, U., Sagasser, M., Mehrtens, F., Stracke, R. & Weisshaar, B. Differential combinatorial interactions of cis-acting elements recognized by R2R3-MYB, BZIP, and BHLH factors control light-responsive and tissue-specific activation of phenylpropanoid biosynthesis genes. Plant Mol. Biol. 57, 155–171 (2005).
34. Weisshaar, B. & Jenkins, G. I. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1, 251–257 (1998).
35. Stracke, R. et al. The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFGI/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ. 33, 88–103 (2010).
36. Faktor, O., Loske, G., Dixon, R. A. & Lamb, C. J. The G-box and H-box in a 39 bp region of a French bean Chalcone synthase promoter constitute a tissue-specific regulatory element. Plant J. 11, 1105–1113 (1997).
37. Hartmann, U. et al. Identification of UV/blue light-response elements in the Arabidopsis thaliana Chalcone synthase promoter using a homologous protoplast transient expression system. Plant Mol. Biol. 36, 741–754 (1998).
38. Feldbrugge, M., Sprenger, M., Hahlbrock, K. & Weisshaar, B. PcMYB1, a novel plant protein containing a DNA-binding domain with one MYB repeat, interacts in vivo with a light-regulatory promoter unit. Plant J. 11, 1079–1093 (1997).
39. Rubio-Somoza, I., Martínez, M., Abraham, Z., Diaz, I. & Carbonero, P. Ternary complex formation between HvMYB53 and other factors involved in transcriptional control in barley seeds. Plant J. 47, 269–281 (2006).
40. Lygin, A. V. et al. Response of soybean pathogens to glyceollin. Phytopathology 100, 897–903 (2010).
41. Lygin, A. V. et al. Glyceollin is an important component of soybean plant defense against Phytophthora sojae and Macrophomina phaseolina. Phytopathology 103, 984–994 (2013).
42. Pham, T. H., Lecomte, S., Efstathiou, T., Ferriere, F. & Pakdel, F. An update on nutrient binding sites for STF1 and LONG HYPOCOTYL5 proteins. Plant Physiol. 159, 583–594 (2015).
43. Yoshikawa, M., Yamauchi, K. & Masago, H. Glyceollin: its role in restricting fungal growth in resistant soybean hypocotyls infected with Phytophthora megasperma var. sojae. Physiol. Plant Pathol. 12, 73–82 (1978).
44. Hahn, M. G., Bonhoff, A. & Grisebach, H. Quantitative localization of the Phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma I. sp. glycinea. Plant Physiol. 77, 591–601 (1985).
45. Shen, G. et al. Characterization of an isoflavonoid-specific prenyltransferase from Lupinus albus. Plant Physiol. 159, 70–80 (2012).
46. Hatano, T. et al. Phenolic constituents of licorice. VIII. Structures of glicosphenone and glucosilovanone, and effects of licorice phenolics on methicillin-resistant Staphylococcus aureus. Chem. Pharm. Bull. 48, 1286–1292 (2000).
47. Dahaij, J. S., Strange, R. N., Bilyard, K. G., Cooksey, C. J. & Garratt, P. J. Two isoprenylated isoflavone phytoalexins from Cajanus cajan. Phytochemistry 23, 871–873 (1984).
48. Farag, M. A., Huhman, D. V., Dixon, R. A. & Sumner, L. W. Metabolomics reveals novel pathways and differential mechanistic and elicitor-specific responses in phenylpropanoid and isoflavonoid biosynthesis in Medicago truncatula cell cultures. Plant Physiol. 146, 387–402 (2008).
49. Renaud, J. B., Overton, S. & Mayer, P. M. Energy and entropy at play in competitive dissipations: The case of uneven positional dissociation of ionized triacylglycerides. Int. J. Mass Spect. 352, 77–86 (2013).
50. Sukumaran, A., McDowell, T., Chen, L., Renaud, J. & Dhaubhadel, S. Isoflavonoid-specific prenyltransferase gene family in soybean: GmPT01, a peroxisomal 2-dimethyllallyltransferase involved in glyceollin biosynthesis. Plant J. 96, 966–981 (2018).
51. Lu, Q. et al. Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoprotein. Plant J. 61, 259–270 (2010).
52. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).
53. Subramanian, S., Graham, M. A., Yu, O. & Graham, T. L. RNA interference of soybean isoflavone synthase genes leads to silencing in tissues distal to the transformation site and to enhanced susceptibility to Phytophthora sojae. Plant Physiol. 137, 1345–1353 (2005).
54. Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).
55. Schmutz, J. et al. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183 (2010).
56. Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
57. Libault, M. et al. Identification of four soybean reference genes for gene expression normalization. Plant Genome 1, 44–54 (2008).
58. Garcia, E. J. et al. Metabolomics reveals chemical changes in Acer saccharum sap over a maple syrup production season. PLoS ONE 15, e0235787 (2020).

Acknowledgements
We thank Ling Chen, Nishat ShayaI Islam, Alex Molnar, and Michelle Bargel (London Research and Development Centre, AAFC) for technical assistance. Kristina Juric (MALDI Mass Spectrometry Facility, UWO, Canada) and Paula Pittock (Biological Mass Spectrometry Laboratory, UWO, Canada) for help with proteomic work. This work was supported by the Natural Sciences and Engineering Research Council of Canada’s Discovery Grant (385922-2011RGPIN) and Agriculture and Agri-Food Canada’s Abase Grant (J1000151) to S.D.

Author contributions
A.K.A.V. performed all the experiments, collected and analyzed data, and prepared draft manuscript. T.M. and J.B.R. performed metabolomics experiment, analyzed data, and contributed to manuscript preparation. S.D. conceived and designed experiments, supervised all aspects of the project, and prepared the final draft manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s42003-021-01889-6.
Correspondence and requests for materials should be addressed to S.D.
Reprints and permission information is available at http://www.nature.com/reprints
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

© Her Majesty the Queen in Right of Canada 2021