Abstract

This paper proposes an algorithm that turns a regular video capturing urban scenes into a high-quality endless animation, known as a Cinemagraph. The creation of a Cinemagraph usually requires a static camera in a carefully configured scene. The task becomes challenging for a regular video with a moving camera and objects. Our approach first warps an input video into the viewpoint of a reference camera. Based on the warped video, we propose effective temporal analysis algorithms to detect regions with static geometry and dynamic appearance, where geometric modeling is reliable and visually attractive animations can be created. Lastly, the algorithm applies a sequence of video processing techniques to produce a Cinemagraph movie. We have tested the proposed approach on numerous challenging real scenes. To our knowledge, this work is the first to automatically generate Cinemagraph animations from regular movies in the wild.

1. Introduction

Our world is dynamic. Imagine you are standing in the middle of Times Square surrounded by constant noise, cars passing by, or flashy billboards showing advertisements at every second. A fundamental challenge in Computer Vision is to model and visualize dynamic environments. Cinemagraphs, still photographs containing minor and repeated animations [1], are one of the most successful examples in capturing such scene dynamics. Their subtle animations are effective in capturing the "moment" with striking visual effects.

The generation of high-quality Cinemagraphs have so far required static cameras with carefully configured scenes [1, 2] or interactive tools [14]. No compelling techniques exist in the automatic conversion of regular videos into Cinemagraphs. Online photo storage services, such as Google Photos, automatically produce short animations from user images and movies. However, their animations are either a simple image slide-show or a trimmed movie segment loop-
been recently proposed [12]. They jointly reconstruct the static background and dynamic foreground objects. However, the adopted visual hull reconstruction leaves noticeable protruding artifacts on their models. Dynamic Fusion reconstructs non-rigidly deforming objects from an RGBD stream, but does not focus on dynamic appearances [22].

More macro scale dynamics (e.g., scene changes over months or years) can be detected by analyzing a set of images acquired by standard cameras [30], stationary surveillance cameras [24], vehicle-mounted cameras [29], or community photo sharing websites [21, 19]. In particular, the time lapse reconstruction [19] has produced impressive spatio temporal 4d models. They are one of the most successful examples of varying geometry and appearance over space and time. However, they require massive amount of photographs, limiting their applications to a small number of landmarks in the world. In contrast, we seek to realize Cinemagraph-quality dynamic scene visualization from a single regular movie.

The Cinemagraph creation has also been studied. Impressive results have been obtained by semi-automatic systems [14, 2], or with templated input videos [3]. Automatic cinemagraphs systems [28, 32] create the mask for animated regions by motion analysis. However, these systems are successful only when the camera does not move and the scene is mostly static. A data-driven single-image approach has produced impressive animations [16], but the dependence on the database currently limits their application ranges. In contrast, this paper proposes an automated approach for regular movies with moving cameras.

3. System overview

This paper proposes a novel system that allows us to convert standard movies with moving cameras capturing urban scenes into Cinemagraph animations. Our system consists of three steps: warping, segmentation, and rendering (See Figure 1). First, we use Structure from Motion (SfM) and Multi-View Stereo (MVS) algorithms to warp the input video into the viewpoint of a reference frame via a depth-map based image morphing. Second, effective temporal analysis and segmentation algorithms are applied on the warped video to give regions that lead to good animations. Finally, we render a high-quality Cinemagraph movie by a sequence of video processing techniques in each segmented region to mitigate artifacts from warping, while fixing the rest of the pixels to the reference frame. The warping step is an application of standard techniques, while the last two steps, in particular the segmentation step, exhibit technical contributions in this paper.

4. Spatial alignment by image warping

The video warping is based on standard 3D reconstruction techniques with minor modifications for being robust against scene dynamics. First, we use a SfM software TheiaSFM [27] to estimate camera poses. Given a reference frame I_r, we estimate a depth-map based on 100 neighboring frames (i.e., 50 frames before and after) via a standard MRF formulation. The range of scene depth at I_r is estimated from visible 3D points provided by SfM, with 1% nearest and farest points discarded for robustness. The inverse depth space is then uniformly discretized into 128 labels.

Following the idea in [15], we compute a matching score between I_r and each neighboring image, then sum up the best half of these scores as the overall unary term to compensate for occlusions and scene dynamics. The matching score is defined as one minus the Normalized Cross Correlation over 5×5 image patches, truncated at 0.3 for robustness. The pairwise term is a truncated linear function of the absolute label differences with a truncation at 4.
multiply 0.15 to the pairwise term. Given the estimated depth-map, we warp all the neighboring frames into the viewpoint of \(I_r\) via standard backward warping, while taking into account occlusions via Z-buffering. Occluded pixels are ignored in the next segmentation process and will be in-painted in the last rendering process.

5. Dynamic appearance segmentation

Carefully choosing regions to animate is the key to successful Cinemagraph creation. Our approach is to conduct temporal analysis on the spatially aligned warped-video, while focusing on two types of appearances common in urban scenes.

5.1. Randomly changing appearance

Digital displays or billboards are popular visual attractions in urban downtowns, night clubs, or store-fronts in shopping malls. Detection and segmentation of displays pose challenges to existing techniques as they could show arbitrary contents. Our system detects these regions by 1) segmenting the warped video into 2D segments by a novel feature vector encoding characteristic appearance changes, and 2) classifying these regions by a random forest trained from manually annotated video clips.

Warped video segmentation: We perform hierarchical bottom-up 2D segmentation of a warped video (See Fig. 4). \(^1\) Our contribution lies in the novel distance metric for a pair of spatial regions, defined as \(D_T + 0.1D_A\). The metric utilizes the warped video to analyze temporal appearance changes \(D_T\) in addition to the absolute appearances \(D_A\).

The inspiration of \(D_T\) comes from locally binary pattern [7, 23] for feature matching, which we employ in the temporal domain. Let \(I_p(f)\) be the mean color of a pixel \(p\) (or a region after merging) at frame \(f\) in the warped video, where we will drop \(p\) from the notation below for simplicity. Our binary temporal pattern descriptor checks once in every \(\alpha\) frames if there will be significant color change after \(\beta\) frames. The figure illustrates a case when \(\alpha = 2\) and \(\beta = 7\).

\[\Delta(i) = 1(||I(\alpha i + \beta) - I(\alpha i)||_2 > \theta). \tag{1} \]

\(1\) denotes the indicator function and checks if the color difference is more than \(\theta = 100\).

To capture both local and long term appearance patterns, we use two sets of parameters: \(\alpha_1 = 4, \beta_1 = 4\) for \(\Delta_1(i)\), and \(\alpha_2 = 2, \beta_2 = N/2\) for \(\Delta_2(i)\). The final binary descriptor is the concatenation of the two:

\[T = [\Delta_1(0), \Delta_1(1), \ldots, \Delta_2(0), \Delta_2(1) \ldots]. \]

The distance between two binary temporal descriptors \(D_T\) is computed by the Hamming distance of the two binary vectors normalized by the feature dimension. \(D_A\) measures the appearance difference between two segments by computing the one minus the normalized cross correlation of two histograms. The histogram is constructed from the LAB values of all pixels inside the 2D region from all frames, with 8 bins per channel.
We start the process with the initial merging threshold set to 0.2 and increase it by a factor of 1.5 every time. We use segmentation results at three different levels of granularity to generate (overlapping) image segments for robustness, in particular, at 60%, 70% and 80% levels [10].

Classification: We build a binary random forest classifier based on appearance, temporal changes, shape, and position features. We have obtained the training data by downloading stationary video clips of popular urban scenes from YouTube. Then, we have manually annotated 2D regions such as displays and billboards. Please refer to the supplementary material for detailed feature design and training process. At test time, we pass all segments from three granularity levels into the classifier and take the union of all positive segments. We ignore mostly invisible segments, that is, if more than half the pixels are invisible (i.e., project outside the view or fail in the Z-buffering test during warping) in more than half the neighboring frames.

5.2. Repeatedly changing appearances

Repeated advertisements or flashing neon-signs are also symbolic structures in many urban scenes, especially at night time. Due to the fact that these regions are often small and isolated, standard motion analysis and segmentation algorithms perform poorly. We propose a simple but powerful temporal analysis algorithm based on Discrete Fourier Transform (DFT) to recognize these pixels.

For each pixel of the warped video, we compute the 1D DFT of its intensities over all frames, then conduct a frequency analysis (See Fig. 2). For ideal cyclic intensity patterns, we should observe a clean peak among high frequency components, while low magnitudes at low frequencies. To be robust against errors from warping, instead of computing a single score using all the N frames, we look for the optimal interval of at least $N/2$ frames. More precisely, we compute the repetitive-ness score of a pixel from frame i to j as

$$C_{rep}(i, j) = \max_{k \geq \tau} |F_k| \div \max_{k \leq \tau} |F_k|,$$

where $|F_i|$ denotes the magnitude of a DFT component. τ is the boundary between the low and high frequency components, which is set to 4 throughout the experiments. The final score is the maximum over all the possible frame intervals containing at least $N/2$ frames:

$$C_{rep} = \max_{(j-i) \geq N/2} C_{rep}(i, j).$$

(2)

We animate a pixel if 1) its score (2) is greater than 2.5 and 2) its 80th percentile of intensities over all frames is greater than 127.

6. Cinemagraph rendering

Our system renders Cinemagraph animations in the detected regions using frames from the warped video, while keeping the remaining pixels fixed to the reference frame. The repeated pattern often consists of small segments and the animation in the optimal interval computed by the formula (2) looks natural without any post-processing.

Random appearance segments are more challenging. We first in-paint visibility holes by Laplacian smoothing over space and time. Next, we apply geometric stabilization by homograph warping. More concretely, feature tracks are generated [25, 6] and filtered by the constraints that 1) the track has to last for at least 10 frames and 2) the standard deviation of the tracked pixel coordinates must be less than 2 pixels in both x and y. Linear least square are used to compute the homography warping from each frame to the reference.

As in existing literature [5, 19], we apply intensity regularization. This is crucial for our warped video, which suffers from severe rendering artifacts. Standard techniques such as temporal median filtering [5] or global least squares optimization [19] have produced compelling results for many of our examples. However, they show two typical failure modes when a segment exhibits rapid optical flow motions and/or abrupt temporal changes. First, they over-regularize high frequency temporal signals. Second, inconsistencies arise across pixels due to the lack of spatial regularization.

Our approach is to represent pixel colors of a segment throughout the frames as a 2D matrix and obtain a low-rank approximation. This method achieves moderate temporal and spatial regularization. RPCA [31] is the choice of our machinery, which has been successfully used for various image and video analysis tasks, but not for high-quality movie rendering to our knowledge.

More concretely, we concatenate pixels of a segment in a single frame to a row vector, and stack them across the frames to form a matrix P. We use Accelerated Proximal Gradient [18] method to minimize the standard RPCA formulation:

$$\|A\|_* + \lambda \|E\|_1 \quad \text{subject to} \quad A + E = P.$$

(3)

The minimization of the nuclear norm $\|A\|_*$ achieves spatial and temporal regularization. We solve the problem for each channel independently and rearrange A as the output pixel values. We have found that it is important to adaptively tune the scalar weight λ depending on the video content, which varies significantly across examples. Intuitively, a rich video content with fast optical flows or temporal changes should still have large nuclear norm. Therefore, we set λ to be proportional to the “richness” of the video content, characterized by Δ_1 from Section 5.1. More precisely,
we set λ to be $0.005 + 0.015 \gamma$, where γ is the number of '1' in Δ_1 divided by its dimension (See Figure 6).

Repetitive appearance regions are naturally cyclic, and we simply render them repeatedly in an interval found by the optimization (2). For random appearance regions, we create loops by playing the video forward and backward.

7. Experimental results

We have implemented the proposed system in C++ and used Intel Core i7 CPU with 32GB RAM and NVIDIA Titan X GPU (for stereo matching score evaluation). We have downloaded various footages from YouTube such as walk-throughs or drive-throughs of urban scenes. We have also recorded walk-through videos by ourselves. Most of the input videos are 10 seconds long (i.e., 300 input frames), while some last for 2 minutes. Our movie collections span indoors/outdoors, day/night, and various places such as urban downtowns, city streets, casinos, shopping malls, or university buildings. Notice that SfM processes all the input frames, but our algorithm only needs a reference frame and 100 neighboring frames. The running time of our system after SfM step ranges from thirty minutes to an hour, depending on the frame resolution and the number of display segments.

Figure 10 shows four of the input videos, segmentation results of the two algorithms, and the output Cinemagraphs. Our system enables automatic high-quality Cinemagraph creation from videos with moving cameras in the wild, where all the existing approaches require a static camera with a clean scene and/or human manual interventions, to our knowledge. Please refer to the supplementary material for complete experimental results and movies.

Figure 5 demonstrates that our segmentation process effectively identifies regions that lead to high quality animations. Since no automated Cinemagraph generation method exists for a general movie, we have supplied our warped videos to an existing algorithm assuming a static camera [32] for comparison. However, their algorithm simply looks at a rectangular regions with large optical flow motions, and cannot handle severe rendering artifacts or rich dynamics in our movies.

Figure 7 shows the effectiveness of our new pixel distance metric for display segmentation. The feature vector allows us to extract image segments that have similar temporal changing patterns. We compare our algorithm with
Figure 7: We evaluate five different segmentation algorithms on two examples. For each example, the segmentation result is shown in the first row and the corresponding classification result is shown in the second row. The combination of the temporal and appearance (temp. + app.) information allows us to effectively segment regions that lead to good animation. Algorithms of Felzenszwalb et al. [9] (with threshold parameter set to 500) and Grundmann et al. [10] lacks in temporal appearance information and fail to group pixels in the display in the top example. Only using the temporal information (temporal only) produces incomplete segments for partially dynamic displays (yellow display on the left of the bottom example). Only using appearance information (appearance only) fails to capture display segment as in Felzenszwalb et al. and Grundmann et al. Segmentation result from 80% hierarchy are shown in the right four columns.

Figure 8: Comparison of different intensity regularization algorithms. Left: input frame. Right: rendering using temporal median filter with radius of 5, global least-square optimization with the smoothing weight 50, and our adaptive RPCA. The first two algorithms regularize each pixel independently, causing inconsistency across pixels under fast motion. In contrast, our algorithm jointly regularize all pixels inside a region.

Felzenszwalb et al. [9] on the reference image and Grundmann et al. [10] on our warped video. Both methods fail to extract segments that have similar temporal appearance characteristics.

Figure 6 shows the effectiveness of our adaptive appearance regularization, where we control the low-rank regularization weight depending on the richness of the video content. Figure 8 shows our rendering results against two standard intensity regularization techniques: temporal median filter [5] and global least-squares optimization [19]. These
methods have no spatial regularization (i.e., per-pixel operation), causing inconsistencies across pixels in the presence of fast optical flow motions. Our low-rank approximation technique outperforms in such cases with moderate spatio-temporal regularization.

Applications: The capability to turn general videos into Cinemagraph animations opens up potentials for novel applications. For instance, in the field of scene visualization, image-based rendering navigation has become the golden standard (e.g., Google Maps Street View) [11, 20], where a user looks at a real photograph at one location, and jumps between locations via transition rendering. However, photographs are all static without any dynamics in these systems. While directly serving videos might be a solution to visualize scene dynamics, they require a lot more data space/transfer and constrain the navigation strictly on the video path. Replacing images with Cinemagraphs allows one to experience scene dynamics at each location as well as free navigation in a scene. Cinemagraphs animate only a fraction of an image and requires minimal extra data space. In particular, we demonstrate this next-generation Cinemagraph-based rendering navigation, by taking a long walk-through video, generating Cinemagraph animations at sub-sampled frames, then form a navigation graph by connecting these frames. Furthermore, it is also easy to replace animating contents by another media for virtual advertisement, which might prevail in the near future with the emerging VR and AR. Please see the supplementary video for examples.

8. Limitations and future work

This paper proposes the first effective system that turns regular movies with moving cameras into high-quality Cinemagraph animations at urban environments. Automatic Cinemagraph creation from regular video is still a very challenging problem, and we have observed a few major failure modes (See Figure 9). First, our system expects that SfM utilizes a static part of a scene to produce camera poses and MVS interpolates rough geometry over dynamic regions. These assumptions might fail at highly dynamic regions, causing unnatural distortions in the animated contents. The second failure mode is in the classification. Our training data come from movie clips by stationary cameras, which look different from the warped videos. We need more training data, potentially, annotating the warped videos from our algorithm for training. The last failure mode is in the rendering. While RPCA is very powerful in suppressing artifacts, it still fails under the presence of severe occluders, such as the long appearance of pedestrians in front of a camera. Utilization of semantic segmentation techniques is our future work to make our system further robust against occluders.

This paper makes a first important step towards automated high-quality dynamic scene visualization from regular movies by mass consumers. We hope that this paper will fuel a round of new research, tackling more diverse set of dynamics in our world.

Acknowledgement

This research is partially supported by National Science Foundation under grant IIS 1540012 and IIS 1618685, and Microsoft Azure Research Award.
Figure 10: A column shows sample input frames (the middle frame as the reference), a repetitive region, a randomly changing region, and sample output frames. Outputs for repetitive pixels and output frames are cropped to the red and green bounding boxes to better illustrate the details. Please see our supplementary video for the full assessment of our results and more examples.
Supplementary material

The supplementary document provides more details on the classification algorithm for randomly changing appearances.

We use a binary random forest to identify segments of randomly changing appearance that lead to high quality animations. Table 1 gives the full specification of our feature vector that encodes appearances, temporal, shape and position information in an 2D segment.

We have obtained the training data as follows. First, we have downloaded stationary video footages from YouTube and manually annotated 2D display regions at pixel levels. Second, we have run the same video segmentation algorithm and generate segments. Lastly, we label each segment as a positive (resp. negative) sample if more (resp. less) than 80% the segment overlaps with the annotated display pixels. We then train a random forest (100 decision trees with depth 10) by using 48 video clips for training and 12 video clips for validation. The training and validation accuracy are 98.0% and 93.0%, respectively. After obtaining the optimal hyperparameters, we merge the validation set into the training set and re-run the training.

At test time, we classify each segment by the trained random forest. Since image segments are obtained from the three levels of granularity, each pixel belongs to three different image segments. We treat a pixel to be a dynamic appearance segment, if at least one of the three segments is classified as a display. After finding the connected display components, we discard too small (less than 50 pixels) or too large (more than 30% of the frame) segments. Finally, we also discard segments that are mostly occluded in the other views and do not likely produce good animations. More precisely, we discard a segment if more than half the pixels are occluded in more than half the neighboring views based on the visibility test conducted in the video warping process.
Table 1: The feature vector used for random forest.

Category	Feature	Description	Dim
Appearance	RGB mean	Mean RGB values.	3
	RGB variance	Variances of RGB values.	3
	LAB histogram	Histogram in LAB color space with 8 bins for each channel.	24
Gradient	BoW	Bag-of-words descriptors constructed by K-means clustering on HoG3D descriptor [17] extracted from regular grid points.	100
Shape	Area	Ratio of the 2D area against the area of the entire frame.	1
	Convexity	Ratio of the 2D area against the area of its convex hull.	1
	Rectangleness	Ratio of the 2D area against the area of the minimum bounding box.	1
	Aspect ratio	The aspect ratio of the minimum bounding box.	1
	Number of edges	The number of edges of an approximated 2D shape. The approximation error is set to 1% of the smaller dimension of the frame.	1
Position	Centroid	The position of the centroid of the segment.	2
	Bounding box	Minimum/maximum x/y position, normalized by width and height.	4
References

[1] Cinemagraph. http://cinemagraphs.com/. 1

[2] J. Bai, A. Agarwala, M. Agrawala, and R. Ramamoorthi. Selectively de-animating video. ACM Trans. Graph., 31(4):66–1, 2012. 1, 2

[3] J. Bai, A. Agarwala, M. Agrawala, and R. Ramamoorthi. Automatic cinemagraph portraits. In Computer Graphics Forum, volume 32, pages 17–25. Wiley Online Library, 2013. 2

[4] T. Beeler, F. Hahn, D. Bradley, B. Bickel, P. Beardsley, C. Gotsman, R. W. Sumner, and M. Gross. High-quality passive facial performance capture using anchor frames. ACM Trans. Graph., 30:75:1–75:10, August 2011. 1

[5] E. P. Bennett and L. McMillan. Computational time-lapse video. In ACM Transactions on Graphics (TOG), volume 26, page 102. ACM, 2007. 4, 6

[6] J.-Y. Bouguet. Pyramidal implementation of the affine lucas kanade feature tracker description of the algorithm. Intel Corporation, 5(1-10):4, 2001. 4

[7] M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C. Strecha, and P. Fua. Brief: Computing a local binary descriptor very fast. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(7):1281–1298, 2012. 3

[8] A. Collet, M. Chuang, P. Sweeney, D. Gillett, D. Evseev, D. Calabrese, H. Hoppe, A. Kirk, and S. Sullivan. High-quality streamable free-viewpoint video. ACM Transactions on Graphics (TOG), 34(4):69, 2015. 1

[9] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient graph-based image segmentation. International Journal on Computer Vision, 59(2):167–181, 2004. 5, 6

[10] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 2141–2148. IEEE, 2010. 3, 4, 5, 6

[11] G. Inc. Google maps. http://maps.google.com. 7

[12] D. Ji, E. Dunn, and J.-M. Frahm. 3d reconstruction of dynamic textures in crowd sourced data. In ECV, pages 143–158. Springer, 2014. 2

[13] H. Joo, H. S. Park, and Y. Sheikh. Map visibility estimation for large-scale dynamic 3d reconstruction. In Computer Vision and Pattern Recognition. IEEE, 2014. 1

[14] N. Joshi, S. Mehta, S. Drucker, E. Stollnitz, H. Hoppe, M. Uyttendaele, and M. Cohen. Cliplets: juxtaposing still and dynamic imagery. In Proceedings of the 25th annual ACM symposium on User interface software and technology, pages 251–260. ACM, 2012. 1, 2

[15] S. B. Kang and R. Szeliski. Extracting view-dependent depth maps from a collection of images. International Journal of Computer Vision, 58(2):139–163, 2004. 2

[16] N. Kolb, T. Simon, A. Efros, and Y. Sheikh. 3d object manipulation in a single photograph using stock 3d models. ACM Transactions on Graphics (TOG), 33(4):127, 2014. 2

[17] A. Klaser, M. Marszalek, and C. Schmid. A spatio-temporal descriptor based on 3d-gradients. In BMVC 2008-19th British Machine Vision Conference, pages 275–1. British Machine Vision Association, 2008. 10

[18] Z. Lin, A. Ganesh, J. Wright, L. Wu, M. Chen, and Y. Ma. Fast convex optimization algorithms for exact recovery of a corrupted low-rank matrix. Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 61, 2009. 4

[19] R. Martin-Brualla, D. Gallup, and S. M. Seitz. Time-lapse mining from internet photos. ACM Transactions on Graphics (TOG), 34(4):62, 2015. 2, 4, 6

[20] Matterport. Matterport: 3d for the real world. http://matterport.com. 7

[21] K. Matzen and N. Snavely. Scene chronology. In ECCV, pages 615–630. Springer, 2014. 2

[22] R. A. Newcombe, D. Fox, and S. M. Seitz. Dynamicfusion: Reconstruction and tracking of non-rigid scenes in real-time. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 343–352, 2015. 2

[23] T. Ojala, M. Pietikainen, and D. Harwood. Performance evaluation of texture measures with classification based on kullback discrimination of distributions. In Pattern Recognition, 1994. Vol. 1-Conference A: Computer Vision & Image Processing., Proceedings of the 12th IAPR International Conference on, volume 1, pages 582–585. IEEE, 1994. 3

[24] K. Sakurada, T. Okatani, and K. Deguchi. Detecting changes in 3d structure of a scene from multi-view images captured by a vehicle-mounted camera. In Computer Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, pages 137–144. IEEE, 2013. 2

[25] J. Shi and C. Tomasi. Good features to track. In Computer Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE Computer Society Conference on, pages 593–600. IEEE, 1994. 4

[26] J. Starck and A. Hilton. Surface capture for performance-based animation. Computer Graphics and Applications, IEEE, 27(3):21–31, 2007. 1

[27] C. Sweeney. Theia multiview geometry library: Tutorial & reference. http://theia-sfm.org. 2

[28] J. Tompkin, F. Pece, K. Subr, and J. Kautz. Towards moment imagery: Automatic cinemagraphs. In Visual Media Production (CVMP), 2011 Conference for, pages 87–93. IEEE, 2011. 2
[29] A. O. Ulusoy and J. L. Mundy. Image-based 4-d reconstruction using 3-d change detection. In Computer Vision–ECCV 2014, pages 31–45. Springer, 2014. 2

[30] T. Y. Wang, P. Kohli, and N. J. Mitra. Dynamic sfm: Detecting scene changes from image pairs. Comput. Graph. Forum, 34(5):177–189, 2015. 2

[31] J. Wright, A. Ganesh, S. Rao, Y. Peng, and Y. Ma. Robust principal component analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In Advances in neural information processing systems, pages 2080–2088, 2009. 4

[32] M.-C. Yeh and P.-Y. Li. An approach to automatic creation of cinemagraphs. In Proceedings of the 20th ACM international conference on Multimedia, pages 1153–1156. ACM, 2012. 2, 5