Description of HIV-1 Group M Molecular Epidemiology and Drug Resistance Prevalence in Equatorial Guinea from Migrants in Spain

Gonzalo Yebra, Miguel de Mulder, África Holguín*

HIV-1 Molecular Epidemiology Laboratory, Dept. of Microbiology, Hospital Ramón y Cajal-IRYCIS and CIBERESP, Madrid, Spain

Abstract

Background: The HIV epidemic is increasing in Equatorial Guinea (GQ), West Central Africa, but few studies have reported its HIV molecular epidemiology. We aimed to describe the HIV-1 group M (HIV-1M) variants and drug-resistance mutations in GQ using sequences sampled in this country and in Spain, a frequent destination of Equatoguinean migrants.

Methods: We collected 195 HIV-1M pol sequences from Equatoguinean subjects attending Spanish clinics during 1997-2011, and 83 additional sequences sampled in GQ in 1997 and 2008 from GenBank. All (n = 278) were re-classified using phylogeny and tested for drug-resistance mutations. To evaluate the origin of CRF02_AG in GQ, we analyzed 2,562 CRF02_AG sequences and applied Bayesian MCMC inference (BEAST program).

Results: Most Equatoguinean patients recruited in Spain were women (61.1%) or heterosexuals (87.7%). In the 278 sequences, the variants found were CRF02_AG (47.8%), A (13.7%), B (7.2%), C (5.8%), G (5.4%) and others (20.1%). We found 6 CRF02_AG clusters emerged from 1983.9 to 2002.5 with origin in GQ (5.5 sequences/cluster). Transmitted drug-resistance (TDR) rate among naïve patients attended in Spain (n = 144) was 4.7%: 3.4% for PI (all with M46IL), 1.8% for NRTI (all with M184V) and 0.9% for NNRTI (Y188L). Among pre-treated patients, 9/31 (29%) presented any resistance, mainly affecting NNRTI (27.8%).

Conclusions: We report a low (~5%) TDR rate among naïve, with PI as the most affected class. Pre-treated patients also showed a low drug-resistance prevalence (29%) maybe related to the insufficient treatment coverage in GQ. CRF02_AG was the prevalent HIV-1M variant and entered GQ through independent introductions at least since the early 1980s.

Introduction

The human immunodeficiency virus type 1 group M (HIV-1M), responsible for the HIV pandemic, originated from a zoonotic transmission from chimpanzees into humans in Cameroon [1]. For decades, the virus evolved and diversified into different lineages in the Congo River basin, where the highest viral diversity circulates [2]. Today, HIV-1M is sub-divided into 9 pure subtypes (A-D, F-H, J and K) and recombinants between them (http://www.hiv.lanl.gov/content/sequence/HIV/CRFs/CRFs.html): 58 circulating recombinant forms (CRFs) and multiple unique recombinant forms (URFs).

Equatorial Guinea (GQ), a Spanish colony until 1968, is a small country located in West Central Africa between Cameroon and Gabon. The estimated number of people living with HIV in GQ (20,000 in 2009) increases annually, and antiretroviral treatment (ART) only reached 48% of them in 2011 [3]. Despite its location, close to the epicenter of HIV-1 pandemic, only two local studies [4,5] have so far reported the HIV molecular epidemiology in GQ. Ortiz et al. included 76 HIV-1M env gene (gp11) sequences obtained in 1999 from general HIV-infected population. Djoko et al. evaluated 41 HIV-1M pol sequences sampled in 2008 from military personnel in Malabo – the capital city. Both studies revealed CRF02_AG as the prevalent HIV-1M variant, as happens in the neighboring countries [6].

The latter also reported a rate of transmitted antiretroviral drug resistance (TDR) of 4.2%. This rate represents the percentage of naïve patients infected with HIV variants carrying drug resistance mutations, and threatens the effectiveness of ART. Recent studies report an increasing TDR prevalence in low- and middle-income countries following ART scale-up [7]. This rise especially affects sub-Saharan Africa, driven by the resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) [8,9]. The TDR rate in Cameroon is around 8-9% [10,11] and lower than 5% in Gabon [12]. HIV molecular epidemiology studies are crucial in these areas to prevent the widespread transmission of drug resistance, especially those lacking systematic surveillance as GQ.
We aimed to describe the circulating HIV-1M variants and the presence of antiretroviral drug resistance mutations in Equatorial Guinea. To achieve this, we applied phylogenetic methods to a combination of viral sequences sampled in Spain (frequent destination of Equatoguinean migration) and publicly available sequences sampled in the sub-Saharan country.

Materials and Methods

Study Population

All the HIV-infected subjects coming from Equatorial Guinea with available HIV-1M pol sequences, and attended in Spanish HIV/AIDS clinics (mainly in Madrid) were collected. They were 195 adult and pediatric patients sampled between 1997 and 2011. Most sequences were previously reported [13–16], while 37 were unpublished. In most cases (136, 69.7%) they included the complete protease (PR, 297nt) and partial reverse transcriptase (RT, 860nt of mean length). In 58 (29.7%) and 1 (0.5%) cases, only the PR or the RT sequence was available, respectively. In addition, all the HIV-1 pol sequences (n = 83) sampled in Equatorial Guinea and available in the GenBank (www.ncbi.nlm.nih.gov/genbank) were retrieved. They belonged to two sequences batches sampled in 1997 (not published) and 2008 [5]. GenBank accession numbers of the sequences included are provided in Accession S1.

HIV-1M Subtyping

HIV-1M variants were re-classified by phylogenetic analysis of the 278 pol sequences, including recombinants not available at publishing time. Representative sequences of the HIV-1M 9 subtypes and 49 CRFs downloaded from Los Alamos HIV sequence database (LANL-DB, http://www.hiv.lanl.gov) were used as references. Sequences were aligned manually, and initial neighbor-joining trees were built using MEGAS (http://www.megasoftware.net) under the Kimura two-parameter model with 1,000 bootstrap re-sampling. Subtypes were further confirmed in approximately maximum-likelihood (ML) phylogenetic trees constructed under the general time reversible model of nucleotide substitutions with gamma-distributed heterogeneity rate (GTR + F) using FastTree v2.1.3 (http://www.microbesonline.org/fasttree). The topology robustness was tested by likelihood-based local branch support. In sequences not ascribed to any known subtype or CRF, recombination analyses were performed using SimPlot v3.5.1 and Recombination Detection Program (RDP, v3alpha4).

In the CRF02_AG subset, we searched monophyletic clusters (associations of ≥3 samples) that involved only sequences from Equatoguinean HIV-infected Patients in Spain.

Results

Equatoguinean HIV-infected Patients in Spain

The main characteristics of these patients are shown in Table 1. Most subjects (61.1%) of this cohort were women, and were infected with HIV due to heterosexual risk practices, in concordance with the general situation in sub-Saharan Africa [20]. Sorting patients according to the sample periods shown in Table 1, we observed a significant increase in the proportion of men: 13.6% in 1997–2001, 44.6% in 2002–2006 and 53.5% in 2007–2011 (P = 0.0002). We found no apparent trends in the remaining analyzed features across time. The epidemiological information was not available in the 83 sequences retrieved from GenBank and sampled in Equatorial Guinea.

HIV-1M Variants Circulating in Equatorial Guinea

Table 2 shows the distribution of HIV-1M variants among the 278 pol sequences from Equatoguinean patients, where the recombinant CRF02_AG (47.8%) was predominant. Pure subtypes infected 122 (43.9%) patients, and other CRFs were found in 19 (6.8%) cases. Four sequences were classified as URF (URF_JU, URF_BH, URF_02D and URF_BG) using RDP and SimPlot. In note, the frequency of subtype B was significantly higher in Equatoguinean subjects sampled in Spain than in those sampled in EQ (9.7% vs. 1.2%, P = 0.012).

The new analysis of the sequences permitted to update their classification, especially among recombinants. We re-classified as CRF02_AG 21 sequences initially assigned to subtype G when they were sampled [21,22], 1 CRF11_cpx described as subtype J [22], 1 CRF13_cpx and 1 CRF18_cpx also reported as subtype G [21] and 1 CRF22_01A1 described as subtype A [16]. The recombination analyses revealed that 2 sequences isolated in 1999 and 2000 and reported as pure subtypes G and J [21] were URF_BG and URF_JU, respectively.

CRF02_AG Cluster Analysis

In the general ML tree that included the 133 CRF02_AG sequences from the study population and 2,652 worldwide CRF02_AG sequences (Figure 1), we found 7 monophyletic clusters including exclusively Equatoguinean CRF02_AG sequences with ≥95% of statistical support. The geographic origin of the 2,652 CRF02_AG sequences from LANL-DB is described in the legend of Figure 1. The further analysis with BEAST
putative clusters were supported by a posterior probability of
(0.95) (cluster V) was related to sequences sampled in Central Africa.
(MRCA) ranged from 1983.9 to 2002.5. Five of the 6 clusters were
definitive due to their high statistical support. They included 33
Equatoguinean sequences (mean = 5.5 sequences/cluster). All but
one (cluster VI) clusters included sequences sampled in both Spain
and GQ. The dates of their most recent common ancestors
(dates (n = 38) in order to include at least one sequence
among the CRF02_AG from LANL-DB according to the ML tree
putative Equatoguinean clusters (n = 39), their closest relatives
included a 92 sequence alignment: the CRF02_AG involved in the
transmitted drug-resistance mutation (TDR) in 7 of the
patients and 31 (15.9%) to treatment-experienced subjects, with
naïve subjects, 148 (75.9%) corresponded to antiretroviral-naïve
patients and 9 (29%) presented any drug-resistance mutation according to the IAS-
USA list [19]. The highest rate (27.8%) was found for NNRTI-
resistance mutations found were M46L (4 cases), and L90M and
I84V (3 cases each). For NRTI-resistance, the mutation M184V
resistance was found in all 3 cases. We observed a fluctuation in TDR rates
in the three periods shown at Table 1:9.7% (3/31) in 1997–2001,
was found in all 3 cases. We observed a fluctuation in TDR rates
in the three periods shown at Table 1:9.7% (3/31) in 1997–2001,
2.5% (2/81) in 2002–2006 and 5.5% (2/36) in 2007–2011,
probably due to the small sample size in each one.
HIV-1M Drug Resistance
Among the 195 sequences collected in Spain from Equatoguinean subjects, 148 (75.9%) corresponded to antiretroviral-naïve patients and 31 (15.9%) to treatment-experienced subjects, with unknown treatment experience in 16 (8.2%) patients. We found at least one transmitted drug-resistance mutation (TDR) in 7 of the
148 (4.7%) naïve patients following the World Health Organization
(list [18]. TDR was 6.7% (6/90) in women vs. 1.8%
(1/56) in men (P = 0.2). Table 4 shows the TDR rate according to
the antiretroviral class affected. In 5 (3.4%) subjects, the mutations
affected PR inhibitors (PI), with M46I/L substitution in all cases.
Another 2 (1.8%) presented the M184V mutation to nucleoside
reverse transcriptase inhibitors (NRTI). One of the latter also
presented a drug-resistance mutation to non-nucleoside reverse
transcriptase inhibitors (NNRTI). No triple-class resistance was
found. Among the 31 ART-experienced patients, 9 (29%)
prevalence was significantly higher among patients sampled in GQ
than in Spain (P = 0.012, chi-square test).

Table 1. Epidemiologic characteristics at sampling time of
the 195 Equatoguinean HIV-infected patients followed in
Spain (1997–2011).

Characteristic	n	% (95% CI)
Gender		
Male	70	38.9 (32.1–46.2)
Female	110	61.1 (53.8–67.9)
Unknown	15	–
Population		
Adult	186	95.4 (91.5–97.5)
Pediatric	9	4.6 (2.4–8.5)
Risk practice		
Heterosexual	128	87.7 (81.3–92.1)
MSM	1	0.7 (0.1–3.8)
IDU	2	1.4 (0.4–4.9)
Vertical	9	6.2 (3.3–11.3)
Transfusion/others	6	4.1 (1.9–8.7)
Unknown	49	–
ART experience		
Naïve	148	82.7 (76.5–87.5)
Pre-treated	31	17.3 (12.5–23.5)
Unknown	16	–
Sampling period		
1997–2001	44	22.6 (17.3–28.9)
2002–2006	105	53.8 (46.8–60.7)
2007–2011	46	23.6 (18.2–30.0)

Mean sampling year (± SD) 2003.96±3.26 –
Mean HIV viral load (log ± SD) 4.3±1.0 –

CI, confidence interval; MSM, men who have sex with men; IDU, injecting drug users; ART, antiretroviral treatment; SD, standard deviation. For naïve and pre-treated patients, the mutations lists from the World Health Organization [18] and from the International AIDS Society-USA [19] were considered, respectively. This information was not available for the 83 HIV-1M sequences retrieved from GenBank and sampled in Equatorial Guinea.

The Bayesian MCC tree (Figure S1) showed that 6 of the 7 putative clusters were supported by a posterior probability of
with a posterior probability of
(0.95) (cluster V) was related to sequences sampled in Central Africa (Figure 1).

HIV-1M Strains and Resistance in Equatorial Guinea

Table 2. HIV-1 group M variants infecting the 278 patients
from Equatorial Guinea.

HIV-1M variant	Total (%)	Sampled in Spain (%)	Sampled in GQ (%)
Pure subtypes	122 (43.9)	84 (43.1)	38 (45.8%)
A	38 (13.7)	24 (12.3)	14 (16.9%)
B*	20 (7.2)	19 (9.7)	1 (1.2)
C	16 (5.7)	10 (5.1)	6 (7.2)
D	14 (5.0)	9 (4.6)	5 (6.0)
F	11 (4.0)	7 (3.6)	4 (4.8)
G	15 (5.4)	9 (4.6)	6 (7.2)
H	8 (2.9)	6 (3.1)	2 (2.4)
Recombinants	156 (56.1)	111 (56.9)	45 (54.2)
CRF02_AG	133 (47.8)	92 (47.2)	41 (49.4)
CRF06_cpx	4 (1.4)	3 (1.5)	1 (1.2)
CRF09_cpx	1 (0.4)	0 (0.0)	1 (1.2)
CRF11_cpx	7 (2.5)	6 (3.1)	1 (1.2)
CRF13_cpx	3 (1.1)	3 (1.5)	0 (0.0)
CRF18_cpx	1 (0.4)	1 (0.5)	0 (0.0)
CRF22_01A1	3 (1.1)	2 (1.0)	1 (1.2)
URF b	4 (1.4)	4 (2.1)	0 (0.0)
All	278	195	83

GQ, Equatorial Guinea; CRF, circulating recombinant form; URF, unique recombinant form. Sequences obtained in Spain were sampled between 1997 and 2011, and those obtained in Equatorial Guinea in 1997 (n = 35) (not published) or 2008 (n = 48; [5]).

*Subtype B prevalence was significantly higher among patients sampled in GQ than in Spain (P = 0.012, chi-square test).

bThe four URF were URF_JU, URF_BH, URF_02D and URF_BG.

doi:10.1371/journal.pone.0064293.t002
naïve (6/7; 85.7%) and pre-treated (6/9 cases; 66.7%) patients carrying drug-resistant viruses were adult women. They were mainly infected by CRF02_AG (2/7 and 4/9, respectively) and subtype B (2/7 and 3/9 cases, respectively).

Regarding the sequences retrieved from GenBank and obtained in Equatorial Guinea, the antiretroviral status was only available for the 41 samples described in Djoko et al., which were obtained from naïve HIV-infected population in Malabo. Among them, TDR was 4.9% according to the WHO mutations list.

Discussion

Despite being located in the River Congo basin, where the HIV epidemics originated [1], only two works [4,5] have provided data about the circulation of different HIV strains and drug resistance in Equatorial Guinea. Here, we expand and complete the information available about the HIV Equatoguinean epidemics combining the use of HIV-1M pol sequences from immigrants in Spain (the main host developed country for Equatoguinean migration) and from patients sampled in Equatorial Guinea. This is the larger study covering transmitted drug resistance in this country and the first one analyzing general HIV-infected population and dating the introduction of CRF02_AG.

CRF02_AG Recombinant is Prevalent in Equatorial Guinea

We confirm that recombinant CRF02_AG, the prevalent HIV-1M variant in Western Africa [6], accounts for a half of infections in Equatorial Guinea (Table 2). This is also the most frequent
CRF02_AG Introduction in Equatorial Guinea

The Bayesian MCMC analysis using BEAST revealed 6 monophyletic, highly statistically supported clusters of Equatoguinean CRF02_AG sequences. This could indicate that this variant entered Equatorial Guinea through several independent introductions occurred at least since the early 1980s, and not through a single introduction event. A previous study proposed that CRF02_AG was introduced in Equatorial Guinea from Cameroon [24], but our results showed that only one of the 6 fell within Central African clades, being the rest related to Western African clades. In many cases, sequences from both regions were interspersed in the analysis (Figure 1), which suggests a frequent circulation of CRF02_AG between countries, as others have also indicated [25]. In both Western and Central Africa the presence of this recombinant, originated at least in the early 1970s [24], has increased in the last years [6].

On the other hand, the observed clustering could also be explained by specific transmission networks, although the available epidemiological information collected in the patients’ clinical records does not point to the presence of any of these networks. In addition, as previously commented, all clusters but one (cluster VI) included both CRF02_AG sequences sampled in Spain and in Equatorial Guinea, which minimizes the chance of a local transmission network. Despite these explanations, this alternative possibility cannot be completely ruled out.

Low Rate of Resistance among HIV-1M-infected Equatoguineans

We observed a TDR rate of 4.7% among the 148 antiretroviral-naïve Equatoguineans attending Spanish HIV/AIDS clinics, a figure close to the limit between low and moderate drug-resistance (5%) according to the World Health Organization [26]. This rate is very similar to that found in the only TDR study performed in Equatorial Guinea (4.9%), which screened military personnel in Malabo [5]. Both are lower than in other sub-Saharan countries, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].

The highest TDR rate was found for PI (3.4%), led by the presence of the substitution M46I/L in all cases. This was also the most frequent PI-resistance mutation among pre-treated patients, including the neighboring Cameroon, with a TDR around 9% [10,11]. Since ART still reaches only 48% of the HIV-infected population in need of therapy in GQ [3], a lower emergence of resistance than in countries with an older ART scale-up is expected [7].
transmitted NRTI-resistance mutation [5]. et al., although they only found the substitution D67N as predominance of change M184V) agrees with the study of Djoko personnel living in Equatorial Guinea [5]. This high prevalence contrasts with the rare administration of PI in Equatorial Guinea, where the first line treatment includes the NNRTI efavirenz [3]. For transmitted NRTI-resistance, the low presence found (with the predominance of change M184V) agrees with the study of Djoko et al., although they only found the substitution D67N as transmitted NNRTI-resistance mutation [5].

Studies in Uganda [7,27] have related the expanded use of NNRTI as peripartum prophylaxis among HIV-infected pregnant women to a higher population-wide prevalence of NNRTI-resistance mutations. Thus, the low presence of transmitted NNRTI-resistance mutations in EquatoGuineans compared with other sub-Saharan populations [8] could result from the infrequent administration of this prophylaxis in Equatorial Guinea (only in 19% of HIV-infected pregnant women in 2010) [3].

In treated EquatoGuinean patients attended in Spain, we found a presence of drug-resistance mutations rate of 29%, with NNRTI as the most affected drug class (27.8%). This lower prevalence than in other sub-Saharan antiretroviral-exposed cohorts [28] could reflect a poor adherence as observed among sub-Saharan living in Spain [29], who present great rates of follow-up losses. This has also been reported in Africa [30], caused by the low accessibility of antiretroviral drugs, as happens in Equatorial Guinea, with an antiretroviral coverage of 48% in 2011. In Equatorial Guinea, the use of antiretroviral drugs started in a regular basis in 2005. Thus, previous sporadic treatments and interrupted exposition to drugs could have caused the appearance of resistance mutations that jeopardizes the success of a future systematic antiretroviral programme. Unfortunately, in most cases the information on specific drug exposure for the pre-treated patients was unavailable, which prevent us from a further interpretation of these data.

HIV Infection Place

The phylogenetic analyses showed that HIV-1M sequences sampled in Spain and/or Equatorial Guinea were interspersed, which suggest that most of the 195 Equatoguinean patients with clinical follow up in Spain were infected in their country of origin. However, we cannot rule out that some of them could have been infected in Spain. This hypothesis would be supported by the overrepresentation of subtype B (the predominant variant in Spain [23] but infrequent in Central Africa) among samples taken in this host country versus those taken in Equatorial Guinea; and by the higher prevalence of transmitted PI-resistance in these subtype B-infected EquatoGuineans sampled in Spain (where treatment is universally available) than in other variants of the study cohort.

Conversely, an evidence for an infection happened in Africa would be the different mutation pattern found in EquatoGuineans sampled in Spain than in a study of general, naive patients [14] (autochthonous and African and non-African foreigners) living in Spain between 1996 and 2010. Thus, the PI-resistance mutation M46L, present in all subtype B viruses with TDR (Table 5), was rare (<1%) among the subtype B-infected population living in Spain, where L90M was predominant. In addition, if the EquatoGuinean patients had been infected in Spain, higher rates of NRTI- and, especially, NNRTI-resistance would have been expected.

In conclusion, the rising HIV drug-resistance transmission in sub-Saharan Africa following antiretroviral rollout highlights the need of periodical surveillance studies to monitor and prevent the resistance emergence, essential information to design or continue the implementation of ART programmes. These studies should be performed among infected people living in the study region. However, in countries lacking surveillance reports (such as Equatorial Guinea), our approach describing the HIV molecular epidemiology of low-income regions from a developed host

Table 5. Epidemiological and virological characteristics of the 7 antiretroviral-naive and the 9 antiretroviral-experienced patients infected by HIV-1M variants harboring drug resistance mutations.

#	ART Practice	HIV-1M Strains	Gender	Risk practice	Sampling year	HIV VL (log)	TDR-PI	TDR-NRTI	TDR-NNRTI
1	Naive Adult B F Htsex 1999	2.5	M46L, L90M	NA	NA				
2	Naive Adult B F NA 1999	4.3	M46L, I84V	NA	NA				
3	Naive Adult C F Htsex 1999	1.8	M46L	NA	NA				
4	Naive Adult CRF02_AG F NA 2005	3.6	–	M184V	–				
5	Naive Adult CRF11_cpx F Htsex 2006	2.9	–	M184V	Y188L				
6	Naive Adult A1 F Htsex 2007	2.7	M46L	–	–				
7	Naive Pediatric CRF02_AG M Vertical 2007	NA	M46L	–	–				
8	Treated Adult B F Htsex 1999	2.3	M46L	NA	NA				
9	Treated Adult B F Htsex 1999	2.3	M46L, L90M	NA	NA				
10	Treated Adult B F Htsex 1999	2.3	M46L, I84V, L90M	NA	NA				
11	Treated Adult CRF02_AG F Htsex 2003	4.0	F53L, I84V, L90M	M184V	K103N				
12	Treated Adult F2 M Htsex 2006	NA	–	–	V106I				
13	Treated Adult D M Htsex 2006	5.0	–	–	V90I				
14	Treated Pediatric CRF02_AG F Vertical 2009	NA	–	M184V	–				
15	Treated Adult CRF02_AG M Htsex 2009	6.0	–	–	K103N				
16	Treated Pediatric CRF02_AG F Vertical 2010	NA	M46L, I84V	L74V, Y115F, M184V	K103N, G190A				

number of patient; ART, antiretroviral treatment; VL, viral load; TDR, transmitted drug resistance mutations; PI, protease inhibitors; NRTI, nucleoside reverse transcriptase inhibitors; NNRTI, non-nucleoside reverse transcriptase inhibitors; F, female; M, male; Htsex, heterosexual; NA, data not available; Dash, no mutation found.

doi:10.1371/journal.pone.0064293.t005
country can provide any knowledge about the HIV epidemic in specific areas.

Supporting Information

Figure S1 Maximum clade credibility tree of the 92 CRF02_AG pol sequences included in the BEAST analysis. The definitive clusters are highlighted in yellow and labeled in accordance to Table 3. The asterisk indicates nodes supported by a posterior probability of ≥0.95. The horizontal axis is expressed in calendar years. Branch colors indicate the origin of the sequences: blue, sequences from Equatoguinean patients (n = 39); green, sequences from Western Africa (n = 21); red, sequences from Central Africa (n = 17); black, other regions (n = 15).

Table S1 Sampling dates of the 92 CRF02_AG pol sequences included in the BEAST analysis. n, number of sequences. (DOCX)

Table S1 GenBank accession numbers of the 278 HIV-1 pol sequences included in this study. (DOCX)

Author Contributions

Conceived and designed the experiments: GY ÅH. Performed the experiments: GY MdM. Analyzed the data: GY MdM ÅH. Wrote the paper: GY ÅH.

References

1. Keele BF, Van Heuverzwyn F, Li Y, Bailes E, Takebishi J, et al. (2006) Chimpanzee reservoirs of pandemic and nonpandemic HIV-1. Science 313: 523–526.
2. Vidal N, Peters M, Mulanga-Kabeya C, Nialabhi N, Robertson D, et al. (2000) Unprecedented degree of human immunodeficiency virus type 1 (HIV-3) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa. J Virol 74: 10490–10507.
3. UNAIDS (2012) Equatorial Guinea National Progress Report. Available: http://www.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2012countries/eGQ_Narrative_Report.pdf. Accessed 28 January 2013.
4. Ortiz M, Sanchez I, Gonzalez MP, Leon MI, Abeso N, et al. (2003) Molecular epidemiology of HIV type 1 subtypes in Equatorial Guinea. AIDS Res Hum Retroviruses 17: 851–855.
5. Djojo CF, Wolle ND, Vidal N, Tameoue U, Montavon C, et al. (2010) HIV type 1 pol gene diversity and genotypic antiretroviral drug resistance mutations in Malabo, Equatorial Guinea. AIDS Res Hum Retroviruses 26: 1097–1101.
6. Hemelaar J, Gouws E, Ghys PD, Osmanov S (2011) Global trends in molecular epidemiology of HIV-1 during 2000–2007. AIDS 25: 679–689.
7. Hamers RL, Wallis CL, Kityo C, Siwale M, Mandaliya K, et al. (2011) HIV-1 drug resistance in antiretroviral-naive individuals in sub-Saharan Africa after rollout of antiretroviral therapy: a multicentre observational study. Lancet Infect Dis 11: 750–759.
8. Gupta RK, Jordan MR, Sultan BJ, Hill A, Davis DH, et al. (2012) Global trends in antiretroviral treatment in treatment-naive individuals with HIV after rollout of antiretroviral treatment in resource-limited settings: a global collaborative study and meta-regression analysis. Lancet 380: 1250–1258.
9. Agbohorgbe AF, Kouaniak F, Laurent C, Ebon E, Arene-Tambore A, et al. (2011) Scale-up of antiretroviral treatment in sub-Saharan Africa is accompanied by increasing HIV-1 drug resistance mutations in drug-naive patients. AIDS 25: 2183–2188.
10. Agbohorgbe AF, Verge L, Poupin-Ngole E, Mbangue M, Douadj N, et al. (2009) Evaluation of transmitted HIV drug resistance among recently-infected antenatal clinic attendees in four in Central African countries. Antivir Ther 14: 401–411.
11. Cecarelli L, Salpini R, Moudourou S, Cento V, Sanzoro MM, et al. (2012) Characterization of drug resistance mutations in naive and ART-treated patients infected with HIV-1 in Yaoundé, Cameroon. J Med Virol 84: 721–727.
12. Mimna-Ndong A, Caron M, Planchier JC, Makwana M, Le Hello S, et al. (2009) High HIV Type 1 prevalence and wide genetic diversity with dominance of recombinant strains but low level of antiretroviral drug-resistance mutations in untreated patients in northeast Gabon, Central Africa. AIDS Res Hum Retroviruses 25: 411–418.
13. Toro C, Jiménez V, Rodríguez C, Del Romero J, Rodés B, et al. (2006) Molecular and epidemiological characteristics of blood-borne virus infections among recent immigrants in Spain. J Med Virol 78: 1399–1608.
14. Yebra G, de Mulder M, Pérez-Elias MJ, Pérez-Molina JA, Galán JC, et al. (2011) Increase of transmitted drug resistance among HIV-infected sub-Saharan Africans residing in Spain in contrast to the native population. PLOS ONE 6: e26757.
15. de Mulder M, Yebra G, Martín L, Prieto I, Mellado MJ, et al. (2011) Drug resistance prevalence and HIV-1 variant characterization in the naive and pretreated HIV-1-infected paediatric population in Madrid, Spain. J Antimicrob Chemother 66: 2362–2371.
16. Holguín A, de Mulder M, Yebra G, López M, Soriano V (2008) Increase of non-B subtypes and recombinants among newly diagnosed HIV-1 native Spaniards and immigrants in Spain. Curr HIV Res 6: 327–334.
17. Yebra G, Holguín A, Pillay D, Hué S (2013) Phylogenetic and demographic characterization of HIV-1 transmission in Madrid, Spain. Infect Genet Evol 14: 232–239.
18. Bennett DE, Camacho RJ, Otlea D, Kunzitzs DR, Fleury H, et al. (2009) Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update. PLOS ONE 4: e7124.
19. Johnson VA, Calvez V, Gunthard HF, Paredes R, Pillay D, et al. (2011) 2011 update of the drug resistance mutations in HIV-1. Top Antivir Med 19: 156–164.
20. UNAIDS (2011) 2010 Report on the global AIDS epidemic Available: http://www.unaids.org/en/documents/20110125_GlobalReport_en.pdf. Accessed 28 January 2013.
21. Holguín A, Álvarez A, Soriano V (2002) High prevalence of HIV-1 subtype G and natural polymorphism at the protease gene among HIV-infected immigrants in Madrid. AIDS 16: 1163–1170.
22. Holguín A, Álvarez A, Soriano V (2005) Differences in the length of gag proteins among different HIV type 1 subtypes. AIDS Res Hum Retroviruses 21: 806–819.
23. Yebra G, de Mulder M, Martín L, Rodríguez C, Labarga P, et al. (2012) Most HIV-1 type 1 non-B infections in the Spanish cohort of antiretroviral treatment-naive HIV-infected patients (CoRIS) are due to recombinant viruses. J Clin Microbiol 50: 407–413.
24. Faria NR, Suchard MA, Abecasis A, Sousa JD, Nkedi Kizza E, et al. (2012) Phylogeography of the HIV-1 CRF02_AG clade in Cameroon. Infect Genet Evol 12: 453–460.
25. Vitoc NM, Sanzoro MM, Gray RR, Tatou AJ, Lo Presti A, et al. (2011) Molecular epidemiology of HIV type 1 CRF02_AG in Cameroon and African patients living in Italy. AIDS Res Hum Retroviruses 27: 1173–1182.
26. WHO (2012) World Health Organization HIV drug resistance report. Available: http://www.who.int/hiv/pub/drugresistance/report2012/en/index.html. Accessed 20 January 2013.
27. Nkedi Kizza E, Hamers RL, Sigaloff KC, Lyagoba F, Magambo B, et al. (2011) Transmitted antiretroviral drug resistance among newly HIV-1 diagnosed young individuals in Kampala. AIDS 25: 905–910.
28. Hamers RL, Sigaloff KC, Wensing AM, Wallis CI, Kimya G, et al. (2012) Patterns of HIV-1 drug resistance after first-line antiretroviral therapy (ART) failure in 6 sub-Saharan African countries: implications for second-line ART strategies. Clin Infect Dis 54: 1660–1669.
29. Pérez-Molina JA, Rillo MM, Nuñez-Lasono I, Casado Otero JL, Cobo RF, et al. (2010) Do HIV-infected immigrants initiating HAART have poorer treatment-related outcomes than autochthonous patients in Spain? Results of the GESIDA 5308 study. Curr HIV Res 8: 521–530.
30. Bilong SC, Fokam J, Nykeschue AS, Kembou E, Mileunge P, et al. (2012) Early warning indicators for HIV drug resistance in Cameroon during the year 2010. PLOS ONE 7: e36777.