Plant-derived peptides rubiscolin-6, soymorphin-6 and their c-terminal amide derivatives: Pharmacokinetic properties and biological activity

Azzurra Stefanucci, Marilisa Pia Dimmoto, Giancarlo Tenore, Stefano Pieretti, Paola Minosi, Gokhan Zengin, Chiara Sturaro, Girolamo Calò, Ettore Novellino, Angelo Cichelli, Adriano Mollica

**Keywords:** Opioid peptides, Rubiscolin-6, Soymorphin-6, Antinociception, Antioxidant activity

**ABSTRACT**

The aim of this work is to investigate the pharmacokinetic properties, antinociceptive and antioxidant activities of rubiscolin-6, soymorphin-6 and their C-terminal amides. The four peptides were synthesized following Fmoc-SPPS strategy to give the final peptides in excellent overall yields and purity following analytical RP-HPLC analysis. None of them shows antioxidant activity and α-tirosinase inhibition in vitro. All compounds are able to activate G-protein coupled receptor at the δ-opioid receptor (DOR) at 100 μM concentration however, rubiscolin-6 amide exhibits significant antinociceptive effect after i.c.v. administration in the tail flick test (TF) and s.c. administration in the formalin test (FT). Rubisco-6 shows the best in vitro intestinal bioavailability in Caco2 cell monolayer and stability to the brush border exopeptidases in the apical compartment. *In silico* experiments show the interaction of rubisco-6 and rubisco-6 amide at the binding cavity of DOR compared with the crystallographic ligand TIPP-NH2.

**1. Introduction**

Exogenous peptides endowed with opioid activity deriving from natural proteins, acting on plants and animals are called exorphins (Zioudrou, Streaty, & Klee, 1979). Some peptides derived from plant proteins might show beneficial effect for plant suppressing escape reaction of insects (Yang et al., 2001; Zioudrou et al., 1979). In general, such bioactive peptides may exert several pharmacological activity as receptor’s ligands, enzymes inhibitors, peptides modulating transport, anti-microbial peptides and antioxidant and radical scavenger. The affinity of those peptides for opioid receptors are much smaller than the endogenous ones, however some of them exhibit central and peripheral effects after oral administration (Kaneko et al., 2012; Yoshikawa et al., 2015).

Accordingly, opioid peptides derived from food through protein digestion, fermentation, or food production processes could produce several benefits against some health problems, such as obesity, cardiovascular diseases, type II-diabetes and immune disorders (Stefanucci et al., 2018). Among them, soymorphins and rubiscolins recently received a great attention from researchers due to their potential applications in the development of functional foods and as lead compounds for the design of novel chemical entities.

Soymorphin (SM peptide sequence: Tyr-Pro-Phe-Val-Val-Asn-Ala) is an opioid eptapeptide derived from the enzymatic digestion of soy proteins which are consumed in cereals. Specifically, SM belongs to the enzymatic digestion of soybean β-conglycinin β-subunit by DPP-IV. The

---

**Abbreviations:** DOR, δ-opioid receptor; MOR, μ-opioid receptor; FT, formalin test; TF, tail flick test; BBB, blood brain barrier; s.c., subcutaneous; i.c.v., intracerebroventricular; SM, soymorphin; BCM, β-casomorphin; GPI, guinea pig ileum; MVD, mouse vas deferens; EM-1, endomorphin-1; EM-2, endomorphin-2; STZ, streptozocine; SPPS, solid phase peptide synthesis; TMS, trimethylsilane; TBTU, 2-(1H-Benzotriazole-1-yl)-1,1,3,3-tetramethyloxetanium tetrafluoroborate; HOBt, hydroxybenzotriazole; DIPEA, N-Ethyldiisopropylamine; DMF, dimethylformamide; TIPS, triisopropylsilane; ACN, acetonitrile; TFA, trifluoroacetic acid; ADME, absorption, distribution, metabolism, excretion

*Corresponding author.

**E-mail address:** a.stefanucci@unich.it (A. Stefanucci).
shorter sequence YPFVV found in the C-terminal region of β-conglycin β subunit is the homologue of human β-casomorphin-5 (YPFVE) named soymorphin-5 (Yoshikawa, 2015).

β-conglycin β subunit releases soymorphin-5 by pancreatic elastase and leucine aminopeptidase, while soymorphin-6 (YPFVV) is obtained by the action of pepsin and pancreatic elastase. Soymorphin-6 (SM-6) possesses anxiolytic (at a dose of 100 mg/kg in elevated-plus maze experiment in mice) and anorexogenic effects after oral administration in animal models (at a dose of 36 mg/kg in 18-h fasted mice, four hours after administration), together with a selective MOR opioid activity in GPI and MVD assays which is two fold more potent than β-casomorphin-4 (BCM) (Arsouy & Üstün-Aytekin, 2018; Kaneko, Iwasaki, Yoshikawa, & Ohinata, 2010; Ohinata, Agui, & Yoshikawa, 2007; Yoshikawa, 2015).

This hexapeptide shares the sequence YPFVV with the human β-casomorphin-4, an opioid peptide with morphine-like activity. Endomorphin-1, -2 (EM-1 and EM-2) and hemorphin (YPWT) derived from hemoglobin, containing the sequence Tyr-Pro-aromatic amino acid are also μ-selective opioid peptides of natural origin (Dvoracsko, Stefanucci, Novellino, & Mollica, 2017; Torino et al., 2010). In contrast opioid peptides derived from plants such as gluten exorphin and rubiscoolin containing the sequence Tyr-Pro-non aromatic amino acids, are selective for the δ-opioid receptors (Ohinata et al., 2007).

Rubiscoolin-6 (amino acid sequence: YPLDLF) is an opioid peptide derived from the plant enzyme Rubisco, which is responsible for CO2 fixation in green leaves, but it is also a food source in the biosphere (Kaneko et al., 2012; Yoshikawa, 2015).

Rubiscoolin-6 exhibits memory-enhancing, anxiolytic and orexigenic activities in animal models (Hirata et al., 2007). Rubiscoolin-6 is also able to bind both δ and μ-opioid receptors with a good to moderate affinity respectively (IC50 0.93 μM vs. IC50α < 2000 μM), showing a strong selectivity for δ. This activity is related to the ability of Rubiscoolin-6 to stimulate glucose uptake in L6 and C2C12 cells, in enhancement of GLUT4 expression through the AMPK pathway, and improvement of glucose homeostasis in STZ-induced diabetic rats (Hirata et al., 2007).

Rubiscoolin-6 produces antinociceptive effect after i.c.v. administration at a minimum dose of 3 nmol/mouse and 1 nmol/mouse using in vivo tail pinch method. It exhibits antinociceptive effect in vivo after oral administration at 300 mg/kg, mediated by δ-opioid receptors in good to moderate affinity respectively (IC50δ 0.93 μM vs. IC50α > 2000 μM), showing a strong selectivity for δ. The activity is related to the ability of Rubiscoolin-6 to stimulate glucose uptake in L6 and C2C12 cells, in enhancement of GLUT4 expression through the AMPK pathway, and improvement of glucose homeostasis in STZ-induced diabetic rats (Hirata et al., 2007).

In order to identify the amino acid residues essential for its opioid activity, Rubiscoolin-6 derivatives were synthesized and among them δ-opioid activities of [Leu6]-rubiscoolin-6 and [Met5]-rubiscoolin-6 were four fold higher than that of rubiscoolin (Yang et al., 2001).

The most potent analogue discovered so far was [Met5,Val6]-rubiscoolin-6 with 20 fold higher potency than the reference exogenous compound (Ohinata et al., 2007; Yoshikawa, 2015).

Considering the panel of peripheral and central effects exerted by these natural bioactive peptides (Hirata et al., 2007; Kaneko et al., 2012; Miyazaki et al., 2014; Perlikowska & Janecka, 2018), we planned to prepare Rubiscoolin-6 and Soymorphin-6 as lead compounds and their C-terminal amide analogues following solid phase peptide synthesis (SPPS). The antioxiand, α-tyrosinase inhibition activities and G protein stimulation at DOR and MOR with calcium mobilization assay have been evaluated in vitro, in vivo antinociceptive effects have been also studied through tail flick and formalin tests after i.c.v. and s.c. administration, respectively. Intestinal bioavailability in CaCo2 cell monolayer was also investigated in order to define their possible oral bioavailability and to assess stability to exopeptidases in the brush border. Furthermore, in silico molecular modeling study was performed with the aim to reveal the binding mode at the DOR of rubiscoolin-6 and its C-terminal amide.

The aim of this project is to investigate the biological and pharmacokinetic properties of opioid plant-derived peptides soymorphin-6, rubiscoolin-6 and their novel C-terminal amides derivatives.

2. Materials and methods
2.1. Chemicals and reagents

Chemicals and reagents were purchased by VWR (MI, Italy) and Merck (MI, Italy), amino acids from GLS Shanghai (China). Final crude peptides were purified on C18 prep RP-HPLC at 216, 235, 254, and 275 nm (Waters C18 4.6 mm × 150 mm); flow rate of 7 mL/min; gradient eluent of H2O/ACN-0.1% TFA, from 5% ACN to 90% ACN in 32 min. Pure peptides were identified by 1H NMR at 25 °C on a 300 MHz Varian Oxford spectrometer, DMSO-δ6 as solvent and chemical shifts in parts per million (δ) downfield from the internal standard TMS. LCQ Finnigan-Mat mass spectrometer (San Jose, CA) equipped with ESI-spray source and ion trap analyzer was used at capillary temperature of 200 °C, spray voltage at 4.00 kV and nitrogen and helium as sheath and auxiliary gas respectively.

2.2. Peptides and chemical characterization

Soymorphin-6, Rubiscoolin-6 and their C-terminal amide analogues were prepared following the well-established Fmoc-solid phase peptide synthesis (Fmoc-SPPS) and were purified by reverse-phase high-performance liquid chromatography (RP-HPLC) (Poli et al., 2019; Stefanucci et al., 2019). The purity of four peptides was checked by analytical RP-HPLC at 236, 268 and 214 nm (C18-bonded 4.6 mm × 150 mm), flow rate of 1 mL/min, using a gradient of H2O/ACN-0.1% TFA from 5% to 95% ACN in 26 min, and was found to be ≥95%. Peptide structures were identified by 1H NMR spectroscopy and LRMS (see SI).

2.3. In vitro antioxidant activity

For antioxidant capacity, different test systems, including radical quenching (DPPH and ABTS), reducing power (CUPRAC and FRAP), were used. The methods details were described in our earlier paper (Grocshowski et al., 2017; Zengin et al., 2019). Trolox equivalents were selected as standards and compounds abilities were expressed as equivalents of trolox (mg TE/g). The significance of differences (p < 0.05) among the peptides was calculated using the parametric One-way ANOVA test together with Tukey’s test (GraphPad Prism 6.0).

2.4. α-tyrosinase inhibition assay

For the tyrosinase inhibition assay, we used L-DOPA (as substrate) and mushroom tyrosinase enzyme (E.C. 1.14.18.1) (Luisi, Stefanucci, Zengin, Dimmuto, & Mollica, 2018).

Kojic acid was used as a standard inhibitor and the results were expressed as kojic acid equivalents (mg KAE/g) the significance of differences (p < 0.05) among the peptides was calculated using the parametric One-way ANOVA test together with Tukey’s test (GraphPad Prism 6.0).

2.5. In vitro calcium mobilization assay

2.5.1. Drugs and reagents

Brilliant black, bovine serum albumin (BSA), 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), and probenecid were from Sigma Aldrich (St. Louis, MO, USA). Pluronic acid and Fluo-4 AM were obtained from Thermo Fisher Scientific (Waltham, US). All cells culture media and supplements were from Euroclone (Milano, Italy). Rubiscoolin-6, rubiscoolin-6 C-amide, soymorphin-6, soymorphin-6 C-amide,
endomorphin-1 (EM-1) were dissolved in dimethyl sulfoxide (DMSO) at the concentration of 10 mM. The stock solutions were kept at −20 °C until use.

2.5.2. Cells

CHO cells lines permanently co-expressing μ-receptors with the C-terminally modified Gα₆S and δ-receptors with the C-terminally modified Gαᵦ₆δ₄δ₅S, were used. Details regarding the generation of these cells have been previously described (Camardea et al., 2009; Lambert & Rainbow, 2013).

Cells were cultured in culture medium consisting of Dulbecco’s modified Eagle’s medium (DMEM) / HAMS F12 (1:1) supplemented with 10% fetal bovine serum (FBS), penicillin (100 IU/mL), streptomycin (100 mg/mL), gentamicin (G418; 200 µg/mL) and hygromycin B (100 µg/mL). Cell cultures were kept at 37 °C in 5% CO₂ / humidified air. When confluence was reached (3–4 days), cells were sub-cultured as required using trypsin / EDTA and used for experimentation. Cells were seeded at a density of 50,000 cells / well into 96-well black, clear-bottom plates. After 24 h incubation the cells were loaded with Hank’s Balanced Salt Solution (HBSS) supplemented with 2.5 mM probenecid, 3 µM of the calcium sensitive fluorescent Fluoro-4 AM, 0.01% pluronic acid and 20 mM HEPES (pH 7.4) for 30 min at 37 °C. Afterwards the loading solution was aspirated and a washing step with 100 µL/well of HBSS, HEPES (20 mM, pH 7.4), 2.5 mM probenecid and 500 µM Brilliant Black was carried out. Subsequently 100 µL/well of the same buffer was added. After placing cell culture and compound plates into the FlexStation II (Molecular Devices, Sunnyvale, CA, USA), changes in fluorescence of the cell-loaded calcium sensitive dye Fluor-4 AM were measured. On-line additions were carried out in a volume of 50 µL/well.

2.5.3. Data analysis and terminology

All data were analyzed using Graph Pad Prism 6.0 (La Jolla, CA, USA). Data are expressed as mean ± sem of n experiments performed in duplicate. In calcium mobilization studies, agonist effects were expressed as maximum change in percent over the baseline fluorescence. Baseline fluorescence was measured in wells treated with vehicle. Agonist potencies were expressed as pEC₅₀, which is the negative logarithm to base 10 of the agonist molar concentration that produces 50% of the maximal possible effect of that agonist. Concentration response curve to agonists were fitted with the four-parameter logistic non-linear regression model:

\[
\text{Effect} = \frac{E_{\text{max}} - \text{Baseline}}{1 + 10^{\log EC_{50} - \log \text{compound}/\text{Hillslope}}}
\]

2.6. In vivo antinociceptive assays

2.6.1. Animals

CD-1 male mice (Charles River, Italy) weighing 25–30 g were used in all experiments. Before the experimental sessions, the mice were maintained in colony, housed in cages (7 mice per cage) under standard light/dark cycle (from 7:00 AM to 7:00 PM), temperature (21 ± 1 °C) and relative humidity (60 ± 10%) for at least 1 week. Food and water were available ad libitum. The research protocol was approved by the Service for Biotechnology and Animal Welfare of the Istituto Superiore di Sanità and authorized by the Italian Ministry of Health, according to Legislative Decree 26/14, which implemented the European Directive 2010/63/UE on the protection of laboratory animals in Italy. Animal welfare was routinely checked by veterinarians from the Service for Biotechnology and Animal Welfare.

2.6.2. Tail flick test

The tail flick test was used to determine antinociceptive response induced by a thermal stimulus and was performed as described earlier (Dimmito et al., 2019). Tail flick apparatus (Ugo Basile, Varese, Italy) consists of an infrared radiant light source (100 W, 15 V bulb) targeted on a photocell utilizing an aluminum parabolic mirror. During the trials, the mice were gently hand restrained with a glove. Radiant heat was targeted 5–6 cm from the tip of the tail, and the latency (s) of the tail withdrawal recorded. The measurement was disconnected if the latency crossed the cutoff time. A cutoff time of 15 s was imposed, and data were expressed as time course of the percentage of maximum effect (% MPE) = (post drug latency/baseline latency)/(cutoff time × baseline latency) × 100. In all experiments, the baseline was calculated as the mean of three readings recorded before testing at intervals of 10 min, and the time course of latency was determined 10–120 min after compound treatment. Compounds were freshly diluted in saline containing 0.1% v/v DMSO, and were injected at 10 µg/10 µL for intracerebroventricular (i.c.v.) administrations, as previously reported (Mollica et al., 2013; Piekielna-Ciesielska et al., 2018).

2.6.3. Formalin test

The method utilized was comparable to the one previously described (Mollica et al., 2011).

Subcutaneous injection of 20 µL of a 1% solution of formalin in saline into the dorsal surface of the mouse hind paw evoked nociceptive behavioural responses, such as licking, biting the injected paw, or both, which are considered indices of nociception. The nociceptive response showed a biphasic trend: an early phase, occurring from 0 to 10 min after formalin injection, produced by the direct stimulation of peripheral nociceptors, and a late prolonged phase, occurring from 15 to 40 min, which reflected the response to inflammatory pain. During the test, the mouse was placed in a Plexiglas observation cage (30 × 14 × 12 cm), 1 h before the formalin administration and allowed to acclimatize to the testing environment. Compounds were solubilized in saline (0.9% NaCl in distilled water) and DMSO in the ratio DMSO:saline 1:3 (v/v) and were administered subcutaneously in the dorsal surface of the right hind paw of the mouse using a microsyringe with a 27-gauge needle 15 min before formalin injection at the dose of 100 µg/20 µL. Then, the total time the animal spent licking or biting its paw in the early and late phase was recorded.

2.6.4. Statistical analysis

Statistically significant differences between groups in the tail flick test and formalin test were measured with a two-way analysis of variance (2-ANOVA) followed by Tukey’s or Sidak’s post-hoc comparisons. GraphPad Prism 6.0 software (San Diego, CA, USA) was used to analyze the data. Data were considered statistically significant when a value of p < 0.05 was performed.

2.7. In vitro gastrointestinal digestion

2.7.1. Reagents and standards

All chemicals and reagents used were either analytical-reagent or HPLC grade. The water was treated in a Milli-Q water purification system (Millipore, Bedford, MA, USA) before use. Chemicals and reagents to simulate the GI digestion were: potassium chloride (KCl), potassium thiocyanate (KSCN), monosodium phosphate (NaH₂PO₄), sodium sulphate (Na₂SO₄), sodium chloride (NaCl), sodium bicarbonate (NaHCO₃), urea, α-amylase, hydrochloric acid (HCl), pepsin, pancreatin, bile salts (Sigma Chemical Co., St. Louis, MO, USA). All organic solvents were purchased from Carlo Erba, (Milano, Italy). 2′,7′-di-chlorofluorescin diacetate (DCFH-DA, Sigma Chemical Co.) was dissolved in dimethylsulfoxide (DMSO) to obtain 100 mM stock solution (aliquoted and stored at −20 °C). Work solutions of DCFH-DA were produced by diluting aliquots in 1% phosphate buffer saline (PBS, 10 mM, pH 7.4) at different concentrations. The assay was performed according to the procedure described by Raiola, Meca, Mañes, and Ritieni (2012), with slight modification (Raiola et al., 2012).

GI digestion was distinguished into salivary, gastric and duodenal
of digestive steps. For the salivary digestion, an aliquot of each peptide (1.0 mg) was mixed with 6 mL of artificial saliva composed of: KCl (89.6 g/L), KSCN (20 g/L), NaH2PO4 (88.8 g/L), Na2SO4 (57.0 g/L), NaCl (175.3 g/L), NaHCO3 (84.7 g/L), urea (25.0 g/L) and 290 mg of α-amylase. The pH of the solution was adjusted to 6.8 with 0.1 M HCl. The mixture was introduced in a plastic bag containing 10 mL of water and homogenized in a Stomacher 80 Microbiomaster (Seward, Worthing, UK) for 3 min. Immediately, 0.5 g of pepsin (14,800 U/L) dissolved in HCl, and then incubated at 37 °C in a Polymax 1040 orbital shaker (250 rpm) (Heidolph, Schwabach, Germany) for 2 h. After the gastric digestion, the pancreatic digestion was simulated as follows: the pH was increased to 6.5 with 0.5 M NaHCO3 and then 5 mL of a mixture pancreatic (8.0 mg/mL) and bile salts (50.0 mg/mL) (1:1; v/v), dis-solved in 20 mL of water, were added and incubated at 37 °C in an orbital shaker (250 rpm) for 2 h. Intestinal digested sample was freeze-dried and stored at −80 °C until further analysis.

2.7.2. HPLC–DADA analyses

Intestinal digested samples were filtered through a Phenex-PVDF 17 mm Syringe Filter 0.45 μm (Phenomenex, Torrance, CA, USA) and analysed by RP-HPLC. Analyses were run on a Finnigan HPLC system (Thermo Electron Corporation, San Jose, CA, USA) provided with photodiode array detector (DAD). The column selected was a Aeries PEPTIDE 3.6 μm XB-C18 New Column 250 × 4.6 mm (Phenomenex). Elution conditions consisted in 2% acetic acid (solvent A) and 2% acetic acid in methanol (solvent B) gradient at a flow rate of 1.0 mL/min. The gradient conditions were: 0–20 min, 0–100% B; 20–23 min, 100% B; 23–27 min, 0% B, followed by 5 min of maintenance. Chromatograms were recorded at 280 nm.

2.7.3. In vitro intestinal stability and transepithelial transport studies

The assay was performed as previously described by Tenore, Campiglia, Giannetti, and Novellino (2015).

2.8. Molecular modeling study

Molecular modeling study was performed on rubiscolin-6 and rubiscolin-6-C-amide using Maestro 2017, following the well-established procedure reported by Stefanucci et al. (2020).

3. Results

3.1. Antioxidant and tyrosinase inhibition activities of synthetic peptides

The antioxidant abilities of the synthetic peptides were investigated by DPPH, ABTS, FRAP and CUPRAC methods. The results are in Table 1. The highest DPPH radical scavenging ability was found for rubiscolin-6-C-amide, followed by soymorphin, rubiscolin-6 and soymorphin-6 C-amide, while the best ABTS radical ability was recorded by soymorphin-6 C-amide. In FRAP assay, rubiscolin-6 C-amide showed the highest potential with the value of 5.79 mg TE/g. However, there was no significant differences in FRAP values among rubiscolin-6, rubiscolin-6 C-amide and soymorphin-6 C-amide. As shown in Table 1, rubiscolin-6 exhibited the best tyrosinase inhibition ability with a value of 24.51 mg KAE/g, followed by soymorphin-6-C-amide and rubiscolin-6 C-amide. Soymorphin-6 is not active on tyrosinase.

3.2. Calcium mobilization assay

In these experiments we evaluated the capability of the compounds to activate the μ- and δ-human recombinant receptors permanently transfected in CHO cells. In such cells the expression of a chimeric G protein that forces the opioid receptors to couple with the calcium pathway allows measuring receptor activation with an automated calcium mobilization assay. Dermorphin and DPDPE were used as standard ligands for μ- and δ-receptors, respectively. In CHO cells the standard agonist dermorphin evoked a robust concentration-dependent stimulation of calcium release displaying high potency (pEC50 of 8.06) and maximal effects (254 ± 18% over the basal values). EM-1 mimicked the stimulatory effect of dermorphin showing similar maximal effects but 3-fold lower potency (pEC50 of 7.45). Rubiscolin-6-C-amide, Soymorphin-6 and Soymorphin-6-C-amide stimulated calcium mobilization only at micromolar concentrations eliciting incomplete concentration response curves, while Rubiscolin-6 was completely inactive. The concentration response curves obtained with these ligands in CHO cells are displayed in Fig. S1 (see SI) and their pharmacological parameters summarized in Table 2. In CHO cells the standard agonist DPDPE evoked a robust concentration-dependent stimulation of calcium release displaying high potency (pEC50 of 7.51) and maximal effects (223 ± 17% over the basal values). All the other compounds showed an incomplete concentration response curve, being active only at micromolar concentrations. The concentration response curves obtained with these ligands in CHO cells are displayed in Fig. S2 (see SI) and their pharmacological parameters summarized in Table 2.

3.3. Antinociceptive effects of Rubiscolin-6-C-amide and Soymorphin-6 C-amide

The antinociceptive effect of Rubiscolin-6 and Rubiscolin-6 C-amide are reported in Fig. 1. In the tail flick test, Rubiscolin-6 induced a significant antinociceptive effect 15 min after administration, followed by a rapid decrease, which becomes similar to that observed in vehicle-treated animals from 60 to 120 min after administration. On the contrary Rubiscolin-6 C-amide induced a robust and significant antinociceptive effect, which is observed 15 min later and which light decreased up to 120 min after administration (Fig. 1). In the formalin test, Rubiscolin-6 was not able to change the nociceptive effect of formalin, both in the early and in the late phase of the test. As previously observed in the tail flick test, Rubiscolin-6 C-amide provoked an antinociceptive effect since it reduced formalin-induced nociception in both test phases (Fig. 1). In Fig. 2 are reported the effects of Soymorphin-6 and Soymorphin-6 C-amide in the tail flick and formalin tests. Soymorphin-6 and Soymorphin-6-C-amide induced similar effects in these tests. Both peptides exerted significant antinociceptive effect 15 and 30 min after the administration, followed by a gradual and similar decrease in the antinociception. In the formalin test, both peptides did not change the nociceptive effects of formalin in the early phase of the test. In the late phase of the formalin test, Soymorphin-6 induced a light increase and Soymorphin-6 C-amide a light decrease of the nociceptive

| Peptides       | DPPH (mg TE/g) | ABTS (mg TE/g) | CUPRAC (mg TE/g) | FRAP (mg TE/g) | Tyrosinase inhibition (mg KAE/g) |
|----------------|---------------|---------------|-----------------|---------------|---------------------------------|
| Rubiscolin-6   | 2.41 ± 0.33a  | 8.86 ± 0.38b  | 10.09 ± 0.02a   | 5.75 ± 0.04a  | 24.51 ± 1.99a                   |
| Soymorphin-6   | 2.65 ± 0.70a  | 3.09 ± 0.47a  | 9.10 ± 0.08b    | 5.64 ± 0.04a  | na                              |
| Rubiscolin-6 C-amide | 2.72 ± 0.51a  | 0.77 ± 0.01a  | 9.55 ± 0.05b    | 5.79 ± 0.03a  | 2.81 ± 0.34b                    |
| Soymorphin-6 C-amide | 1.38 ± 0.21a  | 11.00 ± 1.96a | 9.35 ± 0.13a    | 5.72 ± 0.08a  | 9.19 ± 1.43b                    |

* Values are reported as mean ± S.D. of three parallel experiments. TE: Trolox equivalents; KAE: Kojic acid equivalents; na: not active. a-d: Different letters indicate significant differences in the peptides (p < 0.05).
effect provoked by formalin, but both effects were not statistically significant in comparison with vehicle-treated animals.

3.4. In vitro intestinal bioaccessibility

Results shown in Table 3 clearly indicate a quite high susceptibility of the peptides to the in vitro gastrointestinal environment. Specifically, their amide derivatives are the least resistant to the chemical and enzymatic conditions of the simulated digestive protocol. The intestinal stability and bioavailability of peptides were evaluated by using single layers of CaCo2 cells as a model of absorption in the small intestine. HPLC analysis highlighted very moderate hydrolysis of Rubiscolin-6 and Soymorphin-6 (less than 10% and 15%, respectively) in the apical solution by the brush border exopeptidases after 120 min incubation and regardless of the peptide concentration (Fig. S3, see SI). Di solution by the brush border exopeptidases after 120 min incubation and Soymorphin-6 transepithelially transported was about 10%, thus higher than what generally reported for di peptides transported from CaCo2 monolayer apical to basolateral side (Okumu, Pauletti, Vander Velde, Siahaan, & Borchardt, 1997; Regazzo et al., 2010). Moreover, Soymorphin-6 and Rubiscolin-6 C-amine revealed an important susceptibility to enzymatic degradation, showing average hydrolysis rates of 74% and 65% for Rubiscolin-6 and Soymorphin-6, respectively.

HPLC analyzes of basolateral solution revealed that all peptides were absorbed intact through CaCo2 monolayer, with a concentration-dependent transport following a saturable pattern described by a linear curve (Fig. 3). Interestingly, the actual amount of Rubiscolin-6 and Soymorphin-6 transp Luminal transported was about 10%, thus higher than what generally reported for different size (3–17 aminoacid units) and polarity peptides transported from CaCo2 monolayer apical to basolateral side (Okumu, Pauletti, Vander Velde, Siahaan, & Borchardt, 1997; Regazzo et al., 2010; Satake et al., 2002).

Table 2:

| Compounds        | CHQ50 (μM) | Emax ± SEM % | CHQ50 (μM) | Emax ± SEM % |
|------------------|------------|--------------|------------|--------------|
| Dermorphin       | 8.06 (7.65–8.46) | 254 ± 18%    | 6.43 (5.95–6.91) | 78 ± 3%     |
| DPDPPE           | Inactive   | 263 ± 30%    | 7.51 (7.31–7.70) | 223 ± 17%   |
| EM-1             | 7.45 (7.08–7.82) | 263 ± 30%    | Crc incomplete, at 100 μM 89 ± 15% | Crc incomplete, at 100 μM 87 ± 19% |
| Rubiscolin-6     | Inactive   | Crc incomplete, at 100 μM 131 ± 29% | Crc incomplete, at 100 μM 110 ± 13% |
| Rubiscolin-6 C-amine | Crc incomplete, at 100 μM 81 ± 4% | Crc incomplete, at 100 μM 79 ± 14% |
| Soymorphin-6     | Inactive   | 7.82) 263 ± 30%  | Crc incomplete, at 100 μM 89 ± 15% | Crc incomplete, at 100 μM 112 ± 29% |
| Soymorphin-6 C-amine | Crc incomplete, at 100 μM 131 ± 29% | Crc incomplete, at 100 μM 110 ± 13% |

Data are mean of at least 5 separate experiments made in duplicate.

3.5. Docking study

In silico molecular modeling approach was applied to investigate the relationship between the bioactivity found in vitro and in vivo by rubiscolin-6 and its C-terminal amide and their interactions at the δ-opioid receptor (DOR). The docking of the two peptides was performed on the crystal structure of the DOR (4RWD) downloaded from the PDB database and the so obtained poses have been compared with crystallographic ligands. The receptor was prepared for the docking experiments as previously reported (Stefanucci et al., 2019, 2020) with the PrepWizard module embedded in Maestro 2017 (Schrödinger Release, 2016). The missing side chains were added, and all the co-crystallized molecules were removed except for the opioid ligand TIPP-NH2 and the water molecules 1303 and 101 which are fundamental for the correct activation of the receptor (Kaserer, Lantero, Schmidhammer, Spetea, & Schuster, 2016). These water molecules are necessary for a correct and predictable docking procedure (Kaserer et al., 2016; Stefanucci et al., 2019, 2020). Thus in this model is present a water network connecting the ligand to a key residue of Histidine 278.

After the preparation steps, the docking was performed by using the software Gold 6.0 with a docking procedure previously validated by our group (Stefanucci et al., 2019, 2020). The fitness functions GOLDSCORE was employed for these experiments basing on our previous studies (Stefanucci et al., 2019, 2020). The two water molecules were set to “toggle and spin”, in order to allow the program to automatically decide whether the water molecules should be included during the docking and to optimize their orientation. An area of 10 Å around the co-crystallized ligand was defined as the binding site.
The best poses found are reported in **Fig. 4**; At the DOR, both rubiscolin-6 and rubiscolin-6 C-amide showed a similar interaction behavior, by assuming a convergent conformation and by establishing similar interactions to the key residues Asp128, His278 and water network.

TIPP-NH₂ interacts with residues Asp128, His278, Trp284, Leu200 and Arg192, which are partially present in rubiscolin-6 and rubiscolin-6 C-amide poses.

Indeed, rubiscolin-6 is able to bind to the accessory residue Arg192, whereas this interaction is missing in its amide derivative, which preferentially bind the residue Leu200. Both of them lack to interact with Trp284, which is involved in a key interaction present in the crystallographic ligand; on the other hand they show the three main interactions to the water 101, Asp128 and His278 through the water network, which are responsible for the opioid activity found.

However, both peptides weakly bind to DOR in our calcium mobilization assay and are capable of stimulating the activation of G protein coupled to DOR at high doses (Table 2). This binding behavior falling in the micromolar range, could be explained by the lacking of those additional interactions found for TIPP-NH₂ (Trp284) and by the non-simultaneous presence of the interactions to Leu200 and Arg192, which could justify the low potency of rubiscolin-6 and rubiscolin-6 C-amide.

The interactions found for both peptides, together with those of the crystallographic ligand have been reported in Table 4.

### 4. Discussion

Exorphins from plant proteins and their synthetic derivatives could exhibit a plethora of biological activity acting as modulating agents, antioxidants and anti-microbial compounds on diverse human targets such as receptors, cell’s membrane and enzymes. Thus, such peptides contain certain desirable functional properties that could make them suitable in several formulated food systems.

In the present paper, we detected antioxidant properties by using different methods (DPPH, ABTS, CUPRAC and FRAP) (Kim, Lee, Lee, & Lee, 2002; Mareček et al., 2017). Generally, the tested peptides exhibit low antioxidant abilities. Rubiscolin-6 C-amide shows the best DPPH scavenging ability while soymorphin-6 C-amide exhibits the best ABTS scavenging ability. Reducing abilities of the tested peptides were evaluated by CUPRAC and FRAP assays, which indicate low electron-donating abilities for all of them. This could be due to the presence of the hydrophobic amino acids such as proline, glycine and methionine in the peptides that can contribute to the reduction abilities because of high electron density (Nwachukwu & Aluko, 2019). Literature reports that tyrosine and phenylalanine containing oligopeptides and long sequence peptides could present tyrosinase inhibitory activity (Pillaiyar, Ček et al., 2017). Tyrosinase is one key enzyme in the synthesis of melanin, which is an important pigment for protection of the eye and skin from sunlight (Schurink, van Berkel, Wiersch, & Boeriu, 2007). Thus novel and safe tyrosinase inhibitors are gaining interest among scientific research topics due to their importance in the prevention of hyperpigmentation problems such as melasma and age spots (Zolghadri et al., 2019). Furthermore, recent results indicate that opioids play a key role in skin homeostasis by modulating keratinocyte differentiation, wound healing and inflammation (Bigliardi-Qi et al.,


Table 4
Interactions list found in the best pose of TIPP-NH₂, rubiscolin-6 and rubiscolin-6 C-amide to DOR.

| Compounds       | Asp128 | His278 | Trp284 | Leu200 | Arg192 |
|-----------------|--------|--------|--------|--------|--------|
| TIPP-NH₂        | H bond | H bond through water network | π-π | H bond | Cat-π |
| Rubiscolin-6    | ionic + H | H bond through water network | – | – | H bond |
| Rubiscolin-6 C-amide | ionic + H | H bond through water network | – | H bond | – |

Fig. 4. Best ranked docking poses of Rubiscolin-6 (A) and Rubiscolin-6 C-amide (B) docked at the DOR (4RWD).

2006; Schmelz & Paus, 2007); β-endorphin and MOR are expressed in human epidermal melanocyte (EM) cells and they are closely associated to melanosomes. Kauser and co-workers (Kauser, Schallreuter, Thody, Gummer, & Tobin, 2003) demonstrated that they up-regulate melanocyte dendricity, proliferation, pigmentation and hair growth (Furkert et al., 1997; Tobin & Kauser, 2005) via melanocortin-1 receptor (MC-1R) independent mechanism, thus the discovery of a peptide with exogenous opioid-like structure able to inhibit tyrosinase enzyme could be useful to better understand the relationship between hyperpigmentation process and opioid peptide system. All our peptides be useful to better understand the relationship between hy-

Overall, detailed pharmacological features of rubiscolin-6, soy-

Rubiscolin-6 was able to increase the noiceptive threshold to thermal stimuli after supraspinal administration, but was ineffective after subcutaneous administration in an experimental paradigm of chemical-induced noiceception as the formalin test. All peptides were absorbed intact through CaCo2 monolayer however, rubiscolin-6 C-amide exhibits the most interesting in vivo biological profile, which prompt us to further investigate its effect after oral administration.

The carrier-mediated transport systems involving the H⁺-coupled PepT1 transporter, may be excluded since they are active and saturable symporters specific for intestinal absorption of charged di- and tripeptides (Brandsch, Knüter, & Bosse-Doenecke, 2008). The average polar properties of these peptides would also exclude a possible transcellular diffusion since a vescicular-mediated internalization, the main mechanism involved, would imply absorption by apical cell membrane through hydrophobic interactions (Knipp, Velde, Siahaan, & Borchardt, 1997). The low level of degradation of rubiscolin-6 and soymorphin-6 in transepithelial transfer indicates that passive trans-

Table 4
Interactions list found in the best pose of TIPP-NH₂, rubiscolin-6 and rubiscolin-6 C-amide to DOR.

| Compounds       | Asp128 | His278 | Trp284 | Leu200 | Arg192 |
|-----------------|--------|--------|--------|--------|--------|
| TIPP-NH₂        | H bond | H bond through water network | π-π | H bond | Cat-π |
| Rubiscolin-6    | ionic + H | H bond through water network | – | – | H bond |
| Rubiscolin-6 C-amide | ionic + H | H bond through water network | – | H bond | – |

chemical-induced noiceception in the formalin test. All peptides were absorbed intact through CaCo2 monolayer however, rubiscolin-6 C-amide exhibits the most interesting in vivo biological profile, which prompt us to further investigate its effect after oral administration.

The carrier-mediated transport systems involving the H⁺-coupled PepT1 transporter, may be excluded since they are active and saturable symporters specific for intestinal absorption of charged di- and tripeptides (Brandsch, Knüter, & Bosse-Doenecke, 2008). The average polar properties of these peptides would also exclude a possible transcellular diffusion since a vesicular-mediated internalization, the main mechanism involved, would imply absorption by apical cell membrane through hydrophobic interactions (Knipp, Velde, Siahaan, & Borchardt, 1997). The low level of degradation of rubiscolin-6 and soymorphin-6 in transepithelial transfer indicates that passive transcellular diffusion could be partially involved in their transport. In fact, the amino acids ability to join hydrogen bonds with lipid phosphates of cell membranes, has been reported as a key physicochemical feature helping the translocation process via transcytosis route (Pauletti et al., 1996).

All together, these data support the possible transport of our peptides via paracellular route. Nontheworthy, the passive paracellular transport via tight junctions has been recognized for the absorption of water-soluble low molecular weight and short-chain peptides positively charged due to the average negative charge of tight junctions (Salamat-Miller & Johnston, 2005). Finally, the docking study on rubiscolin-6 and its C-terminal amide into DOR gave an insight on their binding and MOR at 100 μM concentration, however rubiscolin-6 is inactive at MOR according to literature data (Hirata et al., 2007).

Overall, detailed pharmacological features of rubiscolin-6, soy-

Rubiscolin-6 was able to increase the noiceptive threshold to thermal stimuli after supraspinal administration, but was ineffective after subcutaneous administration in an experimental paradigm of chemical-induced noiceception as the formalin test. Rubiscolin-6 C-amide centrally administered demonstrates a strong antinociceptive effect higher than the parent compound, and it is effective after subcutaneous administration. To the best of our knowledge no data are available on the in vivo effects of Soymorphin-6, thus these results are novel and firstly described. After central administration in the tail flick test, both soymorphin-6 and its derivative soymorphin-6 C-amide induce a robust antinociceptive effect until 30 min after the administration but both peptides are not able to change the behavioral response to

5. Ethics statement

The research protocol for in vivo tests was approved by the Service for Biotechnology and Animal Welfare of the Istituto Superiore di
Sanità and authorized by the Italian Ministry of Health, according to Legislative Decree 26/14, which implemented the European Directive 2010/63/UE on the protection of laboratory animals in Italy. Animal welfare was routinely checked by veterinarians from the Service for Biotechnology and Animal Welfare.

CRediT authorship contribution statement

Azzurra Stefanucci: Conceptualization, Writing - review & editing.

Marilisa Pia Dimmīto: Investigation. Giancarlo Tenore: Formal analysis.

Stefano Pieretti: Data curation, Validation. Paola Minosi: Data curation, Validation. Gokhan Zengin: Data curation. Chiara Sturaro: Investigation. Giorlamo Calò: Investigation.

Ettore Novellino: Formal analysis. Angelo Cicchelli: Conceptualization, Writing - review & editing. Adriano Mollica: Supervision, Software, Resources.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Appendix A. Supplementary material

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jff.2020.104154.

References

Arusoy, S., & Üstün-Aytęk, O. (2018). Hydrolysis of food-derived opioids by dipeptidyl peptidase IV from Lactococcus lactis spp. Lactis. Food Research International, 113, 572–581.

Bigiardi-Qi, M., Gaveraux-Ruff, C., Zhou, H., Hell, C., Bady, P., Ruffi, T.,...,Bigiard, P. (2006). Deletion of delta-opioid receptor in mice alters skin differentiation and delays wound healing. Differentiation, 74, 174–185.

Brandisch, M., Knüter, I., & Bosse-Doenecke, E. (2008). Pharmaceutical and pharmacological importance of peptide transporters. Journal of Pharmacy and Pharmacology, 60, 543–585.

Cabalero, J., Sanvedra, M., Fernández, M., & González-Nilo, F. D. (2007). Quantitative structure-activity relationship of rubiscolin analogues as delta opioid peptides using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA). Journal of Agricultural Food Chemistry, 55, 8101–8104.

Camarda, V., Fischetti, C., Anzellotti, N., Molinari, P., Ambrosio, C., Kontenis, E.,..., Calo, G. (2009). Pharmacological profile of NOP receptors coupled with calcium signaling via the chimeric protein GoqNS. Naunyn Schmiedebergs Archives of Pharmacology, 379, 599–607.

Caselli, R. J., Mores, K. L., Zefaras, Mahmoud A., Lii, M. A., Trader, D. J., & van Rijn, R. M. (2019). Rubiscolins are naturally occurring G protein-biased delta opioid receptor peptides. European Neuropsychopharmacology, 29, 450–456.

Dimmīto, M. P., Stefanucci, A., Pieretti, S., Minosi, P., Dvorácskó, S., Tomboly, C.,..., Mollica, A. (2019). Discovery of orexan and anorexan agents with indazole scaffold endowed with peripheral antinociceptive activity. Biomolecules, 9, 492. https://doi.org/10.3390/biom9040092.

Dvorácskó, S., Stefanucci, A., Novellino, E., & Mollica, A. (2017). The design of multi-target ligands for chronic and neuropathic pain. International Journal of Medicinal Chemistry, 7, 2469–2483.

Furkert, K., Klög, U., Smolinski, A., Eichmüller, S., Mehlis, B., Kertcher, U., & Paus, R. (1997). Identification and measurement of β-endorphin levels in the skin during pigmented hair growth in mice. Biochimica Biophysica Acta, 1365, 315–322.

Grochowski, D. M., Uy, S., Askutam, A., Grochowska, S., Zengin, G., Ceylan, R.,..., Hruby, V. J. (2011). New potent opioid analogues containing p-fluoro-L-phenylalanine at the 4α,4' positions and non-hydrinone linkers. Amino Acids, 40, 1503–1511.

Nwachukwu, D. I., & Aluló, R. E. (2019). Structural and functional properties of food protein-derived antioxidant peptides. Journal of Food Biochemistry, 43, Article e12761. https://doi.org/10.1111/jfbc.12761.

Ohihina, K., Agui, S., & Yoshihki, M. (2007). Somatovin, novel mu opioid peptides derived from soy beta-conglycinin beta-subunit, have anxiolytic activities. BioScience, Biotechnology and Biochemistry, 71, 2618–2621.

Poli, G., Dimmīto, M. P., Mollica, A., Zengin, G., Beney, S., Zador, F., & Stefanucci, A. (2019). Discovery of novel µ-opioid receptor inverse agonist from a combinatorial library of tetrapeptides through structure-based virtual screening. Molecules, 24, 1623. https://doi.org/10.3390/molecules24061623.

Raiola, A., Meca, G., Matoes, J., & Ritiéni, A. (2012). Bioaccessibility of deoxynivalenol and its natural co-occurrence with ochratoxin A and aflatoxin B1 in Italian commercial pasta. Food and Chemical Toxicology, 50, 280–287.

Reggiani, D., Molli, D., Gabriele, U., Leonil, J., & Boutrou, R. (2010). The (193–209) 17-residue peptides of bovine β-casein is transported through Caco-2 monolayer. Molecular Nutrition and Food Research, 54, 1428–1435.

Salmat-Miller, N., & Johnston, T. P. (2005). Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. International Journal of Pharmaceutics, 294, 201–216.

Satake, M., Enjoj, M., Nakamura, Y., Taka, K., Kawa, M., Arai, S., & Shimizu, M. (2002). Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers. Bioscience, Biotechnology, and Biochemistry, 66, 378–384.

Schmelz, M., & Paus, R. (2007). Opioids and the skin: “itchy” perspectives beyond analgesia and abuse. Journal of Investigational Dermatology, 127, 1207–1227.

Schrödinger Release 2016-4: LigPrep, Schrödinger, LLC, New York, NY (2016).

Schurink, M., van Berkel, J. W., Wichers, H. J., & Boeriu, C. G. (2007). Novel peptides from soybean, has anxiolytic e...

Salamat-Miller, N., & Johnston, T. P. (2005). Current strategies used to enhance the paracellular transport of therapeutic polypeptides across the intestinal epithelium. International Journal of Pharmaceutics, 294, 201–216.

Stefanucci, A., Dimmīto, M. P., Macedonio, G., Zengin, G., Ahmed, A. A., & Novellino, E. (2019). On resin click-chemistry-mediated synthesis of novel enkephalin analogs with potent anti-nociceptive activity. Scientific Reports, 9, 5771. https://doi.org/10.1038/s41598-019-42889-5.

Stefanucci, A., Luisi, G., Zengin, G., Macedonio, G., Dimmīto, M. P., Novellino, E., & Mollica, A. (2019). Discovery of arginine-containing tripeptides as a new class of pancreatic lipase inhibitors. Future Medicinal Chemistry, 11, 5–19.

Stefanucci, A., Mollica, A., Macedonio, G., Zengin, G., Ahmed, A. A., & Novellino, E. (2018). Exogenous opioid peptides derived from food proteins and their possible uses.
as dietary supplements: A critical review. Food Review International, 34, 8755–9129.

Tenore, G. C., Campiglia, P., Giannetti, D., & Novellino, E. (2015). Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols. Food Chemistry, 15, 320–326.

Tobin, D. J., & Kauser, S. (2005). Beta-endorphin: The forgotten hair follicle melanotropin. Journal of Investigative Dermatology Symposium Proceedings, 10, 212–216.

Torino, D., Mollica, A., Pinnen, F., Feliciani, F., Lucente, G., Fabrizi, G., ... Hruby, V. J. (2010). Synthesis and evaluation of new endomorphin-2 analogues containing (Z)-α, β-didehydrophenylalanine (DDPhe) residues. Journal of Medicinal Chemistry, 53, 4550.

Yang, S., Sonoda, S., Chen, L., & Yoshikawa, M. (2003). Structure-activity relationship of rubiscolins as delta opioid peptides. Peptides, 24, 503–508.

Yang, S., Yunden, J., Sonoda, S., Doyama, N., Lipkowski, A. W., Kawamura, Y., & Yoshikawa, M. (2001). Rubiscolin, a delta selective opioid peptide derived from plant Rubisco. FEBS Letters, 509, 213–217.

Yoshikawa, M. (2015). Bioactive peptides derived from natural proteins with respect to diversity of their receptors and physiological effects. Peptides, 72, 208–225.

Zengin, G., Stefanucci, A., Rodrigues, M. J., Mollica, A., Custodio, L., Zakariyyah, M. A., & Mahomoodally, M. F. (2019). Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles. Journal of Pharmaceutical and Biomedical Analysis, 162, 225–233.

Zioudrou, C., Sreathy, R. A., & Klee, W. A. (1979). Opioid peptides derived from food proteins. The exorphins. Journal of Biological Chemistry, 254, 2446–2449.

Zolghadri, S., Bahrami, A., Hassan, K., Munoz-Munoz, M. T., Garcia-Molina, J., Garcia-Canovas, F., & Sadowski, A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34, 279–309.