Finite calculation of divergent selfenergy diagrams

A. Aste, D. Trautmann
Institute for Theoretical Physics
Klingelbergstrasse 82, Basel, Switzerland

October 25, 2018

Abstract

Using dispersive techniques, it is possible to avoid ultraviolet divergences in the calculation of Feynman diagrams, making subsequent regularization of divergent diagrams unnecessary. We give a simple introduction to the most important features of such dispersive techniques in the framework of the so-called finite causal perturbation theory. The method is also applied to the ‘divergent’ general massive two-loop sunrise selfenergy diagram, where it leads directly to an analytic expression for the imaginary part of the diagram in accordance with the literature, whereas the real part can be obtained by a single integral dispersion relation. It is pointed out that dispersive methods have been known for decades and have been applied to several nontrivial Feynman diagram calculations.

Keywords: Causality, ultraviolet divergences

PACS: 11.10.-z, 11.15.Bt, 12.20.Ds, 12.38.Bx.
1 Introduction

In quantum field theory, one usually starts from fields and a Lagrangean which describes the interaction. These objects get quantized and S-matrix elements or Greens functions are then constructed by the help of Feynman rules. However, these Feynman rules lead to products of distributions with singular behavior. This leads to the well-known ultraviolet-divergences in perturbation theory. The occurrence of such divergences has led to the invention of several ingenious formal procedures like Pauli-Villars regularization [1] or dimensional regularization [2]. The situation remained not entirely satisfactory for several decades. So Feynman in his Nobel lecture remarked: "I think that the renormalization theory is simply a way to sweep the difficulties of the divergences of quantum electrodynamics under the rug."

Today, the situation is not so bad as Feynman described it. The regularization procedures which remove infinities from the theory are well understood and it has become clear that UV divergences do not imply an inconsistency of the theory in general, but are a consequence of our current perturbative formulation of quantum field theories. Renormalization-group methods also shed a new light on their interpretation.

It is still widely unknown that it is possible to treat Feynman diagrams in such a manner that ultraviolet (UV) divergences do not appear in the calculations. This can be achieved by making explicit use of the causal structure of quantum field theory, i.e. by using dispersive techniques. Contrary to widespread belief, the use of dispersion relations in practical calculations is not unusual and has been employed by various authors in phenomenologically important evaluations of calculationally demanding quantum electromagnetic corrections such as higher-order binding corrections to the two-loop bound-state quantum electromagnetic self-energy. Artru et al. have used dispersive techniques as early as in 1966 for a leading-order calculation of the Lamb shift [3, 4]. Pachucki has employed these relations for the evaluation of higher-order binding corrections to the two-loop Lamb shift [5], and mentioned in his paper that the ultraviolet divergences canceled automatically in the calculations.

A very natural and rigorous approach to axiomatic perturbation theory which has been applied successfully to all relevant interactions of the Standard model [6, 7, 8, 9] and supersymmetric models [10, 11] was provided by a classic paper of H. Epstein and V. Glaser in 1971 [12, 13]. Their method, called finite causal perturbation theory or FCPT for short in this paper, avoids UV divergences from the start by defining mathematically correct time-ordered products for distributions. The resulting distributions are smeared out by test functions, avoiding provisionally volume and infrared divergences at once. An extensive introduction to the causal method can be found in the textbook of G. Scharf on finite quantum electrodynamics [14]. There is now also a growing interest in FCPT, because it allows to formulate a consistent renormalization theory on a curved physical background [15].

Basically, FCPT provides a clearly defined strategy for the dispersive calculation of Feynman diagrams. It renders all diagrams finite, but does not automatically solve problems related to the specification of normalization conditions and possible anomalies arising in the regularization procedure, which may violate symmetries which are necessary to give physical meaning. These problems like e.g. the formulation of Ward identities or the introduction of interacting fields in the framework of FCPT have been treated extensively
1 INTRODUCTION

in recent years [16, 17, 18, 19, 20].

In FCPT, the ansatz for the S-matrix as a power series in the coupling constant is crucial, namely S is considered as a sum of smeared operator-valued distributions

$$S(g) = 1 + \sum_{n=1}^{\infty} \frac{1}{n!} \int d^4x_1 \ldots d^4x_n T_n(x_1, \ldots, x_n) g(x_1) \cdots g(x_n) ,$$

where the Schwartz test function $g \in \mathcal{S}(\mathbb{R}^4)$ switches the interaction and provides the infrared cutoff. The basic formulation of causality in FCPT, which had already been used by Bogoliubov et al. [21], is

$$S(g_1 + g_2) = S(g_2)S(g_1) ,$$

if the support of $g_2(x)$ is later than $\text{supp } g_1$ in some Lorentz frame (usually denoted by $\text{supp } g_2 > \text{supp } g_1$). The condition allows the construction of the n-point distributions T_n as a well-defined 'renormalized' time-ordered product expressed in terms of Wick monomials of free fields $:\mathcal{O}(x_1, \ldots, x_n):$

$$T_n(x_1, \ldots, x_n) = \sum_{\mathcal{O}} :\mathcal{O}(x_1, \ldots, x_n): t_n^\mathcal{O}(x_1 - x_n, \ldots, x_{n-1} - x_n) .$$

where the $t_n^\mathcal{O}$ are C-number distributions. T_n is constructed inductively from the first order $T_1(x)$, which describes the interaction among the quantum fields, and from the lower orders $T_j, j = 2, \ldots, n - 1$ by means of Poincaré covariance and causality. The inductive construction of the n-point distributions T_n can be considered as the main technical difference of the theory to other approaches, since all lower orders T_1, \ldots, T_{n-1} must be calculated first in order to construct T_n. But the commonly chosen form of the T_n

$$T_n(x_1, \ldots, x_n) = \sum_{\pi} \Theta(x_\pi^0 - x_\pi^0) \cdots \Theta(x_{\pi_{n-1}}^0 - x_{\pi_n}^0) T_1(x_{\pi_1}) \cdots T_1(x_{\pi_n})$$

where the sum runs over all $n!$ permutations, is not an unambiguous definition, since it contains the product of Heaviside distributions with other singular distributions. This leads to the well-known UV divergences in the calculation of Feynman diagrams. One can illustrate this fact by the following simple one-dimensional example. The product of a Heaviside distribution $\Theta(t)$ with a δ-distribution $\delta(t)$ or even its derivative $\delta'(t)$ is obviously not well-defined. The Fourier transforms of the distributions are

$$\hat{\Theta}(\omega) = \frac{i}{\sqrt{2\pi}} \omega - i0 , \quad \hat{\delta'}(\omega) = \frac{i\omega}{\sqrt{2\pi}} .$$

The ill-defined product $(\Theta \delta')(t)$ goes over into a non-existing convolution by Fourier transform

$$(\Theta \delta')(t) \rightarrow \frac{1}{2\pi} (\hat{\Theta} * \hat{\delta'})(\omega) = \frac{1}{(2\pi)^2} \int_{-\infty}^{+\infty} d\omega' \frac{\omega - \omega'}{\omega' - i0},$$

which is definitely 'UV divergent'.

It is the aim of this paper to demonstrate how UV finite results are obtained in the framework of FCPT by avoiding problematic Feynman integrals. This is done in Section 2, where technical details are explained. In Section 3 the method is applied to the well-known introductory case of a scalar selfenergy diagram, and in section 4, we apply the method to the less trivial case of the two-loop sunrise diagram with arbitrary masses.
2 The method

We start our considerations with a scalar neutral massive field \(\phi_m \) with mass \(m \) which satisfies the free Klein-Gordon equation. It can be decomposed into a negative and positive frequency part according to

\[
\phi_m(x) = \phi_m^-(x) + \phi_m^+(x) = (2\pi)^{-3/2} \int \frac{d^3k}{\sqrt{2E}} [a(\vec{k})e^{-ikx} + a^+(\vec{k})e^{ikx}],
\]

where \(E = \sqrt{\vec{k}^2 + m^2} \). The commutation relations for such a field are given by the Jordan-Pauli distributions

\[
[\phi_m^\pm(x), \phi_m^\mp(y)] = -iD_m^\pm(x - y),
\]

which have the Fourier transforms

\[
\hat{D}_m^\pm(p) = (2\pi)^{-2} \int d^4x D_m^\pm(x)e^{ipx} = \pm \frac{i}{2\pi} \Theta(\pm p^0)\delta(p^2 - m^2).
\]

Since the commutator

\[
[\phi_m(x), \phi_m(y)] = -iD_m^-(x - y) - iD_m^+(x - y) = -iD_m(x - y)
\]

vanishes for spacelike distances \((x - y)^2 < 0\) due to the requirement of microcausality, it follows immediately that the Jordan-Pauli distribution \(D_m \) has causal support, i.e. it vanishes outside the closed forward and backward lightcone

\[
\text{supp} D_m(x) \subseteq \mathcal{V}^- \cup \mathcal{V}^+,
\]

\[
\mathcal{V}^\pm = \{x \mid x^2 \geq 0, \pm x^0 \geq 0\}.
\]

A crucial observation is the fact that the retarded propagator is given in real space by the covariant formula

\[
D_m^{ret}(x) = \Theta(x^0)D_m(x),
\]

which goes over into a convolution in momentum space

\[
\hat{D}_m^{ret}(p) = (2\pi)^{-2} \int d^4k \hat{D}_m(k)\hat{\Theta}(p - k).
\]

The Heaviside distribution \(\Theta(x^0) \) could be replaced by \(\Theta(vx) \) with an arbitrary vector \(v \in \mathcal{V}^+ \) inside the forward lightcone. The Fourier transform of the Heaviside distribution \(\Theta(x^0) \) can be easily calculated

\[
\hat{\Theta}(p) = (2\pi)^{-2} \lim_{\epsilon \to 0} \int d^4x \Theta(x^0)e^{-\epsilon x^0}e^{ipx_0 - ipx} = \frac{2\pi i}{p^0 + i0}\delta^{(3)}(\vec{p}).
\]

For the special case where \(p \) is in the forward lightcone \(\mathcal{V}^+ \), we can go to a Lorentz frame where \(p = (p^0, \vec{0}) \) \((= p^0 = p_0 \text{ as a shorthand})\) such that eq. 14 becomes

\[
\hat{D}_m^{ret}(p^0) = \frac{i}{2\pi} \int dk^0 \frac{\hat{D}_m(k^0)}{p^0 - k^0 + i0} = \frac{i}{2\pi} \int dt \frac{\hat{D}_m(tp^0)}{1 - t + i0}.
\]
For arbitrary $p \in V^+$, \hat{D}^{ret}_{m} is therefore given by the dispersion relation

$$\hat{D}^{ret}_{m}(p) = \frac{i}{2\pi} \int dt \frac{\hat{D}_m(tp)}{1 - t + i0}. \tag{17}$$

It is trivial but instructive to perform the actual calculation of \hat{D}^{ret}_{m}. Exploiting the δ-distribution in

$$\hat{D}_m(p) = \frac{\text{sgn}(p^0)}{2\pi} \delta(p^2 - m^2), \tag{18}$$

we obtain

$$\hat{D}^{ret}_{m}(p) = \frac{1}{(2\pi)^2} \int dt \frac{\text{sgn}(tp^0)\delta(t^2p^2 - m^2)}{1 - t + i0} =$$

$$- \frac{1}{(2\pi)^2} \int dt \frac{\delta(t - \frac{m}{\sqrt{p^2}}) - \delta(t + \frac{m}{\sqrt{p^2}})}{2\sqrt{p^2m(1 - t + i0)}} =$$

$$- \frac{1}{(2\pi)^2} \frac{1}{p^2 - m^2 + i0}. \tag{19}$$

We recover the analytic expression for the Feynman propagator, which coincides with

$$\hat{D}^{F}_{m}(p) + D_{m}^- = - \frac{1}{(2\pi)^2} \frac{1}{p^2 - m^2 + i0} \tag{20}$$

for $p \in V^+$. The imaginary part of the Feynman propagator is given by

$$\text{Im}(\hat{D}^{F}_{m}(p)) = \frac{i}{4\pi} \delta(p^2 - m^2) \tag{21}$$

and can be deduced directly from the causal Jordan-Pauli distribution \hat{D}_m in an obvious way.

2.1 The scalar one-loop selfenergy diagram

As a first step, we define the causal distribution $d(x - y)$ in conformity with (8) as the following vacuum expectation value of a massive and a massless field (the colons denote normal ordering)

$$(-i)\, d(x - y) := \langle 0| : \phi_m(x)\phi_o(x) :: \phi_m(y)\phi_o(y) : |0 \rangle \tag{22}$$

which has again causal support due to microcausality. It is sufficient to consider

$$(-i)\, r(x - y) := -\langle 0| : \phi_m(y)\phi_o(y) :: \phi_m(x)\phi_o(x) : |0 \rangle =$$

$$D_{m}^- (x - y)D_{o}^-(x - y), \tag{23}$$

since $d(x - y) = r(x - y) - r(y - x)$. The product of the two Jordan-Pauli distributions in real space goes over into a convolution in momentum space

$$\hat{r}(p) = \frac{i}{(2\pi)^2} (D_{m}^- * D_{o}^-)(p), \tag{24}$$
such that \(\hat{d}(p) = \hat{r}(p) - \hat{r}(-p) \).

Since we do not calculate the time-ordered product of fields, the Feynman propagators are replaced by Jordan-Pauli distributions.

The integral appearing in (24) is readily evaluated if one exploits the \(\delta \)-distribution stemming from the massless field contraction in

\[
\hat{r}(p) = -\frac{i}{(2\pi)^4} \int d^4 q \Theta(-q^0)\delta(q^0)\Theta(q^0 - p^0)\delta((p - q)^2 - m^2).
\]

(25)

\(\hat{r}(p) \) vanishes outside the closed backward lightcone due to Lorentz invariance and the two \(\Theta \)-distributions in eq. (25). Therefore we can go to a Lorentz frame where \(p = (p^0 < 0, \vec{0}) \), and using the abbreviation

\[
E = \sqrt{\vec{q}^2 + m^2}
\]

leads to

\[
\hat{r}(p^0) = -\frac{i}{2(2\pi)^3 |p^0|} \int d|\vec{q}|\delta(p^0 - 2p^0 E - m^2)\Theta(-E - p^0) =
\]

\[
-\frac{i}{2(2\pi)^3 |p^0|} \Theta(-p^0)\Theta(p^2 - m^2) \sqrt{(\frac{p^0}{2} - \frac{m^2}{2p^0})^2},
\]

(26)

and for arbitrary \(p \) we get the intermediate result

\[
\hat{r}(p) = -\frac{i}{32\pi^3} \frac{p^2 - m^2}{p^2} \Theta(-p^0)\Theta(p^2 - m^2).
\]

(27)

Naive use of the dispersion relation (17) for the real part of the sunrise diagram would lead to an ultraviolet divergent expression. But it can be shown (14) that the finite part of the diagram is given for \(p \in V^+ \) by a subtracted dispersion relation (which is also called splitting formula)

\[
\hat{r}^\text{ret}(p) = \frac{i}{2\pi} \int_{-\infty}^{\infty} dt \frac{\hat{d}(tp)}{(t - i0)^{\omega+1}(1 - t + i0)},
\]

(28)

where \(\omega \) is the power counting degree of the diagram, which is in our case \(\omega = 0 \) since the diagram is logarithmically divergent. \(\hat{r}^\text{ret}(p) \) is normalized such that all derivatives of order \(\leq \omega \) of \(\hat{r}^\text{ret} \) vanish at \(p = 0 \), i.e. in the present case

\[
\hat{r}^\text{ret}(0) = 0.
\]

(29)

These statements are only meaningful if the derivatives of order \(\leq \omega \) of \(\hat{r}^\text{ret}(p) \) exist in the sense of ordinary functions. This is assured in most cases by the existence of a massive field in the theory.

We mention here that eq. (28) corresponds to the dispersion relation (113,10) used in the familiar textbook by Landau and Lifshitz on quantum electrodynamics (22).

Roughly speaking, the additional term in the denominator of (28) has a simple explanation. Writing (28) for \(p = (p^0, \vec{0}) \) as

\[
\hat{r}^\text{ret}(p^0) = \frac{i}{2\pi} (p^0)^{\omega+1} \int_{-\infty}^{\infty} dk^0 \frac{\hat{d}(k^0)}{(k^0 - i0)^{\omega+1}(p^0 - k^0 + i0)},
\]

(30)
It becomes obvious that the division by \((k^0)^{\omega+1}\) acts as a kind of inverse differentiation on the causal distribution \(d(x)\) in real space. The transformed distribution has a less critical scaling behavior, and can be multiplied in a well-defined way by the time-ordering \(\Theta\)-distribution. After the splitting, the original part of \(d(x)\) in the forward lightcone is recovered by differentiating \(\omega + 1\) times along the time axis, corresponding to a multiplication of the distribution by \((p^0)^{\omega+1}\) in momentum space. This observation also shows the connection of the method to differential renormalization [23]. For further mathematical details we refer also to [24].

The splitting integral can be evaluated by elementary methods

\[
\hat{t}^\text{ret}(p) = -\frac{1}{4(2\pi)^4} \int_{-\infty}^{\infty} dt \frac{\text{sgn}(t) \Theta(t^2p^2 - m^2)(t^2p^2 - m^2)}{t^4(1 - t + it0)p^2}, \quad p \in V^+ \tag{31}
\]

and leads directly to

\[
\hat{t}(p) = \frac{1}{4(2\pi)^4} \left[\frac{m^2 - p^2}{p^2} \log \left(\frac{m^2 - p^2 - it0}{m^2} \right) + 1 \right]. \tag{32}
\]

Distribution theory leaves the freedom to add a constant to the result, which corresponds to a local term \(c_0\delta(x)\) in real space. Such local terms have to be restricted by further symmetry considerations in practical cases.

We arrived thus on a very direct way to a finite expression for the scalar one-loop selfenergy diagram, which corresponds up to a prefactor to the regularized expression of the Feynman integral

\[
\int \frac{d^4k}{(k^2 + it0)((p - k)^2 - m^2 + it0)}. \tag{33}
\]

We finally mention that one-loop diagrams in two space-time dimensions are treated in the framework of FCPT in [25], whereas three-dimensional QED is treated in [14].

3 The Sunrise Diagram

In the following section, we will utilize the strategy discussed above for the calculation of the imaginary part of the sunrise diagram. This will show that the causal treatment of Feynman diagrams is also applicable to non-trivial cases. An extensive introduction to the calculation of two-loop diagrams in the causal method has been given in [20], but the case of the sunrise diagram is missing there. Due to the fundamental structure of the sunrise diagram, it is clear that it has been investigated by the use of many different approaches, and in this paper it serves only as a convenient example for a dispersive calculation. We give therefore a short overview over the literature which is related to the subject in the following.

There is now an increased interest in precise calculations of multi-loop Feynman diagrams. In the general massive case, relevant for future high precision calculations in the electroweak theory which go beyond the currently available one-loop electroweak radiative corrections [27], the number of parameters makes it impossible to obtain results in the usual analytic form already in the case of the two-loop sunrise selfenergy diagram shown in Fig.1. When one or two internal particles are massless, the four-dimensional results can be
obtained in terms of dilogarithms [28–31]. The situation is more complicated when
all the virtual particles in the diagram have (different) masses. Such a situation occurs
e.g. in the two-loop off-shell contributions to the Higgs selfenergy. In three dimensions,
the expression for the sunrise diagram is quite compact even for different masses [32], but
in the four dimensions, there are arguments [33] that the result can not be expressed in
terms of polylogarithms or other well-known special functions.

There is nowadays also a widely accepted procedure of expressing radiative correction
calculations in terms of a limited number of master integrals (MI) [34], which reduces the
problem of finding analytic expressions for two-loop diagrams to the careful determination
of the MI. The method has also the advantage that, with a correct bookkeeping of the
recurrence relations arising from integration by parts identities, the MI of a given problem
can be reused in more complicated calculations.

As already mentioned, the analytical calculation of MI (in terms of the usual polylog-
arithms and their generalizations) is possible only in cases with high symmetry, i.e. when
the number of different scales (internal masses and external momenta or Mandelstam vari-
ables) is small like in QCD calculations, where all masses are set to zero, or in QED-type
cases, where only the electron mass is different from zero, or when the external variables
are fixed to particular values (zero or mass shell condition). Another possibility of help
in analytic calculations is sometimes offered by the exploitation of particular simplifying
conditions, like the smallness of some ratios of the parameters allowing the corresponding
expansion.

![Figure 1: The general massive two-loop sunrise selfenergy diagram.](image)

The MI of the sunrise diagram were recognized to be expressible in closed form as a
combination of four Lauricella functions, a special class of generalized hypergeometric se-
ries [35] (and references therein). The method provides efficient multiple series expansions
for the regions of small $|p^2|$, i.e. $|p^2| < \max(m_i^2)$, and of large $|p^2| \gg (m_1 + m_2 + m_3)^2$,
but some problems arise in the intermediate region.

There were also efforts devoted to the investigation of properties in special points (i.e.
at $p^2 = 0, \infty$, pseudothresholds and threshold). The analytical expansions of the MI
at 0 and ∞ are given in [35] and [36]; the values at pseudothresholds and threshold in
[37]; the analytical expansions at pseudothresholds can be found in [38]; a semi-analytical
expansion at threshold in [39] and also in configuration space technique in [40], while the
complete analytical expansions at threshold are presented in [41].

For numerical evaluation purposes, it is possible to cast the general massive selfen-
ergy diagram in a double integral representation and in the particular case of the sunrise
diagram in a single integral representation [35, 42–44] (and references therein). The
configuration space technique is also exploited in the numerical approach [35, 41]. In a re-
cent approach rearrangements of the integrand, driven by the Bernstein-Tkachov theorem,
are introduced to improve numerical convergence \[45\]. A different and interesting method is the use of the recurrence relations as difference equations to numerically evaluate the MI \[46\].

It is of general interest to provide the widest possible range of insight into the structure and analytic properties of multi-loop diagrams. In the present paper we exploit the causal structure of the sunrise diagram, which immediately leads to a straightforward evaluation of the imaginary part of the diagram by elliptic functions. The real part of the diagram can then be obtained from a single integral dispersion relation. The dispersive method works especially well for diagrams which depend only on one external momentum, although its has already been used for different kinds of cases.

As in the case of the one-loop selfenergy diagram, we define the causal distribution \(d(x-y)\) according to eq. (8) as the vacuum expectation value of three massive fields (the colons denote normal ordering)

\[
(-i) d(x-y) := \langle 0 | : \phi_{m_1}(x) \phi_{m_2}(x) \phi_{m_3}(x) : : \phi_{m_1}(y) \phi_{m_2}(y) \phi_{m_3}(y) : | 0 \rangle \tag{34}
\]

which has causal support. As for the one-loop case, we consider

\[
(-i) r(x-y) := -\langle 0 | : \phi_{m_1}(y) \phi_{m_2}(y) \phi_{m_3}(y) : : \phi_{m_1}(x) \phi_{m_2}(x) \phi_{m_3}(x) : | 0 \rangle = i D_{m_1}^-(x-y) D_{m_2}^-(y-x) D_{m_3}^-(y-x), \tag{35}
\]

since \(d(x-y) = r(x-y) - r(y-x)\). The product of the three Jordan-Pauli distributions in real space goes over into a threefold convolution in momentum space

\[
\hat{r}(p) = \frac{1}{(2\pi)^4} (\hat{D}_{m_1}^{-} \ast \hat{D}_{m_2}^{-} \ast \hat{D}_{m_3}^{-})(p), \tag{36}
\]

such that \(\hat{d}(p) = \hat{r}(p) - \hat{r}(-p)\).

The dispersion relation \[17\] for the real part of the sunrise diagram is given by the splitting formula \((p \in V^+)\)

\[
\hat{r}^{ret}(p) = \frac{i}{2\pi} \int dt \frac{\hat{d}(tp)}{(t-i0)^3(1-t+i0)}, \tag{37}
\]

since the power counting degree of the quadratically divergent diagram is in this case \(\omega = 2\). \(\hat{r}^{ret}(p)\) is normalized such that all derivatives of order \(\leq \omega\) of \(\hat{r}^{ret}\) vanish at \(p = 0\)

\[
\hat{r}^{ret}(0) = 0, \quad \frac{\partial}{\partial p_{\mu}} \hat{r}^{ret}(0) = 0, \quad \frac{\partial^2}{\partial p_{\mu} \partial p_{\nu}} \hat{r}^{ret}(0) = 0. \tag{38}
\]

3.1 The Imaginary Part

We will now calculate the three-fold convolution of the Jordan-Pauli distributions in momentum space given by eq. (36). First we evaluate

\[
\hat{d}_{12}(p) = (\hat{D}_{m_1}^{-} \ast \hat{D}_{m_2}^{-})(p) =
\]
\[-\frac{1}{(2\pi)^2} \int d^4q \Theta(-q^0)\delta(q^2 - m_1^2)\Theta(q^0 - p^0)\delta((p - q)^2 - m_2^2). \quad (39) \]

\(\hat{d}_{12}(p) \) vanishes outside the closed backward lightcone due to Lorentz invariance and the two \(\Theta \)-distributions in eq. (39). In a Lorentz frame where \(p = (p^0, \vec{0}) \) we obtain \((E = \sqrt{q^2 + m_1^2}) \)

\[
\hat{d}_{12}(p^0) =
\left(-\frac{1}{2(2\pi)^2} \int d^4q \right) \delta(p_0^2 + 2p^0E + m_1^2 - m_2^2) \Theta(-E - p^0) =
\left(-\frac{1}{2(2\pi)^2} \int d|q||q| \delta\left(\frac{p_0^2}{2} + E + \frac{m_1^2 - m_2^2}{2p^0}\right) \Theta(-E - p^0) =
\left(-\frac{1}{2(2\pi)^2} \right) \Theta(-p^0)(p_0^2 - (m_1 + m_2)^2) \right)
\]

\[
\sqrt{\left(\frac{p_0^2}{2} + m_1^2 - m_2^2\right)^2 - m_1^2}, \quad (40)
\]

and for arbitrary \(p \) we get the intermediate result

\[
\hat{d}_{12}(p) = -\frac{1}{8\pi p^2} \Theta(-p^0)\Theta(p^2 - (m_1 + m_2)^2)
\]

\[
\sqrt{p^2 - 2(m_1^2 + m_2^2)p^2 + (m_1^2 - m_2^2)^2}, \quad (41)
\]

which is symmetric in \(m_1, m_2 \) and exhibits the typical two-particle threshold behavior.

Applying (28) with \(\omega = 0 \) to \(\hat{d}_{12}(p) \) would generate the retarded one-loop propagator for a diagram with masses \(m_1 \) and \(m_2 \). As a next step we calculate

\[
\dot{r}(p) = -\frac{1}{(2\pi)^4} (\hat{D}_{m_3} \ast \hat{d}_{12})(p) = -\frac{i}{4(2\pi)^6} \int d^4q
\]

\[
\Theta(-q^0)\delta(q^2 - m_3^2)\Theta(q^0 - p^0)\Theta((p - q)^2 - (m_1 + m_2)^2)
\]

\[
\sqrt{(p - q)^2 - 2(m_1^2 + m_2^2)(p - q)^2 + (m_1^2 - m_2^2)^2}
\]

\[
(p - q)^2 . \quad (42)
\]

For \(p = (p^0, \vec{0}) \) we obtain \((E = \sqrt{q^2 + m_3^2}) \)

\[
\dot{r}(p) = -\frac{i}{4(2\pi)^6} \int \frac{d^3q}{2E}
\]

\[
\Theta(-E - p^0)(p_0^2 + 2p_0E + m_3^2 - (m_1 + m_2)^2)
\]

\[
p_0^2 + 2p_0E + m_3^2 I(p_0) =
\left(-\frac{i}{4(2\pi)^6} \Theta(-p^0)(p_0^2 - (m_1 + m_2 + m_3)^2)
\right)
\]

\[
\int_{m_3} \frac{dE}{p_0^2 + 2p_0E + m_3^2} \sqrt{E^2 - m_3^2} I(p_0) , \quad (43)
\]
\[I(p_0) = \left((p_0^2 + 2p_0E + m_3^2)^2 - 2(m_1^2 + m_2^2)(p_0^2 + 2p_0E + m_3^2) + (m_1^2 - m_2^2)^2 \right)^{1/2}. \] (44)

The integral (43) can be written in a compact manner if we substitute $s = p_0^2 + 2p_0E + m_3^2$. Going back to arbitrary Lorentz frames by replacing p^0 by $-\sqrt{p^2}$ where necessary, we obtain the following representation of $\hat{r}(p)$:

\[\hat{r}(p) = -\frac{i}{16(2\pi)^2p^2} \Theta(-p^0)\Theta(p^2 - (m_1 + m_2 + m_3)^2) J(p), \] (45)

where

\[J(p) = \int_{s_1}^{s_2} \frac{ds}{s} \sqrt{(s - s_1)(s - s_2)(s_3 - s)(s_4 - s)}, \] (46)

and the variables $s_2 < s_1 < s_4 < s_3$ are defined via

\[s_1 = (m_1 + m_2)^2, \quad s_2 = (m_1 - m_2)^2, \]
\[s_3 = (\sqrt{p^2 + m_3})^2, \quad s_4 = (\sqrt{p^2 - m_3})^2. \] (47)

The integral in (46) can be expressed by complete elliptic integrals E, K and Π:

\[J = \gamma_1 E(\alpha) + \gamma_2 K(\alpha) + \gamma_3 \Pi(\beta_1, \alpha) + \gamma_4 \Pi(\beta_2, \alpha), \] (48)

where

\[\alpha = \sqrt{(s_4 - s_1)(s_3 - s_2)/(s_3 - s_1)(s_4 - s_2)}, \]
\[\beta_1 = \frac{s_4 - s_1}{s_4 - s_2}, \quad \beta_2 = \frac{s_2(s_4 - s_1)}{s_1(s_4 - s_2)}, \]
\[\gamma_1 = \frac{1}{4} \left(\sum_i s_i \right) \sqrt{(s_3 - s_1)(s_4 - s_2)}, \]
\[\gamma_2 = \frac{1}{4} \sqrt{\frac{s_4 - s_2}{s_3 - s_1}(s_1 - s_2)(s_1 - s_2 + 3s_3 + s_4)}, \]
\[\gamma_3 = -\frac{1}{4} \sqrt{(s_4 - s_2)/(s_3 - s_1)} \left(\sum_i s_i^2 - 2 \sum_{i<j} s_i s_j \right), \]
\[\gamma_4 = -2 \frac{s_4 s_3(s_1 - s_2)}{\sqrt{(s_4 - s_2)(s_3 - s_1)}}. \] (49)

For the sake of convenience and clarity, we note the definition of the complete elliptic integrals:

\[E(k) = \int_0^1 dt \sqrt{\frac{1-k^2t^2}{1-t^2}}, \]
\[K(k) = \int_0^1 \frac{dt}{\sqrt{(1-t^2)(1-k^2t^2)}}, \]
THE SUNRISE DIAGRAM

\[\Pi(\nu, k) = \frac{1}{\sqrt{(1-t^2)(1-k^2t^2)(1-\nu^2t^2)}}. \]

(50)

\(E, K \) and \(\Pi \) satisfy very many identities, therefore it might be possible that an even more compact form can be found for \(J \). The analytic expression for \(\hat{d}(p) \) follows from \(\hat{r}(p) \) simply by replacing \(\Theta(-p^0) \) by \(-\text{sgn}(p^0)\), and the imaginary part of the sunrise diagram is given by

\[\text{Im}(\hat{t}(p)) = -\frac{i}{32(2\pi)^6p^2} \Theta(p^2 - (m_1 + m_2 + m_3)^2) J. \]

(51)

The result is indeed fully symmetric under permutations of \(m_1, m_2, m_3 \), although this is not obvious from eq. (48). But for the higher symmetry cases, \(J \) becomes quite simple. For \(m_1 = 0, m_2 = m_3 = m \), \(J \) reduces to

\[J(p) = \frac{1}{2}(p^2 + 2m^2) \sqrt{p^2(p^2 - 4m^2)}, \]

(52)

for \(m_1 = m_2 = 0, m_3 = m \) we have

\[J(p) = \frac{1}{2}(p^2 - m^2)(p^2 + m^2), \]

(53)

and for \(m_1 = m_2 = m_3 = 0 \), \(J \) collapses to

\[J(p) = \frac{1}{2}p^4. \]

(54)

Applying eq. (57) to (52) and (53) leads to the results mentioned in the introduction which are expressible by polylogarithms and associated functions. But the subtracted dispersion relation (57) does not work in the totally massless case, where one encounters an additional infrared divergence which requires additional regularization that can be derived also as a limit from the massive case. The solution in the massless case, relevant e.g. for QCD or quantum gravity, is

\[\hat{t}_{\text{ret}}(p^2) = \hat{t}(p^2) + \hat{r}(p) = \]

\[-\frac{1}{32(2\pi)^6p^2} \log \frac{-(p^2 + ip_0)}{M^2}, \]

(55)

\[\hat{t}(p^2) = -\frac{1}{32(2\pi)^6p^2} \log \frac{-(p^2 + i0)}{M^2} = \]

\[-\frac{1}{32(2\pi)^6p^2} \left(\log \left| \frac{p^2}{M^2} \right| - i\pi \Theta(p^2) \right), \]

(56)

with a real scaling parameter \(M \). Eq. (56) reflects also the high energy behavior of the massive propagator \(\hat{t} \sim p^2 \log(p^2) \). The prefactor \((2\pi)^{-6}\) in the expressions above is due to the fact that we have included a prefactor \((2\pi)^{-2}\) in our definition of the Feynman propagator.
4 Final remarks and conclusion

A closed analytic expression has been derived for the imaginary part of the scalar sunrise diagram with arbitrary masses of the virtual particles. The technical difference between the usual Feynman diagram calculations and the method used in the present paper is that the occurring integrals are reduced step by step to single integrals by utilizing the δ-distributions in the Jordan-Pauli distributions instead of performing a Wick rotation. The real part of the sunrise diagram can be expressed for all values of the external impulse by a single integral, because the causal distribution \hat{d} which is related to the imaginary part of the diagram has the special form

$$\hat{d}(p) = h(p^2)\text{sgn}(p^0)\Theta(p^2 - m_{\text{tot}}^2), \quad m_{\text{tot}} = m_1 + m_2 + m_3,$$

therefore the dispersion relation (37) can also be written for $p \in V^+$

$$\hat{r}^{\text{ret}}(p) = \hat{r}(p) + \hat{r}(p) = i\frac{2}{2\pi}(p^2)^{[\omega/2]+1} \int_{m_{\text{tot}}^2}^{\infty} ds \frac{h(s)}{s^{[\omega/2]+1}(p^2 - s + ip_0)},$$

where $[\omega/2]$ denotes the largest integer $\leq \omega/2$. This formula can be extended to space-like p by analytic continuation

$$\hat{r}^{\text{ret}}(p^2) = i\frac{2}{2\pi}(-p^2)^{[\omega/2]+1} \int_{m_{\text{tot}}^2}^{\infty} ds \frac{h(s)}{s^{[\omega/2]+1}(-p^2 - s)},$$

such that that an access to numerical and analytic investigations is provided for the whole range of external momenta.

The problem of overlapping divergences is automatically solved by the causal method due to the inductive construction of the theory, whereas in usual renormalization schemes it becomes a nontrivial problem to show that all sub-diagrams of a given diagram can be renormalized in a consistent way. In the context of the BPHZ method, the problem was solved by the forest formula, an algorithm which disentangles all divergences in sub-diagrams [47]. This is one of the conceptual strengths of the causal approach. Furthermore it should be pointed out that on the level of the sunrise diagram discussed in this paper, the calculation of the imaginary part can as well be understood by the Cutkoski rules. But at higher orders, one should clearly distinguish between these rules which rely mainly on the unitarity of the theory, whereas in the causal approach the main input is causality.

We have used the example of the sunrise diagram in order to illustrate in a pedagogical manner the strategy and fundamental properties of the dispersive approach for the calculation of Feynman diagrams. We refer also to the recent literature on the specific case of the sunrise diagram, where also non-trivial vertex structures are treated by dispersive and non-dispersive methods [43, 48, 49].

References

[1] W. Pauli, F. Villars, Rev. Mod. Phys. 21, 434 (1949).
[2] G. 't Hooft, B. Veltmann, Nucl. Phys. **B44**, 189 (1972).
[3] X. Artru, J. L. Basdevant, and R. Omnes, Phys. Rev. **150**, 1387 (1966).
[4] H. D. I. Abarbanel, Ann. Phys. **39**, 177 (1966).
[5] K. Pachucki, Phys. Rev. Lett. **72**, 3154 (1994).
[6] A. Aste, G. Scharf, Int. J. Mod. Phys. **A14**, 3421 (1999).
[7] A. Aste, G. Scharf, and M. Dütsch, Annalen Phys. (Leipzig) **8**, 389 (1999).
[8] A. Aste, G. Scharf, and Michael Dütsch, J. Phys. **A31**, 1563 (1998).
[9] N. Grillo, Ann. Phys. **287**, 153 (2001).
[10] F. Constantinescu, M. Gut, and G. Scharf, Annalen Phys. (Leipzig) **11**, 335 (2002).
[11] D.R. Grigore, Eur. Phys. J. **C21**, 723 (2001).
[12] H. Epstein, V. Glaser, Annales Poincaré Phys. Theor. **A19**, 211 (1973).
[13] H. Epstein, V. Glaser, *Le Rôle de la Localité dans la Renormalisation Perturbative en Théorie Quantique des Champs*, Statistical Mechanics and Quantum Field Theory (Les Houches 1970), Gordon and Breach, 1971.
[14] G. Scharf, *Finite Quantum Electrodynamics*, 2nd ed., Springer Verlag, New York, 1995.
[15] R. Brunetti, K. Fredenhagen, Commun. Math. Phys. **208**, 623 (2000).
[16] M. Dütsch and K. Fredenhagen, Commun. Math. Phys. **203**, 71 (1999).
[17] M. Dütsch and K. Fredenhagen, hep-th/0211242.
[18] Tobias Hurth and Kostas Skenderis, Lect. Notes Phys. **558**, 86 (2000).
[19] G. Barnich, Marc Henneaux, Tobias Hurth, and Kostas Skenderis, Phys. Lett. **B 492**, 376 (2000).
[20] Glenn Barnich, Tobias Hurth, and Kostas Skenderis, hep-th/0306127.
[21] N.N. Bogoliubov and D.V. Shirkov, *Introduction to the Theory of Quantized Fields*, Wiley-Interscience, London, 1959.
[22] L.D. Landau and E.M. Lifshitz, *Quantum Electrodynamics*, Pergamon Press (1983).
[23] D. Prange, J. Phys. **A 32**, 2225 (1999).
[24] J.M. Gracia-Bondia and S. Lazzarini, J. Math. Phys. **44**, 3863 (2003).
[25] A. Aste, G. Scharf, and U. Walther, Nuovo Cim. **A 111**, 323 (1998).
[26] A. Aste, Annals Phys. **257**, 158 (1997).
REFERENCES

[27] A. Denner, S. Pozzorini, Eur. Phys. J. C 21, 63 (2001).
[28] F.A. Berends, J.B. Tausk, Nucl. Phys. B 421, 456 (1994).
[29] G. Källén, A. Sabry, Dan. Mat. Fys. Medd. 29, no. 17, 1 (1955).
[30] D.J. Broadhurst, J. Fleischer, and O.V. Tarasov, Z. Phys. C 60, 287 (1993).
[31] J. Fleischer, A.V. Kotikov, and O.L. Veretin, Nucl. Phys. B 547, 343 (1999).
[32] A.K. Rajantie, Nucl. Phys. B 480, 729 (1996).
[33] R. Scharf, Doctoral thesis (Würzburg, 1994).
[34] F.V. Tkachov, Phys. Lett. B 100, 65 (1981); K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981).
[35] F.A. Berends, M. Böhm, M. Buza, and R. Scharf, Z. Phys. C 63, 227 (1994).
[36] M. Caffo, H. Czyż, S. Laporta, and E. Remiddi, Nuovo Cim. A 111, 365 (1998).
[37] F.A. Berends, A.I. Davydychev, and N.I. Ussyukina, Phys. Lett. B 426, 95 (1998).
[38] M. Caffo, H. Czyż, and E. Remiddi, Nucl. Phys. B 581, 274 (2000).
[39] A.I. Davydychev, V.A. Smirnov, Nucl. Phys. B 554, 391 (1999).
[40] S. Groote, A.A. Pivovarov, Nucl. Phys. B 580, 459 (2000).
[41] M. Caffo, H. Czyż, and E. Remiddi, Nucl. Phys. B 611, 503 (2001).
[42] P. Post, J.B. Tausk, Mod. Phys. Lett. A 11, 2115 (1996).
[43] S. Bauberger, F.A. Berends, M. Böhm, and M. Buza, Nucl. Phys. B 434, 383 (1995).
[44] S. Groote, J.G. Körner, and A.A. Pivovarov, Eur. Phys. J. C 11, 279 (1999); Nucl. Phys. B 542, 515 (1999).
[45] G. Passarino, Nucl. Phys. B 619, 257 (2001).
[46] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000); Phys. Lett. B 504, 188 (2001). B 434, 383 (1995).
[47] W. Zimmermann, Commun. Math. Phys. 15, 208 (1969).
[48] A.I. Davydychev and R. Delbourgo, hep-th/0209233.
[49] A. Bashir, R. Delbourgo, and M.L. Roberts, J. Math. Phys. 42, 5553 (2001).