Liquid smoke characteristics from the pyrolysis of oil palm fronds

S Maulina*,1,2, F Silia1
1Department of Chemical Engineering, Faculty of Engineering, Universitas Sumatera Utara
2Sustainable Energy and Biomaterial Center of Excellence, Universitas Sumatera Utara

*E-mail : serimaulina@usu.ac.id

Abstract. This study was conducted as means to characterize the pyrolysis of oil palm fronds into more economical products. In particular, this study was focused on pyrolysis of oil palm fronds, which could generate products such as liquid smoke, tar and char. Four characteristics of liquid smoke were examined in this study, namely the yield of liquid smoke, phenolic content, total acid content and pH. These characteristics were examined in a temperature of 150 °C, 200 °C and 250 °C with processing time of 60 minutes, 90 minutes and 120 minutes. This study revealed that the highest yield of liquid smoke was equal to 43.47% at a temperature of 150 °C for approximately 2 hours, while the highest level of phenolic was obtained at a temperature of 250 °C for approximately 1 hour. Moreover, the highest total acid content obtained was 11.23% at a temperature of 150 °C with a time of 1 hour. In addition, all operating conditions has produced liquid smoke with an average pH value of 3.

1. Introduction
Oil palm plantations in Indonesia have begun to grow rapidly since the early 80s. Approximately, 23.5 million tonnes of crude palm oil was produced in 2012 [1]. Currently, oil palm has become one of the plantation commodities that play a very important role in stimulating the economy in Indonesia, such as increasing foreign exchange, employment, and improving the living standards of people in the region. In addition, producing Crude Palm Oil (CPO) as the main commodity, the palm oil plantation also produces several types of potential wasted, namely Oil Palm Frond (OPF). The plantations will produce 22 stems per tree every year, and each stem has a weight about 2.2 kg. So that in 1 ha of oil palm plantations will generate 6.3 tonnes oil palm fronds each year [2]. Oil Palm Fronds (OPF) is one of the organic waste produced from oil palm plantations that are processed by burning or just throwing away [4]. The moisture content reaching 75 %, OPF is considered as a category of wet by-product. The large amount of waste generated in these oil palm plantations makes palm oil has a great potential to be processed into useful product. It is also driven by the content present in palm oil, which consists of hemicellulose (34.89 %), cellulose (27.14%), and lignin (19.87 %) [3]. In order to produce an economical product, one of the methods that can be used is through pyrolysis of raw materials containing hemicellulose, cellulose, and lignin that would be condensed to become liquid smoke.

Pyrolysis is defined as the thermal degradation process of solids in the absence of oxygen, allowing the occurrence of several thermochemical conversion pathways so the solid becomes permanent gasses, pyrolysis liquid and char [5]. Pyrolysis can be classified as slow pyrolysis and fast pyrolysis [6]. Slow pyrolysis takes place at low temperature with longer time. In general, aimed to produce char. Fast pyrolysis requires the material cutting into small size with special equipment to remove moisture content quickly.

Liquid smoke is a compound that vaporizes simultaneously from a heat reactor through pyrolysis technique (decomposition by heat) and condenses on a cooling system [7]. Liquid smoke has a major component of acidic compounds, phenol derivatives, and carbonyls that act as a flavoring, coloring, antibacterial, and antioxidant [8]. The chemical composition of liquid smoke depends primarily on the type of wood and water content of wood, the influence of both pyrolysis temperature and the duration of smoke generation. The disadvantage of the full strength of liquid smoke is the high content of the
active compounds of flavor and color, which limits their applications when used for specific purposes such as antimicrobial agents [9]. Therefore, the purpose of this study was to determine the effect of temperature, pyrolysis time, and moisture content on the yield and pH of liquid smoke produced.

2. Methodology
The pyrolysis process takes place at the pyrolysis reactor under predefined operating conditions. Oil palm fronds is first dried, then weighed. The pulverized oil palm fronds is introduced into the reactor and pyrolyzed according to predetermined time and temperature, then condensed. The generated smoke will be condensed by using condensor and accommodated in a storage tank. Liquid smoke is allowed for 2 x 24 hours then filtered with filter paper. The set of equipment in the pyrolysis process is shown in Fig. 1.

![Pyrolysis Reactor](image)

Figure 1. Pyrolysis Reactor

Analyzed parameters to obtain the quality of liquid smoke are total acid, phenol content, pH and yield of liquid smoke.

3. Result
The pyrolysis temperature is allow the breaking of chemical bonds on cellulose, hemicellulose and lignin compound. Higher pyrolysis temperature leads to more yield of liquid smoke [10]. This is because the oil palm fronds get a sufficient amount of heat to breaking of chemical bonds so that the compound in the palm oil bark increasingly decomposes and condensed into liquid smoke [11]. High temperatures and long periods of time on pyrolysis is led more complete decomposition of raw materials to obtain higher yields of liquid smoke [12]. The highest yield was obtained at pyrolysis temperature of 150 °C with pyrolysis time for 120 minutes, i.e. 43.47%.

Experiment	Water content (%)	Pyrolysis temperature (°C)	Pyrolysis time (minutes)	Yield of Liquid (%)
1	29.64	150	60	35.187
2	27.25		90	41.646
3	27.96		120	43.470
4	28.34		60	28.133
5	26.64	200	90	30.588
6	23.62		120	38.142
7	21.66		60	29.203
8	21.53	250	90	31.970
9	21.28		120	34.001

Cellulosic pyrolysis will produce acetic acid compounds and carbonyl compounds. The acid compounds formed from the pyrolysis process are organic acid compounds [13] among which are large amounts of acetic acid, propionic, butyric and valeric [14]. Other than that, there are carbonyl compounds present in the liquid smoke including vanillin and syringaldehyde [14]. Hemicellulose pyrolysis will produce furfural, furan, acetic acid and its derivatives [13], thus the acid obtained in
liquid smoke is obtained from the decomposition of hemicellulose and cellulose. The highest total acid was 11.23%, which was obtained at pyrolysis temperature of 150 °C with a pyrolysis time of 60 minutes, as shown in Figure 2.

Phenol is the result of degradation of a wood component called lignin. The more lignin content in the wood, the greater the phenol content obtained in liquid smoke [15]. The phenol compounds present in wood smoke are generally aromatic hydrocarbons composed of benzene rings with a number of bound hydroxyl groups [14]. The amount and quality of phenol in the liquid smoke depends on the temperature of the pyrolysis and the lignin content of the feedstock [16]. The highest phenol content obtained was 12.28% at pyrolysis temperature of 250 °C and pyrolysis time of 60 minutes.

The quality of the resulting liquid smoke can be determined by measuring the degree of acidity (pH). The pH value indicates the rate of decomposition process of the wood chemical component occurred can produce acid and phenol in liquid smoke [17]. The result of measurement of pH of liquid smoke ranged between 3.1 and 3.8. This shows that liquid smoke products are acidic.
Conclusion
Based on the purpose of this research, it was found that the highest yield of liquid smoke was equal to 43.47% at a temperature 150 °C in 2 hours, while the highest total acid content obtained was 11.23% at a temperature of 150 °C in 1 hour. Moreover, the highest phenolics were obtained at a temperature 250 °C in 1 hour and pH is around 3.1 to 3.8.

References
[1] Irvan, Trisakti B, Tomiuchi Y, Harahap U and Daimon H 2017 Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester IOP Conf. Series: Materials Science and Engineering 206 012094
[2] Litbang Deptan. 2010. Pengolahan Pelepah Kelapa Sawit Menjadi Pakan. Loka Penelitian Kambing Potong
[3] Maulina S, Pandang I and Ambarita Y P 2015 Comparative Study Of Utilization Of Oil Palm Frond to Produce Oxalic Acid by Using Alkali Fusion and Oxidation Method Proceeding ICICS
[4] Vakili M, Haque A A M and Gholami Z 2012 Effect of Manual Turning Frequency on Physico-Chemical Parameters During the Oil Palm Frond and Cow Dung Composting Caspian Journal of Applied Science Research 1(12) 49-59 ISSN: 2251-9114
[5] Blasi C D 2008 Modeling Chemical and Physical Processes of Wood and Biomass Pyrolysis Progress in Energy and Combustion Science 34 47-99
[6] Martinez J D, Puy N, Murillo R, Garcia T, Navarro M V and Mastral A M 2013 Waste Tyre Pyrolysis – A review Renewable and Sustainable Energy Reviews 23 179-213
[7] Simon R, Caile B, Palme S, Meler D and Anklam E 2005 Compotition and Analysis of Liquid Smoke Flavoring Primary Product J. Food Sci. 28 871-882
[8] Ayudiarti L D and Sari R N 2010 Asap Cair Dan Aplikasinya Pada Produk Perikanan Squalen 5(3)
[9] Montazeri N, Oliveira A C M, Himelbloom B H, leigh M B and Crapo C A 2012 Chemical Characterization of Comercial Liquid Smoke Product Food Science and Nutrition 1(1) 102-115
[10] Ramadhan A P and Ali M 2012 Pengolahan Sampah Plastik Menjadi Minyak Menggunakan Proses Pirolisis Jurnal Ilmiah Teknik Lingkungan 4(1)
[11] Akbar A, Paindoman R and Coniwanti P 2013 Pengaruh Variabel Waktu dan Temperatur terhadap Pembuatan Asap Cair dari Limbah Kayu Pelawan (Cyanometra Cauliflora) Jurnal Teknik Kimia 19(1)

[12] Fadillah H and Alfiarty A 2015 The Influence of Pyrolysis Temperature and Time To The Yield and Quality of Rubber Fruit (Hevea brasiliensis) Shell Liquid Smoke Prosiding Seminar Nasional Teknik Kimia “Kejuangan” Pengembangan Teknologi Kimia Untuk Pengolahan Sumber Daya Alam Indonesia ISSN: 1693-493

[13] Wijaya M, Noor E, Irawadi T T and Pari G 2008 Karakteristik Komponen Kimia Asap Cair dan Pemanfaatannya sebagai Biopestisida Bionature 9(1) 34-40 ISSN:1411-4720

[14] Sunarsih S, Pratiwi Y and Sunarto Y 2012 Pengaruh Suhu, Waktu, dan Kadar Air Pada Pembuatan Asap Cair dari Limbah Padat Pati Aren Prosiding Seminar Nasional Aplikasi Sains dan Teknologi (SNAST) Periode III ISSN:1979-911X

[15] Budaraga I K, Arnim, Marlida Y and Bulanin U 2016 Liquid Smoke Production Quality from Raw Materials Variation And Different Pyrolysis Temperature International Journal on Advanced Science Engineering Information Technology 6(3) ISSN: 2088-5334

[16] Girard J P 1992 Smoking in Technology of Meat Product New York: Clermont Ferrand, Erllis Horwood

[17] Wijaya, M, Noor E, Irwadi T T and Pari G 2008 Perubahan Suhu Pirolisis Terhadap Struktur Kimia Asap Cair dari Serbuk Gergaji Kayu Pinus Jurnal Ilmu dan Teknologi Hasil Hutan 1(2) 73-77