Comparative Genome Analysis of *Mycobacterium avium* Revealed Genetic Diversity in Strains that Cause Pulmonary and Disseminated Disease

Kei-ichi Uchiya\(^1\),*, Hiroyasu Takahashi\(^2\), Tetsuya Yagi\(^3\), Makoto Moriyama\(^1,4\), Takayuki Inagaki\(^1,5,7\), Kazuya Ichikawa\(^6\), Taku Nakagawa\(^7,8\), Toshiaki Nikai\(^1\), Kenji Ogawa\(^7,8\)

\(^1\) Department of Microbiology, Faculty of Pharmacy, Meijo University, Nagoya, Japan, \(^2\) Department of Pharmacy, Kainan Hospital Aichi Prefectural Welfare Federation of Agricultural Cooperatives, Yatomi, Japan, \(^3\) Department of Infectious Diseases, Center of National University Hospital for Infection Control, Nagoya University Hospital, Nagoya, Japan, \(^4\) Department of Pharmacy, National Hospital Organization, Nagoya Medical Center, Nagoya, Japan, \(^5\) Department of Pharmacy, Takayama Red Cross Hospital, Takayama, Japan, \(^6\) Department of Pharmacy, Nagoya University Hospital, Nagoya, Japan, \(^7\) Department of Clinical Research, National Hospital Organization, Higashinagoya National Hospital, Nagoya, Japan, \(^8\) Department of Pulmonary Medicine, National Hospital Organization, Higashinagoya National Hospital, Nagoya, Japan

Abstract

Mycobacterium avium complex (MAC) infection causes disseminated disease in immunocompromised hosts, such as human immunodeficiency virus (HIV)-positive patients, and pulmonary disease in persons without systemic immunosuppression, which has been increasing in many countries. In Japan, the incidence of pulmonary MAC disease caused by *M. avium* is about 7 times higher than that caused by *M. intracellulare*. To explore the bacterial factors that affect the pathological state of MAC disease caused by *M. avium*, we determined the complete genome sequence of the previously unreported *M. avium* subsp. *hominissuis* strain TH135 isolated from a HIV-negative patient with pulmonary MAC disease and compared it with the known genomic sequence of *M. avium* strain 104 derived from an acquired immunodeficiency syndrome patient with MAC disease. The genome of strain TH135 consists of a 4,951,217-bp circular chromosome with 4,636 coding sequences. Comparative analysis revealed that 4,012 genes are shared between the two strains, and strains TH135 and 104 have 624 and 1,108 unique genes, respectively. Many strain-specific regions including virulence-associated genes were found in genomes of both strains, and except for some regions, the G+C content in the specific regions was low compared with the mean G+C content of the corresponding chromosome. Screening of clinical isolates for genes located in the strain-specific regions revealed that the detection rates of strain TH135-specific genes were relatively high in specimens isolated from pulmonary MAC disease patients, while, those of strain 104-specific genes were relatively high in those from HIV-positive patients. Collectively, *M. avium* strains that cause pulmonary and disseminated disease possess genetically distinct features, and it suggests that the acquisition of specific genes during strain evolution has played an important role in the pathological manifestations of MAC disease.

Introduction

Many species of nontuberculous mycobacteria (NTM) are found in a variety of habitats, including natural water, water distribution systems, bathrooms, soil, and household dust [1–4]. Unlike tuberculosis, direct transmission via human-to-human contact is rare in NTM infection. Instead, NTM infection is thought to occur via exposure to aerosols containing mycobacteria in the environment, although the exact source has not been specified. In Japan, approximately 90% of NTM infections are caused by *Mycobacterium avium* complex (MAC, 70–80%) and *M. kansasii* (10–20%) [5].

MAC infection can be attributed to two closely related organisms, *M. avium* and *M. intracellulare*. *M. avium* comprises four subspecies that infect specific hosts: *M. avium* subsp. *avium* and *M. avium* subsp. *silenaticum* are avian pathogens; *M. avium* subsp. *hominissuis* is found in the environment, humans, and pigs; and *M. avium* subsp. *para Tuberculosis* causes disease in livestock and wildlife. It is generally considered that *M. avium* subsp. *hominissuis* is responsible for MAC disease [6]. The presence (or absence) of specific insertion sequences (IS1245, IS900, and IS901) can be used to distinguish subspecies [7], but today, sequencing of the *hsp65* gene, one of the house keeping genes of *M. avium*, provides more accurate information for subspecies identification [8].

M. avium is an opportunistic pathogen that causes generalized disseminated disease in immunocompromised patients, such as human immunodeficiency virus (HIV)-positive patients. *M. avium* infection spread with acquired immunodeficiency syndrome (AIDS) in the 1980’s. In contrast to HIV-associated disseminated MAC disease, pulmonary MAC disease in immunocompetent persons is caused by *M. intracellulare* and *M. avium*, and their prevalence varies by country. In Japan, the incidence of pulmonary MAC disease caused by *M. avium* is about 7 times higher than that caused by *M. intracellulare* [5]. In recent years,
pulmonary MAC disease producing lesions in the lingular segments and middle lobe is increasing in middle-aged to elderly females with no underlying disease in many countries [9]. The prevalence of NTM lung disease in Japan increased dramatically from 0.82 per 100,000 population in 1971 to 5.9 per 100,000 population in 2001 [10], and the current rate is estimated as 8.0–10.0 per 100,000 population. This rate is substantially higher than the rates seen in the United State and Europe [11–13].

It is likely that bacterial factors, as well as host-related risk factors, are associated with the establishment of pulmonary MAC disease. Although results are inconclusive, several studies have investigated the following possible host-related risk factors: decreases in the levels of estrogen [14], a major female sex hormone, and the presence of polymorphisms in NRAMP1 (encoding natural resistance-associated macrophage protein 1) [15] and MICA (encoding major histocompatibility complex class I chain–related A) [16]. On the other hand, little is known about bacterial factors. The mechanisms of the pathogenicity of mycobacteria involve the following: prevention of maturation of pathogen-containing phagosomes in host macrophages [17]; production of enzymes, such as catalase [18], that remove reactive oxygen species; and synthesis of mycobactin that serves as a siderophore to effectively acquire iron necessary for bacterial growth [19]. In addition to these mechanisms, mycobacteria are also equipped with mechanisms for invading host cells [20].

In this study, we carried out whole-genome sequencing on the previously unreported M. avium subsp. hominisuis strain TH135 isolated from a HIV-negative patient with pulmonary MAC disease, and we performed comparative analysis between genomes of strain TH135 and strain 104 isolated from an AIDS patient with MAC disease to examine the bacterial factors that affect the establishment of pulmonary disease caused by M. avium.

Materials and Methods

Bacterial Strains, Growth Condition, and Genomic DNA Isolation

The clinical isolates used in this study comprised 35 M. avium strains including the genome analysis strain TH135 recovered from the sputa of HIV-negative patients with pulmonary MAC disease at the National Hospital Organization, Higashinagoya National Hospital in Japan from 2004 to 2008. In addition, 28 M. avium clinical isolates derived from blood of HIV-positive patients with disseminated MAC disease were provided by the National Center for Global Health and Medicine, formerly called the International Medical Center of Japan. The subspecies of M. avium clinical isolates was identified as M. avium subsp. hominisuis by sequence analysis of the 39 fragment of the hsp65 gene [8]. The

Table 1. General features of the M. avium strain TH135 genome and comparison with M. avium strain 104.

Property	Strain TH135	Strain 104
Genome size, bp	4,951,217	5,475,491
G+C content, %	69.3	64.0
Protein coding, %	92.5	88.6
ORFs	4,636	4,636
Average gene length, bp	984	948
tRNAs	46	46
rRNA operons (16S-23S-5S)	1	1
Prophage elements, no.	0	1
IS, total no. of copies	30	129

Figure 1. Circular representation of the M. avium strain TH135 genome. The scale is shown in base pairs (Mb), with zero representing the location of the dnaA gene. From the outside to the inside, the outer two circles show forward- and reverse-strand coding sequences (CDS), respectively. The third and fourth circles show rRNA operons and tRNA genes, respectively. The fifth circle shows the percentage of G+C in relation to the mean G+C of the chromosome. The sixth circle shows the GC skew (G – C)/(G+C). The color of each CDS was assigned according to the cluster of orthologous groups (COG) functional classification system [31]. The color of each COG family is shown in the figure.

doi:10.1371/journal.pone.0071831.g001
region (SR)-1 to SR-10 in strain TH135 and SR-11 to SR-21 in strain 104 show strain-specific regions of over 10,000 bp in length.

homology in the reverse strand of the chromosome. Gaps or white spaces within LCBs indicate the presence of strain-specific sequences. Specific blocks indicate the location of each block in each genome. Each colored block represents a homologous region. LCBs drawn horizontally represent collinear blocks (LCBs) between chromosomal sequences of each strain generated by Mauve alignment software. The connecting lines between according to the manufacturer's instructions.

DNA was extracted with a Qiagen kit (Qiagen Inc., Valencia, CA) using in silico Bioinformatics Analysis

Comparative Genomic Analysis

Comparative genomic analysis was performed with M. avium subsp. hominisuis strain 104 (GenBank accession no. NC_008595), which was derived from an AIDS patient with MAC disease [27]. IMCGE software was used for data management and for visualization of genomic features. Multiple whole-genome alignments were performed using Mauve software, which was designed for the identification and alignment of conserved genomic DNA in the presence of rearrangements [28]. Orthologues in M. avium strains TH135 and 104 were defined by bidirectional best-hit analysis between the genomes of both strains with a threshold of >90% amino acid identity and >60% aligned length coverage of a query sequence. The remaining coding sequences (CDS) without the characteristics of orthologues were defined as M. avium strain-specific CDSs.

PCR Analysis and Sequence Analysis

Clinical isolates were cultured in 5 mL 7H9 liquid medium supplemented with 10% oleic acid/albumin/dextrose/catalase enrichment (Difco Laboratories, Detroit, MI) at 37°C. Genomic DNA was extracted with a Qiagen kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions.

organism was grown in Middlebrook 7H9 liquid medium supplemented with 10% oleic acid/albumin/dextrose/catalase enrichment (Difco Laboratories, Detroit, MI) at 37°C. Genomic DNA was extracted with a Qiagen kit (Qiagen Inc., Valencia, CA) according to the manufacturer’s instructions.

Figure 2. Whole genome alignment and G+C content of M. avium strain TH135 (upper) and 104 (lower). Representation of five local collinear blocks (LCBs) between chromosomal sequences of each strain generated by Mauve alignment software. The connecting lines between blocks indicate the location of each block in each genome. Each colored block represents a homologous region. LCBs drawn horizontally represent homology in the reverse strand of the chromosome. Gaps or white spaces within LCBs indicate the presence of strain-specific sequences. Specific blocks indicate the location of each block in each genome. Each colored block represents a homologous region. LCBs drawn horizontally represent collinear blocks (LCBs) between chromosomal sequences of each strain generated by Mauve alignment software. The connecting lines between according to the manufacturer’s instructions.

DNA was extracted with a Qiagen kit (Qiagen Inc., Valencia, CA) using in silico Bioinformatics Analysis

Comparative Genomic Analysis

Comparative genomic analysis was performed with M. avium subsp. hominisuis strain 104 (GenBank accession no. NC_008595), which was derived from an AIDS patient with MAC disease [27]. IMCGE software was used for data management and for visualization of genomic features. Multiple whole-genome alignments were performed using Mauve software, which was designed for the identification and alignment of conserved genomic DNA in the presence of rearrangements [28]. Orthologues in M. avium strains TH135 and 104 were defined by bidirectional best-hit analysis between the genomes of both strains with a threshold of >90% amino acid identity and >60% aligned length coverage of a query sequence. The remaining coding sequences (CDS) without the characteristics of orthologues were defined as M. avium strain-specific CDSs.

PCR Analysis and Sequence Analysis

Clinical isolates were cultured in 5 mL 7H9 liquid medium supplemented with 10% oleic acid/albumin/dextrose/catalase enrichment at 37°C for 1–2 weeks and then transferred to 25 mL of the same medium for further culture. The culture was centrifuged, and DNA was extracted using an InstaGene Matrix (Bio-Rad Laboratories, Hercules, CA) according to the manufacturer’s instructions. The PCR mixture (50 μL) was composed of DNA solution (5–50 ng), 1 U of AmpliTaqGold DNA polymerase (Applied Biosystems, Foster City, CA), 5 μL of 2 mM deoxynucleoside triphosphate mixture, 5 μL of 10×PCR buffer, 1 μL of each primer set at 25 μM, and dimethyl sulfoxide (Sigma-Aldrich) to a final concentration of 4%. The PCR primers used in this study are shown in Table S1. The PCR conditions were as follows: 1 cycle at 95°C for 10 min; 35 cycles at 94°C for 1 min, 55°C for 1 min, and 72°C for 1 min; and 1 cycle at 72°C for 7 min. The PCR products were electrophoresed with the TrackIt 50 bp DNA ladder (Invitrogen, San Diego, CA) in a 2% agarose gel (E-gel; Invitrogen). The resulting PCR products were purified using a GenElute PCR DNA purification kit (Sigma-Aldrich), and direct sequencing analysis was performed using the same primers as those used for PCR. The resulting nucleotide sequences were compared with the genomic sequence data for M. avium strain TH135 and strain 104. Accordingly, the presence of strain
TH135- and 104-specific genes in clinical isolates was determined by the use of specific primers in PCR. The suitability of the present DNA samples for screening of clinical isolates with PCR was determined by amplification of the \(hsp65 \) gene – the gene used to identify subspecies of \(M. avium \) in clinical isolates.

Statistical Analysis
Data for the detection rate of specific genes in \(M. avium \) clinical isolates were analyzed statistically using Fisher’s exact test. \(P \) values of <0.05 were considered significant.

Table 2. Candidates of strain-specific virulence factors in the strain \(TH135 \) genome.

Region\(^a\)	Location (position)	Locus tag	Description	Species with most similar sequence	aa sequence identity (%)
SR-1	20756–23854	MAH_0016	MmpL family protein	\(M. rhodesiae \)	97
SR-2	779143–782040	MAH_0778	MmpL5 protein	\(M. paratuberculosis \)	96
	801455–802618	MAH_0796	virulence factor Mce family protein	\(M. parascrofulaceum \)	68
	802615–803649	MAH_0797	virulence factor Mce family protein	\(M. kansasii \)	74
	803642–804766	MAH_0798	virulence factor Mce family protein	\(M. colombiense \)	73
	804763–806271	MAH_0799	virulence factor Mce family protein	\(M. colombiense \)	70
	806268–807449	MAH_0800	virulence factor Mce family protein	\(M. intracellularulare \)	68
	807449–809221	MAH_0801	virulence factor Mce family protein	\(M. colombiense \)	59
SR-3	1011402–1012598	MAH_1006	PPE family protein	\(M. avium\ subsp. \ avium \)	100
SR-10	4792912–4793808	MAH_4495	Mn\(^{2+}\) dependent Catalase	\(M. parascrofulaceum \)	99
	4799776–4800207	MAH_4505	MmpS4_1 protein	\(M. parascrofulaceum \)	99
	4800204–4803122	MAH_4506	MmpL5_5 protein	\(M. parascrofulaceum \)	99
Other	167053–168243	MAH_0168	PPE family protein	\(M. paratuberculosis \)	100
	597293–599017	MAH_0587	virulence factor Mce4F protein	\(M. avium\ subsp. \ avium \)	100
	1754780–1756012	MAH_1657	PPE family protein	\(M. avium\ subsp. \ avium \)	100
	2061187–2062653	MAH_1946	PPE family protein	\(M. paratuberculosis \)	99
	3644765–3647596	MAH_3375	MmpL6 protein	\(M. paratuberculosis \)	67
	4561515–4565480	MAH_4283	Type VII system protein EccC3	\(M. avium\ subsp. \ avium \)	99
	4914393–4918604	MAH_4605	Type VII system protein EccC2	\(M. paratuberculosis \)	99

\(^a\)Regions SR-1 to SR-10 indicate strain TH135-specific regions, as shown in Figure 2.

doi:10.1371/journal.pone.0071831.t002
Table 3. Candidates of strain-specific virulence factors in the strain 104 genome.

Region*	Location (position)	Locus tag	Description	Species with most similar sequence	aa sequence identity (%)
SR-14	753228–754160	MAV_0790	PPE family protein	M. colombiense	52
		MAV_0828	17 kDa surface antigen family protein	M. xenopi	97
SR-16	1802421–1803848	MAV_1807	virulence factor Mce family protein	M. phlei	73
SR-19	2566717–2567511	MAV_2532	virulence factor Mce family protein	M. intracellularere	97
	2567550–2568578	MAV_2533	virulence factor Mce family protein	M. intracellularere	99
	2568575–2569900	MAV_2534	virulence factor Mce family protein	M. intracellularere	99
	2569924–2571243	MAV_2535	virulence factor Mce family protein	M. intracellularere	99
	2571240–2572400	MAV_2536	virulence factor Mce family protein	M. intracellularere	99
	2572402–2573877	MAV_2537	virulence factor Mce family protein	M. intracellularere	99
SR-21	5193791–5194750	MAV_5047	putative Mce family protein	M. massiliense	70
	5194747–5195673	MAV_5048	putative Mce family protein	M. massiliense	72
	5195745–5196863	MAV_5049	putative Mce family protein	M. abscessus	67
	5196863–5197834	MAV_5050	putative Mce family protein	M. abscessus	77
	5197822–5198829	MAV_5051	putative Mce family protein	M. abscessus	76
	5198626–5199770	MAV_5052	putative Mce family protein	M. abscessus	73
Other	889775–891037	MAV_0948	virulence factor Mce family protein	M. paratuberculosis	99
	891034–892056	MAV_0949	virulence factor Mce family protein	M. avium subsp. avium	99
	892056–893174	MAV_0950	virulence factor Mce family protein	M. avium subsp. avium	100
	893171–894598	MAV_0951	virulence factor Mce family protein	M. avium subsp. avium	99
	895904–897631	MAV_0953	virulence factor Mce family protein	M. paratuberculosis	99
	114858–115163	MAV_0117	PE family protein	M. avium subsp. avium	99
	115166–116839	MAV_0118	PPE family protein	M. avium subsp. avium	97
	1304443–1305594	MAV_1347	PPE family protein	M. avium subsp. avium	99

*Regions SR-14 to SR-21 indicate strain 104-specific regions, as shown in Figure 2.

Table 4. The presence of strain TH135- and 104-specific genes in M. avium isolates.

Strain	Region*	GC%b	Strain-specific gene (Locus tag)	THc n=35	HIVd n=29	P value
TH135	SR-1	66.0	MAH_0016	1 (2.9%)	0 (0%)	1.000
	SR-2	63.3	MAH_0798	13 (37.1%)	5 (17.2%)	0.099
	SR-3	70.2	MAH_1001	33 (94.3%)	18 (62.1%)	0.002
	SR-5	64.1	MAH_2592	10 (28.6%)	0 (0%)	0.001
	SR-9	64.6	MAH_3208	13 (37.1%)	6 (20.7%)	0.174
	SR-10	68.2	MAH_4506	18 (51.4%)	7 (24.1%)	0.039
104	SR-11	68.9	MAV_0264	0 (0%)	1 (3.4%)	0.453
	SR-12	65.9	MAV_0482	0 (0%)	1 (3.4%)	0.453
	SR-14	66.8	MAV_0828	0 (0%)	2 (6.9%)	0.201
	SR-16	65.2	MAV_1807	0 (0%)	6 (20.7%)	0.006
	SR-19	65.0	MAV_2532	2 (5.7%)	4 (13.8%)	0.398
	SR-21	64.1	MAV_5049	8 (22.9%)	9 (31.0%)	0.573

*Regions SR-1 to SR-10 in strain TH135 and lanes SR-11 to SR-21 in strain 104 indicate the strain-specific regions shown in Figure 2.

bGC% in each region.

cStrains from the sputa of patients with pulmonary MAC disease.

dStrains from the blood of HIV-positive patients with disseminated MAC disease.

doi:10.1371/journal.pone.0071831.t004
Nucleotide Sequence Accession Number

The complete chromosome sequence of *M. avium* subsp. *hominissuis* strain TH135 has been deposited in DDBJ/EMBL/GenBank under accession no. AP012555.

Results and Discussion

General Genomic Features

To explore the bacterial factors that affect the establishment of pulmonary disease caused by *M. avium* subsp. *hominissuis*, we determined the whole genome sequence of the previously unreported *M. avium* strain TH135 isolated from a HIV-negative patient with pulmonary disease and compared it with the complete genome of *M. avium* strain 104 derived from an AIDS patient with MAC disease [27]. The general features of strain TH135 compared with those of strain 104 are presented in Table 1.

The replication origin of the strain TH135 chromosome was deduced on the basis of the transition point in GC skew analysis and the presence of the *duad* gene accompanied by several DnaA boxes (Fig. 1). The genome was composed of a single circular chromosome of 4,951,217 bp with an average G+C content of 69.32%, 4,636 predicted CDS, 46 tRNA genes, and a single rRNA operon with the typical order of 16S, 23S, and 5S rRNA genes. The chromosome size of strain TH135 is 524,274 bp shorter than that of strain 104 (5,475,491 bp). Although both strains belong to the same subspecies, IS content is very different between the strains, and the strain 104 genome carries more IS elements than the strain TH135 genome. On the other hand, it is noteworthy that strain TH135 harbors five IS6100 elements (MAV_0912 to MAV_0916) that have 60 point mutations compared with a strain TH135-specific gene, MAV_0948 (GenBank accession no. NC_007962). The genomes of strain TH135 (n = 7) and strain 104 (n = 9). The genomes of strain TH135 and 104 contained CDSs with a 52.0–84.3% sequence similarity (94.4% for strain TH135 and 86.6% for strain 104), both harbor many strain-specific regions, suggesting that both strains evolved independently from a common ancestor.

To explore the bacterial factors that affect the establishment of pulmonary disease caused by *M. avium* subsp. *hominissuis*, we determined the whole genome sequence of the previously unreported *M. avium* strain TH135 isolated from a HIV-negative patient with pulmonary disease and compared it with the complete genome of *M. avium* strain 104 derived from an AIDS patient with MAC disease [27]. The general features of strain TH135 compared with those of strain 104 are presented in Table 1. The replication origin of the strain TH135 chromosome was deduced on the basis of the transition point in GC skew analysis and the presence of the *duad* gene accompanied by several DnaA boxes (Fig. 1). The genome was composed of a single circular chromosome of 4,951,217 bp with an average G+C content of 69.32%, 4,636 predicted CDS, 46 tRNA genes, and a single rRNA operon with the typical order of 16S, 23S, and 5S rRNA genes. The chromosome size of strain TH135 is 524,274 bp shorter than that of strain 104 (5,475,491 bp). Although both strains belong to the same subspecies, IS content is very different between the strains, and the strain 104 genome carries more IS elements than the strain TH135 genome. On the other hand, it is noteworthy that strain TH135 harbors five IS6100 elements (MAV_0912 to MAV_0916) that have 60 point mutations compared with a strain TH135-specific gene, MAV_0948 (GenBank accession no. NC_007962). The genomes of strain TH135 (n = 7) and strain 104 (n = 9). The genomes of strain TH135 and 104 contained CDSs with a 52.0–84.3% sequence similarity (94.4% for strain TH135 and 86.6% for strain 104), both harbor many strain-specific regions, suggesting that both strains evolved independently from a common ancestor.

The Venn diagram in Fig. 3A shows the distribution of shared orthologues and strain-specific genes between strains TH135 and 104. As shown in Fig. 3A, 4,012 genes were shared between the two strains, whereas the number of strain TH135- and 104-specific genes was 624 (13.5%) and 1,108 (21.6%), respectively. Furthermore, strain-specific ORFs are classified according to cluster of orthologous groups (COG) category (Fig. 3B). The relative contribution of COGs are generally similar between strain TH135-specific genes and strain 104-specific genes, and category S (function unknown) and category I (recombination and repair) genes were dominant in both strains. However, the relative contribution of category I (lipid metabolism) was 3.5-fold higher in strain 104-specific genes (14%) than in strain TH135-specific genes (4%), while that of category M (cell envelope and outer membrane biogenesis) was 4-fold higher in strain TH135-specific genes (4%) than in strain 104-specific genes (1%).

Comparison of Virulence-associated Factors

We considered that differences in virulence-associated factors between strain TH135 and strain 104 might explain the different pathological manifestations of MAC disease caused by *M. avium*. Thus, we searched for such factors and compared them between the strains.

Mammalian Cell Entry

Four mammalian cell entry (*mce*) operons (*mce1* to *mce4*), found in the genome sequence of *M. tuberculosis* H37Rv, are associated with the virulence of *M. tuberculosis* [20]. Each *mce* locus comprises two operons (*mce1* to *mce4*), which are homologous to the permeases and substrate-binding proteins of ABC transporters, respectively [32]. Although the precise mechanisms involving Mce proteins remain unclear, it was demonstrated that secreted Mce1A protein moves to the bacterial surface, thereby facilitating entry of mycobacteria into macrophages and HeLa cells, followed by subsequent survival [20,33]. Like Mce1A protein, Mce3A and Mce3E are also involved in cellular uptake of mycobacteria [34], while Mce2A appears to have a distinct role [33]. The *mce* operon is implicated in the uptake of cholesterol, which is an essential energy source for mycobacteria for its long-term survival in host cells [35]. Klepp et al. showed the possible involvement of *mce* operons of *M. smegmatis* in the maintenance of cell surface properties [36]. Furthermore, bioinformatics evidence suggests that some Mce proteins of the bacterial membrane contribute to the formation of beta barrel proteins serving as channels [37–39].

We found that the number of *mce* operons varies between strain TH135 (n = 7) and strain 104 (n = 9). The genomes of strain TH135 and 104 contained CDSs with a 52.0–84.3% sequence similarity to corresponding genes (Table 1). Comparison of *mce* family genes in strain TH135 and 104 genome revealed that strain TH135-specific *mce* genes, MAV_0948 to MAV_0951, and MAV_0957 and MAV_0980, are absent in the strain 104 genome due to frameshifting (Table 1). Furthermore, five genes (MAV_0976 to MAV_0979, and MAV_0801) encoding Mce family proteins in the strain TH135 genome show low homology to corresponding genes (Table S4).
MAV_0953) in the strain 104 genome (Table S4). Interestingly, these five mce genes in the strain TH135 genome were located in specific region SR-2 (Table 2).

There are two sets of mce operons that show homology to genes belonging to mce3 operons in M. tuberculosis H37Rv [40] in the strain 104 genome, and genes belonging to one set showed high sequence similarity to mce genes (MAH_1680 to MAH_1685) in the strain TH135 genome (Table S4), while genes belonging to the other set (MAV_2532 to MAV_2537) were located in strain 104-specific region SR-19 (Table 3). The significance of the presence of these two sets of mce operons is an intriguing question. Furthermore, MAV_1807, a mce homologue, is located in region SR-16, and an operon consisting of six genes (MAV_5047 to MAV_5052), which is not present in TH135, is in region SR-21. Thus, strain 104 harbors more genes encoding strain-specific Mce proteins than strain TH135. Elucidating the roles of mce related genes is necessary to understand their relationships with pathological manifestations of MAC disease.

ESX System

Mycobacteria use type VII secretion systems (ESX-1 to ESX-5) to secrete the 6-kDa early secreted antigenic target (ESAT-6), its protein partner the 10-kDa culture filtrate protein (CFP-10), and other effector proteins such as those with conserved N-terminal domains containing proline-glutamic acid (PE) or proline-proline glutamic acid (PPE) motifs. These effectors play an important role in long-term survival of bacteria in host cells [41,42]. Comparative genome analysis revealed that the genomes of strain TH135 and 104 contained CDSs having a 43.9% to 93.6% homology to Esx-related proteins encoded by the ess-2 to ess-5 loci, but not the ess-1 loci, in the M. tuberculosis H37Rv genome (Table S4). There are a few differences in ess-2 and ess-3 loci between the strains: the strain 104 genome harbors point shift mutations in the regions corresponding to MAH_0168, MAH_4605, and MAH_4283 of strain TH135, and these regions show a respective homology of 70.1%, 88.7%, and 85.6% to PPE69, EccC2, and EccC3 in M. tuberculosis H37Rv (Table S4).

Mycobacteria carry many genes encoding PPE and PE proteins with unknown function. We found three PPE family protein genes (MAH_1006, MAH_1657, and MAH_1946) in the strain TH135 genome, but not in the strain 104 genome (Table 2). On the other hand, strain 104 harbors three strain-specific PE and PPE family genes (MAV_0117 encoding a PE protein, and MAV_0790 and MAV_0117 encoding PPE proteins).

MmpL and MmpS Proteins

The high content of lipids, such as mycolic acids, in the cell wall is a distinctive characteristic of mycobacteria [43], and waxy cell walls play a pivotal role in host survival. MmpL and MmpS have been reported to mediate the transport of lipid metabolites to biosynthesize cell wall lipids [44–46], albeit by an undefined mechanism. The mmpL genes are homologous to the genes encoding proteins that belong to a family of multidrug resistance pumps termed resistance nodulation division (RND) [47,48]. MmpS proteins possess one N-terminal transmembrane domain with an extracytoplasmic C-terminus [46]. The strain TH135 genome harbors all mmpL and mmpS genes found in the strain 104 genome as well as strain TH135-specific mmpL and mmpS genes, mmpL5 (MAH_0778), mmpL5_5 (MAH_4506), mmpL6 (MAH_3375), mmpL family gene (MAH_0016), and mmpS_1 (MAH_4505) (Table 2). Gene mmpS_1 is located adjacent to mmpL5_5 within the strain TH135-specific region SR-10, suggesting that these genes work in a collaborative manner. In addition, MAH_0016 and MAH_0778 are in region SR-1 and region SR-2, respectively. The fact that the strain TH135 genome has more mmpL and mmpS genes than the strain 104 genome suggests differences in cell wall lipid composition between the strains.

Catalase

Mycobacteria produce catalase to remove reactive oxygen species produced by host cells to ensure their survival after invading. M. tuberculosis and M. bovis carry katG-gene encoding catalase, which is an important determinant of their pathogenicity in mice and guinea pigs [18,49]. The katG gene also exists in the genomes of strains TH135 and 104. Interestingly, there is an additional catalase gene (MAH_4495) exclusive to the strain TH135 genome, and this gene is located in TH135-specific regions SR-10 (Table 2). Product of MAH_4495 may be involved in intracellular replication of strain TH135, although further studies are needed to determine it precise function.

Prediction of the Bacterial Factors that Mediate Pulmonary and Disseminated MAC Disease

M. avium strains that cause pulmonary disease are thought to be acquired via the respiratory route and invade through the respiratory mucosal membrane. Such strains are incorporated by phagocytosis and survive in alveolar macrophages where they proceed to cause pulmonary disease [50]. In particular, the ability to replicate in professional phagocytes such as alveolar macrophages is crucial for the long-term survival of M. avium in lung tissue, and this appears to influence the establishment of chronic pulmonary disease. Our findings that strain TH135 specifically carries genes associated with bacterial survival in host cells, namely genes encoding MmpL and MmpS, or catalase, may be of particular importance for the establishment of pulmonary disease.

On the other hand, strains that cause disseminated disease are most likely acquired via the gastrointestinal route [50]. More precisely, bacteria are acquired through the consumption of contaminated water or food, and they experience a number of environments during the course of infection; they endure the acidic pH of the stomach, reach the intestinal lumen, and then invade lining cells of the small intestine, especially the enterocytes of the terminal ileum. Bacteria that invade the lamina propria survive after phagocytosis by phagocytic cells and spread to the blood through lymphatic vessels before being taken up by the spleen and the liver. In these processes, bacterial invasion of lining cells of the small intestine is a crucial step in the establishment of disseminated disease in immunocompromised hosts, and strain 104-specific mce genes associated with cell invasion and bacterial survival in cells may play an important role in the invasion of intestinal epithelial cells. McGarvey and Bermudez reported that M. avium, which causes disseminated disease, exhibit higher cell invasion capability than M. intracellulare, which does not cause disseminated disease [51]. Once functions of strain-specific genes are revealed, their roles in bacterial resistance against host defense will be elucidated in the future. This will lead to identification of bacterial factors associated with the pathological manifestations of MAC disease, which is of great significance in clinical applications.

Screening of Clinical Isolates for Genes Located in the Strain-specific Regions

To investigate the importance of genes in strain-specific regions, we screened 35 clinical isolates (including strain TH135) from HIV-negative patients with pulmonary MAC disease and 29 clinical isolates (including strain 104) from HIV-positive patients with disseminated MAC disease for these genes (Table 4 and Table S5). As shown in Table 4, MAV_2592 in the strain TH135-
specific region SR-5 was found in 28.6% of isolates from pulmonary MAC disease patients but was absent in those from HIV-positive patients. The detection rate of MAH_1001 and MAH_4506 in region SR-5 and region SR-10, respectively, was significantly higher in clinical isolates from pulmonary MAC disease patients than in those from HIV-positive patients. Although not statistically significant, the detection rate of MAV_2532 in region SR-19 was higher in isolates from HIV-positive patients than in those from pulmonary MAC disease patients. The detection rate of MAH_1001 and MAV_0482 in region SR-11 and region SR-12, respectively, were found exclusively in strain 104.

Thus, screening of clinical isolates for genes located in the strain-specific regions revealed that the detection rates of strain TH135-specific genes were generally high in clinical isolates from pulmonary MAC disease patients. On the other hand, the detection rates of strain 104-specific genes were generally high in clinical isolates from HIV-positive patients. These results suggest that the genes located in the strain-specific regions have a strong influence on the pathological manifestations of MAC disease. Further study is needed to investigate the relationship between MAC disease and other specific genes, in addition to the virulence-associated genes.

In conclusion, comparative genome analysis and screening of clinical isolates for specific genes showed that the *M. avium* subsp. *hominissuis* strains which cause pulmonary and disseminated disease possess genetically distinct features. Furthermore, it is thought that the acquisition of specific genes during strain evolution has played an important role in the pathogenesis of *M. avium*. In particular, strain TH135-specific virulence-associated genes may be involved in not only the establishment of pulmonary disease, but also the pathogenicity of *M. avium*. Therefore, comparing the presence of these specific genes between *M. avium* strains isolated in Japan and those isolated abroad is important to elucidate the prevalent genetic features of *M. avium* in each country. This may also lead to the discovery of factors promoting the spread of pulmonary disease caused by *M. avium*.

Supporting Information

Table S1 Primers used for detection of specific genes in *M. avium* clinical isolates. (DOC)

Table S2 List of strain TH135-specific regions and CDS found in each region. (XLS)

Table S3 List of strain 104-specific regions and CDS found in each region. (XLS)

Table S4 Comparison of mce- and esx-related genes in *M. avium* clinical isolates. (XLS)

Table S5 The presence of strain TH135- and 104-specific genes for *M. avium* isolates, including 63 clinical strains and strain 104. (XLS)

Acknowledgments

We are grateful to Dr. Takami Shibayama and everyone from the clinical laboratory at the National Hospital Organization, Kigashinagoya National Hospital. We also thank Masaki Niimi, Kazuhiko Kurokawa, Eimi Tanaka, and Hiroya Fuku for technical assistance.

Author Contributions

Conceived and designed the experiments: KU HT KO TY TI KI T. Performed the experiments: HT KU. Analyzed the data: KU HT MM. Contributed reagents/materials/analysis tools: HT KO. Wrote the paper: KU.
22. Ohya K, Nakanishi K, Enai K, Saitoh H, Kanaya S, et al. (2006) Bioinformatics tool for genomic era: a step towards the in silico experiments-focused on molecular cloning. J Comp Aid Chem 7: 102-115.

23. Lowe TM, Eddy SR (1997) RNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25: 955-964.

24. Lagesen K, Hallin P, Rødland EA, Staerfeldt HH, Rognes T, et al. (2007) RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 35: 3100–3108.

25. Siguier P, Perrochet J, Le Strat L, Mahillon J, Chandler M (2006) ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34: D32–D36.

26. Uchiyama I (2003) MBGD: microbial genome database for comparative analysis. Nucleic Acids Res 31: 58–62.

27. Horan KL, Freeman R, Weigel K, Semret M, Pfaller S, et al. (2006) Isolation of the genome sequence strain Mycobacterium avium 104 from multiple patients over a 17-year period. J Clin Microbiol 44: 783–789.

28. Darling ACE, Mau B, Blattner FR, Perna NT (2004) Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res 14: 1394–1403.

29. Ichikawa K, Yagi T, Moriyama M, Imae T, Nakagawa T, et al. (2009) Characterization of Mycobacterium avium clinical isolates in Japan using subspecies-specific insertion sequences, and identification of a new insertion sequence. ISMeDec. J Med Microbiol 58: 945–950.

30. Mahillon J, Leonard C, Chandler M (1999) IS elements as constituents of bacterial genomes. Res Microbiol 150: 675–687.

31. Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, et al. (2001) The COG database: new developments in phylogenetic classification of bacterial genomes. Res Microbiol 150: 675–687.

32. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8: 60.

33. Chitale S, Ehrt S, Kawamura I, Fujimura T, Shimono N, et al. (2001) Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microb 3: 247–254.

34. El-Shazly S, Ahmad S, Mustafa AS, Al-Attiyah R, Krajci D (2007) Internalization by HeLa cells of latex beads coated with mammalian cell entry (Mce) proteins encoded by the mce3 operon of Mycobacterium tuberculosis. J Med Microbiol 56: 1145–1151.

35. Pandey AK, Sassetti CM (2008) Mycobacterial persistence requires the utilization of host cholesterol. Proc Natl Acad Sci USA 105: 4376–4380.

36. Klepp LJ, Forrellad MA, Ouelha AV, Blanco FC, Stella EJ, et al. (2012) Impact of the deletion of the six mce operons in Mycobacterium smegmatis. Microbes Infect 14: 599–609.

37. Mah N, Perez-Iratxeta C, Andrade-Navarro MA (2010) Outer membrane pore protein prediction in mycobacteria using genomic comparison. Microbiology 156: 2506–2515.

38. Pajon R, Yero D, Lage A, Llanes A, Borroto CJ (2006) Computational identification of beta-barrel outer-membrane proteins in Mycobacterium tuberculosis predicted proteomes as putative vaccine candidates. Tuberculosis 86: 290–302.

39. Song H, Sandie R, Wang Y, Andrade-Navarro MA, Niederweis M (2008) Identification of outer membrane proteins of Mycobacterium tuberculosis. Tuberculosis 88: 526–544.

40. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 396: 190–198.

41. Abdallah AM, Hey van Putius NC, Champion PA, Cox J, Lurink J, et al. (2007) Type VII secretion-mycobacteria show the way. Nat Rev Microbiol 5: 883–891.

42. Sampson SL (2011) Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 26: 1–10.

43. Dallá M, Draper P (1990) The envelope layers of mycobacteria with reference to their pathogenicity. Adv Microb Physiol 39: 131–203.

44. Cox JS, Chen B, McNeil M, Jacobs WR (1999) Complex lipid determine tissue specific replication of Mycobacterium tuberculosis in mice. Nature 402: 79–83.

45. Converse SE, Mougenos JD, Leavell ND, Leary JA, Bertozi CR, et al. (2003) MmpL5 is required for sulfisoxazole biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 100: 6121–6126.

46. Deshayes C, Bach H, Euphrasie D, Attarian R, Courreu M, et al. (2010) MmpS4 promotes glycopeptidolipids biosynthesis and export in Mycobacterium smegmatis. Mol Microbiol 78: 989–1003.

47. Tekaia F, Girdon SV, Garnier T, Brosch R, Barrett IG, et al. (1999) Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuberc Lung Dis 79: 329–342.

48. Domenech P, Reed MB, Barry CE (2005) Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 73: 3492–3501.

49. Wilson TM, Delisle GW, Collins DM (1995) Effect of inhA on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 15: 1009–1015.

50. Inderlied CB, Kemper CA, Bermudez LEM (1993) The M. avium complex. Clin Microbiol Rev 6: 266–310.

51. McGarvey JA, Bermudez LE (2001) Phenotypic and genomic analyses of the Mycobacterium avium complex reveal differences in gastrointestinal invasion and genomic composition. Infect Immun 69: 7242–7249.