\section*{B^+ and B^0 Direct CP Asymmetries difference in a sequential Fourth Generation scenario}

Andrea Soddu

Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100, Israel

\textbf{Abstract.} Direct CP violation in $B^0 \to K^+\pi^−$ decay has emerged at $−10\%$ level, but the asymmetry in $B^+ \to K^+\pi^0$ mode is consistent with zero. This difference points towards possible New Physics in the electroweak penguin operator. We point out that a sequential fourth generation, with sizable $V_{ts}'V_{tb}$ and near maximal phase, could be a natural cause. We compare t' effects on direct CP violation in $B^+ \to K^+\pi^0$ with $b \to s\ell^+\ell^−$ and B_s mixing. Such large effects in $b \to s$ transitions would affect $s \to d$ transitions, as kaon constraints would demand $V_{td} \neq 0$. Using $\Gamma(Z \to bb)$ to bound $|V_{ts}|$, we infer sizable $|V_{ts'}| \lesssim |V_{ts}| \lesssim |V_{us}|$. Imposing ε_K, $K^+ \to \pi^+\nu\bar{\nu}$ and ε'/ε constraints, we find $V_{ts}'V_{ts} \sim \text{few } \times 10^{-4}$ with large phase, enhancing $K_L \to \pi^0\nu\bar{\nu}$ to 5×10^{-10} or even higher. Interestingly, Δm_{B_s} and $\sin 2\Phi_{B_s}$ are not much affected, as $|V_{td}V_{ts}| \ll |V_{td}V_{tb}| \sim 0.01$.

Direct CP violation (DCPV) in $B^0 \to K^+\pi^−$ decay has recently been observed \cite{1, 2} at the B factories. The combined asymmetry is $A_{K\pi} = -0.114 \pm 0.020$. However, the asymmetry in $B^+ \to K^+\pi^0$ decay is found to be \cite{2, 3} $A_{K\pi^0} = +0.049 \pm 0.040$, which differs from $A_{K\pi}$ by

$$A_{K\pi^0} - A_{K\pi} = +0.163 \pm 0.045,$$

with 3.6σ significance. All existing models have predicted $A_{K\pi^0} \sim A_{K\pi}$, as this basically follows from isospin symmetry. The large difference of Eq. (1), if it persists, could indicate isospin breaking New Physics (NP), likely \cite{4, 5, 6, 7, 8, 9} through the electroweak penguin (EWP) operator or a large tree level color suppressed amplitude C \cite{10}.

Following Ref. \cite{11} and \cite{12} we review how the existence of a 4th generation can be a natural source for EWP effects. The t' quark can modify the EWP coefficients, but leave the strong and electromagnetic penguin coefficients largely intact. Eq. (1) can be accounted for, provided that $m_{t'} \sim 300$ GeV, and the quark mixing elements $V_{ts}'V_{tb}$ is not much smaller than V_{ts} and has near maximal CP phase. Independently, $b \to s\ell^+\ell^−$ and B_s mixing constraints can allow large t' effects only if \cite{13} the associated CP phase is near maximal.

Such large effects in $b \to s$ transitions would affect $s \to d$ transitions. In view of the large r_{sb} and ϕ_{sb} values, $V_{td} \neq 0$ is required, and one must explore $s \to d$ and $b \to d$ implications. The reasoning is as follows. Since a rather large impact on $V_{td}'V_{tb}$ is implied by a value of $V_{td}'V_{tb} \sim V_{cb}$ with a near maximal CP phase, if one sets $V_{td}' = 0$, then $V_{td}'V_{ts}$ would still be rather different from SM3 case. With our current knowledge of m_{t}, the ε_K parameter would deviate from the well measured experimental value. Thus, a finite V_{td}' is needed to tune for ε_K.

We find that the kaon constraints that are sensitive to t' (i.e. P_{EW}-like, viz. $K^+ \to \pi^+\nu\bar{\nu}$, ε_K, and ε'/ε) can all be satisfied. Interestingly, once kaon constraints are satisfied, we find little impact is implied for $b \to d$ transitions, such as Δm_{B_d} and $\sin 2\Phi_{B_d}$. That is, $V_{td}' \to 0$ works
approximately for $b \to d$ transitions, for current level of experimental sensitivity. The main outcome for $s \to d$ and $b \to d$ transitions is the enhancement of $K_L \to \pi^0\nu\bar{\nu}$ mode by an order of magnitude or more, to beyond 5×10^{-10}.

1. $B \to K\pi$ with 4th generation
Adding a fourth generation modifies short distance coefficients. Defining $\lambda_q = V_{qs}^* V_{qb}$, the effective Hamiltonian relevant for $B \to K\pi$ can be written as

$$H_{\text{eff}} \propto \lambda_u (C_{1} O_{1} + C_{2} O_{2}) + \sum_{i=3}^{10} (\lambda_i C_i^t - \lambda_i^* \Delta C_i) O_i,$$

where $O_{1,2}$ are the tree operators, $\lambda_i C_i^t$ are the usual SM penguin terms, and $-\lambda_i^* \Delta C_i$ with $\Delta C_i \equiv C_i^t - C_i^l$ is the 4th generation effect. We have used $\lambda_u + \lambda_c + \lambda_t + \lambda_{t'} = 0$, simplified by ignoring $|\lambda_u| \lesssim 10^{-3}$, such that $\lambda_i \approx -\lambda_c - \lambda_{t'}$ [14]. The penguin coefficients $\lambda_i C_i^t + \lambda_{t'} C_i^t$ at scale μ are then put in the form of Eq. (2), which respect the SM limit for $\lambda_{t'} \to 0$ or $m_{t'} \to m_t$. Explicit forms for C_i and O_i can be found, for example, in Ref. [15].

The $K\pi$ amplitudes are dominated by $C_{4,6}^t$. To illustrate t' sensitivity, in Fig. 1 we plot $-\Delta C_i / |C_i^t|$ at m_b scale vs $m_{t'}$. The effect is clearly most prominent for the EWP C_9 coefficient, with linear $x_{t'} = m_{t'}^2 / M_W^2$ dependence arising from Z and box diagrams [14]. ΔC_7 has similar dependence but has weaker strength. For the strong penguin $\Delta C_{4,6}$, the t' effect in the QCD penguin loop is weaker than logarithmic [16] and is very mild. As we shall see, the $B^0 \to K^+\pi^-$ amplitude does not involve the EWP. In contrast, the $B^+ \to K^+\pi^0$ amplitude is sensitive to the EWP via $\Delta C_9 - \Delta C_7$ (virtual Z materializing as π^0).

We see that it is natural for the 4th generation to show itself through the EWP. The effect depends also on the quark mixing matrix parameterized as [13]

$$\lambda_{t'} = V_{t's}^* V_{t'b} = r_{sb} e^{i\phi_{sb}}.$$

(3)

The phase ϕ_{sb} is needed to affect the CPV observables, Eq. (1).

Let us first see how $A_{K\pi} < 0$ can be generated. In the usual QCD factorization (QCDF) approach [17], strong phases are power suppressed, while strong penguin C_4 and C_6 coefficients

![Figure 1. The t' correction $-\Delta C_i$ normalized to strength of strong penguin coefficient $|C_i^t|$ (both at m_b scale) vs. $m_{t'}$.](image-url)
pick up perturbative absorptive parts. Thus, the predicted $A_{K\pi}$ is small, and turns out to be positive. For the perturbative QCD factorization (PQCD) [18] approach, one has an additional absorptive part coming from the annihilation diagram, which arises from a cut on the two quark lines in $B \to \bar{s}q \to K\pi$ decay. In this way, the PQCD approach predicted [18] the sign and order of magnitude of $A_{K\pi}$. By incorporating annihilation contributions as in PQCD, however, QCDF can also [19] give negative $A_{K\pi}$.

We adopt PQCD as a definite calculational framework. The $B^0 \to K^-\pi^+$ amplitude for the 3 generation SM is roughly given by

$$M_{K^-\pi^0}^{SM} \propto \lambda_u f_K F_e + \lambda_c (f_K F_e^P + f_B F_a^P),$$

where $F_e^{(P)}$ is the color-allowed tree (strong penguin) contribution and is real, and $F_a^{(P)}$ is the strong penguin annihilation term that has a large imaginary part. We have dropped subdominant non-factorizable effects. Factorizable and non-factorizable contributions can be computed by following Ref. [18]. We give the SM numbers for F_e, F_e^P and F_a^P in Table I, which leads to $A_{K\pi} = -0.16$ for $\phi_3 \equiv \arg \lambda_u = 60^\circ$, compared to the experimental value of -0.114 ± 0.020.

For $B^- \to K^0\pi^0$, the difference with $K^-\pi^+$ is

$$\sqrt{2} M_{K^-\pi^0}^{SM} - M_{K^-\pi^+}^{SM} \propto \lambda_u f_K F_e + \lambda_c f_K F_e^P,$$

where F_{ek} is the color suppressed tree term, while F^P_{ek} is the color allowed EWP, and both are real. A negligible tree annihilation term $\lambda_u f_B F_e$ has been dropped. Since both the F_e and F_{ek} terms are subdominant compared to F^P_{e} in the 3 generation SM, $A_{K^0\pi^0}$ and $A_{K\pi}$ cannot be far apart. From the values of F_{ek} and F_{ek}^P given in Table I, we get $A_{K^0\pi^0} = -0.10$, which is less negative than $A_{K\pi}$, but at some variance with Eq. (1).

While t' quark, one finds $M_{K^-\pi^0} \approx M_{K^-\pi^+}^{SM}$. The difference is proportional to $\lambda_u (f_K \Delta F_e^P + f_B \Delta F_a^P)$, which is small unless λ_u is very large. This is because $F_{e,a}^P$ are strong penguins, hence $\Delta F_{e,a}^P$ depends very weakly on $m_{t'}$, as can be seen from Table I (for $m_{t'} = 300$ GeV) and Fig. 1. Thus, $A_{K^0\pi^0}$ is insensitive to the 4th generation. For $K^-\pi^0$, one finds

$$\sqrt{2} M_{K^-\pi^0} - \sqrt{2} M_{K^-\pi^+} \propto -\lambda_u f_K \Delta F_{ek}^P,$$

where again $\Delta F_{e,a}^P$ terms have been dropped, and ΔF_{ek}^P is the t' correction to the EWP, which is generated by $\Delta C_9 - \Delta C_7$ at short distance.

Performing a detailed calculation following Ref. [18], we plot $A_{K\pi}$ and $A_{K^0\pi^0}$ in Fig. 2(a) for $m_{t'} = 300, 350$ GeV and $r_{ab} = 0.01$ and 0.03. We see that, indeed, $A_{K\pi}$ is almost independent of t', while it is clear that the largest impact on $A_{K^0\pi^0}$ is for $\phi_{ab} \sim \pm \pi/2$ and large $m_{t'}$ and r_{ab}. To maximize $A_{K^0\pi^0} - A_{K\pi} > 0$, $\phi_{ab} \sim +\pi/2$ is selected, and Eq. (1) can in principle be accounted for.

To entertain a large EWP effect in CPV in $b \to s\ell^+\ell^-$ and B_s mixing constraints, as well as the usually stringent $b \to s\gamma$ constraint.

Table 1. Factorizable contributions for $B^0[+ \to K^+\pi^-[0]$ in Standard Model, and for $m_{t'} = 300$ GeV. The difference between the t' and t penguin contributions gives $\Delta F_{t}^{P}_{e}$. “N.A.” stands for “not applicable”.

	tree	t penguin	t' penguin
$F_e^{(P)}$	0.841 [0.843]	-0.074 [-0.075]	-0.076 [-0.078]
$F_a^{(P)}$	N.A. [0.001 + 0.002 i]	0.003 + 0.026 i [0.003 + 0.026 i]	0.003 + 0.026 i [0.003 + 0.026 i]
$F_{ek}^{(P)}$	N.A. [-0.105]	N.A. [-0.014]	N.A. [-0.029]
We have checked that the $b \to s\gamma$ rate constraint is well satisfied for the range of parameters under discussion. This is because on-shell photon radiation is generated by the $b \to s$ transition operator $O_{7\gamma}$, and the associated coefficient $\Delta C_{7\gamma}$ has weaker m_t' dependence than ΔC_7 shown in Fig. 1. However, $b \to s\ell^+\ell^-$ is generated by EWP [14] operators very similar to O_{7-10} in Eq. (2) for $b \to s\bar{q}q$. The difference is basically just in the Z charge of q vs. ℓ, hence with same m_t' dependence. The box diagram for B_s mixing also has similar m_t' dependence. Taking the formulas from Ref. [13], we plot $b \to s\ell^+\ell^-$ rate ($m_{\ell\ell} > 0.2$ GeV) and Δm_{B_s} vs. ϕ_{sb} in Figs. 2(c) and (d), for $m_{\ell'} = 300, 350$ GeV and $r_{sb} = 0.01$ and 0.03.

We can understand the finding of Ref. [13] that $\phi_{sb} \sim 90^\circ$ is best tolerated by the $b \to s\ell^+\ell^-$ and Δm_{B_s} constraints. For $\cos \phi_{sb} < 0$, the $b \to s\ell^+\ell^-$ rate gets greatly enhanced [14], and would run against recent measurements. One is therefore forced to the $\cos \phi_{sb} > 0$ region, where t' effect is destructive against SM t effect. For Δm_{B_s}, the effect gets destructive for $\cos \phi_{sb} > 0$ when r_{sb} is sizable. Since one just has a lower bound [20] of $14.4 \, \text{ps}^{-1}$ [21], Δm_{B_s} tends to push one away from the $\cos \phi_{sb} > 0$ region. The combined effect is to settle around $\phi_{sb} \sim \pm \pi/2$, i.e. imaginary [13]. This result is independent of the discrepancy of Eq. (1).

We see that for a range of parameter space roughly around $m_{\ell'} \sim 300$ GeV and $0.01 < r_{sb} \lesssim 0.03$, solutions to Eq. (1) can be found that do not upset $b \to s\ell\ell$ and Δm_{B_s}. Both large t' mass

![Figure 2](image-url)

Figure 2. (a) $A_{K\pi}$ and $A_{K^{*}\pi^0}$, (b) $2\Phi_{B_s}$, (c) $B(b \to s\ell^+\ell^-)$ and (d) Δm_{B_s} vs. $\phi_{sb} = \text{arg} V_{tb}^* V_{ts}$. The solid and dashed curves are for $m_{\ell'} = 300$ and 350 GeV, respectively, and for $r_{sb} = |V_{tb}^* V_{ts}| = 0.01$ and 0.03. Horizontal solid band in (c) corresponds to 1σ experimental range, and solid line in (d) is the lower limit, both from Ref. [20]. The experimental range for (c) is outside the plot.
and sizable V_{ts} mixing are needed.

As prediction, we find $\sin 2\Phi_{B_d} < 0$ for CPV in B_d mixing, which is plotted vs ϕ_{ab} in Fig. 2(b). We find $\sin 2\Phi_{B_s}$ in the range of -0.2 to -0.7 and correlating with $\mathcal{A}_{K^0\pi^0} - \mathcal{A}_{K^0\pi^-}$. Three generation SM predicts zero.

It is of interest to predict the asymmetries for the other two $B \to K\pi$ modes. $K^0\pi^-$ is analogous to $\mathcal{M}_{K^-\pi^+}$ except tree contribution is absent. We find $\sin 2\Phi_{B_d} \approx 300$ GeV, $V_{ct} V_{tb}$ is of order suggested by Eq. (1).

We adopt the parametrization in Ref. [22] where the third column and fourth row is kept as real and of order 1, one immediately finds the strength and complexity of V_{tb} as given in Eq. (7), we depict Eq. (8) in Fig. 3(a).

Using SM3 values for $V_{us}^*V_{ub}$, $V_{cs}^*V_{cb}$ (validated later by our $b \to d$ study), since they are probed in multiple ways already, and taking $V_{ts}^*V_{tb}$ as given in Eq. (7), we depict Eq. (8) in Fig. 3(a).

The solid, rather squashed triangle is the usual $V_{us}V_{ub} + V_{cs}V_{cb} + V_{ts}V_{tb} = 0$ in SM3. Given the size and phase of $V_{ts}V_{tb}$, one sees that the invariant phase represented by the area of the quadrangle is rather large, and $V_{ts}V_{tb}$ picks up a large imaginary part, which is very different from SM3 case. Such large effect in $b \to s$ would likely spill over into $s \to d$ transitions, since taking V_{tb} as real and of order 1, one immediately finds the strength and complexity of $V_{td}^*V_{ts}$ would be rather different from SM3, and one would need $V_{td}^*V_{ts} \neq 0$ to compensate for the well measured value for ε_K.

We adopt the parametrization in Ref. [22] where the third column and fourth row is kept simple. This is suitable for B physics, as well as for loop effects in kaon sector. With V_{cb}, V_{tb} and V_{ts} defined as real, one keeps the SM3 phase convention for V_{ub}, now defined as $\arg V_{ub}^* = \phi_{ub}$, which is usually called ϕ_3 or γ in SM3. We take $\phi_{ub} = 60^\circ$ as our nominal value [23]. The two additional phases are associated with V_{ts} and V_{td}, and for the rotation angles we follow the

![Figure 3](image-url)

Figure 3. Unitarity quadrangles of (a) Eq. (8), with $|V_{us}^*V_{ub}|$ exaggerated; (b) Eq. (23), where actual scale is $\sim 1/4$ of (a). Adding $V_{ts}^*V_{tb}$ (dashed) according to Eq. (7) drastically changes the invariant phase and $V_{ts}^*V_{tb}$ from the SM3 triangle (solid), but from Eq. (22), the dashed lines for $V_{td}^*V_{tb}$ and $V_{td}^*V_{tb}$ can hardly be distinguished from SM3 case.
PDG notation [20]. To wit, we have

$$V_{td} = -c_{24}c_{34}s_{14}e^{-i\phi_{db}},$$

$$V_{ts} = -c_{34}s_{24}e^{-i\phi_{ub}},$$

$$V_{tb} = -s_{34},$$

while $V_{t'\beta} = c_{14}c_{24}c_{34}$, $V_{tb} = c_{13}c_{23}c_{34}$, $V_{ob} = c_{13}c_{34}s_{23}$ are all real. With this convention for rotation angles, from Eq. (9) we have $V_{ub} = c_{34}s_{13}e^{-i\phi_{ub}}$.

Analogous to Eq. (7), we also define

$$V_{t'd}V_{t'b} \equiv r_{db}e^{i\phi_{db}}, \; V_{t'd}V_{t's} \equiv r_{ds}e^{i\phi_{ds}},$$

as these combinations enter $b \rightarrow d$ and $s \rightarrow d$ transitions. Inspection of Eqs. (7), (10–12) gives the relations

$$r_{db}r_{sb} = r_{ds}s_{34}^2, \; \phi_{ds} = \phi_{db} - \phi_{ab}. \quad (14)$$

As we shall see, $s \rightarrow d$ transitions are much more stringent than $b \rightarrow d$ transitions, hence we shall turn to constraining r_{ds} and ϕ_{ds}.

Before turning to the kaon sector, we need to infer what value to use for $s_{34} = |V_{t'b}|$, as this can still affect the relevant physics through unitarity. Fortunately, we have some constraint on s_{34} from $Z \rightarrow bb$ width, which receives special t (and hence t') contribution compared to other $Z \rightarrow q\bar{q}$, and is now suitably well measured.

Following Ref. [24] and using $m_t = 300$ GeV, we find

$$|V_{tb}|^2 + 3.4|V_{t'b}|^2 < 1.14. \quad (15)$$

Since all $c_{ij}s$ except perhaps c_{34} would still likely be close to 1, we infer that $s_{34} \lessapprox 0.25$. We take the liberty to nearly saturate this bound by imposing

$$s_{34} \simeq 0.22, \quad (16)$$

to be close to the Cabibbo angle, $\lambda \equiv |V_{ub}| \simeq 0.22$. Combining it with Eq. (7), one gets $|V_{ts}| \sim 0.11 \sim \lambda/2$. Its strength would grow if a lower value of $s_{34} \lesssim \lambda$ is chosen, which would make even greater impact on $s \rightarrow d$ transitions.

Using current values [20] of V_{cb} and V_{ub} as input and respecting full unitarity, we now turn to the kaon constraints of $K^+ \rightarrow \pi^+\nu\bar{\nu}$, $\varepsilon\K$, and ε'/ε. The first two are short-distance (SD) dominated, while the last two suffer from long-distance (LD) effects.

Let us start with $K^+ \rightarrow \pi^+\nu\bar{\nu}$. The first observed event [25] by E787 suggested a sizable rate hence hinted at NP. The fourth generation would be a good candidate, since the process is dominated by the Z penguin. Continued running, including E949 data has yielded overall 3 events, and the rate is now $\mathcal{B}(K^+ \rightarrow \pi^+\nu\bar{\nu}) = (1.47^{+1.30}_{-0.89}) \times 10^{-10}$ [26]. This is still somewhat higher than the SM3 expectation of order 0.8×10^{-10}.

Defining $\lambda_{qs}^d \equiv V_{qs}V_{qs}^*$ and using the formula [27]

$$\mathcal{B}(K^+ \rightarrow \pi^+\nu\bar{\nu}) = \kappa_+ \left| \frac{\lambda_{cs}^d}{|V_{us}|} P_{\ell c} + \frac{\lambda_{qs}^d}{|V_{us}|^5} q_\ell X_0(x_\ell) \right|^2 + \frac{4}{|V_{us}|} q_\ell X_0(x_\ell)^2, \quad (17)$$

we plot in Fig. 4 the allowed range (valley shaped shaded region) of $r_{ds} - \phi_{ds}$ for the 90% confidence level (C.L.) bound of $\mathcal{B}(K^+ \rightarrow \pi^+\nu\bar{\nu}) < 3.6 \times 10^{-10}$. We have used [27] $\kappa_+
Figure 4. Allowed region from $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (valley shaped shaded region), ε_K (simulated dots) and ε'/ε (elliptic rings) in r_{ds} and ϕ_{ds} plane, as described in text, where $V_{td}^* V_{ts} \equiv r_{ds} e^{i\phi_{ds}}$. For ε'/ε, the rings on upper right correspond to $R_6 = 2.2$, and $R_8 = 0.8, 1.1$ (bottom to top), and on upper left, $R_6 = 1.0, 1.2$ (bottom to top), $R_8 = 1.2$.

$(4.84 \pm 0.06) \times 10^{-11} \times (0.224/|V_{us}|)^4$ and $P_c = (0.39 \pm 0.07) \times (0.224/|V_{us}|)^4$. We take the QCD correction factors $\eta_{t'c} \sim 1$, and $X_0(x_{t'})$ evaluated for $m_t = 166$ GeV and $m_{t'} = 300$ GeV. We see that r_{ds} up to 7×10^{-4} is possible, which is not smaller than the SM3 value of 4×10^{-4} for $|V_{td}^* V_{ts}|$

The rather precisely measured CPV parameter $\varepsilon_K = (2.284 \pm 0.014) \times 10^{-3}$ [20] is predominantly SD. It maps out rather thin slices of allowed regions on the r_{ds}-ϕ_{ds} plane, as illustrated by dots in Fig. 4, where we use the formula of Ref. [24] and follow the treatment. Note that r_{ds} up to 7×10^{-4} is still possible, for several range of values for ϕ_{ds}. This is the aforementioned effect that extra CPV effects due to large ϕ_{sb} and r_{sb} now have to be tuned by t' effect to reach the correct ε_K value. We have checked that Δm_K makes no additional new constraint.

The DCPV parameter, Re $(\varepsilon'/\varepsilon)$, was first measured in 1999 [28], with current value at $(1.67 \pm 0.26) \times 10^{-5}$ [20]. It depends on a myriad of hadronic parameters, such as m_s, ΩB (isospin breaking), and especially the non-perturbative parameters R_6 and R_8, which are related to the hadronic matrix elements of the dominant strong and electroweak penguin operators. With associated large uncertainties, we expect ε'/ε to be rather accommodating, but for specific values of R_6 and R_8, some range for r_{ds} and ϕ_{ds} is determined.

We use the formula

$$\text{Re} \frac{\varepsilon'}{\varepsilon} = \text{Im} (\lambda_{et}^{ds}) P_0 + \text{Im} (\lambda_{et'}^{ds}) F(x_t) + \text{Im} (\lambda_{et'}^{ds}) F(x_{t'}),$$ \hspace{1cm} (18)$$

where $F(x)$ is given by

$$F(x) = P_X X_0(x) + P_Y Y_0(x) + P_Z Z_0(x) + P_E E_0(x).$$ \hspace{1cm} (19)$$

The SD functions X_0, Y_0, Z_0 and E_0 can be found, for example, in Ref. [29], and the coefficients
P_i are given in terms of R_6 and R_8 as

$$P_i = r_i^{(0)} + r_i^{(6)} R_6 + r_i^{(8)} R_8,$$ \hspace{1cm} (20)

which depends on LD physics. We differ from Ref. [29] by placing P_0, multiplied by Im ($\Lambda_c^{d_s}$), explicitly in Eq. (18). In SM4, one no longer has the relation Im $\Lambda_c^{d_s} = -\text{Im} \lambda_c^{d_s}$ that makes Re (ε'/ε) proportional to Im ($\lambda_c^{d_s}$). We take the $r_i^{(j)}$ values from Ref. [29] for $\Lambda_c^{d_s} = 310$ MeV, but reverse the sign of $r_i^{(j)}$ for above mentioned reason. Note that Re (ε'/ε) depends linearly on R_6 and R_8. For fixed SD parameters m_{ν} and $\lambda_d^{ds} = V_{ud}V_{us}^*$, one may adjust for solutions to $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and ε_K.

For the “standard” [29] parameter range of $R_6 = 1.23 \pm 0.16$ and $R_8 = 1.0 \pm 0.2$, we find $R_8 \sim 1.2$ and $R_6 \sim 1.0 - 1.2$ allows for solutions at $r_{ds} \sim (5-6) \times 10^{-4}$ with $\phi_{ds} \sim (+35^\circ - 50^\circ)$, as illustrated by the elliptic rings on upper left part of Fig. 4. For $R_6 = 2.2 \pm 0.4$ found [30] in $1/N_C$ expansion at next-to-leading order (and chiral perturbation theory at leading order), within SM3 one has trouble giving the correct Re (ε'/ε) value. However, for SM4, solutions exist for $R_6 \sim 2.2$ and $R_8 = 0.8 - 1.1$, for $r_{ds} \sim (3.5 - 5) \times 10^{-4}$ and $\phi_{ds} \sim -(45^\circ - 60^\circ)$, as illustrated by the elliptic rings on upper right part of Fig. 4. We will take

$$r_{ds} \sim 5 \times 10^{-4}, \quad \phi_{ds} \sim -60^\circ \text{ or } +35^\circ, \hspace{1cm} (21)$$

as our two nominal cases that satisfy all kaon constraints.

To illustrate in a different way, we plot ε_K, $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ and Re (ε'/ε) vs ϕ_{ds} in Figs. 5(a), (b) and (c), respectively, for $r_{ds} = 4$ and 6×10^{-4}. The current 1σ experimental range is also illustrated. In Fig. 5(c), we have illustrated with $R_6 = 1.1$, $R_8 = 1.2$ [29] and $R_6 = 2.2$, $R_8 = 1.1$ [30]. For the former (latter) case, the variation is enhanced as R_6 (R_8) drops.

It is interesting to see what are the implications for the CPV decay $K_L \rightarrow \pi^0 \nu \bar{\nu}$. The formula for $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ is analogous to Eq. (17), except [29] the change of $\kappa_+ \rightarrow \kappa_L = (2.12 \pm 0.03) \times 10^{-10} \times (|V_{us}|/0.224)^8$, and taking only the imaginary part for the various CKM products. Since $\phi_{ds} \sim -60^\circ$ or $+35^\circ$ have large imaginary part, while $r_{ds} = |V_{td}V_{ts}^*| \sim 5 \times 10^{-4}$ is stronger than the SM3 expectation of Im $V_{td}V_{ts}^* \sim 10^{-4}$, we expect the CPV decay rate of $K_L \rightarrow \pi^0 \nu \bar{\nu}$ to be much enhanced.

We plot $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ vs ϕ_{ds} in Fig. 5(d), for $r_{ds} = 4$ and 6×10^{-4}. Reading off from the figure, we see that the $K_L \rightarrow \pi^0 \nu \bar{\nu}$ rate can reach above 10^{-9}, almost two orders of magnitude above SM3 expectation of 0.3×10^{-10}. It is likely above 5×10^{-10}, and in general larger than $K^+ \rightarrow \pi^+ \nu \bar{\nu}$. Specifically, for our nominal value of $r_{ds} \sim 5 \times 10^{-4}$ and $\phi_{ds} \sim +35^\circ$, $B(K_L \rightarrow \pi^0 \nu \bar{\nu})$ and $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ are 6.5 and 2×10^{-10}, respectively, while for the $\phi_{ds} \sim -60^\circ$ case, they are 12 and 3×10^{-10}, respectively. The latter case is closer to the Grossman-Nir bound [31], i.e. $B(K_L \rightarrow \pi^0 \nu \bar{\nu})/B(K^+ \rightarrow \pi^+ \nu \bar{\nu}) \sim \tau_{K_L}/\tau_{K^+} \sim 4.2$, because $V_{td}V_{ts}^*$ is more imaginary. Thus, both $\pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$ should be very interesting at the next round of experiments. However, for $r_{ds} \sim 3.5 \times 10^{-4}$ and $\phi_{ds} \sim -45^\circ$, which is still a solution for $R_6 \sim 2.2$, one has $B(K_L \rightarrow \pi^0 \nu \bar{\nu}) \sim 4 \times 10^{-10}$ with $B(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ at lower end of current range.

With $\phi_{db} \sim 70^\circ$ and $\phi_{db} \sim -60^\circ$ (and $+35^\circ$) both sizable while the associated CKM product is larger than the corresponding SM3 top contribution, there is large impact on $b \rightarrow s$ and $s \rightarrow d$ transitions from Z penguin and box diagrams. It is therefore imperative to check that one does not run into difficulty with $b \rightarrow d$ transitions. Remarkably, we find that the impact on $b \rightarrow d$ is mild. From Eqs. (7), (14), (16) and (21), we infer

$$r_{db} \sim 1 \times 10^{-3}, \quad \phi_{db} \sim 10^\circ (105^\circ). \hspace{1cm} (22)$$

Since r_{db} is much smaller than $|V_{td}V_{tb}| \sim \lambda^3 \sim 0.01$ in SM3, the impact on $b \rightarrow d$ is expected to be milder, i.e. we are not far from the $V_{td} \rightarrow 0$ limit. We stress that this is nontrivial since
there is a large effect in $b \to s$; it is a consequence of imposing $s \to d$ and $Z \to b\bar{b}$ constraints. We illustrate in Fig. 3(b) the unitarity quadrangle

$$V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* + V_{t'd'}V_{tb}^* = 0.$$

(23)

In contrast to Fig. 3(a), $(V_{td}V_{tb}^* + V_{t'd'}V_{tb}^*)_{SM4}$ and $(V_{td}V_{tb}^*)_{SM3}$ can hardly be distinguished.

The $B_d^0 - \bar{B}_d^0$ mass difference and CP violation phase in mixing are respectively given by

$$\Delta m_{B_d} \equiv 2|\lambda_{t'b}^d|^2 \eta_t S(x_t) + (\lambda_{t'b}^d)^2 \eta_t' S(x_{t'})$$

$$+ 2\lambda_{t'b}^d \lambda_{t'b}^{d'} \eta_{tt'} S(x_t, x_{t'})$$

(24)

with $\kappa_{B_d} = \frac{G_F^2 m_W^2 m_{B_d} f_{B_d}^2}{12\pi^3}$. The functions $S(x)$ and $S(x,y)$ can be found in [32]. We take $\eta_t = 0.55$, $\eta_{t'} = 0.58$ and $\eta_{tt'} = 0.50$, and plot in Fig. 6(a) Δm_{B_d} vs ϕ_{dB}, for $r_{ds} = 8$ and 12×10^{-4} (corresponding to $r_{ds} = 4$ and 6×10^{-4}). We have taken the experimental value of $\Delta m_{B_d} = (0.505 \pm 0.005)$ ps$^{-1}$ from PDG 2005 [20], and illustrated with the lower range of $f_{B_d} \sqrt{B_{B_d}} = (246 \pm 38)$ MeV [33]. We have scaled up the error for the latter by 1.4, since it comes from the new result on f_{B_d} with unquenched lattice QCD [34], but B_{B_d} is not yet

![Figure 5](https://example.com/figure5.png)

Figure 5. (a) ε_K, (b) $\mathcal{B}(K^+ \to \pi^+ \nu\bar{\nu})$, (c) Re$(\varepsilon'/\varepsilon)$ and (d) $\mathcal{B}(K_L \to \pi^0 \nu\bar{\nu})$ vs ϕ_{dB}, for $r_{ds} = 4$ and 6×10^{-4} and $m_{\nu} = 300$ GeV. Larger r_{ds} gives stronger variation, and horizontal bands are current (1σ) experimental range [20] (the bound for (d) is outside the plot). For (c), solid (dashed) lines are for $R_6 = 2.2$, $R_8 = 1.1$ ($R_6 = 1.1$, $R_8 = 1.2$).
updated. We see from Fig. 6(a) that Δm_{B_d} does not rule out the parameter space around Eq. (22) (equivalent to Eq. (21)). The overall dependence on r_{db} and ϕ_{db} is mild, and error on $f_{B_d} \sqrt{B_{B_d}}$ dominates. Seemingly, a lower value of $f_{B_d} \sqrt{B_{B_d}} \sim 215$ MeV is preferred. SM3 would give $\Delta m_{B_d} = 0.44 - 0.62$ ps$^{-1}$ for $f_{B_d} \sqrt{B_{B_d}} = 208$ MeV - 246 MeV, so the problem is not with SM4.

We plot $\sin 2\Phi_{B_d}$ vs ϕ_{db} in Fig. 6(b), for $r_{db} = 8$ and 12×10^{-4}. One can see that $\sin 2\Phi_{B_d}$, which is not sensitive to hadronic parameters such as $f_{B_d} \sqrt{B_{B_d}}$, is well within experimental range of $\sin 2\phi_1 = 0.73 \pm 0.04$ from PDG 2005 [20] for the $\phi_{db} \sim 10^5$ case. However, for $\phi_{db} \sim 10^5$ case, which is much more imaginary, $\sin 2\Phi_{B_d}$ is on the high side [35], and it seems that CPV in B physics prefers $R_0 \sim 2.2$ over $R_0 \sim 1$. As another check, we find the semileptonic asymmetry $A_{SL} = -0.7 \times 10^{-3}$ (-0.2×10^{-3}) for $\phi_{db} \sim 10^5$ (10^5), which is also well within range of $A_{SL}^3 = (-1.1 \pm 7.9 \pm 7.0) \times 10^{-3}$ [36].

With Eqs. (7), (16) and (22), together with standard (SM3) values for V_{cb} and V_{ub}, we can get a glimpse of the typical 4×4 CKM matrix, which appears like

$$
\begin{pmatrix}
0.9745 & 0.2225 & 0.0038 \ e^{-i \ 60^\circ} & 0.0281 \ e^{i \ 61^\circ} \\
-0.2241 & 0.9667 & 0.0415 & 0.1164 \ e^{i \ 66^\circ} \\
0.0073 \ e^{-i \ 25^\circ} & -0.0555 \ e^{-i \ 125^\circ} & 0.9746 & 0.2168 \ e^{-i \ 11^\circ} \\
-0.0044 \ e^{-i \ 10^\circ} & -0.1136 \ e^{-i \ 170^\circ} & -0.2200 & 0.9688
\end{pmatrix}
$$

(25)

for $\phi_{db} \sim 10^5$ case (V_{cd} and V_{cs} pick up tiny imaginary parts, which are too small to show in angles). For the $\phi_{db} \sim 10^5$ case, the appearance is almost the same, except $V_{td} \simeq 0.0082 \ e^{-i \ 17^\circ}$ and $V_{td}' \simeq 0.029 \ e^{i \ 74^\circ}$. Note the “double Cabibbo” nature, i.e. the 12 and 34 diagonal 2×2 submatrices appear almost the same. This is a consequence of our choice of Eq. (16). To keep Eq. (7) intact, however, weakening s_{34} would result in even large V_{ts}, but it would still be close to imaginary. However, note that $V_{td}^* V_{ts}$ is almost real, and CPV in $s \rightarrow d$ comes mostly from t'.
The entries for V_{ub}, $i = u, c, t$ are all sizable. $|V_{ub}| \sim 0.03$ satisfies the unitarity constraint $|V_{ub}| \sim 0.08$ from the first row, but it is almost as large as V_{cb}.

The element $V_{ub} \simeq V_{ts}$ is even larger than V_{cb} and close to imaginary. Together with finite V_{ub}, $V_{ub}V_{cb}^{*} \simeq 0.0033 e^{-i\phi_{cb}} (0.0034 e^{i\phi_{cb}})$ is not negligible, and one may worry about $D^{0}\bar{D}^{0}$ mixing. Fortunately the D decay rate is fully Cabibbo allowed. Using $f_{D}\sqrt{B_{D}} = 200$ MeV, we find $\Delta m_{D^{0}} \lesssim 0.05$ ps$^{-1}$ for $m_{\nu} \lesssim 280$ GeV, for both nominal cases of Eq. (22). Thus, the current bound of $\Delta m_{D^{0}} < 0.07$ ps$^{-1}$ is satisfied, and the search for D^{0} mixing is of great interest.

3. summary

In summary, the deviation of direct CPV measurements between neutral and charged B decays, $A_{K^{+}\pi^{0}} - A_{K^{+}\pi^{-}} \simeq 0.16$ while $A_{K^{+}\pi^{-}} \simeq -0.12$, is a puzzle that could be hinting at New Physics. A plausible solution is the existence of a 4th generation with $m_{\nu} \sim 300$ GeV and $V_{ts}^{2}V_{td}^{*} \sim 0.025 e^{i\theta_{t}}$. If so, we find special solution space is carved out by stringent kaon constraints, and the 4×4 CKM matrix is almost fully determined. $K^{+} \rightarrow \pi^{+}\nu\bar{\nu}$ may well be of order $(1 - 2) \times 10^{-10}$, while $K_{L} \rightarrow \pi^{0}\nu\bar{\nu} \sim (4 - 12) \times 10^{-10}$ is greatly enhanced by the large phase in $V_{td}^{*}V_{ts}$. With kaon constraints satisfied, B_{d} mixing and sin $2\Phi_{B_{d}}$ are consistent with experiment. Our results are generic. If the effect weakens in $b \rightarrow s$ transitions, the effect on $K \rightarrow \pi^{0}\nu\bar{\nu}$ would also weaken. But a large CPV effect in electroweak $b \rightarrow s$ penguins would translate into an enhanced $K_{L} \rightarrow \pi^{0}\nu\bar{\nu}$ and sin $2\Phi_{B_{d}} < 0$.

Acknowledgement. This work is supported by HPRN-CT-2002-00292 of Israel. AS would like to thank Prof. Zoupanos and all the organizing stuff for the great hospitality during the Corfu Summer Institute on EPP.

1. B. Aubert et al. [BaBar Collab.], Phys. Rev. Lett. 93, 131801 (2004).
2. Y. Chao et al. [BaBar Collab.], Phys. Rev. Lett. 93, 191802 (2004).
3. A. Arhrib and W.S. Hou, Eur. Phys. J. C 27, 555 (2003).
4. W.S. Hou, R.S. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987).
5. A. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
6. W.S. Hou, Nucl. Phys. B 308, 561 (1988).
7. M. Beneke et al., Nucl. Phys. B606, 245 (2001).
8. Y.Y. Kee and M. Neubert, Nucl. Phys. B 675, 333 (2003).
9. S. Eidelman et. al [Particle Data Group], Phys. Lett. B 592, 1 (2004).
10. The CDF Collaboration has recently measured $\Delta m_{B_{s}}$ and the D0 Collaboration has provided a milder two-sided bound. Our conclusions are only mildly affected considering that we predicted a SM-like behavior for $\Delta m_{B_{s}}$.
11. W.S. Hou, M. Nagashima and A. Soni, Phys. Rev. Lett. 95, 141601 (2005).
12. W.S. Hou, M. Nagashima and A. Soni, Phys. Rev. D 72, 115007 (2005).
13. A. Arhrib and W.S. Hou, Eur. Phys. J. C 71, 021701 (2005).
14. W.S. Hou, R.S. Willey and A. Soni, Phys. Rev. Lett. 58, 1608 (1987).
15. G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).
16. W.S. Hou, Nucl. Phys. B 308, 561 (1988).
17. M. Beneke et al., Nucl. Phys. B606, 245 (2001).
18. Y.Y. Keum, H.n. Li and A.I. Sanda, Phys. Rev. D 63, 054008 (2001).
19. M. Beneke and M. Neubert, Nucl. Phys. B 675, 333 (2003).
20. S. Eidelman and al [Particle Data Group], Phys. Lett. B 592, 1 (2004).
21. The CDF Collaboration has recently measured $\Delta m_{B_{s}}$ and the D0 Collaboration has provided a milder two-sided bound. Our conclusions are only mildly affected considering that we predicted a SM-like behavior for $\Delta m_{B_{s}}$.
22. W.S. Hou, A. Soni and H. Steger, Phys. Lett. B 42, 441 (1987).
23. Our results do not change drastically as ϕ_{ub} is varied by $\pm 10^0$.
24. T. Yanir, JHEP06 (2002) 044.
25. S.C. Adler et al. [E787 Collab.], Phys. Rev. Lett. 79, 2204 (1997).
26. V.V. Anisimovsky et al. [E949 Collab.], Phys. Rev. Lett. 93, 031801 (2004).
27. A.J. Buras, F. Schwab and S. Uhlig, hep-ph/0405132.
[28] A. Alavi-Harati et al. [KTeV Collab.], Phys. Rev. Lett. 83, 22 (1999); V. Fanti et al. [NA48 Collab.], Phys. Lett. B 465, 335 (1999).

[29] A.J. Buras and M. Jamin, JHEP01 (2004) 048.

[30] J. Bijnens and J. Prades, JHEP06 (2000) 035.

[31] Y. Grossman and Y. Nir, Phys. Lett. B 398, 163 (1997).

[32] G. Buchalla, A.J. Buras and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996).

[33] I. Stewart, plenary talk at the XXII Lepton-Photon Symposium, June 2005, Uppsala, Sweden.

[34] A. Gray et al. [HPQCD Collab.], hep-lat/0507015.

[35] The summer 2005 result by K. Abe et al. [Belle Collab.], hep-ex/0507037, reports a low value of $\sin 2\phi_1 = 0.652 \pm 0.039 \pm 0.020$, but this is for $B^0 \to J/\psi K^0$ mode only, and it is too early to draw any conclusion.

[36] E. Nakano et al. [Belle Collab.], hep-ex/0505017. This new result is in agreement with PDG 2005 with slightly better errors.