Phytochemical Investigation and Anti-angiogenic Examination of Iraqi Vigna radiata L. Seeds and Sprouts
Rabab H. Qassim*,-,1 and Enas J. Kadhem*

*Department of Pharmacognosy and Medicinal Plants, College of Pharmacy, University of Baghdad, Baghdad, Iraq.

Abstract

The plant Vigna radiata L., which belongs to Fabaceae family and known mung bean with characteristic greenish seeds. It was cultivated in Iraq in Al-Nasirya city. Literature survey available so far revealed there was no studies about Iraqi Vigna radiata plant and its antiangiogenic activity, therefore the objective of this study was to investigate the phytochemical constituents of two different parts of Vigna radiata (seeds and sprouts), and identify their antiangiogenic activity. The flavonoids were isolated by preparative layer chromatography and subjected to different physio-chemical and spectral analytical techniques to identify their chemical structure; rat aorta anti-angiogenesis assay was conducted for both n-butanol fraction of seeds and sprouts. The results showed that two flavonoids (vitexin and isovitexin) were isolated in pure form and identified to different bioactive constituents or appearance of new bioactive constituents during germination. In conclusion, the difference of Antiangiogenic activity may be related to variation of concentration of bioactive constituents or appearance of new bioactive constituents during germination.

Keywords: Vigna radiata, vitexin, isovitexin, high performance thin layer chromatography HPTLC.
Germination of mung bean seeds improves the antioxidant activity and elucidate important metabolites level for better usage. Germinating (sprouting) of mung bean by breeding or usage some hormones (8).

Vigna radiata contains large numbers of proteins (9), during germination proteolytic cleavage of proteins lead to elevate levels of amino acids. Cinnamic acid, p-hydroxy benzoic acid and gentastic acid are the main phenolic acids that reformed during germination (10,11)

Mash have been used in Asia countries as traditional herbal medicine which have a large variety of beneficial effects, mash is known for its detoxification effects and is used to regulate gastrointestinal upset, to moisturize the skin, and to minimize the swelling in the summer (12).

Angiogenesis is a process of new blood vessel formation from pre-existing one, regulatory by a variety of endogenous cytokines and several regulating factors including growth factor. Angiogenesis plays a vital role in the growth and metastasis of tumor and several chronic anti-inflammatory diseases such as rheumatoid arthritis and proliferative diabetic retinopathy. Vitexin (apigenin – 8 – C – β glucopyranoside) and isovitexin (apigenin – 6 – C – β glucopyranoside) have been reported the important flavonoids that present in _Vigna radiata_ seeds (13,14) as shown in Figure (2). Vitexin has been reported to exhibit anti angiogenic activity by its effect on hypoxia-inducible factor -1α HIF-1α in rat pheochromacytoma PC12 (15,16).

Materials and Methods

Plant material

Vigna radiata seeds were collected from a farm in Nasiriya city during October 2018. The plant was identified and authenticated by Dr. Khansa AL. Joboury in Iraq Natural History Research Centre and Museum / University of Baghdad.

Five hundred grams of seeds were cleaned from unwanted materials, washed in deionized water then left to dry in air for two days, following sample preparation for biochemical analysis for two parts:

- **Part A:** seeds of mung bean were grinded in electric grinder to provide fine powder.
- **Part B:** seeds of mung bean were soaked in water over night. On next day these seeds were tied in muslin cloth for 3 days. Cloth containing soaked seeds were kept moist by spraying water every day in interval of 6 hours to germinate mung bean (18).

Extraction method

1. Grounded powder of seeds of 250 grams were defatted by maceration with hexane for 3 days then allowed to dry at room temperature. The defatted plant materials were extracted by soxhlet apparatus using aqueous ethanol 80% as a solvent for extraction for 18 hrs. (19).

 Extract of seeds was filtered and the solvent was evaporated under reduced pressure using...
rotary evaporator to make a dry extract of seeds (part A), then the residue was suspended in 250 ml of deionized water and partitioned successively with petroleum ether, chloroform, ethyl acetate and n-butanol (3 x 200) ml for each fraction. The first three fractions were dries over anhydrous sodium sulfate, filtered and evaporated to dryness.

2. The same procedure was applied to the sprouts, the dry extract obtained named part B.

Hydrolysis of n-butanol fraction of seeds of Vigna radiata L-plant

One gram of n-butanol fraction of seeds was hydrolyzed in 150 ml of 7% HCl for 6 hr. under reflux, cooled and partitioned with 150 ml x 3 Ethyl acetate, the organic layers were combined then concentrated to dryness over anhydrous sodium sulfate then evaporated by rotary evaporator, weighted and subjected for identification of these compounds by TLC and HPTLC.

Thin layer chromatography examination of extracts obtained from seeds and sprouts of Vigna radiata plant

In this qualitative identification using a ready-made aluminum plates of silica gel GF254 and using 3 different developing solvent systems for detection the plant flavonoid in fractions of ethyl acetate and n-butanol for seeds and sprouts Comparing with flavonoids standards and detection under UV 254, 366 nm, and they are listed in the Tables (1 and 2):

Table 1. Developing solvent systems were used in the identification of expected Flavonoids in above fraction.

NO.	Composition	References
Sk4	Ethyl acetate: chloroform: formic acid: water (8:1:1:1)	20
Sk5	Ethyl acetate: acetic acid: formic acid: water (84:4:4:10)	21
Sk6	Ethyl acetate: formic acid: acetic acid: water (100:11:11:27)	22

Table 2. Thin layer chromatography for separated spots:

Mobile phase	Standard name	Rf value of standard	Rf value of matched flavonoid	Compound name
Sk4	Isovitexin	0.33	0.32	R1
	Vitexin	0.51	0.5	R2
Mobile phase	Standard name	Rf value of standard	Rf value of matched flavonoid	Compound name
Sk5	Isovitexin	0.3	0.29	R1
	Vitexin	0.41	0.41	R2
Mobile phase	Standard name	Value Rf of standard	Rf value of matched flavonoid	Compound name
Sk6	Isovitexin	0.62	0.62	R1
	Vitexin	0.73	0.74	R2

Identification of vitexin and isovitexin by HPTLC

Ethyl acetate and n-butanol before and after hydrolysis fractions for the seeds, and ethyl acetate and n-butanol fractions of sprouts were analyzed also for its flavonoids, coumarin and phenolic acid contents utilizing HPTLC (Eike Reich/CAMAG Laboratory, Switzerland), using silica gel GF254 plates developed in a mobile phase composed of ethyl acetate: formic acid: acetic acid: water (84:4:4:10 V/V) examined at 254 and 366 nm wavelength.

The HPTLC results revealed the presence of vitexin and isovitexin in different Fractions ethyl acetate, n-butanol before and after hydrolysis fraction of seeds, ethyl acetate and n-butanol fractions of sprouts of Vigna radiata all these steps were done in a Baghdad - College of Pharmacy.
Isolation and purification of vitexin and isovitexin by preparative thin layer chromatography (PTLC)

Vitexin and isovitexin were isolated fraction from n-butanol fraction of seeds by preparative layer chromatography (PLC) using (1 mm) thickness plate (20 x 20 cm) and 100 ml of mobile phase (ethyl acetate: acetic acid: Formic acid: water) in the volume ratio of (84: 4: 4: 10) V/V.

Figure 3. Preparative layer chromatography chromatogram of flavonoids isolation observed at 254 wave length

The purity of each isolated compound was examined using the analytical thin layer chromatography until obtaining single spot on TLC plate and detection was recorded under UV light 254 and 366 nm. All these steps were done at College of Pharmacy / University of Baghdad. The isolated compound was recrystallized using hot methanol and compared with vitexin and isovitexin standards by different identification methods, including:

1. Thin layer chromatography (TLC) using the best mobile phase system. Ethyl acetate: Formic acid: acetic acid: water (84: 4: 4: 10)
2. Fourier transforms infrared Spectroscopy (FTIR) in KBr disk.
3. High performance thin layer chromatography HPTLC using the previously mobile phase.

Rat aorta anti-angiogenesis assay

The angiogenesis assay conducted via rat aorta angiogenesis (23). Aortic tissue sample were acquired from 12-14 weeks old male rat, where obtained from animal house of institute for diagnosis and reproductive technique in AL-Nahrain University. The animal was sacrificed via cervical dislocation under anesthesia with diethyl ether. After thoracic aorta was excised and cleaned and rinsed with bank balanced salt solution containing 2.5 µg/ml amphotericin B, then sliced to 1 mm thickness aortic ring. The assay was performed in 48 well tissue cultured plates.5 mg/ml of fibrinogen in serum free M199 growth medium and 3 mg/ml of aprotinin were added to each well to prevent fibrinolysis of vessel fragment. One aorta ring was seeded in each well. 15 ml of thrombin in 0.5 ml NaCl. Bovine plasma was added to the well and mixed rapidly with fibrinogen. After embedding the vessel fragment in the fibrin gel. 0.5 ml of medium M199 supplemented with 20% heat inactivated fetal calf serum, 0.1% α- aminocaproic acid, 1% L-glutamine, 1% amphotericin, 0.6% gentamycin.

Test sample extracts of seeds and sprouts were prepared by dissolving the sample in dimethyl sulphoxide (DMSO) and diluted in M199 growth medium to make the final DMSO concentration 1%. The tissue rings were incubated at 37°C, 5% CO₂ in humidified incubator. The DMSO (1%/v/v) and acetyl salicylic acid (Aspirin) (100 µg /ml) were used as a negative and positive control respectively. The extent of blood vessel growth was quantified using inverted microscopic on day five of experiment with aid camera software. The magnitude of blood vessel growth inhibition was determined according to technique developed by Nicosia (24). The experiment was repeated three times using six replicate per sample. The percentage of blood vessel inhibition was determined according to the following formula

\[
\text{Blood vessel inhibition} = \left(1 - \frac{A_0}{A}\right) \times 100
\]

Where \(A_0\) = distance of blood vessel growth in test substance in mm.
A= distance of blood vessel growth in the control in 1 mm.

Dose response study of n-butanol fraction for seeds and sprouts of Vigna radiata plant with Rat Aorta using anti angiogenic assays

Serial dilution of each seeds and sprouts samples were prepared in the following concentration,200, 100,50,25, 12.5,6.25, and 3.125 µg/ml. g/ml. Dried samples were dissolved in the DMSO and then diluted in M199 growth medium to make the final DMSO concentration 1%. Wells without test samples were received medium with 1% DMSO used as a negative control.

The concentration that inhibit 50% of growing blood vessel IC 50% was calculated by using linear regression equation for extract where \(Y=\) the percentage of inhibition, \(X=\)Concentration.

Results and Discussion

1. The results showed that the most two important flavonoids that present in this plant are the vitexin and isovitexin.
2. Identification of vitexin and isovitexin by HPTLC. The results indicated that HPTLC method was developed for the first time for qualitative identification from seeds of mung
bean plant in which qualitative identification was made by the comparison of maximum retardation factor (Rf) and UV spectrum of ethyl acetate fraction and n-butanol fraction of seeds and sprouts with standards of vitexin and isovitexin and isolated compounds R1, R2 as shown in Figures (7-10).

3. The results showed that sprouted mung bean produced higher yield in extraction followed by seeds. As shown in Table (3)

Table 3. Differences in extract contents yield (gm/ 250 gm) in different parts of vigna radiata plant (seeds and sprouts) using the same extraction method:

Extracted part	Part used	Solvent % W/W of crude extract	% W/W of crude extract
Part A	Seeds	80% ethanol	13 gm.
Part B	Sprouts	80% ethanol	57 gm.

4. Anti-angiogenesis results of analyzed fraction of seeds and sprouts showed that seeds and sprouts have anti angiogenic activity, but percentage of the anti-angiogenesis effect of sprouts (88%) higher than anti-angiogenesis effect of seeds (56%) at IC50% (58.8 µg/ml), (56.6 µg/ml) for sprouts and seeds respectively as shown in Figures (11-15) and Tabled (5-8).

The anti-angiogenic activity may be related to the existence of flavonoids and other phenolic compounds but the variation in inhibition percentage may relate to the concentration of the bioactive constituents or appearance of new bioactive constituents during germination.

Characterization of isolated vitexin and isovitexin:
1. The isolated compound appeared as a single spot having the same color and Rf value as that of standards vitexin and isovitexin as shown in Figure (4).

2. Fourier transforms infrared (FT–IR) spectrum: FT – IR spectroscopy is most commonly used in phytochemical studies as finger printing device. The FT – IR spectra of separated compounds was detected in the College of Sciences Al-Mustansiriya University using SHIMADZU device. IR spectra of isolated compounds as shown in Figures (5 and 6) and the characteristic IR absorption bands of isolated compounds are listed in Table (4)

Table 4. Characteristic F1 – IR absorption bands in (cm⁻¹) of isolated compounds:

Functional group	Group frequency wave number in cm⁻¹	Assignment		
O – H	3381, 3231	Measured for isolated compound vitexin	3433-3000	O-H stretching of phenol
C = C – H	1210	Measured for isolated compound isovitexin	3285	C – H Stretching of aromatic ring
C – H	2190	Asymmetric and symmetric stretching of CH2	2910	
C = O	1651	1641	C = O stretching conjugation and H bonding	
C = C	1614, 1570, 1506	1608, 1568, 1516	C = C stretching aromatic ring	
C – H	1419	1444	C – H bending of CH2.	
O-H	1384	1363	O-H bending of phenol	
C-O-C	1251	1238	C-O-C stretching of ether	
CH	1091 – 1066	1084 – 1072	C – H bending of aromatic (in plane)	
CH	987, 879, 758	916, 887, 775, 698	C-H bending of aromatic (out of plane)	
3. HPTLC was used again for characterization and identification by comparing Max. Retardation factor R_f of isolated compounds (R2 and R1) with that of standards and respectively as shown in Figures (7-9).
Figure 7. HPTLC plate for isolated compounds (13,14) and related standards (10: vitexin, 11, isovitexin) respectively and ethyl acetate and n- butanol fractions of seeds and sprouts (17,18,19,20,21) observed at 254 wave length.

Figure 8. HPTLC chromatogram for vitexin standard comparing with HPTLC chromatogram of isolated compound (R2)

Figure 9. HPTLC chromatogram of isovitexin standard comparing with HPTLC chromatogram of isolated compound (R1)
Figure 10. A- HPTLC chromatogram of n-butanol before hydrolysis of seeds, B- HPTLC chromatogram of ethyl acetate fraction of sprouts, C- HPTLC chromatogram of ethyl acetate fraction of seeds, D- HPTLC chromatogram of n-butanol fraction after hydrolysis of seeds, E- HPTLC chromatogram of n-butanol fraction of sprouts.
EX vivo rat aorta ring anti-angiogenesis assay for n-butanol fraction of seeds and n-butanol fraction of sprouts of Vigna radiata plant

Aortic rings embedded in complete growth medium have received a concentration of 100 µg/ml of each the two n-butanol fraction (seeds, sprouts) the blood vessels growth inhibition was presented as percent of inhibition as Table (5 and 6).

The results showed that two extract significantly inhibited blood vessels growth at day five of experiments, there was no significant difference in blood vessels growth inhibition among each of two extract of *Vigna radiata* of seeds and sprouts (P >0.05%). There IC50% (56.6 µg/ml, 58.5 µg/ml) for seeds and sprouts respectively. Among these two extracts, the n-butanol fraction of sprouts showed the highest anti-angiogenic activity 88% (in term percentage of blood vessels inhibition) in comparison with n-butanol fraction of seeds 56%. The difference between the n-butanol fraction of seeds, n-butanol fraction of sprouts and positive control (acetylsalicylic acid) as shown in the Figures (11-13).

Table 5. The inhibition percentage of blood vessels growth produced by tested fraction of seeds, negative and positive control.

Compound	% of inhibition
Negative control "DMSO"	0
Positive control "aspirin"	90
n-butanol fraction of seeds	56

Table 6. The inhibition percentage of blood vessels growth produced by tested fraction of sprouts, negative and positive control.

Compound	% of inhibition
Negative control "DMSO"	0
Positive control "aspirin"	92
n-butanol fraction of sprouts	88

Figure 11. Anti-angiogenesis activity of 100 µg/ml of n-butanol fraction of seeds, positive and negative control in ex vivo aortic ring model.

Figure 12. Anti-angiogenesis activity of 100 µg/ml of n-butanol fraction of sprouts, positive and negative control in ex vivo aortic ring model.

Figure 13. Effects of *Vigna radiata* seeds and sprouts extracts on blood vessels growth in rat aorta rings, where A, B, C represent the activity of negative control (DMSO), n-butanol fraction of sprouts and n-butanol fraction of seeds respectively.
Dose response effect of n-butanol fraction of Vigna radiata seeds and sprouts on aortic ring model.

Seven serial dilution of n-butanol fraction of each seeds and sprouts alone was prepared and added to the embedded rat aortic ring model to determine the dose response curve. n-butanol fraction of seeds and sprouts showed significant dose dependent inhibition of blood vessels growth when compared to negative control (DMSO%), at day five of experiment as shown in the Tables (7 and 8) and Figures (14 and 15).

Table 7. Serial concentration and their respective inhibition percentage for n-butanol fraction of Vigna radiata seeds.

Concentration (µg/ml)	% of inhibition
89	200
80	100
56	50
34	25
12	12.5
5	6.25
0	53.12

Figure 14. Dose response curve of n-butanol fraction of Vigna radiata seeds in rat aortic rings model.

The IC50 was determined for n-butanol fraction of seeds and sprouts by linear equation as shown in Figure (14 and 15) and it was found to be: IC50% of n-butanol fraction of seeds =56.6 µg/ml; IC50% of n-butanol fraction of sprouts =58.8 µg/ml

Table 8. Serial dilution and their respective inhibition percentage of n-butanol fraction of Vigna radiata sprouts.

Concentration (µg/ml)	% of inhibition
200	100
100	85
50	67
25	45
12.5	22
6.25	19
3.125	8

Figure 15. Dose response curve of n-butanol fraction of Vigna radiata sprouts in rat aortic rings model.

The anti angiogenic activity may be related to the existence of flavonoids and other phenolic compounds but the variation in inhibition percentage may relate to the concentration of the bioactive constituents or appearance of new bioactive constituents during germination

Conclusion

From the above finding, two flavonoids are isolated from Vigna radiata seeds (vitexin and isovitexin). On extraction of the Vigna radiata seeds and sprouts in the same extraction method, the percentage of yield of extract of sprouts were higher than percentage of yield of extract of seeds, which attributed to increase in phytochemical constituents thus the germination of Vigna radiata seeds increase in the amount of phytochemical constituents. The anti angiogenic activity may be related to the existence of flavonoids and other phenolic compounds but the variation in inhibition percentage may relate to the concentration of the bioactive constituents or appearance of new bioactive constituents during germination

References

1. Sies H. Oxidative stress: Oxidants and antioxidant. Exp Physiol 1997; 82: 291 – 295
2. Frey RL. The cowpea: Production, utilization, and research in the united states. Horticultural Reviews 1992; 12: 197 – 222
3. Aly Loby, Bourbour, H.D., P.D., Bu-me, Mun-eta, C., P-P. Vigna radiata (L.) R. Wilczekir in GBIF Secretariat.GBIF Backbone Taxonomy. Checklist dataset https:// doi.org/10.15468/39 omei accessed via GBIF .org on 2019-07-24.
4. Kanata SR, AR junk , Sharma A: Antioxidant and antimicrobial activating of legume hulls. Food Res in 2011; 44 :3182 – 3187.
5. Anjum NA, Umar S, Iqbal M, Khan NA: Gadmium causes oxidative stress in mung bean by affecting the oxidant enzyme system and acorbate – glutathione cycle metabolism. Russian J plant physical 2011;58: 92 – 99
6. Prokudina E, Havlicek L, Al-Mahavikav, Lapik O, Simad M, Giuz J: Rapid UPTC – ESL. MSIMS: Methods for analysis of isoflavonoids and other phenyl propanoids: I food comp anal 2012; 26: 36 – 42.

7. Wang M, Giliapisie A, Morris, J, Pittman R, Davis, Pederson G: Flavonoid content in different legume germplasm seeds quantified by HPLC. Plant Ge Res: Carac utic 2008; 6: 62 – 69.

8. Li, Li, yinmao DONG, Hankun REN, YaoX U E, Hong MENG, Minhui. L. Increased antioxidant activity and polyphenol metabolites in mung J. Sprouts. Food Chem. Technol, compinas 2017;437(3):411-417

9. Kavas A, Sedef NEL: Nutritive value of germinated mung beans and lentil J Consumers Stud Home Econ 1991 ;15:357-366

10. Kirchhoff E: Online- publication of German food composition table “Souci- Fachmann-kraut” on the internet. J Food Comp Anal . 2002;15(4):465-472.

11. Amorowi CZ R, Zegraska Z, Rafalowski R, Pogg BB, Karamad M, Kosinska A: Antioxidant activity and free radical scavenging Capacity of ethanoic extract of thyme, Oregano and marjoram. Eur J lipid Sci Technol 2009;111(11):1111-1117

12. Tang D, Dong Y, Ren H, Lil, He C: A review of photochemistry, metabolite (Vigna radiata), Chem Cent J.2014

13. UH, Cao, D, YY, Coal, Jang W: Identification of the flavonoid in mung bean (phaseolus radiatus L). Soap and their antioxidant activities: food chem.2012; 135 (4): 2942 – 2946

14. Dongkwan K, Sang C, JungBong K, YoSup R: Variation of flavonoids in mung bean (phaseolus radiatus) Soup and their antioxidant activities. Food Chem. 2012;135(4):2942-2946

15. Osada M., Imaoka S, Funae Y.: Apigenin suppresses the expression of VEGF, an important factor for angiogenesis, in endothelial cells via degradation of HIF-1 alpha protein. FEBS Lett. 2004;575(1-3):59-63

16. Bussolati B, Dunk C, Grohman M, KontosCD, Mason J, Ahmed A: Vascular endothelial growth factor receptor-1modulates vascular endothelial growth factor –mediated angiogenesis via nitric oxide. Am J Pathol 2001;159(3):993-1008

17. Anwar F., Latif S., Przybyski R., Sultana B., Ashraf M. Chemical composition and antioxidant activity of seeds of different cultivars of mung bean. J. Food . Sci. 2007 ; 72 : 503-510.

18. Udita T. Ankil S., Darshika N.: Comparative study on ant oxidative activity, phytochemical analysis and mineral composition of Mung Bean (Vigna Radiata) and its sprouts, Journal of pharmcognosy and phytochemistry2017 ;6(1):334-350

19. Kang I., Choi S., Ha T L, Chi M,Wi H R., Le B W, Lee M S.: Effect of Mung Bean (Vigna Radiata L.) Ethanol Extract Decrease proinflammatory cytokine –Induced lipogenesis in the KK-A Y Diabase Mouse Model. Journal of Medicinal food 2015;18(8):841-849

20. Jeong YM., Ha JH.,Roh G Y, . Part S N. Inhibitory effect of mung bean seed (Vigna radiata L.) and time dependent germinated sprouts extracts on whitening effect. Food science and biotechnology 2016; 25(2):567-573

21. Sticher O. Natural product isolation.2009:517-54.

22. Wagner H., Bladt S. Plant drug analysis: Thin layer chromatography ates. Springer Science and Business Media 1996.

23. Brown K, Maynes S, Benzos A, Maguire D, Ford M & Parish C. A novel in vitro assay for human angiogenesis. Lab. Invest 1996; 75:539-555

24. Nicosia RF. THE aortic ring model of angiogenesis: a quarter century of search and discovery. Cell.Mol. Med.2009 ;13:4113-4136.