Activation of Akt by Advanced Glycation End Products (AGEs): Involvement of IGF-1 Receptor and Caveolin-1

Su-Jung Yang1, Chen-Yu Chen2, Geen-Dong Chang2, Hui-Chin Wen2, Ching-Yu Chen4,5, Shi-Chuan Chang6*, Jyh-Fei Liao1, Chung-Ho Chang2,7*

1 Department and Institute of Pharmacology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China, 2 Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China, 3 Graduate Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan, Republic of China, 4 Department of Family Medicine, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan, 5 Division of Geriatric Research, Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Miaoli, Taiwan, Republic of China, 6 Chest Department, Taipei Veterans General Hospital, Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China, 7 Ph.D. Program for Aging, College of Medicine, China Medical University, Taichung, Taiwan, Republic of China

Abstract

Diabetes is characterized by chronic hyperglycemia, which in turn facilitates the formation of advanced glycation end products (AGEs). AGEs activate signaling proteins such as Src, Akt and ERK1/2. However, the mechanisms by which AGEs activate these kinases remain unclear. We examined the effect of AGEs on Akt activation in 3T3-L1 preadipocytes. Addition of AGEs to 3T3-L1 cells activated Akt in a dose- and time-dependent manner. The AGEs-stimulated Akt activation was blocked by a PI3-kinase inhibitor LY 294002, Src inhibitor PP2, an antioxidant NAC, superoxide scavenger Tiron, or nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase inhibitor DPI, suggesting the involvement of Src and NAD(P)H oxidase in the activation of PI3-kinase-Akt pathway by AGEs. AGEs-stimulated Src tyrosine phosphorylation was inhibited by NAC, suggesting that Src is downstream of NAD(P)H oxidase. The AGEs-stimulated Akt activity was sensitive to Insulin-like growth factor 1 receptor (IGF-1R) kinase inhibitor AG1024. Furthermore, AGEs induced phosphorylation of IGF-1 receptor [1] by Tyr1135/1136, which was sensitive to PP2, indicating that AGEs stimulate Akt activity by transactivating IGF-1R receptor. In addition, the AGEs-stimulated Akt activation was attenuated by β-methylcyclodextrin that abolishes the structure of caveolae, and by lowering caveolin-1 (Cav-1) levels with siRNAs. Furthermore, addition of AGEs enhanced the interaction of phospho-Cav-1 with IGF-1R [2] and transfection of 3T3-L1 cells with Cav-1 Y14F mutants inhibited the activation of Akt by AGEs. These results suggest that AGEs activate NAD(P)H oxidase and Src which in turn phosphorylates IGF-1 receptor and Cav-1 leading to activation of IGF-1 receptor and the downstream Akt in 3T3-L1 cells. AGEs treatment promoted the differentiation of 3T3-L1 preadipocytes and addition of AG1024, LY 294002 or Akt inhibitor attenuated the promoting effect of AGEs on adipogenesis, suggesting that IGF-1 receptor, PI3-Kinase and Akt are involved in the facilitation of adipogenesis by AGEs.

Introduction

Glucose and other reducing sugars can react non-enzymatically with the amino groups of proteins and lipids to form Schiff bases. The Schiff bases are slowly rearranged to form Amadori products which then undergo further rearrangements, oxidation, dehydroxylation and condensation resulting in compounds called advanced glycation end products (AGEs). AGEs are formed in normal physiological condition. The formation and accumulation of AGEs are accelerated in tissues from aged individuals and diabetic patients [1–6].

AGEs exert their cellular functions via the interaction with their specific receptor, the receptor for advanced glycation end products (RAGE) [7]. Binding of AGEs to RAGE activates a variety of signaling proteins and downstream transcription factors including Src, NAD(P)H oxidase, Ras/ERK1/2, PI3K/PDK1/Akt, p38 MAPK, NF-κB, and AP1 [1,3,5]. Activation of RAGE by AGEs stimulates the production of reactive oxygen species (ROS) by NAD(P)H oxidase or mitochondria in several cell types [8–13]. It has been shown that activation of PI3K by AGEs is dependent on the generation of ROS in mesangial cells [10]. However, little is known about the proximal signaling events downstream of RAGE.

Caveolae are membrane regions enriched in cholesterol and glycosphingolipids. The major proteins in caveolae are caveolins which serve as structural elements of caveolae. The mammalian caveolin gene family consists of caveolin-1, -2 and -3. Caveolin-1 (Cav-1) is ubiquitously expressed. Caveolin-2 is co-expressed with Cav-1, whereas caveolin-3 is exclusively expressed in skeletal, cardiac and smooth muscle cells [14]. Caveolins function as scaffolding proteins which recruit numerous signaling molecules to the plasma membrane and regulate their activity. For instance, RAGE, EGF receptor, insulin receptor, IGF-I receptor, Src, PKA,
PKC, Akt, ERK1/2, p38 MAPK and PI3-kinase are localized in caveolae [for review, see 14–18]. Therefore, caveolae represent areas in which signaling proteins and their downstream effectors are substantially enriched.

Adipose tissue comprises of adipocytes, preadipocytes and other cell types. All cell types in adipose tissue are constantly exposed to AGEs that are generated even in the normal glucose condition. 3T3-L1 cells, derived from dissociated near term Swiss 3T3 mouse embryos, are a widely used model system for preadipocytes [19]. In this study, we investigate the mechanisms by which AGEs activate Akt in 3T3-L1 preadipocytes. Since RAGE and several signaling proteins are localized in caveolae and caveolins regulate a variety of signaling pathways, we also examined the involvement of Cav-1 in RAGE-mediated Akt activation in 3T3-L1 cells. Our results showed that NAD(P)H oxidase, Src and IGF-1 receptor transactivation are involved in the activation of Akt by AGEs. 3T3-L1 cells can be induced to differentiate into adipocytes by IBMX, dexamethasone, and insulin/IGF-1. Since AGEs transactivate IGF-1 receptor, we further examined whether AGEs affect the differentiation of 3T3-L1 cells.

Materials and Methods

Antibodies and Chemicals

Antibodies against phospho-Src, Src, phospho-Akt, Akt, PDK1, Cav-1, IRS-1, α2, IGF-1R and phosphor-IGF-1R (at Y1131 and Y1135/1136) antibodies were purchased from Cell Signaling (Beverly, MA). Phospho-tyrosine antibodies were obtained from Upstate Biochemical Inc. (Lake Placid, NY). Phospho-(Tyr-14)-Cav-1 antibody was purchased from BD Pharmingen (San Jose, CA). Antibody against GAPDH was obtained from Santa Cruz Biotechnology (Santa Cruz, CA). Antibody against GAPDH was purchased from Zymed (Carlsbad, CA, USA). Phospho-(Ser241)-PDK1 antibody was obtained from BD Pharmingen (San Jos,
CA). Immobilon-P membrane was purchased from Millipore (Bedford, MA). AG1024 and PP2 were purchased from Calbiochem (San Diego, CA). Cav-1 siRNAs were obtained from Dharmacon Inc. (Lafayette, CO). The BCA protein assay kit and the enhanced chemiluminescence (ECL) detection system kit were purchased from PerkinElmer Life Sciences, Inc. (Waltham, MA). CM-H2DCFDA was obtained from Molecular Probes Inc. (Eugene, OR). Actin antibody and other chemicals were purchased from Sigma (St. Louis, MO).

Preparation of Advanced Glycation End Product (AGES)
AGES were prepared as described by Hamada Y. et al. [20]. Briefly, bovine serum albumin (BSA) (10 mg/ml) was incubated with 33 mM glyceraldehyde and 100 U/ml penicillin/streptomycin in PBS, pH 7.4 at 37°C for 5 days. After 5 days incubation, AGES were dialyzed in PBS (pH 7.4) at 4°C for 2 days, and then sterilized with 0.22 μm filter.

Figure 2. The effect of NAC, Tiron, DPI and apocynin on AGEs-stimulated Akt activation in 3T3-L1 cells. (A) Cells were exposed to 100 μg/ml AGES for 15 min in the serum-free medium. After treatment, cells were incubated with 20 μM CM-H2DCFDA for 30 min at 37°C. The ROS production was determined by a fluorescence reader (excitation/emission: 485/520 nm). The data represent mean ± the standard error (SE) of results from three independent experiments. Increases in the AGES-induced ROS were statistically significant at this time point. (B) After 18 hr serum starvation, 3T3-L1 cells were treated with 2 mM NAC, 2 mM Tiron, 50 μM DPI, 25 μM apocynin, or RAGE antibodies (1 μg/ml) for 60 min, and then ROS production was determined by a fluorescence reader (excitation/emission: 485/520 nm). After 18 hr serum starvation, 3T3-L1 cells were treated with 2 mM NAC (C), 2 mM Tiron (D), 50 μM DPI (E), or 25 μM apocynin (F) for 60 min, and then challenged with 100 μg/ml AGES for 15 min. Cell lysates were immunoblotted with antibodies specific for phospho-Akt (AktSer473), Akt or actin. Data are representative of three independent experiments yielding similar results.

doi:10.1371/journal.pone.0058100.g002
Cell Culture

3T3-L1 preadipocytes (CL-173; ATCC, USA) were maintained at 37°C in high glucose Dulbecco's modified Eagle's medium (DMEM) with 50 units/ml penicillin, 50 mg/ml streptomycin, and 10% calf serum in 5% CO2 environment. Near confluent 3T3-L1 cells were incubated with serum-free media for 18 h to arrest and synchronize the cell growth. After this time period, the cells were treated with and without an antioxidant N-acetyl-cysteine, superoxide scavenger Tiron, NADPH oxidase inhibitor diphenyleneiodonium chloride, specific Src family kinase inhibitor PP2, IGF-1 receptor kinase inhibitor AG1024, PI3K inhibitor LY294002, or RAGE antibody for the indicated time before the addition of 100 μg/ml AGEs.

Measurement of Reactive Oxygen Species

Levels of intracellular reactive oxygen species (ROS) were assessed spectro-fluorimetrically by the oxidation of a specific probe CM-H2DCFDA. 3T3-L1 cells were seeded in a 6 wells plate and serum-starved for 18 h to arrest and synchronize the cell growth. After this time period, the cells were treated with and without an antioxidant N-acetyl-cysteine, superoxide scavenger Tiron, NADPH oxidase inhibitor diphenyleneiodonium chloride, specific Src family kinase inhibitor PP2, IGF-1 receptor kinase inhibitor AG1024, PI3K inhibitor LY294002, or RAGE antibody for the indicated time before the addition of 100 μg/ml AGEs.

Generation of a Cav-1 Y14F Stable Cell Line

Mouse Cav-1 cDNA was subcloned into the pcDNA3.1 plasmid (Invitrogen). The Y14F mutant of Cav-1 construct was generated using QuickChange® site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA) [21] with the following primer pairs (synthesized by the Core Instrument Center at the National Health Research Institute), 5'-AGGGACATCTCTTCACTGTTCCCAT-3' and 5'-ATGGGAACAGTGAAGAGATGTCCCT-3'. For transfection, a density of 2x10^5 3T3-L1 cells were plated into 60 mm dishes and maintained in DMEM containing 10% FBS, 3.7 g/L NaHCO3, 5.9575 g/L HEPES, and 100 U/ml penicillin/streptomycin at 37°C, 5% CO2. After 24 hours, cells were transfected by Lipofectamine 2000 (Invitrogen) with 2.5 μg of plasmids: pcDNA3.1-Cav-1 mutant (Cav-1 Y14F) and vector pcDNA3.1 as the positive control. The following day, cells were split and selected in 500 μg/ml neomycin to generate pcDNA3.1-Cav-1 mutant (Cav-1 Y14F) and pcDNA3.1 stable cell lines.

Western Blot Analysis

3T3-L1 cells were starved for 18 h in DMEM, and then stimulated with 100 μg/ml AGEs for 15 min at 37°C. Cells were washed with ice-cold PBS and lysed in RIPA buffer [20 mM Tris-HCl (pH 8.0), 10% glycerol, 150 mM NaCl, 1% Nonidet P-40 (NP-40) and 0.42% NaF] containing protease inhibitors (5 μg/mL aprotinin, 5 μg/mL leupetin, 1 mM Na3VO4, 1 mM phenylmethylsulfonyl fluoride, and 20 mM NaF). Cell lysates were centrifuged at 12000 rpm for 15 min to remove insoluble materials. Western blotting was performed as previously described [21,22]. The following antibodies were used: Akt, phospho-Akt (at serine 473 and threonine 308), PDK1, phosphor-PDK1 (at Ser241), Cav-1, phospho-Cavolin-1 (at tyrosine 14), IGF-1R, phospho-IGF-1R (at tyrosine 1131 and tyrosine 1135/1136), IRS-1, phospho-IRS-1, Src, phospho-Src (at tyrosine 416), phospho-tyrosine, PPARγ, aP2, GAPDH or β-actin.
Co-immunoprecipitation

3T3-L1 cell lysates were prepared as described under Western blot analysis and subjected to immunoprecipitation with IGF-1Rβ antibodies or control mouse IgG (Sigma-Aldrich) using the immunoprecipitation kit Catch and Release® v2.0 (Upstate Signaling solution) following the manufacturer’s instruction. The effluent was analyzed by Western blot analysis. Briefly, 500 μg of cell lysates, 5 μg of anti-IGF-1Rβ antibody, IRS-1 or control mouse IgG (Sigma-Aldrich) and 10 μl of antibody capture affinity ligand were mixed and placed in a catch and release® v2.0 spin column containing 0.5 ml of prepacked IP capture resin. After end-over-end shaking for 12 h in 4°C, the column was centrifuged, washed 3 times and then eluted with 70 μl of the elution buffer. The effluent was analyzed by Western blot analysis with Akt, phospho-Akt (at serine 473 and threonine 308), Cav-1, phospho-Cavolin-1 (at tyrosine 14), IGF-1R, phospho-IGF-1Rβ (at tyrosine 1131 and tyrosine 1135/1136), IRS-1, phospho-IRS-1, Src, or phospho-Src (at tyrosine 416).

Adipogenic Differentiation

For the induction of differentiation, at 2 days post-confluence, 3T3-L1 preadipocytes were incubated with DMEM containing 0.5 mM IBMX, 1 μM dexamethasone, 1.7 μM insulin, and 10% FBS at 37°C, 5% CO2 for 72 hr. The induction medium was replaced with culture medium containing 1.7 μM insulin on day 3. Since day 5, the fresh culture medium was replaced every other day. The oil droplet contents were quantified by measuring the absorbance of oil red O at OD510 nm.

Oil Red O Staining

Differentiated 3T3-L1 cells were washed three times with PBS, and then fixed with 4% paraformaldehyde at room temperature. After 10 min, the fix solution was removed and

Figure 4. Transactivation of IGF-1R by AGEs in 3T3-L1 cells. Serum-depleted 3T3-L1 cells were stimulated with 100 μg/ml AGEs for 15 min, and cell lysates were immunoprecipitated with IGF-1R (A) or IRS-1 (B) antibodies followed by Western blotting with phospho-tyrosine, phospho-IGF-1Rβ (IGF-1Rβ)pY1135/1136, phospho-IGF-1R (IGF-1Rβ)pY1131, total IGF-1Rβ (IGF-1Rβ), IRS-1 or actin antibodies. Serum-depleted 3T3-L1 cells were pretreated with and without 2 μM AG1024 for 30 min and then challenged with 100 μg/ml AGEs for 15 min. Cell lysates were immunoprecipitated with IGF-1Rβ subunit (IGF-1Rβ) antibody followed by immunoblotting with phospho-IGF-1Rβ (IGF-1Rβ)pY1135/1136 and IGF-1Rβ (IGF-1Rβ). Total cell lysates were also immunoblotted with antibodies specific for phospho-Akt (AktpSer473) or Akt (D). Data are representative of three independent experiments yielding similar results.

doi:10.1371/journal.pone.0058100.g004
cells were washed three times with PBS. The 0.35% oil red O stock solution was diluted with ddH$_2$O (in 3:2 ratio) and incubated with cells at 37°C for 1 hr. Stained cells were washed with PBS and visualized.

Glycerol-3-phosphate Dehydrogenase (GPDH) Assay

On day 8 after the induction of differentiation, 3T3-L1 cells were washed twice with PBS, incubated, and scraped with the homogenization buffer which contains 0.25 M sucrose, 1 mM EDTA, 1 mM dithiothreitol, and 5 mM Tris-HCl (pH 7.6). Homogenates were sonicated on ice for 5 sec three times, and centrifuged (12000 rpm) for 10 min at 4°C. The protein amounts were determined with a BCA protein assay kit following the manufacturer's instruction. The amounts of OD$_{340}$ were determined at 30°C with 30 sec intervals for 8 min [23].

Statistical Analyses

The experimental results are expressed as the mean values ± SEM and are accompanied by the number of observations. Data were assessed by the Student’s t-test method. A p value of less than 0.05 was considered statistically significant.

Results

AGEs-induced Phosphorylation of Akt is Mediated by Activation of PI3-Kinase in 3T3-L1 Cells

AGEs have been shown to activate PI3-K and Akt in neutrophils and renal mesangial cells [10,24]. However, the molecular mechanisms by which AGEs activate Akt remain unclear. The effects of AGEs on the PI3-kinase-Akt pathway in 3T3-L1 cells have not been reported, and were examined in this study. As shown in Fig. 1A and 1B, AGEs activated Akt in a time-dependent and dose-dependent manner. Pre-treatment of 3T3-L1 cells with a PI3-kinase inhibitor LY294002 (15 μM) for 30 min completely blocked the activation of Akt induced by...
AGEs (Fig. 1C and 1D). AGEs also activated PDK1 and PDK1 activation was completely blocked by LY294002 (Fig. 1E). These results suggest that AGEs activate Akt via PI3-kinase and PDK1 in 3T3-L1 cells.

ROS are Required for AGEs-induced Akt Phosphorylation in 3T3-L1 Cells

It has been reported that the AGEs-RAGE signaling triggers ROS production [8–13]. Furthermore, ROS have been shown to be required for AGEs-stimulated PI3K activation in renal mesangial cells [10]. To examine whether AGEs stimulate ROS generation in 3T3-L1 cells, we challenged cells with 100 μg/ml AGEs for 15 min. Fig. 2A showed that ROS were induced by AGEs in 3T3-L1 cells. We then examined whether ROS are responsible for the activation of Akt by AGEs in 3T3-L1 cells. 3T3-L1 cells were treated with 2 mM N-acetyl-cysteine (NAC, a ROS scavenger), 2 mM Tiron (a superoxide scavenger) or NADPH oxidase inhibitors (50 μM DPI or 25 μM apocynin) for 60 min, and then challenged with 100 μg/ml AGEs for 15 min. Addition of NAC, Tiron, DPI or apocynin attenuated AGEs-stimulated ROS generation (Fig. 2B). The RAGE blocking antibodies also decreased AGEs-stimulated ROS generation (Fig. 2B), suggesting the involvement of RAGE in the generation of ROS by AGEs. Pretreatment of 3T3-L1 cells with NAC (Fig. 2C) or Tiron (Fig. 2D) suppressed the AGEs-stimulated Akt phosphorylation, suggesting the involvement of superoxide in the activation of Akt by AGEs. Furthermore, pretreatment of 3T3-L1 cells with DPI (Fig. 2E) or 25 μM apocynin (Fig. 2F), another NADPH oxidase inhibitor, blocked Akt activation stimulated by AGEs. These results suggest that AGEs activate Akt via superoxide generated by NADPH oxidase in 3T3-L1 cells.

Protein Tyrosine Kinase Src, a ROS Target, is Involved in AGEs-mediated Akt Activation in 3T3-L1 Cells

RAGE has been shown to associate with and activate protein tyrosine kinase Src in endothelial, vascular smooth muscle and skeletal muscle cells [25–27]. We examined whether Src is involved in the activation of Akt by AGEs in 3T3-L1 cells utilizing PP2, a Src tyrosine kinase inhibitor. Fig. 3A shows that pretreatment of 3T3-L1 cells with 25 μM PP2 abolished the AGEs-stimulated Akt activity. Phosphorylation of Src at Tyr 416 in the activation loop of the kinase domain elevates the kinase activity of Src. We then further examined whether AGEs activate Src employing Western blot analysis with phosphorylation (pY416) antibodies. As shown in Fig. 3B, AGEs enhanced tyrosine phosphorylation levels of Src, which were significantly blocked by PP2. These results suggested that Src is activated by AGEs and involved in AGEs-mediated Akt activation in 3T3-L1 cells.

SRC Protein Tyrosine Kinase, a ROS Target, is Involved in AGEs-mediated Akt Activation in 3T3-L1 Cells

PP2, a Src tyrosine kinase inhibitor, attenuated the phosphorylation levels of Tyr1131 were not significantly affected by AGEs (data not shown). Both immunoprecipitation and Western blot analysis experiments revealed that AGEs also increased total tyrosine phosphorylation levels of IGF-1R (Fig. 4B). Pretreatment of 3T3-L1 cells with AG1024, an IGF-1 receptor kinase inhibitor, attenuated the phosphorylation levels of Tyr1135/1136 on IGF-1Rβ-subunit induced by AGEs (Fig. 4C) and attenuated the activation of Akt (Fig. 4D). These
results suggest that AGEs activate Akt signaling by transactivating IGF-1R in 3T3-L1 cells.

We next investigated whether Src is upstream of IGF-1 receptor. 3T3-L1 cells were pretreated with and without 10 μM PP2 for 30 min, and then incubated with 100 μg/ml AGEs for 15 min. After incubation, IGF-1R proteins in the cell lysates were immunoprecipitated with its antibody. The immunocomplexes were subjected to Western blotting with phospho-tyrosine or phospho-IGF-1R (p-Y1135/1136) antibodies. Fig. 5A showed that addition of PP2 attenuated AGEs-stimulated tyrosine phosphorylation of IGF-1R. In contrast, pretreatment of 3T3-L1 cells with AG1024 did not affect AGEs-stimulated Src kinase activity (Fig. 5B).

We then examined whether Src associates with IGF-1Rβ in 3T3-L1 cells. Serum-depleted 3T3-L1 cells were stimulated with 100 μg/ml AGEs for 15 min, and IGF-1Rβ and its interacting proteins were immunoprecipitated with IGF-1Rβ antibody. The immunocomplexes were subjected to Western blot analysis with IGF-1Rβ, Src and phospho-Src (p-Src) antibodies. The results revealed that Src associated with IGF-1Rβ and AGEs enhanced the association of p-Src with IGF-1Rβ (Fig. 5C). Moreover, pretreatment of 3T3-L1 cells with 2 mM NAC, and then stimulated with 100 μg/ml AGEs for 15 min attenuated the phosphorylation levels of tyrosine 1135/1136 on IGF-1Rβ induced by AGEs (Fig. 5D). These results suggest that ROS and Src are upstream of IGF-1 receptor, and that Src phosphorylates IGF-1Rβ.

Figure 7. Promotion of adipogenesis of 3T3-L1 cells by AGEs-treatment. (A) 3T3-L1 cells were treated with and without 100 μg/ml AGEs during differentiation. The adipogenic induction medium contains 0.5 mM isobutylmethylxanthine, 1 mM dexamethasone, and 1.7 mM insulin. At day 12, cells were subjected to the Oil Red O staining. The oil droplet contents were quantified by measuring the OD510 nm. (*, P<0.05 versus control) (B) 3T3-L1 cells were treated with and without 100 μg/ml AGEs during differentiation. At day 5, cell lysates were subjected to Western blot analysis using the PPARγ, C/EBPα, αP2 and the loading control actin antibodies. (C) Cells from 3T3-L1 and 100 μg/ml AGEs-treated cells were harvested on day 8 after adipogenic induction and were subjected to GPDH activity assay by reading the absorbance of NADH at 340 nm. The results are the means ± SEM of three independent experiments. (*, P<0.05 vs. control) (D) 3T3-L1 cells were treated with and without 100 μg/ml AGEs in the presence of and absence of 10 μM AG1024, 15 μM LY294002, or 5 μM Akt inhibitor during differentiation. Four days after adipogenic induction, cells were subjected to the Oil Red O staining and the oil droplet contents were quantified by measuring the OD510 nm. (E) 3T3-L1 cells were treated with and without 100 μg/ml AGEs in the presence of and absence of 10 μM AG1024, 15 μM LY294002, or 5 μM Akt inhibitor during differentiation. The concentration of DMSO is 0.05% for control and inhibitor-treated groups. At day 5, cell lysates were subjected to Western blot analysis using PPARγ, αP2 and actin antibodies. (*, P<0.05 DMSO versus inhibitors; **, P<0.05 DMSO vs. DMSO+AGEs, ***, P<0.05 DMSO+AGEs vs. inhibitors+AGEs).
doi:10.1371/journal.pone.0058100.g007

Figure 8. A proposed model for the activation of Akt by AGEs in 3T3-L1 cells. AGEs, via RAGE, activate NAD(P)H oxidase and produce reactive oxygen species (ROS) which then stimulate Src kinase activity. Src subsequently phosphorylates and activates IGF-1 receptor which acts as a stimulator for PI3-kinase, PDK-1 and Akt. Src also phosphorylates caveolin-1 and enhances IGF-1 receptor-mediated signaling.
doi:10.1371/journal.pone.0058100.g008
AGEs Promote Adipogenic Differentiation of 3T3-L1 Preadipocytes

Treatment of 3T3-L1 cells with AGEs has been shown to accelerate lipid droplet formation based on the Oil Red O staining [42]. We re-examined the effect of AGEs on the differentiation of 3T3-L1 cells. Fig. 7A showed that AGEs promoted the differentiation of 3T3-L1 cells based on staining and quantification of the oil droplets. PPARγ and C/EBPα are the master transcription factors governing the adipocyte differentiation [43]. Fig. 7B showed that levels of PPARγ and C/EBPα were elevated in AGEs-treated cells as compared to those in untreated 3T3-L1 cells. AGEs treatment also increased levels of markers for differentiated adipocytes, p2 (Fig. 7B) and GPDH activity (Fig. 7C). In contrast, addition of AG1024, LY 294002 or Akt inhibitor attenuated the differentiation of 3T3-L1 cells and the promoting effect of AGEs on adipogenesis (Fig. 7D). Consistently, PPARγ and p2 levels that are up-regulated during adipogenesis and AGEs-enhanced adipogenesis were attenuated by AG1024, LY 294002 and Akt inhibitor (Fig. 7E).

Discussion

Chronic hyperglycemia which is characteristic of diabetes facilitates the formation of AGEs [1–6]. Formation of AGEs is considered a potential link between hyperglycemia and chronic diabetic complications such as diabetic nephropathy and retinopathy [1,4–6]. AGEs also accumulate in many different tissues during the normal aging process [1–3]. Many of the effects of AGEs are mediated by their signaling receptor RAGE [7]. Although AGEs and RAGE have been shown to activate a variety of protein kinases such as Akt, ERK1/2, JNK and p38 MAPK, little is known about the proximal signaling events downstream of RAGE. In the present study, we showed for the first time that via RAGE, NAD/PH oxidase and Src, AGEs transactivate IGF-1 receptor and the downstream PI3-kinase-PDK1-Akt pathway in 3T3-L1 cells. We have also found that phospho-Cav-1 plays a positively regulatory role in AGEs-mediated Akt activation.

The signaling events that link RAGE to NAD/PH oxidase, Src and Akt remain unclear. Our results showed that Akt activated via PI3-kinase since the AGEs-stimulated Akt activity was inhibited by a PI3-K inhibitor LY294002. The effects of AGEs on Akt activation are mediated by their receptor RAGE as neutralizing RAGE antibodies attenuated the activation of Akt by AGEs. The AGEs-stimulated Akt activity was blocked by NAC, an antioxidant, Tiron, a superoxide scavenger and DPI and apocynin, NAD(P)H oxidase inhibitor, suggesting that NAD/PH oxidase and reactive oxygen species participate in the activation of Akt by AGEs. Src is a redox-sensitive tyrosine kinase [28,29]. Our data showed that AGEs activated Src, and that the AGEs-stimulated Akt activation was attenuated by PP2, a Src inhibitor, suggesting the involvement of Src in the activation of Akt by AGEs. Furthermore, we found that AGEs-stimulated Src kinase activity was blocked by NAC, suggesting that Src is downstream of NAD/PH oxidase. These results suggest that AGEs activate NAD(P)H oxidase and reactive oxygen species which then stimulate Src kinase activity leading to activation of the PI3-kinase-PDK1-Akt pathway.

Binding of IGF-1 to IGF-1R is known to activate the downstream Akt and ERK1/2 by tyrosine-phosphorylating insulin receptor substrate proteins (IRS) and Shc. Besides stimulating its own signaling pathways, IGF-1 receptor can be transactivated by a variety of receptors such as angiotensin II, endothelin-1, estrogen, and epidermal growth factor [30–36]. IGF-1 receptor is ubiqui-
tously expressed and also present in 3T3-L1 cells [41]. Several lines of evidence suggest the involvement of IGF-1 receptor in the activation of Akt by AGEs in 3T3-L1 cells. First, AGEs induced tyrosine phosphorylation of IGF-1Rβ and the downstream IRS-1. Second, addition of IGF-1 receptor kinase inhibitor AG1024 attenuated AGEs-stimulated Akt activity. Third, AGEs activated Src and enhanced the association of activated Src with IGF-1Rβ. Furthermore, inhibition of Src with PP2 blocked both AGEs-stimulated tyrosine phosphorylation of IGF-1Rβ and AGEs-stimulated Akt activity. These results suggest that Src is upstream of IGF-1 receptor. Precedents for the involvement of Src in the transactivation of IGF-1 receptor were reported by Zahradka et al [34] and Bouallegue et al [35]. Both groups found that Ang II or endothelin-1 induces the tyrosine phosphorylation levels of IGF-1Rβ and a Src inhibitor PP1 or PP2 weakens the phosphorylation of IGF-1 receptor. Src is also a mediator of IGF-1 receptor transactivation in response to EGF [36]. Thus, activation of Src appears to be essential for the transactivation of IGF-1 receptor by Ang II, endothelin-1, EGF and AGEs.

Although Ang II, EGF and endothelin-1 are reported to enhance tyrosine phosphorylation levels of IGF-1Rβ, the identity of the phosphorylated tyrosine residues remains unknown [30–36]. Y1131, Y1135 and Y1136 are the autophosphorylation sites on the activation loop of the IGF-1Rβ catalytic domain [44,45]. Binding of IGF1 to the α subunit of IGF-1 receptor triggers a conformational change leading to autophosphorylation of these tyrosine residues. It has been shown that the first site of autophosphorylation is predominately Y1135, followed by Y1131 and then by Y1136, and that each phosphorylation increases receptor tyrosine kinase activity [45]. We examined whether these tyrosine residues on IGF-1Rβ are phosphorylated by AGEs using antibodies recognizing p-Y1135/1136 and p-Y1131 on IGF-1Rβ. The results indicated that the phosphorylation levels of Y1135/1136, but not Y1131, on IGF-1Rβ were enhanced by AGEs. These results indicate that AGEs triggers the phosphorylation of at least Y1135 and Y1136 on IGF-1Rβ. Src has been shown to phosphorylate Y1131, Y1135 and Y1136 on IGF-1Rβ to activate IGF-1 receptor [46,47]. Consistently with these reports, our data showed that AGES activated Src and induced phosphorylation of Y1135 and Y1136 on IGF-1Rβ. Blockage of Src kinase activity with PP2 attenuated the AGEs-induced phosphorylation of Y1135 and Y1136 on IGF-1 receptor and AGEs-stimulated Akt activation. Therefore, Src likely mediates the effects of AGEs on the tyrosine phosphorylation and activation of IGF-1 receptor.

Many signaling proteins and receptors are enriched in caveolae. Previous studies showed that RAGE, IGF-IR, and Src family tyrosine kinases localize in caveolae [13–18]. Cav-1 has been shown to positively regulate IGF-1 signaling by stabilizing IGF-1 receptor and IRS-1. Protein levels of IRS-1 and IGF-1 receptor shown to positively regulate IGF-1 signaling by stabilizing IGF-1 tyrosine kinases localize in caveolae [13–18]. Cav-1 has been shown to positively regulate IGF-1 signaling by stabilizing IGF-1 tyrosine kinases. Cav-1 associates with IGF-1 receptor and is positively involved in the activation of the PI3-kinase-Akt pathway by AGEs in 3T3-L1 cells. This mechanism involves RAGE that couples to NADPH oxidase to stimulate Src. The activated Src in turn phosphorylates and activates IGF-1 receptor and its downstream PI3-kinase-Akt pathway. Our data also reveal that Src phosphorylates Cav-1, and that p-Cav-1 associates with IGF-1 receptor and is positively involved in the activation of the PI3-kinase-Akt pathway by AGEs (Fig. 8). Our study shows that besides G protein-coupled receptors (Angiotensin II and endothelin-1 receptors) and nuclear receptors (estrogen receptors), RAGE, a receptor of the immunoglobulin-like superfamily, can also transactivate IGF-1 receptor. Since AGEs and RAGE are involved in diabetic complications and other diseases, IGF-1 receptor antagonists and cholesterol depleting agents might have therapeutic application to these disorders.
1. Nuss N, Bartling B, Navarrete Santos A, Scheule R, Borgermann J, et al. (2007) Advanced glycation end products, diabetes and aging. Z Gerontol Geriatr 40: 349–356.

2. Grillo MA, Colombatto S (2008) Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids 35: 29–36.

3. Lin L, Park S, Lakatta EG (2009) RAGE signaling in inactivation and arteriosclerosis. Front Biosci 14: 2013–1403.

4. Yan SF, Ramasamy R, Schmidt AM (2009) Receptor for AGE and its involvement in vascular endothelial growth factor by intermediate metabolites of advanced glycation end products. J Biol Chem 284: 13685–13693.

5. Fagan DH, Yee D (2008) Crosstalk between IGFR1 and estrogen receptor signaling in breast cancer cells. J Mammary Gland Biol Neoplasia 13: 423–429.

6. Tontsch VR, Morrow B, Phillips L, Delafontaine P (1996) G-protein and tyrosine kinase receptor cross-talk in rat aortic smooth muscle cells: thrombin- and angiotensin II-induced tyrosine phosphorylation of insulin receptor substrate-1 and insulin-like growth factor 1 receptor. Biochem Biophys Res Commun 218: 934–939.

7. Coughlan MT, Mibus AL, Forbes JM (2008) Oxidative stress and advanced glycation end products: a receptor for advanced glycation endproducts. Mol Nutr Food Res 51: 1111–1115.

8. Urata Y, Yamaguchi M, Higashiyama Y, Ibarra Y, Goto S, et al. (2002) Reactive oxygen species accelerate production of vascular endothelial growth factor by advanced glycation end product-induced eNOS in vascular smooth muscle cells. Free Radic Biol Med 32: 688–701.

9. Wong RK, Petriti AI, Davies JE, Ng LL (2002) Augmentation of the neutrophil respiratory burst through the action of advanced glycation end products: a G-protein-coupled receptor to vascular oxidative stress. Diabetes 51: 2846–2853.

10. Xu D, Kyriakis JM (2003) Phosphatidylinositol 3-kinase/Akt signaling in cardiovascular disease. Front Biosci 14: 1403–1413.

11. Patel HH, Murray F, Insel PA (2008) Caveolae as organizers of pharmacologically relevant signal transduction molecules. Annu Rev Pharmacol Toxicol 48: 359–395.

12. Yuan J, Nickerson A, Nauck M, Harlan JM, Hogan MLJ (2002) RAGE signaling in inflammation and arterial oxidant stress. Diabetes 51: 2846–2853.

13. Coughlan MT, Mibus AL, Forbes JM (2008) Arguing for the motion: yes, RAGE is a G-protein receptor for advanced glycation endproducts. Mol Nutr Food Res 51: 1111–1115.

14. Hu S, Hong S, Xu J, Liao K (2004) Insulin-like growth factor-1 receptor autophosphorylation sites. Requirement for transformation by src. J Biol Chem 279: 27315–27321.

15. Santen RJ, Fan P, Zhang Z, Yao Y, Song RX, et al. (2009) Estrogen signals via an extracellular pathway involving IGFR1 and EGFR in tamoxifen-sensitive and -resistant breast cancer cells. Steroids 74: 590–594.

16. Zhou L, Zeng L, Wang X, Xiao D, Wang H (2009) Caveolae and caveolin in transmembrane signaling: Implications for human disease. J Cell Physiol 220: 359–369.

17. Fagan DH, Yee D (2008) CROSSTALK BETWEEN IGFR1 AND ESTROGEN RECEPTOR SIGNALING IN BREAST CANCER CELLS. J Biol Chem 283: 36088–36099.
pathway and cellular proliferation in response to insulin-like growth factor I. Endocrinology 149: 5199–5208.

53. Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, et al. (2000) Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 14: 1750–1773.

54. Smith PJ, Wise LS, Berkowitz R, Wan C, Rubin CS. (1988) Insulin-like growth factor-I is an essential regulator of the differentiation of 3T3-L1 adipocytes. J Biol Chem 263: 9402–9408.

55. Tontonoz P, Hu E, Spiegelman BM. (1994) Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell 79: 1147–1156.

56. Kubota N, Terauchi Y, Miki H, Tamemoto H, Komeda K, et al. (1999) PPAR gamma mediates high-fat diet-induced hyper trophy and insulin resistance. Mol. Cell 4: 597–609.

57. Freytag SO, Paielli DL, Gilbert JD. (1994). Ectopic expression of the CCAAT/ enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev. 8: 1654–1663[1663].