Ranking with Fairness Constraints

L. Elisa Celis, Damian Straszak, and Nisheeth K. Vishnoi

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Abstract

The problem of ranking a set of items is a fundamental algorithmic task in today’s data-driven world, and has received significant attention in computer science. Ranking algorithms lie at the core of applications such as search engines, news feeds and recommendation systems. However, several recent events have pointed to the fact that algorithmic bias in rankings, which results in decreased fairness or diversity in the type of content presented, can promote stereotypes and propagate injustices. Motivated by such real-world applications, in this paper we initiate the study of the traditional ranking problem with additional fairness constraints. Given a collection of items along with 1) the value of placing an item at a particular position, 2) the collection of possibly non-disjoint attributes (e.g., gender, age, race) of each item and 3) a collection of fairness constraints that upper bound the number of items with each attribute that are allowed to appear in the top positions of the ranking, the goal is to output a ranking that maximizes value while respecting the constraints. This problem encapsulates various well-studied problems related to bipartite and hypergraph matching as special cases and turns out to be hard to approximate even with simple constraints.

Our main technical contributions are exact and approximation algorithms along with complementary hardness results that, together, come close to settling the approximability of the constrained ranking maximization problem. We identify a parameter Δ – the maximum number of properties any item has – and show that on the one hand when $\Delta = 1$, there is a fast algorithm to solve the problem exactly, but on the other hand when $\Delta \geq 3$, the problem is hard to approximate, and we present a near-optimal $O(\Delta)$-approximation algorithm for the problem under mild assumptions.

Unlike prior work on the approximability of constrained matching problems, our algorithm is polynomial time, even when the number of constraints is large (polynomially many), its approximation does not depend on the number of constraints, and it produces solutions with small constraint violations. Technically, our main results rely on novel insights about the standard linear programming relaxation for the constrained matching problem when the objective function satisfies certain properties that appear in common ranking metrics such as discounted cumulative gain (DCG), Spearman’s rho or Bradley-Terry, along with the nested structure of fairness constraints. Overall, our results contribute to the growing set of algorithms that can counter algorithmic bias, and the structural insights obtained may find use in other algorithmic contexts related to ranking problems.
Contents

1 Introduction
 1.1 Our contributions .. 3
 1.2 Discussion and future work 5
 1.3 Technical overview .. 7
 1.4 Other related work .. 7
 1.5 Organization of the rest of the paper. 11

2 LP-based exact and approximation algorithms 12
 2.1 The case of $\Delta = 1$... 12
 2.1.1 Integrality of LP solutions 12
 2.1.2 Fast greedy algorithm .. 14
 2.2 $O(\Delta)$-approximation algorithm 15

3 Hardness results .. 18

4 Dynamic programming based exact algorithms 21
 4.1 Geometric interpretation of fairness constraints 21
 4.2 The dynamic programming algorithm 21

A Non-integrality of the LP .. 26

B Values w_{ij} and common ranking metrics 26
1 Introduction

Selecting and ranking a subset of data is a fundamental problem in information retrieval and at the core of ubiquitous applications including Google search, Facebook feeds, Amazon products and Netflix recommendations. The basic algorithmic problem that arises is as follows: There are \(m \) items (e.g., webpages, images, or documents), and the goal is to output a list of \(n \ll m \) items in the order that is most valuable to a given user or company. For each item \(i \in [m] \) and a position \(j \in [n] \) one is given a number \(w_{ij} \) that captures the value that item \(i \) contributes to the ranking if placed at position \(j \). These values can be tailored to a particular query or user and a significant effort has gone into developing models and mechanisms to learn these parameters \[MRS^+08\]. In practice there are many ways one could arrive at \(w_{ij} \), each of which results in a slightly different metric for the value of a ranking – prevalent examples include versions of discounted cumulative gain (DCG) \[JK02\], Bradley-Terry \[BT52\] and Spearman’s rho \[Spe04\]. Generally, for such metrics, \(w_{ij} \) is non-increasing in both \(i \) and \(j \), and if we interpret \(i_1 < i_2 \) to mean that \(i_1 \) has better quality than \(i_2 \), then the value of the ranking can only increase by placing \(i_1 \) above \(i_2 \) in the ranking. Formally, such values satisfy the following property

\[
\begin{align*}
 w_{i_1 j_1} &\geq w_{i_2 j_1} \quad \text{and} \quad w_{i_1 j_1} \geq w_{i_1 j_2} \quad \text{and} \quad w_{i_1 j_1} + w_{i_2 j_2} \geq w_{i_1 j_2} + w_{j_1 i_2} \\
 \text{for all } 1 \leq i_1 < i_2 \leq m \text{ and } 1 \leq j_1 < j_2 \leq n \text{ (see Appendix \[\|\])}.
\end{align*}
\]

Then, the ranking maximization problem is to find an assignment of the items to each of the \(n \) positions that maximizes the total value obtained. In this form, the problem is equivalent to finding the maximum weight matching in a complete \(m \times n \) bipartite graph and has a simple solution, variants of which are widely deployed.

However, when optimizing rankings in this manner, recent events have demonstrated that algorithmic bias – where one type of content is overrepresented at the expense of another – can arise and lead to various problems. From search results that inadvertently promote stereotypes by over/under-representing sensitive attributes such as race and gender \[KMM15\] \[BCZ+16\], to news feeds that can promote extremist ideology \[CHR16\] and possibly even affect the results of elections \[Bae16\] \[BMA15\], it is clear that ensuring fair or unbiased rankings is often crucial. This observation is in line with a recent effort to define, understand and incorporate fairness, accountability and transparency across algorithms \[CDKV16\] \[DHP12\] \[BS15\] \[ZVGRG15\] \[Kir16\]. Towards this general goal, and in the context of the ranking problem defined above, we introduce the constrained ranking maximization problem that restricts allowable rankings to those in which no type of content dominates – i.e., to ensure the rankings are fair.

Since fairness (and bias) could mean different things in different contexts, rather than fixing a measure of fairness, we allow the user to specify a set of fairness constraints. As a motivating example, consider the setting in which the set of items consists of \(m \) images of computer scientists, each image is associated with several (possibly non-disjoint) sensitive attributes or properties such as gender, ethnicity and age, and a subset of size \(n \) needs to be selected and ranked. The user can specify an upper-bound \(u_{k\ell} \in \mathbb{Z}_{\geq 0} \) on the number of items with property \(\ell \) that are allowed to appear in the top \(k \) positions of the ranking. Formally, let \(\{1, 2, \ldots, p\} \) be a set of properties and let \(P_\ell \subseteq [m] \) be the set of items that have the property \(\ell \). Let \(x \) be an \(m \times n \) binary assignment matrix whose \(j \)-th column contains a one in the \(i \)-th position if item \(i \) is assigned to position \(j \) (each position must be assigned to exactly one item and each item can be assigned to at most one position). We say that \(x \) satisfies the fairness constraints if for all \(\ell \in [p] \) and \(k \in [n] \), we have

\[
\sum_{1 \leq j \leq k} \sum_{i \in P_\ell} x_{ij} \leq u_{k\ell},
\]

If we let \(\mathcal{B} \) be the family of all assignment matrices \(x \) that satisfy the fairness constraints, the constrained ranking optimization problem is: Given the sets of items with each property \(\{P_1, \ldots, P_p\} \), the fairness constraints \(\{u_{k\ell}\} \), and the values \(\{w_{ij}\} \), find

\[
\arg \max_{x \in \mathcal{B}} \sum_{i \in [m], j \in [n]} w_{ij} x_{ij}.
\]
This problem is equivalent to finding a maximum weight matching of size \(n \) that satisfies the given fairness constraints in a weighted complete \(m \times n \) bipartite graph, and now becomes non-trivial – its complexity is the central object of study in this paper.

Beyond the fairness and ethical considerations, traditional diversification concerns in information retrieval such as query ambiguity (does “jaguar” refer to the car or the animal?) or user context (does the user want to see webpages, news articles, academic papers or images?) can also be cast in our framework. Towards this, a rich literature on diversifying rankings has emerged in information retrieval. On a high-level, several approaches redefine the objective function to incorporate a notion of diversity and leave the ranking maximization problem unconstrained. E.g., a common approach is to re-weight the \(w_{ij} \)s to attempt to capture the amount of diversity item \(i \) would introduce at position \(k \) conditioned on the items that were placed at positions \(1, \ldots, k - 1 \) (see \[CG98\] \[ZH08\] \[CKC+08\] \[ZCL03\] \[ZMKL05\]), or casting it directly as an (unconstrained) multi-objective optimization problem \[YS16\]. Alternate approaches mix together or aggregate different rankings, e.g., as generated by different interpretations of a query \[RBCJ09\] \[DKNS01\]. Despite these efforts and the fact that all major search engines now diversify their results, highly uniform content is often still displayed – e.g., certain image searches can display results that have almost entirely the same attributes \[KMM15\]. Further, \[GS09\] showed that no single diversification function can satisfy a set of natural axioms that one would want any fair ranking to have. In essence, there is a tension between relevance and fairness – if the \(w_{ij} \)s for items that have a given property tend to be much higher than the rest, the above approaches may not correct for overrepresentation. Hence the reason to cast the problem as a constrained optimization problem: The objective is still determined by the values but the solution space is restricted by fairness constraints.

Theoretically, the fairness constraints come with a computational price: The constrained ranking maximization problem can be seen to generalize various \(\text{NP} \)-hard problems such as independent set, hypergraph matching and set packing. Unlike the unconstrained case, now, even checking if there is a complete feasible ranking (i.e., \(B \neq \emptyset \)) is \(\text{NP} \)-hard. As a consequence, in general, we cannot hope to produce a solution that does not violate any constraints. Some variants and generalizations of our problem have been studied in the TCS and optimization literature; here we mention the three most relevant. Note that some may leave empty positions in the ranking as opposed to selecting \(n \) elements to rank as we desire. \[AFK96\] considered the bipartite perfect matching problem with \(\text{poly}(m) \) constraints. They present a polynomial time randomized algorithm that finds a near-perfect matching which violates each constraint additively by at most \(O(\sqrt{m}) \). \[GRSZ14\] improved the above result to a \((1 + \varepsilon) \) approximation algorithm; however, the running time of their algorithm is roughly \(m^{K^{2.5}/\varepsilon^2} \) where \(K \) is the number of hard constraints and the output is a matching. \[St95\] studied the approximability of the packing integer program problem which, when applied to our setting, gives an \(O(\sqrt{m}) \) approximation algorithm. In our constrained ranking maximization problem all of these results seem inadequate as the number of fairness constraints is \(np \) which would make the running time of \[GRSZ14\] too large and an additive violation of \(O(\sqrt{m}) \) would render the upper bound constraints impotent.

The main technical contributions of this paper are exact and approximation algorithms for the constrained ranking maximization problem along with complementary hardness results which, together, come close to settling its approximability. To overcome the limitations of the past work on constrained matching problems, our results make use of two structural properties of such a formulation: A) The set of constraints can be broken into \(p \) groups; for each property \(\ell \in [p] \) we have \(n \) (nested) upper bound constraints, one for each \(k \in [n] \), and B) The objective function satisfies the property stated in (1). Both are natural in the information retrieval setting and could be useful in other algorithmic contexts involving rankings.
1.1 Our contributions

In this section we present our main results concerning the constrained ranking maximization problem defined above. For each of our results, we point out which structural assumptions the corresponding result relies on. Recall that \(m \geq n \) and, in practice, \(m \gg n \).

Let the type \(T_i := \{ \ell \in [p] : i \in P_\ell \} \) of item \(i \) be the set of properties that the item \(i \) has. Our first result is an exact algorithm for solving the constrained ranking maximization problem whose running time depends exponentially on the number of distinct \(T_is \), denote this number by \(q \).

Theorem 1.1 (Exact dynamic programming-based algorithm; see Theorem 4.1) There is an algorithm that solves the constrained ranking maximization problem in \(O(pqn^q + pm) \) time (where \(q \) is as above) when the values \(w \) satisfy property \((1) \).

This algorithm combines a geometric interpretation of our problem along with dynamic programming and proceeds by solving a sequence of \(q \)-dimensional sub-problems. The proof of Theorem 1.1 is provided in Section 4. When \(q \) is allowed to be large, the problem is NP-hard; see Theorem 3.1.

We cannot expect \(q \) to be constant in general, and even then it would be desirable to have algorithms whose running time is close to \(mp \), the size of the input.

Towards this we consider a natural parameter of the set of properties: The size of the largest \(T_i \), namely \(\Delta := \max_{i \in [m]} |T_i| \). The complexity of the constrained ranking maximization problem seems to show interesting behavior with respect to \(\Delta \) (note that \(\Delta \leq p \) and typically \(p \ll q \)). The case when \(\Delta = 1 \) corresponds to the setting where there are \(p \) disjoint properties, i.e., the properties partition the set of items. For instance, a set of images of humans could be partitioned based on the ethnicity or age of the individual. Note that even though \(q = p \) for \(\Delta = 1 \), this \(q \) could still be large and the previous theorem may have a prohibitively large running time.

However, when \(\Delta = 1 \) we can give an exact algorithm that relies on a natural linear programming (LP) relaxation for the constrained ranking maximization problem. Formally, the relaxation considers the set

\[
\Omega_{m,n} := \left\{ x \in [0,1]^{m \times n} : \sum_{j=1}^n x_{ij} \leq 1 \text{ for all } i \in [m], \text{ and } \sum_{i=1}^m x_{ij} = 1 \text{ for all } j \in [n] \right\}
\]

and the following linear program

\[
\text{max } \sum_{i=1}^m \sum_{j=1}^n w_{ij}x_{ij} \quad \text{s.t. } \sum_{i \in P_\ell} \sum_{j=1}^n x_{ij} \leq u_{k\ell}, \text{ for every } \ell \in [p] \text{ and } k \in [n].
\]

Observe that in the absence of fairness constraints, \((5) \) represents the maximum weight bipartite matching problem – it is well known that the feasible region of its fractional relaxation has integral vertices and hence the optimal values of these two coincide. However, in the constrained setting, even for \(\Delta = 1 \), the feasible region is no longer integral – it can have fractional vertices (see Section 3). For this reason, it is not true that maximizing any linear objective results in an integral or even optimal solution. Surprisingly, we prove that for \(\Delta = 1 \) the cost functions we consider are special and never yield optimal fractional (vertex) solutions.

Theorem 1.2 (Exact LP-based algorithm for \(\Delta = 1 \); see Theorems 2.1 and 2.3) Consider the above linear programming relaxation for the constrained ranking maximization problem when \(\Delta = 1 \) and the objective function satisfies \((1) \). Then there exists an optimal solution with integral entries and hence the relaxation is exact. Further, there exists a greedy algorithm to find an optimal integral solution in \(O(np + m) \) time.

The proof uses a combinatorial argument on the structure of tight constraints that crucially uses the assumption that \(\Delta = 1 \) and the property \((1) \) of the objective function, and the argument cannot be extended for \(\Delta > 1 \).
When trying to design algorithms for larger Δ, the first difficulty is that the constrained ranking feasibility problem remains NP-hard (in fact, hard to approximate) for $\Delta \geq 3$; see Theorems 1.1 and 3.2. In order to bypass this barrier, an algorithmically verifiable condition for feasibility is required. Towards this, for each $1 \leq k \leq n$, we consider the set
\[S_k := \{ l \in [p] : u_{(k-1)\ell} + 1 \leq u_{k\ell} \} \]
of all properties whose constraints increase by at least 1 when going from the $(k-1)st$ to the kth position. We observe that the following abundance of items condition is sufficient for feasibility:
\[(6) \quad \forall k \text{ there are } n \text{ items } i \text{ s.t. } T_i \subseteq S_k. \]

Simple examples show that this condition can be necessary for certain constraints $u_{k\ell}$. In practice, the abundance of items assumption is almost never a problem – the available items m (e.g., webpages) far outnumber the size of the ranking n (e.g., number of positions on the first search result page) and the number of properties p (i.e., there are only so many “types” of webpages).

The second obstacle is the fact that the complexity of the constrained ranking maximization problem can be entirely determined by the $u_{k\ell}s$. In particular, the problem remains NP-hard even when the sets P_1, P_2, \ldots, P_p are fixed and depend only on m, the only input is the numbers $u_{k\ell}$, and the goal is to check if there is a feasible solution; see Theorem 3.3. Further, unless we assume some kind of smoothness condition on the growth of $u_{k\ell}s$, any solution produced by a polynomial time algorithm would need to violate the upper bound conditions by an arbitrarily large constant multiplicative factor; see Theorem 3.3. Thus, we are forced to assume a smoothness condition on the $u_{k\ell}s$. The following natural condition suffices:
\[(7) \quad \forall k, \ell \quad u_{k\ell} \geq \alpha \cdot k \]
for some $\alpha \in (0, 1)$. In other words we always allow any property to appear at least some fixed percentage of the time in the top k positions. As earlier, we expect this condition to also be satisfied in practice for desirable sets of constraints. While one would not like an overrepresentation of any one property in the top k positions, we would also not want any property to be suppressed; that is exactly what condition (7) achieves.

We show that assuming these two conditions, there is an algorithm that achieves an $O(\Delta)$-approximation while only slightly violating the constraints. On the plus side, this result does not need assumption (1) on the objective function, rather only that the $w_{ij}s$ are non-negative. This result is near-optimal; we provide an $\Omega \left(\frac{\Delta}{\log \Delta} \right)$ hardness of approximation result (see Section 3).

Theorem 1.3 (O(Δ)-approximation algorithm; see Theorem 2.4) For the constrained ranking maximization problem, under the assumptions (6) and (7), there is an algorithm that in polynomial time outputs a ranking x with value at least $\Omega \left(\frac{1}{\Delta} \right)$ times the optimal one, such that x satisfies the fairness constraints with at most a twice multiplicative violation, i.e.,
\[\sum_{i \in P_\ell} \sum_{j=1}^k x_{ij} \leq 2 u_{k\ell}, \text{ for all } \ell \in [p] \text{ and } k \in [n]. \]
The algorithm is greedy, however, the proof is obtained by a non-trivial use of the dual-fitting method, the naive use of which would only result in an $O(n \cdot \Delta)$ approximation (see Section 1.3).

Lastly we summarize our hardness results for the constrained ranking problem.

Theorem 1.4 (Hardness Results – Informal) The following variants of the constrained ranking feasibility and constrained ranking maximization problem are NP-hard.

1. Deciding feasibility for the case of $\Delta \geq 3$ (Theorem 3.1).
2. Under the feasibility condition (1), approximating the optimal value of a ranking within a factor $O(\frac{\Delta}{\log \Delta})$, for any $\Delta \geq 3$ (Theorem 3.2).
3. Deciding feasibility when only the number of items m, number of rank positions n, and upper-bounds u are given as input; the properties are fixed for every m (Theorem 3.3).
4. For every constant c, deciding between whether there exists a feasible solution or every solution violates some constraint by a factor of c (Theorem 3.4).
1.2 Discussion and future work

In this paper, motivated by some central questions in information retrieval, we initiate the study of the complexity of a natural constrained optimization problem concerning rankings. Our results indicate that the constrained ranking maximization problem, which is a generalization of the classic bipartite matching problem, shows nuanced complexity. Both the structure of the constraints and the numbers appearing in upper bounds play a role in determining its complexity. Moreover, this problem generalizes several hypergraph matching/packing problems. Our algorithmic results bypass the obstacles implicit in the past theory work by leveraging on the structural properties of the constraints and common objective functions from information retrieval. More generally, our results not only contribute to the growing set of algorithms to counter algorithmic bias for fundamental problems, the structural insights obtained may find use in other algorithmic settings related to the rather broad scope of ranking problems.

Our work also opens several new problems and directions. The first question concerns the complexity of the constrained ranking maximization problem when \(\Delta = 2 \) – is it in \(\text{P} \)? The various constants appearing in our approximation algorithms are unlikely to be optimal and improving them remains important. A related question that deserves independent exploration is to study the complexity of sampling a constrained ranking from the probability distribution induced by the objective (rather than outputting the ranking that maximizes its value, output a ranking with probability proportional to its value). Finally, extending our results to the online setting seems like an important technical challenge which is also likely to have important practical consequences.

1.3 Technical overview

Overview of the proof of Theorem 1.1 We first observe that the constrained ranking maximization problem has a simple geometric interpretation. Every item \(i \in [m] \) can be assigned a property vector \(t_i \in \{0, 1\}^p \) whose \(\ell \)-th entry is 1 if item \(i \) has property \(\ell \) and 0 otherwise. We can then think of the constrained ranking maximization problem as finding a sequence of \(n \) distinct items \(i_1, i_2, \ldots, i_n \) such that

\[
\sum_{j=1}^k t_{ij} \leq u_k, \quad \text{for all } k \in [n]
\]

where \(u_k \) is the vector whose \(\ell \)-th entry is \(u_{k\ell} \). In other words, we require that the partial sums of the vectors corresponding to the top \(k \) items in the ranking stay within the region \([0, u_{k1}] \times [0, u_{k2}] \times \cdots \times [0, u_{kn}]\) defined by the fairness constraints.

Let \(Q := \{t_i : i \in [m]\} \) be the set of all the different property vectors \(t_i \) that appear for items \(i \in [m] \), and let us denote its elements by \(v_1, v_2, \ldots, v_q \). A simple but important observation is that whenever two items \(i_1, i_2 \in [m] \) (with say \(i_1 < i_2 \)) have the same property vector: \(t_{i_1} = t_{i_2} \), then in every optimal solution either \(i_1 \) will be ranked above \(i_2 \), only \(i_1 \) is ranked, or neither are used. This follows from the assumption that the weight matrix is monotone in \(i \) and \(j \) and satisfies the property as stated in [11].

Let us now define the following sub-problem that asks for the property vectors of a feasible solution: Given a tuple \((s_1, s_2, \ldots, s_q) \in \mathbb{N}^q \) such that \(k = s_1 + s_2 + \cdots + s_q \leq n \), what is the optimal way to obtain a feasible ranking on \(k \) items such that \(s_j \) of them have property vector equal to \(v_j \) for all \(j = 1, 2, \ldots, q \)? Given a solution to this sub-problem, using the observation above, it is easy to determine which items should be used for a given property vector, and in what order. Further, one can easily solve such a sub-problem given the solutions to smaller sub-problems (with a smaller sum of \(s_j \)'s), resulting in a dynamic programming algorithm with \(O(n^q) \) states and, hence, roughly the same running time.
Overview of the proof of Theorem 1.2. Unlike the $\Delta = 0$ case where the LP-relaxation has no non-integral vertex (it is the assignment polytope), as shown in Fact 2.2 even when $p = 1$, fractional vertices can arise. Theorem 1.2 implies that for $\Delta = 1$, although the feasible region of (5) is not integral in all directions, it is along the directions of interest. In the proof we first reduce the problem to the case when $m = n$ (i.e., when one has to rank all of the items) and w has the strict form of property (i.e., when the inequalities in assumption (i) are strict). Our strategy then is to prove that for every fractional feasible solution $x \in \Omega_{m,m}$ there is a direction $y \in \mathbb{R}^{m \times m}$ such that the solution $x' := x + \varepsilon y$ is still feasible (for some $\varepsilon > 0$) and its weight is larger than the weight of x. This implies that every optimal solution is necessarily integral.

Combinatorially, the directions we consider correspond to 4-cycles in the underlying complete bipartite graph, such that the weight of the matching can be improved by swapping edges along the cycle. The argument that shows the existence of such a cycle makes use of the special structure of the constraints in this family of instances.

To illustrate the approach, suppose that there exist two items $i_1 < i_2$ that have the same property $\ell \in [p]$, and for some ranking positions $j_1 < j_2$ we have

$$x_{i_1j_2} > 0 \quad \text{and} \quad x_{i_2j_1} > 0. \quad (8)$$

Following the strategy outlined above, consider $x' = x + \varepsilon y$ with $y \in \mathbb{R}^{m \times m}$ to be zero everywhere except $y_{i_1j_1} = y_{i_2j_2} = 1$ and $y_{i_1j_2} = y_{i_2j_1} = -1$. We would like to prove that the weight of x' is larger than the weight of x and that x' is feasible for some (possibly small) $\varepsilon > 0$. The reason why we gain by moving in the direction of y follows from property (i). Feasibility in turn follows because y is orthogonal to every constraint defining the feasible region. Indeed, the only constraints involving items i_1, i_2 are those corresponding to the property ℓ. Further, every such constraint is of the form $\langle 1_{R_k}, x \rangle \leq u_{k\ell}$ where 1_{R_k} is the indicator vector of a rectangle $R_k := P_k \times [k]$. Such a rectangle contains either all non-zero entries of y, two non-zero entries (with opposite signs), or none. In any of these cases, $\langle 1_{R_k}, y \rangle = 0$.

Using a reasoning as above, one can show that no configuration of the form (8) can appear in any optimal solution for i_1, i_2 that share a property ℓ. This implies that the support of every optimal solution has a certain structure when restricted to items that have any given property $\ell \in [p]$; this structure allows us to find an improvement direction in case the solution is not integral. To prove integrality we show that for every fractional solution $x \in \mathbb{R}^{m \times m}$ there exists a fractional entry $x_{ij} \in (0, 1)$ that can be slightly increased without violating the fairness constraints. Moreover since the i-th row and the j-th column must contain at least one more fractional entry each (since the row- and column-sums are 1), we can construct (as above) a direction y, along which the weight can be increased. The choice of the corresponding entries that should be altered requires some care, as otherwise we might end up violating fairness constraints.

The second result in Theorem 1.2 is an algorithm for solving the constrained ranking maximization problem for $\Delta = 1$ in optimal (in the input size) running time of $O(np + m)$. We show that a natural greedy algorithm can be used. More precisely, one iteratively fills in ranking positions by always selecting the highest value item that is still available and does not lead to a constraint violation. An inductive argument based that relies on property (i) and the $\Delta = 1$ assumption gives the correctness of such a procedure. Detailed proofs of both parts of Theorem 1.2 appear in Sections 2.1.1 and 2.1.2.

Overview of the proof of Theorem 1.3. Let $\Delta > 1$ be arbitrary. It is relevant to note that when the constraints are restricted to a single position k in the ranking, the problem becomes a variant of the weighted Δ-hypergraph b-matching problem. In this problem, one is given a Δ-

1By $\langle \cdot, \cdot \rangle$ we denote the inner product between two matrices, i.e., if $x, y \in \mathbb{R}^{m \times n}$ then $\langle x, y \rangle := \sum_{j=1}^{m} \sum_{i=1}^{n} x_{ij}y_{ij}$.

hypergraph $H = (V, E)$ (i.e., E is a collection of subsets of V, each of which has cardinality at most Δ), hyperedge weights and a vector of bounds $b \in \mathbb{N}^V$. The goal is to find a set of hyperedges $S \subseteq E$ of maximum total weight, such that every vertex $v \in V$ belongs to at most b_v hyperedges in S.

Our problem can be seen as a sequence of n nested instances of Δ-hypergraph b-matching: The properties $[p]$ are the set of vertices V of a hypergraph and each item $i \in [m]$ introduces a hyperedge $T_i \subseteq V$. Then, the constrained ranking maximization problem can be reformulated as follows: Find a sequence of hyperedges $T_{i_1}, T_{i_2}, \ldots, T_{i_n}$ (with distinct $i_j \in [m]$) such that

the degree of $\ell \in [p]$ in the hypergraph \{\begin{array}{l}$T_{i_1}, T_{i_2}, \ldots, T_{i_k}$\end{array}\} is at most $u_{k\ell}$.

The objective is to maximize $\sum_{j=1}^{n} w_{ij}$. In other words one is required to solve an incremental hypergraph matching problem – for every $k \in [n]$ add exactly one hyperedge to the solution so that the degree constraints $u_{k\ell}$ are satisfied.

There are polynomial time $O(\Delta)$-approximation algorithms known for the Δ-hypergraph matching problem \cite{Kabyle2009, Krylov2005}, hence a tempting approach could be to solve each instance of hypergraph b-matching separately and then try merge them into one incremental solution. However, it is not clear how to combine two or more solutions when inconsistencies arise between them. Furthermore, such a merging procedure would likely incur a loss in the quality of the solution, hence after n merges one would recover a bound incurring $\Omega(n)$ loss in the value.

Below we explain our approach on how to get around these obstacles and obtain an algorithm whose approximation ratio is independent of n. The most important part of our algorithm is a greedy procedure that finds a large weight solution to a slightly relaxed problem in which not all positions in the ranking have to be occupied. It processes pairs $(i, j) \in [m] \times [n]$ in non-increasing order of weights w_{ij} and puts item i in position j whenever this does not lead to constraint violation.

To analyze this algorithm we consider an LP-relaxation that is a slight modification of \cite{Kabyle2009}; instead of requiring that $x \in \Omega_{m,n}$ we relax it to $x \in \tilde{\Omega}_{m,n}$ where

$$\tilde{\Omega}_{m,n} := \left\{ x \in [0, 1]^{m \times n} : \sum_{j=1}^{n} x_{ij} \leq 1 \text{ for all } i \in [m], \text{ and } \sum_{i=1}^{m} x_{ij} \leq 1 \text{ for all } j \in [n] \right\}.$$

Let us denote by $\text{val}(x)$ the objective value of the linear relaxation, i.e., $\sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} w_{ij}$. To analyze our algorithm we study the dual program. The variables in the dual are $r \in \mathbb{R}^m$, $c \in \mathbb{R}^n$ and $y \in \mathbb{R}^{n \times \ell}$, where r and c correspond to the constraints defining $\tilde{\Omega}_{m,n}$ and y corresponds to fairness constraints. The dual objective is

$$\text{val}(r, c, y) := \sum_{i=1}^{m} r_i + \sum_{j=1}^{n} c_j + \sum_{\ell=1}^{p} \sum_{k=1}^{n} y_{k\ell} u_{k\ell}$$

and the dual constraints are: $r \geq 0$, $c \geq 0$, $y \geq 0$ and

$$r_i + c_j + \sum_{\ell \in T_i} y_{k\ell} \geq w_{ij} \quad \text{for every } i \in [m], j \in [n].$$

We would like to find a dual feasible solution (r, c, y) such that if $x \in \mathbb{R}^{m \times n}$ is the greedy solution to the primal problem, then

$$\text{val}(r, c, y) \leq O(\Delta) \cdot \text{val}(x)$$

and, hence, because of weak duality, x is an $O(\Delta)$-approximate solution to the primal problem.

We now describe how to construct such a dual solution based on the choices made by the greedy algorithm. Let us first focus on making the dual solution feasible (i.e., satisfy \cite{Kabyle2009}) and we reason about \cite{Kabyle2009} later.

For every (i, j) such that $x_{ij} = 1$ in the greedy solution, we set $r_i = c_j = w_{ij}$. By doing this we guarantee that the inequality \cite{Kabyle2009} holds for any cell (i', j') that was not taken to the solution
because the row i' or the column j' was already occupied. Indeed suppose $x_{ij'} = 1$ and $x_{i'j'} = 0$ because (i', j') was considered after (i, j'). In such a case $w_{ij'} \geq w_{i'j'}$, hence $d'_j = w_{i'j'} \geq w_{ij'}$ and (10) holds for (i', j').

It remains to design a strategy for updating the dual variables so that the inequality (10) also holds in the case when (i', j') was rejected because of some fairness constraint. Intuitively, the dual variables must be set in such a way that the pairs (i, j) that are selected by the greedy algorithm pay for the ones that were not selected because of some constraint in which (i, j) was involved. As a first attempt, for every such pair (i, j) that was selected and for every property $\ell \in T_i$, increase $y_{n\ell}$ by w_{ij}. Note that by a similar reasoning as before, if (i', j') was rejected because of a fairness constraint on a rectangle $P_\ell \times [k]$ for some $\ell \in T_j' \cap [k]$ and $k \geq j'$, then there exists at least one other pair $(i, j) \in P_\ell \times [k]$ that was taken by the solution and, hence, $y_{n\ell} \geq w_{ij} \geq w_{i'j'}$ and thus (10) is satisfied for (i', j'). The only issue with such a strategy is that every such increase of $y_{n\ell}$ by w_{ij} concentrates $w_{ij} \cdot u_{n\ell}$ to val(r, c, y). Thus, in total, we might get

$$\text{val}(r, c, y) \geq \sum_{\ell = 1}^{p} \sum_{k = 1}^{n} y_{k\ell} u_{k\ell} \approx \Delta \cdot n \cdot \text{val}(x),$$

which would yield a much higher approximation factor of $\Omega(\Delta \cdot n)$. Thus, we need to be careful when increasing dual variables in order to ensure that we do not pay too much in the objective.

Our refined strategy is as follows: Whenever the greedy algorithm selects some pair (i, j), increase the dual variables $y_{k\ell}$ (for all $\ell \in T_i$) by roughly w_{ij}/k where k is some position between j and n. Under such a strategy, one can prove that

$$\text{val}(r, c, y) = O(\Delta) \cdot \text{val}(x).$$

It remains to select the right value of k in the above strategy so that the dual solution obtained at the end is indeed feasible. It turns out that under the assumption that $u_{k\ell} \geq \alpha \cdot k$ for some constant $\alpha \in (0, 1)$ it suffices to take $k \approx j/\alpha$.

The proof of feasibility relies on the fact that if (i', j') is not selected because of a constraint on a rectangle $P_\ell \times [k]$ then there are at least $\Omega(k)$ pairs (i, j) in the solution that significantly contributed to one of the dual variables $y_{k\ell}$ for $j' \geq k$. This suffices to conclude that (10) is satisfied. It is then enough to observe that since the problem solved was a relaxation of the original ranking maximization problem, the approximation ratio we obtain with respect to the original problem is still $O(\Delta)$.

It remains to complete the ranking by filling in any gaps that may have been left by the above procedure. This can be achieved in a greedy manner that only increases the value of the solution, and violates the constraints by at most a multiplicative factor of 2. A detailed proof of the theorem appears in Section 2.2.

Overview of the proof of Theorem 1.4. Our hardness results are based on a general observation that one can encode various types of packing constraints using instances of the constrained ranking maximization and feasibility problem. The first result (Theorem 5.1) – NP-hardness of the feasibility problem (for $\Delta \geq 3$) is established by a reduction from the hypergraph matching problem. Given an instance of the hypergraph matching problem one can think of its hyperedges as items and its vertices as properties. Degree constraints on vertices can then be encoded by upper bound constraints on the number of items that have a certain property in the ranking. The inapproximability result (Theorem 5.2) is also established by a reduction from the hypergraph matching problem, however in this case one needs to be more careful as the reduction is required to output instances that are feasible.

Our next hardness result (Theorem 5.3) illustrates that the difficulty of the constrained ranking optimization problem could be entirely due to the upper bound numbers $u_{k\ell}$. In particular, even when the part of the input corresponding to which item has which property is fixed, and only
depends on m (and, hence, can be pre-processed as in [FJ12, KPV12]), the problem remains hard. This is proven via a reduction from the independent set problem. The properties consists of all pairs of items \(\{i_1, i_2\} \) for \(i_1, i_2 \in [m] \). Given any graph \(G = (V, E) \) on \(m \) vertices, we can set up a constrained ranking problem whose solutions are independent sets in \(G \) of a certain size. Since every edge \(e = \{i_1, i_2\} \in E \) is a property, we can set a constraint that allows at most one item (vertex) from this property (edge) in the ranking.

Finally, Theorem 3.3 states that it is not only hard to decide feasibility but even to find a solution that does not violate any constraint by more than a constant multiplicative factor \(c \in \mathbb{N} \). The obstacle in proving such a hardness result is that, typically, even if a given instance is infeasible, it is easy to find a solution that violates many constraints by a small amount. To overcome this problem we employ an inapproximability result for the maximum independent set problem by [Has96] and an idea by [CK05]. Our reduction (roughly) puts a constraint on every \((c + 1)\)-clique in the input graph \(G = (V, E) \), so that at most one vertex (item) is picked from it. Then a solution that does not violate any constraint by a multiplicative factor more than \(c \) corresponds to a set of vertices \(S \) such that the induced subgraph \(G[S] \) has no \(c \)-clique. Such a property allows us to prove (using elementary bounds on Ramsey numbers) that \(G \) has a large independent set. Hence, given an algorithm that is able to find a feasible ranking with no more than a \(c \)-factor violation of the constraints, we can approximate the maximum size of an independent set in a graph \(G = (V, E) \) up to a factor of roughly \(|V|^{1-1/c}\); which is hard by [Has96].

1.4 Other related work

Information retrieval, which focuses on selecting and ranking subsets of data, has a rich history in computer science, and is a well-established subfield in and of itself; see, e.g., foundational works [Buc85, Sal89]. The probability ranking principle (PRP) forms the foundation of information retrieval research [MK60, Rob77]; in our context it states that a system’s ranking should order items by decreasing value. Our problem formulation and solutions are in line with this – subject to satisfying the diversity constraints.

A related problem is diverse data summarization in which a subset of items with varied properties must be selected from a large set [PDSAT12, CDKV16]. However, the formulation of the problem is considerably different as there is no need to produce a ranking of the selected items, and hence also no ranking constraints. Extending work on fairness in classification problems [ZWS+13], the fair ranking problem has also been studied as an (unconstrained) multi-objective optimization problem, and various metrics for measuring the fairness of a ranking have been proposed [YS16].

Combining the learning of values along with the ranking of items has also been studied [RKJ08, SRG13]; in each round an algorithm chooses an ordered list of \(k \) documents as a function of the estimated values \(w_{ij} \) and can receive a click on one of them. These clicks are used to update the estimate of the \(w_{ij} \)s, and bounds on the regret (i.e., learning rate) can be given using a bandit framework. In this problem, while there are different types of items that can affect the click probabilities, there are no constraints on how they should be displayed.

Recent work has shown that, in many settings, there are impossibility results that prevent us from attaining both property and item fairness [KMR17]. Indeed, our work focuses on ensuring property fairness (i.e., no property is overrepresented), however this comes at an expense of item fairness (i.e., depending on which properties an item has, it may have much higher / lower probability of being displayed than another item with the same value). In our motivating application we deal with the ranking of documents or webpages, and hence are satisfied with this tradeoff. However, further consideration may be required if, e.g., we wish to rank people as this would give individuals different likelihoods of being near the top of the list based on their properties rather than solely on their value.
1.5 Organization of the rest of the paper.

Our LP-based results are presented in Section 2. In particular, Section 2.1 contains the proof of Theorem 1.2 which shows that there exists an integral solution and gives an exact algorithm for \(\Delta = 1 \), and Section 2.2 contains the proof of Theorem 1.3 which gives our approximation result for general \(\Delta \). The proof of Theorem 1.1 on the exact (but potentially slow) algorithm for general \(\Delta \) is presented in Section 4. Our hardness results are presented in Section 3. Finally in Appendix B we give a brief overview of some common ranking metrics and explain how they can be captured by values \(w_{ij} \) that satisfy (1).

2 LP-based exact and approximation algorithms

2.1 The case of \(\Delta = 1 \)

2.1.1 Integrality of LP solutions

Theorem 2.1 Consider the linear programming relaxation (5) for the constrained ranking maximization problem when the properties \(P_1, \ldots, P_p \) are pairwise disjoint (i.e., \(\Delta = 1 \)). If \(w \in \mathbb{R}^{m \times n}_{\geq 0} \) has property (1), then there exists an optimal integral solution \(x^* \in \{0, 1\}^{m \times n} \) to (5).

Proof: Without loss of generality, we can assume that \(n = m \) via a simple extension of the problem as follows: Extend the matrix \(w \in \mathbb{R}^{m \times n} \) to a square matrix \(\tilde{w} \in \mathbb{R}^{m \times m} \) by setting

\[
\tilde{w}_{ij} = \begin{cases} w_{ij} & \text{for } i \in [m] \text{ and } j \in [n] \\ 0 & \text{for } i \in [m] \text{ and } j \in \{n+1, \ldots, m\} \end{cases}
\]

Further, for every \(\ell \in [p] \) and \(k \in \{n+1, \ldots, m\} \) we set \(u_{k\ell} = k \); i.e., no constraint is imposed on these positions. Note that \(\tilde{w} \) still satisfies property (1). Moreover, every solution \(x \in \Omega_{m,n} \) to the original problem (5) can be extended to a solution \(\tilde{x} \in \Omega_{m,m} \) while preserving the weight; i.e., \(\langle w, x \rangle = \langle \tilde{w}, \tilde{x} \rangle \) (where \(\langle \cdot, \cdot \rangle \) denotes the inner product between two matrices, i.e., \(\langle w, x \rangle = \sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij} x_{ij} \)). Similarly, every solution \(\tilde{x} \) to the extended problem, when restricted to first \(n \) columns, yields a solution to the original problem with the same weight. Thus, it suffices to prove that the extended problem has an optimal integral solution, and for the remainder of this section we assume that \(n = m \).

For simplicity, assume that the matrix \(w \) satisfies the strict variant of property (1); i.e., for all \(1 \leq i_1 < i_2 \leq m \) and \(1 \leq j_1 < j_2 \leq m \) we have

\[
w_{i_1 j_1} > w_{i_2 j_1} \quad \text{and} \quad w_{i_1 j_2} > w_{i_2 j_2} \quad \text{and} \quad w_{i_1 j_1} + w_{i_2 j_2} > w_{i_1 j_2} + w_{i_2 j_1}.
\]

This can be achieved by a small perturbation of the weights without changing the optimal ranking.

Our proof consist of two phases. In the first phase, we show that every optimal solution satisfies a certain property on its support. In the second phase we show that no optimal solution that has this property can have fractional entries. Let us state the property of a feasible solution \(x \in \Omega_{m,m} \) that we would like to establish:

\[
(11) \quad \forall \ell \in [p] \, \forall_{i_1, i_2 \in P_\ell} \, \forall_{j_1, j_2 \in [m]} \, \left(i_1 < i_2 \land j_1 < j_2 \right) \Rightarrow x_{i_2 j_1} \cdot x_{i_1 j_2} = 0.
\]

In other words, whenever we have two items \(i_1, i_2 \) that have the same property \(\ell \), if \(i_1 \) is before \(i_2 \) (i.e., \(i_1 \) is better than \(i_2 \)) then for any position \(j_1, j_2 \in [m] \) such that \(j_1 \) is above \(j_2 \), then \(x_{i_2 j_1} \) and \(x_{i_1 j_2} \) cannot both be positive. We show that if \(x \) does not satisfy condition (11) then it is not optimal.

To this end, take a fractional solution \(x \) for which there is some \(i_1, i_2 \in P_\ell \) and \(j_1, j_2 \in [m] \) for which the condition does not hold. Now, consider a solution of the form \(x' = x + y \) where \(y = \varepsilon (e^{(i_1 j_1)} + e^{(i_2 j_2)} - e^{(i_1 j_2)} - e^{(i_2 j_1)}) \) for some \(\varepsilon > 0 \) and \(e^{(i,j)} \in \mathbb{R}^{m \times m} \) denotes the matrix with
a single non-zero entry at \((i,j)\) of value 1. Since \(x_{i_1j_2} > 0\) and \(x_{i_2j_1} > 0\), we can find some \(\varepsilon > 0\) such that \(x' \geq 0\). Furthermore, we claim that such a solution \(x'\) is still feasible for \((5)\). Indeed, for every item \(i \in [m]\) we have \(\sum_{j=1}^{m} y_{ij} = 0\) we can conclude that
\[
\sum_{j=1}^{m} x'_{ij} = \sum_{j=1}^{m} x_{ij} \leq 1.
\]

Similarly, for every rank position \(j \in [m]\), we have \(\sum_{i=1}^{m} x'_{i,j} = \sum_{i=1}^{m} x_{i,j} = 1\). Hence, \(x' \in \Omega_{m,m}\).

It remains to show that \(x'\) satisfies all of the fairness constraints. Note that it is enough to consider fairness constraints coming from the property \(\ell \in [p]\), as \(i_1, i_2 \in P_\ell\), \(i_1, i_2 \notin P_\ell\) for any \(\ell \neq \ell\), and variables \(x_{i_1j_1}, x_{i_1j_2}, x_{i_2j_1}, x_{i_2j_2}\) do not appear in other constraints. Every such constraint is of the form \(\langle 1_{R_k}, x \rangle \leq u_{k\ell}\) where \(1_{R_k}\) is the indicator vector (matrix) of the rectangle (i.e., submatrix) \(P_k \times [k]\). Since \(\langle 1_{R_k}, y \rangle = 0\) for every such rectangle, we have\(\langle 1_{R_k}, x' \rangle = \langle 1_{R_k}, x + \varepsilon y \rangle = \langle 1_{R_k}, x \rangle \leq u_{k\ell}\).

Therefore \(x'\) is feasible for \((5)\). Furthermore, because of the (strict) property \((1)\), we have:
\[
\langle w, x' \rangle = \langle w, x + \varepsilon y \rangle = \langle w, x \rangle + \varepsilon (w_{i_1j_1} + w_{i_2j_2} - w_{i_1j_2} - w_{i_2j_1}) > \langle w, x \rangle.
\]
As this is a feasible solution with a strictly better objective value, we conclude that \(x\) was not optimal. Hence, every optimal solution necessarily satisfies \((5)\).

Suppose now, for sake of contradiction, that \(x\) satisfies \((5)\) and \(x\) is not integral. Consider a fractional entry \(x_{i_0j_0} \in (0, 1)\) of \(x\) with \(i_0\) as small as possible, and (in case of a tie) \(j_0\) as small as possible. Suppose that the item \(i_0\) belongs to \(P_\ell\) for some \(\ell \in [p]\). Note that there exists an entry \((i_0, j_1)\) with \(j_1 > j_0\) such that \(x_{i_0j_1} > 0\). This is due to the fact that
\[
\sum_{j=1}^{j_0} x_{i_0j} = 1 \quad \text{and} \quad \sum_{j=1}^{j_0} x_{i_0j} = x_{i_0j_0} < 1.
\]
Fix the smallest possible \(j_1\) with this property. Because of the constraint \(\sum_{j=1}^{m} x_{ij_0} = 1\), there exists at least one more fractional entry in the \(j_0\)th column, let us call it \(x_{i_1j_0}\). It follows that \(i_1 > i_0\). Note also that \(i_1 \notin P_\ell\), as if \(i_1 \in P_\ell\) then condition \((11)\) would be violated.

Let us again consider a new candidate solution using the indices defined above:
\[
x' := x + \varepsilon (e^{(i_1j_1)} + e^{(i_2j_2)} - e^{(i_1j_2)} - e^{(i_2j_1)}).
\]
We show that \(x'\) is feasible for some \(\varepsilon > 0\), which then contradicts the fact that \(x\) is optimal because of the strict version of property \((1)\). To do this, it suffices to ensure that \(x'\) does not violate any fairness constraints imposed by the property \(\ell \in [p]\). Note that for \(k \notin \{j_0, j_0 + 1, \ldots, j_1\}\) the constraints
\[
\sum_{i \in P_\ell} \sum_{j=1}^{k} x'_{ij} = \sum_{i \in P_\ell} \sum_{j=1}^{k} x_{ij} \leq u_{k\ell}
\]
remain satisfied. Hence, it only remains to show that no constraint \(\sum_{i \in P_\ell} \sum_{j=1}^{k} x_{ij} \leq u_{k\ell}\) is tight at \(x\) for \(k \in \{j_0, j_0 + 1, \ldots, j_1\}\).

Observe that because of our choice of \((i_0, j_0)\), all entries in the rectangle \(P_\ell \times [j_0 - 1]\) are integral. Furthermore, in the rectangle \(P_\ell \times \{j_0, j_0 + 1, \ldots, j_1 - 1\}\), the only non-zero entry is \(x_{i_0j_0} \in (0, 1)\) due to the fact that \(x_{i_0j_1} > 0\) and condition \((11)\) is satisfied. Now, because \(u_{k\ell} \in \mathbb{Z}\) but for \(k\) as above \(\sum_{i \in P_\ell} \sum_{j=1}^{k} x_{ij} \notin \mathbb{Z}\), the constraint cannot be tight. Thus, \(x'\) is feasible for some \(\varepsilon > 0\) and hence \(x\) is not an optimal solution to \((5)\). Hence, no optimal solution has fractional entries.

In contrast to the above theorem, some vertices of the feasible region might be non-integral.

Fact 2.2 There exists an instance of the ranking maximization problem for \(\Delta = 1\), such that the feasible region of \((5)\) has fractional vertices.

The proof appears in Appendix [A].
2.1.2 Fast greedy algorithm

Due to the special structure for $\Delta = 1$, we are able to find a fast simple algorithm for this case.

Theorem 2.3 There exists an algorithm which, given an instance of the constrained ranking maximization problem with $\Delta = 1$ and objective function that satisfies property (I), outputs an optimal ranking in $O(m + n \cdot p)$ time.

Proof: For simplicity, assume that w satisfies the strict variant of property (I) (with strict inequalities in the definition). This can be assumed without loss of generality by slightly perturbing w. Consider the following greedy algorithm that iteratively constructs a ranking $\pi : [n] \rightarrow [m]$ (i.e., $\pi(j)$ is the item ranked at position j, for all $j \in [n]$).

- For $j = 1$ to n,
 - Let $i \in [m]$ be the smallest index of an item which was not yet picked and can be added at position j without violating any constraint. If there is no such i, output INFEASIBLE.
 - Set $\pi(j) = i$.
- Output π.

It is clear that if the above algorithm outputs a ranking $\pi : [n] \rightarrow [m]$ then π is feasible. Assume now that it indeed outputs a ranking, we will show that it is optimal.

Take any optimal ranking π^*. Let P_ℓ be any property (for $\ell \in [p]$) and let i_1, i_2, \ldots, i_s be the list of items in P_ℓ in increasing order. We claim that if π^* ranks exactly r items from P_ℓ then these have to be i_1, i_2, \ldots, i_r, in that order. For this, note that when swapping two elements, say $i_1, i_2 \in P_\ell$, at positions j_2, j_1 in the ranking (with say $j_1 < j_2$) the change in weight is equal to

$$w_{i_1 j_1} + w_{i_2 j_2} - w_{i_1 j_2} - w_{i_2 j_1} > 0$$

because of the (strict) property (I). Hence it is always beneficial to rank the items in P_ℓ in increasing order. Furthermore, it can be argued using monotonicity that it is always optimal to select the r items with smallest indices for the ranking.

One of the consequences of the above observations is that we can assume that $|P_\ell| \leq n$ for all $\ell \in [q]$ and hence $m \leq np$. This is because we can keep at most n best items with property ℓ, and discard the remaining ones as they will not be part of any optimal solution. Such a discarding can be done in time $O(m)$ time if an instance with $|P_\ell| > n$ is given.

Further, the above observation allows us to now prove optimality of the greedy strategy. Take the largest number k such that π and π^* agree on $[k - 1]$, i.e., $\pi(j) = \pi^*(j)$ for $j = 1, 2, \ldots, k - 1$. If $k - 1 = n$ then there is nothing to prove. Let us then assume that $k - 1 < n$ and $\pi(k) = i_A \neq i_O = \pi^*(k)$. There are two cases: either i_A is ranked in π^* or it is not.

In the first case, let k' be the position in π^* such that $\pi^*(k') = i_A$, clearly $k' > k$. Let π be a ranking identical to π^* but with positions k and k' swapped. We claim that π is still feasible and has larger weight than π^*. The claim about weights follows easily from the strict property (I). Let us now reason about feasibility of π. Let ℓ be the only property of i_A (i.e. $i_A \in P_\ell$) and let h be the total number of elements of property ℓ in top-$(k - 1)$ positions of π (or equivalently of π^*). Note that by doing the swap we could have only violated some constraint corresponding to ℓ. Since $\pi(k) = i_A$ we know that $u_{k \ell} \geq h + 1$ (and similarly $u_{k+1 \ell}, u_{k+2 \ell}, \ldots, u_{n \ell} \geq h + 1$). Further, because of our previous observation, no item $i \in P_\ell$ is ranked at position j for $k \leq j < k'$ in π^*. For this reason, the fairness constraints corresponding to ℓ at $j = k, k + 1, \ldots, k'$ are satisfied for π (there are $h + 1$ elements of property ℓ in top-k' items in π). The second case is very similar. One

2This alternate notation makes the exposition in this section cleaner – see also the notation and problem formulation in Section 3.1.
can reason that if \(i_A \) is not included in the ranking \(\pi^* \) then by changing its \(k \)th position to \(i_A \) we obtain a ranking which is still feasible but has larger value.

Hence, if \(k - 1 < n \), this contradicts the optimality of \(\pi^* \). Thus, \(\pi = \pi^* \) and \(\pi \) is the optimal ranking. By the same argument, one can show that if the instance is feasible, the greedy algorithm will never fail to output a solution (i.e., report infeasibility).

Let us now discuss briefly the running of such a greedy algorithm. For every property \(\ell \) we can maintain an ordered list \(L_\ell \) of elements of \(P_\ell \) which were not yet picked to the solution and a count \(C_\ell \) of items of property \(\ell \) which are already part of the solution. Then for every ranking position \(k \in [n] \) we just need to look at the first element of every list \(L_\ell \) for \(\ell \in [p] \) and one of them will be “the best feasible item”. Having the counters \(C_\ell \) we can check feasibility in \(O(1) \) time and we can also update our lists and counters in \(O(1) \) per rank position. For this reason, every rank position is handled in \(O(p) \) time. Note also that at the beginning all the lists can be constructed in total \(O(m) \) time, since we can go over the items in the reverse order and place every item at the beginning of a suitable list \(L_\ell \) in \(O(1) \) time. Hence, the total running time is \(O(m + n \cdot p) \).

2.2 \(\Theta(\Delta) \)-approximation algorithm

Theorem 2.4 There exists a polynomial time algorithm which given an instance of the constrained ranking maximization problem satisfying condition [6] and [7] and every \(\ell \in [p], k \in [n] \), outputs a ranking \(x \in \{0, 1\}^{m \times n} \) whose weight is at least \(O\left(\frac{\alpha^2}{\Delta}\right) \) times the optimal one and satisfies all fairness constraints up to a factor of 2, i.e.,

\[
\sum_{i \in P_\ell} \sum_{j=1}^k x_{i,j} \leq 2u_{k\ell}, \text{ for all } \ell \in [p] \text{ and } k \in [n].
\]

Proof: The algorithm can be divided into two phases: First we construct a partial ranking that may leave some positions empty, and then we refine it to yield a complete ranking.

The first phase is based on finding an integer solution to the following linear program:

\[
\text{(12)} \quad \max_{x \in \Omega_{m,n}} \sum_{i=1}^m \sum_{j=1}^m x_{ij} w_{ij} \quad \text{s.t.} \quad \sum_{i \in P_\ell} \sum_{j=1}^k x_{ij} \leq u_{k\ell}, \text{ for all } \ell \in [p] \text{ and } k \in [n],
\]

where

\[
\Omega_{m,n} := \left\{ x \in [0, 1]^{m \times n} : \sum_{j=1}^n x_{ij} \leq 1 \text{ for all } i \in [m], \text{ and } \sum_{i=1}^m x_{ij} \leq 1 \text{ for all } j \in [n] \right\}.
\]

Note that this is a relaxation of our usual problem as it does not require every position in the ranking to be filled. In the proof we will often refer to a pair \((i, j) \in [m] \times [n]\) as a cell, since we treat them as entries in a 2-dimensional array. Consider the following greedy algorithm which can be used to find a (potentially non-optimal) integral solution \(z \in \{0, 1\}^{m \times n} \) to the problem \text{(12)}:

- Order the cells \((i, j)\) according to non-increasing values of \(w_{ij} \).
- Set \(z_{ij} = 0 \) for all \((i, j) \in [m] \times [n]\).
- Process the cells \((i, j)\) one by one:
 - if adding \((i, j)\) to the solution does not cause any constraint violation, set \(z_{ij} = 1 \),
 - otherwise, move to the next cell.

We claim that the solution \(z \in \{0, 1\}^{m \times n} \) given by this algorithm has value at least \(O\left(\frac{\alpha^2}{\Delta}\right) \) times the optimal value of the linear program \text{(12)}. In other words,

\[
\sum_{1=1}^m \sum_{j=1}^m z_{ij} w_{ij} \geq O\left(\frac{\alpha^2}{\Delta}\right) \text{OPT}.
\]
To prove this, we now state and analyze the dual program. The variables are \(r \in \mathbb{R}^m, c \in \mathbb{R}^n \) and \(y \in \mathbb{R}^{n \times p} \):

\[
\begin{align*}
\text{min} & \quad \sum_{i=1}^{m} r_i + \sum_{j=1}^{n} c_j + \sum_{k \in P_{\ell} j \leq k} u_{k\ell} y_{k\ell}, \\
\text{s.t.} & \quad r_i + c_j + \sum_{i \in P_{\ell} j \leq k} y_{k\ell} \geq w_{ij} \quad \text{for all } i \in [m] \text{ and } j \in [n] \\
& \quad c, r, y \geq 0.
\end{align*}
\]

For a feasible primal solution \(x \in [0,1]^{m \times n} \) let \(\text{val}(x) \) be the objective value of the primal program, i.e.,

\[
\text{val}(x) := \sum_{i=1}^{m} \sum_{j=1}^{n} x_{ij} w_{ij}.
\]

Similarly, by \(\text{val}(r, c, y) \) we denote the value of the dual objective:

\[
\text{val}(r, c, y) := \sum_{i=1}^{m} r_i + \sum_{j=1}^{n} c_j + \sum_{k \in P_{\ell} j \leq k} u_{k\ell} y_{k\ell}.
\]

By strong duality we know for any pair of feasible primal and dual solutions \(x \) and \((r, c, y) \) we have:

\[
\text{val}(x) \leq \text{OPT} \leq \text{val}(r, c, y),
\]

where \(\text{OPT} \) is the common optimal value of the primal \((12)\) and dual \((13)\) programs.

Let \(z \) be the solution constructed by the algorithm above. We now show that there exists a feasible dual solution \((r, c, y) \) such that

\[
\text{val}(r, c, y) \leq O(\Delta \cdot \alpha^{-2}) \cdot \text{val}(z).
\]

This, together with duality \((14)\), suffices to yield our result. Let \(\varepsilon > 0 \) be a small constant, e.g., \(\varepsilon = \frac{\alpha}{2} \). Define the dual variables by an algorithm that is run parallel to the greedy procedure:

- Initialize: \(y := 0, r := 0, c := 0 \),
- Whenever \(z_{ij} \) is set to 1:
 - set \(r_i := r_i + w_{ij} \) and \(c_j := c_j + w_{ij} \)
 - let \(k := \min \left(n, \left\lceil \frac{j}{\varepsilon} \right\rceil \right) \) and for every property \(\ell \in T_i \), set
 \[
 y_{k\ell} := y_{k\ell} + \frac{w_{ij}}{j \cdot (\alpha - \varepsilon)}.
 \]

We now show that \((r, c, y) \) is a feasible solution. Fix a cell \((i_0, j_0) \in [m] \times [n] \); we would like to prove that

\[
(r_{i_0} + c_{j_0} + \sum_{\ell \in T_{i_0} k \leq j_0} y_{k\ell} \geq w_{i_0j_0}).
\]

When processing \((i_0, j_0)\) during the course of the algorithm, one of the following three things will occur:

1. If \((i_0, j_0)\) was selected in the solution, then \(r_{i_0}, c_{j_0} \geq w_{i_0j_0} \), and hence \(r_{i_0} + c_{j_0} \geq 2w_{i_0j_0} \geq w_{i_0j_0} \) so \((15)\) holds.
2. If \((i_0, j_0)\) was not selected because \(i_0 \) was already assigned, then, because the cells were selected greedily, \(r_{i_0} \geq w_{i_0j'} \) for some \(j' \) such that \(w_{i_0j'} \geq w_{i_0j_0} \). Similarly, if the position \(j_0 \) was already occupied.
3. If \((i_0, j_0)\) was not selected due to a tight fairness inequality, then there is some

\[
\sum_{i_0 \in P_{\ell} j \leq k_0} z_{ij} = u_{k_0\ell}
\]
for some $k_0 \geq j_0$. We will prove that
\[\sum_{i \in P_\ell} \sum_{k \geq k_0} y_{k \ell} \geq w_{i o j_0}, \]
which implies \([15]\).

Note that every cell \((i', j')\) from the rectangle \(P_\ell \times [k_0]\) such that \(j' \geq \lceil \varepsilon k_0 \rceil\), which was added to the solution, contributes at least
\[\frac{w_{i' j'}}{\lceil \varepsilon k_0 \rceil (\alpha - \varepsilon)} \geq \frac{w_{i' j'}}{k_0 (\alpha - \varepsilon)}, \]
to the sum \(\sum_{i \in P_\ell} \sum_{k \geq k_0} y_{k \ell}\); this follows because \(\lceil \frac{j'}{\varepsilon} \rceil \geq k_0 \geq j_0\) for such \(j'\)’s. It remains to answer the question: how many such cells are there?

Since we work under assumption \([7]\) and the \(u_{k \ell}\)’s are integral, \(u_{k_0 \ell} \geq [\alpha k_0]\), this provides a lower bound on the total number of cells taken from the rectangle \(P_\ell \times [k_0]\). Therefore, the total number of cells with \(j' \geq \lceil \varepsilon k_0 \rceil\) selected from that rectangle is at least
\[\lceil \alpha k_0 \rceil - \lceil \varepsilon k_0 \rceil \geq (\alpha - \varepsilon) k_0. \]

As argued above, every such cell contributes at least \(\frac{w_{i o j_0}}{k_0 (\alpha - \varepsilon)}\) to the sum \(\sum_{i \in P_\ell} \sum_{k \geq k_0} y_{k \ell}\).

Hence, we can deduce that
\[\sum_{i \in P_\ell} \sum_{k \geq k_0} y_{k \ell} \geq \frac{w_{i o j_0}}{k_0 (\alpha - \varepsilon)} \cdot (\alpha - \varepsilon) k_0 = w_{i o j_0}. \]

It remains to upper bound the value of the dual objective \(\text{val}(r, c, y)\). It is easy to see that the total contribution of variables \(r\) and \(c\) in the objective is at most \(2 \sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij} w_{ij}\). Hence, it only remains to upper bound the sum
\[\sum_{i \in P_\ell} \sum_{j=1}^{\ell} u_{k \ell} \cdot y_{k \ell}. \]

Whenever a cell \((i, j)\) is added to the solution, i.e., when \(z_{ij}\) is set to 1, the total value contributed to the above sum is:
\[\sum_{\ell \in T_i} u_{k \ell} \cdot \frac{w_{ij}}{j (\alpha - \varepsilon)} \leq \Delta \cdot k \cdot \frac{w_{ij}}{j (\alpha - \varepsilon)} \leq \Delta \cdot \lceil \frac{j}{\varepsilon} \rceil \cdot \frac{w_{ij}}{j (\alpha - \varepsilon)} \leq 2\Delta \cdot \frac{w_{ij}}{\varepsilon (\alpha - \varepsilon)} \]
where \(k = \min \left(\frac{n}{\lceil \frac{j}{\varepsilon} \rceil} \right)\). Recall that \(\varepsilon = \frac{\alpha}{2}\), hence the above yields an upper bound of \(8 \cdot p \cdot \alpha^2 w_{ij}\). Thus, in total,
\[\sum_{i \in P_\ell} \sum_{j=1}^{\ell} u_{k \ell} \cdot y_{k \ell} \leq O \left(\frac{\Delta}{\alpha^2} \right) \cdot \sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij} w_{ij}. \]

This concludes the proof that the above algorithm finds an integral \(O(\frac{\Delta}{\alpha^2})\)-approximation to the linear program \([12]\).

Let us now show how to construct a full ranking out of it. Let
\[I := \{ i \in [m] : z_{i, j} = 0 \text{ for all } j \in [n]\} \quad \text{and} \quad J := \{ j \in [n] : z_{i, j} = 0 \text{ for all } i \in [m]\}. \]

We will construct a new solution \(y \in \{0, 1\}^{m \times n}\) such that \(y\) is supported on \(I \times J\) and has at most one 1 in every row and column, i.e., exactly one 1 in every column \(j \in J\) and satisfies all fairness constraints. Note that if we define \(x := z + y\), then \(x\) has the properties as claimed in the theorem statement. Indeed \(x \in P_{m,n}\) and further for every \(\ell \in [p]\) and \(k \in [n]\)
\[\sum_{i \in P_\ell} \sum_{j \leq k} x_{i, j} \leq \sum_{i \in P_\ell} \sum_{j \leq k} (z_{i, j} + y_{i, j}) \leq \sum_{i \in P_\ell} \sum_{j \leq k} x_{i, j} + \sum_{i \in P_\ell} \sum_{j \leq k} y_{i, j} \leq u_{k \ell} + u_{k \ell}. \]

The approximation guarantee follows because \(y\) has a nonnegative contribution to the total weight and the guarantee on \(x\) is with respect to a relaxed problem \([12]\) whose optimal value is an upper bound on the optimal value of the ranking maximization problem. Hence it remains to find \(y\) with
properties as above.

We can construct y using another greedy procedure. Let $y = 0$. We process the elements of J one at a time in increasing order. When considering a given j pick any $i \in I$ such that adding (i, j) to the solution y does not introduce fairness constraint violation. It is clear that if the above algorithm succeeds to find a suitable $i \in I$ at every step, then it succeeds to construct a solution with the required properties. It remains to show that this is indeed the case. To this end, fix $j \in J$ and look at the step in which j is considered. From condition (6), we know that there are at least n elements in $[m]$ that can be placed at position j without violating any constraint. Out of these n elements, some may have been already taken by the above algorithm (i.e., they are not in I) and some of them could have been added to the new solution y. However, as there were n of them to begin with, at least one remains and can be selected. This concludes the proof of correctness of the above procedure, and hence the proof of Theorem 2.4.

3 Hardness results

In this section we state and prove our hardness results regarding the constrained ranking feasibility and maximization problems.

Since some of the proofs involve the hypergraph matching problem, let us define these concepts formally. A hypergraph is a pair $H = (V, E)$ composed of a vertex set V and a hyperedge set $E \subseteq 2^{|m|}$. Given $\Delta \in \mathbb{N}$ we call H a Δ-hypergraph if every hyperedge $e \in E$ has cardinality at most Δ. The hypergraph matching is the following decision problem: given a hypergraph H and a number $n \in \mathbb{N}$, decide whether there exists a set of n pairwise disjoint hyperedges in H (such a set is called a matching). The optimization variant of this problem asks for a largest cardinality matching.

The name Δ above is intended to be suggestive – recall that in the context of the constrained ranking feasibility (or maximization) problem, the parameter Δ is the maximum number of properties any given item has. The first hardness result states that even for small Δ the constrained ranking feasibility is hard.

Theorem 3.1 The constrained ranking feasibility problem is NP-hard for any $\Delta \geq 3$.

Proof: We present a reduction from Δ-hypergraph matching, which is known to be NP-hard for $\Delta \geq 3$. Let $H = (V, E)$ be a Δ-hypergraph and let $n \in \mathbb{N}$ be a number for which we want to test whether there is a matching of size n. We construct an instance of the constrained ranking problem whose feasibility is equivalent to H having a matching of cardinality n as follows. Let m be the number of hyperedges in H indexed by e_1, e_2, \ldots, e_m, and let p be the number of vertices in H indexed by v_1, v_2, \ldots, v_p. Set the number of items in the ranking problem to be m where the ith item corresponds to edge e_i, and set the number of positions in the ranking to be n. For every vertex $v_\ell \in V$, introduce a property as follows:

$$P_\ell = \{i \in [m] : v_\ell \in e_i\}.$$

Thus, there are $p = |V|$ properties. Note that as each hyperedge e_i contains at most Δ vertices, $|T_i| \leq \Delta$ for all items $i \in [m]$ as desired. For every $k \in [n]$ and $\ell \in [p]$, let $u_{k\ell} = 1$.

It remains to argue that H has a matching of cardinality n if and only if the instance of the constrained ranking problem is feasible. If H has a matching M of cardinality n then let $S := \{i \in [m] : e_i \in M\}$. Define a ranking by taking the elements of S in any order. Since M is a matching, every vertex $v_\ell \in V$ belongs to at most one hyperedge in M. Thus, for every property $\ell \in [p]$ we have $|P_\ell \cap S| \leq 1$, and hence all of the fairness constraints are satisfied. Similarly, the
reasoning in the opposite direction (i.e., that a feasible ranking yields a matching of cardinality \(k \)) follows by letting \(M \) be the set of hyperedges corresponding to the \(n \) items that were ranked.

One possibility is that it is the feasibility of this problem that makes it hard. However, this is not the case. Our next Theorem says that even if we guarantee feasibility via assumption \([6] \), the problem remains hard to approximate.

Theorem 3.2 A feasible constrained ranking maximization problem that satisfies condition \([4] \) and has weights that satisfy property \([1] \) is \(\text{NP-hard} \) to approximate within a factor of \(O(\Delta/\log \Delta) \).

Proof: In the proof we will use the fact that the maximum \(\Delta \)-hypergraph matching problem is \(\text{NP-hard} \) to approximate within a factor of \(O(\Delta/\log \Delta) \) \cite{HSS03}. We present an approximation-preserving reduction from the maximum \(\Delta \)-hypergraph matching problem. The proof is similar to that of Theorem 3.1, however, we must now ensure that the resulting instance is feasible and satisfies condition \([6] \).

For a hypergraph \(H = (V, E) \) with \(|V| = p \) vertices \(v_1, v_2, \ldots, v_p \) and \(m = |E| \) hyperedges \(e_1, e_2, \ldots, e_m \), construct an instance of constrained ranking maximization problem as follows. Let \(m' := 2m \) be the number of items and let \(n := m \) be the number of positions in the ranking. The items \(1, 2, \ldots, m \) correspond to edges \(e_1, e_2, \ldots, e_m \), and the remaining items \(m+1, m+2, \ldots, 2m \) we call improper items. As in the proof of Theorem 3.1 for every vertex \(v_{\ell} \in V \) we define a property \(P_{\ell} = \{ i \in [m] : v_{\ell} \in e_i \} \). The fairness constraints are defined by upper bounds \(u_{k\ell} = 1 \) for all \(k \in [n] \) and \(\ell \in [p] \). Improper items do not belong to any property, and hence condition \([6] \) is satisfied. Furthermore, they can never cause a fairness constraint to be violated. Lastly, we let

\[
 w_{ij} = \begin{cases}
 1 & \text{if } i \in [m], \\
 0 & \text{if } i \in [m+1, 2m].
\end{cases}
\]

Note that such a matrix satisfies the property \([1] \).

Every matching \(M \subseteq E \) of cardinality \(k \) in \(H \) corresponds to a feasible ranking of total weight \(k \) in our instance of ranking maximization (simply take the \(k \) items corresponding to edges in the matching and add any \((m-k)\) improper items). Similarly, every ranking of weight \(k \) can be transformed into a matching of size \(k \). As the reduction is approximation preserving, we conclude that the constrained ranking maximization problem is \(\text{NP-hard} \) to approximate within a factor better than \(O(\Delta/\log \Delta) \).

Our next result says that the constrained ranking feasibility is hard even when we fix the structure of the set of properties; i.e., the only input to the problem are the upper-bound constraints.

Theorem 3.3 There exists a fixed family of properties \(P_m \subseteq 2^{[m]} \) for \(m \in \mathbb{N} \) and \(p_m := |P_m| = O(m^2) \) such that the problem: “given \(n, m \in \mathbb{N} \) and a matrix of upper bound values \(u \in \mathbb{N}^{n \times p_m} \), check whether the constrained ranking instance defined by \(P_m \) and \(u \) is feasible”, is \(\text{NP-hard} \).

Proof: Let the family of properties \(P_m \) be all 2-element subsets of \([m]\), i.e.,

\[
 P_m = \{ \{ i_1, i_2 \} : i_1, i_2 \in [m], i_1 \neq i_2 \}.
\]

We reduce the independent set problem to the above problem of constrained ranking maximization with a fixed property set.

Consider any instance of the independent set problem, i.e., a graph \(G = (V, E) \) and \(t \in \mathbb{N} \) (the underlying question is: is there an independent set of size \(n \) in \(G \)?). Construct a corresponding instance of constrained ranking maximization as follows: The number of ranking positions is \(n \), and there are \(m = |V| \) items to rank, one for every vertex \(v \in V \). Thus, there is a property for each pair of vertices. For every edge \(e = \{ i_1, i_2 \} \in E \), set a fairness constraint that restricts the
number of items having property \(e \) in the top-\(n \) positions to be at most \(u_{n,e} = 1 \). In other words, at most one item out of any \(\{i_1, i_2\} \in E \) can appear the ranking. For all non-edges, we leave the upper-bound constraint on the corresponding property unspecified, or equivalently, we let \(u_{k,e} = k \) for all \(e = \{i_1, i_2\} \notin E \).

Clearly feasible rankings are in one-to-one correspondence with independent sets of size \(n \) in \(G \). Indeed, if we place items (vertices) from an independent set of size \(n \) in the ranking in any order, then the resulting ranking is feasible, as the only essential constraints which are imposed on the ranking are that for every edge \(e = \{i_1, i_2\} \in E \) at most one of \(i_1, i_2 \) is present in the ranking. Conversely, if these constraints are satisfied, the set of \(n \) items placed in the ranking forms an independent set of size \(n \). As the independent set problem is \(\text{NP} \)-hard, via the above reduction we obtain hardness of the constrained ranking maximization problem with fixed properties.

Lastly, one could hope that it is still possible solve the constrained ranking maximization problem by allowing constraints to be violated by a small amount. However, this also remains hard. The result states that finding a solution which violates all the constraints at most a factor of \(c \) (for any constant \(c \)) is \(\text{NP} \)-hard. Interestingly our proof relies on a certain bound from Ramsey theory.

Theorem 3.4 For every constant \(c > 0 \), the following violation gap variant of the constrained ranking feasibility problem is \(\text{NP} \)-hard.

1. Output YES if the input instance is satisfiable.
2. Output NO if there is no solution which violates every fairness constraint at most \(c \) times.

Proof: The reduction is inspired by an idea developed for the approximation hardness of packing integer programs by [CK05]. We use the inapproximability of independent set (Has96, Zuc07) to prove the theorem. It states that approximating the cardinality of the maximum independent set in an undirected graph \(G = (V, E) \) to within a factor of \(|V|^{1-\varepsilon} \) is \(\text{NP} \)-hard, for every constant \(\varepsilon > 0 \).

Fix a constant \(c > 0 \), and without loss of generality, assume that \(c \in \mathbb{N} \). Consider the following reduction: given an instance of the independent set problem, i.e., a graph \(G = (V, E) \) and a number \(n \in \mathbb{N} \) the goal is to check whether there is an independent set of size \(n \) in \(G \). Let the set of items be \(V \) and the number of positions in the ranking to be \(n \). For every clique \(C \subseteq V \) of cardinality \((c+1) \) in \(G \), add a new property \(C \) and set an upper bound on the number of elements in \(C \) in the top-\(n \) positions of the ranking: \(u_{n,C} = 1 \). Note that these are at most \(\binom{m}{c+1} \leq m^{c+1} = \text{poly}(m) \) constraints.

We claim the following:

1. If there is a ranking that violates all of the constraints at most a factor of \(c \), then there is an independent set of cardinality \(\Omega(n^{1/(c+1)}) \) in \(G \).

2. If there is no feasible ranking then there is no independent set of cardinality \(n \) in \(G \).

Note that proving the above suffices to obtain the desired result: If there was a procedure to solve the constrained ranking feasibility problem for \(c \), then one could approximate in polynomial time the cardinality of the maximum independent set in a graph with an approximation ratio of \(|V|^{1-\frac{1}{(c+1)}} \), which is not possible unless \(P = \text{NP} \) [Has96, Zuc07]. Hence it remains to establish the claim.

To establish the second claim, note that every independent set \(S \subseteq V \) of size \(n \) gives a feasible solution to the constrained ranking instance by placing the items corresponding to \(S \) in the ranking in any order. To establish the first claim, suppose that there is a solution that violates every constraint by at most a factor of \(c \). This means that we have a subset \(S \) containing \(n \) vertices in \(G \) that does not contain any \((c+1)\)-clique. Using a standard upper-bound on the Ramsey number
it follows that in the subgraph induced by n in G there exists an independent set of cardinality $\Omega \left(n^{1/(c+1)} \right)$.

4 Dynamic programming based exact algorithms

Recall that for an instance of constrained ranking maximization, every item $i \in [m]$ has a type T_i assigned to it, which is the set of all properties item i has. In this section, we present an exact dynamic programming algorithm for solving the constrained ranking maximization problem which is efficient when the number of distinct types q in the instance is small. We start by providing a geometric viewpoint of the problem, which (arguably) makes it easier to visualize and provides us with convenient notation under which the dynamic programming algorithm is simpler to state and understand.

4.1 Geometric interpretation of fairness constraints

Recall that in an instance of constrained ranking maximization we are given m items, n ranking positions and p properties, together with fairness constraints on them. Let $t_i = 1_{T_i} \in \{0,1\}^p$ be the vector indicating which sets of P item i belongs to (we call this the type of i).

Note that every ranking can be described either by a binary matrix $x \in \{0,1\}^{m \times n}$ such that $x_{ij} = 1$ if and only if item i is ranked at position j, or alternatively by a one-to-one function $\pi : [n] \rightarrow [m]$ such that $\pi(j)$ is the item ranked at position j, for every $j \in [n]$. Using the latter convention we can encode the fairness condition as

$$\forall k \in [n] \sum_{j=1}^{k} t_{\pi(j)} \leq u_k,$$

where $u_k = (u_{k1}, u_{k2}, \ldots, u_{kp})^\top$ is the vector of upper bounds for fairness constraints at position k.

In other words, a ranking is feasible if and only if the kth partial sum of all t_i vectors of items at top-k positions belongs to the rectangle $[0, u_{k1}] \times [0, u_{k2}] \times \ldots \times [0, u_{kp}]$, for every $k \in [n]$.

4.2 The dynamic programming algorithm

Theorem 4.1 There is an algorithm that solves the constrained ranking maximization problem when the objective function w satisfies property (P) in $O(mp + qn^2)$ time (where q is the number of different types of items).

Proof: It is convenient to assume that the matrix w satisfies a strict variant of property (P) in which all the inequalities are strict. The general case follows by an analogous argument. For an item $i \in [m]$, recall that $t_i = 1_{T_i} \in \{0,1\}^p$ is the vector indicating which sets P item i belongs to. Further, let $Q = \{t_i : i \in [m]\}$ be the set of all realized types. Denote the elements of Q by $v_1, v_2, \ldots, v_q \in \{0,1\}^d$. For every $\ell \in [q]$ define $Q_\ell = \{i \in [m] : t_i = v_\ell\}$ and let $q_\ell = |Q_\ell|$.

For every $\ell \in [q]$ we denote by $i^{(\ell)}_1, i^{(\ell)}_2, \ldots, i^{(\ell)}_{q_\ell}$ the list of items in Q_ℓ in increasing order. Note that if in an optimal solution to the ranking maximization problem, exactly s_ℓ items come from Q_ℓ, then these items are exactly $i^{(\ell)}_1, \ldots, i^{(\ell)}_{s_\ell}$ and they appear in increasing order in the solution. This follows from property (P) of w as follows: Suppose that an item $i_1 \in Q_\ell$ is placed at position j_2 and an item $i_2 \in Q_\ell$ is placed at position j_1, with $i_1 < i_2$ and $j_1 < j_2$. Swapping these two items in the ranking does not affect feasibility of the solution and the difference in value is

$$w_{i_1j_1} + w_{i_2j_2} - w_{i_1j_2} - w_{i_2j_1}.$$
This is positive due to the (strict) property $[\Pi]$. Hence the swap can only increase the weight of the solution. A similar reasoning shows that it is beneficial to swap a ranked item i_2 with an unranked item i_1, whenever $i_1 < i_2$.

One of the consequences of the above observations is that we can assume that $q_\ell \leq n$ for all $\ell \in [q]$ and hence $m \leq nq$. This is because we can keep at most n best items from every set Q_ℓ and discard the remaining ones as they will not be part of any optimal solution. Such discarding can be done in time roughly $O(m)$ if an instance with $q_\ell > n$ is given.

The above allows us to reduce the number of candidate rankings which one has to check to roughly q^n. However, this number is still prohibitively large. As $q \ll n$ in many scenarios of interest, we construct a dynamic programming algorithm with a much fewer states $O(n^q)$.

Now, consider the following sub-problem: For any tuple $(s_1, s_2, \ldots, s_q) \in \mathbb{N}^q$ with $k = \sum_{\ell=1}^q s_\ell \leq n$ let $D[s_1, s_2, \ldots, s_q]$ be the largest weight of a feasible ranking with top-k positions occupied, such that exactly s_ℓ items are picked from Q_ℓ for every $\ell \in [q]$. Let us now describe an algorithm for computing $D[s_1, s_2, \ldots, s_q]$. First, initialize all entries $D[s_1, s_2, \ldots, s_q]$ to $-\infty$ and set $D[0, 0, \ldots, 0] = 0$. Next, consider all valid tuples (s_1, s_2, \ldots, s_q) in order of increasing values of $k = \sum_{\ell=1}^q s_\ell$, i.e., $k = 1, 2, \ldots, n$. Suppose that we would like to compute $D[s_1, s_2, \ldots, s_q]$. First one must check whether the fairness constraint at position k is satisfied; for this we calculate

$$v = \sum_{\ell=1}^q s_\ell v_\ell.$$

Note that the ℓth coordinate of v represents the number of items having property $\ell \in [p]$. Hence, a necessary condition for the tuple (s_1, s_2, \ldots, s_q) to represent a feasible ranking is that $v \leq u_k$. If that is not satisfied we just set $D[s_1, s_2, \ldots, s_q] = -\infty$. Otherwise, consider all possibilities for the type of item that is placed at the last position: k. Suppose it is of type ℓ (i.e., it belongs to Q_ℓ). Then we have

$$D[s_1, s_2, \ldots, s_q] = D[s_1, s_2, \ldots, s_\ell-1, s_\ell-1, s_\ell+1, \ldots, s_q] + w_{i_k},$$

where $i = i_{k_\ell}^{(\ell)}$. Hence, in order to compute $D[s_1, s_2, \ldots, s_q]$ we simply iterate over all possible types $\ell \in [q]$ and find the maximum value we can get from the above. Correctness follows from the fact that the s_ℓth item of type Q_ℓ in every optimal ranking is always $i_{k_\ell}^{(\ell)}$.

The total number of sub-problems is at most $O(n^q)$. Hence, the above algorithm can be implemented in time $O(m \cdot p + p \cdot q \cdot n^q)$, where $m \cdot p$ time is required to read the input and construct the list of elements of every given type. The second term $O(p \cdot q \cdot n^q)$ appears because there are n^q subproblems, each such sub-problem considers q cases, and every case has a feasibility check that takes $O(p)$ time.

\textbf{Acknowledgments.} We would like to thank Mohit Singh and Rico Zenklusen for valuable discussions on the problem.

\textbf{References}

[AFK96] Sanjeev Arora, Alan M. Frieze, and Haim Kaplan. A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. In 37th Annual Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA, 14-16 October, 1996, pages 21–30, 1996.

[Bae16] Drake Baer. The ‘Filter Bubble’ Explains Why Trump Won and You Didn’t See It Coming, November 2016. NY Mag.
[BCZ+16] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and Adam T Kalai. Man is to computer programmer as woman is to homemaker? Debiasing word embeddings. In Advances in Neural Information Processing Systems, pages 4349–4357, 2016.

[BMA15] Eytan Bakshy, Solomon Messing, and Lada A Adamic. Exposure to ideologically diverse news and opinion on facebook. Science, 348(6239):1130–1132, 2015.

[BS15] S. Barocas and A.D. Selbst. Big Data’s Disparate Impact. SSRN eLibrary, 2015.

[BT52] Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. Biometrika, 39(3/4):324–345, 1952.

[Buc85] Chris Buckley. Implementation of the smart information retrieval system. Technical report, Cornell University, 1985.

[CDKV16] L. Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K Vishnoi. How to be fair and diverse? Fairness, Accountability and Transparency in Machine Learning, 2016.

[CG98] Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based reranking for reordering documents and producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development in information retrieval, pages 335–336. ACM, 1998.

[CHRG16] Matthew Costello, James Hawdon, Thomas Ratliff, and Tyler Grantham. Who views online extremism? Individual attributes leading to exposure. Computers in Human Behavior, 63:311–320, 2016.

[CK05] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the multiple knapsack problem. SIAM J. Comput., 35(3):713–728, 2005.

[CKC+08] Charles LA Clarke, Maheedhar Kolla, Gordon V Cormack, Olga Vechtomova, Azin Ashkan, Stefan Büttcher, and Ian MacKinnon. Novelty and diversity in information retrieval evaluation. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 659–666. ACM, 2008.

[DHP+12] Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through awareness. In ITCS, New York, NY, USA, 2012. ACM.

[DKNS01] Cynthia Dwork, Ravi Kumar, Moni Naor, and Dandapani Sivakumar. Rank aggregation methods for the web. In Proceedings of the 10th international conference on World Wide Web, pages 613–622. ACM, 2001.

[FJ12] Uriel Feige and Shlomo Jozeph. Universal factor graphs. In Automata, Languages, and Programming - 39th International Colloquium, ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, pages 339–350, 2012.

[FKM+06] Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D Sivakumar, and Erik Vee. Comparing partial rankings. SIAM Journal on Discrete Mathematics, 20(3):628–648, 2006.
Ronald Fagin, Ravi Kumar, and Dakshinamurthi Sivakumar. Comparing top k lists. *SIAM Journal on discrete mathematics*, 17(1):134–160, 2003.

Fabrizio Grandoni, R Ravi, Mohit Singh, and Rico Zenklusen. New approaches to multi-objective optimization. *Mathematical Programming*, 146(1-2):525–554, 2014.

Sreenivas Gollapudi and Aneesh Sharma. An axiomatic approach for result diversification. In *Proceedings of the 18th international conference on World wide web*, pages 381–390. ACM, 2009.

J. Hastad. Clique is Hard to Approximate Within $n(1-\varepsilon)$. In *Proceedings of the 37th Annual Symposium on Foundations of Computer Science*, FOCS ’96. IEEE Computer Society, 1996.

Elad Hazan, Shmuel Safra, and Oded Schwartz. On the complexity of approximating k-dimensional matching. In *Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques*, pages 83–97. Springer, 2003.

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. *ACM Transactions on Information Systems (TOIS)*, 20(4):422–446, 2002.

Keith Kirkpatrick. Battling algorithmic bias: how do we ensure algorithms treat us fairly? *Communications of the ACM*, 59(10):16–17, 2016.

Matthew Kay, Cynthia Matuszek, and Sean A Munson. Unequal representation and gender stereotypes in image search results for occupations. In *Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems*, pages 3819–3828. ACM, 2015.

Jon Kleinberg, Sendhil Mullainathan, and Manish Raghavan. Inherent trade-offs in the fair determination of risk scores. *Innovations in Theoretical Computer Science*, 2017.

Subhash Khot, Preyas Popat, and Nisheeth K. Vishnoi. $2^{\log^{1-\varepsilon} n}$ hardness for the closest vector problem with preprocessing. In *Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012*, pages 277–288, 2012.

Piotr Krysta. Greedy approximation via duality for packing, combinatorial auctions and routing. In *International Symposium on Mathematical Foundations of Computer Science*, pages 615–627. Springer, 2005.

Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In *Proceedings of the 19th international conference on World wide web*, pages 571–580. ACM, 2010.

Christos Koufogiannakis and Neal E Young. Distributed fractional packing and maximum weighted b-matching via tail-recursive duality. In *International Symposium on Distributed Computing*, pages 221–238. Springer, 2009.

Melvin Earl Maron and John L Kuhns. On relevance, probabilistic indexing and information retrieval. *Journal of the ACM (JACM)*, 7(3):216–244, 1960.
[MRS+08] Christopher D Manning, Prabhakar Raghavan, Hinrich Schütze, et al. *Introduction to information retrieval*. Cambridge university press Cambridge, 2008.

[PDSAT12] Debmalya Panigrahi, Atish Das Sarma, Gagan Aggarwal, and Andrew Tomkins. Online selection of diverse results. In *Proceedings of the fifth ACM international conference on Web search and data mining*, pages 263–272. ACM, 2012.

[RBCJ09] Filip Radlinski, Paul N Bennett, Ben Carterette, and Thorsten Joachims. Redundancy, diversity and interdependent document relevance. In *ACM SIGIR Forum*, volume 43, pages 46–52. ACM, 2009.

[RKJ08] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning diverse rankings with multi-armed bandits. In *Proceedings of the 25th International conference on Machine learning*, pages 784–791. ACM, 2008.

[Rob77] Stephen E Robertson. The probability ranking principle in ir. *Journal of documentation*, 33(4):294–304, 1977.

[Sal89] Gerard Salton. Automatic text processing: The transformation, analysis, and retrieval of. *Reading: Addison-Wesley*, 1989.

[Spe04] Charles Spearman. The proof and measurement of association between two things. *The American journal of psychology*, 15(1):72–101, 1904.

[Spe06] Charles Spearman. Footrule?for measuring correlation. *British Journal of Psychology, 1904-1920*, 2(1):89–108, 1906.

[SRG13] Aleksandrs Slivkins, Filip Radlinski, and Sreeniv as Gollapudi. Ranked bandits in metric spaces: learning diverse rankings over large document collections. *Journal of Machine Learning Research*, 14(Feb):399–436, 2013.

[Sri95] Aravind Srinivasan. Improved approximations of packing and covering problems. In *Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas, Nevada, USA*, pages 268–276, 1995.

[YS16] Ke Yang and Julia Stoyanovich. Measuring fairness in ranked outputs. *arXiv preprint arXiv:1610.08559*, 2016.

[ZCL03] Cheng Xiang Zhai, William W Cohen, and John Lafferty. Beyond independent relevance: methods and evaluation metrics for subtopic retrieval. In *Proceedings of the 26th annual international ACM SIGIR conference on Research and development in information retrieval*, pages 10–17. ACM, 2003.

[ZH08] Mi Zhang and Neil Hurley. Avoiding monotony: improving the diversity of recommendation lists. In *Proceedings of the 2008 ACM conference on Recommender systems*, pages 123–130. ACM, 2008.

[ZMKL05] Cai-Nicolas Ziegler, Sean M McNee, Joseph A Konstan, and Georg Lausen. Improving recommendation lists through topic diversification. In *Proceedings of the 14th international conference on World Wide Web*, pages 22–32. ACM, 2005.

[Zuc07] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number. *Theory of Computing*, 3(1):103–128, 2007.
A Non-integrality of the LP

Proof of Fact 2.2 Let \(n = m = 4 \) and suppose there is only one property \(P_1 = \{1, 2\} \) and the constraints are \(u_{21} = 1 \) and \(u_{k1} = \infty \) for \(k \neq 2 \). In other words, we only constraint the ranking to have at most 1 element of property 1 in the top-2 entries.

Consider the following point.

\[
x = \begin{pmatrix}
\frac{1}{2} & 0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & 0 & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 & \frac{1}{2}
\end{pmatrix}
\]

Clearly \(x \) is feasible. Observe that the support of \(x \) has \(2n \) elements and there are exactly that many linearly independent tight constraints at that point. Indeed the doubly-stochastic constraints give us \(2n \) constraints out of which \(2n - 1 \) are linearly independent, and the remaining one is

\[
x_{1,1} + x_{1,2} + x_{2,1} + x_{2,2} = 1.
\]

Therefore \(x \) is a (non-integral) vertex of the feasible region of (5).

B Values \(w_{ij} \) and common ranking metrics

In information retrieval, when proposing a new ranking method, it is naturally important to evaluate the quality of the resulting output. Towards this, a variety of ranking metrics have been developed. Ideally, one would use such metrics to compare how “good” a constrained ranking is (with respect to quality) in comparison to an unconstrained ranking. Putting it another way, we would like to maximize the quality of the constrained ranking as measured by such metrics. In this section we briefly survey three important classes of ranking metrics, translated to our setting, and show that our problem formulation can capture metrics by defining the values \(w_{ij} \) appropriately.

Such metrics are often being defined with respect to the item quality (often referred to as relevance in the IR literature). Without loss of generality, we relabel the items so that \(a_1 \geq a_2 \geq \cdots \geq a_m \) denote the qualities for \(i \in \{1, \ldots, m\} \). For ease of presentation, we introduce simple forms of these metrics below; often in practice they are normalized for better comparison across rankings – the two are equivalent with respect to optimization. We consider integral rankings \(x \in \overline{\Omega}_{m,n} \) where

\[
\overline{\Omega}_{m,n} := \left\{ x \in \{0,1\}^{m \times n} : \sum_{j=1}^{n} x_{ij} \leq 1 \text{ for all } i \in [m], \text{ and } \sum_{i=1}^{m} x_{ij} = 1 \text{ for all } j \in [n] \right\}.
\]

Rank-1 Metrics: The quality of the ranking is considered to be the sum of the quality of its items where the quality of the item at position \(j \) is discounted by a value \(f(j) \) that is non-increasing in \(j \); in other words, getting the order correct at the top of the list is more important than getting
it correct at the bottom. Formally, given a ranking $x \in \Omega_{m,n}$, a rank-1 metric is defined as

$$m_{R1}(x) := \sum_{j=1}^{n} \sum_{i:x_{ij}=1} a_i \cdot f(j)$$

for a non-increasing function $f : [n] \to \mathbb{R}_{\geq 0}$. Common examples are Discounted Cumulative Gain (DCG) \[JK02\] where $f(i) = \frac{1}{\log(1+i)}$ for all i, and its variants. For rank-1 metrics, we can simply define $w_{ij} := a_i \cdot f(j)$. Let us now show that property (\[\square\]) holds for such a metric. Select any two $1 \leq i_1 < i_2 \leq m$ and $1 \leq j_1 < j_2 \leq n$. By definition $a_{i_1} \geq a_{i_2}$ and $f(j_1) \geq f(j_2)$, and hence $w_{i_1,j_1} \geq w_{i_2,j_1}$ and $w_{i_1,j_1} \geq w_{i_1,j_2}$. Further, this implies that

$$(w_{i_1,j_1} + w_{i_2,j_2}) - (w_{i_1,j_2} + w_{i_2,j_1}) = (a_{i_1}f(j_1) + a_{i_2}f(j_2)) - (a_{i_1}f(j_2) + a_{i_2}f(j_1))$$

$$= (a_{i_1} - a_{i_2})(f(j_1) - f(j_2)) \geq 0,$$

so the property holds.

Bradley-Terry Metrics: There are a variety of multiplicative ranking metrics, originally developed with the goal of sampling from a distribution of (complete) rankings $x \in \Omega_{m,m}$. For example, in the Bradley-Terry model \[BT52\], the quantity $\frac{a_{i_1}}{a_{i_1} + a_{i_2}}$ denotes the probability that item i_1 should be ranked above item i_2. This gives rise to the metric $m_{BT}(x) := \prod_{i_1,i_2:x_{i_1,j_1}=1,j_1<j_2} \frac{a_{i_1}}{a_{i_1} + a_{i_2}}$.

Removing the denominator (which is the same for all x as every pair of items appears exactly once), it is easy to see that the metric can be rewritten as

$$m_{BT}(x) = \prod_{i:x_{ij}=1} a_i^{m-j}.$$

Hence, it is equivalent to maximize $\log(m_{BT}(x)) = \sum_{j=1}^{n} \sum_{i:x_{ij}=1} (m-j) \log(a_i)$. By letting $a_i' := \log(a_i)$ and $f(j) := (m-j)$, this is a rank-1 metric with non-increasing f and a_i', and hence fits our formulation as discussed above.

Alignment Metrics: One can also consider metrics that depend only on the difference in the item positions between two rankings. Let $x^* \in \Omega_{m,m}$ be the optimal unconstrained ranking (this corresponds to sorting is in non-increasing order of a_i). Alignment metrics are defined with respect to the positions of the items in x^*, and we give some examples below.

Given a ranking $x \in \Omega_{m,n}$, in our setting Spearman’s footrule \[Spe06\] corresponds to

$$m_f(x) := \sum_{j=1}^{n} \sum_{i:x_{ij}=x_{ij}^*} ((2m-i-j) - |j-j^*|),$$

and similarly Spearman’s rho \[Spe04\] corresponds to

$$m_r(x) := \sum_{j=1}^{n} \sum_{i:x_{ij}=x_{ij}^*} ((2m-i-j)^2 - (j-j^*)^2).$$

These vary slightly from the usual definitions as it is for a partial rather than complete ranking, and we measure similarity rather than difference. The former is in line with partial ranking versions of Spearman’s footrule and Spearman’s rho as in \[FKS03\] \[FKM+06\], and for the latter we add a value to maintain non-negativity and monotonicity. The above metrics can be naturally captured in our formulation by letting $w_{ij} := (2m-i-j) - |j-j^*|$ or $w_{ij} := (2m-i-j)^2 - (j-j^*)^2$ respectively where j^* is such that $x_{ij}^* = 1$. Here, for any two $1 \leq i_1 < i_2 \leq m$ and $1 \leq j_1 < j_2 \leq n$ it is clear that $w_{i_1,j_1} \geq w_{i_2,j_1}$ and $w_{i_1,j_1} \geq w_{i_1,j_2}$ as desired. Furthermore, it is not difficult to show via a simple but tedious case analysis of the possible orderings of j_1,j_2,j_1^*,j_2^* that the desired property $(w_{i_1,j_1} + w_{i_2,j_2}) - (w_{i_1,j_2} + w_{i_2,j_1}) \geq 0$ holds. One can also think of weighted versions of these metrics, as introduced in \[KV10\], for which these observations generalize.