Polar topologies on sequence spaces in non-archimedean analysis

R. AMEZIANE HASSANI
A. EL AMRANI
UNIVERSITÉ SIDI MOHAMED BEN ABDELLAH, MOROCCO
and
M. BABAHMED UNIVERSITÉ MOULAY ISMAIL, MOROCCO
Received : May 2011. Accepted : January 2012

Abstract

The purpose of the present paper is to develop a theory of a duality in sequence spaces over a non-archimedean vector space. We introduce polar topologies in such spaces, and we give basic results characterizing compact, C-compact, complete and AK-complete subsets related to these topologies.

Key words : Locally K-convex topologies, non archimedean sequence spaces, Schauder basis, separated duality.

MSC2010 : 11F85 - 46A03 - 46A20 - 46A22 - 46A35 - 46A45 - 46A50.
1. Introduction

The duality $\langle \lambda, \lambda^\alpha \rangle$, where λ is a scalar sequence space, was studied by Köthe and Toeplitz [7] and it has been reformulated by Köthe [6] using the theory of locally convex spaces. After, the duality $D_{\lambda,\lambda^\beta}E$ has been studied by Chillingworth [2], Matthews [8], T. Komura and Y. Komura [4]. In this work, we are interested to a duality in non-archimedean sequence spaces. We consider a separated duality $\langle X, Y \rangle$ of vector spaces over a non-archimedean valued field K (n.a); in [1] Ameziane and Babahmed gave a fundamental properties of this duality. Afterwards we take $E(X)$ and $E(Y)$ two vector-valued sequence spaces over X and Y respectively such that $E(Y) \subset E(X)^\beta$ that are endwed with the separated duality $\langle E(X), E(Y) \rangle$ by the canonic bilinear form (p.108). We introduce the notion of polar topoogies over $E(X)$; and by the linear maps π_j^X and δ_j^X which we define in this paper; we study the polar topologies compatible with the duality $\langle E(X), E(Y) \rangle$ using the basic duality $\langle X, Y \rangle$. Finally we characterize C- compact, AK-complete and complete subsets of $E(X)$ relatively at these topologies. This study was useful in the study that we made in [3].

Throughout this paper, K is a non-archimedean (n.a) non trivially valued complete field with valuation $|\cdot|$. X and Y are two n.a topological vector spaces over K (or K vector spaces) that are in separated duality $\langle X, Y \rangle$. The duality theory for locally K-convex spaces can be found more exten-sively in [1], [9] , [11] and [12].

2. Preliminary

A nonempty subset A of a K-vector space X is called K-convex if $\lambda x + \mu y + \gamma z \in A$ whenever $x, y, z \in A$, $\lambda, \mu, \gamma \in K$, $|\lambda| \leq 1$, $|\mu| \leq 1$, $|\gamma| \leq 1$ and $\lambda + \mu + \gamma = 1$. A is said to be absolutely K-convex if $\lambda x + \mu y \in A$ whenever $x, y \in A$, $\lambda, \mu \in K$, $|\lambda| \leq 1$, $|\mu| \leq 1$. For a nonempty set $A \subset X$ its K-convex hull $c(A)$ and absolutely K-convex hull $c_0(A)$ are respectively the smallest K-convex and absolutely K-convex set that contains A. If A is a finite set $\{x_1, \ldots, x_n\}$ we sometimes write $c_0(x_1, \ldots, x_n)$ instead of $c_0(A)$.

An absolutely K-convex subset of a locally K-convex space X is called K- closed if for every $x \in X$ the set $\{ |\lambda| : \lambda \in K, \lambda x \in A \}$ is closed in $|K|$. If the valuation on K is discrete every absolutely K-convex set A is K-closed. If K has a dense valuation an absolutely K-convex set A is
K-closed if and only if from $x \in E$, $\lambda x \in A$ for all $\lambda \in K, |\lambda| < 1$ it follows
that $x \in A$. Intersections of K-closed sets are K-closed. For an absolutely K-convex set A the K-closed hull of A is the smallest subset of X that is K-closed and contains A, it is denoted by $K_c(A)$. If K is discrete we have $K_c(A) = A$ and if K is dense, $K_c(A) = \cap \{\lambda A : \lambda \in K \text{ and } |\lambda| > 1\}$ ([1] p. 220).

A topological vector space X over K is called locally K-convex if X has a base of zero consisting of locally K-convex sets.

Let (X, τ) a locally K-convex space, τ is define by a family of n.a. semi-norms τ- continuous over X, and if K is discrete, we can suppose that $N_0 = \{p(x)/x \in X\} \subset |K|$ for every $p \in \mathcal{P}$ ([9]); where (\mathcal{P}) is a family of n.a semi-norms which define the topology τ.

If p is a (n.a) semi-norm over X, $B_p(0, 1)$ is the set $\{x \in X : p(x) \leq 1\}$.

A sequence $(e_i)_i$ is a Schauder basis for X if every $x \in X$ can be written uniquely as $x = \sum_{i=1}^{\infty} \lambda_i x_i$ where the coefficient functionals $f_j : x \mapsto \lambda_j$ are continuous.

Let X a K-vector space and M a subset of X, a K-convex filter over M, is a filter F over M having a basis B consisting of K-convex subsets of M; this basis is called K-convex basis of K-convex filter F.

The order of all filters on M induces an order on all K-convex filters on M. A maximal element of the ordered set of K-convex filter on M is called maximal K-convex filter of M.

Let $(x_i)_{i \in I}$ a net on M; for all $i \in I$, put $F_i = \{x_j/j \geq i\}$. $(F_i)_{i \in I}$ is a filter over M called filter associated to a net $(x_i)_{i \in I}$. Conversely, if $F = (F_i)_{i \in I}$ is a filter over M, for all $i \in I$ let $x_i \in F_i$; over I we define the following order: $i \leq j \Leftrightarrow F_j \subset F_i$. $(x_i)_{i \in I}$ is a net in M called a net associated to a filter F.

Proposition 1. Let X a locally K-convex space, M a subset of X and $F = (F_i)_{i \in I}$ a maximal K-convex filter over M.

1. F converges or not having any clusterpoint.
2. Let $(x_i)_{i \in I}$ a net associated to a F; if $(x_i)_{i \in I}$ converges to x_0, F converges to x_0.

Proof. 1. Let x_0 a cluster point of F and $(U_j)_{j \in J}$ a K-convex neighbourhood base of x_0, $F' = \{F_i \cap U_j/i \in I \text{ and } j \in J\}$ is a K-convex filter which converges to x_0 and it is coarsest than F, then $F = F'$.

2. x_0 is a clusterpoint of $(x_i)_{i \in I}$, then it is a clusterpoint of F, and so F converges to x_0. □
Proposition 2. Let X, Y two K–vector spaces, $f : X \rightarrow Y$ a linear map and $\mathcal{F} = (F_i)_{i \in I}$ a maximal K–convex filter over X that having \mathcal{B} us a K–convex basis; $f(\mathcal{B})$ is a K–convex basis of a maximal K–convex filter over Y.

A subset A of a locally K–convex space X is compactoid if for each neighbourhood U of zero there exist $x_1, \ldots, x_n \in X$ such that $A \subset U + c_0 (x_1, \ldots, x_n)$. An absolutely K–convex subset A of X is said to be C–compact if every convex filter on A has a clusterpoint on A. K is C–compact if and only if K is spherically complete.

Proposition 3. Let M be a subset of X. The following are equivalent:

(i). M is C–compact;

(ii). Every maximal K–convex filter over M converges;

(iii). Any family of closed and K–convex subsets of M whose intersection is empty contains a finite subfamily whose intersection is empty.

Let \mathcal{B} a basis of a filter \mathcal{F} on a subset M of X; the smallest K–convex filter containing \mathcal{B}, is called K–convex filter generated by \mathcal{B} and is denoted by $\mathcal{F}_0(\mathcal{B})$. We show that $\mathcal{F}_0(\mathcal{B}) = \{ F \subset M/\text{there exists } B \in \mathcal{B} : c(B) \subset F \}$, and $c(\mathcal{B})$ is K–convex basis of $\mathcal{F}_0(\mathcal{B})$, that is to say $\mathcal{F}_0(\mathcal{B}) = \mathcal{F}(c(\mathcal{B}))$.

If $(x_i)_{i \in I}$ is a net in X; $(x_i)_{i \in I}$ converges to x_0 if and only if the filter K–convex associated with $(x_i)_{i \in I}$ converges to x_0.

Proposition 4. Let X, Y two K–vector spaces, $f : X \rightarrow Y$ a linear map, M a subset of X and \mathcal{B} a base of filter on M. Then $f(\mathcal{B})$ is a base of filter on $f(M)$, and we have $\mathcal{F}_c(f(\mathcal{B})) = f(\mathcal{F}_c(\mathcal{B}))$.

$((\omega(X), \tau_\omega(X)))$ = the linear space of all sequences in X endowed with the product topology $\tau_\omega(X)$ which is generated by the family of n.a semi-norms $(p_n)_{n \in \mathbb{N}, p \in (P)}$, $p_n(\varphi) = p(x_n)$ for all $\varphi = (x_n)_{n \in \omega(X)}$ and all $p \in (P)$, if X is a locally K-convex space and (P) is a family of n.a semi-norms which define his topology; this space is noted $\omega(K)$ (or ω, for short) in case when $X = K$. A sequence space over X is a subspace of $\omega(X)$.

We define the following sequence spaces over X

$$c_0(X) = \{(x_k)_{k \in \omega(X)} : (x_k)_{k} \text{ converges to zero}\}$$

$$c(X) = \{(x_k)_{k \in \omega(X)} : (x_k)_{k} \text{ converges in } X\},$$

$$\varphi(X) = \{(x_k)_{k \in \omega(X)} : \text{there exists } k_0 \in \mathbb{N} : x_k = 0 \text{ for all } k \geq k_0\},$$

$$m(X) = \{(x_k)_{k \in \omega(X)} : (x_k)_{k} \text{ is bounded in } X\}.$$
Over \(m(X) \) we define the sequence of n.a semi-norms \((\mathfrak{p})_{p \in (\mathcal{P})} \) by:
\[
\mathfrak{p}(\mathfrak{r}) = \sup_{k} p(x_k) \text{ for all } \mathfrak{r} = (x_k)_k \in m(X).
\]
Let \(\tau_{\infty}(X) \) be the topology on \(m(X) \) defined with the sequence of n.a semi-norms \((\mathfrak{p})_{p \in (\mathcal{P})} \).

3. Polar topologies

Let \(X \) and \(Y \) two \(K \)-vector spaces placed in separating duality \(\langle X,Y \rangle \). If \(A \) is a subset of \(X \), we denote by \(A^0 = \{ y \in Y / |\langle x, y \rangle| \leq 1 \text{ for all } x \in A \} \) the polar of \(A \) and \(A^{\infty} = \{ x \in X / |\langle x, y \rangle| \leq 1 \text{ for all } y \in A^0 \} \) the bipolar of \(A \).

\(A^0 \) is absolutely \(K \)-convex and \(\sigma(Y, X) \)-bounded.

For each absolutely \(K \)-convex subset \(A \) of \(Y \), \(K_c (\mathcal{A}^0(Y,X)) = A^\infty([1], \text{ corollary 4.3, p. 233}) \). A subset \(A \) of \(Y \) is said to be \(X \)-closed if for every \(y \in Y \setminus A \), there exits \(x \in X \) such that \(|\langle x, y \rangle| > 1 \) and \(|\langle x, A \rangle| \leq 1 \). Intersections of \(X \)-closed sets are \(X \)-closed. For a subset \(A \) of \(Y \) the \(X \)-closed hull \(X_c(A) \) of \(A \) is the smallest \(X \)-closed subset of \(Y \) that contains \(A \). For each subset \(A \) of \(Y \), \(X_c(A) = A^\infty([1], \text{ proposition 2.5, p. 224}) \). Using these two results and by [1], theorem 4.2, p. 233 we have: for all absolutely \(K \)-convex subset \(A \) of \(Y \), \(A \) is \(X \)-closed, if and only if, \(A \) is \(K \)-closed and \(\sigma(Y, X) \)-closed.

Let \(\mathcal{A} \) be a family of \(\sigma(Y, X) \)-bounded subsets of \(Y \) such that

(a) \(\mathcal{A} \) is directed by inclusion,

(b) \(Y = \bigcup_{A \in \mathcal{A}} A \),

(c) there exists \(\lambda_0 \in K, |\lambda_0| > 1 \) such that \(\lambda_0 A \in \mathcal{A} \), for all \(A \in \mathcal{A} \).

A topology \(\tau \) on \(X \) is called polar topology of \(\mathcal{A} \)-convergence, if \(\tau \) has a fundamental system of zero-neighbourhood \((F.S.N) \) consisting of \(\{ A^0/A \in \mathcal{A} \} \).

A vector topology \(\tau \) on \(X \) is called polar topology if there exists a family \(\mathcal{A} \) of \(\sigma(Y, X) \)-bounded subsets of \(Y \) which has the properties (a), (b) and (c), such that \(\tau \) is a polar topology of \(\mathcal{A} \)-convergence. It is defined by the family of n.a. semi-norms \((P_A)_{A \in \mathcal{A}} \), where \(P_A(x) = \sup \{|\langle x, y \rangle|/y \in A\} \).

If \(\mathcal{A} \) is the family of all subsets of \(Y \) that are:

1. Absolutely \(K \)-convex, weakly bounded and weakly \(C \)-compacts, we have the \(C \)-compact topology \(\tau_c(X,Y) = \tau_c \),

2. Absolutely convex and \(\sigma(Y, X) \)-compact, we have the Mackey topology \(\tau_m(X,Y) = \tau_m \),
3. $\sigma(Y,X)$—bounded and X—closed, we have the X—closed topology $\tau_e(X,Y) = \tau_e$.

4. $\sigma(Y,X)$—bounded, we have the strong topology $\tau_b(X,Y)$.

A locally K—convex topology τ on X is called compatible with the duality $\langle X,Y \rangle$ or (X,Y)—compatible if Y is isomorphic to the topological dual of X provided with the topology τ. The weak topology $\sigma(X,Y)$ is the coarsest topology among all topologies (X,Y)—compatible, and the upper bound topology of all topologies (X,Y)—compatible topology is the finest among all the topologies (X,Y)—compatible.

We say that X is semi-reflexive if X is isomorphic to the strong topological dual of Y and if τ is a locally K—convex topology on X we say that X is τ—reflexive if X is semi-reflexive and $\tau = \tau_b(X,X')$.

For further information about polar topology of \mathcal{A}—convergence and general properties of locally K—convex spaces we refer to [1], [11] and [12].

If $A \subset \omega(X)$, the β—dual of A is the subspace of $\omega(Y)$ which is defined by $A^\beta = \{(y_n)_n \in \omega(Y): \text{lim}_n \langle x_n, y_n \rangle = 0 \text{ for all } (x_n)_n \in A\}$. A is called perfect if $A^{\beta\beta} = A$. If A is perfect then $\varphi(X) \subset A$. For all $A \subset \omega(X)$, A^β is perfect. We define B^β if $B \subset \omega(Y)$ on the same way.

A subset D of $\omega(X)$ is said to be solid if for every $\varpi = (x_k)_k \in D$ and $\alpha = (\alpha_k)_k \in \omega$ such that $|\alpha_k| \leq 1$ for all k, we have $\alpha\varpi = (\alpha_kx_k)_k \in D$. The solid hull $S(D)$ of D is the smallest solid set of sequence containing D.

A topology on $E(X)$, with respect the duality $\langle E(X), E(X)^\beta \rangle$, will be called solid if the elements of the determining family of weakly bounded subsets of $E(X)^\beta$ are solids sets.

Let $E(X)$ and $E(Y)$ be two sequence spaces on X and Y respectively such that $E(Y) \subset E(X)^\beta$, we define on the pair $(E(X), E(Y))$ the following duality $\langle (x_n)_n, (y_n)_n \rangle = \sum_{n=1}^{\infty} \langle x_n, y_n \rangle$ for all $(x_n)_n \in E(X)$ and all $(y_n)_n \in E(Y)$.

If $\varphi(X) \subset E(X)$ and $\varphi(Y) \subset E(Y)$, the duality $\langle E(X), E(Y) \rangle$ is separate.

In the sequel $\langle E(X), E(Y) \rangle$ denotes a duality of this type.

$S(E(Y)) \subset [S(E(X))]^\beta$ and $\langle S(E(X)), S(F(Y)) \rangle$ is a separating duality extending the separating duality $\langle E(X), F(Y) \rangle$, therefore, we can assume that $E(X)$ and $F(Y)$ are solid.

For all $j \geq 1$, we consider the following linear mappings:
\[\pi^X_j : E(X) \rightarrow X \quad \delta^X_j : X \rightarrow E(X) \]
\[(x_n) \mapsto x_j \quad a \mapsto \delta_j(a) \]

where \(\delta_j(a) \) is the sequence with \(a \) in the \(j \)-th place and 0’s elsewhere.

We define also \(\pi^Y_j \) and \(\delta^Y_j \).

Let \(x = (x_k) \in \omega(X) \), for all \(n \geq 1 \) \(x^{[n]} = \sum_{j=1}^{n} \delta_j(x_j) \) is called the \(n \)-th section of \(x \).

We have: \(\pi^X_j \circ \delta^X_j = id_X \), \(\pi^Y_j \circ \delta^Y_j = id_Y \), \((\pi^X_j)^* / Y = \delta^Y_j \) and \((\delta^X_j)^* / F(Y) = \pi^Y_j \) where \(u^* \) is the algebraic adjoint of the linear map \(u \).

Proposition 5. Let \(A \) be a subset of \(E(X) \) if \(A \) is solid, \(A^o \) is solid and we have: \(A^o = [A \cap \varphi(X)]^o \).

Definition 1. Let \(A \) a subset of \(\omega(X) \).

1. is said that \(A \) is \(\delta^X \)-saturated if for all \((x_n) \in A, \delta^X_j(x_j) \in A \).
2. It is said that \(A \) is \(\delta^X \)-saturated if \(A \) is \(\delta^X_j \)-saturated for all \(j \geq 1 \).
3. It is said that \(A \) is \(\pi^X \)-saturated if: \(x_j \in \pi^X_j(A) \) for all \(j \geq 1 \) \(\Rightarrow (x_n) \in A \).

If \(A \) is solid, \(A \) is \(\delta^X \)-saturated.

\(\varphi(X) \) is \(\delta^X \)-saturated and not \(\pi^X \)-saturated.

If \(p \) is a n.a. semi-norm on \(X \), \(\{(x_n) \in \omega(X) / \sup_n p(x_n) \leq 1 \} \) is \(\pi^X \)-saturated.

The following results are demonstrated in a direct:

Proposition 6. Let \(A \) be a subset of \(E(X) \).

1. If \(A \) is \(\pi^X \)-saturated, \(S(A) \) is \(\pi^X \)-saturated.
2. If \(A \) is \(\delta^X \)-saturated, \(S(A) \) and \(c_0(A) \) are \(\delta^X \)-saturated, and \(A^o \) is \(\delta^Y \)-saturated and \(\pi^Y \)-saturated.
3. \(\left[\pi^X_j(A) \right]^o \subset \pi^Y_j(A^o) \) for all \(j \geq 1 \).
4. If \(A \) is \(\delta^X \)-saturated, \(\left[\pi^X_j(A) \right]^o = \pi^Y_j(A^o) \).
5. If \(A \) is \(\delta^X \)-saturated,

\[A^o = \pi^X_j \left[\pi^Y_j(A^o) \right] = \left\{ (y_k) \in F(Y) / \sup_k |\langle x_k, y_k \rangle| \leq 1 \text{ for all } (x_k) \in A \right\} \].

6. \(S(A)^o \subset S(A^o) \); and if \(A \) is \(\delta^X \)-saturated, \(A^o = S(A)^o = S(A^o) \).
7. If A is δ^X-saturated and $F(Y)$-closed, $\pi_j^X(A)$ is Y-closed for all $j \geq 1$.
8. If A is π^X-saturated and $\pi_j^X(A)$ is Y-closed for all $j \geq 1$, A is $F(Y)$-closed.

Corollary 1. Let A be a subset of $E(X)$ δ^X-saturated and π^X-saturated.
For A is $F(Y)$-closed, it is necessary and enough that $\pi_j^X(A)$ be Y-closed for all $j \geq 1$.

Proposition 7. Let A be an absolutely K-convex subset of $E(X)$.
1. If A is K-closed and δ_j^X-saturated, $\pi_j^X(A)$ is K-closed.
2. If A is π^X-saturated and $\pi_j^X(A)$ is K-closed for all $j \geq 1$, A is K-closed.

Proposition 8. Let τ be a topology on $E(X)$ and τ_j the topology image reciprocal of τ by the linear map δ_j^X on X. If τ admits as S.F.N of $0 \{A^o/A \in A\}$, then $\left\{\left[\pi_j^Y(A)\right]^o / A \in A\right\}$ is a F.S.N. of 0 for τ_j.

Proof. ([1], proposition 2.9).

Proposition 9. For all $j \geq 1$, π_j^X is $(\sigma(E(X), F(Y)), \sigma(X, Y))$-continuous and δ_j^X is $(\sigma(X, Y), \sigma(E(X), F(Y)))$-continuous.

Proof. $(\pi_j^X)^*(Y) \subset F(Y)$ and $(\delta_j^X)^*(F(Y)) \subset Y$, and the result follows from ([9], p. 128).

Proposition 10. 1. $\left[\pi_j^X(A)\right]^o = (\delta_j^Y)^{-1}(A^o)$ for all $A \in E(X)$.
2. $\left[\delta_j^X(B)\right]^o = (\pi_j^Y)^{-1}(B^o)$ for all $B \subset X$.
3. $\pi_j^X(A) \subset B \Rightarrow \delta_j^Y(B^o) \subset A^o$ for all $A \in E(X)$ and for all $B \subset X$.
4. $\delta_j^X(B) \subset A \Rightarrow \pi_j^Y(A^o) \subset B^o$ for all $A \in E(X)$ and for all $B \subset X$.
5. $(\pi_j^X)^{-1}(D^o) = \left[\delta_j^Y(D)\right]^o$ for all $D \subset Y$.
6. $(\delta_j^X)^{-1}(C^o) = \left[\pi_j^Y(C)\right]^o$ for all $C \subset F(Y)$.
7. $(\pi_j^X)^*(D) \subset C \Rightarrow \pi_j^X(C^o) \subset D^o$ for all $D \subset Y$ and for all $C \in E(Y)$.
8. $(\delta_j^X)^*(C) \subset D \Rightarrow \delta_j^X(D^o) \subset C^o$ for all $D \subset Y$ and for all $C \subset E(Y)$.

Proof. ([1], proposition 2.8).
A polar topology of \mathcal{A}–convergence on $E(X)$ is said solid, if all $A \in \mathcal{A}$ is solid. Thus, any polar, solid topology admits a F.S.N from 0 consisting of solid subsets.

If τ is the polar topology of \mathcal{A}–convergence on $E(X)$ such that A is δ^Y–saturated for all $A \in \mathcal{A}$, τ coincides with the polar topology of $S(\mathcal{A})$–convergence (proposition 6), and then τ is a polar and solid topology.

Proposition 11. Let τ be a polar topology of \mathcal{A}–convergence over $E(X)$ and τ_j the topology image reciprocal of τ by the linear map δ^X_j on X.

1. τ_j is the polar topology of $\pi^Y_j(A)$–convergence.
2. π^X_j is (τ, τ_j)–continuous if and only if $\delta^Y_j \circ \pi^Y_j(A) \in \mathcal{A}$ for all $A \in \mathcal{A}$.

Proof. ([1], proposition 3.8).

Proposition 12. If τ is the weak topology (resp. Mackey, resp. C–compact, resp. $E(X)$–closed; resp. strong) of $E(X)$ for all $j \geq 1$, τ_j is the weak topology (resp. Mackey, resp. C–compact, resp. X–closed; resp. strong) on X.

Proof. ([1], proposition 3.9).

Proposition 13. Let τ a polar topology of \mathcal{A}–convergence on $E(X)$, for all $j \geq 1$, we have:

1. δ^X_j is (τ_j, τ)–continuous;
2. If τ is solid, π^X_j is (τ, τ_j)–continuous;
3. If π^X_j is (τ, τ_j)–continuous, δ^X_j is (τ_j, τ)–closed.

Proof.
1. τ_j is a polar topology of $\pi^Y_j(\mathcal{A})$–convergence, and we have:

 $\delta^X_j \left(\left[\pi^Y_j(A) \right]^\circ \right) \subset A^\circ$ for all $A \in \mathcal{A}$.

 2. If τ is solid, we have:

 $\pi^X_j(A^\circ) \subset \left[\pi^Y_j(A) \right]^\circ$ for all $A \in \mathcal{A}$.

 3. Let M a closed in (X, τ_j), there exists $A \in \mathcal{A}$ such that $\left[\pi^Y_j(A) \right]^\circ \subset M^\circ$, therefore $A^\circ \subset \delta^X_j(M^\circ) = \left[\delta^X_j(M) \right]^\circ$.

Let τ be a locally K–convex topology on $E(X)$ such that $E(X)$ be τ–pol; if τ is $(E(X) F(Y))$–compatible, τ is a polar topology of \mathcal{A}–convergence, where \mathcal{A} is constituted of $\sigma(F(Y), E(X))$–bounded and
$E(X)$—closed subsets of $F(Y)$, ([1], theorem 4.3). For all $j \geq 1$, τ_j is the polar topology of $\pi_j^Y(A)$—convergence on X and X is τ_j—polar if all $A \in \mathcal{A}$ is δ^Y—saturated, $\pi_j^X(A)$ is $\sigma(Y,X)$—bounded and X—closed (Proposition 6), and then τ_j is (X,Y)—compatible.

If K is spherically complete, we have the following theorem:

Theorem 1. Suppose that K be spherically complete, and let τ a locally K—convex topology on $E(X)$; if τ is $(E(X),F(Y))$—compatible, τ_j is (X,Y)—compatible, for all $j \geq 1$.

Proof. τ is a polar topology of \mathcal{A} convergence, where \mathcal{A} consists of absolutely K convex, $\sigma(E(Y),E(X))$—bounded and $\sigma(E(Y),E(X))$—C—compact subsets of $F(Y)$ ([1], theorem 4.4). For all $j \geq 1$, π_j^Y is $(\sigma(F(Y),E(X)), \sigma(Y,X))$—continuous, then $\pi_j^Y(A)$ is absolutely K—convex, $\sigma(Y,X)$—bounded and $\sigma(Y,X)$—C—compact for all $A \in \mathcal{A}$ and then τ_j is (X,Y)—compatible. \blacksquare

Theorem 2. Let τ a solid and polar topology on $E(X)$; if $E(X)$ is τ—barreled, X is τ_j—barreled for all $j \geq 1$.

Proof. Let B a τ_j—barrel in X; δ_j^X is (τ_j, τ)—closed, then $\delta_j^X(B)$ is a τ—barrel into $E(X)$ and then $(\delta_j^X)^{-1}(\delta_j^X(B))$ is a neighborhood of 0 in (X, τ_j) then B is a neighborhood of 0 for τ_j. \blacksquare

Remark 1. Instead of assuming that τ is solid, we can assume only that π_j^X be (τ, τ_j)—continuous for all $j \geq 1$.

A subset A of $E(X)$ said to be δ^X—stable if for all $x = (x_k) \in E(X)$ such that there exists $j \geq 1$ satisfying $\delta_j^X(x_j) \in A$, then $x \in A$.

Let $A \subset E(X)$ such that $A \cap \{\delta_j^X(a)/a \in X$ and $j \geq 1\} = \phi$, A is δ^X stable.

Definition 2. Let τ a vector topology on $E(X)$; we say that $E(X)$ is $\delta^X\tau$—barreled if every τ—barrel δ^X—stable, is a neighborhood of 0.

If $E(X)$ is τ—barreled, it is $\delta^X\tau$—barreled.

Theorem 3. Let τ a polar and solid topology on $E(X)$; if there exists $j \geq 1$ such that X is τ_j—barreled, $E(X)$ is $\delta^X\tau$—barreled.
Proof. Let B a τ-barrel δ^X-stable in $E(X)$; δ_j^X is (τ_j, τ)-continuous, so $(\delta_j^X)^{-1}(B)$ is a τ_j-barrel, and then $(\delta^X)^{-1}(B)$ is a neighborhood of 0 in (X, τ_j) and hence $(\pi_j^X)^{-1}[(\delta_j^X)^{-1}(B)]$ is a neighborhood of 0 in $(E(X), \tau)$. B is δ^X-stable, then $(\pi_j^X)^{-1}[(\delta_j^X)^{-1}(B)] \subset B$ and then B is a neighborhood of 0 in $(E(X), \tau)$.

Theorem 4. Suppose that X and Y are semi-reflexive, and let τ a topology on $E(X)$ which is $(E(X), F(Y))$-compatible. If $E(X)$ is τ-reflexive, X is τ_j-reflexive for every $j \geq 1$.

Proof. $\tau = \tau_b(E(X), E(X)'') = \tau_b(E(X), F(Y))$; so for all $j \geq 1 \tau_j = \tau_b(X, Y)$ (Proposition 12). Y is semi-reflexive, then τ_j is (X, Y)-compatible ([1], proposition 5.9) and then $\tau_j = \tau_b(X, (X, \tau_j)'').$

Corollary 2. If K is spherically complete and τ is a topology on $E(X)$ which is $(E(X), F(Y))$-compatible and solid such that $E(X)$ is τ-barreled, then X is τ_j reflexive for any $j \geq 1$.

Proof. For all $j \geq 1$, τ_j is (X, Y)-compatible (theorem 1) and X is τ_j-barreled for all $j \geq 1$, then X is τ_j-reflexive ([1], theorem 5.2).

4. Compactness and C-compactness

Let τ a polar topology on $E(X)$ such that π_j^X be (τ, τ_j)-continuous for all $j \geq 1$. If M is a compact subset of $(E(X), \tau)$; $\pi_j^X(M)$ is a compact subset of (X, τ_j) for all $j \geq 1$.

In order to study the converse, we introduce the notion of TK-convergent net.

Definition 3. A net $(x_i)_{i \in I}$ in $E(X)$ is called TK-convergent if for all $j \geq 1$, $(x_i^j)_{i \in I}$ is convergent in (X, τ_j).

Theorem 5. Let M a subset of $E(X)$; M is relatively compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_j^X(M)$ is relatively compact in (X, τ_j) for all $j \geq 1$;

(ii.) All TK-convergent net in M converges in $(E(X), \tau)$.
Proof. N.C.] \(\pi_j^X \) is \((\tau, \tau)\)–continuous for all \(j \geq 1 \), then \(\pi_j^X(M) \) is relatively compact in \((X, \tau_1)\). Let \((x^i_j)_{i \in I}\) a \(TK\)–convergent net in \(M\). For all \(j \geq 1 \) let \(x_j \in X \) such that \((x^i_j)_{i \in I}\) converges to \(x_j \) in \((X, \tau_j)\). \((x^i_j)_{i \in I}\) has a cluster point \(z = (z_n) \) in \((E(X), \tau)\). For all \(j \geq 1 \), \(z_j \) is a cluster point of \((x^i_j)_{i \in I}\) in \((X, \tau_j)\); then \(z_j = x_j \). \((x_n)\) is the unique cluster point of \((x^i)_{i \in I}\), therefore \((x^i)_{i \in I}\) converges to \((x_n)\) in \((E(X), \tau)\).

S.C.] Let \((x^i)_{i \in I}\) a net in \(M\), and let \(A\) the family of \(\sigma(F(Y), E(X))\)–bounded subset of \(F(Y)\) which defines the topology \(\tau\). For any \(j \geq 1 \), \(\tau_j\) is the polar topology of \(\pi_j^Y(A)\)–convergence on \(X\).

Let \(x_1 \) a cluster point of \((x^i_1)_{i \in I}\) in \((X, \tau_1)\). For all \(A \in A \) and for all \(i \in I \), there exists \(i_A > i \) such that \(x^i_1 \in \left[\pi_j^X(A) \right]^0 \). Consider the sub family \((i_A)_{A \in A} \) of \(I \), it is ordered by: \(i_A \leq i_B \iff A \subset B \) for all \(A, B \in A \). \((i_A)_{A \in A}\) is a filter on the right family. Let \(A_0 \in A; i_A \geq i_{A_0} \Rightarrow A_0 \subset A \Rightarrow \left[\pi_j^X(A) \right]^0 \subset \left[\pi_j^X(A_0) \right]^0 \Rightarrow x^i_1 \subset \left[\pi_j^X(A_0) \right]^0 \). Therefore \((x^i_1)_{A \in A}\) converges to \(x_1 \) in \((X, \tau_1)\).

Let \(x_2 \) a cluster point of \((x^i_2)_{A \in A}\) in \((X, \tau_2)\). for all \(A \in A \), there exists \(l_1(i_A) > i_A \) such that \(x^i_2 \in \left[\pi_j^X(A) \right]^0 \).

Let \(A_0 \in A; i_A \geq i_{A_0} \Rightarrow A \supset A_0 \Rightarrow \left[\pi_j^X(A) \right]^0 \supset x^i_2 \supset \left[\pi_j^X(A_0) \right]^0 \). Therefore \((x^i_2)_{A \in A}\) converges to \(x_2 \) in \((X, \tau_2)\).

Let \(x_3 \) a cluster point of \((x^i_3)_{A \in A}\) in \((X, \tau_3)\). For all \(A \in A \), there exists \(l_2(i_A) \rightarrow l_1(i_A) \) such that \(x^i_3 \in \left[\pi_j^X(A) \right]^0 \). \((x^i_3)_{A \in A}\) converges to \(x_3 \) in \((X, \tau_3)\).

Inductively, for all \(j \geq 3 \) and for all \(A \in A \), there exists \(l_j(i_{A-1}) \rightarrow l_1(i_A) \) such that \((x^i_{j+1})_{A \in A}\) converges to \(x_{j+1} \) in \((X, \tau_{j+1})\).

Put \(y = (x^{j+1}, x^{l_1(i_A)}, x^{l_2(i_{A-1})}, ..., x^{l_k(i_{A-2})}) \) \(A \in A\).

For all \(j \geq 1 \), \((x^i_j)_{A \in A}\) converges to \(x_j \) in \((X, \tau_j)\); therefore \(y \) is \(TK\)–convergent, and hence it converges to \(x \) in \((E(X), \tau)\). Hence \(x \) is a cluster point of \((x^i)_{i \in I}\), and then \(M \) is relatively compact. ■

Corollary 3. Let \(M \) a subset of \(E(X)\), \(M \) is compact in \((E(X), \tau)\) if and only if:

(i) \(\pi_j^X(M) \) is compact in \((X, \tau_j)\) for all \(j \geq 1 \),

(ii) Any \(TK\)–convergent net in \(M \) converges to an element of \(M \) in \((E(X), \tau)\).

To give version of theorem 5 using the filters, we need introduce the
following definition:

Definition 4. Let M a subset of $E(X)$ and F a filter on M; we say that F is $TK-$ convergent if for all $j \geq 1$ the filter generated by $\pi_j^X(F)$ converges in (X, τ_j).

Every convergent filter is $TK-$convergent, and if F is a $TK-$convergent filter and F' is a filter finer than F, F' is $TK-$convergent.

Proposition 14. Let M a subset of $E(X)$.

1. If $F = (F_i)_{i \in I}$ is a $TK-$convergent filter on M, any net associated to F is $TK-$convergent.
2. If $(x^i)_{i \in I}$ is a $TK-$convergent net, the $K-$convex filter associated to $(x^i)_{i \in I}$ is $TK-$convergent.

Theorem 6. Let M a subset of $E(X)$; M is compact in $(E(X), \tau)$ if and only if:

(i.) $\pi_j^X(M)$ is compact in (X, τ_j) for all $j \geq 1$;
(ii.) Any $TK-$convergent filter on M converges to an element of M.

Proof. N.C.] Let F a $TK-$convergent filter on M. For any $j \geq 1$ let $x_j \in X$ such that $\pi_j^X(F)$ converges to x_j in (X, τ_j). F has at least one cluster point $z = (z_n)$ in M. For all $j \geq 1$, z_j is a cluster point of $\pi_j^X(F)$, therefore $z_j = x_j$; then (x_n) is the unique cluster point of F in M, so F converges to (x_n) in (M, τ).

S.C.] Let F a maximal filter on M; for all $j \geq 1$ $\pi_j^X(F)$ is a maximal filter on $\pi_j^X(M)$, therefore it converges to x_j in (X, τ_j), and then F is $TK-$ convergent, therefore it converges to an element of M.

Definition 5. Let M a subset of $E(X)$, we say that M is an $AK-$complete subset of $(E(X), \tau)$ if every $x = (x_n)$ element of $E(X)$ such that $(x^{[n]})$ is a Cauchy sequence in (M, τ); $x \in M$ and $(x^{[n]})$ converges to x in $(E(X), \tau)$.

We say that M is relatively $AK-$complete if its closure \overline{M} in $(E(X), \tau)$ is $AK-$ complete.

If M is complete, it is $AK-$complete.

Any closed subset of a set $AK-$complete is $AK-$complete.

In the following result, we characterize the subsets solid and relatively compact of $(E(X), \tau)$.

Theorem 7. Let M a solid subset of $E(X)$, M is relatively compact in $(E(X), \tau)$ if and only if:
(i.) $\pi_j^X(M)$ is relatively compact in (X, τ_j) for all $j \geq 1$,
(ii.) $x^{[i]} \xrightarrow{i \to \infty} x$ uniformly on M in $(E(X), \tau)$,
(iii.) M is relatively AK–complete in $(E(X), \tau)$.

Proof. N.C.] If M is relatively compact, M is relatively complete, and then it is relatively AK–complete.

Suppose we did not (ii.) there exists $A \in \mathcal{A}$ a sequence $(i^i)_i$ in M and a strictly increasing sequence of integers $(j_i)_i$ such that $i^i x^{[j_i]} - i^i x \notin A^\circ$ for all $i \geq 1$. The sequence $(i^i x^{[j_i]} - i^i x)_i$ is TK–convergent to 0, so it converges to 0 in $(E(X), \tau)$ which is absurd.

S.C.] Let $(\alpha^i x)_{\alpha \in D}$ a net in M such that for all $j \geq 1 (\alpha^i x)_\alpha \in D$ converges to x_j in (X, τ_j). Let $A \in \mathcal{A}$ for all $i \geq 1 \alpha^i x^{[i]} - x^{[i]} = \sum_{n=1}^i \delta_n^X(\alpha^i x_n - x_n) \in A^\circ$
for α sufficiently large. So for all $i \geq 1 \alpha^i x^{[i]} - \alpha^i x \rightarrow x^{[i]}$ in $(E(X), \tau)$ in particular $x^{[i]} \in \mathcal{M}$ for all $i \geq 1$. Using this convergence and (ii), we can choose α as $x^{[i]} - x^{[j]} = (x^{[i]} - \alpha^i x^{[i]}) + (\alpha^i x^{[j]} - \alpha^i x) + (\alpha^i x - \alpha^i x^{[j]}) + (\alpha^i x^{[j]} - x^{[j]}) \in A^\circ$ for i, j sufficiently great. Therefore $(x^{[i]})$ is a Cauchy net in \mathcal{M} and then $x^{[i]} \rightarrow_{i \to \infty} x$ in $(E(X), \tau)$. From this convergence and (ii), we can choose i such that $\alpha^i x - x = (\alpha^i x - \alpha^i x^{[i]}) + (\alpha^i x^{[i]} - x^{[i]}) + (x^{[i]} - x) \in A^\circ$ for α large enough, so $(\alpha^i x)_{\alpha \in D}$ converges to x in $(E(X), \tau)$ and hence M is relatively compact (theorem 5).

Corollary 4. Let M a solid subset of $E(X)$; M is compact in $(E(X), \tau)$ if and only if:
(i.) $\pi_j^X(M)$ is compact in (X, τ_j) for all $j \geq 1$,
(ii.) $x^{[i]} \xrightarrow{i \to \infty} x$ uniformly on M in $(E(X), \tau)$
(iii.) M is AK–complete in $(E(X), \tau)$.

Corollary 5. The envelope solid of a relatively compact subset of $(E(X), \tau)$ is not necessarily relatively compact.

Proof. Let $x = (x_n) \in E(X)$ such that $(x^{[i]})_i$ does not converge to x in $(E(X), \tau)$ so $(z^{[i]})_i$ does not converge to z uniformly on $S(x)$ and then $S(x)$ is not relatively compact.

Proposition 15. 1. Let $(x^i)_{i \in I}$ a net in $E(X)$; if \mathcal{F} is a K–convex filter associated with $(x^i)_{i \in I}$, $\pi_j^X(\mathcal{F})$ is a K–convex filter associated with a net $(x^j)_{i \in I}$ for all $j \geq 1$.
2. Let \mathcal{F} a K–convex filter on $E(X)$; if $(x^i)_{i \in I}$ is a net associated to \mathcal{F}, $(x^i_j)_{i \in I}$ is a net associated to $\pi_j^X(\mathcal{F})$ for all $j \geq 1$.

Theorem 8. Let M a K–convex subset of $E(X)$; M is C–compact in $(E(X), \tau)$ if and only if:

(i) $\pi_j^X(M)$ is C–compact in (X, τ_j) for all $j \geq 1$,

(ii) Any K–convex and TK–convergent filter on M admits a cluster point in M.

Proof. N.C.] Obvious.

S.C.] Let \mathcal{F} a maximum K–convex filter of M. For any $j \geq 1$, $\pi_j^X(\mathcal{F})$ is a maximum K–convex filter of $\pi_j^X(M)$ (proposition 2), so $\pi_j^X(\mathcal{F})$ converges to x_j in (X, τ_j). \mathcal{F} is then TK–convergent, so it admits a cluster point in M, and hence \mathcal{F} converges in $(E(X), \tau)$ (Proposition 1). \blacksquare

Proposition 16. Let M a K–convex subset of $E(X)$; if M is C–compact, any K–convex and TK–convergent filter on M has a unique cluster point in M.

Proof. Let \mathcal{F} a K–convex and TK–convergent filter on M. For all $j \geq 1$ let $x_j \in X$ such that $\pi_j^X(\mathcal{F})$ converges to x_j in (X, τ_j). \mathcal{F} admits at least one cluster point (z_n) in M. For all $j \geq 1$, z_j is a cluster point of $\pi_j^X(\mathcal{F})$ in (X, τ_j), and then $x_j = z_j$. So (x_j) is the only cluster point of \mathcal{F} in M. \blacksquare

5. AK–completion and completion

Let M a subset of $E(X)$ and τ a topology on $E(X)$, we put:

$$S_M = \left\{x \in M | x^{[n]} \underset{n \to \infty}{\longrightarrow} x \ in \ (E(X), \tau) \right\}.$$

If M is a subspace of $E(X)$, we say that M is an AK–space if $S_M = M$.

Proposition 17. Let τ a polar topology of A convergence on $E(X)$; $(E(X), \tau)$ is AK–complete.

Proof. Let $x = (x_n) \in E(X)$ such that $(x^{[n]})$ is a Cauchy sequence in $(E(X), \tau)$. For all $A \in A$ there exists $n_0 \geq 1$ such that $x^{[n]} - x^{[m]} \in A^c$ for all $n \geq m \geq n_0$, and then $x^{[n]} - x \in A^c$ for all $n \geq n_0$, then $x^{[n]} \underset{n \to \infty}{\longrightarrow} x$ in $(E(X), \tau)$. \blacksquare
Corollary 6. Let M a subset of $E(X)$. M is AK–complete if and only if M contains every element x of $E(X)$ such that $(x^{[i]})$ is the Cauchy sequence in M.

Corollary 7. Let τ' a locally K–convex topology on $E(X)$ coarser than τ; any AK–complete subset of $(E(X), \tau')$ is complete in $(E(X), \tau)$.

Proof. Let M an AK–complete subset of $(E(X), \tau')$, and either $x \in E(X)$ such that $(x^{[i]})$ is a Cauchy sequence in (M, τ), $(x^{[i]})$ is a Cauchy sequence in (M, τ'), so $x \in M$ and hence M is AK–complete in $(E(X), \tau')$ (Corollary 6).

For all $x = (x_n) \in E(X)$, we put $\psi_x : E(Y) \rightarrow c_0(K)$

$$\psi_x : \begin{array}{l}
y_n \rightarrow (x_n, y_n)_n \\
\end{array}$$

ψ_x is a linear map.

Lemma 1. For any $x \in E(X)$, ψ_x is $(\sigma(E(Y), E(X)), \sigma(c_0(K), m(K)))$–continuous.

Proof. $c_0(K)^\beta = m(K)$ and $(c_0(K), m(K))$ is a separating duality. Let $(\alpha_n) \in m(K)$; $E(X)$ is solid, then $(\alpha_n x_n) \in E(X)$, and we have $\psi_x((\alpha_n x_n)^\circ) \subset \{\alpha_n\}^\circ$.

Proposition 18. $(E(X), \sigma(E(X), E(Y)))$ is an AK–space.

Proof. Let $x = (x_n) \in E(X)$. For all $y = (y_n) \in E(Y)$, $(x_n, y_n) \in c_0(K)$; there exists $i_0 \geq 1$ such that $\sup_{n \geq i_0} |(x_n, y_n)| \leq 1$, then $x^{[i]} - x \in \{y\}^\circ$ for all $i \geq i_0$, and then $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \sigma(E(X), E(Y)))$.

Proposition 19. Suppose that K be local, and let τ a $(E(X), F(Y))$–compatible topology on $E(X)$; if τ is solid, $(E(X), \tau)$ is an AK–space.

Proof. Let A a family of $(\sigma(F(Y), E(X))$–compacts and absolutely K–convex subsets of $F(Y)$ such that τ be a polar topology of A–convergence ([1], theorem 4.5.) Let $x = (x_n) \in E(X)$; for all $A \in A$, $\psi_x(A)$ is solid and $\sigma(c_0(K), m(K))$–compact in $c_0(K)$. Then $z^{[i]} \xrightarrow{i \to \infty} z$ uniformly on $z \in \psi_x(A)$ in $(c_0(K), \sigma(c_0(K), m(K)))$ (theorem 7); there exists $i_0 \geq 1$ such that $\left| z^{[i]} - z, e \right| \leq 1$ for all $i \geq i_0$ and for all $z \in \psi_x(A)$, then $x^{[i]} - x \in A^\circ$ for all $i \geq i_0$, and so $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \tau)$.

We have the following result which is a kind of reciprocal of theorem 1:
Theorem 9. Suppose that K be local, and let τ a polar and solid topology on $E(X)$ for separating duality $\langle E(X), E(X)^\beta \rangle$. If τ_j is (X, Y)–compatible for all $j \geq 1$, τ is $(E(X), E(X)^\beta)$–compatible.

Proof. $E(X)^\beta = (E(X), \sigma(E(X), E(X)^\beta)) \subset (E(X), \tau')$. Let $f \in (E(X), \tau')$ and $x = (x_n) \in E(X)$. $(E(X), \tau)$ is an AK–space (proposition 19), therefore $x^{[i]} \xrightarrow{i \to \infty} x$ in $(E(X), \tau)$, and then $f(x) = \lim f(x^{[i]}) = \sum_j f\delta_j^X(x_j)$. For all $j \geq 1$, $f\delta_j^X \in (X, \tau_j)' = Y$; therefore $f(x) = \sum_j \langle x_j, y_j \rangle$, with $y_j = f\delta_j^X$ for all $j \geq 1$. Hence $(y_j) \in E(X)^\beta$, and so $(E(X), \tau)' \subset E(X)^\beta$. ■

Let \mathcal{C} a family of subsets of $F(Y)$ such that:
1. \mathcal{C} is the right filtering for inclusion;
2. There exist $\lambda_0 \in K$, $|\lambda_0| > 1$ such that $\lambda_0 A \in \mathcal{C}$ for all $A \in \mathcal{C}$;
3. $\lambda_j^Y(A)$ is $\sigma(Y, X)$–bounded for all $j \geq 1$ and for all $A \in \mathcal{C}$
4. The subspace of $E(Y)$ generated by $\cup \{ A/A \in \mathcal{C} \}$ contains $\varphi(Y)$.

We put: \[
\begin{aligned}
\mathcal{C}(X) &= \left\{ (x_n) \in \omega(X)/ \sup_{(y_n) \in A} \sum_n \langle x_n, y_n \rangle < \infty \text{ for all } A \in \mathcal{C} \right\} \\
\mathcal{C}(Y) &= \text{subspace generated by } \cup \{ A/A \in \mathcal{C} \}.
\end{aligned}
\]

If \mathcal{C} is the family of all finite subsets of $F(Y)$, $\mathcal{C}(X) = F(Y)^\beta$.

$\varphi(X) \subset \mathcal{C}(X)$ and $\langle \mathcal{C}(X), \mathcal{C}(Y) \rangle$ is a separating duality defined by the bilinear form:
$$\langle (x_n), (y_n) \rangle = \sum_n \langle x_n, y_n \rangle \text{ for all } (x_n) \in \mathcal{C}(X) \text{ and for all } (y_n) \in \mathcal{C}(Y).$$

If τ is the polar topology of \mathcal{A}–convergence of $E(X)$, $(\mathcal{A}(X), \tau_\mathcal{A})$ is defined, where $\tau_\mathcal{A}$ is the polar topology defined on \mathcal{A} by the family \mathcal{A}, and we have:
1. $E(X) \subset \mathcal{A}(X) \subset F(Y)^\beta$;
2. $\tau_\mathcal{A}/E(X) = \tau$.

Proposition 20. Let τ a polar topology of \mathcal{A}–convergence on $E(X)$.

1. $S_{\mathcal{A}(X), \tau_\mathcal{A}} \subset E(X)$,
2. $(\mathcal{A}(X), \tau_\mathcal{A})$ is AK–complete.

Proof. 1. Let $x = (x_n) \in S_{\mathcal{A}(X), \tau_\mathcal{A}}$; $x^{[i]} \xrightarrow{i \to \infty} x$ $(\tau_\mathcal{A})$, therefore $(x^{[i]})$ is Cauchy sequence in $(E(X), \tau)$ $(\tau = \tau_\mathcal{A}/E(X))$, and then $x \in E(X)$ (proposition 17).
2. Let \((x^{[i]})\) a Cauchy sequence in \((\mathcal{A}(X), \tau_{\mathcal{A}})\); for all \(A \in \mathcal{A}\), there exists \(i_0 \geq 1\) such that for all \(i, j \geq i_0\) \(\sup_i \left\{ \sum_{n=i+1}^{j} \langle x_n, y_n \rangle \right\} / (y_n) \in A \leq 1\).

We have on the one hand, sup \(\left\{ \sum_{n=i_0}^{n} \langle x_n, y_n \rangle \right\} / (y_n) \in A \leq 1\), therefore \(\sup_i \left\{ \sum_{n=i+1}^{\infty} \langle x_n, y_n \rangle \right\} / (y_n) \in A \leq 1\), therefore \(\sup_i \left\{ \langle x^{[i]} - x, (y_n) \rangle \right\} / (y_n) \in A \leq 1\), and then \(x^{[i]} \xrightarrow{i=\infty} x (\tau_{\mathcal{A}})\).

Theorem 10. Let \(\tau\) a solid and polar topology of \(\mathcal{A}\)–convergence on \(E(X)\). For \(E(X)\) is a closed subspace of \((\mathcal{A}(X), \tau_{\mathcal{A}})\) it is necessary and sufficient that any Cauchy net \(TK\)–convergent of \(E(X)\) converges in \((E(X), \tau)\).

Proof. N.C.] \(A\) is solid for all \(A \in \mathcal{A}\), therefore \(A^\circ = [A \cap \varphi(X)]^\circ\).

Let \((x^i)_{i \in I}\) a Cauchy and \(TK\)–convergent net in \((E(X), \tau)\). For all \(j \geq 1\), let \(x_j \in X\) such that \((x^j)_{i \in I}\) converges in \((X, \tau_j)\) to \(x_j, \tau_j\) is the polar topology of \(\pi_j^Y(\mathcal{A})\)–convergence on \(X\). Let \(A \in \mathcal{A}\), there exists \(k_0 \in I\) such that for all \(r, s \geq k_0\) \(\sum_{j=1}^{\infty} \langle x^i_j - x^i_j, y_j \rangle \leq 1\) for all \(N \geq 1\) and for all \(y \in A\). There exists \(k_j \in I\) such that for all \(r \geq k_j\) \(\left\| \langle x^i_j - x, y_j \rangle \right\| \leq 1\) for all \((y_n) \in A\). Let \(r_0 = \max\{k_0, k_1, \ldots, k_N\}\) for all \(r \geq r_0\) we have:

\[
\sum_{j=1}^{N} \left\| x^i_j - x, y_j \right\| \leq \max_{1 \leq j \leq N} \left\| \langle x^i_j - x, y_j \rangle \right\| \leq 1\] for all \((y_n) \in A\).

\[
\sum_{j=1}^{N} \left\| x^i_j - x, y_j \right\| \leq 1\] for all \((y_n) \in A\) and for all \(s \geq r_0\); therefore \(x^s - x \in [A \cap \varphi(X)]^\circ\) for all \(s \geq r_0\). Furthermore, \(x = x^s - (x^s - x) \in \mathcal{A}(X)\). Therefore \((x^i)_{i \in I}\) converges to \(x\) in \((\mathcal{A}(X), \tau_{\mathcal{A}})\), and then \(x \in E(X)\) and \((x^i)_{i \in I}\) converges to \(x\) in \((E(X), \tau)\).

S.C.] Let \((x^i)_{i \in I}\) a net in \(E(X)\) which converges to \(x\) in \((\mathcal{A}(X), \tau_{\mathcal{A}})\). \((x^i)_{i \in I}\) is a Cauchy and \(TK\)–convergent net in \((E(X), \tau)\) \((\tau = \tau_{\mathcal{A}/E(X)}\)\), therefore \((x^i)_{i \in I}\) converges to \(x\) in \((E(X), \tau)\).
Lemma 2. Let L and M two K-vector spaces, τ a topology on L, $L \xrightarrow{\pi} M \xrightarrow{\delta} L$ two linear maps such as $\pi \circ \delta = \text{id}_M$, and τ_δ the inverse image topology of τ by δ on M. The application $\psi : (M, \tau_\delta) \rightarrow (\delta(M), \tau)$, $x \mapsto \delta(x)$, is an homeomorphism.

Proof. If \mathcal{U} is a F.S.N of 0 for τ; a F.S.N of 0 for τ_δ is $\delta^{-1}(\mathcal{U}) = \{\delta^{-1}(U) / U \in \mathcal{U}\}$, and we have: $\psi^{-1}(U \cap \delta(M)) = \delta^{-1}(U)$ for all $U \in \mathcal{U}$. □

Theorem 11. Let τ a polar and solid topology of \mathcal{A}-convergence on $E(X)$; $(E(X), \tau)$ is complete if and only if:
(i.) (X, τ_j) is complete for all $j \geq 1$;
(ii.) $E(X)$ is a closed subspace of $(\mathcal{A}(X), \tau_A)$.

Proof. N.C.] δ_j^X is (τ, τ_j)-closed for all $j \geq 1$ (proposition 13), therefore $\delta_j^X(X)$ is a closed subspace of $(E(X), \tau)$, hence $(\delta_j^X(X), \tau)$ is complete. Now $(\delta_j^X(X), \tau) \simeq (X, \tau_j)$ (lemma 2), therefore (X, τ_j) is complete. Furthermore $E(X)$ is a closed subspace of $(\mathcal{A}(X), \tau_A)$ (theorem 10).
S.C.] Let $(x^i)_{i \in I}$ a Cauchy net in $(E(X), \tau)$. For $j \geq 1$, $(x^i_j)_{i \in I}$ is Cauchy in (X, τ_j) so it converges, and then $(x^i)_{i \in I}$ is TK-convergent in $(E(X), \tau)$ so it converges in $(E(X), \tau)$, (theorem 10). □

Remark 2. We can replace (ii) of theorem 11 by:
(ii) Any Cauchy TK-convergent net in $(E(X), \tau)$ converges in $(E(X), \tau)$.

Corollary 8. Let τ a polar and solid topology of \mathcal{A}-convergence on $E(X)$. If $E(X)$ is a closed subspace of $(\mathcal{A}(X), \tau_A)$: $(E(X), \tau)$ is sequentially complete if and only if (X, τ_j) is sequentially complete for all $j \geq 1$.

Lemma 3. Let τ a vector topology on $E(X)$; if τ is solid, $S_{E(X)}$ is the closure of $\varphi(X)$ in $(E(X), \tau)$.

Proof. $S_{E(X)} \subset \varphi(X)$. Let $x = (x_n) \in \varphi(X)$ and U a solid neighborhood of 0, it is $z = (z_n) \in \varphi(X)$ as $x - z \in U$. Since U is solid $x[i] - x \in U$ for i large enough, then $x[i] \xrightarrow{i \rightarrow \infty} x$ in $(E(X), \tau)$ and hence $x \in S_{E(X)}$. □

Proposition 21. Let τ a solid and polar topology of \mathcal{A}-convergence on $E(X)$; if (X, τ_j) is complete for all $j \geq 1$, $(S_{E(X)}, \tau)$ is complete.
Proof. $S_{E(X)} = \varphi(X)$ (lemma 3), therefore $(S_{E(X)}, \tau)$ is a closed subspace of $(A(X), \tau_A)$, and then $(S_{E(X)}, \tau)$ is complete.

Application: Let $(X, \|\cdot\|)$ a n.a Banach space, we consider $m(X)$ endowed with the n.a. norm $\|\cdot\|_\infty$. We have $c_0(X) = S_m(X)$, and $\|\cdot\|_\infty$ defines a polar and solid topology on $m(X)$, therefore $(c_0(X), \|\cdot\|_\infty)$ is complete.

Theorem 12. Let τ a solid and polar topology of A–convergence on $E(X)$; if $E(X)$ is an AK–space, $(E(X), \tau)$ is complete if and only if (X, τ_j) is complete for all $j \geq 1$.

Proof. N.C.] Obvious.

S.C.] $E(X)$ is an AK–space, therefore $E(X) = S_{(E(X), \tau)}$. Now $S_{(A(X), \tau_A)} \subset E(X)$ (proposition 20) and $S_{(E(X), \tau)} \subset S_{(A(X), \tau_A)}$, therefore $E(X) = S_{(E(X), \tau)} = S_{(A(X), \tau_A)}$, and then $E(X)$ is a closed subspace of $(A(X), \tau_A)$.

Hence $(E(X), \tau)$ is complete (theorem 11).

References

[1] R. Ameziane Hassani, M. Babahmed, Topologies polaires compatibles avec une dualité séparante sur un corps valué non-Archimédien, Proyecciones Vol. 20, Núm. 2, pp. 217-240, (2001).

[2] H.R. Chillingworth, Generalised "dual" sequence spaces, Ned. Akad. Proc. Ser. A. 61, pp. 307-515, (1958).

[3] A. El amrani, R. Ameziane Hassani and M. Babahmed, Topologies on sequence spaces in non-archimedean analysis, J. of Mathematical Sciences: Advances and Applications Vol. 6, Núm. 2, pp. 193-214, (2010).

[4] T. Komura; Y. Komura, sur les espaces parfaits de suites et leurs généralisations, J. Math. Soc. Japon. 15, pp. 319-338, (1963).

[5] G. Köthe, Topological vector spaces, Springer-Verlag Berlin Heidlberg New york, (1969).

[6] Neubegründung der theorie der vollkommen Räume, Math. Nach. 4, pp. 70-80, (1951).
[7] O. Toeplitz, Lineare Räume mit unendlich vielen Koordinaten und Ringe unendlicher Matrizen, J. reine angew. Math. 171, pp. 193-226, (1934).

[8] G. Matthews, Generalised Rings of infinite matrices, Ned. Akad. Wet. Proc. 61, pp. 298-306 (1958).

[9] A.F. Monna, Analyse non-archimédienne, Springer-Verlag Berlin New York Heidelberg (1970).

[10] H.H. Schaefer, Topological vector spaces, Springer-Verlag Berlin New York Heidelberg, (1971).

[11] W. H. Schikhof, Locally convex spaces over nonspherically complete valued field I, II. Bull. Soc. Math. Belg. Sér. B. 38, pp. 187-224, (1986).

[12] J. Van Tiel, Espaces localement K-convexes I-III, Indag. Math. 27, pp. 249-289 (1965).

R. Ameziane Hassani
Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796 FES - MAROC
e-mail : ramezianehassani@hotmail.com

A. El Amrani
Département de Mathématiques
Faculté des Sciences Dhar El Mehraz
Université Sidi Mohamed Ben Abdellah
B. P. 1796, FES - MAROC
e-mail : ramezianehassani@hotmail.com

and

M. Babahmed
Département de Mathématiques
Faculté des Sciences de Meknès
Université Moulay Ismail
B. P. 11201 Zitoune
MEKNES - MAROC
e-mail : babahmed@fs-umi.ac.ma