Supplementary Material: tobacco-specific and combustion pollutants in settled house dust in Malta

Details of the extraction, cleaning and concentration of PAHs, Nicotine, Nicotelline and TSNAs from settled house dust (SHD).

Extraction of PAHs
Approximately 200 mg of sieved SHD were weighed and placed in a 16 × 125 culture tube. 50 μL of Nicotine-d₄ internal standard and 50 μL of Nicotelline + TSNA internal standard mix were prepared in advance in 0.5 mL 1M H₂SO₄ per sample. Similarly, 50 μL of PAH internal standard mix was prepared in 0.5 mL DCM/Pentane (50:50) per sample. Each dust sample was spiked with the abovementioned internal standard mixes and 1.5 mL of water and 5 mL of DCM/Pentane(50:50) were added. The mix was vortexed for 30 s and sonicated for 30 min at 25 °C. After vortexing for 30 s, the tubes were centrifuged at 3700 rpm for 4 min and then frozen in an acetone-dry ice bath.

The organic phase (this is Fraction 1) was transferred in a 13 × 100 tube and kept for PAHs analysis.

Fraction 1: PAHs
This fraction was blown to dryness at 25 °C under a gentle stream of nitrogen and reconstituted with 500 μL of hexane. 300 mg of anhydrous sodium sulfate as a drying agent were added to an Agilent Bond Elut 10 mL, 1 mg silica column. The silica column was prewashed with 3 mL MeOH followed by 3 mL acetone, conditioned with 3mL hexane/DCM (50:50) followed by 6 mL hexane, loaded with 500 μL of reconstituted extract in hexane and eluted with 6 mL of hexane/DCM (70:30) in a 13 × 100 tube. 200 μL of m-xylene were spiked in the collected eluent and blown down under a gentle stream of nitrogen to a final extract volume of 200 μL which was...
transferred with a glass Pasteur pipette in a GC vial with a 250 μL insert. 2 μL were injected in a GC-MS.

Extraction of Nicotelline + TSNAs

After Fraction 1 was removed, 1 mL of 45% potassium carbonate + 5% Na₂EDTA were added to the remaining aqueous phase followed by 8 mL of DCM/Pentane/EtOAc/IPA (40:40:15:5). After vortexing for 1 min and centrifuging at 3700 rpm for 4 min, the two phases were placed in an acetone-dry ice bath.

At this stage the organic phase was split as follows:

Fraction 2: In a 13 × 100 tube containing 0.5 mL of 1M H₂SO₄, 3 mL of the organic phase were poured, for **Nicotine** to be extracted from it.

Fraction 3: In another 13 × 100 tube containing 0.5 mL of 1M H₂SO₄, the remaining 5 mL of the organic phase were poured, for **Nicotelline + TSNAs** to be extracted from it.

Both Fractions 2 & 3 were vortexed for 1 min, centrifuged at 3700 rpm for 4 min and frozen in an acetone-dry ice bath after which the organic phase was discarded.

Fraction 2: Nicotine

The remaining aqueous phase was neutralized with 0.5 mL 50% K₂CO₃/2N NH₄OH and 0.5 mL 90:10 Toluene/Butanol were added. The two phases were vortexed for 1 min, centrifuged at 3700 rpm for 3 min and frozen in an acetone-dry ice bath. The 0.5 mL organic phase was poured in an EDTA deactivated GC vial and injected 2 μL in GC-MS.

Fraction 3: Nicotelline + TSNAs

The remaining aqueous phase was neutralized with 0.5 mL 45% K₂CO₃/5% Na₂EDTA and 5 mL 40:40:15:5 DCM/Pent/EtAc/IPA were added. The mixture was vortexed for 1 min, centrifuged at 3700 rpm for 3 min and frozen in an acetone-dry ice bath. The organic phase was poured in a 13 × 100 tube and spiked with 100 μL of 1% HCl in MeOH and dried at 60 °C under a gentle nitrogen flow. Reconstitution of analytes was done with 200 μL 0.1 M ammonium formate in 20% MeOH. 30 μL were injected in
Supplementary Table 1. Characteristics and statistics of districts in Malta

District	Name	Population	Area\(^a\) (%	Type
1	Northern Harbour	131,056	7.6	Urban
2	Northern	69,467	23.3	Urban background/Rural
3	Southern Harbour	80,170	8.3	Urban/ Harbour
4	Western	59,817	22.9	Urban background/Rural
5	South Eastern	68,044	17.2	Quarries/ industrial/ Trans-shipment hub

\(^a\)Percentage area occupied by district in relation to the surface area of Malta.

Supplementary Table 2. Precision and accuracy for determination of nicotine, nicotelline, TSNAs and PAHs in analyte spiked clay soil\(^a\) used as QC samples

Pollutant	LOQ (ng/g)	Actual (ng/g)	Measured (ng/g)	SD (ng/g)	% RSD	% Accuracy	% Recovery
Nicotine	1.4	1000.0	976.9	20.7	2.1	-2.3	97.7
		333.3	351.3	0.5	0.1	5.4	105.4
		111.1	115.2	0.5	0.4	3.7	103.7
		37.0	38.0	0.3	0.7	2.7	102.7
		12.3	12.4	0.0	0.3	0.3	100.3
		4.1	4.3	0.1	1.5	4.8	104.8
		1.4	1.2	0.0	1.6	-14.5	85.5
Nicotelline	0.36	100.0	91.4	7.6	8.3	-8.6	91.4
		33.3	32.1	2.6	8.3	-3.7	96.3
		11.1	11.8	1.2	9.9	5.8	105.8
	3.7	4.0	0.2	5.5	8.8	108.8	
------	-----	-----	-----	-----	-----	-------	
1.2	1.3	0.1	6.3	6.4	106.4		
0.4	0.4	0.0	6.2	-4.9	95.1		

NNK 0.14

	100.0	100.3	0.4	0.4	0.3	100.3
33.3	30.4	3.7	12.3	-8.7	91.3	
11.1	10.9	0.4	3.5	-2.2	97.8	
3.7	3.7	0.2	6.3	-0.2	99.8	
1.2	1.2	0.1	9.4	0.7	100.7	
0.4	0.4	0.0	5.8	3.5	103.5	
0.1	0.1	0.0	9.5	4.2	104.2	

NNN 0.02

	100.0	79.5	18.0	22.6	-20.5	79.5
33.3	26.9	0.6	2.2	-19.3	80.7	
11.1	10.5	0.8	7.7	-5.4	94.6	
3.7	3.8	0.2	4.8	2.5	102.5	
1.2	1.3	0.0	3.6	3.2	103.2	
0.4	0.4	0.0	7.1	-5.2	94.8	

NAB 1.23

	100.0	92.9	4.9	5.2	-7.1	92.9
33.3	34.1	0.9	2.6	2.3	102.3	
11.1	11.4	0.7	6.2	2.8	102.8	
3.7	3.9	0.1	2.8	4.9	104.9	
1.2	1.2	0.1	7.1	1.0	101.0	

NAT 0.02

	100.0	100.2	4.2	4.2	0.2	100.2	
33.3	33.3	0.1	0.3	-0.2	99.8		
11.1	11.0	0.3	3.1	-1.2	98.8		
3.7	3.7	0.0	1.0	1.2	101.2		
1.2	1.2	0.0	1.0	0.8	100.8		
0.4	0.4	0.0	2.1	1.9	101.9		
0.1	0.1	0.0	1.2	-2.0	98.0		
	0.05	0.0	0.0	0.9	-2.1	97.9	
-------	------	-----	-----	-----	------	------	
	0.02	0.0	0.0	1.8	-0.2	99.8	
Ph	0.82	200.0	172.2	23.2	13.5	-13.9	86.1
	66.7	66.1	1.4	2.1	-0.9	99.1	
	22.2	22.6	0.9	4.0	1.7	101.7	
	7.4	6.8	0.1	0.7	-8.2	91.8	
	2.5	2.5	0.2	8.6	0.6	100.6	
	0.8	0.9	0.0	4.3	3.7	103.7	
An	0.09	200.0	179.6	18.1	10.1	-10.2	89.8
	66.7	66.0	1.5	2.3	-0.9	99.1	
	22.2	23.5	0.9	4.0	5.7	105.7	
	7.4	6.8	0.3	4.6	-7.6	92.4	
	2.5	2.4	0.1	5.3	-3.5	96.5	
	0.8	0.9	0.0	2.4	8.0	108.0	
Fluo	2.47	200.0	182.1	13.8	7.6	-8.9	91.1
	66.7	65.6	0.4	0.6	-1.6	98.4	
	22.2	23.6	0.2	1.0	6.4	106.4	
	7.4	7.1	0.2	2.2	-3.6	96.4	
	2.5	2.4	0.1	2.7	-1.2	98.8	
Pyr	7.41	200.0	186.8	16.8	9.0	-6.6	93.4
	66.7	66.5	4.1	6.2	-0.3	99.7	
	22.2	23.9	1.2	4.9	7.5	107.5	
	7.4	6.9	0.3	4.6	-6.8	93.2	
	2.5	2.5	0.1	2.3	1.7	101.7	
B(a)A	0.09	200.0	184.5	11.4	6.2	-7.7	92.3
	66.7	64.9	2.0	3.2	-2.7	97.3	
	22.2	23.9	0.4	1.7	7.4	107.4	
	7.4	6.8	0.2	3.6	-7.7	92.3	
	2.5	2.3	0.1	4.3	-4.9	95.1	
	0.3	0.3	0.0	1.1	10.7	110.7	
-----	------	------	------	------	------	-------	
	0.1	0.1	0.0	12.3	2.8	102.8	
Chry	2.47	200.0	181.73	18.01	9.91	-9.14	
	66.67	64.11	4.64	7.23	-3.84	96.16	
	22.22	24.40	1.79	7.34	9.82	109.82	
	7.41	7.01	0.27	3.85	-5.39	94.61	
	2.47	2.52	0.13	5.01	2.10	102.10	
B(b)F	2.47	200.0	181.5	14.6	8.0	-9.2	
	66.7	62.6	4.0	6.4	-6.1	93.9	
	22.2	23.7	1.0	4.4	6.7	106.7	
	7.4	6.9	0.2	3.4	-7.2	92.8	
	2.5	2.5	0.1	5.4	1.6	101.6	
B(a)P	0.09	200.0	185.8	12.0	6.4	-7.1	
	66.7	64.5	3.1	4.8	-3.2	96.8	
	22.2	24.2	1.6	6.6	8.9	108.9	
	7.4	6.8	0.3	3.9	-7.6	92.4	
	2.5	2.4	0.2	9.4	-1.3	98.7	
IndP	2.47	200.0	187.1	9.9	5.3	-6.5	
	66.7	66.0	1.4	2.2	-1.0	99.0	
	22.2	26.4	2.5	9.4	18.9	118.9	
	7.4	7.0	0.2	3.4	-5.8	94.2	
	2.5	2.5	0.1	3.6	-0.4	99.6	
	0.8	1.0	0.1	13.1	15.5	115.5	
D(ah)A	0.09	200.0	195.2	4.8	2.5	-2.4	
	66.7	66.0	1.6	2.4	-1.0	99.0	
	7.4	7.2	0.3	4.4	-2.5	97.5	
	2.5	2.6	0.1	3.7	5.7	105.7	
	0.3	0.3	0.0	3.3	-5.1	94.9	
An aqueous solution of nicotelline, nicotine, TSNAs and PAHs containing the specified amounts was added to 200 mg powdered, dried clay soil. Samples were extracted and analyzed as described for the SHD in the experimental section. For all compounds, results are based on the mean of four replicates. LOQ: Limit of quantitation (ng/g); SD: standard deviation; RSD: relative standard deviation.

Supplementary Table 3. Equations for typical standard curves

Pollutant	Concentration range (ng/g)	Slope^a	Intercept	Correlation coefficient (r^2)
Nicotine	0-200,000	0.191056	0.00698	0.9986
Nicotelline	0-200	0.35566	0.00184	0.9982
NNK	0-200	0.206839	-0.00759	0.9992
NNN	0-200	0.144304	-0.00012	1.0000
NAT	0-200	0.133022	1.99774	0.9993
NAB	0-200	0.786727	0.145523	0.9976
Ph	0-0-10,000	0.227839	0.062935	0.9975
An	0-200	0.016556	0.004256	0.9903
Fluo	0-200	0.037721	0.054607	0.9979
Pyr	0-200	0.035267	0.038995	0.9991
BaA	0-200	0.035974	0.013190	0.9939
Chry	0-200	0.032483	0.005760	0.9940
BbF	0-200	0.034311	0.003298	0.9938
BaP	0-200	0.025556	0.012023	0.9998
	IndP	DahA	BghiP	
-------	-----------	-----------	------------	
	0.030388	0.012978	0.9998	
	0.047156	-0.006188	0.9992	
	0.037242	0.013107	0.9993	

a Equations were determined by linear regression: response ratio = a × (amount ratio) + intercept.
Supplementary Table 4. Descriptive statistics for all pollutants (in ng/g) of outdoor deposited house dust collected in Malta

Pollutant	Valid n	Detection frequency (%)	Mean	SD	Min	Max (ng/g)	Q1	Q2	Q3
Nicotine	16	80	3692	11428	75	46,364	213	580	1414
Nicotelline	20	100	2	4	0	17	0	1	2
NNK	20	100	0.5	0.9	0.0	2.9	0.1	0.2	0.3
NNN	20	100	0.4	1.0	0.0	4.3	0.0	0.1	0.2
NAT	20	100	0.2	0.4	0.0	2.1	0.0	0.0	0.1
NAB	20	100	0.2	0.2	0.0	0.7	0.1	0.1	0.3
Σ TSNA	20	100	1.3	2.3	0.1	9.9	0.2	0.5	0.9
Ph	20	100	135	81	24	326	82	110	180
An	20	100	13	10	1	37	6	10	21
Fluo	20	100	178	124	32	506	83	152	246
Pyr	18	90	171	110	33	463	104	135	207
Pollutant	Smoking 20	Smoking 100	Q1	Q2	Q3				
-----------	------------	-------------	----	----	----				
BaA	20	100	57	37	5				
Chry	20	100	110	73	15				
BbF	20	100	87	62	16				
BaP	20	100	78	50	11				
IndP	20	100	74	49	13				
DahA	20	100	18	14	2				
BghiP	20	100	92	61	14				
ΣPAH	20	100	1074	717	133				

Q1, Q2, Q3 are the 25th, 50th and 75th percentiles respectively.

Supplementary Table 5. Mann Whitney U test for all pollutants in SHD to check statistical difference across smoking and non-smoking houses

Pollutant	Smoking 20	Smoking 100	Mann-Whitney U	Wilcoxon
BaA	8.00	0.00	0.00	0.00
Chry	128.0	0.00	0.00	0.00
BbF	88.0	0.00	0.00	0.00
BaP	112.0	0.00	0.00	0.00
IndP	157.0	0.00	0.00	0.00
DahA	51.0	0.00	0.00	0.00
BghiP	15.7	0.00	0.00	0.00
ΣPAH	51.0	0.00	0.00	0.00

Test statistics

Pollutant	Nicotine	Nicotine	NN	NN	NA	NA	ΣTS	ΣTS	Ph	Ph	An	An	Fluo	Fluo	Pyr	Pyr	BaA	BaA	Chry	Chry	BbF	BbF	BaP	BaP	IndP	IndP	DahA	DahA	BghiP	BghiP	ΣPAH	ΣPAH		
Mann-Whitney U	8.00	0.00	128.0	0.00	88.0	0.00	131.0	131.0	99.5	99.5	112.0	112.0	121.0	121.0	51.0	51.0	46.0	46.0	65.0	65.0	45.0	45.0	48.0	48.0	92.0	92.0	54.0	54.0	81.0	81.0	101.0	101.0	74.0	74.0
Wilcoxon	74.0	0.00	869.0	0.00	873.0	0.00	829.0	829.0	840.0	840.0	853.0	853.0	226.0	226.0	106.0	106.0	101.0	101.0	143.0	143.0	111.0	111.0	103.0	103.0	158.0	158.0	90.0	90.0	172.0	172.0	192.0	192.0	179.0	179.0
Supplementary Table 6. Kruskal-Wallis H test for all pollutants in SHD to check statistical difference across the different districts in Malta

Test statistics\(^{a,b}\)
Nicoti

\(^a\)Grouping variable: smoker; \(^b\)not corrected for ties.
	ne	ine	K	N	T	B	NA	o	A	y	F	P	A	iP	H				
Kruskal-Wallis H	3.941	4.262	5.9	4.0	.93	.99	5.579	4.1	1.7	5.4	3.9	3.1	3.8	4.8	4.5	3.5	3.39	4.55	4.06
df	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Asymp.	0.414	0.372	0.2	0.4	0.9	0.9	0.233	0.3	0.7	0.2	0.4	0.5	0.4	0.3	0.3	0.4	0.49	0.33	0.39
Sig.	0.00	0.05	0.20	0.11	0.07	0.66	0.08	0.74	0.48	0.17	0.31	0.30	0.07	0.31	0.68	0.05	0.06	0.07	

*Kruskal Wallis test; bGrouping variable: district.

Supplementary Table 7. Spearman rho correlation plot for nicotine, nicotelline, TSNA and PAHs
Supplementary Table 8. Nicotine, \sum TSNA and \sum PAH concentrations (in ng/g) and % load of pollutant in indoor/outdoor and smoker/non-smokers’ SHD

Place	N	Nicotine (%)	\sum TSNA (%)	\sum PAH (%)
Indoor	54	18246	26	3169
		85.1	0.1	14.8
Outdoor	20	3692	1.3	1074
		77.4	0.1	22.5
Indoor-smokers	16	37366	40	762
		97.9	0.1	2.0
Indoor-non-smokers	30	864	20	4256
		16.8	0.4	82.8

All concentrations are mean values (in ng/g).