Evidence of self-organization in time series of capital markets

Leopoldo Sánchez-Cantú*, Carlos Soto-Campos**, Andriy Kryvko*

*ESIME, Instituto Politécnico Nacional, Ciudad de México, México
**Universidad Autónoma del Estado de Hidalgo, Pachuca, México

HIGHLIGHTS
• We study the dynamics of prices in multiple equity market indices.
• The decrease in stock prices (draw-downs) were identified as units of study.
• A range of price differentials larger than a critical level conforms to a power law.
• This level is interpreted as a phase transition into a self-organized system.

ABSTRACT
A methodology is developed to identify, as units of study, each decrease in the value of a stock from a given maximum price level. A critical level in the amount of price declines is found to separate a segment operating under a random walk from a segment operating under a power law. This level is interpreted as a point of phase transition into a self-organized system. Evidence of self-organization was found in all the stock market indices studied but in none of the control synthetic random series. Findings partially explain the fractal structure characteristic of financial time series and suggest that price fluctuations adopt two different operating regimes. We propose to identify downward movements larger than the critical level apparently subject to the power law, as self-organized states, and price decreases smaller than the critical level, as a random walk with the Markov property.

Keywords: power law; heavy-tailed distribution; self-organization; Self Organized Criticality; critical point of phase transition.

1. Introduction

The analytical-reductionist methodology that has traditionally addressed the description and study of stock market price fluctuations [9], [152], [69], [108], [109], [115], [39], [40], [120], [121], [102], [62] has left out of its scope of observation, therefore without explanation, some of the most interesting features of the phenomena since they don’t fit a normal Gaussian distribution and do not meet the principles of a Wiener-type random walk generated by supposedly rational agents as the unbiased aggregated response to the random flow of external information [96].

Instead of considering these characteristics as anomalies [31], [83], [122], we propose that heavy-tailed distributions [84], [85], the presence of clusters of high volatility alternating with periods of low volatility [123], [124], [38] [17], [97], the non-stationarity of statistical parameters [137], [93], [29], [68], the characteristic multifractal structure of stock market time series [112], [89], [20], [27], [75], [101], the recurring crises that stock markets have suffered since the seventeenth century [70], [134], and a fundamental instability inherent to financial markets [98] are structural processes that need to be addressed and explained instead of being swept under the rug.

Several authors have tested the hypothesis that price fluctuations have short, medium and long-term memory [88], [54], [76], [77], [77], [72]. However, findings have been mixed,

1 Corresponding author.
E-mail address: polo.antares@gmail.com (L. Sánchez-Cantú)
especially for terms longer than a few hours or days. On the flip side, long-term memory has consistently been demonstrated in the volatility of time series [36], [17], [37].

This paper addresses price fluctuations with a systemic outlook to explain the alleged “anomalies” as emergent phenomena [3], [5], [6]. To this aim, recurrent downward movements of asset prices have been selected as observable units of study in a large sample of time series (30 cases) of equity market indices.

2. Methodology

A methodology was developed to identify in a series of daily closing prices each downward movement to a bottom from a recent peak, followed by a rebound back to the previous ceiling, or back to the highest value registered in the previous six months, whichever was reached first. These cumulative negative returns or downfalls then became units of study. Using the series of negative returns as observables, we explored the possibility of identifying a range within the space of states in which a variable that corresponded to the lowest value accumulated during each downfall could be explained as a process that follows a power law.

Data sets of downfalls of 30 international equity market indices (7 regional international, 5 American, 4 Latin American, 4 from emerging European countries, 5 from developed European countries and 5 from Asian countries) were ordered by size. The absolute value of each downfall (ordinates) was plotted against the place it occupied by size (abscissas) in a log-log scale.

Kurtosis of the progressive sets of absolute downfalls of each index were calculated, anchoring each series at the smallest decrease in value. Increasingly larger absolute decreased values were incorporated one by one until the largest was reached. The level of the one decrease from which the set of downfalls smaller to it had a kurtosis closest to zero was identified as the cutoff point or critical level. The set of events with kurtosis closest to zero is thus compatible with a normal density distribution.

The cutoff point was recognized as the critical level of phase transition separating two regimes of operation. The lower (mesokurtotic) segment of smaller price decreases, allegedly operating under a random regime, while the upper (leptokurtotic) segment of downfalls larger than the critical level can be explained as following a power law. This latter set of larger losses is incompatible with a normal density distribution. We propose to consider this set of larger declines in value purportedly generated by a process under a self-organized regime.

3. Computation of parameters

We obtained a time series of daily closing prices/values, \(c_i \), of each stock index from the earliest date available to us, \(c_0 \), down to the most recent date at the time the study was made, \(c_n \) (initial and final dates of each series are shown on Table 2). We then completed the following operations to estimate all the parameters used in this study:

- Log returns \(r_i \), of price series were estimated with \(r_i = \ln(c_i/c_{i-1}) \). Standard deviations, \(S_r \), were calculated as usual. Kurtosis, \(K_r \), of daily returns were calculated as excess-kurtosis with

\[
K = \frac{1}{N} \sum_{i=1}^{N} \frac{(x_i - \bar{x})^4}{\sigma^4} - 3
\]

...so the normal (mesokurtotic or Gaussian) value is 0. Larger values are considered leptokurtic or leptokurtotic [151]. The total number of log returns for each index are labeled \(N_r \).

- The set of daily values of the maximum closing price of the previous six months, \(c_{\text{Max}} \), was generated together with the closing price, \(c_0 \), of every series (Figure 1, A and B).
- We calculated a series of daily differences between \(c_i - c_{Max} \) to measure each decrease in value of the series \(c_i \) below the series \(c_{Max} \). These differences also show the rebounding of \(c_i \) back to the level of \(c_{Max} \). Series of values, \(d_i = c_i - c_{Max} \), were generated (C in Figure 1). Each one of these movements is named a draw-down. A complete draw-down was considered as the set of negative values, \(d_i < 0 \), located between two alternating points where \(d_i = 0 \).

![Figure 1](image1.png)

Figure 1. Nominal value of the S&P500 Index, \(c_i \) (A), the maximum closing level of the last 6 months, \(c_{Max} \) (B) (inferior panel, semi-log scale). Difference, \(c_i - c_{Max} \) (C) (superior panel, arithmetic scale).

- The most negative value of each \(d_i \) series (the bottom of every fall) was recorded (such \(d_i \) value was named \(d_{max} \)). For further analysis, the absolute value of each \(d_{max} \) is identified as an observable unit of study \(x_i \) (Figure 2). The complete set of \(x_i \) values for each index was \(N_x \).

![Figure 2](image2.png)

Figure 2. Difference between the daily nominal value of the S&P500 index compared to the maximum closing value of the previous 6 months \(c_i - c_{Max} \). The arrows show how to identify the maximum value of a price drop \(d_{max} \) followed by a complete recovery of the loss until it reaches back the reference value \(c_{Max} \). DD stands for draw-down.
• Maximum draw-down values, x_i, were ordered from the largest, corresponding to the largest decline, x_{Max}, to the smallest, corresponding to the shallowest decline, x_0.
• This generated a scatterplot of x_i values (ordinates) against the cumulative place they occupied (abscissa) in a log-log scale (Figure 3).

![Figure 3. MSCI Emerging Europe (Cum Price Drops)](image)

Fig. 3. Scatterplot of individual price drops (d_{max} in absolute percentage value). Ordered from the deepest (largest) to the shallowest (smallest), in a log-log scale (critical data-point, x_{min} in white).

- Kurtosis, K_x, of the complete series of declines, x_i, for each index was calculated. Also calculated were the kurtosis of the sets of cumulative values, K_x, anchored at x_{Max} down to x_0. The same occurred with the sets of cumulative values, K_x, anchored at x_0 up to x_{Max} (see Table 1).
- There followed an identification of the inferior segment of declines in value with a kurtosis value, K_x, closest to zero. This segment is thus considered mesokurtotic. The x_i value at the cutoff point of this segment is labeled x_{min} from here on.
- Kurtosis, K_x, of the superior segment (from x_{Max} down to x_{min}) was also calculated. This segment was found to be leptokurtotic for all indices. The point of minimum fall, x_{min} in this set, equivalent to the phase transition point, is the point at which the regime changes from being random (declines of less than x_{min} dimension) to a self-organizing regime (declines greater than x_{min} dimension), x_{min} being the critical level which separates them.
- Declines with values ranging from x_{Max} to x_{min} were selected and depicted on a log-log scale (log of the cumulative number of events against log of the size of the fall). A power regression line for this set of events was drawn and its coefficient of determination R^2 was recorded (see Figure 4). The number of events in this set was labeled N_s.
- The value of the exponent, α, of the regression and the value of the standard error of the exponent, σ, were calculated using the following formulas [106], [30]:

$$\alpha = 1 + N_s \left[\sum_{i=1}^{n} \ln \frac{x_i}{x_{\text{min}}} \right]^{-1}$$ \hspace{1cm} (2)

$$\sigma = \frac{\alpha^{-1}}{\sqrt{N_s}}$$ \hspace{1cm} (3)
The next 12 parameters were calculated for each one of the 30 stock market indices studied:

- Total number of price decreases registered in the series, N_x.
- Number of events (cases) in the upper segment, N_s.
- Number of events (cases) in the lower segment, N_i.
- Percentage that N_s represents of N_x.
- Kurtosis, K_x, of the complete set of downward tendencies.
- Kurtosis, K_s, of the upper (superior) downward tendencies.
- Kurtosis, K_i, of the lower (inferior) downward tendencies.
- Value of x_{Max}.
- Value of x_{Min}.
- R^2 value of power regression line of upper set of downward tendencies.
- Value of α exponent of power regression line.
- Standard error, σ, of the α exponent of the power regression line.

4. Results

Table 1 shows the most relevant results. The general characteristics of the financial time series (number of data for each series, standard deviation and kurtosis of daily log-returns, initial and final dates) appear in Table 2. The 30 stock market indices analyzed are briefly described in the Appendix.

The method we used to identify each observation unit (each dip) yielded events whose amount depended on the length of history of the index in days of operation. The correlation coefficient between both quantities (days of operation vs. degree of loss registered) is 0.992 ($R^2 = 0.945$). The average number of losses registered in all 30 indexes is 323, with a minimum of 111 for Colombia (2001-2015) and a maximum of 1,147 for the DJIA (1897-2015). The average proportion of events or downturns larger than the critical point is 23.68% (ranging from 15.95% to 32.20%).
The average excess-kurtosis of the complete sets of price declines, K_o (formula (1)) is 22.17 (7.925 to 64.709). The average excess-kurtosis of the set of these declines above the critical point, K_n, is 6.029 (1.76 to 21.552) whereas the average excess-kurtosis of the inferior set of declines, K_i, is 0.001 (-0.295 to 0.151).

The average value of the deepest loss, X_{max}, for all series is -55.91% (-38.91% to -77.62%). The average value of the loss at the critical point, x_{min}, is -4.46% (-1.73% to -8.70%) and the average coefficient of determination, R^2, of the power regression is 0.9584 (0.9110 to 0.9834).

Table 1.	a	b	c	d	e	f	g	h	i	j	k	l
N_sup	N_inf	% Sup	K_sup	K_inf	x_max	x_min	R^2	α	σ			
MSCI ACWI	295	57	238	19.32%	39.276	12.174	0.053	-50.99%	-3.27%	0.9744	2.200	0.162
MSCI WI	326	79	247	24.23%	40.576	15.989	0.045	-49.54%	-3.36%	0.9666	2.171	0.132
EM EUROPE	145	39	106	26.90%	12.890	4.408	0.049	-73.80%	-6.92%	0.9528	2.207	0.193
EM ASIA	259	59	200	22.78%	23.506	6.084	-0.005	-61.00%	-2.48%	0.9686	2.864	0.192
EM LATIN	267	71	196	26.59%	16.447	3.898	-0.021	-68.08%	-4.32%	0.9381	2.087	0.129
EuroStoxx 50	139	34	105	24.46%	18.379	3.363	-0.013	-46.24%	-4.16%	0.9698	2.320	0.226
Stoxx Euro 600	358	72	286	22.11%	28.189	4.984	-0.016	-43.66%	-2.55%	0.9635	2.079	0.127
S&P500	696	170	526	24.43%	31.442	12.022	-0.002	-46.91%	-2.81%	0.9808	2.393	0.107
WILSHIRE 50	240	69	171	28.75%	64.709	21.552	0.015	-56.64%	-1.73%	0.9712	2.103	0.133
DJIA	1147	260	881	23.19%	22.962	6.327	-0.003	-53.57%	-3.12%	0.9471	2.147	0.070
NASDAQ C.	452	105	347	23.23%	28.815	9.108	0.086	-54.99%	-3.37%	0.9659	2.172	0.114
RUSSIAN 2K	263	54	209	20.53%	21.868	4.508	0.008	-54.93%	-4.28%	0.9629	2.226	0.167
FRANCE	247	58	189	23.48%	17.583	3.656	-0.037	-33.48%	-4.61%	0.9683	2.372	0.180
GERMANY	525	125	400	21.81%	22.209	5.636	-0.003	-51.70%	-3.61%	0.9683	2.249	0.112
ITALY	172	51	121	29.65%	11.915	2.208	-0.004	-56.09%	-3.31%	0.9242	1.959	0.134
U. KINGDOM	257	41	216	15.95%	19.506	3.666	-0.036	-39.59%	-5.48%	0.9766	2.607	0.251
SWITZERLAND	266	54	212	20.30%	20.637	2.939	-0.295	-41.01%	-3.62%	0.9567	2.269	0.173
JAPAN	436	91	345	20.87%	21.945	4.107	-0.002	-50.94%	-3.38%	0.9834	2.211	0.127
HONG KONG	408	100	308	24.51%	18.655	5.125	-0.001	-72.14%	-5.50%	0.9607	2.258	0.126
AUSTRALIA	359	83	276	23.12%	31.418	10.688	0.005	-50.09%	-3.01%	0.9582	2.187	0.130

Table 1. Values of the main measurements carried out to the time series of each market index are as follow: a) total number of drops registered [N_sup]; b) number of drops larger than the critical point x_{min} [N_inf]; c) number of drops smaller than the critical point x_{max} [N_supp]; d) percentage of drops larger than the critical point x_{min} as compared to the total number of drops [% Sup]; e) excess kurtosis of the complete set of drops $[K_{sup}]$; f) excess kurtosis of the set of drops larger than the critical point $[K_{sup}]$; g) excess kurtosis of the set of drops smaller than the critical point $[K_{inf}]$; h) largest drop X_{max} registered in each series $[x_{max}]$; i) critical point x_{min} in each series of drops $[x_{min}]$; j) coefficient of determination R^2 of the power regression line for the set of drops larger than the critical point $[R^2]$; k) exponent α of the power regression line $[\alpha]$; l) standard error σ of the exponent of the power regression line $[\sigma]$.

It was considered incorrect to estimate the scaling exponent using the power regression line adjustment because, as Goldstein et al [53] highlighted, this procedure is systematically biased and induces errors; hence, it is not reliable. The method Newman [106] and Clauset [30] proposed was used instead. The formulas are annotated at number 11 of Computation of
Parameters as in formulas (2) and (3). The average value of the α exponent is 2.239 (1.959 to 2.864), and the standard error of that exponent is, on average, 0.157 (0.070 to 0.281).

Excess kurtosis of the set of downward tendencies smaller than the critical level (not included in Figure 4) is approximately zero (actual values of all series are depicted on Table 1, col. g), while the density distribution of the set of values larger than the critical level included in the graph corresponds to the leptokurtic segment (Table 1, col. f).

Figure 5 shows the critical level, x_{min}, of each index by groups: regional indices, USA indices, Emerging Markets Europe, Developed Countries Europe, Latin America Markets and Asia Markets. Note that Latin America indices are the most disperse while the USA and Developed Europe indices have the least disperse values. Furthermore, the average value of the critical point is more negative for the Latin America indices (-5.58%) and Emerging Europe (-6.27%), is intermediate for the Asia indices (-4.466%) and Developed Europe (-4.12%) and is less negative for the Regional indices (-3.86%) and the USA indices (-3.062%). This may be related to the degree of efficiency (randomness) of the series, and should be addressed.

Figure 5. Critical Point (x_{min}) by Index Group

![Figure 5](image)

Fig. 5. Level of those price drops, x_{min}, that identify the critical point of the grouped indexes in Regional [REGIONAL = 7] USA indexes [USA = 5], Emerging Europe [EM EUROPE= 4], Developed Europe [DEV. EUROPE = 5], Latin America indexes [EM LATAM = 4], Asian Markets indexes [ASIA = 5].

5. Discussion

The task of explaining and modeling price fluctuations in financial markets, one of the most complex phenomena we can imagine, has been challenging. It was bravely undertaken by giants with the stature of Bachelier, Working, Savage, Marschak, Samuelson, Sharpe and others [9], [152], [45], [96], [108], [115], [120]. With a reductionist view, based on strongly restrictive and unrealistic assumptions, their work, however, fell on fertile soil whose fruits could be harvested in abundance throughout the second half of the 20th century, creating a theoretical framework that is elegant, pure, beautiful, timeless and balanced. Nevertheless, in addition to other authors [138], [117], [73], [149], [77], [126], [25], [63], [127], [128], [51], [113], [65], [66], [67], [146], [147], [129], [130], [142], [143], [144], [145], [125], [52], [78], [48], [1], [55], [56], [64], [119], we believe the time has come to liberate most of those assumptions and to get closer to the phenomenon as it is: organic, dynamic, unstable, rough, discontinuous, partially self-generated and diffuse. Perhaps the state of affairs today is too complex for that old model.
The fact that the financial world is in a permanent state of innovation and conceivably complexification, it is also inherent in its nature to undergo recurrent crises of endogenous origin that should be faced once and for all. Concepts such as holism, entropy, dissipative systems, unbalanced states, self-organization, positive feedback loops and non-linearity, characteristics of the complexity approach, have been gradually introduced into the theoretical discourse of economics and finance [3], [7], [5], [6], [58], [60], [44], [22], [15], [107], [135], [154]. These concepts offer useful alternatives which may allow us to liberate restrictions that are not only unbelievable but sometimes rather absurd. Perfect rationality of economic agents, a selfish interest in maximizing personal utility, and the supposed homogeneity of expectations are just a few examples of assumptions that might hinder the progress in this field.

Table 2. \(N_r = \) Total number of daily log-returns of each original series. \(S_r = \) Standard Deviation of total daily log-returns of each original series. \(K_r = \) Kurtosis of total daily log-returns of each original series. \(\text{First Date} \), date of the first data in the series, corresponds to \(c_0 \) of the series \(c_i \). \(\text{Last Date} \), date of the last data in the series, corresponds to \(c_n \) of the series \(c_i \).

a	b	c	d	e	First Date	Last Date
MSCI ACWI	7,058	0.909%	8.374	1/3/1988	3/13/2015	
MSCI WI	7,748	0.923%	11.334	6/10/1985	3/13/2015	
EM EUROPE	4,974	1.886%	10.597	1/2/1995	3/13/2015	
EM ASIA	7,088	1.291%	6.583	12/31/1987	3/13/2015	
EM LATAM	4,126	1.717%	9.268	1/1/1988	2/26/2015	
EuroStox 50	4,126	1.504%	4.348	1/22/1999	3/13/2015	
StoxxEuro 600	7,748	0.923%	11.334	12/31/1986	3/13/2015	
S&P500	16,418	0.970%	27.675	1/3/1950	4/6/2015	
WILSHIRE 5K	6,526	1.121%	8.805	3/31/1989	2/26/2015	
DJIA	32,180	1.097%	31.420	2/2/1897	3/4/2015	
NASDAQ C.	11,139	1.240%	9.888	5/2/1971	4/7/2015	
RUSSELL 2K	6,949	1.317%	8.640	9/10/1987	4/7/2015	
FRANCE	4,126	1.401%	5.288	7/9/1987	3/17/2015	
GERMANY	13,941	1.229%	7.620	10/1/1959	3/16/2015	
ITALY	6,410	1.456%	5.248	12/29/1989	4/7/2015	
U. KINGDOM	7,821	1.102%	8.447	4/2/1984	3/17/2015	
SWITZERLAND	6,725	1.166%	7.777	7/1/1988	4/7/2015	
JAPAN	10,541	1.304%	10.072	1/5/1970	3/18/2015	
HONG KONG	11,181	1.875%	30.253	12/1/1969	4/2/2015	
AUSTRALIA	8,916	0.990%	85.615	12/31/1979	4/7/2015	
TAIWAN	13,251	1.549%	3.015	1/4/1967	4/7/2015	
INDIA	8,213	1.651%	5.891	4/3/1979	4/7/2015	
RUSSIA	4,377	2.754%	14.966	9/22/1997	4/7/2015	
TURKEY	6,574	2.717%	4.096	1/4/1988	4/7/2015	
HUNGARY	6,053	1.663%	10.941	1/2/1991	4/7/2015	
POLAND	5,524	1.922%	7.438	4/16/1991	4/7/2015	
MEXICO	10,027	1.727%	20.468	1/3/1975	3/5/2015	
BRASIL	5,432	2.367%	10.182	4/14/1993	4/2/2015	
CHILE	6,304	0.817%	6.818	1/2/1990	4/2/2015	
COLOMBIA	3,362	1.329%	12.468	7/3/2001	4/9/2015	
AVERAGE	8,479	1.470%	13.341			
MAX	32,180	2.754%	85.615			
MIN	3,362	0.817%	3.015			

Table 2. \(N_r = \) Total number of daily log-returns of each original series. \(S_r = \) Standard Deviation of total daily log-returns of each original series. \(K_r = \) Kurtosis of total daily log-returns of each original series. \(\text{First Date} \), date of the first data in the series, corresponds to \(c_0 \) of the series \(c_i \). \(\text{Last Date} \), date of the last data in the series, corresponds to \(c_n \) of the series \(c_i \).
Doubtlessly the behavioral patterns at the level of each agent that makes decisions is important; however, it is insufficient to explain the aggregated result or the supposedly coordinated activity of all participants, each one with his or her own peculiarities, while sharing a place and a role in the same system at the same time. Modeling the stock market phenomena, we seek to build a bridge from the micro-level, i.e. from the clever but fallible single agent, with relatively simple and rather stereotypical strategies, responsible for the input that goes into the system (trading in the marketplace), to the output observed at the macro level, that is, price fluctuations with their stylized characteristics.

We consider such an output to be the result not only of the cumulative effect of the parts, likewise as something richer and more organic, i.e., something that confers novel properties on the system. From a systemic perspective, that “something” we propose may be called emergent properties.

New paths recently explored to model the stock markets are related to two main branches: A) The identification and description of the stylized micro-structure of financial time series and the fractal properties of such series and B) Agent-Based Simulations create synthetic markets that follow the seminal segregation model of Thomas Schelling [118]. The pioneering work of Benôit Mandelbrot excels in the field of fractality, together with a mounting group of authors devoted to it [89], [112], [92], [93], [149], [136], [91], [8], [27], [2], [68], [27], [12], [71], [18], [23], [99], [100], [134], [103], [104], [114], [101]. Through the creation of stock market simulations, individual agents are given heterogeneous characteristics and allowed to freely interact in a synthetic environment. These interactions reliably generate price fluctuations portraying the stylized characteristics found in real life markets [59], [7], [110], [80], [42], [43], [50], [35], [74], [141], [81], [61], [43].

6. The power law and self-organization

In an attempt to relate the heavy-tailed distribution with the fractal properties of price fluctuations, the clusters of high volatility, the capacity of self-organization and the emergent properties of complex adaptive systems, we explored the possibility of finding a distribution form known as Power Law or Zipf's Law in the deepest fluctuations or tails of falling prices given the ubiquity of this kind of distribution in phenomena with statistical properties such as those found in financial time series [150].

In 1949, the American philologist George Zipf discovered that when the American corporations listed on the stock market were ordered by size (market capitalization value), the size S_n of the n^{th} largest company was inversely proportional to the place it occupied in the series in an approximate way to the form $S_n \sim 1/n^\alpha$.

Previously, Zipf had found that the frequency distribution of words in a text followed the same rule [155]. Nowadays this distribution form is known as the Zipf's Law. Half a century before Zipf's publication (in 1949), the Italian engineer, sociologist, philosopher and economist Vilfredo Pareto, described a pattern known as tail function, applicable to several social and physical phenomena whose cumulative distribution function of continuous variables can’t be distinguished from Zipf’s proposal for discrete ones [111]. Another of the few differences between Zipf’s and Pareto’s proposals is that Zipf did his graphs with the x value (the measured variable) on the horizontal axis and the probability of appearance $P(x)$ on the vertical axis, while Pareto did it the other way around. The latter is the way we do it in this paper.

Zip's Law is a special case of the Pareto distribution. Both forms of distribution have interesting statistical properties to be contrasted with our results. Firstly, the heavy tails distribution reflected the leptokurtic distribution, notable in all time-series studied here (Table 1, column f). It is said that these processes are dependent on the Power Law because the
probability of obtaining a specific value in any investigated parameter varies inversely as the exponent of such value.

The phenomena that have these properties are not properly represented by a typical value or arithmetic average because the extreme cases can deviate from the media by several orders of magnitude [106], [30]. Examples of natural and social phenomena with this property are the distribution of wealth among members of a community [111], [21], [26], the Gutenberg-Richter Law of frequency of occurrence and intensity of earthquakes [57], the intensity of solar flares [79], the size and frequency of moon craters [105], the size of cities as to number of inhabitants and to their frequency [47], the formation of random networks of several kinds [14], and many others [94].

It is alerted that very few forms of distribution of real world phenomena follow the Power Law in the complete range of values that they may adopt, particularly for small values of the measured variable. In fact, for any positive value of exponent \(\alpha \), the function \(p(x) = Cx^\alpha \) diverges as \(x \) tends to zero. Therefore, the distribution must deviate from the form of the Power Law under a certain minimum value \(x_{min} \). The form of the Power Law appears as a straight line only for values greater than \(x_{min} \)[106].

From a geometrical perspective, a phenomenon organized under the Power Law has fractal properties, that is, within a certain range of values there is self-similarity at different scales; hence it is said that they have scale invariance. It is characteristic of price fluctuations that the extreme events lack a scale or typical value around which the individual cases are concentrated in their magnitude and duration. Generally, this is a consequence of the central limit theorem for processes free of scale in which a Levy random walk replaces the Brownian movement [19].

In this paper, we have found an inverse relation between the size of price decreases and their frequency of presentation through their exponents in such a way that, if a graph is built of such relationships on an arithmetic scale, the distribution adopts a curve in the shape of “J”, which approaches both orthogonal axes asymptotically. When the graph is made on a log-log scale, the distribution forms a straight line with a negative slope. In both cases, all segments of the curve are similar if they are represented in the proper scale.

How come an earthquake, the size of moon craters, the human dwellers in a city or the accumulation of wealth in a family are related to price reductions in the stock market? And, why should they have similar statistical and geometrical properties?

As Sornette and Cauwles suggest, maybe the kind of phenomena that behave in this way can have catastrophic results, apparently detonated by trivial exogenous events that occasionally reach a tipping point since during the phases of apparent equilibrium and tranquility, the necessary conditions for the so-called avalanche, accumulate. For such a feared outcome to happen, a critical value in state variables must be reached before the phenomena self-organize and change their regime [135]. The proverbial straw that breaks the camel back is an example in which, after a paused and peaceful process and almost without warning, some relevant variable reaches a critical level and manifests as a crisis in the form known as a crossover or bifurcation.

In the case of decreased prices in the stock market, while the system is still under the random regime, small changes generated by the response of some investors to exogenous information, perceived as negative, are easily absorbed by the contingent of optimistic participants who may be analyzing the same information but in a longer (or shorter) time frame. Perhaps they conclude that the recent descent in prices creates a favorable condition to increase their positions. However, if the downhill movement of prices continues, the sequence of successive perturbations increases the tension generated in the system following new small downward impulses. At a certain point, the pressure upon the contingent of buyers eventually overrides their capacity to absorb the increasing bidding until a further decrease in prices generates a
change of regime (bifurcation) in which rather than buyers, new sellers who wish to get rid of their positions to stop their growing losses are attracted. Thus, a positive feedback loop is built: lowered prices attract more sellers whose bidding presses prices downwards in a vicious circle that generates a selling crisis characteristic of a market sell-off.

Furthermore, as prices continue to fall, the process could be accelerated as the mandatory selling of positions reaches a threshold in the form of margin-calls, or due to risk management criteria, which trigger stop loss signals. These two possibilities are clear examples of positive feedback mechanisms capable of accentuating the lowering of prices with total disregard to exogenous information or to disparities of the market price with the supposed intrinsic value of assets anticipated by the efficient market hypothesis. Instead, a self-organized system that activates the reinforcement of price trends emerges. It is precisely this self-organized phenomenon in a regime, which reinforces itself that we believe is happening during the phase of dropping prices that are larger than the critical point identified in our model as x_{min}.

There is an endogenous process resulting from an internal re-structuring which depends on the new relationship among agents conforming the system and their answers to information derived from the system itself. This expression of the phenomena is an intimate arrangement in the balance of perturbing and repairing forces, or, using systemic language, the homeostatic mechanisms are surpassed in such a way that the system adopts a new regime that instead of being a stabilizer of its output it becomes an amplifier.

From a mathematical point of view, this observation is not a surprise. It can be understood as the generic behavior of a dynamic system. In accordance with the general theorems of the bifurcation theory, there is only a finite number of ways in which a system can change its regime; it is a change that happens suddenly, not progressively [135].

In his excellent review of the subject, Mark Newman from The University of Michigan, Ann Arbor, discusses the statistical distribution of the Power Law and describes several mechanisms proposed to explain its occurrence. These include: 1) the mechanism known as highly optimized tolerance (HOT) of Carlson and Doyle, 2) the Sneppen and Newman mechanism focused on the behavior of agents under stress, 3) the process of Ully Yule in critical phenomena and 4), the concept of a self-organized critical state anticipated by Per Bak [106].

The Highly-Optimized Tolerance of Carlson and Doyle [28] proposes that in natural and in human systems organized to offer a robust performance, regardless of the uncertainties in the environment, an exchange is generated among the revenue, the cost of the resources and the tolerance to risk, which leads to highly optimized designs that are predisposed to sporadic events of great magnitude. The main characteristics of the systems in a HOT state include: 1) high efficiency performance and robustness to uncertainties to which they are designed, 2) hypersensitivity to design flaws or unforeseen perturbations, 3) structurally, not generic, specialized configurations, and 4) being subject to the Power Law. Classic examples are forest fires and other phenomena based on the percolation model [28].

Another mechanism, mathematically equivalent to that of Carlson and Doyle's, is coherent noise, proposed by Sneppen and Newman. In this mechanism, a certain number of agents or species are subject to stress of different kinds for which each agent has a threshold. Above that level of stress, the agent will be eliminated, or the species will be extinguished. Extinct species are replaced by new species with stress thresholds randomly selected. The net result is a system that self-organizes to a final state where many of the species will have high levels of stress tolerance. This type of phenomenon shows reorganization events whose size is distributed in accordance to the Power Law through many decades. Additionally, the system shows after-shock events with the same distribution. The authors propose that under the action of a slow local force, some systems with short-range interactions may organize to a critical state without needing to fine tune some parameters [131].
The Yule process is a mechanism known as “the rich get richer” or Gibrat’s Law, a principle of cumulative advantage or preferential selection. Here, an alternative that occupies a prominent place as a possible choice will have a higher probability of being chosen; thus, it will have an amplifying effect mathematically demonstrated as a Power Law distribution in its tail [106], [153]. This mechanism is probably adequate to explain that the size of companies and their frequency in a market, the frequency of words in a text or the number of assets a family possesses, show a heavy tailed distribution and follow the Power Law. However, to explain the processes that determine that a price drop of stock assets which surpasses a certain critical level extends the descent in a self-organized form with characteristics such as those shown in this paper, we prefer the method described by Per Bak, that is, a self-organization to a critical state or Self Organized Criticality [11].

According to this model, when the falling prices reach a critical level, a progressive recruitment of sellers who try to limit their losses by getting rid of their positions starts. Each agent will have his/her own pre-existing conditions (or “schema”, as Murray Gell-Mann tags them [49]), such as exposure to the market, previous accumulated returns, degree of exposure and risk control policies and tolerance or aversion to risk, that will determine the threshold level necessary to reach before triggering a selling process. Under Self Organized Criticality, the reaction of sellers is triggered independently of the exogenous information delivered at that moment and of the previous expectations agents have. Instead, it will be determined solely by the endogenous information derived from a price fall of certain magnitude. Once this critical point is reached, the system diverges from its previous trajectory and begins a different dynamic process, as Balcilar et al. have suggested in relation to the herd behavior [13].

Bouchaud has suggested that this erratic dynamic of the markets is mainly of endogenous origin. He attributes this to a market that operates in a regime of manifest evanescent liquidity, but, at the same time, high latent liquidity, which explains its hypersensitivity to fluctuations and identifies a dangerous positive feedback loop arranged by the spread in prices of supply (bid) and demand (ask) and volatility that may lead to a crisis of micro-liquidity and huge jumps in prices [24].

7. Practical applications

We propose four ways in which these concepts may be directly applied to the practice of finance. First, Zipf’s distribution in the size of companies has an important consequence in building alleged efficient portfolios [95] given the impossibility of making an adequate diversification of specific risk when there is dominance of some small number of companies of great size (capitalization) in a market. Therefore, its effect in the supposed “market portfolio” can’t be diversified even if the total number of companies included in the sample is large. This is considered a particular risk factor named Zipf’s factor [82].

Second, it is possible to explain the phases of high volatility as an emergent process that results from a regime in which agents’ expectations diverge about their returns on investments, or about the target prices of assets. In other words, their beliefs are dispersed in an exaggerated way compared with the baseline heterogeneity typically observed under normal circumstances. At the same time, the dispersion in the timeframe adopted to observe, analyze and react to exogenous and endogenous events, becomes more homogeneous. We suggest that as the timeframes in which agents make decisions become shorter and more homogeneous, and as their expectations become more heterogeneous and disperse, the market becomes less stable and more vulnerable to both endogenous and exogenous perturbations. We still have to design the appropriate tests to identify these characteristics in empirical series or replicate these mechanisms with agent-based simulation models to prove our suggestion.
Third, as proposed by Sornette and Scheffer, as we better understand the way in which markets self-organize in successive layers, and how the downfalls in prices are generated, we may recognize the mechanisms that determine the avalanches, develop indicators that allow us to evaluate their presence, find early signs that the system is reaching a critical level of phase transition and, perhaps, mitigate the local or general effects of the disruptive process [132], [133], [116].

And last, having found that the exponent of the regression line of the tails is smaller than 3 (media of 2.239 and range from 1.959 to 2.864), we can predict the probability and magnitude of large negative fluctuations observed in capital markets once the threshold or critical point is exceeded. We are currently developing this methodology.

It could be that from the rich interaction among components of the system, and the non-linear processes they generate, an inherently unpredictable dynamism results. However, what could interest us is predicting the big bifurcations or breaking points towards extreme events happening when critical levels are surpassed in a set of parameters from which an explosion to the infinite is conveyed upon a usually stable variable. We need to investigate how patterns of great scale and catastrophic nature evolve; we suppose there are growing levels of autocorrelation of the relevant variables, formed from processes occurring on a smaller scale. The critical points identified in the present paper suggest the possibility that, on a larger scale, other events that better explain the great stock market breakdowns may be identified.

8. Conclusions

In this paper, we design a new model that may explain price fluctuations as a process with heavy tails distribution that follows a Power Law. We assume a non-stationary phenomenon with periods of high volatility alternating with others of low volatility. To this end, we have considered the statistical and geometric properties of financial time series as emergent phenomena resulting from the joint activity and interaction of autonomous agents, heterogeneous in many aspects, operating in an unstable, high complexity context and resulting in the appearance of trends in price fluctuations and distortions towards extreme states.

We have developed a method to identify the critical point of phase transition in which the random regime proposed by the classical paradigm gives way to a self-organized regime. We have found that the downward movements of prices may be explained as alternating states between periods compatible with a random walk with i.i.d. properties, and periods subject to a self-organized emergent regime that may explain the presence of heavy tails.

Specifically, we have identified that price drops that go deeper than a critical point may be represented as a phenomenon under the Power Law. From this characteristic identified we have made a tentative explanation of how it is generated and what potential consequences such a proposed mechanism may produce to generate a phenomenon with the demonstrated statistical and geometrical characteristics observed. This may explain, at least partially, the fractal structure with self-affinity and scale invariance observed in financial time series.

Our findings suggest the presence of medium-term memory, tentatively due to the effect of positive feedback loops [4] which also identify a probable generation mechanism of clusters with high volatility. We propose to identify descendent movements subject to the Power Law as self-organized states of the kind described by Per Bak as Self-Organized Criticality [10], [11], [46].

Upon the bases established in this paper, we need to define a mechanism for estimating the probability of occurrence of decreases in stock prices larger than the critical point, through the definition of the proper characteristics of each series. This would result in the first practical application of these new concepts.
References

[1] Akerlof GA, Shiller RJ (2009), Animal Spirits, How Human Psychology Drives the Economy, and Why It Matters for Global Capitalism. Princeton University Press, Princeton.

[2] Álvarez-Ramírez J, Gisneros M, Ibarra-Valdés C, Soriano A, (2002), Multifractal Hurst analysis of crude oil prices. Physica A, 313:651-670.

[3] Anderson PW, Arrow JK, Pines D (1998), The economy as an Evolving Complex System. Addison-Wesley, Redwood City, California.

[4] Arthur WB (1988), Self-Reinforcing Mechanisms in Economics. in The Economy as an Evolving Complex System. SFI Studies in the Sciences of Complexity, Perseus Books Publishing, LLC. Pp 9-31.

[5] Arthur WB (1999), Complexity and the Economy. Science, 284:107-109.

[6] Arthur WB (2013), Complexity Economics: A Different Framework for Economic Thought. Santa Fe Institute Working Paper, New Mexico.

[7] Arthur WB, Holland JH, LeBaron B, Palmer R, Taylor P (1997), Asset Pricing Under Endogenous Expectations in an Artificial Stock Market. Economic Notes, 26:297-330.

[8] Ausloos M, Ivanova K (2002), Multifractal Nature of Stock Exchange Prices. arXiv:cond-mat/0108394v2.

[9] Bachelier L (1900), Théorie de la Speculation. Annales Scientifiques de l'Ecole Normale Superieure, 3e serie, tome 17:21-86.

[10] Bak P (1996), How Nature Works. The Science of Self-Organized Criticality. Copernicus, Springer-Verlag, New York.

[11] Bak P, Tang C, Wiesenfeld K (1987), Self-Organized Criticality. An Explanation of 1/f Noise. Physical Review Letters, 59:381-384.

[12] Balankin A (2003), Fractal Behavior of Complex Systems. Ciencia, 7:109-128.

[13] Balciar M, Demirer R, Hammoudeh S (2013), Investor herds and regime-switching: Evidence from Gulf Arab stock markets. Journal of Int. Fin. Markets, Instit. & Money 23:295-321.

[14] Barabási AL, Albert R (1999), Emergence of Scaling in Random Networks. Science 286:509-512.

[15] Beinhocker, ED (2006), The Origin of Wealth, Evolution, Complexity, and the Radical Remaking of Economics. Harvard Business School Press, Boston, Massachusetts.

[16] Belsky G, Gilovich T (2000), Why Smart People Make Big Money Mistakes and How to Correct Them. Simon & Schuster, New York.

[17] Bollerslev T (1986), Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31:307-327.

[18] Borland L, Bouchaud JP, Muzy JF, Zumbach G (2005), The Dynamics of Financial Markets. Mandelbrot’s Multifractal Cascades, and Beyond. arXiv:cond-mat/0501292v1.

[19] Bouchaud JP, Georges A (1990), Anomalous Diffusion in Disordered Media: Statistical Mechanisms, Models and Physical Applications. Physics Reports, 195:127293

[20] Bouchaud JP (2000), Power-laws in economy and finance: some ideas from physics. arXiv:cond-mat/0008103.

[21] Bouchaud JP, Mezard M (2000), Wealth condensation in a simple model of economy. Physica A, 282:536-545.

[22] Bouchaud JP, Potters M (2003), Theory of Financial Risk and Derivative Pricing. From Statistical Physics to Risk Management. 2nd Edition. Cambridge University Press, Cambridge.

[23] Bouchaud JP, Potters M, Meyer M (2008), Apparent multifractality in financial time series. arXiv:condmat/9906347v1. Cambridge University Press, Cambridge.

[24] Bouchaud JP (2010), The Endogenous Dynamics of Markets: Price Impact and Feedback Loops. arXiv:1009.2928v1 [q-fin.ST].

[25] Brunnermeier MK (2001), Asset Pricing under Asymmetric Information. Bubbles, Crashes, Technical Analysis, and Herding. Oxford University Press, Oxford, UK.

[26] Burda Z, Johnston D, Jang JH (2009), Power-Law Distributions in Empirical Data. arXiv:0706.1062v2 [physics.data-an].
[31] Cootner PH (1962), Stock Prices: Random vs. Systematic Changes. Industrial Management Review, 3:24-45.
[32] Cutler DM, Poterba J, Summers L (1989), What Moves Stock Prices? The Journal of Portfolio Management, 15:4-12.
[33] Cutler DM, Poterba J, Summers L (1990), Speculative Dynamics and the Role of Feedback Traders. The American Economic Review, 80:63-68.
[34] Delli Gatti D, Gaffeo E, Gallegati M (2010), Complex agent-based macroeconomics: a research agenda for a new paradigm. Journal of Economic Interaction and Coordination, 5:111-135.
[35] Delli Gatti D, Di Guilmi C, Gaffeo E, Giulioni G, Gallegati M, Palestrini A (2003), A New Approach to Business Fluctuations: Heterogeneous Interacting Agents, Scaling Laws and Financial Fragility. Journal of Economic Behavior & Organization, 56:489-512.
[36] Ding Z, Granger CWJ, Engle RF (1993), A long memory property of stock market returns and a new model. Journal of Empirical Finance, 1:83-106.
[37] Eitelman PS, Vitanza JT (2008), A Non-Random Walk Revisited: Short- and Long-Term Memory in Asset Prices. International Finance Discussion Papers, No 956, November 2008:1-44.
[38] Engle RF (1982), Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica, 50:987-1007.
[39] Fama E (1965), The Behavior of Stock-Market Prices. The Journal of Business, 38:34-105.
[40] Fama E (1970), Efficient capital markets: A review of theory and empirical work. Journal of Finance, 25:383-417.
[41] Fama E (2009), Fama on Market Efficiency in a Volatile Market. In Fama/French Forum. https://www.dimensional.com/famafrench/videos/famaon-market-efficiency-in-a-volatile-market.aspx
[42] Farmer JD (2001), Toward agent-based models for investment. Development in Quantitative Investment Models (AIMR), 61-70.
[43] Farmer JD, Foley D (2009), The economy needs agent based modeling. Nature, 460, 685-686.
[44] Farmer JD, Lo AW (1999), Frontiers of Finance: Evolution and Efficient Markets. Proc Natl Academy of Sciences, 96:9991-9992.
[45] Friedman M, Savage JL (1948), The Utility Analysis of Choice Involving Risk. J of Political Economy, 56(4):279-304.
[46] Frigg R (2003), Self-organized criticality - What it is and what it isn't? Stud Hist Phil Sci, 34:613-632.
[47] Gabaix X (1999), Zip's Law for Cities: An Explanation. The Quarterly J. of Economics, 114:739-767.
[48] Gaffeo E, Delli Gatti D, Desiderio S, Gallegati M (2008), Adaptive micro-foundations for emergent macroeconomics. Eastern Economic Journal, 23:441-463.
[49] Gell-Mann M (1994), Complex Adaptive Systems. In, Complexity: Metaphors, Models, and Reality, Cowan G, Pines D, Meltzer D, Editors. SFI Studies in the Science of Complexity, Proc. Vol XIX, Addison-Wesley, pp 17-45.
[50] Gardina I, Bouchaud JP (2002), Bubbles, Crashes and Intermittency in Agent Based Market Models. arXiv:cond-mat/0206222 v2.
[51] Gigerenzer G, Selten R (2001), Bounded Rationality: The Adaptive Tollbox. Dahlem Workshops Report. The MIT Press, Cambridge.
[52] Gilovich T, Vallone R, Tversky A (1985), The Hot Hand in Basketball: On the Misperception of Random Sequences. Cognitive Psychology, 17:295-314.
[53] Goldstein ML, Morris SA, Yen GG (2004), Problems with Fitting to the Power-Law Distribution. arXiv:cond-mat/0402322v3 [cond-mat.stat-mech] 13 Aug 2004:1-4.
[54] Green MT, Fielitz BD (1977), Long-term dependence in common stock returns. Journal of Financial Economics, 4:339-349.
[55] Grossman S (1976), On the Efficiency of Competitive Stock Markets where Trades have Diverse Information. Journal of Finance, 31:573-585.
[56] Grossman S, Stiglitz J (1980), On the Impossibility of Informationally Efficient Markets. American Economic Review, 70:393-408.
[57] Gutenberg B, Richter RF (1944), Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34:185-188.
[58] Holland JH (1988), The Global Economy as an Adaptive Process. In: The Economy as an Evolving Complex System. SFI Studies in the Sciences of Complexity. Perseus Books Publishing, LLC.
[59] Holland JH, Miller JH (1991), Artificial Adaptive Agents in Economic Theory. SFI Working Paper, 1991:05-025
[60] Holland JH (1998), Emergence, From Chaos to Order. Basic Books, Perseus Books Group, New York.
[61] Hommes CH (2005), Heterogeneous Agent Models in Economics and Finance, Tinbergen Institute Discussion Paper, No. 05-056/1.
[62] Jensen M (1967), The Performance of Mutual Funds 1945-1964. Journal of Finance, 23:389-416.
[63] Johnson NF, Jeffries P, Hui PM (2003), Financial Market Complexity: What physics can tell us about market behavior. Oxford University Press.

[64] Jones BD (1999), Bounded Rationality. Annu Rev Polit Sci, 2:297-321.

[65] Kahneman D, Tversky A (1979), Prospect Theory: An analysis of decisions under risk. Econometrica, 47:263291.

[66] Kahneman D, Slovic P, Tversky A (1982), Judgment under uncertainty: Heuristics and biases. Cambridge University Press, Cambridge.

[67] Kahneman D (2003), Mapping Bounded Rationality. American Psychologist, 58(9):697-720.

[68] Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Bunde A, Havlin S, Stanley HE (2002), Multifractal Detrended Fluctuation Analysis of Nonstationary Time Series. arXiv:physics/0202070v1 [physics.data-an] 27 feb 2002:1-14.

[69] Kendall MG (1953), The Analysis of Economic Time Series Part I: Prices. Journal of the Royal Statistical Society. Series A (General), 116:11-34.

[70] Kindleberger CP, Aliber R (2005), Manias Panics, and Crashes. A History of Financial Crisis. 5th Edition, John Willey & Sons, Hoboken, NJ.

[71] Kim K, Yoon S-M (2004), Multifractal features of financial markets. Physica A, 344:272-278.

[72] Kova'ks S, Huzsvai L, Balogh P (2013), Investigating the long memory property of the Hungarian market pig prices by using detrended fluctuation analysis. J. of Agricultural Informatics, 4:1-9.

[73] LeBaron B (1994), Chaos and nonlinear forecastability in economics and finance. Philosophical Transactions: Physical Science and Engineering, 348(1688):397-404.

[74] LeBaron B (2005), Agent-based Computational Finance. The Handbook of Computational Economics, Vol 2.

[75] Liu Y, Gopikrishan P, Gizeau, Meyer, Peng, Stanley E (1999), Statistical properties of the volatility of price fluctuations. Phys. Rev. E, 60:1390-1400.

[76] Lo AW, MacKinlay AC (1988), Stock Market Prices do not Follow random walks: Evidence for a simple specification test. Review of Financial Studies, 1:41-66.

[77] Lo AW, MacKinlay AC (1999), A Non-Random Walk down Wall Street. Princeton University Press, New Jersey.

[78] Lo AW (2007), Efficient Market Hypothesis. In, The New Palgrave: A Dictionary of Economics, 2nd Edition. Blume L and Durlauf S, Editors. Palgrave McMillan, New York.

[79] Lu ET, Hamilton RJ (1991), Avalanches of the distribution of solar flares. Astrophysical Journal, 380:89-92.

[80] Lux T, Marchesi M (2000), Volatility Clustering in Financial Markets: A Microsimulation of Interacting Agents. Int J Theor Appl Finan, 03:675-702.

[81] Macal CM, North MJ (2005), Tutorial on Agent-Based Modeling and Simulation. Proceedings of the 2005 Winter Simulation Conference.

[82] Malevergne Y, Santa-Clara P, Sornette D (2009), Professor Zpf goes to Wall Street. NBER working paper No. 15295, JEL, No. G12.

[83] Malkiel BG (1973), A Random Walk Down Wall Street. Norton & Company, New York.

[84] Mandelbrot B (1962), Pareto distributions and income maximization. Quarterly Journal of Economics, 76:5785.

[85] Mandelbrot B (1963), The Variation of Certain Speculative Prices. Journal of Business, 36:394-419.

[86] Mandelbrot B (1985), Self-affinity and fractal dimension, Physica Scripta, 32:257-260.

[87] Mandelbrot B, Fisher A, Calvet L. (1997), A Multifractal Model of Asset Returns, Cowles Foundation for Research in Economics, Yale University, 1-31.

[88] Mandelbrot B, Wallis (1968), Noah, Joseph and Operational Hydrology. Water Resources Research, 4:909-918.

[89] Mandelbrot BB (1997), Fractals and Scaling in Finance. Discontinuity, Concentration, Risk. Springer, New York.

[90] Mandelbrot BB, Hudson RL (2004), The (Mis) Behavior of Markets: A Fractal View of Risk, Ruin and Reward. London, Profile Books.

[91] Mantegna RN, Stanley EH (1996), Turbulence and Financial Markets? arXiv:cond-mat/9609290v1.

[92] Mantegna RN, Stanley HE (1995), Scaling behavior in the dynamics of an economic index. Nature, 376:46-49.

[93] Mantegna RN, Stanley HE (2000), An Introduction to Econophysics. Cambridge University Press, Cambridge.

[94] Markovic D, Gros C (2013), Power laws and Self-Organized Criticality in Theory and Nature. arXiv:1310.5527v3 [nlin.AO]

[95] Markowitz HM (1959), Portfolio Selection. Efficient Diversification of Investments. Cowles Foundation for Research in Economics at Yale University. John Wiley & Sons, New York.

[96] Marschak J (1950), Rational Behavior, Uncertain Prospects, and Measurable Utility. Econometrica, 18:111-141.

[97] Mehra R (1998), On the Volatility of Stock Prices: An Exercise in Quantitative Theory. International Journal of Systems Science, 29:1203.1211.

[98] Minsky HP (1992), The Financial Instability Hypothesis. Levy Economics Institute, Working Paper 74.
[136] Stanley HE, Amaral LAN, Canning D, et al (1999), Econophysics: Can physicists contribute to the science of economics. Physica A, 269:156-169.
[137] Stanley HE, Afanasyev V, Amaral LAN, et al. (1996), Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A, 224:302-321.
[138] Summers L (1986), Does the stock market rationally reflect fundamental values? Journal of Finance, 41:591601.
[139] Taleb NN (2005), Fooled by Randomness. The Hidden Role of Chance in Life and in the Markets. 2nd Edition, Random House, New York.
[140] Taleb NN (2007), The Black Swan. The Impact of the Highly Improbable. Random House, New York.
[141] Tesfatsion L (2006), Agent-Based Computational Economics: A Constructive Approach to Economic Theory. Handbook of Computational Economics, Vol 2: North Holland.
[142] Thaler RH, De Bondt W (1985), Does the Stock Market Overreact? Journal of Finance, 40:793-805.
[143] Thaler RH (1993), Advances in Behavioral Finance, Volume I. Russell Sage Foundation, New York.
[144] Thaler RH (1999), Mental accounting matters. Journal of Behavioral Decision Making, 12:241-268.
[145] Thaler RH (2005), Advances in Behavioral Finance, Volume II. Russell Sage Foundation, Princeton University Press, Princeton.
[146] Tversky A, Kahneman D (1974), Judgment under uncertainty: Heuristics and biases. Science, 185:1124-1131.
[147] Tversky A, Kahneman D (1986), Rational Choice and the Framing of Decisions. The Journal of Business, 59:S251-S278.
[148] Tversky A, Kahneman D (1992), Advances in Prospect Theory: Cumulative Representation of Uncertainty. The Journal of Risk and Uncertainty, 5(4):297-323.
[149] Vandewalle N, Ausloos M (1998), Multi-affine analysis of typical currency exchange rates. The European Physical Journal B, 4:257-261.
[150] Wentian L (2002), Zipf's Law Everywhere. Glottometrics 5:14-21. RAM Verlag.
[151] Westfall PH (2014), Kurtosis as Peakedness, 1905-2014 RIP. Am Stat; 68(3):191-195.
[152] Working H (1934), A Random-Difference Series for Use in the Analysis of Time Series. Journal of the American Statistical Association, XXIX, 11.
[153] Yule GU (1925), A mathematical theory of evolution based on the conclusions of Dr. J.C. Willis. Philos Trans R Soc London B, 213:21-87.
[154] Zapart CH (2015), Econophysics: A challenge to econometricians. Physica A, 419, 1 February:318-327.
[155] Zipf GK (1949), Human Behavior and the Principle of Least Effort. Addison-Wesley, Cambridge.
Appendix

The 30 indexes investigated are as follows:

- **MSCI ACWI** (Morgan Stanley Capital International All Countries World Index) includes shares of 2,446 firms from 46 countries and captures returns in 23 Developed Economies and 23 Emerging Markets countries. It represents all economic sectors worldwide.

- **MSCI WI** (Morgan Stanley Capital International World Index), includes shares of 1,613 firms from 23 Developed Economy countries. It represents all economic sectors.

- **MSCI EM EUROPE** (MSCI Emerging Markets Europe Index) captures representation across 6 Emerging Markets countries from Europe (Russia, Turkey, Poland, Greece, Hungary, Czech Republic). It has 84 constituents.

- **MSCI EM ASIA** (MSCI Emerging Markets Asia Index) represents 534 firms from 8 Emerging Market countries from Asia (China, India, Indonesia, Korea, Malaysia, the Philippines, Taiwan and Thailand).

- **MSCI EM LATAM** (MSCI Emerging Markets Latin America Index) with 118 constituents from 5 Emerging Markets countries from Latin America (Brazil, Mexico, Chile, Colombia and Peru).

- **Stoxx Europe 600** represents 600 components of large, mid and small capitalization companies across 18 European countries (Austria, Belgium, Czech Republic, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland and the United Kingdom).

- **Euro Stoxx 50**, the leading blue-chip index from the Eurozone, covers 50 stocks from 12 countries (Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain).

- **CAC 40 Index**, France (40 stocks)

- **FTSE 100 Index**, Great Britain (100 stocks)

- **DAX Index**, Germany (30 stocks)

- **FTSE MIB Index**, Italy (40 stocks)

- **Swiss Market Index**, Switzerland (20 stocks)

- **MICEX Index**, Russia (50 stocks)

- **BSE National 100 Index**, Turkey (100 stocks)

- **BSE Index**, Hungary (13 stocks)

- **WIG Index**, Poland (342 stocks)

- **S&P500** (500 stocks, Large-Caps, USA)

- **DJIA** (30 stocks, Large-Caps, USA)

- **NASDAQ Composite** (2,976 stocks, USA)

- **Russell 2000** (2000 stocks, Small-Caps, USA)

- **Wilshire 5000 Index** (3,698 stocks, USA)

- **IPC**, Mexico (35 stocks)

- **BOVESPA**, Brazil (71 stocks)

- **IGPA**, Chile (102 stocks)

- **IGBC**, Colombia (34 stocks)

- **NIKKEI 225**, Japan (225 stocks)

- **HANG SENG**, Hong Kong (50 stocks)

- **All Ordinaries Index**, Australia (498 stocks)

- **TAIEX Index**, Taiwan (786 stocks)

- **S&P BSE SENSEX Index**, India (30 stocks)