A CONNECTION BETWEEN COVERS OF THE INTEGERS AND UNIT FRACTIONS

ZHI-WEI SUN

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China

Received 8 July 2005; accepted 2 February 2006

Abstract. For integers \(a \) and \(n > 0 \), let \(a(n) \) denote the residue class \(\{ x \in \mathbb{Z} : x \equiv a \pmod{n} \} \). Let \(A \) be a collection \(\{a_s(n_s)\}_{s=1}^k \) of finitely many residue classes such that \(A \) covers all the integers at least \(m \) times but \(\{a_s(n_s)\}_{s=1}^{k-1} \) does not. We show that if \(n_k \) is a period of the covering function \(w_A(x) = |\{1 \leq s \leq k : x \in a_s(n_s)\}| \) then for any \(r = 0, \ldots, n_k-1 \) there are at least \(m \) integers in the form \(\sum_{s \in I} 1/n_s - r/n_k \) with \(I \subseteq \{1, \ldots, k-1\} \).

MSC: primary 11B25; secondary 11B75, 11D68.

1. Introduction

For an integer \(a \) and a positive integer \(n \), we use \(a(n) \) to denote the residue class \(\{ x \in \mathbb{Z} : x \equiv a \pmod{n} \} \). For a finite system

\[A = \{a_s(n_s)\}_{s=1}^k \]

of residue classes, the function \(w_A : \mathbb{Z} \to \{0, 1, \ldots\} \) given by

\[w_A(x) = |\{1 \leq s \leq k : x \in a_s(n_s)\}| \]

is called the covering function of \(A \). Clearly \(w_A(x) \) is periodic modulo the least common multiple \(N_A \) of the moduli \(n_1, \ldots, n_k \), and it is easy to verify the following well-known equality:

\[\frac{1}{N_A} \sum_{x=0}^{N_A-1} w_A(x) = \sum_{s=1}^k \frac{1}{n_s}. \]
As in [7] we call \(m(A) = \min_{x \in \mathbb{Z}} w_A(x) \) the covering multiplicity of \(A \). For example,

\[
B = \{0(2), 0(3), 1(4), 5(6), 7(12)\}
\]

has covering multiplicity \(m(B) = 1 \), because the covering function is periodic modulo \(N_B = 12 \), and

\[
w_B(x) = \begin{cases}
1 & \text{if } x \in \{1, 2, 3, 4, 7, 8, 10, 11\}, \\
2 & \text{if } x \in \{0, 5, 6, 9\}.
\end{cases}
\]

Let \(m \) be a positive integer. If \(w_A(x) \geq m \) for all \(x \in \mathbb{Z} \), then we call \(A \) an \(m \)-cover of the integers, and in this case we have the well-known inequality

\[
\sum_{k=1}^{s=1} \frac{1}{n_s} \geq m.
\]

(The term “1-cover” is usually replaced by the word “cover”.) If \(A \) is an \(m \)-cover of the integers but \(A_t = \{a_s(n_s)\} \) is not (where \([a, b] = \{x \in \mathbb{Z} : a \leq x \leq b\} \) for \(a, b \in \mathbb{Z} \)), then we say that \(A \) forms an \(m \)-cover of the integers with \(a_t(n_t) \) irredundant. (For example, \(\{0(2), 1(2), 2(3)\} \) is a cover of the integers with distinct moduli. The topic of covers of the integers has been an active one in combinatorial number theory (cf. [3, 4]), and many surprising applications have been found (see, e.g., [1, 2, 9, 11]). The so-called \(m \)-covers and exact \(m \)-covers of the integers were systematically studied by the author in the 1990s.

Concerning the cover \(B \) given above one can easily check that

\[
\left\{ \sum_{n \in S} \frac{1}{n} : S \subseteq \{2, 3, 4, 6, 12\} \right\} = \left\{ 0, \frac{1}{12}, \ldots, \frac{11}{12} \right\} \cup \left\{ 1 + \frac{r}{12} : r = 0, 1, 2, 3, 4 \right\}.
\]

This suggests that for a general \(m \)-cover \((1) \) of the integers we should investigate the set \(\left\{ \sum_{s \in I} 1/n_s : I \subseteq [1, k] \right\} \).

In this paper we establish the following new connection between covers of the integers and unit fractions.

Theorem 1. Let \(A = \{a_s(n_s)\}_{s=1}^{k} \) be an \(m \)-cover of the integers with the residue class \(a_k(n_k) \) irredundant. If the covering function \(w_A(x) \) is
periodic modulo n_k, then for any $r = 0, \ldots, n_k - 1$ we have

$$\left| \left\{ \left\lfloor \frac{1}{n_s} \sum_{s \in I} \frac{1}{n_s} \right\rfloor : I \subseteq [1, k - 1] \text{ and } \left\{ \sum_{s \in I} \frac{1}{n_s} \right\} = \frac{r}{n_k} \right\} \right| \geq m, \quad (2)$$

where $\lfloor \alpha \rfloor$ and $\{ \alpha \}$ denote the integral part and the fractional part of a real number α respectively.

Note that n_k in Theorem 1 needn’t be the largest modulus among n_1, \ldots, n_k. In the case $m = 1$ and $n_k = N_A$, Theorem 1 is an easy consequence of [5, Theorem 1] as observed by the author’s twin brother Z. H. Sun. When $w_A(x) = m$ for all $x \in \mathbb{Z}$, the author [6] even proved the following stronger result:

$$\left| \left\{ I \subseteq [1, k - 1] : \sum_{s \in I} \frac{1}{n_s} = \frac{a}{n_k} \right\} \right| \geq \left(\frac{m - 1}{[a/n_k]} \right) \text{ for all } a = 0, 1, \ldots.$$

Given an m-cover $\{ a_s(n_s) \}_{s=1}^k$ of the integers with $a_k(n_k)$ irredundant, by refining a result in [7] the author can show that there exists a real number $0 \leq \alpha < 1$ such that (2) with r/n_k replaced by $(\alpha + r)/n_k$ holds for every $r = 0, \ldots, n_k - 1$.

Here we mention two local-global results related to Theorem 1.

(a) (Z. W. Sun [5]) $\{ a_s(n_s) \}_{s=1}^k$ forms an m-cover of the integers if it covers $|\{ \sum_{s \in I} 1/n_s : I \subseteq [1, k] \}|$ consecutive integers at least m times.

(b) (Z. W. Sun [10]) $\{ a_s(n_s) \}_{s=1}^k$ is an exact m-cover of the integers if it covers $|\bigcup_{s=1}^k \{ r/n_s : r \in [0, n_s - 1] \}|$ consecutive integers exactly m times.

Corollary 1. Suppose that the covering function of $A = \{ a_s(n_s) \}_{s=1}^k$ has a positive integer period n_0. If there is a unique $a_0 \in [0, n_0 - 1]$ such that $w_A(a_0) = m(A)$, then for any $D \subseteq \mathbb{Z}$ with $|D| = m(A)$ we have

$$\left\{ \left\{ \sum_{s \in I} \frac{1}{n_s} \right\} : I \subseteq [1, k] \text{ and } \sum_{s \in I} \frac{1}{n_s} \notin D \right\} \supseteq \left\{ \frac{r}{n_0} : r \in [0, n_0 - 1] \right\}.$$

Proof. Let $m = m(A) + 1$. Clearly $A' = \{ a_s(n_s) \}_{s=0}^k$ forms an m-cover of the integers with $a_0(n_0)$ irredundant. As $w_{A'}(x) - w_A(x)$ is the characteristic function of $a_0(n_0)$, $w_{A'}(x)$ is also periodic mod n_0. Applying Theorem 1 we immediately get the desired result. \qed

We will prove Theorem 1 in Section 3 with help from some lemmas given in the next section.
2. Several Lemmas

Lemma 1. Let (1) be a finite system of residue classes with $m(A) = m$, and let m_1, \ldots, m_k be any integers. If $f(x_1, \ldots, x_k)$ is a polynomial with coefficients in the complex field \mathbb{C} and $\deg f \leq m$, then for any $z \in \mathbb{Z}$ we have

$$\sum_{I \subseteq [1,k]} (-1)^{|I|} f([1 \in I], \ldots, [k \in I]) e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s}$$

$$= (-1)^k c(I_z) \prod_{s \in [1,k] \setminus I_z} \left(e^{2\pi i (a_s-z)m_s/n_s} - 1 \right),$$

where $[s \in I]$ takes 1 or 0 according as $s \in I$ or not, $I_z = \{1 \leq s \leq k : z \in a_s(n_s)\}$, and $c(I_z) = \prod_{s \in I_z} f(x_1, \ldots, x_k)$ is the coefficient of the monomial $\prod_{s \in I_z} x_s$ in $f(x_1, \ldots, x_k)$.

Proof. Write $f(x_1, \ldots, x_k) = \sum_{j_1, \ldots, j_k \geq 0} c_{j_1, \ldots, j_k} x_1^{j_1} \cdots x_k^{j_k}$. Observe that

$$\sum_{I \subseteq [1,k]} (-1)^{|I|} f([1 \in I], \ldots, [k \in I]) e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s}$$

$$= \sum_{j_1, \ldots, j_k \geq 0} c_{j_1, \ldots, j_k} \sum_{I \subseteq [1,k]} \left(\prod_{s=1}^{k} [s \in I]^{j_s} \times (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s} \right)$$

$$= \sum_{j_1, \ldots, j_k \geq 0} c_{j_1, \ldots, j_k} \sum_{J(j_1, \ldots, j_k) \subseteq I \subseteq [1,k]} (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s},$$

where $J(j_1, \ldots, j_k) = \{1 \leq s \leq k : j_s \neq 0\}$.

Let z be any integer. If $I_z \not\subseteq J(j_1, \ldots, j_k)$, then

$$\sum_{J(j_1, \ldots, j_k) \subseteq I \subseteq [1,k]} (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s} = 0$$

since

$$\sum_{I \subseteq [1,k] \setminus J(j_1, \ldots, j_k)} (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s-z)m_s/n_s}$$

$$= \prod_{s \in [1,k] \setminus J(j_1, \ldots, j_k)} \left(1 - e^{2\pi i (a_s-z)m_s/n_s} \right) = 0.$$
hence $I_z = J(j_1, \ldots, j_k)$ and $j_s = 1$ for all $s \in I_z$.

Combining the above we find that the left-hand side of (3) coincides with

$$
c(I_z) \sum_{I \subseteq [1,k]} (-1)^{|I|} e^{2\pi i \sum_{s \in I} (a_s - z) m_s/n_s} = c(I_z) (-1)^{|I_z|} e^{2\pi i \sum_{s \in I_z} (a_s - z) m_s/n_s} \prod_{s \in [1,k] \setminus I_z} \left(1 - e^{2\pi i (a_s - z) m_s/n_s} \right)
$$

$$
= (-1)^k c(I_z) \prod_{s \in [1,k] \setminus I_z} \left(e^{2\pi i (a_s - z) m_s/n_s} - 1 \right).
$$

This proves the desired (3). □

Lemma 2. Let (1) be an m-cover of the integers with $a_k(n_k)$ irredundant, and let m_1, \ldots, m_{k-1} be positive integers. Then, for any $0 \leq \alpha < 1$ we have $C_0(\alpha) = \cdots = C_{n_k-1}(\alpha)$, where $C_r(\alpha)$ (with $r \in [0, n_k - 1]$) denotes the sum

$$
\sum_{\{\sum_{s \in I} m_s/n_s\} = (\alpha + r)/n_k} (-1)^{|I|} \left(\frac{\sum_{s \in I} m_s/n_s}{m-1} \right) e^{2\pi i \sum_{s \in I} (a_s - a_k) m_s/n_s}.
$$

Proof. This follows from [7, Lemma 2]. □

Lemma 3. Let (1) be an m-cover of the integers with $a_k(n_k)$ irredundant. Suppose that n_k is a period of the covering function $w_A(x)$. Then, for any $z \in a_k(n_k)$ we have

$$
\prod_{s \in [1,k] \setminus I_z} \left(1 - e^{2\pi i (a_s - z)/n_s} \right) = \prod_{s \in I_z} \frac{n_k}{n_s} \times \prod_{t=1}^{n_k} \left(1 - e^{2\pi i (t-a_k)/n_k} \right)^{w_A(t) - m}
$$

where $I_z = \{1 \leq s \leq k : z \in a_s(n_s)\}$.

Proof. Since $a_k(n_k)$ is irredundant, we have $w_A(z_0) = m$ for some $z_0 \in a_k(n_k)$. As the covering function of A is periodic mod n_k, $|I_z| = w_A(z) = m$ for all $z \in a_k(n_k)$.

Now fix $z \in a_k(n_k)$. Since $w_A(x)$ is periodic modulo n_k, by [8, Lemma 2.1] we have the identity

$$
\prod_{s=1}^{k} \left(1 - y^{N/n_s} e^{2\pi i a_s/n_s} \right) = \prod_{t=1}^{n_k} \left(1 - y^{N/n_k} e^{2\pi it/n_k} \right)^{w_A(t)},
$$
where \(N = N_A \) is the least common multiple of \(n_1, \ldots, n_k \). Putting \(y = r^{1/N} e^{-2\pi i z/N} \) where \(r \geq 0 \), we then get that

\[
\prod_{s=1}^{k} \left(1 - r^{1/n_s} e^{2\pi i (a_s - z)/n_s} \right) = \prod_{t=1}^{n_k} \left(1 - r^{1/n_k} e^{2\pi i (t - z)/n_k} \right)^{w_A(t)}.
\]

Therefore

\[
\prod_{s \in [1,k] \setminus I_z} \left(1 - e^{2\pi i (a_s - z)/n_s} \right)
\]

\[
= \lim_{r \to 1} \prod_{s \in [1,k] \setminus I_z} \left(1 - r^{1/n_s} e^{2\pi i (a_s - z)/n_s} \right)
\]

\[
= \lim_{r \to 1} \prod_{t=1}^{n_k} \frac{(1 - r^{1/n_k} e^{2\pi i (t - a_k)/n_k})^{w_A(t)}}{\prod_{s \in I_z} (1 - r^{1/n_s} e^{2\pi i (a_s - z)/n_s})}
\]

\[
= \prod_{s \in I_z} n_s \times \lim_{r \to 1} \prod_{t=1}^{n_k} (1 - r^{1/n_k} e^{2\pi i (t - a_k)/n_k})^{w_A(t) - 1},
\]

and hence the desired result follows. \(\square \)

3. Proof of Theorem 1

In the case \(k = 1 \), we must have \(m = 1 \) and \(n_k = 1 \); hence the required result is trivial. Below we assume that \(k > 1 \).

Let \(r_0 \in [0, n_k - 1] \) and \(D = \{d_n + r_0/n_k : n \in [1, m - 1]\} \), where \(d_1, \ldots, d_{m-1} \) are \(m - 1 \) distinct nonnegative integers. (If \(m = 1 \) then we set \(D = \emptyset \).) We want to show that there exists an \(I \subseteq [1, k - 1] \) such that \(\{\sum_{s \in I} 1/n_s\} = r_0/n_k \) and \(\sum_{s \in I} 1/n_s \notin D \).

Define

\[
f(x_1, \ldots, x_{k-1}) = \prod_{d \in D} \left(\frac{x_1}{n_1} + \cdots + \frac{x_{k-1}}{n_{k-1}} - d \right).
\]

(An empty product is regarded as 1.) Then \(\deg f = |D| = m - 1 \). For any \(z \in a_k(n_k) \), the set \(I_z = \{1 \leq s \leq k : z \in a_s(n_s)\} \) has cardinality \(m \) since \(a_k(n_k) \) is irredundant and \(w_A(x) \) is periodic mod \(n_k \). Observe that the coefficient

\[
c_z = \left[\prod_{s \in I_z \setminus \{k\}} x_s \right] f(x_1, \ldots, x_{k-1}) = \left[\prod_{s \in I_z \setminus \{k\}} x_s \right] \left(\sum_{s=1}^{k-1} \frac{x_s}{n_s} \right)^{m-1}\]

\[
= \left[\prod_{s \in I_z \setminus \{k\}} x_s \right] \left(\sum_{s=1}^{k-1} \frac{x_s}{n_s} \right)^{m-1}.
\]
coincides with \((m - 1)! / \prod_{s \in I \setminus \{k\}} n_s\) by the multinomial theorem. For \(I \subseteq [1, k - 1]\) we set
\[v(I) = f([1 \in I], \ldots, [k - 1 \in I]). \]

As \(|\{1 \leq s \leq k - 1 : x \in a_s(n_s)\}| \geq \deg f\) for all \(x \in \mathbb{Z}\), in view of Lemmas 1 and 3 we have
\[
\sum_{I \subseteq [1, k - 1]} (-1)^{|I|} v(I) e^{2\pi i \sum_{s \in I} (a_s - z)/n_s}
= (-1)^{k-1} c_z \prod_{s \in [1, k-1] \setminus I} \left(e^{2\pi i (a_s - z)/n_s} - 1 \right)
= (-1)^{m-1}(m-1)! \prod_{s \in I} n_s \times \prod_{t=1}^{n_k} \left(1 - e^{2\pi i (t-a_k)/n_k} \right)^w A(t) - m = C,
\]
where \(C\) is a nonzero constant not depending on \(z \in a_k(n_k)\).

By the above,
\[
N_A C = \sum_{x=0}^{N_A-1} \sum_{I \subseteq [1, k-1]} (-1)^{|I|} v(I) e^{2\pi i \sum_{s \in I} (a_s - a_k - n_k x)/n_s}
= \sum_{I \subseteq [1, k-1]} (-1)^{|I|} v(I) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s} \sum_{x=0}^{N_A-1} e^{-2\pi i x \sum_{s \in I} n_k/n_s}
\]
and hence
\[
C = \sum_{I \subseteq [1, k-1]} (-1)^{|I|} v(I) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s} = \sum_{r=0}^{n_k-1} C_r,
\]
where
\[
C_r = \sum_{I \subseteq [1, k-1]} (-1)^{|I|} \prod_{d \in D} \left(\sum_{s \in I} \frac{1}{n_s} - d \right) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s}.
\]

Let \(r \in [0, n_k - 1]\). Write
\[
P_r(x) = \prod_{d \in D} \left(x + \frac{r}{n_k} - d \right) = \sum_{n=0}^{m-1} c_{n,r} \binom{x}{n}
\]
where \(c_{n,r} \in \mathbb{C}\). By comparing the leading coefficients, we find that
\[c_{m-1,r} = (m-1)!\]. Observe that
\[C_r = \sum_{I \subseteq [1, k-1]} \sum_{\{\sum_{s \in I} 1/n_s\} = r/n_k} (-1)^{|I|} \left| \left(\frac{\sum_{s \in I} 1/n_s}{n} \right) \right| e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s}
\]
\[= \sum_{n=0}^{m-1} c_{n,r} \sum_{I \subseteq [1, k-1]} \sum_{\{\sum_{s \in I} 1/n_s\} = r/n_k} (-1)^{|I|} \left(\frac{\sum_{s \in I} 1/n_s}{n} \right) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s}
\]
\[= c_{m-1,r} \sum_{I \subseteq [1, k-1]} \sum_{\{\sum_{s \in I} 1/n_s\} = r/n_k} (-1)^{|I|} \left(\frac{\sum_{s \in I} 1/n_s}{m-1} \right) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s};
\]
in taking the last step we note that if \(0 \leq n < m-1\) then
\[\sum_{I \subseteq [1, k-1]} \sum_{\{\sum_{s \in I} 1/n_s\} = r/n_k} (-1)^{|I|} \left(\frac{\sum_{s \in I} 1/n_s}{n} \right) e^{2\pi i \sum_{s \in I} a_s/n_s} = 0\]
by [5, Theorem 1] (since \(\{a_s(n_s)\}_{s=1}^{k-1}\) is an \((m-1)\)-cover of the integers). By Lemma 2 and the above,
\[C_r = (m-1)! \sum_{I \subseteq [1, k-1]} \sum_{\{\sum_{s \in I} 1/n_s\} = 0} (-1)^{|I|} \left(\frac{\sum_{s \in I} 1/n_s}{m-1} \right) e^{2\pi i \sum_{s \in I} (a_s - a_k)/n_s}
\]
does not depend on \(r \in [0, n_k-1]\). Combining the above we obtain that
\[n_k C_{r_0} = \sum_{r=0}^{n_k-1} C_r = C \neq 0\]
So there is an \(I \subseteq [1, k-1]\) for which \(\{\sum_{s \in I} 1/n_s\} = r_0/n_k\); \(\sum_{s \in I} 1/n_s \not\in D\) and hence \(\sum_{s \in I} 1/n_s \not\in \{d_n : n \in [1, m-1]\}\). This concludes our proof.

References

1. P. Erdős, On integers of the form \(2^k + p\) and some related problems, Summa Brasil. Math. 2(1950) 113–123.
2. M. Filaseta, Coverings of the integers associated with an irreducibility theorem of A. Schinzel, in: M. A. Bennett, B. C. Berndt, N. Boston, H. G. Diamond, A. J. Hildebrand, W. Philipp (Eds.), Number Theory for the Millennium (Urbana, IL, 2000), vol. II, pp. 1-24, A K Peters, Natick, MA, 2002.
3. R. K. Guy, Unsolved Problems in Number Theory, third ed., Springer, New York, 2004 (Sections F13 and F14).
4. Š. Porubský and J. Schönhheim, Covering systems of Paul Erdős: Past, present and future, in: G. Halász, L. Lovász, M. Simonvits, V. T. Sós (Eds.), Paul Erdős and his Mathematics, I, Bolyai Soc. Math. Stud., vol. 11, 2002, pp. 581–627.
5. Z. W. Sun, Covering the integers by arithmetic sequences, Acta Arith. 72(1995) 109–129.
6. Z. W. Sun, Exact m-covers and the linear form $\sum_{s=1}^{k} x_s/n_s$, Acta Arith. 81(1997) 175–198.
7. Z. W. Sun, On covering multiplicity, Proc. Amer. Math. Soc. 127(1999) 1293–1300.
8. Z. W. Sun, On the function $w(x) = |\{1 \leq s \leq k : x \equiv a_s \pmod{n_s}\}|$, Combinatorica 23(2003) 681–691.
9. Z. W. Sun, Unification of zero-sum problems, subset sums and covers of \mathbb{Z}, Electron. Res. Announc. Amer. Math. Soc. 9(2003) 51–60.
10. Z. W. Sun, Arithmetic properties of periodic maps, Math. Res. Lett. 11(2004) 187–196.
11. Z. W. Sun, A local-global theorem on periodic maps, J. Algebra 293(2005) 506–512.
12. M. Z. Zhang, Irreducible systems of residue classes that cover every integer exactly m times, Sichuan Daxue Xuebao (Nat. Sci. Ed.) 28(1991) 403–408.