Sleep and health-related physical fitness in children and adolescents: a systematic review

ABSTRACT

Objectives: The aim of this systematic review was to summarize the evidence on the associations between the sleep duration or sleep quality and cardiorespiratory and muscular fitness in children and adolescents aged 6-19 years. Material and Methods: This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) and was registered with the international prospective register of systematic reviews PROSPERO network. Three databases (PubMed, SPORTDiscus and Science Direct) were searched until October 2019 for scientific articles concerning sleep duration, sleep quality and physical fitness. Results: Six articles, including 5797 participants, from 11 different countries, were included in the current systematic review. Conclusion: Longer periods of sleep and better sleep quality were associated with higher levels of physical fitness. Keywords: Sleep; Adolescents; Children; Physical fitness; Sleep duration; Sleep quality.
INTRODUCTION

Physical fitness is the capacity needed by an individual to execute specific motor abilities with vigor and alertness, without undue fatigue, and with ample energy to enjoy leisure-time pursuits and meet unforeseen emergencies. Physical fitness capacities are usually grouped into health-related (cardiorespiratory fitness, body composition, muscular strength, and endurance and flexibility) and skill-related components (agility, coordination, balance, power, reaction time, and speed)¹. High levels of cardiorespiratory and muscular fitness have been associated with lower cardiovascular disease risk, better quality of life, and positive health in youth²,³. However, adolescents’ physical fitness levels have declined over the last decades⁴.

Sleep is a basic human need, with important physical and mental health and well-being implications⁵,⁶, and chronic sleep loss is an important public health issue⁷. Inappropriate sleep duration has been associated with several health implications. In children and adolescents, evidence suggests that short sleep duration is associated with excess adiposity, poor emotional regulation (stress, anxiety, and depressive symptoms), lower academic achievement (e.g., concentration and memory) and lower quality of life/well-being⁸.

The National Sleep Foundation in the USA recommends that children and adolescents aged 6-13 years should sleep between 9-11h per night, and adolescents aged 14-17 years need 8-10h per night to maximize general health⁹. However, despite the detrimental health effects of inappropriate sleep, evidence shows that children and adolescents tend to sleep less compared with previous generations¹⁰,¹¹.

Adolescence (aged 10 to 19 years) is a stage of life characterized by many behavioural and physiological changes¹². Adolescence begins with the onset of puberty, a phase of life in which there are changes to the physical appearance and reproductive capacity, which impact adolescents’ psychological and social development. This is also a period of new rights and responsibilities, development of autonomy and identity, as well as relational changes with family, friends, and school¹³.

During adolescence there is a higher sleep necessity than in adulthood, but lower than during childhood¹⁴-¹⁶. However, it is common to observe short sleep duration among adolescents due to a conflict between the biological delay of sleep times¹⁴,¹⁵,¹⁷ and social factors¹⁸, such as morning school schedules, which act as a strong synchronizer of wake-up time over the week¹⁴. Thus, adolescents wake up earlier, shortening their sleep duration during the week, and wake up later, extending their sleep on weekends. This leads to irregular sleep times and durations¹⁹. This disruption might be exacerbated by other social factors that delay sleep onset, such as: (i) more autonomy regarding the sleep times²⁰, interaction with social networks²¹; (ii) an earlier wake time to comply with academic activities¹⁷; (iii) increased use of electronic media²²,²³ and increased light exposure at night related to these activities²²,²⁴,²⁵. During adolescence short sleep duration may also be related to pubertal stage, as more mature adolescents show later sleep times¹⁷. It is hypothesized that late sleep times result from modifications to the SWC (sleep-wake cycle) regulation processes⁷,²⁶, which affect the expression of the circadian rhythm in adolescents¹⁹.

Sleep duration has been associated with physical fitness levels. For those who are sleep deprived, increasing sleep has shown to improve multiple dimensions of function²⁷. In athletes, it has been reported that sleep restoration and sleep extension improves tennis-serve accuracy³⁰, running and swim sprint times²⁸,²⁹, swim-turn and kick-stroke efficiency²⁸, basketball shooting accuracy, half-court and full-court sprints³¹, and time to exhaustion³². Most studies agree on recommending athletes to increase their sleep by 2h (with a goal of up to 9h for elite athletes)²⁸-³¹,³³, as sleep is an unquestionably vital physiological function and one of the most important factors in exercise recovery³⁴.

A recent study has shown that lower levels of physical fitness and ‘insufficient’ physical activity are associated with poor sleep quality in a large sample of young adults³⁵. In adolescents from 11-16 years old, the engagement in moderate-to-vigorous physical activity has been associated with better sleep quality, but compared to boys, girls had lower levels of physical activity and poor sleep quality³⁶. Some studies have reported the beneficial effects of physical fitness and physical activity in promoting falling sleep and ‘good’ sleep quality³⁷. Likewise, poor sleep quality has been associated with lower levels of muscular endurance, flexibility, and cardiorespiratory fitness in young adults³⁸,³⁹.

In this context, the aim of this systematic review is to summarize the knowledge on the association between sleep duration or sleep quality and health-related physical fitness (cardiorespiratory and muscular fitness) in children and adolescents.

MATERIAL AND METHODS

Protocol and registration

This systematic review followed the preferred reporting items for systematic reviews and meta-analyses (PRISMA)⁴⁰ and was registered with the international prospective register of systematic reviews PROSPERO (CRD42020199083).

Study selection criteria

Three electronic databases were searched from the inception until October 2019 (PubMed, SPORTDiscus and ScienceDirect).

For the present systematic review, we considered only observational studies (cross-sectional and longitudinal) as well as intervention studies reporting results from baseline data (age criteria applied) were considered; methods/protocol papers, conference papers, editorials, commentaries, and reviews were not considered.

Studies with apparently healthy children and adolescents aged 6-19 years old (including overweight or obese) that had been published in English, Spanish or Portuguese were considered. We also checked the reference lists of the papers included, as well as relevant reviews to identify other potential studies. We checked
Sleep and health-related physical fitness

The study against the priori determined PICO (population, intervention, comparator, and outcome) study criteria. Studies reporting interventions with sleep hygiene and sleep patterns (variables as sleep duration or bedtimes and wake-up times and sleep quality), physical fitness and the association between sleep duration and physical fitness, were included.

Data extraction

Selected studies were imported to the manager software (Mendeley 1.18), and duplicated were removed. One author (APF) screened titles and abstracts independently and disagreements was decided by discussion and consulting the second and third authors CA and RS.

Data sources and search strategy

Three electronic databases were searched from the inception until October 2019 (PubMed, SPORTDiscus and ScienceDirect). The search strategy for PubMed was (((“Cardiorespiratory Fitness” [Mesh] OR “Cardiovascular Fitness” [Title/Abstract] OR endurance [Title/Abstract] OR “aerobic fitness” [Title/Abstract]) OR “aerobic endurance” [Title/Abstract] OR “Muscle Strength” [Mesh] OR “Physical Conditioning, Human” [Mesh] OR “Endurance Training” [Mesh])) AND (((sleep [Title/Abstract]) OR “sleep duration” [Title/Abstract])). This search strategy was then adapted to SPORTDiscus and ScienceDirect.

Risk of bias assessment

Risk of bias criteria was adapted from STROBE (STrengthening the Reporting of Observational studies in Epidemiology)42, which has been previously applied in systematic reviews43-45. The criteria for risk bias were the following: (1) Was eligibility criteria applied? (2) Were participants selected randomly? (3) Did the participants represent a specific population? (that is, country or region)? (4) Is the sample size of the study larger than 100? (5) Were the measurements used valid and reliable to adolescents or children? An amount of 1 (yes) or 0 (no or unsure) has been assigned to the answer of every of these questions allowing for a maximum possible score to 6 points. Studies with scores from 3 to 5 were classified as having a lower risk of bias (Table 2).

Data analysis and synthesis

Given the heterogeneity of the included studies, a meta-analysis was not possible. Therefore, we conducted a narrative summary of the results and the characteristics of each study

RESULTS

The systematic search identified 6,014 potential articles. After exclusions based on duplication of articles, 728 remained for abstract screening. Then, 654 articles were excluded, of these 74 full texts were screened and 68 were excluded for reasons such as the subjects’ age, variables of interest or lack of association between sleep and physical fitness. Thus, a total of 6 studies were included in this review (Figure 1).

The number of participants within the included studies was 5,797, and the studies had the following designs: cross-sectional (n=4), follow-up (n=1) and cohort (n=1). All studies were published between 2007 and 2016, and the sample sizes ranged from 236 to 4,903 subjects. The number of studies by country was: United States (1), France (1), Taiwan (1), Portugal (1), Chile (1), and one was conducted with a multicountry sample of participants from Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain, and Sweden. The characteristics and results of each included study are presented in Table 1.

All studies were classified as having a low risk of bias. Table 2 shows the scores of each study for risk of bias.

Sleep duration showed a significant relationship with cardiorespiratory fitness and flexibility. Reduced sleep duration in adolescents was associated with decreased cardiorespiratory fitness, lower levels of muscular endurance, and flexibility when compared to adolescents with appropriate sleep duration38,46. However, in children, no significant differences were found for cardiorespiratory and musculoskeletal fitness levels between late and normal sleepers. Further, none of the physical fitness parameters was associated with sleep duration, bedtime or wake-up time47. In addition, there was no significant association between sleep duration and cardiorespiratory fitness and muscle strength, nor between speed, agility, and flexibility48.

Higher cardiorespiratory fitness was associated with a lower likelihood of having a sleep-related anxiety problem in adolescents49. Additionally, girls who were classified as fit were twice as likely to report better sleep quality than their unfit counterparts. However, girls with poor sleep quality showed lower cardiorespiratory fitness50. Moreover, poor sleep quality and short sleep duration in girls were associated with lower levels of muscular endurance, flexibility, and cardiovascular fitness38.

DISCUSSION

The aim of this systematic review was to summarize the knowledge on the association between sleep duration or quality and physical fitness (cardiorespiratory and muscular fitness) in children and adolescents. The National Sleep Foundation in the USA recommends that children aged 6-13 years should sleep between 9-11h per night and that adolescents aged 14-17 years sleep 8-10h per night to maximize general health. However, it is often observed that short sleep duration among adolescents results from a conflict between the biological delay on sleep times3,14,15,17 and such social factors18 as morning school schedules, which act as a strong wake-up time synchronizer across the week14.

Our results suggest that reduced sleep duration was associated with decreased cardiorespiratory fitness, lower levels of muscular endurance and flexibility in adolescents38,46; however, no associations were found between sleep duration and cardiorespiratory fitness or muscle strength among a large sample of European children aged 6-9 years old37,46. While these studies
reported null findings47,48, more research exploring this relationship in children in other countries and regions and with wider age ranges are required before a clear conclusion can be reached.

In addition, it is important to notice that ideal sleep entails not only an adequate amount of sleep, but also other sleep features such as sleep architecture (i.e., sleep stages), sleep quality (i.e., efficiency to stay asleep), time (i.e., time to sleep/wake up), consistency (i.e., day by day variability), and continuity (that is, variability in sleep duration within the same night)5. For example, the results of this systematic review point to an association between poor sleep quality and lower cardiorespiratory fitness in adolescent girls50. Moreover, girls with poor sleep quality and shorter sleep duration were more likely to show lower muscular endurance, flexibility, and cardiovascular fitness38. Conversely, a higher cardiovascular fitness was associated with a lower likelihood of having sleep-related anxiety problems in adolescents49. Additionally, girls who were classified as fit had twice the odds of reporting better sleep quality compared to their unfit counterparts50.

The results of the present systematic review are in line with previous studies showing a positive association between physical activity or fitness and sleep parameters (subjective sleep/sleep disturbance, sleep quality, shortened sleep onset latency, sleep onset, and total sleep time)36,50,51 in adolescents. However, the association between physical fitness and sleep duration or sleep quality in adolescents has not been extensively studied. One important aspect to be taken into account about the effects of sleep duration on the athletic performance of adolescents is the occurrence of naps. The studies that were evaluated in this review only considered nocturnal sleep. A study has shown that shorter nocturnal sleep duration may be influenced by a high frequency of daytime napping52. This may be due to the fact that adolescents with shorter nighttime sleep duration may try to catch up on sleep during the day. So, does the teenager who sleeps less at night and naps during the day attenuate the negative effects on cardiorespiratory fitness because the nap compensates for some of the sleep deprivation?

Another aspect is that physical activity has been considered an effective, non-pharmacological approach to improve sleep. However, physical activity and sleep assessment methodologies still present challenges. Additionally, the comparisons of results between studies is often problematic due to the multiplicity of assessment tools, data analyses and reporting procedures53,54. Adolescence is a period of life when multiple changes occur in the physiological, psychological, psychiatric, and socio cultural domains55. When constructing a self-reported assessment tool for this age group, the option to place emphasis on either quantitative or qualitative aspects of physical activity and fitness and sleep is paramount.

In this context, increased physical inactivity among children and adolescents56-58 is worrisome. In the past few years, there has been a steep increase in research on the health-related effects of physical inactivity and sedentary behavior59.
Table 1. Summary of included studies.

Author & date	Study Design	Sample size	Girls	Age	Location	Tools	Outcome measures	Absolute effect
Lee & Lin, 2007	Cross-sectional	291	291	19.3 ± 0.6 yrs	Taiwan	• Digital Height-Weight measurement; • Pittsburgh Sleep Quality Index (PSQI) Questionnaire; • Sit and reach test, curl-up test and 800m run/walk test;	• BMI; • Sleep quality evaluation (sleep quality, sleep onset latency, sleep duration, sleep efficiency, sleep disturbances); • Physical fitness (cardiovascular endurance, body composition, muscular strength and endurance, flexibility)	Sleep duration was negatively correlated with 800m run/walk test (r=-0.34; p<0.05) and with the sit-and-reach test (r=-0.24; p<0.05). Thus, there is a significant relationship between sleep duration and cardiovascular fitness and flexibility. Subjects with poor sleep quality (PSQI score >5) showed less sleep duration (t-test=9.57; p<0.05) and were more likely to have lower levels of muscular endurance (t-test =4.42; p<0.05), flexibility (t-test=-5.12; p<0.05), and cardiovascular fitness (t-test=7.27; p<0.05) than subjects with good sleep quality.
Countryman et al, 2013	Cohort	367	99	16.1 ± 0.7 yrs	EUA	• Mercury sphygmomanometer; Balance beam scale and height rod; Waist circumference; Blood collection; • Self-report of sleep duration, quality and fatigue; • Maximal treadmill test (modified Balke (walk–jog) exercise protocol);	• BMI, Blood pressure, Fasting Blood Measures (serum cholesterol, triglycerides, lipoproteins, glucose, insulin, fibrinogen, high-sensitivity CRP and IL-6); • Sleep duration; Children’s Depression Inventory; • Seven-Day Physical Activity Recall; • Aerobic fitness (peak VO2);	The sleep may in part influence cardiometabolic outcomes through associations with fitness. Specifically, reduced sleep duration (7.7h ±1.2) and a composite score based on poor sleep quality and fatigue were associated with decreased cardiorespiratory fitness, which was in turn related to increased risk of metabolic syndrome and inflammation. The sleep latent variable was positively associated with aerobic fitness (coefficient=2.52, z=2.67, p=0.01).
Thivel et al, 2015	Cross-sectional	236	224	7.5 ± 0.6 yrs	France	• Anthropometric parameters (stadiometer, Digital scale Seca model 873, waist circumference); BMI, Skinfold thickness (skinfold caliper); • Children's Eating Habits questionnaire; Self-report (parental factors); • Cardiorespiratory fitness (20m shuttle run test (20-MST); muscular-skeletal fitness (squat jump and cycling peak power) fitness (cycle ergometer; Plateform Ergo Jump PlusF Bosco System);	• Anthropometric Characteristics (Body weight, Height); Body composition (BMI, Index of adiposity); • Eating habits; Sleep patterns (bedtime, wake-up time and sleep duration); • Physical Fitness (cardiorespiratory and, Musculoskeletal Fitness, Squat jump - lower limb explosive strength);	Neither cardiorespiratory fitness level nor musculoskeletal fitness level were significantly different between late and normal sleepers and none of the physical fitness parameters was associated with sleep duration, bedtime and wake-up time (p>0.05 for all).
Zaqout et al, 2016	Follow up	4903	2481	8.7 ± 1.2 yr	Belgium, Cyprus, Estonia, Germany, Hungary, Italy, Spain, Sweden	• TANITA scale and a portable stadiometer; • Questionnaire from parental-reported bedtime and get-up time of children, separately for weekdays and weekends, self-report (parental factors); Proxy-reported KINDL for parents, Food Frequency Questionnaire. • ALPHA health-related fitness test battery, Actigraph accelerometers	• Anthropometric measurement; • Sleep duration and Parental factors; Psychosocial well-being, Dietary habits. • Physical activity; Physical fitness (cardiorespiratory, muscular strength, flexibility, balance and speed)	There was no significant association between sleep duration and cardiorespiratory fitness, muscle strength, speed, flexibility and balance levels (p> 0.05 for all).

Sleep Sci. 2021;14(4):357-365
Statistically significant association was observed between the QST and CRF ($\rho = 0.17$; $p < 0.05$). Poor sleep quality in adolescent girls was associated with lower CRF. Additionally, girls who were classified as fit were twice as much higher odd to report better sleep quality compared to their unfit peers.

In both sexes, sleep-related anxiety problems were correlated with CRF (boys, $r = -0.202$, $p < 0.05$; girls, $r = -0.0064$, $p < 0.05$). However, sleep quality was correlated with CRF only in girls ($r = -0.0065$, $p < 0.05$). A higher CRF level was associated with a lower likelihood of having sleep-related anxiety problem in girls (OR = 0.20, 95% CI, 0.01 to 0.53, $p = 0.031$).

Table 2. Risk of Bias of the included studies.

Study	Q1 (Was eligibility criteria applied?)	Q2 (Were participants selected randomly?)	Q3 (Did the participants represent a specific population? (that is, country or region))	Q4 (Is the sample size of the study larger than 100?)	Q5 (Were the measurements used valid and reliable to evaluate sleep and physical fitness reported?)	Q6 (Were the source and details of the variables used to evaluate sleep and physical fitness reported?)	Q7 (Were the measurements used valid and reliable to adolescents or children?)	Score final
Lee and Lin (2007)	1	0	0	1	1	1	1	4
Countryman et al. (2013)	1	0	1	1	1	1	1	5
Thivel et al. (2015)	1	0	1	1	1	1	1	5
Zaqout et al. (2016)	1	0	1	1	1	1	1	5
Mota and Vale (2010)	0	0	1	1	1	1	1	4
García-Hermoso et al. (2015)	1	0	1	1	1	1	1	5

Notes: Q = Question; Yes = 1; No or doubt = 0.

Notably, a recent systematic review reported consistent evidence for a positive association between muscular fitness and physical activity, however, given the limited number of available studies, the association between muscular fitness and sleep was considered uncertain. This is also in line with a previous systematic review by Poitras et al. (2016), with evidence suggesting that moderate-intensity physical activity may be sufficient for improving or maintaining cardiorespiratory fitness in children and adolescents. These findings continue to support the importance of encouraging physical activity during...
childhood and adolescence, according to the recommendations of the Physical Activity Guidelines Advisory Committee scientific report, to mitigate against the consequences of the physical inactivity, sleep deprivation and poor sleep quality.

A few studies have shown that exercise improved sleep quality or duration, and sleep and exercise exert substantial positive effects on one another. Importantly, previous research has reported the independent and additive effects of muscular and cardiorespiratory fitness on children and adolescents’ health, advocating that these fitness components may influence health through unique physiological pathways. However, the mechanisms involved in the relationship between physical fitness and sleep quality and duration are unknown. Thus, additional studies are necessary to understand these mechanisms.

Studies have also shown that there is a need for action. The lack of sleep and difficulty in sleeping well is a widespread health concern, compounded by the fact that physical inactivity has increased among children and adolescents. Adolescents are not getting as much sleep as recommended. In the last few years, we have observed a discussion to push for policy change in order to delay the time at which schools start in the morning, as many adolescents wake up in the morning to go to school without having an adequate amount of sleep in the previous night, which can affect their school performance, physical fitness, health and well-being.

Results showed that longer nocturnal sleep periods and better sleep quality were associated with higher levels of physical fitness in adolescents. However, such association was not observed in children. Further research is needed, for example through long-term observational and intervention studies that evaluate cause-and-effect relationships and use objective measures of sleep and physical fitness with greater representativeness among children and adolescents, exploring aspects of human lifestyle, differences between genders, age groups and cultural contexts.

The present review provides new contributions to this field of literature and supports the view that sleep duration and sleep quality are meaningfully linked with cardiorespiratory fitness and/or muscular fitness in adolescents.

Strengths and limitations

To the authors’ knowledge, the present systematic review is the first to report on association between sleep duration, sleep quality, and physical fitness in children and adolescents. However, the scarcity of studies evaluating the physiological reasons for the effects of physical fitness upon sleep might occur was a limitation in our results. To better inform the association between sleep quality, sleep duration and physical fitness there is a need for further studies comparing objectively measured sleep outcomes and self-report ones.

ACKNOWLEDGMENTS

We thank the Sabinne Galina (MSc) and Maria Luiza Cruz de Oliveira (PhD) for their help in data collection and the Universidade Lusófona de Lisboa in the doctorate in Physical Education and Sport for financial support. Rute Santos is supported by the Portuguese Foundation for Science and Technology (CEECIND/01069/2017 and FCT/UIDB/00617/2020)

CONFLICT OF INTEREST

The authors declare no potential conflict of interest. The authors alone are responsible for the content and writing of this manuscript.

REFERENCES

1. ACSM. ACSMs guidelines for exercise testing and prestation. 10th ed. Indianapolis: Wolters Kluwer; 2018. DOI: https://doi.org/10.5860/ntm-35-6295
2. Artero EG, Ruiz JR, Ortega FB, España-Romero V, Vicente-Rodríguez G, Molnár D, et al. Muscle and cardiorespiratory fitness are independently associated with metabolic risk in adolescents: the HELENA study. Peditri Diabetes. 2011 Dec;12(8):704-12.
3. Ortega FB, Ruiz JR, Castillo MJ, Sjöström M. Physical fitness in adolescence and adolescence: a powerful marker of health. Int J Obes. 2008 Dec;32(1-11). DOI: https://doi.org/10.1038/sj.ijsjo.0803774
4. Tomkinson GR, Lang Jj, Tremblay MS. Temporal trends in the cardiorespiratory fitness of children and adolescents representing 19 high-income and upper-middle-income countries between 1981 and 2014. Br J Sports Med. 2017;53(8):478-86. DOI: https://doi.org/10.1136/bjsports-2017-097982
5. Chaput J, Saunders TJ, Carson V. Interactions between sleep, movement and other non-movement behaviours in the pathogenesis of childhood obesity. 2017 Feb;18(Suppl 1):1-14. DOI: https://doi.org/10.1111/obr.12508
6. Willingham DT. Are sleep students learning?. Am Educ. 2013;35-9.
7. Owens J. Insufficient sleep in adolescents and young adults: an update on causes and consequences. Pediatrics. 2014 Sep;134(3):e921-e32.
8. Chaput J, Gray CE, Poitras Vj, Carson V, Gruber R, Olds T, et al. Systematic review of the relationships between sleep duration and health indicators in school-aged children and youth 1. Appl Physiol Nutr Metab. 2016 Jun;41(6):526-882.
9. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015 Mar;1(1):40-3. DOI: https://doi.org/10.1016/j.sleh.2014.12.010
10. Keyes KM, Maslowsky J, Hamilton A, Schulenber J. The great sleep recession: Changes in sleep duration among US adolescents, 1991-2012. Pediatrics. 2015 Mar;135(3):460-8. DOI: https://doi.org/10.1542/ peds.2014-2707
11. Maracciani L, Olds T, Petkov J. In search of the lost sleep: secular trends in the sleep time of school-aged children and adolescents. Sleep Med Rev. 2012 Jun;16(3):203-11. DOI: https://doi.org/10.1016/j.smrv.2011.03.005
12. World Health Organization (WHO). Orientation programme on adolescents health for health-care providers. Geneva: WHO; 2006.
13. Fonseca H. Helping adolescents develop resilience: steps the pediatrician can take in the office. Adolesc Med State Art Rev. 2010 Apr;21(1):152-60.
14. Andrade MMM, Benedito-Silva AA, Domenice S, Arnhold JIP, Menna-Barreto L. Sleep characteristics of a longitudinal study adolescents. J Adolesc Health [Internet]. 1993; [cited ANO Mês dia]; 14:401-6. Available from: https://teensneedsleep.files.wordpress.com/2011/04/andrade-et-al-sleep-characteristics-of-adolescents-a-longitudinal-study.pdf
15. Carskadon MA, Vieira C, Acebo C. Association between puberty and delayed phase preference. Sleep. 1993 May;16(3):258-62. DOI: https://doi.org/10.1093/sleep/16.3.258
16. Hagenauer MH, Perryman Jl, Lee TM, Carskadon MA. Adolescent changes in the homeostatic and circadian regulation of sleep. Dev Neurosci. 2009;31(4):276- 84. DOI: https://doi.org/10.1159/000216538
17. Carskadon MA. Sleep in adolescents: the perfect storm. Peditri Clin North Am. 2011 Jun;58(3):637-47. DOI: https://doi.org/10.1016/j.pclin.2011.03.003
18. Bjorvatn B, Pallesen S. A practical approach to circadian rhythm sleep disorders. Sleep Med Rev. 2009 Feb;13(1):47-60. DOI: https://doi.org/10.1016/j.smrv.2008.04.009
19. Crowley SJ, Acebo C, Carskadon MA. Sleep, circadian rhythms, and delayed phase in adolescence. Sleep Med. 2007 Sep;8(6):602-12. DOI:
38. Chang SP, Chen YH. Relationships between sleep quality, physical fitness and body mass index in female young adults. J Sports Med Phys Fitness. 2007 Dec;47(4):462-7.
39. Chen SP, Chen YH. Relationships between sleep quality, physical fitness and body mass index in college freshmen. J Sport Med Phys Fitness. 2015 Oct;55(10):1234-41.
40. Moher D, Liberati A, Tetzlaff J, Altman DG; The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jun;6(6):e1000097. DOI: https://doi.org/10.1371/journal.pmed.1000097.
41. Bingham DD, Costa SR, Shire KA, Clemes SA, Barber SE. Physical activity during the early years: a systematic review of correlates and determinants. J Am Prev Med. 2016 Sep;53(1):384-402.
42. Von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) in the International Journal of Epidemiology, BMJ. 2007 Oct;335(7624):806-8. DOI: https://doi.org/10.1136/ije.2014.222846.
43. Barnett LM, Lai SK, Veldman SL, Hardy LL, Cliff DP, Morgan PJ, et al. Correlates of gross motor competence in children and adolescents: a systematic review and meta-analysis. Sports Med. 2016 Feb;46(11):1663-81. DOI: https://doi.org/10.1007/s40279-016-0479-z.
44. Costigan SA, Barnett L, Ploennies RC, Lubans DR. The health indicators associated with screen-based sedentary behavior among adolescent girls: a systematic review. J Adolesc Heal. 2013 Apr;52(4):382-92. DOI: https://doi.org/10.1016/j.jadohealth.2012.07.018.
45. Lubans DR, Morgan PJ, Cliff DP, Barnett LM, Okely AD. Fundamental movement skills in children and adolescents: review of associated health benefits. Sport Med. 2010;40(12):1019-35. DOI: https://doi.org/10.1007/s00021-006-0181-2.
46. Garcia-Hermoso A, Aguilar MM, Vergara FA, Velásquez EFA, Marina R, Obesity, cardiorespiratory fitness, and self-reported sleep patterns in Chilean school-aged children. Behav Sleep Med. 2015 Apr;15(3):158-65.
47. Zazaqui M, Vyncke K, Moreno LA, Pühse U, Molnar D, et al. Determinant factors of physical fitness in European children. Int J Public Health. 2016 Apr;61(3):573-82. DOI: https://doi.org/10.1007/s00038-016-0811-2.
48. Brand S, Gerber M, Beck J, Hatzinger M, Pühse U, Holsboer-Trachsler E. The relationship between physical activity and sleep from mid adolescence to early adulthood. A systematic review of methodological approaches and meta-analysis. Sleep Med Rev. 2016 Aug;28:32-45. DOI: https://doi.org/10.1016/j.smrv.2015.07.004.
49. DeWald JF, Meijer AM, Oort FJ, Kerkhof GA, Bögels SM. The influence of sleep quality, sleep duration and sleepiness on school performance in children and adolescents: a meta-analytic review. Sleep Med Rev. 2016 Jan;14(1):179-89. DOI: https://doi.org/10.1016/j.smrv.2009.10.004.
50. Lang C, Brand S, Feldmeth AK, Holsboer-Trachsler E, Pühse U, Gerber M. Increased self-reported and objectively assessed physical activity predict sleep quality among adolescents. Physiol Behav. 2013 Aug;124(6-8):159-65. DOI: https://doi.org/10.1016/j.physbeh.2013.07.017.
51. Janssen I, Leblanc AG. Systematic review of the health benefits of physical activity, fitness, and sedentary behavior in school-aged children. Child Dev Perspect. 2013 Mar;7(1):38-45. DOI: https://doi.org/10.1136/10.1186/1479-5868-7-40.
52. World Health Organization (WHO). Global recommendations on physical activity for health. Geneva: WHO; 2010.
53. Fullagar HH, Skonski S, Duffield R, Hammes D, Coutts AJ, Meyer T. Factors associated with short sleep duration in adolescents. Rev Paul Pediatr. 2016 Mar;34(1):64-70. DOI: https://doi.org/10.1590/1806-928X20152632.
54. Tannahill C, Whitehead H. Sleep and physical activity in children and young people: a systematic review and meta-analysis. PLoS One. 2016 Sep;11(9):e0163699. DOI: https://doi.org/10.1371/journal.pone.0163699.
55. Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity, fitness, and sedentary behavior in school-aged children and youth. Int J Behav Phys Act. 2010 May;7:40. DOI: https://doi.org/10.1186/1479-5868-7-40.
56. Smith JJ, Earther N, Weaver RG, Riley N, Beets MW, Lubans DR. Behavioral correlates of muscular fitness in children and adolescents: Sleep Sci. 2021;14(4):357-365.
a systematic review. Sports Med. 2019 Mar;49:887-904. DOI: https://doi.org/10.1007/s40279-019-01089-7

Poitras VJ, Gray CE, Borghese MM, Carson V, Chaput JP, Janssen I, et al. Systematic review of the relationships between objectively measured physical activity and health indicators in school-aged children and youth 1. Appl Physiol Nutr Metab. 2016 Jun;41(6 Suppl 3):S197-239.

Oxford Academic. Part a: Executive Summary. Nutr Rev. 2009 Feb;67(2):114-20, DOI: https://doi.org/10.1111/j.1753-4887.2008.00136.x

Steene-Johannessen J, Anderssen SA, Kolle E, Andersen IB. Low muscle fitness is associated with metabolic risk in youth. Med Sci Sports Exerc. 2009 Jul;41(7):1361-7. DOI: https://doi.org/10.1249/MSS.0b013e31819aaae5

Fischer FM, Oliveira DC, Teixeira LR, Teixeira MCTV, Amaral MA. Efeitos do trabalho sobre a saúde de adolescentes. Ciência Saúde Coletiva. 2003;8(4):973-84. DOI: https://doi.org/10.1590/s1413-81232003000400019

Wheaton AG, Chapman DP. School start times, sleep, behavioral, health, and academic outcomes: a review of the literature. J Sch Health. 2016 May;86(5):363-81.