t-CLASS SEMIGROUPS OF NOETHERIAN DOMAINS

S. KABBAJ AND A. MIMOUNI

ABSTRACT. The t-class semigroup of an integral domain R, denoted $S_t(R)$, is the semigroup of fractional t-ideals modulo its subsemigroup of nonzero principal ideals with the operation induced by ideal t-multiplication. This paper investigates ring-theoretic properties of a Noetherian domain that reflect reciprocally in the Clifford or Boolean property of its t-class semigroup.

1. INTRODUCTION

Let R be an integral domain. The class semigroup of R, denoted $\mathcal{I}(R)$, is the semigroup of nonzero fractional ideals modulo its subsemigroup of nonzero principal ideals \cite{3, 19}. We define the t-class semigroup of R, denoted $\mathcal{I}_t(R)$, to be the semigroup of fractional t-ideals modulo its subsemigroup of nonzero principal ideals, that is, the semigroup of the isomorphy classes of the t-ideals of R with the operation induced by t-multiplication. Notice that $\mathcal{I}_t(R)$ stands as the t-analogue of $\mathcal{I}(R)$, whereas the class group $\text{Cl}(R)$ is the t-analogue of the Picard group Pic(R). In general, we have

$$\text{Pic}(R) \subseteq \text{Cl}(R) \subseteq \mathcal{I}_t(R) \subseteq \mathcal{I}(R)$$

where the first and third containments turn into equality if R is a Prüfer domain and the second does so if R is a Krull domain.

A commutative semigroup S is said to be Clifford if every element x of S is (von Neumann) regular, i.e., there exists $a \in S$ such that $x = ax^2$. A Clifford semigroup S has the ability to stand as a disjoint union of subgroups G_e, where e ranges over the set of idempotent elements of S, and G_e is the largest subgroup of S with identity equal to e (cf. \cite{7}). The semigroup S is said to be Boolean if for each $x \in S$, $x = x^2$. A domain R is said to be Clifford (resp., Boole) t-regular if $S_t(R)$ is a Clifford (resp., Boolean) semigroup.

Date: November 28, 2008.

2000 Mathematics Subject Classification. 13C20, 13F05, 11R65, 11R29, 20M14.

Key words and phrases. Class semigroup, t-class semigroup, t-ideal, t-closure, Clifford semigroup, Clifford t-regular, Boole t-regular, t-stable domain, Noetherian domain, strong Mori domain.

This work was funded by KFUPM under Project # MS/t-Class/257.
This paper investigates the \(t \)-class semigroups of Noetherian domains. Precisely, we study conditions under which \(t \)-stability characterizes \(t \)-regularity. Our first result, Theorem 2.2, compares Clifford \(t \)-regularity to various forms of stability. Unlike regularity, Clifford (or even Boole) \(t \)-regularity over Noetherian domains does not force the \(t \)-dimension to be one (Example 2.4). However, Noetherian strong \(t \)-stable domains happen to have \(t \)-dimension 1. Indeed, the main result, Theorem 2.6, asserts that “\(R \) is strongly \(t \)-stable if and only if \(R \) is Boole \(t \)-regular and \(t \)-dim(\(R \)) = 1.” This result is not valid for Clifford \(t \)-regularity as shown by Example 2.9. We however extend this result to the Noetherian-like larger class of strong Mori domains (Theorem 2.10).

All rings considered in this paper are integral domains. Throughout, we shall use \(\text{qf}(R) \) to denote the quotient field of a domain \(R \), \(\mathcal{T} \) to denote the isomorphy class of a \(t \)-ideal \(I \) of \(R \) in \(S_t(R) \), and \(\text{Max}_t(R) \) to denote the set of maximal \(t \)-ideals of \(R \).

2. MAIN RESULTS

We recall that for a nonzero fractional ideal \(I \) of \(R \), \(I_v := (I^{-1})^{-1} \), \(I_t := \bigcup J_v \) where \(J \) ranges over the set of finitely generated subideals of \(I \), and \(I_w := \bigcup (J : J) \) where the union is taken over all finitely generated ideals \(J \) of \(R \) with \(J^{-1} = R \). The ideal \(I \) is said to be divisorial or a \(v \)-ideal if \(I = I_v \), a \(t \)-ideal if \(I = I_t \), and a \(w \)-ideal if \(I = I_w \). A domain \(R \) is called strong Mori if \(R \) satisfies the ascending chain condition on \(w \)-ideals [5]. Trivially, a Noetherian domain is strong Mori and a strong Mori domain is Mori. Suitable background on strong Mori domains is [5]. Finally, recall that the \(t \)-dimension of \(R \), abbreviated \(t \)-dim(\(R \)), is by definition equal to the length of the longest chain of \(t \)-prime ideals of \(R \).

The following lemma displays necessary and sufficient conditions for \(t \)-regularity. We often will be appealing to this lemma without explicit mention.

Lemma 2.1 ([9] Lemma 2.1). Let \(R \) be a domain.

1. \(R \) is Clifford \(t \)-regular if and only if, for each \(t \)-ideal \(I \) of \(R \), \(I = (I^2 : I^2) \).
2. \(R \) is Boole \(t \)-regular if and only if, for each \(t \)-ideal \(I \) of \(R \), \(I = c(I^2) \), for some \(c \neq 0 \in \text{qf}(R) \).

An ideal \(I \) of a domain \(R \) is said to be \(L \)-stable (here \(L \) stands for Lipman) if \(R^l := \bigcup_{n \geq 1} (I^n : I^n) = (I : I) \), and \(R \) is called \(L \)-stable if every nonzero ideal is \(L \)-stable. Lipman introduced the notion of stability in the specific setting of one-dimensional commutative semi-local Noetherian rings in order to
give a characterization of Arf rings; in this context, L-stability coincides with Boole regularity \[12\].

Next, we state our first theorem of this section.

Theorem 2.2. Let \(R \) be a Noetherian domain and consider the following statements:

1. \(R \) is Clifford \(t \)-regular;
2. Each \(t \)-ideal \(I \) of \(R \) is \(t \)-invertible in \((I : I) \);
3. Each \(t \)-ideal is \(L \)-stable.

Then (1) \(\implies \) (2) \(\implies \) (3). Moreover, if \(t\text{-dim}(R) = 1 \), then (3) \(\implies \) (1).

Proof. (1) \(\implies \) (2). Let \(I \) be a \(t \)-ideal of a domain \(A \). Then for each ideal \(J \) of \(A \), \((I : J) = (I : J_t) \). Indeed, since \(J \subseteq J_t \), then \((I : J_t) \subseteq (I : J) \). Conversely, let \(x \in (I : J) \). Then \(xJ \subseteq I \) implies that \(xJ_t = (xJ)_t \subseteq I_t = I \), as claimed. So \(x \in (I : J_t) \) and therefore \((I : J) \subseteq (I : J_t) \). Now, let \(I \) be a \(t \)-ideal of \(R \), \(B = (I : I) \) and \(J = (B : B) \). Since \(T \) is regular in \(S \), then \(I = (I^2 : I^2)_1 \). By the claim, \(B = (I : I) = (I : (IJ)_t) = (I : IJ) = ((I : I) : J) = (B : J) \). Since \(B \) is Noetherian, then \((I(B : I))_{t_1} = J_{t_1} = J_{v_1} = B \), where \(t_1 \)- and \(v_1 \)-denote the \(t \)- and \(v \)-operations with respect to \(B \). Hence \(I \) is \(t \)-invertible as an ideal of \((I : I) \).

(2) \(\implies \) (3). Let \(n \geq 1 \), and \(x \in (I^n : I^n) \). Then \(xI^n \subseteq I^n \) implies that \(xI^n(B : I) \subseteq I^n(B : I) \). So \(x(I^n(I : I))_{t_1} = x(I^n(I : I))_{t_1} \subseteq (I^n(I : I))_{t_1} = (I^n(I : I))_{t_1} \). Now, we iterate this process by composing the two sides by \((B : I) \), applying the \(t \)-operation with respect to \(B \) and using the fact that \(I \) is \(t \)-invertible in \(B \), we obtain that \(x \in (I : I) \). Hence \(I \) is \(L \)-stable.

(3) \(\implies \) (1). Assume that \(t\text{-dim}(R) = 1 \). Let \(I \) be a \(t \)-ideal of \(R \) and \(J = (I^2 : I^2)_1 = (I^2 : I^2)_v \) (since \(R \) is Noetherian, and so a TV-domain). We wish to show that \(I = J \). By \[10\] Proposition 2.8.(3), it suffices to show that \(IR_M = JR_M \) for each \(t \)-maximal ideal \(M \) of \(R \). Let \(M \) be a \(t \)-maximal ideal of \(R \). If \(I \not

According to \[2\] Theorem 2.1 or \[8\] Corollary 4.3, a Noetherian domain \(R \) is Clifford regular if and only if \(R \) is stable and \(\text{dim}(R) = 1 \). Unlike Clifford regularity, Clifford (or even Boole) \(t \)-regularity does not force a Noetherian domain \(R \) to be of \(t \)-dimension one. In order to illustrate this fact, we first establish the transfer of Boole \(t \)-regularity to pullbacks issued from local Noetherian domains.
Proposition 2.3. Let \((T, M)\) be a local Noetherian domain with residue field \(K\) and \(\phi : T \rightarrow K\) the canonical surjection. Let \(k\) be a proper subfield of \(K\) and \(R := \phi^{-1}(k)\) the pullback issued from the following diagram of canonical homomorphisms:

\[
\begin{array}{ccc}
R & \rightarrow & k \\
\downarrow & & \downarrow \\
T & \phi & K = T/M
\end{array}
\]

Then \(R\) is Boole \(t\)-regular if and only if so is \(T\).

Proof. By [4, Theorem 4] (or [6, Theorem 4.12]) \(R\) is a Noetherian local domain with maximal ideal \(M\). Assume that \(R\) is Boole \(t\)-regular. Let \(J\) be a \(t\)-ideal of \(T\). If \(J(T : J) = T\), then \(J = aT\) for some \(a \in J\) (since \(T\) is local). Then \(J^2 = aJ\) and so \((J^2)_t = aJ\), where \(t_1\) is the \(t\)-operation with respect to \(T\) (note that \(t_1 = v_1\) since \(T\) is Noetherian), as desired. Assume that \(J(T : J) \subseteq T\). Since \(T\) is local with maximal ideal \(M\), then \(J(T : J) \subseteq M\). Hence \(J^{-1} = (R : J) \subseteq (T : J) \subseteq (M : J) \subseteq J^{-1}\) and therefore \(J^{-1} = (T : J)\). So \((T : J^2) = ((T : J) : J) = ((R : J) : J) = (R : J^2)\). Now, since \(R\) is Boole \(t\)-regular, then there exists \(0 \neq c \in \text{qf}(R)\) such that \((J^2)_t = ((J_t)_t) = cJ_t\). Then \((T : J^2) = (R : J^2) = (R : (J^2)_t) = (R : cJ_t) = c^{-1}(R : J_t) = c^{-1}(R : J) = c^{-1}(T : J)\). Hence \((J^2)_t = (J^2)_{v_1} = cJ_{v_1} = cJ_{t_1} = cJ_t\), as desired. It follows that \(T\) is Boole \(t\)-regular.

Conversely, assume that \(T\) is Boole \(t\)-regular and let \(I\) be a \(t\)-ideal of \(R\). If \(II^{-1} = R\), then \(I = aR\) for some \(a \in I\). So \(I^2 = aI\), as desired. Assume that \(II^{-1} \subseteq R\). Then \(II^{-1} \subseteq M\). So \(T \subseteq (M : M) = M^{-1} = (II^{-1})^{-1} = (I_v : I_v) = (I : I)\). Hence \(I\) is an ideal of \(T\). If \(I(T : I) = T\), then \(I = aT\) for some \(a \in I\) and so \(I^2 = aI\), as desired. Assume that \(I(T : I) \subseteq T\). Then \(I(T : I) \subseteq M\), and so \(I^{-1} \subseteq (T : I) \subseteq (M : I) \subseteq I^{-1}\). Hence \(I^{-1} = (T : I)\). So \((T : I^2) = ((T : I) : I) = ((R : I) : I) = (R : I^2)\). But since \(T\) is Boole \(t\)-regular, then there exists \(0 \neq c \in \text{qf}(T)\) such that \((I^2)_t = ((I_t)_t) = cI_t\). Then \((R : I^2) = (T : I^2) = (T : (I^2)_t) = (T : cI_t) = c^{-1}(T : I_t) = c^{-1}(T : I) = c^{-1}(R : I)\). Hence \((I^2)_t = (I^2)_v = cI_v = cI_t = cI\), as desired. It follows that \(R\) is Boole \(t\)-regular. \(\square\)

Example 2.4. Let \(K\) be a field, \(X\) and \(Y\) two indeterminates over \(K\), and \(k\) a proper subfield of \(K\). Let \(L := K[[X, Y]] = K + M\) and \(R := k + M\) where \(M := (X, Y)\). Since \(T\) is a UFD, then \(T\) is Boole \(t\)-regular [9, Proposition 2.2]. Further, \(R\) is a Boole \(t\)-regular Noetherian domain by Proposition 2.3. Now \(M\) is a \(v\)-ideal of \(R\), so that \(t\)-dim\(R\) = \(\dim(R) = 2\).
Recall that an ideal \(I \) of a domain \(R \) is said to be \(\text{stable} \) (resp., \(\text{strongly stable} \)) if \(I \) is invertible (resp., principal) in its endomorphism ring \((I : I)\), and \(R \) is called a stable (resp., strongly stable) domain provided each nonzero ideal of \(R \) is stable (resp., strongly stable). Sally and Vasconcelos [17] used this concept to settle Bass’ conjecture on one-dimensional Noetherian rings with finite integral closure. Recall that a stable domain is \(L \)-stable [1, Lemma 2.1]. For recent developments on stability, we refer the reader to [1] and [14,15,16]. By analogy, we define the following concepts:

Definition 2.5. A domain \(R \) is \(t \)-**stable** if each \(t \)-ideal of \(R \) is stable, and \(R \) is \(t \)-**strongly stable** if each \(t \)-ideal of \(R \) is strongly stable.

Strong \(t \)-stability is a natural stability condition that best suits Boolean \(t \)-regularity. Our next theorem is a satisfactory \(t \)-analogue for Boolean regularity [8, Theorem 4.2].

Theorem 2.6. Let \(R \) be a Noetherian domain. The following conditions are equivalent:

1. \(R \) is strongly \(t \)-stable;
2. \(R \) is Boole \(t \)-regular and \(\dim(R) = 1 \).

The proof relies on the following lemmas.

Lemma 2.7. Let \(R \) be a \(t \)-stable Noetherian domain. Then \(\dim(R) = 1 \).

Proof. Assume \(\dim(R) \geq 2 \). Let \((0) \subseteq P_1 \subseteq P_2 \) be a chain of \(t \)-prime ideals of \(R \) and \(T := (P_2 : P_2) \). Since \(R \) is Noetherian, then so is \(T \) (as \((R : T) \neq 0\)) and \(T \subseteq \overline{R} = R' \), where \(\overline{R} \) and \(R' \) denote respectively the complete integral closure and the integral closure of \(R \). Let \(Q \) be any minimal prime over \(P_2 \) in \(T \) and let \(M \) be a maximal ideal of \(T \) such that \(Q \subseteq M \). Then \(QT_M \) is minimal over \(P_2T_M \) which is principal by \(t \)-stability. By the principal ideal theorem, \(\text{ht}(Q) = \text{ht}(QT_M) = 1 \). By the Going-Up theorem, there is a height-two prime ideal \(Q_2 \) of \(T \) contracting to \(P_2 \) in \(R \). Further, there is a minimal prime ideal \(Q \) of \(P_2 \) such that \(P_2 \subseteq Q \subseteq Q_2 \). Hence \(Q \cap R = Q_2 \cap R = P_2 \), which is absurd since the extension \(R \subseteq T \) is INC. Therefore \(\dim(R) = 1 \). \(\Box \)

Lemma 2.8. Let \(R \) be a one-dimensional Noetherian domain. If \(R \) is Boole \(t \)-regular, then \(R \) is strongly \(t \)-stable.

Proof. Let \(I \) be a nonzero \(t \)-ideal of \(R \). Set \(T := (I : I) \) and \(J := I(T : I) \). Since \(R \) is Boole \(t \)-regular, then there is \(0 \neq c \in \text{qf}(R) \) such that \((I^2)_t = cI \). Then \(T : I = (I : I)^2 = (I : I^2) = (I : (I^2)_t) = (I : cI) = c^{-1}I : I = c^{-1}T \). So \(J = I(T : I) = c^{-1}I \). Since \(J \) is a trace ideal of \(T \), then \((T : J) = (J : J) = (c^{-1}I : c^{-1}I) = (I : I) = T \). Hence \(J_{v_1} = T \), where \(v_1 \) is the \(v \)-operation with respect to \(T \). Since \(R \) is one-dimensional Noetherian domain, then so is \(T \) ([11, Theorem 93]). Now, if \(J \) is a proper ideal of \(T \), then \(J \subseteq N \).
for some maximal ideal \(N \) of \(T \). Hence \(T = J_{v_1} \subseteq N_{v_1} \subseteq T \) and therefore \(N_{v_1} = T \). Since \(\dim(T) = 1 \), then each nonzero prime ideal of \(T \) is \(t \)-prime and since \(T \) is Noetherian, then \(t_1 = v_1 \). So \(N = N_{v_1} = T \), a contradiction. Hence \(J = T \) and therefore \(I = cI = cT \) is strongly \(t \)-stable, as desired. \(\Box \)

Proof of Theorem 2.6 (1) \(\implies \) (2) Clearly \(R \) is Boole \(t \)-regular and, by Lemma 2.7, \(t \)-dim \((R) = 1 \).

(2) \(\implies \) (1) Let \(I \) be a nonzero \(t \)-ideal of \(R \). Set \(T := (I : I) \) and \(J := I(T : I) \). Since \(R \) is Boole \(t \)-regular, then there is \(0 \neq c \in \text{qf}(R) \) such that \((I^2)_r = cI \). Then \((T : I) = ((I : I) : I) = (I : I^2) = (I : (I^2)_r) = (I : cI) = c^{-1}(I : I) = c^{-1}T \). So \(J = I(T : I) = c^{-1}I \). It suffices to show that \(J = T \). Since \(T = (I : I) = (I^{-1})^{-1} \), then \(T \) is a divisorial (fractional) ideal of \(R \), and since \(J = c^{-1}I \), then \(J \) is a divisorial (fractional) ideal of \(R \) too. Now, for each \(t \)-maximal ideal \(M \) of \(R \), since \(R_M \) is a one-dimensional Noetherian domain which is Boole \(t \)-regular, by Lemma 2.8 \(R_M \) is strongly \(t \)-stable. If \(I \not\subseteq M \), then \(T_M = (I : I)_M = (IR_M : IR_M) = R_M \) and \(J_M = I(T : I)_M = R_M \). Assume that \(I \subseteq M \). Then \(IR_M \) is a \(t \)-ideal of \(R_M \). Since \(R_M \) is strongly \(t \)-stable, \(IR_M = aR_M \) for some nonzero \(a \in I \). Hence \(T_M = (I : I)_M = (IR_M : IR_M) = R_M \). Then \(J_M = I(M : I)_M = R_M = T_M \). Hence \(J = J_M = \bigcap_{M \in \text{Max}(R)} T_M = \bigcap_{M \in \text{Max}(R)} T = T \). It follows that \(I = cJ = cT \) and therefore \(R \) is strongly \(t \)-stable. \(\Box \)

An analogue of Theorem 2.6 does not hold for Clifford \(t \)-regularity, as shown by the next example.

Example 2.9. There exists a Noetherian Clifford \(t \)-regular domain with \(t \)-dim \((R) = 1 \) such that \(R \) is not \(t \)-stable. Indeed, let us first recall that a domain \(R \) is said to be pseudo-Dedekind if every \(v \)-ideal is invertible \([10]\). In \([18]\), P. Samuel gave an example of a Noetherian UFD domain \(R \) for which \(R[[X]] \) is not a UFD. In \([10]\), Kang noted that \(R[[X]] \) is a Noetherian Krull domain which is not pseudo-Dedekind; otherwise, \(\text{Cl}(R[[X]]) = \text{Cl}(R) = 0 \) forces \(R[[X]] \) to be a UFD, absurd. Moreover, \(R[[X]] \) is a Clifford \(t \)-regular domain by \([9]\) Proposition 2.2] and clearly \(R[[X]] \) has \(t \)-dimension 1 (since Krull). But for \(R[[X]] \) not being a pseudo-Dedekind domain translates into the existence of a \(v \)-ideal of \(R[[X]] \) that is not invertible, as desired.

We recall that a domain \(R \) is called strong Mori if it satisfies the ascending chain condition on \(w \)-ideals. Noetherian domains are strong Mori. Next we wish to extend Theorem 2.6 to the larger class of strong Mori domains.

Theorem 2.10. Let \(R \) be a strong Mori domain. Then the following conditions are equivalent:

1. \(R \) is strongly \(t \)-stable;
2. \(R \) is Boole \(t \)-regular and \(t \)-dim \((R) = 1 \).
Proof. We recall first the following useful facts:

Fact 1 ([10] Lemma 5.11). Let I be a finitely generated ideal of a Mori domain R and S a multiplicatively closed subset of R. Then $(I_S)_v = (I_v)_S$. In particular, if I is a t-ideal (i.e., v-ideal) of R, then I is v-finite, that is, $I = A_v$ for some finitely generated subideal A of I. Hence $(I_S)_v = ((A_v)_S)_v = ((A_S)_v)_v = (A_S)_v = (A_v)_S = I_S$ and therefore I_S is a v-ideal of R_S.

Fact 2. For each v-ideal I of R and each multiplicatively closed subset S of R, $(I : I)_S = (I_S : I_S)$. Indeed, set $I = A_v$ for some finitely generated subideal A of I and let $x \in (I_S : I_S)$. Then $xA \subseteq xA_v = xI \subseteq xI_S \subseteq I_S$. Since A is finitely generated, then there exists $\mu \in S$ such that $x\mu A \subseteq I$. So $x\mu I = x\mu A \subseteq I_v = I$. Hence $x\mu \in (I : I)$ and then $x \in (I : I)_S$. It follows that $(I : I)_S = (I_S : I_S)$.

(1) \implies (2) Clearly R is Boole t-regular. Let M be a maximal t-ideal of R. Then R_M is a Noetherian domain ([15, Theorem 1.9]) which is strongly t-stable. By Theorem 2.6, t-$\dim(R_M) = 1$. Since MR_M is a t-maximal ideal of R_M (Fact 1), then $ht(M) = ht(MR_M) = 1$. Therefore t-$\dim(R) = 1$.

(2) \implies (1) Let I be a nonzero t-ideal of R. Set $T := (I : I)$ and $J := I(T : I)$. Since R is Boole t-regular, then $(I^2)_T = cI$ for some nonzero $c \in qf(R)$. So $J = c^{-1}I$. Since J and T are (fractional) t-ideals of R, to show that $J = T$, it suffices to show it t-locally. Let M be a t-maximal ideal of R. Since R_M is one-dimensional Noetherian domain which is Boole t-regular, by Theorem 2.6, R_M is strongly t-stable. By Fact 1, I_M is a t-ideal of R_M. So $I_M = a(I_M : I_M)$. Now, by Fact 2, $T_M = (I : I)_M = (I_M : I_M)$ and then $I_M = aT_M$. Hence $J_M = I_M(T_M : I_M) = T_M$, as desired.

We close the paper with the following discussion about the limits as well as possible extensions of the above results.

Remark 2.11. (1) Unlike Clifford regularity, Clifford (or even Boole) t-regularity does not force a strong Mori domain to be Noetherian. Indeed, it suffices to consider a UFD domain which is not Noetherian.

(2) Example [2.4] provides a Noetherian Boole t-regular domain of t-dimension two. We do not know whether the assumption “t-$\dim(R) = 1$” in Theorem 2.2 can be omitted.

(3) Following [8, Proposition 2.3], the complete integral closure \overline{R} of a Noetherian Boole regular domain R is a PID. We do not know if \overline{R} is a UFD in the case of Boole t-regularity. However, it’s the case if the conductor $(R : \overline{R}) \neq 0$. Indeed, it’s clear that \overline{R} is a Krull domain. But $(R : \overline{R}) \neq 0$ forces \overline{R} to be Boole t-regular, when R is Boole t-regular, and by [9, Proposition 2.2], \overline{R} is a UFD.
(4) The Noetherian domain provided in Example 2.4 is not strongly t-discrete since its maximal ideal is t-idempotent. We do not know if the assumption “R strongly t-discrete, i.e., R has no t-idempotent t-prime ideals” forces a Clifford t-regular Noetherian domain to be of t-dimension one.

REFERENCES

[1] D. D. Anderson, J. A. Huckaba and I. J. Papick, A note on stable domains, *Houston J. Math.* 13 (1) (1987), 13–17. 5
[2] S. Bazzoni, Clifford regular domains, *J. Algebra* 238 (2001), 703–722. 3
[3] S. Bazzoni and L. Salce, Groups in the class semigroups of valuation domains, *Israel J. Math.* 95 (1996), 135–155. 1
[4] J. W. Brewer and E. A. Rutter, $D+M$ constructions with general overrings, *Michigan Math. J.* 23 (1976), 33–42. 4
[5] W. Fangui, R. L. McCasland, On strong Mori domains, *J. Pure Appl. Algebra* 135 (1999), 155–165. 2 7
[6] S. Gabelli and E. Houston, Coherentlike conditions in pullbacks, *Michigan Math. J.* 44 (1997), 99–122. 4
[7] J. M. Howie, Fundamentals of semigroup theory, Oxford University Press, Oxford, 1995. 1
[8] S. Kabbaj and A. Mimouni, Class semigroups of integral domains, *J. Algebra* 264 (2003), 620–640. 3 5 7
[9] S. Kabbaj and A. Mimouni, t-Class semigroups of integral domains, *J. Reine Angew. Math.* 612 (2007), 213–229. 2 4 6 7
[10] B. G. Kang, $*$-Operations in integral domains, Ph.D. thesis, The University of Iowa, Iowa City, 1987. 3 5 7
[11] I. Kaplansky, Commutative rings, The University of Chicago Press, Chicago, 1974. 5
[12] J. Lipman, Stable ideals and Arf rings, *Amer. J. Math.* 93 (1971), 649–685. 3
[13] S. Malik, J. Mott and M. Zafrullah, On t-invertibility, *Comm. Algebra* 16 (1988), 149–170.
[14] B. Olberding, Globalizing local properties of Prüfer domains, *J. Algebra* 205 (1998), 480–504. 5
[15] B. Olberding, On the classification of stable domains, *J. Algebra* 243 (2001), 177–197. 5
[16] B. Olberding, On the structure of stable domains, *Comm. Algebra* 30 (2002), 877–895. 5
[17] J. D. Sally and W. V. Vasconcelos, Stable rings and a problem of Bass, *Bull. Amer. Math. Soc.* 79 (1973), 574–576. 5
[18] P. Samuel, On unique factorization domains, *Illinois J. Math.* 5 (1961), 1–17. 6
[19] P. Zanardo and U. Zannier, The class semigroup of orders in number fields, *Math. Proc. Cambridge Phil. Soc.* 115 (1994), 379–391. 1
DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, P.O. BOX 5046, DHAHARN 31261, KSA
E-mail address: kabbaj@kfupm.edu.sa

DEPARTMENT OF MATHEMATICAL SCIENCES, KING FAHD UNIVERSITY OF PETROLEUM & MINERALS, P.O. BOX 5046, DHAHARN 31261, KSA
E-mail address: amimouni@kfupm.edu.sa