Increase of linear size uniformity of synthetic diamond grinding powder

G Ilnitskaya, G Bogatyreva, N Novikov, A Shepelev, G Nevstryev, O Leshchenko
ISM – Institute of Superhard Materials, National Academy of Sciences of Ukraine,
2, Avtozavodskaya St., Kiev, 04074, Ukraine

E-mail: olesh@ism.kiev.ua

Abstract. It has been shown in article that increase of powder uniformity is achieved by carrying out additional sorting of powders in the sizes and form of grains. The sorting process includes the following stages: chemical rounding of diamond grains by strong oxidants; special grain size classification on sieves with mesh sizes corresponded to geometrical progression of twentieth (R-20) and fortieth (R-40) number series; additional separation of diamond grains in narrow graininess by grain form. Diamond powder of AC6 100/80 series has been produced by this technology, as a result of that the content of basic fraction runs up 85 %.

1. Introduction

Increase of efficiency of diamond tools applied in material engineering is important problem today. One of the problem solutions is an increase of quality of diamond powders applied in tooling due to more accurate control of synthesis mechanism as well as technological regimes of powder production.

Diamond is most progressive tool material, especially in the fields where exacting requirements to workpiece quality as well as working accuracy and roughness of workpiece surface of details are demanded. One of the most effective instruments to achieve higher class of workpiece surface and to increase diamond tooling wear-resistance is an increase of size uniformity of granulometric composition and form of diamond grains of powder applied in tooling.

Using diamond powders with higher size uniformity is especially effective in those industry branches where precise form and high grade of workpiece finish are required [1-3].

On the basis of studies carried out in the ISM\(^2\) it have been ascertained that for increase of efficiency of abrasive wheels in polishing of cut glass the special diamond powders are required. These powders have the following properties: uniformity by linear sizes (length (a) and width (b) of grain projection), content of main fraction by grain size is upwards of 80% and form factor (a/b) is at the most 1.3.

The production engineering of such diamond grinding powders of various grain sizes has been developed in the ISM. The process includes the following stages: grain size separation on sieves with mesh sizes corresponded to geometrical progression of twentieth (R-20) and fortieth (R-40) number series with \(\sqrt[20]{10} = 1.122\) and \(\sqrt[40]{10} = 1.059\) ratio correspondingly; special chemical processing and

1 To whom any correspondence should be addressed.

2 ISM – Institute of Superhard Materials, National Academy of Sciences of Ukraine, Kiev, Ukraine
separation by grain form on vibrating table [4-6]. The powders produced by this technology are uniform by linear sizes, by strength as well as content of volume and surface defects.

2. Experimental methods
Experiments have been carried out with various diamond grinding powders synthesized in the Ni–Mn–C system. The average grain sizes are 400/315, 125/100 and 80/63 μm. The diamond powders have been studied with the object to the uniformity of some basic characteristics (strength, grain composition etc.).

It is suggested to assess the powder uniformity by the concentration of grits whose characteristic in the given property corresponds to the mean (nominal) characteristic of the powder under study. Here we discuss the uniformity of diamond powders with respect to the basic technical characteristics: strength (Cun.str.) and grain composition (Cun.lin.size).

We have studied the diamond powders in the following sequence. At first, grain size separation on sieves with mesh sizes corresponded to geometrical progression of twentieth (R-20) number series. Produced narrow fractions of 125/115 and 72/63 have been processed by special chemical treatment of strong oxidants, after that the powders have been separated by grain form on vibrating table.

In all produced fractions we have determined strength (P, N), main fraction content (%), coefficient of strength uniformity (Cun.str., %) [6], form factor (Cf = a/b), coefficient of linear size uniformity (Cun.lin.size, %) – a ratio of number of average size grains ((a+b)/2) to number of all grains.

3. Results and discussion
3.1. Results of additional sieve classifying
The results of studies of properties of diamond grinding powders of AC125 400/314, AC6 125/100 and AC15 80/63 series after additional sieve classifying on R-20 sieves are presented in Table 1.

Grain size	P, N	Series	Main fraction, %	Cun.str., %	Cf, conv. units	Cun.lin.size, %
315/355	218.4	AC125	95.2	46.5	1.11	44.6
355/400	216.7	AC125	93.4	47.8	1.09	47.2
400/315 init.	211.5	AC125	82.5	32.0	1.18	33.6
125/115	7.2	AC6	90.0	25.1	1.32	35.4
115/100	6.4	AC6	92.0	24.4	1.31	32.6
125/100 init.	6.8	AC6	72.0	14.5	1.44	24.4
80/72	11.2	AC20	92.0	22.1	1.40	39.6
72/63	10.9	AC20	92.0	18.5	1.39	37.5
80/63 init.	10.8	AC20	72.0	12.6	1.42	14.7

As appears from the above the strength uniformity of diamond grinding powders of 125/115 narrow class (from 125/100 standard grain size) increases from 14.5% to 25.1%, whereas linear size uniformity increases from 24.4% to 35.4%. The similar results have been obtained for powders of 400/315 and 80/63 grain sizes.

3.2. Results of chemical processing and separation by grain form
The results of studies of properties of diamond grinding powders of AC6 125/115 and AC15 72/63 series after chemical processing and separation by grain form on vibrating table are presented in Table 2.
Table 2. Properties of diamond grinding powders of AC6 125/115 and AC15 72/63 series after chemical processing and separation by grain form on vibrating table.

Grain size	№ of separat. product	P, N	Series	Main fraction, %	C_un.str., %	C_r, conven. units	C_un.lin.size, %
125/115	1	10.5	AC6	93	33.1	1.27	39.6
	2	8.4	AC6	92	28.6	1.44	33.1
	3	4.5	AC6	89	21.4	1.75	28.6
	Initial	7.2	AC6	90	24.4	1.32	35.1
72/63	1	11.8	AC20	93	34.5	1.39	45.6
	2	11.0	AC20	94	31.2	1.46	34.6
	3	9.6	AC20	92	17.8	1.71	22.1
	Initial	10.9	AC20	92	18.6	1.39	37.5

As appears from the above the strength of diamond powder of AC72/63 series increases from 10.5N to 4.5N that is correlated with an increase of form factor and at the same time the strength uniformity increases from 14.5% (initial powder) to 31.2% (finished product). The linear size uniformity increases from 24.4% (initial powder) to 30.6% (product of number 1).

3.3. Results of diamond abrasive wheel test in-polishing of cut glassware surface

Diamond powders of AC15 80/63 series produced by form factor sorting have been used for production of abrasive wheels with B2-01-1 metal-polymeric binder. The wheels have been tested in-polishing of cut glassware surface.

The following operating indices of efficiency have been studied at work of these abrasive wheels: relative (q_p) and specific (q_v) removal of diamond (wear-resistance of the wheels) and roughness of finished surface (R_a). The indices have been determined by the procedures [7].

For verification of results reproducibility the sorting of AC15 80/63 diamond powders, production of abrasive wheels with these powders and polishing tests of these abrasive wheels have been carried out repeatedly.

The results of these tests are presented in Table 3.

Table 3. Correlation between characteristics of diamond grinding powders of AC15 80/63 series and grinding wheel efficiency (results reproducibility).

Sample	Main fraction, %	C_r, conven. units	C_un.lin.size, %	q_p, mg/g	q_v, mg/g	R_a, μm
1	92	1.1	45.6	11.52	308.93	0.17 / 0.18
2	94	1.2	38.7	18.79	274.33	0.19 / 0.20
3	92	1.3	35.3	21.16	168.19	0.15 / 0.20
1	93	1.1	46.2	11.23	303.97	0.28 / 0.32
2	92	1.2	37.3	18.76	273.90	0.20 / 0.22
3	92	1.3	36.1	20.82	163.96	0.15 / 0.18

As appears from the above when coefficient of linear size uniformity increases by 10%, the removal of diamond decreases by 1.5-1.8 times and roughness of finished surface diminishes by 1.4-1.6 times.

The results of tests of abrasive wheels with grinding powders of various series are presented in Table 4.
Table 4. Correlation between characteristics of diamond grinding powders of various series and grinding wheel efficiency.

Series, Grain size	Sample	Technological characteristics	Operating characteristics				
		Main fraction, C6, C_un, lin.size, %	Cun, %	q_p, mg/g	q_v, mg/g^3	R_a, μm	
AC20 80/63	1	93	1.1	56.7	8.88	129.65	0.18
	2	94	1.2	46.2	22.50	328.50	0.24
	3	92	1.3	55.4	25.40	370.84	0.29
AC6 100/80	1	88.6	1.25	43.2	3.58	60.01	0.12
	2	80.5	1.29	39.6	4.11	73.29	0.15
	3	73.1	1.36	32.1	5.02	129.65	0.16
AC6 80/63	1	88.6	1.25	43.2	4.12	70.54	0.14
	2	80.5	1.29	39.6	5.34	84.12	0.15
	3	73.1	1.36	32.1	7.09	145.34	0.25

As appears from the above when main fraction content increases, wear-resistance of the wheels increases too and relative removal of diamond q_p decreases.

4. Conclusion

1. Production of diamond powders uniformed by strength characteristics and linear sizes is provided by classifying processes. It is the result of using increasingly advanced methods of diamond separation by corresponding physical-mechanical characteristics of regular synthetic diamond crystals.

2. As a result of carried out studies the following correlation dependences have been determined: as main fraction content and diamond grain form factor are increased the wear-resistance (q_p, q_v) of abrasive wheels is increased too, while roughness of finished surface (R_a) is decreased.

Maximal reduction of specific diamond consumption in grinding is amount to 2.5 times for diamond of AC20 series and 1.4 times for diamond of AC6 series, while roughness of finished surface is decreased by 1.6 and 1.3 times correspondingly.

References

[1] Bokiy G B, Bezrukov G N, Klyuev Yu A, Naletov A M and Nepsha V I 1986 *Natural and synthetic diamonds* (Moscow: Nauka)

[2] DSTU 3292-95 1996 *Synthetic diamond powders General technical terms* (Kiev: Gosstandart Ukrainy)

[3] Stihov L V 1978 *Determination of sizes and grain size of diamond in different sieve classes* (Moscow: VNIIAlmaz works) pp 50–56

[4] Nevstruev G F and Ilnitskaya G D 2004 Method of production of narrow grain size grinding powders Patent 69947 A *Promyslova vlasnist* 9

[5] Nevstruev G F and Ilnitskaya G D 2004 Method of production of narrow grain size abrasive grinding powders Patent 69949 A *Promyslova vlasnist* 9

[6] Novikov N V, Nevstruev G F, Ilnitskaya G D, Kushch V I and Kolodnitskiy V N 2006 Assessment of superhard material powders quality Part 2 Practical application of quality characteristic assessment method *Superhard Materials* 6 58–67

[7] Shepelev A A and Dubrova A E 2006 Assessment of operating quality indices of superhard material abrasive wheels *Modern processes of machining by SHM tools and surface condition of machine elements* (Kiev:) pp 89–96