Rheumatoid arthritis detection using image processing

Jenny Ann Verghese¹, D.Pamela²*, Prawin Angel Michael¹, R.Meena³*
pamela@karunya.edu

¹,² Department of Biomedical Engineering
³,⁴ Department of Electrical and Electronics Engineering
Karunya Institute of Technology and Sciences

Abstract- Rheumatoid Arthritis (RA) may be a general disease characterized by inflammation, discomfort, and tenderness of the joints and might involve additional body part organs in severe cases. Leading to increased vascular disorder in the zone of inflammatory tissue, joint autoimmune lesions are associated with elevated fever. The detection of RA usually involves blood sample tests. This thesis proposes a novel methodology of detection by processing the X-ray images. This automated system requires clear X-ray images, which after preprocessing and segmentation using Support Vector Machine implemented via MATLAB gives a clear classification about the abnormal and normal images. Different output parameters were used to assess separation tasks. The accuracy of the model section has improved to the use of an optimized SVM network. The proposed model was effective in accurately separating the samples.

1. Introduction

Image processing is a method of signal processing that uses mathematical functions to manipulate images. The input may be an image, a sequence of pictures, or a film, such as a video frame for a photographer, and the image output can be an image or a collection of features or parameters relevant to an image. In certain imaging methods, the image is used as a mark of magnitude and signal processing techniques are implemented to it. Where the scale of a third dimension, or z-axis, is high, images are processed as symbols on three sides. While digital images are often used in image editing, optical and analog image processing are still available.

This paper addresses a universal strategy that works for all. Imaging is the art of generating the first image capture.

Three stages have been included in image processing. Using just a visual scanner to import a photo or take micrographs. Digital graphics and computer vision have been the most comparable to image recognition. Instead of being obtained (by photographic equipment such as cameras) from real scenes, as in many animation videos, hand-drawn representations are created from material templates, environments, and illumination in computer graphics. On the other hand, device view is often categorized as high processing in which the system / program / program attempts to define visual content or image series. Image analysis in addition to management that includes data compression and image enhancement as well as visual patterns that are invisible to human eyes such as satellite images. It produces the final stage where the result can be converted to an image or report based on image analysis.

Rheumatoid arthritis (RA) causes inflammation associated with pain. Arthritis influences roughly 0.5 percent to 1% of the society (the ratio of women to male patients is about 3: 1). 75 percent of the population became impaired after the first three years of sickness. In addition, a
patient's life expectancy will be limited from 4 to 10 years. There is currently no known cure for the disease, which is why disease control is critical in its care. This aids in the avoidance of further bone injury. Arthritis is characterized by a loss of articular cartilage. Magnetic resonance imaging (MRI) images aid in quantifying and detecting cartilage thickness and scale.

2. Literature Review

1. The application of abstract set theory to obtaining various geographical parameters of X-ray images has been introduced by Sankar K. Pal and Robert A. King. Prior enhancement of variation between regions (with minor variations in gray levels) using intensification (INT) efficiency and shifting on a non-slip material plane before gaining its edges are used in the algorithm. Using the functions S, π and $1 - \pi$, as well as fuzzifiers, the cargo plane was ejected from the local domain. A max or min operator is used to detect the final end. A radiograph of the wrist is used to demonstrate the accuracy of a device with several parameters.

2. P. Thangam, K. Thanushkodi, and Thushika Mahendiran have created a curriculum that includes endocrinological disorders in children that are seen in many countries worldwide and vary in diameter and severity in various age ranges and races. Changes in diet and eating habits also correlate to endocrine disorders, necessitating the development of a device that can predict those issues ahead of time. In the treatment and diagnosis of endocrine diseases, osteoporosis is a popular technique. It may also be seen as a sign of a medicinal effect. In pediatric medicine, it’s important for identifying growth hormone or even genetic abnormalities. The left-hand connector was used to determine bone age, which was then applied to time. The disparity between the two demonstrates the irregularity.

3. Sungroh Yoon and Taehoon Lee have introduced a sequencing software to delete unwritten areas from pre-messenger ribonucleic acid (RNA) copies. Finding target sequences is a crucial machine learning activity that aids in the identification of basic genes as well as the understanding of how various proteins are made. Existing prediction repetition approaches have shown good results, but they are also moderately stable and inaccurate. A comprehensive theory of a mechanism based on a predictive network of computational splice junction is presented in this article. The idea involves a novel method of training Boltzmann's equipment collection for horizontal inequality prediction. The proposed method overcomes the limitations of distinct variants and allows for the construction of datasets with distinct features. Using individual social data sets, this approach was shown to have greatly increased accuracy and decreased running time as compared to other methods. The suggested approach is more efficient at handling false interaction signals and is less vulnerable to the duration of the input chain.

4. Y. Lecun, L. Bottou, Y. Bengio, and noP. Haffner have created a software that exhibits several neural networks trained using a back-distribution algorithm, demonstrating an efficient gradient learning technique. Gradient-based learning algorithms can be used to implement dynamic decision-making environments that can discern high-quality symbols, such as handwritten characters, with limited computation if the network layout is sufficient.
This paper discusses and contrasts the different approaches for identifying handwriting characters with the primary role of handwriting digitization. Above the other techniques, convolution neural networks, which are designed to address a wide variety of 2D scenarios, are seen to be the most successful. Area extraction, segment recognition, and language modeling are only a few of the modules that make up real text recognition systems. Graphic Transformer Networks (GTN), a modern learning model, enables a broad range of systems to be globally educated using gradient-based approaches to improve actual performance.

3. Material and Methodology

A. MATLAB

MATLAB (matrix laboratory) is a statistical and functional model for fourth-generation systems. Matrix manipulation, task scheduling and details, algorithm execution, user interface creation, and integration with programs written in other languages, such as C, C++, Java, Fortran, and Python, are all possible with MATLAB, a programming language created by Math Works. The optional toolbox uses the MuPAD image generator, which provides access to the computer's symbolic capabilities, despite the fact that MATLAB is mainly designed for numerical computation. Simulation, a separate kit, adds domain simulations as well as model-based robust and oriented programming.

![Figure 1. Block Diagram of Detection and Classification System](image)

4. Experimental Procedure

Tests are performed using MATLAB coding. GUI settings are adjusted by menu. Clicking on each menu will perform an independent function. In this analysis, digital image processing was used as a method for analyzing a color image of a field and retrieving important features from the image.
Figure 2. Output Gui

Figure 3. Load Image

Figure 4. Preprocessed Image

Figure 5. Segmentation
Figure 6. Segmented Image

Figure 7. Feature Extraction

Figure 8. Select Feature

Figure 9. Classification
5. Results and Discussion

The calculation effect can be observed to aid in the diagnosis and analysis of arthritis. Depending on the size of the cartilage, this procedure is easy and efficient in achieving the target of early bone detection. The Gray Level Co-occurrence Matrix was used to retrieve the features. The whole element was taken into consideration for separation, and it was given to the separator for that reason. Support vector machine division was used to get the total result.

References

[1] P. Thangam, T. Mahendiran, and K. Thanushkodi, “Skeletal bone age assessment—research directions,” Journal of Engineering Science and Technology Review, vol. 5, no. 1, pp. 90–96, 2012.
[2] S. K. Pal, R. King et al., “On edge detection of x-ray images using fuzzy sets,” Pattern Analysis and Machine Intelligence, IEEE Transactions on, no. 1, pp. 69–77, 1983.
[3] D. Giordano, C. Spampinato, G. Scarciolfo, and R. Leonardi, “An automatic system for skeletal bone age measurement by robust processing of carpal and epiphysial/metaphysial bones,” Instrumentation and Measurement, IEEE Transactions on, vol. 59, no. 10, pp. 2539–2553, 2010.
[4] E. Pietka, A. Gertych, S. Pospiech, F. Cao, H. Huang, and V. Gilsanz, “Computer-assisted bone age assessment: Image preprocessing and epiphyseal/metaphyseal roi extraction,” Medical Imaging, IEEE Transactions on, vol. 20, no. 8, pp. 715–729, 2001.
[5] M. Vincenzo De Sanctis, A. T. Soliman, M. Salvatore Di Maio, and S. Bedair, “Are the new automated methods for bone age estimation advantageous over the manual approaches?” Pediatric Endocrinology Reviews (PER), vol. 12, no. 2, 2014.
[6] Y. Bengio, “Learning deep architectures for ai,” Foundations and trends in Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.
[7] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups,” *Signal Processing Magazine, IEEE*, vol. 29, no. 6, pp. 82–97, 2012.
[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” *Nature*, vol. 521, no. 7553, pp. 436–444, 2015.
[9] T. Lee and S. Yoon, “Boosted categorical restricted Boltzmann machine for computational prediction of splice junctions,” in *Proceedings of the 32nd International Conference on Machine Learning (ICML)*, 2015.
[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” *Proceedings of the IEEE*, vol. 86, no. 11, pp. 2278–2324, 1998.
[11] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” in *CVPR*, vol. 1. IEEE, 2001, pp. 1–511.
[12] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural networks applied to visual document analysis,” in *ICDAR*, vol. 2. IEEE, 2013, pp. 958–958.
[13] N. Wiener, Extrapolation, Interpolation, and Smoothing of Stationary Time Series. *The MIT Press*, 1964.
[14] N. Otsu, “A threshold selection method from gray-level histograms,” *Automatica*, vol. 11, no. 285-296, pp. 23–27, 1975.
[15] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based on immersion simulations,” *IEEE transactions on pattern analysis and machine intelligence*, vol. 13, no. 6, pp. 583–598, 1991.
[16] J. Kim, S. Yu, B. Shim, H. Kim, H. Min, E.-Y. Chung, R. Das, and S. Yoon, “A robust peak detection method for rna structure inference by high-throughput contact mapping,” *Bioinformatics*, vol. 25, no. 9, pp. 1137–1144, 2009.
[17] B. Shim, H. Min, and S. Yoon, “Nonlinear preprocessing method for detecting peaks from gas chromatograms,” *BMC bioinformatics*, vol. 10, no. 1, p. 378, 2009.
[18] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” in *CVPR*, vol. 1. IEEE, 2005, pp. 886–893.