Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease

Jun Xu1, Weizhen Gu1, Kai Ji1, Zhao Xu1, Haihua Zhu1,2 and Wenming Zheng1

1College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People’s Republic of China
2Henan Business Research Institute Co. Ltd, Zhengzhou, He’nan, People’s Republic of China

Received: 24 January 2018
Accepted: 30 April 2018

Subject Area:
biochemistry/bioinformatics/genetics/
immunology/cellular biology

Keywords:
ABHD16A, ABHDs, metabolic disease, lipase, immune regulation

1. Introduction

Human adhydrolase domain containing 16A (ABHD16A) is a 63 kDa protein containing 558 amino acid residues that is expressed in cells in multiple species. ABHD16A is a serine metabolism enzyme that typically contains an α/β hydrolase domain. Recently, studies have shown that ABHD16A is associated with neurodegenerative disease [1], immunoregulation [2], Kawasaki disease and coronary artery aneurysm [3]. Human ABHD16A is also known as human leucocyte antigen B (HLA-B) associated transcript 5 (BAT5). Because of its conserved features, ABHD was first identified in 1992 [4] and considered among the most diverse and widespread protein families, including esterases, proteases, lipases, peroxidasises, epoxide hydrolases and dehalogenases [5]. Mammalian ABHDs, which are hydrolases, participate in lipid metabolism, intracellular signalling transduction and metabolic disorders [6]. Particularly within the prior 2–3 years, several groups have reported that ABHD2 [7], ABHD6 [8], ABHD12 [9], ABHD16 [2] and ABHD17 [10] could function in inflammation regulation and cancer pathogenesis. Although functional studies investigating the ABHDs are limited and the field is in its infancy, the growing awareness of the biological significance of the ABHDs has stimulated research...
in this field. Here, we discuss the current research state of ABHD16A, including its gene location and related functions. We also analysed the amino acid sequences and constructed a phylogeny tree of ABHD16A. The functions of other ABHD proteins are systematically summarized and discussed. Significant insights and future developments are also proposed.

2. Gene location of ABHD16A

Human ABHD16A is located on chromosome 6p21.33. This gene has 21 exons and four different transcripts, two of which encode proteins (NM_001177515.1 and NM_021160.2), while the other two transcripts encode long non-coding RNAs (NR_033488.1 and NR_033489.1). The Abhd16a and bat2-bat5 genes are closely associated with tumour necrosis factor (TNF) and the complement gene cluster C2 genes (figure 1a), and are located within the human major histocompatibility complex III (MHC III) region [11–13]. Homoplastically, the mouse ABHD16A gene is located between TNF and Heat shock protein 70 (HSP70) near the Ck2b protein kinase gene (figure 1c) in the cluster of MHC III [13–15]. Owing to the position characteristics of the ABHD16A gene described above, the BAT1–BAT5 proteins have been predicted to be associated with some aspects of immunity.

3. Protein structure of ABHD16A

We submitted the amino acid sequence of human ABHD16A to the Phyre2 portal to predict its three-dimensional protein structure (figure 2a) and transmembrane region (figure 2b). The results revealed four transmembrane regions: residues 59–85, 91–113, 204–229 and 350–365. The sequence alignment against the BLAST and Conserved Domains Database of NCBI revealed that ABHD16A has three conserved domains similar to Abhydrolase 1 (figure 2c), BioH (figure 2d) and PldB (Phospholipase D-orthologue B). The Abhydrolase 1 domain comprises amino acid residues 280 to 408. Many hydrolytic enzymes possess this catalytic domain. These enzymes conservatively preserve the catalytic residues, but not the binding sites, from their common ancestor [4]. BioH was identified as a biotin synthesis enzyme and was predicted to contribute to fatty acid synthesis because of its carboxylesterase activity in substrates with short acyl chains [16,17]. The BioH domain of ABHD16A is located in amino acids 276–428, but its precise function must be further investigated in greater detail. The PldB domain has a 3D structure similar to that of Abhydrolase 1, is located within amino acid residues 302–398 and exhibits lysophospholipase activity [18–20].

The predicted protein structure of ABHD16A is similar to that of other ABHDs. Approximately 23 different ABHD proteins belonging to the α/β-hydrolase-fold superfamily have been reported thus far. A typical α/β-hydrolase fold has 8 β-strands and 6 α-helices [6]. The hydrolytic enzyme active centre is formed by histidine residues and surrounded by helices and loops linking the β-strands. In most cases, Ser and occasionally Cys or Asp lie in a compact loop. In addition, a highly conserved histidine residue is present in a variable loop behind β8 [6].

4. Conservation analysis of the amino acid sequence of ABHD16A

ABHD16A is a highly conserved protein in mammals that is expressed in cells in different tissues [19]. Using molecular evolutionary genetics analysis (MEGA) software, we analysed the amino acid sequences of ABHD16A in 13 mammalian species (table 1). The results revealed 412 conserved sites, 146 variable sites, 58 parsimony-informative sites and 88 singleton sites. Both the maximum-likelihood phylogenetic analysis and sequence comparison showed that the ABHD16A protein sequences could be divided into three categories (figure 3a). The significant differences in the length of the ABHD16A polypeptide chain imply that variable splicing occurs during the post-transcriptional processing of ABHD16A mRNA. For example, human isoforms a and b of ABHD16A have 558 and 525 aa, respectively; Sikkim mice isoforms a and b have
558 and 339 aa, respectively. However, the functional domains, including the alpha/beta hydrolytic enzyme domain, acyltransferase motif HXXXXD (H, histidine; D, aspartic acid and X, any residues), lipase-like motifs GXSXXG (G, glycine; S, serine and X, any residues) and nucleophile centres (Ser, Cys or Asp), are highly conserved (figure 3b) [6]. The present analysis further confirmed the findings of previous reports [6,19] and that ABHD16A is genetically distant from the other members of the ABHD family [6].

5. Research progress related to ABHD16A

In 1989, Spies et al. [12] predicted that ABHD16 probably functioned in immune regulation processes because its gene location is similar to that of TNF and HSP70 in the MHC III gene cluster [12,13]. However, during the following two decades, few gratifying results regarding ABHD16A were reported. Subsequently, Mathew's group reported that the expression of ABHD16A could influence the immunogenicity of bone marrow cells in recombinant B10.BR mice [21]. By analysing the polymorphisms and haplotypes of ABHD16A, Hsieh et al. [3] found several associations between ABHD16A and the genetic predisposition to coronary artery aneurysm and Kawasaki disease. However, during the following few years, the underlying mechanism was not further explored.

In 2014, Savinainen et al. pioneered a study investigating the enzymatic characteristics of human ABHD16A in vitro and revealed that it was a lipase with preference for medium-chain and long-chain fatty acids, especially...
long-chain unsaturated monoglycerides and 15-deoxy-
Δ12,14-prostaglandin J2–2-glycerol ester (15d-PGJ2–2-G) [19],
and its esterase hydrolysis activity could effectively be
inhibited by hormone-sensitive lipase inhibitors. Another
important breakthrough was achieved by Kamat et al.
[2] who showed that the interplay between ABHD16A and
ABHD12 dynamically regulates immunomodulatory lyso-
phosphatidylserines (lyso-PSs) and consequently affects the
release of lipopolysaccharide-induced proinflammatory cyto-
kines from macrophages. A previous study showed that
homozygous mutations of ABHD12 could cause autosomal
recessive neurodegenerative disease characterized by
polyneuropathy, hearing loss, ataxia, restenosis pigmentosa
and cataract (PHARC) [22–24]. ABHD12 deficiency aggra-
vated neuroinflammation and was closely associated with
cerebellar atrophy and peripheral neuroinflammatory disease
in cell models, murine PHARC and zebrafish [9,24].
ABHD16A has a higher specific activity with PS than with
hydrolysing lysophospholipids, other diacylated phospholipids
and neutral lipids [2]. Several selective inhibitors of ABHD16A
have been identified through comparative activity-based
protein profiling analyses [2,19]. In addition, a more recent
study showed that ABHD16A is an immune-balancing reg-
ulator that catalyses the hydrolysis of prostaglandin-glycerol

Figure 3. Conservation analysis of the amino acid sequence of ABHD16A. (a) Phylogenetic tree of the ABHD16A amino acid sequences from 13 mammalian species. Codes prefixed by X represent different variants. The phylogenetic tree was constructed using the neighbour-joining method by MEGA. (b) Multiple alignment of ABHD16A in 13 mammals using DNAMAN, and the different colours represent different homologies of amino acids. The amino acid residues in the red boxes indicate the predicted instructions of the lipase-like motif (GXSXXG), the conserved (HXXXXD) motif and the active nucleophile centre (#, Ser, Cys or Asp), respectively.
Japanese encephalitis virus based on the important role played by MiR-155 in various [47,48,102]. ABHD5 could promote the decomposition of N-phospholipid metabolism, and had the capacity to hydrolyse N-nervous system, ABHD4 was a major regulator of and oxidized short phospholipids [45]. In the mammalian ABHD3 selectively cleaved medium-chain phospholipids the activation of sperm in the reproductive process [35]. ABHD2 acted as a progesterone receptor associated with lipid hydrolase in ester hydrolysing capacity [34]. In addition, ABHD2 is a new triglyceride lipase with an part participated in the metabolism of glycerine esters or phospholipids. ABHD2 is a new triglyceride lipase with an

6.1. Direct contribution to lipid metabolism

The biosynthesis and degradation of lipids are vital for organisms to sustain normal life activities, because lipids are important components of cellular structures, sources of energy, intracellular signalling molecules and are also involved in the acyl modification of proteins. The results showed that, in the ABHD protein family, ABHD2, ABHD3, ABHD4, ABHD5, ABHD6, ABHD12 and ABHD16 participated in the metabolism of glyc erine esters or phospholipids. ABHD2 is a new triglyceride lipase with an ester hydrolysing capacity [34]. In addition, ABHD2 acted as a progesterone receptor associated with lipid hydrolyse in the activation of sperm in the reproductive process [35]. ABHD3 selectively cleaved medium-chain phospholipids and oxidized short phospholipids [45]. In the mammalian nervous system, ABHD4 was a major regulator of N-acyl phospholipid metabolism, and had the capacity to hydrolyse N-arachidonoyl phosphatidylethanolamine nape, lyso-nape, N-acyl-phospholipid serine and other N-acyl phospholipids [47,48,102]. ABHD5 could promote the decomposition of triglyceride due to its fatty triglyceride lipase activity [50,53,54]. ABHD6, which is a monoa cylglycerol hydrolase, functions in balancing energy, regulating the function of brown adipose and modulating white adipose browning [72]. Both ABHD6 and ABHD12, which are 2-arachidonylglycerol hydrolases, are involved in the endocannabinoid and eicosanoid signalling pathways in the brain [44]. A transcriptome analysis indicated that ABHD18A was probably related to the modulation of fatty acid composition in pig muscle [101].

6.2. An important role in liver diseases

The liver is the largest digestive gland and the centre of material and energy metabolism in the human body. As lipases, the ABHD proteins exert significant effects on hepatic glucose and lipid metabolism. The results of one study [59] showed that several members of the ABHD family were related to the occurrence and development of hepatopathy. Liver-specific ABHD5 knockout mice exhibit hepatomegaly and steatosis, and with increasing age the expression of inflammation factors and fibrosis factors at the mRNA level were significantly increased. These results suggest that the deletion of ABHD5 in the liver not only directly leads to liver steatosis but is also involved in steatohepatitis and fibrosis. The mice treated with the ABHD5 antisense oligonucleotide showed severe hepatic steatosis and increased hepatocellular diacylglycerol (DAG), which is a well-documented trigger of insulin resistance, but unexpectedly remained insulin-sensitive [61]. The molecular mechanism could be that a reduction in ABHD5 promotes the isolation of hepatocellular DAG in the lipid droplet/ER section and that the DAG redistribution from the plasma membrane precludes the PKCe translocation to the plasma membrane, which leads to liver insulin resistance [61,63]. ABHD18 was identified as a risk factor for liver cirrhosis and HCC because of the genetic variations at loci involved in the immune response [100].

6.3. A regulator or marker of certain cancers

Many people worldwide suffer from various cancers, particularly metastatic cancer. Cancer cells have more active motility, stronger drug resistance and a greater tolerance to the host immune system. Cancer cells acquiring anoikis resistance survive after detaching from their primary origin and spreading throughout the body through the circulatory and lymphatic systems. A functional genomics study identified that ABHD2 was a regulator of anoikis resistance in ovarian cancer [7]. The results showed that the silencing of ABHD2 could cause OVCA420 cell apoptosis resistance, and the over-expression of ABHD2 could decrease cell resistance to apoptosis. In addition, the expression of ABHD2 is lower in clinical serious ovarian cancer specimens [7]. Studies have suggested that the expression inhibition of ABHD2 may promote a malignant phenotype and contribute to an adverse prognosis in patients with serous ovarian cancer. ABHD4 is a novel regulator of anoikis sensitivity because ABHD4 knockdown could inhibit anoikis in prostate cells and reduce anoikis sensitivity in nasopharyngeal and ovarian cancer cells, while the overexpression of ABHD4 increased anoikis sensitivity [49]. A deficiency of ABHD5 could promote a shift of metabolism to aerobic glycolysis and contribute to colorectal carcinoma development and progression [55].

6. Research progress related to the ABHD family members

Different members of the ABHD family are located on different chromosomes. These proteins have different numbers of exons and amino acid residues and show expression differences in different tissues. Although the functions of several members are unknown, studies have shown that these proteins play significant roles in glucose and lipid metabolism, immunoregulation and many human diseases (table 2).
Table 2. Mammalian ABHD superfamily members. The data regarding the number of exons were obtained from BioGPS, and the data regarding the relatively high expression in normal human tissues were primarily obtained from the BioGPS portal and the reported references.

protein name	molecular weight (kDa)	aliases	gene location in humans	number of exons	relatively high expression in normal human tissues (BioGPS)	related function or role in disease
ABH1	45	LABH1	2p23.3	9	testis, sperm saphenous	related to oxidative stress in mouse and rat models [29–32]; expression downregulation is driven by hepatic steatosis and insulin resistance induced by Notch signalling [33]
ABH2	48	HS1–2, LABH2, PHPS1–2	15q26.1	16	prostate, lung, NK cells, whole blood	a glyceridase and ester hydrolase cleaving 2AG and leading to sperm hyperactivation in a progesterone-dependent manner [34–36]; an androgen-regulated gene promoting prostate cancer growth and resistance to chemotherapy [37]; essential for the reproduction of HBV [38,39]; involved in calcium transfer from the endoplasmic reticulum to mitochondria [40] and chronic obstructive pulmonary disease (COPD) in a Chinese Han population [41]; associated with anoikis resistance in ovarian cancer [7] and possibly associated with tumorigenesis in hepatocytes, stomach cells and colon cells [42,43]
ABH3	46	LABH3	18q11.2	12	colon, small intestine, whole blood	a brain serine hydrolase related to the activation of the endocannabinoid system [44]; a lipase playing the role of a physiological regulator in the metabolism of medium-chain phospholipids [45]; possibly influences innate immunity by transcription factor T-bet [46]
ABH4	39	ABH4	14q11.2	8	adipocyte, testis	functions in N-Acyl ethanolamine synthesis as a (lyso) N-acyl phosphatidylethanolamine-selective lipase [47,48]; a novel regulator of anoikis resistance [49]

(Continued.)
Table 2. (Continued)

protein name	molecular weight (kDa)	aliases	gene location in humans	number of exons	relatively high expression in normal human tissues (BioGPS)	related function or role in disease
ABHD5	39	CG158; IECN2; NCIE2; CDS	3p21.33	8	adipose tissue, bone marrow	a critical acyltransferase with lysophosphatidylglycerol acyltransferase and adipose triglyceride lipase activities and is involved in metabolic disorders; as a lysophosphatidylglycerol acyltransferase, prompts autophagy and is associated with Chanarin-Dorfman syndrome by attenuating inflammatory responsiveness via the promotion of PPAR gamma signalling [50–52]; activates other adipose triglyceride lipases and stimulates triglyceride breakdown as an adipose triglyceride lipase [50,53,54]; a tumour suppressor in human colorectal carcinoma development and progression [55] and serves as a novel tumour marker in sebaceous carcinoma [56]; plays an important role in protecting against atherosclerosis development in macrophages in mice [57]; tissue-specific ABHD5 deficiency leads to lipid imbalance in the liver and plasma caused by the insufficient secretion of postprandial lipoprotein [58], and upregulates gene expression related to hepatic insulin resistance, neutral lipid storage disease, fibrosis, inflammation and hepatic steatosis [59–62]; downregulation of ABHD5 in the heart stimulates the development of diabetic cardiomyopathy by aggravating myocardial steatosis and oxidative stress [63]
ABHD6	38	3p14.3	small intestine, spleen, duodenum	10		as a monoacylglycerol hydrolase, involved in the activation of the endocannabinoid signalling system [44,64–67] and systemic lupus erythematosus [68]; negatively regulates AMPAR-mediated synaptic transmission in hippocampal neurons in HEK293 T cells [69,70]; acts as a critical regulator of metabolic syndrome [71] and energy balance, including the functional realization of brown adipose and the browning of white fat by promoting glucose-stimulated insulin secretion [72]; participates in the pathogenesis of obesity and fatty liver due to its degradation functions in late endosomal/lysosomal lipid Bis [64]; a new potential diagnostic marker or an alternative therapeutic target in Ewing family tumours [73]
ABHD7	42	EPHX4; EH4; EPHXRP	1p22.1	7	brain	a high-activity epoxide hydrolase for fatty acids [74]
ABHD8	47	19p13.11	brain	5		underlying breast and ovarian cancer risk [75]
Table 2. (Continued)

Protein Name	Molecular Weight (kDa)	Aliases	Gene Location in Humans	Number of Exons	Relatively High Expression in Normal Human Tissues (BioGPS)	Related Function or Role in Disease
ABHD9	41	EPHX3; EH3	19p13.12	8	skin, oesophagus	a high-activity epoxide hydrolase for fatty acids [74]; the promoter hypermethylation of ABHD9 possibly leads to prostate cancer recurrence and serves as a marker for prostate cancer prognosis [76,77]
ABHD10	34	3q13.2	6	6	pineal, kidney, thyroid	affects the formation of immunotoxic metabolites, mycophenolic acid acyl-glucuronide [78,79]; acyl glucuronide and probenecid acyl glucuronide in human liver [80]
ABHD11	35	PP1226; WBSCR21	7q11.23	7	colon, prostate	is associated with the development of distant metastases and serves as a novel biomarker of lung adenocarcinoma [81]
ABHD12	45	PHARC; ABHD12A; BEM46L2; C20orf22; dJ96S2G1.2	20p11.21	17	thyroid, brain	participates in the breakdown of 2-AG in the central nervous system and along with MAGL and ABHD6, controls 99% of 2-AG hydrolysis in the brain [65,82]; serves as a lysophospholipase and metabolizes lysophosphatidylserine, which participates in the endocannabinoid signalling pathway [9,18]; associated with PHARC [9,22,23,84]; a potential indicator of liver diseases in plasma [12]
ABHD12B	41	BEM46L3; C14orf29; c14_5314	14q22.1	15	skin	a gene potentially related to obesity [85], chronic periodontitis [86] and longitudinal changes in ventricle size [87]
ABHD13	39	BEM46L1; C13orf6; bA153I24.2	13q33.3	2	bone marrow, thyroid	very little known
ABHD14A	30	DORZ1	3p21.2	5	kidney, thyroid, adrenal	a candidate gene for autism spectrum disorder [88]; plays a potential role in cerebellar development through Zic1, which is a finger protein that controls vertebrate neural development [89]
ABHD14B	22	CIB; HEL-S-299	3p21.2	4	fat, kidney, liver	a potential structural distinctive cofactor with hydrolase activity for transcription initiation factor [90]; a marker of tumour progression in an unknown primary syndrome in neuroendocrine tumours [91]
ABHD15	52	17q11.2	2	2	fat	is involved in insulin signalling in adipocytes [92–94]; Plays an important role in the development of adipocytes and apoptosis [95]
ABHD16A	63	BAT5; NG26; PP199; D6S82E	6p21.33	21	testis, brain	refer to the fourth part of the text

(Continued.)
Moreover, ABHD5 was identified as a novel reliable marker for distinguishing sebaceous carcinoma from non-sebaceous tumours [56]. Compared with the expression seen in normal tissues, the high expression of ABHD6 in the Ewing sarcoma family of tumours suggested that ABHD6 might be a potential diagnostic marker or drug target [73]. The results from an expression quantitative trait locus (eQTL) analysis showed that the expression of ABHD8 was higher in breast cancer and ovarian cancer than that in normal corresponding organs [75]. By analysing SNPs and copy number variations in the peripheral blood, Clifford et al. [100] found that ABHD18 was an important factor in hepatocellular carcinoma in the Asian population.

6.4. A helper or restriction factor in virus infection

Using a human genome-wide bioarray, Ding et al. [38] found that ABHD2 could contribute to the proliferation of hepatitis B viruses (HBVs) by analysing the differential expression of HBV-expressing and control cells through a whole-genome expression profiling of hepatitis B. The antisense oligodeoxynucleotides targeting ABHD2 successfully blocked the replication and expression of HBV [38]. Vieyres et al. [103] demonstrated that ABHD5 was a new host factor contributing to virus morphogenesis in hepatitis C virus production and could trigger the mobilization and consumption of the luminal lipid droplet, which is important for the envelopment, maturation and budding of infectious virions. Our latest results show that ABHD16A inhibits the proliferation of Japanese encephalitis virus (JX 2018, unpublished data). The finding above suggested that the ABHD proteins might be potential targets in therapies for viral infectious diseases.

6.5. A key gene in other diseases

ABHD2 was found to be a critical gene in chronic obstructive pulmonary disease (COPD) by evaluating the genetic variation in the ABHD2 gene among Han Chinese COPD patients and normal controls [41]. The analysis of the DNA methylation data of genes throughout the genome showed that COPD is associated with DNA methylation at the CpG sites of the ABHD16B gene [96]. A mutation of the ABHD5 gene could lead to a rare genetic disorder called Chanarin-Dorfman Syndrome because such patients accumulate excess triacylglycerol caused by a functional defect in ABHD5 in certain tissues and ichthyosis [52,53]. In addition, a reduction in the ABHD5 expression levels in the heart may aggravate myocardial steatosis, oxidative stress and diabetic cardiomyopathy [63]. ABHD6, which is an MAG hydrolase, stimulated insulin secretion induced by glucose in pancreatic beta cells, participated in the regulation of energy homeostasis via PPAR gamma and may represent a new drug target for obesity and type 2 diabetes [72]. Based on genome-wide association studies investigating chronic periodontitis, Rhodin et al. [86] found that ABHD12B was associated with chronic periodontitis and worthy of further investigation. ABHD14A was identified as a candidate gene for autism spectrum disorder in an analysis of homozygous haplotype mapping of SNPs [88].
7. Conclusion and perspectives

Here, we analysed the gene and protein structure, molecular evolution and existing or presumed functions of ABHD16A, and reviewed the functions of the other ABHD family members. Based on previous findings, we highlight the important roles played by the ABHDs during the occurrence and development of diseases related to lipid metabolism and inflammation.

Human ABHD16A might be a potential diagnostic marker of inflammatory-related diseases or play critical roles in the progress of such diseases. The high conservation of its amino acid sequences, lipase motifs and acyltransferase motifs indicates to a certain extent the necessity of this gene for specific cellular functions in mammalian species. ABHD16A not only participates in lipid metabolism but is also involved in the regulation of inflammation and immunity. Many studies have shown that other members of the ABHD protein family are associated with different diseases, such as cancer, lipid metabolism, liver disease and pulmonary disease. Studies investigating these proteins could not only enhance our understanding of the molecular mechanisms of related illnesses but also contribute to screening novel targets and new drugs. The regulation of virus infection suggested that ABHD could not be ignored as a potential marker or target, especially in an era of emerging and re-emerging viruses that unexpectedly appear.

Therefore, the following are potential future directions: (i) the identification or establishment of the inner link between the ABHD proteins and diseases; (ii) the identification of the enzymatic characteristics of ABHD proteins whose activity remains unknown; (iii) the exploration of the molecular mechanisms or pathways of disease-related ABHD proteins; (iv) the screening of proteins interacting with ABHD, especially in the field of intracellular transport and acylation modification (although ABHD16A and ABHD17 could be involved in the palmitoylation/depalmitoylation cycle, protein transport, organelle localization or special functions [10,104,105], their mechanism and targets must be further studied); and (v) the establishment of model cells or animals. The proper experimental model is crucial for studies investigating diseases. Some techniques (e.g. siRNA or CRISPR/CAS9) have been widely used in studies examining molecular mechanisms, especially of human diseases. Tissue-specific or conditional transgenic mice and gene knockout mice are needed if the offspring have a lower positive rate or the knockout leads to a failure in embryogenesis.

In conclusion, the human ABHD protein family has many members and performs a variety of biological functions. These proteins could play an important role in the regulation of lipid metabolism and signalling transduction pathways, and are possibly directly or indirectly correlated with several human diseases. Although interesting results have been obtained, the functions and molecular mechanisms remain unclear and should be explored in more detail in the future. For researchers, studies in this field could be promising, interesting and significant, especially for understanding several human diseases.

Data accessibility. This article has no additional data.

Authors’ contributions. All authors contributed to the production of this article.

Competing interests. The authors declare that there are no conflicts of interest. The founding sponsors played no role in the design of this study; the collection, analyses or interpretation of the data; the writing of the manuscript; or the decision to publish the results.

Funding. This project was financially supported by grants from the Prefered Foundation for Returned Scholar from Overseas of Ministry of Human Resources and Social Security of China (Study abroad personnel and expert service centre of Henan Province) (2017-2).

Acknowledgements. The authors thank Zihua Li and American Journal Experts for their contribution in modifying the figures and polishing the manuscript.

References

1. Turkotte C, Zarini S, Jean S, Martin C, Murphy RC, Marsolais D, Laviolette M, Blanchet MR, Flamand N. 2017. The endocannabinoid metabolite prostaglandin E2 (PGE2)-Glycerol inhibits human neutrophil function: involvement of its hydrolysis into PG E2 and EP Receptors. J. Immunol., 198, 3255 – 3263. (doi:10.4049/jimmunol.1601767)
2. Kamat SS, Camara K, Parsons WH, Chen DH, Dix MM, Bird TD, Howell AR, Cravatt BF. 2015. Immunomodulatory lysophosphatidylsersines are regulated by ABHDD16A and ABHDD12 interplay. Nat. Chem. Biol., 11, 164 – 171. (doi:10.1038/nchembio.1721)
3. Hsieh YY, Lin YJ, Chang CC, Chen DY, Hsu CM, Wang YK, Hsu KH, Tsai FJ. 2010. Human lymphocyte antigen B-associated transcript 2, 3, and 5 polymorphisms and haplotypes are associated with susceptibility of Kawasaki disease and coronary artery aneurysm. J. Clin. Lab. Anal., 24, 262 – 268. (doi:10.1002/jla.20409)
4. Ollis DL et al. 1992. The alpha/beta hydrolase fold. Protein Eng., 5, 197 – 211. (doi:10.1093/protein/5.3.197)
5. Nardini M, Dijkstra BW, van der Horst CM. 1999. Alpha/beta hydrolase fold enzymes: the family keeps growing. Curr. Opin. Struct. Biol., 9, 732 – 737. (doi:10.1016/S0959-440X(99)00378-8)
6. Lord CC, Thomas G, Brown JM. 2013. Mammalian alpha beta hydrolase domain (ABHD) proteins: lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim. Biophys. Acta 1831, 792 – 802. (doi:10.1016/j.bbalip.2013.01.002)
7. Yamanoi K et al. 2016. Suppression of ABHD2, identified through a functional genomics screen, causes anoikis resistance, chemoresistance and poor prognosis in ovarian cancer. Oncotarget, 7, 47 620 – 47 636. (doi:10.18632/oncotarget.9951)
8. Poursharifi P, Madiraju SRM, Prentki M. 2017. Monoacylglycerol signalling and ABHD6 in health and disease. Diabetes Obes. Metab., 19(Suppl. 1), 76 – 89. (doi:10.1111/diob.13008)
9. Tingaud-Sequeira A et al. 2017. Functional validation of ABHD12 mutations in the neurodegenerative disease PHAARC. Neurobiol. Dis., 98, 36 – 51. (doi:10.1016/j.nbd.2016.11.008)
10. Yokoi N, Fukata Y, Sekiya A, Murakami T, Kobayashi K, Fukata M. 2016. Identification of PSO-53 depalmitoylating enzymes. J. Neurosci., 36, 6431 – 6444. (doi:10.1523/JNEURSDC.0419-16.2016)
11. Spies T, Bresnahan M, Strominger JL. 1989. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B. Proc. Natl Acad. Sci. USA, 86, 8955 – 8958. (doi:10.1073/pnas.86.22.8955)
12. Spies T, Blanck G, Bresnahan M, Sands J, Strominger JL, 1989. A new cluster of genes within the human major histocompatibility complex. Science, 243, 214 – 217. (doi:10.1126/science.2911734)
13. Sargent CA, Dunham I, Campbell RD. 1989. Identification of multiple HTF-island associated genes in the human major histocompatibility complex class III region. EMBO J., 8, 2305 – 2312.
14. Albertella MR, Jones H, Thomson W, Olavesen MG, Campbell RD. 1996. Localization of eight additional genes in the human major histocompatibility complex, including the gene encoding the casein
kinase II beta subunit (CSNK2B). Genomics 36, 240 – 251. (doi:10.1006/geno.1996.0459)

15. Negami H, Kawaguchi Y, Ueda H, Fukuda M, Takakawa K, Fujikyo J, Fujisawa T, Uchida K, Ogharna T. 1993 MHC-linked diabetogenic gene of the NOD mouse: molecular mapping of the 3’ boundary of the diabetogenic region. Biochem. Biophys. Res. Commun. 192, 677 – 682. (doi:10.1016/0006-291X(93)16468-2)

16. Sanishvili R et al. 2003 Integrating structure, bioinformatics, and enzymology to discover function: BioH, a new carboxylesterase from Escherichia coli. J. Biol. Chem. 278, 26 039 – 26 045. (doi:10.1074/jbc.M303867200)

17. Tomczyk NH, Nettleship JE, Baxter RL, Crichton HJ, Webster SP, Campopiano DJ. 2002 Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett. 513, 299 – 304. (doi:10.1016/S0014-5793(02)02342-6)

18. Parkkari T et al. 2014 Discovery of triterpenoids as reversible inhibitors of alpha/beta-hydrolase domain containing 12 (ABHD12). PLoS ONE 9, e89286. (doi:10.1371/journal.pone.0098266)

19. Savinainen JR, Patel JZ, Parkkari T, Navia-Paldanius T, Savinainen JT. 2014 Biochemical and pharmacological characterization of the human lymphocyte antigen B-associated transcript 5 (BAT5/ABHD16A). PLoS ONE 9, e89286. (doi:10.1371/journal.pone.0098266)

20. Thomas G, Brown AL, Brown JM. 2014 In vivo metabolite profiling as a means to identify uncharacterised lipase function: recent success stories within the alpha beta hydrolase domain (ABHD) enzyme family. Biochim. Biophys. Acta 1841, 1097 – 1101. (doi:10.1016/j.bbadis.2013.01.004)

21. Mathew PA, Kumar V, Bennett M, Flaherty L. 1995 Regulation of the sperm calcium channel CatSper by phosphorylation in a murine model of the sperm calcium channel CatSper by phosphorylation. Biochem. Biophys. Res. Commun. 209, 410 – 417. (doi:10.1016/S0006-291X(95)80008-9)

22. Fiskerstrand T, Peterson JS, Nystrom A, Fredriksson H, Martensson M, Einarsson I. 2016 Mutations in ABHD12 cause the neurodegenerative disease PHARC: an inborn error of endocannabinoid metabolism. Am. J. Hum. Genet. 87, 410 – 417. (doi:10.1016/j.ajhg.2010.08.002)

23. Chen DH et al. 2013 Two novel mutations in ABHD12: expansion of the mutation spectrum in PHARC and assessment of their functional effects. Hum. Mutat. 34, 1672 – 1678. (doi:10.1002/humu.22437)

24. Blankman JL, Long IJ, Trauger SA, Szudak G, Cavatf BF. 2013 ABHD12 controls brain lysophosphatidylethanolamine pathways that are deregulated in a marine model of the neurodegenerative disease PHARC. Proc. Natl. Acad. Sci. USA 110, 1500 – 1505. (doi:10.1073/pnas. 1217121110)

25. Fontanesi L et al. 2012 Identification and association analysis of several hundred single nucleotide polymorphisms within candidate genes for back fat thickness in Italian Large White pigs using a selective genotyping approach. J. Anim. Sci. 90, 2450 – 2464. (doi:10.2527/jas.2011-4797)

26. Lehner B, Semple JT, Brown SE, Counsell D, Campbell RD, Sanderson CM. 2004 Analysis of a high-throughput yeast two-hybrid system and its use to predict the function of intracellular proteins encoded within the human MHC class III region. Genomics 83, 153 – 167. (doi:10.1016/j.gene.2003.02.035)

27. Cai Y et al. 2016 Circulating ‘lncRNA OTHUHHH0000387022’ from monocytes as a novel biomarker for coronary artery disease. Cardiovasc. Res. 112, 714 – 724. (doi:10.1093/cvr/cvv022)

28. Vigneri R et al. 2007 microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847 – 859. (doi:10.1016/j.immuni.2007.10.009)

29. van Roos-Mom WM, Pepers BA, ‘t Hoen PA, Verwijmeren CA, den Dunnen JT, Dorsman JC, van Ommen GB. 2008 Mutant huntingtin activates Msr2-responsive genes and impairs dopamine synthesis in a PC12 model of Huntington’s disease. BMC Mol. Biol. 9, 84. (doi:11.1006/1471-2199-8-4)

30. Stoolstett M, Geyer M, Reuter S, Reichelt R, Bek MJ, Ravenstad H. 2009 Alpha/beta hydrolase 1 is upregulated in DS dopamine receptor knockout mice and reduces O2 production of NADPH oxidase. Biochem. Biophys. Res. Commun. 379, 81 – 85. (doi:10.1016/j.bbrc.2008.12.008)

31. Kohman RA, Rodriguez-Zas SL, Southey BR, Kelley KW, Dantzer R, Rhodes JS. 2011 Voluntary wheel running reverses age-induced changes in hippocampal gene expression. PLoS ONE 6, e22654. (doi:10.1371/journal.pone.0022654)

32. Kierstein S, Noyes H, Nauenss J, Nakamura Y, Pritchard C, Gibson J, Kemp S, Brass A. 2006 Gene expression profiling in a mouse model for African trypanosomiasis. Genes Immun. 7, 667 – 679. (doi:10.1038/sj.gen.6365445)

33. Fowler JC, Zecchini VR, Jones PH. 2011 Intestinal metaplasia of the stomach containing 12 (ABHD12).

34. Fernandez-Becker NQ, Moss AC. 2009 In silico bioinformatics, and enzymology to discover potential roles of human Sp5, a member of Sp transcription factor family, in human cancers. Biochem. Biophys. Res. Commun. 340, 758 – 766. (doi:10.1016/j.bbrc.2005.12.068)

35. Nomura DK, Blankman JL, Simon GM, Fujikyo K, Issa RS, Ward AM, Cavatf BF, Casida JE. 2008 Activation of the endocannabinoid system by organophosphorus nerve agents. Nat. Chem. Biol. 4, 373 – 378. (doi:10.1038/nchembio.86)

36. Long LZ, Cisar JS, Milliken D, Niessen S, Wang C, Trauger SA, Szudak G, Cavatf BF. 2011 Metabolomics annotates ABHD12 as a physiologically regulated mediator of medium-chain phospholipids. Nat. Chem. Biol. 7, 763 – 765. (doi:10.1038/nchembio.659)

37. Fernandez-Becker NQ, Moss AC. 2009 In silico analysis of T-bet activity in peripheral blood mononuclear cells in patients with inflammatory bowel disease (IBD). In Silico Biol. 9, 355 – 363. (doi:10.3233/ISB-2009-0410)

38. Liu J et al. 2008 Multiple pathways involved in the biosynthesis of anandamide. Neuropsychopharmacology 54, 1 – 7. (doi:10.1038/npp.2007.05.020)

39. Simon GM, Cavatf BF. 2006 Endocannabinoid biosynthesis proceeding through glycerophospho-N-acyl ethanolamine and a role for alpha/beta-hydrolase 4 in this pathway. J. Biol. Chem. 281, 26 465 – 26 472. (doi:10.1074/jbc.M604660200)

40. Simpson CD, Huren R, Kasimer D, MacLean N, Eberhard Y, Ketela S, Moffat J, Schimmel AD. 2012 A genome wide shRNA screen identifies alpha/beta-hydrolase domain containing 4 (ABHD4) as a novel regulator of anoikis resistance. Apoptosis 17, 666 – 678. (doi:10.1007/s10495-012-0723-4)

41. Yang D, Chen H, Xie P, Wang X, Liu C. 2016 Macrophage CGI-58 attenuates inflammatory
responsiveness via promotion of PPARgamma signaling. Cell. Physiol. Biochem. 283, 696 – 713. (doi:10.1159/000443027)
51. Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R. 2008 CGI-S, the causative gene for
channar-dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283, 24525 – 24533.
(doi:10.1074/jbc.M801782B)
52. Takeuchi T, Sugikata K, Tso S, Simpson MA, McGath JA, Akiyama M. 2016 Bi-allelic nonsense mutations in
ABHD5 underlie a mild phenotype of dorfman-channar syndrome. J. Dermatol. Sci. 81, 134 – 136.
(doi:10.1016/j.jdermsci.2015.10.015)
53. Lass A et al. 2006 Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is
activated by CGI-S and defective in Channar-Dorfman syndrome. Cell Metab. 3, 309 – 319.
(doi:10.1016/j.cmet.2006.03.005)
54. Dettlaff-Pokora A, Sledzinski T, Swierczynski J. 2013 Downregulation of adipose triglyceride lipase in the heart aggravates diabetic cardiomyopathy in db/db mice. Biochem. Biophys. Res. Commun. 438, 224 – 229.
(doi:10.1016/j.bbrc.2013.07.063)
55. Pribasig MA et al. 2015 alpha/beta hydrolase domain-containing 6 (ABHD6) degrades the late endosomal/lysosomal lipid bsis(monoacylglycerol)/phosphate. J. Biol. Chem. 290, 2989 – 2981. (doi:10.1074/jbc.M115.669168)
56. Savinainen JR, Saario SM, Laitinen JT. 2012 The serine hydrolases MAGL, ABHD6 and ABHD12 as
guardians of 2-arachidonoylglycerol signalling through cannabinoid receptors. Acta Physiol. 204, 267 – 276.
(doi:10.1111/j.1748-1716.2011.02280.x)
57. Mars WR, Horne EA, Ortega-Gutierrez S, Cisneros JA, Xu C, Lin YH, Muccioli GG, Lopez-Rodriguez ML, Stella N. 2011 Dual inhibition of alpha/beta-
hydrolase domain 6 and fatty acid amylase reduces endocannabinoid levels in neurons. J. Biol.
Chem. 286, 2723 – 2728. (doi:10.1074/jbc.M110.202853)
58. Mars WR et al. 2010 The serine hydrolase ABHD6 controls the accumulation and efficacy of 2-AG at cannabinoid receptors. Nat. Neurosci. 13, 951 – 957.
(doi:10.1038/nn.2601)
59. Oparina NY et al. 2015 PKX locus in systemic lupus erythematosus: fine mapping and functional analysis reveals novel susceptibility gene ABHD6.
Ann. Rheum. Dis. 74, e14. (doi:10.1136/annrheumdis-2014-209499)
60. Wei M et al. 2016 alpha/beta-Hydrolase domain-containing 6 (ABHD6) negatively regulates the surface delivery and synaptic function of AMPA receptors. Proc. Natl. Acad. Sci. USA 113, E2695 – E2704. (doi:10.1073/pnas.1524598113)
61. Wei M et al. 2017 The inhibitory effect of alpha/ beta-hydrolase domain-containing 6 (ABHD6) on the surface targeting of GluA2- and GluA3-
Containing AMPA Receptors. Front. Mol. Neurosci. 10, 55. (doi:10.3389/fnmol.2017.00055)
62. Thomas G et al. 2013 The serine hydrolase ABHD6 Is a critical regulator of the metabolic syndrome. Cell Rep. 5, 508 – 520. (doi:10.1016/j.celrep.2013.08.047)
63. Zhao S et al. 2016 alpha/beta-Hydrolase domain 6 deletion induces adipose browning and prevents obesity and Type 2 diabetes. Cell Rep. 14, 2872 – 2888.
(doi:10.1016/j.celrep.2016.02.076)
64. Max D, Hesse M, Volkmer I, Staese MG. 2009 High expression of the evolutionarily conserved alpha/
beta hydrolase domain containing 6 (ABHD6) in Ewing tumors. Cancer Sci. 100, 2383 – 2389.
(doi:10.1111/j.1349-7006.2009.01347.x)
65. Decker M et al. 2012 EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides. J. Lipid Res. 53, 2038 – 2045. (doi:10.1194/jlr.M024448)
66. Schweiger M, Lass A, Zimmermann R, Eichmann TO, Zechner R. 2009 Neutal lipid storage disease: genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-S/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289 – E296. (doi:10.1152/ajpendo.00009.2009)
67. Inoue T et al. 2013 Integrative systems genetics approach reveals potential reason for elevated concentration of endocannabinoid levels in neurons.
J. Biol. Chem. 286, 2723 – 2728. (doi:10.1074/jbc.M110.202853)
68. Yang J, Yu L. 2014 Intestinal Cgi-58 deficiency increases endocannabinoid levels in neurons. J. Proteomics 86, 466 – 477. (doi:10.1016/j.jprot.2016.02.076)
69. Wiedl T, Arni S, Roschitzki B, Grossmann J, Collaud S, Soltermann A, Hillinger S, Abelesrod R, Winter W. 2011 Activity-based proteomics: identification of ABHD11 and ESD activities as potential biomarkers for human lung adenocarcinoma. J. Proteomics 74, 1884 – 1894. (doi:10.1016/j.jprot.2011.04.030)
70. Navia-Paldanios D, Savinainen JR, Laitinen JT. 2012 Biochemical and pharmacological characterization of human alpha/beta-hydrolase domain-containing 6 (ABHD6) and 12 (ABHD12). J. Lipid Res. 53, 2413 – 2424. (doi:10.1194/jlr.M030411)
71. Kogelman LJ, Zhernakova DV, Westra HJ, Cirera S, Deplazes P, Lessard MR, S, Soltermann A, Hillinger S, Abelesrod R, Winter W. 2011 Activity-based proteomics: identification of ABHD11 and ESD activities as potential biomarkers for human lung adenocarcinoma. J. Proteomics 74, 1884 – 1894. (doi:10.1016/j.jprot.2011.04.030)
72. Lerat J, Cintas P, Beauvais-Dzugan H, Magdelaine C, Sturtz F, Buerges KD. 2017 A complex homozygous mutation in ABHD12 responsible for PHARC syndrome diagnosed with NGS and review of the literature. J. Paediatric. 122, 77 – 84. (doi:10.1111/jps.12126)
73. Kogelman LJ, Zhernakova DV, Westra HJ, Cerea S, Fredholm M, Franke L, Kardamidene HN. 2015 An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med. 7, 105. (doi:10.1186/s13073-015-0229-0)
74. Rhodin K, Divaris K, North KE, Barros SP, Moss K, Beck JD, Olfenbacher S. 2014 Chronic periodontitis genome-wide association studies: gene-centric and gene set enrichment analyses. J. Dent. Res. 93, 882 – 890. (doi:10.1177/002203451454506)
75. Koran ME, Hohn A, Medina FA, Madsen K, Hoyt TA. 2014 Genetic interactions within isoinost-related pathways are associated with longitudinal changes
88. Casey JP et al. 2012 A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Human Genet. 131, 565 – 579. (doi:10.1007/s00439-011-1094-6)

89. Hoshino J, Aruga J, Ishiguro A, Mikoshiba K. 2003 Dorz1, a novel gene expressed in differentiating cerebellar granule neurons, is down-regulated in Zic1-deficient mouse. Brain Res. Mol. Brain Res. 120, 57 – 64. (doi:10.1016/j.molbrainres.2003.10.004)

90. Padmanabhan B, Kuzuhara T, Adachi N, Horikoshi M. 2004 The crystal structure of CCG1/TAF(II)250-interacting factor B (CIB). J. Biol. Chem. 279, 9615 – 9624. (doi:10.1074/jbc.M312165200)

91. Posorski N, Kaemmerer D, Ernst G, Grabowski P, Hoersch D, Hommann M, von Eggeling F. 2011 Localization of sporadic neuroendocrine tumors by gene expression analysis of their metastases. Clin. Exp. Metastasis 28, 637 – 647. (doi:10.1007/s10585-011-9397-5)

92. Gridley S, Lane WS, Garner CW, Lienhard GE. 2005 Novel insulin-elicited phosphoproteins in adipocytes. Cell. Signal. 17, 59 – 66. (doi:10.1016/j.cellsig.2004.05.013)

93. Chavez JA, Gridley S, Sano H, Lane WS, Lienhard GE. 2006 The 47 kDa Akt substrate associates with phosphodiesterase 3B and regulates its level in adipocytes. Biochem. Biophys. Res. Commun. 342, 1218 – 1222. (doi:10.1016/j.bbrc.2006.02.091)

94. Omar B, Zmuda-Trzebiatkowska E, Manganieri V, Goransson O, Degenman E. 2009 Regulation of AMP-activated protein kinase by cAMP in adipocytes: roles for phosphodiesterases, protein kinase B, protein kinase A, Epac and lipolysis. Cell. Signal. 21, 760 – 766. (doi:10.1016/j.cellsig.2009.01.015)

95. Walenta E et al. 2013 alpha/beta-hydrolase domain containing protein 15 (ABHD15)—an adipogenic protein protecting from apoptosis. PLoS ONE 8, e79134. (doi:10.1371/journal.pone.0079134)

96. Wan ES et al. 2012 Systemic steroid exposure is associated with differential methylation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 186, 1248 – 1255. (doi:10.1164/rcrm.201207-12800C)

97. Lin DT, Conibear E. 2015 ABHD17 proteins are novel protein depalmitoylases that regulate N-Ras palmitate turnover and subcellular localization. eLife 4, e11306. (doi:10.7554/eLife.11306)

98. Fukata Y, Murakami T, Yokoi N, Fukata M. 2016 Local palmitoylation cycles and specialized membrane domain organization. Curr. Top. Membr. 77, 97 – 141. (doi:10.1016/bs.ctm.2015.10.003)

99. Clifford RJ et al. 2010 Genetic variations at loci involved in the immune response are risk factors for hepatocellular carcinoma. Hepatology 52, 2034 – 2043. (doi:10.1002/hep.23943)

100. Puig-Oliveras A, Ramayo-Calda Y, Corominas J, Estelle J, Perez-Montarello D, Hudson NJ, Casellas J, Folch JM, Ballester M. 2014 Differences in muscle transcriptome among pigs phenotypically extreme for fatty acid composition. PLoS ONE 9, e99720. (doi:10.1371/journal.pone.0099720)

101. Lee HK, Simon GM, Cravatt BF. 2015 ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system. Biochemistry 54, 2539 – 2549. (doi:10.1021/acs.biochem.5b00207)

102. Vieyres G, Welsch K, Gersd G, Gentzsch J, Kahl S, Vondran FW, Kaderali L, Pietschmann T. 2016 ABHD5/CGI-58, the chanarin-dorfman syndrome protein, mobilises lipid stores for hepatitis C virus production. PLoS Pathog. 12, e1005568. (doi:10.1371/journal.ppat.1005568)

103. Fukata Y, Murakami T, Yokoi N, Fukata M. 2016 Local palmitoylation cycles and specialized membrane domain organization. Curr. Top. Membr. 77, 97 – 141. (doi:10.1016/bs.ctm.2015.10.003)

104. Martin BR, Cravatt BF. 2009 Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 113 – 138. (doi:10.1038/nmeth.1293)