Chemotherapy-Induced Peripheral Neurotoxicity: A Critical Analysis

Susanna B. Park, PhD1,2,*; David Goldstein, FRACP3; Arun V. Krishnan, FRACP, PhD5; Cindy S-Y Lin, PhD5; Michael L. Friedlander, FRACP, PhD6; James Cassidy, MD, PhD7; Martin Koltzenburg, MD, FRCP8; Matthew C. Kiernan, FRACP, DSc9

With a 3-fold increase in the number of cancer survivors noted since the 1970s, there are now over 28 million cancer survivors worldwide. Accordingly, there is a heightened awareness of long-term toxicities and the impact on quality of life following treatment in cancer survivors. This review will address the increasing importance and challenge of chemotherapy-induced neurotoxicity, with a focus on neuropathy associated with the treatment of breast cancer, colorectal cancer, testicular cancer, and hematological cancers. An overview of the diagnosis, symptomatology, and pathophysiology of chemotherapy-induced peripheral neuropathy will be provided, with a critical analysis of assessment strategies, neuroprotective approaches, and potential treatments. The review will concentrate on neuropathy associated with taxanes, platinum compounds, vinca alkaloids, thalidomide, and bortezomib, providing clinical information specific to these chemotherapies. CA Cancer J Clin 2013;63:419–437. © 2013 American Cancer Society, Inc.

Keywords: chemotherapy, neurotoxicity, survivorship, neuropathy

Introduction

As a consequence of advances in cancer diagnosis and treatment, there are now an estimated 28 million cancer survivors worldwide. As such, long-term quality of life is an increasingly important issue, with 67% of U.S. cancer patients surviving at 5 years. Addressing the long-term toxicities of cancer treatment is critical due to their potential impact on cancer survivorship. Accordingly, there has been a gradual shift in focus toward postchemotherapy recovery and survivorship, with an awareness of the importance of the individual patient experience, patient-reported outcomes, and the long-term effects of treatment. Of particular importance is chemotherapy-induced peripheral neuropathy (CIPN), which can lead to permanent symptoms and disability in up to 40% of cancer survivors. CIPN can be a significant disability following the treatment of many types of cancer, including breast, colorectal, testicular, and hematological malignancies, and have an impact on quality of life. As such, there is a critical need to understand pathophysiological mechanisms, optimize clinical assessment, and develop neuroprotective strategies to prevent neuropathy. This review will address the challenge of CIPN, highlighting treatment-related neuropathy caused by some of the most commonly used chemotherapeutic agents (such as taxanes, platinum compounds, vinca alkaloids, thalidomide, and bortezomib), and provide recommendations regarding assessment strategies, management, and follow-up.

Search Strategy and Review Structure

The search strategy for the present review involved the National Center for Biotechnology Information (NCBI)/PubMed database, American Society of Clinical Oncology Annual Meeting abstract library, and the Cochrane Library. Databases

1RG Menzies Fellow, Institute of Neurology, University College London, London, United Kingdom; 2Neuroscience Research Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; 3Clinical Professor, Department of Medical Oncology, Prince of Wales Hospital, Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; 4Associate Professor of Neurology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; 5Senior Lecturer in Neurophysiology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia; 6Professor of Medicine, Department of Medical Oncology, Prince of Wales Hospital, Australia and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia; 7Professor of Oncology, Beatson Oncology Centre, Glasgow, United Kingdom; 8Professor of Clinical Neuropathology, Institute of Neurology and Medical Research Council Centre for Neuromuscular Diseases, University College London, London, United Kingdom; 9Bushell Professor of Neurology, University of Sydney, New South Wales, Australia

Corresponding author: Susanna B. Park, PhD, Institute of Neurology, University College London, Queen Square, London, United Kingdom WC1N 3BG; s.park@neura.edu.au

DISCLOSURES: Dr. Park is a recipient of a RG Menzies Foundation/National Health and Medical Research Council of Australia (NHMRC) Training Fellowship (#101644).

©2013 American Cancer Society, Inc. doi: 10.1002/caac.21204. Available online at cacancerjournal.com
Peripheral neuropathy is a broad term that refers to peripheral nerve damage. CIPN may develop as a consequence of treatment with multiple chemotherapy agents (Table 1), including platinum compounds (cisplatin, carboplatin, oxaliplatin), taxanes (paclitaxel, docetaxel), vinca alkaloids (vincristine, vinblastine), thalidomide, and bortezomib. Most commonly, large sensory nerves are affected, leading to symptoms of paresthesias (“pins and needles”), dysesthesias, and numbness in the hands and feet.5 Sensory loss in a “glove-and-stocking”-type distribution (Fig. 1) is typically associated with a reduction or absence of deep tendon reflexes. From the perspective of a clinical examination, perception of touch, vibration, and proprioception may also be impaired. Typically, the nerve endings in the extremities of the hands and feet are affected earliest by toxicity in a symmetrical, length-dependent manner. Large sensory nerve fibers are most commonly affected, with damage to smaller sensory fibers occurring only rarely with select chemotherapies. Sensory nerve dysfunction is more common than motor involvement. However, motor and autonomic neuropathic symptoms may also develop, depending on the chemotherapy. Symptoms such as sensory ataxia, pain, and severe numbness can be disabling, and interfere with functional ability and quality of life. Neuropathic symptoms may also interfere with treatment, leading to a dose reduction or the early cessation of chemotherapy, thereby potentially impacting patient survival. Symptoms may continue to worsen even after treatment has ceased, a process referred to as the “coasting” phenomenon. While the overall clinical presentation of CIPN is similar among the different chemotherapies, there are important differences in the risk profile and underlying mechanisms of neurotoxicity between the different drugs.

Different chemotherapies affect distinct components of the nervous system, from the level of the sensory cell bodies in the dorsal root ganglion (DRG) to the distal axon (Fig. 1). The DRG is a prominent target as it is less protected by the blood-nerve barrier and more vulnerable to neurotoxic damage,6 potentially explaining the predominance of sensory involvement in patients with CIPN. Platinum compounds accumulate in the DRG,7,8 with platinum-DNA adducts leading to cell death in sensory neurons.9,10 Taxanes, vinca alkaloids, thalidomide, and bortezomib have also been associated with neuronal DRG damage.11-14 Disruption of microtubule dynamics is another common mechanism of neurotoxicity. Microtubules are central to axonal transport processes, and critical for energy and

| TABLE 1. Chemotherapies Associated With Peripheral Neuropathya |
|--------------------------|------------------------|-----------------|------------------------|------------------------|------------------------|
| TYPE | CLASS | THRESHOLD DOSE | SENSORY NEUROPATHY | MOTOR NEUROPATHY | AUTONOMIC NEUROPATHY |
| Paclitaxel | Taxane | >300 mg/m² | Predominantly sensory neuropathy | At higher doses, myalgia and myopathy | Rare |
| Docetaxel | Taxane | >100 mg/m² | Predominantly sensory neuropathy | At higher doses, myalgia and myopathy | Rare |
| Oxaliplatin | Platinum | >550 mg/m² | Acute sensory symptoms and chronic sensory neuropathy | Acute cramps and fasciculations | Rare |
| Cisplatin | Platinum | >350 mg/m² | Predominantly sensory neuropathy | Rare | Rare |
| Vincristine | Vinca alkaloid | >2-6 mg/m² | Sensory neuropathy | Muscle cramps and mild distal weakness | Yes |
| Thalidomide | Immunomodulatory/ antiangiogenic agent | >20 g | Sensory neuropathy | Mild distal weakness and cramps | Yes |
| Bortezomib | Proteasome inhibitor | >16 mg/m² | Painful, small-fiber sensory neuropathy | Rare | Yes |

*Treatments associated with chemotherapy-induced peripheral neuropathy and details of clinical presentations are shown, with an indication of the frequency of the presentation in sensory, motor, and autonomic neuropathy categories.
material delivery. Taxanes bind to β-tubulin components of microtubule assemblies, producing overpolymerization and interference with normal microtubule dynamics, which has been linked to the disruption of axonal transport.15,16 Vinca alkaloids bind tubulin and inhibit microtubule dynamics, leading to interference with the mitotic spindle,12 while bortezomib may also affect tubulin polymerization.17 In addition, interference with energy mechanisms of the axon may contribute to CIPN. Paclitaxel administration produced prominent abnormalities in axonal mitochondria,18 whereas bortezomib also was reported to affect endoplasmic reticulum and mitochondrial integrity, particularly in Schwann cells.19 In addition to energy deficiency, chemotherapies may damage the peripheral vasculature. As a case in point, thalidomide reduces peripheral nerve blood supply via antiangiogenic effects, leading to axonal degeneration.20

Additional targets of neurotoxicity include direct axonal toxicity at the distal terminals, which may induce neurotoxicity and Wallerian degeneration following treatment with paclitaxel,21 vincristine,22 and thalidomide.23 Oxaliplatin may directly alter axonal voltage-gated sodium (Na+) ion channel function, inducing an acute neurotoxicity manifested by peripheral nerve hyperexcitability.24-26 In some patients, bortezomib may induce primary myelin sheath degeneration.19 However, despite potential diverse mechanisms underlying the development of CIPN, common degenerative pathways may be triggered when the normal processes and energy delivery mechanisms of the peripheral nervous system become disrupted.

Differential Diagnoses for CIPN

The symptoms of CIPN may not be specific and may share considerable overlap with other forms of peripheral nerve disease. Appropriate baseline assessment of patients prior to the administration of potentially neurotoxic chemotherapy will assist in identifying those patients with preexisting sensory neuropathies, such as diabetic neuropathy. Consideration of the onset and progression of neuropathic symptoms and relationships with the timing of chemotherapy administration will also assist in identifying patients with CIPN.

Rarely, cancer may also be associated with the development of paraneoplastic neuropathy, in which onconeural antibodies target peripheral nervous system epitopes, producing neurological syndromes that may be similar to CIPN in some cases. Paraneoplastic neuropathies may present prior to diagnosis of the underlying malignancy or, conversely, may occur in patients already undergoing treatment and as such may be difficult to dissociate from CIPN in rare cases.27 Patients with paraneoplastic neuropathies often demonstrate marked proprioceptive loss in proximal areas and rapid progression of disability, which are not characteristic features of CIPN and should prompt clinical reevaluation. Subacute sensory neuropathy is the most common paraneoplastic disorder,28 and typically presents with sensory ataxia and pain but may demonstrate prominent autonomic symptoms.29 Subacute sensory neuropathy may be associated with anti-Hu antibodies in patients with small cell lung cancer, although the syndrome has also been reported in individuals with breast cancer and
Hodgkin disease. Anti-CV2 antibodies may also cause sensorimotor peripheral neuropathy in patients with small cell lung cancer or thymoma, in addition to central nervous system involvement.

Hematological malignancies can be associated with paraneoplastic neuropathies. This is particularly common in patients with multiple myeloma prior to treatment, with baseline neuropathy reported to be present in 20% of patients, although more than 50% of patients may have objective evidence of large- or small-fiber nerve dysfunction. The premalignant precursor of multiple myeloma, monoclonal gammopathy of Waldenström macroglobulinemia, characterized by IgM paraproteinemia, is often associated with predominantly axonal neuropathy. While there are no randomized controlled trials of treatment options for patients with paraneoplastic neuropathies, treatment of the underlying malignancy and immunotherapy are the typical treatment paradigms.

Clinical Assessment

Currently there is no standardized approach to the assessment of chemotherapy-induced neurotoxicity. Consensus is that such a measure must include both objective evidence of neurological deficits and assessment of symptoms from a patient perspective, as clinician-based reporting of adverse events during chemotherapy typically underestimates the significance of symptoms compared with patient reports. The development of a “gold standard” measurement of CIPN would improve the design of future clinical trials and thereby facilitate the development of future neuroprotective therapies. Ideally, such a gold standard should incorporate clinical examination, objective neurophysiological parameters, and patient-reported outcomes. Assessment at baseline and throughout treatment appear to be critical to identify preexisting neuropathy and conditions that may predispose to neuropathy, in addition to recognizing the earliest signs of peripheral nerve damage. Long-term follow-up is also essential to identify the true impact of CIPN, and we recommend that patients be investigated after the completion of treatment to identify persistent neurotoxicity (preferably at a minimum of 3 months posttreatment, when symptoms have stabilized). Such visits can easily be aligned with recommended general follow-up.

Clinical Grading Scales

The most common CIPN assessments are clinician-administered grading scales, including the National Cancer Institute Common Terminology Criteria for Adverse Events (NCI-CTCAE) Neuropathy Sensory subscale (Table 2). However, there is only a moderate level of interobserver agreement, with 46% to 71% reliability reported between assessors and considerable interscale variation. While rigorous observer training leads to higher reliability, the NCI scale is also limited by ceiling and floor effects, with limited responsiveness to change due to the small number of available severity grades.

The Total Neuropathy Score (TNS; developed by Johns Hopkins University) is a composite score with a larger value range (0-40) that combines symptom scores with objective scoring of sensory loss and neurophysiological parameters. The TNS has been validated in a multicenter setting as a sensitive measure of CIPN and reliably correlates with other measures of sensory dysfunction. The wider range of values enables more precise and responsive grading of symptomatic progression, and addresses the lack of distinction between moderate and severe neurotoxicity (NCI grades 2 and 3). For example, 70% of patients with cancer who were scored as unchanged using the NCI scale demonstrated progressive worsening of sensory neuropathy when assessed using the TNS scale. The TNS clinical version (TNSc) uses only clinical measures with no need for specialist equipment, and the TNS reduced version (TNSr) omits formalized vibration threshold testing and assessment of motor and autonomic symptoms. These TNS versions have also been validated in patients with CIPN, with good interrater reliability noted. Griffith et al undertook a systematic review of CIPN assessment methods using a study quality assessment tool, and rated the TNS and its variants with a quality score of moderate, corresponding to 5.4 of 7. A number of initiatives are currently underway to formally identify the best approach to CIPN assessment, including the multinational CI-PeriNomS (Chemotherapy Induced-Peripheral Neuropathy Outcome Measures Study) study, which has reported initial validity and reliability findings for a number of CIPN assessment scales.
Importantly, the study identified good validity and reliability values for several assessment methods including the NCI-CTCAE, TNSc, and patient-reported outcomes measures. However, the TNSc was considered preferable to the NCI-CTCAE in terms of responsiveness. Responsiveness is a key issue in CIPN assessment and it is important to select methods that are appropriately sensitive to change. Further data on the relative responsiveness of these measures will be forthcoming. In the interim, the TNS scale appears to be superior to the NCI scale and may be optimal to adopt for future studies, particularly those of neuroprotective agents. In routine clinical practice, use of the TNSc may be more appropriate as it does not require specialized equipment or training.

Patient-Reported Outcomes

Patient-reported outcomes are becoming increasingly important to provide a comprehensive assessment of CIPN significance and severity. Perhaps not surprisingly, patients report significantly greater neuropathy than is reported by clinicians. In a study of 85 patients treated with chemotherapy, 19% reported neuropathic symptoms, 56% of whom experienced moderate to severe symptoms. In contrast, clinicians rated only 12% of the same cohort as symptomatic, and of these 90% of patients were classified as having mild neuropathic symptoms. In a study of 696 patients treated with oxaliplatin, there was 65% agreement between patient-reported outcomes and clinician-based toxicity criteria with regard to neuropathy, but patients identified the onset of neuropathy 2 months earlier than clinicians. Patient-reported outcomes provide an accurate assessment of neuropathy. Accordingly, several patient questionnaires are now available, including the European Organization for Research and Treatment of Cancer (EORTC) QLQ-CIPN20 questionnaire, the Functional Assessment of Cancer/Gynecologic Oncology Group-Neurotoxicity (FACT/GOG-Ntx) questionnaire, and the Patient Neurotoxicity Questionnaire (PNQ). In addition, future versions of the NCI scale will include patient assessment components.

The FACT/GOG-Ntx is a questionnaire comprising 12 neuropathy-related questions and has been validated with excellent internal consistency. The questionnaire strongly correlates with measures of daily functioning, quality of life and objective neuropathy, identifying that 81% of patients treated with bortezomib had neuropathy, while formal neurological assessment similarly

TABLE 2. Assessment of CIPN Via Neuropathy Grading Scales

GRADE	0	1	2	3	4
NCI Common Terminology Criteria for Adverse Events⁴⁹					
Neuropathy Sensory Subscale	None	Asymptomatic; loss of deep tendon reflexes or paresthesia (including tingling) but not interfering with function	Sensory alteration or paresthesia (including tingling), interfering with ADL	Sensory alteration or paresthesia interfering with ADL	Disabling
Total Neuropathy Score⁵²⁻⁵⁴ (developed by Johns Hopkins University)					
Sensory symptoms	None	Symptoms limited to fingers or toes	Symptoms extend to ankle or wrist	Symptoms extend to knee or elbow	Symptoms above knees or elbows, or functionally disabling
Motor symptoms	None	Slight difficulty	Moderate difficulty	Require help/assistance	Paralysis
Autonomic symptoms	Normal	Reduced in fingers/toes	Reduced to wrist/ankle	Reduced to elbow/knee	Reduced to above elbow/knee
Sensory symptoms	Normal	Reduced in fingers/toes	Reduced to wrist/ankle	Reduced to elbow/knee	Reduced to above elbow/knee
Strength	Normal	Mild weakness	Moderate weakness	Severe weakness	Paralysis
Deep tendon reflexes	Normal	Ankle reflex reduced	Ankle reflex absent	Ankle reflex absent, others reduced	All reflexes absent
Sural amplitude	Normal/reduced to <5% of LLN	76%-95% LLN	51%-75% LLN	26%-50% LLN	0%-25% LLN
Peroneal amplitude	Normal/reduced to <5% of LLN	76%-95% LLN	51%-75% LLN	26%-50% LLN	0%-25% LLN
Vibration sensation	Normal to 125% of ULN	126%-150% ULN	151%-200% ULN	201%-300% ULN	>300% ULN

CIPN indicates chemotherapy-induced peripheral neuropathy; NCI, National Cancer Institute; ADL, activities of daily life; LLN, lower limit of normal; ULN, upper limit of normal.
identified 83% of patients. The questionnaire also provides greater sensitivity, with each increase in NCI grade corresponding to a 4- to 6-point worsening on the FACT/GOG-Ntx scale. Questionnaire results have also been correlated to quantitative measures of nerve damage including vibration threshold detection. The FACT/GOG-Ntx also correlated with measures of daily functioning and quality of life, suggesting that it also assesses functional impact. Systematic review of studies including the FACT/GOG-Ntx scale indicated a quality score of moderate (4.5 of 7). Studies also have reported moderate to high internal consistency reliability (Cronbach’s 0.82-0.94). The EORTC QLQ-CIPN20 is a similar questionnaire, with reportedly good reliability and greater sensitivity than NCI grading, with 62% of patients with CIPN reporting “quite a bit” to “very much” tingling, while only 13% of patients in the same cohort were graded with severe grade 3 neuropathy. A recent study has confirmed the validity and responsiveness of the EORTC QLQ-CIPN20, with good internal validity (Cronbach’s 0.88) and a large effect size with respect to responsiveness to change (Cohen’s 0.82). The PNQ includes assessment of the functional impact of neuropathy symptoms, and has also been found to be a valid and sensitive measure in patients with CIPN, detecting a wider distribution of severity compared with NCI scores. A novel outcome measure, the CIPN Rasch-built Overall Disability Score (CIPN-R-ODS), has been specifically developed to assess patient disability and functional outcomes. The CIPN-R-ODS is an interval-based measure that addresses difficulties with ordinal scales to provide assessment of functional disability. Given the increasing importance of patient-reported outcomes in assessment and management, it is recommended that one of these validated scales be used in all studies addressing CIPN. The benefits of including direct patient evaluations include a more comprehensive and accurate assessment of CIPN, improved understanding of the impact of CIPN symptoms on the patient, and a better correlation of toxicity findings with functional outcomes.

Specific Chemotherapy and Symptom Scales

A number of chemotherapy-specific scales have been developed to address symptomatic differences between chemotherapeutic agents. The Oxaliplatin-Specific Neurotoxicity Scale attempts to dissociate between acute and chronic forms of neurotoxicity produced by oxaliplatin, with 3 severity grades encompassing neuropathic symptoms resolving within 7 days (grade 1), persisting for longer than 7 days (grade 2), and leading to functional impairment (grade 3). Such scales have been demonstrated to lead to the earlier detection of neurotoxicity and a better assessment of persistent neuropathic symptoms. Similarly, a specific scale has been developed for cisplatin-induced neuropathy. The Scale for Cisplatin-Induced Neurotoxicity comprises 3 subscales assessing neurotoxicity, ototoxicity, and Raynaud phenomena. In addition, the importance of more specific assessments is also being recognized to address the symptomatic burden and functional consequences of CIPN. Chronic pain represents a significant issue in cancer survivors following chemotherapy. More than 50% of patients with CIPN report pain, with severe pain reported by up to 25%. Patients often report significantly higher pain levels than are scored by clinicians. A specific Neuropathic Pain Scale for chemotherapy-induced neuropathy has been developed to address patient-reported neuropathic pain, although further validation is required.

Objective Assessment

The gold standard for the objective neurophysiological assessment of CIPN involves the use of nerve conduction studies (NCS), which measure the amplitude and conduction velocity of compound sensory action potentials (CSAPs) and compound motor action potentials (CMAPs). NCS provide valuable information about the extent of axonal loss in patients with CIPN. Reduction of CSAP amplitude is a common finding in patients with CIPN, confirming the development of axonal sensory neuropathy. NCS may also provide an assessment of conduction velocity, temporal dispersion, conduction block, and more proximal F-wave latencies, which are important to rule out other causes of CIPN-like symptoms (particularly inflammatory neuropathies). While NCS are the standard for neuropathy assessment and the only method routinely available to objectively monitor CMAP and CSAP amplitudes, NCS parameters may not change until late in the course of chemotherapy. In addition, NCS require specialized equipment and personnel and may cause discomfort to the patient, particularly in the context of generalized medical problems and the side effects of chemotherapy. A complementary technique to NCS, nerve excitability studies, has been adapted for clinical use, and has demonstrated utility in identifying the onset of oxaliplatin neuropathy prior to the development of changes in NCS and before neuropathic symptoms were clinically significant. On the whole, traditional NCS techniques remain the gold standard approach to assess clinical neuropathy and should be used in clinical trials of neuroprotective agents to provide objective evidence of nerve damage or neuroprotection. Quantitative sensory testing (QST) involves determination of the detection threshold for sensory stimuli to quantify changes in sensory perception, involving a range of testing procedures including vibration threshold detection, thermal
detection, and sharpness detection. The development of standardized QST protocols may increase the accuracy and relevance of the technique for patients with CIPN. Vibration perception threshold measured in the feet is a sensitive QST method for the assessment of CIPN.5,83,89 The development of cold hyperalgesia (increased pain in response to a cold stimulus) may be of assistance in predicting the development of severe neuropathy in patients treated with oxaliplatin.90 In addition, the use of calibrated tuning forks91 and monofilaments92 have been shown to be valid quantitative measures of sensory loss in patients with peripheral neuropathy. Such measures can be undertaken quickly with very little training, and provide an objective assessment of nerve function.

Pharmacogenetic Assessment

Recently, the use of pharmacogenetic techniques to identify genetic polymorphisms has enabled further identification of potential differences in susceptibility to neurotoxicity between individual patients. However, there remains a lack of consensus on the association between genetic variants and the risk of neurotoxicity. Further studies with standardized objective measures of neuropathy and larger patient numbers will be required to fully assess the involvement of genetic polymorphisms in the risk of neurotoxicity.93

Polymorphisms in glutathione S-transferase detoxification enzymes (GSTPI-105) have been variably associated with an increased risk of severe neuropathy in patients treated with oxaliplatin.94-99 Similarly, in patients treated with cisplatin, there have been some associations with polymorphisms in GSTPI and the related GSTM1 genes.97,100 Polymorphisms in genes associated with drug efflux and metabolism (ABCB1, cytochrome P450 2C8 [CYP2C8]) have been linked to neurotoxicity in patients treated with paclitaxel,101 although multiple studies have also been unable to identify relevant associations.102,103 A related gene encoding the CYP3A family of cytochrome P450 enzymes may be a pharmacogenetic predictor of neurotoxicity severity in patients treated with vincristine, with CYP3A4 variants demonstrating less efficient clearance and more severe neuropathy compared with CYP3A5.104,105 A range of polymorphisms have also been identified with genome-wide association analysis in association with oxaliplatin,106 paclitaxel, bortezomib, thalidomide, and vincristine.107,108

Chemotherapies Associated With CIPN

Taxanes

Taxanes, such as paclitaxel and the semisynthetic analog docetaxel, may produce sensory neuropathy,89,109,110 with symptoms of paresthesia and numbness in the extremities.110 Deficits in fine motor skills and walking ability may occur in severe cases.89,109,110 In addition, myalgias and arthralgias often develop within 1 to 4 days following paclitaxel infusion as part of a paclitaxel-associated acute pain syndrome.111 The severity of acute pain has been associated with the later development of sensory neuropathy, suggesting a common mechanism.111

Taxane-induced neuropathy is dose-dependent, with symptoms typically occurring at cumulative doses of greater than 300 mg/m² (Table 3).83,89,112 Increasing single and cumulative paclitaxel dose levels are also associated with a greater risk of neurotoxicity.83,89,112,113 A shorter infusion duration has also been demonstrated to increase the incidence of neurotoxicity (eg, 3 hours compared with 24 hours).114,115 Although there is no difference between similar infusion durations, (eg, 1 hour and 3 hours).116 There has been much debate over the relative neurotoxicity of weekly versus 3-weekly taxane administration schedules. Weekly administration of taxanes was typically associated with a lower rate of severe neurotoxicity compared with 3-weekly schedules.117-123 Recent evidence from a large trial of 2716 patients also suggested that weekly paclitaxel was associated with lower rates of severe neurotoxicity compared with a 2-weekly administration schedule (grade 3: 10% for weekly vs 17% for 2-weekly).124 However, this finding was not universal125 and several studies have identified higher rates of peripheral neuropathy with the weekly administration of paclitaxel-based regimens.126-128 Paclitaxel dose level was important, with a weekly dose of 175 mg/m² producing severe neurotoxicity in over 75% of patients,118 and the effects of increasing dose may potentially overcome the benefit of a weekly schedule.125,127 In addition, new formulations of paclitaxel to improve solubility and delivery, including nanoparticle albumin-bound (Nab) paclitaxel and liposomal-encapsulated paclitaxel, may also assist in enabling lower doses and reduced toxicity.129

Paclitaxel-induced neuropathy was reported to be at least partially reversible, potentially due to axonal recovery after treatment.5,130 However, chronic paclitaxel administration may eventually lead to axonal degeneration, producing symptoms that are longer-lasting, possibly reflecting the consequences of long-term axonal transport dysfunction. Overall, mild to moderate symptoms may persist long-term,131,132 with 39% of patients presenting with objective neurological abnormalities at 3 years of follow-up.132 In addition, both paclitaxel and docetaxel are often administered in conjunction with platinum-based chemotherapies such as cisplatin or carboplatin, which may produce significant additional neurotoxicity in patients with BRCA-related breast cancer, triple-negative cancers, and ovarian cancer.33,131 While the combination with carboplatin is less neurotoxic than cisplatin, almost 25% of patients demonstrated ongoing symptoms following the completion of treatment with carboplatin-taxane regimens.131
While 50% of patients treated with paclitaxel recovered within 9 months, symptoms of peripheral neuropathy persisted in 41% of patients at 3 years, suggesting that neurotoxicity can persist long-term. Patient-reported symptoms and sensory testing identified approximately 67% to 80% of patients with persistent numbness one year following adjuvant treatment for early-stage breast cancer. In addition, paclitaxel has also been demonstrated to cause persistent deficits in balance more than 2 years after treatment.

Oxaliplatin

Oxaliplatin, a third-generation platinum analog that is active against both early-stage and advanced colorectal cancer, produces significant neurotoxicity, a potential dose-limiting side effect of treatment. Oxaliplatin produces 2 spectrums of neurotoxicity: acute, which occurs following infusion, and with chronic administration. Significant acute neurotoxicity occurs in most patients (85%–95%), developing during or immediately following infusion, and typically resolving within a week. The most common symptoms are distal limb and mouth paresthesias exacerbated by cold exposure, jaw pain on biting, and mouth numbness. Motor signs and symptoms may also occur, including muscular spasm-like contractions, fasciculations, and cramps. At a higher cumulative dose, oxaliplatin induces a typical CIPN sensory neuropathy in 20% to 50% of patients, characterized by distal paresthesia and numbness, and leading to functional disability.

Chronic oxaliplatin-induced sensory neuropathy appears to be dose-dependent, with severe neuropathy typically occurring in 10% to 20% of patients at a cumulative dose of 750 mg/m² to 850 mg/m² (Table 3). The incidence of neuropathy increased sharply with cumulative dose, with severe neuropathy estimated to occur in 10% of patients after 9 treatment cycles and in 50% after 14 treatment cycles. Neupathy also increased in incidence and severity with greater single doses. A prolonged infusion duration (6 hours) produced significantly less severe neurotoxicity than the standard 2-hour infusion (6.2% vs 18.7%). “Stop-and-go” treatment strategies, with oxaliplatin given for a shorter period (usually 3 months) and then reintroduced after an oxaliplatin-free interval, produced lower rates of severe neurotoxicity (grade 3: 11% vs 26%). Decreased dose density may also reduce neurotoxicity, with patients receiving 3-weekly regimens (XELOX 3-weekly dose of 130 mg/m² of oxaliplatin with oral capecitabine) developing lower rates of severe neurotoxicity than those receiving 2-weekly schedules (FOLFOX6 leucovorin, fluorouracil, and 100 mg/m² of oxaliplatin) (grade 3: 11% vs 26%). However, 3-weekly schedules may not reduce neurotoxicity when compared with 2-weekly schedules with a lower single dose (FOLFOX4 leucovorin, fluorouracil and 85 mg/m² of oxaliplatin). The total cumulative oxaliplatin dose was found to be a major factor, as patients treated with 2-weekly oxaliplatin at a dose of 85 mg/m² demonstrated a significantly increased incidence of severe neuropathy.

Table 3. Chemotherapy Dose and Duration as a Risk Factor for CIPN

Factor	Consensus	Chemotherapy	References
Single dose level	Increased single doses are associated with greater neurotoxicity	• Taxanes	83,89,112,113
		• Oxaliplatin	140
		• Cisplatin	81,155,157,158,160,162,164
		• Vincristine	168
		• Thalidomide	186,187
		• Bortezomib	69
Cumulative dose level	Increased cumulative doses are associated with greater neurotoxicity	• Taxanes	83,89,112,113
		• Oxaliplatin	84,135,138,140
		• Cisplatin	81,155,157,160
		• Vincristine	168-170
Lack of consensus	Regarding the relationship between cumulative dose and neurotoxicity	• Thalidomide	33,188
Dose threshold	relationship, increasing risk until a plateau at 40 to 45 mg/m²	• Bortezomib	34,69,200,201
Infusion duration	Longer infusion duration may reduce neurotoxicity	• Taxanes	114-116,141
		• Oxaliplatin	
Treatment duration	Longer duration of treatment increases the risk of neurotoxicity	• Thalidomide	33,190
“Stop-and-go” regimen	may be associated with lower neurotoxicity	• Oxaliplatin	142,143

CIPN indicates chemotherapy-induced peripheral neuropathy.
neurotoxicity compared with patients treated with XELOX regimens, a finding that was attributed to the 6% greater oxaliplatin dose (grade 3: 10% vs 13%).

Initial assessments characterized oxaliplatin-induced neuropathy as largely reversible, with a median recovery time of 13 weeks. Studies using clinician-based grading scales identified 0.5% to 0.7% of patients with severe neurotoxicity at 18 to 48 months after treatment. Overall, 15% of patients were reported to have neurotoxic symptoms at 2 years posttreatment using the NCI scale. However, the addition of patient-reported outcome measures demonstrated increased prevalence, with 60% of patients reporting lasting neuropathic symptoms interfering with function compared with 10% of patients graded with severe neuropathy by clinicians. Six months after oxaliplatin treatment, 32% of patients reported persistent numbness and tingling (ranging from “somewhat” to “quite a bit more severe”) using the FACT/GOG-Ntx scale, while only 5.2% of the same cohort were classified as having moderate or severe neuropathy (NCI grades 2 or 3). At 7 years after oxaliplatin treatment, there remained significant numbness in the hands and feet reported by patients, with 29% reporting at least “somewhat severe” neuropathic foot symptoms at follow-up. In addition, patients treated with oxaliplatin had an odds ratio of 2.78 for persistent foot numbness or tingling compared with other patients. Furthermore, clinically significant neuropathic symptoms persisted in patients 2 to 11 years after oxaliplatin treatment, as reported via the patient-reported outcome scale EORTC QLQ-CIPN20.

In addition, more than 75% of patients are reported to demonstrate lasting neurophysiological abnormalities with persistent reductions in sensory amplitudes. At 18 months since oxaliplatin treatment, there was no recovery observed in vibration perception thresholds in the feet and 75% of patients demonstrated balance impairment. Taken in total, these findings suggested that rather than recovery, patients undergo adaptation to chronic symptoms, but have lasting deficits in sensory nerves that persist in the long term.

Cisplatin

Symptoms of cisplatin-induced neuropathy are similar to those of other CIPNs: tingling and numbness, progressing to loss of proprioception and deep tendon reflexes. CSAP amplitudes were decreased, consistent with degeneration of large sensory neurons in the DRG. The cumulative cisplatin dose was strongly associated with the risk of neurotoxicity, with neuropathy developing at cumulative doses greater than 350 mg/m² (Table 3). After 1 cycle of bleomycin, etoposide, and cisplatin (20 mg/m² of cisplatin on days 1–5), 5.2% of patients displayed mild neurotoxicity, although following 3 cycles, neurotoxicity was reported to develop in 20% to 30% of patients. An additional treatment cycle of cisplatin significantly increased the percentage of patients with neurotoxicity with 30% of patients experiencing off-treatment worsening of symptoms,158 although following 3 cycles, neurotoxicity was reported to develop in 20% to 30% of patients. An additional treatment cycle of cisplatin significantly increased the percentage of patients with neurotoxicity at both the time of treatment (24% vs 37%) and at follow-up 2 years later (28% vs 36%). Rates of neurotoxicity also increased with higher single doses of cisplatin. Furthermore, more than 50% of patients continued to progress symptomatically after the cessation of treatment, often with the development of new symptoms, including muscle cramps.

Persistent sensory neuropathy may occur in more than 20% of patients following cisplatin-based treatment, although the percentage of patients affected varies widely depending on the duration of follow-up, assessment technique used, dose, duration of treatment, and other risk factors. The risk of persisting neuropathy was strongly dose-dependent. In addition, reactive platinum remains in peripheral blood mononuclear cells for many years after cisplatin treatment, and analysis of serum platinum levels up to 20 years after cisplatin treatment has revealed significant associations with the severity of neurotoxicity. There are often discrepancies between objective neurophysiological- and subjective symptom-based assessments. With objective testing, up to 80% of patients may demonstrate cisplatin-induced nerve damage, suggesting that cisplatin-induced neuropathy is irreversible but that patients adapt with functional changes that underlie symptomatic recovery over time.

Vincristine

The vinca alkaloid vincristine induces a glove-and-stocking distribution sensory neuropathy in 35% to 45% of patients. Vincristine-induced neuropathy typically develops first in the hands and then feet, leading to functional disability with fine motor tasks and walking. “Coasting” was also prominent in vincristine-induced neuropathy, with 30% of patients experiencing off-treatment worsening of symptoms. In addition to sensory symptoms, motor and autonomic neuropathies were also prominent. Patients treated with vincristine experienced muscle cramps and distal muscle weakness. Autonomic symptoms included reduced heart rate variability, postural hypotension, and bladder and bowel disturbance. Less commonly, ocular palsies and vocal cord paralysis developed. Vincristine treatment was also associated with the development of acute motor neuropathy, similar to Guillain–Barré syndrome variant acute motor axonal neuropathy. While this may be considered rare, it is important to distinguish from acute inflammatory demyelinating
neuropathy, which can also develop in patients with leukemia and lymphoma related to immune system dysfunction.176-178 These clinical presentations can be indistinguishable without electrodiagnostic studies and have different treatment implications, as the suspicion of an immune-mediated neuropathy would warrant treatment with immunotherapy.178,179

Vincristine administration may also induce severe acute neurotoxicity in patients with hereditary sensorimotor neuropathy (Charcot-Marie-Tooth disease).180 If vincristine alkaloid treatment produces severe and acute neurotoxicity in a patient without a history of inherited neuropathy, appropriate testing should be undertaken to rule out undiagnosed Charcot-Marie-Tooth disease. Antifungal treatment with azole-based agents may also exacerbate vincristine-induced neuropathy via inhibition of the hepatic enzyme cytochrome P450 complex isoenzyme 3A that is responsible for vincristine metabolism.104,181 Accordingly, it is recommended that azole-based agents be avoided during vincristine administration181 as azole treatment may dramatically increase the incidence of severe neurotoxicity.

The development of vincristine-induced neuropathy was strongly dose-dependent (Table 3), with neuropathy developing at dose of 2 to \textit{6 mg/m²}.168-170 Vincristine-induced neurotoxicity was also related to single doses, with patients receiving a 4-mg dose demonstrating worse neurotoxicity than those receiving 2 mg.168 Total dose levels have been capped at 2 mg regardless of body surface area, as increased neuropathy occurs in patients treated in excess of these doses.170 However, the development of liposome-encapsulated vincristine may enable higher doses to be administered, without increasing the neurotoxicity side effect profile, even in extensively pretreated patients.182

Vincristine-induced neuropathy has been reported to be largely reversible, although some patients report lasting dysfunction, with sensory symptoms persisting longer than motor symptoms.169 Typically mild sensorimotor symptoms resolved within 2 months.170 However, long-term follow-up of patients with non-Hodgkin lymphoma who were treated with vincristine revealed that 32\% had mild sensory symptoms that persisted at 34 months after vincristine treatment169 and 14\% had disabling sensory neuropathy at 9 years after treatment.183 In comparison, \textit{30\%} of children with acute lymphoblastic leukemia had neuropathic symptoms 7 years following chemotherapy, with objective evidence of persistent neuropathy identified in 100\% of these patients.184 Importantly, patients with sensory neuropathy following treatment for B-cell lymphoma reported a lower quality of life than those without neuropathy,185 indicating that persistent neuropathy has an important impact on patients’ lives.

Thalidomide

Neuropathy remains one of the common adverse events of thalidomide treatment,32 representing the most common reason for thalidomide dose reduction and cessation in patients with multiple myeloma.32,33,186 The overall incidence of neuropathy ranges up to 83\% of patients32,33,187 presenting as a sensory neuropathy with prominent symptoms of paresthesia in the hands and feet, numbness, and mild motor involvement including muscle cramps and weakness.33,188,189 Thalidomide-induced neuropathy involves both small- and large-fiber sensory dysfunction and is most prominent in the distal lower limbs.32

Even with extremely low doses, the duration of exposure to thalidomide is strongly associated with the development of neurotoxicity.190 The median duration of thalidomide treatment in patients with neuropathy is 3 times greater than that of patients who do not develop neuropathy.32 Long-term maintenance therapy with thalidomide for greater than 1 year leads to peripheral neuropathy in 75\% of patients, with severe neuropathy reported in approximately 35\%.191,192 Dose levels are also associated with the development of neuropathy. Lower single daily doses (100 mg/day vs 400 mg/day) produced significantly less neuropathy (56\% vs 68\% for all grades186 and 12\% vs 22\% for grades greater than 1187) and reduced the need for dose reductions due to neurotoxicity, with 42\% of patients in the high-dose cohort experiencing a dose reduction compared with 8\% of the low-dose cohort.186

The thalidomide analog lenalidomide displays a different profile of clinical activity and produces a different toxicity profile. In a direct comparison trial, while thalidomide produced severe neuropathy in 10.6\% of patients, lenalidomide produced severe neuropathy in only 0.9\%, although with greater hematological toxicity.193 The long-term outcomes of thalidomide in patients with multiple myeloma remain relatively unknown. Trials have identified that neuropathic symptoms typically improved within 3 to 4 months after the cessation of thalidomide treatment in 90\% of patients.194 However, studies in patients with other disorders who were treated with thalidomide for more than 2 years have suggested limited and slow reversibility of neuropathy.189

Bortezomib

Bortezomib is the first of a new class of proteasome inhibitors to enter clinical use, and is highly active in multiple myeloma.69 However, bortezomib induces a painful sensory neuropathy in 50\% of patients, with moderate or severe neurotoxicity developing in up to 30\%.34,69 Bortezomib-induced peripheral neuropathy is predominantly sensory, with paresthesia and numbness occurring in distal
areas, particularly lower limbs.32 In contrast to other CIPNs, bortezomib-induced neuropathy involves prominent small fiber involvement, characterized by sharp, burning pain in the toes and soles of the feet.195 Autonomic involvement may develop, including orthostatic hypotension, suppressed heart rate variability, and delayed gastric emptying,195 but motor involvement is uncommon.32,196 Typically, 10% of patients must discontinue bortezomib treatment due to neuropathic symptoms.34 In rare cases, bortezomib may also produce a demyelinating sensorimotor neuropathy (similar to an immune-mediated neuropathy) in a small number of patients, which responds to immunotherapy.197

The incidence and severity of bortezomib-induced neuropathy were dependent on the single-dose level, with 37% of patients treated with 1.3 mg/m2 developing neuropathy compared with 21% of patients treated with 1.0 mg/m2 (Table 3).199 Importantly, dose modification seemed to have an important impact on reversibility, with a higher percentage of patients experiencing recovery after undergoing dose reduction protocols (68% vs 47%).198

Dose intensity was a significant risk factor, with patients treated with twice-weekly bortezomib developing significantly greater neurotoxicity than those treated once weekly (grade 3: 28% vs 8%).199 However, bortezomib-induced neuropathy demonstrated a “dose threshold” relationship, with the onset of neuropathy occurring at a cumulative dose of 16 to 26 mg/m2 and increasing in incidence until 40 to 45 mg/m2 but with no dramatic increase beyond this plateau.69,200 In trials with lower dose intensity, this plateau effect still occurred at a cumulative dose of approximately 45 mg/m2, although following a longer duration of treatment.201 Similarly, patients who underwent prolonged bortezomib treatment did not experience increased levels of neuropathy beyond the plateau dose.69

While studies using subjective grading scales demonstrated resolution of bortezomib-induced neuropathy with a median of 2 to 3 months after treatment in 60% to 85% of patients,69,193,198 more than 25% of patients may be left with persistent neuropathy.202 In addition, a study that used objective assessment of nerve function suggested that neuropathy persisted in the long term without

\begin{table}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{PREVENTION} & \textbf{CATEGORY} & \textbf{AGENTS} \\
\hline
Acetyl-L-carnitine & Antioxidant & Cisplatin; carboplatin/ paclitaxel \\
\hline
Alpha lipoic acid & Antioxidant & Paclitaxel \\
\hline
L-carnitine L-tartrate & Antioxidant & Paclitaxel \\
\hline
Glutamine & Antioxidant & Bortezomib \\
\hline
Glutathione & Antioxidant & Carboplatin/paclitaxel \\
\hline
Vitamins B6, B12 & Antioxidant & Cisplatin; taxanes; vinca alkaloids \\
\hline
Fish oil & Dietary intervention; antioxidant & Taxanes \\
\hline
Pregabalin & Anticonvulsant & Oxaliplatin; paclitaxel \\
\hline
Venlafaxine & Antidepressant & Oxaliplatin \\
\hline
Riluzole & Neuroprotectant & Oxaliplatin \\
\hline
Calcium/magnesium infusion & Neuroprotectant & Oxaliplatin \\
\hline
GM1 monosialoganglioside & Neuroprotectant/ ganglioside & Cisplatin \\
\hline
Minocycline & Antibiotic & Oxaliplatin \\
\hline
Polyamine-depleted diet & Dietary intervention & Oxaliplatin \\
\hline
Cryotherapy & Intervention (temperature) & Paclitaxel \\
\hline
\end{tabular}
\caption{Current Clinical Trials in the Prevention and Treatment of CIPNa}
\end{table}

\begin{table}
\centering
\begin{tabular}{|l|l|l|}
\hline
\textbf{TREATMENT} & \textbf{CATEGORY} & \textbf{AGENTS} \\
\hline
Dietary amino acid supplements & Dietary intervention; antioxidant & CIPN \\
\hline
Acupuncture & Intervention & Thalidomide; bortezomib; paclitaxel; oxaliplatin \\
\hline
Electronic stimulation M5-A scrambler & Intervention (stimulation) & CIPN \\
\hline
Ethosuximide & Anticonvulsant & CIPN \\
\hline
Photon stimulation & Intervention (infrared light) & CIPN \\
\hline
Topical gel & Analgesic & CIPN \\
\hline
Tetrodotoxin & Voltage-gated sodium channel blocker & CIPN \\
\hline
Oxycodone/ naloxone & Opioid analgesic & CPIN \\
\hline
Cannabinoids & Analgesic & Cisplatin; vincristine; paclitaxel \\
\hline
Angiotensin II type 2 receptor antagonist & Analgesic & CIPN \\
\hline
\end{tabular}
\caption{Current Clinical Trials in the Prevention and Treatment of CIPNa}
\end{table}
improvement in small-fiber or large-fiber nerve dysfunction at one year of follow-up, indicating that clinical recovery may not reflect resolution of neurological deficits.

Neuroprotective Approaches and Treatment Strategies

At present, dose modification and interruption remain the most successful approaches for the prevention of CIPN. Fortunately, higher-dose therapy schedules are not often required to achieve the best outcomes, and so there is scope for dose modification. Structured dose-modification protocols may demonstrate a significant benefit in ameliorating neurotoxicity. Implementation of a dose reduction protocol in patients treated with bortezomib reportedly led to improved “reversibility” of neuropathic symptoms in patients who underwent dose reduction. However, further studies are required to address the efficacy of specific dose reduction protocols for other neurotoxic chemotherapies. While there is evidence more broadly that the cumulative dose is associated with the development of neuropathy, the specific improvements with dose reduction protocols are not well described. Shorter treatment courses, longer infusion durations, and providing breaks in treatment (such as in “stop-and-go” regimens) have also assisted in reducing neurotoxicity rates. The identification of individual patients at high risk of developing severe neurotoxicity prior to administration will be crucial to reducing the incidence of neurotoxicity. Specifically, patients with a preexisting neuropathy or a condition that predisposes to peripheral neuropathy, such as diabetes mellitus, are typically at higher risk.

There are currently no therapies with a confirmed neuroprotective benefit available for clinical use in patients with CIPN. While a number of potential approaches are being investigated in clinical trials (Table 4) and many neuroprotective compounds have already been studied, there has been limited success to support the introduction of neuroprotective therapies in clinical trials for CIPN, and any successes to date have often failed to be replicated in larger-scale randomized controlled trials. Accordingly, a
key element in the search for neuroprotective agents remains the design of clinical trials with physiologically relevant, robust, and sensitive endpoints, including patient-reported outcomes.

Several antioxidant compounds designed to protect neuronal cell bodies against DNA damage and toxic accumulation have been assessed. Of these, glutathione and glutamine are still under development, with some preliminary positive findings. A related thiol, N-acetylcysteine, ameliorated oxaliplatin–induced neurotoxicity in a pilot study. In addition, vitamin E supplementation has also been demonstrated to reduce the incidence of neuropathy in patients treated with cisplatin and paclitaxel, but this finding was not confirmed in a phase 3 trial. A number of other antioxidants and vitamins are currently undergoing assessment in clinical trials (Table 4). However, none of these compounds have a proven clinical role at present and evidence of benefit will clearly be required to justify larger prospective clinical trials.

With regard to oxaliplatin–induced neurotoxicity, calcium (Ca\(^{2+}\)) and magnesium (Mg\(^{2+}\)) infusions administered before and after treatment with oxaliplatin have been reported to provide some benefit in reducing neurotoxicity and improving the reversibility of neuropathic symptoms, possibly related to oxalate–mediated chelation of Ca\(^{2+}\) and Mg\(^{2+}\) ions. Similarly, retrospective meta-analyses suggested that Ca\(^{2+}\) and Mg\(^{2+}\) infusions may be of benefit without reducing chemotherapy efficacy. However, recent evidence from a randomized placebo-controlled trial of 353 patients treated with oxaliplatin indicated that infusions of Ca\(^{2+}\) and Mg\(^{2+}\) did not demonstrate efficacy in preventing or reducing neurotoxicity. In addition, there remains some controversy over the potential effects of Ca\(^{2+}\) and Mg\(^{2+}\) infusions on reducing the therapeutic efficacy of oxaliplatin.

Antiepileptic and antidepressant medications may have potential for symptom control in patients with CIPN based on their use in the more general treatment regimens for neuropathic pain. While a number of therapies have been studied to date, no treatments have specifically been recommended for CIPN. There is preliminary evidence to support the introduction of valproate, venlafaxine, and oxcarbazepine. A phase 3 trial in patients treated with oxaliplatin indicated that venlafaxine reduced acute symptoms and may also have prevented severe chronic neurotoxicity. In addition, a randomized controlled trial in patients with painful CIPN indicated that duloxetine was effective in reducing patient-reported pain ratings. However, several antiepileptic or antidepressant agents have failed to demonstrate significant activity in clinical trials, including amitriptyline, gabapentin, and lamotrigine. Again, randomized clinical trials will be required to determine the benefits of antiepileptic and antidepressant medications in patients with CIPN.

A number of experimental symptomatic treatments are currently being studied in patients with CIPN (Table 4), including neurostimulation techniques, topical analgesic creams, acupuncture, and dietary modifications. However, the role of these interventions in treating patients with CIPN remains unclear.

Given the lack of proven and effective treatments for CIPN, a larger focus has been placed on clinical management and patient education strategies to mitigate against secondary injury arising as a result of neuropathy. Therapy to improve balance and gait difficulties may be recommended for suitable patients and occupational therapy may be warranted to assist patients in adapting their activities and their environment. Of relevance, the assessment of physical performance in cancer survivors has revealed a significant association between chronic neuropathy, functional difficulties, and falls, suggesting that CIPN may produce lasting dysfunction in up to 58% of patients. CIPN is an important factor in increasing the risk of falls, with 20% of patients experiencing falls during chemotherapy. Patients who experienced falls reported significantly greater symptoms of neuropathy, with greater functional impairment linked to the degree of neuropathy.

Conclusions

CIPN remains a clinically significant and potentially serious side effect of cancer treatment, with increasing relevance to the millions of cancer survivors worldwide. The number of cancer survivors with disability due to CIPN is underreported, as the use of patient-reported outcomes and objective assessment tools typically reveal greater neurotoxicity than clinician assessment. Improved understanding concerning the pathophysiology underlying the development of CIPN and the diverse mechanisms across different chemotherapies seems crucial to the development of future neuroprotective strategies. Appropriate, standardized, and objective assessment tools combined with validated instruments that also document patient-reported symptoms will be necessary to identify the long-term impact of CIPN in cancer survivors. The dividend of improved cancer outcomes with advances in treatment may be compromised if we fail to develop approaches to minimize the chronic consequences of toxicities such as CIPN.
1. Boyle P, Levin B, eds. World Cancer Report. Lyon, France: International Agency for Research on Cancer; 2008.

2. Howlader N, Noone AM, Krapcho M, et al, eds. SEER Cancer Statistics Review, 1975-2010. Bethesda, MD: National Cancer Institute; 2013, based on the November 2012 SEER data submission. seer.cancer.gov/csr/1975_2010/

3. Topp KS, Barton D, Kottschade L, Grothey A, Lamann C. Chemotherapy-induced peripheral neuropathy: prevention and treatment strategies. *Eur J Cancer*. 2008;44:1507-1515.

4. Ebell MH, Siwek J, Weiss BD, et al. Strength of recommendation taxonomy (SORT): a patient-centered approach to grading evidence in the medical literature. *Am Fam Physician*. 2004;69:548-556.

5. Hausheer FH, Schilsky RL, Bain S, Berghorn LJ, Lieberman F. Diagnosis, management, and evaluation of chemotherapy-induced peripheral neuropathy. *Semin Oncol*. 2006;33:15-49.

6. Allen DT, Kiernan JA. Permeation of proteins from the blood into peripheral nerves and ganglia. *Neuroscience*. 1994;59:755-764.

7. Gregg RW, Molepo JM, Monpetit VJ, et al. Cisplatin neurotoxicity: the relationship between dose, time, and platinum concentration in neurologic tissues, and morphologic evidence of toxicity. *J Clin Oncol*. 1992;10:795-803.

8. Krarup-Hansen A, Rietz B, Krarup C, et al. Cisplatin neurotoxicity in healthy volunteers correlates with platinum-DNA binding. *Neurotoxicology*. 2006;27:992-1002.

9. Dzagnidze A, Katsarava Z, Makhalova J, et al. Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. *J Neurosci*. 2007;27:9451-9457.

10. Peters CM, Jimenez-Andrade JM, Kuskowski MA, et al. An evolving cellular pathology occurs in dorsal root ganglia, peripheral nerve and spinal cord following intravenous administration of paclitaxel in the rat. *Brain Res*. 2007;1168:46-59.

11. Lapointe NE, Morfini G, Brady ST, et al. Effects of eribulin, vincristine, paclitaxel and ixabepilone on fast axonal transport and kinesin-1 driven microtubule gliding: implications for therapy-induced peripheral neuropathy. *Neurotoxicology*. 2013;37:231-239.

12. Poruchynsky MS, Sackett DL, Robey RW, et al. Proteasome inhibitors increase tubulin polymerization and stabilization in tissue culture cells: is a possible mechanism contributing to peripheral neuropathy and cellular toxicity following proteasome inhibition. *Cell Cycle*. 2008;7:940-949.

13. Flatters SJJ, Bennett GJ. Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction. *Pain*. 2006;122:245-257.

14. Cavaletti G, Gilardini A, Canta A, et al. Bortezomib-induced peripheral neurotoxicity: a neuropathological and pathological study in the rat. *Exp Neurol*. 2007;204:317-325.

15. Kirkham R, Tietz AB, Panagiotou E, et al. Therapeutic angiogenesis inhibits or rescues chemotherapy-induced peripheral neuropathy: taxol and thalidomide-induced injury of vasa nervorum is ameliorated by VEGF. *Mol Ther*. 2007;15:69-75.

16. Melli G, Jack C, Lambrinos GL, et al. Erythropoietin protects sensory axons against paclitaxel-induced distal degeneration. *Neurobiol Dis*. 2006;24:525-530.

17. Silva A, Wang Q, Wang M, et al. Evidence for direct axonal toxicity in vincristine neuropathy. *J Peripher Nerv Syst*. 2006;11:211-216.

18. Isoardo G, Bergui M, Durelli L, et al. Thalidomide neuropathy: clinical, electrophysiological and neuroradiological features. *Acta Neurol Scand*. 2004;109:188-193.

19. Adelsberger H, Quasthoff S, Grosskreutz J, et al. The chemotherapeutic oxaliplatin alters voltage-gated Na channel kinetics on rat sensory neurons. *Eur J Pharmacol*. 2000;406:25-32.

20. Webster RG, Brain KL, Wilson RH, et al. Oxaliplatin induces hyperexcitability at motor and autonomic neuromuscular junctions through effects on voltage-gated sodium channels. *Br J Pharmacol*. 2005;146:1027-1039.

21. Sittl R, Lampert A, Huth T, et al. Anti-cancer drug oxaliplatin induces acute cooling-aggravated neuropathy via sodium channel subtype Na(V)1.6-resurgent and persistent current. *Proc Natl Acad Sci U S A*. 2012;109:6704-6709.

22. Titulaer MJ, Soffietti R, Dalfampt J, et al. Screening for tumours in paraneoplastic syndromes: report of an EFNS task force. *Eur J Neurol*. 2011;18:63-73.

23. Giometto B, Grisold W, Vitaliani R, et al. Paraneoplastic neuropsychologic syndrome in the PNS Euronetwork database: a European study from 20 centers. *Arch Neurol*. 2010;67:330-335.

24. Camdessanche JP, Antoine JC, Honnorat J, et al. Paraneoplastic peripheral neuropathy associated with anti-Hu antibodies. A clinical and electrophysiological study of 20 patients. *Brain*. 2002;125:166-175.

25. Antoine JC, Camdessanche JP. Paraneoplastic disorders of the peripheral nervous system. *Presse Med*. 2013;42(6 pt 2):e235-e244.

26. Honnorat J, Cartalat-Carel S, Ricard D, et al. Onconeural antibodies and tumour type determine survival and neurological symptoms in paraneoplastic neurological syndromes with Hu or CV2/CRMP5 antibodies. *J Neurol Neurosurg Psychiatry*. 2009;80:412-416.

27. Richardson PG, Laubach JP, Schlossman RL, et al. Complications of multiple myeloma therapy, part 1: risk reduction and management of peripheral neuropathy and asthenia. *J Natl Compr Cancer Netw*. 2010;8(1 suppl 1):S4-S12.

28. Milesklin L, Stark R, Day B, et al. Development of neuropathy in patients with myeloma treated with thalidomide: patterns of occurrence and the role of electro-physiologic monitoring. *J Clin Oncol*. 2006;24:4507-4514.

29. Richardson PG, Xie W, Mitsiades C, et al. Single-agent bortezomib in previously untreated multiple myeloma: efficacy, characterization of peripheral neuropathy, and molecular correlations with response and neuropathy. *J Clin Oncol*. 2009;27:3518-3525.

30. Malhotra P, Choudhary PP, Lai V, Varma N, Suri V, Varma S. Prevalence of peripheral neuropathy in multiple myeloma at initial diagnosis. *Leuk Lymphoma*. 2011;52:2135-2138.

31. Lanfani P, Mattavelli L, Frigeni B, et al. Role of a pre-existing neuropathy on the course of bortezomib-induced peripheral neurotoxicity. *J Peripher Nerv Syst*. 2008;13:267-274.

32. Ramchandren S, Lewis RA. An update on monoclonal gammapathy and neuropathy. *Curr Neurol Neurosci Rep*. 2012;12:102-110.

33. Dispenzieri A. POEMS syndrome: update on diagnosis, risk-stratification, and management. *Am J Hematol*. 2012;87:804-814.

34. Rajabally YA. Neuropathy and paraproteins: review of a complex association. *Eur J Neurol*. 2011;18:1291-1298.

35. Kuwabara S, Dispenzieri A, Arimura K, Misawa S, Nakaseko C. Treatment for POEMS (polyneuropathy, organomegaly, endocrinopathy, M-protein, and skin changes) syndrome. *Cochrane Database Syst Rev*. 2012;6:CD006826.

36. Viola K, Behin A, Maisonneuve T, et al. Neuropathy in lymphoma: a relationship between the pattern of neuropathy, type of lymphoma and prognosis? *J Neurol Neurosurg Psychiatry*. 2008;79:778-782.

37. Klein CJ, Moon JS, Mauermann ML, et al. The neuropathies of Waldenstrom’s macroglobulinemia (WM) and IgM-MGUS. *Can J Neurol Sci*. 2011;38:289-295.

38. Giometto B, Vitaliani R, Lindeck-Pozza E, et al. Treatment for paraneoplastic neuropathies. *Cochrane Database Syst Rev*. 2012;12:CD007625.

39. Cavaletti G, Frigeni B, Lanzani F, et al. Chemotherapy-induced peripheral neurotoxicity: a critical revision of the currently available tools. *Eur J Cancer*. 2010;46:479-494.

40. Griffith KA, Merkies ISJ, Hill EE, Combrinck DR. Measures of chemotherapy-induced peripheral neuropathy: a systematic review. *Med J Aust*. 2009;190:528-531.
review of psychometric properties. J Peripher Nerv Syst 2010;15:314-325.

46. Fromme EK, Eilers KM, Mori M, Hsieh Y-C, Beer TM. How accurate is clinician reporting of chemotherapy adverse effects? A comparison with patient-reported symptoms from the European Organization for Research and Treatment of Cancer Questionnaire C30. J Clin Oncol. 2004;22:3485-3490.

47. Basch E, Lasonos A, McDonough T, et al. Patient versus clinician symptom reporting using the National Cancer Institute Common Terminology Criteria for Adverse Events: results of a questionnaire-based study. Lancet Oncol. 2006;7:903-909.

48. Stubblefield MD, McNeely ML, Alfano CM, Mayer DK. A prospective surveillance model for physical rehabilitation of women with breast cancer: chemother-apy-induced peripheral neuropathy. Cancer. 2012;118:2250-2260.

49. Trotti A, Colevas AD, Setser A, et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol. 2003;13:176-181.

50. Postma TJ, Heimans JJ, Muller MJ, et al. Validation of a self-reported neurotoxicity questionnaire [published online ahead of print 2010;8:e15-e21].

51. Cavaletti G, Cornblath DR, Markies ISJ, et al. Chemotherapy-induced peripheral neuropathy outcome measures standardization study: from consensus to the first validity and reliability findings. Ann Oncol. 2013;24:454-462.

52. Cornblath DR, Chaudhry V, Carter K, et al. Total neuropathy score: validation and reliability study. Neurology. 1999;53:1660-1666.

53. Chaudhry V, Cornblath DR, Corse A, et al. Thalidomide-induced neuropathy. Neurology. 2002;59:1872-1875.

54. Cavaletti G, Bogliun G, Morzaroli L, et al. Grading of chemotherapy-induced peripheral neuropathy using the Total Neuropathy Scale. Neurology. 2003;61:1297-1300.

55. Cavaletti G, Frigeni B, Lanzi F, et al. The Total Neuropathy Score as an assessment tool in grading the course of chemotherapy-induced peripheral neuropathy: comparison with the National Cancer Institute-Common Toxicity Scale. J Peripher Nerv Syst. 2007;12:210-215.

56. Cavaletti G, Jann S, Pace A, et al. Multicenter assessment of the Total Neuropathy Score for chemotherapy-induced peripheral neuropathy. J Peripher Nerv Syst. 2006;11:135-141.

57. Frigeni B, Platti M, Lanzi F, et al. Chemotherapy-induced peripheral neuropathy can be misdiagnosed by the National Cancer Institute Common Toxicity Scale. J Peripher Nerv Syst. 2011;16:228-236.

58. Smith EM, Cohen JA, Pett MA, Beck SL. The reliability and validity of a modified total neuropathy score-reduced and neuropathy pain severity items when used to measure chemotherapy-induced peripheral neuropathy in patients receiving taxanes and platinum. Cancer Nurs. 2010;33:173-183.

59. Sasane M, Tencer T, French A, et al. Patient-reported outcomes in chemotherapy-induced neuropathy: a review. J Support Oncol. 2010;8:615-621.

60. Cirillo M, Venturini M, Ciccarelli L, et al. Clinician versus nurse symptom reporting using the National Cancer Institute-Common Terminology Criteria for Adverse Events during chemotherapy: results of a comparison based on patient’s self-reported questionnaire. Ann Oncol. 2009;20:1929-1935.

61. Morton RF, Sloan JA, Grothey A, et al. A comparison of single simple-item measures and the common toxicity criteria in detecting the onset of oxaliplatin-induced peripheral neuropathy in patients with colorectal cancer. J Clin Oncol. 2005;23(suppl 16):8087.

62. Postma TJ, Aaronson NK, Heimans JJ, et al. The development of an EORTC quality of life questionnaire to assess chemotherapy-induced peripheral neuropathy: the QLQ-CIPN20. Eur J Cancer. 2005;41:1135-1139.

63. Calhoun EA, Welshman EE, Chang C-H, et al. Psychometric evaluation of the Functional Assessment of Cancer Therapy-Gynecologic Oncology Group-Neuropathy Scale for patients receiving systemic chemotherapy. Int J Gynecol Cancer. 2003;13:741-748.

64. Hershman D, Weimer L, Wang A, et al. Association between patient reported outcome and quantitative sensory tests for measuring long-term neuropathy in breast cancer survivors treated with adjuvant paclitaxel chemotherapy. Breast Cancer Res Treat. 2011;125:767-774.

65. Huang HQ, Brady MF, Cella D, Fleming G. Validation and reduction of FACT/GOG-Ntx subscale for platinum/paclitaxel-induced neurotoxicity: a gynecologic oncology group study. Int J Gynecol Cancer. 2007;17:387-393.

66. Driesen CML, de Kleine-Bolt KME, Vingerhoets AJJM, Mols F, Vreeugdenhil G. Assessing the impact of chemotherapy-induced peripheral neuropathy on the quality of life of cancer patients: the introduction of a new measure. Support Care Cancer. 2012;20:877-881.

67. Cella D, Peterman A, Hudgens S, Webster JL, Floeter MK. Oxaliplatin-induced neuropathy. J Neuro-Oncol. 2006;7:903-909.

68. Moore DH, Donnelly J, McGuire WP, et al. Frequency, characteristics, and relationship between numbness, tingling, and shooting/burning pain in patients with chemotherapy-induced peripheral neuro-
CIPN: A Critical Analysis

86. Kiernan MC, Burke D, Andersen KV, Bostock H. Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve. 2000;23:399-409.

87. Park SB, Lin CS-Y, Krishnan AV, et al. Oxaliplatin-induced neurotoxicity: changes in axonal excitability precede development of neuropathy. Brain. 2009;132:2712-2723.

88. Park SB, Goldstein D, Lin CS-Y, et al. Acute abnormalities of sensory nerve function associated with oxaliplatin-induced neurotoxicity. J Clin Oncol. 2009;27:1243-1249.

89. Forsyth P, Balmaceda C, Peterson K, et al. Prospective study of paclitaxel-induced peripheral neuropathy with quantitative sensory testing. J Neurol. 1997;35:47-55.

90. Attal N, Bouhassira D, Gautron M, et al. Thermal hyperalgesia as a marker of oxaliplatin neurotoxicity: a prospective quantified sensory assessment study. Pain. 2009;144:245-252.

91. Pestronk A, Florence J, Levine T, et al. Sensory exam with a quantitative tuning fork: rapid, sensitive and predictive of SNAP amplitude. Neurology. 2004;62:461-464.

92. Rolke R, Baron R, Maier C, et al. Quantitative sensory testing in the German Research Network on Neuropathic Pain (DFNS): standardized protocol and reference values. Pain. 2006;123:231-243.

93. Cavali G, Alberi P, Marmori P. Chemotherapy-induced peripheral neuropathy in the era of pharmacogenomics. Lancet Oncol. 2011;12:1151-1161.

94. Lecomte T, Landi B, Beaune P, Laurent-Puig P, Loriot MA. Glutathione S-transferase-P1 polymorphism predicts cumulative neuropathy in patients receiving oxaliplatin-based chemotherapy. Clin Cancer Res. 2006;12:3050-3056.

95. Ruzzo A, Graziano F, Loupakis F, et al. Pharmacogenetic predictors of adverse events and response to chemotherapy in metastatic colorectal cancer. J Clin Oncol. 2010;28:3227-3233.

96. Goekkurt E, Al-Batran SE, Hartmann JT, et al. Pharmacogenetic analyses of a phase III trial in metastatic gastroesophageal adenocarcinoma with fluorouracil and leucovorin plus either oxaliplatin or cisplatin. J Clin Oncol. 2009;27:2863-2873.

97. Kweeckel DM, Gelderblom H, Antonini NF, et al. Oxaliplatin-S-transferase pi (GSTT1) codon 105 polymorphism is not associated with oxaliplatin efficacy or toxicity in advanced colorectal cancer patients. Eur J Cancer. 2009;45:572-578.

98. Boige V, Mendiboure J, Pignon JP, et al. Pharmacogenetic assessment of toxicity and outcome in patients with metastatic colorectal cancer treated with LV5FU2, FOLFOX and FOLFOXIRI. JFCCD 2000-05. J Clin Oncol. 2010;28:2556-2564.

99. Oldenburg J, Kragerud SM, Brydoy M, Coenegrachts M, Gothe RA, Fossa SD. Association between long-term neuro-toxicities in testicular cancer survivors and polymorphisms in glutathione-S-transferase-P1 and -M1, a retrospective cross sectional study. J Transl Med. 2007;5:70.

100. Leskela S, Jara C, Leandro-Garcia LJ, et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics. 2011;11:121-129.

101. Marsh S, Paul J, King CR, Gifford C, McLeod HL, Brown R. Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer. J Clin Oncol. 2007;25:4528-4535.

102. Bergmann TK, Green H, Brasch-Andersen A, et al. RETROSPECTIVE study of the impact of pharmacogenetic variants on paclitaxel toxicity and survival in patients with ovarian cancer. Eur J Clin Pharmaco. 2011;76:693-700.

103. Dennison JB, Jones DR, Renbarger JL, Hall SD. Effect of CYP3A5 expression on vincristine metabolism with human liver microsomes. J Pharmacol Exp Ther. 2002;321:553-563.

104. Egbelakin A, Ferguson MJ, MacGill EA, et al. In vitro oxidative metabolism of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011;56:361-367.

105. Won HH, Lee J, Park JQ, et al. Polymorphic markers associated with severe oxaliplatin-induced, chronic peripheral neuropathy in colon cancer patients. Cancer. 2012;118:2829-2836.

106. Johnson DC, Corthals SL, Walker BA, et al. Genetic factors in predicting the risk of thalidomide-related neuropathy in patients with multiple myeloma. J Clin Oncol. 2011;29:797-804.

107. Broyl A, Corthals SL, Jongen JL, et al. Mechanisms of peripheral neuropathy associated with bortezomib and vincristine in patients with newly diagnosed multiple myeloma: a prospective analysis of data from the BEAT study. Blood. 2011;118:1057-1065.

108. Argyriou AA, Koltzsenburg M, Polychronopoulos P, Papapetropoulos S, Kalofonos HP. Peripheral nerve damage associated with administration of taxanes in patients with multiple myeloma. J N Eur Oncol Hematol. 2008;66:218-228.

109. Rowinsky EK, Donehower RC. Neurotoxicity of taxol. Ann Oncol. 2003;14:693-700.

110. Donehower RC. Neurotoxicity of taxol. J Natl Cancer Inst Monogr. 1993;(15):107-115.

111. Winer EP, Berry DA, Woolf S, et al. Randomized phase III trial of paclitaxel as adjuvant therapy for breast cancer. J Natl Cancer Inst. 2007;99:3403-3411.

112. Mielke S, Mross K, Gerds TA, et al. Comparative neurotoxicity of weekly non-break paclitaxel infusions versus 3 h. Anticancer Drugs. 2003;14:785-792.

113. Gradishar WJ, Kraosnojon D, Cheporov S, et al. Significantly longer progression-free survival with nab-paclitaxel compared with docetaxel as first-line therapy for metastatic breast cancer. J Clin Oncol. 2009;27:3611-3619.

114. Green MC, Buzzard AU, Smith T, et al. Weekly paclitaxel improves pathologic complete remission in operable breast cancer when compared with paclitaxel once every 3 weeks. J Clin Oncol. 2005;23:5983-5992.

115. Rivera E, Mejia JA, Arun BK, et al. Phase 3 study comparing the use of docetaxel on an every-3-week versus weekly schedule in the treatment of metastatic breast cancer. Cancer. 2008;112:1455-1461.

116. Tabernero J, Climent MA, Lluch A, et al. A multicentre, randomised phase II study of weekly or 3-weekly docetaxel in patients with metastatic breast cancer. Ann Oncol. 2004;15:1358-1365.

117. Mauri D, Kompasoria K, Tsali L, et al. Overall survival benefit for weekly vs. three-weekly taxanes regimens in advanced breast cancer: a meta-analysis. Cancer Treat Rev. 2010;36:69-74.

118. Schroder CP, de Mulck L, Westermann AM, et al. Weekly docetaxel in metastatic breast cancer patients: no superior benefits compared to three-weekly docetaxel. Eur J Cancer. 2011;47:1355-1362.

119. Perez EA, Suman VJ, Rowland KM, et al. Two concurrent phase II trials of paclitaxel/carboplatin/trastuzumab (weekly or every-3-week schedule) as first-line therapy in women with HER2-overexpressing metastatic breast cancer. Clin Breast Canc. 2005;6:425-432.

120. Budd GT, Barlow WE, Moore, HCF, et al. Comparison of two schedules of paclitaxel as adjuvant therapy for breast cancer [abstract]. J Clin Oncol. 2013;31. Abstract CRA1008.

121. Huang TC, Campbell TC. Comparison of weekly versus every 3 weeks paclitaxel in the treatment of advanced solid tumors: a meta-analysis. Cancer Treat Rev. 2012;38:613-617.

122. Sparano JA, Wang M, Martino S, et al. Weekly paclitaxel in the adjuvant treatment of breast cancer. N Engl J Med. 2008;358:1663-1676.

123. Seidman AD, Berry D, Cirrincione C, et al. Randomized phase III trial of weekly compared with every-3-weeks paclitaxel for metastatic breast cancer, with trastuzumab for all HER-2 overexpressors and random assignment to trastuzumab or not in HER-2 nonoverexpressers: final results of Cancer and Leukemia Group B protocol 9840. J Clin Oncol. 2008;26:1642-1649.
128. Fountzilas G, Dafni U, Dimopoulos M, et al. A randomized phase III study comparing three anthracycline-free taxane-based regimens, as first line chemotherapy in metastatic breast cancer: a Hellenic Cooperative Oncology Group study. Breast Cancer Res Treat. 2009;115:87-99.

129. Zhang Z, Mei L, Feng SS. Paclitaxel drug delivery systems. Expert Opin Drug Deliv. 2013;10:325-340.

130. Pace A, Nisticò C, Cuppone F, et al. Peripheral neurotoxicity of weekly paclitaxel: a schedule or a dose issue? Clin Breast Canc. 2007;7:550-554.

131. Pignata S, De Placido S, Biamonte R, et al. Residual neurotoxicity in ovarian cancer patients in clinical remission after first-line chemotherapy with carboplatin and paclitaxel: the Multicenter Italian Trial in Ovarian cancer (MITO-4) retrospective study. BMC Cancer. 2006;6:5.

132. Osmani K, Vignes S, Aissi M, et al. Taxane-induced peripheral neuropathy has good long-term prognosis: a 1- to 13-year evaluation. J Neurol. 2012;259:1936-1943.

133. Tanabe Y, Hashimoto K, Shimizu C. Paclitaxel-induced peripheral neuropathy in patients receiving adjuvant chemotherapy for breast cancer. Int J Clin Oncol. 2013;18:132-138.

134. Hile ES, Fitzgerald GK, Studenski SA. Persistent mobility disability after neurotoxic chemotherapy. Phys Ther. 2010;90:1649-1657.

135. Andrè T, Boni C, Mounejid-Boudiaf L, et al. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med. 2004;350:2343-2351.

136. Andrè T, Boni C, Navarro M, et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant chemotherapy in stage II or III colon cancer in the MOSAIc Trial. J Clin Oncol. 2009;27:3109-3116.

137. Wilson RH, Lehky T, Thomas RR, et al. Peripheral neurotoxicity of oxaliplatin in combination with 5-fluorouracil (FOLFOX) or capecitabine (XELOX): a prospective evaluation of 150 colorectal cancer patients. Ann Oncol. 2012;23:3116-3122.

138. Madi A, Fisher D, Wilson RH, et al. Oxaliplatin/capecitabine vs oxaliplatin/infusional 3-day chemotherapy in metastatic colorectal cancer: the MRC COIN trial. Br J Cancer. 2012;107:1037-1043.

139. Rothenberg ML, Cox JV, Butts C, et al. Capecitabine plus oxaliplatin (XELOX) versus 5-fluorouracil/folinic acid plus oxaliplatin (FOLFOX-4) as second-line therapy in metastatic colorectal cancer: a randomized phase III noninferiority study. Ann Oncol. 2008;19:1720-1726.

140. Diaz-Rubio E, Tabernero J, Gomez-España A, et al. Phase II study of capecitabine plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer. J Clin Oncol. 2007;25:2245-2250.

141. Bennett BK, Park SB, Lin CS, Frydland ML, Kiernan MC, Goldstein D. Impact of oxaliplatin-induced neuropathy: a patient perspective. Support Care Cancer. 2012;20:2959-2967.

142. Land SR, Kopec JA, Cezchinski RS, et al. Neurotoxicity from oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: NSABP C-07. J Clin Oncol. 2007;25:2205-2211.

143. Kidwell KM, Yothers G, Ganz PA, et al. Long-term neurotoxicity effects of oxaliplatin added to fluorouracil and leucovorin as adjuvant therapy for colon cancer. Cancer. 2012;118:5614-5622.

144. Mols F, Beiers J, Lemmens V, et al. Chemotherapy-induced neuropathy and its association with quality of life among 2- to 11-year colorectal cancer survivors: results from the population-based PROFILES registry. J Clin Oncol. 2013;31:2699-2707.

145. Park SB, Lin CS, Krishnan AV, et al. Long-term neurotoxicity of oxaliplatin treatment: challenging the dictum of reversibility. Oncologist. 2011;16:708-716.

146. Burakgazi AZ, Messersmith W, Vaidya D, et al. Longitudinal assessment of oxaliplatin-induced neuropathy. Neurology. 2011;77:980-986.

147. Brouwers EE, Huijtema AD, Beijnen JH, Schellens JH. Long-term platinum retention after treatment with cisplatin and oxaliplatin. BMC Cancer Pharmacol. 2008;8:7.

148. Sprauten M, Darrah TH, Peterson DR, et al. Impact of long-term serum platinum concentrations on neuro- and ototoxicity in cisplatin-treated survivors of testicular cancer. J Clin Oncol. 2012;30:300-307.

149. Stratton DB, Brogge S, Korn MW, et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol. 2002;13:229-236.

150. Postma TJ, Benard BA, Huigens PC, Osenkopppe CJ, Heijmen BJ. Long-term effects of vincristine on the peripheral nervous system. J Neurooncol. 1993;15:23-27.

151. Haim N, Epelbaum R, Ben-Shahar M, et al. Full dose vincristine (without 2-mg complications by significant neuro-toxicity. Eur J Cancer. 2002;38:587-391.

152. von Schlippe M, Fowler CJ, Harland SJ. Cisplatin neurotoxicity in the treatment of metastatic germ cell tumour: time course and prognosis. Br J Cancer. 2001;85:823-826.

153. Albers P, Siener R, Kresse S, et al. German Testicular Cancer Study Group. Randomized phase III trial comparing retrospective lymph node dissection with one course of bleomycin and etoposide plus cisplatin chemotherapy in the adjuvant treatment of clinical stage I nonseminomatous testicular germ cell tumors: AIO trial AH 01/94 by the German Testicular Cancer Study Group. J Clin Oncol. 2008;26:2966-2972.

154. Grimison PS, Stockler MR, Thomson DB, et al. Comparison of two standard chemotherapy regimens for good-prognosis germ cell tumors: updated analysis of a randomized trial. J Natl Cancer Inst. 2010;102:1253-1262.

155. Nichols CR, Williams SD, Loehrer PJ, et al. Randomized study of cisplatin dose intensity in poor-risk germ cell tumors: a Southeast Cancer Study Group and Southwest Oncology Group protocol. J Clin Oncol. 1991;9:1163-1172.

156. Siegel T, Hain N. Cisplatin-induced peripheral neuropathy. Frequent off-therapy deterioration, demyelinating syndromes, and muscle cramps. Cancer. 1990;66:1117-1123.

157. Brydow M, Oldenburg J, Klepp O, et al. Observer-based study of prevalence of long-term Raynaud-like phenomena and neurological side effects in testicular cancer survivors. J Natl Cancer Inst. 2009;101:1682-1695.

158. Brouwers EE, Huijtema AD, Beijnen JH, Schellens JH. Long-term platinum retention after treatment with cisplatin and oxaliplatin. BMC Cancer Pharmacol. 2008;8:7.

159. Strumberg D, Brugje S, Korn MW, et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol. 2002;13:229-236.

160. Verstappen CCP, Koeppen S, Heimans JJ, et al. Randomized study of cisplatin dose intensity in poor-risk germ cell tumors: a Southeast Cancer Study Group and Southwest Oncology Group protocol. J Clin Oncol. 1991;9:1163-1172.

161. Grimison PS, Stockler MR, Thomson DB, et al. Comparison of two standard chemotherapy regimens for good-prognosis germ cell tumors: updated analysis of a randomized trial. J Natl Cancer Inst. 2010;102:1253-1262.

162. Nichols CR, Williams SD, Loehrer PJ, et al. Randomized study of cisplatin dose intensity in poor-risk germ cell tumors: a Southeast Cancer Study Group and Southwest Oncology Group protocol. J Clin Oncol. 1991;9:1163-1172.

163. Siegel T, Hain N. Cisplatin-induced peripheral neuropathy. Frequent off-therapy deterioration, demyelinating syndromes, and muscle cramps. Cancer. 1990;66:1117-1123.

164. Brydow M, Oldenburg J, Klepp O, et al. Observer-based study of prevalence of long-term Raynaud-like phenomena and neurological side effects in testicular cancer survivors. J Natl Cancer Inst. 2009;101:1682-1695.

165. Brouwers EE, Huijtema AD, Beijnen JH, Schellens JH. Long-term platinum retention after treatment with cisplatin and oxaliplatin. BMC Cancer Pharmacol. 2008;8:7.

166. Sprauten M, Darrah TH, Peterson DR, et al. Impact of long-term serum platinum concentrations on neuro- and ototoxicity in cisplatin-treated survivors of testicular cancer. J Clin Oncol. 2012;30:300-307.

167. Strumberg D, Brugje S, Korn MW, et al. Evaluation of long-term toxicity in patients after cisplatin-based chemotherapy for non-seminomatous testicular cancer. Ann Oncol. 2002;13:229-236.

168. Verstappen CCP, Koeppen S, Heimans JJ, et al. Dose-related vincristine-induced peripheral neuropathy with unexpected off-therapy worsening. Neurology. 2005;64:1076-1077.
dose limit) in the treatment of lymphomas. *Cancer.* 1994;73:2515-2519.

171. Hirvonen HE, Salmi TT, Heinonen N, Antila KJ, Valimaki IA. Vincristine treatment of acute lymphoblastic leukemia induces transient autonomic cardioneuropathy. *Cancer.* 1989;64:801-805.

172. Hancock BW, Naysmith A. Vincristine-induced autonomic neuropathy. *Br Med J.* 1975;3:207.

173. Gonzalez Pérez P, Serrano-Pozo A, Franco-Macias E, Montes-Latorre E, Gomez-Aranda F, Campos T. Vincristine-induced acute neurotoxicity versus Guilain-Barré syndrome: a diagnostic dilemma. *Eur J Neurol.* 2007;14:826-828.

174. Wanschitz J, Dichtl W, Budka H, Loscher WN, Boesch S. Acute motor and sensory axonal neuropathy in Burkitt-like lymphoma. *Muscle Nerve.* 2006;34:494-498.

175. Bahi A, Chakrabarty B, Gulati S, Raju KN, R, Bobak S. Acute onset fasciculopariaes in pediatric non-Hodgkin lymphoma: vincristine induced or Guillain-Barré syndrome? *Pediatr Blood Cancer.* 2010;55:1234-1235.

176. Aral YZ, Gursei T, Ozturk G, Sendaroglu A. Guillain-Barré syndrome in a child with acute lymphoblastic leukemia. *Pediatr Hematol Oncol.* 2001;18:343-346.

177. Re D, Schwenk A, Hegener P, Bamborschke S, Diehl V, Tesch H. Guillain-Barré syndrome in a patient with non-Hodgkin’s lymphoma. *Ann Oncol.* 2000;11:217-220.

178. Brigo F, Balter R, Marradi P, et al. Vincristine-related neuropathy versus acute inflammatory demyelinating polyradiculoneuropathy in children with acute lymphoblastic leukemia. *J Child Neurol.* 2012;27:867-874.

179. Yuki N, Hartung HP. Guillain-Barré syndrome. *N Engl J Med.* 2012;366:2294-2304.

180. Naumann R, Mohm J, Reuner U, Moriyama B, Henning SA, Leung J, et al. Morbidly B, Pytlik R, Kozak T, et al; CIPN: A Critical Analysis of, peripheral neuropathy versus acute neurotoxicity in hematopoietic malignancies: a prospective trial from the Intergroupe Francophone du Myéline (IFM). Low-dose vs. high-dose thalidomide for the treatment of relapsed and/or refractory multiple myeloma: results from OPTIMUM, a randomized trial. *Haematologica.* 2012;97:784-791.

181. Cavaletti G, Beronio A, Reni L, et al. Thalidomide sensitivity neuropathy. *Neurology.* 2004;62:2291-2293.

182. Zara G, Ermanni M, Rondinone R, Arienti S, Doria A. Thalidomide and sensory neuropathy: a neurophysiological study. *J Neurol Neurosurg Psychiatry.* 2008;79:1258-1261.

183. Steurer M, Spizzo G, Mitterer M, Gastl G. Low-dose thalidomide for multiple myeloma: interim analysis of a compassionate use program. *Orknieg.* 2004;27:150-154.

184. Feyler S, Rawston A, Jackson G, Snowden JA, Cocks K, Johnson RJ. Thalidomide maintenance following high-dose therapy in multiple myeloma: a UK myeloma forum phase 2 study. *Br J Haematol.* 2007;139:429-433.

185. Tosi P, Zamagni E, Cellini C, et al. Neurological toxicity of long-term (> 1 yr) thalidomide therapy in patients with multiple myeloma. *Eur J Haematol.* 2005;74:212-216.

186. Gay F, Hayman SR, Lacy MQ, et al. Lenalidomide plus dacarbazine versus thalidomide plus dacarbazine in patients with newly diagnosed multiple myeloma. *Blood.* 2010;115:1343-1350.

187. Barlogie B, Tricot G, Aminise E, et al. Thalidomide and hematopoietic-cell transplantation for multiple myeloma. *N Engl J Med.* 2006;354:1021-1030.

188. Stratogianni A, Tosch M, Schlemmer H, et al. Bortezomib-induced severe autonomic neuropathy. *Clin Auton Res.* 2012;22:199-202.

189. El-Cheikh J, Stoppa AM, Bouabdallah R, et al. Features and risk factors of peripheral neuropathy during treatment with bortezomib for advanced multiple myeloma. *Clin Lymphoma Myeloma.* 2008;8:146-152.

190. Ravaglia S, Corso A, Piccolo G, et al. Immune-mediated neuropathies in myeloma patients treated with bortezomib. *Clin Neurophysiol.* 2008;119:2507-2512.

191. Richardson PG, Sonneveld P, Schuster MW, et al. Reversibility of symptomatic peripheral neuropathy with bortezomib in the phase III APEX trial in relapsed multiple myeloma: impact of a dose-modification guideline. *Br J Haematol.* 2009;144:895-903.

192. Reeder CB, Reece DE, Kukreti V, et al. Once-versus twice-weekly bortezomib induction therapy with CyBorD in newly diagnosed myeloma patients. *Blood.* 2010;115:3416-3417.

193. Dimopoulos MA, Mateos MV, Richardson PG, et al. Risk factors for, and reversibility of, peripheral neuropathy associated with bortezomib-melphalan-prednisone in newly diagnosed multiple myeloma: subanalysis of the phase 3 VISTA study. *Eur J Haematol.* 2011;86:23-31.

194. Bringenh S, Larraca A, Rossi D, et al. Efficacy and safety of once-weekly bortezomib in multiple myeloma patients. *Blood.* 2010;116:4745-4753.

195. Delforge M, Bladé J, Dimopoulos MA, et al. Treatment-related peripheral neuropathy in multiple myeloma: the challenge continues. *Lancet Oncol.* 2010;11:1086-1095.

196. Boyette-Davis JA, Cata JP, Zhang H, et al. Follow-up psychophysical studies in bortezomib-related chemoneuropathy patients. *J Pain.* 2011;12:1017-1024.

197. Albers J, Chaudhry V, Cavaletti G, Donehower R. Interventions for preventing neuropathy caused by cisplatin and related compounds. *Cochrane Database Syst Rev.* 2007;(1):CD005228.

198. Cascini S, Catalano V, Cordella L, et al. Neuroprotective effect of retinoids on oxaliplatin-based chemotherapy in advanced colorectal cancer: a randomized, double-blind, placebo-controlled trial. *J Clin Oncol.* 2002;20:3478-3483.

199. Wang WS, Lin JK, Lin TC, et al. Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. *OncoL* 2007;12:312-319.

200. Stubblefield MD, Vahdat LT, Balmaceda CM, Troxel AB, Hesdorffer CS, Gooch CL. Glutamine as a neuroprotective agent in high-dose paclitaxel-induced peripheral neuropathy: a clinical and electrophysiological study. *Clin Oncol (R Coll Radiol).* 2005;17:271-276.

201. Lin PC, Lee MY, Wang WS, et al. N-acetylcysteine has neuroprotective effects against oxaliplatin-based adjuvant chemotherapy in colon cancer patients: preliminary data. *Support Care Cancer.* 2006;14:484-487.

202. Pae A, Giannarelli D, Galie E, et al. Vitamin E neuroprotection for cisplatin neuropathy: a randomized, placebo-controlled trial. *Neurology.* 2010;74:762-766.

203. Argyriou AA, Chroni E, Koutras A, et al. A randomized controlled trial evaluating the efficacy and safety of CaMg to prevent oxaliplatin-related neurotoxicity in patients with colorectal cancer. *J Clin Oncol.* 2013;31:1134-1140.

204. Kottschade LA, Sloan JA, Mazurczak MA, et al. The use of vitamin E for the prevention of chemotherapy-induced peripheral neuropathy. *Support Care Cancer.* 2011;19:1769-1777.

205. Grothey A, Nikcevich DA, Sloan JA, et al. Intravenous calcium and magnesium for oxaliplatin-induced sensory neurotoxicity in adjuvant colon cancer. *J Clin Oncol.* 2011;29:421-427.

206. Wen F, Zhou Y, Wang W, et al. Ca/Mg infusions for the prevention of oxaliplatin-related neurotoxicity in patients with colorectal cancer: a meta-analysis. *Ann Oncol.* 2013;24:171-178.

207. Loprinzi CL, Qin R, Dakhil SR, et al. Phase III randomized, placebo (PL)-controlled, double-blind study of intravenous calcium/magnesium (CaMg) to prevent oxaliplatin-induced sensory neurotoxicity (sNT). *J Clin Oncol.* 2013;31(suppl). Abstract 3501.
216. Durand JP, Deplanque G, Montheil V, et al. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity. *Ann Oncol*. 2012;23:200-205.

217. Argyriou AA, Chroni E, Polychronopoulos P, et al. Efficacy of oxcarbazepine for prophylaxis against cumulative oxaliplatin-induced neuropathy. *Neurology*. 2006;67:2253-2255.

218. Smith EM, Pang H, Cirrincione C, et al; Alliance for Clinical Trials in Oncology. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy; a randomized clinical trial. *JAMA*. 2013;309:1359-1367.

219. Kautio AL, Haanpaa M, Leminen A, Kalso E, Kautiainen H, Saarto T. Amitriptyline in the prevention of chemotherapy-induced neuropathic symptoms. *Anticancer Res*. 2009;29:2601-2606.

220. Rao RD, Michalak JC, Sloan JA, et al. Efficacy of gabapentin in the management of chemotherapy-induced peripheral neuropathy. *Cancer*. 2007;110:2110-2118.

221. Rao RD, Flynn PJ, Sloan JA, et al. Efficacy of lamotrigine in the management of chemotherapy-induced peripheral neuropathy. *Cancer*. 2008;112:2802-2808.

222. Visovsky C, Collins M, Abbott L, Aschenbrenner J, Hart C. Putting evidence into practice: evidence-based interventions for chemotherapy-induced peripheral neuropathy. *Clin J Oncol Nurs*. 2007;11:901-913.

223. Gewandter JS, Fan L, Magnuson A, et al. Falls and functional impairments in cancer survivors with chemotherapy-induced peripheral neuropathy (CIPN): a University of Rochester CCOP study. *Support Care Cancer*. 2013;21:2059-2066.

224. Tofthagen C, Visovsky C, Berry DL. Strength and balance training for adults with peripheral neuropathy and high risk of fall: current evidence and implications for future research. *Oncol Nurs Forum*. 2012;39:E416-E424.