Discrimination of Vanadium from Zinc Using Gene Profiling in Human Bronchial Epithelial Cells

Zhurowei Li,1 Jackie Stonehuerner,2 Robert B. Devlin,2 and Yuh-Chin T. Huang2

1Center for Environmental Medicine and Lung Biology, University of North Carolina, Chapel Hill, North Carolina, USA; 2National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA

We hypothesized that gene expression profiling may discriminate vanadium from zinc in human bronchial epithelial cells (HBECS). RNA from HBECS exposed to vehicle, V (50 µM), or Zn (50 µM) for 4 hr (n = 4 paired experiments) was hybridized to Affymetrix Hu133A chips. Using one-class t-test with p < 0.01, we identified 140 and 76 genes with treatment:control ratios ≥ 2.0 or ≤ 0.5 for V and Zn, respectively. We then categorized these genes into functional pathways and compared the number of genes in each pathway between V and Zn using Fisher’s exact test. Three pathways regulating gene transcription, inflammatory response, and cell proliferation distinguished V from Zn. When genes in these three pathways were matched with the 163 genes flagged by the same statistical filtration for V:Zn ratios, 12 genes were identified. The hierarchical clustering analysis showed that these 12 genes discriminated V from Zn and consisted of two clusters. Cluster 1 genes (ZBTB1, PML, ZNF44, SIX1, BCL6, ZNF450) were down-regulated by V and involved in gene transcription, whereas cluster 2 genes (IL8, IL1A, PTGS2, DTR, TFBAP3, CXL3) were up-regulated and linked to inflammatory response and cell proliferation. Also, metallothionein 1 genes (MT1F, MT1G, MT1K) were up-regulated by Zn only. Thus, using microarray analysis, we identified a small set of genes that may be used as biomarkers for discriminating V from Zn. The novel genes and pathways identified by the microarray may help us understand the pathogenesis of health effects caused by environmental V and Zn exposure. Key words: cell proliferation, inflammation, interleukin-1, interleukin-8, metal, microarray, transcription.

Environ Health Perspect 113:1747–1754 (2005). doi:10.1289/ehp.7947 available via http://dx.doi.org/ [Online 21 June 2005]

The advancement of microarray technology has allowed investigators to examine simultaneously changes in thousands of genes induced by environmental toxins. McDowell et al. (2000), using gene array with more than 8,000 cDNAs, found patterns of gene expression consistent with acute lung injury in nickel-treated mice. Sato et al. (1999) showed changes in genes related to cell growth and possibly carcinogenesis in rat lungs treated with diesel particles. More recently, Andrew et al. (2003) demonstrated distinct expression patterns in human lung cells exposed to low and high doses of arsenic. The capability of microarrays to provide a snapshot view of expression of a large number of genes may help us generate mechanistic hypotheses as well as identify biomarkers of exposure specific to environmental toxins. The availability of such specific genomic biomarkers may be important in determining the nature of environmental exposures.

Vanadium is present in several environmental settings, for example, during overheating of oil-fired boilers and burning of heavy fuel in power plants. Exposures to high levels of V-rich particles produce upper and lower respiratory symptoms (Levy et al. 1984; Woodin et al. 1999, 2000). Intratracheal administration of vanadyl sulfate (VOSO4) and a V-rich pollutant dust, residual oil fly ash (ROFA), increased pulmonary artery pressure acutely in buffer-perfused rabbit lungs (Huang et al. 2002) and constricted isolated rat aortic rings (Cadene et al. 1997). Particulate air V concentration correlated with increases in heart rate variability index in boilermakers (Magari et al. 2002). V or ROFA altered the expression of many genes and their protein products related to acute stress (Carter et al. 1997; Gavett et al. 1997, 1999; Nadadur et al. 2000; Samet et al. 1998) and cell survival and tissue growth in cultured cells (Chen et al. 2001; Huang et al. 2000; Zhang et al. 2001).

Zinc is ubiquitous in the natural environment, including ambient air (Walsh et al. 1994). Exposure to excessive Zn (via metal fumes) is a potential hazard for industrial workers who perform welding and smelting operations. Inhalation of high concentrations of zinc oxide or zinc chloride produce respiratory epithelial cell damage, inflammation, and acute injury (Doig and Challen 1964; Evans 1945; Kuchar et al. 1995; Matarrese and Matthews 1986; Nemery 1990; Pare and Sandler 1954). Treatment of lung epithelial cells in vitro with Zn compounds enhanced inflammatory signaling and produced cytotoxicity and cell death (Riley et al. 2003; Samet et al. 1998, 1999).

Although V and Zn belong to different elemental classes in the periodic table, they share many biologic properties. For example, both metals are potent enhancers for phosphorylation of signaling proteins, including mitogen-activated protein kinase (Samet et al. 1998) and epidermal growth factor receptors (Wu et al. 1999), and both increase Ras activity (Wu et al. 2002) and interleukin-8 (IL8) release (Samet et al. 1998). Many of these effects may be attributed to the capability of these metals to inhibit protein tyrosine phosphatase activity (Samet et al. 1999). Both V and Zn also inhibit metabolic activity of the cells (Riley et al. 2003). V and Zn may coexist in the ambient environment after being released from different emission sources (Nriagu and Pacyna 1988). The development of a biomarker that discriminates these metals thus may help define the sources and nature of exposures. In this study we hypothesized that gene profiling may be used to discriminate V from Zn in human bronchial epithelial cells (HBECS). We sought to identify a small group of genes that may serve as biomarkers of exposure.

Materials and Methods

Cell culture. Two bronchoscopists obtained bronchial epithelial cells from normal volunteers through bronchoscopic bronchial brushings following the same operational guidelines (Ghio et al. 2000; Huang et al. 2003). Subjects were informed of the procedures and potential risks, and each gave written informed consent. The protocol was approved by the University of North Carolina School of Medicine Committee on Protection of the Rights of Human Subjects and by the U.S. Environmental Protection Agency. A single experienced technician processed all brushings by following the...
established standard of procedures in our laboratory. The cells (passage 2 or 3) were maintained in bronchial epithelial growth medium (BEGM) (Clonetics, San Diego, CA), supplemented with bovine pituitary extract, insulin (5 µg/mL), hydrocortisone (0.5 µg/mL), gentamicin (50 µg/mL), retinoic acid (0.1 ng/mL), transferrin (10 µg/mL), triiodothyronine (6.5 µg/mL), epinephrine (0.5 µg/mL), and human epidermal growth factor (0.5 ng/mL). The fragmented RNA was diluted in hybridization buffer (Tris, magnesium (20 µg) was incubated at 94°C for 35 min, and then injected into a GeneChip cartridge. The GeneChip array was incubated at 42°C for at least 16 hr in a rotating oven at 60 rpm. GeneChips were washed with a series of non-stringent (25°C) and stringent (50°C) solutions containing variable amounts of 2-morpholinoethanesulfonic acid, Tween 20, and SSPE (3 M NaCl, 0.2 M, NaH₂PO₄, 0.02 M EDTA). The microarrays were then stained with streptavidin phycoerythrin, and the fluorescent signal was amplified using a biotinylated antibody solution. Fluorescent images were detected in a GeneChip Scanner 3000 (Affymetrix), and expression data were extracted using the default settings in the MicroArray Suite 5.0 software (Affymetrix). All GeneChips were scaled to a median intensity setting of 500. Four independent sets of experiments were performed on HBECs obtained from four different individuals. Each set consisted of control (vehicle), VOSO₄, and ZnSO₄.

Quantitative polymerase chain reaction. Quantitative polymerase chain reaction (Q-PCR) was performed for selected genes to validate microarray results. HBECs were lysed in guanidine isothiocyanate (GIC) buffer (4 M GIC (Boehringer Mannheim, Indianapolis, IN)), 25 mM sodium citrate (pH 7.0), 0.5% sarkosyl, and 0.1 M DTT, and RNA was pelleted at 80,000 rpm through a cesium chloride gradient for 2 hr at 15°C. cDNAs were synthesized from 0.4 µg of total RNA in 100 µL of a buffer containing 5 µM random hexaoligonucleotide primers (Pharmacia, Piscataway, NJ), 10 U/µL Moloney murine leukemia virus reverse transcriptase and cyclooxygenase)

Gene accession no.	Fold change	Gene symbol	Gene name
Hs.624	8.04	IL8	interleukin 8
Hs.230873	6.67	PPEF2	protein phosphatase, EF hand calcium-binding domain 2
Hs.519417	5.52	STX6	syntaxin 6
Hs.233988	5.98	CVL	carboxypeptidase, vitellogenic-like
Hs.196384	4.67	PTGS2	prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclooxygenase)
Hs.248189	4.46	KRTHA6	keratin, hair, acidic, 6
Hs.211600	4.33	TNFAP3	tumor necrosis factor, alpha-induced protein 3
Hs.477070	4.30	CSNK1B	casein kinase 1, delta
Hs.431460	4.24	ICAM2	intercellular adhesion molecule 2
Hs.443854	4.24	SBF1	stoned B-like factor
Hs.799	4.21	DTR	diaphtheria toxin receptor (heparin-binding epidermal growth factor-like factor)
Hs.418167	4.16	ALB	albumin
Hs.246310	4.11	ALM2	junctional adhesion molecule 2
Hs.406990	4.06	ROC4DP	phosphoserine 4D interacting protein (myomegalin)
Hs.992	4.04	PL2G1B	phospholipase A2, group IB (pancreas)
Hs.454822	3.97	ANGPT1L	angiopeptin-like 1
Hs.65758	3.78	ITPR3	inositol 1,4,5-trisphosphate receptor, type 3
Hs.65713	3.70	DIPA	hepatitis delta antigen-interacting protein A
Hs.519884	3.65	GCNT2	glucosaminyl (N-acetyl) transferase 2, l-branching enzyme
Hs.157259	3.64	SIPA1L2	signal-induced proliferation-associated 1-like 3
Hs.436203	3.63	PRDM1	PR domain containing 1, with ZNF domain
Hs.303980	3.51	CYP11A1	cytochrome P450, family 11, subfamily A, polypeptide 1
Hs.236646	3.49	HOXD9	homeo box D9
Hs.171695	3.46	DUSP1	dual specificity phosphatase 1
Hs.197683	3.44	CACNG2	calcium channel, voltage-dependent, gamma subunit 2
Hs.485910	3.34	RARSL	arginyl-tRNA synthetase-like
Hs.211233	3.30	IL1F9	interleukin 1, family, member 9
Hs.520319	3.30	SLC22A16	solute carrier family 22, organic cation transporter, member 16
Hs.445555	3.22	SERPIN2	serine (or cysteine) proteinase inhibitor, clade D (neurosperin), member 2
Hs.256667	3.20	PKD2	pyruvate dehydrogenase kinase, isozyme 2
Hs.248122	3.10	EPR24	G-protein-coupled receptor 24
Hs.511899	3.07	EDN1	endothelin 1
Hs.525306	2.99	WARS2	tryptophanyl tRNA synthetase 2 (mitochondrial)
Hs.333175	2.86	PL2G12B	phospholipase A2, group XIB
Hs.410817	2.87	RPL13	ribosomal protein L13
Hs.520942	2.77	CLDN4	claudin 4
Hs.508230	2.74	PDCD2	programmed cell death 6
Hs.550498	2.72	RCE1	RCE1 homolog, prenyl protein protease (S. cerevisiae)
Hs.511899	2.72	PRDM1	PR domain containing 1, with ZNF domain
Hs.241724	2.66	CTSG	cathepsin G

Continued, next page
transcriptase (GIBCO BRL Life Technologies), 1 U/µL RNase inhibitor (RNasin; Promega, Madison, WI), 0.5 mM dNTP (Pharmacia), 50 mM KCl, 3 mM MgCl₂, and 10 mM Tris-HCl (pH 9.3). After 1 hr of incubation at 39°C, the reverse transcriptase was heat inactivated at 94°C for 4 min.

Q-PCR of specimen cDNA and standard cDNA was performed using TaqMan master mix (Perkin Elmer, Foster City, CA), 1.25 µM probe, 3 µM forward primer, and 3 µM reverse primer in a 50-µL volume. The probe, which contains both a fluorescence reporter dye at the 5’-end (6-carboxytetramethyl rhodamine, TAMRA: maximum emission wavelength = 518 nm) and a 5’-end (6-carboxyfluorescein, 6-FAM: maximum emission wavelength = 518 nm) and a quencher dye at the 3’-end (carboxy-X-rhodamine, AQ-2: maximum emission wavelength = 562 nm), is degraded by the 5’-3’ exonuclease activity of the Taq DNA polymerase, and the resulting fluorescence is detected by a laser in the sequence detector (TaqMan ABI Prism 7700 Sequence Detector System; PerkinElmer). The relative abundance of mRNA levels was determined from standard curves generated from a serially diluted standard pool of cDNA prepared from BEAS-2B cells. The relative abundance of glycoldehyde-3-phosphate dehydrogenase (GAPDH) mRNA was used to normalize levels of the mRNAs of interest. Six additional sets of Q-PCR experiments consisting of control (vehicle), VOSO₄, and ZnSO₄ were performed using HBECs from six different individuals.

Microarray data analysis. The microarray data were deposited in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus database (http://www.ncbi.nlm.nih.gov/geo; accession number GSE2111). Gene expression values were background-corrected and normalized globally using the default setting of the Affymetrix Microarray Suite 5.0 software, and log₂-transformed according to the Affymetrix Statistical Algorithm Reference Guide (Affymetrix, Inc. 2004b). The log₂ ratios of treatment (V or Zn) over control and V over Zn for all probe sets were analyzed using the one-class t-test against the null hypothesis of 0 (ratio = 1) using the Multiexperiment Viewer (version 3.0; The Institute of Genomic Research, Rockville, MD). A p-value of < 0.01 was considered statistically significant. If more than one probe set for the same gene were flagged, their ratios were averaged.

Functional classification of genes. Biologic processes represented by the differentially expressed genes were compiled using the GOCharts in the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://apps1.nciaid.nih.gov/david/) with the coverage and specificity set at level 5 (high) and the hits threshold at 1; with the classification of the Gene Ontology Consortium (http://www.geneontology.org); and with the human gene resources from NCBI (http://www.ncbi.nlm.nih.gov). Comparison of the probe sets in the biologic processes between V and Zn was determined by the Fisher’s exact test (p < 0.05) (StatView 4.0; SAS Inc., Cary, NC).

Results

Differentially expressed genes associated with V treatment. Incubation of HBECs with VOSO₄ at 50 µM for 4 hr showed no cytotoxicity as supported by the lack of lactate dehydrogenase (LDH) release (data not shown). There were 140 differentially expressed genes with known protein products. Seventy-six genes were up-regulated with a treatment:control ratio ≥ 2.0 (Table 1), and 64 genes were down-regulated with a treatment:control ratio ≤ 0.5 (Table 2). The expression of five up-regulated genes (IL8, prostaglandin-endoperoxide synthase 2 (PTGS2), intercellular adhesion molecule 2 (ICAM2), diphtheria toxin receptor (heparin-binding epidermal growth factor-like growth factor) (DTR), and dual specificity phosphatase 1 (DUSP1) was confirmed by Q-PCR in additional experiments (Figure 1). The 140 genes could be further classified functionally into 28 biologic processes containing at least three gene hits.

Differentially expressed genes associated with Zn treatment. Incubation of HBECS with ZnSO₄ at 50 µM for 4 hr also showed no LDH release (data not shown). There were 76 differentially expressed genes with known protein products. Forty-three genes were up-regulated with a treatment:control ratio ≥ 2.0 (Table 3), and 33 genes were down-regulated with a treatment:control ratio ≤ 0.5 (Table 4). The up-regulation of metallothionein 1F (MT1F) and heme oxygenase 1 (HMOX1) was confirmed by Q-PCR (Figure 1). The 76 genes could be further

Table 1. Continued.

Gene accession no.	Fold change	Gene symbol	Gene name
Hs.2250	2.63	LIF	leukemia inhibitory factor (cholinergic differentiation factor) polymerase (RNA) III (DNA directed) (32 kDa)
Hs.262397	2.58	RP52	ras homolog gene family, member J
Hs.525898	2.56	ARHI	protein phosphatase 1, regulatory subunit 10
Hs.106019	2.54	PPP1R10	solute carrier family 13 (sodium-dependent dicarboxylate transporter), member 3
Hs.250281	2.52	SLC13A3	zinc finger protein 306
Hs.2128	2.48	DUSP5	dual-specificity phosphatase 5
Hs.89690	2.45	CXCL3	chemokine (C-X-C motif) ligand 3
Hs.111690	2.45	MIG-6	mitogen-inducible gene 6
Hs.788	2.41	CXCL1	chemokine (C-X-C motif) ligand 1 (melanoma growth-stimulating activity, alpha)
Hs.485004	2.37	ZNF306	zinc finger protein 306
Hs.534478	2.36	DUSP21	dual-specificity phosphatase 21
Hs.441972	2.34	IFNT1	interferon tau-1
Hs.503598	2.33	JMJD20	jumonji domain containing 2D
Hs.546252	2.25	EGC3	endothelial differentiation, sphingolipid G-protein-coupled receptor, 3
Hs.85862	2.23	PDLIM3	PDZ and LIM domain 3
Hs.445489	2.22	PLEKH1B	pleckstrin homology domain containing, family B (e vecnins), member 1
Hs.1722	2.21	IL1A	interleukin 1, alpha
Hs.466871	2.21	PLAUR	plasminogen activator, urkinase receptor
Hs.159291	2.20	DNP2	dystrophin-related protein 2
Hs.303649	2.19	CCL2	chemokine (C-C motif) ligand 2
Hs.111944	2.19	CYP3A7	cytochrome P450, family 3, subfamily A, polypeptide 7
Hs.533683	2.19	FGR2	fibroblast growth factor receptor 2
Hs.50550	2.19	KBTBD10	kelch repeat and BTB (POZ) domain containing 10
Hs.78844	2.19	RGS2	regulator of G-protein signaling 2, 24 kDa
Hs.190783	2.17	HAL	histidine ammonia-lyase
Hs.463059	2.17	STAT3	signal transducer and activator of transcription 3 (acute-phase response factor)
Hs.25847	2.16	FOS	v-fos FBJ murine osteosarcoma viral oncogene homolog
Hs.127022	2.14	PTPRE	protein tyrosine phosphatase, receptor type, E
Hs.447899	2.13	SIGLEC8	sialic acid-binding Ig-like lectin 8
Hs.344812	2.13	TREC1	three prime repair exonuclease 1
Hs.528610	2.12	MMP25	matrix metallocproteinase 25
Hs.514913	2.11	SERPNB2	serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 2
Hs.506381	2.07	FGID6	FYVE, RhoGEF and PH domain containing 6
Hs.278658	2.06	KRTHB6	keratin, hair, basic, 6 (monilethrix)
Hs.439060	2.08	CLDN1	claudin 1
Hs.507348	2.05	HSSST1	heparan sulfate (glucosamine) 3-O-sulfotransferase 1

*Only genes with known protein products are shown.
*Fold changes are the average of four individuals.
Hs.498292 –2.89 SDCCAG8 serologically defined colon cancer antigen 8
Hs.142167 –2.11 HSZFP36 ZFP-36 for a zinc finger protein
Hs.535499 –2.02 RARA retinoic acid receptor, alpha
Hs.131494 –2.00 ARNT aryl hydrocarbon receptor nuclear translocator
Hs.195710 –2.08 ZNF503 zinc finger protein 503
Hs.518438 –2.08 SOX2 SRY (sex determining region Y)-box 2
Hs.63335 –2.12 TERF2 telomeric repeat binding factor 2
Hs.105633 –2.12 WINS1 WIN51 protein with Drosophila Lin homologous domain
Hs.497868 –2.41 BCL6 B-cell CLL/lymphoma 6 (BCL6), IL1α (IL1A), IL8, PTGS2, DTR, chemokine (C-X-C motif) ligand 3 (CXCL3), promyelocytic leukemia (PML), sine oculis homeobox homolog 1 (Drosophila) (SIX1), tumor necrosis factor (TNF), α-induced protein 3 (TNFAIP3), Zn finger and BTB domain containing 1 (ZBTB1), Zn finger protein 44 (KOX 7) (ZNF44), and Zn finger protein 450 (ZNF450). The hierarchical cluster analysis showed that these 12 genes clearly discriminated the V group from the Zn group (Figure 2) and could be separated into two clusters (Figure 2). Cluster 1 contained ZBTB1, PML, ZNF44, SIX1, BCL6, and ZNF450 that were down-regulated by V and involved in gene transcription. Cluster 2 contained IL8, IL1α, PTGS2, DTR, TNFAIP3, and CXCL3 that were up-regulated and linked primarily to inflammatory response and cell proliferation.

Discussion
In the present study we first determined the differential gene expression patterns in HBECs exposed to 50 µM of V and Zn and found 147 and 76 genes altered by V and Zn, respectively, compared with control. These genes could be classified into 14 biologic processes containing at least three gene hits.

Identification of genes differentiating V from Zn.
To identify genes that would discriminate V from Zn, we first analyzed V:Zn ratios using the same statistical filtration method. A total of 163 genes were identified. The results of the hierarchical clustering analysis using these genes are shown in Figure 2. We next compared biologic processes associated with V with those associated with Zn. We found that four biologic processes, regulation of transcription (24 genes), DNA-dependent transcription (22 genes), inflammatory responses (11 genes), and regulation of cell proliferation (10 genes), contained a disproportionately greater number of V-induced genes. Because all genes involved in the DNA-dependent transcription pathway were also flagged in the regulation of transcription pathway, these two processes were combined into one, designated “gene transcription.” The number of probe sets in the three biologic pathways associated with V and Zn treatment was compared using the Fisher’s exact test. The p-values for these three pathways, gene transcription, inflammatory response, and regulation of cell proliferation, are 0.004, 0.037, and 0.013, respectively.

We next matched genes in these three pathways with the 163 genes and identified 12 candidate genes: B-cell CLL/lymphoma 6 (BCL6), IL1α (IL1A), IL8, PTGS2, DTR, chemokine (C-X-C motif) ligand 3 (CXCL3), promyelocytic leukemia (PML), sine oculis homeobox homolog 1 (Drosophila) (SIX1), tumor necrosis factor (TNF), α-induced protein 3 (TNFAIP3), Zn finger and BTB domain containing 1 (ZBTB1), Zn finger protein 44 (KOX 7) (ZNF44), and Zn finger protein 450 (ZNF450). The hierarchical cluster analysis showed that these 12 genes clearly discriminated the V group from the Zn group (Figure 2) and could be separated into two clusters (Figure 2). Cluster 1 contained ZBTB1, PML, ZNF44, SIX1, BCL6, and ZNF450 that were down-regulated by V and involved in gene transcription. Cluster 2 contained IL8, IL1α, PTGS2, DTR, TNFAIP3, and CXCL3 that were up-regulated and linked primarily to inflammatory response and cell proliferation.

Discussion
In the present study we first determined the differential gene expression patterns in HBECs exposed to 50 µM of V and Zn and found 147 and 76 genes altered by V and Zn, respectively, compared with control. These genes could be
classified into 28 and 14 biologic pathways, respectively, that each had at least three gene hits. Seven differentially expressed genes were validated prospectively in six additional experiments using HEBCs from six different individuals. When the numbers of genes in the pathways were compared between V and Zn, three biologic processes (gene transcription, inflammatory response, and regulation of cell proliferation) contained a disproportionately greater number of V-induced genes. We then matched the genes in these three pathways with the 163 genes that differentiated V from Zn, and identified 12 candidate genes.

These 12 genes clearly discriminated the V group from the Zn group based on the hierarchical clustering analysis and could be separated into two clusters. The first cluster consisted of 6 genes (ZBTB1, PML, ZNF44, SIX1, BCL6, ZNF436) that were down-regulated by V but mildly up-regulated by Zn. All 6 genes were involved in gene transcription, and BCL6 was also linked to inflammatory response and regulation of cell proliferation. The inhibitory effects of V on the expression of these genes have not been reported. Five of these genes encode Zn finger proteins (ZBTB1, ZNF44, BCL6, ZNF436) or proteins containing Zn-binding domains (PML) that play a role in DNA binding (Bray et al. 1991; Zhong et al. 2000). SIX1 encodes a protein characterized by a divergent DNA-binding homeodomain and an upstream SIX domain, which may be involved in determining DNA-binding specificity and protein–protein interactions. Mice lacking the SIX1 gene have impaired organogenesis of skeletal muscle and kidney during embryonic development (Laclef et al. 1996), but its function is unclear. Six biologic pathways were compared between V and Zn, with the 163 genes that differentiated V from Zn. The numbers of genes in the 163 genes that differentiated V from Zn and identified 12 candidate genes.

Gene profiling for vanadium and zinc. Only genes with known protein products are shown.

Table 3. Genes up-regulated by ZnSO4

Gene accessiona	Fold changeb	Gene symbola	Gene namea
Hs.188518	81.01	MT1K	metallothionein 1K
Hs.433391	28.87	MT1G	metallothionein 1G
Hs.283678	8.40	PCDHBI4	protocadherin beta 14
Hs.412106	8.09	ESRBBL1	estrogen-related receptor beta-like 1
Hs.502182	5.46	BDNF	brain-derived neurotrophic factor
Hs.517581	4.78	HMOX1	heme oxygenase (decycling) 1
Hs.165736	4.67	SCAND2	SCAND domain containing 2
Hs.519469	4.05	SLC30A1	solute carrier family 30 (zinc transporter), member 1
Hs.513626	4.58	MT1F	metallothionein 1F (functional)
Hs.154296	4.58	TLR2	toll-like 2
Hs.303090	3.94	PPR1R3C	protein phosphatase 1, regulatory (inhibitor) subunit 3C
Hs.118354	3.66	PRB3	proline-rich polypeptide 3
Hs.468691	3.55	ZNF232	zinc finger protein 233
Hs.59889	3.47	HMGCS2	3-hydroxy-3-methylglutaryl-coenzyme A synthase 2 (mitochondrial)

Figure 1. Gene expression ratios measured by Q-PCR. The expression of a gene associated with V or Zn treatment, relative to the control; n = 6 independent experiments in cells from six different individuals for Q-PCR. Dashed line denotes an expression ratio of 1 (no change). Data are mean ± SE.

Table 3. Genes up-regulated by ZnSO4

- **Gene accession**
- **Fold change**
- **Gene symbol**
- **Gene name**

Only genes with known protein products are shown.

Gene annotations are from NCBI (http://www.ncbi.nlm.nih.gov).
Fold changes are the average of four individuals.
Table 4. Genes down-regulated by ZnSO₄.

Gene accession no.	Fold change	Gene symbol	Gene name
Hs.376873	-6.25	ZNF390	zinc finger protein 390
Hs.106513	-6.09	TLL1	toll-like 1
Hs.200309	-5.87	IL23R	interleukin-23 receptor
Hs.268581	-5.47	LPIN2	lip 2
Hs.112218	-5.36	CAPN10	calpain 10
Hs.532082	-5.23	IL6ST	interleukin 6 signal transducer (gp130, oncostatin M receptor)
Hs.463136	-4.53	COMMD10	COMM domain containing 10
Hs.141349	-4.39	MOS	myeloid oligodendrocyte glycoprotein
Hs.7138	-4.10	CHRNA3	cholinergic receptor, muscarinic 3
Hs.126033	-4.08	SESN3	stress 3
Hs.512567	-3.58	MST1	macrophage stimulating 1 (hepatocyte growth factor-like)
Hs.370510	-3.23	IGF2F	immunoglobulin superfamily, member 4
Hs.533040	-3.21	PDLM47	PDZ and LIM domain 7 (enigma)
Hs.552578	-3.03	TCF1	transcription factor 1, hepatic; LF-B1, hepatic nuclear factor (HNF1), albumin proximal factor
Hs.472558	-2.92	SDCBG84	sertolocal immunoglobulin superfamily member 84
Hs.506394	-2.77	ubiquitin specific protease 44	
Hs.438989	-2.69	ZNF544	zinc finger protein 544
Hs.32721	-2.61	SAG	S-antigen, retina and pineal gland (arrestin)
Hs.74082	-2.48	KLRC3	killer cell lectin-like receptor subfamily C, member 3
Hs.382683	-2.47	PRG-3	plasticity-related gene 3
Hs.522291	-2.42	PRKWNK2	protein kinase, lysine deficient 2
Hs.493275	-2.34	TRIM31	tripartite motif-containing 31
Hs.129899	-2.29	TBX3	T-box 3 (ulnar mammary syndrome)
Hs.546233	-2.29	KIR3DL2	killer cell immunoglobulin-like receptor, three domains, long cytoplasmic tail, 2
Hs.546354	-2.21	RRP4	homolog of yeast RRP4 (ribosomal RNA processing 4), 3′-5′-exoribonuclease
Hs.19385	-2.19	ABHD5	abhydrolase domain containing 5
Hs.344400	-2.19	MPHOSPH6	M-phase phosphoprotein 6
Hs.411311	-2.17	IL24	interleukin 24
Hs.492236	-2.17	H2B29	histone H2B
Hs.255423	-2.06	CIB3	calcium and integrin binding family member 3
Hs.476852	-2.02	SNRK	SNF1-related kinase
Hs.432889	-2.01	MAP2K13	mitogen-activated protein kinase kinase kinase 13

Only genes with known protein products are shown.

*Gene annotations are from NCBI (http://www.ncbi.nlm.nih.gov). Fold changes are the average of four individuals.

Figure 2. The hierarchical clustering analysis for the 163 genes that discriminated V from Zn (A) and the 12 genes from this list identified by additional filtration algorithms described in the text (B). Each row represents one single gene, and each column represents one experiment. Red areas are up-regulation, and green areas are down-regulation, relative to control. The 12 genes clearly discriminate the V group and the Zn group. The analysis also divided the genes into two clusters. Gene names are from NCBI (http://www.ncbi.nlm.nih.gov).
fume increased mRNA of MTs in rat lungs (Cosma et al. 1992). Systemic administration of Zn enhanced MT levels in the liver (Conrad et al. 1997). Mice lacking MTs were more sensitive to Zn toxicity compared with wild-type mice (Park et al. 2001). In our study, in addition to increases in MT1F (4.6-fold), MT1G (29-fold), and MT1K (81-fold), other MTs, although not identified by our statistical filtration, also had elevated ratios: 1.36 for metallothionein 1X (MT1X), 1.17 for metallothionein 1H (MT1H) and 1.21 for metallothionein 2A (MT2A). These results confirm that up-regulation of the MTs may represent that up-regulation of the MTs may represent

References

Affymetrix, Inc. 2004a. Expression Analysis Technical Manual. Available: https://www.affymetrix.com/EXP/technical_manual/technical manual/expression/affx [accessed 30 October 2005]

Affymetrix, Inc. 2004b. Statistical Algorithms Reference Guide. Available: http://www.affymetrix.com/support/technical/technical manuals/expression/affx [accessed 30 October 2005]

Andrew AS, Warren AJ, Barchowsky A, Temple KA, Klie L, Soucy NV, et al. 2003. Genomic and proteomic profiling of responses to toxic metals in human lung cells. Environ Health Perspect 111:809–816.

Arend WP. 2002. The balance between IL-1 and IL-1Ra in disease. Cytokine Growth Factor Rev 13:323–340.

Bajic-Kolacarcic S, Piehl F, Farnebo F, Larson C, Lagercrantz J. 1989. Expression of the BGL gene in the pre- and postnatal mouse. Biochem Biophys Res Commun 157:357–360.

Becker S, Quay J, Koren HS, Haskell JS. 1994. Constitutive and stimulated MCP-1, GRO alpha, beta, and gamma expression in human airway epithelium and bronchoalveolar macrophages. Am J Physiol 266:L127–L286.

Bonner JC, Lindroos PM, Rice AB, Moorman CR, Morgan DL. 1998. Induction of PDSF receptor-alpha in rat myoblasts during pulmonary fibrogenesis in vivo. Am J Physiol 274:L172–L80.

Bonner JC, Rice AB, Moorman CR, Morgan DL. 2000. Airway fibrosis in rats induced by vanadate pentoxide. Am J Physiol Lung Cell Mol Physiol 278:L129–L316.

Boucher CA, Carey N, Edwards YH, Siciliano MJ, Johnson KJ. 1996. Cloning of the human S1X gene and its assignment to chromosome 14. Genomics 31:184–188.

Bray P, Lichter P, Goepfert AH, Ward IB. 1991. Characterization and mapping of human genes encoding zinc finger proteins. Proc Natl Acad Sci USA 88:9563–9567.

Cadene A, Grigorescu F, Serrano JJ, Cross G. 1997. Characterization of various Cu metallothionein effect on vascular control: roles of calcium and tyrosine phosphorylation. J Pharmacol Exp Ther 281:491–498.

Calderon-Garciduenes L, Maropontro RR, Torres-Jardon R, Hernandez-Roldan P, Thomas HJ, Ward DC, Dawid IB. 1991. Characterization and mapping of human genes encoding zinc finger proteins. Proc Natl Acad Sci USA 88:9563–9567.

Chen F, Vallathyan V, Castranova V, Shi X. 2001. Cell apoptosis induced by carcinogenic metals. Mol Cell Biochem 222:183–195.

Condel CC, Walter CA, Richardson A, Hanes MA, Grabowski DT. 1997. Cadmium toxicity and distribution in metallothionein-I and -II deficient transgenic mice. J Toxicol Environ Health 52:S27–S42.

Cosma G, Fulton H, Dafeo T, Gordon T. 2004b. Statistical Algorithms Reference Guide. Available: http://www.affymetrix.com/support/technical/technical manuals/expression/affx [accessed 20 October 2005]

Cox D, Alesandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, Cosma G, Fulton H, Dafeo T, Gordon T. 2004b. Statistical Algorithms Reference Guide. Available: http://www.affymetrix.com/support/technical/technical manuals/expression/affx [accessed 20 October 2005]

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.

Cucuescher WD, D'Alessandro A, Wintermeyer SF, Wong H, Bouhey HA, Blanc PD. 1995. Pulmonary responses to purified zinc oxide fume. J Investig Med 43:271–378.
Rangnekar VV, Waheed S, Davies TJ, Toback FG, Rangnekar VM. 1991. Antimitogenic and mitogenic actions of interleukin-1 in diverse cell types are associated with induction of gro gene expression. J Biol Chem 266:2415–2422.

Riley MR, Boesewetter DE, Kim AM, Sirvent FP. 2003. Effects of metals Cu, Fe, Ni, V, and Zn on rat lung epithelial cells. Toxicology 190:171–184.

Samet JM, Graves LM, Guay J, Dailey LA, Devlin RB, Ghio AJ, et al. 1998. Activation of MAPKs in human bronchial epithelial cells exposed to metals. Am J Physiol 275:L551–L558.

Samet JM, Silbajoris R, Wu W, Graves LM. 1999. Tyrosine phosphatases as targets in metal-induced signaling in human airway epithelial cells. Am J Respir Cell Mol Biol 21:357–364.

Sato H, Sagai M, Suzuki KT, Aoki Y. 1999. Identification, by cDNA microarray, of A-raf and proliferating cell nuclear antigen as genes induced in rat lung by exposure to diesel exhaust. Res Commun Mol Pathol Pharmacol 105:77–86.

Walsh CT, Sandstead HH, Prasad AS, Newberne PM, Fraker PJ. 1994. Zinc: health effects and research priorities for the 1990s. Environ Health Perspect 102(suppl 2):5–46.

Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Deshagiri S, et al. 2004. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signaling. Nature 430:694–699.

Woodin MA, Hauser R, Liu Y, Smith TJ, Siegel FD, Lewis DM, et al. 1998. Molecular markers of acute upper airway inflammation in workers exposed to fuel-oil ash. Am J Respir Crit Care Med 158:182–187.

Woodin MA, Liu Y, Hauser R, Smith TJ, Christiani DC. 1999. Pulmonary function in workers exposed to low levels of fuel-oil ash. J Occup Environ Med 41:972–980.

Woodin MA, Liu Y, Neuberg D, Hauser R, Smith TJ, Christiani DC. 2000. Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am J Ind Med 37:353–363.

Wu W, Graves LM, Jaspers I, Devlin RB, Reed W, Samet JM. 1999. Activation of the EGF receptor signaling pathway in human airway epithelial cells exposed to metals. Am J Physiol 277:L624–L631.

Wu W, Jaspers I, Zhang W, Graves LM, Samet JM. 2002. Role of Ras in metal-induced EGF receptor signaling and NF-kappaB activation in human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 282:L1040–L1048.

Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. 2003. Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094.

Zhang L, Rice AB, Adler K, Sannes P, Martin L, Gladwell W, et al. 2001. Vanadium stimulates human bronchial epithelial cells to produce heparin-binding epidermal growth factor-like growth factor: a mitogen for lung fibroblasts. Am J Respir Cell Mol Biol 24:123–131.

Zhong S, Salomoni P, Pandolfi PP. 2000. The transcriptional role of PML and the nuclear body. Nat Cell Biol 2:E85–E90.