Outlook for inverse design in nanophotonics

Sean Molesky,1 Zin Lin,2 Alexander Y. Piggott,3 Weiliang Jin,1 Jelena Vučković,3 and Alejandro W. Rodriguez1
1) Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544
2) John A. Paulson School of Engineering and Applied Sciences Harvard University, Cambridge, MA, 02138
3) Ginzton Laboratory, Stanford University, Stanford, CA, 94305

Recent advancements in computational inverse design have begun to reshape the landscape of structures and techniques available to nanophotonics. Here, we outline a cross section of key developments at the intersection of these two fields: moving from a recap of foundational results to motivation of emerging applications in nonlinear, topological, near-field, and on-chip optics.

The development of devices in nanophotonics has historically relied on intuition-based approaches, the impetus for which develops from knowledge of some a priori known physical effects. The specific features of such devices are then typically calculated and matched to suitable applications by tuning small sets of characteristic parameters. This approach has had a long track record of success, giving rise to a rich and widely exploited library of templates that includes multilayer thin films, Fabry-Perot and microring resonators, silicon waveguides, photonic crystals, plasmonic nanostructures, and nanobeam cavities, top of Fig. 1. Combining the principles of index guiding and bandgap engineering, along with material resonances, this collection of designs enables remarkable manipulation of light over bands of frequencies spanning from the ultra-violet to the mid infrared: group velocity can be slowed by more than two orders of magnitude, light confined to volumes thousands of times smaller than its free-space wavelength, and resonances made to persist in micron sized areas for tens of millions of cycles.

Yet, as the scope of nanophotonics broadens to include large bandwidth or multi-frequency applications, nonlinear phenomena, and dense integration, continuing with this prototypical approach poses a challenge of increasing complexity. For instance, consider the design of a wavelength-scale structure for enhancing nonlinear interactions, discussed below. Even in the simplest case, several interdependent characteristics must be simultaneously optimized, among which are large quality factors at each individual wavelength and nonlinear overlaps, which must be controlled in as small a volume as possible. In such a situation, the templates of the aforementioned standard library offer no clear or best way to proceed; there is no definite reason to expect that an optimal design can be found in any of the traditional templates, or that such a design necessarily exists. Moreover, the performance of a given nonlinear device is likely to be highly dependent on the particular characteristics of the problem, and as greater demands are placed on functionality it becomes increasingly doubtful that any one class of structures will have the broad applicability of past devices. This lack of evident strategies for broadband applications also brings to attention the space of structures included in the standard photonic library. Predominantly, traditional designs are repetitive mixtures and combinations of highly symmetric shapes described by a small collection of parameters. Since intuition-based optimization is then carried out in terms of these parameters without a great deal of additional computational effort, bearing aside known bounds based on fundamental principles, typically little is known about how close any one particular device comes to performance limits or how it compares to modified design possibilities.

The ability to produce and evaluate novel devices platforms based on nonlinear and broadband processes, such as solar energy conversion, thermal energy manipulation, and on-chip integration, will objectively impact the future of nanophotonics. If the total design space performance of a given type of design can be even partially characterized, an immense amount of research effort can be saved, and a new approach for investigating fundamental limits of nanophotonic devices could emerge. In this review, we bring attention to a collection of recent results showcasing the usefulness of computational inverse design approaches for both comparing the relative performance of possible structures, and creating photonic devices in instances where traditional intuition-based strategies prove difficult to implement. We begin by providing background on inverse design in nanophotonics, highlighting some of the major developments in this field. From this basis of understanding we then turn to discussion of emerging applications and experimental challenges, motivating ways in which inverse design techniques have and could be employed in nonlinear, topological, near-field, and integrated optics.

I. BACKGROUND

1998–2003: The driving motivations behind inverse design have been present for at least several hundreds of years. They are part of the same family of ideas that led Bernoulli to consider the brachistochrone problem, Maupertuis to propose the principle of least action, and Ambartsumian to question the relation between a set
FIG. 1. Progression of photonic design templates: (Top) During the second half of the twentieth century, advancement in fabrication capabilities allowed photonic engineering to expand into the micro and nanoscale. Over the past two decades, this capability has led to the growth of a rich standard library of photonic designs. Moving from left to right, the examples shown for photonic miniaturization depict a Fabry-Perot cavity, microdisk resonator, and fiber cavity. The examples for the photonic library are a photonic crystal defect cavity from Painter et al., a micropost cavity from Pelton et al., a microring resonator from Xu et al., a nanobeam from Eichenfield et al., and a plasmonic sensor from Liu et al. (Bottom) The lower part of the figure provides a visual companion to the timeline of developments in photonic optimization described in the text. Working from top to bottom, left to right, the images are taken from: (1998-1999) Spühler et al., and Dobson and Cox; (2004-2008) Borel et al., Häkansson and Sánchez-Dehesa, Jensen and Sigmund, Frei et al., Kao et al. and Tsuji and Hirayama; (2008-2014) Lu et al. (row), Alaeian et al., Men et al., Ganapati et al., and Liu et al.; (2015-2017) Ilic et al. (row), Fresselen et al., Piggot et al. (combined), Otomori et al. (row), and Yu et al.

of eigenvalues and its generating differential equation. There are at least two central thrusts: first, to determine the extent that the characteristics of a solution, either actual or desired, determine the system from which they are derived; and second, to find effective algorithms for working from solutions characteristics to physical systems.

In the context of nanophotonics, inverse-problem formulations are understandably much more recent. This offshoot, on which we will focus exclusively, began in the late 90s with the work of Spühler et al. and Cox and Dobson, beginning of Fig. 1. In the first article, Spühler et al. designed and fabricated a SiO$_2$/SiON telecom-fiber to ridge-waveguide coupler. Using a genetic algorithm to determine the width of the SiON core over a distance of 138 µm in 3 µm steps, a 2 dB increase in efficiency was achieved compared to direct coupling. In the second article, Cox and Dobson applied a gradient-search algorithm to the problem of bandgap optimization: starting from a 2d periodic structure composed of two materials, they sought to enlarge its bandgap by symmetric alterations of the dielectric composition, demonstrating a 34% increase. The methods used to perform structural optimization in these two early applications of photonic inverse design stand as archetypes for classification, involving either genetic (evolutionary) or gradient-based approaches. Crucially, in genetic algorithms the sensitivity of the fitness or design objective to the individual design parameters (derivative information of the objective function) is not necessarily determined. Moreover, even if gradient information is incorporated into any of the subroutines, it does not deterministically drive the algorithm. This alteration offers both benefits and drawbacks. For complex, non-convex objectives the algorithm is less likely to spend many iterations in oscillatory regions of the parameter space lacking strong maxima. In exchange, it is more likely, depending on the problem, that locally optimal designs are missed.
and that additional iterations will be required to achieve convergence comparable to a gradient based approach.

2004-2008: In the five-year period following these initial investigations, notable extensions and contributions were made. Among them, Doosje et al. showed that plane wave expansions could be used to implement inverse calculations of 3d fcc photonic crystal. Cox and Dobson successfully extended their original work to include in-plane electric fields. Felici and Heinz considered optimal designs for coupling fibers to adiabatic tapers, making use of cascading algorithms combining coarse- and fine-grained parameterizations. Geremia et al. formulated the design of photonic-crystal cavities as a Lagrangian maximization problem involving a generalized cost functional defined in terms of the desired optical characteristics; Jiang et al. used a genetic algorithm to achieve mode matching between photonic-crystal and fiber waveguides; Kizilats et al. applied optimization techniques to improve the design of radio frequency patch antennas. With few exceptions, most works focused on two classes of problems, involving either bandgap optimization in photonic crystals or mode coupling in waveguide geometries. A commonality among these problems was a high degree of symmetry and low dimensionality associated with the optimization parameters, with gradient search methods mainly applied to periodic structures optimized over a small selection of parameters within a predetermined family of designs. Large-scale optimization methods nevertheless begun to be simultaneously pursued in the closely related area of sensitivity analysis, illustrating huge speed-ups in the characterization of the impact of defects and roughness on photonic devices.

The works of Jensen, Sigmund et al., Bruger, Kao, Osher, and Yablonovitch, Håkansson, Sánchez-Dehesa, and Sanchis et al. between 2004 and 2005 began to clearly reshape this landscape, second grouping of Fig. 1. First, inverse methods were extended to include a wider range of technologically relevant applications, including photonic-crystal waveguide bends showing sub 1% transmission losses over a broad band of frequencies, few wavelength-thick devices capable of acting as frequency demultiplexers, and more varied photonic crystal configurations for the creation of wide bandgaps. Second, the introduction of adjoint topology optimization along with improvements to existing genetic techniques, vastly broadened the generality and computational efficiency of inverse design.

At a high level, a major benefit of introducing the concepts of level-set and topology optimization is that they provide a systematic way to organize design possibilities. In the level-set method, a given design domain D into level sets of a solution function $\Phi(x)$ that varies continuously over space $x \in D$ (defined over each voxel or mesh in a computational cell). Mimicking the description of Bruger et al. to consider smooth candidate structures consisting of two materials, one can define a partitioning,

$$\Omega_1 = \{ \Phi(x) < \text{low} \},$$

$$\Omega_2 = \{ \text{high} < \Phi(x) \},$$ \hspace{1cm} (1)

that maps an otherwise continuously varying function to a binary domain. To move toward a device design, $\Phi(x)$ is then evolved through an equation of motion (such as the Hamilton-Jacobi equation) or via gradient, causing it to settle at local maxima. Specifying the optimization domain in this way allows for floating boundaries between material components without the need to provide explicit parameterizations. Additionally, it also allows for appearance of voids while mitigating conditions conducive to the development of ultra-fine (pixel checkerboard) features.

In topology optimization, an even broader design space is considered. Drawing from the finite discretization of the underlying physical problem in a numerical method, each node (line segment, pixel or voxel) within a computational cell is treated as a degree of freedom and “relaxed” continuously in some range. Mimicking the implementation of Jensen and Sigmund as an example, the permittivity of each node ϵ_i in structures consisting of two materials is defined as a linear functional,

$$\epsilon_i = \epsilon_1 + \lambda_i (\epsilon_2 - \epsilon_1),$$ \hspace{1cm} (2)

where $\epsilon_{1,2}$ denotes the permittivity of the two materials and $\lambda \in [0, 1]$ acts as a relaxation parameter. The problem of finding an optimal structure over the space of all discretized designs then amounts to determining the value of λ for each node, while ensuring that the latter takes only its extreme values.

In either approach, the space of possible designs is enormous (on the order of the set of nodes in the optimization domain) and hence to ensure any hope of convergence to a local optimum, iterations based on the gradient of the objective with respect to the design parameters are needed. Here, gradients provide the optimization algorithms a direction of improvement; remarkably, while there is no provable guarantee of a globally optimal solution, it is still nevertheless possible to find good (and in some cases globally optimal) designs. The computational effort required to determine and make use of this information is made manageable through the use of the adjoint method, described in Box 1.
Box 1: The adjoint method

Let $\mathcal{F}[\psi(x) , \epsilon(x)]$ be some objective functional, $\psi(x)$ a field that \mathcal{F} is optimized relative to, $\epsilon(x)$ a controllable set of design parameters, and $\mathcal{M}[\psi(x) , \epsilon(x)] = 0$ a collection of constraints between $\psi(x)$ and $\epsilon(x)$, with x parameterizing the computational domain. The relevant derivative (sensitivity) information for locally optimizing $\epsilon(x)$ is then given by the total variation of \mathcal{F} with respect to the design parameters:

$$\delta\epsilon(x)\mathcal{F} = \frac{\delta\mathcal{F}}{\delta\epsilon(x)} + \delta\mathcal{F} \frac{\delta\psi(x)}{\delta\epsilon(x)}.$$ \hfill (3)

Since there is only one objective functional, $\delta\mathcal{F}/\delta\epsilon(x)$ and $\delta\mathcal{F}/\delta\psi(x)$ can be dealt with in a straightforward way. The determination of $\delta\psi(x)/\delta\epsilon(x)$ is more difficult. Functionally, this quantity is defined by the equation,

$$\delta\epsilon(x)\mathcal{M} = \frac{\delta\mathcal{M}}{\delta\epsilon(x)} + \frac{\delta\mathcal{M}}{\delta\psi(x)} \frac{\delta\psi(x)}{\delta\epsilon(x)} = 0,$$ \hfill (4)

giving $\delta\psi(x)/\delta\epsilon(x) = -(\delta\mathcal{M}/\delta\psi(x))^{-1}\delta\mathcal{M}/\delta\epsilon(x)$. This expression is computationally costly, since \mathcal{M} is typically determined by the solution of the underlying physical problem, or the inverse of the system matrix. Treating it in the forward direction requires as many solutions as there are optimization unknowns. Treating it in the reverse requires first computing the matrix inverse and then applying/using the resulting dense matrix.

To avoid such a calculation, which would severely limit the type of problems that could be tractably considered, one typically substitutes the constraint vector for the objective \mathcal{F}. Inserting (4) into (3) one obtains,

$$\delta\epsilon(x)\mathcal{F} = \frac{\delta\mathcal{F}}{\delta\epsilon(x)} - \frac{\delta\mathcal{F}}{\delta\psi(x)} \left(\frac{\delta\mathcal{M}}{\delta\psi(x)}\right)^{-1}\delta\mathcal{M}/\delta\epsilon(x).$$ \hfill (5)

in which case the combination $\frac{\mathcal{M}}{\delta\psi(x)}(\delta\mathcal{M}/\delta\psi(x))^{-1}$ acts as a linear functional on $\delta\mathcal{M}/\delta\epsilon(x)$. This gives the adjoint equation22

$$\left(\frac{\delta\mathcal{M}}{\delta\psi(x)}\right)^\dagger \mathcal{L}(x) = \frac{\delta\mathcal{F}}{\delta\psi(x)},$$ \hfill (6)

2008–2015: Following the first forays of large-scale optimization methods in photonics was a contemporaneous push to investigate structures and applications of increasing complexity, including early works in solar energy harvesting30,32, dispersion engineering69, wavelength focusing70 and nonlinear switching21. The corresponding gains in performance determined by adjoint techniques naturally led to questions concerning the incorporation of realistic constraints and computationally workable extensions to larger design domains, third grouping of Fig. 1. In essence, while increasing generality provided a boon to device performance, these gains nevertheless came at a cost. In the absence of constraints, the feature sizes that can be produced by either level-set or topology optimization methods are limited only by the size of the chosen computational domains. Moreover, in the topology optimization approach, the permittivity is allowed to vary continuously to make use of gradients and depending on how material constraints are implemented, the solution of which yields all the required derivative information. Here, \dagger is the adjoint operator. If the constraint equations are linear in $\psi(x)$, then $\delta\mathcal{M}/\delta\psi(x)$ is just the operator form of the constraint vector, and the same factorization and conditioners used to solve for $\psi(x)$ can be used to reduce the cost of determining $\lambda(x)$. It is remarkable that adjoint methods yield full derivative information from the solution of a problem that is, in every respect, no harder to solve than the original problem. This fact can, in certain situations, be understood intuitively. Consider for instance the typical electromagnetic problem of optimizing scattered power from a body due to some known incident field. Such a problem requires determining the sensitivity or change in scattered power due to changes in the permittivity $\delta\epsilon$ throughout the body, illustrated in the accompanying schematic. The direct or “forward” approach to the problem proposed by (4) goes as follows: First, one can exploit the Born approximation to treat the first-order variation in the polarization $\delta j = \delta\epsilon \times (\text{incident field})$ at each position as an independent (induced) current.
source. To determine the resulting change in power due to $\delta \epsilon$, a field calculation needs to be carried out at every position in the body (requiring as many solutions as there are polarization unknowns). Then, one must take the inner product between each resulting field and the initial scattered field. However, electromagnetic reciprocity implies that the roles of the field and source can be interchanged, which right away yields the “backward” problem. Applying this transformation to the initial scattered field (no variations), the sensitivity calculation is recast as the problem of determining the field inside the object caused by a single source outside the body, requiring the solution of a single “adjoint” scattering problem, described by [6]. Remarkably, while this concrete example provides intuition, the power of the adjoint method is its generality, applying to a much broader set of problems, e.g. nonreciprocal and even nonlinear materials.

In 2008, Tsui and Hirayama investigated the particular problem of losses at a 90° bend, showing that the replacement of the linear relaxation parameter in [2] with a smooth function approaching a step discontinuity yields similar convergence properties and structures as those obtained using established penalization methods [29]. In a similar spirit, Wang et al. studied basic tradeoffs associated with applications of topology and few-parameter optimization methods to the realization of low-light photonic-crystal waveguides, showing that while the performance of structures generated by topology optimization is typically superior, producing group velocity indices approaching 300, similar order of magnitude gains can be achieved via simple shape variations. Simultaneously, adaptations of large-scale methods to include fabrication tolerances were pursued by Sigmund generally and by Oskooi et al. in the context of robust waveguide tapers, with the key goal being to produce designs that provide some degree of optimality while remaining robust with respect to structural variations. In the former, this was done by introducing erosion and dilation operators that alter the optimized structure; in the latter, this was done by considering the performance of the structure relative to alterations in the direction of steepest descent of the objective function. To control feature sizes within the level-set method, a typical approach is to exploit shape parameterizations that automatically satisfy the desired minimum feature constraint, known as a geometry projection method. For instance, Frei, Johnson et al. observed that a truncated expansion of the level-set function in a basis of radial functions implicitly determines the smallest feature size in a given problem, which they applied to demonstrate a tripling of the Purcell factor of a single-defect photonic crystal cavity. Practical evaluations of the relative importance of different facets of topology optimization and level-set algorithms also extend to computational efficacy, and key ideas emerged in the works of Lu et al., Men et al., Liang and Johnson, and Liu et al., summarized below.

Relaxation methods: In general, the inverse problem of determining both field and structural unknowns can be broken into two subproblems, explored in Lu et al. [29]. First, one relaxes the absolute constraints imposed by Maxwell’s equations and determines the electric field that simultaneously minimizes both the objective and residual with respect to solution of Maxwell’s equations. Next, one considers the electric field found in the first step as a given and seeks instead to minimize said residual by solving for the correct permittivity [29]. An optimal structure is produced by alternating between these two, less demanding subproblems, known as a relaxation method. Similar notions were used earlier by Geremia et al. and Englund et al. in inverse design studies of defect cavities.

Subspace methods: In cases where it is feasible to determine the modes most actively dictating the objective function, then the total optimization problem can be limited to more tractable subspaces [32]. If the allowed variations between any two iterations is also small, then exploiting a relaxation method as above allows the modes of one structure to be used as an approximation for the modes of another; combining these two ideas results in a considerably more accommodating system of equations that can be solved by semi-definite programming techniques, explored by Men et al. in the context of bandgap optimization. Along a similar vein, the computational cost of problems involving multiple frequency bands can be dramatically reduced by the use of window functions and complex-frequency deformations, so long as the objective function is analytic. First, multiply the objective by a meromorphic function peaked around the frequency bands of interest (a Lorentzian is given as an example). By analytically continuing to the complex plane, the entire integral objective is obtained from the residues of the window function, requiring fewer calculations. In Men et al., this formulation was applied to produce 3d cavities with Purcell factors larger than
FIG. 2. Nonlinear optics: Nonlinear optical interactions in micro and nanoscale resonators are regulated by the modal quality factors and nonlinear overlap of the participating modes. Even in the simplest of processes, envisioning structures that optimally control and select from this parameter space is challenging. Shown in the figure are three initial applications of inverse design towards this problem. (A) Schematic of a micropost cavity consisting of aperiodically alternating AlGaAs/AlOx layers designed to enhance the efficiency of $\chi^{(2)}$ second harmonic generation. (The figures of merit of this design are depicted and compared in (E).) (B) and (C) Topology optimized gallium arsenide multi-track ring resonators clad in silica for $\chi^{(2)}$ second harmonic generation, (B), and $\chi^{(3)}$ difference frequency generation, (C). (D) A gallium phosphide metasurface designed for $\chi^{(2)}$ second harmonic generation. All designs are found to have respective nonlinear figures of merit between one and three orders better than previously reported designs.

Transformation optics: Finally, the strengths of inverse design and transformation optics are highly complementary. Coordinate transformations often lead to a clear understanding of the boundary behavior that must be achieved for a device to perform efficiently. For example, in order to keep modes from scattering around a waveguide bend, any permittivity profile that has the same effect as a coordinate transformation producing a 90° rotation will work. However, natural transformations, such as a change to circular coordinates in the above example, tend to produce material profiles that are difficult to fabricate, (unrealistic permittivities, anisotropy, etc). On the other hand, this second problem is well suited for inverse design. Knowledge of the exact boundary conditions that must be satisfied means that Maxwell’s equations do not need to be solved at each iteration. Instead, the algorithm may focus solely on the objective function, like minimization of anisotropy in the permittivity, requiring only derivative information.

Results stemming from these computational insights are also intriguing. For instance, Men et al. found that even without imposing fabrication constraint, their inverse design algorithm could not find photonic structures with fractional bandgaps larger than $\approx 30\%$ (for index contrasts smaller than 1:3.6). Perhaps surprisingly, such gaps are only slightly larger than those previously attributed to hand-designed fcc photonic crystals. Considering the large number of degrees of freedom and initial designs explored, the results suggest that there is not much room for further bandgap engineering. The suggestion of such a fundamental limitation, while negative, is quite appealing from a theoretical perspective. Instinctively, the size of bandgaps must be in some way ultimately bound by material constraints, regardless of how these materials are spatially distributed. Yet, the existence of an argument proving this fact remains open.

II. CURRENT AND EMERGING APPLICATIONS

Nonlinear optics: The utility of engineered resonances for nonlinear phenomena is well documented. Compared to bulk media, resonators offer both longer interaction timescales and higher field confinements, leading to increased nonlinear interactions. Beginning with large-etalon cavities initially considered in the mid nineteen sixties, and moving from millimeter- to micron-scale whispering gallery mode resonators to the more recently proposed wavelength-scale cavities, these ideas have continued to be pushed to realize higher efficiencies (lower pump powers), more compact architectures, and wider bandwidths (faster operating timescales). At a finer level of detail, the physics of nonlinear processes in wavelength-scale structures is well described by a small set of parameters: the frequencies and decay rates (or quality factors) of each resonance and the nonlinear overlap integrals describing interactions between constituent electric fields (generalizing the more commonly known, phase-matching condition...
FIG. 3. Exceptional and topological photonics: The figure depicts the band and modes of a 2d square lattice discovered by topology optimization. At the Γ point of the Brillouin zone, the monopole, dipole and quadrupole modes (labeled as M, D, and Q) coalesce creating an exceptional point. The resulting Dirac band structure and self orthogonality of the modes has been shown to strongly modify the qualitative characteristics of the local density of states, resulting in enhanced spontaneous emission and nonlinear effects, associated with propagating waves. These properties fully characterize nonlinear interactions and must be simultaneously tuned. Yet, while the statement of required conditions is simple, the search for well suited structures remains both a technical and conceptual challenge and none of the standard design principles are readily applicable. While the creation of bandgaps remains a valuable idea, they typically can only cover one of the active frequencies. Further, even if this could be achieved, there is no guarantee that it would result in desirable overlap characteristics. Index-guiding structures can have high modal quality factors and operate effectively over large bandwidths, but require an unideal tradeoff between mode confinement and radiative losses. Plasmon-polariton resonances can provide excellent confinement and field intensities but are saddled with the unavoidable presence of material loss, limiting the ultimate conversion efficiency that can be achieved. Concurrently, for weak nonlinearities, the distinct resonances of any structure must be orthogonal, which weakens nonlinear overlap integrals and hence interactions. To boot, devices based on \(\chi^3 \) and higher order processes require amplitude-dependent frequency corrections to account for cross- and self-phase modulations that prove difficult to independently tune in few-parameter designs.

The complexity implied in determining structures that simultaneously achieve these various design objectives seems ideally suited to inverse design techniques. As a conformation of this notion, preliminary findings for \(\chi^2 \) second harmonic generation and \(\chi^3 \) difference frequency generation are presented. The three designs depicted are found to have nonlinear figures of merit between one and three orders better than any previously reported designs up to the millimeter scale. Across the varied design paradigms considered (layered micropillar cavities, multiring structures, metasurfaces, etcetera), topology optimized structures are observed to have systematically reduced structural symmetry, large quality factors, and nonlinear overlaps. For the nonlinear processes considered, the optimizations consistently find intuitive designs to be overly simplistic in the sense that they do not make sufficient use of interference to match the profiles of the interacting modes. From a practical perspective, stronger overlaps are preferred to higher quality factors since the former are less sensitive to fabrication imperfections and offer greater speed (larger bandwidths).

Finally, the realization of wavelength scale nonlinear devices for \(\chi^2 \) and \(\chi^3 \) harmonic generation is a necessary step towards the development of a variety of promising on-chip technologies including low threshold lasers, frequency combs, supercontinuum sources, spectroscopy, single photon sources, and quantum information processing. The early successes of topology optimization in the nonlinear domain indicate that each of these proposals may benefit substantially from incorporating inverse design techniques.

Exceptional and topological photonics: Starting from early investigations of 2d bandgaps, dispersion engineering has consistently stood as one of the strongest motivations for applying inverse design in photonics. Spurred by the currently developing understanding of topological properties in photonic systems, this original inspiration has reemerged in the creation of exceptional points. As in the case of nonlinear phenomena, manipulating the nuanced role that structure plays in determining the exact characteristics of these features seems particularly aligned to inverse approaches.

Exceptional points occur in non-Hermitian problems (macroscopic electromagnetics, acoustics, etc.) when two or more of the associated complex eigenvalues coalesce, causing the basis to become incomplete. The associated physical behavior is markedly different from the more familiar accidental degeneracy encountered in Hermitian systems. First, as modes approach an exceptional point, the remaining eigenmode becomes self orthogonal, typically quantified in terms of the di-
FIG. 4. Growth of applications: The past three years have seen remarkable growth in variety of systems treated with computational adjoint methods. Panel (A) depicts a near-field transducer for heat-assisted magnetic recording, offering a 50% reduction in self-heating compared with industry standard97. (B) Illumination of an arbitrary nanoscale structure (triangle) with an optimally structured beam to increase optical torque, leading to a 20-fold enhancement98. (C) An electromagnetic cloak, leading to order of magnitude reduction in total scattering99. (D) A schematic of an experimentally realized optimized structure for spectral splitting that achieves 69.5% separation of the optical and infrared spectra, opening new directions for multi-bandgap photovoltaics40. Panels (E) and (F) display conceived applications of inverse design structures to modal coupling: (E) free space coupling to a waveguide mode doubling the field amplitude compared to a traditional grating from Niederberger et al.100; and (F) optimized coupling of power between a ring resonator and a waveguide.

Within the past decade, exceptional points have been designed using three primary schemes: geometries involving gain and loss in coupled resonators108, interacting waveguides109 and currently, purely passive photonic-crystal lattices110. Indirectly, this variety indicates that the subset of systems where exceptional points can occur is in fact quite large, and that with proper design tools there may be enough freedom to engineer both degree and location. As a promising inroad to the additional physics and design possibilities offered by exceptional points, Fig. 3 describes the existence of a coalescence of three eigenvalues occurring at the Γ point of an open C_{2v} photonic crystal obtained by topology optimization85. Two central results follow: First, in showing that third-order exceptional points can be readily engineered, the study strengthens the notion that exceptional points are not bound to special geometries or material parameters. Second, the authors show that exceptional points can be used to enhance the local density of states at certain positions in the crystal.

The results are also relevant in the burgeoning field of topological photonics111. The Dirac bandstructure that accompanies the creation of an exceptional point is a known precursor to media with non trivial photonic topologies, encompassing backscattering immune surface states112, topological insulators113, and optical Weyl point114. Given the potential impact of realizing designer topological properties in practical physical systems, the extension of inverse design methods to deal with other key stepping stones such as chiral modes, and omnidirectional Dirac cones, seems promising.

Nanoscale optics and metasurfaces: Over the last several years, large-scale optimization methods have begun to have a significant impact on a diverse collection of problems in nano-optics and metasurfaces. Representative selections are depicted in Figs. 4 and 5. Implementing a boundary inclusion optimization to determine the characteristics of a slab waveguide, Bhargava and Yablonovitch97 proposed a near field transducer for heat assisted magnetic recording. The design has 50% less self heating than the current standard employed in industry. Making use of the boundary element method, Lee et al.98 investigated the optimization of electromagnetic torques arising from incident optical fields on arbitrary nanostructures. For the example triangular nanoparticle shown in Fig. 4(B), the torque generated on the quadrupole mode was increased by a factor of 20. As an example of their edge element method for three dimensional volume optimizations, Deng and Krovnik99 applied topology optimization toward the design of a single-material cloak for a perfect spherical conductor, leading to an order of magnitude reduction in scattered power. Each of these examples
FIG. 5. Metasurface photonics: The figure highlights four recent applications of inverse design to metasphotonics. (A) A metagrating capable of angularly separating 1000 nm and 1300 nm TE polarized light with 75% absolute efficiency by Sell et al. 115. (B) A 3D polarization splitter designed for microwave applications (≈ 26 – 33 GHz) by Callewaert et al. 116. (C) An optimized quasi random amorphous silicon structure for enhancing absorption of the optical spectrum created by Lee et al. 117. (D) A topology optimized polarizer with ≈ 90% conversion efficiency conceived by Shen et al. 118.

exemplifies a technologically relevant area of photonics where complexity hampers direct application of standard design principles. Moreover, while in some cases there is guidance on expected performance from existence of fundamental limits (typically derived from physical constraints like energy conservation or reciprocity 13), there are yet many situations (such as in near-field or metasurface applications) where no such bounds exist or are only beginning to emerge 14,15, and hence where it is unclear what sort of performance can be achieved.

Varied examples have also been reported for more traditional optical problems such as diffraction, coupling, polarization control, and absorption enhancement in constrained volumes, Fig. 4 (D)-(F) and Fig. 5. In particular, a substantial number of promising results have already been obtained in the context of metasurfaces. The works of Sell et al.115, Callewaert et al.116, and Shen et al.118 have connected inverse design to the larger pursuit of flat optical systems to replace the functionality of conventional optical components 119. Each of the three works presents a general scheme and experimental realization for either highly efficient diffraction, Fig. 5 (A)-(B), or polarization control, Fig. 5 (D), that can be applied to an assortment of particular problems. Much as in the case of band structure, the findings of these studies open broader questions about the breadth of phase and polarization control that can occur per unit thickness in a structured medium (or a single simply structured layer 74).

The metasurface concept also relates to the pressing demand to improve solar energy capture. Two primary aspects which limit the efficiency of traditional (simple) pn-junction designs are light trapping within the volume where photovoltaic conversion occurs 120,121 and the width of the solar spectrum, which fundamentally limits the potential conversion efficiency of any single bandgap. Any device design offering improvement in either aspect is notable, especially if it does not impose extreme fabrication difficulties and can be implemented in silicon systems. While there have been many recent works on inverse design for solar cell application 32, we highlight two particular examples that address these two issues. The first issue was studied by Shen et al.118 in 2014 with respect to the quasi-random features that can be imposed on amorphous silicon surface by wrinkle lithography. Conducting Fourier-based inverse design (referred to here as concurrent design) the authors were able to enhance light-trapping by a reported factor of five over the spectral range of 400 to 1200 nm. The second issue has been examined by Xiao et al.40, who in 2016 demonstrated a splitter that physically separates optical and infrared wavelengths with 69.5% efficiency. By partitioning the solar spectrum in this way, photovoltaics with different bandgaps can be placed in a side by side configuration allowing for multiple bands of high-efficiency operation.

Simultaneously, significant progress has also been made on variations of the question of mode couplers. For dense chip-scale integration there is a clear need to limit the total optical footprint by handling multi-frequency bands on a single waveguide. In opposition, there is
also a clear need to be able to access the information stored on these different frequency bands independently. To meet both goals, devices capable of high fidelity wavelength division multiplexing are required. Adjoint optimized devices from Fresselen et al.35 and Piggot et al.36,37 for implementing this functionality in areas of a few square microns at telecom wavelength, with sub 5 dB transmission loss, are shown in the lower part of Fig. 1 and in Fig. 6. Shen et al.115 and Mak et al.124 have come to similar findings. Also shown in Fig. 6 is a three-port power splitter designed using a fabrication tolerant algorithm and measured to have no worse than 23% transmission at any of its three output ports across its 1400 to 1700 nm operational bandwidth37. Similar to solar energy capture, any improvement in the components providing these necessary functionalities potentially has far reaching industrial impact.

Finally, panels (E) and (F) in Fig. 4 present more speculative applications: the free space coupling of light into a waveguide from Niederberger et al.108 and the optimized coupling of power between a ring resonator and a waveguide at multiple frequencies using wavelength-scale elements. Both problems are routinely dealt with in experimental settings. However, there are surprisingly few high-efficiency techniques to couple light either into nanophotonic structures from free space, or from a waveguide into a cavity beyond adiabatic tapers.

Experimental challenges: Since 2004, a variety of designs have been experimentally demonstrated to illustrate the viability of computational inverse methods. Ranging from bends and splitters for photonic-crystal waveguides36,37,126 to passive components for silicon photonic circuits35,36,72,125 and metasurfaces115,126, operational devices exists in essentially every major domain of photonics in which inverse design has been applied. Yet, to date, none these structures have found broad industrial application. The primary cause of this incongruity is simple: nearly every device has been fabricated using electron-beam lithography due to the small features that occur naturally in current inverse algorithms. For industrial applications, limiting fabrication time, and hence cost, requires compatibility with photolithography; and while explicit constraints imposing a minimal feature size can be implemented in one dimensional designs with relative simplicity127,128, such approaches are considerably more difficult in higher dimensions.

A conceptually simple solution to this challenge is to subdivide the design region into pixels which are larger than the smallest achievable feature size. After removing any intermediate gray structures, the design is then assured to fabricable127,128. However, in trade, this approach probes an overly limited design space, artificially penalizing all smooth curves even if they do not require small features. A more inclusive approach is to incorporate fabrication constraints directly into the optimization problem. For topology algorithms, this is accomplished by using convolutional filters to smear out small features, and image dilation and erosion operations to mimic fabrication imperfections125,126. For boundary parameterized optimizations, simultaneously limiting the minimum radius of curvature125 and eliminating any gaps or bridges narrower than a threshold width127,128 has been shown to increase fabrication tolerance133. These methods have been experimentally tested for electron-beam lithography, and simulations indicated that should also work reasonably well for photolithography when using optical proximity correction132. Yet as promising as these results are, they are not robust to process variations in photolithography, such as defocusing and dosage errors, and finding methods to cope with these additional complications remains an open problem.

Finally, the physical size of practical aperiodic devices that can be currently treated with inverse design methods is limited by the computational cost of the fully-vectorial 3d simulations needed to accurately model their performance. Dozens to hundreds of simulations are required to design a single device, which becomes prohibitively expensive as design domains expand. This limits the type of questions that can be meaningfully treated, and makes it difficult to inverse design interfaces.

FIG. 6. Experimental inverse design: The figure shows two SEM overlaid images with accompanying fields for narrowband (A) two- and (C) three-channel wavelength splitters, Piggot et al.126 The two-band splitter is designed to separate 1300 nm (blue) and 1550 nm (red). The three band splitter designed to separate 1500 nm (blue), 1540 nm (green), and 1580 nm (red). Panels (B) and (D) show measured transmission spectra, validating the functionality of these devices.
with large structures such as single-mode optical fibers. In this light, further improvements in computational approaches (such as iterative solvers) that underpin current inverse methods have the potential to vastly expand complementary application boundaries.

III. SUMMARY OUTLOOK

Applications have always served as the vital spark for progress in inverse design, and from this fact alone the outlook for the application of these principles in nanophotonics is positive. There is both a clear set of mature, clearly formulated problems in areas such as chip-scale integration and cavity design that remain open; as well as a range of new areas of application such as energy capture and nonlinear device design where only promising preliminary work has been done. Beyond the areas we have outlined in the previous sections, inverse design principles appear to offer a new perspective for understanding fluctuation physics and near-field optics. Although currently limited to one dimension, the application of topology optimization to find optimally efficient heat transfer systems promises to have practical and theoretical impact in building further understanding of the practical limits of heat transfer. Extending inverse design to active devices such as modulators and lasers, which are often the performance limiting components of optical systems, would also be extremely useful.

A number of key improvements would enable the widespread usage of inverse design methods in practical applications. First and foremost is improving the robustness of designs to handle process variations in photolithography, which would enable high throughput fabrication. Parallel to this computational focused tract, advancement in nanoscale lithography appear poised to enlarge the landscape of fabricable structures to include a larger subset of the intricate multiscale features and permittivity gradients that ubiquitously appear in inverse algorithms. Inverse design methods can, at least in principle, explore the full space of fabricable devices. It thus becomes a very meaningful question to ask: what is the maximum theoretical performance of an optical device? More specifically, for a given design area, minimum feature size, and selection of materials, what is the ultimate achievable performance of an optical device for a particular function? Establishing such theoretical bounds on the performance of optical devices would help guide future work in all of photonics.

Finally, improvements to the underlying simulations and optimization algorithms could enable design of larger devices, greatly improving the breadth and scope of problems that can be tackled by inverse design. Along these lines, several recent works have begun exploring applications of machine learning in nanophotonics.
A. Y. Piggott, J. Lu, K. G. Lagoudakis, J. Petykiewicz, T. M. Babinec, and J. Vučković, Nature Photonics 24, 87 (2016).

A. Y. Piggott, J. Petykiewicz, L. Su, and J. Vučković, Scientific Reports 7 (2017).

M. Otomori, T. Yamada, K. Izui, S. Nishiwaki, and J. Andkjær, Structural and Multidisciplinary Optimization 55, 913 (2017).

Z. Yu, H. Cui, and X. Sun, Photonics Research 5, B15 (2017).

T. P. Xiao, O. S. Cifci, S. Bhargava, T. Gissibl, W. Zhou, H. Giessen, K. C. Toussaint Jr, E. Yablonovitch, and P. V. Braun, ACS Photonics 3, 886 (2016).

W. Jin, R. Messina, and A. W. Rodriguez, arXiv preprint arXiv:1702.02057 (2017).

L. Su, A. Y. Piggott, N. V. Sapra, J. Petykiewicz, and J. Vučković, arXiv preprint arXiv:1709.08809 (2017).

K. Chadan and P. C. Sabatier, Inverse problems in quantum scattering theory (Springer Science & Business Media, 2012).

M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods and applications. (Springer, 2003).

For an overview of topology optimization in the field of mechanics, where many of the techniques now used in nanophotonics were developed, see Bendsoe and Sigmund (2003). We also note that the material presented here is in no way an exhaustive or definitive history of nanophotonic optimization. Rather, it is meant to serve as a cross section of results giving a sense of how the field has evolved. In particular, we will not discuss the closely related development of sensitivity analysis in the microwave community, even though conceptually there is almost no difference between these two areas. We direct readers interested in a more thorough historical accounts to the reviews by Jensen (2012) and Sigmund, (2009) and the articles contained therein. Earlier articles by Boa and Friedman or Dobson could also be considered as a starting points for gradient based inverse design in nanophotonics. Similarly, genetic algorithms had already been applied to several problems in electomagnetics, which could be considered near enough to nanophotonics. However, within the field the two works cited in the main text have had the largest impact.

T. Back, U. Hammel, and H.-P. Schewe, IEEE Transactions on Evolutionary Computation 1, 3 (1997).

M. C. Fu, F. W. Glover, and J. April, in Simulation conference, 2005 proceedings of the winter (IEEE, 2005) pp. 13–pp.

M. Doosje, B. J. Hoenders, and J. Knoester, JOSA B 17, 600 (2000).

S. J. Cox and D. C. Dobson, Journal of Computational Physics 158, 214 (2000).

T. Felici and H. W. Engl, Inverse Problems 17, 1141 (2001).

J. Geremia, J. Williams, and H. Mabuchi, Physical Review E 66, 066606 (2002).

J. Jiang, J. Cai, G. P. Nordin, and L. Li, Optics Letters 28, 2381 (2003).

G. Kiziltas, D. Psychoudakis, J. L. Volakis, and N. Kikuchi, IEEE Transactions on Antennas and Propagation 51, 2732 (2003).

D. Erni, D. Wiesmann, M. Spiehler, S. Hunziker, E. Moreno, B. Oswald, J. Fröhlich, and C. Hafner, in ACES, Vol. 15 (2000).

G. Veronis, R. W. Dutton, and S. Fan, Optics letters 29, 2288 (2004).

Y. Jiao, S. Fan, and D. A. Miller, IEEE journal of quantum electronics 42, 246 (2006).

J. S. Jensen and O. Sigmund, JOSA B 22, 1191 (2005).

M. Burger, Interfaces and Free Boundaries 5, 301 (2003).

M. Burger, S. J. Osher, and E. Yablonovitch, IEEEE Transactions on Electronics 87, 258 (2004).
Academy of Sciences 100, 7075 (2003).

94 R. Hallir, Y. Okawachi, J. Levy, M. Foster, M. Lipson, and A. Gaeta, Optics letters 37, 1685 (2012).

95 J. H. Moon, J. H. Kim, K.-j. Kim, T.-H. Kang, B. Kim, C.-H. Kim, J. H. Hahn, and J. W. Park, Langmuir 13, 4305 (1997).

96 X. Guo, C.-L. Zou, H. Jung, and H. X. Tang, Physical review letters 117, 123902 (2016).

97 S. Bhargava and E. Yablonovitch, IEEE Transactions on Magnetics 51, 1 (2015).

98 Y. E. Lee, O. D. Miller, M. Reid, S. G. Johnson, and N. X. Fang, arXiv preprint arXiv:1701.07891 (2017).

99 Y. Deng and J. G. Korvink, in Proc. R. Soc. A, Vol. 472 (The Royal Society, 2016) p. 20150835.

100 A. C. Niederberger, D. A. Fattal, N. R. Gauger, S. Fan, and R. G. Beausoleil, Optics express 22, 12971 (2014).

101 W. Heiss, Journal of Physics A: Mathematical and Theoretical 45, 444016 (2012).

102 M. V. Berry, journal of modern optics 50, 63 (2003).

103 A. Pick, B. Zhen, O. D. Miller, C. W. Hsu, F. Hernandez, A. W. Rodriguez, M. Soljačić, and S. G. Johnson, Optics Express 25, 12325 (2017).

104 A. Regensburger, C. Bersch, M.-A. Miri, G. Onishchukov, D. N. Christodoulides, and P. Peschel, Nature 488, 167 (2012).

105 B. Peng, S. Ozdemir, S. Rotter, H. Vilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, Science 346, 328 (2014).

106 H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, Nature 548, 187 (2017).

107 A. Pick, Z. Lin, W. Jin, and A. W. Rodriguez, arXiv preprint arXiv:1705.01750 (2017).

108 B. Peng, Ş. K. Ozdemir, F. Lei, F. Monifi, M. Gyanfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Nature Physics 10, 394 (2014).

109 C. E. Rütt, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Nature physics 6, 192 (2010).

110 B. Zhen, C. W. Hsu, Y. Igarashi, L. Lu, I. Kaminer, A. Pick, S.-L. Chua, J. Joannopoulos, and M. Soljačić, in CLEO: QELS Fundamental Science (Optical Society of America, 2016) pp. FF2B–2.

111 L. Lu, J. D. Joannopoulos, and M. Soljačić, Nature Photonics 8, 821 (2014).

112 Z. Wang, Y. Chong, J. Joannopoulos, and M. Soljačić, Nature Photonics 461, 772 (2009).

113 A. Slobzhanyuk, S. H. Mousavi, X. Ni, D. Smirnova, Y. S. Kivshar, and A. B. Khanikaev, Nature Photonics 11, 130 (2017).

114 J. Noh, S. Huang, D. Leykam, Y. Chong, K. P. Chen, and M. C. Rechtsman, Nature Physics (2017).

115 D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, Nano Letters 17, 3752 (2017).

116 F. Callewaert, V. Vele, A. V. Sahakian, P. Kumar, and K. Aydin, arXiv:1706.08486 (2017).

117 W.-K. Lee, S. Yu, C. J. Engel, T. Reese, D. Rhee, W. Chen, and T. W. Odom, Proceedings of the National Academy of Sciences 114, 8734 (2017).

118 B. Shen, P. Wang, R. Polson, and R. Menon, Optica 1, 356 (2014).

119 N. Yu and F. Capasso, Nature materials 13, 139 (2014).

120 E. Yablonovitch and G. D. Cody, IEEE Transactions on Electron Devices 29, 300 (1982).

121 E. Garnett and P. Yang, Nano letters 10, 1082 (2010).

122 B. Shen, P. Wang, R. Polson, and R. Menon, Nature Photonics 9, 378 (2015).

123 J. C. Mak, C. Sideris, J. Jeong, A. Hajimiri, and J. K. Poon, Optics letters 41, 3868 (2016).

124 P. I. Borel, L. H. Frandsen, A. Harpeth, M. Kristensen, J. S. Jensen, and O. Sigmund, Electron. Lett. 41, 69 (2005).

125 J. S. Jensen and O. Sigmund, Laser & Photonics Reviews 5, 308 (2011).

126 A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vucković, Sci. Rep. 4, 7210 (2014).

127 A. Michaels and E. Yablonovitch, arXiv (2017).

128 L. Su, R. Trivedi, N. V. Sapra, A. Y. Piggott, D. Vercruyssse, and J. Vuckovic, arXiv (2017).

129 B. S. Lazarov, F. Wang, and O. Sigmund, Archive of Applied Mechanics 86, 189 (2016).

130 A. Michaels and E. Yablonovitch, arXiv (2017).

131 Similar ideas can foreseeably be applied to make inverse designs robust to thermal variation. Additionally, if materials with both positive and negative temperature coefficients of the refractive index are incorporated into the design, it should be possible to design almost completely athermal devices.