Research of solar energy potential in the Eastern Siberia

A A Tunik and M Yu Tolstoy

1Irkutsk National Research Technical University, Department of engineering communications and life-support systems, 664074, 83, Lermontov st., Irkutsk, Russian Federation

E-mail: alextun@mail.ru

Abstract. The article presents the results of solar energy potential studying in the Eastern Siberia region (in particular the Irkutsk Oblast) of the Russian Federation by integrating data from three databases: observatories of the CIS countries, NASA and the Hong Kong Observatory. The analysis of the databases was carried out taking into account their error degree. The results obtained make it possible to identify the year periods in when solar power plants can be used as efficiently as possible, both for generating thermal energy and electricity. In turn it will allow optimizing both the solar stations and the design of the solar panels and collectors themselves. The research methodology presented in this article can also be applied to assess the solar energy potential in other regions of the Russian Federation, which can be used for systematizing the data obtained for further calculations of solar plants required capacity and their design.

1. Introduction

Renewable energy is constantly evolving, and technologies for converting alternative energy sources are improving. One of the most perspective directions in this area is solar energy. There are many studies [1-10] and discoveries, as well as many types of solar power plants [11-17].

According to the book of A.M. Magomedov "Unconventional renewable energy sources" [18] the solar constant is the amount of Sun radiant energy in the entire wavelength range, received per time unit by an area unit placed perpendicular to the sun rays and outside the Earth's atmosphere at a distance of one astronomical unit from the Sun. The solar constant value obtained as a result of direct measurements from spacecraft and recommended by NASA as a standard:

\[I_0 = 1353 \text{ W/m}^2 \pm 1.5 \% \]

As a result of passing through the Earth's atmosphere, a part of the sun's radiation is reflected and only about 80% of the solar constant value reaches the Earth's surface. The amount of solar energy reaching the Earth's surface differs from the average annual value: in winter - by less than 0.8 kW·h/m² per day and by more than 4 kW·h/m² per day in summer in Northern Europe. The difference decreases with getting closer to the equator. The amount of solar energy also depends on the geographical location of the site: with getting closer to the equator the energy amount increases. For example, the average annual total solar radiation falling on a horizontal surface is approximately: in Central Europe, Central Asia and Canada 1000 kW·h/m²; in the Mediterranean 1700 kW·h/m²; in most desert regions of Africa, the Middle East and Australia 2200 kW·h/m². Thus, the amount of solar radiation varies significantly depending on the season and geographic location.
2. Analysis of observatory databases using the integration method

According to the Institute of Energy Strategy, the theoretical solar energy potential in Russia is more than 2300 billion tons of fuel equivalent and the economic potential is 12.5 million tons of fuel equivalent. The solar energy potential entering the territory of Russia within three days exceeds the energy getting from the entire annual electricity production in our country.

Due to the location of the Russian Federation (from the 41-st to 82-n degrees latitude north), the level of solar radiation varies significantly: from 810 kWh/m² per year in the remote northern regions to 1400 kWh/m² per year in the southern regions. The level of solar radiation is also influenced by large seasonal fluctuations: at a latitude of 55 degrees, solar radiation in January is 1.69 kWh/m², and in July - 11.41 kWh/m² per day.

The solar energy potential is greatest in the southwest (North Caucasus, the Black and Caspian Seas) and in South Siberia and the Far East.

The most perspective regions for solar energy using are: Republic of Kalmykia, Rostov Oblast, Krasnodar Krai, Volgograd Oblast, Astrakhan Oblast and other regions in the south-west, also Altai Krai, Primorsky Krai, Irkutsk Oblast, Chita Oblast, Republic of Buryatia and other regions in the south-east. Moreover, in some regions of Western and Eastern Siberia and the Far East the level of solar radiation exceeds the level of the southern regions. According to the atlas of solar energy resources in Russia, authored by O.S. Popel and S.E. Frid [19], in Irkutsk (52 degrees latitude north) the average annual solar radiation level reaches values from 4 to 4.5 kW-hour/m²-day.

The Hong Kong Observatory has climatic data collected from cities around the world for a 30-year period (1961-1990). The data for Irkutsk are presented in Table 1:

Table 1. Climatic data for Irkutsk according to the Hong Kong Observatory databases.
Jan.

Average air temperature, °C
The rainfall, mm
The number of cloudy days
Average daily sunshine duration, hours

The NASA (National Aeronautics and Space Administration) database stores information about solar activity from all over the world for 22 years (July 1983 - June 2005). To obtain data for Irkutsk, it’s needed to enter its geographic coordinates in a special section on the NASA website and the database will provide all the necessary information. Table 2 will show the data obtained on the monthly average solar energy values falling on an optimally oriented surface located in Irkutsk.

Table 2. The NASA databases for Irkutsk for 22 years.
Jan.

Average monthly solar radiation falling on a horizontal surface, kWh/m²/day
The deviation of the minimum and maximum values of solar activity falling a horizontal surface from the monthly average, %

Minimum value
Maximum value

2
Table 4. Solar activity calculated data in Irkutsk.

Year	Jan	Feb	March	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Mean
2021	2.48	3.94	5.49	6.26	6.17	5.40	4.70	4.3	4.14	3.40	2.58	2.02	4.24

3. Estimation solar energy average monthly values

Knowing the number of cloudy days and the average length of daylight hours, it can be determined the total monthly and hourly solar activity for each month. It’s needed to subtract the number of cloudy days from the total number of days in a month, assuming that these days solar activity is either very small or absent altogether. The scattered radiation does not play a role in this case, because it can be used mainly in photoelectric conversion. Scattered solar radiation is not enough to carry out thermodynamic transformation. The calculations will be made for an optimally oriented surface and are summarized in Table 4.
Table 1. Duration of month, days

Month	Days
Jan	31
Feb	28
Mar	31
Apr	31
May	30
Jun	31
Jul	31
Aug	30
Sep	31
Oct	30
Nov	31
Dec	365

Monthly average solar energy values falling on an optimally oriented surface, kW-h/m²-day

Month	Value
Jan	2.48
Feb	3.94
Mar	5.49
Apr	6.26
May	6.17
Jun	5.40
Jul	4.70
Aug	4.31
Sep	4.14
Oct	3.40
Nov	2.58
Dec	2.02
Year	4.24

Average number of cloudy days in 30 years

Year	Value
2000	4.3
2001	2.6
2002	3.1
2003	4.5
2004	6.6
2005	8.1
2006	11.1
2007	9.5
2008	7.7
2009	5.6
2010	5.6
2011	5.3
2012	74.0

Average daily sunshine duration, hours

Year	Value
2000	3
2001	5
2002	6.7
2003	7.4
2004	8.6
2005	8.8
2006	7.8
2007	6.1
2008	4.9
2009	3.1
2010	2
2011	5.9

Total solar energy per month, kW-h/m²

Year	Value
2000	66.22
2001	100.08
2002	153.17
2003	159.63
2004	150.55
2005	118.26
2006	93.53
2007	92.67
2008	92.32
2009	86.36
2010	62.95
2011	51.91
2012	1233.8

Average daily solar energy, kW-h/m²

Year	Value
2000	0.83
2001	0.79
2002	0.82
2003	0.85
2004	0.72
2005	0.61
2006	0.60
2007	0.62
2008	0.68
2009	0.69
2010	0.83
2011	1.01
2012	0.72

Knowing the deviation of the minimum and maximum values of solar activity, it is possible to determine the maximum and minimum value of the monthly average value of solar energy falling on an optimally oriented surface. The calculations are presented in Table 5.

Table 5. Average monthly solar activity analysis.

Month	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Year
Value	2.48	3.94	5.49	6.26	6.17	5.40	4.70	4.31	4.14	3.40	2.58	2.02	4.24
Minimum value	-35	-22	-22	-12	-20	-21	-25	-35	-34	-38	-40	-53	-30
Maximum value	33	22	18	10	22	37	45	20	42	41	30	44	30
The maximum value of the average monthly solar energy falling on an optimally oriented surface, kW-h/m²/day	3.30	4.81	6.48	6.89	7.53	7.40	6.82	5.17	5.88	4.79	3.35	2.91	5.51
The minimum value of the average monthly solar energy falling on an optimally oriented surface, kW-h/m²/day	1.61	3.07	4.28	5.51	4.94	4.27	3.53	2.80	2.73	2.11	1.55	0.95	2.97
Difference between maximum and minimum value

| | 1.69 | 1.73 | 2.20 | 1.38 | 2.59 | 3.13 | 3.29 | 2.37 | 3.15 | 2.69 | 1.81 | 1.96 | 2.54 |

Data from table 5 will be presented in the form of a diagram (Figure 1):

![Graph showing monthly average solar energy values falling on an optimally oriented surface, kW∙h/m²∙day.]

Figure 1. Monthly average solar energy values falling on an optimally oriented surface, kW∙h/m²∙day.

After analyzing the data obtained, it can be made the conclusion that the solar energy, falling on an optimally oriented surface, reaches its highest value in May (7.53 kW∙h/m²∙day) and June (7.40 kW∙h/m²∙day). The lowest value was recorded in December (0.95 kW∙hour/m²∙day). However, if to analyze the indicators of average monthly solar activity, it can be seen that it reaches its highest value in April (6.26 kWh/m²∙day) and May (6.17 kWh/m²∙day).

If to pay attention to the data presented in the diagram of the average daily values of solar energy (Figure 2), which is built on the basis of the data from table 4, it can be seen that the highest value is observed in December (1.01 kWh/m²). However, the monthly average value of solar radiation in December is lower than in all other months (2.02 kWh∙hour/m²∙day). It can be explained by the fact that December has the shortest daily sunshine duration (2 hours).
Figure 2. Average daily values of solar energy falling on an optimally oriented surface, kW·h/m²·day.

Figure 3 shows a diagram of total average value of solar energy falling on an optimally oriented surface for each month. This diagram shows that most of the usable solar energy can be obtained from March to May. At the same time, the maximum daily average value is observed in winter, and the maximum solar activity value was recorded in May, June and July. Such instability of indicators arises for a number of reasons below.

It can be seen from Table 2, that the lowest cloudiness for over 22 years was observed in winter (62.7 - 69.2%), therefore, at this time, the average daily value of solar activity reached the highest rates in a year. However, due to the fact that winter has the lowest sunny day duration, the average monthly and total average value per month during this period are minimal.

It was recorded the highest total average value for the month in the period from March to May, namely in April (159.63 kWh/m²). In April it was also recorded the highest monthly average solar radiation (6.26 kWh/m²·day), but the highest annual solar activity was observed in May (7.53 kWh/m²·day). Such instability of monthly indicators can be explained by the fact that the number of cloudy days and the percentage of cloudiness in May are higher than in April.
Figure 3. Total average value of solar energy falling on an optimally oriented surface per month, kW·h/m²·day.

4. General conclusions

It’s most profitable in the Irkutsk region to use solar plants during the period from March to October, and the greatest effect from the sun energy using can be achieved during the period from March to May. It is during this period that the sun position and the angle of sun rays falling on a normally oriented surface are most optimal for the Irkutsk region. In the period from November to February using of solar energy is ineffective due to the fact that during this period the length of daylight hours is very small.

The research presented in this article confirms the fact that the solar radiation level falling on a particular surface does not directly depend on the outside air temperature, wind speed and humidity level. It depends on the cloud level and the geographic location of the surveyed area. Therefore, in developing solar collectors and panels, the main tasks are to save solar energy falling on a special surface, select a suitable location for this surface, as well as convert solar radiation into useful energy with the highest efficiency and the least energy loss.

The research technique presented in this article can be used for research on optimization of the newly developed solar power design plants and solar systems in general [20-24]. Thus, this technique has been applied in developing of two types of solar collectors with a design optimized for efficient using in the Eastern Siberia region. There were obtained patents for a useful model [25-26] for these models of solar collectors.

In SP.131.13330.2018 «Building climatology» are shown the table 8.1 «The value of the total solar radiation (direct and scattered) falling on a horizontal surface with a cloudless sky» and table 9.1 «The value of the total solar radiation (direct and scattered) falling on a vertical surface with a cloudless sky». These tables are used for the solar systems designing.

The data obtained in this article make it possible to calculate the solar energy falling on a surface oriented along the normal to the sun rays direction. It means that the inclination angle of the solar plant coincides with the geographical latitude of the area. This inclination angle allows the receiving surface to get the biggest amount of solar energy. Thus, the data obtained in the result of the presented research supplement the normative data and expand the possibilities of solar systems designing.
References

[1] Karim M A, Perez E and Amin Z M 2014 Mathematical modelling of counter flow v-grove solar air collector Renewable Energy 67 pp 192-201

[2] Jacobson M Z and Delucchi M A 2011 Providing all global energy with wind, water, and solar power Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials En. Pol. 39 pp 1154–1169

[3] Krawczyk D A, Zukowski M and Rodero A 2020 Efficiency of a solar collector system for the public building depending on its location Environmental Science and Pollution Research 27 pp 101–110

[4] Ahmadi M H, Ghazvini M., Sadeghzadeh M., Alhuyi Nazari M., Kumar R., Naeimi A and Ming T. 2018 Solar power technology for electricity generation: A critical review Energy Science & Engineering 6 (5) pp 340-361

[5] Tian Y and Zhao C Y 2013 A review of solar collectors and thermal energy storage in solar thermal applications Applied Energy 104 pp 538-553

[6] Magrassi F, Rocco E, Barberis S, Gallo M and Del Borghi A 2019 Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach Renewable Energy 130 pp 290-304

[7] Bajpai P and Dash V 2012 Hybrid renewable energy systems for power generation in standalone applications: A review Renewable and Sustainable Energy Reviews 16 pp 2926–39

[8] Garlet T B, Ribeiro J L D, Savian F S and Siluk J C M 2020 Value chain in distributed generation of photovoltaic energy and factors for competitiveness: A systematic review Solar Energy 211 pp 396-411

[9] Belykh S A, Lebedeva T A and Vasilyeva DS 2020 Effects of disperse phase parameters on the thixotropic propertiesof silicate-sodium colloidal mixtures in the production of building materials Proceedings of Universities. Investment. Construction. Real estate 10(4) pp 544–551

[10] Kannan N and Vakeesan D 2016 Solar energy for future world: - A review Renewable and Sustainable Energy Reviews 62 pp 1092-1105

[11] Crabtree G and Lewis N 2007 Solar energy conversion Physics Today 60 (3) p 37

[12] Giovannetti F, Föste S, Ehrmann N and Rockendorf G 2012 High transmittance, low emissivity glass covers for flat plate collectors: Applications and performance Energy Procedia 30 pp 106 – 115

[13] Kalogirou S A 2004 Solar thermal collectors and applications Progr. in En. and Com. Sc. 30 (3) pp 231–295

[14] Tene H P, Tetang F A, Edoun M and Kuitche A 2019 Numerical Study of the Greenhouse Effect in a Flat-plate Double Glazing Solar Heat Collector Indian Journal of Science and Technology 12 (38)

[15] Menni Y, Azzi A and Chamkha A J 2018 A Review of Solar Energy Collectors: Models and Applications Journal of Applied and Computational Mechanics 4 (27) pp 375-401

[16] Kalaiarasi G, Velraj R and Swami M V 2016 Experimental energy and exergy analysis of a flat plate solar air heater with a new design of integrated sensible heat storage Energy 111 pp. 609-619

[17] Tunik A A 2012 Development of a solar collector with the regard for the Eastern Siberia climatic zone Proceedings of Irkutsk State Technical University 3 (62) pp. 101-106

[18] Gholizadeh M and Farzi A 2020 Performance Improvement of the single slope Solar Still Using Sand Journal of Solar Energy Research 5 (4) pp 560-567

[19] Magomedov A M 1996 Unconventional renewable energy sources p 245

[20] Poppel O S, Frid S E, Kolomiets Y G and Kiseleva S V 2010 Atlas of solar energy resources in Russia p 83

[21] Tunik A A and Tolstoy M Y 2017 The Complex Mobile Independent Power Station for the Urban Areas IOP Conf. Ser.: Mat. Sc and Eng. 262
[22] Belokaya N V, Popov V S, Popova E M, Tolstoy V M and Tolstoy M Yu 2018 Study of the application of energy-saving installations of life support systems for environmental protection areas Construction and industrial safety 12 (64) pp 91-97

[23] Tunik A, Tolstoy M, Stom D, Popova E and Popov V 2019 Use of microbial fuel cells and solar collectors in the multifunctional energy container IOP Conference Series: Materials Science and Engineering (ICRE 2019) 667

[24] Tunik A A 2016 Mathematical model of heat-mass exchange processes in a flat solar collector SUN 1 Vestnik of MGSU 1 pp 126—142

[25] Zuev I A, Tolstoy M Y and Tunik A A 2016 Development of the new solar collector SUN 3 for heating and hot water supply of social and housing sphere in the Irkutsk region Proceedings of Universities. Investment. Construction. Real estate 4 (19) pp 100-113

[26] Tolstoy M Y, Akinina N V and Tunik A A 2012 Solar collector Patent RF no. 112364 U1 F24J2/ 24 (2006.01) Bul. 1

[27] Tolstoy M Y, Tunik A A and Lapkovskiy A A 2015 Solar collector Patent RF no.153795 U1 F24J 2/24 (2006.01) Bul. 22