The RNA modification landscape in human disease

NICKY JONKHOUT, 1, 2 JULIA TRAN, 1 MARTIN A. SMITH, 1, 2 NICOLE SCHONROCK, 1, 3 JOHN S. MATTICK, 1, 2 and EVA MARIA NOVOA 1, 2, 4, 5

1 Garvan Institute of Medical Research, Darlinghurst, 2010 NSW, Australia
2 St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Kensington NSW 2052, Australia
3 Genome.One, Darlinghurst, 2010 NSW, Australia
4 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
5 Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02139, USA

ABSTRACT

RNA modifications have been historically considered as fine-tuning chemo-structural features of infrastructural RNAs, such as rRNAs, tRNAs, and snoRNAs. This view has changed dramatically in recent years, to a large extent as a result of systematic efforts to map and quantify various RNA modifications in a transcriptome-wide manner, revealing that RNA modifications are reversible, dynamically regulated, far more widespread than originally thought, and involved in major biological processes, including cell differentiation, sex determination, and stress responses. Here we summarize the state of knowledge and provide a catalog of RNA modifications and their links to neurological disorders, cancers, and other diseases. With the advent of direct RNA-sequencing technologies, we expect that this catalog will help prioritize those RNA modifications for transcriptome-wide maps.

Keywords: RNA modification; epitranscriptome; disease; detection methods; direct RNA sequencing

INTRODUCTION

Advances in genomic sequencing technologies have revolutionized our understanding of the mammalian genome and its transcriptional output. It is now evident that most of the genome does not code for protein but is transcribed to produce, in addition to messenger RNAs, a vast pool of intronic, intergenic, and antisense RNAs (Djebali et al. 2012). These non-protein-coding RNAs, most of which have yet to be biologically characterized, are likely to fulfill a wide variety of roles in cell and developmental biology, including the guidance of epigenetic processes (Mattick 2010, 2011; Mercer and Mattick 2013; Morris and Mattick 2014).

While the triplet code of the open reading frame is well understood for mRNAs, the language used by noncoding RNAs to execute their biological functions remains elusive. Dynamic regulation of RNA expression patterns, localization, structure, splicing, stability, and interactions with RNA-binding proteins will intricately dictate this language. In this already complex scenario, RNA modifications, for which more than 100 different types have been described (Cantara et al. 2011; Machnicka et al. 2013), overlay the RNA sequence information, expanding its lexicon (Hussain and Bashir 2015).

RNA modifications were first detected in highly abundant “infrastructural” RNAs, such as rRNAs and tRNAs, followed by snoRNAs and snRNAs, and have been generally viewed as irreversible decorations important for RNA structural stability and/or catalytic function (Karijolich and Yu 2010). However, the RNA modification field was greatly stimulated by the discovery that at least some RNA modifications are reversible (Jia et al. 2011; Liu et al. 2016), leading to the birth of the term “epitranscriptome” (He 2010). Comparative analyses of these modification sites across closely related species have shown that these dynamic, reversible modifications are evolutionarily conserved (Schwartz et al. 2013; Batista et al. 2014; Li and Mason 2014; Dominissini et al. 2016).

The functional and evolutionary relevance of the epitranscriptome is yet unknown, but it may represent the crossroads of gene–environment interactions for physiological adaptation and cognition (Mattick 2010; Hussain and Bashir 2014). There is a progressive expansion of enzymes that impart RNA editing and the extent of RNA editing in the brain during cognitive evolution (Mattick and Mehler 2008; Behm and Öhman 2016). A clear example of this expansion is the family of adenosine deaminases acting on RNA (ADARs), responsible for the editing of adenosine to inosine,
thus increasing gene product diversity, particularly in pri-
mates (Paz-Yaacov et al. 2010). Comparative analysis of
ADARs suggests that these enzymes evolved from adenosine
deeininas acting on tRNAs (ADATs)—present in both
Bacteria and Eukarya—after the split of protozoa and metazo-
a (Grice and Degnzan 2015). Thus, A-to-I editing of tRNAs is
likely ancestral to editing of other RNAs, achieving its maxi-
mal diversity in vertebrates, via the appearance of ADAR3,
whose expression is largely restricted to brain (Chen et al.
2000), and the expansion of the ABOBEC family (which cat-
alyze C/meC deamination to U/T) in mammals, with strong
positive selection in the primates (Sawyer et al. 2004).

Recent studies have provided detailed maps of the location
and abundance of a handful of RNA modifications
(Dominissini et al. 2012; Meyer et al. 2012; Khoddami and
Cairns 2013; Carlile et al. 2014; Schwartz et al. 2014a;
Delatte et al. 2016), mostly obtained by coupling antibody im-
munoprecipitation or chemical treatments to next-generation
sequencing. Through these approaches, N\(^{-}\)-methyladenosine
(m\(^{-}\)A) modification has been identified as an important
factor in the determination of mammalian cell fate transition
and embryonic stem cell differentiation (Batista et al. 2014;
Wang et al. 2014). It is also involved in the regulation of
circadian rhythms in hypothalamic mouse brain (Fustin
et al. 2013), sex determination in flies (Haussmann et al.
2016; Lence et al. 2016), and maternal mRNA clearance in
zebrafish (Zhao et al. 2017). Transcriptome-wide maps have
also been obtained for N\(^{\bullet}\)-methyladenosine (m\(^{\bullet}\)A)
(Dominissini et al. 2016), N\(^{\circ}\)-2′-O-dimethyladenosine
(m\(^{\circ}\)Am) (Linder et al. 2015; Mauer et al. 2016), 5-methylcy-
tosine (m\(^{\text{C}}\)) and pseudouridine (Y), revealing their involve-
ment in biological processes such as stress responses (Carlile
et al. 2014), protein synthesis quality control (Tuorto et al.
2012; Hussain et al. 2013; Blanco et al. 2014), and mRNA
stability (Mauer et al. 2016), among others. There are several
excellent reviews on these few relatively well-characterized
RNA modifications (Klugland and Dahl 2014; Li and
Mason 2014; Frye et al. 2016; Gilbert et al. 2016; Li et al.
2016; Schwartz 2016; Zhao et al. 2016).

In addition to mapping RNA modifications in a genome-
wide fashion, several studies have attempted to characterize
the biological function of RNA modifications by comparing
wild-type cells to those that lack a specific RNA modification
enzyme (Zinshteyn and Gilbert 2013; Nedialkova and Leidel
2015). Although most RNA modifications do not appear to
be essential for viability in fungi—but may play important
roles in fitness—they have been shown to be critical for main-
taining protein homeostasis (Nedialkova and Leidel 2015;
Klassen et al. 2016), proper cellular signaling (Zinshteyn
and Gilbert 2013), and translation fidelity (Patil et al. 2012;
Agris et al. 2017).

RNA modifications have been historically considered to be
relatively static fine-tuners of the RNA structure and func-
tion. However, in the last few years, it has become evident
that the epitranscriptomic layer is not only dynamic and re-
versible (Jia et al. 2011; Zheng et al. 2013; Wang and He 2014;
Liu et al. 2016)—catalyzed by RNA modification “erasers”
(Meyer and Jaffrey 2017)—but also that the activity of RNA
modifications can be regulated by a wide variety of factors,
including environmental conditions (Chan et al. 2010;
Dedon and Begley 2014; Alings et al. 2015; Han et al. 2015).

The past two decades have witnessed considerable progress
in the identification of novel RNA modifications (Grosjean
2015). Unfortunately, the distribution of most remains
uncharacterized. Here we provide an overview of current
methodologies that have been used to date to map RNA
modifications, and consider novel technologies such as direct
RNA sequencing, especially useful in the case of RNA mod-
ifications for which no other genome-wide method exists. To
help decide which RNA modifications to prioritize, we also
provide an overview of RNA modifications shown to be
linked to human disease, including their distribution and
the enzymes involved.

HUMAN RNA MODIFICATIONS AND THEIR
IMPLICATIONS IN DISEASE

A comprehensive catalog of RNA modifications and their
association to human disease is provided in Table 1 (with
the complete list in Supplemental Table S1). Mutations in
approximately half of the currently known RNA modification
enzymes have been linked to human diseases, including can-
cer, cardiovascular diseases, genetic birth defects, metabolic
diseases, neurological disorders, and mitochondrial-related
defects (Fig. 1). From the more than 100 different associations
between mutations in RNA modification enzymes and hu-
mn disease (Supplemental Table S1), we find that neurolog-
ical diseases are largely overrepresented, in agreement with
the observed enrichment of several RNA modifications in
neuronal tissues (Paul and Bass 1998; Chi and Delgado-
Olguin 2013) and in neuronal dysfunction (Najmabadi
et al. 2011; Abbasi-Moheb et al. 2012; Davarniya et al. 2015;
Lence et al. 2016).

From the battery of known RNA modifications, those
present in rRNAs and tRNAs largely dominate the landscape
(Supplemental Table S1). Consequently, previous studies
characterizing the associations between RNA modifications
and human diseases have been mainly focused on modifi-
cations occurring in tRNA molecules (Sarin and Leidel
2014; Torres et al. 2014; Schaffrath and Leidel 2017).
However, pseudouridine, originally thought to be exclusive
to these infrastructural RNAs, has been detected in several
mRNAs (Carlile et al. 2014; Schwartz et al. 2014a), suggest-
ing that additional modifications typically thought to be re-
stricted to “classical” RNA molecules may actually occur
more widely.

The mechanisms whereby a lack of modification may lead
to disease is a field of active debate. It has been postulated that
specific RNA modifications may be essential to tune the pro-
teomic outcome under stress conditions, and that the lack of
NT	Short nomenclature	Full name	Associated human disease	Human enzyme	Yeast enzyme	Bacterial enzyme	Mapping technology
U m1acp3Y	1-methyl-1-(3-amino-3-carboxypropyl) pseudouridine	Bowen-Contradi syndrome (EMG1)	ACAY13, EMG1, EMG1/NEP1	snR35	EMG1	EMG1/NEP1	RT Mismatch signature predicted
U m1Y	1-methyl-pseudouridine	Bowen-Contradi syndrome (EMG1)	ACAY13, EMG1, NEP1	snR35	EMG1	EMG1/NEP1	
U s2U	2-thiouridine	Acute infantile liver failure (TRMU)	TRMU, MTU1	NCS2	NCS6	TusA	
U mUm	2'-O-methyluridine	Non-syndromic X-linked mental retardation (FTSJ1)	FTSJ1, FTSJ2	TRM7	RiboMethSeq		
U mchm5U	5-(carboxyhydroxy)methyluridine methyl ester	Bladder cancer (ALKBH8)	ALKBH8				
U ncm5U	5-carbamoyl-methyluridine	Rolandic Epilepsy (ELP4)	ELP3, ELP4	IKBKAP			
U cmm5U	5-carboxymethylaminomethyluridine	Hypertrophic cardiomyopathy (MTO1)	MTO1, MTO1	MmmE			
U mcms5U	5-methoxy-carbonyl- methyl-2-thiouridine	Bladder cancer (ALKBH8)	ALKBH8, ELP3, ELP4, TRM9	NCS2, NC6, TRM9		TusBCD	
U mcm5U	5-methoxy-carbonyl- methyluridine	Bladder cancer (ALKBH8)	ALKBH8, ELP3, IKBKAP	TRM9		TusBCD	
U mmn5s2U	5-methylamino- methyl-2-selenouridine	Lactic acidosis (GTPBP3)	GTPBP3	MnmCD, MnmH			
U m5U	5-methyluridine	Breast cancer (TRMT2A)	TRMT2A, TRMT2B1	TRM2	RimC, RimCD, RimD, RimfO, TrmA, TrmF0, TrmUS4		
RNA modification	Associated human disease	Human enzyme	Yeast enzyme	Bacterial enzyme	Mapping technology		
------------------	--------------------------	--------------	--------------	------------------	------------------		
U Nm5U	5-taurinomethyl-uridine	MELAS (tRNA)	GTPB3				
U Y	pseudouridine						
	Dyskeratosis congenital (DKC1)	PUS1	Pus1		Pseudo-seq		
	Pitiary tumorgenesis (DKC1)	PUS3	Pus2				
	Prostate cancer (DKC1)	RPUS2D	Pus3				
	Lactic acidosis (PUS1)	PUS7	Pus4				
	Mitochondrial myopathy (PUS1)		Pus5				
	Sideroblastic Anemia (PUS1)		Pus7				
C Cm	2'-O-methylcytidine						
	Non-syndromic X-linked mental retardation (FTSJ1)	FTSJ1	NOP1	RlmM	RiboMethSeq		
		FTSJ2	NOP1				
		FTSJ3	NOP1				
		CCDC76	NOP1				
C m3C	3-methylcytidine						
	Asthma (METTL2B)	METT2B	TRM140		RT Mismatch signature predicteda,b		
	Breast cancer (METTL6)	METT2A					
	Lung cancer (METTL6)	METT2L					
	Metabolism (NSUN2)	METT6					
C f5C	5-formylcytidine						
	Hypotonia / Floppy baby syndrome (NSUN3)	NSUN2	NSUN2				
	Lactic acidosis (NSUN3)	NSUNN	NSUNN				
	Leber hereditary optic neuropathy (NSUN3)						
C m5C	5-methylcytidine						
	Autosomal recessive intellectual disability (NSUN2)	NSUN2	NSUN2				
	Astyctic features (NSUN2)	NSUN2	NSUN2				
	Breast cancer (NSUN2)	NSUN2	NSUN2				
	Cancer (NSUN2)	NSUN2	NSUN2				
	Dubowitz syndrome (NSUN2)	NSUN4	NSUN4				
	Intellectual disability syndromes (NSUN2)	NSUN5	NSUN5				
	Noonan-like syndrome (NSUN2)	NSUN6	NSUN6				
	Metabolism (NSUN2)	NSUN2	NSUN2				
	Hypotonia / Floppy baby syndrome (NSUN3)	NSUN3	NSUN3				
	Lactic acidosis (NSUN3)	NSUN3	NSUN3				
	Leber hereditary optic neuropathy (NSUN3)						
	Cri du chat syndrome (NOP2)	p120	p120				
C Cm	2'-O-methylguanosine						
	Non-syndromic X-linked mental retardation (FTSJ1)	FTSJ1	NOP1	RlmM	RiboMethSeq		
		FTSJ2	NOP1				
		FTSJ3	NOP1				
		CCDC76	NOP1				
C f5C	5-formylguanosine						
	Hypotonia / Floppy baby syndrome (NSUN3)	NSUN3	NSUN3				
	Lactic acidosis (NSUN3)	NSUN3	NSUN3				
C Cm	2'-O-methylguanosine						
	Non-syndromic X-linked mental retardation (FTSJ1)	FTSJ1	NOP1	RlmM	RiboMethSeq		
		FTSJ2	NOP1				
		FTSJ3	NOP1				
		CCDC76	NOP1				
G Cm	2'-O-methylguanosine						
	Non-syndromic X-linked mental retardation (FTSJ1)	FTSJ1	NOP1	RlmM	RiboMethSeq		
		FTSJ2	NOP1				
		FTSJ3	NOP1				
		CCDC76	NOP1				

Continued
NT	Short nomenclature	Full name	Associated human disease	Human enzyme	Yeast enzyme	Bacterial enzyme	Mapping technology
G	yW	wybutosine	Breast cancer (TRMT12)	TRMT12	TYW1	TRM6	RT Mismatch signature predicted^a
			Leukemia (TRMT12)	TRMT12	TYW2	TRM6	
G	m1A	1-methyladenosine	Mitochondrial respiratory chain defects (TRMT10C)	TRMT10C	TRM6	TRM6	RIP-Seq
			Multiple Respiratory Chain Deficiencies (TRMT10C)	TRMT10C	TRM61A	TRM61	
			Neurondevelopmental regression (TRMT10C)	TRMT10C	TRM61B	TRM61	
			X-linked intractable epilepsy (TRMT10C)	TRMT10C	NML	RRP8/BMT1	
			Obesity (NML/Nucleomethylin)	NML	hRRP8	BMT2	
G	ms2i6A	2-methyliso-N6-isopentenyl-adenosine	Alzheimer’s disease (CDK5RAP1)	CDK5RAP1	CDK5RAP1	MiaB	RT Mismatch signature predicted^b
			Breast cancer (CDK5RAP1)	CDK5RAP1	CDK5RAP1	MtaB	
G	ms2i6A	2-methyliso-N6-threonylcarbamoyl-adenosine	Diabetes II (CDKAL1)	CDKAL1	CDKAL1	CDKAL1	
			Non-syndromic X-linked mental retardation (FTS1)	FTS1	FTS1	MtaB	
A	Am	2′-O-methyl-adenosine	Non-syndromic X-linked mental retardation (FTS1)	FTS1	FTS1	NOP1	RibomethSeq
			Obesity (FTO)	FTS2	FTS2	NSR	
A	f6A	N6-formyladenosine	Breast cancer (FTO)	FTO	FTO	TRM3	
			Cancer (FTO)	FTO	FTO	TRS	
			Coronary heart disease (FTO)	FTO	FTO	TRS	
			Diabetes II (FTO)	FTO	FTO	TRS	
			Developmental delay (FTO)	FTO	FTO	TRS	
			Intellectual disability/Mental retardation (FTO)	FTO	FTO	TRS	
			Leukemia (FTO)	FTO	FTO	TRS	
			Prostate cancer (FTO)	FTO	FTO	TRS	
A	i6A	N6-isopentenyl-adenosine	Breast cancer (TRIT1)	MOD5	MOD5	MiaA	RT Mismatch signature predicted^h
			Mitochondrial respiratory chain defects (TRIT1)	TRIT1	TRIT1	Trt1	
A	m6A	N6-methyl-adenosine	Acute myelogenous leukemia (WTAP)	ALKBH5	FTO	SME4	RIP-Seq
			Hypospadias (WTAP)	FTO	SME4	ErmAM	(anti-m6A)
			Breast cancer (FTO)	Methyl14	FTO	ErmBC	
			Cancer (FTO)	Methyl13	FTO	ErmC	
			Coronary heart disease (FTO)	FTO	FTO	RlnF	
			Diabetes II (FTO)	FTO	FTO	RlnF	
			Developmental delay (FTO)	FTO	FTO	RlmA	
			Intellectual disability/Mental retardation (FTO)	FTO	FTO	RsmA	
			Leukemia (FTO)	FTO	FTO	RsmM	
			Prostate cancer (FTO)	FTO	FTO	RsmM	
			Obesity (FTO)	FTO	FTO	RsmM	
			Zika virus (FTO)	FTO	FTO	RsmM	
			Infertility (ALKBH5)	FTO	FTO	RsmM	
			Major depressive disorder (ALKBH5)	FTO	FTO	RsmM	
A	I	inosine	Intellectual disability (ADAT3)	ADAT3	ADAT3	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Strabismus (ADAT3)	ADAT3	ADAT3	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Aicardi-Goutieres syndrome (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Chronic myeloid leukemia (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Deliberate self harm (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Esophageal squamous cell carcinoma (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Human hepatocellular carcinoma (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Metastatic melanoma (ADAR1)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			ALS (ADAR2)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Alzheimer’s disease (ADAR2)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)
			Glioblastoma multiforme (ADAR2)	ADAR1	ADAR1	TAD2-TAD3	RNA-Seq (A-to-G conversion)

^aRT mismatch/block predicted from Motorin et al. (2007).
^bRT mismatch/block predicted from Rykvin et al. (2013).
^cAdditional RT mismatch/block predicted based on disturbance of W-C base pairing.
regulation may affect the ability of the cell to responsively tune its proteome (Patil et al. 2012; Deng et al. 2015). On the other hand, the lack of specific RNA modifications may affect global and/or local translation rates, and consequently cause increased protein aggregation (Nedialkova and Leidel 2015). Finally, it has also been proposed that RNA modifications transduce information that connect the cell’s metabolic state to its translational output, and therefore, that their dysregulation may cause an imbalance between metabolic rates and protein synthesis (Helm and Alfonzo 2014). Future work will be needed to disentangle the causal relationship between RNA modification dysregulation and human disease.

Neurological diseases

Defects in RNA metabolism, including RNA synthesis, processing, function, and degradation, have been found to be associated with motor neuron disorders (Lemmens et al. 2010). On the other hand, the lack of specific RNA modifications may affect global and/or local translation rates, and consequently cause increased protein aggregation (Nedialkova and Leidel 2015). Finally, it has also been proposed that RNA modifications transduce information that connect the cell’s metabolic state to its translational output, and therefore, that their dysregulation may cause an imbalance between metabolic rates and protein synthesis (Helm and Alfonzo 2014). Future work will be needed to disentangle the causal relationship between RNA modification dysregulation and human disease.

Defects in RNA metabolism, including RNA synthesis, processing, function, and degradation, have been found to be associated with motor neuron disorders (Lemmens et al. 2010). On the other hand, the lack of specific RNA modifications may affect global and/or local translation rates, and consequently cause increased protein aggregation (Nedialkova and Leidel 2015). Finally, it has also been proposed that RNA modifications transduce information that connect the cell’s metabolic state to its translational output, and therefore, that their dysregulation may cause an imbalance between metabolic rates and protein synthesis (Helm and Alfonzo 2014). Future work will be needed to disentangle the causal relationship between RNA modification dysregulation and human disease.

Cancer

Dysregulation and mutations in several RNA modification enzymes have been associated with various types of cancers, including breast cancer, bladder cancer, and leukemia, et al. 2004); TRMT1, which has been identified as the cause of autosomal-recessive intellectual disability (ARID) (Najmabadi et al. 2011; Davarniya et al. 2015); and the m^5^C methyltransferase NSUN2, which has been associated with defects in memory and learning in Drosophila and NSUN2-deficient mouse models (Abassi-Moheb et al. 2012; Blancco et al. 2014). Mechanistically, it has been shown that lack of NSUN2 in mice leads to fragmentation of tRNAs, which may trigger apoptosis in the brain (Blanco et al. 2014). However, it is still unclear to which degree this mechanism may actually contribute to the intellectual disability phenotypes observed in human.

Defects in demethylation of RNAs have also been linked to neurological defects. Deletion of the FTO gene in mice, which is one of the two enzymes responsible for reversing or “erasing” m^6^A modifications (Zhao et al. 2016), results in an impairment of dopamine receptor control of neuronal activity and behavioral responses (Hess et al. 2013). ALKBH5, also responsible for m^6^A demethylation, has been linked to major depressive disorders (Du et al. 2015), suggesting that m^6^A may be playing an important regulatory role in the function of the mammalian brain.

A-to-I editing defects have also been associated with neurological diseases (Hideyama and Kwak 2011; Hideyama et al. 2012; Gaisler-Salomon et al. 2014; Tomaselli et al. 2015), such as amyotrophic lateral sclerosis (ALS), the most common adult-onset motor neuron disease (Hideyama and Kwak 2011; Hideyama et al. 2012). More specifically, the glutamate receptor 2 (GluA2) mRNA, which is constitutively edited in some of its nucleotides, has been found to be unedited in motor neurons in individuals with sporadic ALS (Hideyama and Kwak 2011). On the other hand, ADAR2 expression levels were found to be down-regulated in ALS individuals, further supporting the importance of editing in proper motor neuronal functioning (Hideyama et al. 2012). In addition, ADAR2 knockout mice show increased cell death rates in their motor neurons (Sasaki et al. 2015), in agreement with the results observed in ALS individuals, indicating a pivotal role of A-to-I editing in proper neuronal functioning and brain development in mammals.

FIGURE 1. RNA modifications and their links to human disease. The set of known RNA modifications classified by their reference nucleotide, highlighting those that have been associated to human diseases (red), as well as those for which a transcriptome-wide detection method has been established (circled in green).
among others (Supplemental Table S1). For example, the enzymes responsible for mcm^5^S modification, ELP3 and CTU1/2, have been found to be up-regulated in breast cancer and to sustain metastasis (Delaunay et al. 2016). Similarly, the methyltransferase NSUN2 has been found to be overexpressed in breast cancer and its expression levels have been shown to correlate with cancer development and progression (Yi et al. 2016). In contrast, the tRNA methyltransferase TRM9L/KIAA1456 has been found to be down-regulated in breast cancer cells, as well as in other forms of cancer (Begley et al. 2013). Lastly, TRMT12 was found to be overexpressed in 87% of breast tumors (Rodriguez et al. 2007). Taken together, these point to a role of RNA modifications in cancer, although it is yet to be shown whether these enzymes could be used as possible targets for cancer treatment or as biomarkers of disease prognosis.

Genetic defects

Most serious genetic birth defects are caused by mutations in protein-coding genes, but the regulation of gene expression may also cause deviation from normal development. Numerous genetic birth defects have been associated with mutations in RNA modification enzymes, such as the *Cri du chat* syndrome (NOP2/NOL1/p120/NSUN1) (Wu et al. 2005), the Dubowitz syndrome (NSUN2) (Martinez et al. 2012), the Noonan-like syndrome (NSUN2) (Fahiminiya et al. 2014), or the William–Beuren syndrome (WBSCR20/WBSCR22/NSUN5) (Doll and Grzeschik 2001). Furthermore, mutations in RNA modification enzymes have also been shown to cause developmental defects, such as Hutchinson–Gilford progeria syndrome (WDR4) (Shaheen et al. 2015). In addition, mutations in RNA modification enzymes can cause the spinal cord to expose outside the body like spina bifida (TRDMT1) (Franke et al. 2009) and infant death (EMG1) (Armistead et al. 2009).

Note of caution

Here we provide an updated comprehensive catalog of RNA modifications and their associations with human disease, which we expect will provide useful starting points to prioritize the study of additional RNA modifications. However, caution must be taken when interpreting the available data. For example, the fat mass and obesity-associated (*FTO*) gene obtained its name in 2007 after a strong association between a single-nucleotide polymorphism (SNP) in the *FTO* locus and obesity had been identified in multiple populations. Ever since, *FTO* has been widely cited as an example of how an RNA modification dysregulation can be linked to human disease. However, this SNP was recently shown to be unrelated to *FTO* function (Claussnitzer et al. 2015). Instead, this intronic SNP disrupts a conserved motif for the ARID5B repressor, which in turn leads to a de-repression of a potent pre-adipocyte enhancer, causing increased expression of two nearby genes, *IRX3* and *IRX5*, involved in early adipocyte differentiation (Claussnitzer et al. 2015).

In a similar fashion, a variant of *CDKAL1* was found to be associated to type 2 diabetes in various ethnic groups (Benrahma et al. 2014; Lasram et al. 2015), but a different study on Caucasian UK residents found evidence against a role of deregulated expression of *CDKAL1*-v1 in susceptibility to type II diabetes (Locke et al. 2015), emphasizing the fact that caution should be taken in inferring causality from an association between disease-risk genotypes and expression levels. These examples highlight the importance of understanding the underlying mechanisms driving the association between RNA modification enzyme mutations and human diseases, as well as the need to validate these associations.

DETECTING RNA MODIFICATIONS: PAST, PRESENT, AND FUTURE EFFORTS

Classical approaches to detect modified ribonucleosides have relied on thin-layer chromatography, capillary electrophoresis, or related techniques. In all cases, the sample is reduced to nucleotides, which are then separated based on their physicochemical properties. To increase sensitivity, ^32^P-radioactive labeling can be combined with two-dimensional TLC separation on cellulose, enabling the detection of femtomole quantities of modified nucleotides (Keith 1995). However, these methods are labor-intensive, require the use of radioactive labeling, and are semiquantitative at best (Reddy et al. 1981; Zhao and Yu 2004; Hengesbach et al. 2008).

More recent approaches have used liquid chromatography–tandem mass spectrometry (LC–MS/MS) methodologies, which can provide accurate quantitation of multiple RNA modifications across conditions and cell types (Chan et al. 2010; Addepalli and Limbach 2011; Yan et al. 2013; Su et al. 2014) and have been successfully applied to a wide variety of species (Chan et al. 2010; Patil et al. 2012; Begley et al. 2013). Selective enzymatic digestions of individual RNAs with a battery of RNases, coupled to LC–MS/MS techniques, has been shown to be extremely useful for comparative RNA modification analysis across species and conditions (Li and Limbach 2012). In addition, the use of isotopically-labeled compounds (^13^C,^15^N,^18^O) has lowered the detection methods to the femtomole scale, allowing the detection of small differences of RNA modifications between RNA samples (Nikcevic et al. 2011; Li and Limbach 2012).

A key requirement to obtain meaningful results from LC–MS/MS approaches, however, is the isolation of specific RNA species, free from contamination with other RNAs. Thus, LC–MS/MS analyses of RNA modifications have been mostly focused on rRNA or tRNA molecules, due to their high abundance of modifications and simplicity of isolation (Chan et al. 2010; Su et al. 2014). Among the few attempts to identify RNA modifications beyond tRNAs and rRNAs (Yan et al. 2013), several were detected in other RNA pools,
suggesting that some may have broader distribution. Unfortunately, a major limitation of LC–MS/MS approaches is that the information of both the transcript that carried the modified nucleosides, as well as their location within the sequence, remains unknown.

Accurate transcriptome-wide mapping of modified nucleosides is now possible due to advances in next-generation sequencing technologies (Saletore et al. 2012; Helm and Motorin 2017; Novoa et al. 2017). These fall into three different categories: (i) immunoprecipitation of fragmented RNAs using modification-specific antibodies, followed by sequencing of the enriched RNA fragments (RIP-seq), which has been used for mapping m\(^6\)A (Dominissini et al. 2012; Meyer et al. 2012), hm\(^5\)C (Delatte et al. 2016) and m\(^1\)A (Hauenschild et al. 2015; Dominissini et al. 2016); (ii) chemical treatment of RNA prior to sequencing, which exploits the differential reactivity of modified bases, such as using sodium bisulfite for detection of m\(^5\)C (Squires et al. 2012) or CMC \([N\text{-cyclohexyl-2-morpholinoethyl}N\text{-9-(2-morpholinoethyl)carbodiimidemetho-p-toluenesulphonate}]\) for detection of pseudouridine (Carlile et al. 2014; Schwartz et al. 2014a) (Chem-seq); and (iii) nonrandom mismatch signatures in RNA sequencing data produced during conversion of RNA to cDNA by reverse transcriptase during library preparation (Fig. 2; Hauenschild et al. 2015). To date, these technologies and sequencing adaptations have produced transcriptome-wide maps for six RNA modifications including 5-methylcytidine (m\(^5\)C), N\(^6\)-methyladenosine (m\(^6\)A), N\(^6\)-2′-O-dimethyladenosine (m\(^8\)Am), pseudouridine (Ψ), 1-methyladenosine (m\(^1\)A), 5-hydroxymethylcytidine (hm\(^5\)C), in addition to adenosine to inosine (A-to-I) editing, which can be detected using traditional RNA-seq protocols (Ramaswami et al. 2013; Shafik et al. 2016).

RIP-seq

Building on the principles of chromatin immunoprecipitation-sequencing (ChIP-seq), antibody-based detection methods have been successfully applied to detect RNA modifications in a transcriptome-wide fashion, where read densities of immunoprecipitated modified RNA are compared to an untreated input (Fig. 2A; Dominissini et al. 2012; Batista et al. 2014). These methods have proven to be highly sensitive, but they are limited by the available repertoire of commercial antibodies (i.e., at present only those against m\(^6\)A, m\(^1\)A, m\(^5\)C, and hm\(^5\)C) (Table 2). They have had the disadvantage of lacking single-nucleotide resolution, although this limitation can be overcome by slight modification of the protocol (Linder et al. 2015).

![FIGURE 2. Current genome-wide detection methods used to identify RNA modifications.](https://example.com/figure2.png)
Chem-seq

Chemical-based detection methods rely on the use of chemical reagents that selectively react with specific modified RNA nucleotides (Fig. 2B). Upon reverse transcription (RT), chemically modified positions induce RT drop-off, leading to the accumulation of reads ending at the same position. These chemically modified positions can be then precisely located through the identification of increased reverse transcription termination sites (RTTS). Successful application of this technique is exemplified by Pseudo-seq (Carlile et al. 2014; Schwartz et al. 2014a), where CMC-modified pseudouridines block reverse transcription. Although chemical-based detection methods have the strength of producing single-nucleotide resolution RNA modification maps, RT drop-off can be caused by many factors, such as increased RNA secondary structures (Aviran and Pachter 2014), the presence of binding of proteins (Konig et al. 2010), or other RNA modifications (Table 2; Motorin et al. 2007; Ryvkin et al. 2013). In addition, RT enzymes have the undesirable ability of adding nontemplated nucleotides, thus generating an additional source of false positives (Chen and Patton 2001).

Several successful chemical-detection methods do not induce RT drop-off, but instead change the pairing ability of the modified position. In the case of RNA editing, treatment with glyoxal protects guanosines but not inosines (the product of adenosine deamination, which behaves like guanosine) from RNase T1 activity prior to reverse transcription (Cattenoz et al. 2013). Similarly, in the case of bisulphite sequencing, unmethylated cytosine is sulfonated by sodium bisulphite and is subsequently deaminated to uridine, while methylated cytosine is refractory, remaining as cytosine (Schaefer et al. 2009). Upon conversion to cDNA,

TABLE 2. Comparison of current detection methods to map RNA modifications transcriptome-wide

	Chemical-based detection	Antibody-based detection	Nonrandom mismatch signature detection	Oxford Nanopore Technologies (direct sequencing)
Advantages	Single-nucleotide resolution	High selectivity, Low false-positive rate	Single-nucleotide resolution	Single-nucleotide resolution
Limitations	Limited capacity to expand this method to additional modifications	Limited capacity to expand to additional modifications	Limited to modifications that produce mismatch signatures	Limited to RNA modifications for which you can perform a “training” (e.g., available NTPs containing the modification, to be incorporated in synthetic sequences)
RNA modifications detected	Pseudouridine (Y) Inosine (I) 5-methylcytosine (m5C) 2′-O-methylation (Gm, Um,Cm,Am)	N4-methyladenosine (m4A) 5-hydroxymethylcytosine (hm5C)	N4-methyladenosine (m4A), Inosine (I)	
Resolution	Single nucleotide	Peak-based, In general, no	Single nucleotide	Single nucleotide
Isoform identification	In general, no	In general, no	In general, no	Yes
Quantitative measurement	Difficult, requires the use of modified RNA spike-ins	Difficult, requires the use of modified RNA spike-ins	Difficult, requires the use of modified RNA spike-ins	Yes
Length of reads	Typically under 100 bp due to selection of truncated RT reads	Typically under 200 bp	Typically under 200 bp	Extremely long, record >500 kb
PCR in library preparation	Required	Required	Required	Not required
Library preparation cost	Medium (~$US 100/sample)	High (~$US 200/sample)	Medium (~$US 100/sample)	Medium (~$US 100/sample)
Need to sequence input	Yes	Yes	No	No
Library sequencing cost	Medium (~$US 2000/lane)	Medium (~$US 2000/lane)	Medium (~$US 2000/lane)	Low (~$US 500-900/flowcell)
unaltered cytosine will be read by the sequencer as thymine. Unfortunately, due to the incomplete conversion of C-to-U (in the case of bisulfite sequencing) or glyoxal protection of guanosines, these methods suffer from high false-positive rates. Thus, to correct for false positives, these methods require deep sequencing of RNAs both from a wild-type in combination with the knockout/knockdown of the enzyme of interest.

A hybrid method combining chemical modification and immunoprecipitation is 5-azacytidine-mediated RNA immunoprecipitation (Aza-IP), a mechanism-based technique that exploits the covalent bond formed between an RNA methyltransferase and the cytidine analog 5-azacytidine to selectively recover m5C modified RNA targets by immunoprecipitation (Khoddami and Cairns 2013).

Mismatch signature analysis

Lastly, mismatch–signature–based analyses have been used to produce transcriptome-wide maps of RNA modifications with single-nucleotide resolution (Hauenschild et al. 2015). These methods rely on the interference of certain RNA modifications in Watson–Crick (W–C) base-pairing, generating nonrandom mismatch patterns at modified positions during enzymatic RT readthrough (Fig. 2C). Unfortunately, multiple RNA modifications disturb W–C base-pairing and generate increased mismatch rates, hindering the proper identification of the specific underlying modification. To deconvolute these signatures and identify the underlying modifications, previous efforts have used bioinformatic approaches to classify the nonrandom mismatch signatures, using mismatch patterns observed at known tRNA modification sites to train the algorithm (Rykin et al. 2013). In our hands, however, tRNA modification signatures are not representative of mismatch patterns observed in other RNA classes and locations, perhaps due to the rich modification environment of tRNA molecules.

Overall, current transcriptome-wide mapping methods have provided highly valuable information to broaden our understanding of the epitranscriptome, but are constrained by the limited repertoire of commercial antibodies (e.g., those against m6A and hm5C) and the lack of selective chemical reactivities of uncharacterized RNA modifications (Table 2).

Future approaches: direct RNA sequencing

A major limitation of current genome-wide sequencing methods is that they are based on sequence-by-synthesis (SBS) technologies, and consequently, are blind to DNA and RNA modifications (with the exception of A-to-I editing, which causes an A-to-G mismatch). In the case of DNA modifications, this information is lost in the amplification step, e.g., m3C will be read as a C, and a G will be placed in this position. In the case of RNA modifications, the loss occurs during reverse transcription, whereby RNA is converted back to cDNA in order to be sequenced. These processes strip all edited bases and epigenetic information from the molecules, and occasionally introduce substantial artifacts (Chen and Patton 2001). In addition, standard RT enzymes are sensitive to RNA length and may terminate early when encountering stable RNA structures during extension (Aviran and Pachter 2014).

Third generation sequencing (TGS) appeared only a few years ago, and has emerged as a promising alternative to genome-wide map RNA modifications. TGS technologies distance themselves from second generation sequencing (SGS) technologies for their capability of generating very long reads (>100 kb) (Laver et al. 2015; Rhoads and Au 2015). First single-molecule sequencing attempts were performed by the now defunct Helicos Biosciences, which used a single-molecule SBS strategy. Its ability to identify modified and nonstandard RNA bases is unknown, but would likely be subject to similar constraints as cDNA-based technologies, given that a polymerase is nonetheless required for sequencing.

The first alternative SBS approach for detecting RNA modifications was offered by Pacific Bioscience’s single-molecule real-time sequencing (SMRT) platform, which was proven successful in detecting the differences between m6A-modified and unmodified synthetic sequences of RNA, but was too labor-intensive and expensive for subsequent development (Saletore et al. 2012). Another promising TGS technology has been developed by Oxford Nanopore Technologies (ONT). This platform is based on direct measurement of disruptions in the current as the DNA or RNA molecules pass through a porous bacterial transmembrane protein (Loman and Watson 2015). These changes in current intensity can then be used to identify the transiting nucleotides, including modified RNA and DNA nucleotides (Fig. 3A). Initially limited to DNA sequencing, ONT published their first results of direct RNA sequencing at the end of 2016 (Garalde et al. 2016). Several months later, a direct RNA-sequencing (DRS) kit finally became available to the general public in April 2017 (Fig. 3B). In the first step of the DRS library preparation protocol, a double-stranded DNA adapter with a poly(T) or sequence-specific complementary single-stranded overhang is ligated to the 3′ end of template RNA molecules. Next, an optional reverse-transcription step can be performed to linearize and stabilize the template RNAs. Finally, a proprietary sequencing adapter is ligated to the double-stranded DNA adapter before being loaded into a flow cell for sequencing. It is important to note that only the RNA strand will be sequenced (in 3′–5′ orientation). Remarkably, the low sample manipulation required for the library preparation (Fig. 3B) vastly diminishes the biases typically introduced during SBS library preparation, such as those introduced by fragmentation, PCR amplification, or immunoprecipitation.

The simplest way to convert ionic current traces into base-called nucleotides is to run local “live” base-calling, where samples are base-called on-the-fly as the molecules exit
individual pores using ONT’s proprietary algorithm Albacore (which combines a recurrent neural network and a hidden Markov model). Base-calling can also be performed a posteriori with Albacore on a personal computer, a high-performance computing server, or ONT’s cloud-based analysis service known as Metrichor (https://metrichor.com). A third option is to use one of the multiple open-source base-calling algorithms, which use various machine- or deep-learning algorithms, including hidden Markov models (David et al. 2017; Simpson et al. 2017) and recurrent neural networks (Boža et al. 2017; Stoiber and Brown 2017). Unfortunately, these algorithms are typically trained to predict exclusively four bases (A, C, G, T), and thus cannot directly identify DNA- or RNA-modified nucleotides. There have nonetheless been recent reports describing computational models capable of detecting modified DNA bases, by training models from biological control data and by observing conspicuous alterations of ionic current at specific positions (Stoiber et al. 2016; McIntyre et al. 2017; Rand et al. 2017; Simpson et al. 2017). With respect to DRS, these strategies have recently been applied to characterize the epitranscriptome, namely the identification of m6A (Garalde et al. 2016) and conserved 16S ribosomal RNA base modifications and a 7-methylguanosine modification associated with antibiotic resistance (Smith et al. 2017). It is likely that, following the release of the direct RNA-sequencing kit, additional algorithms to detect and predict RNA modifications from DRS data will become available.

For many years, a major limitation of ONT technologies has been its relatively low base-calling accuracy. However, in the last three years, its base-calling accuracy has increased from 70%–88% (using R7 pore technologies and HMM-based algorithms) to 90%–98%, due to a more efficient protein nanopore (currently R9.5), homopolymer-aware RNN base-calling, and a paired-end consensus read strategy. Nonetheless, base-calling errors can be corrected a posteriori either by determining a consensus sequence, probabilistic refinement (Jain et al. 2015), or via a process known as “polishing” (Loman et al. 2015; Sarkozy et al. 2017), where reads are aligned to a reference genome or transcriptome to guide error correction by revisiting the raw signal. However, initial base-calling attempts using ONT to sequence 16s rRNA from *E. coli* only using DRS only yielded an accuracy of 87% (Smith et al. 2017). The authors found that these errors were mainly due to deletion errors occurring in G-rich regions, which are abundant in noncoding infrastructural RNAs such as 16s rRNA. It is likely that the highly modified nature of rRNA molecules may be in fact a confounder for proper RNA base-calling. Newer algorithms, previously trained with known modified RNA nucleotides, will likely produce higher base-calling identities in RNA molecules.

A second major limitation of direct RNA-sequencing technologies is the yield of each individual sequencing run. Although the throughput of ONT sequencing has greatly increased in the last years for (c)DNA sequences, achieving yields of 3–15 billion bases (Gb) per run in a standard R9.4 MinION FLO-MIN106 flow cell (Lu et al. 2016; Jain et al. 2017), the yields obtained from direct RNA sequencing are still far from these values. More specifically, the expected number of cDNA reads using a high-quality FLO-MIN106 flow cell ranges between 6–10 million reads, whereas the expected number of reads from direct RNA sequencing is only 1 million (https://nanoporetech.com/rna).

Despite these limitations, the possibility of detecting RNA modifications in each individual RNA molecule opens new avenues to explore the cross talk and dependencies that may exist between multiple RNA modifications within the same RNA molecule. Current indirect SBS-based methods are unable to decipher whether two RNA modifications present in a given mRNA sequence actually coexist in the same RNA molecule, or if instead, they are exclusively present in different molecules. Furthermore, compared with SBS-based methods, ONT offers the possibility to identify in which RNA transcript isoform the modification is found, and thus may be able to provide quantitative stoichiometric measurements of modified RNA nucleotides at each position in an isoform-specific manner.
DISCUSSION

During the past few decades we have learned how vital epigenetic processes are for learning and memory formation (Day et al. 2013). RNA modifications form an additional language, much less characterized, which is capable of overwriting and redefining the hard-wired transcriptome, extending and diversifying the function of transcripts, thus adding an unchartered layer of regulation affecting genome function.

One of the major surprises in the last decades was the observation that developmental complexity is not correlated with the number of protein-coding genes. One of the answers to this enigma came with the discovery of long noncoding RNAs, whose number increases with developmental complexity (Mattick 2011). Thus, the appearance of multitudes of noncoding RNAs created additional layers of gene expression and genetic information, which provides the regulatory power and plasticity required for the developmental and cognitive capacity of mammals and, in particular, primates (Qureshi et al. 2010; Mattick 2011).

In a similar fashion, RNA modifications may not be simple fine-tuners of RNA function, such as mRNA half-lives (Batista et al. 2014; Schwartz et al. 2014b) or translation efficiency (Wang et al. 2015), but also provide additional capacity for increasing developmental and cognitive complexity. RNAs undergo an enormous amount of editing, especially in primates and especially in the brain (Paul and Bass 1998). A large variety of studies have shown that the activity ADARs (adenosine deaminases acting on RNAs), responsible for A-to-I editing, are highly expressed in nervous systems (Picardi et al. 2015), and markedly increased during primate evolution (Paz-Yaacov et al. 2010). These modifications do not only affect protein-coding genes, but also noncoding transcripts, and thus may be central to learning and plasticity in brain function (Lence et al. 2016; Nairn et al. 2016).

Moreover, there is now evidence that transgenerational inheritance can be mediated by RNAs (Chen et al. 2016; Sharma et al. 2014), thus raising the possibility that RNA is not just the underlying engine of cell biology, developmental biology, and cognition, but perhaps also of evolution itself. Interestingly, the identified molecules involved in transgenerational inheritance were tRNA-derived fragments, which are likely highly modified. Whether these RNAs display different RNA modifications to execute or regulate their function is still an open question, hopefully to be answered in the following years. Once we are capable of systematically mapping RNA modifications in a genome-wide fashion, we may be able to uncover the potential roles of RNA modifications in human development, as well as the effects of their dysregulation in disease.

In recent years, TGS technologies have made possible the sequencing of very long reads from single RNA/DNA molecules. Despite being in their infancy, they have already demonstrated to be powerful technologies capable of overcoming challenges that could not be solved by SGS, such as providing quick in situ diagnoses of virus outbreaks (Quick et al. 2016, 2017), or obtaining genome-wide structural variant information from patient genomes (Cretu Stancu et al. 2017). While the use of TGS to detect RNA modifications is still not fully benchmarked, we expect that in the near future TGS will provide us with single-molecule genome-wide maps of RNA modifications, allowing us to investigate the dependencies between different modified sites, as well as those between different RNA modification types (e.g., m6A and pseudouridine), in a genome-wide fashion.

SUPPLEMENTAL MATERIAL

Supplemental material is available for this article.

ACKNOWLEDGMENTS

N.J. is supported by a UNSW International PhD fellowship. M.A.S. is partially supported by a Cancer Council NSW project grant (RG 14-18). E.M.N. was supported by a long-term postdoctoral fellowship from the Human Frontier Science Program (LT000307/2013-I), and is currently supported by a Discovery Early Career Researcher Award (DE170100506) from the Australian Research Council. This work was supported by National Health and Medical Research Council funds (Project Grant APP1070631 to J.S.M.).

REFERENCES

Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, Cirak S, Wieczorek D, Motazacker MM, Esmaeeli-Nieh S, Cremer K, et al. 2012. Mutations in NSUN2 cause autosomal-recessive intellectual disability. *Am J Hum Genet* 90: 847–855.

Addepalli B, Limbach PA. 2011. Mass spectrometry-based quantification of pseudouridine in RNA. *J Am Soc Mass Spectrom* 22: 1363–1372.

Agris PF, Narendran A, Sarachan K, Väre YVP, Eruysal E. 2017. The importance of being modified: the role of RNA modifications in translational fidelity. *Enzymes* 41: 1–50.

Alings F, Sarin LP, Fufezan C, Drexler HC, Leidel SA. 2015. An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. *RNA* 21: 202–212.

Armistead J, Khatak S, Meyer B, Mark BL, Patel N, Coghlan G, Lamont RE, Liu S, Wiechert J, Cattini PA, et al. 2009. Mutation of a gene essential for ribosome biogenesis, EMG1, causes Bowen-Conradi syndrome. *Am J Hum Genet* 84: 728–739.

Aviran S, Pachter L. 2014. Rational experiment design for sequencing-based RNA structure mapping. *RNA* 20: 1864–1877.

Batista PJ, Molinie B, Wang J, Qu K, Zhang J, Li L, Bouley DM, Lujan E, Begley U, Sosa MS, Avivar-Valderas A, Patil A, Endres L, Estrada Y, Chan CT, Su D, Dedon PC, Aguirre-Ghiso JA, et al. 2013. A human tRNA methyltransferase 9-like protein prevents tumour growth by regulating LIN9 and HIF1-α. *EMBO Mol Med* 5: 366–383.

Behm M, Ohman M. 2016. RNA editing: a contributor to neuronal dynamics in the mammalian brain. *Trends Genet* 32: 165–175.
Bennahma H, Charoute H, Lasram K, Boulouiz R, Atig RK, Fakiri M, Roubi H, Abdelhak S, Barakat A. 2014. Association analysis of IGFBP2, KCNJ11, and CDKAL1 polymorphisms with type 2 diabetes mellitus in a Moroccan population: a case-control study and meta-analysis. Biochem Genet 52: 430–442.

Blanco S, Dietmann S, Flores JV, Hussain S, Kutter C, Humphreys P, Lukk M, Lombard P, Treps L, Pospisil M, et al. 2014. Aberrant methylation of tRNAs links cellular stress to neurodevelopmental disorders. EMBO J 33: 2020–2039.

Boza V, Brejová B, Vinár T. 2017. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS One 12: e0178751.

Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, Veneux FA, Fabris D, Agris PF. 2011. The RNA Modification Database, RNAMDB: 2011 update. Nucleic Acids Res 39: D195–D201.

Carlile TM, Rojas-Duran MF, Zinshteyn B, Shin H, Bartoli KM, Cretu Stancu M, van Roosmalen MJ, Renkens I, Nieboer M, Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Chi L, Delgado-Olguin P. 2013. Expression of NOL1/NOP2/sun 1766 RNA, Vol. 23, No. 12.
He C. 2010. Grand challenge commentary: RNA epigenetics? Nat Chem Biol 6: 863–865.

Helm M, Alfonzo JD. 2014. Posttranscriptional RNA modifications: playing metabolic games in a cell’s chemical logoland. Chem Biol 21: 174–185.

Helm M, Motorin Y. 2017. Detecting RNA modifications in the epitranscriptome: predict and validate. Nat Rev Genet 18: 275–291.

Hengesbach M, Meusburger M, Lyko F, Helm M. 2008. Use of DNAzymes for site-specific analysis of ribonucleotide modifications. RNA 14: 180–187.

Hess ME, Hess S, Meyer KD, Verhagen LA, Koch L, Bronneke HS, Dietrich MO, Jordan SD, Slaetero Y, Elemento O, et al. 2013. The fat mass and obesity associated gene (Fto) regulates activity of the dopaminergic midbrain circuitry. Nat Neurosci 16: 1042–1048.

Hideyama T, Kwak S. 2011. When does ALS start? ADAR2–GluA2 hypothesis for the etiology of sporadic ALS. Front Mol Neurosci 4: 33.

Hideyama T, Yamashita T, Aizawa H, Tsuji S, Kakita A, Takahashi H, Kwak S. 2012. Profound downregulation of the RNA editing enzyme ADAR2 in ALS spinal motor neurons. Neurobiol Dis 45: 1121–1128.

Hussain S, Bashir ZI. 2015. The epitranscriptome in modulating spatio-temporal RNA translation in neuronal post-synaptic function. Front Cell Neurosci 9: 420.

Hussain S, Alekic J, Blanco S, Dietmann S, Frye M. 2013. Characterizing 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14: 215.

Jain M, Fiddes IT, Miga KH, Olsen HE, Patten B, Akeson M. 2015. Improved data analysis for the MinION nanopore sequencer. Nat Methods 12: 351–356.

Jain M, Koren S, Quick J, Rand AC, Sasani TA, Tyson JR, Beggs AD, Hussain S, Aleksic J, Blanco S, Dietmann S, Frye M. 2013. Characterization 5-methylcytosine in the mammalian epitranscriptome. Genome Biol 14: 215.

Keith G. 1995. Mobilities of modified ribonucleotides on two-dimensional cellulose thin-layer chromatography. Biochimie 77: 142–144.

Khodadi M, Cairns BR. 2013. Identification of direct targets and modified bases of RNA cytosine methyltransferases. Nat Biotechnol 31: 458–464.

Klassen R, Cifci A, Funk J, Bruch A, Butter F, Schaffrath R. 2016. tRNA anticondor loop modifications ensure protein homeostasis and cell morphogenesis in yeast. Nucleic Acids Res 44: 10946–10959.

Klungland A, Dah D. 2014. Dynamic RNA modifications in disease. Curr Opin Genet Dev 26: 47–52.

Kong J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner DJ, Luscombe NM, Ule J. 2010. iCLIP reveals the function of hnRNPs in splicing in silencing individual nucleotide resolution. Nat Struct Mol Biol 17: 909–915.

Larrieu D, Britton S, Demir M, Rodrigues R, Jackson SP. 2014. Chemical inhibition of NAt10 corrects defects of lipomatosic cells. Science 344: 527–532.

Larsam K, Ban Halim N, Benrahma H, Mediène-Benchchor S, Arfa I, Hsouna S, Kefi R, Jamoussi H, Ben Ammar S, Bahri S, et al. 2015. Contribution of CDKAL1 rs7756992 and IGF2BP2 rs4402960 polymorphisms in type 2 diabetes, diabetic complications, obesity risk and hypertension in the Tunisian population. J Diabetes 7: 102–113.

Laver T, Harrison J, O’Neill PA, Moore K, Farbos A, Paszkiewicz K, Studholme DJ. 2015. Assessing the performance of the Oxford Nanopore Technologies MinION, Biomol Detect Quantif 3: 1–8.

Lemmens R, Moore MJ, Al-Chalabi A, Brown RH Jr, Robberecht W. 2010. RNA metabolism and the pathogenesis of motor neuron diseases. Trends Neurosci 33: 249–258.

Lence T, Akhtar J, Bayer M, Schmid K, Spindler L, Ho CH, Kreim N, Andrade-Navarro MA, Poeck B, Helm M, et al. 2016. m6A modulates neuronal functions and sex determination in Drosophila. Nature 540: 242–247.

Li S, Limbach PA. 2012. Method for comparative analysis of ribonucleic acids using isotope labeling and mass spectrometry. Anal Chem 84: 8607–8613.

Li S, Mason CE. 2014. The pivotal regulatory landscape of RNA modifications. Annu Rev Genomics Hum Genet 15: 127–150.

Li X, Xiong X, Yi C. 2016. Epitranscriptome sequencing technologies: decoding RNA modifications. Nat Methods 14: 23–31.

Linder B, Grozhik AV, Olareri-George AO, Meydan C, Mason CE, Jaffrey SR. 2015. Single-nucleotide-resolution mapping of m6A and m’Am throughout the transcriptome. Nat Methods 12: 767–772.

Liu F, Clark W, Luo G, Wang X, Fu Y, Wei J, Wang X, Hao Z, Dai Q, Zheng G, et al. 2016. ALKBH1-mediated rRNA demethylation regulates translation. Cell 167: 1897.

Locke JM, Wei FY, Tomizawa K, Weeden MN, Harries LW. 2015. A cautionary tale: the non-causal association between type 2 diabetes risk SNP, rs7756992, and levels of non-coding RNA, CDKAL1-v1. Diabetologia 58: 745–748.

Loman NJ, Watson M. 2015. Successful test launch for nanopore sequencing. Nat Methods 12: 303–304.

Loman NJ, Quick J, Simpson JT. 2015. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat Methods 12: 733–735.

Lu H, Giordano F, Ning Z. 2016. Oxford nanopore MinION sequencing and genome assembly. Genomics Proteomics Bioinformatics 14: 265–279.

Malattia MA, Milanowska K, Osman Oglou O, Purna E, Kurkowska M, Olchowski A, Januszewski W, Kalinowski S, Dunin-Horkawicz S, Rother KM, et al. 2013. MORDOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res 41: D262–D267.

Martinez FJ, Lee JH, Lee JE, Blanco S, Nickerson E, Gabriel S, Frye M, Al-Gazali L, Gleeson JG. 2012. Whole exome sequencing identifies a cause of a Dubowitz-like syndrome. J Med Genet 49: 380–385.

Mattick JS. 2010. RNA as the substrate for epigenome-environment interactions: RNA guidance of epigenetic processes and the expansion of RNA editing in animals underpins development, phenotypic plasticity, learning, and cognition. Bioessays 32: 548–552.

Mattick JS. 2011. The central role of RNA in human development and cognition. FEBS Lett 585: 1600–1616.

Mittack JS, Mehler MF. 2008. RNA editing, DNA recoding and the evolution of human cognition. Trends Neurosci 31: 227–233.

Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, Linder B, Pickering BF, Vasseur JJ, Chen Q, et al. 2016. Reversible methylation of m’Am in the 5’ cap controls mRNA stability. Nature 541: 371–375.

McIntyre ABR, Alexander N, Burton AS, Castro-Wallace S, Chiu CY, John KK, Stahl SE, Li S, Mason CE. 2017. Nanopore detection of bacterial DNA base modifications. bioRxiv. doi: 10.1101/127100.

Mercer TR, Mattick JS. 2013. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20: 300–307.

Meyer KD, Jaffrey SR. 2017. Rethinking m’A readers, writers, and erasers. Ann Rev Cell Dev Biol 33: 1.

Meyer KD, Slaetero Y, Zumpo P, Elemento O, Mason CE, Jaffrey SR. 2012. Comprehensive analysis of mRNA methylation reveals enrichment in 3’ UTRs and near stop codons. Cell 149: 1635–1646.

Morris KV, Mattick JS. 2014. The rise of regulatory RNA. Nat Rev Genet 15: 423–437.

Motorin Y, Muller S, Behm-Ansmant I, Branlant C. 2007. Identification of modified residues in RNAs by reverse transcription-based methods. Methods Enzymol 425: 21–53.

Nairn S, Marshall PR, Tyler CR, Spitale RC, Bredy TW. 2016. Evolving insights into RNA modifications and their functional diversity in the brain. Nat Neurosci 19: 1292–1298.

Najmabadi H, Hu H, Garshabai M, Zemojtel T, Abedini SS, Chen W, Hosseini M, Behjat F, Haas S, Jamal P, et al. 2011. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 478: 57–63.
Wang Y, Li Y, Toth JI, Petroski MD, Zhang ZL, Zhao JC. 2014. N°-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol 16: 191–198.

Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. 2015. N°-methyladenosine modulates messenger RNA translation efficiency. Cell 161: 1388–1399.

Wu Q, Niebuhr E, Yang H, Hansen L. 2005. Determination of the ‘critical region’ for cat-like cry of Cri-du-chat syndrome and analysis of candidate genes by quantitative PCR. Eur J Hum Genet 13: 475–485.

Yan M, Wang Y, Hu Y, Feng Y, Dai C, Wu J, Wu D, Zhang F, Zhai Q. 2013. A high-throughput quantitative approach reveals more small RNA modifications in mouse liver and their correlation with diabetes. Anal Chem 85: 12173–12181.

Yi J, Gao R, Chen Y, Yang Z, Han P, Zhang H, Dou Y, Liu W, Wang W, Du G, et al. 2016. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget 8: 20751–20765.

Zhao X, Yu YT. 2004. Detection and quantitation of RNA base modifications. RNA 10: 996–1002.

Zhao BS, Roundtree IA, He C. 2016. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol 18: 31–42.

Zhao BS, Wang X, Beadell AV, Lu Z, Shi H, Kuuspalu A, Ho RK, He C. 2017. m°A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 542: 475–478.

Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, et al. 2013. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell 49: 18–29.

Zinshteyn B, Gilbert WV. 2013. Loss of a conserved tRNA anticodon modification perturbs cellular signaling. PLoS Genet 9: e1003675.