RESULT ANALYSIS OF DESIGN OF AREA AND POWER EFFICIENT DIGITAL FIR FILTER BASED ON FAITHFULLY ROUNDED TRUNCATED 12-BIT CONSTANT

Sonal Gupta ¹ and Uma shankar Kurmi ²

¹²Department of Electronics & Communication Engineering, RGPV University, Bhopal, India

Abstract—Finite impulse response (FIR) styles are presented using the conception of rounded truncated multipliers 12bit. In this paper consider the optimization of bit dimension without sacrificing the frequency response and output signal precision. A minimum range of various pairs or groups of symbols and residues may be used to code a group of coefficients based on their probability and conditional probability of occurrence. This ingenious conception allows the notion of entropy to be applied as a quantitative measure to evaluate the coding density of various compositions of symbols towards a collection of coefficients. Non-uniform coefficient quantization with correct filter order is planned to reduce total area cost. Multiple constant multiplication/accumulation during a in a very direct FIR structure is implemented using an improved version of truncated multipliers. Multiple constant multiplication/accumulation during a in a much synchronized direct FIR structure is implemented using an improved version of truncated multipliers.

Keywords—Digital signal processing (DSP), faithful rounding, finite impulse response (FIR) filter, truncated multipliers, VLSI design

I. INTRODUCTION

Due to rapid growth in digital signal process system based mostly applications like multimedia system, communication systems and mobile computing that demands highly efficient hardware and ultra-low power operations. Especially, digital filter are widely used for computation, signal analysis and estimation, band selection, signal preconditioning, etc. [1]. Digital filters are in the main classified into 2 varieties specifically, Finite Impulse Response and Infinite Impulse Response (IIR). Finite impulse response (FIR) digital filter is one of the basic elements in several digital signal processing (DSP) and communication systems. It’s additionally usually used in several portable applications with limited area and power budget. During this brief, we tend to present low-priced implementations of FIR filters based on the direct structure with faith totally rounded truncated multipliers. The MCMA module realized by accumulating all the partial products (PPs), wherever excessive PP bits (PPBs) are removed while not affecting the final preciseness of the outputs. The bit widths of all the filter Coefficients are reduced using non-uniform quantization with unequal word lengths so as to decrease the hardware price whereas still satisfying the specification of the frequency response. An important style issue of FIR filter implementation is that the optimization of the bit widths for filters coefficients that have direct collision on the area value of arithmetic units and registers. Additionally, since the bit widths once multiplications grow, several DSP applications don’t need full-precision outputs. Instead, it’s desirable to provide faithfully rounded outputs wherever the whole error introduced in quantization and rounding error isn’t any more than one unit of the last place (ULP) defined because the weighting of the least significant bit (LSB) of the outputs. During this brief, we tend to present low-priced implementations of FIR filters based on the direct structure in Fig. 3 with faithfully rounded truncated multipliers. The MCMA module is realize by accumulating all the partial products (PPs) wherever unnecessary PP bits (PPBs) are uninvolved while not affecting the final precision of the output. The bit widths of all the filter coefficients are reduced using non uniform quantization with unequal word lengths so as to reduce the hardware value whereas still satisfying the specification of the frequency response.
II. Theory

2.1. Multiplier

Multipliers play a very important role in today’s digital signal processing and numerous different applications. With advances in technology, many researchers have tried and are attempting style multipliers which offer either of the subsequent design targets – high speed, low power consumption, regularity of layout and therefore less area or even combination of them in one multiplier so making them appropriate for various high speed, low power and compact VLSI implementation. The common multiplication technique is “add and shift” algorithmic rule. In parallel multipliers number of partial product to be added is that the main parameter that determines the performance of the multiplier. To reduce the amount of partial product to be added, modified Booth algorithmic rule is one of the most popular algorithms. to achieve speed enhancements Wallace Tree algorithmic rule may be used to reduce the amount of sequential adding stages. Additional by combining each changed Booth algorithmic rule and Wallace Tree technique.

2.2. Types of Multiplier

2.2.1. Serial Multiplier

Where space and power is of utmost importance and delay is also tolerated the serial multiplier factor is used. This circuit uses one adder to add the m * n partial product. The circuit is shown inside the fig.3 below for m=n=4. number and number inputs ought to be organized during a special manner synchronized with circuit behaviour as shown on the figure. The inputs could {also be|is also} presented at whole different rates depending on the length of the number and also the number. 2 clocks are used, one to clock the data and one for the reset. a primary order approximation of the delay is O (m,n). With this circuit arrangement the delay is given as

\[D = \lceil (m+1)n + 1 \rceil tfa. \]

As shown the individual PP is formed individually. The addition of the PPs are performed because the intermediate values of PPs addition are stored within the DFF, circulated and added alongside the newly formed PP. This approach isn’t appropriate for large values of M or N.

2.2.2. Serial/Parallel Multiplier

The general design of the serial/parallel multiplier is shown within the figure below. One operand is fed to the circuit in parallel whereas the other is serial. N partial products are formed every cycle. On successive cycles, every cycle will the additions of 1 column of the multiplication table of M*N PPs. the final results are stored within the output register once N+M cycles. Whereas the area needed is N-1 for M=N.
A pipelined version of an 8 bit multiplier is shown below:

![Figure 2: Serial/ Parallel Multiplier](image)

III. METHODOLOGY

The FIR filter design during this brief adopts the direct form wherever the MCMA module sums up all the product $x[n-i]$. In an M-level pipelined system, the quantity of delay components in any path from input to output is (M-1) greater than that within the same path within the original sequential circuit. Pipelining reduces the important path however leads to a penalty in terms of an increased latency. Latency is that the difference within the availability of the primary output information within the pipelined system and also the sequential system. Drawbacks of pipelined filter are increase within the range of latches and in system latency. The speed of DSP design (or the clock period) is limited by the longest path between any two latches or between an input and an output, or between a input and an latch, or between the latch and also the output. This longest path or the “critical path” may be reduced by suitably placing the pipelining latches within the DSP design. The pipelining latches will only be placed across any feed-forward cutest of the graph.

![Figure 3: Block Diagram of pipelined FIR filter](image)

Architecture of MCMA with Truncation (MCMAT), [Multiple constant multiplication/Accumulation with faithfully rounded truncated multipliers]). That removes unnecessary PPB. The white circles within the L-shape block represent the undeletable PPB. The deletion of the PPB is represented by gray circles. Once PP compressions the rounding error of the resultant bits is denoted by cross circles. The last row of the PPB matrix represents all the offset and bias constants needed as well as the sign bit modifications.
According to synthesis result, maximum time delay produced is 1.108ns. That constraint yields minimum clock period 0.72ns. The minimum input time of arrival before clock is 0.730ns and also the maximum output needed time once clock is 1ns.

Figure 4: FIR filter architecture using MCMAT

Figure 5: FIR Filter RTL module

Figure 6: FIR Filter RTL module structure
III. CONCLUSIONS

Low-cost FIR filter designs by along considering the improvement of coefficient bit width and hardware resources in implementations. In planned work synchronized truncate multiplier with delay style to reduce area and delay. Multiplication is main basic unit of the processor that has high speed efficient area. Multiplication is one amongst the basic arithmetic operations and it desires significantly additional hardware resources and interval than addition and subtraction. By using a new truncated multiplier style by along considering the decrease, removal, truncation, and rounding error of the PP bits. Even if most previous styles are supported the transposed shape, in this paper look at that the direct FIR structure with reliably rounded MCMAT leads to the least space value and delay. In planned work synchronized truncate multiplier with delay style to reduce area and delay.

REFERENCES

[1] S. F. Hsiao, J. H. Zhang Jian, and M. C. Chen, “Low Cost FIR Filter Designs Based on Faithfully Rounded Truncated Multiple Constant Multiplication Accumulation” IEEE Trans. on circuits and systems II., May 2013
[2] M. M. Peiro, E. I. Boemo, and L. Wanham, “Design of high-speed multiplier less filters using a non-recursive signed common sub-expression algorithm” IEEE Trans. Circuits Syst. I, Analog Digit. Signal Process, vol. 49, no. 3, pp. 196–203.

[3] C.-H. Chang, J. Chen, and A. P. Vinod, “Information theoretic approach to complexity reduction of FIR filter design” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 8, pp. 2310–2321.

[4] F. Xu, C. H. Chang, and C. C. Jong, “Contention resolution—A new approach to versatile sub-expressions sharing in multiple constant multiplications” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 2, pp. 559–571.

[5] F. Xu, C. H. Chang, and C. C. Jong, “Contention resolution algorithms for common subexpression elimination in digital filter design” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 10, pp. 695–700.

[6] I.-C. Park and H.-J. Kang, “Digital filter synthesis based on an algorithm to generate all minimal signed digit representations” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 21, no. 12, pp. 1525–1529.

[7] Shen Fu Hsiao, Jun Hong Zhang Jian, and Ming Chih Chen, “Low Cost FIR Filter Designs Based on Faithfully Rounded Truncated Multiple Constant Multiplication/Accumulation” IEEE transactions on circuits and systems II: Exp. Briefs, vol. 60, No. 5, May 2013.

[8] H.J. Ko and S.-F. Hsiao, “Design and application of faithfully rounded and truncated multipliers with combined deletion, reduction, truncation, and rounding” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 5, pp. 304–308, May 2011.

[9] P. K. Meher, “New approach to look-up-table design and memory-based realization of FIR digital filter” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 592–603, Mar. 2010.

[10] S. Hwang, G. Han, S. Kang, and J.-S. Kim, “New distributed arithmetic algorithm for low-power FIR filter implementation” IEEE Signal Process. Lett., vol. 11, no. 5, pp. 463–466, May 2004.