ROLE OF ANTIOXIDANT AND MYELOPEROXIDASE LEVELS IN 7, 12-DIMETHYLBENZ [A] ANTHRACENE INDUCED EXPERIMENTAL RAT MODEL: EVIDENCE FOR OXIDATIVE DAMAGE IN ACTIVE ULCERATIVE COLITIS.

P. GEETHA*, B. LAKSHMAN KUMAR, U. INDRA, B. PAVITHRA SHEETAL

Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore 641029, Tamil Nadu, India

Received: 05 Dec 2016 Revised and Accepted: 30 Jan 2017

ABSTRACT

Objective: Ulcerative colitis known as inflammatory bowel disease (IBD) of unknown etiology. We examined the antioxidant and myeloperoxidase status in a murine model of 7, 12-dimethylbenz [a] anthracene induced colitis to elucidate the exact mechanism behind the inflammation.

Methods: Male Wistar rats were exposed to ulcerative colitis using various concentration of DMBA (7,12-Dimethylbenz(A)anthracene) were periodically analysed on 4th, 8th, 12th, 24th and 32nd week from the date of induction. To determine the disease activity index changes in body weight, food consumption, the presence of gross blood in stool and consistency of feces and diarrhea were observed. Macroscopic characters were elucidated based on clinical features of the colon and rectum using scoring pattern. Tissue inflammation status was noted through myeloperoxidase (MPO) assay. The antioxidant status in tissue samples was analysed by superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and total reduced glutathione (GSH).

Results: Gavage intubation of DMBA induced colitis showed significant changes from 4th week and severity on 32nd week. The body weight was gradually reduced. Macroscopic scoring showed severe scoring pattern the inflammation was significantly heavier by week 4; and by the end of 32 w, inflammation in rats was double that of the controls, tissue myeloperoxidase (MPO) activity showed the steady increase of neutrophil infiltration and inflammation rate every week. A significant change was noted in tissue antioxidant status and it showed the oxidation level. Statistically, significant change was recorded from 4th week till 32nd week.

Conclusion: The conventional biochemical changes in colitis induced animal model revealed the association between the oxidative stress and ulcerative colitis.

Keywords: Colitis, 7, 12-Dimethylbenz [A]anthracene, Macroscopic scoring, Gavage intubation and scoring pattern

INTRODUCTION

Ulcerative colitis is an inflammatory bowel disease (IBD) is an idiopathic disease characterized by mucosal inflammation of the gastrointestinal tract. The etiology of the disease has been extensively studies during the last several decades; however, causative factors in disease pathology are not yet fully understood [1, 2]. The primary symptoms of ulcerative colitis are diarrhea, abdominal pain, and urgency of defecate [3]. The inflammatory bowel diseases are becoming more common in Asia, but epidemiologic data are lacking [4]. A number of population-based studies in IBD have been published from Europe, North America and Australia [5, 6]. Even within Asia incidence and prevalence rates of IBD vary according to geography and ethnic groups [7]. The highest rates have been reported in India (particularly ulcerative colitis), Japan, Middle East, and overall rising trends of IBD are seen in East Asia [8]. Oxidative stress is a potential etiological and/or triggering factor for inflammatory bowel disease because the detrimental effects of reactive oxygen molecules (ROM) have been well established in the inflammation process [9]. One of the most important categories of damage contributing to inflammation is that caused by oxidative stress, as a result of the production of free radicals. The free radicals also play a very important role in degenerative, neurodegenerative disorders, atherosclerosis, diabetes and inflammatory bowel disease [10, 11].

A molecule with one or more unpaired electron in its outer shell is called a free radical. Free radicals are able to attack numerous biological substances, including lipid membranes, proteins and DNA. They exert some detrimental effects, including lipid peroxidation of cell membranes, alteration of lipid-protein interactions, enzyme inactivation and DNA breakage [12]. The exogenous sources of free radicals include tobacco smoke, ionizing radiation, pollutants, organic solvents and pesticides [13]. Free radical is a tiny but highly reactive molecule and likely to damage the first thing it meets inside the cell. This might be a protein, membrane lipid, or a segment of DNA. The vast amount of damage is done daily to DNA by free radicals, estimated at 10,000 hits per cell per day. ROS are created as part of normal cellular metabolism and defense systems. At low levels, they play an important role in regulation of cellular growth, differentiation, proliferation and apoptosis [14]. They perform the roles by reversibly affecting different receptors, genes, ion channels, enzymes, proteins and nuclear transcription factors [15, 16]. A disturbance of the balance between formation of active oxygen metabolites and the rate at which they are scavenged by enzymic and non-enzymic antioxidants is referred to as oxidative stress [17]. Oxidative stress has been implicated in the etiology of several (>100) of human diseases and in the process of inflammatory bowel disease [11].

Antioxidants are substances that neutralize free radicals or their actions [18]. Generally, cells possess enzyme systems as superoxide dismutase (SOD), catalase (CAT), and non-enzyme defence system as, reduced glutathione (GSH), for both preventing the production of free radicals and repairing oxidative damage [19]. Oxidative stress has been implicated in the etiology of several of human diseases. The present study was aimed to determine the relationship between the oxidative stress and ulcerative colitis.

MATERIALS AND METHODS

Chemical

712-Dimethylbenz (a) anthracene (DMBA) was purchased from Sigma-Aldrich chemicals. It was maintained at room temperature till...
use and was dissolved in olive oil. The gavage tube was purchased in
(15 s) of sonication. After sonication, the solution was centrifuged at
magnesium chloride was then added to the pellet. The supernatant was discarded. 10 ml of ice-cold 50 mmol potassium
Myeloperoxidase (MPO) assay
Assay of antioxidants in tissue samples
Determination of superoxide dismutase (SOD) activity
Determination of catalase (CAT) activity
Determination of glutathione peroxidase (GPx) activity
Statistical analysis
RESULTS AND DISCUSSION
Disease index

Table 1: Screening of disease activity index

DAL score	Weight loss (%)	Stool consistency	Occult/gross bleeding
0 w	None	Normal	Normal
4th week	1-7	Loose stools	Positive
8th week	7-15	Diarrhoea	Bleeding
12th week	15-20	Diarrhoea	Bleeding
24th week	20-25	Loose stools	Positive
32nd week	>25	Diarrhoea	Bleeding

The percentage change indicates the loss of weight as compared to control group. A non-parametric way of analysis was used to disease activity index.
Macroscopic scoring

The DMBA produce a severe inflammation of the distal colon and rectum as monitored by macroscopic damage. The inflammation was significantly heavier by week 4; and by the end of 32 w, inflammation in rats was double that of the controls. The weights of the colon and rectum in DMBA induced rats were 2 to 5 fold higher than control tissues. Macroscopic scoring of the colon and rectum showed edematous inflammation.

The clinical score was found to be 11.12±0.11 (colon), 10.52±0.016 (rectum) on 32nd week in 20 mg and 10.15±0.11 (colon), 8.61±0.016 (rectum) on 32nd week in 10 mg DMBA induced rats. The changes observed were clearly showed in table 2.

Table 2: Effect of DMBA on colon weight and macroscopic score in rats

Groups (n=3)	Colon weight	Macroscopic score	Rectum weight	Macroscopic score
Group I (control)	0.05±0.002	-	0.44±0.001	-
A) Group II (10 mg)				
4th week	0.08±0.003*	1.23±0.034*	0.05±0.002*	2.11±0.021*
8th week	0.09±0.004*	3.35±0.019*	0.06±0.003*	4.12±0.019*
12th week	0.14±0.004*	5.56±0.011*	0.08±0.002*	5.96±0.015*
24th week	0.18±0.005*	8.99±0.013*	0.11±0.001*	7.17±0.014*
32nd week	0.22±0.003*	10.15±0.011*	0.13±0.003*	8.61±0.016*
B) Group II (20 mg)				
4th week	0.09±0.003**	3.32±0.021**	0.06±0.004**	2.15±0.019**
8th week	0.13±0.002**	4.87±0.010**	0.08±0.003**	3.74±0.015**
12th week	0.19±0.003**	6.59±0.013**	0.11±0.001**	7.15±0.016**
24th week	0.25±0.003**	9.23±0.012**	0.14±0.003**	9.81±0.015**
32nd week	0.26±0.004**	11.12±0.011**	0.15±0.002**	10.52±0.016**

Values expressed as mean±SD (n 3)*-Significant at 5% (p<0.05), Group comparison: a) GII vs GI b) GIIB vs GIIA c) GIIA5 vs GIIA1, GIIA2, GIIA3 and GIIA4 d) GIB5s vs GIB1, GIB2, GIB3 and GIB4

Fig. 1: MPO activity of colonic mucosa in experimentally induced colitis model-Myeloperoxidase activity: MPO–myeloperoxidase. Values expressed as mean±SD (n 3) *-Significant at 5% (p<0.05)

The effect of administration with DMBA 10 and 20 mg/kg on colon and rectum myeloperoxidase (MPO) activity is shown in fig. 1 and 2. The MPO activity is a marker for inflammation, significantly increased in ulcerative colitis model group. Both colon and rectum demonstrate the increased mucosal MPO concentration in rats. 20 mg and 10 mg group showed increased concentration on 32nd week when compared with control (Colon rectum = 29.34±0.31 and 21.41 vs 1.21 μg/mg of tissue). Gradual increase was observed from 4th week on 32nd week the inflammatory effect was increased to 4 folds in both colon and rectum.

Assay of antioxidants in tissue samples

Table 3: Enzymatic antioxidant levels of colon and rectum tissues in DMBA induced rats

Groups	SOD	CATALASE	GPx	
	Colon	Rectum	Colon	Rectum
Group I (Control)	6.59±0.05	5.11±0.04	21.53±0.23	19.48±0.15
A) Group II (10 mg)				
1) 4th week	6.02±0.02*	4.78±0.01*	19.75±0.18*	18.09±0.17*
2) 8th week	5.62±0.04*	4.03±0.03*	18.13±0.21*	17.29±0.13*
3) 12th week	4.29±0.02*	3.59±0.02*	16.57±0.16*	15.76±0.15*
4) 24th week	3.87±0.02*	2.96±0.02*	14.62±0.18*	13.26±0.14*
5) 32nd week	3.10±0.01**	1.66±0.03**	13.32±0.19**	11.21±0.15**
B) (20 mg)				
1) 4th week	5.36±0.02**	4.22±0.03**	19.12±0.17**	17.51±0.14**
2) 8th week	3.93±0.01**	3.56±0.04**	17.79±0.15**	16.51±0.19**
3) 12th week	2.63±0.03**	2.13±0.02**	15.24±0.19**	14.36±0.21**
4) 24th week	1.54±0.02**	1.79±0.01*	13.15±0.18**	11.23±0.19**
5) 32nd week	0.93±0.01**	0.76±0.03**	10.51±0.21**	9.43±0.03**

Values expressed as mean±SD (n 3)*-Significant at 5% (p<0.05), Group comparison: a) GI vs GII b) GIB vs GIIC c) GIID vs GIIE d) GIIF vs GIIG, GIJ, GIH3 and GIH4. SOD-superoxide dismutase (SOD), CAT–catalase, GPx-glutathione peroxidase
In the development of intestinal damage, oxidative stress is involved in the aberrant immune and inflammatory responses. Though the precise mechanisms remain unclear, oxidative damage in the colorectal mucosa is considered an important process. In the present study, DMBA resulted in severe oxidative stress in the colorectal tissues of rats, as evidenced by reducing SOD content, CAT activity, GPx and GSH levels. Table 3 shows the enzymatic SOD, CAT and GPx levels were greatly reduced on 32nd week on both 10 mg and 20 mg group when compared with control. The periodical analysis was done on 4th, 8th, 12th, 24th and 32nd week from the date of induction. SOD, CAT and GPx showed a steady reduction. Non-enzymatic GSH levels were depicted in fig. 3 and 4. Induction of colitis produced a significant decrease in colorectal GSH content compared to control group (Colo 510±19 nmol/g vs. 1123±22 nmol/g, Rectum 451±22 nmol/g vs. 1430±25 nmol/g) on 32nd week.

Fig. 3: GSH activity of colon mucosa in experimentally induced colitis model. GSH-total reduced glutathione. Values expressed as mean±SD (n 3). *Significant at 5% (p<0.05)

Fig. 4: GSH activity of rectum mucosa in experimentally induced colitis model, GSH-total reduced glutathione. Values expressed as mean±SD (n 3). *Significant at 5% (p<0.05)

DISCUSSION

Inflammatory bowel disease is a disorder in which both autoimmune and immune-mediated disorders are involved. In the two forms especially in UC, an autotag-en named human tropomysin isolated form 5 (hTMS) plays an important role in the activation of humoral and cellular-mediated responses [28]. Modification of factors associated with ulcerative colitis results in the provision of relief to the patients. Among these factors, reactive oxygen species (ROS) plays an important role in the progression of the disease [29]. The present study identified important changes in the antioxidant status and myeloperoxidase levels of rats with ulcerative colitis induced with DMBA. Compared with healthy control rats induced group rats showed abnormal changes in body weight and antioxidant levels. These changes resulted in a reduction in body weight and antioxidant levels. These changes resulted indicates the association between ulcerative colitis and oxidation level. 7, 12-dimethyl benzanthracene (DMBA), is an immune-suppressor as well as a potent organ-specific carcinogen. It has been used extensively as a model carcinogen in cancer research it is also called as Bay-region dihydro diol epoxide, produced during cellular metabolism [30]. DMBA causes free radical changes, and a high correlation has been found to occur between the dose of administered DMBA and the levels on a target organ epithelial cells. It produces toxic and highly diffusible reactive oxygen species, capable of producing deleterious effects [31]. No articles are supporting DMBA induced colitis.

Reactive oxygen species are able to produce chemical modifications and to damage proteins, lipids, carbohydrates and nucleotides in the tissues. Reactive free radicals may damage cells by initiation of peroxidation that causes a profound alteration in the structural integrity and functions of cell membranes. Free radical has been implicated in the pathogenesis of several pathological disorders [32]. Free radicals are known to occur as natural by-products under physiologic conditions. However, their overproduction has been implicated in the pathogenesis of gut inflammation and intestinal injury in inflammatory bowel disease [33].

Animal experimental systems are particularly useful for the study of human ulcerative colitis. Since rats closely mimic human diseases, they have been selected in comparison to other animal models. In the present investigation, periodical analysis of DMBA induced ulcerative colitis in rats was done. As a result, the body weight has reduced tremendously, the colon-rectum weight was increase and the microscopic score was also huge and the percentage of the score was statistically significant (P<0.05). However, there was a severe body weight loss observed at the experiments end (32nd week), versus the control rats. The wet weight of the inflamed colon tissue was considered a reliable and sensitive indicator of the severity and extent of the inflammatory response [22]. In the present study, DMBA induced colitis significantly increased the wet weight of colon and rectum, clinical activity, gross lesion score and percentage of affected area compared with colitis control. Disease activity was steadily increasing from 4th week showed severe damage on 32nd week. It indicates that at fixed intervals the changes was observed. Since the intestine is in a constant state of controlled inflammation, thus amplification of the inflammatory response activates infiltration of inflammatory cells that triggers pathological responses and symptoms of IBD [34].

Myeloperoxidase is an enzyme present in neutrophils and at a much lower concentration in monocytes and macrophages. The level of MPO activity is directly proportional to the neutrophil concentration in the inflamed tissue. Therefore, a measurement of MPO activity has been considered a quantitative and sensitive assay for acute intestinal inflammation. In addition, increased MPO activity has been reported to be an index of neutrophil infiltration and inflammation [35]. Induced dosage 10 mg and 20 mg group exhibited a significant increase in the MPO levels when compared to control rats. MPO measurements were steadily increased from 4th week till 32nd-week. It shows the inflammation level.

Enzymatic and non-enzymatic antioxidants forms defence mechanism respectively against the deleterious effects of oxidative stress induced cell damage [36]. In IBD, oxidative stress plays a role in disease initiation and progression [37]. ROS attack the cellular macromolecules, thus disrupting epithelial cell integrity and triggering a mucosal recovery, especially in the case of impaired endogenous defence system [38]. In this work, DMBA induced ROS formation, as indicated by depletion of SOD, CAT, GPx and GSH when compared with control. Compared to 10 mg dose 20 mg dose showed a greater reduction. These findings are supported by previous findings [39, 40].

CONCLUSION

From the above, and taking together that UC is an immune related disease. The involvement of oxidative stress in ulcerative colitis its subsequent development is clearly increasing from 4th week and it reaches maximum on 32nd week. UC is a chronically recurrent inflammatory bowel disease of unknown origin. Oxidative stress has been implicated in the pathogenesis of ulcerative colitis is clearly pictured through above findings. It clearly proves that oxidative stress is a potential etiological and or triggering factor for UC, because the effects of reactive oxygen molecules have been well established in the inflammation process study from 4th week till 32nd week. In conclusion, the immunosuppressant drug DMBA has been found to cause colitis in the current study and the condition particularly elevated at 32nd week. This drug-induced model of
colitis may be further studied for unravelling previously unknown features of the recalcitrant disease namely IBD.

CONFLICT OF INTERESTS
Declared none

ACKNOWLEDGEMENT
We express our deep sense of gratitude to our Secretary and our Principal of Kongunadu Arts and Science College for their support and motivation.

REFERENCES

1. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. J Gastroenterol Hepatol 2010; 6:339-4.

2. Sunyoung I, Michael C, Inax S, Raghab V. Immune-mediated adalimumab-induced thrombocytopenia for the treatment of ulcerative colitis. Int J Pharm Sci 2015;7:456-8.

3. Shi XZ, Winston JH, Sarna SK. Differential immune and genetic responses in rat models of Crohn's colitis and ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 2011;300:41-51.

4. Ng SC, Tang W, Ching YV, Wong M, Chow CM, Hui AJ, et al. Incidence and phenotype of inflammatory bowel disease based on results from the Asia-pacific Crohn's and colitis epidemiology study. Gastroenterology 2013;145:25-30.

5. Wilson J, Hair C, Knight R, Catto-Smith A, Bell S, Kamm M, et al. High incidence of inflammatory bowel disease in Australia: a prospective population-based Australian incidence study. Inflammatory Bowel Dis 2010;16:1550-62.

6. Garey RB, Richardson A, Brampton CM, Colet J, Burt MJ, Chapman BA, et al. High incidence of Crohn's disease in Canterbury, New Zealand: results of an epidemiologic study. Inflammatory Bowel Dis 2006;12:936-43.

7. Thia KT, LoRus EV Jr, Sandborn WJ, Yang SK. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol 2008;103:3157-86.

8. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. J Gastroenterol 2012;142:1:42-54.

9. Rezaie A, Parker RD, Abdollahi M. Oxidative stress and pathogenesis of inflammatory bowel disease: an epiphenomenon or the cause? Dig Dis Sci 2007;52:2105-12.

10. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Evaluation of the antioxidant activity of Raauta tuberosa Food Chem 2006;94:14-8.

11. Karp SM, Koch TR. Oxidative stress and antioxidants in inflammatory bowel disease. Dis Mon 2006;52:99-07.

12. Halliwell B, Gutteridge JMC. Free radicals in biology and medicine. 4th ed. Clarendon Press; 2007.

13. Robinson EE, Maxwell SR, Thorpe GH. An investigation of the antioxidant system of Raauta tuberosa Food Chem 2006;94:14-8.

14. Poli G, Biasi F, Chiariotto P. Oxidative stress and cell signalling. Curr Med Chem 2004;11:1:1163-82.

15. Chen Q, Vazquez EJ, Moghaddas S, Hoppel CL, Lesnefsky EJ. Production of reactive oxygen species by mitochondria: the central role of complex III. J Biol Chem 2003;278:3602-7.

16. Liu W, Guo Qi, You QD, Zhao L, Gu HY, Yuan ST. Anticancer effect and apoptosis induction of gambogic acid in human gastric cancer line BGC-823. World J Gastroenterol 2005;11:3655-9.

17. Papas AM. Determinants of antioxidant status in humans. Lipids 1996;31:77-82.

18. Sies H. Antioxidants in disease, mechanisms and therapy. 1st ed. Academic Press; 1996.

19. Chandra M, Chandra N, Agrawal R, Kumar A, Ghatak A, Pansey VC. The free radical system in ischaemic heart disease. Int J Cardiol 1994;43:121-3.

20. Kalaimathi J, Suresh K. Sinaic acid attenuates 7,12-dimethylbenz[a]anthracene-induced oral carcinogenesis by improving the apoptotic-associated gene expression in hamsters. Asian J Pharm Clin Res 2015;8:228-33.

21. Tsang SW, Ip SP, Wu JC, Ng SC, Yung KK, BIan ZX. A Chinese medicinal formulation ameliorates dextran sulphate sodium-induced experimental colitis by suppressing the activity of nuclear factor-kappa B signalling. J Ethnopharmacol 2015;16:21-30.

22. Thippswamy BS, Mahendran S, Biradar MI, Raj P, Srivastava K, Badami S, et al. Protective effect of embelin against acetic acid induced ulcerative colitis in rats. Eur J Pharm Sci 2011;65:100-5.

23. Krawisz J, Sharon P, Stenson WF. Qualitative assay for acute intestinal inflammation based on myeloperoxidase activity. Gastroenterology 2010;139:339-46.

24. Das S, Vasishth S, Snehla R, Das N, Srivastava LM. Correlation between total antioxidant status and lipid peroxidation in hypercholesterolemia. Curr Sci 2000;78:486-7.

25. Sinha AK. Colorimetric assay of catalase. Anal Biochem 1972;47:399-9.

26. Ellman GC. Tissue sulphhydril groups. Arch Biochem Biophys 1958;82:70-7.

27. Moron MS, Deier JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione-S-transferase activities in rat liver and lung. Biochem Biophys Acta 1979;58:267-8.

28. Kondamudi PK, Kovelamudi H, Mathew G, Nakay PG, Rao MC, Shenoy RR. Investigation of sesamol on myeloperoxidase and colon morphology in acetic acid-induced inflammatory bowel disorder in albino rats. Sci World J 2014;20:8270-1.

29. Millar AD, Rampton DS, Chandler CL, Claxson AW, Blades S, Coumbe A, et al. Evaluating the antioxidant potential of new treatments for inflammatory bowel disease using a rat model of colitis. Gut 1996;39:407-15.

30. Harry R. Synergistic mechanisms in carcinogenesis by polycyclic aromatic hydrocarbons and by tobacco smoke a bio-historical perspective with updates. Carcinogenesis 2001;22:1903–09.

31. Frankel K, Wei L, Wei H, 7,12-dimethylbenz[a]anthracene induces oxidative DNA modifications in vivo. Free Radical Biol Med 1995;19:373-80.

32. Muqbil I, Azmi AS, Bani N. Prior exposure to restraint stress enhances 7,12-dimethylbenz[a]anthracene (DMBA) induced DNA damage in rats. FEBS Lett 2006;580:3995–9.

33. Levy E, Rizwan Y, Thibault L, Lepage G, Brunet S, Bouthiller L, et al. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am J Clin Nutr 2000;71:807–15.

34. El-Ahbar HS, Hammad L, Gawad HSA. Modulating effect of ginger extract on rats with ulcerative colitis. J Ethnopharmacol 2008;118:367-72.

35. Dousharry S, Keshavarzian A, Yonag M, Wade M, Bocchino S, Day BJ, et al. Novel antioxidants zolimid and AEOL11201 ameliorate DNA damages in rats. Dig Dis Sci 2001;46;1922:22–30.

36. Manoharan S, Kolanjiappan K, Suresh K, Panjamurti K. Lipid peroxidation and antioxidant status in patients with oral squamous cell carcinoma. Indian J Med Res 2005;122:529-34.

37. Altered lipid profile, lipoprotein composition, and oxidant and antioxidant status in pediatric Crohn disease. Am J Clin Nutr 2000;71:807–15.

38. Buffinton GD, Doe WF. Depleted mucosal antioxidant defences in inflammatory bowel disease. Free Radical Biol Med 1995;19:911-8.

39. Geetha P, Lakshman Kumar, U Indra, B Pavithra Sheetal. Role of antioxidant and myeloperoxidase levels in 7,12-dimethylbenz[A]anthracene induced experimental rat model: evidence for oxidative damage in active ulcerative colitis. Int J Pharm Sci 2017;9(3):282-286.