Original–Transcribed Text Alignment for Man’yōsyū Written by
Old Japanese Language

Teruaki Oka†
† National Institute for Japanese Language and Linguistics
oka {at} ninjal.ac.jp

Tomoaki Kono†
† National Institute for Japanese Language and Linguistics
tkouno {at} ninjal.ac.jp

Abstract

We are constructing an annotated diachronic corpora of the Japanese language. In part of this work, we construct a corpus of Man’yōsyū, which is an old Japanese poetry anthology. In this paper, we describe how to align the transcribed text and its original text semiautomatically to be able to cross-reference them in our Man’yōsyū corpus. Although we align the original characters to the transcribed words manually, we preliminarily align the transcribed and original characters by using an unsupervised automatic alignment technique of statistical machine translation to alleviate the work. We found that automatic alignment achieves an F1-measure of 0.83; thus, each poem has 1–2 alignment errors. However, finding these errors and modifying them are less work-intensive and more efficient than fully manual annotation. The alignment probabilities can be utilized in this modification. Moreover, we found that we can locate the uncertain transcriptions in our corpus and compare them to other transcriptions, by using the alignment probabilities.

1 Introduction

National Institute for Japanese Language and Linguistics (NINJAL) is constructing an annotated diachronic corpora of the Japanese language.1 As part of this work, we are constructing a corpus of Man’yōsyū (萬葉集, “Collection of myriad leaves”), which is an old Japanese poetry anthology compiled about 8th–9th century AD. Since it is a worldwide very rare example of literature written more than 1,000 years ago, Man’yōsyū is an major source for those who study old Japanese language (OJ). This anthology is composed of 20 volumes and contains more than 4,500 poems.2 Our corpus is based on the transcribed version of the text from original text (see Figure 1), and a large amount of information is annotated semiautomatically by utilizing NLP tools. For example, word boundaries, part-of-speech (POS) tags, pronunciations, cross-references to original characters, and so on are included in this information. Table 1 shows the statistics of our Man’yōsyū corpus.

In this paper, we describe how to align the transcribed text and its original text semiautomatically to be able to cross-reference them in our Man’yōsyū corpus. This is because researchers of OJ frequently reference and consult the original texts. Eventually, we align the original characters to the transcribed words manually. However, to alleviate this work, we preliminarily align the transcribed and original characters by using an unsupervised automatic alignment technique of statistical machine translation and then modify the mistakes manually with less work.

2 Transcription

Most OJ researchers use some type of transcribed version of old Japanese texts. Therefore, we also employed the transcribed version of Man’yōsyū (Kojima et al., 1994) as the base text of our corpus. This

1 This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://creativecommons.org/licenses/by/4.0/
2 Although Man’yōsyū consists of several volumes (books), we deem the anthology to be one text and treat it as singular for clarification in this paper.
Table 1: The statistics of our Man’yōsyū corpus.

Number of poems	4,516
Number of syllabic units	29,489
Total number of words (total)	101,313
Total number of transcribed characters	148,352
Total number of original characters	128,063

Figure 1: Examples of transcribed poems from Man’yōsyū (Kojima et al., 1994). For clarification, each character was indexed with subscript Arabic numerals. A bold character in an original poem that was deleted in the transcribed poem is indicated by “del,” and bold characters in the transcribed poem that were inserted are indicated by “ins.” The translated poems were cited from (Pierson, 1929–1963).

Text was provided by Syogakukan, a major Japanese publishing company. The provided text is marked up using XML to digitally replicate the paper books and was already annotated with some information (e.g., page number; poem number; ruby, which is explained further in Section 4.1; and original text). This text is a transcription of a reading of the original text into a mixture of kanji and kana characters used in the writing of the modern Japanese language. The original Man’yōsyū text is written in OJ with only kanji characters, which are used in two different ways: logographically and phonographically (the latter use is known as man’yōgana).

In transcription works, the phonographic characters are replaced with kana characters, and some logographical ones are also replaced with more suitable kanji characters or kana characters. Since several kanji characters have been used in the modern Japanese language, they are sometimes not replaced. In addition, since the original poems were sometimes written in the writing style of the Chinese language, the transcribed texts contain character-order replacements, deletions, and insertions with respect to the original poems, as in Chinese–Japanese translation (see Figure 1).

3 Related work

Techniques for automatic alignment between electronic parallel texts are mainly used in the field of statistical machine translation, and many NLP tools are available. The most popular alignment tool is GIZA++ (Och and Ney, 2003), which can align one source token (e.g., a word) to some number of target tokens (1-to-n alignment) in each type of unit (e.g., a sentence) in a parallel corpus by using IBM models (Brown et al., 2003) and HMM model (Brown et al., 2001). GIZA++ allows token-order replacements, deletions, and insertions among a source/target unit pair.

These techniques are used not only in the fields of machine translation, but also digital humanities. For example, (Moon and Baldridge, 2007) used them to induce POS taggers for Middle English text.

3 If the kana character(s) can be additionally replaced with more easy-to-read logographic kanji character(s), the kana character(s) are replaced with the kanji characters (e.g., “波 査” are replaced with “は な”, and additionally replaced with “花”).
They aligned Modern English and Middle English bibles and then projected the POS tags from words in the Modern English bible to words in the Middle English bible for use as a training corpus for Middle English bigram POS taggers. This projection approach was proposed in (Yarowsky and Ngai, 2001) and has been used to create POS taggers or parsers for low-resource languages or domains, and so on (Drabek and Yarowsky, 2005; Ozdowska, 2006).

We also use GIZA++ because there are character-order replacements, insertions, and deletions between the transcribed and original text. Since (Moon and Baldridge, 2007) mainly intended to create POS taggers, they did not evaluate their autoalignment performance. However, our objective is annotating alignments themselves; thus, we need to evaluate and attempt to improve our automatic alignment performance. In addition, (Moon and Baldridge, 2007) treated texts written in English, which is a word-segmented language, and employed a word as an alignment token. In contrast, Japanese language does not use a space between words; moreover, in our Man’yōsū corpus, although the transcribed text is already word-segmented because of our policy for creating the corpus, the original text is not segmented because it is merely additional information. Therefore, we employ a character as an alignment token; thus, our automatic alignment is characters-to-characters.

4 Original–transcribed character alignment

We start with the computerized parallel texts of Man’yōsū (Kojima et al., 1994), in which each transcribed poem is associated with its original poem. In addition, both forms are spaced by caesura space marks. Therefore, we employ each syllabic unit, spaced by caesura space marks, as our alignment unit and each character as our alignment token. Since the number of (transcribed) words in the Man’yōsū corpus is not very large, we can avoid the data sparseness problem as an advantage of employing characters-to-characters alignment. Although (Moon and Baldridge, 2007) employed 1-to-n alignment, our transcriptions have n-to-1 and m-to-n alignment pairs (see Figure 2). However, these are rare cases. Most alignment pairs are 1-to-n, as in Figure 1; thus, we also employ the 1-to-n (one original character to several transcribed characters) alignment of GIZA++ and utilize post-processing to cope with the n-to-1 and m-to-n alignments via rules. In addition, our task only has a character sequence-to-a character sequence alignments as a restriction. This is because, most minimum m-to-n alignment pairs between the original and transcribed texts follow this restriction in the transcription works, as in Figures 1 and 2, and eventually, we want to align one original character sequence to one transcribed word (see Table 2).

4.1 Additional data

To improve alignment performance, we use original-transcribed (or-tr) unit pairs and other parallel units. First, we use ruby tags. A “ruby” is a small kana character (or characters) attached to the (mainly kanji) character (or characters) in the body text, generally to represent the pronunciation of the body character(s). Man’yōsū (Kojima et al., 1994) also has ruby characters in both the transcribed and original
Table 2: Examples of alignment one original character sequence to one transcribed word our Man’yōsyū corpus cross references. Upper example is the case of Figure 1 ii) and under example is the case of Figure 2 ii).

Word	POS tag	Original characters
ੲ	noun	ہ2
Ḗ2	particle	Ḗ1
Ḗ3	particle	Ḗ3
Ḗ9	pronoun	Ḗ8
Ḗ4	particle	Ḗ4
Ḗ9 Ḗ10	verb	Ḗ7
Ḗ9	auxiliary verb	Ḗ6
Ḗ9 Ḗ10	auxiliary verb	Ḗ5
Ḗ9 Ḗ10	adverb	Ḗ4
Ḗ14	pronoun	Ḗ11
Ḗ9 Ḗ10	particle	NULL
Ḗ9 Ḗ10 Ḗ17	noun	Ḗ8 Ḗ13
Ḗ14	particle	Ḗ11
Ḗ9 Ḗ10 Ḗ20	verb	Ḗ6
Ḗ9 Ḗ10	verb	Ḗ16
Ḗ9 Ḗ10	auxiliary verb	Ḗ15
Ḗ14	particle	NULL
Ḗ9 Ḗ10	particle	Ḗ11
Ḗ9 Ḗ10	noun	Ḗ3 Ḗ2 Ḗ3
Ḗ9 Ḗ10	noun	Ḗ4
Ḗ9 Ḗ10	verb	Ḗ6
Ḗ9 Ḗ10	particle	Ḗ7
Ḗ9 Ḗ10	particle	Ḗ7

texts and were computerized with ruby tags (see Figure 3). We use rt tags (body text) as transcribed units and rb tags (ruby text) as original units accessorially, because these tag annotations (computerizations) are not trusted and not every kanji character has a ruby. We call units from the ruby tags in the transcribed text tr-ruby and those in the original text or-ruby. To avoid data sparseness, only in mono-ruby\(^7\) cases, we replace the kanji characters in the rt tags with the kana characters in the rb tags in the transcription text at or-tr as a preprocessing step.\(^8\) These are replaced with rt characters after GIZA++ alignment step. These steps create m-to-1 alignments from 1-to-n alignments of GIZA++ outputs (see Figure 4).

Second, original units include characters that have been used in the modern Japanese language since the OJ, and these characters are sometimes not replaced in transcription work. Therefore, to successfully align these characters, we also use pairs consisting of a character and itself (e.g., “栗–栗”, “種–種”), called character-self. Table 3 shows some examples of simplified input data for GIZA++, and Table 4 shows the numbers of units, source characters, and target characters.

4.2 Post-processing rules

For post-processing the GIZA++ output, we apply the following rules in order (see Figure 5 a)-g)). We note that since the transcribed text has already been word-segmented and POS-tagged, we can refer to the POS tags of all subscribed characters.

a) **Rule 1. Interpolating for alignments 1:** If a character in the transcribed unit is NULL-aligned and the POS tag of the character is not a particle, we assign it with the same character alignment of its leftmost character that is not NULL-aligned in the same unit.

b) **Rule 2. Interpolating for alignments 2:** If a lead character(s) in the transcribed unit is NULL-aligned, we assign it (them) with the same character alignment of its (their) rightmost character that is not NULL-aligned in the same unit.

\(^7\)This is a particular ruby that is attached to only one character in the body text.

\(^8\)Actually, we also replace all odoriji characters (椽) that represent iteration of the previous character(s), to the corresponding previous character(s) when we use GIZA++.
Rule 3. Interpolating for alignments 3: If a character is NULL-aligned and not in \{ \text{而, 於, 乎, 于, 矣, 焉, 也, 兮} \} in the original units, we assign it with the same alignment of its rightmost character that is not NULL-aligned in the same unit. If such a character is absent, we assign it same character alignment of the leftmost character that is not NULL-aligned in the same unit.

d) Rule 4. Remove intersections: If an m-to-n alignment is either not one original character sequence or one transcribed character sequence (or both), we remove all alignments for those characters without alignment between the leftmost sequences.

e) Rule 5. Remove initial or final particles alignments: If a transcribed character sequence start or end with a particle character (or characters) on an m-to-n alignment, we remove the connections to these characters from the original characters, unless the transcribed sequence consists only particle character(s).

f) Rule 6. Remove “か” alignments: If an original character is aligned with “我が” in the transcribed unit, we remove the connections from the original character to “か” and its right side characters. Although this “我が” is pos-tagged with noun, strictly speaking the “か” means a case particle.

g) Rule 7. Remove “み” alignments: If an original character is not only aligned with “み” whose POS tag is “suffix-substantive-general” in the transcribed unit, we remove the connections from the original character to “み” and its right side characters.

Rules a–c assign some non-NUL connections to NULL-aligned characters (see examples of Figure 5 a–c). Furthermore, rule c makes m-to-1 or m-to-n alignments from 1-to-1 or 1-to-n align-
Table 4: The number of units, source characters, and target characters.

	Number of units	Number of original characters	Number of transcribed characters
or-tr	29,489	128,063	161,561
tr-ruby	25,187	35,543	56,901
or-ruby	44,778	126,646	181,597
character-self	2,196	2,196	2,196

Figure 4: An Example of a created many-to-1 alignment, after mono-ruby characters were restored to a body character.

ments (see examples of Figure 5 c). Eventually, since we want to align one original character sequence to one transcribed word (see Table 2), we remove the intersections between several m-to-n alignments using Rule d. On the other hand, an original character sequence that is not a particle or suffix does not include the meaning of a particle or suffix. Therefore, we remove such alignments using Rules e–g. Such transcribed particle or suffix characters are called “読み添え (Yomisoe).”

5 Evaluation of automatic alignment performance

In our experiment, we compared the precision, recall and F1-measure of our approach across eight datasets. To evaluate alignment performance, we use 79 randomly selected poems from our Man’yōsyū corpus. Two professional researchers of Man’yōsyū probatively annotated the correct alignments for the poems. Table 5 presents the results of the evaluation.

The addition of tr-ruby or character-self to the dataset improves the performance of our alignment in comparison with the or-tr only or the addition of or-ruby. However, the or-tr+or-ruby+character-self dataset results in the best performance. This is because the data are noisy, even though the number of or-ruby units is the largest in our dataset, as can be seen when comparing Figure 3 to Figure 1. We believe that the addition of character-self reined in this noise as a restriction during unsupervised learning. In addition, the proportion of poems that have identical alignments as the correct alignments is 1/79 at most. Since the F1-measures are about 0.83, each poem has 1–2 alignment errors. However, finding these errors and modifying them are less work-intensive and more efficient than fully manual annotation.

Since GIZA++ uses probabilistic models, we can calculate the probability of each m-to-n alignment pair from the output. We normalized the probabilities and use them as the score of the m-to-n alignment pair. We set a threshold value for the score to predict the correct/wrong of the alignment pair, and then investigated a correlation with actual correct/wrong. Consequently, we found that we can distinguish the correctness of an m-to-n alignment pair with high coefficient of correlation (0.925) when the threshold value is 0.15035 (using the or-tr+tr-ruby+or-ruby+character-self). That is, we can modify the errors more efficiently if we begin our modification by checking the alignment pairs with scores below the threshold. We have already started this modification based on the results of our automatic alignment approach (using the or-tr+tr-ruby+or-ruby+character-self) and two workers have completed 1,023/4,516 poems during a period of five months.

6 Extra tries

We can calculate the alignment probability of each pair of unit. We normalized and sorted these probabilities (using the or-tr+tr-ruby+or-ruby+character-self). Table 6 shows the 10 best and Table 7 shows the 10 worst unit-pairs. The characters in the original units are all phonographic (1-to-1 alignment) in Table 6.
a) Rule 1:

Original: NULL \(\ldots O_i \ldots \)
Transcribed: \(\ldots t_1 \ldots t_{i+1} \ldots \)

Ex) NULL 今 に

b) Rule 2:

Original: NULL \(\ldots O_i \ldots \)
Transcribed: \(\ldots t_1 \ldots t_2 \ldots t_3 \ldots \)

Ex) NULL 今 に

c) Rule 3:

Original: \(\ldots O_i O_{i+1} \ldots \)
Transcribed: NULL \(\ldots t_1 \ldots \)

Ex) NULL 今 に

d) Rule 4:

Original: \(\ldots O_{i-2} O_{i-1} O_i O_{i+1} O_{i+2} \ldots \)
Transcribed: \(\ldots t_{i-2} t_{i-1} t_i t_{i+1} t_{i+2} \ldots \)

Ex) NULL 今 に

e) Rule 5:

Original: \(\ldots O_i O_{i+1} \ldots \)
Transcribed: \(\ldots t_{i-2} t_{i-1} t_i t_{i+1} t_{i+2} \ldots \)

Ex) NULL 今 に

f) Rule 6:

Original: \(\ldots O_i O_{i+1} \ldots \)
Transcribed: \(\ldots t_1 \ldots t_{i+1} \ldots \)

Ex) NULL 今 に

g) Rule 7:

Original: \(\ldots O_i O_{i+1} \ldots \)
Transcribed: \(\ldots t_{i-2} t_{i-1} t_i t_{i+1} t_{i+2} \ldots \)

Ex) NULL 今 に

Figure 5: Post-processing rules. The above rules are applied to the GIZA++ output according to the order. The squares represent each character (token), and edges (connections) represent each character alignment between an original character and a transcribed character.
Table 5: Automatic alignment performances for each dataset.

	Perc.	Rec.	F1	
(1)	or-tr	0.827	0.826	0.826
(2)	or-tr + tr-ruby	0.830	0.826	0.829
(3)	or-tr + or-ruby	0.827	0.822	0.825
(4)	or-tr + character-self	0.829	0.822	0.825
(5)	or-tr + tr-ruby + or-ruby	0.832	0.827	0.830
(6)	or-tr + tr-ruby + character-self	0.832	0.827	0.829
(7)	or-tr + or-ruby + character-self	0.834	0.828	0.831
(8)	or-tr + tr-ruby + or-ruby + character-self	0.834	0.827	0.830

Table 6: The 10 unit-pairs with the highest (normalized) alignment probabilities. The Correct/Wrong column shows whether the unit-pair alignments are completely correct. □ shows the mono-ruby (rt) or iterated characters.

Source: Original unit	Target: Transcribed unit	Probability	Correct/Wrong
毛武礼礼学	もむにれを	0.995	Correct
伊牟礼氏乎礼师	い群む]れて居[を]れば	0.993	Correct
平氏母許乃毛尔	をてもこのもに	0.991	Correct
平吕能波都平尔	居[を]ろのはつをに	0.991	Correct
蕾芸奈牟毛能乎	縦[つ]きなるものを	0.991	Correct
染桝呂と[保]と[校]と[吕]尔	ほどろほどに	0.991	Correct
伊乎称受乎礼师	眠[い]を寝[ね]る居[を]れば	0.990	Correct
乎良牛等须礼校	居[を]らむとすれば	0.990	Correct
乎良毛许乃母尔	をてもこのもに	0.990	Correct
乎良毛许能母尔	をてもこのもに	0.989	Correct

Conversely, in Table 7, most characters in the original units are difficult to read (logographical), which matches our intuition. Despite that both the original and transcribed units consist of only one character and are the same, the numeric characters in Table 7 — 六 (six), 兩 (two), 四 (four) — are scored poorly. This is because these characters in the original Man’yōshū are mostly used as phonographic characters, such as “四具礼 (drizzling rain),” rather than for their numerical meanings. These all numeric characters in Table 7 are units for note, and they are exceptional uses. “紫—紫の” also has similar result. However, most uses of “紫“ in original units consist of several characters, such as “筑紫奈留”; thus, the case that the original unit consists of only “紫“ has low probability. Additionally, “毘—小—小 [ちひ]さけど“ has character-order replacement.

Many OJ researchers have transcribed Man’yōshū using their own policies. Therefore, many syllable units in the original Man’yōshū have several transcriptions. We compared the (normalized) probabilities of varied transcriptions that are listed in (Tsuru and Moriyama, 1977) and show this result in Table 8. In this table, we can find transcriptions with higher probabilities than ours. However, these probabilities are calculated from only our transcription; thus, they tell us only, “Which transcription is most likely in our corpus?” At least, from this results, we may as well think that we employ other transcriptions about these transcriptions in our corpus. In these ways, we can find units in our transcription that are difficult to read or uncertain, and then select more likely transcriptions using this comparison.

7 Conclusion

In this paper, we described how to semiautomatically align the transcribed and original characters to be able to cross-reference them in our Man’yōshū corpus. Our approach uses GIZA++, which is used in the field of machine translation, and post-processing rules. We also utilized ruby tags as additional training data, and achieved an F1-measure of about 0.83, meaning that is each poem has only 1–2 alignment errors. However, finding and modifying these errors are cheaper and more efficient than using.
Table 7: The 10 unit-pairs with the lowest (normalized) alignment probabilities. The Correct/Wrong column shows whether the unit-pair alignments are completely correct. ʦʧ shows the mono-ruby characters (rt).

Source: Original unit	Target: Transcribed unit	Probability	Correct/Wrong
૴ ึ ੁ	໪ 𢥊	0.094	Correct
ੁ ੁ	ຠ ຝ	0.092	Correct
ຝ ຝ	ໃ ຝ	0.090	Correct
ຝ ຝ	ຝ ຝ	0.087	Wrong
ຝ ຝ	ຝ ຝ	0.081	Correct
ຝ ຝ	ຝ ຝ	0.078	Wrong
ຝ ຝ	ຝ ຝ	0.061	Correct
ຝ ຝ	ຝ ຝ	0.047	Wrong
ຝ ຝ	ຝ ຝ	0.039	Correct
ຝ ຝ	ຝ ຝ	0.008	Correct

Table 8: Comparing of the normalized alignment probabilities of various transcriptions.

Original unit	Our transcribed unit	Other transcription	Alignment probability
好等尔	こひしらに	こほしらに	0.270
	こふらくに	こふろくに	0.196
	こふとにし	こふとにし	0.368
	こからむに	こからむに	0.172
	みょ Residential	0.068	
結手解毛	ゆふ手たゆきも	ゆふてたゆきも	0.084
	ゆむてうきも	ゆむてうきも	0.158
	ゆふてたゆしも	ゆふてたゆしも	0.105
	ゆふてゆるゆしも	ゆふてゆるゆしも	0.141
	ゆふてゆるふも	ゆふてゆるふも	0.043

completely manual annotation. Since the coefficient of correlation between the alignment score and alignment correctness is 0.925, the score can be utilized for increasing error-correction efficiency. We have already begun making modifications based on the result of our automatic alignment approach. In addition, we confirmed that we can find the uncertain transcriptions in our corpus and compare them with other transcriptions by using alignment probabilities. We plan to use this approach to investigate the various transcriptions from a statistical perspective as future work. We hope this research will ease and encourage further study of historical works.

Acknowledgements

The work reported in this paper was supported by the NINJAL collaborative research project, “The Construction of Diachronic Corpora and New Developments in Research on the History of Japanese.”

References

Peter F. Brown, Jennifer C. Lai, and Robert L. Mercer. 1991. Aligning Sentences in Parallel Corpora. In proceedings of the 29th Annual Meeting of the Association for national Linguistics (ACL-91), 169–176.

Peter F. Brown, Vincent J. Della. Pietra, Stephen A. Della. Pietra and Robert L. Mercer. 1993. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, 19(2):263–311.

Elliott F. Drábek and David Yarowsky. 2005. Induction of Fine-grained Part-of-speech Taggers via Classifier Combination and Crosslingual Projection. In proceedings of the ACL Workshop on Building and Using Parallel Texts (ParaText ’05), 49–56.

Noriyuki Kajima, Masatoshi Kinoshita and Haruyuki Touno. 1994. Shinpen Nihon Koten Bungaku Zensyu, volume 6–9. Syougakukan, JP.

Taesun Moon and Jason Baldridge. 2007. Part-of-speech Tagging for Middle English through Alignment and Projection of Parallel Diachronic Texts. In proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL), 390–399.
Franz J. Och and Hermann Ney. 2003. *A Systematic Comparison of Various Statistical Alignment Models*. *Computational Linguistics*, 29(1):19–51.

Sylwia Ozdowska. 2006. *Projecting POS Tags and Syntactic Dependencies from English and French to Polish in Aligned Corpora*. In proceedings of the International Workshop on Cross-Language Knowledge Induction (In EACL 2006), 53–60.

Jan L. Pierson. 1929–1963. *The Manyôšâ*: Translated and Annotated, Book 1–20. Brill, Leiden, NED.

Hisashi Tsuru and Takashi Moriyama. 1977. *Man’yôsyû*, expanded edition. Ohfu, Japan.

David Yarowsky and Grace Ngai. 2001. *Inducing Multilingual POS Taggers and NP Bracketers via Robust Projection Across Aligned Corpora*. In proceedings of the Second Meeting of the North American Chapter of the Association for Computational Linguistics (NAACL ’01), 1–8.