GC-MS and FTIR analysis of methanolic leaf extract of *Rhynchosia minima* (L.) DC.

Vilas T. Patil*, Varsha D. Jadhav

Department of Botany, Shivaji University, Kolhapur -416004, Maharashtra, India

ABSTRACT

The current analysis was carried out to determine the chemical components in the leaves of *R. minima* (L.) DC. The GC-MS analysis of methanolic leaf extract of *R. minima* indicated the presence of 19 compounds. The prevailing compounds of *R. minima* leaves were 1-Pentadecene (14.31%), alpha. Bisabolol (10.39%), 1Heptadecene (9.78%), Cyclohexene,4-(1,5dimethyl,1-hexadieny) (7.06%), 3-Hexadecene (E) (8.10%), Caryophyllene (6.58%), Neophytadiene (5.16%), Humulene (1.91%), Naphthalene,1,2,3,5,6,8 a-hexahydro-4,7-dimethyl (3.72%), Hexadecanoic acid, methyl ester (2.09%), Pentadecanone (3.13%), 8-Octadecanone (4.62%), 1-Nonadecene (4.16%), Spironolactone (5.31%), Beta-Famesene (19.22%), Cyclohexene,4-(1,5dimethyl,1,4-hexadieny) (1.60%), Cyclohexane, octyl (1.43%), beta Bisabolene (9.21%). These compounds have antibacterial, antifungal, antioxidant, hemolytic, insecticidal, and lubricant activity. Fourier Transform Infra-Red Spectroscopy (FTIR) leaf analysis of *R. minima* shows lipid, protein, phosphate ion, carboxylic acid, hydroxy compound, aliphatic bromo compounds. The present study revealed that *R. minima* leaves represent various types of bioactive compounds. 1-Heptadecene with antibiotic activity, 8-Octadecanone shows antimicrobial activity and hexadecanoic acid, nematicide, antibiotic, antioxidant, hypcholesteremic production of methyl ester.

INTRODUCTION

The genus *Rhynchosia* (Fabaceae) belongs to the family Fabaceae (Leguminosae), the subfamily Papilionoideae, the tribe Phaseoleae, the subtribe Cajaninae. The genus is described in India by 25 species, as well as one variety and one subspecies, 7 of which are endemic to India. In India, there is a great diversity of the species of *Rhynchosia*, about 60%, found in the Eastern Ghats [1].

With its various edible berries, and also great value in the indigenous medicine system, the family fabaceae has an economic significance. Many of the wild edible plant have both therapeutic and dietary function. Wild edible plant plays a significant role in human life, supplying nutrients, fibres, vitamins, essential fatty acids and improving dietary taste and colour. *R. minima* (L.) DC. Commonly referred to as Turvel is an annual twinning or trailing spread throughout India, Sri Lanka, and the United States [2]. The seeds are weaker and poisonous and the extract of seeds shows strong agglutinating activity on human RBC [3]. The medicine leaves of this plant are used as abortifacient in the folk tradition method. Decoction prepared from leaves is used as an abortifacient by triabals in the North Maharashtra region [4]. The Sikkim tribals use plant leaves in the treatment of wounds, helminthic infection and abortion [5]. In the Saurashtra region of Gujarat, the aborigines use the leaves to treat asthma and piles [6]. Plant phytochemical experiments revealed the existence of ergoster, stigmasteral, lupeol, and steroidal glycoside [7]. The Leaves of *R. Minima* have significant anthelmintic activity [4]. *R. Minima* leaves essential therapeutic qualities such as contamination with helminths, cuts, asthma, piles and abortive substances [8]. In the case of gold nanoparticles *R. minima* mediated synthesis, the alkene group, acyl halide, secondary amine in alkaloids and alkyl halides such as iodine and bromine compounds may be involved in the reduction of gold chloride into gold nanoparticles, these compounds may also serve as reducing and capping agents [9]. Preliminary phytochemical screening of the *R. minima* aqueous leaf extract indicated the presence of alkaloids, flavonoids, tannins, terpenoids and glycosides [4]. Medicinal plants have historically been an integral part of human life since ancient days. Because of their therapeutic selectivity, minute of side effects, inexpensive source and function as lead molecules for the development of new drugs, natural compounds are currently...
the main source for the modern drug discovery. *Rhynchosia* species (Fabaceae) grow widely in the world’s tropical and subtropical areas. In herbal medicine, a few plants of this genus have been used to treat various conditions such as antibacterial, antidiabetic, abortive, wound healing, hepatoprotective, boil cure, rheumatic pain and skin infections [10]. Medicinal plants are a worthy source of biologically active compounds for the production over the past centuries of new therapeutic drug candidates [11-13]. Also today, plant species are commonly used by people in many countries as a cure for the treatment of different forms of diseases such as infectious, cardiovascular, diabetic, intestinal, renal, mental-nervous, dietary, respiratory, reproductive, neurological, skin infections and many wounds [14]. Therefore, the plants provide a valuable source of natural compounds and played a major role with scientifically enhanced effectiveness in the new drug development as well as less side effects [15]. Therefore, in terms of biological activity and drug discovery many researchers based their research attention on medicinal plants.

MATERIALS AND METHODS

Collection of Plant Material and Preparation of Methanol Extract

The plant materials of *R. minima* were collected from Kondi in Solapur District, Maharashtra. The identification of plant material was carried out by using flora of Kolhapur District [13]. The leaves were air dried at lab condition to avoid contamination and made fine powder by using mechanical grinder. Then the powder was used for extraction using the solvent methanol. The obtained extracts were filtered by using Whatman No.1 filter paper, concentrated by using an evaporator at 40 °C and residual extracts were stored in the refrigerator at 4 °C in small and sterile amber colour glass bottles. This solution was further used for GC-MS analysis. Fine powder of leaves of *R. Minima* was used to FTIR analysis.

The GC-MS analysis was done using GCMS-TQ8050- Shimadzu (Japan). It has equipped with SH-Rxi-5 sil MS fused silica capillary column (0.25mm diameter and 0.25 mm thickness). Injection mode- split, Flow control mode – Pressure, Pressure-75.2 kPa, linear velocity-41.4 cm/sec, Purge flow-3.0 ml/min and Spilt ratio-(1.0). Helium gas (99.9%) was used as a carrier gas at constant flow rate. Identification of components is read on mass spectrum of GC-MS by using National institute of standard and techniques NIST-08 LIB and WILEY-O8 L.

RESULTS AND DISCUSSION

The GCMS analysis of leaves of *R.minima* showed Nienteen compounds (Table 1). The major phytochemical components were: 1-Pentadecene(14.31%), alpha.-Bisabolol (10.39%), 1-Heptadecene (9.78%), Cyclohexene, 4-(1,5-dimethyl-1,4-hexadienyl (7.06%), 3-Hexadecene,(Z)-(8.10%), Caryophyllene (6.58%), Neophytadiene (5.16%), Humulene (1.91%), Naphthalene,1,2,3,5,6,8 a-hexahydro-4,7-dimethyl (3.72%), Hexadecanoic acid, methyl ester (2.09%), Pentadecanone (3.13%), 8-Octadecanone (4.02%), 1-Nonadecene (4.16%) Spiro[4.5]dec-6-en-8-one,1,7-dimethyl-4-(1-methylpentyl (2.97%), Neophytadiene (2.24%), (E)-beta.-Famesene (1.92%), Cyclohexane,octyl (1.45%), beta-Bisabolene (9.21%) (Figure 1). Compounds 1-Heptadecene and 8-Octadecanone with antibiotic and antimicrobial activity

Figure 1: GC-MS chromatogram of methanolic extract of leaves of *R.minima*
Figure 2: FTIR chromatogram of methanolic extract of Leaves of *R. minima*

Table 1: GC-MS analysis revealed the presence of bioactive compounds in the leaves of methanolic extract of *R. minima*

Sr No.	Name of compound	Retention time	% Peak area	Mol. formula	Mol. weight
1	3-Hexadecene, (Z)-	21.300	8.10	C16H32	224
2	Caryophyllene	22.096	6.58	C15H24	204
3	Cyclohexane, octyl-	22.770	1.45	C14H28	196
4	E-beta-Famesene	22.866	1.92	C15H24	204
5	Humulene	23.013	1.91	C15H24	204
6	Cyclohexene, 4-(1,5-dimethyl-1,4-hexadienyl)	24.083	7.06	C15H24	204
7	beta-Bisabolene	24.270	9.21	C15H24	204
8	Naphthalene, 1,2,3,5,6-hexahydro-4,7-dimethylnol-(1-methylethyl)-, (1S-cis)	24.551	3.72	C15H24	204
9	Cyclohexene, 4-(1E)-1,5-dimethyl-1,4-hexadien	25.052	1.80	C15H24	204
10	1-Pentadecene	26.256	14.31	C15H30	210
11	8-Pentadecan	28.090	13.14	C15H30	226
12	alpha-Bisabolol	28.506	10.39	C15H26	222
13	Spiro[4.5]dec-6-en-8-one, 1,7-dimethyl-4-(1-methylethyl)	28.644	2.97	C15H24	220
14	1-Heptadecene	30.711	9.78	C17H34	238
15	Neophytadiene	31.612	5.16	C20H38	278
16	8-Octadecanone	32.394	4.02	C18H36	268
17	Hexadecanoic acid, methyl ester	33.438	2.09	C17H34	270
18	1-Nonadecene	35.013	4.16	C19H38	266
19	Neophytadiene	38.491	2.24	C20H38	278
In the current evaluation, a study of Gas Chromatogram-Mass spectrometry (GC-MS) has identified nineteen bioactive compounds from the methanolic leaf extract of *R. minima*. The presence of various bioactive compounds in *R. minima* has shown that the pharmaceutical significance. FTIR analysis of *R. minima* leaves shows lipid, protein, phosphate ions, carboxylic acid, hydroxy compound, aliphatic bromo compound (Figure 2 and Table 3) [20]. *Rhynchosia* is an economically important genus that is distributed all over the world. Phytochemical investigations into many species of *Rhynchosia* have shown that the genus is limited to the abundance of C-glycosylflavonoids developing. The *Rhynchosia*’s preliminary phytochemical screening revealed alkaloids, flavonoids, tannins, terpenoids, and glycosides. Wild legume *Rhynchosia* is a rich source of phytochemicals and nutrition and provides possibilities for advancement as a stand-by for cultivated species as a vegetable. The several species of *Rhynchosia* exhibit antioxidant, antimicrobial, anti-nutritional, antifungal, anti-diabetic, anti-inflammatory and anticancer activities that suggest they have a range of medicinal properties as well as exceptional nutritional potential.

ACKNOWLEDGMENT

The acknowledge the authorities of Department of Botany, Shivaji University, Kolhapur for extended support & providing necessary lab facilities.

REFERENCES

1. Patil D A. Flora of Dhule and Nandurbar District (Maharashtra) Bishen singh Mahendra Pal singh Publishers and Distributors, Dehra Dun, India 2003.
2. Kadhim M J, Ghaida J M and Imad H H. *In vitro* Antibacterial, antifungal and phytochemical analysis of methanolic extract of fruit *Cassia fistula*. *Oriental Journal of Chemistry*. 2016: 32: 1329-1346.
3. Mohamed Z Z, Fashchuddin B A, Wel-S H, Shiek P F. GC-MS analysis of phytochemical constituents in leaf extract of *Neolamarkea Cadamba* (Rubiaceae) From Malaysia. International journal of Pharmacy and Pharmaceutical Sciences. 2014: 6; 123-127.
4. Mali R G and Mahale N B. C-Glycosylflavonones from *Rhynchosia minima*. *Phytochemistry* 1977: 16; 498.
5. Shah G L. Menon A R, Gopal G V. An account of the Ethanobotany of Saurashtra in Gujarat state (India). Journal of Economic and Taxonomic Botany. 1981: 2; 173-182.
6. Sermakkan M and Thangapandian V. GC-MS analysis of *Cassia italica* leaf methanol extract. *Asian Journal of Pharmaceutical and Clinical Research*. 2012: 5; 90-94.
7. Ahmed W, Ahmed Z, Mali A Stigmasteryl galactoside from *Rhynchosia minima*. *Phytochemistry*.1992: 31; 4038-4039.
8. Ali A, Olabassar, Inas A Q, Mazahar F. GC-MS Analysis, HPTLC Fingerprint profile and DPPH free radical scavenging. Assay of methanol extract of *Martynia Annua* Linn. seeds.2019:11:16-22.
9. Prasad K and Swamy N. *Rhynchosia raviii* (Leguminosae-Papilionoideae), a new species from Andhra Pradesh, India. *Phytotaxa* 2014:175: 159-160.
10. Alur Rammohan, Guda Mallikarjuna Reddy, Baki Vijaya Bhaskar Duvvuru Gunasekar, Gregory V. Zyranyov Planta. 2020:9:251
11. Harvey, A. L. Natural products in drug discovery. Drug discov Today. 2008: 13:894–901
12. Koehn. FE, Carter. GT. The evolving role of natural products in drug discovery, Nature Reviews Drug Discovery. 2005; 4:206–220.
13. Newman. DJ, Cragg. GM. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products. 2012; 75:315–335.
14. González-Tejero MR, Casares-Porcel M, Sánchez-Rojas CP, Ramiro-Gutiérrez JM, Molero-Mesa J, Pieroni A, Giusti ME, Censorii E, De Pasquale C, Della A, Paraskeva-Hadijchambi D. Medicinal plants in the Mediterranean area: synthesis of the results of the project Rubia. *Journal of Ethnopharmacology*. 2008: 116:341–357.
15. Butler MS. The role of natural product chemistry in drug discovery. *Journal of Natural Products*. 2004: 67:2141–2153.
16. Gunalan G, Krishnamurthy V. and (Late) Ariamuthu S. GC-MS and HPTLC fingerprinting of *Bahania variagata* leaves for anticancer activity. *World Journal of Pharmaceutical Research* 2014:3:1313-1336.
17. John C. Interpretation of infrared spectra, a practical approach. *Encyclopedia Analytical Chemistry* 2000.
18. Selvarani K, Stella V, Bai G. GC-MS analysis of biologically active compounds in *Cayratia pedata* (lam) leaf and callus extracts. *International Journal of Chemical Studies* 2014:2:51-56.
19. Mali R G, Hundiwale J C, Gavit R S, Patil D A and Patil K S: Herbal abortificients used in north Maharashtra. *Natural Product Radiance* 2006;5:315-318.
20. FAO (Food and Agriculture Organization of the United Nations). *Rhynchosia minima* (L.) DC. 2006.
21. Gundidza M , Gweru N, Magwa M L, Ramalivhana N J, Humphrey G, Samie A and Mmbengwa V. Phytochemical composition and biological activities of essential oil of *Rhynchosia minima* (L) (OC) (Fabaceae), *African Journal of Biotechnology* 2009: 8:721-724.
22. L. Md. Bhakshu & RR. Venkata Raju. Chemical composition and in
vitro antimicrobial activity of essential oil of *Rhynchosia heynei*, an endemic medicinal plant from Eastern Ghats of India. Pharmaceutical Biology. 2009: 47(11); 1067-1070.

23. Ramasabbu M & Veluchamy G. Comparing the possible mechanism in the reducing ability of leaves of two higher plants in the synthesis of gold nanoparticles. *International Journal of Pharmaceutical Research and Bio-science*. 2015: 4:102-115.

24. Ramasabbu M & Veluchamy G. Comparing the possible mechanism in the reducing ability of leaves of two higher plants in the synthesis of gold nanoparticles. *International Journal of Pharmaceutical Research and Bio-science*. 2015: 4:102-115.

25. Mali R G & Mahale N B. Evaluation of *Rhynchosia minima* (L) DC leaves for Anthelmic activity. *International Journal of Pharmaceutical Sciences and Nanotechnology*. 2008; 1:191-194.