Abstract

Let \(d(x, y) \) denote the length of a shortest path between vertices \(x \) and \(y \) in a graph \(G \) with vertex set \(V \). For a positive integer \(k \), let \(d_k(x, y) = \min\{d(x, y), k + 1\} \) and \(R_k\{x, y\} = \{z \in V : d_k(x, z) \neq d_k(y, z)\} \). A set \(S \subseteq V \) is a distance-\(k \)-resolving set of \(G \) if \(S \cap R_k\{x, y\} \neq \emptyset \) for distinct \(x, y \in V \). In this paper, we study the maker-breaker distance-\(k \) resolving game (MB\(k \)RG) played on a graph \(G \) by two players, Maker and Breaker, who alternately select a vertex of \(G \) not yet chosen. Maker wins by selecting vertices which form a distance-\(k \) resolving set of \(G \), whereas Breaker wins by preventing Maker from winning. We denote by \(O_{R,k}(G) \) the outcome of MB\(k \)RG. Let \(\mathcal{M}, \mathcal{B} \) and \(\mathcal{N} \), respectively, denote the outcome for which Maker, Breaker, and the first player has a winning strategy in MB\(k \)RG. Given a graph \(G \), the parameter \(O_{R,k}(G) \) is a non-decreasing function of \(k \) with codomain \(\{-1 = \mathcal{B}, 0 = \mathcal{N}, 1 = \mathcal{M}\} \).

We exhibit pairs \(G \) and \(k \) such that the ordered pair \((O_{R,k}(G), O_{R,k+1}(G)) \) realizes each member of the set \(\{(\mathcal{B}, \mathcal{N}), (\mathcal{B}, \mathcal{M}), (\mathcal{N}, \mathcal{M})\} \); we provide graphs \(G \) such that \(O_{R,1}(G) = \mathcal{B}, O_{R,2}(G) = \mathcal{N} \) and \(O_{R,k}(G) = \mathcal{M} \) for \(k \geq 3 \). Moreover, we obtain some general results on MB\(k \)RG and study the MB\(k \)RG played on some graph classes.

Keywords: distance-\(k \) metric, \(k \)-truncated metric, resolving set, \(k \)-truncated resolving set, distance-\(k \) resolving set, Maker-Breaker distance-\(k \) resolving game, Maker-Breaker resolving game

2010 Mathematics Subject Classification: 05C12, 05C57

1 Introduction

Games played on graphs have been studied extensively; examples of two-player games include cop and robber game [21], Hex board game [11], Maker-Breaker domination game [5], etc. Erdős and Selfridge [6] introduced the Maker-Breaker game played on an arbitrary hypergraph \(H = (V, E) \) by two players, Maker and Breaker, who alternately select a vertex from \(V \) not yet chosen in the course of the game. Maker wins the game if he can select all vertices of a hyperedge from \(E \), whereas Breaker wins if she is able to prevent Maker from doing so. For further reading on these games, see [2, 15]. The Maker-Breaker resolving game (MBRG) was introduced in [18], and its fractionalization was studied in [26]. As it turns out, on any graph \(G \) that is connected, MBRG fits as the terminal member of a natural family of metric resolving games numbering \((\text{diam}(G) - 1) \) in strength, where \(\text{diam}(G) \) is the length of a longest path found in \(G \). In this paper, we introduce and study this family, and we call a general member of this family the Maker-Breaker distance-\(k \) resolving game (MB\(k \)RG). As will be made clear shortly, MB\(k \)RG equals MBRG when \(k = \text{diam}(G) - 1 \). But first, we need to set down some basic terminology and notations.
Let \(G \) be a finite, simple, undirected, and connected graph with vertex set \(V(G) \) and edge set \(E(G) \). Let \(k \) be a member of the set \(\mathbb{Z}^+ \) of positive integers. For \(x, y \in V(G) \), let \(d(x, y) \) denote the minimum number of edges in a path linking \(x \) and \(y \) in \(G \), and let \(d_k(x, y) = \min\{d(x, y), k + 1\} \). Thus, \(d_r(\cdot, \cdot) \) is the usual, shortest-path metric on \(G \), and we can call \(d_k(\cdot, \cdot) \) the distance-\(k \) or the \(k \)-truncated metric on \(G \). For distinct \(x, y \in V(G) \), let \(R(x, y) = \{ z \in V(G) : d(x, z) \neq d(y, z) \} \) and \(R_k(x, y) = \{ z \in V(G) : d_k(x, z) \neq d_k(y, z) \} \). A set \(S \subseteq V(G) \) is a resolving set of \(G \) if \(S \cap R(x, y) \neq \emptyset \) for distinct \(x, y \in V(G) \), and the metric dimension \(\dim(G) \) of \(G \) is the minimum cardinality over all resolving sets of \(G \). Similarly, a set \(S \subseteq V(G) \) is a distance-\(k \) resolving set (also called a \(k \)-truncated resolving set) of \(G \) if \(S \cap R_k(x, y) \neq \emptyset \) for distinct \(x, y \in V(G) \), and the distance-\(k \) metric dimension (also called the \(k \)-truncated metric dimension) \(\dim_k(G) \) of \(G \) is the minimum cardinality over all distance-\(k \) resolving sets of \(G \). For an ordered set \(S = \{u_1, u_2, \ldots, u_\alpha\} \subseteq V(G) \) and for a vertex \(v \in V(G) \), the metric code of \(v \) with respect to \(S \) is the \(\alpha \)-vector \(\text{code}_S(v) = (d(v, u_1), d(v, u_2), \ldots, d(v, u_\alpha)) \). We note that \(S \) is a resolving set of \(G \) if and only if the map \(\text{code}_S(\cdot) \) is injective on \(V(G) \). By replacing the metric \(d(\cdot, \cdot) \) by \(d_k(\cdot, \cdot) \) mutatis mutandis, the notion of a distance-\(k \) metric code map \(\text{code}_{S,k}(\cdot) \) on \(V(G) \) and a distance-\(k \) resolving set are analogously defined; note that, again, \(S \subseteq V(G) \) is a distance-\(k \) resolving set of \(G \) if and only if the map \(\text{code}_{S,k}(\cdot) \) is injective on \(V(G) \).

The concept of metric dimension was introduced in \([14, 23]\), and the concept of distance-\(k \) metric dimension was introduced in \([1, 7]\). For further study on distance-\(k \) metric dimension of graphs, see \([10]\), which is a result of merging \([13, 25]\) with some additional results, and \([25]\) is based on \([24]\). Some applications of metric dimension include robot navigation \([19]\), network discovery and verification \([3]\), chemistry \([20]\), and combinatorial optimization \([22]\). For applications of distance-\(k \) metric dimension see \([10, 17]\), where sensors/landmarks are placed at locations (vertices) forming a distance-\(k \) resolving set of a network, with the understanding that the cost of a sensor/landmark increases as its detection range increases. It is known that determining the metric dimension of a general graph is an NP-hard problem \([12, 19]\) and that determining the distance-\(k \) metric dimension of a general graph is an NP-hard problem \([8, 9]\).

Returning to the eponymous games of this paper, and following \([18]\), MBRG (MBRG, respectively) is played on a graph \(G \) by two players, Maker (also called Resolver) and Breaker (also called Spoiler), denoted by \(M^* \) and \(B^* \), respectively. \(M^* \) and \(B^* \) alternately select (without missing their turn) a vertex of \(G \) that was not yet chosen in the course of the game. \(M \)-game (\(B \)-game, respectively) denotes the game for which \(M^* \) (\(B^* \), respectively) plays first. \(M^* \) wins the MBRG (MBRG, respectively) if he is able to select vertices that form a resolving set (a distance-\(k \) resolving set, respectively) of \(G \) in the course of the game, and \(B^* \) wins MBRG (MBRG, respectively) if she stops Maker from winning. We denote by \(O_R(G) \) and \(O_{R,k}(G) \) the outcomes, respectively, of MBRG and MBRG played on a graph \(G \). Noting that there’s no advantage for the second player in the MBRG, it was observed in \([18]\) that there are three realizable outcomes, as follows: \(O_R(G) = M \) if \(M^* \) has a winning strategy whether he plays first or second in the MBRG, \(O_R(G) = B \) if \(B^* \) has a winning strategy whether she plays first or second in the MBRG, and \(O_R(G) = N \) if the first player has a winning strategy in the MBRG. Analogously, we assign to \(O_{R,k}(G) \) an element of \(\{M, B, N\} \) in accordance with each of the aforementioned outcomes.

The authors of \([18]\) studied the minimum number of moves needed for \(M^* \) (\(B^* \), respectively) to win the MBRG provided \(M^* \) (\(B^* \), respectively) has a winning strategy. In MBRG, let \(M_R(G) \) (\(M'_R(G) \), respectively) denote the minimum number of moves for \(M^* \) to win the \(M \)-game (\(B \)-game, respectively) provided he has a winning strategy with \(O_R(G) = M \), and let \(B_R(G) \) (\(B'_R(G) \), respectively) denote the minimum number of moves for \(B^* \) to win the \(M \)-game (\(B \)-game, respectively) provided she has a winning strategy with \(O_R(G) = B \). Suppose rivals \(X \) and \(Y \) compete to gain control over a network \(Z \), with \(X \) trying to install transmitters with limited range at certain nodes to form a distance-\(k \) resolving set of the network, while \(Y \) seeks to sabotage the effort by \(X \). In this scenario, time becomes a matter of natural concern. If \(O_{R,k}(G) = M \), then we denote by \(M_{R,k}(G) \) (\(M'_R(G) \), respectively) the minimum number of moves for \(M^* \) to win the \(M \)-game (\(B \)-game, respectively). If \(O_{R,k}(G) = B \), then we denote by \(B_{R,k}(G) \) (\(B'_R(G) \), respectively) the minimum number of moves for \(B^* \) to win the \(M \)-game (\(B \)-game, respectively). If \(O_{R,k}(G) = N \), then we denote by \(N_{R,k}(G) \) (\(N'_R(G) \), respectively) the minimum number of moves for the first player to win the \(M \)-game (\(B \)-game, respectively).
Now, we recall a bit more terminology and notations. The diameter, \(\text{diam}(G) \), of \(G \) is \(\max \{d(x, y) : x, y \in V(G)\} \). For \(v \in V(G) \), the open neighborhood of \(v \) is \(N(v) = \{u \in V(G) : uv \in E(G)\} \), and the degree of \(v \) is \(|N(v)| \); a leaf (or an end-vertex) is a vertex of degree one, and a major vertex is a vertex of degree at least three. Let \(P_n, C_n \) and \(K_n \) respectively denote the path, the cycle and the complete graph on \(n \) vertices. For positive integers \(s \) and \(t \), let \(K_s,t \) denote the complete bi-partite graph with two parts of sizes \(s \) and \(t \). For \(a \in \mathbb{Z}^+ \), let \(\{a\} \) denote the set \(\{1, 2, \ldots, a\} \).

This paper is organized as follows. In Section 2 we study the parameter \(O_{R,k}(G) \) as a function of \(k \). We exhibit pairs \(G \) and \(k \) such that the ordered pair \((O_{R,k-1}(G), O_{R,k}(G))\) realizes each member of the set \(\{(|B, N), (B, M), (N, M)|\} \), and we define an MB\&RG-outcome-transition number (a jump) as an integer \(k > 1 \) such that \(O_{R,k-1}(G) \neq O_{R,k}(G) \). In Section 3 we examine \(O_{R,k}(G) \) when \(G \) is the Petersen graph, a complete multipartite graph, a wheel graph, a cycle, and a tree with some restrictions.

2 The parameter \(O_{R,k}(G) \) as a function of \(k \)

To facilitate our discussion of \(O_{R,k}(G) \) as a function of \(k \), let us assign outcomes \(B, N \), and \(M \) the values of \(-1, 0 \), and \(1 \), respectively, and hence we have \(B < N < M \). It is clear from the definitions that \(d_{k+1}(x, y) \geq d_k(x, y) \) and, for \(k \geq \text{diam}(G) - 1 \), \(d_k(x, y) = d(x, y) \). Thus, we can identify \(d(x, y) \) with \(d_k(x, y) \) for any \(k \geq \text{diam}(G) - 1 \); we can likewise identify \(O_R(G) \) with \(O_{R,k}(G) \) for any \(k \geq \text{diam}(G) - 1 \). The following observation is instrumental to studying MB\&RG as a function of \(k \).

Observation 2.1. On any graph, a distance-\(k \) resolving set is a distance-(\(k + 1 \)) resolving set.

The preceding observation easily leads to the following two observations, which are found in existing literature.

Observation 2.2. \([1] \) Let \(G \) be a connected graph, and let \(k, k' \in \mathbb{Z}^+ \) with \(k < k' \). Then \(\text{dim}_k(G) \geq \text{dim}_{k'}(G) \geq \text{dim}(G) \).

Observation 2.3. \([4] \) Let \(k \in \mathbb{Z}^+ \) and \(G \) be a connected graph.

(a) If \(\text{diam}(G) \in \{1, 2\} \), then \(\text{dim}_k(G) = \text{dim}(G) \) for all \(k \).

(b) More generally, \(\text{dim}_k(G) = \text{dim}(G) \) for all \(k \geq \text{diam}(G) - 1 \).

The following monotonicity result follows readily from the rules of MB\&RG and Observation 2.1.

Proposition 2.4. On any graph \(G \), the parameter \(O_{R,k}(G) \) is a non-decreasing function of \(k \), where the codomain is \(\{B = -1, N = 0, M = 1\} \).

It’s worth noting that there are exactly \(\binom{\text{diam}(G)+1}{2} \) monotone functions from \(\{\text{diam}(G) - 1\} \) to \(\{-1, 0, 1\} \). To see this, observe that such a function is but a vector consisting of a string of \(-1\)’s, followed by a string of \(0\)’s, and then followed by a string of \(1\)’s, satisfying \(a + b + c = \text{diam}(G) - 1 \) and \(a, b, c \in \{0\} \cup \mathbb{Z}^+ \), where \(a, b, \) and \(c \) respectively denote the number of \(-1\)’s, \(0\)’s, and \(1\)’s. The number of solutions to the diophantine equation clearly equals the number of monomials of total degree \(\text{diam}(G) - 1 \) in 3 symbols, and the latter is well known to be the combinatorial symbol asserted. Now, we spotlight a few key results among the bounty of consequences yielded by Proposition 2.4.

Corollary 2.5. Let \(k \in \mathbb{Z}^+ \) and \(G \) be a connected graph.

(a) If \(\text{diam}(G) \in \{1, 2\} \), then \(O_{R,k}(G) = O_R(G) \) for all \(k \).

(b) Given \(k < k' \), we have \((O_{R,k}(G), O_{R,k'}(G)) \in \{(B, B), (N, N), (M, M), (B, N), (B, M), (N, M)\}; note that \(O_{R,k_0}(G) \) is \(O_R(G) \) for \(k_0 \geq \text{diam}(G) - 1 \).
The monotonicity of $O_{R,k}(G)$ as a function of k with codomain $\{B, N, M\}$ prompts natural questions. Given a graph G, what is the range of $O_{R,k}(G)$? Also, where does the function “jump value”? To this end, for $X, Y \in \{B, N, M\}$ with $X < Y$, define the MBkRG-outcome-transition number (the jump) of G from X to Y, denoted by $O^T_{X,Y}(G)$, to be the number $\alpha \in [\text{diam}(G) - 1] - \{1\}$ satisfying $O_{R,\alpha}(G) = X$ and $O_{R,\alpha+1}(G) = Y$, when such an α exists; put $O^T_{X,Y}(G) = \emptyset$ otherwise. Clearly, each graph G has no more than two jumps and, if $O^T_{R,M}(G) \neq \emptyset$, then G has only one jump.

Now, we work towards realization results in conjunction with Proposition 2.7 and Corollary 2.8. First, we recall some terminology. Two vertices u and v are called twins if $N(u) - \{v\} = N(v) - \{u\}$; notice that a vertex is its own twin. Hernando et al. [16] observed that the twin relation is an equivalence relation on $V(G)$ and, under it, each (twin) equivalence class induces either a clique or an independent set. The next few results involve twin equivalence classes.

Observation 2.6. Let x and y be distinct members of the same twin equivalence class of G.
(a) $[16]$ If R is a resolving set of G, then $R \cap \{x, y\} \neq \emptyset$.
(b) $[10]$ If R_k is a distance-k resolving set of G, then $R_k \cap \{x, y\} \neq \emptyset$.

Proposition 2.7. Let G be a connected graph of order at least 4.
(a) $[18]$ If G has a twin equivalence class of cardinality at least 4, then $O_R(G) = B$.
(b) $[18]$ If G has two distinct twin equivalence classes of cardinality at least 3, then $O_R(G) = B$.
(c) $[26]$ If G has $k \geq 0$ twin equivalence classes of cardinality 2 and exactly one twin equivalence class of cardinality 3 with $\text{dim}(G) = k + 2$, then $O_R(G) = N$.

Corollary 2.8. Let $k \in \mathbb{Z}^+$, and let G be a connected graph of order at least 4.
(a) If G has a twin equivalence class of cardinality at least 4, then $O_{R,k}(G) = B$ for all k.
(b) If G has two distinct twin equivalence classes of cardinality 3, then $O_{R,k}(G) = B$ for all k.

Here is a relation between $\text{dim}_{k}(G)$ and $O_{R,k}(G)$, which is analogous to the relation between $\text{dim}(G)$ and $O_R(G)$ obtained in [18].

Observation 2.9. Let $k \in \mathbb{Z}^+$, and let G be a connected graph of order $n \geq 2$.
(a) If $O_{R,k}(G) = M$, then $\text{dim}_{k}(G) \leq \lceil \frac{n}{2} \rceil$.
(b) If $\text{dim}_{k}(G) \geq \lceil \frac{n}{2} \rceil + 1$, then $O_{R,k}(G) = B$.

Proof. Let $k \in \mathbb{Z}^+$, and let G be a connected graph of order $n \geq 2$.
(a) Let $O_{R,k}(G) = M$. Assume, to the contrary, that $\text{dim}_{k}(G) > \lceil \frac{n}{2} \rceil$. In the B-game of the MBkRG, M^* can occupy at most $\lfloor \frac{n}{2} \rfloor$ vertices, and hence M^* fails to occupy a distance-k resolving set of G; thus, $O_{R,k}(G) \neq M$, which contradicts the hypothesis.
(b) Let $\text{dim}_{k}(G) \geq \lceil \frac{n}{2} \rceil + 1$. In the M-game of the MBkRG, M^* can occupy at most $\lfloor \frac{n}{2} \rfloor$ vertices of G; thus, M^* fails to occupy vertices that form a distance-k resolving set of G. Since B^* has a winning strategy for the M-game in the MBkRG, $O_{R,k}(G) = B$. \qed

Analogous to the concept of a pairing dominating set (see [5]) and a pairing resolving set (see [18]), we define a pairing distance-k resolving set and a quasi-pairing distance-k resolving set of a graph.

Definition 2.10. Let $k, \alpha \in \mathbb{Z}^+$ and G be a connected graph. Let $X = \bigcup_{i \in [\alpha]} \{u_i, v_i\}$, where $\bigcup X \subseteq V(G)$ and $|\bigcup X| = 2\alpha$. Let $Z \subseteq V(G)$ be such that $|Z| = \alpha$ and $Z \cap \{u_i, v_i\} \neq \emptyset$ for each $i \in [\alpha]$.
(a) Suppose each Z, as defined, is a distance-k resolving set of G, then X is called a *pairing distance-k resolving set of $G*.$

(b) Suppose each Z, as defined, fails to be a distance-k resolving set of G, and there exists a vertex $v \in V(G) - \bigcup X$ such that $Z \cup \{v\}$ is a distance-k resolving set of G for each Z, then X is called a *quasi-pairing distance-k resolving set of $G*.$

Observation 2.11. [13] If G admits a pairing resolving set, then $O_R(G) = \mathcal{M}.$

Observation 2.12. Let $k \in \mathbb{Z}^+$, and let G be a connected graph of order at least two.

(a) If G admits a pairing distance-k resolving set, then $O_{R,k}(G) = \mathcal{M}.$

(b) If G admits a quasi-pairing distance-k resolving set, then $O_{R,k}(G) \in \{\mathcal{M}, \mathcal{N}\}.$

Now, we present the main theorem of this section, which is a collection of realization results (to wit, examples) which shed much light on MBkRG, viewed as a family of $(\text{diam}(G) - 1)$ resolving games played out on a fixed graph G; in other words, viewing $O_{R,k}(G)$ as a function of $k.$

Theorem 2.13. Let $k \in \mathbb{Z}^+.$

(a) There exist graphs G satisfying $O_{R,k}(G) = \mathcal{M}$ for $k \geq 1.$

(b) There exist graphs G satisfying $O_{R,k}(G) = \mathcal{N}$ for $k \geq 1.$

(c) There exist graphs G satisfying $O_{R,k}(G) = \mathcal{B}$ for $k \geq 1.$

(d) There exists a graph G such that $O_{R,1}(G) = \mathcal{N}$ and $O_{R,k}(G) = \mathcal{M}$ for $k \geq 2.$

(e) There exist graphs G such that $O_{R,1}(G) = \mathcal{B}$ and $O_{R,k}(G) = \mathcal{N}$ for $k \geq 2.$

(f) There exist graphs G such that $O_{R,1}(G) = \mathcal{B}$ and $O_{R,k}(G) = \mathcal{M}$ for $k \geq 2.$

(g) There exist graphs G such that $O_{R,1}(G) = \mathcal{B}, O_{R,2}(G) = \mathcal{N}$ and $O_{R,k}(G) = \mathcal{M}$ for $k \geq 3.$

Proof. (a) Let G be a tree obtained from $K_{1, \alpha},$ where $\alpha \geq 3,$ by subdividing exactly $(\alpha - 2)$ edges once. Let $\ell_1, \ell_2, \ldots, \ell_\alpha$ be the leaves and v be the major vertex of G such that $d(v, \ell_{\alpha-1}) = d(v, \ell_\alpha) = 1$ and $d(v, \ell_i) = 2$ for each $i \in [\alpha - 2].$ By Observation 2.6(b), let s_i be the degree-two vertex lying on the $v - \ell_i$ path for each $i \in [\alpha - 2].$ Since $\{\{\ell_{\alpha-1}, \ell_\alpha\}\} \cup \bigcup_{i=1}^{\alpha-2} \{\{s_i, \ell_i\}\}$ is a pairing distance-k resolving set of G for each $k \in \mathbb{Z}^+, O_{R,k}(G) = \mathcal{M}$ for all $k \geq 1$ by Observation 2.12(a).

(b) Let G be a tree obtained from $K_{1, \alpha},$ where $\alpha \geq 4,$ by subdividing exactly $(\alpha - 3)$ edges once. Let v be the major vertex of G and let $\{\ell_1, \ell_2, \ldots, \ell_\alpha\}$ be the set of leaves of G such that $d(v, \ell_{\alpha-2}) = d(v, \ell_{\alpha-1}) = d(v, \ell_\alpha) = 1$ and $d(v, \ell_i) = 2$ for each $i \in [\alpha - 3];$ further, for each $i \in [\alpha - 3],$ let s_i be the degree-two vertex lying on the $v - \ell_i$ path in $G.$ We note that, for any distance-k resolving set R of G, $|R \cap \{\ell_{\alpha-2}, \ell_{\alpha-1}, \ell_\alpha\}| \geq 2$ by Observation 2.6(b). Let $X = \{\ell_\alpha, \ell_{\alpha-1}\} \cup \bigcup_{i=1}^{\alpha-3} \{\{s_i, \ell_i\}\}$ and let $Z \subseteq V(G)$ with $|Z| = \alpha - 2$ such that $Z \cap \{\ell_{\alpha-1}, \ell_\alpha\} \neq \emptyset$ and $Z \cap \{s_i, \ell_i\} \neq \emptyset$ for each $i \in [\alpha - 3].$ Since $Z \cup \{\ell_{\alpha-2}\}$ is a distance-k resolving set of G and Z fails to form a distance-k resolving set of $G,$ X is a quasi-pairing distance-k resolving set of $G.$ By Observation 2.12(b), $O_{R,k}(G) \in \{\mathcal{M}, \mathcal{N}\}.$ In the B-game, B^* can select two vertices in $\{\ell_\alpha, \ell_{\alpha-1}, \ell_{\alpha-2}\}$ after her second move; thus, B^* wins the B-game. Therefore, $O_{R,k}(G) = \mathcal{N}$ for all $k \geq 1.$

(c) Let $G = K_{1, \beta},$ where $\beta \geq 4,$ be the star on $(\beta + 1)$ vertices such that $L(G) = \bigcup_{i=1}^{\beta+1} \{\ell_i\}$ is the set of leaves of $G.$ Since $L(G)$ is a twin equivalence class of cardinality $\beta \geq 4,$ $O_{R,k}(G) = \mathcal{B}$ for all $k \geq 1$ by Corollary 2.8(a).

(d) Let G be a tree obtained from a 3-path given by v_1, v_2, v_3 by joining exactly two leaves ℓ_i and ℓ'_i to each $v_i,$ where $i \in [3].$ First, we show that $O_{R,1}(G) = \mathcal{N}.$ Let S be any distance-1 resolving set of $G;$ for each $i \in [3], S \cap \{\ell_i, \ell'_i\} \neq \emptyset$ by Observation 2.6(b) since ℓ_i and ℓ'_i are twins in $G.$ We may assume that $S_0 = \{\ell_1, \ell_2, \ell_3\} \subseteq S$ by relabeling the vertices of G if necessary. We note that, for any distinct $i, j \in [3],$ $\text{code}_{S_0, 1}(\ell'_i) = \text{code}_{S_0, 1}(\ell'_j)$ and $R_1(\ell'_i, \ell'_j) = \{v_i, \ell'_i, v_j, \ell'_j\};$ thus, $S \cap \{v_i, \ell'_i, v_j, \ell'_j\} \neq \emptyset.$ So, $|S| \geq 5,$ and
thus $\dim_1(G) \geq 5$. Let $X = \{\{v_2, v_3\}\} \cup \bigcup_{i=1}^{3} \{\{i, i'\}\}$ and let $Z \subseteq V(G)$ with $|Z| = 4$ such that $Z \cap \{v_2, v_3\} \neq \emptyset$ and $Z \cap \{i, i'\} \neq \emptyset$ for each $i \in [3]$. Since $Z \cup \{v_1\}$ is a minimum distance-1 resolving set of G, X is a quasi-pairing distance-1 resolving set of G. In the B-game of the MB1RG, B^* wins since M^* can occupy at most 4 vertices in the course of the game and $\dim_1(G) = 5$. Thus, $O_{R,1}(G) = N'$ by Observation 2.12(b).

Second, we show that $O_{R,k}(G) = M$ for all $k \geq 2$. Since $\bigcup_{i=1}^{3} \{\{i, i'\}\}$ is a pairing distance-k resolving set of G for all $k \geq 2$, $O_{R,k}(G) = M$ for all $k \geq 2$ by Observation 2.12(a).

(c) Let G be a tree obtained from an α-path $v_1, v_2, \ldots, v_{\alpha}$, where $\alpha \geq 3$, by attaching exactly three leaves $\ell_i, \ell_i', \ell_i''$ to v_0 and attaching exactly two leaves ℓ_i and ℓ_i' to each v_i, where $i \in [\alpha]$.

First, we show that $O_{R,1}(G) = B$. Let S be any distance-1 resolving set of G. By Observation 2.9(b), $|S \cap \{\ell_0, \ell_0', \ell_0''\}| \geq 2$ and $|S \cap \{\ell_i, \ell_i'\}| \geq 1$ for each $i \in [\alpha - 1]$. By relabeling the vertices of G if necessary, we may assume that $S_0 = \bigcup_{i=1}^{3} \{\ell_i\} \cup \{\ell_i', \ell_i''\} \subseteq S$. Note that, for any distinct $i, j \in [\alpha]$, $\text{code}_{S_0}(\ell_i) = \text{code}_{S_0}(\ell_j)$ and $R_1(\ell_i, \ell_j) = \{v_i, \ell_i, v_j, \ell_j\}$; thus, $|S \cap \{v_i, \ell_i, v_j, \ell_j\}| \geq 1$. So, $|S| \geq 2\alpha$ and hence $\dim_1(G) \geq 2\alpha$. Since $\dim_1(G) \geq 2\alpha \geq \left\lceil \frac{3\alpha + 1}{2} \right\rceil + 1 = \left\lceil \frac{\nu(G)}{2} \right\rceil + 1$ for $\alpha \geq 3$, $O_{R,1}(G) = B$ by Observation 2.9(b).

Second, we show that $O_{R,k}(G) = N$ for all $k \geq 2$. Let $k \geq 2$. Let $X = \bigcup_{i=1}^{3} \{\{i, i'\}\}$ and let $Z \subseteq V(G)$ with $|Z| = \alpha$ such that $Z \cap \{i, i'\} \neq \emptyset$ for each $i \in [\alpha]$. Since $Z \cup \{\ell_0, \ell_0', \ell_0''\}$ forms a minimum distance-k resolving set of G, X is a quasi-pairing distance-k resolving set of G. By Observation 2.12(b), $O_{R,k}(G) \in \{M, N\}$. Note that, in the B-game of the MB4RG, B^* has a winning strategy since B^* can occupy two vertices of $\{\ell_0, \ell_0', \ell_0''\}$ after her second move, and thus preventing M^* from occupying vertices that form a distance-k resolving set of G. So, $O_{R,k}(G) = N$ for all $k \geq 2$.

(f) Let G be a tree obtained from an α-path $v_1, v_2, \ldots, v_{\alpha}$, where $\alpha \geq 4$, by joining exactly two leaves ℓ_i and ℓ_i' to each v_i, where $i \in [\alpha]$.

First, we show that $O_{R,1}(G) = B$. For each $i \in [\alpha]$ and for any distance-1 resolving set S of G, $S \cap \{\ell_i, \ell_i'\} \neq \emptyset$ by Observation 2.9(b). We may assume that $S^* = \bigcup_{i=1}^{3} \{\ell_i\} \subseteq S$ by relabeling the vertices of G if necessary. We note that, for any distinct $i, j \in [\alpha]$, $\text{code}_{S^*}(\ell_i) = \text{code}_{S^*}(\ell_j)$ and $R_1(\ell_i, \ell_j) = \{v_i, \ell_i, v_j, \ell_j\}$; thus, $S \cap \{v_i, \ell_i, v_j, \ell_j\}$ and $R_1(\ell_i, \ell_j) = \{v_i, \ell_i, v_j, \ell_j\}$; thus, $S \cap \{v_i, \ell_i, v_j, \ell_j\} \neq \emptyset$. So, $|S| \geq 2\alpha - 1$, and thus $\dim_1(G) \geq 2\alpha - 1$. Since $\dim_1(G) \geq 2\alpha - 1 \geq \left\lceil \frac{3\alpha + 1}{2} \right\rceil + 1 = \left\lceil \frac{\nu(G)}{2} \right\rceil + 1$ for $\alpha \geq 4$, $O_{R,1}(G) = B$ by Observation 2.9(b).

Second, we show that $O_{R,k}(G) = M$ for all $k \geq 2$. Since $\bigcup_{i=1}^{3} \{\{i, i'\}\}$ is a pairing distance-2 resolving set of G, $O_{R,2}(G) = M$ by Observation 2.12(a). By Proposition 2.4, $O_{R,k}(G) = M$ for all $k \geq 2$.

(g) Let G be the graph in Figure A where $\alpha \geq 2$. We note the following: (i) for any minimum distance-k resolving set S of G and for each $i \in [\alpha]$, $S \cap \{\ell_i, \ell_i'\} \neq \emptyset$ and $S \cap \{s_i, s_i'\} \neq \emptyset$ by Observation 2.9(b); (ii) if $S_0 = \bigcup_{i=1}^{3} \{\ell_i, s_i\} \subseteq S$, then $\text{code}_{S_0}(\ell_i) = \text{code}_{S_0}(s_i)$ for each $k \geq 1$ and for each $j \in [\alpha]$; (iii) for each $i \in [\alpha]$, $R_1(\ell_i, s_i') = \{\ell_i', s_i', x_i\}$; (iv) for each $i \in [\alpha]$, $R_2(\ell_i', s_i') = \{\ell_i', s_i', x_i, y\}$; (v) for each $i \in [\alpha]$ and for each $k \geq 3$, $R_k(\ell_i', s_i') = \{\ell_i', s_i', x_i, y, z\}$. Let $W = \bigcup_{i=1}^{3} \{\{i, i'\}, \{s_i, s_i'\}\}$.

First, we show that $O_{R,1}(G) = B$. In the M-game, B^* can choose exactly one vertex of each pair in W and at least one vertex in $\bigcup_{i=1}^{3} \{x_i\}$. By relabeling the vertices of G if necessary, we may assume that B^* chose the vertices in $\{x_j\} \cup \bigcup_{i=1}^{3} \{\ell_i, s_i'\}$ after her $(2\alpha + 1)$st move. Since all vertices in $\{\ell_i', s_i', x_j\}$, for some $j \in [\alpha]$, are occupied by B^*, (iii) implies that M^* fails to occupy vertices that form a distance-1 resolving set of G in the M-game of the MB1RG. Thus, $O_{R,1}(G) = B$.

Second, we show that $O_{R,2}(G) = N$. Let $U \subseteq V(G)$ with $|U| = 2\alpha$ such that $U \cap \{\ell_i, \ell_i'\} \neq \emptyset$ and $U \cap \{s_i, s_i'\} \neq \emptyset$ for each $i \in [\alpha]$. Since $U \cup \{y\}$ is a minimum distance-2 resolving set of G, W is a quasi-pairing distance-2 resolving set of G. By Observation 2.12(b), $O_{R,2}(G) \in \{M, N\}$. In the B-game, B^* can select the vertex y and exactly one vertex of each pair in W; we may assume that B^* chose the vertices in $\{y\} \cup \bigcup_{i=1}^{3} \{\ell_i, s_i'\}$ after her $(2\alpha + 1)$st move. In order for M^* to occupy vertices that form a distance-2 resolving set of G in the B-game, (iv) implies that M^* must select all vertices in $\bigcup_{i=1}^{3} \{x_i\}$ in addition to the vertices in $\bigcup_{i=1}^{3} \{\ell_i, s_i\}$, but this is impossible since $\alpha \geq 2$ and B^* can select at least one vertex in $\bigcup_{i=1}^{3} \{x_i\}$ in her $(2\alpha + 2)$nd move. So, B^* wins the B-game of the MB2RG. Thus, $O_{R,2}(G) = N$.

Third, we show that $O_{R,k}(G) = M$ for $k \geq 3$. Since $\bigcup_{i=1}^{3} \{y, z\}$ is a pairing distance-k resolving set of G for $k \geq 3$, $O_{R,k}(G) = M$ for all $k \geq 3$ by Observation 2.12(a).
Example 3.2. Since $3 = \frac{\alpha}{2}$, Observation 3.1 and Corollary 2.5, we make the following observation.

In this section, we consider the outcome of the MBkRG as well as the minimum number of steps needed to reach the outcome of the MBkRG on some graph classes. Taking into consideration of Proposition 2.3 and Corollary 2.5, we make the following observation.

Observation 3.1. Let $k \in \mathbb{Z}^+$ and G be a connected graph of order $n \geq 2$.

(a) If $O_{R,k}(G) = \mathcal{M}$, then $\dim_k(G) \leq M_{R,k}(G) \leq M'_{R,k}(G) \leq \lceil \frac{2n}{k} \rceil$, $M_{R,k+1}(G) \leq M'_{R,k}(G)$.

(b) If $O_{R,k}(G) = \mathcal{B}$, then $B'_{R,k}(G) \leq B_{R,k}(G) \leq \lceil \frac{n}{2} \rceil$; moreover, for $k > 1$, $B_{R,k}(G) \geq B_{R,k-1}(G)$ and $B'_{R,k}(G) \geq B'_{R,k-1}(G)$.

(c) If $\text{diam}(G) \in \{1,2\}$ or $k \geq \text{diam}(G) - 1$, then $M_{R,k}(G) = M_{R}(G)$ and $M'_{R,k}(G) = M'_{R}(G)$ if $O_{R}(G) = \mathcal{M}$, and let $B_{R,k}(G) = B_{R}(G)$ and $B'_{R,k}(G) = B'_{R}(G)$ if $O_{R}(G) = \mathcal{B}$.

(d) If X is a pairing distance-k resolving set of G with $|X| = 2 \dim_k(G)$, then $M_{R,k}(G) = M'_{R,k}(G) = \dim_k(G)$.

(e) If X is a quasi-pairing distance-k resolving set of G with $|X| = 2(\dim_k(G) - 1)$ and $O_{R,k}(G) = \mathcal{N}$, then $N_{R,k}(G) = \dim_k(G)$.

Next, we examine the MBkRG on some graph classes. We first consider the Petersen graph and complete multipartite graphs.

Example 3.2. Let $k \in \mathbb{Z}^+$.

(a) Let \mathcal{P} denote the Petersen graph. It was shown in [15] that $O_{R}(\mathcal{P}) = \mathcal{M}$ and $M_{R}(\mathcal{P}) = 3 = M'_{R}(\mathcal{P})$. Since $\text{diam}(\mathcal{P}) = 2$, Corollary 2.5(a) and Observation 3.1(c) imply that $O_{R,k}(\mathcal{P}) = \mathcal{M}$ and $M_{R,k}(\mathcal{P}) = 3 = M'_{R,k}(\mathcal{P})$ for all k.

(b) For $m \geq 2$, let $G = K_{a_1,a_2,\ldots,a_m}$ be a complete multi-partite graph of order $\sum_{i=1}^{m} a_i$, and let s be the number of partite sets of G consisting of exactly one element. Since $\text{diam}(G) \leq 2$, Corollary 2.5(a) implies $O_{R,k}(G) = O_{R}(G)$ for all k, and $O_{R}(G)$ was determined in [15]. So,

$$O_{R,k}(G) = \begin{cases} \mathcal{B} & \text{if } s \geq 4, \text{ or } a_i \geq 4 \text{ for some } i \in [m], \\ & \text{or } s = a_i = 3 \text{ for some } i \in [m], \\ & \text{or } a_i = a_j = 3 \text{ for distinct } i, j \in [m], \\ \mathcal{N} & \text{if } s = 3 \text{ and } a_i \leq 2 \text{ for each } i \in [m], \\ & \text{or } s \leq 2, a_i \leq 3 \text{ for each } i \in [m] \text{ and } a_j = 3 \text{ for exactly one } j \in [m], \\ \mathcal{M} & \text{if } s \leq 2 \text{ and } a_i \leq 2 \text{ for each } i \in [m]. \end{cases}$$
Moreover, we have the following: (i) if $O_{R,k}(G) = M$, then $M_{R,k}(G) = M'_{R,k}(G) = \dim(G)$ by Theorem 4.12 of [18] and Observation (4.11(c)); (ii) if $O_{R,k}(G) = B$, then $B_{R,k}(G) = B'_{R,k}(G) = 2$ by Proposition 3.2 of [18] and Observation (3.7(c)); (iii) if $O_{R,k}(G) = \tilde{N}$, then $N_{R,k}(G) = \dim(G)$ and $N'_{R,k}(G) = 2$.

To see (iii), we note that if $O_{R,k}(G) = \tilde{N}$, then G has exactly one twin equivalence class of cardinality 3, say Q, and G admits a quasi-pairing distance-k resolving set, say X, with $|X| = 2(\dim_k(G) - 1)$. In the M-game, $N_{R,k}(G) = \dim(G)$ by Observations (2.3(a) and (3.7(c)). In the B-game, $N'_{R,k}(G) = 2$ by Observation (2.3(b) and the fact that B^* can occupy 2 vertices of Q after her second move.

Next, we consider cycles. It was obtained in [18] that $O_R(C_n) = M$ for $n \geq 4$. We recall some terminology. Following [4], let M be a set of at least two vertices of C_n, let u_i and u_j be distinct vertices of M, and let P and P' denote the two distinct $u_i - u_j$ paths determined by C_n. If either P or P', say P, contains only two vertices of M (namely, u_i and u_j), then we refer to u_i and u_j as neighboring vertices of M and the set of vertices of $V(P) - \{u_i, u_j\}$ as the gap of M (determined by u_i and u_j). The two gaps of M determined by a vertex of M and its two neighboring vertices of M are called neighboring gaps. Note that, M has r gaps if $|M| = r$, where some of the gaps may be empty. The following lemma and its proof are adapted from [4].

Lemma 3.3. Let $S \subseteq V(C_n)$, where $n \geq 5$. Suppose S satisfies the following two conditions: (1) every gap of S contains at most 3 vertices, and at most one gap of S contains 3 vertices; (2) if a gap of S contains at least 2 vertices, then its neighboring gaps contain at most 1 vertex. Then S is a distance-1 resolving set of C_n.

Proof. Let $S \subseteq V(C_n)$ satisfy the conditions of the present lemma, where $n \geq 5$. Let C_n be given by $u_0, u_1, \ldots, u_n, u_0$ and let $v \in V(C_n) - S$. Let $2_{[S]}$ denote the $|S|$-vector with 2 on each entry of $\text{code}_{S,1}(\cdot)$, and all subscripts in this proof are taken modulo n.

First, suppose $v = u_i$ belongs to a gap of size 1 of S. Then $W_0 = \{u_{i-1}, u_{i+1}\} \subseteq S$ and $\text{code}_{W_0,1}(u_i) = (1, 1) \neq \text{code}_{W_0,1}(u_j)$ for each $u_j \in V(C_n) - (S \cup \{u_i\})$ since u_j cannot be adjacent to both u_{i-1} and u_{i+1} in C_n.

Second, suppose $v = u_i$ belongs to a gap of size 2 of S such that $\{u_i, u_{i+1}\} \cap S = \emptyset$ or $\{u_{i-1}, u_i\} \cap S = \emptyset$, say the former. Let $W_1 = \{u_{i-1}, u_{i+2}\} \subseteq S$. If $n = 5$, then $\text{code}_{W_1,1}(u_j) : u_j \in V(C_5) - W_1 = \{(1, 1), (1, 2), (2, 1)\}$. So, suppose $n \geq 6$. By the condition (2) of the present lemma, $\{u_{i-2}, u_{i-3}\} \cap S \neq \emptyset$. If $u_{i-2} \in S$, then $\text{code}_{W_1,1}(u_j) = (1, 2) \neq \text{code}_{W_1,1}(u_j)$ for each $u_j \in V(C_n) - (S \cup \{u_i\})$ since u_j cannot be adjacent to u_{i-1} in C_n. If $u_{i-2} \notin S$ and $u_{i-3} \in S$, then we have the following: (i) $\text{code}_{W_1,1}(u_j) = \text{code}_{W_1,1}(u_{i-2}) = (1, 2) \neq \text{code}_{W_1,1}(u_j)$ for each $u_j \in V(C_n) - (S \cup \{u_i, u_{i-2}\})$ since u_j is not adjacent to u_{i-1} in C_n; (ii) $\text{code}_{S,1}(u_i) \neq \text{code}_{S,1}(u_{i-2})$ since $d_1(u_i, u_{i-3}) = 2 > 1 = d_1(u_{i-2}, u_{i-3})$.

Third, suppose $v = u_i$ belongs to a gap of size 3 of S. If $\{u_{i-1}, u_{i+1}\} \cap S = \emptyset$, then $\text{code}_{S,1}(u_i) = 2_{[S]} \neq \text{code}_{S,1}(u_{i-2})$ for each $u_j \in V(C_n) - (S \cup \{u_i\})$ since u_j is adjacent to at least one vertex of S. Now, suppose $\{u_i, u_{i+1}, u_{i+2}\} \cap S = \emptyset$ or $\{u_{i-2}, u_{i-1}, u_i\} \cap S = \emptyset$, say the former; then $W_2 = \{u_{i-1}, u_{i+3}\} \subseteq S$. If $n = 5$, then $\{u_j \in V(C_5) - W_2 = \{(1, 2), (2, 1), (2, 2)\}$. If $n = 6$, then $\text{code}_{W_2,1}(u_j) : u_j \in V(C_6) - W_2 \neq \text{code}_{W_2,1}(u_j)$ for each $u_j \in V(C_n) - (S \cup \{u_i\})$ since u_j is not adjacent to u_{i-1} in C_n. If $u_{i-2} \notin S$ and $u_{i-3} \in S$, then $\text{code}_{W_1,1}(u_i) = \text{code}_{W_1,1}(u_{i-2}) = (1, 2) \neq \text{code}_{W_1,1}(u_j)$ for each $u_j \in V(C_n) - (S \cup \{u_i, u_{i-2}\})$ and $d_1(u_i, u_{i-3}) = 2 > 1 = d_1(u_{i-2}, u_{i-3})$; thus, $\text{code}_{S,1}(u_i) \neq \text{code}_{S,1}(u_{i-2})$ for each $u_j \in V(C_n) - (S \cup \{u_i\})$.

As a generalization of Lemma 3.3, we state the following result without providing a detailed proof, where its proof for $k = 1$ is given in Lemma 3.3. The proof for the converse of Lemma 3.4 is provided in [10].

Lemma 3.4. Let $k \in \mathbb{Z}^+$ and $S \subseteq V(C_n)$, where $n \geq 2k + 3$. Suppose S satisfies the following two conditions: (1) every gap of S contains at most $(2k + 1)$ vertices, and at most one gap of S contains $(2k + 1)$ vertices; (2) if a gap of S contains at least $(k + 1)$ vertices, then its neighboring gaps contain at most k vertices. Then S is a distance-k resolving set of C_n.

8
Proposition 3.5. Let $k \in \mathbb{Z}^+$ and $n \geq 3$. Then

$$O_{R,k}(C_n) = \begin{cases} N & \text{if } n = 3 \text{ and } k \geq 1, \\ M & \text{if } n \geq 4 \text{ is even and } k \geq 1, \\ \mathcal{M} & \text{if } n \geq 5 \text{ is odd and } k \geq 2. \end{cases}$$

Proof. Let $k \in \mathbb{Z}^+$. Let C_n be given by $u_1, u_2, \ldots, u_n, u_1$, where $n \geq 3$. Note that $O_{R,k}(C_3) = N$ by Example 3.2(b). If $n = 4$, then $\{u_1, u_3\}, \{u_2, u_4\}$ is a pairing distance-k resolving set of C_4; thus, $O_{R,k}(C_4) = \mathcal{M}$ by Observation 2.12(a). So, suppose $n \geq 5$.

If $n = 2x$ ($x \geq 3$), let $X = \cup_{i=1}^x \{u_{2i-1}, u_{2i}\}$ and S be the set of vertices that are selected by M^* over the course of the MBIRG such that M^* selects exactly one vertex in $\{u_{2i-1}, u_{2i}\}$ for each $i \in [x]$. Then we have the following: (i) every gap of S contains at most 2 vertices; (ii) if a gap of S contains 2 vertices, then its neighboring gaps contain at most 1 vertex. By Lemma 3.3, S is a distance-1 resolving set of C_n. Since X is a pairing distance-1 resolving set of C_n, $O_{R,1}(C_n) = \mathcal{M}$ by Observation 2.12(a). By Proposition 2.4, $O_{R,k}(C_n) = \mathcal{M}$ for even $n \geq 6$ and for $k \geq 1$.

If $n = 2x + 1$ ($x \geq 2$), let $Y = \cup_{i=1}^x \{u_{2i-1}, u_{2i}\}$. In the B-game of the MBIRG, suppose B^* selects u_{2x+1} (by relabeling the vertices of C_n if necessary) after her first move and let S' be the set of vertices that are selected by M^* such that M^* selects exactly one vertex in $\{u_{2i-1}, u_{2i}\}$ for each $i \in [x]$. Then we have the following: (i) at most one gap of S' contains 3 vertices (when B^* is able to select all vertices in $\{u_1, u_{n-1}, u_n\}$) over the course of the MBIRG and all other gaps of S' contain at most 2 vertices; (ii) if a gap of S' contains exactly one vertex, then its neighboring gaps contain at most 1 vertex. By Lemma 3.4, S' is a distance-2 resolving set of C_n. Since Y is a pairing distance-2 resolving set of C_n, $O_{R,2}(C_n) = \mathcal{M}$ by Observation 2.12(a). By Proposition 2.4, $O_{R,k}(C_n) = \mathcal{M}$ for odd $n \geq 5$ and for $k \geq 2$. \square

Remark 3.6. Let C_n be given by $u_1, u_2, \ldots, u_n, u_1$. We consider the B-game of the MBIRG.

(1) We show that $O_{R,1}(C_5) = \mathcal{M}$. Without loss of generality, suppose B^* selects u_5 on her first move. Then M^* selects u_4 on his first move and exactly one vertex in $\{u_2, u_3\}$ on his second move. Since the vertices selected by M^* form a distance-1 resolving set of C_5, $O_{R,1}(C_5) = \mathcal{M}$.

(2) We show that $O_{R,1}(C_7) = \mathcal{M}$. Let S be the set of vertices that are selected by M^* over the course of the game. Without loss of generality, suppose B^* selects u_7 on her first move. Then M^* selects u_6 on his first move. If B^* selects a vertex in $\{u_1, u_2\}$ on her second move, then M^* selects u_3 on his second move and exactly one vertex of $\{u_4, u_5\}$ on his third move. If B^* selects u_3 on her second move, then M^* selects u_4 on his second move and exactly one vertex of $\{u_1, u_2\}$ on his third move. If B^* selects u_4 on her second move, then M^* selects u_3 on his second move and exactly one vertex of $\{u_1, u_2\}$ on his third move. In each case, S satisfies the conditions of Lemma 3.3; thus, S is a distance-1 resolving set of C_7 and $O_{R,1}(C_7) = \mathcal{M}$.

Conjecture 3.7. In addition to C_5 and C_7, we find that $O_{R,1}(C_n) = \mathcal{M}$ through explicit computation. We further conjecture that $O_{R,1}(C_n) = \mathcal{M}$ for all odd $n \geq 5$, but an argument for the general (odd) n eludes us.

Next, we consider wheel graphs. The join of two graphs G and H, denoted by $G + H$, is the graph obtained from the disjoint union of G and H by adding additional edges between each vertex of G and each vertex of H. Since $diam(G + H) \leq 2$, $O_{R,k}(G + H) = O_R(G + H)$, for all $k \in \mathbb{Z}^+$, by Corollary 2.6(a). Let $d_G(w_i, w_j)$ denote the distance between the vertices w_i and w_j in a graph G, and let $d_{G,k}(w_i, w_j)$ denote $d_k(w_i, w_j)$ in G.

For the wheel graph $C_n + K_1$, let $V(K_1) = \{v\}$ and let C_n be given by $u_1, u_2, \ldots, u_n, u_1$ such that v is adjacent to each u_i, where $i \in [n]$, in $C_n + K_1$. Let $k \in \mathbb{Z}^+$. If $n = 3$, then $O_{R,k}(C_3 + K_1) = O_{R,k}(K_1) = \mathcal{B}$ by Proposition 2.3(a). If $n = 4$, then $\{u_1, u_3\}, \{u_2, u_4\}$ is a pairing distance-k resolving set of $C_4 + K_1$. If $n = 5$, then $\{u_1, u_2\}, \{u_3, u_4\}, \{u_5, v\}$ is a pairing distance-k resolving set of $C_5 + K_1$. So, $O_{R,k}(C_4 + K_1) = O_{R,k}(C_5 + K_1) = \mathcal{M}$, for all $k \geq 1$, by Observation 2.12(a). For $n \geq 6$, let
Let $k \in \mathbb{Z}^+$ and $n \geq 3$. Then (i) $O_{R,k}(C_n + K_1) = O_R(C_n + K_1) = B$; (ii) if $n \in \{4, 5, 6, 7\}$ or $n \geq 8$ is even, then $O_{R,k}(C_n + K_1) = O_R(C_n + K_1) = M$; (iii) if $n \geq 9$ is odd, then $O_{R,k}(C_n + K_1) = O_R(C_n + K_1) \in \{M, N\}$ (because M^* has a winning strategy in the M-game of the MBkRG).

Next, we consider some restrictions. We recall some terminology and notations. Fix a tree T. A vertex ℓ of degree one is called a terminal vertex of a major vertex v if $d(\ell, v) < d(\ell, w)$ for every other major vertex w in T. The terminal degree, $\text{ter}_T(v)$, of a major vertex v is the number of terminal vertices of v in T, and an exterior major vertex is a major vertex with positive terminal degree. Let $M(T)$ be the set of exterior major vertices of T. For each $i \in [3]$, let $M_i(T) = \{w \in M(T) : \text{ter}_T(w) = i\}$, and let $M_4(T) = \{w \in M(T) : \text{ter}_T(w) \geq 4\}$; note that $M(T) = \bigcup_{j=1}^{4} M_j(T)$.

Theorem 3.9. Let $k \in \mathbb{Z}^+$ and T be a tree that is not a path. Further, suppose that T contains neither a degree-two vertex nor a major vertex with terminal degree zero. Then

$$O_{R,k}(T) = \begin{cases}
\mathcal{B} & \text{if } |M_4(T)| \geq 1 \text{ or } |M_3(T)| \geq 2 \text{ for all } k \geq 1, \\
\mathcal{N} & \text{if } M_4(T) = \emptyset, |M_3(T)| = 1, |M_2(T)| \geq 2 \text{ and } k = 1, \\
\mathcal{M} & \text{if } M_4(T) = \emptyset, |M_3(T)| = 1, |M_2(T)| \in \{0, 1\} \text{ and } k = 1, \\
\mathcal{M} & \text{if } M_4(T) = \emptyset \text{ and } |M_3(T)| = 1 \text{ for all } k \geq 2, \\
\mathcal{M} & \text{if } M_4(T) = \emptyset, |M_2(T)| = 3 \text{ and } k = 1, \\
\mathcal{M} & \text{if } M_4(T) = \emptyset, |M_2(T)| = 2 \text{ and } k = 1, \\
\mathcal{M} & \text{if } M_4(T) = \emptyset \text{ and } M_2(T) \neq \emptyset \text{ for all } k \geq 2.
\end{cases}$$

Proof. Let $k \in \mathbb{Z}^+$, and let T be a tree as described in the statement of the present theorem. Then each vertex of T is either a leaf or an exterior major vertex. Let $M_1(T) = \{u_1, u_2, \ldots, u_z\}$ and $M'(T) = \bigcup_{i=1}^{z} M_i(T) = \{v_1, v_2, \ldots, v_z\}$, where $x \geq 0$ and $z \geq 1$. If $z \geq 1$, then, for each $j \in [x]$, let m_j be the terminal vertex of u_j; notice that $m_j u_j \in E(T)$. For each $i \in [z]$, let $\text{ter}_T(v_i) = \sigma_i \geq 2$ and let $\{\ell_{i_1}, \ldots, \ell_{i_{\sigma_i}}\}$ be the set of terminal vertices of v_i in T.

First, suppose $|M_4(T)| \geq 1$; then Corollary 2.8(a) implies that $O_{R,k}(T) = \mathcal{B}$ for all $k \geq 1$. Second, suppose $|M_4(T)| \geq 2$; then Corollary 2.8(b) implies that $O_{R,k}(T) = \mathcal{B}$ for all $k \geq 1$.

Third, suppose that $M_4(T) = \emptyset$ and $|M_3(T)| = 1$; then $z = 1 + |M_2(T)|$. We may assume that $\text{ter}_T(v_1) = 3$ by relabeling the vertices of T if necessary. If $z = 1$ (i.e., $M_2(T) = \emptyset$), then $T = K_{1,3}$ and $O_{R,k}(T) = \mathcal{N}$ for all $k \geq 1$ by Example 3.2(b).

Now, suppose that $z \geq 2$ (i.e., $M_2(T) \neq \emptyset$); then $\text{ter}_T(v_i) = 2$ for each $i \in [z - 1]$. For any minimum distance-k resolving set W of T, Observation 2.8(b) implies that $|W \cap \{\ell_{z,1}, \ell_{z,2}, \ell_{z,3}\}| \geq 2$ and $|W \cap \{\ell_{i_1,1}, \ell_{i_2,2}\}| \geq 1$ for each $i \in [z - 1]$. By relabeling the vertices of T if necessary, let $W_0 = (\bigcup_{i=1}^{z-1} \{\ell_{i_1,1}\}) \cup \{\ell_{z,1}, \ell_{z,2}, \ell_{z,3}\} \subseteq W$. Then, for any distinct $i, j \in [z]$ and for any distinct $\alpha, \beta \in [x]$, we have the following: (i) code$^0_{\alpha,1}(\ell_{i,2}) = \text{code}_{\alpha,1}(\ell_{j,2}) = \text{code}_{\alpha,1}(m_\alpha) = \text{code}_{\alpha,1}(m_\beta)$; $R_1\{\ell_{i,1}, \ell_{j,2}\} = \{\ell_{i,2}, v_i, \ell_{j,2}, v_j\}$, $R_1\{m_\alpha, m_\beta\} = \{m_\alpha, m_\beta, u_\alpha, u_\beta\}$ if $x \geq 2$, and $R_1\{m_\alpha, m_\beta\} = \{\ell_{i,2}, v_i, m_\alpha, u_\alpha\}$ if $x \geq 1$; (ii) for $k \geq 2$, code$^0_{\alpha,1}(\ell_{i,2}) \neq \text{code}_{\alpha,1}(m_\beta)$; if $k = 1$ and $z = 2$, then the first player has a winning strategy: (i) in the M-game, M^* can select $\ell_{2,3}$ and then exactly one vertex of each pair in $\{\{\ell_{1,1}, 1, \ell_{1,2}\}, \{\ell_{1,1}, 2, \ell_{2,2}\}, \{v_1, v_2\}\} \cup \{\{u_{\ell_{1,1},1}\}\}$ thereby, and thus occupying a distance-1 resolving set of T in the course of the MB1RG; (ii) in the B-game, B^* can occupy two vertices of $\{\ell_{2,1}, \ell_{2,2}, \ell_{2,3}\}$ after her second move, and thus preventing M^* from occupying vertices that form any distance-1 resolving set of T in the course of the MB1RG. If $k = 1$ and $z \geq 3$, then dim$_1(G) \geq 2z + x \geq 1 + \left\lceil \frac{x(x-1)}{2} \right\rceil + 1 = \left\lceil \frac{x(x-1)}{2} \right\rceil + 1$; thus, $O_{R_1}(T) = B$ by Observation 2.9(b). If $k \geq 2$, then $A = (\bigcup_{i=1}^{z} \{\ell_{i_1,1}, 1, \ell_{2,2}\}) \cup (\bigcup_{i=1}^{z} \{u_{j,1}, m_{j}\})$ is a quasi-pairing distance-k resolving set of T, and the first player has a winning strategy in the MBkRG: (i) in the M-game, M^* can occupy $\ell_{2,3}$ after his first move and exactly one vertex of each pair in A thereafter; (ii) in the B-game, B^* can occupy two vertices of $\{\ell_{z,1}, \ell_{z,2}, \ell_{z,3}\}$ after her second move.
Fourth, suppose that $M_4(T) = \emptyset = M_3(T)$. Since T is not a path, $M_2(T) \neq \emptyset$; notice that $|M_2(T)| = z \geq 2$ in this case. Let $C = \langle \cup_{i=1}^z \{\ell_i, m_i\} \rangle \cup \langle \cup_{j=1}^z \{u_j, m_j\} \rangle$. If $k \geq 2$, then C is a pairing distance-k resolving set of T; thus, $O_{R,k}(T) = \mathcal{M}$ by Observation 2.12(a). So, suppose $k = 1$. If $z = 2$, then $C \cup \{v_1, v_2\}$ is a pairing distance-1 resolving set of T; thus, $O_{R,1}(T) = \mathcal{M}$ by Observation 2.12(a). If $z = 3$, then $O_{R,1}(T) = \mathcal{N}$: (i) in the B-game of the MB1RG, B^* has a winning strategy since $\dim_1(T) \geq x + 5 = \lceil \frac{x+9}{2} \rceil = \lceil \frac{|V(T)|}{2} \rceil$ (via an argument similar to the third case of the present proof); (ii) in the M-game of the MB1RG, M^* can select v_1 and then exactly one vertex of each pair in $C \cup \{v_2, v_3\}$ thereafter, and thus occupying vertices that form a distance-1 resolving set of T. If $z \geq 4$, then $\dim_1(T) \geq 2z + x - 1 \geq \lceil \frac{3z+4x}{2} \rceil + 1 = \lceil \frac{|V(T)|}{2} \rceil + 1$ using a similar argument shown in the third case of the present proof; thus, $O_{R,1}(T) = \mathcal{B}$ by Observation 2.9(b).

We conclude this section with a couple of questions.

Question 3.10. Among connected graphs G of a fixed diameter λ, how many of the $(\lambda + 1)$-ternary-valued, monotone functions on $|\lambda - 1|$ are realized as $O_{R,k}(G)$? Which ones? (We speculate that answers to the questions are more accessible for certain classes of graphs such as trees.)

Question 3.11. For a connected graph G and each $k \in [\text{diam}(G) - 1]$, is there an algorithm to determine the time $(M_{R,k}, M'_{R,k}, N_{R,k}, N'_{R,k}, B_{R,k}, B'_{R,k})$ for the Maker or the Breaker to win MBkRG?

Acknowledgements. The authors thank the anonymous referees for their helpful comments.

References

[1] A.F. Beardon and J.A. Rodríguez-Velázquez, On the k-metric dimension of metric spaces. *Ars Math. Contemp.* 16 (2019) 25-38.

[2] J. Beck, *Combinatorial Games. Tic-Tac-Toe Theory*. Cambridge University Press, Cambridge, 2008.

[3] Z. Beerliova, F. Eberhard, T. Erlebach, A.Hall, M. Hoffmann, M. Mihalák and L.S. Lam, Network discovery and verification. *IEEE J. Sel. Areas Commun.* 24 (2006) 2168-2181.

[4] P.S. Buczkowski, G. Chartrand, C. Poisson and P. Zhang, On k-dimensional graphs and their bases. *Period. Math. Hungar.* 46 (2003) 9-15.

[5] E. Duchêne, V. Gledel, A. Parreau and G. Renault, Maker-Breaker domination game. *Discrete Math.* 343(9) (2020) #111955.

[6] P. Erdös and J.L. Selfridge, On a combinatorial game. *J. Combin. Theory Ser. A* 14 (1973) 298-301.

[7] A. Estrada-Moreno, On the (k, t)-metric dimension of a graph. Ph.D. thesis, Universitat Rovira i Virgili, 2016.

[8] A. Estrada-Moreno, I.G. Yero and J.A. Rodríguez-Velázquez, On the (k, t)-metric dimension of graphs. *Comput. J.* 64 (2021) 707-720.

[9] H. Fernau and J.A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. *Discrete Appl. Math.* 236 (2018) 183-202.

[10] R.M. Frongillo, J. Geneson, M.E. Lladser, R.C. Tillquist and E. Yi, Truncated metric dimension for finite graphs. *Discrete Appl. Math.* 320 (2022) 150-169.

[11] M. Gardner, *The Scientific American Book of Mathematical Puzzles and Diversions*. Simon & Schuster, New York, 1959, pp. 73-83.
[12] M.R. Garey and D.S. Johnson, *Computers and Intractability: A Guide to the Theory of NP-Completeness*. Freeman, New York, 1979.

[13] J. Geneson and E. Yi, The distance-k dimension of graphs. arXiv:2106.08303v2 (2021) https://arxiv.org/abs/2106.08303

[14] F. Harary and R.A. Melter, On the metric dimension of a graph. *Ars Combin.* 2 (1976) 191-195.

[15] D. Hefetz, M. Krivelevich, M. Stojaković and T. Szabó, *Positional Games*. Birkhäuser/Springer, Basel, 2014.

[16] C. Hernando, M. Mora, I.M. Pelayo, C. Seara and D.R. Wood, Extremal graph theory for metric dimension and diameter. *Electron. J. Combin.* 17 (2010) #R30.

[17] M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs. *Discrete Math.* 312 (2012) 3349-3356.

[18] C.X. Kang, S. Klavžar, I.G. Yero and E. Yi, Maker-Breaker resolving game. *Bull. Malays. Math. Sci. Soc.* 44 (2021) 2081-2099.

[19] S. Khuller, B. Raghavachari and A. Rosenfeld, Landmarks in graphs. *Discrete Appl. Math.* 70 (1996) 217-229.

[20] D.J. Klein and E. Yi, A comparison on metric dimension of graphs, line graphs, and line graphs of the subdivision graphs. *Eur. J. Pure Appl. Math.* 5(3) (2012) 302-316.

[21] R. Nowakowski and P. Winkler, Vertex-to-vertex pursuit in a graph. *Discret. Math.* 43 (1983) 235-239.

[22] A. Sebő and E. Tannier, On metric generators of graphs. *Math. Oper. Res.* 29 (2004) 383-393.

[23] P.J. Slater, Leaves of trees. *Congr. Numer.* 14 (1975) 549-559.

[24] R.C. Tillquist, Low-dimensional embeddings for symbolic data science. Ph.D. thesis, University of Colorado, Boulder, 2020.

[25] R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Truncated metric dimension for finite graphs. arXiv:2106.14314v1 (2021) https://arxiv.org/abs/2106.14314

[26] E. Yi, Fractional Maker-Breaker resolving game. *Lecture Notes in Comput. Sci.* 12577 (2020) 577-593.