Capecitabine Induced Therapy Related Acute Myeloblastic Leukemia with t(10;11) (q22;q23) in a Patient with Breast Cancer

Meme Kanserli bir Hastada Capecitabin İlişkili ve t(10;11) (q22;q23) Pozitif Akut Myeloblastik Lösemi

ABSTRACT

Capecitabine is an oral agent that is used either as single agent or in combination therapy. Therapy related acute myeloblastic leukemia after capecitabine use is rarely reported. We presented a 39-year-old woman with metastatic breast cancer. She admitted with acute myelomonocytic leukemia after treating with oral Capecitabine. t(10;11)(q22;q23) was determined in conventional cytogenetic analysis. She achieved complete remission with intensive chemotherapy but relapse developed. She died although the salvage chemotherapy. To our knowledge our patients is the first report with t-AML.

Key Words: Capecitabine, therapy related acute myeloblastic leukemia, breast cancer, t(10;11)(q22;q23)

INTRODUCTION

Breast cancer is among the most frequent malignancy in females. The treatment of breast cancer rapidly developed, but the frequent cause of therapy related acute leukemia (t-AML) is still breast cancers (1). Cytotoxic chemotherapy is the main treatment of metastatic breast cancer. Capecitabine is a prodrug of Fluouracil (FU), which is an antimetabolite with tumor than healthy tissue. Cytotoxicity of FU results from both the incorporation into RNA or DNA and blockade of thymidine synthesis. The drug has FDA approval more than 10 years. The toxicities of capecitabine are well known. Generally, the most frequent adverse effects of capecitabine are hyperbilirubinemia, diarrhea, nausea, hand-foot syndrome, and dermatitis. Hematological side effects of capecitabine including anemia, lymphopenia, neutropenia, and thrombocytopenia is well-known (2), however the leukemogenic effect of capecitabine was rarely reported (3-7). Here we present a patient with metastatic breast cancer and therapy related acute myeloblastic leukemia after capecitabine treatment.

CASE REPORT

A 39-year-old woman was diagnosed as breast cancer with bone metastasis (stage IV) at February 2010. Estrogen receptor and HER2/neu were positive, and progesterone receptor was negative. She was treated with trastuzumab, tamoxifen, leuprolid acetate and ibandronic acid. 21 months later, treatment was changed to lapatinib (1250 mg/day) and capecitabine (2000 mg/m² orally on day 1 through 14 of a 21-day cycle) and ibandronic acid due to progression of bone lesion. Capecitabine was stopped at June 2013 due to thrombocytopenia. She was admitted to hospital due to fatigue at September 2013. Complete blood count revealed that hemoglobin was 7.4g/dl, white blood cell was 105000/mm³, and platelet was 15000/mm³. Blast cells were seen in peripheral smear. Bone marrow aspiration and flow cytometry revealed acute myelomonocytic leukemia. CD13, CD33, CD34, CD117, MPO, CD64, and CD11b were positive. In bone marrow biopsy, reticulin fibrosis (grade 2/3) and tree-image dysplasia were identified. Clonal 46XX, (10;11)(q22;q23) rearrangement was found in conventional cytogenetic analysis. JAK2 mutation and the rearrangements of BCR-ABL, PML-RARA, AML1, CBFB-MYH11 were negative. She achieved complete remission with intensive chemotherapy (idarubicine and cytarabine), four courses of consolidation chemotherapy with high dose cytarabine was given.
Letrozole was started due to metastatic bone lesion related to breast cancer. After 10 months of leukemia free survival, relapse was identified. FLG-Ida salvage chemotherapy was administered, and partial remission was obtained. After, re-induction with FLAG-Ida regimen percentage of blasts in the bone marrow increased markedly. She received best supportive care, but she died 18 months after the leukemia diagnosis.

DISCUSSION

t-AML is a well-known late complication of cancer therapy including chemotherapy, radiotherapy and immunosuppressive treatment (1, 8). In the classic forms of t-AML, leukemia develops within 5-7 years following chemotherapy with alkylating agents such as melphalan and cyclophosphamide or radiotherapy. The other agents causing t-AML is topoisomerase-II inhibitors. Topoisomerase-II inhibitors related t-AML occurs within 2-3 years and it is rapidly progressive with higher blast count, and it has poor prognosis inspite of the high response rate of induction therapy (1). Topoisomerase inhibitors related t-AML with is characterized by translocations involving MLL, PML-RARA or core binding factor (CBF) genes. We documented the relationship between t(10; 11)(q22;q23) and capecitabine induced t-AML. Clinical course and laboratory findings of our case were similar to t-AML related topoisomerase inhibitors. Leukemic manifestation occurred within 3 years after use of capecitabine, and blastic infiltration, tree-lineage dysplasia with MLL gene abnormality was found.

After the first remission induction therapy complete remission was achieved, but leukemia free survival was quite short. The MLL gene was identified in 11q23 translocation, and various 11q23 translocations have been observed until now (1, 8). There are limited information about AML with t(10; 11)(q22;q23) (9, 10), but the reports published recently showed that the t(10; 11)(q22;q23) is a poor prognostic feature despite intensive induction and allogeneic stem cell transplantation (11, 12).

Several studies reported that breast cancer therapy is a risk factor of t-AML (1, 13, 14). Addition of G-CSF to routine therapy regimens, use of antracyclines, cyclophosphamide, radiotherapy, and high dose therapy followed by autologous stem cell transplantation were described as significant risk factors for t-AML (1). Capecitabine induced t-AML in patients with breast cancer was not reported yet and classically capecitabine is not accepted as a leukemogenic agent. To our knowledge the presented patient is the first report with t-AML secondary to capecitabine use for breast cancer treatment. Literature review revealed only five patients were reported developed t-AML after therapy with capecitabine until now (3–7). These patients’ characteristics were shown in table 1. All of these patients had gastrointestinal cancer and they were older than our patient. Poor prognostic course of our patient was similar to other t-AML secondary capecitabine except who had acute promyelocytic phenotype. The leukemia free survival was very short despite the intensive chemotherapy regimens. In addition she was not accepted as a candidate for allogeneic stem cell transplantation since her breast cancer was not in remission.

In conclusion, capecitabine might have a leukemogenic effect via MLL gene in our patient. This group of AML has very poor prognosis, and capecitabine should be used carefully especially in patients with high risk for t-AML.

Table 1. The characteristics of patients with Capecitabine induced t-AML

Patient’s age/sex (Reference)	Primary cancer	Cancer therapy	Interval between capecitabine therapy and t-AML	Leukemia subgroup	Cytogenetic disorder	Leukemia treatment	Response/ Survival
63/Female (3)	Colorectal cancer	Capecitabine	12 months	AML M4	t(6;11)	Palliation	-/2 months, died
58/Male (4)	Colorectal cancer	Capecitabine	16 months	AML M3	t(15;17)	Idarubicine+ ATRA	CR/1 month, alive
66/Male (5)	Colorectal cancer	Radiotherapy	11 months	AML	-	?	CR/unknown
68/Male (6)	Gastric cancer	Oxaliplatin	48 months	AML M3	t(15;17), ATRA+ ATO	CR/2 months, alive	
63/Male (7)	Esophageal cancer	Capecitabine	29 months	AML M5	47,X,der(Y)	Daunorubicine+ cytarabine	CR/2 months, died
42/Female current case	Breast cancer	Capecitabine	33 months	AML M4	t(10;11)(q22;q23)	Idarubicine+ cytarabine	CR/18 months, died

Conflict of interest

No conflict of interest was declared by the authors.

REFERENCES

1. Godley LA, Larson RA. Therapy-related myeloid leukemia. Semin Oncol 2008; 35: 418-29
2. Walko CM, Lindley C. Capecitabine: A Review. Clin Ther 2005; 27:23-44
3. Shapiro S, Hughes G, Al-Obaidi MJ, et al. Acute myeloid leukemia secondary to treatment with capecitabine for metastatic colorectal cancer. Eur J Hematol 2007; 78:543-4
4. Rashidi A, Man L, Howard JR, et al. Therapy-related acute promyelocytic leukemia after chemoradiotherapy with capecitabine for rectal adenocarcinoma. Leuk Lymphoma 2014; 55: 683-4
5. Tansley S, Gibbons S. Capecitabine-induced acute myeloid leukaemia. N Z Med J 2009;122:118-28
6. Zhang YC, Zhou YO, Yan B, et al. Secondary acute promyelocytic leukemia following chemotherapy for gastric cancer: A case report. World J Gastroenterol 2015; 21; 4402-7
7. Damodaran S, Bellavia T, Sait SNJ, et al. Acute myeloid leukemia secondary to Oxaliplatin treatment for esophageal cancer. Clin Colorectal Cancer 2012; 11: 151-4
8. Bueso-Ramos CE, Kanagal-Shamanna R, Routbort MJ, et al. Therapy-Related Myeloid Neoplasms. Am J Clin Pathol. 2015;144:207-18
9. Ono R, Taki T, Taketani T, et al. LCX, leukemia-associated protein with a CXX domain, is fused to MLL in acute myeloid leukemia with trilineage dysplasia. Cancer Research 2002; 62:4075-80
10. Lorsbach RB, Moore J, Mathew S, et al. TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23). Leukemia 2003; 17:637-41
11. Pigneux A, Labopin M, Maertens J, et al. On Behalf of the Acute Leukemia Working Party EBMT. Outcome of allogeneic hematopoietic stem cell transplantation for adult patients with AML and 11q23/MLL rearrangement (MLL-AML) Leukemia 2015; 29: 2375-81
12. DiNardo CD, Tang G, Pemmaraju N, et al. Acute myeloid leukemia with t(10;11); a pathological entity with distinct clinical presentation. Clin Lymphoma Myeloma Leuk 2016; 15:47-51
13. Wolff AC, Blackford AL, Visvanathan K, et al. Risk of Marrow Neoplasms After Adjuvant Breast Cancer Therapy: The National Comprehensive Cancer Network Experience J Clin Oncol 2015; 33: 340–8
14. Armand P, Kim HT, Mayer E, et al. Outcome of allo-SCT for women with MDS or AML occurring after breast cancer therapy Bone Marrow Transplant 2010; 45: 1611–7