Expression of σ^{54} (ntrA)-Dependent Genes Is Probably United by a Common Mechanism

SYDNEY KUSTU,* EDUARDO SANTERO, JOHN KEENER,† DAVID POPHAM,‡ AND DAVID WEISS

Department of Microbiology and Immunology, University of California Berkeley, Berkeley, California 94720

σ^{54} IS REQUIRED TO TRANSCRIBE A DIVERSE SET OF GENES

In addition to the most abundant sigma factor, both gram-negative and gram-positive eubacteria employ alternative sigma factors that confer different promoter specificities on the core form of RNA polymerase (reviewed in reference 49). Several bacteriophages that infect each of these groups also encode sigma factors. Some of the alternative sigma factors allow transcription of genes whose products contribute to a common physiological response. For example, σ^{32} of enteric bacteria allows transcription of genes whose products are needed for protection from heat shock and certain other stresses (42, 76). Sigma F of enteric bacteria (2) and σ^{86} of Bacillus subtilis (47, 48), both of which confer the same promoter specificity on core polymerase, allow transcription of genes whose products are required for motility and chemotaxis. Some sigma factors allow transcription of genes whose products are required at a precise time, for example, at a particular time after bacteriophage infection (40, 64) or during the sporulation process of B. subtilis (73, 77). σ^{54} differs from other alternative sigma factors in that it is needed for transcription of genes whose products have diverse physiological roles (9, 27, 62, 111).

σ^{54} (encoded by ntrA [glnF, rpoN]) was identified as a positive regulatory factor needed for expression of the gene encoding glutamine synthetase, glnA, in enteric bacteria (39; reviewed in reference 74). It was later found to be required for expression of other genes whose products function in the assimilation of nitrogen. For example, σ^{54} is required for transcription of genes encoding amino acid transport components and degradative enzymes (1, 117; reviewed in reference 78) and genes whose products are needed for biological nitrogen fixation (75; reviewed in references 28 and 44). It is required for transcription of the nitrogen fixation (nif) genes from a number of bacteria, including Klebsiella pneumoniae (28, 44), Rhodobacter capsulatus (63a, 79; reviewed in reference 45), and members of the genera Azotobacter (114, 125), Azospirillum (99), Rhizobium (44, 111), and Bradyrhizobium (31).

Recently, it has become apparent that σ^{54}-holoenzyme transcribes genes whose products have different physiological functions (Table 1). Examples of such genes are (i) the delta gene of rhizobia (111), which encodes a transport component for dicarboxylic acids; (ii) genes on the TOL (toluene) plasmid of Pseudomonas putida that encode proteins required for catabolism of toluene and xylene (27, 57, 101); (iii) genes encoding two of the components of a formate-degradative pathway in Escherichia coli (9); (iv) genes encoding hydrogenases responsible for the oxidation of molecular hydrogen in Alcaligenes eutrophus and Pseudomonas facilis (52, 105, 106, 127; J. Warrelmann, D. Romerma, and B. Friedrich, personal communication); (v) genes encoding the hook and filament proteins of Caulobacter flagella (85, 89, 94); and (vi) genes encoding pilins in Pseudomonas aeruginosa (59, 61) and Neisseria gonorrhoeae (84) that allow these organisms to adhere to human epithelial cells (121, 128, 131). In the first four cases and in the case of the Pseudomonas pilin gene, the requirement for σ^{54} has been demonstrated directly by showing that transcription does not occur in mutant strains that lack this sigma factor (9, 27, 59, 106, 111; Table 1). In the latter two cases, the evidence for dependence on σ^{54} is less direct (Table 1). Although it has been proposed that transcription from the major promoter for the puf photosynthetic operon of Rhodobacter capsulatus is σ^{54} dependent (4), we think that this is unlikely because the proposed promoter lacks the minimal conserved features common to σ^{54}-dependent promoters (see below; reviewed in references 28 and 44). Moreover, disruption of the nifA gene, which was recently demonstrated to encode a σ^{54} homolog in Rhodobacter capsulatus (63a), does not cause defects in photosynthesis (45; R. Kranz, personal communication).

CONCLUSIONS

σ^{54}-Holoenzyme (σ^{54} associated with core RNA polymerase) recognizes and binds to the major glnA promoter. (All promoters that are recognized by σ^{54}-holoenzyme are characterized minimally by a conserved GC doublet that lies

367
Gene	Gene product(s)	Organisms\(a\)	Activator	Evidence\(d\)	Selected reference(s)\(f\)	Comments
glnA	Glutamine synthetase	Enteric bacteria, including *Escherichia coli*, *Salmonella typhimurium*, and *Klebsiella pneumoniae*; *Pseudomonas aeruginosa*	NTRC	(i), (iii), (v), (vi), (vii)	38, 39, 51, 54, 66, 74, 75, 78	In *Azotobacter vinelandii*, synthesis of glutamine synthetase appears to be constitutive and is normal in ntrA" mutants (114, 125). Similarly, synthesis of glutamine synthetase is normal in *ntrC"* (ntrA") mutants of *Alcaligenes eutrophus* (105) and in *nifK4"* (ntrA") mutants of *Rhodobacter capsulatus* (45; Kranz, personal communication). In *Rhizobium meliloti* and *Agrobacterium tumefaciens*, synthesis of glutamine synthetase II (the plantlike or eucaryotic form) appears to be under \(\sigma^{34}\) control because *ntrC"* mutants lack this enzyme (113). By contrast, synthesis of glutamine synthetase I (the bacterial enzyme, product of the glnA gene) is not affected in *ntrC"* mutants (113). In *Bradyrhizobium japonicum*, synthesis of glutamine synthetase I does not appear to be \(\sigma^{34}\) dependent because there is not a \(\sigma^{34}\)-dependent promoter upstream of the glnA transcriptional start site (18).
nas	Assimilatory nitrate and nitrite reductases	*Klebsiella pneumoniae*; *Azotobacter vinelandii*; *Rhizobium meliloti*; *Agrobacterium tumefaciens*; *Azospirillum brasilense*; *Alcaligenes eutrophus*	NTRC	(vi)	17	Since promoter sequences for nas genes (17) have not yet been identified, the possibility remains that the \(\sigma^{34}\) requirement for their transcription is indirect.
nifH, *nifD*, *nifK*	Dinitrogenase (*nifHDK*) and dinitrogenase reductase (*nifH1*), proteins required for synthesis of the iron-molybdenum cofactor of dinitrogenase (e.g., *nifDENV*) and for processing of dinitrogenase reductase to the active form (e.g., *nifM")	*Klebsiella pneumoniae*; *Azotobacter vinelandii*; *Azospirillum brasilense*; *Rhodobacter capsulatus*	NIFA	(i)-(iii), (v)-(vii)	75, 130; reviewed in ref. 28 and 44	NIFA is inactivated by oxygen. In *K. pneumoniae*, this inactivation appears to require the NIFP product (30, 81), whereas in *Rhizobium* (8, 53) and *bradyrhizobium* (32, 33) it does not require a nif-specific product and in this sense appears to be direct.
nifA	Activator of transcription for *nif* and some *fix* genes (see below); also required for the formation of determinate symbiosis (production of normal, healthy nodules in normal number) by *Bradyrhizobium japonicum* (31) and probably by *Rhizobium meliloti* (123, 133)	*Klebsiella pneumoniae*; *Azospirillum brasilense*; *Rhodobacter capsulatus*; *Bradyrhizobium japonicum*	NTRC	(i)-(vii)	3, 130; reviewed in ref. 28 and 44	Interestingly, transcription of *nifA* is dependent on \(\sigma^{34}\) in some organisms but not others. In *K. pneumoniae*, and probably in *A. brasilense* and *R. capsulatus*, *nifA* transcription is dependent on \(\sigma^{34}\) and NTRC and occurs under nitrogen-limiting conditions. Transcription of *nifA* in *B. japonicum* under symbiotic conditions also appears to be \(\sigma^{34}\) dependent, but NTRC is not the activator; neither the activator nor the relevant physiological signal for *nifA* transcription is known (124). In *A. vinelandii*, a free-living diazotroph, *nifA* transcription is not dependent on NTRC, and it is not known whether it is \(\sigma^{34}\) dependent (115, 125).
Expression of σ^{44}-Dependent Genes

Gene	Function/Details	Promoter/Target	References		
fixABCX	The fixX gene of *Rhizobium trifoli* encodes a ferredoxin-like protein (55). Although the products of the other genes are not known, there is circumstantial evidence that they are involved in electron transport to dinitrogenase in aerobic diazotrophs, presumably under microaerobic conditions (discussed in ref. 43).	*Rhizobium melloti* Bradyrhizobium japonicum	NIFA (i, vi) NIFA (i, vi)	123; reviewed in ref. 44 43	fixABCX is a single operon in *R. melloti*. In *B. japonicum*, fixA and fixBC constitute separate operons (43).
dctA	C4-dicarboxylate transport component; required for growth on dicarboxylic acids in free-living state and apparently also symbiotically (110; reviewed in ref. 107)	*Rhizobia* (Rhizobium leguminosarum, *Rhizobium melloti*, *R. trifoli*) DCTD (free living); unknown (symbiotic)⁹	NIFA (i, iii), (vi), (vii) Alcaligenes eutrophus (see Comments) (iii)	107-109, 111; I. Jiang, B. Gu, L. M. Albright, and B. T. Nixon, J. Bacteriol., submitted for publication	The nomenclature is for *Rhizobium* spp. In the free-living state, induction apparently occurs in response to dicarboxylates external to the cell. Although the DCTB protein, which would be membrane bound on the basis of its amino acid sequence, is the primary sensor for the system; the DCTA protein itself appears to be involved because a haploid *dctA-lacZ* fusion is expressed at high levels in the absence of inducer (107, 109). Mutants *hno*[−] (motA[−]) of *A. eutrophus* have defects in dicarboxylate transport.
melA	Tyrosinase, required for synthesis of the pigment melanin	*Rhizobium leguminosarum* biovare phaseoli (the melA gene is found only in this biovar)	NIFA (iv), (vi)	46	It is speculated that this tyrosinase may play a role in detoxification of plant phenolic compounds during senescence of root nodules (46).
fdhF and *hyd-3* (unlinked)	The selenoprotein of formate dehydrogenase F and the gas-evolving hydrogenase isozyme 3. These proteins are components of formate hydrogen lyase, which degrades formate to CO₂ and H₂ under anaerobic conditions (and in the absence of alternative electron acceptors such as nitrate).	*Escherichia coli*, probably *Salmonella typhimurium* Unknown; requirement for cis-acting sequences upstream of the *fdhF* promoter (between −144 and −100). Upstream sequences mediating formate induction could not be separated physically from those mediating oxygen or nitrate repression (10).	NIFA (i)-(iii), (vii)	9, 10	Although the physiological function(s) of the formate hydrogen lyase pathway is not clear, a primary function may be decarboxylation of formate (reviewed in ref. 119).
hox	Soluble and membrane-bound hydrogenases that oxidize molecular hydrogen as a source of energy and/or reducing power. Oxygen is the terminal electron acceptor.	*Alcaligenes eutrophus* HOXA, the product of a gene in the hoxC cluster; induction under conditions of energy limitation	NIFA (i, iii)	30, 35, 36, 52, 71, 105, 106; Warrelmann, Romerma, and Friedrich, personal communication	The nomenclature is for the genus *Alcaligenes*. *hox* genes are clustered on a 450-kilobase megaplasmid, whereas the hno (motA[−]) gene is chromosomal. Expression of *hox* genes encoding a membrane-bound hydrogenase in *P. facilis* is σ^{44} dependent.

Continued on following page
Gene	Gene product(s)	Organism(s)	Activator	Evidence	Selected reference(s)	Comments
Structural gene encoding pilin (designated pilA in *Pseudomonas aeruginosa* and pilE in *Neisseria gonorrhoeae*).	A pilin of the N-methylphenylalanine class, the monomeric subunit of pil; synthesized as a precursor called prepilin	*Pseudomonas aeruginosa* *Neisseria gonorrhoeae* *Bacteroides nodosus* *Moraxella bovis*	Unknown. The only condition known to result in greatly increased transcription of the pilA gene of *P. aeruginosa* appears to be the inability to repress (depolymerize) pil (60).	(i), (iii), (vii)	59-61, 97a, 131	Gonooccocal pil greatly enhance adherence of the bacterium to host epithelial cells (121, 128), and this increased adherence apparently accounts for the increased virulence of piliated strains (67, 68). Similarly for the pili of *P. aeruginosa* (131).
xylCAB and xylS	Enzymes (upper pathway) that catabolize toluene to benzene and xylene to the corresponding methylbenzoates (xylCAB operon) and activator of transcription for the operon encoding enzymes (lower or meta pathway) that further catabolize benzene to methylbenzoates to products that can enter the tricarboxylic acid cycle (xylS)	*Pseudomonas putida* (TOL plasmid pWWO)	XYL; induction by toluene, xylene, and their alcohol catabolic products	(i), (iv), (vi)	27, 34, 56-58, 62, 91, 101, 118, 132	These pathways are being manipulated for the degradation of toxic aromatic compounds (102).
Gene encoding carboxypeptidase G2	Carboxypeptidase G2, which hydrolyzes the C-terminal glutamate moiety from folic acid and analogs such as methotrexate	*Pseudomonas putida*	Unknown. When the organism is grown in the presence of glutamate and folate as carbon sources, enzyme synthesis does not occur until the glutamate has been depleted (unpublished results cited in ref. 87).	(i)	86, 87	This enzyme is used in cancer chemotherapy (86).
fbG operon (fliK, flaN, fliK, figl)	Hook and filament proteins of the flagellum	*Caulobacter crescentus*	Unknown; requirement for upstream sequences (designated ftr) at fbG (at -- 100); similar sequences also occur upstream (at -- 100) of both flik and figl.	(i), (ii), (v), (vii)	21, 85, 89, 90, 94, 97	The nomenclature is for *C. crescentus*. A single flagellum is synthesized by the *Caulobacter* predivisional cell at the pole opposite to the stalk; it is inherited by the daughter swarmer cell (reviewed in ref. 20 and 92). Transcription of each of the genes listed depends on expression of flagellar regulatory and structural components in a hierarchical manner and occurs at a specific time in the cell cycle (21, 85, 97). It is not yet clear whether activators for fliK-holoenzyme, which would be expected to play a role in the regulatory hierarchy, also play a role in cell cycle control or whether this control occurs by an independent mechanism. It is not clear whether fliK (sigma F), which is required for transcription of any of the *Caulobacter* flagellar or chemotaxis genes in *E. coli* and *E. coli* (2, 47, 48), is required for transcription of any of the *Caulobacter* flagellar or chemotaxis genes. Mutants *spoN* ("ntrA") of *P. aeruginosa* lack flagella and lack flagellin as detected immuno-logically.
EXPRESSION OF \(\sigma^{4}\)-DEPENDENT GENES

between 11 and 14 base pairs [bp] upstream of the transcriptional start and a conserved GG doublet that lies exactly 10 bp farther upstream [reviewed in references 28, 44, and 62; D. Popham and S. Kustu, manuscript in preparation].) However, recognition complexes between \(\sigma^{4}\)-holoenzyme and the glnA promoter (closed complexes) are nonproductive transcriptionally because the DNA remains double stranded (74, 100, 116). Initiation of transcription requires an activator protein called NTRC, also known as NRI (encoded by \(ntrC\) [glnG]) [reviewed in reference 66]. NTRC binds upstream of the promoter to sites that have the properties of transcriptional enhancers (95, 103). It catalyzes the isomerization of closed complexes between \(\sigma^{4}\)-holoenzyme and the glnA promoter to transcriptionally productive open complexes in which the DNA strands are locally denatured in the region of the transcription start site (100, 116). The isomerization reaction requires ATP (100, 116).

As is true for glnA, transcription of a number of other \(\sigma^{4}\)-dependent genes requires an activator. For example, transcription of \(nif\) genes in a variety of bacteria requires the activator protein NIFA (5, 13, 31, 79, 115, 123; reviewed in reference 44). Similarly, transcription of the \(dctA\) gene is dependent on DCTD (108, 109), transcription of the \(xylCAB\) and \(xylS\) genes requires XYLXR (references 27, 57, 101, and 118 and references cited therein), and transcription of the \(hox\) (hydrogen oxidation) genes is dependent on the product of a gene in the \(hox\) locus (30, 36, 71, 106).

Like NTRC, other activators of \(\sigma^{4}\)-holoenzyme (NIFA [6, 7, 11, 14, 15, 88; reviewed in reference 44] and DCTD [B. T. Nixon, personal communication]) bind to sites located at least 80 bp away from the promoters they regulate. In several systems for which the specific activator has not yet been identified (\(E. coli\) formate hydrogen lyase, \(C. crescentus\) hook protein, and \(P. aeruginosa\) pilin), a requirement for upstream sequences that could serve as activator binding sites has nevertheless been demonstrated (10, 89, 90, 97a). It therefore seems likely that transcription by \(\sigma^{4}\)-holoenzyme will prove to depend on an activator in these other cases, and it is an attractive speculation that this will be true in every case (9, 100, 111).

The activator proteins whose sequences are known (NTRC, NIFA, DCTD, and XYLXR) show a high degree of sequence similarity within their central domains (domain D of reference 29), each of which contains a putative ATP-binding site (regions 1 and 3 in reference 37; 58, 109). The central domain spans \(\sim\)240 amino acid residues [16, 29], of which 30% are identical in each of the four activators—NTRC and NIFA from \(K. pneumoniae\), DCTD from \(R. leguminosarum\), and XYLXR from \(P. putida\) [58, 109].

Eleven independent mutant forms of \(Salmonella\) NTRC that are specifically defective in the ability to activate transcription (129) have amino acid substitutions within the central domain; moreover, the substitutions affect residues that are identical in the four activators, including residues that constitute the proposed ATP-binding site (D. Weiss and S. Kustu, unpublished data). These results indicate that the central domain of NTRC is specifically required for formation of open complexes between \(\sigma^{4}\)-holoenzyme and the glnA promoter. Sequence similarity among the activators is consistent with the simple hypothesis that they all function in a similar manner. Interestingly, truncated forms of the NIFA protein from \(Rhizobium\) \(meliloti\) that retain only the central domain appear to retain the ability to activate transcription from the \(Rhizobium\) \(nifH\) promoter (53).
FUNCTION OF ACTIVATOR PROTEINS IS CONTROLLED BY DIFFERENT PHYSIOLOGICAL SIGNALS AND DIFFERENT MECHANISMS

Control of transcription at σ^4-dependent promoters appears to be accomplished primarily by modulation of the activity state of activator proteins (see below; Table 1) and their abundance (57; reviewed in references 28, 44, and 74). The amount of σ^4 does not vary much, at least under different conditions of nitrogen availability (19, 26, 83, 111). Each activator allows σ^4-holoenzyme to initiate transcription in response to a distinct physiological signal, such as (i) limitation of combined nitrogen (NTRC as activator [reviewed in references 66, 78]); (ii) low oxygen tension (NIFA as activator [8, 25, 28, 32, 33, 44, 50, 72, 81, 126]); (iii) availability of dicarboxylic acids, presumably external to the cell (DCTD as activator [107, 109]); (iv) availability of toluene, xylene, or their alcohol catabolic products (XYLR as activator [34, 57, 91, 101, 132]); (v) energy limitation (product of a gene in the boxC locus as activator [30, 35, 36, 71]); and (vi) presence of formate under anaerobic conditions (activator unknown [9, 10]). It will be of interest to understand the nature of the signals that regulate transcription of the Caulobacter hook and flagellin genes, expression of which is controlled by a complex regulatory hierarchy (12, 20, 21, 22, 92, 97) and occurs in a cell cycle-dependent manner (85, 97).

Function of the activators themselves is apparently controlled by a variety of mechanisms. NTRC is synthesized in an inactive form, and its activity is regulated positively and negatively by phosphorylation and dephosphorylation, respectively, of its NH_2-terminal domain (65, 93). This domain (~120 amino acids) appears to control the ability of the central domain to activate transcription by σ^4-holoenzyme (65, 96, 112). The degree of phosphorylation of NTRC is increased under nitrogen-limiting conditions. NTRC is a member of a two-component regulatory system (70, 96, 112) and is phosphorylated by its partner NTRB, also known as NRRI (encoded by ntrB [glnL]). Like NTRC, the DCTD protein of rhizobia is a member of a two-component regulatory system, and therefore it is probably activated by phosphorylation by its partner DCTB (109); phosphorylation is thought to increase in response to availability of external dicarboxylates. Unlike NTRC and DCTD, the NIFA protein is apparently synthesized in an active form (8, 13, 33). In K. pneumoniae, it is inactivated by the NIFL protein (mechanism unknown) in response to molecular oxygen or combined nitrogen (50, 81; reviewed in references 28 and 44). In Bradyrhizobium japonicum (32, 33) and Rhizobium meliloti (8), NIFA is inactivated at high oxygen tensions by a mechanism(s) that does not involve NIFL or any other nif-specific protein. Finally, the XYL protein of P. putida appears to be activated directly by binding low-molecular-weight substrates of the xylene catabolic pathway (27, 34, 57, 91, 101, 132). Thus, function of the activator proteins that control transcription by σ^4-holoenzyme is highly regulated. For different activator proteins, it is regulated by different mechanisms.

THE SEQUENCE OF σ^4 HAS UNIQUE FEATURES

As discussed above, σ^4 confers on core RNA polymerase the ability to bind specifically to a promoter (a minimal definition of a sigma factor) but it apparently does not confer the ability to form open complexes. In this regard it is interesting that σ^4 shows little amino acid sequence similarity to other sigma factors (63, 80, 82, 111) (of which ~15 have now been identified [49]), whereas these share several regions of amino acid sequence similarity with each other (41, 49, 120). Rather, σ^4 has a glutamine-rich region at its amino terminus that resembles the glutamine-rich region required for activation of transcription by mammalian transcription factor Sp1 (23). (In different organisms, between 15 and 25% of the first 50 residues of σ^4 are glutamine [63a, 80, 82, 114].) S. Sasse-Dwight and J. D. Gralla have determined that the glutamine-rich region of σ^4 is specifically required for NTRC-dependent isomerization of closed to open complexes at the glnA promoter (personal communication). Small deletions in this region allow the formation of closed recognition complexes at glnA but prevent the formation of open complexes.

CONCLUSIONS

σ^4 has physiologically diverse roles and in this way resembles the most abundant sigma factor in eubacterial cells (σ^70 and its homologs) rather than other alternative sigma factors. A direct line of evidence for physiological diversity is that mutant strains which lack σ^4 have pleiotropic phenotypes. For example, such mutant strains of A. eutrophus (105; Warrelmann, Romerrman, and Friedich, personal communication), which were designated hno-, for ‘hydrogen, nitrate and other things’ (52, 105), fail to express not only hydrogenases required for utilization of molecular hydrogen as an energy source but also enzymes required for utilization of urea and formamide as nitrogen sources and a dicarboxylate transport system; they have defects in several additional functions as well. σ^4-Deficient strains of E. coli, R. meliloti, and P. aeruginosa also have physiologically pleiotropic phenotypes (9, 59, 111; Table 1). The properties of mutant strains that lack σ^4 indicate that this sigma factor is not essential for bacterial viability under all conditions (39, 59, 105, 111, 114, 125). As discussed above, however, σ^4 is required for several important biological processes. It is required for the autotrophic growth of P. facilis (106, 127) and for that of A. eutrophus with molecular hydrogen as an electron donor (52, 105, 106). σ^4 is required for biological nitrogen fixation in a variety of gram-negative bacteria (Table 1) and, in addition, is needed for the establishment of stable symbiotic relationships between Bradyrhizobia (31), rhizobia (123, 133), and their plant hosts (Table 1). σ^4 would appear to be required for the formation of functional swarmer cells in C. crescentus (Table 1) and for virulence of N. gonorrhoeae (67, 68, 121, 128) and P. aeruginosa (59, 131).

Transcription by σ^4-holoenzyme appears to be controlled by a common mechanism: use of an activator protein and ATP to catalyze formation of transcriptionally productive open complexes (100). It is the activator proteins that allow σ^4-holoenzyme to respond to diverse physiological signals. The selective advantage to use of σ^4 and this mechanism, if any, remains to be determined (27, 111).

ACKNOWLEDGMENTS

We thank Dennis Dean, Ray Dixon, Gary Gussin, Richard Losick, Tracy Nixon, Larry Reitzer, and Valley Stetten for cogent criticisms of the manuscript.

Work in our laboratory is supported by Public Health Service grant GM38361 to S.K. from the National Institutes of Health and by EMBO fellowship 266-1987 to E.S.

LITERATURE CITED

1. Ames, G. F.-L., and K. Nikaido. 1985. Nitrogen regulation in Salmonella typhimurium. Identification of an ntrC protein-
binding site and definition of a consensus. EMBO J. 4:539-547.
2. Arnott, D. N., M. F. Chambert. 1989. Secondary a factor controls transcription of flagellar and chemotaxis genes in Escherichia coli. Proc. Natl. Acad. Sci. USA 86:830-834.
3. Austin, S., N. Henderson, and R. Dixon. 1987. Requirements for transcriptional activation in vitro of the nitrogen-regulated glnA and nifA promoters from Klebsiella pneumoniae: dependence on activator concentration. Mol. Microbiol. 1:92-100.
4. Bauer, C. E., D. A. Young, and B. L. Marrs. 1988. Analysis of the Rhodobacter capsulatus psa operon. Location of the oxygen-regulated promoter region and the identification of an additional psa-encoded gene. J. Biol. Chem. 263:4820-4827.
5. Bennet, L. T., F. Cannon, and D. Dean. 1988. Nucleotide sequence and mutagenesis of the nifA gene from Azotobacter vinelandii. Mol. Microbiol. 2:315-321.
6. Betancourt-Alvarez, M., K. Kaluzo, and H. Henneke. 1986. Activation of the Bradyrhizobium japonicum nifH and nifDK operons is dependent on promoter-upstream DNA sequences. Nucleic Acids Res. 14:4207-4227.
7. Better, M., G. Ditta, and D. R. Helinski. 1985. Deletion analysis of Bradyrhizobium meliloti symbiotic promoters. EMBO J. 4:2419-2424.
8. Beynon, J. L., M. K. Williams, and F. C. Cannon. 1988. Expression and functional analysis of the Rhizobium meliloti nifA gene. EMBO J. 7:7-14.
9. Birkmann, A., R. G. Sawers, and A. Bock. 1987. Involvement of the ntrA gene product in the anaerobic metabolism of Escherichia coli. Mol. Gen. Genet. 210:535-542.
10. Birkmann, A., F. Zinoni, G. Sawers, and A. Bock. 1987. Factors affecting transcriptional regulation of the formate-hydrogen-lyase pathway of Escherichia coli. Arch. Microbiol. 148:44-51.
11. Brown, S. E., and F. M. Ausubel. 1984. Mutations affecting regulation of the Klebsiella pneumoniae nifH (nitrogenase reductase) gene. EMBO J. 3:31-37.
12. Bryan, R., R. Champer, S. Gomes, B. Ely, and L. Shapiro. 1987. Separation of temporal control and trans-acting modulation of flagellin and chemotaxis genes in Caulobacter. Mol. Gen. Genet. 206:300-306.
13. Buchanan-Willson, V., M. C. Cannon, J. L. Beynon, and F. C. Cannon. 1981. Role of the nifA gene product in the regulation of nif expression in Klebsiella pneumoniae. Nature (London) 294:776-778.
14. Buck, M., W. Cannon, and J. Woodcock. 1987. Transcriptional activation of the Klebsiella pneumoniae nifH gene may involve DNA loop formation. Mol. Microbiol. 1:234-249.
15. Buck, M., S. Miller, M. Drummond, and R. Dixon. 1986. Upstream activators are present in the promoters of nitrogen fixation genes. Nature (London) 320:374-378.
16. Buikema, W. J., W. W. Szeto, P. V. Lemley, W. H. Orme-Johnson, and F. M. Ausubel. 1985. Nitrogen fixation specific regulatory genes of Klebsiella pneumoniae and Rhizobium meliloti share homology with the general nitrogen regulatory gene ntrC of K. pneumoniae. Nucleic Acids Res. 13:4539-4555.
17. Cali, B. M., J. L. Micca, and V. Stewart. 1989. Genetic regulation of nitrate assimilation in Klebsiella pneumoniae M5A1. J. Bacteriol. 171:2666-2672.
18. Carlson, R. A., M. L. Guerinot, and B. K. Chelm. 1985. Characterization of the gene encoding glutamine synthetase 1 (glnA) from Bradyrhizobium japonicum. J. Bacteriol. 162:698-703.
19. Castano, I., and F. Bastarachea. 1984. glnF-lacZ fusions in Escherichia coli: studies on glnF expression and its chromosomal orientation. Mol. Gen. Genet. 195:228-233.
20. Chamer, R., R. Bryan, S. L. Gomes, M. Purucker, and L. Shapiro. 1985. Temporal and spatial control of flagellar and chemotaxis gene expression during Caulobacter cell differentiation. Cold Spring Harbor Symp. Quant. Biol. 50:831-840.
21. Chamer, R., A. Dingwall, and L. Shapiro. 1987. Cascade regulation of Caulobacter flagellar and chemotaxis genes. J. Mol. Biol. 194:71-80.
22. Chen, L.-S., D. Mullin, and A. Newton. 1986. Identification, nucleotide sequence, and control of developmentally regulated glnA and nifA promoters in the hook operon region of Caulobacter crescentus. Proc. Natl. Acad. Sci. USA 83:2860-2864.
23. Courey, A. J., R. I. Tijan. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel, glutamine-rich activator motif. Cell 55:887-898.
24. Cumsky, M., and D. R. Zusman. 1979. Myxobacterial hemaglutinin: a development-specific lectin of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76:5505-5509.
25. David, M., M.-L. Daveran, J. Batut, A. Dedieu, O. Domergue, J. Ghai, C. Heissen, P. Boistard, and D. Kahn. 1988. Cascade regulation of nif gene expression in Rhizobium meliloti. Cell 54:671-683.
26. de Bruin, F. J., and F. M. Ausubel. 1983. The cloning and characterization of the glnF (ntrA) gene of Klebsiella pneumoniae: role of the ntrA gene in the expression of nif and other nitrogen assimilation genes. Mol. Gen. Genet. 192:342-353.
27. Dixon, R. 1986. The xylABC promoter from the Pseudomonas putida TOL plasmid is activated by nitrogen regulatory genes. Mol. Gen. Genet. 203:129-136.
28. Dixon, R. A. 1984. The genetic complexity of nitrogen fixation. J. Gen. Microbiol. 130:2745-2755.
29. Drummond, M., P. Whitty, and J. Wootton. 1986. Sequence and domain relationships of nifC and nifA from Klebsiella pneumoniae: homologies to other regulatory proteins. EMBO J. 5:441-447.
30. Eberz, G., C. Hogrefe, C. Kortkute, A. Kanienski, and B. Friedrich. 1986. Molecular cloning of structural and regulatory hydrogenase (bos) genes of Alcaligenes eutrophus H16. J. Bacteriol. 168:636-641.
31. Fischer, H.-M., A. Alvarez-Moraes, and H. Henneke. 1986. The pleiotropic nature of symbiotic regulatory mutants: Bradyrhizobium japonicum nifA gene is involved in control of nif gene expression and in determination of symbiotic symbiosis. EMBO J. 5:1165-1173.
32. Fischer, H.-M., T. Bruderer, and H. Henneke. 1988. Essential and non-essential domains in the Bradyrhizobium japonicum NifA protein: identification of indispensable cysteine residues potentially involved in redox reactivity and/or metal binding. Nucleic Acids Res. 16:2207-2224.
33. Fischer, H.-M., and H. Henneke. 1987. Direct response of Bradyrhizobium japonicum nifA-mediated nif gene regulation to cellular oxygen status. Mol. Gen. Genet. 209:621-626.
34. Franklin, F. C., and A. Williams. 1982. Construction of a partial diploid for the degraded pathway encoded by the TOL plasmid (pWWO) from Pseudomonas putida mt-2: evidence for the positive nature of the regulation by the xylR gene. Mol. Gen. Genet. 177:321-328.
35. Friedrich, C. G. 1982. Expression of hydrogenase during limitation of electron donors and derepression of ribulose bis-phosphate carboxylase. J. Bacteriol. 149:203-210.
36. Friedrich, C. G., and B. Friedrich. 1983. Regulation of hydorgenase formation is temperature sensitive and plasmid coded in Alcaligenes eutrophus. J. Bacteriol. 153:176-181.
37. Fry, D. C., S. A. Kuby, and A. S. Miliadou. 1986. ATP-binding site of adenylate kinase: mechanistic implications of its homology with ras-encoded p21, F1-ATPase, and other nucleotide-binding proteins. Proc. Natl. Acad. Sci. USA 83:907-911.
38. Gaillardin, C. M., and B. Magasanik. 1978. Involvement of the product of the glnF gene in the autogenous regulation of glutamine synthetase formation in Klebsiella aerogenes. J. Bacteriol. 133:1329-1338.
39. Garcia, E., S. Bancroft, S. G. Rhee, and S. Kustu. 1977. The product of a newly identified gene glnF, is required for synthesis of glutamine synthetase in Salmonella. Proc. Natl. Acad. Sci. USA 74:1662-1666.
40. Geiduschek, E. P., and J. Ito. 1982. Regulatory mechanisms in the development of lytic bacteriophages in Bacillus subtilis. p. 203-245. In D. A. Dubnau (ed.), The molecular biology of the bacilli. Academic Press, Inc., New York.
41. Grishkov, M., and R. R. Burgess. 1986. Sigma factors from E.
coli, B. subtilis, phage SP01, and phage T4 are homologous proteins. Nucleic Acids Res. 14:6745-6763.

42. Grossman, A. D., J. E. Erickson, and C. A. Gross. 1984. The htpR gene product of E. coli is a sigma factor for heat-shock promoters. Cell 38:383–390.

43. Gubler, M., and H. Hennecke. 1988. Regulation of the fxa gene and fxs operon in Bradyrhizobium japonicum. J. Bacteriol. 170:1205–1214.

44. Gussin, G. N., C. W. Ronson, and F. M. Ausubel. 1986. Regulation of nitrogen fixation genes. Annu. Rev. Genet. 20:567–591.

45. Haselkorn, R. 1986. Organization of the genes for nitrogen fixation in photosynthetic bacteria and cyanobacteria. Annu. Rev. Microbiol. 40:527–547.

46. Hawkins, F. K., and A. W. Johnston. 1988. Transcription of a Rhizobium leguminosarum biotav phaseloc gene needed for melanin synthesis is activated by nifA of Rhizobium and Klebsiella pneumoniae. Mol. Microbiol. 2:331–337.

47. Hellman, J. D., L. M. Marquez, and M. J. Chamberlin. 1988. Cloning, sequencing and disruption of the Bacillus subtilis α8 gene. J. Bacteriol. 170:1568–1574.

48. Helmsamer, W., and M. J. Chamberlin. 1987. DNA sequence analysis suggests that expression of flagellar and chemotaxis genes in Escherichia coli and Salmonella typhimurium is controlled by an alternative α factor. Proc. Natl. Acad. Sci. USA 84:6422–6424.

49. Helmann, J., and M. J. Chamberlin. 1988. Structure and function of bacterial sigma factors. Annu. Rev. Biochem. 57:839–872.

50. Hill, S., C. Kennedy, E. Kavanagh, R. B. Goldberg, and R. Hanau. 1981. Nitrogen fixation gene nifL involved in oxygen regulation of nitrogenase synthesis in Klebsiella pneumoniae. Nature (London) 290:424–426.

51. Hirschman, J., P.-K. Wong, K. Sei, J. Keener, and S. Kustu. 1985. Products of nitrogen regulatory genes ntrA and ntrC of enteric bacteria activate glnA transcription in vitro: evidence that the ntrA product is a sigma factor. Proc. Natl. Acad. Sci. USA 82:7525–7529.

52. Hogrefe, C., D. Romermann, and B. Friedrich. 1984. Alcaligenes eutrophus hydrogenase genes (hot). J. Bacteriol. 158:43–49.

53. Huala, E., and F. M. Ausubel. 1989. The central domain of Rhizobium meliloti NifA is sufficient to activate transcription from the R. meliloti nifH promoter. J. Bacteriol. 171:3354–3365.

54. Hunt, T. P., and B. Magasanik. 1985. Transcription of glnA by purified Escherichia coli components: core RNA polymerase and the products of glnF, glnG, and glnL. Proc. Natl. Acad. Sci. USA 82:8453–8457.

55. Ismaa, S. E., and J. M. Watson. 1987. A gene upstream of the Rhizobium meliloti nifA gene encodes a ferredoxin-like protein. Nucleic Acids Res. 15:3310.

56. Inouye, S., Y. Ebina, A. Nakazawa, and T. Nakazawa. 1984. Nucleotide sequence surrounding transcription initiation site of xyAB operon on TOL plasmid of Pseudomonas putida. Proc. Natl. Acad. Sci. USA 81:1098–1091.

57. Inouye, S., A. Nakazawa, and T. Nakazawa. 1987. Expression of the regulatory gene xyIS on the TOL plasmid is positively controlled by the xyIR gene product. Proc. Natl. Acad. Sci. USA 84:5182–5186.

58. Inouye, S., A. Nakazawa, and T. Nakazawa. 1988. Nucleotide sequence of the regulatory gene xyIR of the TOL plasmid from Pseudomonas putida. Gene 66:301–306.

59. Ishimoto, K., and S. Lory. 1989. Formation of pilin in Pseudomonas aeruginosa requires the RpoN subunit of RNA polymerase. Proc. Natl. Acad. Sci. USA 86:1954–1957.

60. Johnson, K., and S. Lory. 1987. Characterization of Pseudomonas aeruginosa mutants with altered pilination. J. Bacteriol. 169:5663–5667.

61. Johnson, K., M. L. Parker, and S. Lory. 1986. Nucleotide sequence and transcriptional initiation site of two Pseudomonas aeruginosa pilin genes. J. Biol. Chem. 261:15703–15708.

62. Johnston, A. W. B., and J. A. Downie. 1984. What is a nif promoter? Trends Biochem. Sci. 9:367–368.

63. Jones, R., and R. Haselkorn. 1988. The DNA sequence of the Rhodobacter capsulatus nifH gene. Nucleic Acids Res. 16:8735.

64. Jones, R., and R. Haselkorn. 1989. The DNA sequence of the Rhodobacter capsulatus ntrA, ntrB and ntrC gene analogues required for nitrogen fixation. Mol. Gen. Genet. 215:507–516.

65. Kassavetis, G. A., and E. P. Geiduschek. 1984. Defining a bacteriophage T4 late promoter: bacteriophage T4 gene 55 protein suffices for directing late promoter recognition. Proc. Natl. Acad. Sci. USA 81:5101–5105.

66. Koeber, J., and S. Kustu. 1988. Protein kinase and phosphoprotein phosphatase activities of nitrogen regulatory proteins NTRB and NTRC of enteric bacteria: roles of the conserved amino-terminal domain of NTRC. Proc. Natl. Acad. Sci. USA 85:4976–4980.

67. Kopek, D. S., W. L. Peacock, Jr., W. E. Deacon, L. Brown, and C. T. Pickle. 1963. Neisseria gonorrhoeae. I. Virulence genetically linked to clonal variation. J. Bacteriol. 85:1274–1279.

68. Kim, C. H., D. R. Heinlinski, and G. Ditta. 1986. Overlapping transcription of the nifA regulatory gene in Rhizobium meliloti. Gene 50:141–148.

69. Kofoid, E. C., and J. S. Parkinson. 1988. Transmitter and receiver modules in bacterial signaling proteins. Proc. Natl. Acad. Sci. USA 85:4981–4985.

70. Kornik, J., C. H. Piggot, and D. Freedman. 1987. Genes of lithoautotrophic metabolism are clustered on the mega-plasmid pHG1 in Alcaligenes eutrophus. Mol. Gen. Genet. 210:122–128.

71. Kranz, R. G., and R. Haselkorn. 1986. Anaerobic regulation of nitrogen fixation genes in Rhodopseudomonas capsulata. Proc. Natl. Acad. Sci. USA 83:6805–6809.

72. Kroos, L., B. Kunkel, and R. Losick. 1989. Switch protein alters specificity of RNA polymerase containing a compartment-specific sigma factor. Science 243:526–528.

73. Kustu, S., K. Sei, and J. Keener. 1986. Nitrogen regulation in enteric bacteria, p. 139–154. In J. Booth and C. Higgins (ed.), Regulation of gene expression. Symposium of the Society for General Microbiology. Cambridge University Press, Cambridge.

74. Leonardo, J. M., and R. B. Goldberg. 1980. Regulation of nitrogen metabolism in glutamine auxotrophs of Klebsiella pneumoniae. J. Bacteriol. 142:99–110.

75. Lindquist, S., and E. A. Craig. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631–667.

76. Losick, R., P. Youngman, and P. J. Piggot. 1986. Genetics of endospore formation in Bacillus subtilis. Annu. Rev. Genet. 20:625–670.

77. Magasanik, B. 1982. Genetic control of nitrogen assimilation in bacteria. Annu. Rev. Genet. 16:135–168.

78. Masepohl, R., W. Klipp, and A. Puhler. 1988. Genetic characterization and sequence analysis of the duplicated nifA/nifB gene region of Rhodobacter capsulatus. Mol. Gen. Genet. 212:27–37.

79. Merrick, M., J. Gibbins, and A. Toudkarian. 1987. The nodule-sequencing of the sigma factor gene ntrA (rpoN) of Azotobacter vinelandii—analysis of conserved sequences in NtrA proteins. Mol. Gen. Genet. 210:323–330.

80. Merek, M., S. Hill, H. Hennecke, M. Hahn, R. Dixon, and C. Kennedy. 1982. Repressor properties of the nifL gene product in Klebsiella pneumoniae. Mol. Gen. Genet. 185:75–81.

81. Merrick, M. J., and J. R. Gibbins. 1985. The nodule-sequence of the nitrogen regulation gene ntrA of Klebsiella pneumoniae.
EXPRESSION OF u54-DEPENDENT GENES

The presence of positively regulated flagellar gene promoters in Caulobacter crescentus is a protein binding site. Proc. Natl. Acad. Sci. USA 108:903-909.

Ronson, C. W., R. A. Bender, and B. Friedland. 1989. An rpoN-like gene of Alcaligenes eutrophus is homologous to the carbon metabolism of bacteria. p. 201-207. In H. J. Evans, P. J. Bottomley, and W. E. Newton (ed.), Nitrogen fixation research progress. Martinus Nijhoff, Dordrecht, The Netherlands.

Ronson, C. W., P. M. Astwood, and J. A. Downie. 1984. Molecular cloning and genetic organization of C4-dicarboxylic acid transport genes from Rhizobium leguminosarum. J. Bacteriol. 166:903-909.

Ronson, C. W., P. M. Astwood, B. T. Nixon, and F. M. Ausubel. 1987. Deducing functions of C4-dicarboxylate transport regulatory genes of Rhizobium leguminosarum are homologous to nitrogen regulatory genes. Nucleic Acids Res. 15:7921-7934.

Ronson, C. W., P. Lyttleton, and J. G. Robertson. 1981. C4-dicarboxylate transport mutants of Rhizobium trifolii form ineffective nodules on Trifolium repens. Proc. Natl. Acad. Sci. USA 78:4284-4288.

Ronson, C. W., B. T. Nixon, L. M. Albright, and F. M. Ausubel. 1987. Rhizobium meliloti ntrA (rpoN) gene is required for diverse metabolic functions. J. Bacteriol. 169:2424-2430.

Ronson, C. W., B. T. Nixon, and F. M. Ausubel. 1987. Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell 49:579-581.

Rossbach, S., J. Schell, and F. J. de Bruijn. 1987. The ntrC gene of Agrobacterium tumefaciens C58 controls glutamine synthetase (GSII) activity, growth on nitrate and chromosomal but not Ti-encoded arginine catabolism pathways. Mol. Gen. Genet. 209:419-426.

Santero, E., L. H. Luque, J. R. Medina, and M. Tortorella. 1986. Isolation of ntrC-like mutants of Azotobacter vinelandii J. Bacteriol. 166:541-544.

Santero, E., A. Toudjarian, R. Humphrey, and C. Kennedy. 1988. Identification and characterization of two nitrogen fixation regulatory regions, nifA and nrtF at Azotobacter vinelandii and Azotobacter chroococcum. Mol. Microbiol. 2:303-314.

Sasse-Dwight, S., and J. D. Gralla. 1988. Probing the Escherichia coli glnALG upstream activation mechanism in vivo. Proc. Natl. Acad. Sci. USA 85:8934-8938.

Schmitz, G. K., F. Mikadal, and G. F. L. Arnes. 1988. Regulation of a transport operon promoter in Salmonella typhimurium: identification of sites essential for nitrogen regulation. Mol. Gen. Genet. 215:107-117.

Sloven, R. A., K. Lindsay, and F. H. Franklin. 1966. Genetic, functional and sequence analysis of the xyfB and xyF regulatory genes of the TOL plasmid pWWO. J. Gen. Microbiol. 132:1347-1358.

Stewart, V. 1988. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol. Rev. 52:190-232.

Stragier, P., C. Parrot, and J. Bouvier. 1985. Two functional domains conserved in major and alternate bacterial sigma factors. FEBS Lett. 187:11-15.
121. Swanson, J. 1973. Pili: their role in attachment of gonococci to tissue culture cells. J. Exp. Med. 137:571–589.
122. Szeto, W. W., B. T. Nixon, C. W. Ronson, and F. M. Ausubel. 1987. Identification and characterization of the Rhizobium meliloti ntrC gene: R. meliloti has separate regulatory pathways for activation of nitrogen fixation genes in free-living and symbiotic cells. J. Bacteriol. 169:1423–1432.
123. Szeto, W. W., J. L. Zimmerman, V. Sundaresan, and F. M. Ausubel. 1984. A Rhizobium meliloti symbiotic regulatory gene. Cell 36:1035–1043.
124. Thony, B., H.-M. Fischer, D. Anthamatten, T. Bruderer, and J. Hennecke. 1987. The symbiotic nitrogen fixation regulatory operon (fixR nifA) of Bradyrhizobium japonicum is expressed aerobically and is subject to a novel, nifA-independent type of activation. Nucleic Acids Res. 15:8479–8499.
125. Toukdarian, A., and C. Kennedy. 1986. Regulation of nitrogen metabolism in Azotobacter vinelandii: isolation of ntr and glnA genes and construction of ntr mutants. EMBO J. 5:399–407.
126. Virts, E. L., S. W. Stanfield, D. R. Helinski, and G. S. Ditta. 1988. Common regulatory elements control symbiotic and microaerobic induction of nifA in Rhizobium meliloti. Proc. Natl. Acad. Sci. USA 85:3062–3065.
127. Warrelmann, J., and B. Friedrich. 1986. Mutants of Pseudomonas faciles defective in lithoautotrophy. J. Gen. Microbiol. 132:91–96.
128. Watt, P. J., and M. E. Ward. 1981. Adherence of Neisseria gonorrhoeae and other Neisseria strains to mammalian cells. p. 255–288. In E. Beachey (ed.), Bacterial adherence. Chapman & Hall, Ltd., New York.
129. Wei, G. R., and S. Kustu. 1981. Glutamine auxotrophs with mutations in a nitrogen regulatory gene, ntrC: that is near glnA. Mol. Gen. Genet. 183:392–399.
130. Wong, P.-K., D. Popham, J. Keener, and S. Kustu. 1987. In vitro transcription of the nitrogen fixation regulatory operon nifA of Klebsiella pneumoniae. J. Bacteriol. 169:2876–2880.
131. Woods, D. E., D. C. Straus, W. G. Johanson, Jr., V. K. Berry, and J. A. Bass. 1980. Role of pili in adherence of Pseudomonas aeruginosa to mammalian buccal epithelial cells. Infect. Immun. 29:1146–1151.
132. Worsey, M. J., F. C. H. Franklin, and P. A. Williams. 1978. Regulation of the degradative pathway enzymes coded for by the TOL plasmid (pWWO) from Pseudomonas putida mt-2. J. Bacteriol. 134:757–764.
133. Zimmerman, J. L., W. W. Szeto, and F. M. Ausubel. 1983. Molecular characterization of Tn5 induced, symbiotic (Fix-) mutants of Rhizobium meliloti. J. Bacteriol. 156:1025–1034.