An Element ϕ-δ-Primary to another Element in Multiplicative Lattices

A. V. Bingi
Department of Mathematics
St. Xavier’s College (autonomous), Mumbai-400001, India
email: ashok.bingi@xaviers.edu

Abstract

In this paper, we introduce an element ϕ-δ-primary to another element in a compactly generated multiplicative lattice L and obtain its characterizations. We prove many of its properties and investigate the relations between these structures. By a counter example, it is shown that if an element $b \in L$ is ϕ-δ-primary to a proper element $p \in L$ then b need not be δ-primary to p and found conditions under which an element $b \in L$ is δ-primary to a proper element $p \in L$ if b is ϕ-δ-primary to p.

2010 Mathematics Subject Classification: 06B99

Keywords: expansion function, δ-primary to another element, ϕ-δ-primary to another element, 2-potent δ-primary to another element, n-potent δ-primary to another element, idempotent element

1 Introduction

The notion of an element prime to another element in a multiplicative lattice L is introduced by F. Alarcon et. al. in [3]. Further, the notion of an element primary to another element in a multiplicative lattice L is introduced by C. S. Manjarekar and Nitin S. Chavan in [4]. In an attempt to unify these notions of an element prime to another element and an element primary to another element in a multiplicative lattice L under one frame, an element δ-primary to another element in a multiplicative lattice L is introduced by Ashok V. Bingi in [1].

Further, the concept of an element weakly prime to another element and an element weakly primary to another element in a multiplicative lattice L is introduced by C. S. Manjarekar and U. N. Kandale in [5]. To generalise these concepts, the study of an element ϕ-prime to another element and an element ϕ-primary to another element in a multiplicative lattice L is done by Ashok V. Bingi in [2]. In this paper, we introduce and study, the notion of an element ϕ-δ-primary to another element in a multiplicative lattice L as a generalization of an element δ-primary to another element in L and unify an element ϕ-prime to another element and an element ϕ-primary to another element in L, under one frame.

A multiplicative lattice L is a complete lattice provided with commutative, associative and join distributive multiplication in which the largest element 1 acts as a multiplicative identity. An element $e \in L$ is called meet principal if $a \land be = ((a : e) \land b)e$ for all a, $b \in L$. An element $e \in L$ is called join principal if $(ae \lor b) : e = (b : e) \lor a$ for all a, $b \in L$. An element $e \in L$ is called principal if e is both meet principal and join principal. A multiplicative lattice L is said to be
principally generated (PG) if every element of \(L \) is a join of principal elements of \(L \).

An element \(a \in L \) is called compact if for \(X \subseteq L, \ a \leq \bigvee X \) implies the existence of a finite number of elements \(a_1, a_2, \ldots, a_n \) in \(X \) such that \(a \leq a_1 \lor a_2 \lor \cdots \lor a_n \). The set of compact elements of \(L \) will be denoted by \(L_c \). If each element of \(L \) is a join of compact elements of \(L \) then \(L \) is called a compactly generated lattice or simply a CG-lattice.

An element \(a \in L \) is said to be proper if \(a < 1 \). The radical of \(a \in L \) is denoted by \(\sqrt{a} \) and is defined as \(\bigvee \{ x \in L_+ \mid x^n \leq a, \text{ for some } n \in \mathbb{Z}_+ \} \). A proper element \(m \in L \) is said to be maximal if for every element \(x \in L \) such that \(m < x \leq 1 \) implies \(x = 1 \). A proper element \(p \in L \) is called a prime element if \(ab \leq p \) implies \(a \leq p \) or \(b \leq p \) where \(a, b \in L \) and is called a primary element if \(ab \leq p \) implies \(a \leq p \) or \(b \leq \sqrt{p} \) where \(a, b \in L_\star \). For \(a, b \in L_\star \) \((a : b) = \bigvee \{ x \in L \mid xb \leq a \} \). A multiplicative lattice is called as a Noether lattice if it is modular, principally generated and satisfies ascending chain condition. An element \(a \in L \) is called a zero divisor if \(ab = 0 \) for some \(0 \neq b \in L \) and is called idempotent if \(a = a^2 \). A multiplicative lattice is said to be a domain if it is without zero divisors and is said to be quasi-local if it contains a unique maximal element. A quasi-local multiplicative lattice \(L \) with maximal element \(m \) is denoted by \((L, m) \). A Noether lattice \(L \) is local if it contains precisely one maximal prime. In a Noether lattice \(L \), an element \(a \in L \) is said to satisfy restricted cancellation law if for all \(b, c \in L, ab = ac \neq 0 \) implies \(b = c \) (see [8]). According to [6], an expansion function on \(L \) is a function \(\delta : L \rightarrow L \) which satisfies the following two conditions: \(1 \). \(a \leq \delta(a) \) for all \(a \in L \), \(2 \). \(a \leq b \) implies \(\delta(a) \leq \delta(b) \) for all \(a, b \in L \). The reader is referred to [3] for general background and terminology in multiplicative lattices.

According to [3], an element \(b \in L \) is said to be prime to a proper element \(p \in L \) if \(xb \leq p \) implies \(x \leq p \) where \(x \in L \). According to [4], an element \(b \in L \) is said to be primary to a proper element \(p \in L \) if \(xb \leq p \) implies \(x \leq \sqrt{p} \) where \(x \in L_\star \). According to [5], an element \(b \in L \) is said to be weakly prime to a proper element \(p \in L \) if \(0 \neq xb \leq p \) implies \(x \leq p \) where \(x \in L \) and an element \(b \in L \) is said to be weakly primary to a proper element \(p \in L \) if \(0 \neq xb \leq p \) implies \(x \leq \sqrt{p} \) where \(x \in L_\star \).

Further, according to [1], given an expansion function \(\delta \) on \(L \), an element \(b \in L \) is said to be \(\delta \)-primary to a proper element \(p \in L \) if for all \(x \in L, xb \leq p \) implies \(x \leq \delta(p) \). According to [2], given a function \(\phi : L \rightarrow L \), an element \(b \in L \) is said to be \(\phi \)-prime to a proper element \(p \in L \) if for all \(x \in L, xb \leq p \) and \(xb \notin \phi(p) \) implies \(x \leq p \) and an element \(b \in L \) is said to be \(\phi \)-primary to a proper element \(p \in L \) if for all \(x \in L, xb \leq p \) and \(xb \notin \phi(p) \) implies \(x \leq \sqrt{p} \).

In this paper, we define an element \(\phi \cdot \delta \)-primary to another element in \(L \) and obtain their characterizations. The notion of an element \(\phi \cdot \alpha \)-primary to another element in \(L \) is introduced and relations among them are obtained. By counter examples, it is shown that if \(b \in L \) is \(\phi \cdot \delta \)-primary to a proper element of \(p \in L \) then \(b \) need not be \(\phi \)-prime to \(p \), \(b \) need not be prime to \(p \) and \(b \) need not be \(\delta \)-primary to \(p \). In 6 different ways, we have proved if an element \(b \in L \) is \(\phi \cdot \delta \)-primary to a proper element \(p \) then \(b \) is \(\delta \)-primary to \(p \) under certain conditions. We define an element \(2 \)-potent \(\delta \)-primary to another element of \(L \) and an element \(n \)-potent
δ-primary to another element of \(L \). Finally, we show that for an idempotent element \(p \in L, b \in L \) is \(\phi_2-\delta \)-primary to \(p \) but if \(b \in L \) is \(\phi_2-\delta \)-primary to a proper element \(p \in L \) then \(p \) need not be idempotent. Throughout this paper, (1). \(L \) denotes a compactly generated multiplicative lattice with 1 compact in which every finite product of compact elements is compact, (2). \(\delta \) denotes an expansion function on \(L \) and (3). \(\phi \) denotes a function defined on \(L \).

2 An element \(\phi-\delta \)-primary to another element in \(L \)

We begin with introducing the notion of an element of \(L \) to be \(\phi-\delta \)-primary to another element of \(L \) which is the generalization of the concept of an element to be \(\delta \)-primary to another element of \(L \).

Definition 2.1. Given an expansion function \(\delta : L \rightarrow L \) and a function \(\phi : L \rightarrow L \), an element \(b \in L \) is said to be \(\phi-\delta \)-primary to a proper element \(p \in L \) if for all \(x \in L, xb \leq p \) and \(xb \nleq \phi(p) \) implies \(x \leq \delta(p) \).

For the special functions \(\phi_\alpha : L \rightarrow L \), an element “\(\phi_\alpha-\delta \)-primary to” another element in \(L \) is defined by following settings in the definition 2.1 of an element \(\phi-\delta \)-primary to another element in \(L \). For any proper element \(p \in L \) in the definition 2.1 in place of \(\phi(p) \), set

- \(\phi_0(p) = 0 \). Then \(b \in L \) is called weakly \(\delta \)-primary to \(p \).
- \(\phi_2(p) = p^2 \). Then \(b \in L \) is called 2-almost \(\delta \)-primary to \(p \) or \(\phi_2-\delta \)-primary to \(p \) or simply almost \(\delta \)-primary to \(p \).
- \(\phi_n(p) = p^n \). Then \(b \in L \) is called \(n \)-almost \(\delta \)-primary to \(p \) or \(\phi_n-\delta \)-primary to \(p \) \((n > 2) \).
- \(\phi_\omega(p) = \bigwedge_{n=1}^{\infty} p^n \). Then \(b \in L \) is called \(\omega \)-almost \(\delta \)-primary to \(p \) or \(\phi_\omega-\delta \)-primary to \(p \).

Since for an element \(a \in L \) with \(a \leq q \) but \(a \ngeq \phi(q) \) implies that \(a \ngeq q \land \phi(q) \), there is no loss generality in assuming that \(\phi(q) \leq q \). We henceforth make this assumption.

Definition 2.2. Given any two functions \(\gamma_1, \gamma_2 : L \rightarrow L \), we define \(\gamma_1 \leq \gamma_2 \) if \(\gamma_1(a) \leq \gamma_2(a) \) for each \(a \in L \).

Clearly, we have the following order:

\[
\phi_0 \leq \phi_\omega \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \leq \phi_1
\]

Further as \(\phi(p) \leq p \) and \(p \leq \delta(p) \) for each \(p \in L \), the relation between the functions \(\delta \) and \(\phi \) is \(\phi \leq \delta \).

According to [6], \(\delta_0 \) is an expansion function on \(L \) defined as \(\delta_0(p) = p \) for each \(p \in L \) and \(\delta_1 \) is an expansion function on \(L \) defined as \(\delta_1(p) = \sqrt{p} \) for each \(p \in L \).

The following 2 results relate an element \(\phi \)-prime to another element and an element \(\phi-\delta \)-primary to another element with some element \(\phi-\delta \)-primary to another element in \(L \).
Theorem 2.3. An element \(b \in L \) is \(\phi-\delta_0 \)-primary to a proper element \(p \in L \) if and only if \(b \) is \(\phi \)-prime to \(p \).

Proof. The proof is obvious. \(\square \)

Theorem 2.4. An element \(b \in L \) is \(\phi-\delta_1 \)-primary to a proper element \(p \in L \) if and only if \(b \) is \(\phi \)-primary to \(p \).

Proof. The proof is obvious. \(\square \)

Theorem 2.5. Let \(\delta, \gamma : L \to L \) be expansion functions on \(L \) such that \(\delta \leq \gamma \). Let \(p \in L \) be a proper element and \(b \in L \). If \(b \) is \(\phi-\delta \)-primary to \(p \) then \(b \) is \(\phi-\gamma \)-primary to \(p \). In particular, for every expansion function \(\delta \) on \(L \), if \(b \) is \(\phi \)-prime to \(p \) then \(b \) is \(\phi-\delta_0 \)-primary to \(p \).

Proof. Assume that \(b \in L \) is \(\phi-\delta \)-primary to a proper element \(p \in L \). Suppose \(xb \leq p \) and \(xb \notin \phi(p) \) for \(x \in L \). Then \(x \leq \delta(p) \leq \gamma(p) \) and so \(b \) is \(\phi-\gamma \)-primary to \(p \). Next, for any expansion function \(\delta \) on \(L \), we have \(\delta_0 \leq \delta \). So if \(b \) is \(\phi-\delta_0 \)-primary to \(p \) then \(b \) is \(\phi-\delta \)-primary to \(p \) and we are done because if \(b \) is \(\phi \)-prime to \(p \) then \(b \) is \(\phi-\delta_0 \)-primary to \(p \). \(\square \)

Corollary 2.6. For every expansion function \(\delta \) on \(L \), if an element \(b \in L \) is prime to a proper element \(p \in L \) then \(b \) is \(\phi-\delta \)-primary to \(p \).

Proof. The proof follows by using Theorem 2.3 to the fact that if an element \(b \in L \) is prime to a proper element \(p \in L \) then \(b \) is \(\phi \)-prime to \(p \). \(\square \)

The following example shows that (by taking \(\phi \) as \(\phi_2 \) and \(\delta \) as \(\delta_1 \) for convenience)

- If \(b \in L \) is \(\phi-\delta \)-primary to a proper element \(p \in L \) then \(b \) need not be \(\phi \)-prime to \(p \).
- If \(b \in L \) is \(\phi-\delta \)-primary to a proper element \(p \in L \) then \(b \) need not be prime to \(p \).

Example 2.7. Consider the lattice \(L \) of ideals of the ring \(R = \langle \mathbb{Z}_{24}, +, \cdot \rangle \). Then the only ideals of \(R \) are the principal ideals \((0), (2), (3), (4), (6), (8), (12), (1) \). Clearly, \(L = \{ (0), (2), (3), (4), (6), (8), (12), (1) \} \) is a compactly generated multiplicative lattice. It is easy to see that the element \((2) \in L \) is \(\phi_2-\delta_1 \)-primary to \((4) \in L \) while \((2) \) is not \(\phi_2 \)-prime to \((4) \). Also \((2) \) is not prime to \((4) \).

Now before obtaining the characterizations of an element \(\phi-\delta \)-primary to another element of \(L \), we state the following essential lemma which is outcome of Lemma 23.13 from [7].

Lemma 2.8. Let \(a_1, a_2 \in L \). Suppose \(b \in L \) satisfies the following property:

(\(\ast \)). If \(h \in L \) with \(h \leq b \) then either \(h \leq a_1 \) or \(h \leq a_2 \).

Then either \(b \leq a_1 \) or \(b \leq a_2 \).
Theorem 2.9. Let p be a proper element of L and $b \in L$. Then the following statements are equivalent:

1. b is ϕ-δ-primary to p.
2. either $(p : b) \leq \delta(p)$ or $(p : b) = (\phi(p) : b)$.
3. for every $r \in L_*$, $rb \leq p$ and $rb \notin \phi(p)$ implies $r \leq \delta(p)$.

Proof. (1)\implies(2). Suppose (1) holds. Let $h \in L_*$ be such that $h \leq (p : b)$. Then $hb \leq p$. If $hb \leq \phi(p)$ then $h \leq (\phi(p) : b)$. If $hb \notin \phi(p)$ then since b is ϕ-δ-primary to p, $hb \leq p$ and $hb \notin \phi(p)$, it follows that $h \leq \delta(p)$. Hence by Lemma 2.8, either $(p : b) \leq (\phi(p) : b)$ or $(p : b) \leq \delta(p)$. Consequently, either $(p : b) = (\phi(p) : b)$ or $(p : b) \leq \delta(p)$.

(2)\implies(3). Suppose (2) holds. Let $rb \leq p$ and $rb \notin \phi(p)$ for $r \in L_*$. By (2) if $(p : b) = (\phi(p) : b)$ then as $r \leq (p : b)$, it follows that $r \leq (\phi(p) : b)$ which contradicts $rb \notin \phi(p)$ and so we must have $(p : b) \leq \delta(p)$. Therefore $r \leq (p : b)$ gives $r \leq \delta(p)$.

(3)\implies(1). Suppose (3) holds. Let $xb \leq p$ and $xb \notin \phi(p)$ for $x \in L$. Then as L is compactly generated, there exist $y' \in L_*$ such that $y' \leq x$ and $y'b \notin \phi(p)$. Let $y \leq x$ be any compact element of L. Then $(y \lor y') \in L_*$ such that $(y \lor y')b \leq p$ and $(y \lor y')b \notin \phi(p)$. So by (3), it follows that $(y \lor y') \leq \delta(p)$ which implies $x \leq \delta(p)$ and therefore b is ϕ-δ-primary to p.

Theorem 2.10. Let (L, m) be a quasi-local Noether lattice. If a proper element $p \in L$ is such that $p^2 = m^2 \leq p \leq m$ and $b \in L$ then b is either ϕ_2-δ_1-primary to p or $b \leq p$.

Proof. Let $xb \leq p$ and $xb \notin \phi_2(p)$ for $x \in L$. If $x \notin m$ then $x = 1$. So $xb \leq p$ gives $b \leq p$. Now if $x \leq m$ then $x^2 \leq m^2 = p^2 \leq p$ and hence $x \leq \delta_1(p)$ which implies b is ϕ_2-δ_1-primary to p. Thus b is either ϕ_2-δ_1-primary to p or $b \leq p$.

To obtain the relation among an element ϕ_α-δ-primary to another element in L, we prove the following lemma.

Lemma 2.11. Let $\gamma_1, \gamma_2 : L \to L$ be functions on L such that $\gamma_1 \leq \gamma_2$ and p be proper element of L. If an element $b \in L$ is γ_1-δ-primary to p then $b \in L$ is γ_2-δ-primary to p.

Proof. Let an element $b \in L$ be γ_1-δ-primary to p. Suppose $xb \leq p$ and $xb \notin \gamma_2(p)$ for $x \in L$. Then as $\gamma_1 \leq \gamma_2$, we have $xb \leq p$ and $xb \notin \gamma_1(p)$. Since b is γ_1-δ-primary to p, it follows that $x \leq \delta(p)$ and hence b is γ_2-δ-primary to p.

Theorem 2.12. For an element $b \in L$ and a proper element $p \in L$, consider the following statements:

(a) b is δ-primary to p.
(b) b is ϕ_0-δ-primary to p.
(c) b is ϕ_ω-δ-primary to p.
(d) b is $\phi_{(n+1)}$-δ-primary to p.
(e) \(b \) is \(\phi_n-\delta \)-primary to \(p \) where \(n \geq 2 \).

(f) \(b \) is \(\phi_2-\delta \)-primary to \(p \).

Then \((a) \implies (b) \implies (c) \implies (d) \implies (e) \implies (f) \).

Proof. Obviously, if \(b \) is \(\delta \)-primary to \(p \) then \(b \) is weakly \(\delta \)-primary to \(p \) and hence \((a) \implies (b) \). The remaining implications follow by using Lemma 2.11 to the fact that \(\phi_0 \leq \phi_\omega \leq \cdots \leq \phi_{n+1} \leq \phi_n \leq \cdots \leq \phi_2 \). □

Corollary 2.13. Let \(p \in L \) be a proper element and \(b \in L \). Then \(b \) is \(\phi_\omega-\delta \)-primary to \(p \) if and only if \(b \) is \(\phi_n-\delta \)-primary to \(p \) for every \(n \geq 2 \).

Proof. Assume that \(b \) is \(\phi_n-\delta \)-primary to \(p \) for every \(n \geq 2 \). Let \(xb \leq p \) and \(xb \notin \bigwedge_{n=1}^\infty p^n \) for \(x \in L \). Then \(xb \leq p \) and \(xb \notin p^n \) for some \(n \geq 2 \). Since \(b \) is \(\phi_n-\delta \)-primary to \(p \), we have \(x \leq \delta(p) \) and hence \(b \) is \(\phi_\omega-\delta \)-primary to \(p \). The converse follows from Theorem 2.12. □

Now we show that under a certain condition, if an element \(b \in L \) is \(\phi_n-\delta \)-primary \((n \geq 2)\) to a proper element \(p \in L \) then \(b \) is \(\delta \)-primary to \(p \).

Theorem 2.14. Let \(L \) be a local Noetherian domain. Let \(p \in L \) be a proper element and \(0 \neq b \in L \). Then \(b \) is \(\phi_n-\delta \)-primary to \(p \) for every \(n \geq 2 \) if and only if \(b \) is \(\delta \)-primary to \(p \).

Proof. Assume that \(b \) is \(\phi_n-\delta \)-primary to \(p \) for every \(n \geq 2 \). Let \(xb \leq p \) for \(x \in L \). If \(xb \notin \phi_n(p) \) for \(n \geq 2 \) then as \(b \) is \(\phi_n-\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). If \(xb \leq \phi_n(p) = p^n \) for all \(n \geq 1 \) then as \(L \) is local Noetherian, by Corollary 3.3 of [?], it follows that \(xb \leq \bigwedge_{n=1}^\infty p^n = 0 \) and so \(x = 0 \). Since \(L \) is domain and \(0 \neq b \), we have \(x = 0 \) which implies \(x \leq \delta(p) \). Hence, in any case, \(b \) is \(\delta \)-primary to \(p \). Converse follows from Theorem 2.12. □

Corollary 2.15. Let \(L \) be a local Noetherian domain. Let \(p \in L \) be a proper element and \(0 \neq b \in L \). Then \(b \) is \(\phi_\omega-\delta \)-primary to \(p \) if and only if \(b \) is \(\delta \)-primary to \(p \).

Proof. The proof follows from Theorem 2.14 and Corollary 2.13. □

Clearly, if an element \(b \in L \) is \(\delta \)-primary to a proper element \(p \in L \) then \(b \) is \(\phi-\delta \)-primary to \(p \). The following example shows that its converse is not true (by taking \(\phi \) as \(\phi_2 \) and \(\delta \) as \(\delta_1 \) for convenience).

Example 2.16. Consider the lattice \(L \) of ideals of the ring \(R = \langle Z_{30}, +, \cdot \rangle \). Then the only ideals of \(R \) are the principal ideals \(\langle 0 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 5 \rangle, \langle 6 \rangle, \langle 10 \rangle, \langle 15 \rangle, \langle 1 \rangle \). Clearly \(L = \{ \langle 0 \rangle, \langle 2 \rangle, \langle 3 \rangle, \langle 5 \rangle, \langle 6 \rangle, \langle 10 \rangle, \langle 15 \rangle, \langle 1 \rangle \} \) is a compactly generated multiplicative lattice. It is easy to see that the element \(\langle 2 \rangle \in L \) is \(\phi_2-\delta_1 \)-primary to \(\langle 6 \rangle \in L \) but \(\langle 2 \rangle \) is not \(\delta_1 \)-primary to \(\langle 6 \rangle \).

In the following successive six theorems, we show conditions under which if an element \(b \in L \) is \(\phi-\delta \)-primary to a proper element \(p \) then \(b \) is \(\delta \)-primary to \(p \).
Theorem 2.17. Let \(L \) be a Noether lattice. Let \(0 \neq p \in L \) be a non-nilpotent proper element satisfying the restricted cancellation law. Let \(b \in L \) be such that \(p < b \). Then \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_2 \) if and only if \(b \) is \(\delta \)-primary to \(p \).

Proof. Assume that \(b \in L \) is \(\delta \)-primary to \(p \in L \). Then obviously, \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for every \(\phi \) and hence for some \(\phi \leq \phi_2 \). Conversely, assume that \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_2 \). Then by Lemma 2.11, \(b \) is \(\phi_2 \)-\(\delta \)-primary (almost \(\delta \)-primary) to \(p \). Let \(xb \leq p \) for \(x \in L \). If \(xb \notin \phi_2(p) \) then as \(b \) is \(\phi_2 \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). If \(xb \leq \phi_2(p) = p^2 \) then \(xp \leq p^2 \neq 0 \) as \(p < b \). Hence \(x \leq p \leq \delta(p) \) by Lemma 1.11 of [8] and thus \(b \) is \(\delta \)-primary to \(p \).

Corollary 2.18. Let \(L \) be a Noether lattice. Let \(0 \neq p \in L \) be a non-nilpotent proper element satisfying the restricted cancellation law. Let \(b \in L \) be such that \(p < b \). If \(b \) is \(\phi_2 \)-\(\delta \)-primary to \(p \) then \(b \) is \(\delta \)-primary to \(p \).

Proof. The proof follows from proof of the Theorem 2.17.

The following result is general form of Theorem 2.17.

Theorem 2.19. Let \(L \) be a Noether lattice. Let \(0 \neq p \in L \) be a non-nilpotent proper element satisfying the restricted cancellation law. Let \(b \in L \) be such that \(p < b \). Then \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_n \) and for all \(n \geq 2 \) if and only if \(b \) is \(\delta \)-primary to \(p \).

Proof. Assume that \(b \) is \(\delta \)-primary to \(p \). Then obviously, \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for every \(\phi \) and hence for some \(\phi \leq \phi_n \), for all \(n \geq 2 \). Conversely, assume that \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_n \) and for all \(n \geq 2 \). Then by Lemma 2.11, \(b \) is \(\phi_n \)-\(\delta \)-primary (almost \(\delta \)-primary) to \(p \) and for all \(n \geq 2 \). Let \(xb \leq p \) for \(x \in L \). If \(xb \notin \phi_n(p) \) for some \(n \geq 2 \) then as \(b \) is \(\phi_n \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \) and we are done. So let \(xb \leq \phi_n(p) \) for all \(n \geq 2 \). Then \(xb \leq p^n \leq p^2 \) as \(n \geq 2 \). This implies \(xp \leq p^2 \neq 0 \) as \(p < b \). Hence \(x \leq p \leq \delta(p) \) by Lemma 1.11 of [8] and thus \(b \) is \(\delta \)-primary to \(p \).

Corollary 2.20. Let \(L \) be a Noether lattice. Let \(0 \neq p \in L \) be a non-nilpotent proper element satisfying the restricted cancellation law. Let \(b \in L \) be such that \(p < b \). If \(b \) is \(\phi_n \)-\(\delta \)-primary to \(p \) (\(\forall \ n \geq 2 \)) then \(b \) is \(\delta \)-primary to \(p \).

Proof. The proof follows from proof of the Theorem 2.19.

Definition 2.21. An element \(b \in L \) is said to be \(2 \)-potent \(\delta \)-primary to a proper element \(p \in L \) if for all \(x \in L \), \(xb \leq p^2 \) implies \(x \leq \delta(p) \).

Theorem 2.22. Let \(b \in L \) be \(2 \)-potent \(\delta \)-primary to a proper element \(p \in L \). Then \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_2 \) if and only if \(b \) is \(\delta \)-primary to \(p \).

Proof. Assume that \(b \) is \(\delta \)-primary to \(p \). Then obviously, \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for every \(\phi \) and hence for some \(\phi \leq \phi_2 \). Conversely, assume that \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_2 \). Then by Lemma 2.11, \(b \) is \(\phi_2 \)-\(\delta \)-primary (almost \(\delta \)-primary) to \(p \). Let \(xb \leq p \) for \(x \in L \). If \(xb \notin \phi_2(p) \) then as \(b \) is \(\phi_2 \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). If \(xb \leq \phi_2(p) = p^2 \) then as \(b \) is \(2 \)-potent \(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). Hence \(b \) is \(\delta \)-primary to \(p \).
Corollary 2.23. Let \(p \in L \) be a proper element and \(b \in L \). If \(b \) is \(\phi_2 \)-\(\delta \)-primary to \(p \) and \(b \) is 2-potent \(\delta \)-primary to \(p \) then \(b \) is \(\delta \)-primary to \(p \).

Proof. The proof follows from proof of the Theorem 2.22.

Definition 2.24. Let \(n \geq 2 \). An element \(b \in L \) is said to be \(n \)-potent \(\delta \)-primary to a proper element \(p \in L \) if for all \(x \in L \), \(xb \leq p^n \) implies \(x \leq \delta(p) \).

Obviously, if an element \(b \in L \) is \(n \)-potent \(\delta_0 \)-primary to a proper element \(p \in L \) then \(b \) is 2-potent \(\delta \)-primary to \(p \).

The following result is general form of Theorem 2.22.

Theorem 2.25. Let \(p \in L \) be a proper element and \(b \in L \). Then \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_n \) where \(n \geq 2 \) if and only if \(b \) is \(\delta \)-primary to \(p \), provided \(b \) is \(k \)-potent \(\delta \)-primary to \(p \) for some \(k \leq n \).

Proof. Assume that \(b \) is \(\delta \)-primary to \(p \). Then obviously, \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for every \(\phi \) and hence for some \(\phi \leq \phi_n \) where \(n \geq 2 \). Conversely, assume that \(b \) is \(\phi \)-\(\delta \)-primary to \(p \) for some \(\phi \leq \phi_n \) where \(n \geq 2 \). Then by Lemma 2.21, \(b \) is \(\phi_n \)-\(\delta \)-primary (\(n \)-almost \(\delta \)-primary) to \(p \). Let \(xb \leq p \) for \(x \in L \). If \(xb \not\leq \phi_k(p) = p^k \) then \(xb \not\leq \phi_n(p) = p^n \) as \(k \leq n \). Since \(b \) is \(\phi_n \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). If \(xb \not\leq \phi_k(p) = p^k \) then as \(b \) is \(k \)-potent \(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). Hence \(b \) is \(\delta \)-primary to \(p \).

Corollary 2.26. Let \(p \in L \) be a proper element and \(b \in L \). If \(b \) is \(\phi_n \)-\(\delta \)-primary to \(p \) and \(b \) is \(k \)-potent \(\delta \)-primary to \(p \) where \(k \leq n \) then \(b \) is \(\delta \)-primary to \(p \).

Theorem 2.27. Let \(p \in L \) be a proper element and \(b \in L \) be \(\phi \)-\(\delta \)-primary to \(p \). If \(pb \not\leq \phi(p) \) then \(b \) is \(\delta \)-primary to \(p \).

Proof. Let \(xb \leq p \) for \(x \in L \). If \(xb \not\leq \phi(p) \) then as \(b \) is \(\phi \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \). So assume that \(xb \leq \phi(p) \). Then as \(pb \not\leq \phi(p) \), we have \(db \not\leq \phi(p) \) for some \(d \leq p \) in \(L \). Also \((x \lor d)b = xb \lor db \leq p \) and \((x \lor d)b \not\leq \phi(p) \). As \(b \) is \(\phi \)-\(\delta \)-primary to \(p \), we have \(x \leq (x \lor d) \leq \delta(p) \) and hence \(b \) is \(\delta \)-primary to \(p \).

From the Theorem 2.27, it follows that, if an element \(b \in L \) is \(\phi \)-\(\delta \)-primary to a proper element \(p \in L \) but \(b \) is not \(\delta \)-primary to \(p \) then \(pb \leq \phi(p) \) and hence \(pb \leq p \).

Corollary 2.28. If an element \(b \in L \) is \(\phi_0 \)-\(\delta \)-primary to a proper element \(p \in L \) but \(b \) is not \(\delta \)-primary to \(p \) then \(pb = 0 \).

Proof. The proof is obvious.

Theorem 2.29. Let an element \(b \in L \) be \(\phi \)-\(\delta \)-primary to a proper element \(p \in L \). If \(b \) is \(\delta \)-primary to \(\phi(p) \) then \(b \) is \(\delta \)-primary to \(p \).

Proof. Let \(xb \leq p \) for \(x \in L \). If \(xb \not\leq \phi(p) \) then as \(b \) is \(\phi \)-\(\delta \)-primary to \(p \), we have \(x \leq \delta(p) \) and we are done. Now if \(xb \leq \phi(p) \) then as \(b \) is \(\delta \)-primary to \(\phi(p) \), we have \(x \leq \delta(\phi(p)) \). This implies that \(x \leq \delta(p) \) because \(\phi(p) \leq p \) and we are done.
The following theorem shows that a under certain condition, \(b \in L \) is \(\phi \)-\(\delta \)-primary to \((p : q) \in L \) if \(b \) is \(\phi \)-\(\delta \)-primary to \(p \in L \) where \(q \in L \).

Theorem 2.30. Let an element \(b \in L \) be \(\phi \)-\(\delta \)-primary to a proper element \(p \in L \). Then \(b \) is \(\phi \)-\(\delta \)-primary to \((p : q) \) for all \(q \in L \) if \((\phi(p) : q) \leq \phi(p : q) \) and \((\delta(p) : q) \leq \delta(p : q) \).

Proof. Let \(x b \leq (p : q) \) and \(x b \not\in \phi(p : q) \) for \(x \in L \). Then \(x q b \leq p \) and \(x q b \not\in \phi(p) \). Now as \(b \) is \(\phi \)-\(\delta \)-primary to \(p \), we have \(x q \leq \delta(p) \) which implies \(x \leq (\delta(p) : q) \leq \delta(p : q) \) and hence \(b \) is \(\phi \)-\(\delta \)-primary to \((p : q) \).

Theorem 2.31. If an element \(b^k \in L \) is \(\phi \)-\(\delta_1 \)-primary to a proper element \(p \in L \) for all \(k \in \mathbb{Z}_+ \) such that \(\delta_1(\phi(p)) = \phi(\delta_1(p)) \) then \(b \) is \(\phi \)-prime to \(\delta_1(p) \) where \(b \in L \).

Proof. Assume that \(x b \leq \delta_1(p) \) and \(x b \not\in \phi(\delta_1(p)) \) for \(x \in L \). Then there exists \(n \in \mathbb{Z}_+ \) such that \(x^n \cdot b^n = (x b)^n \leq p \). If \((x b)^n \leq \phi(p) \) then by hypothesis \(x b \leq \delta_1(\phi(p)) = \phi(\delta_1(p)) \), a contradiction. So we must have \(x^n \cdot b^n = (x b)^n \not\in \phi(p) \). Since \(b^n \) is \(\phi \)-\(\delta_1 \)-primary to \(p \) we have, \(x^n \leq \delta_1(p) \) and hence \(x \leq \delta_1(\delta_1(p)) = \delta_1(p) \). This shows that \(b \) is \(\phi \)-prime to \(\delta_1(p) \).

Now we relate idempotent element of \(L \) with an element \(\phi_n \)-\(\delta \)-primary \((n \geq 2) \) to another element of \(L \).

Theorem 2.32. If \(p \) is an idempotent element of \(L \) then \(b \in L \) is \(\phi_\omega \)-\(\delta \)-primary to \(p \) and hence \(b \) is \(\phi_n \)-\(\delta \)-primary \((n \geq 2) \) to \(p \).

Proof. As \(p \) is an idempotent element of \(L \), we have \(p = p^n \) for all \(n \in \mathbb{Z}_+ \). So \(\phi_\omega(p) = p \). Therefore \(b \) is \(\phi_\omega \)-\(\delta \)-primary to \(p \). Hence \(b \) is \(\phi_n \)-\(\delta \)-primary \((n \geq 2) \) to \(p \), by Theorem 2.12.

As a consequence of Theorem 2.32 we have following result whose proof is obvious.

Corollary 2.33. If \(p \) is an idempotent element of \(L \) then \(b \in L \) is \(\phi_2 \)-\(\delta \)-primary to \(p \).

However, if \(b \in L \) is \(\phi_2 \)-\(\delta \)-primary to \(p \in L \) then \(p \) need not be idempotent as shown in the following example (by taking \(\delta \) as \(\delta_1 \) for convenience).

Example 2.34. Consider the lattice \(L \) of ideals of the ring \(R = \langle \mathbb{Z}_8 , + , \cdot , > \). Then the only ideals of \(R \) are the principal ideals \((0),(2),(4),(1)\). Clearly, \(L = \{(0),(2),(4),(1)\} \) is a compactly generated multiplicative lattice. It is easy to see that the element \((2) \in L \) is \(\phi_2 \)-\(\delta_1 \)-primary to \((4) \in L \) but \((4) \) is not idempotent.

We conclude this paper with the following examples, from which it is clear that,

- If \(b \in L \) is \(\phi_2 \)-\(\delta_1 \)-primary to \(p \in L \) then \(b \) need not be 2-potent \(\delta_0 \)-primary to \(p \).
- If \(b \in L \) is 2-potent \(\delta_0 \)-primary to \(p \in L \) and \(b \) is \(\phi_2 \)-\(\delta_1 \)-primary to \(p \) then \(b \) need not be prime to \(p \).
Example 2.35. Consider L as in Example 2.16. Here the element $(3) \in L$ is $\phi_2-\delta_1$-primary to $(6) \in L$ but (3) is not 2-potent δ_0-primary to (6).

Example 2.36. Consider L as in Example 2.34. Here the element $(2) \in L$ is $\phi_2-\delta_1$-primary to $(4) \in L$ and (2) is 2-potent δ_0-primary to (4) but (2) is not prime to (4).

References

[1] Ashok V. Bingi, An element δ-primary to another element in multiplicative lattices, (communicated).

[2] Ashok V. Bingi, An element ϕ-prime to another element and an element ϕ-primary to another element in multiplicative lattices, (communicated).

[3] F. Alarcon, D. D. Anderson and C. Jayaram, Some results on abstract commutative ideal theory, Periodica Mathematica Hungarica, 30(1)(1995), 1-26.

[4] C. S. Manjarekar and Nitin S. Chavan, An element primary to another element, The Journal of the Indian Mathematical Society, 71(1-4), (2004), 55-60.

[5] C. S. Manjarekar and U. N. Kandale, An element weakly primary to another element, Chinese Journal of Mathematics, (2013), 1-4.

[6] C. S. Manjarekar and A. V. Bingi, δ-primary elements in multiplicative lattices, International Journal of Advance Research, 2(6) (2014), 1-7.

[7] D. S. Culhan, Associated primes and primal decomposition in modules and lattice modules and their duals, Ph. D. Thesis, University of California, Riverside, 2005.

[8] J. Wells, The restricted cancellation law in a Noether lattice, Fundamenta Mathematicae, 3(75), (1972), 235-247.