No-backlash control system by two-motor driver
(The analysis and experiments on total current reduction)

Akihiro MAEKAWA*1 and Yusuke SUGIURA*2

*1 Meijo Univ. Dept. of Vehicle and Mechanical Engineering
1-501 Shiogamaguchi, Tenpaku-ku, Nagoya 468-8502, Japan

Received: 29 March 2017; Revised: 21 May 2017; Accepted: 9 October 2017

Abstract
A no-backlash drive control technique in which two motors drive a load axis, as one is for a forward direction and another is for a reverse one, has two problems: 1) the drive system has a remarkable power loss, 2) the 1st natural frequency of the drive system may cause a backlash. For the former problem, we employ a torque crossover method, in which a part of torque reference of the drive-side motor gives to the driven-side motor and the resulted torque reference of the driven-side one is reduced. For the latter problem, we employ a rate difference feedback method that feedbacks a signal in proportion to the difference between the forward direction motor velocity and the reverse one to each motor torque. We have shown through our analysis that the torque crossover does not affect poles of the 1st natural frequency, and that the rate difference feedback improves the damping of the 1st natural frequency directly and suppress its vibration. We evaluate our method in the non-linear simulation and experiment: 1) it is preferable to increase the damping of the 1st natural frequency with the rate difference feedback and then decrease the motor current with the rate difference in the control system tuning, 2) the torque difference between the two motors is required to some extent for no-backlash drive, so torque crossover should not be increased unnecessarily. We have gotten the experimental results that the total motor current has been reduced by 40%.

Keywords: Motion control, Vibration of a mechanism, Servo-mechanism, No-backlash, Steering system

1. 緒 言
自動車のインテリジェント化は益々進歩しており、ここ数年の間に自動ブレーキ機能や車線維持を搭載した乗用車が実用化された。自動車の完全自動運転に関しても公道でデモ運転が行われており、自動車専用道から規制が緩和されていくものと予想される。車両を無人で走行させるためには、自車位置標定技術や周辺環境認識を含んだ車両誘導制御技術を組合せて行う。車両の誘導はモータなどでハンドル操舵し、ラックアンドピニオン機構などを介して前輪を駆動する。ハンドルには遊び（不感帯）があり、ラックアンドピニオン機構のバックラッシュがその要因の一つである。適度なハンドルの遊びはドライバーが運転する際の負担を軽減する。しかし、車両を無人運転する場合にはハンドルの遊びは操舵制御系のむだ時間として作用し、操舵制御系の応答性低下や車線変更時にオーバーシュートの原因となりうる。この傾向は車速の増加に伴い顕著（安部、1992）になる。したがって、無人運転車両ではハンドルの遊び、すなわちバックラッシュの影響を極力減らす操舵システムが望まれる。バックラッシュを抑制する方法として遊
星減速機を対象に2つの歯車を組み合わせた機構（岡島, 2008）が提案されており一部が実用化されている。この方法は簡便であるがバックラッシュを完全になくせず、また歯車の精度合わせが重くなる。また、制御的な方法として1台モータでオブザーバを用いる方法（小田井, 堀, 2000）では力の加わる向きが逆転する瞬間にバックラッシュが発生し容易、完全にバックラッシュをなくす方法として事前にバックラッシュを打ち消すように2台のモータを少しだけ動かし、その角度をプリセットする。その後、プリセットした角度を保持しながら、2台のモータ角度を2台の位置及び速度制御器でそれぞれ位置決めを行い、1つの負荷をノーバックラッシュ駆動する方法（Robertz et al., 2010）（古屋他, 2008）（内田他, 2011, 2014）が提案されている。筆者らも2台のモータをそれぞれ正転駆動用、逆転駆動用として組合せて、1台の位置及び速度制御器で1つの負荷を駆動し制御的にバックラッシュを打ち消すノーバックラッシュ駆動制御システム（前川, 小川, 2012）を提案している。この駆動方法は一次共振周波数でバックラッシュが発生しやすいことや消費電流が増加するなどの問題があり対策方法の一例（前川, 小川, 2013）を示した。また、一次共振周波数の波形は正転側と逆転側で逆相になることに着目した改良型振動抑制方法（前川, 杉浦, 2016）が提案されている。筆者らは2台のモータをそれぞれ正転駆動用、逆転駆動用として組合せて、1台の位置及び速度制御器で1つの負荷を駆動し制御的にバックラッシュを打ち消すノーバックラッシュ駆動制御システム（前川, 小川, 2012）を提案している。この駆動方法は一次共振周波数の振動抑制と消費電流低減を同時に実現する方法について報告する。

2. システムの基本構成

図1にノーバックラッシュ制御の原理、表1に駆動パターンを示す。図1に示すように歯車を取り付けた正転駆動用減速器付きモータ（以下、正転モータと称する）と逆転駆動用減速器付きモータ（以下、逆転モータと称する）の2台のモータを使用して負荷軸の角度、角速度を制御する。オフセットトルクとは正転モータは正転方向、逆転モータは逆転方向に、常に一定で加え続けるトルクのことをいう。基本的なノーバックラッシュ制御では図1に示すように正転及び逆転モータが負荷にオフセットトルクを加え負荷軸を保持した状態で、正転モータ、逆転モータのどちらか一方のトルクを増加させることで指定した回転方向に負荷を駆動する。このとき他方のマータは負荷の回転方向に反対にオフセットトルクを加え続けることにより、マータの歯車を負荷軸の歯車に押し付けてバックラッシュを抑制する。

3. 駆動システムの解析及びシミュレーション

3.1 一次共振周波数の振動抑制と消費電流低減の同時実現方法

ノーバックラッシュ制御（前川, 小川, 2012）では一次共振周波数でバックラッシュが発生しやすく、その振動抑制に速度差ゲインの導入（前川, 杉浦, 2016）が効果的であることを示した。この方法では正転モータ角速度と逆転モータ角速度の差に速度差ゲインを乗じて正転及び逆転モータにそれぞれフィードバックするものである。また、ノーバックラッシュ制御では従動側モータには常に一定のオフセットトルクを加え続けるため、駆動側モータの必要電流はその分増加していた。そこで、消費電流低減を目的にトルククロスオーバを導入した実験結果（前川, 小川, 2013）を示した。トルククロスオーバは駆動側モータのトルク目標値の一部を従動側モータに与えて従動側モータのオフセットトルクを減らす方法である。従動側モータのオフセットトルクを減らした分だけ駆動側モータのトルクが必要となるので、駆動側、従動側の両方のモータ電流を減少させることができる。これらの方法で振動抑制と電流低減の同時実現ができるかを検証すべく制御系解析を行った。その結果を図2に示す。駆動システムは正転モータ、負荷、逆転モータの3個のモータ要素と、減速機など動力伝達機構の2つのパネ要素で構成される3自由度系となる。バックラッシュは動力伝達系のパネ剛性に不感帯を持たせたモデリングとした。

Table 1 The driving patterns for the state of the load axis.

State	Torque	Forward drive motor	Reverse drive motor	Load axis
Standing state	const.	0	const.	0
Forward drive	const.	Td(+)	const.	0 Td(+)
Reverse drive	const.	0	const.	Td(-)

Fig. 1 The view of the no-backlash control in which two motors drive a load axis, as one is for a forward direction and another is for a reverse direction.
図2でθ_r: 位置目標値[rad], T_{ref}: トルク目標値[V], T_{M1}: 正転側トルク目標値[V], T_{M2}: 逆転側トルク目標値[V], T_o: オフセットトルク目標値[V], K_P: 位置制御ゲイン[1/s], K_V: 速度制御ゲイン[V/(rad/s)], K_C: トルククロスオーバゲイン[-], K_{Vd}: 電流フィードバックゲイン[A/V], K_{Vp}: 速度差ゲイン[V/(rad/s)], J_M: モータ慣性[kgm²], D_M: モータ粘性抵抗[Nm/(rad/s)], G: 減速比[-], K: 動力伝達系のパネ剛性[Nm/rad], J_L: 負荷慣性[kgm²], D_L: 負荷粘性抵抗[Nm/(rad/s)], T_p: 正転側モータ発生トルク[Nm], T_m: 逆転側モータ発生トルク[Nm], T_L: 負荷トルク[Nm], T_d: 外乱トルク[Nm], T_{MP}: 正転伝達トルク[Nm], T_{MM}: 逆転伝達トルク[Nm], \omega_{MP}: 正転モータ角速度[rad/s], \omega_{MM}: 逆転モータ角速度[rad/s], \theta_{MP}: 正転モータ角度[rad], \theta_{MM}: 逆転モータ角度[rad], \theta_L: 負荷角度[rad]である。

図2で正転方向に起動直後は、逆転方向にオフセットトルクとクロスオーバトルクが加わった状態で、かつバックラッシュはオフセットトルクにより抑制されているので、図3は図2に示す非線形モデルと等価になる。

Fig.2 The block diagram of the no-backlash control system with the torque crossover gain and the rate difference gain.

The backlash is modelled as a dead zone of the spring stiffness in the drive line.

Fig. 3 The block diagram of the no-backlash control system used in the analysis.

その確認として、一次共振周波数 \omega_Pの振動が最も顕著に現れる速度差ゲイン K_{Vd}=0の条件で表2の諸元を用いて図2の非線形モデルと図3の線形モデルに位置目標値 \theta_rにステップ入力を与えた時の伝達トルク T_{MP}, T_{MM}の応答を図4に示す。図4より、これらの応答はほぼ一致しており、起動直後の挙動を線形モデルで解析しても問題ないことが確認できた。

Table 2	The specifications of the drive system.						
Motor inertia	J_M	2.3×10^{-4}	kgm²	Position control gain	K_P	13	1/s
Motor viscous friction	D_M	1.0×10^{-7}	Nm/(rad/s)	Rate control gain	K_V	4.0	V/(rad/s)
Total gear ratio	G	100		Current feedback gain	K_{Vd}	0.192	A/V
Spring stiffness of the drive line	K	8.9×10^{-2}	Nm/rad	Motor torque constant	K_{Vp}	6.9×10^{-2}	Nm/A
Load inertia	J_L	1.16	kgm²	Rate difference gain	K_{Vd}	0	V/(rad/s)
Load viscous friction	D_L	6.0	Nm/(rad/s)	Torque crossover gain	K_C	0~1	V/(rad/s)

[DOI: 10.1299/transjsme.17-00141] © 2017 The Japan Society of Mechanical Engineers
3・2 伝達関数

図3のブロック図をもとに正転側に位置目標値を与えた際の挙動の解析を行った。まず，角度目標値θrから伝達トルクT_{MP}, T_{MM}までの伝達関数を求めた。伝達関数を式(1)，(2)に示す。

\[T_{MP} = \frac{GKK_{TF}K_{PV}(A_4s^4 + A_3s^3 + A_2s^2 + A_1s)}{(J_mG^2s^2 + (D_m + K_{TF}K_{VD})G^2s + K)(B_4s^4 + B_3s^3 + B_2s^2 + B_1s + B_0)} \theta_r \]
(1)

\[T_{MM} = \frac{GKK_{TF}K_{PV}(C_4s^4 + C_3s^3 + C_2s^2 + C_1s)}{(J_mG^2s^2 + (D_m + K_{TF}K_{VD})G^2s + K)(B_4s^4 + B_3s^3 + B_2s^2 + B_1s + B_0)} \theta_r \]
(2)

\[A_4 = 2G^2J_M \]
\[A_3 = 2D_MG^2J_L + 2D_LG^2J_M + G^2J_L(1 + K_C)K_{TF}K_{VD} \]
\[A_2 = 2G^2J_MK(-1 + K_C) + 2D_MG^2K + 2J_LK + D_LG^2(1 + K_C)K_{TF}K_{VD} \]
\[A_1 = 2D_K - 2D_MG^2K(-1 + K_C) \]
\[B_4 = 2G^2J_MK \]
\[B_3 = 2D_MG^2J_L + 2D_LG^2J_M + G^2J_L(1 + K_C)K_{TF}K_V \]
\[B_2 = 2D_MG^2K + 2J_LK + 4G^2J_MK + 2D_LG^2(1 + K_C)K_{TF}K_V + G^2J_L(1 + K_C)K_{TF}K_pK_V \]
\[B_1 = 2D_K + 4D_MG^2K + 2G^2K(1 + K_C)K_{TF}K_V + D_LG^2(1 + K_C)K_{TF}K_pK_V \]
\[B_0 = 2G^2K(1 + K_C)K_{TF}K_pK_V \]
\[C_4 = 2G^2J_MK \]
\[C_3 = 2D_MG^2J_LK_C + 2D_LG^2J_MK_C + G^2J_L(1 + K_C)K_{TF}K_{VD} \]
\[C_2 = 2G^2J_MK(-1 + K_C) + 2D_MG^2K_C + 2J_LK_K_C + D_LG^2(1 + K_C)K_{TF}K_{VD} \]
\[C_1 = 2D_MG^2K(-1 + K_C) + 2D_LK_K_C \]
\[K_{TF} = K_1K_T \]

\[\omega_{P1} = \sqrt{\frac{K}{J_mG^2}} \]
(3)

\[\zeta = \frac{D_M + K_{TF}K_{VD}}{2J_m} \sqrt{\frac{J_mG^2}{K}} \]
(4)

式(1)，(2)より系の減衰を高めるために導入した速度差ゲインK_{VD}は分母の右括弧だけに現れる。すなわち，K_{VD}は式(3)，(4)に示す一次共振周波数ω_{P1}の減衰係数ζを高めることだけに作用し，それ以外の極には影響を及ぼさないことがわかる。一方，トルククロスオーバー制御K_Cはω_{P1}の極に影響を及ぼさないことがわかる。したがって，ω_{P1}に関してK_{VD}とK_Cは非干渉となるので，調整手順として，K_{VD}を用いてω_{P1}の減衰を高めた後，K_Cを用いて消費電流低減を行うのが適切であると考えられる。
3・3 トルククロスオーバーゲイン導入に伴う極, 零点の挙動

表2の諸元を用いて, 式(2)の伝達関数の極と零点の動きを図5に示す。60 rad/s付近の極は式(3)の一次共振周波数 ω_p であり, その極はトルククロスオーバーゲイン K_C の値によらず全く動かない。また, 130（rad/s）付近の極は式(5)に示す負荷共振周波数 ω_{pL} （前川, 小川, 2012）であり, K_C を変えてもその極はほとんど動かない。一方で, 零点は K_C の値に伴い大きく動く。K_C が小さい時, 零点は原点から離れた右半平面にあり, 同ゲインが大きくなるにつれて原点に近づいていく。K_C が0.8を超えると, 零点は左半平面に移動する。零点が左に移動していくのは, 正転方向に位置目標値を加えた直後に逆転伝達トルク T_{MM} の向きが負から正に, すなわち, 負荷を駆動する向きに変化していくことに対応している。そして, K_C が1の時に ω_p の極と相殺する。さらに K_C を増加させると, 零点は上下方向に移動して行くので, ω_p の振動が再び生じるとともに T_{MM} の応答がより振動的になる。

$$\omega_{pL} = \frac{2K_C}{J_L}$$

Fig. 5 The eigenvalues and zeros of the no-backlash control system at the rate difference gain $K_{ip} = 0$. As the torque crossover gain K_C increases, the zeros approach from the right half plane to the imaginary axis. The poles of the 1st natural frequency ω_p are cancelled by the zeros at $K_C = 1$. As K_C increases from 1, the zeros will move the up and down direction.

3・4 トルククロスオーバーゲイン導入時の非線形シミュレーション

図2に示すブロック図を用いて非線形シミュレーションを行った。位置目標値として自動車で連続して車線変更を行う際のハンドル操舵の周波数や角度を想定し, 0.2Hz, 20度の正弦波入力を与え, トルククロスオーバーゲイン K_C を増加させた。結果を図6に示す。$K_C = 0$ の時, 起動直後に正転モータの電流が急増, 逆転モータの電流は一定で正転方向にトルクを発生し, 1～3s 間は正転モータの電流は一定, 逆転モータの電流はマイナス側に増加し逆転方向にトルクを発生する。一次共振周波数 ω_p の振動は起動直後が顕著であり, その後, 駆動側となるモータが切り替わる際にも ω_p の振動は励起されない。また正転伝達トルク T_{MP}, 逆転伝達トルク T_{MM} は0になっておらず, バックラッシュは発生していない。図7～図10に示す通り, K_C の増加につれて ω_p の振動が減少し, 起動直後の T_{MM} はマイナスから $K_C = 0.6$ でプラス方向に変わる。起動直後の T_{MP} の電流ピーク値も減少していく。図9に示す $K_C = 1.0$ の時, 理論的には極零相殺により ω_p の振動が消えた状態である。なお, ノーバックラッシュ制御は2つのモータが互いに逆方向に突っ張ることでバックラッシュを抑制しており, K_C を必要以上に大きくするとオフセットトルクが減少しバックラッシュが発生しやすくなる懸念がある。

(a) Load angle θ_L
(b) Motor velocity ω_p, ω_M
(c) Motor current I_F
(d) Transmission torque T_{MP}, T_{MM}

Fig. 6 Sinusoidal response of non-linear simulation at the torque crossover gain $K_{ip} = 0$. The vibration of the 1st natural frequency ω_p is appeared in the transmission torque T_{MP} and T_{MM}. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0 \& T_{MM} \neq 0$. The direction of T_{MM} immediately after starting is negative.

[DOI: 10.1299/transjsme.17-00141] © 2017 The Japan Society of Mechanical Engineers
Fig. 7 Sinusoidal response of non-linear simulation at the torque crossover gain $K_c = 0.6$. The vibration of the 1st natural frequency ω_p of the transmission torque T_{MP} and T_{MM} is reduced. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0$ & $T_{MM} \neq 0$. The direction of T_{MM} immediately after starting is flat.

Fig. 8 Sinusoidal response of non-linear simulation at the torque crossover gain $K_c = 0.8$. The vibration of the 1st natural frequency ω_p of the transmission torque T_{MP} and T_{MM} is reduced. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0$ & $T_{MM} \neq 0$. The direction of T_{MM} immediately after starting is slightly positive.

Fig. 9 Sinusoidal response of non-linear simulation at the torque crossover gain $K_c = 1.0$. The vibration of the 1st natural frequency ω_p of the transmission torque T_{MP} and T_{MM} is suppressed by the pole-zero cancellation. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0$ & $T_{MM} \neq 0$. The direction of T_{MM} immediately after starting is positive.

Fig. 10 Sinusoidal response of non-linear simulation at the torque crossover gain $K_c = 1.2$. The vibration of the 1st natural frequency ω_p of the transmission torque T_{MP} and T_{MM} is reduced. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0$ & $T_{MM} \neq 0$, but K_c exceeding 1 is not preferable because the offset torque decreases and does not act backlash suppression.
3.5 トルククロスオーバーゲイン及びトルク差ゲイン導入に伴う極, 零点の挙動

式 (1), (2) に示す伝達関数よりトルク差ゲイン K_{VD} は, 一次共振周波数 ω_{P1} の振動抑制にのみ作用することが分かっている. K_{VD} を導入により虚軸の近くにあった ω_{P1} の極は左に移動している. 一方, トルククロスオーバーゲイン K_C による極, 零点の挙動は図5と同様である.

![Fig. 11](image1)
The eigenvalues and zeros of the no-backlash control system at the rate difference gain $K_{VD} = 1$. Thus, the torque crossover gain K_{VD} can act only on the 1st natural frequency ω_{P1} and can increase its damping. The movement of the zeros with increasing the torque crossover gain K_C is the same as Fig. 5.

3.6 トルククロスオーバーゲイン及びトルク差ゲイン導入時の非線形シミュレーション

トルク差ゲイン K_{VD} ありの条件下でトルククロスオーバーゲイン K_C を増加させた場合の非線形シミュレーションを行った. 目標値として 0.2Hz, 20deg の正弦波入力を与えた時の結果を図12～図15に示す. 一次共振周波数 ω_{P1} の振動が K_{VD} により抑制されるとともに, K_C の増加に伴い正転モータ及び逆転モータの電流が減少している.

![Fig. 12](image2)
Sinusoidal response of non-linear simulation at the rate difference gain $K_{VD} = 0.25$ and the torque crossover gain $K_C = 0$. The vibration of the 1st natural frequency ω_{P1} is suppressed by K_{VD}. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0 \& T_{MM} \neq 0$.

![Fig. 13](image3)
Sinusoidal response of non-linear simulation at the rate difference gain $K_{VD} = 1$ and the torque crossover gain $K_C = 0$. The vibration of the 1st natural frequency ω_{P1} is fully suppressed by K_{VD}. A backlash does not occur, where the transmission torque is $T_{MP} \neq 0 \& T_{MM} \neq 0$.

[DOI: 10.1299/transjsme.17-00141] © 2017 The Japan Society of Mechanical Engineers
Fig. 14 非線形シミュレーションの結果。正弦波入力による振動の抑制は良好である。モータの速度、電流、トルクも減じている。バックラッシュが発生しない。

Fig. 15 非線形シミュレーションの結果。正弦波入力による振動の抑制は良好である。モータの速度、電流、トルクも減じている。バックラッシュが発生しない。

4. 実験

4・1 トルククロスオーバケインの導入

トルククロスオーバケイン K_c を導入することにより、電流低減効果を実験で検証した。使用した実験装置の外観を図16, 表3に示す。負荷慣性計測できるのは正転及び逆転駆動用モータの位置、速度、電流、及び負荷の角度である。実験装置ではトルク計がなく、伝達トルクを計測することはできない。モータ速度や電流の応答を非線形シミュレーションと比較した。

Table3 実験装置の仕様

実験では目標値として0.2Hz, 3degの正弦波入力を与えた。図17が従来の1モータ駆動、図18がノーバックラッシュ駆動。図19がトルククロスオーバーを追加したノーバックラッシュ駆動での結果である。図17に示す1モータ駆動では負荷角度の目標値とのバックラッシュによる偏差が顕著であるが、図18, 図19のノーバックラッシュ駆動では改善されている。負荷速度に着目すると1モータ駆動よりノーバックラッシュ駆動の方がより正弦波に近づいている。また、モータ電流は、1モータ駆動では最大0.8A, ノーバックラッシュ駆動では正転モータ電流3Aの時、逆転モータは0.8Aなので総電流は3.8Aとなるが、トルククロスオーバーを追加により1.8Aに低減している。
Fig. 17 Sinusoidal response of the experimental results in one motor control system. The distortion of the load velocity is remarkable. The maximum motor current is 0.8A.

Fig. 18 Sinusoidal response of the experimental results of the no-backlash control system without the torque crossover. The distortion of the load velocity has been improved. The maximum total motor current is 3.8A.

Fig. 19 Sinusoidal response of the experimental results of the no-backlash control system with the torque crossover. The distortion of the load velocity has been improved compared with one motor drive. The maximum total motor current is 1.8A.

4・2 トルククロスオーバーケイン及びトルク差ゲイン導入

トルククロスオーバーケイン K_C 及びトルク差ゲイン K_{VD} 導入による電流低減及び一次共振周波数 ω_p の振動抑制効果を実験で検証した。諸元を表4に示す。ω_p の振動が顕著に現れるよう減速比と負荷慣性を変更した。

Table4	The specifications of the experimental equipment.
Motor inertia J_M	2.4×10^{-4} kgm2
Total gear ratio G	15
Spring stiffness of the drive line K	2.7×10^2 Nm/rad
Load inertia J_L	8.0×10^{-3} kgm2
Motor power	100 W
Backlash in terms of load axis	
Position control gain K_p	30 1/s
Rate control gain K_v	35 V/(rad/s)
Integration time of the rate control T_w	80 ms

まず、トルク差ゲイン K_{VD} の振動抑制効果を調べた。図20は $K_{VD}=0$, 図21, 図22は $K_{VD}=25$ での結果である。図20～図22の负荷角度波形が図18, 図19に比して歪んでいる理由は、装置の製作過程で静止摩擦が大きくなってしまったためである。図21に示すように K_{VD} 導入により ω_p の振動が抑制された。また、図21と図22でモータ速度波形や電流波形に若干の相違はあるが再現性は確保されている。
次のトルククロスオーバーゲイン \(K_C \) を増加させ、モータ総電流の抑制状況を調べた。図22に示す \(K_C = 0 \) では正転モータは3A、逆転モータは-0.5A なので総電流は3.5A となる。また、図23に示す \(K_C = 0.5 \) では正転モータは2A、逆転モータは0.1A なので総電流は2.1A となり、\(K_C = 0 \) に比べて消費電流を40% 低減できた。しかし、図24に示す \(K_C = 1.0 \) では0.6秒付近で正転、逆転モータ間の電流差がなくなり、速度波形に歪みが発生した。理論上、\(K_C = 1.0 \) では \(\omega_{P1} \) の極零相殺が起こり \(K_{VD} \) は不要となるが、実験では電流差が無くオフセットトルクが加わらない状態になるためバックラッシュが生じたものと予想される。よって、\(K_{VD} \) で \(\omega_{P1} \) の抑制しながら、\(K_C \) を0.5程度に設定するのが望ましい。なお、シミュレーションと比較して実験での \(K_{VD} \) の高い理由として、シミュレーションは実際の車両諸元で行ったが、実験ではシミュレーションと \(\omega_{P1} \) を合わせることを優先したためギア比が低くなった。その結果、実験装置の駆動側粘性抵抗が減少し、それに見合う減衰を得るために \(K_{VD} \) が高くなったと思われる。
5. 結 論

(1) 正転及び逆転モータが負荷にオフセットトルクを加えて負荷軸を保持した状態で、正転モータ、逆転モータのどちらか一方のトルクを増加させることで指定した回転方向に負荷を駆動するノーバックラッシュ駆動制御システムでは一次共振周波数でバックラッシュが発生しやすいことや駆動側モータが従動側モータを駆動する必要があるため消費電流が増加するなどの問題があった。そこで、駆動側モータのトルク目標値の一部を従動側モータに与えて従動側モータのオフセットトルクを減らすトルククロスオーバを導入した。解析では一次共振周波数の極と零点に影響を及ぼすことが明らかになった。したがって、トルククロスオーバを1に設定する以外に調整方法がないというのは決して好ましいとは言えない。

(2) そこで、2台のモータの速度差に速度差ゲインを乗じ、それぞれの軸に補正トルクとしてフィードバックすることで一次共振の振動を抑制する。トルククロスオーバゲインを増加させてモータ電流を低減する方法を提案した。解析により速度差ゲインとトルククロスオーバゲインは一次共振周波数に関して非干渉であることわかった。すなわち、速度差ゲインは一次共振周波数の減衰を高めるが他の極には影響せず、またトルククロスオーバゲインは一次共振周波数の極には影響しない。したがって、まず前者で一次共振周波数の減衰を確保した後、後者で電流を減らすようワンスルーで制御系調整が行えないので実用的である。ただし、バックラッシュを完全になくすために1つの駆動側に2台のモータを用いる方法はセンサ2台必要、制御装置も必要になり、その分コストアップや信頼性低下の懸念がある。完全ではないがバックラッシュを低減するには2枚の歯車を少しずらした遊星減速機や、剛性は低下するがハーモニックドライブの機械的な方法が簡便であるので、目的に応じて使い分けることが望ましい。

(3) トルククロスオーバゲインと速度差ゲインの導入によりノーバックラッシュ駆動を維持しながら駆動側、従動側の両方のモータ電流を減少させることができることを解析、非線形シミュレーションを通じて検討し、実験でモータ電流を40%低減できることを確認した。

Fig. 23 Sinusoidal response of the experimental results at the rate difference gain $K_{VD} = 25$ and the torque crossover gain $K_C = 0.5$. The vibration of the 1st natural frequency ω_p is suppressed in the motor velocity ω_P, ω_M. The maximum total motor current is 2.0A.

Fig. 24 Sinusoidal response of the experimental results at the rate difference gain $K_{VD} = 25$ and the torque crossover gain $K_C = 1.0$. The velocity difference has occurred and it seems that the backlash has occurred. At that time, the difference between each motor current is close to 0, and the offset torque is not momentarily applied.
(4) 速度差ゲインで一次共振の振動を抑制した正弦波駆動実験でトルクロスオーバゲインが1の時,正転モータと逆転モータの電流がほぼ等しくなった際に顕著な速度差が生じた。よって、速度差ゲインによって一次共振抑制を行った状態でも、2つのモータにはある程度のトルク差が必要である。したがって、トルクロスオーバゲインは1では大き過ぎであり、0.5程度に設定するのが望ましい。

文献
安部正人, 自動車の運動と制御(1992), 東京電機大学出版局。
古屋信幸, 小栗崇嘉, 真嶋亮, 内田豊一, 2台のサーボモータの協調制御による歯車減速機のバックラッシ補償（第2報）—シミュレーションによる解析と制御アルゴリズムへの適用—, 精密工学会誌, Vol.74, No.10 (2008), pp.1107-1112。
前川明樹, 小川順也, 2モータ式ノーバックラッシュ駆動制御システム（第1報, 目標値応答に関する解析と実験）, 日本機械学会論文集 C編, Vol.78, No.791 (2012), pp.2386-2395。
前川明樹, 小川順也, 2モータ式ノーバックラッシュ駆動制御システム（第3報, 特性改善に関する解析と実験）, 日本機械学会論文集 C編, Vol.79, No.808 (2013), pp.4770-4785。
小田井正樹, 堀洋一, ギアトルク補償に基づくバックラッシをもつ二惯性系の速度制御, 電気学会論文誌 D, 産業応用部門誌, Vol.120, No.1 (2000), pp.5-10。
岡島克之, 遊星歯車装置, 関巴 2008-286299 (2008)。

Robertz, S., Halt, L., Kelkar, S., Nilsson, K., Robertsonn, A., Schaer, D. and Schiffer, J., Precise robot motions using dual motor control, Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA’10) (2010), pp.5613-5620。

内田豊一, 伊藤彰人, 北村敏也, 古屋信幸, サーボモータの協調制御による精密位置決め法（遊星歯車を増設した直動機構の特性評価）, 日本機械学会論文集, Vol.80, No.814 (2014), DOI:10.1299/transjsme.2014dr0162。

Odai, M. and Hori, Y., Speed control of 2-inertia system with gear backlash based on gear torque compensation, IEEJ Transactions on Industry Applications, Vol.120, No.1 (2000), pp.5-10 (in Japanese)。

Okajima, K., Planetary gear set, Japanese patent disclosure 2008-286299 (2008) (in Japanese)。

References
Abe, M., Automotive vehicle (1992), Tokyo denki university press (in Japanese)。
Furuya, N., Oguri, T., Mashima, A. and Uchida, T., Backlash compensation of reduction gears by twin motor cooperative control (2nd Report) : study on control method based on simulation analysis, Journal of the Japan Society of Precision Engineering, Vol.74, No.10 (2008), pp.1107-1112 (in Japanese)。
Maekawa, A. and Ogawa, J., No-backlash control system by two-motor drive (1st.report, the analyses and experiments of reference response), Transactions of Japan Society of Mechanical Engineers, Series C, Vol.78, No.791 (2012), pp.2386-2395 (in Japanese)。
Maekawa, A. and Ogawa, J., No-backlash control system by two-motor drive (3rd.report, the analyses and experiments of performance improvement), Transactions of Japan Society of Mechanical Engineers, Series C, Vol.79, No.808 (2013), pp.4770-4785 (in Japanese)。
Maekawa, A. and Sugiura, Y., No-backlash control system by two-motor drive (The analysis and experiments on natural vibration suppression), Transactions of the JSME (in Japanese), Vol.82, No.841 (2016), DOI:10.1299/transjsme.2016-00213。
Odai, M. and Hori, Y., Speed control of 2-inertia system with gear backlash based on gear torque compensation, IEEJ Transactions on Industry Applications, Vol.120, No.1 (2000), pp.5-10 (in Japanese)。
Okajima, K., Planetary gear set, Japanese patent disclosure 2008-286299 (2008) (in Japanese)。

[DOI: 10.1299/transjsme.17-00141] © 2017 The Japan Society of Mechanical Engineers
Robertz, S., Halt, L., Kelkar, S., Nilsson, K., Robertsson, A., Schaer, D. and Schiffer, J., Precise robot motions using dual motor control, Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA'10) (2010), pp.5613-5620.

Uchida, T., Ito, A., Kitamura, T. and Furuya, N., Positioning system with backlash compensation by twin motor cooperative control (Evaluation of rectilinear motion mechanism installed planetary gear speed reducer), Transactions of the JSME (in Japanese), Vol.80, No.814 (2014), DOI:10.1299/transjsme.2014dr0162.

Uchida, T., Ito, A., Oshima, T. and Furuya, N., Positioning system with backlash compensation by twin motor cooperative control, Transactions of Japan Society of Mechanical Engineers, Series C, Vol.77, No.778 (2011), pp.2280-2289 (in Japanese).