MINI-REVIEW

Biotransformation ability of endophytic fungi: from species evolution to industrial applications

Xi Liu¹,² · Zhong-Ya Zhou¹,² · Jin-Long Cui¹ · Meng-Liang Wang¹ · Jun-Hong Wang¹

Received: 18 May 2021 / Revised: 24 August 2021 / Accepted: 25 August 2021 / Published online: 9 September 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract

Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new generation of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioactive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective catalytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the production/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized recent research progress in this field, providing a reference for further research and application of fungal endophytes.

Key points

• The industrial value of degradation of endophytes was summarized.
• The commercial value for the pharmaceutical industry is reviewed.

Graphical abstract

Keywords Endophytic fungi · Biotransformation · Natural product · Bioconversion · Co-evolution

Introduction

Bacterial and fungal endophytes deeply involved in the physiology and metabolism of host plants can be found in almost all studied plants (Chen et al. 2020). Plant survival and development is often inseparable from the participation of such endophytes (Adamo et al. 2020). Therefore, plants should no longer be simply regarded as independent individuals; rather, they must be considered “symbiotic functional bodies” containing internal microorganisms (Kuzniar et al. 2020). In particular, endophytic fungi sustain part or their entire life cycle within healthy plants without causing any obvious diseases (Strobel 2018).

Of the 300,000 species of plants existing on earth, about one-sixth produce compounds potentially useful in disease treatment, able to synthesize various bioactive compounds, within the special internal environments in plants whose habitats are different from the ordinary environment (e.g., soil) for microorganisms (Nisa et al. 2015). These special habitats provide unique niches for a large number of endophytic fungi (Li et al. 2020a).

Among recent studies on secondary metabolites of fungi, 51% of newly discovered compounds with pharmacological activity have been found from endophytic fungi, with many showing versatile biological functions, including promoting plant nutrient absorption and helping plants cope with stress.
(Liu et al. 2020; Pilsyk et al. 2020; Xiao et al. 2020). They are also deeply involved in plant physiology and metabolism, including gene exchange, signal induction, and element sharing with plants. In addition, fungal secondary metabolites can be involved in regulating plant gene expression, modulating the activity and direction of branched metabolic pathways, and modifying plant metabolites and their production. With respect to the latter, fungal endophytes often impact the amount and concentration of (final) metabolites accumulating in plants tissues. In terms of the level of metabolic modifications, endophytic fungi can directly synthesize or decompose some metabolites; i.e., they can affect the metabolite composition of medicinal plants through biotransformation. For example, the endophytic fungi Flavobacterium sp. GE 32 and Arthritus sp. GE 17–18 in Panax ginseng can transform ginsenoside Rb1 that has low bioavailability into ginsenoside Rg3 and C-K (these products from ginseng root have been implicated in having a host of human health benefits), which has high bioavailability (Fu 2019; Fu et al. 2016).

Endophytic fungi complement the biotransformation capacity of the host plant, thus helping solve issues in complex compound production and the decomposition of difficult substances, such as industrial waste and pollutants. Biotransformation, including decomposition and synthesis affected by endophytic fungi both in vivo (in plant) and in vitro, is an area of significant active research. Recent advances have been successfully applied in drug synthesis (Louis et al. 2019), pollutant degradation, and food fermentation, e.g., wine brewing (Rho et al. 2020), thus providing opportunities for green and efficient solutions to industrial challenges. However, correlated summaries on these applications are largely lacking. The present study focuses on the biosynthesis and biodegradation abilities of endophytic fungi relevant to various applications, i.e., biotransformations and catalyses, to provide a scientific reference for sustainable production.

Research progress on the biodegradation activity of endophytic fungi

The research on and application of biodegradation activities of endophytic fungi includes the decomposition of small organic molecules and polymers.

Progress in degradation of small organic molecules by endophytic fungi

A balanced but potentially antagonistic relationship often exists between endophytic fungi and host plants (Schulz et al. 2015). Plants activate their defense system when many fungal endophytes initiate colonization, but the fungus often disrupt these defense responses by targeting plant defensive signaling factors to suppress host responses allowing for establishment within the plant more easily. For example, endophytic Mucor sp. KU234656 and Epichloë festucae KM400586, which have various hosts, decompose plant signaling molecules such as strigolactones (plant hormones that stimulate branching) and salicylic acid (plant hormones that regulate the plant immune system), to facilitate the penetration of the fungus into plant tissues (Rozpadek et al. 2018; Ambrose et al. 2015). Such fungal decomposing abilities are attributed to degradative enzyme systems, which include carbohydrate esterases, glycoside hydrolases, and polysaccharide lyases (Gramaje et al. 2020). Some endophytic fungi have evolved metabolic abilities to decompose plant-specific organic substances; for instance, Phomopsis liquidambari from the bark of Bischofia polycarpa can degrade sinapic acid (one of the most representative methoxy phenolic pollutants) to H2O and CO2 (Xie et al. 2016). Further to this, Burkholderia cenocepacia 869T2 from the roots of Vetiveria zizanioides has the unique ability to dechlorinate the compound dioxin (persistent carcinogenic byproducts of anthropogenic activities) into dibenzo-p-dioxin and subsequently decompose it into catechol and 2-hydroxy-succinate with low carcinogenicity (Nguyen et al. 2021). Endophytic fungi also develop various abilities to directly decompose defense substances. For example, Fusarium verticillioides from Zea mays, Acrmenion tum sp. and F. moniliforme from Aphelundra tetragona, and Paecilomyces formosus HQ44388 from Glycine max can degrade toxic substances, such as benzoxazolin-2-(3H)-one (Schulz et al. 2016), aphelandrine (Christa et al. 1997), jasmonic acid (Bilal et al. 2018), 2-hydroxy-N-(2-hydroxyxphyl) acetate (Zikmundova et al. 2002), 6-methoxy-benzoxazolin-2-one, and 2-benzoxazolinone (Glenn et al. 2016), in plants to adapt to the environment and establish a balanced symbiotic relationship with plants.

When an equilibrium is attained between an endophytic fungus and its host plant(s), a mutual relationship is established. Endophytic fungi can help plants avoid external damage through contributions of their unique biodegradation capability. For example, the endophytic fungus Neurospora intermedia MF362953 isolated from Saccharum officinarum can decompose phenylurea herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea] (Morais et al. 2017). Some endophytic fungi can degrade some host plants’ compounds, but the biochemical mechanism(s) of how these compounds are degraded has yet to be clearly elucidated. For instance, Paraconiothyrium variabilis LCP5644 from Cephalotaxus harringtonia and F. oxysporum 2T12J01A from Andrographis paniculata can decompose O-glycosides and change the metabolite profile of the host (Tian et al. 2014; Wang et al. 2014). Some endophytic fungi from Salvia miltiorrhiza can degrade limonene, geraniol, and pinene (plant essential oil components) into intermediates of terpenoid biosynthesis to produce new valuable biological products, and Mucor circinelloides DF20 from Salvia miltiorrhiza can promote tanshinone (pharmacological active component of host plant) biosynthesis and accumulation.
in *Salvia miltiorrhiza* root (Chen et al. 2018, 2021). However, the degradation of endophytic fungi can sometimes destroy the medicinal substances of plants. For example, *Alternaria eureka* 20131E11L from *Ruscus aculeatus* can transform the spirochete alcohol skeleton of neoruscogenin, which used to treat chronic venous insufficiency, varicose veins, and hemorrhoids, into a cholesterol skeleton (Ozcinar et al. 2018), and endophytic fungal *P. liquidambari* from *Bischophia polycarpa* can completely decompose cinnamic acid (hepatoprotective agent) into CO₂ and H₂O, rendering it impossible for plants to synthesize flavonoids, thus reducing the active quality of medicinal plants (Xie and Dai 2015).

Endophytic fungi not only exhibit their degradation ability within the host plant but also display high degradation activity outside the plant. Nine endophytic fungi isolated from *Plantago lanceolata*, including *Aspergillus niger*, *Eurotium repens*, *Leptosphaerulina chartatum*, A. nidulans, *E. amstelodami*, *Cladosporium pseudocladosporioides*, *Penicillium chrysogenum*, *Bipolaris* sp., and *Epichloë nigrum*, have been shown to be able to decompose non-steroidal anti-inflammatory drugs, such as diclofenac, diflunisal, ibuprofen, mefenamic, and piroxicam in vitro (Gonda et al. 2016). Endophytic fungi with unique biodegradation capabilities benefit from various enzymes co-evolved with host plants for a long time, particularly α-L-rhamnohydrolase, β-N-acetylhexosaminidase, and urease, which have industrial application values (Gramaje et al. 2020; Atmaca 2019). Many additives that are difficult to treat in the industry, such as reactive dark blue, reactive green, reactive turquoise blue, reactive brilliant red, reactive brilliant orange, triclosan, and malachite green (listed as a carcinogen by the Food and Drug Administration), are considered as common pollutants in the aquaculture industry (Zhou et al. 2018b). Three endophytic fungi, *Myrothecium verrucaria* DJTU-sh7, *Glomerella* sp., and *Talaromyces stollii*, isolated from *Taxus chinensis* can degrade reactive dark blue, reactive green, reactive black, reactive turquoise blue, reactive brilliant orange, and reactive brilliant red (refractory chemical dyes) (Hao et al. 2016). *Klebsiella aerogenes* M2017452 from *Cyperus rotundus* can degrade malachite green to nontoxic substances, e.g., N,N-dimethylaniline and 2-(4-dimethylamino-phenyl)-phenyl-methanal (Shang et al. 2019). Triclosan can be degraded into detoxifying metabolites, e.g., hydroquinone, (2Z,4E)-3-chloro-2,5-dihydroxyhexa-2,4-dienedioic acid, and (2Z,4E)-3-chloro-2,5-dihydroxyhexa-2,4-dienedial by *Penicillium oxalicum* FJ196840 isolated from *Artemisia annua* (Tian et al. 2018). In addition, endophytic fungi can be used to degrade organic substances, such as polycyclic aromatic hydrocarbon (Tardif et al. 2016), triphenylmethane (Gao et al. 2020a), cyanide (Al-Badri et al. 2020), azo compounds (Marzell-Pereira et al. 2019), and phenols (Rusanova et al. 2019), in industrial wastewater. For example, *Trichoderma harzianum* PTA-10317 from *Taraxacum officinale* L. can completely decompose phenanthrene (polycyclic aromatic hydrocarbon pollutant) into CO₂ and H₂O (Repas et al. 2017). Furthermore, endophytic fungus *P. liquidambari* from *Oryza sativa* can degrade more than 10 small molecule organic chemical pollutants, such as bisphenol, chloroalkane, chloroalkene, caprolactam, polyaromatic hydrocarbon, naphthalene, chlorochlorochlorohexane, chlorobenzene, aminobenzoate, styrene, fluorenbzoate, atrazine, dioxin, toluene, benzoate, and ethylbenzene (Zhou et al. 2017).

Progress in the degradation of organic polymers by endophytic fungi

Endophytic fungi have acquired the ability to decompose the aging cell wall and breakthrough various plant barriers in the process of establishing symbiosis with host plants by evolution. These interactions are aimed towards the fungus obtaining nutrients from the plant, but can also have the consequence of eliminating host “waste” byproducts, i.e., compounds that the plant cannot use, but may, in some instances, accumulate within plant tissues leading to toxicity (Suryanarayanan et al. 2012). In addition, fungal endoglucanases and celllobiohydrolases (endo- and exo-cellulases) can degrade cellulose and hemicellulose of plant for their invading or mutualistic symbiosis (Adamo et al. 2020). The unique biodegradation process of organic polymers in endophytic fungi often requires the assistance of redox system enzymes, such as lytic polysaccharide monoxygenases, ligninolytic peroxidases, laccase, and other enzymes produced by endophytic fungi, cellulose, and lignin as a major component of cell wall aging, which can be transformed into nutrients of endophytic fungi (Mathe et al. 2019). For example, *Rickenella mellea* JGI 334,780 from *Alloclavaria purpurea* can transform lignin, cellulose, hemicellulose, and lignin-like polymers in plant aging cell walls into their nutrients or help plant to dispose garbage (Korotkin et al. 2018). Endophytic fungi can produce endo-1,4-β-xylanase, xylan α-glucuronidase, acetylxylan esterase, and xylan acetylsterase to degrade xylan, while chitin can be degraded into nutrients by chitinase, polysaccharide lyase, and N-acetylglucosaminidase, all enzymes that can be produced by various endophytic fungi (Aranda-Martinez et al. 2016). For example, *Hymenoscyphus ericae* and *Pochonia chlamydosporia* can decompose chitin from other invading microorganisms, fungal residual body, or soil into N-acetylglucosamine, thus providing an organic nitrogen source for plants (Kerley et al. 1995).

Endophytic fungal enzymes have been gradually used in industrial production, and the production of amylase, cellulase, laccase, lipase, protein, xylanase, pectinase, phytase, and phenoxidase has been matured and industrialized (Correa et al. 2014). A summary of the latest research results on
endophytic fungal enzymes in the last 5 years is shown in Table 1.

With respect to industrial applications, a combination of the decomposition ability of endophytic fungi with physical and chemical pretreatment may reduce the loss of purely physical and chemical pretreatment. For example, in the sugar production industry, endophytic Ulocladium sp. from Eucalyptus Globus and F. verticillioides from Andropogon gayanus can be used to pretreat raw materials to improve the yield of sugar (de Almeida et al. 2019). The endophytic fungus Hypoxylon sp. CI-4 in T. distichum can transform cellulose into 1-acetyl-2-(1-hydroxyethyl)-cyclohexene, 3,2,3-dimethoxy-naphthalene, 2,5-furandione dihydro-cellulose into 1-acetyl-2-(1-hydroxyethyl)-cyclohexene, anti-chondrocyte apoptosis, and anti-Staphylococcus aureus of LW-XG was glucose, mannose, and glucuronic acid at a low-molecular-weight xanthan (LW-XG; the composition chain containing mannose, gluconic acid, and mannose) into a low-molecular-weight xanthan (LW-XG; the composition of LW-XG was glucose, mannose, and gluconic acid at a molar ratio of 1.63:1.5:1.0) with antioxidant, anti-arthritis, anti-cholesterol, acetopyrosis, and anti-Staphylococcus aureus (Hu et al. 2019). These fungi also have a commercial value in environmental and industrial waste treatment. For example, the serine hydrolase secreted by Guignardia mangiferae E2702C and Zopfiella karachiensis E2719A can be used to treat synthetic material polyester polyurethane under anaerobic conditions (Russell et al. 2011).

Research progress on the biosynthesis of natural products by endophytic fungi

Endophytic fungi directly synthesize various natural products in plants

The reciprocal relationship between endophytic fungi and the host has been verified; however, many aspects of the complex co-evolutionary mechanisms that mediate these interactions remain unclear (Lu et al. 2019). Such co-evolutionary adaptations have been selected for the ability of endophytic fungi to produce signal substances that are either similar or different from the host, and endophytic fungi can provide new avenues for screening for efficient synthetic drugs, compounds useful in agriculture (plant growth promotion, protection from abiotic stress, protection from pathogens, etc.), food safety (harvest, post-harvest, storage), and other industrial applications (biofuels, bioplastics, etc.).

Endophytic fungi can produce various phytohormones, such as phytohormone indole-3-acetic acid, gibberellic acid, cytokinin, and phytoalexins, which were successively found from the endophytic fungi Serendipita indica, F. fujikuroi MI58289, and Piriformospora indica DSM11827 (Inaji et al. 2020; Niehaus et al. 2016; Li et al. 2016b). This finding indicated that endophytic fungi can participate in host signal regulation and affect host physiological and metabolic activities (Yuan et al. 2016; Bilal et al. 2018; Guarino et al. 2020).

Endophytic fungi can also synthesize some “simulated secondary metabolites” similar to or the same as host plants through “gene exchange” with host plants. The gene clusters mediating the synthesis of some of these “shared” metabolites have been proposed to be endophytic fungal origin, having been transferred to host plants through their long co-evolutionary history (Glenn et al. 2016). Currently, paclitaxel (an antineoplastic) (Shao et al. 2021), camptothecin (for antitumor) (Kaur et al. 2020), cinchonine (for treatment of malaria disease) (Maehara et al. 2011), and podophylotoxin (inhibit herpes virus) (Vasundhara et al. 2016) can be synthesized by endophytic fungi and more than 90 high medicinal value metabolites (Archana et al. 2021). However, in other cases, the biosynthetic pathway mediating the synthesis of similar bioactive metabolites found in both endophytic fungi and their plant hosts has been found to be completely different. For example, the pathway for gibberellic acid (GA) biosynthesis of Gibberella fujikuroi IMI 58,289 is different from their host plants, and the fungal GAs is synthesized from acetyl-CoA via mevalonic acid pathway, but most plants, at least in the green parts, are predominantly produced by the methyl erythritol phosphate pathway (Böhmke and Tuzdynski 2009). The taxol (anticancer drug) biosynthetic pathway found in the endophytic fungus A. nidulans has low homology to the one reported for plant Taxus spp., suggesting that the taxol biosynthesis ability of this endophytic fungi may have evolved independently of the plant one (Elena et al. 2020).

Some compounds synthesized by endophytic fungi are not made by host plant but are released into the tissues of host plant and can cause changes in the chemical composition of the host plant. For example, fungal ergot alkaloid and loline alkaloids can accumulate in plant tissues and which are important toxic substances to livestock (Fig. 1). These compounds were originally thought to be produced by the plant, Lolium perenne, until they were discovered to be exclusively produced by L. perenne endophytic E. festucae and Epichloë fungal species (Katrin et al. 2020; Panaccione et al. 2017). On the basis of these findings, scientists have reinoculated L. perenne with genetically modified Epichloë spp. as E^AR1 and E^AR37, in which production of the toxic alkaloids has been abolished, and leading to the elimination of the toxic substances in host plants, and improved quality of pasture production. These fungi are currently commercialized in Australia, North America, and other places.
Table 1 Industrial application of enzyme from endophytic fungi in medicinal plants

No.	Plant	Endophytic fungi	Enzyme	References
1	Allium cepa	Beauveria bassiana	Xylanase, endoglucanase	Amobonye et al. (2021)
2	Coffee plants	Induratia sp. CML4013	Lipase, amylase, protease, phytase, pectinase, cellulase	Monteiro et al. (2020)
3	Vitis labrusca L.	Diaporthe sp. KM362392	Endoglucanase	Felber et al. (2019)
4	Andropogon gayanus	Fusarium culmorum	Endoglucanase	de Almeida et al. (2019)
5	Phoenix dactylifera L.	Penicillium biliae TDPEF30	Protease (especially acidic protease)	Ben et al. (2019)
6	Simarouba glauca	Phomopsis sp. KX49881	Laccase	Navada et al. (2018)
7	Laguncularia racemosa	Aspergillus awamori	Endoglucanase, β-glucosidase, xylanase	Maroldi et al. (2018)
8	Rhizophora mangle	Aspergillus niger	Cellulase	
9	Cananga odorata	Cercospora chrysanthemi	Amylase, cellulase, lipase	Toghueo et al. (2017)
10	Chaetomium globosum	Cercospora flagellaris	Cellulase	
11	Colletotrichum fructicola	Cercospora olivascens	Amylase, lipase	
12	Diaporthe sp.	Fusarium equiseti	Amylase, cellulase, laccase	
13	Fusarium oxysporum	Fusarium solani	Amylase, cellulase, lipase	
14	Fusarium striatum	Fusarium solani	Amylase, cellulase, lipase	
15	Guignardia mangiferae	Phoma microchlamydospora	Amylase, cellulase, lipase	
16	Nectria rigidiuscula	Phomopsis phyllanticolla	Amylase, cellulase, lipase	
17	Nigrospora oryzae	Pleosporales sp.	Cellulase	
18	Terminalia mantaly	Septoria sp.	Lipase	
19	Cercospora chrysanthemi	Diaportheales sp.	Amylase, cellulase, lipase	
20	Cercospora flagellaris	Corynespora cassiicola	Amylase, cellulase, lipase	
21	Cercospora sp.	Fusarium solani	Amylase, cellulase, lipase	
22	Hypoxylon investiens	Nemania bipapillata	Amylase, Lipase	
23	Nigrospora oryzae	Phoma microchlamydospora	Amylase, cellulase, lipase	
24	Phomopsis phyllanticolla	Phomopsis sp.	Amylase, cellulase, lipase	
25	Pleosporales sp.	Pleosporales sp.	Cellulase	
26	Septoria sp.	Xylaria adscendens	Amylase, cellulase, lipase, laccase	
27	Xylaria persicaria	Xylaria sp.	Amylase, cellulase, lipase	
28	Xylariaceae sp.	Xylariaceae sp.	Amylase, cellulase, lipase, laccase	
Another well-studied and confirmed example is swainsonine, a toxin which can seriously poison livestock, and it is also one of the main bioactive chemicals in several Fabaceae plants, produced by endophytic Undifilum spp. and Alternaria spp., which were dominant fungal endophytes from Astragalus, Oxytropis, and Swainsona of Fabaceae plants (Moodley et al. 2019; Ren et al. 2017). A significant number of novel compounds with diverse activities continues to be found in various endophytic fungi, including flavonoids, alkaloids, and terpenoids (with main finds summarized in Table 2).

Highly selective catalytic activities of endophytic fungi

The use of endophytic fungi as a biocatalyst for the production of high-yield and high-purity compounds in an environmentally friendly manner has attracted significant research interest (Scalvenzi 2014). The catalysis and transformation of endophytic fungi have been mainly used for the following purposes: (i) overcoming the difficulties in chemical synthesis; (ii) improving the activity or reducing the toxicity of lead drugs; and (iii) assisting in the study of the structure–activity relationship of drugs (Özçinar et al. 2018).

Endophytic fungi can selectively catalyze the synthesis of O-glycoside and O-ether bonds. Endophytic Penicillium sp. JQ228238 from Polygonum cuspidatum can transform resveratrol into pterostilbene, which shows more metabolic stability and stronger anti-inflammatory and antioxidant activities (Xu et al. 2020), Epicoccum nigrum from Salix sp. can transform flavonoids into kaempferol-O-diglycoside, which shows anticancer and antioxidant activity (Harwoko et al. 2019), and Neosartorya hiratsukae from Astragalus.

No.	Plant Endophytic fungi	Enzyme	References
41	Terminalia catappa Cercospora olivascens	Amylase, cellulase, lipase	Orlandelli et al. (2017)
42	Cladosporium tenuissimum	Amylase	
43	Diaporthe sp.	Amylase, cellulase	
44	Fusarium decemcellulare	Amylase, cellulase	
45	Fusicoccum sp.	Amylase, cellulase, lipase	
46	Guignardia mangiferae	Lipase	
47	Hypoxylon investiens	Amylase, cellulase, lipase, laccase	
48	Lasidiopodia theobromae	Amylase, cellulase	
49	Mycosphaerella thailandica	Amylase	
50	Ophioceras leptosporum	Amylase, lipase	
51	Paraconiothyrium variabile	Amylase, cellulase, lipase	
52	Penicillium chermesinum	Amylase, cellulase	
53	Penicillium parvum	Amylase, cellulase, lipase	
54	Pestalotopsis sp.	Cellulase, lipase, laccase	
55	Phomopsis theicola	Amylase, cellulase	
56	Pseudocercospora sp.	Amylase, lipase	
57	Pseudofusicoccum kimberleyense	Amylase	
58	Xylaria apiculata	Amylase	
59	Xylaria castorea	Amylase, cellulase, lipase	
60	Xylaria sp.	Amylase, cellulase, lipase	
61	Piper hispidum Sw Bipolaris sp. JF767001	α-amylase	Krishnapura et al. (2016)
62	Marasmius cladothyllum JF767003	α-Amylase	Katoh et al. (2014)
63	Phlebia sp. JF766997	α-Amylase	
64	Phyllosticta capitalensis JF766988	α-amylase	
65	Schizothyrium commune JF766994	α-amylase	
66	Curcuma amada Talaromycyes pinophilus KJ372306	l-Asparaginase	
67	Bacopa monnieri Pleosporales sp.	Amylase	
68	Eutypella sp. E9901c	Amylase	
69	Fusarium oxysporum FITK1	Amylase	
70	Fomitopsis cf. Meliae KYO	Cellulase	
71	Eremophila longifolia Preussia minima EL-14	α-Amylase	Zaferanloo et al. (2014)
angustifolius is able to transform neoruscogenin into neoruscogenin-1-\(O\)-\(β\)-glucopyranoside, which is a potential leading compound with anti-inflammatory and anti-tumor activities (Özçinar et al. 2018). In addition, endophytic fungi can catalyze the synthesis of N-glycoside and amide bonds with high selectivity. For example, *F. verticillioides* from *Zea mays* catalyzed the formation of the N-glycosidic bond of carbamate to produce N-(2-hydroxyphenyl)-malonic acid with anticancer and antioxidant activity, and *P. brasiliensis* from *Zea mays* promoted the formation of an amide bond between halogenated benzoic acid and amino acid (Fill et al. 2018; Schulz et al. 2016). The most commercial potential of endophyte is highly regioselective oxidation to hydroxyl, carbonyl, and epoxy groups. Four endophytic fungi, *P. oxalicum* FJ196840, *F. oxysporum*, *G. cingulata*, and *Umbelopsis isabellina* FJ872076.1, from *Senna spectabilis* and *Centella asiatica* can catalyze the formation of the benzene ring in artemisinic acid (synthetic precursor of antimalarial drug artemisinin), carbonylation, diterpene ketation, enantioselective hydroxylation of (\(-\))-(\(S\))-propranolol (medicine for treating arrhythmia, angina pectoris, and hypertension), and artemisinic acid (Hao et al. 2018; Monteiro et al. 2017; Borges et al. 2009; Gao et al. 2015). *Pestalotiopsis microspora* JF487784 in *Huperzia serrata* can hydroxylate ursolic acid at special sites (Fu et al. 2011). In addition, similar bioconversion effects have been reported by endophytic fungi; for instance, *Phomopsis sp.* KY113119 and *Neofusicoccum sp.* MF276906 from *Pinus sp.* can efficiently catalyze (\(+\)-(\(R\))-limonene to limonene-1,2-diol (Bier et al. 2017; Cecati et al. 2018), and endophytic *Nodulisporium sp.* JN254790 from *Panax notoginseng* can convert the carbon–carbon double bonds of ginsenosides Re to dihydroxy, forming a novel compound with antiplatelet aggregation activity, vinaginsenoside R13 (Luo et al. 2013). *F. oxysporum* from *C. roseus* can glycosylate vinblastine and finally produce vincristine with antitumor activity (Kumar et al. 2013). The redox reaction of endophytic fungi also has stereoselectivity. For example, *P. crustosum* and *A. fumigatus* DSM 21,023 from *Viguiera robusta* and *Juniperus communis* can catalyze highly enantioselective oxidation albdendazole and deoxypodophyllotoxin to (\(-\))-albendazole sulfoxide (drug for treating cerebral cysticercosis) and podophyllotoxin, respectively (Carrao et al. 2011; Kusari et al. 2009). Four endophytic fungi, namely, *N. parvum* from *Illicium verum* and *Bacillus megaterium*, *Pseudomonas* sp., and *P. chrysogenum* from *Raphanus sativus* were used for the stereoselective catalytic reduction of carbonyl group and the catalyzation of the reduction of acetophenone to (\(+\))-1-phenylethanol and (\(-\))-1-phenylethanol (Li et al. 2016a; Rodriguez et al. 2015). They can even catalyze specific regional chemical reactions. For instance, *P. brasilianum* from *Melia azedarach* can catalyze the Baeyer Villiger reaction regiochemistry of 1-indanone to produce two compounds: dihydrocoumarin and (\(-\)-(\(R\))-3-hydroxy-1-indanone (Fill et al. 2012).

One of the most important scientific applications of endophytic fungal catalytic activity is their use to assist in the study of the drug structure–activity relationships. For example, *Penicillium sp.* SWUKD4.1850 from the root of *Aphe-landra* can catalyze the transformation of nigroniacid (drugs for preventing cerebral ischemia–reperfusion injury) into new compounds with high biological activity (Qin et al. 2019). The endophytic *Colletotrichum gloeosporioides* and

![Diagram](image-url)
No.	Host plant	Endophytic fungi	Chemical name	Pharmacological activity	References
1	Ryegrass	*Epichloe festucae* LpTG-1	Lolitrem B	Central nervous toxicity	Reddy et al. (2020)
2	*Aster tataricus*	*Cyanoderma asteris*	Astin A	Antitumor activity	Schafhauser et al. (2019)
3	*Smallanthus sonchifolius*	*Nigrospora sphaerica* (22E, 24R)-ergosta-4,6,8(14),22-tetraen-3-one		Antitumor activity	Gallo et al. (2009)
4	*Phoma betae*		8-hydroxy-6-methoxy-3-methylisocoumarin		
5	*Rhizophora racemosa*	*Pseudopestalotiosis theae MN814071*	cytosporins W	Cytotoxicity	Yu et al. (2020)
6	*Achyranthes bidentata*	*Phomopsis* sp. CGMCC 5416	Phomochromanone A	Anti-HIV-1 activity	Yang et al. (2020b)
7			Phomochromanone B		
8			Phomochromanone C	Anti-PANC-1 cancer cells	
9	*Gynostemma Pentaphylla*	Chaetomium sp. JN180937.1	Exopolysaccharide (composed of glucose, mannose, arabinose, and galactose in the ratio of 78.29:8.99:8.64:4.08)	Antioxidation and inhibition of cell proliferation	Zhang et al. (2017)
10	*Duroia hirsuta*	*Stelliosphaera formicium* YU.101029	Stelliosphaerols A	Anti-Staphylococcus aureus	Forcina et al. (2015)
11			Stelliosphaerols B		
12	*Vernonia amygdalina*	*Curvularia papendorff* KR673909	Kheiric acid	The anti-virus activities of human coronavirus 229E, feline coronavirus FCV F9, and *Staphylococcus* sp. could inhibit the proliferation of human breast cancer MCF7 cells	Khiralla et al. (2020)
13	*Markhamia platycalyx*	*Aspergillus flocculus*	5,9-Dihydroxy-2,4,6,8,10-pentamethyldodeca-6,10-trienal	Anti-parasite activity of parasite *Trypanosoma Bruce*	Tawfike et al. (2019)
14	Extensive host plants	*Diaporthe vochysiae* LGMF1583	Vochysiamides A	Activity against gram-negative bacteria, *Klebsiella pneumoniae*	Noriler et al. (2019)
15	*Paullinia cupana*	*Trichoderma asperellum* KU512700	1-Hydroxy-8-methoxyanthracene-9,10-dione	Broad-spectrum antibacterial activity	Silva et al. (2018)
16	*Ephedra aphylla*	*Diaporthe Phaseolorum* KU512679	3,4-Bis(2-ethylhexyl)phthalic acid	Antitumor activity	
17			3-Hydroxypropanoic acid	Antitumor, genotoxicity	
18	*Caesalpinia echinata*	*Pleospora tarda*	Altemariol	Significant antiviral effect on HSV-2 and VSV	Selim et al. (2018)
19			Altemariol-(9)-methyl ether		
20			Ethyl trichoderonic acid	Significant antileishmanial activity	Cota et al. (2018)
21			6'-Acetoxy-piliformal acid		
No.	Host plant	Endophytic fungi	Chemical name	Pharmacological activity	References
-----	------------------	------------------	---------------	--	---------------------
24	*Entada abyssinica*	Epicoccum nigrum 10,672/SFR/CAM	Beauvericin	Significant resistance to three gram-negative bacteria *Bacillus cereus*, *Salmonella typhimurium*, *Staphylococcus aureus*	Dzoyem et al. (2017)
25			Indole-3-carboxylic acid	Significant inhibition of *Enterococcus faecalis*	
26			Parahydroxybenzaldehyde	Weak cytotoxicity and antioxidant activity	
27			Quinizarin	Weak cytotoxicity and antioxidant activity	
28	*Hypericum perforatum*	*Thielavia subthermophila*	Hypericin	It can be used in photodynamic therapy (PDT) of variable pathogenic diseases, light-activated hypericin acts as a strong pro-oxidant agent with antimicrobial and antigenic properties	Jendželovská et al. (2016)
29	*Cinnamomum mollissimum*	*Phoma sp.*	4-Hydroxymellein	Significant inhibitory effect on P388 murine leukemic cells and *Bacillus subtilis*	Santiago et al. (2014)
30	*Fucus serratus*		Phomafuranol	Significant antibacterial, antifungal, and algal activity	Hussain et al. (2014)
31	*Ocimum tenuiflorum*	*Penicillium Citrinum TPTDF1.4*	3,7-Dihydroxy-9-methoxy-1-methyl-6H-benzo[c]chromen-6-one	Significant cytotoxic effect on murine lymphoma cell line L5178Y cells	Lai et al. (2013)
32			(2R,3S,7aR,10aS,10bS)-5-Hydroxy-2,3,4-trimethyl-8-((E)-2-methyl-3-oxodec-8-enoyl)-2,3,7a,8,9,10,10a,10b-octahydropyrano[2′,3′,4′:4,5] chromen-2,3-b	Significant anti-*Staphylococcus aureus* ATCC 29,213 activity	
33	*Laurencia*	*Penicillium Chrysogenum QEN-24S*	Penicisteroids A	Antifungal and cytotoxic activity	Gao et al. (2011)
34	*Juniperus communis* L. Horstmann	*Aspergillus fumigatus Fresenius DSM 21,023*	Deoxypodophyllotoxin	Antibacterial and anticancer effects	Kusari et al. (2009)
35	*Kennedia nigriscans*	*Streptomyces sp. NRRL 3052*	Munumbicins E-4, Munumbicins E-5	Broad-spectrum antibiotics	Castillo et al. (2006)
36	*Helianthus annuus*	*Nigrospora sphaerica TISTR3654*	5-Pentyldihydrofuran-2(3H)-one	Activity of anti-*Staphylococcus aureus* and *meticillin*-resistant *S. aureus*, the activity of anti-fungi *Talaromyces marneffei* and the significant cytotoxic effect on A549 human cancer cell	Supaphon and Preedanon (2019)
37			(Z)-Methyl 4-(isobutyryloxy)but-3-enolate	2-Phenylacetic acid	
38			2-Phenylacetic acid	Cytotoxic activity	Ma et al. (2021)
39	*Cephalotaxus fortunei*	*Xylaria sp. KU645984.1*	Xylariasins A	Cytotoxic activity	
No.	Host plant	Endophytic fungi	Chemical name	Pharmacological activity	References
-----	-----------------------------	-------------------------	--------------------------------------	--	---------------------
40	Marine red alga	*Acremonium vitellinum* MH726097	6,8-di-O-Methylbipolarin	Insecticidal activity	Yuan et al. (2020)
41	*Achyranthes bidentata*	*Phomopsis* sp. CGMCC 5416	Chermesinone B	Anti-HIV-1 virus, cytotoxic activity	Yang et al. (2020b)
42	*Cyclosorus parasiticus*	*Phomopsone* C			
43	*Nicotiana tabacum*	*Diaporthe* sp. SC-J0138	Diaporthichalasin D	Cytotoxic activity	Yang et al. (2020a)
44	*Cyclosorus parasiticus*	*Diaporthe* sp. SC-J0138	Diaporthichalasin H		
45	*Nicotiana tabacum*	*Phomopsis* sp. CGMCC 5416	Chermesinone B	Anti-HIV-1 virus, cytotoxic activity	Yang et al. (2020a)
46	*Nicotiana tabacum*	*Diaporthe* sp. SC-J0138	Diaporthichalasin H	Cytotoxic activity	
47	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles A	Antifungal activity	Sun et al. (2020)
48	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles B		
49	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles C		
50	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles D		
51	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles E		
52	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles F		
53	*Salvia miltiorrhiza*	*Phomopsis* sp. PKU-EA00015	Strepimidazoles G		
54	*Elaeis guineensis* Jacq	*Streptomyces palmae* CMU-AB204	(Z)-5-(o-tolyl)pent-4-enoic acid	Antifungal activity	Sun et al. (2020)
55	*Elaeis guineensis* Jacq	*Streptomyces palmae* CMU-AB204	(Z)-7-(o-tolyl)hept-6-enoic acid		
56	*Elaeis guineensis* Jacq	*Streptomyces palmae* CMU-AB204	(Z)-11-(o-tolyl)undec-10-enoic acid	Antibacterial activity	Shao et al. (2020)
57	*Elaeis guineensis* Jacq	*Streptomyces palmae* CMU-AB204	(Z)-12-(o-tolyl)dodec-11-enoic acid		
58	*Aconitum vilmorinianum*	*Penicillium variabile* HM469398	Mazaphilones G	Inhibitory effects nitric oxide production	Shao et al. (2020)
59	*Aconitum vilmorinianum*	*Penicillium variabile* HM469398	Mazaphilones H		
60	*Stryphnodendron adstringens*	*Diaporthe* cf. *Heveae* LGMF1631	Cladosporin B	Antibacterial activity	Savi et al. (2020)
61	Marine sponges	*Penicillium solitum* MN365722	Solitumin A	Cytotoxic, antibiotic, anti-Leishmania, anti-Trypanosoma cruzi, and inhibition of proteasome activity	Rodriguez et al. (2020)
62	Marine sponges	*Penicillium solitum* MN365722	Solitumin B		
63	Marine sponges	*Penicillium solitum* MN365722	Solitumidines A		
64	Marine sponges	*Penicillium solitum* MN365722	Solitumidines B		
65	Marine sponges	*Penicillium solitum* MN365722	Solitumidines C		
66	Marine sponges	*Penicillium solitum* MN365722	Solitumidines D		
No.	Host plant	Endophytic fungi	Chemical name	Pharmacological activity	References
-----	----------------------	---------------------------	---	--	-----------------------------
67	*Globularia alypum*	Battamyces globularicolaMB 832,845	(3R,6Z)-3-Thiomethyl-6-[4-O-([2E]-4-hydroxy-3-methylbut-2-enyl]benzylidene]piperazine-2,5-dione	Cytotoxic activity	Noumeur et al. (2020)
68			(3R,6Z)-3-Thiomethyl-6-[4-O-([2Z]-4-hydroxy-3-methylbut-2-enyl]benzylidene]piperazine-2,5-dione		
69			(3R,6Z)-3-Hydroxy-6-[4-O-(3-methylbut-2-enyl]benzylidene]piperazine-2,5-dione		
70			(3R,6Z)-3-Thiomethyl-6-[4-O-(3-methylbut-2-enyl]benzylidene]piperazine-2,5-dione		
71			(3S,6R)-3,6-Bisthiomethyl-6-[4-O-[(2Z)-4-hydroxy-3-methylbut-2-enyl]phenylmethyl]piperazine-2,5-dione		
72	*Ceriops tagal*	*Colletotrichum gloeosporioides* MF508974	(5R,7S)-5,7-Dihydroxy-2-propyl-5,6,7,8-tetrahydro-4H-chromen-4-one	Cytotoxic activity and inhibition effect of COX-2 enzyme	Luo et al. (2020)
73	*Kandelia candel*	*Colletotrichum tropicale* SCSIO 41,022	Colletoidinole A		
74			Methyl 2-(1H-indol-3-yl)-2-(3-(2-methoxy-2-oxoethyl)-1H-indol-2-yl)acetate		
75	*Lycoris radiata*	*Aspergillus versicolor* MG821480	Proversilins C	Inhibition effect of HL-60 cell growth	Li et al. (2020b)
76			Proversilins E		
77	*Callistemon subulatus*	*Aspergillus* sp. MH665645	Isoshinamethone	Anticancer activity	Kamel et al. (2020)
78	*Melia azedarach* Linn	*Diaporthe eucalyptorum* KACC48653	Eucalyptacid A	Antifungal activity	Gaet al. (2020b)
79	*Fucus vesiculosus*	*Pyrenochaetopsis* sp. FVE-001	Pyrenosetins A	Anticancer activity	Fan et al. (2020)
80			Pyrenosetins B		
81	*Ceriops tagal*	*Talaromyces assiutensis* JN899320.1	Talarocyclopenta A	Inhibitory effects nitric oxide production	Cai et al. (2020)
82			Asperitaconic B		
83			Talarocyclopenta B	Antibacterial activity and inhibitory effects nitric oxide production	
84	*Rhizophora stylosa*	*Aspergillus terreus* SCAU011	Asperbutenolide A	Inhibition effect of COX-2 enzyme	Bao et al. (2020)
No.	Host plant	Endophytic fungi	Chemical name	Pharmacological activity	References
-----	-------------------------	--------------------------------	--	--	--------------
85	Acanthus ilicifolius L.	Epicoccum nigrum SCNU-F0002	1-(4-hydroxy-2-methoxybenzofuran-5-yl)butan-1-one	Antibacterial activity	Yan et al. (2019)
86	Vochysia diversgens	Diporthe vochysiae LGMF1583	Vochysiamide B		Noriler et al. (2019)
87	Rhizophora apiculata B1	Aspergillus sp. MK629267	Asperfuranoids A		Cai et al. (2019)
88			Asperfuranoids B		
89			Asperfuranoids C		
90			Asperpanoid A		
91			Asperpanoid B		
92	Lemna gibba	Streptomyces sp. MF347418	8-Hydroxy-3,4-dihydro-1H-quinolin-2-one	Antibacterial and cytotoxic activity	Mahmoud et al. (2018)
93			3,4-Dihydro-1H-quinolin-2-one		
94			8-Methoxy-3,4-dihydro-1H-quinolin-2-one		
95	Pulicaria crispa	Aspergillus versicolor	Aspernolides L	Antibacterial, antifungal, cytotoxic and	Ibrahim et al. (2018)
96			Aspernolides M	antimalarial activities	
97	Casearia sylvestris	Colletotrichum crassipes CSY-03	1-Phenylethyl-O-α-L-rhamnopyranoside	Inhibition effect of acetylcholine-	Chapla et al. (2018)
98	Dugetia stelechantha	Talaromyces stipitatus DgCr2 2.1b	Paecillin D	Antibacterial activity	da Silva et al. (2017)
99	Nicotiana tabacum	Rhizophycus vagum Nitaf 22	Rhizopyncinolide A		Lai et al. (2016)
100			Rhizopyncin C		
101			Rhizopyncin D		
102	Rhizophora stylosa	Aspergillus terreus FC118	Exopolysaccharide (composed of D-galacturonic acid, rhamnose, D-mannose, glucose, and D-galactose in ratio of 0.45:3.02:3.25:1.00:0.95)	Anti-obesity activity	Yu et al. (2019)
103	Angelica sinensis	Alternaria tenuissima MH035972.1	Fumigaclavine C	Antioxidant activity	Wang et al. (2019)
104	Salvia miltiorrhiza	Bipolaris sorokiniana KLBMPSM007	Cochloquinone B	Antibacterial activity	Zhu et al. (2020)
105	Bergenia purpurascens	Saccharicola bicolor KT367526	Bicolorins B	Antifungal activity	Zhao et al. (2020)
106			Bicolorins D		
107	Oxya chinensis Thunberg	Nigrospora sphaerica ZMT05	Nigrosporamide A		Zhu et al. (2017)
108			4-Prenyloxyclavatol		
109	Dendrobium officinale	Nigrospora oryzae	Nigrosirpexin A	Inhibition effect of acetylcholine-	Zhou et al. (2018a)

Note: The table continues with additional entries not shown here.
Fig. 2 Endophytic fungus *N. hiratsukae* 20131E2AR1-1 and *A. eureka* 20131E1BL1 catalyze the transformation of cycloastragenol and astragenol to new compound with new bioactivity.
P. crustosum from Viguiera robusta, and Fusarium spp. from V. arenaria can all transform diketopiperazine to produce several antitumor diketopiperazine derivatives, such as (3R, 5aR, 65, 10aR)-6-hydroxy-3-(hydroxymethyl)-2-methyl-3,10a-bis(methyl-thio)-2,3,5a,6,10,10a-hexahydro-pyrazino[1,2-α]indole-1,4-dione and 6-hydr- oxy-3-(hydroxymethyl)-2-methyl-3-(methythio)-2,3,10,10a-tetrahydro-pyrazino[1,2-α]indole-1,4- dione (Guimaraes et al. 2010). The unique habitat of endophytic fungi makes them “micro-evolve” to some unique ability to synthesize certain novel skeleton compounds. For example, F. oxysporum ATCC MYA 4623 can catalyze hydrazine to form novel skeleton compounds with anti-inflammatory activity, 3-methyl-1,2,4-triazolo[3,4-α]phthalazine (Almeida et al. 2018). Two endophytic fungi, A. eureka 20131E1BL1 and N. hiratsukae 20131E2AR1-1 from Astragalus sp., can modify cycloastragenol and astragenol to produce new compounds 1–5 (Fig. 2) that have telomerase inhibitory effects and are expected to be used in anti-aging and anti-Alzheimer’s disease (Ekiz et al. 2019).

Conclusion and future perspectives

Although much of the research on endophytic fungi is still in its infancy, their biodegradation and biosynthesis capacity is receiving increasing research attention. Results from this research can have the potential to promote revolutionary developments of industries ranging from food safety and security to the discovery of novel biopharmaceutical compounds to understanding basic aspects of organisal interactions and evolution. However, some difficulties are still encountered in studies on endophytic fungi. These include:

1. Lack of culture conditions: given the operational complexity of the plant internal environment and the often unique habitats of medicinal plants, although a large number of endophytic fungi have been detected using high-throughput sequencing, a significant number of endophytic fungi still cannot be effectively cultured in vitro.

2. In vitro passage affects fungal physiology: For those fungi that can be cultured, in vitro passage often leads to decreasing activities of desired biological processes. Owing to the complexity of the interaction between endophytic fungi and their host plants and current limitations on the factors that mediate these interactions, in many instances, the biotransformation activity, efficiency, and desired product formation capabilities of many isolated endophytic fungi gradually decrease with increasing generations of subculturing on synthetic media, thus limiting potential commercialization efforts. As one example, the ability to synthesize camptothecin gradually declines in F. solani INFU/Ca/KF/3 because of the lack of its host

C. acuminata continually providing stritosidine synthases in vitro (Kusari et al. 2011). Increasing our understanding and ability to manipulate these species interaction mechanisms is necessary.

3. Poor understanding of the networks that mediate establishment and regulation of the fungal-plant interaction. Our current understanding of the factors that mediate host responses, fungal persistence, and (biochemical) pathway interactions remains limited. For example, the content of wihanolid A in Withania somnifera can be increased by 147% when infected with Sarocladium kilense F800957 compared with those not infected (Ramesh et al. 2019). This regulatory mechanism also needs to be further elucidated.

Future directions:

1. Although a lot of biotransforming activities have been found in plants, only a few of them are applied to mass production in real life. Thus, the future efforts should focus on strengthening the continuous industrial application research in vivo and in vitro.

2. Application of high-throughput “omics” to the fungal endophyte-plant interactions. Use of high-throughput sequencing technology including transcriptomics, coupled to proteomics and metabolomics, should be applied to gain mechanistic insights into the degree of integration of fungal and plant genetic and biochemical networks. The application of information networks, artificial intelligence, and other disciplines, using network models to simulate the signal and material exchange and sharing of species interaction, should also be developed to study the biotransformation mechanisms of endophytic fungi.

3. Continued screening and isolation of fungal endophytes and novel screening and isolation of fungal endophytes and novel approaches at maintaining desired traits during in vitro culturing should be encouraged.

Author contribution Conceptualization, X.L. and J.L.C.; writing—original draft preparation, X.L.; writing—review and editing, J.L.C. and Z.Y.Z.; supervision, M.L.W. and J.L.W. All authors have read and agreed to the published version of the manuscript.

Funding This work was financially supported by Shanxi Scholarship Council of China (No. 2020–013) and the National Natural Science Foundation of China (No. 31670328).

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.
Conflict of interest The authors declare no competing interests.

References

Adamo M, Chialva M, Calveo J, Rose S, Girlanda M, Perotto S, Bal- estrini R (2020) The dark side of orchid symbiosis: can Tulas- nella calospora decompose host tissues? Int J Mol Sci 21:3139

Al-Badri BAS, Al-Mawali SS, Al-Balushi ZM, Al-Mahmoodi IH, Al- Sadi AM, Velzahahn R (2020) Cyanide degradation and antago- nistic potential of endophytic Bacillus subtilis strain BEB1 from Bougainvillea spectabilis Willd. All Life 13:92–98

Almeida MO, Lopes AA, Roberto PG, Bertoni BW, Pupo MT (2018) Unveiling the fungal biotransformation of hydralazine using 13C-precursor. Phytochem Lett 26:55–59

Ambrose KV, Tian Z, Wang Y, Smith J, Zylstra G, Huang B, Belanger FC (2015) Functional characterization of salicylate hydroxylase from the fungal endophyte Epichloë festucae. Sci Rep 5:10939

Amobonye A, Bhagwat P, Singh S, Pillai S (2021) Enhanced xylanase and endoglucanase production from Beauveria bassiana SAN01, an entomopathogenic fungal endophyte. Fungal Biol 125:39–48

Aranda-Martinez A, Lenfant N, Escudero N, Zavala-Gonzalez EA, Henri ssat B, Lopez-Llorca LV (2016) CAZyme content of Pochonia chlamydosporia reflects that chitin and chitosan modifi- cation are involved in nematode parasitism. Environ Microbiol 18:4200–4215

Archana S, Dheeraj KS, Ravindra NK, James FW, Surendra KG (2021) Fungal endophytes as efficient sources of plant-derived bioactive compounds and their prospective applications in natural product drug discovery: insights, avenues, and challenges. Microorgan- isms 9:197

Atmaca E (2019) The relationship between certain microbiological and some arbuscular mycorrhizal parameters of plants prevalent around an aluminum bauxite mine deposit. Appl Ecol Environ Res 17:10941–10961

Bao J, Li XX, He F, Zhang X, Zha K, Tao H, Yu JH, Liu H, Zhang H (2020) Asperbutenolide A, an unusual aromatic butenolide dimer with diverse bioactivities from a marine-derived fungus Aspergil- lus terreus SCA011. Tetrahedron Lett 61:152193

Ben MF, Frikha F, Daoud A, Chenari BA, Luptakova L, Alenezi FC, He, Fe Y, Zhang X, Zhu K, Tao H, Yu JH, Liu H, Zhang H (2020) Asperbutenolide A, an unusual aromatic butenolide dimer with diverse bioactivities from a marine-derived fungus Aspergil- lus terreus SCA011. Tetrahedron Lett 61:152193

Bens MF, Frikha F, Daoud A, Chenari BA, Luptakova L, Alenezi FN, Al-Anzi BS, Oszako T, Gharsallah N, Belbahi L (2019) Response surface methodology optimization of an acidic pro- tease produced by Penicillium bilaiae isolate TDPEF30, a newly recovered endophytic fungus from healthy roots of date palm trees (Phoenix dactylifera L.). Microorganisms 7:74

Bier MC, Medeiros AB, Soccol CR (2017) Biotransformation of limonene by an endophytic fungus using synthetic and orange residue-based media. Fungal Biol 121:137–144

Bilal S, Shazhad R, Khan AL, Kang SM, Imran QM, Al-Harrasi A, Yun BW, Lee IJ (2018) Endophytic microbial consortia of phyto- hormones-producing fungus Paecilomyces formosus LHL10 and bacteria Sphingomonas sp. LK11 to Glycine max L. regu- lates physio-hormonal changes to attenuate aluminum and zinc stresses. Front Plant Sci 9:1273

Böhmke C, Tuzdynski B (2009) Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–1893

Borges KB, Pupo MT, Bonato PS (2009) Enantioselective analysis of propranolol and 4-hydroxypropranolol by CE with application to biotransformation studies employing endophytic fungi. Elect- rophoresis 30:3910–3917

Cai J, Zhou XM, Yang X, Tang MM, Liao QY, Meng BZ, Liao S, Chen GY (2020) Three new bioactive natural products from the fungus Talaromyces assimilisens JT12. Bioorg Chem 94:103362

Cai R, Jiang H, Zang Z, Li C, She Z (2019) New benzofuranoidans and phenylpropanoids from the mangrove endophytic fungus, Asper- gillus sp. ZJ-68. Marine Drugs 17:478

Carrao DB, Borges KB, Barth T, Pupo MT, Bonato PS, de Oliveira AR (2011) Capillary electrophoresis and hollow fiber liquid-phase microextraction for the enantioselective determination of alben- daoze sulfoxide after biotransformation of albedazo by an endophytic fungus. Electrophoresis 32:2746–2756

Castillo UF, Strobil GA, Mullenberg K, Condron MM, Teplow DB, Folgiano V, Gallo M, Ferracane R, Mannina L, Veli S, Codde M, Robison R, Porter H, Jensen J (2006) Munumbicins E-4 and E-5: novel broad-spectrum antibiotics from Streptomyces NRRL 3052. FEMS Microbiol Lett 255:296–300

Cecati FM, Magallanes-Noguera C, Tom CE, Ardanaz CE, Kurina- san M (2018) Ecofriendly chemical diversification of Eupator- ium buniiifolium essential oil by endophytic fungi. Process Biochem 64:93–102

Chan HM, Qi Y, He XY, Xu LN, Zhang WY, Lv XM, Zhang HH, Yang DF, Zhu YH, Liang ZS (2021) Endophytic fungus Mucor circinelloides DF20 promote tanshinone biosynthesis and accumu- lation in Salvia miltiorrhiza root. Plant Sci 307:110898

Chen WH, Wu SJ, Suna XL, Feng KM, Rahmand K, Tana HY, Yub LY, Lia TQ, Xu LC, Qin LP, Han T (2020) High-throughput sequencing analysis of endophytic fungal diversity in Cynanchum sp. S Afr J Bot 83:1–10

Chen H, Wu H, Yan B, Zhao H, Liu F, Zhang H, Sheng Q, Miao F, Liang Z (2018) Core microbiome of medicinal plant Salvia miltiorrhiza seed: a rich reservoir of beneficial microbes for sec- ondary metabolism? Int J Mol Sci 19:672

Christa W, Orlando P, Manfred H (1997) Degradation of the polyamine alapoloid aphelandrine by endophytic fungi isolated from Aph- landra tetragona. FEMS Microbiol Lett 155:147–153

Cota BB, Binda CD, Maia DNL, Ramos FM, Valle MO, Hofmeyr M, Alves TMA, Souza-Fagundes EM, Campos FF, Zani CL (2018) Leishmanial compounds of Nectria pseudotrichia, an endophytic fungus isolated from the plant Caesalpinia echinata (Brazilwood). Mem Inst Oswaldo Cruz 113:102–110

Correa RA, Rodríguez JAT, Mota TR, Azevedo JL, Pamphile JA, de Souza CG, Polizeli MD, Bracht A, Peralta RM (2014) Endophytic fungi: expanding the arsenal of industrial enzyme producers. J Ind Microbiol Biotechnol 41:1467–1478

da Silva P, de Souza M, Bianco E, da Silva S, Soares L, Costa E, da Silva F, Barison A, Forim M, Cass QB (2017) Antifungal polypeptides and other compounds from amazonian endophytic Talaromyces Fungi. J Braz Chem Soc 29:622–630

da Almeida MN, Falokosi DL, Guimarães VM, de Rezende ST (2019) Study of gamba grass as carbon source for cellulase production by Fusarium verticilloides and its application on sugarcan bagasse saccharification. Ind Crop Prod 133:33–43

Dzoyem JP, Melong R, Tsamo AT, Maffo T, Kapcke DGGW, Ngadjui BT, McGaw LJ, Eloff JN (2017) Cytotoxicity, antioxidant and antibacterial activity of four compounds produced by an endo- phytic fungus Epicoccum nigrum associated with Eucalyptus australis. Rev Bras Farmacogn 27:251–253

Ekiz G, Yilmaz S, Yusufoglu H, Kirmizibayrak PB, Bedir E (2019) Microbial transformation of cycloastragenol and astraganol by endophytic fungi isolated from Astragalus species. J Nat Prod 82:2979–2985

Elena A, Georgios D, Peter P (2020) Bioactive secondary metabolites from endophytic fungi. Curr Med Chem 27:1836–1854

Fan B, Dewapriya P, Li F, Blumel M, Tasdemir D (2020) Pyrenose- tins A-C, a new decalinolysiprotetramic acid derivatives isolated by bioactivity-based molecular networking from the seaweed-derived fungus Pyrenochaetopsis sp. FVE-001. Mar Drugs 18:47

Felber AC, Speician V, Orlandelli RC, Costa AT, Polonio JC, Mourão KSM, Pamphile JA (2019) Endoglucanase production by
endophytic fungi isolated from *Vitis labrusca* L., with peanut hull and sawdust as substrates. Biosci J 35:933–940

Fill TP, Pallini HF, Din ZU, Jurberg ID, da Silva JV, Rodrigues-Filho E (2018) Conjugation of antifungal benzoic acid derivatives as a path for detoxification in *Penicillium brasiliensis*, an endophyte from *Melia azedarach*. Bioorg Chem 81:367–372

Fill TP, da Silva JV, de Oliveira KT, de Silva BF, Rodrigues-Fo E (2012) Oxidative potential of some endophytic fungi using 1-indanone as a substrate. J Microbiol Biotechnol 22:832–837

Forcina GC, Castro A, Bokesch HR, Spakowicz DJ, Legaspi ME, Kucera K, Villota S, Narvaez-Trujillo A, McMahon JB, Gustafson KR, Strobelt SA (2015) Stelliosphaerol A and B, sesquiterpene-polyol conjugates from an Ecuadorian fungal endophyte. J Nat Prod 78:3005–3010

Fu Y (2019) Biotransformation of ginsenoside Rb1 to Gyp-XVII and minor ginsenoside Rg3 by endophytic bacterium *Flavobacterium* sp. GE 32 isolated from *Panax ginseng*. Lett Appl Microbiol 68:134–141

Fu Y, Yin Z, Wu LP, Yin CR (2016) Biotransformation of ginsenoside Rbl1 to ginsenosides C–K by endophytic fungus *Arthrinium* sp GE 17–18 isolated from *Panax ginseng*. Lett Appl Microbiol 63:196–201

Fu SB, Yang JS, Cui JL, Meng QF, Feng X, Sun DA (2011) Multi-thydroxylation of ursolic acid by *Pestalotiopsis microspora* isolated from the medicinal plant *Huperzia serrata*. Fitoterapia 82:1057–1061

Gallo MBC, Chagas FO, Almeida MO, Macedo CC, Cavalcanti BC, Barros FWA, de Moraes MO, Costa-Lotufo LV, Pessoa C, Basilio V, Gao YQ, Du ST, Xiao J, Wang DC, Han WB, Zhang Q, Gao JM, Gao TC, Qin D, Sun DA (2015) Unusual microbial laccases and cytochalasins from endophytic fungi found in association with *Smallanthus sonchifolius* (Asteraceae) as resourceful producers of cytotoxic bioactive natural products. J Basic Microbiol 49:142–151

Gao SS, Li XM, Li CS, Proksch P, Wang BG (2011) Penicisteroids A and B, antifungal and cytotoxic polyoxygenated steroids from the marine alga-derived endophytic fungus *Penicillium chrysogenum* QEN-24S. Bioorg Med Chem Lett 21:2894–2897

Gao ZH, Dong XR, Gao RR, Sun DA (2015) Unusual microbial laccase-activation and hydrogenation of asiatic acid by *Umelobispora isaelli*. J Asian Nat Prod Res 17:1059–1064

Gao TC, Qin D, Zuo S, Peng Y, Xu J, Yu B, Song H, Dong J (2020a) Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, *Bjerkandera adusta* WU3. Bioresour Bioprocess 7:53

Gao YQ, Du ST, Xiao J, Wang DC, Han WB, Zhang Q, Gao JM (2020b) Isolation and characterization of antifungal metabolites from the melia azedarach-associated fungus *Diaporthe eucalyptorum*. J Agri Food Chem 68:2418–2425

Chapela V, Zeraik M, Cafeu M, Silva G, Cavalcante L, Beier S, Gorfer M, Schmoll M, Compant S (2020) Comparative genomic analysis of *Dactylonectria torresensis* strains from grapevine, soil and weed highlights potential mechanisms in pathogenicity and endophytic lifestyle. J Fungi (basel) 6:255–278

Guarino C, Marziano M, Tartaglia M, Prigioniero A, Postiglione A, Scarano P, Sciarrelli R (2020) Poaceae with PGPR bacteria and arbuscular mycorrhizae partnerships as a model system for plant microbiome manipulation for phytoremediation of petroleum hydrocarbons contaminated agricultural soils. Agronomy-Basel 10:547

Guimaraes DO, Borges WS, Vieira NJ, de Oliveira LF, da Silva CH, Lopes NP, Dias LG, Duran-Patron R, Collado IG, Pupo MT (2010) Diketopiperazines produced by endophytic fungi found in association with two *Asteraceae* species. Phytochemistry 71:1423–1429

Hao DC, Song SM, Mu J, Hu WL, Xiao PG (2016) Unearthing microbial diversity of *Taxus* rhizosphere via MiSeq high-throughput ampiclon sequencing and isolate characterization. Sci Rep 6:22006

Hao T, Yanjun M, WanYL, Jainwen W (2018) Efficient degradation of triclosan by an endophytic fungus *Penicillium oxalicum* B4. Environ Sci Pol Res 57:1–13

Harwoko H, Hartmann R, Daletos G, Ancheeva E, Frank E, Liu M, Proksch P (2019) Biotransformation of host plant flavonoids by the fungal endophyte *Epicoccum nigrum*. ChemistrySelect 4:13054–13057

Hu X, Wang K, Yu M, He P, Qiao H, Zhang H, Wang Z (2019) Characterization and antioxidant activity of a low-molecular-weight xanthan gum. Biomolecules 9:730

Hussain H, Kock I, Al-Harrasi A, Al-Rawahi A, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz B, Krohn K (2014) Antimicrobial chemical constituents from endophytic fungus *Phoma* sp. Asian Tropical J Medical Med 7:699–702

Ibrahim SRM, Asfour HZ (2018) Bioactive γ-butyrolactones from endophytic fungus *Aspergillus versicolor*. Int J Pharma 14:437–443

Inaji A, Okazawa A, Taguchi T, Nakamoto M, Katsuyama N, Yoshikawa R, Ohnishi T, Waller F, Ohta D (2020) Rhizotaxis modulation in arabidopsis is induced by diffusible compounds produced during the cocultivation of arabidopsis and the endophytic fungus *Serendiptia indica*. Plant Cell Physiol 61:838–850

Jendželovská Z, Jendželovský R, Kuchárková B, Fedorčoček P (2016) Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci 7:560

Kamel RA, Abdel-Razek AS, Hamed A, Ibrahim RR, Stammler HG, Fres E, Sewald N, Shaaban M (2020) *Isoshamixanthone*: a new pyrano xanthone from endophytic *Aspergillus* sp. ASCLA and absolute configuration of episoshamixanthone. Nat Prod Res 34:1080–1090

Katoch M, Salgotra A, Singh G (2014) Endophytic fungi found in association with *Saccharomyces cerevisiae* as potential producers of industrial enzymes and antimicrobial bioactive compounds. Braz Arch Biol Technol 57:714–722

Katrin GH, Wade JM, Catherine MM, Cory M, Alison JP (2020) Fungal alkaloid occurrence in endophyte-infected perennial ryegrass during seedling establishment. J Chem Ecol 46:410–421

Kaur P, Kumar V, Singh R, Dwivedi P, Dey A, Pandey DK (2020) Biotechnological strategies for production of camptothecin from fungal and bacterial endophytes. S Afr J Bot 134:135–145

Kerley SJ, Read DJ (1995) The biology of mycorrhiza in the ericaceae XVIII. chitin degradation by *Hymenoscyphus ericae* and transfer of chitin-nitrogen to the host plant. New Phytol 131:369–375

Khilla A, Spina R, Varbanov M, Philippot S, Lemiere P, Slezak-Deschaumes S, André P, Mohamed I, Yagi SM, Laurain-Mattar D (2020) Evaluation of antiviral, antibacterial and antiproliferative activities of the endophytic fungus *Curvularia papendorfii*, and isolation of a new polyhydroxyacid. Microorganisms 8:1353

Korotkin HB, Swenie RA, Miettinen O, Budke JM, Chen KH, Lutzoni F, Smith ME, Matheny PB (2018) Stable isotope analyses
reveal previously unknown trophic mode diversity in the Hyme-
nochaetales. Am J Bot 105:1869–1887

Krishnapura PR, Belur PD (2016) Partial purification and characteriza-
tion of L-asparaginase from an endophytic Talaromyces pinophilus
isolated from the rhizomes of Curcuma amada. J Mol Catal B-Enzym 124:83–91

Kumar A, Ahmad A (2013) Biotransformation of vinblastine to vincrist-
ine by the endophytic fungus Fusarium oxysporum isolated from
Catharanthus roseus. Biocatal Biotransform 31:89–93

Kusari S, Zühlke S, Spitteler M (2011) Effect of artificial reconstitution
of the interaction between the plant Camptotheca accinata and
the fungal endophyte Fusarium solani on camptothecin biosyn-
thesis. J Nat Prod 74:764–775

Kusari S, Lamshoft M, Spitteler M (2009) Aspergillus fumigatus
Fresenius, an endophytic fungus from Juniperus communis L.
Horstmann as a novel source of the anticancer pro-drug deoxy-
podophyllotoxin. J Appl Microbiol 107:1019–1030

Kuzniar A, Włodarczyk K, Grzadziel J, Wozniak M, Furtak K, Galazka
A, Dziedziczyk E, Skorzyńska-Polit E, Wolinska A (2020) New
insight into the composition of wheat seed microbiota. Int J Mol
Sci 21:4636

Lai D, Wang A, Cao Y, Zhou K, Mao Z, Dong X, Tian J, Xu D, Dai J,
Peng Y, Zhou LG, Liu Y (2016) Bioactive dibenzo-alpha-pyrene
derivatives from the endophytic fungus Rhizopus nigricans var. Nitaf
22. J Nat Prod 79:2022–2031

Lai D, Brotz-Oesterhelt H, Muller WEG, Wray V, Proksch P (2013)
Bioactive polyketides and alkaloids from Penicillium citrinum, a
fungus endophytically isolated from Ocimum tenuiflorum. Fitoterapia
91:100–106

Li HY, Liu ZL, Sun BD, Yu M, Niu SB, Ding G (2020a) Resorcylic acid analogs from the desert plant endophytic fungus
Rhinocladiella similis. Mycosystema 39:589–598

Li H, Zhang R, Cao F, Wang J, Hu Z, Zhang Y (2020b) Proversilins
A-E, drimane-type sesquiterpenoids from the endophytic Asper-
gillus versicolor. J Nat Prod 83:2200–2206

Li HY, Li ZY, Ruan GH, Yu YK, Liu XG (2016a) Asymmetric redu-
tion of acetophenone into R-(+)-1-phenylethanol by endophytic
fungus of the interaction between the plant Camptotheca accinata and
Fusarium oxysporum. J Nat Prod 74:764–775

Luo SL, Dang LZ, Li JF, Zou CG, Zhang KQ, Li GH (2013) Bio-
transformation of saponins by endophytes isolated from
Panax notoginseng. Chem Biodivers 17:e1900040

Luo YP, Sun JF, Li YB (2020) Fungi: outstanding source of
novel chemical scaffolds. J Asian Nat Prod Res 22:99–120

Louis B, Sehrish I, Kiran N, Dobgima JF, Elsie LY, Robinson CJ,
Yiboh MTN, Pranab R (2019) Biotechnological application of
endophytic filamentous fungus living in cinchona plant. Chem Pharm Bull
59:1073–1074

Mahmoud MM, Abdel-Razek AS, Frese M, Soliman HSM, Sewald
N, Shaaban M (2018) 3,4-Dihydro-quinolin-2-one derivatives
from extremophilic Streptomyces sp. LGSE21. Int J Pharma
27:1834–1842

Maroldi MMC, Vasconcellos VM, Lacava PT, Farinas CS (2018)
Potential of mangrove-associated endophytic fungi for produc-
tion of carbohydrolases with high saccharification efficiency.
Appl Biochem Biotechnol 184:806–820

Marzall-Pereira M, Savi DC, Bruscato EC, Niebsch CH, Paba J,
Aluzio R, Ferreira-Maba LS, Galli-Terasawa LV, Glienke C,
Kava V (2019) Neopestalotiopsis species presenting wide dye
destaining activity: report of a mycelium-associated laccase.
Microbiol Res 228:126299

Mathe C, Fawal N, Roux C, Dunand C (2019) In silico definition of
new ligninolytic peroxidase sub-classes in fungi and putative
relation to fungal life style. Sci Rep 9:20373

Maxwell T, Blair RG, Wang Y, Kettring AH, Moore SD, Rex M,
Harper JK (2018) A solvent-free approach for converting cellulose waste into volatile organic compounds with endophytic fungi. J Fungi 4:102

Monteiro MCP, Tavares DG, Nery EM, Queiroz MVd, Pereira OL,
Cardoso PG (2020) Enzyme production by Induratia spp., isolated from coffee plants in Brazil. Braz Arch Biol Technol
63:e20180673

Monteiro AF, Seidl C, Severino VGP, Cardoso CL, Castro-Gamboa I
(2017) Biotransformation of labdane and halimane diterpenoids by two filamentous fungal strains. R Soc Open Sci 4:170854

Moodley O, Sun Y, Sossah FL, Kakishima M, Pavlov IN, Li Y, Wang Q
(2019) Application of toxigenic Alternaria oxyporos to soybeans and its effect on swainsonine detection in different environments.
Bull Environ Contam Toxicol 102:268–274

Morais PV, Wang Y, Li H, Feng G, Du L, Zeng D (2017) Biodegrada-
tion of diuron by an endophytic fungus Neurospora intermedia
DP8–1 isolated from sugarcane and its potential for remediating diuron-contaminated soils. Plos One 12:e0182556

Navada KK, Sanjeev G, Kulal A (2018) Enhanced biodegradation and kinetics of anthraquinone dye by laccase from an electron beam irradiated endophytic fungus. Int Biodeter Biodegr 132:241–250

Nguyen BAT, Hsieh JL, Lo SC, Wang SY, Hung CH, Huang E, Hung
SH, Chin WC, Huang CC (2021) Biodegradation of dioxins by
Burkholderia cepacia strain 869T2; Role of 2-haloalcoholase. J Hazard Mater 401:123347

Niehaus EM, Munsterkotter M, Proctor RH, Brown DW, Sharon A,
Idan Y, Oren-Young L, Sieber CM, Novak O, Pencik A,
Tarkowska D, Hromadova K, Freeman S, Maymon M, Elazar M,
Youssef SA, El-Shabrawy EM, Shalaby ABA, Houterman P,
Brock NL, Burkhardt I, Tsavkelova EA, Dickschat JS, Galuszka P,
Guldener U, Tuzdynski B (2016) Comparative “omics” of the Fusarium fujikuroi Species complex highlights differences in genetic potential and metabolite synthesis. Genome Biol Evol
8:3574–3599

Nisa H, Kamili AN, Nawchoo IA, Shafi S, Shameem N, Bandha S
(2015) Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb Patho-
genesis 82:50–59

Noriler SA, Savi DC, Ponomareva LV, Rodrigues R, Rohr J, Thorsen
JS, Glienke C, Shaaban KA (2019) Vochysiamides A and B: two new bioactive carboxamides produced by the new species Diaportha vochysiae. Fiteroterapia 138:104273

Noumeur SR, Teponno RB, Helaly SE, Wang XW, Harzallah D, Houbraken J, Croux PW, Stadler M (2020) Diketopiperazines from
Batnarmyces globulariicola, gen. & sp. nov. (Chaetomycetes), a fungus associated with roots of the medicinal plant Globularia alypum in Algeria. Mycol Prog 19:589–603
Orlandelli RC, Santos MS, Polonio JC, Azvedo JL, Pamphile JA (2017) Use of agro-industrial wastes as substrates for α-amylase production by endophytic fungi isolated from *Piper hispidum* Sw. Acta Sci-Technol 39:255–261

Özcinar Ö, Tağ Ö, Yusufoglu H, Kivçak B, Bedir E (2018) Biotransformation of ruscogenins by *Cunninghamella blakesleeanae* NRRL 1369 and neoruscogenin by endophytic fungus *Neosartorya hiratsukae*. Phytochemistry 152:1–9

Ozcinar O, Ozgur T, Yusufoglu H, Kivcak B, Bedir E (2018) Biotransformation of neoruscogenin by the endophytic fungus *Alternaria eureka*. J Nat Prod 81:1357–1367

Panacciono DG, Arnold SL (2017) Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis. Sci Rep 7:8930

Pilsyk S, Miezczkowski A, Golan MP, Wawrzyniak A, Kruszewska JS (2020) Internalization of the *Alternaria nidulans* AstA transporter into mitochondria depends on growth conditions, and affects ATP levels and sulfate oxidase activity. Int J Mol Sci 21:7727

Qawasmeh A, Ramaz A, Wheatley W (2015) Volatiles in perennial ryegrass infected with strains of endophytic fungi: impact on African black beetle host selection. J Appl Entomol 139:94–104

Qawasmeh A, Obied HK, Ramaz A, Wheatley W (2012) Influence of fungal endophyte infection on phenolic antioxidation capacity in grasses: interaction between *Lolium perenne* and different strains of *Neotyphodium lolii*. J Agric Food Chem 60:3381–3388

Qin D, Shen W, Wang J, Han M, Chai F, Duan X, Yan X, Guo J, Gao T, Zuo SH, Dong YJ (2019) Enhanced production of unusual triterpenoids from *Kadsura angustifolia* fermented by a symbiotic endophytic fungus, *Penicillium* sp. SWUKD4.1850. Phytochemistry 158:56–66

Ramesh KK, Sucheta S, Shiv SP, Alok CKS, Vivek B (2019) Fungal endophytes attune withanolide biosynthesis in *Withania somnifera*, prime to enhanced withanolide A content in leaves and roots. World J Microbiol Biotechnol 35:20

Reddy P, Elkins A, Hemsworth J, Guthridge K, Vassiliadis S, Read E, Spangenberg G, Rochfort S (2020) Identification and distribution of novel metabolites of *lotus* in *mice* by high-resolution mass spectrometry. Molecules 25:372

Ren Z, Song R, Wang S, Quan H, Yang L, Sun S, Zhao B, Lu H (2017) The biosynthesis pathway of swainsonine, a new anticancer drug from three endophytic fungi. J Microbiol Biotechnol 27:1897–1906

Repas TS, Gillis DM, Boubakir Z, Bao X, Samuels GJ, Kaminskyj M, Turnau K (2018) The role of strigolactone in the cross-talk between *Arabidopsis thaliana* and the endophytic fungus *Mucor* sp. Front Microbiol 9:441

Rusanova M, Rusanov K, Butterweck V, Atanassov I (2019) Exploring the capacity of endophytic fungi isolated from medicinal plants for fermentation and phenolics biotransformation of rose oil distillation wastewater. Biotechnol Biotec Eq 33:651–663

Russell JR, Huang J, Anand P, Kucera K, Sandoval AG, Dantzler KW, Hickman D, Jee J, Kimovec FM, Koppstein D, Marks DH, Mittermiller PA, Nunez SJ, Santiago M, Townes MA, Vishnevetsky M, Williams NE, Vargas MPN, Boulanger LA, Bascom-Slack C, Strobel SA (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

Santiago C, Sun L, Munro MHG, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from *Cinnamomum mollissimum*: biological activity and structure. Asian Pacific J Tropical Biomed 4:627–632

Savi DC, Noriler SA, Ponomareva LV, Thorson JS, Rohr J, Glenike C, Shabaan KA (2020) Dihydrodioscorocumarins produced by *Diarthofhec. heveae* LGMF1631 inhibiting citrus pathogens. Folia Microbiol 65:381–392

Scalvenzi L (2014) New frontiers of essential oils research: biotransformation of the phytocomplex and its pure compounds by endophytic fungi. International Symposium on Medicinal Plants and Natural Products 1030:125–132

Schafhauser T, Jahn L, Kirchner N, Kulik A, Flor L, Lang A, Caraced T, Fewer DP, Sivenon K, van Berkel WH, Jacques P, Weber T, Gross H, van Pee KH, Wohlleben W, Ludwig-Muller J (2019) Antitumor astins originate from the fungal endophyte *Cynodon melia asteris* living within the medicinal plant *Aster tataricus*. Proc Natl Acad Sci USA 116:26909–26917

Schulz M, Filary B, Kuehn S, Colby T, Harzen J, Schmidt J, Sicker D, Hennig L, Hofmann D, Disko U, Anders N (2016) Benzoxazolone detoxification by *N*-glucosylation: the multi-compartment-network of *Zea mays* L. Plant Signal Behav 11:e1119962

Schulz B, Haas S, Juncker A, Andree N, Schobert M (2015) Fungal endophytes are involved in multiple balanced antagonisms.Curr Sci 109:39–45

Selim K, Elkhateeb T, Tawila A, El-Beih A, Abdel-Rahman T, El-Diwany A, Ahmed E (2018) Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4:49

Shang N, Ding M, Dai M, Si H, Li S, Zhao G (2019) Biodegradation of malachite green by an endophytic bacterium *Klebsiella aerogenes* S27 involving a novel oxidoreductase. Appl Microbiol Biotechnol 103:1214–1215

Shao FJ, Wilson IW, Qui DY (2021) The research progress of taxol in *Taxis*. Curr Pharm Biotechnol 22:360–366

Shao Y, Yan H, Yin T, Sun Z, Xie H, Song L, Sun K, Li W (2020) New azaphilones from *Penicillium variabile*, a fungal endophyte from roots of *Africanum vilmorinianum*. J Antibiot 73:77–81

Silva FA, Liotti RG, Boleti APA, Reis EM, Passos MBS, Dos Santos EL, Sampaio OM, January AH, Branco CLB, Silva GF, de Mendonca EAF, Soares MA (2018) Diversity of cultivable fungal endophytes in *Paullinia cupana* (Mart.) Ducke and bioactivity of their secondary metabolites. PLoS One 13:e0195874

Strobel G (2018) The emergence of endophytic microbes and their biological promise. J Fungi 2:57

Sun X, Wang G, Xiao H, Jiang J, Xiao D, Xing B, Li A, Zhang Y, Sun K, Xu Y, Guo L, Yang D, Ma M (2020) Streptimidazoles A–G from the plant endophytic *Streptomyces* sp. PKU-EA00015 with inhibitory activities against a plant pathogenic fungus. J Nat Prod 83:2246–2254

Sujarit K, Mori M, Dobashi K, Shiomi K, Pathom-Aree W, Lumyong S (2020) New antimicrobial phenyl alkanolic acids isolated from an oil palm rhizosphere-associated actinomycete, *Streptomyces palmae* CMU-AB204(T). Microorganisms 8:350

Supaphon P, Preadanon S (2019) Evaluation of in vitro alpha-glucosidase inhibitory, antimicrobial, and cytotoxic activities of
secondary metabolites from the endophytic fungus, *Nigrospora sphaerica*, isolated from *Helianthus annuus*. Ann Microbiol 69:1397–1406

Suryanarayanan TS, Thirunavukkarasu N, Govindarajulu MB, Gopalan V (2012) Fungal endophytes: an untapped source of biocatalysts. Fungal Divers 54:19–30

Tardif S, Yergeau E, Tremblay J, Legendre P, Whyte LG, Greer CW (2016) The willow microbiome is influenced by soil petroleum-hydrocarbon concentration with plant compartment-specific effects. Front Microbiol 7:1363

Tawfike AF, Romli M, Clements C, Abbott G, Young L, Schumacher M, Diederich M, Farag M, Edrada-Ebel R (2019) Isolation of anticancer and anti-trypanosome secondary metabolites from the endophytic fungus *Aspergillus floculosus* via bioactivity guided isolation and MS based metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 1106–1107:71–83

Tian H, Ma YJ, Li WY, Wang JW (2018) Efficient degradation of triclosan by an endophytic fungus *Penicillium oxalicum* B4. Environ Sci Pol Res 25:8963–8975

Tian Y, Amand S, Buisson D, Kunz L, Chachette F, Dupont J, Nay B, Prado S (2014) The fungal leaf endophyte *Paraconiothyrium variabile* specifically metabolizes the host-plant metabolome for its own benefit. Phytochemistry 108:95–101

Toghueo RMK, Zabalgogeazcoa I, Vázquez de Aldana BR, Boyom FF (2017) Enzymatic activity of endophytic fungi from the medicinal plant *Terminalia catappa*, *Terminalia mantuy* and *Canunaga odorata*. S Afr J Bot 109:146–153

Vasundhara M, Kumar A, Reddy MS (2016) Molecular approaches to screen bioactive compounds from endophytic fungi. Front Microbiol 7:1774

Wang A, Yin R, Zhou Z, Gu G, Dai J, Lai D, Zhou L (2020) Antifungal halogenated cyclopentenones from the endophytic fungus *Rhizopycnis vagum* and their antibacterial, cytotoxic, and phytotherapeutic activities. Front Chem 8:596889

Wang Y, Li Y, Li S, Li Q, Fan W, Kiatoukosin L, Chen J (2019) Extracellular polysaccharides of endophytic fungus *Alternaria tenaissima* F1 from *Angelica sinesis*: Production conditions, purification, and antioxidant properties. Int J Biol Macromol 133:172–183

Wang JH, Wang ZT, Wang LL, Wang ZJ, Ma Z, Chou GX, Hu ZB, Li WK (2014) Biotransformation of neoandrographolide by endophytic fungus from *Dendrobium officinale* Kinumara Migo. Asian J Chem 26:3457–3460

Wang HL, Wen K, Zhao XY, Wang XD, Li AY, Hong HZ (2009) The inhibitory activity of endophytic *Bacillus* sp. strain CHM1 against plant pathogenic fungi and its plant growth-promoting effect. Crop Prot 28:634–639

Xiao X, Wei C, Xin L, Heng Y, Guitai W, Kunming D, Xiuliang T, Wang JH, Wang ZT, Wang LL, Wang ZJ, Ma Z, Chou GX, Hu ZB, Li C (2020b) New azaphilones, phomopsones A-C with biological activities from an endophytic fungus *Phomopsis* sp. CGMCC No. 5416. Fiteroterapia 145:1045

Yu X, Muller WEG, Meier D, Kalscheuer R, Guo Z, Zhou K, Umeokoli BO, Liu Z, Proksch P (2020) Polyketide derivatives from mangrove-derived endophytic fungus *Pseudoperlatotipia theae*. Mar Drugs 18:129

Yu WG, He Y, Chen YF, Gao XY, Ning WE, Liu CY, Tang TF, Liu Q, Huang XC (2019) Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice. Korean J Physiol Pha 23:161–169

Yuan X, Wang XF, Xu K, Li W, Chen D, Zhang P (2020) Characterization of a new insecticidal anthraquinone derivative from an endophyte of *Acremonium vitellinum* against *Helicoverpa armigera*. J Agric Food Chem 68:11480–11487

Yuan J, Zhou J-Y, Li Y, Dai CC (2016) The primary mechanism of endophytic fungus *Gilmaniella* sp. AL12 promotion of plant growth and sesquiterpenoid accumulation in *Atractylodes lancea*. Plant Cell Tiss Org 125:571–584

Zafarzaloo B, Bhattacharjee S, Ghorbani MM, Mahon PJ, Palombo EA (2014) Amylase production by *Pseudomonas aeruginosa*, a fungus of endophyte origin: optimization of fermentation conditions and analysis of fungal secretome by LC-MS. BMC Microbiol 14:15

Zhang H, Wang X, Li R, Sun X, Sun S, Li Q, Xu C (2017) Preparation and bioactivity of exopolysaccharide from an endophytic fungus *Chaetomium* sp. of the medicinal plant *Gynostemma Pentaphyllum*. Pharmacogn Mag 13:477–482

Zhao M, Guo DL, Liu GH, Fu X, Gu YC, Ding LS, Zhou Y (2020) Antifungal halogenated cyclopenenones from the endophytic fungus *Saccharicola bicolor* of *Bergenia purpurascens* by the one strain-many compounds strategy. J Agric Food Chem 68:185–192

Zhou J, Li X, Chen Y, Dai CC (2017) De novo transcriptome assembly of *Phomopsis liquidambari* provides insights into genes associated with different lifestyles in rice (*Oryza sativa* L.). Front Plant Sci 8:121

Zhou QY, Yang XQ, Zhang ZX, Wang BY, Hu M, Yang YB, Zhou H, Ding ZT (2018a) New azaphilones and tremulane sesquiterpene from endophytic *Nigrospora oryzae* cocultured with *Irpex lacteus*. Fiteroterapia 130:26–30

Zhou X, Zhang J, Pan Z, Li D (2018b) Review of methods for the detection and determination of malachite green and leuco-malachite green in aquaculture. Crit Rev Anal Chem 14:1–20

Zhu X, Liu S, Liu W, Sun X, Gao M, Wang C, Li Q, He Y, Ding W, Li C (2020) A novel cochlioinquinone derivative, CoB1, regulates autophagy in *Pseudomonas aeruginosa* infection through the PAK1/Akt1/mTOR signaling pathway. J Immunol 205:1293–1305

Zhu X, Chen J, Zhu S, He Y, Ding W, Li C (2017) Two new compounds from *Nigrospora sphaerica* ZMT05, a fungus derived from *Oryza chinensis* Thumer. Nat Prod Res 32:2375–2381

Zikumudova M, Drandarov K, Bigler L, Hesse M, Werner C (2002) Biotransformation of 2-benzoxazolinone and 2-hydroxy-1,4-benzoazinin-3-one by endophytic fungi isolated from *Aphelandra tetragona*. Appl Environ Microbiol 68:4863–4870

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.