Families of cubic Thue equations with effective bounds for the solutions

Claude LEVESQUE and Michel WALDSCHMIDT

Abstract. To each non totally real cubic extension \(K \) of \(\mathbb{Q} \) and to each generator \(\alpha \) of the cubic field \(K \), we attach a family of cubic Thue equations, indexed by the units of \(K \), and we prove that this family of cubic Thue equations has only a finite number of integer solutions, by giving an effective upper bound for these solutions.

1 Statements

Let us consider an irreducible binary cubic form having rational integers coefficients
\[
F(X,Y) = a_0X^3 + a_1X^2Y + a_2XY^2 + a_3Y^3 \in \mathbb{Z}[X,Y]
\]
with the property that the polynomial \(F(X,1) \) has exactly one real root \(\alpha \) and two complex imaginary roots, namely \(\alpha' \) and \(\overline{\alpha'} \). Hence \(\alpha \notin \mathbb{Q}, \alpha' \neq \overline{\alpha'} \) and
\[
F(X,Y) = a_0(X - \alpha Y)(X - \alpha' Y)(X - \overline{\alpha'} Y).
\]

Let \(K \) be the cubic number field \(\mathbb{Q}(\alpha) \) which we view as a subfield of \(\mathbb{R} \). Define \(\sigma : K \to \mathbb{C} \) to be one of the two complex embeddings, the other one being the conjugate \(\overline{\sigma} \). Hence \(\alpha' = \sigma(\alpha) \) and \(\overline{\alpha'} = \overline{\sigma(\alpha)} \). If \(\tau \) is defined to be the complex conjugation, we have \(\overline{\sigma} = \tau \circ \sigma \) and \(\sigma \circ \tau = \sigma \).

Claude LEVESQUE
Département de mathématiques et de statistique, Université Laval, Québec (Québec), CANADA G1V 0A6
e-mail: Claude.Levesque@mat.ulaval.ca

Michel WALDSCHMIDT
Institut de Mathématiques de Jussieu, Université Pierre et Marie Curie (Paris 6), 4 Place Jussieu, F – 75252 PARIS Cedex 05, FRANCE
e-mail: miw@math.jussieu.fr

Mise à jour: March 19, 2013
Let ε be a unit > 1 of the ring \mathbb{Z}_K of algebraic integers of K and let $\varepsilon' = \sigma(\varepsilon)$ and $\varepsilon'' = \sigma(\varepsilon)$ be the two other algebraic conjugates of ε. We have

$$|\varepsilon'| = |\varepsilon''| = \frac{1}{\sqrt{\varepsilon}} < 1.$$

For $n \in \mathbb{Z}$, define

$$F_n(X, Y) = a_0(X - \varepsilon^n \alpha Y)(X - \varepsilon'^n \alpha' Y)(X - \varepsilon''^n \alpha'' Y).$$

Let $k \in \mathbb{N}$, where $\mathbb{N} = \{1, 2, \ldots\}$. We plan to study the family of Thue inequations

$$0 < |F_n(x, y)| \leq k,$$

where the unknowns n, x, y take values in \mathbb{Z}.

Theorem 1. There exist effectively computable positive constants κ_1 and κ_2, depending only on F, such that, for all $k \in \mathbb{Z}$ with $k \geq 1$ and for all $(n, x, y) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ satisfying $\varepsilon^n \alpha \notin \mathbb{Q}$, $xy \neq 0$ and $|F_n(x, y)| \leq k$, we have

$$\max \{ |\varepsilon^n|, |x|, |y| \} \leq \kappa_1 \kappa_2^2.$$

From this theorem, we deduce the following corollary.

Corollary 1. For $k \in \mathbb{Z}$, $k > 0$, the set

$$\{(n, x, y) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z} \mid \varepsilon^n \alpha \notin \mathbb{Q}; xy \neq 0; |F_n(x, y)| \leq k\}$$

is finite.

This corollary is a particular case of the main result of [2], but the proof in [2] is based on the Schmidt subspace theorem which does not allow to give an effective upper bound for the solutions (n, x, y).

Example. Let $D \in \mathbb{Z}$, $D \neq -1$. Let $\varepsilon := (\sqrt[3]{D^3 + 1} - D)^{-1}$. There exist two positive effectively computable absolute constants κ_3 and κ_4 with the following property. Define a sequence $(F_n)_{n \in \mathbb{Z}}$ of cubic forms in $\mathbb{Z}[X, Y]$ by

$$F_n(X, Y) = X^3 + a_n X^2 Y + b_n X Y^2 - Y^3,$$

where $(a_n)_{n \in \mathbb{Z}}$ is defined by the recurrence relation

$$a_{n+3} = 3D a_{n+2} + 3D^2 a_{n+1} + a_n$$

with the initial conditions $a_0 = 3D^2$, $a_{-1} = 3$ and $a_{-2} = -3D$, and where $(b_n)_{n \in \mathbb{Z}}$ is defined by $b_n = -a_{n-2}$. Then, for x, y, n rational integers with $xy \neq 0$ and $n \neq -1$, we have

$$|F_n(x, y)| \geq \kappa_3 \max \{ |x|, |y|, |\varepsilon^n| \} \kappa_4.$$
Families of cubic Thue equations with effective bounds for the solutions

This result follows from Theorem 1 with \(\alpha = \varepsilon \) and

\[
F(X, Y) = X^3 - 3DX^2Y - 3D^2XY^2 - Y^3.
\]

Indeed, the irreducible polynomial of \(\varepsilon^{-1} = \sqrt{D^3 + 1} - D \) is

\[
F_{-2}(X, 1) = (X + D)^3 - D^3 - 1 = X^3 + 3DX^2 + 3D^2X - 1,
\]

the irreducible polynomial of \(\alpha = \varepsilon \) is

\[
F(X, 1) = F_0(X, 1) = F_{-2}(1, X) = X^3 - 3D^2X^2 - 3DX - 1,
\]

while

\[
F_{-1}(X, Y) = (X - Y)^3 = X^3 - 3X^2Y + 3XY^2 - Y^3.
\]

For \(n \in \mathbb{Z}, n \neq -1 \), \(F_n(X, 1) \) is the irreducible polynomial of \(\alpha \varepsilon^n = \varepsilon^{n+1} \), while for any \(n \in \mathbb{Z}, F_n(X, Y) = N_{\mathbb{Q}(\varepsilon)/\mathbb{Q}}(X - \varepsilon^{n+1}Y) \).

The recurrence relation for \(a_n = \varepsilon^{n+1} + \varepsilon^{n}+1 + \varepsilon^n \) follows from

\[
\varepsilon^{n+3} = 3D\varepsilon^{n+2} + 3D^2\varepsilon^{n+1} + \varepsilon^n
\]

and for \(b_n \), from \(F_{-n}(X, Y) = -F_{n-2}(Y, X) \).

2 Elementary estimates

For a given integer \(k > 0 \), we consider a solution \((n, x, y)\) in \(\mathbb{Z}^3 \) of the Thue inequality with \(\varepsilon^n \alpha \) irrational and \(xy \neq 0 \). We will use \(\kappa_5, \kappa_6, \ldots, \kappa_{55} \) to designate some constants depending only on \(\alpha \).

Let us firstly explain that in order to prove Theorem 1 we can assume \(n \geq 0 \) by eventually permuting \(x \) and \(y \). Let us suppose that \(n < 0 \) and write

\[
F(X, Y) = a_3(Y - \alpha^{-1}X)(Y - \alpha^{t-1}X)(Y - \overline{\alpha}^{-1}X).
\]

Then

\[
F_n(X, Y) = a_3(Y - e^{\lfloor n \rfloor} \alpha^{-1}X)(Y - e^{\lfloor n \rfloor} \alpha^{t-1}X)(Y - \overline{\alpha}^{-\lfloor n \rfloor} \alpha^{-1}X).
\]

Now it is simply a matter of using the result for \(\lfloor n \rfloor \) for the polynomial \(G(X, Y) = F(Y, X) \).

Let us now check that, in order to prove the statements of 1, there is no restriction in assuming that \(\alpha \) is an algebraic integer and that \(a_0 = 1 \). To achieve this goal, we define
\[F(T, Y) = T^3 + a_1 T^2 Y + a_0 a_2 T Y^2 + a_0^2 a_3 Y^3 \in \mathbb{Z}[T, Y], \]

so that \(a_0^2 F(X, Y) = \tilde{F}(a_0 X, Y) \). If we define \(\tilde{\alpha} = a_0 \alpha \) and \(\tilde{\alpha}' = a_0 \alpha' \), then \(\tilde{\alpha} \) is a nonzero algebraic integer, and we have

\[\tilde{F}(T, Y) = (T - \tilde{\alpha} Y)(T - \tilde{\alpha}' Y)(T - \overline{\tilde{\alpha}} Y). \]

For \(n \in \mathbb{Z} \), the binary form

\[\tilde{F}_n(T, Y) = (T - \varepsilon^n \tilde{\alpha} Y)(T - \varepsilon^n \tilde{\alpha}' Y)(T - \overline{\varepsilon^n \tilde{\alpha}} Y) \]

satisfies

\[a_0^2 \tilde{F}_n(X, Y) = \tilde{F}_n(a_0 X, Y). \]

The condition (1) implies \(0 < |\tilde{F}_n(a_0 x, y)| \leq a_0^2 k \). Therefore it suffices to prove the statements for \(\tilde{F}_n \) instead of \(F_n \), with \(\alpha \) and \(\alpha' \) replaced by \(\tilde{\alpha} \) and \(\tilde{\alpha}' \). This allows us, from now on, to suppose \(\alpha \in \mathbb{Z}_K \) and \(a_0 = 1 \).

As already explained, we can assume \(n \geq 0 \). There is no restriction in supposing \(k \geq 2 \); (if we prove the result for a value of \(k \geq 2 \), we deduce it right away for smaller values of \(k \), since we consider Thue inequations and not Thue equations). If \(k \) were assumed to be \(\geq 2 \), we would not need \(\kappa_1 \), as is easily seen, and the conclusion would read

\[\max\{n, |\alpha|, |\beta|\} \leq k. \]

Without loss of generality we can assume that \(n \) is sufficiently large. As a matter of fact, if \(n \) is bounded, we are led to some given Thue equations, and Theorem 1 follows from Theorem 5.1 of [3].

Let us recall that for an algebraic number \(\gamma \), the house of \(\gamma \), denoted \(\text{h} \), is by definition the maximum of the absolute values of the conjugates of \(\gamma \). Moreover, \(d \) is the degree of the algebraic number field \(K \) (namely \(d = 3 \) here) and \(R \) is the regulator of \(K \) (viz. \(R = \log \varepsilon \)), where, from now on, \(\varepsilon \) is the fundamental unit \(> 1 \) of the non totally real cubic field \(K \). The next statement is Lemma A.6 of [3].

Lemma 1 Let \(\gamma \) be a nonzero element of \(\mathbb{Z}_K \) of norm \(\leq M \). There exists a unit \(\eta \in \mathbb{Z}_K \) such that the house \(\text{h} \) is bounded by an effectively computable constant which depends only on \(d \), \(R \) and \(M \).

We need to make explicit the dependence upon \(M \), and for this, it suffices to apply Lemma A.15 of [3], which we want to state, under the assumption that the \(d \) embeddings of the algebraic number field \(K \) in \(\mathbb{C} \) are noted \(\sigma_1, \ldots, \sigma_d \).

Lemma 2 Let \(K \) be an algebraic number field of degree \(d \) and let \(\gamma \) be a nonzero element of \(\mathbb{Z}_K \) whose absolute value of the norm is \(m \). Then there exists a unit \(\eta \in \mathbb{Z}_K^\times \) such that

\[
\frac{1}{R} \max_{1 \leq j \leq d} \left| \log(m^{-1/d}|\sigma_j(\eta \gamma)|) \right|
\]

is bounded by an effectively computable constant which depends only on \(d \).
Since \(d = 3 \), \(K = \mathbb{Q}(\alpha) \) and the regulator \(R \) of \(K \) is an effectively computable constant (see for instance \(\text{(1)} \), §6.5), the conclusion of Lemma 2 is

\[
-\kappa_5 \leq \log(|\sigma_j(\eta \gamma)|/\sqrt{m}) \leq \kappa_5,
\]

which can also be written as

\[
\kappa_6 \sqrt{m} \leq |\sigma_j(\eta \gamma)| \leq \kappa_7 \sqrt{m},
\]

with two effectively computable positive constants \(\kappa_6 \) and \(\kappa_7 \). We will use only the upper bound\(^1\) under the hypotheses of Lemma 1 with \(d = 3 \), when \(\gamma \) is a nonzero element of \(\mathbb{Z}_K \) of norm \(\leq M \), there exists a unit \(\eta \) of \(\mathbb{Z}_K^* \) such that

\[
|\eta \gamma| \leq \kappa_7 \sqrt{M}.
\]

Our strategy is to prove that \(|\ell|\) is bounded by a constant times \(\log k \), and that \(|n|\) is also bounded by a constant times \(\log k \); then we will show that \(|y|\) is bounded by a constant power of \(k \) and deduce that \(|x|\) is also bounded by a constant power of \(k \).

Let us eliminate \(x \) in (2) and (4) to obtain

\[
y = -\frac{\varepsilon^n \alpha y - \varepsilon^m \alpha' y}{\varepsilon^n \alpha - \varepsilon^m \alpha'},
\]

since we supposed \(\varepsilon^n \alpha \) irrational, we did not divide by 0. The complex conjugate of (2) is written as

\[
x - \frac{\varepsilon^m \alpha y}{\varepsilon^n \alpha - \varepsilon^m \alpha'} = \frac{\varepsilon^m \alpha'}{\varepsilon^n \alpha - \varepsilon^m \alpha'}.
\]

\(^1\) The lower bound follows from looking at the norm!
We eliminate x and y in the three equations (2), (4) and (6) to obtain a unit equation à la Siegel:

$$
\varepsilon \ell \xi_1 (\alpha' \varepsilon^n - \alpha \varepsilon'^n) + \varepsilon' \ell \xi_1 (\alpha' \varepsilon'^n - \alpha \varepsilon^n) + \varepsilon' \ell \xi_1 (\alpha \varepsilon^n - \alpha' \varepsilon'^n) = 0.
\tag{7}
$$

In the remaining part of this section 2, we suppose $\varepsilon^n |\alpha| \geq 2 |\varepsilon' n|$. \tag{8}

Note that if this inequality is not satisfied, then we have $\varepsilon_3 n / 2 < 2 |\alpha'| |\alpha|$ and this leads to the inequality (18), and to the rest of the proof of Theorem 1 by using the argument following the inequality (18).

For $\ell > 0$, the absolute value of the numerator $\varepsilon \ell \xi_1 - \varepsilon' \ell \xi'_1$ in (5) is increasing like $\varepsilon \ell$ and for $\ell < 0$ it is increasing like $\varepsilon'^2 / 2$; for $n > 0$, the absolute value of the denominator $\varepsilon^n \alpha - \varepsilon' n \alpha'$ is increasing like ε^n and for $n < 0$ it is increasing like $\varepsilon'^n / 2$. In order to extract some information from the equation (5), we write it in the form

$$y = \pm \frac{A - a}{B - b}$$

with $B = \varepsilon^n \alpha, \ b = \varepsilon' n \alpha'$,

$$\{A, a\} = \left\{ \varepsilon \ell \xi_1, \varepsilon' \ell \xi'_1 \right\},$$

the choice of A and a being dictated by

$$|A| = \max \{ |\varepsilon \ell \xi_1|, |\varepsilon' \ell \xi'_1| \}, \quad |a| = \min \{ |\varepsilon \ell \xi_1|, |\varepsilon' \ell \xi'_1| \}.$$

Since $|A - a| \leq 2 |A|$ and since $|b| \leq |B| / 2$ because of (8), we have $|B - b| \geq |B| / 2$, so we get

$$|y| \leq 4 \frac{|A|}{|B|}.$$

We will consider the two cases corresponding to the possible signs of ℓ, (remember that n is positive).

First case. Let $\ell \leq 0$. We have

$$|A| \leq \kappa_{11} \varepsilon'^n / 2 \kappa_9 .$$

We deduce from (5)

$$1 \leq |y| \leq 4 \frac{\varepsilon \ell}{\alpha} \varepsilon'^{n / 2} \leq \kappa_{12} \varepsilon'^{n / 2} \kappa_9 \tag{9}$$

Hence there exists κ_{13} such that
Families of cubic Thue equations with effective bounds for the solutions

\[0 \leq \log |y| \leq \left(\frac{|\ell|}{2} - n \right) \log \epsilon + \frac{13}{15} \log k, \]

from which we deduce the inequality

\[n \leq \frac{|\ell|}{2} + \kappa_{14} \log k, \tag{10} \]

which will prove useful: \(n \) is roughly bounded by \(|\ell|\). From (4) we deduce the existence of a constant \(\kappa_{15} \) such that

\[|x| \leq \epsilon^{-n/2}|\alpha'|y| + \kappa_{15} k^{\epsilon^{-1/2}}. \tag{11} \]

Second case. Let \(\ell > 0 \). We have

\[|A| \leq \kappa_{16} \epsilon^{\ell/2}. \tag{12} \]

We deduce from (5) the upper bound

\[1 \leq |y| \leq 4 \left(\frac{\xi_1}{\alpha} \right) \epsilon^{\ell-n} \leq \kappa_{17} k^{\epsilon^{\ell-n}}; \tag{12} \]

hence there exists \(\kappa_{18} \) such that

\[0 \leq \log |y| \leq (\ell - n) \log \epsilon + \kappa_{18} \log k. \]

Consequently,

\[n \leq \ell + \kappa_{19} \log k. \tag{13} \]

From the relation (4) we deduce the existence of a constant \(\kappa_{20} \) such that

\[1 \leq |x| \leq \epsilon^{-n/2}|\alpha'|y| + \kappa_{20} k^{\epsilon^{-1/2}}. \tag{14} \]

By taking into account the inequalities (9), (10) and (11) in the case \(\ell \leq 0 \), and the inequalities (12), (13) and (14) in the case \(\ell > 0 \), let us show that the existence of a constant \(\kappa_{21} \) satisfying \(|\ell| \leq \kappa_{21} \log k \) allows to conclude the proof of Theorem 1. As a matter of fact, suppose

\[|\ell| \leq \kappa_{21} \log k. \tag{15} \]

Then (10) and (13) imply \(n \leq \kappa_{22} \log k \), whereupon \(|\ell|\) and \(n \) are effectively bounded by a constant times \(\log k \). This implies that the elements \(e^t \), with \(t \) being \((|\ell|/2) - n, \ell - n, -n/2, |\ell|/2 \) or \(-\ell/2\), appearing in (9), (12), (11) and (14) are bounded from above by \(k^{\kappa_{23}} \) for some constant \(\kappa_{23} \). Therefore the upper bound of \(|y|\) in the conclusion of Theorem 1 follows from (9) and (12) and the upper bound of \(|x|\) is a consequence of (11) and (14). Our goal is to show that sooner or later, we end up with the inequality (15).

In the case \(\ell > 0 \), the lower bound \(|x| \geq 1\) provides an extra piece of information. If the term \(\epsilon^{\ell/2} \xi_1 \) on the right hand side of (4) does not have an absolute value \(< 1/2 \),
then the upper bound (15) holds true and this suffices to claim the proof of Theorem 1. Suppose now $|\epsilon^{\ell}x_1'| < 1/2$. Since the relation (12) implies

$$e^{-n/2} |\alpha' y| \leq 4 \left| \frac{\xi_1 \alpha'}{\alpha} \right| e^{\ell - (3n/2)},$$

we have

$$1 \leq |x| \leq 4 \left| \frac{\xi_1 \alpha'}{\alpha} \right| e^{\ell - (3n/2)} + \frac{1}{2}$$

and

$$1 \leq 8 \left| \frac{\xi_1 \alpha'}{\alpha} \right| e^{\ell - (3n/2)}.$$

We deduce

$$\frac{3}{2} n \leq \ell + \kappa_{24} \log k. \quad (16)$$

The upper bound in (16) is sharper than the one in (13), but, amazingly, we used (13) to establish (16).

When $\ell < 0$, we have $|\ell - n| = n + |\ell| \geq |\ell|$, while in the case $\ell \geq 0$ we have

$$|\ell - n| \geq \frac{1}{3} \ell + \frac{2}{3} \ell - n \geq \frac{1}{3} |\ell| - \kappa_{24} \log k,$$

because of (16). Therefore, if ℓ is positive (recall (16)), zero or negative (recall (10)), we always have

$$n \leq \frac{2}{3} |\ell| + \kappa_{25} \log k \quad \text{and} \quad |\ell - n| \geq \frac{1}{3} |\ell| - \kappa_{24} \log k \quad (17)$$

with $\kappa_{24} > 0$ and $\kappa_{25} > 0$.

3 Diophantine tool

Let us remind what we mean by the absolute logarithmic height $h(\alpha)$ of an algebraic number α (cf. [4], Chap. 3). For L a number field and for $\alpha \in L$, we define

$$h(\alpha) = \frac{1}{[L : Q]} \log H_L(\alpha),$$

with

$$H_L(\alpha) = \prod_{v} \max \{1, |\alpha|_v \}^{d_v}$$

where v runs over the set of places of L, with d_v being the local degree of the place v if v is ultrametric, $d_v = 1$ if v is real, $d_v = 2$ if v is complex. When $f(X) \in \mathbb{Z}[X]$ is the minimal polynomial of α and $f(X) = a_0 \prod_{1 \leq j \leq d} (X - \alpha_j)$, with $\alpha_1 = \alpha$, it
happens that
\[h(\alpha) = \frac{1}{d} \log M(f) \quad \text{with} \quad M(f) = \left| a_0 \right| \prod_{1 \leq j \leq d} \max \{ 1, |\alpha_j| \}. \]

We will use two particular cases of Theorem 9.1 of [4]. The first one is a lower bound for the linear form of logarithms \(b_0 \lambda_0 + b_1 \lambda_1 + b_2 \lambda_2 \), and the second one is a lower bound for \(\gamma_1^2 \gamma_2^2 - 1 \). Here is the first one.

Proposition 1. There exists an explicit absolute constant \(c_0 > 0 \) with the following property. Let \(\gamma_0, \gamma_1, \gamma_2 \) be three rational integers such that \(\Lambda = b_0 \lambda_0 + b_1 \lambda_1 + b_2 \lambda_2 \) be nonzero. Write
\[\gamma_0 = e^{\lambda_0}, \quad \gamma_1 = e^{\lambda_1}, \quad \gamma_2 = e^{\lambda_2} \quad \text{and} \quad D = \left[\mathbb{Q}(\gamma_0, \gamma_1, \gamma_2) : \mathbb{Q} \right]. \]

Let \(A_0, A_1, A_2 \) and \(B \) be real positive numbers satisfying
\[\log A_i \geq \max \left\{ h(\gamma_i), \left| \frac{\lambda_i}{D} \right| \right\} \quad (i = 0, 1, 2) \]
and
\[B \geq \max \left\{ e, D, \frac{|b_2|}{D \log A_0}, \frac{|b_0|}{D \log A_2}, \frac{|b_2|}{D \log A_1}, \frac{|b_1|}{D \log A_2} \right\}. \]
Then
\[|\Lambda| \geq \exp \left\{ -c_0 D^5 (\log D)(\log A_0)(\log A_1)(\log A_2)(\log B) \right\}. \]

The second particular case of Theorem 9.1 in [4] that we will use is the next Proposition 2. It also follows from Corollary 9.22 of [4]. We could as well deduce it from Proposition 1.

Proposition 2. Let \(D \) be a positive integer. There exists an explicit constant \(c_1 > 0 \), depending only on \(D \) with the following property. Let \(K \) be a number field of degree \(\leq D \). Let \(\gamma_1, \gamma_2 \) be nonzero elements in \(K \) and let \(b_1, b_2 \) be rational integers. Assume \(\gamma_1^2 \gamma_2^2 \neq 1 \). Set
\[B = \max \{ 2, |b_1|, |b_2| \} \quad \text{and, for} \quad i = 1, 2, \quad A_i = \exp \left(\max \{ e, h(\gamma_i) \} \right). \]
Then
\[|\gamma_1^2 \gamma_2^2 - 1| \geq \exp \left\{ -c_1 (\log B)(\log A_1)(\log A_2) \right\}. \]

Proposition 2 will come into play via its following consequence.

Corollary 2 Let \(\delta_1 \) and \(\delta_2 \) be two real numbers in the interval \([0, 2\pi) \). Suppose that the numbers \(e^{i \delta_1} \) and \(e^{i \delta_2} \) are algebraic. There exists an explicit constant \(c_2 > 0 \), depending only upon \(\delta_1 \) and \(\delta_2 \), with the following property: for each \(n \in \mathbb{Z} \) such that \(\delta_1 + n \delta_2 \notin \mathbb{Z} \pi \), we have
\[|\sin(\delta_1 + n \delta_2)| \geq (|n| + 2)^{-c_2}. \]
Proof. Write $\gamma_1 = e^{i\delta_1}$ and $\gamma_2 = e^{i\delta_2}$. By hypothesis, γ_1 and γ_2 are algebraic with $\gamma_1\gamma_2 \neq 1$. Let us use Proposition 2 with $b_1 = 1$, $b_2 = n$. The parameters A_1 and A_2 depend only upon δ_1 and δ_2 and the number $B = \max\{2, |n|\}$ is bounded from above by $|n| + 2$. Hence

$$|\gamma_1\gamma_2 - 1| \geq (|n| + 2)^{-c_3}$$

where c_3 depends only upon δ_1 and δ_2. Let ℓ be the nearest integer to $(\delta_1 + n\delta_2)/\pi$ (take the floor if there are two possible values) and let $t = \delta_1 + n\delta_2 - \ell\pi$. This real number t is in the interval $(-\pi/2, \pi/2]$. Now

$$|e^{it} + 1| = |1 + \cos(t) + i\sin(t)| = \sqrt{2(1 + \cos(t))} \geq \sqrt{2}.$$

Since $e^{it} = (-1)^{\ell}\gamma_1\gamma_2$, we deduce

$$|\sin(\delta_1 + n\delta_2)| = |\sin(t)| = \frac{1}{2} \left| (-1)^{2\ell} e^{2it} - 1 \right| = \frac{1}{2} \left| (-1)^{t} e^{it} + 1 \right| \left| (-1)^{t} e^{it} - 1 \right| \geq \frac{\sqrt{2}}{2} |\gamma_1\gamma_2 - 1|.$$

This secures the proof of Corollary 2.

The following elementary lemma makes clear that $e^{t} \sim 1$ for $t \to 0$. The first (resp. second) part follows from Exercise 1.1.a (resp. 1.1.b or 1.1.c) of [4]. We will use only the second part; the first one shows that the number t in the proof of Corollary 2 is close to 0, but we did not need it.

Lemma 3

(a) For $t \in \mathbb{C}$, we have

$$|e^{t} - 1| \leq |t| \max\{1, |e^{t}|\}.$$

(b) If a complex number z satisfies $|z - 1| < 1/2$, then there exists $t \in \mathbb{C}$ such that $e^{t} = z$ and $|t| \leq 2|z - 1|$. This t is unique and is the principal determination of the logarithm of z:

$$|\log z| \leq 2|z - 1|.$$

4 Proof of Theorem [1]

Let us define some real numbers θ, δ and ν in the interval $[0, 2\pi)$ by

$$e^{t} = \frac{1}{e^{1/2}} e^{i\theta}, \quad \alpha' = |\alpha'| e^{i\delta}, \quad \xi_1' = |\xi_1'| e^{i\nu}.$$

By ordering the terms of (7), we can write this relation as

$$T_1 + T_2 + T_3 = 0.$$
and the three terms involved are
\[
\begin{align*}
T_1 : &= e^\ell \xi_1 (\alpha' e^n - \overline{\alpha'} e^{\ell n}) = 2i\xi_1 |\alpha'| e^{\ell-n/2} \sin(\delta + n\theta), \\
T_2 : &= \alpha e^n (\overline{\xi}_1' - e^{\ell} \xi_1') = -2i\xi_1' |\alpha| e^{n-\ell/2} \sin(\nu + \ell \theta), \\
T_3 : &= \xi_1' e^{\ell n} \overline{\alpha'} e^{\ell n} - \overline{\xi}_1 e^\ell \alpha' e^n = 2i\xi_1' \alpha' e^{-(n+\ell)/2} \sin(\nu - \delta + (\ell - n)\theta).
\end{align*}
\]

It turns out that these three terms are purely imaginary. We write this zero sum as
\[
a + b + c = 0 \quad \text{with} \quad |a| \geq |b| \geq |c|,
\]
and we use the fact that this implies that $|a| \leq 2|b|$. Thanks to (17), Corollary 2 shows that a lower bound of the sinus terms is $|\ell|^{-\kappa_{26}}$ (and an obvious upper bound is 1). Moreover,

\begin{itemize}
 \item The T_1 term contains a constant factor and the factors:
 \begin{itemize}
 \item $|\xi_1|$ with $k^{-2} \leq |\xi_1| \leq k^2$.
 \item $e^{\ell-n/2}$ (which is the main term).
 \item a sinus with a parameter n (a lower bound of the absolute value of that sinus being $n^{-\kappa_{36}}$).
 \end{itemize}
 \item Similarly, T_2 contains a constant factor and the factors:
 \begin{itemize}
 \item $|\xi_1'|$ with $k^{-2} \leq |\xi_1'| \leq k^2$.
 \item $e^{n-\ell/2}$ (which the main term).
 \item a sinus with a parameter ℓ (a lower bound of the absolute value of that sinus being $|\ell|^{-\kappa_{26}}$).
 \end{itemize}
 \item Similarly, T_3 contains a constant factor and the factors:
 \begin{itemize}
 \item $|\xi_1'|$ with $k^{-2} \leq |\xi_1'| \leq k^2$.
 \item $e^{-(n+\ell)/2}$ (which the main term).
 \item a sinus with a parameter $\ell - n$ (a lower bound of the absolute value of that sinus being $|\ell - n|^{-\kappa_{36}}$).
 \end{itemize}
\end{itemize}

We will consider three cases, and we will use the inequalities (3) and (17). This will eventually allow us to conclude that there is an upper bound for $|\ell|$ and n by an effective constant times $\log k$.

First case. If the two terms a and b with the largest absolute values are T_1 and T_2, from the inequalities $|T_1| \leq 2|T_2|$ and $|T_2| \leq 2|T_1|$ (which come from $|b| \leq |a| \leq 2|b|$), we deduce (thanks to (17))
\[
k^{-\kappa_{30}} |\ell|^{-\kappa_{31}} \leq e^{\frac{3}{2} (\ell - n)} \leq k^{\kappa_{32}} |\ell|^{\kappa_{33}},
\]
whereupon, thanks again to (17), we have
\[
-\kappa_{34} \log k + \frac{|\ell|}{3} \leq |\ell - n| \leq \kappa_{35} \log |\ell| + \kappa_{36} \log k,
\]
which leads to $|\ell| \leq \kappa_{37} (\log k + \log |\ell|)$. This secures the upper bound (15), and ends the proof of Theorem 1.
Second case. Suppose that the two terms a and b with the largest absolute values are T_1 and T_3. By writing $|T_1| \leq 2|T_3|$ and $|T_3| \leq 2|T_1|$, we obtain (thanks to (17))

$$k^{-1/3}|\ell|^{-\kappa_{38}} \leq \varepsilon^{3/2} \leq k^{1/3}|\ell|^{\kappa_{39}},$$

hence

$$|\ell| \leq \kappa_{40}(\log k + \log |\ell|).$$

Once more, we have $\varepsilon|\ell| \leq k\kappa_{41}$, and we saw that the upper bound (17) allows to draw the conclusion.

Third case. Let us consider the remaining case, namely, the two terms a and b with the largest absolute values being T_2 and T_3. Consequently, in the relation $T_1 + T_2 + T_3 = 0$, written in the form $a + b + c = 0$ with $|a| \geq |b| \geq |c|$, we have $c = T_1$. Writing $|T_2| \leq 2|T_3|$ and $|T_3| \leq 2|T_2|$, we obtain

$$k^{-1/3}|\ell|^{-\kappa_{42}} \leq \varepsilon^{3n/2} \leq k^{1/3}|\ell|^{\kappa_{43}}.$$

From the second of these inequalities, we deduce the existence of κ_{44} such that

$$n \leq \kappa_{44}(\log k + \log |\ell|).$$

Remark. The upper bound (18) allows to proceed as in the usual proof of the Thue theorem where n is fixed.

From the upper bound $|T_1| \leq |T_2|$, one deduces $n > \ell - \kappa_{45}\log k$, so that (18) leads right away to the conclusion if ℓ is positive.

Let us suppose now that ℓ is negative. Let us consider again the equation (7) that we write in the form

$$\rho_n \varepsilon^\ell + \mu_n \varepsilon'\ell - \overline{\mu_n} \varepsilon'^\ell = 0$$

(19)

with

$$\rho_n = \zeta_1(\alpha' \varepsilon'^n - \overline{\alpha} \varepsilon^n) \quad \text{and} \quad \mu_n = \zeta_1(\overline{\alpha'} \varepsilon'^n - \alpha \varepsilon^n).$$

We check (cf. Property 3.3 of [4])

$$h(\mu_n) \leq \kappa_{46}(n + \log k).$$

Let us divide each side of (19) by $-\mu_n \varepsilon'^\ell$:

$$\frac{\overline{\mu_n} \varepsilon'^\ell}{\mu_n \varepsilon'^\ell} - 1 = \frac{\rho_n \varepsilon^\ell}{\mu_n \varepsilon'^\ell}.$$

We have

$$|\alpha' \varepsilon'^n - \overline{\alpha} \varepsilon^n| \leq |\alpha' \varepsilon'^n| + |\overline{\alpha} \varepsilon^n| = 2 |\varepsilon'^n \alpha'|$$

and, using (8),

$$|\overline{\alpha'} \varepsilon'^n - \alpha \varepsilon^n| \geq \frac{1}{2} |\alpha| \varepsilon^n.$$
Since \(|\xi| \leq k^{1/9} \) and \(|\xi'| > k^{-1/9} \) by (3), we come up with
\[
|\rho_n| \leq \kappa_4 k^{5/9} \kappa_9 \epsilon_n / 2, \quad |\mu_n| \geq \kappa_4 k^{5/9} \epsilon_n.
\]
Therefore, since \(|\epsilon'|^{-1} = \epsilon^{1/2} \), we have
\[
\left| \frac{\mu_n \epsilon'}{\mu_n \epsilon'} - 1 \right| = \left| \frac{\rho_n \epsilon'}{\mu_n \epsilon'} \right| \leq \kappa_{49} \epsilon^{-(n+3|\ell|)/2} k^{5/9}.
\]
We denote by \(\log \) the principal value of the logarithm and we set
\[
\lambda_1 = \log \left(\frac{\epsilon'}{\epsilon} \right), \quad \lambda_2 = \log \left(\frac{\mu_n}{\mu_n} \right) \quad \text{and} \quad \Lambda = \log \left(\frac{\mu_n \epsilon'}{\mu_n \epsilon'} \right).
\]
We have
\[
\lambda_1 = 2i\pi \nu \quad \lambda_2 = 2i\pi \theta_n,
\]
where \(\nu \) and \(\theta_n \) are the real numbers in the interval \([0, 1)\) defined by
\[
\frac{\epsilon'}{\epsilon'} = e^{2i\pi \nu} \quad \text{and} \quad \frac{\mu_n}{\mu_n} = e^{2i\pi \theta_n}.
\]
From \(e^\Lambda = e^{\lambda_1 + \lambda_2} \) we deduce \(\Lambda - \ell \lambda_1 - \lambda_2 = 2i\pi h \) with \(h \in \mathbb{Z} \). From Lemma 3 we deduce \(|\Lambda| \leq 2 |e^\Lambda - 1| \). Using \(|\Lambda| < 2\pi \) and writing
\[
2i\pi h = \Lambda - 2i\pi \ell \nu - 2i\pi \theta_n,
\]
we deduce \(|h| \leq |\ell| + 2 \).

In Proposition 1 let us take
\[
b_0 = h, \quad b_1 = \ell, \quad b_2 = 1, \quad \gamma_0 = 1, \quad \lambda_0 = 2i\pi, \quad \gamma_1 = \frac{\epsilon'}{\epsilon'}, \quad \gamma_2 = \frac{\mu_n}{\mu_n},
\]
\[
A_0 = A_1 = \kappa_3, \quad A_2 = (k \epsilon^n)^{\kappa_1}, \quad B = e + \frac{|\ell|}{\log A_2}.
\]
Notice that the degree \(D \) of the field \(\mathbb{Q}(\gamma_0, \gamma_1, \gamma_2) \) is \(\leq 6 \). Then we obtain
\[
\left| \frac{\mu_n \left(\frac{\epsilon'}{\epsilon'} \right) ^\ell}{\mu_n \epsilon'} - 1 \right| = |e^\Lambda - 1| \geq \frac{1}{2} |\Lambda| \geq \exp \left\{ -\kappa_{32} (\log A_2) (\log B) \right\}.
\]
By combining this estimate with (20), we deduce
\[
|\ell| \leq \kappa_{33} (n + \log k) \log B,
\]
which can also be written as $B \leq \kappa_4 \log B$, hence B is bounded. This allows to obtain

$$|\ell| \leq \kappa_5 (n + \log k).$$

We use (18) to deduce $e^{\ell} \leq k^{41}$ and we saw that the upper bound (15) leads to the conclusion of the main Theorem.

References

1. H. Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, 193. Springer-Verlag, New York, (2000).
2. C. Levesque et M. Waldschmidt, Familles d’équations de Thue-Mahler n’ayant que des solutions triviales, Acta Arith., 155 (2012), 117–138.
3. T. N. Shorey and R. Tijdeman, Exponential Diophantine equations, vol. 87 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1986.
4. M. Waldschmidt, Diophantine approximation on linear algebraic groups, vol. 326 of Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, Berlin, 2000.