Supplemental Information

Selective Surface PEGylation of UiO-66 Nanoparticles for Enhanced Stability, Cell Uptake, and pH-Responsive Drug Delivery

Isabel Abánades Lázaro, Salame Haddad, Sabrina Sacca, Claudia Orellana-Tavra, David Fairen-Jimenez, and Ross S. Forgan
Table of Contents

S1. General Experimental Remarks. S2.
S2. Materials and Synthesis. S4.
S3. Characterisation of NMOFs. S8.
S4. Characterisation of Surface-Modified NMOFs. S15.
S5. Stability of Surface-Modified NMOFs. S29.
S6. Characterisation of Calcein Loaded NMOFs. S34.
S7. Calcein Release from NMOFs. S39.
S8. Characterisation of NMOFs after Calcein Release. S48.
S9. Endocytosis of NMOFs. S52.
S10. Therapeutic Efficacy of Drug-Loaded NMOFs S55.
S11. References. S58.

All experimental data associated with this manuscript are available for download at:

http://dx.doi.org/10.5525/gla.researchdata.389
S1. General Experimental Remarks

Powder X-ray Diffraction (PXRD): PXRD measurements were carried out at 298 K using a PANalytical X'Pert PRO diffractometer (λ (CuKα) = 1.4505 Å) on a mounted bracket sample stage. Data were collected over the range 5–45°. (University of Glasgow)

Thermogravimetric Analysis (TGA): Measurements were carried out using a TA Instruments Q500 Thermogravimetric Analyser. Measurements were collected from room temperature to 800 °C with a heating rate of 10 °C / min under an air atmosphere. (University of Glasgow)

Nuclear Magnetic Resonance Spectroscopy (NMR): NMR spectra were recorded on either a Bruker AVIII 400 MHz spectrometer or a Bruker AVI 500 MHz spectrometer and referenced to residual solvent peaks. (University of Glasgow)

Gas Uptake: N\textsubscript{2} adsorption isotherms were carried out at 77 K on a Quantachrome Autosorb iQ gas sorption analyser. Samples were degassed under vacuum at 120 °C for 20 hours using the internal turbo pump. BET surface areas were calculated from the isotherms using the Micropore BET Assistant in the Quantachrome ASiQwin operating software. (University of Glasgow)

Pore-Size Distribution: Pore size distributions were calculated using the N\textsubscript{2} at 77 K on carbon (slit pore, QSDFT, equilibrium model) calculation model within the Quantachrome ASiQwin operating software. (University of Glasgow)

UV-Vis Spectroscopy: UV-vis spectra were recorded using a Shimadzu UV-1800; analysis was carried out using the software UVProve. (University of Glasgow)

ESIMS: Electrospray Ionisation Mass Spectrometry was carried out on solution samples injected into a Bruker MicroTOFq spectrometer. (University of Glasgow).

Scanning Electron Microscopy (SEM): The powder samples were coated with Pd for 150 seconds using Polaron SC7640 sputter coater and imaged using a Carl Zeiss Sigma Variable Pressure Analytical SEM with Oxford Microanalysis. Particle size distribution was analysed manually using ImageJ software. (University of Glasgow)

IR: Infrared spectra of solids were collected using a Shimadzu Fourier Transform Infrared
Spectrometer, FTIR-8400S, fitted with a Diamond ATR unit. (University of Glasgow)

Flow Cytometry: Measurements were carried out using Cytek DxP8 analyser cytometer; BLU mode (laser)-FLU1 (fluorescence detector). The analysis was done using FlowJo and Prism softwares. (University of Cambridge)

Confocal Microscopy: Measurements were carried out using Leica TCS SP5 confocal microscope. The microscope was equipped with 405 diode, argon and HeNe lasers. Leica LAS AF software was used to analyse the images. (University of Cambridge)

Dynamic Light Scattering: Colloidal analysis was performed by Dynamic Light Scattering (DLS) with a Zetasizer Nano ZS potential analyser equipped with Non-Invasive Backscatter optics (NIBS) and a 50 mW laser at 633 nm. (University of Glasgow)
S2. Materials and Synthesis

All reagents unless otherwise stated were obtained from commercial sources and were used without further purification. The modulators L1 and L2 were synthesised by literature procedures, and the synthesis of UiO-66 – [Zr6O4(OH)4(C8H4O4)x]n – was adapted from a literature procedure. The propargyl modified monomethyl poly(ethylene glycol) samples were synthesised according to a literature procedure.

p-Azidomethyl benzoic acid (L1)

![Diagram of p-Azidomethyl benzoic acid (L1)](attachment:diagram)

The commercially available 4-(bromomethyl)benzoic acid (5 g, 23.27 mmol, 1.0 eq) was dissolved in N,N-dimethylformamide (DMF, 150 mL) in a round 250 mL bottom flask. Sodium azide (3.8 g, 58.18 mmol, 2.5 eq) was added dropwise. The reaction mixture was heated at 50 °C for 24 hours. The solvent was evaporated under vacuum. Following the literature procedure, p-azidomethyl benzoic acid (3.91 g, 22.1 mmol, 95%) was obtained pure as a white solid.

1H NMR (500 MHz, CDCl₃) δ 4.48 (s, 2 H), 7.46 (d, J = 8.4 Hz, 2H), 8.16 (d, J = 8.3 Hz, 2H);

13C NMR (126 MHz, CDCl₃) δ 53.41, 128.7, 130.62, 130.91, 141.04, 167.51.

The azide band (2130 cm⁻¹) was identified by IR, and compared with the starting material.

ESI-MS: calculated for C₈H₆N₃O₂ m/z = 176.0466; found m/z = 176.0455.

p-Propargyloxy benzoic acid (L2)

To a solution of methyl 4-hydroxybenzoate (5 g, 33 mmol, 1.0 eq) in acetonitrile (40 mL), K₂CO₃ (6.64 g, 49.5 mmol, 1.5 eq) was added. The mixture was heated to 50 °C for 30 min followed by dropwise addition of propargyl bromide (80% in toluene, 4.9 g, 3.53 mL, 33 mmol, 1 eq). The mixture was allowed to react at the same temperature during 16 hours. Solvent was evaporated and the remaining liquid was quenched with water and extracted with chloroform (4 x 15 mL). The organic layers were combined and washed with water (2 x 10 mL) and brine (2 x 10 mL). Pure methyl p-propargyloxybenzoate was obtained as a white solid (8.11 g, 32 mmol, 97%).

1H NMR (500 MHz, CDCl₃) δ: 2.54 (t, J = 2.5 Hz, 1H), 3.88 (s, 3H), 4.74 (d, J = 2.5 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 8.00 (d, J = 9.0 Hz, 2H); 13C NMR (126 MHz, CDCl₃) δ: 51.86, 55.78, 76.05, 77.79, 114.51, 123.42, 131.50, 161.11, and 166.64.

Methyl p-propargyloxybenzoate (8 g, 32 mmol) was dissolved in a mixture of THF (45 mL) and MeOH (22.5 mL), an aqueous solution of NaOH 40% weight (25 mL) was added and the reaction mixture allowed to reflux for two hours. After cooling down, the organic solvents
were distilled under vacuum yielding a clear solution, which was acidified with 6 M aqueous HCl. A white precipitate separated, was filtered and washed with abundant water, yielding after drying under vacuum pure \(\text{p-propargyloxybenzoic acid (6.43 g, 27 mmol, 87.6\%)} \).

\[^1H \text{ NMR (500 MHz, CDCl}_3 \text{)} \delta: 3.57 (t, J = 2.4 Hz, 1H), 4.86 (d, J = 2.4 Hz, 2H), 7.04 (d, J = 9.0 Hz, 2H), 7.88 (d, J = 9.0 Hz, 2H), 12.41 (s, 1H); ^{13}C \text{ NMR (126 MHz, CDCl}_3 \text{)} \delta: 39.91, 56.05, 79.02, 79.14, 115.04, 124.11, 131.67, and 161.13. \]

ESI-MS: calculated for C\(_{10}\)H\(_7\)O\(_3\) \(m/z = 175.0401\); found \(m/z = 175.0399\).

UiO-66 Synthesis

UiO-66 was synthesised by adaptation of a literature procedure to include different modulators as follows. For all samples, after cooling the reaction mixture, particles were collected by centrifugation (4500 rpm, 15 minutes), and washed (sonication centrifugation cycles) with fresh DMF (x1) and MeOH (x3). The NMOFs were dried for at least 24 hours under vacuum before analysis.

UiO-66 (Unmodulated)

1,4-Benzenedicarboxylic acid (bdc) (448 mg, 2.7 mmol) was dissolved in 30 mL of DMF. In a separate vial, the metal precursor, zirconium chloride (629 mg, 2.7 mmol) was dissolved in 30 mL of DMF. Both solutions were sonicated until complete dissolution and mixed together in a 100 mL jar. The solution was heated to 120 °C for 24 hours yielding UiO-66 nanoparticles.

UiO-66-AcOH (Modulated with acetic acid)

UiO-66 particles were modulated using the same procedure. Acetic acid (4.2 mL, 7% volume) was added after mixing both precursors solutions. The sample is named UiO-66-AcOH.

UiO-66-L1 and UiO-66-L2 (Modulated with L1 or L2)

1,4-Benzenedicarboxylic acid (448 mg, 2.7 mmol) plus one, three or five equivalents of modulator (L1 or L2), compared to metal precursor, were dissolved in 30 mL of DMF. In a separate vial, the metal precursor, zirconium chloride (629 mg, 2.7 mmol) was dissolved in 30 mL of DMF. Both solutions were sonicated until complete dissolution and mixed together. Subsequently, acetic acid (4.2 mL, 7% volume) was added. The solution was heated to 120 °C for 24 hours yielding UiO-66 nanoparticles.
1-Azidodecane

1-Bromodecane (4 g, 0.018 mol, 1 eq) was dissolved in DMF (50 mL). Then, sodium azide (2.39 g, 0.036 mol, 2 eq) was added dropwise, and the mixture was allowed to react at 50 °C overnight. After the solvent was evaporated, the remaining mixture was poured into water (100 mL) and extracted with DCM (3 x 25 mL). The organic phase was further washed with water (2 x 15 mL). The product was obtained pure as a slightly yellow oil (3.2 g, 94%), whose spectroscopic data matched that found in the literature.55

1H NMR (400 MHz, DMSO) δ 0.86 (t, J = 6.9 Hz, 3H), 1.36 – 1.19 (m, 14H), 1.58 – 1.45 (m, 2H), 3.31 (t, J = 6.9 Hz, 2H); 13C NMR (101 MHz, DMSO) δ 14.38, 22.55, 26.60, 28.70, 28.99, 29.13, 29.37, 29.38, 31.64, 51.10.

PEG550-propargyl

In a typical PEG550-propargyl synthesis (n = 11), 1 eq (2 g, 3.64 mmol) of PEG550 methyl ether is dissolved in 50 mL anhydrous THF under nitrogen. After that, 1.5 eq (236 mg, 5.46 mmol) of 60% NaH in mineral oil, and 1.5 eq (0.6 mL, 3.40 mmol) of propargyl bromide, are added. The solution is stirred overnight at room temperature. The resulting mixture is then filtrated and evaporated under vacuum. A clear, brown oil is obtained (1.225 g, 2.125 mmol, 59%).4

1H NMR: (500 MHz, DMSO) δ 3.25 (s, 3H), 3.47 – 3.40 (m, 4H), 3.54 – 3.48 (m, 44H), 4.15 (d, J = 2.4 Hz, 2H); 13C NMR: (101 MHz, DMSO) δ 57.95, 58.51, 68.98, 70.25 (high intensity, polymeric chain), 71.75, 77.51, 80.79.

EIMS: calculated for C$_4$H$_5$O(C$_2$H$_4$O)$_n$C$_2$H$_5$O, M+Na+ (n = 6) m/z = 401.2151; found m/z = 401.2160, (found from n=6 to n=17).

PEG2000-propargyl

In a typical PEG2000-propargyl synthesis (n = 44), 1 eq (2 g, 1 mmol) of PEG2000 methyl ether is dissolved in 100 mL anhydrous tetrahydrofuran (THF) under nitrogen. After that, 1.5 eq (65 mg, 1.5 mmol) of 60% NaH in mineral oil, and 1.5 eq (0.6 mL, 3.40 mmol) of propargyl bromide, are added. The solution is stirred overnight at room temperature. The resulting mixture is then filtered and evaporated under vacuum. A white, hard powder is obtained (993 mg, 0.51 mmol, 51%).

1H NMR (500 MHz, DMSO) δ 3.25 (s, 3H), 3.46 – 3.41 (m, 4H), 3.52 (s, 88H), 4.15 (d, J = 2.4 Hz, 2H); 13C NMR: (101 MHz, DMSO) δ 57.95, 58.51, 68.98, 69.97, 70.05, 70.25 (high intensity, polymeric chain), 70.65, 71.75, 77.52, 80.79.

No ionisation was observed in EIMS, IR showed a stretch at $\tilde{\nu} = 2883$ cm$^{-1}$, which is representative of the alkyne functionality.
L1-dodecyne
1-Dodecyne (1.98 mmol, 327 mg, 1.2 equivalents) was dissolved in DCM (50 mL), DiPEA (4 mol%, 138 µl), AcOH (4 mol %, 45 µl) and Cul (2 mol %, 7.5 mg) were added, and the mixture stirred 15 minutes under nitrogen. Then, p-azidomethylbenzoic acid (L1) (1.65 mmol, 291 mg, 1 equivalent) was added to the reaction mixture, which was allowed to react overnight at room temperature under nitrogen atmosphere. Then, the reaction solvent was washed with water (3 x 15 mL) with an aqueous EDTA solution (2 x 15 mL) and with water (2 x 15 mL). Pure product was obtained as a white powder after evaporation of the organic solvent.

\[
\text{H NMR (400 MHz, DMSO)} \delta 0.85 (t, J = 6.8 Hz, 3H), 1.34 – 1.12 (m, 13H), 1.65 – 1.46 (m, 2H), 2.60 (t, J = 7.5 Hz, 2H), 5.64 (s, 2H), 7.35 (d, J = 8.2 Hz, 2H), 8.11 – 7.79 (m, 3H), 13.02 (s, 1H); \]

\[
\text{C NMR (101 MHz, DMSO)} \delta 14.40, 22.55, 25.43, 28.99, 29.15, 29.20, 29.32, 29.35, 29.42, 31.74, 31.78, 52.65, 122.75, 128.26, 130.12, 130.18, 130.85, 141.57, 147.75.
\]

L2-decane
1-Azidodecane (2.5 mmol, 461 mg, 1.2 equivalents) was dissolved in DCM (50 mL), DiPEA (4 mol %, 146 µl), AcOH (4 mol %, 48 µl) and Cul (2 mol, 8.0 mg) were added, and the mixture stirred 15 minutes under nitrogen. Then, p-propargyloxybenzoic acid (L2) (2.1 mmol, 500 mg, 1 equivalent) was added to the reaction mixture, which was allowed to react overnight at room temperature under nitrogen atmosphere. Then, the reaction solvent was washed with water (3 x 15 mL) with an aqueous EDTA solution (2 x 15 mL) and with water (2 x 15 mL). Pure product was obtained as a white–yellowish powder after evaporation of the organic solvent.

\[
\text{H NMR (400 MHz, DMSO)} \delta 12.63 (s, 1H), 8.25 (s, 1H), 7.89 (d, J = 8.7 Hz, 2H), 7.12 (d, J = 8.7 Hz, 2H), 5.22 (s, 2H), 4.36 (t, J = 7.1 Hz, 2H), 1.92 – 1.65 (m, 2H), 1.23 (s, 12H), 0.85 (t, J = 6.9 Hz, 3H); \]

\[
\text{C NMR (101 MHz, DMSO)} \delta 204.59, 194.88, 162.04, 161.77, 131.71, 114.93, 49.85, 31.78, 31.73, 29.35, 29.32, 29.30, 29.10, 28.97, 28.82, 28.79, 28.69, 26.26, 22.57, 14.41.
S3. Characterization of NMOFs

Analysis of the UiO-66 samples by PXRD confirmed their crystallinity (Figure S1). Unmodulated samples showed a broad PXRD pattern, indicating a very small particle size, while UiO-66-AcOH showed a better defined PXRD pattern. Inclusion of L1 or L2 did not affect crystallinity and produced phase pure samples.

Figure S1. Stacked PXRD patterns of UiO-66 modulated with a) L1 and b) L2.

The modulator (L1 or L2) content in the UiO-66 samples was calculated using 1H NMR spectroscopy of samples digested in D$_2$SO$_4$ / DMSO-d$_6$. By comparing intensity of one of the aromatic signals of the modulator (d, 2H) to the resonance of the aromatic protons of the bdc linker (s, 4H), it is possible to determine modulator content using the formula:

$$L_{\text{mol\% compared to linker}} = \frac{\text{Intensity (L aromatic signal)}}{\text{Intensity (L aromatic signal) + (bdc aromatic signal/2) * 100}}$$

Typical 1H NMR spectra are shown in Figure S2, which corresponds to UiO-66-L1 (5 eq), and Figure S3, which corresponds to UiO-66-L2 (3 eq). The integral ratios confirm that L1 is present in 13.3% molar ratio when compared to the linker, bdc, and L2 is present in 6.8% molar ratio. In this way, the increasing content of both L1 in UiO-66-L1 and L2 in UiO-66-L2 could be determined (Table S1).
Figure S2. 1H NMR spectrum (D$_2$SO$_4$ / DMSO-d$_6$, 293 K) of UiO-66-L1 (5 eq), showing the presence of the modulator L1.

Figure S3. 1H NMR spectrum (D$_2$SO$_4$ / DMSO-d$_6$, 293 K) of UiO-66-L2 (3 eq), showing the presence of the modulator L2.
Table S1. Modulator content in UiO-66 samples determined by 1H NMR spectra.

Modulator	L1 (1 eq)	L1 (3 eq)	L1 (5 eq)	L2 (1 eq)	L2 (3 eq)	L2 (5 eq)
Mol % versus bdc	5.6%	8.3%	13.3%	1.2%	6.8%	17.1%

FTIR spectra of the samples also showed an increase in signals associated with the functional groups of the modulators (azide band for L1, alkyne signals for L2) as more equivalents were added to the synthetic mixture (Figure S4).

Figure S4. FTIR spectra of modulated UiO-66 samples showing the presence of functional groups of a) L1 and b) L2 in the synthesised MOF.
The effect of modulator incorporation on particle size was examined by SEM imaging. The samples were prepared as low concentration dispersions of nanoparticles in MeOH, which were allowed to dry in the oven at 60 °C for 5 minutes. For UiO-66-AcOH (Figure S5), particles were roughly spherical aggregates of very small crystals, with a diameter of around 200 nm.

![Figure S5. SEM images of UiO-66-AcOH.](image)

For UiO-66-L1 samples, the morphology is noticeably different, being roughly octahedral crystallites of 100-200 nm in size regardless of the number of equivalents of L1 included in the synthetic mixture (Figure S6).

![Figure S6. SEM images of a) UiO-66-L1 (1 equiv), b) UiO-66-L1 (3 equiv), and c) UiO-66-L1 (5 equiv).](image)

In contrast, samples of UiO-66-L2 became larger and more polydisperse as more equivalents of L2 were included in the synthetic mixture (Figure S7), reaching sizes of ~600 nm for UiO-66-L2 (5 equiv). UiO-66-L1 (1 equiv) has a reasonable particle size range of around 200-300 nm, but as \(^1\)H NMR spectroscopic analysis showed very little incorporation of L2, UiO-66-L2 (5 equiv) was used for proof-of-concept surface modification along with UiO-66-L1 (5 equiv).
The quantities of organic components (either bdc or the modulator) present in UiO-66-L1 and UiO-66-L2 (all subsequent samples synthesised with 5 equivalents of modulator) were calculated by TGA measurements (Figure S8) and used for further degradation studies.

Figure S8. TGA traces (recorded in air) of UiO-66-L1 and UiO-66-L2, compared to L1 and UiO-66-AcOH.

It has been previously reported that when UiO-66 (Zr₆O₄(OH)₄L₆ theoretical structure) is thermally degraded in air, the first mass loss step at 200-300 °C corresponds to the zirconium clusters losing two molecules of water, adopting the Zr₆O₆L₆ molecular formula, then, the ligand decomposition takes place near 500 °C, leaving the residue ZrO₂. Therefore,
by comparing experimental mass loss of the last decomposition step with the weight percent of the linker in the \([\text{Zr}_6\text{O}_4(\text{OH})_4\text{L}_x]\) structure for different values of \(x\), the number of ligands in the structure can be estimated (Table S2).^{56}

Table S2. Theoretical compositions of different defective UiO-66 samples.

\[
\text{Linker wt\%} = \frac{xL}{\text{Zr6O4(OH)4Lx}} \times 100
\]

Number of linkers in \(\text{Zr}_6\text{O}_4(\text{OH})_4\text{L}_x\)	Linker wt\%
\(x=6\)	59.2 wt\%
\(x=5\)	54.5 wt\%
\(x=4\)	49.1 wt\%
\(x=3\)	42.0 wt\%

In Figure S7 we can observe that the last decomposition step of UiO-66-AcOH corresponds to 46.8 wt\% of the sample, which matches a material with 2.5 ligands missing, leading the approximate composition \([\text{Zr}_6\text{O}_4(\text{OH})_4\text{L}_{3.5}]_n\), with either acetates, chlorides or solvents at defect sites.

When L1 is introduced to the synthetic procedure, the material \([\text{Zr}_6\text{O}_4(\text{OH})_4\text{L}_x\text{(L1)}_y]\) shows a similar decomposition profile to UiO-66-AcOH, indicating that L1 degrades together with the linker (bdc) but at a lower temperature, suggesting L1 is incorporated at the surfaces or the particles and at defects. As L1 has a similar molecular weight to the bdc linker, we have estimated the total organic content (bdc and L1) present in the sample using the former theoretical calculations. In UiO-66-L1 the last decomposition step corresponds to 59.1\% of the total weight of sample, suggesting a full complement of six linkers/modulators in the structure. Therefore, the UiO-66-L1 composition is expected to be close to \([\text{Zr}_6\text{O}_4(\text{OH})_4\text{L}_{6-x}\text{L1}_x]\)_n. UiO-66-L2 shows a more complex degradation profile, in which degradation of the last ligand step corresponds to 46.2 wt\%. As its bioapplications, due to particle size, were not further studied (see later), no in depth analysis of its thermal degradation was performed.

The porosities of the samples were measured by \(\text{N}_2\) adsorption isotherms at 77 K, and the adsorption isotherms (Figure S9a) yielded the following information:

UiO-66-AcOH: \(S_{\text{BET}}=1232 \text{ m}^2\text{g}^{-1}\); pore volume= 0.652 ccg\(^{-1}\).

UiO-66-L1: \(S_{\text{BET}}=1565 \text{ m}^2\text{g}^{-1}\); pore volume= 0.762 ccg\(^{-1}\).

UiO-66-L2: \(S_{\text{BET}}=1420 \text{ m}^2\text{g}^{-1}\); pore volume = 0.702 ccg\(^{-1}\).
Figure S9. a) Adsorption and desorption isotherms (N₂, 77 K) of UiO-66-L1 and Ui-66-L2 modulated samples compared to UiO-66-AcOH. Filled symbols represent adsorption, empty symbols represent desorption. b) Pore size distribution (slit pore, N₂ at 77 K on carbon, QSDFT equilibrium model) of UiO-66-L1 and UiO-66-L2 modulated samples compared to UiO-66-AcOH.

The surface areas for the samples modulated by 5 equivalents of L1 and L2 are enhanced, while the pore size distribution of these modulated samples (Figure S9b) is similar to the reported for UiO-66 (8 Å and 11 Å). These results, together with the pore volume determination and the surface area of the nanoparticles, unequivocally confirm that the modulators are attached to the surface and defects sites and not stored in the pores of the NMOFs. In fact, when adding 5 equivalents of modulator to the synthetic process, the porosity of the particles increases, which could be attributed to defects induced in the structure, as attaching L1 or L2, with only one coordination site could lead to not fully connected zirconium positions.
S4. Characterisation of Surface-Modified NMOFs

General Procedure

In a typical CuAAC reaction performed on the modified MOF, 200 mg of the MOF in question, in this example UiO-66-L1, was placed in a 100 mL two neck round bottom flask. The MOF nanoparticles were dispersed in DCM (40 mL) by sonication (10 minutes). The solvent was bubbled with N₂, DiPEA (304 µL, 0.053 mmol, 4 mol%) was added, then acetic acid (92 µL, 0.053 mmol, 4 mol%) was added, CuI (5 mg, 0.0264 mmol, 2 mol%) was added, and the mixture was stirred for 5 min under N₂ atmosphere. 1-Azidodecane (200 mg, 1.1 mmol), or the alternative surface reagent, was added dropwise. The mixture was allowed to react for 24 hours at room temperature under nitrogen. The precipitate was collected by centrifugation and washed with DCM (x2) and methanol (x3).

Alkyl-Modified UiO-66

Proof-of-concept surface modification was carried out by reacting UiO-66-L1 with 1-dodecyne, and UiO-66-L2 with azidodecane. Sample integrity throughout the process was confirmed by PXRD (Figure S10).

Figure S10. Stacked PXRD patterns of surface-modified UiO-66 nanoparticles
For high-resolution electrospray ionisation mass spectrometry (HRESI-MS) analysis, the surface modified NMOF samples were digested in an acidic aqueous solution, which was subsequently extracted with DCM. The organic phase was washed several times with an aqueous solution of Na₂EDTA in order to remove the metals present in solution. The organic phase was then evaporated and dissolved in a 1:1 mixture of MeOH and MeCN. Peaks were found for the products of the CuAAC reaction between modulators and surface functionality as follows:

UiO-66-L1-dodecane. Calcd C₂₀H₃₀N₃O₂ [M+H]^+: m/z = 344.2333; found: m/z = 344.2319.

UiO-66-L2-decane. Calcd C₂₀H₂₈N₃O₃ [M-H]^−: m/z = 358.2136; found: m/z = 358.2131.

Samples were prepared for ¹H NMR spectroscopy by digestion in D₂SO₄ / DMSO-d₆, although the low modulator content made analysis difficult. The conversion of the functional groups of the modulators was monitored by FTIR spectroscopy, including comparison of the spectra of the surface modified NMOFs with pristine samples where the modulator had been reacted with the respective surface component in solution (Figure S11). The low overall content of modulator in the samples means the signals are quite weak. For UiO-66-L1-dodecane, the N₃ signal (~2100 cm⁻¹) of L1 decreases considerably upon reaction, while the C-H region (2700-3000 cm⁻¹) shows signals for the surface alkyl unit. In the IR spectrum of UiO-66-L2-decane, the signal around 3250 cm⁻¹ for the acetylene functionality of L2 is lost, and again new signals appear in the C-H region (2700-3000 cm⁻¹). Unfortunately, the signals expected for the triazole unit are masked by peaks from UiO-66 itself.
Figure S11. FTIR spectra comparing a) UiO-66-L1 before and after reaction with 1-dodecyne, as well as the product of the CuAAC reaction between L1 and 1-dodecyne, and b) UiO-66-L2 before and after reaction with azidodecane, as well as the product of the CuAAC reaction between L2 and azidodecane.

The porosity of the samples was determined by N$_2$ adsorption isotherms measured at 77 K (see Figure 2, main text) which confirmed that the samples remained porous and showed
slight decreases in gravimetric surface areas associated with incorporation of additional mass at the particle surfaces:

\[\text{UiO-66-L1-dodecane: } S_{\text{BET}} = 1168 \text{ m}^2\text{g}^{-1}; \text{ pore volume} = 0.623 \text{ ccg}^{-1}. \]

\[\text{UiO-66-L2-decane: } S_{\text{BET}} = 1262 \text{ m}^2\text{g}^{-1}; \text{ pore volume} = 0.587 \text{ ccg}^{-1}. \]

Thermogravimetric analysis was used to investigate the incorporation of surface functionality. For UiO-66-L1-dodecane, additional mass loss events are obvious in the TGA traces recorded in air (Figure S12a) and under nitrogen (Figure S12b). These mass loss events occur at temperatures higher than the decomposition of the isolated product of the CuAAC reaction between L1 and dodecane, indicating covalent attachment to the NMOF, and a surface functionality component of around 10% w/w.

Figure S12. a) Comparison of TGA traces in air of UiO-66-L1 before and after reaction with 1-dodecyne. b) Comparison of TGA traces in nitrogen of the MOFs as well as the isolated “clicked” material L1-dodecane.

Similar TGA analysis was carried out on UiO-66-L2 and its functionalised analogue UiO-66-L2-decane. In both the TGA traces recorded in air (Figure S13a) and under nitrogen (Figure 13b), there is a high temperature mass loss event corresponding to covalently attached surface functionality, with a weight content of around 10% w/w.
Figure S13. a) Comparison of TGA traces in air of UiO-66-L2 before and after reaction with 1-azidodecane. b) Comparison of TGA traces in nitrogen of the MOFs as well as the isolated “clicked” material L2-decane.

SEM imaging was used to examine the morphology and size of the NMOFs after surface modification. In both cases, it can be seen that particle size and morphology is retained after the click modulation protocol (Figure S14).

Figure S14. SEM images of a) UiO-66-L1-dodecane and b) UiO-66-L2-decane.
PEG-modified UiO-66

UiO-66-L1 was chosen for modification with propargyl-functionalised poly(ethylene glycol) chains of two different sizes, PEG550 \((M_n = 550)\) and PEG2000 \((M_n = 2000)\). Thermogravimetric analysis, shown in Figure 3 in the main text, confirms the incorporation of the PEG units and strongly indicates that covalent attachment is required for their incorporation, as no mass loss events corresponding to PEG units are seen in control samples where the MOFs are simply soaked in PEG solutions without a catalyst for the CuAAC conjugation protocol. The level of PEG incorporation was estimated to be 21.7\% \(w/w\) and 23.1\% \(w/w\), for UiO-66-L1-PEG550 and UiO-66-L1-PEG2000, respectively.

Samples for HRESI-MS were prepared by the acid digestion protocol described for the alkyl modified materials. Whilst a series of peaks corresponding to covalently modified PEG550 (the molecules of different chain lengths are present in the starting material) are clearly visible in the mass spectrum of UiO-66-L1-PEG550 (Figure S15), it was not possible to ionise the larger PEG2000 chains by ESIMS or MALDI-TOF. This was common to the precursors and to the digested MOFs.

\(n\) (UiO-66-L1-PEG550)	\(m/z (+Na^+)\) calculated	\(m/z\) measured
6	578.2600	578.2657
7	622.2952	622.2929
8	666.3214	666.3180
9	710.3476	710.3448
10	754.3738	754.3701
11	798.4000	798.3966
12	842.4263	842.4230
13	886.4525	886.4530
14	930.4787	930.4758

Figure S15. ESIMS of digested UiO-66-L1-PEG550 and a table of observed peaks for covalently modified PEG chains of different lengths.

FTIR spectra were collected to monitor the functional group conversion and incorporation of the PEG units to UiO-66-L1. For both UiO-66-L1-PEG550 (Figure S16a) and UiO-66-L1-PEG2000 (Figure S16b), there is a noticeable decrease in intensity of the azide signal around 2300 cm\(^{-1}\), indicating conversion of the surface L1 units, and signals for the C-H
functionality of the PEG chains are observed. There are no signals in the surface modified MOFs for the alkyne units of the PEG precursors, again indicating that PEG incorporation occurs through covalent attachment rather than adsorption.

Figure S16. FTIR spectra comparing a) UiO-66-L1-PEG550 with the two starting materials used in its synthesis, and b) UiO-66-L2-PEG2000 with the two starting materials used in its preparation.
PXRD analysis showed that the PEGylated NMOFs retained their crystallinity (Figure S17).

![Stacked PXRD patterns of UiO-66-L1 and its PEGylated derivatives.]

Figure S17. Stacked PXRD patterns of UiO-66-L1 and its PEGylated derivatives.

SEM was used to ensure particles were not degraded during the surface modification protocol (Figure S18). For both UiO-66-L1-PEG550 and UiO-66-L1-PEG2000, the particles remained intact, and as the chain length increased, the morphology of the NMOFs tended towards spherical, rather than the well-defined octahedral of UiO-66-L1. The long polymer chains are clearly being installed at the surface, leading to an overall rounding of the particles.
Figure S18. SEM images of a) UiO-66-L1-PEG550 and b) UiO-66-L1-PEG2000.

The particle size distributions before and after PEGylation were analysed manually using the ImageJ software package (Figure S19). The average size of UiO-66-L1 particles was found to be 146.6 ± 29.3 nm, which increased upon PEGylation to 160.2 ± 26.9 nm for UiO-66-L1-PEG550 and to 172.9 ± 36.8 nm for UiO-66-L1-PEG2000. This size increase is consistent with the increasing size of the surface polymer chains being installed on the nanoparticles’ surfaces, but the magnitude of the size change may be affected by the accompanying change in morphology from octahedral to roughly spherical particles upon surface modification. A comparison of the particle size histograms for all three samples is given in Figure S20.
Figure S19. Particle size analysis from SEM micrographs for a) UiO-66-L1, b) UiO-66-L1-PEG550, and c) UiO-66-L1-PEG2000.

Figure S20. Comparison of particle size histograms for the three samples analysed with ImageJ.
Dynamic light scattering (DLS) was used to monitor particle size and aggregation in solution, before and after surface modification. In a scintillation vial, dispersions with a concentration of 250 μg of MOF per mL of dispersant were prepared by sonication over 5 min prior to the measurement of each sample. Three recordings, consisting of 14 runs each, were performed consecutively on the same sample for each measurement. The waiting time between recordings was 5 seconds. No stirring was provided during the course of the experiment.

When samples were dispersed in MeOH (Figure S21), the effect of surface PEGylation is clear. Both UiO-66-AcOH and UiO-66-L1 aggregate in solution, which may be a result of their hydrophilic surfaces, although UiO-66-L1 displays smaller aggregates than UiO-66-AcOH. The PEGylated samples show much smaller size in solution, with average diameters around 150 nm correlating well with SEM data, suggesting well dispersed particles with no aggregation as a consequence of their PEG surfaces.

![Figure S21. a) Dynamic light scattering (DLS) measurements of UiO-66 samples in methanol. b) Zoom in on DLS data for smaller particle sizes.](image)

DLS measurements were also carried out in water (Figure S22), but it was found to be difficult to generate stable dispersions of UiO-66-L1. Aggregation and precipitation was observed, but aggregates around 2000-3000 nm were typically in initial measurements. The PEGylated samples showed much less aggregation, in particular UiO-66-L1-PEG2000, which has a much larger surface corona of water-compatible PEG chains and so stabilises small aggregates around 500 nm in size.
During repeated DLS experiments run over 10 minutes, it was observed that UiO-66-L1-PEG2000 gradually aggregated (Figure S23), from particles around 250 nm to around 500 nm in diameter. Aggregates of UiO-66-L1-PEG550 across a broad size range around 1000 nm had, in contrast, stabilised rapidly prior to measurement, again indicating the significant effect of larger PEG chains on hydrodynamic behaviour of the UiO-66 nanoparticles.

As the PEGylated UiO-66 samples were intended for use as drug delivery vectors, their cytotoxicities towards HeLa cells, as well as those of the modulators L1 and L2, were
investigated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) (Promega, UK) reduction assay. UiO-66 itself has previously been found to be non-toxic using this methodology.59

HeLa cells were maintained at 37 °C with 5% CO\textsubscript{2} in high rich glucose (4500 mg/L) Dulbecco's modified Eagle's Medium (DMEM) with phenol red supplemented with 10% (v/v) Fetal Bovine Serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin and 100 μg/mL streptomycin. This was named complete DMEM (cDMEM). The cells were passaged three times a week (at 75-80% of confluence) at a density of 2.8 x 104 cell/cm2.

The day before the experiment, cells were seeded into a 96 well plate at a density of 10 x 103 cells per well. Prior to the treatments, cells were washed twice with PBS. The MOFs and modulators were dissolved/suspended in cDMEM at different concentrations. They were then added to the cells and incubated for 72 h at 37 °C with 5% CO\textsubscript{2}. To measure the toxicity, the cells were washed three times with phosphate buffered saline (PBS), the media was replaced with 100 μL of fresh culture media containing 20 μL of MTS/phenazine methosulfate (in a proportion 20:1) solution, and the plate was incubated for 1 h at 37 °C with 5% CO\textsubscript{2}. The plates were read at 490 nm by UV/Vis spectrophotometry.

No decrease in cell viability was observed up to 1 mg/mL concentration of either of the modulators (Figure S24), confirming that they are non-toxic. Similar results were obtained for the PEGylated UiO-66 samples (Figure S25).
Figure S24. Metabolic activity of HeLa cells after 72 h of exposure to L1 and L2, measured by MTS assay.

Figure S25. Metabolic activity of HeLa cells after 72 h of exposure to UiO-66-L1-PEG550 and UiO-66-L1-PEG2000, measured by MTS assay.
S5. Stability of Surface-Modified NMOFs

To obtain the degradation profile of the different UiO-66 nanoparticles, around 10 mg of sample were dispersed in a dialysis bag with 10 mL of phosphate buffered saline (PBS) at pH 7.4, and dialysed against 100 mL of PBS under magnetic stirring at room temperature. The release of the bdc linker, indicative of degradation, was measured by UV-Vis spectroscopy. The quantity of bdc (% w/w) present in the different UiO-66 samples was calculated based on the TGA measurements detailed in Section S3, being 46.8% w/w for UiO-66-AcOH and 59.1% w/w for UiO-66-L1. The initial linker weight for UiO-66-L1 was corrected with the weight of PEG in the new sample, previously determined by TGA analysis in Section S4.

\[
\text{Linker wt\%} = 59.08 \times \left(1 - \frac{\text{PEG wt\%}}{100}\right)
\]

A calibration curve of bdc in PBS pH 7.4 was performed (\(\lambda_{\text{max}} = 241\) nm) and shown in Figure S26a. Solutions of bdc and L1 of the same concentration were measured revealing a maximum absorbance peak at 234 nm for L1 with a very similar extinction coefficient to bdc. When the absorbance of a solution of both bdc and L1 (1:1) was measured, a maximum peak absorbing at 238 nm was determined with a very similar extinction coefficient to bdc on its own (Figure S26b).

Figure S26. a) Calibration curve of bdc absorbance at \(\lambda = 241\) nm in PBS at pH 7.4. b) UV-Vis spectra of PEG2000-propargyl (brown), L1 (pink), bdc (black), and a mixture of L1 and bdc (green).
Due to the overlapping absorbance of L1 and bdc, the fact that the presence of L1 does not affect the bdc absorbance, and as the quantity of L1 present in sample (determined by 1H NMR) is very small compared to bdc, the bdc calibration curve in Figure S26 was used.

Each measurement was taken in situ (from 210 nm to 330 nm, Figure S27) and the liquid was introduced back to the dialysis media before prior measurement. Each experiment was performed separately 3 times to determine the error and each calculation was performed with the exact mass of NMOF added.

Figure S27. UV-Vis spectra (210-330 nm) of the degradation profiles of the different samples in PBS.

In a typical calculation of the percentage of bdc released, based on the maximum absorbance of the dialysis media, the following calculations were performed:
\[mg \text{ of sample } \times \text{ wt\% bdc in sample} = \frac{mg}{g} \text{ bdc} \rightarrow \frac{mg}{ml} \text{ bdc} \rightarrow \text{Maximum absorbance} \]

\[\frac{\text{Experimental absorbance}}{\text{Maximum absorbance}} \times 100 = \% \text{ bdc Released} \]

The degradation profiles were collected in triplicate and are plotted in Figure S28, showing significant differences for PEGylated samples compared to uncoated samples. There is a clear enhancement in stability for the PEGylated samples, which also degrade with a different kinetic profile.

Figure S28. a) Degradation profiles of coated and uncoated UiO-66 nanoparticles in PBS pH 7.4, with b) an inset of the early time period. Error bars denote standard deviations from triplicate experiments.

The kinetic profiles for the degradation of the samples were subsequently determined by curve fitting utilising Microcal Origin software. The uncoated samples, UiO-66-AcOH and UiO-66-L1, exhibit (Figure S29) exponential degradation profiles: \(y = y_0 + A_1 e^{x/\tau} \). In contrast, the PEGylated samples exhibit (Figure S30) sigmoidal degradation profiles: \(y = \text{start} + (\text{end}-\text{start}) (x^\alpha/(K^\alpha+x^\alpha)) \), clearly indicating a different initial degradation mechanism.
NMOF	Degradation equation	\(R^2 \)
UIO-66-AcOH | \% bdc released = 84.235 - 84.749 e^{-0.07977t} \) | \(R^2 = 0.99415 \)
UIO-66-L1 | \% bdc released = 86.863 - 83.831 e^{-1.8398t} \) | \(R^2 = 0.99351 \)

Figure S29. Degradation profiles of UIO-66-AcOH and UIO-66-L1 with curve fittings. Error bars denote standard deviations from triplicate experiments.

NMOF	Degradation equation	\(R^2 \)
UIO-66-L1-PEG550 | \% bdc released = 0.72412 + 86.50317 \(\left(t^{0.07977}/(1.1607+t^{0.07977})\right) \) | \(R^2 = 0.9977 \)
UIO-66-L1-PEG2000 | \% bdc released = -1.6399 + 89.0698 \(\left(t^{1.83984}/(9.2853+t^{1.83984})\right) \) | \(R^2 = 0.99078 \)

Figure S30. Degradation profiles of UIO-66-L1-PEG550 and UIO-66-L1-PEG2000 with curve fittings. Error bars denote standard deviations from triplicate experiments.
The effect of exposure of the UiO-66 nanoparticles to PBS buffer on their crystallinity was investigated by powder X-ray diffraction. In the general procedure, 20 mg of the UiO-66 nanoparticles were dispersed in PBS buffer (pH 7.4, 20 mL) by sonication (5 minutes), and stirred for different contact times. Then, the nanoparticles were collected by centrifugation and washed with fresh water. After being dried for 24 h under vacuum, their crystallinity was analysed by PXRD (Figure S31).

Figure S31. Stacked PXRD patterns of UiO-66 samples after different contact times with PBS buffer for a) UiO-66-L1-PEG550 and b) UiO-66-L1-PEG2000.

The samples clearly exhibit different stabilities under the experimental conditions, with uncoated UiO-66 samples rapidly losing crystallinity, while the PEGylated samples remain highly crystalline after an hour.
S6. Characterization of Calcein Loaded NMOFs

General Procedure for Calcein Loading
200 mg of UiO-66-L1 was dispersed by sonication (15 minutes) in 100 mL of a methanolic solution of calcein (10 mg/mL), and stirred at room temperature for 48 hours. The solid was collected by centrifugation (4500 rpm, 20 min), and submitted to dispersion centrifugation cycles with fresh methanol until the supernatant solution remained colorless (around 5 times). The calcein loaded material, cal@UiO-66-L1, was obtained as a bright orange powder.

General Procedure for Surface Modifying Calcein Loaded Samples
The same CuAAC procedure detailed in Section S4 was used to prepare the calcein loaded materials, cal@UiO-66-L1-PEG550 and cal@UiO-66-L1-PEG2000. The reaction media did not acquire an intense orange color, as no considerable amounts of calcein were released during the process.

Powder X-ray diffraction data (PXRD) confirmed that the samples remained crystalline after calcein loading and subsequent surface PEGylation (Figure S32).

Figure S32. Stacked PXRD patterns of calcein-loaded UiO-66 samples.

The retention of sample integrity was further suggested by SEM imaging of calcein loaded samples, which showed little change in overall size but some rounding (Figure S33).
The calcein content of the MOFs was determined by UV-Vis spectroscopy of acid digested samples. 1 mg of sample was dispersed, heated in PBS buffer pH 5.5 (10 mL) and stirred for 48 hours. The sample was centrifuged before the analysis of the calcein absorbance in the PBS solution against a previously prepared calibration curve (Figure S34), and the remaining solid NMOF was confirmed visually to have lost the characteristic orange color form the calcein.

$$[mg/ml] \text{ of Calcein} \times 10 \text{ ml} = mg \text{ of Calcein}$$

$$\frac{mg \text{ of Calcein}}{mg \text{ of NMOF}} \times 100 = \text{Calcein wt\%}$$
The analysis of the UV/Vis spectrophotometric data gave the following loading values:

cal@UiO-66-L1: 16.1% w/w.
cal@UiO-66-L1-PEG550: 13.1% w/w.
cal@UiO-66-L1-PEG2000: 10.3% w/w.

Investigation of calcein content was carried out by thermogravimetric analysis (Figure S35).

![TGA profiles](image.png)

Figure S35. TGA profiles of cal@UiO-66-L1 in air and its comparison with UiO-66-AcOH, UiO-66-L1 and calcein.

For **cal@UiO-66-L1**, the absence of a significant calcein decomposition step at 200 °C, together with its bigger size compared to the pore cavity, suggests that calcein is attached to the zirconium clusters present in the surface and defect sites through its carboxylic acid groups. The multi-step degradation profile makes quantitative calcein content analysis by TGA difficult, however, it is clearly present.

Similar TGA analysis was carried out on the samples which had been surface modified with PEG chains (Figure S36).
Figure S36. a) TGA traces of cal@UiO-66-L1-PEG550 in air and its comparison with cal@UiO-66-L1, UiO-66-L1-PEG550, and calcein. b) TGA traces of cal@UiO-66-L1-PEG2000 in air and its comparison with cal@UiO-66-L1, UiO-66-L1-PEG2000 and calcein.

The appearance of a new degradation step at the reported degradation temperature of PEG confirms that the PEGylation has been successful. As the thermal degradation of calcein and PEG occur across the same temperature ranges, it is not possible to determine exact contents of either functionality by TGA.

Adsorption isotherms (N$_2$, 77 K) were used to investigate the mode of calcein incorporation (Figure S37).

Figure S37. a) Adsorption and desorption isotherms (N$_2$, 77 K) of calcein loaded UiO-66 samples. Filled symbols represent adsorption, empty symbols represent desorption. b) Pore size distribution (slit pore, N$_2$ at 77 K on carbon, QSDFT equilibrium model) of the calcein loaded UiO-66 samples.
It is clear that the samples remain porous on calcein loading, suggesting that the majority of the calcein is attached to the surfaces of the MOFs rather than being stored in the pores and blocking them. The isotherms yielded the following data:

- cal@UiO-66-L1 \(S_{BET} = 1002 \text{ m}^2\text{g}^{-1} \); pore volume = 0.469 ccg\(^{-1}\).
- cal@UiO-66-L1-PEG550 \(S_{BET} = 826 \text{ m}^2\text{g}^{-1} \); pore volume = 0.421 ccg\(^{-1}\).
- cal@UiO-66-L1-PEG2000 \(S_{BET} = 683 \text{ m}^2\text{g}^{-1} \); pore volume = 0.575 ccg\(^{-1}\).
S7. Calcein Release from NMOFs

In a typical calcein release experiment, between 5 and 10 mg of NMOF were dispersed in a dialysis bag with 10 mL of PBS (required pH), and dialysed against 100 mL of PBS (same pH) under magnetic stirring at room temperature. A full spectrum (210-550 nm) was performed for each measurement, which was taken in situ, and the liquid was added back to the dialysis media prior to the next measurement. Both bdc and calcein absorbance characteristic peaks were analysed. For each experiment, calculations were performed with the exact mass of NMOF added.

The previous calibration curve for calcein in PBS at pH 5.5 ($\lambda_{\text{max}} = 452$ nm, Figure S33a) was used for further analysis. In addition, a calibration curve for calcein in PBS at pH 7.4 was also performed ($\lambda_{\text{max}} = 498$ nm Figure S38).

![Absorbance graph with equation](image)

Figure S38. Calibration curve of calcein in PBS pH 7.4

The theoretical maximum calcein absorbance of the dialysis media was determined using the following calculations:

$$\text{mg of sample} \times \text{wt}\% \text{ Calcein in sample} = \frac{\text{mg of Calcein}}{\text{ml}} \rightarrow \text{Maximum absorbance}$$

$$\frac{\text{Experimental absorbance}}{\text{Maximum absorbance}} \times 100 = \% \text{ Calcein Released}$$
The NMOF degradation during the release process was also studied by analysis of the bdc characteristic absorbance peak ($\lambda_{\text{max}} = 241 \text{ nm}$). The weight percentage of bdc present in the sample was adjusted with the weight percentage of calcein previously determined by UV-Vis spectroscopy:

$$(\text{wt}\% \text{ BDC in UiO-66-L1}) \times \frac{(100 - \text{wt}\% \text{ Calcein})}{100} = \% \text{ BDC in UiO-66-L1 - Calcein}$$

For PEGylated samples, the weight percentage of bdc was adjusted in the same way, including this time the weight percentage of the PEG units previously determined by TGA:

$$(\text{wt}\% \text{ BDC in UiO-66-L1}) \times \frac{100 - (\text{wt}\% \text{ PEG} + \text{wt}\% \text{ Calcein})}{100}$$

Then, the former calculations based on the maximum absorbance were performed to obtain the amount of bdc released.

cal@UiO-66-L1

The calcein release from cal@UiO-66-L1 was monitored at pH 5.5 and pH 7.4 by UV/Vis spectroscopy (Figure S39).

![Figure S39](image_url)

Figure S39. UV-Vis spectra of calcein and bdc release from cal@UiO-66-L1 in PBS at a) pH = 7.4 and b) pH = 5.5.
The release profiles are plotted in Figure S40 with a comparison in Figure S41.

NMOF	Release equation	R^2
cal@UiO-66-L1	% calcein released = 158.663($t^{0.0505}/1.1286 + t^{0.0505}$)	0.99442
pH 7.4		
cal@UiO-66-L1	% calcein released = 96.325 - 59.4714 $e^{-t/2.25915}$	0.99061
pH 5.5		

Figure S40. Calcein release from cal@UiO-66-L1 exhibits a) a sigmoidal profile with the equation $y = V_{max}(X^n/K^n + X^n)$ at pH 7.4, and b) an exponential release profile $y = y_0 + A_1e^{-t/t_1}$ at pH 5.5. Error bars denote standard deviations from triplicate experiments.

Figure S41. pH Dependence of calcein release from cal@UiO-66-L1. Error bars denote standard deviations from triplicate experiments.
There is a clear difference in the release profiles in the early time stages, with lower pH favouring release as would be expected, but by 24 h the released amounts of calcein are similar.

The rate of release of bdc, and thus information on the degradation of the materials, can also be obtained using this method. From the release profiles (Figure S42), it would appear that the MOF breaks down more rapidly in pH 5.5, which would again be expected.

MOF	Release equation	R^2
cal@UiO-66-L1	% bdc released = -3.126 + 48.676 e^{t/7.829} + 50.2778 e^{t/1.5195}	0.99680
pH 7.4		
cal@UiO-66-L1	% bdc released = 100.242 -66.733 e^{t/3.1814}	0.99387
pH 5.5		

Figure S42. Release of bdc linker from cal@UiO-66-L1 exhibits a) an exponential profile with the equation $y = y_0 + A_1(1 - e^{-x \cdot t}) + A_2(1 - e^{-x \cdot 2})$ at pH 7.4, and b) an exponential profile $y = y_0 + A_1 e^{x \cdot t}$ at pH 5.5. Error bars denote standard deviations from triplicate experiments.

cal@UiO-66-L1-PEG550 and cal@UiO-66-L1-PEG2000

Similar calcein release experiments were performed for the PEGylated samples, with the UV/Vis spectra for release at pH 7.4 and pH 5.5 plotted for cal@UiO-66-L1-PEG550 in Figure S43 and for cal@UiO-66-L1-PEG550 in Figure S44.
Figure S43. UV-Vis spectra of calcein and bdc release from cal@UiO-66-L1-PEG550 in PBS at a) pH = 7.4 and b) pH = 5.5.

Figure S44. UV-Vis spectra of calcein and bdc release from cal@UiO-66-L1-PEG2000 in PBS at a) pH = 7.4 and b) pH = 5.5.

The calcein release profiles prepared from the UV-Vis spectroscopic data are shown in Figure S45, for the release experiments at pH 7.4, and in Figure S46, for the experiments at pH 5.5.
NMOF	Release equation	R^2
cal@UiO-66-L1-PEG550	pH 7.4	% Calcein Released $= 33.14264(t^{0.0642}/0.1114 + t^{0.0642})$
cal@UiO-66-L1-PEG2000	pH 7.4	% Calcein Released $= 31.21395(t^{0.00297}/0.1119 + t^{0.00297})$

Figure S45. Calcein release at pH 7.4 from a) cal@UiO-66-L1-PEG550 and b) cal@UiO-66-L1-PEG2000, which exhibit sigmoidal profiles. Error bars denote standard deviations from triplicate experiments.

NMOF	Release equation	R^2
cal@UiO-66-L1-PEG550	pH 5.5	% Calcein Released $= 48.94399 + 38.48863 (1-e^{-0.30861t}) + 70.21881(1-e^{-153.71876t})$
cal@UiO-66-L1-PEG2000	pH 5.5	% Calcein Released $= 43.52386 + 39.73063 (1-e^{-0.0987t}) + 23.4361(1-e^{-111.16625t})$

Figure S46. Calcein release at pH 5.5 from a) cal@UiO-66-L1-PEG550 and b) cal@UiO-66-L1-PEG2000, which exhibit sigmoidal profiles. Error bars denote standard deviations from triplicate experiments.
The release profiles for both PEGylated samples are closely related, and show a significant pH dependence. The PEGylated MOFs release around 30% of calcein at pH 7.4, whilst rapidly releasing around 80% of cargo at pH 5.5. This contrasting behaviour is illustrated in Figure S47.

Figure S47. Calcein pH dependence release from PEGylated samples. Error bars denote standard deviations from triplicate experiments.

The release of bdc was also monitored, and is compiled in Figure S48 (pH 7.4) and Figure S49 (pH 5.5). It is clear that degradation occurs much more rapidly at lower pH values, as expected.
Figure S48. Release of bdc at pH 7.4 from a) cal@UiO-66-L1-PEG550 and b) cal@UiO-66-L1-PEG2000, which both exhibit sigmoidal profiles with the general equation $y = \text{start} + (\text{end} - \text{start})(x^n/(k^n + x^n))$. Error bars denote standard deviations from triplicate experiments.

NMOF	Release equation	R^2
cal@UiO-66-L1-PEG550 pH 7.4	$\% \text{ bdc released} = 1.24289 + 85.2324(1.48297/3.4901 + t^{1.48297})$	$R^2 = 0.99789$
cal@UiO-66-L1-PEG2000 pH 7.4	$\% \text{ bdc released} = 10.17714 + 67.75258(t^{2.37638}/3.2658 + t^{3.7638})$	$R^2 = 0.98549$

Figure S49. Release of bdc at pH 5.5 from a) cal@UiO-66-L1-PEG550 and b) cal@UiO-66-L1-PEG2000, which both exhibit sigmoidal profiles with the general equation $y = \text{start} + (\text{end} - \text{start})(x^n/(k^n + x^n))$. Error bars denote standard deviations from triplicate experiments.

NMOF	Release equation	R^2
cal@UiO-66-L1-PEG550 pH 5.5	$\% \text{ bdc Released} = 24.2305 + 42.4435(1-e^{-t^{1.1161}}) + 3.6974E15(1-e^{-7.806E15})$	$R^2 = 0.97793$
cal@UiO-66-L1-PEG2000 pH 5.5	$\% \text{ bdc Released} = 26.59038 + 28.26383(1-e^{-t^{0.2338}}) + 32.89627(1-e^{-2.32031})$	$R^2 = 0.98765$
PEGylation clearly has a significant effect on calcein release, particularly at pH 7.4, where the coating inhibits calcein release (Figure S50).

Figure S50. Release of calcein from coated and uncoated UiO-66 at pH 7.4. Error bars denote standard deviations from triplicate experiments.

Stimuli-responsive release of calcein

As the release of calcein from the PEGylated samples reached plateaux after around one day when dispersed in PBS pH 7.4, while a much more significant release was observed at pH 5.5 (Figure S47), a stimuli-responsive release experiment was carried out, where the pH of the release media was adjusted from 7.4 to 5.5 during the course of the experiment to observe if there was further release. To do so, 50 µL of concentrated HCl was added to the 100 mL of PBS pH 7.4 placed in contact with the dialysis bag, in order to obtain pH 5.5. The quantity of concentrated HCl need to change the pH of the dialysis media was determined previous to the experiment. The pH responsive release profile is shown in the main paper in Figure 5.
S8. Characterisation of NMOFs after Calcein Release

To simulate release conditions on a larger scale, 50 mg samples of the calcein-loaded NMOFs were dispersed in 50 mL of PBS pH 7.4, which was stirred at room temperature for 2 days in the case of cal@UiO-66-L1-PEG2000 and for 1 day for cal@UiO-66-L1. Then, the NMOF was collected by centrifugation (4500 rpm, 15 minutes), and washed with water 3 times. The NMOFs were dried for 24 hours under vacuum before further analysis.

PXRD showed that the samples retained some crystallinity, although were somewhat degraded by the release process, likely as a consequence of the extended exposure to phosphates in PBS (Figure S51).

![Stacked PXRD patterns of NMOFs before and after simulated release conditions.](image)

Figure S51. Stacked PXRD patterns of NMOFs before and after simulated release conditions.

Thermogravimetric analysis of the samples in air showed that for cal@UiO-66-L1, a significant amount of calcein had been released (Figure S52a), leaving a higher overall metal oxide residue. For cal@UiO-66-L1-PEG2000, the mass loss events attributed to the PEG chains are not present, suggesting that the PEG chains have been cleaved from the MOF during the exposure to PBS (Figure S52b).
The residual calcein content was measured by the UV/Vis spectroscopic method described in Section S6. The uncoated sample cal@UiO-66-L1 contained 5.2% w/w calcein after 1 day in PBS, corresponding to 67.5% release. In contrast, cal@UiO-66-L1-PEG2000 contained 5.4% w/w calcein after 2 days in PBS, corresponding to 42.7% release. These values correlate well with the smaller scale release profiles in Section S7.

Adsorption isotherms for N$_2$ at 77 K were collected for the samples (Figure S53), which both showed that after the release, the MOFs retained some porosity. The following surface area data were obtained, and compared to the pristine starting materials collected in Section S6:

- **cal@UiO-66-L1** $S_{BET} = 1002 \text{ m}^2\text{g}^{-1}$; pore volume = 0.469 ccg$^{-1}$.
- **cal@UiO-66-L1 (1 day in PBS)** $S_{BET} = 1155 \text{ m}^2\text{g}^{-1}$; pore volume = 0.666 ccg$^{-1}$.
- **cal@UiO-66-L1-PEG2000** $S_{BET} = 683 \text{ m}^2\text{g}^{-1}$; pore volume = 0.575 ccg$^{-1}$.
- **cal@UiO-66-L1-PEG2000 (2 days in PBS)** $S_{BET} = 554 \text{ m}^2\text{g}^{-1}$; pore volume = 0.442 ccg$^{-1}$.

The unmodified material shows an increase in gravimetric surface area and pore volume, likely as a result of the release of calcein mass. In contrast, cal@UiO-66-L1-PEG2000 shows a decrease in gravimetric surface area, despite releasing some calcein. We attribute this to an increase in mass resulting from formation of a phosphate corona (from the PBS buffer) at the surfaces of the particles, which is initially aided by the presence of the PEG chains. We expect that the incorporation of these phosphates blocks the release of further calcein.
The incorporation of phosphates into the materials can be monitored by FTIR spectroscopy (Figure S54). The growing broad signal at ~1000 cm$^{-1}$ is present in both samples after 2 days, indicating that phosphate accumulation occurs in PBS. However, UiO-66-L1 is able to release the majority of its calcein before significant phosphate incorporation, while UiO-66-L1-PEG2000 is likely to have its release of calcein delayed by the PEG2000 chains and then blocked by phosphate.
Figure S54. Stacked FTIR spectra of a) cal@UiO-66-L1 compared to the sample after 1 and 2 days simulated release conditions, and b) cal@UiO-66-L1-PEG2000 compared to the sample after 2 and 5 days simulated release conditions.
S9. Endocytosis Studies

Confocal microscopy for cell uptake
For all the confocal microscopy experiments HeLa cells were seeded in a NUNC™ imaging four-well plate at a density of 1.11×10^5 cells/mL and incubated for 24 h at 37 ºC with 5% CO$_2$ in cDMEM. After that the cells were then washed with PBS and incubated with 0.25 mg/mL of MOF in media, the corresponding calcein concentration in media, or only media as a control, for 2 h at 37 ºC with 5% CO$_2$ in cDMEM. Subsequently, the cells were washed with PBS, and staining solution was added to the wells. The staining solution consisted of 5 μg/mL Hoescht 33342 nuclear stain and 5 μg/mL plasma membrane stain CellMask™ Orange. Cells were incubated for 5 minutes with the staining solution in the absence of light, after which trypan blue (0.4%) was added to quench any external fluorescence. The cells were washed with PBS three further times. Finally, fresh media without phenol red was added to each sample. The four-well plate was placed on a Leica TCS SP5 confocal microscope to be imaged. The microscope was equipped with 405 diode, argon and HeNe lasers. Leica LAS AF software and ImageJ were used to analyze the images, which are shown in Figure 6 in the main manuscript.

The cell morphology changed during the course of the experiment as observed for the control sample, where the cells were incubated only with media. This could be explained due to the necessary multiple PBS washes to completely remove non-internalised MOFs and fluorescent stains.

Flow cytometry assays (FACS)
In all the FACS experiments, HeLa cells were seeded in a Cellstar 24-well plate at a density of 5×10^4 cells/well and incubated for 48 h at 37 ºC with 5% CO$_2$ in complete medium.

Positive controls
After cell growing for 48 h, each well containing cells was washed with PBS and pre-treated with sucrose (102.7 mg/mL, 0.3 M), chlorpromazine (31.9 μg/mL, 100 μM), nystatin (250 μg/mL), and rottlerin (2.6 μg/mL, 5 μM) for 30 min at 37 ºC. Subsequently, endocytosis tracers (transferrin-AlexaFluor-633, 25 μg/mL; BODIPY TR-ceramide, 3.5 μg/mL; and Texas Red-dextran-10 kDa, 0.5 mg/mL) known to specifically go through the clathrin, caveolae, and macropinocytosis pathways respectively, were added and incubated for another 1.5 h. After each treatment, the medium of each well was aspirated and the wells were washed extensively to remove all the conditions. The cells were then harvested by adding 0.1 mL of trypsin and incubated for 5 min at 37 ºC with 5% CO$_2$. Cells were recovered by centrifugation
(5 min at 1200 rpm) and re-suspended in 100 μL of complete medium without phenol red. Finally the samples were measured in a Cytek DxP8 analyser cytometer within 30 min. The analysis of the data was done using FlowJo and Prism software (Figure S55).

![Graph](image)

Figure S55. FACs of the positive controls of desired endocytosis routes, showing statistical difference for the concentration of tracers used.

Analysis of the endocytosis pathways of coated and uncoated NMOFs

In a similar way to the positive controls, at 80% cell confluency, each well was washed with PBS and pre-treated with sucrose (102.7 mg/mL, 0.3 M), chlorpromazine (31.9 μg/mL, 100 μM), nystatin (250 μg/mL), or rottlerin (2.6 μg/mL, 5 μM) for 30 min at 37 ºC. Then, either UiO-66-L1, UiO-66-L1-PEG550, or UiO-66-L1-PEG2000, were added and incubated for another 1.5 h. Subsequently, samples were measured by flow cytometry.

In all the FACS experiments, after any treatment, the media of each well was aspirated and the wells were washed extensively to remove all the conditions. The cells were then harvested by adding 0.1 mL of trypsin and incubated for 5 min at 37 ºC with 5% CO₂. The cells were recovered by centrifugation, 5 min at 1200 rpm, and re-suspended in 100 μl of cDMEM without phenol red. Finally the samples were measure in a Cytek DxP8 analyzer cytometer within 30 min. The analysis of the data was done using FlowJo and Prism software and is reported in the main text in Figure 7.

Confocal microscopy for co-localization

For all the co-localization experiments, HeLa cells were seeded in a NUNC™ imaging four-well plate at a density of 1.11 x 10^5 cell/mL and incubated for 24 h at 37 ºC with 5% CO₂ in cDMEM. At the end of the incubation period the four-well plate was placed on a Leica TCS SP5 confocal microscope to be imaged. The microscope was equipped with 405 diode, argon and HeNe lasers. Leica LAS AF software was used to analyse the images.
LysoTracker®-Deep red imaging

The cells were then washed with PBS and incubated with 0.5 mg/mL of UiO-66-L1, UiO-66-L1-PEG550, or UiO-66-L1-PEG2000, along with LysoTracker®-Deep red for 2 h at 37 °C with 5% CO₂ in cDMEM. Subsequently, the cells were washed with PBS to remove the conditions, with trypan blue (0.4%) to quench any external fluorescence, and again three times with PBS. Finally, fresh media without phenol red was added to each sample.

On the one hand, calcein cannot cross the cell membrane alone, on the other hand, it self-quenches, and so the green fluorescence is only observed upon release of calcein from the internalised NMOF. Despite the fact that the release profiles determined that PEGylated UiO-66 samples only release ~15% of calcein at pH 7.4 after 2 hours of exposure, the green fluorescence is clearly visible outside the lysosome, suggesting a proportion of cal@UiO-66-L1-PEG2000 is internalised by a different uptake mechanism (in the more acidic lysosome 85% of calcein would be expected to be released in pH 5.5 at the same exposure time).

![Figure S56. Confocal fluorescence microscopy images of NMOF uptake into HeLa cells using a lysotracker (red) to stain the lysosome and showing calcein internalisation (green). Non-lysosomal calcein is highlighted in white boxes for UiO-66-L1-PEG2000. Scale bars represent 25 µm, 10 µm and 7.5 µm, from left to right.](image-url)
S10. Therapeutic Efficacy of Drug-Loaded NMOFs

To assess the ability of the surface functionalised UiO-66 nanoparticles to deliver cytotoxic agents into cells, the known anticancer drug dichloroacetic acid (DCA)51 was incorporated into solvothermal syntheses of UiO-66 and UiO-66-L1 in place of acetic acid, yielding DCA@UiO-66 and DCA@UiO-66-L1. The presence of L1 and DCA in DCA@UiO-66-L1 was confirmed by 1H NMR spectroscopy of digested samples (Figure S57).

Figure S57. 1H NMR spectrum (D$_2$SO$_4$ / DMSO-d_6, 293 K) of DCA@UiO-66-L1, showing the presence of the modulator L1 and DCA.

The crystallinity of the samples was confirmed by PXRD (Figure S58a) and DCA@UiO-66-L1 was found to consist of nanoparticles around 150 nm in diameter by SEM (Figure S58b). The same CuAAC procedure detailed in Section S4 was used to surface functionalise DCA@UiO-66-L1 with the longer PEG chain, yielding DCA@UiO-66-L1-PEG2000, which did not affect crystallinity.
The DCA content of the samples was assessed by TGA and by inductively coupled plasma mass spectrometry (ICP-MS) determination of chloride content (Figure S59).

Figure S59. a) TGA traces for DCA loaded UiO-66 samples compared to UiO-66-L1-PEG2000, confirming the presence of both DCA and PEG chains in DCA@UiO-66-L1-PEG2000. b) Comparison of DCA loading values for the samples calculated by TGA and ICP-MS.

Close correlation between the DCA loading values derived from TGA mass loss events and ICP-MS was observed, with a gradual decrease in DCA loading occurring as the mass of the
surface functionality increased, as would be expected. The TGA values are likely slightly higher than the ICP-MS values due to other mass loss events occurring alongside the DCA thermal decomposition. While TGA analysis confirmed the presence of the PEG functionality in DCA@UiO-66-L1-PEG2000, the mass loss events for DCA and the PEG chains occurred simultaneously, precluding calculation of DCA loading, and so the ICP-MS methodology was used.

To determine cytotoxicity, MTS assays were again performed on HeLa cells incubated with DCA@UiO-66-L1 and DCA@UiO-66-L1-PEG2000. The results are presented in the main text in Figure 8, showing the PEGylated materials are more toxic than the unfunctionalised derivatives, presumably because of enhanced lysosome-escaping capabilities and stability. The effect is even more prevalent when the data are presented by dose of DCA rather than MOF (Figure S60), as the PEGylated materials contain less DCA by weight. The therapeutic efficacy of DCA is greatly enhanced by delivery within the PEGylated NMOF.

![Figure S60](image)

Figure S60. Metabolic activity of HeLa cells after 72 h of exposure to DCA@UiO-66-L1 and DCA@UiO-66-L1-PEG2000, measured by MTS assay.
S11. References

(S1) Wrobel, M.; Aubé, J.; König, B. (2012). Parallel solid-phase synthesis of diaryltriazoles. Beilstein J. Org. Chem. 8, 1027.

(S2) Pandey, S.; Kolli, B.; Mishra, S. P.; Samui, A. B. (2012). Siloxane polymers containing azo moieties synthesized by click chemistry for photo responsive and liquid crystalline applications. J. Polym. Sci. A Polym. Chem. 50, 1205.

(S3) Wu, H.; Chua, Y. S.; Krungleviciute, V.; Tyagi, M.; Chen, P.; Yildirim, T.; Zhou, W. (2013). Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. J. Am. Chem. Soc. 135, 10525.

(S4) He, X.-P.; Zeng, Y.-L.; Zang, Y.; Li, J.; Field, R. A.; Chen, G.-R. (2016). Carbohydrate CuAAC click chemistry for therapy and diagnosis. Carbohydr. Res. 429, 1.

(S5) Ryu, M.-H.; Choi, J.-W.; Kim, H.-J.; Park, N.; Cho, B.-K. (2011). Complementary Hydrogen Bonding Between a Clicked C3-Symmetric Triazole Derivative and Carboxylic Acids for Columnar Liquid-Crystalline Assemblies. Angew. Chem. Int. Ed. 50, 5737.

(S6) Katz, M. J.; Brown, Z. J.; Colon, Y. J.; Siu, P. W.; Scheidt, K. A.; Snurr, R. Q.; Hupp, J. T.; Farha, O. K. (2013). A facile synthesis of UiO-66, UiO-67 and their derivatives. Chem. Commun. 49, 9449.

(S7) Cavka, J. H.; Jakobsen, S.; Olsbye, U.; Guillou, N.; Lamberti, C.; Bordiga, S.; Lillerud, K. P. (2008). A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability. J. Am. Chem. Soc. 130, 13850.

(S8) Shao, C.; Wang, X.; Zhang, Q.; Luo, S.; Zhao, J.; Hu, Y. (2011). Acid-base jointly promoted copper(I)-catalyzed azide-alkyne cycloaddition. J. Org. Chem. 76, 6832.

(S9) Orellana-Tavra, C.; Baxter, E. F.; Tian, T.; Bennett, T. D.; Slater, N. K. H.; Cheetham, A. K.; Fairen-Jimenez, D. (2015). Amorphous metal-organic frameworks for drug delivery. Chem. Commun. 51, 13878.

(S10) Sebby, K. B.; Mansfield, E. (2015). Determination of the surface density of polyethylene glycol on gold nanoparticles by use of microscale thermogravimetric analysis. Anal. Bioanal. Chem. 407, 2913.

(S11) Bonnet, S.; Archer, S. L.; Allalunis-Turner, J.; Haromy, A.; Beaulieu, C.; Thompson, R.; Lee, C. T.; Lopaschuk, G. D.; Puttagunta, L.; Bonnet, S.; Harry, G.; Hashimoto, K.; Porter, C. J.; Andrade, M. A.; Thebaud, B.; Michelakis, E. D. (2007). A Mitochondria-K+
Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell 11, 37.