The purpose was to evaluate the effect that deviations from the recommended protocol of a two-step etch-and-rinse adhesive system has on permeability and nanoleakage. One hundred and twenty dentin disks were treated with a two-step etch-and-rinse adhesive system, according to the manufacturer's instructions, or using five simulated deviations from the recommended protocol: applying potassium oxalate, reducing the application time of the adhesive, avoiding adhesive drying, aggressively drying the adhesive, and double application of adhesive. Kruskal–Wallis and Tukey's post hoc comparisons were used to evaluate the permeability reduction ($\alpha=0.05$). Twelve additional dentin disks were prepared for transmission electron microscope (TEM) analysis of nanoleakage. Aggressive drying, adding additional layers of adhesive or using oxalate reduced dentin permeability and yielded a better infiltration of the hybrid layer, whereas reducing the application time or less drying the adhesive did not reduce dentin permeability, caused extensive nanoleakage, showing immediate compromised dentin sealing.

Keywords: Dental adhesives, Dentin bonding, Nanoleakage, Permeability, TEM
hypotheses are as follows: 1) no significant differences will be observed in dentin permeability reduction among the treatment groups and 2) no differences will be noted in the nanoleakage analysis among the treatment groups.

MATERIALS AND METHODS

Specimen preparation for permeability study

One hundred and twenty intact human third molar teeth, without restorations or macroscopic carious lesions, were used in this study. The teeth were gathered after obtaining informed consent under a protocol reviewed and approved by the Ethics Committee, College of Dentistry, Universidade de Lisboa (approval number: 201931). Before their preparation, the teeth were randomly selected from a group of teeth stored in 0.5% Chloramine T (Sigma Chemical, St Louis, MO, USA) at 4°C, according to the ISO TR 11405 standard developed by the International Organization for Standardization (ISO).

From each tooth, a coronary dentin disk having a thickness of 0.70 (±0.01) mm was obtained by a section parallel to the occlusal surface within 1–2 mm from the tip of the pulp horns (first cut) and then again about 1 mm more occlusally (second cut), using a diamond disk at low speed (IsoMet, Buehler, Lake Bluff, IL, USA) under plentiful water irrigation. The specimens’ thicknesses were measured with a digital micrometer (Digimatic Caliper Seriates 500, Mitutoyo America, Dawn, IL, USA) to obtain the thickness of 0.70 (±0.01) mm.

The pulpal surfaces of the specimens were etched with 32% phosphoric acid gel (Uni-etch, Bisco, Schaumburg, IL, USA) for 1 min to completely remove the smear layer and smear plugs created by the preparation of the dentin discs, opening up all the tubules and allowing the fluid to freely flow within the dentin tubules.

With the purpose of creating a uniform smear layer obtained in similar conditions to those occurring in the clinic, the occlusal surface of the dentin disks were grinded with 600 grit-silicon-carbide sandpaper (Carbimet Grit 600/P1200, Buehler) in a mechanical grinder (Ecomet 3, Buehler) for 60 s under water irrigation, in accordance with the ISO TR 11405 standard.

Dentin permeability (P) of each specimen was measured at two time points: 1) after the application and rinsing of the etchant (PB), serving as the baseline measurement, and 2) after the application and polymerization of the adhesive (PA).

The 120 specimens were randomly assigned to six groups, with each group consisting of 20 specimens. The order in which the specimens were treated was randomized to avoid possible bias due to any particular sequence of treatment. One-Step Plus (Bisco, Schaumburg, IL, USA) was used for all groups; the composition of the adhesive is described in Table 1.

Material	Manufacturer	Components
Bisblock	Bisco, Schaumburg, IL, USA	Oxalic acid, Biphenyl dimethacrylate (BPDM), Photo-initiator,
		15–40 vol% 2-hydroxyethyl methacrylate (HEMA), 15–40 vol% bisphenol A glycerolate dimethacrylate (Bis-GMA), 40–70 vol% Acetone, 8.5 wt% Fluoraluminosilicate, glass fillers (1 µm)
One-Step Plus	Bisco	

1. Experimental groups

(1) Group 1: Application according to manufacturer’s instructions (Per mfr) —Control group

The occlusal surface of the dentin was conditioned with 32% phosphoric acid gel (Uni-etch) for 15 s. The disk was rinsed with an air/water spray for 10 s, and the excess water was removed in the end using a moist cotton pellet. The bottle of the primer/adhesive was shaken for 3–5 s after the impact of the mixture element was audible in its interior. The primer/adhesive was applied with a brush in two consecutive layers, with scrubbing for 15 s. The solvent was then evaporated by gently but thoroughly air drying for at least 10 s, beginning with a gentle stream initially and increasing to a fairly strong stream of air, leaving the surface shiny.

Finally, the primer/adhesive was polymerized for 10 s, with a light intensity of 600 mW/cm² (QTH, VIP JR, Bisco). The output of the curing light was periodically verified at 600 mW/cm² with a radiometer (Curing Radiometer P/N 10503, Kerr, Orange, CA, USA) throughout the study.

(2) Group 2: Potassium oxalate application (Oxalate appl)

After rinsing and drying the dentin, it was conditioned with phosphoric acid according to the manufacturer’s instructions and a solution of potassium oxalate (BisBlock, Bisco) was applied for 30 s. The dentin surface was abundantly rinsed and then dried using a moist cotton pellet so that the surface stayed shiny and visibly moist. The subsequent steps of the adhesive technique were executed in accordance with the manufacturer’s instructions.

(3) Group 3: Reduced application time of the adhesive (Reduced appl time)

After rinsing and drying the dentin, it was conditioned with phosphoric acid according to the manufacturer’s instructions, and the primer/adhesive was applied
in a single layer, with scrubbing for 5 s and then immediately starting drying. All the subsequent steps of the adhesive technique were executed in agreement with the manufacturer’s instructions.

(4) Group 4: No drying of the adhesive (No drying)
All the adhesive technique steps were executed in agreement with the manufacturer’s instructions. However, the primer/adhesive was not dried; that is, the solvent was not evaporated, the primer/adhesive excess was removed with a paintbrush (Bisco Brush applicator, Bisco) prior to light polymerization.

(5) Group 5: Aggressive drying of the adhesive (Agg drying)
All the adhesive technique steps were executed in agreement with the manufacturer’s instructions except for the drying of the primer/adhesive, which was aggressively dried for 15 s with maximum pressure of the air syringe 1 cm from the dentin surface.

(6) Group 6: Double application of adhesive (Double appl)
After executing all the adhesive technique steps according to the manufacturer’s instructions, the primer/adhesive was reapplied with a brush in two more consecutive layers, with scrubbing of each layer for 15 s. The solvent was evaporated again beginning with a soft blow of air, leaving the surface shiny, and, finally, the primer/adhesive was again polymerized for 10 s, with a light of intensity of 600 mW cm\(^{-2}\) (VIP JR, Bisco).

Dentin permeability measurements
For the measurement of dentin permeability (P), a Pashley apparatus (Kenward Industries, North Augusta, SC, USA) was used with a saline solution (PBS, Gibco, Grand Island, NY, USA), as described by Outhwaite et al.\(^{26}\) and Pashley\(^{27}\) (Fig. 1), with 37 cm H\(_2\)O hydraulic pressure, which is close to the normal pulpal pressure\(^{6,28}\). The dentin disks were placed between two “O” rings in opposition on each side of the specimen surface and then tightly closed inside the Pashley apparatus.

Before the exposure of the occlusal dentin, the absence of fluid conductance was confirmed by separately attaching five intact crown segments to the testing apparatus (as described above) and observing the (absence of) fluid movement for 2 h\(^{28,29}\). To avoid any interference with the effectiveness of the adhesive system, the pressure was interrupted during the application of the adhesive system\(^{6,19}\). The progression of the air bubble was measured every 2 min over a 6-min interval to determine the rate of saline solution flow in millimeters per minute.

Calculations to determine dentin permeability
The dentin permeability (P) of each specimen was measured at two time points: 1) after conditioning with the etchant (PB), serving as the baseline measurement and 2) after the application and polymerization of the adhesive (PA). These two measurements were used to calculate, as a ratio, the reduction in dentin permeability. The initial value of dentin permeability, measured after the conditioning by the acid (PB) (baseline), was assigned a value of 100%. Considering that permeability was determined for each specimen before the application of the adhesive system and it was applied with the specimen placed in the Pashley apparatus, the reduction in dentin permeability after the polymerization of the adhesive (PA) was expressed as a percentage of this maximum value \([100 – (PA/PB \times 100)] \). Thus, each specimen served as its own control.

Statistical analysis
Sample size calculations were performed using the G*Power Program Statistical Analysis\(^{30,31}\), with \(\alpha=0.05\), a desired power of 80%, and data from the pilot study.

The statistical analysis was performed using a rank-based Kruskal–Wallis procedure. Pairwise comparisons among the six groups were made according to the method given by Conover\(^{32}\), using Tukey adjustment for multiple comparisons in conjunction with an overall 5% level of Type I error. The homogeneity of variances was assessed using the method used by Levene\(^{33}\).

Specimen preparation for nanoleakage study
Twelve additional 0.7-mm-thick dentin disks were prepared similar to those for the permeability study. Two dentin disks were used for each of the six adhesive groups, and the adhesive was applied as in the permeability study. After storage in distilled water at 37°C for 24 h, three slabs approximately 0.5 mm thick were sectioned perpendicular to the plain surface using a diamond copper saw (Isomet 1000, Buehler) under plentiful irrigation. The slabs were immersed in an ammoniacal silver nitrate solution in the dark for 24 h, without allowing them to dehydrate, and prepared for nanoleakage\(^{5,34}\). Ninety nanometer-thick epoxy resin-embedded sections were prepared and examined using a transmission electron microscope (TEM; Zeiss EM10,
RESULTS

Dentin permeability
The data on percent permeability reduction are summarized in Table 2 by adhesive types and application modes as mean and standard deviation (SD); the median, range, minimum and maximum, are also presented.

The results showed that the percentage distribution of permeability reduction was different among the six experimental groups ($p<0.0001$). The highest permeability reduction was observed in the double-adhesive application group (88.85±4.59) and the lowest was observed in the no adhesive drying (54.95±20.60) group (Fig. 2).

The distribution of the percentage of permeability reduction did not statistically differ among the double application, oxalate application, and aggressive drying groups ($p=0.21$).

In addition, the data provided evidence that the percentage of permeability reduction in the highest group (that associated with double application) was significantly greater than that obtained by following the manufacturer’s instructions ($p=0.0014$). There was also significant difference between the manufacturer’s instruction group and the oxalate application group ($p=0.0073$), with higher permeability reduction in the oxalate application group.

Nanoleakage
The representative micrographs in this study are shown in Figs. 3–8. At high magnification for all groups and specimens, evidence of spotted silver deposits (black arrows) that are randomly distributed through the entire thickness of the hybrid layer can be seen. The spotted type consisted of isolated spots of silver grains that were observed in varying degrees of intensity within the

Group	n	Mean	SD	Median	Minimum	Maximum	Range
Double application (Appl)	20	88.85	4.59	88.5	80	97	17
Oxalate appl	20	86.70	5.57	86.5	75	97	22
Aggressive (Agg) drying	20	83.7	7.15	83.5	67	95	28
Per manufacturer (mfr)	20	80.3	9.94	83	62	95	33
Reduced appl time	20	72.25	12.63	75.5	37	86	49
No drying	20	54.95	20.60	57.5	20	85	65

Fig. 2 Box-and-whisker plots of percentage permeability reduction (in descending order by median, with Tukey groupings indicated graphically by the four colored rectangles. Groups within the same rectangle are not significantly different).

Fig. 3 TEM micrograph of representative area of unstained, undemineralized, silver-impregnated sections of the manufacturer’s instructions group. C: resin composite layer, A: adhesive layer, H: hybrid layer, D: mineralized dentin. 5,000×.
hybrid layers and in the adhesive layers.

In the three groups comprising the manufacturer's instructions (Fig. 3), reduced application time (Fig. 4), and no drying (Fig. 5) groups, the reticular nanoleakage pattern (gray arrows) was also observed within the resin-dentin interfaces. The reticular type consisted of discontinuous islands of silver deposits exclusively observed in the hybrid layers or in the hybridized areas.
Fig. 8 TEM micrograph of representative area of unstained, undemineralized, silver-impregnated sections of the aggressive drying of adhesive group. C: resin composite layer, H: hybrid layer, D: mineralized dentin, T: dentin tubule. 3,150×

of the resin tags. In addition, in the no-drying group, a layer of dendritic silver-impregnated water channels known as “water trees” was observed. In the double application (Fig. 6), oxalate application (Fig. 7), and aggressive drying groups (Fig. 8), no reticular type of nanoleakage was noted in the complete extension of the resin-dentin interface or in the adhesive layer.

The manufacturer’s instructions group exhibited minimal but distinctive nanoleakage throughout the hybrid layer, and reticular silver deposits could be identified along the hybrid layer only sporadically. In high resolution (black arrows, Fig. 3), a spotted type of nanoleakage was observed in the hybrid layer, which was slightly more intense in the top and bottom parts of this layer.

Significant nanoleakage was observed in the reduced application time (Fig. 4) group, including both reticular and spotted types of nanoleakage. The hybrid layer consistently showed the presence of silver deposits. Some tubules showed silver deposition between the resin tags and the tubule walls.

The no-drying (Fig. 5) group showed the highest quantity of nanoleakage of all the groups. The severity of nanoleakage in this group was so high that the reticular silver deposits not only occurred continuously along the entire length of the hybrid layer but also extended to its entire thickness. In addition, the extensive silver deposits were also observed within the dentin tubules. The special water channels called “water trees” mentioned above could be seen arising from the surface of the hybrid layer and extending into the adhesive layer.

DISCUSSION

Studies of the permeability characteristics of dentin and their interactions with dentin adhesive systems are of considerable physiopathological and clinical interest because they may help explain some of the reasons for restorative failure and postoperative dentin sensitivity.

The permeability characteristics of the resin-dentin interface, or, more specifically, the hybrid layer or resin-dentin interdiffusion zone, can be separately studied by quantitative or qualitative methods. In this study, dentin permeability was studied quantitatively, using the method described by Outhwaite et al. and Pashley, while nanoleakage was studied qualitatively, using transmission electron microscopy.

For these types of studies, the applied pressure mentioned in the literature has varied greatly. In this study, a low hydraulic pressure (37 cm H₂O) was used to avoid any disturbance of the intratubular content, the resin tags, or the hybrid layer. The use of this hydraulic pressure should result in hydraulic conductance measurements comparable to reality (14 cm H₂O).

The dentin permeability reduction levels achieved among the six different groups were extremely different, with larger-than-expected range of values of dentin permeability reduction for the same adhesive system, where the only difference among the groups was a deviation from a single step of the application protocol. Furthermore, the groups with lower dentin permeability reduction values are also the ones with higher variability and standard deviations. This may denote that the adhesive and its application protocol performance are more prone to be influenced by factors otherwise less relevant, when a deleterious deviation is made on that adhesive protocol. Those factors may be the degree of mineralization of the substrate, the number and size of the dentine tubules or the simulated pulpal pressure. For instance, an alteration in the degree of surface moisture caused by desiccation or blotting yielded different dentin permeability reduction results (Agg drying: 83.7%; Per mfr: 80.3%; No drying: 54.95%).

The composition of adhesive systems and solvent type also affect their behavior. Ethanol/water based systems are less moisture sensitive and good at re-expanding collagen matrix, producing higher bond strengths in dried dentin. Acetone-based systems, such as One-Step Plus, evaporate much more residual water than ethanol/water-based systems; nevertheless, they are more sensitive to air drying as they cannot re-expand the shrunken collagen fibrils. Adoption of the same bonding protocol for different adhesives with different volatilities and capability of water displacement may result in undesirable consequences.

The results suggest that the bonding efficacy of the two-step etch-and-rinse adhesives is strongly affected by all the operator-dependent variables studied.

In the manufacturer’s instructions group, as in
other studies4,24,39, the results were not the best among all the experimental groups. This may suggest that the adhesive system used in this study has the potential for improvement, especially in terms of the instructions for use. As suggested by some authors, changing the application protocol of some adhesives may sometimes improve their bonding capacity40,41.

In this study, longer and more aggressive air drying for the uncured adhesives, which may improve the evaporation of the adhesive solvents and water derived from the dentinal fluids, yielded results that are among the best of the experimental groups (Agg drying: 83.7\%). These results agree with those reported by Barkmeier and Erickson42, who found that severe air drying of the primer only slightly reduced the shear bond strength. Moreover, Frankenberger et al.9 showed that drying the primer for 60 s yielded higher bond strengths than other deviations. Furthermore, Hiraishi et al.43 found that it is not possible to completely eliminate the presence of water from the hybrid layer even by aggressively air drying the primed dentin surface, allowing nanoleakage to occur along the interface. Thus, bonding to dentin is definitely technique dependent44. To obtain the most reliable clinical results, the manufacturers’ instructions should meticulously describe how to dry the remaining primer/adhesive. Although it is known that clinicians mostly deviate from the protocol to save time15, it should be emphasized that if one has to make a deviation from the recommended protocol, thorough air drying is preferable to leaving any water/solvent remains on the primed dentin before polymerization.

Some studies45,46 have shown that longer application time enhanced solvent evaporation in simplified adhesives, resulting in better integrity of the adhesive layer. However, in this study, it was decided not to include a longer application time group because a change in the protocol that increases the adhesive application time is not likely to happen clinically in daily practice because clinicians want to save application time.

In the oxalate application group (Oxalate appl: 86.7\%), the results did not show a statistically significant difference in the dentin permeability reductions between this group and the manufacturer’s instructions group. These results matched well with those reported in other studies24,47 and may signify that the use of oxalate—a deviation from the recommended protocol—resulted in a less “technique sensitive” application for this adhesive. In other words, more consistent results with this approach can be expected, suggesting that it may be an improvement in the adhesive technique. Nevertheless, the adhesive used in the study had low levels of fluoride (70 ppm) and was not very acidic (pH=4.6), and these factors may have contributed to the good results because it has been reported24,48 that the bond strength and the hydraulic conductance reduction capacity of the simplified adhesives for oxalate-treated, acid-etched dentin may be compromised by the fluoride content and acidity of some etch-and-rinse adhesives. Oxalate desensitizers are effective in reducing the hydraulic conductance of dentin with exposed tubules because they react with calcium ions on dentin and in dentinal fluid to form sparingly soluble calcium oxalate crystals49. Thus, the reduction of dentin permeability is achieved via subsurface tubular occlusion, which should not interfere with the subsequent resin infiltration21. However, the solubility of calcium oxalate is affected by pH because the anion is the conjugate base of a weak acid. The low pH values of some adhesives may increase the solubility of calcium oxalates in the dentinal tubules and may negatively interfere with adhesion40. More long term studies are needed to confirm these observations.

The results obtained in the double-application group (Double appl: 88.85\%) were the best among all the experimental groups, with high dentin permeability reduction and minor nanoleakage mainly of the spotted type. These results are in agreement with several studies that demonstrated that multiple consecutive coats50,51 increased the resin-dentin bond strengths for etch-and-rinse adhesives. It appears that when each layer is light cured, the adhesive layer becomes thicker without changing the quality of the hybrid layer and that the increase in bond strength is mainly due to the improved stress distribution via the increased elasticity of the thicker adhesive layer50. The adhesive layer is thicker and more hydrophobic in the double-application group. A hydrophobic adhesive layer has better mechanical properties, and it is thought to better tolerate degradation factors and fatigue stress51. The manufacturers of One-Step Plus recommend this optional double application protocol as an option for Class V restorations but, according to the results of this study, it should be investigated whether it will not be beneficial to use double application in all types of restorations.

In the reduced application time group, the resins did not fully infiltrate the demineralized dentin allowing the existence of interfibrillar spaces filled with water rather than resin, which could be observed by the presence of both reticular and spotted patterns of nanoleakage. The results of this study are in agreement with other studies6,9,10 wherein it was seen that whenever the infiltration time of the primer was reduced, the primer was not able to serve its function, proving that primer application is a time-dependent process. Therefore, according to the results of this study, it is recommended to carefully follow the manufacturer’s instructions regarding the application time of the adhesive system, which must be applied for at least 10 s.

Among all the experimental groups, the worst results of dentin permeability reduction were obtained in the no drying group (No drying: 54.95\%). The nanoleakage results are consistent with the results of dentin permeability where extensive nanoleakage could be observed. The nanoleakage was so extensive that the silver deposits impregnated the entire thickness of the hybrid layer and inside the dentin tubules, precluding the dentin tubules from sealing and explaining why the dentin permeability reduction results were so poor. In fact, other studies4,52,53 have demonstrated that it is not possible to properly seal a resin-dentin interface without the careful and complete evaporation of the
water/solvents before the polymerization of the resins. The results of this study suggest that not drying the primer/adhesive-impregnated dentin surface before polymerizing is probably the worst bonding mistake that a clinician can make when applying the etch-and-rinse system. It creates additional channels for rapid water movement, which may enhance water sorption within the hydrophilic adhesive layer. This may result in rapid deterioration of the mechanical properties of the resin-dentin bonds and make the resin-dentin interface readily susceptible to long-term bond degradation.

Future research should clarify the effect of other mistakes related to the clinical application of an adhesive system, apart from the ones tested in this study. Furthermore, the effect of isolated mistakes and different combinations of two or more adhesive application mistakes and their interactions should also be examined.

Finally, further studies should be conducted to better understand the impact of the adhesive application mistakes on the hydrolytic degradation rates of the resin-dentin bond over time and the challenge that this degradation causes to the longevity of the resin-bonded restorations.

CONCLUSION

The results of this study require the rejection of the null hypotheses. The deviations in the adhesive protocol that turned the hybrid layer into a more hydrophobic zone —whether by aggressively drying the adhesive, applying an additional layer of adhesive, or blocking the water contamination with oxalate— showed immediate improvement in terms of the dentin permeability reduction and less nanoleakage, resulting in a less technique-sensitive application protocol for this adhesive. However, the deviations that increased the wetness of the hybrid layer and/or decreased the application time immediately compromised the sealing of the dentin and caused extensive nanoleakage.

The inadequate clinical application of the total-etch, two step adhesive system creates imperfect dentin tubule sealing, which may explain clinical reports of postoperative sensitivity associated with adhesive restorations.

REFERENCES

1) Cadenaro M, Maravic T, Comba A, Mazzoni A, Fanfoni L, Hilton T, et al. The role of polymerization in adhesive dentistry. Dent Mater 2019; 35: e1-e22.
2) Besnault C, Attal JP. Influence of a simulated oral environment on microleakage of two adhesive systems in Class II composite restorations. J Dent 2002; 30: 1-6.
3) Reis AF, Gianmini M, Pereira PN. Long-term TEM analysis of the nanoleakage patterns in resin-dentin interfaces produced by different bonding strategies. Dent Mater 2007; 23: 1164-1172.
4) Hashimoto M, Tay FR, Svizero NR, de Gee AJ, Feilzer AJ, Sano H, et al. The effects of common errors on sealing ability of total-etch adhesives. Dent Mater 2006; 22: 560-568.
5) Tay FR, Pashley DH, Yiu C, Cheong C, Hashimoto M, Itou K, et al. Nanoleakage types and potential implications: evidence from unfilled and filled adhesives with the same resin composition. Am J Dent 2004; 17: 182-190.
6) Cavalheiro A, Vargas MA, Armstrong SR, Dawson DV, Gratton DG. Effect of incorrect primer application on dentin permeability. J Adhes Dent 2006; 8: 393-400.
7) Scotti N, Cavalli G, Gagliani M, Breschi L. New adhesives and bonding techniques. Why and when? Int J Esthet Dent 2017; 12: 524-535.
8) Cruz J, Sousa B, Coito C, Lopes M, Vargas M, Cavalheiro A. Microtensile bond strength to dentin and enamel of self-etch vs. etch-and-rinse modes of universal adhesives. Am J Dent 2019; 32: 174-182.
9) Frankenberger R, Kramer N, Petschelt A. Technique sensitivity of dentin bonding: effect of application mistakes on bond strength and marginal adaptation. Oper Dent 2000; 25: 324-330.
10) Peschke A, Blunck U, Roulet JF. Influence of incorrect application of a water-based adhesive system on the marginal adaptation of Class V restorations. Am J Dent 2000; 13: 239-244.
11) Peutzfeldt A, Asmussen E. Adhesive systems: effect on bond strength of incorrect use. J Adhes Dent 2002; 4: 233-242.
12) Armstrong SR, Keller JC, Boyer DB. The influence of water storage and C-factor on the dentin-resin composite microtensile bond strength and debond pathway utilizing a filled and unfilled adhesive resin. Dent Mater 2001; 17: 268-276.
13) Sahin C, Cehreli ZC, Yenigul M, Dayanagac B. In vitro permeability of etch-and-rinse and self-etch adhesives used for immediate dentin sealing. Dent Mater J 2012; 31: 401-408.
14) Sano H, Yoshiyama M, Ebisu S, Burrow MF, Takatsu T, Ciucchi B, et al. Comparative SEM and TEM observations of nanoleakage within the hybrid layer. Oper Dent 1995; 20: 160-167.
15) Li H, Burrow MF, Tyas MJ. Nanoleakage of cervical restorations of four dentin bonding systems. J Adhes Dent 2000; 2: 57-65.
16) Tao L, Pashley DH. The relationship between dentin bond strengths and dentin permeability. Dent Mater 1989; 5: 133-139.
17) Brännström M. Sensitivity of dentine. Oral Surg Oral Med Oral Pathol 1966; 21: 517-526.
18) Brännström M. Etiology of dentin hypersensitivity. Proc Finn Dent Soc 1992; 88: 7-13.
19) Pashley DH, Carvalho RM, Pereira JC, Villanueva R, Tay FR. The use of oxalate to reduce dentin permeability under adhesive restorations. Am J Dent 2001; 14: 89-94.
20) Tay FR, Pashley DH. Have dentin adhesives become too hydrophilic? J Can Dent Assoc 2003; 69: 726-731.
21) Tay FR, Pashley DH, Mak YF, Carvalho RM, Lai SC, Suh BI. Integrating oxalate desensitizers with total-etch two-step adhesive. J Dent Res 2003; 82: 703-707.
22) Dental materials —Testing of adhesion to tooth structure. International Organization for Standardization. Technical report TR 11405, 1-14. 1994, Switzerland.
23) Kolker JL, Vargas MA, Armstrong SR, Dawson DV. Effect of desensitizing agents on dentin permeability and dentin tubule occlusion. J Adhes Dent 2002; 4: 211-221.
24) Yiu CK, Hiraishi N, Chersoni S, Breschi L, Ferrari M, Prati C, et al. Single-bottle adhesives behave as permeable membranes after polymerisation. II. Differential permeability reduction with an oxalate desensitizer. J Dent 2006; 34: 106-116.
25) Pashley DH, Tao L, Boyd L, King GE, Horner JA. Scanning electron microscopy of the substructure of smear layers in human dentine. Arch Oral Biol 1988; 33: 265-270.
26) Outhwaite WC, McKenzie DM, Pashley DH. A versatile split-chamber device for studying dentin permeability. J Dent Res 2020; 99: 204-213.
27) Pashley D. Dentin Permeability: Theory and Practice. In: Spangberg LSW, editor. Experimental Endodontics. Boca Raton, FL: CRC Press; 1990. p. 20-46.
28) Ozok AR, Wu MK, Wesselink PR. The effects of post-extraction time on the hydraulic conductance of human dentine in vitro. Arch Oral Biol 2002; 47: 41-46.
29) Goodis HE, Marshall GW Jr, White JM, Gee L, Hornberger B, Marshall SJ. Storage effects on dentin permeability and shear bond strengths. Dent Mater 1993; 9: 79-84.
30) Faul F, Erdfelder E, Buchner A, Lang AG. Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behav Res Methods 2009; 41: 1149-1160.
31) Faul F, Erdfelder E, Buchner A, Lang AG. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007; 39: 175-191.
32) Conover WJ. Practical Nonparametric Statistics. 3rd ed. New York: Wiley; 1999.
33) Levene H. Essays in Honor of Harold Hotelling, I. In: Olkin, editor. Contributions to Probability and Statistics: Stanford University Press; 1960. p. 278-92.
34) Tay FR, Pashley DH, Yoshiyama M. Two modes of nanoleakage expression in single-step adhesives. J Dent Res 2002; 81: 472-476.
35) Prati C. What is the clinical relevance of in vitro dentine permeability tests? J Dent 1994; 22: 83-88.
36) Ciucchi B, Bouillaguet S, Hola J, Pashley D. Dentinal fluid dynamics in human teeth, in vivo. J Endod 1995; 21: 191-194.
37) Luque-Martinez IV, Perdigao J, Munoz MA, Sezinando A, Reis A, Loguercio AD. Effects of solvent evaporation time on immediate adhesive properties of universal adhesives to dentin. J Dent 2014; 10: 1126-1135.
38) Irmak O, Baltacioglu IH, Ulusoy N, Bagis YH. Solvent type influences bond strength to air or blot-dried dentin. BMC Oral Health 2016; 16: 77.
39) Izuga-Izuga A, Tay FR, Pashley DH, Wefel JS, Garcia-Godoy F, Wei SH. Single-step, self-etch adhesives behave as permeable membranes after polymerization. Part III. Evidence from fluid conductance and artificial caries inhibition. Am J Dent 2004; 17: 394-400.
40) Bouillaguet S, Bertossa B, Krejci I, Wataha JC, Tay FR, Pashley DH. Alternative adhesive strategies to optimize bonding to radicular dentin. J Endod 2007; 33: 1227-1230.
41) King NM, Tay FR, Pashley DH, Hashimoto M, Ito S, Brackett WW, et al. Conversion of one-step to two-step self-etch adhesives for improved efficacy and extended application. Am J Dent 2005; 18: 126-134.
42) Barkmeier WW, Erickson RL. Shear bond strength of composite to enamel and dentin using Scotchbond Multi-Purpose. Am J Dent 1994; 7: 175-179.
43) Hiraishi N, Breschi L, Prati C, Ferrari M, Tagami J, King NM. Technique sensitivity associated with air-drying of HEMA-free, single-bottle, one-step self-etch adhesives. Dent Mater 2007; 23: 498-505.
44) Gianinni M, Makishi P, Ayres AP, Vernelho PM, Fronza BM, Ninkado T, et al. Self-etch adhesive systems: a literature review. Braz Dent J 2015; 26: 3-10.
45) Saikawa P, Matsumoto M, Chowdhury A, Carvalho RM, Sano H. Does shortened application time affect long-term bond strength of universal adhesives to dentin? Oper Dent 2018; 43: 549-558.
46) Mena-Serrano AP, Garcia EJ, Perez MM, Martins GC, Grande RH, Loguercio AD, et al. Effect of the application time of phosphoric acid and self-etch adhesive systems to sclerotic dentin. J Appl Oral Sci 2013; 21: 196-202.
47) Sadek FT, Pashley DH, Ferrari M, Tay FR. Tubular occlusion optimizes bonding of hydrophilic resins to dentin. J Dent Res 2007; 86: 524-528.
48) Yiu CK, King NM, Suh BI, Sharp LJ, Carvalho RM, Pashley DH, et al. Incompatibility of oxalate desensitizers with acidic, fluoride-containing total-etch adhesives. J Dent Res 2005; 84: 730-735.
49) Gillam DG, Mordan NJ, Sinodinou AD, Tang JY, Knowles JC, Gibson IR. The effects of oxalate-containing products on the exposed dentine surface: an SEM investigation. J Oral Rehabil 2001; 28: 1037-1044.
50) Hashimoto M, Sano H, Yoshida E, Hori M, Kaga M, Oguchi H, et al. Effects of multiple adhesive coatings on dentin bonding. Oper Dent 2004; 29: 416-423.
51) Fujiwara S, Takamizawa T, Barkmeier WW, Tsujimoto A, Imai A, Watanabe H, et al. Effect of double-layer application on bond quality of adhesive systems. J Mech Behav Biomed Mater 2018; 77: 501-509.
52) Momoi Y, Akimoto N, Kida K, Yip KH, Kohno A. Sealing ability of dentin coating using adhesive resin systems. Am J Dent 2003; 16: 105-111.
53) Gregoire G, Joniot S, Guignes P, Millas A. Dentin permeability: self-etching and one-bottle dentin bonding systems. J Prostheth Dent 2003; 90: 42-49.
54) Tay FR, Hashimoto M, Pashley DH, Peters MC, Lai SC, Yiu CK, et al. Aging affects two modes of nanoleakage expression in bonded dentin. J Dent Res 2003; 82: 537-541.
55) Hashimoto M, Ohno H, Sano H, Tay FR, Kaga M, Kudou Y, et al. Micromorphological changes in resin-dentin bonds after 1 year of water storage. J Biomed Mater Res 2002; 63: 306-311.