Geology of Monte Gallo (Palermo Mts, NW Sicily)

Luca Basilone & Cipriano Di Maggio

To cite this article: Luca Basilone & Cipriano Di Maggio (2016): Geology of Monte Gallo (Palermo Mts, NW Sicily), Journal of Maps, DOI: 10.1080/17445647.2015.1124716

To link to this article: http://dx.doi.org/10.1080/17445647.2015.1124716
1. Introduction

Monte Gallo is an isolated carbonate massif (Figure 1/Geological Sheet) located in the northern sector of the Palermo Mts, near Mondello (Palermo) (Figure 1(b)). The study area is included in the topographic base map 1:25,000 ‘Mondello’ (249 II NO) edited by I.G. M. (Istituto Geografico Militare, the mapping agency of Italy). Though the mountain consists of a slightly elevated top area (maximum height 561 m a.s.l. at Pizzo della Sella), it shows a strong relief being bounded by cliffs hundreds of metres in height overlooking ‘Conca d’Oro’ (the plain on which Palermo city stands out) and the Tyrrhenian Sea (see the Geological Map). For its location and for the fauna and flora biodiversity it is a very interesting natural site. The ‘Oriented Natural Reserve of Monte Gallo’, comprised in the Regional Plane of Parks and Reserve of the Regione Siciliana, consists of an emerged 5.86 km² extended area and an adjacent protected marine area, where the sand substrate is populated by the Posidonia oceanica Delille.

The occurrence of Jurassic bauxites in the shallow-water carbonate succession of Monte Gallo has offered an excellent site for the reconstruction of the Mesozoic-Paleogene Panormide carbonate platform geological history (Di Stefano, Mallarino, Mindszenty, & Nicchitta, 2002; Ferla, Censi, & Meli, 2002 and references thereafter). The littoral deposits with Persististrombus latus (Gmelin) have provided important fossil collections (e.g. Ruggieri & Milone, 1974).

Geomorphological studies (Di Maggio, 2000; Hugonie, 1982) have showed the existence of an isolated relief produced by tectonics and affected by planation processes, karst phenomena, coastal processes and water erosion during the Quaternary age.

Recent field investigations, partly conducted in the frame of the Italian Official Geologic Cartography (1:50,000 scale map, CARG project, Catalano et al., 2013a), have highlighted new discovery about the Mesozoic carbonates and the Quaternary outcropping deposits.

The main purpose of this work, describing the results of detailed field mapping, is to give new information about the geological heritage of the region that, accomplished with the previously mentioned geomorphological, naturalistic and cultural aspects, is able to justify the proposition of a Geosite for the Monte Gallo area.

A Geosite, as defined by the IUGS (International Union of Geological Science) and by the UNESCO, is a locality where it is possible recognized a relevant geologic, geomorphologic, paleontologic, mineralogic, etc. interest and for this reason to be considered and preserved as cultural and landscape heritage (Wimbledon, 1997).

The definition of geological framework is an essential procedure, proposed by ProGEO (the European Association for the Conservation of the Geological Heritage) and used since the IUGS’s Global Geosites...
Project, for the inventory of Geosites with scientific value.

In areas rich in interesting geological features, a thematic map is a fundamental tool for identification and protection of the geological heritage, in order to promote institution, improvement and exploitation of a Geosite. A geological map offers the possibility of fruition also through the proposition of geological itineraries for geotourism (Eder & Patzak, 2004; Strasser et al., 1995).

The Geological Map of Monte Gallo illustrated here, accomplished by schemes at its margin and explanatory notes, may be used as a cartographic support and as a field trip guide for the geological heritage of the area. In this view, some oriented pathways are suggested (Geological itineraries in supplementary materials).

2. Geological setting

The Sicilian orogen, located in the centre of the Mediterranean at the NE corner of the Pelagian platform of North Africa, links the Southern Apennine and the Calabrian Arc to the Tellian and Atlas systems of North Africa (Figure 1(a)).

The Sicilian Fold and Thrust Belt (FTB) is a segment of the Apennine-Tyrrhenian System, whose building up refers both to the post-collisional convergence between Africa and a complex ‘European’ crust (Bonardi et al., 2003) and to the coeval roll-back of the subduction hinge of the Adriatic Ionian-African lithosphere (Catalano et al., 2013b; Doglioni, Merlini, & Cantarella, 1999 and references therein).

The study area is located in the Palermo Mts (Figure 1(b)), the northernmost sector of the emerged Sicilian FTB (Figure 1(a)), which results from the piling up of deep-water and carbonate platform tectonic units (Imerese and Panormide, Catalano et al., 2013b and references thereinafter). The Panormide tectonic units consist of geologic bodies, 900–1200 m thick and 4–8 km² wide, stacked with ramp and flat geometry S- and SW-verging with the interposition of the Oligo-Miocene Numidian flysch deposits, postdating the time of tectonic emplacement (Abate, Catalano, & Renda, 1978).

In the Monte Gallo area (Figure 1(b)) the tectonic relationships between the Monte Gallo and Cozzo di Lupo tectonic units are highlighted. These are progressively superimposed along N–S trending thrust (Figure 4/Geological Sheet). High angle normal faults, related to the Plio-Quaternary extensional and transtensional tectonic events due to the opening of Tyrrhenian Sea (Gueguen, Doglioni, & Fernandez, 1998; Malinverno & Ryan, 1986), dissect the older structures and are responsible for the present-day setting (Figure 4/Geological Sheet).

The investigated rock bodies, now incorporated into the Sicilian FTB, originated from the deformation of the Mesozoic-Cenozoic sedimentary cover of the Sicilian sector of the African continental margin (Catalano & D’Argenio, 1978). They are represented by shallow-water carbonate deposits pertaining to the Upper Triassic-Eocene Panormide succession. This succession is characterized by Bahamian-type facies, with periodic subaerial exposure and continental sedimentation (Basilone, 2015; Di Stefano et al., 2002).

3. Methodologies

Field mapping was carried out using published base maps (Regional Technical Cartography – CTR – Regione Siciliana) at a 1:2000–1:10,000 scale map. Google Earth and aerial images were analysed in order to recognize the main morphostructural features. The geological map is presented at a scale of 1:15,000 in a Transverse Mercator Projection.

Both physical-stratigraphy and facies analyses were applied along several stratigraphic sections that were measured and sampled to define the lithological and sedimentological characteristics of the recognized units and to define their stratigraphic relationships. Mesozoic carbonates have been classified using the more recent lithostratigraphic nomenclature (Basilone, 2012), although most of formations are informal, that are not validated by the Italian Commission of Stratigraphy and the Quaternary deposits were subdivided.
in unconformity-bounded stratigraphic units (UBSUs, ISSC-Salvador ed., 1994).

Carbonate microfacies were described by using Dunham’s classification and were dated by Mesozoic benthonic and planktonic calcareous fossil biozonations (Camoin, 1983; Chiocchini, Farinacci, Mancinelli, Molinari, & Potetti, 1994; Montanari, 1965). Quaternary deposits were constrained using Pleistocene biozonation (Cita et al., 2006; Rio, Raffi, & Villa, 1990) and numerical datings (Hearty, Miller, Stearns, & Szabo, 1986; Mauz, Buccheri, Zöller, & Greco, 1997) compared with the Oxygen Isotope Stages (OIS) of the δ^{18}O curve (Shackleton, 1995, Figure 6/Geological Sheet).

Field mapping was integrated with structural and morphostructural analyses at map and mesoscopic scale.

3.1. The geological sheet

The included Geological Sheet (A2 format) consists of the Geological Map at a 1:15,000 scale and some sketches displaying various geological elaborates: the correlation of logged sections (Figure 2/Geological Sheet) help to understand the Upper Triassic-Eocene stratigraphic setting of the area; the geomorphological map (Figure 3/Geological Sheet) illustrates the main landforms; the sketches of Figures 5 and 6 display the geometric relationships and the chronological distribution of the mapped Quaternary UBSUs. Some geological cross-sections permit to recognize the stratigraphic relationships among the units and the main tectonic structures of the study area. The structural map of Figure 4 shows tectonic lineaments and possible geological itineraries, where the main geological features are observable along several stops (see Geological itineraries in supplementary materials).

3.2. Software

Field data and the associated topographic templates were scanned into a PC using Adobe Photoshop (AP). Adobe Illustrator (AI) was used to draft the geological map and the structural sketch. The map frame was performed with AI and the pictures in the frame and in the text were adapted using both AP and AI. ArcMap was used to overlap the aerial photos (courtesy of ARTA-Regione Siciliana). Three-dimensional analysis of the topography was made using gis-software (Global Mapper).

4. Stratigraphy

The Mesozoic and Cenozoic deposits are classified through lithostratigraphy, while the Quaternary deposits are separated into UBSUs. Complete description of the lithological, stratigraphic, sedimentological, paleoenvironmental and paleontological features are
reported in Tables 1 and 2, in the legend at the margin of the Geological Map and in the supplementary materials (Plates 1–7). The sites where are observable the main geological features of the units are indicated with stops of the geological itineraries reported on Figure 4/Geological Sheet.

4.1. Lithostratigraphy and facies analysis of the Mesozoic-Paleogene carbonates and Cenozoic clastics

The Mesozoic-Paleogene carbonate succession (Figure 2/Geological Sheet) and the Cenozoic clastics consist of:

4.1.1. Sciacca Formation (SIA, Norian-Rhaetian)

The whitish peritidal dolostones of the Sciacca Fm (Table 1) extensively outcrop at the foot of the carbonate massif (see Geological Map). The upper 70–150 m of the formation is exposed on the northern side of Monte Gallo, while 30–50 m outcrops at Pizzo Vuturo, where large megalodontid shells are recognizable (Stop 3, green itinerary). The lower boundary is not exposed. The upper one is an erosional surface capped by the deposits of the Capo Rama formation through a paraconformity (Stop 4 of green itinerary) and by the Jurassic bauxite deposits and the Pizzo Manolfo peritidal limestone through an angular unconformity, as well observable along the whole mountain and especially in its northwestern side (Figure 2 and Stop 6, blue itinerary).

4.1.2. Capo Rama formation (RMF, Norian-Sinemurian)

The Capo Rama Fm (Figure 2/Geological Sheet) outcrops along the coastal sector of Monte Gallo and in its southwestern side (0–150 m thick), and thins laterally to disappear in the northern side of the massif (see Geological Map). The lithostratigraphic characteristics of the unit (Table 1 and Plate 1 in supplementary materials) are well exposed in the coastal sector of Mondello (Stop 1, blue itinerary), at Spinasanta quarry (Stop 2, green itinerary) and along the southern side of Pizzo Impiso (see Geological Map). The upper boundary of the unit is a subaerial irregular surface, whose origin was accompanied by large erosion, several paleo-faults with small downthrown, a dense network of neptunian dykes vertical and sub-horizontal to the bedding, block-faulting and tilting (Figure 3) and that

Figure 3. Triassic-Jurassic carbonate succession at Spinasanta quarry. The Upper Triassic-Lower Jurassic peritidal limestones of the Capo Rama Fm (RMF) are dislocated by synsedimentary faults. The Jurassic red bauxite clays (bx) fill erosional ponds at the top of the RMF and a dense network of neptunian dykes (inset), Kimmeridgian dasycladacean and gasteropods limestone (gs) and Upper Tithonian-Valanginian Pizzo Manolfo limestone (CTI), onlap the older strata.

Figure 4. (a) Outcropping site of the Costa Mazzone clays (mz). AFU: Lower Cretaceous Capo Gallo requienid limestone, LEG: Upper Cretaceous rudistid limestone of the Pellegrino Fm; (b) detail of the darkish sampled clays.
was capped by continental sediments (bauxites). Moreover, the topmost portion of the formation is characterized by a dense network of neptunian dykes, vertical and sub-horizontal to the bedding, mostly filled by red bauxite clays and karst products.

4.1.3. Bauxites of Spinasanta (bx, Middle-Upper Jurassic)

The brick-red and yellowish bauxite clays are preserved in neptunian dykes (inset in Figure 3) or in little troughs and karren displaying onlap and infilling geometries, as observable in the abandoned quarry of Spinasanta (Stop 2, yellow itinerary).

4.1.4. Gastropods limestone (gs, Kimmeridgian)

The calcareous unit (Table 1 and Plate 2 in supplementary materials) outcrops at Spinasanta quarry (Stop 2, yellow itinerary), where it rests with onlap terminations above the peritidal limestone of the RMF and with transitional relationships with bx (Figure 3).

4.1.5. Pizzo Manolfo limestone (CTI, Upper Tithonian-Valanginian)

The grey shallowing upward peritidal limestone (Table 1 and Plate 3 in supplementary materials) outcrops, 150–300 m thick at Pizzo della Sella (Stop 1, red itinerary), Pizzo Impiso and Pizzo Vuturo (Stop 5, green itinerary), and 70–100 m thick at La Torre (Stop 2, blue itinerary) and Pizzo S. Margherita. The lower unconformity boundary with the RMF is characterized by onlap stratal terminations. It is well observable at Bauso Rosso (western side of the massif, Stop 2, yellow itinerary), where it laterally extended for some hundreds of metres.

4.1.6. Capo Gallo limestone (AFU, Upper Barremian-Lower Aptian)

The dark-grey requienid limestone (Table 1, Plate 4 in supplementary materials) has been recently defined as formational unit (Basilone & Lena, 2009) on the basis of its type section reconstructed from Pizzo della Sella (Stop 2, red itinerary). The unit outcrops, 30–
Table 1. Main characteristics of the described Mesozoic-Paleogene lithostratigraphic units of the Monte Gallo carbonate succession.

Fms	labels	Texture and lithology	thick (m)	Lower boundary	Geometry	Depositional environment	Fossil content	Age
Valdesi	VSI	Rudstone-grainstone with Nummulites sp., bryozoans, rodophycean algae, echinoid and coral fragments (Pl. 6 in supplementary materials) alternated with coral boundstone and, locally, with thin-bedded white pelagic wackestone with planktonic foraminifers. Thin breccias and pebbly mudstone, mark the lower boundary	15–25	Downlap	Dm-thick strata with tabular geometry	Open shelf and patch reef	Alveolinids (Fasciolites oblungus (D’Orbigny), F. ellipsoidalis (Schwager), F. schwageri (Chechka-Rispoli), F. giganteus (Chechka-Rispoli)), nummulitids (Nummulites crassus Boubé, N. millecaput Boubé, N. mollis (D’Archiac), N. paronai (Prever)), Discozyclina robusta Douvillé, Orbitolites lehmannii Moorkens	Cuisian-Lutetian
Amerillo	AMM	Red and white thin-bedded planktonic foraminifers-bearing mudstone-wackestone and marly limestone	0.4	Onlap and infilling	Thin-bedded stratification	Deep-water	Planktonic foraminifers (Globotruncana ex gr. lapparenti, Globotruncana ventricosa (White))	Late Cretaceous
Pellegrino	LEG	Darkish-grey caprinid and radiolitid floatstone (Pl. 5a, b in supplementary materials) alternated with bioclastic packstone (Pl. 5, g, h) with benthiic foraminifers, hydrozoans, algae, coral fragments, conglомерates with rounded rudistid fragments (Pl. 5c), cm-thick oolitic and bioclastic grainstone. Rare dm-thick fenestral packstone and blackish laminated mudstone (strictly circulation lagoon)	100–200	Downlap	Shallowing upward cycles	Open shelf with isolated reefs that supply the slope	Caprinids (Caprina schiosensis, Caprinula sp., Ichtyosarcolites rotundus, caprotinids (Polyconites verneuilli), large radiolitids (Sauvagesia sp., Durania sp., Radiolites sauvagesi, R. nebrodensis), benthiic foraminifera (Orbitolina (Conicorbitolina) conica D’Archiac, Cuneolina cf. pavania, C. cf. conica, C. cf. cretacea, Trocholina elongata, Actinoporella podolica, Conoscipirilla basilensis, Dicyolina sp., Comunpia cf. cretacea)	Cenomanian
Costa	mz	Brown darkish pelites with rare mm-thick yellowish clays and upwards mm-thick varves-type rhythmic alternations of red-yellowish marls and greenshish-to-darkish laminated clays and at the top redish-vaccum limestones of karst origin	0.5–2.8	Erosional	Pond filling-type	Lacustrine	Caprinids (Offneria sp., Precaprina sp.), algae (Cay euxia sp., Triploporella cf. decastri Baratollo), benthiic foraminifers (Cuneolina ex gr. camposauri-laurentii Sartoni and Crescenti, Palorbitolina lenticularis Blumenbach, P. praecursor (Montanari), Recticostococcus giganteus Schroeder), Boscina irregularis Radioici, Lithocodium sp.), corals	Aptian p.p.-Albian p.p.
Mazzone clays		Brown darkish pelites with rare mm-thick yellowish clays and upwards mm-thick varves-type rhythmic alternations of red-yellowish marls and greenshish-to-darkish laminated clays and at the top redish-vaccum limestones of karst origin	0.5–2.8	Erosional	Pond filling-type	Lacustrine	Caprinids (Offneria sp., Precaprina sp.), algae (Cay euxia sp., Triploporella cf. decastri Baratollo), benthiic foraminifers (Cuneolina ex gr. camposauri-laurentii Sartoni and Crescenti, Palorbitolina lenticularis Blumenbach, P. praecursor (Montanari), Recticostococcus giganteus Schroeder), Boscina irregularis Radioici, Lithocodium sp.), corals	Aptian p.p.-Albian p.p.
Capo Gallo limestone	AFU	Dark-grey wackestone-packstone with requenids (Pl. 4a, b in supplementary materials), large Nerinea sp., algae, benthiic foraminifers and microproblematics (Pl. 4d, f, subtidal lithofacies) are alternated to dm-thick fenestral wackestone-packstone with peloids and algae fragments (intertidal lithofacies), and to dm-thick darkish oolitic packstone-grainstone, with abraded and broken ooid grains (Pl. 4c, g, sand bar lithofacies)	30–150	Onlap	Deepening upward facies sequences	Open shelf bordered by sand bar	Caprinids (Offneria sp., Precaprina sp.), algae (Cay euxia sp., Triploporella cf. decastri Baratollo), benthiic foraminifers (Cuneolina ex gr. camposauri-laurentii Sartoni and Crescenti, Palorbitolina lenticularis Blumenbach, P. praecursor (Montanari), Recticostococcus giganteus Schroeder), Boscina irregularis Radioici, Lithocodium sp.), corals	Late Barremian-Early Aptian
Pizzo Manollo limestone	CTI	Thick-bedded wackestone (rarely packstone) with Nerinea sp., Cay euxia sp. (Pl. 3a, c in supplementary materials), benthiic forams and large oncoid grains, alternated with dm-thick fenestral packstone with peloids and bioclasts and oolitic packstone-grainstone with radial-fibrous ooid grains (Pl. 3b, d)	70–300	Onlap	Shallowing upward cycles	Tidal flat, lagoon, oolitic sand bar	Algae (Cypeina jurassica Favre & Richard, Campbeixellia striata Carozzi, Salpingoporella annulata Carozzi, Actinoporella podolica Athl), benthiic forams (Pseudocyclamina sp., Verrosella compressa (Sartoni and Crescenti), V. laurentii (Sartoni and Crescenti), Campanellula capuensis De Castro, Debarinia sp., Belorussiella sp.), microproblematics (Bacina irregularis Radiocci)	Upper Tithonian-Valanginian
Gastropods limestone	gs	Grey-reddish bioclastic wackestone-packstone with small gastropods, benthiic foraminifers and algae (Pl. 2 in supplementary materials) in two beds with tabular geometry (12 cm-thick and 49 cm-thick, respectively)	<1	Onlap with RMF and transitional with bx	Tabular	Lagoon	Algae (Salpingoporella gradi Radioici, S. annulata Carozzi), benthiic forams (Montalewia salvensis Charollais, Bronnimann & Zaninetti, Parurguina caelensis Cuvillier, Fouy & Pignatti-Morano, Kumbia palatiniensis Henson)	Kimmeridgian
Bauxites of Spinasanta	bx	Brick-red and yellowish bauxite clays with pisoids fragments, oolite and intraclasts and blackish speleothems	0.25–0.80	Erosional with RMF and SIA	Infilling neptunian dykes	Continental	Kumbia palatiniensis Henson)	Azoic

Note: RMF = rapid marine flooding. BX = Brick-red and yellowish bauxite clays with pisoids fragments, oolite and intraclasts and blackish speleothems.
40 m thick, at S. Margherita and Pizzo Vuletta (see geological cross-sections in the Geological Sheet) and, 70–150 m thick, at Tiniere and Piano dello Stinco, where the lower boundary, marked by onlap terminations, is observable (Stop 9, yellow itinerary).

4.1.7. Costa Mazzone clays (mz, Aptian p.p.-Albian p.p.)
These continental clays (Table 1), covering with pond filling-lens geometry the top of the AFU, outcrop in the northern side of Piano dello Stinco (Figure 4 and Stop 7, yellow itinerary). For these deposits detailed analyses have pointed out a lacustrine to strictly lagoon depositional environment formed during a period of erosion of the carbonate platform strata caused by tectonic uplift (Basilone, 2015).

4.1.8. Pellegrino formation (LEG, Cenomanian)
The rudistid limestone of the Pellegrino fm outcrop, 100–200 m thick, at the Pizzo della Sella peak (Stop 3 of red itinerary) and Piano dello Stinco (Stop 5, yellow itinerary), where the main lithostratigraphic characteristics and paleontological content are observable (Table 1, Plate 5 in supplementary materials). A major downlap surface with AFU and mz, associated with submarine erosion and hiatus, characterizes the lower boundary of the unit (Basilone, 2009, 2015) as observable at Piano dello Stinco (Figure 4 and Stop 7, yellow itinerary).

4.1.9. Amerillo formation (AMM, Campanian-Maastrichtian)
The red and white thin-bedded pelagites (Table 1) outcrop, few dm-thick, at Piano dello Stinco, where they onlap the LEG and fill a dense network of neptunian dykes crossing the topmost beds of the Cenomanian rudistid limestone (Stop 8, yellow itinerary).

4.1.10. Valdesi formation (VSI, Cuisian-Lutezian)
The ‘nummulitid limestone’ of the Valdesi fm (Table 1 and Plate 6 in supplementary materials) outcrop, 20–25 m thick, at Piano dello Stinco (Stop 8, yellow itinerary), where the lower boundary is marked by downlap relationships (Figure 5) accompanied by submarine erosion, evidencing a large hiatus (depositional and erosional).

4.1.11. Numidian flysch (FYN, Upper Oligocene-Lower Miocene)
Brown manganesiferous clays, with arenaceous and calcareous planktonic foraminifers (Globorotalia opima Bolli) and intercalations of quartz-sandstones, outcrop in the Sferracavallo area (western side of the Geological Map), where they unconformably overlie the Mesozoic carbonates of the Cozzo di Lupo tectonic unit (Figure 1(b)).
Table 2. Main characteristics of the described Quaternary UBSUs outcropping in the Monte Gallo area.

UBSU Labels	Texture and lithology	thick m	Lower boundary	Depositional environment	Fossil content	Age OIS	
Capo Plaia synthem	Colluvial deposits, consisting of heterometric clasts (rewelded scree) welded in a clayey matrix (rewelded soils) with stone line; scree and debris flow; littoral deposits; chemical carbonates (travertines and speleothems)	10	Erosional or non-depositional unconformity with RFR or older deposits (upper boundary: present-day topographic surface)	Continental to coastal	Continental or coastal organism	Holocene	1
Raffo Rosso synthem	Cross-laminated aeolian sandstones and sands (few metres thick) with quartz or carbonate grains and stratified slope deposits composed of cemented coarse-to-fine inverse graded clast-supported breccias, involving very angular to sub-rounded carbonate clasts, with an average diameter of 0.5–20 cm (50 cm maximum). They, arranged in several well-sorted levels, 0.5 to 2 m thick, are cyclically alternated with red paleosols, frequently reworked	20	Non-depositional surface or subaerial erosional unconformity with SIT or older deposits	Talus slope (last glacial climatic event)	Continental gastropods	Upper Pleistocene p.p.	2–4
Baracello synthem	Red to yellowish coastal bioclastic calcarenites alternated with parallel and cross-stratified sands and bio-conglomerates consisting of heterometric and polygenic elements with ‘Senegalian’ faunal assemblage. They are laterally passing to laminated red silty clay (rewelded soils) and calcareous breccias intercalation (stone-line structures), welded by red sand matrix (colluvial deposits, 1–5 m-thick)	1–8	Marine erosional surface or continental erosional unconformity with BLT or older deposits	Continental to coastal (warm climatic event)	P. latus (Gmelin), Cantharus viverratus Kiener, Mitra fusca Swainson, Conus testudinarius Martini, Hyotissa hyotis Linnaeus, Ostrea edulis, Glycimeris glycimeris. G. pilosus, Spondylus gaederopus, Patella feruginea Gmelin, Natica sp., Clanculus candelari, C. vulgatum, vermetids, echinoids, algae and corals. The colluvial deposits are rich in continental gastropods and rests of vertebrates of the ‘Elephas mnaidriensis’ faunal complex	Pleistocene p.p.	5
Polisano Synthem	Cross-stratified and laminated quartz and carbonate aeolian low classed fine sands and sandstones, red or yellow in colour. Rare angular carbonate clasts and blocks, related to local rock or debris falls, are interlayered	1–3	Subaerial erosional or non-depositional surface with SNP₁ or older deposits	Aeolian dunes (glacial climatic event)	Continental gastropods	Uppermost Pleistocene	6
Tommaso Natale subsynthem	Litho- and bioclastic calcarenites with hummocky cross-stratification and sands with cross and parallel laminations, paleocurrent traces and bioturbations, locally algal boundstone	1–5	Ravinement surface with MRS or older deposits	Coastal (warm climatic event)	Bivalves (Cardula revoluta, Chlamys multistriatata Ansell, Ostrea edulis, Pecten jacobaeus, Lineo, Spondylus spp., Glycimeris spp.), gastropods (Patella caerulea, Cymatium ficoide, Cantharus viverratus), corals (Cirrhopathes caespitosa, Astroides calycularis), brachiopods (Megalithis detruncata), cirripeds, echinoderms (Arbacia lixula), fish fragments	Middle Pleistocene p.p.	7
Marsala synthem	Yellowish poorly cemented fossiliferous carbonate sands with a minor content of clays rich in bioturbations (i.e. Glossifungites) alternated with yellow bio- and lithoclastic well-cemented oblique, parallel and cross-laminated calcarenites and calcirudites rich in mollusc fragments; minor content in quartz grains and intercalation of conglomerates, 1–2 m-thick, with carbonate and siliceous elements, deriving from the dismantling of the Meso-Cenozoic substrate	0.5–5	Ravinement surface cutting the tectonically deformed Meso-Cenozoic carbonate substrate (angular unconformity)	Foreshore to shoreface	Bivalves (Glycimeris spp., P. jacobaeus, C. multistriatata, C. septemradiata (Müller), Arctica islandica Lineo, Ostrea edulis, Volga rugosa, Noripes latteus, Centurium creanatus, Rissoa cimea, Bittium reticulatum, Clanculus jusselii), gastropods (Patella spp.), corals, bryozoans, sponges, calcareous algae, vermetids, scafoiads, echinoderms, benthic foraminifers (Hyalinea balthica Merla & Ercoll), ostracods (Aurila sp., Denodocitere prava, Cimburria latissima), nanofossils (small Gephyrocapsa biozone), rare planktonic foraminifers (Globorotalia truncatulinoides excelsa)	Lower Pleistocene (Emilian-Sicilian) (1.5–0.8 My)	8

OIS numerical datings: Mauz et al. (1997) and Hearty et al. (1986).
4.2. Quaternary UBSUs

Lower and upper boundaries of Quaternary deposits consist of regionally extended unconformities (locally marked by paleosoils), such as ravinement surfaces, subaerial surfaces due to water erosion and non-depositional surfaces. Significant environmental changes during the Quaternary, due to tectonics (block-faulting or uplifting) and to climate fluctuations, appear to originate in both unconformity surfaces and deposits (Di Maggio et al., 2009).

Paleontological data, numerical datings (Hearty et al., 1986; Mauz et al., 1997) and stratigraphic relationships constrained the age of the synthems (Table 2, Figures 5, 6/Geological Sheet).

La Fossa, located in the eastern side of the Monte Gallo complex (Stop 3, blue itinerary), is an interesting site to observe the stratigraphic relationships and the lithological characteristics (Table 2; Plate 7 in supplementary materials) of most of the described synthems (Figure 6).

4.2.1. Marsala synthem (MRS, Emilian-Sicilian)

The bioclastic calcarenites (Table 2, Plate 7a, b) of this synthem outcrop around the Monte Gallo carbonate massif. In the coastal sectors they display seaward dipping planar stratification. Lower boundary is a ravinement surface with the tectonically deformed Mesozoic-Cenozoic substrate (Figure 5/Geological Sheet).

4.2.2. Tommaso Natale subsynthem (SNP2, Middle Pleistocene p.p., OIS 7)

This unit is included within the regional scale Partinico synthem (SNP, Di Maggio et al., 2009). A coastal terrace represents the geomorphic expression of the unit (Figure 6). The lower boundary is a ravinement surface carved on MRS or older deposits (Figure 5/Geological Sheet and Stop 3, blue itinerary).

4.2.3. Polisano synthem (BLT, uppermost Middle Pleistocene, OIS 6)

The aeolian deposits of this synthem outcrop at the foot of the eastern and southern side of Monte Gallo (see Geological Map and Stop 1 both of yellow and green itineraries, Figure 4/Geological Sheet). These lithologies (Table 2, Plate 7c in supplementary materials) have been quarried, extracting materials for ornamental use, and highlighting interesting sedimentary structures (dunes and ripple marks, Stop 1, yellow itinerary). The lower boundary, locally pedogenized, is a subaerial erosional or a non-depositional surface with the SNP2 (Figure 5/Geological Sheet) or Mesozoic carbonate substrate.

4.2.4. Barcarello synthem (SIT, Upper Pleistocene p.p., OIS 5)

It consists of marine deposits (i.e. ‘Strombus limestone’, Auct.) laterally passing to welded colluvial deposits (Table 2, Plate 7d, e in supplementary materials). They outcrop with discontinuity along the coastal sector of the study area, at an altitude up to about 25 m a.s.l. The lower boundary is a marine abrasion surface laterally extending to a continental erosion surface and cutting the BLT deposits or older rocks (Figure 5/Geological Sheet). The main lithological and paleontological characteristics of the synthem are well exposed at Punta di Barcarello and Sferracavallo historical sites (Figure 7, Stops 1 and 2, black itinerary).

4.2.5. Raffo Rosso synthem (RFR, Upper Pleistocene p.p., OISs 4–2)

The synthem consists of aeolian deposits (Figure 7), few metres thick, occurring along the coastal plain, and stratified slope deposits, outcropping at the foot of the steep slopes (Table 2, Plate 7f in supplementary materials). The lower boundary is a subaerial erosion or non-depositional surface, frequently marked by paleosoils and/or caliche crusts, with the SIT or older deposits (Figure 7 and Figure 5/Geological Sheet). Stratigraphic features, geometric relationships and lithological characteristics are observable at the Stop 3 of black itinerary (Figure 4/Geological Sheet), where the type section of the unit is here proposed (Figure 8).
4.2.6. Capo Plaia Synthem (AFL, Holocene, OIS 1)

In this synthem are comprised slope scree(s) (dt), litoral (li), alluvial/colluvial deposits (co) and chemical carbonates, as karst pisoids, travertine and speleothem (Table 2, Plate 7g, h in supplementary materials). The lower boundary is a variously originated unconformity surface with the RFR deposits or older rocks (Figure 5/Geological Sheet). The upper boundary is the present-day topographic surface, frequently marked by soils.

5. Geomorphological outlines

Monte Gallo consists of both two peaks with sharp ridges (Pizzo Vuturo, 509 m a.s.l.; Pizzo della Sella, 561 m a.s.l.) and a flat top (Piano dello Stinco, 541 m a.s.l.), separated by cut-off dry valleys (Figure 3/Geological Sheet).

In the flat top of Piano dello Stinco, a hanging relict of an old and gentle erosional land surface occurs. It is a patch of a planation surface, which can be traced back to the cycles of quasi-planation affecting Sicily and Apennines during the final phases of construction of the chain (Amato & Cinque, 1999).

Sharp ridges and flat top are bounded by broad steep slopes hundreds of metres high, which are abandoned coastal cliffs. Only in the northern slope (Malpasso area) a stretch of cliff is still active. These cliffs result from original fault scarps produced by important extensional block-faulting, occurring during the Calabrian (Hugonie, 1982) and responsible for the fragmentation and ‘isolation’ of the structural high of Monte Gallo, and the sinking and drowning of the structural low of Conca d’Oro (Figure 5/Geological Sheet). The cliffs are currently degraded and affected by weathering, landslides and talus accumulation at their foot.

Widespread karren and caves, some hanging relics of abandoned fluviokarst valleys and open dolines affect the top areas and the slopes. Fluviokarst valleys active only during the heavy rainfalls down-cut the southern and southeastern slopes of Monte Gallo. Alluvial fans are situated at the mouth of the valleys.

Coastal terraces linked to marine high-stands phases of Middle-Upper Pleistocene age (Mauz et al., 1997) are present along the Conca d’Oro. The Tyrrhenian (OIS 5e) terrace surfaces are developed up to about 15–25 m a.s.l. Post-Tyrrhenian uplifting rates reach values between about 0.08 and 0.15 m/kyr (Catalano et al., 2013a).

6. Tectonics

The Monte Gallo relief is a main antiform structure mostly bordered by several different-trending normal faults (Figure 4/Geological Sheet and geological cross-sections):

1. Jurassic NW–SE-oriented dip-slip faults (30–70° dipping to SW), showed at Spinasanta quarry (Figure 3), where the original paleokarst cavities and open fractures, just at the top of the RMF, appear reactivated by younger tectonics;
NNE–SSW-oriented faults (70° dipping in average), whose kinematic analysis reveal reverse components and left strike-slip movements, have been recognized along the western side of the massif and at Pizzo della Sella and Pizzo Impiso southern side;

(3) E–W-, NE–SW- and NNE–SSW-oriented dip-slip faults with hundreds of metres of downthrown bound the whole carbonate massif (Figure 4/Geological Sheet). This tectonic acted during the Early Pleistocene, creating the accommodation spaces for the sedimentation of the Marsala synthem;

(4) younger faults, similarly oriented to the previous ones, cut the Middle Pleistocene aeolian deposits of the BLT synthem (Figure 9).

7. Conclusions

Detailed geological field works, stratigraphic, paleontological, sedimentological and facies analyses, accomplished by structural and geomorphological surveys, have permitted to define the geological map of the Monte Gallo area.

 Lithostratigraphic criteria and phys stratigraphy methods permitted to distinguish formations and UBSUs. The structural analysis confirmed the setting of major tectonic units and evidences different tectonic phases.

Thus, the collected data show that the studied area has particular geological attributes, such as to give significant importance from the points of view of science and landscape.

The illustrated main geological features, which can be easily recognized and followed on the territory using the Geological Sheet of Monte Gallo, include (i) stratigraphic and sedimentological aspects of the outcropping shallow-water carbonates and continental clays; (ii) the spectacularly exposition of the several Mesozoic–Paleogene unconformities and (iii) Quaternary unconformity surfaces and deposits (UBSUs). These features concur with the proposal of the institution of a geosite in the Monte Gallo area.

So the Geological Sheet is an enhancement tool of the geological heritage of Monte Gallo; it and its explanatory notes may be used as a field trip guide for researchers and geotourists.

Acknowledgement

The authors thank Prof. L. Montanari, who has helped with the Mesozoic biostratigraphic data. We are very grateful to Luigi Spalluto, Maurizio Marino and Chris Orton for their constructive comments and suggestions.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This project was financed by the University of Palermo (FFR 2012/2013, resp. C. Di Maggio).

ORCID

Luca Basilone http://orcid.org/0000-0002-2719-2984

References

Abate, B., Catalano, R., & Renda, P. (1978). Schema geologico dei Monti di Palermo (Sicilia). Società Geologica Italiana, 97, 807–819. Retrieved from http://www.soggeo.it/362/pubblicazioni.html

Amato, A., & Cinque, A. (1999). The erosional landsurfaces of the Campano–Lucano Appennines (S. Italy): Genesis, evolution, and tectonic implications. Tectonophysics, 315, 251–267.

Basilone, L. (2009). Sequence stratigraphy of a mesozoic carbonate platform-to-basin system in western Sicily. CE/G, 1(3), 251–273.

Basilone, L. (2012). Lithostratigrafia della Sicilia [Lithostratigraphy of Sicily]. Palermo: ARTA-Regione Siciliana, Arti Grafiche Palermitane s.r.l., pp. 1–160. ISBN 978–88–97559–09–2. Retrieved from http://www.soggeo.it/365/1557/news/lithostratigrafia_della_sicilia.html

Basilone, L. (2015). Paleoclimate and extensional tectonics of Lower Cretaceous short-lived lacustrine environments along the Panormide Southern Tethyan Carbonate Platform (NW Sicily): New sedimentological, mineralogical and geochemical constraints, Basin Research.

Basilone, L., & Lena, G. (2009). The lower Cretaceous Pizzo Sella formation at Monte Gallo (Palermo Mts., NW Sicily). Epitome, FIST, Geoitalia, Rimini.

Bonardi, G., de Capoa, P., Di Staso, A., Estevez, A., Martin-Martin, M., Martin-Rojas, L. … Tent-Mancús, J. E. (2003). Oligocene to Early Miocene depositional and structural evolution of the Calabria-Peloritani Arc southern subtrarrane (Italy) and geodynamic correlations with the Spain Betics and Morocco Rif. Geodinamica Acta, 16, 149–169. Retrieved from http://www.tandfonline.com/loi/tgda20#.VbtWnSQ2Cbk

Camoin, G. (1983). Plate-formes carbonates et recifs a Rudistes du Cretace de Sicile (Unpublished doctoral dissertation), Université de Provence, Marseille.

Catalano, R., & D’Argenio, B. (1978). An essay of palinspastic restoration across Western Sicily. Geologica Romana, 17, 145–159.

Catalano, R., Basiline, L., Di Maggio, C., Gasparo Morticelli, M., Agate, M., & Avellone, G. (2013a). Note illustrative della Carta Geologica d’Italia alla scala 1:50.000 del foglio 594–585 “Partimico-Mondello”, con carta geologica 1:50.000 allegata, pp. 1–271. Progetto Carg, ISPRA-Regione Siciliana.

Catalano, R., Valenti, V., Accaino, F., Sulli, A., Tinivella, U., Gasparo Morticelli, M., … Giustiniani, M. (2013b). Sicily’s fold/thrust belt and slab roll-back: The S.I.RI. PRO seismic crustal transect. Journal of Geological Society London, 170, 451–464.

Chiocchini, M., Farinacci, A., Mancinelli, A., Molinari, V., & Potetti, M. (1994). Biostratigrafia a foraminiferi, dasycladales e calpionelle delle successioni carbonatiche mesozoiche dell’Appennino centrale (Italia) [Foraminifers, dasyclades and calpionellids biostratigraphy of the Mesozoic carbonate successions of Central Appennine (Italy)]. In: Mancinelli A. (Ed.), Biostratigrafia dell’Italia centrale.
Di Maggio, C. (2000). Morphostructural aspects of the cen-