Takotsubo cardiomyopathy associated with serotonin syndrome in a patient with stroke
A case report
Sung Ho Jang, MDa, Jong-Ho Nam, MDb, Jun Lee, MDc, Min Cheol Chang, MDd,*

Abstract
Rationale: Takotsubo cardiomyopathy (TC) is characterized by transient left ventricular dysfunction. We describe a patient with stroke who presented with TC caused by serotonin syndrome (SS) following the administration of serotonergic and dopaminergic agents.

Patient concerns: A 55-year-old man with stroke was administered venlafaxine, tianeptine, ropinirole, carbidopa/levodopa, bromocriptine, and methylphenidate during rehabilitation. The patient presented with clinical features of SS (mental confusion, agitation, hyperhidrosis, chills, rigidity, and tachycardia), which persisted over 24 hours. The day after his SS symptoms disappeared, the patient’s blood pressure decreased, and he developed tachycardia.

Diagnoses: Echocardiography revealed an extensively akinetic apical segment and a severely hypokinetic midventricular segment of the left ventricle with basal hyperkinesia. The ejection fraction was reduced to 38%, and he was diagnosed with TC by the cardiologist.

Interventions: He was administered oxygen at 8 to 10L/minutes via a Venturi mask, and norepinephrine bitartrate was administered intravenously. Hydration was maintained with normal saline infusion.

Outcomes: Following appropriate management of TC, the patient was hemodynamically stable with significant recovery of his left ventricular wall motion.

Lessons: Prognosis of TC is usually favorable; however, it could be fatal in some cases. Clinicians should be aware of the potential development of TC in patients with stroke presenting with SS following the administration of serotonergic and dopaminergic agents.

Abbreviations: ICH = intracranial hemorrhage, MRC = Medical Research Council, SS = serotonin syndrome, TC = Takotsubo cardiomyopathy.

Keywords: dopaminergic agent, serotonergic agent, serotonin syndrome, stroke, takotsubo cardiomyopathy

1. Introduction
Takotsubo cardiomyopathy (TC), also known as stress-induced cardiomyopathy, is characterized by transient left ventricular dysfunction induced by emotional or physical stress without coronary disease.[1] Although the pathomechanism for this condition remains unclear, myocardial stunning caused by catecholamine excess is the most common theory that explains its occurrence.[2,3] Stressful events and factors contributing to physical stress including pheochromocytoma, subarachnoid hemorrhage, and the exogenous administration of norepinephrine or medications causing elevated plasma norepinephrine levels are known triggers for TC.[4]

Serotonin syndrome (SS), a potentially life-threatening condition increases serotonergic activity in the central nervous system.[5] Patients with SS present with a combination of various symptoms including mental status changes, autonomic instability, and neuromuscular hyperactivity.[5] Antidepressants (serotonergic), dopaminergic agents, opioids, and antiemetics are known to induce SS;[6] SS can lead to a hyperadrenergic state, and previous studies have reported SS-induced TC.[7,8]

Serotonergic and dopaminergic agents are known to effectively manage depressed mood and improve cognitive, executive, language, and motor function in patients with stroke; therefore, these agents are commonly prescribed for patients with stroke during rehabilitation.[9,10] However, the use of these agents in patients with stroke may precipitate SS.[11] We report the case of a patient with stroke who presented with SS-induced TC after the administration of serotonergic and dopaminergic agents during rehabilitation.

2. Case report
A 55-year-old man underwent conservative treatment at the Neurosurgery Department of a University Hospital for a spontaneous intracranial hemorrhage (ICH) involving the right
The patient was hydrated with normal saline infusion. The administration of monoamine oxidase inhibitors (isocarboxazid) and lithium precipitated SS in their patient. In 2012, Sasaki et al reported a case of SS-induced TC in a patient with stroke. Among the various hypotheses that explain the pathophysiological mechanism of TC, catecholamine excess is the most convincing.12,23 The human myocardium contains both, B1- and B2-adrenoreceptors,14 and B2-adrenoreceptors are more sensitive to changes in epinephrine levels.3,14 Paur et al3 reported that the gradient of B2-adrenoreceptors increases from the basal to the apical segment of the heart, which explains the typical pattern of myocardial dysfunction observed in TC (transient akinesia or hypokinesia of the apical and midventricular segments with basal hyperkinesia).14 Simultaneous multivessel coronary spasm of an epicardial artery could be another possible mechanism for TC.4 Echocardiographic findings in our patient were consistent with the typical pattern of TC-associated myocardial dysfunction. Additionally, the cardiac dysfunction was transient, and the patient’s ejection fraction recovered from 38% to 53% 10 days after the onset of TC. Therefore, we could confirm that our patient had developed TC.

We diagnosed our patient with SS based on the Radomski criteria,12 which require the presence of at least 4 major symptoms or 3 major symptoms with 2 minor symptoms (major symptoms: confusion, elevated mood, coma or semi-coma, fever, hyperhidrosis, myoclonus, tremors, chills, rigidity, and hyperreflexia; minor symptoms: agitation, insomnia, tachycardia, tachypnea, diarrhea, low or high blood pressure, impaired coordination, mydriasis, and akathisia). Our patient’s symptoms fulfilled 4 major and 2 minor symptoms of the Radomski criteria; thus, we could confirm that our patient showed SS-related symptoms. The patient was administered several serotonergic and dopaminergic agents; therefore, we could not accurately determine which specific drug induced SS. All the serotonergic and dopaminergic agents we used (venlafaxine, tianeptine sodium, ropinirole, carbidopa/levodopa, bromocriptine mesylate, and methylphenidate) can cause hyperactivation of the serotonergic system and precipitate SS.11 SS causes a hyperadrenergic state leading to physiological stress7,8 and consequent stress-induced cardiomyopathy. Additionally, the elevated serotonin level following the administration of serotonergic agents can directly overstimulate serotonin receptors in the heart, which might have contributed, at least in part, to TC observed in our patient.4

To date, 2 studies have reported SS-induced TC.7,8 In 2011, Mehta et al11 reported a case of SS-induced TC in a patient with major depressive disorder. They reported that the co-administration of monoamine oxidase inhibitors (isocarboxazid) and lithium precipitated SS in their patient. In 2012, Sasaki et al8 reported a case of a patient with SS-induced TC in whom SS occurred following the administration of tetracyclic antidepressant (maprotiline) for the management of major depressive disorder. Therefore, to our knowledge, this is the first report describing SS-induced TC in a patient with stroke.

Notably, serotonergic and dopaminergic agents are widely prescribed during the rehabilitation of patients with stroke to control a depressed mood and to enhance rehabilitation outcomes.10,11 Usually, the prognosis of TC is favorable when managed appropriately; however, cardiogenic shock is reported to occur in 4.2% of patients with TC, and the mortality rate is 1.1%.15 Therefore, clinicians should be aware of the possibility of SS-induced TC in patients with stroke following the administration of serotonergic and dopaminergic agents.

Author contributions

Conceptualization: Sung Ho Jang, Min Cheol Chang.
Data curation: Jong-Ho Nam, Min Cheol Chang.
Investigation: Sung Ho Jang.
Methodology: Jong-Ho Nam, Min Cheol Chang.
Writing – original draft: Min Cheol Chang.
Writing – review & editing: Min Cheol Chang.

References

[1] Sharkey SW, Windenburg DC, Lesser JR, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol 2010;55:333–41.
[2] Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med 2005;352:539–48.
[3] Paur H, Wright PT, Sikkil MB, et al. High levels of circulating epinephrine trigger apical cardiodepression in a(2)-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 2012;126:697–706.
[4] Vasudev R, Rampal U, Patel H, et al. Selective serotonin-norepinephrine reuptake inhibitors-induced takotsubo cardiomyopathy. N Am J Med Sci 2016;8:312–5.
[5] Mackay FJ, Dunn NR. Mann RD: antidepressants and the serotonin syndrome in general practice. Br J Gen Pract 1999;49:871–4.
[6] Ables AZ, Nagubilli R. Prevention, recognition, and management of serotonin syndrome. Am Fam Physician 2010;81:1139–42.
[7] Mehta NK, Aurigemma G, Rafeq Z, et al. Reverse takotsubo cardiomyopathy: after an episode of serotonin syndrome. Tex Heart Inst J 2011;38:568–72.
[8] Sasaki H, Yumoto K, Nanao T, et al. Cardiogenic shock due to takotsubo cardiomyopathy associated with serotonin syndrome. JC cases 2013;7:e1–3.
[9] Beristain X, Golombievski E. Phamacotherapy to enhance cognitive and motor recovery following stroke. Drugs Aging 2015;32:765–72.
[10] Cramer SC. Drugs to enhance motor recovery after stroke. Stoke 2015;46:2998–3005.
[11] Jang SH, Kwon YM, Chang MC. Serotonin syndrome in stroke patients. J Rehabil Med 2015;47:282–5.
[12] Radomski JW, Dursun SM, Revelly MA, et al. An exploratory approach to the serotonin syndrome; an update of clinical phenomenology and revised diagnostic criteria. Med Hypotheses 2000;55:218–24.
[13] Schultz T, Shao Y, Redfors B, et al. Stress-induced cardiomyopathy in Sweden: evidence for different ethnic predisposition and altered cardiovascular status. Cardiology 2012;122:180–6.
[14] Lyon AR, Rees PS, Prasad S, et al. Stress (takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Pract Cardiovasc Med 2008;5:22–9.
[15] Gianni M, Dentali F, Grandi AM, et al. Apical ballooning syndrome or takotsubo cardiomyopathy: a systematic review. Eur Heart J 2006;27:1523–9.