TWO NEW DIFFERENT KINDS OF CONVEX DOMINATED FUNCTIONS AND INEQUALITIES VIA HERMITE-HADAMARD TYPE

M. EMIN ÖZDEMIR*, MEVLÜT TUNC, AND HAVVA KAVURMACI**

ABSTRACT. In this paper, we establish two new convex dominated function and then we obtain new Hadamard type inequalities related to this definitions.

1. INTRODUCTION

Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a convex function and let \(a, b \in I \), with \(a < b \). The following inequality
\[
 f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}
\]
is known in the literature as Hadamard’s inequality. Both inequalities hold in the reversed direction if \(f \) is concave.

In [1], Godunova and Levin introduced the following class of functions.

Definition 1. A function \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) is said to belong to the class of \(Q(I) \) if it is nonnegative and for all \(x, y \in I \) and \(\lambda \in (0, 1) \) satisfies the inequality;
\[
 f(\lambda x + (1-\lambda)y) \leq \frac{f(x)}{\lambda} + \frac{f(y)}{1-\lambda}
\]
They also noted that all nonnegative monotonic and nonnegative convex functions belong to this class and also proved the following motivating result:

If \(f \in Q(I) \) and \(x, y, z \in I \), then
\[
 f(x)(x-y)(x-z) + f(y)(y-x)(y-z) + f(z)(z-x)(z-y) \geq 0.
\]

In [2], Dragomir et al. defined the following new class of functions.

Definition 2. A function \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) is \(P \) function or that \(f \) belongs to the class of \(P(I) \), if it is nonnegative and for all \(x, y \in I \) and \(\lambda \in [0, 1] \) satisfies the following inequality;
\[
 f(\lambda x + (1-\lambda)y) \leq f(x) + f(y).
\]

In [2], Dragomir et al. proved the following inequalities of Hadamard type for class of \(Q(I) \) – functions and \(P \) – functions.
Theorem 1. Let $f \in Q(I)$, $a, b \in I$ with $a < b$ and $f \in L_1[a, b]$. Then the following inequalities hold:

$$f \left(\frac{a + b}{2}\right) \leq \frac{4}{b - a} \int_a^b f(x)dx$$

and

$$\frac{1}{b - a} \int_a^b p(x) f(x)dx \leq \frac{f(a) + f(b)}{2}$$

where $p(x) = \frac{(b-x)(x-a)}{(b-a)^2}$, $x \in [a, b]$.

Theorem 2. Let $f \in P(I)$, $a, b \in I$ with $a < b$ and $f \in L_1[a, b]$. Then the following inequality holds:

$$f \left(\frac{a + b}{2}\right) \leq 2 \int_a^b f(x)dx \leq 2[f(a) + f(b)].$$

In [3] and [4], the authors connect together some disparate threads through a Hermite-Hadamard motif. The first of these threads is the unifying concept of a g-convex-dominated function. In [5], Hwang et al. established some inequalities of Fejér type for g-convex-dominated functions. Finally, in [6] Kavurmacı et al. introduced several new different kinds of convex-dominated functions and then gave H-H type inequalities for this classes of functions.

The main purpose of this paper is to introduce two new convex-dominated function and then present new H-H type inequalities related to these definitions.

2. $(g, Q(I))$-Convex Dominated Functions

Definition 3. Let a nonnegative function $g : I \subseteq \mathbb{R} \to \mathbb{R}$ belong to the class of $Q(I)$. The real function $f : I \subseteq \mathbb{R} \to \mathbb{R}$ is called $(g, Q(I))$-convex dominated on I if the following condition is satisfied:

$$(2.1) \quad \left| \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda} - f(\lambda x + (1 - \lambda) y) \right| \leq \frac{g(x)}{\lambda} + \frac{g(y)}{1 - \lambda} - g(\lambda x + (1 - \lambda) y)$$

for all $x, y \in I$ and $\lambda \in (0, 1)$.

The next simple characterisation of $(g, Q(I))$-convex dominated functions holds.

Lemma 1. Let a nonnegative function $g : I \subseteq \mathbb{R} \to \mathbb{R}$ belong to the class of $Q(I)$ and $f : I \subseteq \mathbb{R} \to \mathbb{R}$ be a real function. The following statements are equivalent:

1. f is $(g, Q(I))$-convex dominated on I.
2. The mappings $g - f$ and $g + f$ are $(g, Q(I))$-convex on I.
3. There exist two $(g, Q(I))$-convex mappings l, k defined on I such that

$$f = \frac{1}{2} (l - k) \quad \text{and} \quad g = \frac{1}{2} (l + k).$$
Theorem 3. \[Q \in \{a, b\}
Theorem 3. By Definition 1 with \(\lambda = \frac{1}{2}\), we have that

\[
g (\lambda x + (1 - \lambda) y) - g (x) \leq f(x) \cdot \frac{1}{\lambda} - f(y)
\]

\[
\leq \frac{f(x)}{\lambda} + \frac{f(y)}{1 - \lambda} - f (\lambda x + (1 - \lambda) y)
\]

for all \(x, y \in I\) and \(\lambda \in (0, 1)\). The two inequalities may be rearranged as

\[
(g + f) (\lambda x + (1 - \lambda) y) \leq \frac{(g + f)(x)}{\lambda} + \frac{(g + f)(y)}{1 - \lambda}
\]

and

\[
(g - f) (\lambda x + (1 - \lambda) y) \leq \frac{(g - f)(x)}{\lambda} + \frac{(g - f)(y)}{1 - \lambda}
\]

which are equivalent to the \((g, Q(I))\) -convexity of \(g + f\) and \(g - f\), respectively.

2\(\Leftrightarrow\)3 Let us define the mappings \(f, g\) as \(f = \frac{1}{2} (l - k)\) and \(g = \frac{1}{2} (l + k)\). Then if we sum and subtract \(f, g\), respectively, we have \(g + f = l\) and \(g - f = k\). By the condition 2 of Lemma 1, the mappings \(g - f\) and \(g + f\) are \((g, Q(I))\) -convex on \(I\), so \(l, k\) are \((g, Q(I))\) -convex mappings on \(I\) too.

Theorem 3. Let a nonnegative function \(g : I \subseteq \mathbb{R} \rightarrow \mathbb{R}\) belong to the class of \(Q(I)\) and the real function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}\) is \((g, Q(I))\) -convex dominated on \(I\). If \(a, b \in I\) with \(a < b\) and \(f, g \in L_1[a, b]\), then one has the inequalities:

\[
\left| \frac{4}{b - a} \int_a^b f(x) \, dx - f \left(\frac{a + b}{2} \right) \right| \leq \frac{4}{b - a} \int_a^b g(x) \, dx - g \left(\frac{a + b}{2} \right)
\]

and

\[
\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_a^b p(x) \, dx \right| \leq \frac{g(a) + g(b)}{2} - \frac{1}{b - a} \int_a^b p(x) g(x) \, dx
\]

for all \(x, y \in I\) and \(p(x)\) as in Theorem 1.

Proof. By Definition 1 with \(\lambda = \frac{1}{2}\), \(x = ta + (1-t)b\), \(y = (1-t)a + tb\) and \(t \in [0, 1]\), as the mapping \(f\) is \((g, Q(I))\) -convex dominated function, we have that

\[
\left| 2 \left[f (ta + (1-t)b) + f ((1-t)a + tb) \right] - f \left(\frac{a + b}{2} \right) \right|
\]

\[
\leq 2 \left[g (ta + (1-t)b) + g ((1-t)a + tb) \right] - g \left(\frac{a + b}{2} \right).
\]

Integrating the above inequality over \(t\) on \([0, 1]\), the first inequality is proved.

Since \(f\) is \((g, Q(I))\) -convex dominated using Definition 1 with \(x = a\), \(y = b\) and \(t \in [0, 1]\), we can write

\[
\left| (1-t) f(a) + tf(b) - t (1-t) f (ta + (1-t)b) \right|
\]

\[
\leq (1-t) g(a) + tg(b) - t (1-t) g (ta + (1-t)b)
\]

and

\[
\left| tf(a) + (1-t) f(b) - t (1-t) f ((1-t)a + tb) \right|
\]

\[
\leq tg(a) + (1-t) g(b) - t (1-t) g ((1-t)a + tb).
\]
Then, adding above inequalities we have
\[
[[f(a) + f(b)] - t (1 - t) [f(\lambda a + (1 - \lambda) b)] - f(\lambda x + (1 - \lambda) y)]
\leq [g(a) + g(b)] - t (1 - t) [g(\lambda a + (1 - \lambda) b)] - g(\lambda x + (1 - \lambda) y)
\]
Integrating the resulting inequality over \(t \) on \([0, 1]\), we get the second inequality. The proof is completed. \(\square \)

3. \((g, P(I))\)-convex dominated functions

Definition 4. Let a nonnegative function \(g : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) belong to the class of \(P(I) \). The real function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is called \((g, P(I))\)-convex dominated on \(I \) if the following condition is satisfied:

\[
(3.1) \quad T \leq [g(x) + g(y)] - g(\lambda x + (1 - \lambda) y)
\]
for all \(x, y \in I \) and \(\lambda \in [0, 1] \).

The next simple characterisation of \((g, P(I))\)-convex dominated functions holds.

Lemma 2. Let a nonnegative function \(g : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) belong to the class of \(P(I) \) and \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) be a real function. The following statements are equivalent:

1. \(f \) is \((g, P(I))\)-convex dominated on \(I \).
2. The mappings \(g - f \) and \(g + f \) are \((g, P(I))\)-convex on \(I \).
3. There exist two \((g, P(I))\)-convex mappings \(l, k \) defined on \(I \) such that

\[
f = \frac{1}{2} (l - k) \quad \text{and} \quad g = \frac{1}{2} (l + k)
\]

Proof. \(1 \Leftrightarrow 2 \) The condition \((3.1)\) is equivalent to

\[
(g(\lambda x + (1 - \lambda) y) - g(x) + g(y))
\leq [f(x) + f(y)] - f(\lambda x + (1 - \lambda) y)
\leq [g(x) + g(y)] - g(\lambda x + (1 - \lambda) y)
\]
for all \(x, y \in I \) and \(\lambda \in [0, 1] \). The two inequalities may be rearranged as

\[
(g + f)(\lambda x + (1 - \lambda) y) \leq (g + f)(x) + (g + f)(y)
\]
and

\[
(g - f)(\lambda x + (1 - \lambda) y) \leq (g - f)(x) + (g - f)(y)
\]
which are equivalent to the \((g, P(I))\)-convexity of \(g + f \) and \(g - f \), respectively.

\(2 \Leftrightarrow 3 \) Let we define the mappings \(f, g \) as \(f = \frac{1}{2} (l - k) \) and \(g = \frac{1}{2} (l + k) \). Then if we sum and subtract \(f, g \) respectively, we have \(g + f = l \) and \(g - f = k \). By the condition 2 of Lemma 2, the mappings \(g - f \) and \(g + f \) are \((g, P(I))\)-convex on \(I \), so \(l, k \) are \((g, P(I))\)-convex mappings on \(I \) too. \(\square \)

Theorem 4. Let a nonnegative function \(g : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) belong to the class of \(P(I) \). The real function \(f : I \subseteq \mathbb{R} \rightarrow \mathbb{R} \) is \((g, P(I))\)-convex dominated on \(I \). If \(a, b \in I \) with \(a < b \) and \(f, g \in L_1[a, b] \), then one has the inequalities:

\[
\left| \frac{2}{b - a} \int_a^b f(x) \, dx - f\left(\frac{a + b}{2}\right) \right| \leq \frac{2}{b - a} \int_a^b g(x) \, dx - g\left(\frac{a + b}{2}\right)
\]
and
\[|f(a) + f(b)| - \frac{1}{b-a} \int_a^b f(x) \, dx \leq |g(a) + g(b)| - \frac{1}{b-a} \int_a^b g(x) \, dx \]

for all \(x, y \in I \).

Proof. By Definition 4 with \(\lambda = \frac{1}{2}, x = ta + (1-t)b, y = (1-t)a + tb \) and \(t \in [0,1] \), as the mapping \(f \) is \((g, P(I))\)−convex dominated function, we have
\[
|f(ta + (1-t)b) + f((1-t)a + tb)| - f\left(\frac{a+b}{2}\right) \leq |g(ta + (1-t)b) + g((1-t)a + tb)| - g\left(\frac{a+b}{2}\right).
\]

Integrating the above inequality over \(t \) on \([0,1]\), the first inequality is proved.

Since \(f \) is \((g, P(I))\)−convex dominated using Definition 4 with \(x = a, y = b \) and \(t \in [0,1] \), we can write
\[
||f(a) + f(b)| - f(ta + (1-t)b)|
\leq |g(a) + g(b)| - g(ta + (1-t)b).
\]

Integrating the above resulting inequality over \(t \) on \([0,1]\) we get the second inequality. The proof is completed. \(\square \)

REFERENCES

[1] E.K. Godunova and V.I. Levin, Neravenstva dija funkcii sirokogo klassa soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel Mat. i Mt. Fiz., Mezvuzov Sb. Nauc. Trudov. MPGI, Moscow, 1985, 138-142.

[2] S.S. Dragomir, J. Pečarić and L.E. Persson, Some inequalities of Hadamard Type, Soochow Journal of Mathematics, Vol.21, No:3, pp. 335-341, July 1995.

[3] S.S. Dragomir and N.M. Ionescu, On some inequalities for convex-dominated functions, Anal. Num. Theor. Approx., 19 (1990), 21-28. MR 936: 26014 ZBL No.733: 26010.

[4] S.S. Dragomir, C.E.M Pearce and J.E. Pečarić, Means, g−Convex Dominated & Hadamard-Type Inequalities, Tamsui Oxford Journal of Mathematical Sciences 18(2) 2002, 161-173.

[5] Shiow-Ru Hwang, Ming-In Ho and Chung-Shin Wang, Inequalities of Fejér Type for \(G \)-convex Dominated Functions, Tamsui Oxford Journal of Mathematical Sciences, 25 (1) (2009) 55-69.

[6] H. Kavurmaci, M.E. Özdemir and M.Z.Sarıkaya, New inequalities and theorems via different kinds of convex dominated functions, RGMIA Research Report Collection, 15(2012), Article 9, 11 pp.

▲Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
E-mail address: emos@atauni.edu.tr

Department of Mathematics, Faculty of Art and Sciences, Kilis 7 Aralik University, Kilis, 79000, Turkey
E-mail address: mevluttunc@kilis.edu.tr
E-mail address: hhkavurmaci@atauni.edu.tr