Nitrogen dioxide (NO₂) is a strong respiratory irritant gas originating from high-temperature combustion. Main outdoor sources of NO₂ include motor vehicles (particularly those equipped with diesel engines) and fossil-fuel power plants, whereas the most important indoor sources are gas heaters, stoves, and environmental tobacco smoke [Kraft et al. 2005; U.S. Environmental Protection Agency (EPA) 2008].

Large meta-analyses of studies on the short-term health effects of NO₂ have been carried out in Europe (Samoli et al. 2006; Touloumi et al. 1997; Zmirou et al. 1998), the United States (Stieb et al. 2002, 2003), and Canada (Shin et al. 2008). The results indicate a positive association between daily increases of NO₂ and natural, cardiovascular, and respiratory mortality. The findings are consistent with an independent effect of NO₂, although the possibility remains that NO₂ acts as a surrogate for other unmeasured pollutants (Samoli et al. 2006). Several epidemiological studies have indicated that NO₂ may be a more relevant health-based exposure indicator than particulate matter (PM) (Kan and Chen 2003; Sarnat et al. 2001; Schwartz et al. 1994). Based on these observations, the U.S. EPA has recently proposed to strengthen the NO₂ air quality standard that protects public health (U.S. EPA 2008).

Despite the large body of evidence linking NO₂ with daily mortality, few studies have addressed the issue of susceptibility to NO₂ by performing analyses by age, sex, and other factors, including socioeconomic status (SES) (Laurent et al. 2007) and chronic morbidity. On the other hand, the evaluation of the role of susceptibility factors in modifying the effect of air pollutants is of increasing interest in order to better understand the mechanisms of NO₂ health effects and to provide public health warnings to specific population subgroups. Along these lines, we have already explored the role of individual characteristics (age, sex, socioeconomic factors, and clinical characteristics) as effect modifiers of the association of PM ≤ 10 μm in aerodynamic diameter (PM₁₀) and ozone (O₃) with natural mortality [Berti et al. 2009].

The specific objectives of the present article were to investigate the NO₂ mortality relationship for specific causes of death while exploring the latency of the effects and the potential confounding role by other pollutants and to evaluate sociodemographic features and chronic or acute medical conditions as potential effect modifiers. Preliminary results of this study were presented at the 2009 Conference of the International Society for Environmental Epidemiology (Chisolo et al. 2009).

Address correspondence to G. Berti, Arpa Piemonte, Environmental Epidemiological Unit, Via Sabaudia 164, 10095 Grugliasco (TO), Italy; Telephone: 39-011-40188357. Fax: 39-011-4037125. E-mail: g.berti@arpa.piemonte.it

Members of the EpiAir Collaborative Group: N. Caranci, R. Miglio, G. Pace, P. Pandolli, C. Scarnato, and G. Zanini (Bologna, Italy); A. Antonelli and M.P. Dessì (Cagliari, Italy); G. Accetta, M. Baccini, A. Barchielli, A. Biggeri, E. Chellini, D. Grechi, S. Mallone, G. Manneschi, and D. Nuvolone (Florence, Italy); L. Simonato and R. Tessari (Mestre-Venice, Italy); L. Bisanti, G. Randi, and M. Rognoni (Milan, Italy); A. Cernigliaro and S. Scondotto (Palermo, Italy); S. Baldacci, G. Viegi, and M.A. Vigotti (Pisa, Italy); P. Colais, F. de Donato, A. Faustini, F. Forastiere, C.A. Perucci, and M. Stafogga (Rome, Italy); S. Minerba, R. Primerano, M. Serinelli, and M.A. Vigotti (Taranto, Italy); and G. Berti, E. Cadum, M. Chiusolo, C. Galassi, M. Grossa, C. Ivaldi, R. Pelosi, and S. Ponzoni (Turin, Italy). The project was funded by a grant from the Italian Ministry of Health, Centro Nazionale per la Prevenzione ed il Controllo delle Malattie, “Inquinamento Atmosferico e Salute: Sorveglianza Epidemiologica ed Interventi di Prevenzione, EPIAIR” (EPIAIR, 2007–2012). The authors declare they have no actual or potential competing financial interests.
Materials and Methods

Health data. We collected mortality data for 10 Italian cities (Bologna, Cagliari, Florence, Mestre–Venice, Milan, Palermo, Pisa, Rome, Taranto, and Turin); this data accounted for about 12% of the total Italian population (Table 1). We selected 276,205 subjects ≥ 35 years old, resident within the city at the time of death, who died between 2001 and 2005 of natural causes (International Classification of Diseases, version 9 (ICD-9), codes 1–799 [World Health Organization 1979]). The underlying cause of death was classified as cardiac (ICD-9 codes 390–429), cerebrovascular (ICD-9 codes 430–438), and respiratory (ICD-9 codes 460–519). The resident population data (year 2001) were recovered from the census office registry.

For all centers except Cagliari (where hospital discharge data were not available at the time of the study), we collected data at the individual level on the following susceptibility factors: age, sex, median income of the census block of residence (these data were available only for Milan, Turin, Bologna, and Rome and accounted for 75% of the study population), and median socioeconomic position of the census block of residence (these data were available only for Mestre–Venice, Pisa, Rome, Taranto, and Turin and accounted for 44% of the study population). A record linkage with the regional archives of hospital admission databases allowed us to gather data on the place of death [classified as out-of-hospital, recently discharged (within 4 weeks) from a hospital, in-hospital, nursing home] and on discharge diagnoses in the previous 2 years.

Health conditions in the 24 months before death were classified as “chronic” or “acute” according to several criteria. Chronic diseases were those with a course consistent with clinical criteria of chronicity that were diagnosed at least 1 month before death and did not present a recent exacerbation; both primary and secondary discharge diagnoses were considered for hospitalizations that occurred between 29 days and 2 years before death. Acute conditions included not only clinical manifestations with sudden onset, short course, and high likelihood to be cured but also exacerbations of chronic diseases, provided that both these clinical forms caused a hospitalization within 1 month before death; only the primary discharge diagnoses were considered for hospitalizations that occurred in the 4 weeks before death. We based our list of diagnoses on Elixhauser’s list of comorbidities (Elixhauser et al. 1998); this approach is consistent with previous work (Forastiere et al. 2008). We selected as “chronic conditions” diabetes, coagulation disorders, hypertension, myocardial infarction, cardiac ischemic diseases, diseases of pulmonary circulation, heart conduction disorders, dysrhythmias, heart failure, cerebrovascular diseases, and chronic pulmonary diseases; “acute conditions” included diseases of pulmonary circulation, dysrhythmias, heart failure, and renal failure.

Environmental data. Air pollution data were provided through city-specific air monitoring networks managed by regional environmental agencies or local authorities. We obtained data on nitrogen dioxide (NO2, daily average, micrograms per cubic meter), ozone (O3, daily maximum 8-hr running mean, micrograms per cubic meter), and PM10 (daily average, micrograms per cubic meter) (Table 2). Air pollution data were collected according to methods already employed in several European studies.

We estimated daily levels of air pollutants for each city by averaging monitor-specific daily measurements available from different monitoring stations. A previously defined algorithm was implemented to impute missing values for pollutant concentrations in each center (Berri et al. 2009a; Biggeri et al. 2004).

We collected data on meteorological variables (air temperature, dew point temperature, and barometric pressure) from the Italian Air Force Meteorological Service. Apparent temperature was estimated taking into account barometric pressure, and apparent temperature. Similarly, low-winter temperatures were adjusted for by calculating the mean air temperature of the previous 6 days (lag 1–6) and by fitting a penalized spline of the lagged variable only for days with lag 0–1 apparent temperature above the city-specific median value, calculated on the year-round time series of apparent temperature. We estimated the lagged effect of temperature on mortality at the different lags.

Table 1. Study period, total population, and number and percentage of subjects who resided and died in 10 Italian cities: EpiAir Study, Italy, 2001–2005.

City	Study period	Total population (n=)	Cardiac mortality (n=)	Cerebrovascular mortality (n=)	Respiratory mortality (n=)	All natural mortality (n=)
Bologna	2001–2005	371,217	5,581 (27.5)	1,888 (9.3)	1,719 (8.5)	20,314 (100.0)
Cagliari	2002–2005	164,249	1,228 (24.1)	585 (11.5)	463 (9.1)	5,094 (100.0)
Florence	2001–2005	356,118	4,383 (25.9)	1,744 (10.3)	1,450 (8.6)	16,940 (100.0)
Mestre–Venice	2001–2005	195,790	2,698 (29.7)	910 (10.3)	421 (4.6)	9,076 (100.0)
Milan	2001–2005	1,258,211	13,021 (25.2)	5,383 (10.4)	4,391 (8.5)	51,738 (100.0)
Palermo	2001–2005	688,722	5,277 (24.8)	2,327 (10.9)	1,404 (6.6)	21,320 (100.0)
Pisa	2001–2005	89,694	1,225 (27.5)	585 (13.2)	361 (8.1)	4,447 (100.0)
Rome	2001–2005	2,546,804	31,896 (30.8)	9,684 (9.3)	6,077 (5.9)	103,677 (100.0)
Taranto	2001–2005	202,033	1,755 (25.9)	642 (9.3)	562 (8.2)	6,885 (100.0)
Turin	2001–2005	865,263	9,376 (25.5)	4,732 (12.9)	2,781 (7.6)	36,716 (100.0)
Total	2001–2005	6,734,101	76,443 (27.7)	28,480 (10.3)	19,629 (7.1)	276,205 (100.0)

*Population at 2001 census.
of NO₂ on mortality for each specific exposure day separately, up to 5 days before death. All the city-specific results (from distributed-lag and single-lag models) were finally pooled to estimate the lagged effect of NO₂ across all of the cities. Pooled estimates were obtained from city-specific results by applying a random-effects meta-analysis (maximum likelihood method) (Normand 1999; van Houwelingen et al. 2002).

We implemented bipollutant models in order to estimate the association of NO₂ with cause-specific mortality while adjusting for PM₁₀ or, in turn, O₃ (the latter during April–September only). The lag exposures were chosen within the unconstrained distributed-lag modeling framework, selecting the lags showing the strongest association. A pooled estimate was obtained from city-specific results via random-effects meta-analysis (Normand 1999; van Houwelingen et al. 2002).

We evaluated the role of the potential effect modifiers (sex, age, SES at the census block level, chronic and acute conditions as previously defined) via conditional logistic regression models stratified by the levels of each presumed effect modifier: we compared the effect estimate for NO₂ in each category of the potential effect modifier with the effect estimate in the reference category for the potential modifier, from the stratified models. Because all effect modifiers were likely to be associated with age (e.g., chronic conditions), all stratum-specific estimates were standardized by age, using the relative frequencies of the overall age distribution as weights. We formally evaluated statistical significance (at ɑ = 0.05 level) of the effect modification and computed p-values for relative effect modification (p-REM). In particular, the relative effect modification (REM) was evaluated by analyzing the difference between the coefficient of the NO₂–mortality association within a specific stratum of the effect modifier and the coefficient within the reference stratum of the same variable. The corresponding p-value (p-REM) is derived by assuming that the difference between the two coefficients follows a normal distribution with zero mean and variance equal to the sum of the two stratum-specific variances. We assumed that effect modification was “likely” when p-REM ≤ 0.05, regardless of the magnitude of the stratum-specific association estimate. The effect modification was “suggested” when 0.05 < p-REM < 0.20 and either a) the risk estimated in a specific stratum was twice the risk estimated in the reference stratum or b) the excess risk estimated for the stratum was statistically significant. In addition, in case of a possible effect modifier with more than two ordinary modalities (e.g., number of chronic condition), we considered evidence of effect modification to be “suggestive” when a dose–response trend was observed.

Analysis of effect modification by individual characteristics was performed for each city, and pooled effects were estimated via random-effect meta-analysis (Normand 1999). For each pooled effect estimate, we computed the Q-statistic and the p-value of heterogeneity (HET) to test for heterogeneity among city-specific estimates (against the null hypothesis that the city-specific estimates were homogeneous).

We express all effect estimates as the percent increase in mortality, with corresponding 95% confidence intervals (CIs), associated with a 10-µg/m³ increase in NO₂.

We performed the statistical analyses using SAS (version 8.0; SAS Institute Inc., Cary, NC, USA) and R software (version 2.6.1; R Project for Statistical Computing, Vienna, Austria).

Results

Table 1 summarizes population and mortality data for each city included in the analysis. We considered a total of 276,205 natural (non-accidental) deaths among those > 35 years of age. Cardiac, cerebrovascular, and respiratory mortality accounted for about 28%, 10%, and 7% of natural deaths, respectively.

Table 2 summarizes the descriptive statistics for air pollution indicators, expressed as daily means over the time period considered, for each city. For NO₂, values consistently exceeded 40 µg/m³ in six cities.

![Figure 1. NO₂ and mortality, by cause of death and lag (single-lag and constrained and unconstrained distributed-lag models). Values shown are percent increases of risk (95% CI) for 10-µg/m³ increases in NO₂ (pooled results from 10 cities), EpiAir Study, Italy, 2001–2005.](image)

Table 2. Descriptive characteristics of air pollutants by city: EpiAir Study, Italy, 2001–2005.

City	Daily mean NO₂ (µg/m³)	Daily mean PM₁₀ (µg/m³)	Daily maximum O₃ from 8-hr running means (µg/m³)²									
	No. monitors	Mean ± SD	50th percentile	90th percentile	No. monitors	Mean ± SD	50th percentile	90th percentile	No. monitors	Mean ± SD	50th percentile	90th percentile
Bologna	3	52 ± 18	50	75	1	43 ± 25²	36	76	2	91 ± 31	89	131
Cagliari	2	34 ± 16	33	54	3	32 ± 12	30	48	3	91 ± 34	89	138
Florence	4	46 ± 19	44	68	4	38 ± 18	35	61	3	96 ± 24	96	125
Mestre–Venice	3	38 ± 14	36	58	2	48 ± 33²	39	80	2	91 ± 30	88	131
Milan	3	59 ± 23	57	88	5	52 ± 32	43	95	2	91 ± 34	89	138
Palermo	3	52 ± 16	51	74	3	35 ± 19	32	52	1	98 ± 21	96	127
Pisa	3	30 ± 11	28	46	3	34 ± 15	31	53	1	105 ± 25	102	140
Rome	6	62 ± 16	62	83	3	39 ± 16	37	59	3	78 ± 21	78	104
Taranto	4	26 ± 11	24	41	2	50 ± 21²	43	81²	3	78 ± 21	78	104
Turin	3	66 ± 20	64	92	2	55 ± 34²	44	102²	1	115 ± 39	113	170

²Data for O₃ from April–September. ³Data availability 2002–2005. ⁴Data availability 2003–2005. ⁵Data availability 2001–2004.
Figure 1 shows pooled effect estimates (10 cities) for the association between NO$_2$ and mortality by cause of death and lag (single-lag models and constrained and unconstrained distributed-lag models). The lag structure suggests a prolonged effect of the NO$_2$ on all outcomes considered up to lag 5, whereas a delayed association was more evident for respiratory mortality, from lag 1 to 5. Based on these results, we selected lag 0–5 as the lag with the maximum estimated effect for natural, cardiac, and cerebrovascular mortality, and lag 1–5 as the lag with the maximum estimated effect for respiratory mortality.

Pooled results for all 10 cities indicated that a 10-μg/m3 increase in NO$_2$ was significantly associated (at $\alpha = 0.05$ level) with all natural mortality, cardiac mortality, and respiratory mortality, with the strongest estimated effects for respiratory mortality (Table 3). The estimated effects of NO$_2$ were not confounded by PM$_{10}$ in bipollutant models. Associations were enhanced during the warm season in nine cities (excluding Cagliari), overall and according to strata of selected susceptibility factors (Table 4). We observed an overall increase of 2.03% (95% CI, 0.87–3.21) in natural mortality associated with a 10-μg/m3 increase of NO$_2$. The association was stronger for subjects > 84 years of age (3.41%; 95% CI, 2.10–4.74) than for younger subjects, but age was not a significant effect modifier (p-REM = 0.270), and associations did not follow a monotonic trend with age. Neither income nor socioeconomic position (both measured as the median of the census block of residence) significantly modified the association between NO$_2$ and mortality, but we observed significant heterogeneity in the stratum-specific effect estimates among the cities.

The season of death significantly modified the association between NO$_2$ and all natural mortality, with a stronger association (4.64%; 95% CI, 3.33–5.97) during the warm season than during the rest of the year (1.18%; 95% CI, 0.20–2.16; p-REM = 0.000). The association between NO$_2$ and all natural mortality also was significantly stronger among subjects with at least one hospital admission between 2 years and 29 days before death (2.86%; 95% CI, 1.39–4.35) than among other subjects (0.73%; 95% CI, −0.69 to 2.18; p-REM = 0.043). Similarly, the association was significantly stronger for subjects with three or more chronic conditions (3.62%; 95% CI, 2.04–5.22) than for those without chronic conditions (1.54%; 95% CI, 0.27–2.82; p-REM = 0.045), with a monotonic increase in the excess risk in relation to the number of chronic conditions. Associations between NO$_2$ and all natural mortality also were stronger among subjects hospitalized between 2 years and 29 days before death for the specific chronic conditions examined. Estimated risks were particularly high for subjects with disorders of pulmonary circulation (8.03%; 95% CI, 3.17–13.2; p-REM = 0.014), and we found some evidence of effect modification by heart conduction disorders (5.91%; 95% CI, 1.78–10.2; p-REM = 0.064), diabetes (3.61%; 95% CI, 1.73–5.53; p-REM = 0.108), heart failure (3.40%; 95% CI, 1.43–5.40; p-REM = 0.166), and cardiac ischemic diseases (3.22%; 95% CI, 1.52–4.96; p-REM = 0.185).

We did not find evidence of effect modification by sex, place of death, hospital admissions between 0 and 28 days before death (Table 4), or hospitalization for diseases of the pulmonary circulation, dysrhythmias, heart failure, or renal failure during the 28 days before death (data not shown).

Discussion

In this study we found statistically significant increases in mortality due to natural, cardiac, and respiratory causes associated with a 10-μg/m3 increase in NO$_2$ regardless of season, and a significant association between NO$_2$ and cerebrovascular mortality during the warm season. Overall, associations were strongest for exposures lagged 0–5 days and were stronger in the warm than in the cold season. Associations with NO$_2$ appeared to be independent of PM$_{10}$ and independent of O$_3$ exposure during the warm season. Associations with total mortality were stronger for subjects with a hospital admission in the 2 preceding years. Interestingly, previous cardiovascular morbidity (changes in pulmonary circulation, heart conduction disorders, heart failure, and ischemic heart diseases) and diabetes appeared to confer a strong susceptibility.

Excess risks estimated in the present study for a 10-μg/m3 increase in NO$_2$ (natural causes, lag 0–5: 2.09%; 95% CI, 0.96–3.24; cardiac causes, lag 0–5: 2.63%; 95% CI, 1.53–3.65; respiratory causes, lag 1–5: 3.48%; 95% CI, 0.75–6.29) are higher than those published in previous meta-analyses, although comparisons are limited because of the use of different statistical methods, lags, populations, and metrics for NO$_3$ exposure.

Samoli et al. (2006) used the most extensive European database available [Air Pollution on Health: A European Approach (APHEA-2)] to investigate the effects of NO$_2$ on mortality. They estimated 0.30%, 0.40%, and 0.38% excess risks for natural, cardiovascular, and respiratory causes, respectively (for a 10-μg/m3 increase in NO$_2$). The study was related to the calendar period 1990–1997, and the study population was not restricted to a specific age group. The meta-analysis of the Italian studies on short-term effects of air pollution (MISA2) reported at lag 0–1, 0.59%,
effect of NO₂ could be enhanced by the lower average mortality during the summer months, given that in Italian cities the dose–response curve is steeper at lower mortality and concentration values (Biggeri et al. 2009).

Our results suggest an effect of NO₂ on mortality independent from PM₁₀, but the role of NO₂ as a surrogate of unmeasured pollutants cannot be ruled out. In the presence of high levels of traffic, PM consists of

Table 4. NO₂ and all natural mortality among subjects ≥ 35 years of age who resided and died in nine Italian cities, pooled results by sociodemographic characteristic and chronic condition, EpiAir Study, Italy, 2001–2005.

Variable	n (%)	Percent increase in risk	95% CI	p-REM	HET
All natural deaths (≥ 35 years of age, lag 0–5)	271,111 (100.0)	2.03	0.87 to 3.21	—	0.001
Age (years)					
35–64	35,803 (13.3)	2.17	0.42 to 3.95	0.022	
65–74	52,898 (19.4)	0.42	-2.14 to 3.04	0.275	
75–84	82,539 (30.4)	1.91	0.71 to 3.11	0.809	
≥ 85	90,070 (32.2)	3.41	2.10 to 4.74	0.270	
Sexa					
Men	130,428 (48.1)	2.35	1.36 to 3.35	—	0.171
Women	140,674 (51.9)	1.71	-0.16 to 3.61	0.556	
SES (average of the census tract)b,d					
Low (< 20th percentile)	33,565 (12.4)	3.09	0.90 to 5.32	—	0.326
Middle (20th to 80th percentile)	63,040 (34.3)	1.70	-0.12 to 3.55	0.343	
High (> 80th percentile)	32,277 (11.9)	2.50	-0.46 to 5.55	0.758	
Income (average of the census tract)c,e					
Low (< 20th percentile)	47,721 (17.6)	2.95	0.32 to 5.65	—	0.008
Middle (20th to 80th percentile)	122,394 (45.1)	3.01	1.75 to 4.28	0.968	
High (> 80th percentile)	39,681 (14.6)	1.33	-0.74 to 3.43	0.347	
Location of deathf					
Outside the hospital, not hospitalized during the last 4 weeks	103,538 (38.2)	1.63	0.24 to 3.04	—	0.012
Outside the hospital, hospitalized during the last 4 weeks	25,778 (9.5)	2.97	0.98 to 4.99	0.264	
In hospitalf	132,181 (48.8)	2.48	1.12 to 3.86	0.396	
In a nursing homeg	9,811 (3.5)	0.89	-0.246 to 4.34	0.691	
Season of deathf					
October–March	144,464 (53.3)	1.18	0.20 to 2.16	—	0.006
April–September	126,647 (46.7)	4.64	3.33 to 5.97	0.000	
Hospital admission between 0 and 28 days before deathh					
No	149,953 (55.3)	1.82	0.56 to 3.09	—	0.021
Yes	121,158 (44.7)	2.56	1.16 to 3.97	0.442	
Hospital admission between 29 days and 2 years before deathi					
No	95,096 (35.1)	0.73	-0.69 to 2.18	—	0.012
Yes	176,015 (64.9)	2.86	1.39 to 4.35	0.043	
No. of specific chronic conditionsj,k					
0	152,100 (56.1)	1.54	0.27 to 2.82	—	0.001
1	41,547 (15.3)	2.39	0.03 to 4.80	0.536	
2	32,390 (11.9)	2.99	0.49 to 5.55	0.313	
≥ 3	45,074 (16.6)	3.62	2.04 to 5.22	0.045	
Specific chronic conditionsj,k,l (ICD-9 code)					
Diabetes (250)	30,620 (11.3)	3.61	1.73 to 5.53	0.108	
Congulation disorders (286, 287)	3,285 (1.2)	3.26	-3.66 to 10.68	0.698	
Hypertension (401–405)	53,441 (19.1)	2.24	0.85 to 3.65	0.252	
Myocardial infarction (410, 412)	12,828 (4.7)	3.30	0.41 to 6.27	0.367	
Cardiac ischemic diseases (410–414)	37,225 (13.7)	3.22	1.52 to 4.96	0.185	
Diseases of pulmonary circulation (415–417)	5,269 (1.9)	8.03	3.17 to 13.12	0.014	
Heart conduction disorders (426)	6,213 (2.3)	5.91	1.78 to 10.20	0.064	
Dysrhythmias (427)	34,529 (12.7)	3.43	0.88 to 6.04	0.243	
Heart failures (428)	28,174 (10.4)	3.40	1.43 to 5.40	0.166	
Cardiobvascular diseases (430–438)	36,937 (13.8)	2.73	0.16 to 3.58	0.548	
Chronic pulmonary diseases (490–505)	32,859 (12.1)	3.05	1.21 to 4.92	0.293	

Reference category. Data include number and percentage of subjects ≥ 35 years of age and percent increases of risk of death for natural causes (% REM) for a 10-μg/m³ increase in NO₂ pooled results by age, sex, indicators of SES, location of death, season, previous hospitalizations, and specific chronic conditions (nine cities, except Cagliari).

*p-Value of REM, derived from the difference between the coefficient of the stratum and the coefficient of the reference category (for each chronic condition, the reference category is the group of subjects without the disease). *Results standardized by age, with weights equal to relative frequencies of subjects in the age groups 35–64, 65–74, 75–84, and ≥ 85 years, from the nine cities analyzed. *Data available only for Mestre–Venice, Pisa, Rome, Taranto, and Turin. *Data available only for Florence, Milan, and Turin. *Chronic conditions are based on primary or secondary contributing diagnoses of any hospital admissions occurred between 29 days and 2 years before death.
a mixture of carbon particles (including PM in the ultrafine range), which are mainly produced by diesel engines (diesel soot). In fact, diesel engines are the main sources of both NO2 and ultrafine PM. These ultrafine particles are sulfated and nitrogzenized, which may explain the high correlation observed among PM, NO2, and sulfur dioxide. From this perspective, NO2 should be considered mainly as a surrogate of ultrafine PM (Sarnat et al. 2001). In our EpiAir study, NO2 is a strong confounder of the relationship between PM10 and mortality: in the single-pollutant model, we observed a significant increase of 0.80% (lag 0–2) for the association of PM10 with natural mortality that decreased to 0.18% (not significant) in the bipollutant model with NO2. This is consistent with the results of a previous Italian meta-analysis (Biggeri et al. 2004).

Specific groups within the general population are at increased risk of adverse effects from NO2 exposure. Factors that may influence susceptibility to the effects of air pollution include age (e.g., elderly) (Liu et al. 2007; Yang et al. 2006), sex, race/ethnicity, genetic factors, and preexisting diseases or conditions (e.g., obesity, diabetes, respiratory disease, asthma, chronic obstructive pulmonary disease, cardiovascular disease, dysrhythmias, airway hyperresponsiveness, respiratory infection) (Dales et al. 2006; Felber Dietrich et al. 2008; Hock et al. 2000). In addition, exposure to air pollution may vary among population subgroups according to SES, educational level, air conditioning use, proximity to roadways, geographic location, level of physical activity, and work environment (Kraft et al. 2005). We analyzed several factors that may confer susceptibility and/or vulnerability to air pollution, and most of our results are in agreement with previous studies, even though some of the associations could be partially spurious because of the multiple tests performed on the same database.

Many chronic health conditions appeared to increase susceptibility to effects of NO2 in particular, people with previous hospital discharges for cardiovascular conditions appeared to be at higher risk. The estimated effect of NO2 was highest for subjects with three or more chronic health conditions. The estimated NO2 effect was stronger among the elderly—a finding that is consistent with previous studies for exposure to particles (Aga et al. 2003), although the association for those ≥ 85 years of age was not significantly different from that for the 35- to 64-year age group.

The results obtained in the present study do not clarify the role of SES as an effect modifier of the association between mortality and variation in NO2. However, data on SES were not available at an individual level (only at area level), and this represents a limitation of our study. Another limitation is related to the ascertainment of the chronic health condition, which we based on hospital discharge records and suffers from the limits of accuracy of the source used. Therefore, we tried to increase the sensitivity of the definition of chronic conditions by using all hospital admissions in the 2-year period before death and by considering both primary and contributory causes.

Conclusion

This study confirms a clear association between short-term exposure to NO2 and natural mortality and supports increased susceptibility among people suffering from chronic cardiovascular conditions and diabetes. These conditions should be considered when developing prevention-oriented health policies (Künzli 2002).

References

Aga E, Samoli E, Touloumi G, Anderson HR, Cadum E, Forsberg B, et al. 2003. Short-term effects of ambient particles on mortality among those older than 65 years: results from 28 cities within the APHEA2 project. Eur Respir J Suppl 40:528–533.

Atkins P, de Paula J. 2006. Physical Chemistry. 8th ed. New York: Oxford University Press.

Berti G, Chiusolo M, Grechi D, Gross M, Rognoni M, Tressari R, et al. 2008a. Environmental indicators in ten Italian cities (2001–2005): the air quality data for epidemiological surveillance [in Italian]. Epidemiol Prev 26:suppl 11:10–28.

Berti G, Galassi C, Faustini A, Forastiere F. 2009a. Air pollution and health: epidemiological surveillance and prevention [in Italian]. Epidemiol Prev 33:suppl 11:140–144.

Biggeri A, Baccini M, Gruppo collaborativo EpiAir. 2009. Short-term effects of air pollution in Italy: risk heterogeneity from 1996 to 2005 [in Italian]. Epidemiol Prev 33:suppl 11:140–144.

Biggeri A, Bellini P, Terracini B, et al. 2004. Meta-analysis of the Italian studies on short-term effects of air pollution—MISA 1996–2002 [in Italian]. Epidemiol Prev 28:suppl 4:94–100.

Bisanti L, Cernigliaro A, Forastiere F, Stafoggia M, Berti G, Faustini A, et al. 2009. Short-term effects of nitrogen dioxide exposure on mortality and susceptibility factors [Abstract]. Epidemiology 20:567.

Dales RE, Calmarak D, Doiron MS. 2006. Gaseous air pollutants and hospitalization for respiratory disease in the neonatal period. Environ Health Perspect 114:1751–1754.

Elbähauer A, Steiner C, Harris DR, Coffey RM. 1998. Comorbidity measures for use with administrative data. Med Care 36:28–27.

Felber Dietrich D, Gumperli A, Gaspoz JM, Schindler C, Liu LJ, Gold DR, et al. 1994. Acute effects of summer air pollution exposure on mortality and morbidity: a case-crossover analysis of individual effect modifiers. Epidemiology 19:571–590.

Hoek G, Brunekreef B, Verheuvel A, Wijnen J, Fischer P. 2000. Daily mortality and air pollution in the Netherlands. J Air Waste Manag Assoc 50:1380–1389.

Kalkstein LS, Valimont KM. 1986. An evaluation of summer discomfort in the United States using a relative climatological index. Bull Am Meteorol Soc 67:842–848.

Künzli N. 2002. The public health relevance of air pollution assessment. Eur Respir J 20:1711–1719.

Laurent O, Bard D, Filleul L, Segala C. 2007. Effect of socioeconomic status on the relationship between atmospheric pollution and mortality. J Epidemiol Community Health 61:665–675.

Levy D, Lumley T, Sheppard L, Kaufman J, Checkoway H. 2001. Referent selection in case-crossover analyses of acute health effects of air pollution. Epidemiology 12:186–192.

Liu S, Kreyvski D, Shi Y, Chen Y, Burnett RT. 2007. Association between maternal exposure to ambient air pollutants during pregnancy and foetal growth restriction. J Expo Sci Environ Epidemiol 17:426–432.

Meyre D, et al. 2010. Susceptibility factors to ozone-related mortality—a method for studying transient effects on the risk of acute events. Am J Epidemiol 133:144–153.

Normand SL. 1999. Meta-analysis: formulating, evaluating, combining and reporting. Stat Med 18:321–339.

Pekkanen J, Brunner EJ, Anderson HR, Tiittanen P, Atkinson RW. 2000. Daily concentrations of air pollution and plasma fibrinogen in London. Occup Environ Med 57:181–182.

Samoli E, Aga E, Touloumi G, Niskias K, Fersberg B, Lefranc A, et al. 2006. Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. Eur Respir J 27:1129–1138.

Sarnat JA, Schwartz J, Cattano PJ, Shu HH. 2001. Gaseous pollutants in particulate matter: confounders or surrogates? Environ Health Perspect 109:1053–1061.

Schwartz J, Dockery DW, Neas LM, Wypij D, Ware JH, Spengler JD, et al. 1994. Acute effects of summer air pollution on respiratory symptom reporting in children. Am J Respir Crit Care Med 149:1243–1248.

Shin HH, Stieb DM, Jessiman B, Goldberg MS, Brion D, Brook J, et al. 2008. A temporal multicity model to estimate the effects of short-term exposure to ambient air pollution on health. Environ Health Perspect 114:1147–1153.

Stafoggia M, Forastiere F, Faustini A, Biggeri A, Bisanti L, Cadum T, et al. 2010. Susceptibility factors to ozone-related mortality—a population-based case-crossover analysis. Am J Respir Crit Care Med 182:376–384.

Stieb DM, Judex S, Burnett RT. 2002. Meta-analysis of time-series studies of air pollution and mortality: effects of gases and particles and the influence of cause of death, age, and season. J Air Waste Manag Assoc 52:470–484.

Stieb DM, Judex S, Burnett RT. 2003. Meta-analysis of time-series studies of air pollution and mortality: update in relation to the use of generalized additive models. J Air Waste Manag Assoc 53:258–261.

Touloumi G, Katsouyanni K, Zmirou D, Schwartz J, Spix C, de Leon AP, et al. 1997. Short-term effects of ambient oxidant exposure on mortality: a combined analysis within the APHEA project. Air Pollution and Health: A European Approach. Am J Epidemiol 154:177–185.

U.S. EPA. Environmental Protection Agency. 2008. Risk and Exposure Assessment to Support the Review of the NO2 Primary National Ambient Air Quality Standard. Available: http://www.epa.gov/ttn/oar2/naqs/standards/no2/ data/20081121_NO2_REA_final.pdf [accessed 13 May 2011].

van Houwelingen H, Arends L, Stijnen T. 2002. Advanced methods for use with administrative data. Med Care 36:8–27.

Zmirou D, Schwartz J, Saez M, Zanobetti A, Wojtyniak B, World Health Organization. 1979. International Classification of Diseases. 9th Revision. Available: http://www.cdc.gov/nchs/icd/icd9.htm [accessed 1 July 2011].

Yang CY, Hsieh HJ, Tsai SS, Wu TN, Chiu HF. 2006. Correlation between air pollution and postneonatal mortality in a suburban city: Taipei, Taiwan. J Toxicol Environ Health A 69:2033–2040.

Zmirou D, Schwartz J, Saez M, Zanobetti A, Wypijniak B, Touloumi G, et al. 1999. Time-series analysis of air pollution and cause-specific mortality. Epidemiology 9:495–503.