Sheaves on \mathcal{T}-topologies

By Mário J. EDMUNDO and Luca PRELLI

(Received Apr. 21, 2014)

Abstract. The aim of this paper is to give a unifying description of various constructions of sites (subanalytic, semialgebraic, o-minimal) and consider the corresponding theory of sheaves. The method used applies to a more general context and gives new results in semialgebraic and o-minimal sheaf theory.

Introduction.

Sheaf theory in some tame contexts such as semi-algebraic geometry ([10]), subanalytic geometry ([28], [35]) and o-minimal geometry ([19]) has had recently different applications in various fields of mathematics such as model theory [4], [5], [20], analysis [28], [30], [31], [36] and representation theory [1], [2], [37]. Each one of the above theories is very useful for the mentioned applications but has some elements which are missing in the other ones: the aim of this paper is to give a unifying description of all these various constructions (subanalytic, semialgebraic, o-minimal) using a modification of the notion of \mathcal{T}-topology introduced by Kashiwara and Schapira in [28].

The idea is the following: on a topological space X one chooses a subfamily \mathcal{T} of open subsets of X satisfying some suitable hypothesis, and for each $U \in \mathcal{T}$ one defines the category of coverings of U as the topological coverings $\{U_i\}_{i \in I} \subset \mathcal{T}$ of U admitting a finite subcover. In this way one defines a site $X_\mathcal{T}$ and studies the category of sheaves on $X_\mathcal{T}$ (called Mod($k_\mathcal{T}$)). This idea was already present in [28]. However in [28], the space X is assumed to be Hausdorff, locally compact and the elements of \mathcal{T} are assumed to have finitely many connected components.

The exigence to treat in a unifying way all the previous constructions, to treat also some non Hausdorff cases (as conic subanalytic sheaves which are related to the extension of the Fourier-Sato transform [36]) and the non-standard setting which appears naturally in the o-minimal context (where the elements of \mathcal{T} are totally disconnected and never locally compact), motivates a modification of the definition of [28]. In particular, in our definition we replace “connectedness” by the notion of \mathcal{T}-connectedness (which in the standard o-minimal context is connectedness). Remark that there are many important o-minimal expansions

$$\mathcal{M} = (\mathbb{R},<,0,1,+,\cdot,(f)_{f \in \mathcal{F}})$$

2010 Mathematics Subject Classification. Primary 18F20; Secondary 18F10.

Key Words and Phrases. sheaf theory, Grothendieck topologies.

The first author was supported by Fundação para a Ciência e a Tecnologia, Financiamento Base 2008 - ISFL/1/209. The second author is a member of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM) and was supported by Marie Curie grant PIEF-GA-2010-272021. This work is part of the FCT project PTDC/MAT/101740/2008.
of the ordered field of real numbers. For example \mathbb{R}_{an}, \mathbb{R}_{exp}, $\mathbb{R}_{an,exp}$, \mathbb{R}_{an}^*, $\mathbb{R}_{an}^{*,exp}$ see resp., [12], [40], [15], [17], [18]. For each such we have 2^κ many non-isomorphic non-standard o-minimal models for each $\kappa > \text{cardinality of the language}$. There is however a non-standard o-minimal structure

$$\mathcal{M} = \left(\bigcup_{n \in \mathbb{N}} \mathbb{R}((t^{1/n})), <, 0, 1, +, \cdot, (f_p)_{p \in \mathbb{R}[[\zeta_1, \ldots, \zeta_n]]} \right)$$

which does not came from a standard one ([32], [23]).

With this more general notion of T-space X we study the category of sheaves on the site X_T. The natural functor of sites $\rho : X \to X_T$ induces relations between the categories of sheaves on X and X_T, given by the functors ρ_* and ρ^{-1}. The functor ρ_* is fully faithful. Moreover when X is locally weakly quasi-compact there is a right adjoint to the functor ρ^{-1}, denoted by ρ_i. The functor ρ_i is exact, commutes with \lim and \otimes and is fully faithful. We introduce the category of T-flabby sheaves (known as sa-flabby in [10] and as quasi-injective in [35]): $F \in \text{Mod}(k_T)$ is T-flabby if the restriction $\Gamma(U; F) \to \Gamma(V; F)$ is surjective for each $U, V \in T$ with $U \supseteq V$. We prove that T-flabby sheaves are stable under \lim and \otimes and are acyclic with respect to the functor $\Gamma(U; \bullet)$, for $U \in T$. More generally, if one introduces the category $\text{Coh}(T) \subset \text{Mod}(k_X)$ of coherent sheaves (i.e. sheaves admitting a finite resolution consisting of finite sums of k_U, $U \in T$), then T-flabby sheaves are acyclic with respect to $\text{Hom}_k(\rho_* G, \bullet)$, for $G \in \text{Coh}(T)$. Coherent sheaves also give a description of sheaves on X_T: for each $F \in \text{Mod}(k_T)$ there exists a filtrant inductive family $\{F_i\}_{i \in I}$ such that $F \simeq \lim_i F_i$. In fact, we have an equivalence between the categories $\text{Mod}(k_T)$ and $\text{Ind}(\text{Coh}(T))$ the indization of the category $\text{Coh}(T)$.

All of the above results and methods are new in the o-minimal context and most of them are new even in the semialgebraic case as well. On the other hand, we also introduce a method for studying the category $\text{Mod}(k_T)$ of sheaves on T-spaces which is the fundamental tool in the semialgebraic and o-minimal case, namely, we prove that as in [19] the category of sheaves on X_T is equivalent to the category of sheaves on a locally quasi-compact space \tilde{X}_T, the T-spectrum of X, which generalizes the notion of o-minimal spectrum as well as the real spectrum of commutative rings from real algebraic geometry. In particular, sheaves on the subanalytic site are sheaves on the T-spectrum associated to the family of relatively compact subanalytic subsets. Such a result was not present in [28].

This theory can then be specialized to each of the examples we mentioned above: when T is the category of semialgebraic open subsets of a locally semialgebraic space X we obtain the constructions (and the generalizations) of results of [10], in particular, when X is a Nash manifold, we recover the setting of [37]. When T is the category of relatively compact subanalytic open subsets of a real analytic manifold X we obtain the constructions and results of [28], [35]. Moreover, when T is the category of conic subanalytic open subsets of a real analytic manifold X we obtain a suitable category of conic subanalytic sheaves considered in [36]. Finally, when T is the category of definable open subsets of a locally definable space X we obtain in the definable case the
constructions of [19] and we obtain new results in the o-minimal context generalizing those of the two previous cases.

The paper is organized in the following way. In Section 1 we introduce the locally weakly quasi-compact spaces and study some properties of sheaves on such spaces. The results of this section will be used in two crucial ways on the theory of sheaves on \(T \)-spaces, they are required to show that: (i) when a \(T \)-space \(X \) is locally weakly quasi-compact, then there is a right adjoint \(\rho! \) to the functor \(\rho^{-1} \) induced by the natural functor of sites \(\rho : X \to X_T \); (ii) for a \(T \)-space \(X \), the category of sheaves on \(X_T \) is equivalent to the category of sheaves on a locally quasi-compact space \(\tilde{X}_T \), the \(T \)-spectrum of \(X \).

In Section 2 we introduce the \(T \)-spaces and develop the theory of sheaves on such spaces as already described above.

1. Sheaves on locally weakly quasi-compact spaces.

Let \(X \) be a non necessarily Hausdorff topological space. One denotes by \(\text{Op}(X) \) the category whose objects are the open subsets of \(X \) and the morphisms are the inclusions. In this section we generalize some classical results about sheaves on locally compact spaces. For classical sheaf theory our basic reference is [26]. We refer to [39] for an introduction to sheaves on Grothendieck topologies.

1.1. Locally weakly quasi-compact spaces.

Definition 1.1.1. An open subset \(U \) of \(X \) is said to be relatively weakly quasi-compact in \(X \) if, for any covering \(\{ U_i \}_{i \in I} \) of \(X \), there exists \(J \subset I \) finite, such that
\[
U \subset \bigcup_{i \in J} U_i.
\]

We will write for short \(U \subset\subset X \) to say that \(U \) is a relatively weakly quasi-compact open set in \(X \), and we will call \(\text{Op}_c(U) \) the subcategory of \(\text{Op}(U) \) consisting of open sets \(V \subset\subset U \). Note that, given \(V, W \in \text{Op}_c(U) \), then \(V \cup W \in \text{Op}_c(U) \).

Definition 1.1.2. A topological space \(X \) is locally weakly quasi-compact if satisfies the following hypothesis for every \(U, V \in \text{Op}(X) \)

LWC1. Every \(x \in U \) has a fundamental neighborhood system \(\{ V_i \} \) with \(V_i \in \text{Op}_c(U) \).
LWC2. For every \(U' \in \text{Op}_c(U) \) and \(V' \in \text{Op}_c(V) \) one has \(U' \cap V' \in \text{Op}_c(U \cap V) \).
LWC3. For every \(U' \in \text{Op}_c(U) \) there exists \(W \in \text{Op}_c(U) \) such that \(U' \subset\subset W \).

Of course an open subset \(U \) of a locally weakly quasi-compact space \(X \) is also a locally weakly quasi-compact space. Let us consider some examples of locally weakly quasi-compact spaces:

Example 1.1.3. A locally compact topological space \(X \) is a locally weakly quasi-compact. In this case, for \(U, V \in \text{Op}(X) \) we have \(V \subset\subset U \) if and only if \(V \) is relatively compact subset of \(U \).

Example 1.1.4. Let \(X \) be a topological space with a basis of quasi-compact (i.e. each open covering admits a finite subcover) open subsets closed under taking finite intersections. Then \(X \) is locally weakly quasi-compact and, for \(U, V \in \text{Op}(X) \) we have \(V \subset\subset U \) if and only if \(V \) is contained in a quasi-compact subset of \(U \). In this situation
we have the following particular cases:

(i) X is a Noetherian topological space (each open subset of X is quasi-compact). This includes in particular: (a) algebraic varieties over algebraically closed fields; (b) complex varieties (reduced, irreducible complex analytic spaces) with the Zariski topology.

(ii) X is a spectral topological space (in addition: (i) X is quasi-compact; (ii) T_0; (iii) every irreducible closed subset is the closure of a unique point). This includes in particular: (a) real algebraic varieties over real closed fields; (b) the o-minimal spectrum of a definable space in some o-minimal structure.

(iii) X is an increasing union of open spectral topological spaces X_i’s, i.e. $X = \bigcup_{i \in I} X_i$. This space X has a basis of quasi-compact open subsets closed under taking finite intersections and in addition is: (i) not quasi-compact in general unless I is finite; (ii) T_0. This includes in particular: (a) the semialgebraic spectrum of a locally semialgebraic space; (b) more generally, the o-minimal spectrum of a locally definable space in some o-minimal structure.

Example 1.1.5. Let E be a real vector bundle over a locally compact space Z, endowed with the natural action μ of \mathbb{R}^+ (the multiplication on the fibers). Let $\hat{E} = E \setminus Z$, and for $U \in \text{Op}(E)$ set $U_Z = U \cap Z$ and $\hat{U} = U \cap \hat{E}$. Let $E_{\mathbb{R}^+}$ denote the space E endowed with the conic topology i.e. open sets of $E_{\mathbb{R}^+}$ are open sets of E which are μ-invariant. With this topology $E_{\mathbb{R}^+}$ is a locally weakly quasi-compact space and, for $U, V \in \text{Op}(E_{\mathbb{R}^+})$ we have $V \subset U$ if and only if $V_Z \subset U_Z$ in Z and $\hat{V} \subset \hat{U}$ in $\hat{E}_{\mathbb{R}^+}$ (the later is \hat{E} with the induced conic topology).

1.2. Sheaves on locally weakly quasi-compact spaces.

Recall that X is a non necessarily Hausdorff topological space.

Definition 1.2.1. Let $U = \{U_i\}_{i \in I}$ and $U' = \{U'_i\}_{i \in I}$ be two families of open subsets of X. One says that U' is a refinement of U if for each $U_i \in U$ there is $U'_i \in U'$ with $U'_i \subseteq U_i$.

One denotes by Cov(U) the category whose objects are the coverings of $U \in \text{Op}(X)$ and the morphisms are the refinements, and by Cov$^f(U)$ its full subcategory consisting of finite coverings of U.

Given $V \in \text{Op}(U)$ and $S \in \text{Cov}(U)$, one sets $S \cap V = \{U \cap V_{i \in S} \in \text{Cov}(V)$.

Definition 1.2.2. The site X^f on the topological space X is the category $\text{Op}(X)$ endowed with the following topology: $S \subset \text{Op}(U)$ is a covering of U if and only if it has a refinement $S^f \in \text{Cov}(U)$.

Definition 1.2.3. Let $U, V \in \text{Op}(X)$ with $V \subset U$. Given $S = \{U_i\}_{i \in I} \in \text{Cov}(U)$ and $T = \{V_j\}_{j \in J} \in \text{Cov}(V)$, we write $T \subset S$ if T is a refinement of $S \cap V$, and $V_j \subset U_i$ if and only if $V_j \subset U_i$.

Let us recall the definitions of presheaf and sheaf on a site.
Definition 1.2.4. A presheaf of k-modules on X is a functor $\text{Op}(X)^{op} \to \text{Mod}(k)$. A morphism of presheaves is a morphism of such functors. One denotes by $\text{Psh}(k_X)$ the category of presheaves of k-modules on X.

Let $F \in \text{Psh}(k_X)$, and let $S \in \text{Cov}(U)$. One sets

$$F(S) = \ker \left(\prod_{W \in S} F(W) \Rightarrow \prod_{W', W'' \in S} F(W' \cap W'') \right).$$

Definition 1.2.5. A presheaf F is separated (resp. is a sheaf) if for any $U \in \text{Op}(X)$ and for any $S \in \text{Cov}(U)$ the natural morphism $F(U) \to F(S)$ is a monomorphism (resp. an isomorphism). One denotes by $\text{Mod}(k_X)$ the category of sheaves of k-modules on X.

Let $F \in \text{Psh}(k_X)$, one defines the presheaf F^+ by setting

$$F^+(U) = \lim_{S \in \text{Cov}(U)} F(S).$$

One can show that F^+ is a separated presheaf and if F is a separated presheaf, then F^+ is a sheaf. Let $F \in \text{Psh}(k_X)$, the sheaf F^{++} is called the sheaf associated to the presheaf F.

Lemma 1.2.6. For $F \in \text{Psh}(k_X)$, and let $U \in \text{Op}(X)$. If F is a sheaf on X^f, then for any $V \in \text{Op}^c(U)$ the morphism

$$F^+(U) \to F^+(V)$$

factors through $F(V)$.

Proof. Let $S \in \text{Cov}(U)$, and set $S \cap V = \{ W \cap V \}_{W \in S}$. Since $V \in \text{Op}^c(U)$, there is a finite refinement $T^f \in \text{Cov}^f(V)$ of $S \cap V$. Then the morphism (1.1) is defined by

$$F^+(U) \simeq \lim_{S \in \text{Cov}(U)} F(S)$$

$$\to \lim_{S \in \text{Cov}(U)} F(S \cap V)$$

$$\to \lim_{T^f \in \text{Cov}^f(V)} F(T^f)$$

$$\to \lim_{T \in \text{Cov}(V)} F(T)$$

$$\simeq F^+(V).$$

The result follows because $F(T^f) \simeq F(V)$. \qed
Corollary 1.2.7. With the hypothesis of Lemma 1.2.6, we consider two coverings $S \in \text{Cov}(U)$ and $T \in \text{Cov}(V)$. If $T \subset S$, then the morphism

$$F^+(S) \to F^+(T)$$

factors through $F(T)$. In particular, if T is finite, then the morphism (1.2) factors through $F(V)$.

From now on we will assume the following hypothesis:

the topological space X is locally weakly quasi-compact. (1.3)

Lemma 1.2.8. Let $U \in \text{Op}(X)$, and consider a subset $V \subset U$. Then for any $S^f \in \text{Cov}^f(U)$ there exists $T^f \in \text{Cov}^f(V)$ with $T^f \subset S^f$.

Proof. Let $S^f = \{U_i\}$. For each $x \in U$ and $U_i \ni x$, consider a $V_{x,i} \in \text{Op}^c(U_i)$ containing x. Set $V_x = \bigcap_i V_{x,i}$, the family $\{V_x\}$ forms a covering of U. Then there exists a finite subfamily $\{V_j\}$ containing V. By construction $V_j \cap V \subset U_i$ whenever $V_j \subset U_i$.

Lemma 1.2.9. Let $F \in \text{Psh}(k_X)$, and let $U \in \text{Op}(X)$. If F is a sheaf on X^f, then for any $V \in \text{Op}^c(U)$ the morphism

$$F^{++}(U) \to F^{++}(V)$$

factors through $F(V)$.

Proof. Since X is locally weakly quasi-compact, there exists $W \in \text{Op}^c(U)$ with $V \subset W$. As in Lemma 1.2.6 we obtain a diagram

$$
\begin{array}{ccc}
F^{++}(U) & \to & F^{++}(W) \\
\downarrow & & \downarrow \\
\lim_{S^f \in \text{Cov}^f(W)} F^+(S^f) & \longrightarrow & \lim_{T^f \in \text{Cov}^f(V)} F^+(T^f).
\end{array}
$$

Since X is locally weakly quasi-compact then by Lemma 1.2.8 for any $S^f \in \text{Cov}^f(W)$ there exists $T^f \in \text{Cov}^f(V)$ with $T^f \subset S^f$. By Corollary 1.2.7 the morphism

$$F^+(S^f) \to F^+(T^f)$$

factors through $F(T^f) \simeq F(V)$. Then the morphism

$$\lim_{S^f \in \text{Cov}^f(W)} F^+(S^f) \to \lim_{T^f \in \text{Cov}^f(V)} F^+(T^f)$$
factors through $F(V)$ and the result follows. \hfill \Box

Corollary 1.2.10. Let $F \in \text{Psh}(k_X)$. If F is a sheaf on X^I, then:

(i) for any $V \in \text{Op}^c(X)$ one has the isomorphism $\lim_{U \supseteq V} F(U) \cong \lim_{U \supseteq V} F^+(U)$.

(ii) for any $U \in \text{Op}(X)$ one has the isomorphism $\lim_{V \subseteq U} F(V) \cong \lim_{V \subseteq U} F^+(V)$.

Proof. (i) By Lemma 1.2.9 for each $U \in \text{Op}(X)$ with $U \supseteq V$ we have a commutative diagram

\[
\begin{array}{ccc}
F^+(U) & \rightarrow & F^+(V) \\
\downarrow & & \downarrow \\
F(U) & \rightarrow & F(V)
\end{array}
\]

This implies that the identity morphism of $\lim_{U \supseteq V} F(U)$ factors through $\lim_{U \supseteq V} F^+(U)$. On the other hand this also implies that the identity morphism of $\lim_{U \supseteq V} F^+(U)$ factors through $\lim_{U \supseteq V} F(U)$. Then $\lim_{U \supseteq V} F(U) \cong \lim_{U \supseteq V} F^+(U)$.

The proof of (ii) is similar. \hfill \Box

Corollary 1.2.11. Let X be a quasi-compact and locally weakly quasi-compact space, and let $F \in \text{Psh}(k_X)$. If F is a sheaf on X^I, then the natural morphism

$$F(X) \rightarrow F^+(X) \quad (1.5)$$

is an isomorphism.

Proof. It follows immediately from Corollary 1.2.10 (i) with $V = X$. \hfill \Box

Let $\{F_i\}_{i \in I}$ be a filtrant inductive system in $\text{Mod}(k_X)$. One sets

\[\text{"} \lim" F_i = \text{inductive limit in the category of presheaves,} \]

\[\lim F_i = \text{inductive limit in the category of sheaves.} \]

Recall that $\lim F_i = (\text{"} \lim" F_i)^{++}$.

Proposition 1.2.12. Let $\{F_i\}_{i \in I}$ be a filtrant inductive system in $\text{Mod}(k_X)$ and let $U \in \text{Op}(X)$. Then for any $V \in \text{Op}^c(U)$ the morphism

$$\Gamma(U; \lim F_i) \rightarrow \Gamma(V; \lim F_i)$$
factors through $\varprojlim \Gamma(V; F_i)$.

Proof. By Lemma 1.2.9 it is enough to show that $\varprojlim F_i$ is a sheaf on X. Let $U \in \text{Op}(X)$ and $S \in \text{Cov}^I(U)$. Since \varprojlim commutes with finite projective limits we obtain the isomorphism $(\varprojlim F_i)(S) \simeq \varprojlim F_i(S)$. The result follows because $F_i \in \text{Mod}(k_X)$ for each $i \in I$. \hfill \square

Corollary 1.2.13. Let $\{F_i\}_{i \in I}$ be a filtrant inductive system in $\text{Mod}(k_X)$.

(i) For any $V \in \text{Op}(X)$ one has the isomorphism $\varinjlim \Gamma(U; F_i) \simeq \varprojlim \Gamma(U; \lim F_i)$.

(ii) For any $U \in \text{Op}(X)$ one has the isomorphism $\varprojlim \lim \Gamma(V; F_i) \simeq \varinjlim \Gamma(V; \lim F_i)$.

Proof. It follows from Corollary 1.2.10 with $F = \varprojlim F_i$. \hfill \square

Corollary 1.2.14. Let X be a quasi-compact and locally weakly quasi-compact space. Then the natural morphism

$$\varprojlim \Gamma(X; F_i) \to \Gamma(X; \varprojlim F_i)$$

is an isomorphism.

Proof. It follows from Corollary 1.2.11 with $F = \varprojlim F_i$. \hfill \square

Example 1.2.15. Let us consider the formula

$$\varprojlim \Gamma(U; F_i) \simeq \varinjlim \Gamma(U; \varprojlim F_i) \quad (1.6)$$

(i) Let X be a Noetherian space and let $V \in \text{Op}(X)$. Then $\Gamma(V; F) \simeq \varinjlim \Gamma(U; F)$, since every open set is quasi-compact and (1.6) becomes $\varprojlim \Gamma(V; F_i) \simeq \Gamma(V; \varprojlim F_i)$.

(ii) Assume that X has a basis of quasi-compact open subsets and let $V \in \text{Op}^c(X)$. Then V is contained in a quasi-compact open subset of X and $\varprojlim \Gamma(U; F) \simeq \varinjlim \Gamma(W; F)$, where W ranges through the family of quasi-compact subsets of X.

(iii) Let X be a locally compact space and let $V \in \text{Op}^c(X)$. Then $\Gamma(V; F) \simeq \varinjlim \Gamma(U; F)$, and (1.6) becomes $\varprojlim \Gamma(V; F_i) \simeq \Gamma(V; \varprojlim F_i)$.
(iv) Let $E_{\mathbb{R}^+}$ be a vector bundle endowed with the conic topology, and let $V \in \text{Op}^c(E_{\mathbb{R}^+})$. Then $\lim_{U \supset V} \Gamma(U; F) \simeq \Gamma(K; F)$, where K is the union of the closures of V_Z in Z and V in $E_{\mathbb{R}^+}$, and (1.6) becomes $\lim_{i} \Gamma(K_i; F_i) \simeq \Gamma(K; \lim_{i} F_i)$.

Lemma 1.2.16. Let $F \in \text{Psh}(k_X)$. Then we have the isomorphism

$$\lim_{V \subset W} \lim_{V \subset W} F(W) \cong \lim_{V \subset W} F(V).$$

Proof. The result follows since for each $V \in \text{Op}^c(X)$ there exists $W \in \text{Op}^c(X)$ such that $V \subset W$ since X is locally weakly compact. Let $U, V \subset X$ such that $U \supset V$. The restriction morphism $F(U) \to F(V)$ factors through $\lim_{W \supset V} F(W)$. Taking the projective limit we obtain the result. \hfill \Box

Remark 1.2.17. The notion of locally weakly quasi-compact can be extended to the case of a site, by generalizing the hypothesis LWC1–LWC3. For our purpose we are interested in the topological setting and we refer to [34] for this approach.

1.3. c-soft sheaves on locally weakly quasi-compact spaces.

Let X be a locally weakly quasi-compact space, and consider the category $\text{Mod}(k_X)$.

Definition 1.3.1. We say that a sheaf F on X is c-soft if the restriction morphism $\Gamma(W; F) \to \lim_{U \supset V} \Gamma(U; F)$ is surjective for each $V, W \in \text{Op}^c(X)$ with $V \subset W$.

It follows from the definition that injective sheaves and flabby sheaves are c-soft. Moreover, it follows from Corollary 1.2.13 that filtrant inductive limits of c-soft sheaves are c-soft.

Proposition 1.3.2. Let $0 \to F' \to F \to F'' \to 0$ be an exact sequence in $\text{Mod}(k_X)$, and assume that F' is c-soft. Then the sequence

$$0 \to \lim_{U \supset V} \Gamma(U; F') \to \lim_{U \supset V} \Gamma(U; F) \to \lim_{U \supset V} \Gamma(U; F'') \to 0$$

is exact for any $V \in \text{Op}^c(X)$.

Proof. Let $s'' \in \lim_{U \supset V} \Gamma(U; F'')$. Then there exists $U \supset V$ such that s'' is represented by $s''_U \in \Gamma(U; F'')$. Let $\{U_i\}_{i \in I} \in \text{Cov}(U)$ such that there exists $s_i \in \Gamma(U_i; F)$ whose image is $s''_U|_{U_i}$ for each i. There exists $W \in \text{Op}^c(U)$ with $W \supset V$, a finite covering $\{W_j\}_{j=1}^n$ of W and a map $\varepsilon : J \to I$ of the index sets such that $W_j \subset U_{\varepsilon(j)}$. We may argue by induction on n. If $n = 2$, set $U_i = U_{\varepsilon(i)}$, $i = 1, 2$. Then $(s_1 - s_2)|_{U_i \cap U_2}$ belongs to $\Gamma(U_i \cap U_2; F')$, and its restriction defines an element of $\lim_{W \supset W_1 \cap W_2} \Gamma(W'; F')$, hence it extends to $s' \in \Gamma(U; F')$. By replacing s_1 with $s_1 - s'$ on W_1 we may assume that
$s_1 = s_2$ on $W_1 \cap W_2$. Then there exists $s \in \Gamma(W_1 \cup W_2; F)$ with $s|_{W_i} = s_i$. Thus the induction proceeds. \qed

Proposition 1.3.3. Let $0 \to F' \to F \to F'' \to 0$ be an exact sequence in $\text{Mod}(k_X)$, and assume F', F c-soft. Then F'' is c-soft.

Proof. Let $V, W \in \text{Op}^c(X)$ with $V \subset \subset W$ and let us consider the diagram below

$$
\begin{array}{ccc}
\Gamma(W; F) & \to & \Gamma(W; F'') \\
\downarrow \alpha & & \downarrow \gamma \\
\lim_{U \supset \supset V} \Gamma(U; F) & \to & \lim_{U \supset \supset V} \Gamma(U; F'').
\end{array}
$$

The morphism α is surjective since F is c-soft and β is surjective by Proposition 1.3.2. Then γ is surjective. \qed

Proposition 1.3.4. The family of c-soft sheaves is injective respect to the functor $\lim_{U \supset \supset V} \Gamma(U; \bullet)$ for each $V \in \text{Op}^c(X)$.

Proof. The family of c-soft sheaves contains injective sheaves, hence it is cogenerated. Then the result follows from Propositions 1.3.2 and 1.3.3. \qed

Assume the following hypothesis

Lemma 1.3.5. Assume (1.7). Then there exists a covering $\{V_n\}_{n \in \mathbb{N}}$ of X such that $V_n \subset \subset V_{n+1}$ and $V_n \in \text{Op}^c(X)$ for each $n \in \mathbb{N}$. \hfill (1.7)

Proof. Let $\{U_n\}_{n \in \mathbb{N}}$ be a countable cover of X with $U_n \in \text{Op}^c(X)$ for each $n \in \mathbb{N}$. Set $V_1 = U_1$. Given $\{V_i\}_{i=1}^n$ with $V_{i+1} \supset \supset V_i$, $i = 1, \ldots, n-1$, let us construct $V_{n+1} \supset \supset V_n$. Consider $x \notin V_n$. Up to take a permutation of \mathbb{N} we may assume $x \in U_{n+1}$. Since X is locally weakly quasi-compact there exists $V_{n+1} \in \text{Op}^c(X)$ such that $V_n \cup U_{n+1} \subset \subset V_{n+1}$. \qed

Proposition 1.3.6. Assume (1.7). Then the category of c-soft sheaves is injective respect to the functor $\Gamma(X; \bullet)$.

Proof. Take an exact sequence $0 \to F' \to F \to F'' \to 0$, and suppose F' c-soft. By Lemma 1.3.5 there exists a covering $\{V_n\}_{n \in \mathbb{N}}$ of X such that $V_n \subset \subset V_{n+1}$ (and $V_n \in \text{Op}^c(X)$) for each $n \in \mathbb{N}$. All the sequences

$$
0 \to \lim_{U_n \supset \supset V_n} \Gamma(U_n; F') \to \lim_{U_n \supset \supset V_n} \Gamma(U_n; F) \to \lim_{U_n \supset \supset V_n} \Gamma(U_n; F'') \to 0
$$

are exact.
are exact by Proposition 1.3.2, and the morphism \(\lim_{n} \Gamma(U_{n+1}; F') \to \lim_{n} \Gamma(U_{n}; F') \) is surjective for all \(n \). Then by Proposition 1.12.3 of [26] the sequence

\[
0 \to \lim_{n} \lim_{n+1 \supset V_{n}} \Gamma(U_{n}; F') \to \lim_{n} \lim_{n+1 \supset V_{n}} \Gamma(U_{n}; F) \to \lim_{n} \lim_{n+1 \supset V_{n}} \Gamma(U_{n}; F'') \to 0
\]

is exact. By Lemma 1.2.16 \(\lim_{n} \lim_{n+1 \supset V_{n}} \Gamma(U_{n}; G) \simeq \Gamma(X; G) \) for any \(G \in \text{Mod}(kX) \) and the result follows. □

Example 1.3.7. Let us consider some particular cases

(i) When \(X \) is Noetherian c-soft sheaves are flabby sheaves.

(ii) When \(X \) has a basis of quasi-compact open subsets, then \(F \in \text{Mod}(kX) \) is c-soft if the restriction morphism \(\Gamma(U; F) \to \Gamma(V; F) \) is surjective, for any quasi-compact open subsets \(U, V \) of \(X \) with \(U \supseteq V \).

(iii) When \(X \) is a locally compact space countable at infinity, then we recover c-soft sheaves as in chapter II of [26].

(iv) When \(E_{\mathbb{R}+} \) is a vector bundle endowed with the conic topology, then \(F \in \text{Mod}(kE_{\mathbb{R}+}) \) is c-soft if the restriction morphism \(\Gamma(E_{\mathbb{R}+}; F) \to \Gamma(K; F) \) is surjective, where \(K \) is defined as in Example 1.2.15.

2. **Sheaves on \(T \)-spaces.**

In the following we shall assume that \(k \) is a field and \(X \) is a topological space. Below we give the definition of \(T \)-space, adapting the construction of Kashiwara and Schapira [28]. We study the category of sheaves on \(X_{T} \) generalizing results already known in the case of subanalytic sheaves. Then we prove that as in [19] the category of sheaves on \(X_{T} \) is equivalent to the category of sheaves on a locally weakly-compact topological space \(\tilde{X}_{T} \), the \(T \)-spectrum, which generalizes the notion of o-minimal spectrum.

2.1. **\(T \)-sheaves.**

Let \(X \) be a topological space and let us consider a family \(T \) of open subsets of \(X \).

Definition 2.1.1. The topological space \(X \) is a \(T \)-space if the family \(T \) satisfies the hypotheses below

\[
\begin{cases}
\text{(i) } T \text{ is a basis for the topology of } X, \text{ and } \emptyset \in T, \\
\text{(ii) } T \text{ is closed under finite unions and intersections,}
\text{(iii) every } U \in T \text{ has finitely many } T\text{-connected components},
\end{cases}
\]

where we define:

- a \(T \)-subset is a finite Boolean combination of elements of \(T \);
- a closed (resp. open) \(T \)-subset is a \(T \)-subset which is closed (resp. open) in \(X \);
- a \(T \)-connected subset is a \(T \)-subset which is not the disjoint union of two proper
T-subsets which are closed and open.

Example 2.1.2. Let $R = (R, <, 0, 1, +, \cdot)$ be a real closed field. Let X be a locally semialgebraic space ([10], [11]) and consider the subfamily of $\text{Op}(X)$ defined by $T = \{U \in \text{Op}(X) : U$ is semialgebraic}. The family T satisfy (2.1). Note also that the T-subsets of X are exactly the semialgebraic subsets of X ([7]).

Example 2.1.3. Let X be a real analytic manifold and consider the subfamily of $\text{Op}(X)$ defined by $T = \text{Op}^c(X_{sa}) = \{U \in \text{Op}(X_{sa}) : U$ is subanalytic relatively compact}. The family T satisfies (2.1).

Example 2.1.4. Let X be a real analytic manifold endowed with a subanalytic action μ of \mathbb{R}^+. In other words we have a subanalytic map

$$\mu : X \times \mathbb{R}^+ \to X,$$

which satisfies, for each $t_1, t_2 \in \mathbb{R}^+$:

$$\begin{cases}
\mu(x, t_1 t_2) = \mu(\mu(x, t_1), t_2), \\
\mu(x, 1) = x.
\end{cases}$$

Denote by $X_{\mathbb{R}^+}$ the topological space X endowed with the conic topology, i.e. $U \in \text{Op}(X_{\mathbb{R}^+})$ if it is open for the topology of X and invariant by the action of \mathbb{R}^+. We will denote by $\text{Op}^c(X_{\mathbb{R}^+})$ the subcategory of $\text{Op}(X_{\mathbb{R}^+})$ consisting of relatively weakly quasi-compact open subsets. Consider the subfamily of $\text{Op}(X_{\mathbb{R}^+})$ defined by $T = \text{Op}^c(X_{sa, \mathbb{R}^+}) = \{U \in \text{Op}^c(X_{\mathbb{R}^+}) : U$ is subanalytic}. The family T satisfies (2.1).

Example 2.1.5. Let $\mathcal{M} = (M, <, (c)_{c \in C}, (f)_{f \in F}, (R)_{R \in R})$ be an arbitrary o-minimal structure. Let X be a locally definable space ([3]) and consider the subfamily of $\text{Op}(X)$ defined by $T = \text{Op}(X_{\text{def}}) = \{U \in \text{Op}(X) : U$ is definable}. The family T satisfies (2.1). Note also that the T-subsets of X are exactly the definable subsets of X (by the cell decomposition theorem in [13], see [19, Proposition 2.1]).

Let X be a T-space. One can endow the category T with a Grothendieck topology, called the T-topology, in the following way: a family $\{U_i\}_i$ in T is a covering of $U \in T$ if it admits a finite subcover. We denote by X_T the associated site, write for short k_T instead of X_T, and let $\rho : X \to X_T$ be the natural morphism of sites. We have functors

$$\text{Mod}(k_X) \xrightarrow{\rho_*} \text{Mod}(k_T). \quad (2.2)$$

Proposition 2.1.6. We have $\rho^{-1} \circ \rho_* \simeq \text{id}$. Equivalently, the functor ρ_* is fully faithful.

Proof. Let $V \in \text{Op}(X)$ and let $G \in \text{Mod}(k_T)$. Then $\rho^{-1}G = (\rho^{-}F)^{++}$, where $\rho^{-}G \in \text{Psh}(k_X)$ is defined by
Sheaves on T-topologies

\[\text{Op}(X) \ni V \mapsto \lim_{U \supseteq V, U \in T} G(U). \]

In particular, when $U \in T$, $\rho^{-1}G(U) = G(U)$.

Let $F \in \text{Mod}(k_X)$ and denote by $\iota: \text{Mod}(k_X) \to \text{Psh}(k_X)$ the forgetful functor. The adjunction morphism $\rho^{-1} \circ \rho_* \to \text{id}$ in $\text{Psh}(k_X)$ defines $\rho^{-1} \rho_* F \to \iota F$. This morphism is an isomorphism on T, since $\rho^{-1} \rho_* F(U) \simeq \rho_* F(U) \simeq F(U) \simeq \iota F(U)$ when $U \in T$. By (2.1) (i) T forms a basis for the topology of X, hence we get an isomorphism

$$\rho^{-1} \rho_* F \simeq (\rho^{-1} \rho_*)^+ \simeq (\iota F)^+ \simeq F$$

and the result follows. □

Proposition 2.1.7. Let $\{F_i\}_{i \in I}$ be a filtrant inductive system in $\text{Mod}(k_T)$ and let $U \in T$. Then

$$\lim_i \Gamma(U; F_i) \simeq \Gamma(U; \lim_i F_i).$$

Proof. Denote by $\text{"lim"}_i F_i$ the presheaf $V \mapsto \lim_i \Gamma(V; F_i)$ on X_T. Let $U \in T$ and let S be a finite covering of U. Since \lim_i commutes with finite projective limits we obtain the isomorphism $(\text{"lim"}_i F_i)(S) \sim \lim_i F_i(S)$ and $F_i(U) \sim F_i(S)$ since $F_i \in \text{Mod}(k_T)$ for each i. Moreover the family of finite coverings of U is cofinal in $\text{Cov}(U)$. Hence $\text{"lim"}_i F_i \sim (\text{"lim"}_i F_i)^+$. Applying once again the functor $(\cdot)^+$ we get

$$(\text{"lim"}_i F_i) \sim (\text{"lim"}_i F_i)^+ \sim (\text{"lim"}_i F_i)^{++} \sim \lim_i F_i.$$

Hence applying the functor $\Gamma(U; \cdot)$ we obtain the isomorphism $\lim_i \Gamma(U; F_i) \sim \Gamma(U; \lim_i F_i)$ for each $U \in T$. □

Proposition 2.1.8. Let F be a presheaf on X_T and assume that

(i) $F(\emptyset) = 0$,
(ii) For any $U, V \in T$ the sequence $0 \to F(U \cup V) \to F(U) \oplus F(V) \to F(U \cap V)$ is exact.

Then $F \in \text{Mod}(k_T)$.

Proof. Let $U \in T$ and let $\{U_j\}_{j=1}^n$ be a finite covering of U. Set for short $U_{ij} = U_i \cap U_j$. We have to show the exactness of the sequence

$$0 \to F(U) \to \bigoplus_{1 \leq k \leq n} F(U_k) \to \bigoplus_{1 \leq i < j \leq n} F(U_{ij}),$$

...
where the second morphism sends \((s_k)_{1 \leq k \leq n}\) to \((t_{ij})_{1 \leq i < j \leq n}\) by \(t_{ij} = s_i|_{U_{ij}} - s_j|_{U_{ij}}\).

We shall argue by induction on \(n\). For \(n = 1\) the result is trivial, and \(n = 2\) is the hypothesis. Suppose that the assertion is true for \(j \leq n - 1\) and set \(U' = \bigcup_{1 \leq k < n} U_k\).

By the induction hypothesis the following commutative diagram is exact

\[
\begin{array}{ccc}
0 & \rightarrow & F(U) \\
\downarrow & & \downarrow \\
0 & \rightarrow & F(U') \oplus F(U_n) \\
\downarrow & & \downarrow \\
\bigoplus_{i<n} F(U_i) \oplus F(U_n) & \rightarrow & \bigoplus_{i<n} F(U_{in}) \\
\downarrow & & \downarrow \\
\bigoplus_{i<j<n} F(U_{ij}) & . &
\end{array}
\]

Then the result follows. \(\square\)

Example 2.1.9. Let us see some examples of sites associated to \(\mathcal{T}\)-topologies:

(i) When \(\mathcal{T}\) is the family of Example 2.1.2 we obtain the semi-algebraic site of \([10]\), \([11]\).

(ii) When \(\mathcal{T}\) is the family of Example 2.1.3 we obtain the subanalytic site \(X_{sa}\) of \([28]\), \([35]\).

(iii) When \(\mathcal{T}\) is the family of Example 2.1.4 we obtain the conic subanalytic site of \([36]\).

(iv) When \(\mathcal{T}\) is the family of Example 2.1.5 we obtain the o-minimal site \(X_{def}\). It is the one considered in \([19]\) when \(X\) is a definable space.

2.2. \(\mathcal{T}\)-coherent sheaves.

Let us consider the category \(\text{Mod}(k_X)\) of sheaves of \(k_X\)-modules on \(X\), and denote by \(\mathcal{K}\) the subcategory whose objects are the sheaves \(F = \bigoplus_{i \in I} kU_i\), with \(I\) finite and \(U_i \in \mathcal{T}\) for each \(i\). The following definition is extracted from \([28]\).

Definition 2.2.1. Let \(\mathcal{T}\) be a subfamily of \(\text{Op}(X)\) satisfying (2.1), and let \(F \in \text{Mod}(k_X)\).

(i) \(F\) is \(\mathcal{T}\)-finite if there exists an epimorphism \(G \rightarrow F\) with \(G \in \mathcal{K}\).

(ii) \(F\) is \(\mathcal{T}\)-pseudo-coherent if for any morphism \(\psi : G \rightarrow F\) with \(G \in \mathcal{K}\), \(\ker \psi\) is \(\mathcal{T}\)-finite.

(iii) \(F\) is \(\mathcal{T}\)-coherent if it is both \(\mathcal{T}\)-finite and \(\mathcal{T}\)-pseudo-coherent.

Remark that (ii) is equivalent to the same condition with “\(G\) is \(\mathcal{T}\)-finite” instead of “\(G \in \mathcal{K}\)”. One denotes by \(\text{Coh}(\mathcal{T})\) the full subcategory of \(\text{Mod}(k_X)\) consisting of \(\mathcal{T}\)-coherent sheaves. It is easy (see \([29\), Exercise 8.23]) to prove that \(\text{Coh}(\mathcal{T})\) is additive and stable by kernels.
Lemma 2.2.2. Let $F, G \in \mathcal{K}$. Then, given $\varphi : F \to G$, we have $\ker \varphi \in \mathcal{K}$.

Proof. We have $F = \bigoplus_{i=1}^l k_{W_i}; \ G = \bigoplus_{j=1}^m k_{W'_j}$. Composing with the projection p_j, $j = 1, \ldots, m$ on each factor of G, $\ker \varphi$ will be the intersection of the $\ker p_j \circ \varphi$ so that, if each one has the desired form, the same will happen to their intersection. Therefore it is sufficient to assume $m = 1$, let us say, $G = k_{W}$. A morphism $\varphi : F \to G$ is then defined by a sequence $v = (v_1, \ldots, v_l)$, where v_i is the image by φ of the section of k_{W_i} defined by 1 on W_i, so $v_i = 0$ if $W_i \not\subset W$. More precisely, if $s = (s_1, \ldots, s_l)$ is a germ of F in y, we have $\varphi(s_1, \ldots, s_l) = \sum_{i=1}^l v_i s_i$. So, given $s = (s_1, \ldots, s_l) \in \ker \varphi$, if, for a given i, we have $v_i s_i \neq 0$, then s defines a germ of $H_i =: \bigoplus_{i \neq i} k_{W_i \cap W_i}$ in y.

Accordingly, $\ker \varphi \simeq \bigoplus_{i=1}^l H_i$. \hfill \Box

Therefore, according to the definition of $\text{Coh}(\mathcal{T})$ and to Lemma 2.2.2, any $F \in \text{Coh}(\mathcal{T})$ admits a finite resolution

$$K^\bullet := 0 \to K^1 \to \cdots \to K^n \to F \to 0$$

consisting of objects belonging to \mathcal{K}.

Proposition 2.2.3. Let $U \in \mathcal{T}$ and consider the constant sheaf $k_{U_X^T} \in \text{Mod}(k_{\mathcal{T}})$. We have $k_{U_X^T} \simeq \rho_* k_U$.

Proof. Let F be the presheaf on X_T defined by $F(V) = k$ if $V \subset U$, $F(V) = 0$ otherwise. This is a separated presheaf and $k_{U_X^T} \simeq F^{++}$. Moreover there is an injective arrow $F(V) \hookrightarrow \rho_* k_U(V)$ for each $V \in \text{Op}(X_T)$. Hence $F^{++} \hookrightarrow \rho_* k_U$ since the functor $(\cdot)^{++}$ is exact. Let $S \subseteq T$ be the sub-family of T-connected elements. Then S forms a basis for the Grothendieck topology of X_T. For each $W \in S$ we have $F(W) \simeq \rho_* k_U(W) \simeq k$ if $W \subset U$ and $F(W) = 0$ otherwise. Then $F^{++} \simeq \rho_* k_U$. \hfill \Box

Proposition 2.2.4. The restriction of ρ_* to $\text{Coh}(\mathcal{T})$ is exact.

Proof. Let us consider an epimorphism $G \to F$ in $\text{Coh}(\mathcal{T})$, we have to prove that $\psi : \rho_* G \to \rho_* F$ is an epimorphism. Let $U \in \mathcal{T}$ and let $0 \neq s \in \Gamma(U; \rho_* F) \simeq \text{Hom}_{k_{X}}(k_U, F)$ (by adjunction). Set $G' = G \times_F k_U = \ker(G \oplus k_U \Rightarrow F)$. Then $G' \in \text{Coh}(\mathcal{T})$ and moreover $G' \to k_U$. There exists a finite $\{U_i\}_{i \in I} \subset \mathcal{T}$ of T-connected elements such that $\bigoplus_{i \in I} k_{U_i} \to G'$. The composition $k_{U_i} \to G' \to k_U$ is given by the multiplication by $a_i \in k$. Set $I_0 = \{k_{U_i}; a_i \neq 0\}$, we may assume $a_i = 1$. We get a diagram

\[
\begin{array}{ccc}
\bigoplus_{i \in I_0} k_{U_i} & \longrightarrow & G' \longrightarrow G \\
\downarrow & & \downarrow \\
k_{U} & \to & F.
\end{array}
\]

The composition $k_{U} \to G' \to G$ defines $t_i \in \text{Hom}_{k_{X}}(k_{U_i}, G) \simeq \Gamma(U_i; \rho_* G)$. Hence for each $s \in \Gamma(U; \rho_* F)$ there exists a finite covering $\{U_i\}$ of U and $t_i \in \Gamma(U_i; \rho_* G)$ such that
\[\psi(t_i) = s|_{U_i}. \] This means that \(\psi \) is surjective. \[\square \]

Notation 2.2.5. Since the functor \(\rho_* \) is fully faithfull and exact on \(\text{Coh}(T) \), we will often identify \(\text{Coh}(T) \) with its image in \(\text{Mod}(k_T) \) and write \(F \) instead of \(\rho_* F \) for \(F \in \text{Coh}(T) \).

Theorem 2.2.6. The following hold:

(i) The category \(\text{Coh}(T) \) is stable by finite sums, kernels, cokernels and extensions in \(\text{Mod}(k_T) \).

(ii) The category \(\text{Coh}(T) \) is stable by \(\bigotimes_{k_T} \) in \(\text{Mod}(k_T) \).

Proof. (i) The result follows from a general result of homological algebra of [27, Appendix A.1]. With the notations of [27] let \(P \) be the set of finite families of elements of \(T \), for \(U = \{ U_i \}_{i \in I} \in P \) set

\[L(U) = \bigoplus_i k_{U_i}, \]

for \(V = \{ V_j \}_{j \in J} \in P \) set

\[\text{Hom}_P(U, V) = \text{Hom}_{k_T}(L(U), L(V)) = \bigoplus_i \bigoplus_j \text{Hom}_{k_T}(k_{U_i}, k_{V_j}) \]

and for \(F \in \text{Mod}(k_T) \) set

\[H(U, F) = \text{Hom}_{k_T}(L(U), F) = \bigoplus_i \text{Hom}_{k_T}(k_{U_i}, F). \]

By Proposition A.1 of [27] in order to prove (i) it is enough to prove the properties (A.1)–(A.4) below:

(A.1) For any \(U = \{ U_i \} \in P \) the functor \(H(U, \bullet) \) is left exact in \(\text{Mod}(k_T) \).

(A.2) For any morphism \(g : V \to W \) in \(P \), there exists a morphism \(f : U \to V \) in \(P \) such that \(U \xrightarrow{f} V \xrightarrow{g} W \) is exact.

(A.3) For any epimorphism \(f : F \to G \) in \(\text{Mod}(k_T) \), \(U \in P \) and \(\psi \in H(U, G) \), there exists \(V \in P \) and an epimorphism \(g \in \text{Hom}_P(V, U) \) and \(\varphi \in H(V, F) \) such that \(\psi \circ g = f \circ \varphi \).

(A.4) For any \(U, V \in P \) and \(\psi \in H(U, L(V)) \) there exists \(W \in P \) and an epimorphism \(f \in \text{Hom}_P(W, U) \) and a morphism \(g \in \text{Hom}_P(W, U) \) such that \(L(g) = \psi \circ f \) in \(\text{Hom}_{k_T}(L(W), L(V)) \).

It is easy to check that the axioms (A.1)–(A.4) are satisfied.

(ii) Let \(F \in \text{Coh}(T) \). Then \(F \) has a resolution

\[\bigoplus_{j \in J} k_{U_j} \to \bigoplus_{i \in I} k_{U_i} \to F \to 0 \]
with I and J finite. Let $V \in \mathcal{T}$. The sequence

$$\bigoplus_{j \in J} k_{V \cap U_j} \to \bigoplus_{i \in I} k_{V \cap U_i} \to F_V \to 0$$

is exact. Then it follows from (i) that F_V is coherent. Let $G \in \text{Coh}(\mathcal{T})$. The sequence

$$\bigoplus_{j \in J} G_{U_j} \to \bigoplus_{i \in I} G_{U_i} \to G \bigotimes_{k_{\mathcal{T}}} F \to 0$$

is exact. The sheaves G_{U_i} and G_{U_j} are coherent for each $i \in I$ and each $j \in J$. Hence it follows by (i) that $G \bigotimes_{k_{\mathcal{T}}} F$ is coherent as required. □

Corollary 2.2.7. The following hold:

(i) The category $\text{Coh}(\mathcal{T})$ is stable by finite sums, kernels, cokernels in $\text{Mod}(k_X)$.

(ii) The category $\text{Coh}(\mathcal{T})$ is stable by \bigotimes_{k_X} in $\text{Mod}(k_X)$.

Proof. (i) The stability under finite sums and kernels is easy, see [29, Exercise 8.23]. Let $F, G \in \text{Coh}(\mathcal{T})$ and let $\varphi : F \to G$ be a morphism in $\text{Mod}(k_X)$. Then $\rho_*(\varphi)$ is a morphism in $\text{Mod}(k_{\mathcal{T}})$ and $\text{coker}(\rho_*\varphi) \in \text{Coh}(\mathcal{T})$ by Theorem 2.2.6. We have $\text{coker}(\rho_*\varphi) \simeq \rho_* \text{coker} \varphi$ since ρ_* is exact on $\text{Coh}(\mathcal{T})$ by Proposition 2.2.4. Composing with ρ^{-1} and applying Proposition 2.1.6 we obtain $\text{coker} \varphi \in \text{Coh}(\mathcal{T})$.

(ii) The proof of the stability by \bigotimes_{k_X} is similar to that of Theorem 2.2.6. □

Theorem 2.2.8. (i) Let $G \in \text{Coh}(\mathcal{T})$ and let $\{F_i\}$ be a filtrant inductive system in $\text{Mod}(k_{\mathcal{T}})$. Then we have the isomorphism

$$\lim_i \text{Hom}_{k_{\mathcal{T}}}(\rho_* G, F_i) \simeq \text{Hom}_{k_{\mathcal{T}}}(\rho_* G, \lim_i F_i).$$

(ii) Let $F \in \text{Mod}(k_{\mathcal{T}})$. There exists a small filtrant inductive system $\{F_i\}_{i \in I}$ in $\text{Coh}(\mathcal{T})$ such that $F \simeq \lim_i \rho_* F_i$.

Proof. (i) There exists an exact sequence $G_1 \to G_0 \to G \to 0$ with G_1, G_0 finite direct sums of constant sheaves k_U with $U \in \mathcal{T}$. Since ρ_* is exact on $\text{Coh}(\mathcal{T})$ and commutes with finite sums, by Proposition 2.2.3 we are reduced to prove the isomorphism $\lim_i \Gamma(U; F_i) \simeq \Gamma(U; \lim_i F_i)$. Then the result follows from Proposition 2.1.7.

(ii) Let $F \in \text{Mod}(k_{\mathcal{T}})$, and define $I_0 := \{(U, s) : U \in \mathcal{T}, s \in \Gamma(U; F)\}$

$$G_0 := \bigoplus_{(U, s) \in I_0} \rho_* k_U$$

The morphism $\rho_* k_U \to F$, where the section $1 \in \Gamma(U; k_U)$ is sent to $s \in \Gamma(U; F)$
defines an epimorphism \(\varphi : G_0 \to F \). Replacing \(F \) by \(\ker \varphi \) we construct a sheaf \(G_1 = \bigoplus_{(V,t) \in I_1} \rho_*k_V \) and an epimorphism \(G_1 \to \ker \varphi \). Hence we get an exact sequence \(G_1 \to G_0 \to F \to 0 \). For \(J_0 \subseteq I_0 \) set for short \(G_{J_0} = \bigoplus_{(U,s) \in J_0} \rho_*k_U \) and define similarly \(G_{J_1} \). Set

\[J = \{ (J_1, J_0); J_k \subseteq I_k, J_k \text{ is finite and } \text{im} \varphi |_{G_{J_1}} \subseteq G_{J_0} \} \]

The category \(J \) is filtrant and \(F \simeq \varprojlim_{(J_1, J_0) \in J} \text{coker}(G_{J_1} \to G_{J_0}) \).

Corollary 2.2.9. Let \(G \in \text{Coh}(T) \) and let \(\{ F_i \} \) be a filtrant inductive system in \(\text{Mod}(k_T) \). Then we have an isomorphism

\[
\varprojlim_i \text{Hom}_{k_T}(G, F_i) \simeq \text{Hom}_{k_T}(G, \varprojlim_i F_i).
\]

Proof. Let \(U \in T \). We have the chain of isomorphisms

\[
\Gamma(U; \varprojlim_i \text{Hom}_{k_T}(G, F_i)) \simeq \varprojlim_i \Gamma(U; \text{Hom}_{k_T}(G, F_i)) \\
\simeq \varprojlim_i \text{Hom}_{k_T}(G_U, F_i) \\
\simeq \text{Hom}_{k_T}(G_U, \varprojlim_i F_i) \\
\simeq \Gamma(U; \text{Hom}_{k_T}(G, \varprojlim_i F_i)),
\]

where the first and the third isomorphism follow from Theorem 2.2.8 (i). The fact that \(G_U \in \text{Coh}(T) \) follows from Theorem 2.2.6 (ii).

As in [28], we can define the indization of the category \(\text{Coh}(T) \). Recall that the category \(\text{Ind}(\text{Coh}(T)) \), of \(\text{ind-}T \)-coherent sheaves is the category whose objects are filtrant inductive limits of functors

\[
\varprojlim_i \text{Hom}_{\text{Coh}(T)}(\bullet, F_i) \quad (\text{"}\varprojlim_i F_i\text{" for short}),
\]

where \(F_i \in \text{Coh}(T) \), and the morphisms are the natural transformations of such functors. Note that since \(\text{Coh}(T) \) is a small category, \(\text{Ind}(\text{Coh}(T)) \) is equivalent to the category of \(k \)-additive left exact contravariant functors from \(\text{Coh}(T) \) to \(\text{Mod}(k) \). See [29] for a complete exposition on indizations of categories. We can extend the functor \(\rho_* : \text{Coh}(T) \to \text{Mod}(k_T) \) to \(\lambda : \text{Ind}(\text{Coh}(T)) \to \text{Mod}(k_T) \) by setting \(\lambda(\text{"}\varprojlim_i F_i\text{"}) := \varprojlim_i \rho_* F_i \).

Corollary 2.2.10. The functor \(\lambda : \text{Ind}(\text{Coh}(T)) \to \text{Mod}(k_T) \) is an equivalence of categories.
Proof. Let $F = \lim_{\rightarrow} F_j, G = \lim_{\rightarrow} G_i \in \text{I}(\text{Coh}(T))$. By Theorem 2.2.8 (i) and the fact that the functor ρ_* is fully faithfull on $\text{Coh}(T)$ we have
\[
\text{Hom}_{kT}(\lambda(F), \lambda(G)) \simeq \text{Hom}_{kT}(\lim_{\rightarrow} \rho_* F_j, \lim_{\rightarrow} \rho_* G_i)
\]
\[
\simeq \lim_{\rightarrow} \lim_{\rightarrow} \text{Hom}_{kT}(\rho_* F_j, \rho_* G_i)
\]
\[
\simeq \lim_{\rightarrow} \lim_{\rightarrow} \text{Hom}_{\text{Coh}(T)}(F_j, G_i)
\]
\[
\simeq \text{Hom}_{\text{Ind}(\text{Coh}(T))}(F, G),
\]
hence λ is fully faithful. By Theorem 2.2.8 (ii) for each $F \in \text{Mod}(kT)$ there exists $G = \lim_{\rightarrow} G_i \in \text{Ind}(\text{Coh}(T))$ such that $\lambda(G) = \lim_{\rightarrow} \rho_* F_i \simeq F$, hence λ is essentially surjective.

2.3. T-flabby sheaves.

Definition 2.3.1. We say that an object $F \in \text{Mod}(kT)$ is T-flabby if for each $U, V \in T$ with $V \supseteq U$ the restriction morphism $\Gamma(V; F) \to \Gamma(U; F)$ is surjective.

Remark 2.3.2. Remark that the category $\text{Mod}(kT)$ is a Grothendieck category, hence it has enough injectives. It follows from the definition that injective sheaves are T-flabby. This implies that the family of T-flabby objects is cogenerating in $\text{Mod}(kT)$.

Example 2.3.3. Let us see some examples of T-flabby sheaves:

(i) When T is the family of Example 2.1.2 we obtain the family of sa-flabby objects of $[10]$.

(ii) When T is the family of Example 2.1.3 we obtain the family of quasi-injective objects of $[35]$.

Proposition 2.3.4. The following hold:

(i) Let F_i be a filtrant inductive system of T-flabby sheaves. Then $\lim_{i} F_i$ is T-flabby.

(ii) Products of T-flabby objects are T-flabby.

Proof. We will only prove (i) since the proof of (ii) is similar since taking products is exact and commutes with taking sections. Let $U \in T$. Then for each i the restriction morphism $\Gamma(V; F_i) \to \Gamma(U; F_i)$ is surjective. Applying the exact \lim_{i} and using Proposition 2.1.7, the morphism
\[
\Gamma(V; \lim_{i} F_i) \simeq \lim_{i} \Gamma(V; F_i) \to \lim_{i} \Gamma(U; F_i) \simeq \Gamma(U; \lim_{i} F_i)
\]
is surjective.
Proposition 2.3.5. The full additive subcategory of \(\text{Mod}(k_T) \) of \(T \)-flabby object is \(\Gamma(U; \bullet) \)-injective for every \(U \in T \), i.e.:

(i) For every \(F \in \text{Mod}(k_T) \) there exists a \(T \)-flabby object \(F' \in \text{Mod}(k_T) \) and an exact sequence \(0 \to F \to F' \).

(ii) Let \(0 \to F' \to F \to F'' \to 0 \) be an exact sequence in \(\text{Mod}(k_T) \) and assume that \(F' \) is \(T \)-flabby. Then the sequence

\[
0 \to \Gamma(U; F') \to \Gamma(U; F) \to \Gamma(U; F'') \to 0
\]

is exact.

(iii) Let \(F', F, F'' \in \text{Mod}(k_T) \), and consider the exact sequence

\[
0 \to F' \to F \to F'' \to 0.
\]

Suppose that \(F' \) is \(T \)-flabby. Then \(F \) is \(T \)-flabby if and only if \(F'' \) is \(T \)-flabby.

Proof. (i) It follows from the definition that injective sheaves are \(T \)-flabby. So (i) holds since it is true for injective sheaves. Indeed, as a Grothendieck category, \(\text{Mod}(k_T) \) admits enough injectives.

(ii) Let \(s'' \in \Gamma(U; F'') \), and let \(\{V_i\}_{i=1}^n \in \text{Cov}(U) \) be such that there exists \(s_i \in \Gamma(V_i; F) \) whose image is \(s''|_{V_i} \). For \(n \geq 2 \) on \(V_1 \cap V_2 \) \(s_1 - s_2 \) defines a section of \(\Gamma(V_1 \cap V_2; F') \) which extends to \(s' \in \Gamma(U; F') \) since \(F' \) is \(T \)-flabby. Replace \(s_1 \) with \(s_1 - s' \) (identifying \(s' \) with its image in \(F \)). We may suppose that \(s_1 = s_2 \) on \(V_1 \cap V_2 \). Then there exists \(t \in \Gamma(V_1 \cap V_2, F) \) such that \(t|_{V_i} = s_i, \ i = 1, 2 \). Thus the induction proceeds.

(iii) Let \(U, V \in T \) with \(V \supseteq U \) and let us consider the diagram below

\[
\begin{array}{ccc}
0 & \longrightarrow & \Gamma(V; F') \\
\downarrow{\alpha} & & \downarrow{\beta} \\
0 & \longrightarrow & \Gamma(U; F')
\end{array}
\begin{array}{ccc}
\Gamma(V; F) & \longrightarrow & \Gamma(V; F'') \\
\downarrow{\beta} & & \downarrow{\gamma} \\
\Gamma(U; F) & \longrightarrow & \Gamma(U; F'')
\end{array}
\begin{array}{ccc}
\longrightarrow & \longrightarrow & 0 \\
\downarrow{\gamma} & & \\
0 & \longrightarrow & 0
\end{array}
\]

where the row are exact by (ii) and the morphism \(\alpha \) is surjective since \(F' \) is \(T \)-flabby. It follows from the five lemma that \(\beta \) is surjective if and only if \(\gamma \) is surjective.

\[\square\]

Theorem 2.3.6. Let \(F \in \text{Mod}(k_T) \). Then the following hold:

(i) \(F \) is \(T \)-flabby if and only if the functor \(\text{Hom}_{k_T}(\bullet, F) \) is exact on \(\text{Coh}(T) \).

(ii) If \(F \) is \(T \)-flabby then the functor \(\text{Hom}_{k_T}(\bullet, F) \) is exact on \(\text{Coh}(T) \).

Proof. (i) is a consequence of a general result of homological algebra (see Theorem 8.7.2 of [29]). For (ii), let \(F \in \text{Mod}(k_T) \) be \(T \)-flabby. There is an isomorphism of functors

\[
\Gamma(U; \text{Hom}_{k_T}(\bullet, F)) \cong \text{Hom}_{k_T}((\bullet)_U, F)
\]

for each \(U \in T \). By Theorem 2.2.6 and (i) the functor \(\text{Hom}_{k_T}((\bullet)_U, F) \) is exact on
Coh(T) and so the functor $\mathcal{H}om_{k_T}(\bullet, F)$ is also exact on Coh(T).

Theorem 2.3.7. Let $G \in \text{Coh}(T)$. Then the following hold:

(i) The family of T-flabby sheaves is injective with respect to the functor $\text{Hom}_{k_T}(G, \bullet)$.

(ii) The family of T-flabby sheaves is injective with respect to the functor $\mathcal{H}om_{k_T}(G, \bullet)$.

Proof. (i) Let $G \in \text{Coh}(T)$. Let $0 \to F' \to F \to F'' \to 0$ be an exact sequence in $\text{Mod}(k_T)$ and assume that F' is T-flabby. We have to show that the sequence

$$0 \to \text{Hom}_{k_T}(G, F') \to \text{Hom}_{k_T}(G, F) \to \text{Hom}_{k_T}(G, F'') \to 0$$

is exact.

There is an epimorphism $\varphi : \bigoplus_{i \in I} kU_i \to G$ where I is finite and $U_i \in T$ for each $i \in I$. The sequence $0 \to \ker \varphi \to \bigoplus_{i \in I} kU_i \to G \to 0$ is exact. We set for short $G_1 = \ker \varphi$ and $G_2 = \bigoplus_{i \in I} kU_i$. We get the following diagram where the first column is exact by Theorem 2.3.6 (i)

\[
\begin{array}{ccc}
0 & \to & 0 \\
\downarrow & & \downarrow \\
0 & \to & \text{Hom}_{k_T}(G, F') \to \text{Hom}_{k_T}(G, F) \to \text{Hom}_{k_T}(G, F'') \to 0 \\
\downarrow & & \downarrow \\
0 & \to & \text{Hom}_{k_T}(G_2, F') \to \text{Hom}_{k_T}(G_2, F) \to \text{Hom}_{k_T}(G_2, F'') \to 0 \\
\downarrow & & \downarrow \\
0 & \to & \text{Hom}_{k_T}(G_1, F') \to \text{Hom}_{k_T}(G_1, F) \to \text{Hom}_{k_T}(G_1, F'') \to 0 \\
\downarrow & & \downarrow \\
0 & & 0
\end{array}
\]

The second row is exact by Proposition 2.3.5 (ii), hence the top row is exact by the snake lemma.

(ii) Let $G \in \text{Coh}(T)$. It is enough to check that for each $U \in T$ and each exact sequence $0 \to F' \to F \to F'' \to 0$ with F' T-flabby, the sequence

$$0 \to \Gamma(U; \mathcal{H}om_{k_T}(G, F')) \to \Gamma(U; \mathcal{H}om_{k_T}(G, F)) \to \Gamma(U; \mathcal{H}om_{k_T}(G, F'')) \to 0$$

is exact. We have

$$\Gamma(U, \mathcal{H}om_{k_T}(G, \bullet)) \simeq \text{Hom}_{k_T}(G_U, \bullet),$$

and, by (i) and the fact that $G_U \in \text{Coh}(T)$ (Theorem 2.2.6 (ii)), T-flabby objects are injective with respect to the functor $\text{Hom}_{k_T}(G_U, \bullet)$ for each $G \in \text{Coh}(T)$, and for each $U \in T$. \hfill \square
Proposition 2.3.8. Let $F \in \text{Mod}(k_T)$. Then F is T-flabby if and only if $\text{Hom}_{k_T}(G, F)$ is T-flabby for each $G \in \text{Coh}(T)$.

Proof. Suppose that F is T-flabby, and let $G \in \text{Coh}(T)$. We have

$$\text{Hom}_{k_T}(\bullet, \text{Hom}_{k_T}(G, F)) \cong \text{Hom}_{k_T}(\bullet \bigotimes_{k_T} G, F)$$

and $\text{Hom}_{k_T}(\bullet \bigotimes_{k_T} G, F)$ is exact on $\text{Coh}(T)$ by Theorems 2.2.6 (ii) and 2.3.6 (i).

Suppose that $\text{Hom}_{k_T}(G, F)$ is T-flabby for each $G \in \text{Coh}(T)$. Let $U, V \in T$ with $V \supseteq U$. For each $W \in T$ the morphism $\Gamma(V; \Gamma_W F) \rightarrow \Gamma(U; \Gamma_W F)$ is surjective. Hence the morphism

$$\Gamma(V; F) \cong \Gamma(V; \Gamma_V F)$$

$$\rightarrow \Gamma(U; \Gamma_V F)$$

$$\cong \Gamma(U; F)$$

is surjective. □

Let us consider the following subcategory of $\text{Mod}(k_T)$:

$$\mathcal{P}_{X_T} := \{ G \in \text{Mod}(k_T); G \text{ is } \text{Hom}_{k_T}(\bullet, F)\text{-acyclic for each } F \in \mathcal{F}_{X_T} \},$$

where \mathcal{F}_{X_T} is the family of T-flabby objects of $\text{Mod}(k_T)$.

This category is generating. In fact if $\{ U_j \}_{j \in J} \in T$, then $\bigoplus_{j \in J} kU_j \in \mathcal{P}_{X_T}$ by Theorem 2.3.7 (and the fact that $\Pi \text{Hom}_{k_T}(\bullet, \bullet) \cong \text{Hom}_{k_T}(\bigoplus \bullet, \bullet)$) and products are exact). Moreover \mathcal{P}_{X_T} is stable by $\bullet \bigotimes_{k_T} K$, where $K \in \text{Coh}(T)$. In fact if $G \in \mathcal{P}_{X_T}$ and $F \in \mathcal{F}_{X_T}$ we have

$$\text{Hom}_{k_T}(G \bigotimes_{k_T} K, F) \cong \text{Hom}_{k_T}(G, \text{Hom}_{k_T}(K, F))$$

and $\text{Hom}_{k_T}(K, F)$ is T-flabby by Proposition 2.3.8. In particular, if $G \in \mathcal{P}_{X_T}$ then $G_U \in \mathcal{P}_{X_T}$ for every $U \in \text{Op}(X_T)$.

Theorem 2.3.9. The category $(\mathcal{P}_{X_T}^{\text{op}}, \mathcal{F}_{X_T})$ is injective with respect to the functors $\text{Hom}_{k_T}(\bullet, \bullet)$ and $\text{Hom}_{k_T}(\bullet, \bullet)$.

Proof. (i) Let $G \in \mathcal{P}_{X_T}$ and consider an exact sequence $0 \rightarrow F' \rightarrow F \rightarrow F'' \rightarrow 0$ with F' T-flabby. We have to prove that the sequence

$0 \rightarrow \text{Hom}_{k_T}(G, F') \rightarrow \text{Hom}_{k_T}(G, F) \rightarrow \text{Hom}_{k_T}(G, F'') \rightarrow 0$
is exact. Since the functor $\text{Hom}_{kT}(G, \bullet)$ is acyclic on T-flabby sheaves we obtain the result.

Let F be T-flabby, and let $0 \to G' \to G \to G'' \to 0$ be an exact sequence on \mathcal{P}_{X_T}. Since the objects of \mathcal{P}_{X_T} are $\text{Hom}_{kT}(\bullet, F)$-acyclic the sequence

$$0 \to \text{Hom}_{kT}(G'', F) \to \text{Hom}_{kT}(G, F) \to \text{Hom}_{kT}(G', F) \to 0$$

is exact.

(ii) Let $G \in \mathcal{P}_{X_T}$, and let $0 \to F' \to F \to F'' \to 0$ be an exact sequence with F' T-flabby. We shall show that for each $U \in T$ the sequence

$$0 \to \Gamma(U; \text{Hom}_{kT}(G, F')) \to \Gamma(U; \text{Hom}_{kT}(G, F)) \to \Gamma(U; \text{Hom}_{kT}(G, F'')) \to 0$$

is exact. This is equivalent to show that for each $U \in T$ the sequence

$$0 \to \text{Hom}_{kT}(G'_U, F') \to \text{Hom}_{kT}(G_U, F) \to \text{Hom}_{kT}(G'_U, F'') \to 0$$

is exact. This follows since $G'_U \in \mathcal{P}_{X_T}$ as we saw above. The proof of the exactness in $\mathcal{P}_{X_T}^{op}$ is similar. □

Proposition 2.3.10. Let $F \in \text{Mod}(k_T)$. The following assumptions are equivalent

(i) F is T-flabby,
(ii) F is $\text{Hom}_{kT}(G, \bullet)$-acyclic for each $G \in \text{Coh}(T)$,
(iii) $R^1 \text{Hom}_{kT}(k_{V \setminus U}, F) = 0$ for each $U, V \in T$.

Proof. (i) \Rightarrow (ii) follows from Theorem 2.3.7, (ii) \Rightarrow (iii) setting $G = k_{V \setminus U}$ with $U, V \in T$, (iii) \Rightarrow (i) since if $R^1 \text{Hom}_{kT}(k_{V \setminus U}, F) = 0$ for each $U, V \in T$ with $V \supseteq U$, then the restriction $\Gamma(V; F) \to \Gamma(U; F)$ is surjective. □

Let X, Y be two topological spaces and let $T \subset \text{Op}(X), T' \subset \text{Op}(Y)$ satisfy (2.1). Let $f : X \to Y$ be a continuous map. If $f^{-1}(T') \subset T$ then f defines a morphism of sites $f : X_T \to Y_{T'}$.

Proposition 2.3.11. Let $f : X_T \to Y_{T'}$ be a morphism of sites. T-flabby sheaves are injective with respect to the functor f_*. The functor f_* sends T-flabby sheaves to T'-flabby sheaves.

Proof. Let us consider $V \in T'$. There is an isomorphism of functors $\Gamma(V; f_* \bullet) \simeq \Gamma(f^{-1}(V); \bullet)$. It follows from Proposition 2.3.5 that T-flabby are injective with respect to the functor $\Gamma(f^{-1}(V); \bullet)$ for any $V \in T'$.

Let F be T-flabby and let $U, V \in T'$ with $V \supset U$. Then the morphism

$$\Gamma(V; f_* F) = \Gamma(f^{-1}(V); F) \to \Gamma(f^{-1}(U); F) = \Gamma(U; f_* F)$$

is surjective. □
2.4. \textbf{T}-sheaves on locally weakly quasi-compact spaces.

Assume that X is a locally weakly quasi-compact space.

Lemma 2.4.1. For each $U \in \text{Op}^c(X)$ there exists $V \in T$ such that $U \subseteq \subseteq V \subseteq \subseteq X$.

Proof. Since X is locally weakly quasi-compact we may find $W \in \text{Op}^c(X)$ such that $U \subseteq \subseteq W$. By (2.1) (i) we may find a covering $\{W_i\}_{i \in I}$ of X with $W_i \in T$ and $W_i \subseteq \subseteq X$ for each $i \in I$. Then there exists a finite family $\{W_j\}_{\ell = 1}^\ell$ whose union $V = \bigcup_{\ell = 1}^\ell W_j$ contains W. Then $V \in T$ and $U \subseteq \subseteq V \subseteq \subseteq X$. \hfill \Box

When X is locally weakly quasi-compact we can construct a left adjoint to the functor ρ^{-1}.

Proposition 2.4.2. Let $F \in \text{Mod}(k_T)$, and let $U \in \text{Op}(X)$. Then

$$\Gamma(U; \rho^{-1} F) \simeq \lim_{V \subseteq \subseteq U, V \in T} \Gamma(V; F)$$

Proof. By Theorem 2.2.8 we may assume $F = \lim_{i} \rho_* F_i$, with $F_i \in \text{Coh}(T)$. Then $\rho^{-1} F \simeq \lim_{i} \rho^{-1} \rho_* F_i \simeq \lim_{i} F_i$. We have the chain of isomorphisms

$$\begin{align*}
\Gamma(U; \rho^{-1} F) &\simeq \lim_{V \subseteq \subseteq U, V \in T} \lim_{W \subseteq \subseteq V} \Gamma(W; \rho^{-1} F) \\
&\simeq \lim_{V \subseteq \subseteq U, V \in T} \lim_{W \subseteq \subseteq V} \Gamma(W; \lim_{i} \rho^{-1} \rho_* F_i) \\
&\simeq \lim_{V \subseteq \subseteq U, V \in T} \Gamma(V; \rho_* F_i) \\
&\simeq \lim_{V \subseteq \subseteq U, V \in T} \Gamma(V; F),
\end{align*}$$

where the first and the fourth isomorphisms follow from Lemma 1.2.16, the third isomorphism is a consequence of Corollary 1.2.13, and the last isomorphism follows from Proposition 2.1.7. \hfill \Box

Proposition 2.4.3. The functor ρ^{-1} admits a left adjoint, denoted by $\rho_!$. It satisfies

(i) for $F \in \text{Mod}(k_X)$ and $U \in T$, $\rho_! F$ is the sheaf associated to the presheaf $U \mapsto \lim_{U \subseteq \subseteq V} \Gamma(V; F)$,

(ii) For $U \in \text{Op}(X)$ one has $\rho_! k_U \simeq \lim_{V \subseteq \subseteq U, V \in T} k_V$.

Proof. Let $\tilde{F} \in \text{Psh}(k_T)$ be the presheaf $U \mapsto \lim_{U \subseteq \subseteq V} \Gamma(V; F)$, and let $G \in \text{Mod}(k_T)$. We will construct morphisms

$$\text{Hom}_{\text{sh}(k_T)}(\tilde{F}, G) \xrightarrow{\xi} \text{Hom}_{k_X}(F, \rho^{-1} G).$$
To define ξ, let $\varphi : \tilde{F} \to G$ and $U \in \text{Op}(X)$. Then the morphism $\xi(\varphi)(U) : F(U) \to \rho^{-1}G(U)$ is defined as follows

$$F(U) \simeq \lim_{V \subseteq U, V \in T} \lim_{V \subseteq W} F(W) \xrightarrow{\varphi} \lim_{V \subseteq U, V \in T} G(V) \simeq \rho^{-1}G(U).$$

On the other hand, let $\psi : F \to \rho^{-1}G$ and $U \in T$. Then the morphism $\vartheta(\psi)(U) : \tilde{F}(U) \to G(U)$ is defined as follows

$$\tilde{F}(U) \simeq \lim_{U \subseteq V \in T} F(V) \xrightarrow{\psi} \lim_{U \subseteq V \in T} \rho^{-1}G(V) \to G(U).$$

By construction one can check that the morphism ξ and ϑ are inverse to each other. Then (i) follows from the chain of isomorphisms

$$\text{Hom}_{\text{Psh}(kT)}(\tilde{F}, G) \simeq \text{Hom}_{kT}(\tilde{F}^{++}, G) \simeq \text{Hom}_{kT}(\tilde{F}^{++}, G).$$

To show (ii), consider the following sequence of isomorphisms

$$\text{Hom}_{kT}(\rho_!k_U, F) \simeq \text{Hom}_{kX}(k_U, \rho^{-1}F) \simeq \lim_{V \subseteq U, V \in T} \text{Hom}_{kT}(k_V, F) \simeq \text{Hom}_{kT}(\lim_{V \subseteq U, V \in T} k_V, F),$$

where the second isomorphism follows from Proposition 2.4.2.

Proposition 2.4.4. The functor $\rho_!$ is exact and commutes with \lim and \otimes.

Proof. It follows by adjunction that $\rho_!$ is right exact and commutes with \lim, so let us show that it is also left exact. With the notations of Proposition 2.4.3, let $\tilde{F} \in \text{Mod}(k_X)$, and let $\tilde{F} \in \text{Psh}(k_T)$ be the presheaf $U \mapsto \lim_{V \subseteq U, V \in T} \Gamma(V; F)$. Then $\rho_!F \simeq \tilde{F}^{++}$, and the functors $F \mapsto \tilde{F}$ and $G \mapsto G^{++}$ are left exact.

Let us show that $\rho_!$ commutes with \otimes. Let $F, G \in \text{Mod}(k_X)$, the morphism

$$\lim_{U \subseteq V \in T} F(V) \otimes_k \lim_{U \subseteq V \in T} G(V) \to \lim_{U \subseteq V \in T} \left(F(V) \otimes_k G(V) \right)$$

defines a morphism in $\text{Mod}(k_T)$

$$\rho_!F \otimes_{k_T} \rho_!G \to \rho_! \left(F \otimes_{k_X} G \right)$$

by Proposition 2.4.3 (i). Since $\rho_!$ commutes with \lim we may suppose that $F = k_U$ and

□
\(G = k_V\) and the result follows from Proposition 2.4.3 (ii).

Proposition 2.4.5. The functor \(\rho_!\) is fully faithful. In particular one has \(\rho^{-1}\circ \rho_! \simeq \text{id}\). Moreover, for \(F \in \text{Mod}(k_X)\) and \(G \in \text{Mod}(k_T)\) one has

\[
\rho^{-1}\text{Hom}_{k_T}(\rho_! F, G) \simeq \text{Hom}_{k_X}(F, \rho^{-1} G).
\]

Proof. For \(F, G \in \text{Mod}(k_X)\) by adjunction we have

\[
\text{Hom}_{k_X}(\rho^{-1} \rho_! F, G) \simeq \text{Hom}_{k_X}(F, \rho_! \rho^{-1} G) \simeq \text{Hom}_{k_X}(F, G).
\]

This also implies that \(\rho_!\) is fully faithful, in fact

\[
\text{Hom}_{k_T}(\rho_! F, \rho_! G) \simeq \text{Hom}_{k_X}(F, \rho^{-1} \rho_! G) \simeq \text{Hom}_{k_X}(F, G).
\]

Now let \(K, F \in \text{Mod}(k_X)\) and \(G \in \text{Mod}(k_T)\), we have

\[
\text{Hom}_{k_X}(K, \rho^{-1} \text{Hom}_{k_T}(\rho_! F, G)) \simeq \text{Hom}_{k_T}(\rho \rho_!, \text{Hom}_{k_T}(\rho_! F, G))
\]

\[
\simeq \text{Hom}_{k_T}(\rho_! \rho K \bigotimes_{k_T} \rho_! F, G)
\]

\[
\simeq \text{Hom}_{k_T}(\rho_! K \bigotimes_{k_X} F, G)
\]

\[
\simeq \text{Hom}_{k_X}(K \bigotimes_{k_X} F, \rho^{-1} G)
\]

\[
\simeq \text{Hom}_{k_X}(K, \text{Hom}_{k_X}(F, \rho^{-1} G)).
\]

\[\square\]

Finally let us consider sheaves of rings in \(\text{Mod}(k_T)\). If \(\mathcal{A}\) is a sheaf of rings in \(\text{Mod}(k_X)\), then \(\rho_* \mathcal{A}\) and \(\rho \mathcal{A}\) are sheaves of rings in \(\text{Mod}(k_T)\).

Let \(\mathcal{A}\) be a sheaf of unitary \(k\)-algebras on \(X\), and let \(\mathcal{A} \in \text{Psh}(k_T)\) be the presheaf defined by the correspondence \(T \ni U \mapsto \lim_{U \subseteq C} \Gamma(V; \mathcal{A})\). Let \(F \in \text{Psh}(k_T)\), and assume that, for \(V \subset U\), with \(U, V \in T\), the following diagram is commutative:

\[
\begin{array}{ccc}
\Gamma(U; \mathcal{A}) \bigotimes_k \Gamma(U; F) & \longrightarrow & \Gamma(U; F) \\
\downarrow & & \downarrow \\
\Gamma(V; \mathcal{A}) \bigotimes_k \Gamma(V; F) & \longrightarrow & \Gamma(V; F).
\end{array}
\]

In this case one says that \(F\) is a presheaf of \(\mathcal{A}\)-modules on \(T\).

Proposition 2.4.6. Let \(\mathcal{A}\) be a sheaf of \(k\)-algebras on \(X\), and let \(F\) be a presheaf of \(\mathcal{A}\)-modules on \(X_T\). Then \(F^{++} \in \text{Mod}(\rho_! \mathcal{A})\).
PROOF. Let $U \in \mathcal{T}$, and let $r \in \varprojlim_{U \subseteq V} \Gamma(V; \mathcal{A})$. Then r defines a morphism
\[
\lim_{U \subseteq V} \varprojlim_{U \subseteq V} \Gamma(V; \mathcal{A}) \otimes_k \Gamma(W; F) \to \Gamma(W; F)
\]
for each $W \subseteq U$, $W \in \mathcal{T}$, hence an endomorphism of $(F^{++})_{|U_{X,T}} \simeq (F|_{U_{X,T}})^{++}$. This morphism defines a morphism of presheaves $\tilde{A} \to \mathcal{E}nd(F^{++})$ and $\tilde{A}^{++} \simeq \rho_{\ast}A$ by Proposition 2.4.3. Then $F^{++} \in \text{Mod}(\rho_{\ast}A)$.

PROPOSITION 2.4.7. Assume that X is locally weakly quasi-compact. Let $F \in \text{Mod}(k_{\mathcal{T}})$ be \mathcal{T}-flabby. Then $\rho^{-1}F$ is c-soft.

PROOF. Recall that if $U \in \text{Op}(X)$ then $\Gamma(U; \rho^{-1}F) \simeq \varinjlim_{V \subseteq U} \Gamma(V; F)$, where $V \in \mathcal{T}$. Let $W \in \text{Op}(X)$, $W \subset \subset X$. It follows from Lemma 2.4.1 that every $U' \supset W$, $U' \in \text{Op}(X)$ contains $U \subseteq W$. Hence
\[
\varinjlim_{U'} \Gamma(U'; F) \simeq \varinjlim_{U} \Gamma(U; F),
\]
where $U' \supset W$, $U' \in \text{Op}(X)$ and $U \in \mathcal{T}$ such that $U \supset W$. We have the chain of isomorphisms
\[
\varinjlim_{U} \Gamma(U; \rho^{-1}F) \simeq \varinjlim_{U} \varinjlim_{V \subseteq U} \Gamma(V; F)
\]
\[
\simeq \varinjlim_{U} \Gamma(U; F)
\]
where $U \in \mathcal{T}$, $U \supset W$ and $V \in \mathcal{T}$. The first isomorphism follows from Proposition 2.4.2 and second one follows since for each $U \supset W$, $U \in \mathcal{T}$, there exists $V \in \mathcal{T}$ such that $U \supset V \supset W$.

Let $V, W \in \text{Op}^c(X)$ with $V \subset \subset W$. Since F is \mathcal{T}-flabby and filtrant inductive limits are exact, the morphism $\varinjlim_{U} \Gamma(U; \rho^{-1}F) \simeq \varinjlim_{W'} \Gamma(W'; F) \to \varinjlim_{U} \Gamma(U; F) \simeq \Gamma(W'; \rho^{-1}F)$, where $W', U \in \mathcal{T}$, $W' \supset W$, $U \supset V$, is surjective. Hence $\Gamma(W'; \rho^{-1}F) \to \varinjlim_{U} \Gamma(U; \rho^{-1}F)$ is surjective.

2.5. \mathcal{T}_{loc}-sheaves.

Let X be a \mathcal{T}-space and let
\[
\mathcal{T}_{\text{loc}} = \{U \in \text{Op}(X) : U \cap W \in \mathcal{T} \text{ for every } W \in \mathcal{T}\}.
\]

Clearly, $\emptyset, X \in \mathcal{T}_{\text{loc}}$, $\mathcal{T} \subseteq \mathcal{T}_{\text{loc}}$ and \mathcal{T}_{loc} is closed under finite intersections.

DEFINITION 2.5.1. We make the following definitions:

- a subset S of X is a \mathcal{T}_{loc}-subset if and only if $S \cap V$ is a \mathcal{T}-subset for every $V \in \mathcal{T}$;
- a closed (resp. open) \mathcal{T}_{loc}-subset is a \mathcal{T}_{loc}-subset which is closed (resp. open) in X;
- a \mathcal{T}_{loc}-connected subset is a \mathcal{T}_{loc}-subset which is not the disjoint union of two proper
clopen T_{loc}-subsets.

Observe that if $\{S_i\}_i$ is a family of T_{loc}-subsets such that $\{i : S_i \cap W \neq \emptyset\}$ is finite for every $W \in T$, then the union and the intersection of the family $\{S_i\}_i$ is a T_{loc}-subset. Also the complement of a T_{loc}-subset is a T_{loc}-subset. Therefore the T_{loc}-subsets form a Boolean algebra.

Example 2.5.2. Let us see some examples of T_{loc} subsets:

(i) Let T be the family of Example 2.1.2. Then the T_{loc} subsets are the locally semi-algebraic subsets of X.

(ii) Let T be the family of Example 2.1.3. Then the T_{loc} subsets are the subanalytic subsets of X.

(iii) Let T be the family of Example 2.1.4. Then the T_{loc} subsets are the conic subanalytic subsets of X.

(iv) Let T be the family of Example 2.1.5. Then the T_{loc} subsets are the locally definable subsets of X.

One can endow T_{loc} with a Grothendieck topology in the following way: a family $\{U_i\}_i$ in T_{loc} is a covering of $U \in T_{loc}$ if for any $V \in T$, there exists a finite subfamily covering $U \cap V$. We denote by $X_{T_{loc}}$ the associated site, write for short $k_{T_{loc}}$ instead of $k_{X_{T_{loc}}}$, and let

$$
\begin{array}{c}
X \\
\downarrow \rho_{T_{loc}} \quad \rho \\
X_{T_{loc}} \quad X_T
\end{array}
$$

be the natural morphisms of sites.

Remark 2.5.3. The forgetful functor, induced by the natural morphism of sites $X_{T_{loc}} \to X_T$, gives an equivalence of categories

$$\mathrm{Mod}(k_{T_{loc}}) \sim \mathrm{Mod}(k_T).$$

The quasi-inverse to the forgetful functor sends $F \in \mathrm{Mod}(k_T)$ to $F_{loc} \in \mathrm{Mod}(k_{T_{loc}})$ given by $F_{loc}(U) = \lim_{V \in T} F(U \cap V)$ for every $U \in T_{loc}$.

Therefore, we can and will identify $\mathrm{Mod}(k_{T_{loc}})$ with $\mathrm{Mod}(k_T)$ and apply the previous results for $\mathrm{Mod}(k_T)$ to obtain analogues results for $\mathrm{Mod}(k_{T_{loc}})$.

Recall that $F \in \mathrm{Mod}(k_T)$ is T-flabby if the restriction $\Gamma(V; F) \to \Gamma(U; F)$ is surjective for any $U, V \in T$ with $V \supseteq U$. Assume that

$$X_{T_{loc}} \text{ has a countable cover } \{V_n\}_{n \in \mathbb{N}} \text{ with } V_n \in T, \forall n \in \mathbb{N}. \quad (2.4)$$

Proposition 2.5.4. Let $F \in \mathrm{Mod}(k_T)$. Then F is T-flabby if and only if the
restriction $\Gamma(X; F) \to \Gamma(U; F)$ is surjective for any $U \in T_{loc}$.

Proof. Suppose that F is \mathcal{T}-flabby. Consider a covering $\{V_n\}_{n \in \mathbb{N}}$ of $X_{T_{loc}}$ satisfying (2.4). Set $U_n = U \cap V_n$ and $S_n = V_n \setminus U_n$. All the sequences

$$0 \to k_{U_n} \to k_{V_n} \to k_{S_n} \to 0$$

are exact. Since F is \mathcal{T}-flabby the sequence

$$0 \to \text{Hom}_{\mathcal{T}}(k_{S_n}, F) \to \text{Hom}_{\mathcal{T}}(k_{V_n}, F) \to \text{Hom}_{\mathcal{T}}(k_{U_n}, F) \to 0$$

is exact. Moreover the morphism $\text{Hom}_{\mathcal{T}}(k_{S_{n+1}}, F) \to \text{Hom}_{\mathcal{T}}(k_{S_n}, F)$ is surjective for all n since $S_n = S_{n+1} \cap V_n$ is open in S_{n+1}. Then by Proposition 1.12.3 of [26] the sequence

$$0 \to \varprojlim_n \text{Hom}_{\mathcal{T}}(k_{S_n}, F) \to \varprojlim_n \text{Hom}_{\mathcal{T}}(k_{V_n}, F) \to \varprojlim_n \text{Hom}_{\mathcal{T}}(k_{U_n}, F) \to 0$$

is exact. The result follows since $\varprojlim \Gamma(U_n; G) \simeq \Gamma(U; G)$ for any $G \in \text{Mod}(k_T)$ and $U \in T_{loc}$. The converse is obvious. \hfill \Box

Proposition 2.5.5. The full additive subcategory of $\text{Mod}(k_T)$ of \mathcal{T}-flabby object is $\Gamma(U; \bullet)$-injective for every $U \in T_{loc}$.

Proof. Take an exact sequence $0 \to F' \to F \to F'' \to 0$, and suppose that F' is \mathcal{T}-flabby. Consider a covering $\{V_n\}_{n \in \mathbb{N}}$ of $X_{\mathcal{T}_{loc}}$ satisfying (2.4). Set $U_n = U \cap V_n$. All the sequences

$$0 \to \Gamma(U_n; F') \to \Gamma(U_n; F) \to \Gamma(U_n; F'') \to 0$$

are exact by Proposition 2.3.5, and the morphism $\Gamma(U_{n+1}; F') \to \Gamma(U_n; F')$ is surjective for all n. Then by Proposition 1.12.3 of [26] the sequence

$$0 \to \varprojlim_n \Gamma(U_n; F') \to \varprojlim_n \Gamma(U_n; F) \to \varprojlim_n \Gamma(U_n; F'') \to 0$$

is exact. Since $\varprojlim \Gamma(U_n; G) \simeq \Gamma(U; G)$ for any $G \in \text{Mod}(k_T)$ the result follows. \hfill \Box

Let X, Y be two topological spaces and let $\mathcal{T} \subset \text{Op}(X)$, $\mathcal{T}' \subset \text{Op}(Y)$ satisfy (2.1). Let $f : X \to Y$ be a continuous map. If $f^{-1}(\mathcal{T}'_{loc}) \subseteq \mathcal{T}_{loc}$ then f defines a morphism of sites $f : X_{\mathcal{T}_{loc}} \to Y_{\mathcal{T}'_{loc}}$.

Corollary 2.5.6. Let $f : X_{\mathcal{T}_{loc}} \to Y_{\mathcal{T}'_{loc}}$ be a morphism of sites. \mathcal{T}-flabby sheaves are injective with respect to the functor f_*. The functor f_* sends \mathcal{T}-flabby sheaves to \mathcal{T}'-flabby sheaves.
Proof. Let us consider $V \in T'_\text{loc}$. There is an isomorphism of functors $\Gamma(V; f_* \bullet) \cong \Gamma(f^{-1}(V); \bullet)$. It follows from Proposition 2.5.5 that T-flabby are injective with respect to the functor $\Gamma(f^{-1}(V); \bullet)$ for any $V \in T'_\text{loc}$.

Let F be T-flabby and let $U, V \in T'$ with $V \supset U$. Then the morphism

$$\Gamma(V; f_* F) = \Gamma(f^{-1}(V); F) \to \Gamma(f^{-1}(U); F) = \Gamma(U; f_* F)$$

is surjective by Proposition 2.5.4. □

Remark 2.5.7. An interesting case is when X is a locally weakly quasi-compact space and there exists $S \subseteq \text{Op}(X)$ with $T = \{ U \in S : U \subset X \}$ satisfying (2.1).

Assume that X satisfies (1.7). Then X has a covering $\{ V_n \}_{n \in \mathbb{N}}$ of X such that $V_n \in T$ and $V_n \subset V_{n+1}$ for each $n \in \mathbb{N}$. By Lemma 1.3.5 we may find a covering $\{ U_n \}_{n \in \mathbb{N}}$ of X such that $U_n \in \text{Op}^c(X)$ and $U_n \subset U_{n+1}$ for each $n \in \mathbb{N}$. By Lemma 2.4.1 for each $n \in \mathbb{N}$ there exists $V_n \in T$ such that $U_n \subset V_n \subset U_{n+1}$.

In this situation Proposition 2.5.4 and 2.5.5 are satisfied.

2.6. T-spectrum.

Let X be a topological space and let $\mathcal{P}(X)$ be the power set of X. Consider a subalgebra \mathcal{F} of the power set Boolean algebra $\langle \mathcal{P}(X), \subseteq \rangle$. Then \mathcal{F} is closed under finite unions, intersections and complements. We refer to [25] for an introduction to this subject.

The Boolean algebra \mathcal{F} has an associated topological space, that we denote by $\tilde{S}(\mathcal{F})$, called its Stone space. The points in $\tilde{S}(\mathcal{F})$ are the ultrafilters α on \mathcal{F}. The topology on $\tilde{S}(\mathcal{F})$ is generated by a basis of open and closed sets consisting of all sets of the form

$$\tilde{A} = \{ \alpha \in \tilde{S}(\mathcal{F}) : A \in \alpha \},$$

where $A \in \mathcal{F}$. The space $\tilde{S}(\mathcal{F})$ is a compact totally disconnected Hausdorff space. Moreover, for each $A \in \mathcal{F}$, the subspace \tilde{A} is Hausdorff and compact.

Definition 2.6.1. Let X be a T-space and let \mathcal{F} be the Boolean algebra of T'_loc-subsets of X (i.e. Boolean combinations of elements of T'_loc). The topological space \tilde{X}_T is the data of:

- the points of $\tilde{S}(\mathcal{F})$ such that $U \in \alpha$ for some $U \in T$,
- a basis for the topology is given by the family of subsets $\{ \tilde{U} : U \in T \}$.

We call \tilde{X}_T the T-spectrum of X.

With this topology, for $U \in T$, the set \tilde{U} is quasi-compact in \tilde{X}_T since it is quasi-compact in $\tilde{S}(\mathcal{F})$. Hence \tilde{X}_T is locally weakly quasi-compact with a basis of quasi-compact open subsets given by $\{ \tilde{U} : U \in T \}$. Note that if $X \in T$, then $\tilde{X}_T = \tilde{X}$ which is a spectral topological space.

Remark 2.6.2. We may also define \tilde{X}_T by means of prime filters of elements of T. This is because T-subsets can be written as finite unions and intersections of T-open
and T-closed subsets. In this situation an ultrafilter is determined by the prime filter contained in it.

Proposition 2.6.3. Let X be a T-space. Then there is an equivalence of categories $\text{Mod}(k_T) \simeq \text{Mod}(k_{\tilde{X}_T})$.

Proof. Let us consider the functor

$$\zeta^t : T \to \text{Op}(\tilde{X}_T)$$

$$U \mapsto \tilde{U}.$$

This defines a morphism of sites $\zeta : \tilde{X}_T \to X_T$. Indeed, if $V \in T$, $S \in \text{Cov}(V)$, then $\tilde{S} = \{ \tilde{V}_i : V_i \in S \} \in \text{Cov}(V)$. Let $F \in \text{Mod}(k_T)$ and consider the presheaf $\zeta^t F \in \text{Psh}(k_{\tilde{X}_T})$ defined by $\zeta^t F(U) = \lim_{\tilde{U} \subseteq \tilde{V}} F(V)$. In particular, if $U = \tilde{V}$, $V \in T$, $\zeta^t F(U) \simeq F(V)$. In this case, by Corollary 1.2.11 we have the isomorphisms

$$\zeta^{-1} F(\tilde{V}) = (\zeta^{-1} F)^{++}(\tilde{V}) \simeq \zeta^{-1} F(\tilde{V}) \simeq F(V).$$

Then for $V \in T$ we have

$$\zeta_* \zeta^{-1} F(V) \simeq \zeta^{-1} F(\tilde{V}) \simeq F(V).$$

This implies $\zeta_* \circ \zeta^{-1} \simeq \text{id}$. On the other hand, given $\alpha \in \tilde{X}_T$ and $G \in \text{Mod}(k_{\tilde{X}_T})$,

$$\langle \zeta^{-1} \zeta_* G, \alpha \rangle \simeq \lim_{\tilde{U} \ni \alpha, U \in T} \zeta^{-1} \zeta_* G(\tilde{U})$$

$$\simeq \lim_{\tilde{U} \ni \alpha, U \in T} \zeta_* G(U)$$

$$\simeq \lim_{\tilde{U} \ni \alpha, U \in T} G(\tilde{U})$$

$$\simeq G_\alpha$$

since $\{ \tilde{U} : U \in T \}$ forms a basis for the topology of \tilde{X}_T. This implies $\zeta^{-1} \circ \zeta_* \simeq \text{id}$. □

Example 2.6.4. Let us see some examples of T-spectra.

(i) When T is the family of Example 2.1.2 the T-spectrum \tilde{X}_T of X is the semialgebraic spectrum of X ([10]). When X is semialgebraic, then $\tilde{X}_T = \tilde{X}$, the semialgebraic spectrum of X from [9].

(ii) When T is the family of Example 2.1.3 the T-spectrum \tilde{X}_T of X is the subanalytic spectrum of X. The equivalence $\text{Mod}(k_{\tilde{X}_{sa}}) \simeq \text{Mod}(k_{X_{sa}})$ was used in [38] to bound the homological dimension of subanalytic sheaves.

(iii) When T is the family of Example 2.1.5 the T-spectrum \tilde{X}_T of X is the α-minimal
spectrum of X. When X is a definable space, then $\tilde{X}_T = \tilde{X}$, the o-minimal spectrum of X from [33], [19].

3. Examples.

In this section we recall our main examples of T-sheaves. Good references on o-minimality are, for example, the book [13] by van den Dries and the notes [8] by Coste. For semialgebraic geometry relevant to this paper the reader should consult the work by Delfs [10], Delfs and Knebusch [11] and the book [7] by Bochnak, Coste and Roy. For subanalytic geometry we refer to the work [6] by Bierstone and Milman.

3.1. The semialgebraic site.

Let $R = (R, <, 0, 1, +, \cdot)$ be a real closed field. Let X be a locally semialgebraic space and consider the subfamily of $\text{Op}(X)$ defined by $\mathcal{T} = \{U \in \text{Op}(X) : U$ is semialgebraic$\}$. The family \mathcal{T} satisfies (2.1) and the associated site $X_\mathcal{T}$ is the semialgebraic site on X of [10], [11]. Note also that: (i) the \mathcal{T}-subsets of X are exactly the semialgebraic subsets of X ([7]); (ii) $\mathcal{T}_{\text{loc}} = \{U \in \text{Op}(X) : U$ is locally semialgebraic$\}$ and (iii) the \mathcal{T}_{loc}-subsets of X are exactly the locally semialgebraic subsets of X ([11]).

One can show (using triangulation of semialgebraic sets, as in [26]) that the family $\text{Coh}(\mathcal{T})$ corresponds to the family of sheaves which are locally constant on a locally semialgebraic stratification of X. For each $F \in \text{Mod}(k_\mathcal{T})$ there exists a filtrant inductive system $\{F_i\}_{i \in I}$ in $\text{Coh}(\mathcal{T})$ such that $F \simeq \lim_{i} F_i$.

The subcategory of T-flabby sheaves corresponds to the subcategory of sa-flabby sheaves of [10] and it is injective with respect to $\Gamma(U; \bullet), U \in \text{Op}(X_\mathcal{T})$ and $\text{Hom}_{k_\mathcal{T}}(G, \bullet)$, $G \in \text{Coh}(\mathcal{T})$. Our results on T-flabby sheaves generalize those for sa-flabby sheaves from [10].

We call in this case the T-spectrum $\tilde{X}_\mathcal{T}$ of X the semialgebraic spectrum of X. The points of $\tilde{X}_\mathcal{T}$ are the ultrafilters α of locally semialgebraic subsets of X such that $U \in \alpha$ for some $U \in \text{Op}(X_\mathcal{T})$. This is a locally weakly quasi-compact space with basis of quasi-compact open subsets given by $\{U : U \in \text{Op}(X_\mathcal{T})\}$ and there is an equivalence of categories $\text{Mod}(k_\mathcal{T}) \simeq \text{Mod}(k_{\tilde{X}_\mathcal{T}})$. When X is semialgebraic, then $\tilde{X}_\mathcal{T} = \tilde{X}$, the semialgebraic spectrum of X from [9], and there is an equivalence of categories $\text{Mod}(k_\mathcal{T}) \simeq \text{Mod}(k_{\tilde{X}})$ ([10]).

3.2. The subanalytic site.

Let X be a real analytic manifold and consider the subfamily of $\text{Op}(X)$ defined by $\mathcal{T} = \text{Op}^c(X_{sa}) = \{U \in \text{Op}(X_{sa}) : U$ is subanalytic relatively compact$\}$. The family \mathcal{T} satisfies (2.1) and the associated site $X_\mathcal{T}$ is the subanalytic site X_{sa} of [28], [35]. In this case the \mathcal{T}_{loc}-subsets are the subanalytic subsets of X.

The family $\text{Coh}(\mathcal{T})$ corresponds to the family $\text{Mod}_{\mathbb{R}_{\text{c}}}(k_X)$ of \mathbb{R}-constructible sheaves with compact support, and for each $F \in \text{Mod}(k_{X_{sa}})$ there exists a filtrant inductive system $\{F_i\}_{i \in I}$ in $\text{Mod}_{\mathbb{R}_{\text{c}}}(k_X)$ such that $F \simeq \lim_{i} F_i$.

The subcategory of T-flabby sheaves corresponds to quasi-injective sheaves and it is injective with respect to $\Gamma(U; \bullet), U \in \text{Op}(X_{sa})$ and $\text{Hom}_{k_{X_{sa}}}(G, \bullet), G \in \text{Mod}_{\mathbb{R}_{\text{c}}}(k_X)$.
We call in this case the T-spectrum \tilde{X}_T of X the subanalytic spectrum of X and denote it by \tilde{X}_{sa}. The points of \tilde{X}_{sa} are the ultrafilters of subanalytic subsets of X such that $U \in \alpha$ for some $U \in \text{Op}^c(X_{sa})$. Then there is an equivalence of categories $\text{Mod}(k_{X_{sa}}) \simeq \text{Mod}(k_{\tilde{X}_{sa}})$.

Let $U \in \text{Op}(X_{sa})$ and denote by $U_{X_{sa}}$ the site with the topology induced by X_{sa}. This corresponds to the site X_T, where $T = \text{Op}^c(X_{sa}) \cap U$. In this situation (2.1) is satisfied.

3.3. The conic subanalytic site.

Let X be a real analytic manifold endowed with a subanalytic action μ of \mathbb{R}^+. In other words we have a subanalytic map

$$\mu : X \times \mathbb{R}^+ \to X,$$

which satisfies, for each $t_1, t_2 \in \mathbb{R}^+$:

$$\begin{cases} \mu(x, t_1 t_2) = \mu(\mu(x, t_1), t_2), \\ \mu(x, 1) = x. \end{cases}$$

Denote by $X_{\mathbb{R}^+}$ the topological space X endowed with the conic topology, i.e. $U \in \text{Op}(X_{\mathbb{R}^+})$ if it is open for the topology of X and invariant by the action of \mathbb{R}^+. We will denote by $\text{Op}^c(X_{\mathbb{R}^+})$ the subcategory of $\text{Op}(X_{\mathbb{R}^+})$ consisting of relatively weakly quasi-compact open subsets.

Consider the subfamily of $\text{Op}(X_{\mathbb{R}^+})$ defined by $T = \text{Op}^c(X_{sa,\mathbb{R}^+}) = \{U \in \text{Op}^c(X_{\mathbb{R}^+}) : U \text{ is subanalytic}\}$. The family T satisfies (2.1) and the associated site X_T is the conic subanalytic spectrum X_{sa,\mathbb{R}^+}. In this case the T_{loc}-subsets are the conic subanalytic subsets.

Set $\text{Coh}(X_{sa,\mathbb{R}^+}) = \text{Coh}(T)$. For each $F \in \text{Mod}(k_{X_{sa,\mathbb{R}^+}})$ there exists a filtrant inductive system $\{F_i\}_{i \in I}$ in $\text{Coh}(X_{sa,\mathbb{R}^+})$ such that $F \simeq \varprojlim_i F_i$.

The subcategory of T-flabby sheaves is injective with respect to $\Gamma(U; \bullet), U \in \text{Op}(X_{sa,\mathbb{R}^+})$ and $\text{Hom}_{k_{X_{sa,\mathbb{R}^+}}}(G, \bullet), G \in \text{Coh}(X_{sa,\mathbb{R}^+})$.

We call in this case the T-spectrum \tilde{X}_T of X the conic subanalytic spectrum of X and denote it by $\tilde{X}_{sa,\mathbb{R}^+}$. The points of $\tilde{X}_{sa,\mathbb{R}^+}$ are the ultrafilters α of conic subanalytic subsets of X such that $U \in \alpha$ for some $U \in \text{Op}^c(X_{sa,\mathbb{R}^+})$. Then there is an equivalence of categories $\text{Mod}(k_{X_{sa,\mathbb{R}^+}}) \simeq \text{Mod}(k_{\tilde{X}_{sa,\mathbb{R}^+}})$.

3.4. The o-minimal site.

Let $\mathcal{M} = (M, <, (c)_{c \in C}, (f)_{f \in F}, (R)_{R \in \mathcal{R}})$ be an arbitrary o-minimal structure. Let X be a locally definable space and consider the subfamily of $\text{Op}(X)$ defined by $T = \text{Op}(X_{\text{def}}) = \{U \in \text{Op}(X) : U \text{ is definable}\}$. The family T satisfies (2.1) and the associated site X_T is the o-minimal site X_{def} of [19]. Note also that: (i) the T-subsets of X are exactly the definable subsets of X (by the cell decomposition theorem in [13], see [19, Proposition 2.1]); (ii) $T_{loc} = \{U \in \text{Op}(X) : U \text{ is locally definable}\}$ and (iii) the T_{loc}-subsets of X are exactly the locally definable subsets of X.
Set $\text{Coh}(X_{\text{def}}) = \text{Coh}(T)$. For each $F \in \text{Mod}(k_{X_{\text{def}}})$ there exists a filtrant inductive system $\{F_i\}_{i \in I}$ in $\text{Coh}(X_{\text{def}})$ such that $F \simeq \lim_{\rightarrow} \rho_\ast F_i$.

The subcategory of T-flabby sheaves (or definably flabby sheaves) is injective with respect to $\Gamma(U; \bullet)$, $U \in \text{Op}(X_{\text{def}})$ and $\text{Hom}_{\text{Coh}(X_{\text{def}})}(G, \bullet)$, $G \in \text{Coh}(X_{\text{def}})$.

We call in this case the T-spectrum \tilde{X}_T of X the definable or o-minimal spectrum of X and denote it by \tilde{X}_{def}. The points of \tilde{X}_{def} are the ultrafilters α of the Boolean algebra of locally definable subsets of X such that $U \in \alpha$ for some $U \in \text{Op}(X_{\text{def}})$. This is a locally weakly quasi-compact space with basis of quasi-compact open subsets given by $\{\tilde{U} : U \in \text{Op}(X_{\text{def}})\}$ and there is an equivalence of categories $\text{Mod}(k_{X_{\text{def}}}) \simeq \text{Mod}(k_{\tilde{X}_{\text{def}}})$.

Finally observe that since locally semialgebraic spaces are locally definable spaces in a real closed field and real closed fields are o-minimal structures and, relatively compact subanalytic sets are definable sets in the o-minimal expansion of the field of real numbers by restricted globally analytic functions, both the semialgebraic and subanalytic sheaf theory are special cases of the o-minimal sheaf theory.

References

[1] A. Aizenbud and D. Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Not. IMRN, 5 (2008).
[2] A. Aizenbud and D. Gourevitch, The de Rham theorem and Shapiro lemma for Schwartz functions on Nash manifolds, Israel J. Math., 177 (2010), 155–188.
[3] E. Baro and M. Otero, Locally definable homotopy, Ann. Pure Appl. Logic, 161 (2010), 488–503.
[4] A. Berarducci, O-minimal spectra, infinitesimal subgroups and cohomology, J. Symb. Logic, 72 (2007), 1177–1193.
[5] A. Berarducci, Cohomology of groups in o-minimal structures: acyclicity of the infinitesimal subgroup, J. Symb. Logic, 74 (2009), 891–900.
[6] E. Bierstone and D. Milman, Semianalytic and subanalytic sets, Publ. I. H. E. S., 67 (1988), 5–42.
[7] J. Bochnak, M. Coste and M. F. Roy, Real algebraic geometry, Ergebnisse der Math., 36, Springer-Verlag, Berlin, 1998.
[8] M. Coste, An introduction to o-minimal geometry, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000.
[9] M. Coste and M. F. Roy, La topologie du spectre réel, in Ordered fields and real algebraic geometry, Contemp. Math., 8 (1982), 27–59.
[10] H. Delfs, Homology of locally semialgebraic spaces, Lecture Notes in Math., 1484, Springer-Verlag, Berlin, 1991.
[11] H. Delfs and M. Knebusch, Locally semi-algebraic spaces, Lecture Notes in Math., 1173, Springer-Verlag, Berlin, 1985.
[12] J. Denef and L. van den Dries, p-adic and real subanalytic sets, Ann. of Math. (2), 128 (1988), 79–138.
[13] L. van den Dries, Tame topology and o-minimal structures, London Math. Society Lecture Notes Series, 248, Cambridge University Press, Cambridge, 1998.
[14] L. van den Dries, A. Macintyre and D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Math. (2), 140 (1994), 183–205.
[15] L. van den Dries and C. Miller, On the real exponential field with restricted analytic functions, Israel J. Math., 85 (1994), 19–56.
[16] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J., 84 (1996), 497–540.
Sheaves on \(T \)-topologies

[17] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, *Trans. Amer. Math. Soc.*, 350 (1998), 4377–4421.

[18] L. van den Dries and P. Speissegger, The field of reals with multisummable series and the exponential function, *Proc. London Math. Soc.*, 81 (2000), 513–565.

[19] M. Edmundo, G. Jones and N. Pestfield, Sheaf cohomology in o-minimal structures, *J. Math. Logic*, 6 (2006), 163–179.

[20] M. Edmundo and L. Prelli, Poincaré - Verdier duality in o-minimal structures, *Ann. Inst. Fourier Grenoble*, 60 (2010), 1259–1288.

[21] R. Engelking, General Topology, Sigma Series in Pure Mathematics, 6, Heldermann Verlag, Berlin, 1989.

[22] R. Godement, Topologie algébrique et théorie des faisceaux, Hermann, Paris, 1958.

[23] E. Hrushovski and Y. Peterzil, A question of van den Dries and a theorem of Lipshitz and Robinson; not everything is standard, *J. Symb. Logic*, 72 (2007), 119–122.

[24] B. Iversen, Cohomology of sheaves, Universitext Springer-Verlag, Berlin, 1986.

[25] P. T. Johnstone, Stone spaces, Cambridge Studies in Advanced Math., 3, Cambridge University Press, Cambridge, 1982.

[26] M. Kashiwara and P. Schapira, Sheaves on manifolds, Grundlehren der Math., 292, Springer-Verlag, Berlin, 1990.

[27] M. Kashiwara and P. Schapira, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, 64 (1996).

[28] M. Kashiwara and P. Schapira, Ind-sheaves, Astérisque, 271 (2001).

[29] M. Kashiwara and P. Schapira, Categories and sheaves, Grundlehren der Math., 332, Springer-Verlag, Berlin, 2006.

[30] G. Morando, An existence theorem for tempered solutions of \(D \)-modules on complex curves, *Publ. Res. Inst. Math. Sci.*, 43 (2007), 625–659.

[31] G. Morando, Tempered solutions of \(D \)-modules on complex curves and formal invariants, *Ann. Inst. Fourier*, 59 (2009), 1611–1639.

[32] L. Lipshitz and Z. Robinson, Overconvergent real closed quantifier elimination, *Bull. London Math. Soc.*, 38 (2006), 897–906.

[33] A. Pillay, Sheaves of continuous definable functions, *J. Symb. Logic*, 53 (1988), 1165–1169.

[34] L. Prelli, Sheaves on subanalytic sites, PhD Thesis, Universities of Padova and Paris 6, 2006.

[35] L. Prelli, Sheaves on subanalytic sites, *Rend. Sem. Mat. Univ. Padova*, 120 (2008), 167–216.

[36] L. Prelli, Conic sheaves on subanalytic sites and Laplace transform, *Rend. Sem. Mat. Univ. Padova*, 125 (2011), 173–206.

[37] L. Prelli, De Rham theorem for Schwartz functions on Nash manifolds, *Israel J. Math.*, 197 (2013), 131–137.

[38] L. Prelli, On the homological dimension of o-minimal and subanalytic sheaves, *Portugaliae Math.*, 67 (2010), 403–411.

[39] G. Tamme, Introduction to étale cohomology, Universitext Springer-Verlag, Berlin, 1994.

[40] A. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, *J. Amer. Math. Soc.*, 9 (1996), 1051–1094.

Mário J. EDMUNDO
Università di Aberta &
CMAF Universidade de Lisboa
Av. Prof. Gama Pinto 2
1649-003 Lisboa, Portugal
E-mail: mjedmundo@fc.ul.pt

Luca PRELLI
CMAF Universidade de Lisboa
Av. Prof. Gama Pinto 2
1649-003 Lisboa, Portugal
E-mail: lmprelli@fc.ul.pt