Research Article

Boundary Integral Technique of 2nd Order Partial Differential Equation by Using Radial Basis

A. Asghar, M. O. Ahmad, M. N. Bashir, Taseer Muhammad, Sami Ullah Khan, and M. Ramzan

1Department of Mathematics and Statistics, University of Lahore, Lahore, Pakistan
2Department of Mathematics, COMSATS University Islamabad, Sahiwal 57000, Pakistan
3Department of Mathematics, College of Science, King Khalid University, Abha 61413, Saudi Arabia

Correspondence should be addressed to Taseer Muhammad; mw_qau88@yahoo.com

Received 9 January 2022; Revised 24 April 2022; Accepted 24 May 2022; Published 20 July 2022

Academic Editor: Yakov Strelniker

Copyright © 2022 A. Asghar et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The solution of second order partial differential equation, with continuous change in coefficients by the formation of integral equation and then using radial basis function approximation (RBSA), has been developed in this paper. Use of boundary element method (BEM), which gives the solution of heat or mass diffusion in non-homogenous medium with function varying smoothly in space is also the part of this article. Discretization of boundary of integral domain instead of entire domain of the problem concerned is also the distinction of the recent work. The numerical solution of some problems with known value of the variable has also been included at the end.

1. Introduction

Costa [1] and Bera et al. [2] established second order linear partial differential equations (P.D.E):

\[
\begin{align*}
\frac{\partial}{\partial x_1} \left(h_{11} \frac{\partial \hat{w}}{\partial x_1} \right) + \frac{\partial}{\partial x_1} \left(h_{12} \frac{\partial \hat{w}}{\partial x_2} \right) &= 0, \\
\frac{\partial}{\partial x_2} \left(h_{21} \frac{\partial \hat{w}}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(h_{22} \frac{\partial \hat{w}}{\partial x_2} \right) &= 0.
\end{align*}
\]

Equation (1) is valid for two-dimensional steady state flow in anisotropic medium or diffusion of mass in anisotropic medium, where \(\hat{w} \) = temperature or concentration, \(h_{ij} \) = diffusion or conduction coefficient and also \(h_{ij} = h_{ji} \). Furthermore,

\[
\begin{align*}
h_{11} \Delta_1 \Delta_1 + h_{12} \Delta_1 \Delta_2 &> 0, \\
h_{11} \Delta_1 \Delta_2 + h_{12} \Delta_2 \Delta_2 &> 0
\end{align*}
\]

Such that \(\Delta_1^2 + \Delta_2^2 \neq 0 \).

Equation (2) presents the constraints for the integral base scheme associated with equation (1). Reutskiy [3], Al-Jawary and Wrobel [4], Rangelov et al. [5], and Ferreira [6] studied the behavior of graded material in nonhomogeneous media.

Efficiency in computation and accuracy in treatment makes the numerical method based on integral equation more advantageous for the treatment of such B.V.Ps.

To solve the integral equations derived from such numerical techniques, trial functions play a vital role. Trial functions are of many types such as polynomials, trigonometric functions, and radial basis functions. Radial basis functions as conical and multiquadric radial basis functions have been found useful recently by a number of researchers Lin et al. [7]. Use of radial basis functions in modern era as Lin and Reutskiy [8] has revolutionized the process of research in a number of fields.

Clements [9] and Ooi et al. [10] established the solution of equation (1) with constant value of \(h_{ij} \) but when \(h_{ij} \) is
continuously changing, then solution of equation (1) is really a challenging case.

Suitable fundamental solution of equation (1) for varying coefficient \(h_{ij} \) is difficult though not possible. If fundamental solution is used to form integral equation for the special case when \(h_{ij} = t_{ij} g(x_1, x_2) \). When \(g(x_1, x_2) \) is uniformly changing function and \(t_{ij} \) is constant, then the resulting formulation is not only boundary integral but domain integral containing \(\tilde{w} \) as integrand Brebbia and Nardini [11] used dual reciprocity method to find approximate solution in terms of boundary integrals. Ang [12] and Tanaka et al. [13] purposed dual reciprocity method for \(h_{ij} = t_{ij} g(x_1, x_2) \).

This paper enhanced the use of boundary element method (BEM) for steady state diffusion equation by adding source term and taking \(h_{ij} \) as smoothly varying function. No restriction is imposed on \(h_{11}, h_{12}, \) and \(h_{22} \) as in the work of Ang [14], Dineva et al. [15], and Rangogni [16]. Condition of \(h_{11}, h_{12}, \) and \(h_{22} \) is to satisfy the definiteness condition (2) in solution domain. This paper also employs radial basis trial function to approximate \(\tilde{w}(x_1, x_2) \) to convert the given diffusion equation to elliptic diffusion equation as Ang et al. [17], Fahmy [18] explain that integral formulation here does not involve any domain integral. At the end, specific problems are solved for unknown by converting the problem into a set of algebraic equations.

2. Steps for Solution

Steady state anisotropic diffusion equation is

\[
\frac{\partial}{\partial x_1} \left(h_{11} \frac{\partial \tilde{w}}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(h_{12} \frac{\partial \tilde{w}}{\partial x_2} \right) + g_1(x_1, x_2) \tilde{w} + g_2(x_1, x_2) = 0
\]

\[
\frac{\partial}{\partial x_1} \left(h_{21} \frac{\partial \tilde{w}}{\partial x_1} \right) + \frac{\partial}{\partial x_2} \left(h_{22} \frac{\partial \tilde{w}}{\partial x_2} \right) + g_3(x_1, x_2) \tilde{w} + g_4(x_1, x_2) = 0
\]

where \(g_1(x_1, x_2) \tilde{w} + g_2(x_1, x_2) \) is the source term.

\(\tilde{w}(x_1, x_2) = \zeta(x_1, x_2) \) for \((x_1, x_2) \in \mathcal{C}_1 \)

\(h_{11}(x_1, x_2) n_1(x_1, x_2) \frac{\partial \tilde{w}}{\partial x_1} + h_{12}(x_1, x_2) n_2(x_1, x_2) \frac{\partial \tilde{w}}{\partial x_2} = \zeta(x_1, x_2) \) for \((x_1, x_2) \in \mathcal{C}_2 \)

\(h_{21}(x_1, x_2) n_1(x_1, x_2) \frac{\partial \tilde{w}}{\partial x_1} + h_{22}(x_1, x_2) n_2(x_1, x_2) \frac{\partial \tilde{w}}{\partial x_2} = \zeta(x_1, x_2) \) for \((x_1, x_2) \in \mathcal{C}_2 \)

\(\zeta = \mathcal{C}_1 U \mathcal{C}_2, n_i = \text{unit normal vector to } \mathcal{C}_i \)

3. Reformation

We rewrite the system of equation (3) as

\[
\begin{align*}
&h_{11}^{(0)} \frac{\partial^2 \tilde{w}}{\partial x_1^2} + \frac{\partial}{\partial x_1} \left(h_{11}^{(1)} \frac{\partial \tilde{w}}{\partial x_1} + h_{12}^{(0)} \frac{\partial^2 \tilde{w}}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{12}^{(1)} \frac{\partial \tilde{w}}{\partial x_2} \right) + g_1(x_1, x_2) \tilde{w} + g_2(x_1, x_2) = 0 \\
&+ h_{21}^{(0)} \frac{\partial^2 \tilde{w}}{\partial x_2^2} + \frac{\partial}{\partial x_1} \left(h_{21}^{(1)} \frac{\partial \tilde{w}}{\partial x_1} + h_{22}^{(0)} \frac{\partial^2 \tilde{w}}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{22}^{(1)} \frac{\partial \tilde{w}}{\partial x_2} \right) + g_3(x_1, x_2) \tilde{w} + g_4(x_1, x_2) = 0
\end{align*}
\]

Here, \(h_{ij}^{(1)} = h_{ij} - h_{ij}^{(0)} \) are functions of \(x_1 \) and \(x_2 \) and varies smoothly, and \(h_{ij}^{(0)} \) are constant terms.

Let the substitution be

\[
\tilde{w}(x_1, x_2) = v_1(x_1, x_2) + v_2(x_1, x_2),
\]

where \(v_1 \) is related to \(\tilde{w} \) by

\[
\begin{align*}
&h_{11}^{(0)} \frac{\partial^2 v_1}{\partial x_1^2} + \frac{\partial}{\partial x_1} \left(h_{11}^{(1)} \frac{\partial v_1}{\partial x_1} + h_{12}^{(0)} \frac{\partial^2 v_1}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{12}^{(1)} \frac{\partial v_1}{\partial x_2} \right) + g_1(x_1, x_2) \tilde{w} + g_2(x_1, x_2) = 0 \\
&+ h_{21}^{(0)} \frac{\partial^2 v_1}{\partial x_2^2} + \frac{\partial}{\partial x_1} \left(h_{21}^{(1)} \frac{\partial v_1}{\partial x_1} + h_{22}^{(0)} \frac{\partial^2 v_1}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{22}^{(1)} \frac{\partial v_1}{\partial x_2} \right) + g_3(x_1, x_2) \tilde{w} + g_4(x_1, x_2) = 0
\end{align*}
\]

\(v_2 \) is related to \(\tilde{w} \) by

\[
\begin{align*}
&h_{11}^{(0)} \frac{\partial^2 v_2}{\partial x_1^2} + \frac{\partial}{\partial x_1} \left(h_{11}^{(1)} \frac{\partial v_2}{\partial x_1} + h_{12}^{(0)} \frac{\partial^2 v_2}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{12}^{(1)} \frac{\partial v_2}{\partial x_2} \right) + g_1(x_1, x_2) \tilde{w} + g_2(x_1, x_2) = 0 \\
&+ h_{21}^{(0)} \frac{\partial^2 v_2}{\partial x_2^2} + \frac{\partial}{\partial x_1} \left(h_{21}^{(1)} \frac{\partial v_2}{\partial x_1} + h_{22}^{(0)} \frac{\partial^2 v_2}{\partial x_1 \partial x_2} \right) + \frac{\partial}{\partial x_2} \left(h_{22}^{(1)} \frac{\partial v_2}{\partial x_2} \right) + g_3(x_1, x_2) \tilde{w} + g_4(x_1, x_2) = 0
\end{align*}
\]

It is obvious that above equations satisfy equation (3).

Discretize equation (8) into linear algebraic equations. Solve resulting algebraic equations using B.Cs.

4. Trial Function Substitution

Trial functions such as radial basis function (RBF) are used to approximate unknown and are also used to discretize the domain and numerically solve partial differential equations by considering following approximation:

\[
\sum_{j=1}^{N} \left(h_{ij}^{(0)} \frac{\partial v_1}{\partial x_j} + h_{ij}^{(1)} \frac{\partial v_2}{\partial x_j} \right) = \sum_{j=1}^{N} \left(a_j^{(1)} (') (x_1, x_2) \right)
\]

Here, \(a_j^{(1)} \) are constant and \((') \) \((x_1, x_2) \) are radial basis functions centered at \((\eta_1^{(0)}, \eta_2^{(0)})\).

Using equation (9) in equation (7),
We consider the following substitution:

\[w(x_1, x_2) = \sum_{r' = 1}^{\tilde{N}} \sum_{m=1}^{r'} \tilde{w}(r_{m}) \frac{\partial (r_{m})}{\partial x_j} (x_1, x_2) \]

where \(\tilde{N} \) is the number of interpolation points.

We consider the following substitution:

\[\tilde{w}(x_1, x_2) = \beta^{(1)}(x_1, x_2) + \beta^{(2)}(x_1, x_2) + \beta^{(3)}(x_1, x_2) \\
+ \ldots + \tilde{w}(x_1, x_2) = \sum_{r' = 1}^{\tilde{N}} \sum_{m=1}^{r'} \tilde{w}(r_{m}) \]

where \(\tilde{N} \) is the number of interpolation points.

We consider the following substitution:

\[\tilde{w}(x_1, x_2) = \sum_{r' = 1}^{\tilde{N}} \sum_{m=1}^{r'} \tilde{w}(r_{m}) \frac{\partial (r_{m})}{\partial x_j} (x_1, x_2) \]

where \(\tilde{N} \) is the number of interpolation points.

Here, the relation for \(\tilde{w}(r_{m}) \), \(v(r_{m}) \), and \(\Psi(r_{m}) \) are given as

\[\tilde{w}(r_{m}) = \tilde{w}(\eta_{1}^{(r_{m})}, \eta_{2}^{(r_{m})}) \]
\[v(r_{m}) = v(\eta_{1}^{(r_{m})}, \eta_{2}^{(r_{m})}) \]
\[\Psi(r_{m}) = \Psi(\eta_{1}^{(r_{m})}, \eta_{2}^{(r_{m})}) \]

We rearrange this system of equations for constants \(\beta^{(r_{m})} \) and \(d^{(r_{m})} \) which results in

\[\tilde{w}(x_1, x_2) = \sum_{r' = 1}^{\tilde{N}} \sum_{m=1}^{r'} \tilde{w}(r_{m}) \frac{\partial (r_{m})}{\partial x_j} (x_1, x_2) \]

From equation (14),

\[a_i^{(r_{m})} = \sum_{m=1}^{r_{m}} \left(t_i^{(r_{m})} v^{(r_{m})} + O_i^{(r_{m})} \right) \]

with

\[t_i^{(r_{m})} = \sum_{n=1}^{r_{m}} \tilde{w}(r_{m}) \frac{\partial (r_{m})}{\partial x_j} (x_1, x_2) \]

\[O_i^{(r_{m})} = \sum_{n=1}^{r_{m}} \tilde{w}(r_{m}) \frac{\partial (r_{m})}{\partial x_j} (x_1, x_2) \]

Using equation (16) into equation (10),

\[g_i^{(r_{m})} w^{(r_{m})} + \sum_{m=1}^{r_{m}} \left(w^{(r_{m})} v^{(r_{m})} + O^{(r_{m})} u^{(r_{m})} \right) = -g_i^{(r_i)} for \, n = 1, 2, 3, \ldots, \tilde{N} \]

where \(g_i^{(r_i)} = g_i (\eta_{1}^{(r_i)}, \eta_{2}^{(r_i)}) \)

Here,
5. Formation of Boundary Integral Equation

Partial differential equation given by equation (8) can be converted into boundary integral equation as

\[\delta(\eta_1, \eta_2) \bar{\omega}(\eta_1, \eta_2) = \gamma(x_1, x_2, \eta_1, \eta_2) \partial(x_1, x_2) \]

\[- \phi(x_1, x_2, \eta_1, \eta_2) \sum_{i=1}^{2} \sum_{j=1}^{2} h^{(0)}_{ij} n_i(x_1, x_2) \]

\[\frac{\partial}{\partial x_j} (\bar{\omega}(x_1, x_2)) ds(x_1, x_2), \]

(22)

where

\[\delta(\eta_1, \eta_2) = \begin{cases} 1, & \text{when } (\eta_1, \eta_2) \text{ lies in interior of domain } D, \\ \frac{1}{2}, & \text{when } (\eta_1, \eta_2) \text{ lies on smooth part of } \tilde{C}. \end{cases} \]

(23)

By putting equation (6) into equation (22),

\[\delta(\eta_1, \eta_2)(\bar{\omega}(\eta_1, \eta_2) - v_1(\eta_1, \eta_2)) \]

\[= \gamma(x_1, x_2, \eta_1, \eta_2)(\bar{\omega}(x_1, x_2) - v_1(x_1, x_2)) \]

\[\partial(x_1, x_2) ds(x_1, x_2). \]

(24)

where

\[(x_1, x_2) = \sum_{i=1}^{2} \sum_{j=1}^{2} h^{(0)}_{ij} n_i(x_1, x_2) \frac{\partial}{\partial x_j} (\bar{\omega}(x_1, x_2)) \]

\[\frac{\partial}{\partial x_j} (\bar{\omega}(x_1, x_2)) ds(x_1, x_2), \]

(25)

\[\delta(\eta_1, \eta_2)(\bar{\omega}(x_1, x_2) - v_1(x_1, x_2)) \]

\[= \gamma(x_1, x_2, \eta_1, \eta_2)(\bar{\omega}(x_1, x_2) - v_1(x_1, x_2)) \]

\[\partial(x_1, x_2) ds(x_1, x_2). \]

(26)

By taking the following approximations,

\[C = C^{(1)} \cup C^{(2)} \cup \ldots \cup C^{(M)} \cup C^{(M)}. \]

(27)

By the use of equations (25) and (26) into equation (24),

\[\delta^{(n')}(\eta_1', \eta_2')(\bar{\omega}^{(m)} - v_1) = \sum_{m=1}^{M} \left(\bar{\omega}^{(m)} - v_1^{(m)} \right) \gamma(x_1, x_2, \eta_1', \eta_2') ds(x_1, x_2) \]

\[- \sum_{m=1}^{M} \left(\bar{\omega}^{(m)} - v_1^{(m)} \right) \gamma(x_1, x_2, \eta_1', \eta_2') ds(x_1, x_2). \]

(28)

For \(n' = M + i \), where \(1 \leq i \leq N \)

It is the boundary integral approximation of partial differential equation (8).

6. Mathematical Methodology

Boundary conditions given in equation (4) can be expressed in terms of algebraic equations as

\[P^{(m)} + \sum_{g=1}^{M_N} y^{(mg)} \bar{\omega}^{(g)} = \sum_{i=1}^{2} \sum_{j=1}^{2} h_{ij}(x_1, x_2) n_i(x_1, x_2) \frac{\partial}{\partial x_j} (\bar{\omega}) \]

is restricted to \(C^{(m')} \).

(29)

The coefficient \(y^{(mg)} \) is given as

\[y^{(mg)} = \sum_{i=1}^{2} \sum_{j=1}^{2} h_{ij}(x_1, x_2) n_i(x_1, x_2) \frac{\partial}{\partial x_j} (\bar{\omega}) \]

is restricted to \(C^{(m')} \).

(30)
To solve the problem above, we apply the following B. Cs:

$$y^{(m,r,g)} = \sum_{i=1}^{M} \sum_{j=1}^{N} h_{ij}^{(1)} (\eta_i^{(m)}, \eta_j^{(r)}) n_i^{(m)} \sum_{r_i=1}^{M} \phi^{(r,p)} \frac{\partial}{\partial x_j} \left((r) (x_{1r}, x_{2r}) \right) at (x_{1r}, x_{2r}) = \left(\eta_i^{(m)}, \eta_j^{(r)} \right). \quad (31)$$

where

$$h_{ij}^{(0)} = \frac{1}{N_0^2} \sum_{i=1}^{N_0} \sum_{j=1}^{N_0} h_{ij}^{(0)} \left(\frac{i}{N_0}, \frac{j}{N_0 + 1} \right). \quad (37)$$

Analytical and numerical values of \bar{w} are compared graphically.

Figure 1 shows comparison of number of boundary elements, and interior collocation points has been drawn graphically. This is worth observing here that the accuracy of solution has improved with more element discretization of boundary curve. Value of \bar{w} at some specific points like (10, 4) and (40, 19) is considered to compare with analytic solution of \bar{w} at selected interior points. \bar{w} used in equation (12) is differentiated w.r.t x_i ($i = 1, 2$) in order to derive partial derivatives of first order for \bar{w}.

PROBLEM#02: Now considering the following values of h_{ij} and g_i:

$$h_{11} = e^{x_1} + 1, \quad h_{22} = e^{-x_1}, \quad h_{12} = h_{21} = 0 \quad (38)$$

$$g_1 = -e^{2x_1 + x_2} - 6e^{-x_1} - 2e^{-x_2} - 4, \quad g_2 = 1$$

Here, the domain of the problem is $0 < x_i < 1$ ($i = 1, 2$).

To solve the problem above, we apply the following B. Cs:

$$\sum_{j=1}^{2} \frac{\partial \bar{w}}{\partial x_j} x_{1j} = 0 \quad (39)$$

$$x_1 \in (0, 1) \quad \text{For} \quad x_2 \in (0, 1),$$

$$\bar{w}(0, x_2) = 1 \quad (40)$$

Here, again $h_{ij}^{(0)}$ denotes the average value of h_{ij} on the interior nodes, and its value is same as equation (37).

The analytic solution of concerned problem is

$$\bar{w}(x_1, x_2) = e^{2x_1 - x_2}. \quad (40)$$

Analytical and numerical values of \bar{w} are compared graphically by taking $x_2 = 0.50$ and varying x_1 such that ($x_1 = 0.1, 0.2, \ldots, 0.9$)

In the graph above, analytical solution of \bar{w} at fixed value of $x_2 = 0.50$ is compared with approximated value of \bar{w} by taking different values of x_1. The graph predicts that analytical solution agrees well with the numerical value. (Figure 2)
8. Conclusion

Numerical technique used in the article requires only the boundary to be discretized for the solution of 2-D steady state mass diffusion or heat conduction using trial function approximation. Specialty is that it does not include collocation points only but also interior points distributed in a mannered way. The accuracy and validity of the method are verified by applying to a problem with known solutions. The solution obtained numerically agrees well with the known results.

It is also noted here that in this paper, the boundary integral equation, obtained and used in this method, is discretized using elements with constant value and this makes the error as minimum as desired. Also, the reduction in error is observed by increasing the number of boundary elements and related interior collocation points. The selected method based on trial function and boundary integral approximation provides effective and reliable alternatives to all the existing mathematical techniques for the solution of heat and mass conduction in the anisotropic medium. The possibility of further improvement in the work to solve problems related to anisotropic media is also part of this paper as was performed earlier by Fahmy [20], Marin and Lesnic [21], Baron [22] and Aksoy and Senocak [23], and Dobroskok and Linkov [24].

Data Availability

The data used to support the findings of this study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] V. A. F. Costa, “Unified streamline, heatline and massline methods for the visualization of two-dimensional heat and mass transfer in anisotropic media,” International Journal of Heat and Mass Transfer, vol. 46, no. 8, pp. 1309–1320, 2003.
[2] P. Bera, V. Eswara, and P. Singh, “Numerical study of heat and mass transfer in an anisotropic porous enclosure due to constant heating and cooling,” Numerical Heat Transfer, Part A: Applications, vol. 34, no. 8, pp. 887–905, 1998.
[3] S. Y. Reutskiy, “A meshless radial basis function method for 2D steady-state heat conduction problems in anisotropic and inhomogeneous media,” Engineering Analysis with Boundary Elements, vol. 66, pp. 1–11, 2016.
[4] M. A. Al-Jawary and L. C. Wrobel, “Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods,” International Journal of Computer Mathematics, vol. 89, no. 11, pp. 1463–1487, 2012.
[5] T. Rangelov, M. Marinov, and P. Mineva, “Time-harmonic behaviour of cracked piezoelectric solid by boundary integral equation method,” Journal of Theoretical and Applied Mechanics, vol. 44, no. 1, pp. 55–78, 2014.
[6] A. J. M. Ferreira, “A formulation of the multiquadric radial basis function method for the analysis of laminated composite plates,” Composite Structures, vol. 59, no. 3, pp. 385–392, 2003.
[7] J. Lin, Y. Zhao, D. Watson, and C. S. Chen, “The radial basis function differential quadrature method with ghost points,” Mathematics and Computers in Simulation, vol. 173, pp. 105–114, 2020.
[8] S. Lin and S. Reutskiy, “A semi-analytic collocation technique for steady-state strongly nonlinear advection-diffusion-reaction equations with variable coefficients,” International Journal for Numerical Methods in Engineering, vol. 112, no. 13, pp. 2004–2024, 2017.
[9] D. L. Clements, “A boundary integral equation method for the numerical solution of a second order elliptic equation with variable coefficients,” The Journal of the Australian Mathematical Society. Series B: Applied Mathematics, vol. 22, no. 2, pp. 218–228, 1980.
[10] E. H. Ooi, E. T. Ooi, and W. T. Ang, “Numerical investigation of the meshless radial basis integral equation method for solving 2D anisotropic potential problems,” Engineering Analysis with Boundary Elements, vol. 53, pp. 27–39, 2015.
[11] C. A. Brebbia and D. Nardini, “Dynamic analysis in solid mechanics by an alternative boundary element procedure,” International Journal of Soil Dynamics and Earthquake Engineering, vol. 2, no. 4, pp. 228–233, 1983.
[12] W. T. Ang, A Beginner’s Course in Boundary Element Methods, Universal Publishers, Boca Raton, Florida, 2007.
[13] M. Tanaka, T. Matsumoto, and Y. Suda, “A dual-reciprocity boundary element method applied to the steady-state heat...
conduction problem of functionally gradient materials,” in Proceedings of the 2nd International Conference on Boundary Element Techniques, Camden, New Jersey, US, January 2001.

[14] W. T. Ang, “Numerical solution of a linear elliptic partial differential equation with variable coefficients: a complex variable boundary element approach,” Numerical Methods for Partial Differential Equations, vol. 28, no. 3, pp. 954–965, 2012.

[15] P. Dineva, D. Gross, R. Müller, and T. Rangelov, “BIEM analysis of dynamically loaded anti-plane cracks in graded piezoelectric finite solids,” International Journal of Solids and Structures, vol. 47, no. 22-23, pp. 3150–3165, 2010.

[16] R. Rangogni, “A solution of Darcy’s flow with variable permeability by means of B.E.M. and perturbation techniques,” in Boundary Elements IX, C. A. Brebbia, Ed., Vol. 3, Springer-Verlag, Berlin, Germany, 1987.

[17] W. T. Ang, D. L. Clements, and N. Vahdati, “A dual-reciprocity boundary element method for a class of elliptic boundary value problems for non-homogeneous anisotropic media,” Engineering Analysis with Boundary Elements, vol. 27, no. 1, pp. 49–55, 2003.

[18] M. A. Fahmy, “Shape design sensitivity and optimization for two-temperature generalized magneto-thermoelastic problems using time-domain DRBEM,” Journal of Thermal Stresses, vol. 41, no. 1, pp. 119–138, 2018.

[19] Y. Zhang and S. Zhu, “On the choice of interpolation functions used in the dual-reciprocity boundary-element method,” Engineering Analysis with Boundary Elements, vol. 13, no. 4, pp. 387–396, 1994.

[20] M. A. Fahmy, “Boundary element modeling and simulation of biothermomechanical behavior in anisotropic laser-induced tissue hyperthermia,” Engineering Analysis with Boundary Elements, vol. 101, pp. 156–164, 2019.

[21] L. Marin and D. Lesnic, “The method of fundamental solutions for nonlinear functionally graded materials,” International Journal of Solids and Structures, vol. 44, no. 21, pp. 6878–6890, 2007.

[22] C. Baron, “Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum,” Ultrasonics, vol. 51, no. 2, pp. 123–130, 2011.

[23] H. G. Aksoy and E. Şenocak, “Wave propagation in functionally graded and layered materials,” Finite Elements in Analysis and Design, vol. 45, no. 12, pp. 876–891, 2009.

[24] A. A. Dobroskok and A. M. Linkov, “CV dual reciprocity BEM for transient flow in blocky systems with singular points and lines of discontinuities,” Engineering Analysis with Boundary Elements, vol. 34, no. 3, pp. 238–247, 2010.