Geodesic Webs and PDE Systems of Euler Equations

Vladislav V. Goldberg
New Jersey Institute of Technology, Newark, NJ, USA

Valentin V. Lychagin
University of Tromso, Tromso, Norway

Abstract

We find necessary and sufficient conditions for the foliation defined by level sets of a function \(f(x_1, \ldots, x_n) \) to be totally geodesic in a torsion-free connection and apply them to find the conditions for \(d \)-webs of hypersurfaces to be geodesic, and in the case of flat connections, for \(d \)-webs \((d \geq n + 1)\) of hypersurfaces to be hyperplanar webs. These conditions are systems of generalized Euler equations, and for flat connections we give an explicit construction of their solutions.

1 Introduction

In this paper we study necessary and sufficient conditions for the foliation defined by level sets of a function to be totally geodesic in a torsion-free connection on a manifold and find necessary and sufficient conditions for webs of hypersurfaces to be geodesic. These conditions has the form of a second-order PDE system for web functions. The system has an infinite pseudogroup of symmetries and the factorization of the system with respect to the pseudogroup leads us to a first-order PDE system. In the planar case (cf. [1]), the system coincides with the classical Euler equation and therefore can be solved in a constructive way. We provide a method to solve the system in arbitrary dimension and flat connection.

2 Geodesic Foliations and Flex Equations

Let \(M^n \) be a smooth manifold of dimension \(n \). Let vector fields \(\partial_1, \ldots, \partial_n \) form a basis in the tangent bundle, and let \(\omega^1, \ldots, \omega^n \) be the dual basis. Then

\[
[\partial_i, \partial_j] = \sum_k c_{ij}^k \partial_k
\]
for some functions $c^k_{ij} \in C^\infty(M)$, and
\[d\omega^k + \sum_{i<j} c^k_{ij} \omega^i \wedge \omega^j = 0. \]

Let ∇ be a linear connection in the tangent bundle, and let Γ^k_{ij} be the Christoffel symbols of second type. Then
\[\nabla_i (\partial_j) = \sum_k \Gamma^k_{ij} \partial_k, \]
where $\nabla_i \overset{\text{def}}{=} \nabla_{\partial_i}$, and
\[\nabla_i (\omega^k) = -\sum_j \Gamma^k_{ij} \omega^j. \]

In [1] we proved the following result.

Theorem 1 The foliation defined by the level sets of a function $f(x_1, \ldots, x_n)$ is totally geodesic in a torsion-free connection ∇ if and only if the function f satisfies the following system of PDEs:
\[\frac{\partial_i (f_j)}{f_i f_j} - \frac{\partial_j (f_i)}{f_i f_j} + \frac{\partial_j (f_j)}{f_j f_j} = \sum_k \left(\frac{\Gamma^k_{ii}}{f_i f_i} \Gamma^k_{jj} - \frac{\Gamma^k_{ij} f_k}{f_i f_j} \right) \]
for all $i < j, i, j = 1, \ldots, n$; here $f_i = \frac{\partial f}{\partial x_i}$.

We call such a system a **flex system**.

Note that conditions [1] can be used to obtain necessary and sufficient conditions for a d-web formed by the level sets of the functions $f_\alpha(x_1, \ldots, x_n), \alpha = 1, \ldots, d$, to be a geodesic d-web, i.e., to have the leaves of all its foliations to be totally geodesic: one should apply conditions [1] to the all web functions $f_\alpha, \alpha = 1, \ldots, d$.

2.1 Geodesic Webs on Manifolds of Constant Curvature

In what follows, we shall use the following definition.

Definition 2 We call by $(\text{Flex } f)_{ij}$ the following function:
\[(\text{Flex } f)_{ij} = f^2_j f_{ii} - 2f_i f_j f_{ij} + f^2_i f_{jj}, \]
where $i, j = 1, \ldots, n$, $f_i = \frac{\partial f}{\partial x_i}$ and $f_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$.

It is easy to see that $(\text{Flex } f)_{ij} = (\text{Flex } f)_{ji}$, and $(\text{Flex } f)_{ii} = 0$.

2
Proposition 3 Let \((\mathbb{R}^n, g)\) be a manifold of constant curvature with the metric tensor
\[
g = \frac{dx_1^2 + ... + dx_n^2}{(1 + \kappa (x_1^2 + ... + x_n^2))^2},
\]
where \(\kappa\) is a constant. Then the level sets of a function \(f(x_1, ..., x_n)\) are geodesics of the metric \(g\) if and only if the function \(f\) satisfies the following PDE system:
\[
(Flex f)_{ij} = \frac{2\kappa (f_i^2 + f_j^2)}{1 + \kappa (x_1^2 + ... + x_n^2)} \sum_k x_k f_k
\]
for all \(i, j\).

Proof. To prove formula (2), first note that the components of the metric tensor \(g\) are
\[
g_{ii} = b^2, \quad g_{ij} = 0, \quad i \neq j,
\]
where
\[
b = \frac{1}{1 + \kappa (x_1^2 + ... + x_n^2)}.
\]
It follows that
\[
g^{ii} = g_{ii}^{-1}, \quad g^{ij} = 0, \quad i \neq j.
\]
We compute \(\Gamma^i_{jk}\) using the classical formula
\[
\Gamma^i_{jk} = \frac{1}{2} g^{ki} \left(\frac{\partial g_{ii}}{\partial x^j} + \frac{\partial g_{ij}}{\partial x^i} - \frac{\partial g_{ij}}{\partial x^k} \right)
\]
and get
\[
\Gamma^k_{ii} = 2\kappa x_k b, \quad k \neq i; \quad \Gamma^i_{ii} = -2\kappa x_i b; \quad \Gamma^k_{ij} = 0, \quad i, j \neq k; \quad i \neq j;
\]
\[
\Gamma^i_{ij} = -2\kappa x_j b, \quad i \neq j; \quad \Gamma^j_{ij} = -2\kappa x_i b, \quad i \neq j.
\]
Substituting these values of \(\Gamma^i_{jk}\) into the right-hand side of formula (1), we get formula (2).

Note that if \(n = 2\), then PDE system (2) reduces to the single equation
\[
(Flex f)_{ij} = \frac{2\kappa (f_i^2 + f_j^2)}{1 + \kappa (x_1^2 + x_2^2)} \sum_k x_k f_k.
\]
The left-hand side of equation (4) does not depend on \(i\) and \(j\). Thus we have
\[
\frac{(\text{Flex } f)_{ij}}{f_i^2 + f_j^2} = \frac{(\text{Flex } f)_{kl}}{f_k^2 + f_l^2}
\]
for any \(i, j, k,\) and \(l.\)

It follows that \((\text{Flex } f)_{ij} = 0 \) \((5)\) for some fixed \(i\) and \(j,\)

In other words, one has the following result.

Theorem 4 Let \(W\) be a geodesic \(d\)-web on the manifold \((\mathbb{R}^n, g)\) given by web-functions \(\{f^1, \ldots, f^d\}\) such that \((f^a_k)^2 + (f^a_l)^2 \neq 0\) for all \(a = 1, \ldots, d\) and \(k, l = 1, 2, \ldots, n.\) Assume that the intersections of \(W\) with the planes \((x_{i_0}, x_{j_0})\), for given \(i_0\) and \(j_0,\) are linear planar \(d\)-webs. Then the intersection of \(W\) with arbitrary planes \((x_i, x_j)\) are linear webs too.

2.2 Geodesic Webs on Hypersurfaces in \(\mathbb{R}^n\)

Proposition 5 Let \((M, g) \subset \mathbb{R}^n\) be a hypersurface defined by an equation \(x_n = u(x_1, \ldots, x_{n-1})\) with the induced metric \(g\) and the Levi-Civita connection \(\nabla.\) Then the foliation defined by the level sets of a function \(f(x_1, \ldots, x_{n-1})\) is totally geodesic in the connection \(\nabla\) if and only if the function \(f\) satisfies the following system of PDEs:

\[
(F \text{lex } f)_{ij} = \frac{u_1 f_1 + \cdots + u_{n-1} f_{n-1}}{1 + u_1^2 + \cdots + u_{n-1}^2}((f_j^2 u_{ii} - 2 f_j f_i u_{ij} + f_i^2 u_{jj}). \quad (6)
\]

Proof. To prove formula \((6),\) note that the metric induced by a surface \(x_n = u(x_1, \ldots, x_{n-1})\) is

\[
g = ds^2 = \sum_{k=1}^{n-1} (1 + u_k^2) dx_k^2 + 2 \sum_{j=1}^{n-1} u_i u_j dx_i dx_j.
\]

Thus the metric tensor \(g\) has the following matrix:

\[
(g_{ij}) = \\
\begin{pmatrix}
1 + u_1^2 & u_1 u_2 & \cdots & u_1 u_{n-1} \\
u_2 u_1 & 1 + u_2^2 & \cdots & u_2 u_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
u_1 u_{n-1} & u_{n-1} u_2 & \cdots & 1 + u_{n-1}^2
\end{pmatrix}
\]
and the inverse tensor g^{-1} has the matrix

$$(g^{ij}) = \frac{1}{1 + \sum_{k=1}^{n-1} (1 + u_k^2)} \begin{pmatrix}
\sum_{k=2}^{n-1} (1 + u_k^2) & -u_1 u_2 & \ldots & -u_1 u_{n-1} \\
-u_2 u_1 & \sum_{k=1, k \neq 2}^{n-1} (1 + u_k^2) & \ldots & -u_2 u_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
-u_{n-1} u_1 & -u_{n-1} u_2 & \ldots & \sum_{k=1}^{n-2} (1 + u_k^2)
\end{pmatrix}.$$

Computing Γ^i_{jk} by formula (3), we find that

$$\Gamma^i_{jk} = \frac{u_k u_{ij}}{1 + \sum_{k=1}^{n-1} (1 + u_k^2)}.$$

Applying these formulas to the right-hand side of (1), we get formula (6).

We rewrite equation (6) in the form

$$(\text{Flex } f)_{ij} f^2_j u_{ii} - 2 f_i f_j u_{ij} + f^2_i u_{jj} = (\text{Flex } f)_{kl} f^2_k u_{kk} - 2 f_k f_l u_{kl} + f^2_k u_{ll}$$

It follows that the left-hand side of (7) does not depend on i and j, i.e., we have

$$(\text{Flex } f)_{ij} = 0$$

for some fixed i and j, then

$$(\text{Flex } f)_{kl} = 0$$

for any k and l.

In other words, we have a result similar to the result in Theorem 4.

Theorem 6 Let W be a geodesic d-web on the hypersurface (M, g) given by web functions $\{f^1, \ldots, f^d\}$ such that $(f^a_i) u_{ii} - 2 f^a_i f^a_j u_{ij} + (f^a_i)^2 u_{jj} \neq 0$, for all $a = 1, \ldots, d$ and $k, l = 1, 2, \ldots, n$. Assume that the intersections of W with the planes (x_i, x_j), for given i_0 and j_0, are linear planar d-webs. Then the intersection of W with arbitrary planes (x_i, x_j) are linear webs too.
3 Hyperplanar Webs

In this section we consider hyperplanar geodesic webs in \mathbb{R}^n endowed with a flat linear connection ∇.

In what follows, we shall use coordinates x_1, \ldots, x_n in which the Christoffel symbols Γ^i_{jk} of ∇ vanish.

The following theorem gives us a criterion for a web of hypersurfaces to be hyperplanar.

Theorem 7 Suppose that a d-web of hypersurfaces, $d \geq n + 1$, is given locally by web functions $f_\alpha(x_1, \ldots, x_n), \alpha = 1, \ldots, d$. Then the web is hyperplanar if and only if the web functions satisfy the following PDE system:

$$(\text{Flex } f)_{st} = 0, \quad (8)$$

for all $s < t = 1, \ldots, n$.

Proof. For the proof, one should apply Theorem 1 to all foliations of the web.

In order to integrate the above PDEs system, we introduce the functions

$$A_s = \frac{f_s}{f_{s+1}}, \quad s = 1, \ldots, n - 1,$$

and the vector fields

$$X_s = \frac{\partial}{\partial x_s} - A_s \frac{\partial}{\partial x_{s+1}}, \quad s = 1, \ldots, n - 1.$$

Then the system can be written as

$$X_s (A_t) = 0,$$

where $s, t = 1, \ldots, n - 1$.

Note that

$$[X_s, X_t] = 0$$

if the function f is a solution of (8).

Hence, the vector fields X_1, \ldots, X_{n-1} generate a completely integrable $(n - 1)$-dimensional distribution, and the functions A_1, \ldots, A_{n-1} are the first integrals of this distribution.

Moreover, the definition of the functions A_s shows that

$$X_s(f) = 0, \quad s = 1, \ldots, n - 1,$$

also.

As a result, we get that

$$A_s = \Phi_s (f), \quad s = 1, \ldots, n - 1,$$

6
for some functions Φ_s.

In these terms, we get the following system of equations for f:

\[
\frac{\partial f}{\partial x_s} = \Phi_s(f) \frac{\partial f}{\partial x_{s+1}}, \quad s = 1, ..., n-1,
\]
or

\[
\frac{\partial f}{\partial x_s} = \Psi_s(f) \frac{\partial f}{\partial x_n}, \quad s = 1, ..., n-1,
\]

where $\Psi_{n-1} = \Phi_{n-1}$, and

\[
\Psi_s = \Phi_{n-1} \cdots \Phi_s
\]

for $s = 1, ..., n-2$.

This system is a sequence of the Euler-type equations and therefore can be integrated. Keeping in mind that a solution of the single Euler-type equation

\[
\frac{\partial f}{\partial x_s} = \Psi_s(f) \frac{\partial f}{\partial x_n}
\]

is given by the implicit equation

\[
f = u_0(x_n + \Psi_s(f) x_s),
\]

where $u_0(x_n)$ is an initial condition, when $x_s = 0$, and Ψ_s is an arbitrary nonvanishing function, we get solutions f of system (8) in the form:

\[
f = u_0(x_n + \Psi_{n-1}(f) x_{n-1} + \cdots + \Psi_1(f) x_1),
\]

where $u_0(x_n)$ is an initial condition, when $x_1 = \cdots = x_{n-1} = 0$, and Ψ_s are arbitrary nonvanishing functions.

Thus, we have proved the following result.

Theorem 8 Web functions of hyperplanar webs have the form

\[
f = u_0(x_n + \Psi_{n-1}(f) x_{n-1} + \cdots + \Psi_1(f) x_1),
\]

where $u_0(x_n)$ are initial conditions, when $x_1 = \cdots = x_{n-1} = 0$, and Ψ_s are arbitrary nonvanishing functions.

Example 9 Assume that $n = 3$, $f_1(x_1, x_2, x_3) = x_1$, $f_2(x_1, x_2, x_3) = x_2$, $f_3(x_1, x_2, x_3) = x_3$, and take $u_0 = x_3$, $\Psi_1(f_1) = f_1^2$, $\Psi_2(f_1) = f_1$ in (10). Then we get the hyperplanar 4-web with the remaining web function

\[
f_4 = \frac{x_2 - 1 \pm \sqrt{(x_2 - 1)^2 - 4x_1x_3}}{2x_1}.
\]

It follows that the level surfaces $f_4 = C$ of this function are defined by the equation

\[x_1(C^2x_1 - Cx_2 + x_3 + C) = 0,\]
i.e., they form a one-parameter family of 2-planes

\[C^2x_1 - Cx_2 + x_3 + C = 0. \]

Differentiating the last equation with respect to \(C \) and excluding \(C \), we find that the envelope of this family is defined by the equation

\[(x_2)^2 - 4x_1x_3 - 2x_2 + 1 = 0. \]

Therefore, the envelope is the second-degree cone.

Example 10 Assume that \(n = 3 \), \(f_1(x_1, x_2, x_3) = x_1, \ f_2(x_1, x_2, x_3) = x_2, \ f_3(x_1, x_2, x_3) = x_3, \) and take \(u_0 = x_3, \Psi_1(f_4) = 1, \Psi_2(f_4) = f_4^2 \) in (10). Then we get the linear 4-web with the remaining web function

\[f_4 = \left(\frac{1 \pm \sqrt{1 - 4x_2(x_1 + x_3)}}{2x_2} \right)^2. \]

The level surfaces \(f_4 = C^2 \) of this function are defined by the equation

\[x_2(x_1 + C^2x_2 + x_3 - C) = 0, \]

i.e., they form a one-parameter family of 2-planes

\[x_1 + C^2x_2 + x_3 - C = 0. \]

Differentiating the last equation with respect to \(C \) and excluding \(C \), we find that the envelope of this family is defined by the equation

\[4x_1x_2 + 4x_2x_3 - 1 = 0. \]

Therefore, the envelope is the hyperbolic cylinder.

In the next example no one foliation of a web \(W_3 \) coincides with a foliation of coordinate lines, i.e., all three web functions are unknown.

Example 11 Assume that \(n = 3 \) and take

(i) \(u_{01} = x_3, \ \Psi_1(f_1) = f_1^2, \ \Psi_2(f_1) = f_1; \)

(ii) \(u_{02} = x_3, \ \Psi_1(f_2) = 1, \ \Psi_2(f_2) = f_2^2; \)

(iii) \(u_{03} = x_3^3, \ \Psi_1(f_3) = f_3, \ \Psi_2(f_3) = 1; \)

(iv) \(u_{04} = x_3, \ \Psi_1(f_4) = \Psi_2(f_4) = f_4 \)

in (10). Then we get the linear 4-web with the web functions

\[f_1 = \frac{x_2 - 1 \pm \sqrt{(x_2 - 1)^2 - 4x_1x_3}}{2x_1}, \]

\[f_2 = \left(\frac{1 \pm \sqrt{1 - 4x_2(x_1 + x_3)}}{2x_2} \right)^2. \]
(see Examples 9 and 10) and

\[f_3 = \left(\frac{1 \pm \sqrt{1 - 4x_1(x_2 + x_3)}}{2x_1} \right)^2, \]
\[f_4 = \frac{x_3}{1 - x_1 - x_2}. \]

It follows that the leaves of the foliation \(X_1 \) are tangent 2-planes to the second-degree cone

\[(x_2)^2 - 4x_1x_3 - 2x_2 + 1 = 0 \]
(cf. Example 9 and 10), the leaves of the foliation \(X_2 \) and \(X_3 \) are tangent 2-planes to the hyperbolic cylinders

\[4x_1x_2 + 4x_2x_3 - 1 = 0 \]
\[4x_1x_2 + 4x_1x_3 - 1 = 0 \]
(cf. Example 10), and the leaves of the foliation \(X_4 \) are 2-planes of the one-parameter family of parallel 2-planes

\[Cx_1 + C'x_2 + x_3 = 1, \]
where \(C \) is an arbitrary constant.

References

[1] Goldberg, V. V. and V. V. Lychagin, *Geodesic webs on a two-dimensional manifold and Euler equations*, Acta Math. Appl., 2009 (to appear).

Authors' addresses:
Department of Mathematical Sciences, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA; vladislav.goldberg@gmail.com
Department of Mathematics, The University of Tromso, N9037, Tromso, Norway; lychagin@math.uit.no