CASE REPORT

Infrarenal high intra-abdominal testis: fusion of T2-weighted and diffusion-weighted magnetic resonance images and pathological findings

Seiji Hoshi, Yuichi Sato, Junya Hata, Hidenori Akaihata, Soichiro Ogawa, Nobuhiro Haga and Yoshiyuki Kojima*

Abstract

Background: Several recent reports have demonstrated that the preoperative sensitivity and accuracy of identifying and locating non-palpable testes increases with the use of conventional MRI, in addition to diffusion-weighted imaging (DWI). Therefore, pre-operative prediction of the presence and location of testes using imaging techniques may guide management of intra-abdominal testis. Fowler-Stephens orchiopexy is effective for treating patients with intra-abdominal testis; however, long-term testicular function after this procedure has not been clarified. We present a case of a high intra-abdominal testis located below the kidney, and discuss the usefulness of fusion view with T2-weighted and DWI images to make a diagnosis of high intra-abdominal testis and the pathological findings to predict future fertility potential.

Case presentation: A 10-month-old boy was referred to the urology department for the management of non-palpable testis. We employed not only conventional MRI, but also DWI, to improve the diagnostic accuracy of non-palpable testes by MRI examination. The high-intensity mass-like structure below the kidney on the T2-weighted image and the markedly high signal intensity mass on the DWI image completely matched, which suggested that the mass below the kidney was the right testis. The patient underwent diagnostic and therapeutic laparoscopy. A testis was found under the ascending colon, 1 cm below the right kidney. We performed 2-stage Fowler-Stephens orchiopexy. The testis could be delivered to the scrotum without any tension. We examined expression patterns of the stem cell marker, undifferentiated embryonic cell transcription factor 1 (UTF1) in the testicular biopsy sample, and demonstrated that the UTF1-positive Ad spermatogonia / negative Ad spermatogonia ratio was lower in this patient than in boys his age with descended and inguinal undescended testes, indicating that spermatogonial stem cell activity may decrease remarkably in this boy.

Conclusions: Fusion view with T2-weighted and DWI images may be a useful diagnostic modality for high intra-abdominal testes. Fowler-Stephens orchiopexy may provide blood supply to the testis but that might not be enough to achieve spermatogenesis.

Keywords: Cryptorchidism, Intraabdominal testis, MRI, Stem cell, Case report

* Correspondence: ykojima@fmu.ac.jp
Department of Urology, Fukushima Medical University School of Medicine, 1, Hikarigaoka, Fukushima 960-1295, Japan

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Background

The advent of laparoscopy has dramatically changed the diagnosis and treatment of non-palpable testis in children. Laparoscopy is an accepted procedure to investigate the presence and location, and to perform subsequent treatment, of intra-abdominal testis. Several recent reports have demonstrated that the preoperative sensitivity and accuracy of identifying and locating non-palpable testes increases with the use of conventional MRI, in addition to diffusion-weighted imaging (DWI) [1, 2]. Therefore, pre-operative prediction of the presence and location of testes using imaging techniques may guide management of intra-abdominal testis. Fowler-Stephens orchiopexy is effective for treating patients with intra-abdominal testis; however, long-term testicular function after this procedure has not been clarified. We present a case of a high intra-abdominal testis located below the kidney, and discuss the usefulness of fusion view, with T2-weighted and DWI images, to make a diagnosis of high intra-abdominal testis and the pathological findings to predict future fertility potential.

Case presentation

A 10-month-old boy was referred to the urology department for the management of non-palpable testis. There was no significant familial or past history. A clinical examination demonstrated a left, well-positioned testis, 16 × 11 × 11 mm in size, and an empty right scrotum. No abnormality of the external genitalia was found. Physical examination could not confirm the presence of the right testis.

Ultrasonography could not identify the right testis in the abdomen or inguinal region. We employed not only conventional MRI, but also DWI, to improve the diagnostic accuracy of non-palpable testes by MRI examination. The T2-weighted image showed a high-intensity mass-like structure, which was difficult to distinguish from the surrounding fat tissue, below the right kidney. Furthermore, DWI showed a mass, at that position, of markedly high signal intensity. The T2-weighted image was fused with the DWI image, using medical image viewer software (EV Insite R, PSP Co., Tokyo, Japan), to identify the anatomical location. The high-intensity mass-like structure on the T2-weighted image and the markedly high signal intensity mass on the DWI image completely matched (Fig. 1), which suggested that the mass below the kidney was the right testis.

The patient underwent diagnostic and therapeutic laparoscopy. The 5-mm 0-degree camera, introduced through the umbilicus, showed an opened right inguinal ring, with vas deferens. Two more trocars were introduced and a testis was found under the ascending colon, 1 cm below the right kidney. We decided to perform 2-stage Fowler-Stephens orchiopexy. The spermatic vessels were ligated with nonabsorbable 2–0 sutures with the expectation that this would allow collateral blood supply to develop more fully. Ten months after the first surgery, the second stage of the 2-stage laparoscopic Fowler-Stephens procedure was performed. Because the vessel derived from the inferior epigastric artery had developed enough, as a feeding vessel, to provide blood supply to the right testis, retroperitoneal dissection was carried down from the level of the testis to the internal ring to create a wide peritoneal pedicle. The 15 × 10 × 6 mm testis could be delivered to the scrotum without any tension from the radially dilating system. After delivery of the testis, we performed testicular biopsy to compare pathological findings between the present patient and inguinal undescended testes, because we routinely do testicular biopsy during orchiopexy to predict future testicular function. For biopsy, the tunica albuginea was exposed and iris scissors were used to remove a small piece of the testicular parenchyma. Pathological findings in the biopsies taken at stage 2 of the operation showed that median seminiferous tubule diameter and median number of spermatogonia per tubular cross section were comparable to those in inguinal undescended testes of boys his age (n = 5; Fig. 2). We also examined expression patterns of the stem cell marker, undifferentiated embryonic cell transcription factor 1 (UTF1) [3–5], and demonstrated that the UTF1-positive Ad spermatogonia / UTF1-negative Ad spermatogonia ratio was lower in this patient than in boys of his age with descended testes (n = 5) and in inguinal undescended testes (the same biopsy samples used in the pathological
This was part of a study examining the histopathological findings and stem cell activity of undescended testes, which was approved by the ethics committee of Fukushima Medical University School of Medicine. Informed consent was obtained from the patients before the study, after explaining its purpose and methods.

Ten months after the second surgery, the right testis, 13 × 8 × 7 mm in size, was located in the scrotum, and good vascularization was detected on echo color Doppler ultrasound.

Discussion

Diagnostic modalities, such as ultrasound and MRI, are nonspecific in the intra-abdominal testis, and the accuracy of these examinations was not satisfactory. The only effective diagnostic procedure is considered to be laparoscopy. However, there is a possibility of being unable to locate a testis on diagnostic laparoscopy [6]. An accurate preoperative diagnosis is usually useful to determine the surgical approach for non-palpable testes management, particularly for high intra-abdominal cases. Kanrarci reported that identifying and locating non-palpable testes was improved by
using the combination of DWI and conventional MRI, with
about 90% sensitivity and accuracy [1]. Kato et al. also re-
ported that preoperative combined assessment using T1-
and T2-weighted imaging, fat-suppressed T2-weighted
imaging, and DWI enabled the identification of intra-
abdominal or intra-canalicular testes preoperatively and fa-
cilitated an accurate diagnosis of non-palpable testes [2].
They demonstrated that combined MRI assessments had
an accuracy of 92.3% in the diagnosis of intra-abdominal
testes; however, high intra-abdominal testes located over
the pelvis, as in the present case, were not included in their
reports [2]. In the present case, we could predict the pre-
ance and location of the intra-abdominal testis, below the
kidney, preoperatively by fusion view with T2-weighted and
DWI images. At our center, we usually perform MRI in pa-
ients who have a non-palpable testis without contralateral
testicular hypertrophy and if ultrasonography fails to dem-
onstrate a testis, because MRI improves the accuracy of
diagnosing non-palpable testis and can be useful for identi-
fying the presence and location of a testis. However, as de-
scribed in the AUA guideline, although MRI is being used
more widely due to greater sensitivity and specificity, it has
the problems of higher cost, low availability, and need for
anesthesia [7]. In addition, no imaging method can confirm
absence of the testis with 100% accuracy [7]. Therefore, the
AUA guideline recommends surgical exploration, such as
diagnostic laparoscopy (or open exploration), rather than
MRI [7]. Despite this recommendation, it would have been
quite difficult to find the right testis at laparoscopy in our
patient without the information obtained by MRI. Although
it is hard to be dogmatic about the situations in which MRI
is beneficial, examination of fusion views with T2-weighted
and DWI images may be useful for preoperative localiza-
tion of high intra-abdominal testes or for postopera-
tive assessment in the rare cases where the testis cannot be
identified by laparoscopy.

Previous reports demonstrated that the success rate of
Fowler-Stephens orchiopexy, which was assessed by
whether the testis was returned to the scrotum or the tes-
ticular size, was 69–95% [8, 9]. A recent report suggested
that the testicular blood supply after Fowler-Stephens or-
chiopexy was preserved in most cases [10]; however, testicular
function after Fowler-Stephens orchiopexy has not been
clarified. Rosito et al. reported that ligation of the spermatic
vessels during the first stage of orchiopexy for intra-
abdominal testis was associated with a significant reduction
of spermatogonia, although no significant changes were ob-
served in the volumetric characteristics of the testes [11].
Kamisawa et al. also reported, in their animal study, that
Fowler-Stephens orchiopexy may not significantly contrib-
ute to the improvement of spermatogenesis [12]. In our
case, we examined the histological findings and expression
pattern of the stem cell marker, UTF1, in the testicular bi-
opsy specimen, during the second stage of a 2-stage

Fowler-Stephens orchiopexy. A previous animal study dem-
monstrated that the differentiation from gonocytes into early
A spermatogonia and the stem cell activity of early A
spermatogonia were disturbed during the early stage of
spermatogenesis, suggesting that the loss of spermatogonial
stem cell activity results in disturbances in spermatogenesis
and may make fertility difficult in cryptorchidism [13]. In
our patient, although good vascularization was detected on
echo color Doppler ultrasound, and median seminiferous
tubule diameter and median number of spermatogonia per
tubular cross section were comparable to those in inguinal
undescended testis cases, the UTF1-positive Ad spermato-
gonia (actual stem cells) / UTF1-negative Ad spermato-
gonia (potential stem cells) ratio was lower than in
descended testes and inguinal undescended testes. This im-
plies that spermatogonial stem cell activity was markedly
reduced, and that development of collateral vessels after the
first stage of 2-stage Fowler-Stephens orchiopexy may pro-
vide enough blood to maintain testicular viability but might
not be sufficient to achieve spermatogenesis, although it is
unclear if the testicular findings were attributable to the
intra-abdominal location of the testis or were caused by
ligation of the primary testicular vessels and the 10-month
collateralization period.

Conclusions
We presented a case of a high intra-abdominal testis lo-
cated below the kidney. Fusion view with T2-weighted
and DWI images may be a useful diagnostic modality for
high intra-abdominal testes. Fowler-Stephens orchiopexy
may provide blood supply to the testis but that might
not be enough to achieve spermatogenesis; therefore, further
studies are needed.

Abbreviations
DWI: Diffusion-weighted imaging; UTF1: Undifferentiated embryonic cell
transcription factor 1

Acknowledgements
None.

Funding
None.

Availability of data and materials
The datasets generated during and/or analysed during the current study are
not publicly available due to restrictions of our Institutional Review Board
but are available from the corresponding author on reasonable request.

Authors’ contributions
SH participated in the follow up care, performed literature review, carried
out hematoxylin-eosin staining and evaluate the results, and drafted the manuscript. YS
carried out the surgery, participated in the follow up care
and drafted the manuscript. JH participated in the follow up care, and
drafted the manuscript. HA participated in the follow up care and edited
the manuscript. SO participated in the surgery, participated in the follow
up care, and edited the manuscript. NH performed literature review carried
out the immunostaining and evaluate the results, and edited the
manuscript. YK carried out the surgery and edited the manuscript. All
authors read and approved the final manuscript.
Ethics approval and consent to participate
Not applicable.

Consent for publication
The parents have provided consent to publish.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 September 2016 Accepted: 11 August 2017
Published online: 24 August 2017

References
1. Kantarci M, Doganay S, Yalcin A, et al. Diagnostic performance of diffusion-weighted MRI in the detection of nonpalpable undescended testes: comparison with conventional MRI and surgical findings. AJR Am J Roentgenol. 2010;195:W268–73.
2. Kato T, Kojima Y, Kamisawa H, et al. Findings of fat-suppressed T2-weighted and diffusion-weighted magnetic resonance imaging in the diagnosis of non-palpable testes. BJU Int. 2011;107:290–4.
3. Liu A, Cheng L, Du J, et al. Diagnostic utility of novel stem cell markers SALL4, OCT4, NANOG, SOX2, UTF1, and TCL1 in primary mediastinal germ cell tumors. Am J Surg Pathol. 2010;34:697–706.
4. Kristensen DM, Nielsen JE, Skakkebaek NE, et al. Presumed pluripotency markers UTF-1 and REX-1 are expressed in human adult testes and germ cell neoplasms. Hum Reprod. 2008;23:775–82.
5. van Bohr MP, Roepers-Gajadien HL, Korver CM, et al. Expression of the pluripotency marker UTF1 is restricted to a subpopulation of early A spermatogonia in rat testis. Reproduction. 2008;136:33–40.
6. Kim C, Bennett N, Docimo SG. Missed testis on laparoscopy despite blind-ending vessels and closed processus vaginalis. Urology. 2005;65:1226 e7–8.
7. Kolon TF, Herndon CD, Baker LA, Baskin LS, et al. Evaluation and treatment of cryptorchidism: AUA guideline. J Urol. 2014;192:337–45.
8. Koff SA, Sethi PS. Treatment of high undescended testes by low spermatic vessel ligation: an alternative to the Fowler-Stephens technique. J Urol. 1996;156:799–803.
9. Catworthy HW Jr, Hollabaugh RS, Grosfeld JL. The “long loop vas” orchiopexy for the high undescended testis. Am Surg. 1972:38:69–73.
10. Esposito C, Vallone G, Savanelli A, et al. Long-term outcome of laparoscopic Fowler-Stephens orchiopexy in boys with intra-abdominal testis. J Urol. 2009;181:1851–6.
11. Rosito NC, Koff WJ, da Silva Oliveir TL, et al. Volumetric and histological findings in intra-abdominal testes before and after division of spermatic vessels. J Urol. 2004;171:2430–3.
12. Kamisawa H, Kojima Y, Mizuno K, et al. Spermatogenesis after 1-stage Fowler-stephens orchiopexy in experimental cryptorchid rat model. J Urol. 2010;183:2380–4.
13. Kamisawa H, Kojima Y, Mizuno K, et al. Attenuation of spermatogonial stem cell activity in cryptorchid testes. J Urol. 2012;187:1047–52.