R(K-(*)) from dark matter exchange

Cline, James M.; Cornell, Jonathan M.

Published in:
Physics Letters B

DOI:
10.1016/j.physletb.2018.05.034

Publication date:
2018

Document version
Publisher’s PDF, also known as Version of record

Document license:
CC BY

Citation for published version (APA):
Cline, J. M., & Cornell, J. M. (2018). R(K-(*)) from dark matter exchange. Physics Letters B, 782, 232-237. https://doi.org/10.1016/j.physletb.2018.05.034
R(Κ^{(*)}) from dark matter exchange

James M. Cline a,b,*, Jonathan M. Cornell b

a Niels Bohr International Academy & Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen, Denmark
b McGill University, Department of Physics, 3600 University St., Montréal, QC H3A2T8, Canada

Article history:
Received 26 February 2018
Received in revised form 19 April 2018
Accepted 11 May 2018
Available online 15 May 2018

ABSTRACT

Hints of lepton flavor violation have been observed by LHCb in the rate of the decay \(B \rightarrow K\mu^+\mu^- \) relative to that of \(B \rightarrow Ke^+e^- \). This can be explained by new scalars and fermions which couple to standard model particles and contribute to these processes at loop level. We explore a simple model of this kind, in which one of the new fermions is a dark matter candidate, while the other is a heavy vector-like quark and the scalar is an inert Higgs doublet. We explore the constraints on this model from flavor observables, dark matter direct detection, and LHC run II searches, and find that, while currently viable, this scenario will be directly tested by future experiments.

1. Introduction

The LHCb experiment has observed intriguing deficits in \(R(K) \) and \(R(K^*) \), defined as the ratio of branching ratios \(B(K^{(*)} \rightarrow \mu^+\mu^-)/B(K^{(*)} \rightarrow e^+e^-) \) [1,2]. These “hadronically clean” ratios are free from theoretical uncertainties in hadronic matrix elements, which cancel out [3]. In the standard model (SM) it is expected that \(R(K^{(*)}) = 1 \) [4], while experimentally deficits of approximately 20% are observed. Although the significance in either observation \(K \) or \(K^* \) is not high, model-independent fits to both data, and possibly including quantities more sensitive to hadronic physics, including \(B_s \rightarrow \mu^+\mu^- \), \(B \rightarrow \phi\mu^+\mu^- \) and the angular observable \(P_S^{\mu} \), indicate a higher significance of \(\sim 4\sigma \) [5–9]. Ref. [10] shows that the best fits and significance do not change appreciably whether one includes the hadronically sensitive observables or not, and that it is possible to find a good fit to the data by including a single dimension-6 operator in the effective Hamiltonian,

\[
H_{\text{eff}} \supset O_{b_2\mu_2} = \frac{1}{\Lambda^4} (\bar{\sigma}_L \gamma_\mu b_L)(\bar{\mu}_L \gamma^\mu \mu_L)
\]

with \(\Lambda \approx 31 \text{ TeV} \), which is approximately \(-0.15 \) times the SM contribution at one loop.

The new physics contribution (1) can be obtained from tree-level exchange of a heavy Z’ vector boson [11–18] or leptoquark

[19–36], or through loop effects of new particles. In ref. [37], an exhaustive classification and study of the simplest loop models was carried out, where it was shown that one needs either two new scalars and one new fermion, or two new fermions and one new scalar, to explain the \(B \) decay anomalies. Many possible quantum numbers of the new particles are possible. Here we note that these include cases where one of them can be neutral under the SM gauge interactions, opening the possibility that it could be dark matter (DM), and thus allowing the model to explain two observed phenomena requiring new physics.

We prefer to minimize the number of new scalars so there is just one, thereby allowing the DM candidate to be one of the new fermions. Fermionic dark matter is free from relevant Higgs portal couplings, making for a more predictive theory in which the dark matter properties are determined by the same couplings that explain the flavor anomaly. It will be shown that considerations of the dark matter relic density and direct detection give interesting additional restrictions on the model, and that it is also constrained by existing LHC searches as well as flavor-changing neutral current

* Corresponding author.
E-mail addresses: jcline@physics.mcgill.ca (J.M. Cline), cornellj@physics.mcgill.ca (J.M. Cornell).

https://doi.org/10.1016/j.physletb.2018.05.034
0370-2693/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
processes. The model therefore has high potential for discovery by a variety of complementary experimental searches.

2. Model and low-energy effective theory

We introduce a Majorana fermionic DM particle S, a vectorlike heavy quark Ψ that carries SM color and hypercharge, and a scalar ϕ that is an inert SU(2)$_L$ doublet. The quantum numbers are shown in Table 1. The only couplings of the new fields to SM particles allowed by gauge and global symmetries (see Table 1) are

\[
-L \supset \bar{\lambda}_i \bar{Q}_i L \phi \Psi + \bar{\lambda}_i \bar{S}_i \phi \dagger \nu_i \phi H.c. \\
+ \kappa H.1 |H|^2 |\phi|^2 + \lambda_{H.2} [H^\dagger \phi]^2
\]

where Q, L are the SM quark and lepton doublets, ϕ is the SU(2)$_L$ index and i is the flavor index. The relevant interactions at low energy are generated at one loop and thus require sizable couplings. Since there is no flavor symmetry, we will see that this model lives in a corner of parameter space where meson mixing constraints are nearly saturated. In a more complete model, the global symmetries could be an accidental consequence of a spontaneously broken gauge symmetry under which the new physics particles are charged.

The Higgs portal couplings $\lambda_{H,i}$ play no important role in the following: $\lambda_{H.1}$ gives an overall shift to m_ϕ^2 after electroweak symmetry breaking, while $\lambda_{H.2}$ splits the charged and neutral components of ϕ by a small amount (relative to m_ϕ^2 as constrained by LHC searches). A coupling of the form

\[
\lambda_{H.3} (H^\dagger \phi)^2 + H.c.
\]

violates lepton number conservation, as can be seen from the charge assignments in Table 1. (Notice that S cannot be assigned lepton number since it is Majorana.) Of course one expects that L is only an approximate symmetry, as neutrinos have Majorana masses, which constrains the size of $\lambda_{H.3}$. In fact this operator could be the origin of one of the neutrino masses through the loop diagram shown in Fig. 2, with mass matrix $\delta m_{i,j} \sim \lambda_{i,j} m_{H,3} m^2_{\nu}/(16\pi^2 m^2_\phi)$ (where $v = 246$ GeV), which has a single nonvanishing eigenvalue given by the trace.\(^3\) If $m_{\nu,3} = 0.05$ eV for example, $\lambda_{H.3} \sim 10^{-9}/\sum_{i=1}^{2} \lambda_i^2$.

To make definite predictions from (2), we must specify which field bases are referred to. We will assume that for the leptons and down-type quarks, it is the mass eigenbasis. This implies that up-type quarks have couplings that are rotated by the CKM matrix: $\lambda_{i} \bar{Q}_i \rightarrow \tilde{\lambda}_i \bar{Q}_i (\tilde{u}_L V_{ij}, \tilde{d}_L V_{ij}) \equiv (\tilde{\lambda}_i \tilde{u}_i, \tilde{\lambda}_i \tilde{d}_i)$

The box diagrams relevant for $b \rightarrow s(\tau^+ \tau^-)$, $\ell_i \rightarrow 3 \ell_j$, neutral meson mixing and DM scattering on nucleons are shown in Fig. 1.\(^3\)

\(^2\) A more complicated model with two or more flavors of dark matter would allow for nonsingular mass matrices.

\(^3\) The SU(2)$_L$ charges of the fields in this theory do not allow it to contribute to $b \rightarrow sW$ at one loop.
If all of the couplings are positive and real, \(\lambda_1^2 \lambda_2^2 = 0.009 \), right at the D mixing 95% c.l. limit. If \(\lambda_1 \) has the opposite sign to \(\lambda_2 \), \(\lambda_1^2 \lambda_2^2 \) is smaller, \(\cong 0.004 \).

The hierarchical nature of the quark couplings is preserved under renormalization group running, since they are multiplicatively renormalized. The one-loop beta functions take the form [52,53]

\[
\beta(\lambda_i) = \mu \frac{d\lambda_i}{d\mu} = \frac{3}{16\pi^2} \lambda_i \left(\frac{1}{2} \lambda_i^2 |q|^2 + \sum_k \lambda_k^2 \right) \tag{7}
\]

For the choice of couplings in (6), this leads to a Landau pole in \(\lambda_2 \) at a scale of about 8\(m_\phi \), indicating the need for further new physics at such scales. For example a spontaneously broken non-abelian gauge symmetry, such as we already suggested for explaining the global symmetries of the model, could avert the Landau pole.

It is technically natural to assume the other lepton couplings \(\lambda_{1,3} \) are negligible, since they are generated radiatively only through neutrino mass insertions. However aesthetically it may seem peculiar to have \(\lambda_2 \gtrsim \lambda_3 \). If \(\lambda_1, \lambda_3 \neq 0 \), the box diagrams lead to lepton flavor-violating decays such as \(\tau \rightarrow 3\mu \) and \(\mu \rightarrow 3e \).

However because of the Majorana nature of \(\lambda_2 \), they are crossed box diagrams, shown in Fig. 1, that exactly cancel the uncrossed ones in the limit where external momenta are neglected in the loop. Their amplitudes then scale as \(\lambda_3 \lambda_2 \lambda m_\mu^2/m_\phi^4 \) and \(\lambda_2 \lambda m_\mu^2/m_\phi^4 \) respectively. After comparing them to those of leptonic decays in the SM, \(2\sqrt{2} G F (\lambda_1 \gamma^4 \lambda_2) (\bar{\epsilon} \gamma^\mu \nu \epsilon) \), and imposing the experimental limits on the forbidden decay modes [54] we find no significant constraints on \(\lambda_1 \) or \(\lambda_3 \).

Radiative transitions are another flavor-sensitive observable, as shown in Fig. 3. For \(b \rightarrow s \gamma \), Fig. 3(a) generates the dipole operator

\[
\frac{\lambda_1^2 \lambda_2 \epsilon_{m_\phi}}{32\pi^2} \left(\frac{q^2}{m_\phi^2} f(R) - q^2 f(R^{-1}) \right) \frac{1}{m_\phi^2} \left(\bar{s}_i \gamma^\mu \epsilon_b \right) \tag{8}
\]

where \(f(R) = (R^3 - 6R^2 + 3R + 6\ln R + 2)/(6(R - 1)^4) \), \(R = m_\phi^2/m_\mu^2 \), \(q \) is the photon momentum and \(f(1) = 1/12 \). The electric charges \(q_i \) of \(\Psi \) and \(\phi \) are as in Table 1. Due to operator mixing, the chromomagnetic moment also contributes. Using the results of ref. [37], the Wilson coefficients for our benchmark model with \(m_\phi = m_\mu = 1 \text{ TeV} \) give \(C_7 + 0.24 C_8 = -9 \times 10^{-3} \), a factor of 10 below the current limit on this combination from measurements of the branching ratio of \(b \rightarrow s \gamma \).

Fig. 3(b) gives the anomaly to the magnetic moment of the muon of \(\Delta(g - 2)/2 \cong -\lambda_2 \epsilon_{m_\phi}/\sqrt{8\pi} m_\phi^2 \cong -1 \times 10^{-10} \), by saturating (5) and taking \(m_\phi = 1 \text{ TeV} \). Ultimately this model increases the tension between the measured and predicted values of \(g - 2 \), but the effect is minimal, 20 times smaller than the SM discrepancy [54]. A similar diagram with the photon replaced by the Z leads to a correction of the coupling of the Z to left-handed muons of the form \(\delta g_{\mu}/g^\mu_{SU}(q^2 = m_\mu^2) \cong -\lambda_2 2\pi/(24\pi m_\mu^2) \cong -0.0012 \) [37]. This is significantly smaller than the uncertainty by leptons, \(g_{\mu}(m_\mu^2) = -0.2689 \pm 0.0011 \) [55], which has a 0.4% error at the 1\(\sigma \) level.

4. Dark matter constraints

The dark matter candidate in our model has tree-level annihilation to \(\mu\mu \) and \(\nu_\mu\nu_\mu \). The s-wave contribution to the cross section is helicity suppressed, so the v\(^2 \) term dominates [61]. The total thermally averaged annihilation cross section, counting both final states, either muons or neutrinos, is

\[
\langle n_{\nu\text{rel}}(x) &= \frac{1}{4\pi} \frac{4 - m_\nu^2 + m_\mu^2}{(m_\mu^2 + m_\nu^2)^2} \tag{9}
\]

where \(x = m_\phi/T \). To get the observed relic density [62], at the freeze-out temperature \(T_f \) this should be roughly equal to the standard value \(\langle n_{\nu\text{rel}} \rangle_0 \cong 4.6 \times 10^{-26} \text{ cm}^3/\text{s} \) [63] appropriate for p-wave annihilating Majorana dark matter in the mass range \(m_\phi \gtrsim 50 \text{ GeV} \), that we will see is required by collider constraints. By assuming that \(\lambda_2 \) saturates the inequality (5) so that it is no larger than needed to satisfy the flavor constraints, the relation

\[
\langle n_{\nu\text{rel}}(x) = (\sigma v_{\text{rel}}) \text{0 requires}
\]

\[m_\phi = 0.026 \sqrt{x_f} m_\phi. \tag{10}\]

This is valid if \(m_\phi \geq m_\psi \); one can show that (10) is further reduced by the factor m_\phi/m_\psi if m_\phi < m_\psi.

We verified the previous estimate by numerically solving the Boltzmann equation with micrOMEGAs 4.3.5 [64]; contours corresponding to the cosmologically preferred value \(2\Omega h^2 = 0.1199 \) [62] are displayed in Fig. 4. Annihilations can lead to indirect signals in gamma rays and charged cosmic rays, but the p-wave suppression of the cross section makes the limits from such searches very weak. Collider limits are far more constraining, notably ATLAS searches for 2 leptons and missing transverse energy [57], which exclude the green region in Fig. 4.

Because S is a Majorana particle, the box diagram for scattering of S off quarks leads only to spin-dependent or velocity-suppressed scattering off nucleons. The spin-dependent cross section for DM scattering off a single nucleon is given by \(\sigma = \sigma_0 \left(|\lambda_1|^2 \Delta_n + |\lambda_1|^2 \Delta_u + |\lambda_2|^2 \Delta_s \right)^2 \), where \(\sigma_0 = 3|\mu_{n,s}|^2 |\lambda_2|^4/ \)
main production modes at a hadron collider and their decays. The final states necessarily include hard lepton pairs, since the splitting between m_ϕ and m_S must be large, eq. (10). This also produces missing energy as the decay products inevitably include dark matter SS pairs. Moreover hadronic jets appear if Ψ is produced, since Ψ decays into ϕ plus quarks.

For Drell–Yan production of ϕ–ϕ^* pairs, the signal is lepton pairs and missing energy, with no jets. (One of the leptons is a neutrino if $q\bar{q} \to W \to \phi^*\phi^0$ occurs.) This is the same final state as in production of slepton pairs, so SUSY searches [57] may be applied.\(^\text{5}\) The excluded region is shown in Fig. 4, constraining $m_\phi \gtrsim 500$ GeV for all m_S for which the relic density can be accommodated.

In diagrams (Fig. 6(b, c, d)), Ψ is produced, which subsequently decays to $b\mu^+\bar{S}$ or $t\bar{\nu}_\mu S$. Such final states have been searched for by ATLAS in 13.3 fb\(^{-1}\) of $\sqrt{s} = 13$ TeV data, including events with one or two leptons, jets and missing transverse momentum [69, 70]. These analyses have been implemented in CheckMATE 2.0.14 [72], which we used to constrain our model, in conjunction with FeynRules 2.3 [73] and MadGraph 2.6.0 [71]. 20,000 events per model point were generated for the process $pp \to \Psi\Psi$ ($pp \to \phi\phi^*$ is suppressed by the small couplings of Ψ and ϕ to first generation quarks, or the parton distribution function of b or t). The subsequent showering and hadronization of the final state partons was modeled with Pythia 8.230 [74] and detector simulation was done with Delphes 3.4.1 [75].

Fig. 7 shows the resulting 95% c.l. limits on m_Ψ versus m_S for models which both explain the flavor anomalies and give the correct DM relic density. Here m_Ψ is set by eq. 10 with $x_f = 22$ and the couplings are scaled relative to (6) by the factor $(M/1$ TeV)$^{1/2}$, where $M = \max(m_\phi, m_\Psi)$; this choice keeps all the box diagrams approximately constant. At values of $m_S \lesssim 60$ GeV, the lowest values that allow for the correct relic density while avoiding slepton search constraints, the one-lepton search limits $m_\Psi \gtrsim 950$ GeV, except for a narrow window with m_S just below m_ϕ. The two-lepton search does not constrain m_Ψ as strongly but is more sensitive to larger DM masses.

6. Conclusions

The indications from LHCb of lepton flavor universality breaking down are currently our best hint of physics beyond the standard

\(^{5}\) These limits assume annihilation to all flavors of both right and left handed sleptons, taken to be degenerate. Comparing production cross sections of all sleptons to that of a $\phi\phi^*$ pair using MadGraph [71] indicates that they may be overly stringent for our model; at 13 TeV, the slepton production cross section is $\sigma = 1.40$ fb for $m_\chi = 500$ GeV, whereas $\sigma = 0.33$ fb for $\phi\phi^*$ production with $m_\phi = 500$ GeV.

5 We thank S. Okawa for pointing out the importance of the charge radius contribution.
model from colliders. These anomalies should be verified within a few years by further data from LHCb and Belle II [76]. If confirmed, it is not unreasonable to expect that the relevant new physics could also shed light on other shortcomings of the standard model. We have shown how a very economical model, in which dark matter plays an essential role, could be the source of $R(K^{(*)})$ anomalies, while predicting imminent tensions in other flavor observables, notably B_s mixing. The model may be tested by the next generation of direct detection searches and can be discovered at the LHC via searches for leptons, jets and missing energy.

Acknowledgements

We thank J. Martin Camalich and D. London for helpful discussions, and S. Okawa for alerting us to a problem with the first version of this paper. Our work is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

[1] Roel Aaij, et al., LHCB. Test of lepton universality using $B^- \to K^+ \pi^- \pi^+$ decays, Phys. Rev. Lett. 113 (2014) 151601, arXiv:1406.6482 [hep-ex].
[2] R. Aaij, et al., LHCB. Test of lepton universality using $B^- \to K^+ \pi^- \pi^+$ decays, J. High Energy Phys. 08 (2017) 055, arXiv:1705.05802 [hep-ex].
[3] Gudrun Hiller, Frank Kruger, More model-independent analysis of $b \to s$ processes, Phys. Rev. D 69 (2004) 074020, arXiv:hep-ph/0310219.
[4] Marzia Boredono, Gino Isidori, Andrea Pattori, On the Standard Model Prediction for R_K and R_{K^*}, Eur. Phys. J. C 76 (2016) 440, arXiv:1605.07633 [hep-ph].
[5] Bernat Capdevila, Andreas Crivellin, Sébastien Descotes-Genon, Joaquim Matias, Javier Virto, Patterns of New Physics in $b \to s \ell^+\ell^-$ transitions in the light of recent data, arXiv:1704.03540 [hep-ph], 2017.
[6] Li-Sheng Geng, Benjamin Grinstein, Sebastian Jäger, Jörg Martin Camalich, Xiu-Lei Kruger, R. D. Dorˇsner, Mario Čerar,Marco D'Amico, Gilberto Crivellin, Dario Müller, Adolfo Signer, Yannick Ulrich, Correlating lepton flavour universality violation in B decays with $\mu \to e$ using leptons, Phys. Rev. D 97 (2018) 015019, arXiv:1706.08511 [hep-ph].
[7] Daniel Aloni, Avital Dery, Claudia Frugiuele, Yosef Nir, Testing minimal flavour violation in lepton models of the $R_{K^{(*)}}$ anomaly, J. High Energy Phys. 11 (2017) 109, arXiv:1708.06161 [hep-ph].
[8] Nima Assad, Bartosz Fornal, Benjamin Grinstein, Baryon number and lepton universality violation in lepton and quark models, Phys. Lett. B 777 (2018) 324–331, arXiv:1708.06350 [hep-ph].
[9] Yi Cai, Jonathan D. R.atty, Yi Li, Andrea Crivellin, Dario Müller, Arkady Studenikin, Valerio Toffol, Te-Won Yun, Ke Yang, S. Heinrich, S. Peng, and M. Strondzka, R_K, R_{K^*} from LHCb, J. High Energy Phys. 03 (2018) 115011, arXiv:1708.08450 [hep-ph].
[10] Lorenzo Calibbi, Andreas Crivellin, Tianjun Li, A model of lepton vector triplets in view of the b-physics anomalies, arXiv:1709.00562 [hep-ph], 2017.
[11] Umapada Kumar Dey, Deepak Kiran, Bhaskar Pehanguria, Arun C. Vincent, Searching for lepton triplets at IceCube and the LHC, arXiv:1709.02009 [hep-ph], 2017.
[12] Dario Müller, Leptokurtic in flavour physics, in: Workshop on Flavour Changing and Conserving Processes, FCC2017, Anacapi, Capri Island, Italy, September 7–9, 2017, arXiv:1801.03380 [hep-ph].
[13] Ilja Doerner, Adolfo Signer, Dario Müller, Leptoquark toolbox for precision collider studies, arXiv:1801.07641 [hep-ph], 2018.
[14] Gudrun Hiller, Dennis Loose, Ivan Nisandžić, Flavorful leptokurtic at hadron colliders, Phys. Rev. D 97 (2018) 075004, arXiv:1801.03939 [hep-ph].
[15] S. Fajfer, N. Košnik, L. Vale rice, Footprints of leptoquarks: from $R_{K^*}\not\to K^*\pi^0$ to $\mu \to e\gamma$ universality, J. High Energy Phys. 07 (2018) 275, arXiv:1802.08767 [hep-ph].
[16] Monte Carlo package, Arvid Rajaraman, B anomalies and leptoquarks at the LHC: beyond the lepton-quark final state, arXiv:1803.05962 [hep-ph], 2018.
[17] Pere Arnan, Lars Hofer, Federico Meschia, Andreas Crivellin, Loop effects of heavy new scalars and fermions in $b \to s\ell^+\ell^-$, J. High Energy Phys. 04 (2017) 043, arXiv:1608.07832 [hep-ph].
[18] Ben Grispos, N. Maravich, S.A. Renner, Linear flavour violation and anomalies in B physics, J. High Energy Phys. 06 (2016) 083, arXiv:1509.05020 [hep-ph].
[19] D. Arisztizabal Sierra, Florian Staub, Avelino Vicente, Shedding light on the $b\to s$ anomalies with a dark sector, Phys. Rev. D 92 (2015) 015001, arXiv:1503.06077 [hep-ph].
[20] Geneviève Bélanger, Cédric Delaunay, Susanne Westhoff, A dark matter relic-driven muon anomaly, Phys. Rev. D 92 (2015) 055021, arXiv:1506.06600 [hep-ph].
[21] Alejandro Celis, Wan-Zhe Feng, Martin Vollmann, Dirac dark matter and $b \to s\ell^+\ell^-$ with $U(1)$ gauge symmetry, Phys. Rev. D 95 (2017) 035018, arXiv:1608.03894 [hep-ph].
[22] Wolfgang Altmannshofer, Stefano Gori, Stefano Profumo, Farinoldo S. Queiroz, Exploring dark matter and B decay anomalies with an $\mathcal{L}_{DM} - L_{\mu\tau}$ model, J. High Energy Phys. 12 (2016) 106, arXiv:1609.04026 [hep-ph].
[23] James M. Cline, Jonathan M. Cornell, David London, Ryotaro Watanabe, Hidden sector vector explanation of b-decay and cosmic ray anomalies, Phys. Rev. D 95 (2017) 095015, arXiv:1702.00395 [hep-ph].
[24] Zeungwon Baek, Dark matter contribution to $b\to s\mu^+\mu^-$ anomaly in local $U(1)_{DM}$ model, arXiv:1707.04573 [hep-ph], 2017.
[25] James M. Cline, B decay anomalies and dark matter from vectorlike confinement, arXiv:1710.01240 [hep-ph], 2017.
[26] Filippo Sala, David M. Straub, A new light particle in B decays?, Phys. Lett. B 774 (2017) 205–209, arXiv:1704.06188 [hep-ph].
[27] Junichiro Kawamura, Shohei Okawa, Yoji Oyama, Interplay between the $b\to s\mu^+\mu^-$ anomalies and dark matter physics, Phys. Rev. D 96 (2017) 075041, arXiv:1703.04344 [hep-ph].
[28] Cheng-Wei Chiang, Guan-Jie Huang, Hiroshi Ichikawa, A simple model for explaining muon-related anomalies and dark matter, arXiv:1711.07365 [hep-ph].
[29] Bhushanjyoti Bhattacharya, David London, James M. Cline, Alakabha Datta, Grace Dupuis, Quark-flavored scalar dark matter, Phys. Rev. D 92 (2015) 115012, arXiv:1509.04271 [hep-ph].
[30] M. Bona, et al., UUT, Model-independent constraints on $\Delta f = 2$ operators and the scale of new physics, J. High Energy Phys. 03 (2008) 049, arXiv:0707.0636 [hep-ph].
[51] Marcella Bona, UFTfit, Unitarity triangle analysis beyond the Standard Model from UFTfit, Proceedings, 38th International Conference on High Energy Physics (ICHEP 2016): Chicago, IL, USA, August 3–10, 2016, PoS ICHEP2016 (2016) 149.

[52] Ming-xing Luo, Yong Xiao, Two loop renormalization group equations in the standard model, Phys. Rev. Lett. 90 (2003) 011601, arXiv:hep-ph/0207271.

[53] Marie E. Machacek, Michael T. Vaughn, Two loop renormalization group equations in a general quantum field theory. I. Wave function renormalization, Nucl. Phys. B 222 (1983) 83–103.

[54] C. Patrignani, et al., Particle Data Group, Review of particle physics, Chin. Phys. C 40 (2016) 100001.

[55] S. Schael, et al., SLD Electroweak Group, DELPHI, ALEPH, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group, L3, Precision electroweak measurements on the Z resonance, Phys. Rep. 427 (2006) 257–454, arXiv:hep-ex/0509098.

[56] Carlo Giunti, Alexander Studenikin, Neutrino electromagnetic interactions: a window to new physics, Rev. Mod. Phys. 87 (2015) 531, arXiv:1403.6344 [hep-ph].

[57] The ATLAS collaboration (ATLAS), Search for electroweak production of supersymmetric particles in the two and three lepton final state at √s = 13 TeV with the ATLAS detector, ATLAS-CONF-2017-039 (2017).

[58] Joachim Kopp, Lisa Michael, Juri Sinrnon, Loopy constraints on leptophilic dark matter and internal bremsstrahlung, J. Cosmol. Astropart. Phys. 1404 (2014) 022, arXiv:1401.6457 [hep-ph].

[59] D.S. Akerib, et al., LUX. Results from a search for dark matter in the complete LUX exposure, Phys. Rev. Lett. 118 (2017) 021303, arXiv:1608.07648 [astro-ph.CO].

[60] J. Aalbers, et al., DARWIN, DARWIN: towards the ultimate dark matter detector, J. Cosmol. Astropart. Phys. 1611 (2016) 017, arXiv:1606.07001 [astro-ph.IM].

[61] Spencer Chang, Ralph Edezhath, Jeffrey Hutchinson, Markus Luty, Leptophilic effective WIMPs, Phys. Rev. D 90 (2014) 015011, arXiv:1402.7358 [hep-ph].

[62] P.A.R. Ade, et al., Planck, Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594 (2016) A13, arXiv:1502.01589 [astro-ph.CO].

[63] Gary Steigman, Basudeb Dasgupta, John F. Beacom, Precise relic WIMP abundance and its impact on searches for dark matter annihilation, Phys. Rev. D 86 (2012) 023506, arXiv:1204.3622 [hep-ph].

[64] G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model, Comput. Phys. Commun. 176 (2007) 367–382, arXiv:hep-ph/0607059.

[65] G. Belanger, F. Boudjema, A. Pukhov, A. Semenov, Dark matter direct detection rate in a generic model with micrOMEGAs 2.2, Comput. Phys. Commun. 180 (2009) 747–767, arXiv:0803.2360 [hep-ph].

[66] Torsten Bringmann, et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods, Eur. Phys. J. C 77 (2017) 831, arXiv:1705.07920 [hep-ph].

[67] C. Amole, et al., PICO, Dark matter search results from the PICO-60 C/F2 bubble chamber, Phys. Rev. Lett. 118 (2017) 251301, arXiv:1702.07666 [astro-ph.CO].

[68] M. Szydagis, LUX, LZ, The present and future of searching for dark matter with LUX and LZ, Proceedings, 38th International Conference on High Energy Physics, (ICHEP 2016): Chicago, IL, USA, August 3–10, 2016, PoS ICHEP2016 (2016) 220, arXiv:1611.05525 [astro-ph.CO].

[69] The ATLAS collaboration (ATLAS), Search for top squarks in final states with one isolated lepton, jets, and missing transverse momentum in √s = 13 TeV pp collisions with the ATLAS detector, ATLAS-CONF-2016-050 (2016).

[70] The ATLAS collaboration (ATLAS), Search for direct top squark pair production and dark matter production in final states with two leptons in √s = 13 TeV pp collisions using 13.3 fb−1 of ATLAS data, ATLAS-CONF-2016-076 (2016).

[71] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, arXiv:1405.0301 [hep-ph].

[72] Manuel Drees, Herbi Dreiner, Daniel Schmeier, Jamie Tattersall, Jong Soo Kim, CheckMATE: confronting your favourite new physics model with LHC data, Comput. Phys. Commun. 187 (2015) 227–265, arXiv:1312.2591 [hep-ph].

[73] Adam Alloul, Neil D. Christensen, Céline Degrande, Claude Duhr, Benjamin Fuks, FeynRules 2.0 – a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2230–2300, arXiv:1310.1921 [hep-ph].

[74] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita Desai, Philip Iten, Stephen Mrenna, Stefan Prestel, Christine O. Raumusen, Peter Z. Skands, An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159–177, arXiv:1410.3012 [hep-ph].

[75] J. de Favereau, C. Delaere, P. Demin, A. Gammancio, V. Lemaitre, A. Mertens, M. Selvaggi, DELPHES 3, DELPHES 3, a modular framework for fast simulation of a generic collider experiment, J. High Energy Phys. 02 (2014) 057, arXiv:1307.6346 [hep-ex].

[76] Johannes Albrecht, Florian Bernlochner, Matthew Kenzie, Stefanie Reichert, David Straub, Alison Tully, Future prospects for exploring present day anomalies in flavour physics measurements with Belle II and LHCs, arXiv:1705.10308 [hep-ph]. 2017.