Efficacy of telbivudine on interruption of hepatitis B virus vertical transmission: a meta-analysis

Min-Hui Liu, Yun-Jian Sheng, Jun-Ying Liu, Huai-Dong Hu, Qiong-Fang Zhang, Hong Ren

From the Department of Infectious Diseases, Institute of Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China

Correspondence: Hong Ren, MD · Department of Infectious Diseases, Institute of Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University. 74#Linjiang Road, Chongqing 400010 China · renhong0531@vip.sina.com

Ann Saudi Med 2013; 33(2): 169-175
DOI: 10.5144/0256-4947.2013.169

BACKGROUND AND OBJECTIVES: Hepatitis B virus (HBV) infection is one of the most common infections in the world. Vertical transmission is the main reason for the continued endemic infection rates, at least in Asia. This study aimed to investigate the efficacy of telbivudine on mother-to-child transmission (MTCT) interruption.

METHODS: Studies up to April 2012 were collected by searching Pubmed, EMBASE, the Cochrane Library, EBM Review, WangFang Database and China National Knowledge Infrastructure. Serum hepatitis B surface antigen (HBsAg) and HBV DNA in newborns and infants, maternal HBV DNA negative conversion and alanine transaminase (ALT) normalization and adverse events were analyzed.

RESULTS: Seven clinical trials involving 644 pregnant women were included in this meta-analysis. Telbivudine resulted in lower HBsAg and HBV DNA seroprevalence in newborns and infants. When maternal viral load prior to delivery was higher than 10^3 copies/mL, HBsAg or HBV DNA positivity had no statistical difference.

CONCLUSIONS: Telbivudine treatment has efficacy and safety on MTCT interruption during late pregnancy. In addition, we demonstrated benefit of telbivudine for mothers in terms of HBV DNA negative conversion and ALT normalization. Telbivudine treatment at the end of pregnancy should be considered in women with high viral load.
To reduce the risk of in-utero transmission, five drugs are now FDA-approved for the treatment of HBV (interferon, lamivudine, adefovir, entecavir, and peginterferon alpha-2a) and divided into five categories (A, B, C, D, and X) for use in pregnancy. Currently, there are no FDA category A anti-HBV medications. Lamivudine in category C (animal reproduction studies have shown an adverse effect on the fetus, there are no adequate and well-controlled studies in humans, and the benefits from the use of the drug in pregnant women may be acceptable despite its potential risks) - it is safe and well tolerated in HIV-infected pregnancy, and may also provide additional protection in pregnant women with high-level viremia according to a meta-analysis. Nevertheless, lamivudine resistant mutants emerge at a high rate of approximately 15% to 30% per year of therapy. Even an HBV DNA mutation in a newborn due to lamivudine therapy during the last trimester of pregnancy in the mother has been reported. Tenofovir in category B (animal reproduction studies have failed to demonstrate a risk to the fetus and there are no adequate and well-controlled studies in pregnant women) was demonstrated a potent inhibitor of HIV and HBV replication, including activity against lamivudine-resistant HBV and approved for CHB therapy by the US FDA in August 2008. Unfortunately, it has not been approved yet or is still undergoing phase III trials in many countries including China.

Tenofovir in category B has greater antiviral and clinical efficacy than lamivudine in patients with chronic hepatitis B, and less primary treatment failure and resistance. Much less is known about the efficacy of telbivudine on preventing vertical transmission of HBV in pregnant patients. Recently, several studies showed controversial results in blocking MTCT of telbivudine. This study aimed at meta-analyzing the published drug-based randomized and non-randomized controlled studies designed to evaluate the efficacy of telbivudine on the interruption of HBV MTCT in pregnant patients with high HBV DNA levels. According to the data, we evaluated the safety of telbivudine in mothers and infants additionally.

METHODS

Literature research and data extraction

We searched PubMed, EMBASE, the Cochrane Library, EBM Review, WangFang Database and China National Knowledge Infrastructure for relevant articles up to April 2012. The key words “telbivudine”, “hepatitis B”, “vertical transmission”, “perinatal transmission”, “intrauterine transmission”, “mother-to-child transmission”, and their synonyms and related terms, were used. Reference lists from qualitative topic reviews and published clinical trials were also searched. Data extraction was conducted independently by two investigators (Liu MH and Liu JY). Articles were examined to eliminate duplicate reports of the same trials.

Inclusion and exclusion criteria

A inclusive clinical trial had to fulfil the following criteria: a prospective randomized controlled or non-randomized controlled study; telbivudine treatment for women infected by HBV in late pregnancy; maternal viral load higher than 10^6 copies/mL at baseline; all infants given vaccine and HBIG within 12 hours of birth, vaccinated a second dose at weeks 4 and a final dose at week 24; serum parameters including HBsAg and HBV DNA as MTCT end-point. The most frequent reasons for exclusion were publication in an ineligible format including letters/abstracts or the results provided were not from original research including reviews/editorials; patients were co-infected with other hepatitis virus or human immunodeficiency virus; there was no control group; antiviral treatment began at the first or second trimester of gestation.

Efficacy measures

The primary end points of interruption of MTCT were indicated by serum HBsAg, HBeAg and HBV DNA of newborns or infants aged 6-12 months. Secondary end point was serum antibody to hepatitis B surface antigen (anti-HBs) of infants aged 6-12 months. The primary end point of maternal virological response and biochemical response was proportion of patients with undetectable HBV DNA and proportion of ALT normalization, respectively.

Statistical methods

Outcomes were analyzed on an intention-to-treat basis. In this meta-analysis, the results were expressed as risk ratios (RRs) and 95% confidence intervals (CIs), and P<.01 was considered statistically significant. Heterogeneity between trials was evaluated by the Cochrane Q-test. In addition, the consistency of effects among trials was evaluated by I^2. A P value <.10 or I^2>50% was considered indicative of statistically significant heterogeneity. According to the absence of significant heterogeneity, we used a fixed-effect model to obtain quantitative, pooled, summary RRs. Publication bias was assessed by funnel plots which displayed the studies in a plot of effect size against sample size, which mapped the log standard error.
against the log RR of individual studies.38 Data analysis was conducted by using Review Manager software 5.0 (Cochrane Collaboration, Oxford, United Kingdom).

RESULTS

Search results and characteristics

We identified 72 articles by electronic search and excluded 54 irrelevant citations after reading abstracts. The process of article selection is shown in Figure 1. Among the 18 potentially relevant studies, two without control groups were excluded. One was rejected because patients in treatment group were treated with a combination of telbivudine and HBIG while patients in the control group were given HBIG alone. One was excluded because only one patient was enrolled. Six duplicate studies and one article without adequate information were excluded. Finally, seven clinical trials36,37,39-43 involving 644 pregnant women infected by HBV fulfilled our inclusion criteria. Of these, two were acquired from PubMed (Pan et al, 2012; Han et al, 2011), and the others were from Wang Fang Database and China National Knowledge Infrastructure published in Chinese (Chen et al, 2011; Yao et al, 2011; Cao et al, 2011; Zhang et al, 2010; Zhang et al, 2009). Only one of the included trials was a randomized, controlled clinical trial (Zhang et al, 2009). The 644 patients with a HBV DNA baseline level higher than 106 copies/mL had no historical antiviral-therapy before pregnancy except for ten in one study (Pan et al, 2012). Telbivudine was given to 350 patients in treatment group at an oral dose of 600 mg once daily mainly starting at 28 weeks gestational age in late pregnancy. The other 294 patients were left untreated and served as the controls. One patient received treatment from 12 weeks because of abnormal liver function (Zhang et al, 2009). The characteristics of the included studies were summarized in Table 1, Table 2 and Table 3.

First author, year	Study design	Age of mother	Group (n)	Interventions on mothers	Maternal HBV DNA level (lg copies/ml) (meanSD)
Pan,39 2012	NRCT, P	20-40	arm1: 53	LDT 600mg od from week 12 to 30	8.08 (6.62-9.42) 2.68 (0.84)
		20-40	arm2: 35	no treatment	8.08 (6.67-9.08) 7.64 (0.72)
Han,36 2011	NRCT, P	20-40	arm1: 135	LDT 600mg od from week 20 to 32	8.10 (0.56) 2.44 (1.79)
		20-40	arm2: 94	no treatment	7.98 (0.61) 7.28 (0.66)
Chen,40 2011	NRCT, P	NA	arm1: 25	LDT 600mg od from week 28	>7.0 NA
		NA	arm2: 25	no treatment	>7.0 NA
Yao,37 2011	NRCT, P	28.9	arm1: 28	LDT 600mg od from week 28	7.5 (0.6) 3.3 (1.6)
		arm2: 30	no treatment	7.5 (0.7) 7.5 (0.6)	
Cao,42 2011	NRCT, P	NA	arm1: 18	LDT 600mg od from week 28	7.78 (0.58) 3.87 (1.12)
		NA	arm2: 20	no treatment	7.45 (0.46) 7.42 (0.53)
Zhang,43 2010	NRCT, P	23-36	arm1: 60	LDT 600mg od from week 28	lg[(6.62±0.9)×106] lg[(0.49±0.54)×103]
		24-37	arm2: 60	no treatment	lg[(7.22±1.27)×106] lg[(7.46±1.06)×106]
Zhang,37 2009	RCT, P	NA	arm1: 31	LDT 600mg od from week 28	7.38 (0.81) 4.08 (0.52)
		NA	arm2: 30	no treatment	7.46 (0.45) 7.38 (0.57)

NRCT: non-randomized controlled trial; RCT: randomized controlled trial; P: prospective; LDT: telbivudine; od: once daily; NA: data not available; SD: Standard Error
Table 2. Outcomes of newborns/infants.

First author, year	Newborns within 24h	Infants aged 6-12 month					
	HBsAg +	HbcAg +	HBV DNA +	HBsAg +	HbcAg +	HBV DNA +	anti-HBs +
Pan, 2012	NA	NA	NA	0/54	0/54	0/54	NA
	NA	NA	NA	3/35	3/35	3/35	NA
Han, 2011	13/136	NA	NA	0/132	NA	0/132	132/132
	28/94	NA	NA	7/88	NA	7/88	81/88
Chen, 2011	1/25	NA	0/25	0/25	NA	0/25	NA
	5/25	NA	4/25	4/25	NA	4/25	NA
Yao, 2011	1/28	NA	NA	0/28	NA	NA	NA
	5/30	NA	NA	4/30	NA	NA	NA
Chen, 2011	3/18	NA	0/18	NA	NA	NA	NA
	2/20	NA	1/20	NA	NA	NA	NA
Zhang, 2010	6/60	NA	5/60	1/60	NA	1/60	NA
	18/60	NA	18/60	11/60	NA	11/60	NA
Zhang, 2009	2/31	NA	NA	0/31	NA	NA	NA
	2/30	NA	NA	4/30	NA	NA	NA

NA: data not available.

Table 3. Outcomes of mothers and adverse events.

First author, year	ALT normalization before delivery	Maternal HBV DNA (-) before delivery	Adverse events		
	Mothers	Infants			
Pan, 2012	46/53	1/53	0/53	3/54	
	21/35	0/53	0/35	1/35	
Han, 2011	30/36	NA	12/135	0/136	
	21/37	NA	5/94	0/94	
Chen, 2011	NA	NA	0/25	0/25	
	NA	NA	0/25	0/25	
Yao, 2011	NA	NA	3/20	0/20	
	NA	NA	2/30	0/30	
Cao, 2011	NA	1/18	NA	0/18	
	NA	0/20	NA	0/20	
Zhang, 2010	NA	52/60	13/60	0/60	
	NA	0/60	0/60	0/60	
Zhang, 2009	NA	NA	0/31	8/31	
	NA	NA	0/30	9/30	

(-): HBV DNA undetectable; NA: data not available.
Serum HBsAg and HBV DNA of newborns within 24h after birth

The efficacy of telbivudine on blocking MTCT in newborns was assessed in six trials containing the data of HBsAg seroprevalence and evaluated in three trials providing HBV DNA seroprevalence. Analysis showed efficacy of telbivudine on interrupting vertical transmission. A fixed-effect model was used because of the absence of heterogeneity (chi-square=4.98, P=0.42, I²=0%). The overall estimate for RR of telbivudine group vs. control group was 0.37 [95% CI 0.24, 0.56] (P<.00001) in serum HBsAg positivity (Figure 2). It was 0.25 [95% CI 0.11, 0.59] (P=0.001) in serum HBV DNA positivity, heterogeneity analysis chi-square=0.41, P=0.81, I²=0% (Figure 2).

Serum HBsAg and HBV DNA of infants aged 6-12 months

Six trials providing data of serum HBsAg positivity in infants were evaluated. We observed a significant reduce of HBsAg seroprevalence in the treatment groups. The summary RR was 0.09 [95% CI 0.03, 0.26] (P<.00001) (Figure 3). Q-test for heterogeneity chi-square=0.31, P=1.00, I²=0%. Only 4 trials compared serum HBV DNA positivity in infants. All these trials showed a significant effect among infants from treated group with a common RR of 0.08 [95% CI 0.02, 0.29] (P=.0001) in favor of treatment (Figure 3). Q-test for heterogeneity chi-square=0.24, P=.97, I²=0%.

Maternal HBV DNA negative conversion and alanine transaminase normalization

Only three trials contained data of maternal HBV DNA negative conversion and alanine transaminase normalization prior to delivery. Telbivudine therapy resulted in higher HBV DNA negative conversion rate and ALT normalization rate among mothers. In comparison with no treatment, telbivudine therapy resulted in higher HBV DNA negative conversion rate and ALT normalization rate among mothers. The pooled RR was 37.68 [95% CI 7.45, 190.47] (P<.0001), and 1.46 [95% CI 1.18, 1.80] (P=.0006), respectively (Figure 4).
Serum HBsAg of newborns and infants born to mothers with different viral loads

To investigate the influence of maternal HBV DNA levels on vertical transmission, we made an analysis by dividing the studies into two subgroups according to maternal HBV DNA levels before delivery in treated groups. When maternal HBV DNA level was lower than 10^3 copies/mL after treatment, HBsAg seroprevalence in newborns was reduced in comparison to the control group. The summary RR was 0.33 [95% CI 0.20, 0.53] (P<0.0001) (Figure 5). However, when maternal HBV DNA level was higher than 10^3 copies/mL, HBsAg positivity in the two groups had no statistical difference [RR 0.7; 95% CI 0.26, 1.89] (P=.49) (Figure 5).

Among infants born to mothers with a HBV DNA level lower than 10^3 copies/mL, the RR of HBsAg prevalence was 0.07 [95% CI 0.02, 0.31] (P=.0003) (Figure 6). No statistical difference was observed in HBsAg prevalence of infants when mothers’ HBV DNA level was higher than 10^3 copies/mL [RR 0.11; 95% CI 0.01, 0.87] (P=.04) (Figure 6). These demonstrated that high maternal viral loads prior to delivery after treatment implied small efficacy of telbivudine on blocking vertical transmission of HBV and also corresponded to the theory regarding high maternal viral load as a high risk of MTCT.

Safety

Three studies reported adverse events in mothers (Han et al, 2011; Yao et al, 2011; Zhang et al, 2010), two of which described adverse events as serum creatine kinase (CK) elevation (Yao et al, 2011; Zhang et al, 2010) and the other one considered the events drug-unrelated (Han et al, 2011). Two studies reported adverse events among infants. One reported serum CK elevation (Zhang et al., 2009). In the other one, pneumonia occurred in three infants from the treated group and one from the control group, but it was not clear whether the occurrence was drug-related (Pan et al, 2012). Incidence of adverse events among mothers had a significant difference with a Peto odds ratio of 3.35 [95% CI 1.66, 6.73] (P=.0007). Adverse events among newborns/infants did not differ significantly between telbivudine and untreated groups [Peto odds ratio 0.98; 95% CI 0.37, 2.61] (P=.97).

DISCUSSION

Multiple clinical trials have confirmed that telbivudine showed significantly greater HBV DNA suppression with less primary treatment failure and resistance in general in patients with chronic hepatitis B. Telbivudine has been generally well tolerated, with a low adverse effect profile. Telbivudine treatment at the end of pregnancy should be considered in women with a very high viral load to diminish the risk of vertical transmission. However, it is still controversial because of lack of data and evidence of efficacy. This meta-analysis adds further support to the efficacy of telbivudine on interrupting MTCT.

Our study showed significant efficacy of telbivudine on preventing vertical transmission indicated both by serum HBsAg and HBV DNA in newborns (RR was 0.37 and 0.09, respectively) or infants (RR was 0.25 and 0.08, respectively). Transmission rate indicated by
serum HBsAg in telbivudine group was much lower than that in control group among infants (0.3%, 1/330 vs. 12.3%, 33/268). Similarly, it was 0.4% (1/271) and 12.0% (25/208) respectively indicated by serum HBV DNA. It was demonstrated that MTCT incidence would increase in newborns or infants if maternal HBV DNA level was higher than 10^5 copies/mL prior to delivery. Analysis of HBV DNA negative conversion and ALT normalization also confirmed the definite efficacy of telbivudine on mothers.

Serum HBsAg, HBeAg, and HBV DNA in newborns or infants are frequently used as routine indicators of MTCT. Beasley et al.45 recommended high titers of HBsAg within 24 hours after birth and becoming HBsAg carrier after passive-active immunoprophylaxis as two criteria for perinatal infection diagnosis. Thus, evaluating MTCT within 24 hours after birth seems not entirely reasonable because the efficacy of the serovaccination must be confirmed in all children by a serologic examination (HBsAg and anti-HBs) at some time after the last vaccination.46 Though detecting techniques for serum HBV DNA now are available which are much more sensitive than which for HBV markers,9,47 HBV DNA is probably undetectable in patient infected by HBV, especially HBV carriers. So HBV DNA used as indicator solely to estimate vertical transmission rate would lead an unreliable result. Therefore, combination of HBsAg and HBV DNA testing within 24 hours and 6 to 12 months after birth should be suggested.

There are reports of symptomatic myopathy, peripheral neuropathy and cardiac arrhythmia in patients receiving telbivudine, as well as a significantly higher incidence of grade 3 to 4 serum CK elevations noted in telbivudine-treated compared to lamivudine-treated patients at 2 years (12.9% versus 4.1%).10,48,49 CK elevation was observed in three analyzed studies and normalization occurred after drug discontinuation. Other adverse events or birth defects were not recorded. The difference of adverse events among infants between treated and control groups was not significant. Additionally, hepatitis flares can occur after discontinuation of antiviral therapy.50 There are few data about excretion of telbivudine into breast milk. For these reasons, close monitoring is necessary if patients are to receive telbivudine treatment during pregnancy. The 6-week postpartum visit should serve as an opportunity to establish referrals.51

This meta-analysis presents some potential limitations. Firstly, the majority of studies included were non-randomized controlled trials and the only randomized one had not described the method used to generate the allocation sequence. It was difficult to blind and allocate subjects randomly in consideration of informed consent before telbivudine therapy. Secondly, few studies and small samples were included in this meta-analysis. Thirdly, lack of some important information such as maternal HBeAg status and data of long-term postpartum follow up make it impossible to analyse further. Finally, publication bias existed in our study. Compared to positive studies, negative studies may be less likely to be published or more likely to take longer to be published, which can affect the validity of meta-analysis.52

In conclusion, telbivudine has a clear efficacy and safety on interrupting perinatal transmission of HBV in pregnant women with high viral load. It is also associated with a significantly greater proportion of patients achieving HBV DNA negative conversion and ALT normalization. Moreover, the efficacy of telbivudine on blocking MTCT can be implied by maternal HBV DNA level prior to delivery after treatment.

Figure 6. Influence of maternal HBV DNA level prior to delivery on HBsAg seroprevalence in infants.

Table 1: Results of meta-analysis for MTCT incidence among infants.

Study	MTCT Incidence of HBs Ag among Infants before delivery (%)	MTCT Incidence of HBs Ag among Infants after treatment (%)	Significance
Zhihui 2010	75% (6/8)	0% (0/0)	P = 0.05
Zhihui 2011	33% (17/51)	12% (3/25)	P = 0.03
Jiang 2020	50% (25/50)	0% (0/0)	P = 0.05
Total events			P = 0.05

In conclusion, telbivudine has a clear efficacy and safety on interrupting perinatal transmission of HBV in pregnant women with high viral load. It is also associated with a significantly greater proportion of patients achieving HBV DNA negative conversion and ALT normalization. Moreover, the efficacy of telbivudine on blocking MTCT can be implied by maternal HBV DNA level prior to delivery after treatment.

Ann Saudi Med 2013 March-April www.annsaudimed.net 175
systematic review

TELBIVUDINE META-ANALYSIS

REFERENCES

1. World Health Organization. Hepatitis B. World Health Organization Fact Sheet No. 204. Available at: http://www.who.int/mediacentre/factsheets/fs204/en/ (accessed June 5, 2005).

2. Lok AS. Chronic hepatitis B. N Engl J Med. 2002;346:1672-1682.

3. De Franchis R, Hadengue A, Lau G, Lavenchay, D. Lok A, McIntyre N, et al. EASL International Consensus Conference on Hepatitis B. 13-14 September, 2002, Geneva, Switzerland: consensus statement (long version). J Hepatol. 2003;39 suppl 1:S3-S25.

4. Alter MJ. Epidemiology of hepatitis B in Europe and worldwide. J Hepatol. 2003;39 suppl 1:64-69.

5. Buchanan C, Tran TT. Management of chronic hepatitis B in pregnancy. Clin Liver Dis. 2010 Aug;14(3):493-504.

6. Jonas M. Hepatitis B and pregnancy: an under-estimated issue. Liver Int. 2009;29 suppl 1:133-139.

7. Xu DZ, Yan YP, Choi BC, Xu JQ, Men K, et al. Risk factors and mechanism of transplacental transmission of hepatitis B virus: a case-control study. J Med Virol. 2002;67(1):20-26.

8. Lin HH, Lee TY, Chen DS, Sung JL, Dho H, Etah T, et al. Transplacental leakage of HBsAg-positive material as the most likely route in causing intrauterine infection with hepatitis B virus. J Pediatr. 1987;111:877-881.

9. Zhang SL, Han XB, Yue YF. Relationship between HBV viremia level of pregnant women and intrauterine infection: nested PCR for detection of HBVDNA. World J Gastroenterol. 1998;4:61-63.

10. del Canizo R, Grosheide PM, Mazel JA, Heijink RA, Hop WC, Gerardis LJ, et al. Ten-year neonatal hepatitis B vaccination program, The Netherlands, 1982-1992: protective efficacy and long-term immunogenicity. Vaccine. 1997;15:1624-1630.

11. Yuan J, Liu J, Xu A, Li H, Hu B, Chen J, et al. Antepartum immunophrophylaxis of three doses of hepatitis B immunoglobulin is not effective: a single-centre randomized study. J Viral Hepat. 2006;13:597-604.

12. Li XM, Shi MF, Yang YB, Shi ZJ, Hou HY, Shen HM, et al. Effect of hepatitis B immunoglobulin on interruption of HBV intrauterine infection. World J Gastroenterol. 2004;10:325-327.

13. Arsfous D, Fikht M, Hafsa AE, Kaaiba N, Azzou M. Service de gastroentérologie, et al. Hepatitis B and pregnancy. Tunis Med. 2006;88(6):383-389.

14. Lin HH, Vanprapar N, Sirimai AA, Wuyp HY, et al. Telbivudine Versus Lamivudine in Chinese Patients with Chronic Hepatitis B: A Randomized, Double-blind, Placebo-controlled Trial. J Hepatol. 2010;53(2):S146-55.

15. Giles MT, Visvanathan K, Lewin SR, Sadaszewus J. Chronic hepatitis B infection and pregnancy. Obstet Gynecol Surv. 2012;67(11):37-44.

16. Han GR, Cao MK, Zhao W, Jiang HX, Wang CM, Bai SF, et al. A prospective and open-label study for the efficacy and safety of telbivudine in pregnancy for the prevention of perinatal transmission of hepatitis B virus infection. J Hepatol. 2011;55(6):1215-1221.

17. Zhang L, Wang L. Blocking intrauterine infection by telbivudine in pregnant chronic hepatitis B patients. Chin J Hepatol. 2009;17(8):561-563.

18. Sterne JA, Egger M. Funnel plots for detecting bias in meta-analysis: guidelines on choice of axis. J Clin Epidemiol. 2001;54:1094-1105.

19. Pan CQ, Han GR, Jiang HX, Zhao W, Cao MK, Wang CM, et al. Telbivudine Prevents Vertical Transmission from HBsAg-Positive Women with Chronic Hepatitis B. Clin Gastroenterol Hepatol. 2012 Feb 14[Epub ahead of print].

20. Chen XQ, Yao ZC, Wu LP, Chen MC, Zhang YP, et al. Clinical study on telbivudine in preventing hepatitis B virus infection in pregnant women with HBsAg+ HBV DNA high titer. Jiangsu Med. 2011;37(4):419-421.

21. Zhang YF, Hu HY. Efficacy and safety of telbivudine in preventing mother-to-child HBV transmission. Adjr. 2010;12(3):157-159.

22. Kim JW, Park SH, Louie SG. Telbivudine: A Novel Nucleoside Analog for Chronic Hepatitis B. Ann Pharmacother. 2006;40(3):472-478.

23. Beasley RP, Hwang LY, Lee GC, Lan CC, Roan CH, Huang FY, et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B virus vaccine and hepatitis B vaccine. Lancet. 1983;2:1099-1102.

24. Baczek Y. Hepatitis B and pregnancy. Gastroenterol Clin. 2004;33(1Pt 2):572-10.

25. Beasley RP, Hwang LY, Lee GC, Lan CC, Roan CH, Huang FY, et al. Prevention of perinatally transmitted hepatitis B virus infections with hepatitis B virus vaccine and hepatitis B vaccine. Lancet. 1983;2:1099-1102.

26. Benhamou Y, Fleury H, Trimoulet P, Pellegrin I, Benhamou Y, Fleury H, trimoulet P, Pellegrin I, et al. Anti-hepatitis B virus efficacy of tenofovir disoproxil fumarate in HIV-infected patients. Hepatology. 2006;43:548-555.

27. Loc A, Marchalon B. Chronic hepatitis B. Hepatology. 2007;45:507-509.

28. Matthews GV, Huihingsanov A, Lewin SR, Amin J, Nerkirmin R, Petcharapirat P, et al. A randomized trial of combination hepatitis B therapy in HIV/ HBV coinfected antiretroviral naive individuals in Thailand. Hepatology. 2008;48:1062-1069.

29. Marcellin P, Healthcote EJ, Buti M, Gane E, de Man RA, Kravst V, et al. Tenofovir disoproxil fumarate versus adefovir dipivoxil for chronic hepatitis B. N Engl J Med. 2005;353:2442-2445.

30. Hammer SM, Erner JJ Jr, Reiss P, Schooley RT, Thompson MA, Walmley S, et al. Antiretroviral treatment of adult HIV infection: 2008 recommendations of the International AIDS Society-USA panel. JAMA. 2008;300:555-570.

31. Lai CL, Leung N, Teo EK, Tong M, Wong F, Hahn HW, et al. A 1-year trial of telbivudine, lamivudine, and the combination in patients with hepatitis B e antigen-positive chronic hepatitis B. Gastroenterology. 2005 Aug;129(2):528-536.

32. Lai CL, Gane E, Hsu CW, Thongsawat S, Wang YM, Chen YG, et al. Two-year results from the globe trial in patients with hepatitis B: greater clinical and antiviral efficacy for telbivudine (LdT) vs. lamivudine. Hepatology. 2006;44(Suppl 1):222A.

33. Lai CL, Gane E, Liaw YF, Hsu CW, Thongsawat S, Wang Y, et al. Telbivudine versus lamivudine in patients with chronic hepatitis B. N Engl J Med. 2007;357(25):2576-2588.

34. Zeuzem S, Buti M, Gane EJ, Liaw YJ, Di Biscegillo AM, Heathcote E, et al. Baseline parameters predict both early virologic response and longer term outcomes for telbivudine-treated patients with chronic hepatitis B (The Globe Study). Hepatology. 2007;46(4 Suppl 1):831A.

35. Gane E, Lai CL, Liaw YE, Thongsawat S, Wang Y, Chen Y, et al. Phase 3 comparison of telbivudine vs lamivudine in HBeAg-positive patients with chronic hepatitis B: efficacy, safety, and predictors of response at 1 year. J Hepatol. 2006;44(Suppl 2):S183-S184.

36. Hou J, Yin YK, Xu D, Tan D, Niu J, Zhou X, et al. Telbivudine Versus Lamivudine in Chinese Patients with Chronic Hepatitis B: Results at 1 Year of a Randomized, Double-Blind Trial. Hepatology. 2008;47(2):447-54.

37. Lai CL, et al. Telbivudine in Special Populations with Hepatitis B Virus Infection. Hepatology. 2009;49(Suppl 1):S146-55.

38. Jonas M. Hepatitis B in Pregnancy. Clin Liver Dis. 2007;11(4):945-63.

39. Thornton A, Lee P. Publication bias in meta-analysis: its causes and consequences. J Clin Epidemiol. 2000;53(2):207-216.