Capturing Turbulent Dynamics and Statistics in Experiments with Unstable Periodic Orbits

Balachandra Suri,1 Logan Kageorge,2 Roman O. Grigoriev,2 and Michael F. Schatz2
1IST-Austria, 3400 Klosterneuburg, Austria
2School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
(Dated: August 7, 2020)

In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and frequently visited UPOs differ only by a few percent.

Characteristic flow patterns (coherent structures) embedded in turbulence play critical roles in both moderately [1] and highly turbulent flows [2, 3], including cascade processes in two and three dimensions [4–6]. However, inherently statistical descriptions of turbulence, which are currently widely accepted, fail to describe coherent structures effectively. Consequently, they are unable to quantitatively predict statistical averages of turbulent flows (e.g., energy dissipation rates).

Recent studies suggest that coherent structures in turbulence can be described by recurrent (e.g., time-periodic) solutions to the deterministic equations governing fluid flow [1, 7–11]. The existence of such solutions embedded within a chaotic set suggests the possibility of a fundamentally dynamical theory, inspired by Hopf’s vision of turbulence as a walk between neighborhoods of recurrent solutions [8, 12]. For certain (e.g., uniformly hyperbolic) low-dimensional dynamical systems exhibiting chaos, this viewpoint has been fleshed-out; chaotic trajectories in state space shadow (follow) a dense set of recurrent solutions in the form of unstable time-periodic orbits (UPOs). This property enables short-time forecasting and the computation [via periodic orbit theory (POT)] of statistical averages from properly weighted sums evaluated over UPOs, with higher weights assigned to more frequently visited UPOs [13–15].

Although the equations governing turbulence are formally infinite-dimensional, turbulent flows (due to dissipation) can be represented as state space trajectories confined to finite-dimensional chaotic sets [12]. This dimension can be estimated, e.g., based on the number of unstable directions of UPOs and can be relatively low [O(10)] for transitional flows in domains of moderate size [16–19]. While this qualitative similarity with low-dimensional chaos is encouraging, variability in the number of unstable directions for UPOs suggests turbulent flows are nonhyperbolic [20]. The stable and unstable manifolds of dynamically-invariant sets become tangent at some locations inside the chaotic set, destroying the shadowing property there and raising questions regarding the utility of UPOs for both forecasting and computing statistical averages.

To date, research devoted to developing and testing a dynamical description of turbulence based on UPOs has relied exclusively on direct numerical simulations (DNS) [5, 7, 10, 18, 21–27]. Despite the likely presence of nonhyperbolicity, studies focusing on transitional flows (with dynamics and statistics dominated by coherent structures) have generated valuable new insight. In canonical three-dimensional shear flows (e.g., plane-Couette) it was shown that UPOs capture salient dynamical aspects (e.g., self-sustaining processes [28]) and statistical averages (e.g., mean flow profile) of turbulent flows [5, 7, 10, 21, 22]. However, definitive evidence in support of POT has not emerged even from studies that identified large sets of (≈50) UPOs [17, 29].

Previous numerical studies have imposed numerous flow restrictions, including spatially-periodic boundary conditions, minimal-flow-unit domains and symmetry-invariance, that are not representative of experiments. Consequently, direct experimental evidence for shadowing–turbulent flows approaching UPOs and mimicking their spatiotemporal evolution has not been reported previously. Also, some amount of noise is always present in experiments and how it affects the dynamical relevance of UPOs is not currently understood. Lastly, the statistical significance of UPOs in laboratory flows is also an outstanding question.

In this Letter, we report clear evidence of UPOs in an experimental quasi-two-dimensional (Q2D) flow, in a domain whose size is much larger than a minimal flow unit. DNS of this moderately turbulent (transitional) flow is performed with no-slip boundary conditions and without imposing any symmetry constraints. In particular, to test the shadowing hypothesis, we study the spatiotemporal evolution of turbulent flows that approach UPOs closely. We investigate the relation between statistical “weights” predicted by POT and how frequently turbulent flow approaches UPOs. Finally, we compare time-averaged properties of turbulent flows with those.
computed from UPOs.

A Q2D Kolmogorov-like flow in the experiment is generated in a shallow (6-mm thick) electrolyte-dielectric bilayer. The fluids lie in a rectangular container with lateral (x and y) dimensions 17.8 cm × 22.9 cm (see Fig. 1). An array of permanent magnets placed beneath the container generates a near-sinusoidal magnetic field $\mathbf{B} \sim e^{-\pi y/w} \sin(\pi y/w) \hat{z}$, where $w = 1.27$ cm is the width of each magnet. Passing a direct current ($J \hat{y}$) through the electrolyte layer generates a Lorentz force $\mathbf{F} = J \hat{y} \times \mathbf{B} \sim e^{-\pi y/w} \sin(\pi y/w) \mathbf{F}$ that drives a horizontal flow. The electrolyte-dielectric interface is seeded with glass microspheres and spatiotemporally resolved 2D velocity fields $\mathbf{u}(x, y, t)$ that quantify the horizontal flow are measured using particle image velocimetry [30]. Details of the experiment and DNS are provided in the supplemental material (SM) [31].

The Q2D flow in experiment is theoretically modeled using the nondimensional 2D equation [32],

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\nabla p + \frac{1}{Re} (\nabla^2 \mathbf{u} - \gamma \mathbf{u}) + \mathbf{f}, \quad (1)$$

which is derived by averaging 3D Navier-Stokes equation in the z direction. Here, $\mathbf{u}(x, y, t)$ is assumed to be incompressible ($\nabla \cdot \mathbf{u} = 0$) and corresponds to the velocity field at the free surface in experiment. p is analogous to kinematic pressure. The spatial forcing profile \mathbf{f} is obtained by depth-averaging and normalizing the Lorentz force \mathbf{F}. Prefactor $\beta = 0.8$ to the nonlinear term and $-\gamma \mathbf{u}$ ($\gamma = 3.86$) capture the effects due to the solid boundary at the bottom of the fluid layers. Reynolds number Re is related to the strength of electromagnetic forcing and is the parameter used to control the complexity of flow (cf. SM).

DNS of the flow governed by Eq. (1) was performed using a second-order (in space and time) finite difference code previously employed in Refs. [11, 19, 33]. The dimensions of the computational domain $(14w \times 18w)$, no-slip velocity boundary conditions, and electromagnetic forcing in the DNS correspond to those in the experiment, facilitating direct quantitative comparison between the two. The 2D forcing profile \mathbf{f} in the DNS is antisymmetric under the inversion transformation $R(x, y) = (-x, -y)$, i.e., $R\mathbf{f} = -\mathbf{f}$. Hence, Eq. (1) is equivariant under R. This two-fold symmetry ($R^2 = 1$) is, however, weakly broken in experiment due to imperfections.

The Kolmogorov-like flow becomes weakly turbulent above $Re \approx 18$. Results presented in this study correspond to $Re = 23.5 \pm 1.5$ in experiment. In the DNS, turbulent time series were generated for $Re \in [22.6, 25.1]$ in steps of $\Delta Re = 0.5$. The flow is chaotic for these Re, which was validated in DNS by computing the Lyapunov exponents using continuous Gram-Schmidt orthogonalization (cf. SM) [34, 35]. The corresponding Kaplan-Yorke dimension is $D_{KY} \approx 12$ and the Lyapunov time is $\tau_l \approx 50$ seconds. We analyzed a 36000τ-long turbulent time series in the DNS and experiment to detect signatures of UPOs.

Time-periodic flows are solutions to Eq. (1) that satisfy the condition $\mathbf{u}_{\text{po}}(t') = \mathbf{u}_{\text{po}}(t')$. Here, t' parametrizes time along the orbit with period $T > 0$. Due to equivariance under R, Eq. (1) can also possess “pre-periodic” solutions such that $\mathbf{u}_{\text{po}}(t') = R\mathbf{u}_{\text{po}}(t')$ [26]. However, it is not known a priori whether UPOs of either type exist for our choice of parameters (Re, β, γ) and whether turbulent flow transiently approaches such solutions.

To identify signatures of UPOs, we performed recurrence analysis on the turbulent time series from DNS by computing [17, 26]:

$$r(t, \tau) = D_{c}^{-1} \min_g \| \mathbf{u}(t) - \mathbf{u}(t + \tau) \|, \quad g = \{R, 1\}. \quad (2)$$

Here, $\tau > 0$ and $\| \cdot \|$ represents the L_2 norm. The normalization constant $D_c = \max_{t, \tau} \| \mathbf{u}(t) - \mathbf{u}(t + \tau) \|$ is the empirically estimated diameter of the chaotic set which ensures $r(t, \tau) \leq 1$. Low recurrence values $r(t, \tau) \ll 1$ indicate that turbulent flow fields, or their symmetry-related copies, at instants t and $t + \tau$ are similar. Therefore, during the interval $[t, t + \tau]$, the turbulent trajectory in state space is possibly shadowing an unstable periodic or pre-periodic orbit with period $T \approx \tau$. Initializing a Newton-Krylov solver [22] with 50 initial conditions $\mathbf{u}(t)$ that corresponding to deep minima in recurrence ($r \leq 0.2$), we identified seven distinct UPOs, labeled as follows: UPO0, UPO1, UPO2A, UPO2B, UPO2C, UPO3A and UPO3B. Among these, UPO0 and UPO1 are R–invariant and have been reported previously [19]. The rest lie in full state space; UPO2A-2C are pre-periodic orbits that lie on the same solution branch and UPO3B is the symmetry-related copy of UPO3A. Several properties of the UPOs are tabulated in the SM.

To test the dynamical relevance of a UPO in experiment, i.e., whether turbulent flows $\mathbf{u}(t)$ approach the
UPO, we computed the normalized distance \[D_1(t) = D_c^{-1} \min_{t'} \| \mathbf{u}(t) - \mathbf{u}_{po}(t') \|. \] \[D_1 \] is the instantaneous separation between \(\mathbf{u}(t) \) and the closest point on the orbit \(\mathbf{u}_{po}(t') \), as shown in Fig. 2(a). \(D_1 \ll 1 \) \((D_1 \approx 1) \) implies the turbulent flow is very close to (far away from) the UPO in state space. We previously identified that flow fields in physical space are visually similar when \(D_1 \leq 0.45 \) [36]. Using this metric, we found many instances when turbulent flow approaches one of the computed UPOs. For example, Fig. 2 compares snapshots from experiment and UPO\textsubscript{3A} at an instant the turbulent trajectory is near UPO\textsubscript{3A} \((D_1 = 0.16) \). The remarkable similarity between these flow fields confirms that turbulent trajectories in experiment indeed approach UPOs very closely.

Turbulent trajectories near a UPO should shadow its evolution in state space [7, 17, 18, 22]. To validate this in experiment, we analyzed a particularly close pass to UPO\textsubscript{3A}; the period of this orbit is \(T = 113.2 \text{s} \) \((2.2\pi) \). Using our closeness criterion, we estimated that the turbulent trajectory remains in the neighborhood of UPO\textsubscript{3A} for a duration equal to about four periods of UPO\textsubscript{3A} \((-2 < t/T < 2 \text{ in Fig. 3}) \). To visualize turbulent dynamics over this interval, we projected the state space around UPO\textsubscript{3A} onto a low-dimensional subspace in Fig. 2. Indeed, the turbulent trajectory approaches UPO\textsubscript{3A}, shadows its evolution by tracing four loops, and subsequently departs from the neighborhood of UPO\textsubscript{3A}. Video 1 in the SM shows side-by-side comparison of turbulent flow and UPO\textsubscript{3A} in both physical space and state space.

Since the shapes of the turbulent trajectory and UPO\textsubscript{3A} are similar, one may ask if the corresponding flows evolve at similar rates. To explore this, for each point on the turbulent trajectory \(\mathbf{u}(t) \), we identified the closest point \(\mathbf{u}_{po}(t') \) on UPO\textsubscript{3A} (cf. Fig. 2). We then tested whether the time \(t' \) increases at the same rate as \(t \); \(dt'/dt = 1 \) implies identical rates of evolution for the turbulent flow and the UPO it is shadowing. Fig. 3(b) shows the relation between \(t' \) and \(t \) during the interval of shadowing. We defined \(t' \) on the interval \(0 < t' < T \) due to periodicity of the UPO. For each of the four periods, \(t' \) (solid black line) follows the “diagonal” \(t \mod T \) (dashed gray line). This shows the turbulent trajectory and UPO\textsubscript{3A} evolve at comparable rates, on average. Noticeable difference in the instantaneous rates of evolution is related to turbulent trajectories not approaching UPO\textsubscript{3A} infinitesimally closely [36]. We also found that turbulent trajectories in experiment shadow UPO\textsubscript{0} and UPO\textsubscript{2B} for a duration that is nearly one and three times their respective periods (see Fig. S2 and S3 in the SM).

Statistical significance of UPOs has received little attention in previous numerical studies [29, 37], and none in experiments. To address this, we computed the fraction \(P(\epsilon) \) of the total time turbulent trajectories visit the \(\epsilon \)-neighborhood \((D_1 < \epsilon) \) of any UPO. Fig. 4(a) reveals that particularly close passes \((\epsilon \leq 0.2) \) to UPOs are rare \((P < 2\%) \) and require very long turbulent time series for their detection. However, increasing the size of neighborhoods to \(\epsilon = 0.45 \), we find that turbulent trajectories spend a sizable fraction of time near UPOs; about 30\% in experiment and 23\% in the DNS. The sensitivity of \(P \) to the choice of \(\epsilon \) is comparable to that observed by Kerswell et al. for the statistical significance of traveling wave solutions in turbulent pipe flow at \(Re = 2400 \) [38].

Since very close passes to UPOs are rare, quantifying the relative importance of various UPOs required coarse partitioning of the state space. A turbulent trajectory can be simultaneously close to several UPOs which are adjacent to each other in state space. To distinguish their statistical significance, we grouped the UPOs into three clusters which are sufficiently far apart in state space: UPO\textsubscript{0,1}, UPO\textsubscript{2A-2C}, and UPO\textsubscript{3A,3B}. These clusters were identified using pairwise separation between UPOs (cf. SM). For each cluster, we then computed the conditional
probability \(P_c(\epsilon)/P(\epsilon) \) that a turbulent trajectory is near the UPOs in that cluster \((D_1 \leq \epsilon)\), given it is near one of the seven UPOs.

The probabilities for turbulent trajectories in experiment and DNS visiting the three UPO clusters are shown in Fig. 4(b) for \(\epsilon = 0.45 \). Clearly, the \(R \)-invariant solutions UPO\(_{0,1}\) are rarely visited. In contrast, UPO clusters that do not lie in the symmetry subspace are visited frequently and hence are statistically significant. Changing the neighborhood size between \(\epsilon = 0.4 \) and \(\epsilon = 0.5 \) did not affect the results qualitatively. The discrepancy between experiments and DNS appears to be a limitation of the 2D model in reproducing some aspects of an inherently 3D laboratory flow sufficiently accurately [33].

The relative significance of UPO clusters can be rationalized using periodic orbit theory, originally developed for uniformly hyperbolic low-dimensional chaotic systems [13, 14]. The statistical “weight” associated with a UPO, and hence the probability of finding a chaotic trajectory in its infinitesimal neighborhood, is approximately given by (cf. Section 2.7.1 in Ref. [15])

\[
\pi_i \propto \frac{1}{|\Lambda_{i1}| \cdot |\Lambda_{i2}| \cdots |\Lambda_{ik}|},
\]

where \(|\Lambda_{i1}|, \ldots, |\Lambda_{ik}| \) are the magnitudes of the unstable Floquet multipliers of UPO\(_i\). The POT weight associated with each cluster is then \(P_c/P = \sum_i \pi_i \), where the summation is over the UPOs in that cluster. The weights \(\pi_i \) in Eq. (4) are defined to within a normalization constant, which we chose such that the cumulative probability for the three clusters is the same for POT and DNS. Fig. 4(b) shows that the statistical significance of various UPO clusters predicted using POT is fairly consistent with measurements in DNS. This is quite remarkable, given that turbulent trajectories do not visit these UPOs infinitesimally closely. Lastly, alternative weighting formulas discussed in Refs. [17, 37, 39, 40] also yield similar estimates for the statistical significance of UPO clusters (cf. SM).

The motivation behind identifying UPOs and quantifying their statistical significance is to compare statistical averages of turbulent flows with those of UPOs. Following standard practice [5, 7, 22], we computed the instantaneous energy input \((I) \) and dissipation \((D) \) rates

\[
I(t) = (f \cdot u)_\Omega,
\]

\[
D(t) = -\frac{1}{Re} (u \cdot \nabla^2 u - \gamma u \cdot u)_\Omega,
\]

for the turbulent flow and all the UPOs. Here, \(a \cdot b \) is the scalar product between vector fields \(a, b \) and \(\langle \cdot \rangle_\Omega \) represents the integral \(\int_\Omega (\cdot) \, dx \\ dy \) evaluated over the entire flow domain \(\Omega \). In Fig. 5, we plotted the difference between instantaneous input and dissipation rates \((I - D)\) versus the energy input rate \(I \) for the turbulent flow in experiment. \(I \) and \(D \) are normalized by the temporal mean \(\langle I \rangle_t = \langle D \rangle_t \). The corresponding quantities for each UPO are overlaid. Additionally, the probability density function \(f(I) \) from experiment (as well as DNS) is shown in the inset.

For the statistically significant UPO\(_{2A-2C}\) and UPO\(_{3A,3B}\), both energy input and dissipation rates cluster around the turbulent mean values, located at \(I/\langle I \rangle_t = 1 \) and \(I - D = 0 \) in Fig. 5. The \(I \) (and \(D \)) values for these UPOs vary over a narrow range (0.95, 1.07).
that is approximately $\pm \sigma_I$ of the turbulent mean, where $\sigma_I = 0.055$ is the standard deviation of I for turbulent flow. Consequently, the mean energy input (and dissipation) rate for each of these five UPOs is within $\pm 0.6\sigma_I$ of the turbulent average (unity), as shown in the inset. In contrast, UPO $0_{1,2}$, which are statistically insignificant, have mean values of I and D that deviate by over $2\sigma_I$ from the turbulent mean value.

In this article, we provided unambiguous experimental evidence for the dynamical relevance and statistical significance of UPOs in a moderately turbulent flow. We showed that turbulent trajectories in state space transiently approach UPOs closely and shadow their spatiotemporal evolution. We also quantified the statistical significance of various UPOs by computing the fraction of time turbulent trajectories visit their neighborhoods. The estimates from DNS are consistent with the "weights" predicted by periodic orbit theory. Lastly, we showed that statistically significant UPOs capture time-averaged properties of the turbulent flows in both experiment and DNS accurately.

Our study identified that turbulent flows spend about 30% of the time near the UPOs we computed. This suggests that UPOs with longer periods as well as other types of nonchaotic solutions—such as unstable equilibria, quasi-periodic orbits, and hetero/homoclinic connections—may also play an important dynamical and statistical role [10, 24, 41, 42]. Their existence and dynamical relevance, at least in symmetry-invariant subspaces, was recently demonstrated for both 2D and three-dimensional shear flows [10, 19, 41, 42]. Hence, a dynamical framework based on UPOs, as well as other types of recurrent solutions, should ultimately enable forecasting [11, 36] and control (e.g., Lütjhe et al. [43]) of turbulent dynamics, besides accurately predicting its statistical properties.

MS and RG acknowledge funding from the National Science Foundation (CMMI-1234436, DMS-1125302, CMMI-1725587) and Defense Advanced Research Projects Agency (HR0011-16-2-0033). B.S. acknowledges funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 754411.

[1] B. Hof, C. W. H. van Doorne, J. Westerweel, F. T. M. Nieuwstadt, H. Faist, B. Eckhardt, H. Wedin, R. R. Kerswell, and F. Waleffe, Science 305, 1594 (2004).
[2] S. K. Robinson, Annual Review of Fluid Mechanics 23, 601 (1991).
[3] D. J. C. Dennis and F. M. Sogaro, Phys. Rev. Lett. 113, 234501 (2014).
[4] G. Boffetta and R. E. Ecke, Annu. Rev. Fluid Mech. 44, 427 (2012).
[5] L. van Veen, A. Vela-Martin, and G. Kawahara, Phys. Rev. Lett. (2019).
[6] S. Goto, Progress of Theoretical Physics Supplement 195, 139 (2012).
[7] G. Kawahara and S. Kida, J. Fluid Mech. 449, 291 (2001).
[8] J. F. Gibson, J. Halacrow, and P. Cvitanović, J. Fluid Mech. 611, 107 (2008).
[9] A. de Lozar, F. Mellibovsky, M. Avila, and B. Hof, Phys. Rev. Lett. 108, 214502 (2012).
[10] M. Avila, F. Mellibovsky, N. Roland, and B. Hof, Phys. Rev. Lett. 110, 224502 (2013).
[11] B. Suri, J. Tithof, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. Lett. 118, 114501 (2017).
[12] E. Hopf, Commun. Pur. Appl. Math. 1, 303 (1948).
[13] D. Auerbach, P. Cvitanović, J. P. Eckmann, G. Guranatne, and I. Procaccia, Phys. Rev. Lett. 58, 23 (1987).
[14] P. Cvitanović, Phys. Rev. Lett. 61, 2729 (1988).
[15] Y. Lan, Commun. Nonlinear Sci. 15, 502 (2010).
[16] J. F. Gibson. Channelflow: A spectral Navier-Stokes simulator in C++, Tech. Rep. (U. New Hampshire, 2014) Channelflow.org.
[17] G. J. Chandler and R. R. Kerswell, J. Fluid Mech. 722, 554 (2013).
[18] N. B. Budanur, K. Y. Short, M. Farazmand, A. P. Willis, and P. Cvitanovic, J. Fluid Mech. 833, 274–301 (2017).
[19] B. Suri, R. K. Pallantla, M. F. Schatz, and R. O. Grigoriev, Phys. Rev. E 100, 013112 (2019).
[20] E. J. Kostelich, I. Kan, C. Grebogi, E. Ott, and J. A. Yorke, Physica D: Nonlinear Phenomena 109, 81 (1997).
[21] S. Toh and T. Itano, J. Fluid Mech. 481, 67–76 (2003).
[22] D. Viswanath, J. Fluid Mech. 580, 339 (2007).
[23] Y. Duguet, C. C. T. Pringle, and R. R. Kerswell, Phys. Fluids 20, 114102 (2008).
[24] L. van Veen and G. Kawahara, Phys. Rev. Lett. 107, 114501 (2011).
[25] T. Kreilos and B. Eckhardt, Chaos: An Interdisciplinary Journal of Nonlinear Science 22, 047505 (2012).
[26] A. P. Willis, P. Cvitanovic, and M. Avila, J. Fluid Mech. 721, 514 (2013).
[27] J. Page and R. R. Kerswell, Journal of Fluid Mechanics 886, A28 (2020).
[28] F. Waleffe, Phys. Fluids 9, 883 (1997).
[29] D. Lucas and R. R. Kerswell, Phys. Fluids 27, 045106 (2015).
[30] B. Drew, J. Charonko, and P. P. Vlachos, “QI – Quantitative Imaging (PIV and more),” (2013), available at https://sourceforge.net/projects/qi-tools/.
[31] See supplemental material for details regarding (i) experimental setup, (ii) DNS, (iii) D_{K_Y} computation, (iv) properties of UPOs, (v) state space projection procedure, (vi) turbulent trajectories shadowing UPO and UPO$_{2B}$, (vii) pairwise separation between UPOs, and (viii) comparison of UPO weighting protocols. Videos 1, 2, and 3 show side-by-side comparison of turbulent flows in experiment shadowing UPO$_{3A}$, UPO$_0$, and UPO$_{2B}$, respectively.
[32] B. Suri, J. Tithof, R. Mitchell, R. O. Grigoriev, and M. F. Schatz, Phys. Fluids 26, 053601 (2014).
[33] J. Tithof, B. Suri, R. K. Pallantla, R. O. Grigoriev, and M. F. Schatz, J. Fluid Mech. 828, 837 (2017).
[34] D. A. Egolf, I. V. Melnikov, W. Pesch, and R. E. Ecke, Nature 404, 733 (2000).
[35] A. Karimi and M. R. Paul, Phys. Rev. E 85, 046201
(2012).
[36] B. Suri, J. Tithof, R. O. Grigoriev, and M. F. Schatz, Phys. Rev. E 98, 023105 (2018).
[37] E. Kazantsev, Nonlinear Proc. Geoph. 5, 193 (1998).
[38] R. R. Kerswell and O. R. Tutty, J. Fluid Mech. 584, 69–102 (2007).
[39] S. M. Zoldi and H. S. Greenside, Phys. Rev. E 57, R2511 (1998).
[40] S. M. Zoldi, Phys. Rev. Lett. 81, 3375 (1998).
[41] T. M. Schneider, B. Eckhardt, and J. Vollmer, Phys. Rev. E 75, 066313 (2007).
[42] M. Farano, S. Cherubini, J.-C. Robinet, P. De Palma, and T. M. Schneider, Journal of Fluid Mechanics 858, R3 (2018).
[43] O. Lüthje, S. Wolff, and G. Pfister, Phys. Rev. Lett. 86, 1745 (2001).