Study of Antimicrobial Activity of the Callus Tissue Salvia Pratensis L. (Lamiaceae) In Vitro

Elena Maslova
Belgorod State National Research University
Russia, Belgorod
maslova@bsu.edu.ru

Tatyana Glodik
Belgorod State National Research University
Russia, Belgorod
gtania98@mail.ru

Valeria Semykina
Belgorod State National Research University
Russia, Belgorod
valeria.semikina@yandex.ru

Natalya Gulya
Biotech company “NoviStem”
Russia, Belgorod
gulia.natalya@yandex.ru

Tatyana Perelygina
Belgorod State National Research University
Russia, Belgorod
perelygina@bsu.edu.ru

Abstract—In this paper, we studied the antimicrobial activity of callus tissue Salvia pratensis L. obtained in vitro against Escherichia coli and Staphylococcus aureus. The most effective sterilizing agents for disinfection of plant explants with their introduction into in vitro culture were selected. The composition of the nutrient medium for the cultivation of callus tissues of S. pratensis has been optimized. A comparative analysis for the antibacterial activity of plant extracts obtained from callus tissues and intact plants was carried out, and as a result it was found that extracts from callus tissue demonstrate the most pronounced antibacterial properties in concentrations of 100% and at a dilution of 1:10, in contrast to extracts from leaves and flowers of an intact plant.

Keywords—callus tissue, antibacterial activity, S. pratensis, plant extracts, in vitro, gram-negative, gram-positive microorganisms

I. INTRODUCTION

Antibiotic resistance is one of the main problems facing humanity. In this regard, there is an increasing need for the search for new antimicrobial agents. Plant materials are one of these sources and they do not cause resistance [1]. Nowadays the modern preparation and production of biologically active substances from plant materials with antimicrobial, anti-inflammatory, antioxidant effects are more and more actively associated with the use of various biotechnological techniques.

In recent years, special attention of researchers has been given to the study of a significant number of representatives of Lamiaceae or Labiatae family. A number of authors studied plant species with pronounced antimicrobial properties, such as Teucrium polium L., Mentha piperita L., Rosmarinus officinalis L., Ballota nigra L., Salvia aethiopis L., Salvia stepposa Shost., Ocimum [2-9]. The problem of the limitations of natural raw materials, the distribution range of the species, the dependence of gathering raw materials on geographical, climatic and seasonal factors leads to the search for alternative plant sources. The development of plant cell and tissue engineering methods allows inducing the formation of callus tissue of plants in vitro.

Obtaining cell cultures in vitro enables the synthesis of environmentally friendly plant biomass, which possesses or produces valuable biologically active substances with antibacterial, antioxidant, antiviral and anti-cancer properties. Previously, the authors investigated the antimicrobial properties of callus cultures of Ajuga genevensis L., and the high antibacterial activity of the extracts in relation to E.coli was proved [10]. A high antimicrobial activity of the callus culture of Mentha arvensis L. against bacteria of the genus Proteus was also revealed [11]. Using the medicinal plant Salvia officinalis L. as an example, the regenerative ability of callus tissue of this species was studied [12] and the conditions for obtaining callus and somatic embryogenesis of plant explants were determined [13]. The data indicate the increasing importance of the use of plant cell cultures to obtain a number of biologically active compounds or substances with valuable properties.

Meadow sage (Salvia pratensis L.) is a perennial plant with biologically active substances in its essential oil [14]. Sage contains borneol, cineole, α and β thujone, as well as aliphatic components, oxygen-containing sesquiterpenes, sesquiterpene hydrocarbons, oxygen-containing monoterpenes, monoterpenic hydrocarbons. In total, in the composition of S. pratensis 28 compounds, mainly monoterpenoids with the sabinene component (21%) were identified [15].

The importance of S. pratensis in human use is great, alongside with closely related species of medicinal sage (S. officinalis) and nutmeg (S. sclarea). It has such properties as anti-inflammatory, antimicrobial, expectorant [16].

The aim of the research is to obtain callus tissue of Salvia pratensis L. in vitro, determine its antibacterial activity, and make a comparison.

II. EXPERIMENTAL

As materials and objects of research we used - callus tissue and intact plants (flowers and leaves) of S. pratensis, growing in Belgorod region, as well as test objects gram-negative bacteria of the species Escherichia coli (VKPM-
M17 strain) and gram-positive – *Staphylococcus aureus* (MDC 5233 strain).

All work and experiments with plant explants, callus tissues and microorganisms were carried out in laminar boxes “Lamsystems” class II and class III protection, A2-A3 type (manufactured by Russia, ZAO Laminar Systems) in compliance with aseptic rules [17]. Callus tissues were obtained by introducing into the culture in vitro plant explants (seeds) of *S. pratensis* gathered in Belgorod Region during the active fruiting of plants in late June - early July 2017-2018. Plant explants underwent phase sterilization. As sterilizers lysoformin 3000 (3%, 5%), biocide (3%, 5%), sodium hypochlorite (5%, 2.5%), chloramine B (5%), silver nitrate (0.5 %, 0.1%) were used. Then, seedlings obtained from seeds were wounded in order to induce callusogenesis and cultivated on modified nutrient media of various compositions with the addition of various concentrations of phytohormones IAA, BAP and sucrose (20, 30 g/l) [18]. Callus tissues were cultured in a thermostat at a temperature of 23.5 °C and passaged every 3-4 weeks for fresh nutrient in order to propagate and maintain cultures.

Plant extracts of callus tissue and intact *S. pratensis* plants were obtained using the method of preparation of alcoholic extracts [10]. After receiving a 100% plant extract, the procedure for obtaining serial dilutions was carried out. To obtain a 1:10 dilution, 1 ml of a 100% plant extract was taken and placed using an automatic dispenser in the first tube with 9.3 ml of autoclaved distilled water. To obtain a 1:100 dilution, 1 ml of the solution was taken from a 1:10 dilution and added to a test tube with 9.3 ml of distilled water. Subsequent dilutions of 1: 1000 and 1: 10000 were prepared in a similar manner [19]. Cell cultures of passage 4 were used to prepare plant extracts from callus tissue.

The study of antimicrobial activity, based on the disk diffusion method, was carried out. Daily diurnal cultures of *E. coli* (VKPM-M17 strain) and *S. aureus* (MDC 5233 strain) were preliminarily obtained on oblique agar-agar using the nutritional medium GRM; microorganism suspensions were prepared according to standard methods [20]. Filter disks with a diameter of 14 mm were impregnated with the studied solutions (extracts). For control, a 40% solution of ethyl alcohol (included in the extracts) and antibiotic solutions were used. The control antibiotic gentamicin was used for *E. coli*, and ceftriaxone was used for *S. aureus*. The diameters of zones of growth inhibition of microorganisms were evaluated by standard indicators [20]. Data processing was performed with the help of the statistical analysis software package Microsoft Excel. The following statistical characteristics were used: arithmetic mean (x), mean error (Sx). To assess the significance of differences between the control and experimental groups, the Fisher test was used [21].

III. RESULTS AND DISCUSSION

Obtaining callus tissues of *S. pratensis* was carried out by introducing into the culture in vitro plant explants, seeds by nature. To determine the most effective sterilizing agent, *S. pratensis* plant explants were sterilized with five disinfecting solutions: lysoformin 3000 with a concentration of 3% and 5%, biocide with a concentration of 3% and 5%, sodium hypochlorite with a concentration of 5% and 2.5%, chloramine B - 5%, silver nitrate concentration of 0.5% and 0.1%. The exposure time of each disinfectant was 10 and 15 minutes.

As a result, it was found that the most effective sterilizing solution for introducing *S. pratensis* plant explants into the culture in vitro is a 3% biocide when exposed to it for 10 minutes (Table I, Fig. 1).

With this sterilization mode, the maximum number of viable plant explants (43.3%) in relation to sterile (80%) was obtained. However, an increase in the exposure time of this sterilizer to 15 minutes at a given concentration led to a decrease in seed viability (20% viable from 96.67% sterile). The use of this sterilizer in higher concentrations of 5% for 15 minutes had a detrimental effect on the viability of plant explants, which did not germinate at all, but were not covered by infection, because seed sterility was 100%. Reducing the exposure time of 5% biocide to 10 minutes led to a slight decrease in sterile explants (96.67%), but their viability increased significantly (out of 96.67% sterile viable was 20%). Therefore, the use of this sterilization regimen is very effective for obtaining seedlings in an in vitro culture. It is also possible to use 5% chloramine B as a sterilizing agent with an exposure time of 15 minutes (20% viable) and 5% sodium hypochlorite for 10 minutes. However, the latter sterilization regime provides a small amount of 13.33% of viable plant explants.

Sterilizing solution and its concentration	Sterilization duration (minutes)	Sterile explants number (%)	Viable explants number (%)
Lysoformin 3000 (5%)	10	61.67±2.3	0.0±0.0
Lysoformin 3000 (5%)	15	96.67±3.6	0.0±0.0
Biocide (3%)	10	80.0±3.09	43.3±1.67
Biocide (3%)	15	96.67±3.61	20.0±0.77
Biocide (5%)	10	96.67±3.61	20.0±0.77
Biocide (5%)	15	100.0±0.0	0.0±0.0
Sodium hypochlorite (5%)	10	96.67±3.61	13.33±0.51
Sodium hypochlorite (5%)	15	100.0±0.0	0.0±0.0
Sodium hypochlorite (2.5%)	10	96.67±3.61	0.0±0.0
Sodium hypochlorite (2.5%)	15	81.67±3.09	0.0±0.0
Chloramine B (5%)	10	96.67±3.61	0.0±0.0
Chloramine B (5%)	15	100.0±0.0	20.00±0.77
Silver nitrate (0.1%)	10	96.67±3.61	0.0±0.0
Silver nitrate (0.1%)	15	96.67±3.61	0.0±0.0
The use of all other sterilization regimes with lysoformin 3000, sodium hypochlorite and silver nitrate in various concentrations and exposure times is not advisable, since when using them, the percentage of viable seeds is close to zero.

Using the Fisher Test, it was found out that at a significance level of P > 0.05 all values of viable and sterile explants S. pratensis, presented in Table I, are statistically significant.

Viable isolated cultures obtained by sterilization were grown on various modified culture media (MR1 and MR2) to induce callusogenesis and to obtain callus tissues. As a result, it was found that MR2 medium is a more optimal medium for cultivating callus tissue of S. pratensis (Fig. 2), since callus tissue growth was initiated on it at subsequent passaging stages, which was not observed on MR1 medium.

To conduct a comparative analysis of the antimicrobial properties, plant extracts were obtained from callus tissues cultured in vitro and as well as from flowers and leaves of intact plants collected in Belgorod Region. The results of the antimicrobial effect of the extract from the flowers, leaves of an intact plant and callus tissue of S. pratensis on microorganisms of the species E. coli and S. aureus are presented in Table II and diagrams (Fig. 3, 4).

As it can be seen from table II and fig. 3 a 100% plant extract from the flowers of the intact S. pratensis plant and its dilution 1:10 have weak antimicrobial activity against E. coli. The plant extract from the flowers of the intact plant S. pratensis does not show antibacterial activity against S. aureus, since the control exceeded almost all the values of the studied extracts and their dilutions, except for 100%, which is 0.14 units higher than the control value (Table II, fig. 4).

100% plant extract from the leaves of the plant S. pratensis and its dilution 1:10 have weak antibacterial activity against E. coli. In relation to S. aureus, only 100% extract from the leaves of the plant S. pratensis exhibits weak antimicrobial activity.

The results of the antimicrobial effect of the extract from callus tissue of S. pratensis on microorganisms of the E. coli species show that the 100% extract, as well as its dilution 1:10 of the callus culture of S. pratensis demonstrate antimicrobial activity significantly exceeding the control values. The remaining dilutions were lower than the control value; therefore, they did not show antimicrobial activity against E. coli. In relation to S. aureus, 100% callus tissue extract demonstrates strong antimicrobial activity, while its dilutions of 1:10 and 1:100 have weak antimicrobial activity. The indicators of all other dilutions were below the control value; therefore, they did not possess antibacterial properties.

Based on the data above, 100% extract from callus tissue S. pratensis and some of its dilutions have high antimicrobial activity against E. coli and S. aureus than the extracts from flowers and leaves of an intact plant.

![Fig. 1](image1.png)

Fig. 1. The effect of sterilizing solutions on the ratio of sterile and viable explants of the species S. pratensis.

Extract concentration	Diameters of the zones of growth inhibition of microorganisms, mm					
	Intact plant					
	Flowers	Leaves				
	E. coli	S. aureus	E. coli	S. aureus		
Microorganisms	**E. coli**	**S. aureus**	**E. coli**	**S. aureus**		
100%	1.13±0.37	1.5±0.5	0.962±0.32	1.56±0.52	9.4±3.1	13.7±4.5
1:10	0.93±0.31	1.2±0.4	0.93±0.31	1.2±0.4	7.2±2.41	9.3±3.1
1:100	0.0±0.0	1.0±0.33	0.0±0.0	1.0±0.33	1.03±0.34	6.7±2.3
1:1000	0.0±0.0	0.91±0.3	0.0±0.0	0.0±0.0	0.82±0.27	2.4±0.8
1:10000	0.0±0.0	0.53±0.17	0.0±0.0	0.0±0.0	0.32±0.1	1.25±0.41
control	0.36±0.1	1.36±0.4	0.3±0.1	1.375±0.45	3.9±1.3	3.86±1.28
antibiotic	9.5±3.06	10.2±3.4	8.5±2.8	9.2±3.06	8.6±2.8	8.4±2.8

![Fig. 2](image2.png)

Fig. 2. Callus tissue of S. pratensis on media: a) MR1 at 1 month of cultivation (1 passage); b) MR2 at 4 months of cultivation (4 passage).
Thus, the data obtained indicate that the cultivation of callus culture is advisable to obtain antibacterial substances, which exist in a much smaller amount in the leaves and flowers of an intact plant. This research serves as the basis for further study of callus tissue of S. pratensis in different passages of cultivation and testing it on a wider range of microorganisms.

IV. CONCLUSION

REFERENCES

[1] M. Ginoyan, M. Petrosyan, A. Tschounyan, “Antimicrobial activity of some plant materials used in Armenian traditional medicine”, BMC complementary and alternative medicine, vol. 17:50, pp. 1-9, 2017.

[2] Yu.G. Rudakova, O.I. Napayana, O.I. Popova, “Izuchenie antimikrobnogo deistvia izvlechenii iz travy Dubrovnika Belogo TeuqurumFoliuniu. (Lamiaceae)”, Farmatsiya and farmakologiya, № 3, pp.41-43, 2014.

[3] Z.M. Tokhissrova, A.S. Nikitina, O.I. Popova, “Izuchenie antimikrobnogo deistvia ehfignogo masla iz pobegov Rozmarina Lekarstvennogo (Rosmarinus officinalis L., Lamiaceae)”, Farmatsiya and farmakologiya, vol. 4.1 (14), pp. 66–71, 2016.

[4] S.V. Raikova, A.G. Golikov, G.M. Shub, N.A. Durnova, O.G. Shapoval, A.Yu. Rakhetnov, “Antimikrobnaya aktivnost’ ehfignogo masla myaty perechnoi (Mentha arvensis L.)”, Saratov Journal of Medical Scientific Research. vol. 7, № 4, pp. 787-790, 2011.

[5] E.A. Mlechko, “Izvlechenie antimikrobnikh aktivnost’ ehfignogo masla Shalfeya Ehiopskogo (Salvia Aethiopis L.)”, Electronic scientific journal “Apriori. Series: Natural and Technical Sciences ”, № 4, pp. 1-4, 2014.

[6] A. Avetisyan, A. Markosyan, M. Petrosyan, N. Sahakyan, A. Babayan, S. Aloyan, A. Tschounyan, “Chemical composition and some biological activities of essential oils of different varieties of Basil Ocimum”, BMC complementary and alternative medicine. vol. 17:60, pp. 1-8, 2017.

[7] O.A. Ivashchuk, E.V. Maslova, I.V. Batlutskaya, N.V. Shcherbinina, K.A. Degtyareva, N.I. Gulya and M.D. Zhuravlev, “Optimization of sterilization process of plant explants when introduced into culture in vitro based on artificial neural networks (by the example of the family Labiateae Juss. (Lamiaceae)”, International Journal of Advanced Biotechnology and Research, vol. 8, № 4, pp.1698-1707, 2017.

[8] E.V. Maslova, N.I. Gulya, K.A. Degtyareva, I.V. Batlutskaya, O.A. Ivashchuk, V.I. Fedorov, “Introduction into culture in vitro of rare and endangered plant species of Belgorod region flora (by the example of the family Fabaceae) using neural network hardware”, Indo American journal of pharmaceutical sciences, vol. 05 (06), pp. 6095-6102, 2018.

[9] T.V. Glodik, V.V. Semykina, E.V. Maslova, “Investigation of antimicrobial activity of Salvia tesquicola Klok. Et Pobed and S. pratensis L. (Lamiaceae)”, Collection of abstracts of the 23rd international Pushchino school-conference of young scientists “Biology-science of the XXI century”, Pushchino, 2019. pp. 129.

[10] N.Zh. Sahakyan, M.T. Petrosyan, J.A. Agadzhanyan, “Antibakterial’nya aktivnost’ izolirovannoi kul’tury zhivuchki zhenevskoi Ajuga genevensis L.”, Biological Journal of Armenia, № 1-2 (60), pp. 60-65, 2008.

[11] M. Johnson, E.G. Welsey, M.S. Kavitma, V. Uma, “Antibacterial activity of leaves and inter-nodal callus extracts of Mentha arvensis L.”, Asian Pacific Journal of Tropical Medicine, vol. 4. pp. 196-200, 2011.

[12] A.A. Tawfik, M.F. Mohamed, “Regeneration of salvia (Salvia officinalis L.) via induction of meristematic callus”, In Vitro Cellular & Developmental Biology-Plant, vol. 43, № 1, pp. 21-27, 2007.

[13] O.-M. Joa-Boldura, F. Radu, S. Popescu, A. Borozan, “Regeneration, Micropropagation, Callus Cultures and Somatic Embryogenesis of Common Sage (Salvia officinalis L.)”, Bulletin UASVM Horticulture, vol. 67(1), pp. 308-313, 2010.

[14] P.F. Mayevsky, Flora srednei polosy evropeiskoi chasti Rossi. 11th ed. M.: Tovarishchestvo nauchykh izdanii KMK, 2014.

[15] F. Senatore, V. De Feo, “Essential oils from Salvia spp. (Lamiaceae). II. Chemical composition of the essential oil from Salvia pratensis L. subsp. haematodes (L.)”, Brij.informlences. Journal of Essential Oil Research, vol. 10, pp. 135–137, 1999.

[16] E.A. Gubanova, O.I. Popova, “Feno’naye soedineniya nekotorykh vidov roda Salvia (Lamiaceae) fiory Rossi i ikh biologicheskaya aktivnost’”, Rastitel’nyye resursy, vol. 45, № 3, pp.137-160, 2009.

[17] R.G. Butenko, Biologiya kletok vysshikh rastenii invitro i biotekhnologii na ikh osnove: Textbook. M .: FBK PRESS, 1999

[18] T. Murashige, F. Skoog, “A revised medium for rapid growth and bio-assays with tobacco tissue cultures”, Physiol Plant, vol. 15(3), pp. 473 – 497, 1962.

[19] V.V. Lysak, R.A. Zhukovskaya, O.V. Fomina, Mikrobiologiya. Praktikum: posobie. Minsk: BSU, 2015.

[20] Z.D. Khadzhieva, I.S. Krakhmalov, “Izuchenie antimikrobnoi aktivnosti lekarstvennykh preparatov s fitoehkstraktom”, Fundamental research, № 11, pp. 152-154, 2010.

[21] E.A. Sniegin, Praktikum po biometriI: uchebnoe posobi. Belgorod: Publishing House “Belgorod” NIU “BelGU”, 2016, 56 p. .