A realist synthesis of educational interventions to improve nutrition care competencies and delivery by doctors and other healthcare professionals

Mogre, V., Scherpbier, A. J. J. A., Stevens, F., Aryee, P., Cherry, M. G., & Dornan, T. (2016). A realist synthesis of educational interventions to improve nutrition care competencies and delivery by doctors and other healthcare professionals. BMJ Open, 6(10), [e010084]. DOI: 10.1136/bmjopen-2015-010084

Published in:
BMJ Open

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
Copyright 2016 The Authors
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date: 22. Jul. 2018
BMJ Open

Realist synthesis of educational interventions to improve nutrition care competencies and delivery by doctors and other healthcare professionals

Victor Mogre,1,2 Albert J J A Scherpbier,2 Fred Stevens,2 Paul Aryee,3 Mary Gemma Cherry,4 Tim Dorman2

ABSTRACT

Objective: To determine what, how, for whom, why, and in what circumstances educational interventions improve the delivery of nutrition care by doctors and other healthcare professionals work.

Design: Realist synthesis following a published protocol and reported following Realist and Narrative Evidence Synthesis: Evolving Standards (RAMESES) guidelines. A multidisciplinary team searched MEDLINE, CINAHL, ERIC, EMBASE, PsycINFO, Sociological Abstracts, Web of Science, Google Scholar and Science Direct for published and unpublished (grey) literature. The team identified studies with varied designs; appraised their ability to answer the review question; identified relationships between contexts, mechanisms and outcomes (CMOs); and entered them into a spreadsheet configured for the purpose. The final synthesis identified commonalities across CMO configurations.

Results: Over half of the 46 studies from which we extracted data originated from the USA. Interventions that improved the delivery of nutrition care improved skills and attitudes rather than just knowledge; provided opportunities for superiors to model nutrition care; removed barriers to nutrition care in health systems; provided participants with local, practically relevant tools and messages; and incorporated non-traditional, innovative teaching strategies. Operating in contexts where student and qualified healthcare professionals provided nutrition care in developed and developing countries, these interventions yielded health outcomes by triggering a range of mechanisms, which included feeling competent, feeling confident and comfortable, having greater self-efficacy, being less inhibited by barriers in healthcare systems and feeling that nutrition care was accepted and recognised.

Conclusions: These findings show how important it is to move education for nutrition care beyond the simple acquisition of knowledge. They show how educational interventions embedded within systems of healthcare can improve patients’ health by helping health students and professionals to appreciate the importance of delivering nutrition care and feel competent to deliver it.

Strengths and limitations of this study

- Application of the principles of realist synthesis to nutrition and education research is novel.
- The characteristics and conditions of educational interventions that can improve the delivery of nutrition care, identified by this review, are important to the work of policymakers, researchers, health professions educators and course developers.
- Few reports of failed educational interventions were found, indicating a risk of positive publication bias.
- Until our conceptual model is tested and refined in the real world, we consider it to be an indefinite candidate theory, presenting elements worth considering by those concerned with the design, implementation and evaluation of educational interventions to improve the delivery of nutrition care by doctors and other healthcare professionals.
- We cannot assume that the research evidence we identified represents ‘real-world’ practices, and therefore our claims for the transferability of this research must be guarded.

INTRODUCTION

Nutrition is an important component of healthcare. It plays a critical role in the prevention and treatment of most cardiovascular and cerebrovascular diseases, which are leading causes of morbidity and mortality throughout the world.1–3 Nutrition is even more important in sub-Saharan Africa because malnutrition is a major cause of morbidity and mortality, particularly among children.4

Several landmark reports5–6 have identified the delivery of nutrition care as one of the core responsibilities of doctors. Research has also shown that nutrition counselling delivered by them has positive influence on patients’ clinical outcomes. They and other
healthcare professionals whose primary role is not nutrition care, however, often miss opportunities to advise patients on diet and health.⁷ ⁸ Health workers in primary care settings are particularly important providers of nutrition care because they can motivate even healthy individuals to adopt healthier lifestyles.⁹ The care expected from primary care health workers includes nutrition assessment, education and counselling interventions, monitoring and evaluation. Lack of knowledge,¹⁰ skills and confidence,¹¹ ¹² as well as negative attitudes towards delivery of nutrition care and low outcome expectancy,¹³ are barriers to healthcare professionals providing nutrition care. In addition to these individual-related factors, several system-related factors such as lack of time, office space, payment, materials and education¹⁴ also prevent the delivery of nutrition care by these healthcare professionals.

Many educational interventions have been designed and implemented to improve nutrition care, but their effects have been inconsistent and often weak.¹⁵–¹⁷ There remains a need, therefore, for interventions that can change healthcare professionals’ behaviour in practice.¹⁵–¹⁷ It is imperative to identify contextual factors, which mediate or inhibit their competence and delivery of nutrition care.¹⁸ ¹⁹ In order to meet those needs, researchers have to identify components of effective educational interventions and processes.

To date, only one secondary research investigation has synthesised conclusions from existing evidence about nutrition care.²⁰ The authors of that review concluded that in-service nutrition training improved healthcare professionals’ knowledge, nutrition-related counselling skills and malnutrition management skills. The main limitation was that this was a traditional systematic review, which only considered in-service nutrition training programmes. Its authors found that the evidence base was very heterogeneous; studies had widely varying study designs with heterogeneous outcome measures; and there were wide differences in the competence, experience and backgrounds of participating healthcare professionals. As the authors acknowledged, systematic review methodology limited their ability to recognise and account for the complexity of interactions within such interventions.

We reasoned that we could move the field forward by conceptualising nutrition education interventions as complex ones within a realist research approach. As noted in our published review protocol,²¹ we recognised that educational interventions involve multiple actors operating at different levels with a range of artefacts in varied material environments.²² We assumed that these components operate in non-linear ways to yield context-dependent outcomes. Realist synthesis explores ‘what is it about this intervention that works, for whom and in what circumstances?’ and is therefore an appropriate way to study complex interventions.²³ It is an iterative, theory-driven approach, which aims to unpack the theories that inform decisions and actions adopted in the design and implementation of interventions.²⁴ Realist synthesis begins with the development of an initial programme (or candidate) theory about how interventions work, the contexts in which they do and do not work, and the differentiated patterns of outcomes that they generate.²⁵ As the review progresses, researchers test the initial programme theory and refine it as more evidence becomes available.²⁶

Thus, the aim of this realist review was to determine what, how, for whom, why and in what circumstances educational interventions improve the delivery of nutrition care by doctors and other healthcare professionals work.

METHODS

VM is a nutritionist working in sub-Saharan Africa, which provided a context for the research. Other members of the team included scholars of medical education, evidence synthesis, social science, nutrition and an experienced clinician.

Alteration from protocol

The review question above is broader than in the published protocol²¹ because the search showed important findings from research in health professions other than medicine, which the team felt could make a valuable contribution.

Search methods

Search terms pertaining to nutrition, care, healthcare professionals, training etc were scoped on two electronic databases. Resulting articles were reviewed, and refinement of search terms was not considered necessary. Further explanation and a full list of the search terms can be found in our published protocol.²¹ A search strategy was created for Ovid MEDLINE (available in online supplementary appendix 1) and adapted for the rest of the databases. These databases were CINAHL, ERIC, EMBASE, PsycINFO, Sociological Abstracts, Web of Science, Science Direct and Google Scholar, the latter of which was used to search for grey literature. Email alerts were set for journals and RSS feeds for databases to ensure that we identified new papers as soon as they became available.

Inclusion criteria

▸ Study participants: Medical students, students of other health professions and practising healthcare professionals (eg, nurses, physician assistant).
▸ Focus of intervention: Developing participants’ competencies in any aspect of nutrition practice behaviour.
▸ Study design: All.
▸ Context of intervention: Medical schools, residency and fellowship programmes, and interventions at community and hospital settings.
▸ Publication language: English.
Publication date. January 1994 to December 2014 inclusive. This date range was chosen because preliminary searches indicated that educational interventions to improve nutrition care competencies and delivery among doctors and other healthcare professionals gained prominence within published literature around 1994.

Exclusion criteria
We sought to understand generalists’ delivery of nutrition education, and therefore we excluded research that only considered the education of dietitians and/or nutritionists since nutrition is their main responsibility. While we excluded conference proceedings, opinion pieces, case studies and abstracts, we used them to develop the initial candidate theories reported in our protocol.21 We also excluded systematic reviews, although they informed the design of our data extraction form and provided an insight into context, mechanism outcome (CMO) configurations and additional references. Papers were also excluded if they lacked evaluation or outcome data and not being about improvement in nutrition care competencies.

Study selection
Figure 1 shows the flow chart of the search and selection processes. The final search yielded 4500 hits. VM and TD initially screened the titles of 100 hits independently and compared their findings. There was almost complete agreement, and VM continued with the screening.

Figure 1 Search and selection process.
After eliminating duplicates, 357 studies were selected. Having obtained their abstracts, VM, TD and MGC determined independently whether each study was concerned with improving nutrition care competencies and delivery of nutrition care. At a face-to-face discussion, we compared our choices, for which the k statistic of agreement was 0.9. This yielded 74 studies, 6 of which were excluded because they were conference abstracts. Seven studies could not be obtained despite repeated attempts. VM read the reference lists of the remaining 61 studies, and all identified systematic reviews, identifying 11 more studies.

Quality assessment
It is regarded as acceptable in realist synthesis to include part(s) or whole studies for analysis and synthesis, provided that the methods employed for collecting such data are robust. As recommended by Pawson, the appraisal of primary studies was informed by their relevance as well as their rigour. Our judgements of a study’s relevance were informed by the extent to which the whole study or parts of it were relevant to our published initial programme theory. Our assessment of rigour was informed by the trustworthiness of studies’ design, sample size and data collection tools in relation to the outcomes reported. The Mixed Methods Appraisal Tool helped us assess rigour. Based on the exclusion and inclusion criteria, VM selected 55 of the 72 studies for quality assessment. Quality assessment was conducted by AS, TD, FS and MGC. This process resulted in the exclusion of nine studies from which clear conclusions could not be drawn because of methodological weaknesses. The remaining 46 studies were included in our data analysis. We kept notes of our reasons for including or excluding each study and resolved doubts about our judgements of study quality by discussing between ourselves. The processes of quality assessment and data extraction proceeded concurrently.

Data extraction, analysis and synthesis
For the purpose of data extraction, we followed guidance from previous related systematic reviews and iteratively refined our procedures in accordance with the focus of the review. VM initially extracted data from a sample of 10 studies, discussed the findings with the other members of the team and used those discussions to guide further data extraction. Data extracted included the following:

★ Study design, sample size and outcome data
★ Educational levels of study participants (students vs practising health workers)
★ How course material had been developed
★ Topics covered
★ Methods of teaching and learning
★ Methods of evaluating outcomes including data collection tools
★ Intervention type (eg, workshops, curriculum designs)
★ Durations of intervention

★ Contexts of intervention (eg, practising healthcare professionals, students)
★ Mechanisms generated
★ Learning outcomes
★ Impacts (if any) of intervention on clinical outcomes
★ Any theories or mechanisms postulated by author(s) explaining the effects of interventions

We read all 46 included studies twice, transferring relevant data into our data extraction form. We identified the CMOs and interactions between them for each study as well as the theory informing each intervention. To do that, we assumed that the design of each study was informed by a theory, which the authors stated explicitly or implicitly. Identifying those theories helped us understand how interventions worked to generate outcomes. We discussed and reflected on all the data we had identified for each study, sometimes using extracts of publication narratives to foster reflection.

The next stage was to identify themes that were common to different studies. Using an interpretative and narrative approach, we discussed and synthesised initial conclusions, which we used to refute or refine the candidate theories in our published protocol. We chose this process of synthesis in preference to a meta-analysis, which would not have been possible given the diversity in study populations, designs, interventions and outcomes.

RESULTS
General characteristics of the studies
Table 1 provides a summary of the 46 studies. Twenty-seven (59%) came from the USA, 7 (19%) from Europe, 4 each from South America (all from Brazil) and Asia, 2 from Canada and 1 each from Africa (ie, South Africa) and Australia. In total, 4816 participants participated in them (median=76 participants; IQR: 47, 178). Interventions that had healthcare professionals as participants had somewhat larger numbers (median=98; IQR: 46, 163) than those having students as participants (median=54 participants; IQR: 32, 152).

The studies had varied study designs (shown in table 2) with a preponderance (n=39, 85%) of quasi-experimental designs. Twenty-one studies had follow-up evaluations after the pre-test and post-test evaluations. The time period between post-test and follow-up evaluations ranged between 2 weeks and 12 months.

Most studies (n=32, 70%) evaluated outcomes using surveys of knowledge, attitudes, self-reported practice behaviours, self-efficacy, confidence and feedback. A large proportion of these surveys were developed by the authors, who did not usually report the psychometric properties of their instruments. All the interventions that set out to improve knowledge used multiple-choice questions (ranging between 1 and 78 questions). Changes in attitude before and after interventions were
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
Levy et al, 2011	Workshop	USA	Primary healthcare professionals (doctors, nurses, physician assistants)	Pre-test and post-test without control group	Training programme to provide information, tools and technical assistance to primary care practices to improve delivery of preventive services and the management of chronic diseases	Training well received by all participants
Self-reported improvement in knowledge between pre-test and post-test						
Self-reported satisfaction with intervention						
Carson, 2003	Part of an ambulatory clerkship	USA	Fourth year medical students	Cross-sectional	Training medical students on assessment of body composition using tape measure	
Facilitating the identification and treatment of metabolic syndrome	Increased self-reported knowledge					
Probable changes in practice behaviour						
Taren et al, 2003	Required course	USA	Preclinical medical students	Pre-test and post-test with control group	Evaluation of an integrated nutrition education programme	
Nutrition intervention for disease prevention and therapy	Significant increase in nutrition OSCE scores between pre-test and post-test					
Increased self-reported satisfaction in nutrition content of the curriculum						
More positive perception of web-enhanced than the web-based and traditional formats						
Buckley, 2003	Varied formats (web-based, web-enhanced and traditional lectures)	USA	Fourth year nursing students	Cross-sectional	Evaluating the effect of various formats of training on the nutrition knowledge of participants	No significant changes in knowledge between the three formats
More positive perception of web-enhanced than the web-based and traditional formats						
Ray et al, 2012	Lectures, demonstrations and interactive practical sessions	UK	Third and fourth year clinical students	Pre-test and post-test without control group	Evaluating the effectiveness of a nutrition education intervention in a cohort of tomorrow’s doctors using knowledge, attitude and practice scores related to clinical nutrition	
Covering topics relating to hospital malnutrition	Significant improvement in knowledge scores between pre-test and post-test					
Significant changes in attitude scores						
Students reported satisfaction with the course						
Applied acquired knowledge to patients						
Ke et al, 2008	Workshop	Taiwan	Nurses in ICU, GI and GS	RCT	The effects of educational intervention on nurses’ knowledge, attitudes and behavioural intentions regarding supplying artificial nutrition and hydration	
Coverage of topics such as normal nutrient metabolism,	Significant improvement in knowledge between pre-test and post-test					
Significant changes in mean attitude scores						
Significant changes in behaviour intentions						
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
--------------------	------------------	----------------	--------------	-------------	--------------------------------------	----------
Buchowski et al., 2002²⁹	A computer-based and a required course	USA	First year medical students	Pre-test and post-test without control group	Nutrient metabolism for terminal patients with cancer and appropriateness of supplying ANH to terminal patients with cancer	Increase in knowledge scores between pre-test and post-test. Developed positive attitudes towards nutrition after intervention. Mixed results with regard to confidence to counsel patients on nutrition.
Puoane et al., 2006³⁰	Workshop	South Africa	Nurses	Pre-test and post-test without control group	Assessing the attitudes and perceptions towards severely malnourished children and their mothers/caregivers pre-test and post-intervention. Coverage of topics such as principles of care set out by the WHO for managing severe malnutrition.	Positive change in attitudes towards malnourished children after intervention. Change in perceptions about malnourished children after training. Reduction in case fatalities.
Hillenbrand and Larsen, 2002³¹	Workshop	USA	Paediatric residents	Pre-test and post-test without control group	The effect of an educational intervention on paediatric residents’ knowledge about breastfeeding, their confidence in addressing lactation issues and their management skills during clinical encounters with breastfeeding mothers.	Intervention improved the knowledge of paediatric residents about breastfeeding. Confidence increased after the intervention. Limited changes in participants’ practice behaviour after intervention.
Maiburg et al., 2003³²	Computer-based instruction	The Netherlands	GP trainees	Pre-test and post-test with control group	The impact of a computer-based instruction on nutrition knowledge and practice behaviour of GP trainees. Covered a wide range of nutrition including food pyramid, obesity, diabetes mellitus, hypercholesterolaemia, hypertension and irritable bowel syndrome.	Improvement in knowledge scores after intervention. Changes in practice behaviour.
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
--------------------	-------------------	----------------	--------------	-------------	--------------------------------------	----------
Ockene et al, 1995	Workshop	USA	Internists	RCT	Impact of a training programme on physicians’ lipid intervention knowledge, attitudes and skills Improved skills on brief dietary risk assessment and patient-centred counselling	No significant changes in self-reported knowledge scores Limited changes in attitudes Counselling scores increased between pre-test and post-test Improved communication skills Improved consultation performance Mothers able to recall recommendations of health workers
Zaman et al, 2008	Workshop	Pakistan	Healthcare workers	RCT	Impact of training health workers in nutrition counselling in enhancing their communication skills and performance, improving feeding practices and reducing growth faltering in children aged 6–24 months	Improved communications skills Improved consultation performance Mothers able to recall recommendations of health workers
Eisenberg et al, 2013	Workshop	USA	Doctors and other healthcare professionals	Pre-test and post-test without control group	Improving healthcare professionals nutrition behaviour, personal habits and their perceived ability to advise overweight or obese patients through the inclusion of ‘culinary education’ in the form of cooking demonstrations and participatory hands-on cooking workshops, combined with more traditional didactic and nutrition-related presentations	Self-reported significant positive changes in ability to counsel obese patients Changes in participants’ nutrition behaviours
Roche et al, 2007	Computer-based instruction	USA	Paediatric residents	RCT	A computer-based compact disc instructional programme covering the nutrition topics of oral rehydration therapy, calcium and vitamins	Modest improvement in self-reported knowledge scores after intervention Positive attitudes towards computer instruction after intervention Participants believed intervention enhanced their knowledge in nutrition
Gance-Cleveland et al, 2009	Workshop	USA	Nurse practitioners	Pre-test and post-test without control group	Four-hour training session on HEAT CPG to improve provider behaviour and efficacy Topics covered included obesity prevention, behaviour modifications and family	Post-training results revealed significant improvement in practitioner knowledge Post-training results revealed significant improvements in counselling skills and knowledge
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
--------------------	-------------------	----------------	--------------	-------------	-------------------------------------	----------
Ray et al, 2014	Workshop	UK	Junior doctors	Pre-test and post-test without control group	Nutrition assessment in hospitalised patients	Improvement in practitioners’ intent to improve behaviour Post-training results revealed significant improvements in practitioners’ report of increased confidence in ability to address barriers
Bassichetto and Réa, 2008	Workshop	Brazil	Paediatricians and nutritionists	RCT	Training intervention to equip junior doctors to run a hospital nutrition awareness week to contribute to the improvement in nutrition care Topics covered included clinical and public health nutrition, organisational management and leadership strategies	Significant improvement in knowledge, attitudes and practice scores Significant improvement in knowledge scores after intervention Improvement in dietary counselling after intervention
Dacey et al, 2013	Workshop	USA	Doctors and other healthcare professionals	Pre-test and post-test without control group	The impact of two types of live face-to-face CME programmes aiming to alter participants’ thinking and behaviour and comfort with the use of lifestyle medicine Topics included the history and rationale for lifestyle medicine, exercise medicine initiative and lifestyle medicine competencies	Improvement in the perception of barriers to lifestyle medicine Improvement in self-reported knowledge Increased confidence to counsel
Ritenbaugh et al, 1996	4-year integrated nutrition curriculum	USA	All levels of medical students	Cross-sectional	Evaluation of an integrated nutrition curriculum	Changes in knowledge Students satisfied with curriculum Greater adoption of manual recommendations among practices in the training group Training group adhered closer to diet screening recommendations in the manual
Tziraki et al, 2000	Workshop	USA	Primary care doctors	RCT	Training to improve the adoption of a manual to guide primary care practices in structuring their office environment and routine visits to improve nutrition screening, advice/referral and follow-up for cancer prevention Compared the effect of training on	
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
-------------------	------------------	----------------	--------------	--------------	-------------------------------------	----------
Edwards and Wyles, 1999[^2]	Workshop	UK	Healthcare professionals	Pre-test and post-test without control group	Effectiveness of training sessions for health professionals concerning folic acid in pregnancy	Changes in office environment were conducive to nutrition screening and dietary advice
Castro et al, 2013[^3]	Workshop	Brazil	Doctors in the ICU	Pre-test and post-test with control group	A multifaceted nutritional educational intervention on the quality of nutritional therapy and clinical outcomes of critically ill patients	Improvement in knowledge after training
Pello et al, 2004[^4]	Workshop	Brazil	Doctors	RCT	Training to improve the nutrition counselling behaviour of physicians and caregiver retention of nutrition advice using the nutrition component of the WHO/UNICEF strategy of IMC	Adequacy of nutritional therapy improved significantly
Kohlmeier et al, 2000[^5]	Computer-based instruction	USA	First year medical students	Pre-test and post-test without control group	Evaluating students’ attitudes and self-efficacy in nutrition and cancer and acceptability of a computer-based instruction	Reduction in malnutrition cases
Bjerrum et al, 2012[^6]	Workshop	Denmark	Nurses	Pre-test and post-test without control group	Improving nurses knowledge in nutrition and their attitudes towards their responsibility to providing nutrition care in relation to assessment and management	Participants felt more secure in their ability to provide nutrition care

[^2]: Mogre V, et al. BMJ Open 2016;6:e010084. doi:10.1136/bmjopen-2015-010084
[^3]: Castro et al. Work & Occupat Ther 2013;13:60-70.
[^4]: Pello et al. J Clin Nurs 2004;13:1314-21.
[^5]: Kohlmeier et al. J Consult Clin Psychol 2000;68:44-52.
[^6]: Bjerrum et al. Int J Nurs Pract 2012;18:152-9.
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes			
Pedersen et al, 2012	Workshop	Denmark	Nurses	Pre-test and post-test without control group	Training programme to implement nutritional guidelines to change nurses’ nutrition practice behaviour relating to the identification of patients’ eating habits, improving patients’ knowledge about appropriate food choices and number of snacks eaten between meals to risk of undernutrition in hospitalised patients	Modest changes in nutrition practice behaviour Improvement in the eating difficulties of patients Patients’ knowledge of appropriate food choices improved			
Conroy et al, 2004	Required course	USA	Second year medical students	Pre-test and post-test without control group	Impact of an innovative preventive medicine and nutrition curriculum on students’ confidence about addressing patients’ diet and exercise patterns and on their own health habits	Personal dietary, exercise patterns of participants improved Confidence in their ability to address diet and exercise in patients increased Changes in knowledge Students considered nutrition curriculum to be effective			
Endevelt et al, 2006	Workshop	Israel	Second year medical students	Cross-sectional	Identification of time slots for nutrition training for medical students Impact of a nutrition education programme on students’ knowledge Topics covered included nutrition and dietary recommendations for healthy people. Health risks of obesity	Changes in knowledge Students considered nutrition curriculum to be effective			
de Fine Olivarius et al, 2005	Seminar	USA	Primary care doctors	Pre-test and post-test with control group	Improving the quality of diet recording and instruction in primary care Diet counselling for diabetes patients using one’s own diet	Improvement in personal dietary behaviours of participants Changes in attitudes towards dietary counselling Significant changes in self-efficacy scores Significant changes in attitudes Improvement in nutrition counselling competence Improvement in personal dietary habits			
Schlair et al, 2012	Workshop	USA	First year medical students	Pre-test and post-test without control group	The feasibility and impact of a brief nutrition counselling curriculum on medical students’ nutrition knowledge, confidence, attitudes and practices and their own affect the students’ own nutrition behaviour and attitudes Topics covered were nutrition-related counselling confidence for patients with obesity				
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes			
-------------------	-------------------	----------------	--------------	--------------	-------------------------------------	----------			
Scolapio et al, 2008⁶²	Workshop	USA	Doctors, dieticians and pharmacist	Pre-test and post-test with control group	and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Impact of a live continuing medical education nutrition course on participants’ nutrition knowledge and practice behaviour	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Confidence in counselling patients on nutrition improved	Modest changes in practice behaviours
Kennelly et al, 2010⁶³	Workshop	Ireland	GPs and nurses	Pre-test and post-test without control group	The impact of a dietetics intervention on healthcare professionals’ knowledge in nutrition and practice behaviour related to the management of malnutrition in hospitalised patients and the acceptability of the educational intervention	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Modest changes in practice behaviours and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Level of acceptance for the intervention increased and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages
Lewis et al, 2014⁶⁴	Internet-based instruction	USA	Paediatric residents	Cross-sectional	Evaluating paediatric trainees’ engagement, knowledge acquisition and satisfaction with nutrition modules delivered in interactive and non-interactive format	Significant change in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Significant change in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Engagement with course content increased and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Level of satisfaction with intervention increased and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages
Acuña et al, 2008⁶⁵	Workshop	Brazil	Medical and nursing students	Pre-test and post-test without control group	Evaluating the effect of an intensive education course given to healthcare professionals and students Topics covered related to hospital malnutrition and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Ability to diagnose malnutrition and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Ability to diagnose malnutrition and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Ability to diagnose malnutrition and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Ability to diagnose malnutrition and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages
Powell-Tuck et al, 1997⁶⁶	Required course	USA	Second year medical students	Pre-test and post-test without control group	Development and inception of a 7-day curriculum on diet and health	Students’ feedback was positive and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Significant changes in knowledge and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages
Afaghi et al, 2012⁶⁷	Workshop	Iran	Clinical year 4 and 5 students	Pre-test and post-test without control group	Clinical-based case study teaching to enhance clinical skills regarding the role of nutrition in chronic disease and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Student perceptions of the adequacy of the instruction were positive and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Student perceptions of the adequacy of the instruction were positive and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Student perceptions of the adequacy of the instruction were positive and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages	Student perceptions of the adequacy of the instruction were positive and chronic disease and understanding of simple nutrition messages and chronic disease and understanding of simple nutrition messages

Continued
Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes
Carson et al, 2002⁶⁸	Required course	USA	Fourth year medical students	Pre-test post-test with control group	Topics covered included the role of nutrition in chronic diseases, assessment of dietary intake and weight management	Significant changes in knowledge
Vanderpool et al, 2014⁶⁹	Continuous medical education	USA	Paediatric gastroenterology residents and paediatric gastroenterologists	Pre-test and post-test without control group	Improving nutrition knowledge acquisition and dissemination	Changes in knowledge
Duerksen, 2002⁷⁰	Clinical rotation	Canada	Second year medical students	Pre-test and post-test without control group	Improvement in nutritional practice using the SGA	Changes in knowledge
Engel et al, 1997⁷¹	Computer-based training as part of family practice clerkship rotation	USA	Third year medical students	Pre-test and post-test without control group	Knowledge and self-efficacy in prescribing diets for patients with diabetes	Changes in knowledge
Richards and Mitchell, 2001⁷²	Presentation by a dietitian to individual participants	Australia	GPs	Pre-test and post-test without control group	Presentation of a nutrition manual and behaviour modification strategies	Changes in knowledge
Kipp, 1997⁷³	Computer-based instruction	USA	First year medical students	Pre-test and post-test without control group	Evaluation of a CAI module on food guide pyramid and dietary guidelines	Changes in knowledge
Cooksey et al, 2000⁷⁴	Computer-based instruction	USA	Preclinical medical students	Cross-sectional	Evaluation of series of interactive, multimedia educational programmes (nutrition in medicine)	Advances in knowledge

Continued
Table 1 Continued

Author(s) and year	Intervention type	Study location	Participants	Study design	Focus of intervention/topics covered	Outcomes	
Cheatham *et al*, 2002⁷⁶	Computer-based tutorial	USA	Nursing, physician assistant and physical therapy students	Pre-test and post-test without control group	that teach the basic principles of nutritional science and application to cases	Development and use of a computer-based tutorial on nutritional assessment	feedback and tracking students’ performance were noted
Kolasa *et al*, 1996⁷⁶	Workshop	USA	Dietetic students, family medicine residents and third year medical students	Cross-sectional	Encouraging effective communication with media and consumer through article preparation	Students felt amount of content was adequate	Significant changes in knowledge scores
Fox, 2009⁷⁷	Required course	Canada	Community nutrition graduate students	Pre-test and post-test without control group	Incorporation of arts as strategies for understanding and addressing community health issues	Students recognised the incorporation of arts as a mechanism of conducting health research, advocacy, education, healing and capacity-building initiatives	

ANH, artificial nutrition and hydration; CME, continuous medical education; CPG, clinical practice guideline; GI, gastroenterology; GP, general practitioner; computer-assisted instruction; GS, general surgery; HEAT, healthy eating and activity together; ICU, intensive care unit; IMCI, integrated management of childhood illness; OSCE, objectively structured clinical examination; RCT, randomised controlled trial; SGA, subjective global assessment; UNICEF, United Nations Children’s Fund.
Underpinning of their interventions. These included only 11 studies (24%) explicitly stated the theoretical duration of interventions and expected learning outcomes. Intervention focus, types, teaching and learning formats, duration of interventions and expected learning outcomes. Only 11 studies (24%) explicitly stated the theoretical underpinning of their interventions. These included experiential, social and cognitive learning theories as well as cognitive theory of multimedia learning. The purpose of most interventions was to improve participants’ competencies (ie, knowledge, skills and attitudes) in a variety of nutrition topics (shown in Table 1). Studies originating from developing countries tended to cover topics related to infant and young child feeding practices, whereas those from developed countries covered topics related to hospital malnutrition and nutritional management of chronic diseases. Most studies in which students participated aimed to increase curriculum contact hours and nutrition content. Studies involving practitioners were usually continuous medical education (CME) programmes aiming to improve knowledge, attitudes, skills and practice behaviour in specific topics such as breastfeeding practices and dietary counselling. Teaching and learning formats included lectures, problem-based learning tutorials, nutrition slogans, demonstrations, role plays, group discussions, games and video presentations. All interventions used more than one teaching and learning format except six, which were either lecture based or computer based only. Almost all of the interventions used innovative teaching and learning methods. Interventions involving students were usually obligatory and lasted from 2 weeks to 4 years. Those involving professionals were generally shorter. The shortest intervention was a 1-hour intensive session for GPs and other healthcare professionals on the benefits of giving folic acid to women of child bearing age; the longest were two 4-year integrated nutrition curricula for medical students. Inconsistent reporting of the length of interventions (including use of terms like credit hours) made it difficult to determine their average lengths.

Context—mechanisms—outcomes configurations

Table 3 lists the CMOs identified from the included studies. We describe here how those interacted to yield CMO configurations.

Characteristic	Frequency (%)
Study design	
Randomised control trials	7 (15)
Quasi-experimental	
Pre-test–post-test with control group	6 (13)
Pre-test–post-test without control group	26 (57)
Cross-sectional	7 (15)
Methodological approach	
Qualitative	5 (10)
Quantitative	32 (70)
Qualitative and quantitative	9 (20)
Data collection method	
Questionnaires/surveys only	32 (70)
Observations only	2 (4)
Focus group discussions only	2 (4)
Questionnaires/surveys with other methods (eg, interviews, observations)	10 (22)
Format of intervention	
Training programmes	12 (26)
Workshops	9 (20)
Required courses	7 (15)
Technology based (computer based, internet based)	11 (24)
Ambulatory clinical rotations	2 (4)
Seminars	1 (2)
Continuing medical education programmes	4 (9)
Healthcare professionals (n=22, 48%)	
Doctors (GPs/primary care)	8 (36)
Nurses	5 (23)
Multidisciplinary participants (eg, nurses, doctors, pharmacists)	9 (41)
Students (n=24, 52%)	
Undergraduate, preclinical	14 (58)
Undergraduate, clinical	5 (21)
Postgraduate	5 (21)

GPs, general practitioners.
Table 3 Context, mechanism and outcome configurations

Context	Intervention characteristics	Mechanisms triggered	Outcomes
Participants lacking nutrition counselling skills	Emphasizing skills building instead of knowledge outcomes (‘let me be skilful’)	Being more confident	Use of dietary counselling steps
Participants having inadequate knowledge	Being more confident	Self-reported confidence to counsel patients and change in counselling behaviour	
Participants being future and practising healthcare professionals	Feeling adequately prepared		
Lack of faculty to provide nutrition training at preclinical and clinical settings	Being more confident		
Participants being future and practising healthcare professionals	Feeling adequately prepared		
Participants being future and practising healthcare professionals	Being more confident		
Meeting the needs of potential participants of an intervention (‘Ask me what I want’)	Being more confident		
Participants lacking time to provide nutrition care	Feeling comfortable to deliver nutrition care	Better delivery of nutrition care in clinical settings	
Lack of payment for providing preventive care	Sense of acceptance	Greater confidence in nutrition counselling	
Participants having limited access to referral sources and materials for nutrition care	Sense of credibility	Greater satisfaction with educational intervention	
Poor investment into nutrition care	Anticipation of being valued	Significant gains in knowledge outcomes	
Lack of supportive office systems to deliver nutrition care	Interest		
Separation of prevention and curative services in the healthcare system	Sense of knowing the needs of participants		
Inadequate instruction and syllabi for nutrition training in curricula			
Busy healthcare professionals lacking time to attend continuing education programmes in nutrition			
Incorporating technology-based education (‘My computer is a learning tool’)	Convenience and self-paced study	Significant gains of knowledge	
Practising healthcare professionals	Interactivity	More positive attitudes towards nutrition care	
Participants lacking appropriate tools to deliver nutrition care	Instant feedback	Changed real-time practice behaviour	
Participants’ personal dietary and lifestyle habits	Accessibility	Greater confidence in skills of nutrition counselling	
Participants having inadequate training in nutrition		Better counselling skills	
Providing participants with local, practical relevant tools and messages (‘Give me tools’)	Removal of perceived barriers	Facilitating the uptake of nutrition messages	
Practising healthcare professionals	Feeling comfortable	Changed nutrition practice behaviour	
Participants lacking appropriate tools to deliver nutrition care		Engaging in specific rather than general discussion with patients	
Participants’ personal dietary and lifestyle habits			
Context	Intervention characteristics	Mechanisms triggered	Outcomes
--	---	--	--
Participants not routinely addressing patients’ nutrition problems	Use of non-traditional teaching strategies (‘Using the right strategy for the right job’)	▶ Capture interest of participants	▶ Giving relevant advice and recommendations to patients
		▶ Meet the learning needs of participants	▶ Simplifying complex messages
		▶ Active participation and uptake of knowledge and skills	
		▶ Relevance of learning	
Existence of structural barriers to providing nutrition care to patients		▶ Engaging the management of malnutrition	
Poor interest in nutrition education		▶ Engaging in exercise and dietary counselling	
		▶ Ability to counsel overweight/obese patients	
		▶ Significant changes in knowledge gains	
		▶ Positive personal health habits of participants	
		▶ Capture interest of participants	
		▶ Meet the learning needs of participants	
		▶ Active participation and uptake of knowledge and skills	
		▶ Relevance of learning	
Lack of confidence to deliver nutrition care	Improving self-efficacy (‘I feel that I can do it, so I will do it’)	▶ Feeling motivated	▶ Self-reported changes in practice behaviours
Among future and practising healthcare professionals		▶ Feeling confident	▶ Intentions to change behaviour
Participants having inadequate knowledge	Improving the personal health habits of healthcare professionals (‘Do as I do’)	▶ Being more confident	▶ Greater counselling confidence
Among future and practising healthcare professionals		▶ Sense of being a role model	▶ Intentions to change behaviour
Participants lacking training in diet counselling		▶ Sense of relatedness to patients	▶ Positive healthy lifestyles
Lack of patient motivation to change dietary pattern			▶ Engaging in dietary assessment
Lack of time			▶ More favourable attitudes towards nutrition counselling
Low priority given to nutrition	Integrating nutrition content (‘Add nutrition to my learning’)	▶ Accepting nutrition education	▶ Greater recognition of the relevance of nutrition education
Inadequate time dedicated to nutrition		▶ Reduction in perception of time limitations	▶ Increased in the number hours dedicated to nutrition
Healthcare students		▶ Sense of belonging	▶ Greater gains in cognitive outcomes
Reported inadequate knowledge in nutrition		▶ Acceptance	▶ Multidisciplinary designed programme
Multidisciplinary nature of healthcare delivery	Adopting a multidisciplinary approach in intervention design and implementation (‘Working with others’)	▶ Recognising the multidisciplinary nature of nutrition healthcare delivery	▶ Meets the needs of all participants
Cross-disciplinary nature of nutrition			▶ Greater satisfaction
physician–patient interactions43, 50 and increased self-reported counselling behaviour and confidence50 took place without any significant increase in knowledge. In one study, Ockene et al45 noted that ‘a large proportion (1.5 hour) of the entire 3 hour CME training program was devoted to the learning of counselling and dietary assessment skills’. These findings show that it is important to train skills and create learning environments that encourage the acquisition of skills in order to change healthcare professionals’ nutrition care behaviour.78, 79

Superiors role modelling the delivery of nutrition care

(‘I look up to you!’)

A candidate theory in our published protocol,21 that healthcare professionals would be more likely to deliver nutrition care if they saw their superiors model the same behaviour, was apparent in the evidence. Seeing superiors model nutrition care led research participants to feel more confident, accepted and credible. They anticipated their actions being valued, which led them towards changing their nutrition practice. Virtual physician mentors,39 simulation of GP consultations using video clips,42 physicians describing how they addressed nutrition in practice38 and role modelling by physicians in classes68 were among the interventions that provided positive role modelling.

Meeting the needs of potential participants of an intervention

(‘Ask me what I want!’)

Most interventions were modelled on the theory that education will be most successful when it is designed to meet participants’ needs.33, 34, 37, 46, 50, 52, 59, 62, 63, 67–49 Assessment of needs identified gaps in learners’ knowledge or practice behaviour,62 and how they learnt best. It informed the content, format and design of curricula. It helped select teaching and learning methods to which participants were receptive, which they found interesting and satisfying, and which led them to value their education.

Addressing structural and systemic factors

(‘Is my consulting room enabling?’)

As well as education, interventions that improved working environments influenced participants’ behaviour and helped maintain changes that had been achieved.57 Eight studies helped participants address lack of support33, 47, 48, 69 and systematic barriers.14, 50, 54, 57 They restructured office environments to make them more conducive to providing nutrition care.14 Pelto et al,34 for example, stated that ‘structural conditions in the public health system in Pelotas provided an environment in which physicians could utilize their knowledge’ (p. 360). Other researchers provided nutritional messages that busy primary care providers could deliver to patients.33 Presentations on change management and leadership48 and provision of guidelines on office organisation14 helped improve nutrition care. Collaboration between education and care delivery leaders helped remove structural and systemic barriers.30 These created working environments that were conducive to the delivery of nutrition care.

Incorporating technology-based education

(‘My computer is a learning tool’)

Seven studies used technology to resolve challenges relating to healthcare professionals having insufficient time to attend continuing education programmes, programmes having inadequate nutrition content and faculty being unavailable to teach.39, 42, 46, 54, 55, 64, 68, 74 Computer-based and internet-based interventions allowed easy updating of content,42 permitted self-directed and independent study of nutrition information,42, 46 presented content consistently,68 were accessible,74 promoted interactivity74 and were convenient for participants because they were self-administered42, 68 and self-paced.74 These interventions led to significant gains of knowledge,39, 46, 55, 64 positive attitudes,42, 46 increase in self-assessed nutrition counselling skills42, 55 and real-time practice behaviour.42 The convenience, interest and independent nature of this type of education contributed to those outcomes.

Providing participants with local, practically relevant tools and messages

(‘Give me tools!’)

Some researchers theorised that making local, practically relevant tools and messages available in practice contexts would change the behaviour of trainee healthcare professionals. The tools they provided included memorable slogans,35 simple ‘key take home messages’,33, 37, 40, 63 personalised nutrition messages33 and locally relevant examples.34 Researchers simplified nutrition messages,33 provided resource materials and tools to resolve problems in counselling and assessing patients,54, 63 and adapted advice for local conditions.54 Those interventions helped professionals engage in specific rather than generic discussions with patients and provided advice and recommendations that patients found relevant.54 The authors of a randomised controlled trial (RCT), which improved physicians’ counselling of mothers with malnourished children aged 12–24 months in Brazil,54 attributed children’s improved nutritional status to this provision of locally appropriate messages and tools.

Using non-traditional teaching and learning strategies

(‘The right strategy for the right job’)

Another theory, which guided interventions, was that non-traditional teaching and learning strategies would change professionals’ behaviour. For instance, Hillenbrand and Larsen41 hypothesised that providing a series of interactive educational interventions to paediatric residents would increase their knowledge about breastfeeding and lactation problems and increase their confidence to counsel breastfeeding women. Interventions, which sometimes complemented lectures, included discussions, simulated patient cases, group work, role plays, hands-on demonstrations, group
practice, panel discussions and case-based learning. Other interventions included problem-based learning tutorials, computer-based or web-based cases, student-led debates, self-assessment exercises and clinical case presentations. These interventions provided practical experience and promoted active learning. They emphasised the development of skills rather than just knowledge. They engaged participants’ interest and helped them assume responsibility for their own learning. These interventions caused significant changes in participants’ knowledge, personal health habits, confidence to provide exercise and dietary counselling, ability to counsel obese patients and ability to manage malnutrition. Carson et al attributed the enhanced nutrition counselling skills of students in a 4-week ambulatory care rotation to their innovative combination of teaching strategies.

Improving self-efficacy (‘I feel that I can do it, so I will do it’) Self-efficacy is a basic tenet of Bandura’s social learning theory. This term describes individuals’ confidence in their ability to perform a task or achieve an outcome. It is a key influence on behaviour. Eight studies explicitly set out to improve participants’ self-efficacy by increasing their confidence. They adopted strategies like role modelling by practising physicians, role playing using either simulated or real patients, providing demonstrations and hands-on practice sessions and viewing then discussing videos and web-based cases. Four each of these interventions were conducted among future healthcare professionals and practising healthcare professionals. They were effective in both settings.

Improving the personal health habits of the healthcare professional (‘Do as I do’) Four interventions, which stimulated practising and health professions students to take better care of their own health, had positive outcomes. These included regular consumption of fruits and vegetables, personal awareness of calorie consumption, engagement in regular physical activity and development of culinary skills. In both settings, these led to better self-reported healthy lifestyles and self-reported ability to undertake dietary assessment, counselling confidence, self-assessed knowledge and even treating a higher proportion of diabetic patients with diet alone. Healthcare professionals, who considered themselves role models for patients, felt more confident to advise patients to do as they had done.

Initial and revised programme theory Our published protocol presented candidate theories and a theoretical model, which we briefly repeat here. Drawing on social cognitive theory, we postulated the following:

► Healthcare professionals’ ability to deliver nutrition care is influenced by their competence, which is the outcome of a learning process, which is influenced by factors within academic environments. Those factors include the quantity and quality of nutrition content in curricula, the teaching and learning methods employed, and the extent to which learning is reinforced.

► Professionals are more likely to care for patients’ nutrition if they have high self-efficacy for nutrition care and vice versa.

► Professionals’ delivery of nutrition care is a behaviour demonstrated in the social context of workplaces, which is influenced by observing and modelling the behaviours, attitudes and emotional reactions of others (eg, superiors). It is also influenced by the structural determinants of behaviours such as the workplace settings themselves (eg, hospital/community, emergency/paediatric/general ward), job descriptions/role, time and availability of other staff to undertake particular roles.
conditions/contexts such as restructuring the healthcare system, removing structural and systemic barriers, adopting favourable policies for nutrition care, providing appropriate tools to deliver nutrition care, investing more in preventive care and providing an office that makes it easier to provide nutrition care. Providing an enabling healthcare setting was central to all of the CMO configurations identified.

We present in table 4 a summary of the characteristics of interventions in accordance with what works, for whom and under what conditions.

Measurement issues

The ultimate aim of health education is to improve health outcomes. Few studies have, however, even tried to show improvements in patients’ health because it is very difficult to do. Authors acknowledged that this limited the conclusions they could draw from their evidence, which meant that they could often only speculate on how their interventions might affect patients’ health. The impact of educational interventions is often ranked according to its position in Miller’s pyramid of assessment. Some studies achieved the highest level—the performance level—which is most likely to impact patient outcomes. They did so by directly observing the delivery of nutrition care in clinical settings, recording videos of doctors counselling patients, auditing charts and using incognito simulated patients. Most studies were at lower levels of the pyramid. For example, they assessed participants’ reported changes in practice behaviours by means of self-administered surveys. As observed by the authors of one such study, reliance on students’ self-reported confidence in counselling rather than an objective measure of counselling skills (such as an objective-structured clinical examination) limits the generalisability of the findings. Schair et al acknowledged the potential for social desirability bias in self-reports. While self-report would be invalid evidence in a systematic review or meta-analysis, it is safer to use it in realist synthesis, which aims to produce progressively more refined theories of change rather than incontrovertible evidence.

For future studies, Scolapiò et al suggested that ‘harder’ data could be obtained using patient surveys and chart reviews, or having participants give specific examples of improved patient outcome that were directly linked to competences they had acquired from educational interventions. Our review shows the need for future studies to explore innovative ways of collecting this information.

DISCUSSION

There is increasing pressure for medical education to be socially accountable. This research may be seen as socially responsive because it arose out of a pressing health need in sub-Saharan Africa: improvement of the competencies of doctors and other healthcare professionals in order to deliver effective nutrition care. Our study provided practical guidance to educators trying to meet this need in Africa and elsewhere by showing the importance of moving education for nutrition care beyond the simple acquisition of knowledge.

The CMO configurations identified in this realist review are preliminary and non-exhaustive and should be considered as a set of generic hypotheses derived
Table 4 Overview of what works, for whom, under what circumstances and to achieve what

What works	Choosing interventions, which are educationally and clinically relevant to the needs of participants
	Adopting appropriate teaching and learning techniques
	Building on self-efficacy and confidence through role modelling
	Emphasizing skills development rather than pure knowledge gains
	Improving the personal lifestyle habits of healthcare professionals
	Removing systemic barriers and restructuring healthcare systems to make healthcare settings
	more enabling
	Using practical, relevant tools
	Using information and communications technology (computer-based education)
For whom	Doctors and other practising healthcare professionals
	Students of the health professions
Under what circumstances	Within a multidisciplinary approach to nutrition education and care
	Supported by educational and care delivery leaders
	Where nutrition care is recognised as an important component of
	Care delivery systems
	Curricula
To achieve what outcomes	Where healthcare systems are structured to be conducive to the practice of nutrition care
	Educational and clinical outcomes

from the best available evidence. Nonetheless, they provide information to policymakers about what may improve the nutrition practice behaviour of healthcare professionals, how, under what conditions and in what settings. Our review has identified a set of conditions that facilitate the success of interventions in varied contexts.

A key finding of this review is that improving the skills, self-efficacy and attitudes of learners by adopting appropriate teaching and learning strategies is critical to the success of nutrition education interventions. Improving learners’ skills and attitudes provides them with confidence and a sense of active mastery of the specific tasks they have to perform. Role modelling of the delivery of nutrition care by superiors, providing appropriate physical space in which to deliver nutrition care and adopting favourable policies are important because they increase professionals’ sense of being accepted, credibility, relatedness and assurance.

Our analysis shows that planners of educational interventions would be well advised to assess potential participants’ needs and interests. Computer-based education presents new opportunities for course designers and planners. Already considered as a potentially efficient form of teaching and learning in the health professions, this presents novel ways of incorporating nutrition content into healthcare professional curricula. Given that healthcare professionals say they have too little time to attend training programmes and provide nutrition care, the convenience of computer-based and internet-based education has potential to overcome barriers to learning.

The main strengths of our review were its integrative nature and our use of realist synthesis methodology, which allowed for practical theories to be generated for future testing and implementation. However, the review had limitations. One is that we did not consult individual experts in the field when we developed our initial model. Had we done that, we might have included more candidate theories. We also acknowledge the interpretative and subjective nature of qualitative research and the likelihood that a different team of researchers might have arrived at different candidate programme theories.

We acknowledge that the model shown in figure 2 is but one of several possible interpretations, as is typical of the models that emerge from realist synthesis. We acknowledge limitations in the evidence base. The synthesis that results from any review is only as good as the primary studies it is able to include. Many of the primary studies provided limited, superficial descriptions of their educational interventions. This made it difficult for us to test all components of our candidate theories and to provide rich descriptions of some of the mechanisms that were identified. As has been found by other reviewers in medical education, this review was limited by a lack of descriptions of the contexts of the intervention, implementation processes and mechanisms.

Other limitations included the unavailability of the full text of seven studies. While it is a limitation, realist synthesis is less dependent on the inclusion of complete sets of studies than, for example, traditional systematic reviews. So, it may limit the scope of our findings but does not invalidate them. While the backbone of meta-analysis and traditional systematic review is aggregation, realist synthesis refines theories by obtaining a rich (rather than necessarily complete) evidence base of reports of how interventions generate certain pattern of outcome. We also consider as a limitation the delay in preparing the review for publication after the end of the search in December 2014. During this period, new studies might have been published, the inclusion of which may enrich further our findings.
Finally, initial screening by just one author might be seen as a limitation, but we found such high consistency between that author’s judgement and a second author in a pilot phase of the project that we judged single screening to make the best use of the inevitably limited resources in the country, where the research was conducted.

We conclude that it has been possible to assemble, from a heterogeneous database, some patterns in the links between CMOs that are consistent enough to guide the practice of nutrition education. Our findings have refined some existing candidate theories, which researchers, also, apply to their work on nutrition education.

Author affiliations
1Department of Health Professions Education and Innovative Learning, School of Medicine and Health Sciences, University for Development Studies, Tamale, Ghana
2Department of Educational Development & Research, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
3Department of Community Nutrition, School of Allied Health Sciences, University for Development Studies, Tamale, Ghana
4Department of Health Services Research, Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK

Acknowledgements The authors wish to thank Mr Fuseini Abdulai Braimah, senior library assistant, School of Medicine and Health Sciences, University for Development Studies, Ghana for his support in helping to retrieve full texts of some of the included studies.

Contributors VM and TD were responsible for the conception and design of the study. VM was principally responsible for searching, sourcing and initial screening of studies. VM, MGC and TD further screened studies based on abstracts. Quality assessment was performed by VM, AJJAS, FS and MGC. VM was responsible for data extraction, synthesis and interpretation of the data and drafting of the manuscript. AJJAS, TD, FS, MGC and PA contributed to interpretation of the data and revision of the article. All authors approved the article for publication.

Funding This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement VM had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

REFERENCES
1. Pearson TA, Blair SN, Daniels SR, et al. AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases American Heart Association Science Advisory and Coordinating Committee. Circulation 2002;106:388–91.
2. Bantle JP, Wylie-Rosett J, Albright AL, et al., American Diabetes Association. Nutrition recommendations and interventions for diabetes: a position statement of the American Diabetes Association. Diabetes Care 2008;31(Suppl 1):S81–78.
3. Goldstein LB, Adams R, Alberts MJ, et al., American Heart Association/American Stroke Association Stroke Council; Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Council, et al. Primary prevention of ischemic stroke: a guideline from the American Heart Association/American Stroke Association Stroke Council; cosponsored by the Atherosclerotic Peripheral Vascular Disease Interdisciplinary Working Group; Cardiovascular Nursing Group; Clinical Cardiology Council; Nutrition, Physical Activity, and Metabolism Council; and the Quality of Care and Outcomes Research Interdisciplinary Working Group: The American Academy of Neurology affirms the value of this guideline. Stroke 2006;37:1583–633.
4. United Nations Children’s Fund. Improving child nutrition: the achievable imperative for global progress. New York: United Nations Children’s Fund, 2013:1–124.
5. Kopelman P, Lennard-Jones J. Nutrition and patients: a doctor’s responsibility. Clin Med (Lond) 2002;2:391–4.
6. Council GM. Tomorrow’s doctors: outcomes and standards for undergraduate medical education. Manchester, UK: General Medical Council, 2009.
7. Aib A, Galuska D, Khan L, et al. Are healthcare professionals advising obese patients to lose weight? A trend analysis. MedGenMed 2004;7:10.
8. Psarras J, Wadden TA. Treatment of obesity in primary care practice in the United States: a systematic review. J Gen Intern Med 2009;24:1073–9.
9. Abramson S, Stein J, Schaufele M, et al. Personal exercise habits and counseling practices of primary care physicians: a national survey. Clin J Sport Med 2000;10:40–8.
10. Huang J, Yu H, Marin E, et al. Physicians’ weight loss counseling in two public hospital primary care clinics. Acad Med 2004;79:156–61.
11. Laschinger HKS, Tresolini GP. An exploratory study of nursing and medical students health promotion counselling self-efficacy. Nurse Educ Today 1999:19:408–18.
12. Jay M, Gillespie C, Ark T, et al. Do internists, pediatricians, and psychiatrists feel competent in obesity care? J Gen Intern Med 2008;23:1066–70.
13. Foster GD, Wadden TA, Makris AP, et al. Primary care physicians’ attitudes about obesity and its treatment. Obes Res 2003;11:1168–77.
14. Tziraki C, Graubard BI, Manley M, et al. Effect of training on adoption of cancer prevention nutrition-related activities by primary care practices: results of a randomized, controlled study. J Gen Intern Med 2000;15:155–62.
15. McLaren DS. Nutrition in medical schools: a case of mistaken identity. Am J Clin Nutr 1994;59:960–3.
16. Weinsier RL. National Dairy Council Award for Excellence in Medical/Dental Nutrition Education Lecture, 1995: medical-nutrition education—factors important for developing a successful program. Am J Clin Nutr 1995;62:837–40.
17. Gershoff SN. National Dairy Council Award for Excellence in Medical/Dental Nutrition Education Lecture, 1996: nutrition education—success or failure? Am J Clin Nutr 1996;64:809–12.
18. Ball LE, Hughes RM, Leveritt MM. Nutrition in general practice: role and workforce preparation expectations of medical educators. Aust J Prim Health 2010;16:304–10.
19. Mechanic D. Social research in health and the American sociopolitical context: the changing fortunes of medical sociology. Soc Sci Med 1993;36:95–102.
20. Sunguya BF, Poudel KC, Mlunde LB, et al. Nutrition training improves health workers’ nutrition knowledge and competence to manage child undernutrition: a systematic review. Front Public Health 2013:1:37.
21. Mogre V, Scherpberier A, Doman T, et al. A realistic review of educational interventions to improve the delivery of nutrition care by doctors and future doctors. Syst Rev 2014;3:148.
22. Wong G, Greenhalgh T, Pawsen R. Internet-based medical education: a realistic review of what works, for whom and in what circumstances. BMC Med Educ 2010;10:12.
23. Pawsen R, Greenhalgh T, Harvey G, et al. Realist synthesis: an introduction: ESRC Research Methods Programme, University of Manchester RMP: Methods Paper 2. 2004. http://www.csrr.ac.uk/methods/publications/documents/RMPMethods2.pdf.
24. McCormack B, Rycroft-Malone J, DeCorty K, et al. A realistic review of interventions and strategies to promote evidence-informed healthcare: a focus on change agency. Implement Sci 2013;8:107.
25. Pawsen R. Evidence-based policy: a realist perspective. Thousand Oaks (CA): Sage, 2006.
39. Buchowski MS, Plaisted C, Fort J, Ray S, Udumyan R, Rajput-Ray M, Ke LS, Chiu TY, Hu WY, Roche PL, Ciccarelli MR, Gupta SK, Eisenberg DM, Miller AM, McManus K, Zaman S, Ashraf RN, Martines J. Training in complementary feeding for improving clinical outcomes: training and supporting junior doctors to run ‘Nutrition Awareness Weeks’ in three NHS hospitals across England. *BMC Med Educ* 2014;14:109.

40. Bassichetto KC, Réa MF. Infant and young child feeding counseling: an intervention study. *J Pediatr (Rio J)* 2008;84:75–82.

41. Dacey M, Armstein F, Kennedy MA, et al. The impact of lifestyle medicine continuing education on provider knowledge, attitudes, and counseling behaviors. *Med Teach* 2013;35:e1149–e56.

42. Ritenbaugh CK, Thomson CA, Taren D, et al. Nutrition curriculum in medical education: an integrated and comprehensive approach. *Teach Learn Med* 1996;8:102–10.

43. Edwards L, Wyles D. The folic acid message and how they want it. A GP nutrition education project. *BMJ Open* 2016;6:e010084. doi:10.1136/bmjopen-2015-010084.

44. Powell-Tuck J, Summerbell C, Holsgrove G, et al. Advances and controversies in clinical nutrition: the education outcome of a live continuing medical education course. *Nutr Clin Pract* 2008;23:90–5.

45. Kipp DE. Technological methods in nutrition education. Developing an intervention study. *BMJ Qual Saf* 2005;14:154–59.

46. Jenkins J, Glanz K, Block J, et al. Nutrition education and leadership – multichannel delivery to enhance health. *J Nutr Educ Behav (Abingdon)* 2007;39:92–100.

47. Tian Y, Huang X, He Y, et al. Evaluation of a novel nutrition education intervention for medical students from across England. *BMC Med Educ* 2011;11:761–8.

48. Yardley S, Cottrell E, Rees E, Pawson R, Greenhalgh T, Harvey G, England. *BMJ Open* 2012;2:e000417.

49. Hillenbrand KM, Larsen PG. Effect of an educational intervention on nurse’s knowledge, attitudes, and behavioral intentions toward supplying artificial nutrition and hydration to terminal cancer patients. *Support Care Cancer* 2008;16:1265–72.

50. Buchowski MS, Plaisted C, Fort J, et al. Computer-assisted teaching of nutrition education for medical students and residents on a simple assessment of body composition. *Am J Clin Nutr* 2005;71:137–140.

51. Buckley KM. Evaluation of classroom-based, web-enhanced, and web-based distance learning nutrition courses for undergraduate nursing. *J Nutr Educ Behav* 2003;35:367–70.

52. Ray S, Udumyan R, Rajput-Ray M, et al. Evaluation of a novel nutrition education intervention for medical students from across England. *BMC Med Educ* 2011;11:761–8.

53. Taren DL, Thomson CA, Koff NA, et al. Effect of an integrated nutrition curriculum on medical education, student clinical performance, and student perception of medical-nutrition training. *Am J Clin Nutr* 2011;93:117–120.

54. Carson JAS. Pocket tape measure for waist circumference: training medical students and residents on a simple assessment of body composition. *J Nutr* 2003;133:5475–95.

55. Ke LS, Chiu TY, Hu WY, et al. Effects of educational intervention on nurses’ knowledge, attitudes, and behavioral intentions toward supplying artificial nutrition and hydration to terminal cancer patients. *Support Care Cancer* 2008;16:1265–72.

56. Maiburg BH, Rethans JJ, Schuwirth LW, et al. Controlled trial of effect of computer-based nutrition course on knowledge and practice of general practitioner trainees. *Am J Clin Nutr* 2003;77(4 Suppl):1095–104.

57. Ockene JK, Ockene IS, Quirk ME, et al. Physician training for patient-centered nutrition counseling in a lipid intervention trial. *Am J Prev Med* 1995;24:563–70.

58. Zaman S, Ashraf RN, Martines J. Training in complementary feeding counselling of healthcare workers and its influence on maternal behaviours and child growth: a cluster-randomized controlled trial in Lahore, Pakistan. *J Health Popul Nutr* 2008;26:210–22.

59. Eisenberg DM, Miller AM, McManus K, et al. Enhancing medical education to address obesity: “See one, Taste one. Cook one. Teach one.” *Teach Learn Med* 2011;33:470–2.

60. Roche PL, Ciccarelli MR, Gupta SK, et al. Multi-school collaboration to develop and test nutrition computer modules for pediatric residents. *J Am Diet Assoc* 2007;107:1586–9.

61. Carse-Cleveland SL, Sidora-Accola K, Keising H, et al. Changes in nurse practitioners’ knowledge and behaviors following brief training on the healthy eating and activity together (HEAT) guidelines. *J Pediatr Health Care* 2009;23:222–30.

62. Ray S, Laur C, Douglas P, et al. Nutrition education and leadership—multichannel delivery to enhance health. *J Nutr Educ Behav* 2007;39:92–100.

63. Locher SC, Sasaki SN, Cheskin L, et al. Changes in nurse practitioners’ knowledge and behaviors following brief training on the healthy eating and activity together (HEAT) guidelines. *J Pediatr Health Care* 2009;23:222–30.

64. Kipp DE. Technological methods in nutrition education. Developing an intervention study. *BMJ Qual Saf* 2014;58:469–71.

65. Dreesen DR. Teaching medical students the subjective global assessment. *Nutrition* 2002;18:131–15.

66. Engle SS, Crandall J, Basch CE, et al. Computer-assisted diabetes nutrition education program: the knowledge and self-efficacy of medical students. *Diabetes Educ* 1997;23:545–9.

67. Richards D, Mitchell G. Insight. GFs and nutrition: what they want and how they want it. A GP nutrition education project. *Aust J Nutr Educ* 2001;3:58:6–9.

68. Kipp DE. Technological methods in nutrition education. Developing interactive computerized modules accessible on the World Wide Web for medical students. *Top Clin Nutr* 1997;12:38–44.

69. Coksey K, Kohlmeier M, Plaisted C, et al. Getting nutrition education into medical schools: a computer-based approach. *Am J Clin Nutr* 2000;72:768S–765.

70. Cheatham M, Boosalis MG, Boissonnault GA. Use of a computer tutorial on nutritional assessment by three different groups of health professions students. *J Allied Health* 2002;31:252–5.
76. Kolasa KM, Elesha-Adams M, Patton DD. When a reporter calls: media training to teach nutrition education. Top Clin Nutr 1996;11:75–80.

77. Fox AL. Evaluation of a pilot arts and health module in a graduate community nutrition program. Can J Diet Pract Res 2009;70:81–6.

78. Ockene JK, Kristeller J, Goldberg R, et al. Increasing the efficacy of physician-delivered smoking interventions. J Gen Intern Med 1991;6:1–8.

79. Bandura A, McClelland DC. Social learning theory. Englewood Cliffs (NJ): Prentice-Hall, 1977.

80. Bandura A. Self-efficacy: the exercise of control. Macmillan, 1997.

81. Bandura A. Social cognitive theory: an agentic perspective. Annu Rev Psychol 2001;52:1–26.

82. Westhorp G, Walker B, Rogers P. Under what circumstances does enhancing community accountability and empowerment improve education outcomes, particularly for the poor? A realist synthesis protocol. London: EPPI-Centre, Social Science Research Unit, Institute of Education, University of London, 2012.

83. Miller GE. The assessment of clinical skills/competence/ performance. Acad Med 1990;65:S63–7.

84. Lindgren S, Karle H. Social accountability of medical education: aspects on global accreditation. Med Teach 2011;33:667–72.

85. Boelen C, Woollard R. Social accountability: the extra leap to excellence for educational institutions. Med Teach 2011;33:614–19.

86. Boelen C, Woollard B. Social accountability and accreditation: a new frontier for educational institutions. Med Educ 2009:43:887–94.

87. Devitt P, Palmer E. Computer-aided learning: an overvalued educational resource? Med Educ 1999;33:136–9.

88. Carr MM, Reznick RK, Brown DH. Comparison of computer-assisted instruction and seminar instruction to acquire psychomotor and cognitive knowledge of epistaxis management. Otolaryngol Head Neck Surg 1999;121:430–4.

89. D’Alessandro DM, Kreiter CD, Erkonen WE, et al. Longitudinal follow-up comparison of educational interventions: multimedia textbook, traditional lecture, and printed textbook. Acad Radiol 1997;4:719–23.

90. Deen D, Karp R, Lowell B. A mini-fellowship in clinical nutrition for primary care physicians. J Cancer Educ 2000;15:134–6.

91. Heimburger DC, Ullmann DO, Ramsey MJ, et al. Dietary habits of first-year medical students assessed during clinical nutrition course. Nutrition 1994;10:214–20.

92. Hodgson CS, Wilkerson L, Go VL. Changes in nutrition knowledge among first- and second-year medical students following implementation of an integrated nutrition curriculum. J Cancer Educ 2000;15:144–7.

93. Kolasa KM, Jobe AC, Miller MG, et al. Teaching medical students cancer risk reduction nutrition counseling using a multimedia program. Farm Med 1999;31:200–4.

94. Edwards M. Nutrition education for medical students: 4th year transition to residency for primary care (1020.3). The FASEB Journal 2014;28(1 Suppl):1020.3.

95. Carson JAS. Impact of integrating cardiovascular nutrition in an ambulatory care rotation on the knowledge, attitudes, self-efficacy and patient care practices of fourth year medical students. Doctoral dissertation. University of Texas-Austin, 2000.

96. Baker K, Offert M. Incorporating nutrition education through applied, hands-on culinary elective in medical school training (1020.2). FASEB J 2014;28(1 Suppl):1020.2.
Realist synthesis of educational interventions to improve nutrition care competencies and delivery by doctors and other healthcare professionals
Victor Mogre, Albert J J A Scherpbier, Fred Stevens, Paul Aryee, Mary Gemma Cherry and Tim Dornan

BMJ Open 2016 6:
doi: 10.1136/bmjopen-2015-010084

Updated information and services can be found at:
http://bmjopen.bmj.com/content/6/10/e010084

These include:

References
This article cites 86 articles, 23 of which you can access for free at:
http://bmjopen.bmj.com/content/6/10/e010084#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Medical education and training (215)
- Nutrition and metabolism (287)
- Patient-centred medicine (392)
- Public health (1884)
- Qualitative research (602)
- Research methods (522)

Notes
To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/