Pediatric restrictive cardiomyopathy due to a heterozygous mutation of the TNNI3 gene

Yan Chen, Shiwei Yang, Jun Li, Gannan Wang, Yuming Qin, Daowu Wang, Kejiang Cao

Department of Emergency, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Department of Cardiology, Nanjing Children’s Hospital, Nanjing Medical University, Nanjing, Jiangsu 210008, China.

Received 16 October 2012, Revised 20 November 2012, Accepted 04 December 2012, Epub 20 April 2013

Abstract

Pediatric restrictive cardiomyopathy is rare and most commonly idiopathic in origin. Here, we applied a candidate gene approach and identified a missense mutation in the cardiac troponin I gene in a 12-year-old Chinese girl with restrictive cardiomyopathy. This study indicates that mutation in sarcomere protein genes may play an important role in idiopathic pediatric restrictive cardiomyopathy.

Keywords: cardiomyopathy, restrictive, sarcomere protein gene, troponin I

INTRODUCTION

Restrictive cardiomyopathy (RCM) is very rare in children and it is characterized by dilated atria, elevated end-ventricular diastolic pressure, and severe diastolic dysfunction resulting from increased stiffness of the myocardium[1,2]. RCM carries a poor prognosis with a low survival rate and ultimately requires heart transplantation[3-6]. Pediatric RCM is most commonly idiopathic and its molecular basis is still unclear. Recently, mutations in the sarcomeric protein genes (cardiac troponin I, TNNI3; cardiac troponin T, TNNT2; α-cardiac actin, ACTC; β-myosin heavy chain, MYH7) have been identified in pediatric RCM, which suggests that sarcomeric protein mutations may be important causes of RCM[7-13]. Here, we performed genetic investigations of candidate genes that have been reported in RCM and identified a missense mutation in the TNNI3 gene in a 12-year-old girl with RCM.

SUBJECTS AND METHODS

Patient and clinical evaluation

The patient and her family were recruited at Nanjing Children’s Hospital into an ongoing research protocol approved by the institution’s ethics committee. All participants gave informed consents and were evaluated by family history, physical examination, and echocardiography. The patient had been evaluated at another hospital a year before and was referred to our hospital for further evaluation. The patient had no history of congenital heart disease, and there was no family history of heart disease. The patient had no history of drug use and no history of infectious diseases. The patient had no history of alcohol or tobacco use.

Received 16 October 2012, Revised 20 November 2012, Accepted 04 December 2012, Epub 20 April 2013

The authors reported no conflict of interests.

This work was funded by the Natural Science Foundation of China (No. 81000076), and the Youth Education Program to Shiwei YANG supported by Nanjing Health Bureau. The authors wish to thank all the study participants.

These authors contributed equally to the manuscript.

Corresponding author: Kejiang Cao, MD, Department of Cardiology, the First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu 210029, China. Tel/Fax: +86-25-83117426. E-mail: jrdoctoryang@163.com.
changes (Fig 2). The case had a mild short PR interval, but showed no evidence of neuromuscular diseases and metabolic diseases. Magnetic resonance imaging (MRI) revealed no delayed gadolinium enhancement and demonstrated enlargement in both atria. There was no evidence of ventricular hypertrophy and pericardial abnormality. Etiologic investigations revealed normal karyotype, normal plasma amino acids and urine organic acids, and normal plasma autoantibody. The results of the major laboratory tests were within normal range except for a marked elevation in plasma pro-BNP level (1023 ng/L) (the upper limit of normal range, 115 ng/L). She was subsequently diagnosed as restrictive cardiomyopathy. Endomyocardial biopsy was not performed in this case due to refusal by the parents.

RESULTS

Clinical characteristics of the index case and her family

The patient was a 12-year-old Chinese girl and experienced her first episode of dyspnea on exertion. She had normal growth parameters. An echocardiogram disclosed that the girl had a structurally normal heart with normal biventricular dimensions, normal biventricular wall thickness and normal systolic functions, but with massive biatrial enlargement (Fig 1), markedly left ventricular (LV) diastolic dysfunction, which is consistent with restrictive LV filling pattern: a decreased e-wave deceleration time (102 ms, normal > 150 ms), an abnormal E/A wave ratio of 2.29 (normal < 2), and a decreased isovolumic relaxation time (30 ms, normal > 70 ms). Electrocardiogram (ECG) showed sinus rhythm, and biatrial enlargement, and diffuse T-wave

DNA extraction and sequencing

Genomic DNA was extracted from peripheral blood samples using a PUREGENE DNA purification kit (Gentra Systems, Minneapolis, MN, USA) according to the manufacturer’s instructions. Genetic analysis was performed for 4 candidate genes (TNNI3, TNNT2, ACTC, MYH7) known to associate with RCM by bidirectional sequencing of all the coding exons. Sequence variants were then tested in the family as well as 100 healthy control.

Fig. 1 Characteristic of echocardiography and amino acid sequence alignment in the TNNI3 gene across multiple species. A 2-dimensional echocardiographic image (apical 4-chamber view) showing a markedly enlarged LA and RA with normal biventricular size. RA: right atrium. LA: left atrium. RV: right ventricle. LV: left ventricle.

Fig. 2 ECG of the patient. ECG showing sinus rhythm, incomplete right bundle branch block, ST segment depression in the inferior leads, and marked biatrial enlargement.
Genetic analysis was performed for 4 candidate genes (*TNNI3, TNNT2, ACTC, and MYH7*) known to associate with restrictive cardiomyopathy by bidirectional sequencing of all the coding exons. A heterozygous 575G > A mutation in exon 8 of *TNNI3* was identified in the patient. The mutation resulted in the substitution of histidine for arginine at amino acid 192 (R192H). Amino acid 192 (arginine) is highly conserved across species and this missense mutation has previously been described to be associated with both restrictive and hypertrophic cardiomyopathy.[7,14] (Fig. 3). This mutation was absent in her parents and 100 healthy subjects screened at our institution. No mutation at *TNNT2, MYH7*, and *ACTC* was detected in the case.

DISCUSSION

Over the past decade, molecular genetic analyses have revealed dozens of mutations in sarcomeric protein genes, which encode the contractile unit of cardiac muscles, in both DCM and HCM. These findings have shown that mutations in specific functional regions of sarcomeric protein genes result in different phenotypes. An interesting feature of cardiomyopathies is that RCM may overlap with HCM, especially in pediatric cases. Up to now, more than 900 mutations have been confirmed to be associated with HCM. Since the first sarcomere gene mutation was identified in the *TNNI3* gene in RCM in 2003[7], several heterozygous mutations in *TNNI3, TNNT2, ACTC*, and *MYH7* have been reported to be associated with RCM[7-13], indicating that RCM may also be caused by single heterozygous mutations in the genes encoding sarcomeric proteins.

In this report, we identified a known heterozygous missense mutation in exon 8 of *TNNI3* (R192H) in a 12-year-old Chinese girl. According to our knowledge, this is the first reported genetic study of Chinese RCM patient. The R192H cTnI mutation was firstly reported by Mogensen in 2003[7] in a 19-year-old RCM patient, who died of heart failure. This mutation was also found in a RCM family with hypertrophic physiology, in which all the three persons affected had a early onset of RCM from the first to third decades[14]. All those reports suggest that this mutation may have a good genotype-phenotype correlation with early age of disease onset. RCM and HCM may occur in one family with the same sarcomere gene mutation, which shows phenotypic heterogeneity in cardiomyopathies[7,14]. The R192H mutation is located in the highly conserved C-terminal region in TNNI3 and in vitro studies showed that this mutation disrupts interactions within the troponin complex[15]. Gomes et al.[16] and Parvatiyar et al.[17] found that the R192H mutation increased the Ca\(^{2+}\) sensitivity of force development in skinned fibers. Furthermore, Du et al.[18] showed that the transgenic R193H mice, similar to human R192H, demonstrated RCM characteristics.

Cardiomyocyte contraction is regulated primarily by the interactions between the intracellular calcium concentration and its major sensor—the troponin complex. TNNI3 is the inhibitory component of the troponin complex and it can bind to actin-tropomyosin and prevent muscle contraction by inhibition of actin-tropomyosin-activated myosin ATPase activity[17,19]. Studies have identified different functional domains of *TNNI3*[17,19]. The occurrence of TNNI3 mutations in RCM was first reported by Mogensen, who found 6 novel mutations located in the conserved and functional important regions of the gene[17]. To date, at least eight *TNNI3* mutations including seven substitutions and one deletion were identified in RCM that occupied several critical functional domains: the inhibitory region, the switch region and the C-terminus[7,20,21]. Studies found that the C-terminus of cTnI plays an important role in maintaining the diastolic parameters of the heart[20]. Three of the eight mutations are located in the
conserved C-terminal region of TNNI3 protein. TNNI3 C-terminus is required for normal inhibitory function and studies using transgenic mice demonstrated that mutations existing in this region had serious consequences for cardiac function [23]. In vitro studies also have revealed RCM-linked TNNI3 C-terminus mutations sensitized the myofilaments to Ca2+, slowed relaxation and Ca2+ transient decay rate [24]. However, most identified HCM linked mutations existing in this region had serious consequences in the same functional domains shared by RCM [25], and the molecular mechanism whereby mutations in the same functional region of TNNI3 result in diverse phenotypic expression needs further studies.

In summary, we report a TNNI3 missense mutation (R192H) in idiopathic RCM in a 12-year-old Chinese girl. This case further improves our knowledge of the causes of cardiomyopathic disease and shows that the spectrum of sarcomeric gene mutations may be involved in pediatric RCM.

References

[1] Cox GF, Sleeper LA, Lowe AM, Towbin JA, Colan SD, Orav EJ, et al. Factors associated with establishing a causal diagnosis for children with cardiomyopathy. Pediatrics 2006; 118: 1519-31.
[2] Biagini E, Leone O, Grigioni F, Ferlito M, Branzi A, Raperze C. Diagnosis of idiopathic restrictive cardiomyopathy at a glance. J Cardiovasc Med 2007; 8: 758.
[3] Ammash NM, Seward JB, Bailey KR, Edwards WD, Tajik AJ. Clinical profile and outcome of idiopathic restrictive cardiomyopathy. Circulation 2000; 101: 2490-96.
[4] Weller RJ, Weintraub R, Addonizio LJ, Chrisant MR, Gersony WM, Hsu DT. Outcome of idiopathic restrictive cardiomyopathy in children. Am J Cardiol 2002; 90: 501-6.
[5] Kimberling MT, Balzer DT, Hirsch R, Mendeloff E, Huddleston CB, Canter CE. Cardiac transplantation for pediatric restrictive cardiomyopathy: presentation, evaluation and short-term outcome. J Heart Lung Transplant 2002; 21: 455-9.
[6] Fenton MJ, Chubb H, McMahon AM, Rees P, Elliott MJ, Burch M. Heart and heart-lung transplantation for idiopathic restrictive cardiomyopathy in children. Heart 2006; 92: 85-9.
[7] Mogensen J, Kubo T, Duque M, Uribe W, Shaw A, Murphy R, et al. Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J Clin Invest 2003; 111: 209-16.
[8] Ware SM, Quinn ME, Ballard ET, Miller E, Uzark K, Spicer RL. Pediatric restrictive cardiomyopathy associated with a mutation in beta-myosin heavy chain. Clin Genet 2008; 73: 165-70.
[9] Karam S, Raboissin MJ, Ducreux C, Chalabreysse L, Millat G, Bozio A, et al. A de novo mutation of the beta cardiac myosin heavy chain gene in an infantile restrictive cardiomyopathy. Congenit Heart Dis 2008; 3: 138-43.
[10] Peddy SB, Vricella LA, Crosson JE, Oswald GL, Cohn RD, Cameron DE, et al. Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics 2006; 117: 1830-33.
[11] Menon SC, Michels VV, Pellikka PA, Ballew JD, Karst ML, Herron KJ, et al. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin Genet 2006; 74: 445-54.
[12] Kaski JP, Syrris P, Burch M, Tomé-Esteban MT, Fenton M, Christiansen M, et al. Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart 2008; 94: 1478-84.
[13] Pinto JR, Yang SW, Hitz MP, Parvatiyar MS, Jones MA, Liang J, et al. Fetal cardiac troponin isoforms rescue the increased Ca2+ sensitivity produced by a novel double deletion in cardiac troponin T linked to restrictive cardiomyopathy: a clinical, genetic, and functional approach. J Biol Chem 2011; 286: 20091-12.
[14] Rai TS, Ahmad S, Ahluwalia TS, Ahuja M, Bahl A, Saikia UN, et al. Genetic and clinical profile of Indian patients of idiopathic restrictive cardiomyopathy with and without hypertrophy. Mol Cell Biochem 2009; 331: 187-92.
[15] Doolan A, Tebo M, Ingles J, Nguyen L, Tsoutsman T, Lam L, et al. Cardiac troponin I mutations in Australian families with hypertrophic cardiomyopathy: clinical, genetic and functional consequences. J Mol Cell Cardiol 2005; 38: 387-93.
[16] Gomes AV, Liang J, Potter JD. Mutations in human cardiac troponin I that are associated with restrictive cardiomyopathy affect basal ATPase activity and the calcium sensitivity of force development. J Biol Chem 2005; 280: 30099-15.
[17] Parvatiyar MS, Pinto JR, Dweck D, Potter JD. Cardiac Troponin Mutations and Restrictive Cardiomyopathy. J Biomed Biotechnol 2010; 2010: 350706.
[18] Du J, Zhang C, Liu J, Sidky C, Huang XP. A point mutation (R192H) in the C-terminus of human cardiac troponin I causes diastolic dysfunction in transgenic mice. Arch Biochem Biophys 2006; 450: 143-50.
[19] Chang AN, Parvatiyar MS, Potter JD. Troponin and cardiomyopathy. Biochem Biophys Res Commun 2008; 369: 74-81.
[20] Gambarini FI, Tagliani M, Arbusini E. Pure restrictive cardiomyopathy associated with cardiac troponin I gene mutation: mismatch between the lack of hypertrophy and the presence of disarray. Heart 2008; 94: 1257.
[21] Kostareva A, Gudkova A, Sjöberg G, Mörner S, Semmern E, Krutikov A, et al. Deletion in TNNT3 gene is associated with restrictive cardiomyopathy. Int J Cardiol 2009; 131: 410-2.
[22] Du J, Liu J, Feng HZ, Hossain MM, Gobara N, Zhang C, et al. Impaired relaxation is the main manifestation in transgenic mice expressing a restrictive cardiomyopathy
A *TNNI3* mutation in pediatric restrictive cardiomyopathy

[23] Murphy AM, Kögl H, Georgakopoulos D, McDonough JL, Kass DA, Van Eyk JE, et al. Transgenic mouse model of stunned myocardium. *Science* 2000; 287: 488-91.

[24] Davis J, Wen H, Edwards T, Metzger JM. Allele and species dependent contractile defects by restrictive and hypertrophic cardiomyopathy-linked troponin I mutants. *J Mol Cell Cardiol* 2008; 44: 891-904.

[25] Gomes AV, Potter JD. Cellular and molecular aspects of familial hypertrophic cardiomyopathy caused by mutations in the cardiac troponin I gene. *Mol Cell Biochem* 2004; 263: 99-114.