On the Worst-case Performance of the
Sum-of-Squares Algorithm for Bin Packing

JANOS CSIRIK * DAVID S. JOHNSON † CLAIRE KENYON ‡

February 1, 2008

Abstract

The Sum of Squares algorithm for bin packing was defined in [2] and studied in great detail in [1], where it was proved that its worst case performance ratio is at most 3. In this note, we improve the asymptotic worst case bound to $2.7777\ldots$

1 Introduction

In the classical bin packing problem, we are given an integer bin capacity B and a list $L = (a_1, \ldots, a_n)$ of items with each item a having positive size $s(a) \leq B$. Our goal is to pack the items into a minimum number of bins, i.e., partition them into a minimum number of subsets such that the sum of the item sizes in each subset is B or less. This problem is NP-hard, so typically we must settle for approximation algorithms, i.e., algorithms that produce packings with a relatively small but possibly not minimum number of bins. Of special interest are on-line algorithms, i.e., ones that assign each item in turn to a bin without knowledge of the sizes or number of future items.

The Sum of Squares on line bin packing algorithm (SS), introduced in [2], is applicable to instances where the item sizes are integral, and is surprisingly effective whenever the item sizes are independent identically distributed random variables [1]. It uses the following simple rule to add an item to the current packing P. Let s be the size of the item and let $ss(P) = \sum_{h=1}^{B-1} n_h(P)^2$, where $n_h(P)$ is the number of bins in P whose level (the total size of the items the bin contains) is equal to h. Then the item is placed into either a new bin or a partially filled bin with level less that or equal to $B - s$, with the choice made so as to minimize $ss(P')$ for the resulting packing P'. In what

*csirik@inf.u-szeged.hu. Dept. of Computer Sciences, University of Szeged, Szeged, Hungary.
†dsj@research.att.com. AT&T Labs - Research, Room C239, 180 Park Avenue, Florham Park, NJ 07932, USA.
‡claire@cs.brown.edu. Computer Science Department, Brown University, Providence, RI 02912.
follows, we will write \(n_h \) instead of \(n_h(P) \) when the packing under study is clear from the context.

For any list \(L \), let \(s(L) = \sum_i s(a_i) \). Clearly, the number of bins must be at least \(\lceil s(L)/B \rceil \). In [1], it was proved that the number \(SS(L) \) of bins used by \(SS \) is at most \(3\lceil s(L)/B \rceil \), and hence \(SS \) has an asymptotic performance ratio of at most 3. In addition, instances were presented that implied that the asymptotic performance ratio for \(SS \) is at least 2. In this note, we give an improved worst-case analysis of \(SS \) that begins to close the gap, lowering the asymptotic worst-case performance ratio from 3 to \(25/9 = 2.7777 \ldots \)

Theorem 1 For all lists \(L \),

\[
SS(L) < \frac{25}{9} \cdot \frac{s(L)}{B} + 2 \leq \frac{25}{9} OPT(L) + 2.
\]

Discussion. We expect that this new bound can be further improved. The proof of the original factor-of-3 bound in [1] was based on examining the last time one item of a certain type was inserted, whereas our analysis here is based on examining the last time two particular items were inserted. Extending this analysis to three or more items might yield further improvements, although we expect that the tradeoff between bound-improvement and the length of the proof will follow the law of diminishing returns. Major improvements will probably require significant new ideas.

2 Proof of Theorem [1]

The proof repeatedly uses the following straightforward key property of the Sum of Squares algorithm, which was already used in the proof of the factor-of-3 result in [1].

Lemma 1 [1] If \(SS \) starts a new bin when adding an item of size \(s \) to the current packing \(P \), then, for any \(j \), \(1 \leq j < B - s \), we have

\[
n_j(P) \leq n_{j+s}(P).
\]

Let \(0 < \alpha < \delta \leq 1/2 \) be two parameters satisfying the following inequalities.

\[
2\alpha \leq 1 - 2\delta, \quad (2.1)
\]

\[
\frac{1 + \alpha}{3} \geq \delta, \quad \text{and} \quad (2.2)
\]

\[
\alpha \leq 2 - \frac{16}{3}\delta. \quad (2.3)
\]

We will show that, with the possible exception of two bins, the bins of the \(SS \) packing are filled to an average level \(\delta B \). This implies \(s(L)/B \geq \delta(SS(L) - 2) \). Maximizing \(\delta \)
under the above constraints yields \(\delta = 9/25 \) (with \(\alpha = 2/25 \)), hence the theorem. Since our proof relies only on the fact that \(\alpha \) and \(\delta \) satisfy (2.1) through (2.3), we can also conclude that no better bound can be obtained using the same basic proof technique.

If a bin was ever started with an item of size less than \(\delta B \), let the last item to start such a bin be \(x \) and let its size be \(s < \delta B \). In addition, if a bin was ever started with an item of size less than or equal to \(\alpha B \), let the last item to start such a bin be \(x' \) and let its size be \(s' \leq \alpha B \).

If \(x' \) exists, for each \(j \in [1, s'] \), we define \(c_j \) to be the largest integer such that \(j + c_j s' < B \). Notice that \(j + c_j s' > B(1 - \alpha) \). We now break the proof into cases.

Case 1: \(x \) does not exist. Then all non-empty bins contain at least one item of size \(\geq \delta B \) and we are done.

Case 2: \(s \leq \alpha B \). Then \(x' = x \) is also the last item of size \(\delta B \) or less to start a new bin. We analyze the packing at the time when \(x = x' \) was packed. Call a level small if it is less than \(\delta B \) and large if it exceeds \(\delta B \). We pair every small level with a large level which is in the same congruence class mod \(s' \): level \(j + is' \) is paired with level \(j + (c_j - i)s' \), for \(1 \leq j \leq s' \) and \(j + is' < \delta B \). To confirm that the second level is indeed large, note that

\[
\frac{(j + is') + (j + (c_j - i)s')}{2} = \frac{2j + c_j s'}{2} \geq \frac{B(1 - \alpha)}{2} \geq \delta B, \tag{2.4}
\]

where the last inequality follows from (2.1). Thus if the first level is small, the second is indeed large. Moreover, any combination of a bin of the first level with a bin of the second will have average contents at least \(\delta B \).

Moreover, Lemma \(1 \) implies that \(n_j + (c_j - i)s' \geq n_j + is' \), and so we can assign each bin with level \(j + is' \) as the unique mate of a bin with level \(j + (c_j - i)s' \). It follows that at the time when \(x' \) was packed we had \(s(L)/B \geq \delta \cdot SS(L) \). The new bin into which \(x' \) was packed may be less full, but thereafter no bin can decrease in level and all subsequent new bins must have level at least \(\delta B \), so in the end we must have \(s(L)/B > \delta (SS(L) - 1) \), which implies the theorem.

Case 3: \(s > \alpha B \). Then \(x' \neq x \) or \(x' \) does not exist. We again exploit the concept of mate. If \(x' \) exists, let \(m \geq 1 \) be the largest integer such that \(ms' \leq \alpha B \). Let \(\Delta = ms' \geq \alpha B/2 \). Note that \(ms' < \delta B \) and so using the same scheme we used in Case 2, we can pair each bin with level \(\leq ms' \) with a bin with level \(\geq \delta B \) for which it is the unique mate. (In what follows, we shall refer to each bin in the pair as the mate of the other.) Moreover, here we have a slightly stronger result: at the time when \(x' \) was packed, we had for each \(j \), \(1 \leq j \leq s' \), that every bin with level \(j + is' \leq ms' \) had as its mate a bin whose contents had total size at least \(B(1 - \alpha) \). To see this, note that since \(j + is' \leq ms' \) and \(j > 0 \), we have \(i \leq m - 1 \), and so:

\[
 j + (c_j - i)s' \geq j + c_j s - (m - 1)s' \geq B - s' - (m - 1)s' \geq B(1 - \alpha). \tag{2.5}
\]

If \(x' \) does not exist, let \(\Delta = \alpha B > \alpha B/2 \) and note that at the time \(x \) was packed we had \(n_h = 0 \) for all \(h \leq \alpha B \), and hence there are no mates.
We now analyze the packing at the time when \(x \) is packed, given that at that time all bins with levels \(\leq \Delta \) were mates of bins at levels that satisfied (2.5) and that \(\Delta \leq \alpha B \). We partition the bins with levels \(> \Delta \) into congruence classes mod \(s \): For each \(h \in [\Delta + 1, \Delta + s] \), class \(D_h \) consists of the bins with levels \(h, h + s, h + 2s, \ldots, h + d_h s \), where \(d_h \) is the largest integer such that \(h + d_h s < B \). Notice that \(d_h \geq 1 \) follows from (2.1) and the fact that \(s < \delta B \). For each class \(D_h \), we add as honorary members those bins with levels \(\leq \Delta \) that are mates of bins in \(D_h \). Thus at the time \(x \) is to be packed, every bin is either in a class \(D_h \) or an honorary member of such a class, with the possible exception of the bin that received \(x' \).

We shall now show that for each \(h \), the bins in \(D_h \), together with the honorary members of \(D_h \), have average content at least \(\delta B \). After the bin containing \(x \) is started, all subsequent bins will start with items of size \(\delta B \) or greater, so we will thus be able to conclude that \(s(L)/B > \delta (Ss(L) - 2) \) and the theorem will follow.

Subcase 3.1. Let us first consider the case when \(D_h \) contains no honorary members. By Lemma 1, the average content for bins in \(D_h \) is at least

\[
\frac{1}{d_h + 1} \sum_{i=0}^{d_h} (h + is) = h + \frac{d_h s}{2}.
\]

Our analysis will now use the bounds \(h + (d_h + 1)s \geq B \), \(s < \delta B \), and \(h > \Delta > \alpha B/2 \), which follow from the definitions of \(d_h \), \(s \), and \(\Delta \). We also use the facts that \(d_h \) is an integer and that, as a consequence of (2.1) and (2.2), we have \(\delta \leq 3/8 < 2/5 \).

If \(d_h = 1 \), then

\[
h + s/2 > (B - 2s) + s/2 = B - 3s/2 > B - 3\delta B/2 > \delta B.
\]

If \(d_h = 2 \), then we use assumption (2.2) to get

\[
h + s > h + (B - h)/3 = (B + 2h)/3 > (B + \alpha B)/3 > \delta B.
\]

Finally, if \(d_h \geq 3 \), then

\[
h + \frac{d_h s}{2} > h + \frac{d_h}{2} \left(\frac{B - h}{d_h + 1} \right) > \frac{d_h B}{2(d_h + 1)} \geq \frac{3}{8} B \geq \delta B.
\]

Subcase 3.2. Let us now consider the case when \(D_h \) does contain honorary members. By (2.5), the bins of \(D_h \) which have mates have levels greater than or equal to \(B(1 - \alpha) \), and so clearly we must have \(h + d_h s \geq B(1 - \alpha) \). Since \(s > \alpha B \), only this last level \(h + d_h s \) in \(D_h \) can contain bins that have mates. Thus there are at most \(n_{h+d_h s} \) honorary members. Moreover, we claim that \(d_h \geq 2 \), since otherwise we would have \(h + s \geq B(1 - \alpha) \) and hence

\[
B(1 - \alpha) \leq h + s \leq \Delta + 2s < \alpha B + 2\delta B,
\]

in contradiction with (2.1).
Let us partition the true and honorary members of D_h into subclasses E_i, $0 \leq i \leq d_h$, as follows: E_0 consists of the first n_h bins in each level of D_h, together with the first n_h honorary members of D_h (or all such bins if there are fewer than n_h of them). Inductively, for each $i > 0$, E_i consists of the first $t_i = n_{h+i} - n_{h+(i-1)}$ as-yet-unassigned bins in each level, a non-negative number by Lemma 4, together with the first t_i unassigned honorary members of D_h (or all such bins if there are fewer than t_i of them). Note that E_i contains t_i bins for each level $h + ks$, $i \leq k \leq d_h$, plus up to t_i honorary bins. Thus $|E_i| \leq t_i(d_h - i + 2)$.

Let $X_i = \sum_{k=i}^{d_h} (h + ks)/(d_h - i + 2)$. This is the average level of a collection of bins, one empty and one having level $h + ks$, $i \leq k \leq d_h$. It is easy to see that X_i is a lower bound on the average contents of the bins in E_i when E_i is nonempty. We will prove that for every i, $X_i \geq \delta B$. This will imply that the average contents for all the bins in D_h is at least δB. Since this will be true for all h, the theorem will follow.

First observe that as long as $h + is \leq \delta B$, we have that $X_i \geq \delta B$ implies $X_{i+1} \geq \delta B$ since X_{i+1} can be obtained from X_i by removing a bin of level $h + is \leq \delta B$. Similarly, as long as $h + is > \delta B$, we have that $X_i \geq \delta B$ implies $X_{i+1} \geq \delta B$ since X_i can be obtained from X_{i+1} by adding a bin of level $h + is > \delta B$. Hence it is enough to prove the claim for $i = 0$ and for $i = d_h$.

If $i = d_h$, we have $X_i = (h + d_h)/d_h \geq B(1 - \alpha)/2 \geq \delta B$ by (2.1), and we are done.

If $i = 0$ we have:

$$X_i \geq \frac{1}{d_h + 2} \sum_{k=0}^{d_h} (h + ks) = \frac{d_h + 1}{d_h + 2} \left(h + \frac{d_h}{2} \right) \geq \frac{d_h + 1}{d_h + 2} \left(h + \frac{(B(1 - \alpha) - h)}{2} \right)$$

by (2.3). Using $h > \Delta \geq \alpha B/2$, $d_h \geq 2$, and assumption (2.3) gives

$$X \geq \frac{d_h + 1}{d_h + 2} \left(\frac{B(1-\alpha/2)}{2} \right) \geq \frac{3}{8}(1 - \alpha/2)B \geq \delta B$$

and the theorem is proved.

□

References

[1] J. Csirik, D. S. Johnson, C. Kenyon, J. B. Orlin, P. W. Shor, and R. R. Weber. On the sum-of-squares algorithm for bin packing. In *Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing*, pages 208–217, New York, 2000. ACM. To appear in *J.ACM*. Journal submission available at www.research.att.com/~dsj/papers/Jsumsq.ps.

[2] J. Csirik, D. S. Johnson, C. Kenyon, P. W. Shor, and R. R. Weber. A self organizing bin packing heuristic. In M. Goodrich and C. C. McGeoch, editors, *Proceedings 1999 Workshop on Algorithm Engineering and Experimentation*, pages 246–265, Berlin, 1999. Lecture Notes in Computer Science 1619, Springer-Verlag.