Optimal synthesis of multivalued quantum circuit

Yao-Min Di1, Hai-Rui Wei2

1School of Physics & Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
2Department of Mathematics and Mechanics, School of Applied Science, University of Science and Technology Beijing, Beijing 100083, China

(Dated: June 16, 2015)

Although many of works have been done in multivalued quantum logic synthesis, the question whether multivalued quantum circuits are more efficient than the conventional binary quantum circuits is still open. In this article we devote to the optimization of generic multivalued quantum circuits. The multivalued quantum Shannon decompositions (QSD) are improved so that the circuits obtained are asymptotically optimal for all dimensionality \(d\). The syntheses of uniformly multifold controlled \(R_y\) rotations are also optimized to make the circuits further simplified. Moreover, the theoretical lower bound of complexity for multivalued quantum circuits is investigated, and a quantity known as efficiency index is proposed to evaluate the efficiency of synthesis of various quantum circuits. The algorithm for qudit circuits given here is an efficient synthesis routine which produces best known results for all dimensionality \(d\), and for both cases the number of qudit \(n\) is small and that is asymptotic. The multivalued quantum circuits are indeed more efficient than the binary quantum circuits. The facts, the leading factor of the lower bound of complexity for qudit circuits is small by a factor of \(d - 1\) in comparison to that for qubit circuits and the asymptotic efficiency index is increased with the increase of dimensionality \(d\), reveal the potential advantage of qudit circuits over generic qubit circuits. The generic \(n\)-qudit circuits with \(d \geq 5\) and generic two-ququart circuits synthesized by the algorithm given here are practical circuits which are more efficient than the most efficient qubit circuits.

PACS numbers: 03.67.Lx, 03.67.Ac

I. INTRODUCTION

Enormous progress has been made in the field of quantum information science over the past two and a half decades. Most approaches to quantum information processing use two-level quantum systems (qubits). However there is increasing interest in exploiting protocol with multilevel quantum systems (qudits). The simplest multilevel system, the three-level quantum system, is called a qutrit, the four-level quantum system is called a ququart. The multivalued quantum information is exciting because quantum systems usually have multi-levels, it enables us to full use of various resources. In quantum computing, the algorithms are commonly described by the quantum circuit model. The process of constructing quantum circuits by some elementary components is called synthesis. The complexity of quantum circuit can be measured in terms of the number of elementary gates required. A large amount of work in these areas has been done for binary quantum computing \([10, 21]\). The CNOT gate is one of most widely used two-qubit elementary gate. It has been shown that the CNOT gate with one-qubit gate is universal for qubit quantum circuits \([10, 11]\). The best result so far for the synthesis of generic quant quantum circuits are given by Shende et al. based on quantum Shannon decomposition (QSD) \([19]\).

Although many of works also have been done in multivalued quantum logic synthesis \([22, 29]\), the works on this area are still far from complete. The results obtained cannot show the advantage of using multilevel quantum systems in the complexity of quantum logic synthesis. Which gate is chosen as the two-qubit elementary gate of the qudit quantum circuit is a crucial issue for multivalued quantum computing, and there have been many proposals. In our recent previous work, the generalized controlled \(X\) (GCX) gate has been proposed as the two-qubit elementary gate for the multivalued circuits \([30, 31]\). We generalize QSD, the most powerful technique for the synthesis of generic qubit circuits, to the multivalued case. Based on the GCX gate, using the multivalued QSD, we obviously improve the results of the synthesis of qudit quantum circuit \([31]\). But there are still some problems. One is that the quantum circuits built by multivalued QSD algorithm are not asymptotically optimal except for the dimensionality of qudit \(d\) is a power of two. It was not clear whether we can build efficient quantum circuits for the qudit \(d\) is not a power of two as that \(d\) is a power of two. The other is that the multivalued quantum circuits in Ref. \([31]\) do not show obvious advantage over the circuits for binary systems. The problem whether the multivalued quantum circuits can be more efficient than the binary circuit is still open.

In this article, we devote to optimizing multivalued quantum circuits and to solving the problems stated above. The multivalued QSD for the qudit \(d\) is not a power of two is optimized so that the synthesis of quantum circuits for these qudits also is asymptotically optimal. The synthesis of the uniformly multifold controlled \(R_y\) rotations is also optimized to make the circuits further simplified. The theoretical lower bound of complexity for qudit quantum circuits is investigated. A quantity known as efficiency index is proposed to evaluate the efficiency of synthesis of generic \(n\)-qudit circuits. The results and comparison show that algorithm given here is most efficient qudit synthesis routine so far which produces best known results in all respects. The multivalued quantum circuits are indeed more efficient than the binary quantum circuits.

The article is organized as follows: The lower bound of

*Corresponding author: yaomindi@sina.com
complexity for qudit circuits is investigated in Sec. [III]. The leading factor of the lower bound of complexity for qudit circuits is small by a factor of d^{-1} in comparison to that for qubit circuits. The optimization of the multivalued QSD and uniformly multifold controlled R_i rotations, the structure and the GCX gate count of optimal qudit circuits are given in Sec. [III].

The efficiency of synthesis of quantum circuits is discussed in Sec. [IV]. The quantity in term of efficiency index is proposed in this section. The asymptotic efficiency index is increased with the increase of dimensionality d for these circuits. The efficiency indexes of generic n-qudit circuits with $d \geq 5$ and generic two-qudit circuits given here are higher than that of the most efficient qubit circuits. Finally, a brief conclusion and future work are given in Sec. [V].

II. LOWER BOUNDS OF GCX GATES

The GCX gate (denoted as $\text{GCX}(m \rightarrow X^{(j)})$) is a controlled-$U$ two-qudit gate which implements the $X^{(j)}$ operation on the target qudit iff the control qudit is in the state $|m\rangle$, where $X^{(j)} = |i\rangle\langle j| + |j\rangle\langle i| + \sum_{k\in\{0,1\}}|k\rangle\langle k|$. The GCX gate essentially is a CNOT gate. For a multilevel quantum system which forms a qudit, two levels in the system forms a qubit. If a two-qubit CNOT gate is realized in two such systems, a controlled-U two-qudit gate which implements the U of qudit quantum circuits is called as partition size. Let $W = UTV$ be CSD of the matrix, then

$$W = r \begin{pmatrix} r & m - r \\ m - r & W_{12} \end{pmatrix},$$

with $2r \leq m$. Here r is called as partition size. Let $W = UTV$ be CSD of the matrix, then

$$U = r \begin{pmatrix} U_1 & 0 \\ 0 & U_2 \end{pmatrix},$$

$$\Gamma = r \begin{pmatrix} C & -S & 0 \\ S & C & 0 \\ 0 & 0 & I \end{pmatrix},$$

$$V = r \begin{pmatrix} V_1 & 0 \\ 0 & V_2 \end{pmatrix},$$

where C and S are diagonal matrices of the forms $C = \text{diag} \{ \cos \theta_1, \cos \theta_2, \cdots, \cos \theta_1 \}$ and $S = \text{diag} \{ \sin \theta_1, \sin \theta_2, \cdots, \sin \theta_1 \}$, I is the $(m-2r) \times (m-2r)$ identity matrix, and Γ is called cosine-sine matrix. An n-qudit gate corresponds to a $d^n \times d^n$ unitary matrix. The synthesis of qudit quantum circuits based on CSD was first proposed by Khan et al. [27, 28]. There, they choose the partition size $r = d^{n-1}$ at each recursion level. Different from the Khan et al.’s method, we choose the partition size $r = [d/2]d^{n-1}$ for the first level decomposition, then $r = [d/4]d^{n-1}$ for the second level decomposition, and $r = [d/2^k]d^{n-1}$ for the kth level decomposition, here $[a]$ denotes the integer part of a. After k levels ($\log_2 d < \kappa < \log_2 d + 1$) of decomposition, $d^{n-1} \times d^{n-1}$ block diagonal matrices are obtained. The block diagonal matrices correspond to uniformly controlled $(n-1)$-qudit $(u\Lambda_1(U^{m-1}))$ gates; the cosine-sine matrices corresponds to uniformly $(n-1)$-fold controlled $R_i (u\Lambda_{n-1}(R_i))$ rotations.

The second phase of multivalued QSD is the further decomposition for the uniformly controlled $(n-1)$-qudit gate. It can
be decomposed into d copies of $(n - 1)$-qudit gates and $d - 1$ copies of controlled $(n - 1)$-qudit diagonal ($\Lambda_1(\Delta^{n-1})$) gates. In qubit case, the uniformly controlled $(n - 1)$-qudit gate is decomposed into a pair of $(n - 1)$-qudit gate and a $\Lambda_1(\Delta^{n-1})$ gate, and it is equivalent to the decomposition of the block diagonal matrix in QSD. So the decomposition given here is a generalization of QSD for qubit case.

The synthesis of a generic n-qudit gate involves three kinds of component: $(n - 1)$-qudit gates, $\Lambda_1(\Delta^{n-1})$ gates, and rotations. The $(n - 1)$-qudit gates can be further decomposed in similar ways. So we can construct a generic n-qudit quantum circuit by a recursive way. All the component elements required can be efficiently synthesized based on GCX gate.

B. Optimization of the Synthesis Stated Above

Optimizing the decomposition of matrices: When d is not a power of 2, there are identity submatrices in the cosine-sine matrices of CSD. We can rearrange and change the block diagonal matrices of CSD to reduce the numbers of two components, the $(n - 1)$-qudit gate and the $\Lambda_1(\Delta^{n-1})$ gate. The number of $(n - 1)$-qudit gates can be reduced to the minimum d^2.

For example, an n-qudit gate, corresponding to a $3^n \times 3^n$ unitary matrix, can be decomposed as follows

$$W_1 = A\Gamma_1 B\Gamma_0 CT_2 D.$$ \hspace{1cm} (5)

with

$$\Gamma_0 = \begin{pmatrix} C & -S & 0 \\ S & C & 0 \\ 0 & 0 & I \end{pmatrix}, \quad \Gamma_1 = \begin{pmatrix} I & 0 & 0 \\ 0 & C_1 & -S_1 \\ 0 & S_1 & C_1 \end{pmatrix},$$

$$\Gamma_2 = \begin{pmatrix} I & 0 & 0 \\ 0 & C_2 & -S_2 \\ 0 & S_2 & C_2 \end{pmatrix},$$

$$A = \begin{pmatrix} U_1 & 0 & 0 \\ 0 & U_2 & 0 \\ 0 & 0 & U_3 \end{pmatrix}, \quad B = \begin{pmatrix} I & 0 & 0 \\ 0 & X_2 & 0 \\ 0 & 0 & X_3 \end{pmatrix},$$

$$C = \begin{pmatrix} V_1 & 0 & 0 \\ 0 & V_2 & 0 \\ 0 & 0 & V_3 \end{pmatrix}, \quad D = \begin{pmatrix} I & 0 & 0 \\ 0 & Y_2 & 0 \\ 0 & 0 & Y_3 \end{pmatrix},$$

where each block matrix in the decomposition above is of size $3^{n-1} \times 3^{n-1}$. We can rewrite it as that

$$W_1 = A'\Gamma_1 B'\Gamma_0 CT_2 D'.$$ \hspace{1cm} (8)

with

$$A' = (I \otimes U_2) \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & U_3' \end{pmatrix}, \quad B' = (I \otimes X_2) \begin{pmatrix} X_1 & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & I \end{pmatrix},$$

$$C' = (I \otimes V_2) \begin{pmatrix} I & 0 & 0 \\ 0 & I & 0 \\ 0 & 0 & V_3' \end{pmatrix}, \quad D' = \begin{pmatrix} Y_1 & 0 & 0 \\ 0 & Y_2 & 0 \\ 0 & 0 & Y_3 \end{pmatrix}. \hspace{1cm} (9)$$

where $U'_3 = U_3^{-1} U_3$, $X_1 = X_3^{-1} U_3^{-1} U_1$, $V'_3 = V_3^{-1} X_3^{-1} X_3 V_3$, $Y_1 = V_3^{-1} X_3$. For matrices A, B, C, D and D', each of them corresponds to two $\Lambda_1(\Delta^{n-1})$ gates and three $(n - 1)$-qudit gates; for A', B', C' each matrix corresponds to one $\Lambda_1(\Delta^{n-1})$ gate and two $(n - 1)$-qudit gates. The optimal synthesis of a generic n-qudit circuit gate involves nine $(n - 1)$-qudit gates and five $\Lambda_1(\Delta^{n-1})$ gates, three $(n - 1)$-qudit gates and three $\Lambda(\Delta^{n-1})$ gates less than that in the original synthesis.

For example again, taking $d = 6$, the n-qudit circuit, corresponding to a $6^n \times 6^n$ unitary matrix, can be decomposed as follows

$$W_2 = A\Gamma_1 B\Gamma_2 CT_3 DT_0 ET_4 FT_5 G\Gamma_6 H$$ \hspace{1cm} (10)

with

$$\Gamma_0 = \begin{pmatrix} C & -S & 0 \\ S & C & 0 \\ 0 & 0 & I \end{pmatrix},$$

where each block matrix in Eq. (11) is of size $6^2 \times 6^2$, and

$$\Gamma_1 = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ 0 & C_1 & -S_1 & 0 & 0 \\ 0 & S_1 & C_1 & 0 & 0 \\ 0 & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & S_2 \end{pmatrix},$$

$$\Gamma_2 = \begin{pmatrix} C_2 & -S_2 & 0 & 0 & 0 \\ S_2 & C_2 & 0 & 0 & 0 \\ 0 & 0 & I & 0 & 0 \\ 0 & 0 & 0 & S_2 & C_2 \\ 0 & 0 & 0 & 0 & I \end{pmatrix},$$

$$\Gamma_3 = \begin{pmatrix} I & 0 & 0 & 0 & 0 \\ 0 & C_3' & -S_3' & 0 & 0 \\ 0 & S_3' & C_3' & 0 & 0 \\ 0 & 0 & 0 & I & 0 \\ 0 & 0 & 0 & 0 & S_2' \end{pmatrix},$$

where each block matrix in Eqs. (12) is of size $6^{n-1} \times 6^{n-1}$. The second half of expression in Eq. (10), $ET_4 FT_5 G\Gamma_6 H$, has same form as the first half, $A\Gamma_1 B\Gamma_2 CT_3 D$. The first half can be rewritten as

$$A\Gamma_1 B\Gamma_2 CT_3 D = A'\Gamma_1 B'\Gamma_0 CT_2 D'$$ \hspace{1cm} (14)

with

$$A' = (I \otimes A_2) diag[I, I, A_3, A_4, A_5, A_6],$$

$$B' = (I \otimes B_2) diag[B'_1, I, B'_3, B'_4, I],$$

$$C' = (I \otimes C_2) diag[C_1, C_2, C_3, C_4, C_5, C_6],$$

$$D' = diag[D'_1, D_2, D_3, D_4, D_5, D_6].$$ \hspace{1cm} (15)
Here $A'_1 = A^{-1}_1 A_1$, $A'_2 = A^{-1}_2 A_2$, $A'_6 = A^{-1}_6 A_6$, $B'_1 = B^{-1}_1 A_1$, $B'_4 = B^{-1}_4 A_4$, $B'_5 = B^{-1}_5 A_5$, $C'_1 = C^{-1}_1 B_1 B_3 C_3$, $C'_3 = C^{-1}_3 C_5$, $C'_6 = C^{-1}_6 B_3 B_6 C_6$, $D'_1 = C^{-1}_5 C_1$ and $D'_4 = C^{-1}_2 C_4$.

The two half of the expression can be processed in same way. The optimal synthesis of a generic n-qudit circuit gate with $d = 6$ involves 36 $(n - 1)$-qudit gates and 28 $\Lambda_1(\Delta^{-1})$ gates, eight $(n - 1)$-qudit gates and eight $\Lambda_1(\Delta^{-1})$ gates less than that in the original synthesis.

The numbers of three component needed to construct optimal generic multivalued quantum circuits are listed in Tab. I.

A cosine-sine matrix for a qudit system can involve several sets of $u\Lambda_1(R_\gamma)$ rotation. To reduce the number of $(n - 1)$-qudit gates to its minimum d^2 is essential for the asymptotic optimality of the synthesis. The number of the GCX gate in these d^2 $(n - 1)$-qudit gate components account for vast majority of the GCX gate count of an n-qudit gate if n is large. For example the number of the GCX gate in nine 2-qudit gate components account for 68.02% of the GCX gate count of a generic 3-qudit circuit. Whereas the number of GCX gate in nine 7-qudit gate components account for 99.87% of the count of a generic 8-qudit circuit. The numbers of two other components may be neglected if n is enough large. Hence the synthesis obtained here is asymptotically optimal, which means that the generic n-qudit circuit can be synthesized asymptotically by $O(d^2 n^2)$ two-qudit elementary gates, here α is a constant.

Optimizing the uniformly multifold controlled R_γ rotations:

The optimization of the qudit $u\Lambda_{n-1}(R_\gamma)$ rotations has been given in Ref. [19] by using controlled-Z (CZ) gates. To optimize the qudit $u\Lambda_{n-1}(R_\gamma)$ rotations needs the high dimensional counterpart of CZ gate. The multivalued extension of Z operation is a one-qudit operation $Z_1^{[m]}$ which is specified by that $Z_1^{[m]} = \sum_{k=0}^{d^n} |k]\langle k| - |m]\langle m|$. There are only d different forms of $Z_1^{[m]}$ operation for a qudit ($d = 0, 1, \cdots, d - 1$, respectively), whereas there are $d(d - 1)/2$ forms of $X_1^{[i]}$ operation for the qudit. Like the GCX gate, the generalized controlled Z (GCZ) gate (denoted as $GCZ(m - m')$) is defined as a controlled 2-qudit gate which implements the $Z_1^{[m]}$ operation on the target qudit iff the control qudit is in the state $|m\rangle$. It is specified by $GCZ(m - m') = \sum_{j=0}^{d^n} |j]\langle i| - |m\rangle\langle m'|$. Like the qudit case, the control qudit and target qudit of the GCZ gate are changeable, and using two generalized Hadamard gates, the GCX and GCZ gates can be transformed each other. The generalized Hadamard gate $H_1^{[i]}$ is a one-qudit gate specified by that $H_1^{[i]} = \sum_{k=0}^{d^n} \frac{|k]\langle k| + |i]\langle i| + |j]\langle j| + |j\rangle\langle j|}{\sqrt{2}}$. The circuit representation of GCX gate and its transformation relation with GCZ gate are shown in Fig. [I].

The statements and Fig. 14 in Appendix C of Ref. [31] still hold for qudit $u\Lambda_{n-1}(R_\gamma)$ rotations if all GCX($m \rightarrow X_1^{[i]}$) gates are replaced with GCZ($m \rightarrow j$) gates. Thus a set of qudit $u\Lambda_{n-1}(R_\gamma)$ rotation may be implemented with $2d^{n-2}(d - 1)$ GCZ gates, of which $d - 1$ GCZ($m \rightarrow j$) gates ($m = 1, 2, \cdots, d - 1$, respectively) may be moved furthest to the right (or the left). The rightmost $d - 1$ GCZ gates produce a diagonal gate which may absorb into the neighboring uniformly controlled $(n - 1)$-qudit gate. The reason why the $d - 1$ GCZ gates are able to be moved furthest to the right whereas only one CZ gate is able to move like that in qudit case is that the controlled gates with different control basis states can exchange one another. This saves $d - 1$ two-qudit elementary gates for each set of qudit $u\Lambda_{n-1}(R_\gamma)$ rotation, totally save $(d^2(n - 1) - 1)n_{ab}/(d + 1)$ GCX gates for a generic n-qudit circuit, where n_{ab} is the number of $u\Lambda_{n-1}(R_\gamma)$ component in the circuit and is given in Tab. II. In the practical process of optimization, it should optimize $u\Lambda_{n-1}(R_\gamma)$ rotations first, then to optimize the decomposition of matrices.

C. Structure and GCX Gate Count of Optimal Circuits

The optimal quantum circuit of generic n-qudit circuits involves $d^2(n - 1)$-qudit gates, which are separated by $\Lambda_1(\Delta^{-1})$ gates or circuits for cosine-sine matrix. It involves $d^2 - 2^n \Lambda_1(\Delta^{-1})$ gates and $2^n - 1$ circuits for cosine-sine matrix. In multivalued case, a circuit for cosine-sine matrix usually involves several sets of $u\Lambda_{n-1}(R_\gamma)$ rotations. The structure of a generic n-qudit circuit is illustrated in Fig. 2.

The GCX gate count of the optimal multivalued quantum circuits given here is tabulated in Tab. II. For comparison the count before the optimization is also given. The results are obviously improved after optimization, especially for the case d is not a power of two. The circuits optimized have asymptotic optimal features for all dimensionality d, whereas the circuits before optimization are not asymptotically optimal except for d is a power of two.

IV. EFFICIENCY OF SYNTHESIS OF QUANTUM CIRCUITS

To evaluate the efficiency of synthesis of generic n-qudit circuits based on GCX gates, we propose a quantity known as efficiency index (\mathcal{R}) which is defined by $\mathcal{R} = d^{2n}/N_n$, where N_n is the number of GCX gate required to synthesize the n-qudit circuit. The quantity \mathcal{R} is the average number of param-

![FIG. 1: GCZ gate (a) and transformation between GCX gate and GCZ gate (b).](image-url)
The Table, it can be seen that the synthesis of multivalued quantum circuits.

Asymptotic efficiency indexes for the optimal synthesis of qudit quantum circuits obtained using the multivalued QSD. In each cell, the upper line denotes the count before optimization [31], the bottom line denotes the count optimized.

n	d	3	4	5	6	7	8
2	44	108	272	510	828	1176	
3	26	90	176	355	618	980	
4	692	2232	10256	25860	52740	85456	
5	344	1926	5216	15565	53856	72716	
6	6860	37800	33614	1158720	2965788	5551504	
7	3458	32886	136576	577705	1797210	4735948	
8	83924	613248	10796576	51109320	166400964	355955600	

There are several previous works on the synthesis of multi-valued quantum circuits based on elementary gates. Based on the controlled increment (CINC) gate, the synthesis by using the spectrum decomposition algorithm is investigated in Refs. [23, 25]. It is asymptotically optimal, which has leading factor 2 for the CINC account of the synthesis. Using the GCX gate as the two-qudit elementary gate instead of the CINC gate, the synthesis is greatly simplified [31]. The synthesis simplified still has leading factor 2 but for the GCX account. So it’s \(\mathcal{R}^{asy} \) is equal to 0.5 for all dimensionality \(d \), which less than all values of \(\mathcal{R}^{asy} \) in Tab. III.

Based on CINC gate, the synthesis by using the CSD with balanced partition are investigated in Ref. [28]. The circuits synthesized by this method are simpler than those by using the spectrum decomposition if \(n \) is small, but they are not asymptotically optimal except for \(d \) is a power of two. The results of this work are given in Tab. IV. It needs \(d - 1 \) GCX gates to synthesize a CINC gate [31]. Comparing the data in Tab. II and that in Tab. IV considering the CINC gate itself has complex construct, it can be seen that the synthesis of quantum circuits given in this article are much more efficient than that in Ref. [28] even if the \(n \) is very small.

Li et al. propose a two-ququart gate, termed the controlled double-not (CDNOT) gate, for four level quantum systems. Based on the CDNOT gate, they investigate the synthesis of ququart quantum circuits by using QSD method [29], the results are tabulated in Tab. V. A CDNOT gate is a two-ququart controlled gate which implements the \(\sigma_z \otimes I_2 \) operation on the target ququart iff the control ququart is in the state \(\ket{m} \), \(m \in \{0, 1, 2, 3\} \), here \(\sigma_z \) is a Pauli matrix. The \(\sigma_z \otimes I_2 \) operation is equivalent to two \(X \) operations: \(X^{(02)} \) and \(X^{(13)} \), so a CDNOT gate is equivalent to two GCX gate. The \(\mathcal{R}^{asy} \) of this synthesis is 1.60, still less than that in Tab. III for ququart 1.95. From discussion above, it can be seen that our algorithm given here is first efficient multivalued synthesis routine which produces best known results for all dimensionality \(d \), and for both the small \(n \) case and the asymptotic case.

The syntheses of generic \(n \)-qubit circuits based on QSD and their asymptotic efficiency indexes are listed in Tab. VI. The
TABLE IV: The CINC gate count for the synthesis of qudit quantum circuits obtained by using CSD with balanced partition [28].

n	2	3	4	5	6	7	8
d	60	1200	326400	5.2 × 10^6	(5/16)4^n−(3/2)×4^n		

TABLE V: The CDNOT gate count for the synthesis of qudrat quantum circuits [29].

n	2	3	4	5	6	7	8
Gate count	60	1200	326400	5.2 × 10^6	(5/16)4^n−(3/2)×4^n		

TABLE VI: The CNOT counts of n-qubit quantum circuits based on QSD.

l = 1 [19]	l = 1, optimal	l = 2 [19]	l = 2, optimal [19]
6 36 168 720 2976 (3/4)×4^n−(3/2)×4^n	31 147 635 2635 (2/3)×4^n−(3/2)×4^n+1/3	3 24 120 528 2208 (9/16)×4^n−(3/2)×4^n	3 20 100 444 1868 (23/48)×4^n−(3/2)×4^n+4/3

V. CONCLUSION AND FUTURE WORK

We have optimized the synthesis of generic multivalued quantum circuits. The optimal circuits are asymptotically optimal for all dimensionality d, so that we can build efficient quantum circuits for the qudit d is not a power of two as that d is a power of two. It is of great significance to make full use of various resources. The algorithm given here is the most efficient qudit synthesis routine so far which produces best known results in all respects.

The multivalued quantum circuits do have advantages over the binary quantum circuits. The generic n-qudit circuits with d ≥ 5 and generic two-qudit circuits given here are practical circuits which are more efficient than the most efficient qubit circuits. The leading factor of the lower bound of complexity for qudit circuits is small by a factor of d − 1 in comparison to that for qubit circuits and the asymptotic efficiency index is increased with the increase of dimensionality d, further reveal the advantages and benefits of qudit circuits over generic qubit circuits.

There is still plenty of room for improvement in the synthesis of multivalued quantum circuits. One of most important work for the improvement is to optimize the two-qudit quantum circuits. Since our algorithm for generic qudit circuits given here is recursive, the more efficient generic qudit circuits can be obtained from more efficient two-qudit circuits.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Science Foundation of China under Grant No. 11204112 & 11447015 and the Priority Academic Program for the Development of Jiangsu Higher Education Institutions.

[1] A. D. Greentree, S. G. Schirmer, F. Green, L. C. L. Hollenberg, A. R. Hamilton, and R. G. Clark, Maximizing the Hilbert space for a finite number of distinguishable quantum states, Phys.
[2] A. B. Klimov, R. Guzmán, J. C. Retamal, and C. Saavedra, Qutrit quantum computer with trapped ions, Phys. Rev. A 67, 062313 (2003).

[3] D. L. Zhou, B. Zeng, Z. Xu, and C. P. Sun, Quantum computation based on d-level cluster state, Phys. Rev. A 68, 062303 (2003).

[4] B. P. Lanyon, M. Barbieri, M. P. Almeida, T. Jennewein, T. C. Ralph, K. J. Resch, G. J. Pryde, J. L. O’Brien, A. Gilchrist, and A. G. White, Simplifying quantum logic using higher-dimensional Hilbert spaces, Nat. Phys. 5, 134 (2009).

[5] M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. D. O’Connell, D. Sank, H. Wang, J. Wenner, A. N. Cleland, M. R. Geller, and J. M. Martinis, Emulation of a quantum spin with a superconducting phase qubit, Science 325, 722 (2009).

[6] R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Stef- fen, M. Boissonneault, A. Blais, and A. Wallraff, Control and tomography of a three Level superconducting artificial atom, Phys. Rev. Lett. 105, 223601 (2010).

[7] E. T. Campbell, Phys. Rev. Lett. Enhanced fault-tolerant quantum computing in d-level systems, 113, 230501 (2014).

[8] W. Qin, C. Wang, and G. L. Long, High-dimensional quantum state transfer through a quantum spin chain, Phys. Rev. A 87, 012339 (2013).

[9] Y. M. Di, H. R. Wei, Y. Cao, L. Liu, and C. H. Zhaou, Entangling capability of multivalued bipartite gates and optimal preparation of multivalued multipartite quantum states, Quantum Inf. Process. 14, 1997 (2015).

[10] A. Barenco, C. H. Bennett, R. Cleve, and D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Elementary gates for quantum computation, Phys. Rev. A 52, 3457 (1995).

[11] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information (Cambridge: Cambridge University Press, 2000).

[12] J. J. Vartiainen, M. Möttönen, and M. Salomaa, Efficient decomposition of quantum gates, Phys. Rev. Lett. 92, 177902 (2004).

[13] M. Möttönen, J. J. Vartiainen, V. Bergholm, and M. Salomaa, Quantum circuits for general multiqubit gates, Phys. Rev. Lett. 93, 130502 (2004).

[14] G. Vidal and C. M. Dawson, Universal quantum circuit for two-qubit transformations with three controlled-NOT gates, Phys. Rev. A 69, 010301 (2004).

[15] F. Vatan and C. Williams, Optimal quantum circuits for general two-qubit gates, Phys. Rev. A 69, 032315 (2004).

[16] V. V. Shende, I. L. Markov, and S. S. Bullock, Minimal universal two-qubit controlled-NOT-based circuits, Phys. Rev. A 69, 062321 (2004).

[17] V. Bergholm, J. J. Vartiainen, M. Möttönen, and M. M. Salomaa, Quantum circuits with uniformly controlled one-qubit gates, Phys. Rev. A 71, 052330 (2005).

[18] Y. S. Zhang, Y. M. Ye, and G. C. Guo, Conditions for optimal construction of two-qubit nonlocal gates, Phys. Rev. A 71, 062331 (2005).

[19] V. V. Shende, S. S. Bullock, and I. L. Markov, Synthesis of quantum-logic circuits, IEEE Trans. on CAD 25, 1000 (2006).

[20] H. R. Wei, Y. M. Di, and J. Zhang, Modified KhanejaCGlaser decomposition and realization of three-qubit quantum gate, Chin. Phys. Lett. 25, 3107 (2008).

[21] H. R. Wei and Y. M. Di, Decomposition of orthogonal matrix and synthesis of two-qubit and three-qubit orthogonal gates, Quantum Inf. Comput. 12, 0262 (2012).

[22] A. Muthukrishnan and C. R. Stroud, Jr., Multivalued logic gates for quantum computation, Phys. Rev. A 62, 052309 (2000).

[23] S. S. Bullock, D. P. O'Leary, and G. K. Brennen, Asymptotically optimal quantum circuits for d-Level systems, Phys. Rev. Lett. 94, 230502 (2005).

[24] G. K. Brennen, D. P. O'Leary, and S. S. Bullock, Criteria for exact qudit universality, Phys. Rev. A 71, 052318 (2005).

[25] G. K. Brennen, S. S. Bullock, and D. P. O'Leary, Quantum information and computation, Quantum Inf. Comput. 6, 436 (2006).

[26] F. S. Khan and M. Perkowski, Proceedings of the 7th International symposium on representations and methodology of future computing technologies (Tokyo, Japan) (2005).

[27] F. S. Khan and M. Perkowski, Synthesis of multi-qutrit hybrid and d-valued quantum logic circuits by decomposition, Theor. Comput. Sci. 367, 336 (2006).

[28] Y. Nakajima, Y. Kawano, H. Sekigawa, M. Nakanishi, S. Yamashita, and Y. Nakashima, Synthesis of quantum circuits for d-level systems by using cosine-sine decomposition, Quantum Inf. Comput. 9, 423 (2009).

[29] W. D. Li, Y. J. Gu, K. Liu, Y. H. Lee, and Y. Z. Zhang, Efficient universal quantum computation with auxiliary Hilbert space, Phys. Rev. A 83, 034303 (2013).

[30] Y. M. Di and H. R. Wei, Elementary gates for ternary quantum logic circuit, arXiv:1105.5485 (2011).

[31] Y. M. Di and H. R. Wei, Synthesis of multivalued quantum logic circuits by elementary gates, Phys. Rev. A 87, 012325 (2013).

[32] C. C. Paige and M. Wei, History and generality of the CS decomposition, Linear Algebra and Appl. 208/209, 303 (1994).