Review

Development of biomimetic catalytic oxidation methods and non-salt methods using transition metal-based acid and base ambiphilic catalysts

By Shun-Ichi MURAHASHI*1,*2,†

(Communicated by Ryoji NOYORI, M.J.A.)

Abstract: This review focuses on the development of ruthenium and flavin catalysts for environmentally benign oxidation reactions based on mimicking the functions of cytochrome P-450 and flavoenzymes, and low valent transition-metal catalysts that replace conventional acids and bases. Several new concepts and new types of catalytic reactions based on these concepts are described.

Keywords: biomimetic oxidation, ruthenium catalyst, flavin catalyst, oxidation of amines, sp³ C–H activation, transition metal based acid and base ambiphilic catalyst

1. Introduction

New concepts regarding environmentally benign biomimetic oxidation catalysts and neutral redox catalysts that replace acids and bases are discussed, along with the development of a wide variety of catalytic reactions based on these concepts. These methods have been widely applied to the synthesis of biologically active substances and functional substances, and have contributed to some significant advances in industrial technology.

2. Biomimetic catalytic oxidation

Oxidation is one of the most fundamental reactions in organic synthesis. Owing to the need to develop forward-looking technology that is environmentally acceptable with respect to minimizing the formation of inorganic salts and the efficient, highly selective formation of end products, many aspects must be considered. The most attractive approach would be a biomimetic oxidation reaction that is analogous to metabolic processes that occur in living organisms. The development of innovative methods for systematically exploring new types of oxidation reactions would have many advantages. Indeed, we discovered novel biomimetic methods for catalytic oxidation reactions by simulating the functions of cytochrome P-450 and flavoenzymes via the use of metal catalysts or organocatalysts, and, as a result, we were able to develop some highly useful strategies that can be useful in this area.¹

2.1. Ruthenium catalyzed biomimetic cytochrome P-450-type oxidation reactions. Cytochrome P-450 has two major functions. One is the two-electron reduction of molecular oxygen by porphyrin followed by protonolysis to form an oxo species (Fe=O), and the other is the transfer of an oxygen atom to a substrate. We attempted to generate a middle-valent ruthenium oxo species, which could serve as an analogue for the oxo-iron species of cytochrome P-450 without the porphyrin moiety, although, at that time, high-valent oxo metal complexes were considered to be the active species for oxidation reactions. N-Methylamine derivatives were selected as substrates, because the oxidation of N-demethylation of tertiary N-methylamines is unique for cytochrome P-450 specific reactions and plays an important role in the metabolism of naturally occurring toxic tertiary N-methylamines. Fortunately, we discovered a novel cytochrome P-450 type of oxidation of tertiary N-methylamines that does not require porphyrin. Since then, unique cytochrome P-450 type selective oxidative transformations of various substrates have been explored.¹

*1 Okayama University of Science, Okayama, Japan.
*2 Recipient of the Japan Academy Prize in 2010.
† Correspondence should be addressed: S.-I. Murahashi, Department to Chemistry, Okayama University of Science, Ridai-cho, Kita-ku, Okayama 700-0005, Japan (e-mail: murahashi@high.ous.ac.jp).
Ruthenium catalyzed oxidation of tertiary amines. In 1988 we discovered that a novel cytochrome P-450-type catalytic oxidation reaction can be carried out in the absence of porphyrins, using a ruthenium(II) phosphine catalyst.2) Thus, the RuCl₂(PPh₃)₃-catalyzed oxidation of tertiary amines 1 with t-BuOOH gives the corresponding α-(t-butyldioxy)alkylamines 2 with high efficiency, as shown in Scheme 1.

The mechanism of this unique oxidation reaction was examined carefully through kinetics studies involving isotope effects. The ruthenium(II) complex reacts with t-BuOOH to give Ru(II)OOt-Bu, which is converted to the Ru=O species. C–H activation takes place by electron transfer and subsequent proton transfer to give the iminium ion complex. Nucleophilic attack of the second molecule of t-BuOOH gives the product 2, water, and the regenerated Ru(II) species to complete the catalytic cycle. Similarly, the RuCl₃ catalyzed oxidation of tertiary amines with H₂O₂ in methanol gives the corresponding α-(methoxy)alkylamines 4.

The oxidative transformation of secondary amines to imines. Based on the above mechanistic study, it is apparent that the same catalytic system could be used for the oxidative transformation of secondary amines into the corresponding imines 6. Indeed, the first catalytic oxidative transformation of secondary amines to imines was discovered as shown in Scheme 2.

The direct oxidative transformation of secondary amines was improved dramatically, because the reaction can be carried out with molecular oxygen under mild conditions. Using a ruthenium bimetallic complex catalyst Ru₂(OAc)₄Cl, the oxidation of secondary amines could be performed in a highly efficient manner using molecular oxygen for the first time [Scheme 2].

Substitution at the α-position of amines and amides. Substituents at the α-position of amines and amides are of importance from the standpoint of the synthesis of biologically active nitrogen compounds. Generally, formation of a carbon–carbon bond at the α-position of an amine is achieved using carbon electrophiles. That is, N-protection of the amines with an electron-withdrawing group, lithiation with organolithium compounds to give α-carbanions, subsequent treatment with carbon electrophiles, and removal of the protecting group gives α-substituted amines. The limitation of this method is the difficulty in scaling-up the reaction because sensitive organolithium compounds are used in stoichiometric amounts.

The oxidative transformation of secondary amines to imines provides the first convenient general method for the synthesis of α-substituted amines, because the enantioselective addition of nucleophiles to imines has been established.4) This is the second method for introducing a substituent at the α-position of amines [Method B] in addition to Method A, as shown in Scheme 2.
Ruthenium-catalyzed oxidation of amides and related compounds. The cytochrome P-450 type oxidation method of tertiary amines can be applied to the oxidations of amides and related compounds. Thus, the ruthenium-catalyzed oxidation of amide 8 with t-BuOOH under mild conditions gives the corresponding t-butyldioxyamide 9 as shown in Scheme 3. It is important to note that α-substituted amides 11 can be obtained by the ruthenium-catalyzed oxidation of amide 8 to give product 9, which can be treated with carbon nucleophiles [Method C] as shown in Scheme 3.

This method can also be used for the selective oxidation of peptides. A novel catalytic backbone modification at the glycine residue of peptides was performed without backbone fragmentation.8)

One of the most challenging topics in the oxidation of amides is the catalytic oxidation of β-lactams. We verified that the oxidation of β-lactams is effective, which has been a longstanding problem in pharmaceutical synthesis. Ruthenium-catalyzed oxidation with a reactive peracetic acid in a buffer solution was found to proceed under mild conditions. Azetidinone 12 can be converted into the corresponding 4-acetoxyazetidinone 13 with extremely high stereoselectivity in a buffer solution (99%, 99% de). The product is a versatile intermediate for organic synthesis.10) This is the first example of an aerobic, oxidative cross dehydrogenative coupling reaction induced by sp3 C–H activation [Eq. 3].

Oxidative transformation of alkenes to α-ketols. Direct oxidative transformation of an alkene to an α-ketol was discovered for the first time by the author, although epoxidation of the alkene is well known. Thus, the RuCl3-catalyzed oxidation of alkenes with peracetic acid in an aqueous solution (CH2Cl2/CH3CN/H2O) affords the corresponding α-ketols 15 in high efficiency [Eq. 4].

Since peracetic acid is produced by the cobalt-catalyzed aerobic oxidation of acetaldehyde, we examined ruthenium-catalyzed generation of peracetic acid from acetaldehyde under aerobic conditions and discovered that the RuCl3 catalyzed oxidation of β-lactam 12 with molecular oxygen (1 atm) in the presence of acetaldehyde gave 13 in 91% yield.9)

Direct oxidative transformation of tertiary amines with molecular oxygen. In the search for an environmentally benign and effective method for the direct oxidative transformation of tertiary amines with molecular oxygen, we aimed at the direct cyanation of tertiary amines by accomplishing two tasks at the same time; that is, (i) C–H activation by oxidation with molecular oxygen, and (ii) trapping of the iminium ion intermediate with a carbon nucleophile under oxidative conditions to give the carbon–carbon bond formation product. Indeed, we found that the ruthenium-catalyzed oxidative cyanation of tertiary amines with molecular oxygen in the presence of sodium cyanide gives the corresponding α-aminonitrile 14 in a highly efficient manner, which is a versatile intermediate for organic synthesis.10) This is the first example of an aerobic, oxidative cross dehydrogenative coupling reaction induced by sp3 C–H activation [Eq. 3].
The present method is particularly useful for the synthesis of biologically important compounds bearing α-ketol structures, such as cortisone acetate\(^\text{[11]}\) and adriamycin acetate.\(^\text{[13]}\) The ruthenium catalyzed stereoselective oxidative transformation of allyl acetate \(16\) to \(17\) is the key step in synthesis of cortisone acetate \([\text{Eq. 5}].\)^{11}\)

Oxidation of phenols. Oxidative transformation of phenols is of importance in view of the biological and synthetic importance of such compounds; however, it suffers from non-selectivity. Selective oxidation of phenols is limited to those bearing bulky substituents at the 2 and 6 positions. We discovered that the RuCl\(_2\)(PPh\(_3\))\(_3\)-catalyzed oxidation of \(p\)-substituted phenols \(18\) with tBuOOH proceeds selectively to give the corresponding \(t\)-butylidioxynaphthalide \(19\) without any substituent at the 2 and 6 positions \([\text{Eq. 6}].\)^{14}\) The reason why the ruthenium catalyzed reaction proceeds in a selective manner is due to the fast single electron transfer (SET) ability of ruthenium from a phenoxy radical to form the cationic intermediate, before radical coupling occurs. The dienones thus obtained are versatile synthetic intermediates. Typically, the treatment of dienones \(19\) with TiCl\(_4\) at \(-78^\circ\text{C}\) gives the corresponding 2-substituted quinone \(20\) selectively with high efficiency. The transformation of phenols can be applied to the one-pot synthesis of \(cis\)-fused octahydroanthraquinone by sequential migration and a Diels–Alder reaction.

Oxidation of hydrocarbons. The catalytic oxidation of hydrocarbons remains as a challenging topic. The RuCl\(_2\)(PPh\(_3\))\(_3\) catalyzed oxidation of hydrocarbons with tBuOOH gives the corresponding ketones and alcohols with high efficiency.\(^\text{[15]}\) The kinetic isotope effect and other studies indicated that the oxidation is not due to a BuO radical or a BuOO radical but rather, to the oxo ruthenium species.\(^\text{[15]}\) As described before, peracetic acid is a more reactive reagent. The combination of a ruthenium catalyst with peracetic acid is an excellent system for the oxidation of non-activated hydrocarbons.\(^\text{[16]}\) The method used for the \textit{in situ} generation of peracetic acid from acetaldehyde and molecular oxygen can be used for the aerobic oxidation of non-activated hydrocarbons. The aerobic catalytic oxidation of non-activated hydrocarbons can be carried out using iron powder,\(^\text{[17]}\) a ruthenium porphyrine catalysts,\(^\text{[18]}\) and copper-crown ether catalysts\(^\text{[19]}\) highly efficiently. In particular, the simple Cu(OAc)\(_2\)-acetonitrile catalytic system is convenient and useful for the aerobic oxidation of inactivated hydrocarbons as shown in \textit{Eq. 7}.\(^\text{[20]}\)

Simulating the function of cytochrome P-450 with ruthenium catalysts resulted in the discovery of various novel and selective catalytic oxidation reactions that are simple, clean, and practical. In combination with a low valent ruthenium catalyst with an oxidant such as \(t\)-butyl hydroperoxide, acetaldehyde-molecular oxygen (peracetic acid), and hydrogen peroxide has been used as clean oxidizing reagents. The biomimetic oxidation reactions presented here can be worked up easily and result in only \(t\)-butyl alcohol, acetic acid, water, respectively, as by-products and hence are widely used in laboratories and even in industry. The principle and mechanism of the reaction are now clearly understood, used widely, and extended to the design of more environmentally benign catalytic reactions using molecular oxygen under mild conditions.\(^\text{[3]}\)

2.2. Flavin-catalyzed biomimetic oxidation reactions. In order to study the metabolic functions of metal enzymes and organic enzymes in a complementary manner, we initiated to study the oxidation mechanism of flavoenzymes. The flavoenzyme is a coenzyme in which riboflavin binds a dinucleotide to form flavin-adenine-dinucleotide (FAD). At that time, the mechanism of flavoenzymes was proposed as shown in Scheme 4 using 4a-hydroxy-5-ethylflavillin as a model compound. The oxidation of a substrate \((S)\) with hydroperoxylavin \(21\) gives product SO and hydroxyflavillin \(22\), which eliminates water to form oxidized flavin \(23\). Reduction of \(23\) with NADPH gives reduced flavin \(24\), which then reacts with molecular oxygen to give \(21\) to complete the catalytic cycle. The transfer of oxygen from hydroperoxyflavin \(21\) to substrates has been verified; however, the catalytic recycling step, that is, the conversion of hydroxyflavillin \(22\) to hydroperoxyflavin \(21\) was...
ambiguous. In 1989 we examined the reactivity of 4a-hydroxy-5-ethylflavin 22 by stop-flow kinetics in order to identify biomimetic oxidation reactions that mimic the function of a flavoenzyme. We discovered that 22 undergoes a very fast pseudo-first order ionization (k₁ = 3 × 10² M⁻¹ s⁻¹) to generate flavinium cation 23. From this finding it was expected that 22 would undergo an S₂₃₋₁-type reaction with aqueous hydrogen peroxide. Actually, the hydroperoxyflavin 21 was obtained from 22 in excellent yield. Based on this finding we discovered novel biomimetic flavin-catalyzed oxidation reactions with hydrogen peroxide. This discovery constitutes a milestone for flavin-catalyzed aerobic oxidation reactions with hydrogen peroxide.

Flavin-catalyzed oxidation with hydrogen peroxide.

The reaction of secondary amines 5 with a hydrogen peroxide solution in the presence of catalyst 25 results in efficient production of nitrones 26. This was an unexpected and exciting result, because at that time, no method was available for the direct synthesis of nitrones from secondary amines [Eq. 8].

\[
\text{Scheme 4.}
\]

This catalytic system can be applied to the oxidative transformation of sulfides to sulfoxides. The kinetics on the catalytic oxidation of methyl phenyl sulfide revealed that the rate-determining step is formation of flavinium cation (p = −1.90). Because of ease of designing a suitable chiral flavin catalyst, asymmetric catalytic oxidations of organic substrates can be carried out. Using a chiral flavin catalyst, the first asymmetric catalytic Baeyer–Villiger oxidation reaction was performed with an organocatalyst.²²)

Flavin-catalyzed aerobic oxidation reaction. We attempted to extend the flavin-catalyzed oxidation to a more environmentally benign oxidation reactions by using molecular oxygen in place of hydrogen peroxide. Based on the mechanism shown in Scheme 4, the crucial step for construction of flavin-catalyzed aerobic oxidation is the reduction of FlEt + 23 to FlEtH 24 with an appropriate reducing agent that is analogous to NADPH. We turned out attention on the fact that hydrazine is the inhibitor of flavoenzymes, and we found that hydrazine hydrate can be used to replace NADPH as a reducing agent. We discovered that the oxidation of sulfides with molecular oxygen proceeds in the presence of a solution of flavin catalyst 25 and hydrazine hydrate in trifluoroethanol at room temperature.²³) Indeed, the flavin-catalyzed oxidation of sulfide 27 gave sulfoxide 28 cleanly and highly efficiently with an extremely high turn-over number (19,000). This is the first example of such an aerobic oxidation using an organic catalyst. Apparently, the flavinium cation intermediate reacts readily with hydrazine to give an adduct which undergoes β-elimination of the diazene to give the reduced flavin. Diazene can also be used for the reduction of the oxidized flavin 23 [Eq. 9].²³,²⁴)

[9]
An important variation in nitrone synthesis is the Na$_2$WO$_4$-catalyzed decarboxylative oxidation of N-alkyl-α-amino acid 33. The reaction proceeds smoothly under the similar conditions to give nitrone 26 regioselectively, as shown in Scheme 5.28)

Nitrones are difficult to prepare and are typically prepared by either the stoichiometric oxidation of hydroxylamines with HgO or condensation of hydroxylamines with aldehydes. Therefore, the present biomimetic, single step synthesis of nitrones from secondary amines is carried out with hydrogen peroxide gave nitrone 26 in excellent yields.26) For the synthesis of the unstable cyclic nitrones selenium dioxide is a more convenient catalyst.27)

3. Transition-metal-based Lewis acid, base, and ambiphilic catalysts

Strong Lewis acids and strong bases are often used for conventional organic transformations; however, stoichiometric amounts of these strong acids and bases are usually used. If it is possible to design transition-metal based redox Lewis acid catalysts, redox base catalysts, and ambiphilic catalysts, the reactions could be carried out catalytically and selectively under neutral conditions without the formation of any salts. Based on the new concept for sp3 C–H activation induced by a hetero atom effect, we discovered that low-valent ruthenium, iridium, rhodium and rhenium hydride complexes can be used as redox Lewis acids and/or base catalysts. Using neutral catalysts, various environmentally benign catalytic reactions can be constructed.32)

3.1. Transition metal catalyzed C–H activation of sp3 C–H activation induced by α-heteroatom effect. Transition-metal complex-assisted C–H activation will open new opportunities for the catalytic formation of carbon–carbon bonds because of its potential to generate reactive carbon–metal complexes. The design of a catalytic reaction involving C–H activation followed by reaction with an electrophile would be important to provide an environmentally friendly non-salt process, which proceeds under neutral conditions.

The C–H activation of tertiary amines. In 1978 we discovered the palladium catalyzed alkyl group exchange reaction of tertiary amines and investigated the mechanism of this unique catalytic reaction.33) C–H activation at the nitrogen of tertiary amines was verified based on i) d-labeling experiments at the α- and β-positions, ii) racemization of the optically active amines, iii) product analysis,33,34) although at that time, the concept of C–H activation was quite rare. The mechanism involves coordination of palladium to the nitrogen of tertiary amine 34, followed by oxidative addition at the α-C–H bond to give iminium ion complex 36 as shown in Scheme 6. The reactions of intermediate 36 with a tertiary amine or
water give the alkyl exchange products or hydrolysis products as shown in Scheme 6. Such C–H activation occurs upon treatment with any type of low-valent transition metal and metal complexes. This is in sharp contrast to the reactions of primary and secondary amines, where N–H activation takes place to give an imine metal hydride complex as common intermediates.

General concept for the sp³ C–H activation by α-hetero atom effect. The concept of C–H activation of tertiary amines with a metal complex by an α-heteroatom effect led to the discovery of new methods for activating various organic substrates under neutral conditions as shown in Scheme 7. Coordination of a hetero atom (Y) to a low-valent metal complex (M) would increase both the basicity of the metal complex and the acidity of C–H bond adjacent to the heteroatom, and hence the oxidative addition of the metal to the α-C–H bond would occur to afford α-transition-metalated complex. This concept has been extended to the α-C–H activation of pronucleophiles such as nitriles, isocyanates, carbonyl compounds, and trifluoromethylated compounds.

The C–H activation of nitriles. In 1989 we discovered that C–H activation of nitriles occurs readily when a RuH₂(PPh₃)₄ catalyst was employed. We selected RuH₂(PPh₃)₄ as a catalyst, because ruthenium has a strong coordination ability towards hetero-atoms and a hydride is a small and labile ligand. When initiated by C–H activation, nitriles undergo various catalytic reactions, which include Aldol type reactions, Knoevenagel reactions, Michael additions, addition to acetylenes, and addition to imines, highly efficiently under neutral and mild conditions without salt formation. These reactions proceed in a highly efficient manner, even in the case of base-sensitive substrates such as phenols, aldehydes, and propargyl groups [Eq. 11].

\[
\text{RCN} + \text{H} \rightarrow \text{RCHN} + \text{NH}_2
\]

The mechanism of the catalytic Michael addition of nitriles has been clarified by isolation of the intermediate ruthenium complexes. Coordination of the nitrile to the low-valent ruthenium complex, subsequent oxidative addition of the ruthenium to the α-C–H bond of nitrile would afford the C-bonded complex, which is then converted to the N-bonded complex. This complex subsequently undergoes a reaction with electrophiles. It is noteworthy that the regioselective addition of nitriles to carbon–carbon triple bonds of terminal alkynes proceeds. Contrasting results were obtained depending on the presence of an α-substituent on the nitrile.

Low-valent iridium hydride complex IrH₂(i-PrP)₅ was found to be an excellent catalyst for the activation of both C–H and carbon–nitrogen triple bonds of nitriles. The catalytic Thorpe–Ziegler reaction under neutral conditions gives cyanoenamines, which are versatile synthetic intermediates. This method is preferable to the conventional method which requires stoichiometric amounts of strong bases, such as butyllithium.

The C–H activation of isonitriles. The C–H activation of isonitriles gives the α-metalated intermediate. The rhodium or ruthenium-catalyzed addition of isonitriles to carbonyl compounds gives the corresponding α,β-unsaturated formamidines. Since rhodium is an excellent catalyst for decarbonylation reactions, the Rh₄(CO)₁₂-catalyzed reaction of isonitriles with 1,3-dicarbonyl compounds gives pyrroles regioselectively, based on the control of electronic and steric effects.
The C–H activation of carbonyl compounds. The most challenging transformation was the direct C–H activation of simple ketones, because carbonyl compounds coordinate to transition metals only weakly. Using more basic low valent ruthenium hydride complex Cp*RuH(PPh3)2, the C–H activation of simple ketones and subsequent Michael addition would be highly desirable. However, it has, in the general method for the synthesis of these compounds material science; therefore, the development of a important role in medicinal, agrochemical and selective manner under neutral conditions without the formation of any defluorinated by-product [Eq. 15].

\[
\begin{array}{c}
\text{F}_2\text{C} \quad \text{R}^1 \quad \text{H} \quad + \quad \text{IrH}_5(\text{P}^2\text{Pr}_3)_2 \\
\text{R}^2 \quad \text{R}^3 & \quad \text{RuH}_2(\text{PPh}_3)_4 \quad \text{R}^4 \quad \text{H} \quad + \quad \text{IrH}_5(\text{P}^2\text{Pr}_3)_2 \\
\end{array}
\]

3.2. Low-valent ruthenium hydride complex as redox Lewis acid catalyst. The ruthenium hydride complex RuH2(PPh3)4 functions as a transition metal-based base catalyst in the C–H activation of pronucleophiles. Importantly, we found that the RuH2(PPh3)4 catalyst can also function as a Lewis acid catalyst. The coordination of ruthenium to nitriles perturbs the carbon–nitrogen triple bond, permitting the addition of a nucleophile.

The conventional Lewis acid-promoted hydration of nitriles results in salt formation. In 1986, we discovered that the RuH2(PPh3)4-catalysed reaction of alcohols with nitriles gives esters along with the evolution of ammonia. This is an environmentally friendly non-salt reaction, because this means that the RuH2(PPh3)4 catalysis efficiently upon treatment with only two equivalents of water under neutral conditions. This is a very important discovery, because this means that the RuH2(PPh3)4 catalyst functions as a transition-metal-based base catalyst and also as a transition-metal-based Lewis acid catalyst. The hydration is useful and can be applied to the synthesis of biologically important compounds such as pumiliotoxin C [Eq. 16].

In order to investigate the mechanism, we switched the nucleophile from water to alcohols. As a result, we discovered a new type of esterification reaction, i.e. reactions of nitriles with alcohols. Thus, the RuH2(PPh3)4-catalysed reaction of alcohols with a nitrile in the presence of water under neutral conditions gives esters along with the evolution of ammonia. This is an environmentally friendly non-salt producing process. The synthesis of streptomycin griceus 54 is a typical example of such an ester synthesis [Eq. 17]. It is noteworthy that as a closely related reaction, the RuH2(PPh3)4-catalysed reaction of alcohols gives esters along with the evolution of
molecular hydrogen by dehydrogenative condensation.46

\[
\text{C_5H_11OH} + \text{C_5H_11CN} + \text{H_2O} \rightarrow \text{C_5H_11OH} + \text{C_5H_11CHO} + 2 \text{H_2O}
\]

Extension of the ruthenium catalyzed reaction by changing the nucleophile from alcohols to amines led to the discovery of a new catalytic amidation reaction of nitriles with amines along with the evolution of ammonia. In the field of amide synthesis, a problem of continuing interest was the development of a general method for the conversion of amines into amides under neutral conditions without the formation of salts. The primary amine undergoes chemoselective amidation in the presence of a secondary amine. Chemo-selective synthesis of maytenine57, an important anti-bacterial compound was performed, because of the template effect of the metal, as shown in Eq. 18.47 Importantly, this method provides a highly useful route to the synthesis of polyesters and polyamides from dinitriles.

\[
2 \text{PhCN} + \text{NH}_2\text{NH}_2 + 2 \text{H_2O} \rightarrow \text{PhCN} + 2 \text{H_2O}
\]

3.3. Acid and base ambiphilic catalysts. If a suitable catalyst is found that can simultaneously function both as a Lewis acid and base, the reaction could be carried out catalytically under neutral conditions without the formation of salts. According to the conventional method, Lewis acid promoted reactions and subsequent base promoted reactions cannot be carried out simultaneously because the reagents inactivate each other. However, if one can design an ambiphilic catalyst that functions as a Lewis acid catalyst and also as a base catalyst under neutral conditions, it would be possible to carry out sequential reactions catalytically without salt formation. We found that an iridium hydride complex $\text{IrH}_5(\text{PPh}_3)_2$ constitutes such an ideal catalyst.

The three-component reaction used in the synthesis of glutarimides, important precursors of certain types of pharmaceuticals, such as sedatives, was selected. The $\text{IrH}_5(\text{PPh}_3)_2$ catalyzed the reaction of nitriles with acrylonitriles in the presence of two equivalents of water at 150 °C in a sealed tube, giving high yields of glutarimides [Eq. 19]. According to the conventional method, glutarimide is prepared by the triton B-promoted Michael addition of a nitrile to an acrylonitrile to give a 1,3-dinitrile, followed by treatment with sulfuric acid in acetic acid, giving the product in about 4% overall yield. Apparently, $\text{IrH}_5(\text{PPh}_3)_2$ functions both as a redox base catalyst and an acid catalyst, and the reaction occurs consecutively in the presence of the single $\text{IrH}_5(\text{PPh}_3)_2$ catalyst, without the formation of salts.46 Immobilized ruthenium and iridium catalysts are highly useful for combinatorial chemistry.

\[
\text{NC} \rightarrow \text{HN} + \text{2 H_2O} \rightarrow \text{NH_2} - \text{NH}_3 + \text{H_2O}
\]

In summary, herein demonstrated is that low valent ruthenium, iridium, and rhodium rhenium hydride complexes can be used as transition-metal-based redox bases, Lewis acids, and ambiphilic catalysts. Using these catalysts, various pronucleophiles such as nitriles, carbonyl compounds, isonitriles, trifluoromethylated compounds undergo selective carbon–carbon bond formation upon treatment with nucleophiles or electrophiles under neutral conditions. These catalytic reactions have the potential to serve as environmentally benign catalytic processes in the future.

Acknowledgements

The research discussed in this review was performed mainly at Osaka University and subsequently at Okayama University of Science. I wish to express my sincere thanks to all the former co-workers whose names appear in the references.

References

1) a) Murahashi, S.-I. (1992) Biomimetic oxidation in organic synthesis using transition metal catalysts. Pure Appl. Chem. 64, 403–412; b) Murahashi, S.-I. (1995) Synthetic aspects of metal-catalyzed oxidations of amines and related reactions. Angew. Chem. Int. Ed. Engl. 34, 2443–2465; c) Murahashi, S.-I. and Zhang, D. (2008) Ruthenium catalyzed biomimetic oxidation in organic synthesis inspired by cytochrome P-450. Chem. Soc. Rev. 37, 1490–1501.

2) Murahashi, S.-I., Naota, T. and Yonemura, K. (1988) Ruthenium-catalysed cytochrome P-450 type oxidation of tertiary amines with alkyl hydroperoxides. J. Am. Chem. Soc. 110, 8256–8258.

3) Murahashi, S.-I., Naota, T., Miyaguchi, N. and Nakato, T. (1992) Ruthenium-catalysed oxidation of tertiary amines with hydrogen peroxide in the presence of methanol. Tetrahedron Lett. 33, 6991–6994.

4) Murahashi, S.-I., Naota, T. and Taki, H. (1985)
Ruthenium-catalyzed oxidation of secondary amines to imines using t-butyl hydroperoxide. J. Chem. Soc. Chem. Commun. 613–614.

5) Murahashi, S.-I., Okano, Y., Sato, H., Nakae, T. and Komiyi, N. (2007) Aerobic ruthenium-catalyzed oxidative transformation of secondary amines to imines. Synlett 1675–1678.

6) Murahashi, S.-I., Naota, T., Kuwabara, T., Saito, T., Kumobayashi, H. and Akutagawa, S. (1990) Ruthenium-catalyzed oxidation of amides and lactams with peroxides. J. Am. Chem. Soc. 112, 7820–7822.

7) Naota, T., Nakato, T. and Murahashi, S.-I. (1990) Novel method for α-substitution of amines via N-methoxy carbonyl-α-t-butylidioxamines. Tetrahedron Lett. 31, 7475–7478.

8) Murahashi, S.-I., Mitani, A. and Kitao, K. (2000) Ruthenium-catalyzed glycine-selective oxidative backbone modification of peptides. Tetrahedron Lett. 41, 10246–10249.

9) Murahashi, S.-I., Saito, T., Naota, T., Kumobayashi, H. and Akutagawa, S. (1991) Ruthenium-catalyzed oxidative oxidation of β-lactams with molecular oxygen and aldehydes. Tetrahedron Lett. 32, 5991–5994.

10) a) Murahashi, S.-I., Komiyi, N., Terai, H. and Nakae, T. (2003) Aerobic ruthenium-catalyzed oxidative cyation of tertiary amines with sodium cyanide. J. Am. Chem. Soc. 125, 15312–15313; b) Murahashi, S.-I., Komiyi, N. and Terai, H. (2005) Ruthenium-catalyzed oxidative cyation of tertiary amines with hydrogen peroxide and sodium cyanide. Angew. Chem. Int. Ed. 44, 6931–6933; c) Murahashi, S.-I., Nakae, T., Terai, H. and Komiyi, N. (2008) Ruthenium-catalyzed oxidative cyation of tertiary amines with molecular oxygen or hydrogen peroxide and sodium cyanide: sp³ C–H bond activation and carbon–carbon bond formation. J. Am. Chem. Soc. 130, 11005–11012.

11) Murahashi, S.-I., Saito, T., Hanaoka, H., Murakami, Y., Naota, T., Kumobayashi, H. and Akutagawa, S. (1993) Ruthenium-catalyzed oxidative transformation of alkenes to α-ketols with peracetic acid. Simple synthesis of Cortisone acetate. J. Org. Chem. 58, 2929–2930.

12) Murahashi, S.-I., Naota, T. and Hanaoka, H. (1993) Osmium-catalyzed oxidative transformation of alkenes to α-ketols with peracetic acid. Chem. Lett. 1767–1770.

13) Hotopp, T., Gultke, H.-J. and Murahashi, S.-I. (2001) Synthesis of 4-demethoxydihyramycine utilizing ruthenium-catalyzed oxidation of allyl acetates. Tetrahedron Lett. 42, 3393–3396.

14) Murahashi, S.-I., Naota, T., Miyaguchi, N. and Noda, S. (1996) Ruthenium-catalyzed oxidation of phenols with alkyl hydroperoxides. A novel, facile route to 2-substituted quinones. J. Am. Chem. Soc. 118, 2509–2510.

15) Murahashi, S.-I., Komiyi, N., Oda, Y., Kuwabara, T. and Naota, T. (2000) Ruthenium-catalyzed oxidation of alkenes with tert-butyl hydroperoxide and peracetic acid. J. Org. Chem. 65, 9186–9193.

16) Komiyi, N., Noji, S. and Murahashi, S.-I. (2001) Ruthenium-catalyzed oxidation of alkanes with peracetic acid in trifluoroacetic acid: Ruthenium as an efficient catalyst for the oxidation of unactivated C–H bonds. Chem. Commun. (Camb.), 65–66.

17) Murahashi, S.-I., Oda, Y. and Naota, T. (1992) Iron- and ruthenium-catalyzed oxidations of alkanes with molecular oxygen in the presence of aldehydes and acids. J. Am. Chem. Soc. 114, 7913–7914.

18) Murahashi, S.-I., Naota, T. and Komiyi, N. (1995) Metalloporphyrin-catalyzed oxidation of alkanes with molecular oxygen in the presence of acetaldehyde. Tetrahedron Lett. 36, 8059–8062.

19) Komiyi, N., Naota, T., Oda, Y. and Murahashi, S.-I. (1997) Aerobic oxidation of alkanes and alkenes in the presence of aldehydes catalyzed by copper salts and copper-crown ether. J. Mol. Catal. 117, 21–35.

20) Murahashi, S.-I., Komiyi, N., Hayashi, Y. and Kumano, T. (2001) Copper complexes for catalytic, aerobic oxidation of hydrocarbons. Pure Appl. Chem. 73, 311–314.

21) Murahashi, S.-I., Oda, T. and Masui, Y. (1989) Flavin-catalyzed oxidation of amines and sulfur compounds with hydrogen peroxide. J. Am. Chem. Soc. 111, 5002–5003.

22) Murahashi, S.-I., Ono, S. and Imada, Y. (2002) Asymmetric Baeyer–Villiger reaction with hydrogen peroxide catalyzed by a novel planar-chiral bisflavin. Angew. Chem. Int. Ed. 41, 2366–2368.

23) Imada, Y., Iida, H., Ono, S. and Murahashi, S.-I. (2003) Flavin-catalyzed oxidations of sulfides and amines with molecular oxygen. J. Am. Chem. Soc. 125, 2868–2869.

24) Imada, Y., Iida, H., Ono, S., Masui, Y. and Murahashi, S.-I. (2006) Flavin-catalyzed oxidation of amines and sulfides with molecular oxygen: Biennial green oxidation. Chem. Asian J. 1, 136–147.

25) Iida, H., Imada, Y., Murahashi, S.-I. and Naota, T. (2005) An aerobic, organocatalytic, and chemo-selective method for Baeyer–Villiger oxidation. Angew. Chem. Int. Ed. 44, 1704–1706.

26) a) Murahashi, S.-I., Matsui, H., Shiota, T., Tsuda, T. and Watanabe, S. (1990) Tungstate-catalyzed oxidation of secondary amines to nitrones. J. Org. Chem. 55, 1736–1744; b) Murahashi, S.-I., Shiota, T. and Imada, Y. (1992) Oxidation of secondary amines to nitrones. 6-methyl-2,3,4,5-tetrahydroxyridine N-oxide. Org. Synth. 70, 265–271.

27) Murahashi, S.-I. and Shiota, T. (1987) Selenium dioxide catalyzed oxidation of secondary amines with hydrogen peroxide. Simple synthesis of nitrones from secondary amines. Tetrahedron Lett. 28, 2383–2386.

28) Murahashi, S.-I., Imada, Y. and Ohtake, H. (1994) Tungstate-catalyzed decarboxylative oxidation of N-alkyl-α-amino acids: An efficient method for regioselective synthesis of nitrones. J. Org. Chem. 59, 6170–6172.

29) Murahashi, S.-I., Tsuji, T. and Ito, S. (2000)
Synthesis of optically active N-hydroxylamines by asymmetric hydrogenation of nitriles with iridium catalysts. Chem. Commun. (Camb.). 409–410.

30) a) Ohtake, H., Imada, Y. and Murahashi, S.-I. (1999) Highly diastereoselective addition of a chiral ketene silyl acetal to nitrones: Asymmetric synthesis of β-amino acids and key intermediates of β-lactam antibiotics. J. Org. Chem. 64, 3790–3791; b) Kawakami, T., Ohtake, H., Arakawa, H., Okachi, T., Imada, Y. and Murahashi, S.-I. (1999) Asymmetric synthesis of β-amino acids by addition of chiral enolates to N-acyloximinium ions and application for synthesis of optically active 5-substituted 8-methylindolizidines. Org. Lett. 1, 107–110; c) Ohtake, H., Imada, Y. and Murahashi, S.-I. (1999) Regioselective synthesis of nitriles by decarboxylative oxidation of N-alkylα-amino acids and application to the synthesis of 1-azabicyclic. Bull. Chem. Soc. Jpn. 72, 2737–2754; d) Kawakami, T., Ohtake, H., Arakawa, H., Okachi, T., Imada, Y. and Murahashi, S.-I. (2000) Asymmetric synthesis of β-amino acids by addition of chiral enolates to nitrones via N-acyloximinium ions. Bull. Chem. Soc. Jpn. 73, 2423–2444.

31) Murahashi, S.-I., Imada, Y., Kawakami, T., Harada, K., Yonemushi, Y. and Tomita, N. (2002) Enantioselective addition of ketene silyl acetals to nitrones catalyzed by chiral titanium complexes. J. Am. Chem. Soc. 124, 2888–2889.

32) a) Murahashi, S.-I. and Naota, T. (1996) A new way for efficient catalysis by using low valent ruthenium complexes as redox Lewis acid and base catalysts. Bull. Chem. Soc. Jpn. 69, 1805–1824; b) Naota, T., Takaya, H. and Murahashi, S.-I. (1998) Ruthenium-catalyzed reactions for organic synthesis. Chem. Rev. 98, 2599–2660; c) Murahashi, S.-I. and Takaya, H. (2000) Low-valent ruthenium and iridium hydride complexes as alternatives to Lewis acid and base catalysts. Acc. Chem. Res. 33, 225–233.

33) Murahashi, S.-I., Hirano, T. and Yano, T. (1978) Palladium catalyzed amine exchange reaction of tertiary amines. Insertion of palladium(0) into carbon–hydrogen bonds. J. Am. Chem. Soc. 100, 348–350.

34) Murahashi, S.-I. and Watanabe, T. (1979) Palladium catalyzed hydrolysis of tertiary amines with water. J. Am. Chem. Soc. 101, 7429–7430.

35) a) Yoshimura, N., Moritani, I., Shimamura, T. and Murahashi, S.-I. (1973) Synthesis of unsymmetrical secondary and tertiary amines from amines by palladium catalyst. J. Am. Chem. Soc. 95, 3038–3039; b) Murahashi, S.-I., Yoshimura, N., Tsuniyama, T. and Kojima, T. (1983) Catalytic alkyl group exchange reaction of primary and secondary amines. J. Am. Chem. Soc. 105, 5002–5011.

36) Naota, T., Taki, H., Mizuno, M. and Murahashi, S.-I. (1989) Ruthenium-catalyzed Aldol and Michael reactions of activated nitriles. J. Am. Chem. Soc. 111, 5954–5955.

37) Murahashi, S.-I., Naota, T., Taki, H., Mizuno, M., Takaya, H., Komiya, S., Mizuho, Y., Oyasato, N., Hirokaki, M., Hirose, M. and Fukunaka, A. (1993) Ruthenium-catalyzed Aldol and Michael reactions of nitriles. Carbon–carbon bond formation by α–C–H activation of nitriles. J. Am. Chem. Soc. 117, 12436–12451.

38) a) Naota, T., Tanna, A. and Murahashi, S.-I. (2000) Synthesis and characterization of C- and N-bound isomers of transition metal α-cyanoacarbonylions. J. Am. Chem. Soc. 122, 2960–2961; b) Naota, T., Tanna, A., Kamuro, S. and Murahashi, S.-I. (2002) Mechanism of the interconversions between C- and N-bound transition metal α-cyanoacarbonylions. J. Am. Chem. Soc. 124, 6842–6843.

39) Murahashi, S.-I., Naota, T. and Nakano, Y. (2009) Ruthenium-catalyzed regioselective reactions of nitriles and 1,3-dicarbonyl compounds with terminal alkenes. Synlett 3355–3360.

40) Takaya, H., Naota, T. and Murahashi, S.-I. (1998) Iridium hydride complex catalyzed addition of nitriles to carbon–nitrogen triple bonds of nitriles. J. Am. Chem. Soc. 120, 4244–4245.

41) Takaya, H., Kojima, S. and Murahashi, S.-I. (2001) Rhodium complex-catalyzed reaction of isonitriles with carbonyl compounds: Catalytic synthesis of pyrroles. Org. Lett. 3, 421–424.

42) Takaya, H., Ito, M. and Murahashi, S.-I. (2009) Rhodium-catalyzed addition of carbonyl compounds to the carbon–nitrogen triple bonds of nitriles: α-C–H activation of carbonyl compounds. J. Am. Chem. Soc. 131, 10824–10825.

43) Guo, Y., Zhao, X., Zhang, D. and Murahashi, S.-I. (2009) Iridium-catalyzed reactions of trifluoromethylated compounds with amines: A Csp3–H bond activation α to the trifluoromethyl group. Angew. Chem. Int. Ed. 48, 2047–2049.

44) Murahashi, S.-I., Sasaki, S., Saito, E. and Naota, T. (1992) Ruthenium-catalyzed hydration of nitrites and transformation of δ-keto nitrites to ene-lactams. J. Org. Chem. 57, 2521–2523.

45) Naota, T., Shichijo, Y. and Murahashi, S.-I. (1994) Ruthenium complex catalyzed condensation of nitrites with alcohols. J. Chem. Soc. Chem. Commun. 1359–1360.

46) Murahashi, S.-I., Naota, T., Ito, K., Maeda, Y. and Taki, H. (1987) Ruthenium-catalyzed oxidative transformation of alcohols and aldehydes to esters and lactones. J. Org. Chem. 52, 4319–4327.

47) Murahashi, S.-I., Naota, T. and Saito, E. (1986) Ruthenium-catalyzed amidation of nitriles with amines. A novel facile route to amides and polyamides. J. Am. Chem. Soc. 108, 7846–7847.

48) Takaya, H., Yoshida, K., Iizaki, K. and Murahashi, S.-I. (2003) Transition-metal-based Lewis acid and base ambiphilic catalysts of iridium hydride complexes: Multicomponent synthesis of glutarimides. Angew. Chem. Int. Ed. 42, 3302–3304.
Profile

Shun-Ichi Murahashi received his M.Eng. (1963) and Ph.D. of Eng. (1969) from Osaka University under the direction of Professor Ichiro Moritani. He was appointed an Assistant Professor of Osaka University in the Faculty of Engineering Science in 1963 and was promoted to Associate Professor in 1972, and subsequently to Professor in 1979. In 1968–1970 he served as a research associate at Columbia University under the direction of Professor Ronald Breslow. In 2001, he was awarded the title of Professor Emeritus at Osaka University, and moved to Okayama University of Science.

He received the Chemical Society of Japan Award in 1995, Docteur Honoris Causa, Université de Rennes in 1995, the Merck-Schuchart Lectureship in 1996, a Humboldt Research Award in 2002, a Special Award in Synthetic Organic Chemistry Japan in 2005, and The Japan Academy Prize in 2010. His current research interests are organometallic chemistry directed towards organic synthesis, biomimetic oxidation reactions, ruthenium chemistry, and non-salt, green processes by C–H activation.