New Records of *Neobenedenia girellae* (Hargis, 1955) (Monogenea: Capsalidae) in Marine Ornamental Fish Imported to Yucatan, Mexico

AMELIA PAREDES-TRUJILLO,1,3 **DAVID HERNÁNDEZ,**2 AND **VÍCTOR MANUEL VIDAL-MARTÍNEZ**2,3

1 Laboratorio de Sanidad Acuícola, Campus 6 de Investigaciones, Instituto EPOMEX, Universidad Autónoma de Campeche, Av. Agustín Melgar s/n, Col. Buenavista 24039, Campeche, Mexico (e-mail: amipared@uacam.mx) and 2 Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Antigua Carretera a Progreso km 6 C.P. 97310, Mérida Yucatan, Mexico.

ABSTRACT: We detected *Neobenedenia girellae* infections in 40 species belonging to 12 families of imported marine ornamental fish from a public aquarium in the Mexican state of Yucatan. A total of 348 fish specimens were examined for monogeneans in January 2018 to December 2020. Monogeneans were corroborated morphologically and molecularly with a partial sequence of 28S (region D1–D3) ribosomal DNA and analyzed in a molecular phylogenetic context in combination with other *N. girellae* sequences available in GenBank. The phylogenetic tree revealed that the specimen found consistently belonged to the *N. girellae* clade. High infection parameters were detected of *N. girellae* in most hosts. This identification is relevant to aquarists and aquaculturists in the Gulf of Mexico because *N. girellae* is considered highly pathogenic in confined fish. This work demonstrates that the importation of ornamental fish coupled with deficient sanitary measures (lack of quarantine areas in distribution centers) contributes to spread of parasites and their establishment within Mexico.

KEY WORDS: *Neobenedenia girellae*, monogenean, Capsalidae, marine ornamental fish.

Capsalid monogeneans comprise approximately 9 subfamilies, 57 genera, and more than 300 species, infecting predominantly the skin and gills of marine fish (Whittington, 2004; Ogawa et al., 1995; Gibson et al., 2010). Some genera (e.g., **Benedenia** Diesing, 1858, **Capsala** Bosc, 1811; **Entobdella** Blainville in Lamarck, 1818; **Neobenedenia** Yamaguti 1963) are considered highly pathogenic and responsible for severe outbreaks of epizootics, causing severe economic losses in farmed and aquarium fishes (Gaida and Frost, 1991; Whittington 2004). Shinn et al. (2015) reported economic losses from *Neobenedenia melleni* (MacCallum, 1927) Yamaguti, 1963, infections in cobia in Taiwan, with mortality of 40% and a loss of US$1.80 million. In Japan and Australia, *Benedenia seriolae* (Yamaguti, 1934) Meserve, 1938, affected Japanese amberjack (*Seriola quinquerradiata* Temminck and Schlegel, 1845) and greater amberjack (*Seriola dumerili* (Risso, 1810)), with losses of up to US$214 and 0.53 million, respectively. In particular, *Neobenedenia* has been reported to infect a large number of fishes, including more than 100 fish species representing about 30 families (Whittington and Horton, 1996; Whittington, 2004; Whittington and Chong, 2007; Magalhães-Cardoso et al., 2019; Sepúlveda and González, 2019). Outbreaks of *Neobenedenia* spp. have been widely detected in commercial species from Asia, (*Epinephelus coioides* (Hamilton, 1822), *Lutjanus argentimaculatus* (Forsskål, 1775), *Lutjanus johnii* (Bloch, 1792), *Pinjalo pinjalo* (Bleeker, 1850), *S. dumerili*, *S. quinquerradiata*, *Seriola rivoliana* Valenciennes in Cuvier and Valenciennes, 1833) (Seng, 1997; Hirayama et al., 2009; Ohno et al., 2009; Hirazaga, Ishizuka, et al., 2016, Hirazaga, Tsubone, et al., 2016; Sicuro and Luzzana, 2016); the northwestern Pacific (*Paralichthys olivaceus* (Temminck and Schlegel, 1846) and *Verasper variegatus* (Temminck and Schlegel, 1846)) (Seng, 1997; Hutson, 2007); Indonesia, Australia (*Barramundi Lates calcarifer* (Bloch, 1790)) (Seng, 1997), and Mexico (*Seriola lalandii* Valenciennes in Cuvier and Valenciennes, 1833) (Avilés-Quevedo and Castelló-Orvay, 2004), as well as in several ornamental marine fish from Brazil (*Chaetodon semilarvatus* Cuvier in Cuvier and Valenciennes, 1831, *Pomacanthus asfur* (Forsskål, 1775), *Pomacanthus maculosus* (Forsskål, 1775), *Pygopliches diacanthus* (Boddart, 1772)) (Magalhães-Cardoso et al., 2019); Mexico (*Canthigaster bennetti* (Bleeker, 1854); Australasia (*Nemateleotris decora* Randall and Allen, 1973, *Neocirrhites armatus* Castelnau, 1873, *Pseudechilinus hexataenia* (Bleeker, 1857), *Pseudochromis fridmani* Klausewitz, 1968); Africa (*Gnathanodon speciosus* (Forsskål, 1775)) (Brazenor, Bertozzi, et al., 2018). Specifically, *Neobenedenia girellae* (Hargis, 1955)
Yamaguti, 1963, is a lethal and persistent species, with a wide geographic distribution and a high infective capacity in several hosts (Hiramaya et al., 2009; Brazenor, Bertozzi, et al., 2018, Brazenor, Saunders, et al., 2018; Tedesco et al., 2021). It has been recorded in approximately 30 host species, including several tropical reef fish families Carangidae, Cirrhitidae, Coryphaenidae, Labridae, Latidae, Microdesmiidae, Pleuronectidae, Pseudochromidae, Rachycentridae, Serranidae (Brazenor, Bertozzi, et al., 2018, Brazenor, Saunders, et al., 2018), among others. Because of its short life cycle and low host specificity, it can become highly prevalent and cause large numbers of mortalities of aquarium fish (Nam et al., 2020). The elevated abundance of *N. girellae* causes considerable irritation to fish (e.g., weakness, anorexia, dyspnea, mild hemorrhages on the skin and eyes, mucous hypersecretion, blindness, and death from secondary infections [mainly bacterial infections] if not treated) (Hirazaga, Ishizuka, et al., 2016, Hirazaga, Tsubone, et al., 2016). This parasite was described in *Girella nigricans* (Ayres, 1860) for the first time in California, U.S.A. (Hargis, 1995). Subsequently, it was described in several localities in Mexico (among other regions of the world) (Bravo-Hollis and Deloya, 1973; Moser and Haldorson, 1982; Gaida and Frost, 1991; Ogawa et al., 2006), including in *Mycteroperca pardalis* (Streets, 1877) and *Scarus perrico* Jordan and Gilbert, 1882, in La Paz, Baja California, Mexico, and Nayarit, Mexico, respectively (Bravo-Hollis, 1958). The export and import of fish for aquaculture is likely one of the most important sources of its dispersion (Salgado and Rubio, 2014). However, the role of the ornamental fish trade in the translocation and establishment of wild and farmed fish has received limited attention in Mexico. The present research thus focused on the detection and identification of *N. girellae* in traded marine ornamental fish into the state of Yucatan, Mexico.

MATERIALS AND METHODS

The marine ornamental fish examined in this study were donated from a commercial aquarium in Merida, Yucatan, Mexico, between January 2018 and December 2020. A total sample of 348 ornamental fish were collected (Table 1). Most of the fish were originally captured from the natural environment of the Indo-Pacific region, although the exact capture locations were not available to the importer. Upon arrival in Mexico, the imported fish is inspected by the Agricultural Health Inspection Office (OISA), which issues a health certificate of fish. Subsequently, the ornamental fish are distributed to several regions of Mexico (specifically, until their point of sale, e.g., Merida, Yucatan) or transferred to the market Morelos in Mexico City, Mexico, which represents one of the main commercialization and distribution centers for ornamental fish from Mexico.

The imported fish were transported in isolated plastic bags with artificial aeration. Once at their point of sale (i.e., the aquarium in Merida), the dead or dying fish were separated and kept in coolers, posteriorly donated, and transported to the Aquatic Pathology Laboratory at CINVESTAV-IPN Unidad Mérida for parasitological examination. Once at the laboratory, fish were measured to obtain total length, standard length, and total weight. The surface of the skin and eyes, gills, scales from the lateral line, and fins were examined under a stereomicroscope (Stemi 305, Carl Zeiss) for ectoparasites. Whenever parasites were found, they were counted, preliminarily identified to the genus level, and fixed depending on the taxonomic group (Whittington, 2004). Capsalid monogeneans were isolated, counted in situ, cleaned with physiological saline, and preserved in 4% formalin or 96% alcohol labeled vials for subsequent morphological or molecular studies, respectively (Brazenor, Bertozzi, et al., 2018, Brazenor, Saunders, et al., 2018). Monogeneans were removed with fine paintbrushes, stained with ammonium picrate, and identified to the species level according to suitable literature (e.g., Whittington and Kearn, 1993; Hargis, 1995; Ogawa et al., 2006). Infection parameters such as prevalence, mean abundance, and mean intensity were those proposed by Bush et al. (1997). Standard measurements were made with an Olympus BX50 compound microscope (Olympus, Tokyo, Japan) and ImageJ software (Wayne Rasband Scientific Software, Kensington, Maryland, U.S.A.). Drawings were prepared by Adobe Illustrator software (Adobe Inc., San Jose, California, U.S.A.). A full-body view of *N. girellae*, as well as a ventral view of the accessory sclerite, anterior hamulus, posterior hamuli, and marginal hooks, were illustrated (Figs. 1, 2). The following features were measured for morphological and morphometric description: body, length and width; pair of anterior attachment organs, length by width; haptor, length; anterior hamuli, length, posterior hamuli, length, accessory sclerites, length; pair of testes, length by width; ovary, length by width; egg, length by width (Whittington and Kearn, 1993; Whittington, 2004) (Table 2). All measurements are...
Table 1. Host species diversity and Neobenedenia girellae parasite numbers per infected host, imported to Yucatan, Mexico.

Family	Host	Infected host	Total host	Total parasites	Prevalence (%)	Mean abundance (±SD)	Mean intensity (±SD)	Original distribution
Acanthuridae	Acanthurus japonicus	3	5	108	60	21.6 ± 17.38	36 ± 28.39	Indo–West Pacific
	Acanthurus pyroferus	3	7	42	42	0.42 ± 4.21	1 ± 5.89	Indo–Pacific
	Acanthurus triostegus	1	2	43	50	21.5 ± 17.28	43 ± 35.95	Indo–Pacific
	Acanthurus lineatus	2	15	12	13	0.8 ± 3.41	6 ± 0.33	Indo–Pacific
Paracanthurus hepatus	2	5	1	40	40	0.2 ± 4.01	0.5 ± 5.67	Indo–Pacific
Zebrasoma flavescens	5	7	14	71	71	2 ± 2.21	3 ± 3.09	Northwest and central Pacific Ocean
	Zebrasoma velifer	3	14	35	22	3 ± 2.11	12 ± 5.70	Eastern Indian Ocean to the Pacific Ocean
Apogonidae	Pterapogon kauderni	4	5	2	80	0.4 ± 3.81	0.5 ± 1.25	Western Pacific
Balistidae	Ballesta niger	3	5	1	60	0.2 ± 0.41	0.33 ± 0.27	Indo–Pacific
	Rhinecanthus aculeatus	10	17	28	59	3 ± 1.21	3 ± 0.78	Indo–West Pacific
	Rhinecanthus verrucosus	9	23	18	39	0.78 ± 3.43	2 ± 1.82	Indo–West Pacific
Bleniidae	Ecsenias bicolor	3	12	6	8	0.5 ± 3.71	6 ± 0.33	Indo–Pacific
	Salarias ramosus	1	3	12	33	4 ± 6.78	12 ± 5.61	Western central Pacific
Callymonidae	Synchronus splendidus	3	12	16	25	1.33 ± 2.88	5.33 ± 7.89	Western Pacific
Chaetodontidae	Chelmon rostratus	7	7	13	100	2.2 ± 2.01	2 ± 1.82	Western Pacific
	Forcipiger longirostris	10	11	13	90	1.18 ± 3.03	1.3 ± 2.73	Indo-Pacific
	Heniochus acuminatus	4	6	28	67	5 ± 0.78	7 ± 3.07	Indo-Pacific
Grammatidae	Gramma loreto	5	6	12	83	2 ± 2.21	2.4 ± 1.86	Western central Atlantic
Labridae	Centrolabrus exoletus	1	3	9	33	3 ± 1.23	9 ± 11.23	Eastern Atlantic
	Halichoeres chrysus	2	4	17	50	4.25 ± 7.90	8.5 ± 7.34	Eastern Indian Ocean
Microdesmidae	Nemateleotris magnifica	3	6	1	17	0.16 ± 4.05	0.33 ± 3.68	Indian Ocean
Pomacanthidae	Pomacanthus imperator	3	6	2	50	0.33 ± 3.88	0.66 ± 5.59	Indo-Pacific
	Pomacanthus paru	4	5	7	80	1.4 ± 2.81	2 ± 4.12	Western and eastern Atlantic
Pomacentridae	Pomacentrus zonipectus	1	2	32	50	16 ± 11.78	32 ± 25.56	Eastern Pacific
	Abudefduf vaigiensis	14	18	25	78	1.3 ± 2.91	2 ± 3.16	Indo-Pacific
	Ampiprion ocellaris	8	9	16	89	1.77 ± 2.44	2 ± 2.39	Indo–West Pacific
	Ampiprion perula	22	23	21	96	1 ± 3.21	1 ± 3.39	Western Pacific
	Ampiprion polymusus	2	5	13	40	3 ± 1.21	7 ± 2.12	Western Pacific
	Chromis xanthurra	11	15	2	73	0.13 ± 2.05	0.18 ± 4.38	Pacific Ocean
	Chrysiptera parasema	8	15	21	53	1.4 ± 2.81	3 ± 1.95	Western Pacific
	Dacillus trimaculatus	4	4	8	100	2 ± 2.21	2 ± 2.68	Indo-Pacific
Pseudochromidae	Plectichromis paccagnellae	9	15	23	50	1.5 ± 2.71	3 ± 4.55	Western Pacific

given (mm) with the range followed by the mean in parentheses (Table 2).

DNA amplification, sequencing, and phylogenetic analyses

Genomic DNA was extracted from each specimen of Neobenedenia with a DNeasy TM Blood & Tissue Kit (Qiagen, Hilden, Germany) following the standard manufacturer’s protocol. Specimens of different host species were chosen for extraction. Given that the 28S ribosomal gene has been used in other studies to identify species of Neobenedenia (Brazenor, Bertozzi, et al., 2018, Brazenor, Saunders, et al., 2018), we also amplified the D1, D2, and D3 regions of this gene. The amplification was carried out with the primers 391 (Nadler and Hudspeth, 1998) and 536 (Garcia-Varela and Nadler, 2005), and the conditions of the polymerase chain reaction amplification were: 94°C
Table 2. Comparative measures for *Neobenedenia girellae* found infecting imported fish

Measure (mm)	Acanthurus japonicus, n = 2	Acanthurus lineatus, n = 1	Ballesta niger , n = 2	Rhinecanthus verrucosus, n = 4	Forcipiger longirostris, n = 5	Centropyge multispinis, n = 5	Chrysiptera parasema, n = 5	Centropyge loricula, n = 2
Maximum width	3.01–3.04	3.04	3.04	3.21	3.80	3.65	3.75	3.65
Anterior attachment organs	0.44	0.46	0.45	0.45	0.47	0.44	0.46	0.45
Marginal hooks	0.8	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Number of marginal hooks	7	7	7	7	7	7	7	7
Pharyngeal length	0.19–0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Eggs	0.10–0.25	0.14	0.15	0.20	0.18	0.33	0.32	0.32
Outer length	0.26–0.27	0.26	0.26	0.26	0.26	0.25	0.25	0.25

Notes:
- n = number of specimens.
- Measurements are given in millimeters (mm).
Figures 1, 2. Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963, from the external surfaces from marine ornamental fish. 1. Full body. 2. Ventral view, (a) accessory sclerite; (b) anterior hamulus; (c) posterior hamuli; (d) marginal hooks.

for 5 min, 35 cycles at 94°C for 1 min, 50°C for 1 min, 72°C for 1 min, and a postamplification extension at 72°C for 10 min. For sequencing, the 2 amplification primers plus 503 (Stock et al., 2001) and 504 (García-Varela and Nadler, 2005) were used. Sequencing was carried out in GENEWIZ (South Plainfield, New Jersey, U.S.A.). The sequences obtained from each primer were read, edited, and assembled into a consensus sequence for each extracted specimen by Geneious Pro 4.8.4® (Biomatters Ltd.). The new sequences were submitted to GenBank for publication and public access. For phylogenetic analyses, the new sequences were aligned with other 28S sequences from Neobenedenia available in GenBank. The alignment was performed by ClustalW (Thompson et al., 1994), implemented in “SLOW/ACCURATE” and “CLUSTALW (for DNA)” (Kyoto University Bioinformatics Center, 2019). The nucleotide evolution model was estimated in jModelTest v.2 (Darriba et al., 2012). A maximum likelihood (ML) analysis was performed to obtain the phylogenetic tree with RAxML v.7.0.4 (Stamatakis, 2006), and 1,000 bootstrap repetitions (bt) were implemented. The ML tree was visualized in FigTree v.1.4.3. (Rambaut, 2000). The genetic distances of the 28S gene were calculated with uncorrected P-value (p-distances) in MEGA v.6.0 (Tamura et al., 2013).

RESULTS

A total of 348 fish specimens of 40 species representing 12 families were examined for monogeneans (Table 1). A total of 213 fish were infected, and 803 N. girellae were collected, infecting the skin, the surface of the eyes, the gills, or a combination of samples from host species of all the families mentioned (Table 1). Macroscopic external lesions were observed in parasitized fish epidermal damage associated with the site of haptor attachment, mild hemorrhages on the skin and eyes, exophthalmia, presence of dyspnea, and anorexia. All monogeneans were identified with morphological characteristics of the genus Neobenedenia described by Whittington and Kearn (1993) and Whittington (2004) with a morphologically flattened, leaflike body shape, absence of haptoral septa, and a vagina, although having accessory sclerites, haptoral hamuli, paired anterior circular discs, and 2 juxtaposed testes, which is a unique combination in species of this genus (Table 2). Monogeneans were collected from species of all the families, therefore representing new host and geographical records. Prevalence ranged from 8 to 100% in the hosts, with mean abundance and intensity ranging from 0.13 ± 2.05 to 32 ± 27.78 and 32 ± 27.78 to 48 ± 42.85, respectively (Table 1). The morphological measurements of the host species are presented in Table 2.

Phylogenetic analyses

Only 6 new sequences were successfully obtained from all the specimens collected from 6 different host species, with a length of 1,123 to 1,203 base pairs (bp). The length of the final alignment was 1,249 bp. The estimated substitution model was GTR + GAMMA and the nucleotide frequencies were 0.259 (A), 0.178 (C), and 0.300 (T). The ML value was –s3209.140011. The phylogenetic tree showed a major clade with a high support value (bt = 86), where N. girellae was
grouped with 2 other species of the genus, which were only recognized as Neobenedenia sp. (Fig. 3). In particular, within the clade of *N. girellae* (bt = 73), most of the specimens identified for this species were grouped, including the specimens of our study. The exception was the specimen MH843692, which despite being named *N. girellae* was grouped in a different independent clade of the tree. The genetic distance was null among the specimens collected in this study. The intraspecific genetic distance of the clade *N. girellae* ranged from 0 to 0.9%. The distance between the specimens of the clade *N. girellae* and the specimen that was grouped in a different independent clade ranged from 6.8 to 7.2%. Finally, the genetic distance between *N. girellae* and the other species of the genus represented in our phylogenetic analysis ranged from 1.1 to 11.2%.

DISCUSSION

Presented here are the first confirmed molecular and morphological data of *N. girellae* in Yucatan, Mexico. This monogenean represents both new host and new geographical records and shows the wide range of aquarium fish that this parasite can infect (see Table 1). We consider our findings relevant for aquaculturists and pet shop owners in the Gulf of Mexico because *N. girellae* is an emerging parasitic infection and a potential threat to the trade of ornamental fish. Although this monogenean species is well established in Mexico (Bravo-Hollis and Deloya, 1973), our findings indicate that constant reintroductions of the parasite occur in different regions, possibly following market routes.

We suggest that the parasite has at least 2 possible origins, although neither is conclusive: the movement of imported infected fish and the possible acquisition of infections within reservoir centers (e.g., Morelos markets), where the fish are kept in confinement without adequate sanitary measures before being distributed to various regions of Mexico. The importation of ornamental fish is one contribution to the introduction of parasites and their dispersal and establishment within Mexico.

The international trade of ornamental fishes has been identified as a threat to transboundary biosecurity, biodiversity, and future aquaculture development (Whittington and Chong, 2007; Salgado-Rubio, 2014; Mendoza et al., 2015). The presence of *N. girellae* has been reported in various ornamental marine species (e.g. *Chaetodon, N. decora, N. armatus, P. hexataenia, P. fridmani, P. asfur, P. maculosus, P. diacanthus, Trachinotus blochii* (Lacépède, 1801)) in Brazil, Australia, and Korea. However, few studies have reported infection parameters (Gaida and Frost, 1991; Ogawa et al., 1995; Ogawa et al., 2006; Hirayama et al., 2009; Hirazaga, Ishizuka, et al., 2016; Brazenor, Bertozzi, et al., 2018, Brazenor, Saunders, et al., 2018; Nam et al., 2020).

In this study, high prevalences were found in most hosts. Elevated infection rates are commonly observed in aquarium fish owing to high stocking density and sometimes inadequate water quality maintenance (Magalhães-Cardoso et al., 2019). On the other hand, the stress associated with the capture, handling, and transport of ornamental fish from their origin, coupled with deficient sanitary measures (lack of quarantine areas in distribution centers) and mishandling, facilitates these parasites’ dispersal with high infections parameters. During transport, the fish are handled in excess, being placed in overcrowded plastic bags with low oxygen levels and increasing amounts of excreted nitrogenous waste (ammonium). These deteriorating conditions pave the way for the establishment of this monogenean.

Putri et al. (2020) reported a prevalence of 60% of *N. girellae* in *Rachycentron canadum* (Linnaeus, 1766) from Indonesia, and Gaida and Frost (1991) reported a prevalence of 75% in *Medialuna californiensis* (Steindachner, 1876) from California. The life cycle of *N. girellae* is short, a smaller body size being needed to attain maturity. Bondad-Reantaso et al. (1995) identified the rapid development of *N. girellae* in Japanese flounder, reaching sexual maturity in 10–11 days at 25°C from oncomiracidia. Egg to maturation was 15–17 days. In the present study, this parasite was particularly abundant on the eyes, causing corneal opacity and skin irritation. *Neobenedenia girellae* harm fish by mechanical attachment of the haptor: Ogawa et al. (2006) found particular histological damage in the cornea of infected fish displaying hyperplasia of squamous epithelial cells and mucous cells. The *N. girellae* ectoparasite is well-adapted to tropical regions, so successful establishment in wild native fauna and cultured fish in Yucatan can be foreseen if they reach the open environments. Brazenor, Bertozzi, et al. (2018) and Brazenor, Saunders, et al. (2018) found that this parasite completed its life cycle almost twice as quickly in warm, high-saline conditions compared with cooler temperatures (i.e., oncomiracidia’s longevity is significantly lower in salinities below 22% compared with higher saline conditions (35–40%)). Moreover, at 20–25°C, the parasite attained sexual maturity and produced eggs more slowly than at 30°C. In this sense, the
Figure 3. Phylogenetic relationships of *Neobenedenia* species found in several host species resulting from the maximum likelihood analysis with the 28S rDNA gene. The newly generated sequences are highlighted in red. Numbers near the tree nodes represent the bootstrap support values, and the scale bar indicates the number of substitutions per site.

Yucatan marine environment provides suitable habitats for this parasite’s establishment and reproduction, given its high temperatures, high salinity, and multiple reef spots.

Unfortunately, in Mexico few regulations exist for the importation and introduction of ornamental species to the market, allowing practically any aquatic organism of this sort to be introduced with limited sanitary control (Contreras et al., 1998; Cedillo et al., 2001). A health certificate declaring that imported fish into Mexico are free from World Organisation for Animal Health (OIE) listed diseases is compulsory; otherwise, the entry of such goods is denied. Although *N. girellae* is a dangerous pathogen, it is not currently included on the list of diseases. Furthermore, even though health authorities conduct physical inspections at some border points, marine ornamentals, as a valuable commodity, must be transferred swiftly; therefore, fish carrying parasites or disease are practically unnoticed.

We consider it equally important that sanitary agents be trained to recognize significant pathogens besides the listed diseases that can be problematic for aquaculture and the aquarium industry. Containment measures such as quarantine may be worth reviewing in terms of their effectiveness in preventing parasite detection, with the aim of reducing the spread of disease.

ACKNOWLEDGMENTS

This work was supported by the Consejo Nacional de Ciencia y Tecnología (CONACYT) under postdoctoral grant 253392. We are grateful to the Instituto de Ecología, Pesquerías, y Oceanografía del Golfo de México (EPOMEX) for support in the final stage of this research. Thanks are also extended to Dr. Rodolfo del Río. Sincere and grateful thanks are extended to all at Laboratorio de Patología Acuática CINVES-TAVPIN Unidad Merida. Thanks are also extended to Andrea Selina Caamal Pool, who helped with field
work, and Dr. Eduardo Garza Gisholt for donating the ornamental fish.

LITERATURE CITED

Avilés-Quevedo, M. A., and F. Castelló-Orvay. 2004. Manual para el Cultivo de Jurel [Internet]. Coyoacán, Mexico. INAPESCA. https://www.gob.mx/inapesca/documentos/manual-para-el-cultivo-de-jurel.

Bondad-Reantaso, M. G., K. Ogawa, M. Fukudome, and Avilés-Quevedo, M. A., and F. Castelló-Orvay. 1998. Phytology of 368 monogeneans of the family Capsalidae Baird, 1853, de las costas del Pacífico, incluyendo 366 una especie nueva. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México 28:195–216.

Bravo-Hollis, M. 1958. Trematodes de peces marinos de aguas mexicanas. XIV. Cuarto 365 monogéneos de la familia Capsalidae Baird, 1853, de las costas del Pacífico, incluyendo 366 una especie nueva. Anales del Instituto de Biología de la Universidad Nacional Autónoma de México 2:137.

Brazenor, A. K., T. Bertozzi, T. L. Miller, I. D. Whittington, and K. S. Hutson. 2018. DNA profiling reveals Neobenedenia girellae as the primary culprit in global fisheries and aquaculture. Molecular Phylogenetics and Evolution 129:130–137.

Brazenor, A. K., R. J. Saunders, T. L. Miller, and K. S. Hutson. 2018. Morphological variation in the cosmopolitan fish parasite Neobenedenia girellae (Capsalidae: Monogenea). International Journal for Parasitology 48:125–134.

Bush, A., J. Mafferty, J. M. Lotz, and A. W. Shostak. 1997. Parastylas meets ecology on its own terms: Margolis et al. Revisited. Journal of Parasitology 83:575–583.

Cedillo, P. C., M. L. Rosales, and C. F. Constantino. 2001. Linfaquiosis en peces tetra fantasia (Parambassis ranga) de la ciudad de México. Veterinaria Mexicana 32:73–76.

Contreras, M. T., M. Mejía, and W. Carrillo. 1998. Negative impact on the aquatic ecosystems of the state of Morelos from introduced aquarium and other commercial fish. Aquarium Sciences and Conservation 2:1–2.

Coyoacán, Mexico. INAPESCA. https://www.gob.mx/inapesca/documentos/manual-para-el-cultivo-de-jurel.

Darrha, D., G. L. Taboada, R. Doallo, and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9:772.

Dewi, N. T. B., I. F. Aryadi, A. F. T. Arizal, D. R. Mardika, P. A. Syahputra, S. Subekti, Kismiyati, P. D. W. Sari. 2017. Monogenean parasites on cantang grouper (Epinephelus fuscoguttatus-lanceolatus) wilture in floating net cage for mariculture center Lombok. West Nusa Tenggara, Indonesia. IOP Conf. Series: Earth and Environmental Science 137.

Gaida, H. I., and P. Frost. 1991. Intensity of Neobenedenia girellae (Monogenea: Capsalidae) on the half-moon, Medinaulna californiensis (Perciformes: Kyphosidae), examined using a new method for detection. The Helminthological Society of Washington 58:129–130.

García-Varela, M., and S. A. Nadler. 2005. Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU tRNA gene sequences. Journal of Parasitology 91:1401–1409.

Gibson, D., P. Harris, and R. Bray. 2010. Capsalidae Baird, 1853. Accessed through: World 405 Register of Marine Species at 406. http://www.marinespecies.org/aphia.php?p=taxdetails&id=119225 on 2016- 407 11-19.

Hargis, W. J. 1955. A new species of Benedenia (Trema- toda: Monogenea) from Girella nigricans, the opaleye. Journal of Parasitology 41:48–50.

Hirayama, T., F. Kawano, and N. Hirazawa. 2009. Effect of Neobenedenia girellae (Monogenea) infection on host amberjack Seriola dumerili (Carangidae). Aquaculture 288:159–165.

Hirazaga, N., R. Ishizuka, and H. Hagiwara. 2016. The effects of Neobenedenia girellae (Monogenea) infection on host amberjack Seriola dumerili (Carangidae): hematological and histopathological analyses. Aquaculture 461:32–39.

Hirazaga, N., S. Tsubone, and R. Takano. 2016. Anthelmintic effects of 75ppm hydrogen peroxide treatment on the monogeneans Benedenia seriolae, Neobene- denia girellae, and Zeaupata japonica infecting the skin and gills of greater amberjack Seriola dumerili. Aquaculture 450:244–249.

Hutson, K. S. 2007. Parasite interactions between wild and farmed yellowtail kingfish (Seriola lalandi) in southern Australia [thesis]. Adelaide (AU): The University of Adelaide; 2007. 194 pp.

Kyoto University Bioinformatics Center [Internet]. Kyoto, Japan; 2019. http://www.genome.jp/tools/clustalw/. Accessed 2019.

Magalhães-Cardoso, P. H., S. Carvalho-Balian, H. Sousa-Soares, K. R. Tancredo, and M. Laterca-Martins. 2019. Neobenedenia mellenti (Monogenea: Capsalidae) in ornamental reef fish imported to Brazil. Revista Brasileira de Parasitologia Veterinária 28:1–6.

Mendoza, R., S. Luna, and C. Aguilera. 2015. Risk assessment of the ornamental fish trade in Mexico: analysis of freshwater species and effectiveness of the FISK (Fish Invasiveness Screening Kit). Biological Invasions 17:3491–3502.

Moser, M., and L. Haldorson. 1982. Parasites of two species of surperch (Embiotocidae) from seven Pacific coast locales. Journal of Parasitology 68:733–735.

Nadler, S.A., and D. S. S. Hudspeth. 1998. Ribosomal DNA and phylogeny of the Ascaridoidea (Nematoda: Secer- nentea): Implications for morphological evolution and classification. Molecular Phylogenetics and Evolution 10:221–236.

Nam, U., S. Hyun-Joon, I. Hwang, and K. Jeong-Ho. 2020. Neobenedenia girellae infection of aquarium-raised snubnose pompano (Trachinotus blochii) in Korea. Fish Pathology 33:15–21.

Ogawa, K., M. G. Bondad-Reantaso, M. Fukudome, and H. Wakabayashi. 1995. Neobenedenia girellae (Hargis, 1955) Yamaguti, 1963 (Monogenea: Capsalidae) from cultured marine fishes of Japan. Journal of Parasitology 81:223–227.

Ogawa, K., J. Miyamoto, H. C. Wang, C. F. Lo, and G. H. Kou. 2006. Neobenedenia girellae (Monogenea) infection of cultured cobia Rachycentron canadum in Taiwan. Fish Pathology 33:303–309.

Ohno, Y., F. Kawano, and N. Hirazawa. 2009. The effect of oral antibiotic treatment and freshwater bath treatment on susceptibility to Neobenedenia girellae (Monogenea)
infection of amberjack (Seriola dumerili) and yellowtail (S. quinquergiata) hosts. Aquaculture 292:248–251.

Putri, R. D. B., A. R. Rivaie, S. Subekti, and P. D. W. Sari. 2020. Neobenedenia girellae infestation on cobia (Rachycentron canadum) in Hurun Bay Lampung, Indonesia. IOP Conference Series Earth and Environmental Science 441(1):012058.

Rambaut, A. 2000. Estimating the rate of molecular evolution: incorporating non-contemporaneous sequences into maximum likelihood phylogenies. Bioinformatics 16:395–399. https://doi.org/10.1093/bioinformatics/19.4.395. Accessed 2000.

Salgado, M. G., and G. M. Rubio. 2014. Helmitos parasitos de peces de agua dulce introducidos, en R. Mendoza y P. Koleff (coords.), Especies acuáticas invasoras en México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Ciudad de México, México, pp. 269–285.

Seng, L. T. 1997. Control of parasites in cultured marine finishes in Southeast Asia—an Overview. International Journal for Parasitology 27:1177–1184.

Sepúlveda, F. A., and M. T. González. 2019. DNA barcoding evidence for the first recorded transmission of Neobenedenia sp. from wild fish species to Seriola la-landi cultured in an open recirculating system on the Coast of northern Chile. Aquaculture 501:239–246.

Shinn, A., J. Pratoomyot, J. Bron, G. Paladini, E. Brooker, and A. Brooker. 2015. Economic impacts of aquatic parasites on global finfish production. Global Aquaculture Advocate 58–61.

Sicuro, B., and U. Luzzana. 2016. The state of Seriola spp. other than yellowtail (S. quinquergiata) farming in the world. Reviews in Fisheries Science & Aquaculture 24:314–325.

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood–based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690.

Stock, S. P., J. F. Campbell, and S. A. Nadler. 2001. Phylogeny of Steinerma Travassos, 1927 (Cephalobina: Steinermatidae) inferred from ribosomal DNA sequences and morphological characters. Journal of Parasitology 87:877–899.

Tamura, K., G. Stecher, D. Peterson, A. Filipski, and S. Kumar. 2013. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Phylogenetics and Evolution 30:2725–2729.

Tedesco, P., M. Caffara, N. M. R. Moreira, C. Gomes, A. Gustinelli, and M. L. Fioravanti. 2021. Occurrence of Neobenedenia girellae (Monogenea: Capsalidae) in gilt-head seabream Sparus aurata (Actinopterygii: Sparidae) cultured in Portugal. Pathogens 10:1269.

Thompson, J. D., H. G. Higgins, and T. J. Gibson. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22:4673–4680.

Whittington, I. 2004. The Capsalidae (Monogenea: Monopisthocotylea): a review of diversity, classification and phylogeny with a note about species complexes. Folia Parasitologica 51:109–122.

Whittington, I., and M. A. Horton. 1996. A revision of Neobenedenia Yamaguti, 1963 (Monogenea: Capsal-idae) including a redescription of N. melleni (MacCallum, 1927) Yamaguti, 1963. Journal of Natural History 30:1113–1156.

Whittington, I., and G. C. Kearns. 1993. A new species of skin parasitic Benedenine monogenean with a preference for the pelvic fins of its host, Lutjanus carponotatus (Perciformes: Lutjanidae) from the Great Barrier Reef. Journal of Natural History 27:1–14.

Whittington, R. J., and R. Chong. 2007. Global trade in ornamental fish from an Australian perspective: the case for revised import risk analysis and management strategies. Preventive Veterinary Medicine 81:92–116.