Exceeding the leading spike intensity and fluence limits in backward Raman amplifiers

V. M. Malkin, Z. Toroker, and N. J. Fisch

Phys. Rev. E 90, 063110 — Published 12 December 2014

DOI: 10.1103/PhysRevE.90.063110
Exceeding the leading spike intensity and fluence limits in backward Raman amplifiers

V. M. Malkin, Z. Toroker, and N. J. Fisch
1) Department of Astrophysical Sciences, Princeton University, Princeton, NJ USA 08540
2) Department of Electrical Engineering, Technion Israel Institute of Technology, Haifa 32000, Israel

The leading amplified spike in backward Raman amplifiers can reach nearly relativistic intensities before the saturation by the relativistic electron nonlinearity. The saturation sets an upper limit to the largest achievable leading spike intensity. It is shown here that this limit can be substantially exceeded by the initially sub-dominant spikes, which surprisingly outgrow the leading spike after its nonlinear saturation. Furthermore, an initially negligible group velocity dispersion of the amplified pulse in strongly undercritical plasma appears to be capable of delaying the longitudinal filamentation instability in the nonlinear saturation regime. This enables further amplification of the pulse to even larger output fluences.

PACS numbers: 52.38.Bv, 42.65.Re, 42.65.Dr, 52.35.Mw

I. INTRODUCTION

The backward Raman amplification (BRA) of laser pulses in plasmas is potentially capable of producing laser powers about a million times larger than the chirped pulse amplification (CPA) at the same wavelengths within the same size devices. The BRA advantage can be even greater at laser wavelengths much shorter than 1/3 micron, where material gratings used by CPA cannot operate. The possibility of reaching nearly relativistic unfocused intensities in backward Raman amplifiers has been in principle demonstrated experimentally as well.

The major physical processes that may affect BRA include the amplified pulse filamentation and detuning due to the relativistic electron nonlinearity, parasitic Raman scattering of the pump and amplified pulses by plasma noise, generation of superluminous precursors of the amplified pulse, pulse scattering by plasma density inhomogeneities, plasma heating through inverse bremsstrahlung, the resonant Langmuir wave Landau damping, and other processes (see for example [34–37]). Among these deleterious processes can also mitigate by appropriate preparation of laser pulses and plasmas, choosing parameter ranges and selective detuning of the Raman resonance. Ultimately, the output intensity limit appears to be imposed primarily by the relativistic electron nonlinearity, causing saturation of the dominant leading spike growth. The major goal of this paper is to explore the possibility of extending BRA beyond this theoretical limit for the largest achievable unfocused intensity and fluence of the output pulses.

II. BASIC EQUATIONS

To capture the effects of interest here, one needs to take into account, apart from the resonant Raman backscattering, the relativistic electron nonlinearity (REN) and group velocity dispersion (GVD) of the amplified laser pulse. This is because the amplified pulse reaches nearly relativistic intensities and contracts to a duration of just a few plasma periods. In contrast to this, the pump laser pulse has a non-relativistic intensity and long duration, so that REN and GVD effects are negligible for the pump. Noteworthy that the sufficiently long pump might experience non-relativistic filamentation instabilities, either ponderomotive or thermal. However, these instabilities develop on longer time scales, so they can be avoided by using pump pulses having correlation times shorter than the instability times. Such pumps can be produced by using pulse randomization techniques developed to reduce nonuniformities in direct irradiation of inertially confined targets for nuclear fusion. Similar randomization techniques can also suppress the amplified pulse transverse relativistic filamentation instability associated with REN. Thus, to assess the largest output intensity, a one-dimensional model may be adequate, with REN and GVD effects included in the equation for the amplified pulse, but not in the equation for the pump pulse.

The REN and GVD effects can also be neglected in the equation for the Langmuir wave which mediates the energy transfer from the pump to the amplified pulse. Namely, the GVD is negligible because the Langmuir wave group velocity itself is negligible, and the REN is negligible because it produces just a relatively small shift in the Langmuir wave frequency. This shift has not time enough to noticeably affect the Langmuir wave within the short duration of the amplified pulse, while it does not matter here how the Langmuir wave evolves in a given plasma location after the amplified pulse passing this lo-
cation.

Furthermore, in the regimes well below the wavebreaking, which are of major interest here due to the high BRA efficiency, the hydrodynamic nonlinearity of the Langmuir wave itself may be neglected45. For cold enough plasmas, the Langmuir wave kinetic nonlinearity associated with trapped electrons26,46 is also small and has not time enough to noticeably affect the Langmuir wave within the short duration of the amplified pulse.

Thus, the resulting one-dimensional equations for the resonant 3-wave interaction, taking into account the lowest order relativistic electron nonlinearity and group velocity dispersion effects for the amplified pulse, can be put in the form13:

\begin{align}
 a_t + c_a a_z = V_3 f b, \quad f_t &= -V_3 a b^*, \\
 b_t - c_b b_z = -V_3 a f^* + i R (b^2 b - b c f).
\end{align}

Here a, b and f are envelopes of the pump pulse, counter-propagating shorter pulsed pulse and resonant Langmuir wave, respectively; subscripts t and z signify time and space derivatives; c_a and c_b are group velocities of the pump and amplified pulses; V_3 is the 3-wave coupling constant (real for appropriately defined wave envelopes). R is the coefficient of nonlinear frequency shift due to the relativistic electron nonlinearity, $\kappa = c'_b / 2 c_b$ is the group velocity dispersion coefficient (c'_b is the derivative of the amplified pulse group velocity over the frequency).

The group velocities c_a and c_b are expressed in terms of the respective laser frequencies ω_a and ω_b as follows:

\begin{equation}
 c_a = c \sqrt{1 - \frac{\omega_a^2}{\omega_e^2}}, \quad c_b = c \sqrt{1 - \frac{\omega_b^2}{\omega_e^2}},
\end{equation}

where c is the speed of light in vacuum,

\begin{equation}
 \omega_e = \sqrt{\frac{4 \pi n_e e^2}{m_e}}
\end{equation}

is the electron plasma frequency, n_e is the electron plasma concentration, m_e is the electron rest mass and $-e$ is the electron charge, so that

\begin{equation}
 2 \kappa = \frac{\omega_e^2}{c_b} \omega_b (\omega_b^2 - \omega_e^2) = \frac{\omega_b^2 c^2}{\omega_e^2 c'_b}.
\end{equation}

The pump pulse envelope, a, is further normalized such that the average square of the electron quiver velocity in the pump laser field, measured in units of c^2, is $|a|^2$, so that

\begin{equation}
 \overline{v_{ca}^2} = c^2 |a|^2.
\end{equation}

Then, the average square of the electron quiver velocity in the seed laser field and in the Langmuir wave field are given by

\begin{equation}
 \overline{v_{cb}^2} = c^2 |b|^2 \frac{\omega_a}{\omega_b}, \quad \overline{v_{cf}^2} = c^2 |f|^2 \frac{\omega_a}{\omega_f}.
\end{equation}

The 3-wave coupling constant can be written as47

\begin{equation}
 V_3 = k_f c \sqrt{\frac{\omega_a}{8 \omega_b}},
\end{equation}

where k_f is the wave number of the resonant Langmuir wave

\begin{equation}
 k_f = k_a + k_b, \quad k_a c = \sqrt{\omega_a^2 - \omega_e^2}, \quad k_b c = \sqrt{\omega_b^2 - \omega_e^2}.
\end{equation}

The frequency resonance condition is

\begin{equation}
 \omega_b + \omega_f = \omega_a,
\end{equation}

where $\omega_f \approx \omega_e$ is the Langmuir wave frequency in a not too hot plasma. The nonlinear frequency shift coefficient R can then be put as48–50

\begin{equation}
 R = \omega_a^2 \omega_b \omega_f. \quad (11)
\end{equation}

This hydrodynamic model is applicable for the pump pulse intensity I_0 smaller than that at the threshold of the resonant Langmuir wave breaking I_{br}. The motivation for studying specifically such regimes is that for deep wavebreaking regimes the BRA efficiency is lower1,3.

\section{III. Universal Variables}

The above equations will be solved for a small Gaussian initial seed and constant initial pump with a sharp front. After entering the pump depletion stage, the leading amplified spike (propagating directly behind the seed pulse) grows and contracts (since it depletes the pump faster and faster, as it grows). Thus the spike becomes of much shorter duration than the elapsed amplification time, attaining the universal features of a classical π-pulse before the REN becomes important. This prepares universal initial conditions for entering the REN regime.

To expose this universality, it is helpful to change z and t variables to dimensionless variables

\begin{equation}
 \tau = \left(1 + \frac{c_a}{c_b}\right)^{1/3} R^{1/3} V_3^{2/3} a_0^{4/3} \left(\frac{L - z}{c_b}\right),
\end{equation}

\begin{equation}
 \zeta = \left(1 + \frac{c_a}{c_b}\right)^{-1/3} R^{-1/3} V_3^{4/3} a_0^{2/3} \left(\frac{t - L - z}{c_b}\right),
\end{equation}

where τ measures the elapsed amplification time (or the distance traversed by the original seed front), ζ measures the distance (or delay time) from the original seed front; L is the plasma width and a_0 is the input pump amplitude; the seed is injected into the plasma at $z = L$, $t = 0$ and meets immediately the pump front injected into the plasma at $z = 0$, $t = -L/c_a$.

Then, defining new wave amplitudes a_1, f_1 and b_1 by
v.

IV. DISPERSIONLESS REN REGIME

First, consider extremely undercritical plasmas where the group velocity dispersion can be neglected, so that the approximation \(Q = 0 \) is good enough.

Fig. 1 shows the rescaled amplified pulse amplitude \(|b_1|\) as a function of the delay time \(\zeta \) at several amplification times \(\tau \) for \(Q = 0 \). The amplified pulse may have its maximum amplitude from either the first spike or from later spikes. This maximum is depicted in Fig. 2. The initial nearly linear part of the curve in Fig. 2 corresponds to the classical \(\pi \)-pulse regime. In what we call the REN regime, the leading spike growth saturates, while the second spike grows, reaching even higher intensity. Then the second spike growth saturates, while the third spike grows, reaching even higher intensity yet. The spikes do not filament and remain distinguishable for a while. As seen from the Fig. 2, the top amplified pulse amplitude can be nearly double the largest leading spike amplitude, so that output intensity can be nearly 4 times the leading spike theoretical limit.

V. THE EFFECT OF GROUP VELOCITY DISPERSION

For less extreme, though still strongly undercritical plasmas, the group velocity dispersion can become important in the REN regime. This is in contrast to the \(\pi \)-pulse regime for which the group velocity dispersion is negligible in strongly undercritical plasmas\(^{13}\). The importance of even rather small group velocity dispersion in the REN regime is illustrated in Figs. 3 and 4 which show the dispersion effect at small amplification times \(\tau \).

Fig. 4 shows the maximum pulse amplitude \(\max_\zeta |b_1| \) as a function of the amplification time \(\tau \). Note that the
The leading spike amplitude
The second spike amplitude
The third spike amplitude

FIG. 2. The maximal amplitude of the amplified pulse \(\max_\tau |b_1| \) as a function of the amplification time \(\tau \) in extremely undercritical plasma.

\(\pi \)-pulse regime corresponds to the joint straight part of the curves located approximately at times \(\tau < 2 \). Here, there is indeed no \(Q \)-dependence, indicating the negligibility of the group velocity dispersion. However, in the REN regime (\(\tau > 3 \)), the \(Q \)-dependence becomes increasingly prominent. Larger \(Q \) corresponds to smaller pulse amplitudes, because group velocity dispersion tends to stretch the pulses. It also tends to delay the onset of the longitudinal filamentation instability, thus enabling yet larger output fluences if not intensities.

It can be seen from Figs. 3 and 4 that significant additional growth of the amplified pulse intensity and fluence can occur not only beyond the classical \(\pi \)-pulse regime, but even after the leading spike saturation. In extremely undercritical plasmas, where \(Q \lesssim 0.01 \), subsequent to the leading spike saturation, the amplified pulse intensity and fluence can increase further by a factor of about 3. In denser, but still strongly undercritical plasmas with \(Q \sim 0.02 - 0.03 \), the amplified pulse growth subsequent to the leading spike saturation can be about 2-fold in intensity and about 4-fold in fluence.

For example, for \(\lambda_b = 1/4 \mu \text{m} \) and \(I_0 = I_{br}/2 \), and \(Q = 0.025 \) (corresponding to \(\omega_x/\omega_b = 0.05 \)), the fluence achievable in the REN regime is 120 kJ/cm\(^2\). Here, the plasma concentration is \(n_e = 4.5 \times 10^{19} \text{cm}^{-3} \) and the input pump intensity is \(I_0 = 1.7 \times 10^{14} \text{W/cm}^2 \); the pump duration is 0.7 ns, the amplified pulse output duration is 94 fs and the intensity is \(1.2 \times 10^{18} \text{W/cm}^2 \).

Note that these intensities are more than 10 times larger than intensities reached in the recent numerical simulations\(^{51} \). One reason why the REN regime was not reached in these simulations might be because of instabilities arising from numerical noise. The numeral noise in particle-in-cell codes might even exceed real plasma noise. In any event, the instabilities, whatever the origin, might be suppressed, say, by applying selective detuning techniques\(^{3,4,17-19} \). Since these techniques were not employed in [51], the REN regime could be unreachable. In simulations of much larger

\(Q \)-pulse regime corresponds to the joint straight part of the curves located approximately at times \(\tau < 2 \). Here, there is indeed no \(Q \)-dependence, indicating the negligibility of the group velocity dispersion. However, in the REN regime (\(\tau > 3 \)), the \(Q \)-dependence becomes increasingly prominent. Larger \(Q \) corresponds to smaller pulse amplitudes, because group velocity dispersion tends to stretch the pulses. It also tends to delay the onset of the longitudinal filamentation instability, thus enabling yet larger output fluences if not intensities.

It can be seen from Figs. 3 and 4 that significant additional growth of the amplified pulse intensity and fluence can occur not only beyond the classical \(\pi \)-pulse regime, but even after the leading spike saturation. In extremely undercritical plasmas, where \(Q \lesssim 0.01 \), subsequent to the leading spike saturation, the amplified pulse intensity and fluence can increase further by a factor of about 3. In denser, but still strongly undercritical plasmas with \(Q \sim 0.02 - 0.03 \), the amplified pulse growth subsequent to the leading spike saturation can be about 2-fold in intensity and about 4-fold in fluence.

For example, for \(\lambda_b = 1/4 \mu \text{m} \) and \(I_0 = I_{br}/2 \), and \(Q = 0.025 \) (corresponding to \(\omega_x/\omega_b = 0.05 \)), the fluence achievable in the REN regime is 120 kJ/cm\(^2\). Here, the plasma concentration is \(n_e = 4.5 \times 10^{19} \text{cm}^{-3} \) and the input pump intensity is \(I_0 = 1.7 \times 10^{14} \text{W/cm}^2 \); the pump duration is 0.7 ns, the amplified pulse output duration is 94 fs and the intensity is \(1.2 \times 10^{18} \text{W/cm}^2 \).

Note that these intensities are more than 10 times larger than intensities reached in the recent numerical simulations\(^{51} \). One reason why the REN regime was not reached in these simulations might be because of instabilities arising from numerical noise. The numeral noise in particle-in-cell codes might even exceed real plasma noise. In any event, the instabilities, whatever the origin, might be suppressed, say, by applying selective detuning techniques\(^{3,4,17-19} \). Since these techniques were not employed in [51], the REN regime could be unreachable. In simulations of much larger
pump intensities than discussed here, \(I_0 \approx 30I_{br} \gg I_{br} \), somewhat larger output intensities, like \(4 \times 10^{17} \text{ W/cm}^2 \), were reported\(^{51}\). Similarly, possibly because of numerical noise, the REN regime was apparently not reached also in those simulations.

Note that the ability to compress laser pulses from ns to 100 fs duration may allow direct BRA of currently available powerful 1/4 micron wavelength ns laser pulses to ultrahigh powers. The regimes found here can further enhance multi-step BRA schemes\(^{52,53}\), as well as possible combinations of such schemes with other currently considered methods of producing ultra-high laser intensities, like\(^{54–61}\).

VI. SUMMARY

In summary, an amplification regime is identified here wherein output pulse intensities and fluences substantially surpass the previous theoretical limit for strongly undercritical plasmas. The new intensity and fluence limits are produced by the initially sub-dominant spikes of the amplified wavetrain, which were not previously thought to be important for achieving the largest output pulses. In addition, the amplified pulse regular group velocity dispersion, in spite of being small in strongly undercritical plasmas, is shown nevertheless to be capable of delaying the pulse filamentation, thus allowing further pulse amplification to even larger output fluences.

VII. ACKNOWLEDGMENTS

This work was supported by DTRA HDTRA1-11-1-0037, by NSF PHY-1202162, and by the NNSA SSAA Program under Grant No DE274-FG52-08NA28553.

\(^{1}\)V. M. Malkin, G. Shvets, and N. J. Fisch, “Fast compression of laser beams to highly overcritical powers,” Phys. Rev. Lett. 82, 4448 (1999).
\(^{2}\)G. A. Mourou, C. P. J. Barty, and M. D. Perry, “Ultrahigh-intensity lasers: physics of the extreme on a tabletop,” Phys. Today 51, 22 (1998).
\(^{3}\)V. M. Malkin, G. Shvets, and N. J. Fisch, “Ultra-powerful compact amplifiers for short laser pulses,” Phys. Plasmas 7, 2232 (2000).
\(^{4}\)V. M. Malkin and N. J. Fisch, “Key plasma parameters for resonant backward Raman amplification in plasma,” Eur. Phys. J. Special Topics 223, 1157 (2014).
\(^{5}\)Y. Ping, W. Cheng, S. Suckewer, D. S. Clark, and N. J. Fisch, “Amplification of ultrashort laser pulses by a resonant Raman scheme in a gas-jet plasma,” Phys. Rev. Lett. 92, 175007 (2004).
\(^{6}\)A. A. Balakin, D. V. Kartashov, A. M. Kiselev, S. A. Skobelev, A. N. Stepanov, and G. M. Fraiman, “Laser pulse amplification upon Raman backscattering in plasma produced in dielectric capillaries,” JETP Lett. 80, 12 (2004).
\(^{7}\)W. Cheng, Y. Avitzour, Y. Ping, S. Suckewer, N. J. Fisch, M. S. Hur, and J. S. Wurtele, “Reaching the nonlinear regime of Raman amplification of ultrashort laser pulses,” Phys. Rev. Lett. 94, 045003 (2005).
\(^{8}\)J. Ren, S. Li, A. Morozov, S. Suckewer, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, “A compact double-pass Raman backscattering amplifier/compressor,” Phys. Plasmas 15, 065702 (2008).
\(^{9}\)R. K. Kirkwood, E. Dewald, C. Niemann, N. Meezan, S. C. Wilks, D. W. Price, O. L. Landen, J. Wurtele, A. E. Charman, R. Lindberg, N. J. Fisch, V. M. Malkin, and E. O. Valeo, “Amplification of an ultrashort laser pulse by stimulated Raman scattering of a 1 ns pulse in a low density plasma,” Phys. Plasmas 14, 113 (2007).
\(^{10}\)C. H. Pai, M. W. Lin, L. C. Ha, S. T. Huang, Y. C. Tsou, H. H. Chu, J. Y. Lin, J. Wang, and S. Y. Chen, “Backward Raman amplification in a plasma waveguide,” Phys. Rev. Lett. 101, 065 005 (2008).
\(^{11}\)G. Vieux, A. Lyachev, X. Yang, B. Ersfeld, J. P. Farmer, E. Brunetti, R. C. Issac, G. Raj, G. H. Welsh, S. M. Wiggins, and D. A. Jaroszynski, “Chirped pulse Raman amplification in

![FIG. 4. The maximal amplitude of the amplified pulse \(\max_{\tau} |b_\tau| \) as a function of the amplification time \(\tau \) for several values of the dispersion parameter \(Q \).](image-url)
plasma,” New J. Phys. 13, 063042 (2011).
http://dx.doi.org/10.1088/1367-2630/13/6/063042

12G. M. Fraiman, N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, “Robustness of laser phase fronts in backward Raman amplifiers,” Phys. Plasmas 9, 3617 (2002).
http://dx.doi.org/10.1063/1.1491959

13V. M. Malkin and N. J. Fisch, “Relic crystal-lattice effects on Raman compression of powerful x-ray pulses in plasmas,” Phys. Rev. Lett. 99, 205001 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.205001

14V. M. Malkin, Z. Toroker, and N. J. Fisch, “Laser duration and intensity limits in plasma backward Raman amplifiers,” Phys. Plasmas 19, 023109 (2012).
http://dx.doi.org/10.1063/1.3683558

15V. M. Malkin, G. Shvets, and N. J. Fisch, “Detuned Raman amplification of short laser pulses in plasma,” Phys. Rev. Lett. 84, 1208 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.1208

16V. M. Malkin, Y. A. Tsidulko, and N. J. Fisch, “Stimulated Raman scattering of rapidly amplified short laser pulses,” Phys. Rev. Lett. 85, 4068 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.4068

17A. A. Solodov, V. M. Malkin, and N. J. Fisch, “Pump side-scattering in ultrapowerful backward Raman amplifiers,” Phys. Rev. E 69, 066413 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.066413

18V. A. Tsidulko, V. M. Malkin, and N. J. Fisch, “Suppression of superluminescent precursors in high-power backward Raman amplifiers,” Phys. Rev. Lett. 88, 235004 (2002).
http://dx.doi.org/10.1103/PhysRevLett.88.235004

19A. A. Solodov, V. M. Malkin, and N. J. Fisch, “Random density inhomogeneities and focussability of the output pulses for plasma-based powerful backward Raman amplifiers,” Phys. Plasmas 10, 2540 (2003).
http://dx.doi.org/10.1063/1.1576761

20V. M. Malkin, N. J. Fisch, and J. S. Wurtele, “Compression of powerful x-ray pulses to attosecond durations by stimulated Raman backscattering in plasmas,” Phys. Rev. E 75, 026404 (2007).
http://dx.doi.org/10.1103/PhysRevE.75.026404

21V. M. Malkin and N. J. Fisch, “Quasitranstion regimes of backward Raman amplification of intense x-ray pulses,” Phys. Rev. E 80, 046409 (2009).
http://dx.doi.org/10.1103/PhysRevE.80.046409

22V. M. Malkin and N. J. Fisch, “Quasitranstion backward Raman amplification of powerful laser pulses in plasma with multicharged ions,” Phys. Plasmas 17, 073109 (2010).
http://dx.doi.org/10.1063/1.3460347

23A. A. Balakin, N. J. Fisch, G. M. Fraiman, V. M. Malkin, and Z. Toroker, “Numerical modeling of quasitranstion backward Raman amplification of laser pulses in moderately undercritcal plasmas with multicharged ions,” Phys. Plasmas 18, 102311 (2011).
http://dx.doi.org/10.1063/1.3650074

24M. S. Hur, R. R. Lindberg, A. E. Charman, J. S. Wurtele, and H. Suk, “Electron Kinetic Effects on Raman Backscatter in Plasmas,” Phys. Rev. Lett. 95, 151003 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.151003

25N. Yampolsky and N. Fisch, “Effect of nonlinear Landau damping in plasma-based backward Raman amplifier,” Phys. Plasmas 16, 072105 (2009).
http://dx.doi.org/10.1063/1.3160006

26N. Yampolsky and N. Fisch, “Limiting effects on laser compression by resonant backward Raman scattering in modern experiments,” Physics of Plasmas 18, 056711 (2011).
http://dx.doi.org/10.1063/1.3587120

27D. Strozzi, E. Williams, H. Rose, D. Hinkel, A. Langdon, and J. Banks, “Threshold for electron trapping nonlinearity in Langmuir waves,” Phys. Plasmas 19, 112306 (2012).
http://dx.doi.org/10.1063/1.4767644

28Z. Wu, Y. Zuo, J. Su, L. Liu, Z. Zhang, and X. Wei, “Production of single pulse by Landau damping for backward Raman amplification in plasma,” IEEE Transactions on Plasma Science 42, 1704–1708 (2014).
http://dx.doi.org/10.1109/TPS.2014.2317878

29S. Depiereux, V. Yahiia, C. Goyon, G. Loisel, P.-E. Masson-Laborde, N. Borisenko, A. Orekhov, O. Rosmej, T. Riehnecker, and C. Labaume, “Light laser triggers increased Raman amplification in the regime of nonlinear Landau damping,” Nature Communications 5, 4158 (2014).
http://dx.doi.org/10.1038/ncomms5158

30N. A. Yampolsky, N. J. Fisch, V. M. Malkin, E. J. Valeo, R. Lindberg, J. Wurtele, J. Ren, S. Li, A. Morozov, and S. Suckewer, “Demonstration of detuning and wavebreaking effects on Raman amplification efficiency in plasma,” Phys. Plasmas 15, 113104 (2008).
http://dx.doi.org/10.1063/1.3023153

31R. M. G. M. Trines, F. Fiuza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Simulations of efficient Raman amplification into the multipetawatt regime,” Nature Phys. 7, 87 (2011).
http://dx.doi.org/10.1038/nphys1793

32D. S. Clark and N. J. Fisch, “Operating regime for a backward Raman laser amplifier in preformed plasma,” Phys. Plasmas 10, 3363 (2003).
http://dx.doi.org/10.1063/1.1590667

33N. A. Yampolsky, V. M. Malkin, and N. J. Fisch, “Finite-duration seeding effects in powerful backward Raman amplifiers,” Phys. Rev. E 69, 036401 (2004).
http://dx.doi.org/10.1103/PhysRevE.69.036401

34Z. Toroker, V. M. Malkin, A. A. Balakin, G. M. Fraiman, and N. J. Fisch, “Geometrical constraints on plasma couplers for Raman compression,” Phys. Plasmas 19, 083110 (2012).

35Z. Toroker, V. M. Malkin, and N. J. Fisch, “Seed Laser Chirping for Enhanced Backward Raman Amplification in Plasmas,” Phys. Rev. Lett. 109, 085003 (2012).
http://dx.doi.org/10.1103/PhysRevLett.109.085003

36H. Hora, “Self-focusing of laser beams in a plasma by ponderomotive forces,” Zeitschrift fr Physik 226, 156–159 (1969).
http://dx.doi.org/10.1007/BF01392018

37P. Kaw, G. Schmidt, and T. Wilcox, “Filamentation and trapping of electromagnetic radiation in plasmas,” Physics of Fluids 16, 1522–1525 (1973).
http://dx.doi.org/10.1063/1.1694552

38C. E. Max, “Strong selffocusing due to the ponderomotive force in plasmas,” Physics of Fluids (1958-1988) 19, 74–77 (1976).
http://dx.doi.org/10.1063/1.861305

39E. W. Perkins and E. J. Valeo, “Thermal Self-Focusing of Electromagnetic Waves in Plasmas,” Phys. Rev. Lett. 32, 1234–1237 (1974).
http://dx.doi.org/10.1103/PhysRevLett.32.1234

40R. Lehmberg and S. Obenschain, “Use of induced spatial incoherence for fundamental illumination of laser fusion targets,” Optics Communications 46, 27 – 31 (1983).
http://dx.doi.org/10.1016/0030-4018(83)90024-X

41Y. Kato, K. Mima, N. Miyangana, S. Arinaga, Y. Kitagawa, M. Nakatsuka, and C. Yamanaka, “Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instablility Suppression,” Phys. Rev. Lett. 53, 1057–1060 (1984).
http://link.aps.org/doi/10.1103/PhysRevLett.53.1057

42S. Skupsky, R. Short, T. Kessler, R. Craxton, S. Letzring, and J. Soures, “Improved laser-beam uniformity using the angular
dispersion of frequency-modulated light,” Journal of Applied Physics 66, 3456–3462 (1989), cited By (since 1996)390. http://dx.doi.org/10.1063/1.344101

45J. M. Dawson, “Nonlinear Electron Oscillations in a Cold Plasma,” Phys. Rev. 113, 383–387 (1959). http://dx.doi.org/10.1103/PhysRev.113.383

46H. X. Vu, D. F. DuBois, and B. Bezeerides, “Kinetic inflation of stimulated Raman backscatter in regimes of high linear Landau damping,” Physics of Plasmas 9, 1745–1763 (2002). http://dx.doi.org/10.1063/1.1471235

47W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, Reading, MA, 1988).

48A. G. Litvak, “Finite-amplitude wave beams in a magnetoactive plasma,” Zh. Eksp. Teor. Fiz. [Sov. Phys. JETP] 57 [30], 629 [344] (1969 [1970]). http://www.jetp.ac.ru/cgi-bin/e/index/r/57/2/p629?a=list

49C. Max, J. Arons, and A. B. Langdon, “Self-modulation and self-focusing of electromagnetic waves in plasmas,” Phys. Rev. Lett 33, 209 (1974). http://dx.doi.org/10.1103/PhysRevLett.33.209

50R. M. G. M. Trines, F. Fiuza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses,” Phys. Rev. Lett 107, 105002 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.105002

51N. J. Fisch and V. M. Malkin, “Generation of ultrahigh intensity laser pulses,” Phys. Plasmas 10, 2056 (2003). http://dx.doi.org/10.1063/1.1567290

52R. M. G. M. Trines, F. Fiuza, R. Bingham, R. A. Fonseca, L. O. Silva, R. A. Cairns, and P. A. Norreys, “Production of Picosecond, Kilojoule, and Petawatt Laser Pulses via Raman Amplification of Nanosecond Pulses,” Phys. Rev. Lett. 107, 105002 (2011). http://dx.doi.org/10.1103/PhysRevLett.107.105002

53V. M. Malkin and N. J. Fisch, “Manipulating ultra-intense laser pulses in plasmas,” Phys. Plasmas 12, 044507 (2005). http://dx.doi.org/10.1063/1.1881533

54G. Shvets, N. J. Fisch, A. Pukhov, and J. Meyer-ter-Vehn, “Superradiant amplification of an ultrashort laser pulse in a plasma by a counterpropagating pump,” Phys. Rev. Lett. 81, 4879 (1998). http://dx.doi.org/10.1103/PhysRevLett.81.4879

55L. Lancia, J.-R. Marquès, M. Nakatsutsumi, C. Riconda, S. Weber, S. Hüller, A. Mančić, P. Antic, V. T. Tikhonchuk, A. Héron, P. Audebert, and J. Fuchs, “Experimental Evidence of Short Light Pulse Amplification Using Strong-Coupling Stimulated Brillouin Scattering in the Pump Depletion Regime,” Phys. Rev. Lett. 104, 025001 (2010). http://dx.doi.org/10.1103/PhysRevLett.104.025001

56A. V. Korzhimanov, A. A. Gonoskov, E. A. Khazanov, and A. M. Sergeev, “Horizons of petawatt laser technology,” Physics-Uspekhi 54, 9–28 (2011). http://dx.doi.org/10.3367/UFNe.0181.201101c.0009

57A. Di Piazza, C. Müller, K. Z. Halsagortsyan, and C. H. Keitel, “Extremely high-intensity laser interactions with fundamental quantum systems,” Rev. Mod. Phys. 84, 1177–1228 (2012). http://dx.doi.org/10.1103/RevModPhys.84.1177

58G. A. Mourou, N. J. Fisch, V. M. Malkin, Z. Toroker, E. A. Khazanov, A. M. Sergeev, T. Tajima, and B. L. Garrec, “Exawatt-Zettawatt pulse generation and applications,” Opt. Commun. 285, 720–724 (2012). http://dx.doi.org/10.1016/j.optcom.2011.10.089

59S. V. Bulanov, T. Z. Esirkepov, M. Kando, A. S. Pirozhkov, and N. N. Rozanov, “Relativistic mirrors in plasmas novel results and perspectives,” Physics-Uspekhi 56, 429–464 (2013). http://dx.doi.org/10.3367/UFNe.0183.201305a.0449

60S. Weber, C. Riconda, L. Lancia, J.-R. Marquès, G. A. Mourou, and J. Fuchs, “Amplification of Ultrashort Laser Pulses by Brillouin Backscattering in Plasmas,” Phys. Rev. Lett. 111, 055004 (2013). http://dx.doi.org/10.1103/PhysRevLett.111.055004

61M. Tamburini, A. Di Piazza, T. V. Liseykina, and C. H. Keitel, “Plasma-Based Generation and Control of a Single Few-Cycle High-Energy Ultrahigh-Intensity Laser Pulse,” Phys. Rev. Lett. 113, 025005 (2014). http://dx.doi.org/10.1103/PhysRevLett.113.025005