A simple framework on sorting permutations

Ricky X. F. Chen · Christian M. Reidys

Received: date / Accepted: date

Abstract In this paper we present a simple framework to study various distance problems of permutations, including the transposition and block-interchange distance of permutations as well as the reversal distance of signed permutations. These problems are very important in the study of the evolution of genomes. We give a general formulation for lower bounds of the transposition and block-interchange distance from which the existing lower bounds obtained by Bafna and Pevzner, and Christie can be easily derived. As to the reversal distance of signed permutations, we translate it into a block-interchange distance problem of permutations so that we obtain a new lower bound. Furthermore, studying distance problems via our framework motivates several interesting combinatorial problems related to product of permutations, some of which are studied in this paper as well.

Keywords Plane permutation · Transposition distance · Block-interchange distance · Reversal distance

1 Introduction

Let \mathcal{S}_n denote the group of permutations, i.e. the group of bijections from $[n] = \{1, \ldots, n\}$ to $[n]$, where the multiplication is the composition of maps. We shall discuss the following three representations of a permutation π on $[n]$:

two-line form: the top line lists all elements in $[n]$, following the natural order. The bottom line lists the corresponding images of the elements on the top line, i.e.

$$\pi = \begin{pmatrix}
1 & 2 & 3 & \cdots & n-2 & n-1 & n \\
\pi(1) & \pi(2) & \pi(3) & \cdots & \pi(n-2) & \pi(n-1) & \pi(n)
\end{pmatrix}.$$
one-line form: \(\pi \) is represented as a sequence \(\pi = \pi(1)\pi(2)\cdots\pi(n-1)\pi(n) \).

cycle form: regarding \((\pi) \) as a cyclic group, we represent \(\pi \) by its collection of orbits (cycles).

The set consisting of the lengths of these disjoint cycles is called the cycle-type of \(\pi \).

We can encode this set into a non-increasing integer sequence \(\lambda = \lambda_1\lambda_2\cdots \), where \(\sum \lambda_i = n \), or as \(1^{a_1}2^{a_2}\cdots n^{a_n} \), where we have \(a_i \) cycles of length \(i \). A cycle of length \(k \) will be called a \(k \)-cycle. A cycle of odd and even length will be called an odd and even cycle, respectively.

It is well known that all permutations of the same cycle-type form a conjugacy class of \(S_n \).

In [9], plane permutations were used to study one-face hypermaps. In particular, a combinatorial proof for the following result of Zagier [15] and Stanley [14] was presented: the number of \(k \)-cycles.

In this paper, we employ the framework of plane permutations to study sorting permutations, which is related to various sorting operations of permutations. In section 3, we study the transposition distance problem of permutations and derive a generally formulated lower bound which is important in the context of bioinformatics, in particular the evolution of genomes by rearrangements in DNA as well as RNA. For the related studies and general biological background, we refer to [1–3, 5–8, 10, 12, 13] and references therein.

An outline of this paper is as follows. In section 2, we present a short introduction on plane permutations, especially we study a natural action on plane permutations which is related to various sorting operations of permutations. In section 3, we study the transposition distance problem of permutations and derive a generally formulated lower bound which implies the lower bound obtained by Bafna and Pevzner [5] via the cycle-graph model. Our formula of the lower bound motivates several optimization problems as well. One of them is to determine \(\max |C(\alpha \gamma) - C(\gamma)| \) for a fixed permutation \(\alpha \), where \(C(\pi) \) denotes the number of cycles in the permutation \(\pi \). We will solve this optimization problem in this paper.

In section 4, we consider the block-interchange distance of permutations and establish the block-interchange distance formula due to Christie [8]. In section 5, we study the reversal distance of signed permutations. By translating the reversal distance of signed permutations into block-interchange distance of permutations with restricted block-interchanges, we prove a new formula on the lower bound of the reversal distance. We then observe that this bound is typically equal to the reversal distance.

2 Plane permutations

Definition 1 (Plane permutation) A plane permutation on \([n]\) is a pair \(p = (s, \pi) \) where \(s = (s_i)_{i=0}^{n-1} \) is an \(n \)-cycle and \(\pi \) is an arbitrary permutation on \([n]\). The permutation \(D_p = s \circ \pi^{-1} \) is called the diagonal of \(p \).

Given \(s = (s_0s_1\cdots s_{n-1}) \), a plane permutation \(p = (s, \pi) \) can be represented by two aligned rows:

\[
(s, \pi) = \begin{pmatrix}
\pi(s_0) & \pi(s_1) & \cdots & \pi(s_{n-2}) & \pi(s_{n-1}) \\
s_0 & s_1 & \cdots & s_{n-2} & s_{n-1}
\end{pmatrix}
\]

Indeed, \(D_p \) is determined by the diagonal-pairs (cyclically) in the two-line representation here, i.e., \(D_p(\pi(s_{i-1})) = s_i \) for \(0 < i < n \), and \(D_p(\pi(s_{n-1})) = s_0 \).

Given a plane permutation \((s, \pi) \) on \([n]\) and a sequence \(h = (i,j,k,l) \), such that \(i \leq j < k \leq l \) and \(\{i, j, k, l\} \subset [n-1] \), let

\[
l^h = (s_0, s_1, \ldots, s_{i-1}, \overbrace{s_k, \ldots, s_{j+1}}^{s_{j+1}, \ldots, s_k}, s_{j+1}, \ldots, s_{j+k-l}, s_j, \ldots, s_0, \ldots)
\]
i.e. the n-cycle obtained by transposing the blocks $[s_i, s_j]$ and $[s_k, s_l]$ in s. Note that in case of $j + 1 = k$, we have

$$s^h = (s_0, s_1, \ldots, s_{j-1}, s_k, s_j, s_{j+1}, \ldots, s_l, s_{l+1}, \ldots).$$

Let furthermore

$$\pi^h = D_p \circ s^h,$$

that is, the derived plane permutation, (s^h, π^h), can be represented as

$$
\begin{pmatrix}
\vdots & s_k & \cdots & s_l & s_{j+1} & \cdots & s_{k-1} & s_i & \cdots & s_j & \cdots & s_{l+1} & \cdots \\
\vdots & \pi(s_k) & \cdots & \pi(s_l) & \pi(s_{j+1}) & \cdots & \pi(s_{k-1}) & \pi(s_i) & \cdots & \pi(s_j) & \cdots & \pi(s_{l+1}) & \cdots \\
\vdots & \vdots
\end{pmatrix}.
$$

We write $(s^h, \pi^h) = \chi_h \circ (s, \pi)$. Note that the bottom row of the two-row representation of (s^h, π^h) is obtained by transposing the blocks $[\pi(s_{j-1}), \pi(s_{j-1})]$ and $[\pi(s_{k-1}), \pi(s_{k-1})]$ of the bottom row of (s, π). In the following, we refer to general χ_h as block-interchange and for the special case of $k = j + 1$, we refer to χ_h as transpose. As a result, we observe

Lemma 1 Let (s, π) be a plane permutation on $[n]$ and $(s^h, \pi^h) = \chi_h \circ (s, \pi)$ for $h = (i, j, k, l)$. Then, $\pi(s_r) = \pi^h(s_r)$ if $r \in \{0, 1, \ldots, n - 1\} \setminus \{i - 1, j, k, l, i\}$, and for $j + 1 < k$

$$\pi^h(s_{j-1}) = \pi(s_{k-1}), \quad \pi^h(s_j) = \pi(s_i), \quad \pi^h(s_{k-1}) = \pi(s_{j-1}), \quad \pi^h(s_l) = \pi(s_j)$$

hold and for $j = k - 1$ we have

$$\pi^h(s_{j-1}) = \pi(s_j), \quad \pi^h(s_j) = \pi(s_i), \quad \pi^h(s_l) = \pi(s_{j-1}).$$

We shall proceed by analyzing the induced changes of the π-cycles when passing to π^h. By Lemma 1 only the π-cycles containing $s_{j-1}, s_j, s_{k-1}, s_l$ will be affected.

Lemma 2 Let $(s^h, \pi^h) = \chi_h \circ (s, \pi)$, where $h = (i, j, k, l)$. Then there exist the following six scenarios for the pairs (π, π^h):

Case	π	π^h
1	$(s_{j-1}, v_{j-1}' \ldots v_{j-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{j-1}, v_{j-1}'' \ldots v_{j-1}', s_j, v_j'' \ldots v_j', s_l, v_l'' \ldots v_l')$
2	$(s_{k-1}, v_{k-1}' \ldots v_{k-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{k-1}, v_{k-1}'' \ldots v_{k-1}', s_j, v_j'' \ldots v_j', s_l, v_l'' \ldots v_l')$
3	$(s_{k-1}, v_{k-1}' \ldots v_{k-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{k-1}, v_{k-1}', v_{k-1}'' \ldots v_{k-1}'' m, s_j, v_j', v_j'' \ldots v_j'' m, s_l, v_l', v_l'' \ldots v_l'' m)$
4	$(s_{j-1}, v_{j-1}' \ldots v_{j-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{j-1}, v_{j-1}'' \ldots v_{j-1}', s_j, v_j'' \ldots v_j', s_l, v_l'' \ldots v_l')$
5	$(s_{k-1}, v_{k-1}' \ldots v_{k-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{k-1}, v_{k-1}'' \ldots v_{k-1}', s_j, v_j'' \ldots v_j', s_l, v_l'' \ldots v_l')$
6	$(s_{k-1}, v_{k-1}' \ldots v_{k-1}'' m)$, $(s_j, v_j' \ldots v_j'' m)$, $(s_l, v_l' \ldots v_l'' m)$	$(s_{k-1}, v_{k-1}', v_{k-1}'' \ldots v_{k-1}'' m, s_j, v_j', v_j'' \ldots v_j'' m, s_l, v_l', v_l'' \ldots v_l'' m)$
Proof We shall only prove Case 1 and Case 2, the remaining four cases can be shown analogously. For Case 1, the π-cycles containing s_{i-1}, s_j, s_l are

$$(s_{i-1}, v_1^i, \ldots v_m^i), (s_j, v_1^j, \ldots v_m^j), (s_l, v_1^l, \ldots v_m^l).$$

Lemma 1 allows us to identify the new cycle structure by inspecting the critical points s_{i-1}, s_j and s_l. Here we observe that all three cycles merge and form a single π^h-cycle

$$(s_{i-1}, \pi^h(s_{i-1}), (\pi^h)^2(s_{i-1}), \ldots) = (s_{i-1}, \pi(s_j), \pi^2(s_j), \ldots) = (s_{i-1}, v_1^j, \ldots v_m^j, s_j, v_1^j, \ldots v_m^j, s_l, v_1^l, \ldots v_m^l).$$

For Case 2, the π-cycle containing s_{i-1}, s_j, s_l is

$$(s_{i-1}, v_1^i, \ldots v_m^i, s_j, v_1^j, \ldots v_m^j, s_l, v_1^l, \ldots v_m^l).$$

We compute the π^h-cycles containing s_{i-1}, s_j and s_l in π^h as

$$(s_{i-1}, \pi^h(s_{i-1}), (\pi^h)^2(s_{i-1}), \ldots) = (s_{i-1}, \pi(s_j), \pi^2(s_j), \ldots) = (s_{i-1}, v_1^j, \ldots v_m^j)$$

$$(s_j, \pi^h(s_j), (\pi^h)^2(s_j), \ldots) = (s_j, \pi(s_l), \pi^2(s_l), \ldots) = (s_j, v_1^l, \ldots v_m^l)$$

$$(s_l, \pi^h(s_l), (\pi^h)^2(s_l), \ldots) = (s_l, \pi(s_{i-1}), \pi^2(s_{i-1}), \ldots) = (s_l, v_1^i, \ldots v_m^i)$$

whence the lemma. □

If we wish to express which cycles are impacted by a transpose of scenario k acting on a plane permutation, we shall say “the cycles are acted upon by a Case k transpose”.

We next observe

Lemma 3 Let $p^h = \chi_h \circ p$ where χ_h is a transpose. Then the difference of the number of cycles of p and p^h is even. Furthermore the difference of the number of cycles, odd cycles, even cycles between p and p^h is contained in $\{-2, 0, 2\}$.

Proof Lemma 2 implies that the difference of the numbers of cycles of π and π^h is even. As for the statement about odd cycles, since the parity of the total number of elements contained in the cycles containing s_{i-1}, s_j and s_l is preserved, the difference of the number of odd cycles is even. Consequently, the difference of the number of even cycles is also even whence the lemma. □

Suppose we are given $h = (i, j, k, l)$, where $j + 1 < k$. Then using the strategy of the proof of Lemma 2 we have

Lemma 4 Let $(s^h, \pi^h) = \chi_h \circ (s, \pi)$, where $h = (i, j, k, l)$ and $j + 1 < k$. Then, the difference of the numbers of π-cycles and π^h-cycles is contained in $\{-2, 0, 2\}$. Furthermore, the scenarios, where the number of π^h-cycles increases by 2, are given by:
Theorem 1

For an arbitrary permutation \(\gamma \) on \([n]^*\), \(p = (\bar{s}, \gamma)\) is a plane permutation. By construction, each transposition on the sequence \(s\) induces a transpose on \(p\). If \(s\) changes to \(\bar{s}\) by a series of transpositions, we have, for some \(\beta\), that \(p\) changes into the plane permutation \((\bar{\epsilon}_n, \beta)\). By construction, we have

\[
D_p = \bar{s} \gamma^{-1} = \bar{\epsilon}_n \beta^{-1},
\]
and accordingly
\[\bar{\beta} = \gamma s^{-1} \hat{e}_u. \]

Since each transpose changes the number of cycles by at most 2 according to Lemma 3, at least \(\frac{C(\gamma^{-1}s_0) - C(\gamma)}{2} \) transposes are needed from \(\gamma \) to \(\bar{\beta} \). The same argument also applies to deriving the lower bounds in terms of odd and even cycles, respectively. Note that \(\gamma \) can be arbitrarily selected, then the proof follows. \(\square \)

The most common model used to study transposition distance is cycle-graph proposed by Bafna and Pevzner [5]. Given a permutation \(s = s_1 s_2 \cdots s_n \) on \([n] \), the cycle graph \(G(s) \) of \(s \) is obtained as follows: add two additional elements \(s_0 = 0 \) and \(s_{n+1} = n + 1 \). The vertices of \(G(s) \) are the elements in \([n + 1]^* \). Draw a directed black edge from \(i + 1 \) to \(i \), and draw a directed gray edge from \(s_i \) to \(s_{i+1} \), we then obtain \(G(s) \). An alternating cycle in \(G(s) \) is a directed cycle, where its edges alternate in color. An alternating cycle is called odd if the number of black edges is odd. Bafna and Pevzner obtained lower and upper bound for \(t(\pi) \) in terms of the number of cycles and odd cycles of \(G(s) \) [5].

By examining the cycle graph model \(G(s) \) of a permutation \(s \), it turns out the cycle graph \(G(s) \) is actually the directed graph representation of the product \(p_i \bar{s} \), if we identify the two auxiliary points \(0 \) and \(n + 1 \). The directed graph representation of a permutation \(\pi \) is the directed graph by drawing an directed edge from \(i \) to \(\pi(i) \). If we color the directed edge of \(\bar{s} \) gray and the directed edge of \(p_i \) black, an alternating cycle then determines a cycle of the permutation \(p_i \bar{s} \). Therefore, the number of cycles and odd cycles in \(p_i \bar{s} \) is equal to the number of cycles and odd cycles in \(G(s) \), respectively. As results, Theorem 1 immediately implies

Corollary 1 (Bafna and Pevzner [5])

\[
\begin{align*}
\text{td}(s) & \geq \frac{n + 1 - C(p_i \bar{s})}{2}, \quad (3) \\
\text{td}(s) & \geq \frac{n + 1 - C_{\text{odd}}(p_i \bar{s})}{2}. \quad (4)
\end{align*}
\]

Proof Setting \(\gamma = (p_i \bar{s})^{-1} \) in Theorem 1 implies the corollary. \(\square \)

In view of Theorem 1 employing an appropriate \(\gamma \), it is possible to obtain a better lower bound than what are in Corollary 1. This motivates the following problems: given a permutation \(\pi \), what is the maximum number of \(|C(\pi \gamma) - C(\gamma)| \) (resp. \(|C_{\text{odd}}(\pi \gamma) - C_{\text{odd}}(\gamma)| \), \(|C_{\text{ev}}(\pi \gamma) - C_{\text{ev}}(\gamma)| \)), where \(\gamma \) ranges over a set of permutations.

More generally, we can study the distribution functions

\[
\sum_{\gamma \in A} C(\pi \gamma) - C(\gamma), \quad \sum_{\gamma \in A} C_{\text{odd}}(\pi \gamma) - C_{\text{odd}}(\gamma), \quad \sum_{\gamma \in A} C_{\text{ev}}(\pi \gamma) - C_{\text{ev}}(\gamma),
\]

where \(A \) is a set of permutations, e.g., a conjugacy class or all permutations. In this paper, we will later determine \(\max_{\pi} \{ |C(\pi \gamma) - C(\gamma)| \} \) for an arbitrary permutation \(\pi \). Surprisingly, the maximum for this case is achieved when \(\gamma = \pi^{-1} \) or \(\gamma \) is the identity permutation. For the other two problems in terms of odd cycle and even cycle, we are unable to solve it at present. Is it likely that the maxima are achieved when \(\gamma = \pi^{-1} \) or \(\gamma \) is the identity permutation as well?

Another approach to obtain a better lower bound is fixing \(\gamma \) and figuring out these unavoidable transposes which do not increase (or decrease) the number of cycles (or odd, or even cycles) from \(\gamma \) to \(\gamma s^{-1} \hat{e}_u \). In particular, by setting \(\gamma = p_i \bar{s} \), it is not hard to analyze the number of “hurdles” similar as in Christie 1 in the framework of plane permutations, which we do not go into detail here.
4 Block-interchange distance of permutations

A more general transposition problem, where the involved two blocks are not necessarily adjacent, was studied in Christie [8]. It is referred to as the block-interchange distance problem. The minimum number of block-interchanges needed to sort s into e_n is accordingly called the block-interchange distance of s and denoted as $\text{bid}(s)$. Clearly, Lemma 4 may facilitate the study of the block-interchange distance.

Lemma 5 Let $p = (\bar{s}, \pi)$ be a plane permutation on $[n]^n$ where $D_p = p_i^{-1}$ and $\bar{s} \neq \hat{e}_n$. Then, there exist $\bar{s}_{i-1} <_\pi \bar{s}_j <_\pi \bar{s}_{k-1} \leq_\pi \bar{s}_1$ such that

$$\pi(\bar{s}_{i-1}) = \bar{s}_{k-1}, \quad \pi(\bar{s}_i) = \bar{s}_j.$$

Proof Since $\bar{s} \neq \hat{e}_n$, there exists $x \in [n]$ such that $x + 1 <_\pi x$. Assume $x = \bar{s}_{k-1}$ is the largest such integer and let $\bar{s}_j = x + 1$. Then, $\pi(\bar{s}_{i-1}) = x = \bar{s}_{k-1}$ since $D_p(\pi(\bar{s}_{i-1})) = \pi(\bar{s}_{i-1}) + 1 = x + 1$. Between \bar{s}_{i-1} and x, find the largest integer which is larger than x. Since $x + 1$ lies between \bar{s}_{i-1} and x, this maximum exists and we denote it by y. Then we have by construction

$$\bar{s}_{i-1} <_\pi \bar{s}_j = y <_\pi x = \bar{s}_{k-1} <_\pi y + 1 = \bar{s}_{i+1}.$$

Therefore, $\pi(\bar{s}_i) = D_p^{-1}(y + 1) = y = \bar{s}_j$, whence the lemma. □

Now we can derive the exact block-interchange distance formula obtained by Christie [8].

Theorem 2 (Christie [8])

$$\text{bid}(s) = \frac{n + 1 - C(p, \bar{s})}{2}. \quad (6)$$

Proof Let $p = (\bar{s}, \pi)$ be a plane permutation on $[n]^n$ where $D_p = p_i^{-1}$ and $\bar{s} \neq \hat{e}_n$. According to Lemma 5, we either have $\bar{s}_{i-1} <_\pi \bar{s}_j <_\pi \bar{s}_{k-1} <_\pi \bar{s}_1$ such that we either have π-cycle

$$(\bar{s}_{i-1}, \bar{s}_{k-1}, \ldots, \bar{s}_j, \bar{s}_j, \ldots) \quad \text{or} \quad (\bar{s}_{i-1}, \bar{s}_{k-1}, \ldots)(\bar{s}_i, \bar{s}_j, \ldots),$$

or $\bar{s}_{i-1} <_\pi \bar{s}_j <_\pi \bar{s}_{k-1} =_\pi \bar{s}_1$ such that we have the π-cycle $(\bar{s}_{i-1}, \bar{s}_{k-1}, \bar{s}_i, \ldots)$. For the former case, the determined C^*_0 is either Case c or Case e of Lemma 4. For the latter case, the determined C^*_0 is Case 2 transpose of Lemma 2. Therefore, no matter which case, we can always find a block-interchange to increase the number of cycles by 2. Then, arguing as in Theorem 1 completes the proof. □

Note that each block-interchange can be achieved by at most two transpositions, i.e.,

$$[i, j, j + 1, \ldots k - 1, k, i] \to [k, l, j + 1, \ldots k - 1, i, j] \iff [i, j, j + 1, \ldots k - 1, k, i] \to [k, l, i, j, j + 1, \ldots k - 1] \to [k, l, j + 1, \ldots k - 1, i, j].$$

Then, we immediately obtain an upper bound for the transposition distance.

Corollary 2 [5]

$$\text{td}(s) \leq n + 1 - C(p, \bar{s}). \quad (7)$$

Furthermore, Zagier and Stanley’s result mentioned earlier implies that
Corollary 3 Let \(bid_k(n) \) denote the number of sequences \(s \) on \([n] \) such that \(bid(s) = k \). Then,

\[
bid_k(n) = \frac{2C(n+2, n+1-2k)}{(n+1)(n+2)}. \tag{8}
\]

Proof Let

\[k = bid(s) = \frac{n+1 - C(p, \bar{s})}{2}. \]

The number of \(s \) such that \(bid(s) = k \) is equal to the number of permutation \(\bar{s} \) such that \(C(p, \bar{s}) = n+1 - 2k \). Then, applying Zagier and Stanley’s result completes the proof. \(\square \)

We note that the corollary above was also used by Bona and Flynn [4] to compute the average number of block-interchanges needed to sort permutations.

In view of Theorem 1 and Theorem 2, we are now in position to answer one of the optimization problems mentioned earlier.

Theorem 3 Let \(\alpha \) be a permutation on \([n] \) and \(n \geq 1 \). Then we have

\[
\max_{\gamma} \{|C(\alpha\gamma) - C(\gamma)|\} = n - C(\alpha), \tag{9}
\]

where \(\gamma \) ranges over all permutations on \([n] \).

Proof Claim. for arbitrary \(s \), we have

\[
\max_{\gamma} \{|C(p, \bar{s}\gamma) - C(\gamma)|\} = n + 1 - C(p, \bar{s}), \tag{10}
\]

where \(\gamma \) ranges over all permutations on \([n]^\ast \).

To prove the Claim, we argue as in Theorem 4 that

\[
bid(s) \geq \max_{\gamma} \left\{ \frac{|C(p, \bar{s}\gamma) - C(\gamma)|}{2} \right\},
\]

holds. On the other hand, Theorem 2 guarantees

\[
bid(s) = \frac{n + 1 - C(p, \bar{s})}{2} = \left| \frac{C(p, \bar{s}\gamma) - C(\gamma)}{2} \right|_{\gamma = (p, \bar{s})^{-1}},
\]

which means the maximum is achieved when \(\gamma = (p, \bar{s})^{-1} \), whence the Claim.

We now use the fact that any even permutation \(\alpha' \) on \([n]^\ast \) has a factorization into two \((n+1) \)-cycles. Assume \(\alpha' = \beta_1 \beta_2 \) where \(\beta_1, \beta_2 \) are two \((n+1) \)-cycles, and \(p_i = \theta \beta_i \theta^{-1} \).

Then, we have

\[
\max_{\gamma} \{|C(\alpha'\gamma) - C(\gamma)|\} = \max_{\gamma} \{|C(\theta \beta_1 \beta_2 \gamma \theta^{-1}) - C(\theta \gamma \theta^{-1})|\}
\]

\[= \max_{\gamma} \{|C(p, \beta_1 \beta_2 \gamma \theta^{-1}) - C(\theta \gamma \theta^{-1})|\}
\]

\[= n + 1 - C(p, \beta_1 \beta_2 \gamma \theta^{-1})
\]

\[= n + 1 - C(\beta_1 \beta_2) = n + 1 - C(\alpha').
\]
So the theorem holds for even permutations. Next we assume α is an odd permutation. If $C(\alpha) < n$, then we can always find a transposition τ (i.e., a cycle of length 2) such that $\alpha = \alpha' \tau$, α' is an even permutation and $C(\alpha) = C(\alpha') - 1$. Thus,

$$\max_T \{ |C(\alpha') - C(\gamma)| \} = \max_T \{ |C(\alpha' \tau) - C(\gamma)| \}$$

$$= \max_T \{ |C(\alpha' \tau) - C(\tau \gamma) - C(\gamma)| \}$$

$$\leq \max_T \{ |C(\alpha' \tau) - C(\tau \gamma)| + |C(\tau \gamma) - C(\gamma)| \}$$

$$= [n - C(\alpha')] + 1 = n - C(\alpha).$$

Note that $|C(\alpha I) - C(I)| = n - C(\alpha)$, where I is the identity permutation. Hence, we conclude that $\max_T \{ |C(\alpha') - C(\gamma)| \} = n - C(\alpha)$. When $C(\alpha) = n$, i.e., $\alpha = I$, it is obvious that $\max_T \{ |C(\tau \gamma) - C(\gamma)| \} = 0 = n - C(\alpha)$. Hence, the theorem holds for odd permutations as well. This completes the proof. □

5 Reversal distance for signed permutations

In this section, we consider the reversal distance for signed permutations, a problem extensively studied in the context of genome evolution [1, 6, 13] and references therein. Lower bounds for the reversal distance based on the breakpoint graph model were obtained in [6, 12, 13].

In our framework the reversal distance problem can be expressed as a block-interchange distance problem. A lower bound can be easily obtained in this point of view, and the lower bound will be shown to be the exact reversal distance for most of signed permutations.

Let $[n] = \{-1, -2, \ldots, -n\}$.

Definition 2 A signed permutation on $[n]$ is a pair (a, w) where a is a sequence on $[n]$ while w is a word of length n on the alphabet set $\{+,-\}$.

Usually, a signed permutation is represented by a single sequence $a_w = a_{w,1}a_{w,2} \cdots a_{w,n}$ where $a_{w,k} = w_k a_k$, i.e., each a_k carries a sign determined by w_k.

Given a signed permutation $a = a_1 a_2 \cdots a_{i-1} a_i a_{i+1} \cdots a_{j-1} a_j a_{j+1} \cdots a_n$ on $[n]$, a reversal $\rho_{i,j}$ acting on a will change a into

$$a' = \rho_{i,j} \circ a = a_1 a_2 \cdots a_{i-1} (-a_j) (-a_{j-1}) \cdots (-a_{i+1}) (-a_i) a_{j+1} \cdots a_n.$$

The reversal distance $d_r(a)$ of a signed permutation a on $[n]$ is the minimum number of reversals needed to sort a into $e_n = 12 \cdots n$.

For the given signed permutation a, we associate the sequence $s = s(a)$ as follows

$$s = s_0 s_1 s_2 \cdots s_{2n} = 0 a_1 a_2 \cdots a_n (-a_n) (-a_{n-1}) \cdots (-a_2) (-a_1),$$

i.e., $s_0 = 0$ and $s_k = -s_{2n+1-k}$ for $1 \leq k \leq 2n$. Furthermore, such sequences will be referred to as skew-symmetric sequences since we have $s_k = -s_{2n+1-k}$. A sequence s is called exact if there exists $s_i < 0$ for some $1 \leq i \leq n$. The reversal distance of a is equal to the block-interchange distance of s into

$$e_n^a = 012 \cdots n(-n)(-n+1) \cdots (-2)(-1).$$
where only certain block-interchanges are allowed, i.e., only the actions \(\chi_h, h = (i, j, 2n + 1 - j, 2n + 1 - i) \) are allowed where \(1 \leq i \leq j \leq n \). Hereafter, we will denote these particular block-interchanges on \(s \) as reversals, \(\rho_{ij} \).

Let

\[
\tilde{s} = (s) = (0, a_1, a_2, \ldots, a_{n-1}, a_n, -a_n, -a_{n-1}, \ldots, -a_2, -a_1),
\]

\[
\rho_r = (-1, -2, \ldots, -n+1, -n, n, n-1, \ldots, 2, 1, 0).
\]

A plane permutation of the form \((\tilde{s}, \pi)\) will be called skew-symmetric.

Theorem 4

\[
d_r(a) \geq \frac{2n + 1 - C(p_r, \tilde{s})}{2}.
\]

Proof Since reversals are restricted block-interchanges, the reversal distance will be bounded by the block-interchange distance without restriction. Theorem 4 then implies Eq. (11).

Our approach gives rise to the question of how potent the restricted block-interchanges are. Is it difficult to find a block-interchange increasing the number of cycles by 2 that is a reversal (i.e., 2-reversal)?

We will call a plane permutation \((\tilde{s}, \pi)\) exact, skew-symmetric if \(\tilde{s}\) is exact and skew-symmetric. The following lemma will show that there is almost always a 2-reversal.

Lemma 6 Let \(p = (\tilde{s}, \pi) \) be exact and skew-symmetric on \([n]^+ \cup [n]^–\), where \(D_p = p_r^{-1} \). Then, there always exist \(i - 1 \) and \(2n - j \) such that

\[
\pi(s_{i-1}) = s_{2n-j},
\]

where \(0 \leq i - 1 \leq n - 1 \) and \(n + 1 \leq 2n - j \leq 2n \). Furthermore, we have the following cases

(a) If \(s_{i-1} < s_j < s_{2n-j} < s_{2n+1-1} \), then

\[
\pi(s_{i-1}) = s_{2n-j}, \quad \pi(s_j) = s_{2n+1-i}.
\]

(b) If \(s_j < s_{i-1} < s_{2n+1-i} < s_{2n-j} \), then

\[
\pi(s_{i-1}) = s_{2n-j}, \quad \pi(s_j) = s_{2n+1-i}.
\]

Proof We firstly prove the former part. Assume \(s_t \) is the smallest negative element among the subsequence \(s_1, s_2, \ldots, s_t \). If \(s_t = -n \), then we have \(s_{2n+1-1} = -s_i = n \) by symmetry. Since \(D_p = p_r^{-1} \), for any \(k \), \(s_{i+1} = p_r^{-1}(s_k) = s_k + 1 \) where \(n + 1 \) is interpreted as \(-n\). Thus, \(\pi(s_{i-1}) = D_p^{-1}(s_i) = D_p^{-1}(-n) = n = s_{2n+1-i} \). Let \(2n - j = 2n + 1 - i \), then \(2n - j \geq n + 1 \) and we are done. If \(s_t > -n \), then we have \(\pi(s_{i-1}) = D_p^{-1}(s_i) = s_i - 1 \geq -n \). Since \(s_t \) is the smallest negative element among \(s_t \) for \(1 \leq i \leq n \), if \(s_{2n-j} = s_i - 1 < s_t \), then \(2n - j \geq n + 1 \), whence the former part.

Using \(D_p = p_r^{-1} \) and the skew-symmetry \(s_k = -s_{2n+1-k} \), we have in case (a) the following situation in \(p \) (only relevant entries are illustrated)

\[
\begin{pmatrix}
-1 & i & \cdots & j + 1 & 2n - j & 2n + 1 - j & \cdots & 2n + 1 - i \\
\end{pmatrix}
\]

Therefore, we have

\[
\pi(s_{i-1}) = s_{2n-j}, \quad \pi(s_j) = -s_{2n-j} - 1 = s_{2n+1-i}.
\]
Analogously we have in case of (b) the situation
\[
\begin{pmatrix}
j & j+1 & \cdots & i-1 & i & \cdots & 2n+1-i & 2n+2-i & \cdots & 2n-j \\
s_j & -s_{2n-j} & \cdots & s_i-1 & s_{2n-j}+1 & \cdots & -s_{2n-j-1} & -s_i-1 & \cdots & s_{2n-j} \\
-2s_{2n-j} & -1 & \diamond & \cdots & \diamond & \cdots & \diamond & \cdots & \diamond & \diamond & \cdots & \diamond & \diamond
\end{pmatrix}.
\]
Therefore, we have
\[
\pi(s_{i-1}) = s_{2n-j}, \quad \pi(s_j) = -s_{2n-j} - 1 = s_{2n+1-i}.
\]
This completes the proof. \(\square\)

Remark. The pair \(s_{i-1}\) and \(s_{2n-j}\) such that \(\pi(s_{i-1}) = s_{2n-j}\) is not unique. For instance, assume the positive integer \(k, 1 \leq k \leq n-1\), is not in the subsequence \(s_1s_2\cdots s_n\) but \(k+1\) is, then \(\pi^{-1}(k)\) and \(k = D_{s_n}^{-1}(k+1)\) form such a pair.

Inspection of Lemma 4 and Lemma 6 shows that there is almost always a 2-reversal for signed permutations. The only critical cases, not covered in Lemma 6 are

- The signs of all elements in the given signed permutation are positive.
- Exact signed permutation which for \(1 \leq i \leq n\) and \(n+1 \leq 2n-j\), \(\pi(s_{i-1}) = s_{2n-j}\) iff
 \[2n-j = 2n+1-i,\]

We proceed to analyze the latter case. Since \(\pi(s_{i-1}) = s_{2n+1-i} = -s_i\), we have
\[
\begin{pmatrix}
s_{i-1} & s_i & \cdots & s_n & -s_n & \cdots & s_{2n+1-i} & s_{2n+2-i} \\
\pi(s_{i-1}) & \diamond & \cdots & \diamond & \cdots & \diamond & \cdots & \diamond
\end{pmatrix} = \begin{pmatrix}
s_{i-1} & s_i & \cdots & s_n & -s_n & \cdots & -s_i & -s_{i-1} \\
-\diamond & \cdots & \diamond & \cdots & \diamond & \cdots & \diamond & \diamond
\end{pmatrix}.
\]

Due to \(D_{s_n}\), \(D_p(-s_i) = s_i = -s_i + 1\) (note that \(n+1\) is interpreted as \(-n\)). The only situation satisfying this condition is that \(s_i = -n\), i.e., the sign of \(n\) in the given signed permutation is negative. Then, we have \(\pi(s_{i-1}) = s_{2n-j} = s_{2n+1-i} = n\). We believe that in this case Lemma 2 (instead of Lemma 4) provides a 2-reversal. Namely, \(s_{i-1}\) (i.e., the preimage of \(n\)), \(s_n\) and \(n = s_{2n+1-i}\) will form a Case 2 transpose in Lemma 2, which will be true if \(n\) and \(s_i\) are in the same cycle of \(\pi\), i.e., \(\pi\) has a cycle \((s_{i-1}, s_{2n+1-i}, \ldots, s_{n}, \ldots)\). In order to illustrate this we consider

Example 1
\[
\begin{pmatrix}
0 & -3 & 1 & 2 & -4 & 4 & -2 & -1 & 3 \\
-4 & 0 & 1 & 4 & 3 & -3 & -2 & 2 & -1
\end{pmatrix} = (0, -4, 3, -1, 2, 4, -3)(1)(-2)
\]
\[
\begin{pmatrix}
0 & 2 & -4 & 1 & 3 & -3 & 1 & 4 & -2 \\
1 & 4 & -2 & 2 & -4 & 0 & 3 & -3 & -1
\end{pmatrix} = (0, 1, 3, -4, -2, -1, 2, 4, -3)
\]
We inspect, that in the first case \(s_{i-1} = 2\), \(s_n = -4\) and \(n = 4\) form a Case 2 transpose of Lemma 2. In the second case \(s_{i-1} = 2\), \(s_n = 3\) and \(n = 4\) form again a Case 2 transpose of Lemma 2.

Therefore, we conjecture

Conjecture 1 Let \(\tau = (\bar{s}, \pi)\) be exact, skew-symmetric on \([n]^+ \cup [n]^−\) where \(D_p = p^−1\) and suppose \(\pi(s_{i-1}) = s_{2n+1-i}\), where \(1 \leq i \leq n\). Then, \(n\) and \(s_\bar{s}\) are in the same cycle of \(\pi\).
Lemma and an analysis of the preservation of exactness under 2-reversals suggest, that for a random signed permutation, it is likely to be possible to transform \(s \) into \(e \) via a sequence of 2-reversals. In fact, many examples, including Braga [3, Table 3.2], indicate that the lower bound of Theorem 4 gives the exact reversal distances.

Note that the lower bound obtained in [6,12] via the break point graph also provides the exact reversal distance for most of signed permutations although the exact reversal distance was formulated later in [13]. Now we give a brief comparison of our formula Eq. (11) and the lower bound via break point graph. The break point graph for a given signed permutation \(\pi = a_1a_2\cdots a_n \) on \([n]\) can be obtained as follows: replacing \(a_i \) with \((-a_i)a_i\), and adding 0 at the beginning of the obtained sequence while adding \(-(n+1)\) at the end of the obtained sequence, in this way we obtain a sequence \(b = b_0b_1b_2\cdots b_{2n+1} \) on \([n]^* \cup [n+1]^*\). Draw a black edge between \(b_{2i} \) and \(b_{2i+1} \), as well as a grey edge between \(i \) and \(-(i+1)\) for \(0 \leq i \leq n \). The obtained graph is the break point graph \(BG(\pi) \) of \(\pi \). Note that each vertex in \(BG(\pi) \) has degree two so that it can be decomposed into disjoint cycles. Denote the number of cycles in \(BG(\pi) \) as \(C_{BG}(\pi) \). Then, the lower bound via the break point graph is

\[
d_r(\pi) \geq n + 1 - C_{BG}(\pi).
\]

Looking into this formula and the break point graph, we can actually formulate Eq. (15) into the form similar to our lower bound. Let \(\theta_1, \theta_2 \) be the two involutions (without fixed points) determined by the black edges and grey edges in the break point graph, respectively, i.e.,

\[
\theta_1 = (b_0,b_1)(b_2,b_3)\cdots(b_{2n},b_{2n+1}),
\theta_2 = (0, -1)(1, -2)\cdots(n, -n - 1).
\]

It is not hard to observe that \(C_{BG}(\pi) = \frac{C(\theta_1\theta_2)}{2} \). Therefore, we have

Proposition 1

\[
d_r(\pi) \geq \frac{2n + 2 - C(\theta_1\theta_2)}{2}.
\]

Since both our lower bound Eq. (11) and the lower bound Eq. (16) provide the exact reversal distance for most of signed permutations, that suggests, for most of signed permutations,

\[
C(p, \tilde{s}) = C(\theta_1\theta_2) - 1 = 2C_{BG}(\pi) - 1.
\]

Is it always true?

At last, we present the following generalization of Conjecture 1:

Conjecture 2 Let \(p = (\tilde{s}, \pi) \) be skew-symmetric on \([n]^* \cup [n]^*\) where \(D_p = p^{-1} \). Then, \(n \) and \(s_n \) are in the same cycle of \(\pi \).

Acknowledgements We acknowledge the financial support of the Future and Emerging Technologies (FET) programme within the Seventh Framework Programme (FP7) for Research of the European Commission, under the FET-Proactive grant agreement TOPDRIM, number FP7-ICT-318121.
References

1. D. A. Bader, B. M. E. Moret, M. Yan, A linear-time algorithm for computing inversion distance between
signed permutations with an experimental study, J. Comp. Biol. 8(5) (2001), 483-491.
2. L. Bulteau, G. Fertin, I. Rusu, Sorting by transpositions is difficult, SIAM J. Discrete Math. 26(3) (2012),
1148-1180.
3. M. D. V. Braga, baobabLuna: the solution space of sorting by reversals, doua. prabi.fr/software/luna-
data/doc/luna-doc.pdf.
4. M. Bona and R. Flynn, The average number of block interchanges needed to sort a permutation and a
recent result of Stanley, Inf. Process. Lett., 109 (2009), 927-931.
5. V. Bafna and P. Pevzner, Sorting permutations by transpositions, Proc. 6th Symposium on Discrete Algo-
rithms, ACM-SIAM, (1995), pp. 614-621.
6. V. Bafna and P. A. Pevzner, Genome rearrangements and sorting by reversals, SIAM Journal on Comput-
ing, 25(2):272-289, 1996.
7. D. A. Christie, Genome Rearrangement Problems. PhD. thesis, Glasgow University, 1998.
8. D. A. Christie, Sorting permutations by block-interchanges, Inf. Process. Lett., 60 (1996), 165-169.
9. R. X. F. Chen, C. M. Reidys, Another combinatorial proof of a result of Zagier and Stanley,
arXiv:1502.07674 [math.CO].
10. I. Elias and T. Hartman, A 1.375-approximation algorithm for sorting by transpositions, In Proc. of the
5th International Workshop on Algorithms in Bioinformatics (WABI05), volume 3692 of Lecture Notes
in Computer Science, pp. 204-214.
11. F. W. D. Huang, C. M. Reidys, A topological framework for signed permutations, arXiv:1410.4706
[math.CO].
12. S. Hannenhalli, P. Pevzner, To cut or not to cut (applications of comparative physical maps in molecular
evolution), Proceedings of the seventh annual ACM-SIAM symposium on Discrete algorithms (1996),
304-313.
13. S. Hannenhalli, P. Pevzner, Transforming cabbage into turnip: Polynomial algorithm for sorting signed
permutations by reversals, Journal of the ACM 46 (1999) 1-27.
14. R. Stanley, Two enumerative results on cycles of permutations, European J. Comb. 32 (2011), 937-943.
15. D. Zagier, On the distribution of the number of cycles of elements in symmetric groups, Nieuw Arch.
Wisk. (4),13, No. 3 (1995), 489-495.
