Proteomic Analysis of Normal and Cancer Cervical Cell Lines Reveals Deregulation of Cytoskeleton-associated Proteins

KALLIOPI I. PAPPA1,2, VASILIKI LYGIROU3,4, GEORGIA KONTOSTATHI3,4, JEROME ZOIDAKIS3, MANOUSOS MAKRIDAKIS3, KONSTANTINOS VOUGAS3, GEORGE DASKALAKIS1, ALEXANDER POLYZOS5 and NICHOLAS P. ANAGNOU2,4

1First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece; 2Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; 3Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece; 4Laboratory of Biology, University of Athens School of Medicine, Athens, Greece; 5Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece

Abstract. Background: Both HPV-positive and -negative cervical cancers are primarily associated with features of cell cycle and cytoskeletal disruption; however, the actual biological processes affected remain elusive. To this end, we systematically characterized the intracellular proteomic profiles of four distinct and informative cervical cell lines. Materials and Methods: Cell extracts from a normal cervical (HCK1T) and three cervical cancer cell lines, one HPV-negative (C33A), and two HPV-positive, SiHa (HPV16+) and HeLa (HPV18+), were analyzed by 2-dimensional electrophoresis and differentially expressed proteins were identified by MALDI-TOF mass spectrometry, while differential expression was confirmed by western blot analysis. Results: In total, 113 proteins were found differentially expressed between the normal and the cervical cancer lines. Bioinformatics analysis revealed the actin cytoskeleton signaling pathway to be significantly affected, while up-regulation of cofilin-1, an actin depolymerizing factor, was documented and further validated by western blotting. Furthermore, two-way comparisons among the four cell lines, revealed a set of 18 informative differentially expressed proteins. Conclusion: These novel identified proteins provide the impetus for further functional studies to dissect the mechanisms operating in the two distinct pathways of cervical carcinogenesis.

Cervical cancer represents the fourth most common and fatal form of cancer among women worldwide (1). More than 90% of cervical cancer cases arise as a consequence of a human papilloma virus (HPV) infection. Currently, 210 different HPV types have been officially recognized (2), and – based on their carcinogenic potential – have been classified either as low-risk HPV types, or as high-risk and potentially carcinogenic (3). Of the high-risk group, the five most common HPV types include HPV 16, 18, 45, 30, and 33, while types 16 and 18 alone, account for about 70% of all cervical cancer cases (4).

In the early phase of cervical carcinogenesis, HPV initially infects the proliferating cells of the basal layer of the cervical stratified epithelium through abrasions of the mucosal epithelium. Following infection, the HPV genome remains in the form of nuclear extrachromosomal episome, and due to the repression of the viral E6 and E7 oncoprotein synthesis, the viral DNA replication occurs at very low levels (5). Following the gradual differentiation of the basal cells and their migration to the upper layers of the epithelium, an increased expression of E6 and E7 oncoproteins occurs, leading to inhibition of apoptosis, while the viral genome is replicated further. At this point, structural proteins and mature viral particles are produced, and the shed virus can then initiate a new infection. These
infections resolve within 1-2 years, but they can last up to several decades. However, very few of them are persistent and gradually progress to cancer (6), reflecting a dynamic interplay of viral mechanisms of immune escape and suppression of the negative regulators of the cell growth, combined with defects of cellular response by the host (5). The final events of the neoplastic transformation are associated frequently (45-80%) with the integration of the HPV DNA into the host genome and the ensuing overexpression of E6 and E7 oncoproteins, leading to further proliferation of the transformed cells.

Since both HPV-positive and HPV-negative cervical cancers are primarily associated with features of cell-cycle and cytoskeletal disruption (5), the precise elucidation of the contribution of the putative individual oncogenic drivers induced by the presence or the absence of HPV in cervical cancer is imperative. Therefore, utilization of informative cell lines with or without the HPV genome, can provide valuable insights on these mechanisms. To this end, our group has initiated a comprehensive approach to elucidate the specific oncogenic drivers operating in cervical cancer, both at the transcriptional (7) and the proteomic level (8). In these studies, we have identified for the first time, four novel transcription modules (7), involved in cervical cancer, exhibiting synergy between groups of transcription regulators, while certain modules were annotated to specific biological processes, such as cell cycle, apoptosis, transcription and development. In our recent study (8), by employing proteomic approaches on the secretome of four informative cervical cell lines, we have identified 67 differentially expressed proteins, displaying mainly catalytic, binding or structural molecule activity, while bioinformatics analysis identified the transcription factor NRF2 as an important regulator of differentially expressed proteins in the cancer cell lines. Thus, such comparative proteomic approaches employing cervical cell lines, represent a valuable tool to further explore the precise mechanisms involved in viral infection and protein dysfunction interplay that can lead to cervical carcinogenesis (5, 6). Furthermore, a review (6) of recent studies on the proteomics of cervical cancer cell lines, revealed that their major focus relies either on the variable effects of several drugs or on the modulation of a specific gene expression on their proteome composition.

Therefore, based on the above data, in the present study, we further investigated these mechanisms, by employing 2-dimensional electrophoresis (2-DE) and bioinformatics analysis, and systematically characterized the intracellular proteomic profiles of four distinct informative cervical cell lines, either with or without the presence of HPV, and identified specific biochemical similarities and differences, reflecting particular aberrant pathways of carcinogenesis, which can be eventually validated further and assessed as putative biomarkers of cervical pathology.

Materials and Methods

Cell lines culture and sample preparation. HeLa (HPV 18+), SiHa (HPV 16+) and C33A (HPV-negative) cervical cancer cell lines, were purchased from ATCC (Manassas, VA, USA) and cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% Fetal Bovine Serum (FBS) (Gibco-Invitrogen, Waltham, MA, USA) at 37°C, 5% CO2, as previously described (9). HCKT1 cell lines were a kind offer of Tosh Kiyono (10) and were cultured as proposed (11) in Defined Keratinocyte Serum-Free Medium (SFM) (Gibco BRL, San Francisco, CA, USA) supplemented with 5 ng/ml Epidermal Growth Factor (EGF) (Gibco BRL) and 50 μg/ml of Bovine Pituitary Extract (BPE) (Gibco BRL). When the cells reached a concentration of 106 cells per ml, they were trypsinized and harvested, and the pellets were washed in Phosphate Buffered Saline (PBS) 3 times. Pellets were homogenized in 2D-Buffer (7 M Urea, 2 M thiourea, 4% CHAPS, 1% DTE) using mild sonication (water bath sonication). After centrifugation at 16,000 x g for 20 min, the total cell extract was obtained as a supernatant. Protein concentration was measured with the Bradford assay.

2D Electrophoresis. From each cell extract, 80 μg were loaded on 7-cm immobilized pH gradient (IPG) strips of pH 3-10 NL (Bio-Rad, Hercules, CA, USA) in isoelectric focusing (IEF) cell trays, following the addition of 2% Bio-Lyte 3/10 Ampholytes for isoelectric focusing. For the preparative gels only, the amount of protein loaded from each cell line was 400 μg. IEF was performed in Bio-Rad PROTEAN IEF cell for 14,000 VHR as follows. Step 1: 50 V, rapid, 14 h (active rehydration); step 2: 250 V, rapid, 30 min; step 3: 4,000 V, linear, 1 h; step 4: 4,000 V, rapid, 11,000 VHR (focusing); step 5: 100 V, rapid, 24 h (conservation). For the second dimension electrophoresis, the equilibration of the strips and the reduction and alkylation of the proteins were performed in equilibration buffer (6 M Urea, 1.5 M Tris HCl, pH 8.8, 30% Glycerol, 2% SDS) containing 0.03 M DTE for 20 min and then in equilibration buffer containing 0.136 M Iodoacetamide for 20 min. Strips were then sealed with agarose on top of a 12% SDS-polyacrylamide gel, which was run at 80 V for 10 min and then at 160 V. Following electrophoresis, the gels were fixed in 30% methanol, 10% acetic acid for 30 min, 2 h and then overnight. Visualization of the spots was achieved with silver staining. Each gel was sensitized in 0.8 mM sodium thiosulfate pentahydrate solution for 1 min, washed with ultrapure water for 1 min, stained in 12 mM silver nitrate solution for 20 min and washed again with ultrapure water for 10 sec. Visualization of the spots was performed with 50 ml of development solution (3% w/v potassium carbonate, 12.5 μl formalin-formaldehyde 37%, 5.25 μl 10% w/v sodium thiosulfate pentahydrate). When the development was completed, the gel was washed with ultrapure water for 10 sec and the stop solution (2% acetic acid) was added and left for 10 min. After two washes with ultrapure water for 10 min, the gels were scanned with a GS-800 imaging densitometer (Bio-Rad). Four 2D gels from each cell line were prepared and were used for the analysis.

Comparative analysis. The comparative analysis of the 2D gels images was performed with the PDQuest 2D-Gel analysis software v.8.1.0 (Bio-Rad). The individual protein spot quantity was normalized with the total optical density of the gel. All protein spots with a cancer/normal ratio <0.5 or >2 were considered as differentially expressed and were included for further analysis.
Spot preparation and protein identification. The spots were picked manually from the corresponding preparative 2D gels, which were stained with Coomassie Colloidal Blue overnight, placed in 96-well plates, and 100 μl of destaining solution (40% ACN, 50 mM ammonium bicarbonate) was added in each spot. The plates were shaken for 15 min and this step was repeated three times. Then, the spots were washed with 100 μl ultrapure water for 5 min, reduced with 100 μl of 10 mM DTE dissolved in 100 mM ammonium bicarbonate, pH 8.5 for 10 min and alkylated with 100 μl of 54 mM iodoacetamide, dissolved in 100 mM ammonium bicarbonate, pH 8.5 for 10 min in the dark. The spots were washed with 100 μl of 100 mM ammonium bicarbonate, pH 8.5 for 5 min and then dried in a Savant SpeedVac™ concentrator (Thermo Fisher Scientific, Logan, UT, USA). Finally, 3 μl of 10 ng/μl trypsin in 10 mM ammonium bicarbonate was added and left overnight. The products of tryptic digestion were extracted from the gel by the addition of 5 μl of extraction solution (50% ACN, 0.1% TFA) for 30 min. Then, 1 μl of peptides from each spot were mixed on a stainless steel MALDI target plate with 1 μl of matrix solution (50% v/v ACN, 0.1% TFA v/v, 0.7% v/v α-cyano-4-hydroxycinnamic acid) containing the peptides des-Arg-bradykinin, 904.4681Da (Sigma-Aldrich Corp., St. Louis, MO, USA), and the adrenocorticotropic hormone fragment 18-39, 2465.1989Da (Sigma-Aldrich), as internal standards. For peptide identification, Matrix Assisted Laser Desorption Ionization-Time of Flight/Time of Flight Mass Spectrometry (MALDI-TOF/TOF MS) was performed in an Ultraflex TOF/TOF mass spectrometer (Bruker Daltonics, Billerica, MA, USA). Peak list was created with the Flexanalysis v2.2 software (Bruker Daltonics), peptide matching and protein searches were performed automatically by Mascot Server database (Matrix Science, Boston, MA, USA), signal/noise threshold ratio was set at 2.5. For peptide identification, monoisotopic masses were used and a mass tolerance of 0.0025% (25 ppm) was allowed. Cysteine carbamidomethylation and methionine oxidation were set as fixed and variable modifications, respectively. One miscleavage was allowed. The peptide masses were compared with the theoretical peptide masses of all available proteins from *Homo sapiens* using the Swiss-Prot database. The probability score with *p* < 0.05 identified by the software, was used as the criterion for the affirmative protein identification.

Bioinformatics analysis. Functional annotation of the differentially expressed proteins was performed manually using information from UniProt (http://www.uniprot.org/) and the literature. Pathway analysis was generated by QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN, Redwood City, CA, USA; www.qiagen.com/ingenuity). Ingenuity® Pathway Analysis output was manually curated in order to remove redundant terms, results unrelated to cancer biology, and pathways with fewer than three differentially expressed proteins from our dataset. Moreover, only statistically significant (*p*≤0.05, Fisher’s exact test) canonical pathways were selected.

Western blot analysis. Four 50 μg samples of cell extract dissolved in Laemli’s buffer from each cell line were loaded in 15% SDS-polyacrylamide gel after incubation at 90°C for 10 min. The gel was run at 40 V for 15 min and then at 120 V in transfer buffer (3.03 g Tris, 14.4 g Glycine, 200 ml Methanol for 1 liter total volume). The transfer was performed in transfer buffer for 2 h at 290 mA at 4°C. Then, the membrane was stained with Ponceau-S stain for 5 min, washed with ultrapure water for 5 min three times, followed by the addition of blocking solution (5% w/v non-fat dried milk in TBS-Tween 0.1% v/v) and incubation for 2 h. The membrane was washed with TBS-Tween 0.1% v/v successively for 15 min, 5 min, and 5 min, and the primary mouse antibody sc-53934 for Cofilin-1 (Santa Cruz Biotechnology, Inc., Dallas, TX, USA) was added in a 1:500 dilution and left at 4°C overnight. The next day, the three washes were repeated and the secondary sc-2005 goat anti-mouse antibody IgG-HRP (Santa Cruz Biotechnology) was added in a 1:2,000 dilution and left at room temperature for 2 h. The three washes were repeated, ECL was added and left for 1 min; its excess was removed, followed by film exposure and development.

Results

Proteomic analysis. In order to investigate the quantitative differences in protein expression resulting from malignant transformation of the cervical epithelium, the proteomic profiles of four cervical cell lines were analyzed. The four cell lines that were used were the following: HCK1T (Human Cervical Keratinocytes), a normal cervical epithelium cell line; HeLa, a cervical cancer cell line positive for HPV18; SiHa, a cervical cancer cell line positive for HPV16; and C-33A, a cervical cancer cell line negative for HPV. Four 2D gels were run for each cell line total extract. A representative gel is shown in Figure 1 for each cell line. The initial analysis was focused on the comparison between the normal cervical cell line (HCK1T) and the group of the three cervical cancer cell lines (HeLa, SiHa, C-33A). In this comparison, 43 spots, that corresponded to 48 unique proteins, were found down-regulated (cancer/normal ratio <0.5) in the cancer cell lines. Almost half of these proteins (42%), are associated to cytoskeleton and 21% of them are involved in metabolism (Figure 2). Moreover, 85 spots, that corresponded to 65 unique proteins, were found up-regulated (cancer/normal ratio >2) in the cancer cell lines. A significant percentage of these proteins are also associated to cytoskeleton (8%) and metabolism (42%) (Figure 2). Proteins that were found deregulated included cofilin-1; vinculin; vimentin; fascin; annexin A2; transgelin-2; alpha-enolase; triosephosphate isomerase; glyceraldehyde-3-phosphate dehydrogenase; peptidyl-prolyl cis-trans isomerase A; fructose-bisphosphate aldolase A; peroxiredoxins 1, 2, 5 and 6; protein DJ-1; and growth factor receptor-bound protein 2. A complete list of the differentially expressed proteins is presented in Table I.

The overlap of differentially expressed proteins among the three comparisons was examined and is presented in a Venn diagram in Figure 3. Five proteins only emerged from the comparison between the HPV-negative cervical cancer cell line (C-33A) and the normal cervical keratinocytes (HCK1T), while 13 proteins composed the HPV-positive “core”, emerging from the individual comparisons between the HPV-negative cervical cancer cell lines (HeLa and SiHa) with the HCK1T (Table II).
Bioinformatics analysis. Pathway analysis of the differentially expressed proteins between the normal (HCK1T) and the three cancer (HeLa, SiHa, C-33A) cell lines, using the Ingenuity® Pathway Analysis (IPA) software, revealed that the actin cytoskeleton signaling pathway is associated in a statistically significant manner ($p=0.029$) (Figures 4 and 5, Table III). As mentioned previously, biological function annotation also documented that a large percentage of all the differentially expressed proteins, are associated to cytoskeleton. Based on these indications, and the known biological contribution to cancer pathogenesis, proteins involved in cytoskeletal processes were further investigated. Thus, cofilin-1 (CFL1), an actin depolymerizing factor (ADF) that is implicated in aggressive cancer cell behavior (12-17), was selected for further validation. The main function of cofilin-1 is the depolymerization of F-actin, a biological process crucial for normal mitosis, cytokinesis and cell migration (18). Cofilin-1, was actually up-regulated in all three cancer cell lines (Table I).

Confirmation of the proteomic analysis results. In the 2D gels, cofilin-1 was found up-regulated in HeLa and C-33A cell lines (HeLa/HCK1T ratio: 3.6, C-33A/HCK1T ratio: 3.0). Its levels were also higher in SiHa compared to the ones in HCK1T, but did not reach the 2-fold threshold (SiHa/HCK1T ratio: 1.3) as shown in Figure 6A. The up-regulation of cofilin-1 in the 2D gels was confirmed by western blot analysis on the four cell lines (Figure 6B). As shown in Figure 6, the levels of cofilin-1 in the western blot analysis follow the same expression pattern as in the 2D gels, thus confirming the proteomic analysis results.

Discussion

The comparison of proteomic profiles between the three cervical cancer cell lines (HeLa, SiHa, C-33A) and the normal cervical keratinocytes (HCK1T) total cell extract, revealed a total of 113 differentially expressed proteins (cancer/normal ratio <0.5 or >2). Around 60% of these proteins are associated to cytoskeleton or metabolism. Moreover, bioinformatics analysis of the differentially expressed proteins revealed that actin cytoskeleton signaling represents a statistically significant pathway deregulated in cervical cancer. This finding led us to the investigation of cofilin-1, in the context of cervical cancer.
and actin cytoskeleton remodeling, and the independent confirmation of its expression trend by western blot analysis.

Functional annotation of the differentially expressed proteins indicated that nearly 63% of all deregulated proteins are involved in metabolism. More specifically, 67% of the proteins involved in metabolism are up-regulated in the cervical cancer cell lines compared to normal cervical keratinocytes. This finding could serve as a validation of our approach, since uncontrolled proliferation occurring during carcinogenesis, generates additional anabolic and energy demands. To sustain survival and proliferation, cancer cells have to activate or enhance metabolic pathways that utilize the available nutrients for production of metabolic precursors for cell anabolism, and maintain the reduction–oxidation balance (19). Hence, molecules and regulators that participate in such metabolic processes are expected to be deregulated in cancer cells when compared to normal ones. Such typical examples of enzyme proteins that emerged from our analysis, included alpha-enolase; triosephosphate isomerase; glyceraldehyde-3-phosphate dehydrogenase; peptidyl-prolyl cis-trans isomerase A; fructose-bisphosphate aldolase A; and peroxiredoxins 1, 2, 5 and 6.

Actin cytoskeleton signaling, a statistically significant pathway that emerged from bioinformatics analysis of the differentially expressed proteins, is known to play a pivotal role in cancer, since actin cytoskeleton remodeling is essential for cell proliferation and migration. The process, during which a cancer cell migrates from the original site of the tumor to a new site, consists of specific steps, known as the ‘metastatic cascade’. To metastasize, a cancer cell has to detach from the primary tumor site, migrate, intravasate, translocate through vessels, extravasate, and finally, attach and grow a secondary tumor at a new site. Due to their plasticity, cancer cells can move utilizing either mesenchymal or amoeboid motility, depending on the physical properties of the extracellular matrix, the degree of extracellular proteolysis and on the soluble signaling factors. This whole procedure requires extensive cell cytoskeleton reorganization to achieve the desired cell movements and shape alterations. Actin cytoskeleton remodeling requires the fine orchestration among actin microfilaments, intermediate filaments and microtubules (20, 21).
Table 1. List of differentially expressed proteins following comparison between normal and cancer cervical cell lines.

A. Proteins down-regulated in the cervical cancer cell lines compared to normal cervical keratinocytes (HCK1T).

Spot #	Uniprot ID	Protein	Mascot score	Molecular weight (Da)	pI	Expression fold change	HeLa/ HCK1T	SiHa/ HCK1T	C-33A/ HCK1T
3	1433S_HUMAN	14-3-3 protein sigma	91	27871	4.5	0.145	0.246	0.082	
6	VIME_HUMAN	Vimentin	161	53676	4.9	0.461	N/A		
7	HSPB1_HUMAN	Heat shock protein beta-1	78	22826	6.0	0.324	0.376		
8	TERA_HUMAN	Transitional endoplasmic reticulum ATPase	57	89950	5.0	0.284	0.065		
9	HSP7C_HUMAN	Heat shock cognate 71 kDa protein	81	71082	5.2	0.429	0.330		
10	HSPF1_HUMAN	Heat shock 70 kDa protein 1A/1B	85	70294	5.4				
11	HSPB1_HUMAN	Heat shock protein beta-1	119	22826	6.0	0.353	0.269		
15	HSPB1_HUMAN	Heat shock protein beta-1	85	22826	6.0	0.134	0.071	0.127	
17	SPB5_HUMAN	Serpin B5	65	45250	5.7	0.356	0.132	0.123	
20	HRNH1_HUMAN	Heterogeneous nuclear ribonucleoprotein H	85	49484	5.9	0.383			
22	CAPG_HUMAN	Macrophage-capping protein	51	38760	5.8	0.201			
23	HSPB1_HUMAN	Heat shock protein beta-1	131	22826	6.0	0.260	0.381	0.023	
24	K2C6A_HUMAN	Keratin, type II cytoskeletal 6A	49	60293	8.9	0.176	0.380		
28	WDR1_HUMAN	WD repeat-containing protein 1	76	66836	6.2	0.287	0.468		
29	PUR9_HUMAN	Bifunctional purine biosynthesis protein PURH	80	65089	6.3		0.404		
30	PDLI1_HUMAN	PDZ and LIM domain protein 1	187	36505	6.6		N/A		
33	K2C5_HUMAN	Keratin, type II cytoskeletal 5	120	62568	8.6	0.101			
35	FSCN1_HUMAN	Fascin	103	55123	7.0	0.452	0.420		
36	FSCN1_HUMAN	Fascin	159	55123	7.0	0.200	0.091	0.058	
37	K2C5_HUMAN	Keratin, type II cytoskeletal 5	97	62568	8.6	0.164	0.129	0.224	
38	K2C6A_HUMAN	Keratin, type II cytoskeletal 6A	98	60293	8.9	0.032	0.019	0.044	
39	K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	88	60315	8.9				
40	FSCN1_HUMAN	Keratin, type II cytoskeletal 6C	75	60273	8.9				
41	FSCN1_HUMAN	Fascin	237	55123	7.0	0.200	0.091	0.058	
42	K2C5_HUMAN	Keratin, type II cytoskeletal 5	146	62568	8.6	0.314			
43	K2C6A_HUMAN	Keratin, type II cytoskeletal 6A	143	60293	8.9				
44	K2C6B_HUMAN	Keratin, type II cytoskeletal 6B	124	60315	8.9				
45	K2C6C_HUMAN	Keratin, type II cytoskeletal 6C	111	60273	8.9				
46	KCRU_HUMAN	Creatine kinase U-type, mitochondrial	60	47406	9.4	0.324	0.457		
47	AXA2L_HUMAN	Putative annexin A2-like protein	141	38808	8.5	0.440	0.044		
48	CALR_HUMAN	Calreticulin	188	48283	4.1		0.447		
52	PDIA1_HUMAN	Protein disulfide-isomerase	143	57480	4.6	0.140			
55	GRP78_HUMAN	78 kDa glucose-regulated protein	105	72402	4.9	0.305			
60	EIF3I_HUMAN	Eukaryotic translation initiation factor 3 subunit I	113	36878	5.3	0.499			
62	XRC5C_HUMAN	X-ray repair cross-complementing protein 5	63	83222	5.5	0.369			
63	RLK0_HUMAN	60S acidic ribosomal protein P0	114	34423	5.6	0.401			
75	VINC_HUMAN	Vinculin	63	124292	5.4	0.125			
86	ACTG_HUMAN	Actin, cytoplasmic 2	53	42108	5.2	0.336			
89	IMDH2_HUMAN	Inosine-5'-monophosphate dehydrogenase 2	89	56226	6.5	0.199	0.284		
90	FSCN1_HUMAN	Fascin	64	55123	7.0				
100	FUBP1_HUMAN	Far upstream element-binding protein 1	81	67690	7.8	0.478			
120	HSP71_HUMAN	Heat shock 70 kDa protein 1A/1B	159	70294	5.4	0.369			
123	TB5B_HUMAN	Tubulin beta chain	122	50095	4.6	0.114			
124	TBB2C_HUMAN	Tubulin beta-2C chain	111	50255	4.7	0.059			
125	ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	106	56525	5.1	0.124			
126	TBB4_HUMAN	Tubulin beta-4 chain	101	50010	4.6				
Table I. Continued

Spot #	Uniprot ID	Protein	Mascot score	Molecular weight (Da)	pI	Expression fold change		
						HeLa/ HCK1T	SiHa/ HCK1T	C-33A/ HCK1T
127	TBB2A_HUMAN	Tubulin beta-2A chain	101	50274	4.6	2,480		
162	K2C8_HUMAN	Keratin, type II cytoskeletal 8	81	53671	5.4	0.159	N/A	
174	PGK1_HUMAN	Phosphoglycerate kinase 1	149	44985	9.2	0.419		
176	TAGL2_HUMAN	Transgelin-2	144	22548	9.3	0.255	N/A	
179	ATPB_HUMAN	ATP synthase subunit beta, mitochondrial	167	56525	5.1	0.465		
	TBB5_HUMAN	Tubulin beta chain	64	50095	4.6	13,780	2,460	
	TBB2B_HUMAN	Tubulin beta-2B chain	58	50377	4.6	6,530		
	TBB2A_HUMAN	Tubulin beta-2A chain	58	50274	4.6	6,530		
207	ATPA_HUMAN	ATP synthase subunit alpha, mitochondrial	107	59828	9.6	0.344	0.412	
	GLYM_HUMAN	Serine hydroxymethyltransferase, mitochondrial	70	56414	9.5			

B. Proteins up-regulated in the cancer cervical cell lines compared to normal cervical keratinocytes (HCK1T).

Spot #	Uniprot ID	Protein	Mascot score	Molecular weight (Da)	pI	Expression fold change		
						HeLa/ HCK1T	SiHa/ HCK1T	C-33A/ HCK1T
53	RSSA_HUMAN	40S ribosomal protein SA	55	32947	4.6	2,480		
54	EF1D_HUMAN	Elongation factor 1-alpha	51	31217	4.8	11,990		
57	CH60_HUMAN	60 kDa heat shock protein, mitochondrial	187	61187	5.6	2,430	2,380	
59	TCPE_HUMAN	T-complex protein 1 subunit epsilon	73	60089	5.3	4,020		
61	IPYR_HUMAN	Inorganic pyrophosphatase	109	33095	5.5	2,090		
65	PDI3A3_HUMAN	Protein disulfide-isomerase A3	200	57146	5.9	2,450		
66	LDHB_HUMAN	L-lactate dehydrogenase B chain	64	36900	5.7	2,280		
68	NDKA_HUMAN	Nucleoside diphosphate kinase A	107	17309	5.8	2,520		
69	TCPA_HUMAN	T-complex protein 1 subunit alpha	126	60819	5.7	3,580	3,190	
70	SBP1_HUMAN	Selulin-binding protein 1	152	52928	5.9	3,110		
71	ENOA_HUMAN	Alpha-enolase	78	47481	7.7	2,150	2,690	
73	TPI5_HUMAN	Triosephosphate isomerase	113	31057	5.6	3,210	3,990	
74	LMNA_HUMAN	Prelamin-A/C	112	74380	6.6	6,780		
76	ERP29_HUMAN	Endoplasmic reticulum resident protein 29	121	29032	7.5	10,200	8,170	
77	FABP5_HUMAN	Fatty acid-binding protein, epidermal	78	15497	7.5	6,340		
78	LMNA_HUMAN	Prelamin-A/C	101	74380	6.6	3,480		
79	SERA_HUMAN	D-3-phosphoglycerate dehydrogenase	70	57356	6.3	10,630	2,770	
80	EFIG_HUMAN	Elongation factor 1-gamma	138	50429	6.3	7,570	5,570	
81	HINT2_HUMAN	Histidine triad nucleotide-binding protein 2	50	17208	9.8	3,900		
82	TCPZ_HUMAN	T-complex protein 1 subunit zeta	66	58444	6.2	5,890	2,920	
	STIP1_HUMAN	Stress-induced-phosphoprotein 1	62	63227	6.4	2,120		
	LMNA_HUMAN	Prelamin-A/C	60	74380	6.6	2,120		
	ENOA_HUMAN	Alpha-enolase	116	47481	7.7	4,600	2,430	
	STIP1_HUMAN	Stress-induced-phosphoprotein 1	93	63227	6.4	3,390		
	SERA_HUMAN	D-3-phosphoglycerate dehydrogenase	149	57356	6.3	3,350		
	PGAM1_HUMAN	Phosphoglycerate mutase	144	28900	6.8	2,710	3,270	
96	GUAA_HUMAN	GMP synthase [glutamine-hydrolyzing]	120	77408	9.8	3,900		
97	EF2_HUMAN	Elongation factor 2	60	96246	6.4	2,320		
98	EF2_HUMAN	Elongation factor 2	60	96246	6.4	2,320		
	PS2A_HUMAN	Proteasome subunit alpha type-2	95	25996	7.7	2,040		
103	EF2_HUMAN	Elongation factor 2	72	96246	6.4	3,050		
104	K2C1_HUMAN	Keratin, type II cytoskeletal 1	47	66170	8.8	13,780	2,460	
107	GBLP_HUMAN	Guanine nucleotide-binding protein subunit beta-2-like 1	177	35511	8.9	4,760		
108	RAN_HUMAN	GTP-binding nuclear protein Ran	133	24579	7.8	3,550	2,600	
109	HCD2_HUMAN	3-hydroxyacyl-CoA dehydrogenase type-2	145	27134	9.1	8,720	5,035	
110	PPIA_HUMAN	Peptidyl-prolyl cis-trans isomerase A	91	18229	9.0	3,060		
112	PRDX5_HUMAN	Peroxiredoxin-5, mitochondrial	81	22301	9.9			
Spot #	Uniprot ID	Protein	Mascot score	Molecular weight (Da)	pI	Expression fold change		
--------	------------	--	--------------	-----------------------	----	-----------------------		
			HeLa/	SiHa/	C-33A/			
			HCK1T	HCK1T	HCK1T			
111	PPIA_HUMAN	Peptidyl-prolyl cis-trans isomerase A	113	18229	9.0	2.610		
112	KPYM_HUMAN	Pyruvate kinase isozymes M1/M2	258	58470	9.0	4.620		
113	ALDOA_HUMAN	Fruktose-bisphosphate aldolase	140	39851	9.2	2.520		
114	LDHA_HUMAN	L-lactate dehydrogenase A chain	92	36950	9.3	3.940		
			17,930					
115	PRDX1_HUMAN	Peroxiredoxin-1	152	22234	9.2	13.960		
116	PPIA_HUMAN	Peptidyl-prolyl cis-trans isomerase A	84	18229	9.0	3.660		
117	COF1_HUMAN	Cofilin-1	99	18719	9.1	4.670		
118	G3P_HUMAN	Glyceraldehyde-3-phosphate dehydrogenase	52	36201	9.3	2.440		
125	K2C7_HUMAN	Keratin, type II cytoskeletal 7	61.00	21411	5.3	3.350		
			3,730					
126	APT_HUMAN	Adenine phosphoribosyltransferase	94	19767	5.7	7.510		
128	RFA2_HUMAN	Replication protein A 32 kDa subunit	57	29342	5.7	2.380		
139	ERP29_HUMAN	Endoplasmic reticulum resident protein 29	61	29032	7.5	2.030		
143	A26L1_HUMAN	Putative ankyrin repeat domain-containing	47	14164	9.6	3.460		
		protein 26-like 1				14,730		
144	PARK7_HUMAN	Protein DJ-1	93	20050	6.4	2.400		
145	TCPB_HUMAN	T-complex protein 1 subunit beta	112	57794	6.0	2.700		
148	LSHB_HUMAN	Lutropin subunit beta	51	16019	9.9	2.040		
152	SCOT1_HUMAN	Succinyl-CoA:3-ketocoezyme A transferase 1, mitochondrial	70	56578	7.8	5.990	10,220	
158	KIC10_HUMAN	Keratin, type I cytoskeletal 10	56	59020	5.0	4.370		
160	PNP1_HUMAN	Purine nucleoside phosphorylase	82	30325	6.5	3.890		
161	PS2A_HUMAN	Proteasome subunit alpha type-2	67	25996	7.7	10.690		
163	ALDR_HUMAN	Aldose reductase	139	36230	6.6	5.050		
165	LSHB_HUMAN	Lutropin subunit beta	47	16019	9.9	2.140		
167	IDHC_HUMAN	Isocitrate dehydrogenase [NADP] cytoplasmic	199	46915	6.6	11.680		
168	ALDR_HUMAN	Aldose reductase	172	36230	6.6	3.730		
169	PPIA_HUMAN	Peptidyl-prolyl cis-trans isomerase A	47	18229	9.0	2.860		
170	LSHB_HUMAN	Lutropin subunit beta	48	16019	9.9	2.920		
172	ALDR_HUMAN	Aldose reductase	80	36230	6.6	3.260		
173	PERP1_HUMAN	Phosphatidylethanolamine-binding protein 1	82	21411	5.3	3.140		
175	LEG3_HUMAN	Gaelectin-3	66	26193	9.1	2.270		
181	ATP5H_HUMAN	ATP synthase subunit d, mitochondrial	56	18537	5.1	5.310		
183	PHB_HUMAN	Prohibitin	98	29843	5.5	11.430		
184	PRDX2_HUMAN	Peroxiredoxin-2	78	22049	5.6	4.940		
187	CH60_HUMAN	60 kDa heat shock protein, mitochondrial	160	61187	5.6	5.790		
190	GRB2_HUMAN	Growth factor receptor-bound protein 2	80	25304	5.9	2.290		
191	PRDX3_HUMAN	Thioredoxin-dependent peroxide reductase, mitochondrial	57	28017	8.9	5.350		
			7,380					
193	AL7A1_HUMAN	Alpha-aminoacidic semialdehyde dehydrogenase	56	59020	9.1	2.280		
194	RAN_HUMAN	GTP-binding nuclear protein Ran	65	24579	7.8	6.210		
196	TPIS_HUMAN	Triosephosphate isomerase	84	31057	5.6	2.050		
197	AL7A1_HUMAN	Alpha-aminoacidic semialdehyde dehydrogenase	71	59020	9.1	7.110		
198	EFTU_HUMAN	Elongation factor Tu, mitochondrial	202	24952	7.9	2.060		
199	PS2B_HUMAN	Proteasome subunit beta type-2	61	22993	6.6	5.560		
200	EFTA_HUMAN	Electron transfer flavoprotein subunit alpha, mitochondrial	51	35400	9.5	2.840		
			3,830					
201	GBLP_HUMAN	Guanine nucleotide-binding protein subunit beta-2-like 1	138	35511	8.9	3.160		
			12,500					
203	COF1_HUMAN	Cofilin-1	55	18719	9.1	2.430		
205	VDAC2_HUMAN	Voltage-dependent anion-selective channel protein 2	94	32060	8.7	6.060		
206	PSA4_HUMAN	Proteasome subunit alpha type-4	63	29750	8.7	2.400		
208	VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	89	30868	9.2	3.730		
209	ETFB_HUMAN	Electron transfer flavoprotein subunit	55	28054	9.2	3.120		
210	PRDX6_HUMAN	Peroxiredoxin-6	88	25133	6.0	11,580		
211	VDAC1_HUMAN	Voltage-dependent anion-selective channel protein 1	82	30868	9.2	17,930		
212	PSA7_HUMAN	Proteasome subunit alpha type-7	75	28041	9.3	2.340		

Table I. Continued
In our study, cofilin-1, which is involved in the Actin cytoskeleton signaling, was actually up-regulated in HeLa and C-33A (>2-fold expression change), while it was also found in higher levels in SiHa (1.3-fold expression change) compared to HCK1T. This expression trend was confirmed by western blot analysis on the four cell lines total cell extract, employing an antibody previously validated and recommended for use in western blot, according to the guidelines (22).

Cofilin-1 is a small protein of ~19 kD whose name stands for cofilamentous protein. It plays a key role in actin dynamics, cell division, chemotaxis and cancer cell migration (18, 23). Cofilin-1 severs and depolymerizes actin filaments, thus increasing the free barbed ends where actin polymerization occurs (24, 25). However, different concentrations of cofilin-1 have different effects on actin filament severing and nucleation. Low concentration favors severing, while high concentration favors nucleation (26). Cofilin-1 also has a Nuclear Localization Signal (NLS) and can transfer monomeric actin in the nucleus where rod-like structures of actin are formed in response to heat shock, ATP-depletion and dimethyl sulfoxide (DMSO) treatment, cytochalasin D or high cytosolic G-actin concentration. However, its biological role in the nucleus remains unclear (18).
Figure 4. Ingenuity® Canonical Pathways deregulated between normal and cancer cervical cell lines. Only statistically significant pathways are shown in a descending order of p-value using Fisher’s exact test.

Table III. List of Ingenuity® Pathway Analysis results from the comparison between normal and cancer cervical cell lines. Only statistically significant pathways are shown in a descending order of p-value, using Fisher’s exact test.

Ingenuity® Canonical Pathways	p-Value	Differentially expressed proteins from our dataset
Unfolded protein response	4.17E-10	CALR, HSPA1A/HSPA1B, HSPA9, HSPA8, HSPA5, VCP, HSPA6, P4HB
Remodeling of Epithelial Adherens Junctions	2.82E-09	TUBB2A, TUBB4A, VCL, ACTG1, TUBB, TUBB2B, NME1, TUBB4B
Protein Ubiquitination Pathway	1.17E-07	HSPB1, HSPA1A/HSPA1B, HSPA9, PSMA4, PSMA7, HSPA8, HSPA5, HSPD1, PSMA2, PSMB2, HSPA6
Glycolysis I	1.91E-07	TPI1, PGAM1, PGK1, GAPDH, ALDOA
14-3-3-mediated Signaling	2.09E-07	TUBB2A, VIM, TUBB4A, SFN, TUBB, TUBB2B, GRB2, TUBB4B
Mitochondrial Dysfunction	3.31E-07	HSD17B10, VDAC1, PARK7, PRDX3, VDAC2, ATP5A1, ATP5H, PRDX3, ATP5B
Glucocorticoid Signaling	8.91E-06	PGAM1, PGK1, GAPDH, ALDOA
Aldosterone Signaling in Epithelial Cells	1.70E-05	HSPB1, HSPA1A/HSPA1B, HSPA9, HSPA8, HSPA5, HSPD1, HSPA6
Gap Junction Signaling	1.95E-05	TUBB2A, TUBB4A, ACTG1, TUBB, TUBB2B, GRB2, TUBB4B
Purine Nucleotides De Novo Biosynthesis II	3.09E-05	IMPDH2, GMPS, ATIC
Breast Cancer Regulation by Stathmin1	7.41E-05	TUBB2A, TUBB4A, NGN2, TNFR1, TUBB, TUBB2B, GRB2, TUBB4B
eNOS Signaling	9.55E-04	HSPA1A/HSPA1B, HSPA9, HSPA8, HSPA5, HSPA6, GRB2, TUBB4B
VEGF Signaling	1.41E-03	SFN, VCL, ACTG1, GRB2
Glucocorticoid Receptor Signaling	2.75E-03	HSPA1A/HSPA1B, HSPA9, HSPA8, HSPA5, GRB2, HSPA6
NRF2-mediated Oxidative Stress Response	2.75E-03	ACTG1, ERP29, VCP, PRDX1, STIP1
FAK Signaling	1.12E-02	VCL, ACTG1, GRB2
Death Receptor Signaling	1.32E-02	HSPB1, ACTG1, LMNA
EIF2 Signaling	1.74E-02	GRB2, EIF3I, RPLP0, RPSA
Paxillin Signaling	1.74E-02	VCL, ACTG1, GRB2
Oxidative Phosphorylation	2.04E-02	ATP5A1, ATP5H, ATP5B
Actin Cytoskeleton Signaling	2.88E-02	CFL1, VCL, ACTG1, GRB2
Signaling by Rho Family GTPases	3.63E-02	VIM, CFL1, ACTG1, GRB2
Regulation of eIF4 and p70S6K Signaling	4.37E-02	GRB2, EIF3I, RPSA
Figure 5. Actin cytoskeleton signaling is a statistically significant affected pathway in cervical cancer cells, as documented from the Ingenuity® Pathway Analysis of the differentially expressed proteins, between cervical cancer cell lines and normal cervical keratinocytes. Nodes filled with red color represent proteins that were found up-regulated in cervical cancer cell lines and nodes filled with green color represent proteins that were found down-regulated in the cervical cancer cell lines. Double-lined nodes represent groups of proteins or complexes.

Figure 6. Cofilin-1 levels in cervical cell lines. A. Cofilin-1 levels in proteomics analysis. Fold change is expressed in comparison with HCK1T, as the average from the two identified spots on 2D gels, measured with PDQuest software. B. Cofilin-1 levels in western blot analysis. Fold change is expressed in comparison with HCK1T representing the average from four biological replicates for each cell line, measured with the Quantity One 1-D Analysis software (Bio-Rad). Tubulin levels were used for signal normalization in western blots. Mean values and standard deviation bars are shown for each cell line, and p-value was calculated with Student’s t-test.
The function of cofilin-1 does not only depend on its concentration, but also on several environmental factors. Phosphorylated cofilin-1 on ser-3 is considered to be inactive because of its lower affinity for actin. LIM kinase 1 (LIMK1), LIM kinase 2 (LIMK2) and testicular protein kinase 1/2 (TESK1/2) phosphorylate cofilin-1 on ser3, while slingshot-1L (SSH1L) phosphatase and chronophin (CIN) induce its dephosphorylation (18). Upon stimulation by epidermal growth factor (EGF), cofilin-1 becomes activated through dephosphorylation and dissociation from phosphatidylinositol 4,5-bisphosphate (PIP2) in order to reorganize the cytoskeleton for chemiotactic migration (27). Changes on the intracellular pH, regulated by Na\(^+\)-H\(^+\) exchanger 1 (NHE1), can also affect cofilin-1 activity. When pH is higher than normal (6.8-7.4), cofilin-1 can be also activated through dissociation from the inhibitory complexes with cortactin and PIP2 (25, 28, 29).

In the context of cancer metastasis and cell migration, cofilin-1 is active at the leading edge of migrating cells protrusions and its levels have been studied in various types of cancer (25). In non-small cell lung cancer (NSCLC), high cofilin-1 levels were correlated with lower overall survival rate, cellular invasiveness and resistance to drugs, and particularly, to cisplatin (30-33). Coflin-1 was also found up-regulated in breast cancer and its levels correlated with tumor size and stage (34-36). Overexpression of cofilin-1 can predict shorter progression-free survival in advanced ovarian cancer patients, receiving standard therapy (37). Immunohistochemistry studies on prostate tissue sections revealed expression of cofilin-1 in 70% of prostate cancer samples, while benign prostate hyperplasia samples were negative for the protein. In the same study, coflin-1 levels were significantly associated with the Gleason score and the presence of lymph node metastasis (38). Furthermore, proteomic analysis of saliva from patients with head and neck squamous cell carcinoma, revealed significantly increased levels of cofilin-1 compared to the control group (39). Additionally, high expression levels of cofilin-1 were associated with large tumor size, high TNM stage, lymph node metastasis, and decreased overall survival in immunohistochemical studies of patients with squamous cell and adenosquamous carcinoma, and adenocarcinoma of the gallbladder (40). Finally, high levels of cofilin-1 expression compared to normal tissue have also been documented in pancreatic cancer (41) and oral carcinoma (42).

As mentioned above, in our study, the differentially expressed proteins were obtained from the comparison of normal cervical keratinocytes with the three different cervical cancer cell lines. These cervical cancer cell lines differ primarily by the presence or absence and the type of the HPV. Specifically, HeLa is positive for HPV18, SiHa is positive for HPV16, and C-33A is negative for HPV. These cell lines were carefully chosen for our analysis in order to investigate the differences between the HPV-positive and HPV-negative types of cervical cancers. The availability of the 18 informative differentially expressed proteins (Figure 3 and Table II) revealed from these two-way comparisons among the four cell lines, provide the impetus for further functional studies to dissect the molecular mechanisms that could play a role in the two distinct pathways of cervical carcinogenesis.

Our study is the first to provide an insight into the differences of the total proteome of cervical cancer cell lines in direct comparison to normal cervical keratinocytes. Most of the proteomic studies utilizing cervical cancer cell lines, focus on the differences that occur in the protein expression pattern as an effect of a drug treatment, such as doxorubicin, oxymatrine and cisplatin (43-45), or under stress conditions, like UVB irradiation and hypoxia (46, 47), or after the induced and/or inhibited expression of specific genes, as in the cases of HVP16 E6 gene, transgelin-2 and parkin (48-50). Moreover, our group has recently studied the secretome of these cervical cancer cell lines compared to normal cervical keratinocytes (8). Comparative analysis of the secretome revealed 67 differentially expressed proteins, out of which 36 were also identified as differentially expressed in our study. Furthermore, Lin et al. (51) proposed several putative biomarkers for the rare and very aggressive type of neuroendocrine cervical cancer by comparing the proteomic profile of HM-1, a neuroendocrine cervical cancer cell line, to CaSki, ME-180, and HeLa, that exhibit a non-neuroendocrine origin (51). Their study disclosed 82 differentially expressed proteins and further confirmed the differential expression of transgelin, galectin-1 and PGK-1 in all cell lines employing western blotting. Interestingly, transgelin and PGK-1 were also found differentially expressed in our analysis, suggesting a pivotal role of these proteins in cervical pathology.

In conclusion, the proteomic comparison of the three cervical cancer cell lines with normal cervical keratinocytes, revealed novel proteins that are potentially deregulated in cervical cancer and could be further investigated as putative biomarkers and pharmacological targets. Moreover, bioinformatics analysis indicated that these proteins are involved in processes and pathways that are already documented to be active during carcinogenesis, confirming the validity of the proteomics results. The expression trend of cofilin-1, that was found up-regulated in the cancer group, was confirmed by western blot. Although cofilin-1 has been studied thoroughly in the context of various types of cancer, to our knowledge, it has not been studied yet in cervical cancer. Therefore, the up-regulation of the protein in the cancer cell lines we documented, indicates that cofilin-1 could also be overexpressed in cervical cancer biopsies. Nevertheless, confirmation of this hypothesis in a cohort of well-characterized clinical samples of different clinical stages is definitely needed, and could lead to the use of...
cofilin-1 as a valuable marker of either cancerous and/or precancerous lesions of the cervical epithelium.

Acknowledgements

This study was funded by the Oncology Program of the Central Council of Health of the Ministry of Health, Grant No. 70-3-9209 to Nicholas P. Anagnou, and by the European Union’s European Social Fund (ESF) and Greek National Funds through the Program THALIS, under the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF), Grant No. 70-3-11830 to Kalliopi I. Pappa. The authors wish to thank Dr. Tohru Kiyono (National Cancer Centre Research Institute, Tokyo, Japan) for his generous gift of the HCK1T normal cervical cell line.

References

1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65: 87-108, 2015.

2. International human papillomavirus reference center on: 20/01/2017. Available from: http://www.hpvcenter.se/index.php

3. Arbyn M, Tommasino M, Depuydt C and Dillner J: Are 20 human papillomavirus types causing cervical cancer? J Pathol 234: 431-435, 2014.

4. de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tou S, Felix A, Bravo LE, Shin HR, Vallesjos CS, de Ruiz PA, Lima MA, Guimera N, Clavero O, Alejo M, Lombart-Bosch A, Cheng-Yang C, Tatti SA, Kasamatsu E, Iljazovic E, Odaida M, Prado R, Seoud M, Grce M, Usubutun A, Jain A, Suarez GA, Bornstein J, Munoz N, Bosch FX, Retrospective International S and Jemal A: Global cancer statistics, 2012. CA Cancer J Clin 65: 87-108, 2015.

5. Sidani M, Wessels D, Mouneimne G, Ghosh M, Goswami S, Sarmiento C, Wang W, Kuhl S, El-Sibai M, Backer JM, Eddy R, Soll D and Condeelis J: Cofilin determines the migration behavior and turning frequency of metastatic cancer cells. J Cell Biol 179: 777-791, 2007.

6. van Rheenen J, Condeelis J and Glogauer M: A common cofilin activity cycle in invasive tumor cells and inflammatory cells. J Cell Sci 122: 305-311, 2009.

7. Tania N, Prosk E, Condeelis J and Edelman-Keshet L: A temporal model of cofilin regulation and the early peak of actin barbed ends in invasive tumor cells. Biophys J 100: 1883-1892, 2011.

8. Chang CY, Leu J and Lee YJ: The actin depolymerizing factor (adf)/cofilin signaling pathway and DNA damage responses in invasive cervical cancer: A retrospective cross-sectional worldwide study. Lancet Oncol 11: 1048-1056, 2010.

9. sachman J, Doorbar J, Wentzensen N, de Sanjose S, Fakhr C, Monk BJ, Stanley MA and Franceschi S: Carcinogenic human papillomavirus infection. Nat Rev Dis Primers 2: 16086, 2016.

10. Kontostathi G, Zoidakis J, Anagnou NP, Pappa KI, Vlahou A and Makridakis M: Proteomics approaches in cervical cancer: Focus on the discovery of biomarkers for diagnosis and drug treatment monitoring. Expert Rev Proteomics 13: 731-747, 2016.

11. Pappa KI, Polyzos A, Jacob-Hirsch J, Amargilino N, Vlachos GD, Louradris D and Anagnou NP: Profiling of discrete gynecological cancers reveals novel transcriptional modules and common features shared by other cancer types and embryonic stem cells. PLoS One 10: e0142229, 2015.

12. Kontostathi G, Zoidakis J, Makridakis M, Lygirou V, Mermelkas G, Papadopoulos T, Vougas K, Vlamis-Gardikas A, Drakakis P, Louradris D, Vlahou A, Anagnou NP and Pappa KI: Cervical cancer cell line secretem highlights the roles of transforming growth factor-beta-induced protein ig-h3, peroxiredoxin-2, and nrf2 on cervical carcinogenesis. Biomed Res Int 2017: 4180703, 2017.
van Rheenen J, Song X, van Roosmalen W, Cammer M, Chen X, Desmarais V, Yip SC, Backer JM, Eddy RJ and Condeelis JS: EGF-induced pip2 hydrolysis releases and activates cofilin locally in carcinoma cells. J Cell Biol 179: 1247-1259, 2007.

Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H, Oser M, Chen X, Koleske AJ and Condeelis J: Cofilactin phosphorylation regulates cell invasion through a ph-dependent pathway. J Cell Biol 195: 903-920, 2011.

Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R, Condeelis J, Kelly MJ, Jacobson MP and Barber DL: Cofilin is a ph sensor for actin free barbed end formation: Role of phosphoinositide binding. J Cell Biol 183: 865-879, 2008.

Muller CB, De Bastiani MA, Becker M, Franca FS, Branco MA, Castro MA and Klamt F: Potential crosstalk between cofilin-1 and egfr pathways in cisplatin resistance of non-small-cell lung cancer. Oncotarget 6: 3531-3539, 2015.

Becker M, De Bastiani MA, Muller CB, Markoski MM, Castro MA and Klamt F: High cofilin-1 levels correlate with cisplatin resistance in lung adenocarcinomas. Tumour Biol 35: 1233-1238, 2014.

Muller CB, de Barros RL, Castro MA, Lopes FM, Meurer RT, Roche A, Mazzini G, Ulbrich-Kulczynski JM, Dal-Pizzol F, Fernandes MC, Moreira JC, Xavier LL and Klamt F: Validation of cofilin-1 as a biomarker in non-small cell lung cancer: Application of quantitative method in a retrospective cohort. J Cancer Res Clin Oncol 137: 1309-1316, 2011.

Castro MA, Dal-Pizzol F, Zdanov S, Soares M, Muller CB, Lopes FM, Zanotto-Filho A, da Cruz Fernandes M, Moreira JC, Shacter E and Klamt F: Cofil expression levels as a prognostic and drug resistance marker in nonsmall cell lung cancer. Cancer 116: 3645-3655, 2010.

Shaheed SU, Rustogi N, Scally A, Wilson J, Thyesen H, Loizidou MA, Hadjisavvas A, Hanby A, Speirs V, Loadman P, Linforth R, Kyriacou K and Sutton CW: Identification of stage-specific breast markers using quantitative proteomics. J Proteome Res 12: 5696-5708, 2013.

Zhang Y and Tong X: Expression of the actin-binding proteins indicates that cofilin and fascin are related to breast tumour size. J Int Med Res 38: 1042-1048, 2010.

Kabbage M, Chahed K, Hamrita B, Guiller CL, Trimeche M, Remadi S, Hoebeke J and Chouchane L: Protein alterations in infiltrating ductal carcinomas of the breast as detected by nonequilibrium ph gradient electrophoresis and mass spectrometry. J Biomed Biotechnol 2008: 564127, 2008.

Nishimura S, Tsuda H, Kataoka F, Araf T, Nomura H, Chiyoda T, Susumu N, Nishio K and Aoki D: Oxymatrine induces apoptosis in human cervical cancer cells via induction of apoptosis. Life Sci 93: 7-16, 2013.

Perluigi M, Giorgi A, Blazcino C, De Marco F, Foppoli C, Di Domenico F, Butterfield DA, Schinina ME, Cini C and Coccia R: Proteomics analysis of protein expression and specific protein oxidation in human papillomavirus transformed keratinocytes upon UVB irradiation. J Cell Mol Med 13: 1802-1822, 2009.

Sorensen BS, Horsman MR, Vorum H, Honore B, Overgaard J and Alsner J: Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother Oncol 92: 443-449, 2009.

Evans W, Filippova M, Filippov V, Bashkirova S and Duerksen-Hughes P: Cellular levels of oxidative stress affect the response of cervical cancer cells to chemotherapeutic agents. Biomed Res Int 2014: 574659, 2014.

Nguyen V, Voevodina O, Rutten-Goovaerts M, Tajara EH: Proteomic approaches identify members of cofilin pathway involved in oral tumorigenesis. PLoS One 7: e50517, 2012.

Filippova M, Filippov V, Williams VM, Zhang K, Kokoza O, Bashkirova S and Duerksen-Hughes P: Cellular levels of oxidative stress affect the response of cervical cancer cells to chemotherapeutic agents. Biomed Res Int 2014: 574659, 2014.

Yang ZL, Miao X, Xiong L, Zou Q, Yuan Y, Li J, Liang L, Chen M and Chen S: Cfl1 and arp3 are biomarkers for metastasis and poor prognosis of squamous cell/adenosquamous carcinomas and adenocarcinomas of gallbladder. Cancer Invest 31: 132-139, 2013.

Received April 6, 2017
Revised June 6, 2017
Accepted June 9, 2017