Targeting the gut-liver axis in liver disease

Reiner Wiest1,*, Agustin Albillos2, Michael Trauner3, Jasmohan S. Bajaj4, Rajiv Jalan5

Keywords: Gut-liver-axis; Bacterial translocation; Liver injury; Fibrosis; Cirrhosis; Bile acids; Microbiome; Incretines; Pre-, probiotics; Faecal microbial transplantation.

Received 27 March 2017; received in revised form 4 May 2017; accepted 5 May 2017

Summary

The gut-liver axis is widely implicated in the pathogenesis of liver diseases, where it is increasingly the focus of clinical research. Recent studies trialling an array of therapeutic and preventative strategies have yielded promising results. Considering these strategies, the armamentarium for targeting the gut-liver axis will continue to expand. Further clinical trials, translated from our current knowledge of the gut-liver axis, promise an exciting future in liver treatment.

© 2017 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

Introduction

Open to the outer environment, the gut harbours a microbiome containing several-fold more genetic material than the human genome. It produces a myriad of metabolites, as well as hormones and peptides. The liver is at the nexus between this vast source of nutrients, toxins and hormones, and the rest of the body. Unsurprisingly, in experimental models and in vitro systems, the gut-liver-axis has been demonstrated to contribute to the pathogenesis of most liver diseases, such as alcoholic and non-alcoholic fatty liver disease (NAFLD), steatohepatitis (NASH), cholestatic liver diseases, hepatocellular carcinoma (HCC), acute-on-chronic liver failure, progression to fibrosis/cirrhosis and complications of cirrhosis. Therapeutic approaches can be grouped into modulation of the microbiota, bile acid (BA) pool and/or its signalling, gut lumen adsorptive strategies, bariatric procedures, incretins and miscellaneous (e.g. prokinetics). However, investigations in humans are key. Thus, this article will highlight the most recent human studies and clinical trials targeting the gut-liver axis. A list of ongoing (not yet published) trials is presented in Table 1. Moreover, we take the liberty of encouraging clinical trials on unestablished concepts.

Background: Pathophysiology

"Whatever comes from the gut enters the liver; the portal circulation is the afferent and the biliary tree is the efferent of the gut-liver-axis" (Fig. 1): The liver is the recipient and filter of nutrients, bacterial products/toxins and metabolites from the intestine. We are becoming increasingly aware of interactions between the gut, liver, immune system and metabolism. For instance, the term "metabolic endotoxaemia" has been coined since Cani et al. discovered that the microbiome is involved in the onset of insulin resistance, low-grade inflammation and diabetes.1 This stems from the observation that constituents of gram-negative bacteria, which are present in the blood stream at very low levels because of translocation from the gut, could trigger inflammation and alter glucose metabolism.1 A complete list and overview of all the different components or metabolic products of gut bacteria, products, intestinal hormones, peptides and gut-derived neurotransmitters are beyond the scope of this article. Therefore, this article focuses on pathogen/microbe-associated molecular patterns (P/MAMPs), of which bacterial lipopolysaccharides (LPS), peptidoglycans, flagellin and bacterial DNA are prototypical.

The immune system recognises P/MAMPs via pattern recognition receptors, such as toll-like receptors and nucleotide-binding oligomerisation domain like receptors (NLR). To oversimplify, an increased inflow and/or susceptibility to P/MAMPs via pathological bacterial translocation induces a pro-inflammatory intrahepatic milieu driven by
Table 1. Ongoing clinical trials targeting the gut-liver-axis.

Medication	Mechanism	Trial phase	Target population	Primary Endpoint	Acronym/ reference
Amoxicillin + clavulanic acid	Antibiotic	Phase III	Alcoholic Hepatitis MD > 32	Survival at 2 mo	AntibioCor³⁰
Ciprofloxacin	Antibiotic	Phase IV	Severe alcoholic hepatitis	Death at 28 days, 3 and 6 mo	32
Rifaximin SSD	Antibiotic	Phase II	Early decompensated cirrhosis	Mortality or liver-related hospitalisation	50
Rifaximin	Antibiotic	Phase III	Alcoholic Hepatitis MD > 32	Bacterial infections after 90 d	RIFA-AAH¹
Rifaximin	Antibiotic	Phase IV	Liver cirrhosis	Death, LTx, number complications	54
Rifaximin	Antibiotic	Phase IV	Decompensated cirrhosis, HVPG > 10 mmHg	Change HVPG	55
Rifaximin	Antibiotic	Phase III	Cirrhosis with TIPS	First episode of covert encephalopathy in patients treated by TIPS	PRPET³⁶
Rifaximin	Antibiotic	Phase III	Cirrhosis with low-protein ascites plus risk factor	12 mo mortality	ProPLARifax³⁷
Rifaximin	Antibiotic	Phase III	Cirrhosis with gastroesophageal bleeding	Composite (complication cirrhosis or death) in 8 wk	RFXM³⁸
Rifaximin	Antibiotic	Phase IV	Cirrhosis with remission from overt HE	Time to first Hepar Encephalopathy (HE) breakthrough episode	59
Rifaximin	Antibiotic	Phase IV	Liver resection (≥ 4 segments)	Liver function	Arrow³¹
Rifaximin	Antibiotic	Phase IV	NAFLD/NASH ± fibrosis stage 0–3	Serum endotoxin	60
Flagyl or vancomycin	Antibiotic	Phase IV	Cirrhosis with HE	Neutrophil spontaneous oxidative burst ex vivo	RIFSYS³³
Vancomycin	Antibiotic	Phase IV	Children with PSC/Overlap-syndrome	Liver function test	40
Solithromycin	Antibiotic	Phase II	Recurrent PSC post-LTx	Liver function test at 12 wk	39
Not stated	FMT	Phase II	PSC	Liver biochemistry (AP, AST, ALT), bilirubin	104
Rectal enema	FMT	Phase I	Cirrhosis with recurrent HE	Safety, tolerability	95
Endoscopic duodenal application	FMT	Phase I	NASH	Hepatic steatosis	103
Nasojejunal tube	FMT	Not provided	NASH-related decompensated cirrhosis	Complications of cirrhosis	101
Endoscopic duodenal application	FMT	Phase II	NAFLD	HOMA score	102
Rectal enema	FMT	Phase I	Cirrhosis	Feasability	PROFIT¹⁰⁰
Jejunal tube application daily for 7 d	FMT	Phase II	Liver Transplant Recipient (>30 d post-LTx)	Feasability	99
Oligofructose-enriched Inulin	Pre-biotic	-	NAFLD	Survival at 3 mo	96
Oligofructose-enriched Inulin	Pre-biotic	-	Liver injury, fat, fibrosis	65	
VSL3	Pro-biotic	-	NAFLD	Liver fat, injury, inflammation	66
Bio-25/ Subherb	Pre-biotic	-	NAFLD and sleeve gastrectomy	Ultrasound liver fat	71
Lactobacillus rhamnosus and Bifidobacterium animalis	Pro-biotic	-	Post-LTx-metabolic syndrome	Change total body weight	72
Lactobacillus acidophilus ATCC SD5221 and 1.109 Bifidobacterium lactis HN019	Pro-biotic	-	NAFLD	Liver biopsy 6 mo	76
Lactobacillus spp	Pro-biotic	-	NAFLD	Plasma LPS 12 wk	77

(continued on next page)
