Rashba-control for the spin excitation of a fully spin polarized vertical quantum dot

P.Lucignano1,2, B.Jouault3, A.Tagliacozzo1,2, and B.L.Altshuler4

1 Coherentia-INFM, Monte S.Angelo - via Cintia, I-80126 Napoli, Italy
2 Dipartimento di Scienze Fisiche Università di “Federico II” Napoli, Napoli Italy
3 GES, UMR 5650, Université Montpellier II, 34095 Montpellier Cedex 5, France
4 Physics department, Princeton University, Princeton, NJ08540, USA

(Dated: October 25, 2018)

Far infrared radiation absorption of a quantum dot with few electrons in an orthogonal magnetic field could monitor the crossover to the fully spin polarized state. A Rashba-spin-orbit coupling can tune the energy and the spin density of the first excited state which has a spin texture carrying one extra unit of angular momentum. The spin orbit coupling can squeeze a flipped spin density at the center of the dot and can increase the gap in the spectrum.

PACS numbers: 73.21.La, 73.23.-b, 78.67.Hc

Introduction. Quantum dots (QD’s), confining one or few active electrons \cite{1}, have been proposed as devices for the future quantum electronics. One of the possibilities is to operate on the spin of the trapped electrons as a qubit \cite{2}. In a different proposal the QD controls the nuclear spins embedded in the crystal matrix via hyperfine coupling \cite{3}. In both cases the polarization of the spins is expected to last long enough at low temperatures, so that the quantum computation can be carried out. Controlled spin transfer between electrons and nuclei has been demonstrated to be possible in a spin polarized two-dimensional electron gas (2DEG) \cite{4}. In a 2DEG fully spin polarized quantum Hall states are used to manipulate the orientation of nuclear spins. Low lying skyrmion states at filling close to one are used to reset the nuclear spin system by inducing fast spin relaxation. In the presence of a magnetic field B orthogonal to the dot, the relaxation mechanism seems to be dominated by hyperfine interaction for $B < 0.5T$ and by spin-orbit (SO) coupling assisted by phonons for higher fields \cite{5}.

The Rashba SO interaction \cite{6}, which arises in QD structures from the lack of inversion symmetry caused by the two-dimensional (2D) confinement, can be controlled by gate voltages parallel to the $x-y$ structure \cite{7}. This possibility has been beautifully shown in InGaAs−based 2DEG \cite{8} and in a recent experiment on large lateral QD, where the conductance has been tuned from the weak localization limit, without SO coupling, to the antilocalization limit, with SO coupling \cite{9}. The inverse relaxation time $1/T_1$ has also been probed recently by transport across a single QD \cite{10}.

Thanks to the combined effect of $e-e$ interactions and of an appropriate $B>B^*$ orthogonal to the dot ($\parallel \hat{z}$), the QD becomes a ‘maximum density droplet’ (MDD) with a fully spin polarized (FSP) ground state (GS) \cite{11}. In this paper we show that controlled SO interaction of a FSP QD, made out of III-V semiconductors, can be used to adiabatically modify the low lying energy states of few $(N = 2,3,4)$ trapped electrons and their spin density. The Rashba-SO coupling contributes to a well defined collective spin excitation (first excited state (FES)), with a change of the spin density, w.r.t to the GS, localized at the origin of the QD. This excitation can be pumped with Far Infrared Radiation (FIR). Using numerical diagonalization for few electrons in the dot, we find that the absorption intensity for circularly polarized FIR is strongly enhanced when the crossover to the FSP state is completed (see Fig.3). The spin density can be squeezed at the center of the dot by increasing the SO coupling α (see Fig.4). Meanwhile the gap between the GS and FES increases with α (as shown in Fig.2c) for N=3.

QD spin properties tuned by SO for $B>B^*$. The electrons are confined in two dimensions (x,y) by a parabolic potential of characteristic frequency ω_d, in the presence of $\vec{B} = -B\hat{z}$. The single particle hamiltonian for the i-th electron, in the effective mass approximation (m^*_e), is:

$$H_{(i)} = \frac{1}{2m^*_e} \left(\vec{p}_i + e\vec{A}_i \right)^2 + \frac{1}{2} m^*_e \omega^2 \alpha^2,$$

with $\vec{A}_i = B/2(y_i-x_i,0)$, and $-e$ the electron charge.

The Zeeman spin splitting would only mask our results with additional inessential complication and we neglect it \cite{12}. The single particle Darwin-Fock states ϕ_{nm} are the eigenfunctions of the 2D harmonic oscillator with frequency $\omega_0 = \sqrt{\omega^2 + \omega_d^2}/4$, where $\omega_c = eB/m^*_ec$, the cyclotron frequency. m is the angular momentum in the z direction ($m \in (-n,-n+2,...,n-2,n)$ with $n \in (0,1,2,3,...)$). The radial size of the ϕ_{nm}’s is $\sim l = \sqrt{h/m^*_e\omega_d}$, the characteristic length due to the lateral geometrical confinement in the dot, inclusive of the B field effects.

The corresponding single particle energy levels are: $\epsilon_{n,m} = (n+1)\hbar\omega_d - m\hbar\omega_c/2$. In the absence of SO, the full hamiltonian for the dot, inclusive of the Coulomb interaction between the electrons (parametrized by U) is:

$$H = \sum_{i=1}^N H_{(i)} + \sum_{i<j}^N U/|\vec{r}_i - \vec{r}_j|.$$ The orbital angular momentum $M = \sum_{i=1}^N m_{(i)}$, the total spin S and S_z
(the projection of the spin along \(\hat{z} \)) are good quantum numbers.

By increasing \(\vec{B} \), the dot undergoes a sequence of transitions to higher \(M \) and higher \(S \) states. These transitions have been monitored in the conductance for larger dots including tens of electrons as well as for dots with few electrons. Eventually, the GS reaches the maximum \(M = N(N - 1)/2 \) and full spin polarization \(S = N/2 \) [13, 14].

The confinement of the QD in the \(\hat{z} \) direction produces an electric field orthogonal to the dot plane, which gives rise to a Rashba term in the Hamiltonian, that couples orbital and spin dynamics. In a biased dot the size of this perturbation would also depend on the screening of the source drain bias \(V_{sd} \) applied to the contacts. The single particle Hamiltonian now reads:

\[
H_i \rightarrow H_i + \frac{\alpha}{\hbar} (\hat{\vec{z}} \times (\vec{p}_i + \frac{e}{c} \vec{A}_i)) \cdot \vec{\sigma}_i.
\]

(2)

Here \(\vec{\sigma} \) are the Pauli matrices and \(\alpha \) (measured in units of meV Å) is the SO coupling parameter, which is proportional to the total angular momentum along \(\hat{z} \) and \(E \) is the energy. Details of our exact diagonalization procedure have been reported previously [13].

SO coupling lifts the spin degeneracy of the \(M \) multiplets, and the FSP GS attains the lowest \(J_z \): \(J_z^{ESP} = N(N - 1)/2 - N/2 \) (\(S_z \) is the projection of the spin along \(\hat{z} \)). In a previous work we exhibited the charge density and spin density of the first excited state (FES) (see Fig.1,2), which showed unexpected spin texture properties [14]. Indeed, the FSP QD reproduces in a nutshell the Quantum Hall Ferromagnet (QHF) at filling one which has skyrmion-like low lying collective excitations [12, 16, 17].

In Fig.1a the lowest lying energy levels \(E \) are plotted vs \(\omega_c \) for \(N = 2 \) with \(\omega_c = 5 \text{meV}, U = 13 \text{meV} \) and \(\alpha = 250 \text{meVÅ} \). The level structure is qualitatively analogous to that obtained in ref. [13], intended for an InSb dot, with Dresselhaus and cubic SO terms included. The singlet-triplet transition appears here as a marked anticrossing at \(\hbar \omega_c \approx 4 \text{meV} \), because of the SO coupling. The states involved in the anticrossing have \(J_z = 0 \) and originate, in the absence of SO, from the singlet (\(S = 0, S_z = 0, M = 0 \)) and the triplet (\(S = 1, S_z = -1, M = 1 \)) states. Recently, the relaxation time \(T_1 \) for the flipping of the two-electron spin trapped in a vertical GaAs QD, from the triplet to the singlet state, has been measured, by applying electrical pulses to the QD, \(T_1 \) has been estimated to be \(> 200 \mu s \) at \(T < 0.5K \) [10]. Similarly to what found in ref. [13], exchange interaction produces a small zero-field splitting between the first excited state (a triplet with \(J_z = 2 \)) and the second excited state (a singlet with \(J_z = 1 \)). Increasing \(B \) further the SO induces the crossing of the

FIG. 1: (color on-line) \(N=2 \) particles dot: a) energy spectrum vs magnetic field \(\omega_c \) in the presence of the SO. Values of the parameters are in the text. The GS is \(J_z = 0 \), the FES is \(J_z = 1 \). b) Charge densities of the GS (black line) and of the FES (red line) of the FSP dot. c) Corresponding spin densities of the GS (black line) and of the FES (red line) of the FSP dot.

FIG. 2: (color on-line) \(N=3 \) particles dot: a) energy spectrum vs magnetic field \(\omega_c \) in the presence of the SO. \(\omega_d = 7 \text{meV}, U = 13 \text{meV}, \alpha = 250 \text{meVÅ} \). The GS is \(J_z = 3/2 \), the FES is \(J_z = 5/2 \). b) Charge densities of the GS (black line) and of the FES (red line) of the FSP dot. c) Corresponding spin densities of the GS (black line) and of the FES (red line) of the FSP dot. d) GS-FES spin gap vs \(\alpha \) at \(\omega_c = 8 \text{meV} \).
latter two states, so that lowest lying states are the GS
(S = 1, \(J_z = 0\)) and the FES (S = 1, \(J_z = 1\)). This
crossing qualifies \(B^*\) which is rather insensitive to SO
coupling.

As seen from figure, the same pattern can be found
also for \(N = 3, 4\). The SO coupling tends to shift the
\(\uparrow\) spin density w.r.t. to the \(\downarrow\) one radially [14]. The
shift can occur easily for the GS when \(N = 2\) and provides
a reduction of the \(e - e\) interaction by leaving an iso-
lated spin at the center of the dot. When \(N > 2\), the
confinement potential together with the \(e - e\) repulsion
contrasts such a spin redistribution and the final result is
that the \(z\)-component of the total spin density is dimin-
ished at the center of the dot. In particular, \(\sigma_z(r)\) tends
to flatten in the GS for \(N = 3, 4\). Correspondingly the
radial component \(\sigma_r(r)\) increases in the case of \(N = 3, 4\)
at any distance from the center and not only at the dot
boundary as it happens for \(N = 2\).

Anticrossings are less prominent for \(N = 4\) and the
level separation of the bunch of states in Fig (3) is much
smaller, but a gap develops at \(\omega_e \approx 8.5\text{meV}\), between
the GS (\(S = 2, J_z = 4\)) and the FES (\(S = 1, J_z = 5\)). The
gap is strongly sensitive to the SO tuning and increases
with increasing \(N\) (see Fig. (2) for \(N = 3\)).

In the FES the SO enforces a spin texture with \(\langle \sigma_z \rangle\)
flipped at the origin with respect to the GS and healing
back gradually away from the center up to the QD
boundary, where the spin density points radially in the
dot plane [11]. The FES for \(B > B^*\) has \(J_z\) increased by one \(\uparrow\) w.r.
to the GS. This is mostly due to spin reversal because the
difference of the angular momentum expectation values
\(\langle M \rangle_{FES} - \langle M \rangle_{GS}\) is found to be van-
ishingly small. In a disk shaped dot, a radial change of
\(\langle M \rangle\) requires a change of \(n(r)\) as well, but, as a mat-
ter of fact, we find that the charge distribution in the
dot at the FSP point is rather insensitive to excitation
and to the strength of the SO coupling (see figs. [1][11,2,3]). While the radial charge density \(n(r)\) appears to be
compressible at fields \(B < B^*\) and \(B > B^*\), it is approx-
inately incompressible at \(B \sim B^*\). When \(B >> B^*\), the
charge distribution of the dot reconstructs [14,20,21,22].

The spin excitation gives rise to an extra collective
magnetization \(\hat{z} \cdot \Delta \hat{M}(r) \approx (2\mu_B \Delta \sigma_z(r))\), where
\(\Delta \sigma_z(r')\) is the difference in \(z\)-component of the local spin
density between the FES and the GS and \(\mu_B = e\hbar/2m_e c\).
The radial spin density \(\sigma_z(r)\) appears in Fig (1), Fig (2),
Fig (4) for \(N = 2, 3, 4\) respectively).

We have estimated the possible extra magnetic flux \(\phi\)
associated to the spin excitation, by integrating numeri-
cally the vector potential, induced by the spin polariza-
tion of the dot, \(a_\phi(r)\), along the circle of radius \(R\) at the
dot boundary \(\gamma\) (\(\phi = \int_\gamma R d\theta a_\phi(R)\)). This is given by:

\[
a_\phi(r) = \frac{2\pi}{\hbar} \int_0^{2\pi} d\theta' \int_0^R \frac{r' d\theta' \times \hat{r}}{|\hat{r}' - \hat{r}|} \frac{\partial \Delta M_z(r')}{\partial \sigma'} , \tag{3}
\]

where \(\hat{r}\) is a radial unit vector. The calculation yields
a fraction of the flux quantum \(\sim 10^{-5}\hbar c/e\), but it is
remarkable that, at \(B \approx B^*\), we find the same value of \(\phi\)
for \(N = 2, 3, 4\). This is consistent with the fact that the FES
has essentially one spin flipped at the origin and no
change in orbital angular momentum.

FIR absorption. Far infrared radiation is a common
tool in large scale QD arrays (e.g. In QD’s [22] or
field-effect confined GaAs QD [23]). In the presence of
a Rashba SO term the center of mass coordinate and
the relative coordinates are coupled together [21], so that
Kohn’s theorem does not apply. It follows that FIR ra-
idation could excite the many body FES. We have calcu-
lated the dipole matrix element squared for the transition
from GS to FES vs B. Our results are shown in Fig. (5)
for \(N = 2(a)\) and \(N = 4(b)\), respectively. The dispersion
of the absorption peaks is artificial, but their detailed
shape would yield direct access to the coupling constants
and to the relaxation mechanisms. We find an increase of the expected intensity at the FSP point which marks the crossover to the new states. As expected, the crossover sharpens with increasing N.

Conclusions. Simultaneous application of an electric field with a magnetic field orthogonal to a disk shaped QD reproduces the properties of a 2DEG QHF on the dot scale, with its skyrmion excitations. SO opens an anticrossing gap above the GS and stabilizes a skyrmion like FES, within the gap, with a spin reversed at the origin of the QD. FIR can excite the dot thus affecting nuclear magnetic resonance of underlying nuclear spins, as in recent experiments in GaAs quantum wells.

Discussions with S. Tarucha are gratefully acknowledged, as well as hospitality at ICTP, Trieste.

[1] L. P. Kouwenhoven, D. G. Austing, S. Tarucha, Rep. Prog. Phys. 64 (6), 701-736 (2001); L. P. Kouwenhoven and C. M. Marcus Phys. World 116, 35-39 (1998); M. A. Kastner, Ann. Phys. (N. Y.) 9, 885 (2000).
[2] D. Loss and D. P. Di Vincenzo, Phys. Rev. A57, 120 (1998).
[3] B. E. Kane, Nature, 393, 133 (1998).
[4] J. H. Smet, R. A. Deuchschmann, F. Ertl, W. Wegscheider, G. Abstreiter, K. von Klitzing, Nature, 415, 281 (2002).
[5] A. V. Khetskii and Y. Nazarov, Phys. Rev B 64, 125316 (2001); Y. B. Lyanda - Geller, I. L. Aleiner and B. L. Altshuler, Phys. Rev. Lett. 89, 107602 (2002).
[6] E. I. Rashba, Fiz. Tverd. Tela 2, 1224 (1960); Sov. Phys. Solid State 2, 1109 (1960); Y. A. Bychkov, E. I. Rashba, J. Phys. C17, 6039 (1984).
[7] J. Nitta, T. Akazaki, H. Takayanagi and T. Enoki, Phys. Rev. Lett., 78, 1335 (1997); D. Grundler, Phys. Rev. Lett., 84, 6074 (1999).
[8] F. E. Meijer, A. F. Morpurgo, T. M. Klapwijk, T. Koga and J. Nitta, cond-mat/0406106.
[9] J. B. Miller, D. M. Zumbal, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003).
[10] A. K. Hüttel, J. Weber, A. W. Holleitner, D. Weimann, K. Eberl and R. H. Blick, Phys. Rev. B 69, 073302 (2004).
[11] T. H. Oosterkamp, J. W. Janssen, L. P. Kouwenhoven, D. G. Austing, T. Honda and S. Tarucha Phys. Rev. Lett., 82, 2931 (1999).
[12] A. H. MacDonald, in "Quantum transport in Semiconductor Heterostructures", edited by B. Kramer (Kluwer, Dordrecht, 1996), p110.
[13] M. Stopa, Phys. Rev. B 54, 13767 (1996).
[14] P. Lucignano, B. Jouault and A. Tagliacozzo, Phys. Rev. B 69, 045314 (2004).
[15] B. Jouault, G. Santoro, A. Tagliacozzo, Phys. Rev. B 61, 10242 (2000).
[16] S. L. Sondhi, A. Karlhede, S. A. Kivelson and E. H. Rezayi, Phys. Rev. B 47, 16419 (1993).
[17] S. E. Barrett, G. Dabbagh, L. N. Pfeiffer, K. W. West and R. Tyccko, Phys. Rev. Lett. 74, 5112 (1995); A. Schmeller, J. P. Eisenstein, L. N. Pfeiffer and K. W. West, Phys. Rev. Lett. 75, 4290 (1995); E. H. Aifer, B. B. Goldberg and D. A. Broido, Phys. Rev. Lett. 76, 680 (1996).
[18] C.F. Destefani, S.E. Ulloa and G.E. Marques, Phys. Rev. B 69, 125302 (2004) (see Fig.3).
[19] T. Fujisawa, D. G. Austing, Y. Tokura, H. Hirayama and S. Tarucha, Nature 419, 278 (2002).
[20] V. Gudmundsson, A. Brataas, C. Steinbach, A. G. Mal'shukov, K. A. Chao and D. Heitmann, Physica Scripta T69, 150 (1997).
[21] L. P. Rochinson, L. J. Guo, S. Y. Chou and D.C. Tsui, Phys. Rev. Lett. 87, 166802 (2001).
[22] M. Fricke et al., Europhys. Lett. 36, 197 (1996); P. Junker, U. Kops, U. Merkt, T. Darnhofer and U. Rossler, Phys. Rev. B49, 4794 (1994).
[23] R. Krahe, V. Gudmundsson, G. Heyn, D. Heitmann, Phys. Rev. B63, 195303, (2001).
[24] L. Jacak, P. Hawrilack, A.Wójc, Quantum Dots, Springer-Verlag Berlin (1998).
[25] G. Salis, D. T. Fuchs, J. M. Kikkawa, D. D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. Lett. 86, 2677, (2001); J. M. Kikkawa and D. D. Awschalom, Science 287, 473 (2000).