RELATIONS BETWEEN THE 2×2 MINORS OF A GENERIC MATRIX

HANG HUANG, MICHAEL PERLMAN, CLAUDIA POLINI, CLAUDIU RAICU, AND ALESSIO SAMMARTANO

Abstract. We prove the case $t = 2$ of a conjecture of Bruns–Conca–Varbaro, describing the minimal relations between the $t \times t$ minors of a generic matrix. Interpreting these relations as polynomial functors, and applying transpose duality as in the work of Sam–Snowden, this problem is equivalent to understanding the relations satisfied by $t \times t$ generalized permanents. Our proof follows by combining Koszul homology calculations on the minors side, with a study of subspace varieties on the permanents side, and with the Kempf–Weyman technique (on both sides).

1. Introduction

For positive integers m, n, consider the rational map

$$\Lambda_2 : \mathbb{P}(\text{Hom}(\mathbb{C}^m, \mathbb{C}^n)) \to \mathbb{P}\left(\text{Hom}\left(2 \bigwedge \mathbb{C}^m, 2 \bigwedge \mathbb{C}^n\right)\right), \quad \phi \mapsto 2 \bigwedge \phi.$$ \hspace{1cm} (1.1)

We denote the (closure of its) image by $X_{m,n}$ and consider the problem of understanding the defining equations of $X_{m,n}$. Identifying $\text{Hom}(\mathbb{C}^m, \mathbb{C}^n)$ with the space of $m \times n$ complex matrices, the map (1.1) simply assigns to a matrix the tuple consisting of all its 2×2 minors, so finding the equations of $X_{m,n}$ amounts to understanding the algebraic relations that these minors satisfy. When $m = 2$, we can identify $X_{2,n}$ with $\text{Gr}_2(\mathbb{C}^n)$, the Grassmannian of 2-dimensional subspaces of \mathbb{C}^n, whose equations are well-understood: they are all quadratic, known as the Plücker relations. For general m, n however, the Plücker relations are not sufficient, as shown by Bruns, Conca and Varbaro in [BCV13]. In fact, [BCV13] identifies new minimal equations between the $t \times t$ minors for an arbitrary t, of degree 2 and 3. They are described in representation theoretic terms, and obtained through a careful analysis of highest weight vectors and combinatorics of bi-tableaux. It is conjectured in [BCV13, Conjecture 2.12] that these quadratic and cubic equations generate all the relations between the minors. The goal of our paper is to confirm the conjecture in the case when $t = 2$. This boils down to a vanishing result for Tor groups, which we prove by combining a number of techniques from representation theory and algebraic geometry.

To state the results, as well as for most proofs, it is convenient to use a coordinate independent approach, and to make the usual identification between matrices and 2-tensors. To that end, we consider complex vector spaces V_1, V_2, with $\dim(V_1) = m, \dim(V_2) = n$. We let $S = \text{Sym}(V_1 \otimes V_2)$, which we think of as the homogeneous coordinate ring of the source of Λ_2, and we consider the natural action of the group $\text{GL} = \text{GL}(V_1) \times \text{GL}(V_2)$ on S. If we identify $S \simeq \mathbb{C}[x_{i,j}]$ then the 2×2 minors of the generic matrix of indeterminates $(x_{i,j})$ span a GL-invariant subspace of S isomorphic to $\bigwedge^2 V_1 \otimes \bigwedge^2 V_2$. We let $W = \bigwedge^2 V_1 \otimes \bigwedge^2 V_2$, and consider the polynomial ring $R = \text{Sym}(W)$, which we think of as the homogeneous coordinate ring of the target of the map Λ_2. The inclusion of W into S gives rise to an algebra homomorphism $\Psi : R \to S$, whose image we denote by A. We have that $A = \mathbb{C}[X_{m,n}]$ is the homogeneous coordinate ring of $X_{m,n}$, and $I(X_{m,n}) = \ker(\Psi)$.

Date: May 20, 2021.

2020 Mathematics Subject Classification. Primary: 13D07, 13A50, 13C40, 14M12; Secondary: 13A30.

Key words and phrases. Determinantal varieties, Koszul homology, relations between minors, Grassmannians.
Noting that the minimal generators of $I(X_{m,n})$ are encoded by $\text{Tor}_1^R(A, \mathbb{C})$, we prove the following (here, for a partition $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots)$, we write S_λ for the corresponding Schur functor, see Section 2.2).

Theorem 1.1. We have $\text{Tor}_1^R(A, \mathbb{C})_j = 0$ for $j \neq 2, 3$, and we have an isomorphism of GL-representations

$$\text{Tor}_1^R(A, \mathbb{C})_2 = S_{1,1,1,1}V_1 \otimes S_{2,2}V_2 \oplus S_{2,2}V_1 \otimes S_{1,1,1,1}V_2,$$

$$\text{Tor}_1^R(A, \mathbb{C})_3 = S_{3,1,1,1}V_1 \otimes S_{2,2,2}V_2 \oplus S_{2,2,2}V_1 \otimes S_{3,1,1,1}V_2.$$

For our proof of Theorem 1.1, we will consider in parallel the closely related problem of understanding relations between permanents. More precisely, we consider the map (which is defined everywhere)

$$\Sigma_2 : \mathbb{P}(\text{Hom}(\mathbb{C}^m, \mathbb{C}^n)) \rightarrow \mathbb{P}(\text{Hom}((\text{Sym}^2 \mathbb{C}^m, \text{Sym}^2 \mathbb{C}^n)), \phi \rightarrow \text{Sym}^2 \phi,$$

and denote its image by $\mathbf{X}_{m,n}$. When $m = 1$, $\mathbf{X}_{1,n}$ can be identified with the degree two Veronese variety, whose defining equations are again known to be quadratic. As we will see, $\mathbf{X}_{m,n}$ also admits cubic minimal relations in general. A generalized 2×2 submatrix is one of the form

$$\begin{bmatrix} x_{i_1,j_1} & x_{i_1,j_2} \\ x_{i_2,j_1} & x_{i_2,j_2} \end{bmatrix},$$

where we do not require that $i_1 \neq i_2$, or that $j_1 \neq j_2$. The corresponding generalized permanent is given by $x_{i_1,j_1} \cdot x_{i_2,j_2} + x_{i_1,j_2} \cdot x_{i_2,j_1}$. The (generalized) 2×2 permanents span a GL-invariant subspace inside S, isomorphic to $\mathbf{W} = \text{Sym}^2 V_1 \otimes \text{Sym}^2 V_2$, and complementary to the space of minors within the quadrics in S:

$$S_2 = \text{Sym}^2 (V_1 \otimes V_2) = W \oplus \mathbf{W}.$$

We define $\mathbf{R} = \text{Sym}(\mathbf{W})$, and let \mathbf{A} be the image of the natural map $\mathbf{W} : \mathbf{R} \rightarrow S$ induced by the inclusion $\mathbf{W} \subset S$. The ring \mathbf{A} is the algebra generated by the 2×2 permanents, and is also the homogeneous coordinate ring of the image of Σ_2. Moreover, we have that $\ker(\mathbf{W}) = I(\mathbf{X}_{m,n})$. We will prove the following, which in fact turns out to be equivalent to Theorem 1.1.

Theorem 1.2. We have $\text{Tor}_1^R(\mathbf{A}, \mathbb{C})_j = 0$ for $j \neq 2, 3$, and we have an isomorphism of GL-representations

$$\text{Tor}_1^R(\mathbf{A}, \mathbb{C})_2 = S_{4}V_1 \otimes S_{2,2}V_2 \oplus S_{2,2}V_1 \otimes S_{4}V_2,$$

$$\text{Tor}_1^R(\mathbf{A}, \mathbb{C})_3 = S_{4,1,1}V_1 \otimes S_{3,3}V_2 \oplus S_{3,3}V_1 \otimes S_{4,1,1}V_2.$$

The relationship between Theorems 1.1 and 1.2 comes from interpreting all the constructions described so far as polynomial functors, and using transpose duality as explained in Section 2.3. For now, we note that it can be visualized by drawing the Young diagrams of the partitions associated with the relevant Schur functors. For instance, we have that the exterior and symmetric powers correspond to transposed diagrams:

$$\begin{array}{c c}
\wedge & \leftrightarrow \\
\wedge & \leftrightarrow \\
\end{array}$$

and

$$\begin{array}{c c}
\wedge & \leftrightarrow \\
\wedge & \leftrightarrow \\
\end{array}$$

and

$$\begin{array}{c c}
\wedge & \leftrightarrow \\
\wedge & \leftrightarrow \\
\end{array}$$
More generally, the same is true if we compare the Tor groups for minors and permanents:

j	Tor\(_R^j(A, \mathbb{C})\)	Tor\(_\overline{R}^j(\overline{A}, \mathbb{C})\)
2		
3		

The rings \(A\) and \(\overline{A}\) are known as the special fiber rings associated with the maps \((1.1)\) and \((1.2)\), and they are natural quotients of the Rees algebras of the ideals \(I_2 = \langle W \rangle\) of \(2 \times 2\) minors, and \(\overline{I}_2 = \langle \overline{W} \rangle\) of \(2 \times 2\) permanents. The Rees algebras give the bi-graded homogeneous coordinate rings of the graphs of the maps \((1.1)\) and \((1.2)\), and it is an open problem to compute their presentation. We explain a reduction procedure in Section 4 from which we derive the presentation of the Rees algebra of \(I_2\) in the case of \(m \times 3\) matrices.

We end the introduction with a summary of the proof strategy for Theorem 1.2.

Step 1. Using the results of [BCV13] and the equivalence between minors and permanents, we obtain the description of \(\text{Tor}^j(\overline{A}, \mathbb{C})\) for \(j \leq 4\). This step is based on a general duality for polynomial functors, which is explained in Section 2.3. The main part of the argument is then concerned with proving the vanishing \(\text{Tor}^j(\overline{A}, \mathbb{C}) = 0\) for \(j > 4\), and is covered by the following steps.

Step 2. We assume that \(m \geq n\). We let \(S^{(2)}\) denote the second Veronese subring of \(S\), which is a finitely generated \(R\)-module (it is infinitely generated over \(R\)). We compute the zeroth and first Koszul homology of \(S\) relative to \(W\) and restrict to even degrees to find a presentation of \(S^{(2)}\) over \(\overline{R}\). This presentation has the property that the generators are in degree up to \([n/2]\), and the relations in degree up to \([n/2] + 1\), which implies that

\[
\text{Tor}^j_1(S^{(2)}, \mathbb{C}) = 0 \text{ for } j > [n/2] + 1. \tag{1.3}
\]

We note that the calculation of Koszul homology is performed on the minors side (relative to \(W\)), and then carried over by functoriality to the permanents side (this is a recurring theme in our argument). Since the Koszul homology modules relative to \(W\) are equivariant modules supported on the cone over a Segre variety, their structure can be understood using a bivariate version of the Sam–Snowden theory of GL-equivariant modules over polynomial rings in infinitely many variables. We explain the necessary aspects of the theory in Sections 2.5 and 2.6 and perform the Koszul homology calculation in Section 3.

Step 3. The details for this step are discussed in Section 4. We show the existence of a finite filtration

\[\overline{A} = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq M_{[n/2]} = S^{(2)} \]

by \(\overline{R}\)-modules, such that \(M_r/M_{r-1}\) is generated in degree \(r\), has degree \((r + 1)\) first syzygies, and degree \((r + 2)\) second syzygies. As in **Step 2**, we obtain this by translating the description of the beginning of the minimal resolution of \(M_r/M_{r-1}\), where

\[A = M_0 \subseteq M_1 \subseteq \cdots \subseteq S^{(2)} \]

is a corresponding (infinite!) filtration by \(R\)-modules. The shape of the resolution of \(M_r/M_{r-1}\) is described using the Kempf–Weyman geometric technique and Bott’s theorem.
It turns out that \mathcal{A} and $S^{(2)}$ agree in high degree, so $S^{(2)}$ gives a good approximation of \mathcal{A} for which we can estimate Tor_1 using (1.3). We can then think of \mathcal{A} as being obtained from $S^{(2)}$ by removing finitely many layers, while controlling how Tor_1 changes at each step. We conclude that

$$\text{Tor}_1^C(\mathcal{A}, \mathbb{C})_j = 0 \text{ for } j > \lfloor n/2 \rfloor + 2,$$

and in particular if $n \leq 5$ then the vanishing sought in Step 1 holds.

Step 4. We assume from now on that $n \geq 6$, and prove by induction on the pair (m, n) that Theorem 1.2 holds. A useful tool in the study of spaces of tensors, particularly well-suited for inductive proofs, is the subspace variety. After analyzing the equations of a subspace variety Y on the permanents side in Section 5, we use induction to conclude that for $j \geq 4$, the only non-zero groups $\text{Tor}_1^C(\mathcal{A}, \mathbb{C})_j$ may occur when $j \geq n$. Since $n > \lfloor n/2 \rfloor + 2$, all such groups vanish by Step 3.

To motivate some of our choices for working on either the minors or permanents side, we note that the passage between the two settings is purely a representation theoretic construction, which behaves poorly relative to the geometry: \mathcal{W} defines a base-point free linear series, while W has a large base locus, given by a Segre variety; $S^{(2)}$ is the normalization of \mathcal{A}, but it is an infinite A-module; the Koszul homology relative to \mathcal{W} has finite length, while the one with respect to W is built from geometrically interesting modules supported on a Segre cone; the modules $\overline{M}_r/\overline{M}_{r-1}$ have finite length, while each M_r/M_{r-1} arises as a push-forward from a geometric vector bundle. Most of the non-trivial calculations that we make occur on the most geometrically significant side, and are then translated via representation theory to the other side. One exception is the study of the subspace variety, which is equally significant on both sides. The choice we made there was based on the fact that the subspace variety on the permanents side has minimal equations of degree twice as large as that on the minors side, which is crucial in the inductive argument from Step 4.

Organization. In Section 2 we recall some basic facts about polynomial functors, and give the functorial interpretation of Theorems 1.1 and 1.2 explaining how they are equivalent. In Section 3 we compute the first Koszul homology group of the polynomial ring S with respect to the space of 2×2 minors, and derive the corresponding result for permanents. In Section 4 we explain a filtration argument that gives an upper bound for the degrees of the minimal generators of $I(\mathcal{X}_{m,n})$. In Section 5 we find the equations of the subspace variety Y. The inductive step in the proof of Theorem 1.2 is explained in Section 6. We conclude with a discussion of the defining ideal of the Rees algebra in Section 7.

2. Preliminaries

The goal of this section is to establish some basic notation concerning partitions and representations of the general linear group, as well as to discuss polynomial functors in the uni- and bivariate setting. We recall the transpose duality for polynomial functors following [SS12], and explain how the functorial approach gives an equivalence between Theorems 1.1 and 1.2.

2.1. Partitions. We write \mathcal{P} for the set of all partitions $\lambda = (\lambda_1 \geq \lambda_2 \geq \cdots \geq 0)$, and write \mathcal{P}_n for the subset consisting of those $\lambda \in \mathcal{P}$ that have at most n parts (that is, $\lambda_{n+1} = 0$). We write $|\lambda| = \lambda_1 + \lambda_2 + \cdots$ for the size of λ, and write λ' for the conjugate partition, obtained by transposing the corresponding Young diagram. For partitions with repeating parts, we use the abbreviation (b^a) for the sequence (b, b, \cdots, b) of length a; for instance $(3, 3, 3, 1, 1)$ may be written as $(3^4, 1^2)$. For $\lambda, \mu \in \mathcal{P}$, we write $\mu \geq \lambda$ if $\mu_i \geq \lambda_i$ for all i. We say that μ/λ is a horizontal strip if $\mu_i \geq \lambda_i \geq \mu_{i+1}$ for all i, and write $\mu/\lambda \in \text{HS}$.
2.2. Polynomial functors. We write \(\text{Vec} \) for the category of complex vector spaces. For \(d \geq 0 \) we consider the tensor power functors \(\mathbb{T}^d : \text{Vec} \to \text{Vec} \), defined by \(\mathbb{T}^d(V) = V \otimes^d \). A polynomial functor \(P : \text{Vec} \to \text{Vec} \) is a subquotient of a direct sum of tensor power functors. Polynomial functors form a semi-simple abelian category \(\mathcal{V} \), and we refer the reader to \([SS12, \text{Section 6}]\) for its properties. The simple objects are indexed by partitions \(\lambda \), they are denoted \(S_\lambda \), and called \textit{Schur functors}. When \(\lambda = (d) \), \(S_\lambda = \text{Sym}^d \) is the symmetric power functor, while for \(\lambda = (1^k) \), \(S_\lambda = \bigwedge^k \) is the exterior power functor. There is an exact involution \(\tau : \mathcal{V} \to \mathcal{V} \), with the property that

\[
\tau(S_\lambda) = S_{\lambda'} \quad \text{for every partition } \lambda \in \mathcal{P}.
\]

In particular, \(\tau \) interchanges \(\text{Sym}^d \) and \(\bigwedge^d \). We will be interested in the subcategory \(\mathcal{V}_{gf} \) of \textit{graded-finite} polynomial functors, which are those that decompose as direct sums of Schur functors

\[
P = \bigoplus_{\lambda \in \mathcal{P}} S_{\lambda}^{\oplus m_\lambda}, \quad m_\lambda \in \mathbb{Z}_{\geq 0}. \tag{2.1}
\]

Note that \(\tau \) preserves \(\mathcal{V}_{gf} \). We write \(P_\lambda = S_{\lambda}^{\oplus m_\lambda} \) and refer to it as the \(\lambda \)-isotypic component of \(P \), and write \(P_d \) for the degree \(d \) part of \(P \), namely

\[
P_d = \bigoplus_{|\lambda| = d} S_{\lambda}^{\oplus m_\lambda}.
\]

A natural pair of elements in \(\mathcal{V}_{gf} \), which are interchanged by \(\tau \), is:

\[
\text{Sym} = \bigoplus_{d \geq 0} \text{Sym}^d \quad \text{and} \quad \bigwedge = \bigoplus_{d \geq 0} \bigwedge^d.
\]

We let \(\text{GL}(V) \simeq \text{GL}_n(\mathbb{C}) \) denote the group of invertible linear transformations of a vector space \(V \) of dimension \(n \). For every \(P \in \mathcal{V} \) we have that \(P(V) \) is a \(\text{GL}(V) \)-representation. For Schur functors, we have that \(S_\lambda V = 0 \) when \(\lambda_1' > n \), that is, when \(\lambda \) has more than \(n \) parts. If \(\lambda \in \mathcal{P}_n \) then \(S_\lambda V \) is an irreducible \(\text{GL}(V) \)-representation, and moreover, we have that for \(\lambda, \mu \in \mathcal{P}_n \) there exists an isomorphism \(S_\lambda V \simeq S_\mu V \) as \(\text{GL}(V) \)-representations if and only if \(\lambda = \mu \). It follows that for a fixed \(\lambda \in \mathcal{P} \) we can detect the multiplicity \(m_\lambda \) in \((2.1) \) by decomposing \(P(V) \) into a direct sum of irreducible \(\text{GL}(V) \)-representations, for any vector space \(V \) with \(\dim(V) \geq \lambda_1' \). This fact will be used repeatedly throughout this article.

2.3. Bi-variate polynomial functors. The category of \textit{bivariate} polynomial functors \(P : \text{Vec} \times \text{Vec} \to \text{Vec} \) is \(\mathcal{V}^{\otimes 2} \), with simple objects indexed by pairs \((\lambda, \mu) \in \mathcal{P} \times \mathcal{P} \) and denoted \(S_{\lambda} \times S_{\mu} \): we have

\[
(S_\lambda \times S_\mu)(V_1, V_2) = S_\lambda V_1 \otimes S_\mu V_2 \quad \text{for every } V_1, V_2 \in \text{Vec}.
\]

We use the notation \(\boxtimes \) to contrast with the univariate functor given by \((S_\lambda \otimes S_\mu)(V) = S_\lambda V \otimes S_\mu V \). The subcategory \(\mathcal{V}_{gf}^{\otimes 2} \) consists of objects

\[
P = \bigoplus_{(\lambda, \mu) \in \mathcal{P}} (S_\lambda \boxtimes S_\mu)^{\oplus m_{\lambda, \mu}}, \quad m_{\lambda, \mu} \in \mathbb{Z}_{\geq 0},
\]

and we define the \((\lambda, \mu) \)-isotypic component \(P_{\lambda, \mu} \) and the bi-graded component \(P_{d,e} \) in analogy with the univariate case. The involution \(\tau \) induces (commuting) involutions \(\tau_1, \tau_2 \) on \(\mathcal{V}^{\otimes 2} \), which act on the simples by

\[
\tau_1(S_\lambda \boxtimes S_\mu) = S_{\mu'} \boxtimes S_\mu \quad \tau_2(S_\lambda \boxtimes S_\mu) = S_\lambda \boxtimes S_{\mu'}.
\]

One of the key players in this work is the algebra functor \(\mathcal{G} \) defined by letting

\[
\mathcal{G}(V_1, V_2) = \text{Sym}(V_1 \otimes V_2).
\]
When \(V_1 \simeq \mathbb{C}^m, V_2 \simeq \mathbb{C}^n \), we have that \(\mathcal{G}(V_1, V_2) = S \) is the coordinate ring of the space of \(m \times n \) matrices. By Cauchy’s formula, we have that
\[
\mathcal{G} = \bigoplus_{\lambda \in \mathcal{P}} S_\lambda \otimes S_\lambda,
\]
and in particular
\[
\tau_1 \tau_2 \mathcal{G} = \mathcal{G}.
\]
We define the functor \(\mathcal{E} = \tau_1 \mathcal{G} = \tau_2 \mathcal{G} \), which can be shown to send a pair \((V_1, V_2) \) to the exterior algebra \(\Lambda(V_1 \otimes V_2) \) (see [Wey03, Corollary 2.3.3]), and which satisfies \(\tau_1 \tau_2 \mathcal{E} = \mathcal{E} \). We also consider the (bivariate) functors \(\mathfrak{W}, \overline{\mathfrak{W}}, \mathfrak{R}, \overline{\mathfrak{R}}, \) defined by
\[
\mathfrak{W}(V_1, V_2) = \bigwedge^2 V_1 \otimes \bigwedge^2 V_2, \quad \overline{\mathfrak{W}}(V_1, V_2) = \text{Sym}^2 V_1 \otimes \text{Sym}^2 V_2, \quad \mathfrak{R} = \text{Sym} \circ \mathfrak{W}, \quad \overline{\mathfrak{R}} = \text{Sym} \circ \overline{\mathfrak{W}}.
\]
Since \(\mathfrak{W}, \overline{\mathfrak{W}} \) are subfunctors of \(\mathcal{G} \), it follows that \(\mathcal{G} \) is naturally an \(\mathfrak{R} \)- and \(\overline{\mathfrak{R}} \)-algebra functor. The natural transformations \(\phi : \mathfrak{R} \to \mathcal{G} \) (resp. \(\overline{\phi} : \overline{\mathfrak{R}} \to \mathcal{G} \)) give rise to subfunctors \(\mathfrak{A} = \text{Im}(\phi) \) (resp. \(\overline{\mathfrak{A}} = \text{Im}(\overline{\phi}) \)). With the notation in the introduction, if \(S = \mathcal{G}(V_1, V_2) \) then
\[
\mathfrak{R}(V_1, V_2) = R, \quad \overline{\mathfrak{R}}(V_1, V_2) = \overline{R}, \quad \mathfrak{A}(V_1, V_2) = A, \quad \overline{\mathfrak{A}}(V_1, V_2) = \overline{A}.
\]
Moreover, using the transpose duality functors we get that
\[
\tau_1 \tau_2 \mathfrak{W} = \overline{\mathfrak{W}}, \quad \tau_1 \tau_2 \mathfrak{R} = \overline{\mathfrak{R}}, \quad \tau_1 \tau_2 \mathfrak{A} = \overline{\mathfrak{A}}.
\]
This makes precise the statement that we can exchange minors for permanents in a functorial way.

We write \(\mathcal{P}_{\text{even}} \) for the subset of \(\mathcal{P} \) consisting of partitions of even size, and consider the set of partitions
\[
\mathcal{M}_0 = \{ \lambda \in \mathcal{P}_{\text{even}} : \lambda_1 \leq \lambda_2 + \lambda_3 + \cdots \}.
\]
It follows from [CEPS80, Section 6] (see also [BCV13, (1.2)]) that
\[
\mathfrak{A} = \bigoplus_{\lambda \in \mathcal{M}_0} S_\lambda \otimes S_\lambda,
\]
and the corresponding formula for \(\overline{\mathfrak{A}} \) is obtained by applying \(\tau_1 \tau_2 \).

We define \(\text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C}) \) to be the \(i \)-th homology of the Koszul complex
\[
\cdots \to \bigwedge^{i+1} \mathfrak{W} \otimes \mathfrak{A} \to \bigwedge^i \mathfrak{W} \otimes \mathfrak{A} \to \bigwedge^{i-1} \mathfrak{W} \otimes \mathfrak{A} \to \cdots
\]
and define \(\text{Tor}^r_\overline{\mathfrak{A}}(\overline{\mathfrak{A}}, \mathcal{C}) \) analogously. Since \(\tau_1 \) and \(\tau_2 \) are exact, we have that
\[
\tau_1 \tau_2 \text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C}) = \text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C}) \quad \text{for all } i.
\]
We note that the functors \(\mathfrak{A}, \mathfrak{A}, \text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C}) \) etc. are all zero in bi-degree \((d, e) \) unless \(d = e = 2j \) is even. We will make an abuse of notation and write \(\mathfrak{F}_j \) instead of \(\mathfrak{F}_{2j, 2j} \) when \(\mathfrak{F} \) is any of these functors. The discussion above shows that Theorem 1.1 is equivalent to the assertion that \(\text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C})_j = 0 \) for \(j \neq 2, 3 \) and
\[
\text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C})_2 = S_{1,1,1,1} \otimes S_{2,2} \oplus S_{2,2} \otimes S_{1,1,1,1}, \quad \text{Tor}^r_\mathfrak{A}(\mathfrak{A}, \mathcal{C})_3 = S_{3,1,1,1} \otimes S_{2,2,2} \oplus S_{2,2,2} \otimes S_{3,1,1,1}.
\]
Moreover, Theorem 1.2 is equivalent to the fact that \(\text{Tor}^r_\overline{\mathfrak{A}}(\overline{\mathfrak{A}}, \mathcal{C})_j = 0 \) for \(j \neq 2, 3 \) and
\[
\text{Tor}^r_\overline{\mathfrak{A}}(\overline{\mathfrak{A}}, \mathcal{C})_2 = S_4 \otimes S_{2,2} \oplus S_{2,2} \otimes S_4, \quad \text{Tor}^r_\overline{\mathfrak{A}}(\overline{\mathfrak{A}}, \mathcal{C})_3 = S_{4,1,1} \otimes S_{3,3} \oplus S_{3,3} \otimes S_{4,1,1}.
\]
Moreover, we have that (2.5) and (2.6) are equivalent by (2.4), showing that Theorems 1.1 and 1.2 are equivalent as well.
2.4. Highest weight vectors in S. We let $GL = GL(V_1) \times GL(V_2)$ and decompose $S = \text{Sym}(V_1 \otimes V_2)$ as a GL-representation (see (2.2))

$$S = \bigoplus_{\lambda \in P} S_{\lambda}V_1 \otimes S_{\lambda}V_2. \quad (2.7)$$

Whenever we need to work with explicit elements of S, we assume that V_1, V_2 are equipped with fixed bases yielding identifications $V_1 \simeq \mathbb{C}^m, V_2 \simeq \mathbb{C}^n$, and $S \simeq \mathbb{C}[x_{i,j}]$ is a polynomial ring in the entries of a generic $m \times n$ matrix. For every $r \geq 1$ we write

$$\det_r = \det(x_{i,j})_{1 \leq i,j \leq r}$$

for the principal $r \times r$ minor coming from the upper left corner of the generic matrix, with the convention that $\det_r = 0$ when $r > \min(m, n)$. For a partition $\lambda \in \mathcal{P}$ we let

$$\det_{\lambda} = \prod_{i=1}^{\lambda_1} \det_{\lambda_i},$$

which is a highest weight vector for the action of GL on S. The component $S_{\lambda}V_1 \otimes S_{\lambda}V_2$ in (2.7) is then the \mathbb{C}-linear span of the orbit $GL \cdot \det_{\lambda}$. For instance, when $V_1 = V_2 = \mathbb{C}^2$, we have that $W = \text{Sym}^2 V_1 \otimes \text{Sym}^2 V_2$ is 9-dimensional, spanned by

$$x_{1,1}^2, \; x_{1,2}^2, \; x_{2,1}^2, \; x_{2,2}^2, \; x_{1,1}x_{1,2}, \; x_{1,1}x_{2,1}, \; x_{1,2}x_{2,1}, \; x_{2,1}x_{2,2}, \; x_{1,1}x_{2,2} + x_{1,2}x_{2,1}.$$

2.5. Filtrations on equivariant modules. For a vector space V we let $\text{Sym}(V)$ be the corresponding polynomial ring. Throughout this section, by module we mean a $GL(V)$-equivariant $\text{Sym}(V)$-module. The category of such modules is well-understood by [SS16], and we recall here some of the basic facts that will be used later on. By varying V, the modules we study give rise to polynomial functors, and we encourage the reader to translate the results here in the language of the earlier sections. For $\lambda \in \mathcal{P}$ define the free module

$$F_\lambda(V) = S_{\lambda}V \otimes \text{Sym}(V).$$

Using Pieri’s rule [Wey03 Corollary 2.3.5], we get a multiplicity-free $GL(V)$-decomposition

$$F_\lambda(V) = \bigoplus_{\mu / \lambda \in \text{HS}} S_{\mu}V.$$

Moreover, it follows from [SS16 Proposition 1.3.3] that if we write $\langle S \rangle$ for the submodule generated by a subset S of $F_\lambda(V)$, then

$$\langle S_{\mu}V \rangle = \bigoplus_{\delta \geq \mu, \delta / \lambda \in \text{HS}} S_{\delta}V. \quad (2.8)$$

We define $M_\lambda(V)$ as the quotient

$$M_\lambda(V) = \frac{F_\lambda(V)}{\langle S_{\mu}V : \mu / \lambda \in \text{HS}, \mu_i > \lambda_i \text{ for some } i > 1 \rangle} = \bigoplus_{d \geq 0} S_{\lambda_1 + d, \lambda_2, \lambda_3, \ldots}V. \quad (2.8)$$

We remark that the only submodules of $M_\lambda(V)$ have the form $M_{\lambda_1 + d, \lambda_2, \lambda_3, \ldots}(V)$, and they form a chain. Furthermore, there exists a non-zero module map $M_\lambda(V) \to M_\mu(V)$ if and only if $\lambda_1 \geq \mu_1$ and $\lambda_i = \mu_i$ for all $i \geq 2$; in this case, the map is injective and unique up to scalar.

We equip $F_\lambda(V)$ with a decreasing filtration $\{F^t(F_\lambda(V))\}_{t \geq 0}$ by submodules, setting

$$F^t(F_\lambda(V)) = \bigoplus_{\mu / \lambda \in \text{HS}, t \leq \mu_2 + \mu_3 + \ldots} S_{\mu}V. \quad (2.9)$$
We denote the graded components of associated graded modules by \(\text{gr}^t(-) \). Note that for \(\lambda = (0,0,\ldots) \) we have \(F_\lambda(V) = \text{Sym}(V) \), and \(F^0(\text{Sym}(V)) = \text{Sym}(V) \), \(F^1(\text{Sym}(V)) = 0 \), so \(\text{gr}(\text{Sym}(V)) = \text{gr}^0(\text{Sym}(V)) = \text{Sym}(V) \).

It follows that, for any \(\lambda \), the associated graded module \(\text{gr}(F_\lambda(V)) \) is a module over \(\text{Sym}(V) \) (and \(\text{GL}(V) \)-equivariant), and moreover, we have a module isomorphism

\[
\text{gr}^t(F_\lambda(V)) = \frac{F^t(F_\lambda(V))}{F^{t+1}(F_\lambda(V))} = \bigoplus_{\mu/\lambda \in \text{HS}, \mu_1 = \lambda_1, t = \mu_2 + \mu_3 + \cdots} M_\mu(V).
\]

(2.10)

We extend this filtration to direct sums of \(F_\lambda(V) \)'s, and note that by (2.9) every \(\text{GL}(V) \)-equivariant map automatically respects the filtration. We note also that taking \(\text{gr}(\cdot) \) only affects the \(\text{Sym}(V) \)-module structure, but not the \(\text{GL} \)-structure. In other words, if \(\phi : F_2 \to F_1 \) is an equivariant map of finite free modules, then for the associated graded map \(\text{gr}(\phi) : \text{gr}(F_2) \to \text{gr}(F_1) \) we have \(\phi = \text{gr}(\phi) \) as \(\text{GL}(V) \)-linear maps (but not as \(\text{Sym}(V) \)-linear maps). In the special case of the (unique up to scaling) map \(\phi : F_\lambda(V) \to F_\gamma(V) \), where \(\lambda/\gamma \in \text{HS} \), we have that the induced map \(\text{gr}(\phi) \) embeds

\[
M_\mu(V) \hookrightarrow M_\delta(V)
\]

if there exists \(\delta \) with \(\delta/\gamma \in \text{HS} \), \(\delta_1 = \gamma_1 \) and \(\delta_i = \mu_i \) for \(i \geq 2 \), and it sends \(M_\mu(V) \) to zero if no such \(\delta \) exists.

Example 2.1. If \(\lambda = (3,1) \) and \(\gamma = (1,1) \) then the non-zero components of \(\text{gr}(F_\lambda(V)) \) and \(\text{gr}(F_\gamma(V)) \) are:

	1	2	3	4
\(\text{gr}^t(F_\lambda(V)) \)	\(M \)	\(M \oplus M \)	\(M \oplus M \)	\(M \)
\(\text{gr}^t(F_\gamma(V)) \)	\(M \)	\(M \)	\(M \)	\(M \)

Let \(\phi : F_3(V) \to F_3(V) \) be as above. The only non-zero part of \(\text{gr}(\phi) \) is given by the inclusion of \(M_{3,1} \) into \(M_{1,1} \), and that of \(M_{3,1,1} \) into \(M_{1,1,1} \).

2.6. Filtrations in the bi-graded setting.

We consider now a pair of vector spaces \(V_1, V_2 \), and the associated polynomial ring \(\text{Sym}(V_1) \otimes \text{Sym}(V_2) = \text{Sym}(V_1 \oplus V_2) \). We write \(\text{GL} = \text{GL}(V_1) \times \text{GL}(V_2) \), and call module a \(\text{GL} \)-equivariant \(\text{Sym}(V_1) \otimes \text{Sym}(V_2) \)-module. We have in particular for \(\lambda, \mu \in P \) the free module

\[
F_\lambda(V_1) \otimes F_\mu(V_2),
\]

which is equipped with a bi-filtration by submodules, given by

\[
\mathcal{F}^{s,t}(F_\lambda(V_1) \otimes F_\mu(V_2)) = \mathcal{F}^s(F_\lambda(V_1)) \otimes \mathcal{F}^t(F_\mu(V_2)) \quad \text{for } s, t \in \mathbb{N}.
\]

The associated graded components are

\[
\text{gr}^{(s,t)}(F_\lambda(V_1) \otimes F_\mu(V_2)) = \text{gr}^s(F_\lambda(V_1)) \otimes \text{gr}^t(F_\lambda(V_2)).
\]

As before, all module maps respect this filtration (since they are assumed to be \(\text{GL} \)-equivariant).

All our modules are naturally bi-graded by placing each irreducible \(\text{GL} \)-representation \(S_\delta V_1 \otimes S_\gamma V_2 \) in bi-degree \((|\delta|, |\gamma|)\). We have a diagonal functor \(\Delta \) that picks up the symmetric bi-degrees in each module:

\[
\Delta(M) = \bigoplus_{d \geq 0} M_{(d,d)}.
\]
If we apply Δ to the ring itself we obtain the coordinate ring of the Segre product $\mathbb{P}V_1 \times \mathbb{P}V_2$:

$$\Delta(\text{Sym}(V_1) \otimes \text{Sym}(V_2)) = \bigoplus_{d \geq 0} \text{Sym}^d V_1 \otimes \text{Sym}^d V_2 = S/I_2,$$

where S and I_2 are as defined in the Introduction. We assume that $|\lambda| = |\mu|$ and obtain S/I_2-modules

$$F_{\lambda,\mu} = \Delta(F_{\lambda}(V_1) \otimes F_{\mu}(V_2)) = S\lambda V_1 \otimes S\mu V_2 \otimes S/I_2,$$

$$M_{\lambda,\mu} = \Delta(M_{\lambda}(V_1) \otimes M_{\mu}(V_2)) = \bigoplus_{d \geq 0} S_{\lambda_1+d,\lambda_2,\lambda_3,\ldots} V_1 \otimes S_{\mu_1+d,\mu_2,\mu_3,\ldots} V_2.$$ \hfill (2.11)

Applying the diagonal functor we obtain an induced bi-filtration on $F_{\lambda,\mu}$, with associated graded components

$$\text{gr}^{(s,t)}(F_{\lambda,\mu}) = \Delta(\text{gr}^s(F_{\lambda}(V_1)) \otimes \text{gr}^t(F_{\mu}(V_2))) = \bigoplus_{(\tau,\theta) \in \mathcal{N}_{\lambda,\mu}^{s,t}} S_{\tau} V_1 \otimes S_{\theta} V_2,$$

where

$$\mathcal{N}_{\lambda,\mu}^{s,t} = \left\{ (\tau, \theta) \in \mathcal{P} \times \mathcal{P} : \tau/\lambda, \theta/\mu \in \text{HS}, s = \tau_2 + \tau_3 + \cdots, t = \theta_2 + \theta_3 + \cdots, \text{ and } |\tau| = |\theta| \right\}.$$ \hfill (2.12)

In other words, we have a direct sum module decomposition

$$\text{gr}(F_{\lambda,\mu}) = \bigoplus_{(\alpha,\beta) \in \mathcal{N}_{\lambda,\mu}} M_{\alpha,\beta},$$

where

$$\mathcal{N}_{\lambda,\mu} = \left\{ (\alpha, \beta) \in \mathcal{P} \times \mathcal{P} : \alpha/\lambda, \beta/\mu \in \text{HS} \text{ and } (\alpha_1 = \lambda_1 \text{ or } \beta_1 = \mu_1) \right\}. \hfill (2.13)$$

Remark 2.2. As for the case of one vector space V, the following facts hold:

1. The only submodules of $M_{\lambda,\mu}$ are of the form $M_{(\lambda_1+d,\lambda_2,\lambda_3,\ldots), (\mu_1+d,\mu_2,\mu_3,\ldots)}$, and they form a chain.
2. There exists a non-zero S/I_2-linear map $M_{\lambda,\mu} \rightarrow M_{\alpha,\beta}$ if and only if $\lambda_1 \geq \alpha_1, \mu_1 \geq \beta_1, \lambda_i = \alpha_i, \mu_i = \beta_i$ for $i \geq 2$; in this case, the map is injective and unique up to scalar.
3. If $\varphi : F_2 \rightarrow F_1$ is an equivariant map of finite free S/I_2-modules, then for the associated graded map $\text{gr}(\varphi) : \text{gr}(F_2) \rightarrow \text{gr}(F_1)$ we have $\varphi = \text{gr}(\varphi)$ as GL-equivariant maps (but not as maps of S/I_2-modules).
4. Specializing (3) to the case when $F_2 = F_{\lambda,\mu}$ and $F_1 = F_{\alpha,\beta}$, we get that $\text{gr}(\varphi)$ includes each component $M_{\gamma,\delta}$ into a corresponding $M_{\tau,\theta}$ whenever possible. More precisely, we have $\text{gr}(\varphi)(M_{\gamma,\delta}) \subseteq M_{\tau,\theta}$ if $(\tau, \theta) \in \mathcal{N}_{\lambda,\mu}, (\gamma, \delta) \in \mathcal{N}_{\alpha,\beta}, \tau_1 \geq \gamma_1, \theta_1 \geq \delta_1, \tau_i = \gamma_i, \theta_i = \delta_i$ for $i \geq 2$, and $\text{gr}(\varphi)(M_{\tau,\theta}) = 0$ if no such γ, δ exist.

Explicit examples of the bi-filtrations discussed above, and the corresponding induced maps, will appear in the proof of Theorem [5.1]

3. The first Koszul homology groups for 2×2 minors

The goal of this section is to describe the zeroth and first Koszul homology groups associated with the space $W \subset S$ spanned by the 2×2 minors. We write $K_\bullet(W)$ for the Koszul complex whose i-th term is

$$K_i(W) = \bigwedge^i W \otimes S,$$

and note that

$$H_i(K_\bullet(W)) = \operatorname{Tor}_i^R(S, \mathbb{C}).$$
Moreover, since $I_2 = \langle W \rangle \subseteq S$ then
\[H_0(K_\bullet(W)) = S/I_2 = \bigoplus_{d \geq 0} \text{Sym}^d V_1 \otimes \text{Sym}^d V_2 \] (3.1)
is the homogeneous coordinate ring of the Segre product $\mathbb{P}V_1 \times \mathbb{P}V_2$. We prove the following.

Theorem 3.1. Let $K = H_1(K_\bullet(W))$. The graded components of K are described as GL-representations by $K_d = 0$ for $d < 3$,

\[K_3 = S_{2,1}V_1 \otimes S_{1,1,1}V_2 \oplus S_{1,1,1}V_1 \otimes S_{2,1}V_2, \]
\[K_4 = S_{2,2}V_1 \otimes S_{1,1,1}V_2 \oplus S_{1,1,1}V_1 \otimes S_{2,2}V_2 \oplus S_{2,1,1}V_1 \otimes S_{2,1,1}V_2 \oplus S_{2,1,1}V_1 \otimes S_{3,1}V_2 \oplus S_{3,1}V_1 \otimes S_{2,1,1}V_2, \]
\[K_d = S_{d-2,1,1}V_1 \otimes S_{d-2,1,1}V_2 \oplus S_{d-2,1,1}V_1 \otimes S_{d-1,1}V_2 \oplus S_{d-1,1}V_1 \otimes S_{d-2,1,1}V_2, \text{ for } d \geq 5. \]

Recall from the Introduction that $\overline{W} = \text{Sym}^2 V_1 \otimes \text{Sym}^2 V_2$ is the space spanned by the 2×2 permanents, and $T = \langle \overline{W} \rangle \subseteq S$, then it follows by transpose duality from (3.1) that

\[H_0(K_\bullet(\overline{W})) = S/T = \bigoplus_{d \geq 0} \bigwedge^d V_1 \otimes \bigwedge^d V_2 = \bigoplus_{d = 0}^n \bigwedge^d V_1 \otimes \bigwedge^d V_2, \]

where the last equality follows since $\bigwedge^d V_2 = 0$ for $d > n = \dim(V_2)$. Moreover, from Theorem 3.1 we get:

Theorem 3.2. Let $\overline{K} = H_1(K_\bullet(\overline{W}))$. We have $\overline{K}_d = 0$ for $d < 3$, and

\[\overline{K}_3 = S_{2,1}V_1 \otimes S_{3}V_2 \oplus S_{3}V_1 \otimes S_{2,1}V_2, \]
\[\overline{K}_4 = S_{2,2}V_1 \otimes S_{4}V_2 \oplus S_{4}V_1 \otimes S_{2,2}V_2 \oplus S_{3,1}V_1 \otimes S_{3,1}V_2 \oplus S_{3,1}V_1 \otimes S_{2,1}V_2 \oplus S_{2,1,1}V_1 \otimes S_{3,1}V_2, \]
\[\overline{K}_d = S_{3,1,d-3}V_1 \otimes S_{3,1,d-3}V_2 \oplus S_{3,1,d-3}V_1 \otimes S_{2,1,d-2}V_2 \oplus S_{2,1,d-2}V_1 \otimes S_{3,1,d-3}V_2, \text{ for } d \geq 5. \]

In particular, since $S_{3}V_2 = 0$ when λ has more than n parts, it follows that $\overline{K}_d = 0$ for $d \geq n + 3$.

Proof of Theorem 3.2. We write ∂_i for the i-th differential in $K_\bullet(W)$, so that $K = \ker(\partial_1)/\text{Im}(\partial_2)$. We recall the beginning of the Lascoux minimal free resolution of S/I_2 (see [Wey03] Section 6.1)

\[W^3 \otimes S \xrightarrow{\partial_3} W^2 \otimes S \xrightarrow{\partial_2} W^1 \otimes S \xrightarrow{\partial_1} W \otimes S \xrightarrow{\delta_1} S \]

where

\[W^1 = S_{1,1,1}V_1 \otimes S_{2,1}V_2 \oplus S_{2,1}V_1 \otimes S_{1,1,1}V_2, \]
\[W^2 = S_{2,1,1}V_1 \otimes S_{2,1,1}V_2 \oplus S_{1,1,1}V_1 \otimes S_{3,1}V_2 \oplus S_{3,1}V_1 \otimes S_{1,1,1}V_2, \]
\[W^3 = S_{3,1,1}V_1 \otimes S_{2,1,1}V_2 \oplus S_{2,1,1}V_1 \otimes S_{3,1,1}V_2 \oplus S_{2,2,2}V_1 \otimes S_{2,2,2}V_2. \]

We will also need the decomposition

\[\bigwedge^2 W = S_{2,1,1}V_1 \otimes S_{2,2}V_2 \oplus S_{2,1,1}V_1 \otimes S_{1,1,1}V_2 \oplus S_{2,2}V_1 \otimes S_{2,1,1}V_2 \oplus S_{1,1,1}V_1 \otimes S_{2,1,1}V_2. \]

Since $\delta_1 = \partial_1$ we have that $K = \text{Im}(\partial_2)/\text{Im}(\partial_2)$. Factoring $\partial_2 : \bigwedge^2 W \otimes S \to \ker(\partial_1) \subseteq W \otimes S$ through $\delta_2 : W^1 \otimes S \to \ker(\delta_1)$ we obtain a map $\epsilon_2 : \bigwedge^2 W \otimes S \to W^1 \otimes S$ and a linear presentation

\[\left(W^2 \oplus \bigwedge^2 W \right) \otimes S \xrightarrow{\delta_3 \otimes \epsilon_2} W^1 \otimes S \to K \to 0. \]
Tensoring with S/I_2 over S we obtain the presentation

$$F_2 = \left(W^2 \oplus \bigwedge^2 W \right) \otimes S/I_2 \xrightarrow{\varphi = \partial_3 \oplus \overline{\partial}} F_1 = W^1 \otimes S/I_2 \rightarrow K \rightarrow 0$$

(3.2)

where we used that K is annihilated by I_2 (see [Eis95] Prop. 17.14).

In order to find the GL-decomposition of K we determine the image of φ. We consider the filtrations of F_1, F_2 constructed in Section 2.6 By Remark 2.2 (3) it suffices to study the associated graded map $\text{gr}(\varphi) : \text{gr}(F_2) \rightarrow \text{gr}(F_1)$. The components of $\text{gr}(F_1) = \text{gr}(F(1,1,1),(2,1) \oplus F(2,1),(1,1,1))$ are determined by (2.13): for the summand $\text{gr}(F(1,1,1),(2,1))$ we have

$$M_{(1,1,1),(2,1)} \quad M_{(1,1,1),(1,2,1)} \quad M_{(1,1,1),(2,2)} \quad M_{(1,1,1),(3,1)}$$

and, symmetrically, for the summand $\text{gr}(F(2,1),(1,1,1))$ we have

$$M_{(2,1),(1,1,1)} \quad M_{(2,1),(1,1,1)} \quad M_{(2,2),(1,1,1)} \quad M_{(3,1),(1,1,1)}$$

We are going to calculate $M_{\lambda,\mu} \cap \text{Im}(\text{gr}(\varphi))$ for each of the 16 terms $M_{\lambda,\mu}$ above. Observe that each $M_{\lambda,\mu}$ appears exactly once, with the exception of $M_{(2,1),(1,1,1)}$, therefore, by symmetry, it suffices to deal with the first 8 cases and with the second copy $M_{(2,1),(1,1,1)}$ appearing in the last 8.

1. $M_{(1,1,1),(2,1)} \cap \text{Im}(\text{gr}(\varphi)) = 0$.
 It follows from Remark 2.2 (2) by inspecting the graded components of $\text{gr}(F_2)$.

2. $M_{(1,1,1),(1,2,1)} \subseteq \text{Im}(\text{gr}(\varphi))$.
 $S_{1,1,1,1}V_1 \otimes S_{2,1,1}V_2$ is part of the minimal generating set of $\bigwedge^2 W \otimes S/I_2$. Its image is non-zero under ∂_2, therefore also under the lift ϵ_2, and by degree reasons also under $\overline{\partial}$. Thus $M_{(1,1,1),(1,2,1)} \subseteq \text{Im}(\text{gr}(\varphi))$ by Remark 2.2 (2).

3. $M_{(1,1,1),(2,2)} \cap \text{Im}(\text{gr}(\varphi)) = M_{(2,1,1),(2,1,1)}$.
 $S_{1,1,1,1}V_1 \otimes S_{2,2}V_2$ does not appear in F_2. On the other hand, $S_{2,1,1,1}V_1 \otimes S_{3,2}V_2$ appears in $W^2 \otimes S$, and its image in $W^1 \otimes S$ under δ_3 is non-zero because $S_{2,1,1,1}V_1 \otimes S_{3,2}V_2$ does not appear in $W^3 \otimes S$. Note that $S_{2,1,1,1}V_1 \otimes S_{3,2}V_2$ appears once in $W^1 \otimes S$, hence it avoids the kernel of $W^1 \otimes S \rightarrow W^1 \otimes S/I_2$. We deduce that the image of $S_{2,1,1,1}V_1 \otimes S_{3,2}V_2$ under $\overline{\delta}_3$ is non-zero, and the desired conclusion follows by Remark 2.2 (2).

4. $M_{(1,1,1),(3,1)} \subseteq \text{Im}(\text{gr}(\varphi))$.
 $S_{1,1,1,1}V_1 \otimes S_{3,1}V_2$ is part of the minimal generating set of $W^2 \otimes S/I_2$. Its image is non-zero under δ_3, and by degree reasons also under $\overline{\delta}_3$. Thus $M_{(1,1,1),(3,1)} \subseteq \text{Im}(\text{gr}(\varphi))$ by Remark 2.2 (2).

5. $M_{(2,1),(1,1,1)} \subseteq \text{Im}(\text{gr}(\varphi))$.
 By Remark 2.2 (2) the only $M_{\lambda,\mu} \subseteq \text{gr}(F_1)$ that can map to $M_{(2,1),(1,1,1)}$ comes from the subspace $S_{2,1,1,1}V_1 \otimes S_{2,1,1}V_2$ that is part of the minimal generating set of $W^2 \otimes S/I_2$. As in item 4 we conclude that $\text{Im}(\text{gr}(\varphi))$ contains (exactly) one copy of $M_{(2,1),(1,1,1)}$.

6. $M_{(2,1),(2,2)} \subseteq \text{Im}(\text{gr}(\varphi))$ as in item 2.

7. $M_{(2,1),(1,2,1)} \subseteq \text{Im}(\text{gr}(\varphi))$ as in the second part of item 4.

8. $M_{(3,1),(1,2,1)} \subseteq \text{Im}(\text{gr}(\varphi))$ as in the second part of item 3.

We conclude that the associated graded module of the induced filtration on K is

$$\text{gr}(K) = M_{(1,1,1),(2,1)} \oplus M_{(2,1),(1,1,1)} \oplus M_{(2,1),(2,1,1)} \oplus S_{1,1,1,1}V_1 \otimes S_{2,2}V_2 \otimes S_{2,2}V_1 \otimes S_{1,1,1,1}V_2.$$
By (2.12), this implies the GL-decomposition stated in the theorem.

4. Filtrations on the second Veronese subring

We let $S^{(2)}$ denote the second Veronese subring of S, with the grading given by

$$S^{(2)}_d = \text{Sym}^{2d}(V_1 \otimes V_2) = \bigoplus_{\lambda \vdash 2d} S_\lambda V_1 \otimes S_\lambda V_2.$$

We can think of $S^{(2)}$ as a graded module over the (standard) graded polynomial ring R, and it follows from Section 3 that

$$\text{Tor}^R_0(S^{(2)}, C)_d = \text{Sym}^{2d} V_1 \otimes \text{Sym}^{2d} V_2, \quad (4.1)$$

and (see Theorem 3.1 for the description of K)

$$\text{Tor}^R_1(S^{(2)}, C)_d = K_{2d}.$$

The R-submodule of $S^{(2)}$ generated by 1 is A, so it is clear that $\text{Tor}^R_0(A, C) = C$ (concentrated in degree 0). The formula (4.1), which describes the minimal generators of $S^{(2)}$ as an R-module, provides a natural increasing filtration of $S^{(2)}$ by R-submodules

$$A = M_0 \subseteq M_1 \subseteq M_2 \subseteq \cdots \subseteq S^{(2)}, \quad (4.2)$$

where M_i is the R-submodule generated by $\bigoplus_{d=0}^i \text{Sym}^{2d} V_1 \otimes \text{Sym}^{2d} V_2$.

The goal of this section is to prove the following:

Theorem 4.1. For each $r > 0$ and for $i = 0, 1, 2$ we have that

$$\text{Tor}^R_i(M_r/M_{r-1}, C)_j = 0 \text{ if } j \neq i + r.$$

Applying transpose duality, it follows from (4.1) that we have a filtration

$$\overline{A} = \overline{M}_0 \subseteq \overline{M}_1 \subseteq \overline{M}_2 \subseteq \cdots \subseteq S^{(2)}, \quad (4.3)$$

where \overline{M}_i is the \overline{R}-submodule generated by $\bigoplus_{d=0}^i \text{Sym}^{2d} V_1 \otimes \text{Sym}^{2d} V_2$. Unlike (4.2), the filtration (4.3) is finite, and we have $\overline{M}_{[n/2]} = S^{(2)}$. It follows from Theorem 4.1 that for $i = 0, 1, 2$ we have

$$\text{Tor}^R_i(\overline{M}_r/\overline{M}_{r-1}, C)_j = 0 \text{ if } j \neq i + r. \quad (4.4)$$

Corollary 4.2. We have that $\text{Tor}^R_1(\overline{A}, C)_j = 0$ for $j > [n/2] + 2$.

Proof. We prove by descending induction on r that $\text{Tor}^R_1(\overline{M}_r, C)_j = 0$ for $j > [n/2] + 2$. The base case is $r = [n/2]$, which follows from Theorem 3.2 since

$$\text{Tor}^R_1(S^{(2)}, C)_j = K_{2j} = 0 \text{ for } 2j \geq n + 3.$$

For the induction step, we have an exact sequence

$$\cdots \longrightarrow \text{Tor}^R_2(\overline{M}_r/\overline{M}_{r-1}, C) \longrightarrow \text{Tor}^R_1(\overline{M}_{r-1}, C) \longrightarrow \text{Tor}^R_0(\overline{M}_r, C) \longrightarrow \cdots$$

and the desired conclusion follows using (4.4) with $i = 2$, and the induction hypothesis. \Box

We now proceed with the proof of Theorem 4.1. The module M_r/M_{r-1} has space of minimal generators given by $\text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_2$. In higher degrees, the GL-equivariant structure is given as follows (see also [BCVI13, Remark 1.9]).
Lemma 4.3. The GL-decomposition of M_r/M_{r-1} is given by

$$\bigoplus_{\lambda \in \mathcal{M}_r \setminus \mathcal{M}_{r-1}} S_\lambda V_1 \otimes S_\lambda V_2.$$ \hspace{1cm} (4.5)

where $\mathcal{M}_r = \{ \lambda \in \mathcal{P}_{even} : 2\lambda_1 - |\lambda| \leq 2r \}$.

Proof. To prove this statement, we need to check that

$$M_r = \bigoplus_{\lambda \in \mathcal{M}_r} S_\lambda V_1 \otimes S_\lambda V_2.$$

The case $r = 0$ follows from (2.3). Since M_r/M_{r-1} is generated by $\text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_2$, it is a quotient of $\text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_2 \otimes A$.

Using Pieri’s rule, if $\lambda \in \mathcal{M}_0$ then

$$S_\lambda V \otimes \text{Sym}^{2r} V = \bigoplus_\mu S_\mu V,$$

where μ varies over partitions in \mathcal{M}_r. It follows that M_r/M_{r-1} is a subrepresentation of (4.5). To prove the reverse inclusion, it suffices to check that if $\lambda \in \mathcal{M}_r$, then $x_{1,1}^{2r} = 0$ follows from (2.3). Since $\text{det} \lambda = (\lambda_1 - 2r, \lambda_2, \lambda_3, \cdots)$ satisfies $\mu \in \mathcal{M}_0$, and the corresponding highest weight vectors satisfy

$$\text{det}_\lambda = x_{1,1}^{2r} \cdot \text{det}_\mu.$$ \hspace{1cm} \hfill \Box

Since $\text{det}_\mu \in A = \mathcal{M}_0$ and $x_{1,1}^{2r} \in \text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_2$, it follows that $\text{det}_\lambda \in \mathcal{M}_r$.

We are going to realize each M_r/M_{r-1} as the global sections of a vector bundle, and compute its syzygies using the Kempf–Weyman geometric technique. We let $X = \mathbb{P}V_1 \times \mathbb{P}V_2$, where $\mathbb{P}V_i$ is the projective space of one dimensional quotients of V_i. We consider the tautological exact sequence on $\mathbb{P}V_i$,

$$0 \rightarrow R_i \rightarrow V_i \otimes \mathcal{O}_{\mathbb{P}V_i} \rightarrow Q_i \rightarrow 0,$$ \hspace{1cm} (4.6)

where Q_i is the tautological quotient line bundle on $\mathbb{P}V_i$ (often denoted $\mathcal{O}_{\mathbb{P}V_i}(1)$). Using [Har77, Exercise II.5.16], we get exact sequences

$$0 \rightarrow \bigwedge^2 R_i \rightarrow \bigwedge^2 V_i \otimes \mathcal{O}_{\mathbb{P}V_i} \rightarrow R_i \otimes Q_i \rightarrow 0.$$ \hspace{1cm} (4.7)

We write $\pi_i : X \rightarrow \mathbb{P}V_i$ for the natural projection maps, and define $\eta = \pi_1^*(R_1 \otimes Q_1) \otimes \pi_2^*(R_2 \otimes Q_2)$, $L = \pi_1^*(Q_1) \otimes \pi_2^*(Q_2)$. Pulling back to X the two sequences in (4.7) and tensoring them together, we get an exact sequence

$$0 \rightarrow \xi \rightarrow W \otimes \mathcal{O}_X \rightarrow \eta \rightarrow 0,$$

where ξ is a locally free sheaf and can also be obtained as an extension

$$0 \rightarrow \xi_1 \rightarrow \xi \rightarrow \xi_2 \rightarrow 0$$

where

$$\xi_1 = \bigwedge^2 V_1 \otimes \pi_2^* \left(\bigwedge^2 R_2 \right)$$

and

$$\xi_2 = \pi_1^* \left(\bigwedge^2 R_1 \right) \otimes \pi_2^* (R_2 \otimes Q_2).$$

We will need the following consequence of Bott’s theorem [Wey03, Corollary 4.1.9].
Lemma 4.4. Suppose that \(u, v \in \mathbb{Z}_{\geq 0}, j, r \in \mathbb{Z}_{\geq 1}, \) and \(u + v \leq j + 2. \) We have

\[
H^j \left(X, \mathcal{L}^{2r} \otimes \bigwedge^u \xi_1 \otimes \bigwedge^v \xi_2 \right) = 0.
\]

Proof. Using Cauchy’s formula, we have that

\[
\bigwedge^u \xi_1 = \bigoplus_{a \vdash u} S_a \left(S_{1,1}V_1 \right) \otimes \pi^z_{S} \left(S_{\alpha'} \left(S_{1,1}R_2 \right) \right), \quad \bigwedge^v \xi_2 = \bigoplus_{\beta \vdash v} \pi^v_{S} \left(S_{\beta} \left(S_{1,1}R_1 \right) \right) \otimes \pi^z_{S} \left(S_{\beta'} \left(R_2 \otimes Q_2 \right) \right)
\]

Using the projection formula and K"{u}nneth’s formula, it suffices to check that if the following hold

- \(\lambda \vdash 2v \) is such that \(S_{\lambda} \) appears in the plethysm \(S_{\beta} \circ S_{1,1} \) for some \(\beta \vdash v, \)
- \(\mu \vdash (2u + v) \) is such that \(S_{\mu} \) appears in the tensor product \(\left(S_{\alpha'} \circ S_{1,1} \right) \otimes S_{\beta'} \) for \(\alpha \vdash u, \beta \vdash v, \)
- \(a, b \in \mathbb{Z}_{\geq 0} \) satisfy \(a + b = j, \)

then \(H^a \left(\mathbb{P} V_1, Q_{2r}^z \otimes S_j R_1 \right) = 0 \) or \(H^b \left(\mathbb{P} V_2, Q_{2r}^{z+v} \otimes S_j R_2 \right) = 0. \) Suppose otherwise, so that both groups are non-zero. It follows from Bott’s theorem that \(\lambda_a - 1 \geq 2r + a \geq 2a \) and \(\mu_b - 1 \geq 2r + v + b \geq 2 + v + b, \) so

\[
2v = |\lambda| \geq \lambda_1 + \cdots + \lambda_a \geq a \cdot \lambda_a \geq a(3 + a), \tag{4.8}
\]

\[
2u + v = |\mu| \geq \mu_1 + \cdots + \mu_b \geq b \cdot \mu_b \geq b(3 + b + v). \tag{4.9}
\]

We divide our analysis into three cases and show that in each case we obtain a contradiction.

Case 1: \(b = 0. \) It follows that \(a = j, \) so that \(j + 2 \geq u + v \geq v \geq j(j + 3)/2 \) by (4.8), which is only possible when \(j = 1, \) which then forces \(3 \geq v \geq 2. \) Since \(S_{\beta} \circ S_{1,1} \) is a quotient of \(S_{1,1}^z, \) it follows by Pieri’s rule that \(\lambda_1 \leq v \leq 3, \) but this contradicts the inequality \(\lambda_a - 1 \geq 2a \) since \(a = j = 1. \)

Case 2: \(a = 0. \) It follows that \(b = j, \) so that

\[
2(j + 2) \geq 2(u + v) = (2u + v) + v \geq j(3 + j + v) + v = 3j + j^2 + (j + 1)v.
\]

It follows that \(4 \geq j + j^2 + (j + 1)v, \) which implies \(j = 1, \) so that \(u + v \leq 3. \) Since \(S_{\alpha'} \circ S_{1,1} \) is a quotient of \(S_{1,1}^{z+u} \) and \(S_{\beta'} \) is a quotient of \(S_{1,1}^{z}, \) it follows from Pieri’s rule that \(\mu_1 \leq u + v \leq 3, \) but this contradicts the inequality \(\mu_b \geq b(3 + b + v) \geq b(3 + b) \) since \(b = j = 1. \)

Case 3: \(a, b \geq 1. \) It follows that

\[
2(a + b) + 4 = 2(j + 2) \geq 2v + (2u + v) - v \geq a(3 + a) + b(3 + b + v) - v = 3(a + b) + a^2 + b^2 + (b - 1)v,
\]

which implies that \(4 \geq a + b + a^2 + b^2, \) forcing \(a = b = 1 \) and equality to hold everywhere. In particular, \(2v = a(3 + a) \) implies \(v = 2, \) and \(2u + v = b(3 + b + v) \) implies \(u = 2. \) Since (4.8)–(4.9) are equalities, we get moreover that \(\lambda = (4) \) and \(\mu = (6) \) are partitions with only one part. However, every \(\lambda \) for which \(S_{\lambda} \) appears in \(S_{\beta} \circ S_{1,1} \) has at least two parts, so we reached once again a contradiction.

\[
\square
\]

Proposition 4.5. If \(r > 0 \) then \(M_r/M_{r-1} = H^0(X, \mathcal{L}^{2r} \otimes \operatorname{Sym}(\eta)), \) and \(H^i(X, \mathcal{L}^{2r} \otimes \operatorname{Sym}(\eta)) = 0 \) for \(i > 0. \) Moreover, for \(i = 0, 1, 2 \) we have that \(\operatorname{Tor}^R_i(M_r/M_{r-1}, \mathbb{C}) = 0 \) if \(j \neq i + r, \) so Theorem 4.1 holds.

Proof. Denote \(N_r = H^0(X, \mathcal{L}^{2r} \otimes \operatorname{Sym}(\eta)). \) Note that since \(Q_i \) is a line bundle, we have that for a partition \(\mu \vdash d \) one has

\[
S_{\mu}(R_i \otimes Q_i) = Q_i^{d} \otimes S_{\mu} R_i.
\]

By Cauchy’s formula, one gets

\[
\mathcal{L}^{2r} \otimes \operatorname{Sym}^d(\eta) = \bigoplus_{\mu \vdash d} \pi^x_{1} \left(Q_{1}^{d+2r} \otimes S_{\mu} R_{1} \right) \otimes \pi^x_{2} \left(Q_{2}^{d+2r} \otimes S_{\mu} R_{2} \right).
\]
Using Künneth’s formula, we get that

\[H_t(X, \mathcal{L}^{2r} \otimes \text{Sym}^d(\eta)) = \bigoplus_{\mu \vdash d} \left(\bigoplus_{u + v = t} H^u(\mathbb{P}V_1, Q_1^{d+2r} \otimes S_\mu \mathcal{R}_1) \otimes H^v(\mathbb{P}V_2, Q_2^{d+2r} \otimes S_\mu \mathcal{R}_2) \right). \]

Since \(|\mu| = d\) and \(r \geq 0\), it follows that \(d + 2r \geq \mu_1\), so Bott’s theorem implies that the sheaves \(Q_i^{d+2r} \otimes S_\mu \mathcal{R}_i\) have vanishing higher cohomology. It follows that \(\mathcal{L}^{2r} \otimes \text{Sym}^d(\eta)\) has vanishing higher cohomology, and

\[H^0(X, \mathcal{L}^{2r} \otimes \text{Sym}^d(\eta)) = \bigoplus_{\mu \vdash d} H^0(\mathbb{P}V_1, Q_1^{d+2r} \otimes S_\mu \mathcal{R}_1) \otimes H^0(\mathbb{P}V_2, Q_2^{d+2r} \otimes S_\mu \mathcal{R}_2) \]

\[= \text{Bott} \bigoplus_{\mu \vdash d} S_{d+2r, \mu_1, \mu_2, \ldots} V_1 \otimes S_{d+2r, \mu_1, \mu_2, \ldots} V_2. \]

Since the partitions in \(M_r \setminus M_{r-1}\) are precisely the ones of the form \((d + 2r, \mu_1, \mu_2, \ldots)\) with \(|\mu| = d\) for some \(d \geq 0\), we can then apply Lemma 4.3 to conclude that \(M_r/M_{r-1} \cong N_r\) as \(\text{GL}\)-representations.

Using [Wey03, Theorem 5.1.2] it follows that

\[\text{Tor}_R^R(N_r, \mathbb{C})_{r+i+j} = H^j \left(X, \bigwedge^{i+j} \xi \otimes \mathcal{L}^{2r} \right) \text{ for all } i, j \in \mathbb{Z}. \] (4.10)

For \(i \leq 2\), it follows from [Har77, Exercise II.5.16] that \(\bigwedge^{i+j} \xi\) has a filtration with composition factors \(\bigwedge^{u} \xi_1 \otimes \bigwedge^{v} \xi_2\), with \(u + v = i + j \leq j + 2\), so using Lemma 4.4 we get that \(H^j \left(X, \bigwedge^{i+j} \xi \otimes \mathcal{L}^{2r} \right) = 0\) when \(j, r \geq 1\). In particular, from (4.10) we get \(\text{Tor}_R^R(N_r, \mathbb{C})_j = 0\) if \(j \neq i + r\) for \(i = 0, 1, 2\).

To conclude our proof we show that \(M_r/M_{r-1} \cong N_r\) as \(R\)-modules. By the previous paragraph we have

\[\text{Tor}_0^R(N_r, \mathbb{C}) = H^0(X, \mathcal{L}^{2r}) = \text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_2 \text{ and } \text{Tor}_1^R(N_r, \mathbb{C}) = H^0(X, \mathcal{L}^{2r} \otimes \xi). \]

To compute the latter, notice that the exact sequence \(0 \to \xi_1 \to \xi \to \xi_2 \to 0\) yields an exact sequence

\[0 \to H^0(X, \mathcal{L}^{2r} \otimes \xi_1) \to H^0(X, \mathcal{L}^{2r} \otimes \xi) \to H^0(X, \mathcal{L}^{2r} \otimes \xi_2). \]
Using Künneth’s formula, Bott’s theorem, and Pieri’s rule we calculate

\[
H^0 \left(X, L^{2r} \otimes \xi_1 \right) = H^0 \left(X, \pi_1^* Q_1^{2r} \otimes \pi_2^* Q_2^{2r} \otimes V_1 \otimes \pi_2^* \left(\bigwedge^2 R_2 \right) \right) \\
= \bigwedge^2 V_1 \otimes H^0 \left(X, \pi_1^* Q_1^{2r} \otimes \pi_2^* \left(Q_2^{2r} \otimes \bigwedge^2 R_2 \right) \right) \\
\text{Künneth} = \bigwedge^2 V_1 \otimes H^0 \left(\mathbb{P} V_1, Q_1^{2r} \otimes V_2 \right) \\
\text{Bott} = \left(\bigwedge^2 V_1 \otimes \text{Sym}^{2r} V_1 \right) \otimes S_{2r+1} V_2 \\
\text{Pieri} = (S_{2r+1} V_1 \oplus S_{2r+1} V_1) \otimes S_{2r+1} V_2 \\
H^0 \left(X, L^{2r} \otimes \xi_2 \right) = H^0 \left(X, \pi_1^* Q_1^{2r} \otimes \pi_2^* Q_2^{2r} \otimes \pi_1^* \left(\bigwedge^2 R_1 \right) \otimes \pi_2^* \left(R_2 \otimes Q_2 \right) \right) \\
= H^0 \left(X, \pi_1^* \left(Q_1^{2r} \otimes \bigwedge^2 R_1 \right) \otimes \pi_2^* \left(Q_2^{2r} \otimes R_2 \otimes Q_2 \right) \right) \\
\text{Künneth} = H^0 \left(\mathbb{P} V_1, Q_1^{2r} \otimes \bigwedge^2 R_1 \right) \otimes H^0 \left(\mathbb{P} V_2, Q_2^{2r+1} \otimes R_2 \right) \\
\text{Bott} = S_{2r+1} V_1 \otimes S_{2r+1} V_2.
\]

We deduce that Tor^R_1(N_r, \mathbb{C}) is a subrepresentation of

\[
S_{2r+1} V_1 \otimes S_{2r+1} V_2 \oplus S_{2r+1} V_1 \otimes S_{2r+1} V_2 \oplus S_{2r+1} V_1 \otimes S_{2r+1} V_2.
\]

Since both M_r/M_{r-1} and N_r are generated by Sym^{2r} V_1 \otimes Sym^{2r} V_1, there exist R-linear surjections

\[\varphi_M : F \to M_r/M_{r-1}, \quad \varphi_N : F \to N_r\]

where $F = \text{Sym}^{2r} V_1 \otimes \text{Sym}^{2r} V_1 \otimes R$. Let $H \subseteq F$ be the R-submodule generated by all subspaces $S_{2r+1} V_1 \otimes S_{2r+1} V_2$ such that either $\lambda \neq \mu$ or $\lambda = \mu \notin M_r \setminus M_{r-1}$. It follows by Lemma 4.3 that $H \subseteq \text{ker}(\varphi_M)$. On the other hand, by (4.11) we see that $\text{ker}(\varphi_N) \subseteq H$, since $(2r, 1, 1) \in M_{r-1}$. Hence φ_M, φ_N induce an R-linear surjection $N_r \to M_r/M_{r-1}$, which must also be injective since $N_r \cong M_r/M_{r-1}$ as GL-representations.

\[\Box\]

5. The Subspace Variety

Recall that $\overline{W} = \text{Sym}^2 V_1 \otimes \text{Sym}^2 V_2$, and $\overline{R} = \text{Sym}(\overline{W})$, so that Spec$(\overline{R}) = \overline{W}^\vee$. We consider the subspace variety $Y \subset \overline{W}^\vee$ given by

\[Y = \{ y \in \overline{W}^\vee : y \in \text{Sym}^2 H \otimes \text{Sym}^2 V_2^\vee \text{ for some codimension one subspace } H \subset V_1^\vee \} \]

The goal of this section is to describe the defining equations of Y.

\textbf{Theorem 5.1.} The vector space of minimal generators of the ideal $I(Y) \subset \overline{R}$ is concentrated in degree m, and it is isomorphic as a GL-representation to

\[\bigwedge^m V_1 \otimes \bigwedge^m (V_1 \otimes \text{Sym}^2 V_2).\]
The proof techniques are similar to those used in [Wey03, Chapter 7]. We consider the projective space \mathbb{P} of rank $(m-1)$ quotients of V, and consider the affine bundle

$$\mathcal{Y} = \text{Spec}_p \text{Sym}^2 (\text{Sym}^2 \mathcal{Q} \otimes \text{Sym}^2 V_2),$$

where \mathcal{Q} is the tautological quotient sheaf of rank $m-1$ (note that this is different from [4.6], where the rank of \mathcal{Q}_1 was one). The tautological sequence on \mathbb{P} is

$$0 \to \mathcal{R} \to V_1 \otimes \mathcal{O}_\mathbb{P} \to \mathcal{Q} \to 0,$$

where \mathcal{R} is often denoted $\mathcal{O}_\mathbb{P}(-1)$. It induces an exact sequence

$$0 \to \mathcal{R} \otimes V_1 \to \text{Sym}^2 V_1 \otimes \mathcal{O}_\mathbb{P} \to \text{Sym}^2 \mathcal{Q} \to 0,$$

and after tensoring with $\text{Sym}^2 V_2$ it gives an exact sequence

$$0 \to (\mathcal{R} \otimes V_1) \otimes \text{Sym}^2 V_2 \to \wedge \mathcal{W} \otimes \mathcal{O}_\mathbb{P} \to \text{Sym}^2 \mathcal{Q} \otimes \text{Sym}^2 V_2 \to 0,$$

which makes \mathcal{Y} a geometric sub-bundle of the trivial bundle $\wedge \mathcal{W} \times \mathbb{P}$. Writing $q : \wedge \mathcal{W} \times \mathbb{P} \to \wedge \mathcal{W}$ for the natural projection map, we have that $q(\mathcal{Y}) = Y$ (in fact, the reader can check that $q|_\mathcal{Y}$ is birational, so it gives a resolution of singularities of Y). Using Bott’s theorem and the projection formula, we have that

$$H^i(\mathcal{Y}, \mathcal{O}_\mathcal{Y}) = \bigoplus_{d \geq 0} H^i(\mathbf{P}, \text{Sym}^d (\text{Sym}^2 \mathcal{Q} \otimes \text{Sym}^2 V_2)) = 0 \text{ for } i > 0.$$

It follows from [Wey03, Theorem 5.1.2] that $q_* (\mathcal{O}_\mathcal{Y})$ has a minimal free \mathcal{R}-resolution F_\bullet where

$$F_i = \bigoplus_j H^j \left(\mathbf{P}, \bigwedge^{i+j} (\mathcal{R} \otimes V_1 \otimes \text{Sym}^2 V_2) \right) \otimes \mathcal{R}(-i-j)$$

$$= \bigoplus_j H^j (\mathbf{P}, \mathcal{R}^{i+j}) \otimes \bigwedge^{i+j} (V_1 \otimes \text{Sym}^2 V_2) \otimes \mathcal{R}(-i-j).$$

For $i + j \geq 0$, we have that $H^j (\mathbf{P}, \mathcal{R}^{i+j}) = H^j (\mathbf{P}, \mathcal{O}_\mathbf{P}(-i-j))$ is non-zero only for $i = j = 0$, and $j = m - 1$, $i + j \geq m$. In particular, we get that

$$F_1 = H^{m-1} (\mathbf{P}, \mathcal{R}^m) \otimes \bigwedge^m (V_1 \otimes \text{Sym}^2 V_2) \otimes \mathcal{R}(-m).$$

Since the minimal generators of F_1 are the minimal generators of $I(Y)$, and since $H^{m-1} (\mathbf{P}, \mathcal{R}^m) = \bigwedge^m V_1$, the conclusion of Theorem 5.1 follows.

6. The proof of Theorem 1.2

The goal of this section is to describe the proof of Theorem 1.2. We let $(m, n) = (\dim(V_1), \dim(V_2))$, and note that by symmetry, the cases (m, n) and (n, m) are equivalent, so without loss of generality we may assume that $m \geq n$. In Section 6.1 we use the results of [BCV13] to prove Theorem 1.2 for $j \leq 4$. Based on Corollary 4.2 we deduce that the theorem is true for $n \leq 5$ in Section 6.2. The substantial part of the argument is explained in Section 6.3 where we argue by induction on the dimension vector (m, n).

6.1. Low degree equations. It follows from transpose duality that proving Theorem 1.2 for $j \leq 4$ (for all m, n) is equivalent to proving Theorem 1.1 for $j \leq 4$ (for all m, n). Since the minors (resp. permanents) are linearly independent, we may assume that $j \geq 2$. The cases $j = 2, 3$ and 4 are discussed in Sections 2.1, 3.3, and 3.4 (respectively) of [BCV13].
6.2. The case \(n \leq 5 \). The assumption \(n \leq 5 \) implies that \(\lfloor n/2 \rfloor + 2 \leq 4 \), so we conclude by Corollary 4.2 that \(\text{Tor}_1^{\mathcal{R}}(\mathcal{F}, \mathcal{C})_j = 0 \) for \(j > 4 \).

6.3. The inductive step. We assume that \(m \geq n \geq 6 \), and suppose by induction that Theorem 1.2 is true for every pair \((m', n') \neq (m, n)\), with \(m' \leq m \) and \(n' \leq n \) (we abbreviate this as \((m', n') \prec (m, n)\)). If we define the functor \(\mathcal{T} = \mathcal{T}_2 \oplus \mathcal{T}_3 \) by letting (recall the notation and conventions in Section 2.3)

\[
\mathcal{T}_2 = S_4 \otimes S_2, 2 \oplus S_2, 2 \otimes S_4, \quad \mathcal{T}_3 = S_{4,1,1} \otimes S_{3,3} \oplus S_{3,3} \otimes S_{4,1,1},
\]

then the induction hypothesis gives for every \(U_1, U_2 \) with \((\dim(U_1), \dim(U_2)) \prec (m, n)\) an exact sequence

\[
\mathcal{T}(U_1, U_2) \otimes \mathfrak{F}(U_1, U_2) \rightarrow \mathfrak{F}(U_1, U_2) \rightarrow \mathfrak{F}(U_1, U_2) \rightarrow 0.
\]

By functoriality, we can extend \(\mathcal{T}, \mathfrak{F}, \mathfrak{K} \) to bi-variate functors of locally free sheaves on any variety (or scheme) \(Z \) over \(\mathbb{C} \). Since exactness is a local property, it follows that \(\mathfrak{F}(V_1, V_2) \rightarrow \mathfrak{F}(V_1, V_2) \rightarrow \mathfrak{F}(V_1, V_2) \rightarrow 0 \) (6.1) is exact for any pair of locally-free sheaves \((V_1, V_2)\) with \((\text{rank} V_1, \text{rank} V_2) \prec (m, n)\).

Consider now vector spaces \(V_1, V_2 \) with \((\dim(V_1), \dim(V_2)) = (m, n)\), and consider \(Z = \mathbb{P} \) the projective space of \((m-1)\)-dimensional quotients of \(V_1 \) as in Section 5. We take \(V_1 = \mathcal{Q} \) the tautological rank \((m-1)\) quotient sheaf on \(\mathbb{P} \), and \(V_2 = V_2 \otimes \mathcal{O}_{\mathbb{P}} \). Since \((\text{rank} V_1, \text{rank} V_2) = (m-1, n) \prec (m, n)\), (6.1) is exact. We let

\[
B = H^0(\mathbb{P}, \mathfrak{F}(V_1, V_2))
\]

and observe that (using the notation from Section 5) \(B = \mathcal{R}/I(Y) \) is the coordinate ring of the subspace variety \(Y \subset \mathbb{P}^2 \). It follows from Theorem 5.1 that \(B \) has an \(\mathcal{R} \)-module presentation

\[
\mathcal{U}(V_1, V_2) \otimes \mathcal{R} \rightarrow \mathcal{R} \rightarrow B, \quad \text{where} \quad \mathcal{U}(V_1, V_2) = \bigwedge^m V_1 \otimes \bigwedge^m (V_1 \otimes \text{Sym}^2 V_2),
\]

(6.2)

so \(B \) is defined by degree \(m \) equations in \(\mathcal{R} \). We let

\[
C = H^0(\mathbb{P}, \mathfrak{K}(V_1, V_2)),
\]

(6.3)

and note that since the maps in (6.1) are split as maps of \(\mathcal{O}_Z \)-modules, it follows that after taking global sections we obtain an exact sequence

\[
H^0(\mathbb{P}, \mathcal{T}(V_1, V_2) \otimes \mathcal{O}_Z \mathfrak{K}(V_1, V_2)) \rightarrow B \rightarrow C \rightarrow 0.
\]

(6.4)

We claim moreover that the natural multiplication map

\[
H^0(\mathbb{P}, \mathcal{T}(V_1, V_2)) \otimes H^0(\mathbb{P}, \mathfrak{K}(V_1, V_2)) \rightarrow H^0(\mathbb{P}, \mathcal{T}(V_1, V_2) \otimes \mathcal{O}_Z \mathfrak{K}(V_1, V_2))
\]

(6.5)

is also surjective. To see this, it suffices by [Laz04, Example 1.8.13] to check that \(\mathcal{T}(V_1, V_2) \) and \(\mathfrak{K}(V_1, V_2) \) are (direct sums of coherent locally free) 0-regular sheaves. Since \(V_1 \) is resolved by the complex

\[
0 \rightarrow \mathcal{O}_\mathbb{P}(-1) \rightarrow V_1 \otimes \mathcal{O}_\mathbb{P} \rightarrow V_1 \rightarrow 0,
\]

it follows from [Laz04, Proposition 1.8.8] that \(V_1 \) is 0-regular, and by [Laz04, Proposition 1.8.9] the same is true about any polynomial functor applied to \(V_1 \). The same reasoning applies to \(V_2 \), which is 0-regular since it is trivial. Since tensor products of 0-regular locally free sheaves are 0-regular, the desired claim follows.

Combining (6.4) with the surjective map (6.5), and noting that by Bott’s theorem we have

\[
H^0(\mathbb{P}, \mathcal{T}(V_1, V_2)) = \mathcal{T}(V_1, V_2),
\]

we obtain an exact sequence

\[
\mathcal{T}(V_1, V_2) \otimes B \rightarrow B \rightarrow C \rightarrow 0.
\]
We consider the long exact sequence on Tor in degree j
\[\text{Tor}_j^R(C, C) \subseteq \mathcal{T}(V_1, V_2) \oplus \mathcal{U}(V_1, V_2).\]
\[\text{If } m > n \text{ then we have that } C = \overline{A}, \text{so (6.7) yields } \text{Tor}_j^R(\overline{A}, C) = 0 \text{ for } j \neq 2, 3, m.\]

Using the fact that $m \geq 2$ and Corollary 4.2 we conclude that $\text{Tor}_j^R(\overline{A}, C)_m = 0$, and therefore $\text{Tor}_j^R(\overline{A}, C)_j = 0$ for $j > 4$.

Suppose now that $m = n$. In this case C is only a quotient of \overline{A}, and we have a short exact sequence
\[0 \rightarrow J \rightarrow \overline{A} \rightarrow C \rightarrow 0,\]
where J is an ideal whose GL-structure is given (applying Bott’s theorem to (6.3)) by
\[J = \bigoplus_{\lambda \in \mathcal{M}_0} S_{\lambda} V_1 \otimes S_{\lambda} V_2,\]
where $\mathcal{M}_0 = \{\lambda : \lambda \in \mathcal{M}_0\}$. Since partitions with n parts only occur in degree $\geq n$ in R, it follows that J is generated in degree $\geq n$, so its defining relations have degree $\geq n + 1$ and thus $\text{Tor}_j^R(J, C)_j = 0$ for $j \leq n$.

We consider the long exact sequence on Tor in degree j:
\[\cdots \rightarrow \text{Tor}_j^R(J, C)_j \rightarrow \text{Tor}_j^R(\overline{A}, C)_j \rightarrow \text{Tor}_j^R(C, C)_j \rightarrow \cdots\]
By (6.7) we know that if $j > 4$ then $\text{Tor}_j^R(C, C)_j$ may only be non-zero for $j = n > [n/2] + 2$, so it doesn’t contribute to $\text{Tor}_j^R(\overline{A}, C)_j$ by Corollary 4.2. A similar argument applies to $\text{Tor}_j^R(J, C)_j$, which may be non-zero only for $j \geq n + 1$. This proves that $\text{Tor}_j^R(\overline{A}, C)_j = 0$ for $j > 4$, concluding our proof.

7. Determinantal ideals of fiber type

In this final section we turn our attention to the graph of the map Λ_2 introduced in (1.1), which is also the blowup of $\mathbb{P}(\text{Hom}(\mathbb{C}^m, \mathbb{C}^n))$ along the determinantal variety defined by I_2. Observe that
\[\text{Graph}(\Lambda_2) \subseteq \mathbb{P}(\text{Hom}(\mathbb{C}^m, \mathbb{C}^n)) \times \mathbb{P}\left(\text{Hom}\left(2 \mathbb{C}^m, 2 \mathbb{C}^n\right)\right)\]
thus Graph(Λ_2) is defined by bi-homogeneous polynomials in the ring $S \otimes R$. In fact, the bi-homogeneous coordinate ring of Graph(Λ_2) is the Rees algebra of the ideal of minors $I_2 \subseteq S$
\[\text{Rees}(I_2) = \bigoplus_{d \geq 0} I_2^d \cong S[It] \subseteq S[t]\]
where t denotes an indeterminate. The ring Rees(I_2) is the image of the S-algebra map $\Pi : S \otimes R \rightarrow S[t]$ determined by $R_1 = W \rightarrow Wt \subseteq S_2t$. In this section we scale the grading of R and consider it as polynomial ring generated in degree 2. In particular, Rees(I_2) is a bi-graded \mathbb{C}-algebra generated by Rees$(I_2)_{(1,0)} = V_1 \otimes V_2 = S_1$ and Rees$(I_2)_{(0,2)} = Wt \subseteq S_2t$.

It is natural to study the defining relations of Rees(I_2). From this perspective, the algebra A, investigated in the previous sections, is the special fiber Rees$(I_2) \otimes \mathbb{C}$ of the Rees algebra. Denoting by $J = \ker(\Pi)$ and $I(X_{m,n}) = \ker(\Psi)$ the defining ideals of Rees(I_2) and A respectively, we have that $J_{(0,2d)} = I(X_{m,n})_d$ for all
$d \in \mathbb{N}$. On the other hand, denoting by $\text{Syz}(I_2)$ the first syzygy module of I_2, we have that $\mathcal{J}_{(d,2)} = \text{Syz}(I_2)_{d+2}$ for all $d \in \mathbb{N}$. The ideal I_2 is said to be of fiber type if \mathcal{J} is generated by $\mathcal{J}_{(0,2d)}$ and $\mathcal{J}_{(d,2)}$ for $d \in \mathbb{N}$. In analogy with the case of maximal minors (see [BCV15]) we ask:

Question 7.1. Let I_2 be the ideal of 2×2 minors of a generic $m \times n$ matrix X. Is I_2 of fiber type?

The fiber type property would reduce the problem of finding the relations of $\text{Rees}(I_2)$ to the one of finding the first syzygies of I_2, solved by Lascoux, and the one of finding the relations of A, settled in Theorem 1.1. Below we observe, adapting an argument of [BCV13], that Question 7.1 reduces to matrices of size $(n+2) \times n$, and that the answer is affirmative for $m \times 3$ matrices. Recall our convention that $m = \dim V_1 \geq n = \dim V_2$.

Proposition 7.2. Fix $n \in \mathbb{N}$. If I_2 is of fiber type for a generic $(n+2) \times n$ matrix, then it is of fiber type for any generic $m \times n$ matrix.

Proof. Denote $T = S \otimes R$. For each bi-degree $(d,e) \neq (0,0)$ we consider the surjective map

$$\chi : D = T_{(1,0)} \otimes T_{(d-1,e)} \oplus T_{(0,2)} \otimes T_{(d,e-2)} \to T_{(d,e)}$$

defined by $\chi(x \otimes \alpha, y \otimes \beta) = x\alpha + y\beta$. We say that a representation $S_\lambda V_1 \otimes S_\nu V_2$ is balanced if $\lambda = \nu$, unbalanced otherwise. Decompose $T_{(d,e)} = B_{(d,e)} \oplus U_{(d,e)}$, where $B_{(d,e)}$ (resp. $U_{(d,e)}$) is the sum of all the balanced (resp. unbalanced) sub-representations. Furthermore, let $D = E \oplus F$ where

$$E = T_{(1,0)} \otimes B_{(d-1,e)} \oplus T_{(0,2)} \otimes B_{(d,e-2)}, \quad F = T_{(1,0)} \otimes U_{(d-1,e)} \oplus T_{(0,2)} \otimes U_{(d,e-2)}.$$

Notice that, since $\text{Rees}(I_2)$ is a direct sum of ideals of S, it contains no unbalanced representation, and therefore $U_{(d,e)} \subseteq \mathcal{J}_{(d,e)}$.

Let $H \subseteq \mathcal{J}_{(d,e)}$ be an irreducible representation that is part of the minimal generating set of \mathcal{J}, i.e. such that its image modulo $\langle T_{(1,0)} \oplus T_{(0,2)} \rangle \mathcal{J}$ is non-zero. Setting $H' = \chi(F)$, we cannot have $H \subseteq H'$, since H is minimal. Thus $H \cap H' = 0$, and by surjectivity of χ there exists an irreducible sub-representation $H'' \subseteq D$, disjoint from F, mapping non-trivially to H via χ. It follows that H'', and hence also H, is isomorphic to an irreducible representation occurring in E, and hence occurring in either $V_1 \otimes V_2 \otimes S_\lambda V_1 \otimes S_\lambda V_2$ or $\wedge^2 V_1 \otimes \wedge^2 V_2 \otimes S_\lambda V_1 \otimes S_\lambda V_2$, for some $\lambda \in \mathcal{P}$. We have $\lambda_{n+1} = 0$ since $H \neq 0$, and by Pieri’s rule $H \cong S_\mu V_1 \otimes S_\nu V_2$ for some $\mu, \nu \in \mathcal{P}$ with $\mu_{n+3} = \nu_{n+3} = 0$. We conclude that the relations $H \subseteq \mathcal{J}_{(d,e)}$ already appear in the case $m = n + 2$, and the desired statement follows. \hfill \Box

It can be verified using Macaulay2 [GS] that for a generic 5×3 matrix, the ideal I_2 is of fiber type. Applying Proposition 7.2 with $n = 3$ we obtain the following.

Corollary 7.3. For a generic $m \times 3$ matrix, the ideal I_2 is of fiber type.

Acknowledgements

Experiments with the computer algebra software Macaulay2 have provided numerous valuable insights. Perlman acknowledges the support of the National Science Foundation Graduate Research Fellowship under grant DGE-1313583. Polini acknowledges the support of the National Science Foundation grant DMS-1601865. Raicu acknowledges the support of the Alfred P. Sloan Foundation, and of the National Science Foundation Grant DMS-1901886.

References

[BCV13] Winfried Bruns, Aldo Conca, and Matteo Varbaro, *Relations between the minors of a generic matrix*, Adv. Math. 244 (2013), 171–206.

[BCV15] ———, *Maximal minors and linear powers*, J. Reine Angew. Math. 702 (2015), 41–53.
RELATIONS BETWEEN THE 2×2 MINORS OF A GENERIC MATRIX

[CEP80] Corrado de Concini, David Eisenbud, and Claudio Procesi, *Young diagrams and determinantal varieties*, Invent. Math. **56** (1980), no. 2, 129–165.

[Eis95] David Eisenbud, *Commutative algebra*, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry.

[GS] Daniel R. Grayson and Michael E. Stillman, *Macaulay 2, a software system for research in algebraic geometry*, Available at http://www.math.uiuc.edu/Macaulay2/.

[Har77] Robin Hartshorne, *Algebraic geometry*, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52.

[Laz04] Robert Lazarsfeld, *Positivity in algebraic geometry. I*, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 48, Springer-Verlag, Berlin, 2004. Classical setting: line bundles and linear series.

[SS12] Steven V Sam and Andrew Snowden, *Introduction to twisted commutative algebras*, arXiv [1209.5122](http://arxiv.org/abs/1209.5122) (2012).

[SS16] ______, *GL-equivariant modules over polynomial rings in infinitely many variables*, Trans. Amer. Math. Soc. **368** (2016), no. 2, 1097–1158.

[Wey03] Jerzy Weyman, *Cohomology of vector bundles and syzygies*, Cambridge Tracts in Mathematics, vol. 149, Cambridge University Press, Cambridge, 2003.

Department of Mathematics, Texas A&M University, Mailstop 3368, College Station, TX 77843, USA

Email address: hhuang@math.tamu.edu

Department of Mathematics and Statistics, Queen’s University, Kingston, ON K7L 3N6, Canada

Email address: mp174@queensu.ca

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, USA

Email address: cpolini@nd.edu

Department of Mathematics, University of Notre Dame, 255 Hurley, Notre Dame, IN 46556, USA

Institute of Mathematics “Simion Stoilow” of the Romanian Academy

Email address: craicu@nd.edu

Dipartimento di Matematica, Politecnico di Milano, Via Bonardi 9, 20133, Milano, Italy

Email address: alessio.sammartano@polimi.it