CMS Software and Offline preparation for future runs

Tommaso Boccali
INFN Pisa / CERN
CMS Computing circa 2019 the status

- LHC concluded in December 2018 its second Run (“RunII”)
- CMS very successful in the data taking and analysis operations, with computing supporting unexpected requirements
 - ParkingB: additional 12 B events collected in 2018 to support CMS B Physics; a sample 5x larger than Babar’s and Belle’s!
 - Up to 6 kHz additional rate to tape
 - HF flavour physics in Heavy Ions: 4.5 B additional Minbias events collected in Nov 2018
 - Rate to offline > 7 GB/s
- On top of that, standard pp operations (64/fb collected), analysis operations in full swing
 - 859 collider papers submitted
 - Derivative increasing!
Overall...

- Complete utilization of resources, with sizeable over-pledges in CPU
- In 2018, more than **24 B full Simulation events generated** to support the physics program
- Storage areas (disks, tape systems) well under control
 - Thanks to Dynamo/DDM, operational since the start of the Run
- CMS SW in **full-real multithreading mode since 2015** (8 threads is the default): **no memory problems**, even with PhaseII simulations

![24B Full Sim events generated in 2018](image)

Data Deletions by DDM (2015-2018)

- DDM deletes **~40 PB/month**
- Production varies from 1-15 threads
- Analysis still mostly single thread
So where is the problem?

- **2009-2012 (RunI):** resources somehow overprovisioned, luxury mode
- **2013-2014 (LS1):** Funding Agencies imposed a “flat funding”, which means ~20% increase/y thanks to Moore’s law (and friends)
- **2015-2018 (RunII):** resources more and more constrained, Moore’s law starting to be excessively optimistic
- **2019-2020 (LS2):** virtually no increase in resources granted
- **2021-2023 (RunIII):** in principle not incredibly different from RunII, but LHC is willing to surprise us
- **2024-2025 (LS3):** no increases?
- **2026+:** the LHC Phase II, the problem!
RunII \rightarrow RunIII

- Limit in instantaneous luminosity @ 2×10^{34} cm$^{-2}$s$^{-1}$, close to RunII ...
- … but levelled for most of the fill time (12 h?) \rightarrow much larger average inst lumi \rightarrow $<\text{PileUp}> 35 \rightarrow 55$ (?)
RunIII \rightarrow RunIV

- Current modelling expects up to 7.5×10^{34} cm$^{-2}$s$^{-1}$ flat luminosity during fills
- PU = $\langle PU \rangle = 200$
- CMS with an upgraded detector:
 - Many more silicon tracker measurements
 - Completely revamped forward calorimetry
 - \rightarrow many more channels, much larger expected algorithmic complexity
- Physics requirements currently suggesting 5-10x increased trigger rate
 \rightarrow on paper, easy to get factors 50-100x more resources needed with respect to RunII!

(see An analytics driven computing model for HL-LHC here at ACAT)
What to do?

- Even considering an optimistic technology factor $\sim 4x$ from technology, factors $> 10x$ are missing.
- Miracles apart (quantum computing anyone?), we need an intense and focused R&D program in order to allow for a(n economically) viable exploitation of HL-LHC.
- In CMS, the activity is carried out in multiple groups, with an attempt of light steering from the Evolution of Computing Model 202X → ECoM2X.
- It is not a Computing only effort, but an overall CMS effort, including:
 - Physics, Trigger, PPD and Run Coordination
 - Expert analysts
 - Representative of major funding agencies
- Activity split in 7 Working Groups

Some highlights in the next slides...
Technology tracking

- Difficult to fully predict the 2026+ technology scenario, but our analyses show that we should focus on:
 - Directly supporting **GPUs** and **FPGAs** in our software stacks
 - **TPUs** are also promising, but are there use cases apart from speeding up ML training?
- At the moment there is no convergence of **HDD** and **SDD**, with a “distance” in $$/TB$$ roughly constant in time
- Tape technologies are advancing at higher pace than **disk**; still there is a problem with decreasing user base
- Up to now no real effort to streamline **network utilization** (considered infinite)
- This will probably change by RunIV, at least for transatlantic links
 - Abandon uniform full mesh?
 - Segregate continents?
 - US (ESnet) LHConE traffic +40%/y
Physics choices, data rates and analysis model

- Investigations just started, and complex due to many stakeholders
- **Naive extrapolation from** $L=1.9\times10^{34}$ → $L=7.5\times10^{34}$ explains the expected need of HLT output at ~ 7.5 kHz, mostly coming from single object triggers
 - Unless we want to reduce / descope a part of the physics program
 - Unless we can use less inclusive trigger approaches - to be studied!

- More to be gained by **smart data handling** approaches:
 - **Park** a large fraction of triggers, and recover in the winter shutdown or LSs
 - **Scouting** datasets, with small “reco like” output to offline
 - Prompt reconstruction just in order to ensure data quality; **deferred reconstruction** for the rest
 - ...

- The amount of MC to produce has a large effect on resource needs
 - Need for a **common-HEP GAN based Fast Simulation**?
 - Event generators’ increase in resources due to $N(NN)LO$ to be kept under control - **today it is not**
Heterogeneous architectures

- There is general consensus that the best performance/$$ will not be obtained with standard CPUs
- Testbeds active on GPUs, FPGAs, ... initially as standalone exercises
- In the last year, CMS has performed a general attempt to systematically **include these in the standard CMSSW Software Framework:**
 - Allow multiple versions of “equivalent” modules, and defer the decision on which to use even very late (event by event, module by module)
 - Allow the best communication between modules exposing different interfaces (for example, aut. chain GPU modules without moving data back to the host)
 - Have CUDA as an external tool in CMSSW, for native utilization
 - Next step (in collaboration with other experiments?) is to try and have automatic code translation in place (is it even possible?)
- Examples exist; see for example **Towards a heterogeneous High Level Trigger farm for CMS** at ACAT
- Status of the framework allows to run benchmarks / compare architectures / plan for infrastructure
Reduced data formats

- The most important result of the previous ECoM17 task force has been the **definition** of a (even more) reduced data format.
- CMS **already in 2014** pioneered the definition of “small” general purpose data format, **MiniAOD @ ~ 1/10 of the AOD**
- Its adoption has been **overwhelming in RunII**: its adoption was expected to be for ~70% of analysis, it now reached 95%
- **NanoAOD** go even further: we were aiming at ~ 5 kB/ev, eventually we are at 1 kB/ev!
- **Expected analysis coverage ~50 %**: we hope to be positively surprised as for Mini!

Data Tier	Size (kB)
RAW	100
GEN	3000
SIM	1000
DIGI	3000
RECO(SIM)	400 (8x reduction)
AOD(SIM)	800 (8x reduction)
MINIAOD(SIM)	50 (8x reduction)
NANOAOD(SIM)	1 (50x reduction)

Full RunII: 25 (DT) + 35 (MC) B events expected to fit in 60 TB

Exec Summary: “Prevalent analysis format in CMS reduced by a factor 3000x in event size since the start of RunI”
Changing SW tools

- The CMS SW stack and Computing Infrastructure were **adequate for CMS needs in RunII**, and then some.
- We have **no real hint that RunIII would pose irresolvable problems either**; but, since RunIV is a different story, CMS plans to **try and test any disruptive technology already in RunIII**.
- Among the software tools, the biggest worries in the RunIV time scale are about **software support and sustainability**. **Common solutions with other experiments are a way to mitigate the support cost**.

CMS identified 3 initial areas where we can profit from existing OSS:

- Geometry description: **testing DD4HEP from AIDA2020**; if testing is positive, transition in ~1 y
- **CRIC from CERN** as a replacement for the Information System - already in place for the first use cases
- **Rucio** (initially from ATLAS) as the **Data Management solution** - transition and then large scale test in ~ 1 y
Changes to the infrastructure

- Reducing the needs for **data replication** is of paramount importance for a cost reduction.
- This can come from aggressive policies paired with remote reads:
 - **CMS already executes prod WFs without data locality, and explicit overflows to “close sites” via the Xrootd federation.**
- The **data lake** seems the most promising solution to-date for a safe storage of our data, with limited replication.
- It also **allows to think that most of the CPU resources can be served without managed disks**. This opens to:
 - HPC systems
 - Commercial Clouds
 - Ephemeral sites
- and drives the needs for **proper caching tools, easy to deploy**. See Using DODAS as deployment manager for smart caching of CMS data management system at ACAT.
HPC systems

- An HPC race is going on, at least between major players
- Next big thing is **ExaScale** \((10^{18} \text{ Flops} - \text{ operations per second})\)
 - Should be well available by HL-LHC
- Somehow difficult to compare, technologies / benchmarks, but
 - **LHC needs today the equivalent of \(~30 \text{ PFlops}\)**
 - A single Exascale system is ok to process 30 “today” LHC
 - **Scaling: a single Exascale system could process the whole offline HL-LHC with no R&D or model change**
- Some FAs/countries are explicitly requesting HEP to use the HPC infrastructure as ~ only funding; it is generally ok IF we are allowed to be part in the planning (to make sure they are usable for us)

US: apparently no current way to have a say at least on big DOE systems
EU: ETP4HPC has at least “asked for HEP position”
China: no current way to have a say
Our Funding Agencies are asking CMS to be prepared to use national HPC infrastructures for a sizeable part of our needs, by RunIV.

There are many not trivial problems to solve:

- **Data access** (access, bandwidth, ...)
- **Accelerator Technology** (KNL, GPU, FPGA, TPU, ???, ...)
- **Primary architecture** (Intel, Power9, ARM, proprietary ...)
- **Submission of tasks** (MPI vs Batch systems vs proprietary systems)
- **Node configuration** (low RAM/Disk, ...)
- **Not-too-open environment** (OS, Access policies, ...)

Since many problems are more political than technical, CMS has prepared a document to perform handshaking with HPC sites, and in order to

- Explain our needs
- Propose solutions (standard, ad-hoc)
- Discuss out-of-the-box solutions for Future systems
- (shared with the other exps to find a Common ground)

CMS plans a (virtual) trip to visit all the HPC sites, and establish direct links.

Report on HPC resources integration at CMS

Introduction

High Performance Computing (HPC) systems are highly non-standard facilities, and are custom-built having in mind use cases largely different from High Energy Physics (HEP) ones. The utilization of these system by HEP experiments is not trivial: each HPC center is different and, of course, this increases the level of complexity from the integration and operations perspectives.
Current understanding of resource needs for PhaseII

- All, in all, **starting from the factors 50-100x as previously mentioned**, the efforts already put in place are **starting to pay off**

- Last public version of our 2027 estimates cite projected needs for
 - CPU: 44 MHS06
 - Disk: 2.2 EB
 - Tape: 3 EB
 - *(with respect to 2019 pledges, these are 22x, 13x and 15x)*

- .. with a storage **decrease by 2x** due the **modellization of NanoAOD as a tool for 50% of the analyses**, and thus reducing the needs to process and store on disk larger data formats

See **An analytics driven computing model for HL-LHC** at ACAT for more information
Conclusions

- HL-LHC is a fascinating research environment, with incredible capabilities for physics discoveries
- Unfortunately, the large amount of expected data does not fit any reasonable amount of funding, if handled via standard operation models
- CMS has started a deep and intense R&D program, involving all the stakeholders from Physics groups to Trigger experts, in order to pave a way towards an affordable HL-LHC computing
- Ideas are being collected, analyzed and formalized, with the plan to have them under test in RunIII before the final deployment in production starting from 2026