Antibiotic Resistance of Isolated Gram Negative Bacilli from Different Clinical Sample in a Central Teaching Hospital of Pediatric in Baghdad

Huda Sahib Abdul-Mohammed Al-Rawazq1*, Asifa Ali Hussein2 and Ali Kamal Mohammed2

1Department of Anatomy/Biology section, College of Medicine, University of Baghdad, Baghdad, Iraq. 2Central Teaching Hospital of Pediatric, Baghdad, Iraq.

Abstract
The number of infections caused by microorganisms is increasing significantly over the last few years. A total of 140 patients admitted to the central teaching hospital of pediatrics from the 1st of June 2017 to 31 October 2017. The Clinical samples was processed from culture and sensitivity testing. Antibiotic discs used for gram negative isolates. The most prevalent gram negative isolates included Escherichia coli 63 (45.0 %), Pseudomonas spp. 21 (15.0 %), Klebsiella spp. 19 (13.6 %) predominantly. Escherichia coli were the most prevalent isolates from urine 45 (71.4 %), Klebsiella spp. 11 (57.9 %) and Enterobacter spp. 11 (68.8 %) followed by Escherichia coli 10 (15.9 %) predominant from blood. 68 (48.6 %) of specimens were urine, 47 (33.6 %) were blood and 25 (17.8 %) were from other origins. Resistance to CTR was 42 (51.2 %) in Escherichia coli, 15 (18.3 %) in Pseudomonas spp. 9 (11.0 %) in Klebsiella spp. and similarly AMC showed 41 (62.1) resistance among Escherichia coli, 8 (12.1 %) among Pseudomonas spp. and Klebsiella spp. and also GEN showed 27 (57.4 %) resistance among Escherichia coli, 7 (14.9 %) among Pseudomonas spp. and 6 (12.8 %) in Klebsiella spp.

Keywords: Antimicrobial Resistance, Gram Negative bacilli, Patient Pediatric, Hospital.
INTRODUCTION
Number of infections caused by microorganisms is increasing significantly over the last few years; one of the reasons for this increase is development of microbial resistance to drugs used to treat these infections. The infection due to gram negative bacteria increasing problem in recent years. Most common reasons responsible for these infections are multidrug resistant gram negative bacilli particularly members of the family Enterobacteriaceae and non-fermenting gram negative rods. Enterobacteriaceae family had shown high rates of antibiotic resistance. Resistance gram negative bacteria are a serious global public health concern especially in developing countries. Gram negative bacilli are common cause of intra-abdominal infections, urinary tract infections, nosocomial pneumonia and bacteremia. Most infections may be related to unbalanced microbiota and host defenses mechanisms but undoubtedly hospital environments are great source of potentially pathogenic microorganisms. A number of factors have been reported that were related to infection with resistant microorganisms, including previous use of antibiotics, corticosteroid therapy, mechanical ventilation, length of hospital stay and use of invasive device such as catheters. The prevalence of resistant gram negative bacteria can vary at local, regional, national and international levels. The mortality is increasing every day because of global changing of antimicrobial resistance patterns.

MATERIALS AND METHODS
A total of 140 children admitted to the central teaching hospital of pediatrics from the 1st of June 2017 to 31 October 2017. Gram-negative isolates from clinical samples were included in the study. The Clinical samples included urine, blood, wound secretions, pus, ear, endotracheal, doubluma, peritoneal. The sample was processed from culture and sensitivity testing. Antimicrobial susceptibility was evaluated by the Kirby-Bauer disk diffusion method in guide lines of clinical and laboratory standards Institute. Antibiotic discs used for gram negative isolates [Ampicillin (AMP), Augmentin (AMC), Cefotaxime (CTX), Ceftriaxone (CTR), Cefpime (CFP), Cefixime (CFM), Cephlothin (CLT), Gentamycin (GEN), Amikacin (AK), Nitrofurantin (NIT)].

Statistical Analysis
The suitable statistical methods were used in order to analyze and assess the results, they include the followings:
- Descriptive statistics: Statistical tables including observed frequencies with their percentages.
- Inferential statistics: These were used to accept or reject the statistical hypotheses, Persons Chi-Square test (χ^2) at level of significance 0.05. P value < 0.05 level of significance was considered statistically significant.

RESULTS
In a total of 140 different clinical samples which were processed. The most prevalent gram negative isolates included Escherichia coli 63 (45.0%), Pseudomonas spp. 21 (15.0%), Klebsiella spp 19 (13.6%) predominantly. Escherichia coli were the most prevalent isolates from urine 45 (71.4%), Klebsiella spp 11 (57.9%) and Enterobacter spp 11 (68.8%) followed by Escherichia coli 10 (15.9%) predominant from blood. 68 (48.6%) of specimens were urine, 47 (33.6%) were blood and 25 (17.8%) were from other origins. Resistance to CTR

Bacterial Type	No.	%
Escherichia coli	63	45.0
Klebsiella spp	19	13.6
Proteus spp	6	4.3
Enterobacter spp	16	11.4
Serretia spp	3	2.1
Acinetobacter spp	12	8.6
Pseudomonas spp	21	15.0
Total	140	100.0
was 42 (51.2 %) in Escherichia coli, 15 (18.3 %) in Pseudomonas spp 9 (11.0 %) in Klebsiella spp and similarly AMC showed 41 (62.1) resistance among Escherichia coli, 8 (12.1 %) among Pseudomonas spp and Klebsiella spp and also GEN showed 27 (57.4 %) resistance among Escherichia coli, 7 (14.9 %) among Pseudomonas spp and 6 (12.8 %) in Klebsiella spp.

DISCUSSION

The Microbial Pathogens as well as their antibiotic sensitivity patterns may change from place to place and from time to time18. In present study show in Table (1) the most common microorganisms isolated were Escherichia coli 63 (45.0 %), Pseudomonas spp 21 (15.0 %), Klebsiella spp 19 (13.6 %). Escherichia coli found to be the

Table 2. Distribution of Organisms Isolated from various Clinical sample

Clinical Sample	Escherichia coli N %	Klebsiella spp N %	Proteus spp N %	Enterobacter spp N %	Serretia spp N %	Acinetobacter spp N %	Pseudomonas spp N %	Total N %
Urine	45 (71.4)	6 (31.6)	3 (50.0)	2 (12.5)	2 (66.7)	1 (8.3)	9 (42.9)	68 (48.6) *
Blood	10 (15.9)	11 (57.9)	2 (33.3)	11 (68.8)	1 (33.3)	8 (66.7)	4 (19.0)	47 (33.6) *
Wound	4 (6.3)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	5 (23.8)	9 (6.4)
Pus	0 (0.0)	2 (10.5)	1 (16.7)	1 (6.2)	0 (0.0)	0 (0.0)	1 (4.8)	5 (3.6)
Ear	2 (3.2)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	1 (4.8)	3 (2.1)
Endo-tracheal	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	2 (16.7)	0 (0.0)	2 (1.4)
Doubluma	1 (1.6)	0 (0.0)	0 (0.0)	2 (12.5)	0 (0.0)	0 (0.0)	1 (4.8)	4 (2.9)
Peritoneal	1 (1.6)	0 (0.0)	0 (0.0)	0 (0.0)	1 (8.3)	0 (0.0)	0 (0.0)	2 (1.4)
Total	63 (45.0)*	19 (13.6)*	6 (4.3)	16 (11.4)	3 (2.1)	12 (8.6)	21 (15.0)*	140 (100.0)

(P < 0.05).

Table 3. Antibiotic Resistance in Gram Negative Bacilli

Antibiotic Used	Escherichia coli N %	Klebsiella spp N %	Proteus spp N %	Enterobacter spp N %	Serretia spp N %	Acinetobacter spp N %	Pseudomonas spp N %	Total N %
AMP	19 (43.2)	4 (9.1)	3 (6.8)	7 (15.9)	2 (4.5)	6 (13.6)	3 (6.8)	44 (12.5)
AMC	41 (62.1)	8 (12.1)	1 (1.5)	2 (3.0)	1 (1.5)	5 (7.6)	8 (12.1)	66 (18.7)
CTX	8 (34.8)	4 (17.4)	3 (13.0)	2 (8.7)	2 (8.7)	2 (8.7)	2 (8.7)	23 (6.5)
CTR	42 (51.2)	9 (11.0)	4 (4.9)	4 (4.9)	3 (3.7)	5 (6.1)	15 (18.3)	82 (23.2) *
CFP	15 (38.5)	2 (5.1)	4 (10.3)	6 (15.4)	0 (0.0)	1 (2.6)	11 (28.2)	39 (11.0)
CFM	27 (57.4)	6 (12.6)	4 (8.5)	3 (6.4)	0 (0.0)	0 (0.0)	7 (14.9)	47 (13.3)
CLT	2 (18.2)	2 (18.2)	0 (0.0)	1 (9.1)	0 (0.0)	4 (36.4)	2 (18.2)	11 (3.1)
GEN	3 (20.0)	6 (40.0)	0 (0.0)	3 (20.0)	0 (0.0)	1 (6.7)	2 (13.3)	15 (4.2)
AK	5 (35.7)	7 (50.0)	0 (0.0)	1 (7.1)	0 (0.0)	0 (0.0)	1 (7.1)	14 (4.0)
NIT	6 (50.0)	1 (8.3)	0 (0.0)	3 (25.0)	0 (0.0)	0 (0.0)	2 (16.7)	12 (3.4)
Total	168 (47.6)	49 (13.9)*	19 (5.4)	32 (9.1)	8 (2.3)	24 (6.8)	53 (15.0)*	353 (100.0)

(P < 0.05).

[Ampicillin (AMP), Augmentin (AMC), Cefotaxime (CTX), Ceftriaxone (CTR), Cefpime (CFP), Cefixime (CFM), Cephalothin (CLT), Gentamycin (GEN), Amikacin (AK), Nitrofurantin (NIT)].
Fig. 1. Distribution of Organisms Isolated from various Clinical sample

Fig. 2. Antibiotic Resistance in Gram Negative Bacilli
most common in study which was isolated from urine and this agree with Javeed et al., Saravanan et al. and Vipin et al. showed significant differences (P < 0.05) in Table (2). Urine samples were 68 (48.6 %) and blood samples were 47 (33.6 %) and other origins was 53 (15.0 %). Resistance emerges from over utilization of antibiotics trying to sterilize the environment and also the inappropriate use of the antibiotics for treatment, uncontrolled antibiotics resistance surveillance. There was 168 (47.6 %) resistance rate of *Escherichia coli* to [CTR 42 (51.2 %), AMC 41 (62.1 %), CFM 27 (57.4 %), AMP 19 (43.2 %)] which is the most resistance and there was 53 (15.0 %) resistance rate *Pseudomonas* spp to [CTR 15 (18.3 %), CFP 11 (28.2 %), AMC 8 (12.1 %), CFM 7 (14.9 %) also 49 (13.9 %) resistance rate to [CTR 9 (11.0 %), AMC 8 (12.1 %), AK 7 (50.0 %), CFM 6 (12.8 %), GEN 6 (40.0 %), this result show in Table (3) with significant differences (P < 0.05).

CONCLUSION

In this study, the most common microorganisms isolated was *Escherichia coli* isolated from urine samples most resistance rate to Ceftriaxone 42 (51.2 %), Augmentin 41 (62.1 %), Ceﬁxime 27 (57.4 %), Ampicillin19 (43.2 %).

ACKNOWLEDGMENTS

None

CONFLICT OF INTEREST

The author declares that there are no conflict of interest.

REFERENCES

1. Anjum MU, Shams N, Shah SH, Mujaddad-ur-Rehman M, Hussain S. Prevalence and Antibiotic Resistance pattern of Multidrug Resistant Bacteria among Blood Isolates. *Sch. J. App. Med. Sci.*, 2014; 2(5D): 1734-1740.

2. Sankarakutty J., Kaup S., Distribution and Anti-gram of Gram Negative Isolates from Various clinical samples at a Teaching Hospital, Tunkur. *Sch. J. App. Med. Sci.*, 2014; 2(3A): 927-931.

3. Lockhart SR., Abramson MA., Beckmann SE., Gallagher G., Riedel S., Diekema DJ et al. Antimicrobial Resistance among Gram-Negative Bacilli causing infections in Intensive care unit patients in the United States between 1993 and 2004. *J. Clin. Microbiol.*, 2007; 45(10): 3352-3359.

4. Abo-state MA., Mahdy HM. Ezatz SM., Abded EH., Shakkour El and Bahnasawy El. Antimicrobial Resistance profiles of Enteriobacteriaceae Isolated from Rosetta Branch of River Nile, Egypt. *Worl. App. Sci. J.*, 2012; 19: 1234-1243.

5. Osman KM., Ata NS., Hedia RH., AbuElnaga ASM., El-Hariri M and Aly MAK. Emergence of an Anti-microbial Resistant Pseudomonas aeroginosa from Human and Animal Clinical samples: A zoonotic and public Health Hazard. *Global Veterinaria*, 2012; 19: 745-751.

6. Abo-state MA, Sharif MR, Sharif A. Risk factors of Methicillin-Resistant Staphylococcus aureus Colonization in Diabetic outpatients. A prospective Cohort study. *Internat. J. Microbial. Resea.*, 2013; 4: 147-151.

7. Alizargar J., Sharif MR., Sharif A. Risk factors of Methicillin-Resistant Staphylococcus aureus Colonization in Diabetic outpatients. A prospective Cohort study. *Internat. J. Microbial. Resea.*, 2013; 4: 176-182.

8. Okonko To., Soleyne FA., Amusam TA., Ogun AA., Oggunnusi TA and Ejembi J. Incidence of Multi-Drug Resistance (MDR) Organisms in Abeokuta southwest Nigeria. *Glo. J. Pharma.*, 2009; 3: 69-80.

9. Aly MEA, Essam TM and Amin MA. Antibiotic Resistance profile of E.coli strains isolated from Clinical Specimens and Food samples in Egypt. *Internation. J. Microbiol. Resea.*, 2012; 3: 176-182.

10. Sharif MR, Alizagar J. and Sharif A. Antibiotic susceptibility of Staphylococcus aureus in Isolates of the patients with Osteomyelitis. *Worl. J. Med. Sci.*, 2013: 9: 180-183.

11. Sievert DV., Ricks P., Edwards JR., Schneider A., Patel J., Srinivasan A., Kalen A., Limbago B., Fridkin S. and National Health care safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial resistant pathogens associated with health care-associated infections: summary of Data reported to the national Health care safety Network at the center for disease control and prevention 2009-2010 infect control Hospital. *Epidemiol.*, 2013; 34: 1-14.

12. Bryce EA., Scharf S., Walker M., Walsh A., The infection control audit as a tool for change. *Am. J. infect. Control.*, 2007; 35: 271-283.

13. Khalili H., Soltani R., Afhami S., Dashti-Khavidaki S., Aljani B., Antimicrobial resistance pattern of Gram-negative bacteria of nosocomial origin at a teaching hospital in the Islamic Republic of Iran. *East. Medi. J.*, 2012; 18(2): 172-177.

14. Livermore DM., Current epidemiology and growing resistance of Gram-negative pathogens. *Korean J. Intern. Med.*, 2012; 27: 128-142.

15. Okesola AO. And Oni AA. Antimicrobial resistance Among Common Bacterial pathogens in south western Nigeria. Ameri. Euras. J. Agr. Envie. Sci., 2009; 5: 327-330.

16. Al-Rawazq et al. J Pure Appl Microbiol, 13(1), 349-354 | March 2019 | DOI 10.22207/JPAM.13.1.38
testing. Eighteenth informational Supplement document M100e S18. Wayne, PA: Clinical and Laboratory Standards Institutes (CLSI), 2008.

18. Pakyz AL., The Utility of Hospital Antibiograms as tool for Guiding Empiric Therapy and Tracking Resistance; Insight from the society of infectious diseases pharmacists. Pharmacotherapy, 2007; 27(9): 1306-1312.

19. Javeed I., Hafeez R. and Anwar MS. Antibiotic Susceptibility pattern of Bacterial Isolates from patients Admitted to Atertiary care Hospital in Lahore. Biomedica., 2011; 27: 19-23.

20. Saravanan R., Raveendran V. Antimicrobial resistance pattern in a tertiary care hospital : An observational study. J Bas. Clin. Pharm., 2013; 4(3): 56-63.

21. Vipin K., Rohit KM., Avantika C., Pramila G., Incidence of B-Lactamase producing gram-negative clinical isolates and their antibiotic susceptibility patterns A case study in Allahabad. Internati. J. Resea. Pure and Appli. Microbiol., 2011; 1(3): 36-39.

22. Sharif MR., Alizargar J., Sharif A. Antimicrobial Resistance among gram-negative Bacteria Isolated from Different samples of patients Admitted to A University Hospital in Kashan, Iran. Advances. Biolog. Resear., 2013; 7(5): 199-202.

23. Kritu P., Prakash G., Shiba KR., Reene KM., Ram NS., Ganesh R., Antibiograms-typing of gram negative isolates in different clinical samples of tertiary hospital. Asian J. Pharmaceu. Clinici. Resea., 2013; 6(1): 153-156.