Comparação da geometria nasal entre adultos com apneia obstrutiva do sono: estudo preliminar

Comparison of nasal geometry among adults with obstructive sleep apnea: a preliminary study

Jackson Ítalo Tavares da Rocha
Anna Myrna Jaguaribe de Lima
Hilton Justino da Silva
Adriana de Oliveira Camargo Gomes
Paulo Augusto Vitorino
Danielle Cristina Silva Clímaco
Danielle Andrade da Cunha

Recebido em: 05/07/2019
Aceito em: 13/11/2019

RESUMO

Objetivo: comparar a geometria nasal entre dois grupos de pacientes com diferentes graus de apneia obstrutiva do sono e correlacionar índice e gravidade da apneia e grau de sonolência diurna com áreas e volume nasais.

Métodos: 20 adultos (15 mulheres e 5 homens – idade média de 52,0±11,4 anos) sem obstrução nasal, submetidos à polissonografia e divididos em dois grupos: a) dez indivíduos sem ou com apneia em grau leve; b) dez com apneia moderada ou grave. A geometria nasal foi avaliada por rinometria acústica. Foram considerados o volume (distância da válvula nasal até a parte posterior da concha nasal média) e as três áreas seccionais: válvula nasal, parte anterior e parte posterior da concha nasal inferior.

Resultados: o grupo 2 apresentou valores menores na área da válvula nasal, à direita, e maiores valores nas áreas das conchas nasais. Não houve correlação entre escala de sonolência e geometria nasal.

Conclusão: a área da válvula nasal foi menor, unilateralmente, no grupo com apneia moderada e grave. Não houve correlação entre volumes e áreas nasais e sonolência diurna excessiva.

Descritores: Apneia Obstrutiva do Sono; Rinometria Acústica; Diagnóstico; Obstrução Nasal; Cavidade Nasal

ABSTRACT

Purpose: to compare nasal geometry between two groups of patients with different degrees of obstructive sleep apnea and to correlate apnea-hypopnea index, apnea severity and degree of daytime sleepiness with nasal areas and volume.

Methods: a total of 20 adults (15 women and 5 men, mean age of 52.0±11.4 years old) without nasal obstruction were submitted to polysomnography. The subjects were divided into two groups: a) 10 individuals without apnea or with mild-grade apnea; b) 10 with moderate or severe apnea. Nasal geometry was evaluated by acoustic rhinometry. The volume, comprising the distance from the nasal valve to the posterior part of the middle nasal turbinate, and the three sectional areas corresponding to nasal valve, anterior part of the inferior nasal turbinate and posterior part of the inferior nasal turbinate, were considered. The Shapiro-Wilk, Mann-Whitney, Student’s t tests for independent samples and Spearman’s correlation coefficient were used for the analysis, with a significance level lower than 5%.

Results: group 2 presented lower values in the area corresponding to the nasal valve (on the right), and higher values in the nasal turbinate areas. There was no correlation between the drowsiness scale and nasal areas and volumes.

Conclusion: the area of the nasal valve was unilaterally smaller in the group with moderate and severe apnea. There was no correlation between volumes and nasal areas and excessive daytime sleepiness.

Keywords: Obstructive Sleep Apnea; Acoustic Rhinometry; Diagnosis; Nasal Obstruction; Nasal Cavity
INTRODUÇÃO

A apneia obstrutiva do sono (AOS) é uma doença crônica, de caráter evolutivo, caracterizada como uma disfunção da respiração durante o período do sono, secundária a fatores anatomo-estruturais e neuromusculares, tendo como principais sintomas: hipersonolência diurna, despertar frequente, ronco, interrupções do fluxo aéreo, sono inquieto, déficits neurocognitivos, cefaleia, problemas cardiovasculares, alterações do comportamento1-5.

Sabe-se que a etiologia da AOS é multifatorial e que mudanças morfométricas e funcionais em estruturas orofaríngeas e nasais estão entre os processos de causa e efeito da AOS6,7. Essas alterações promovem o estreitamento das vias aéreas superiores (VAS), um dos principais fatores para o surgimento desse agravo6,8.

A despeito de não se ter comprovada a influência da obstrução nasal sobre a AOS9, um estudo indicou alta incidência de alterações estruturais nasais em pacientes com esse distúrbio do sono10, o que justifica a realização de mais pesquisas sobre o tema.

O método padrão-ouro para o diagnóstico da AOS é a polissonografia11. Entretanto, outros procedimentos de rastreio podem ser úteis para conjugar diferentes fatores de risco12, como as alterações de vias aéreas, incluindo exames que avaliem a geometria da cavidade nasal8,13. Nesse contexto, a RA pode identificar fatores de risco para o desenvolvimento e agravamento da AOS relacionados a obstruções da cavidade nasal, podendo ser adotada como método auxiliar, a fim de detectar alterações anatômicas que acompanhem o surgimento e a evolução da doença8,13.

Assim, o uso da RA pode ser um aliado importante no diagnóstico complementar da apneia obstrutiva do sono (AOS), já que alterações anatômicas das vias aéreas estão associadas a essa doença14-16.

Portanto, com o intuito de se verificar a associação de medidas nasais com a apneia obstrutiva do sono, o objetivo deste estudo foi comparar as medidas rínométricas de áreas seccionais e volumes nasais entre os dois grupos com diferentes graus de apneia, a saber, indivíduos sem AOS ou com AOS de grau leve e indivíduos com AOS moderada ou grave, submetidos à polissonografia para diagnóstico e correlacionar o índice de apneia e hipopneia, gravidade da apneia e grau de sonolência diurna com as áreas e volume nasais.

MÉTODOS

Este é um estudo primário, observacional, transversal, descritivo-analítico, de caráter quantitativo, realizado no Laboratório de Motricidade Orofacial da Universidade Federal de Pernambuco e no ambulatório de Pneumologia do Hospital Otávio de Freitas.

O estudo foi aprovado, sob parecer nº 865.491, pelo Comitê de Ética e Pesquisa em Seres Humanos do Centro de Ciências da Saúde da Universidade Federal de Pernambuco, Brasil. Todos os sujeitos assinaram o termo de consentimento livre e esclarecido, antes de se iniciar a coleta.

Foram recrutados adultos de ambos os gêneros, com idade acima de 18 anos, sem queixa de obstrução nasal ou cirurgias nasais prévias, submetidos à polissonografia (PSG) para diagnóstico de AOS, atendidos no Ambulatório de Pneumologia, no período entre janeiro de 2013 e dezembro de 2015. Pacientes que apresentavam outros distúrbios do sono, que porventura estivessem em uso de sedativos, dependentes químicos, com alterações anatômicas craniofaciais e em vias aéreas superiores (VAS), e aqueles em terapia com uso de dispositivos espiroscópicos ou CPAP, foram excluídos do estudo.

Todos os pacientes procuraram o serviço por apresentarem queixas de apneia e por isso foram submetidos à polissonografia, para diagnóstico. Os sujeitos recrutados já tinham sido submetidos à avaliação médica, em que foram descartadas alterações anatômicas nasais que pudessem influenciar o resultado do exame. Os critérios de inclusão e exclusão foram aplicados de acordo com os resultados da análise médica.

Desse modo, foram analisados 20 pacientes (15 mulheres e 5 homens), com média de idade de 52,0±11,4 anos e IMC=31,9±9,0 kg /m2, sem queixa de obstrução nasal. Após análise polissonográfica, os resultados foram aplicados de acordo com os resultados da análise médica.
A avaliação antropométrica consistiu de medida do peso e altura, realizada com uma balança digital (Welmy, com capacidade para 200 kg, divisões de 100 g) com estadiômetro acoplado, sendo o peso mensurado em quilogramas (kg) e a altura em metros (m). Os dados do peso corporal e da altura foram utilizados para calcular o IMC (Peso (kg)/Altura² (m)). Para avaliação da circunferência do pescoço, foi utilizada uma fita métrica flexível milimetrada, com capacidade de até 150 cm e incrementos de 1 mm, ao nível da cartilagem tireoide, com o indivíduo na postura de pé e em posição anatômica.

Para quantificar o grau de sonolência diurna do indivíduo, foi aplicada a escala de sonolência de Epworth (ESE).

Figura 1. Fluxograma do procedimento de coleta da pesquisa
Epworth (ESE)17,18. A escala é composta por questões simples sobre presença de sono em algumas situações do dia. Um escore até 10 é considerado dentro da normalidade e acima de 10, excesso de sonolência19.

O exame PSG foi conduzido durante uma noite completa, nas dependências do Hospital, em sono espontâneo e sem nenhuma sedação. A monitorização e o acompanhamento do exame foram realizados por profissionais treinados, sendo adaptado o monitor respiratório portátil (ApneaLinkTM). O aparelho permaneceu ligado entre a hora de dormir e o momento em que o paciente acordava pela manhã.

O monitor ApneaLinkTM é capaz de monitorizar continuamente a oximetria de pulso, detectar os esforços respiratórios (por meio de cinta tóraco-abdominal adaptada ao corpo do paciente), mensurar o fluxo aéreo (por meio de um sensor de pressão presente em cânula nasal de pressão, também adaptada à face do paciente), gravar roncos e localizar posição corporal. Além disso, a frequência cardíaca é continuamente mensurada por meio da leitura da onda de pulso pela oximetria. Todos os dados são gravados no software do aparelho, sendo posteriormente feita a leitura destes, no próprio ambulatório, de acordo com as normas internacionais.

Durante a análise dos dados provenientes do exame, a detecção dos eventos respiratórios (apneia ou hipopneia) foi realizada por médico especializado, responsável pelo parecer diagnóstico. De acordo com o previamente descrito, havendo redução superior a 90% do fluxo aéreo basal, caracterizou-se a presença de apneia, enquanto a presença de redução de fluxo aéreo superior a 30% do basal associada à queda da saturação de O\textsubscript{2}\geq 4% caracterizou a hipopneia. Após a análise do todo o período de sono da noite, a soma de todos os eventos apresentados resultou no índice de apneia e hipopneia (IAH) cujo valor, se igual ou superior a 5 eventos/hora, foi a referência para o diagnóstico de AOS19.

Para a realização do procedimento de avaliação da geometria da cavidade nasal, utilizou-se a rinometria acústica (RA) pelo equipamento Eccovision Acoustic Rhinometer (Sleep Group Solution, North Miami Beach, Flórida, USA). A RA permite a mensuração de áreas e volume das cavidades nasais, bem como a distância das diferentes construções a partir das narinas.

As duas cavidades nasais foram avaliadas separadamente por meio dos valores de volume (V), medidos em cm3, que compreendia o volume da cavidade nasal a partir da válvula nasal até a parte posterior da concha nasal média, compreendendo a distância de 10mm a 64mm, bem como os valores das áreas de secções transversais (AST), medidas em cm2, sendo estas três: AST1 = correspondente à válvula nasal, AST2 = correspondente à parte anterior da concha nasal inferior e AST3 = correspondente à parte posterior da concha nasal inferior ou média19,21. Para que os valores dos volumes e das AST das cavidades nasais pudessem ser analisados conjuntamente, os valores obtidos em cada narina também foram somados.

As áreas de secção transversais são calculadas pela intensidade da onda refletida e captada pelo microfone. Já as distâncias em relação à narina são calculadas com base na velocidade da onda sonora refletida e e tempo de captura pelo microfone. Os dados são convertidos e apresentados em um gráfico de função área-distância representado na tela do computador, chamado de rinograma e, a partir desses valores, o sistema calcula os valores para os volumes, pela área do gráfico19,20.

Para assegurar a acurácia das medidas rinométricas, cuidados foram tomados em relação à temperatura ambiente, ruidos externos, posicionamento do tubo do rinômetro durante os exames e vedamento entre o adaptador nasal e a cavidade nasal, conforme descrito em outros estudos19,20.

Portanto, a temperatura ambiente foi controlada e mantida em aproximadamente 25°C. Após o período de ambientação do paciente à sala de exame, por cerca de 30 minutos, era realizada a calibração individual do aparelho no início do procedimento, bem como tomados cuidados em relação ao posicionamento correto do tubo do rinômetro para evitar perdas de registro das ondas sonoras. O participante era orientado a ficar sentado, em posição ereta, com os pés bem posicionados em contato com o chão, além de manter a cabeça sempre estável. No momento da coleta do exame, era sempre solicitado que o paciente mantivesse o olhar fixo em um ponto à frente, na altura dos olhos, com o objetivo de manter o posicionamento da cabeça.

Com o propósito de certificação da reprodutibilidade do exame21, as medidas rinométricas foram realizadas por dois avaliadores, sendo repetidas, por duas vezes, as medições de cada narina, com cada um dos examinadores, para confirmação dos valores mensurados, que não poderia diferir mais que 10% entre eles, e impedir erros de análise por problemas no procedimento de coleta. Os valores considerados...
no resultado correspondem à segunda medida obtida pelo segundo avaliador.

O paciente era instruído a inspirar e expirar três vezes pela boca, sendo que, na terceira inspiração a respiração deveria ser suspensa por alguns segundos, enquanto o sinal sonoro indicava que as medidas estavam sendo tomadas.

Para análise dos resultados, inicialmente foi testada a aderência dos dados aos padrões de normalidade pelo teste de Shapiro-Wilk. As variáveis que apresentaram distribuição normal tiveram seus resultados expressos pela média (±desvio-padrão), e as que não apresentaram aderência, os valores foram mostrados em mediana (valor mínimo-valor máximo). Para comparação entre os grupos, utilizou-se o teste de Mann-Whitney (na comparação de variáveis cujos valores não apresentaram distribuição normal) e Teste t de Student para amostras independentes (na comparação entre variáveis cujos valores apresentaram distribuição normal) e para testar a correlação entre as variáveis foi usado o coeficiente de correlação de Spearman. Em todas as situações, o nível de significância assumido foi de 5%. Utilizou-se o programa SPSS versão 17.0.

RESULTADOS

Os valores das variáveis que caracterizam a amostra, foram estratificados pelos grupos 1 (sem AOS e AOS leve) e 2 (AOS moderada e grave). Observa-se que os grupos diferiram apenas quanto à altura e, como esperado, no índice de apneia e hipopneia (IAH), sendo maior no grupo 2 (Tabela 1).

Foram calculados os valores médios encontrados na RA para as AST e os volumes (V) das cavidades nasais de ambos os grupos (Tabela 2). Nota-se que, ao se comparar as cavidades nasais esquerda e direita, separadamente, o grupo 2 apresentou menor valor na AST1 (correspondente à válvula nasal) na cavidade nasal direita, comparativamente ao grupo 1 e maior valor em AST2 esquerda e AST3 total, ou seja, na análise da soma das duas cavidades.

Desse modo, houve diferença entre os grupos quanto aos valores de três variáveis nas áreas seccionais, porém não houve diferença em seis variáveis de área e nem quanto aos volumes.

As médias dos valores, calculadas por gênero, não diferiram, a não ser entre as medidas de AST1 esquerda (p=0,013), em que o grupo masculino obteve valor médio de 1,04cm² e o feminino, de 0,67cm².

Quanto aos resultados do teste de correlação entre as variáveis relacionadas à AOS e as medidas nasais, os valores indicam que houve correlação positiva entre o IAH e gravidade da AOS e a AST3 total. Porém, não houve correlação entre a escala de sonolência de Epworth e as variáveis rinométricas (Tabela 3).

Tabela 1. Caracterização da amostra, estratificada pelos grupos (n=20)

Variáveis	GRUPO 1	GRUPO 2	p-valor
Idade (anos) - Média (±DP)	49,90 (±9,48)	54,1(±13,17)	0,151
Peso (kg) - Média (±DP)	72,20 (±9,32)	85,87 (±18,95)	0,073
Altura (m) - Média (±DP)	1,62(±0,13)	1,61(±0,08)	0,034*
IMC (kg/m²) - Média (±DP)	30,07 (±8,22)	33,81 (±9,84)	0,778
Circunferência do Pescoço (cm) - Média (±DP)	37,10 (±3,90)	40,50 (±5,84)	0,651
ESE (escore) - Média (±DP)	10,50 (±6,55)	16,00 (±7,30)	0,915
IAH (eventos/h) - Mediana (Min-Máx)	5,20 (2,0-11,30)	36,40 (15,3-94,40)	0,000**

*Teste t de Student para amostras independentes – nível de significância p<0,05
**Teste Mann-Whitney – nível de significância p<0,05
Legenda: Grupo 1 – Sem AOS/AOS Leve; Grupo 2 – AOS Moderada/Grave; IAH – Índice de Apneia e Hipopneia; IMC – Índice de Massa Corpórea; ESE – Escala de Sonolência de Epworth; DP – desvio-padrão; Min-Máx – valores mínimo e máximo
Rocha JÍT, Lima AMJ, Silva HJ, Gomes AOC, Vitorino PA, Climaco DCS, Cunha DA

TABELA 2. Valores das áreas e volumes avaliados por rinometria acústica estratificados por gênero e por grupo

Variáveis	M	F	GRUPO 1	GRUPO 2	p-valor	
AST1 D (cm²) - Média (±DP)	1,15 (±0,27)	0,75 (±0,24)	0,926	0,94 (±0,36)	0,77 (±0,20)	0,045 *
AST1 E (cm²) - Mediana (Mín-Máx)	1,04 (±0,43)	0,67 (±0,18)	0,013*	0,70 (0,41-1,26)	0,72 (0,35-1,70)	0,821
AST1 total (cm²) - Média (±DP)	2,20 (±0,51)	1,42 (±0,37)	0,262	1,67 (±0,61)	1,56 (±0,45)	0,152
AST2 D (cm²) - Média (±DP)	3,01 (±1,02)	2,02 (±1,09)	0,954	1,99 (±0,97)	2,55 (±1,26)	0,333
AST2 E (cm²) - Média (±DP)	3,08 (±1,01)	2,07 (±0,91)	0,759	1,93 (±0,61)	2,71 (±1,21)	0,035 *
AST2 total (cm²) - Média (±DP)	6,09 (±1,74)	4,09 (±1,84)	0,802	3,92 (±1,51)	5,26 (±2,23)	0,172
AST3 D (cm²) - Mediana (Mín-Máx)	3,66 (±2,01)	3,01 (±1,92)	0,822	2,27 (1,27-5,89)	3,20 (1,16-7,20)	0,290
AST3 E (cm²) - Mediana (Mín-Máx)	4,21 (±2,53)	2,98 (±1,66)	0,338	2,44 (1,67-4,16)	3,58 (0,47-8,10)	0,212
AST3 total (cm²) - Média (±DP)	7,87 (±4,27)	5,99 (±3,40)	0,467	5,21 (±2,23)	7,71 (±4,37)	0,025 *
V D direita (cm³) - Média (±DP)	14,54 (±4,14)	9,81 (±3,81)	0,779	10,55 (±4,22)	11,43 (±4,62)	0,502
V E (cm³) - Média (±DP)	14,88 (±3,78)	9,99 (±3,55)	0,894	10,58 (±3,44)	11,84 (±4,81)	0,337
V total (cm³) - Média (±DP)	29,42 (±6,62)	19,79 (±6,71)	0,770	21,126 (±7,22)	23,27 (±8,57)	0,370

Teste t de Student para amostras independentes – nível de significância p<0,05

Teste Mann-Whitney – nível de significância p<0,05

Legenda: M – masculino; F – feminino; GRUPO 1 – Sem AOS/AOS Leve; GRUPO 2 – AOS Moderada/Grave; AST – Área de Secção Transversal; V – Volume, correspondente à distância de 10mm a 64mm a partir da narina; D – cavidade nasal direita; E – cavidade nasal esquerda; DP – desvio-padrão; Mín-Máx – valores mínimo e máximo

DISCUSSÃO

As alterações estruturais de cavidade nasal têm sido relacionadas à presença da AOS, porém ainda há o que se esclarecer quanto à sua associação com a etiologia dessa doença. A despeito da relação existente entre obstruções nasais e alterações morfológicas que geram agravos como a respiração oral de suplência, roncopatia e, consequentemente, a AOS.

A presente investigação propôs-se a verifícarmo grupo sem queixas nasais, fatores que pudessem ser preditivos de AOS, por meio de avaliação das medidas da geometria nasal, comparando um grupo sem AOS ou com AOS leve com outro grupo diagnosticado com AOS moderada ou grave, no intuito de ilustrar a possível relação da morfologia nasal com a presença e grau da AOS.

Quanto à amostra estudada, pode-se notar que os dois grupos foram compostos, em sua maioria, por mulheres: 70% no grupo 1 e 80% no grupo 2 (Figura 1). Ao se testar a diferença de todas as medidas avaliadas entre os gêneros, a despeito da amostra masculina ser bem menor, não houve significância, a não ser entre as medidas de AST1 esquerda (p=0,013), em
que o grupo masculino obteve valor médio maior que o feminino (1,04cm² e 0,67cm², respectivamente). Considerando-se que nas medidas totais das áreas e volume, homens e mulheres não diferiram, optou-se por não excluir os homens da amostra.

É válido ressaltar que os dois grupos estudados não diferiram quanto à idade e medidas corporais, com exceção da medida de altura, que foi menor no grupo com AOS moderada e grave (Tabela 1). Isso pressupõe uma certa homogeneidade entre os grupos, o que favorece a análise quanto ao isolamento das variáveis a serem analisadas, ou seja: geometria nasal e grau da AOS. Os grupos diferiram em relação ao IAH, como já obviamente previsto, sendo esse o fator utilizado na estratificação dos grupos. Destaca-se, ainda, que não houve diferença entre as médias dos escores da ESE, o que não corrobora a literatura17.

Estudos têm apontado a RA como um exame objetivo da cavidade nasal, destacando sua utilidade na prática clínica, em grupos específicos9,20,24,25. Uma pesquisa que comparou as médias das AST1 e AST2, de 108 indivíduos com e sem AOS, encontrou diferença de 10-22% nas AST1 e AST2 entre os grupos8. Tais achados corroboram em parte o presente estudo: nota-se que o grupo 2 apresentou valores menores na AST1 direita, em relação ao grupo 1; porém, em AST2 esquerda, o grupo 2 apresentou valores maiores, bem como na AST3 total (Tabela 2).

Esse resultado parece, a princípio, contrariar a hipótese inicial, já que as medidas correspondentes à região das conchas nasais (AST2 e AST3)19-21 foram maiores no grupo com AOS moderada e grave. No entanto, considerando-se que a AST1 corresponde à área da válvula nasal21 e que essa oferece maior resistência ao fluxo aéreo, uma menor área de AST1, no grupo 2 aponta para uma possível interferência dessa medida na AOS23, ainda que as áreas mais posteriores tenham dimensões maiores.

Ademais, é importante comentar que o grupo de pacientes avaliados no estudo anteriormente citado era composto, em quase 70%, por indivíduos com AOS grave6, o que também pode explicar a diferença nos resultados em relação à presente pesquisa, no que se refere à AST2.

Em outro trabalho27, os achados da RA em 87 indivíduos que apresentavam queixas e sinais de AOS previamente ao diagnóstico pela PSG, também demonstraram menores valores da AST mínima, caracterizando maiores obstruções nasais, corroborando os resultados obtidos neste estudo, já que, em todos os sujeitos estudados a AST1 correspondeu à menor área de secção transversa, correspondendo, assim, à AST mínima.

Na presente amostra, foi verificada correlação positiva entre as medidas de AST3 com o IAH e com a gravidade da AOS (Tabela 3). No entanto, esses achados vão de encontro com a hipótese de que a obstrução nasal pode ser considerada na etiologia da AOS, tendo em vista que, sendo positiva, indica que, quanto maior a área, maior o IAH e gravidade da AOS encontrados. Portanto, reforça-se a ideia de que, neste grupo sem queixas nasais, a válvula nasal tenha apresentado maior influência para a AOS do que as áreas mais posteriores e o volume.

Não foram encontradas correlações entre as áreas totais dos dois primeiros segmentos da cavidade nasal e nem do volume total com o IAH e a gravidade da apneia (Tabela 3) corroborando outros estudos16,23. Uma possível justificativa para o achado é a de que a resistência nasal seja um fator importante para o surgimento da doença, sendo este dado não avaliado por meio da RA23.

Da mesma forma, não foi observada correlação quando da análise da geometria da cavidade nasal e o nível de sonolência diurna, principal síntoma da AOS, resultado este diferente de outro estudo que, apesar de indicar a avaliação da hipersonolência diurna, não menciona se os pacientes apresentavam diagnóstico e nem o grau da AOS20. Outro fator importante a ser analisado é que a população desse estudo apresentava queixa de obstrução nasal, o que difere, também, da presente pesquisa.

A sonolência diurna excessiva (SDE), que é obtida subjetivamente por meio do escore da escala de sonolência de Epworth (ESE), pode ser definida como a inabilidade de se manter acordado e alerta durante o dia18. Esta inabilidade pode ser decorrente de distúrbios do sono em geral e não exclusivamente da apneia obstrutiva do sono (AOS). No presente estudo, ambos os grupos apresentaram SDE (ESE>10), não havendo diferença entre eles. Na presente amostra, o diagnóstico por meio da polissonografia foi feito especificamente para AOS, não tendo sido pesquisada a presença de outros distúrbios do sono que também poderiam ser responsáveis pela presença de SDE.

Ressalta-se que os sujeitos deste estudo não apresentaram queixa e nem evidências de obstruções nasais, o que pode explicar a ausência de correlação entre a maioria das variáveis rinométricas e os indicadores de apneia. Isso pode ser explicado...
pela fisiopatologia da AOS, cujo colapso das VAS, que provoca a obstrução respiratória, surge de uma série de fatores, mais especificamente da redução da motilidade dos tecidos moles durante o ciclo respiratório, sendo a língua, as paredes da faringe e o palato mole estruturas essenciais nesse processo. Logo, a rinometria permite observar obstruções em cavidade nasal, que nem sempre estão presentes em todos os indivíduos com AOS.

No entanto, tendo em vista a diferença encontrada nesta amostra sem queixas nasais, sendo este um estudo preliminar, para se confirmar a importância da rinometria acústica como um instrumento complementar na avaliação de indivíduos com sinais ou sintomas de apneia é necessário um estudo com uma amostra maior de sujeitos, estratificando-os em indivíduos sem apneia e nos três diferentes graus de AOS.

Sugerem-se, portanto, estudos longitudinais com a avaliação da geometria nasal desses pacientes, desde o diagnóstico até o tratamento para a AOS a fim de se verificar a influência dos mais diversos procedimentos utilizados no tratamento da patologia sobre as estruturas nasais.

CONCLUSÃO

Das medidas rinométricas aferidas, a área seccional correspondente à válvula nasal foi menor, unilateralmente, no grupo com apneia moderada e grave, em relação aos indivíduos sem AOS ou com AOS de grau leve. Porém, não foi observada correlação entre os volumes e áreas nasais e a sonolência diurna excessiva, um dos principais sintomas diretamente relacionados à apneia obstrutiva do sono, no grupo estudado.

REFERÊNCIAS

1. Figueiredo AC, Lorenzi MC, Prezzoti S, Cabral MM, Sennes LU, Lorenzi-Filho G. Efeitos da pressão positiva contínua em vias aéreas sobre os sintomas nasolaringeos em pacientes com a síndrome da apneia obstrutiva do sono. J Bras Pneumol. 2004;30(6):535-9.
2. Jordan AS, Mcsharry DG, Malhotra A. Adult obstructive sleep apnea. The Lancet. 2014;383(9918):736-47.
3. Osman AM, Carter SG, Carberry JC, Eckert DJ. Obstructive sleep apnea: current perspectives. Nat Sci Sleep. 2018;3(10):21-34. doi: 10.2147/NSS. S124657. eCollection 2018.
4. Miller JD, Aronis KN, Chrispin J, Patil KD, Marine JE, Martin SS et al. Obesity, exercise, obstructive sleep apnea, and modificable atherosclerotic cardiovascular disease risk factors in atrial fibrillation. J Am Coll Cardiol. 2015;66(25):2899-906.
5. Marcus CL, Moore RH, Rosen CL, Giordani B, Garetz SL, Taylor HG et al. A randomized trial of adenotonsillectomy for childhood sleep apnea. Engl J Med. 2013;368(25):2366-76.
6. Daves RJO, Stradling JR. The efficacy of nasal continuous positive airway pressure in the treatment of obstructive sleep apnea syndrome is proven. Am J Respir Crit Care Med. 2000;161(6):1775-6.
7. Guimarães KCC, Drager LF, Genta PR, Marcondes BF, Lorenzi-Filho G. Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med. 2009;179(10):962-6.
8. Banabilih SM, Suzina AH, Mohamad H, Dinsuhaimi S, Samsudin AR, Singh GD. Assessment of 3-D nasal airway morphology in Southeast Asian adults with obstructive sleep apnea using acoustic rhinometry. Clin Oral Investig. 2010;14(5):491-8. doi: 10.1007/s00784-009-0342-9.
9. Migueis DP, Thuler LCS, Lemes LNA, Moreira CSS, Joffily L, Araújo-Melo MHA. Systematic review: the influence of nasal obstruction on sleep apnea. Braz J Otorhinolaryngol. 2016;82(2):223-31.
10. Mekhitarian NL, Fava AS, Lopes HC, Stamm A. Estudo epidemiológico das alterações estruturais da cavidade nasal associadas à síndrome da apnéia e hipopnéia obstrutiva do sono (SAHOS). Rev Bras. Otorrinolaringol. 2005;71(4):464-6.
11. Bosi M, De Vito A, Kotecha B, Viglietta L, Braghirol A, Steier J et al. Phenotyping the pathophysiology of obstructive sleep apnea using polygraphy/polysonomography: a review of the literature. Sleep Breath. 2018;22(3):579-92. doi: 10.1007/ s11325-017-1613-3.
12. Vaz AP, Drummond M, Caetano Mota P, Severo M, Almeida J, Carlos Winck J. Tradução do Questionário de Berlim para língua Portuguesa e sua aplicação na identificação da SAOS numa consulta de patologia respiratória do sono. Rev Port Pneumol. 2011;17(2):59-65.
13. Moxness MH, Bugten V, Thorstensen WM, Nordgård S, Bruskeland G. A comparison of minimal cross sectional areas, nasal volumes and
peak nasal inspiratory flow between patients with obstructive sleep apnea and healthy controls. Rhinology. 2016;54(4):342-7. doi: 10.4193/Rhin16.085.

14. Awad MI, Kacker A. Nasal obstruction considerations in sleep apnea. Otolaryngol Clin North Am. 2018;51(5):1003-9. doi: 10.1016/j.otc.2018.05.012.

15. Fu D, Pinto JM, Wang L, Chen G, Zhan X, Wei Y. The effect of nasal structure on olfactory function in patients with OSA. Euro Arch Oto-Rhino-Laryngol. 2015;272(2):357-62.

16. Vidigal TA, Haddad FLM, Gregório LC, Poyares D, Tufik S, Azeredo Bittencourt LR. Subjective, anatomical, and functional nasal evaluation of patients with obstructive sleep apnea syndrome. Sleep Breath. 2013;17(1):427-33.

17. Bertolazi AN, Fagondes SC, Hoff LS, Pedro D, Barreto SSM, Johns MW. Portuguese-language version of the Epworth sleepiness scale: validation for use in Brazil. J Bras Pneumol. 2009;35(9):877-83.

18. Arand D, Bonnet M, Hurwitz T, Mitler M, Rosa R, Sangal RB. The clinical use of the MSLT and MWT. Sleep. 2005;28(1):123-44.

19. Gomes AOC, Sampaio-Teixeira ACM, Trindade SHK, Trindade IEK. Áreas seccionais nasais de adultos sadios aferidas por rinometria acústica. Rev Bras Otorrinolaringol. 2008;74(5):746-59.

20. Trindade IEK, Conegliam PCP, Trindade SHK, Dias NH, Sampaio-Teixeira ACLM. Internal nasal dimensions of adults with nasal obstruction. Braz J Otorhinolaryngol. 2013;79(5):575-81.

21. Nigro NCE, Nigro FAJ, Voegels RL, Mion O, Mello Junior JF. Rinometria acústica: correlação anatômica dos dois primeiros entalhes encontrados no rinograma. Braz J Otorhinolaryngol. 2005;71(2):149-54.

22. Pinto JA. Ronco e apnéia do sono. Rio de Janeiro: Revinter. 2000.

23. Chen X, Song J, Chen D, Sun J. Study of acoustic rhinometry and rhinomanometry for severe obstructive sleep apnea-hypopnea syndrome. J Clin Otorhinolaryngol Head Neck Surg. 2011;25(17):780-2.

24. Morris LG, Setlur J, Burschtin OE, Steward DL, Jacobs JB, Lee KC. Acoustic rhinometry predicts tolerance of nasal continuous positive airway pressure: a pilot study. Am J Rhinol. 2006;20(2):133-7.

25. Trindade IEK, Gomes AOC, Fernandes MLF, Trindade SHK, Silva Filho OG. Nasal airway dimensions of children with repaired unilateral cleft lip and palate. Cleft Palate Craniofac J. 2015;52(5):512-6.

26. Sin S, Wootton DM, McDonough JM, Nandalike K, Arens R. Anterior nasal resistance in obese children with obstructive sleep apnea syndrome (OSAS). Laryngoscope. 2014;124(11):2640-4.

27. Liu SA, Su MC, Jiang RS. Nasal patency measured by acoustic rhinometry in East Asian patients with sleep-disordered breathing. Am J Rhinol. 2006;20(3):274-7.

28. Şeneldir L, Koten M, Adali MK, Yaşız R, Taş A, Karasalıhoğlu AR. The evaluation of the outcomes of nasal obstruction surgery by acoustic rhinometry measurements and effects of nasal obstruction on daytime sleepiness. Ear Nose Throat J. 2012;22(1):12-20.

29. Bilston LE, Gandevia SC. Biomechanical properties of the human upper airway and their effect on its behavior during breathing and in obstructive sleep apnea. J Appl Physiol. 2013;116(3):314-24.