Methyltransferase and demethylase profiling studies during brown adipocyte differentiation

Min Jeong Son1,*, Won Kon Kim1,2,*, Kyoungh-jin Oh1, Anna Park1, Da Som Lee1, Baek Soo Han1,2, Sang Chul Lee1,2,* & Kwang-Hee Bae1,2,*
1Metabolic Regulation Research Center, KRIIBB, 2Department of Functional Genomics, University of Science and Technology (UST), Daejeon 34141, Korea

INTRODUCTION

White adipose tissue (WAT) stores extra energy as lipid droplets in white adipocyte cells. In contrast, brown adipose tissue (BAT) dissipates the extra energy as heat by uncoupling the respiratory chain of oxidative phosphorylation in mitochondria.

Although brown adipose tissue is important with regard to energy balance, the molecular mechanism of brown adipocyte differentiation has not been extensively studied. Specifically, regulation factors at the level of protein modification are largely unknown. In this study, we examine the changes in the expression level of enzymes which are involved in protein lysine methylation during brown adipocyte differentiation. Several enzymes, in this case SUV420H2, PRDM9, MLL3 and jHDM1D, were found to be up-regulated. On the other hand, Set7/9 was significantly down-regulated. In the case of SUV420H2, the expression level increased sharply during brown adipocyte differentiation, whereas the expression of SUV420H2 was marginally enhanced during the white adipocyte differentiation. The knock-down of SUV420H2 caused the suppression of brown adipocyte differentiation, as compared to a scrambled control. These results suggest that SUV420H2, a methyltransferase, is involved in brown adipocyte differentiation, and that the methylation of protein lysine is important in brown adipocyte differentiation. [BMB Reports 2016; 49(7): 388-393]

Energy expenditure through non-shivering thermogenesis in BAT serves either to maintain the body’s temperature against cold exposure or to waste food energy, indicating its role in both thermal and energy balancing processes. Recently, a correlation between obesity and the amount of BAT in humans has been reported by many research groups (1-3). Thus, a deeper understanding of the molecular and cellular mechanisms of brown adipocyte differentiation is important in terms of the treatment and prevention of obesity. However, the molecular mechanisms and signal transduction of brown adipocyte differentiation have not been extensively studied, as compared to studies of white adipocyte differentiation (4, 5).

Post-translational modifications (PTMs) of proteins are common and typical regulatory mechanisms by which organisms control key cellular processes, such as the cell cycle, cell survival, and cell proliferation and differentiation (5). Specifically, the lysine methylation of histones is known to be important for the epigenetic regulation of transcription and chromatin in eukaryotes. Recently, it was reported that lysine methylation of non-histone proteins is also very crucial in various key cellular processes (6, 7). Furthermore, the cross-talk between lysine methylation and other PTMs has an effect on the functions of modified proteins (8). However, the relationship between lysine methylation and brown adipocyte differentiation has not been studied extensively (9, 10). The site and degree of lysine methylation is dynamically regulated by a balanced action between lysine methyltransferases (KMTs) and lysine demethylases (KDMs).

SUV420H2 (also known as KMT5C), together with SUV420H1, function as histone methyltransferases specifically trimethylating histone H4 on lysine-20 (H4K20) (11). Histone H4K20 trimethylation induces epigenetic transcriptional repression. In addition, SUV420H2 functions in pericentric heterochromatin regions, and thereby plays a key role in the establishment and maintenance of constitutive heterochromatin in these regions (12). SUV420H-double-null mice are perinatally lethal and are bred to lose nearly all H4K20me3 and H4K20me2 states. Additionally, they show impaired genome instability and programmed DNA rearrangements (13). Recently, it was reported that the loss of H4K20me3 in tumor cells by the decreased expression of a H4K20-specific Methyltransferase and demethylase profiling studies during brown adipocyte differentiation
methyltransferase, SUV420H2, induced the expression of cancer-promoting genes, including tensin-3 (14).

In this study, we undertook profiling studies of KMTs and KDMs during brown adipocyte differentiation. In addition, given the results from a knock-down experiment on SUV420H2, we suggest that SUV420H2 is involved in brown adipocyte differentiation, and that lysine methylation plays an important role in this process as well.

RESULTS AND DISCUSSION

First, immortalized brown preadipocytes were induced into mature brown adipocytes. As shown in Fig. 1A, the immortalized brown preadipocytes were successfully differentiated and stained by Oil-Red O. Additionally, the mRNA levels of several markers, in this case PPARγ, PGC1α, PRDM16 and UCP1, were dramatically increased during brown adipocyte differentiation (Fig. 1B). The protein levels of UCP1 and adipocyte protein 2 (aP2) were also significantly up-regulated.
Methylation enzyme profiling during brown adipogenesis
Min Jeong Son, et al.

(Fig. 1C), indicating that efficient differentiation occurred under our experimental conditions. Next, to identify the KMTs and KDMs involved in brown adipocyte differentiation, we performed a qPCR array experiment of samples obtained from both preadipocytes and mature brown adipocytes, using immortalized brown preadipocyte cells. We analyzed the expression changes of 31 methyltransferases and 18 demethylases. Among these, several enzymes showed differential expression patterns during brown adipocyte differentiation (Fig. 2). In particular, SUV420H2, PRDM9, MLL3, PHF8 and JHDM1D were increased during brown adipocyte differentiation. On the other hand, the Set7/9 was significantly suppressed. In the cases of PRDM9 and JHDM1D, the changes of the expression levels were validated by real-time PCR (Fig. 3A). However, there was no significant detectable change in the case of PHF8 during differentiation. Among the KMTs or KDMs showing differential expression patterns during brown adipocyte differentiation, SUV420H2 showed a dramatic expression change, but there have been no reports about its involvement in adipocyte differentiation or in the insulin signaling pathway. The changes at the level of both the mRNA and the protein were also assessed, showing that the mRNA and protein levels increase sharply during the late stages of brown adipocyte differentiation (Figs. 3B and 3C). This result suggests that the expression of SUV420H2 is important during the late stages of adipogenesis. During white adipocyte differentiation, the expression of SUV420H2 showed a slight increase. However, the degree of the increase is significantly smaller than in the case of brown adipocyte differentiation. Next, we more closely investigated the effect of SUV420H2 on
brown adipocyte differentiation. To clarify the role of SUV420H2 during this process, we infected immortalized brown preadipocytes with shRNA against SUV420H2 using a retroviral expression system (shRNA-SUV420H2-RFP). A control vector containing a scrambled sequence was used as a negative control. The infected preadipocytes were isolated using a FACS sorter. Most of the cells were found to be RFP-positive under a fluorescence microscope (Fig. 4A). The knock-down of the endogenous SUV420H2 was examined by real-time PCR and western blot analysis (Figs. 4B and 4C). As shown, the shSUV420H2-2 construct appears to induce the efficient knock-down of the expression of SUV420H2. Next, preadipocytes infected with shSUV420H2-2 were induced to differentiate into mature brown adipocytes, after which Oil-red O staining was used to measure the degree of lipid accumulation after six days of differentiation (Figs. 4D and 4E). We observed that SUV420H2 methyltransferase may be involved in brown adipocyte differentiation by means of transcriptional activation through the demethylation of repressive methyl markers (H3K9me2 and H3K27me2) (20).

MLL3 is a KMT that methylates the Lys-4 of histone H3 (H3K4). H3K4me is a tag for epigenetic transcriptional activation (21, 22). MLL3, together with MLL2, is a constituent of a large protein complex known as the ASC-2/NCOA6 complex (ASCOM), which has been shown to be a transcriptional modulator of β-globin and estrogen genes. It is also known that ASCOM plays critical roles in adipocyte differentiation as a coactivator of the key adipogenic transcriptional factors PPARγ and C/EBPα (22, 23). In addition, there is a close relationship between H3K4 trimethylation and adipocyte differentiation. Therefore, the increased expression of MLL3 during brown adipocyte differentiation coincides well with the findings of previous reports.

In conclusion, these results of KMTs and KDMs profiling analysis, together with the further characterization of the enzymes showing differential expression patterns, should provide useful information leading to a deeper understanding of brown adipocyte differentiation.

MATERIALS AND METHODS

Differentiation of immortalized brown preadipocytes

The immortalized brown preadipocyte cell line was kindly provided by Prof. Shingo Kajimura (UCSF, USA) (24). Cells were maintained and cultured in a growth medium [high glucose Dulbecco’s Modified Eagle’s Medium (DMEM) containing 1% antibiotic-antimycotic solution and 20% fetal bovine serum; Gibco-Invitrogen] at 37°C in a humidified atmosphere with 5% CO2. The immortalized brown preadipocytes were induced to differentiate into mature brown adipocytes by a previously described method (25, 26).

Oil-Red O staining

Lipid droplets of differentiating or mature brown adipocytes were assessed by Oil-red O staining, as described previously (25, 26). For a quantification analysis, the Oil-red O staining dye was extracted and quantified, as described previously (26-30).
Quantification of KMTs and KDMs during brown adipocyte differentiation

Total RNA was prepared by extraction from cultured cells using the QIAzol lysis reagent (Qiagen, Hilden, Germany), according to the manufacturer’s instructions. First-strand complementary DNA (cDNA) was synthesized using total RNA (2 μg) as a template, random primers (500 ng), and cDNA synthesis kit components (Promega) in a total volume of 25 μl (24, 25). The targeted fragment of cDNA for each of the genes associated with adipocyte differentiation was amplified by PCR with 2 μl of the reverse transcription (RT) product, 10 pmol of each primer, and a PCR premix (Nanohelix, Daejeon, Korea). In three sets of experiments, KMTs or KDMs showing significant changes in all sets were defined as differentially expressed.

Analysis of gene expression

The targeted fragment of cDNA for the brown adipocyte differentiation-associated genes was amplified by Quantitative Real-time RT-PCR (31). Primer used: SUV420h2 (F: 5’-CGT CTTGGAAGAAGATA-3’, R: 5’-CGACTCATGTTGATG AAG-3’), UCPI (F: 5’-CTTGCTCCTACGATGTTG-3’, R: 5’-ACTGCCCAGCTTGTCACCT-3’), PGC1α (F: 5’-CCCTGC CATTGTAAGCC-3’, R: 5’-TGCTGCTGTTCCTGTTTTC-3’), PPARγ (F: 5’-CAAGCATACAAAGTGCCATCA-3’, R: 5’-GA GCTGGGTTTTCAGAATAA-3’), aP2 (F: 5’-TGGAAAGT TBP-3’, R: 5’-CACCACCGTGTGACC AT-3’). Gene expression levels were normalized to TBP (F: 5’-CCCCCTGATCCCTCCATT-39, R: 5’-GAAGCTGCGGT ACAATTCCAG-3’).

SUV420H2 knock-down by shRNA using a retroviral expression system

To knock-down the expression of SUV420H2 in immortalized brown preadipocytes, a retrovirus-mediated infection system was used. The gene encoding shRNA against SUV420H2 was inserted into the multi-cloning site of the pSIREN-RetroQ-DoRed vector (Clontech). Subsequently, retroviruses were produced by transiently co-transfecting GP2-293 cells with a retroviral vector and the VSV-G plasmid. At 48 h after transfection, media containing the retroviruses were collected, filtered with 0.45-μm filters, and used to infect cells in the presence of polybrene (8 μg/ml). Infected preadipocyte cells were selectively enriched by means of fluorescence-activated cell sorting (FACS; FACSAria cell sorter, BD Biosciences), and were then maintained in a growth medium as described previously (25, 26).

ACKNOWLEDGEMENTS

This work was supported by grants from KIRIBB and the Research Program (2012N3A9C7030101, 2013N3A9A7046301, 2015M3A7B6027948, and 2015M3A9D7029882) of the Korea National Research Foundation.

REFERENCES

1. Park A, Kim WK and Bae K-H (2014) Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells 6, 33-42
2. Harms M and Seale P (2013) Brown and beige fat: development, function and therapeutic potential. Nature Med 19, 1252-1263
3. Yao X, Shan S, Zhang Y and Ying H (2011) Recent progress in the study of brown adipose tissue. Cell Biosci 1, 35
4. Bae K-H, Kim WK and Lee SC (2012) Involvement of protein tyrosine phosphatases in adipogenesis: New anti-obesity targets?. BMB Rep 45, 700-706
5. Whetstone JR (2014) Methylation: a multifaceted modification – looking at transcription and beyond. Biochim Biophys Acta 1839, 1351-1352
6. Biggar KK and Li SS (2015) Non-histone protein methylation as a regulator of cellular signalling and function. Nature Rev Mol Cell Biol 16, 5-17
7. Hamamoto R, Saloura V and Nakamura Y (2015) Critical roles of non-histone protein lysine methylation in human tumorigenesis. Nature Rev Cancer 15, 110-124
8. Zhang X, Huang Y and Shi X (2015) Emerging roles of lysine methylation on non-histone proteins. Cell Mol Life Sci 72, 4257-4272
9. Okamura M, Inagaki T, Tanaka T and Sakai J (2010) Role of histone methylation and demethylation in adipogenesis and obesity. Organogenesis 6, 24-32
10. Ohno H, Shinoda K, Ohyama K, Sharp LZ and Kajimura S (2013) EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167
11. Del Rizzo PA and Triewel RC (2014) Molecular basis for substrate recognition by lysine methyltransferases and demethylases. Biochim Biophys Acta 1839, 1404-1415
12. Souza PP, Volkel P, Trinel D et al (2009) The histone methyltransferase SUV420H2 and heterochromatin proteins HP1 interact but show different dynamic behaviours. BMC Cell Biol 20, 41
13. Schotta G, Sengupta R, Kubicek S et al (2008) A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22, 2048-2061
14. Shinchi Y, Hieda M, Nishioka Y et al (2015) EHMT1 controls brown adipocyte cell fate and thermogenesis through the PRDM16 complex. Nature 504, 163-167
15. Tachibana M, Sugimoto K, Fukushima T and Shinkai Y (2001) Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 276, 25309-25317
16. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129, 823-837
17. Huang C, Xiang Y, Wang Y et al (2010) Dual-specificity histone demethylase KIAA1718 (KDM7A) regulates neuronal differentiation through FGFR4. Cell Res 20,
Min Jeong Son, et al.

154-165

18. Tsukada Y, Ishitani T and Nakayama KI (2010) KDM7 is a dual demethylase for histone H3 Lys 9 and Lys 27 and functions in brain development. Genes Dev 24, 432-437
19. Osawa T, Muramatsu M, Wang F et al. (2011) Increased expression of histone demethylase JHDM1D under nutrient starvation suppresses tumor growth via down-regulating angiogenesis. Proc Natl Acad Sci U S A 108, 20725-20729
20. Yokoyama A, Okuno Y, Chikanishi T et al. (2010) KIAA1718 is a histone demethylase that erases repressive histone methyl marks. Gene Cells 15, 867-873
21. Hess JL (2004) Mechanisms of transformation by MLL. Crit Rev Eukaryot Gene Exp. 14, 235-254
22. Dreijerink KM, Varier RA, van Beekum O et al. (2009) The multiple endocrine neoplasia type 1 (MEN1) tumor suppressor regulates peroxisome proliferator-activated receptor gamma-dependent adipocyte differentiation. Mol Cell Biol 29, 5060-5069
23. Lee J, Saha PK, Yang Q-H et al. (2008) Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci 105, 19229-19234
24. Seale P, Kajimura S, Yang W et al. (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6, 38-54
25. Kim WK, Oh K-J, Choi H-R et al. (2015) MAP kinase phosphatase 3 inhibits brown adipocyte differentiation via regulation of ERK phosphorylation. Mol Cell Endocrinol 416, 70-76
26. Kamal AH, Kim WK, Cho K et al. (2013) Investigation of adipocyte proteome during the differentiation of brown preadipocytes. J Proteomics 94, 327-336
27. Lee DS, Choi H, Han BS et al. (2016) c-Jun regulates adipocyte differentiation via the KLF15-mediated mode. Biochem Biophys Res Comm 469, 552-558
28. Choi H-R, Kim WK, Park A et al. (2013) Protein tyrosine phosphatase profiling studies during brown adipogenic differentiation of mouse primary brown preadipocytes. BMB Rep 46, 539-543
29. Kim EY, Kim JW, Kim WK et al. (2014) Selection of aptamers for mature white adipocytes by Cell SELEX using flow cytometry. PLoS ONE 9, e97747
30. Kim HJ, Yoon BK, Park H et al. (2016) Caffeine inhibits adipogenesis through modulation of mitotic clonal expansion and the AKT/GSK3 pathway in 3T3-L1 adipocytes. BMB Rep 49, 111-115
31. Hu L, Su P, Li R et al. (2015) Knockdown of microtubule actin crosslinking factor 1 inhibits cell proliferation in MC3T3-E1 osteoblastic cells. BMB Rep 48, 583-588