SYMmetric F-CONJECTURE FOR \(g \leq 35 \)

MAKSYM FEDORCHUK

Abstract. We prove the symmetric F-conjecture describing the ample cone of \(\overline{M}_{0,g}/S_g \) and \(\overline{M}_g \) for \(g \leq 35 \).

1. Introduction

A divisor on the moduli space \(\overline{M}_{g,n} \) of stable \(n \)-pointed genus \(g \) curves is \(F \)-nef if it pairs with all 1-dimensional boundary strata (\(F \)-curves) non-negatively. The (symmetric) F-conjecture says that every \((S_n \text{-invariant}) \) \(F \)-nef divisor is nef \([GKM02, \text{Conjecture (0.2)}]\). The strong F-conjecture (or, Fulton’s conjecture) for \(\overline{M}_{0,n} \) says that every \(F \)-nef divisor is equivalent to an effective \(\mathbb{Q} \)-linear combination of the standard boundary divisors; it is known up to \(n \leq 7 \) \([Lar12]\) and false for \(n \geq 12 \) \([Pix13]\).

A breakthrough Bridge Theorem of Gibney-Keel-Morrison \([GKM02, \text{Theorem (0.3)}]\) reduces the F-conjecture for \(\overline{M}_g \) to the symmetric F-conjecture for \(\overline{M}_{0,g} \). In this note, we prove the symmetric F-conjecture for \(\overline{M}_{0,g} \) for \(g \leq 35 \) in all characteristics. Previously, the symmetric F-conjecture was proved for \(g \leq 24 \) by Gibney \([Gib09]\). A technical statement of the main result is in Theorem 1, with the main ingredient of the proof being Lemma 4, which is a special case of our earlier \([Fed14, \text{Prop. 6.0.6}]\). However, no familiarity with loc.cit. is assumed.

2. Main result

For an integer partition \(\lambda \vdash n \) of length \(k \), there is a closed immersion \(b_{\lambda}: \overline{M}_{0,k} \to \overline{M}_{0,n} \) where \(b_{\lambda}(C, \{p_i\}_{i=1}^k) \) is obtained from \(C \) by attaching a fixed \((\lambda_i + 1) \)-pointed (maximally degenerate) rational curve to \(p_i \), and stabilizing. An \(S_n \text{-invariant} \) line bundle \(L \in \text{Pic}(\overline{M}_{0,n})^{S_n} \) is called stratally effective boundary if the pullback \(b_{\lambda}^*L \) is an effective boundary (that is, an effective \(\mathbb{Q} \)-linear combination of boundary divisors) on \(\overline{M}_{0,|\lambda|} \) for all partitions \(\lambda \). By a standard argument \([Mor07, \text{Effective Dichotomy, p.39}]\), a stratally effective boundary divisor is nef. The main result of this note is:

Theorem 1. An \(F \)-nef \(S_n \text{-invariant} \) line bundle \(L \) on \(\overline{M}_{0,n} \) is stratally effective boundary if \(b_{\lambda}^*L \) is an effective boundary for all strict partitions \(\lambda \) of \(n \).

Since \(n \) has a strict partition of size > \(k \) only if \(n \geq (k+1)(k+2)/2 \), we obtain:

Corollary 2. Suppose the strong F-conjecture holds for \(\overline{M}_{0,m} \) for all \(m \leq k \). Then the symmetric F-conjecture is true for \(\overline{M}_{0,n} \) for all \(n \leq (k+1)(k+2)/2 - 1 \).

In particular, since the strong F-conjecture holds for \(\overline{M}_{0,m} \) for all \(m \leq 7 \), by \([Lar12]\) for \(m = 7 \) and \([FG03]\) for \(m \leq 6 \), we conclude that:

\[\text{Date: July 28, 2020.} \]
Corollary 3. Suppose $g \leq 35$. The symmetric F-conjecture holds for $\overline{M}_{0,g}$ in any characteristic, and for \overline{M}_g in any characteristic except 2.

The characteristic restriction in the second part is from [GKM02, Theorem (0.3)].

3. Proof of Theorem 1

Theorem 1 follows from a special case of [Fed14, Prop. 6.0.6], which we now present:

Lemma 4 (Ascent of effectivity). Let L be an F-nef S_n-invariant line bundle on $\overline{M}_{0,n}$. Suppose $\lambda \vdash n$ is a non-strict partition of size k, say, with $\lambda_{k-1} = \lambda_k$. Set $\mu := (\lambda_1, \ldots, \lambda_{k-2}, 2\lambda_{k-1}) \vdash n$. If $b_\mu L$ is an effective boundary on $\overline{M}_{0,k-1}$, then $b_\lambda L$ is an effective boundary on $\overline{M}_{0,k}$.

Preliminaries: Every divisor D on $\overline{M}_{0,m}$ can be written as

$$D = -\sum_{I \sqcup J = [m]} b_{I,J} \Delta_{I,J},$$

where the sum is taken over all 2-part partitions of $[m] := \{1, \ldots, m\}$. Such a partition is proper if $|I|, |J| \geq 2$. Proper partitions enumerate the boundary divisors, and the non-proper 2-part partitions of $[m]$ correspond to the cotangent line bundles via a standard convention that $\Delta_{\{i\},[m]\setminus\{i\}} := -\psi_i$ for $i = 1, \ldots, m$.

The ambiguity in writing D as in (5) is completely described by Keel’s relations in $\text{Pic}(\overline{M}_{0,m})$ (see [AC98, Theorem 2.2(d)] and [Kee92]). We use the following formulation:

Lemma 6 (Effective Boundary Lemma [Fed14, Lemma 2.3.3]). We have

$$-\sum_{I \sqcup J = [m]} b_{I,J} \Delta_{I,J} = \sum_{I \sqcup J = [m]} c_{I,J} \Delta_{I,J} \in \text{Pic}(\overline{M}_{0,m}) \otimes \mathbb{Q},$$

if and only if there is a function $w : \text{Sym}^2 \{1, \ldots, m\} \to \mathbb{Q}$ such that for every 2-part partition $I \sqcup J = [m]$, we have:

$$\sum_{i \in I, j \in J} w(i,j) = c_{I,J} + b_{I,J}.$$

In particular, a divisor $D = -\sum_{I \sqcup J = [m]} b_{I,J} \Delta_{I,J}$ is an effective boundary on $\overline{M}_{0,m}$ if and only if there exists a function w such that

$$\sum_{i \in I, j \in J} w(i,j) \geq b_{I,J},$$

for all partitions $I \sqcup J = [m]$, with equality holding for all non-proper partitions.

Proof of Lemma 4. Let $f : \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}$ be a function such that

$$L = -\sum_{I \sqcup J = [n]} f(|I|) \Delta_{I,J},$$

where the sum is taken over all 2-part partitions of $[n]$. If $L = \sum_{i=2}^{[n/2]} c_i \Delta_i$ in the standard basis of $\text{Pic}(\overline{M}_{0,n})^{S_n}$, then we can take $f(i) = f(n-i) = -c_i$ for all $i = 2, \ldots, [n/2]$, and $f(0) = f(1) = f(n-1) = 0.$
The function f is symmetric, that is $f(a) = f(n - a)$ for all $a \in \mathbb{Z}/n\mathbb{Z}$. By F-nefness of L, for every 4-part integer partition $n = a + b + c + d$, corresponding to the F-curve $F(a, b, c, d) \subset \overline{M}_{0,n}/S_n$, we have an F-inequality:

$$(8) \quad L \cdot F(a, b, c, d) = f(a) + f(b) + f(c) + f(d) - f(a + b) - f(b + c) - f(a + c) \geq 0.$$

By the assumption,

$$b^*_\mu L = \sum_{I \sqcup J = [k - 1]} f(\sum_{t \in I} \Delta_{I,J})$$

is an effective boundary on $\overline{M}_{0,k-1}$. By Lemma 6, there is a function $\bar{w}: \text{Sym}^2[k - 1] \to \mathbb{Q}$ such that for every 2-part partition $I \sqcup J = [k - 1]$, we have:

$$(9) \quad \sum_{i \in I, j \in J} \bar{w}(i,j) \geq f(\sum_{t \in I} \mu_t),$$

with equality holding for all non-proper partitions.

Define $w: \text{Sym}^2[k] \to \mathbb{Q}$ by

$$w(i,j) = \begin{cases} \bar{w}(i,j) & \text{if } i, j \in \{1, \ldots, k - 2\} \\ \bar{w}(i,j)/2 & \text{if } i \in \{k - 1, k\} \text{ and } j \notin \{k - 1, k\} \end{cases}$$

$$w(k - 1, k) = f(\lambda_k) - \frac{1}{2} f(2\lambda_k) = f(\lambda_k) - \frac{1}{2} f(\mu_{k-1}).$$

Since

$$b^*_\lambda L = \sum_{I \sqcup J = [k]} f(\sum_{t \in I} \lambda_t) \Delta_{I,J},$$

Lemma 6 implies that $b^*_\lambda L$ is an effective boundary on $\overline{M}_{0,k}$ once we establish the following:

Claim 10. For all 2-part partitions $I \sqcup J = [k]$, we have

$$(11) \quad \sum_{i \in I, j \in J} w(i,j) \geq f(\sum_{t \in I} \lambda_t),$$

with equality holding for all non-proper partitions.

We consider three cases:

Case 1: If $k - 1$ and k belong to the same part, say J, then

$$\sum_{i \in I, j \in J} w(i,j) = \sum_{i \in I, j \in \{1, \ldots, k - 1\} \setminus I} \bar{w}(i,j) \geq f(\sum_{t \in I} \mu_t) = f(\sum_{t \in I} \lambda_t),$$

where we used Inequality (9). In particular, the equality holds when I is a singleton.

Case 2: If $J = \{k - 1\}$, or $J = \{k\}$,

$$\sum_{i \in I, j \in J} w(i,j) = w(k - 1, k) + \frac{1}{2} \sum_{j \in \{1, \ldots, k - 2\}} \bar{w}(j,k-1) = f(\lambda_k) - \frac{1}{2} f(2\lambda_k) + \frac{1}{2} f(\mu_{k-1}) = f(\lambda_k).$$
Case 3: Suppose $I = I' \cup \{k-1\}$ and $J = J' \cup \{k\}$, where $I' \sqcup J' = \{1, \ldots, k-2\}$. Then

$$
\sum_{i \in I, j \in J} w(i, j) = f(\lambda_k) - \frac{1}{2} f(2\lambda_k) + \frac{1}{2} \sum_{i \in I', j \in J \cup \{k-1\}} \bar{w}(i, j) + \frac{1}{2} \sum_{i \in I' \cup \{k-1\}, j \in J'} \bar{w}(i, j)
$$

$$\geq f(\lambda_k) - \frac{1}{2} f(2\lambda_k) + \frac{1}{2} f(\sum_{t \in I'} \lambda_t) + \frac{1}{2} f(\sum_{t \in J'} \lambda_t),$$

where we used Inequality (9).

Denoting $A := \sum_{t \in I'} \lambda_t$, $B := \sum_{t \in J'} \lambda_t$, and $a := \lambda_{k-1} = \lambda_k$, we have $A + B + 2a = n$, and (12) translates into

$$
\sum_{i \in I, j \in J} w(i, j) \geq f(a) - \frac{1}{2} f(2a) + \frac{1}{2} f(A) + \frac{1}{2} f(B).
$$

Applying the F-inequality (8):

$$
L \cdot F(A, B, a, a) = f(A) + f(B) + 2f(a) - 2f(A + a) - f(2a) \geq 0,
$$

we conclude that

$$
\sum_{i \in I, j \in J} w(i, j) \geq f(A + a) = f\left(\sum_{t \in I} \lambda_t\right),
$$

as desired. \(\square\)

References

[AC98] Enrico Arbarello and Maurizio Cornalba. Calculating cohomology groups of moduli spaces of curves via algebraic geometry. *Inst. Hautes Études Sci. Publ. Math.*, (88):97–127 (1999), 1998.

[Fed14] Maksym Fedorchuk. Semiclaimeness criteria for divisors on $\overline{M}_{0,n}$, 2014. Under review, arXiv:1407.7839.

[FG03] Gavril Farkas and Angela Gibney. The Mori cones of moduli spaces of pointed curves of small genus. *Trans. Amer. Math. Soc.*, 355(3):1183–1199 (electronic), 2003.

[Gib09] Angela Gibney. Numerical criteria for divisors on \overline{M}_g to be ample. *Compos. Math.*, 145(5):1227–1248, 2009.

[GKM02] Angela Gibney, Sean Keel, and Ian Morrison. Towards the ample cone of $\overline{M}_{g,n}$. *J. Amer. Math. Soc.*, 15(2):273–294 (electronic), 2002.

[Kee92] Sean Keel. Intersection theory of moduli space of stable n-pointed curves of genus zero. *Trans. Amer. Math. Soc.*, 330(2):545–574, 1992.

[Lar12] Paul L. Larsen. Fulton's conjecture for $\overline{M}_{0,7}$. *J. Lond. Math. Soc. (2)*, 85(1):1–21, 2012.

[Mor07] Ian Morrison. Mori theory of moduli spaces of stable curves, 2007. Projective Press, New York.

[Pix13] Aaron Pixton. A nonboundary nef divisor on $\overline{M}_{0,12}$. *Geom. Topol.*, 17(3):1317–1324, 2013.

Department of Mathematics, Boston College, 140 Commonwealth Ave, Chestnut Hill, MA 02467, USA maksym.fedorchuk@bc.edu