Caspase-1 Activation via Rho GTPases: A Common Theme in Mucosal Infections?

Andreas J. Müller, Claudia Hoffmann, Wolf-Dietrich Hardt*

Institute of Microbiology, D-BIOL, ETH Zürich, Zürich, Switzerland

Caspase-1 Activation: More Common among Enteropathogens than We Thought?

Caspase-1 is an important converging point for danger signals initiating inflammation and defense. Recent work suggests that RhoGTPase activation and/or cytoskeletal disturbance may represent a novel pathway eliciting caspase-1 responses that are subverted by several enteropathogenic bacteria. The enteropathogen Salmonella Typhimurium employs the type III effector protein SopE, an activator (guanine nucleotide exchange factor [GEF]) for RhoGTPases, to elicit caspase-1 maturation and release of the pro-inflammatory cytokines IL-1β and IL-18 (Figure 1A). Thus, caspase-1 activation is a central regulator of the innate immune defense. Recent work has indicated that the activation of RhoGTPases, in particular Rac1 and possibly Cdc42, might represent a novel type of signaling input that can activate caspase-1 signaling and which may represent a point of attack for bacterial virulence factors (Figure 1A, right, [6–9]).

SopE, a Potent Activator of Host Cellular Rho GTPases

SopE from the enteropathogenic bacteria Salmonella enterica subspecies I serovar Typhimurium (S. Typhimurium) is a well-known functional mimic of mammalian GEFs [9]. SopE is delivered into host cells via the bacterial type III secretion system TTSS-1, binds to host cellular RhoGTPases, including Rac1 and Cdc42, and activates them by catalyzing rapid G-nucleotide exchange [9,10].

The activity of cellular RhoGTPases depends on guanine nucleotide binding and is regulated by various cellular proteins. Rho-specific cellular GEFs stimulate the nucleotide exchange on RhoGTPases. Upon release of GDP and subsequent binding of GTP, the RhoGTPase switches to its active conformation and is now able to signal to downstream effectors [11]. By mimicking the function of endogenous GEFs, SopE disturbs the RhoGTPase activation cycle and initiates signaling downstream of Rac1 and Cdc42, respectively [9].

SopE is the prototype of a family of bacterial RhoGTPase GEFs that also includes SopE2 and BopE from Salmonella and Burkholderia spp. (Table 1, Figure 2A). In spite of the functional similarity, SopE-like GEFs have an entirely different three-dimensional structure than the Dbl-like mammalian GEFs for RhoGTPases [12,13]. SopE is composed of two three-helix bundles and a small GA-rich loop in the catalytic center. Nonetheless, several amino acid contacts with the RhoGTPase and the basic catalytic mechanism are shared with Dbl-like mammalian GEFs [12,13]. Moreover, both GEF families bind to the same surface of the RhoGTPase, i.e., the “switch 1” and “switch 2” regions that facilitate G-nucleotide binding [12,14]. Thus, SopE-like GEFs of pathogenic bacteria are “functional mimics” of host cellular Dbl-like GEFs.

Caspase-1 Activation by SopE

SopE is one of the key TTSS-1 effectors driving host cell invasion and the induction of mucosal inflammation by S. Typhimurium [9,15–17]. SopE was shown to induce a number of host cell responses, including the activation of JNK and PAK signaling and prominent actin cytoskeleton rearrangements [9,18]. Therefore, it has been assumed that SopE- and RhoGTPase-mediated tissue

Mucosal surfaces are constantly exposed to a large number of commensal, non-pathogenic microorganisms towards which the gut immune system remains non-responsive [1]. In the case of an acute infection, this homeostasis is overruled and an inflammatory response is initiated. Detection of pathogen-derived molecules, bacterial growth, or other “danger signals” indicating infection or trauma occurs via “pattern recognition receptors” and other detectors on the surface and in the cytosol of mucosal cells and most other cells of the body [2,3]. This detection process induces the production of pro-inflammatory cytokines, which initiate the innate immune defense. Caspase-1 represents an important converging point for processing danger signals: physical stress, pore-forming toxins, extracellular ATP, and the presence of conserved bacterial products (e.g., flagellin or peptidoglycan) in the cytosol are detected via danger-sensing molecules and adaptors [4]. These bind to caspase-1 and lead to the formation of multiprotein complexes called inflammasomes [5]. Thereby, caspase-1 is activated and catalyzes the maturation and release of pro-inflammatory cytokines like interleukin (IL)-1β and IL-18 (Figure 1A). Thus, caspase-1 activation is a point of attack for bacterial virulence factors (Figure 1A, right, [6–9]).
invasion and/or JNK or PAK activation was sufficient to explain how SopE contributes to gut inflammation. However, recent work has identified a different biological mechanism: SopE-mediated RhoGTPase activation was found to drive not only tissue invasion, but also caspase-1 activation and the release of IL-1β (Figure 1A, right [8]). Caspase-1 was also activated in cells over-expressing constitutively active Rac1, constitutively active Cdc42, or an active mutant of the Dbl-like Rac1-GEF Tiam1 [6,8]. Moreover, knock-out mice lacking caspase-1/IL-1β/IL-18 responses still allowed SopE-mediated tissue invasion, but failed to mount mucosal inflammation. In bone marrow chimeraic mice, caspase-1 was required primarily within stromal cells of the gut mucosa, most likely enterocytes [8]. Together, these data indicated that GEF-induced RhoGTPase activation in the mucosal epithelium can elicit caspase-1/IL-1β/IL-18-dependent gut inflammation.

A New Family of Bacterial GEFs

Recently, a second family of bacterial type III effector proteins, the WxxxE family, was found to possess GEF activity for host cellular RhoGTPases [19]. The WxxxE family includes Map from enteropathogenic E. coli (EPEC), IpgB1 and IpgB2 from Shigella, and SifA and SifB from Salmonella spp. These proteins harbor a unique flexible loop in the catalytic site and an invariant WxxxE motif (Figure 2A). Although phylogenetically unrelated to SopE-like GEFs, the WxxxE family GEFs display a protein fold that is highly similar to that of SopE/E2 and employ the same catalytic mechanism (Figure 2B). Several WxxxE family members, e.g., Map, IpgB1, and IpgB2, have been shown to induce RhoGTPase activity [19]. Interestingly, they differ in their substrate specificities (Table 1, [19,20]). For example, in vivo, IpgB1 activates Rac1 and Cdc42 [21], whereas IpgB2 preferentially activates RhoA, but also Cdc42 and Rac1 in vitro [19]. This observation suggests that, depending on the preferred target, at least a subset of WxxxE GEFs might serve similar functions as SopE in pro-inflammatory signaling.

Caspase-1: An Achilles’ Heel Subverted by Mucosal Pathogens?

The vast majority of SopE or WxxxE family type III effector proteins have been detected in enteropathogenic bacteria (Table 1). In the case of SopE, GEF-induced RhoGTPase activation was shown to elicit caspase-1 responses and the release of caspase-1-dependent cytokines, i.e., IL-1β and IL-18, thus leading to gut inflammation [8]. Based on these data, we hypothesize that the WxxxE family members found in enteropathogenic E. coli and Shigella spp. may have the same biological function, i.e., activating caspase-1 in the host’s intestine. Among these effector proteins, GEFs with specificity for Rac1 and Cdc42 are especially good candidates to activate caspase-1, since

Figure 1. Danger-associated signaling via the inflammasome. (A) Cytosolic microbe-associated molecular patterns and danger signals are detected and integrated by an array of inflammasome components converging at the activation of caspase-1 [5,38–40]. In addition to the already known stimuli for inflammasome activation (left, red), a pathway involving S. Typhimurium SopE and Rho GTPases (right, blue) has been described recently [8]. The effector proteins injected can act both directly on the actin polymerization as well as via the activation of Rho GTPases [41–43]. (C) Comparison of pathologies in different animal models of Salmonella, Shigella, and Citrobacter/EPEC infection. The region of the strongest pathology and the most important pathological changes in each model is indicated in red. Representative images for the macroscopic and histological changes in the respective animal models can be found in references [44–48]. doi:10.1371/journal.ppat.1000795.g001
activated Rac1 (and to a lesser extent Cdc42) has been shown to activate caspase-1 [6]. Thus, GEF-mediated caspase-1 activation might be a common strategy of enteropathogenic bacteria for enhancing mucosal inflammation (Figure 1B). This is of special significance in light of earlier work on Salmonella and Citrobacter infection models showing that enteropathogenic bacteria can benefit from eliciting gut inflammation: although some aspects of the pathology differ between the model systems (e.g., proximal/distal location of the most severe lesions in the large intestine Figure 1C), the host’s inflammatory response is thought to suppress growth of the competing commensal microflora in either case [22–24]. Therefore, it is tempting to speculate that virulence factors with Rac1- and/or Cdc42-specific GEF activity might allow enteropathogens to subvert Rho GTPase-mediated caspase-1 activation in order to gain an edge against the commensal microflora.

Analysis of Caspase-1 Activation by Bacterial Effector Proteins—A Tricky Task

In principle, knockout mice deficient in caspase-1, IL-18, or IL-1 signaling allow the analysis of caspase-1 activation by candidate virulence factors. However, this analysis is tricky for two different reasons.

First, caspase-1 activation and IL-1/IL-18 signaling represent an important arm of the innate immune defense (Figure 1A) which helps to clear pathogens and limits further pathogen-inflicted damage [25–29]. Therefore, caspase-1, IL-1, or IL-18 deficiency tends to increase pathogen loads in infected tissues, can trigger additional (caspase-1/IL-1/IL-18 independent) pro-inflammatory pathways and amplify disease symptoms. This phenotype has been observed in Shigella and Citrobacter infection experiments and may have masked WxxxE protein-induced effects [23,30].

Second, there is appreciable functional overlap between the Shigella, Salmonella, and EPEC virulence factors inducing mucosal inflammation. Not all of them require caspase-1 [8,31]. Therefore, the contribution of caspase-1-dependent virulence factors may be “masked” in wild-type infections, as was shown to be the case in Salmonella infections [8,28]. The investigation of virulence factors activating caspase-1 thus requires knowledge about functionally overlapping pro-inflammatory mechanisms. These would have to be disrupted in order to unequivocally identify (or refute) a caspase-1-mediated virulence mechanism.

Thus, in the case of pathogens employing SopE or WxxxE family effector proteins, caspase-1, IL-1, or IL-18 deficiency...
should have two opposing effects: reducing the responsiveness towards the caspase-1-activating virulence factor versus increasing pathogen loads (and possibly damage) in the host's tissue. Therefore, the experiments need to be designed carefully in order to discern these opposing effects. For example, SopE-mediated caspase-1 activation was clearly observed in *S. Typhimurium* strains lacking other virulence factors, but it was masked in the context of the wild-type pathogen [8,28].

A similar balance between caspase-1-mediated innate defense and pathogen-induced pathology may have prohibited unequivocal detection of WxxxE protein-mediated caspase-1 activation in the cases of *Shigella* spp., *Citrobacter* spp., or entero-pathogenic *E. coli* [30]. Pathogen mutants stripped of all but the caspase-1-dependent virulence factor protein, effector protein expression in a *Salmonella* mutant, or tissue culture transfection experiments might help to circumvent this technical problem.

The RhoGTPase–Caspase-1 Connection: What’s in Between?

In HEK293 cells, Rac1 and Cdc42 activation is sufficient for activating caspase-1 [6,8]. However, it has remained unclear whether a specific downstream effector protein of Rac1 and/or Cdc42 or disturbance of the actin cytoskeleton inflicted by the activated RhoGTPases transmits the danger signal towards caspase-1. The Rac1 effector kinase LIMK was suggested to be involved in signaling...
to caspase-1 [6], and direct interaction of caspase-1 with and phosphorylation by PAK-1 was shown [32]. Other reports support a role for actin and actin-binding proteins. The gelolin family protein flightless-I binds and inhibits caspase-1, thereby possibly linking caspase-1 activity to the actin cytoskeleton [33]. In macrophages, inflammasome components might be sequestered by perinuclear F-actin structures that form upon certain inhibitory stimuli [34]. The molecular links between Rac1/Cdc42 and inflammasome activation remain to be elucidated.

An Evolutionary Role for Linking Actin Polymerization to Caspase-1 Activation

The detection of microbe-associated molecular patterns alone is not sufficient to induce an inflammatory response in the gut mucosa. Additional signals characteristic of pathogen growth within a tissue or other trauma are thought to be required before the innate immune system responds. A prominent example of such a two-layered control mechanism is the pro-inflammatory cytokine IL-1β. Pro-IL-1β expression is induced upon TLR4 stimulation by bacterial lipopolysaccharide (LPS). However, the pro-IL-1β has to be cleaved and activated by caspase-1 before it is secreted [35]. Caspase-1 in turn is activated in response to numerous danger signals [36]. Manipulation or disruption of the cell cytoskeleton has been proposed recently as a “pattern of pathogenicity” signal that feeds into caspase-1 activation and pro-IL-1β processing [37]. Based on this, it is tempting to speculate that Rac1/Cdc42 activation or actin destabilization itself might represent a pathogen-associated danger signal sensed by the innate immune system. If this held true, the SopE and WxxxE families of type III effector proteins might subvert a pathogen-searching mechanism for eliciting mucosal inflammation. With knockout mice deficient in caspase-1 and several inflammasome components and a growing number of useful infection models at hand, investigating the involvement of WxxxE GEFs in caspase-1 activation will be an interesting task for future research.

Accession Numbers

The UniProt [http://www.uniprot.org/uniprot/] accession numbers for the protein sequences used for alignment in Figure 2A are O52623 (S. enterica sv. Typhimurium SopE), Q7CDQ4 (S. enterica sv. Typhimurium SopE2), Q63K41 (B. pseudomallei BopE), Q6URF9 (E. coli EspM2), B3YYM1 (E. coli EspM3), B1GVN9 (C. rodentium EspM3), Q8VQ34 (E. coli EspM1), Q9AWJ7 (S. flexneri IpgB2), B9WN85 (E. coli EspI), Q7DB76 (E. coli Map), Q6XVY7 (S. flexneri IpgB1), and Q56061 (S. enterica sv. Typhimurium SifA).

The PDB [http://www.rcsb.org/pdb/] accession codes for the structures shown in Figure 2B are 1g2 for SopE [12], 3gc for Map [19], and 1hc for Tiam1 [14].

References

1. Lotz M, Gaulle D, Walther S, Menard S, Bogdan C, et al. (2006) Postnatal acquisition of endotoxin tolerance in intestinal epithelial cells. J Exp Med 203: 973–984.
2. Kawasaki T, Akira S (2006) TLR signaling. Cell Death Differ 13: 816–825.
3. Shaw MH, Reimer T, Kim YG, Nunez G (2008) NOD-like receptors (NLRs): bona fide intracellular microbial sensors. Curr Opin Immunol 20: 377–382.
4. Benko S, Phlpoltip D, Girardin SE (2006) The microbial and danger signals that activate Nod-like receptors. Cytokine 43: 368–375.
5. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10: 241–247.
6. Schotte P, Denecker G, Van Den Broeke A, Sasakawa C (2005) IpgB1 is a novel Shigella flexneri-induced inflammatory cytokine. J Biol Chem 280: 25149–25154.
7. Galle M, Schotte P, Hageman M, Wallaert A, Yang HJ, et al. (2008) The Pseudomonas aeruginosa Type III secretion system plays a dual role in the regulation of caspase-1-mediated IL-1βa maturation. J Cell Mol Med 12: 1767–1776.
8. Muller AJ, Hoffmann C, Galle M, Van Den Broeke A, Heikevalder M, et al. (2009) The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. Cell Host Microbe 6: 125–136.
9. Harth WD, Chen LM, Bagrodia S, Cerione RA, Galan JE (1998) S. typhimurium encodes a secreted protein of Salmonella dublin that induces the accumulation of actin filaments in epithelial cells. J Biol Chem 273: 25134–25142.
10. Worthylake DK, Rossman KL, Sondek J (2000) Guanosine nucleotide exchange on Cdc42. J Biol Chem 275: 30501–30509.
11. Hall A (1994) Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 10: 31–54.
12. Bachwald G, Friebl A, Galan JE, Harth WD, Wittinghofer A, et al. (2002) Structural basis for the reversible activation of a Rho protein by the bacterial toxin SopE. EMBO J 21: 3286–3295.
13. Schlumberger MC, Friebl A, Bachwald G, Schaffrath K, Wittinghofer A, et al. (2003) Amino acids of the bacterial toxin SopE involved in G-nucleotide exchange on Cdc42. J Biol Chem 278: 27149–27159.
14. Wittinghofer A, et al. (2002) Structural crystal of Rac1 in complex with the guanine nucleotide exchange region of Tiam1. Nature 401: 682–688.
15. Wood MW, Rosqvist J, Mullan PB, Edwards MH, Galayov EE (1996) SopE, a secreted protein of Salmonella dublin, is translocated into the target eukaryotic cell via a sip-dependent mechanism and promotes bacterial entry. Mol Microbiol 22: 327–330.
16. Mirold S, Elbarb K, Weissmuller A, Prager R, Tischke H, et al. (2001) Salmonella host cell invasion emerged by acquisition of a mosaic of separate genetic elements, including Salmonella Pathogenicity island 1 (SPI1), SPI3, and sopE2. J Bacteriol 183: 2548–2558.
17. Zhang S, Santos RL, Tiols RM, Stender S, Harth WD, et al. (2002) The Salmonella enterica Serotype Typhimurium Effector Proteins SipA, SopA, SopB, SopD, and SopE2 Act in Concert To Induce Diarrhea in Calves. Infect Immun 70: 1407–1412.
18. Boisvert R, Robbiana R, Walker AW, Westendorf AM, Barthel M, et al. (2007) Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota. PLoS Biol 5: e244. doi:10.1371/journal.pbio.0050244.
19. Almeida KL, Barriere M, Wickham ME, Sekirov I, Chanman OL, et al. (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2: 119–129.
20. Raffatellu M, George MD, Akhyana Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocas-m-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–486.
21. Sansonetti PJ, Phlipoltip A, Arondel J, Thirumalai K, Barriere S, et al. (2006) Caspase-1 activation of IL-1βa and IL-1β are essential for Shigella flexneri-induced inflammation. Immunity 12: 581–590.
22. Tsuji NM, Tsuutsui H, Seki E, Kuida K, Okamuras H, et al. (2004) Roles of caspase-1 in Listeria infection in mice. Int Immunol 16: 335–343.
23. Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Franciscella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202: 1043–1049.
24. Raffatellu M, George MD, Akhyana Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocas-m-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–486.
25. Almeida KL, Barriere M, Wickham ME, Sekirov I, Chanman OL, et al. (2007) Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe 2: 119–129.
26. Raffatellu M, George MD, Akhyana Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocas-m-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–486.
27. Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Franciscella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202: 1043–1049.
28. Raffatellu M, George MD, Akhyana Y, Hornsby MJ, Nuccio SP, et al. (2009) Lipocas-m-2 resistance confers an advantage to Salmonella enterica serotype Typhimurium for growth and survival in the inflamed intestine. Cell Host Microbe 5: 476–486.
Citrobacter rodentium. Infect Immun 77: 604–614.
31. Hapfelmeier S, Ehbar K, Stecher B, Barthel M, Kremer M, et al. (2004) Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopP, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infect Immun 72: 795–809.
32. Basak C, Pathak SK, Bhattacharyya A, Mandal D, Pathak S, et al. (2005) NF-kappaB- and C/EBP-beta-driven interleukin-1beta gene expression and PAK1-mediated caspase-1 activation play essential roles in interleukin-1beta release from Helicobacter pylori lipopolysaccharide-stimulated macrophages. J Biol Chem 280: 4279–4288.
33. Li J, Yin HL, Yuan J (2008) Flightless-I regulates proinflammatory caspases by selectively modulating intracellular localization and caspase activity. J Cell Biol 181: 321–333.
34. Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
35. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
36. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
37. Vance RE, Isberg RR, Portnoy DA (2009) The inflammasome: a danger sensing complex triggering innate immunity. Curr Opin Immunol 21: 613–622.
38. Vanc EK, Isberg RR, Portnoy DA (2009) Patterns of pathogenesis: discrimination of pathogenic and nonpathogenic microbes by the innate immune system. Cell Host Microbe 6: 10–21.
39. Guroc I, Abrami L, Girardin S, Tschopp J, van der Goot FG (2004) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126: 1135–1145.
40. Sutterwala FS, Mijares LA, Li L, Ogura Y, Kanzawa R, et al. (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRc4 inflammasome. J Exp Med 204: 3235–3245.
41. Mariathasan S, Monack DM (2007) Inflammasome adaptors and sensors: intracellular regulators of infection and inflammation. Nat Rev Immunol 7: 31–40.
42. Mairath BK, Garg D, Kapoor M, et al. (2009) Structure and function of Salmonella SopE2 from Salmonella typhimurium, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. Mol Microbiol 73: 1206–1219.
43. Hapfelmeier S, Stecher B, Barthel M, Kremer M, Monack DM, et al. (2005) Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopP, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infect Immun 72: 795–809.
44. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
45. Hapfelmeier S, Stecher B, Barthel M, Kremer M, Monack DM, et al. (2005) Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopP, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infect Immun 72: 795–809.
46. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
47. Hapfelmeier S, Stecher B, Barthel M, Kremer M, Monack DM, et al. (2005) Role of the Salmonella Pathogenicity Island 1 Effector Proteins SipA, SopP, SopE, and SopE2 in Salmonella enterica Subspecies 1 Serovar Typhimurium Colitis in Streptomycin-Pretreated Mice. Infect Immun 72: 795–809.
48. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
49. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
50. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
51. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
52. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
53. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
54. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
55. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
56. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
57. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
58. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
59. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
60. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
61. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
62. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.
63. Mariathasan S, Newton K, Monack DM, Pelegrin P, Surprenant A (2009) Dynamics of macrophage polarization reveal new mechanism to inhibit IL-1beta release through pyrophosphates. EMBO J 28: 2114–2127.