Supplemental Materials

Reentrant spin reorientation transition and Griffiths - like phase in antiferromagnetic TbFe$_{0.5}$Cr$_{0.5}$O$_3$

Bhawana Mali1,*, Harikrishnan S. Nair2, T. W. Heitmann3, Hariharan Nhalil1,†, Daniel Antonio4, Krzysztof Gofryk4, Shalika Ram Bhandari5,6, Madhav Prasad Ghimire5,6, Suja Elizabeth1

1 Department of Physics, Indian Institute of Science, Bangalore 560012, India
2 Department of Physics, 500 W. University Ave, The University of Texas at El Paso, TX 79968, USA
3 University of Missouri Research Reactor, University of Missouri, Columbia, MO 65211, USA
4 Idaho National Laboratory, Idaho Falls, ID 83415, USA
5 Central Department of Physics, Tribhuvan University, Kirtipur, 44613, Kathmandu, Nepal
6 IFW Dresden, Helmholtzstr. 20, D-01069, Dresden, Germany

*E-mail: bhawana@iisc.ac.in

†Present address: Department of Physics, Bar-Ilan University Ramat-Gan, Israel

Neutron powder diffraction (NPD) Analysis

FIG. S1. Rietveld refinement of neutron powder diffraction data at 350 K with Pnma space group. The intensity of nuclear Bragg peak position at (101) is not fully accounted for by the model.
FIG. S2. Neutron powder diffraction pattern of TbFe$_{0.5}$Cr$_{0.5}$O$_3$. The experimental data (red) and calculated pattern (black) with the Rietveld refinement program at 300 K, 215 K, 100 K, 20 K and 7.7 K for all possible irreducible representations confirms that the magnetic structure of TbFe$_{0.5}$Cr$_{0.5}$O$_3$ belongs to Γ_2 representation at 300 K, at T_N (257 K) it transforms to Γ_4, and at T_{SR} (190 K) it re-enters Γ_2 which remains stable down to 7.7 K.

T (K)	Element	m_x (μ_B)	m_y (μ_B)	m_z (μ_B)		
300	Fe$^{3+}$/Cr$^{3+}$	0.52(4)	3.58(1)	0.62(1)		
215	Fe$^{3+}$/Cr$^{3+}$	0.48(6)	0.59(2)	1.74(3)		
100	Fe$^{3+}$/Cr$^{3+}$	0.52(4)	3.48(2)	1.38(5)		
20	Fe$^{3+}$/Cr$^{3+}$, Tb$^{3+}$	0.11(4)	3.14(4)	0.00	0.75(2)	0.84(6)
7.7	Fe$^{3+}$/Cr$^{3+}$, Tb$^{3+}$	0.13(1)	3.19 (4)	0.00	1.27(1)	0.00

Table. S1. Components of magnetic moment obtained from neutron powder diffraction for TbFe$_{0.5}$Cr$_{0.5}$O$_3$ at different temperatures.
