Concise report

Proof-of-concept study demonstrating the pathogenicity of affinity-purified IgG antibodies directed to domain I of β2-glycoprotein I in a mouse model of anti-phospholipid antibody-induced thrombosis

Charis Pericleous¹, Patricia Ruiz-Limón², Zurina Romay-Penabad², Ana Carrera Marín², Acely Garza-García³, Lucy Murfitt³, Paul C. Driscoll³, David S. Latchman¹, David A. Isenberg¹, Ian Giles¹, Yiannis Ioannou¹,⁴, Anisur Rahman¹ and Silvia S. Pierangeli².

Abstract

Objective. IgG aPL against domain I of β2-glycoprotein I (β2GPI) [anti-DI (aDI)] is associated with the pathogenesis of APS, an autoimmune disease defined by thrombosis and pregnancy morbidity. To date, however, no study has demonstrated direct pathogenicity of IgG aDI in vivo. In this proof-of-concept study, we designed a novel system to affinity purify polyclonal aDI aPL in order to assess its prothrombotic ability in a well-characterized mouse microcirculation model for APS.

Methods. Two polyclonal IgG fractions were isolated from serum of a patient with APS, both with high aPL activity but differing in aDI activity (aDI-rich and aDI-poor). These IgG fractions were tested for their pathogenic ability in an in vivo mouse model of thrombosis. Male CD1 mice were injected intraperitoneally with either aDI-rich or aDI-poor IgG; as a control, IgG isolated from healthy serum was used. A pinch injury was applied to the right femoral vein and thrombus dynamics and tissue factor activity in isolated tissue were evaluated.

Results. Both aDI-rich and aDI-poor IgG retained aCL and anti-β2GPI activity, while only aDI-rich IgG displayed high aDI activity, as defined by our in-house cut-offs for positivity in each assay. aDI-rich IgG induced significantly larger thrombi in vivo compared with aDI-poor IgG (P < 0.0001). Similarly, aDI-rich IgG significantly enhanced the procoagulant activity of carotid artery endothelium and peritoneal macrophages isolated from experimental animals (P < 0.01).

Conclusion. These data directly demonstrate that the ability to cause thrombosis in vivo is concentrated in the aDI fraction of aPL.

Key words: anti-phospholipid syndrome, anti-phospholipid antibodies, β2-glycoprotein I, domain I, venous thrombosis, mouse model.

Introduction

APS is a systemic autoimmune disease caused by circulating aPL [1]. APS is a major cause of acquired hypercoagulability and recurrent pregnancy loss in the general population [2]. Antibodies to phospholipid (PL), and to serine protease clotting factors and PL-binding proteins circulate in the blood of patients with APS. The strongest evidence for pathogenicity relates to antibodies against
the PL-binding protein β_2-glycoprotein I [anti-β_2GPI (aβ_2GPI)] [3].

β_2GPI has five domains (DI–DV). Although antibodies directed against all of these domains have been reported in patients with APS, anti-DI antibodies (aDI) are most closely linked to pathogenicity. We [4] and other groups [5–8] have shown that circulating levels of IgG aDI are elevated in patients with APS compared with healthy and disease controls.

We previously demonstrated that human recombinant DI abrogated the thrombogenic ability of polyclonal human IgG purified from a patient with APS in our well-characterized in vivo mouse model of thrombotic APS [9], while a human monoclonal IgG aPL, IS4, both bound DI and enhanced clot formation in the same model [11, 12]. Critically, however, no study has shown that affinity-purified IgG aDI from patients with APS has a direct prothrombotic effect in vivo. Therefore this study was designed to test the hypothesis that the ability to cause thrombosis in mice is concentrated in the aDI fraction of polyclonal IgG derived from serum of a patient with APS.

Patients and methods

Affinity purification of anti-DI antibodies

Serum was obtained from a female patient with APS. Polyclonal IgG from this patient has previously been shown to cause thrombosis in our mouse model [13]. Patient serum was fractionated into aDI-rich and aDI-poor fractions as follows: human recombinant hexahistidine-tagged DI was produced and purified as described previously [10, 14]. Immobilized-nickel resin beads (Promega, Madison, WI, USA) were equilibrated with PBS (pH 7.4), followed by incubation with purified DI (50 μg DI/100 μl resin) for 30 min. DI-coupled beads were incubated with patient serum (1 ml serum/100 μl resin) for 1 h. The beads were then spun, the flow-through was collected (aDI-poor fraction) and beads were washed with PBS. Captured aDI antibodies (aDI-rich fraction) were eluted from the beads with 0.1 M glycine (pH 2.7), concentrated and dialysed in PBS (Amicon Pro centrifugal devices, Millipore, Billerica, MA, USA).

Human polyclonal IgG purification

IgG was purified from both aDI-rich and aDI-poor fractions using protein G chromatography (ThermoScientific Pierce, Rockford, IL, USA). Pooled sera from 10 healthy donors who tested negative for aPL [normal human serum (NHS)] were used as a source of control IgG. aDI-rich IgG, aDI-poor IgG and NHS-IgG were concentrated and dialysed in PBS and were confirmed to be free of endotoxin by the limulus amoebocyte lysate assay (Sigma, St Louis, MO USA). All research subjects who donated serum signed informed consent according to the Declaration of Helsinki and the study was approved by the Institutional Review Board of the University of Texas Medical Branch.

Immunological characterization of serum and purified polyclonal IgG

IgG aCL, aβ_2GPI and aDI activity were measured in human serum (diluted 1:50), purified human IgG (aDI-rich, aDI-poor and IgG purified from unfractionated serum, all tested at 100 μg/ml) and mouse serum (diluted 1:10) using direct ELISA as described previously [4]. Total human IgG circulating in mouse serum was measured by ELISA [12].

To determine the avidity of purified IgG to CL, β_2GPI or DI, we tested IgG (at 100 μg/ml) in the presence of increasing salt concentrations (range 0.15–4 M NaCl, where PBS has 0.15 M NaCl).

aCL activity was defined as IgG phospholipid units (GPLU), using commercially sourced calibrators (Louisville aPL Diagnostics, Seabrook, TX, USA; activity range <16 to >-96 GPLU), while aβ_2GPI and aDI activity were defined as IgG β_2GPI units (GBU) and DI units (GDU), respectively, using in-house calibrators (activity range <3.1 to >100 for both tests). Based on sera from a population of 200 healthy subjects, our cut-offs for aPL positivity in these assays are (defined as the mean + 3 s.d. of the activity of healthy subjects) 17 GPLU, 8 GBU, and 10 GDU.

In vivo induction of thrombosis and analysis of thrombus dynamics

Five to 10 male CD1 mice (Charles River Laboratories, Cambridge, MA, USA) per group were injected intraperitoneally twice (at time 0 and 48 h later) with either 100 μg of aDI-rich or aDI-poor IgG (n = 10/group) or NHS-IgG (n = 5). Mice were anaesthetized 72 h after the first injection. The right femoral vein was exposed and pinched using a standard pressure to induce injury. Thrombus dynamics were assessed as described previously [9, 15, 16]. Serum was obtained for ELISA after the surgical procedure.

Tissue factor activity in carotid homogenates and peritoneal macrophages

At the end of the surgical procedures, uninjured carotids were placed into Tris-buffered saline-0.01% Triton X-100 buffer containing heparin. Peritoneal macrophages were collected by flushing the peritoneal cavity with PBS for 5 min. After sonication, tissue factor (TF) activity was determined using a commercial chromogenic assay (Human Tissue Factor Activity Kit, AssayPro, St Charles, MO, USA). TF activity data were normalized using the protein concentration as reference and expressed as pM/mg/ml protein [16].

Statistical analysis

Differences between groups were analysed by the following methods: thrombus size, one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test; TF activity, non-parametric unpaired t-tests with Welch’s correction; human aPL activity in mouse serum, Mann-Whitney test; and total human IgG in mouse serum, one-way ANOVA followed by Dunn’s multiple comparison test.
Results

Binding properties of aDI-rich and aDI-poor fractions

aCL, aβ2GPI and aDI titres for APS serum were >96 GPLU, 93.9 GBU and 50.2 GDIU, respectively. As illustrated in Fig. 1, purified IgG (100 μg/ml) from unfractio- nated serum was highly positive in all three assays, with values >96 GPLU, >100 GBU and 89.4 GDIU. aDI-rich IgG maintained high activity against all three antigens (>96 GPLU, >100 GBU, >100 GDIU); as expected, aDI activity was enriched compared with unfractonated IgG. Conversely, aDI-poor IgG confirmed reduced binding to these antigens (89.3 GPLU, 46.8 GBU, 17 GDIU); the reduction in aDI activity was far greater (Fig. 1A-C). Both aDI-rich and aDI-poor IgG retained aCL, aβ2GPI and aDI activity above the cut-off values for positivity in each assay. All samples from healthy controls were negative in all three assays.

We determined the avidity of both aDI-rich and aDI-poor fractions for CL, β2GPI and DI, comparing results with unfractionated IgG (Fig. 1D-F). In all three assays the activity of aDI-poor IgG was reduced by ~50% when NaCl was marginally increased from 0.15 to 0.25 M. In contrast, aDI-rich IgG retained >90% aβ2GPI and aDI activity even at 4.0 M NaCl; aCL activity was reduced, but only at ≥2.0 M NaCl. Thus, although the aDI-poor fraction retained high aCL and aβ2GPI activity, these aPLs were of low avidity compared with the high avidity aPL in the aDI-rich fraction. Mice injected with aDI-rich IgG had significantly higher aPL titres in all three assays compared with mice that received aDI-poor IgG (mean activity of the aDI-rich group: 39.5 GPLU, 40.1 GBU, 16.6 GDIU; aDI-poor group: 9.3 GPLU, 13.3 GBU, 4.7 GDIU) (n = 9 mice/group, P < 0.001 in all cases). Circulating human IgG was confirmed to be present in all mice. Human IgG levels did not differ significantly between mice injected with aDI-rich and aDI-poor IgG samples (data not shown).

In vivo thrombus-generation results

aDI-rich IgG induced significantly larger thrombi in vivo [mean thrombus size 1848.1 μm² (s.d. 729.2)] compared with aDI-poor [960.5 μm² (s.d. 258.6)] or NHS-IgG [525.1 μm² (s.d. 136.2)] (P < 0.0001 in both cases) (Fig. 2A). The aDI-poor fraction retained some prothrombotic potential, as the thrombi in these mice were significantly larger compared with mice treated with NHS-IgG (P < 0.0001). Ex vivo tissue factor activity

Both APS-derived IgG preparations increased carotid TF activity compared with NHS-IgG [mean TF activity 149.0 pM/mg/ml (s.d. 21.1)], by a factor of 2.4-fold for aDI-rich IgG [402.5 (s.d. 165.2)] and by 1.4-fold for aDI-poor IgG [223.1 (s.d. 71.8)]. However, treatment with aDI-rich IgG resulted in significantly enhanced carotid TF
activity compared with aDI-poor IgG (1.6-fold difference, \(P = 0.005 \); Fig. 2B).

In peritoneal macrophages, treatment with aDI-rich IgG greatly enhanced TF activity by a factor of 3.5-fold compared with aDI-poor IgG
\[106.9 \text{ (S.D. 55.5)} \text{ vs } 28.5 \text{ (S.D. 14.1), respectively; } P = 0.003 \], aDI-poor IgG did not produce any increase in macrophage TF activity compared with NHS-IgG
\[30.6 \text{ (S.D. 4.1); Fig. 2C} \].

Discussion

Previously we showed that recombinant human DI could inhibit the ability of polyclonal human IgG from a patient with APS to cause thrombosis or to enhance TF activity in the same *in vivo* mouse model that is described here [9]. In this report we used polyclonal IgG from a different patient with APS. In all three outcome measures, aDI-rich IgG significantly enhanced prothrombotic ability *in vivo* compared with aDI-poor or NHS-IgG. These findings are consistent with our hypothesis that the ability of human APS-derived IgG to cause thrombosis in mice is concentrated in the aDI-rich fraction. Notably the aDI-poor fraction retained some prothrombotic capacity, which may be due to (some) residual aDI activity, retained a\(\beta_2 \)GPI activity (presumably binding to epitopes in DII–V) or caused by other prothrombotic IgG antibodies such as anti-prothrombin (PT) or anti-PT/phosphatidylserine [17].

Limitations of this work are that a single patient’s sample was used and that we were unable to compare the effects of aDI-rich IgG with IgG affinity-purified for binding to another region of \(\beta_2 \)GPI. Our expression system is currently designed to produce DI only, however, in the future it may be possible to carry out a similar experiment to test IgG specific for different domains. Our hypothesis predicts that enrichment of IgG specific to other \(\beta_2 \)GPI domains would not enhance the ability to cause thrombosis—all such non-aDI antibodies should be present in the aDI-poor sample used in this study.

The identification of DI as the key antigenic region for pathogenic IgG aPL [4, 5, 7] paved the way for studies reporting the association of circulating aDI with APS [8] and the ability of recombinant DI to inhibit aPL-induced thrombosis *in vivo* [9]. Importantly, a synthetic monoclonal IgG aDI (MMB2) was very recently been shown to cause complement-mediated thrombosis and fetal loss *in vivo* [18], while IgG recognizing a peptide derived from the human DI sequence induced monocyte and endothelial cell activation and bound Toll-like receptor 4 (TLR4) *in vitro*. In fact, the DI-derived peptide shared sequence homology with an epitope on TLR4 [19]. Both complement
and TLR4 are historically implicated in aPL-stimulated pathogenesis and these two studies are the first to suggest that specifically aDI can drive cell damage via TLR4 and/or complement activation.

Designing a test for the detection of aDI [17] could have both diagnostic and prognostic value, allowing us to assess the susceptibility of a patient to develop an APS-related clinical manifestation. In addition, creating therapeutic agents that target aDI could offer a novel approach for treating APS [20]. Our results have provided direct evidence that human aDI is prothrombotic in vivo, thus emphasizing the importance of measuring circulating aDI for APS diagnosis and further highlighting the therapeutic potential of recombinant DI as a decoy for pathogenic aDI.

Acknowledgements

In memory of Silvia Pierangeli, a truly inspirational and wonderful person. Research at University College London (UCL) was supported by the National Institute for Health Research at the National Institute for Medical Research (P.C.D., A.G.-G., L.M.) was supported by the National Institutes of Health. Research at the National Institute for Medical Research (P.R.-L., Z.R.-P., A.C.M., S.S.P.) was supported by R0-1 A.R.) was funded by Arthritis Research UK Program Grant: Research at University College London (UCL) was supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. Y.I. is also funded through Arthritis Research UK (grant 2016).

Funding: Research at UCL (P.C., D.S.L., D.A.I., I.G., Y.I., A.R.) was funded by Arthritis Research UK Program Grant 19423. Research at University of Texas Medical Branch (P.R.-L., Z.R.-P., A.C.M., S.S.P.) was supported by RO-1 grant 5R01AR056745 from the National Institutes of Health. Research at the National Institute for Medical Research (P.C.D., A.G.-G., L.M.) was supported by the Medical Research Council (file reference U117574559).

Disclosure statement: The authors have declared no conflicts of interest.

References

1 Miyakis S, Lockshin MD, Atsumi T et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006;4:295–306.
2 Rouhey RA. Antiphospholipid antibodies: immunological aspects. Clin Immunol 2004;112:127–8.
3 Giannakopoulos B, Krillis SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013;368:1033–44.
4 Ioannou Y, Pericleous C, Giles I et al. Binding of antiphospholipid antibodies to discontinuous epitopes on domain I of human beta(2)-glycoprotein I: mutation studies including residues R39 to R43. Arthritis Rheum 2007;56:280–90.
5 Iverson GM, Victoria EJ, Marquis DM. Anti-i2 glycoprotein I (i2GPI) autoantibodies recognize an epitope on the first domain of i2GPI. Proc Natl Acad Sci USA 1998;95:15542–6.
6 Reddel SW, Wang YX, Sheng YH, Krillis SA. Epitope studies with anti-beta 2-glycoprotein I antibodies from autoantibody and immunized sources. J Autoimmun 2000;15:91–6.
7 Iverson GM, Reddel S, Victoria EJ et al. Use of single point mutations in domain I of i2-glycoprotein I to determine fine antigenic specificity of antiphospholipid autoantibodies. J Immunol 2002;169:7097–103.
8 de Laat B, Pengo V, Pabinger I et al. The association between circulating antibodies against domain I of beta2-glycoprotein I and thrombosis: an international multicenter study. J Thromb Haemost 2009;7:1767–73.
9 Ioannou Y, Romay-Penabad Z, Pericleous C et al. In vivo inhibition of antiphospholipid antibody-induced pathogenicity utilizing the antigenic target peptide domain I of i2-glycoprotein I: proof of concept. J Thromb Haemost 2009;7:833–42.
10 Pericleous C, Miles J, Esposito D et al. Evaluating the conformation of recombinant domain I of beta(2)-glycoprotein I and its interaction with human monoclonal antibodies. Mol Immunol 2011;49:56–63.
11 Pierangeli SS, Liu X, Espinola R et al. Functional analyses of patient-derived IgG monoclonal antia cardiolipin antibodies using in vivo thrombosis and in vivo microcirculation models. Thromb Haemost 2000;84:388–95.
12 Giles I, Pericleous C, Liu X et al. Thrombin binding predicts the effects of sequence changes in a human monoclonal antiphospholipid antibody on its in vivo biologic actions. J Immunol 2009;182:4836–43.
13 Carrera-Marin A, Romay-Penabad Z, Papalardo E et al. C6 knock-out mice are protected from thrombophilia mediated by antiphospholipid antibodies. Lupus 2012;21:1497–505.
14 Ioannou Y, Giles I, Lambrianides A et al. A novel expression system of domain I of human beta2 glycoprotein I in Escherichia coli. BMC Biotechnol 2006;6:8.
15 Pierangeli SS, Liu XW, Barker JH, Anderson G, Harris EN. Induction of thrombosis in a mouse model by IgG, IgM and IgA immunoglobulins from patients with the antiphospholipid syndrome. Thromb Haemost 1995;74:1361–7.
16 Romay-Penabad Z, Aguilar-Valenzuela R, Urbanus RT et al. Apolipoprotein E receptor 2 is involved in the thrombotic complications in a murine model of the antiphospholipid syndrome. Blood 2011;117:1408–14.
17 Willis R, Harris EN, Pierangeli SS. Current international initiatives in antiphospholipid antibody testing. Semin Thromb Hemost 2012;38:360–74.
18 Agosti C, Dorigutto P, Sbattero D et al. A non-complement-fixing antibody to i2 glycoprotein I as a
novel therapy to control abortions and thrombosis in antiphospholipid syndrome. Blood 2014;123:3478–87.

19 Colasanti T, Alessandri C, Capozzi A et al. Autoantibodies specific to a peptide of β2-glycoprotein I cross-react with TLR4, inducing a proinflammatory phenotype in endothelial cells and monocytes. Blood 2012;120:3360–70.

20 Pericleous C, Ioannou Y. New therapeutic targets for the antiphospholipid syndrome. Expert opinion on therapeutic targets 2010;14:1291–9.