Abstract—This paper describes a new algorithm for hyperspectral image unmixing. Most unmixing algorithms proposed in the literature do not take into account the possible spatial correlations between the pixels. In this paper, a Bayesian model is introduced to exploit these correlations. The image to be unmixed is assumed to be partitioned into regions (or classes) where the statistical properties of the abundance coefficients are homogeneous. A Markov random field, is then proposed to model the spatial dependencies between the pixels within any class. Conditionally upon a given class, each pixel is modeled by using the classical linear mixing model with additive white Gaussian noise. For this model, the posterior distributions of the unknown parameters and hyperparameters allow the parameters of interest to be inferred. These parameters include the abundances for each pixel, the means and variances of the abundances for each class, as well as a classification map indicating the classes of all pixels in the image. To overcome the complexity of the posterior distribution, we consider a Markov chain Monte Carlo method that generates samples asymptotically distributed according the posterior. The generated samples are then used for parameter and hyperparameter estimation. The accuracy of the proposed algorithms is illustrated on synthetic and real data.

Index Terms—Bayesian inference, hyperspectral images, Markov random fields (MRFs), Monte Carlo methods, spectral unmixing.

I. INTRODUCTION

HYPERSONICAL image analysis involves many technical issues such as image classification, image segmentation, target detection, and the crucial step of spectral unmixing. The problem of spectral unmixing has been investigated for several decades in both the signal processing and geoscience communities, where many solutions have been proposed (see, for instance, [1] and [2] and references therein). Hyperspectral unmixing consists of decomposing the measured pixel reflectances into mixtures of pure spectra whose fractions are referred to as abundances. Assuming the image pixels are linear combinations of pure materials is very common in the unmixing framework. More precisely, the linear mixing model (LMM) considers the spectrum of a mixed pixel as a linear combination of endmembers [1]. The LMM requires to have known endmember signatures. These signatures can be obtained from a spectral library or by using an endmember extraction algorithm (EEA). Standard EEAs are reviewed in [3]. Once the endmembers that appear in a given image have been identified, the corresponding abundances have to be estimated in the so-called inversion step. Due to physical considerations, the abundances have to satisfy positivity and sum-to-one constraints. A lot of inversion algorithms respecting these constraints have been proposed in the literature. The fully constrained least squares (FCLS) [4] and scaled gradient [5] algorithms are two optimization techniques that ensure the positivity and sum-to-one constraints inherent to the unmixing problem. Another interesting approach introduced in [6] consists of assigning appropriate prior distributions to the abundances and to solve the unmixing problem within a Bayesian framework. However, all these inversion strategies have been developed in a pixel-by-pixel context and do not exploit the possible spatial correlations between the different pixels of the hyperspectral image. In this paper, we show that taking these spatial correlations into account allows the unmixing procedure to be improved.

Within a Bayesian estimation framework, a very popular strategy for modeling spatial information in an image is based on Markov random fields (MRFs). MRFs have been widely used in the image processing literature to properly describe neighborhood dependence between image pixels. MRFs and their pseudolikelihood approximations have been introduced by Besag in [7]. They have then been popularized by Geman in [8] by exploiting the Gibbs distribution inherent to MRFs. The hyperspectral community has also recently exploited the advantages of MRFs for hyperspectral image analysis [9]–[11]. However, to our knowledge, MRFs have not been studied for hyperspectral image unmixing. There are mainly two approaches that can be investigated to model spatial correlations between the abundances of a hyperspectral image with MRFs. The first idea is to define appropriate prior distributions for the abundances highlighting spatial correlations. This approach has been for instance adopted by Kent and Mardia in [12] where several techniques have been introduced for mixed-pixel classification of remote sensing data. These techniques rely on a fuzzy membership process, which implicitly casts the achieved classification task as a standard unmixing problem. Modeling the abundance dependencies with MRFs makes this approach well adapted to unmix images with smooth abundance transition throughout the scene.

Conversely, this paper proposes to exploit the pixel correlations in an underlying membership model. This strategy allows more flexibility and appears more suited for images composed of distinct areas, as frequently encountered in remote sensing applications. Moreover, this approach has the great advantage

1Note that, to our knowledge, Kent and Mardia’s paper is one of the earliest work explicitly dealing with linear unmixing of remotely sensed images.
of easily generalizing the Bayesian algorithms previously introduced in [6] and [13], as detailed further in this paper. It consists of introducing labels that are assigned to the image pixels. To take into account the possible spatial correlations between the observed pixels, a Potts–Markov field [14] is chosen as prior for the labels. This prior enforces the neighboring pixels to belong to the same class. Potts–Markov models have been extensively used for the classification/segmentation of hyperspectral data in the remote sensing and image processing literatures [10], [11], [15], [16]. Other research works, such as [17] and [18], have proposed alternative strategies for modeling spatial correlations between pixels for the classification of hyperspectral images. All these works have shown that taking into account the spatial correlations is of real interest when analyzing hyperspectral images.

The new unmixing strategy studied in this paper assumes that the hyperspectral image to be analyzed is partitioned into homogeneous regions (or classes) in which the abundance vectors have the same first and second order statistical moments (means and covariances). This assumption implies an implicit image classification, modeled by hidden labels whose spatial dependencies follow a Potts–Markov field. Conditionally upon these labels, the abundance vectors are assigned appropriate prior distributions with unknown means and variances that depend on the pixel class. These prior distributions ensure the positivity and sum-to-one constraints of the abundance coefficients. They are based on a reparametrization of the abundance vectors and are much more flexible than the priors previously studied in [6] and [13]. Of course, the accuracy of the abundance estimation procedure depends on the hyperparameters associated with these priors. This paper proposes to estimate these hyperparameters in a fully unsupervised manner by introducing a second level of hierarchy in the Bayesian inference. Non-informative prior distributions are assigned to the hyperparameters. The unknown parameters (labels and abundance vectors) and hyperparameters (prior abundance mean and variance for each class) are then inferred from their joint posterior distribution. Since this posterior is too complex to derive closed-form expressions for the classical Bayesian estimators, Markov chain Monte Carlo (MCMC) techniques are studied to alleviate the numerical problems related to the LMM with spatial constraints. MCMC allow one to generate samples asymptotically distributed according to the joint posterior of interest. These samples are then used to approximate the Bayesian estimators, such as the minimum mean square error (MMSE) or the maximum a posteriori (MAP) estimators. Note that the underlying classification and abundance estimation problems are jointly solved within this Bayesian framework.

The paper is organized as follows. The unmixing problem is formulated in Section II. Section III introduces a hierarchical Bayesian model appropriate to this unmixing problem. The MCMC algorithm required to approximate the Bayesian LMM estimators is described in Section IV. Simulation results conducted on simulated and real data are provided in Sections V and VI. Finally, conclusions are reported in Section VII.

II. PROBLEM FORMULATION

The LMM assumes that the spectrum of a given pixel is a linear combination of deterministic endmembers corrupted by an additive noise [1] considered here as white Gaussian. The observed L-spectrum of a given pixel \(p \) is defined as

\[
y_p = Ma_p + n_p
\]

where \(L \) is the number of spectral bands, \(M = [m_1, \ldots, m_L] \) is a known \(L \times R \) matrix containing the \(L \)-spectra of the endmembers, \(a_p \) is the \(R \times 1 \) abundance vector, \(R \) is the number of endmembers that are present in the image, and \(n_p \) is the noise vector. The vector \(n_p \) is classically assumed to be an independent and identically distributed (i.i.d.) zero-mean Gaussian sequence with unknown variance \(s^2 \)

\[
n_p|s^2 \sim N(0_L, s^2 I_L)
\]

where \(I_L \) is the \(L \times L \) identity matrix. Note that the noise variance is the same for all pixels of the hyperspectral image and does not vary from one pixel to another, which has been a common assumption in the hyperspectral literature [19], [20]. Considering an image of \(P \) pixels, standard matrix notations can be adopted, leading to \(Y = [y_1, \ldots, y_P] \) and \(A = [a_1, \ldots, a_P] \).

A. Introducing Spatial Dependencies Between Abundances

We propose in this paper to exploit spatial correlations between the pixels of the hyperspectral image to be analyzed. More precisely, it is interesting to consider that the abundances of a given pixel are similar to the abundances of its neighbors. Formally, the hyperspectral image is assumed to be partitioned into \(K \) regions or classes. Let \(I_k \subset \{1, \ldots, P\} \) denote the subset of pixel indexes belonging to the \(k \)-th class. A label vector of size \(P \times 1 \) denoted as \(z = [z_1, \ldots, z_P]^T \) with \(z_p \in \{1, \ldots, K\} \) is introduced to identify the class to which each pixel \(p \) belongs \((p = 1, \ldots, P)\). In other terms, \(z_p = k \) if and only if \(p \in I_k \). In each class, the abundance vectors to be estimated are assumed to share the same first and second order statistical moments, i.e., \(\forall k \in \{1, \ldots, K\}, \forall p \in I_k \)

\[
E[a_p] = \mu_k, \quad E[(a_p - \mu_k)(a_p - \mu_k)^T] = \Lambda_k.
\]

Therefore, the \(k \)-th class of the hyperspectral image is fully characterized by its abundance mean vector \(\mu_k \) and its abundance covariance matrix \(\Lambda_k \).

B. Markov Random Fields

To describe spatial correlations between pixels, it is important to properly define a neighborhood structure. The neighborhood relation between two pixels \(i \) and \(j \) has to be symmetric: if \(i \) is a neighbor of \(j \), then \(j \) is a neighbor of \(i \). This relation is applied to the nearest neighbors of the considered pixel, for example, the fourth, eighth, or twelfth nearest pixels. Fig. 1 shows two examples of neighborhood structures. The four pixel structure or 1 order neighborhood will be considered in the rest of this paper. The associated set of neighbors, or cliques, has only vertical and horizontal possible configurations (see [7] and [8]).

Once the neighborhood structure has been established, the MRF can be defined. Let \(z_p \) denote a random variable associated with the \(p \)-th pixel of an image (having \(P \) pixels).
In the context of hyperspectral image unmixing, the variables z_1, \ldots, z_p indicate the pixel classes and take their values in a finite set $\{1, \ldots, K\}$, where K is the number of possible classes. The whole set of random variables $\{z_1, \ldots, z_p\}$ forms a random field. An MRF is then defined when the conditional distribution of z_i given the other pixels z_{-i} only depend on its neighbors $z_{\mathcal{V}(i)}$, i.e.,

$$f(z_i|z_{-i}) = f(z_i|z_{\mathcal{V}(i)})$$

(4)

where $\mathcal{V}(i)$ is the neighborhood and $z_{-i} = \{z_j; j \neq i\}$. This paper focuses on the Potts–Markov model since it is very appropriate to hyperspectral image segmentation [11]. Given a discrete random field z attached to an image with P pixels, the Hammersley–Clifford theorem yields

$$f(z) = \frac{1}{G(\beta)} \exp \left[\sum_{p=1}^{P} \sum_{p' \in \mathcal{V}(p)} \beta \delta(z_p - z_{p'}) \right]$$

(5)

where β is the granularity coefficient, $G(\beta)$ is the normalizing constant or partition function, and $\delta(\cdot)$ is the Kronecker function ($\delta(x) = 1$ if $x = 0$, and $\delta(x) = 0$ if otherwise). Note that drawing a label vector $z = [z_1, \ldots, z_p]$ from the distribution (5) can be easily achieved without knowing $G(\beta)$ by using a Gibbs sampler [21]. The hyperparameter β tunes the degree of homogeneity of each region in the image. Some simulations have been conducted to show the influence of this parameter on image homogeneity. Synthetic images have been generated from a Potts–Markov model with $K = 3$ (corresponding to three gray levels in the image) and a 1-order neighborhood structure. Fig. 2 indicates that a small value of β induces a noisy image with a large number of regions, contrary to a large value of β that leads to few and large homogeneous regions. It is unnecessary to consider values of $\beta \geq 2$ since, for the 1-order neighborhood structure adopted here, “when $\beta \geq 2$, the Potts–Markov model is almost surely concentrated on single-color images” [22, p. 237]. Note, however, that for larger neighborhood systems, a smaller value of β would be enough to obtain uniform patches in Potts realizations. For example, β is expected to be about twice for a 2-order neighborhood [23]. In this paper, the granularity coefficient β is fixed a priori.

C. Abundance Reparametrization

As explained before, the fraction vectors a_p should satisfy positivity and sum-to-one constraints defined as

$$\sum_{r=1}^{R} a_r = 1, \quad a_r > 0, \quad \forall r = 1, \ldots, R. \quad (6)$$

To ensure that these constraints are satisfied, we have considered a reparametrization for positive parameters summing to one that was introduced in [12] for the spectral unmixing of satellite images. Note that this reparametrization has also shown interesting results for a pharmacokinetic problem [24] and has been recently applied to hyperspectral unmixing [25]. This reparametrization consists of rewriting the abundances as a function of random variables that will be referred to as logistic coefficients in the rest of this paper. A logistic coefficient vector $t_p = [t_{1,p}, \ldots, t_{R,p}]^T$ is assigned to each abundance vector a_p, according to the relationship

$$a_{r,p} = \frac{\exp(t_{r,p})}{\sum_{r=1}^{R} \exp(t_{r,p})}. \quad (7)$$

Initially, the spatial dependencies resulting from the image partitioning described in Section II-A are based on the first and second order moments of the abundance vectors a_p. However, the spatial constraints defined in (3) can be easily adapted when using logistic coefficient vectors. Indeed, in each class, the unknown logistic coefficient vectors are assumed to share the same first and second order moments, i.e., $\forall k \in \{1, \ldots, K\}, \forall p \in \mathcal{I}_k$

$$\psi_k = E[t_{p}|z_p = k]$$

$$\Sigma_k = E[(t_{p} - \psi_k)(t_{p} - \psi_k)^T]. \quad (8)$$

With this reparametrization, the kth class is fully characterized by the unknown hyperparameters ψ_k and Σ_k.

III. Hierarchical Bayesian Model

This section investigates the likelihood and the priors inherent to the LMM for the spectral unmixing of hyperspectral images, based on Potts–Markov random fields and logistic coefficients. The unknown parameter vector associated with the proposed Bayesian model is denoted as $\mathbf{y} = (T, z, s^2)$, where s^2 is the noise variance, z is the label vector, and $T = [t_1, \ldots, t_P]$ with $t_p = [t_{1,p}, \ldots, t_{R,p}]^T(p = 1, \ldots, P)$ is the logistic coefficient matrix. Note that the noise variance s^2 is unknown in this paper, contrary to the model considered in [12].
A. Likelihood

The additive white Gaussian noise sequence of the LMM allows one to write
\[y_p(t_p, s^2) \sim N(Ma_p(t_p), s^2 I_L)(p = 1, \ldots, P). \]
Therefore, the likelihood function of \(y_p \) is
\[f(y_p|t_p, s^2) \propto \frac{1}{s^2} \exp \left[-\frac{\|y_p - Ma_p(t_p)\|^2}{2s^2} \right] \tag{9} \]

where \(s \) means proportional to and \(\|x\| = \sqrt{x^T x} \) is the standard \(l^2 \) norm. By assuming independence between the noise sequences \(n_p(p = 1, \ldots, P) \), the likelihood of the \(P \) image pixels is
\[f(Y|T, s^2) = \prod_{p=1}^P f(y_p|t_p, s^2). \tag{10} \]

B. Parameter Priors

This section defines the prior distributions of the unknown parameters and their associated hyperparameters that will be used for the LMM.

1) Label Prior: The prior distribution for the label vector \(z = [z_1, \ldots, z_P]^T \) introduced in Section II-B is a Potts–Markov random field with a 1-order neighborhood and a known granularity coefficient \(\beta \). The resulting prior distribution can be written as in (5), where \(\mathcal{V}(p) \) is the 1-order neighborhood shown in Fig. 1 (left).

2) Logistic Coefficient Prior: Following the approach described in Section II-A, each component of \(t_p \) is assumed to be distributed according to a Gaussian distribution. In addition, as highlighted in Section II-C [see (8)], the mean and variance of the logistic coefficients depend on the class to which the corresponding pixel belongs. Therefore, the prior distribution for \(t_p \) is defined conditionally upon the pixel label
\[t_p|z = k, \psi_{r,k}, \sigma^2_{r,k} \sim N(\psi_{r,k}, \sigma^2_{r,k}) \tag{11} \]

where the hyperparameters \(\psi_{r,k} \) and \(\sigma^2_{r,k} \) depend on their pixel class \(k \). As suggested in Section 1, a hierarchical Bayesian algorithm will be used to estimate these hyperparameters. For a given pixel \(p \), by assuming prior independence between the coefficients \(t_{1,p}, \ldots, t_{R,p} \), the prior distribution for the vector \(t = [t_{1,p}, \ldots, t_{R,p}]^T \) is
\[f(t_p|z = k, \psi_k, \Sigma_k) \sim N(\psi_k, \Sigma_k) \tag{12} \]

where \(\psi_k = [\psi_{1,k}, \ldots, \psi_{R,k}]^T \) and \(\Sigma_k = \text{diag}(\sigma^2_{r,k}) \) is the \(R \times R \) diagonal matrix whose diagonal elements are \(\sigma^2_{r,k} \).

By assuming prior independence between the \(P \) vectors \(t_1, \ldots, t_p \), the full posterior distribution for the logistic coefficient matrix \(T \) is
\[f(T|z, \Psi, \Sigma) = \prod_{k=1}^K \prod_{p \in \mathcal{V}_k} f(t_p|z = k, \psi_k, \Sigma_k) \tag{13} \]

with \(\Psi = [\psi_1, \ldots, \psi_K] \) and \(\Sigma = \{\Sigma_1, \ldots, \Sigma_K\} \).

3) Noise Variance Prior: A conjugate inverse-gamma distribution is assigned to the noise variance
\[s^2|\nu, \delta \sim IG(\nu, \delta) \tag{14} \]

where \(\nu \) and \(\delta \) are adjustable hyperparameters. This paper assumes that \(\nu = 1 \) (as in [6]) and estimates \(\delta \) jointly with the other unknown parameters and hyperparameters (using a hierarchical Bayesian algorithm).

C. Hyperparameter Priors

Hierarchical Bayesian algorithms require one to define prior distributions for the hyperparameters. Note that the hyperparameters \(\psi_{r,k} \) and \(\sigma^2_{r,k} \) fully describe the different classes partitioning the image. The prior distributions for \(\psi_{r,k} \) and \(\sigma^2_{r,k} \) are conjugate distributions. More precisely, a vague inverse-gamma distribution is chosen for the logistic coefficient variance \(\sigma^2_{r,k} \), i.e.,
\[\sigma^2_{r,k}|\xi, \gamma \sim IG(\xi, \gamma) \tag{15} \]

where \(\xi = 1 \) and \(\gamma = 5 \) (in order to obtain a large variance). Moreover, a centered Gaussian distribution with unknown variance has been chosen as prior for the logistic coefficient mean
\[\psi_{r,k}|v^2 \sim N(0, v^2) \tag{16} \]

where \(v^2 \) is another adjustable hyperparameter. By assuming independence between the different mean vectors \(\psi_k \), as well as between the covariance matrices \(\Sigma_k \) for \(k = 1, \ldots, K \), the priors for \(\Psi \) and \(\Sigma \) can be expressed as
\[f(\Psi|v^2) \propto \prod_{k=1}^K \prod_{r=1}^R \left(\frac{1}{v^2} \right)^\frac{1}{2} \exp \left(-\frac{\psi_{r,k}^2}{2v^2} \right) \tag{17} \]

\[f(\Sigma|\xi, \gamma) \propto \prod_{k=1}^K \prod_{r=1}^R \gamma^\xi \Gamma(\xi) (\sigma^2_{r,k} - (\xi + 1)) \exp \left(-\frac{\gamma}{\sigma^2_{r,k}} \right). \tag{18} \]

Jeffreys' priors are chosen for the hyperparameters \(\delta \) and \(v^2 \) (see, e.g., [26, p. 131]) for the details including computations
\[f(\delta) \propto \frac{1}{\delta} 1_{R^+}(\delta) \quad f(v^2) \propto \frac{1}{v^2} 1_{R^+}(v^2) \tag{19} \]

where \(1_{R^+}(\cdot) \) denotes the indicator function defined on \(\mathbb{R}^+ \). These choices reflect the lack of knowledge regarding these two hyperparameters. At this last hierarchy level within the Bayesian inference, the hyperparameter vector can be defined as \(\Omega = \{\Psi, \Sigma, v^2, \delta\} \).

D. Joint Distribution

The joint posterior of the unknown parameter vector \(\Theta = (\Psi, \Sigma, v^2, \delta) \) is classically defined using the hierarchical structure
\[f(\Theta|Y) = f(Y|\Psi) f(\Psi|\Sigma) f(\Sigma|v^2) f(v^2) f(\delta) \tag{20} \]

i.e., \(f(\Theta|Y) \) is proportional to the product of the likelihood by the priors and hyperpriors. The posterior distribution (20)
associated with the LMM is too complex to obtain closed-form expressions for the MMSE or MAP estimators of the unknown parameter vector Θ. To alleviate this problem, we propose to use MCMC methods to generate samples that are asymptotically distributed according to (20). The generated samples are then used to approximate the Bayesian estimators. The next section studies a hybrid Gibbs sampler that generates samples asymptotically distributed according to the posterior distribution (20).

IV. HYBRID GIBBS SAMPLER

This section studies a Metropolis-within-Gibbs sampler that generates samples according to $f(\Theta|Y)$. The proposed sampler iteratively generates samples distributed according to the conditional distributions detailed below.

A. Conditional Distribution of the Label Vector z

For each pixel p ($p = 1, \ldots, P$), the class label z_p is a discrete random variable whose conditional distribution is fully characterized by the probabilities

$$ P[z_p = k|\Theta_{-z_p}] \propto f(t_p|z_p = k, \psi_k, \Sigma_k)f(z_p) $$

where Θ_{-z_p} denotes Θ without z_p, $k = 1, \ldots, K$ (K is the number of classes), and z_{-p} denotes the vector z whose pth element has been removed. These posterior probabilities can be expressed as

$$ P[z_p = k|\Theta_{-z_p}] \propto \exp \left[\sum_{p=1}^{P} \sum_{p' \in \mathcal{V}(p)} \beta \delta(z_p - z_{p'}) \right] $$

$$ \times |\Sigma_k|^{-1/2} \exp \left[-\frac{1}{2}(t_p - \psi_k)^T \Sigma_k^{-1}(t_p - \psi_k) \right] $$

where $|\Sigma_k| = \prod_{r=1}^{R} \sigma_{r,k}^2$. Note that the posterior probabilities of the label vector z in (21) define an MRF. Consequently, sampling from this conditional distribution can be achieved using the scheme detailed in [21], i.e., by drawing a discrete value in the finite set $\{1, \ldots, K\}$ with the probabilities (21).

B. Conditional Distribution of Logistic Coefficient Matrix T

For each pixel p, the Bayes theorem yields

$$ f(t_p|z_p = k, \psi_k, \Sigma_k, y_p, s^2) $$

$$ \propto f(y_p|t_p, s^2) f(t_p|z_p = k, \psi_k, \Sigma_k) $$

$$ \propto \left(\frac{1}{\pi^2} \right)^{\frac{p}{2}} \exp \left\{ -\frac{1}{2s^2} \|y_p - Ma_p(t_p)\|_2^2 \right\} $$

$$ \times |\Sigma_k|^{-1/2} \exp \left[-\frac{1}{2}(t_p - \psi_k)^T \Sigma_k^{-1}(t_p - \psi_k) \right]. $$

Unfortunately, it is too difficult to generate samples distributed according to (22). Therefore, a Metropolis–Hastings step is used, based on a random walk method [27, p. 245] with a Gaussian proposal distribution $\mathcal{N}(0, u^2)$. The variance u^2 of the instrumental distribution has been fixed to obtain an acceptance rate between 0.15 and 0.5 as recommended in [28].

C. Conditional Distributions of the Noise Variance

The Bayes theorem yields

$$ f(s^2|Y, T, \delta) \propto f(s^2|\delta) \prod_{p=1}^{P} f(y_p|t_p, s^2). $$

As a consequence, $s^2|Y, T, \delta$ is distributed according to the following inverse-gamma distribution

$$ s^2|Y, T, \delta \sim IG \left(\frac{LP}{2} + 1, \delta + \sum_{p=1}^{P} \|y_p - Ma_p(t_p)\|_2^2 \right). $$

D. Conditional Distribution of Ψ and Σ

For each endmember r ($r = 1, \ldots, R$) and each class k ($k = 1, \ldots, K$), the conditional distribution of $\psi_{r,k}$ can be written as

$$ f(\psi_{r,k}|\Theta_{-\psi_{r,k}}) \propto f(\psi_{r,k}|v^2) \prod_{p\in I_k} f(t_p|z_p = k, \psi_{r,k}, \sigma_{r,k}^2). $$

Similarly, the conditional distribution of $\sigma_{r,k}^2$ is

$$ f(\sigma_{r,k}^2|\Theta_{-\sigma_{r,k}}) \propto f(\sigma_{r,k}^2) \prod_{p\in I_k} f(t_p|z_p = k, \psi_{r,k}, \sigma_{r,k}^2). $$

Straightforward computations allow the following results to be obtained

$$ \psi_{r,k}|\Theta_{-\psi_{r,k}} \sim \mathcal{N} \left(\frac{\sum_{p\in I_k} t_{r,p} \psi_{r,k}}{\sigma_{r,k}^2 + \sigma_{r,k}^2}, \frac{\sigma_{r,k}^2}{\sigma_{r,k}^2 + \sigma_{r,k}^2} \right) $$

$$ \sigma_{r,k}|\Theta_{-\sigma_{r,k}} \sim IG \left(\frac{n_k}{2}, 1, \gamma + \sum_{p\in I_k} (t_{r,p} - \psi_{r,k})^2 \right) $$

with $\sigma_{r,k} = (1/n_k) \sum_{p\in I_k} t_{r,p}$.

E. Conditional Distribution of v^2 and δ

The conditional distributions of v^2 and δ are the following inverse-gamma and gamma distributions, respectively

$$ v^2|\Psi \sim IG \left(\frac{RK}{2}, \frac{1}{2} \sum_{k=1}^{K} \psi_k^T \psi_k \right) $$

$$ \delta|s^2 \sim \mathcal{G} \left(1, \frac{1}{s^2} \right). $$

V. SIMULATION RESULTS ON SYNTHETIC DATA

Many simulations have been conducted to illustrate the accuracy of the proposed algorithm. The first experiment considers a 25×25 synthetic image with $K = 3$ different classes. The image contains $R = 3$ mixed components (construction concrete, green grass, and micaceous loam) whose spectra
Table I

Class	Actual	Estimated	
	\(\mu_1 \)	\([0.6, 0.3, 0.1]^T \)	\([0.57, 0.3, 0.13]^T \)
	\(\text{diag}(A_1) \)	\([5, 5, 5]^T \)	\([5, 6, 7, 6.7]^T \)
Class	\(\mu_2 \)	\([0.3, 0.5, 0.2]^T \)	\([0.29, 0.49, 0.2]^T \)
	\(\text{diag}(A_2) \)	\([5, 5, 5]^T \)	\([4.5, 5.2, 8.1]^T \)
Class	\(\mu_3 \)	\([0.3, 0.2, 0.5]^T \)	\([0.3, 0.2, 0.5]^T \)
	\(\text{diag}(A_3) \)	\([5, 5, 5]^T \)	\([4.6, 5.7, 10.2]^T \)

Fig. 3. Left: actual labels. Right: estimated labels.

Fig. 4. Top: abundance maps of the 3 pure materials for LMM. Bottom: abundance maps of the 3 pure materials estimated by the hybrid Gibbs sampler (left to right: construction concrete, green grass, micaceous loam).

(L = 413 spectral bands) have been extracted from the spectral libraries distributed with the ENVI package [29]. A label map generated using (5) with \(\beta = 1 \) is shown in Fig. 3 (left). The mean and variance of the abundances have been chosen for each class, as reported in Table I. These values reflect the fact that the first endmember is more present in Class 1 (with an average concentration of 60%), the second endmember is more present in Class 2 (with an average concentration of 50%), and the third endmember is more present in Class 3 (with an average concentration of 50%). In this simulation scenario, the abundance variance has been fixed to a common value of 0.005 for all endmembers, pixels, and classes. The generated abundance maps for the LMM are depicted in Fig. 4. Note that a white (black) pixel in the fraction map indicates a large (small) value of the abundance coefficient. The noise variance is chosen such that the average signal-to-noise ratio (SNR) is equal to \(SNR = 19 \) dB, i.e., \(s^2 = 0.001 \).

The MMSE and MAP estimators for the unknown parameters can be computed from samples generated with the Gibbs samplers presented in Section IV. For instance, the marginal MAP estimates of the label vector \(\hat{z}_{\text{MAP}} \) are shown in Fig. 3 (right) for the proposed hybrid Gibbs algorithm. The MMSE estimates of the abundances conditioned upon \(\hat{z}_{\text{MAP}} \) are shown in Fig. 4. A number of \(N_{MC} = 5000 \) iterations (including 500 burn-in iterations) have been necessary to obtain these results. The proposed algorithm generates samples distributed according to the full posterior of interest. Then, these samples can be used to compute the posterior distributions of the parameters of interest. For instance, the estimated abundance means and variances have been reported in Table I (last row). The estimated classes, abundance coefficients, and abundance mean vectors are clearly in accordance with their actual values.

The LMM hybrid Gibbs algorithm is compared respectively with its non-spatial constrained Bayesian counterpart developed in [6]. The synthetic image shown in Fig. 3 has been analyzed by the initial algorithm in [6] with the same number of iterations \(N_{MC} \) in addition to the FCLS algorithm [4]. As a criterion, the global MSE of the rth estimated abundances has been computed for each algorithm. This global MSE is defined as

\[
\text{MSE}_r^2 = \frac{1}{P} \sum_{p=1}^{P} (\hat{a}_{r,p} - a_{r,p})^2
\]

where \(\hat{a}_{r,p} \) denotes the MMSE estimate of the abundance \(a_{r,p} \).

Table II reports the different results, showing that the algorithm developed in this paper (referred to as “Spatial”) performs better than the non-spatial constrained algorithms (referred to as “Bayesian” and “FCLS”).

VI. SIMULATION RESULTS ON AVIRIS IMAGES

A. Performance of the Proposed Algorithm

This section illustrates the performance of the proposed spatial algorithm on a real hyperspectral dataset, acquired over Moffett Field (CA, USA) in 1997 by the JPL spectro-imager Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Many previous works have used this image to illustrate and compare algorithm performances with hyperspectral images [30]. The first region of interest, shown in Fig. 5, is a 50 × 50 image. The dataset has been reduced from the original 224 bands to \(L = 189 \) bands by removing water absorption bands. As in [6], a principal component analysis has been conducted as a preprocessing step to determine the number of endmembers present in the scene. Then, the endmember spectra have been extracted with the help of N-FINDR algorithm proposed by Winter in [31]. The \(R = 3 \) extracted endmembers, shown in Fig. 6, corresponds to soil, vegetation and water.

Note that the influence of the endmember extraction step on the unmixing results has been investigated in [21] by coupling the proposed algorithm with other EEAs.
algorithm proposed in Section IV has been applied on this image with \(N_{MC} = 5000 \) iterations (with 500 burn-in iterations). The number of classes has been set to \(K = 4 \) since prior knowledge on the scene allows 4 areas in the image to be identified: water point, lake shore, vegetation and soil.

The estimated classification and abundance maps for the proposed hybrid Gibbs algorithm are shown in Figs. 7 (left) and 8. The results are very similar to those obtained with the LMM-based Bayesian algorithm (see [6, Fig. 9 (top)]) or the FCLS algorithm (see [6, Fig. 9 (bottom)]).

The performance of the proposed algorithm has been also evaluated for different values of the number of endmembers \(R \). The resulting classification maps for \(R = 4 \) and \(R = 5 \) are given in Fig. 7 (middle and right). These maps show that the classification results are quite robust with respect to the number of endmembers. The corresponding abundance maps can be found in [21], as well as the results of the proposed algorithm when the number of classes varies.

The execution time of the proposed method (combined with the N-FINDR procedure) has been compared with those of two other unmixing algorithms when applied on this Moffett image: the FCLS algorithm (combined with N-FINDR) and the constrained nonnegative matrix factorization (cNMF) algorithm that jointly estimates the endmember matrix and the abundances [32]. The results are reported in Table III. The proposed method (referred to as “Spatial”) has the higher computational cost, mainly due to the joint estimation of the labels and the abundance vectors. However, it provides more information about unmixing. In particular, the samples generated by the proposed Gibbs sampler can be used to determine confidence intervals for the estimated parameters.

B. Simulation on a Larger Image

The performance of the proposed Bayesian algorithm has also been evaluated on a larger real hyperspectral image. The selected scene has been extracted from the AVIRIS Cuprite image, acquired over a mining site in Nevada in 1997. The geologic characteristics of the complete data have been mapped in [33]. The area of interest of size \(190 \times 250 \) is shown in Fig. 9 and has been previously studied in [34] to test the VCA algorithm with \(R = 14 \). Therefore, in this experiment, the same number of endmembers has been extracted by the VCA algorithm. The number of classes has been set to \(K = 14 \), which seems to be sufficient to capture the natural diversity of the scene. The proposed algorithm has been used to estimate the unknown parameters related to the analyzed scene. As an example, Fig. 10 shows the estimated classification map (see [21] for more results). The proposed Bayesian inversion algorithm has been able to identify some regions similar to those recovered in [34]. For instance, the composition of two areas (marked as colored rectangles in Fig. 10) is investigated. Table IV reports the abundance means for the most significant

Table III: Computational Times of LMM-Based Unmixing Algorithms

Algorithm	Time(s)	cNMF	Spatial
FCLS	0.388	2.5 \times 10^5	8.4 \times 10^3

These simulations have been carried out with an unoptimized MATLAB 2007b 32-b implementation on a Core(TM)2 Duo 2.66-GHz computer.
endmembers that appear in the two highlighted regions. From these tables, one can conclude that the two classes represented in black and dark gray of the “blue” area are composed of very mixed pixels (the abundance of the most significant endmember is 0.201). On the other hand, both classes in the “green” area are clearly dominated by the sixth endmember. By comparing its corresponding signature with the materials included in the USGS library spectra, this sixth endmember matches the Montmorillonite spectrum (see Fig. 11). This result is in agreement with the ground truth. Montmorillonite is the most commonly found material in this area [33].

VII. CONCLUSION

A new hierarchical Bayesian algorithm was proposed for hyperspectral image unmixing. MRFs were introduced to model spatial correlations between the pixels of the image. A hidden discrete label was introduced for each pixel of the image to identify several classes defined by homogeneous abundances (with constant first and second order statistical moments). The positivity and sum-to-one constraints on the abundances were handled by using an appropriate reparametrization defined by logistic coefficient vectors. We derived the joint posterior distribution of the unknown parameters and hyperparameters associated to the proposed Bayesian LMM. An MCMC method was then studied to generate samples asymptotically distributed according to this posterior. The generated samples were used to estimate the abundance maps as well as the underlying image labels. The results obtained on simulated data and on real AVIRIS images are very promising. Future works include the estimation of the granularity coefficient involved in Potts–Markov random fields.

ACKNOWLEDGMENT

The authors would like to thank one of the reviewers for pointing out the relevant paper [12] and for his valuable suggestions that helped to improve the manuscript.

REFERENCES

[1] N. Keshava and J. Mustard, “Spectral unmixing,” *IEEE Signal Process. Mag.*, vol. 19, no. 1, pp. 44–57, Jan. 2002.
[2] C.-I. Chang, *Hyperspectral Data Exploitation: Theory and Applications*. Hoboken, NJ: Wiley, 2007.
[3] P. J. Martínez, R. M. Perez, A. Plaza, P. L. Aguilar, M. C. Cantero, and J. Plaza, “Endmember extraction algorithms from hyperspectral images,” *Ann. Geophys.*, vol. 49, no. 1, pp. 93–101, Feb. 2006.
[4] D. C. Heinz and C.-I. Chang, “Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery,” *IEEE Trans. Geosci. Remote Sens.*, vol. 39, no. 3, pp. 529–545, Mar. 2001.
[5] C. Theys, N. Dobigeon, J.-Y. Tourneret, and H. Lantéri, “Linear unmixing of hyperspectral images using a scaled gradient method,” in *Proc. IEEE-SP Workshop SSP*, Cardiff, U.K., Aug. 2009, pp. 729–732.
[6] N. Dobigeon, J.-Y. Tourneret, and C.-I. Chang, “Semi-supervised linear spectral unmixing using a hierarchical Bayesian model for hyperspectral imagery,” *IEEE Trans. Signal Process.*, vol. 56, no. 7, pp. 2684–2695, Jul. 2008.
[7] J. Besag, “Spatial interaction and the statistical analysis of lattice systems,” *J. Roy. Stat. Soc. Ser. B*, vol. 36, no. 2, pp. 192–236, 1974.
[8] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 6, no. 6, pp. 721–741, Nov. 1984.
[9] R. S. Rand and D. M. Keenan, “Spatially smooth partitioning of hyperspectral imagery using spectral/spatial measures of disparity,” *IEEE Trans. Geosci. Remote Sens.*, vol. 41, no. 6, pp. 1479–1490, Jun. 2003.
[10] G. Reflief, X. Descombres, F. Falzone, and J. Zerubia, “Texture feature analysis using a Gauss–Markov model in hyperspectral image classification,” *IEEE Trans. Geosci. Remote Sens.*, vol. 42, no. 7, pp. 1543–1551, Jul. 2004.
[11] N. Bali and A. Mohammad-Djafari, “Bayesian approach with hidden Markov modeling and mean field approximation for hyperspectral data analysis,” *IEEE Trans. Image Process.*, vol. 17, no. 2, pp. 217–225, Feb. 2008.
[12] T. T. Kent and K. V. Mardia, “Spatial classification using fuzzy membership models,” *IEEE Trans. Pattern Anal. Mach. Intell.*, vol. 10, no. 5, pp. 659–671, Sep. 1988.
[13] N. Dobigeon, S. Moussaoui, M. Coulon, J.-Y. Tourneret, and A. O. Hero, “Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery,” *IEEE Trans. Signal Process.*, vol. 57, no. 11, pp. 4355–4368, Nov. 2009.
[14] F. Wu, “The Potts model,” *Rev. Modern Phys.*, vol. 54, no. 1, pp. 235–268, Jan. 1982.
[15] R. Neher and A. Srivastava, “A Bayesian MRF framework for labeling terrain using hyperspectral imaging,” *IEEE Trans. Geosci. Remote Sens.*, vol. 43, no. 6, pp. 1363–1374, Jun. 2005.
[16] J. Li, J. M. Bioucas-Dias, and A. Plaza, “Semi-supervised hyperspectral image segmentation using multinomial logistic regression with active learning,” *IEEE Trans. Geosci. Remote Sens.*, vol. 48, no. 11, pp. 4085–4098, Nov. 2010.
[17] M. Faouel, J. A. Benediktsson, J. Chanussot, and J. R. Sveinsson, “Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles,” *IEEE Trans. Geosci. Remote Sens.*, vol. 46, no. 11, pp. 3804–3814, Nov. 2008.
