Evolution and Role of Mergers in the BCG-Cluster Alignment. A View from Cosmological Hydro-Simulations

C. Ragone-Figueroa\(^{1,2}\)\(^\star\), G. L. Granato\(^{2,1,3}\), S. Borgani\(^{2,3,5,6}\), R. De Propris\(^4\), D. García Lambas\(^{1,2}\), G. Murante\(^2\), E. Rasia\(^{2,3}\) and M. West\(^7\)

\(^{1}\) Instituto de Astronomía Teórica y Experimental (IATE), Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), Universidad Nacional de Córdoba, Laprida 854, X5000BGR, Córdoba, Argentina

\(^{2}\) INAF, Osservatorio Astronomico di Trieste, via Tiepolo 11, I-34131, Trieste, Italy

\(^{3}\) IFPU - Institute for Fundamental Physics of the Universe, Via Beirut 2, 34014 Trieste, Italy

\(^{4}\) FINCA, University of Turku, Vaspalantie 20, Piikkiö FI-21500, Finland

\(^{5}\) Dipartimento di Fisica dell' Università di Trieste, Sezione di Astronomia, via Tiepolo 11, I-34131 Trieste, Italy

\(^{6}\) INFN - National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy

\(^{7}\) Lowell Observatory, 1400 W Mars Hill Rd, Flagstaff, AZ 86001, USA

Abstract

Contradictory results have been reported on the time evolution of the alignment between clusters and their Brightest Cluster Galaxy (BCG). We study this topic by analyzing cosmological hydro-simulations of 24 massive clusters with \(M_{200}\) \(\gtrsim 10^{15} \, \text{M}_\odot\), plus 5 less massive with \(1 \times 10^{14} \lesssim M_{200} \lesssim 7 \times 10^{14} \, \text{M}_\odot\), which have already proven to produce realistic BCG masses. We compute the BCG alignment with both the distribution of cluster galaxies and the dark matter (DM) halo. At redshift \(z = 0\), the major axes of the simulated BCGs and their host cluster galaxy distributions are aligned on average within 20°. The BCG alignment with the DM halo is even tighter. The alignment persists up to \(z \lesssim 2\) with no evident evolution. This result continues, although with a weaker signal, when considering the projected alignment. The cluster alignment with the surrounding distribution of matter (3\(R_{200}\)) is already in place at \(z \sim 4\) with a typical angle of 35°, before the BCG-Cluster alignment develops. The BCG turns out to be also aligned with the same matter distribution, albeit always to a lesser extent. These results taken together might imply that the BCG-Cluster alignment occurs in an outside-in fashion. Depending on their frequency and geometry, mergers can promote, destroy or weaken the alignments. Clusters that do not experience recent major mergers are typically more relaxed and aligned with their BCG. In turn, accretions closer to the cluster elongation axis tend to improve the alignment as opposed to accretions closer to the cluster minor axis.

Key words: methods: numerical – galaxies: clusters: general – galaxies: elliptical and lenticular, cD – galaxies: evolution – galaxies: formation – galaxies: haloes.

1 Introduction

It has long since been established that in the local Universe brightest cluster galaxies (BCGs) tend to be elongated in the same direction as their host clusters, as originally noted by Sastry (1968). Later work has demonstrated that this general alignment is detectable independently of the particular tracer of the cluster shape, such as the distribution of member galaxies (e.g. Niederste-Ostholt et al. 2010), the X-Ray emitting hot gas or the Sunyaev-Zeldovich effect (Hashimoto et al. 2008; Donahue et al. 2016), or the total mass maps derived from strong and weak lensing (Donahue et al. 2016). Recently, it has also been pointed out that the large-scale environment may also play an important role (Wang et al. 2018).

Besides the BCG-Cluster alignment, several other forms of preferred orientation of cosmic structures have been investigated (for a review see Joachimi et al. 2015), such as the BCG alignment with large-scale structures (e.g. Argyres et al. 1986; Lambas et al. 1988), or the still contro-
versal tendency for major axes of cluster satellite galaxies to point toward the cluster center (see Huang et al. 2016, and references therein), or the correlation between cluster shape and large-scale structures (e.g. Ragone-Figueroa & Plionis 2007; Paz et al. 2011). However, in this work we will concentrate only on the first, well established, phenomenon and its dependence on redshift.

The redshift dependence of the BCG-Cluster alignment is comparatively scanty known, and different authors reported contradictory results already at moderate redshift $z \lesssim 0.4$. Indeed, while both Niederste-Ostholt et al. (2010) and Hao et al. (2011) claim that the alignment signal becomes weaker at higher redshift, the same trend was not confirmed later by Huang et al. (2016). At yet higher redshift an impressive result was reported by West et al. (2017), who found a clear BCG-cluster alignment signal for ten clusters at $z > 1.3$ observed with the Hubble Space Telescope.

In principle, some theoretical insight on the origin of the BCG-Cluster alignment can be attained by means of gravity-only cosmological simulations, comparing the direction of the major axes of dark matter (DM) haloes at different scales (see Kang et al. 2007; Suto et al. 2016, and references therein). However, reliable investigations require hydro-dynamical simulations, including the sub-resolution description of physical processes (e.g. star formation and feedback effects) which are necessary to produce BCGs as close a possible to the observed population. Recently, in Ragone-Figueroa et al. (2018) we have shown that our zoom-in simulations of 24 massive galaxy cluster predict a mass growth and a final mass of BCGs in reasonable agreement with available observational results. Therefore we devote this paper to investigate the evolution of the BCG-cluster alignment, as predicted by the same simulations.

Most previous analyses of the BCG-Cluster alignment based on cosmological hydrodynamical simulations (e.g. Dong et al. 2014; Vellicig et al. 2015; Tenneti et al. 2015; Zhang & Wang 2019; Okabe et al. 2019) have been focused on smaller mass clusters (\lesssim a few $10^{14} \, M_\odot$), selected in significantly smaller volumes than that of our parent simulation. Moreover, in this work, we are specifically interested in quantifying the role of major mergers (mass ratio > 0.25) on the alignment. On the observational side, recently Wittman et al. (2019) claimed that the alignment distribution of clusters undergoing major mergers, around 1 Gyr after the first pericenter passage, is consistent with that of the general population. Note that this conclusion is based on the assumption that the direction connecting the two BCGs is a proxy for that of the filament along which the clusters are merging, as well as the major axis of the eventual merged cluster. Taken at face value, their finding suggests that any plausible worsening of the alignment caused by the merger should fade quickly.

The organization of the present paper is as follows. In Section 2 we summarize the characteristics of our simulations. The analysis method is described in the subsequent Section 3, and the results are presented in Section 4. The final Section 5 summarizes our main conclusions.

2 NUMERICAL SIMULATIONS

The numerical simulations analyzed in this paper are presented in Ragone-Figueroa et al. (2018). These simulations are similar to those presented in Ragone-Figueroa et al. (2013), but include an updated version of the AGN feedback scheme. Therefore, here we only describe their most relevant features for the present study. For further numerical or technical details on this set of simulations, we refer the reader to the above papers, and references therein.

Our set consists of 29 zoomed-in Lagrangian regions with a custom version of the GADGET-3 code (Springel 2005). These regions have been selected from a parent gravity-only simulation of a $1 \, h^{-1} \text{Gpc}$ box, and are centered around the 24 most massive dark matter (DM) haloes. They all have masses $M_{500} \gtrsim 1.1 \times 10^{15} \, M_\odot$. In addition we select randomly 5 less massive haloes with masses $1.4 \times 10^{14} \lesssim M_{500} \lesssim 6.8 \times 10^{13} \, M_\odot$. Each region was re-simulated at higher resolution including hydrodynamics and sub-resolution baryonic physics. The adopted cosmological parameters are: $\Omega_m = 0.24$, $\Omega_b = 0.04$, $n_s = 0.96$, $\sigma_8 = 0.8$ and $H_0 = 72 \, \text{km s}^{-1} \, \text{Mpc}^{-1}$. The mass resolution for the DM and gas particles is $m_{\text{DM}} = 8.47 \times 10^8 \, h^{-1} \, M_\odot$ and $m_{\text{gas}} = 1.53 \times 10^9 \, h^{-1} \, M_\odot$, respectively. For the gravitational force, a Plummer-equivalent softening length of $\epsilon = 5.6 \, h^{-1} \, \text{kpc}$ is used for DM and gas particles, whereas $\epsilon = 3 \, h^{-1} \, \text{kpc}$ for black hole and star particles. The DM softening length is kept fixed in comoving coordinates for $z > 2$ and in physical coordinates at lower redshift.

Our set of simulations includes a treatment of several sub-resolution baryonic processes usually included in galaxy formation simulations. For details on the adopted implementation of cooling, star formation, and associated feedback, we refer the reader to Ragone-Figueroa et al. (2013). Metallicity dependent cooling is implemented following the approach by Wiersma et al. (2009). The production of metals is followed according to the model of stellar evolution originally implemented by Tornatore et al. (2007).

A full account of the AGN feedback model can be found in Appendix A of Ragone-Figueroa et al. (2013), with few modifications discussed in Section 2 of Ragone-Figueroa et al. (2018) and required to improve the spatial association of the particles representing SMBH with the stellar system in which they were first seeded. This is fundamental to obtain the best possible effect of AGN feedback in limiting the stellar mass growth. The same set of simulations has been used in Bassini et al. (2019) to study SMBH-cluster scaling relations.

Throughout the paper, comoving distances will be denoted by the c letter put before the corresponding unit, that is ΩM for comoving Mpc. Otherwise, we are referring to physical distances.

3 METHODS

Cluster of galaxies are identified by means of a friends-of-friends (FOF) algorithm. First we link DM particles in the

\$1 \, M_{500} (M_{500})$ is the mass enclosed by a sphere whose mean density is 200 (500) times the critical density at the considered redshift. The radius of this sphere is dubbed $R_{200} (R_{500})$.
Figure 1. An example of the different mass distributions and their elongation axis for one of our simulated clusters at $z = 0$. Left Panel: BCG stellar mass distribution. The short line corresponds to the BCG elongation axis, this is set to coincide with the x-axis in all panels. The long line marks instead the cluster galaxies elongation axis. Middle Panel: satellite galaxies distribution, short and long lines are as in the left panel. Right panel: cluster DM distribution. The long line follows the direction of the cluster DM elongation axis.

High resolution regions with a linking length of 0.16 times the mean inter-particle separation. Gas and star particles are then linked to the FOF group defined by the DM particles using the same linking length.

Galaxies inside the clusters are instead identified using the SUBFIND subhalo finder algorithm (Springel et al. 2001; Dolag et al. 2009). This algorithm uses all the particles in the FOF group to determine saddle points of the density field, and then groups together all those particles lying inside a border defined by the spatial position of such saddle points. Then, an unbinding procedure is applied to eliminate high speed particles (i.e., those not gravitationally bound to the substructure). The unbound particles are assigned to the main subhalo. The latter includes all particles not belonging to any other subhalo, thus also the BCGs and the intra-cluster stars.

The center of the halo and the BCG coincide and is given by the particle belonging to the main SubFind subhalo having the minimum value of the gravitational potential. This center is then used to compute at each redshift R_{200} and R_{500} along with their associated masses M_{200} and M_{500}, respectively.

In all figures the BCG is defined as the stellar particles that belong to the main cluster subhalo and are within 10 per cent of R_{500} of the center. Nevertheless, for sake of comparison we also consider BCG as particles inside 50 kpc (physical kpc). As shown in Ragone-Figueroa et al. (2018) the 10 per cent of R_{500} at $z = 0$ is similar to the radius at which our simulated BCGs drop to a rest-frame surface brightness of $B_V \sim 24$ mag arcsec$^{-2}$, a classical observational value to define the galaxy limit (de Vaucouleurs et al. 1991). In our sample of clusters, $0.1R_{500}$ amounts on average to 155, 55 and 30 kpc at redshift 0, 1 and 2, respectively (see Fig. 7 in Ragone-Figueroa et al. 2018).

The alignment between our simulated BCGs and their host clusters can be quantified by means of the angle between the elongation axes of both structures. These elongation axes can be obtained from the principal axes of the ellipsoids that best describe the corresponding distribution of matter. The common practice is to obtain these principal axes from the eigenvectors of a shape tensor that can be expressed as

$$S_{ij} = \frac{1}{M} \sum_n m_n w_n x_{n,i} x_{n,j}$$

where $x_{n,i}$ and $x_{n,j}$ are the i^{th} and j^{th} component of the n^{th} particle position vector relative to the system center, m_n is its mass, M is the sum of the m_n masses and w_n is a weight that is typically related to the distance of the particle to the system center.

The length of the ellipsoid semi-axes ($a > b > c$) are related to the eigenvalues, whereas the directions of the corresponding principal axes ($\hat{a}, \hat{b}, \hat{c}$) are provided by the eigenvectors of the shape matrix. These computations can be performed iteratively, as proposed for example by Zemp et al. (2011). The iterative technique consists in repeating the determination of the ellipsoid until some convergence criteria is satisfied. We first compute S using all the particles, in the BCG or in the cluster (inside R_{200}), yielding initial a, b and c. New a, b and c are next determined discarding particles outside the initial ellipsoidal volume. The process is repeated until changes in the axis ratio become smaller than 0.001. However when dealing with observations, iteration is not used.

For our simulated clusters we compute the best ellipsoids in two ways: using the galaxies (ClusterGlxs) or using the DM particles (clusterDM) inside R_{200}. We consider as galaxies subhaloes with stellar masses $> 1 \times 10^{10} M_\odot$.

When the cluster ellipsoid is estimated with the galaxies we consider four cases in Eq. 1:

- **m-weight:** m_n is the mass of the galaxies and $w_n = 1$
- **r-weight:** w_n is the inverse of the square distance of galaxies to the cluster center and $m_n = 1$
- **mr-weight:** m_n is the mass of the galaxies and w_n is the inverse of the square distance of galaxies to the cluster center
- **no-weight:** $m_n = 1$ and $w_n = 1$

Since we apply both the iterative and non-iterative computations of the best ellipsoids, we obtain eight estimates of the cluster galaxy distribution principal axes.

Regarding the DM halo we follow Zemp et al. (2011) and use the iterative technique without weights removing DM subhaloes before any computation. This leaves us with only one estimation of the best ellipsoid for the DM halo.

The BCGs best ellipsoids are computed using both the
iterative and non-iterative techniques, applied only to star particles, for the m-weight (with \(m_t \) equal to the star particles mass), r-weight, mr-weight and no-weight cases. We hence obtain eight estimations of the BCG principal axes.

Then, in the 3D case, for each BCG-Cluster pair we compute nine alignment angles, one between the central galaxy (iterative m-weight) and the cluster DM halo (iterative no-weight) and the remaining eight between the central galaxy and the cluster galaxies (4 iterative and 4 non-iterative computations of the m-weight, r-weight, mr-weight and no-weight cases).

The 3D alignment angle \(\alpha \) is defined as the acute angle between the principal major axes of the BCG and the cluster

\[
\alpha = \arccos(\langle \hat{a}_{BCG} \cdot \hat{a}_{Clus} \rangle)
\]

(2)

If these two major axes were randomly oriented then our sample of clusters would have a median \(\alpha = 60^\circ \), and a 25%-75% percentiles of ~ 41.4°~ 75.5° respectively.

The projected shapes are computed considering the three orthogonal lines of sight. Only the non-iterative no-weight computation is used here, but in order to mimic what it is done in observations we also consider a case were only the 20 most massive galaxies are used to obtain the shape and position angle of clusters. The projected BCG-Cluster alignment is measured in two ways:

- \(\alpha \) alignment, obtained from Eq. 2 but using the elongation axis of the projected BCG and cluster mass distributions. The mean (and median) angle expected for a uniform random distribution of projected orientation, that is in absence of any alignment signal, is 45° with a standard deviation of \(\sigma = 90\sqrt{\frac{1}{N}} \approx 25.98° \), and 25%-75% percentiles of 22.5° and 67.5°.
- \(\theta \) alignment (e.g. Yang et al. 2006; Hao et al. 2011), obtained from

\[
\theta = \frac{1}{N} \sum_{n=1}^{N} \theta_n
\]

(3)

where \(\theta_n \) is the angle between the projected BCG major axis and the line connecting the BCG to the projected position of the \(n^{th} \) satellite galaxy. If the BCG preferentially aligns with the distribution of cluster satellite galaxies, then it should be obtained \(\theta < 45° \). In a given sample of clusters, if the BCG principal axes are randomly oriented with respect to the cluster satellite distributions, then (\(\theta = 45° \) is expected. The computation of the corresponding standard deviation is not straightforward since it depends on the angular distribution of galaxies inside each cluster. In order to cope with this, we compute the standard deviation numerically (at every simulation output) after one random shuffling of the BCG elongation axis in each cluster. \(^3\)

\(^2\) We found some confusion in the literature on this point. For a random orientation in 3D the median angle is 60°, while the mean angle is \(\approx 57.3° \) (1 radian). In some works the distribution of \(\cos \alpha \) is considered, whose mean is 0.5 which corresponds to \(60° \).

\(^3\) If instead of shuffling the BCG elongation axis we randomly shuffle the satellite galaxies angular positions (\(\theta_n \) in Eq. 3), then (\(\theta = 45° \) and \(\sigma = 90\sqrt{\frac{1}{N}} \), where \(N \) is the number of galaxies used to compute \(\theta \), provided it is the same for all clusters have. This latter operation samples the BCG \(\theta \) alignment with a uniform angular distribution of galaxies. Since real clusters are not triaxial systems, this is not a correct representation of the random distribution of \(\theta \).

4 RESULTS

4.1 3D Alignment

We start by showing in the left panel of Fig. 2 the evolution of the median alignment angle (\(\alpha \)) between the principal axes of BCGs and their host clusters (BCG-ClusterGlxs alignment), where the cluster shapes and principal axes have been computed using galaxies. For sake of brevity we concentrate in the iterative technique only, but we verified that conclusions hold true when using the non iterative computations. The maximum look-back time in this panel is given by the condition that cluster ellipsoids must be computed with at least 20 galaxies.

As found in observations, we obtain a very clear signal of BCG-ClusterGlxs alignment at \(z=0 \). The distribution of the alignment angles is tight, for instance in the no-weight case we find a median of 22.2° and 25% and 75% quartiles of 12.7° and 28.2° respectively. The alignment signal for all the BCG-ClusterGlxs pairs of ellipsoids (m-weight, r-weight, mr-weight and no-weight) persists over the whole considered redshift range, with a very mild tendency to increase with time. The strength of the alignment signal can be appreciated by comparing with the horizontal dashed area in the figure. The latter covers the same percentiles range than before, but for a distribution of angles between two randomly oriented axes.

The right panel of Fig. 2 depicts the evolution of the alignment angle between the BCG and the DM halo (BCG-ClusterDM alignment) as a function of look-back time. The alignment obtained with the usual definition of BCG and the median of BCG halo (BCG-ClusterDM alignment) is typically greater than the fiducial 10% \(R_{500} \) aperture and can progressively include a significant fraction of the cluster main progenitor. Hence, the determination of the main galaxy position angle might be affected by the distribution of stellar matter outside the galaxy, which could artificially increase the alignment signal. Nevertheless, during the last 10Gyr both BCG-ClusterDM alignments (with BCG defined as stars particles inside both 50kpc or 10% \(R_{500} \)) are systematically stronger than the BCG-ClusterGlxs one (left panel), with a median usually below 20°. Once again, we find just a very weak, if not negligible, tendency for a better alignment with time. By converse, Okabe et al. (2019) claim for a clear improvement of the alignment toward \(z = 0 \). However, we note that...
Figure 2. Median values of BCG-ClusterGlxs (left panel) and BCG-ClusterDM (right panel) alignment angles for our set of 29 simulated cluster at each epoch (note that limits in the x-axis are different in both panels, see text). The shaded area encloses the 25%-75% percentiles of the distributions. For sake of clarity in the left panel only the no-weight case percentiles are shown. Up to \(z \lesssim 2 \) there is no clear evolution of the alignment. At \(z \gtrsim 2 \) the BCG-ClusterDM alignment angle increases gradually toward earlier epochs, nevertheless this is not the case if BCG is defined as stars particles inside a 50kpc fixed aperture (dotted line). The horizontal dashed area corresponds to the 25%-75% percentiles of the angle distribution for random directions in 3D (see text).

Figure 3. In the two panels, to ease the comparison we include again the shaded area that encloses the 25%-75% percentiles of the BCG-clusterDM alignment distributions (as in right panel of Fig. 2). The dashed area shows instead the 25%-75% percentiles of the alignment angle distribution for random orientations. Left panel: Dashed and dotted lines stand for the medians of the alignment between the clusterDM and the DM within 3\(R_{200} \) and 10cMpc respectively. During the time interval studied in this work clusters have always been aligned with their nearby surroundings (3\(R_{200} \)) with an angle \(\alpha \lesssim 30^\circ \) (dashed line). The alignment with the 10cMpc scale is somewhat weaker and seems to develop later at \(z \sim 1 \). The median of 3\(R_{200} \)(\(z = 0 \)) \sim 7cMpc and that of 3\(R_{200} \)(\(z = 1 \)) \sim 5.5cMpc. Right panel: Dashed and dotted lines stand for the medians of the alignment between the BCG and the DM within 3\(R_{200} \) and 10cMpc respectively. Though to a lesser extent than ClusterDM, the BCG is also aligned with the larger scale distribution of mass. The strength of this alignment weakens when computed with the mass at larger scales and at higher redshifts.
they study a significantly less massive set of clusters and do not remove subhaloes to describe the DM distribution.

On the other hand, the worsening of the BCG-ClusterDM alignment at earlier times ($z \gtrsim 2$) could be simply related to the fact that at those redshifts the central galaxy is ill defined. Inside the proto-clusters there is not an obvious dominant galaxy but instead several galaxies which compete in mass. Another important fact to consider is that interactions and mergers are more frequent at early time. We will return to this point in Section 4.3.

In order to further analyze the evolution of the alignment with larger scales, Fig. 3 depicts the alignment of cluster DM (left panel) or BCGs (right panel) with the distribution of matter within $3R_{200}$ (dashed line) and 10cMpc (dotted line). To ease the comparison we include the 25%-75% percentiles shaded area of the BCG-ClusterDM alignment presented in the right panel of Fig. 2. It is interesting to note that the alignment of the cluster DM halo with the distribution of matter within $3R_{200}$ (median $3R_{200,\text{median}} \sim 7c$Mpc, median $3R_{200,\text{0.1}} \sim 5.5$cMpc) is present over the whole studied redshift range whilst that with the even larger scale of 10cMpc begins to be clearly distinguishable from random alignments only at $z \lesssim 1.5$. A 10cMpc scale seem to be exceedingly large at $z \gtrsim 1.5$ as to be correlated with the proto-cluster. Though to a lesser extent than ClusterDM, BCGs show also indications of being aligned with the larger scale field. The strength of this alignment weakens when computed with the mass at larger scales or at higher redshifts. This could imply that the alignment stem from the outside, correlating first a larger scale with the cluster and then the cluster with the central galaxy.

4.2 Projected Shape and Alignment

In order to more closely compare with observational results we compute the projected cluster shapes and the BCG-ClusterGlxs alignment between the projected distributions of BCG stars and cluster galaxies. As mentioned before we consider three possible projections. The evolution in time of the mean minor-to-major axis ratio b/a, of the projected galaxy distribution is shown with solid line in Fig. 4. There is a mild evolution of b/a indicating that clusters evolve toward rounder shapes at lower redshifts. This evolution might be partly due to a well known artifact, dubbed noise bias, created by discreteness. This artificially increases ellipticities with decreasing sampling (Paz et al. 2006; Plionis et al. 2006; Ragone-Figueroa et al. 2010; Shin et al. 2018) and in fact this could well be the case since clusters at higher redshifts are progressively populated with less galaxies. In order to better understand how this artifact affects our clusters we recompute axis ratios using always a fixed number of galaxies picking up the 20 most massive ones. This choice mimics somehow the magnitude limit that is present in observational catalogues eliminating in turn the sampling number effects. As expected when working with a lower number of objects we obtain lower values of b/a than when using all the available galaxies, but the mild correlation of the median shape with time remains. Moreover, (b/a) at low redshifts are very similar to the mean value reported by Shin et al. (2018) for their most massive clusters, before they correct for noise and edge bias (see their Fig. 2).

As mentioned in Section 3 we have two estimates of the projected alignment, namely the projected version of Eq 2 and the mean angle between the BCG elongation and the distribution of the satellite galaxies defined in Eq 3. Fig. 5 shows the α and θ alignment in the left and right panel respectively compared with the corresponding random expectations. In both panels, it can be seen that the BCG-Cluster alignment is present also in 2D projections up to redshift $z \lesssim 2$ with no clear signs of evolution. The same is true if the sample of clusters with richness equal to 20 galaxies is used. However, the projected α alignment signal is somewhat less evident than in the 3D case.

On the observational side the evolution of the alignment with time is far from being well assessed. On one hand, Huang et al. (2016) analyzed the alignment phenomenon in a sample of 8237 clusters constructed from the Sloan Digital Sky Survey in the redshift range 0.1 to 0.35 and with estimated masses $M_{200} \approx 1.4 \times 10^{14} M_{\odot}$. They reported an average difference in the position angle of the BCG and the cluster of 35°, with no evidence of redshift dependence in their limited range, in agreement with our result. On the contrary, using cluster samples up to redshift $z \lesssim 0.44$ it has been found a stronger alignment signal as redshift decreases (Niederste-Ostholt et al. 2010; Hao et al. 2011).

Surprisingly, and contrary to the b/a of clusters, at any redshift the α alignment angle distribution we obtain with the 20 most massive galaxies is very similar to the distribution derived by using all the galaxies inside the cluster.

4 In this section, whose results are comparable with observation, we plot the mean instead of the median. Although the latter is generally a more useful statistic of the distribution, usually in observational works the former is considered.
Figure 5. The mean projected α (left) and θ (right) alignments considering the 3 possible projections for the sample of 29 simulated clusters. Computations using all (solid lines) and the 20 most massive galaxies (dashed lines) are shown. Shaded areas surrounding each mean correspond to the $\pm 1\sigma$ of the corresponding distributions. Left panel: The projected α alignment is somewhat looser than the full 3D alignment but is still present in the whole studied redshift range. The horizontal dashed area with center at 45° encloses the $\pm 1\sigma$ deviation of the random alignment expectation. Right panel: The projected θ alignment is also present during the whole redshift range. The dashed area surrounding 45° corresponds to the $\pm 1\sigma$ standard deviation of a random distribution of θ, which is computed after one shuffling of the BCG elongation axis in each cluster (see text).

Figure 6. Effect of the noise bias on clusters b/a and the projected BCG-Cluster alignment α. P_{K-S} is the Kolmogorov-Smirnov probability that two samples are drawn from the same distribution. The dashed histogram shows the P_{K-S} values obtained when comparing the two b/a distributions in Fig. 4 at each redshift. P_{K-S} has a sharp peak at small values, implying that clusters b/a are substantially different if computed with all or with only 20 galaxies. On the contrary, the position angles of clusters seem to be less affected by this so-called noise bias. In fact, the gray solid histogram of P_{K-S} values resulting from the comparison of the two α distributions in the left panel of Fig. 5, are comparatively large.

This can be quantified by means of the Kolmogorov-Smirnov test as shown in Fig. 6. It is evident from this figure that the noise bias affects the computation of the cluster position angles negligibly and much less than that of the cluster shapes. This finding is important since it supports the reliability of observational works where the BCG-Cluster alignment has been detected at high redshift by using a small number of galaxies (West et al. 2017).

4.3 The Role of Mergers

With the aim of assessing the role of major mergers in the evolution of the alignment between the central galaxy and its host cluster we study the individual assembly path of each cluster. Major merger events are defined as accretions of haloes with at least 25% of the cluster mass. We identify the moments in which a cluster began to accrete another halo as the snapshot just before the accreted halo is last seen as a distinct FOF group. The elapsed time between two successive such moments or, in the case of a last merger the time between it and redshift zero, is defined as $\text{NoAcc} \Delta t$.

In this section we concentrate on merger events occurring at $z < 1$, where the clusters and the BCGs are more mature, and the average alignment is almost constant. In order to understand how the BCG-Cluster alignment is affected by major mergers, we consider the change of three quantities between the beginning (start) and the end (end) of each $\text{NoAcc} \Delta t$.

These are:

- $\Delta \alpha = \alpha_{\text{start}} - \alpha_{\text{end}}$, where alpha corresponds to the BCG-ClusterDM alignment angle. Positive values of $\Delta \alpha$ indicate an improvement of the alignment during $\text{NoAcc} \Delta t$, and vice-versa.
The improvement (worsening) of the alignment using the BISECT option.

Both clusters with smaller \(\Delta \tau \), where \(\Delta \tau = T_{\text{start}} - T_{\text{end}} \), and \(T = (a^2 - b^2)/(a^2 - c^2) \) is the triaxiality parameter. Values of \(T \) near to one (zero) correspond to more prolate (oblate) systems. In turn, positive (negative) values of \(\Delta \tau \) imply that the DM halo is more oblate (prolate) at the end of NoAcc\(\Delta \tau \) than at the beginning.

\[\Delta \text{Shift} = \text{Shift}_{\text{start}} - \text{Shift}_{\text{end}}, \]

where \(\text{Shift} \) is the distance between the center of mass and the minimum potential of the cluster. This quantity is often used to characterize the relaxation status of a cluster. Larger values of \(\Delta \text{Shift} \) indicate that the cluster got more relaxed after NoAcc\(\Delta \tau \), and vice-versa.

For mergers happening at \(z < 1 \) the top panel of Fig. 7 shows\(^5\) that the improvement (worsening) of the alignment is more evident when NoAcc\(\Delta \tau \) is longer (shorter). In other words, clusters that spend longer time intervals without important accretion events can strengthen the alignment with their BCGs. This fact could then explain the worsening of the BCG-ClusterDM alignment at the highest redshifts in Fig 2, since mergers at those epochs are expected to be more frequent than at late times. The color code in the figure corresponds to the parameter \textit{AccretionDistance} which takes into account the geometry of the merger. More precisely, this distance considers the velocity direction and the position that a halo had at the moment of being accreted by the cluster:

\[\text{AccretionDistance} = 1P + d_p \quad (4) \]

where \(1P \) is the impact parameter of the accreted halo, hence the perpendicular distance between the direction of its velocity vector and the center of the cluster; and \(d_p \) is the perpendicular distance of the accreted halo to the major elongation axis of the cluster. Mergers entering the cluster near its major axis and with velocities directions nearly parallel to it, on-axis mergers, will have lower values of \textit{AccretionDistance}. Both \(1P \) and \(d_p \) are evaluated taking into account the position and relative velocity of the accreting halo just before its last identification as a distinct FOF group.

Coming back to the top panel of Fig. 7 it can be noticed a tendency for clusters which improved their alignment to have smaller \textit{AccretionDistance}. In the bottom panel we show the difference of angular displacements, \(\Delta \alpha_{BCG} - \Delta \alpha_{DM} \), of the BCG and clusterDM principal axes during NoAcc\(\Delta \tau \). Positive (negative) values mean that the BCG principal axis experienced more (less) rotation than the cluster axis during NoAcc\(\Delta \tau \). If we take the cases with NoAcc\(\Delta \tau > 2 \text{Gyr} \), we get that in the 65% of the cases the BCG principal axis is the one that rotates more toward the new alignment configuration.

In Fig. 8 where we consider only clusters with NoAcc\(\Delta \tau > 1 \text{Gyr} \) as we intend to reject systems in which the elapsed time since accretion is comparatively short. The left panel depicts the correlation between \(\Delta \eta \) and \textit{AccretionDistance}. In this plot we can observe a systematic improvement of the alignment in clusters with smaller \textit{AccretionDistance}, which means clusters accreting material along nearly their principal axes. The color code in this panel corresponds to the alignment angle at \(t_{\text{end}} \), the end of NoAcc\(\Delta \tau \), these angles are always \(\lesssim 40^\circ \) with the stronger alignments in clusters\(^5\).

\[\Delta \alpha > 0. \]

Out of 22 mergers, we have 85% (64%) of the cluster with \(\alpha < 30^\circ \) (20°) at \(t_{\text{end}} \).

We now focus on the shape of clusters at the beginning and at the end of NoAcc\(\Delta \tau \). We select two subset of clusters according to the median \(\Delta \tau \) defined before which takes into account the change in the triaxiality of the clusters during NoAcc\(\Delta \tau \). The empty diamond in the left panel of Fig. 8 corresponds to the 50% of clusters with the lowest values of \(\Delta \tau \). For these clusters the median\((\Delta \tau)^\text{end} = -0.21 \) which means that at the end of NoAcc\(\Delta \tau \) they are typically more prolate.

\[^5\text{Solid lines in Fig.7 and Fig. 8 are computed with the IDL routine ROBUSTJ\text{\textsc{fit}} using the BISECT option.}\]
than at the beginning. On the contrary, the 50% of clusters with the largest values of \(\Delta T \), empty triangle in Fig. 8, has a median(\(\Delta T\)) = 0.13, and hence they became more oblate. The emerging picture is the following. Clusters that became more prolate after the merger had accretions events typically coming from near the major axis of the cluster and have also improved their alignment. Conversely, those that became more oblate typically had off-axis accretions and deteriorated their alignments.

These are important findings since they suggest that major mergers are not affecting equally the relative orientation of clusters with their central galaxies. Indeed, the frequency and geometry of mergers seem to be related to the final outcome of the BCG-Cluster alignment.

Finally, the right panel of Fig. 8 is devoted to study the relationship between the alignment and the dynamical state of clusters, as measured by \(\Delta \text{Shift} \). The color in this panel indicates that clusters with the largest values of \(\Delta \text{Shift} \) are the more relaxed systems at the end of \(\text{NoAcc}\Delta t \). There is a clear tendency for clusters that became more relaxed to have also the highest improvements in the alignment. This finding is in agreement with Fig 7, since it is naturally expected that clusters with the longest \(\text{NoAcc}\Delta t \) have gained a more relaxed status.

5 SUMMARY AND CONCLUSIONS

In this work, we employed cosmological hydro-simulations of rich galaxy clusters to analyse the alignment between their Brightest Cluster Galaxies (BCGs) and the general structure of the clusters, as traced both by the DM distribution and by the distribution of member galaxies. By reconstructing the main progenitor path of each cluster, we can study the evolution of its alignment angle with the central galaxy. We find that each cluster presents a different alignment angle evolution, which seems to be related to the frequency and geometry of the mergers that the system has experienced. Depending on their geometry, mergers can promote, destroy or weaken alignments. If the merger acts in detriment of the alignment, but the cluster is given sufficient time without further important accretions, then the alignment can be restored. Taking all clusters together, a clear signal of alignment is on average present during the whole studied redshift range.

The main results of this work can be summarized as follow.

- We find a constant and strong BCG-Cluster alignment signal in the last 10 Gyr (\(z \lesssim 2\)). The alignment is present whether we define the BCG as star particles inside a fixed aperture of 50kpc or a variable size aperture of 10\%\(R_{200}\). The same result holds if we use the DM or the satellite galaxies distributions to obtain the cluster principal axis.
- At \(z \gtrsim 2\) the BCG-ClusterDM alignment angle increases with redshift, a fact that can be ascribed to the higher frequency of mergers occurring at these epochs. However, the latter behaviour depends on the exact definition of BCG. In this redshift regimes the definition of BCG becomes increasingly meaningless. Nevertheless, we measure the angle between the proto-cluster and its most massive galaxy.
- Clusters feature a substantial degree of alignment with the larger-scale structure, as defined by 3\(R_{200}\). The same is true for BCGs, albeit to a lesser extent. Taken together, these findings suggest that the alignment is induced from the outside, correlating first a larger-scale with the cluster and then the cluster with its central galaxy.

Figure 8. In this plot we consider mergers with \(\text{NoAcc}\Delta t > 1\text{Gyr}\). The solid lines are two-variable linear regression fits to the samples. Left: Clusters that improved the alignment with their BCGs have preferentially had major mergers with lower \(\text{AccretionDistance}\), which means that the accreted halo came from a direction relatively near to the cluster elongation axis. The Spearman rank correlation coefficient is \(r = -0.55\) with a probability of 0.009 of being obtained from an uncorrelated population. The empty diamond and triangle stand for the \([\text{Median}(\text{AccretionDistance}),\text{Median}(\Delta \alpha)]\) coordinates for the 50% of clusters that became more prolate and more oblate, respectively. Right: An improvement of the alignment is correlated with an improvement in the cluster relaxation status. The Spearman rank correlation coefficient is \(r = 0.65\) with a probability of 0.001 of being obtained from an uncorrelated population.
The signal of alignment at $z \lesssim 2$ persists, albeit weakened to some extent, when considering projected matter distributions. The low number galaxies affects less the computation of the cluster principal axis than the computation of its axes ratio.

Major mergers may transiently disrupt the alignment. Nevertheless, after some Gyr without further major perturbations, the alignment is developed again. This is accompanied with a more relaxed state for the cluster.

Mergers along the cluster principal axis affect the alignment to a lesser extent than off-axis ones.

Clusters that after the merger are more prolate than before, improve the alignment more than clusters that became more oblate.

Our results suggest a scenario according to which cluster orientations, and consequently on average also BCG orientations, are dictated by the large scale structure. It is indeed conceivable that the relationship between the large scale structure and the orientation of the cluster is produced both by tidal torques and by the preferential direction of accretion and merging onto the cluster. These preferred accretion channels, in turn, affect the orbital parameters of the acquired satellite galaxies, whose interactions and mergers with the BCG will ultimately influence its orientation. Sufficiently relaxed clusters could further orientate the BCG with its gravitational potential through tidal torquing. A detailed analysis of the latter processes will be the subject of future work.

ACKNOWLEDGEMENTS

This project has received funding from the Consejo Nacional de Investigaciones Científicas y Técnicas of the República Argentina (CONICET), from the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba - Argentina (SeCyT) and from the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie grant agreement No 734374. Simulations have been carried out on CCAD-UNC, which is part of SNCA-MinCyT (Argentina), and at the computing centre of INAF (Italia). We acknowledge the computing centre of INAF-Osservatorio Astronomico di Trieste, under the coordination of the CHIPP project (Bertocchi et al. 2019; Taffoni et al. 2020), for the availability of computing resources and support. SB acknowledges financial support from PRIN-MIUR 2015W7KAWC, the INFN INDARK grant, the Italy-Germany MIUR-DAAD bilateral grant n. 57396842

REFERENCES

Argyres P. C., Groth E. J., Peebles P. J. E., Struble M. F., 1986, AJ, 91, 471

Bassini L., et al., 2019, A&A, 630, A144

Bertocchi S., et al., 2019, arXiv e-prints, p. arXiv:1912.05340

Dolag K., Borgani S., Murante G., Springel V., 2009, MNRAS, 399, 497

Donahue M., et al., 2016, ApJ, 819, 36

Dong X. C., Lin W. P., Kang X., Ocean Wang Y., Dutton A. A., Macciò A. V., 2014, ApJ, 791, L33

Hao J., Kubo J. M., Feldmann R., Annis J., Johnston D. E., Lin H., McKay T. A., 2011, ApJ, 740, 39

Hashimoto Y., Henry J. P., Boehringer H., 2008, MNRAS, 390, 1562

Huang H.-J., Mendelbaum R., Freeman P. E., Chen Y.-C., Rozo E., Rykoff E., Baxter E. J., 2016, MNRAS, 463, 222

Joachimi B., et al., 2015, Space Sci. Rev., 193, 1

Kang X., van den Bosch F. C., Yang X., Mao S., Mo H. J., Li C., Jing Y. P., 2007, MNRAS, 378, 1531

Lambas D. G., Groth E. J., Peebles P. J. E., 1988, AJ, 95, 996

Niederste-Ostholt M., Strauss M. A., Dong F., Koester B. P., McKay T. A., 2010, MNRAS, 405, 2023

Okabe T., et al., 2019, MNRAS, p. 2662

Paz D. J., Lambas D. G., Padilla N., Merchán M., 2006, MNRAS, 366, 1503

Paz D. J., Sgró M. A., Merchán M., Padilla N., 2011, MNRAS, 414, 2029

Plionis M., Basilakos S., Ragone-Figueroa C., 2006, ApJ, 650, 770

Ragone-Figueroa C., Plionis M., 2007, MNRAS, 377, 1785

Ragone-Figueroa C., Plionis M., Merchán M., Göttinger S., Yepes G., 2010, MNRAS, 407, 581

Ragone-Figueroa C., Granato G. L., Murante G., Borgani S., Cui W., 2013, MNRAS, 436, 1750

Ragone-Figueroa C., Granato G. L., Ferraro M. E., Murante G., Biffi V., Borgani S., Planelles S., Rasia E., 2018, MNRAS, 479, 1125

Sastry G. N., 1968, PASP, 80, 252

Shin T.-h., Clampitt J., Jain B., Bernstein G., Neil A., Rozo E., Rykoff E., 2018, MNRAS, 475, 2421

Springel V., 2005, MNRAS, 364, 1105

Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS, 328, 726

Suto D., Kitayama T., Nishimichi T., Sasaki S., Suto Y., 2016, PASJ, 68, 97

Taffoni G., Becciani U., Garilli B., Maggio G., Pasian F., Umana G., Smareglia R., Vitello F., 2020, arXiv e-prints, p. arXiv:2002.01283

Tenneti A., Mandelbaum R., Di Matteo T., Kessell A., Khандai N., 2015, MNRAS, 453, 469

Tornatore L., Borgani S., Dolag K., Matteucci F., 2007, MNRAS, 382, 1050

Velliscig M., et al., 2015, MNRAS, 454, 3328

Wang P., Luo Y., Kang X., Libeskind N. I., Wang L., Zhang Y., Tempel E., Guo Q., 2018, ApJ, 859, 115

West M. J., de Propris R., Bremer M. N., Phillipps S., 2017, MNRAS, 467, 1279

Zemp M., Gnedin N. Y., Kravtsov A. V., 2011, Nature Astronomy, 1, 0157

Wiersma R. P. C., Schaye J., Smith B. D., 2009, MNRAS, 398, 999

Wittman D., Foote D., Golovich N., 2019, ApJ, 874, 84

Yang X., van den Bosch F. C., Mo H. J., Mao S., Kang X., Weinmann S. M., Guo Y., Jing Y. P., 2006, MNRAS, 369, 1293

Zemp M., Gnedin O. Y., Gnedin N. Y., Kravtsov A. V., 2011, ApJS, 197, 30

Zhang X., Wang Y., 2019, Research in Astronomy and Astrophysics, 19, 181

de Vaucouleurs G., de Vaucouleurs A., Corwin Jr. H. G., Buta R. J., Paturel G., Fouqué P., 1991, Third Reference Catalogue of Bright Galaxies. Volume I: Explanations and references. Volume II: Data for galaxies between 0^h and 12^h. Volume III: Data for galaxies between 12^h and 24^h.

This paper has been typeset from a TeX/LaTeX file prepared by the author.

MNRAS 000, 1–10 (2020)