Validation of a Next Generation Sequencing (NGS) panel
to improve the diagnosis of X-linked hypophosphataemia (XLH)
and other genetic disorders of renal phosphate wasting

Susanne Thiele1*, Ralf Werner1,2*, Annika Stubbe3, Olaf Hiort1**, Wolfgang Hoeppner3,4**
*equally contributing first authors, **equally contributing last authors

1Division of Paediatric Endocrinology and Diabetes, Department of Pediatrics, University of Lübeck, Germany, Ratzeburger Allee 160, 23562 Lübeck, Germany
2Institute for Molecular Medicine, University of Lübeck, Germany, Ratzeburger Allee 160, 23562 Lübeck, Germany
3Labor Dr. Heidrich und Kollegen MVZ GmbH, Klinikweg 23, 22081 Hamburg, Germany
4Bioglobe GmbH, Grandweg 64, 22529 Hamburg, Germany

Corresponding author:
Olaf Hiort, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
Fon: +49 451 500 42810, Fax +49 451 500 42954
e-mail: Olaf.Hiort@uksh.de

Short title: A new NGS panel for XLH and related disorders

Key words: X-linked hypophosphataemia (XLH), PHEX, hypophosphataemic rickets (HR),
Autosomal dominant hypophosphataemic rickets (ADHR), FGF23, Autosomal recessive hypophosphataemic rickets 1 (ARHR1), DMP1, Autosomal recessive hypophosphataemic rickets 2 (ARHR2), ENPP1, Autosomal recessive hypophosphataemic rickets 3 (ARHR3), FAM20C, Osteoglophonic dysplasia (OGD), FGFR1, Hypophosphataemic rickets and hyperparathyroidism, KL, Hereditary hypophosphataemic rickets with hypercalciuria (HHRH), SLC34A3, Hypophosphataemia and nephrocalcinosis (NPHLOP1), SLC34A1, renal phosphate wasting disorders, hypophosphataemia, next generation sequencing, gene panel
Abstract

Background: Hypophosphataemic rickets (HR) comprise a clinically and genetically heterogeneous group of conditions, defined by renal-tubular phosphate wasting and consecutive loss of bone mineralisation. X-linked hypophosphataemia (XLH) is the most common form, caused by inactivating dominant mutations in *PHEX*, a gene encompassing 22 exons located at Xp22.1. XLH is treatable by anti-Fibroblast Growth Factor 23 antibody, while for other forms of HR such a therapy may not be indicated. Therefore, a genetic differentiation of HR is recommended.

Objective: To develop and validate a next generation sequencing panel for HR with special focus on *PHEX*.

Design and Methods: We designed an AmpliSeq gene panel for the IonTorrent PGM next generation platform for *PHEX* and ten other HR-related genes. For validation of *PHEX* sequencing 50 DNA-samples from XLH-patients, in whom 42 different mutations in *PHEX* and one structural variation have been proven before, were blinded, anonymised and investigated with the NGS panel. In addition, we analyzed one known homozygous *DMP1* mutation and two samples of HR-patients, where no pathogenic *PHEX* mutation had been detected by conventional sequencing.

Results: The panel detected all 42 pathogenic missense/nonsense/splice-site/indel *PHEX*-mutations and in one the known homozygous *DMP1* mutation. In the remaining two patients, we revealed a somatic mosaicism of a *PHEX* mutation in one; as well as two variations in *DMP1* and a very rare compound heterozygous variation in *ENPP1* in the second patient.
Conclusions: This developed NGS panel is a reliable tool with high sensitivity and specificity for diagnosis of XLH and related forms of HR.
Introduction

X-linked hypophosphataemia (XLH) (OMIM#307800) is the most common genetic disorder of phosphate homeostasis characterized by renal phosphate wasting and hypophosphataemia. It affects about one in 20,000 individuals (1) and follows an X-chromosomal dominant inheritance pattern.

Children affected by XLH present with a broad phenotypic spectrum ranging from isolated hypophosphatemia with few clinical signs up to severe symptoms, such as rickets with extreme lower limb deformities, distinct tooth problems (such as dental abscesses), and a disproportionate short stature (reviewed in (2)). In adulthood further symptoms may occur, such as osteomalacia, arthrosis, pseudo fractures, and diminished final height (3). Further clinical signs are hearing difficulties, enthesopathy, and muscular dysfunction. As the disorder is more under focus during the last few years, more clinical signs have been associated with XLH, such as Arnold-Chiari malformation and other craniofacial abnormalities. Furthermore, bone pain is a very pronounced sign in XLH leading to an impairment of the quality of life in affected children and adults (reviewed in (2)).

XLH is caused by mutations in the PHEX gene encoding the cleavage enzyme phosphate-regulating neutral endopeptidase (PHEX) located on the X chromosome. Today, more than 588 mutations have been reported, spread all over the 22 exons of the PHEX gene (http://www.hgmd.cf.ac.uk/). This includes point mutations, deletions, insertions, as well as intronic variations, presumably altering PHEX function. Although the pathophysiology of XLH is not fully understood, the inactivation of the PHEX protein (expressed predominantly in osteoblasts) leads to an increase of fibroblasts growth factor 23 (FGF23)
levels. High FGF23 levels cause urinary phosphate wasting by down-regulating the renal sodium phosphate transporters 2a and 2c (NaPi2a and NaPi2c, respectively) and reducing transformation of 25-OH-Vitamin D3 to the active vitamin D form 1,25-OH$_2$-Vitamin D$_3$ (4-6) leading to abnormal low levels of 1,25-OH$_2$-Vitamin D$_3$ despite of hypophosphataemia. Therefore, laboratory hallmarks in XLH are hypophosphataemia, reduced renal-tubular phosphate reabsorption, and inappropriately low to normal 1,25 (OH)$_2$-vitamin D$_3$ levels. In addition, elevated alkaline phosphatase is seen as a marker of higher bone turnover related to rickets.

There is a high overlap between XLH and other forms of HR both in clinical as well as in laboratory findings. Some of those components that have been associated with elevated FGF23 expression or decreased degradation of FGF23 include (amongst others) FAM20C (family with sequence similarity 20 member C) (7), furthermore, ENPP1 (ectonucleotide pyrophosphatase/ phosphodiesterase) encoded by the ENPP1 gene (8), and DMP1 (dentin matrix acidic phosphoprotein 1) encoded by the DMP1 gene (9, 10). Consequently, inactivating mutations in these genes also lead to an elevation of serum FGF23 levels and to disorders with a similar phenotype to XLH. A further known pathomechanism is caused by increased FGF23 levels due mutations in FGF23 itself, which affect the cleavage site for degradation. This condition follows an autosomal-dominant (AD) inheritance and the phenotype seems to be milder (11). In contrast to XLH, ADHR shows incomplete penetrance, variable age at onset, and vanishing of the phosphate-wasting defect in rare cases (11-13). Table 1 summarizes different forms of HR with their biochemical characteristics in comparison to nutritional rickets.

Conventional therapy of HR includes oral phosphate supplementation and, in forms with FGF23-mediated hypophosphataemia, calcitriol; however, this therapy further stimulates
FGF23 excretion, enforcing the renal phosphate wasting (6). Recently, a novel therapy with an anti-FGF23 antibody has been approved and current results demonstrate an enormous impact on medical outcome for patients with XLH in children (14-16) and adults (17). The novel therapy with Burosumab has only been approved for XLH, and it is currently unknown if patients with other forms of HR with FGF23 elevation might profit or not from this therapy. Some forms of HR, e.g. caused by ENPP1 mutation, may even have unfavourable effects from Burosumab such as hypercalcemia and calcification, although this is also currently unknown.

In XLH, early diagnosis followed by an immediate treatment has a strong impact on the patient’s long-term outcome (18). However, the diagnosis of this rare condition is often delayed. The first clinical signs are often mild and occur when a toddler starts standing alone and walking, leading to bowing of the lower limbs, which can also be the first sign of rickets due to vitamin D deficiency. Even the biochemical signs are not always straightforward and may altogether not differentiate between XLH and other forms of HR (19). Therefore, the molecular genetic confirmation of the clinically and biochemically based diagnosis of XLH and differentiation from other forms of HR has been recommended by many specialists of this disorder (2). Until today, the gold standard for the search of mutations in the PHEX gene has been Sanger sequencing of all twenty-two exons including the exon/intron boundaries for detecting splice site mutations, followed by multiplex ligation-mediated probe amplification analysis (MLPA). By this approach, the diagnosis is relatively expensive and time consuming and cannot detect other forms of HR. If several patients were to be analyzed in one approach and several genes of one panel were to be examined for some of the patients, we were able to determine a total time and cost saving from 10 samples onward by NGS analysis.
For these reasons we developed a next generation sequencing (NGS) panel comprising not only all exons and the intron boundaries of the *PHEX* gene but also ten other genes, in which mutations are known to cause renal phosphate wasting disorders to ensure distinct differential diagnosis of XLH.
Material and Methods

The ethical committee of the University of Lübeck approved this part of the study in January 2004 (04-020) and confirmed the ethical correctness for developing of a NGS panel with the same samples in October 2018 (18-271).

DNA samples with known PHEX-Mutations

For validation of the gene panel we involved DNA samples from 50 XLH patients with a confirmed clinical, biochemical, and molecular genetic diagnosis representing 42 different PHEX mutations. The mutations cover a broad spectrum of short deletions, missense, nonsense and splice site mutations covering most of the exons of the PHEX gene, as well as one large duplication of exon 12. The samples were anonymized and blinded before inclusion into the panel investigation. DNA had been prepared from EDTA-blood with Qiagen blood kit (Qiagen, Hilden, Germany).

After validation of the gene panel for PHEX we analyzed three additional samples in which HR had been diagnosed by clinical and biochemical signs in the patients, but without a detectable mutation in PHEX analyzed by Sanger sequencing. One sample has a known homozygous variant in the DMP-1 gene. All 53 samples were anonymized with continuous numbers, only harboring the information of the sex chromosomes differentiation between male and female samples.
Establishing the IonTorrent ampliseq gene panel

We utilized the IonTorrent PGM next generation platform (Thermo Fisher Scientific, Walham, MA, USA) in our setting for molecular diagnosis of XLH. The NGS was performed according to the standard protocol recommended by the system supplier.

The gene panel was designed using the AmpliSeq Designer online tool from Thermo Fisher Scientific (https://www.ampliseq.com/). Technical characteristics of the gene panel are shown in Table 2 and Supplementary Table 1. Patient DNA was amplified by multiplex polymerase chain reaction. We included 11 genes in our gene panel of HR-related disorders – PHEX, FGF23, DMP1, ENPP1, SLC34A3, CLCN5, SLC34A1, SLC9A3R1, FAM20C, FGFR1 and KL – which are involved in phosphate metabolism or are known to cause different types of HR.

Sequence analysis was carried out with the software module SeqNext (SeqPilot™, JSI, Ettenheim, Germany). Small gaps in the designed panel, mainly due to large homopolymer stretches, were complemented by Sanger sequencing (Table 2 and Supplementary Tables 2 and 3).

Multiplex ligation-mediated probe amplification (MLPA)

Large deletions or duplications encompassing one or more exons of PHEX can be analyzed by MLPA. The MLPA reaction was performed according to the standard protocol recommended by the system supplier (Salsa MLPA probemix P223, MRC-Holland, Amsterdam, The Netherlands) (20). The evaluation was carried out with GeneMarker (SoftGenetices, State College, USA).

iPLEX and MALDI-TOF MS

The mosaic mutation was confirmed by using iPLEX and MALDI-TOF MS (Agena Bioscience, Hamburg, Germany). The iPLEX reaction was performed according to the standard protocol recommended by the system supplier (21). The homogeneous MassEXTEND (hME) and iPLEX
process relies on a small volume PCR amplifying the target regions including the SNP position in a multiplex fashion. The basic principle of hME and iPLEX reaction is identical. Both methods use a third, so called MassEXTEND primer, which anneals directly adjacent to the SNP position. In an enzymatic primer extension reaction, this primer will be elongated. During that process the allele specific analytical products are generated. The products differ by mass according to the incorporated bases. Primers were designed:

ACGTTGGATGCTGTGAGCACCAATTGGAC PHEX-ex21_PCR1) and

ACGTTGGATGCTCTCTTCTAGGTAGGTGC PHEX-ex21_PCR2), with the Tag-Sequences in italics. For the iPLEX-reaction the primer sequences were: **ACAGACCAGAAGCTGCC** (left) and **CAATTTGGACTTGTTCTC** (right). The sample carrier was introduced into the mass spectrometer (MassARRAY Analyzer Compact, Agena Bioscience, Hamburg, Germany) and data are fully automatically acquired and analyzed in a real time setting and revised using Typer software (Agena Bioscience, Hamburg, Germany).
Results

The technical data of the established NGS panel for the molecular confirmation of the diagnosis of XLH are shown in Table 2. Supplementary Sanger sequencing has been established to completely cover sequences with homopolymers in particular. All in all, close to 100% coverage of all amplicons of the 11 genes in the NGS panel was achieved. The method proved to be sufficiently robust to process 20 patients in parallel in one reaction approach without loss of quality.

In DNA samples from 49 patients (patients No. 1 to 50, except for patient 17) with confirmed XLH, the NGS assay correctly re-identified the PHEX mutations that were already known and classified as pathogenic. Using the NGS method, 15 nonsense, 12 missense, 4 splice, 7 deletions and 4 insertions were found (Supplementary Table 4). For validation, the sequence variants were again confirmed by Sanger sequencing. In one patient no obvious mutation could be detected by the gene panel. This sample was subsequently also analyzed by MLPA and revealed a duplication of PHEX exon 12, confirming previous results (Supplementary Figure 1).

DNA samples from 3 patients that were classified as XLH patients, but in whom no pathogenic mutation in PHEX could be detected beforehand, were also examined with the NGS method (P1-P3; Table 3). NGS analysis of the PHEX gene of the first sample strongly indicated a mosaicism at cDNA position 2104 (P1; Table 3). Sixty of 706 reads displayed a T allele at position c.2104 while 646 reads displayed the C allele of the reference sequence (c.2104C> T, C: 91.5%, T: 8.5%). This result suggests a mosaic mutation. To confirm the mosaic status in the blood DNA, we verified the NGS analysis employing an assay with iPLEX technology (hME) (Supplementary Figure 2).
In the last two samples no variation was detected in the PHEX sequence, nor was MLPA suspicious. Therefore, the sequence data of the other genes of the NGS panel were analyzed. The already known nonsense mutation c.31delT (p.Trp11Glyfs*9) in the DMP-1 gene was discovered in a homozygous fashion in the first sample (P2; Table 3). In the second sample, two heterozygous missense mutations, c.475C>A (p.Gln159Lys) and c.205A>T (p.Ser69Cys), were discovered in the DMP-1 gene. In addition, in this sample three variants were detected in the ENPP1 gene: c.2320C>T (p.Arg774Cys), and the compound heterozygous mutations c.2662C>T (p.Arg888Trp) and c.2663G>A (p.Arg888Gln), both affecting codon position 888 (P3; Table 3).
Discussion

Recently, first international clinical practice recommendations for the diagnosis and management of XLH have been published, recommending that XLH should be diagnosed not only on the basis of clinical signs of rickets and/or osteomalacia in association with renal phosphate wasting, but also on the basis of molecular analysis, confirming the clinical diagnosis on a genetic level (2). Improvements in gene sequencing technologies in combination with rapidly declining costs have led to the development of a large amount of targeted NGS panels. These panels allow investigating multiple known disease-causing genes in one assay. Therefore, in this study, we developed an NGS panel for the diagnosis of XLH and related disorders. We validated the panel for PHEX using 50 DNA-samples with a known PHEX mutation. Since the NGS tool gave a 100% agreement in 49 patient samples, the coverage and the sensitivity must be rated very high, proving that we created an easy, fast, and reliable diagnostic tool for the diagnosis of XLH. An exception are large deletions in 46,XX patients or duplications encompassing one or more exons. In these cases, an additional PHEX MLPA analysis must be performed if a mutation cannot be detected with NGS. What sets our XLH gene panel apart from commercial panels is the validation with 50 previously sequenced DNA samples from clinically confirmed XLH patients. However, the validation could only be carried out for the PHEX gene. There is probably no comparable cohort with already known mutations in the other genes of the panel. Furthermore, due to the high coverage of the genes in the panel we were able to identify a mosaic mutation in the PHEX gene (c. [=/2104C >T]; p.Arg702*) in one patient sample that had not been detected by Sanger sequencing previously. The reason is most likely that in this case the frequency of the mutated gene copies in DNA from leukocytes
was very low (reference base C about 91.5%, but mutated base T in only 8.5% of all reads), but the mosaic mutation has been confirmed by iPLEX and MALDI-TOF MS (Supplementary Figure 2). Since mosaic mutations are difficult to detect by Sanger sequencing, their description in \textit{PHEX} is rare in the literature (22-24). Therefore, the identification of this mosaic mutation demonstrated the high sensitivity of the developed NGS panel.

However, the advantage of using the panel is not only the molecular diagnosis of XLH, but also of related disorders of renal phosphate wasting in one investigation. For this goal we included ten other candidate genes in the panel. These genes were decided to be included into our tool, since all these genes are encoding proteins, which are involved in renal phosphate reabsorption and most of them are known to cause a type of renal phosphate wasting disorder in case of a mutation in one of these genes (for details see Table 1). A validation of variations in these genes except for \textit{PHEX} was not possible because of the rarity of these conditions and the unavailability of samples with known mutations.

In one patient we proved a known homozygous \textit{DMP1} mutation, which has been detected before by Sanger sequencing. \textit{DMP1} encodes for dentin matrix protein type 1 and is produced by osteoblasts and osteocytes, regulating cell attachment and cell differentiation (25). Homozygous \textit{DMP1}-mutations are the cause for ARHR type 1 (ARHR1) (9, 10, 26); a rare autosomal recessive disorder with biochemical and skeletal signs similar to those observed in XLH. Although there are similarities in the pathophysiology between XLH and ARHR1 especially with elevated or inappropriate normal FGF23-levels, the patient can be treated only by the conventional therapy since Burosumab is exclusively licenced for XLH.
In the third sample without proven \textit{PHEX} mutation we detected several molecular genetic changes, which could be responsible for the phenotype of the patient. While the \textit{DMP-1} variants may be common variants, the most probable reason for the phenotype are the compound heterozygous mutations mentioned above in the \textit{ENPP1} gene, affecting different positions of the same amino acid codon. Both variants are very rare (allele frequency:\textless 0.00003 at gnomAD) \cite{27} and are considered as probably damaging by Polyphen 2 \cite{28} and deleterious by SIFT (Sorting Intolerant From Tolerant) \cite{29}.

Homozygous or compound heterozygous \textit{ENPP1} mutations have been previously described to lead not only to generalized arterial calcification of infancy (GACI) \cite{30-32}, but also to autosomal-recessive hypophosphatemic rickets type 2 (ARHR2) in rare cases \cite{8}. Although in ARHR2 patients inappropriate high FGF23 levels are seen \cite{8}, patients should not be treated with Burosumab, because it is a putative enhancement of the development of vascular calcifications.

Limitations of our approach may be the overall effort that is needed to investigate the genes involved in HR. However, this is reduced if aside from \textit{PHEX} other genes are included in the NGS analysis. Furthermore, several samples can be studied in parallel, leading to an economic advantage. Moreover, while the overall coverage is quite high, a customized panel can only detect variations in the genes included. Hitherto unknown genes involved in HR will not be investigated. Samples where no variations are detected with the panel have to be subjected to other NGS methods with an untargeted approach, namely whole exome sequencing or even whole genome sequencing (WGS). These methods have the disadvantage of requiring another, often much more extensive bioinformatics approach for analysis and may be used as a second line. Nevertheless, WGS also offers the possibility to detect structural variations like inversions (not
detectable by MLPA) or deletions by the identification of split-pair reads (33). And lastly, all molecular methods applied will be profitable only in light of very informative patients with respect to clinical and biochemical phenotyping.

In conclusion, the use of NGS technology has major advantages for exact diagnosis of the different forms of HR. In contrast to commercially available NGS panels, the panel was validated with known mutated samples and therefore the application of the panel developed in this study seems to be a sensitive and specific tool which can not only detect mutations in PHEX, but also in other genes associated with HR. This differentiation is favourable for the patients as it readily leads to very specific treatment options.
Declaration of interests

OH and ST received honoraria from Kyowa Kirin.

Funding

This work was in supported by a grant obtained from Kyowa Kirin.

References

1. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK. Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol. 2009;160(3):491-7.
2. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levchenko E, et al. Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol. 2019;15(7):435-55.
3. Chesher D, Oddy M, Darbar U, Sayal P, Casey A, Ryan A, Sechi A, Simister C, Waters A, Wedatilake Y, et al. Outcome of adult patients with X-linked hypophosphatemia caused by PHEX gene mutations. J Inherit Metab Dis. 2018;41(5):865-76.
4. Saito H, Kusano K, Kinosaki M, Ito H, Hirata M, Segawa H, Miyamoto K, Fukushima N. Human fibroblast growth factor-23 mutants suppress Na+-dependent phosphate co-transport activity and 1alpha,25-dihydroxyvitamin D3 production. J Biol Chem. 2003;278(4):2206-11.
5. Beck-Nielsen SS, Mughal Z, Haffner D, Nilsson O, Levtchenko E, Ariceta G, de Lucas Collantes C, Schnabel D, Jandhyala R, Makitie O. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis. 2019;14(1):58.
6. Imel EA, DiMeglio LA, Hui SL, Carpenter TO, Econs MJ. Treatment of X-linked hypophosphatemia with calcitriol and phosphate increases circulating fibroblast growth factor 23 concentrations. J Clin Endocrinol Metab. 2010;95(4):1846-50.
7. Rolvien T, Kornak U, Schinke T, Amling M, Oheim R. A novel FAM20C mutation causing hypophosphatemic osteomalacia with osteosclerosis (mild Raine syndrome) in an elderly man with spontaneous osteonecrosis of the knee. Osteoporos Int. 2019;30(3):685-9.
8. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hauser G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267-72.
9. Lorenz-Depiereux B, Bastepe M, Benet-Pages A, Amyere M, Wagenstaller J, Muller-Barth U, Badenhoop K, Kaiser SM, Rittmaster RS, Shlossberg AH, et al. DMP1 mutations in autosomal recessive hypophosphatemia implicate a bone matrix protein in the regulation of phosphate homeostasis. Nat Genet. 2006;38(11):1248-50.
10. Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, Yuan B, Yu X, Rauch F, Davis SI, Zhang S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310-5.

11. Kruse K, Woelfel D, Strom TM. Loss of renal phosphate wasting in a child with autosomal dominant hypophosphatemic rickets caused by a FGF23 mutation. Horm Res. 2001;55(6):305-8.

12. Econs MJ, McEnery PT. Autosomal dominant hypophosphatemic rickets/osteomalacia: clinical characterization of a novel renal phosphate-wasting disorder. J Clin Endocrinol Metab. 1997;82(2):674-81.

13. Econs MJ, McEnery PT, Lennon F, Speer MC. Autosomal dominant hypophosphatemic rickets is linked to chromosome 12p13. J Clin Invest. 1997;100(11):2653-7.

14. Carpenter TO, Whyte MP, Imel EA, Boot AM, Hogler W, Linglart A, Padidela R, Van’t Hoff W, Mao M, Chen CY, et al. Burosumab Therapy in Children with X-Linked Hypophosphatemia. N Engl J Med. 2018;378(21):1987-98.

15. Imel EA, Glorieux FH, Whyte MP, Munns CF, Ward LM, Nilsson O, Simmons JH, Padidela R, Namba N, Cheong HI, et al. Burosumab versus conventional therapy in children with X-linked hypophosphatemia: a randomised, active-controlled, open-label, phase 3 trial. Lancet. 2019;393(10189):2416-27.

16. Whyte MP, Carpenter TO, Gottesman GS, Mao M, Skринar A, San Martin J, Imel EA. Efficacy and safety of burosumab in children aged 1-4 years with X-linked hypophosphatemia: a multicentre, open-label, phase 2 trial. Lancet Diabetes Endocrinol. 2019;7(3):189-99.

17. Insogna KL, Rauch F, Kamenicky P, Ito N, Kubota T, Nakamura A, Zhang L, Mealfife M, San Martin J, Portale AA. Burosumab Improved Histomorphometric Measures of Osteomalacia in Adults with X-Linked Hypophosphatemia: A Phase 3, Single-Arm, International Trial. J Bone Miner Res. 2019;34(12):2183-91.

18. Kruse K, Hinkel GK, Griefahn B. Calcium metabolism and growth during early treatment of children with X-linked hypophosphataemia. Eur J Pediatr. 1998;157(11):894-900.

19. Rothenbuhler A, Schnabel D, Hogler W, Linglart A. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism. 2020;1035:153892.

20. Schouten JP, McElgunn CJ, Waaijier R, Zwijnenburg D, Diepvens F, Pals G. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 2002;30(12):e57.

21. Storm N, Darnhofer-Patel B, van den Boom D, Rodi CP. MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol Biol. 2003;212:241-62.

22. Goji K, Ozaki K, Sadewa AH, Nishio H, Matsu M. Somatic and germline mosaicism for a mutation of the PHEX gene can lead to genetic transmission of X-linked hypophosphatemic rickets that mimics an autosomal dominant trait. J Clin Endocrinol Metab. 2006;91(2):365-70.

23. Saito T, Nishii Y, Yasuda T, Ito N, Suzuki H, Igarashi T, Fukumoto S, Fujita T. Familial hypophosphatemic rickets caused by a large deletion in PHEX gene. Eur J Endocrinol. 2009;161(4):647-51.

24. Yang M, Kim J, Yang A, Jang J, Jeon TY, Cho SY, Jin DK. A novel de novo mosaic mutation in PHEX in a Korean patient with hypophosphatemic rickets. Ann Pediatr Endocrinol Metab. 2018;23(4):229-34.
25. Kalajzic I, Braut A, Guo D, Jiang X, Kronenberg MS, Mina M, Harris MA, Harris SE, Rowe DW. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone. 2004;35(1):74-82.

26. Turan S, Aydin C, Bereket A, Akcay T, Guran T, Yaralioglu BA, Bastepe M, Juppner H. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone. 2010;46(2):402-9.

27. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, et al. Variation across 141,456 human exomes and genomes reveals the spectrum of loss-of-function intolerance across human protein-coding genes. bioRxiv. 2019:531210.

28. Sim NL, Kumar P, Hu J, Henikoff S, Schneider G, Ng PC. SIFT web server: predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012;40(Web Server issue):W452-7.

29. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. A method and server for predicting damaging missense mutations. Nat Methods. 2010;7(4):248-9.

30. Cheng KS, Chen MR, Ruf N, Lin SP, Rutsch F. Generalized arterial calcification of infancy: different clinical courses in two affected siblings. Am J Med Genet A. 2005;136(2):210-3.

31. Rutsch F, Boyer P, Nitschke Y, Ruf N, Lorenz-Depierieux B, Wittkampf T, Weissen-Plenz G, Fischer RJ, Mughal Z, Gregory JW, et al. Hypophosphatemia, hyperphosphaturia, and bisphosphonate treatment are associated with survival beyond infancy in generalized arterial calcification of infancy. Circ Cardiovasc Genet. 2008;1(2):133-40.

32. Staretz-Chacham O, Shukrun R, Barel O, Pode-Shakked B, Pleniceanu O, Anikster Y, Shalva N, Ferreira CR, Ben-Haim Kadosh A, Richardson J, et al. Novel homozygous ENPP1 mutation causes generalized arterial calcifications of infancy, thrombocytopenia, and cardiovascular and central nervous system syndrome. Am J Med Genet A. 2019;179(10):2112-8.

33. dos Santos AP, Meinel J, Piveta CdSC, de Andrade JGR, Fabbri-Scallet H, Gil-da-Silva-Lopes VL, Guerra-Junior G, Kuenstner A, Kaiser FJ, Holterhus P-M, et al. Disruption of the topological associated domain at Xp21.2 is related to gonadal dysgenesis: A general mechanism of pathogenesis. medRxiv. 2020:2020.03.25.20041418.
Legends for supplementary tables and figures:

Supplementary Table 1: Amplicons of the HR-Panel. Chromosomal positions are described according to GRCh37/hg19

Supplementary Table 2: Primer sequences used to close panel gaps.

Supplementary Table 3: Primer sequences used for Sanger sequencing of homopolymer stretches. Within KL, one amplicon detects two homopolymer stretches.

Supplementary Table 4: Mutations in 50 samples with proven PHEX mutations, validated by the NGS-Panel. A) Individual patient samples and mutations in the different exons of PHEX. The table also lists, which mutations were hemizygous and which were heterozygous. B) Polymorphisms in PHEX, which were detected in the patients. These were homozygous, hemizygous or heterozygous.

Supplementary Figure 1: Normalized intensity of MLPA analysis of PHEX in patient sample 17. The green arrows point to the probes Exon 12-1 and -2, which were at 150 and 132% of normal. As patient 17 was female, a 46,XX karyotype with will have usually two copies of PHEX. In this sample, the higher amplification rate points to a duplication on one allele.

Supplementary Figure 2: Detection and validation of the mosaic mutation. A) Section of aligned single reads of the NGS platform at single nucleotide variation c.[=/2104C>T]. B)
Details of the used reference gene, exon position and number of aligned reads displaying the alternate or reference allele as well as a pseudo electropherogram displayed by SeqNext.

C) Confirmation of the detected mosaic mutation with iPLEX and MALDI-TOF MS
Table 1: Different types of hypophosphataemic rickets (HR), their abbreviations, genetic origin, and biochemical features

Name	Abbreviation	Gene	FGF23	Serum-P	Serum-Ca	Urine-P	Urine-Ca	25OHD3	1,25OHD3	PTH	AP
X-linked hypophosphataemia	XLHR / XLH	PHEX	↑	↓	-	↑	↓	-	↓*	-	↑
Autosomal dominant hypophosphataemic rickets	ADHR	FGF23	↑	↓	-	↑	↓	-	↓*	-	↑
Autosomal recessive hypophosphataemic rickets 1	ARHR1	DMP1	↑	↓	-	↑	↓	-	↓*	-	↑
Autosomal recessive hypophosphataemic rickets 2	ARHR2	ENPP1	↑	↓	-	↑	↓	-	↓*	-	↑
Hereditary hypophosphataemic rickets with hypercalciuria (HHRH)	HHRH	SLC34A3	↓	↓	-	↑	↑	-	↑	↓	↑
Nutritional rickets	NR	-	-	-	-	-	-	↓	↓	-	↑

P - Phosphate, Ca - Calcium, - in general in the normal range, ↑ elevated, ↓ decreased, ↓* inadequate in the lower normal range
Table 2: Technical characteristics of the next generation sequencing (NGS) panel for X-linked hypophosphataemia

Ref Seq	Number of exons	Number of homopolymers	Characteristics
Genes			
PHEX	NM_000444.5	22	2
CLCN5	NM_000084.4	11	0
DMP1	NM_004407.3	5	1
ENPP1	NM_006208.2	25	6
FAM20C	NM_020223.3	10	4
FGF23	NM_020638.2	3	0
FGFR1	NM_023110.2	17	0
KL	NM_004795.3	5	4
SLC34A1	NM_003052.4	12	3
SLC34A3	NM_080877.2	12	1
SLC9A3R1	NM_004252.4	6	1
NGS Panel details			
Number of genes		11	
Panel size		45,98 kb	
Primer Pools		2	
Total number of exons		128	
Total number of amplicons		245	
Amplicon lengths		125-275 bp	
Coverage		99,88%	
Table 3: Variants found in Patients 1 – 3 without proven PHEX-Mutation

Gene	Exon	Variant	Variant Type	P1, ♀	P2, ♂	P3, ♀
PHEX	21	c.2104C=/<T ; p.(Arg702*)	nonsense mosaic			
DMP1	2	c.31delT ; p.(Trp11Glyfs*9)	frameshift hom			
	6	c.205A>T ; p.(Ser69Cys)	missense	hom		
	6	c.475C>A ; p.(Gln159Lys)	missense	het		
ENPP1	23	c.2320C>T (p.Arg774Cys)	missense	het		
	25	c.2662C>T (p.Arg888Trp)	missense	compound het		
	25	c.2663G>A (p.Arg888Gln)	missense	compound het		
FAM20C	10	c.1672C>T (p.Arg558Trp)	missense	compound het		
	10	c.1690A>G (p.Asn564Asp)	missense	het		
SLC34A3	13	c.1538A>T ; p.(Glu513Val)	missense	het		

Homoygous, hom; heterozygous, het
Chromosome	Start	Stop	Amplicon_Name	Gene
chr4	88577544	88577766	AMPL7153651783	DMP1
chr4	88578090	88578312	AMPL7153651782	DMP1
chr4	88580341	88580435	AMPL7154566441	DMP1
chr4	88580512	88580728	AMPL7153651774	DMP1
chr4	88583035	88583260	AMPL7154567095	DMP1
chr4	88583249	88583472	AMPL7154567096	DMP1
chr4	88583445	88583620	AMPL7154567097	DMP1
chr4	88583609	88583755	AMPL7155868476	DMP1
chr4	88583744	88583961	AMPL7155868477	DMP1
chr4	88583935	88584163	AMPL7155868478	DMP1
chr4	88584144	88584356	AMPL7154574300	DMP1
chr4	88584345	88584553	AMPL7155868479	DMP1
chr5	176812611	176812845	ES19.SLC34A1_1	SLC34A1
chr5	176812754	176812982	ES19.SLC34A1_2	SLC34A1
chr5	176812994	176813213	ES19.SLC34A1_3	SLC34A1
chr5	176813213	176813424	ES19.SLC34A1_4	SLC34A1
chr5	176813401	176813628	ES19.SLC34A1_5	SLC34A1
chr5	176814583	176814815	AMPL7153743925	SLC34A1
chr5	176814808	176815014	AMPL7154843939	SLC34A1
chr5	176814980	176815170	AMPL7155868417	SLC34A1
chr5	176815159	176815360	AMPL7157576150	SLC34A1
chr5	176815349	176815424	AMPL7160020481	SLC34A1
chr5	176820635	176820826	AMPL7153743924	SLC34A1
chr5	176820974	176821167	AMPL7154844019	SLC34A1
chr5	176821146	176821246	AMPL7153742603	SLC34A1
chr5	176823691	176823846	AMPL7153743930	SLC34A1
chr5	176823772	176823986	AMPL7153743934	SLC34A1
chr5	176823975	176824137	AMPL7157574362	SLC34A1
chr5	176824669	176824892	ES19.SLC34A1_17	SLC34A1
chr5	176824826	176825044	ES19.SLC34A1_18	SLC34A1
chr5	176825042	176825258	ES19.SLC34A1_19	SLC34A1
chr5	176825224	176825436	AMPL7163326595	SLC34A1
chr6	13212932	13212952	ES21.ENPP1_1	ENPP1
chr6	132168079	13216822	AMPL7159494407	ENPP1
chr6	132169931	13217031	AMPL7154566373	ENPP1
chr6	13217074	13217129	AMPL7153189822	ENPP1
chr6	132172213	132172439	AMPL7153189741	ENPP1
chr6	132173124	132173345	AMPL7154567025	ENPP1
chr6	132173338	132173506	AMPL7153189806	ENPP1
chr6	132175980	132176207	AMPL7153189774	ENPP1
chr6	132179767	132179986	AMPL7153189736	ENPP1
chr6	132181367	132181562	AMPL7153189755	ENPP1
chr6	132181551	132181732	AMPL7154567024	ENPP1
chr6	132182702	132182915	AMPL7156689679	ENPP1
chr6	132185567	132185782	AMPL7153189791	ENPP1
chr6	132185909	132186136	AMPL7153189812	ENPP1
chr6	132189131	132189292	AMPL7153189784	ENPP1
chr6	132190443	132190662	AMPL7153189799	ENPP1
chr6	132193122	132193338	AMPL7153189760	ENPP1
chr6	132193885	132194074	AMPL7154566996	ENPP1
chr6	132194063	132194215	AMPL7159531628	ENPP1
Table 1: Amplicons of the HR-Panel

Chromosome	Start	Stop	Amplicon_Name	Gene
chr6	132195313	132195530	AMPL7153189739	ENPP1
chr6	132196880	132197040	AMPL7157413412	ENPP1
chr6	132198078	132198170	AMPL7159531629	ENPP1
chr6	132199541	132199767	AMPL7153189779	ENPP1
chr6	132200852	132201029	AMPL7156689663	ENPP1
chr6	132201018	132201222	AMPL7159531636	ENPP1
chr6	132203460	132203652	AMPL7153189764	ENPP1
chr6	132204732	132204948	AMPL7159531630	ENPP1
chr6	132206027	132206245	AMPL7154567026	ENPP1
chr6	132207721	132207910	AMPL7159531634	ENPP1
chr6	132211297	132211503	AMPL7156689651	ENPP1
chr6	132211492	132211705	AMPL7156689652	ENPP1
chr7	193110	193234	AMPL7160312109	FAM2OC
chr7	193214	193447	AMPL7154076530	FAM2OC
chr7	193284	193498	ES16.FAM2OC_2	FAM2OC
chr7	193482	193690	ES16.FAM2OC_3	FAM2OC
chr7	193682	193894	ES16.FAM2OC_4	FAM2OC
chr7	195448	195642	AMPL7160312172	FAM2OC
chr7	195631	195799	AMPL7154076526	FAM2OC
chr7	208759	208959	AMPL7154076540	FAM2OC
chr7	208948	209130	AMPL7160312164	FAM2OC
chr7	286348	286560	AMPL7154076528	FAM2OC
chr7	288143	288361	AMPL7160312167	FAM2OC
chr7	288346	288559	AMPL7163333840	FAM2OC
chr7	295644	295843	AMPL7160312169	FAM2OC
chr7	295832	295967	AMPL7160312170	FAM2OC
chr7	295947	296131	AMPL7160312171	FAM2OC
chr7	296557	296717	AMPL7160312165	FAM2OC
chr7	296706	296853	AMPL7160312166	FAM2OC
chr7	296871	297003	AMPL7161142675	FAM2OC
chr7	296992	297182	AMPL7160312325	FAM2OC
chr7	298575	298764	AMPL7154076547	FAM2OC
chr7	299548	299736	AMPL7160312173	FAM2OC
chr7	299714	299902	AMPL7160312174	FAM2OC
chr7	299857	300016	AMPL7160312175	FAM2OC
chr8	38271113	38271246	AMPL7163258041	FGFR1
chr8	38271237	38271430	AMPL7153387772	FGFR1
chr8	38271321	38271552	AMPL7155000690	FGFR1
chr8	38271541	38271719	AMPL7153046940	FGFR1
chr8	38271688	38271894	AMPL7153130822	FGFR1
chr8	38272015	38272241	AMPL7153047043	FGFR1
chr8	38272261	38272490	AMPL7153046983	FGFR1
chr8	38273252	38273483	AMPL7154142947	FGFR1
chr8	38273393	38273623	AMPL7153167950	FGFR1
chr8	38274766	38274982	AMPL7153047020	FGFR1
chr8	38275354	38275545	AMPL7153047059	FGFR1
chr8	38275715	38275938	AMPL7153047007	FGFR1
chr8	38276911	38277136	AMPL7154418863	FGFR1
chr8	38277125	38277313	AMPL7153081109	FGFR1
Supplementary Table 1: Amplicons of the HR-Panel

Chromosome	Start	Stop	Amplicon_Name	Gene
chr8	38279141	38279336	AMPL7155000695	FGFR1
chr8	38279324	38279488	AMPL7155000697	FGFR1
chr8	38281890	38282116	AMPL7154111959	FGFR1
chr8	38282096	38282300	AMPL7153168115	FGFR1
chr8	38283611	38283789	AMPL7153047089	FGFR1
chr8	38285384	38285589	AMPL7153047094	FGFR1
chr8	38285578	38285806	AMPL7154418865	FGFR1
chr8	38285834	38285995	AMPL7153047027	FGFR1
chr8	38287031	38287215	AMPL7163255485	FGFR1
chr8	38287204	38287422	AMPL7163255486	FGFR1
chr8	38287382	38287584	AMPL7153594318	FGFR1
chr8	38314767	38314997	AMPL7153594238	FGFR1
chr8	38314986	38315103	AMPL7154988576	FGFR1
chr9	140126068	140126301	ES16.SLC34A3_1	SLC34A3
chr9	1401262432	140126660	ES16.SLC34A3_2	SLC34A3
chr9	140126988	140127221	ES16.SLC34A3_3	SLC34A3
chr9	140127129	140127362	ES16.SLC34A3_4	SLC34A3
chr9	140127350	140127552	ES16.SLC34A3_5	SLC34A3
chr9	140127534	140127742	ES16.SLC34A3_6	SLC34A3
chr9	140127711	140127929	ES16.SLC34A3_7	SLC34A3
chr9	140128051	140128277	ES16.SLC34A3_8	SLC34A3
chr9	140128234	140128449	ES16.SLC34A3_9	SLC34A3
chr9	140128471	140128652	ES16.SLC34A3_10	SLC34A3
chr9	140128598	140128800	ES16.SLC34A3_11	SLC34A3
chr9	140128787	140128976	ES16.SLC34A3_12	SLC34A3
chr9	140128960	140129180	ES16.SLC34A3_13	SLC34A3
chr9	140129050	140129236	ES16.SLC34A3_14	SLC34A3
chr9	140130304	140130536	AMPL7154567412	SLC34A3
chr9	140130422	140130659	AMPL7154567413	SLC34A3
chr9	140130654	140130808	AMPL7154843919	SLC34A3
chr9	140130747	140130974	AMPL7154843920	SLC34A3
chr12	4479357	4479590	AMPL7154842495	FGFR23
chr12	4479575	4479772	AMPL7153631596	FGFR23
chr12	4479624	4479851	AMPL7153385642	FGFR23
chr12	4479805	4479959	AMPL7154567080	FGFR23
chr12	4481694	4481917	AMPL7153651730	FGFR23
chr12	4488335	4488562	AMPL7154567089	FGFR23
chr12	4488551	4488771	AMPL7154567090	FGFR23
chr13	33590711	33590944	ES21.KL_1	KL
chr13	33590846	33591079	ES21.KL_2	KL
chr13	33591035	33591263	ES21.KL_3	KL
chr13	33591249	33591466	ES21.KL_4	KL
chr13	33627816	33627898	AMPL7156734054	KL
chr13	33627887	33628102	AMPL7156734055	KL
chr13	33628091	33628304	AMPL7155868163	KL
chr13	33628293	33628507	AMPL7155868164	KL
chr13	33629061	33629274	AMPL7154842216	KL
chr13	33629263	33629479	AMPL7155868149	KL
chr13	33634802	33635023	ES21.KL_10	KL
chr13	33635011	33635235	ES21.KL_11	KL
chr13	33635226	33635439	ES21.KL_12	KL
Chromosome	Start	Stop	Amplicon_Name	Gene
------------	---------	---------	----------------	----------
chr13	33635427	33635641	ES21.KL_13	KL
chr13	33635629	33635837	ES21.KL_14	KL
chr13	33635822	33636008	ES21.KL_15	KL
chr13	33637950	33638151	AMPL7154842286	KL
chr13	33638140	33638439	AMPL7154842287	KL
chr17	72744848	72745054	ES22.SLC9A3R1_1	SLC9A3R1
chr17	72745043	72745270	ES22.SLC9A3R1_2	SLC9A3R1
chr17	72745176	72745378	ES22.SLC9A3R1_3	SLC9A3R1
chr17	72745312	72745522	ES22.SLC9A3R1_4	SLC9A3R1
chr17	72758016	72758237	AMPL7155868543	SLC9A3R1
chr17	72758185	72758380	AMPL7154156665	SLC9A3R1
chr17	72759411	72759639	AMPL7153385564	SLC9A3R1
chr17	72759629	72759855	AMPL7154842533	SLC9A3R1
chr17	72762980	72763196	AMPL7154321964	SLC9A3R1
chr17	72764189	72764407	AMPL7154321958	SLC9A3R1
chr17	72764575	72764775	AMPL7154842548	SLC9A3R1
chr17	72764771	72764873	AMPL7154842549	SLC9A3R1
chrX	22050376	22050592	AMPL7154567237	PHEX
chrX	22050581	22050808	AMPL7154567238	PHEX
chrX	22050797	22050946	AMPL7154567239	PHEX
chrX	22050935	22051152	AMPL7154567240	PHEX
chrX	22051139	22051274	AMPL7154567241	PHEX
chrX	22056505	22056720	AMPL7153651704	PHEX
chrX	22065003	22065190	AMPL7156689692	PHEX
chrX	22065179	22065375	AMPL715481267	PHEX
chrX	22094299	22094505	AMPL7156689721	PHEX
chrX	22094494	22094709	AMPL7156689722	PHEX
chrX	22095440	22095661	AMPL7157481265	PHEX
chrX	22095650	22095845	AMPL7157481266	PHEX
chrX	22108477	22108684	AMPL7153651712	PHEX
chrX	22111902	22112128	AMPL7156689714	PHEX
chrX	22112117	22112345	AMPL7156689715	PHEX
chrX	22113294	22113522	AMPL7167698779	PHEX
chrX	22113351	22113578	AMPL7167698777	PHEX
chrX	22113576	22113799	AMPL7167698778	PHEX
chrX	22115008	22115221	AMPL7153651703	PHEX
chrX	22117093	22117310	AMPL7153651702	PHEX
chrX	22129511	22129724	AMPL7153651715	PHEX
chrX	22132527	22132752	AMPL7153651717	PHEX
chrX	22151578	22151798	AMPL7153651707	PHEX
chrX	22186372	22186562	AMPL7153651706	PHEX
chrX	22196313	22196535	AMPL7153651718	PHEX
chrX	22208477	22208686	AMPL7153651711	PHEX
chrX	22230935	22231160	AMPL7153651708	PHEX
chrX	22237074	22237299	AMPL7153651716	PHEX
chrX	22239684	22239904	AMPL7153651724	PHEX
chrX	22244497	22244687	AMPL7153651705	PHEX
chrX	22245559	22245777	AMPL7153651722	PHEX
chrX	22263370	22263593	AMPL7153651721	PHEX
chrX	22265853	22265991	AMPL7154567248	PHEX
chrX	22265980	22266177	AMPL7154567249	PHEX
Chromosome	Start	Stop	Amplicon_Name	Gene
------------	-----------	-----------	---------------	------
chrX	22266166	22266331	AMPL7154567250	PHEX
chrX	22266320	22266457	AMPL7154567251	PHEX
chrX	22266446	22266544	AMPL7154567252	PHEX
chrX	22266643	22266859	AMPL7154567253	PHEX
chrX	22266848	22267072	AMPL7154567254	PHEX
chrX	22267061	22267277	AMPL7154567255	PHEX
chrX	22267266	22267463	AMPL7154567256	PHEX
chrX	22267452	22267647	AMPL7154567257	PHEX
chrX	22267636	22267846	AMPL7154567258	PHEX
chrX	22267835	22268045	AMPL7154567259	PHEX
chrX	22268034	22268225	AMPL7154567260	PHEX
chrX	22268214	22268416	AMPL7154567261	PHEX
chrX	22268405	22268620	AMPL7154567262	PHEX
chrX	22268609	22268783	AMPL7154567263	PHEX
chrX	22268772	22268991	AMPL7154567264	PHEX
chrX	22269090	22269201	AMPL7154567265	PHEX
chrX	22269190	22269380	AMPL7154567266	PHEX
chrX	22269369	22269471	AMPL7154566611	PHEX
chrX	49868920	49869022	AMPL7153651761	CLCN5
chrX	49806755	49806957	AMPL7154567040	CLCN5
chrX	49806946	49807143	AMPL7154567041	CLCN5
chrX	49834337	49834556	AMPL7155868695	CLCN5
chrX	49834545	49834749	AMPL7153651764	CLCN5
chrX	49837067	49837290	AMPL7160636364	CLCN5
chrX	49840262	49840484	AMPL7155868662	CLCN5
chrX	49840473	49840689	AMPL7155868663	CLCN5
chrX	49845207	49845430	AMPL7153651763	CLCN5
chrX	49846125	49846333	AMPL7155868644	CLCN5
chrX	49846322	49846537	AMPL7155868645	CLCN5
chrX	49850597	49850756	AMPL7153651758	CLCN5
chrX	49850953	49851178	AMPL7154567061	CLCN5
chrX	49851167	49851345	AMPL7154567062	CLCN5
chrX	49851334	49851558	AMPL7153651771	CLCN5
chrX	49853192	49853391	AMPL7155868598	CLCN5
chrX	49853380	49853566	AMPL7155868599	CLCN5
chrX	49854590	49854808	AMPL7155868573	CLCN5
chrX	49854797	49855003	AMPL7155868574	CLCN5
chrX	49854992	49855197	AMPL7155868575	CLCN5
chrX	49855145	49855360	AMPL7155868552	CLCN5
chrX	49855349	49855568	AMPL7155868553	CLCN5
chrX	49856721	49856942	AMPL7153651766	CLCN5
Gene	Primer Name (fwd)	Forward Primer Sequence	Primer Name (rev)	Reverse Primer Sequence
---------	-------------------	-------------------------	-------------------	-------------------------
ENPP1	ENPP1-ex01-F1	AGCCAAGGATCTGACCGCGAG	ENPP1-ex01-SR5	CCACGTCCATAGGGCCAGC
KL	KL-ex01-1-F4	CGGGGCAGGGCATAAAGG	KL-ex01-1-R1	TCCCAGATGGACGACCTTG
SLC34A1	SLC34A1-ex02-ex04-F2	TGTCATTACGCGTTGAGAC	SLC34A1-ex02-ex04-R2	ATGCTGACGATGGATGTTG
Gene	Primer Name (fwd)	Forward Primer Sequence	Primer Name (rev)	Reverse Primer Sequence
--------	------------------	-------------------------	------------------	------------------------
SLC9A3R1	SLC9A3R1-ex06-F1	ACCTCACCAAGGCTGAGGACCA	SLC9A3R1-ex06-R1	GGATGTGGGTGCTGATTGTG
SLC34A3	SLC34A3-ex13-F2	ATGAAACTCAGACTTGGCGCTC	SLC34A3-ex13-R2	CTGCCGAGAAACACACCTTG
SLC34A1	SLC34A1-ex02-ex04-F2	TGTCATTCAGGCTGGTGAGAC	SLC34A1-ex02-ex04-R2	ATGCTGACGATGTGGATGTGG
SLC34A1	SLC34A1-ex06-ex08-F2	ATGCAACACCTGTAAACGGAC	SLC34A1-ex06-ex08-R2	GATCTTCAAGGTCTATCTGGAC
KL	KL-ex02-2-F1	ACTATCCTGGAGCATGAGAAGA	KL-ex02-2-R1	TATGCCCCAAATGAAATGGTCTCC
KL	KL-ex04-3-F1	CCATGCTTCGCTTGCCATGTT	KL-ex04-3-R1	TGTAGTGGCTGGTATTCTTCG
KL	KL-ex05-F1	GATGTTGTGCTGGAAATACGG	KL-ex05-R1	GTTTCACAACACTTAGGAGTCG
FAM20C	FAM20C-ex01-3-F1	GTCCCAACTCGTGAGAAGAACT	FAM20C-ex01-3-R1	TGAACCTCTCTACACCATGGA
FAM20C	FAM20C-ex03-F1	AACTCAAAACTCCGAGGGAGA	FAM20C-ex03-R1	ACCTGCTCGTGGCTCGTGGCC
FAM20C	FAM20C-ex04-F1	GGAAGCTCAGCAGGTCTTCATG	FAM20C-ex04-R1	TGGTACGTGGCTGGTGGAC
FAM20C	FAM20C-ex10-F1	ATTCCTCTCCTCAGTTCCCC	FAM20C-ex10-R1	GATGACCGCTCGTGGCTGCC
ENPP1	ENPP1-ex03-F1	CAAACCAAGCCACATAAGTAC	ENPP1-ex03-R1	GAAACACAGAAACTTCCCTGG
ENPP1	ENPP1-ex04-F1	GTGGCCAGATTCTGTGAGTGC	ENPP1-ex04-R1	TAGTTGCCAAATAGCCCATGAC
ENPP1	ENPP1-ex08-F1	CCAATGTAATGATTAGATCAG	ENPP1-ex08-R1	CAAAGAATGGCGACACAGAC
ENPP1	ENPP1-ex19-F1	GAAAGAGCAACACTTTGCC	ENPP1-ex19-R1	TCAGGGTGCTCTCCAGAACC
ENPP1	ENPP1-ex21-F1	GCTGACAGCTAGAGGCAATTTG	ENPP1-ex21-R1	TACCCCTAAAATGTAGTGAAG
ENPP1	ENPP1-ex25-F1	ATTAAACTTGGGAGATGGGAC	ENPP1-ex25-R1	GCAAGATTCAACAGGACCTC
DMP1	DMP1-ex04-ex05-F1	GTAAGATCCTCTACAAAGAAGAC	DMP1-ex04-ex05-R1	CCAGGTAATTTAATCCTAACATC
PHEX	PHEXex1F	TAGAAGAGCAAGAACAGCTTGG	PHEXex1R	GCAGGCCAACAGCCCTATACC
PHEX	PHEXex18F	AGAGAATGAGAAGCTGTACC	PHEXex18R	AAACACGCTTGGAGAACCAATGG
Supplementary Table 4: Mutations in 50 samples with proven PHEX mutations, validated by the NGS-Panel.

Gene	Exon/Intron	Variant	Variant Type
PHEX	Exon 1	c.1A>G p.(Met1Val)	missense
PHEX	Exon 1	c.58C>T p.(Arg20*)	nonsense
PHEX	Intron 1	c.118+2T>A	splicing
PHEX	Exon 2	c.124C>T p.(Gln42*)	nonsense
PHEX	Exon 2	c.162C>A p.(Glu54*)	nonsense
PHEX	Exon 2	c.1815G>T p.(Glu61*)	nonsense
PHEX	Exon 3	c.208_212delGTAAA p.(Val69Serfs*7)	frame shift
PHEX	Exon 3	c.300C>T p.(Phe101*)	nonsense
PHEX	Exon 4	c.409delA p.(Ile137Serfs*7)	frame shift
PHEX	Exon 4	c.417T>A p.(Ty139*)	nonsense
PHEX	Exon 5	c.614G>C p.(Arg205Pro)	missense
PHEX	Exon 5	c.659T>A p.(Leu220*)	nonsense
PHEX	Exon 8	c.852_854delAAT p.(Ile284del)	deletion
PHEX	Exon 9	c.958_960delAAG p.(Lys320del)	deletion
PHEX	Intron 9	c.1079+1G>A	splicing
PHEX	Exon 10	c.1152T>G p.(Tyr384*)	nonsense
PHEX	Exon 10	c.1158C>A p.(Tyr389*)	nonsense
PHEX	Exon 11	c.1178T>G p.(Ile393Thrfs*15)	frame shift
PHEX	Exon 12	c.1328G>A p.(Arg443His)	missense
PHEX	Exon 12	c.1461C>T p.(Pro487Leu)	missense
PHEX	Exon 15	c.1645C>T p.(Arg549*)	nonsense
PHEX	Intron 15	c.1648+1G>A	splicing
PHEX	Exon 16	c.1699C>T p.(Arg567*)	nonsense
PHEX	Exon 16	c.1700G>C p.(Arg567Pro)	missense
PHEX	Exon 18	c.1832_1833delTT p.(Phe611*)	frame shift
PHEX	Exon 18	c.1850C>T p.(lys645Thr)	missense
PHEX	Exon 18	c.1853T>G p.(Arg618Arg)	nonsense
PHEX	Exon 18	c.1862A>C p.(Glu621Pro)	missense
PHEX	Exon 20	c.1971C>G p.(Ty657*)	nonsense
PHEX	Exon 20	c.2040C>T p.(Arg680*)	missense
PHEX	Exon 20	c.2051T>G p.(Phe684Cys)	missense
PHEX	Exon 20	c.2059_2063dupATGATGCTCAT p.(Ser687_His690dup)	duplication
PHEX	Exon 20	c.2066C>T p.(Ala689Val)	missense
PHEX	Exon 21	c.3096A>G p.(His1032*)	nonsense
PHEX	Intron 21	c.3101-1G>A	splicing
PHEX	Exon 24	c.3239G>T p.(Arg447*)	nonsense
Polymorphisms in PHEX

Gene	Exon/Intron	Variant	Variant Type
5´UTR	c.-543A>G	polymorphism	
5´UTR	c.-90A>G	polymorphism	
Intron 2	c.188-47C>T	polymorphism	
Intron 6	c.733+189G>A	polymorphism	
Intron 6	c.733-46C>T	polymorphism	
Intron 7	c.849+128G>A	polymorphism	
Intron 8	c.1588-32A>G	polymorphism	
Intron 13	c.1646-46T>C	polymorphism	
Intron 15	c.1799-10C>T	polymorphism	
Intron 18	c.1900-8dupT	polymorphism	
Intron 19	c.1966-11T>C	polymorphism	
Intron 21	c.1666-31C>T	polymorphism	
3´UTR	c.*1282_*1287dupGTGTGT	polymorphism	
3´UTR	c.*1330T>C	polymorphism	
3´UTR	c.*1331T>C	polymorphism	
3´UTR	c.*1331G>T	polymorphism	
3´UTR	c.*1330T>A	polymorphism	

Legend:

- hemi
- het
- hom
Supplementary Figure 2

A

B

C

no template control

reference sequence

patient with mosaic mutation

iPLEX primer

C

T

10.3%