Title: The rodent lateral orbitofrontal cortex represents expected Pavlovian outcome value but not identity

Marios C. Panayi *1,2, Simon Killcross1

1 School of Psychology, The University of New South Wales, Australia
2 Department of Experimental Psychology, University of Oxford, Oxford, UK
*Corresponding author: marios.panagi@psy.ox.ac.uk

Abstract

The orbitofrontal cortex (OFC) is critical for updating reward-directed behaviours flexibly when task contingencies are reversed, or when outcomes are devalued. We systematically examined the generality of these findings using lesions of the rodent lateral OFC (LO) in instrumental action-outcome, and Pavlovian cue-outcome, learning using specific satiety and taste aversion methods of outcome devaluation. LO lesions disrupted outcome devaluation in Pavlovian but not instrumental procedures. Furthermore, this effect was only observed when using taste-aversion devaluation. Using a specific Pavlovian-to-Instrumental transfer procedure, we established that LO is not necessary for the representation of specific outcome properties, but rather in using these properties to access the current motivational value of outcomes. The role of LO in outcome devaluation and reversal learning was also dissociable between anterior and posterior subregions. These novel dissociable task- and subregion-specific effects suggest a way to reconcile contradictory findings between rodent and non-human primate OFC research.
Introduction

The orbitofrontal cortex (OFC) in rodents and primates is critical for updating behaviour flexibly when outcome contingencies change (Murray, O’Doherty, & Schoenbaum, 2007). Compelling evidence for this view comes from studies using outcome devaluation procedures in which the value of a reward is reduced to test whether behaviour is updated to reflect changes in the outcome’s current value. In rodents, OFC lesions disrupt the appropriate reduction in anticipatory responding for a reward that has been paired with illness and has become aversive (Gallagher, McMahan, & Schoenbaum, 1999; Pickens et al., 2003; Pickens, Saddoris, Gallagher, & Holland, 2005). Similar conclusions have been reached in human fMRI studies (Gottfried, O’Doherty, & Dolan, 2003) and non-human primate studies using excitotoxic lesions and functional inactivation to target OFC function (Izquierdo & Murray, 2004, 2010; Izquierdo et al., 2004; Izquierdo, Suda, & Murray, 2005; Machado & Bachevalier, 2007; Rolls, 2000; West, DesJardin, Gale, & Malks ova, 2011).

Successfully updating behaviour in an outcome devaluation procedure provides strong evidence that the organism has (i) a representation of the specific identity of the predicted outcome, (ii) access to its current motivational value, and (iii) can flexibly update behaviour based on this information. Prominent model-based and sensory-specific outcome-expectancy coding accounts of the OFC (Wikenheiser, Marrero-Garcia, & Schoenbaum, 2017; Wilson, Takahashi, Schoenbaum, & Niv, 2014) argue that deficits in outcome devaluation following OFC lesions are due to an inability to access the representation of the specific identity of expected outcomes. However, deficits in outcome devaluation could also be due to an inability to use an intact representation of expected outcome identity to access its current motivational value.

One aspect of devaluation procedures that may dissociate these two mechanisms (expected identity vs. expected value) is which method of outcome devaluation is used. The
two most commonly employed methods of outcome devaluation are taste aversion, i.e. pairing the reward with illness so that the reward becomes aversive, and sensory specific satiety, i.e. consuming the specific reward to satiety so that it is no longer very rewarding (Holland & Straub, 1979). Devaluation by sensory specific satiety involves recent access to the specific outcome immediately prior to test. This recent repeated access to the outcome may lead to habituation of the sensory representation (identity) of the outcome and provides recent experience of the current motivational value of the outcome. In contrast, taste aversion methods may force the organism to successfully recall outcome identity at test without the aid of recent outcome exposure (Colwill & Rescorla, 1985; Holland, 2004).

Model-based and sensory-specific outcome-expectancy coding accounts of the OFC (Delamater, 2007; Rudebeck & Murray, 2014; Wilson et al., 2014) predict that OFC lesions should disrupt the devaluation effect regardless of whether specific satiety or taste aversion methods are used. This is because appropriate flexible behaviour in both methods of devaluation require that an animal first access the model-based state-representation/identity of the expected outcome. If the OFC is only necessary for accessing the current motivational value of expected outcomes but not their identities, then OFC lesions may not disrupt outcome devaluation by specific satiety. We directly test this prediction using excitotoxic lesions of the OFC in both satiety and taste aversion devaluation procedures.

Devaluation procedures can also be used to dissociate whether a neural substrate of flexible behavioural control is specific to instrumental action-outcome or Pavlovian cue-outcome processes. Balleine et al. (2011) have argued that the role of the rodent OFC in flexible behavioural control is specific to Pavlovian cue-outcome learning (Schoenbaum, Chiba, & Gallagher, 1999) and not instrumental action-outcome learning (Ostlund & Balleine, 2007). Specifically, lesions of rodent OFC did not disrupt instrumental devaluation using specific satiety (Ostlund & Balleine, 2007). It is of note that the OFC lesions reported
in Ostlund and Balleine (2007) specifically targeted the lateral OFC (LO) whereas earlier Pavlovian devaluation studies in rodents involved widespread damage to the ventral (VO), lateral (LO), dorsolateral (DLO), anterior agranular insular (AI) and even medial (MO) OFC subregions (Gallagher et al., 1999; Pickens et al., 2003, 2005). It is therefore unclear whether all these subregions contribute to flexible behavioural control tested by Pavlovian outcome devaluation.

Using focal LO lesions we address whether the role of OFC in flexible behavioural control is specific to cue-guided (Pavlovian) and not action-guided (instrumental) behaviours. Furthermore, we directly test the prediction that both satiety and taste-aversion forms of devaluation are disrupted by OFC lesions by disrupting access to model-based state representations of the predicted outcome identity.

**Results**

**Instrumental devaluation by taste aversion**

First we test whether the OFC plays a necessary role in guiding flexible action-outcome behaviour in an instrumental outcome devaluation task. Ostlund and Balleine (2007) have shown that OFC lesions do not disrupt behaviour in an instrumental devaluation task using specific satiety as the method of devaluation. We extend these findings to instrumental devaluation using taste-aversion as the method of devaluation.

Following recovery from sham or excitotoxic OFC lesions (Figure 1A, N = 32; sham devalued n = 8, sham non-devalued n = 8, lesion devalued n = 8, lesion non-devalued n = 8), half the animals in each lesion group were assigned to have an instrumental reinforcer devalued (devalued group) or an alternative reinforcer devalued (non-devalued group). Rats were trained to lever press for either pellet or liquid sucrose rewards on a random interval 30s schedule (RI30), and were exposed to the alternative reward non-contingently in a separate
session on each day of training. OFC lesions did not affect the lever pressing acquisition across the 3 days of RI30 acquisition training (Figure 1B). A mixed Lesion (sham, lesion) x Devaluation (devalued, non-devalued) x Day (3 days) ANOVA revealed only a significant main effect of Day ($F_{(2, 56)} = 13.99$, $p < .001$, all remaining $F < 1.31$, $p > .26$). A significant linear trend of Day ($F_{(1, 28)} = 21.80$, $p < .001$) suggested that all groups increased lever responding across acquisition days.

Next, animals in the devalued groups acquired a taste aversion to the instrumental reinforcer following pairings with LiCl injections (in contrast to pairings of the alternate reinforcer with control saline injections) whereas animals in the non-devalued groups acquired a taste aversion to the alternative reinforcer and the instrumental outcome was paired with saline injections. Taste aversion was successfully acquired to the food paired with LiCl, as shown by decreased consumption compared to the food paired with saline injections (Figure 1C), and there were no apparent group differences in acquiring this taste aversion. A mixed Lesion x Devaluation (devalued, non-devalued group) x Pairing (3 pairings) x Injection (LiCl, saline) ANOVA supported the acquisition of taste aversion with significant main effects of Pairing ($F_{(2, 56)} = 10.55$, $p < .001$), Injection ($F_{(1, 28)} = 35.96$, $p < .001$), and a Pairing x Injection interaction ($F_{(2, 56)} = 176.17$, $p < .001$, all remaining $F < 2.48$, $p > .09$). Similarly, a significant Pairing x Injection linear trend effect ($F_{(1, 28)} = 513.68$, $p < .001$) suggested that consumption of food paired with LiCl significantly decreased across pairings (linear trend across Pairing for LiCl, $F_{(1, 28)} = 286.92$, $p < .001$) whereas consumption of the food paired with saline increased (linear trend across Pairing for saline, $F_{(1, 28)} = 67.57$, $p < .001$). These findings support previous reports that OFC lesions do not affect initial learning of instrumental lever pressing behaviour, or sensitivity to acquiring taste aversions.
Devaluation of the instrumental response was then assessed by an extinction test of 120 lever pressing. At test the groups with the devalued instrumental reinforcer performed fewer lever presses than the non-devalued groups (i.e. the groups with the alternative reinforcer devalued), but this was not differentially affected by lesion or sham surgery (Figure 1D). A univariate Lesion x Devaluation ANOVA revealed a significant main effect of Devaluation \( (F_{(1, 28)} = 5.14, \ p = .03) \) that did not significantly interact with Lesion (Lesion x Devaluation \( F_{(1, 28)} = 1.19, \ p = .29 \), main effect of Lesion \( F_{(1, 28)} = 0.21, \ p = .65 \)). Therefore, a significant devaluation effect was found across both lesion groups.

Similar to the devaluation test in extinction, subsequent re-acquisition of the instrumental response with the delivery of the outcome was significantly affected by the acquired taste aversion showing a strong devaluation effect (Figure 1E). A univariate Lesion x Devaluation ANOVA revealed a significant main effect of Devaluation \( (F_{(1, 28)} = 181.01, \ p < .001) \) that did not significantly interact with Lesion (Lesion x Devaluation \( F_{(1, 28)} = 0.43, \ p = .52 \), main effect of Lesion \( F_{(1, 28)} = 2.09, \ p = .16 \)).

These findings combine with those of Ostlund and Balleine (2007) to show that the OFC is not necessary for the flexible control of action-outcome behaviour. Furthermore, we rule out the possibility that this discrepancy between Pavlovian and instrumental devaluation effects following OFC is due to differences in the method of devaluation i.e. taste-aversion or specific satiety.

**Pavlovian devaluation by sensory specific satiety**

Next we tested whether the robust effect of OFC lesions on Pavlovian devaluation using taste aversion (Gallagher et al., 1999; Pickens et al., 2003, 2005) could be extended to devaluation by sensory specific satiety. A new group of animals underwent sham or excitotoxic OFC lesions, damage is depicted in Figure 2A. Four animals with damage to the
A further two control animals were excluded due to the presence of unilateral LO/DLO damage caused by sham surgery (final $N = 25$; sham $n = 14$, lesion $n = 11$). Next, all animals received Pavlovian training with two unique cue-outcome pairings before undergoing sensory specific satiety, immediately followed by Pavlovian devaluation testing in extinction.

Acquisition of discriminative responding to the cues (15-sec train of clicks or white noise) predicting pellets and sucrose solution did not differ between lesion groups (Figure 2B). A Group x US (pellet, sucrose) x DayBlock (3 blocks of 3 days) mixed ANOVA revealed no significant main effect of Group or any interactions with Group (all $F < 1.00$, $p > .39$). A significant main effect of DayBlock ($F_{(2, 46)} = 197.63$, $p < .001$) and a US x DayBlock interaction ($F_{(2, 46)} = 9.01$, $p < .001$) revealed that response acquisition was greater for the sucrose US than the pellet US (further supported by a significant linear trend US x DayBlock interaction, $F_{(1, 23)} = 19.46$, $p < .001$).

Prior to devaluation by satiety, there was no significant difference in the mean weights of each group of rats ($t_{(23)} = 1.05$, $p = .31$; sham $M = 374.36$ g, $SD = 22.73$, lesion $M = 384.36$ g, $SD = 25.01$). Following the 1 hr satiety devaluation manipulation, the amount of pellets and sucrose consumed was weighed, and did not differ between groups. Overall, consumption of pellets was lower (sham $M = 5.05$ g, $SD = 1.48$, lesion $M = 5.37$ g, $SD = 0.93$) than consumption of sucrose (sham $M = 18.53$ g, $SD = 3.70$, lesion $M = 17.00$ g, $SD = 3.44$), but this difference was similar in both groups. A Group x US (sucrose, pellet) mixed ANOVA revealed a significant main effect of US ($F_{(1, 23)} = 355.58$, $p < .001$) but no significant effect of Group ($F_{(1, 23)} = 1.19$, $p = .29$) or Group x US interaction ($F_{(1, 23)} = 0.83$, $p = .37$).
During the devaluation test, responding was lower to the cue predictive of the devalued (sated) than the non-devalued outcome (Figure 2C) in both groups. This pattern of results was confirmed by a Group x Devaluation (devalued, non-devalued) x US (pellet, sucrose) mixed ANOVA which included US identity to ensure that the differences observed during consumption did not differentially affect test performances. As described, there was a main effect of Devaluation ($F_{(1, 23)} = 4.53, \ p = .04$) suggesting lower responding to the devalued than the non-devalued cue, which was not affected by Group or the identity of the US (main effect of US $F_{(1, 23)} = 1.98, \ p = .17$, all other $F < 1.00, \ p > .54$). Therefore, in contrast to previous reports using taste aversion devaluation (Gallagher et al., 1999; Pickens et al., 2003, 2005), OFC lesions did not disrupt Pavlovian outcome devaluation when sensory specific satiety was used as the method of devaluation.

The effect of sensory specific satiety on Pavlovian cue representations

The rodent OFC appears to be critical to updating cue-guided behaviour when the value of the outcome is devalued by taste aversion but not by specific satiety processes. Both methods of devaluation are used interchangeably to probe an organism’s ability to update behaviour the value of an outcome changes, and to establish learning about associations between cues and specific outcome identities (Balleine, Killcross, & Dickinson, 2003; Killcross & Blundell, 2002). However, while these two devaluation methods are often used interchangeably, it is unclear whether they engage the same or different associative mechanisms. It is possible that sensory specific satiety procedures provide multiple mechanisms for reducing behaviour to the devalued cue which are not available in taste aversion procedures. One difference between these two methods of devaluation is that sensory specific satiety involves the reduction of value by satiation, but also by habituation of the sensory representation of the outcome i.e. specific satiety not only reduces the value of
the expected outcome but also the ability to excite the representation of an outcome’s sensory properties. In contrast, taste aversion has been argued to leave the sensory identity of the predicted outcome intact, and only modifies its associated value (Colwill & Rescorla, 1988, 1990; Holland, 2004).

Taste aversion devaluation mechanisms have been successfully explored using Pavlovian-to-instrumental transfer procedures (PIT) (Colwill & Rescorla, 1988, 1990; Holland, 2004), in which Pavlovian cues selectively increase instrumental responding when both cue and response predict the same outcome, i.e. the specific PIT effect. In conditioning, cues and instrumental responses can form independent associations with both the sensory and the general motivational properties of an outcome (Gilroy, Everett, & Delamater, 2014), and in specific PIT it is the predicted sensory properties of the Pavlovian cue that appear to drive instrumental responding for the same outcome. This mechanism is supported by the finding that taste aversion devaluation does not disrupt specific PIT because the taste aversion does not change the sensory properties of predicted outcomes, only their associated motivational value. If the effects of specific satiety differ from taste aversion by virtue of habituating the sensory properties of an expected outcome, then it would be predicted that the expected outcome would lose its specific signalling properties in a specific PIT procedure. This hypothesis was assessed directly by testing the effect of specific satiety on specific PIT.

First, rats were trained on two unique lever-outcome relationships and three unique Pavlovian cue-outcome relationships. Instrumental training was for liquid sucrose and maltodextrin rewards, whereas Pavlovian cues predicted either liquid sucrose, maltodextrin, or food pellet rewards (supplementary results).

Prior to PIT testing, one of the two instrumental outcomes was devalued by specific satiety (supplementary results). Instrumental responding was sensitive to the selective
reduction in outcome value (Figure 3A) during a pre-test instrumental extinction session. Responding was significantly reduced on the lever associated with the devalued outcome compared to the non-devalued outcome. This significant devaluation effect was observed at the start of extinction but disappeared when responding on both levers had extinguished by the end of extinction. This was supported by a significant main effect of Block ($F_{(3, 39)} = 25.60, p < .001$) and Devaluation x Block interaction ($F_{(3, 39)} = 4.43, p = .009$), but no effect of Devaluation ($F_{(1, 13)} = 3.40, p = .09$). Specifically, non-devalued was significantly higher than devalued lever responding in block 1 ($F_{(1, 13)} = 13.70, p = .003$) and block 2 ($F_{(1, 13)} = 8.84, p = .02$), but not blocks 3 and 4 ($F's < 1.0, p's > .84$). In contrast to lever pressing, magazine behaviour (Figure 3B) did not differ between devaluation conditions during the lever extinction period (Devaluation x Block ANOVA, all $F's < 2.58, p's > .07$).

During the PIT test, the sensory specific PIT effect was observed on the non-devalued lever, but this effect was selectively abolished on the devalued lever (Figure 3C).

Specifically, responding on the non-devalued lever was greatest in the presence of the Cue that predicted the same outcome (Same vs. Different, $F_{(1, 13)} = 5.98, p = .04$; Same vs. General, $F_{(1, 13)} = 20.37, p < .001$), and responding during the different cue was greater than during the general cue ($F_{(1, 13)} = 4.28, p = .049$). Responding on the devalued lever did not differ in the presence of the different cues (all $F's < 3.19, p's > .2$). This pattern of simple effects was supported by a Devaluation (Non-Devalued, Devalued) x Cue (Same, Different, General) ANOVA which revealed a significant main effect of Cue ($F_{(2, 26)} = 5.93, p = .01$), and a Devaluation x Cue interaction ($F_{(2, 26)} = 4.38, p = .02$), but no main effect of Devaluation ($F_{(1, 13)} = 3.934, p = .07$). An additional planned comparison of responding during the Same cue revealed a significant decrease in responding on the devalued lever compared to the non-devalued lever ($F_{(1, 13)} = 11.87, p = .007$). In contrast to lever pressing, magazine behaviour (Figure 3D) did not differ between devaluation or cue conditions during
the test (Devaluation x Cue ANOVA, all $F$’s < 1, $p$’s > .51), suggesting that the effects on lever pressing were not confounded by differences in competing magazine responding to the cues.

These findings suggest that one associative pathway that might contribute to behavioural control in Pavlovian devaluation tasks using specific satiety is habituation or a reduction in the signalling efficacy of the sensory specific properties of expected outcomes. In contrast, devaluation using taste aversion leaves the signalling properties of expected outcomes intact (Holland, 2004; Rescorla, 1992). Given that lesions of the rodent OFC disrupt devaluation by taste aversion (Gallagher et al., 1999; Pickens et al., 2003, 2005), the intact devaluation we observe following specific satiety in OFC lesioned animals can be accounted for by this alternative pathway. Specifically, OFC lesions disrupt the use of specific outcome properties to access the current motivational value of an expected outcome (as required by taste aversion devaluation), but do not disrupt the representation of the sensory specific properties of expected outcomes per se. In fact, pre-training OFC lesions do not disrupt specific Pavlovian to instrumental transfer (Ostlund & Balleine, 2007), an effect we have confirmed with our lesion and behavioural parameters (supplementary Figure S1).

**Pavlovian devaluation by taste aversion**

An alternative account of the absence of OFC lesion effects on Pavlovian devaluation using sensory specific satiety in contrast to robust deficits devaluation by taste aversion in rodents (Gallagher et al., 1999; Pickens et al., 2003, 2005) is the extent and specificity of OFC lesion damage. It is notable that OFC lesions in these taste aversion studies encompass many orbital subregions (VO, LO, DLO, AI, and even MO). In contrast, the OFC lesions in the present studies are predominantly focussed on the anterior extent of LO, similar to those employed by Ostlund and Balleine (2007). In addition to testing whether these anterior LO
lesions are sufficient to replicate the effect of large OFC lesions on outcome devaluation by taste aversion, a second group of lesion animals was created with posterior LO lesions. Rats underwent sham or excitotoxict lesion surgery using a range of co-ordinates, and two distinct lesion groups were established (described in methods section), anterior and posterior LO lesion groups (Figure 4A, Figure S2) were defined by damage predominantly anterior or posterior to bregma +3.70 respectively (Figure 4B).

First, all animals were trained on two unique Pavlovian cue-outcome relationships. Acquisition of responding to the CSs predicting the to-be devalued and non-devalued USs did not differ within groups but differed between lesion groups (Figure 4C) such that responding was lower in the posterior OFC lesion group. A mixed Group x CS (devalued, non-devalued) x DayBlock (4 Blocks of 3 days) ANOVA supported this observation with a significant main effect of Group ($F_{(2, 41)} = 3.67$, $p = .03$) and DayBlock ($F_{(3, 123)} = 102.14$, $p < .001$) but all other effects failed to reach significance (Group x US $F_{(2, 41)} = 2.55$, $p = .09$, Group x US x DayBlock $F_{(6, 123)} = 2.01$, $p = .07$, all remaining $F < 1.00, p > .44$). Bonferroni corrected pairwise comparisons of overall responding revealed that the posterior group had lower performance than the sham group ($F_{(1, 41)} = 7.34$, $p = .03$), but no significant differences were found between anterior and sham ($F_{(1, 41)} = 2.29$, $p = .42$), or posterior and anterior groups ($F_{(1, 41)} = 1.65$, $p = .62$).

Taste aversion was successfully acquired by all groups (Figure 4D). Food consumption (g) was analysed using a Group x Pairing (injection 1, 2) x Devaluation (LiCl, saline) ANOVA which revealed significant effects of Devaluation ($F_{(1, 41)} = 8.23$, $p = .01$), Pairing ($F_{(1, 41)} = 141.39$, $p < .001$) and a Pairing x Devaluation interaction ($F_{(1, 41)} = 37.83$, $p < .001$), but no main effect or interactions with Group (all remaining $F < 1.00, p > .68$). Follow up simple effects revealed that consumption of the US paired with LiCl did not differ from saline prior to the first injection (pairing 1 $F_{(1, 41)} = 0.09$, $p = .77$), but was significantly
reduced relative to saline prior to the second injection (pairing 2 $F_{(1, 41)} = 59.199, p < .001$).

The third injection pairings performed in the test chambers showed successful transfer of the
taste aversion to this context in all groups (Figure 4E). A Group x Devaluation mixed
ANOVA on magazine duration behaviour revealed a significant effect of Devaluation ($F_{(1, 41)}$
= 16.16, $p < .001$) that did differ with Group (all remaining $F < 1.57, p > .22$). Taken
together, consumption and approach towards the US paired with LiCl was successfully
reduced compared to the US paired with saline injections, but the magnitude of this unique
taste aversion did differ between groups.

Devaluation testing was conducted under extinction to ensure that behaviour was
guided by the expected/recalled value of the outcomes (Figure 4F). The sham group showed a
significant reduction in magazine behaviour to the CS that predicted the devalued relative to
the non-devalued US, but this devaluation effect was not evident in the anterior and posterior
lesion groups. This pattern of results was supported by a Group x Devaluation mixed
ANOVA revealing a significant Group x Devaluation interaction ($F_{(2, 41)} = 3.46, p = .04$), the
main effects of Devaluation ($F_{(1, 41)} = 3.74, p = .06$) and Group ($F_{(2, 41)} = 0.41, p = .41$) did
not reach significance. Simple effects revealed that this interaction was due to a significant
devaluation effect in the sham group ($F_{(1, 41)} = 7.33, p = .01$), but not the anterior ($F_{(1, 41)}$
= 2.06, $p = .16$) or posterior groups ($F_{(1, 41)} = 0.81, p = .37$). This suggests that lesions of the
anterior or the posterior LO are sufficient to disrupt Pavlovian devaluation by taste aversion,
previously established with much larger OFC lesions in rodents (Gallagher et al., 1999;
Pickens et al., 2003, 2005).

Next, a US specific reinstatement test was conducted to see if the lesion groups could
appropriately reduce behaviour to the devalued cue following a brief reminder of the outcome
value. Rats were first exposed to one of the USs, and after a short delay they were presented
with the CS that predicted that US (in extinction). All groups remained sensitive to the taste
aversion when re-exposed to the USs in the test chamber (uneaten devalued USs observed by experimenter when cleaning the chamber prior to test). A mixed Group x Period (pre, post US delivery) x Devaluation ANOVA on magazine behaviour during US re-exposure (data not shown) revealed a significant effect of Period ($F_{(1, 41)} = 71.20, p < .001$), Devaluation ($F_{(1, 41)} = 72.05, p < .001$) and Period x Devaluation interaction ($F_{(1, 41)} = 79.30, p < .001$, all remaining $F < 1.33, p > .28$). Simple main effects revealed that magazine behaviour did not differ before US delivery ($F_{(1, 41)} = 1.23, p = .02$), but was significantly higher after delivery of the non-devalued than the devalued US ($F_{(1, 41)} = 93.46, p < .001$).

During the reinstatement test, all groups showed significant evidence of sensitivity to US devaluation in the presence of the CSs (Figure 4G). A mixed Group x Devaluation ANOVA supported this pattern of results with a significant main effect of Devaluation ($F_{(1, 41)} = 50.73, p < .001$), but no significant effect of Group ($F_{(2, 41)} = 1.12, p = .34$) or Group x Devaluation interaction ($F_{(2, 41)} = 1.97, p = .15$). Therefore, re-exposure to the US prior to test elicited a robust devaluation effect in all groups. This suggests that the disruption of the Pavlovian devaluation effect following LO lesions is not caused by a failure to acquire sensory specific cue-outcome associations, not the ability to acquire a sensory specific taste-aversion, nor perseverative responding to any predictive cues. Instead, the deficit is specific to recalling the new value of the devalued outcome and/or integrating it into appropriate behavioural control.

Sign-tracking and reversal

The finding that posterior LO lesions retarded acquisition of initial Pavlovian conditioned approach behaviour is surprising given that these animals can appropriately modulate their cue driven behaviour based on outcome value when given contact with the US in a reinstatement test. It was hypothesised that this might reflect an impairment in the
When a lever is used as a Pavlovian cue, rats will come to approach and engage with the lever cue (sign-tracking) instead of the normal conditioned approach to the magazine (goal-tracking behaviour) (Brown & Jenkins, 1968; Jenkins & Moore, 1973; Locurto, Terrace, & Gibbon, 1976). Many researchers have argued that sign-tracking behaviour reflects a process by which the lever CS acquires enhanced incentive salience so that the incentive motivational value of the outcome becomes attributed to the cue (Berridge, 2004). Therefore, it was predicted that the posterior LO group would not attribute incentive salience to a lever cue and show a deficit in sign-tracking. The sham, anterior, and posterior LO lesion groups were retrained on a discriminated sign-tracking procedure in using rewarded (CS+) and non-rewarded (CS-) lever cues (left and right lever, counterbalanced).

To ensure that any differences in lever pressing are not confounded by differential levels of competing responses, it is important to establish that there are no group differences in baseline magazine behaviour. Mixed Group x DayBlock (4 blocks of 3 days) ANOVAs for the PreCS magazine duration did not differ between groups during acquisition (Group or Group x DayBlock interactions, all $F < 1.75, p > .12$) or subsequent reversal (all $F < 2.01, p > .14$, data not shown).

During acquisition, lever pressing during the CS+ was greater than CS-, but the lesion groups made fewer responses than the sham group (Figure 5A, left panel). A mixed Group x CS (CS+, CS-) x DayBlock (4 blocks of 3 days) ANOVA partially supported the observed differences with a significant main effect of Group ($F_{(2, 41)} = 3.75, p = .03$) and a 3-way Group x CS x DayBlock interaction ($F_{(6, 123)} = 3.42, p < .01$, all remaining effects also reached significance $F > 2.20, p < .05$). While there were no group differences on DayBlocks 1 and 2 (non-significant main effects of Group and Group x CS interactions for DayBlock 1 and 2, all $F < 2.27, p > .12$), on DayBlocks 3 and 4 there were significant main effects of...
Group (DayBlock 3 $F_{(2, 41)} = 4.97, p = .01$, DayBlock 4 $F_{(2, 41)} = 5.01, p = .01$) and Group x Cue interactions (DayBlock 3 $F_{(2, 41)} = 3.99, p = .03$, DayBlock 4 $F_{(2, 41)} = 4.70, p = .01$). Bonferroni corrected simple effects revealed that there were no group differences in responding to the CS- (DayBlock 3 and 4, all $F < 4.21, p > .14$), whereas CS+ lever pressing was greater in the sham than the posterior group (DayBlock 3 $F_{(1, 41)} = 9.51, p = .01$, DayBlock 4 $F_{(1, 41)} = 8.77, p = .02$) but not different between sham and anterior or anterior and posterior lesions (DayBlock 3 and 4, all $F < 3.87, p > .17$). Therefore, lever responding to the CS+ was lower for the posterior lesion than the sham group in the second half of acquisition but no differences between anterior lesions and the sham or posterior lesion groups were revealed.

Magazine duration responding in the CS- decreased across acquisition in all groups whereas responding to the CS+ only decreased in the sham and anterior groups but not in the posterior lesion group (Figure 5A, left panel). A mixed Group x CS x DayBlock ANOVA supported these observations. CS+ responding was greater than CS- responding, and while responding decreased across days this decline was more rapid to the CS- than the CS+ (main effect of DayBlock $F_{(3, 123)} = 30.06, p < .001$, and a CS x DayBlock interaction $F_{(3, 123)} = 5.82, p = .001$). A 3-way Group x CS x DayBlock interaction ($F_{(6, 123)} = 2.94, p = .01$, and a significant Group x DayBlock interaction $F_{(3, 123)} = 2.19, p < .05$) suggested that the differential decline in responding to each CS was not the same in each group (all remaining $F < 1.00, p > .39$). Separate follow-up Group x DayBlock ANOVAs were conducted on each CS to explore the 3-way interaction. Responding during the CS- decreased to the same extent in all groups (significant main effect of DayBlock $F_{(3, 123)} = 32.25, p < .001$, but no main effect of Group $F_{(2, 41)} = 0.55, p = .58$, or Group x DayBlock interaction $F_{(3, 123)} = 0.24, p = .96$). In contrast, during the CS+ there were significant group differences in responding (significant main effect of DayBlock $F_{(3, 123)} = 18.23, p < .001$, no main effect of Group $F_{(2, 388}$
A popular measure of sign-tracking behaviour is the Pavlovian conditioned approach (PCA) index (Flagel et al., 2011) which combines a number measures relating to the probability, latency, and relative bias in lever pressing over magazine approach. However, there is no principled justification for the specific choice or relative weighting of these measures, so a data driven alternative was used to quantify sign-tracking behaviour. A Doubly Multivariate ANOVA (Tabachnick & Fidell, 2013) was employed to directly assess response competition between the lever pressing and magazine duration measures in the sign-tracking procedure. This allowed for the comparison of two fundamentally different measures, lever pressing and magazine duration, which are likely to be correlated due to response competition i.e. high scores on one measure preclude high scores on the other measure.

A Group x DayBlock x CS (rewarded, non-rewarded) MANOVA with lever pressing and magazine duration response measures revealed a significant Group x DayBlock x CS interaction ($F_{(6, 37)} = 2.95, p = .02$). Follow up Group x DayBlock MANOVAs revealed a significant Group x DayBlock interaction for the rewarded CS ($F_{(6, 37)} = 2.59, p = .03$) but not the non-rewarded CS ($F_{(6, 37)} = 0.86, p = .53$). This significant multivariate interaction was investigated using a planned composite of the differences between measures.
(standardised with respect to within group variances and the grand mean) i.e. lever pressing - magazine duration. This composite reflects the expected competition between responses and was verified (post-hoc) by a discriminant analysis on the final day block of acquisition which revealed standardised coefficients of 0.64 (lever pressing) and -.56 (magazine duration) associated with the first eigenvalue.

The difference scores on the standardised variate revealed that during acquisition of responding directed at the rewarded lever, all groups expressed a bias towards magazine responding at the start of training (Figure 5A). However, by the end of training the sham and anterior groups were responding more to the lever than the magazine whereas the posterior group was responding similarly to both the magazine and the lever. This pattern of observed results was supported statistically. A Group x DayBlock ANOVA on the acquisition of the rewarded lever revealed a significant main effect of Group ($F_{(2, 41)} = 3.45, \ p = .04$), DayBlock ($F_{(3, 123)} = 95.89, \ p < .001$) and Group x DayBlock interaction ($F_{(6, 123)} = 3.67, \ p < .01$). Bonferroni adjusted simple effects revealed that there were no group differences in on DayBlock 1 and 2 (all $p > .17$) whereas on DayBlock 3 and 4 the posterior group had significantly lower scores than the sham group ($p < .01$, all remaining $p > .15$). These findings suggest that there is a difference in OFC function within LO along the anterior-posterior gradient.

**Reversal Learning**

A commonly reported deficit following OFC damage is in reversal learning (Boulougouris, Dalley, & Robbins, 2007; Rudebeck & Murray, 2011; Schoenbaum, Nugent, Saddoris, & Setlow, 2002), so a reversal manipulation was employed to test whether anterior and posterior LO damage result in a reversal deficit. The identity of the CS+ and CS- levers was reversed and acquisition continued for another 12 days.
Reversal learning resulted in more lever presses being directed towards the new CS+ than the CS-, but the lesion groups made fewer responses than the sham group (Figure 5A, right panel). A mixed Group x CS (CS+, CS-) x DayBlock (4 blocks of 3 days) ANOVA partially supported the observed differences with a significant main effect of Group ($F_{(2, 41)} = 5.09, p = .01$) and a 3-way Group x CS x DayBlock interaction ($F_{(6, 123)} = 3.94, p = .001$), all remaining effects also reached significance $F > 3.56, p < .04$, except the Group x DayBlock interaction $F_{(6, 123)} = 1.52, p = .181$). The 3-way interaction was decomposed into separate Group x CS ANOVAs conducted for each DayBlock. On DayBlock 1 responding was greater to the CS- than the CS+ (main effect of CS on DayBlock 1 $F_{(1, 41)} = 5.27, p = .03$) but this did not differ between groups (non-significant main effect of Group and Group x CS interaction, all $F < 1.82, p > .18$). On DayBlocks 2, 3 and 4 the main effect of CS remained significant such that CS+ responding was now higher than CS- responding (DayBlock 2 $F_{(1, 41)} = 109.59, p < .001$, DayBlock 3 $F_{(1, 41)} = 185.42, p < .001$, DayBlock 4 $F_{(1, 41)} = 222.47, p < .001$), however there were also significant main effects of Group (DayBlock 2 $F_{(2, 41)} = 5.05, p = .01$, DayBlock 3 $F_{(2, 41)} = 5.42, p = .01$, DayBlock 4 $F_{(2, 41)} = 4.09, p = .02$) and Group x Cue interactions (DayBlock 2 $F_{(2, 41)} = 3.60, p = .04$, DayBlock 3 $F_{(2, 41)} = 5.45, p = .01$, DayBlock 4 $F_{(2, 41)} = 3.97, p = .03$). Bonferroni corrected simple effects revealed that there were no group differences in responding to the CS- (DayBlock 2, 3 and 4, all $F < 5.01, p > .09$), whereas CS+ lever pressing was greater in the sham than the posterior group (DayBlock 2 $F_{(1, 41)} = 8.47, p = .02$, DayBlock 3 $F_{(1, 41)} = 10.72, p = .01$, DayBlock 4 $F_{(1, 41)} = 8.10, p = .02$) but not different between sham and anterior, or anterior and posterior lesions (DayBlock 2, 3 and 4, all $F < 4.16, p > .14$). Therefore, similar to initial acquisition, lever responding to the CS+ was lower for the posterior lesion than the sham group later in acquisition but no differences between anterior lesions and the sham or posterior lesion groups could be concluded.
A reversal deficit was also found in the posterior LO lesion group using the measure of magazine duration. Magazine duration decreased more rapidly to the CS+ than the CS- during reversal for the sham and anterior lesion group but there was no apparent reduction in responding to either CS in the posterior lesion group (Figure 5B, right panel). These observations were supported by a Group x CS x DayBlock ANOVA on magazine duration data which revealed significant differences in responding to each CS (CS x DayBlock interaction $F_{(3, 123)} = 5.24$, $p < .01$) and group differences in the rate of response reduction across the session (main effect of Group $F_{(2, 41)} = 3.44$, $p = .04$, main effect of DayBlock $F_{(3, 123)} = 18.48$, $p < .001$, and Group x DayBlock interaction $F_{(6, 123)} = 2.43$, $p = .03$). Overall, simple main effects revealed that responding was higher for CS+ than CS-on DayBlock 5 ($F_{(1, 41)} = 17.38$, $p < .001$), but at similar levels on DayBlock 6, 7 and 8 (all $F_{(1, 41)} < 1.00$, $p > .28$). Simple main effects examining group differences revealed that responding reduced across reversal in the sham and anterior lesion groups (effect of DayBlock for sham group $F_{(3, 39)} = 5.30$, $p < .01$, anterior group $F_{(3, 39)} = 4.69$, $p = .01$) but not in the posterior lesion group ($F_{(3, 39)} = 2.33$, $p = .09$).

Similar to the analysis of acquisition, a multivariate approach was used to assess competition between lever and magazine behaviour in reversal. A Group x DayBlock x CS (rewarded, non-rewarded) MANOVA with lever pressing and magazine duration response measures revealed a significant Group x DayBlock x CS interaction ($F_{(6, 37)} = 3.11$, $p = .01$). Follow up Group x DayBlock MANOVAs revealed a significant Group x DayBlock interaction for the rewarded CS ($F_{(6, 37)} = 3.34$, $p = .01$) but not the non-rewarded CS ($F_{(6, 37)} = 2.11$, $p = .08$). A discriminant analysis was performed on the final day block of acquisition which revealed standardised coefficients of 0.41 (lever pressing) and -0.69 (magazine duration) associated with the first eigenvalue, which supported the choice of a difference score again.
The difference scores on the standardised variate revealed that during reversal of the rewarded lever, all groups responded more towards the magazine than the lever at the start of training (Figure 5D). However, by the end of training the sham and anterior groups were performing more to the lever than the magazine whereas the posterior group was performing equally to both the magazine and the lever. A Group x DayBlock ANOVA on the acquisition of the rewarded lever revealed a significant main effect of Group ($F_{(2, 41)} = 5.30, \ p = .01$), DayBlock ($F_{(3, 123)} = 47.55, \ p < .001$) and Group x DayBlock interaction ($F_{(6, 123)} = 3.20, \ p = .01$). Bonferroni adjusted simple effects revealed that there were no group differences in on DayBlock 1 (all $p > .99$) whereas on DayBlocks 3 and 4 the posterior group had significantly lower scores than the sham group (all $p < .01$, all remaining $p > .05$). Similar to acquisition, the posterior lesion group were significantly impaired in sign-tracking to the CS+ during reversal.
Discussion

Our results demonstrate a number of important neural and behavioural dissociations within the rodent OFC. First we directly confirm the dissociable role of the rodent OFC in Pavlovian but not instrumental behavioural flexibility following outcome devaluation (Gallagher et al., 1999; Ostlund & Balleine, 2007). Next we demonstrate that OFC lesions in rodents only disrupt the Pavlovian outcome devaluation effect when outcome value is manipulated by taste aversion but not specific satiety. Using a specific PIT test, we establish that, unlike taste aversion devaluation, specific satiety devaluation can act via a reduction in the efficacy of sensory specific outcome properties, a reduction which appears to be intact following OFC lesions. Finally, we show that the role of the OFC in outcome devaluation and reversal learning are dissociable within anterior and posterior subregions of rodent LO. Together, these findings allow for many contradictory findings in OFC research to be reconciled as functional heterogeneity within the putative orbital subregions.

Outcome Devaluation

OFC lesions did not disrupt the appropriate reduction in instrumental responding when the outcome was paired with illness, similar to reports using specific satiety devaluation methods (Balleine et al., 2011; Ostlund & Balleine, 2007). In contrast to instrumental devaluation, we found that the role of the OFC in Pavlovian outcome devaluation was dependent on the method of devaluation. OFC lesions abolished the appropriate reduction in Pavlovian approach responding when the outcome was devalued by a taste aversion (Gallagher et al., 1999; Pickens et al., 2003, 2005), but not when the outcome was devalued by specific satiety. The absence of OFC lesion effects on Pavlovian devaluation using sensory specific satiety in rats contrasts with demonstrations that OFC lesions reliably disrupt Pavlovian devaluation by specific satiety in non-human primates (Izquierdo, Suda, & Murray,
2004; Elisabeth A Murray et al., 2015; Rudebeck & Murray, 2011; West, DesJardin, Gale, & Malkova, 2011).

These two methods of devaluation are often used interchangeably in computational models of learning (e.g. Dranias, Grossberg, & Bullock, 2008; Grossberg, Bullock, & Dranias, 2008) and often yield similar results following lesions of neural regions involved in goal-directed and habitual behavioural control (Balleine & Killcross, 2006; Balleine et al., 2003; Blundell, Hall, & Killcross, 2003; Coutureau & Killcross, 2003; Hatfield, Han, Conley, Gallagher, & Holland, 1996; Killcross & Coutureau, 2003; Laura H. Corbit; Bernard W. Balleine, 2015; Yin, Knowlton, & Balleine, 2004; Yin, Ostlund, Knowlton, & Balleine, 2005). While both devaluation methods work by reducing the value of a food outcome, they are likely to achieve this by recruiting different psychological processes. Therefore, to understand the functional role of the OFC is it important to consider the differences between these devaluation procedures.

To selectively reduce responding for a devalued outcome, an organism must have access to the specific sensory properties of the predicted outcome (i.e. identity information), as well as the current motivational value of the predicted outcome (i.e. value information). It has been shown that taste aversion modifies the value of a predicted outcome, but leaves intact the access to the sensory specific properties of the predicted outcome. For example, rats will significantly enhance instrumental lever responding in the presence of a Pavlovian cue if both the response and cue reliably predict the same outcome (i.e. the specific PIT effect), an effect that is mediated by the specific properties of the predicted outcome acting as a sensory cue and that is unaffected by taste aversion learning (Colwill & Rescorla, 1990; Gilroy et al., 2014; Holland, 2004; Rescorla, 1992).
The specific satiety procedure involves repeated consumption of a specific outcome until the animal reaches satiety, a procedure that simultaneously reduces the motivational value of the outcome and potentially involves habituation of the sensory systems required to represent the sensory properties of the outcome. We hypothesised that, if specific satiety involves the habituation of the sensory specific properties of an expected outcome, then its signalling properties should be greatly reduced and unable to mediate specific PIT. We confirmed this prediction in a behavioural experiment. Following Pavlovian and instrumental training for distinct outcomes, Pavlovian cues selectively enhanced instrumental responding for the same outcome, but not when the outcome had been devalued by specific satiety. Therefore, unlike taste aversion devaluation (Holland, 2004; Rescorla, 1992), specific satiety devaluation reduces the effective signalling capacity of predicted sensory specific outcome properties, and impairs specific PIT.

The specific OFC lesion deficit in Pavlovian outcome devaluation following taste aversion, but not sensory specific satiety, suggests that OFC lesions do not disrupt the representation of sensory specific of predicted outcomes. This is supported by intact performance on specific PIT tasks following OFC lesions (Figure S1) (Ostlund & Balleine, 2007), a task that critically depends on using the signalling properties of predicted outcomes to guide behaviour i.e. the sensory properties of the expected outcome (S) can potentiate the instrumental lever response (R) by an S-R association. Therefore, following OFC lesions, rodents can successfully represent and utilise the specific properties of predicted outcomes to guide behaviour which allows them to flexibly update behaviour in Pavlovian devaluation by specific satiety and specific PIT procedures. However, OFC lesions disrupt flexible behaviour when the task requires the use of these intact specific properties of predicted outcomes to access the current motivational value of the outcome, as in Pavlovian devaluation procedures using taste aversion.
A consistently reported finding following OFC lesions is that initial acquisition and
behavioural expression of either cue-outcome or action-outcome contingencies is left intact
(Boulougouris et al., 2007; Chudasama, Kralik, & Murray, 2007; Chudasama & Robbins,
2003; Gallagher et al., 1999; Rudebeck & Murray, 2011; Schoenbaum et al., 2002; but see
Walton, Behrens, Noonan, & Rushworth, 2011). This finding is critical to ruling out many
alternative explanations of the effect of OFC lesions on outcome devaluation such as general
learning deficits. In the present experiments, anterior LO lesions did not affect instrumental
conditioning, Pavlovian conditioning, or taste aversion learning. Unexpectedly, lesions
focussed on the posterior LO region did suppress behavioural responding during Pavlovian
acquisition. It is unlikely that this effect is simply a general suppression of activity (as there
was no difference in locomotor activity, Figure S3) or appetite (as there was no difference in
consumption levels at the start of taste aversion learning).

One possible account of the reduced Pavlovian conditioned approach behaviour in the
posterior LO group is that the CS did not acquire incentive salience. Incentive salience refers
to the process by which a the incentive-motivational properties of the outcome are transferred
to the CS (Berridge, 2004), such that if a lever CS is presented a rat will attempt to
“consume” the lever as if it were the pellet that it predicts. This behaviour directed at the
lever CS (sign-tracking) comes at the expense of the traditional Pavlovian approach response
to the site of reward delivery, the magazine (goal-tracking). Sham control and anterior LO
lesions did not affect the propensity to acquire sign-tracking behaviour, whereas sign-tracking
was significantly reduced following posterior LO lesions. This finding is consistent with
evidence that rats showing stronger sign-tracking tendencies have increased c-fos activity in
posterior OFC regions following lever cue presentation (Flagel et al., 2011). This suggests
that the posterior but not the anterior LO mediates the attribution of incentive-salience to
cues. Alternatively, posterior LO may be involved in resolving response competition when multiple responses are supported by a predictive cue. In the present experiment, the sign-tracking procedure was preceded by extensive Pavlovian training during the outcome devaluation procedure, which may have resulted in a pre-existing dominant magazine approach response that could not be overcome following posterior LO lesions.

Surprisingly, extensive LO lesions have also been shown to have no effect on sign-tracking behaviour (Chang, 2014), but did retard subsequent reversal learning when rewarded (CS+) and non-rewarded (CS-) lever cues reversed reward contingencies. The present study found a similar impairment in reversal learning following posterior but not anterior LO lesions.

**Rodent and primate homology**

When defining the OFC in human and non-human primates cytoarchitectonically, there are clear granular, agranular and dysgranular areas (Price, 2006a). In contrast, the rodent OFC only consists of agranular cortical regions which led Brodmann (1909) to conclude that rodents do not have a comparable orbital or frontal cortex. However, a different approach to identifying rodent homologs of the orbital and frontal cortex was proposed by Rose and Woolsey (1948) based on similar connectivity between the putative OFC of rabbits and cats and the mediodorsal nucleus of the thalamus (MD). This argument based on MD connectivity has been repeatedly extended to other regions of the frontal cortex in rodents (Groenewegen, 1988; Uylings, Groenewegen, & Kolb, 2003). However, as Price (2006a) has noted, Brodmann’s original problem of defining precise homologs between rodent and primate OFC with comparable cytoarchitecture still remains (an argument that some researchers have maintained, e.g. Preuss, 1995; Rolls, 2014; Rudebeck & Murray, 2011a; Wise, 2008). The solution to this problem has been to base rodent and primate OFC...
homology on a combination of similar connectivity and functional evidence (e.g. Roesch & Schoenbaum, 2006c; Rudebeck & Murray, 2014).

The hallmark behavioural consequences of OFC lesions in rodents and primates, critical to establishing cross-species homology, have been questioned. For example, deficits in extinction learning have been cited and formed the basis of models of OFC function (Butter, 1969; Kolb, Nonneman, & Singh, 1974; Wilson et al., 2014), but have been poorly replicated (Burke, Takahashi, Correll, Brown, & Schoenbaum, 2009; Panayi & Killcross, 2014). The two behavioural disturbances following OFC damage that have dominated the literature (Murray et al., 2007) are impaired reversal learning, and outcome devaluation deficits. Recently, the robustness of reversal learning deficits following OFC lesions in primates has been challenged as an artefact of aspiration lesions which can cause unintended damage to neighbouring white matter tracts (Rudebeck, Saunders, Prescott, Chau, & Murray, 2013). Fibre sparing excitotoxic lesions fail to replicate reversal learning deficits, but do significantly disrupt outcome devaluation in primates. This finding has important implications for questions of homology between primate and rodent OFC as it suggests very few functional similarities exist. However, the apparent lack of functional similarities may be a consequence of poor OFC subregion specificity within the rodent and primate literature.

Our findings provide the first evidence of a dissociation of devaluation and reversal learning deficits within anterior and posterior regions of the lateral OFC subregion. Specifically, both anterior and posterior LO are necessary for updating behaviour based on the current value of expected outcomes (i.e. disrupt devaluation performance), but only posterior LO appears to be necessary for rapidly updating behaviour when predictive cue-outcome contingencies change (i.e. reversal learning deficits). Recently Murray et al. (2015) have provided similar demonstrations of functional dissociations between anterior (area 11) and posterior (area 13) macaque OFC in Pavlovian outcome devaluation. Together these data
suggest the importance of anterior-posterior differences in OFC subregions that complement the growing literature on functional differences between medial and lateral OFC subregions in both rodents (Balleine et al., 2011; Bradfield, Dezfooli, van Holstein, Chieng, & Balleine, 2015; Corwin, Fussinger, Meyer, King, & Reep, 1994; Alicia Izquierdo, 2017; Mar, Walker, Theobald, Eagle, & Robbins, 2011) and primates (Bouret & Richmond, 2010; Noonan et al., 2010; Rudebeck & Murray, 2011; Mark E Walton, Chau, & Kennerley, 2015).

Theoretical accounts of OFC function

The importance of differentiating OFC subregions has implications for theories of OFC function. One class of theories of OFC function proposes that the OFC represents information about the sensory specific properties of expected outcomes (Burke, Franz, Miller, & Schoenbaum, 2008; Delamater, 2007; Schoenbaum & Esber, 2010; Schoenbaum, Roesch, Stalnaker, & Takahashi, 2009). During Pavlovian conditioning in normal animals, a stimulus may form associations with multiple features of a reward such as its general motivational properties and sensory specific properties; Associative activation of these different properties can lead to different classes of responses such as general preparatory or specific consummatory responses (Delamater, 2007, 2012; Dickinson & Dearing, 1979; Hall, 2002; Konorski, 1967; Wagner & Brandon, 1989). Here, the OFC is proposed as the neural substrate of the associatively activated representation of an expected reward’s sensory specific properties, e.g. if an animal learns that a tone stimulus predicts lemon flavoured sucrose reward, then in the presence of the tone and in anticipation of reward delivery the OFC might represent information about the lemon flavour, viscous fluid properties, and sweet taste of the reward. This theory accounts for the effect of OFC lesions in outcome devaluation since an animal needs to know which outcome is predicted (outcome identity) to selectively reduce anticipatory responding for a no-longer valuable outcome.
However, this account predicts that OFC lesions should abolish the outcome devaluation effect regardless of the method of devaluation. While this might be true of lesions encompassing multiple OFC subregions in rodents (Gallagher et al., 1999; Pickens et al., 2003, 2005), our findings show that lesions specific to anterior LO disrupt Pavlovian devaluation by taste aversion but not specific satiety. We propose that the lesioned animals could represent the specific properties of the expected outcome, but could not use this representation to access the current motivational value of that outcome. This proposal is in line with the sensory specific outcome expectancy theory of OFC function but suggests a limited role for the anterior LO in accessing the current/updated expected value of an outcome based on its sensory properties and using this to modulate behaviour accordingly. It may be that a unified representation of an expected outcome, such as predicted likelihood, taste, location, hedonic value, and motivational value is represented across multiple OFC subregions.

A similar conclusion is reached by Murray et al. (2015) in macaques, who found that temporary inactivation of anterior OFC (area 11) disrupted satiety devaluation when inactivation occurred at test but not when inactivation occurred during the satiety devaluation procedure prior to test. In contrast, posterior OFC (area 13) inactivation only disrupted performance when inactivated during the satiety procedure but not at test. This suggests that posterior OFC in macaques is necessary for updating the value of expected rewards, whereas anterior OFC is critical for translating this knowledge into behaviour. This parallels our suggested role for the anterior LO in rodents in accessing the current value of an expected outcome to guide behaviour. Furthermore, this potential homology predicts that posterior LO in rodents might be important for value updating. Our findings provide prima facie evidence for this prediction, showing that posterior LO lesions suppress overall levels of Pavlovian learning, and extinction of learnt value during reversal learning, consistent with impoverished
value updating. However, direct tests of this dissociation are still needed to confirm this homology between rodent and non-human primate OFC.
Methods

Animals. Rats were housed four per cage in ventilated Plexiglass cages in a temperature regulated (22 ± 1°C) and light regulated (12h light/dark cycle, lights on at 7:00 AM) colony room. At least one week prior to behavioural testing, feeding was restricted to ensure that weight was approximately 95% of ad libitum feeding weight, and never dropped below 85%. All animal research was carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratories Animals (NIH publications No. 80-23, revised 1996) and approved by the University of New South Wales Animal Care and Ethics Committee. Subjects were forty-eight male Long Evans rats (Monash Animal Services, Gippsland, Victoria, Australia) approximately 4 months old (Experiment 1, N = 32, weighing between 301-359 g, M = 326.6 g; Supplementary Experiment, N = 16, weighing between 321-399 g, M = 342.1 g), and one hundred and twelve male Wistar rats (BRC Laboratory Animal Service, University of Adelaide, South Australia, Australia) approximately 4 months old (Experiment 2, N = 32, weighing between 343-452 g, M = 403.6 g; Experiment 4, N = 64, weighing between 343-452 g, M = 403.6 g; Experiment 5, N = 16, weighing between 357-417 g, M = 372.8 g).

Apparatus. Behavioural testing was conducted in eight identical operant chambers (30.5 x 32.5 x 29.5 cm; Med Associates) individually housed within ventilated sound attenuating cabinets. Each chamber was fitted with a 3-W house light that was centrally located at the top of the left-hand wall. Food pellets could be delivered into a recessed magazine, centrally located at the bottom of the right-hand wall. Delivery of up to two separate liquid rewards via rubber tubing into the magazine was achieved using peristaltic pumps located above the testing chamber. The top of the magazine contained a white LED light that could serve as a visual stimulus. Access to the magazine was measured by infrared detectors at the mouth of the recess. Two retractable levers were located on either side of the
magazine on the right-hand wall. A speaker located to the right of the house light could provide auditory stimuli to the chamber. In addition, a 5-Hz train of clicks produced by a heavy-duty relay placed outside the chamber at the back right corner of the cabinet was used as an auditory stimulus. The chambers were wiped down with ethanol (80% v/v) between each session. A computer equipped with Med-PC software (Med Associates Inc., St. Albans, VT, USA) was used to control the experimental procedures and record data.

**Devaluation chambers.** To provide individual access to reinforcers during the devaluation procedure, rats were individually placed into a mouse cage (33 x 18 x 14 cm clear Perspex cage with a wireframe top). Pellet reinforcers were presented in small glass ramekins inside the box and liquid reinforcers were presented in water bottles with a sipper tube. 1 day prior to the start of the devaluation period, all rats were exposed to the mouse cages and given 30 mins of free access to home cage food and water to reduce novelty to the context and consuming from the ramekin and water bottles.

Locomotor activity was assessed in a set of 4 rat open field arenas (Med Associates Inc., St. Albans, VT, USA) individually housed in light and sound attenuating cabinets. A 3-W light attached on the top left corner of the sound attenuating cabinet provided general illumination in the chamber and was always on. A 28 V DC fan on the right hand wall of the sound attenuating cabinet was also left on throughout testing to mask outside noise. The floor of the open field arena was smooth plastic and the four walls were clear Perspex with a clear Perspex roof containing ventilation holes. The internal dimensions of the chamber were 43.2 x 43.2 x 30.5 cm (length x width x height). Two opposing walls contained an array of 16 evenly spaced infrared detectors set 3 cm above the floor to detect animal locomotor activity. A second pair of infrared beam arrays was set 14 cm above the floor on the remaining walls to detect rearing behaviours. Infrared beam breaks were recorded using a computer equipped
with Activity Monitor software (Med Associates Inc., St. Albans, VT, USA) which provided a measure of average distance travelled based on beam break information.

Surgery. Excitotoxic lesions targeting the lateral OFC were performed prior to any training. Rats were anesthetized with isoflurane, their heads shaved, and placed in a stereotaxic frame (World Precision Instruments, Inc., Sarasota, FL, USA). The scalp was incised, and the skull exposed and adjusted to flat skull position. Two small holes were drilled into the skull and the dura mater was severed to reveal the underlying cortical parenchyma. A 1-µL Hamilton needle (Hamilton Company, Reno, NV, USA) was lowered through the two holes targeting the lateral OFC (co-ordinates specified below). At each site the needle was first left to rest for 1 min. Then an infusion of N-methyl-D-aspartic acid (NMDA; Sigma-Aldrich, Switzerland), dissolved in phosphate buffered saline (pH 7.4) to achieve a concentration of 10µg/µL, was infused for 3 mins at a rate of 0.1 µ/min. Finally, the needle was left in situ for a further 4 mins to allow the solution to diffuse into the tissue. Following the diffusion period the syringe was extracted and the scalp cleaned and sutured. Sham lesions proceeded identically to excitotoxic lesions except that no drugs were infused during the infusion period. After a minimum of 1 week of postoperative recovery, rats were returned to food restriction for 2 days prior to further training.

Animals were randomly assigned to one of two lesion conditions in Experiments 1, 2, and Supplementary Experiment (Figure S1), with the following stereotaxic co-ordinates AP: +3.5 mm, ML: ±2.2 mm, D-V: -5.0 mm from bregma (Experiment 1, sham, n = 16; lesion, n = 16; Supplementary Experiment, sham, n = 8; lesion, n = 8), or AP: +4.2 mm; ML: ±2.6 mm; D-V: -4.8 mm from bregma (Experiment 2, sham, n = 16; lesion, n = 16). In experiment 4, three sets of lesion co-ordinates were used to encourage distinct lesion subgroups. The co-ordinates used were AP: +4.2 mm, ML: ±2.6 mm, D-V: 4.8 mm (n = 16 lesion, n = 6 sham), AP: +3.7 mm, ML: ±3.2 mm, D-V: -5.0 mm (n = 16 lesion, n = 5 sham) and AP: +3.7 mm,
ML: ±2.6 mm, D-V: -5.0 mm (n = 16 lesion, n = 5 sham). Final group designation was based on post-experimental lesion characterisation.

Reinforcers. The reinforcers used were a single grain pellet (45 mg dustless precision grain-based pellets; Bio-serv, Frechtown, NJ, USA), 20% w/v sucrose solution and 20% w/v maltodextrin solution (Myopure, Petersham, NSW, Australia). Liquid reinforcers were flavoured with either 0.4% v/v concentrated lemon juice (Berri, Melbourne, Victoria, Australia) or 0.2% v/v peppermint extract (Queen Fine Foods, Alderley, QLD, Australia) to provide unique sensory properties to each reinforcer. Liquids were delivered over a period of 0.33 s via a peristaltic pump corresponding to a volume of 0.2 mL. The volume and concentration of liquid reinforcers was chosen to match the calorific value of the corresponding grain pellet reward, and have been found to elicit similar rates of Pavlovian and instrumental responding as a pellet reward in other experiments conducted in this lab. In all experiments involving liquids, the magazine was scrubbed with warm water and thoroughly dried between sessions to remove residual traces of the liquid reinforcer. To reduce neophobia to the reinforcers, one day prior to magazine training sessions all animals were pre-exposed to the reinforcers (10 g of pellets per animal and 25 ml of liquid reinforcer per animal) in their home cage.

Magazine training. In all experiments, animals received two sessions of magazine training, one for each reinforcer with the following parameters: reward delivery was on an RT60 s schedule for 16 rewards with the house light and fan kept on throughout the session. Sessions were separated by at least 2 hours.

Experiment 1. Instrumental Devaluation by LiCl Taste Aversion

All animals received 2 separate sessions of training each day with the pellet and sucrose rewards, an instrumental lever training session (lever extended) and a magazine training
(lever retracted) session with non-contingent reward delivery to provide equivalent exposure
to the alternative reward. The order of training sessions and the identity of the instrumental
and alternate reward were fully counterbalanced across all groups. All training session were
separated by a period of at least 2 hours.

First, animals were familiarised with lever training using a fixed ratio 1 schedule (FR1,
reward delivered on each lever press), for 60 mins or until a maximum of 25 rewards were
earned. The alternative, non-instrumental, reward was delivered on an RT30s (random time
30s) schedule for 1 hour or until 25 rewards had been delivered.

Instrumental acquisition training occurred on the following 3 days. Instrumental training
sessions lasted until 40 rewards were achieved and lever pressing was rewarded on a RI30s
schedule (random interval 30s such that on average every 30s a reward becomes available to
reward the next lever press). The alternate reward session involved an RT30s schedule for 40
rewards. The use of interval and time based schedules of reinforcement was designed to
match the instrumental and alternate reward sessions so that all experiences were identical
except for the presence (and response requirement) of the lever in the instrumental session.

Following devaluation of the reward by taste aversion, all animals were tested with the
instrumental lever to assess devaluation. The test was conducted under extinction and the
lever was extended for 10 mins. On the following day, all animals were given a 20-min re-
acquisition test to assess devaluation in the presence of the instrumental reinforcer (RI30s
schedule).

**Taste Aversion**

Following instrumental training all animals received taste aversion training on one of the
reinforcers. Half the animals in each surgery condition (sham and lesion) were allocated to a
devalued or a non-devalued group after being matched on their level of instrumental performance. The devalued groups received pairings of the instrumental reinforcer paired with 0.15M LiCl injections i.p. (15 mL/Kg) after 30 mins of individual access to that reinforcer in the devaluation chamber. The non-devalued groups received similar LiCl injections following access to the alternate (i.e. non-instrumental) reinforcer. On alternating days (order counterbalanced) all groups received 0.9% w/v saline injections (15 mL/Kg) following 30 mins access to the reinforcer that was not paired with LiCl. This procedure was repeated over 6 days such that all animals received 3 reinforcer-LiCl pairings and 3 reinforcer-saline pairings. Therefore, all animals had one reinforcer devalued with LiCl such that in the devalued groups it was the instrumental reinforcer and in the non-devalued groups it was the alternate reinforcer.

All animals were given an additional day without injections at the end of the taste aversion procedure before any further behavioural testing was conducted. This minimised the possibility of nausea persisting at test after the final LiCl injection, and ensured that all animals were at a comparable level of hunger at test.

**Experiment 2. Pavlovian Devaluation by Sensory Specific Satiety**

**Acquisition**

Pavlovian acquisition training occurred over 9 days involving one session of training per day. Each session consisted of 32 trials with a 90s ITI, 15s CS duration co-terminating with the delivery of a single reward. Two CS (5Hz click and 78dB white noise) and US (grain pellet and lemon sucrose) relationships were maintained throughout training such that rats always experienced 16 of each unique CS-US pairings each session (counterbalanced).

**Satiety Devaluation**
Satiety devaluation was achieved by providing rats with 1 hour of free access to one of the reinforcers in the devaluation chamber. At the end of the 1 hour period animals were removed from the devaluation chamber and put back in their home cage and immediately transferred to the test chambers.

**Devaluation Test**

Devaluation testing was identical to Pavlovian acquisition training except that it was performed under extinction i.e. no rewards were delivered throughout the session. The identity of the first and second cue and was predetermined at test to allow for counterbalancing. After the first devaluation test all animals were given a day of acquisition training before undergoing the devaluation procedure and test for a second time. All animals were sated on both rewards across both tests with the order of cue presentation fully counterbalanced.

**Experiment 3. Sensory Specific Satiety and Pavlovian to Instrumental Transfer**

**Acquisition Training**

On each day all animals received either a single Pavlovian training session, or two instrumental training sessions. The order of Pavlovian and instrumental sessions alternated each day.

**Pavlovian Training**

All animals received a total of 6 days of Pavlovian training. Pavlovian training sessions consisted of 3 CSs, a 2800 Hz, 80 dB tone, 78 dB white noise and a 5 Hz train of clicks. There were 4 presentations of each cue (i.e. a total of 12 cues presented within a session) each lasting 2 mins with a variable ITI of 300s. Reward was delivered throughout the cue
period on a RT 30s schedule. Each cue was paired with a unique outcome (grain pellet, lemon sucrose, and peppermint maltodextrin) and the identity of that outcome remained constant.

All unique cue-outcome combinations were counterbalanced across animals and within groups.

**Instrumental Training**

Prior to Pavlovian and instrumental acquisition training all animals were given 2 days of lever training on a continuous reinforcement schedule (each lever press was rewarded) using the same parameters as the instrumental training sessions.

All animals received a total of 6 days of instrumental training. Instrumental training involved two sessions per day, separated by at least one hour. During the session a single lever was extended and lever pressing was rewarded with a unique liquid outcome, either lemon sucrose or peppermint maltodextrin. During the second instrumental session of the day, a different lever was extended and lever pressing was rewarded with the unique liquid outcome that was not paired with the earlier lever. The identity of the lever outcome pairings was kept constant throughout training and was counterbalanced between subjects and within groups. Training sessions lasted until a maximum of 20 rewards was earned or until 30 mins had elapsed. On the first two days, reinforcement was delivered on a random ratio 5 schedule (RR5) such that on average a reward was delivered every 5 lever presses, followed by four days of RR10.
**Devaluation**

Satiety devaluation was achieved by providing rats with 1 hour of free access to one of the liquid reinforcers in the devaluation chamber. At the end of the 1 hour period animals were removed from the devaluation chamber and put back in their home cage and immediately transferred to the test chambers. One of the liquid reinforcers was devalued using this method on two consecutive days to allow a test on each lever. Following 2 further days of Pavlovian and instrumental training, the alternative liquid reinforcer was devalued for two days. This resulted in both liquid reinforcers being devalued and tested with each lever.

**PIT Test**

The PIT test involved a single lever presented at the start of the session for 10 mins with no programmed consequences to extinguish lever pressing behavior to a low baseline rate (this allows for clearer demonstration of the potential rate-enhancing effect of CS presentations). Then the CSs were played for 2 min with a fixed 2 min inter-stimulus interval. Each CS was played three times (a total of 9 CS presentations) and the order of CS presentation was randomized. Throughout the session no rewards were delivered and lever pressing and magazine entry were recorded with no programmed consequences. A second identical test session was conducted on the following day using the lever that had yet to be tested. Order of lever presentation was counterbalanced. This pattern of tests was repeated once after 4 days of retraining on Pavlovian and instrumental sessions.
Experiment 4: Pavlovian Devaluation by LiCl Taste Aversion

Histology and Lesion Group Allocation

Lesion damage is depicted in Figure 4A. Lesion extent was judged by a trained observer blind to group allocation. Once approximate lesion extent was drawn, a second trained observer (also blind to surgical conditions) independently verified the extent of the drawn lesions and the grounds for exclusion. Animals were excluded if there was only unilateral OFC damage, evidence of damage to the dorsal part of the anterior olfactory nucleus ventral to OFC or if there was extensive damage to the white matter of the forceps minor of the corpus callosum. Seven animals were excluded due to the presence of infection that was evident across the entirety of the frontal cortex, and a further two animals were excluded due to illness throughout behavioural training. Three animals were excluded due to insufficient bilateral damage to OFC structures. Seven animals were excluded based on significant unilateral or bilateral damage to the dorsal part of the anterior olfactory nucleus. One animal was excluded due to almost complete unilateral damage to primary and secondary motor areas M1 and M2, ventral to the OFC. Final group numbers were sham $n = 13$, lesion $n = 31 (N = 44)$.

The lesion drawings were then analysed to establish the extent of damage to the subregions of the OFC from which two distinct lesion groups could be formed. OFC lesions were predominantly confined to LO and DLO as in previous experiments and were distributed across a large anterior-posterior range. This observation was quantified by estimating the percentage of bilateral damage across all OFC structures at 7 coronal planes (+5.20 to +2.20 mm from bregma in steps of 0.50 mm). At each coronal plane the total area of each orbital structure and the total area of lesion damage were estimated (number of pixels counted using Adobe Photoshop CS; San Jose, CA). Bilateral damage was defined by
comparing the hemisphere with the smallest lesion area for each orbital subregion and the
total area of the structure in that hemisphere. Total OFC damage at each section was defined
by the sum of damaged area relative to the sum of the total area of each orbital structure i.e.

\[
\text{\% Bilateral OFC damage} = 100 \times \frac{\text{Total lesion area}}{\text{Total orbital structure area}}.
\]

The OFC structures included in this analysis were LO, DLO, VO, AI, AId and AIv, however the damage (Figure 4A) was relatively confined to LO and DLO. Most animals had OFC damage at +3.70 mm from bregma, so anterior and posterior lesions were based on comparing relative lesion volume
anterior (+5.20, +4.70, +4.20 mm) and posterior (+3.20, +2.70, +2.20) to this point. Animals with a greater lesion damage anterior to +3.70 were assigned to the anterior OFC lesion group, and animals with greater lesion damage posterior to +3.70 were allocated to the posterior OFC group. While these criteria for anterior and posterior OFC were based on the present sample, these criteria also define the anterior-posterior split that defines DLO and AId/AIv, and the presence of the forceps minor of the corpus callosum, which supports the external validity of these criteria.

Final lesion group numbers were anterior \( n = 16 \), posterior \( n = 15 \). A Group (anterior, posterior) x Plane (+5.20, +4.70, +4.20, +3.70, +3.20, +2.70, +2.20) mixed ANOVA analysing the percentage bilateral lesion volume (Figure 4B) revealed no significant overall effect of Group \( (F(1,29) = 0.21, \ p = .65) \) but a significant main effect of Plane \( (F(6,174) = 64.07, \ p < .001) \) and Group x Plane interaction \( (F(6,174) = 17.70, \ p < .001) \). Follow up planned contrasts comparing groups at each coronal plane revealed greater damage in the anterior group at +4.70 \( (F(1,29) = 7.87, \ p = .01) \) and +4.20 \( (F(1,29) = 33.74, \ p < .001) \), and greater damage in the posterior group at +3.70 \( (F(1,29) = 6.97, \ p = .01) \) and +3.20 \( (F(1,29) = 12.78, \ p = .001) \) but no significant differences at +5.20 \( (F(1,29) = 2.89, \ p = .10) \) or +2.20 \( (F(1,29) = 1.86, \ p = .18) \) (Figure 4B). These differences indicate that the grouping criteria were effective at creating partially overlapping but distinct lesion groups.
**Acquisition**

Pavlovian acquisition training occurred over 12 days involving one session of training per day. Each session consisted of 32 trials with a 90s ITI, 15s CS duration co-terminating with the delivery of a single reward. Two CS (5Hz click and 78dB white noise) and US (grain pellet and lemon sucrose) relationships were maintained throughout training such that rats always experienced 16 of each unique CS-US pairings each session (counterbalanced).

**Taste Aversion**

Taste aversion to one of the rewards (counterbalanced) was achieved by pairing reward consumption with nausea induced by Lithium Chloride (LiCl; Sigma-Aldrich, Switzerland). All rats received 3 pairings of one reward with an i.p. injection of 0.15 M LiCl (15 mL/Kg) and 3 pairings of the other reward with saline (0.9% w/v; Sigma-Aldrich, Switzerland). The first 2 food-injection pairings occurred immediately after providing rats with 30 mins free access to the reward in the devaluation chambers. The final food-injection pairings occurred in the test chamber after rats were exposed to a magazine training session with one of the reinforcers (reward delivered randomly on an RT60 s schedule for 16 rewards). The order of food-injection pairings was counterbalanced and alternated across the 6 days of taste aversion training. The final food-injection pairings in the test chamber were conducted to ensure that the taste aversion transferred between the devaluation chambers and the testing chambers. All animals were given an additional day without injections at the end of the taste aversion procedure before any further behavioural testing was conducted. This minimised the possibility of nausea persisting at test after the final LiCl injection, and ensured that all animals were at a comparable level of hunger at test.
Devaluation Test

Devaluation testing was identical to Pavlovian acquisition training except that it was performed under extinction i.e. no rewards were delivered throughout the session. The identity of the first and second cue and was predetermined at test to allow for counterbalancing. Animals were tested again on the following day with the identity of the first cue changed to fully counterbalance the test procedure.

US Specific Reinstatement

After the final devaluation test, all rats received a US-specific reinstatement test to verify whether any failure of devaluation was due to impaired retention of the acquired taste aversion. On each day animals were pre-exposed to a single US type within the test chamber before being tested with 8 presentations in extinction of the CS that predicted the US. Exposure sessions involved a 5 min baseline period in which nothing happened in the chamber, followed by a reward delivery every 5s for 30 s (6 rewards), and then a post reward period of 5 mins. After the session, rats were temporarily returned to their home cage to allow for any remaining rewards to be collected for counting later and thorough cleaning of the reward site. Rats were then returned to the testing chamber for a test consisting of 8 CS presentations (90s ITI) in extinction with the CS that predicted the recently delivered US. The order of outcome testing across both days was fully counterbalanced.

Re-acquisition

After reinstatement testing, all rats received 3 days of re-acquisition training. These were identical to Pavlovian acquisition training except that only the CS paired with the non-devalued CS was presented for all 32 trials.
Autoshaping

Following the reacquisition training, all animals were trained for 12 days on a discriminated autoshaping procedure where the non-devalued reward continued to serve as the US. Each session consisted of 32 trials with a 90s ITI and 15s CS duration, 16 rewarded CS+ trials and 16 non-rewarded CS- trials. The CS+ and CS- involved the insertion of the lever on the left or right hand side of the magazine (counterbalanced). Responding on the lever had no programmed consequences but was recorded for analysis.

Reversal

Autoshaping was followed by reversal training for 12 days such that the CS+ and CS- contingencies were reversed i.e. the rewarded lever cue no longer predicted reward and the non-rewarded lever cue predicted reward.

Locomotor Screening

All animals were tested for locomotor activity before surgery, and again at the end of training, to verify the absence of any effects on locomotor activity in a within-subjects design.

Statistical Analysis

Baseline responding. Baseline rates of responding across all experiments did not differ between groups. Separate mixed ANOVAs on baseline responding in each experimental stage did not reveal significant main effects or interactions with Group (all $F < 1.75$, $p > .14$).

CS responding was operationalized as the time spent exploring the magazine during the 15s CS period. PreCS responding was operationalized as the duration of responding
during the 15s immediately preceding the 15s CS and was used as a measure of baseline responding to the testing context. All data were analysed with mixed ANOVAs, and significant interactions of interest were followed up with ANOVAs on the relevant subset of data. Following significant omnibus ANOVA tests, planned linear and quadratic orthogonal trend contrasts and their interactions between groups were analysed to assess differences in rates of responding.

Acknowledgements

We gratefully acknowledge Fred Westbrook, Nathan Holmes, David Bannerman, and Mark Walton for their invaluable feedback. Research supported by grants awarded to Simon Killcross from the Australian Research Council (ARC Discovery Grant DP0989027 and DP120103564).

Competing Interests

The authors declare no competing interests.
References

Balleine, B. W., & Killcross, A. S. (2006). Parallel incentive processing: an integrated view of amygdala function. *Trends in Neurosciences, 29*(5), 272–279. https://doi.org/10.1016/j.tins.2006.03.002

Balleine, B. W., Killcross, A. S., & Dickinson, A. (2003). The effect of lesions of the basolateral amygdala on instrumental conditioning. *Journal of Neuroscience, 23*(2), 666–675. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12533626

Balleine, B. W., Leung, B. K., & Ostlund, S. B. (2011). The orbitofrontal cortex, predicted value, and choice. *Ann N Y Acad Sci, 1239*, 43–50. https://doi.org/10.1111/j.1749-6632.2011.06270.x

Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. *Physiology & Behavior, 81*(2), 179–209. https://doi.org/http://dx.doi.org/10.1016/j.physbeh.2004.02.004

Blundell, P., Hall, G., & Killcross, A. S. (2003). Preserved sensitivity to outcome value after lesions of the basolateral amygdala. *Journal of Neuroscience, 23*(20), 7702–7709. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12930810

Boulougouris, V., Dalley, J. W., & Robbins, T. W. (2007). Effects of orbitofrontal, infralimbic and prelimbic cortical lesions on serial spatial reversal learning in the rat. *Behavioural Brain Research, 179*(2), 219–228. https://doi.org/10.1016/j.bbr.2007.02.005

Bouret, S., & Richmond, B. J. (2010). Ventromedial and Orbital Prefrontal Neurons Differentially Encode Internally and Externally Driven Motivational Values in Monkeys. *Journal of Neuroscience, 30*(25), 8591–8601. https://doi.org/10.1523/JNEUROSCI.0049-10.2010

Bradfield, L. A., Dezfooli, A., van Holstein, M., Chieng, B., & Balleine, B. W. (2015). Medial Orbitofrontal Cortex Mediates Outcome Retrieval in Partially Observable Task Situations. *Neuron, 88*(6), 1268–1280. https://doi.org/10.1016/j.neuron.2015.10.044

Brown, P. L., & Jenkins, H. M. (1968). Auto-shaping of the pigeon’s key-peck. *J Exp Anal Behav, 11*(1), 1–8. https://doi.org/10.1901/jeab.1968.11-1

Burke, K. A., Franz, T. M., Miller, D. N., & Schoenbaum, G. (2008). The role of the
orbitofrontal cortex in the pursuit of happiness and more specific rewards. Nature, 454(7202), 340-U45. https://doi.org/10.1038/Nature06993

Burke, K. A., Takahashi, Y. K., Correll, J., Brown, P. L., & Schoenbaum, G. (2009). Orbitofrontal inactivation impairs reversal of Pavlovian learning by interfering with “disinhibition” of responding for previously unrewarded cues. European Journal of Neuroscience, 30(10), 1941–1946. https://doi.org/10.1111/j.1460-9568.2009.06992.x

Butter, C. M. (1969). Perseveration in extinction and in discrimination reversal tasks following selective frontal ablations in Macaca mulatta. Physiol. Behav, 4, 163–171.

Chang, S. E. (2014). Effects of orbitofrontal cortex lesions on autoshaped lever pressing and reversal learning. Behavioural Brain Research, 273, 52–56. https://doi.org/10.1016/j.bbr.2014.07.029

Chudasama, Y., Kralik, J. D., & Murray, E. A. (2007). Rhesus monkeys with orbital prefrontal cortex lesions can learn to inhibit prepotent responses in the reversed reward contingency task. Cerebral Cortex, 17, 1154–1159. Retrieved from http://cercor.oxfordjournals.org/content/17/5/1154.full.pdf

Chudasama, Y., & Robbins, T. W. (2003). Dissociable contributions of the orbitofrontal and infralimbic cortex to pavlovian autoshaping and discrimination reversal learning: further evidence for the functional heterogeneity of the rodent frontal cortex. Journal of Neuroscience, 23(25), 8771–8780. https://doi.org/10.1523/JNEUROSCIENCE.23-25-8771.2003

Colwill, R. M., & Rescorla, R. A. (1985). Postconditioning Devaluation of a Reinforcer Affects Instrumental Responding. Journal of Experimental Psychology: Animal Behavior Processes, 11(1), 120–132. https://doi.org/10.1037/0097-7403.11.1.120

Colwill, R. M., & Rescorla, R. A. (1988). Associations between the Discriminative Stimulus and the Reinforcer in Instrumental Learning. Journal of Experimental Psychology: Animal Behavior Processes, 14(2), 155–164. https://doi.org/10.1037/0097-7403.14.2.155

Colwill, R. M., & Rescorla, R. A. (1990). Evidence for the Hierarchical Structure of Instrumental Learning. Animal Learning & Behavior, 18(1), 71–82. https://doi.org/10.3758/Bf03205241
Corwin, J. V, Fussinger, M., Meyer, R. C., King, V. R., & Reep, R. L. (1994). Bilateral Destruction of the Ventrolateral Orbital Cortex Produces Allocentric but Not Egocentric Spatial Deficits in Rats. *Behavioural Brain Research, 61*(1), 79–86. https://doi.org/10.1016/0166-4328(94)90010-8

Coutureau, E., & Killcross, A. S. (2003). Inactivation of the infralimbic prefrontal cortex reinstates goal-directed responding in overtrained rats. *Behavioural Brain Research, 146*(1–2), 167–174. Retrieved from http://www.sciencedirect.com/science/article/pii/S0166432803003498

Delamater, A. R. (2007). The role of the orbitofrontal cortex in sensory-specific encoding of associations in Pavlovian and instrumental conditioning. In G. Schoenbaum, J. A. Gottfried, E. A. Murray, & S. J. Ramus (Eds.), *Linking Affect to Action: Critical Contributions of the Orbitofrontal Cortex* (Vol. 1121, pp. 152–173). Oxford: Blackwell Publishing. https://doi.org/10.1196/annals.1401.030

Delamater, A. R. (2012). On the nature of CS and US representations in Pavlovian learning. *Learn Behav, 40*(1), 1–23. https://doi.org/10.3758/s13420-011-0036-4

Dickinson, A., & Dearing, M. F. (1979). Appetitive-aversive interactions and inhibitory processes. In A. Dickinson & R. A. Boakes (Eds.), *Mechanisms of learning and motivation: A memorial volume to Jerzy Konorski* (pp. 203–232). Hillsdale, New Jersey: Lawrence Erlbaum Associates.

Dranias, M. R., Grossberg, S., & Bullock, D. (2008). Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. *Brain Research, 1238*, 239–287. https://doi.org/10.1016/j.brainres.2008.07.013

Flagel, S. B., Cameron, C. M., Pickup, K. N., Watson, S. J., Akil, H., & Robinson, T. E. (2011). A food predictive cue must be attributed with incentive salience for it to induce c-fos mRNA expression in cortico-striatal-thalamic brain regions. *Neuroscience, 196*, 80–96. https://doi.org/10.1016/j.neuroscience.2011.09.004

Gallagher, M., McMahan, R. W., & Schoenbaum, G. (1999). Orbitofrontal cortex and representation of incentive value in associative learning. *Journal of Neuroscience, 19*(15), 6610–6614. Retrieved from http://www.jneurosci.org/cgi/reprint/19/15/6610.pdf

Gilroy, K. E., Everett, E. M., & Delamater, A. R. (2014). Response-Outcome versus
Outcome-Response Associations in Pavlovian-to-Instrumental Transfer: Effects of Instrumental Training Context. *International Journal of Comparative Psychology*, 27(4). Retrieved from http://www.escholarship.org/uc/item/4ft1h92h

Grossberg, S., Bullock, D., & Dranias, M. R. (2008). Neural dynamics underlying impaired autonomic and conditioned responses following amygdala and orbitofrontal lesions. *Behavioral Neuroscience*, 122(5), 1100–1125. https://doi.org/10.1037/a0012808

Hall, G. (2002). Associative structures in Pavlovian and instrumental conditioning. In C. R. Gallistel (Ed.), *Steven’s handbook of experimental psychology* (Vol. 3, pp. 1–45). New York: John Wiley & Sons.

Hatfield, T., Han, J. S., Conley, M., Gallagher, M., & Holland, P. C. (1996). Neurotoxic lesions of basolateral, but not central, amygdala interfere with Pavlovian second-order conditioning and reinforcer devaluation effects. *Journal of Neuroscience*, 16(16), 5256–5265. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt= Citation&list_uids=8756453

Holland, P. C. (2004). Relations between Pavlovian-instrumental transfer and reinforcer devaluation. *J Exp Psychol Anim Behav Process*, 30(2), 104–117. https://doi.org/10.1037/0097-7403.30.2.104

Holland, P. C., & Straub, J. J. (1979). Differential effects of two ways of devaluing the unconditioned stimulus after Pavlovian appetitive conditioning. *J Exp Psychol Anim Behav Process*, 5(1), 65–78. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/528879

Izquierdo, A. (2017). Functional Heterogeneity within Rat Orbitofrontal Cortex in Reward Learning and Decision Making. *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience*, 37(44), 10529–10540. https://doi.org/10.1523/JNEUROSCI.1678-17.2017

Izquierdo, A., Suda, R. K., & Murray, E. A. (2004). Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. *Journal of Neuroscience*, 24, 7540–7548. Retrieved from http://www.jneurosci.org/content/24/34/7540.full.pdf
Jenkins, H. M., & Moore, B. R. (1973). The form of the auto-shaped response with food or water reinforcers. *J Exp Anal Behav, 20*(2), 163–181. https://doi.org/10.1901/jeab.1973.20-163

Killcross, A. S., & Blundell, P. (2002). Associative representations of emotionally significant outcomes. In S. C. Moore & M. Oaksford (Eds.), *Emotional Cognition: From brain to behaviour* (Vol. 44, pp. 35–74). Amsterdam: John Benjamins Publishing Company.

Killcross, A. S., & Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. *Cerebral Cortex, 13*(4), 400–408. Retrieved from http://cercor.oxfordjournals.org/cgi/reprint/13/4/400.pdf

Kolb, B., Nonneman, A. J., & Singh, R. K. (1974). Double dissociation of spatial impairments and perseveration following selective prefrontal lesions in rats. *J Comp Physiol Psychol, 87*(4), 772–780. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/4426996

Konorski, J. (1967). *Integrative activity of the brain; an interdisciplinary approach.* Chicago,: University of Chicago Press.

Laura H. Corbit; Bernard W. Balleine. (2015). Learning and Motivational Processes Contributing to Pavlovian-Instrumental Transfer and Their Neural Bases: Dopamine and Beyond. In *Current Topics in Behavioral Neurosciences.* https://doi.org/10.1007/7854_2015_388

Locurto, C., Terrace, H. S., & Gibbon, J. (1976). Autoshaping, random control, and omission training in the rat. *J Exp Anal Behav, 26*(3), 451–462. https://doi.org/10.1901/jeab.1976.26-451

Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. *Journal of Neuroscience, 31*(17), 6398–6404. https://doi.org/10.1523/JNEUROSCI.6620-10.2011

Murray, E. A., Moylan, E. J., Saleem, K. S., Basile, B. M., & Turchi, J. (2015). Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. *eLife, 4*, e11695. https://doi.org/10.7554/eLife.11695

Murray, E. A., O’Doherty, J. P., & Schoenbaum, G. (2007). What we know and do not know
about the functions of the orbitofrontal cortex after 20 years of cross-species studies.

Journal of Neuroscience, 27(31), 8166–8169.

https://doi.org/10.1523/JNEUROSCI.1556-07.2007

Noonan, M. P., Walton, M. E., Behrens, T. E., Sallet, J., Buckley, M. J., & Rushworth, M. F. (2010). Separate value comparison and learning mechanisms in macaque medial and lateral orbitofrontal cortex. Proceedings of the National Academy of Science, 107, 20547–20552.

Ostlund, S. B., & Balleine, B. W. (2007). Orbitofrontal cortex mediates outcome encoding in pavlovian but not instrumental conditioning. Journal of Neuroscience, 27(18), 4819–4825. https://doi.org/Doi 10.1523/Jneurosci.5443-06.2007

Panayi, M. C. M. C., & Killcross, S. (2014). Orbitofrontal cortex inactivation impairs between- but not within-session Pavlovian extinction: An associative analysis. Neurobiology of Learning and Memory, 108, 78–87. https://doi.org/10.1016/j.nlm.2013.08.002

Pickens, C. L., Saddoris, M. P., Gallagher, M., & Holland, P. C. (2005). Orbitofrontal lesions impair use of cue-outcome associations in a devaluation task. Behav Neurosci, 119(1), 317–322. https://doi.org/2005-01705-030 [pii]10.1037/0735-7044.119.1.317

Pickens, C. L., Saddoris, M. P., Setlow, B., Gallagher, M., Holland, P. C., & Schoenbaum, G. (2003). Different roles for orbitofrontal cortex and basolateral amygdala in a reinforcer devaluation task. Journal of Neuroscience, 23(35), 11078–11084. Retrieved from http://www.jneurosci.org/content/23/35/11078.full.pdf

Rescorla, R. A. (1992). Response-outcome versus outcome-response associations in instrumental learning. Animal Learning and Behavior, 20(3), 223–232.

Rudebeck, P. H., & Murray, E. A. (2011). Balkanizing the primate orbitofrontal cortex: distinct subregions for comparing and contrasting values. Critical Contributions of the Orbitofrontal Cortex to Behavior, 1239, 1–13. https://doi.org/DOI 10.1111/j.1749-6632.2011.06267.x

Rudebeck, P. H., & Murray, E. A. (2014). The Orbitofrontal Oracle: Cortical Mechanisms for the Prediction and Evaluation of Specific Behavioral Outcomes. Neuron, 84(6), 1143–1156. https://doi.org/10.1016/j.neuron.2014.10.049
Rudebeck, P. H., Saunders, R. C., Prescott, A. T., Chau, L. S., & Murray, E. A. (2013). Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. *Nature Neuroscience, 16*, 1140–1145. Retrieved from http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3733248/pdf/nihms483559.pdf

Schoenbaum, G., Chiba, A. A., & Gallagher, M. (1999). Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. *Journal of Neuroscience, 19*(5), 1876–1884. Retrieved from http://www.jneurosci.org/cgi/reprint/19/5/1876.pdf

Schoenbaum, G., & Esber, G. A. (2010). How do you (estimate you will) like them apples? Integration as a defining trait of orbitofrontal function. *Current Opinion in Neurobiology, 20*(2), 205–211. https://doi.org/DOI 10.1016/j.conb.2010.01.009

Schoenbaum, G., Nugent, S. L., Saddoris, M. P., & Setlow, B. (2002). Orbitofrontal lesions in rats impair reversal but not acquisition of go, no-go odor discriminations. *Neuroreport, 13*(6), 885–890. Retrieved from http://graphics.tx.ovid.com/ovftpdfs/FPDDMCOKLECKGD00/fs047/ovft/live/gv024/0001756/200205070-00030.pdf

Schoenbaum, G., Roesch, M. R., Stalnaker, T. A., & Takahashi, Y. K. (2009). A new perspective on the role of the orbitofrontal cortex in adaptive behaviour. *Nature Reviews Neuroscience, 10*(12), 885–892. https://doi.org/Doi 10.1038/Nrn2753

Tabachnick, B. G., & Fidell, L. S. (2013). *Using multivariate statistics* (6th ed.). Boston: Pearson Education.

Wagner, A. R., & Brandon, S. E. (1989). Evolution of a Structured Connectionist Model of Pavlovian Conditioning (AESOP). In S. B. Klein & R. R. Mowrer (Eds.), *Contemporary learning theories: Pavliocian conditioning and the status of tradional learning theories* (pp. 149–189). Hillsdale, NJ: Lawrence Erlbaum.

Walton, M. E., Behrens, T. E., Noonan, M. P., & Rushworth, M. F. (2011). Giving credit where credit is due: orbitofrontal cortex and valuation in an uncertain world. *Ann N Y Acad Sci, 1239*, 14–24. Retrieved from http://onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2011.06257.x/abstract

Walton, M. E., Chau, B. K., & Kennerley, S. W. (2015). Prioritising the relevant information
for learning and decision making within orbital and ventromedial prefrontal cortex.

West, E. A., DesJardin, J. T., Gale, K., & Malkova, L. (2011). Transient Inactivation of Orbitofrontal Cortex Blocks Reinforcer Devaluation in Macaques. *The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 31*(42), 15128–15135. https://doi.org/10.1523/JNEUROSCI.3295-11.2011

Wikenheiser, A. M., Marrero-Garcia, Y., & Schoenbaum, G. (2017). Suppression of Ventral Hippocampal Output Impairs Integrated Orbitofrontal Encoding of Task Structure. *Neuron.* https://doi.org/10.1016/j.neuron.2017.08.003

Wilson, R. C., Takahashi, Y. K., Schoenbaum, G., & Niv, Y. (2014). Orbitofrontal cortex as a cognitive map of task space. *Neuron, 81*(2), 267–279. https://doi.org/10.1016/j.neuron.2013.11.005

Yin, H. H., Knowlton, B. J., & Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. *European Journal of Neuroscience, 19*(1), 181–189. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14750976

Yin, H. H., Ostlund, S. B., Knowlton, B. J., & Balleine, B. W. (2005). The role of the dorsomedial striatum in instrumental conditioning. *European Journal of Neuroscience, 22*(2), 513–523. https://doi.org/10.1111/j.1460-9568.2005.04218.x
Figure 1. The effects of excitotoxic OFC lesions on instrumental devaluation by taste aversion. (A) Representative OFC lesion damage in the Non-Devalued (left) and Devalued (right) lesion groups. Semi-transparent grey patches represent lesion damage in a single subject, and darker areas represent overlapping damage across multiple subjects. Coronal sections are identified in mm relative to bregma (Paxinos and Watson, 1997). (B) Rate of lever pressing during 3 days of instrumental acquisition. (C) Mean reward consumption during taste aversion learning, consumption of rewards paired with LiCl induced nausea decreased across injection pairings (Left), whereas consumption of rewards paired with saline injections increased across injection pairings. (D) Total lever presses during the 10 mins
devaluation test in extinction. (E) Total lever presses during the 20 mins re-acquisition test
with rewards delivered instrumentally. Error bars depict +SEM.
Figure 2. The effects of excitotoxic OFC lesions on Pavlovian devaluation by specific satiety. 

(A) Representative OFC lesion damage in the lesion group. Semi-transparent grey patches represent lesion damage in a single subject, and darker areas represent overlapping damage across multiple subjects. Coronal sections are identified in mm relative to bregma (Paxinos and Watson, 1997). (B) Duration of magazine activity during the CS above the PreCS baseline over 9 days of Pavlovian acquisition in blocks of 3 days, and during the devaluation test in extinction (C) immediately following specific satiety. Error bars depict +SEM.
Figure 3. The effects of specific satiety on specific PIT. Rate of lever pressing (A) and magazine duration (B) responding during instrumental extinction in two minute blocks following devaluation by sensory specific satiety. Error bars depict +SEM. Rate of lever pressing (C) and magazine duration (D) responding during the specific PIT test in extinction following outcome devaluation by sensory specific satiety. Responding plotted as the mean response rate per minute during each cue minus the preceding baseline no-cue period. Same and different conditions indicate whether the Pavlovian CS predicted the same or different liquid reinforcer to the instrumental response, and the general condition indicates responding during the CS that predicted pellets which were never an instrumental reinforcer. Non-devalued (left) and devalued (right) indicate whether the lever outcome was devalued by specific satiety.
Figure 4. The effects of subregion specific OFC lesions on Pavlovian devaluation by taste aversion. (A) Representative OFC lesion damage in the anterior (left) and posterior (right) LO lesion groups. Semi-transparent grey patches represent lesion damage in a single subject, and darker areas represent overlapping damage across multiple subjects. Coronal sections are identified in mm relative to bregma (Paxinos and Watson, 1997). (B) Quantification of percent bilateral OFC damage in anterior and posterior lesion groups at each coronal plane, in...
mm relative to bregma. (C) Rate of acquisition to the Pavlovian CSs in blocks of 3 days. 
Response rates presented as duration of magazine activity during the CS minus activity in the 
PreCS period. (D) The acquisition of a specific taste aversion following pairings of one 
outcome with LiCl injections (Devalued) or saline injections (Non-Devalued). The mean 
weight of each outcome consumed prior to each injection pairing is plotted. (E) An additional 
pairing of each outcome with LiCl or saline injections was conducted in the experimental 
chambers following non-contingent delivery of reward into magazine. Data presented as total 
duration of magazine activity in the session. This allowed for a measure of the transfer of the 
taste aversion to the testing context. (F) Magazine responding (CS – PreCS) to the CSs 
associated with the devalued and non-devalued outcomes, presented in extinction. (G) An 
outcome specific reinstatement test in which responding to the CSs was assessed after brief 
exposure to its associated outcome. Error bars depict +SEM.
Figure 5. The effects of subregion specific OFC lesions sign-tracking behaviour and reversal learning. Lever (A) and magazine (B) CS responding during 12 days of acquisition (left), and reversal (right) of a rewarded (CS+) and non-rewarded (CS-) lever cue. Response competition during acquisition (C) and reversal (D) of the CS+. Lever response bias calculated as the difference between standardised lever and magazine responding so that
positive scores represent greater lever bias and negative scores represent greater magazine response bias. Error bars depict +SEM.
Supplementary – Effect of OFC Lesions on Sensory Specific Pavlovian to Instrumental Transfer

Similar to Ostlund and Balleine (2007a), we tested whether the effects of our specific OFC lesions affected the use of sensory-specific Pavlovian information to guide instrumental responding using a Pavlovian to instrumental transfer test (PIT).

Results

Histology

Lesion damage is depicted in (Figure S1A). One sham animal was excluded due to extensive damage to primary and secondary motor areas M1 and M2. Final $N = 15$; sham $n = 7$, lesion $n = 8$.

Behavioural results

Pavlovian

A mixed Group x Day (16 days) x US (sucrose, maltodextrin, pellet) ANOVA was conducted on CS-PreCS magazine entry rate to quantify Pavlovian acquisition. This analysis revealed that responding was greater for pellets than sucrose reinforcers ($F_{(1, 13)} = 8.69, \ p = .03$, main effect of US, $F_{(2, 26)} = 4.56, \ p = .02$, no other differences between reinforcers reached significance, sucrose vs maltodextrin, $F_{(1, 13)} = 0.37, \ p = .91$, maltodextrin vs pellets, $F_{(1, 13)} = 4.42, \ p = .16$). Surprisingly, CS responding was significantly greater in the sham than the lesion group ($F_{(1, 13)} = 12.49, \ p = .004$). Importantly, there were no significant interactions between Group, Day, or US (remaining $F < 1.35, \ p > .11$). Both groups showed significant acquisition over days of training (significant main effect of Day, $F_{(15, 195)} = 4.86, \ p < .001$, significant positive linear, $F_{(1, 13)} = 8.69, \ p < .001$, and negative quadratic trend, $F_{(1, 13)} = 6.29, \ p = .03$), and responding (entries per minute, CS-PreCS) on the final day of acquisition
were sham ($M = 7.76$, $SD = 1.36$) lesion ($M = 6.03$, $SD = 1.27$). It is likely that the increased responding to the pellet reinforcer is a result of the use of magazine frequency as a measure as we routinely observe the opposite pattern when using magazine duration as a measure (e.g. experiment 4). Unfortunately, magazine duration data were not recorded during this experiment to determine whether the difference between sham and lesion groups was only present on this measure. Furthermore, it is important to note that this measure of Pavlovian conditioning is conflated with consummatory responses since the USs were delivered at random times throughout the CS, and as such it is hard to draw clear conclusions about any observed differences in responding.

Instrumental acquisition did not differ between groups, a pattern supported by a mixed Group x Day (12 days) ANOVA finding a significant main effect of Day ($F_{(11, 143)} = 58.15$, $p < .001$) but no significant effect of Group ($F_{(1, 13)} = 1.62$, $p = .23$) or Group x Day interaction ($F_{(11, 143)} = 1.10$, $p = .36$). Response levels (lever presses per minute) on the final day of instrumental training were similar in sham ($M = 11.00$, $SD = 3.66$) and lesion ($M = 9.12$, $SD = 3.61$) groups.

Extinction of magazine and lever responding in the 10 minutes prior to testing did not reveal any group differences (Figure S1 B, C). Separate mixed Group x Block (10 blocks of 1 min) ANOVAs on lever pressing and magazine approach revealed significant main effects of Block (lever pressing $F_{(9, 117)} = 8.95$, $p < .001$, magazine entries $F_{(9, 117)} = 2.60$, $p = .01$) but no effect of Group or Group x Block interactions (remaining $F < 1.42$, $p > .19$).

At test, lever pressing was assessed in the presence of the CSs that either predicted the same outcome as the instrumental response, a different outcome (predicted by the alternative instrumental response) or a general outcome not predicted by either instrumental response. In
both groups lever pressing was potentiated most by CS same, moderately by CS different and minimally by CS general (Figure S1 D). A mixed Group x Cue (same, different, general) ANOVA confirmed that responding differed between cues (main effect of Cue $F_{(2, 26)} = 6.32$, $p = .01$) but was not differentially affected by lesion group (main effect of Group $F_{(1, 13)} = 0.04$, $p = .85$, Group x Cue interaction $F_{(2, 26)} = 1.26$, $p = .30$). Bonferroni adjusted simple main effects revealed that responding to CS same was greater than CS general ($F_{(1, 13)} = 10.25$, $p = .02$), however CS same did not differ from CS different ($F_{(1, 13)} = 3.58$, $p = .24$) and CS different did not differ from CS general ($F_{(1, 13)} = 3.92$, $p = .21$).

Additional comparisons examined whether responding to each cue was significantly different from baseline (i.e. 0). The data were collapsed across groups as there was no significant interaction with group. Lever responding was significantly greater than baseline for CS Different ($F_{(1, 13)} = 8.29$, $p = .01$) and CS Same ($F_{(1, 13)} = 20.20$, $p = .001$), but not for CS General ($F_{(1, 13)} = 0.35$, $p = .56$) which suggests that there was no significant evidence of a general PIT effect for CS General.

Magazine responding during the test session was not differentially affected by either group or cues (Figure S1 E). A mixed Group x Cue (same, different, general) ANOVA supported this observation with all effects failing to reach significance (all $F < 1.23$, $p > .29$).
Supplementary Results – Effect of sensory specific satiety on specific Pavlovian to instrumental transfer

Exclusions

Two rats were excluded based on a substantial response bias to one cue. Responding was over 4x higher to one CS suggesting substantial cue or outcome preference.

Behavioural results

Instrumental

Acquisition of instrumental responding for the sucrose and maltodextrin rewards occurred at a similar rate, and did not differ on the final day of acquisition (lever presses per min; Sucrose, $M = 28.87$, $SD = 9.97$; Maltodextrin, $M = 27.53$, $SD = 7.68$). A Reward (Sucrose, Maltodextrin) x Session (1-6) ANOVA revealed that lever pressing significantly increased across sessions (main effect of $F(5, 65) = 129.71$, $p < .001$, positive linear trend $F(1, 13) = 92.91$, $p < .001$) but did not significantly differ between reward type (all remaining $Fs < 1.00$, $p > .84$).

Pavlovian

The rate of acquisition was greater for the cues predicting sucrose and maltodextrin than for the cue predicting pellets, however there were no differences in responding by the final day of acquisition (time spent in magazine during 2 minute cue above 2 minute baseline; Sucrose, $M = 46.32$ s, $SD = 17.57$; Maltodextrin, $M = 52.60$ s, $SD = 15.06$; Pellet, $M = 39.22$ s, $SD = 19.89$). A Reward (Sucrose, Maltodextrin, Pellet) x Session (1-6) ANOVA revealed significant main effects of Session ($F(5, 65) = 11.24$, $p < .001$, positive linear trend $F(1, 13) = 27.66$, $p < .001$) and Reward ($F(2, 26) = 22.28$, $p < .001$; Session x Reward interaction did not
reach significance $F_{(10, 130)} = 1.41, \ p = .18$). During acquisition responding did not differ between Sucrose and Maltodextrin rewards ($F_{(1, 13)} = 1.62, \ p = .54$), whereas responding for Pellet reward was significantly lower than Sucrose ($F_{(1, 13)} = 27.55, \ p < .001$) and Maltodextrin ($F_{(1, 13)} = 26.07, \ p = .001$) rewards. Additional analysis of responding for each Reward on the final day of acquisition suggested that there were no significant differences between reward types ($F_{(2,26)} = 2.26, \ p = .13$).

**Satiety Devaluation**

Prior to each of the 4 test sessions, rats consumed $M_1 = 21.09 \ (SD = 3.29)$, $M_2 = 23.16 \ (SD = 4.85)$, $M_3 = 22.45 \ (SD = 5.15)$, $M_4 = 23.36 \ (SD = 2.97)$ grams of the to-be devalued liquid reinforcer. Total reward consumption did not differ between test sessions (main effect of session $F_{(3, 39)} = 2.52, \ p = .07$).

**Supplementary Results – Locomotor screening Anterior vs Posterior LO**

General locomotor activity (Figure S3) did not differ between groups before and after surgery (data not shown). A mixed Group x Surgery (Pre, Post) x Block (6 blocks of 10 mins) ANOVA revealed a significant main effect of Surgery ($F_{(1, 41)} = 10.18, \ p = .003$), Block ($F_{(5, 205)} = 659.29, \ p < .001$) and a Surgery x Block interaction ($F_{(5, 205)} = 4.88, \ p < .001$, all remaining effects $F < 1.71, \ p > .08$). The significant effect of surgery was a reduction in locomotor activity post-surgery which is likely to be a result of habituation to the locomotor chamber.
Figure S1. The effects of excitotoxic OFC lesions on specific Pavlovian-to-instrumental transfer (PIT). (A) Representative OFC lesion damage in the lesion group. Semi-transparent grey patches represent lesion damage in a single subject, and darker areas represent overlapping damage across multiple subjects. Coronal sections are identified in mm relative to bregma (Paxinos and Watson, 1997). Rate of lever pressing (B) and magazine entry behaviour (C) during extinction of the instrumental response prior to PIT testing. Instrumental lever pressing (D) and magazine entry behaviour during the specific PIT test. Responding plotted as the mean response rate per minute during each cue minus the preceding baseline no-cue period. Same and different conditions indicate whether the Pavlovian CS predicted the same or different liquid reinforcer to the instrumental response, the general condition indicates responding during the CS that predicted pellets which were never an instrumental reinforcer. Error bars depict +SEM.
Figure S2. Representative OFC lesion damage across the anterior-posterior plane within the same rat from the sham (left), anterior (middle), and posterior lesion groups. Coronal sections are identified in mm relative to bregma (Paxinos and Watson, 1997).
Figure S3. OFC lesions do not affect general locomotor activity. Mean number of beam
breaks before (left) and after (right) surgery, in blocks of 10 mins. Error bars depict +SEM.