Mechanical strain stimulates COPII-dependent secretory trafficking via Rac1

Santosh Phuyal1,*, Elena Djaerff2, Anabel-Lise Le Roux2, Martin J Baker3, Daniela Fankhauser4, Sayyed Jalil Mahdizadeh5, Veronika Reiterer4, Amirabbas Parizadeh4, Edward Felder6, Jennifer C Kahlhofer7, David Teis7, Marcelo G Kazanietz3, Stephan Geley4, Leif Eriksson5, Pere Roca-Cusachs2,8,**, HESSO Farhan1,4,***

Abstract

Cells are constantly exposed to various chemical and physical stimuli. While much has been learned about the biochemical factors that regulate secretory trafficking from the endoplasmic reticulum (ER), much less is known about whether and how this trafficking is subject to regulation by mechanical signals. Here, we show that subjecting cells to mechanical strain both induces the formation of ER exit sites (ERES) and accelerates ER-to-Golgi trafficking. We found that cells with impaired ERES function were less capable of expanding their surface area when placed under mechanical stress and were more prone to develop plasma membrane defects when subjected to stretching. Thus, coupling of ERES function to mechanotransduction appears to confer resistance of cells to mechanical stress. Furthermore, we show that the coupling of mechanotransduction to ERES formation was mediated via a previously unappreciated ER-localized pool of the small GTPase Rac1. Mechanistically, we show that Rac1 interacts with the small GTPase Sar1 to drive budding of COPII carriers and stimulates ER-to-Golgi transport. This interaction therefore represents an unprecedented link between mechanical strain and export from the ER.

Keywords COPII; endoplasmic reticulum; mechanobiology

Introduction

Endoplasmic reticulum (ER) exit sites (ERES) are specialized ribosome-free domains of the rough ER (Malkus et al., 2002; Farhan et al., 2007; Shomron et al., 2021), which give rise to an intricate network of tubules and vesicles that ferry cargo toward distal compartments (Zeuschner et al., 2006; Phuyal & Farhan, 2021; Weigel et al., 2021). In recent years, ERES have emerged as platforms that integrate signaling pathways in response to alterations of secretory protein load, starvation, or mitogens (Farhan et al., 2008; Farhan et al., 2010; Zacharogianni et al., 2011; Centonze et al., 2019; Centonze & Farhan, 2019; Subramanian et al., 2019). Thus, signaling to ERES allows cells to tune the secretory rate to meet the changing requirements during cell growth and proliferation. At ERES, secretory proteins leave the ER via COPII-dependent carriers. The assembly of the COPII coat is initiated by the small GTPase Sar1, which is activated by its exchange factor Sec12, a transmembrane ER-resident protein. Recruitment of Sec12 was shown to reconstitute a critical event in the biogenesis of ERES (Maeda et al., 2017). Moreover, we showed recently that phosphorylation of Sec12 regulates ERES number (Centonze et al., 2019).

Besides intracellular and environmental chemical stimuli, cells are constantly exposed to mechanical stimuli such as substrate stiffness, compression, or tensile forces (Discher et al., 2005). It is now well established that such mechanical cues trigger signaling pathways that mediate changes in cell differentiation, proliferation, growth, and survival (Engler et al., 2006; Roca-Cusachs et al., 2013; Gudipaty et al., 2017; Janmey et al., 2020). Most research in the area of mechanobiology has focused on the plasma membrane, the nucleus, or the cytoskeleton as receivers and mediators of mechanical signaling (Phuyal & Baschieri, 2020). However, it is currently
poorly understood whether and how mechanical stress has any effect on early secretory pathway compartments such as ERES.

The small GTPase Rac1 is a major regulator of actin cytoskeleton remodeling (Nobes & Hall, 1995). Rac1 has been reported to orchestrate spatially restricted signaling cascades at various subcellular organelles (Payapilly & Malliri, 2018; Phuyal & Farhan, 2019). However, any presence of functionally active Rac1 at the ER remains unexplored. Importantly, previous reports show that Rac1 signals downstream of mechanical cues to regulate cellular proliferation, gene expression, nutrient transport, and epithelial wound healing (Katsumi et al., 2002; Kumar et al., 2004; Liu et al., 2007; Yamane et al., 2007; Desai et al., 2008; Verma et al., 2011; Gould et al., 2016).

An open question is whether Rac1 signaling regulates the early secretory pathway, and whether mechanical cues act as a stimulus for this process.

In this study, we demonstrate that the early secretory pathway responds to mechanical cues. Our results show that changes in mechanical tension increases ERES number and enhances the rate of ER exit in a manner Rac1-dependent. We further show that Rac1 regulates ERES formation by interacting with the small GTPase Sar1.

Results

Mechanical strain stimulates the early secretory pathway in a Rac1-dependent manner

To impose mechanical tension on cells, we cultured HeLa cells on fibronectin-coated micropatterned surfaces that contained multiple geometric shapes of two different sizes (small: 700 μm², large: 1,600 μm²) (Albert & Schwarz, 2014). Cells were allowed to adhere and accommodate to the patterns of different sizes for 4 h followed by fixation and immunostaining with anti-Sec31 antibodies to label ERES. Strikingly, forcing cells to occupy a larger surface area led to an increased ERES number irrespective of the geometry (Figs 1A left panel and B, and EV1A–B). The same observation was made when we carried out the experiment in nontransformed RPE-1 cells (Figs 1C and EV1C–E). These findings raised the possibility that ERES respond to mechanical cues. We tested this possibility by subjecting HeLa cells to acute mechanical tension and monitoring ERES in live cells using GFP-tagged Sec16A as an ERES marker. Cells transiently expressing GFP-Sec16A were grown on fibronectin-coated poly(dimethylsiloxane) (PDMS) membranes and subjected to 7.5% biaxial stretch. We noted a rapid increase in the number of ERES in stretched cells within a minute (Fig 1D–E; Movie EV1 upper panel). A similar rapid response was observed by exposing HeLa cells to acute (5 min) mechanical strain through hypotonic swelling (Fig EV1F–G). Thus, mechanical stimulation acutely upregulates ERES number in cells.

We next asked how mechanical strain is linked to the early secretory pathway. Rac1 activation and signaling has been previously linked to mechanical strain (Katsumi et al., 2002). To validate that Rac1 is activated in our experimental setup upon mechanical stimulation, we used cells expressing a Rac1 FRET biosensor (Fritz et al., 2013). We observed a clear increase in Rac1 activity in cells forced to occupy a large micropatterned surface (Fig 1F) and cells subjected to equibiaxial stretching (Fig 1G). To test whether Rac1 is involved in the stretch-induced increase in ERES, we cultured cells on the micropatterned surface, allowed them to attach for 30 min and then treated with the Rac1 inhibitor NSC23766 for four hours. NSC23766 is a reversible Rac1-specific inhibitor that occupies the GEF-recognition groove centering on Trp56 of Rac1 to inhibit its activation by some GEFs, such as TIAM1 (Gao et al., 2004). Rac1 inhibition decreased the number of ERES compared with control in both HeLa and RPE-1 cells (Figs 1A, H and I, and EV1B–E). Notably, the reduction in ERES number was more pronounced in cells that occupied larger geometries than in the cells occupying smaller geometries (Figs 1A, H and I, and EV1B–E). In a similar manner, NSC23766 also blocked the acute increase in ERES number upon biaxial stretching (Fig 1D and E; Movie EV1). These effects were not due to an effect of NSC23766 on cell surface area, which was found to be similar in treated and untreated cells (Fig EV1H–J). Thus, the increase in ERES number by mechanical stretch is dependent on Rac1.

Figure 1. Mechanical strain stimulates ERES and ER-to-Golgi transport.

A Representative immunofluorescence images of Sec31A marked ERES in HeLa cells cultured on crossbow shaped micropatterned surface of small (upper panel) or large (lower panel) size for 4 h. Cells were treated with DMSO (Ctrl) or 50 μM NSC23766 (Rac1 inhibitor) for 4 h prior to fixation and immunostaining. Scale bars: 5 μm.

B, C The number of ERES per cell for each pattern size in HeLa (B) and RPE-1 (C) cells. The number of ERES was quantified from at least 74 cells per condition for HeLa (B) and at least 42 cells per condition for RPE-1 (C) from three independent experiments. Each dot represents an individual cell.

D HeLa cells transiently expressing GFP-Sec16A were grown on PDMS membranes, treated as indicated and subjected to 75% equibiaxial stretch. The effect of stretch on ERES was then monitored by live cell imaging. Representative still images are shown. Scale bar: 5 μm. See also Movie EV1.

E Quantification of the experiments in (C). ERES increase in HeLa cells before and during equibiaxial stretch were quantified from a total of 19 cells in four independent live imaging experiments. Baseline GFP-Sec16A count from control (Ctrl) before strain was used to normalize GFP-Sec16A counts for each condition. Shading represents standard deviation.

F HeLa cells transfected with Rac1 FRET biosensor were cultured on crossbow micropatterns and allowed to grow for 4 h before Rac1 FRET ratio was measured in living cells. The dot plot shows FRET ratio for individual cells (small = 28, large = 33 cells) quantified from three independent experiments.

G HeLa cells transfected with Rac1 FRET biosensor were cultured on PDMS membranes, subjected to 75% equibiaxial stretch and Rac1 FRET ratio was measured in living cells for indicated time points. Graph shows average FRET ratio calculated from a total of 16 cells from three independent experiments.

H, I Quantification of ERES in HeLa cells seeded on large (H) and small (I) micropatterned surfaces (described in A). A total of 90–100 cells from three independent experiments were used for ERES quantification.

J Golgi arrival kinetics of GFP-ManII-RUSH in HeLa cells stably expressing Str-KDEL-SBP-GFP-ManII (RUSH system). Cell were grown on PDMS membranes, treated as indicated and subjected to 75% equibiaxial stretch. See also Movie EV2. ManII arrival at the Golgi was monitored in 19 cells in two independent experiments. See also Movie EV2.

Data information: In all graphs, asterisks (*) mark statistical significance (P-value <0.05; Student’s unpaired t-test) and error bars show standard deviation.
Because ERES are sites for cargo exit from the ER, we tested whether mechanically challenged cells would exhibit a change in the rate of ER-to-Golgi transport. Therefore, we exploited the retention using selective hook (RUSH) assay (Boncompain et al., 2012) with Mannosidase II (ManII) as secretory reporter. We applied biaxial strain to HeLa cells stably expressing the RUSH reporter ManII and observed an enhanced ER-export of ManII in stretched cells compared with that in nonstretched cells (Fig 1J; Movie EV2). Again, Rac1 was essential for stretch-induced acceleration of ER-export since perturbation of its activity with the inhibitor NSC23766 delayed the ER-to-Golgi transport (Fig 1J; Movie EV2).

Based on the findings from these experiments, we conclude that the early secretory pathway responds to mechanical strain, and this response depends on Rac1 signaling activity.

The early secretory pathway is required for cellular adaptation to mechanical strain

Having established the first link between mechanical strain and the early secretory pathway, we examined whether the early secretory pathway has any functional consequences for cellular adaptation during mechanical stimulation. For this purpose, we used small
interfering RNA (siRNA) targeting the small GTPases Sar1A and Sar1B, which is known to disrupt the assembly and the functionality of ERES (Cutrona et al., 2013). We verified depletion of Sar1 level using Western blot (Fig EV2A). We cultured Sar1-depleted HeLa cells on the micropatterned surface, allowed them to adhere for 3 h, and monitored whether cells occupy the whole micropattern. We found that a significantly large proportion of Sar1-depleted cells failed to spread and fully cover the large micropatterns compared with the control cells (Fig 2A and B). On the contrary, no difference between control and Sar1A/B depleted cells was observed for cells on smaller micropattern geometries (Fig EV2B and C). This indicates that the failure to spread and cover the large micropattern is not the result of an adhesion defect, but rather due to an inability of cells to adapt to the mechanical challenge. Of note, the defect in cellular adaptation can also not be attributed to an effect on cell size, which was found to be unaffected by depletion of Sar1A/B (Fig 2C).

A similar effect was observed when cells were treated with the Rac1 inhibitor NSC23766 (Fig 2D and E) further supporting a functional link for Rac1 with ERES in the context of adaptation of the cell surface to mechanical stress during cell spreading. As a complementary approach, we tested whether ERES are involved in regulating the ability of cells to ERES in cellular adaptation during mechanical stimulation. We subjected control or Sec16A depleted HeLa cells to mechanical stretch and monitored membrane permeability in live cells using propidium iodide. We found that Sec16A depletion compromises plasma membrane integrity in cells when exposed to mechanical strain (Fig EV2F). This suggests that acute regulation of anterograde membrane flux through the secretory pathway plays a role in maintaining plasma membrane integrity. As with Sar1A/B depletion, Sec16A depletion did not alter cell size (Fig EV2G and H). Altogether, our results support the idea that the early secretory pathway plays an important role during cellular adaptation to mechanical tension.

Manipulation of Rac1 activity at the ER affects ERES

We next asked whether Rac1 also signals to ERES in the absence of mechanical strain. For this purpose, we silenced Rac1 expression using siRNA in HeLa cells and assessed the number of ERES. We found that downregulation of Rac1 significantly reduced the ERES count (Fig 3A and B). We verified the depletion of Rac1 by Western blotting (Fig EV3A). Since Rac1 is required to maintain the cytoskeleton, we also measured the area covered by Rac1 knockdown cells and found significant differences compared with control cells (Fig EV3B). The effect of Rac1 depletion on ERES could be rescued by introducing a siRNA-resistant version of Rac1 in the cells (Fig EV3C-E). To further verify the results from the knockdown experiments, we treated HeLa cells with the Rac1 inhibitor NSC23766 for 4 h, fixed and processed for quantification of ERES by immunofluorescence and confocal microscopy. In agreement with the results (Fig 3A and B) from knockdown experiments, pharmacological inhibition of Rac1 also led to a remarkable decrease in ERES (Fig 3C and D). Similar results were obtained in breast cancer MDA-MB-231 cells and prostate cancer PC3 cells (Fig EV3F and G), indicating that the effect is not cell type specific. Notably, treatment of Rac1-knockout PC3 cells with NSC23766 did not affect ERES, thus verifying an on-target effect of the inhibitor on ERES (Fig EV3H-J).

Because NSC23766 is a reversible inhibitor, we also checked whether the effect of Rac1 inhibition on ERES subsides following inhibitor washout. Indeed, the number of ERES almost completely recover after 2 h of NSC23766 washout (Fig 3C and D).

To determine the effect of Rac1 on ERES dynamics in living cells, we performed fluorescence recovery after photobleaching (FRAP) in cells expressing GFP-tagged Sec16A. We have previously used this strategy to uncover effects on ERES biogenesis and maintenance (Farhan et al., 2010; Tillmann et al., 2015). As shown in Fig 3E and F, inhibition of Rac1 reduced both the fluorescence recovery, resulting in a reduced mobile fraction of GFP-Sec16A after compared with control cells.

We wanted to further investigate whether the observed effect of perturbed Rac1 activity on ERES translates to altered ER-to-Golgi transport. We performed RUSH experiments with ManII as a cargo and noted a substantial delay in the rate of ManII arrival at the Golgi upon knockdown or inhibition of Rac1 (Fig 3G and H). Treatment of Rac1-depleted HeLa cells with NSC23766 had no cumulative effect on ManII arrival at the Golgi as compared with knockdown or inhibition alone (Fig 3G and H). This observation corroborates the PC3 Rac1 knockout ERES data (Fig EV3I and J) and further indicates the on-target effect of the inhibitor. Taken together, the results presented so far clearly establish an important role for Rac1 in regulating the ERES and the early secretory pathway.
altered ERES. To selectively inactivate Rac1 at the ER, we generated a plasmid expressing the GAP-domain of the Rac1-specific GAP β2-Chimaerin fused to the KDEL receptor 2 (KDELR2) for ER targeting (hereafter KDELR2-GAP). As a control, we created catalytically inactive GAP fused to KDELR2 by mutating the R363 to alanine (hereafter KDELR2-AGAP). We included KDELR2 as an additional control in our experiments. We overexpressed these plasmids in HeLa cells (Fig EV4D–F) and quantified the effect on ERES with and without mechanical stimulation of cells. While KDELR2 or KDELR2-AGAP overexpressing cells had similar number of ERES, cells overexpressing KDELR2-GAP exhibited a significant ERES reduction under normal and mechanically challenged growth conditions (Fig 4E–H). During mechanical strain, inactive Rac1 at the ER (KDELR2-GAP overexpression) reduced ERES count only in cells occupying large micropatterns (Fig 4G and H), but not in cells occupying small micropatterns (Fig EV4C and D). Overexpression of KDELR2-GAP slightly reduced the total cellular pool of active Rac1 (Fig EV4H). The effect of KDELR2-GAP on ERES is similar to those obtained with the knockdown or the pharmacological inhibition of Rac1, which affect every subcellular pool of Rac1. However, the KDELR2-GAP only acts at the ER, and thus, these results point toward a functionally active Rac1 at the ER possibly regulating the ERES.

We next asked whether increasing Rac1 activation at the ER is sufficient to regulate ERES. To this end, we took advantage of CIBN-CRY2-based light-inducible dimerization system (Kennedy et al., 2010) to recruit the Rac1-specific GEF TIAM1 to the ER (Fig 4I). This approach has previously been used to generate spatially restricted active Rac1 at the leading edge in cells (de Beco et al., 2018). As presented in Fig 4I, cytosolic TIAM was successfully recruited to the ER by CIBN-Sec16A, activating the ER pool of Rac1 in living HeLa cells. Following this, we counted ERES using SNAP-tagged Sec16A as a marker, and noted an overall increase in ERES over time (Figs 4J and EV4I) further strengthening the notion of an involvement of active Rac1 in signaling to ERES.

Effect of Rac1 on the early secretory pathway is actin independent

We next aimed to unravel the underlying molecular details of Rac1 regulated ER-export. Rac1 is pivotal in regulating actin dynamics, and actin assembly has previously been observed at the ER (Wales et al., 2016). Therefore, we asked whether actin mediates the observed effect of Rac1 on ERES and ER-export. To test this, we treated HeLa cells under normal growth conditions with different concentrations of actin disrupting cytoskeletal Cytod and latrunculin A (LatA), and quantified ERES and ER-to-Golgi transport. Neither Cytod nor LatA treatment reduced ERES (Fig 5A and B) or affected the rate of the ER-to-Golgi transport (Fig 5C and D).
E) as Rac1 did. In live cell imaging experiments, using the GFP-tagged actin probe actin-chromobody, we did verify that both drugs worked as anticipated Fig EV5A. Because actin cytoskeleton and its regulators are tightly coupled to mechanotransduction (Ohashi et al., 2017), we further explored whether actin mediates Rac1 signaling to ERES during mechanical strain. We cultured HeLa cells on PDMS membranes, treated them with DMSO (control) or CytoD, and exposed them to mechanical strain. We quantified ERES by immunolabeling endogenous Sec31A, a subunit of the COPII machinery. In agreement with the data presented in Figs 1A–E and EV1B, C, mechanical strain increased ERES number (Fig 5F and G). However, actin disruption did not abrogate strain induced ERES increase (Fig 5F and G).

To perform a more targeted actin perturbation, we silenced the expression of inverted formin 2 (INF2) (Fig EV5B and C), which regulates actin dynamics locally at the ER (Wales et al., 2016). We determined ERES counts (Fig 5H and I) or the kinetics of ER-to-Golgi transport (Fig 5J and K) in INF2 depleted cells and were unable to detect any appreciable changes compared with the control.

Based on these data, we conclude that the effect of Rac1 on the early secretory pathway is actin independent.

Rac1 interacts with the COPII subunit Sar1 and stimulates vesicle budding

Because we observed Rac1 at ERES and functionally active Rac1 at the ER (Fig 4), we tested whether Rac1 directly signals to the constituents of the ER-export machinery. We visualized mCherry-tagged Rac1 together with GFP-tagged Sec16A in HeLa cells, and observed a transient co-occurrence of Rac1 with Sec16A (Fig 6A; Movie EV4) further suggesting a direct link between Rac1 and ERES. At ERES, recruitment of the small GTPase Sar1 is an early step during the process of COPII assembly. Therefore, we investigated whether Rac1 interacts with Sar1. Because the localization of Rac1 to ERES was very transient (Movie EV4), we opted for biomolecular fluorescence complementation (BiFC) to capture any transient Rac1-Sar1 interactions. Overexpression of Sar1-YFP(C) or YFP(N)-Rac1 alone in HeLa cells gave no fluorescent signal (Fig EV5D). When cotransfected, YFP(C)-Sar1 and YFP(N)-Rac1 formed a fluorescent YFP complex (Fig 6B) indicating Rac1 and Sar1 as interaction partners. We observed that many of the Rac1-Sar1 complexes formed puncta that colocalized with Sec31A, indicating Rac1-Sar1 complexes form at ERES (Fig 6B and C). Moreover, we were also able to coimmunoprecipitate endogenous Sar1 with GFP-tagged Rac1 in HeLa cells (Fig 6D) further supporting the BiFC results (Fig 6B). We also used BiFC to probe for Rac1 and Sec16A interaction and were unable to detect any complex formation (Fig EV5E). Finally, we tested whether the Rac1-Sar1 complex formation was sensitive to a mechanical stimulus. Therefore, we expressed Sar1-YFP(C) and YFP(N)-Rac1 in HeLa that we cultured for 4 h on small and large micropatterns. We noticed that cells on large micropatterns had more Rac1-Sar1 complexes (Fig 6E and F), which indicates that this interaction might be sensitive to mechanical strain. Together, these findings indicated that Rac1 may regulate ER export via its interaction with Sar1.

We next explored the Rac1-Sar1 interaction using *in silico* modeling, which suggested that Rac1 could cover the GTP binding site in Sar1 (Fig 7A and B), thereby preventing Sec23 (Sar1 GAP) from accessing Sar1, due to a steric clash between Sec23 and Rac1 (black circle in Fig 7C). On the contrary, our model predicts that the Sar1-Rac1 dimer can interact with the Sar1 GEF Sec12 (Fig 7D). To validate this prediction, we performed co-immunoprecipitation experiments. As shown in Fig 7E, immunoprecipitated GFP-tagged Rac1 brought down endogenous Sar1 and Sec12, supporting the notion of the existence of a ternary complex and increasing the level of confidence in our *in silico* model. Based on the prediction from our *in silico* model, we created a Rac1 double mutant by substituting arginine at 163 (R163) and lysine at 166 (K166) with alanine (Rac1RK/AA), which we predict to reduce the ability to bind Sar1. We used co-immunoprecipitation experiments to test this prediction. As an additional control, we included RhoA to determine whether the interaction is specific to Rac1. Indeed, Rac1RK/AA exhibited a severely reduced ability to bind to Sar1 compared with wild-type Rac1 (Fig 7F). We used RhoA as an additional control to test the specificity of Rac1 and Sar1 interaction and failed to detect Sar1 in the co-immunoprecipitated fraction (Fig 7F). Taken together, these results further support the existence of a Rac1-Sar1 complex and therefore strengthen the notion of Rac1-dependent regulation of ERES.

Figure 3. Perturbation of Rac1 activity affects ERES and ER-export.

A HeLa cells were transfected with 10 nM nontargeting control siRNA (siCtrl) or siRNAs targeting Rac1 (siRac1). After 72 h, cells were fixed and processed for immunostaining against Sec31A to label ERES. Representative confocal microscopy images are shown.

B Quantification graph shows the number of ERES/cell in cells transfected with control siRNA (siCtrl) or siRNAs targeting Rac1 or Sec12, expressing activity affects ERES and ER-export.

C Representative immunofluorescence images showing ERES in HeLa cells treated with DMSO (Ctrl), Rac1 inhibitor NSC23766 (50 μM, 4 h), or NSC23766 washout (50 μM for 4 h, then washout for 2 h).

D Graph shows the number of ERES per cell (displayed as % of Ctrl) derived from at least 30 cells per condition from three experiments.

E Fluorescence recovery after photo bleaching (FRAP) of GFP-Sec16A marked ERES in HeLa cells. Images show an individual ERES before (−1), immediately after (0) and 28 s after photo bleaching. The graph illustrates FRAP analysis of individual ERES from 23 (for control) and 24 (for NSC23766) regions in three experiments. Line connects individual time points. Data are ±SD.

F Quantification of the mobile fraction of GFP-Sec16A in control and Rac1 inhibited cells. Mobile fraction is derived from a total of 23 (Ctrl) and 24 (NSC23766) individual ERES from three independent experiments.

G The rate of ER-export was monitored using GFP-ManII-RUSH in HeLa cells after perturbation of Rac1 with siRNA (siRac1), or Rac1 inhibitor NSC23766, or a combination of both. Representative images show GFP-ManII-RUSH distribution in HeLa cells at indicated time points.

H Quantification shows ratio of ManII fluorescence intensity within Golgi to outside Golgi region after addition of biotin at indicated time points. Between 76 and 104 cells were used for measurement of ManII intensity in three experiments.

Data information: Scale bars in all immunofluorescence images are 5 μm. Asterisks (*) indicate statistical significance (P-value <0.05), ns indicates nonsignificant. For data presented in (B), (D), and (H), one-way Anova was used, whereas Student’s unpaired t-test was used for F. Error bars represent standard deviation.
Figure 3.
Because Rac1 had a positive effect on ERES structure and function, we reasoned that Rac1 ought to exert a positive effect on Sar1. This can occur either because of enhanced Sar1 activation by Sec12, or reduced inactivation by Sec23. Our in silico model predicted that Sec23 is not capable of binding the Sar1-Rac1 dimer. On the contrary, our combined experimental and computational data indicate that Sec12 can bind the complex. Therefore, we next investigated whether Rac1 affects the activation state of Sar1. To this end, we incubated microsomes with recombinant Sar1 followed by pulldown with an antibody directed to the active form of Sar1. Because microsomes contain Sec12, the GEF for Sar1, we observed Sar1 activation on microsomes (Fig 8A). When we included recombinant Rac1 in the assay, we obtained higher levels of active Sar1 (Fig 8A). No effect for Rac1 on Sar1 activation was observed when we performed the assay with GTPγS, which maximally activates Sar1 (Fig 8A). Likewise, when the assay was performed in the presence of GDP, only small amounts of active Sar1 were detected, and no effect of Rac1 on Sar1 activation was detectable (Fig 8A).

Active Sar1 promotes COPII assembly and thereby the formation of carriers from the ER. To determine whether recombinant Rac1 stimulates carrier formation, we used an in vitro COPII vesicle budding assay (Kim et al., 2005; Farhan et al., 2010). We used microsomes from HeLa cells stably expressing the RUSH cargo ManII. In the absence of biotin, ManII is only found in the ER. Microsomes...
Figure 5.
Figure 5. Effect of Actin disruption on ERES and ER-to-Golgi transport.
A, B Representative immunofluorescence images showing Sec31A labeled ERES in HeLa cells treated with DMSO (Ctrl), 0.5 μM cytochalasin D (CytoD) and 0.5 μM latrunculin A (LatA) for 25 and 30 min (A). Scale bar: 5 μm. The number of ERES per cell in HeLa cells treated with different doses of CytoD and LatA for 30 min are displayed as % of control ± standard deviation (90–100 cells from three experiments) (B).
C Distribution of ManII-RUSH in HeLa cells: Cells were pre-treated with DMSO (Ctrl) or 1 μM LatA for 15 min prior to addition of biotin to initiate ManII-trafficking. Golgi arrival for ManII-RUSH was monitored for 30 min. Scale bar: 5 μm.
D, E Graph showing ratio of ManII within Golgi to outside Golgi. Values were derived from HeLa cells treated with LatA or CytoD as described in (C). At least 30 cells per condition were used for quantification in each experiment (n = 3).
F HeLa cells cultured on PDMS membranes were treated with DMSO or 1 μM cytochalasin D (CytoD) and ERES were labeled with anti-Sec31A antibody before (no strain) or after 15% equibiaxial strain (15% strain). Antiphalloidin staining was performed to visualize actin in cells. Representative images are shown. Scale bars, 5 μm.
G Quantification of experiment described in (F). The graph shows average ERES/Cell. Data were derived from a total of 90–115 cells from three experiments. Each dot represents several cells, and error bars show standard deviation.
H, I siRNA mediated depletion of INF2 does not phenocopy Rac1 effect. HeLa cells were transfected with nontargeting control siRNA (siCtrl) or siRNA against INF2 (siINF2) for 72 h before processing cells immunostaining with Sec31A to quantify ERES. Representative images showing Sec31A-labeled ERES in HeLa cells (H), and quantification of ERES per cell presented as % of control (I). In total, 137 cells (siCtrl) and 113 cells (siINF2) were used for ERES quantification from three independent experiments. Scale bar in H is 5 μm.
J, K Knockdown of INF2 does not alter the kinetics of ER-to-Golgi transport. Hela cells stably expressing ManII-RUSH were transfected with siRNAs as described in E, and the ER-to-Golgi transport of ManII-RUSH was followed by confocal microscopy (J). Representative images for indicated time points are shown. Scale bars, 5 μm. The ratio of ManII-RUSH within the Golgi to outside the Golgi was calculated for the indicated time points (K). Three independent experiments were performed and a total of 82 (siCtrl, 0 min), 72 (siINF2, 0 min) and 93 (siCtrl and siINF2, 20 min) were used for quantification.

Data information: In all graphs, error bars represent standard deviation, *P-value < 0.05 and ns = nonsignificant. One-way ANOVA was used to test for statistical significance for (B) and (G). Student’s t-test was used for the rest.
Source data are available online for this figure.

Figure 6. Rac1 regulates ERES and ER-export by dimerizing with Sar1.
A Colocalization of mCherry-Rac1 and GFP-Sec16 in HeLa cells as monitored by SRRF live cell imaging. See also Movie EV4. Scale bars: 5 and 0.5 μm (inset).
B Representative immunofluorescence images of HeLa cells cotransfected with YFP(N)-Rac1 and Sar1-YFP(C) and immunostained with Sec31A. Rac1 and Sar1 form complexes at ERES in HeLa cells, which partially overlap with Sec31A. Scale bars: 5 and 1 μm (insets).
C Box plot showing the fraction of ERES that overlap with the Rac1-Sar1 complex (number of cells = 24, number of experiments = 4). Individual data points shown in the graph represent number of images. Whiskers indicate min-max range and central band indicates the median of all data.
D CFP-tagged Rac1 was immunoprecipitated by GFP-trap and the fraction was immunoblotted for endogenous Sar1. Representative immunoblot showing coimmunoprecipitation of Sar1 by Rac1.
E Representative immunofluorescence images of HeLa cells cotransfected with YFP(N)-Rac1 and Sar1-YFP(C) and cultured on crossbow micropatterns of indicated size. Cells were cotransfected with the indicated DNA constructs and incubated overnight prior to trypsination and seeding on the micropatterned coverslip. Cells were allowed to grow for 3 h, fixed and processed for microscopy. Scale bar: 5 μm.
F Quantification of Rac1-Sar1 puncta described in (E) (number of experiments = 3, number of cells = 28 (small) and 27 (large)). In the quantification graph, error bars represent standard deviation and asterisk (*) denotes statistical significance at P-value < 0.05. A two-tailed unpaired Student's t test was used for statistical testing.
Source data are available online for this figure.
were incubated with cytosol from HeLa cells, biotin, recombinant Rac1, GTP, and ATP regeneration system (see materials and methods for details). Vesicles and microsomes were separated by differential centrifugation. Performing the assay in the presence of Rac1 increased the amounts of mCherry-ManII in the vesicle fraction compared with the fraction without exogenous Rac1 (Fig 8B and C). This
Discussion

We and others established that ERES are platforms for the integration of several signaling pathways in response to mitogens (Farhan et al., 2010; Tillmann et al., 2015; Scharaw et al., 2016), or starvation (Zacharogianni et al., 2011), or the UPR and other ER-localized signaling molecules (Centonze et al., 2019; Subramanian et al., 2019). Our current work expands this view by showing that ERES respond to mechanical stretching of cells. As a candidate mechanotransducer, we suggest the small GTPase Rac1 based on the following observations: (i) Rac1 is activated in cells occupying the large micropatterns or subjected to biaxial stretching; (ii) Rac1 inhibition or knockdown reduces the number of ERES; (iii) Rac1 localized to ERES and formed a complex with Sar1; (iv) Activation or inhibition of the ER pool of Rac1 regulates ERES number. Future work will need to fully elucidate the complete signaling cascade connecting mechanical strain and ERES, but our current work suggests Rac1 to be part of this cascade.

Mounting evidence suggests that small GTPases form dimers, consequently affecting their biological function. For instance, dimerization of Arf1 (Diestelkoetter-Bachert et al, 2020) and Sar1 (Hariri et al, 2014) was shown to regulate biogenesis of COPI vesicles and scission of COPII vesicles, respectively. Reportedly, Rac1 homodimerization regulates its intrinsic GTP hydrolyzing ability (Zhang et al., 2001). In contrast to homodimerization, only scant information is available on heterodimerization of small GTPases. Based on co-immunoprecipitation and BiFC data, we propose that Rac1 and Sar1 form such a heterodimer. The endomembrane system hosts a wide range of small GTPases, and future studies are required to test whether Rac1 and/or Sar1 has other dimerization partners. While our results highlight a role for Rac1 in COPII-dependent trafficking, it is likely that future work will uncover more endomembrane-related functions of Rac1 and other small GTPases. All other downstream biological effects of Rac1 on ERES are compatible with the positive effect of Rac1 toward Sar1. This raises the question of how the Rac1-Sar1 dimer could positively regulate ER-export? The fact that we observe a ternary complex of Rac1, Sar1, and Sec12 suggests that Rac1 might promote Sar1 activation. This is supported by our finding of more Sar1-GTP formed on microsomes in the presence of Rac1. In addition, our in silico data suggest that the Rac1-Sar1 complex does not accommodate Sec23. A possible alternative interpretation of our data is that Rac1-Sar1 heterodimerization prevents formation of Sar1 homodimers. Sar1 homodimerization was proposed previously to promote vesicle scission (Hariri et al., 2014), and therefore, the heterodimerization with Rac1 might delay vesicle scission, thereby extending the time for

Figure 7. In silico modeling predicts a Rac1-Sar1-Sec12 ternary complex and its experimental validation.

A, B In silico model showing the complex between Rac1 (gray) and Sar1 (gold) and how Rac1 covers the GTP binding site of Sar1. GTP of Rac1 in stick model, and of Sar1 in ball-and-stick.

C In silico model showing the steric clash between Rac1 and Sec23 (encircled), obtained by superposing the Sar1 units of the Sar1-Sec23 (green-purple) heterodimer onto the Sar1-Rac1 heterodimer (gold-gray).

D In silico model showing that the Sar1-Rac1 heterodimer can interact with Sec12 by superposing the Sar1 units of Sar1-Rac1 (gold-gray) and Sar1-Sec12 heterodimers (green-blue).

E Cells expressing GFP-Rac1 were lysed followed by immunoprecipitation against GFP and immunoblotting against endogenous Sar1 and Sec12. Blotting against GFP was performed to determine efficiency of the IP.

F HeLa cells were cotransfected with the indicated plasmids and cells were incubated overnight prior to cell lysis and immunoprecipitation against GFP. Immunoblotting against anti-mCherry was performed to detect Sar1A-mCherry. The IP efficiency was determined using anti-GFP. Different exposure times are shown for anti-mCherry blot.

Source data are available online for this figure.

Figure 8. Rac1 stimulates the formation of active Sar1 and COPII.

A Microsomes isolated from HeLa cells were incubated as indicated. Active Sar1 pulldown was then carried out, followed by immunoblotting against Sar1.

B Microsomes (M) from HeLa cells stably expressing mCherry-ManII-RUSH were incubated with ATP and an ATP-regenerating system, GTP, biotin and cytosol in the presence or absence of recombinant Rac1 for 30 min at 25°C. COPII vesicles (V) were pelleted by ultracentrifugation (100,000 g) and immunoblotted for anti-mCherry to detect ManII-RUSH and anticalnexin (ER marker).

C Quantification data of two independent vesicle budding assays. All values were normalized to 4°C Ctrl condition.

Source data are available online for this figure.

data, together with the result from the active Sar1 pulldown (Fig 8A), suggest that Rac1 stimulates cargo exit from the ER through its interaction and positive modulation of the COPII subunit Sar1.
Name	Vendor	Cat. no.	Sequence	Remarks
NSC23766	Tocris	2161		
Cytochalasin D	Sigma	C8273		
Latrunculin A	Tocris	3973		
GTP	Sigma	G8877		
Creatine phosphate	Sigma	10621714001		
Creatine Kinase	Sigma	10127566001		
Magnesium acetate tetrahydrate	Sigma	M5661-50G		
Potassium acetate	Sigma	236497-100G		
Adenosine 5'-triphosphate disodium salt hydrate	Sigma	A26209-1C		
Cytoo Starters Kit	CYTOO	10-900-00-18		
Anti-Rac1 Antibody, clone 23A8	Merck	05-389		
anti-Giantin	Covance	PRB-114P		
anti-GM130	BD Biosciences	610823		
anti-INF2	ProteinTech group	20466-1-AP		
anti-Sar1	abcam	ab125871		
Anti-Sec31A Clone 32/Sec31A	BD Biosciences	612351		
anti-GFP	Roche	13026100		
anti-Calnexin (E-10)	SantaCruz	sc-46669		
HRP mouse	Jackson Immuno-research	115035003		
HRP rabbit	Jackson Immuno-research	111035144		
Alexa Fluor 488	Thermo Fisher Scientific	A-11001	Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody	
Alexa Fluor 568	Thermo Fisher Scientific	A-11031	Goat anti-Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody	
Alexa Fluor 647	Thermo Fisher Scientific	A-21235	Goat anti-Mouse IgG (H + L) Cross-Adsorbed Secondary Antibody	
Alexa Fluor 488	Thermo Fisher Scientific	A-11008	Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody	
Alexa Fluor 568	Thermo Fisher Scientific	A-11011	Goat anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody	
Alexa Fluor 647	Thermo Fisher Scientific	A-21244	Goat anti-Rabbit IgG (H + L) Cross-Adsorbed Secondary Antibody	
Sar1 activation assay kit	NewEastBio	NB-81801		
Recombinant Rac1	NewEastBio	NB-10101		
Recombinant Sar1	NewEastBio	NB-10114		
Fugene 6	Promega	E2692		
HiPerfect	Qiagen	301707		
Rac1 siRNA #1	Dharmacon	M-003560-06-0005	5'-UAACGCGAUUCCGUGUUGUA-3' 5'-UAAGACACAGAUGCAAGAAA-3' 5'-CCGCGACACUGUGUCCCAACA-3' 5'-AUGAAAGUGUCACCGGGUAA-3'	used for rescue experiments
Rac1 siRNA #2	ThermoFisher Scientific	AM51331 (siRNA ID: 120600)	5'-CCUUUGUGACCUUUUGUCATT-3'	
siINF2	Qiagen	SIO0319165	5'-CCGCTTACGATTGTACGAA-3'	

© 2022 The Authors

The EMBO Journal 41: e110596 | 2022 13 of 20
cargo loading and the formation of larger carriers. At this moment, we can only speculate about the existence of such carriers. In support of this speculation is our live imaging experiment where we observed that stretched cells exhibited more tubular ERES. However, we point out that the topic of whether ERES give rise to vesicles, tubules, or tunnels is a controversially discussed topic (Phuyal & Farhan, 2021), and further explorations along this line are certainly beyond the scope of the current work.

Another surprising finding was the identification of a very transient and small pool of endogenous Rac1 at the ER and at ERES. The high level of cytosolic Rac1 in any given cell type might have precluded the identification of this subcellular Rac1 pool with conventional confocal microscopy techniques. The ER pool of Rac1 is biologically active and is unlikely representing nascent biosynthetic Rac1. This is supported by the data showing that localized inactivation of Rac1 at the ER (with an ER-targeted GAP) reduced the number of ERES. In addition, Rac1 formed complexes with Sar1 at ERES. The observation of Rac1 at the ER is in line with a previous finding (Woroniuk et al., 2018), which documented Rac1 signaling activity at the perinuclear region, a membrane system that is continuous with the ER. Reportedly, the C-terminal fusion of CAAX motif of Rac1 to the green fluorescent protein GFP was sufficient for targeting GFP to the ER (Choy et al., 1999) further highlighting the intrinsic ability of Rac1 to associate with the ER membrane.

Our work establishes for the first time a mechanistic link between mechanotransduction and the regulation of ERES and demonstrates an important role of ERES for proper cellular adaptation in mechanically challenged cells. Previous research has established the regulation of ERES by intracellular stimuli (e.g., mitosis or unfolded proteins in the ER) or by extracellular chemical stimuli (e.g., nutrients and mitogens). Our work adds mechanical stimuli to the picture of the regulation of ERES. The increase in the number of ERES upon mechanical stimulation is unlikely a mere redistribution of ERES for the following reasons: First, if the increase was not a real one, but only due to redistribution of ERES, then it would be expected to occur in any condition, irrespective of the biological

Table 1 (continued)

Name	Vendor	Cat. no.	Sequence	Remarks
AllStars Negative Control siRNA (5 nmol)	Qiagen	1027280		
Silencer™ Select Negative Control No. 1 siRNA	ThermoFisher Scientific	4390843		
siGenome Non-Targeting Control siRNA Pool #1	Horizon Discovery (Dharmacon)	D-001206-13-05		
GFP-Sec16A	Addgene	15776		
SNAP-Sec16A	This paper		FWD: 5’-atatagatctcggagaatggcctgg-3’ REV: 5’-atatgaattcTAGTTCAGCACCAG-3’	Cloned using EcoRI and BglII
mCherry-Rac1	Substituted GFP in GFP-Rac1 with mCherry-N1 using HindIII and BsgI			
YFP(N)-Rac1	This paper		FWD: 5’-AATTTCGACGATGGCCACCTTACACAGCGAC-3’ REV: 5’-TTAAGGCCTCTCCACGAGTCC-3’	Cloned using XhoI and ApaI
Sar1-YFP(C)	This paper		FWD: 5’-tataataaatATGCTTTCTATTTG-3’ REV: 5’-ataaatgatGCTAATAATACGTCCA-3’	Cloned using Clai and EcoRI
KDELRE2-GFP	This paper		FWD: 5’-tatagaatatATGCTTTCTATTTG-3’ REV: 5’-ataaatgatGCTAATAATACGTCCA-3’	Cloned using XhoI and HindIII into pmEGFP-N1
KDELRE2-GAP-GFP	This paper		FWD: 5’-tataataaatATGCTTTCTATTTG-3’ REV: 5’-ataaatgatGCTAATAATACGTCCA-3’	Cloned using EcoRI and BamHI into KDELRE2-GFP
KDELRE2-GAP-GFP	This paper		dGAP was synthesized as gBlock and cloned into KDELRE2-GFP using the same primers as for KDELRE2-GAP-GFP	
GFP-Sec61β	Gift from Lei Lu, Nanyang Technological University, Singapore			
pTriEx4-Rac1-2G	Addgene	66110		
CIBN-GFP-Sec61β	Addgene	104177		
CRY2-TIAM-mCherry	Gift from Mathieu Coppey			
context. However, we observe the increase only in control cells and not in Rac1 inhibited or depleted cells. Second, the increase of ERES is in line with the acceleration of ER-to-Golgi trafficking as observed in the RUSH assay. A mere redistribution will not cause a change in ER-to-Golgi trafficking. This will pave the way for future investigations on the role of other mechanical stimuli such as stiffness, compression, or shear stress. The mechanisms by which Rac1 activity is regulated during mechanotransduction are poorly understood, although studies have proposed a role for mechanosensitive channels and focal adhesion molecules at the cell surface (Bae et al., 2014; Arya et al., 2020). Future work is needed to characterize the receptors or sensors at the cell surface that signal to Rac1.

Finally, our work has implications for the regulation of proteostasis in response to changes in cell size. We noticed that the absolute number of ERES is higher in cells forced to grow on larger micropatterns. The same was true when we expanded the cell area using acute stretching. This shows that cells are capable of adapting their secretory capacity when they expand in size. In fact, a recent preprint showed that different organelles undergo changes dependent on the cell size (Lanz et al., 2021). Future work could focus on studying how cell size affects proteostasis by controlling the rate of protein synthesis, secretion, and degradation.

Materials and Methods

Cell culture and treatment

HeLa cells were maintained in DMEM (Lonza, #12-604F) supplemented with 10% FCS (Life Technologies, #10500064), 50 units/ml penicillin and 50 μg/ml streptomycin (Lonza, #DE17-603E), in a humidified 5% CO₂ atmosphere at 37°C. PC3 cells and MDA-MB-231 cells were cultured in RPMI (Sigma, #R8758) medium. RPE-1 cells were maintained in DMEM/F-12 (Life Technologies, #31331028) medium. All cell culture media contained the same supplements as for HeLa cells. CRISPR Rac1 knockout PC3 cells were extensively characterized previously (Baker et al., 2020).

For all Rac1 inhibition experiments, cells were treated with 50 μM NSC23766 or 0.1% (v/v) DMSO in complete medium for 4 h. For actin disruption experiments, cells were treated with 0.5, 1, 1.5, and 2 μM cytochalasin D or latrunculin A in complete medium for 15 and 30 min. For RUSH assays, cells were preincubated with 1 μM cytochalasin D or latrunculin A for 15 min before starting the cargo release with biotin.

siRNA oligos were delivered to the cells using HiPerFect (Qiagen, #301707) transfection reagent. Briefly, 10–20 nM siRNA duplexes were complexed with the transfection reagent in 100 μl serum and antibiotics free cell culture medium, incubated at room temperature inside the laminar flow hood for 5 min and added to the cells immediately after seeding for experiments. Knockdown efficiency after 48 or 72 h was measured to check that the levels of desired proteins were reduced. For Rac1 knockdown experiments, the siGenome nontargeting siRNA pool from Dharmacon were used as control. The AllStars negative control siRNA from Qiagen was used as control for INF2 knockdown experiments (Table 1).

All plasmid transfections were carried out using FuGene 6 (Promega, #E2691) (used at 3 μl per μg DNA) transfection reagent following the manufacturer’s protocol. Cells were transfected with 750 ng of plasmid DNA. Unless otherwise stated, all listed concentrations of siRNAs and chemicals are final concentrations.

Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 12 min, washed three times with PBS, quenched for 5 min with 50 mM NH₄Cl, and washed again twice with PBS. After permeabilization with 0.2% (v/v) triton X-100 for 4 min, cells were washed twice with PBS, and blocked for 30 min in 1% (wt/vol) BSA. Finally, cells were incubated for 1 h with the primary antibody, washed thrice with PBS, incubated for 1 h with secondary antibody, and mounted with antifading Polyvinyl alcohol mounting medium with DABCO® (Sigma, #10981) after washing three times with PBS. All incubation steps were carried out at room temperature, triton X-100 and BSA dilutions were prepared in PBS, and each PBS washing steps were 5 min on a shaker.

FRAP microscopy

HeLa cells were seeded on 35 mm MatTek dishes (MatTek corporation, #P35G-1.5-20-C) and incubated overnight. Cells were then transfected with 0.75 μg of GFP-Sec16A plasmid and incubated overnight. Prior to FRAP experiments, cells were treated with DMSO or with Rac1 inhibitor NSC23766 for 4 h. The experiment was performed on a Zeiss LSM700 confocal microscope equipped with a 63x oil-immersion objective (Plan-Apochromat 63×/1.40 NA Ph3 M27) at 37°C. Images were acquired using Zeiss Zen software. A prebleach image was acquired before bleaching individual ERES at 100% laser intensity (10 iterations) and subsequent image acquisition at one image per second.

FRAP analysis was carried out as described previously (Farhan et al., 2010; Centonze et al., 2019).

Preparation of polydimethylsiloxane (PDMS) membranes

Stretchable PDMS (Sylgard Silicone Elastomer Kit, Dow Corning) membranes were prepared as previously described (Kosmalska et al., 2015). Briefly, a mix of 10:1 base to crosslinker ratio was spun on plastic wafers for 1 min at 500 rpm and then cured overnight at 65°C. Once polymerized, membranes were peeled off the wafers and assembled onto a metal ring for fibronectin coating, cell seeding, and microscopy experiments.

Mechanical stimulation of the cells and live cell imaging or ERES staining

Cell mechanical stimulation was performed as previously described (Kosmalska et al., 2015). Briefly, a 150 μl droplet of a 10 μg/ml fibronectin solution (Sigma, #F0895) was deposited in the center of the membrane mounted in the ring. After overnight incubation at 4°C, the fibronectin solution was rinsed. HeLa cells transiently transfected with GFP-Sec16A were then seeded on the fibronectin-coated membranes and allowed to attach for up to 1 h. Then, ring-containing membranes were mounted in the stretch system as previously described (Kosmalska et al., 2015). Live-cells were subjected to a 7.5% equibiaxial strain. Images of the cells were acquired with 500 ms interval frames, with a 60x objective (NIR Apo 60X/WD 2.8,
Nikon) mounted in an inverted microscope (Nikon Eclipse Ti) with a spinning disk confocal unit (CSU-W1, Yokogawa), a Zyla sCMOS camera (Andor) and using the Micromanager software.

For actin disruption experiments, HeLa cells were seeded on the fibronectin-coated PDMS membranes mounted on the stretch system and allowed to attach for up to 1 h. After 15 min before stretch, samples were incubated with either 1 μM cytochalasin D in DMSO or DMSO only. Living cells were then subjected to a 15% stretch for 3 min at 37°C, and cells were subsequently fixed at room temperature with 4% PFA. After 12-min incubation with the fixative, cells were washed with PBS and stretch was slowly released. Samples without stretch were prepared by sticking a PDMS sheet in a MatTek dish and preparing the fibronectin coating, cells seeding and drug incubation as for the stretch condition. For immunostaining of ERES in these samples, staining conditions were as follow: 10-min quenching with 50 mM NH₄Cl, 4-min permeabilization with 0.2% triton X-100. After wash, samples were blocked for 1 h with 2% fish gelatin (Sigma Aldrich, #G7765). All the subsequent steps were performed in 2% fish gelatin. Cells were incubated with the primary anti-Sec31 antibody for 1 h. After wash (3 times 5 min), samples were incubated with both the secondary goat anti-mouse antibody-alexa488 (Thermofisher A11029) at 1:500 dilution and Phalloidin-TRITC (555) (Sigma-Aldrich P1951, 0.1 mg/ml) for 1 h. All buffer dilutions were prepared in PBS at given concentrations. Samples were washed, and buffer was exchanged to PBS. Images were acquired with a 60× objective (NIR Apo 60X/WD 2.8, Nikon) mounted in an upright epifluorescence microscope (NIR Apo 60X/WD 2.8, Nikon) and an Orca Flash 4.0 camera (Hamamatsu), using the Metamorph software. For the stretch conditions, samples were slowly restretched to a 15% equibiaxial stretch before imaging.

For Rac1-FRET assay and the RUSH assay, HeLa cells were subjected to a 7.5% equibiaxial strain. Images were acquired with a 60× objective (NIR Apo 60X/WD 2.8, Nikon) mounted in an upright epifluorescence microscope (NIR Apo 60X/WD 2.8, Nikon) and an Orca Flash 4.0 camera (Hamamatsu), using the Metamorph software. For the RUSH assay, equibiaxial strain experiments were carried out using Fiji (Schindelin et al., 2012). Prior to analysis, background was subtracted from the immunofluorescence images using “subtract background” command in Fiji, where a rolling ball radius of 50 pixels was used. To obtain ERES count in cells, images were thresholded, and ERES were counted using “Analyze particle” command. Counts were then normalized to total cells. All images within the same experiment were processed in the exact same way for quantification.

ERS, RUSH quantification, and colocalization analysis

ERS, RUSH quantification, and colocalization analyses were all carried out using Fiji (Schindelin et al., 2012). Prior to analysis, background was subtracted from the immunofluorescence images using “subtract background” command in Fiji, where a rolling ball radius of 50 pixels was used. To obtain ERES count in cells, images were thresholded, and ERES were counted using “Analyze particle” command. Counts were then normalized to total cells. All images within the same experiment were processed in the exact same way for quantification.

In live cell imaging equibiaxial strain experiments, the number of GFP-Sec16A marked ERES in each frame was detected and counted using “Find maxima” in Fiji after background subtraction as described above.

For quantification of RUSH experiments, ManII intensity in the Golgi was measured by drawing a ROI. To measure extra Golgi intensity of ManII, the ROI was then transferred outside the Golgi. Ratio of ManII at the Golgi to extra Golgi region was calculated for data visualization.

The fraction overlap of Rac1-Sar1 complex with Sec31 was calculated using Fiji (Schindelin et al., 2017) plugin in Fiji.

Cell lysis, immunoprecipitation, and immunoblotting

Cells were washed twice with ice-cold PBS, scraped off in lysis buffer (50 mM Tris–HCl, 300 mM NaCl, 1 mM EDTA, 0.5% Triton X-100, pH 7.4) supplemented with EDTA-free protease and phosphatase inhibitor mixture and incubated in ice for 10 min. Cell lysates were then centrifuged at 20,000 g for 10 min at 4°C. The supernatant was collected and solubilized in loading buffer. Samples were run on 4–20% TGX gels (BioRad), and proteins were transferred to a nitrocellulose membrane using semidyey transfer system. Once the transfer was complete, membranes were blocked (in 5% (wt/vol) milk in TBS with 0.1% Tween 20) and incubated first with the specified primary antibodies, washed and then with the HRP-conjugated secondary antibodies. Finally, blots were visualized using ECL clarity chemiluminescence reagent (BioRad, #1705061) on ChemiDoc (BioRad).

For immunoprecipitation experiments, cells were lysed in immunoprecipitation buffer (20 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM MgCl₂, 10% glycerol, 0.5% NP-40) and GFP-trap
homogenized by passing through a 25-gauge syringe for at least 30 min. 250 mM sorbitol, 10 mM KOAc, and 1.5 mM MgOAc. Cells were resuspended in 400 μl buffer containing 10 mM Hepes-KOH, pH 7.2, 250 mM sorbitol, 10 mM KOAc, and 1.5 mM MgOAc. Cells were homogenized by passing through a 25-gauge syringe for at least 30 times and centrifuged at 1,000 g for 10 min. The postnuclear supernatant was then centrifuged at 6,000 g for 10 min. The pellet was resuspended in ice-cold PBS and centrifuged again at 6,000 g for 10 min. Finally, the pellet was resuspended in 100 μl of lysis buffer provided with the kit and used for active Sar1 pulldown with anti-active Sar1 monoclonal antibody provided in the kit.

Vesicle budding assay

We prepared microsomes and cytosol for vesicle budding assay following the previously published protocol from the laboratory (Farhan et al., 2010). Microsomes were isolated from HeLa cells stably expressing ManII-RUSH, whereas cytosol was prepared from HeLa cells.

For budding reactions, 30 μl of microsomes, 65 μl of cytosol, 40 μM biotin, 0.5 mM GTP, and an ATP regeneration system (1 mM ATP, 25 mM creatine phosphate, and 0.3 mg/ml creatine kinase) was used. Vesicle budding reactions were carried out either at 25°C or on ice (control) for 30 min. In the Rac1- and Sar1-containing reactions, 500 ng recombinant proteins were added. The reaction was stopped by placing the tubes on ice. Finally, the reaction mixture was centrifuged at 100,000 g for 30 min to pellet the budded vesicles.

Statistical analyses

The number of experiments and the number of cells used for generating data are indicated in the respective figure legends. All statistical analysis was performed in GraphPad Prism 9 (Version 9.3.1). Where appropriate, we performed a Student’s unpaired t test to evaluate statistical significance of the data. For comparing multiple means, we used one-way analysis of variance (ANOVA) followed by the Dunnett’s multiple comparison’s test. In Fig 3D, Tukey’s multiple comparison test was applied following one-way ANOVA. In the figures, data are presented as mean ± standard deviation from at least three independent experiments, unless otherwise indicated in the figure legends. In the figures, asteriks (*) denote statistical significance at P-value <0.05.
and default settings, and the 10 best scoring models from each downloaded. The 50 models were clustered based on RMSD values and evaluation of Kelley penalties (Kelley et al., 1996) to obtain the optimum number of clusters, using the Clustering of complexes module in the Schrödinger software [Schrödinger Release 2020–2: Maestro, Schrödinger, LLC, New York, NY, 2020.]. As consensus model was then selected the predicted complex with lowest RMSD from the centroid of the most populated cluster which in this case contained 14 of the total predicted 50 complexes.

The obtained Rac1-Sar1 complex was analyzed, and superposed onto the Sar1-Sec12 and Sar1-Sec23 crystal structures from Saccharomyces cerevisae, with PDB-IDs 6X90 and 1M2O, respectively. Superposition was made such that the two Sar1 units would be optimally aligned. All superposition and images were generated using the Molecular Operating Environment software [Molecular Operating Environment (MOE) 2019.01; Chemical Computing Group, Montréal, Canada, 2019].

Data availability

This study includes no data deposited in external repositories.

Acknowledgements

HF is supported by grants from the Norwegian Cancer Society (Projects 208015 & 182815), by the Research Council of Norway (Project 302452), by the Otto-Rakett-Bruun endowment and by grants from the European Commission (H2020-MSCA-ITN-860035; H2020-MSCA-ITN-859962). We thank the Biooptics core facility at the Medical university of Innsbruck, as well as the Norwegian Stemcell Facility for allowing us to use their microscopes. Funding from the Vinnova Seal-of-Excellence program 2019-02205 (CaTheDRA) to SJM is gratefully acknowledged. LAE is supported by the Swedish Research Council through grant 2019-3684. Work in the Teis lab is funded by DOC82 doc.fund, and P 29583. JCK is a recipient of a DOC Fellowship of the Austrian Academy of Sciences. The Swedish National Infrastructure for Computing is acknowledged for allocations of computing time at supercomputing center NSC, in part funded by the Swedish Research Council through grant agreement no. 2018-05973 (LAE). MGK is supported by National Institutes of Health grant E5026023. P.R.-C. Acknowledges funding from Spanish Ministry of Science and Innovation (PID2019-110298GB-I00), the European Commission (H2020-FETPROACT-01-2016-731957). The prize “ICREA Academia” for excellence in research, Fundació la Marató de TV3, and Obra Social “La Caixa”. IBEC is a recipient of a Severo Ochoa Award of Excellence from MINECO.

Author contributions

Santhosh Phuyal: Conceptualization; data curation; formal analysis; supervision; validation; investigation; visualization; methodology; writing – original draft.

Elena Djareff: Formal analysis; methodology. **Anabel-Lise Le Roux:** Conceptualization; data curation; formal analysis; investigation; methodology; writing – review and editing. **Martin J Baker:** Methodology. **Daniela Fankhauser:** Methodology. **Sayyed Jalil Mahdizadeh:** Formal analysis; investigation; methodology; writing – review and editing. **Veronika Reiterer:** Methodology; project administration; writing – review and editing. **Amirabbas Parizadeh:** Methodology. **Edward Felder:** Supervision; methodology. **Jennifer C Kahlhoffer:** Formal analysis; methodology. **David Teis:** Supervision; methodology; writing – review and editing. **Marcelo G Kazanietz:** Supervision; methodology. **Stephan Geley:** Supervision; methodology; project administration. **Leif A Eriksson:** Data curation; formal analysis; supervision; investigation; methodology; writing – review and editing. **Pere Roca-Cusachs:** Formal analysis; funding acquisition; investigation; methodology; writing – original draft; writing – review and editing. **Hesso Farhan:** Conceptualization; data curation; formal analysis; supervision; funding acquisition; investigation; methodology; writing – original draft; project administration; writing – review and editing.

Disclosure and competing interests statement

The authors declared that they have no conflict of interest. PRC is an EMBO member; this has no bearing on the editorial consideration of this article for publication.

References

Albert PJ, Schwarz US (2014) Dynamics of cell shape and forces on micropatterned substrates predicted by a cellular Potts model. *Biophys J* 106: 2340–2352

Andrusier N, Nussinov R, Wolfson HJ (2007) FireDock: fast interaction refinement in molecular docking. *Proteins* 69: 139–159

Arya RK, Goswami R, Rahaman SO (2020) Mechanotransduction via a TRPV4-Rac1 signaling axis plays a role in multinucleated giant cell formation. *J Biol Chem* 296: 100129

Bae YH, Mui KL, Hsu BY, Liu SL, Cretu A, Razinia Z, Xu T, Pure E, Assoian RK (2014) A FAK-Cas-Rac-lamellipodin signaling module transduces extracellular matrix stiffness into mechanosensitive cell cycling. *Sci Signal* 7: r57

Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG (2020) Evaluation of active Rac1 levels in cancer cells: a case of misleading conclusions from immunofluorescence analysis. *J Biol Chem* 295: 13698–13710

Boncompain G, Divoux S, Careil N, deorges H, Lescure A, Latreche L, Mercanti V, Jollivet F, Raposo G, Perez F (2012) Synchronization of secretory protein traffic in populations of cells. *Nat Methods* 9: 493–498

Boncompain G, Perez F (2012) Synchronizing protein transport in the secretory pathway. *Curr Protoc Cell Biol* Chapter 15: Unit 15 19

Centonze F, Reiterer V, Nalbach K, Saito K, Pawlowski K, Behrends C, Farhan H (2019) LTK is an ER-resident receptor tyrosine kinase that regulates secretion. *J Cell Biol* 218: 2470–2480

Centonze FG, Farhan H (2019) Crosstalk of endoplasmic reticulum exit sites and cellular signaling. *FEBS Lett* 593: 2280–2288

Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. *Proteins* 52: 80–87

Choy E, Chiu VK, Siljetti J, Feoktistov M, Morimoto T, Michaelson D, Ivanov IE, Philips MR (1999) Endomembrane trafficking of ras: the CAAX motif targets proteins to the ER and Golgi. *Cell* 98: 69–80

Comeau SR, Hatchell DW, Vajda S, Camacho CJ (2004) ClusPro: an automated docking and discrimination method for the prediction of protein complexes. *Bioinformatics* 20: 45–50

Cutrona MB, Beznoussenko GV, Fusella A, Martella O, Moral P, Mironov AA (2013) Silencing of mammalian Sar1 isoforms reveals COPII-independent protein sorting and transport. *Traffic* 14: 691–708

de Beco S, Vaidzialsyte K, Manzi J, Dailler F, di Federico F, Cornilleau G, Dahan M, Coppey M (2018) Optogenetic dissection of Rac1 and Cdc42 gradient shaping. *Nat Commun* 9: 4816
Desai LP, Chapman KE, Waters CM (2008) Mechanical stretch decreases migration of alveolar epithelial cells through mechanisms involving Rac1 and Tiam1. Am J Physiol Lung Cell Mol Physiol 295: 1958 –1965

Diestelkötter-Bachert P, Beck R, Reckmann I, Hellwig A, Garcia-Saez A, Zelman-Hopf M, Hanke A, Nunes Alves A, Wade RC, Mayer MP et al (2020) Structural characterization of an Arf dimer interface: molecular mechanism of Arf-dependent membrane scission. FEBS Lett 594: 2240 –2253

Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310: 1139 –1143

Engler AJ, Sen S, Sweeney HL, Discher DE (2004) Matrix elasticity directs stem cell lineage specification. Cell 126: 677 –689

Farhan H, Reiterer V, Korkhov VM, Schmid JA, Freissmuth M, Sitte HH (2007) Concentrative export from the endoplasmic reticulum of the gamma-aminobutyric acid transporter 1 requires binding to SEC24D. J Biol Chem 282: 7679 –7689

Farhan H, Weiss M, Tani K, Kaufman RJ, Hauri HP (2010) MAPK signaling to the early secretory pathway revealed by kinase/phosphatase functional screening. J Cell Biol 189: 997 –1011

Fritz R, Letzelter M, Reimann A, Martin K, Fusco L, Ritsma L, Ponsioen B, Fluri E, Schulte-Merker S, van Rheenen J et al (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6: r12

Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101: 7618 –7623

Gilles JF, Dos Santos M, Boudier T, Bolte S, Heck N (2017) DiAna, an ImageJ tool for object-based 3D co-localization and distance analysis. Methods 115: 55 –64

Gould RA, Yalcin HC, Mackay JL, Sauls K, Norris R, Kumar S, Butcher JT (2016) Cyclic mechanical loading is essential for Rac1-mediated elongation and remodeling of the embryonic mitral valve. Curr Biol 26: 27 –37

Gudipaty SA, Lindblom J, Loftus PD, Redd MJ, Edes K, Davey CF, Krishnegowda V, Rosenblatt J (2017) Mechanical stretch triggers rapid epithelial cell division through Pieg1. Nature 543: 118 –121

Gustafsson J, Cullen S, Ashdown G, Owen DM, Pereira PM, Henriques R (2016) Fast live-cell conventional fluorophore nanoctopy with ImageJ through super-resolution radial fluctuations. Nat Commun 7: 12471

Hariri H, Bhattacharya N, Johnson K, Noble AJ, Stagg SM (2014) Insights into the mechanisms of membrane curvature and vesicle scission by the small GTPase Sar1 in the early secretory pathway. J Mol Biol 426: 3811 –3826

Jannney PA, Fletcher DA, Reinhart-King CA (2020) Stiffness sensing by cells. Physiol Rev 100: 695 –724

Katsumi A, Milanini J, Klosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA (2002) Effects of cell tension on the small GTPase Rac. J Cell Biol 158: 153 –164

Kelley LA, Gardner SP, Sutcliffe MJ (1996) An automated approach for clustering an ensemble of NMR-derived protein structures into conformationally related subfamilies. Protein Eng 9: 1063 –1065

Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL (2010) Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 7: 973 –975

Kim J, Hamamoto S, Ravazzola M, Orci L, Schekman R (2005) Uncoupled packaging of amyloid precursor protein and presenilin 1 into coat protein complex II vesicles. J Biol Chem 280: 7758 –7768

Ko J, Park H, Heo L, Seok C (2012) GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Res 40: W294 –W297

Kosmalska AJ, Casares L, Elosegui-Artola A, Thottacherry JJ, Moreno-Vicente R, Gonzalez-Tarrago V, Del Pozo MA, Mayor S, Arroyo M, Navajas D et al (2015) Physical principles of membrane remodelling during cell mechnoaadaptation. Nat Commun 6: 7292

Kozakov D, Hall DR, Xia B, Porter KA, Padhory D, Yueh C, Beglov D, Vajda S (2017) The ClusPro web server for protein-protein docking. Nat Protoc 12: 255 –278

Krieger E, Vriend G (2014) YASARA view – molecular graphics for all devices – from smartphones to workstations. Bioinformatics 30: 2981 –2982

Kumar A, Murphy R, Robinson P, Wei L, Bonek AM (2004) Cyclic mechanical strain inhibits skeletal myogenesis through activation of focal adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor. FASEB J 18: 1524 –1535

Lanz MC, Zatulovskiy E, Swaffer MP, Zhang L, Zhang Y, You DS, Marinov G, McAlpine P, Elias J, Skotheim JM (2021) Increasing cell size remodells the proteome and promotes senescence. bioRxiv. 2021.2007.2029.454227

Lin DW, Chung BP, Huang JW, Wang X, Huang L, Kaiser P (2019) Microhomology-based CRISPR tagging tools for protein tracking, purification, and depletion. J Biol Chem 294: 10877 –10885

Liu W, Nelson CM, Tan JL, Chen CS (2007) Cadherins, RhoA, and Rac1 are differentially required for stretch-mediated proliferation in endothelial versus smooth muscle cells. Circ Res 101: e44 –e52

Maeda M, Katada T, Saito K (2017) TANGO1 recruits Sec16 to coordinately organize ER exit sites for efficient secretion. J Cell Biol 216: 1731 –1743

Mahdizadeh SJ, Thomas M, Eriksson LA (2023) Reconstruction of the Fas-mediated death-inducing signalling complex (DISC) using a protein-protein docking meta-approach. J Chem Inf Model 61: 3543 –3558

Malkus P, Jiang F, Schekman R (2002) Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J Cell Biol 159: 915 –921

Mashiai E, Schniedman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ (2008) FireDock: a web server for fast interaction refinement in molecular docking. Nucleic Acids Res 36: W229 –W232

Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with Actin stress fibers, lamellipodia, and filopodia. Cell 81: 53 –62

Ohashi K, Fujisawa S, Mizuno K (2017) Roles of the cytoskeleton, cell adhesion and rho signalling in mechanosensing and mechanotransduction. J Biochem 161: 245 –254

Palamidessi A, Fritelli E, Garre M, Faretta M, Mione M, Testa I, Diaspro A, Lanzetti L, Scita G, Di Fiore PP (2008) Endocytic trafficking of Rac is required for the spatial restriction of signaling in cell migration. Cell 134: 135 –147

Payapilly A, Malliri A (2018) Compartmentalisation of RAC1 signalling. Curr Opin Cell Biol 54: 50 –56

Phuyal S, Baschieri F (2020) Endomembranes: unsung heroes of mechanobiology? Front Bioeng Biotechnol 8: 59721

Phuyal S, Farhan H (2019) Multifaceted rho GTPase signalling at the endomembranes. Front Cell Dev Biol 7: 127

Phuyal S, Farhan H (2021) Want to leave the ER? We offer vesicles, tubules, and tunnels. J Cell Biol 220: e202104062

Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PloS One 6: e24657

Roca-Cusachs P, Sunyer R, Trepat X (2013) Mechanical guidance of cell migration: lessons from chemotaxis. Curr Opin Cell Biol 25: 543 –549

Sakuma T, Nakade S, Sakane Y, Suzuki KT, Yamamoto T (2016) MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCH systems. Nat Protoc 11: 118 –133
The endosomal transcriptional regulator RNF11 integrates degradation and transport of EGFR. J Cell Biol 215: 543–558

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9: 676–682

Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33: W363–W367

Shomron O, Nevo-Yassaf I, Aviad T, Yaffe Y, Zahavi EE, Dukhovny A, Perlson E, Brodsky I, Yeheskel A, Pasmanik-Chor M et al (2021) COPII collar defines the boundary between ER and ER exit site and does not coat cargo containers. J Cell Biol 220: e201907224

Subramanian A, Capalbo A, Iyengar NR, Rizzo R, di Campli A, Di Martino R, Lo Monte M, Beccan AR, Yerudkar A, del Vecchio C et al (2019) Auto-regulation of secretory flux by sensing and responding to the folded cargo protein load in the endoplasmic reticulum. Cell 176: 1461–1476.e23

Tillmann KD, Reiterer V, Baschieri F, Hoffmann J, Millarte V, Hauser MA, Mazza A, Atlas N, Legler DF, Sharan R et al (2015) Regulation of Sec16 levels and dynamics links proliferation and secretion. J Cell Sci 128: 670–682

Verma SK, Lal H, Golden HB, Geriela-chaguet F, Smith M, Guleria RS, Foster DM, Lu G, Dostal DE (2011) Rac1 and RhoA differentially regulate angiotensinogen gene expression in stretched cardiac fibroblasts. Cardiovase Res 90: 88–96

Wales P, Schubert CE, Aufschnaiter R, Fels J, Garcia-Aguilar I, Janning A, Dlugos CP, Schafer-Herze M, Klingner C, Walte M et al (2016) Calcium-mediated Actin reset (CaAR) mediates acute cell adaptations. Elife 5: e19850

Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J et al (2021) ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 184: 2412–2429.e16

Woroniuk A, Porter A, White G, Newman DT, Diamantopoulou Z, Waring T, Rooney C, Strathdee D, Marston DJ, Hahn KM et al (2018) Steff/TIAM2-mediated Rac1 activity at the nuclear envelope regulates the perinuclear Actin cap. Nat Commun 9: 2124

Yamane M, Matsuda T, Ito T, Fujio Y, Takahashi K, Azuma J (2007) Rac1 activity is required for cardiac myocyte alignment in response to mechanical stress. Biochem Biophys Res Commun 353: 1023–1027

Zacharogianni M, Kondylis V, Tang Y, Farhan H, Xanthakis D, Fuchs F, Boutros M, Rabouille C (2011) ERK7 is a negative regulator of protein secretion in response to amino-acid starvation by modulating Sec16 membrane association. EMBO J 30: 3684–3700

Zeuschnier D, Geerts WJ, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J (2006) Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 8: 377–383

Zhang B, Gao Y, Moon SY, Zhang Y, Zheng Y (2001) Oligomerization of Rac1 gtpase mediated by the carboxyl-terminal polybasic domain. J Biol Chem 276: 8958–8967

License: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.