Serial processing of kinematic signals by cerebellar circuitry during voluntary whisking

Susu Chen, George J. Augustine & Paul Chadderton

Purkinje cells (PCs) in Crus 1 represent whisker movement via linear changes in firing rate, but the circuit mechanisms underlying this coding scheme are unknown. Here we examine the role of upstream inputs to PCs—excitatory granule cells (GCs) and inhibitory molecular layer interneurons—in processing of whisking signals. Patch clamp recordings in GCs reveal that movement is accompanied by changes in mossy fibre input rate that drive membrane potential depolarisation and high-frequency bursting activity at preferred whisker angles. Although individual GCs are narrowly tuned, GC populations provide linear excitatory drive across a wide range of movement. Molecular layer interneurons exhibit bidirectional firing rate changes during whisking, similar to PCs. Together, GC populations provide downstream PCs with linear representations of volitional movement, while inhibitory networks invert these signals. The exquisite sensitivity of neurons at each processing stage enables faithful propagation of kinematic representations through the cerebellum.
A
imals actively probe and interact with the world by moving to acquire sensory information. Self-motion has sensory consequences that enable the nervous system to guide and adjust future movement, with sensorimotor brain circuits constantly engaged to optimise this process\(^1\). For tactile sensation, rodents rhythmically sweep their whiskers back and forth to scan the proximal surrounding. Such active whisking enables animals to explore, identify and discriminate objects with impressive degrees of sensitivity and capability\(^2\). This behaviour has served as a well-defined paradigm to study active sensory processing and has yielded many insights into the neuronal circuit basis of sensorimotor control\(^3\)–\(^10\). The cerebellum is strongly implicated in sensorimotor processing\(^11\), and recent studies in the vibrissae regions of the rodent cerebellum have highlighted its functional role in the control of voluntary whisker movement\(^12\), but the origin of these decreases in activity is unclear. A reduction in net excitatory drive to PCs could result from reduced activity within upstream populations of MFs and PFs, or alternatively via inhibitory operations within the cerebellum. To examine the underlying mechanism, we examined GC and IN activity during epochs of voluntary whisking.

We performed whole-cell (WC; \(n = 32, N = 22\) mice) and cell-attached (CA; \(n = 13, N = 11\) mice) patch clamp recordings from GCs in the vibrissal areas of the cerebellar cortex (lobule Crus 1) of awake mice. To correlate GC activity with whisker movement, we simultaneously tracked spontaneous whisking via a high-speed camera (Fig. 1a, b). In the WC configuration, GCs were readily identified by their characteristic in vivo electrophysiological properties\(^13\)–\(^16\), including high input resistance (0.63±0.07 GΩ, \(n = 32\)) and fast membrane time constant (\(\tau = 5.9±0.4\) ms, \(n = 32\)). These measurements are in good agreement with the data obtained from the lateral hemispheres of anaesthetised rodents\(^25\), 29, 30.

The mean resting membrane potential of GCs was \(-63.8±1.0\) mV (\(n = 32\)). In both WC and CA recordings, GCs exhibited low baseline firing rates (Fig. 1b, c; WC: 0.8±0.5 Hz, \(n = 32\); CA: 4.8±1.3 Hz, \(n = 13\)), bursting patterns of spike output\(^31\) as reflected in high coefficient of variation of interspike interval (CV of ISI in WC: 4.9±1.6, \(n = 12\); CV of ISI in CA: 2.9±0.5, \(n = 13\); \(P = 0.3\), Mann–Whitney U test), and short half-width of action potentials (0.31±0.11 ms, \(n = 13\) in CA). Although the mean firing rate of CA recordings was significantly different from that of WC recording (\(P < 0.001\), Mann–Whitney U test), this was likely due to our inability to identify silent GCs in CA mode. Accordingly, the whole-cell data revealed a substantial fraction of GCs (\(n = 26/32\)) that remained silent in the absence of whisker movement (Fig. 1c).

A total of 26 out of 32 GCs exhibited significant differences in membrane potential between quiet and whisking periods (\(P < 0.05\), Kolmogorov–Smirnov test assessed on a cell-by-cell basis; Fig. 1d). In these cells, whisking was associated with significant membrane depolarisation (\(-61.5±1.0\) mV to \(-58.9±1.1\) mV; \(n = 26; P < 0.001\), Wilcoxon signed-rank test; Fig. 1e), indicating a widespread increase in excitatory drive to the GCL. Unlike downstream PCs, reductions in GC activity during movement were never observed. To address the precise temporal relationship between membrane potential depolarisation and whisking, we computed normalised mean-subtracted cross correlations between whisker position and corresponding voltage traces, centred on the onset of individual whisking epochs and averaged across trials (Fig. 1f). In the majority of GCs (\(n = 26/32\)), we observed significant positive correlations between whisker position and membrane potential (Fig. 1f, g). On average, depolarisation peaked at 9.3±4.8 ms (\(n = 26\)) prior to the onset of whisking (Fig. 1g, Supplementary Fig. 1), but approximately one-third (\(n = 8/26\)) of GCs lagged movement, and overall there was a broad distribution of latencies between GC depolarisation and movement (Fig. 1g). Neuronal activity that precedes movement is consistent with observations in PCs, where changes in simple spiking typically precede whisking onset\(^37\), and is consistent with a movement signal that is internally, rather than externally, generated\(^28\), \(^32\).

Results

Widespread depolarisation within GC layer during whisking. Around 1 out of 3 of movement-responsive PCs exhibit reduced firing rates during free whisking\(^17\), but the origin of these decreases in activity is unclear. A reduction in net excitatory drive to PCs could result from reduced activity within upstream populations of MFs and PFs, or alternatively via inhibitory operations within the cerebellum. To examine the underlying mechanism, we examined GC and IN activity during epochs of voluntary whisking.

Encoding of movement via MF input to GCs. Several factors could contribute to the observed depolarisation of membrane potential during free whisking: (1) enhanced frequency of MF input\(^27\), \(^28\), \(^33\), as revealed by an increase in the rate of excitatory postsynaptic currents (EPSCs); (2) increased amplitude of...
individual EPSC events and/or (3) elevated sensitivity to synaptic input mediated by enhanced glutamate spillover from neighbouring synapses. To understand the relationship between GC depolarisation and whisker movement, we performed voltage-clamp recordings to measure EPSCs. GCs were clamped at −70 mV (close to the reversal potential for synaptic inhibition) and EPSCs were recorded during bouts of quiescence and whisking. Whisking bouts were associated with an overall increase in inward current. Analysis of individual EPSC waveforms revealed that both the amplitude and time-course of individual MF inputs were unchanged between...
quiescence and whisking (17.5 ± 2.4 pA to 18.1 ± 2.4 pA, \(P = 0.45 \) for EPSC amplitude; 0.18 ± 0.02 to 0.19 ± 0.03 ms, \(P = 0.25 \) for 20–80% rise time, Wilcoxon signed-rank test, \(n = 11 \), Fig. 2c, d, f, g). In contrast, whisking was associated with a significant increase in EPSC rate (11.7 ± 2.0 to 24.7 ± 6.0 Hz; \(P < 0.001 \), Wilcoxon signed-rank test, \(n = 11 \); Fig. 2e, h). These results demonstrate that movement-related increases in inward current, and resulting membrane potential depolarisation, are predominately caused by elevated rates of MF synaptic input during movement.

MF input rate determines GC kinematic tuning. Having established that movement is principally associated with increases in EPSC rate, we explored whether these excitatory synaptic inputs represented specific kinematic parameters of whisking. We examined the relationship between EPSC rate and: (1) raw whisker position, (2) the slowly varying parameter, set point (Fig. 3a) and (3) the rapidly varying parameter, phase (Supplementary Fig. 3a). In 11 recordings, the majority of GCs showed selectivity to whisker position and set point (\(n = 6 \) for

Figure 2:

- **a**: Whisker position and holding current.
- **b**: Whisker movement and voltage clamp at -70 mV.
- **c**: Probability of EPSC amplitude.
- **d**: Probability of EPSC rise time.
- **e**: Probability of inter-EPSC interval.
- **f**: EPSC amplitude comparison between Quiet and Whisking.
- **g**: EPSC rise time comparison between Quiet and Whisking.
- **h**: EPSC rate comparison between Quiet and Whisking.

Supplementary Figure 3a:

- **Probability of Inter-EPSC Interval**
position, \(n = 7 \) for set point, \(P < 0.05 \), Kolmogorov–Smirnov test comparing distribution of angle at all times to its distribution at times of EPSC occurrence for each recording (Fig. 3b). Tuned GCs exhibited ‘preferred angles’ for position and set point, which corresponded to the highest rates of MF input. Individual GC tuning curves remained relatively broad such that progressive deviations from the preferred angle were associated with progressive, but gradual, reductions in EPSC rate. A small number of GCs also exhibited significant tuning to whisking phase (\(n = 2 \) out of 11, \(P < 0.05 \), Kuiper’s test comparing distribution of phase at all times to its distribution at times of EPSC occurrence for each recording; Supplementary Fig. 3b). These results demonstrate that GC sensitivity to both slow and fast kinematic parameters is conferred via changes in the rate of MF input. Similarly, we compared the relationship between membrane potential and features of movement in current-clamp recordings. GCs showed selectivity to whisker position and set point demonstrating broad angular tuning (Fig. 3c). Across the population, the voltage range between ‘preferred’ and ‘least-preferred’ angle (see ‘Methods’ section) was 10.6 ± 1.8 mV for position and 9.0 ± 1.4 mV for set point (\(n = 26 \), range: 1.1–30.0 mV for position, 1.5–27.4 mV for set point; Fig. 3d), demonstrating that changes in whisker angle alone are associated with substantial depolarisations in individual GCs.

We next examined the relationship between EPSC rate tuning and membrane potential directly. In a small number of GCs (\(n = 5 \)), we were able to perform consecutive voltage- and current-clamp recordings, and directly compare movement-related changes in EPSC rate and membrane potential. We observed a close correspondence in both the profile (as in Fig. 3b, c), and preferred angle (Fig. 3e) of input (EPSP) tuning and membrane potential modulation, indicating that the tuning of MF input accounts for the subthreshold selectivity of GCs during whisking.

Sharp and selective output amongst GC populations. To determine how an increased rate of MF EPSCs influences GC output during whisking, we measured GC firing patterns (Fig. 4a). In approximately a third of GCs, whisker movements were associated with enhanced spiking (Fig. 4b, c). Overall, the firing rate in WC and CA recordings increased from 1.9 ± 0.6 to 4.2 ± 1.1 Hz (\(P < 0.001 \), Wilcoxon signed-rank test, \(n = 45 \) WC and CA recordings; Fig. 4d). In GCs with enhanced spike output, action potentials occurred in bouts of high-frequency bursts (Fig. 4a, Supplementary Fig. 1) with a mean instantaneous firing frequency of 219 ± 56 Hz in individual bursts (defined as groups of spikes with ISI less than 50 ms). Unlike brief sensory-evoked bursting in anaesthetised rodents,25, 30 movement-related bursts were longer lasting, containing on average 31.5 ± 17.9 spikes with an inter-burst interval of 2.1 ± 0.8 s. Accordingly, the mean CV of ISI was extremely high for GCs (3.6 ± 0.8, \(n = 25 \)).

We next compared membrane-potential- and action-potential- (i.e., spiking output) tuning to kinematic features in WC recordings (Fig. 4e–h). GC output was tuned to both position and set point (\(n = 9 \) out of 12 cells; \(P < 0.05 \), Kolmogorov–Smirnov test comparing distribution of angle at all times to its distribution at times of action potential occurrence for each recording), and also phase (\(n = 2 \) out of 12 cells; \(P < 0.05 \), Kuiper’s test comparing distribution of phase at all times to its distribution at times of action potential occurrence for each recording; Supplementary Fig. 3c). In all cases, the preferred angle/phase corresponded tightly between membrane potential and spike output (Fig. 4e–i, Supplementary Fig. 3b). However, GC output tuning was considerably more selective than input tuning as indicated by the modulation depth for EPSP and spike rate between ‘preferred’ and ‘least preferred’ angles (Fig. 4j; see ‘Methods’ section). Overall, our results demonstrate that GCs are highly selective for distinct kinematic features of whisking. This sensitivity is conferred predominately via increases in MF EPSP rate, which causes predictable membrane potential depolarisations and action potential firing at preferred angles.

To determine how GC populations respond during changes in whisker set point, the tuning curves of individual GCs were normalised with respect to the range of movement observed during individual recordings (see ‘Methods’ section). This enabled us to average across cells for a given set point percentile and obtain the mean tuning curve for the population as a whole. Whereas individual GCs displayed sharp tuning at one or multiple set point positions (Fig. 5a), the mean tuning function displayed a nearly monotonic dependence upon whisker set point change from resting position, with increasing activity in the direction of protraction or retraction (Fig. 5b). Regression analysis performed, respectively, over the range of retraction and protraction from resting position revealed significant linear relationships between population firing rate and relative set point change (retraction: \(R^2 = 0.32 \), protraction: \(R^2 = 0.64 \), \(P < 0.05 \), ANOVA, Fig. 5b). Therefore, populations of GCs with distinct and relatively selective tuning properties transmit set point information to downstream targets (PCs and INs) via elevated firing rates.

Bidirectional IN firing rate change during whisking. PCs in Crus 1 represent whisker movements via both increases and decreases in simple spike activity. However, upstream GC activity is always enhanced during whisking, suggesting that downstream inhibition plays a key role in determining the sign and degree of bidirectional PC simple spiking. To examine the role of INs during behaviour, we performed patch clamp recordings from INs in this lobule (Fig. 6a). INs were distinguished on the basis of their resting firing rates and the absence of complex spiking.
During recordings in both WC and CA35 configurations (Fig. 6b, Supplementary Fig. 4).

When mice were not whisking, INs fired tonically (whole-cell: 20.0 ± 2.6 Hz, n = 5, and cell-attached: 33.1 ± 4.7 Hz, n = 40, N = 32 mice, Fig. 6b), in agreement with previous studies.36-39 During whisking, a large fraction of INs exhibited significant changes in firing rate (P < 0.05, Wilcoxon signed-rank test, n = 35 out of 45; Fig. 6c). Approximately two-thirds of such INs increased their spiking during whisking (n = 23 out of 35, Fig. 6d), while activity decreased in the remaining third (n = 12 out of 35, Fig. 6e). Changes in INs firing rate were non-uniform, regarding both the sign and magnitude of modulation across the population (as large +458% and −66% changes in firing rate during whisking epochs). INs with low baseline firing rate during non-whisking epochs did not show any bias towards increasing their spiking during whisking or vice versa for cells with high baseline rate, indicating that the direction and magnitude of rate change were independent of the cell’s spontaneous firing rate (Fig. 6c).

Linear relationship between firing rate and whisker position. PCs discharge tonically at rest, and by integrating excitatory inputs from GCs and inhibitory inputs from MLIs, form a linear neural code to represent voluntary whisking.17 The same could be true for INs, which also display ongoing firing activity and share similar synaptic inputs with PCs (both are innervated by GCs and other INs). To test this prediction, we determined the relationship between IN instantaneous firing rate and whisker position (Fig. 6d, e; see ‘Methods’ section). Strong linear relationships were revealed in nearly half of INs (n = 19 out of 43, linear regression fits: R² = 0.96 ± 0.01, P < 0.05, ANOVA, n = 19; Supplementary Table 1) in a directionally selective manner.

Two types of linear encoding schemes were present in INs: unidirectional (n = 8, Fig. 7a) and bidirectional (n = 11, Fig. 7b) with respect to whisker angle. Unidirectional INs (Fig. 7a) showed piecewise linear correlation within a range of whisker positions corresponding to either forward or backward movements (relative to resting position). In contrast, bidirectional INs (Fig. 7b) responded during both forward and backward whisker movement and were capable of continuously representing whisking by firing rate change. In these cells, whisker angles on one side (i.e., either protracted- or retracted-) were associated with firing rate increases proportional to positional change from resting point, whereas, movement on the opposite side was associated with linear reductions in firing rate (Fig. 7b).

To provide a full picture of such linear representation across the population of INs, each IN’s spiking was normalised with respect to its baseline rate and the relative change in whisker position was obtained by subtracting the corresponding resting position. Both types of INs demonstrated almost perfect linear relationships (unidirectional: R² = 0.98 ± 0.01, n = 8; bidirectional: R² = 0.94 ± 0.01, n = 11; P < 0.05, ANOVA) between relative changes in firing rate and mean whisker position over a certain range (Fig. 7c). The average gain of INs, which was defined as the absolute value of the slope of each linear regression fit, was 25.0 ± 4.6 Hz/degree (n = 19; bidirectional: 31.4 ± 7.1 Hz/degree, n = 11; unidirectional: 16.2 ± 3.8 Hz/degree, n = 8; P = 0.12, Mann–Whitney U test, Fig. 7d). In comparison to PCs, INs exhibited larger gain values across the population (IN: 25.0 ± 4.6 Hz/degree, n = 19; PC: 15.8 ± 2.1 Hz/degree, n = 44; P < 0.001, Mann–Whitney U test), meaning INs exhibited larger changes in firing rate in order to encode the same degree of movement, and indicating that these cells may be more susceptible to rate saturation (i.e., boundary effects). To test the fidelity of movement encoding by INs, transfer functions were computed from individual spike trains and corresponding whisker positions (n = 10, recordings with a correlation coefficient between whisker position and instantaneous firing rate >0.25). Using this approach, it was partially possible to predict the dynamics of whisking trajectory in real time (Supplementary Fig. 5a). The reconstruction from single INs captured the dynamics of the slowly varying whisking kinematic parameter, set point, although the amplitudes of reconstructed trajectories were attenuated, suggesting a low-pass filtered representation of movement. Overall, INs were modest predictors of whisking trajectory with an average correlation coefficient value of 0.42 ± 0.08 (range: 0.14–0.76, P < 0.01, n = 10; Supplementary Fig. 5b) between reconstruction and real set point. Taken together, our results confirm that selective encoding of
kinematic features by GCs, and bidirectional modulation of synaptic inhibition are both necessary to account for the physiological patterns of PC simple spiking activity during voluntary whisking.

Discussion

Understanding the neural representation of motor behaviour requires detailed examination on how single neurons encode movement. Here we have exploited a well-defined model, the mouse whisker system, to probe how single neurons in the cerebellar cortex encode patterns of self-generated movement. We provide the first patch clamp recordings from cerebellar GCs and INs in lobule Crus 1 of awake mice, and demonstrate the sensitivity of these cells to whisker movement. GCs receive excitatory MF synaptic input that represents both fast and slow kinematic features of whisking. While a relatively small fraction of GCs

Fig. 4 Kinematic tuning of granule cell output.

a) Whisker position (orange; upward deflection indicating protraction) and corresponding GC spike train.

b) Colour-coded whisker movement from nine consecutive epochs (trials) and corresponding spike raster from single GC. Mean whisker position (red line; orange: S.E.M.) and peri-event time histogram (PETH) of GC spiking for all trials. Firing rates were computed from PETH with 50 ms bin size. GC firing rate changes between quiet and whisking epochs from WC and CA recordings (**P < 0.001, Wilcoxon signed-rank test, n = 32 WC and n = 13 CA).

e, f Average V_{rm} with respect to whisker position e and set point f for a single GC. Filled triangles: preferred angles. Dashed horizontal line in e indicates average quiescent V_{rm}. Vertical line indicates whisker resting position. g, h Histogram of spike rate with respect to whisker position g and set point h for the same GC. The overall profile of angular tuning is similar to V_{rm}, but sharper. Filled triangles: preferred angles. Dashed horizontal line in g indicates resting firing rate. Vertical line indicates whisker resting position. i) Correspondence between preferred angle for V_{rm} and spike rate for all GCs (n = 9). Filled circle: GC shown in e–h. j) Modulation depth of EPSC rate (i.e. synaptic input) and GC spike rate (i.e., output) with respect to whisker position (top) and set point (bottom). Modulation depth was significantly higher for output (**P < 0.001, Mann-Whitney U-test; n = 6 input and n = 9 output for position; n = 7 input and n = 9 output for set point)
show tuning to whisking phase, the vast majority of GCs receive information about set point, which is conveyed to downstream neurons via high-frequency burst firing in a subset of neurons. Despite receiving increased excitatory drive via PFs, a significant fraction of interneurons in the molecular layer display firing rate reductions during free whisking, in a manner similar to PCs. Our results indicate that whisker signals are subject to serial processing within the cerebellar cortex in order to accurately represent movement (Fig. 8): within the GCL layer, whisker-related MF input is integrated within populations of GCs, generating linear increases in PF activity that encode whisker position. Downstream within the molecular layer, broad integration of excitatory PF input and sign reversal via local inhibition occur to implement robust linear bidirectional representations of whisker position in both other INs and PCs.

GCs are small in size and vast in number, providing the sole source of excitatory drive within the cerebellar cortex, but little is known about the properties of these neurons in awake, behaving animals. In the absence of movement, GCs display low baseline firing rates (Fig. 1c). During whisking, the vast majority of GCs undergo membrane potential depolarisation due to increased rates of MF input. Notably, the amplitude and time-course of individual EPSCs is unchanged between quiet and whisking periods. This suggests that the identity of active MF inputs may not change between bouts of quiescence and whisking (unlike, e.g., GCs in the floculus), and mechanisms such as short-term plasticity (e.g., synaptic depression) do not influence the overall profile of EPSC amplitude between these two conditions. The observed increase in the rate of synaptic input during whisking resembles dramatic increases in excitability observed in lobule V GCs when mice are running. However, individual GCs in Crus 1 receive rate-modulated input that confers kinematic tuning to specific features of whisking behaviour.

A large proportion of GCs exhibit tuning to positional changes, in particular with respect to the slowly varying kinematic parameter, set point, but also to whisker phase. The rate of MF input (EPSCs) varies with respect to whisker angle/phase, and we observed a direct correspondence between the tuning of MF input rate, membrane potential and action potential output in individual GCs (Figs. 3c and 4i). In addition to excitatory MF input, GCs receive Golgi cell inhibition that can control GC output. Although we have not measured Golgi cell inhibition directly, our results indicate that this source of inhibition does not alter the profile of kinematic tuning of individual GCs. Golgi cell inhibition remains likely to play an important role in regulating the overall excitability of the GCL, and the timing of GC output, and further work is required to confirm these proposals. However, our results show that MF input rate governs the subthreshold tuning of individual GCs during voluntary whisker movement.

GC membrane potential tuning is typically rather broad (Figs. 3c and 4e, f), but the requirement for substantial depolarisation to reach action potential threshold ensures that individual GC output is selective, and GCs only fire within a limited range of whisker angles (Figs. 4g, h and 5a). The heterogeneous tuning of different GCs ensures that, while individual cells remain selective, whisker movements are associated with monotonic increases in excitability in the GC output at the population level (Fig. 5b).

These measurements from the input layer support the notion that whisker input to the cerebellar cortex is dense and widespread, and that efferent rather than re-afferent drive dominates cerebellar activity during free whisking (Fig. 1g, Supplementary Fig. 1). Classical cerebellar theory predicts that the input layer of the cerebellar cortex employs a sparse coding principle in GC populations, in which only a small fraction of GCs generates output in response to a given MF input. Such a scheme could facilitate the information storage capacity of PCs by allowing the discrimination of the greatest amount of distinct PF input patterns. Here we observed that a large fraction of GCs (approximately one-third) are activated during whisking, implying a shift from sparse to a dense mode of activation during such behaviour. However, the selectivity of individual GCs to whisker position may ensure that overall low firing rates are preserved on a moment-by-moment basis. Measures of population sparseness will ultimately require simultaneous monitoring of many GCs during whisker movement (or monitoring of PF activity) to examine the fraction and identification of active GCs in Crus 1.

Recent studies have revealed the convergence of functionally distinct afferent inputs onto single GCs across the mouse cerebellum. The congruent arrangement of somatosensory and motor input to lobule Crus 1 means that individual GCs might integrate convergent sensory- and motor-related signals about the
INs exert strong modulation over other cell types (and each other), placing them in a critical position to control information flow within cerebellar circuits. By making direct electrophysiological recordings from single INs in behaving mice, our experiments demonstrate INs in lobule Crus 1 show linear physiological recordings from single INs in behaving mice, our results indicate that, rather than receiving bidirectional changes in whisker-related MF activity, the cerebellar cortex splits behavioural signals via its inhibitory circuits, giving rise to bidirectional firing rate changes in output neurons.

Fig. 6 Firing rate alteration of inhibitory interneurons during whisking. a Schematic representation of cerebellar circuit highlighting inhibitory interneurons (INs) in the molecular layer. b Representative whole-cell and cell-attached recordings from INs. c Relative firing rate change during whisking with respect to baseline rate during non-whisking for all significantly modulated INs (P < 0.05, Wilcoxon signed-rank test, n = 35). Red and green circles represent increasing (n = 23) and decreasing (n = 12) cells, respectively. d IN exhibiting increasing firing rates during whisking. Colour-coded whisker movement (left) and the corresponding spike raster plot (middle). PETH from the same IN was overlaid with the mean whisker position (red, dashed orange lines: S.E.M) to show the close relationship between firing rate change and movement (right). e IN exhibiting decreasing firing rates during whisking. Colour-coded whisker movement (left) and the corresponding spike raster plot (middle). PETH from the same IN was overlaid with the mean whisker position (red, dashed orange lines: S.E.M) to show the close relationship between firing rate change and movement (right).
populations of neurons) in downstream PCs24. In addition to reciprocal connectivity between interneurons, PCs collaterals also project back to neighbouring PCs and MLIs in the adult cerebellum55. This feedback projection could likewise offer an additional route for sign inversion. Together, GC-IN-PC, GC-IN-IN, GC-PC-PC and GC-PC-IN pathways may act in concert with the GC-PC connection to determine the firing rate change of PCs and INs in a bidirectional manner.

In contrast to GCs, INs exhibit quite distinct tuning properties with respect to whisker position. The most prevalent functional IN class consists of ‘unidirectional’ cells that exhibit altered firing rates at only forward or backward positions. This property is surprising, given that, across the entire population, upstream GCs encode both forward and backward positions via elevated firing. It is therefore possible that unidirectional INs receive excitatory inputs from specific subsets of GCs (i.e., forward- or backward-selective GCs), while ‘bidirectional’ INs may also receive inhibitory input from local unidirectional INs. The circuit mechanisms underlying this organisation remain unclear, and functional imaging of IN populations may reveal whether such functional heterogeneity is spatially organised (e.g., ‘forward-’ and ‘backward-’ movement microzones within Crus 1). At present, our results highlight the surprising complexity of function exhibited by cerebellar interneurons.

The role of the cerebellar cortex during sensorimotor behaviour has been widely debated. During voluntary whisking, a majority of PCs cells encode movement via linear changes in firing rate to represent salient kinematic parameters17,53,60. However, it has remained unclear how such movement-related signals propagate through the circuitry of the cerebellar cortex. The present study reveals that linear encoding is prominent in INs upstream of PCs, and indicates that broad sampling of PF inputs underpins the linear modulation of firing rate in INs and PCs that encode set point.

Our results provide a platform from which to address the crucial role of the lateral cerebellum in active sensory processing. Compared to multi-joint limb movements, whisking is a relatively simple behaviour, and we have focused on the movement with a single degree of freedom (forward and backward), though it is known that animals can also move single whiskers in three dimensions61.

Beyond the representation of whisker position, cerebellar circuits also encode other kinematic features of whisking, including phase, which is robustly represented by neurons in somatosensory neocortex. Given the prominent sensory input received by Crus 1 (from both neocortex and periphery), a necessary next step is to determine the influence of external sensory input (e.g., tactile stimulation) on the activity of
cerebellar neurons during active whisking. Furthermore, it will be essential to record from different components of the cerebellar cortex during the acquisition and performance of vibrissal-based sensorimotor tasks, to fully establish the importance of the cerebellum in sensorimotor learning.

Methods

Animal handling and surgery. The care and experimental manipulation of animals was performed in accordance with institutional and UK Home Office guidelines. 4- to 8-week-old C57BL/6 mice of both genders were used in this study. Animals were group housed in a 12-12 reverse light-dark cycle and all experiments were carried out during the dark phase. Prior to electrophysiology experiments, mice were anaesthetised with 1% isoflurane under aseptic conditions, and a lightweight head-post was attached to the skull using glue Histoacryl (Braun Corporation, USA) and acrylic dental cement (Kemdent, UK). A circular chamber was built with cement over the lateral hemisphere of the cerebellum to allow subsequent access for electrophysiological recording. The chamber was then filled with a silicone-based elastomer (Kwik-Cast; World Precision Instruments, USA) and sealed with a layer of nail varnish. A non-steroidal anti-inflammatory drug (Carprofen; 5 mg/kg) was provided via intra-peritoneal administration during surgery to support recovery. Implanted mice were given 2–5 days for recovery, during which time Buprenorphine (0.8 mg/kg) jelly was provided for postoperative analgesia. On the day of the recording, anaesthesia was induced and a small cranial window was performed in accordance with institutional and UK Home Office guidelines. Under infrared light illumination, whisker movements were measured along the longitudinal axis (medial line: 0 degree); protraction corresponded to increases in whisker angle. Because whiskers, especially those from the same row, move in synchrony, one of the traced whiskers was routinely used for analysis concerning whisking, as changing whisker did not affect the results.

Data presentation and analysis. The data are presented as mean ± SEM unless otherwise stated. All the data analysis was carried out in MATLAB (MathWorks) and AxographX software (www.axograph.com). In whole-cell recordings, resting membrane potentials were recorded immediately after formation of whole-cell configuration and series resistances ranged between 20–40 MΩ. Bridge balance in current-clamp mode was applied in interneurons, but not in granule cell recordings, given their much higher input resistances in comparison to series resistances. No current was injected unless otherwise stated. Membrane potentials were not corrected for liquid junction potentials. Neuron types in the cerebellum (GCs and INs) could be readily identified by their characteristic electrophysiological properties.

Whisker tracking. Under infrared light illumination, whisker movements were filmed with a high-speed camera (Genie HM640; Teledyne Dalsa Inc, USA) operating at 250 fps Video acquisitions were controlled by Streampix 6 software (Norpix, Canada) and externally triggered by TTL pulses generated via the ITC-18 to synchronise with electrophysiological acquisition. Whisker position was tracked offline using open-source software—http://whiskertracking.janelia.org—and a customised graphical user interface with electrophysiological acquisition. Whisker azimuth angles were measured along the longitudinal axis (medial line: 0 degree); protraction corresponded to increases in whisker angle. Because whiskers, especially those from the same row, move in synchrony, one of the traced whiskers was routinely used for analysis concerning whisking, as changing whisker did not affect the results.

In vivo electrophysiology. Patch clamp recordings were made from cerebellar GCs and interneurons in awake mice using a Multiclamp 700B amplifier (Molecular Devices, USA). Recordings were made between depths of 200–1000 µm from the pia surface using borosilicate glass pipettes (6–8 MΩ) filled with internal solution containing (in mM): 135 K-glucuronate, 7 KCl, 10 HEPES, 10 phosphocreatine, 2 Mg-ATP, 2 Na₂-ATP, and 0.5 Na₂-GTP (pH 7.2; 280–290 mOsm). The data were filtered at 10 kHz, digitised at 25 kHz using an ITC-18 interface (Instrutech Corporation, USA) and transferred to a computer using AxographX software (www.axograph.com). In whole-cell recordings, resting membrane potentials were recorded immediately after formation of whole-cell configuration and series resistances ranged between 20–40 MΩ. Bridge balance in current-clamp mode was applied in interneurons, but not in granule cell recordings, given their much higher input resistances in comparison to series resistances. No current was injected unless otherwise stated. Membrane potentials were not corrected for liquid junction potentials. Neuron types in the cerebellum (GCs and INs) could be readily identified by their characteristic electrophysiological properties.

Whisker tracking. Under infrared light illumination, whisker movements were filmed with a high-speed camera (Genie HM640; Teledyne Dalsa Inc, USA) operating at 250 fps Video acquisitions were controlled by Streampix 6 software (Norpix, Canada) and externally triggered by TTL pulses generated via the ITC-18 to synchronise with electrophysiological acquisition. Whisker position was tracked offline using open-source software—http://whiskertracking.janelia.org—and a customised graphical user interface with electrophysiological acquisition. Whisker azimuth angles were measured along the longitudinal axis (medial line: 0 degree); protraction corresponded to increases in whisker angle. Because whiskers, especially those from the same row, move in synchrony, one of the traced whiskers was routinely used for analysis concerning whisking, as changing whisker did not affect the results.

Data presentation and analysis. The data are presented as mean ± SEM unless otherwise stated. All the data analysis was carried out in MATLAB (MathWorks) and AxographX. In whole-cell recordings, input resistance of GCs was measured from steady-state voltage deflections during 400 ms step current injections of ~20 pA. Interneuron input resistance was calculated using 400 ms current injection of ~50 pA. GC synaptic events were detected using a template-matching algorithm in AxographX, where a representative EPSC event was selected to serve as the template in each cell and event detection was set at least three times the standard deviation of the baseline noise. All detected EPSCs were visually inspected. Cell-attached recordings were first high-pass filtered at 20 Hz. Action potentials were detected automatically using an amplitude threshold in AxographX. Sample size estimation was not performed due to the technically challenging nature of the recordings and instead post hoc tests were performed to assess statistical significance.

Behavioural characterisation. Whisking epochs were visually identified off-line. Traced whisker position was first low-pass filtered at 30 Hz using a 4-pole Butterworth filter run in forward and reverse directions, and subsequently up-sampled to 1 kHz. Kinematic feature set point was derived by low-pass filtering whisker angle at cutoff frequency 6 Hz. Kinematic feature phase was defined as the angle of the Hilbert transform on band-pass filtered (6–30 Hz) whisker angle. A phase of zero corresponds to maximal protraction and a phase of ±π denotes maximal retraction in a whisk cycle.

Granule cell analysis. Spikes were grouped into bursts with inter-spike interval (ISI) > 50 ms. Wilcoxon signed-rank test (P < 0.001) was used to evaluate significant change.
in firing rate or EPSC rate across the population of GCs. Significant changes in membrane potential distribution between non-whisking and whisking epochs were determined using a 2-sample Kolmogorov–Smirnov test (P < 0.05). Membrane potential and the whisker position data were truncated into 1 s segments centred on individual whisking onsets (0.5 s preceding- and post-onset). To examine the temporal relationship between membrane potential depolarisation and whisker position change, normalised cross-correlations were computed for the individual data segments and averaged across segments. The time at the nearest maxima (peaks) above the upper/lower 95% confidence bounds defined the time delay between the two signals.

To identify GC tuning to kinematic features, a two-sample Kolmogorov–Smirnov test (P < 0.05) was used to compare the distribution of angle (position/set point) at all times with the distribution at times of EPSC/spike occurrence. The distribution of kinematic features at EPSC/spike times was normalised by the amount of time spent in individual bins to generate the tuning curve (in terms of Hz). Kuiper’s test (P < 0.05) was used to assess phase tuning. Modulation depths were calculated as the maximal rate (preferred) minus the minimal rate (least-preferred) divided by the mean in the tuning curve. The firing rate tuning curves of individual significantly modulated GCs were normalised into percentiles in 5% increments with respect to the range of set point in individual mice. A population set point tuning curve was generated by averaging across cells for individual percentiles.

Interneuron analysis. Spike rates were calculated across all whisking and non-whisking epochs in the recording sweeps as the total number of–spikes divided by the duration of an epoch. CV2 of ISI was calculated using CV2 = 2 × (ISI−1 + ISI−1)/ISI0. Comparisons of the spike rates were made between quiet and non–whisking epochs and between the whisking and non–whisking epochs by calculating the rate of the spikes at all epochs comprising the two respective conditions. To generate peri-event time–histograms, spike trains were aligned by the onsets of whisking bouts and averaged across trials. Corresponding whisking epochs were aligned at the onset and averaged to reveal the mean whisker movement within bouts.

To determine instantaneous firing rates, a 100 ms rectangular window function was slid along IN spike train with 1 ms step. All linear regression fits for IN instantaneous firing rate and average whisker position was performed using the Basic Fitting GUI in MATLAB. Analysis of Variance (ANOVA) was used to determine whether variation in whisker position arises among different instantaneous firing rate groups of a given IN, and a P-value smaller than 0.05 justified linear modulation of firing rate by whisker position.

Linear decoding by transfer function. The relationship between the IN firing pattern and whisker position was modelled by a linear transfer function, which was calculated in order to decode whisking trajectory from single neuron spike trains. Pattern and whisker position was modelled by a linear transfer function, which was determined by the response of the neuron to the stimuli. The transfer function was then used to reconstruct the original whisker and the real whisker set point derived from the original whisker trace.

Data availability. All the relevant data are available from the authors.

Received: 13 September 2016 Accepted: 20 June 2017
Published online: 10 August 2017

References

1. Diamond, M. E., von Heimendahl, M., Knutsen, P. M., Kleinfeld, D. & Ahissar, E. ‘Where’ and ‘what’ in the whisker sensorimotor system. Nat. Rev. Neurosci. 9, 601–612 (2008).

2. Gibson, J. M. & Weller, W. I. Quantitative studies of stimulus coding in first–order vibrissa afferents of rats. 2. Adaptation and coding of stimulus parameters. J. Neurophysiol. 45, 915–917 (1981).

3. Brecht, M., Schneider, M., Sakmann, B. & Margrie, T. W. Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427, 704–710 (2004).

4. Kleinfeld, D., Ahissar, E. & Diamond, M. E. Active sensation: insights from the rodent vibrissa sensorimotor system. Curr. Opin. Neurobiol. 16, 435–444 (2006).

5. Crochet, S., Poulet, J. F. A., Kremer, Y. & Petersen, C. C. H. Synaptic mechanisms underlying sparse coding of active touch. Neuron 69, 1160–1175 (2011).

6. Matyas, F. et al. Motor control by sensory cortex. Science 330, 1240–1243 (2010).

7. Moore, J. D. et al. Hierarchy of orofacial rhythms revealed through whisking and breathing. Nature 497, 205–210 (2013).

8. Proville, R. D. et al. Cerebellum involvement in cortical sensorimotor circuits for the control of voluntary movements. Nat. Neurosci. 17, 1233–1239 (2014).

9. Maravall, M. & Diamond, M. E. Algorithms of whisker-mediated touch perception. Curr. Opin. Neurobiol. 25, 176–186 (2014).

10. Urbain, N. et al. Whisking-related changes in neuronal firing and membrane potential dynamics in the somatosensory thalamus of awake mice. Cell Rep. 13, 647–656 (2015).

11. Volpert, D. M., Miall, R. C. & Kawato, M. Internal models in the cerebellum. Trends Neurosci. 23, 133–138 (1999).

12. Rahmati, N. et al. Cerebellar potentiation and learning a whisker-based object localization task with a time response window. J. Neurosci. 34, 1949–1962 (2014).

13. Eccles, J. C., Sasaki, K. & Strata, P. A comparison of the inhibitory actions of Golgi cells and of basket cells. Exp. Brain. Res. 3, 81–94 (1967).

14. Häusser, M. & Clark, B. A. Tonic synaptic inhibition modulates neural output pattern and spatiotemporal synaptic integration. Neuron 19, 665–678 (1997).

15. Mittmann, W., Koch, U. & Häusser, M. Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells. J. Physiol. 563, 369–378 (2005).

16. Gao, W., Chen, G., Reintert, K. C. & Ehner, T. J. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J. Neurosci. 26, 8377–8387 (2006).

17. Chen, S., Augustine, G. J. & Chadderton, P. The cerebellum linearly encodes whisker position during voluntary movement. Elife 5, e10509 (2016).

18. Duguid, I. et al. Control of cerebellar granule cell output by sensory-evoked Golgi cell inhibition. Proc. Natl Acad. Sci. USA 112, 13099–13104 (2015).

19. Kaniyach, R. T. & Silver, R. A. Synaptic and cellular properties of the feedforward inhibitory circuit within the input layer of the cerebellar cortex. J. Neurosci. 28, 8955–8967 (2008).

20. Crowley, J. J., Fioravante, D. & Regehr, W. G. Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration. Neuron 63, 843–853 (2009).

21. Cohen, D. & Yarom, Y. Patches of synchronized activity in the cerebellar cortex evoked by mossy-fiber stimulation: questioning the role of parallel fibers. Proc. Natl Acad. Sci. USA 95, 15032–15036 (1998).

22. Jaeger, D. & Bower, J. M. Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances. J. Neurosci. 19, 6091–6101 (1999).

23. Wulff, P. et al. Synaptic inhibition of Purkinje cells mediates consolidation of vestibulo-cerebellar motor learning. Nat. Neurosci. 12, 1042–1049 (2009).

24. Park, S., Tara, E. & Khodakhah, K. Efficient generation of reciprocal signals by inhibition. J. Neurophysiol. 107, 2453–2462 (2012).

25. Chadderton, P., Margrie, T. W. & Häusser, M. Integration of quanta in cerebellar granule cells during sensory processing. Nature 428, 856–860 (2004).

26. Jörntell, H. & Ekerot, C.-F. Properties of somatosensory synaptic integration in cerebellar granule cells in vivo. J. Neurosci. 26, 11786–11797 (2006).

27. Arenz, A., Silver, R. A., Schaeffer, A. T. & Margrie, T. W. The contribution of single synapses to sensory representation in vivo. Science 321, 977–980 (2008).

28. Powell, K., Mathy, A., Duguid, I. & Häusser, M. Synaptic representation of locomotion in single cerebellar granule cells. Elife 4, e07290 (2015).

29. Rance, E. A. et al. High-fidelity transmission of sensory information by single cerebellar mossy fibre boutons. Nature 450, 1245–1248 (2007).

30. Duguid, I., Branco, T., London, M., Chadderton, P. & Häusser, M. Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex. J. Neurosci. 32, 11132–11133 (2012).

31. van Beugen, B. J., Gao, Z., Boele, H.-J., Hoebek, F. & De Zeeuw, C. I. High frequency burst firing of granule cells ensures transmission at the parallel fiber to Purkinje cell synapse at the cost of temporal coding. Front Neurosci. 7, 95 (2013).

32. Di Stefano, A. et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nat. Neurosci. 20, 727–734 (2017).
33. van Kan, P. L., Gibson, A. R. & Houk, J. C. Movement-related inputs to intermediate cerebellum of the monkey. J. Neurophysiol. 69, 74–94 (1993).

34. DiGregorio, D. A., Nusser, Z. & Silver, R. A. Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002).

35. Van Dijck, G. et al. Probabilistic identification of cerebellar cortical neurons across species. PLoS ONE 8, e57669 (2013).

36. Vos, B. P., Volny-Luraghi, A. & De Schutter, E. Cerebellar Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur. J. Neurosci. 11, 2621–2634 (1999).

37. Holtzman, T., Rajapaksa, T., Mostofi, A. & Edgley, S. A. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs. J. Physiol. 574, 491–507 (2006).

38. Barmack, N. H. & Yakhnis, V. Cerebellar climbing fibers modulate simple spines in Purkinje cells. J. Neurosci. 23, 7904–7916 (2003).

39. Laurens, J., Heiney, S. A., Kim, G. & Blazquez, P. M. Cerebellar cortex granular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition. PLoS ONE 8, e82293 (2013).

40. Gaffet, M. A. & Christie, J. M. Movement rate is encoded and influenced by widespread, coherent activity of cerebellar molecular layer interneurons. J. Neurosci. 37, 4751–4765 (2017).

41. Jelitai, M., Puggioni, P., Ishikawa, T., Rinaldi, A. & Duguid, I. Dendritic excitation-inhibition balance shapes cerebellar output during motor behaviour. J. Physiol. 588, 3757–3783 (2010).

42. Bower, J. M., Brain, M. A., Gibson, J. M., Shambes, G. M. & Welker, W. Principles of organization of a cerebro-cerebellar circuit. Micromapping the projections from cerebral (SI) to cerebellar (granule cell layer) tactile areas of rats. Brain. Behav. Evol. 18, 1–81 (1981).

43. Bosman, L. W. J. et al. Encoding of whisker input by cerebellar Purkinje cells. J. Physiol. 588, 3757–3783 (2010).

44. Marr, D. A theory of cerebellar cortex. I. Physiol. 202, 437–470 (1969).

45. Albus, J. S. A theory of cerebellar function. Math. Biosci. 10, 25–61 (1971).

46. Billings, G., Piasini, E., Lendvai-Balogh, A., Nusser, Z. & Silver, R. A. Network structure influences by glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. J. Physiol. 470, 61–68 (1988).

47. Mao, J. et al. Comparative anatomy of cerebellar Purkinje cells and Golgi cells in the rat: receptive fields and timing of responses to facial stimulation. Eur. J. Neurosci. 11, 2621–2634 (1999).

48. Wilms, C. D. & Häusser, M. Reading out a spatiotemporal population code by repeated activity of Purkinje cells in the cerebellum. J. Physiol. 594, 759–770 (2016).

49. Herzfeld, D. J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of action by cerebellar Purkinje cells. J. Neurophysiol. 103, 783–791 (2010).

50. Korbo, L., Andersen, B. B., Ladefoged, O. & Møller, A. Total numbers of Purkinje cells in various cell types in rat cerebellar cortex estimated using an unbiased stereological method. Brain. Res. 609, 262–268 (1993).

51. Benzinger, S. C. et al. Optogenetic mapping of cerebellar inhibitory circuitry reveals spatially biased coordination of interneurons via electrical synapses. Cell Rep. 7, 1601–1613 (2014).

52. Witter, L., Rudolph, S., Pressler, R. T., Lahlf, S. I. & Reeger, W. G. Purkinje cell collaterals enable output signals from the cerebellar cortex to feed back to the cerebellum and into the Purkinje cell network. Neuron 19, 312–319 (1991).

53. Bower, J. M. Model-founded explorations of the roles of molecular layer interneurons in the macaque monkey are functionally driven by mossy fiber pathways through net excitation or inhibition. J. Physiol. 594, 759–770 (2016).

54. Herzel, J., Kojima, Y., Soetedjo, R. & Shadmehr, R. Encoding of action by cerebellar Purkinje cells. J. Neurophysiol. 103, 783–791 (2010).

55. Santamaría, F., Tripp, P. G. & Bower, J. M. Feeding inhibition controls the spread of granule cell–induced Purkinje cell activity in the cerebellar cortex. J. Neurophysiol. 97, 248–263 (2007).

56. Rieubland, S., Roth, A. & Häusser, M. Structured connectivity in cerebellar inhibitory networks. Neuron 81, 913–929 (2014).

57. Santamaría, F., Tripp, P. G. & Bower, J. M. Feeding inhibition controls the spread of granule cell–induced Purkinje cell activity in the cerebellar cortex. J. Neurophysiol. 97, 248–263 (2007).