Modeling lifetime data with Weibull-Lindley distribution

Abstract

In this paper a new extension of the Lindley distribution is presented using the Weibull link function introduced and studied by Tahir et al., to develop a Weibull-Lindley distribution. We derive and discuss the mathematical and Statistical properties of the subject distribution along with its reliability analysis and inference for the parameters. Finally, the Weibull-Lindley distribution has been used to model four lifetime datasets and the results show that the proposed generalization performs better than the other known extensions of the Lindley distribution considered for the study.

Keywords: Lindley distribution, Weibull-Lindley distribution, mathematical properties, reliability function, parameter estimation, applications.

Introduction

The Lindley distribution introduced by Lindley et al., in the context of Bayesian analysis as a counter example of fiducial statistics, is defined by its probability density function (PDF) and cumulative distribution function (CDF) as

\[G(x) = 1 - \left[1 + \frac{\theta x}{\theta + 1} \right] e^{-\theta x} \]
(1.1)

And

\[g(x) = \frac{\theta^2}{\theta + 1} (1 + x) e^{-\theta x} \]
(1.2)

respectively. For \(x > 0, \theta > 0 \), where \(\theta \) is the scale parameter of the Lindley distribution.

Details of this distribution, its mathematical and statistical properties, estimation of its parameter and application including the superiority of Lindley distribution over exponential distribution has been done by Ghitany et al., We have so many generalized families of distributions proposed by different researchers that are used in extending other distributions to produce compound distributions with better performance. These are several ways of adding one or more parameters to a distribution function which makes the resulting distribution richer and more flexible for modeling data. A brief summary of some of these methods or families of distribution include the beta generalized family (Beta-G) by Eugene et al.,

Gamma-G (type 1) by Zografos et al.,

Gamma-G (type 2) by Risti et al.,

Gamma-G (type 3) by Torabi et al.,

Log-gamma-G by Amiri et al.,

Exponentiated T-X by Alzaghhal et al.,

Exponentiated-G (EG) by Cordeiro et al.,

Logistic-G by Corbey et al.,

Gamma-X by Alzaatreh et al.,

Lindley distribution by Merovci et al.,

the exponentiated Power Lindley distribution by Ashour et al.,

Generalized Lindley distribution by Nadarajah et al.,

Transmuted Generalized Lindley distribution by Elgarhy et al.,

Extended Power Lindley distribution by Alkarni et al.,

a two-parameter Lindley distribution by Shanker et al.,

the Lomax-Lindley distribution by Yahaya et al.,

Transmuted Two-Parameter Lindley distribution by Al-khazaleh et al., and

a three-parameter Lindley distribution by Shanker et al.,

The aim of this article is to introduce a new continuous distribution called Weibull-Lindley distribution (WLnD) from the proposed family by Tahir et al., The remaining parts of this article are presented in sections as follows: We defined the new distribution and give its plots in section 2.1. Section 2.2 derived some properties of the new distribution. Section 2.3 proposes some reliability functions of the new distribution. The order statistics for the new distribution are also given in section 2.4. The maximum likelihood estimates (MLEs) of the unknown model parameters of the new distribution are obtained in section 2.5. In section 3 we carry out application of the proposed model with others to four lifetime datasets. Lastly, in section 4, we give the summary of our work and concluding remarks.

Materials and methods

Construction of Weibull-Lindley distribution (WLnD)

In the next section, we have defined the cdf and pdf of the Weibull-Lindley distribution (WLnD) using the method proposed by Tahir et al., According to Tahir et al., the formula or Weibull link function for deriving the cdf and pdf of any Weibull-based continuous distribution is defined as:

\[F(x) = \frac{-\log(G(x))}{\beta} e^{-\alpha \beta} \int_0^\infty e^{-\alpha \beta t} dt = e^{\alpha \beta \left[-\log(G(x)) \right]} \]
(2.1.1)

And

\[f(x) = \frac{\alpha \beta}{G(x)^\beta} \left[-\log(G(x)) \right]^\beta e^{\alpha \beta \left[-\log(G(x)) \right]} \]
(2.1.2)

respectively, where \(g(x) \) and \(G(x) \) are the pdf and cdf of any continuous distribution to be generalized respectively and \(\alpha \) and \(\beta \) are the two additional new parameters responsible for the shape of the distribution.
Using equation (1.1) and (1.2) in (2.1.1) and (2.1.2) and simplifying, we obtain the cdf and pdf of the Weibull-Lindley random variable X as:

\[
F(x; \theta, \alpha, \beta) = e^{-\beta \left(\left(\frac{ \theta x + \alpha}{\theta + 1} \right) - \frac{\alpha}{\theta} \right)}
\]

(2.1.3)

and

\[
f(x; \theta, \alpha, \beta) = \frac{\alpha \beta \theta^2 (1 + x) e^{\theta x}}{(\theta + 1) \left(1 + \frac{\theta x}{\theta + 1} \right) e^{\theta x}} \left(-\log \left[1 - \left(\frac{\theta x}{\theta + 1} \right) e^{-\theta x} \right] \right)^{\beta - 1} e^{-\beta \left(\left(\frac{ \theta x + \alpha}{\theta + 1} \right) - \frac{\alpha}{\theta} \right)}
\]

(2.1.4)

respectively.

For $x > 0; \theta, \alpha, \beta > 0$; where θ is a scale parameter and α and β is a shape parameters of the Weibull-Lindley distribution.

The following is a graphical representation of the pdf and cdf of the Weibull-Lindley distribution. Given some values of the parameters $\alpha, \beta \& \theta$, we provide some possible graphs for the pdf and the cdf of the WLnD as shown in Figure 1&2 below: Figure 1 indicates that the WLnD is a skewed distribution and can take various forms. This means that distribution can be very useful for datasets that are skewed.

Properties

In this section, we defined and discuss some properties of the WLnD distribution.

The Quantile function

This function is derived by inverting the cdf of any given continuous probability distribution. It is used for obtaining some moments like skewness and kurtosis as well as the median and for generation of random variables from the distribution in question. Hyndman et al., defined the quantile function for any distribution in the form $Q(u) = F^{-1}(u)$ where $Q(u)$ is the quantile function of $F(x)$ for $0 < u < 1$.

Taking $F(x)$ to be the cdf of the Weibull-Lindley distribution and inverting it as above will give us the Quantile function as follows:

\[
F(x) = e^{-\beta \left(\left(\frac{ \theta x + \alpha}{\theta + 1} \right) - \frac{\alpha}{\theta} \right)} = u
\]

(2.2.1)
Simplifying equation (2.2.1) above, we obtain:

$$Q(u) = X_u = -\frac{1}{\theta} - \frac{1}{\theta} W \left(-\frac{\ln u}{\alpha} \right)^{\frac{1}{\beta}}$$

(2.2.2)

By using (2.2.2) above, the median of X from the WLnD is simply obtained by setting $u=0.5$ while random numbers can be generated from WLnD by setting $X = Q(u)$, where u is a uniform variate on the unit interval $(0,1)$ and $W(.)$ represents the negative branch of the Lambert function.

Skewness and kurtosis

The quantile based measures of skewness and kurtosis will employed due to non-existence of the classical measures in some cases. The Bowley’s measure of skewness based on quartiles by Kenney et al.,

$$SK = \frac{Q(3) - 2Q\left(\frac{1}{2}\right) + Q(1)}{Q(3) - Q(1)}$$

(2.2.3)

where $Q(.)$ is any quartile or octile of interest.

Moments

Moments of a random variable are very important in distribution theory because they are used to study some of the most important features and characteristics of a random variable such as mean, variance, skewness and kurtosis.

Let X denote a continuous random variable, the nth moment of X is given by:

$$E(x^n) = e^{-\alpha x} \sum_{i=0}^{\infty} \left(-\alpha x \right)^i \frac{\beta^i}{i!}$$

(2.2.5)

Recall that from equation (2.1.4),

$$f(x; \alpha, \beta, \theta) = \frac{\alpha \beta \theta^2}{(\theta + 1)^2} x^{\beta - 1} e^{-\alpha x} \left(1 + \frac{\theta x}{\theta + 1} \right) e^{-\theta x}$$

(2.2.6)

Also, let

$$A = e^{-\alpha x} \sum_{i=0}^{\infty} \left(-\alpha x \right)^i \frac{\beta^i}{i!}$$

Then, using a power series expansion for A, we can write A as:

$$A = e^{-\alpha x} \sum_{i=0}^{\infty} \left(-\alpha x \right)^i \frac{\beta^i}{i!}$$

(2.2.7)

Substituting for the expansion above in equation (2.2.6), we have:

$$f(x) = e^{-\alpha x} \sum_{i=0}^{\infty} \left(-\alpha x \right)^i \frac{\beta^i}{i!}$$

(2.2.8)

Where for $(j \geq 0)$ $P_{ij} = 1$ and $(k = 1, 2, \ldots)$
Modeling lifetime data with Weibull-Lindley distribution

Combining equation (2.2.8) and (2.2.9) and inserting the above power series in equation (2.2.7) and simplifying, we have:

\[
f(x) = \frac{a_0 \beta^2}{(\theta + 1)^2} \sum_{k=0}^{\infty} \frac{k!}{(\beta(i + 1) - 1)!} \left(1 - \frac{\beta(i + 1)}{\theta + 1} \right)^{k + 1} P_{i,k+1} (1+x)^{-k - 1} e^{-\theta x (i+1)} \]

Now, if \(l \) is a positive non-integer, we can expand the last term in (2.2.10) as:

\[
f(x) = \sum_{n=0}^{\infty} \left(1 + \frac{\theta x}{\theta + 1} \right)^{n+1} \left(1 - \frac{\beta(i + 1)}{\theta + 1} \right)^{n+1} P_{i,k+1} (1+x)^{-k - 1} e^{-\theta x (i+1)} \]

Using power series expansion on the last term in equation (2.2.12), we have

\[
f(x) = \sum_{n=0}^{\infty} \left(1 + \frac{\theta x}{\theta + 1} \right)^{n+1} \left(1 - \frac{\beta(i + 1)}{\theta + 1} \right)^{n+1} P_{i,k+1} (1+x)^{-k - 1} e^{-\theta x (i+1)} \]

Now, substituting equation (2.2.13), the power series expansion in equation (2.2.12) above, one gets:

\[
f(x) = \eta_{i,k,l,m,p} (1+x)^{n_p} e^{-\theta x (i+1)} \]

Where

\[
\eta_{i,k,l,m,p} = \frac{a_0 \beta^2}{(\theta + 1)^2} \sum_{k=0}^{\infty} \frac{k!}{(\beta(i + 1) - 1)!} \left(1 - \frac{\beta(i + 1)}{\theta + 1} \right)^{k + 1} P_{i,k+1} (1+x)^{-k - 1} e^{-\theta x (i+1)} \]

Hence,

\[
\mu'_{n} = E[X^n] = \int_0^\infty x^n f(x) dx = \frac{\mu_n}{0} \eta_{i,k,l,m,p} (1+x)^{n_p} e^{-\theta x (i+1)} dx
\]

Also, using integration by substitution method in equation (2.2.15); we obtain the following:

Let \(u = \theta x (1+m) \Rightarrow x = \frac{u}{\theta (1+m)} \Rightarrow \frac{du}{dx} = \theta (1+m) \) and \(dx = \frac{du}{\theta (1+m)} \)

Substituting for \(u \), \(x \) and \(dx \) in equation (2.2.15) and simplifying; we have:

\[
\mu_n' = \eta_{i,k,l,m,p} \left[\int_0^{\theta (1+m)} x^{n_p} e^{-\theta x (1+m)} \frac{du}{\theta (1+m)} + \int_0^{\theta (1+m)} x^{n_p+1} e^{-\theta x (1+m)} \frac{du}{\theta (1+m)} \right]
\]

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. Biom Biostat Int J. 2018;7(6):532-544. DOI: 10.15406/bbij.2018.07.00256
Modeling lifetime data with Weibull-Lindley distribution

The characteristics function of a random variable X can be obtained by

$$
\phi(t) = E[e^{itX}] = \frac{\Gamma(p + 2)}{(\theta(1 + m))^{p+1}} + \frac{\Gamma(p + 3)}{(\theta(1 + m))^{p+2}}
$$

(2.2.17)

The Variance

$$
\text{Var}(X) = \mu_2 - \left(\mu_1\right)^2
$$

(2.2.18)

The mean of $WLnD$ can be obtained from the n^th moment of the distribution when $n=1$ as follows:

$$
\mu_n = \eta_{i,j,k,l,m,p} \frac{\Gamma(p + 2)}{(\theta(1 + m))^{p+1}} + \frac{\Gamma(p + 3)}{(\theta(1 + m))^{p+2}}
$$

(2.2.19)

The Survival function

$$
S(x) = 1 - F(x)
$$

(2.3.1)

Taking $F(x)$ to be the $cdfs$ of the Weibull-Lindley distribution, substituting and simplifying (2.3.1) above, we get the survival function of the $WLnD$ as:

$$
s(x) = 1 - e^{-\left[\frac{\alpha}{\theta} \left(1 - \left\lceil\frac{\theta x}{\alpha}\right\rceil\right)\right]^\theta}
$$

(2.3.2)

Below is a plot of the survival function at chosen parameter values in Figure 3. The figure above revealed that the probability of survival for any random variable following a Weibull-Lindley distribution decreases as the values of the random variable increases, that is, as time goes on, probability of life decreases. This implies that the Weibull-Lindley distribution can be used to model random variables whose survival rate decreases as their age grows.
The Hazard function

Hazard function as the name implies is also called risk function, it gives us the probability that a component will fail or die for an interval of time. The hazard function is defined mathematically as;

\[
h(x) = \frac{f(x)}{1 - F(x)} = \frac{f(x)}{S(x)}
\]

(2.3.3)

Taking \(f(x) \) and \(F(x) \) to be the pdf and cdf of the proposed Weibull-Lindley distribution given previously, we obtain the hazard function as:

\[
h(x) = a\beta e^{\beta x} \left(1 - \frac{1}{(\gamma + 1)} e^{\beta x} \right)^{\beta - 1} \left(1 - \frac{1}{(\gamma + 1)} e^{\beta x} \right)^{\beta} \left(1 - e^{\beta x} \right)^{\beta - 1}
\]

(2.3.4)

The following is a plot of the hazard function at chosen parameter values in Figure 4.

Order statistics

Order statistics are used widely over the years for solving a huge set of problems such as in robust statistical estimation and detection of outliers, characterization of probability distributions and goodness of fit tests, entropy estimation, analyses of censored samples, reliability analysis, quality control and strength of materials. Suppose \(X_1, X_2, \ldots, X_n \) is a random sample from a distribution with pdf, \(f(x) \), and let \(X_{1:n} < X_{2:n} < \ldots < X_{n:n} \) denote the corresponding order statistic obtained from this sample. The pdf, \(f_{a:n}(x) \) of the \(a^{th} \) order statistic can be defined as;

\[
f_{a:n}(x) = \frac{n!}{(a-1)!(n-a)!} \sum_{k=0}^{n-a} (-1)^k \binom{n-a}{k} f(x) F(x)^{k-a+1}
\]

(2.4.1)

where \(f(x) \) and \(F(x) \) are the pdf and cdf of the Weibull-Lindley distribution respectively.

Using (2.1.3) and (2.1.4), the pdf of the \(a^{th} \) order statistics \(X_{a:n} \), can be expressed from (2.4.1) as;
Modeling lifetime data with Weibull-Lindley distribution

Let the log-likelihood function,

\[l(\alpha, \beta) = \sum_{i=1}^{n} \left\{ \alpha \beta \theta^2 (1+x_i) e^{-\theta x_i} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\}^{\beta - 1} \left[e^{\alpha \theta x_i} \left(\log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right) \right]^{\alpha - d} \] (2.4.2)

Hence, the pdf of the minimum order statistic \(X_{(1)} \) and maximum order statistic \(X_{(n)} \) of the WLnD are given by:

\[f_{X_{(1)}}(x) = \sum_{k=0}^{n-1} \left(-1 \right)^{n-1} \frac{n!}{(a-1)(n-a)!} \sum_{i=1}^{n-a} \left[a \beta \theta^2 (1+x_i) e^{-\theta x_i} \right] \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\}^{\beta - 1} \left[e^{\alpha \theta x_i} \left(\log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right) \right]^{\alpha - d} \] (2.4.3)

and

\[f_{X_{(n)}}(x) = n \sum_{k=0}^{n-1} \left(-1 \right)^{n-1} \frac{n!}{(a-1)(n-a)!} \sum_{i=1}^{n-a} \left[a \beta \theta^2 (1+x_i) e^{-\theta x_i} \right] \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\}^{\beta - 1} \left[e^{\alpha \theta x_i} \left(\log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right) \right]^{\alpha - d} \] (2.4.4)

respectively.

Parameter estimation via maximum likelihood

Let \(X_1, X_2, \ldots, X_n \) be a sample of size ‘n’ independently and identically distributed random variables from the WLnD with unknown parameters \(\alpha, \beta \) and \(\theta \) defined previously. The pdf of the WLnD is given from (2.1.3) as

\[f(x) = \frac{a \beta \theta^2 (1+x) e^{-\theta x} \left\{ \log \left(1 + \frac{\theta x}{\theta + 1} \right) e^{-\theta x} \right\}^{\beta - 1} e^{\alpha \theta x} \left(\log \left(1 + \frac{\theta x}{\theta + 1} \right) e^{-\theta x} \right) \alpha - d}{(\theta + 1) \left[1 + \frac{\theta x}{\theta + 1} \right] e^{-\theta x}} \] (2.5.1)

The likelihood function is given by;

\[L(X | \alpha, \beta, \theta) = \left(\alpha \beta \theta^2 \right)^n \prod_{i=1}^{n} \left[(1 + x_i) e^{-\theta x_i} \right] \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\}^{\beta - 1} \left[e^{\alpha \theta x_i} \left(\log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right) \right]^{\alpha - d} \] (2.5.2)

Let the log-likelihood function, \(l = \log L(X | \alpha, \beta, \theta) \) therefore

\[l = n \log \alpha + n \log \beta + 2n \log \theta - n \log (\theta + 1) + \sum_{i=1}^{n} \left(\log (1 + x_i) - \theta \sum_{i=1}^{n} x_i \right) + \left(\beta - 1 \right) \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} \] (2.5.3)

\[- \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} - \alpha \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} \] (2.5.4)

Differentiating \(l \) partially with respect to \(\alpha, \beta \) and \(\theta \) respectively gives;

\[\frac{\partial l}{\partial \alpha} = -n \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} \] (2.5.5)

\[\frac{\partial l}{\partial \beta} = n \sum_{i=1}^{n} \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \] (2.5.6)

\[- \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} - \alpha \sum_{i=1}^{n} \left\{ \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \right\} \] (2.5.7)

\[- \log \left(1 + \frac{\theta x_i}{\theta + 1} \right) e^{-\theta x_i} \]
Modeling lifetime data with Weibull-Lindley distribution

Equating equations (2.5.3), (2.5.4) and (2.5.5) to zero and solving for the solution of the non-linear system of equations will give us the maximum likelihood estimates of parameters α, β & θ respectively. However, the above equations cannot be solved manually due to their complexity unless numerically with the help of statistically inclined computer programs like Python, R, SAS, etc., when data sets are available.

Results and discussions

This section presents four datasets, their descriptive statistics, graphics and applications to some selected extensions of the Lindley distribution including the classical Lindley distribution. We have compared the performance of the Weibull-Lindley distribution (WLID) to some families of Lindley distribution such as Lomax-Lindley distribution (LLID), Two-parameter Lindley distribution (TPLID), Transmuted Lindley distribution (TLID) and the Lindley distribution (LID).

Data sets and their nature

In this section, four different datasets and their summary are presented for fitting the above listed distributions. The available data sets I, II, III, and IV and their respective summary statistics are provided in Table 1–5 respectively as follows;

Table 1 Summary statistics for dataset I

Parameters	n	Minimum	Q₁	Median	Q₃	Mean	Maximum	Variance	Skewness	Kurtosis
Values	20	1.1	1.475	1.7	2.05	1.9	4.1	0.4958	1.8625	7.1854

Table 2 Summary statistics for dataset II

Parameters	n	Minimum	Q₁	Median	Q₃	Mean	Maximum	Variance	Skewness	Kurtosis
Values	20	40	86.75	119	140.8	113.45	165	1280.892	-0.3552	-0.89

Table 3 Summary Statistics for data set III

Parameters	n	Minimum	Q₁	Median	Q₃	Mean	Maximum	Variance	Skewness	Kurtosis
Data set I	63	0.55	1.375	1.59	1.685	1.507	2.24	0.105	-0.8786	3.9238

Table 4 Descriptive statistics for dataset IV

Parameters	n	Minimum	Q₁	Median	Q₃	Mean	Maximum	Variance	Skewness	Kurtosis
Values	59	4.1	8.45	10.6	16.85	13.49	39.2	64.8266	1.6083	2.256

Dataset I: This dataset represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an analgesic and reported by Gross et al., and has been used by Shanker et al., Table 1.

Dataset II: This data represent the survival times in weeks for male rats Lawless et al., (Table 2).

Dataset III: This data set represents the strength of 1.5cm glass fibers initially collected by members of staff at the UK national laboratory. It has been used by Bourguignon et al., Afify et al., Barreto Souza et al., Oguntunde et al., Ieren et al., as well as Smith et al., Its summary is given as follows: (Table 3).

Dataset IV: This dataset represents 59 observations of the monthly actual taxes revenue in Egypt (in 1,000 million Egyptian pounds) between January 2006 and November 2010. The data has been previously used by Owoloko et al. The descriptive statistics for this data are as follows:

We also provide some histograms and densities for the three data sets as shown in Figure 5–8 below respectively (Table 4).

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. *Biom Biostat Int J*. 2018;7(6):532-544. DOI: 10.15406/bbij.2018.07.00256
Figure 5 Histogram and density plot for the Relief times of 20 patients (Data set I).

Figure 6 Histogram and density plot for the survival times in weeks for male rats (Data set II).

Figure 7 A histogram and density plot for the strength of 1.5cm glass fibres (Data set III).

Figure 8 A histogram and density plot for the monthly actual taxes revenue in Egypt (Data set IV).

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. Biom Biostat Int J. 2018;7(6):532-544. DOI: 10.15406/bbij.2018.07.00256
From the summary statistics of the four data sets, we found that data sets I and IV are positively skewed, while II is a bit negatively skewed or approximately normal and III is negatively skewed. Also, data sets I, III and IV have higher kurtosis while II have low level or degree of peakedness.

Analysis of data

These four different datasets presented above were used to fit all the above listed Lindley distributions by applying the formulas of the test statistics in section 2 in order to get the best fitted model and the results are presented as follow in the four tables for each dataset below: (Table 5).

From Table 5, the values of the parameter MLEs and the corresponding values of l_1, AIC, A^*, W^* and $K-S$ for each model show that the Weibull-Lindley distribution ($WLID$) has better performance compared to the other four models namely: Lomax-Lindley distribution ($LLlD$), Two-parameter Lindley distribution ($TPLlD$), Transmuted Lindley distribution ($TLlD$) and the Lindley distribution (LlD) and hence becomes the best fitted distribution based the data set I (Table 6).

Parameter estimates	l_1(log-likelihood value)	AIC	A^*	W^*	$K-S$	$P-Value$	Ranks
0.5842	16.0004	38.0009	0.2483	0.0428	0.167	0.6324	1
3.8112							
1.1589	24.9726	53.9452	0.6295	0.1063	0.3113	0.0414	2
-0.9888							
0.8926	27.2805	58.561	0.6401	0.108	0.2885	0.0716	3
9.7008							
0.8162	30.2496	62.4991	0.6758	0.1141	0.3911	0.0044	4
0.361							
9.6021	29.8421	65.6841	0.6552	0.1107	0.416	0.002	5
2.4483							

Table 5 The statistics l_1, AIC, A^*, W^* and $K-S$ for the fitted models to the first dataset

Again the results in Table 6 above shows that the Weibull-Lindley distribution ($WLID$) fits the second dataset better than the other four models ($LLlD$, $TPLlD$, $TLlD$ and LlD) because the values of the statistics; AIC, A^*, W^* and $K-S$ are smaller for the $WLID$ than the other models and therefore it is considered as the best fitted distribution based the data set II (Table 7).

The results from Table 7 also agrees with the previous results that the $WLID$ is more flexible compared to the three other models this also agrees with the fact that generalizing any continuous distribution provides a compound distribution with at least better fit than the classical distribution (i.e Lindley) irrespective of the nature of the data used provide it is asymmetry Table 8.

Table 6 The statistics l_1, AIC, A^*, W^* and $K-S$ for the fitted models to the second dataset

Parameter estimates	l_1(log-likelihood value)	AIC	A^*	W^*	$K-S$	$P-Value$
0.0278	106.6467	219.2935	0.4311	0.062	0.3225	0.0313
1.6862						
1.0152						
0.0198						
1.9445	112.8891	231.7781	0.5199	0.076	0.3772	0.0068
2.8037						
0.0371	128.3464	260.6929	0.4103	0.0586	0.6941	8.57E-09
0.3054						
1.9987	4442.078	8888.156	NaN	NaN	1	<2.2e-16
0.6326						
2.2161	4926.226	9854.452	NaN	NaN	1	<2.2e-16

Again the results in Table 6 above shows that the Weibull-Lindley distribution ($WLID$) fits the second dataset better than the other four models ($LLlD$, $TPLlD$, $TLlD$ and LlD) because the values of the statistics; AIC, A^*, W^* and $K-S$ are smaller for the $WLID$ than the other models and therefore it is considered as the best fitted distribution based the data set II (Table 7).

The results from Table 7 also agrees with the previous results that the $WLID$ is more flexible compared to the three other models this also agrees with the fact that generalizing any continuous distribution provides a compound distribution with at least better fit than the classical distribution (i.e Lindley) irrespective of the nature of the data used provide it is asymmetry Table 8.

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. *Biom Biostat Int J.* 2018;7(6):532-544.

DOI: 10.15406/bbij.2018.07.00256
Table 7 The statistics ll, AIC, A^*, W^* and K-S for the fitted models to the third dataset

Distributions	Parameter estimates	ll (log-likelihood value)	AIC	A^*	W^*	K-S	P-Value	Ranks
	1.4523	34.1708	74.3416	4.2254	0.7768	0.224	0.0033	1
	7.6251							
	1.7248							
	0.361							
	9.6021							
	2.4483							
	1.391							
	-0.9937							
	1.2155							
	9.2573							
	0.9957							

Table 8 The statistics ll, AIC, A^*, W^* and K-S for the fitted models to the fourth dataset

Distributions	Parameter estimates	ll (log-likelihood value)	AIC	A^*	W^*	K-S	P-Value	Ranks
	0.3767	199.8163	405.6327	0.7927	0.1329	0.1597	0.0986	1
	8.5414							
	0.8256							
	0.0809							
	6.6768							
	3.1649							
	0.1429							
	-0.4154							
	0.1618							
	4.938							
	0.1361							

Lastly, our results in Table 8 provides the same results as obtained in the above previous tables with the Weibull-Lindley distribution performing better than the other three distributions considered in this study.

The following figures display the histogram and estimated densities of the fitted models for the four real life data sets used in this study.

From the estimated density plots in Figures 9 we can observe that though there is no big difference between the performance of the other four models, it is very clear that the performance of the Weibull-Lindley distribution ($WLlD$) remains the best and consistent irrespective of the nature the datasets as compared to the Lomax-Lindley distribution ($LLlD$), Two-parameter Lindley distribution ($TPLlD$), Transmuted Lindley distribution ($TLlD$) and the Lindley distribution (LlD).

Furthermore, the performance of the Weibull-Lindley could be attributed to the fact that the Weibull-Lindley is heavy-tailed and highly skewed to the right with excellent flexibility which allows it to take various shapes depending on the parameter values and it also exhibit some degree of kurtosis all of which are features of the four datasets used in this research, hence, the Weibull-Lindley distribution will be more appropriate for lifetime datasets which are positively skewed with a higher degree of peakness as well as those that are approximately normal with observations above zero.

Hence, having demonstrated earlier in Tables 5–8, we have a similar conclusion based on figure 3.5 that the Weibull-Lindley distribution has a better fit for the four data sets considered in this study.

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. Biom Biostat Int J. 2018;7(6):532-544. DOI: 10.15406/bbij.2018.07.00256
Summary conclusion

This article proposed a new distribution called Weibull-Lindley distribution. The Mathematical and Statistical properties of the new distribution have been derived and studied extensively. Some of its properties with graphical analysis and discussion on their usefulness and applications were also considered. The model parameters were estimated using maximum likelihood method and we have a conclusion based on our applications of the model to four real life datasets that the new distribution (WLnD) has a better fit compared to the other four already existing models considered in this study.

Conflicts of interest

Author declares that there is no conflicts of interest.

References

1. Tahir MH, Zubair M, Mansoor M, et al. A new Weibull–G family of distributions. Hacettepe Journal of Mathematics and Statistics. 2016;45(2):629–647.
2. Lindley DV. Fiducial distributions and Bayes’ theorem. Journal Royal Statistical Society Series B. 1958;20:102–107.
3. Ghitany ME, Atieh B, Nadarajah S. Lindley distribution and its applications. Mathematical Computation and Simulation. 2008;78(4):493–506.

Citation: Ieren TG, Oyamakin SO, Chukwu AU. Modeling lifetime data with Weibull-Lindley distribution. Biom Biostat Int J. 2018;7(6):532–544.

DOI: 10.15406/bbij.2018.07.00256
