Checklist of aquatic alien species established in large river basins of Belarus

Vitaliy P. Semenchenko1*, Viktor K. Rizevsky1, Sergey E. Mastitsky2, Vasiliy V. Vezhnovets1, Mikhail V. Pluta1, Vladimir I. Razlutsky1 and Tatiana Laenko1

1Scientific and Practical Center of the National Academy of Sciences of Belarus on Bioresources, 27 Akademicheskaya str., 220072, Minsk, Belarus; E-mail: zoo231@biobel.bas-net.by
2Great Lakes Center, Research Foundation of SUNY, Buffalo State College, 1300 Elmwood Avenue, Buffalo, 14222 New York, USA; E-mail: aliensinbelarus@gmail.com

*Corresponding author

Received 12 January 2009; accepted in revised form 7 March 2009; published online 6 April 2009

Abstract

The assessment of risks associated with alien invasive organisms implies a detailed knowledge of their taxonomical composition and distribution within an assessment unit. In this paper we used both literature data and results from our field surveys of more than forty sites, conducted in 2006-2008, to compile a checklist of aquatic alien species (invertebrates and fish) established in the three large river basins of Belarus (Dnieper, Pripyat, Neman). Thirty six alien species have been revealed, most of which are of Ponto-Caspian origin. The discovery of several new species during our surveys indicates that the rate of introductions has substantially increased over the last two decades.

Key words: alien aquatic species, Belarus, exotic species, fish, invertebrates, rate of introduction

Introduction

Invasive alien species are a major ecological threat recognised all over the world. Many successful invaders have also imposed high economic damages (e.g., Pimentel et al. 2005). The estimation of the probability of establishment and the assessment of risks associated with alien species require a detailed knowledge of their diversity and distribution within an assessment unit (Semenchenko and Pugachevskiy 2006; Olenin et al. 2007; Panov et al. 2007; Arbaciauskas et al. 2008). The goal of this study was to review the species composition and distribution of aquatic alien animals established in the main river basins of the Republic of Belarus. Different pathways have been responsible for introduction of exotic species into the waterbodies of this country, with shipping through interbasin canals being identified as the most important one (Bij de Vaate et al. 2002; Karatayev et al. 2008). In their recent review paper, Karatayev et al. (2008) have composed the first checklist of aquatic alien invertebrates found in Belarus. Herein, we enlarge this inventory with new records made by us during surveys of the rivers Dnieper, Neman, Pripyat and the Dnieper-Bug Canal conducted in 2006-2008. In addition, we provide the first list of alien fishes established under natural conditions in the basins of these rivers.

Material and methods

This checklist of alien species was compiled using both data from the literature and our survey results from the rivers Dnieper, Neman, Pripyat, and the Dnieper-Bug Canal. Although more than 40 locations were sampled in these
basins during 2006-2008, in the present paper we focused on 15 sites that had been sampled with equal effort (Figure 1). The AQEM protocol was used for sampling the benthic macroinvertebrates at these sites (AQEM Consortium 2002). All benthic samples were collected in 4-5 replicates from 20-50 cm depth near the bank using a hand-net (ISO 7828) that had been dragged along a 5 m long transect. In the midstream part of the port bays of Mikashevichi (Pripyat River) and Brest (Mukhovets River), a set of benthic samples was taken using a Ponar Grab (10 x 15 cm). The fishes were caught with a hand-net (50x50 cm, mesh size 10 mm) from 0.5-1.0 m depth.

Figure 1. Location of sites sampled and discussed in this study (red circles)

Results and Discussion

Species composition, distribution and pathways of introduction

Thirty six alien species are currently known from the examined river basins. Almost all of them are of Ponto-Caspian origin (Annex 1). The number and distribution of exotics differs strikingly between the basins. The highest species richness occurred in the rivers Pripyat and Dnieper, indicating that these waterways play an important role as corridors for invasion of aquatic exotic animals on the territory of Belarus (Figure 2).

Within a basin, the highest number of alien species was usually observed in the lower reaches of the rivers and in the river ports. For instance, 19 species were recorded in the Dnieper River at the Belarus-Ukraine border (site 1, Figure 1), and 14 species in the Mikashevichi river port (Pripyat River, site 9, Figure 1). Only five species, i.e., *Chelicorophium curvispinum* (Sars, 1895), *Lithoglyphus naticoides* (C. Pfeiffer, 1828), *Dreissena polymorpha* (Pallas, 1771), *Percottus glenii* (Dybowsky, 1877) and *Carassius auratus gibelio* (Bloch, 1782), appeared to be common for all examined river basins.
There are different levels of certainty as to how and when an alien species arrived in a river basin. For example, it is not known exactly when *Eurythemora velox* (Lilljeborg, 1853), *L. naticoides* and *C. curvispinum* appeared in the Pripyat River basin, or when *Neogobius gymnnotrachelus* (Kessler, 1857) and *Neogobius melanostomus* (Pallas, 1814) arrived in the Dnieper River basin. However, based on the dates of first records or publications, all alien species from our checklist (Annex 1) could conventionally be divided into the following three groups: ‘old invaders’ (from the end of the 19th century to 1950), ‘late invaders’ (1950-1990) and ‘new invaders’ (after 1990).

The first group includes 9 species, i.e. *Potamothrix moldaviensis* (Vejdovsky and Mrázek, 1902), *Tubifex newaensis* (Michaelsen, 1903), *C. curvispinum, D. polymorpha, L. naticoides, P. pungitius pungitius* (Linnaeus, 1758), *Neogobius fluviatilis* (Pallas, 1814), *Amerius nebulosus* (Le Sueur, 1819) and *C. a. gibelio*. The introduction of most of them was related to the construction of shipping canals that established the hydrological connection between the Black Sea and Baltic Sea basins about 200 years ago (Olenin 2002; Karatayev et al. 2008). The main vector for introduction of invertebrates from this group was the firewood transported in rafts from the Russian Empire into Western Europe (Karatayev et al. 2008), while the fishes either naturally dispersed from the Ponto-Caspian region (*N. fluviatilis*) or were intentionally introduced by humans (*C. a. gibelio, A. nebulosus*). Although the most intensive ship traffic occurred in the Dnieper-Bug Canal, other artificial canals were also important for the spread of alien invertebrates. For example, it was the Oginsky Canal between the rivers Pripyat and Neman that allowed the gravel snail *L. naticoides* to penetrate into the Neman River basin, and the nine-spined stickleback *P. pungitius pungitius* – from the Neman to the Pripyat River basin. The Avgustovskiy Canal, which connected the Vistula River and the Neman River (Olenin 2002), served as a pathway for penetration of *Orconectes limosus* (Rafinesque, 1817) from Poland to Belarus (Pikulik et al. 1999).

The majority of the species from the checklist belong to the ‘late invaders’ group. At least in the case of the Pripyat River basin, most of these species are likely to be introduced during a period of intensive shipping that took place from 1970 to 1993 (Figure 3). The vector for introductions during this period was likely the ballast water discharged by cargo ships in the river ports. This assumption is confirmed by the very high numbers of alien species that we observed in the Mikashevichi and Mozyr ports on the Pripyat River (Annex 2). Nevertheless, other pathways existed that resulted in the introduction of ‘late invaders’ into Belarus. For example, we found the North American snail *Physella acuta* (Draparnaud 1805) in the Neman River near the Grodno river port (Semenchenko et al. 2008). Most likely, this snail arrived in Belarus through the ornamental pathway, i.e. as aquarium species; nevertheless, its natural spread from Poland via the Avgustovskiy Canal, which connects the Vistula River and the Neman River, is also possible. A number of ‘late invaders’ were intentionally (*P. glenii*) or accidentally (*Pseudorasbora parva* (Temminck and Schlegel, 1846)) introduced into
the waterbodies of Belarus. However, there are some ‘late invaders’, e.g. the New Zealand mud snail Potamopyrgus antipodarum (J.E. Gray, 1853) and polychaete Hypania invalida (Grube, 1860), whose invasion pathways are not very clear. Both species could come either from Poland (Alien species in Poland Database 2008) or Ukraine (Alexandrov et al. 2007). Three alien species (Physella integra (Haldeman, 1841), Macrobrachyum nipponense (De Haan, 1849) and Ictalurus punctatus (Rafinesque, 1818) from the ‘late’ group inhabit only one waterbody, Lake Beloe, which serves as a cooling reservoir of a power station. The first of these species was supposedly introduced into the lake unintentionally with the planting stock of M. nipponense. The channel catfish I. punctatus was introduced into this lake in 1979 (Shumak and Mischenko 1989).

The group of ‘new invaders’ includes Caspio-bdeella fadejewi (Selensky, 1915), Limnomyysis benedeni Czerniavsky, 1882, Chelicorophium robustum (Sars, 1895), Obesogammarus crassus (Sars, 1894), Obesogammarus obessus (Sars, 1894), Pontogammarus robustoides (Sars, 1894), Paramysys lacustris (Czerniavsky, 1882), Orconectes limosus, Ferrisia fragilis (Tryon, 1863), Clupeonella cultriventris (Nordmann, 1840), Syngnathus nigrolineatus Eichwald, 1831 and Proterorhinus marmoratus (Pallas, 1814). All these species except O. limosus and P. lacustris are likely to come from the Ukraine (Alexandrov et al. 2007), either using commercial ships as vectors or alternatively spreading naturally from the Dnieper River basin (in particular, from the Kievskoe Reservoir located close to the Belarusian border). The spiny-cheek crayfish O. limosus had naturally dispersed into the Neman River basin from Poland (Alekhnovich 1999; Pikulik et al. 1999), while P. lacustris likely spread from Lithuania, where it was acclimatized in the Kaunas Reservoir (Arbačiauskas 2005). All ‘new invaders’ possess a high potential to spread into other river basins, both within Belarus and also those in adjacent countries. For instance, Orconectes limosus is now rapidly dispersing within the Neman River basin (Alekhnovich 1999; Giginjak et al. 2007; this study) and can be expected in the near future to invade the basins of the rivers Pripyat and Zapadnaya Dvina. Clupeonella cultriventris, Obesogammarus obessus and Limnomyysis benedeni are currently absent from the basin of the Polish River Vistula (Alien Species in Poland Database 2008) but can penetrate therein from Belarusian waters. In the early 1980s, the tubenose goby P. marmoratus was recorded in the Kievskoe Reservoir (Dnieper River, Ukraine) (Naseka et al. 2005). In 2007, this species was first found in the middle and upper parts of the Pripyat River in Belarus (Rizevsky et al. 2007), and soon thereafter arrived in the Vistula River in Poland (Grabowska et al. 2008).

Many studies have shown that the rates of alien species’ introductions and dispersal have exponentially increased over a few recent decades throughout the whole World (e.g., Leppäkoski and Olenin 2000; Leppäkoski et al. 2002; Minchin 2007). This pattern is typical for Belarusian river basins as well. For instance, within the past 6-7 years the mysid Limnomyysis benedeni (Czerniavsky, 1882) has spread from the Ukrainian territory upstream of the middle section of the Pripyat River (Semenchenko et al. 2007). The tubenose goby, Proterorhinus marmoratus, has colonised the entire Belarusian section of the Pripyat River over the last 15-20 years (Rizevsky et al. 2007). Orconectes limosus has covered the distance from the border between Belarus and Poland to the upper part of the Neman River in the 10 years since its first discovery (Alekhnovich 1999; this study). The unexpected arrival of the North American snail F. fragilis in the Pripyat River most likely took place only 5-7 years ago (Semenchenko and Laenko 2008).

Future invasions

The analysis of potential donor areas, which can provide Belarusian river basins with new alien species shows that the Kievskoe Reservoir (Dnieper River, Ukraine) is the most important one. However, both western (Poland) and north-western (Lithuania) directions can also play a certain role in future invasions. Several alien species that invaded Poland from Western Europe may soon arrive in Belarusian river basins, e.g. Gammarus tigrinus Sexton, 1939 and Hemimysis anomala Sars, 1907 (Jaźdżewski et al. 2005). The north-western direction for new invasions relates to the Kaunas Reservoir (Neman River, Lithuania), where a number of Ponto-Caspian invertebrates were acclimatized in the middle 20th century (Arbačiauskas 2005). Paramysys lacustris has already entered Lake Drsviaty from Lithuania (Semenchenko et al. 2007). This latter species was also found in the Neman River during our survey of the Grodno river port in 2008.
Copp et al. (2005) have analysed the recent expansion of Ponto-Caspian gobies in Europe and found that the spread of these fishes is facilitated by a range of factors, including such species-specific traits as phenotypic plasticity, a wide range of reproductive tactics and low parasite loads compared to native species, etc. These traits allow gobies to continue their successful expansion into new European river basins. The arrival of several gobid species in Belarusian waters from the Kievskoe Reservoir is highly probable (Rizevsky and Ermolaeva 2002).

Concluding remarks

The majority of the 35 alien species established in the examined Belarusian river basins are of Ponto-Caspian origin, indicating that Ukraine is the main donor area of aquatic exotic species for Belarus. Several impoundments constructed along the Ukrainian section of the Dnieper River have likely been used as ‘stepping-stones’ (Havel et al. 2005) by the Ponto-Caspian invaders on their way upstream. The uppermost reservoir in this chain of impoundments, the Kievskoe Reservoir, is very close to the Belarusian border, and will likely serve as the main donor waterbody of invaders for Belarus in the future. However, the ‘central European invasion corridor’ that includes the Ukrainian part of the Dnieper River (Bij de Vaate et al. 2002; Karatayev et al. 2008) was not the only pathway of alien species introduction into Belarus. At least 4 species could have arrived from Poland (Vistula River basin) and Lithuania (Neman River basin), whereas a number of species have been introduced intentionally. It can be expected that the ongoing development of both market economy and international trade in Belarus will substantially increase the diversity of donor areas, vectors, pathways and, as the result, the rate of introduction of new aquatic alien species.

Acknowledgements

This study was supported by the European Commission 6th Framework Programme Integrated Project ALARM (contract nº GOC-E-CT-2003-506675), publication support provided by the European Commission seventh research framework through the enviroGRIDS project (Grant Agreement nº 226740) We gratefully acknowledge Dr. Frances Lucy (Institute of Technology, Sligo, Ireland) for correction of English of the manuscript.

References

Alekhnovich A (1999) Possible consequences of the introduction of American spiny-cheek crayfish for Belarusian fauna. In: Abstracts of the International conference ‘Europe is our home’. Minsk, p 122

Alexandrov B, Boltachev A, Kharchenko T, LyashenkoA, Son M, Tsarenko P, Zhukinsky V (2007) Trends of aquatic alien species invasions in Ukraine. Aquatic Invasions 2(3): 215-242 doi:10.3391/ai.2007.2.3

Alien species in Poland Database (2008) Available at: http://www.iop.krakow.pl/ias/ Accessed on 20 December 2008

AQEM Consortium (2002) Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the Framework Directive. Version 1.0

Arbačiauskas K (2005) The distribution and local dispersal of Ponto-Caspian Pericarida in Lithuanian fresh waters with notes on Pontogammarus robustoides population establishment, abundance and impact. Oceanological and Hydrobiological Studies XXXIV(1): 93-111

Arbačiauskas K, Semenchenco V, Grabowski M, Leuven R, Panuovič M, Son M, Csanyi B, Gumulinauskaitė S, Konopacka A, Nehring S, van der Velde G, Vezhnovetz V, Panov V (2008) Assessment of biocontamination of benthic macroinvertebrate communities in European inland waterways. Aquatic Invasions 3 (2): 211-230 doi:10.3391/ai.2008.3.2.12

Bij de Vaate A, Jazdzewski K, Ketaelaars HAM, Gollasch S, Van der Velde G (2002) Geographical patterns in range extension of Ponto-Caspian macroinvertebrate species in Europe. Canadian Journal of Fisheries and Aquatic Sciences 59: 1159-1174 doi:10.1139/f02-098

Copp GH, Blanco PG, Bogutskaia NG, Erös T, Fálka I, Ferreira MT, Fox MG, Freyhof J, Gozlan RE, Grabowska J, Kováč V, Moreno-Amich R, Naseka AM, Povž M, Przybylski M, Robillard M, Russell IC, Stakowska S, Šumper SS, Vila-Gispert A, Wiesner C (2005) To be, or not to be, a non-native freshwater fish? Journal of Applied Ichthyology 21: 242-262 doi:10.1111/j.1439-0426.2005.00690.x

Giginyak YG, Baychonov VM, Giginyak IY (2007) Contemporary hydrobiological state of aquatic ecosystems of the National Park ‘Belovezhskaya Pushcha’. In: Mikhailova TM (ed) Proceedings of the III International conference ‘Lake ecosystems: biological processes, anthropogenic transformation, water quality’. Belarusian State University Press, Minsk, pp 49-50

Grabowska J, Pietraszewski P, Ondráčkova M (2008) Tubenose goby Proterorhinus marmoratus (Pallas, 1814) has joined three other Ponto-Caspian gobies in the Vistula River (Poland). Aquatic Invasions 3(2): 261-265 doi:10.3391/ai.2008.3.2.20

Gulyugin SY, Kaminskiy DF (1999) New data on the range extension of three species of gobies: N. fluviatilis, N. melanostomus, N. gymnotrichelus. Abstracts of the international scientific-technical conference, 17-19 November 1998, Kaliningrad, p 5

Havel JE, Lee CE, Vander Zanden MJV (2005) Do reservoirs facilitate invasions into landscapes? BioScience 55(6): 518-525 doi:10.1641/0006-3568(2005)055[0518:DRFIIL]2.0.CO;2

Iliev VS, Protasov AA (1948) Brown bullhead in the lakes of Volyn region. Priroda 8: 32-36

Jazdzewski K, Konopacka A, Grabowski M (2005) Native and alien malacostracan Crustacea along the Polish Baltic Sea
cost in the twentieth century. Oceano logical and Hydrobiological Studies XXXIV(1): 175-193

Karatayev AY (1988) Ecology of macroin vertebrates of cooling reservoirs of Belarus (paper 875-888 Dep). VINITI Press, Minsk

Karatayev AY, Burlakova LE, Padilla DK, Johnson LE (2003) Patterns of spread of the zebra mussel (Dreissena polymorpha (Pallas)): the continuing invasion of Belarusian lakes. Biological Invasions 5(3): 213-221 doi:10.1023/A:1026112915163

Karatayev AY, Mastitsky SE, Burlakova LE, Olenin S (2008) Past, current, and future of the central European corridor for aquatic invasions in Belarus. Biological Invasions 10: 215-232 doi:10.1007/s10530-007-9124-y

Khmeleva NN, Golubev AP (1984) Production of forage and commercial crustaceans. Nauka i Tekhnika Press, Minsk, 215 pp.

Kunitsky DF, Pluta MV (1999) Stone morocco Pseudorasbora parva – a new species in ichthyofauna of Belarus. Vesti Akademii Nauk Belarusi. Seriya Biologicheskikh Nauk 3: 122-123

Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the b rackish Baltic Sea. Biological Invasions 2(2): 151-163 doi:10.1023/A:1005052809567

Leppäkoski E, Gollasch S, Gruszka P, Ojaveer H, Olenin S, Panov V (2002) The Baltic – a sea of invaders. Canadian Journal of Fisheries and Aquatic Sciences 59: 1175-1188 doi:10.1139/f02-098

Mastitsky SE, Makarevich OA (2007) Distribution and abundance of Ponto-Caspian amphipods in the Belarusian section of the Dnieper River. Aquatic Invasions 2(1): 39-44 doi:10.3391/AI.2008.2.1.3

Minsk V (1989) Ecological consequences of invasion of the spiny-cheek crayfish, Orconectes limosus, in aquatic ecosystems of Belarus. Vestsi Natsiaiynai’ nay Akademia Navuk Belarusi. Seriya Biyalagichnykh Navuk 3: 110-113

Pimentel D, Zuniga R, Morrison D (2005) Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273-288

Polischuk VV, Travyanko VS, Stavinskaya AM (1976) Aquatic fauna of the Pripyat Polesie and its peculiarities. In: Abstracts of the 4th Zoological Conference of Belarusian SSR ‘Biological backgrounds of the exploitation, restoration, and conservation of Belarusian animal world’. Minsk, pp 27-28

Rizevsky VK, Pluta MV, Ermolaev A (1999) Data on morphology of the Amur sleeper (Percottus glehni Dybowski) from the system of water reservoirs of Minsk. Vesti Akademii Nauk Belarusi. Seriya Biologicheskikh Nauk 3: 119-121

Rizevsky VK, Ermolaeva IA (2002) Representatives of the family Gobiidae in waterbodies of Belarus. Voprosy Rybnoy Khozyaystva Belarusi 18: 241-250

Rizevsky V, Pluta M, Leschenko A, Ermolaev I (2007) First record of the invasive Ponto-Caspian tubenose goby Proterorhinus marmoratus (Pallas, 1814) from the River Pripyat, Belarus. Aquatic Invasions 2(3): 275-277 doi:10.3391/AI.2007.2.3.15

Rozen OV (1907) Mulloluses collected in Pinsk and Mozyr districts of Minsk region (Polesie). Proceedings of the student society for study of Russian nature. Volume III. Moscow University Press, Moscow, pp 83-93

Semenchenko VP, Pugachevskiy AV (2006) The problem of alien species in the flora and fauna of Belarus. Nauka i Innovatsii 44(10): 15-20

Semenchenko V, Razlutsky V, Vezhnovetz V (2007) First record of the invasive Ponto-Caspian myid Limnomyis benedeni Czemirsky, 1882 from the River Pripyat, Belarus. Aquatic Invasions 2(3): 272-274 doi:10.3391/AI.2007.2.3.14

Semenchenko V, Laenko T (2008) First record of the invasive North American gastropod Ferrissia fragilis (Tryon, 1863) from the Pripyat River basin, Belarus. Aquatic Invasions 3(1): 80-82 doi:10.3391/AI.2008.3.1.12

Semenchenko V, Laenko T, Razlutsky V (2008) A new record of the North American gastropod Physella acuta (Draparnaud 1805) from the Neman River basin, Belarus. Aquatic Invasions 3(3): 359-360 doi:10.3391/AI.2008.3.3.14

Semenchenko V, Vezhnovetz V (2008) Two new invasive Ponto-Caspian amphipods reached for the Pripyat River, Belarus. Aquatic Invasions 3(4): 359-361 doi:10.3391/AI.2008.3.3.14

Snimov AI (1986) Fauna of Ukraine. Naukova dumka, Kiev. Vol. 8, part 5, 320 pp

Sokolskaya NL (1956) Data on the Oligochaeta fauna of the Pripyat Polesie. In: Winberg GG (ed) Proceedings of the comprehensive expedition for study of waterbodies of Poles’e. Belarusian State University Press, Minsk, pp 189-199

Shumak VV, Mischenko NV (1989) First results of acclimatization of the channel catfish Ictalurus punctatus in the cool ing reservoir Lake Beloe. In: Proceedings of the All-Union workshop on new objects and technologies of fishery on thermal waters. Moscow, VNIIPRKH Press: 92-93
Checklist of aquatic alien species for Belarus

Tischikov GM, Tischikov IG (1999) Macrozoobenthos fauna in the middle and low Berezina River. In: Proceedings of the International Conference on Aquatic Ecosystems ‘The results and future of aquatic ecology research’. Belarusian State University Press, Minsk, pp 251-264

Tischikov GM, Tischikov IG (2005) Taxonomic composition of macrozoobenthic communities in the Zapadnyi Bug and Narev rivers' basins. In: Proceedings of the 7th National Scientific Conference ‘Use of the rivers Narev and Bug in the context of sustainable development’. Warsaw, pp 175-191

Vezhnovets VV (2005) Crustaceans (Cladocera, Copepoda) in aquatic ecosystems of Belarus. Belorusskaya Nauka, Minsk

Vladimirova KS, Gurvich VV, Olivari GA (1965) Benthos of the upper course of the Dnieper River and waterbodies of its floodplain (at the territory of Belarusian SSR). In: Bulavko AG, Zakharenkov IS, Ostapenya AP, Prokudin FD (eds) Proceedings of the Republican scientific-technical workshop on studies, complex use and conservation of water resources. Minsk, pp 16–21

Voronin FN (1957) Fish of Belarus, Agricultural Press, Minsk, 83 pp

Vorontsov EM (1937) Composition of fish fauna in waterbodies of the western part of BSSR and characterization of fish fauna of the upper Dnieper basin. Fauna and Ecology 3: 219-228

Wolski T (1930) Corophium curvispinum G. O. Sars in der Prypeć und in den Warschauer Wasserleitungsanlagen. Fragmenta Faunistica Musei Zoologici Polonici 1(6): 152-159

Zelenskiy I (1864) Data on geography and statistics of Russia. Minsk Province. Volume 2. St. Petersburg, 671 pp

Zhukov PI (1988) Encyclopedia on ecology of freshwater fishes. Nauka i Tekhnika Press, Minsk, 312 pp
Annex 1

Checklist of alien species naturalized in different river basins of Belarus

nn	Taxon*	Native area	Records in river basins	Reference		
			Dnieper	Pripyat	Neman	
1	Caspiobdella fadejewi (Selensky, 1915)	Ponto-Caspian	1976	1999	Not found	Polischuk et al. 1976**, Tischikov and Tischikov 1999; this study
2	Potamothrix moldaviensis (Vejdovsky and Mrazek, 1902)	Ponto-Caspian	1956	Not found	Not found	Sokolskaya 1956**
3	Tubifex nevaensis (Michaelsen, 1903)	Ponto-Caspian	1956	Not found	Not found	Sokolskaya 1956**; Vladimirova et al. 1965
4	Hypania invalida (Grube, 1860)	Ponto-Caspian	2008	1999	Not found	Tischikov and Tischikov 2005**; this study
5	Eurytemora velox (Liljeborg, 1853)	Ponto-Caspian	about 1950	1956	Not found	Vezhnovets 2005
6	Chaetogammarus ischnus (Stebbing, 1906)	Ponto-Caspian	2007	2007	Not found	Mastitsky and Makarevich 2007**, this study
7	Chelicorophium curvispinum (Sars, 1895)	Ponto-Caspian	2007	1914	Not found	Wolski 1930**, this study
8	Chelicorophium robustum (Sars,1895)	Ponto-Caspian	2008	Not found	Not found	this study**
9	Dikerogammarus haemobaphes (Eichwald 1841)	Ponto-Caspian	2007	2007	Not found	Mastitsky and Makarevich 2007**, this study
10	Dikerogammarus villosus (Sowinski, 1894)	Ponto-Caspian	2007	2007	Not found	Mastitsky and Makarevich 2007**, this study
11	Limnomysis benedeni Czerniavsky, 1882	Ponto-Caspian	2007	2008	Not found	Semenchenko et al. 2007**, this study
12	Macrobrachium nipponense (De Haan,1849)	Far East	Not found	1982	Not found	Khmeleva and Golubev 1984**
13	Obesogammarus crassus (Sars, 1894)	Ponto-Caspian	2007	2007	Not found	Mastitsky and Makarevich 2007**, Semenchenko and Vezhnovets 2008
14	Obesogammarus obesus (Sars, 1894)	Ponto-Caspian	2008	2008	Not found	Semenchenko and Vezhnovets 2008**
15	Orectonectes limosus (Rafinesque, 1817)	North America	Not found	Not found	1999	Alekhovich 1999**
16	Paramysis lucustris (Czerniavsky, 1882)	Ponto-Caspian	2008	Not found	2006	Semenchenko et al. 2007**
17	Pontogammarus robustoides (Sars, 1894)	Ponto-Caspian	2007	Not found	Not found	Mastitsky and Makarevich 2007**, this study
18	Dreissena polymorpha (Pallas,1771)	Ponto-Caspian	Unknown date	Unknown date	Unknown date	Ovchinnikov 1933**; Karatayev et al. 2003
19	Ferrisia fragilis (Tryon, 1863)	North America	Not found	2008	Not found	Semenchenko and Laenko 2008**
20	Lithoglyphus naticoides (C. Pfeiffer, 1828)	Ponto-Caspian	Not found	1907	2007	Rozen 1907**, this study
Annex 1 (continued)

nn	Taxon*	Native area	Records in river basins	Reference	
21	Physella acuta (Draparnaud 1805)	North America	Not found	1983, 2008	Naumova et al. 1983**, Semenchenko and Laenko 2008
22	Physella intergra (Haldeman, 1841)	New Zealand	Not found	1988	Karatayev 1988**
23	Potamopyrgus antipodarum (J.E. Gray, 1853)	New Zealand	Not found	1976	Polischuk et al. 1976**

ACTINOPTERYGII:

nn	Taxon*	Native area	Records in river basins	Reference		
24	Ameiurus nebulosus (LeSueur, 1819)	North America	Not found	1948	Ivlev and Protasov 1948**	
25	Carrasius auratus gibelio (Bloch, 1782)	Far East, China	Unknown date	Unknown date	Zelensky 1864**, Zhukov 1888	
26	Clapeonella cultiventris (Nordmann, 1840)	Ponto-Caspian	Not found	1936	Shumak and Mischenko 1989**	
27	Ictalurus punctatus (Rafinesque, 1818)	North America	Not found	1993	Vorontsov 1937**, Voronin 1957	
28	Neogobius flaviatilis (Pallas, 1814)	Ponto-Caspian	1936	1957	Not found	
29	Neogobius gymnnotrachelus (Kessler, 1857)	Ponto-Caspian	1993	1993	Not found	
30	Neogobius melanostomus (Pallas, 1814)	Ponto-Caspian	About 1900	1993	Not found	
31	Perccottus glenii (Dybowski, 1877)	Far East	About 2005	2007	2007	this study**
32	Proterorhinus marmoratus (Pallas, 1814)	Ponto-Caspian	1986	2007	Not found	
33	Pseudorasbora parva (Temminck and Schlegel, 1846)	Far East	1998	Not found	Smirnov 1986**, Rizevsky et al. 2007, this study	
34	Pungitius platygaster platygaster (Kessler, 1859)	Ponto-Caspian	2008	Not found	Not found	
35	Pungitius pungitius pungitius (Linnaeus, 1758)	Baltic Sea	Not found	About 1800	native	
36	Syngnathus nigrolineatus Eichwald, 1831	Ponto-Caspian	2008	Not found	this study**	

*The taxonomy of species is in accordance with the Integrated Taxonomic Information System (http://www.itis.gov).

** Reference for first record
Annex 2
The number of alien species on the main sites of Dnieper, Pripyat and Neman river basins and Pripyat-Bug canal (see Figure 1)

Site	River basin, settlement, Coordinates: latitude °N, longitude °E	Alien invertebrates	Alien fish
1	Dnieper, Nizhnie Zhary 51°17.23', 30°34.36'	Chaetogammarus ischnus	Neogobius fluviatilis
		Chelicorophium curvispinum	Neogobius gymnotrachelus
		Dikerogammarus chaemobaphes	Neogobius melanostomus
		Dikerogammarus villosus	Proterorhinus marmoratus
		Dreissena polymorpha	
		Eurytemora velox	
		Limnomysis benedeni	
		Lithoglyphus naticoides	
		Obesogammarus crassus	
		Obesogammarus abeasus	
		Paramysis lacustris	
		Pontogammarus robustoides	
	Dnieper, Loev 51°57.38', 30°48.18'	Chaetogammarus ischnus	Neogobius fluviatilis
		Dikerogammarus haemobaphes	Neogobius gymnotrachelus
		Dikerogammarus villosus	
		Eurytemora velox	
		Obesogammarus crassus	
		Obesogammarus abeasus	
	Dnieper, Rechitsa 52°19.50', 30°31.07'	Chelicorophium curvispinum	Neogobius fluviatilis
		Dikerogammarus haemobaphes	Neogobius gymnotrachelus
		Dikerogammarus villosus	
		Dreissena polymorpha	
		Lithoglyphus naticoides	
		Obesogammarus crassus	
		Obesogammarus abeasus	
	Dnieper, Rogachev 52°09.26', 30°38.18'	Dikerogammarus haemobaphes	No data
		Dreissena polymorpha	
	5 Pripyat, Narovlya 51°51.52', 29°29.07'	Chaetogammarus ischnus	Neogobius fluviatilis
		Chelicorophium curvispinum	Neogobius gymnotrachelus
		Dikerogammarus haemobaphes	
		Dikerogammarus villosus	
		Eurytemora velox	
		Limnomysis benedeni	
		Lithoglyphus naticoides	
		Obesogammarus crassus	
		Obesogammarus abeasus	
	6 Pripyat, Mozyr 52°07.01', 28°32.43'	Chaetogammarus ischnus	Neogobius fluviatilis
		Chelicorophium curvispinum	Neogobius melanostomus
		Dikerogammarus haemobaphes	
		Dikerogammarus villosus	
		Eurytemora velox	
		Limnomysis benedeni	
		Lithoglyphus naticoides	
		Obesogammarus crassus	
		Obesogammarus abeasus	
	7 Pripyat, Kostyukovichy 52°07.33', 28°32.43'	Chelicorophium curvispinum	Neogobius fluviatilis
		Dikerogammarus villosus	Neogobius melanostomus
		Dreissena polymorpha	Proterorhinus marmoratus
		Eurytemora velox	
		Lithoglyphus naticoides	
		Obesogammarus crassus	
Annex 2 (continued)

The number of alien species on the main sites of Dnieper, Pripyat and Neman river basins and Pripyat-Bug canal (see Figure 1)

Site	River basin, settlement, Coordinates: latitude, °N, longitude, °E	Alien invertebrates	Alien fish
8 Pripyat, Pererovskiy Mlynok 52°02.99', 26°09.82'	Chaetogammarus ischnus Dikerogammarus haemobaphes Dikerogammarus villosus Eurytemora velox Limnomyysis benedeni Obesogammarus crassus	Clupeonella cultriventris Neogobius fluviatilis Neogobius melanostomus Percottus gleni Proterorhinus marmoratus	
9 Pripyat, Mikashevichi 52°05.38', 28°32.49'	Chaetogammarus ischnus Chelicorophium curvispinum Dikerogammarus haemobaphes Dikerogammarus villosus Dreissena polymorpha Eurytemora velox Ferrisia fragilis Limnomyysis benedeni Obesogammarus crassus Obesogammarus obesus	Clupeonella cultriventris Neogobius fluviatilis Neogobius melanostomus Percottus gleni Proterorhinus marmoratus	
10 Pripyat, Pinsk 52°06.18', 26°04.41'	Chaetogammarus ischnus Dikerogammarus haemobaphes Dikerogammarus villosus Dreissena polymorpha Eurytemora velox Ferrisia fragilis Lithoglyphus naticoides	Neogobius fluviatilis Neogobius melanostomus Proterorhinus marmoratus	
11 Dnieper-Bug Canal, Dubai 52°06.37', 26°06.16'	Dreissena polymorpha Eurytemora velox	Neogobius melanostomus Pungitius pungitius	
12 Dnieper-Bug Canal, Kobrin 52°11.28', 24°45.50'	Dreissena polymorpha Eurytemora velox Dikerogammarus haemobaphes Lithoglyphus naticoides	Neogobius fluviatilis Neogobius melanostomus	
13 Mukhovetz, Brest 52°05.00', 23°41.53'	Dikerogammarus haemobaphes, Dikerogammarus villosus Dreissena polymorpha Eurytemora velox Hypania invalida Lithoglyphus naticoides	Neogobius fluviatilis Neogobius melanostomus	
14 Neman, Grodno 53°40.46', 23°46.03'	Dreissena polymorpha Lithoglyphus naticoides Orconectes limosus Paramysis lacustris Physella acuta	Percottus glenii Pungitius pungitius	
15 Neman, Gozha 53°56.46', 23°55.08'	Dreissena polymorpha Lithoglyphus naticoides Orconectes limosus Paramysis lacustris	Pungitius pungitius	