Variational Calculus with Conformable Fractional Derivatives

Matheus J. Lazo 1 matheuslazo@furg.br
Delfim F. M. Torres 2† delfim@ua.pt

1Instituto de Matemática, Estatística e Física — FURG, Rio Grande, RS, Brazil
2Center for Research and Development in Mathematics and Applications (CIDMA)
Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal

Abstract

Invariant conditions for conformable fractional problems of the calculus of variations under the presence of external forces in the dynamics are studied. Depending on the type of transformations considered, different necessary conditions of invariance are obtained. As particular cases, we prove fractional versions of Noether’s symmetry theorem. Invariant conditions for fractional optimal control problems, using the Hamiltonian formalism, are also investigated. As an example of potential application in Physics, we show that with conformable derivatives it is possible to formulate an Action Principle for particles under frictional forces that is far simpler than the one obtained with classical fractional derivatives.

Mathematics Subject Classification 2010: 26A33, 34A08, 49K05, 49K10, 49S05.

Keywords: conformable fractional derivative; Noether’s theorem; invariant variational conditions; fractional calculus of variations; fractional optimal control.

1 Introduction

Fractional calculus is a generalization of (integer) differential calculus, allowing to define integrals and derivatives of real or complex order [23, 30, 33]. It had its origin in the 1600s and for three centuries the theory of fractional derivatives developed as a pure theoretical field of mathematics, useful only for mathematicians. The theory took more or less finished form by the end of the XIX century. In the last few decades, fractional differentiation has been “rediscovered” by applied scientists, proving to be very useful in various fields: physics (classic and quantum mechanics, thermodynamics, etc.), chemistry, biology, economics, engineering, signal and image processing, and control theory [27]. One can find in the existent literature several definitions of fractional derivatives, including the Riemann–Liouville, Caputo, Riesz, Riesz–Caputo, Weyl, Grunwald–Letnikov, Hadamard, and Chen derivatives. Recently, a simple solution to the discrepancies between known definitions was presented with the introduction of a new fractional notion, called the conformable derivative [22]. The new definition is a natural extension of the usual derivative, and satisfies the main properties one expects in a derivative: the conformable derivative of a constant is zero; satisfies the standard formulas of the derivative of the product and of the derivative of the quotient of two functions; and satisfies the chain rule. Besides simple and similar to the standard derivative, one can say that the conformable derivative combines the best characteristics of known fractional derivatives [1]. For this reason, the subject is now under strong development: see [5] [8] [10] [13] and references therein.

*This is a preprint of a paper whose final and definite form will appear in the IEEE/CAA Journal of Automatica Sinica, ISSN 2329-9266. Submitted 01-Oct-2015; Revised 20-April-2016; Accepted 22-June-2016.
†Corresponding author. Tel: +351 234370668; Fax: +351 234370666; Email: delfim@ua.pt
The fractional calculus of variation was introduced in the context of classical mechanics when Riewe \[35\] showed that a Lagrangian involving fractional time derivatives leads to an equation of motion with non-conservative forces such as friction. It is a remarkable result since frictional and non-conservative forces are beyond the usual macroscopic variational treatment \[9\]. Riewe generalized the usual calculus of variations for a Lagrangian depending on Riemann–Liouville fractional derivatives \[35\] in order to deal with linear non-conservative forces. Actually, several approaches have been developed to generalize the calculus of variations to include problems depending on Caputo fractional derivatives, Riemann–Liouville fractional derivatives, Riesz fractional derivatives and others \[2, 4, 7, 14, 25, 31, 32\] (see \[3, 28, 29\] for the state of the art). Among these approaches, recently it was show that the action principle for dissipative systems can be generalized, fixing the mathematical inconsistencies present in the original Riewe’s formulation, by using Lagrangians depending on classical and Caputo derivatives \[24\].

In this paper we work with conformable fractional derivatives in the context of the calculus of variations and optimal control \[3\]. In order to illustrate the potential application of conformable fractional derivatives in physical problems we show that it is possible to formulate an action principle with conformable fractional derivatives for the frictional force free from the mathematical inconsistencies found in the Riewe original approach and far simpler than the formulations proposed in \[24\]. Furthermore, we obtain a generalization of Noether’s symmetry theorem for the fractional variational problems and we also consider the conformable fractional optimal control problem. Emmy Noether was the first who proved, in 1918, that the notions of invariance and constant of motion are connected: when a system is invariant under a family of transformations, then a conserved quantity along the Euler–Lagrange extremals can be obtained \[26, 40\]. All conservation laws of Mechanics, e.g., conservation of energy or conservation of momentum, are easily explained from Noether’s theorem. In this paper we study necessary conditions for invariance under a family of continuous transformations, where the Lagrangian contains a conformable fractional derivative of order \(\alpha\in(0,1)\). When \(\alpha\to1\), we obtain some well-known results, in particular the Noether theorem \[40\]. The advantages of our fractional results are clear. Indeed, the classical constants of motion appear naturally in closed systems while in practical terms closed systems do not exist: forces that do not store energy, so-called nonconservative or dissipative forces, are always present in real systems. Fractional dynamics provide a good way to model nonconservative systems \[35\]. Nonconservative forces remove energy from the systems and, as a consequence, the standard Noether constants of motion are broken \[17\]. Our results assert that it is still possible to obtain Noether-type theorems, which cover both conservative and nonconservative cases, and that this is done in a particularly simple and elegant way via the conformable fractional approach. This is in contrast with the approaches followed in \[16, 19, 20, 21\].

The paper is organized as follows. In Section 2 we collect some necessary definitions and results on the conformable fractional calculus needed in the sequel. In Section 3 we obtain the conformable fractional Euler–Lagrange equation and in Section 4 we formulate an action principle for dissipative systems, as an example of application and motivation to study the conformable calculus of variations. In Section 5 we present an immediate consequence of the Euler–Lagrange equation, that we use later in Sections 6 and 7 where we prove, respectively, some necessary conditions for invariant fractional problems and a conformable fractional Noether theorem. We then review the obtained results using the Hamiltonian language in Section 8. In Section 9 we consider the conformable fractional optimal control problem, where the dynamic constraint is given by a conformable fractional derivative. Using the Hamiltonian language, we provide an invariant condition. In Section 10 we consider the multi-dimensional case, for several independent and dependent variables.

2 Preliminaries

In this section we review the conformable fractional calculus \[11, 15, 22\]. The conformable fractional derivative is a new well-behaved definition of fractional derivative, based on a simple limit definition. We review in this section the generalization of \[22\] proposed in \[1\].
Definition 1. The left conformable fractional derivative of order $0 < \alpha \leq 1$ starting from $a \in \mathbb{R}$ of a function $f : [a, b] \to \mathbb{R}$ is defined by

$$ \frac{d_a^\alpha}{dx_a^\alpha} f(x) = f_a^{(\alpha)}(x) = \lim_{\epsilon \to 0} \frac{f(x + \epsilon(x - a)^{1-\alpha}) - f(x)}{\epsilon}. \tag{1} $$

If the limit (1) exist, then we say that f is left α-differentiable. Furthermore, if $f_a^{(\alpha)}(x)$ exist for $x \in (a, b)$, then $f_a^{(\alpha)}(a) = \lim_{x \to a^+} f_a^{(\alpha)}(x)$ and $f_a^{(\alpha)}(b) = \lim_{x \to b^-} f_a^{(\alpha)}(x)$.

The right conformable fractional derivative of order $0 < \alpha \leq 1$ terminating at $b \in \mathbb{R}$ of a function $f : [a, b] \to \mathbb{R}$ is defined by

$$ \frac{b^\alpha}{dx_b^\alpha} f(x) = b_f^{(\alpha)}(x) = -\lim_{\epsilon \to 0} \frac{f(x + \epsilon(b - x)^{1-\alpha}) - f(x)}{\epsilon}. \tag{2} $$

If the limit (2) exist, then we say that f is right α-differentiable. Furthermore, if $b_f^{(\alpha)}(x)$ exist for $x \in (a, b)$, then $b_f^{(\alpha)}(a) = \lim_{x \to a^+} b_f^{(\alpha)}(x)$ and $b_f^{(\alpha)}(b) = \lim_{x \to b^-} b_f^{(\alpha)}(x)$.

It is important to note that for $\alpha = 1$ the conformable fractional derivatives (1) and (2) reduce to first order ordinary derivatives. Furthermore, despite the definition of the conformable fractional derivatives (1) and (2) can be generalized for $\alpha > 1$ (see (1)), we consider only $0 < \alpha \leq 1$ in the present work. It is also important to note that differently from the majority of definitions of fractional derivative, including the popular Riemann–Liouville and Caputo fractional derivatives, the fractional derivatives (1) and (2) are local operators and are related to ordinary derivatives if the function is differentiable (see Remark 2). For more on local fractional derivatives, we refer the reader to (11) (22) and references therein.

Remark 2. If $f \in C^1[a, b]$, then we have from (1) that

$$ f_a^{(\alpha)}(x) = (x - a)^{1-\alpha} f'(x) \tag{3} $$

and from (2) that

$$ b_f^{(\alpha)}(x) = -(b - x)^{1-\alpha} f'(x), \tag{4} $$

where $f'(x)$ stands for the ordinary first order derivative of $f(x)$.

From (3) and (4) it is easy to see that the conformable fractional derivative of a constant is zero, differently from the Riemann–Liouville derivative of a constant, and for the power functions $(x - a)^p$ and $(b - x)^p$ one has $\frac{d_x^\alpha}{dx_a^\alpha}(x - a)^p = p(x - a)^{p-\alpha}$ and $\frac{d_x^\alpha}{dx_b^\alpha}(b - x)^p = p(b - x)^{p-\alpha}$ for all $p \in \mathbb{R}$.

The most remarkable consequence of definitions (1) and (2) is that the conformable fractional derivatives satisfy very simple fractional versions of chain and product rules.

Proposition 3 (See (11) (22)). Let $0 < \alpha < 1$ and f and g be α-differentiable functions. Then,

(i) $(c_1 f + c_2 g)_a^{(\alpha)}(x) = c_1 f_a^{(\alpha)}(x) + c_2 g_a^{(\alpha)}(x)$ and $b(c_1 f + c_2 g)^{(\alpha)}(x) = c_1 b f^{(\alpha)}(x) + c_2 b g^{(\alpha)}(x)$

for all $c_1, c_2 \in \mathbb{R}$;

(ii) $(f g)_a^{(\alpha)}(x) = f_a^{(\alpha)}(x)g(x) + f(x)g_a^{(\alpha)}(x)$ and $b(f g)^{(\alpha)}(x) = b f^{(\alpha)}(x)g(x) + f(x)b g^{(\alpha)}(x)$;

(iii) $\left(\frac{f}{g}\right)_a^{(\alpha)}(x) = \frac{f_a^{(\alpha)}(x)g(x) - f(x)g_a^{(\alpha)}(x)}{g^2(x)}$ and $b\left(\frac{f}{g}\right)^{(\alpha)}(x) = \frac{b f^{(\alpha)}(x)g(x) - f(x)b g^{(\alpha)}(x)}{g^2(x)}$;

(iv) if $g(x) \geq a$, then $(f \circ g)_a^{(\alpha)}(x) = f_a^{(\alpha)}(g(x))g_a^{(\alpha)}(x)(g(x) - a)^{\alpha-1}$;

(v) if $g(x) \leq b$, then $b(f \circ g)^{(\alpha)}(x) = b f^{(\alpha)}(g(x))g^{(\alpha)}(x)(b - g(x))^{\alpha-1}$;

(vi) if $g(x) < a$, then $(f \circ g)_a^{(\alpha)}(x) = -a f^{(\alpha)}(g(x))g_a^{(\alpha)}(x)(a - g(x))^{\alpha-1}$;
(vii) if \(g(x) > b \), then \(b(f \circ g)^{(\alpha)}(x) = -f_b^{(\alpha)}(g(x))g^{(\alpha)}(x)(g(x) - b)^{\alpha - 1} \).

The simple chain and product rules given in Proposition 3 justify the increasing interest in the study of the conformable fractional calculus, since it enable us to investigate its potential applications as a tool to practical modeling of complex problems in science and engineering.

The conformable fractional integrals are defined as follows [11 22].

Definition 4. The left conformable fractional integral of order \(0 < \alpha \leq 1 \) starting from \(a \in \mathbb{R} \) of a function \(f \in L^1[a, b] \) is defined by

\[
I_a^\alpha f(x) = \int_a^x f(u) d_u^\alpha u = \int_a^x \frac{f(u)}{(u - a)^{1 - \alpha}} du,
\]

and the right conformable fractional integral of order \(0 < \alpha \leq 1 \) terminating at \(b \in \mathbb{R} \) of a function \(f \in L^1[a, b] \) is defined by

\[
bI^\alpha f(x) = \int_x^b f(u) d_u^\alpha u = \int_x^b \frac{f(u)}{(b - u)^{1 - \alpha}} du.
\]

It is important to mention that the conformable fractional integrals (5) and (6) differ from the traditional fractional Riemann–Liouville integrals [23 30 33] only by a multiplicative constant. Moreover, for \(\alpha = 1 \), the conformable fractional integrals reduce to ordinary first order integrals.

In addition to these definitions, in the present work we make use of the following properties of conformable fractional derivatives and integrals.

Theorem 5. Let \(f \in C[a, b] \) and \(0 < \alpha \leq 1 \). Then,

\[
\frac{d_x^\alpha}{dx^\alpha} I_a^\alpha f(x) = f(x)
\]

and

\[
\frac{d_x^\alpha}{dx^\alpha} bI^\alpha f(x) = f(x)
\]

for all \(x \in [a, b] \).

Theorem 6 (Fundamental theorem of conformable fractional calculus). Let \(f \in C^1[a, b] \) and \(0 < \alpha \leq 1 \). Then,

\[
I_a^\alpha f_a^{(\alpha)}(x) = f(x) - f(a)
\]

and

\[
bI^\alpha b f_b^{(\alpha)}(x) = f(x) - f(b)
\]

for all \(x \in [a, b] \).

Theorem 7 (Integration by parts). Let \(f, g : [a, b] \to \mathbb{R} \) be two functions such that \(fg \) is differentiable. Then,

\[
\int_a^b f(x)g_a^{(\alpha)}(x)d_a^\alpha x = f(x)g(x)|_a^b - \int_a^b g(x)f_a^{(\alpha)}(x)d_a^\alpha x,
\]

\[
\int_a^b f(x)g_b^{(\alpha)}(x)d_b^\alpha x = -f(x)g(x)|_a^b - \int_a^b g(x)f_b^{(\alpha)}(x)d_b^\alpha x,
\]

and, if \(f, g : [a, b] \to \mathbb{R} \) are differentiable functions, then

\[
\int_a^b f(x)g_a^{(\alpha)}(x)d_a^\alpha x = f(x)g(x)|_a^b + \int_a^b g(x)f_a^{(\alpha)}(x)d_a^\alpha x.
\]
The proof of Theorem 5 follows directly from (3), (4), (5) and (6) since \(I^\alpha_a f(x) \) and \(\varepsilon I^\alpha_a f(x) \) are differentiable. On the other hand, the fundamental theorem of the conformable fractional calculus (Theorem 6) is a direct consequence of (3), (4) and definitions (5) and (6) since \(f, g : [a, b] \rightarrow \mathbb{R} \) are differentiable functions. Finally, the integration by parts (7) and (8) follow from Proposition 3 and Theorem 5. We also need the following result.

Theorem 8 (Chain rule for functions of several variables). Let \(f : \mathbb{R}^N \rightarrow \mathbb{R} \ (N \in \mathbb{N}) \) be a differentiable function in all its arguments and \(y_1, \ldots, y_N : \mathbb{R} \rightarrow \mathbb{R} \) be \(\alpha \)-differentiable functions. Then,

\[
\frac{d^\alpha}{dx^\alpha} f(y_1(x), \ldots, y_N(x)) = \frac{\partial f}{\partial y_1} y_1^{(\alpha)} + \frac{\partial f}{\partial y_2} y_2^{(\alpha)} + \cdots + \frac{\partial f}{\partial y_N} y_N^{(\alpha)}
\]

and

\[
\frac{\partial}{\partial x} \frac{d^\alpha}{dx^\alpha} f(y_1(x), \ldots, y_N(x)) = \frac{\partial f}{\partial y_1} y_1^{(\alpha)} + \frac{\partial f}{\partial y_2} y_2^{(\alpha)} + \cdots + \frac{\partial f}{\partial y_N} y_N^{(\alpha)}.
\]

Proof. For simplicity, we prove (9) only for \(N = 2 \). The proofs for a general \(N \) and of (10) are similar. From (11) we have for \(N = 2 \) that

\[
\frac{d^2}{dx^2} f(y_1(x), y_2(x)) = \frac{\partial^2 f}{\partial y_1 \partial y_2} y_1^{(\alpha)} y_2^{(\alpha)}
\]

since \(f \) is differentiable.

\[\square\]

3 The conformable fractional Euler–Lagrange equation

Let us consider first the fractional variational integral

\[
I = \int_a^b L(x, y(x), y'(x)) \, dx
\]

defined on the set of continuous functions \(y : [a, b] \rightarrow \mathbb{R} \) such that \(y^{(\alpha)} \) exists on \([a, b]\), where the Lagrangian \(L = L(x, y, y^{(\alpha)}) : [a, b] \times \mathbb{R}^2 \rightarrow \mathbb{R} \) is of class \(C^1 \) in each of its arguments. The fundamental problem of the calculus of variations consists in finding which functions extremize \(I \). In order to obtain a necessary condition for the extremum of (11) we need the following Lemma.

Lemma 9 (Fundamental Lemma for conformable calculus of variation). Let \(M \) and \(\eta \) be continuous function on \([a, b]\). If

\[
\int_a^b \eta(x) M(x) \, dx = 0
\]

for any \(\eta \in C[a, b] \) with \(\eta(a) = \eta(b) = 0 \), then

\[
M(x) = 0
\]

for all \(x \in [a, b] \).
Proof. We do the proof by contradiction. From (12) we have that

$$\int_a^b \eta(x) M(x) d^\alpha x = \int_a^b \eta(x) \frac{M(x)}{(x-a)^{1-\alpha}} dx = 0. \quad (14)$$

Suppose that there exist an \(x_0 \in (a, b) \) such that \(M(x_0) \neq 0 \). Without loss of generality, let us assume that \(M(x_0) > 0 \). Since \(M \) is continuous on \([a, b]\), there exists a neighborhood \(\delta_N(x_0) \subset (a, b) \) such that

\[M(x) > 0 \quad \text{for all} \quad x \in \delta_N(x_0). \]

Let us choose

\[\eta(x) = \begin{cases} (x-x_0-\delta)^2(x-x_0+\delta)^2 & \text{if } x \in \delta_N(x_0) \\ 0 & \text{if } x \notin \delta_N(x_0). \end{cases} \quad (15) \]

Clearly, \(\eta(x) \) given by (15) is continuous and satisfy \(\eta(a) = \eta(b) = 0 \). Inserting (15) into (14) we obtain

\[\int_a^b \eta(x) M(x) d^\alpha x = \int_{x_0-\delta}^{x_0+\delta} (x-x_0-\delta)^2(x-x_0+\delta)^2 \frac{M(x)}{(x-a)^{1-\alpha}} dx > 0, \]

which contradicts our hypothesis. Thus,

\[\frac{M(x)}{(x-a)^{1-\alpha}} > 0 \quad \text{for all} \quad x \in (a, b). \]

Since \((x-a)^{1-\alpha} > 0\) for \(x \in (a, b) \), and since \(M \in C[a, b] \), we get

\[M(x) = 0 \quad \text{for all} \quad x \in [a, b]. \]

The proof is complete. \(\square \)

Theorem 10 (The conformable fractional Euler–Lagrange equation). Let \(\mathcal{J} \) be a functional of form (11) with \(L \in C^1([a, b] \times \mathbb{R}^2) \), and \(0 < \alpha \leq 1 \). Let \(y : [a, b] \to \mathbb{R} \) be a \(\alpha \)-differentiable function with \(y(a) = y_a \) and \(y(b) = y_b \), \(y_a, y_b \in \mathbb{R} \). Furthermore, let \(\frac{\partial L}{\partial y} \) be a differentiable function, and \(\frac{\partial L}{\partial y_a^{(\alpha)}} \) be \(\alpha \)-differentiable. If \(y \) is an extremizer of \(\mathcal{J} \), then \(y \) satisfies the following fractional Euler–Lagrange equation:

\[\frac{\partial L}{\partial y} - \frac{d^\alpha}{dx^\alpha} \left(\frac{\partial L}{\partial y_a^{(\alpha)}} \right) = 0. \quad (16) \]

Proof. Let \(y^* \) give an extremum to (11). We define a family of functions

\[y(x) = y^*(x) + \epsilon \eta(x), \quad (17) \]

where \(\epsilon \) is a constant and \(\eta \) is an arbitrary \(\alpha \)-differentiable function satisfying \(\eta \frac{\partial L}{\partial y_a^{(\alpha)}} \in C^1 \) and the boundary conditions \(\eta(a) = \eta(b) = 0 \) (weak variations). From (17), the boundary conditions \(\eta(a) = \eta(b) = 0 \), and the fact that \(y^*(a) = y_a \) and \(y^*(b) = y_b \), it follows that function \(y \) is admissible: \(y \) is \(\alpha \)-differentiable with \(y(a) = y_a \), \(y(b) = y_b \), and \(y \frac{\partial L}{\partial y_a^{(\alpha)}} \) is differentiable. Let the Lagrangian \(L \) be \(C^1([a, b] \times \mathbb{R}^2) \). Because \(y^* \) is an extremizer of functional \(\mathcal{J} \), the Gateaux derivative \(\delta \mathcal{J}(y^*) \) needs to be identically null. For the functional (11),

\[\delta \mathcal{J}(y^*) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\int_a^b L \left(x, y, y_a^{(\alpha)} \right) d^\alpha x - \int_a^b L \left(x, y^*, y_a^{(\alpha)} \right) d^\alpha x \right) \]

\[= \int_a^b \left(\eta(x) \frac{\partial L}{\partial y^*} + \eta_a^{(\alpha)}(x) \frac{\partial L}{\partial y_a^{(\alpha)}} \right) d^\alpha x = 0. \]
Using the integration by parts formula \((\eta \frac{\partial L}{\partial y^*_a}) \) is differentiable we get

\[
\delta J(y^*) = \int_a^b \eta(x) \left(\frac{\partial L}{\partial y^*} - \frac{d}{dx} \frac{\partial L}{\partial y^*_a} \right) dx = 0, \tag{18}
\]

since \(\eta(a) = \eta(b) = 0 \). The fractional Euler–Lagrange equation (16) follows from (18) by using the fundamental Lemma 3.

Definition 11. A continuous function \(y \) solution of (16) is said to be an extremal of (11).

Remark 12. For \(\alpha = 1 \), the functional \(J \) given by (11) reduces to the classical variational functional

\[
J(y) = \int_0^1 L(x,y(x),y'(x)) \, dx
\]

and the associated Euler–Lagrange equation (16) is

\[
\frac{\partial L}{\partial y} - \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) = 0. \tag{19}
\]

Let us consider now the more general case where the Lagrangian depends on both integer order and fractional order derivatives. In this case the following theorem holds.

Theorem 13 (The generalized conformable fractional Euler–Lagrange equation). Let \(J \) be a functional of form

\[
J(y) = \int_a^b L(x,y(x),y'(x),y^{(\alpha)}_a(x)) \, dx, \tag{20}
\]

with \(L \in C^1([a,b] \times \mathbb{R}^3) \), and \(0 < \alpha \leq 1 \). Let \(y : [a,b] \to \mathbb{R} \) be a differentiable function with \(y(a) = y_a \) and \(y(b) = y_b \), \(y_a, y_b \in \mathbb{R} \). If \(y \) is an extremizer of \(J \), then \(y \) satisfies the following fractional Euler–Lagrange equation:

\[
\frac{\partial L}{\partial y} - \frac{d}{dx} \left(\frac{\partial L}{\partial y'} \right) - \frac{1}{(x-a)^{1-\alpha}} \frac{d^\alpha}{dx^\alpha} \left(\frac{\partial \hat{L}}{\partial y^{(\alpha)}_a} \right) = 0, \tag{21}
\]

where \(\hat{L}(x,y,y',y^{(\alpha)}_a) = (x-a)^{1-\alpha} L(x,y,y',y^{(\alpha)}_a) \).

Proof. Let \(y^* \) give an extremum to (20). We define a family of functions as in (17) but with \(y \in C^1[a,b] \). From (17) and the boundary conditions \(\eta(a) = \eta(b) = 0 \), and the fact that \(y^*(a) = y_a \) and \(y^*(b) = y_b \), it follows that function \(y \) is admissible. Because \(y^* \) is an extremizer of \(J \), the Gateaux derivative \(\delta J(y^*) \) needs to be identically null. For the functional (20) we have

\[
\delta J(y^*) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\int_a^b L(x,y(y^*),y^{(\alpha)}_a) \, dx - \int_a^b L(x,y^*,y^{(\alpha)}_a) \, dx \right)
\]

\[
= \int_a^b \eta(x) \left(\frac{\partial L}{\partial y^*} - \frac{d}{dx} \frac{\partial L}{\partial y^{(\alpha)}_a} \right) dx
\]

\[
+ \int_a^b \eta^{(\alpha)}_a(x) \frac{\partial L}{\partial y^{(\alpha)}_a} \, dx
\]

\[
= \int_a^b \eta(x) \left(\frac{\partial L}{\partial y^*} - \frac{d}{dx} \frac{\partial L}{\partial y^{(\alpha)}_a} \right) dx
\]

\[
+ \int_a^b \eta^{(\alpha)}_a(x) \frac{\partial L}{\partial y^{(\alpha)}_a} \, dx
\]

\[
= 0,
\]
where we performed an integration by parts in the second term in the first integral (since $\eta(a) = \eta(b) = 0$), and we rewrote the second integral as a conformable integral by using definition (5). Using the integration by parts formula (7) (η_α is differentiable) we get

$$\delta J(y^*) = \int_a^b \eta(x) \left(\frac{\partial L}{\partial y^*} - \frac{d}{dx} \frac{\partial L}{\partial y^*} \right) dx$$

$$- \int_a^b \eta(x) \frac{d^a}{dx^a} \frac{\partial \tilde{L}}{\partial y^{a(\alpha)}} dx^a$$

$$= \int_a^b \eta(x) \left((x-a)^{1-\alpha} \frac{\partial L}{\partial y^*} - (x-a)^{1-\alpha} \frac{d}{dx} \frac{\partial L}{\partial y^*} \right)$$

$$- \frac{d^a}{dx^a} \frac{\partial \tilde{L}}{\partial y^{a(\alpha)}} dx^a = 0,$$

since $\eta(a) = \eta(b) = 0$. The fractional Euler–Lagrange equation (21) follows from (22) by using the fundamental Lemma 9.

4 Lagrangian formulation for frictional forces

As an example of potential application of the variational calculus with conformable fractional derivatives, we formulate an action principle for dissipative systems free from the mathematical inconsistencies found in the Riewe approach [24] and far simpler than the formulation proposed in [24]. The action principle we propose states that the equation of motion for dissipative systems is obtained by taking the limit $a \to b$ in the extremal of the action

$$S = \int_a^b L(x, x', x^{(\alpha)}_a) dt$$

that satisfy the fractional Euler–Lagrange equation (see (21))

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \frac{\partial L}{\partial x'} - \frac{1}{(t-a)^{1-\alpha}} \frac{d^a}{dx^a} \frac{\partial \tilde{L}}{\partial x^{(\alpha)}_a} = 0,$$

where $\tilde{L}(x, x', x^{(\alpha)}_a) = (t-a)^{1-\alpha} L(x, x', x^{(\alpha)}_a)$, $x(t)$ is the path of the particle and t is the time. It is important to emphasize that the condition $a \to b$ (also considered in the original Riewe’s approach) applied to the action principle does not imply any restrictions for conservative systems, since in this case $x(t)$ is the action’s extremal for any time interval $[a, b]$, even when $a \to b$. Furthermore, our action principle is simpler than the formulation in [24] and free from the mathematical inconsistencies present in Riewe’s approach (see [24] for a detailed discussion). In order to show that our method provides us with physical Lagrangians, let us consider the simple problem of a particle under a frictional force proportional to its velocity. A quadratic Lagrangian for a particle under a frictional force proportional to the velocity is given by

$$L(x, x', x^{(\alpha)}_a) = \frac{1}{2} m (x')^2 - U(x) + \frac{\gamma}{2} (x^{(\alpha)}_a)^2,$$

where the three terms in (25) represent the kinetic energy, potential energy, and the fractional linear friction energy, respectively. Note that differently from Riewe’s Lagrangian [35], our Lagrangian (25) is a real function with a linear friction energy, which is physically meaningful. Since
the equation of motion is obtained in the limit $a \to b$, if we consider the last term in (24) up to first order in $\Delta t = t - a$, we get
\[
\frac{\gamma}{2} \left(x_a^{\left(\frac{1}{2}\right)} \right)^2 = \frac{\gamma}{2} \left(x' \Delta t^{\frac{1}{2}} \right)^2 \approx \frac{\gamma}{2} x' \Delta x,
\]
that coincides, apart from the multiplicative constant $1/2$, with the work from the frictional force $\gamma x'$ in the displacement $\Delta x \approx x' \Delta t$. The appearance of an additional multiplicative constant is a consequence of the use of fractional derivatives in the Lagrangian and does not appear in the equation of motion after we apply the action principle [24].

Remark 14. It is important to stress that the order of the fractional derivative should be fixed to $\alpha = 1/2$ in order to obtain, by a fractional Lagrangian, a correct equation of motion of a dissipative system. For α different from $1/2$, the Lagrangian does not describe a frictional system under a frictional force proportional to the velocity. Consequently, the fractional linear friction energy makes sense only for $\alpha = 1/2$.

The Lagrangian (25) is physical in the sense it provides physically meaningful relations for the momentum and the Hamiltonian. If we define the canonical variables
\[
q_1 = x', \quad q_2^{\frac{1}{2}} = x_a^{\left(\frac{1}{2}\right)}
\]
and
\[
p_1 = \frac{\partial L}{\partial q_1} = mx', \quad p_2^{\frac{1}{2}} = \frac{\partial L}{\partial q_2^{\frac{1}{2}}} = \gamma x_a^{\left(\frac{1}{2}\right)},
\]
we obtain the Hamiltonian
\[
H = q_1 p_1 + q_2^{\frac{1}{2}} p_2^{\frac{1}{2}} - L = \frac{1}{2} m (x')^2 + U(x) + \frac{\gamma}{2} \left(x_a^{\left(\frac{1}{2}\right)} \right)^2.
\]
(26)

From (26) we can see that the Lagrangian (25) is physical in the sense it provides us a correct relation for the momentum $p_1 = mx$, and a physically meaningful Hamiltonian (it is the sum of all energies). Furthermore, the additional fractional momentum $p_2^{\frac{1}{2}} = \gamma x_a^{\left(\frac{1}{2}\right)}$ goes to zero when we take the limit $a \to b$, since $x \in C^2[a,b]$.

Finally, the equation of motion for the particle is obtained by inserting our Lagrangian (25) into the Euler–Lagrange equation (24),
\[
mx'' + \gamma(t - a)^{-\frac{1}{2}} \frac{dt}{d(t-a)} \left[\frac{d}{dt} \left(x_a^{\left(\frac{1}{2}\right)} \right) \right] = mx'' + \gamma x' + \gamma(t - a)x'' = F(x),
\]
(27)
where we have used (3) since $x \in C^2[a,b]$ and $F(x) = -\frac{d}{dx} U(x)$ is the external force. By taking the limit $a \to b$ with $t \in [a,b]$, we finally obtain the correct equation of motion for a particle under a frictional force:
\[
mx'' + \gamma x' = F(x).
\]

5 The conformable fractional DuBois–Reymond condition

In the remainder of the present work we are going to consider only the simplest case where we have no mixed integer and fractional derivatives. We now present the DuBois–Reymond condition in the conformable fractional context. It is an immediate consequence of the chain rule (3) and the Euler–Lagrange equation (24).

Theorem 15 (The conformable fractional DuBois–Reymond condition). If y is an extremal of \mathcal{J} as in (11), then
\[
\frac{d^\alpha}{dx^\alpha} \left(L - \frac{\partial L}{\partial y^{(\alpha)}(a)} y^{(\alpha)}(a) \right) = \frac{\partial L}{\partial x} \cdot (x - a)^{-\alpha}.
\]
(28)
Proof. By the chain rule (9) and the Leibniz rule in Proposition 3,
\[
\frac{d^\alpha}{dx^\alpha} \left(L - \frac{\partial L}{\partial y_a} y_a^{(\alpha)} \right) = \frac{\partial L}{\partial x} x_a^{(\alpha)} + \frac{\partial L}{\partial y_a} y_a^{(\alpha)} - \frac{d^\alpha}{dx^\alpha} \frac{\partial L}{\partial y_a} y_a^{(\alpha)}.
\]

The proof is complete. \qed

Corollary 16. If (11) is autonomous, that is, if \(L = L(y, y^{(\alpha)}) \) does not depend on \(x \), then
\[
\frac{d^\alpha}{dx^\alpha} \left(L - \frac{\partial L}{\partial y_a} y_a^{(\alpha)} \right) = 0
\]
along any extremal \(y \).

Remark 17. When \(\alpha = 1 \) and \(y \in C^1 \), Theorem 15 is the classical DuBois–Reymond condition: if \(y \in C^1 \) is an extremal of \(J(y) = \int_a^b L(x, y, y') dx \) (i.e., \(y \) satisfies (19)), then
\[
\frac{d}{dx} \left(L - \frac{\partial L}{\partial y'} y' \right) = \frac{\partial L}{\partial x}.
\]

6 Fractional invariant conditions

We consider invariance transformations in the \((x, y)\)-space, depending on a real parameter \(\epsilon \). To be more precise, we consider transformations of type
\[
\begin{align*}
x &= x + \epsilon \tau(x, y(x)), \\
y &= y + \epsilon \xi(x, y(x)),
\end{align*}
\]
where the generators \(\tau \) and \(\xi \) are such that \(x \geq a \) and there exist \(\tau_a^{(\alpha)} \) and \(\xi_a^{(\alpha)} \).

Definition 18. We say that the fractional variational integral (11) is invariant under the family of transformations (29) up to the Gauge term \(\Lambda \), if a function \(\Lambda = \Lambda(x, y) \) exists such that for any function \(y \) and for any real \(x \in [a, b] \), we have
\[
L \left(\bar{x}, \bar{y}, \frac{d^\alpha}{dx^\alpha} \bar{y}, \frac{d^\alpha}{dx^\alpha} \bar{x} \right) = L(x, y, y^{(\alpha)}) + \epsilon \frac{d^\alpha}{dx^\alpha} \Lambda(x, y) + o(\epsilon)
\]
for all \(\epsilon \) in some neighborhood of zero, where \(\frac{d^\alpha}{dx^\alpha} \bar{x} \) stands for
\[
\frac{d^\alpha}{dx^\alpha} \bar{x} = 1 + \epsilon \frac{\tau_a^{(\alpha)}}{(x - a)^{1-\alpha}}.
\]

We note that for \(\alpha = 1 \) our Definition 18 coincides with the standard approach (see, e.g., [36]). When \(\Lambda \equiv 0 \), one obtains the concept of absolute invariance. The presence of a new function \(\Lambda \) is due to the presence of external forces in the dynamical system, like friction. The function \(\Lambda \) is called a Gauge term. In fact, many phenomena are nonconservative and this has to be taken into account in the conservation laws [17, 18]. We give an example.
Example 19. Consider the transformation

\[
\begin{align*}
\tau &= x \\
\eta &= y + \epsilon \frac{1}{2\alpha} (x - a)^\alpha
\end{align*}
\] (32)

and the functional

\[
\mathcal{J}(y) = \int_a^b \left(y_a^{(\alpha)}(x) \right)^2 \, dx.
\] (33)

Since

\[
\frac{d}{dx} \frac{1}{2\alpha}(x - a)^\alpha = \frac{1}{2}
\]

it is easy to verify that (33) is invariant under (32) up to the Gauge function \(\Lambda = y \).

Definition 20. Given a function \(C = C(x, y, y_a^{(\alpha)}) \), we say that \(C \) is a conserved quantity for (11) if

\[
\frac{d}{dx} \frac{1}{\alpha} (x-a)^{\alpha} = 0
\] (34)

along any solution \(y \) of (16) (i.e., along any extremal of (11)).

Remark 21. Applying the conformable integral (5) to both sides of equation (34), Definition 20 is equivalent to \(C(x, y(x), y_a^{(\alpha)}(x)) \equiv \text{const.} \).

We now provide a necessary condition of invariance.

Theorem 22. If \(\mathcal{J} \) given by (11) is invariant under a family of transformations (29), then

\[
\frac{\partial L}{\partial x} \tau + \frac{\partial L}{\partial y} \xi + \frac{\partial L}{\partial y_a^{(\alpha)}} \left[\xi_a^{(\alpha)} - y_a^{(\alpha)} \left((\alpha - 1) \frac{\tau}{x-a} + \frac{\tau_a^{(\alpha)}}{(x-a)^{\alpha-1}} \right) \right] + L \frac{\tau_a^{(\alpha)}}{(x-a)^{\alpha-1}} = \frac{d^a}{dx^a} \Lambda
\] (35)

Proof. By the fractional chain rule (see Proposition 3),

\[
\frac{d}{dx} \frac{1}{\alpha} (x-a)^{\alpha} = \frac{d}{dx} \frac{1}{\alpha} (x-e\tau - a)^{\alpha} - \frac{\tau_a^{(\alpha)}}{(x-a)^{\alpha-1}} \left[(x-a)^{\alpha-1} + \epsilon \tau_a^{(\alpha)} \right].
\]

Substituting this formula into (30), differentiating with respect to \(\epsilon \) and then putting \(\epsilon = 0 \), we obtain relation (35).

Remark 23. Allowing \(\alpha \) to be equal to 1, for \(\Lambda \equiv 0 \) our equation (35) becomes the standard necessary condition of invariance (cf., e.g., (26)):

\[
\frac{\partial L}{\partial x} \tau + \frac{\partial L}{\partial y} \xi + \frac{\partial L}{\partial y_a^{(\alpha)}} (\xi_a^{(\alpha)} - y_a^{(\alpha)} \tau_a^{(\alpha)}) + L \tau_a^{(\alpha)} = 0.
\]

For \(\alpha = 1 \) and an arbitrary \(\Lambda \), see (30).

In particular, if we consider “time invariance” (i.e., \(\tau \equiv 0 \)), we obtain the following result.

Corollary 24. Let \(\bar{y} = y + \epsilon \xi(x, y(x)) \) be a transformation that leaves invariant \(\mathcal{J} \) in the sense that

\[
L(x, \bar{y}, \bar{y}_a^{(\alpha)}) = L(x, y, y_a^{(\alpha)}) + \epsilon \frac{d^a}{dx^a} (x, y) + o(\epsilon).
\]

Then,

\[
\frac{\partial L}{\partial y} \xi + \frac{\partial L}{\partial y_a^{(\alpha)}} \xi_a^{(\alpha)} = \frac{d^a}{dx^a} \Lambda.
\]
7 The conformable fractional Noether theorem

Noether’s theorem is a beautiful result with important implications and applications in optimal control [37][38][39]. We provide here a conformable fractional Noether theorem in the context of the calculus of variations. Later, in Section 8, we provide a conformable fractional optimal control version (see Theorem 34).

Theorem 25 (The conformable fractional Noether theorem). If \(J \) given by \((11) \) is invariant under \((29) \) and if \(y \) is an extremal of \(J \), then

\[
\frac{d^\alpha_a}{dx^\alpha_a} \left[\left(L - \frac{\partial L}{\partial y_a^{(\alpha)}} y_a^{(\alpha)} \right) \tau + \frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} \right] = (1 - \alpha) \frac{\partial L}{\partial y_a^{(\alpha)}} \left[\xi(x-a)^{1-2\alpha} - \frac{y_a^{(\alpha)} \tau}{(x-a)^{\alpha}} \right] + \frac{d^\alpha_a}{dx^\alpha_a} \left[\frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} \right].
\]

Proof. From Theorem 22 and using the conformable fractional Euler–Lagrange equation (16) and the DuBois–Reymond condition (28), we deduce successively that

\[
\frac{d^\alpha_a}{dx^\alpha_a} (x-a)^{1-\alpha} = \left[\frac{d^\alpha_a}{dx^\alpha_a} \left(L - \frac{\partial L}{\partial y_a^{(\alpha)}} y_a^{(\alpha)} \right) \frac{\tau}{(x-a)^{1-\alpha}} + \frac{d^\alpha_a}{dx^\alpha_a} \left(\frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} \right) \right] (x-a)^{1-\alpha}
\]

\[
= \frac{d^\alpha_a}{dx^\alpha_a} \left(L - \frac{\partial L}{\partial y_a^{(\alpha)}} y_a^{(\alpha)} \right) \frac{\tau}{(x-a)^{1-\alpha}} + \frac{d^\alpha_a}{dx^\alpha_a} \left(\frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} \right) (x-a)^{1-\alpha}
\]

\[
= \frac{d^\alpha_a}{dx^\alpha_a} \left(L - \frac{\partial L}{\partial y_a^{(\alpha)}} y_a^{(\alpha)} \right) \frac{\tau}{(x-a)^{1-\alpha}} + \frac{d^\alpha_a}{dx^\alpha_a} \left(\frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} \right) (x-a)^{1-\alpha}
\]

Thus, we obtain equation (36).

Remark 26. When \(\alpha = 1 \), equation (36) is simply Noether’s conservation law in the presence of external forces: for any extremal of \(J \) and for any family of transformations \((\tau, \eta)\) for which \(J \) is invariant, the conservation law

\[
\left(L - \frac{\partial L}{\partial y'} y' \right) \tau + \frac{\partial L}{\partial y'} \xi = \Lambda + \text{constant}
\]

holds (see [26] Theorem 2.1). In addition, if system is conservative \((\Lambda \equiv 0)\), then one has the classical Noether theorem

\[
\left(L - \frac{\partial L}{\partial y'} y' \right) \tau + \frac{\partial L}{\partial y'} \xi = \text{constant}.
\]
Corollary 27 (The conformable fractional Noether theorem under the presence of an external force f). If \mathcal{J} given by (11) is invariant under (29), y is an extremal of \mathcal{J}, and the function $f = f(x, y, y_a^{(\alpha)})$ satisfies the equation

\[
\frac{d_\alpha f}{dx_a} = (1 - \alpha) \frac{\partial L}{\partial y_a^{(\alpha)}} \left[\xi(x - a)^{1-2\alpha} - \frac{y_a^{(\alpha)}}{(x-a)\alpha} \right] + \frac{d_\alpha \Lambda}{dx_a}(x-a)^{1-\alpha},
\]

then

\[
\left(L - \frac{\partial L}{\partial y_a^{(\alpha)}} y_a^{(\alpha)} \right) \tau + \frac{\partial L}{\partial y_a^{(\alpha)}} \xi(x-a)^{1-\alpha} - f = \rho
\]

is a conserved quantity.

Corollary 28. If \mathcal{J} given by (11) is invariant under the transformation $\tau = x$, $\gamma = y + \epsilon \xi(x, y(x))$, and if y is an extremal of \mathcal{J}, then

\[
\frac{\partial L}{\partial y_a^{(\alpha)}} \xi - \Lambda
\]

is a conserved quantity.

Proof. The result is due to the fact that $\frac{d_\alpha^2 (x-a)^{1-\alpha}}{dx_\alpha^2} = (1 - \alpha)(x-a)^{1-2\alpha}$.

8 The Hamiltonian formalism

The Hamiltonian formalism is related to the Lagrangian one by the so called Legendre transformation, from coordinates and velocities to coordinates and momenta. Let momenta be given by

\[
p(x) = \frac{\partial L}{\partial y_a^{(\alpha)}}(x, y(x), y_a^{(\alpha)}(x))
\]

and the Hamiltonian function by

\[
H(x, y, v, \psi) = -L(x, y, v) + \psi v.
\]

To simplify notation, $[y](x)$ and $\{y\}(x)$ will denote $(x, y(x), y_a^{(\alpha)}(x))$ and $(x, y(x), y_a^{(\alpha)}(x), p(x))$, respectively. Differentiating (38), and using definition (37), it follows that

\[
\frac{d_\alpha H}{dx_a}(y)(x) = -\frac{\partial L}{\partial x} [y](x)x_a^{(\alpha)} - \frac{\partial L}{\partial y} [y](x) \cdot y_a^{(\alpha)}(x) - \frac{\partial L}{\partial v} [y](x) \cdot \frac{d_\alpha}{dx_a} y_a^{(\alpha)}(x)
\]

\[
+ p_a^{(\alpha)}(x) \cdot y_a^{(\alpha)}(x) + \frac{\partial L}{\partial y_a^{(\alpha)}} [y](x) \cdot \frac{d_\alpha}{dx_a} y_a^{(\alpha)}(x)
\]

\[
= -\frac{\partial L}{\partial x} [y](x) \cdot (x-a)^{1-\alpha} - \frac{\partial L}{\partial y} [y](x) \cdot y_a^{(\alpha)}(x) + p_a^{(\alpha)}(x) \cdot y_a^{(\alpha)}(x).
\]

On the other hand, by the definition of Hamiltonian (38), one has immediately that

\[
\begin{align*}
\frac{\partial H}{\partial x} (x, y, v, \psi) &= -\frac{\partial L}{\partial x} (x, y, v) \\
\frac{\partial H}{\partial y} (x, y, v, \psi) &= -\frac{\partial L}{\partial y} (x, y, v) \\
\frac{\partial H}{\partial \psi} (x, y, v, \psi) &= v
\end{align*}
\]

and so we can write equation (39) in the form

\[
\frac{d_\alpha H}{dx_a}(y)(x) = \frac{\partial H}{\partial x} (y)(x)(x-a)^{1-\alpha} + \frac{\partial H}{\partial y} (y)(x) \cdot y_a^{(\alpha)}(x) + \frac{\partial H}{\partial \psi} (y)(x) \cdot p_a^{(\alpha)}(x).
\]
If \(y \) is an extremal of \(J \), then by the conformable fractional Euler–Lagrange equation (10)

\[
\frac{\partial^\alpha H}{\partial y}(y)(x) - \frac{d_a^\alpha}{dx_a^\alpha} \left(\frac{\partial L}{\partial y} \right)(x) = -\frac{\partial H}{\partial y} \{y\}(x) - \rho_a^{(\alpha)}(x) = 0
\]

and we can write

\[
\begin{align*}
\left\{ \begin{array}{l}
y_a^{(\alpha)}(x) = \frac{\partial H}{\partial y} \{y\}(x), \\
\rho_a^{(\alpha)}(x) = -\frac{\partial H}{\partial y} \{y\}(x).
\end{array} \right.
\tag{41}
\end{align*}
\]

The system (41) is nothing else than the conformable fractional Euler–Lagrange equation in Hamiltonian form. Substituting the expressions of (41) into equation (40), we get the analog to the DuBois–Reymond condition (28) in Hamiltonian form:

\[
\frac{d_a^\alpha H}{dx_a^\alpha}(y)(x) = \frac{\partial H}{\partial x} \{y\}(x)(x - a)^{1-\alpha}.
\tag{42}
\]

If the Lagrangian \(L \) is autonomous, i.e., \(L \) does not depend on \(x \), then \(\frac{\partial L}{\partial x} = 0 \) and, consequently, by equation (42) \(H \) is a conserved quantity. If the Lagrangian \(L \) does not depend on \(y \), then \(\frac{\partial L}{\partial y} = -\frac{\partial H}{\partial y} = 0 \) and so \(\rho_a^{(\alpha)} = 0 \), i.e., \(p \) is a conserved quantity. We now exhibit Corollary 27 within the Hamiltonian framework.

Theorem 29 (Conformable fractional Noether’s theorem in Hamiltonian form under the presence of an external force \(f \)). If \(J \) given by (11) is invariant under (29), \(y \) is an extremal of \(J \), and function \(f = f(x, y(x), y_a^{(\alpha)}(x)) \) satisfies the equation

\[
\frac{d_a^\alpha f(x, y(x), y_a^{(\alpha)}(x))}{dx_a^\alpha} = (1 - \alpha)p(x) \left[\xi(x - a)^{1-2\alpha} - \frac{y_a^{(\alpha)}(x)}{(x - a)^{\alpha}} \right] + \frac{d_a^\alpha \Lambda}{dx_a^\alpha}(x, y(x))(x - a)^{1-\alpha},
\]

then

\[
p(x)\xi(x - a)^{1-\alpha} - H(y\{x\})\xi - f(x, y(x), y_a^{(\alpha)}(x))
\]

is a conserved quantity.

9 Conformable fractional optimal control

The conformable fractional optimal control problem is stated as follows: find a pair of functions \((y(\cdot), v(\cdot))\) that minimizes

\[
J(y, v) = \int_a^b L(x, y(x), v(x)) \, d_a^\alpha x
\tag{43}
\]

when subject to the (nonautonomous) fractional control system

\[
y_a^{(\alpha)}(x) = \varphi(x, y(x), v(x)).
\tag{44}
\]

A pair \((y(\cdot), v(\cdot))\) that minimizes functional (43) subject to (44) is called an optimal process. The reader interested on the fractional optimal control theory is referred to [19, 20, 34]. Here we note that if \(\alpha = 1 \), then (43)–(44) is the standard optimal control problem: to minimize

\[
J(y, v) = \int_a^b L(x, y(x), v(x)) \, dx
\]

subject to the control system

\[
y'(x) = \varphi(x, y(x), v(x)).
\]

We assume that the Lagrangian \(L \) and the velocity vector \(\varphi \) are functions at least of class \(C^1 \) in their domain \([a, b] \times \mathbb{R}^2\). Also, the admissible state trajectories \(y \) are such that \(y_a^{(\alpha)} \) exist.
Remark 30. In case \(\varphi \equiv v \), the previous problem (43)–(44) reduces to the fundamental problem of the conformable fractional variational calculus (11), as stated in Section 3.

Following the standard approach [15, 39], we consider the augmented conformable fractional functional

\[
I(y, v, p) = \int_a^b \left[L(x, y(x), v(x)) + p(x)(y_a^{(\alpha)}(x) - \varphi(x, y(x), v(x))) \right] \, dx,
\]

where \(p \) is such that \(y_a^{(\alpha)} \) exists. Consider a variation vector of type \((y + \epsilon y_1, v + \epsilon v_1, p + \epsilon p_1) \) with \(|\epsilon| \ll 1 \). For convenience, we restrict ourselves to the case \(y_1(a) = y_1(b) = 0 \). If \((y(\cdot), v(\cdot)) \) is an optimal process, then the first variation is zero when \(\epsilon = 0 \). Thus, using the conformable fractional integration by parts formula (Theorem 7), we obtain that

\[
0 = \int_a^b \left[\frac{\partial L}{\partial y} y_1 + \frac{\partial L}{\partial v} v_1 + p_1(y_a^{(\alpha)} - \varphi) + p \left(y_a^{(\alpha)} - \varphi \frac{\partial \varphi}{\partial y} y_1 - \varphi \frac{\partial \varphi}{\partial v} v_1 \right) \right] \, dx
\]

By the arbitrariness of the the variation functions, we obtain the following system, called the Euler–Lagrange equations for the conformable fractional optimal control problem:

\[
\begin{align*}
\frac{y_a^{(\alpha)}}{a} &= \dot{\varphi}(x, y(x), v(x)), \\
\frac{p_a^{(\alpha)}}{a} &= \frac{\partial L}{\partial y}(x, y(x), v(x)) - p(x) \frac{\partial \varphi}{\partial y}(x, y(x), v(x)), \\
\frac{\partial L}{\partial v}(x, y(x), v(x)) - p(x) \frac{\partial \varphi}{\partial v}(x, y(x), v(x)) &= 0.
\end{align*}
\]

These equations give necessary conditions for finding the optimal solutions of problem (43)–(44). We remark that they are similar to the standard ones, in case of integer order derivatives, but in this case they contain conformable fractional derivatives, as expected. The solution can be stated using the Hamiltonian formalism. Consider the Hamiltonian function

\[
H(x, y, v, p) = -L(x, y, v) + p(x)\varphi(x, y, v).
\]

Then (46) gives:

1. the fractional Hamiltonian system

\[
\begin{align*}
\frac{y_a^{(\alpha)}}{a} &= \frac{\partial H}{\partial p}(x, y, v, p), \\
\frac{p_a^{(\alpha)}}{a} &= \frac{\partial H}{\partial y}(x, y, v, p);
\end{align*}
\]

2. the stationary condition

\[
\frac{\partial H}{\partial v}(x, y, v, p) = 0.
\]

Definition 31. Any triplet \((y, v, p) \) satisfying system (48) and equation (49) is called a conformable fractional Pontryagin extremal.

Remark 32. In the particular case \(\varphi \equiv v \), i.e., when the conformable fractional optimal control problem is reduced to the fundamental conformable fractional problem of the calculus of variations, we obtain

\[
H = -L(x, y, v) + pv, \quad y_a^{(\alpha)} = v,
\]

and the equations

\[
p_a^{(\alpha)} = -\frac{\partial H}{\partial y} = \frac{\partial L}{\partial y}, \quad p = \frac{\partial L}{\partial v}.
\]
Therefore, we obtain the conformable fractional Euler–Lagrange equation (10):

\[
\frac{\partial L}{\partial y} + d_a^\alpha \left(\frac{\partial L}{\partial y_a} \right).
\]

Let us now consider the augmented fractional variational functional (45) written in the Hamiltonian form:

\[
\mathcal{I}(y, v, p) = \int_0^1 \left(-H(x, y(x), v(x), p(x)) + p(x)y_a^{(\alpha)}(x) \right) d_x^\alpha x,
\]

where \(H \) is given by expression (17). For a parameter \(\epsilon \), with \(|\epsilon| \ll 1\), consider the family of transformations

\[
\begin{align*}
\tau &= x + \epsilon \tau(x, y(x), v(x), p(x)), \\
\eta &= y + \epsilon \eta(x, y(x), v(x), p(x)), \\
\psi &= v + \epsilon \psi(x, y(x), v(x), p(x)), \\
\psi &= p + \epsilon \psi(x, y(x), v(x), p(x)).
\end{align*}
\]

We now define the notion of invariance of (43)–(44) in terms of the Hamiltonian \(H \) and the augmented conformable fractional variational functional (50).

Definition 33. The conformable fractional optimal control problem (43)–(44) is invariant under the transformations (51) up to the Gauge term \(\Lambda \), if a function \(\Lambda = \Lambda(x, y) \) exists such that for any functions \(y, v \) and \(p \), and for any real \(x \in [0, 1] \), the following equality holds:

\[
\left[-H(\bar{x}, \bar{y}, \bar{v}, \bar{p}) + p a^\alpha \bar{y}_a \right] d_x^\alpha x = -H(x, y, v, p) + p y_a^{(\alpha)} + d_a^\alpha \Lambda(x, y) + o(\epsilon) \tag{52}
\]

for all \(\epsilon \) in some neighborhood of zero, where as in Definition (50) \(d_x^\alpha \) stands for (51).

Theorem 34 (Fractional Noether's theorem for the fractional optimal control problem (43)–(44)). If (43)–(44) is invariant under (51) in the sense of Definition (53) and if \((y, v, p)\) is a conformable fractional Pontryagin extremal, then

\[
\frac{d_a^\alpha}{dx_a^\alpha} (p \xi) - \tau \left(\frac{\partial H}{\partial x} + (\alpha - 1) \frac{p y_a^{(\alpha)}}{x - a} \right) - H \frac{\tau_a^{(\alpha)}}{(x - a)^{1-\alpha}} = \frac{d_a^\alpha \Lambda}{dx_a^\alpha}. \tag{53}
\]

Proof. Differentiating (52) with respect to \(\epsilon \), and choosing \(\epsilon = 0 \), we get

\[
\begin{align*}
- \frac{\partial H}{\partial x} \tau - \frac{\partial H}{\partial y} \xi - \frac{\partial H}{\partial v} \sigma - \frac{\partial H}{\partial p} \pi + \pi y_a^{(\alpha)} + p \left[(\alpha - 1) \frac{\tau_a^{(\alpha)}}{x - a} + \frac{\tau_a^{(\alpha)}}{(x - a)^{1-\alpha}} \right] + \left[-H + p y_a^{(\alpha)} \right] \frac{\tau_a^{(\alpha)}}{(x - a)^{1-\alpha}} = \frac{d_a^\alpha \Lambda}{dx_a^\alpha}.
\end{align*}
\]

Equation (53) follows because \((y, v, p)\) is a conformable fractional Pontryagin extremal.

Remark 35. When \(\alpha = 1 \) and \(\Lambda = 0 \), equation (53) becomes

\[
\frac{d}{dx} (p \xi) - \tau \frac{\partial H}{\partial x} - H \tau' = 0.
\]

Using relations (48) and (49) with \(\alpha = 1 \), we deduce that

\[
-H \tau + p \xi \equiv \text{constant},
\]

which is the optimal control version of Noether’s theorem (37–39). For \(\alpha \in (0, 1) \), Theorem 34 extends the main result of (17).
10 The multi-dimensional case

In this section we show a necessary condition of invariance, when the Lagrangian depends on two independent variables x_1 and x_2 and on m functions y_1, \ldots, y_m. First, we define conformable fractional partial derivatives and conformable multiple fractional integrals in a natural way, similarly as done in the integer case. In addition, we are going to use the following properties.

Theorem 36 (The conformable Green’s theorem for a rectangle). Let f and g be two continuous and α-differentiable functions whose domains contain $R = [a, b] \times [c, d] \subset \mathbb{R}^2$. Then

$$
\int_a^b \left(f(x_1, c) - f(x_1, d) \right) \, d_t^\alpha x_1 + \int_c^d \left(g(b, x_2) - g(a, x_2) \right) \, d_t^\alpha x_2
= \int_R \left(\frac{\partial^\alpha}{\partial x_1^\alpha} g(x_1, x_2) - \frac{\partial^\alpha}{\partial x_2^\alpha} f(x_1, x_2) \right) \, d_t^\alpha x_1 \, d_t^\alpha x_2. \tag{54}
$$

Proof. By Theorem 6 we have

$$
\begin{align*}
&f(x_1, d) - f(x_1, c) = \int_c^d \frac{\partial^\alpha}{\partial x_2^\alpha} f(x_1, x_2) \, d_t^\alpha x_2, \\
&g(b, x_2) - g(a, x_2) = \int_a^b \frac{\partial^\alpha}{\partial x_1^\alpha} g(x_1, x_2) \, d_t^\alpha x_1.
\end{align*}
$$

Therefore,

$$
\begin{align*}
\int_a^b \left(f(x_1, c) - f(x_1, d) \right) \, d_t^\alpha x_1 &+ \int_c^d \left(g(b, x_2) - g(a, x_2) \right) \, d_t^\alpha x_2 \\
&= - \int_a^b \int_c^d \frac{\partial^\alpha}{\partial x_2^\alpha} f(x_1, x_2) d_t^\alpha x_2 d_t^\alpha x_1 + \int_c^d \int_a^b \frac{\partial^\alpha}{\partial x_1^\alpha} g(x_1, x_2) d_t^\alpha x_1 d_t^\alpha x_2 \\
&= \int_R \left(\frac{\partial^\alpha}{\partial x_1^\alpha} g(x_1, x_2) - \frac{\partial^\alpha}{\partial x_2^\alpha} f(x_1, x_2) \right) \, d_t^\alpha x_1 \, d_t^\alpha x_2.
\end{align*}
$$

The proof is complete. \qed

Remark 37. From Definition 4 and Remark 4 it is easy to verify that for C^1 functions our fractional Green’s theorem over a rectangular domain (Theorem 36) reduces to the conventional Green’s identity for $\hat{f}(x_1, x_2) = f(x_1, x_2)(x_1 - a)^{\alpha-1}$ and $\hat{g}(x_1, x_2) = g(x_1, x_2)(x_2 - a)^{\alpha-1}$.

Lemma 38. Let F, G and h be continuous and α-differentiable functions whose domains contain $R = [a, b] \times [c, d]$. If $h = 0$ on the boundary ∂R of R, then

$$
\int_R \left(G(x_1, x_2) \frac{\partial^\alpha}{\partial x_1^\alpha} h(x_1, x_2) - F(x_1, x_2) \frac{\partial^\alpha}{\partial x_2^\alpha} h(x_1, x_2) \right) \, d_t^\alpha x_1 \, d_t^\alpha x_2
= - \int_R \left(\frac{\partial^\alpha}{\partial x_1^\alpha} G(x_1, x_2) - \frac{\partial^\alpha}{\partial x_2^\alpha} F(x_1, x_2) \right) h(x_1, x_2) d_t^\alpha x_1 d_t^\alpha x_2. \tag{55}
$$

Proof. By choosing $f = Fh$ and $g = Gh$ in Green’s formula (54), we obtain that

$$
\begin{align*}
\int_a^b \left(F(x_1, c)h(x_1, c) - F(x_1, d)h(x_1, d) \right) \, d_t^\alpha x_1 &+ \int_c^d \left(G(b, x_2)g(b, x_2) - G(a, x_2)g(a, x_2) \right) \, d_t^\alpha x_2 \\
&= \int_R \left(\frac{\partial^\alpha}{\partial x_1^\alpha} G(x_1, x_2) - \frac{\partial^\alpha}{\partial x_2^\alpha} F(x_1, x_2) \right) h(x_1, x_2) d_t^\alpha x_1 d_t^\alpha x_2 \\
&\quad + \int_R \left(G(x_1, x_2) \frac{\partial^\alpha}{\partial x_1^\alpha} h(x_1, x_2) - F(x_1, x_2) \frac{\partial^\alpha}{\partial x_2^\alpha} h(x_1, x_2) \right) d_t^\alpha x_1 d_t^\alpha x_2.
\end{align*}
$$
Since \(h = 0 \) on the boundary \(\partial R \) of \(R \), we have

\[
\int_R \left(G(x_1, x_2) \frac{\partial^\alpha}{\partial x_1^\alpha} h(x_1, x_2) - F(x_1, x_2) \frac{\partial^\alpha}{\partial x_2^\alpha} h(x_1, x_2) \right) \, d^\alpha_a x_1 d^\alpha_c x_2 = -\int_R \left(\frac{\partial^\alpha}{\partial x_1^\alpha} G(x_1, x_2) - \frac{\partial^\alpha}{\partial x_2^\alpha} F(x_1, x_2) \right) h(x_1, x_2) d^\alpha_a x_1 d^\alpha_c x_2.
\]

The proof is complete. \(\square\)

Remark 39. In the very recent and general paper \([7]\), a vector calculus with deformed derivatives (as the conformable derivative) is formally introduced. We refer the reader to \([6]\) for a detailed discussion of a vector calculus with deformed derivatives and more properties on the multi-dimensional conformable calculus.

Let us consider now the fractional variational integral

\[
\mathcal{J}(y) = \int_R L \left(x, y, \frac{\partial^\alpha y}{\partial x^\alpha} \right) d^\alpha_a x,
\]

where for simplicity we choose \(R = [a, b] \times [a, b] \), and where \(x = (x_1, x_2), \ y = (y_1, \ldots, y_m), \)

\[
d^\alpha_a x = d^\alpha_a x_1 d^\alpha_c x_2, \quad \text{and} \quad \frac{\partial^\alpha y}{\partial x^\alpha} = \left(\frac{\partial^\alpha_0 y_1}{\partial x_1^\alpha}, \ldots, \frac{\partial^\alpha_m y_m}{\partial x_2^\alpha} \right).
\]

We are assuming that \(L = L(x_1, x_2, y_1, \ldots, y_m, v_1, \ldots, v_{m,1}, v_{m,2}) \) is at least of class \(C^1 \), that the domains of \(y_k, k \in \{1, \ldots, m\} \) contain \(R \), and that all these partial conformable fractional derivatives exist.

Theorem 40 (The multi-dimensional fractional Euler–Lagrange equation). Let \(y \) be an extremizer of (56) with \(y|_{\partial R} = \psi(x_1, x_2) \) for some given function \(\psi = (\psi_1, \ldots, \psi_m) \). Then, the following equation holds:

\[
\frac{\partial L}{\partial y_k} - \frac{\partial^\alpha_0}{\partial x_1^\alpha} \left(\frac{\partial L}{\partial v_{k,1}} \right) - \frac{\partial^\alpha_0}{\partial x_2^\alpha} \left(\frac{\partial L}{\partial v_{k,2}} \right) = 0
\]

for all \(k \in \{1, \ldots, m\} \).

Proof. Let \(y^* = (y^*_1, \ldots, y^*_m) \) give an extremum to (56). We define \(m \) families of functions

\[
y_k(x_1, x_2) = y_k^*(x_1, x_2) + \epsilon \eta_k(x_1, x_2),
\]

where \(k \in \{1, \ldots, m\}, \epsilon \) is a constant, and \(\eta_k \) is an arbitrary \(\alpha \)-differentiable function satisfying the boundary conditions \(\eta_k|_{\partial R} = 0 \) (weak variations). From (58), the boundary conditions \(\eta_k|_{\partial R} = 0 \) and \(y_k|_{\partial R} = \psi_k(x_1, x_2) \), it follows that function \(y_k \) is admissible. Let the Lagrangian \(L \) be \(C^1 \). Because \(y^* \) is an extremizer of functional \(\mathcal{J} \), the Gateaux derivative \(\delta \mathcal{J}(y^*) \) needs to be identically null. For the functional (56),

\[
\delta \mathcal{J}(y^*) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \left(\int_R L \left(x, y^*, \frac{\partial^\alpha y^*}{\partial x^\alpha} \right) d^\alpha_a x - \int_R L \left(x, y^*, \frac{\partial^\alpha y}{\partial x^\alpha} \right) d^\alpha_a x \right)
\]

\[
= \sum_{k=1}^m \int_R \left(\eta_k(x_1, x_2) \frac{\partial L}{\partial y_k} \right) \frac{\partial L}{\partial y_k} \left(x, y^*, \frac{\partial^\alpha y}{\partial x^\alpha} \right) d^\alpha_a x
\]

\[
+ \frac{\partial^\alpha}{\partial x_1^\alpha} \eta_k(x_1, x_2) \frac{\partial L}{\partial v_{k,1}} + \frac{\partial^\alpha}{\partial x_2^\alpha} \eta_k(x_1, x_2) \frac{\partial L}{\partial v_{k,2}} \right) d^\alpha_a x = 0.
\]
Using (55), we get that
\[
\sum_{k=1}^{m} \int_{R} \eta_k(x_1, x_2) \left(\frac{\partial L}{\partial y_k} \frac{\partial^\alpha y_k}{\partial x_1^\alpha} - \frac{\partial L}{\partial x_1^\alpha} \frac{\partial \xi_k}{\partial x_1^\alpha} - \frac{\partial L}{\partial x_2^\alpha} \frac{\partial \eta_k}{\partial x_2^\alpha} \right) \, d^\alpha x = 0
\]
(59)
since \(\eta_k |_{\partial R} = 0 \). The fractional Euler–Lagrange equation (57) follows from (59) by using the fundamental lemma. □

Let \(\epsilon \) be a real, and consider the following family of transformations:
\[
\begin{align*}
\xi_i &= x_i + \epsilon \tau_i (x, y(x)), \quad i \in \{1, 2\}, \\
\eta_k &= y_k + \epsilon \xi_k(x, y(x)), \quad k \in \{1, \ldots, m\},
\end{align*}
\]
(60)
where \(\tau_i \) and \(\xi_k \) are such that there exist \(\frac{\partial^\alpha \tau_i}{\partial x_1^\alpha} \) and \(\frac{\partial^\alpha \xi_k}{\partial x_1^\alpha} \) for all \(i, j \in \{1, 2\} \) and all \(k \in \{1, \ldots, m\} \).

Denote by \(\left[\frac{\partial^\alpha \xi}{\partial x_1^\alpha} \right] \) the matrix
\[
\left[
\begin{array}{ccc}
\frac{\partial^\alpha \xi_1}{\partial x_1^\alpha} & \frac{\partial^\alpha \xi_2}{\partial x_1^\alpha} \\
\frac{\partial^\alpha \tau_1}{\partial x_1^\alpha} & \frac{\partial^\alpha \tau_2}{\partial x_1^\alpha}
\end{array}
\right]
\]
\[
= \left[\begin{array}{cc}
1 + \frac{\epsilon}{x_1-a} \frac{\partial^\alpha \tau_1}{\partial x_1^\alpha} & \frac{\epsilon}{x_2-a} \frac{\partial^\alpha \tau_1}{\partial x_1^\alpha} \\
\frac{1}{x_1-a} \frac{\partial^\alpha \tau_2}{\partial x_1^\alpha} & 1 + \frac{\epsilon}{x_2-a} \frac{\partial^\alpha \tau_2}{\partial x_1^\alpha}
\end{array}\right].
\]

Definition 41. Functional \(J \) as in (60) is invariant under the family of transformation (60) if for all \(y_k \) and for all \(x_i \in [0, 1] \) we have
\[
L \left(\xi, \eta, \frac{\partial^\alpha y}{\partial x_1^\alpha} \right) \left[\frac{\partial^\alpha \xi}{\partial x_1^\alpha} \right] \det \left[\frac{\partial^\alpha \xi}{\partial x_1^\alpha} \right] = L \left(x, y, \frac{\partial^\alpha y}{\partial x_1^\alpha} \right) + \epsilon \frac{d^{\alpha} \Lambda}{d x_1^\alpha}(x, y) + o(\epsilon)
\]
for all \(\epsilon \) in some neighborhood of zero.

Using the same techniques as in the proof of Theorem 22 we obtain a necessary condition of invariance for the fractional variational problem (59).

Theorem 42. If \(J \) given by (56) is invariant under transformations (60), then
\[
\sum_{i=1}^{2} \frac{\partial L}{\partial x_i} \tau_i + \sum_{k=1}^{m} \frac{\partial L}{\partial y_k} \xi_k + \sum_{k=1}^{m} \sum_{i=1}^{2} \frac{\partial L}{\partial v_{k,i}} \left[\frac{\partial^\alpha \xi_k}{\partial x_1^\alpha} - \frac{\partial^\alpha y_k}{\partial x_1^\alpha} \right] \left((\alpha - 1) \frac{\tau_i}{x_i-a} + 1 \right) \frac{\partial^\alpha \tau_i}{\partial x_1^\alpha}
\]
\[
+ L \left(\frac{1}{x_1-a} \frac{\partial^\alpha \tau_1}{\partial x_1^\alpha} + \frac{1}{x_2-a} \frac{\partial^\alpha \tau_2}{\partial x_1^\alpha} \right) = \frac{d^{\alpha} \Lambda}{d x_1^\alpha}.
\]
(61)

Proof. Using relations
\[
\frac{\partial^\alpha \xi_k}{\partial x_1^\alpha} = \frac{\partial^\alpha y_k}{\partial x_1^\alpha} + \epsilon \frac{\partial^\alpha \xi_k}{\partial x_1^\alpha}
\]
\[
= \frac{\partial^\alpha y_k}{\partial x_1^\alpha} + \epsilon \frac{\partial^\alpha \xi_k}{\partial x_1^\alpha} \left(x_1 + \epsilon \tau_1 - a \right)^{\alpha-1} \left(x_1 - a - \epsilon \tau_1 \right)^{1-\alpha} + \epsilon \frac{\partial^\alpha \tau_1}{\partial x_1^\alpha}
\]
and
\[
\frac{d}{d \epsilon} \left[\frac{\partial^\alpha \xi}{\partial x_1^\alpha} \right]_{\epsilon=0} = \frac{1}{x_1-a} \frac{\partial^\alpha \tau_1}{\partial x_1^\alpha} + \frac{1}{x_2-a} \frac{\partial^\alpha \tau_2}{\partial x_1^\alpha}
\]
we conclude that (61) holds. □

Remark 43. When \(\alpha = 1 \) and \(\Lambda \equiv 0 \), Theorem 42 reduces to the standard one (cf. 26): equality (61) simplifies to
\[
\sum_{i=1}^{2} \frac{\partial L}{\partial x_i} \tau_i + \sum_{k=1}^{m} \frac{\partial L}{\partial y_k} \xi_k + \sum_{k=1}^{m} \sum_{i=1}^{2} \frac{\partial L}{\partial v_{k,i}} \left[\frac{\partial \xi_k}{\partial x_i} - \frac{\partial y_k}{\partial x_i} \frac{\partial \tau_i}{\partial x_i} \right] + L \left(\frac{\partial \tau_1}{\partial x_1} + \frac{\partial \tau_2}{\partial x_2} \right) = 0.
\]
Corollary 44. If J given by (56) is invariant under (60), $\tau_1 \equiv 0 \equiv \tau_2$, and no Gauge term is involved (i.e., $\Lambda \equiv 0$), then

$$\sum_{k=1}^{m} \frac{\partial L}{\partial y_k} \xi_k + \sum_{k=1}^{m} \sum_{i=1}^{2} \frac{\partial L}{\partial v_{k,i}} \frac{\partial}{\partial x_{i,a}} \xi_k = 0.$$

It remains an open question how to obtain a Noether constant of motion for the conformable fractional multi-dimensional case.

Acknowledgments

This work was partially supported by CNPq and CAPES (Brazilian research funding agencies), and by Portuguese funds through the Center for Research and Development in Mathematics and Applications (CIDMA), and The Portuguese Foundation for Science and Technology (FCT), within project UID/MAT/04106/2013. The authors are grateful to three anonymous Reviewers for useful comments and suggestions.

References

[1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math. 279 (2015), 57–66.

[2] O. P. Agrawal, Formulation of Euler-Lagrange equations for fractional variational problems, J. Math. Anal. Appl. 272 (2002), no. 1, 368–379.

[3] R. Almeida, S. Pooseh and D. F. M. Torres, Computational methods in the fractional calculus of variations, Imp. Coll. Press, London, 2015.

[4] R. Almeida, D. F. M. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1490–1500. [arXiv:1007.2937]

[5] D. R. Anderson and R. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electron. J. Differential Equations 2015 (2015), 10 pp.

[6] A. S. Balakin, J. Bory-Reyes and M. Shapiro, Towards a physics on fractals: differential vector calculus in three-dimensional continuum with fractal metric, Phys. A 444 (2016), 345–359.

[7] D. Baleanu, O. P. Agrawal, Fractional Hamilton formalism within Caputo’s derivative, Czechoslovak J. Phys. 56, (2006), 1087–1092.

[8] H. Batarfi, J. Losada, J. J. Nieto and W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, J. Funct. Spaces 2015 (2015), Art. ID 706383, 6 pp.

[9] P. S. Bauer, Dissipative Dynamical Systems: I, Proc. Natl. Acad. Sci 17 (1931), 311–314.

[10] B. Bayour and D. F. M. Torres, Existence of solution to a local fractional nonlinear differential equation, J. Comput. Appl. Math., in press. DOI:10.1016/j.cam.2016.01.014 [arXiv:1601.02125]

[11] N. Benkhettou, A. M. C. Brito da Cruz and D. F. M. Torres, A fractional calculus on arbitrary time scales: fractional differentiation and fractional integration, Signal Process. 107 (2015), 230–237. [arXiv:1405.2813]
[12] N. Benkhettou, A. M. C. Brito da Cruz and D. F. M. Torres, Nonsymmetric and symmetric fractional calculi on arbitrary nonempty closed sets, Math. Methods Appl. Sci. 39 (2016), no. 2, 261–279.
[13] N. Benkhettou, S. Hassani and D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, J. King Saud Univ. Sci. 28 (2016), no. 1, 93–98.
[14] J. Cresson, Fractional embedding of differential operators and Lagrangian systems, J. Math. Phys. 48 (2007), no. 3, 033504, 34 pp.
[15] D. S. Dukić, Noether’s theorem for optimum control systems, Internat. J. Control (1) 18 (1973), 667–672.
[16] G. S. F. Frederico and D. F. M. Torres, A formulation of Noether’s theorem for fractional problems of the calculus of variations, J. Math. Anal. Appl. 334 (2007), no. 2, 834–846.
[17] G. S. F. Frederico and D. F. M. Torres, Non-conservative Noether’s theorem for fractional action-like variational problems with intrinsic and observer times, Int. J. Ecol. Econ. Stat. 9 (2007), no. F07, 74–82.
[18] G. S. F. Frederico and D. F. M. Torres, Nonconservative Noether’s theorem in optimal control, Int. J. Tomogr. Stat. 5 (2007), no. W07, 109–114.
[19] G. S. F. Frederico and D. F. M. Torres, Fractional conservation laws in optimal control theory, Nonlinear Dynam. 53 (2008), no. 3, 215–222.
[20] G. S. F. Frederico and D. F. M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem, Int. Math. Forum 3 (2008), no. 10, 479–493.
[21] G. S. F. Frederico and D. F. M. Torres, Fractional Noether’s theorem in the Riesz-Caputo sense, Appl. Math. Comput. 217 (2010), no. 3, 1023–1033.
[22] R. Khalil, M. Al Horani, A. Yousef and M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math. 264 (2014), 65–70.
[23] A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006.
[24] M. J. Lazo and C. E. Krumreich, The action principle for dissipative systems, J. Math. Phys. 55 (2014), 122902, 11 pp.
[25] M. J. Lazo and D. F. M. Torres, The DuBois-Reymond fundamental lemma of the fractional calculus of variations and an Euler-Lagrange equation involving only derivatives of Caputo, J. Optim. Theory Appl. 156 (2013), no. 1, 56–67.
[26] J. D. Logan, Invariant variational principles, Mathematics in Science and Engineering, Vol. 138. Academic Press, New York-London, 1977.
[27] J. T. Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), no. 3, 1140–1153.
[28] A. B. Malinowska, T. Odzijewicz and D. F. M. Torres, Advanced methods in the fractional calculus of variations, Springer Briefs in Applied Sciences and Technology, Springer, Cham, 2015.
[29] A. B. Malinowska and D. F. M. Torres, Introduction to the fractional calculus of variations, Imp. Coll. Press, London, 2012.
[30] K. S. Miller and B. Ross, *An introduction to the fractional calculus and fractional differential equations*, Wiley, New York, 1993.

[31] T. Odzijewicz, A. B. Malinowska and D. F. M. Torres, Fractional variational calculus with classical and combined Caputo derivatives, Nonlinear Anal. **75** (2012), no. 3, 1507–1515. [arXiv:1101.2932](https://arxiv.org/abs/1101.2932)

[32] T. Odzijewicz, A. B. Malinowska and D. F. M. Torres, Fractional calculus of variations in terms of a generalized fractional integral with applications to physics, Abstr. Appl. Anal. **2012** (2012), Art. ID 871912, 24 pp. [arXiv:1203.1961](https://arxiv.org/abs/1203.1961)

[33] I. Podlubny, *Fractional differential equations*, Academic Press, San Diego, CA, 1999.

[34] S. Pooseh, R. Almeida and D. F. M. Torres, Fractional order optimal control problems with free terminal time, J. Ind. Manag. Optim. 10 (2014), no. 2, 363–381. [arXiv:1302.1717](https://arxiv.org/abs/1302.1717)

[35] F. Riewe, Mechanics with fractional derivatives, Phys. Rev. E (3) **55** (1997), no. 3 part B, 3581–3592.

[36] W. Sarlet, and F. Cantrijn, Generalizations of Noether’s theorem in classical mechanics, SIAM Rev. **23** (1981), no. 4, 467–494.

[37] D. F. M. Torres, On the Noether theorem for optimal control, Eur. J. Control **8** (2002), no. 1, 56–63.

[38] D. F. M. Torres, Conservation laws in optimal control, in *Dynamics, bifurcations, and control*, Lecture Notes in Control and Inform. Sci. **273**, Springer, Berlin (2002), 287–296.

[39] D. F. M. Torres, Quasi-invariant optimal control problems, Port. Math. **61** (2004), no. 1, 97–114. [arXiv:math/0302264](https://arxiv.org/abs/math/0302264)

[40] D. F. M. Torres, Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations, Commun. Pure Appl. Anal. **3** (2004), no. 3, 491–500.