Growth hormone in the management of female infertility
S Kalra, B Kalra, A Sharma, M Thakral, A Ahalawat

Citation
S Kalra, B Kalra, A Sharma, M Thakral, A Ahalawat. Growth hormone in the management of female infertility. The Internet Journal of Endocrinology. 2008 Volume 5 Number 2.

Abstract
Ovulation is a complex process which is controlled by multiple hormonal systems. While the role of gonadotrophins in the regulation of ovulation is well understood and characterized, growth hormone has been studied less vigorously as far as its effect on female reproduction is concerned. This review discusses the physiologic basis of growth hormone in the regulation of induction of ovulation in women. It also reviews clinical studies done using growth hormone as co-therapy in women with infertility.

INTRODUCTION
A large number of intraovarian regulators modulate the ovarian response to gonadotropin stimulation. The principal regulatory systems in the human involve the growth hormone-IGF system (1), the epidermal growth factor (EGF) system (2), and the TGF-α and β system (3). In addition, inhibins and activins also exhibit local actions in the ovary (4).

Growth hormone (GH) is a pleiotropic, multifunctional hormone with effects ranging far beyond those on linear growth. GH is known to be involved in the regulation of male and female infertility. This review discusses the biochemical background and clinical studies of GH therapy in female infertility.

PHYSIOLOGY
Growth hormone, produced by the pituitary and locally by the ovary, binds to GH receptors on granulosa, the thecal, and luteal cells and promotes steroidogenesis and gametogenesis (5). It acts at multiple levels in the ovulation cascade.

Growth hormone increases the sensitivity to IGF-II acting through the IGF-I receptor, because IGF-II and IGF binding protein are abundantly present in human granulosa cells, whereas IGF-I is scarce (7). Therefore, GH acts indirectly by upregulating LH receptor and LH-induced luteinization, and directly through induction of production in the absence of gonadotropins (8).

Growth hormone affects the maturation of the follicle and gamete as well IGF-I and IGF-II play a major role in folliculogenesis until the antrum formation stage. GH helps in the recruitment and early development of follicle without acting through FSH and IGF-I as well (9).

Growth hormone may have a direct inhibitory action on follicle apoptosis in conjunction with gondotropins, and may enhance follicular survival and cell proliferation by strengthening LH action. GH may help in follicle selection, as GH binding sites in granulosa cells are lost in atretic follicles (10). The...
development of the dominant follicle is also known to be slow in GH receptor-deficient cattle (11).

Both GH and IGF-I play a role in the recruitment of the dominant follicle from its cohort, leading to mono-follicular growth in women. (12) When GH is deficient, low serum levels of IGF-I prevent the dominant follicle from increasing IGF-I levels. This prevents any difference in the sensitivity to FSH of the different cohort follicle, and allows equal multifollicular growth. With GH treatment, a differential in sensitivity to FSH between this follicle and its cohort are restored by higher IGF-I levels, leading to mono-follicular growth.

As the follicle matures, nuclear and cytoplasmic events occur within the oocyte to allow oocyte fertilization. A direct correlation between follicular GH concentrations and human oocyte maturity has been reported,(13) and oocytes harvested from follicles with normal antral fluid GH concentration are more fertile than those from follicles with low GH concentrations. Growth hormone enhances oocyte quality by accelerating and coordinating cytoplasmic and nuclear maturation, as seen in bovine oocytes (14, 15).

Good patient selection has been shown to improve results of GH co-therapy for female infertility. Eugonadotrophic normoprolactinemic patients with long-standing infertility and documented growth hormone deficiency (23) or panhypopituitarism (24) respond well to this treatment. GH supplementation has been shown to improve pregnancy rates in poor responders.(21) In women with no history of poor response to IVF stimulation protocols, the use of growth hormone was not linked to better live birth rate or pregnancy rate (18).

In those with history of poor response in the past to IVF stimulation protocols, odds ratio for live birth (OR 4.37 CI 95% 1.06 to 18.01) was in favour of GH. Similar results were noted for pregnancy rate (OR 3.2, 95% CI 1.05 to 9.72). The incidence of multiple pregnancy was higher while that of reported miscarriage, minor and major physical symptoms, as well as ectopic pregnancy was lower. (18) In another study in women aged > 40 years, undergoing IVF, more pregnancies (26% vs. 6%) and higher delivery rates (22% vs. 4%) were noted in GH-treated subjects (22) than those not given the hormone.

Good patient selection has been shown to improve results of GH co-therapy for female infertility. Eugonadotrophic normoprolactinemic patients with long-standing infertility and documented growth hormone deficiency (23) or panhypopituitarism respond well to this treatment (24). Workers have, however, used GH in non-GH deficient patients as well. (25)

DOSE OF GROWTH HORMONE

Doses used have ranged from 0.9 to 1.8 mg/week, and growth is discontinued once pregnancy is achieved (23) in
recent case reports. Previous studies have used much higher doses. Growth hormone has been given daily (25, 26) or on alternate days (6; 27-31), in doses ranging from 12 IU (27-29) to 18 IU (30) to 24 IU (6, 31). One of the authors has prescribed a daily weight-based dose (0.1 IU/kg/day) (25) while another has compared 4IU daily with 12IU daily. (26)

CONCLUSION

Growth hormone co-therapy has a definite role to play in ovarian stimulation, and is effective in appropriately selected cases. Further research needs to be done to identify effective and efficient growth hormone treatment regimes, as well improve patient selection. Effort should also be made to study, in detail, the effect of GH therapy on oocyte fertilization and endometrial receptivity.

References

1. Poretsky L, Cataldo NA, Resenwaks Z, Giudice LC. The insulin-related ovarian regulatory system in health and disease. Endocrinology Rev 1999; 20:535-582.
2. Tapanainen J, Leinonen PJ, Tapanainen P, Yamamoto M, Jaffe RB. Regulation of human granulosa-luteal cell progesterone production by gonadotropins and growth factors. J Clin Endocrinol Metab 1987; 48: 576-580.
3. Roy SK. Epidermal growth factor and transforming growth factor-α modulation of follicle-stimulating hormone-induced deoxyribonucleic acid synthesis in hamster preantral and early antral follicles. Biol Reprod 1993; 48:552-557.
4. Roeris VJ, Barth S, el Roey A, Yen SS. Expression of inhibin/activin subunits and proteins in ovarian follicles and the corpus luteum during the human menstrual cycle. J Clin Endocrinol Metab 1993; 77:1402-1410.
5. Hull KL, Harvey S. Growth hormone as an amplifier of insulin-like growth factor-1 action: potentiated oestriol accumulation. J Endocrinol 1997;152:201-9.
6. Tapanainen J, Martikainen H, Voutilainen R, Orava M, Ruokonen A, Ronnberg L. Effect of growth hormone administration on human ovarian function and streiogenic gene expression in granulosa-luteal cells. Fertil Steril 1992; 58:726-32.
7. Barreeca A, Artini PG, Del Monte P, et al. In vivo and in vitro effect of growth hormone on estradiol secretion by human granulosa cells. J Clin Endocrinol Metab 1993; 77:61-67.
8. Lanzone A, Di Simone N, Castellani R, Fulghesu AM, Caruso A, Mancuso S. Human growth hormone enhances progesterone production by human luteal cells in vitro: evidence of a synergistic affect with human chorionic gonadotropin. Fertil Steril 1992; 57:92-6.
9. Liu X, Andoh K, Yokota H, et al. Effects of growth hormone, activin A and follistatin on the development of preantral follicle from immature female mice. Endocrinology 1998; 139:2342-7.
10. Quensiél H. Localization of binding site for IGF-I, insulin and GH in the sow ovary. J Endocrinol 1991; 193:363-72. 11. Chase CC Jr, Kirbo CJ, Hammond AC, Olsen TA, Lucy MC. Patterns of ovarian growth and development in cattle with a growth hormone receptor deficiency. J Anim Sci 1998; 76:12-72.
12. de Boer JA, van der Meer M, van der veen EA, Schoemaker J. Growth hormone (GH) substitution in hypogonadotropic GH-deficient women decreases the follicle-stimulating hormone threshold for monofollicular growth. J Clin Endocrinol Metab 1999; 84:590-5.
13. Mendoza C, Cremades N, Ruiz-Requena E. Relationship between fertilization results after intracytoplasmic sperm injection, and intrafollicular steroid, pituitary hormone and cytokine concentrations. Hum Reprod 1999; 14; 628-35.
14. Hull KL, Harvey S. Growth hormone: roles in female reproduction. J Endocrinol 2001; 168:1-23.
15. Lzadyar F, Hage WJ, Colenbrander B, Bevers MM. The promotory effect of growth hormone on the developmental competence of in vitro matured bovine oocytes is due to improved cytoplasmatic maturation. Mol Reprod Dev 1998; 49: 444-53.
16. Politis I, Srikanthakumar A, Turner JD, Tsang BK, Ainsworth L, Downey BR. Changes in and partial identification of the plasminogen activator and plasminogen activator inhibitor systems during ovarian follicular maturation in the pig. Biol Reprod 1990; 43: 636-42.
17. Homburg R, Østergård H. Clinical applications of growth hormone for ovarian stimulation. Hum Reprod Update 1995; 1:264-75.
18. Harper K, Proctor M, Huges E. Growth hormone for in vitro fertilization. Cochrane Database Sys Review 2003, CD 000099.
19. de Boer JA, Schomaker J, van der veen EA. Impaired reproductive system function in women treated for growth hormone deficiency during childhood. Clin Endocrinol (Oxf) 1997; 46:681-689.
20. Tsilchorozidou T, Conwyey GS, Uterus size and ovarian morphology in women with isolated growth hormone deficiency, hypogonadotrophic hypogonadism and hypopituitarism. Clin Endocrinol (Oxf) 2004; 61:567-72.
21. Howles CM, Loumaye E, Germond M, et al. Does growth hormone releasing factor assist follicular development in poor responder patients undergoing ovarian stimulation for in vitro fertilization? Hum Reprod 1999; 4:1939-1943.
22. Tesarik J et al. Improvement of delivery and live birth rates after ICSI in women aged >40 years by ovarian co-stimulation with growth hormone. Hum Reprod 2005; 20:2536-2541.
23. Giampietro A, Milardi D, Bianchi A, et al. The effect of treatment with growth hormone on fertility outcome in endoganal women with growth hormone deficiency: report of four cases and renew of the titerature. Fertil Steril 2009; 91(3):930.e7-e11.
24. Salle A, Klein M, Pascal-Vigeron V, Dousset B, Leclere J, Weryha G. Successful pregnancy and birth after sequential cotreatment with growth hormone and gonadotropins in a woman with panhypopituitarism: a new treatment protocol. Fertil Steril 2000, 74:1248-20.
25. Bergh C, Hillensjö T, Wikland M, Nilsson L, Borg G, Hamberger L. Addjuvant growth hormone treatment during in vitro fertilization: a randomized, placebo-controlled study. Fertil Steril 1994; 62:113-20.
26. Suikkari AM, MacLachlan V, Koitinen R, Seppala M, Uterus size and ovarian function in women treated for growth hormone deficiency during childhood. Clin Endocrinol (Oxf) 1997; 46:681-689.
27. Tsilchorozidou T, Conwyey GS, Uterus size and ovarian morphology in women with isolated growth hormone deficiency, hypogonadotrophic hypogonadism and hypopituitarism. Clin Endocrinol (Oxf) 2004; 61:567-72.
28. Zhuang GL, Wong SX, Zhou CQ. The effect of co-therapy of growth hormone and gonadotropin for ovarian hyperstimulation in vitro fertilization and embryo transfer. Chung-Hua Fu Chan Ko
29. Blumenfeld Z, Dirnfeld M, Gonen Y, Abramovici H. Growth hormone co-treatment for ovulation induction may enhance conception in the co-treatment and succeeding cycles, in clonidine negative but not clonidine positive patients. Human Reproduction 1994; 9:209-13.

30. Dor J, Seidman DS, Amudia E, Bider D, Levran D, Mashiach S. Adjuvant growth hormone therapy in poor responders to in vitro fertilization: a prospective randomized placebo-controlled double blind study. Human reproduction 1995; 10:40-3.

31. Owen EJ, Ostergaard H, Soham Z, Jacobs HS, MS, Mason BA. Co-treatment with growth hormone, after pituitary suppression, for ovarian in vitro fertilization: a randomized, double blind, placebo-control trial. 1991; 56:1104-10.
Author Information

Sanjay Kalra, DM (Endocrinology)
Bharti Hospital, Wazir Chand Colony, Kunjpura Road, Model Town Karnal-132001, Haryana

Bharti Kalra, MD (Gynae & Obst)
Bharti Hospital, Wazir Chand Colony, Kunjpura Road, Model Town Karnal-132001, Haryana

Amit Sharma, MD (Medicine)
Bharti Hospital, Wazir Chand Colony, Kunjpura Road, Model Town Karnal-132001, Haryana

Meenakshi Thakral, BA
Bharti Hospital, Wazir Chand Colony, Kunjpura Road, Model Town Karnal-132001, Haryana

Atul Ahalawat, M.Sc-Biotech
Bharti Hospital, Wazir Chand Colony, Kunjpura Road, Model Town Karnal-132001, Haryana