Polarization transfer observables for quasielastic proton-nucleus scattering in terms of a complete Lorentz invariant representation of the NN scattering matrix

B.I.S. van der Ventel, G.C. Hillhouse and P.R. De Kock

University of Stellenbosch, Stellenbosch, 7600, South Africa

S.J. Wallace

Department of Physics, University of Maryland, College Park, Maryland, 20742
(November 21, 2018)

Abstract

For the calculation of polarization transfer observables for quasielastic scattering of protons on nuclei, a formalism in the context of the Relativistic Plane Wave Impulse Approximation is developed, in which the interaction matrix is expanded in terms of a complete set of 44 independent invariant amplitudes. A boson-exchange model is used to predict the 39 amplitudes which were omitted in the formerly used five-term parameterization (the SP-VAT form) of the nucleon-nucleon scattering matrix. Use of the complete set of amplitudes eliminates the arbitrariness of the five-term representation.

24.10.Jv, 24.70.+s, 25.40.-h
I. INTRODUCTION

Quasielastic scattering of protons on nuclei is an attractive phenomenon for the study of the basic nucleon-nucleon interaction in the nuclear medium, because it exhibits the approximate behavior of the scattering of a nucleon on only one nucleon of the target nucleus. Quasielastic scattering has been modeled by the Relativistic Plane Wave Impulse Approximation [1] which considers it as a single-step process, whereby the projectile interacts with only one nucleon of the target nucleus, while the rest of the nucleons remain inert. The well known and outstanding success of the original RPWIA was its prediction of the analyzing power for $^{40}\text{Ca}(\vec{p},\vec{p}')$ and $^{208}\text{Pb}(\vec{p},\vec{p}')$ at 500 MeV; a case in which all non-relativistic models failed [2].

In the RPWIA approach, the description of the initial and final free particle in the medium is based on mean-field theory, as described by Serot and Walecka in Ref. [3]. In the RPWIA model the associated Dirac plane waves have their free nucleon mass decreased by the real part of the average nuclear scalar field to yield an effective nucleon mass. The values of the effective masses serve as an indicator of the nuclear medium effects on the NN interaction.

In former theoretical studies of scattering [4,5,1] the nucleon-nucleon scattering matrix (\hat{F}) was parameterized in terms of the five Fermi covariants which is commonly referred to as the SPVAT form of \hat{F} or the IA1 model. It should be stressed, however, that even though the SPVAT form gave reasonable results for elastic and quasielastic scattering observables, it is in principle not correct, since as was first pointed out in Ref. [6], a five-term representation of the relativistic NN scattering matrix is necessarily ambiguous. In addition, Tjon and Wallace [7] have shown that a general Lorentz invariant representation of \hat{F} (referred to as the IA2 model) contains additional terms that cannot be neglected. The IA2 representation of \hat{F} contains, in fact, 44 independent invariant amplitudes, instead of the previously used five, which are consistent with parity and time-reversal invariance as well as charge symmetry together with the on-mass-shell condition for the external nucleons. Comparison to the
limited data available with subsequent and more refined calculations \[2,8 – 10\] have also revealed that quasielastic \((\vec{p}, \vec{p}')\) and \((\vec{p}, \vec{n})\) prefer different five-term representations of \(\hat{F}\):
The \((\vec{p}, \vec{n})\) data favor a pseudovector \(\pi NN\) coupling, whereas the \((\vec{p}, \vec{p}')\) data are consistent with a pseudoscalar term for the \(\pi NN\) vertex. Therefore, the most basic question which has to be addressed is the representation of the NN scattering matrix.

In the current application of the RPWIA to quasielastic scattering, the following components play a key role:

1. The amplitudes in the basic two-nucleon interaction, which are partly determined from free NN scattering data and partly from a solution of the Bethe-Salpeter equation employing a meson-exchange model for the NN force.

2. The Lorentz covariant set constructed from the Dirac matrices which serves as a representation for \(\hat{F}\).

3. The effective nucleon mass for both projectile and target nucleons interacting in the nuclear medium.

In this paper a theoretical formalism is presented for the calculation of calculate polarization transfer observables for quasielastic proton-nucleus scattering using a general Lorentz invariant representation of the NN scattering matrix \[11\]; a systematic survey of the predictive power of the model compared to data will be presented in a future paper. By adhering to the simplifying features of the RPWIA, one can focus on the basic NN interaction without introducing additional complications. A complete and unambiguous expansion of \(\hat{F}\) allows for a correct incorporation of medium effects (within the RPWIA framework) and therefore one can distinguish between experimental results which are genuine medium effects and those which arise due to other effects not taken into account by the RPWIA. In Section \[\text{II}\] we briefly review the RPWIA and also discuss the ambiguities of the SPVAT form of \(\hat{F}\). In Section \[\text{III}\] the general Lorentz invariant representation of \(\hat{F}\) is discussed. Section \[\text{IV}\] presents the transformation from invariant amplitudes to effective amplitudes, while in Sec-
tion expressions for the spin observables are derived in terms of the effective amplitudes. A calculation of complete sets of spin observables, based on the IA2 model, for quasielastic \(^{40}\text{Ca}(\vec{p}, \vec{p}')\) scattering at 500 MeV is presented in Section VII. Section VII summarizes the main aspects of this paper.

II. RELATIVISTIC PLANE WAVE IMPULSE APPROXIMATION

Complete sets of spin observables \(\left(P, A_y, D_{l'l'}, D_{s's'}, D_{l's'}, D_{nl}, D_{nn} \right)\) for quasielastic \((\vec{p}, \vec{p}')\) and \((\vec{p}, \vec{n})\) scattering are calculated within a relativistic framework using the Relativistic Plane Wave Impulse Approximation (RPWIA). The RPWIA models quasielastic scattering as a single-step process whereby the projectile knocks out a single bound nucleon from the nucleus. The rest of the nucleons are assumed to remain inert, but their effect is taken into account in that the free mass of the projectile and target nucleons are shifted to *effective masses*, \(M_1\) and \(M_2\) respectively. In the context of the Walecka model the effective masses can both be calculated microscopically as follows: For the projectile,

\[
M_1 = M + \langle S(\vec{r}) \rangle
\]

where \(M\) is the free nucleon mass, \(\langle S(\vec{r}) \rangle\) is the average value over the whole nucleus of the real part of the scalar potential found by weighting it with \(T(b)\), the transmission probability through the nucleus at an impact parameter \(b\), and with the nuclear density \(\rho(r)\) for the specific nucleus. The effective mass of the target nucleon is determined from

\[
M_2 = M - g_s \langle \phi(\vec{r}) \rangle
\]

where \(g_s\) is the scalar meson coupling constant and \(\phi(\vec{r})\) is the scalar field for the specific nucleus with the averaging done as described above. Values of \(M_1\) and \(M_2\) for specific nuclei and incident laboratory energies can be found in Table II of Ref. [8].

\[1\] The spin observables are defined in Section V.
seem to suggest that the spin observables are target independent \cite{12,13}, and therefore we assume, as a first step, a Fermi-gas approximation for the target nucleus. The RPWIA therefore reduces quasielastic proton-nucleus scattering to a two-body scattering process with Dirac spinors (containing effective nucleon masses) describing the external nucleons. A graphical representation of the scattering process is depicted in Fig. \[1\].

Refering to Fig. \[1\], the projectile Dirac spinor is given by:

\[U(\vec{p}_1, M_1, s_i) = \left[\frac{E_1^* + M_1}{2M_1} \right]^{\frac{1}{2}} \left(\frac{\phi(s_i)}{E_1^* + M_1} \phi(s_i) \right) \] (2.1)

where \(E_1^* = \vec{p}_1^2 + M_1^2 \) and the spinor is normalized to \(\bar{U}(\vec{p}_1, M_1, s) U(\vec{p}_1, M_1, s') = \delta_{ss'} \).

Similar expressions exist for the other three spinors labelled by \(\vec{p}_2, \vec{k}_1 \) and \(\vec{k}_2 \). The following four-momenta are also defined:

\[p_1^* = (E_1^*, \vec{p}_1), \quad p_2^* = (E_2^*, \vec{p}_2), \quad k_1^* = (E_1'^*, \vec{k}_1), \quad k_2^* = (E_2'^*, \vec{k}_2) \]

where \(p_i^* = M_i^2 \) and \(k_i^* = M_i^2 \) \((i = 1, 2)\). For handling the polarization, one requires the spin projection operator,

\[P(\hat{n}) = \frac{1}{2}(I_2 + \hat{\sigma} \cdot \hat{n}) \] (2.2)

for the direction \(\hat{n} \) where \(I_2 \) is the \(2 \times 2 \) unit matrix. In the basis of Pauli spinors, \(\phi(\hat{n}) \) for spin direction \(\hat{n} \), we have

\[P(\hat{n}) = \phi(\hat{n}) \phi^\dagger(\hat{n}). \] (2.3)

Defining

\[\bar{U}(\vec{p}_1, M_1, s_i) = U^\dagger(\vec{p}_1, M_1, s_i) \gamma^0 \]

where the convention of Ref. \cite{14} is used for the gamma-matrices, the Lorentz invariant matrix element for the scattering process depicted in Fig. \[1\] is given by:
\[
\mathcal{M} = [U(k_1, M_1, s_f) \otimes U(k_2, M_2, s'_2)] \hat{F} [U(p_1, M_1, s_i) \otimes U(p_2, M_2, s_2)]
\]

(2.4)

where \(\hat{F}\) is the 16 \(\times\) 16 nucleon-nucleon scattering matrix. The question arises as to what form of \(\hat{F}\) is to be used in Eq. (2.4) assuming parity and time-reversal invariance as well as charge symmetry. Once a choice of \(\hat{F}\) has been made, analytical expressions for all spin observables, namely the unpolarized double differential cross section, the analyzing power and the polarization transfer observables can obtained from Eq. (2.4). All previous calculations \([1,15,8–10]\) of spin observables for quasielastic proton-nucleus scattering have been parameterized \(\hat{F}\) in terms of only the five Fermi covariants:

\[
\hat{F} = F_S(I_4 \otimes I_4) + F_P(\gamma^5 \otimes \gamma^5) + F_V(\gamma^\mu \otimes \gamma^\mu) + \\
F_A(\gamma^5 \gamma^\mu \otimes \gamma^5 \gamma^\mu) + F_T(\sigma^{\mu\nu} \otimes \sigma^{\mu\nu})
\]

(2.5)

where the latter is commonly called the SPVAT form or IA1 representation of \(\hat{F}\). The amplitudes, \(F_L\) \((L = S, P, V, A, T)\) are obtained by fitting to free NN scattering data \([13]\). This procedure, however, does not uniquely fix the form of the matrix \(\hat{F}\). To see this we note that the pseudoscalar covariant, \(PS = \gamma^5 \otimes \gamma^5\), has exactly the same matrix elements between positive energy free mass Dirac spinors \((M_1 = M_2 = M)\) as the pseudovector covariant, \(PV = \frac{q}{2M} \otimes \frac{\gamma^5}{2M}\), i.e.,

\[
\left[\bar{U}_1(M) \otimes \bar{U}_2(M)\right] [PV - PS] [U_1(M) \otimes U_2(M)] = 0.
\]

This is called the equivalence theorem \([16]\). We can therefore replace \(PS\) with \(PV\) in Eq. (2.3) without altering the amplitudes, \(F_L\). Even though these two representations are equivalent on-shell \((p^2 = M^2)\) they will give different results when sandwiched between positive energy Dirac spinors containing an effective nucleon mass, since then matrix elements between negative energy states now also enter. This is because the effective mass spinor can always be expanded in a free mass basis:

\[
U(p_1, M_1, s_i) = \alpha_U U(p_1, M, s_i) + \alpha_V V(p_1, M, s_i)
\]

where \(V\) is the negative energy Dirac spinor \([14]\). There also exists the relation \([8]\),
\[M_{PV} = \frac{M_1 M_2}{M^2} M_{PS} \]

(2.6)

where \(M_{PS} \) and \(M_{PV} \) are the contribution of the pseudoscalar covariant and pseudovector covariant respectively to the invariant matrix element given by Eq. (2.4). Note that in Eq. (2.6), the pseudovector covariant is \(PV = \frac{q \gamma^5}{2M} \otimes \frac{q \gamma^5}{2M} \), but where \(q = p_1^* - k_1^* = k_2^* - p_2^* \), i.e., the momenta are on-mass-shell with respect to the effective masses, \(M_1 \) and \(M_2 \). In the equivalence theorem, the momenta must be on-mass-shell with respect to the free mass. The above equality has been used in Refs. [8–10] to investigate the sensitivity of the spin observables to the difference between using a pseudoscalar covariant or a pseudovector covariant. The ambiguity which is inherent in any five-term or incomplete representation of \(\hat{F} \) (such as the IA1 representation) was first pointed out in Ref. [6]. Tjon and Wallace have developed a general Lorentz invariant representation of \(\hat{F} \). The formalism can be found in Refs. [7,11] and is applied to elastic proton-nucleus scattering in Refs. [17–19]. We will refer to this as the IA2 representation of \(\hat{F} \) and discuss, in the next section, its application to quasielastic proton-nucleus scattering.

III. IA2 REPRESENTATION OF \(\hat{F} \) APPLIED TO QUASIELASTIC PROTON-NUCLEUS SCATTERING

From Eqs (3.1) and (3.18) in Ref. [19] the IA2 representation of \(\hat{F} \) is given by:

\[
\hat{F} = \sum_{\rho_1 \rho'_1; \rho_2 \rho'_2} \sum_{n=1}^{13} F_{n}^{\rho_1 \rho'_1 \rho_2 \rho'_2} \left[\Lambda_{\rho_1'}(k_1; M) \otimes \Lambda_{\rho_2'}(k_2; M) \right] K_n \\
\left[\Lambda_{\rho_1}(p_1; M) \otimes \Lambda_{\rho_2}(p_2; M) \right]
\]

(3.1)

where \(M \) refers to the free nucleon mass. Henceforth the notation

\[\{ \rho \} = \rho_1 \rho'_1; \rho_2 \rho'_2 \]

will be used. In Eq. (3.1), \(F_{n}^{(\rho)} \) \((n = 1 - 13)\) are the invariant amplitudes for each rho-spin sector (which is defined by the rho-spin labels, \(\rho_1 \rho'_1; \rho_2 \rho'_2 \), where \(\rho = \pm \)), \(\Lambda_{\rho}(p, M) \) are covariant projection operators given by:
\[\Lambda_\rho(p', M) = \frac{\rho \phi + M}{2M} \]
\[= \frac{\rho (E\gamma^0 - \vec{p} \cdot \vec{\gamma}) + M}{2M} \] \hspace{1cm} (3.2)

where \(E^2 = \vec{p}'^2 + M^2 \), and \(K_n \) \((n = 1 - 13)\) are kinematic covariants constructed from the Dirac matrices:

\[
\begin{align*}
K_1 &= S = I_4 \otimes I_4 \\
K_2 &= P = \gamma^5 \otimes \gamma^5 \\
K_3 &= V = \gamma^\mu \otimes \gamma_\mu \\
K_4 &= A = \gamma^5 \gamma^\mu \otimes \gamma^5 \gamma_\mu \\
K_5 &= T = \sigma^{\mu\nu} \otimes \sigma_{\mu\nu} \\
K_6 &= Q_{11,\mu}(I_4 \otimes \gamma^\mu) \\
K_7 &= Q_{22,\mu}(\gamma^\mu \otimes I_4) \\
K_8 &= Q_{11,\mu}(\gamma^5 \otimes \gamma^5 \gamma^\mu) \\
K_9 &= Q_{22,\mu}(\gamma^5 \otimes \gamma^5 \gamma^\mu) \\
K_{10} &= Q_{12,\mu}(I_4 \otimes \gamma^\mu) \tilde{S} \\
K_{11} &= Q_{21,\mu}(\gamma^\mu \otimes I_4) \tilde{S} \\
K_{12} &= Q_{12,\mu}(\gamma^5 \otimes \gamma^5 \gamma^\mu) \tilde{S} \\
K_{13} &= Q_{21,\mu}(\gamma^5 \gamma^\mu \otimes \gamma^5) \tilde{S}
\end{align*}
\]

where

\[Q_{ij,\mu} = \frac{(p'_i + p_j)_\mu}{2M} \text{ with } p'_1 = k_1 \text{ and } p'_2 = k_2. \]

With each combination of rho-spin labels \(\{\rho_1 \rho_1' \rho_2 \rho_2'\} \) is associated a pair \((ij)\) to index a specific rho-spin sector (or subclass): See Table I of [19]. For example \(\{++++\} \equiv (11) \) and \(\{+--\} \equiv (22) \). Parity and time-reversal invariance, together with charge symmetry and the on-mass-shell condition for external nucleons, lead to \(\hat{F}^\dagger \) being completely specified by 44 independent invariant amplitudes [11]. Five amplitudes in subclass \(\hat{F}^{11} \) are completely
specified by fitting to physical free NN scattering data and are therefore identical to the SPVAT amplitudes in the IA1 representation of \hat{F}. The remaining 39 off-shell amplitudes (contained in subclasses \hat{F}^{12} to \hat{F}^{44}) are obtained by solving the Bethe-Salpeter equation in a three-dimensional quasi-potential reduction 20,21, with pure pseudovector pion-nucleon coupling, to determine a complete set of helicity amplitudes. The invariant amplitudes are related via matrix equations to the helicity amplitudes 11. The IA2 representation is a complete and unambiguous expansion of \hat{F} since covariants cannot be added or changed arbitrarily without violating the above-mentioned symmetries. Amplitudes which are solely determined by physical scattering data are isolated in subclass \hat{F}^{11} while the remaining amplitudes are determined by solving a dynamical equation, the Bethe-Salpeter equation using a meson-exchange model for the NN force.

From Eq. (3.1) four cases concerning the combination of projectile and target nucleon masses can be distinguished:

1. No medium effect ($M_1 = M_2 = M$): In this case only subclass \hat{F}^{11} will contribute to the invariant scattering amplitude.

2. Projectile Relativity ($M_1 \neq M; M_2 = M$): Contributions to the invariant scattering amplitude arise from $\hat{F}^{11}, \hat{F}^{21}, \hat{F}^{31}$ and \hat{F}^{41} where the latter three subclasses require at least projectile relativity for a contribution.

3. Target Relativity ($M_1 = M; M_2 \neq M$): Contributions to the invariant scattering amplitude arise from $\hat{F}^{11}, \hat{F}^{12}, \hat{F}^{13}$ and \hat{F}^{14} where the latter three subclasses require at least target relativity for a contribution.

4. Target and projectile relativity ($M_1 \neq M; M_2 \neq M$): Now all subclasses will contribute to the invariant scattering amplitude but $\hat{F}^{22}, \hat{F}^{23}, \hat{F}^{24}, \hat{F}^{32}, \hat{F}^{33}, \hat{F}^{34}, \hat{F}^{42}, \hat{F}^{43}$ and \hat{F}^{44} require at least projectile and target relativity for a contribution.

From Eq. (3.1) we see that medium effects can never occur in subclass \hat{F}^{11} due to the accompanying positive energy projection operators. Medium effects in the IA2 representation
of \hat{F} arise only due to off-shell amplitudes (which are contained in the subclasses \hat{F}^{12} to \hat{F}^{44}). This is in contrast to IA1 where medium effects are included only in subclass \hat{F}^{11}.

One can now substitute Eq. (3.1) into Eq. (2.4) and proceed from there to calculate the spin observables in terms of $|\mathcal{M}|^2$ which is directly related to the invariant amplitudes $F_n^{(\rho)}$.

We will, however, not follow this direct approach due to the following reasons:

1. Following the standard procedure (see Ref. [14] for example) one finds that $|\mathcal{M}|^2$ contains traces over at least eight gamma matrices. The number of gamma matrices increase as the covariants become more complicated. Since the number of terms generated by such a trace is given by $\frac{N!}{(N^2)!} \cdot 2^N$ (where N refers to the number of gamma matrices), and since there is a double sum over the rho-spin sectors, a very large number of terms will occur.

2. Since we are applying a relativistic formalism to a Nuclear Physics problem, it might be more instructive to rewrite the NN scattering matrix in a form which is more familiar to traditional Nuclear Physics.

We will therefore follow a similar approach as in Ref. [22] where an effective t-matrix is derived which is a 4×4 matrix, but which still contains all the information coming from the relativistic analysis. From Eq. (2.1) we can write:

$$U(\vec{p}_1, M_1, s_i) = \left(\frac{E_1^*}{M_1} \right)^{\frac{1}{2}} u^+(\vec{p}_1, M_1) \phi(s_i)$$

where, as a 4×2 matrix:

$$u^+(\vec{p}_1, M_1) = \left(\frac{E_1^* + M_1}{2E_1^*} \right)^{\frac{1}{2}} \begin{pmatrix} I_2 \\ \vec{\sigma} \cdot \vec{p}_1 \\ E_1^* + M_1 \end{pmatrix}.$$ \hspace{1cm} (3.3)$$

Similarly

$$\bar{U}(\vec{p}_1, M_1, s_i) = \left(\frac{E_1^*}{M_1} \right)^{\frac{1}{2}} \phi^\dagger(s_i) \bar{u}^+(\vec{p}_1, M_1)$$

where, as a 2×4 matrix:
\[u^+(p_1, M_1) = u^+(p_1, M_1) \gamma^0. \]

\[u^\rho(p) \] (where \(\rho = \pm \)) contains no reference to the spin and is normalized to
\[u^\rho(\rho') u^\rho(\rho) = \delta_{\rho \rho}. \]

In terms of \(u^+ \) the invariant matrix element, (Eq. 2.4) is given by
\[
\mathcal{M} = \left(\frac{E_1^* E_2^* E_1' E_2'}{M_1^2 M_2^2} \right)^{\frac{1}{2}} \left[\phi^\dagger(s_f) \bar{u}^+ (k_1, M_1) \otimes \phi^\dagger(s_2') \bar{u}^+ (k_2, M_2) \right] \hat{F}.
\]
\[
\left[\phi(s_i) u^+ (p_1, M_1) \otimes \phi(s_2) u^+ (p_2, M_2) \right].
\]

Use of the identity \(AC \otimes BD = (A \otimes B)(C \otimes D) \), where \(\otimes \) refers to the usual Kronecker product, leads to the expression
\[
\mathcal{M} = \left(\frac{E_1^* E_2^* E_1' E_2'}{M_1^2 M_2^2} \right)^{\frac{1}{2}} \left[\phi^\dagger(s_f) \otimes \phi^\dagger(s_2') \right] \left[\bar{u}^+ (k_1, M_1) \otimes \bar{u}^+ (k_2, M_2) \right] \hat{F}.
\]
\[
\left[u^+ (p_1, M_1) \otimes u^+ (p_2, M_2) \right] \left[\phi(s_i) \otimes \phi(s_2) \right]. \tag{3.4}
\]

Defining the effective \(t \)-matrix as:
\[
\hat{t} = \left[\bar{u}^+ (k_1, M_1) \otimes \bar{u}^+ (k_2, M_2) \right] \hat{F} \left[u^+ (p_1, M_1) \otimes u^+ (p_2, M_2) \right] \tag{3.5}
\]
and \(g_1 = [(E_1^* E_2^* E_1' E_2')/M_1^2 M_2^2]^\frac{1}{2} \), Eq. (3.4) becomes:
\[
\mathcal{M} = g_1 \left[\phi^\dagger(s_f) \otimes \phi^\dagger(s_2') \right] \hat{t} \left[\phi(s_i) \otimes \phi(s_2) \right]. \tag{3.6}
\]

Since \(\hat{t} \) is a \(4 \times 4 \) matrix it can be expanded in terms of a basis constructed from the Pauli matrices and the momenta of the scattering process. Define the three-momentum transfer \(\vec{q} = p_1 - k_1 = k_2 - p_2 \), the average momentum \(\vec{p}_a = \frac{1}{2}(p_1 + k_1) \) and a vector orthogonal to both \(\vec{q} \) and \(\vec{p}_a \), \(\vec{N} = \vec{q} \times \vec{p}_a = p_1 \times k_1 \). Note that
\[
\vec{q} \cdot \vec{p}_a = \frac{1}{2}(p_1^2 - k_1^2).
\]

For quasielastic scattering \(|\vec{p}_1| \neq |\vec{k}_1| \) and therefore \(\vec{q} \) and \(\vec{p}_a \) are not orthogonal, however, \(\vec{N} \cdot \vec{q} = \vec{N} \cdot \vec{p}_a = 0 \). Assuming only parity invariance, \(\hat{t} \) can be written in terms of a set of eight linearly independent matrices in the spin of the two interacting nucleons:
\[\hat{t} = \sum_{n=1}^{8} b_n (\chi_n^{(1)} \otimes \chi_n^{(2)}) \] (3.7)

where

\[\chi_1^{(1)} = I_2, \quad \chi_1^{(2)} = I_2. \]
\[\chi_2^{(1)} = \vec{N} \cdot \vec{\sigma}, \quad \chi_2^{(2)} = \vec{N} \cdot \vec{\sigma}. \]
\[\chi_3^{(1)} = \vec{N} \cdot \vec{\sigma}, \quad \chi_3^{(2)} = I_2. \]
\[\chi_4^{(1)} = I_2, \quad \chi_4^{(2)} = \vec{N} \cdot \vec{\sigma}. \]
\[\chi_5^{(1)} = \vec{q} \cdot \vec{\sigma}, \quad \chi_5^{(2)} = \vec{q} \cdot \vec{\sigma}. \]
\[\chi_6^{(1)} = \vec{p} \cdot \vec{\sigma}, \quad \chi_6^{(2)} = \vec{p} \cdot \vec{\sigma}. \]
\[\chi_7^{(1)} = \vec{q} \cdot \vec{\sigma}, \quad \chi_7^{(2)} = \vec{p} \cdot \vec{\sigma}. \]
\[\chi_8^{(1)} = \vec{p} \cdot \vec{\sigma}, \quad \chi_8^{(2)} = \vec{q} \cdot \vec{\sigma}. \]

In the next section the invariant amplitudes, \(F_n^{(p)} \) \((n = 1 - 13)\) are transformed to a set of eight effective amplitudes \(b_n \) \((n = 1 - 8)\), and expressions for the spin observables are derived in terms of the effective amplitudes.

IV. TRANSFORMATION FROM THE INVARIANT AMPLITUDES TO THE EFFECTIVE AMPLITUDES.

Expressions for the effective amplitudes of \(\hat{t} \) are now derived: Taking the trace of Eq. (3.7) yields

\[b_1 = \frac{1}{4} \text{Tr}[\hat{t}]. \] (4.1)

Multiply Eq. (3.7) with \((\vec{N} \cdot \vec{\sigma} \otimes \vec{N} \cdot \vec{\sigma})\) and take the trace of the resulting equation. Since \(\vec{N} \cdot \vec{q} = \vec{N} \cdot \vec{p_a} = 0 \) there will be no contribution from the last four terms of Eq. (3.7) and therefore

\[b_2 = \frac{1}{4\vec{N} \cdot \vec{N}} Y_2(\vec{N}, \vec{N}) \] (4.2)

where

\[Y_2(\vec{a}, \vec{b}) = \text{Tr}[(\vec{a} \cdot \vec{\sigma} \otimes \vec{b} \cdot \vec{\sigma})\hat{t}]. \]
Similar arguments lead to

\[b_3 = \frac{1}{4N^2} \text{Tr}[(\vec{N} \cdot \vec{\sigma} \otimes I_2)\hat{t}] \] (4.3)

and

\[b_4 = \frac{1}{4N^2} \text{Tr}[(I_2 \otimes \vec{N} \cdot \vec{\sigma})\hat{t}] \] (4.4)

Following the same reasoning as above, one can also derive a set of four coupled equations relating the amplitudes \(b_5, b_6, b_7 \) and \(b_8 \). A set of coupled equations arise since the vectors \(\vec{q} \) and \(\vec{p}_a \) are not orthogonal for quasielastic scattering, (i.e. \(\vec{q} \cdot \vec{p}_a \neq 0 \)). The solutions are:

\[b_5 = \frac{r_2^2 Y_2(\vec{p}_a, \vec{p}_a) - r_2 r_3 Y_2(\vec{p}_a, \vec{q}) - r_3^2 Y_2(\vec{q}, \vec{p}_a)}{M^2(r_1 r_3 - r_2^2)^2} \] (4.5)

\[b_6 = \frac{r_2^2 Y_2(\vec{p}_a, \vec{p}_a) - r_1 r_2 Y_2(\vec{p}_a, \vec{q}) - r_1 r_3 Y_2(\vec{q}, \vec{p}_a) + r_2^2 Y_2(\vec{q}, \vec{q})}{M^2(r_1 r_3 - r_2^2)^2} \] (4.6)

\[b_7 = \frac{-r_1 r_2 Y_2(\vec{p}_a, \vec{p}_a) + r_2^2 Y_2(\vec{p}_a, \vec{q}) + r_1 r_3 Y_2(\vec{q}, \vec{p}_a) - r_2 r_3 Y_2(\vec{q}, \vec{q})}{M^2(r_1 r_3 - r_2^2)^2} \] (4.7)

\[b_8 = \frac{-r_1 r_2 Y_2(\vec{p}_a, \vec{p}_a) + r_1 r_3 Y_2(\vec{p}_a, \vec{q}) + r_2^2 Y_2(\vec{q}, \vec{p}_a) - r_2 r_3 Y_2(\vec{q}, \vec{q})}{M^2(r_1 r_3 - r_2^2)^2} \] (4.8)

where

\[r_1 = \frac{2\vec{q}^2}{M}, \]
\[r_2 = \frac{2\vec{p}_a \cdot \vec{q}}{M} \quad \text{and} \]
\[r_3 = \frac{2\vec{p}_a^2}{M}. \]

The next step is to derive an expression for the \(\hat{t} \)-matrix which is convenient for use in the calculation of the traces which determine the effective amplitudes. Substitution of Eq. (3.1) into Eq. (3.5) leads to

\[
\hat{t} = \sum_{\{\rho\}} \sum_{n=1}^{13} F_n^{(\rho)} \left[\Gamma_{\rho_1}(\vec{k}_1, M, M_1) \otimes \Gamma_{\rho_2}(\vec{k}_2, M, M_2) \right] K_n \\
\left[\Gamma_{\rho_1}(\vec{p}_1, M, M_1) \otimes \Gamma_{\rho_2}(\vec{p}_2, M, M_2) \right] \] (4.9)

where we have introduced the \(4 \times 2 \) \(\Gamma \)-matrices defined as:
\[\Gamma_\rho(\vec{p}, M, M^*) = \Lambda_\rho(\vec{p}, M) u^+(\vec{p}, M^*). \tag{4.10} \]

In Eq. (4.10) \(M^* \) denotes an effective mass and Eq. (3.3) has been generalized to:
\[u^+(\vec{p}, M^*) = \begin{pmatrix} I_2 \phi(\vec{p}_1, M^*) \\ \vec{\sigma} \cdot \vec{p} \chi(\vec{p}, M^*) \end{pmatrix}. \tag{4.11} \]

Eq. (4.11) reduces to Eq. (3.3) if we set
\[\phi(\vec{p}_1, M_1) = \left(\frac{E^*(\vec{p}_1) + M_1}{2E^*(\vec{p}_1)} \right)^{\frac{1}{2}} \]
where \(E^*(\vec{p}_1) = \sqrt{\vec{p}_1^2 + M_1^2} \) and
\[\chi(\vec{p}_1, M_1) = \phi(\vec{p}_1, M_1) \left(E^*(\vec{p}_1) + M_1 \right)^{-1}. \]

We can obtain an explicit expression for \(\Gamma_\rho \) as follows: From Eq. (4.11) we can write
\[u^+(\vec{p}, M^*) = \begin{pmatrix} I_2 \phi(\vec{p}, M^*) \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \vec{\sigma} \cdot \vec{p} \chi(\vec{p}, M^*) \end{pmatrix} \]
and therefore
\[u^+(\vec{p}, M^*) = \phi(\vec{p}, M^*) (\hat{e}_1 \otimes I_2) + \chi(\vec{p}, M^*) (\hat{e}_2 \otimes \vec{\sigma} \cdot \vec{p}) \tag{4.12} \]
where
\[\hat{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ and } \hat{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \]
with \(\hat{e}_i \hat{e}_j = \delta_{ij} \). To write the \(\rho \)-spin projection operator in \((2 \times 2) \otimes (2 \times 2) \) form we recall that
\[\gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix} = \sigma_3 \otimes I_2 \quad \text{and} \quad (4.13) \]
\[\vec{p} \cdot \vec{\gamma} = \begin{pmatrix} 0 & \vec{p} \cdot \vec{\sigma} \\ -\vec{p} \cdot \vec{\sigma} & 0 \end{pmatrix} = i\sigma_2 \otimes \vec{p} \cdot \vec{\sigma}. \tag{4.14} \]
Substitution of Eqs. (4.13) and (4.14) into Eq. (3.2) leads to
\[
\Lambda_\rho(p, M) = \frac{\rho E_p}{2M} (\sigma_3 \otimes I_2) - \frac{i\rho}{2M} (\sigma_2 \otimes \vec{p} \cdot \vec{\sigma}) + \frac{1}{2} (I_2 \otimes I_2).
\] (4.15)

Substitution of Eqs. (4.12) and (4.15) into Eq. (4.10), and using the properties of the Pauli matrices, allows one to write:
\[
\Gamma_\rho(p, M, M^*) = \sum_{i=1}^{2} h_{\rho}^{(i)}(p, M, M^*) \left[\hat{e}_i \otimes A_i(p) \right] \] (4.16)
where
\[
A_i(p) = \begin{cases}
I_2; & i = 1 \\
\vec{p} \cdot \vec{\sigma}; & i = 2
\end{cases}
\]
with
\[
h_{\rho}^{(1)}(p, M, M^*) = \frac{\rho E_p}{2M} \phi(\vec{p}, M^*) - \frac{\rho \vec{p}}{2M} (\vec{p} \otimes \vec{\sigma}) + \frac{1}{2} \phi(\vec{p}, M^*) \quad \text{and} \quad
\]
\[
h_{\rho}^{(2)}(p, M, M^*) = \frac{\rho E_p}{2M} \chi(\vec{p}, M^*) - \frac{\rho \vec{p}}{2M} (\vec{p} \otimes \vec{\sigma}) + \frac{1}{2} \chi(\vec{p}, M^*).\]

Similar steps lead to
\[
\bar{\Gamma}_\rho(p, M, M^*) = \sum_{i=1}^{2} \bar{j}_{\rho}^{(i)}(p, M, M^*) \left[\hat{e}_i^\dagger \otimes A_i(p) \right] \] (4.17)
where
\[
\bar{j}_{\rho}^{(1)}(p, M, M^*) = h_{\rho}^{(1)}(p, M, M^*) \quad \text{and} \quad
\]
\[
\bar{j}_{\rho}^{(2)}(p, M, M^*) = -h_{\rho}^{(2)}(p, M, M^*).\]

To calculate the effective amplitudes, the contribution of each covariant to the trace relations must be determined. \(\hat{t} \) is calculated from Eq. (4.9) using the explicit forms of \(\Gamma_{\rho_i}(p, M, M^*) \) and \(\bar{\Gamma}_{\rho_i}(p, M, M^*) \) in Eqs. (4.16) and (4.17). Use is then made of Eqs. (4.1) to (4.8) to determine the effective amplitudes, \(b_1 \) to \(b_8 \). This procedure requires the calculation of traces of a set of matrices \(t_i \), where \(i = 1 - 46 \). With each covariant is associated a set of t-matrices of which the trace must be taken. We wrote a program in the MATHEMATICA computer...
language to do the required trace algebra. The effective amplitudes are linear functions of $F_n^{(\rho)}$, i.e.

$$b_i = b_i(\{F_n^{(\rho)}\}) \quad \text{where} \quad i = 1 - 8.$$ \hfill (4.18)

The isospin zero (isospin one) effective amplitudes are obtained by substituting the isospin zero (isospin one) invariant amplitudes into Eq. (4.18).

V. EXPRESSIONS FOR SPIN OBSERVABLES IN TERMS OF THE EFFECTIVE AMPLITUDES

In this section expressions are derived for the unpolarized cross section, the analyzing power and the polarization transfer observables in terms of the effective amplitudes b_n for both (\vec{p}, \vec{p}') and (\vec{p}, \vec{n}) scattering.

Working in the nucleon-nucleon laboratory frame, the spin in the incident beam direction is described in terms of three orthogonal unit vectors $(\hat{l}, \hat{s}, \hat{n})$, where \hat{l} is along the beam direction, \hat{s} lies perpendicular and to the side of \hat{l} in the scattering plane, and the normal unit vector is $\hat{n} = \hat{l} \times \hat{s}$. Similarly the spin of the final beam is described in terms of $(\hat{l}', \hat{s}', \hat{n})$.

1. Unpolarized double differential cross section

For the scattering process in Fig. 1 one can write down the expression for the differential cross section, $d\sigma$:

$$d\sigma = \frac{1}{|\vec{v}_1 - \vec{v}_2|} \left(\frac{M_1 M_2}{E_1^* E_2^*} \right) \left(\frac{M_1 M_2}{E_1'^* E_2'^*} \right) 2\pi^4 \delta(\vec{p}_1^* + \vec{p}_2^* - \vec{k}_1^* - \vec{k}_2^*)$$

$$\frac{d^3\vec{k}_1}{(2\pi)^3} \frac{d^3\vec{k}_2}{(2\pi)^3} |\mathcal{M}|^2.$$ \hfill (14)

As we consider the quasielastic scattering at energies much higher than the interaction energies amongst the target nucleons, we assume the latter to be practically non-interacting. Therefore, the momentum distribution of these nucleons can be obtained
in a Fermi-gas model. Following the same arguments as in Ref. [1] allows one to write down the following expression for the double differential cross section:

\[
\frac{d\sigma}{d\Omega'_{1}dE'_{1}} = \frac{|k_{1}|E'_{1}}{|\vec{q}|E'_{1}} \int_{p_{\text{min}}}^{k_{f}} d|\vec{p}_{2}| d\phi |\vec{p}_{2}|f(p_{1}^{*},p_{2}^{*},k_{f}) |\mathcal{M}|^{2}
\]

where

\[
f(p_{1}^{*},p_{2}^{*},k_{f}) = \frac{3}{16\pi^{3}k_{f}^{3}} \frac{M_{1}^{2}M_{2}^{2}}{[(p_{1}^{*} \cdot p_{2}^{*} - M_{1}^{2}M_{2}^{2})^{2}]^{\frac{3}{2}}}
\]

(5.1)

and

\[
p_{\text{min}} = \left| \frac{q}{2} - \frac{\omega^{*}}{2} \left[1 - \frac{4M_{2}^{2}}{q_{\mu}q^{\mu}} \right] \right|.
\]

(5.2)

In Eq. (5.2), \(q^{\mu} \) is the four-momentum transfer \(q^{\mu} = (\omega^{*}, \vec{q}) \) where

\[
\omega^{*} = E_{1}^{*} - E_{1}' = E_{2}^{*} - E_{2} \quad \text{and} \quad \vec{q} = \vec{p}_{1} - \vec{k}_{1} = \vec{k}_{2} - \vec{p}_{2}.
\]

To obtain the Fermi momentum \(k_{f} \), the required effective density is calculated in an eikonal approximation as shown in Ref. [1]. More refined values of \(k_{f} \) for specific target nuclei can be found in Table II of Ref. [8]. Define the function

\[
\Gamma''(\vec{p}_{1},\vec{p}_{2},\vec{k}_{1},\vec{k}_{2}) = \sum_{s_{i},s_{f}} \sum_{s_{2},s_{2}'} |\mathcal{M}|^{2}.
\]

Substitution of Eq. (3.7) into Eq. (3.6) leads to

\[
\mathcal{M} = g_{1} \sum_{n=1}^{8} b_{n} \left[\phi^{\dagger}(s_{f})\chi_{n}^{(1)}(s_{i}) \right] \left[\phi^{\dagger}(s_{2}')\chi_{n}^{(2)}(s_{2}) \right]
\]

and therefore one can write

\[
\Gamma''(\vec{p}_{1},\vec{p}_{2},\vec{k}_{1},\vec{k}_{2}) = g_{1}^{2} \sum_{m,n=1}^{8} b_{n}^{*} b_{m} \text{Tr}[\chi_{n}^{(1)}\chi_{m}^{(1)}\chi_{n}^{(2)}\chi_{m}^{(2)}].
\]

An explicit expression for \(\Gamma''(\vec{p}_{1},\vec{p}_{2},\vec{k}_{1},\vec{k}_{2}) \) is given in the appendix. To obtain the unpolarized cross section, one sums over the initial spin and average over the final spin which leads to:
For \((\vec{p}, \vec{p}')\) scattering

\[
\left(\frac{d\sigma}{d\Omega_1 dE_1^{'}} \right)_{\text{unpol}}^{(p,p')} = \frac{|\vec{k}_1| E_1' E_1''}{4|q'| E_1''} \int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| \ d\phi \ |\vec{p}_2| f(p_1^*, p_2^*, k_f) \\
\Gamma''(\vec{p}_1, \ldots \vec{k}_2). \tag{5.3}
\]

where

\[b_{\text{ave}} = \frac{1}{2}(b_i(I = 0) + b_i(I = 1)).\]

For the charge-exchange reaction \((\vec{p}, \vec{n})\),

\[
\left(\frac{d\sigma}{d\Omega_1 dE_1} \right)_{\text{unpol}}^{(p,n)} = \frac{|\vec{k}_1| E_1' E_1''}{4|q'| E_1''} \int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| \ d\phi \ |\vec{p}_2| f(p_1^*, p_2^*, k_f) \\
N_{\text{eff}} \Gamma''(\vec{p}_1, \ldots \vec{k}_2, \{b_{\text{ch-ex}}^i\})
\]

where the charge-exchange amplitudes are defined as:

\[b_{\text{ch-ex}}^i = \frac{1}{2}[b_i(I = 1) - b_i(I = 0)].\]

The quantities \(Z_{\text{eff}}\) and \(N_{\text{eff}}\) are defined in Ref. [1] and values for specific targets are given in Table II of Ref. [8].

2. Analyzing power

The definition of the analyzing power is given in terms of polarized double differential cross sections as:

\[
A_y = \frac{\frac{d\sigma}{d\Omega_1 dE_1}^{(\hat{s}_f = +\hat{n})} - \frac{d\sigma}{d\Omega_1 dE_1}^{(\hat{s}_f = -\hat{n})}}{\frac{d\sigma}{d\Omega_1 dE_1}^{(\hat{s}_f = +\hat{n})} + \frac{d\sigma}{d\Omega_1 dE_1}^{(\hat{s}_f = -\hat{n})}} \tag{5.4}
\]

where, for example,

\[
\frac{d\sigma}{d\Omega_1 dE_1}^{(\hat{s}_f)} = \frac{|\vec{k}_1| E_1'}{|q'| E_1''} \int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| \ d\phi \ |\vec{p}_2| f(p_1^*, p_2^*, k_f) \frac{1}{2} \tilde{\Gamma}'(\hat{s}_f)
\]
is averaged over incident spin directions \(\hat{s}_i \), and the target particles' initial and final spin as contained in the factor:

\[
\tilde{\Gamma}'(\vec{p}_1, \ldots, \vec{k}_2, \hat{s}_f) = \sum_{s_i, s_2, s_2'} |\mathcal{M}|^2 \\
= \text{Tr}[\chi^{(1)}_m \hat{P}(\hat{s}_f) \chi^{(1)}_n] \text{Tr}[\chi^{(2)}_m \chi^{(2)}_n]
\] (5.5)

where use was made of Eqs. (2.2) and (2.3). A calculation of the traces in Eq. (5.5) shows that \(\tilde{\Gamma}'(\vec{p}_1, \ldots, \hat{s}_f) \) has the following structure:

\[
\tilde{\Gamma}'(\vec{p}_1, \ldots, \hat{s}_f) = f_1(\vec{p}_1, \ldots, \vec{k}_2) + f_2(\vec{p}_1, \ldots, \vec{k}_2) \vec{N} \cdot \hat{s}_f + \\
f_3(\vec{p}_1, \ldots, \vec{k}_2) \vec{p}_a \cdot (\vec{q} \times \hat{s}_f).
\] (5.6)

Defining the combination function

\[
\Gamma'(\vec{p}_1, \ldots, \vec{k}_2, \hat{s}_f) = \tilde{\Gamma}'(\vec{p}_1, \ldots, \vec{k}_2, \hat{s}_f) - \tilde{\Gamma}'(\vec{p}_1, \ldots, \vec{k}_2, -\hat{s}_f).
\] (5.7)

and using Eq. (5.6) in Eq. (5.7) yields

\[
\Gamma'(\hat{s}_f) = 2(f_2(\vec{p}_1, \ldots, \vec{k}_2) \vec{N} \cdot \hat{s}_f + f_3(\vec{p}_1, \ldots, \vec{k}_2) \vec{p}_a \cdot (\vec{q} \times \hat{s}_f).
\]

The explicit forms of the functions \(f_2 \) and \(f_3 \) can be inferred from Eq. (A2) in the appendix. If \(\hat{s}_f = \hat{n} \) then

\[
\vec{N} \cdot \hat{n} = p_1 k_1 \sin \theta_L
\]

and

\[
\vec{p}_a \cdot (\vec{q} \times \hat{n}) = -p_1 k_1 \sin \theta_L.
\]

The analyzing power for the \((\vec{p}, \vec{p}')\) reaction is given by

\[
A_y(\vec{p}, \vec{p}') = \frac{\int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| d\phi |\vec{p}_2| f(\vec{p}_1, \ldots, p_2, k_f) \Gamma'(\hat{n}, \{b_i(I = 1)\}) + N_{\text{eff}} \Gamma'(\hat{n}, \{b_i^{\text{ave}}\})}{\int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| d\phi |\vec{p}_2| f(k_f) \Gamma'(\hat{n}, \{b_i(I = 1)\}) + N_{\text{eff}} \Gamma'(\hat{n}, \{b_i^{\text{ave}}\})}
\]

and the analyzing power for the \((\vec{p}, \vec{n})\) reaction is given by

\[
A_y(\vec{p}, \vec{n}) = \frac{\int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| d\phi |\vec{p}_2| f(k_f) \Gamma'(\hat{n}, \{b_i^{\text{ch-ex}}\})}{\int_{p_{\text{min}}}^{k_f} d|\vec{p}_2| d\phi |\vec{p}_2| f(k_f) \Gamma'(\hat{n}, \{b_i^{\text{ch-ex}}\})}
\] (5.8)
3. Polarization transfer observables

The polarization transfer observables are defined in terms of linear combinations of polarized double differential cross sections as follows:

\[
D_{ij} = \frac{d\sigma}{d\Omega_i dE_i}(\hat{s}_i, \hat{s}_f) - \frac{d\sigma}{d\Omega_i dE_i}(-\hat{s}_i, \hat{s}_f) - \frac{d\sigma}{d\Omega_i dE_i}(\hat{s}_i, -\hat{s}_f) + \frac{d\sigma}{d\Omega_i dE_i}(-\hat{s}_i, -\hat{s}_f),
\]

(5.9)

In Eq. (5.9) a typical polarized differential cross section is:

\[
\frac{d\sigma}{d\Omega_i dE_i}(\hat{s}_i, \hat{s}_f) = \frac{|\vec{k}_1| E_i'}{|q| E_1} \int_{p_{min}}^{k_f} d|\vec{p}_2| |d\phi| |\vec{p}_2| f(p_i', p_2', k_f) \frac{1}{2} \tilde{\Gamma}(\hat{s}_i, \hat{s}_f)
\]

(5.10)

where

\[
\tilde{\Gamma}(\vec{p}_1, ..., \vec{k}_2, \hat{s}_i, \hat{s}_f) = \sum_{s_2, s_2'} |M|^2
\]

[\text{expression continued...}]

with \(\vec{A}_i\) functions of only the three-momenta, \(\vec{p}_1\) to \(\vec{k}_2\) of which the explicit form can be inferred from Eq. (A1). Define again, now dictated by the form of Eq. (5.9), a function:

\[
\Gamma(\vec{p}_1, ..., \vec{k}_2, \hat{s}_i, \hat{s}_f) = \tilde{\Gamma}(\hat{s}_i, \hat{s}_f) - \tilde{\Gamma}(-\hat{s}_i, \hat{s}_f) - \tilde{\Gamma}(\hat{s}_i, -\hat{s}_f) + \tilde{\Gamma}(-\hat{s}_i, -\hat{s}_f).
\]

(5.11)
The explicit expression for Γ contains various kinematical parameters which are presented in the first column of Table I. The other columns contain the values of these quantities in the laboratory frame, for each polarization transfer observable: θ refers to the laboratory scattering angle, $p_1 = |\vec{p}_1|$ and $k_1 = |\vec{k}_1|$. Use of Eqs. (5.10), (5.11) and (5.3) lead to

$$D_{ij'} = \frac{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(p_1^*, p_2^*, k_f) 4\Gamma(\hat{s}_i, \hat{s}_f)}{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(p_1^*, p_2^*, k_f) \Gamma''(\vec{p}_1, ..., \vec{k}_2)}. \quad (5.12)$$

The polarization transfer observables for the (\vec{p}, \vec{p}') reaction are given by

$$D_{ij'}[(\vec{p}, \vec{p}')] = \frac{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(k_f) (4Z_{\text{eff}}\Gamma(\hat{s}_i, \hat{s}_f, \{b_i(I = 1)\}) + 4N_{\text{eff}}\Gamma(\hat{s}_i, \hat{s}_f, \{b_i^{\text{ave}}\}))}{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(k_f) (Z_{\text{eff}}\Gamma''(\{b_i(I = 1)\}) + N_{\text{eff}}\Gamma''(\{b_i^{\text{ave}}\}))}$$

and the corresponding observables for the (\vec{p}, \vec{n}) reaction are given by

$$D_{ij'}[(\vec{p}, \vec{n})] = \frac{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(k_f) 4\Gamma(\hat{s}_i, \hat{s}_f, \{b_i^{\text{ch-ex}}\})}{\int_{p_{\text{min}}}^{k_f} d\vec{p}_2 \mid d\phi \mid \vec{p}_2 \mid f(k_f) \Gamma''(\{b_i^{\text{ch-ex}}\})}. \quad (5.13)$$

Once again, as in Eq. (5.8), the effective number of neutrons does not appear in Eq. (5.13).

Although the primary aim of this paper is to present the theoretical formalism for calculating quasielastic proton-nucleus polarization transfer observables, in the next section we give a brief glimpse of the predictive power of the formalism by applying it to quasielastic $^{40}\text{Ca}(\vec{p}, \vec{p}')$ scattering at 500 MeV A. A systematic study of the predictive power of the model, as well as a comparison to IA1-based predictions, will be presented in a future paper.

VI. RESULTS

Before presenting the results we mention the numerical checks that were performed to verify that the transformation from invariant amplitudes $F_n^{(\rho)}$, to effective amplitudes b_n was carried out correctly and that the expressions for the spin observables in terms of the effective amplitudes are indeed correct. For $M_1 = M_2 = M$ only subclass \hat{F}^{11} contributes
to the invariant matrix element and the IA2 representation is therefore equivalent to the SPVAT form of \hat{F}. We therefore verified that our expressions for the spin observables in terms of the effective amplitudes give exactly the same numerical result as the corresponding expressions in Ref. [1] which contain only the five SPVAT amplitudes. This confirms that the transformation to effective amplitudes has been carried out correctly for only the SPVAT covariants. To verify the transformation for covariants K_6 to K_{13}, we derived expressions for the spin observables directly for each individual covariant K_6 to K_{13}. This involves traces over Dirac matrices (as opposed to the trace algebra involving Pauli matrices presented in this paper) and provides a non-trivial check for the transformation involving covariants K_6 to K_{13}. The fact that two independent ways give numerically the same result for all spin observables confirms the correctness of the transformation to effective amplitudes and the expressions for the spin observables derived in this paper.

The formalism in the previous sections is now applied to quasielastic $^{40}\text{Ca}(\vec{p}, \vec{p}')$ scattering at an incident laboratory kinetic energy of 500 MeV and a laboratory scattering angle of 19°. In the original calculation of Horowitz and Murdock in Ref. [1], it was found that the use of an effective mass for both the projectile and target nucleons moved the theoretical calculation closer to the data [23] and below the free mass calculation for A_y. This was referred to as the quenching effect in the analyzing power and claimed to be a “relativistic signature”. In Ref. [1] the SPVAT parameterization of \hat{F} was used. Fig 2 shows the results employing the IA2 representation of \hat{F}. The solid line represents the calculation using an effective mass for the projectile and target nucleons with $M_1 = 0.892$ and $M_2 = 0.817$ taken from Table II in Ref. [8] for ^{40}Ca at $T_{lab} = 500$ MeV. The dashed line is the free mass calculation. The data are from Ref. [23]. We notice that the quenching effect in A_y is very small compared to Fig. 6 of Ref. [1] over the entire energy range. The result is that the IA2 calculation does not describe A_y as well as the IA1 calculation of Ref. [1]. For the other observables, the effective mass and the free mass calculation do equally well. This is in contrast to the result in Ref. [1] where the D_{ij}’s only preferred a free mass calculation.
VII. SUMMARY

We have presented a theoretical formalism to calculate polarization transfer observables for quasielastic proton-nucleus scattering using a general Lorentz invariant representation of the nucleon-nucleon scattering matrix. In this way we avoid the ambiguities which are inherent in the previously-used five-term representation (the SPVAT form) of \hat{F}. In the process we have derived an effective t-matrix, which is a 4×4 matrix and therefore more familiar to Nuclear Physics, but which still contains all the information coming from the relativistic analysis. This necessitates the transformation from the 44 invariant amplitudes to a set of eight effective amplitudes as well as the derivation of new expressions for the spin observables in terms of the effective amplitudes. By staying within the framework of the Relativistic Plane Wave Impulse Approximation (with its many simplifying features) and using a general Lorentz invariant representation of \hat{F}, allows us to do an unambiguous investigation of medium effects via quasielastic proton-nucleus scattering. The first application of the formalism to the reaction $^{40}\text{Ca}(\vec{p},\vec{p}')$ at $T_{\text{lab}} = 500 \text{ MeV}$ and $\theta_{\text{lab}} = 19^\circ$ shows that the IA2 representation of \hat{F} does not lead to such strong medium effects in any of the spin observables, in contrast to the results in Ref. [1] where the medium effect was most noticeable in A_y. There it was also found that the use of an effective mass for the projectile and target nucleons led to the theoretical calculation being closer to the data than the free mass calculation. The IA2 representation is consistent with data, however, in that it predicts little medium effect in any of the spin observables, eventhough the prediction of A_y is now a little poorer than before. In a subsequent paper, a systematic study of spin observables, using the IA2 representation of \hat{F}, will be presented for both quasielastic (\vec{p},\vec{p}') and (\vec{p},\vec{n}) data.

\[2\] all of which are motivated by experimental data on the spin observables
ACKNOWLEDGMENTS

One us (vdV) wishes to thank prof J.A. Tjon (University of Utrecht, the Netherlands) and prof S.J. Wallace (University of Maryland, USA) for very helpfull discussions. The financial assistance to vdV by the Harry Crossley Foundation, the South African FRD and the National Accelerator Centre is gratefully acknowledged.

APPENDIX: EXPLICIT EXPRESSIONS FOR SPIN OBSERVABLES IN TERMS OF EFFECTIVE AMPLITUDES $a_i (i = 1 - 8)$.

In this appendix we present explicit expressions for the quantities Γ'', Γ' and Γ in terms of the effective amplitudes a_i which are related as follows to the effective amplitudes b_i:

$$b_1 = a_i$$
$$b_2 = \frac{a_2}{m^4},$$
$$b_i = \frac{i}{m^2}a_i \quad \text{for } i = 3, 4$$
$$b_i = \frac{1}{m^2}a_i \quad \text{for } i = 5, 6, 7, 8$$

where m denotes the free nucleon mass.

$$\frac{1}{g_t^2} \Gamma''(\vec{p}_1, \vec{p}_2, \vec{k}_1, \vec{k}_2) =$$
$$4 \text{Im}(a_1)^2 + 4 \text{Re}(a_1)^2 + (\vec{N} \cdot \vec{N})^2 \left(\frac{4 \text{Im}(a_2)^2}{m^4} + \frac{4 \text{Re}(a_2)^2}{m^4} \right) +$$
$$\vec{N} \cdot \vec{N} \left(\frac{4 \text{Im}(a_3)^2}{m^4} + \frac{4 \text{Re}(a_3)^2}{m^4} + \frac{4 \text{Im}(a_4)^2}{m^4} + \frac{4 \text{Re}(a_4)^2}{m^4} \right) + \left(\frac{4 \text{Im}(a_6)^2}{m^4} + \frac{4 \text{Re}(a_6)^2}{m^4} \right) (\vec{p}_a \cdot \vec{p}_a)^2 +$$
$$(8 \text{Im}(a_6) \text{Im}(a_7) + 8 \text{Re}(a_6) \text{Re}(a_7) + 8 \text{Im}(a_6) \text{Im}(a_8) + 8 \text{Re}(a_6) \text{Re}(a_8)) (\vec{p}_a \cdot \vec{q} \cdot \vec{p}_a \cdot \vec{q}) +$$
$$\left(\frac{8 \text{Im}(a_5) \text{Im}(a_6)}{m^4} + \frac{8 \text{Re}(a_5) \text{Re}(a_6)}{m^4} + \frac{8 \text{Im}(a_5) \text{Im}(a_7)}{m^4} + \frac{8 \text{Re}(a_5) \text{Re}(a_7)}{m^4} \right) (\vec{p}_a \cdot \vec{q} \cdot \vec{q})^2 +$$
$$\left(\frac{8 \text{Im}(a_5) \text{Im}(a_7)}{m^4} + \frac{8 \text{Re}(a_5) \text{Re}(a_7)}{m^4} + \frac{8 \text{Im}(a_5) \text{Im}(a_8)}{m^4} + \frac{8 \text{Re}(a_5) \text{Re}(a_8)}{m^4} \right) \vec{p}_a \cdot \vec{q} \cdot \vec{q} +$$
$$(\frac{4 \text{Im}(a_5)^2}{m^4} + \frac{4 \text{Re}(a_5)^2}{m^4}) (\vec{q} \cdot \vec{q})^2 + \left(\frac{4 \text{Im}(a_7)^2}{m^4} + \frac{4 \text{Re}(a_7)^2}{m^4} + \frac{4 \text{Im}(a_8)^2}{m^4} + \frac{4 \text{Re}(a_8)^2}{m^4} \right) \vec{p}_a \cdot \vec{p}_a \cdot \vec{q} \cdot \vec{q} \quad (A1)$$
\[
\frac{1}{g_i^4} \Gamma' (\bar{p}_1, \ldots, \bar{k}_2, \bar{s}_f) = \left(-\frac{4 \text{Re}(a_2) \text{Im}(a_4) \bar{N} \cdot \bar{N}}{m^6} + \frac{4 \text{Im}(a_2) \text{Re}(a_4) \bar{N} \cdot \bar{N}}{m^6} - \frac{4 \text{Re}(a_1) \text{Im}(a_3)}{m^2} + \frac{4 \text{Im}(a_1) \text{Re}(a_3)}{m^2} \right) \bar{N} \cdot \bar{s}_f + \frac{\bar{p}_a \cdot (\bar{q} \times \bar{s}_f)}{m^4} \left(\frac{4 \text{Re}(a_6) \text{Im}(a_7) \bar{p}_a \cdot \bar{p}_a}{m^4} - \frac{4 \text{Im}(a_5) \text{Re}(a_7) \bar{p}_a \cdot \bar{p}_a}{m^4} - \frac{4 \text{Re}(a_5) \text{Im}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{4 \text{Im}(a_5) \text{Re}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} - \frac{4 \text{Re}(a_7) \text{Im}(a_8) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{4 \text{Im}(a_7) \text{Re}(a_8) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{4 \text{Im}(a_7) \text{Re}(a_8) \bar{q} \cdot \bar{q}}{m^4} \right) \]

\[\frac{1}{g_i^4} \Gamma (\bar{p}_1, \ldots, \bar{k}_2, \bar{s}_i, \bar{s}_f) = \left(\frac{2 \text{Im}(a_2)^2 \bar{N} \cdot \bar{N}}{m^8} + \frac{2 \text{Re}(a_2)^2 \bar{N} \cdot \bar{N}}{m^8} + \frac{2 \text{Im}(a_3)^2}{m^4} + \frac{2 \text{Re}(a_3)^2}{m^4} \right) \bar{N} \cdot \bar{s}_f \bar{N} \cdot \bar{s}_i + \frac{2 \text{Re}(a_2) \text{Re}(a_4) \bar{N} \cdot \bar{N}}{m^6} - \frac{2 \text{Im}(a_1) \text{Im}(a_3)}{m^2} - \frac{2 \text{Re}(a_1) \text{Re}(a_3)}{m^2} \right) \bar{N} \cdot (\bar{s}_f \times \bar{s}_f) + \bar{p}_a \cdot \bar{s}_f \bar{p}_a \cdot \bar{s}_i \left(\frac{2 \text{Im}(a_6)^2 \bar{p}_a \cdot \bar{p}_a}{m^4} + \frac{2 \text{Re}(a_6) \text{Re}(a_7) \bar{p}_a \cdot \bar{p}_a}{m^4} + \frac{2 \text{Im}(a_5) \text{Im}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Re}(a_5) \text{Re}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} \right) + \frac{2 \text{Im}(a_7) \text{Im}(a_8) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Re}(a_7) \text{Re}(a_8) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Im}(a_5) \text{Im}(a_8) \bar{q} \cdot \bar{q}}{m^4} + \frac{2 \text{Re}(a_5) \text{Re}(a_8) \bar{q} \cdot \bar{q}}{m^4} \bar{q} \cdot \bar{s}_f + \bar{p}_a \cdot \bar{s}_f \left(\frac{2 \text{Im}(a_6)^2 \bar{p}_a \cdot \bar{p}_a}{m^4} + \frac{2 \text{Re}(a_6) \text{Re}(a_7) \bar{p}_a \cdot \bar{p}_a}{m^4} + \frac{2 \text{Im}(a_5) \text{Im}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Re}(a_5) \text{Re}(a_6) \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Im}(a_7)^2 \bar{p}_a \cdot \bar{q}}{m^4} + \frac{2 \text{Re}(a_7)^2 \bar{p}_a \cdot \bar{q}}{m^4} \right) \bar{q} \cdot \bar{s}_i + \left(\frac{2 \text{Re}(a_1)^2 + \text{Re}(a_1)^2}{m^8} - \frac{\text{Im}(a_2)^2 (\bar{N} \cdot \bar{N})^2}{m^8} - \frac{\text{Re}(a_2)^2 (\bar{N} \cdot \bar{N})^2}{m^8} - \frac{\text{Im}(a_3)^2 \bar{N} \cdot \bar{N}}{m^8} + \frac{\text{Im}(a_4)^2 \bar{N} \cdot \bar{N}}{m^8} + \frac{\text{Re}(a_4)^2 \bar{N} \cdot \bar{N}}{m^8} - \frac{\text{Re}(a_1)^2 \bar{N} \cdot \bar{N}}{m^8} - \frac{\text{Im}(a_5)^2 \bar{p}_a \cdot \bar{p}_a}{m^8} - \frac{\text{Re}(a_5)^2 \bar{p}_a \cdot \bar{p}_a}{m^8} \right) \bar{s}_i \cdot \bar{s}_f \right) \]

(A2)

(A3)
REFERENCES

[1] C.J. Horowitz and D.P. Murdock, Phys. Rev. C37, 2032 (1988).

[2] G.C. Hillhouse, Ph.D thesis, University of Stellenbosch (1999), unpublished.

[3] B.D. Serot and J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negele and E. Vogt (plenum Press, New York, 1986), Vol. 16, p. 116.

[4] J.A. McNiel, J.R. Shepard and S.J. Wallace, Phys. Rev. Lett. 50, 1439 (1983).

[5] J.A. McNiel, J.R. Shepard and S.J. Wallace, Phys. Rev. Lett. 50, 1443 (1983).

[6] D.L. Adams and M. Bleszynski, Phys. Lett. 136B, 10 (1984).

[7] J.A. Tjon and S.J. Wallace, Phys. Rev. C32, 1667 (1985).

[8] G.C. Hillhouse and P.R. de Kock, Phys. Rev. C49, 391 (1994).

[9] G.C. Hillhouse and P.R. de Kock, Phys. Rev. C52, 2796 (1995).

[10] G.C. Hillhouse, B.I.S. van der Ventel, S.M. Wyngaardt and P.R. de Kock, Phys. Rev. C57, 448 (1998).

[11] J.A. Tjon and S.J. Wallace, Phys. Rev. C35, 280 (1987).

[12] C. Chan, T.E. Drake, R. Abegg, D. Frekers, O. Häusser, K. Hicks, D.A. Hutcheon, L. Lee, C.A. Miller, R. Schubank, E.J. Stepehenson and S. Yen, J. Phys. G 15, L55 (1989).

[13] T. Wakasa, Study of Nuclear Isovector Spin Responses from Polarization Transfer in (p,n) Reactions at Intermediate Energies, Ph.D Thesis, University of Tokyo (1996), unpublished.

[14] J.D. Bjorken and S. Drell, Relativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

[15] C.J. Horowitz and M.J. Iqbal, Phys. Rev. C33, 2059 (1986).
[16] J. Hamilton, *Theory of Elementary Particles*, (Oxford University Press, London, 1959).

[17] J.A. Tjon and S.J. Wallace, Phys. Rev. Lett. 54, 1357 (1985).

[18] J.A. Tjon and S.J. Wallace, Phys. Rev. C32, 267 (1985).

[19] J.A. Tjon and S.J. Wallace, Phys. Rev. C36, 1085 (1987).

[20] E.E. van Faassen and J.A. Tjon, Phys. Rev. C28, 2354 (1983).

[21] E.E. van Faassen and J.A. Tjon, Phys. Rev. C30, 285 (1984).

[22] R.J. Furnstahl and S.J. Wallace, Phys. Rev. C47, 2812 (1993).

[23] T.A. Carey, K.W. Jones, J.B. McClelland, J.M. Moss, L.B. Rees and N. Tanaka, Phys. Rev. Lett. 53, 144 (1984).
FIGURES

FIG. 1. Two-body scattering process with momentum, mass and spin labels for the external nucleons. \(\hat{F} \) is the \(16 \times 16 \) nucleon-nucleon scattering matrix in the two-nucleon spin space. \(p_i \) and \(k_i \) \((i = 1 - 2) \) represent the four-momenta of the particles respectively. \(M_1 \) and \(M_2 \) denote the effective masses of the projectile and target nucleons respectively. \(s_i, s_2, s_f \) and \(s_2' \) are the spin four-vectors for each particle.

FIG. 2. Spin observables for a range of transferred energy \(\omega \) over the quasielastic peak for inclusive proton scattering from \(^{40}\text{Ca} \) at 500 MeV and \(\theta_{lab} = 19^\circ \). The centroid of the quasielastic peak is at \(\omega \approx 63 \) MeV. Data are from Ref. [23]. The solid represents the IA2 calculation and the dashed line represents the free mass calculation.
TABLES

TABLE I. Expressions for kinematical quantities containing \hat{s}_i and/or \hat{s}_f for each non-zero polarization transfer observable.

kinematical quantity	D_{vl}	$D_{s's}$	D_{nn}	$D_{s'l}$	D_{Vs}
$\vec{q} \cdot \hat{s}_i$	$p_1 - k_1 \cos \theta$	$-k_1 \sin \theta$	0	$p_1 - k_1 \cos \theta$	$-k_1 \sin \theta$
$\vec{q} \cdot \hat{s}_f$	$p_1 \cos \theta - k_1$	$-p_1 \sin \theta$	0	$-p_1 \sin \theta$	$p_1 \cos \theta - k_1$
$\vec{p}_a \cdot \hat{s}_i$	$\frac{1}{2} (p_1 + k_1 \cos \theta)$	$\frac{1}{2} k_1 \sin \theta$	0	$\frac{1}{2} (p_1 + k_1 \cos \theta)$	$\frac{1}{2} k_1 \sin \theta$
$\vec{p}_a \cdot \hat{s}_f$	$\frac{1}{2} (p_1 \cos \theta + k_1)$	$-\frac{1}{2} p_1 \sin \theta$	0	$-\frac{1}{2} p_1 \sin \theta$	$\frac{1}{2} (p_1 \cos \theta + k_1)$
$\vec{N} \cdot \hat{s}_i$	0	0	$p_1 k_1 \sin \theta$	0	0
$\vec{N} \cdot \hat{s}_f$	0	0	$p_1 k_1 \sin \theta$	0	0
$\hat{s}_i \cdot \hat{s}_f$	$\cos \theta$	$\cos \theta$	1	$-\sin \theta$	$\sin \theta$
$\vec{N} \cdot (\hat{s}_i \times \hat{s}_f)$	$p_1 k_1 \sin^2 \theta$	$p_1 k_1 \sin^2 \theta$	0	$p_1 k_1 \cos \theta \sin \theta$	$-p_1 k_1 \cos \theta \sin \theta$
\(F \)

\[(k_1 M_1 s_f) \quad (k_2 M_2 s'_2) \]

\[(p_1 M_1 s_i) \quad (p_2 M_2 s_2) \]
