Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing

Mohammed Selman1,2, Samar K Dankar1,2, Nicole E Forbes1,2, Jian-Jun Jia1 and Earl G Brown1,2

Little is known about the processes that enable influenza A viruses to jump into new host species. Here we show that the non-structural protein 1 (NS1) gene is linked to host switching and induces a novel protein by alternative splicing. The protein sequence of NS3 is similar to NS1 protein but with an internal deletion of a motif comprised of three antiparallel β-strands spanning codons 126 to 168 in NS1. The NS1-125G(GGT) codon was also found in 33 natural influenza A viruses that were strongly associated with switching from avian to mammalian hosts, including human, swine and canine populations. In addition to the experimental human to mouse switch, the NS1-125G(GGT) codon was also found in 33 natural influenza A viruses that were strongly associated with switching from avian to mammalian hosts, including human, swine and canine populations.

INTRODUCTION

In the past century, most pandemics were caused by influenza A virus (IAV). Although the natural reservoir of IAV is aquatic birds, IAV expand their host range through undefined adaptive processes involving mutation and genome reassortment. Over the years, the IAV have adapted to acquire the ability to cross the species barrier and thus have gained the capacity to infect, and cause disease in several new hosts including humans. However, little is known about the genetic mutations and processes by which the IAV is able to efficiently jump among species.

Many well-documented host-switching events have occurred for the IAV, such as in 1979, when an avian H1N1 IAV switched to the swine host which established a new ‘Eurasian avian origin’ swine flu lineage within the Eurasian swine populations. In 1997, 18 instances of poultry adapted highly pathogenic avian H5N1 IAV switching hosts to humans occurred in Hong Kong, which resulted in unusually severe disease and the deaths of six individuals. Two years later in Hong Kong, two instances of poultry adapted low pathogenic avian H9N2 IAV switching hosts to humans resulted in hospitalization, but with normal clinical disease and survival. However, neither the H5N1 nor H9N2 infections established sustained human-to-human transmission. The Eurasian avian to swine transmission was permanent and involved continued swine-to-swine transmission, whereas the H5N1 and H9N2 avian strains were not sufficiently adapted to humans to establish transmission in the new human host. However, both of the 1997 H5N1 and 1999 H9N2 IAV virus lineages must have possessed genetic features that allowed the first steps in host switching, which is infection of a novel host.

Recently, the study of experimental adaptation of a human H3N2 flu within a mouse host has revealed the acquisition of many positively selected mutations in the viral genome, which include 11 coding mutations in the non-structural protein 1 (NS1) gene. The NS genome segment encodes 2 genes, the NS1 protein from the full length transcript and the nuclear export protein (NEP) (also known as NS2), by pre-mRNA splicing. NS1 is a multifunctional protein that plays key roles in inhibition of host immune responses and viral replication. Specific NS mutations selected on mouse adaptation were also independently acquired in highly pathogenic viruses. For instance, 226I and 227K NS1 mutations are convergent with the 1918 H1N1 Spanish flu, and the F103L and M106I NS1 mutations, that have been shown to be adaptive, have been previously selected in the highly pathogenic avian H5N1 and its precursor from low pathogenic H9N2 lineages. Among 11 individual adaptive NS1 mutations, the nonsynonymous nucleotide substitution A374G inducing the D125G(GAT→GGT) mutation caused the greatest increase in viral replication and virulence in the mouse in vivo, which were associated with increased RNA polymerase activity, interferon antagonism, and protein synthesis in mouse cells in vitro. This mutated codon was...
adjacent to the independently selected NS1 coding mutation, M124I (nucleotide A372G).13,15

IAVs use the host splicing machinery to alternatively splice the NS gene,19 producing the NS1 protein from the unspliced transcript and the NEP protein from the spliced transcripts, and similarly for the M gene,20 producing the M1 matrix protein from the unspliced transcript and the transmembrane ion channel M2 protein from the spliced transcript. However, it was shown that the NS1 protein plays a role in splicing of host mRNA, by inhibiting the accumulation of a spliced cellular mRNA,21–23 without affecting the splicing of the NS gene.24

In this study, we show the first reported case of IAV adaptation to a new host by the selection of a mutation, NS1 D125G(GAT→GTT), which introduced a new splice site into the NS gene, hence producing the novel NS3 protein by alternative splicing. In addition, we found, that the 125G(GTT) codon is mostly found in viruses that have recently switched to new host species.

MATERIALS AND METHODS

Cell lines and virus strains

Mouse kidney epithelial cells (M1), human lung epithelial cells (A549) and 293T cells were maintained as described previously12 in minimum essential medium (MEM) or DMEM (for 293T) (Gibco; Life Technologies Corporation, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum (HyClone; Thermo Fisher Scientific, Ottawa, Ont., Canada), penicillin (100 U/ml), streptomycin (100 g/ml) and 2 mM L-glutamine (Gibco; Life Technologies Corporation). All cells were incubated at 37 °C in 5% CO\textsubscript{2}. Viruses were grown as previously described12,14 in 10-day-old specific pathogen-free embryonated chicken eggs (Canadian Food Inspection Agencies, Ottawa, Ont., Canada) at 37 °C for 2 days and stored at −80 °C.

Viruses yield in cells and mice

Madin–Darby canine kidney (MDCK), M1 or A549 cells were washed twice with 1× phosphate-buffered saline (PBS) and infected with a multiplicity of infection (MOI) of 0.001 in the presence of L-1-tosylamido-2-phenylethyl chloromethyl ketone (TPCK) trypsin (1–100 μg/ml), streptomycin (100 g/ml) and 2 mM L-glutamine (Gibco; Life Technologies Corporation). All cells were incubated at 37 °C in 5% CO\textsubscript{2}. Viruses were grown as previously described12,14 in 10-day-old specific pathogen-free embryonated chicken eggs (Canadian Food Inspection Agencies, Ottawa, Ont., Canada) at 37 °C for 2 days and stored at −80 °C.

Plasmids and rescue of recombinant viruses

Viruses rescue of HK-wild type (HK-wt) and NS mutant viruses were performed as previously described.12,14 The nucleotide sequence of the full length segment 8 for HK-wt and mutant NS1 and NS3 genes are included as FASTA files in Supplementary Table S1. The A/HK/1/68 NS3 gene cDNA was synthesized and inserted into the pLLB plasmid by Biomatic Corporation (Cambridge, Ont., Canada).

Protein and RNA synthesis

A549 and M1 cells were washed twice with PBS and infected with 100 μl recombinant viruses at an MOI of 3 (protein) or 2 (RNA). Cells were incubated at 37 °C for 30 min, and overlaid with 3 ml of 1× MEM. Cells were harvested at 8 hpi. Each experiment was performed in two or more biological repeats. A549 cells were infected with 100 μl recombinant viruses at an MOI of 3. After 8 hpi, the cells were pulsed-labeled with 80 μCi/ml 35S cysteine and methionine for 1 h in cysteine and methionine free media (Gibco; Life Technologies Corporation), cell lysates were collected with 1× SDS sample buffer and assessed by SDS-polycrylamide gel electrophoresis (PAGE) and autoradiography as previously described.12

RNA analysis

Total RNA was isolated from infected cells using RNeasy Protect Mini Kit (QIAGEN Inc., Toronto, Ont., Canada). After reverse transcription using oligo-(dT)\textsubscript{20} for viral mRNA or IAV universal primer for viral RNA (vRNA), real-time quantitative PCR analysis was performed using gene-specific primers (Supplementary Table S2), as previously described.13 Each experiment was performed in three biological repeats and two technical replicates. Conventional reverse transcription (RT)-PCR was also performed using HK-NS forward and HK-NS reverse primers that were complementary to terminal regions of the NS1 genome segment for both viral mRNA and vRNA Table S2 followed by Sanger sequencing of cDNA products (StemCore Labs (OHRI), Ottawa, Ont., Canada).

splice site prediction

wt and mutant NS gene sequences, from A/Hong Kong/1/1968 (H3N2) were run through ASSP25 (Alternative Splice Site Predictor) using acceptor and donor site cut-off values of 7 and 9, respectively (http://www.es.embnet.org/~mwang/assp.html).

Human splice site

Consensus sequence of splice site is bases of alignment of known human donor and acceptor site sequences extracted from EID (Exon-Intron database).26 Generation of sequence logos was done by WebLogo.27

Protein immunoblot analysis

Infected cells were washed twice with cold PBS, and were collected with 500 μl of 1× SDS buffer. Equal volumes of protein samples were on 10% or 12.5% polyacrylamide-SDS gels for 1 to 2 h at 120 V followed by transfer into polyvinylidene difluoride membranes (Millipore Corporation Canada; Cedarlane, Burlington, Ontario, Canada) for 1 h at 20 V at room temperature. Membranes were blocked with 10% dry milk in Tris-buffered saline or 5% bovine serum albumin in Tris-buffered saline for 1 h at room temperature, and then incubated with primary rabbit antibodies, NS1 (Dr E. Brown, University of Ottawa) or actin (Sigma, St Louis, MO, USA), followed by incubation with specific horseradish peroxidase-conjugated secondary antibody (Sigma). Signal detection was achieved using ECL plus (Pierce Protein Biology Products; Thermo Fisher Scientific) according to the manufacturer’s instructions.

NS1 immunoprecipitation

NS1 immunopassivity chromatography was performed using 5 μl rabbit anti-NS1 immune serum bound to 20 μl Protein G Dynabeads (Life Technologies Corporation). A549 infected with rHK-wt or rHK-NS-D125G cell lysate harvested 8 hpi were incubated with NS1 antibody-conjugated beads for 1 h at room temperature while rocking, then were washed with NP-40 lysis buffer. The beads were resuspended in 1× SDS buffer and boiled before analysis by SDS–PAGE electrophoresis. Gels were stained with Coomassie blue, and protein bands for NS1 and
NS3 were cut for mass spectroscopy analysis (Advanced Protein Technology Centre (SickKids), Toronto, Ont., Canada).

Mass spectroscopy (MS)

Gel bands for NS1-wt, NS1 124I 125G and NS3 were reduced with 30 μl of 10 mM DTT in 50 mM ammonium bicarbonate (30 min at 56 °C) and alkylated with 30 μl of 100 mM iodoacetamide in 50 mM ammonium bicarbonate (15 min in the dark at room temperature) before in-gel digestion by submersion in 13 μg/ml trypsin (sequencing grade trypsin; Promega Corporation, Madison, WI, USA) for 3 h at 37 °C. The eluted peptides were loaded onto a 150 μm ID picocolumn (Magic C18; Michrom Biosciences) at 4 μl/min and separated over a 75 μm ID analytical column packed into an emitter tip containing the same packing material. The peptides were eluted over 2 h at 300 nl/min using a 0 to 40% acetonitrile gradient in 0.1% formic acid using an EASY n-LC nano-chromatography pump (Proxeon Biosystems, Odense, Denmark). The peptides were eluted into a LTQ-Orbitrap hybrid mass spectrometer (Thermo-Fisher Scientific, Bremen, Germany) operated in a data-dependant mode using multistage activation. MS was acquired at 60 000 full width at half maximum resolution in the Fourier transform mass spectrometer and MS/MS was carried out in the linear ion trap. Six MS/MS scans were obtained per MS cycle. The raw data files were searched using Sequest (Thermo-Fisher Scientific) which was set up to search for NS1 from Influenza A virus (A/Hong Kong/1-1/1968(H3N2) Genbank accession number ACF22215), using a parent ion accuracy of 10 ppm and a fragment accuracy of 0.5 Da. A fixed modification of carbamidomethyl cysteine and variable modifications of phosphorylated serine, threonine and tyrosine residues, as well as oxidized methionine were considered in the search. MS spectra are available upon request.

Genomic and phylogenetic analysis

We retrieved all 18 237 NS gene sequence from NCBI’s Influenza Virus Resource on 17 March 2012, and identified the NS genes with a search. MS spectra are available upon request. Genomic and phylogenetic analysis

To determine how the M124I and D125G NS1 mutations affect viral replication, we measured viral growth in different hosts; in vitro, in MDCK canine kidney epithelial cells, M1 mouse kidney epithelial cells, A549 human lung epithelial cells, and in vivo, in CD-1 mouse lungs (Figure 1). NS mutant viruses grew to similar or slightly lower titres relative to wt in canine and human cells (Figure 1A and 1B). In contrast, growth in mouse cells showed a significant (P<0.05) increase in viral growth compared to wt (Figure 1C), where mutation D125G enhanced growth 102-fold, followed by the double and M124I mutants, with 41- and 2-fold increased yields respectively. Likewise, in vivo viral growth in mouse lungs showed increased growth for D125G and the double-mutant 1 day post-infection, with 20- and 16-fold increases relative to wt, respectively (Figure 1D). Thus, the D125G NS mutation in human IAV showed a gain of function for viral replication in mouse tissues.

Identification of the novel NS3 protein

To determine whether the adaptive NS mutation affects viral protein synthesis, we infected M1 and A549 cells with wt and NS mutant viruses and collected cell lysates for immunoblotting with anti-NS1 serum. Immunoblotting detected the 26 kDa NS1 protein and a second protein of 20 kDa (Figure 2A) in cells infected with the 125G, as reported earlier and the double-mutant. This indicated that the 125G mutation induced the smaller, 20 kDa protein. Combining the 125G with the 124I mutation increased the expression level of the 20-kDa protein. Furthermore, the 20-kDa protein was also detected in the original mouse adapted virus containing the 125G mutation (Figure 2B), and by radioactive labelling of proteins in infected A549 cells with the NS1 125G, and double mutant viruses (Figure 2C). The NS1 D125G and NS3 proteins are both stable in infected cells as previously shown in
A459 cells. A549 cells were infected (MOI 5) and pulsed for 1 h with S35 8 hpi. Error bars indicate s.e.m.)

We determined the amino acid sequence of the 20-kDa protein by liquid chromatography and tandem mass spectrometry (LC–MS–MS) of tryptic peptide fragments. NS1 and 20 kDa proteins were purified from wt and double-mutant-infected A549 cells by immuno-affinity chromatography and SDS–PAGE (Figure 3A) for LC–MS–MS analysis. The extracted ion chromatograms confirmed the sequence of the wt and double mutant NS1 proteins (Figure 3B and Supplementary Figure S1). In contrast, the 20-kDa protein sequence lacked three internal tryptic peptides (Figure 3B) and possessed an additional unique ‘joining tryptic peptide’, with NS1 amino-acid 125G adjacent to 169H (Figure 3C and Supplementary Figure S2). Thus, by peptide sequencing we identified the 20 kDa band as a novel influenza A protein, NS3, similar to NS1 with an internal deletion of 43 amino acids spanning positions 126K and 168G.

The NS3 protein is a product of alternative splicing due to the A374G(125G) mutation

To determine whether the internal deletion of NS3 was due to splicing of the NS gene transcript, we sequenced NS RNA from NS wt, 125G and double-mutant infected M1 cells. Extracted RNA was reverse-transcribed using NS gene primers to generate cDNA from mRNA and viral genomic RNA. cDNA was amplified using PCR primers complementary to the terminal regions of the NS genome segment. At the mRNA level, the wt and all mutants amplified two bands encoding NS1 and NEP (Figure 4A). The 125G and double-mutant also amplified two novel bands of intermediate size. DNA sequencing showed that the smaller band corresponded to a novel transcript, with an internal in-frame deletion of 129 nucleotides spanning positions 374 and 502, involving predicted amino acids 125–168 (Figure 4B and Supplementary Figure S3). This corresponded with the internal deletion found at the protein level in NS3. The larger novel band had a sequence consistent with a DNA hybrid of NS1 and NS3. The 5′ end sequence of NS3 mRNA ends with the nucleotide preceding the mutation in codon G125 that was joined in-frame to position 2 of codon G168 which is the NEP splice sites. For the 125G and double-mutant, an alternative putative donor splice site was identified at position 373 corresponding to position 1 of pre-mRNA codon 125 (Figure 4D). The A to G mutation at position 374 forms a requisite GU donor splice site at the 5′ end of the intron31 (Figure 4C and 4D), thus producing NS3 via the novel donor splice site at position 373 and the NEP’s acceptor splice site at position 503. Likelihood scores for the NS3 donor site were progressively higher than NEP. The addition of the 124I to the A374G(125G) mutation increased the likelihood score for the NS3 donor splice site (Figure 4D), since the 124I mutation further increased complementarity with the splicesomal U1 snRNA binding sequence, ACUUAACCUC (identical in human and mouse), which initiates splicing.31,32

To assess the effect of the A374G(125G) mutation on RNA expression levels, RNA from infected M1 cells was quantified by quantitative RT–PCR for NS1, NEP, NS3, as well as a late (M1) and early gene transcript (NP). To specifically quantify the NEP and NS3 mRNA, we
used primers for their respective donor splice sites; as for NS1, we used an intronic primer in the 125-168 area that is absent from the NEP and NS3 transcripts (Supplementary Table S1). The mutants showed a significant increase in mRNA and vRNA levels compared to the wt (Figure 4E and 4G), particularly in the double-mutant (with a greater than sevenfold increase for both mRNA and vRNA) that also affected the level of the NEP mRNA. The level of NS3 mRNA was undetectable for wt and 124I NS, and detectable in the A374G(125G) mutant with a 10-fold higher level in the double-mutant (Figure 4F and Supplementary Figure S4). Thus, both mutations demonstrated a functional role in RNA synthesis. These data also demonstrated that increased similarity to the consensus sequence of the donor splice site due to the additional 124I mutation increases the splicing of the NS gene in favor of NS3.

To further test the hypothesis that the novel 20-kDa NS3 band was the product of translation of a novel splice product of the NS gene, we expressed the NS1 D125G(GAT→GGT) mutant NS gene, as well as a synthetic cDNA construct of NS3 in splicing competent 293T cells and splicing incompetent coupled prokaryotic T7 transcription/reticulocyte translation systems. Cell-free transcription/translation of radioactively labeled NS1-wt and NS1 D125G(GAT→GGT) resulted in indistinguishable 26-kDa NS1 protein bands without the 20-kDa NS3 protein that was, however, synthesized from the synthetic NS3 cDNA construct (Figure 5A), confirming that the NS3 protein band was the product of this novel transcript. Expression of the synthetic NS3 cDNA in transfected 293T cells also resulted in the production of the 20-kDa NS3 protein band detectable by anti-NS1 immunoblotting that was also synthesized from the NS1 D125G(GAT→GGT)
construct but not from the NS1 D125G(GAT-GGC) mutant (with the same NS1 coding sequence but with a defective splice donor site) (Figure 5B), indicating that NS3 protein production is dependent on splicing and furthermore is not the product of post-translational modification of the NS1 D125G mutant protein. Thus, the expression pattern of NS3 from various constructs in both eukaryotic and prokaryotic transcription systems supported the earlier findings that NS3 is the result of NS3 structural modeling

The deleted peptide in NS3 causes the loss of binding regions for the protein kinase R, cleavage and polyadenylation specificity factor, as well as a nuclear export sequence. We used the known crystal structure of H5N1 NS1 (Supplementary Figure S5) to illustrate the relative location of the deleted internal peptide region of NS3. The NS1 three-dimensional structure model shows that the internal deletion corresponds to a specific motif of NS1, composed of three anti-parallel β-strands.

Increase in viral growth is due to novel splicing of NS gene

To determine whether the initial observation of increased growth observed in mouse lungs and cells was due to the D125G(A374G) mutation in the NS1 protein or due to NS3, the novel splice product of the NS gene, we generated recombinant HK (A/HK/1/68) viruses with a glycine at position 125 of the NS1 protein, but lacking the novel NS3 donor splice site (Figure 6A). We generated two new recombinant viruses that contained a GGC or GGG codon at position 125, encoding a glycine but that cannot splice at this site due to the loss of the internal donor splice site (Figure 6B). We measured growth, as performed in Figure 1, in MDCK and M1 cells at 48 hpi.
and 1 day post-infection in CD-1 mice relative to wt and D125G(A374G) (Figure 4C). In MDCK cells the 125G(GGT) virus that produces NS3 protein grew to similar levels as the wt; however, the 125G(GGG) and 125G(GGC) viruses grew to significantly lower titres (480- and 18 000-fold less respectively) than the wt and 125G(GGT) viruses. In M1 cells and CD-1 mice, the 125G(GGT) grew to higher titres then the wt, as previously observed in Figure 1 (Figure 6C). Again, the 125G(GGG) and 125G(GGC) viruses grew to significantly lower levels than the 125G(GGT) mutant with 24- to 78-fold reduced titres in M1 cells, as well as significant reductions in CD-1 mice lungs (Figure 6C). Thus, the gain of function shown for viral replication in mouse tissues due to the D125G(GAT) NS mutation in human IAV was not due to the NS1 amino acid substitution at position 125 from aspartic acid to glycine, but was rather due to the novel splicing of the NS gene to produce NS3.

To assess whether the increased replication seen in M1 cells in vitro was due to an increased ability to inhibit INF production (as previously shown in mouse lungs13), we also measured IFN-β induction of infected cell supernatants using mouse IFN-β ELISA. Whereas HK-wt and NS1 M124I induced minimally detectable levels of IFN-β, the HK NS1 D125G(GAT) mutant produced significantly more IFN-β that was however reduced in combination with the M124I mutation (Supplementary Figure S6). Thus, the increased replication due to the NS1 D125G(GAT) in M1 cells cannot be explained by effects on inhibition of IFN-β induction. This was in contrast to the phenotype seen on infection of mice with NS1 D125G(GAT)
where IFN-β induction was significantly reduced relative to HK-wt13 indicating that IFN antagonism is a complex biological trait that differs for infections performed in vivo versus in vitro.

Bioinformatic analysis of 125G(GGT) NS1 codon in the influenza database
To have a better understating of the novel NS3 protein, we searched other NS1 gene sequences to assess the occurrence of the 125G(GGT) mutation among viruses found in the NCBI’s Influenza Virus Resource database. From the 18,237 available NS1 genes, most of the amino acids at NS1 position 125 were aspartic acid or glutamic acid (D or E) (Supplementary Figure S7 and Supplementary Table S3). Only 71 viruses had a glycine at position 125, with 33 viruses possessing the GGT codon required for the novel splicing of the NS gene needed to generate NS3 (Table 1). As only the RNA sequence GU (GT in DNA) is an absolute requirement in a splicing donor site, we also searched NS1 genes for the presence of codons ending in GT, including AGT, CGT, TGT, but none were found at position 125 of the NS1 protein. Although the pool of viruses containing the 125G(GGT) codon was small, a pattern emerged that associated this mutation with adaptation and host-switching (Table 1). 125G(GGT) was found in the first swine isolate of the wholly avian 1979 H1N1 virus (A/Swine/Belgium/WVL1/1979(H1N1)) that switched hosts from avian to swine in Europe (Table 1). NS1 125G(GGT) was also independently observed in one case of the 1997 H5N1 virus (A/Hong Kong/481/97(H5N1)) that switched hosts from avian to human and in both (2 of 2) cases of the 1999 H9N2 viruses (A/Hong Kong/1074/99(H9N2) and A/Hong Kong/1073/99(H9N2)) that switched hosts from avian to human; and in the 2010 H3N2 virus that switch hosts from avian (A/Chicken/Korea/97/2007(H9N2)) to canine (A/Canine/Changwon/02/2010(H3N2)) all of which linked the NS1 125G(GGT) mutation with interspecies transmission (Table 1). These natural observations are all in addition to the A374G (D125G) mutation which was also independently selected upon mouse adaptation of the human IAV (A/Aichi/2/68(H3N2)).

Furthermore, the A/quail/Hong Kong/G1/97(H9N2) and A/Teal/Hong Kong/W312/97(H6N1) IAV which are proposed to be the viruses that rearranged by reassortment to generate the H5N1 and H9N2 influenza viruses that switched hosts from avian to human in Hong Kong in 1997 and 1999,42,43 also contain the 125G(GGT) codon (Table 1). This observation further strengthens the hypothesis that these quail and teal viruses were in fact the progenitors of the 1997 H5N1 and 1999 H9N2 virus. Viruses with the 125G(GGT) codon from the A/quail/Hong Kong/G1/97/99 lines were isolated from a wide variety of avian species in Honk Kong, including pheasant, quail, pigeon, partridge and chicken (Table 1). The NS gene with the 125G(GGT) codon from this lineage has been maintained in this lineage in poultry to be isolated 10 years later in domestic ducks in Vietnam (i.e. A/duck/Vietnam/OIE-2328/2009) (Table 1).

The recent canine IAV outbreak in Korea40 and southern China45 is hypothesized to be of avian origin from Korea due to the close phylogenetic relationships.46 Although the exact origin of this virus is still unknown, we found a closely related chicken virus from Korea (A/chicken/Korea/97/2007), which also contained the 125G(GGT) codon, which could be the source lineage of the canine IAV (Table 1). In addition, two strain of H3N8 goose IAV from Zambia,47 the one human H1N1 IAV from New York, and a pair of chickens infected with highly pathogenic avian H5N1 IAV from Egypt48 also contained the 125G(GGT) mutation (Table 1), but were not associated or related with any known host switching event. The geographic location of the two H5N1 chicken IAV isolates from Egypt coincides with several accounts of human infection with avian H5N1,49 however the human NS genes sequences were not available for comparative analysis.

DISCUSSION
Here, we show that the A374G nucleotide substitution, encoding the D125G(GGT→GGT) mutation, selected upon lung serial-passage of human IAV within a mouse host, activates a new donor splice site, hence producing the NS3 mRNA transcript that encodes the novel NS3 protein.

Novel splice products where previously reported in different viruses for the M gene,49,50 but translation of the new mRNAs were not detected.51 However, previous studies have shown that mutations that inactivate alternative splice sites in the M gene decrease the viruses viability and growth rate.52 Viable genetic variants with different sizes of NS1 gene products due to premature stop codons have been reported on laboratory passage of pathogenic avian H7N3 IAV but these mutations attenuated growth in chickens.53,54 Although IAV variants possessing shorter length NS1 genes due to premature termination are common in nature55 and have been generated by genetic engineering to produce attenuated vaccine candidates,56 to the best of our knowledge, other than the NEP protein, no new splice products have been previously identified for the NS gene. Hence, the selection of an adaptive mutation introducing a functional splice site, and

Table 1 List of virus containing the NS1 125G(GGT) codon. Viruses are grouped according to phylogenetic origin

Accession number	Virus	Origin	Host
FR687296	A/Chicken/Egypt/Q1011/2010(H5N1)	Avian	Chicken
FR687294	A/Chicken/Egypt/Q1185/2010(H5N1)	Avian	Chicken
JN543555	A/Chicken/Korea/97/2007(H9N2)	Avian	Chicken
JN247591	A/Canine/Chiangsu/02/2010(H3N2)	Avian	Canine
AF222674	A/Chicken/Hong Kong/NT16/99(H9N2)	Avian	Chicken
AJ410583	A/Chukka/Hong Kong/FY295/00(H6N1)	Avian	Chukka
AB571532	A/Duck/Vietnam/OIE-2328/2009(H9N2)	Avian	Duck
AB638729	A/Duck/Vietnam/OIE-2576/2009(H9N2)	Avian	Duck
AB638753	A/Duck/Vietnam/OIE-2581/2009(H9N2)	Avian	Duck
AB638737	A/Duck/Vietnam/OIE-2582/2009(H9N2)	Avian	Duck
AB571539	A/Duck/Vietnam/OIE-2583/2009(H9N2)	Avian	Duck
AB638745	A/Duck/Vietnam/OIE-2584/2009(H9N2)	Avian	Duck
AB638610	A/Duck/Vietnam/OIE-2578/2009(H9N2)	Avian	Duck
AB638327	A/Duck/Vietnam/OIE-2592/2009(H9N2)	Avian	Duck
AB638319	A/Duck/Vietnam/OIE-2593/2009(H9N2)	Avian	Duck
AB636537	A/Duck/Vietnam/OIE-2595/2009(H9N2)	Avian	Duck
AJ410577	A/Pheasant/Hong Kong/SH39/99(H6N1)	Avian	Pheasant
AF222676	A/Pheasant/Hong Kong/SSP11/99(H9N2)	Avian	Pheasant
AF222673	A/Pigeon/Hong Kong/FY6996(H9N2)	Avian	Pigeon
AF222672	A/Quail/Hong Kong/G1/97(H9N2)	Avian	Quail
AF222675	A/Quail/Hong Kong/SSP1099(H9N2)	Avian	Quail
AF250483	A/Teal/Hong Kong/W31297(H6N1)	Avian	Teal
AF256176	A/Hong Kong/1073/99(H9N2)	Avian	Human
AJ404735	A/Hong Kong/1074/99(H9N2)	Avian	Human
AF256178	A/Hong Kong/481/97(H5N1)	Avian	Human
AB569507	A/Geese/Zambia/05/2008(H3N8)	Avian	Goose
AB569515	A/Geese/Zambia/06/2008(H3N8)	Avian	Goose
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
CY037902	A/Swine/Belgium/WVL1/1979(H1N1)	Avian	Swine
consequently the emergence of a novel intron which results in an in-frame deletion between the novel donor and previously described acceptor splice site constitutes the first-time occurrence of splicing has been associated with an adaptive gain-of-function in IAV.

When combining the 124I and 125G mutations, the level of NS3 mRNA transcription and protein synthesis increased, suggesting that the overall observed increases in NEP, NS1, M and NP vRNA and mRNA was controlled by higher levels of NS3 mRNA and/or protein production. The NS1 protein has been shown to regulate the splicing of IAV transcripts, where it regulates the splicing of the M1 mRNA, but not the splicing of the NS gene into NS1 and NEP. However, the 124I mutation significantly increased splicing in favor of the novel NS3 protein when combined with the 125G mutation demonstrating an effect on splicing that may be due to changing the activity of the NS1 splice sites nonetheless, we cannot rule out an effect due to the 124I plus 125G mutated NS1 protein in this process.

By comparing growth properties of synthetic viruses with synonymous 125G mutations that were lacking the novel splice site, we were able to demonstrate that the observed increases in viral growth was primarily due to the novel splice product of the NS gene, and not due to the D125G amino acid change in the NS1 protein that resulted in decreased replication in M1 and MDCK cells (Figure 6). We thus demonstrated increased replication of the splice competent NS1 D125G(GGT) mutant versus the splice incompetent D125G(GGC) and D125G(GGG) viruses that both grew to significantly lower yields in MDCK and M1 cells, as well as in mouse lungs. The 125G(GT) mutation has also been shown to enhance IFN-β antagonism in the mouse lung that was associated with increased virulence and viral growth in the mouse lung. This was in contrast to the increased IFN-β induction seen in M1 cells for the 125G(GGT) mutant (Supplementary Figure S6), indicating that IFN antagonism at the level of IFN-β induction is a complex biochemical trait. Forbes et al. have also previously shown that the M124I mutation resulted in positive epistasis with the NS1 M106V mutation in mouse cells but negative epistasis in mouse lungs suggesting different types of NS1 gene interactions that are dependent on the host cell environment.

The increase in viral growth due to the (A374G)125G mutation was only detected in mouse, and not in human or canine cells. Taking into consideration that selection of the (A374G)125G mutation occurs when adapting a human IAV into a mouse host, this suggests that the increase in viral fitness due to the novel splice product, NS3, might only be beneficial in viruses that lack optimal functioning because they have not been adapted into a novel host. The (A374G)125G mutation in the human A/HK/1/68 virus in the human A549 cell was not required for replication in human cells and therefore did not enhance NS1 replicative functions, possibly because those functions have already been provided by previous human-adaptive mutations. Likewise, adaptive mutations such as the (A374G)125G did not enhance replication in the MDCK cell line, because the A/HK/1/68 virus possesses the appropriate functions of NS1 that are required to replicate in this cell line which is highly susceptible to infection with IAV from various host sources due, at least in part, to its defective IFN response due a defective Mx1 gene. Thus, the 125G(GGT) mutations appear to be selected in viruses that have switched hosts and require mutations that compensate for a lack of adequate NS1 and/or NS2 gene functions in the new host. This hypothesis is supported by the natural occurrence of codon 125G(GGT) in avian viruses that have been adapted to and among various species of poultry, as well as poultry viruses that have gone on to transmit to mammals and thus were operational for influenza virus host switching. Thus in nature, NS1 125G(GGT) was found in several viruses that had switched hosts from avian to a mammalian, including human, swine and canine populations. Most of these events involved well characterized viruses, like the 1979 H1N1 virus progenitor for the Eurasian swine flu lineage, the 1997 H5N1 and the 1999 H9N2 virus that switched host from avian to human, or more recently for the 2010 H3N2 virus that switched hosts from avian to canine. In addition, the 125G(GGT) codon is also found in their progenitor viruses such as the A/quali/Hong Kong/G1/97 virus that established a prevalent Asian poultry lineage of H9N2, suggesting that the selection of the 125G(GGT) codon occurs on intensive adaption, such as occurs in high density poultry farming to increase the ability of a host switch in IAV. The accumulated data indicate that adaption to a new host is multigenic and involves changes in the properties of multiple genes (see Refs. 14–16) and therefore the 125G(GGT) codon would be expected to operate in host switching in concert with other adaptive mutations. The NS1 mutation (A374G)125G and predicted splice site was also independently selected upon mouse adaptation of the human IAV A/Aichi/2/ 68(H3N2), providing further support that the novel splice product confers an adaptive advantage upon entry into a new host.

In this study, we established that the NS1 A374G substitution induced a D125G coding mutation and concomitantly activated a novel donor splice site, hence producing the novel viral transcript and protein, NS3. The NS3 splice site and resultant NS3 protein rather than the NS1 D125G substitution was critical for the adaptive properties due to this mutation. The increased viral replication and gene expression due to the novel NS splice site and the A374G/D125G mutation, as well as antagonism of IFN-β production previously reported in mice, provides a functional basis for examining the individual roles for the NS3 and NS1 125G proteins in viral RNA synthesis and IFN-β antagonism. In addition, we observed an association of the 125G(GGT) with viruses that have switched hosts during both experimental and natural evolution. Although the NS3 splice site are similar in all 33 viruses with the 125G(GGT) mutation (Supplementary Figure S8), we are now investigating whether the novel splicing of the NS gene, and translation of the NS3 protein also occurs in natural viruses with the NS1 125G(GGT) codon.

The future occurrence of pandemics caused by the emergence of a novel influenza A virus against which the population has little or no immunity is unpredictable. The finding of the adaptive 125G(GGT) mutation improves our understanding of the adaptive roles of influenza A virus mutants and their properties that will open avenues for further research. Studies continue to find previously unknown IAV proteins such as PB1-F2 and recently PA-X produced by frame shifting into the second open reading frame of segment 3. Our finding suggests that the 125G(GGT) mutation that induces the NS3 protein from a novel splice product in human H3N2 virus, could be an important factor for the ability of other IAV to adapt to a new host, and hence, would be a good marker to identify the potential for the emergence of a novel pathogen in human, poultry, canine and swine populations.

ACKNOWLEDGEMENTS

We thank Shuzhi Wang (University of Ottawa, Ottawa) and Paul Taylor (The Hospital for Sick Children, Toronto) for technical assistance. This project has been supported by the CIHR Pandemic Preparedness Team grant to the CIHR Canadian Influenza Pathogenesis Team TPA-90188, and CIHR operating grant MOP-74526.

1 Taubenberger JK, Morens DM. Pandemic influenza—including a risk assessment of H5N1. Rev Sci Tech 2009; 28: 187–202.
Emerging Microbes and Infections

Non-structural protein 3, novel influenza A virus protein
M Solen et al.

Fields BN, Knipe DM, Howley PM. Fields virology. 5th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, 2007.

3 Smith GJ, Vijaykrishna D, Bahl et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459: 1122–1125.

4 Cauthen AN, Swainy DE, Schultz-Cherry S, Perdue ML, Suarez DL. Continued circulation in China of highly pathogenic avian influenza viruses encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in poultry and humans. J Virol 2004; 78: 6552–6559.

5 Taubenberger JK, Kash JC. Influenza virus evolution, host adaptation, and pandemic formation. Cell Host Microbe 2010; 7: 440–451.

6 Persaet M, Ottis K, Vandepitte J, Kaplan MM, Bachmann PA. Evidence for the natural transmission of influenza A virus from wild ducks to swine and its potential importance for man. Bull World Health Organ 1981; 59: 75–78.

7 Donatelli I, Campilloti L, Castrucci MR, Ruggeri A, Sidioli L, Oxford JS. Detection of two antigenic subpopulations of H1N1 influenza viruses from pigs: antigenic drift or interspecies transmission? J Med Virol 1991; 34: 248–257.

8 Vijaykrishna D, Smith GJ, Pybus OG et al. Long-term evolution and transmission dynamics of swine influenza A virus. Nature 2011; 473: 519–522.

9 Claas EC, Osterhaus AD, van Beek R et al. Human infection with H5N1 influenza virus related to a highly pathogenic avian influenza virus. Lancet 1998; 351: 472–477.

10 Chang PK. Outbreak of avian influenza A(H5N1) virus infection in Hong Kong in 1997. Clin Infect Dis 2002; 34 Suppl 2: S58–S64.

11 Guo Y, Li J, Cheng X. Discovery of men infected by avian influenza A (H9N2) virus. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 2002; 14: 332–335.

12 Smith GJ, Vijaykrishna D, Bahl et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459: 1122–1125.

13 Li S, Min JY, Krug RM, Sen GC. Binding of the influenza A virus NS1 protein to PKR mediates the inhibition of its activation by either PACT or double-stranded RNA. Virology 2006; 349: 13–21.

14 Li S, Min JY, Krug RM. A site on the influenza A virus NS1 protein mediates both inhibition of PKR activation and temporal regulation of viral RNA synthesis. Virology 2007; 363: 236–243.

15 Chen Z, Li Y, Krug RM. Influenza virus A NS1 protein targets poly(A) binding protein II of the cellular 3′-end processing machinery. EMBO J 1999; 18: 2273–2283.

16 Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol Cell Biol 1998; 1: 991–1000.

17 Li Y, Yamakita Y, Krug RM. Regulation of a nuclear export signal by an adjacent inhibitory sequence: the effector domain of the influenza virus NS1 protein. Proc Natl Acad Sci USA 1998; 95: 4864–4869.

18 Bornholtz ZA, Prasad BV. X-ray structure of NS1 from a highly pathogenic H5N1 influenza virus. Nature 2008; 456: 985–988.

19 Bornholtz ZA, Prasad BV. X-ray structure of influenza virus NS1 effector domain. Nat Struct Mol Biol 2006; 13: 559–560.

20 Song D, Kang B, Lee C et al. Transmission of avian influenza virus (H3N2) to dogs. Emerg Infect Dis 2008; 14: 741–746.

21 Narsasari T, Sim MK, Ng HH et al. Adaptation of human influenza H3N2 virus in a mouse pneumoovirus model: insights into viral virulence, tissue tropism and host pathogenesis. Microbes Infect 2009; 11: 2–11.

22 Lin YP, Shaw M, Gregory V et al. Avian-to-human transmission of H9N2 subtype influenza A viruses: relationship between H9N2 and H5N1 human isolates. Proc Natl Acad Sci USA 2000; 97: 9651–9658.

23 Guan Y, Shortridge KF, Krausa S, Webster RG. Molecular characterization of H9N2 influenza viruses: were they the donors of the "internal" genes of H5N1 viruses in Hong Kong? Proc Natl Acad Sci USA 1999; 96: 9366–9367.

24 Guan Y, Shortridge KF, Krausa S et al. H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in southeastern China. J Virol 2000; 74: 9372–9380.

25 Li S, Shi Z, Jiao P et al. Avian-origin H3N2 canine influenza A viruses in Southern China. Infect Genet Evol 2010; 10: 1286–1288.

26 Lin Y, Zhao Y, Zeng X, Li C, Liu Y. Genetic and pathobiologic characterization of H3N2 canine influenza viruses isolated in the Jiangsu Province of China in 2009–2010. Vet Microbiol 2012; 158: 247–258.

27 Simuludue E, Iishi A, Igarashi M et al. Characterization of influenza A viruses isolated from wild waterfowl in Zambia. J Gen Virol 2011; 92(Pt 6): 1416–1427.

28 Kayali G, Webb RJ, Ducatte MF et al. The epidemiological and molecular aspects of influenza H5N1 viruses at the human-animal interface in Egypt. PLoS One 2011; 6: e17370.

29 Shih SR, Suen PC, Chen YS, Chang SC. A novel spliced transcript of influenza A/WSN/33 virus. Virus Genes 1998; 17: 179–183.

30 Shih SR, Nemeroff ME, Krug RM. The choice of alternative 5′ splice sites in influenza virus M1 mRNA is regulated by the viral polymerase complex. Proc Natl Acad Sci USA 1999; 96: 6324–6328.

31 Jackson D, Lamb RA. The influenza A virus spliced messenger RNA M mRNA3 is not required for viral replication in tissue culture. J Gen Virol 2008; 89(Pt 12): 3097–3101.

32 Chiang C, Chen GW, Shih SR. Mutations at alternative 5′ splice sites of M1 mRNA negatively affect influenza A virus viability and growth rate. J Virol 2008; 82: 10873–10886.

33 Perdue ML. Naturally occurring NS variants in an avian influenza virus isolate. Virus Res 1992; 23: 223–240.

34 Wang L, Suarez DL, Pantrin-Jackwood M et al. Characterization of influenza virus variants with different sizes of non-structural (NS) genes and their potential as a live influenza vaccine in poultry. Vaccine 2008; 26: 3580–3586.

35 Gundon WG. Variability among the neuraminidase, non-structural 1 and PB1-F2 proteins in the influenza A virus genome. Virus Genes 2012; 44: 363–373.

36 Richt JA, Garcia-Sastre A. Attenuated influenza virus vaccines with modified NS1 protein. Nature 2007; 450: 531–536.

37 Perdue ML, Sande MA, Mandir M et al. Characterization of influenza A virus mitochondiral protein that induces cell death. Nat Med 2001; 7: 1306–1312.

38 Seitz C, Frensing T, Hoper D, Kochs G, Reich U. High yields of influenza A virus in Madin–Darby canine kidney cells are promoted by an insufficient interferon-induced antiviral state. J Gen Virol 2010; 91(Pt 7): 1754–1763.

39 Bornholtz ZA, Prasad BV, Malide D et al. A novel influenza A virus mitochondrial protein that induces cell death. Nat Med 2001; 7: 1306–1312.

40 Jagger BW, Wise HM, Kash JC et al. An overlapping protein-coding region in influenza A virus segment 3 modulates the host response. Science 2012; 337: 199–204.

This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/