High-quality draft genome sequences of five anaerobic oral bacteria and description of *Peptoanaerobacter stomatis* gen. nov., sp. nov., a new member of the family *Peptostreptococcaceae*

Maria V. Sizova¹, Amanda Chilaka¹, Ashlee M. Earl², Sebastian N. Doerfert¹, Paul A. Muller¹, Manolito Torralba³, Jamison M. McCorrison³, A. Scott Durkin³, Karen E. Nelson³ and Slava S. Epstein¹*

Abstract

Here we report a summary classification and the features of five anaerobic oral bacteria from the family *Peptostreptococcaceae*. Bacterial strains were isolated from human subgingival plaque. Strains ACC19a, CM2, CM5, and OBRC8 represent the first known cultivable members of “yet uncultured” human oral taxon 081; strain AS15 belongs to “cultivable” human oral taxon 377. Based on 16S rRNA gene sequence comparisons, strains ACC19a, CM2, CM5, and OBRC8 are distantly related to *Eubacterium yurii* subs. *yurii* and *Filifactor alocis*, with 93.2 – 94.4 % and 85.5 % of sequence identity, respectively. The genomes of strains ACC19a, CM2, CM5, OBRC8 and AS15 are 2,541,543; 2,312,592; 2,594,242; 2,553,276; and 2,654,638 bp long. The genomes are comprised of 2277, 1973, 2325, 2277, and 2308 protein-coding genes and 54, 57, 54, 36, and 28 RNA genes, respectively. Based on the distinct characteristics presented here, we suggest that strains ACC19a, CM2, CM5, and OBRC8 represent a novel genus and species within the family *Peptostreptococcaceae*, for which we propose the name *Peptoanaerobacter stomatis* gen. nov., sp. nov. The type strain is strain ACC19aᵀ (=HM-483ᵀ; =DSM 28705ᵀ; =ATCC BAA-2665ᵀ).

Keywords: *Peptostreptococcaceae, Peptoanaerobacter stomatis*, Uncultivable bacteria, Anaerobic oral bacteria, Human oral taxa

Introduction

The oral cavity is a major gateway to the human body [1] and one of the principle sites of interest to the Human Microbiome Project, which aims to characterize this microbiome and understand its role in health and disease.

The 16S rRNA surveys and metagenomic analyses indicate that the typical oral community is comprised of over 700 bacterial species [2–4], approximately half of which have been isolated in culture and formally named. The rest remain uncultivated or unclassified [1, 5]. Anaerobic species are of particular importance as they constitute approximately one half of the human oral microbiome [6–8] and likely play an important role in the function of the oral microbial community.

The Human Oral Microbiome Database, provides comprehensive information on currently known prokaryote species and presents a provisional “oral taxa” naming scheme for the presently unnamed cultivable and uncultivable species. HOMD also provides links to genome sequencing projects of oral bacteria [9]. There are annotated genomes for 381 oral taxa currently available at HOMD.

Five anaerobic strains ACC19a, CM2, CM5, OBRC8, and AS15 from the family *Peptostreptococcaceae* were isolated earlier from the subgingival plaque obtained from two

*Correspondence: s.epstein@neu.edu

¹Northeastern University, 360 Huntington Avenue, Boston, MA, USA

Full list of author information is available at the end of the article

© 2015 Sizova et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
Family Peptostreptococcaceae currently is represented by five validly-named genera, *Anaerobacter*, *Filifactor*, *Peptostreptococcus*, *Sporacetigenium*, and *Tepidibacter* [11, 12], and several unclassified species. At this time, genome sequences of oral bacteria from the family *Peptostreptococcaceae* are available for three strains of *Peptostreptococcus anaerobius*, one strain of *P. stomatis*, one strain of *Filifactor alocis*, and one strain of unclassified *Eubacterium yurii* subsp. *margaretiae*.

According to HOMD, the genera *Peptostreptococcus* and *Filifactor* are represented by three oral taxa, while the other eleven *Peptostreptococcaceae* oral taxa remain formally unclassified. To date, only two unclassified oral taxa are represented by cultivable isolates, whereas nine stay “yet uncultured” and are known only by their molecular signatures. Strains ACC19a, CM2, CM5, and OBRC8 described here represent the first known cultivable members of “yet uncultured” human oral taxon 081; strain AS15 is classified as a member of “cultivable” oral taxon 377.

Here we report a summary classification and the features of strains ACC19a, CM2, CM5, OBRC8, and AS15 together with their genome sequence and annotation. Strains have been deposited in BEI Resources, ATCC and DSMZ under deposition numbers HM-483, DSM 28705, ATCC BAA-2665 (for ACC19a), HM-484, DSM 28703, ATCC BAA-2664 (for CM2), HM-485, DSM 28704 (for CM5), HM-765, DSM 28706 (for OBRC8), and HM-766, DSM 28702, ATCC BAA-2661 (for AS15) respectively.

Organism information

Classification and features

Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strains ACC19a, CM2, CM5, and OBRC8 were only distantly related to *Eubacterium yurii* subsp. *yurii*, *E. yurii* subsp. *schtitka*, *E. yurii* subsp. *margaretiae* and *Filifactor alocis*, and formed a separate branch within the *Peptostreptococcaceae*, while strain AS15 was closely related *E. yurii* subsp. *margaretiae* (Fig. 1). The validly published species of *E. yurii* subsp. *yurii*, *E. yurii* subsp. *schtitka* and *E. yurii* subsp. *margaretiae* have historically been misclassified and were included within the genus *Eubacterium* [13, 14], but according to 16S rRNA gene sequence phylogeny, *E. yurii* falls into the *Peptostreptococcaceae* [15].

Cells of strains ACC19a, CM2, CM5, and OBRC8 are non-spore-forming, highly motile, peritrichous rods with round ends; cells often form chains. Cells of strain AS15 are motile, monotrichous, straight rods with square ends that often form rosettes or brush-like aggregates (Table 1, Fig. 2). On liquid TY medium, a maximum growth of 6.5 mm was observed after 2 to 3 days of incubation at 37°C. Growth was observed with 0.2% yeast extract, 0.5% Bacto-tryptone, 0.5% malt extract, 0.5% peptone, 0.5% yeast extract, and 0.5% sodium chloride.

Fig. 1 Maximum-Likelihood phylogenetic tree based on 16S rRNA gene sequence comparisons of strains ACC19a, CM2, CM5, OBRC8, and AS15 (shown in bold) together with other representatives of the *Peptostreptococcaceae* family and other related human bacteria. The tree was derived based on Tamura-Nei model using MEGA 5 [39]. Bootstrap values > 50% calculated for 1000 subsets are shown at branch-points. Bar 0.02 substitutions per position. Strains whose genomes have been sequenced are marked with an asterisk.
Table 1: Classification and general features of the five oral isolates according to the MIGS recommendation [34]

MIGS ID	Property	Term	Evidence code
		strain ACC19a	
		strain CM2	
		strain CM5	
		strain OBRC8	
		strain AS15	
	Classification	Domain Bacteria	TAS [35]
		Phyllum Firmicutes	TAS [36]
		Class Clostridia	TAS [36]
		Order Clostridiales	TAS [36]
		Family Peptostreptococcaceae	TAS [36]
		Genus Peptoanaerobacter	
		Species Peptoanaerobacter stomatis	
		Type strain HM-483; DSM 28705; ATCC BAA-2665	
	Gram stain	Positive	IDA
	Cell shape	Rods with round ends	IDA
	Cell size, μm	0.4-0.8 × 1.2-2.5	IDA
	Motility/Flagella	+/-peritrichous	IDA
	Sporulation	Does not form spores	IDA
	Temperature range	30 – 42 °C	IDA
	Optimum temperature	37 °C	IDA
	pH range; Optimum	6.5-7.5; 7	IDA
	Carbon source	Yeast extract	IDA
	MIGS-6	Habitat	TAS [10]
	MIGS-6.3	Salinity	IDA
	MIGS-15	Oxygen requirement	TAS [10]
	MIGS-14	Biotic relationship	TAS [10]
	MIGS-4	Geographic location	TAS [10]

Sizova et al. Standards in Genomic Science (2015) 10:37
Table 1 Classification and general features of the five oral isolates according to the MIGS recommendation [34] (Continued)

MIGS-5	Sample collection	March 1, 2010	TAS [10]
MIGS-4.1	Latitude	42.34	NAS
MIGS-4.2	Longitude	-71.09	NAS
MIGS-4.4	Altitude	5.8 m above see level	NAS

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are from Gene Ontology project [37, 38]
cells of strains ACC19a, CM2, CM5, and OBRC8 range from 1.0 to 3.4 μm in length and from 0.4 to 0.8 μm in width; cells of strain AS15 are 1.5 – 4.7 μm long and 0.4-0.5 μm wide (Table 1, Fig. 2). Cells are Gram-positive, structurally and by staining (Table 1, Fig. 2). After 48-72 h incubation on TY blood agar plates at 37 °C, strains ACC19a, CM2, CM5, and OBRC8 formed pin-point, beige, circular, convex, non-hemolytic colonies, approximately 0.5 mm in diameter. Colonies of strain AS15 are circular, umbonate, alpha-hemolytic, yellow-greenish in pigment, 1 mm in diameter after 48-72 h, and 2-3 mm in diameter after 168 h.

Isolated strains grew only under strict anaerobic conditions. Growth occurred from 30 to 42 °C, with optimum growth at 37 °C. All isolates were susceptible to discs containing 1 mg kanamycin, 2 units penicillin, 60 μg erythromycin, 30 μg chloramphenicol, 30 μg tetracycline and bile. Catalase, oxidase and urease activities were negative; nitrate reduction was not detected, gelatin was not liquefied, and aesculin was not hydrolyzed. Strains ACC19a, CM2, CM5, and OBRC8 did not produce indole, while strain AS15 did produce indole (Table 1). All strains were able to grow on 2.0 – 10 g l⁻¹ of yeast extract, but not on casamino acids. No visible biomass was formed in medium with 0.5 – 2.0 g l⁻¹ of yeast extract only. All five strains produced acid on API 20A media containing glucose, maltose and sucrose, but not lactose, arabinose, cellobiose, mannose, melezitose, raffinose, rhamnose, trehalose, xylose, glycerol, mannitol, salicin and sorbitol. All produced gas on TY liquid medium. In liquid medium, supplemented with 5.0 g l⁻¹ of yeast extract, strains CM2, OBRC8 and AS15 fermented D-glucose, D-sucrose and D-maltose; strains ACC19a, CM2, CM5 and OBRC8 poorly fermented L-glutamine; strain CM2 fermented L-serine; strains ACC19a, CM5, and AS15 weakly fermented L-alanine; strains CM2, CM5, and AS15 poorly fermented L-valine. The major metabolic end products of strains ACC19a, CM2, and CM5 on TY medium were acetate and propionate (Table 1).

Cell biomass that was grown in TY liquid medium for 48 h was used for the whole-cell fatty acids analysis. Fatty acids were methylated, extracted, and analyzed by GC using the Sherlock Microbial Identification System at Microbial ID, Inc. Fatty acid methyl esters profile showed that strain ACC19a contained C12:0 (5.6 %), C14:0 (46.6 %), C16:0 (7.8 %), C16:1ω7c (9.4 %), and C16:1ω7c DMA (5.2 %) as major fatty acids; strain CM2 contained C 12:0 (5.2 %), C14:0 (47.1 %), C16:0 (5.7 %), C16:1ω7c (6.9 %), and C16:1ω7c DMA (7.2 %); and strain CM5 contained C14:0 (40.6 %), C16:0 (7.4 %), C16:1ω7c (11.5 %), and C16:1ω7c DMA (6.8 %) (Table 1). Genomic DNA G + C content of strains ACC19a, CM5, CM2 and OBRC8 was between 30.0 – 30.7 %, and of strain AS15 was 32.2 % (Table 2).
Genome sequencing information

Genome project history
The genomes were selected for sequencing in 2010-11 by the HMP. For strains ACC19a, CM2, and CM5, sequencing, finishing, and annotation were performed by the Broad Institute of Harvard and MIT. For strains OBRC8 and AS15, sequencing, finishing, and annotation were performed by the J. Craig Venter Institute (JCVI). The genomes were deposited in the Genome On-Line Database [16]; the complete genome sequences were deposited in GenBank and are available in the RefSeq database [17–19]. Project information and association with MIGS version 2.0 is presented in Table 3. The genome finishing quality for all strains was High-Quality Draft.

Growth conditions and genomic DNA preparation
Strains ACC19a, CM2, CM5, OBRC8, and AS15 were cultivated on liquid TY anaerobic medium as previously described [10].

Genomic DNA was extracted from microbial biomass with the PowerMicrobial® Maxi DNA Isolation Kit (MO BIO Laboratories, Inc.) using phenol: chloroform in combination with bead beating cell lysis.

Genome sequencing and assembly
Strains ACC19a, CM2, and CM5 were sequenced using two 454 pyrosequence libraries on the 454 platform: one standard 0.6 kb fragment library and one 2.5 kb jump library [20]. Library construction and sequencing process details are available at www.broadinstitute.org and 454 technologies. For strain CM2, additional sequence data was generated using two Illumina libraries on the Illumina HiSeq 2000 platform: one standard 180 bp fragment library and one 3-5 kb jump library. Library construction and sequencing process details are available at www.broadinstitute.org. Strains ACC19a and CM5 454 data set was assembled using Newbler Assembler version 2.3 PostRelease-11/19/2009 and CM2 data sets were assembled using ALLPATHS version R39099 (Table 3).

Strains OBRC8 and AS15 were sequenced using Illumina paired-end sequencing technology on the Illumina HiSeq 2000 platform: one standard Illumina paired-end library. Library construction and sequencing process details are available at www.jcvi.org. Strains OBRC8 and AS15 Illumina data sets were assembled using Celera Assembler version 6.1.

Both assemblies are considered High-Quality Draft and consist of: 59 contigs with a total size of 2,541,543 bases for strain ACC19a; 106 contigs with a total size of 2,594,242 bases for strain CM5; and 19 contigs with a total size of 2,312,592 bases for strain CM2. The error rates of the draft genome sequences for strains ACC19a and CM5 are estimated to be less than one in 10,000 (accuracy of ~ Q40) and less than 1 in 1,000,000 (accuracy of ~ Q60) for strain CM2. Average sequence coverage for strains ACC19a and CM5 is 40× and 39×, respectively, and 282× for strain CM2 (Tables 3, 4 and 2, Additional file 1: Table S1).

Strains OBRC8 and AS15 Illumina data sets were assembled using Celera Assembler version 6.1.

Table 2 Genomes statistics

Attribute	strain ACC19a	strain CM2	strain CM5	strain OBRC8	strain AS15
Genome size (bp)	254,1543 100	231,259,2 100	259,424,2 100	255,327,6 100	265,463,8 100
DNA coding region (bp)	215,2064 85	196,164,0 85	219,838,6 85	217,178,3 85	220,441,4 83
DNA G + C (bp)	771,857 30	695,842 30	790,067 30	783,396 31	855,775 32
DNA scaffolds	59 100	19 100	106 100	40 100	52 100
Total genes	2,331 100	2,030 100	2,379 100	2,313 100	2,336 100
Protein coding genes	2,277 98	1,973 97	2,325 98	2,277 98	2,308 99
RNA genes	54 2	57 3	54 2	36 2	28 1
Pseudo genes	0 0	0 0	0 0	0 0	0 0
Genes in internal clusters	21 1	4 0	18 1	4 0	10 0
Genes with function prediction	1,811 78	1,618 80	1,873 79	1,868 81	1,915 82
Genes assigned to COGs	1,404 60	1,362 67	1,448 61	1,422 61	1,472 63
Genes with Pfam domains	1,856 80	1,636 81	1,917 81	1,822 79	1,851 79
Genes with signal peptides	129 6	120 6	130 6	131 6	174 7
Genes with transmembrane helices	531 23	455 22	505 21	514 22	616 26
CRISPR repeats	0 0	0 0	0 0	0 0	0 0

*% - Percent of total. The total is based on either the size of the genome in base pairs or the protein coding genes in the annotated genome.
MIGS ID	Property	Term ACC19a	strain CM2	strain CM5	strain OBRC8	strain AS15
MIGS-31	Finishing quality	High-Quality Draft Genome Sequence				
MIGS-28	Libraries used	Two 454 pyrosequencing libraries, one standard 0.6 kb fragment library and one 2.5 kb jump library	Two Illumina libraries, one standard 180 bp fragment library and one 3-5 kb jump library	Two 454 pyrosequencing libraries, one standard 0.6 kb fragment library and one 2.5 kb jump library	Standard Illumina paired-end library	Standard Illumina paired-end library
MIGS-29	Sequencing platforms	454 FLX Titanium	Illumina HiSeq 2000	454 FLX Titanium	Illumina HiSeq 2000	Illumina HiSeq 2000
MIGS-31.2	Fold coverage	40x	282x	39x	32x	31x
MIGS-30	Assemblers	Newbler v.2.3	ALLPATHS v. R39099	Newbler v.2.3	Celerassembler v.6.1	Celerassembler v.6.1
MIGS-32	Gene calling method	PRODIGAL	PRODIGAL	PRODIGAL	GLIMMER	GLIMMER
Locus Tag	HMPREF9629					
GenBank ID	AFZE000000000					
GenBank Date of Release	Dec 19, 2011					
GOLD ID	G06852					
BIOPROJECT	49887					
MIGS 13	Source Material Identifier	HM-483; DSM 28705; ATCC BAA-2665	HM-484; DSM 28703; ATCC BAA-2664	HM-485; DSM 28704	HM-765; DSM 28706	HM-766; DSM 28702; ATCC BAA-2661
Project relevance	Human Microbiome Project					
sequence coverage for strains OBRC8 and AS15 is 32× and 31×, respectively (Tables 3, 4 and 2, Additional file 1: Table S1).

Assessment of coverage, GC content, contig BLAST and 16S rRNA gene classification was consistent with the expected organism for all five genomes.

Genome annotation

Strains ACC19a, CM2, and CM5 were annotated using PRODIGAL [21] with no additional manual curation performed. For strains OBRC8 and AS15, genes were identified using GLIMMER, also with no additional manual curation. Table 2 summarizes statistics for each genome, including gene count, according to the original annotations and the Integrated Microbial Genomes (IMG) and Metagenomes website as of May 15, 2014 [22]. Additional annotations using RAST were performed for comparison [23].

Genome properties

Strains ACC19a, CM2, CM5, OBRC8, and AS15 genomes include one circular chromosome of 2,541,543; 2,312,592; 2,594,242; 2,553,276; and 2,654,638 bp, respectively, with DNA G + C content of 30.0 – 32.2 % (Table 4 and 2). The genomes comprise 2277, 1973, 2325, 2277, and 2308 protein-coding genes, respectively, and 54, 57, 54, 36, and 28 RNA genes, respectively. The coding regions accounted for 83.0 – 85.1 % of the genomes for all isolates (Table 2). The total number of genes ranged between 2030 and 2379 and the percent of genes assigned to clusters of orthologous groups (COGs) ranged from 60.2 % - 67.1 % (Table 2). The isolate with the smallest genome size, strain CM2, had the least number of predicted total genes and protein-coding genes, but the highest percentage of genes assigned to COGs. The percentage of genes with signal peptides for strains ACC19a, CM2, CM5, and OBRC8 ranged between 5.5 – 5.9 %; for strain AS15 the percentage was 7.45 %. The percentage of genes with transmembrane helices for strains ACC19a, CM2, CM5, and OBRC8 ranged between 21.2 – 22.8 %; for strain AS15 the percentage was 26.4 % (Table 2).

COG values for the annotation data directly from the sequencing centers were found on the IMG website, as of May 15, 2014 (Table 5). The percentages in Table 5 are the number of COG proteins out of the total number of annotated genes. For all strains, 32.9 % - 39.8 % of the proteins were not predicted to be part of a COG category; strain ACC19a had the highest percentage of proteins unassigned (Table 5). Strain CM2 had the highest sequence coverage, at 282×, and the lowest percentage of unassigned proteins, at 32.9 % (Table 3 and 5).

Insights from the genome sequences

Metabolic network analysis

The metabolic Pathway/Genome Databases (PGDBs) for strains ACC19a, CM2, and CM5 were generated on February 10, 2013 from genomic data obtained from RefSeq [17–19] by the PathoLogic program using Pathway Tools software version 17.0 [24] and MetaCyc version 17.0 [25]. These PGDBs are categorized as Tier 3, meaning that they were generated computationally, have undergone no subsequent manual curation, and may contain errors [26]. In addition, the RAST annotations of the genomic data for all five strains were uploaded to a downloadable version of Pathway Tools version 17.5 [24].

According to the RAST annotations, for strains ACC19a, CM2, and CM5, complete “sucrose degradation III (sucrose invertase)” pathways were predicted in Pathway Tools, but were marked as not present based on the RefSeq data. Based on the RAST annotations, for strains OBRC8 and AS15, this pathway was also predicted in Pathway Tools. Based on biological testing, strains CM2, OBRC8, and AS15, but not ACC19a and CM5, used sucrose as a carbon source. Strains CM2, OBRC8, and AS15 were also able to use glucose and maltose as carbon sources (Table 1). In Pathway Tools, glucose is part of multiple pathways, including glycolysis I and III, glucose and xylose degradation, and heterolactic fermentation pathways. For all five strains, there was a complete glycolysis III pathway. In Pathway Tools, maltose is also part of multiple pathways, including the starch degradation I through V and the glycogen degradation I pathways. In the starch degradation V pathway, a 4-α-glucanotransferase (EC 2.4.1.25) is required to degrade maltose into α-D-glucose. We confirmed that strains CM2, OBRC8, and AS15 have a gene for this protein.

Phenotypic and phylogenetic comparison

Based on 16S rRNA gene sequence comparisons, strains ACC19a, CM2, CM5, and OBRC8 are closely related to each other, with 98.9 – 99.9 % sequence identity. These four novel isolates are only distantly related to [*Eubacterium*]
yurii subs. yurii and [E.] yurii subs. schtitka, with 93.2 – 94.4 % 16S rRNA gene sequence identity, and to Filifactor alocis, with 85.5 % sequence identity (Figure 1). Strains ACC19a, CM2, CM5, and OBRC8 are sharing only 93.6 – 94.0 % of 16S rRNA gene sequence identity with strain AS15, which is below a ‘lower cut-off window’ of 95 % for the new genus differentiation [27, 28]. Predicted DNA-DNA hybridization (DDH) values [29–31] between each of the novel strains, ACC19a, CM2, CM5, and OBRC8 and strain AS15 together with [E.] yurii subs. margaretiae vary between 13.8 % - 14.3 %, clearly indicating two separate taxa (Table 6).

Predicted DDH value between four strains, ACC19a, CM2, CM5, and OBRC8 varies between 67.6 and 84.5 % (Table 6), which is above or on the brink of the threshold of 70 %, the widely accepted value of relatedness used for

Table 5	Number of genes associated with general COG functional categories obtained from BROAD or JCVI pipelines										
Code	Description	strain ACC19a	%	strain CM2	%	strain CM5	%	strain OBRC8	%	strain AS15	%
J	Translation, ribosomal structure and biogenesis	136	5.8	132	6.5	136	5.7	136	5.9	142	6.1
A	RNA processing and modification	0	0	0	0	0	0	0	0	0	0
K	Transcription	105	4.5	97	4.8	105	4.4	106	4.6	105	4.5
L	Replication, recombination and repair	111	4.8	96	4.7	145	6.1	113	4.9	104	4.5
B	Chromatin structure and dynamics	0	0	0	0	0	0	0	0	0	0
D	Cell cycle control, cell division, chromosome partitioning	23	1	22	1.1	23	1	22	1	21	0.9
V	Defense mechanisms	46	2	34	1.7	42	1.8	41	1.8	55	2.4
T	Signal transduction mechanisms	77	3.3	75	3.7	78	3.3	80	3.5	77	3.3
M	Cell wall/membrane/envelope biogenesis	70	3	67	3.3	69	2.9	73	3.2	71	3
N	Cell motility	56	2.4	50	2.5	52	2.2	48	2.1	55	2.4
U	Intracellular trafficking, secretion, and vesicular transport	40	1.7	33	1.6	35	1.5	37	1.6	41	1.8
O	Posttranslational modification, protein turnover, chaperones	52	2.2	54	2.7	52	2.2	55	2.4	60	2.6
C	Energy production and conversion	96	4.1	95	4.7	98	4.1	97	4.2	103	4.4
G	Carbohydrate transport and metabolism	75	3.2	76	3.7	75	3.2	75	3.2	76	3.3
E	Amino acid transport and metabolism	138	5.9	147	7.2	142	6.6	146	6.3	146	6.3
F	Nucleotide transport and metabolism	54	2.3	54	2.7	54	2.3	55	2.4	54	2.3
H	Coenzyme transport and metabolism	69	3	67	3.3	69	2.9	72	3.1	79	3.4
I	Lipid transport and metabolism	40	1.7	39	1.9	41	1.7	41	1.8	38	1.6
P	Inorganic ion transport and metabolism	77	3.3	76	3.7	72	3	81	3.5	87	3.7
Q	Secondary metabolites biosynthesis, transport and catabolism	17	0.7	16	0.8	16	0.7	15	0.6	17	0.7
R	General function prediction only	155	6.6	171	8.4	167	7	170	7.3	166	7.1
S	Function unknown	125	5.4	118	5.8	131	5.5	120	5.2	128	5.5
-	Not in COGs	927	40	668	33	931	39	891	39	864	37

% - Percent of annotated genes. The total is based on the total number of protein coding genes in the genome.

Table 6	Predicted values of DNA-DNA hybridization* between strains ACC19a, CM2, CM5, OBRC8, AS15 and related members of the family Peptostreptococcaceae										
Predicted value of DDH, %	Accession	strain ACC19a	%	strain CM2	%	strain CM5	%	strain OBRC8	%	strain AS15	%
strain ACC19a	AFZE00000000	136	5.8	132	6.5	136	5.7	136	5.9	142	6.1
strain CM2	AFZF00000000	67.6									
strain CM5	AFZG00000000	84.5									
strain OBRC8	ALNK00000000	72									
strain AS15	ALJM00000000	14.2									
[Eubacterium] yurii subs. margaretiae	AEE50000000	13.9									
Fillifactor alocis	CP002390	14									

*DDH values were predicted by the Genome-to-Genome Distance calculator 2.0, formula 3 [29–31]
Physiological and genomic characteristics of four novel isolates ACC19a, CM2, CM5, and OBRC8 were considerably different from the properties of strain AS15 and \([E.]\) yurii subs. yurii, \([E.]\) yurii subs. schtitka, and \([E.]\) yurii subsp. margaretiae [13, 14]. Strains ACC19a, CM2, CM5, OBRC8 were represented by highly motile peritrichous rods with round ends, single or in short chains; while strain AS15, \([E.]\) yurii subs. yurii, \([E.]\) yurii subs. schtitka, and \([E.]\) yurii subsp. margaretiae were straight rods with single subpolar flagellum and square ends, that formed rosettes or brush-like aggregates. Contrary to strain AS15, \([E.]\) yurii subs. yurii, \([E.]\) yurii subs. schtitka and \([E.]\) yurii subsp. margaretiae, strains ACC19a, CM2, CM5, and OBRC8 did not produce indole. In addition, strain AS15 showed alpha-hemolytic activity on blood TY-agar medium, while strains ACC19a, CM2, CM5, and OBRC8 were non-hemolytic. Metabolic end products of glucose fermentation of \([E.]\) yurii subs. yurii and \([E.]\) yurii subs. schtitka and \([E.]\) yurii subsp. margaretiae were butyrate, acetate and propionate; strains ACC19a, CM2, CM5, and OBRC8 produced acetate and propionate only.

DNA G + C content of strains ACC19a, CM2, CM5, and OBRC8 was 30 – 30.68 %, while G + C of strain AS15, \([E.]\) yurii subs. yurii and \([E.]\) yurii subs. schtitka and \([E.]\) yurii subsp. margaretiae was 32 -32.24 %.

Conclusions

Unique phenotypic, phylogenetic, and genomic features allow for the differentiation of strains ACC19a, CM2, CM5, and OBRC8 from strain AS15, \([E.]\) yurii subs. yurii, \([E.]\) yurii subs. schtitka, \([E.]\) yurii subsp. margaretiae and \(F.\) alocis. Based on the distinct characteristics presented, we suggest that strains ACC19a, CM2, CM5, OBRC8 represent a novel genus and species within the family Peptostreptococcaceae, for which we propose the name \(Pep-toanaerobacter stomatis\) gen. nov., sp. nov. The type strain

Table 7 Number of genes identified in biosynthetic pathway\(^a\) from whole genome sequences of strains ACC19a, CM2, CM5, OBRC8, AS15 and related organisms from the family Peptostreptococcaceae

Genes responsible for biosynthesis	strain ACC19\(^a\)	strain CM2	strain CM5	strain OBRC8	strain AS15	(Eubacterium) yurii subsp. margaretiae	Fillfactor alocis
Accession number	AFZE000000000	AFZF000000000	AFZG000000000	ALNK000000000	ALIM000000000	AEE500000000	CP002390
Teichoic and lipoteichoic acids	9	8	8	8	9	11	4
Benzoquinones or naphthoquinones	0	0	0	0	1	1	0
Polar lipids	13	11	11	11	15	18	14
Lipopolysaccharides	0	0	0	0	0	0	0
Mycoic acids	0	0	0	0	0	0	0
Polyamines	8	8	9	8	9	9	10
Diaminopimelic acid	3	3	3	3	6	6	0

\(^a\)Identified by Rapid Annotation Subsystem Technology (RAST)
Description of Peptoanaerobacter gen. nov.

Peptoanaerobacter (Gr. v. peptô, cook, digest; Gr. pref. an-, not; Gr. masc. n. aer, air; N.L. masc. n. bacter, rod, staff; N.L. masc. n. anaerobacter, the digesting rod not [living] in air).

Cells are Gram-positive, structurally and after staining, motile peritrichous rods with round ends, about 1.2 – 2.5 μm long and 0.4 – 0.8 μm wide, often occurring in chains. No spores are formed. Strictly anaerobic. Catalase, oxidase and urease are negative. Nitrate is not reduced. Growth is supported by yeast extract but not Casamino acids. Yeast extract is required for growth on glucose, sucrose and maltose. The major metabolic end-products of glucose fermentation are acetate and propionate. Growth temperature range is 30 – 42 °C. Major fatty acids are C14:0, C16:0, C16:1ω7c 7c. Genes responsible for biosynthesis of teichoic and lipoteichoic acids, polar lipids, polyamines and DAP are present in the genome. There are no genes responsible for biosynthesis of respiratory benzoquinones or naphthoquinones, mycocid acids or lipopolysaccharides.

The type species is Peptoanaerobacter stomatis.

Description of Peptoanaerobacter stomatis sp. nov. Gr. n. stoma stomatos, mouth; N.L. gen. n. stomatis, of the mouth

Cell morphology is as described for the genus. Colonies are pin-point, circular, convex beige, 0.5 mm in diameter, and non-hemolytic. Acid is produced from glucose, maltose and sucrose, but not lactose, arabinose, cellulobiose, mannose, melezitose, raffinose, rhamnose, trehalose, xylose, glycerol, mannitol, salicin and sorbitol. Indole is not produced. Gelatin is not liquefied. Esculin is not hydrolyzed. The type strain is susceptible to discs containing 1 mg kanamycin, 2 units penicillin, 60 μg erythromycin, 30 μg chloramphenicol, 30 μg tetracycline and bile. The genome is 2,541,543-bp long and contains 2,277 protein-coding and 54 RNA genes. DNA G + C content is 30.37 mol %. The type strain ACC19α (=HM-483T; =DSM 28705T; =ATCC BAA-2665T) was isolated from the human subgingival dental plaque. Habitat: human mouth.

is strain ACC19α (=HM-483T; =DSM 28705T; =ATCC BAA-2665T).

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

Conceived and designed the experiments: MVS SSE. Performed the experiments: MVS AC SND MT. Analyzed the data: MVS AC AME PAM JMM ASD. Contributed reagents/materials/analysis tools: MT JMM ASD KEN AME SSE. Wrote the paper: MVS AC AME SSE. All authors read and approved the final manuscript.

Acknowledgements

This work was supported by NIH Grants 1RC1DE020707-01 and 3 R21 DE018026-02 to SSE, 1U54 AI84844-01 to KEN, U54HG004969 to AME, and HHSN27220090017C to the Broad Institute. We thank Dr. K. Konstantinidis for advice on ANI values calculations, Dr. W. Fowle, and T. Hohmann for help with electron microscopy, Drs. N. Panikov, and M. Mandalaikis for fermentation products analysis, and A. Hazen for technical assistance.

Received: 25 June 2014 Accepted: 27 May 2015

Published online: 18 July 2015

References

1. Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, Yu WH, et al. The human oral microbiome. J Bacteriol. 2010;192(19):5002–17. doi:10.1128/JB.00542-10.
2. Asa JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. Defining the normal bacterial flora of the oral cavity. J Clin Microbiol. 2005;43(11):5721–32. doi:10.1128/JCM.43.11.5721-5732.2005.
3. Bik EM, Long CD, Armitage GC, Loomer P, Emerson J, Mongodin EF, et al. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010;4(8):962–74. doi:10.1038/ismej.2010.30.
4. Kros I, Lepp PW, Relman DA. Bacterial diversity within the human subgingival crevice. Proc Natl Acad Sci U S A. 1999;96(25):14547–52.
5. Paster BJ, Olsen I, Asa JA, Dewhirst FE. The breadth of bacterial diversity in the human periodontal pocket and other oral sites. Periodontol 2000. 2006;42:80–7. doi:10.1111/j.1600-0757.2006.00174.x.
6. Brook I, Frazier EH, Ghar ME. Aerobic and anaerobic microbiology of periodontal abscess. Oral Microbiol Immunol. 1991;6(2):123–5.
7. Daniuk T, Tokajuk G, Cywil-Krokicka D, Remkiewicz D, Zaremba ML, Stokowski W. Aerobic and anaerobic bacteria in subgingival and supragingival plaques of adult patients with periodontal disease. Adv Med Sci. 2006;51 Suppl 181–5.
8. Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, Levinas VA, et al. Bacterial diversity in human subgingival plaque. J Bacteriol. 2001;183(12):3770–83. doi:10.1128/JB.183.12.3770-3783.2001.
9. Chen T, Yu WH, Izard J, Baranova OV, Lakhmanan A, Dewhirst FE. The Human Oral Microbiome Database: a web accessible resource for investigating oral microbe taxonomic and genomic information. Database. 2010;2010:baq013. doi:10.1093/database/baq013.
10. Sizova MV, Hohmann T, Hazen A, Paster BJ, Halem SR, Murphy CM, et al. New approaches for isolation of previously uncultivated oral bacteria. Appl Environ Microbiol. 2012;78(11):394–203. doi:10.1128/AEM.06813-11.
11. Ezaki T. Family VII. Peptostreptococcaceae fam. nov. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, et al., editors. Bergey’s Manual of Systematic Bacteriology Second ed. New York: Springer; 2009. p. 1008–13.
12. De Vos P. New approaches for isolation of previously uncultivated oral bacteria. J Bacteriol. 1988;169(8):2207–2210.
13. Wade WG. Genus I. Eubacterium. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer; 2009. p. 865–91.

Additional file

Additional file 1: Table S1. Associated MIGS records of Peptostreptococcaceae spp. ACC19α, CM2, CMS, OBB8c, and AS15.

Abbreviations

HMP: Human Microbiome Project; HOMD: Human Oral Microbiome Database; DDH: DNA-DNA hybridization; BEI Resources: Biodefense and Emerging Infections Research Resources Repository; DSAZ: Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH; German Collection of Microorganisms and Cell Cultures GmbH; GOLD: Genome On-Line Database; IMG: Integrated Microbial Genomes; RAST: Rapid Annotation using Subsystem Technology.
Auch AF, von Jan M, Klenk HP, Goker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2(1):142–66. doi:10.1093/sgx/gnp043.

Caspers R, Altman T, Dreher K, Fulcher CA, Subbraveti P, Keseler I, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 2012;40:742–53.

Caspers R, Altman T, Billington R, Dreher K, Foerster H, Fulcher CA, et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/Genome Databases. Nucleic Acids Res. 2014;42(Database issue):D459–71. doi:10.1093/nar/gkt1103.

Tindall BJ, Rossello-Mora R, Busse HJ, Ludwig W, Kampfer P. Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol. 2010;60(Pt 1):249–66. doi:10.1099/ijs.0.016949-0.

Yarza P, Richter M, Peplies J, Euzéby J, Amann R, Schleifer KH, et al. The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol. 2008;31(4):241–50. doi:10.1016/j.syapm.2008.07.001.

Auch AF, Klenk HP, Goker M. Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci. 2010;2(1):142–6. doi:10.4056/sigs.541628.

Auch AF, von Jan M, Klenk HP, Goker M. Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci. 2010;2(1):117–34. doi:10.4056/sigs.531120.

Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics. 2013;14:60. doi:10.1186/1471-2105-14-60.

Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Fell EJ, et al. Opinion: Re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3(9):733–9. doi:10.1038/nrmicro1236.

Konstantinidis KT, Tiedje JM. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr Opin Microbiol. 2007;10(5):504–9. doi:10.1016/j.mib.2007.08.003.

Field D, Garrity G, Gray T, Morrison N, Seelengut J, Sterk P, et al. The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol. 2008;26(5):541–7. doi:10.1038/nbt1360.

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A. 1990;87(12):4576–9.

Ludwig W, Schleifer K-H, Whitman WB. Revised road map to the phylum Firmicutes. In: De Vos P, Garrity GM, Jones D, Krieg NR, Ludwig W, Rainey FA, et al., editors. Bergey’s Manual of Systematic Bacteriology. 2nd ed. New York: Springer; 2009. p. 1–13.