Impermanence and failure: the legacy of conservation-based payments in Sumatra, Indonesia

James T Erbaugh
Department of Environmental Studies, Dartmouth College, Hanover, NH, United States of America
Global Science, The Nature Conservancy, Arlington, VA, United States of America
E-mail: james.t.erbaugh@dartmouth.edu

Keywords: conservation failure, conservation legacies, forest cover change impermanence, Indonesia, integrated conservation and development, payments for ecosystem services

Supplementary material for this article is available online

Abstract
Projects that pay communities or individuals to conserve natural areas rarely continue indefinitely. When payments cease, the behaviors they motivate can change. Previous research on conservation-based payments recognizes the impermanence of conservation success, but it does not consider the legacy of payments that failed to effect change. This research assesses impermanence and failure by investigating the legacy of village-level conservation payments made through one of the largest Integrated Conservation and Development Projects in Indonesia. The Kerinci-Seblat Integrated Conservation and Development Project aimed to conserve forest area and promote local development through voluntary conservation agreements (VCAs) that provided payments for pro-conservation pledges and activities from 2000 through 2003. Project documentation and previous research find that payments failed to incentivize additional forest conservation, producing nonsignificant differences in forest-cover change during the project period. To examine the legacy of these payments in the post-project period, this research uses matched difference-in-differences and triple differences models to analyze forest cover change in villages (n = 263) from 2000 through 2016 as well as matched binary logistic regression models to assess enduring differences in household (n = 1303) livelihood strategies within VCA villages in 2016. The analysis finds that VCA villages contained significantly more forest loss than the most similar non-VCA villages outside the national park, and greater payments predict increased forest loss in the post-project period. In addition, farming high-value tree crops and cultivating private land were the most important attributes for modeling VCA affiliation among randomly selected households. These results demonstrate that, after payments ceased, project failures increased in severity over time. Those who design and implement conservation-based payments bear great responsibility to ensure their projects are informed by local voice, align with community preferences, and provide sufficient benefits, lest they result in a conservation legacy of increased failure.

1. Introduction
The widespread conversion of natural habitat and resulting declines in biodiversity demand effective conservation solutions (Gibson et al 2011, Pereira et al 2012, Laurance et al 2014, Haddad et al 2015, Waldron et al 2017, Jones et al 2018, Coleman et al 2019). There is substantial evidence that protected areas (PAs) shelter more land from conversion than the most similar unprotected land (Andam et al 2010, Sims 2010, Nolte et al 2013, Shah and Baylis 2015, Sills and Jones 2018). Despite their relative successes, de facto land management within PAs remains difficult to regulate (Watson et al 2014, Geldmann et al 2019),
and one-third of PAs that seek to exclude people are under intense human pressure (Jones et al 2018). Further, PAs can limit local decision-making and resource rights, making them inappropriate in some situations (Adams et al 2004). Empowering communities to design, implement, and benefit from local conservation is critical to the success of PAs and agendas for sustainable development (Oldekop et al 2016, Erbaugh et al 2020). Some projects seek to improve the efficacy of PAs and support local people by providing economic incentives for pro-conservation activities within or near protected lands (Jack et al 2008, Lambin et al 2014, Börner et al 2017).

Payments for ecosystem services (PES) represent a widespread approach to environmental governance that offers economic incentives for pro-conservation behavior. Billions of dollars in PES are allocated through more than 550 different programs that remunerate groups or individuals in order to protect ecosystem function (Salzman et al 2018). Despite the rapid growth in PES from the 1990s to the present, evidence on how and when payments result in improved ecosystem services remains inconclusive (Fattanayak et al 2010, Brouwer et al 2011, Agrawal et al 2014). The evaluation of PES programs often suffers from a lack of baseline data and insufficient counterfactual analysis (Agrawal 2014, Ferraro and Hanauer 2014, Ferraro et al 2015). Recent studies address these shortcomings, providing better evidence that PES can generate additional conservation during or soon after payments were made (Jayachandran et al 2017, Havinga et al 2020). Assessing the conservation legacies of PES projects, however, remains uncommon.

The conservation legacy of a project refers to its long-term impact in reference to its stated objectives (Miller 2013). Investigating PES projects to better understand their conservation legacies is particularly important, since such payments are deployed extensively and can produce considerable changes in conservation behaviors (Salzman et al 2018, Wunder et al 2018). Introducing payments for conservation may erode the intrinsic motivation of individuals or groups to continue conserving natural habitat or protect ecosystem services (Agrawal et al 2015). ‘Impermanence’ refers to the tendency for conservation outcomes to shift once extrinsic rewards cease (Engel et al 2008, Wunder et al 2008). Some empirical research examines the impermanence of positive conservation outcomes from PES (Andersson et al 2018), but few if any studies evaluate outcomes after payments fail to incentivize conservation.

Studying conservation failures and their legacies promises to better inform the design and implementation of conservation governance. Connecting where, when, and why conservation projects failed to meet their stated objectives can provide useful information on the design and implementation of conservation projects (Catalano et al 2019). Analyzing how the impacts from projects that failed to meet their objectives persist or change over time can provide information useful for when conservation researchers, practitioners, and donors want to weigh the long-term risks and benefits of intervention. This research assesses the legacy of conservation-based payments made through one of Indonesia’s largest integrated conservation and development projects that failed to reduce local forest cover change.

1.1. The Kerinci-Seblat integrated conservation and development project

The Kerinci-Seblat National Park (KSNP) anchors the study area for this research. This research examines forest cover and livelihoods in the national park and villages within 3 km of its border. In total, the park and its surrounding villages span four provinces, 15 districts (kabupaten/kota), and cover nearly 26 000 km². The park and villages adjacent to it are approximately equal in area to the nation of Burundi. Though the history of conservation in the Kerinci-Seblat landscape begins nearly a century ago (Aumeeruddy 1994), KSNP was formed primarily during the last three decades.

The Government of Indonesia declared Kerinci-Seblat a national park in 1982 (Minister of Agriculture Decree No. 736/Mentan/X/1982). The newly declared park combined 15 conservation areas, adding approximately 100 000 additional hectares (Bettinger 2015). Despite several disputes concerning the park boundary, the Ministry of Forestry and sub-national governments agreed to an official boundary in 1993 (Wibowo 1999). However, the KSNP boundary was not officially mapped or marked by physical objects until 2000. This undertaking was made possible with funding from the Kerinci-Seblat Integrated Conservation and Development Project (KS-ICDP) (World Bank 2003).

The KS-ICDP began in 1996 and ceased activities in 2003 (World Bank 2003). It allocated $18.8 million for three objectives: (a) mapping and formally establishing park boundaries; (b) improving park management and service delivery; and (c) promoting sustainable development in forest proximate communities (World Bank 1996). This research focuses on the KS-ICDP’s third objective. Specifically, it investigates the legacy of voluntary conservation agreements (VCAs), which sought to promote forest conservation in the Kerinci-Seblat landscape by providing conservation-based payments to nearby villages (figure 1).

VCAs implemented through the KS-ICDP aimed to reduce forest cover loss by providing results-based payments at the village-level. The agreements stipulated that village members would cease all deforestation and forest degradation and implement a number of sustainable livelihood initiatives with village-level funding from the project (World Bank 1996, 2003, Wood et al 2014). Trained local facilitators wrote VCAs in collaboration with village councils.
Figure 1. Kerinci-Seblat National Park with potential and actual VCA villages (IUCN 2016). Potential VCA villages are those with land within 3 km of the national park boundary.

and village heads to select locally appropriate activities. Once drafted, local authorities signed the VCA. According to standards for the project facilitation, all of the adults in a village where authorities signed a VCA were aware of how the agreement was drafted and what it stipulated (Wood et al. 2014). Of the 234 villages available for selection in the KSNP landscape, and the 134 villages in the ‘park buffer zone,’ project managers and the Indonesian Government selected 75 villages (Linkie et al. 2008). The 72 villages that agreed to sign a VCA were promised approximately $25 000 in development grant money ($34 069.10 AFI) for fulfilling the terms of the agreement. Upon signing the VCA, villages were to receive the initial grant disbursement ($12 500), with the second tranche of funding disbursed upon the initiation of pro-conservation livelihood activities. However, payment schedules were delayed by unforeseen bureaucratic challenges. Sixty-four percent of villages advanced to the second stage of payments (World Bank 2003, p 23). Records from the facilitating organization, the World Wildlife Fund (WWF) indicate 43% (n = 31) of villages that signed a VCA received half of the total payment or less, 8% (n = 6) received more than 50% but less than 95% of the total payment, and 49% (n = 35) of villages received over 95% of the total payment (SM table 1.1 available online at stacks.iop.org/ERL/17/054015/mmedia).

Project documentation and peer-reviewed literature conclude that VCAs did not generate additional forest conservation. Infrastructure development and smallholder agriculture were the primary drivers of forest-cover loss in the Kerinci-Seblat landscape during and after the VCA project (Linkie et al. 2003, 2004, Bettinger 2014, 2015). An early example in the conservation literature of counterfactual analysis estimated with statistical matching measured forestcover before and during the VCA implementation (2000–2003). It found no significant differences in forestcover loss between VCA and the most similar non-VCA villages and concludes VCAs failed to conserve additional forest area (Linkie et al. 2008).

Project documentation echoes the narrative of failure, identifying bureaucratic hurdles and a short project timeframe as primary drivers (World Bank 2003). Four years after project activities ceased, however, a purposive survey of 12 VCA villages reported

1 At the time of project implementation, the survey of ‘villages’ in the KSNP landscape included administrative units that varied by province. These units were desa in Jambi, Bengkulu, and South Sumatra Provinces, and jorong in West Sumatra (as opposed to nagari). See supplemental materials (SM 1) for further information.
that households continued to implement 43% of the pro-conservation livelihood activities stipulated in the agreement (Wood et al 2014). Though the purposeful survey research neither reports population-level outcomes nor considers the relationship between pro-conservation activities and forest cover change, it raises questions about how conservation failures might change over time. The research presented here investigates the impermanence of conservation outcomes, drawing on a suite of quantitative methods to assess differences between VCA and non-VCA villages after VCA activities ceased.

2. Methods

This research employs a ‘portfolio approach’ to assess forest cover change and livelihood strategies in and around KSNP (Young et al 2006). Portfolio approaches combine multiple data and analyses to strengthen support for conclusions. When findings from multiple analyses in a portfolio approach converge, they provide greater confidence in the findings and support for a conclusion; when they diverge, they provide greater insight but decreased support for any one conclusion. The portfolio for this research incorporates two analyses. A forest cover analysis considers the average impact of VCA participation and payment on forest cover loss in the post-project period; a livelihood analysis examines enduring associations between household livelihood strategies and VCA participation.

The forest cover analysis and the livelihood analysis operationalize information gathered from project leaders, reports, and previous literature. Former project staff and the lead author identified villages that signed VCAs and linked them to village-level boundaries from the Village Master File 2000 provided by the Central Bureau of Statistics (Badan Pusat Statistik) (BPS 2015). Additional information on the village identification process is available in the supplemental materials (SM 1). Project materials and previous literature identified the variables that determined selection of VCA villages. These variables include village area dedicated to timber or agricultural concession, accessibility, slope, and population in the year 2000 (World Bank 1996, 2003, Linkie et al 2008). To measure these variables in VCA as well as non-VCA villages, this research generates a dataset from public and proprietary data sources (table 1). Statistical matching balances these variables across VCA and non-VCA villages to account for selection bias that may impact forest cover or livelihood outcomes. Estimates from the forest cover analysis and the livelihood analysis were further adjusted using a set of time-sensitive or confounding variables that did not determine VCA selection, but had the potential to impact the dependent variable.

The forest cover analysis measures differences in post-project forest cover loss between VCA and non-VCA villages. Data for this analysis are the result of processing remotely sensed land cover products to provide annual data on forest cover for the Kerinci-Seblat landscape from 2000 to 2016. This analysis builds on the findings from previous literature, which establishes parallel trends in forest cover change between VCA and non-VCA villages before the year 2000 (Linkie et al 2008). A suite of difference-in-differences (DD) and triple differences (DDD) models estimate the average effect of treatment on treated (ATT) units. In the context of the forest cover analysis, treatment refers to VCA participation and the effect of interest is forest cover loss. Thus, the forest cover analysis investigates if VCA villages continued to demonstrate non-significant differences in forest cover loss after the KS-ICDP project ended using DD models that incorporate key covariates as well as two-way fixed effects (Angrist and Pischke 2009), multiple matching strategies (Ho et al 2007, lacus et al 2008, Stuart 2010, King and Nielsen 2016), and alternative assumptions for treatment timing (Callaway and Sant’Anna 2020, de Chaisemartin and d’Haultfœuille 2020). To better understand heterogeneous impacts from the VCA program, the analysis of forest cover also measures differences in forest cover loss between VCA villages that received full payment and those that did not using DDD models (Cunningham 2021). Further information on the form of these models, the analytical approach, and robustness checks are available in the supplemental materials (SM 2.1).

The livelihood analysis measures enduring differences in livelihood strategies between households within a subset of VCA and non-VCA villages based on cross-sectional survey data. The subset of VCA and non-VCA villages were drawn from three districts (Kerinci, Sungai Penuh, and Merangin) in Jambi Province during 2016, the final post-project year included in the forest cover analysis. The three selected districts contain some of the greatest amounts of forest cover and National Park area in the Kerinci-Seblat landscape. Households in villages within 3 km of the National Park were selected via a random stratified cluster sample. Matched binary regression models evaluate if randomly selected households that report participating in forest intensive livelihood strategies are more or less likely to reside in VCA villages (Wooldridge 2002, lacus et al 2008). Further elaboration of the models, analytical approach, and robustness checks are available in the supplemental materials (SM 2.2). The supplemental materials also include complete information on all elements of the sampling design (SM 3). For the livelihood analysis as well as the forest cover analysis, the lead author cleaned and modeled all data using R software and produced all visualizations with R and ArcGIS.

Together, the two analyses measure the primary objective of the VCA program and the mechanism of change it aimed to influence. The forest
Table 1. Model variables organized by analysis.

Variable	Treatment information	Data source
Forest cover analysis (2000–2016)	Forestcover change^a Identified tree-cover change in KSNP and outside of KSNP within forest (i.e. not plantation) area, converted pixels to hectares	Hansen et al (2013), Margono et al (2014)
VCA status^b	Household identified as within VCA or non-VCA village; total VCA payment made	Project documents, BPS (2014) (see SM 1)
Primary forest^c (2000)	Measured within villages, converted to hectares	Margono et al (2014)
Elevation^c	Meters	Jarvis et al (2008)
Non-forest area (2000)	Total ha of non-forest area within 3 km of the national park boundary	Hansen et al (2013), Margono et al (2014)
Slope^c	Calculated total area of village over 10% slope, following Blackman et al (2017)	Processed in ArcGIS 10.6.1 from Jarvis et al (2008)
Concession area^c	Combined oil palm, timber, and selective logging concession area	Global Forest Watch (2014a, 2014b, 2014c)
Distance to roads^{c,d}	Estimated temporal trends using road data from 2000 and 2016 (interval periods not available)	CIESIN (2013), Badan Informasi Geospasial (2014)
Population (1 km estimates)^{c,d}	Calculated within villages	CIESIN (2018)
Livelihood analysis (2016) VCA status^d	Household identified as within VCA or non-VCA village	Project documents, BPS (2014) (see SM 1)
Primary crop^b	Combined into: high-value tree crops, rice, tubers, other	Primary survey (see SM 3)
Private land^b	Dichotomous (1 = cultivates private land)	Primary survey
Formal land title^b	Dichotomous (1 = holds formal title)	Primary survey
Elevation^{c,d}	Meters	Jarvis et al (2008)
Distance to KSNP^{c,d}	Euclidean distance in meters	Processed from primary survey and IUCN (2016)
Distance to concession area^{c,d}	Euclidean distance in meters	Processed from primary survey and MEF (2017)
Total yearly income^d	Logged in rupiah	Primary survey
Sex of household head (HHH)^d	Dichotomous (1 = female HHH)	Primary survey
Age of HHH^d	Years	Primary survey
Years of education^d	Years	Primary survey

^a Dependent variable.
^b Independent variable of interest.
^c Matching variable.
^d Model covariate.

Cover analysis evaluates the legacy of forest-cover change in VCA villages. The livelihood analysis considers enduring differences in household livelihood strategies between VCA and non-VCA villages. If the analysis of forest cover and the analysis of livelihoods find significant and complementary results concerning the impermanence of project outcomes, they support a conclusion concerning the conservation legacy of VCAs. However, if the analyses are non-significant or in contrast, they either support a narrative of non-significant project legacy or temper any analytical conclusions about the project’s conservation legacy. Table 2 summarizes the complementarity of these analyses.

3. Results

VCA villages demonstrated a significant increase in long-term forest loss outside KSNP and non-significant differences in forestcover loss within KSNP. Average forestcover loss over time illustrates rising forestcover loss throughout the post-project period (figure 2). After adjusting for VCA selection criteria, time-varying covariates, as well as year and village fixed effects, the analysis of forest cover supports the conclusion that non-KSNP forestcover change in VCA villages was greater than the most similar non-VCA villages in the post-project period (figure 3). The ATT for signing a VCA is between...
24.0% ($\beta = 0.214, SE = 0.084$) and 26.4% ($\beta = 0.234, SE = 0.072$) more forestcover loss outside the national park. Measuring this effect by the amount of VCA SE = $0.269, SE = 0.157, SE = 0.068$) to 24.4% ($\beta = 0.19, SE = 0.05) times less likely to be within a VCA village. Though forest intensive livelihood strategies are significantly associated with VCA affiliation, yearly household income was not.

Additional variables that showed some significant association across multiple models include years of HHH education and if a household member claimed a formal property title. One additional year of HHH education increases the odds a household is from a VCA village by 1.01 ($\beta = 0.19, SE = 0.05) and 1.13 ($\beta = 0.12, SE = 0.06) times more likely to be within a VCA village. Though forest intensive livelihood strategies are significantly associated with VCA affiliation, yearly household income was not.

Table 2. The relationship between the forest cover analysis and the livelihood analysis. Significant findings that are complementary provide additional support that analysis findings represent legacy effects from VCA payments. Significant findings that are not complementary provide less support that the findings represent legacy effects from VCA payments.

Household in VCA villages are:	VCA villages have:
More likely to report forest intensive livelihood strategies	Complementary results: Increased severity of failure that is more likely related to the VCA mechanism.
Less likely to report forest intensive livelihood strategies	Complementary results: Increased severity of failure that is less likely related to the VCA mechanism.

The DDD and doubly robust staggered treatment estimates of ATT provide additional support to findings from the canonical DD models. The DDD models estimates the ATT for advancing to the second payment stage between 64.4% ($\beta = 0.497, SE = 0.135$) and 79.7% ($\beta = 0.586, SE = 0.170$) more forestcover loss compared to VCA villages that did not advance. Villages that defected from the project after the first round were non-significantly different from the most similar villages that did not receive VCA payments. The staggered treatment DD model also finds similar differences between second and first stage VCA villages. It estimates the overall ATT as 22.9% ($\beta = 0.206, SE = 0.100$) to 30.8% ($\beta = 0.269, SE = 0.111$). Villages that advanced to the second VCA payment stage drive overall estimates, with a group-wise ATT of between 66.9% ($\beta = 0.512, SE = 0.151$) and 72.8% ($\beta = 0.541, SE = 0.177$), as compared to the most similar non-VCA villages. Villages that received only the first payment demonstrate mixed significance, with two of three matching models estimating they demonstrated 17.3% ($\beta = −0.19, SE = 0.068$) to 24.4% ($\beta = −0.28, SE = 0.102$) less forestcover loss in the post-project period, as compared to non-VCA villages.

Significance, magnitude, and direction of the ATT for models of forestcover outside KSNP are broadly robust to different matching techniques. Non-significance, magnitude, and direction of additional KSNP forestcover loss within VCA villages are also broadly robust to different matching techniques and model specifications. None of the models violated the parallel trends assumption, thus confirming previous research that established non-significant differences between VCA and non-VCA forestcover loss during project implementation (Linkie et al 2008). The supplemental materials provide an extended discussion of matching results and model estimates (SM 4).

The livelihood analysis finds that forest intensive livelihood strategies were the most important variables for predicting if a randomly selected household was from a VCA village (table 3). Specifically, farming high-value tree crops or cultivating privately held land were significant predictors a household resided within a VCA village. Households that farmed high-value tree crops (coffee, cinnamon, oil palm, or rubber) are between 2.18 ($\beta = 0.78, SE = 0.32$) and 3.13 ($\beta = 1.14, SE = 0.27$) times more likely to be in a VCA village, with significant results across all matching strategies. The relationship between cultivating private land and VCA village affiliation is also significant across all matching strategies. Households that reported cultivating private land were between 3.32 ($\beta = 1.20, SE = 0.58$) and 5.06 ($\beta = 1.62, SE = 0.80$) times more likely to be within a VCA village. Though forest intensive livelihood strategies are significantly associated with VCA affiliation, yearly household income was not.
Favoring a conservative interpretation of these models, this article does not discuss findings without broad support from two or more matched estimates at the 95% confidence threshold.

All matched models performed similarly in the livelihood analysis, but outcomes from matching pretreatment differ. AUC values are broadly similar across models, ranging from 0.70 to 0.73. The CEM approach demonstrates the best covariate balance (SM 4) and retained the largest number of households in VCA villages (table 3). The supplemental materials (SM 4) include data on covariate balance from coarsened exact, full, Mahalanobis, and genetic matching. All matching methods improve overall covariate balance, but only CEM retained over 90% of households from VCA villages.

4. Discussion

VCA project outcomes in the Kerinci-Seblat landscape were impermanent, and project failures increased in severity during the post-project period. The VCAs made through the KS-ICDP aimed to promote forest conservation within and outside the national park and catalyze local development by disbursing funds for pro-conservation activities. However, VCA villages demonstrated significantly higher levels of long-term forest loss outside KSNP and nonsignificant levels of forest cover change within the national park. In addition, a randomly selected household was more likely to be from a VCA village if it reported farming high-value agricultural commodities on privately cultivated land. These complementary findings point to a conservation legacy in stark contrast to the primary objective of the conservation agreements. This discussion considers why failure occurred during implementation, why it increased in severity following project activities, and the long-term impacts of greater project compliance to provide insights for research on conservation governance.

Focusing on project implementation, in addition to design, is of critical importance for understanding conservation failures. Several ICDPs implemented in different country contexts, but with a similar focus on community participation and local development (Alpert 1996, McShane and Wells 2004), failed to promote conservation within PAs or enhance livelihoods (Garnett et al 2007, Weber et al 2011). ICDPs that achieved conservation successes were defined by timely implementation aided by the ability to work within local institutions and with local governments (Brown 2002).

Bureaucratic delays, problems with disbursing funds, and rigid project timelines inhibited the success of VCAs and their associated payments. Thirty-six percent of villages did not advance to the second payment stage. Unforeseen challenges working with local government to disburse funding delayed payment schedules, and the majority of villages received...
Figure 3. Model estimates of average additional forestcover loss inside (KSNP) and outside (non-KSNP) the national park in the post-treatment period (2003–2016) for VCA villages. Panels visualize the average effect of project participation on forestcover loss (A), the average effect of an additional $10,000 of payment on forestcover loss (B), and the average effect of advancing to the second stage of project payment (C). Values have been calculated from IHS transformed coefficient estimates (SM 3), and all error bars represent 95% confidence intervals.

their first payment in the final year of the project (World Bank 2003; supplemental materials: SM 1). PES provided through the public sector more often run into bureaucratic difficulties, similar to those experienced in the KS-ICDP (Wunder et al. 2008). To successfully integrate conservation and development, projects must work through the multilevel interactions and relationships between local actors, resources, and government organizations (Moore et al. 2018, Hayes et al. 2019, Verde Selva et al. 2020). As this research demonstrates, short-term projects challenged by implementation barriers risk more than failing to ‘do good’ by incentivizing significant improvements in conservation outcomes. They also risk promoting long-term outcomes in opposition to their stated objectives.

VCAs made through the KS-ICDP demonstrate a legacy of increased failure. Previous studies of VCA impacts found no significant differences in national park forestcover within VCA and non-VCA villages (Linkie et al. 2008). After investigating the legacy of VCAs in the post-project period, the research supported previous findings that differences in forestcover loss between VCA and non-VCA villages within the national park were nonsignificant. However, assessing the legacy of VCAs outside of the national park tells a different story. Non-KSNP forestcover loss was between approximately 24.0% and 26.4% higher in VCA villages as compared to the most similar non-VCA villages. The concept of leakage provides some insight for explaining why VCA villages contained higher levels of forestcover loss outside the national park as compared to similar non-VCA villages.

Leakage in conservation refers to when activities trigger resource use or land conversion outside the primary area of focus, thus reducing the overall benefit of the payment (Meyfroidt and Lambin 2008, Ostwald and Henders 2014, Henders et al. 2015, Meyfroidt et al. 2018). Specifically, analyzing PES for leakage determines if payments displaced resource exploitation to a different location. For example, increasing the strictness of forest protection in one location or nation can displace forest cover loss to other locations or nations (Meyfroidt and Lambin 2009, Meyfroidt et al. 2010). Though the results from this research resemble project failure due to leakage, they differ from standard accounts in one important way. The stated objective for implementing VCAs was to conserve all forestcover within VCA villages. In signing the VCAs, village governments pledged to cease all forest clearing. Leakage from implementing VCAs and making payments would see the displacement of forest-cover loss to non-VCA villages. Instead, our findings support the conclusion that non-KSNP forestcover loss increased due to VCA participation. This indicates that behaviors changed within VCA villages to promote forest intensive livelihoods on the periphery of the National Park. It does not indicate that behaviors changed in non-VCA villages.

The results from this research point to forest conversion from smallholder agriculture as a likely driver...
VCA selection variables	Model 1: No matching	Model 2: CEM	Model 3: Mahal. matching	Model 4: full matching	Model 5: genetic matching
Elevation	−0.18	−0.08	0.07	0.14	0.05
Distance to KSNP	−0.60	−0.09	0.06	−0.10	0.19
Distance to concession area	−0.10	−0.08	−0.05	−0.09	−0.04
Agricultural household	0.47	0.16	0.00	−0.04	0.06
Household demographics					
Total income (logged)	−0.10	0.16	−0.14	−0.30	−0.07
Female (HHH)	−0.10	−0.19	0.32	0.52	0.11
Age (HHH)	−0.01	0.01	0.01	0.02	0.01
Years of education (HHH)	0.03	0.12	0.07	0.12	0.01
Number of adults	−0.15	−0.15	−0.33	−0.23	−0.58
Forest intensive livelihood strategies					
Farms high value tree crop	1.06	0.78	1.09	1.14	1.07
Cultivates private land	1.01	1.39	1.20	1.62	1.35
Formal land title	−0.85	−1.06	−0.85	−1.19	−1.05
Model and sample information					
Intercept	2.76	−5.0	−0.91	−0.85	0.79
Matching method	None	Coarsened exact	Mahalanobis	Full	Genetic
Sample size (Treated: control)	1220 (172: 1048)	786 (156: 630)	452 (121: 331)	1085 (131: 954)	308 (154: 154)
HHs from VCA villages retained	100%	90.7%	70.3%	76.2%	89.5%

*p < 0.1; **p < 0.05; ***p < 0.01.
of increased forestcover loss in VCA villages. After adjusting for VCA selection criteria and demographic variation, forest intensive livelihood strategies are the most significant predictors of VCA village residence. Specifically, cultivating private acreage and farming high-value tree-crops were the most predictive and significant variables when modeling the likelihood a randomly selected household was from a VCA village. Other studies point to a similar relationship between smallholder agriculture and forest conversion in central and southern Sumatra. Oil palm plantations and smallholder agriculture are a prominent driver of forest conversion in Sumatra and across Indonesia (Jepson et al. 2001, Linkie et al. 2003, Clough et al. 2016, Widianaingsih et al. 2016). However, in areas of higher elevation, coffee cultivation more often drives forest conversion (Gaveau et al. 2009, Levang et al. 2012). In the Kerinci highlands, coffee and cinnamon (Cassievera sumatera) production are often associated with forestcover loss (Wibowo 1999). There are unverified reports from 2007 of increased clearing for coffee production in the Kerinci-Seblat landscape in response to rising coffee prices (Agionby and Wiggins 2007). The results in this research account for increases in population, distance to roads, and many other confounders that often determine where coffee and other agricultural commodities are produced. After adjusting for these other possible explanations of forest loss or commodity agriculture production, the results support the conclusion that a behavioral dynamic determined by village participation in the VCA project complicated greater forest clearing, and that households within VCA villages were more likely to farm coffee and cinnamon than the most similar households in non-VCA villages. Further, the most well-paid VCA villages contained the greatest forestcover loss in the post-project period. The relationship between VCAs, forestcover loss, and forest-intensive livelihood strategies indicate that project participation and payments resulted in the future conversion of forests.

Providing, failing to provide, or ceasing payments for conservation can change the incentives local communities have for altering land cover. Though payments may aim to promote conservation through financial incentives, there are many reasons why they may not realize their intended impact (Muradian et al. 2013). Monetizing conservation changes behavior in often unforeseen ways, and payments can crowd out inherent motivation for protecting natural landscapes (Agrawal et al. 2015, Rode et al. 2015, Cetas and Yasué 2017). When considering whether or not to provide conservation payments, project implementors must also consider also how payments can affect the real or perceived value of a resource once payments cease (Bryan 2013). A study in Hungary that examined farmers’ behaviors after conservation payments stopped found that the intensity of cropping increased (Kovács et al. 2021). In the context of the KS-ICDP, not only did the termination of payments result in greater forestcover loss within VCA villages, but the villages that received the greatest payments contained significantly higher levels of forestcover loss. With each additional $10,000, VCA villages experienced an average 15.6%–16.2% increase in forestcover loss from 2003 to 2016. In addition, VCA villages that received full payment through the VCA project demonstrated 64.7%–79.7% more forestcover loss than villages that defected from the second stage of implementation. Previous studies found that prior compliance with institutional regulation is a useful indicator when predicting PES success (Martin Persson and Alpízar 2013). The results from this research suggest that compliance for payment can also predict where future forest conversion may occur if payments cease. Once conservation payments cease, competing land-uses continue to provide financial benefits so long as local governments and people comply with the right combination of formal and informal institutions (Kovács et al. 2021). Attending to the long-term viability of conservation-based payments is therefore critical to effect enduring conservation outcomes. The final KS-ICDP project document identifies the importance of long-enduring conservation activities. It reads:

The original project was conceived as a first six-year time-slice of a much longer program. It was always clear that the project was highly ambitious and would need a much longer timeframe to achieve real support for the park within the regional context. Nevertheless, there was never any commitment... to a multi-phased project (e.g., as might have been achieved via an Adaptable Program Loan) nor was any real strategy developed to ensure that provincial/kabupaten governments could sustain integrated activities beyond the project’s lifetime (World Bank 2003).

As this research demonstrates, failing to effectively provide and sustain conservation-based payments risks more than nonsignificant impacts.

5. Conclusion

This research provides empirical evidence that conservation outcomes are impermanent, and project failures can increase in severity over time. It investigates the conservation legacy of conservation-based payments made through one of the largest ICDPs in Indonesia. Villages that signed a conservation agreement and received payments for pro-conservation livelihood activities contained significantly more forest-cover loss after the project ended, compared to the most similar villages. Further, from a ran-
dom sub-sample within the study-region, households that reported cultivating private land and farming high-value tree crops were significantly more likely to reside within a village that signed a conservation agreement. These findings contribute to research on incentive-based conservation governance by highlighting the risk conservation-based payment programs run once payments stop, and they demonstrate the importance of evaluating conservation legacies.

The limitations of this study highlight opportunities for improving future research on conservation impacts. For example, the results concerning household livelihood strategies and VCA affiliation should not be interpreted as a direct result of the VCAs, but instead as complementary findings that support the conclusion that the VCA project generated a legacy of increased forest cover loss (table 2). Future investigations that examine the impermanence of conservation outcomes would do well to collect longitudinal data on environmental, social, and economic outcomes, and draw on the suite of quantitative methods presented here. The potential drivers of conservation outcomes and their impermanence that this study does not address include economic inequality and elite capture (Wilfahrt 2018). Despite its limitations, this research demonstrates the usefulness of econometric methods to analyze a project’s conservation legacy. The findings show that payment-based programs do not merely run the risk of nonsignificant conservation impacts. They can generate legacies of negative conservation outcomes. Learning from such failures represents an opportunity to advance conservation governance.

Evaluating the relationship between PES projects and their conservation legacies will remain critical when assessing the effectiveness of conservation-based payments. Other studies establish and affirm the importance of paying enough to offset opportunity costs of land-cover change (Wunder et al. 2018). Thus, conservation projects that leverage an economic incentive must consider how ‘pay enough’ (Gneezy and Rustichini 2000), for long enough, with the right form of compensation, and at the right times (Frey and Jegen 2001). Failure to do so risks a legacy that promotes behavior in direct opposition to conservation objectives. Future research on the legacies of conservation-based contracts and payments can provide additional insights for developing incentives more attuned to context, values, implementation, and adaptive planning.

Data availability statement

The data that support the findings of this study are available upon reasonable request from the authors.

Acknowledgments

This research was made possible through funding from the Borlaug Institute for International Food Security, the Fulbright Program, the University of Michigan Rackham Graduate School, and the National Science Foundation (Grant No. 1912001). F Andrea, E Ediansyah, L Erika, N Habibbi, F Okrizal, I Purnadi, Syafrin, and D Wijaya provided survey enumeration and data entry services. This manuscript benefited from comments provided by A Agrawal, D Brown, M Cox, E Gerber, R Howarth, D Miller, and two anonymous reviewers.

Ethical statement

This study received an IRB exemption from the University of Michigan (HUM00119291). Survey respondents confirmed their willingness to participate in the survey research, and all research was conducted in accordance with recognized standards.

References

Andams K S, Ferraro P J, Sims K R E, Healy A and Holland M B 2010 Protected areas reduced poverty in Costa Rica and Thailand Proc. Natl Acad. Sci. USA 107 9996–10001
Andersson K P, Cook N J, Grillos T, Lopez M C, Salk C F, Wright G D and Mwangi E 2018 Experimental evidence on conservation and the eradication of poverty Proc. Natl Acad. Sci. USA 115 3909–10
Agrawal A, Chhatre A and Gerber E R 2015 Motivational crowding in sustainable development interventions Am. Polit. Sci. Rev. 109 470–87
Agrawal A, Wollenberg E and Persha L 2014 Governing agriculture-forest landscapes to achieve climate change mitigation Glob. Environ. Change 29 270–80
Alpert P 1996 Integrated conservation and development projects Bioscience 46 845–55
Andam K S, Ferraro P J, Sims K R E, Healy A and Holland M B 2010 Protected areas reduced poverty in Costa Rica and Thailand Proc. Natl Acad. Sci. USA 107 9996–10001
Andersson K P, Cook N J, Grillos T, Lopez M C, Salk C F, Wright G D and Mwangi E 2018 Experimental evidence on payments for forest commons conservation Nat. Sustain. 1 128–35
Angrist J D and Pischke J-S 2009 Mostly Harmless Econometrics (Princeton, NJ: Princeton University Press)
Auneeruddu Y 1994 Local representations and management of agroforests on the periphery of Kerinci Seblat National Park Sumatra, Indonesia (No. 3) People and Plants (Paris)
Badan Informasi Geospasial 2014 Transportation network (Jaringan Transportasi)
Bettinger K A 2014 Death by 1,000 cuts: road politics at Sumatra’s Kerinci Seblat National Park Conserv. Soc. 12 280–93

ORCID iD

James T Erbaugh https://orcid.org/0000-0002-0602-9045

Financial Times

James T Erbaugh https://orcid.org/0000-0002-0602-9045

054015 J T Erbaugh

https://orcid.org/0000-0002-0602-9045

References

Andams K S, Ferraro P J, Sims K R E, Healy A and Holland M B 2010 Protected areas reduced poverty in Costa Rica and Thailand Proc. Natl Acad. Sci. USA 107 9996–10001
Andersson K P, Cook N J, Grillos T, Lopez M C, Salk C F, Wright G D and Mwangi E 2018 Experimental evidence on payments for forest commons conservation Nat. Sustain. 1 128–35
Angrist J D and Pischke J-S 2009 Mostly Harmless Econometrics (Princeton, NJ: Princeton University Press)
Auneeruddu Y 1994 Local representations and management of agroforests on the periphery of Kerinci Seblat National Park Sumatra, Indonesia (No. 3) People and Plants (Paris)
Badan Informasi Geospasial 2014 Transportation network (Jaringan Transportasi)
Bettinger K A 2014 Death by 1,000 cuts: road politics at Sumatra’s Kerinci Seblat National Park Conserv. Soc. 12 280–93

Acknowledgments

This research was made possible through funding from the Borlaug Institute for International Food Security, the Fulbright Program, the University of Michigan Rackham Graduate School, and the National Science Foundation (Grant No. 1912001). F Andrea, E Ediansyah, L Erika, N Habibbi, F Okrizal, I Purnadi, Syafrin, and D Wijaya provided survey enumeration and data entry services. This manuscript benefited from comments provided by A Agrawal, D Brown, M Cox, E Gerber, R Howarth, D Miller, and two anonymous reviewers.

Ethical statement

This study received an IRB exemption from the University of Michigan (HUM00119291). Survey respondents confirmed their willingness to participate in the survey research, and all research was conducted in accordance with recognized standards.

ORCID iD

James T Erbaugh https://orcid.org/0000-0002-0602-9045

Financial Times

James T Erbaugh https://orcid.org/0000-0002-0602-9045

054015 J T Erbaugh

https://orcid.org/0000-0002-0602-9045

References

Andams K S, Ferraro P J, Sims K R E, Healy A and Holland M B 2010 Protected areas reduced poverty in Costa Rica and Thailand Proc. Natl Acad. Sci. USA 107 9996–10001
Andersson K P, Cook N J, Grillos T, Lopez M C, Salk C F, Wright G D and Mwangi E 2018 Experimental evidence on payments for forest commons conservation Nat. Sustain. 1 128–35
Angrist J D and Pischke J-S 2009 Mostly Harmless Econometrics (Princeton, NJ: Princeton University Press)
Auneeruddu Y 1994 Local representations and management of agroforests on the periphery of Kerinci Seblat National Park Sumatra, Indonesia (No. 3) People and Plants (Paris)
Badan Informasi Geospasial 2014 Transportation network (Jaringan Transportasi)
Bettinger K A 2014 Death by 1,000 cuts: road politics at Sumatra’s Kerinci Seblat National Park Conserv. Soc. 12 280–93
Bettinger K 2015 Political contestation, resource control and conservation in an era of decentralisation at Indonesia's Kerinci Seblat National Park Asia Pac. Viewp. 56 252–66
Blackman A, Corral L, Lima E S and Asner G P 2017 Titling indigenous communities protects forests in the Peruvian Amazon Proc. Natl Acad. Sci. 114 4123–8
Börner J, Baylis K, Corbera E, Ezine-de-blas D, Honey-Rosés J, Persson U M and Wunder S 2017 The effectiveness of payments for environmental services World Dev. 96 359–74
BPS 2014 Village boundaries (Masterfile Peta Desa)
BPS 2015 Master file Desa (Village Master File)
Brouwer R, Tesfaye A and Paauw P 2011 Meta-analysis of institutional-economic factors explaining the environmental performance of payments for watershed services Environ. Conserv. 38 380–92
Brown K 2002 Innovations for conservation and development Geogr. J. 168 6–17
Bryan A 2013 Incentives, land use, and ecosystem services: synthesizing complex linkages Environ. Sci. Policy 27 124–34
Callaway B and Sant’Anna P H C 2020 Difference-in-differences with multiple time periods J. Econ. 220 1–31
Catalano A S, Lyons-White J, Mills M M and Knight A T 2019 Learning from published project failures in conservation Biol. Conserv. 238 108223
Cetas R E and Yasué M 2017 A systematic review of motivational values and conservation success in and around protected areas Conserv. Biol. 31 203–12
CIESIN 2013 Global roads open access data set (gROADS), v1 (available at: http://sedac.ciesin.columbia.edu/data/set/roads-global-roads-open-access-v1) (Accessed 2 May 2014)
CIESIN 2018 Gridded population of the world, version 4 (GPWv4); population count adjusted to match 2015 revision of UN WPP country totals, revision 11
Clough Y et al 2016 Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes Nat. Commun. 7 13137
Coleman J L et al 2019 Top 100 research questions for biodiversity conservation in Southeast Asia Biol. Conserv. 234 211–20
Cunningham S 2021 Causal Inference: The Mixtape (New Haven, CT: Yale University Press)
de Chaisenmart C and d’Haultfouville X 2020 Two-way fixed effects estimators with heterogeneous treatment effects Am. Econ. Rev. 110 2964–96
Engel S, Pagiola S and Wunder S 2008 Designing payments for environmental services in theory and practice: an overview of the issues Ecol. Econ. 65 663–74
Erbaugh J T, Pradhan N, Adams J, Oldekop J A, Agrawal A, Brockington D, Pritchard R and Chhatre A 2020 Global forest restoration and the importance of prioritizing local communities Nat. Ecol. Evol. 4 1472–6
Ferraro P J and Hanauer M M 2014 Advances in measuring the environmental and social impacts of environmental programs Annu. Rev. Environ. Resour. 39 495–517
Ferraro P J, Hanauer M M, Miteva D A, Nelson J L, Pattanayak S K, Noile C and Sims K R E 2015 Estimating the impacts of conservation on ecosystem services and poverty by integrating modeling and evaluation Proc. Natl Acad. Sci. 112 7420–5
Frey B S and Jegern R 2001 Motivation crowding theory J. Econ. Surv. 15 589–611
Garnett S T, Sayer J and Du Toit J 2007 Improving the effectiveness of interventions to balance conservation and development: a conceptual framework Ecol. Soc. 12 1–20
Gaveau D, Linkie M, Levang P and Leader-Williams N 2009 Three decades of deforestation in southwest Sumatra: effects of coffee prices, law enforcement and rural poverty Biol. Conserv. 142 597–605
Geldmann J, Manica A, Burgess N D, Coal L and Balmford A 2019 A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures Proc. Natl Acad. Sci. USA 116 23209–15
Gibson L et al 2011 Primary forests are irreplaceable for sustaining tropical biodiversity Nature 478 378–81
Global Forest Watch 2014 Indonesia oil palm concessions [WWW document] (World Resources Institute) (available at: https://data.globalforestwatch.org/datasets/oil-palm-concessions) (Accessed 25 February 2018)
Global Forest Watch 2014 Indonesia wood fiber concessions [WWW document] (World Resources Institute) (available at: https://data.globalforestwatch.org/datasets/indonesia-wood-fiber-concessions) (Accessed 25 February 2018)
Global Forest Watch 2014c Indonesia managed forest concessions [WWW document] (World Resources Institute) (available at: https://data.globalforestwatch.org/datasets/indonesia-managed-forest-concessions) (Accessed 25 February 2018)
Gneezy U and Rustichini A 2000 Pay enough or don’t pay at all J. Econ. 115 791–810
Haddad N M et al 2013 Habitat fragmentation and its lasting impact on Earth’s ecosystems Sci. Adv. 1 e1500052
Hansen M C, Potapov P V, Moore R, Hancher M, Turubanova S A and Tyukavina A 2013 High-resolution global maps of 21st-century forest cover change Science 342 850–3
Havinga I, Heim L, Vega-Araya M and Languillaume A 2020 Spatial quantification to examine the effectiveness of payments for ecosystem services: a case study of Costa Rica’s Pago de Servicios Ambientales Ecol. Indic. 108 105766
Hayes T, Grillos T, Bremer L L, Murtinuo F and Shapiro E 2019 Collective PES: more than the sum of individual incentives Environ. Sci. Policy 102 1–8
Henders S, Persson U M and Kastner T 2015 Trading forests: land-use change and carbon emissions embodied in production and exports of forest-risk commodities Environ. Res. Lett. 10 125012
Ho D E, Imai K, King G and Stuart E A 2007 Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference Polit. Anal. 15 199–236
Iacus S M, King G, Porro G, Nall C, Sehon J, Quinn K, Winship C and Porro G 2008 Matching for causal inference without balance checking Available SSRN 1152391 pp 1–17 10.2139/ssrn.1152391
IUCN 2016 The world database on protected areas [WWW document] (available at: www.protectedplanet.net/)
Jack B K, Kouyouk C and Sims K R E 2008 Designing payments for ecosystem services: lessons from previous experience with incentive-based mechanisms Proc. Natl Acad. Sci. 105 9465–70
Jarvis A, Reuter H I, Nelson A and Guevara E 2008 Hole-filled seamless SRTM for the globe version 4. CGIAR–CSI
Jayachandran D, Pritchard R, Chhatre A and Thomas N E 2017 Cash for carbon: a randomized trial of payments for ecosystem services to reduce deforestation Science 357 267–73
Jepson P, Jarvie J K, Mackinnon K, Monk K A, Jepson P, Jarvie J K, Mackinnon K and Monk K A 2001 The end for Indonesia's lowland forests? Science 292 859–61
Jones K R, Venter O, Fuller R A, Allan J R, Maxwell S L, Negret P J and Watson E M 2018 One-third of global protected land is under intense human pressure Science 360 788–91
King G and Nielsen R 2016 Why propensity scores should not be used for matching
Kovác E K, Kalóczai Á and Czucz B 2021 The role of politics in the life of a conservation incentive: an analysis of agri-environment schemes in Hungary Biol. Conserv. 259 109172
Lambin E F, Chauvet S, Covarrubias A and Tyukavina A 2003 Forest clearance and land-use change and carbon emissions embodied in land-use change and carbon emissions embodied in lowland forests? Ecol. Indic. 3 273–81
Levang P, Sitorus S, Gaveau D and Sunderland T 2012 Landless farmers, sly opportunists, and manipulated voters: the
squatters of the Bukit Barisan Selatan National Park (Indonesia) Conserv. Soc. 10 243
Linkie M, Martyr D J, Holdren J, Yanuar A, Hartana A T, Sugardijo J and Leader-Williams N 2003 Habitat destruction and poaching threaten the Sumatran tiger in Kerinci Seblat National Park, Sumatra Oryx 37 41–48
Linkie M, Smith R J and Leader-Williams N 2004 Mapping and predicting deforestation patterns in the lowlands of Sumatra Biodivers. Conserv. 13 1809–18
Linkie M, Smith R J, Zhu Y, Martyr D J, Suedmeyer B, Pramono J and Leader-Williams N 2008 Evaluating biodiversity conservation around a large Sumatran protected area Conserv. Biol. 22 683–90
Margono B A, Potapov P V, Turubanova S, Stolle F and Hansen M C 2014 Primary forest cover loss in Indonesia over 2000–2012 Nat. Clim. Change 4 1–6
Martin Persson U and Alpícar F 2013 Conditional cash transfers and payments for environmental services—a conceptual framework for explaining and judging differences in outcomes World Dev. 43 124–37
McShane T O and Wells M P 2004 Integrated conservation and development? Getting Biodiversity Projects to Work: Towards Better Conservation and Development ed T O McShane and M F Wells (New York: Columbia University Press) MEF 2017 Production forest boundaries Meyfroidt P et al 2018 Middle-range theories of land system change Glob. Environ. Change 53 52–67 Meyfroidt P and Lambin E F 2008 Forest transition in Vietnam and its environmental impacts Glob. Change Biol. 14 1319–36 Meyfroidt P and Lambin E F 2009 Forest transition in Vietnam and displacement of deforestation abroad Proc. Natl Acad. Sci. USA 107 20917–22 Miller D C 2013 Conservation Legacies: Governing Biodiversity and Livelihoods around the W National Parks of Benin and Niger PhD Dissertation University of Michigan Moore A W, King, L, Dale A and Newell R 2018 Toward an integrative framework for local development path analysis Ecol. Soc. 23 13 Muradian R et al 2013 Payments for ecosystem services and the fatal attraction of win-win solutions Conserv. Lett. 6 274–9
Nolte C, Agrawal A, Silvius K M and Soares-Filho B S 2013 Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon Proc. Natl Acad. Sci. USA 110 4956–61
Olden Jul A, Holmes G, Harris W E and Evans K L 2016 A global assessment of the social and conservation outcomes of protected areas Conserv. Biol. 30 133–41
Ostwald M and Henders S 2014 Making two parallel land-use sector debates meet: carbon leakage and indirect land-use change Land Use Pol. 36 533–42
Pattanaik S K, Wunder S and Ferraro P J 2010 Show me the money: do payments supply environmental services in developing countries? Rev. Environ. Econ. Policy 4 254–74
Pereira H M, Navarro L M and Martins I S 2012 Global biodiversity change: the bad, the good, and the unknown Annu. Rev. Environ. Resour. 37 25–50
Rode J, Gómez-Baggethun E and Krause T 2015 Motivation crowding by economic incentives in conservation policy: a review of the empirical evidence Ecol. Econ. 117 270–82
Salzman J, Bennett G, Carroll N, Goldstein A and Jenkins M 2018 The global status and trends of payments for ecosystem services Nat. Sustain. 1 136–44
Shah P and Baylis K 2015 Evaluating heterogeneous conservation effects of forest protection in Indonesia PLoS One 10 1–21
Sills E O and Jones K 2018 Causal inference in environmental conservation: the role of institutions Handbook of Environmental Economics (New York: Elsevier B.V.) pp 395–437
Sims K R E 2010 Conservation and development: evidence from Thai protected areas J. Environ. Econ. Manage. 60 94–114
Stuart E A 2010 Matching methods for causal inference: a review and a look forward Stat. Sci. 25 1–21
Verde Selva G, Pauli N, Kiatkoski Kim M and Clifton J 2020 Opportunity for change or reinforcing inequality? Power, governance and equity implications of government payments for conservation in Brazil Environ. Sci. Policy 105 102–12
Waldron A, Miller D C, Redding D, Mooers A, Kuhn T S, Nibbelink N, Roberts J T, Tobias J A and Gittelman J L 2017 Reductions in global biodiversity loss predicted from conservation spending Nature 551 364–7
Watson J E M, Dudley N, Segan D B and Hockings M 2014 The performance and potential of protected areas Nature 515 656–61
Weber J G, Sills E O, Bauch S and Pattanaik S K 2011 Do ICDPs work? An empirical evaluation of forest-based microenterprises in the Brazilian Amazon Land Econ. 87 661–81
Wibowo D 1999 Deforestation, capital accumulation and consumption: strategic implications for sustainable development Int. Sustainable Development Research Conf. Proc. pp 394–400
Widianingsih N N, Theilade I and Pouliot M 2016 Contribution of forest restoration to rural livelihoods and household income in Indonesia Sustainability 8 835
Wilfahrt M 2018 The politics of local government performance: elite cohesion and cross-village constraints in decentralized Senegal World Dev. 103 149–61
Wood P, Sheil D, Syaf R and Warta Z 2014 The implementation and sustainability of village conservation agreements around Kerinci Seblat National Park, Indonesia Soc. Nat. Resour. 27 1–19
Wooldridge J M 2002 The Econometric Analysis of Cross Section and Panel Data (Cambridge: MIT Press)
World Bank 1996 Indonesia—Kerinci Seblat Integrated Conservation and Development Project (English) (Washington, DC: World Bank) (available at: http://documents.worldbank.org/curated/en/577541468759483922/Indonesia-Kerinci-Seblat-Integrated-Conservation-and-Development-Project)
World Bank 2003 Implementation Completion Report for the Kerinci Seblat Integrated Conservation and Development Project (World Bank) (available at: http://documents.worldbank.org/curated/en/101901468756309422/Indonesia-Kerinci-Seblat-Integrated-Conservation-and-Development-Project)
Wunder S, Brouwer R, Engel S, Ezinze-De-Blas D, Muradian R, Pascual U and Panel Data (English) (available at: http://documents. worldbank.org/curated/en/101901468756309422/Indonesia-Kerinci-Seblat-Integrated-Conservation-and-Development-Project)
Wunder S, Brouwer R, Engel S, Ezinze-De-Blas D, Muradian R, Pascual U and Pinto R 2018 From principles to practice in paying for nature’s services Nat. Sustain. 1 145–50
Wunder S, Engel S and Pagiola S 2008 Taking stock: a comparative analysis of payments for environmental services programs in developed and developing countries Ecol. Econ. 65 834–52
Young O R et al 2006 A portfolio approach to analyzing complex human-environment interactions: institutions and land change Ecol. Soc. 11 31