Some p-adic differential equations

Maurice de GOSSON University of Karlskrona-Ronneby, 371 79 Karlskrona, Sweden

Branko DRAGOVICH Steklov Mathematical Institute, Gubkin St. 8, 117966, Moscow, Russia; Institute of Physics, P.O.Box 57, 11001 Belgrade, Yugoslavia

Andrei KHRENNIKOV Department of Mathematics, Statistics and Computer Sciences, Växjö University, Växjö, S-35195, Sweden

Abstract

We investigate various properties of p-adic differential equations which have as a solution an analytic function of the form

$$F_k(x) = \sum_{n \geq 0} n! P_k(n)x^n,$$

where $P_k(n) = n^k + C_{k-1}n^{k-1} + \cdots + C_0$ is a polynomial in n with $C_i \in \mathbb{Z}$ (in a more general case $C_i \in \mathbb{Q}$ or $C_i \in \mathbb{C}_p$), and the region of convergence is $|x|_p < p^{-\frac{1}{d}}$. For some special classes of $P_k(n)$, as well as for the general case, the existence of the corresponding linear differential equations of the first- and second-order for $F_k(x)$, is shown. In some cases such equations are constructed. For the second-order differential equations there is no other analytic solution of the form $\sum a_n x^n$. Due to the fact that the corresponding inhomogeneous first-order differential equation exists one can construct infinitely many inhomogeneous second-order equations with the same analytic solution. Relation to some rational sums with the Bernoulli numbers and to $F_k(x)$ for some $x \in \mathbb{Z}$ is considered. Some of these differential equations can be related to p-adic dynamics and p-adic information theory.
1 Introduction

Some aspects of the p-adic series of the form

$$F_k(x) = \sum_{n \geq 0} n! P_k(n) x^n, \quad (1.1)$$

where $P_k(n) = n^k + C_{k-1} n^{k-1} + \cdots + C_0$ is a polynomial in n with $C_i \in \mathbb{Z}$, have been considered in a few articles (see [1], [2] and references therein). It was noted in [1] that

$$F_0(x) = \sum_{n \geq 0} n! x^n \quad (1.2)$$

is an analytic solution of the following p-adic differential equation:

$$x^2 w''(x) + (3x - 1) w'(x) + w(x) = 0. \quad (1.3)$$

Here we investigate the existence, construction and various properties of the differential equations which have as an analytic solution p-adic power series of the form (1.1) with

$$P_k(n) = n^k + C_{k-1} n^{k-1} + \cdots + C_0, \quad C_i \in \mathbb{Q}. \quad (1.4)$$

In a sense we mainly consider an inverse problem related to differential equations, i.e. we are looking for differential equation for which a solution is known.

Recall that the power series (1.1) has p-adic region of convergence $D_p = \{ x \in \mathbb{C}_p : | x |_p < p^{-1/p^k} \}$, where \mathbb{C}_p is the algebraic closure of \mathbb{Q}_p [3]. In the case of restriction to \mathbb{Q}_p, we have $D_p = \mathbb{Z}_p$ for every p. Note that in the real case the series (1.1) is not convergent for any $0 \neq x \in \mathbb{Q}$.

A theory of the p-adic hypergeometric differential equations is presented in Dwork’s book [4].

2 Existence of some p-adic differential equations

It is not difficult to verify that expression (1.2), which is the simplest example of (1.1), satisfies not only equation (1.3) but also the first-order inhomogeneous differential equation

$$x^2 w' + (x - 1) w = -1. \quad (2.1)$$
Note that differentiation of (2.1) gives (1.3).
Combining (1.3) and (2.1) in the form
\[x^2 w'' + (3x - 1)w' + w + R(x)[x^2 w' + (x - 1)w + 1] = 0, \] (2.2)
where \(R(x) \) is a rational function with integer coefficients, one can consider infinitely many second-order linear inhomogeneous \(p \)-adic differential equations with the same analytic solution (1.2). Generally, we will be interested in differential equations of the form
\[(Polynomial)_1 w'' + (Polynomial)_2 w' + (Polynomial)_3 w = (Polynomial)_4, \] (2.3)
where the polynomials are in \(x \) with integer (or \(p \)-adic) coefficients, and \(w = F_k(x) \) with \(P_k(n) \) given by (1.4).

Proposition 1 Let \(A(x) \) and \(B(x) \) be rational functions with rational coefficients. If there are differential equations
\[A(x)F'_\nu(x) + B(x)F_\nu(x) = C, \quad C \in \mathbb{Q}, \] (2.4)
\[A(x)F''_\nu(x) + (A'(x) + B(x))F'_\nu(x) + B'(x)F_\nu(x) = 0, \] (2.5)
with the analytic solution
\[F_\nu(x) = \sum_{n \geq 0} n!P_\nu(n)x^n, \] (2.6)
then there exist also similar differential equations of the first- and second-order with the solution
\[F_{\mu+\nu}(x) = \sum_{n \geq 0} n! \prod_{i=1}^{\mu} (n + i)^2 P_\nu(n + \mu)x^n. \] (2.7)

Proof: Rewriting eq. (2.4) in the form
\[\frac{A(x)}{B(x)}F'_\nu(x) + F_\nu(x) = \frac{C}{B(x)} \]
and taking its derivative one obtains a new equation
\[A_1(x)F''_\nu(x) + B_1(x)F'_\nu(x) = C, \]
which is of the same form as (2.4) but with new rational functions $A_1(x)$ and $B_1(x)$: $A_1(x) = -A(x)B(x)/B'(x)$, $B_1(x) = (B'(x)A(x) - A'(x)B(x) - B^2(x))/B'(x)$. Repeating this procedure μ times, we get

$$A_{\mu}(x)F_{\nu}^{(\mu+1)}(x) + B_{\mu}(x)F_{\nu}^{(\mu)} = C.$$

Taking into account that $F_{\nu}^{(\mu)}(x) = F_{\nu+\mu}(x)$, for functions $F_\nu(x)$ and $F_{\mu+\nu}(x)$ given by (2.6) and (2.7), respectively, we have differential equation for $F_{\mu+\nu}$:

$$A_{\mu}(x)F_{\mu+\nu}'(x) + B_{\mu}(x)F_{\mu+\nu}(x) = C,$$

which resembles equation (2.4). The corresponding second-order differential equation is

$$A_{\mu}(x)F_{\mu+\nu}''(x) + (A_{\mu}'(x) + B_{\mu}(x))F_{\mu+\nu}'(x) + B_{\mu}'(x)F_{\mu+\nu}(x) = 0.$$

From the proof of the Proposition 1 it also follows

Corollary 1 Derivatives of any order of the function (2.6), which is related to equations (2.4) and (2.5), induce the corresponding first- and second-order differential equations.

Proposition 2 If there are differential equations (2.4) and (2.5) with the analytic solution (2.6), then there exist also similar differential equations with the analytic solution

$$G_{\nu}(x) = x^m F_\nu(x) = x^m \sum_{n \geq 0} n! P_{\nu}(n)x^n, \quad m \in \mathbb{N}. \quad (2.10)$$

Proof: Differentiating (2.10), and replacing $F_\nu(x)$ and $F_\nu'(x)$ in (2.4) one gets similar equation

$$A_1(x)G_{\nu}'(x) + B_1(x)G_{\nu}(x) = C,$$

where $A_1(x) = A(x)/x^m$ and $B_1(x) = B(x)/x^m - mA(x)/x^{m+1}$. By differentiation of (2.11) one has the corresponding second-order differential equation.

Proposition 3 There exist the first- and second-order differential equations with the analytic solution

$$F_k(x) = \sum_{n \geq 0} n! k^n x^n, \quad k = 1, 2, ... \quad (2.12)$$
Proof: Start with (1.2) which induces equations (2.1) and (2.2). According to the Corollary 1, \(F'(x) = \sum n!nx^n \) has its own differential equation. Due to the Proposition 2 it follows that there exist equations for \(F_1(x) = xF'(x) = \sum n!nx^n \). Performing this procedure \(k \) times we come to the Proposition 3.

Proposition 4 There exist a first- and a second-order differential equation with the analytic solution
\[
\Phi_\alpha(x) = \sum_{n \geq 0} n!(n+\alpha)x^n, \quad \alpha \in \mathbb{Q}. \tag{2.13}
\]

Proof: Let us introduce \(G_\alpha(x) = x^\alpha F_0(x) = \sum_{n \geq 0} n!x^{n+\alpha} \). According to the Proposition 2, \(G_\alpha(x) \) is an analytic solution of a first- and second-order differential equation if \(\alpha \in \mathbb{N} \). In the same way one can show that \(G_\alpha(x) \) is also a solution of a first-order differential equation if \(\alpha \in \mathbb{Q} \), as well as if \(\alpha \in \mathbb{C}_p \). Differentiating equation for \(G_\alpha(x) \) in an appropriate way one can obtain the corresponding first-order differential equation for \(G'_\alpha(x) \) (see also Corollary 1). In an analogous way to the Proposition 2 it follows that \(\Phi_\alpha(x) = x^{-\alpha}G'_\alpha(x) = \sum_{n \geq 0} n!(n+\alpha)x^n \) is an analytic solution of some first- and second-order differential equations.

It is now obvious that any \(p \)-adic power series of the form
\[
F_k(x) = \sum_{n \geq 0} n! \prod_{i=1}^l (n + \alpha_i)^{k_i}x^n, \quad k_1 + k_2 + \cdots + k_l = k, \quad \alpha_i \in \mathbb{Q}, \tag{2.14}
\]
is an analytic solution of a first- and, consequently, of a second-order homogeneous differential equation.

We can take that in (2.14) some or all of \(\alpha_i \in \mathbb{Q}_p \) (or \(\mathbb{C}_p \)), but in such case there is restriction of our consideration to a definite \(\mathbb{Q}_p \) (or \(\mathbb{C}_p \)). However, taking \(\alpha_i \in \mathbb{Q} \) we have results valid in \(\mathbb{C}_p \) for every \(p \).

Theorem 1 To each function of the form \(F_k = \sum_{n \geq 0} n!P_k(n)x^n \), where \(P_k(n) = n^k + C_{k-1}n^{k-1} + \cdots + C_0 \) is a polynomial in \(n \) with coefficients \(C_i \in \mathbb{Q} \) (or \(C_i \in \mathbb{C}_p \)), corresponds a first-order differential equation, and consequently the second-order one.

Proof: It follows from the fact that the above polynomial \(P_k(n) \) can be rewritten in the form
\[
P_k(n) = \prod_{i=1}^k (n + \alpha_i),
\]
where $\alpha_i \in \mathbb{C}_p$.

3 Construction of some p-adic differential equations

There are many ways to construct relevant differential equations for some $F_k(x) = \sum n!P_k(n)x^n$ with simple polynomials $P_k(n)$.

For functions $\sum n!n^kx^n$, where $k = 0, 1, 2, \cdots$, the relations [1] of the following form are valid:

$$x^k \sum n!n^kx^n + U_k(x) \sum n!x^n = V_{k-1}(x),\quad (3.1)$$

where $U_k(x)$ and $V_{k-1}(x)$ are certain polynomials in x with integer coefficients. The first three of them are:

$$x \sum_{n\geq0} n!nx^n + (x - 1) \sum_{n\geq0} n!x^n = -1,\quad (3.2)$$

$$x^2 \sum_{n\geq0} n!n^2x^n + (-x^2 + 3x - 1) \sum_{n\geq0} n!x^n = 2x - 1,\quad (3.3)$$

$$x^3 \sum_{n\geq0} n!n^3x^n + (x^3 - 7x^2 + 6x - 1) \sum_{n\geq0} n!x^n = -3x^2 + 5x - 1.\quad (3.4)$$

We use the above relations for power series to construct differential equations for some simple cases of $F_k(x)$.

Example 1: $F_0(x) = \sum n!x^n$.

Starting with (3.2) one obtains

$$x^2F_0'(x) + (x - 1)F_0(x) = -1,\quad (3.5)$$

that is the equation (2.1). Differentiation of (3.5) gives

$$x^2F_0''(x) + (3x - 1)F_0'(x) + F_0(x) = 0,\quad (3.6)$$

which is just (1.3).

Example 2: $F_1(x) = \sum n!nx^n$.

Due to (3.2) and (3.3) one gets

$$x^2(x - 1)F_1'(x) + (x^2 - 3x + 1)F_1(x) = x.\quad (3.7)$$
Dividing (3.7) by \(x\) and performing derivation one has
\[
x^3 F''_1(x) + x(3x - 1)F'_1(x) + (x + 1)F_1(x) = 0. \quad (3.8)
\]

Example 3: \(F_1(x) = \sum n!(n + 1)x^n\).

Combining (3.2) and (3.3) we obtain:
\[
x^2 F'_1(x) + (2x - 1)F_1(x) = -1, \quad (3.9)
\]
\[
x^2 F''_1(x) + (4x - 1)F'_1(x) + 2F_1(x) = 0. \quad (3.10)
\]

Example 4: \(F_2(x) = \sum n!(n + 1)(n + 2)x^n\).

The corresponding differential equations are:
\[
x^2 F'_2(x) + (3x - 1)F_2(x) = -2, \quad (3.11)
\]
\[
x^2 F''_2(x) + (5x - 1)F'_2(x) + 3F_2(x) = 0, \quad (3.12)
\]

and can be obtained using equations (3.2), (3.3) and (3.4).

Examples 3 and 4 are particular ones of \(F_1(x) = \sum n!(n + \alpha)x^n\), \(\alpha \in \mathbb{Q}\). Let us construct now the corresponding differential equations for any \(\alpha \in \mathbb{Q}\), which does exist according to the Proposition 4.

Example 5: \(\Phi_\alpha(x) = \sum n!(n + \alpha)x^n\), \(\alpha \in \mathbb{C}_p\).

It is worthwhile to start with \(G_\alpha(x) = x^\alpha F_0(x) = \sum n!x^{n+\alpha}\). Substituting \(F_0(x) = x^{-\alpha}G_\alpha(x)\) in its equation (3.5) one obtains
\[
x^2 G'_\alpha(x) - [(\alpha - 1)x + 1]G_\alpha(x) = -x^\alpha.
\]

Forming the second-order differential equation for \(G_\alpha(x)\) and taking \(G'_\alpha(x) = x^{\alpha-1}\Phi_\alpha(x)\) we have
\[
x^2[(\alpha - 1)x + 1]\Phi'_\alpha(x) + [(\alpha - 1)x^2 - (\alpha - 3)x - 1]\Phi_\alpha(x) = -(\alpha - 1)^2x - \alpha, \quad (3.13)
\]

and consequently
\[
x^2[(\alpha - 1)x + 1][(\alpha - 1)^2x + \alpha]\Phi''_\alpha(x)
+ [3(\alpha - 1)^3x^3 - (\alpha - 1)(\alpha^2 - 9\alpha + 4)x^2 - (2\alpha^2 - 7\alpha + 1)x - \alpha]\Phi'_\alpha(x)
+ [(\alpha - 1)^3x^2 + 2\alpha(\alpha - 1)x + (\alpha + 1)]\Phi_\alpha(x) = 0. \quad (3.14)
\]

Example 6: \(F_k(x) = \sum n! \prod_{i=1}^{k}(n + i)x^n\), \(k \in \mathbb{N}\).
Starting from the Example 3, using the method of mathematical induction and an analogous way to the Example 5, one can derive the following equations:

\[x^2 F'_k(x) + [(k + 1)x - 1]F_k(x) = -k!, \quad (3.15) \]
\[x^2 F''_k(x) + [(k + 3)x - 1]F'_k(x) + (k + 1)F_k(x) = 0. \quad (3.16) \]

Note that (3.15) and (3.16) hold for \(k = 0 \) as well.

Example 7: \(F_k(x) = \sum n! \prod_{i=1}^{k} (n + i)^2 x^n \).

Differentiation of equation (3.5) \(k \) times yields:

\[x^2 F^{(k+2)}_0(x) + [(2k + 3)x - 1]F^{(k+1)}_0(x) + (k + 1)^2 F^{(k)}_0(x) = 0. \quad (3.17) \]

Since \(F^{(k)}_0(x) = F_k(x) \) we have

\[x^2 F''_k(x) + [(2k + 3)x - 1]F'_k(x) + (k + 1)^2 F_k(x) = 0. \quad (3.17) \]

The corresponding first-order equation of (3.17) has a rather complex form.

Example 8: \(\Phi_{\alpha \beta}(x) = \sum n!(n + \alpha)(n + \beta)x^n, \quad \alpha, \beta \in C_p. \)

Denote \(G_{\alpha \beta}(x) = x^{\beta} \Phi_{\alpha}(x) = \sum n!(n + \alpha)x^{n+\beta} \) and note that \(G'_{\alpha \beta} = x^{\beta-1} \Phi_{\alpha \beta}(x) \). Using equation (3.13) for \(\Phi_{\alpha}(x) \) one can obtain the following differential equation:

\[
\begin{align*}
x^2[(\alpha - 1)x + 1][((\alpha - 1)(\beta - 1)x^2 + (\alpha + \beta - 3)x + 1)]
& + x[(\alpha - 1)(\beta - 1)x^2 + (\alpha + \beta - 3)x + 1]
& + x[3x(\alpha - 1) + 2][((\alpha - 1)(\beta - 1)x^2 + (\alpha + \beta - 3)x + 1]
& - x^2[(\alpha - 1)x + 1][((\alpha - 1)(\beta - 1)x + \alpha + \beta - 3]
& - [((\alpha - 1)(\beta - 1)x^2 + (\alpha + \beta - 3)x + 1)]^{\beta-1}] \Phi_{\alpha \beta}(x)

& = x[(\alpha - 1)^2x + \alpha][2(\alpha - 1)(\beta - 1)x + \alpha + \beta - 3] - [((\alpha - 1)^2(\beta + 1)x + \alpha \beta]
& \times [(\alpha - 1)(\beta - 1)x^2 + (\alpha + \beta - 3)x + 1]. \quad (3.18)
\end{align*}
\]

The corresponding homogeneous second-order differential equation exists, but it is more complex than (3.18).

Example 9: \(F_2(x) = \sum n!n^2 x^n \).
This can be considered as special case of the Example 9 for \(\alpha = \beta = 0 \). From (3.18) it follows

\[
x^2(x^2 - 3x + 1)F_2''(x) + (x^3 - 7x^2 + 6x - 1)F_2(x) = -x(x + 1). \tag{3.19}
\]

The corresponding homogeneous second-order differential equation is

\[
x^3(x + 1)(x^2 - 3x + 1)F_2''(x) + x(3x^4 - 6x^3 - 7x^2 + 6x - 1)F_2'(x)
+ (x^4 + 2x^3 - 13x^2 + 2x + 1)F_2(x) = 0. \tag{3.20}
\]

It is obvious that using the above procedures one can construct differential equation for any function of the form \(F_k(x) = \sum n! \prod_{i=1}^k (n + \alpha_i)x^n \), where \(\alpha_i \in \mathbb{C}_p \).

4 On other solutions

It seems that the homogeneous second-order differential equation for analytic function \(F_k(x) = \sum n!P_k(n)x^n \) has no another analytic solution in the region containing point \(x = 0 \). Namely, in any particular case of the above examples one can start with power series expansion and conclude that only \(F_k(x) = \sum n!P_k(n)x^n \) is the corresponding analytic solution. However, the corresponding general statement needs a clear rigorous proof.

Note that the solution \(F_0(x) = \sum_{n \geq 0} n!x^n \) can be presented in the form

\[
F_0(x) = \sum_{n \geq 0} b_n(x - \beta)^n, \tag{4.1}
\]

where coefficients \(b_n \) satisfy conditions

\[
\sum_{n \geq k} b_n \binom{n}{k} \beta^{n-k} = k!, \quad k = 0, 1, 2, \ldots \tag{4.2}
\]

Solution of the system of equations (4.2) yields

\[
b_n = \sum_{k \geq n} (-1)^{k-n}k! \binom{k}{n} \beta^{k-n}. \tag{4.3}
\]
One can easily verify that in the simplest case, given by the Example 1 and equation (1.3), one has the following two new solutions (see also [5]):

\[
\begin{align*}
 w_1(x) &= \frac{1}{x} \exp \left(-\frac{1}{x} \right), \\
 w_2(x) &= \frac{1}{x} \exp \left(-\frac{1}{x} \right) \int_{x_0}^{x} \frac{1}{t} \exp \left(\frac{1}{t} \right) dt,
\end{align*}
\]

where the region of \(p \)-adic convergence of \(w_1(x) \) and \(w_2(x) \) in (4.4) is \(\Delta_p = \{ x \in \mathbb{C}_p : |x|_p > p^{-\frac{1}{p-1}} \} \). Thus \(\mathbb{C}_p = D_p \cup S_p \cup \Delta_p \), where \(D_p \) is the region of convergence of analytic solution (1.2) and \(S_p \) is the sphere \(S_p = \{ x \in \mathbb{C}_p : |x|_p = p^{-\frac{1}{p-1}} \} \). Note that \(D_p, S_p, \) and \(\Delta_p \) are mutually disjoint subsets of \(\mathbb{C}_p \).

Using a reasoning analogous to the preceding section, one can show that all homogeneous second-order differential equations for \(F_k(x) = \sum n! P_k(n)x^n \) have the corresponding two other solutions which are connected with (4.4) in the similar way as analytic solutions \(F_k(x) \) are related to \(F_0(x) \).

5 Relation to rational summation of \(p \)-adic series

The above differential equations may be used to obtain various expressions for sums of some \(p \)-adic series.

For example, from (3.15) one can rederive (3.2)-(3.4), as well as any other sum of the form

\[
\sum n! [n^k + u_k(x)] x^n = v_k(x),
\]

where \(u_k(x) \) and \(v_k(x) \) are rational functions of variable \(x \). Any other possible rational sum can be generated from (5.1) multiplying it by rational numbers and performing the corresponding summation. For \(k = 1, ..., 5 \) we calculated (5.1) in the explicit form:

\[
\begin{align*}
 \sum_{n \geq 0} n! \left(n + \frac{x - 1}{x} \right) x^n &= \frac{-1}{x}, \\
 \sum_{n \geq 0} n! \left(n^2 + \frac{-x^2 + 3x - 1}{x^2} \right) x^n &= \frac{2x - 1}{x^2},
\end{align*}
\]
\[\sum_{n \geq 0} n! \left(n^3 + \frac{x^3 - 7x^2 + 6x - 1}{x^3} \right) x^n = \frac{-3x^2 + 5x - 1}{x^3}, \quad (5.4) \]

\[\sum_{n \geq 0} n! \left(n^4 + \frac{-x^4 + 15x^3 - 25x^2 + 10x - 1}{x^4} \right) x^n = \frac{4x^3 - 17x^2 + 9x - 1}{x^4}, \quad (5.5) \]

\[\sum_{n \geq 0} n! \left(n^5 + \frac{x^5 - 31x^4 + 90x^3 - 65x^2 + 15x - 1}{x^5} \right) x^n = \frac{-5x^4 + 49x^3 - 52x^2 + 14x - 1}{x^5}. \quad (5.6) \]

Taking \(x = t \in \mathbb{Z} \) in (5.2)-(5.6) we obtain \(p \)-adic sums valid in all \(\mathbb{Q}_p \). The case \(x = 1 \) and \(k = 1, \ldots, 11 \) is presented in [1]. For some evaluation of \(\sum n! \) one can see Schikhof’s book ([3], p. 17). We write down sums for \(x = -1 \) and \(k = 1, \ldots, 5 \):

\[\sum_{n \geq 0} (-1)^n n!(n + 2) = 1, \quad \sum_{n \geq 0} (-1)^n n!(n^2 - 5) = -3, \]

\[\sum_{n \geq 0} (-1)^n n!(n^3 + 15) = 9, \quad \sum_{n \geq 0} (-1)^n n!(n^4 - 52) = -31, \]

\[\sum_{n \geq 0} (-1)^n n!(n^5 + 203) = 121. \quad (5.7) \]

Note also that putting \(x = 1/(1-\alpha), \ x = 1 \) and \(x = -1 \) successively in (3.13) we have:

\[\sum_{n \geq 0} n!(n + \alpha) \left(\frac{1}{1-\alpha} \right)^n = \alpha - 1, \quad |1 - \alpha|^p^{-1} < p^{-1}, \quad (5.8) \]

\[\sum_{n \geq 0} n!(n + \alpha)(\alpha n + 1) = -\alpha^2 + \alpha - 1, \quad (5.9) \]

\[\sum_{n \geq 0} (-1)^n n!(n + \alpha)[(\alpha - 2)n + 2\alpha - 5] = \alpha^2 - 3\alpha + 1. \quad (5.10) \]

The sum (5.10) can be easily verified employing (5.7).

Since the \(p \)-adic sums (5.2)-(5.6) are convergent in \(\mathbb{Z}_p \) one can use them to obtain a new kind of \(p \)-adic sums with the Bernoulli numbers \(B_n \), which may be regarded as [3]

\[B_n = \int_{\mathbb{Z}_p} x^n dx, \quad n = 0, 1, 2, \ldots, \]
where \(f_{z_p} f(x) dx \) denotes the Volkenborn integral. Recall that expressions
\[
B_0 = 1, \quad \sum_{i=1}^{n-1} \binom{n}{i} B_i = 0, \quad n \geq 2
\]
determine all Bernoulli numbers. Rewriting (5.2)-(5.6) in the form (3.1) and performing the Volkenborn integration, we get the first five sums:

\[
\sum_{n \geq 0} n![(n + 1)B_{n+1} - B_n] = -1,
\]
\[
\sum_{n \geq 0} n![(n^2 - 1)B_{n+2} + 3B_{n+1} - B_n] = -2,
\]
\[
\sum_{n \geq 0} n![(n^3 + 1)B_{n+3} - 7B_{n+2} + 6B_{n+1} - B_n] = -4,
\]
\[
\sum_{n \geq 0} n![(n^4 - 1)B_{n+4} + 15B_{n+3} - 25B_{n+2} + 10B_{n+1} - B_n] = -\frac{25}{3},
\]
\[
\sum_{n \geq 0} n![(n^5 + 1)B_{n+5} - 31B_{n+4} + 90B_{n+3} - 65B_{n+2} + 15B_{n+1} - B_n] = -\frac{33}{2}.
\]

The termwise integration of an analytic function is provided by the Proposition 55.4 of [3]. If we first make transformation \(x \to -x \) and then apply the Volkenborn integral we can obtain the corresponding sums with \((-1)^n\) factors. As an illustration we give the following two sums:

\[
\sum_{n \geq 0} (-1)^n n![(n + 1)B_{n+1} + B_n] = 1,
\]
\[
\sum_{n \geq 0} (-1)^n n![(n^2 - 1)B_{n+2} - 3B_{n+1} - B_n] = -2.
\]

Since \(|B_n|_p \leq p \) (see [3], p. 172), there are no problems with the convergence of the above series in \(\mathbb{Q}_p \) for every \(p \) and results are valid in all \(\mathbb{Q}_p \). Multiplying the series (3.1) by \(x^m \) before integration, one can generalize the above formulas involving the Bernoulli numbers.
6 Possible physical applications

Since 1987, when a notion of p-adic strings [6] was introduced for the first time, there have been exciting investigations in application of p-adic numbers in many parts of modern theoretical and mathematical physics (for a review, see, e.g. Refs. [7],[8] and [9]). One of the very perspective approaches is related to adeles [10], which unify p-adic and real numbers. So, adelic quantum theory (see [11]-[13]) seems to be a more complete theory then the ordinary one based on real and complex numbers only.

Some of the above p-adic differential equations may be regarded as classical equations of motion in the Lagrangian formalism. Recall that for a given Lagrangian $L(\dot{q}, q, t)$, the classical equation of motion is the Euler-Lagrange equation

$$\frac{\partial L}{\partial q} - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}} = 0,$$

where \dot{q} denotes derivative of q with respect to the time variable t. In the case of quadratic Lagrangians, i.e.

$$L(\dot{q}, q, t) = a(t)\dot{q}^2 + 2b(t)\dot{q}q + c(t)q^2 + 2d(t)\dot{q} + 2e(t)q + f(t),$$

the classical equation of motion reads:

$$a(t)\ddot{q} + \dot{a}(t)\dot{q}(t) + [\dot{b}(t) - c(t)]q(t) = e(t) - \ddot{d}(t).$$

Let us consider the simplest case of our p-adic differential equations presented in the form (2.2), where $R(x)$ is a rational function with integer coefficients. According to (6.3), a second-order differential equation can be an equation of motion if there is a definite relation between the coefficients of the terms with \ddot{q} and \dot{q}. One can easily see that the case $R(x) = 0$ does not lead to an equation of motion. However, if $R(x) = (-x + 1)/x^2$ then (2.2) becomes equation of motion in the following form:

$$t^4\ddot{q} + 2t^3\dot{q} + (2t - 1)q = t - 1,$$

One of the possible Lagrangians which give (6.4) is

$$L(\dot{q}, q, t) = \frac{t^2}{2} \dot{q}^2 + \left(\frac{t^3}{3} + 2 \log t + \frac{1}{t} + C\right)\dot{q}q + \frac{t^2}{2}q^2 - \frac{1}{t}q + \frac{1}{t}q,$$

where C is a constant. Other Lagrangians, which lead to (6.4), have less symmetric coefficients than (6.5). A solution of (6.4) is $q(t) = \sum n!t^n$
and represents p-adic classical trajectory. In virtue of the Proposition 5 this is a unique p-adic analytic solution around $x = 0$ and there is not the corresponding real analytic counterpart.

It is worth noting also that other analytic solutions of the form $F_k(t) = \sum n!P_k(n)x^n$ have no real counterparts and may describe some dynamical systems for which real numbers are useless. As a possible application of these analytic solutions one can consider dynamics on information spaces introduced in [14].

7 Concluding remarks

When the coefficients C_i of the polynomials $P_k(n)$ in (1.1) are rational numbers and $x \in \mathbb{Q}_p$, then all the obtained results for $F_k(x)$ are valid in \mathbb{Z}_p for every p. Taking into account solutions (see Section 4) which have real counterparts, we can construct also some adelic [10] solutions. Namely, an adelic solution for the case $k = 1$ in the form (6.4) is:

$$q(t) = (q_\infty(t_\infty), F_0(t_2), F_0(t_3), ..., F_0(x_p), ...),$$

(7.1)

where the index ∞ denotes real case, $F_0(t) = \sum n!t^n$, and

$$q_\infty(t) = \frac{1}{t} \exp\left(-1/t\right)$$

\times \left(A_1 + A_2 \int_{t_0}^t \exp\left(2/y\right)dy + \int_{t_0}^t dy \exp\left(2/y\right) \int_{y_0}^y dz \frac{z-1}{z^3} \exp\left(-1/z\right) \right),$$

(7.2)

where A_1 and A_2 are arbitrary integration constants.

All the above considered differential equations are linear. Some of them are homogeneous and the others are inhomogeneous. Rewriting all equations in the form

$$D_k\left(\frac{d^2}{dx^2}, \frac{d}{dx}, x\right)F_k(x) = 0,$$

(7.3)

where operator D_k linearly depends on derivatives $\frac{d^2}{dx^2}$ and $\frac{d}{dx}$, one can construct many non-linear differential equations taking various products of D_k. For example, according to (3.5) and (3.9), we have

$$[x^2u' + (x - 1)u + 1][x^2u' + (2x - 1)u + 1] = 0$$

(7.4)
with solutions: \(u_1(x) = \sum n!x^n \), \(u_2(x) = \sum n!(n + 1)x^n \).

Acknowledgments
A part of this article has been done during the visit of one of the authors (B.D.) to the Department of Mathematics, University of Karlskrona-Ronneby, Sweden, and to the Institute of Mathematics and System Engineering, Växjö University, Sweden, on the basis of the research project of the Royal Academy of Science of Sweden in collaboration with States of Former SU. The work of B.D. was supported in part by RFFI grant 990100866.

References

[1] B Dragovich. On \(p \)-adic power series. In: WH Schikhof, C Perez-Garcia, J Kakol, eds. \(p \)-Adic Functional Analysis. Lecture Notes in Pure and Applied Mathematics. Vol. 207. New York: Marcel Dekker, 1999. pp 65-75.

[2] B Dragovich. On some \(p \)-adic series with factorials. In: WH Schikhoh, C Perez-Garcia, J Kakol, eds. \(p \)-Adic Functional Analysis. Lecture Notes in Pure and Applied Mathematics. Vol. 192. New York: Marcel Dekker, 1997. pp 95-105.

[3] WH Schikhof. Ultrametric Calculus: An Introduction to \(p \)-Adic Analysis. Cambridge: Cambridge University Press, 1984.

[4] B Dwork. Lectures on \(p \)-Adic Differential Equations. New York: Springer-Verlag, 1982.

[5] E Kamke, Handbook on Ordinary Differential Equations. (Russian Edition). Moscow: Nauka, 1976.

[6] IV Volovich. \(p \)-adic string. Class Quantum Grav 4:L83-L87, 1987

[7] VS Vladimirov, IV Volovich, EI Zelenov. \(p \)-Adic Analysis and Mathematical Physics. Singapore: World Scientific, 1994.

[8] A Khrennikov. \(p \)-Adic Valued Distributions in Mathematical Physics. Dordrecht: Kluwer Academic Publishers, 1994.

[9] A Khrennikov. Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models. Dordrecht: Kluwer Academic Publishers, 1997.
[10] A Weil. Adeles and Algebraic Groups. Boston: Birkhäuser, 1982.

[11] B Dragovich. Adelic harmonic oscillator. Int J Mod Phys A10:2349-2365, 1995.

[12] GS Djordjević, B Dragovich. \(p \)-Adic path integrals for quadratic actions. Mod Phys Lett A12:1455-1463, 1997.

[13] B Dragovich, Lj Nešić. \(p \)-Adic and adelic generalization of quantum cosmology. Grav Cosm 5:222-228, 1999.

[14] A Khrennikov. Classical and quantum mechanics on information spaces with applications to cognitive, psychological, social, and anomalous phenomena. Found Phys 29:1065-1097, 1999.