Effects of elevated CO$_2$ and temperature on phytoplankton community biomass, species composition and photosynthesis during an autumn bloom in the Western English Channel

Matthew Keys1,2, Gavin Tilstone1, Helen S. Findlay1, Claire E. Widdicombe1 and Tracy Lawson2.

1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK.
2University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.

Correspondence to: G. Tilstone (ghti@pml.ac.uk)

Abstract

The combined effects of elevated pCO$_2$ and temperature were investigated during an autumn phytoplankton bloom in the Western English Channel (WEC). A full factorial 36-day microcosm experiment was conducted under year 2100 predicted temperature ($+4.5$ °C) and pCO$_2$ levels (800 µatm). The starting phytoplankton community biomass was 110.2 (± 5.7 sd) mg carbon (C) m$^{-3}$ and was dominated by dinoflagellates (~50 %) with smaller contributions from nanophytoplankton (~13 %), cryptophytes (~11 %) and diatoms (~9 %). Over the experimental period total biomass was significantly increased by elevated pCO$_2$ (20-fold increase) and elevated temperature (15-fold increase). In contrast, the combined influence of these two factors had little effect on biomass relative to the ambient control. The phytoplankton community structure shifted from dinoflagellates to nanophytoplankton at the end of the experiment in all treatments. Under elevated pCO$_2$ nanophytoplankton contributed 90% of community biomass and was dominated by *Phaeocystis* spp., while under elevated temperature nanophytoplankton contributed 85% of the community biomass and was dominated by smaller nano-flagellates. Under ambient conditions larger nano-flagellates dominated while the smallest nanophytoplankton contribution was observed under combined elevated pCO$_2$ and temperature (~40 %). Dinoflagellate biomass declined significantly under the individual influences of elevated pCO$_2$, temperature and ambient conditions. Under the combined effects of elevated pCO$_2$ and temperature, dinoflagellate biomass almost doubled from the starting biomass and there was a 30-fold increase in the harmful algal bloom (HAB) species, *Prorocentrum cordatum*. Chlorophyll a normalised maximum photosynthetic rates (P'_{max}) increased > 6-fold under elevated pCO$_2$ and > 3-fold under elevated temperature while no effect on P'_{max} was observed when pCO$_2$ and temperature were elevated simultaneously. The results suggest that future increases in temperature and pCO$_2$ do not appear to influence coastal phytoplankton.
productivity during autumn in the WEC which would have a negative feedback on atmospheric CO₂.

1. Introduction

Oceanic uptake of atmospheric CO₂ has increased by ~42% over pre-industrial levels, with an on-going annual increase of ~0.4%. Current CO₂ level has reached ~400 µatm and has been predicted to rise to >700 µatm by the end of this century (Alley et al., 2007), with estimates exceeding 1000 µatm (Raupach et al., 2007; Raven et al., 2005). The oceans are absorbing CO₂ from the atmosphere, which results in a shift in oceanic carbonate chemistry resulting in a decrease in seawater pH or ‘Ocean Acidification’ (OA). The projected increase in atmospheric CO₂ and corresponding increase in ocean uptake, is predicted to result in a decrease in global mean seawater pH of 0.3 units below the present value of 8.1 to 7.8 (Wolf-gladrow et al., 1999). Under this scenario, the shift in dissolved inorganic carbon (DIC) equilibria has wide ranging implications for phytoplankton photosynthetic carbon fixation rates and growth (Riebesell, 2004).

Concurrent with OA, elevated atmospheric CO₂ and other climate active gases have warmed the planet by ~0.6 °C over the past 100 years (IPCC, 2007). Atmospheric temperature has been predicted to rise by a further 1.8 to 4 °C by the end of this century (Alley et al., 2007). Phytoplankton metabolic activity may be accelerated by increased temperature (Eppley, 1972), which can vary depending on the phytoplankton species and their physiological requirements (Beardall and Stojkovic, 2006). Long-term data sets already suggest that ongoing changes in coastal phytoplankton communities are likely due to climate shifts and other anthropogenic influences (Edwards et al., 2006; Smetacek and Cloern, 2008; Widdicombe et al., 2010). The response to OA and temperature can potentially alter the community composition, community biomass and photo-physiology. Understanding how these two factors may interact (synergistically or antagonistically) is critical to our understanding and for predicting future primary productivity (Boyd and Doney, 2002).

Laboratory studies of phytoplankton species in culture and studies on natural populations in the field have shown that most species exhibit sensitivity, in terms of growth and photosynthetic rates, to elevated pCO₂ and temperature individually. To date, only a few studies have investigated the interactive effects of these two stressors on natural populations (e.g. Coello-Camba et al., 2014; Feng et al., 2009; Gao et al., 2017; Hare et al., 2007). Most laboratory studies have varied results with species-specific responses, for example, with the diatom Thalassiosira weissflogii, pCO₂ elevated to 1000 µatm and + 5 °C temperature increase synergistically enhanced growth, while the same conditions resulted in a reduction in growth.
for the diatom *Dactyliosolen fragilissimus* (Taucher et al., 2015). Although there have been fewer studies on dinoflagellates, similar variability in responses has been observed, e.g. (Errera et al., 2014; Fu et al., 2008). In natural populations, elevated pCO$_2$ has stimulated growth in pico- and nanophytoplankton communities (Engel et al., 2008) while increased temperature has reduced biomass of these groups (Moustaka-Gouni et al., 2016). In a recent field study on natural phytoplankton communities, elevated temperature (+ 3°C above ambient) enhanced community biomass in natural populations but the combined influence of elevated temperature and pCO$_2$ caused a reduction in biomass (Gao et al., 2017).

Phytoplankton species composition, abundance and biomass has been measured at the time-series station L4 in the western English Channel (WEC) since 1992, to evaluate how global changes could drive future shifts in phytoplankton community structure and carbon biogeochemistry. To compliment the biological time series, key environmental parameters for monitoring the health and state of the WEC are measured weekly including depth profiles of seawater temperature. Dissolved inorganic carbon (DIC) and total alkalinity (TA) has been sampled at station L4 since 2008. Over the past 50 years a 0.5 °C warming has been observed in the WEC (Smyth et al., 2010). The DIC and TA time series is relatively short and as such there is no significant trend in the calculated pCO$_2$, although it has shown an increase.

Based on the existing literature, the working hypotheses of this study are that: (1) community biomass will increase differentially under individual treatments of elevated temperature and pCO$_2$; (2) elevated pCO$_2$ will lead to taxonomic shifts due to differences in species-specific CO$_2$ concentrating mechanisms and/or RuBisCO specificity; (3) photosynthetic carbon fixation rates will increase differentially under individual treatments of elevated temperature and pCO$_2$; (4) elevated temperature will lead to taxonomic shifts due to species-specific thermal optima; (5) temperature and pCO$_2$ elevated simultaneously will have synergistic effects.

The objectives of the study were to investigate: 1) the combined effects of elevated pCO$_2$ and temperature on phytoplankton community structure, biomass and photosynthetic carbon fixation rates during the autumn transition from diatoms and dinoflagellates to nanophytoplankton at station L4; 2) assess the natural variability in phytoplankton community structure and the carbon biomass of the dominant species observed in the experimental community relative to long-term observations at station L4 over two decades (1993-2014); and 3) assess the distribution of biomass of the dominant species observed at the end of the experiment relative to the in-situ gradients of temperature and pCO$_2$ observed at station L4. The effects of elevated pCO$_2$ and temperature on phytoplankton succession in autumn is presently unknown.
2. Materials and methods

2.1 Time series, phytoplankton community composition

Station L4 (50° 15'N, 4° 13'W) is located 13 km SSW of Plymouth in a water depth of ~54 m (Harris, 2010) and is regarded as one of Europe’s principal coastal time series sites. Sampling is conducted on a weekly basis (weather permitting) and has been on-going since 1992 (http://www.westernchannelobservatory.org). Phytoplankton taxonomic composition was enumerated from seawater samples collected from 10 m depth, fixed with 2% (final concentration) acid Lugol’s iodine solution and analysed by inverted light microscopy using the Utermöhl counting technique (Utermöhl, 1958; Widdicombe et al., 2010). For phytoplankton carbon biomass values; taxa-specific mean cell bio-volumes were calculated following Kovala & Larrance, (1966) and converted to carbon using the equations of Menden-Deuer & Lessard, (2000).

2.2 Perturbation experiment, sampling and experimental set-up

Experimental seawater containing a natural phytoplankton community was sampled at station L4 on 7th October 2015 from 10 m depth (40 L). The experimental seawater was gently pre-filtered through a 200 µm Nitex mesh to remove zooplankton grazers, into two 20 L acid-cleaned carboys. In addition, 320 L of seawater was collected into sixteen 20 L acid-cleaned carboys from the same depth for use as experimental media. Immediately upon return to the laboratory the media seawater was filtered through an in-line 0.2 and 0.1 µm filter (Acropak™, Pall Life Sciences) then stored in the dark at 14 °C until use. The experimental seawater was gently and thoroughly mixed and transferred in equal parts from each carboy (to ensure homogeneity) to sixteen 2.5 L borosilicate incubation bottles (4 sets of 4 replicates). The remaining experimental seawater was sampled for initial (T0) concentrations of nutrients, chlorophyll a, total alkalinity, dissolved inorganic carbon, particulate organic carbon (POC) and nitrogen (PON) and was also used to characterise the starting experimental phytoplankton community. The incubation bottles were placed in an outdoor simulated in-situ incubation culture system and each set of replicates were linked to one of four 22 L reservoirs filled with the filtered seawater media. Neutral density spectrally corrected blue filters (Lee Filter no. 301) were placed between polycarbonate sheets and mounted to the top, sides and ends of the incubation system to provide ~50 % irradiance, approximating PAR measured at 10 m depth at station L4 on the day of sampling prior to starting experimental incubations. The media was aerated with CO₂ free air and 5 % CO₂ in air precisely mixed using a mass flow controller (Bronkhorst UK Limited) and used for the microcosm dilutions as per the following experimental design: (1) control (390 µatm pCO₂, 14.5 °C matching station L4 in-situ values),
(2) high temperature (390 µatm pCO₂, 18.5 °C), (3) high pCO₂ (800 µatm pCO₂, 14.5 °C) and (4) combination (800 µatm pCO₂, 18.5 °C).

Initial nutrient concentrations (measured at 0.24 µM nitrate + nitrite, 0.086 µM phosphate and 2.14 µM silicate on 7th October 2015) were amended to 8 µM nitrate+nitrite and 0.5 µM phosphate to provide favourable growth conditions. As the phytoplankton community was sampled over the transitional phase from diatoms and dinoflagellates to nanophytoplankton, the in-situ silicate concentration was maintained to reproduce the silicate concentrations typical of this time of year (Smyth et al., 2010). Media transfer and sample acquisition was facilitated by peristaltic pumps and semi-continuous daily dilution rates were set between 10-13 % of the incubation bottle volume following 48 hrs acclimation in batch culture. CO₂ enriched seawater was added to the high CO₂ treatment replicates every 24 hrs, acclimating the natural phytoplankton population to increments of elevated pCO₂ from ambient to ~800 µatm over 8 days followed by maintenance at ~800 µatm as per the method described by Schulz et al, (2009). This protocol was preferred since some phytoplankton species are inhibited by the mechanical effects of direct bubbling (Riebesell et al., 2010; Shi et al., 2009) which can cause a reduction in growth rates and the formation of aggregates (Love et al., 2016). pH was monitored daily to adjust the pCO₂ of the experimental media (+/-) prior to dilutions to maintain target pCO₂ levels in the incubation bottles.

2.3 Analytical methods, experimental seawater

2.3.1 Chlorophyll a

Chlorophyll a (Chl a) was measured in each incubation bottle. 100 mL triplicate samples from each replicate were filtered onto 25 mm GF/F filters (nominal pore size 0.7 μm), extracted in 90 % acetone overnight at -20 °C and chl a was estimated on a Turner Trilogy™ fluorometer using the non-acidified method of Welschmeyer (1994). The fluorometer was calibrated against a stock Chl a standard (Anacystis nidulans, Sigma Aldrich, UK), the concentration of which was determined with a Perkin Elmer™ spectrophotometer at wavelengths 663.89 and 750.11 nm. Samples for Chl a were taken every 2-3 days.

2.3.2 Carbonate system

70 mL samples for total alkalinity (TA) and dissolved inorganic carbon (DIC) analysis were collected from each experimental replicate, stored in amber borosilicate bottles with no head space and fixed with 40 µL of super-saturated Hg₂Cl₂ solution for later determination (Apollo SciTech™ Alkalinity Titrator AS-ALK2; Apollo SciTech™ AS-C3 DIC analyser, with analytical precision of 3 µmol kg⁻¹). Duplicate measurements were made for TA and triplicate
measurements for DIC. Carbonate system parameter values for media and treatment samples were calculated from TA and DIC measurements using the programme CO2sys (Pierrot et al., 2006) with dissociation constants of carbonic acid of Mehrbach et al., (1973) refitted by Dickson and Millero (Dickson and Millero, 1987). Samples for TA and DIC were taken every 2-3 days.

2.3.3 Phytoplankton community analysis

Phytoplankton community analysis was performed by flow cytometry (Becton Dickinson Accuri™ C6) for the 0.2 to 18 µm size fraction following Tarran et al., (2006) and inverted light microscopy was used to enumerate cells > 18 µm (BS EN 15204,2006). For flow cytometry, 2 mL samples fixed with glutaraldehyde to a final concentration of 2 % were flash frozen in liquid nitrogen and stored at -80 °C for later analysis. For inverted light microscopy, 140 mL samples were fixed with 2 % (final concentration) acid Lugol’s iodine solution and analysed by inverted light microscopy (Olympus™ IMT-2) using the Utermöhl counting technique (Utermöhl, 1958; Widdicombe et al., 2010). Phytoplankton community samples were taken at T0, T10, T17, T24 and T36.

2.3.4 Phytoplankton community biomass

The smaller size fraction identified and enumerated through flow cytometry; picophytoplankton, nanophytoplankton, Synechococcus, coccolithophores and cryptophytes were converted to carbon biomass (mg C m⁻³) using a spherical model to calculate mean cell volume:

\[
\frac{4}{3} \pi r^3
\]

and a conversion factor of 0.22 pg C µm⁻³ (Booth, 1988). A conversion factor of 0.285 pg C µm⁻³ was used for coccolithophores (Tarran et al., 2006) and cell a volume of 113 µm³ and carbon cell⁻¹ value of 18 pg applied for Phaeocystis spp. (Widdicombe et al., 2010). Phaeocystis spp. were identified and enumerated by flow cytometry separately to the nanophytoplankton class due to high observed abundance in in the high pCO₂ treatment. Mean cell measurements of individual species/taxa were used to calculate cell bio-volume for the 18 µm + size fraction according to Kovala and Larrance (1966) and converted to biomass according to the equations of Menden-Deuer & Lessard, (2000).

2.3.5 POC and PON

Samples for particulate organic carbon (POC) and particulate organic nitrogen (PON) were taken at T0, T15 and T36. 150 mL samples were taken from each replicate and filtered under gentle vacuum onto pre-ashed 25mm glass fibre filters (GF/F, nominal pore size 0.7 µm). Filters
were stored in acid washed petri-slides at -20 °C until further processing. Sample analysis was conducted using a Thermoquest Elemental Analyser (Flash 1112). Acetanilide standards (Sigma Aldrich, UK) were used to calibrate measurements of carbon and nitrogen and also used during the analysis to account for any drift in measured values.

2.3.6 Chl fluorescence-based photophysiology

Photosystem II (PSII) variable Chl fluorescence parameters were measured using a fast repetition rate fluorometer (FRRf) (FastOcean sensor in combination with an Act2Run laboratory system, Chelsea Technologies, West Molesey, UK). The excitation wavelengths of the FRRf's light emitting diodes (LEDs) were 450, 530 and 624 nm. The instrument was used in single turnover mode with a saturation phase comprising 100 flashlets on a 2 µs pitch and a relaxation phase comprising 40 flashlets on a 50 µs pitch. Measurements were conducted in a temperature controlled chamber at 15 °C. The minimum (F_o) and maximum (F_m) Chl fluorescences were estimated according to Kolber et al., (1998). Maximum quantum yields of PSII were calculated as:

$$\frac{F_v}{F_m} = \frac{(F_m - F_o)}{F_m}$$

PSII electron flux was calculated on a volume basis ($J_{V_{PSII}}$ mol e·m$^{-3}$ d$^{-1}$) using the absorption algorithm (Oxborough et al., 2012) following spectral correction by normalising the FRRf LED emission to the white spectra using FastPRO 8 software. This step required inputting the experimental phytoplankton community fluorescence excitation spectra values (FES). Since we did not measure the FES of our experimental samples, we used mean literature values for each phytoplankton group calculated proportionally (based on percentage contribution to total estimated biomass per phytoplankton group) as representative values for our experimental samples. The $J_{V_{PSII}}$ rates were converted to Chl specific carbon fixation rates (mg C (mg Chl a)$^{-1}$ m$^{-3}$ h$^{-1}$), calculated as:

$$J_{V_{PSII}} \times \varphi_{EC} \times MW_C \div Chl \ a$$

where φ_{EC} is the electron requirement for carbon uptake (molecule CO$_2$ (mol electrons)$^{-1}$), MW$_C$ is the molecular weight of carbon and Chl a is the Chl a measurement specific to each sample. Chl specific $J_{V_{PSII}}$ based photosynthesis-irradiance curves were conducted in replicate batches between 10:00 – 16:00 to account for variability over the photo-period at between 8 - 14 irradiance intensities. The maximum intensity applied was adjusted according to ambient natural irradiance on the day of sampling. Maximum photosynthetic rates of carbon fixation (P_{Bm}), the light limited slope (α) and the light saturation point of photosynthesis (I_k) were estimated by fitting the data to the model by Webb et al., (1974):
\[P_\text{B} = (1 - e^{-\alpha \times I/P_\text{B}}) \]

Samples for FRRf fluorescence-based light curves were taken at T36.

2.4 Statistical analysis

To test for effects of high pCO\(_2\), high temperature and high pCO\(_2\) x high temperature on the measured response variables (Chl \(a\), total community biomass, POC, PON, photosynthetic parameters and biomass of individual species), generalised least squares models with the factors pCO\(_2\), temperature and time (and all interactions) were applied to the data between T0 and T36 incorporating an auto-regressive correlation structure of the order (1) to account for auto correlation. To test for significant differences between experimental treatments at T36 in all measured parameters, generalized linear models were applied to the data. Where main effects were established, pairwise comparisons were performed using the method of Herberich et al. (2010) for data with non-normality and/or heteroscedasticity. Weekly biomass values from the L4 time-series were averaged over years to elucidate the variability and seasonal cycles of the dominant species observed in the experimental community at T36, relative to the time-series observations. The distribution of these species biomass at station L4 was also analysed relative to the in-situ gradients of temperature (1993-2014) and pCO\(_2\) (2008-2014) using frequency histograms. Analyses were conducted using the R statistical package (R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria).

3. Results

Chl \(a\) concentration in the WEC ranged between 0.02-~5 mg m\(^{-3}\) from 30 September - 6th October 2015, with a concentration of ~1.6 mg m\(^{-3}\) at station L4 (Fig. 1 A). Over the period leading up to phytoplankton community sampling, increasing nitrate and silicate concentrations coincided with a Chl \(a\) peak on 23rd September (Fig. 1 B). Routine net trawl (20 \(\mu\)m) sample observations indicated a phytoplankton community dominated by the diatoms *Leptocylindrus danicus* and *L. minimus* with a lower presence of the dinoflagellates *Prorocentrum cordatum*, *Heterocapsa* spp. and *Oxytoxum gracile*. Following decreasing nitrate concentrations, this community transitioned to a *P. cordatum* bloom on 29th September, the week before experimental community sampling (data not shown).

3.1 Experimental carbonate system

Equilibration to the target high pCO\(_2\) values (800 \(\mu\)atm) within the high pCO\(_2\) and combination treatments was achieved at T10 (Fig. 2 A). These treatments were slowly acclimated to increasing levels of pCO\(_2\) over 7 days (from the initial dilution at T3) while the control and high
temperature treatments were acclimated at the same ambient carbonate system values as that from station L4 on the day of sampling. Following equilibration, the mean pCO$_2$ values within the control and high temperature treatments were 394.9 (± 4.3 sd) and 393.2 (± 4.8 sd) µatm respectively, while in the high pCO$_2$ and combination treatments mean pCO$_2$ values were 822.6 (± 9.4) and 836.5 (± 15.6 sd) µatm, respectively. Carbonate system values remained stable throughout the experiment (Fig. 2 B-D).

3.2 Experimental temperature treatments

Mean temperatures in the control and high pCO$_2$ treatments were 14.1 (± 0.35 sd) °C and in the high temperature and combination treatments the mean temperatures were 18.6 (± 0.42 sd) °C. There was a mean temperature difference between the ambient and high temperature treatments of 4.46 (± 0.42 sd) °C (Supporting information, Fig. S1 A & B).

3.3 Chlorophyll a

Mean Chl a in the experimental seawater at T0 was 1.64 (± 0.02 sd) mg m$^{-3}$ (Fig. 3 A). This decreased in all treatments between T0 to T7, to ~0.1 (± 0.09, 0.035 and 0.035 sd) mg m$^{-3}$ in the control, high pCO$_2$ and combination treatments, while in the high temperature treatment at T7 Chl a was 0.46 mg m$^{-3}$ (± 0.29 sd). From T7 to T12 there was an increase in Chl a in all treatments which was highest in the combination (4.99 mg m$^{-3}$ ± 0.69 sd) and high pCO$_2$ treatments (3.83 mg m$^{-3}$ ± 0.43 sd) (Table 1). At T36 Chl a concentration in the combination treatment was significantly higher than all other treatments at 6.87 (± 0.58 sd) mg m$^{-3}$ (Table 2) while the high temperature treatment concentration was significantly higher than the control and high pCO$_2$ treatments at 4.77 (± 0.44 sd) mg m$^{-3}$ (Table 2). Mean concentrations for the control and high pCO$_2$ treatments at T36 were not significantly different at 3.30 (± 0.22 sd) and 3.46 (± 0.35 sd) mg m$^{-3}$ respectively (pairwise comparison t = 0.78, p = 0.858).

3.4 Phytoplankton biomass

The starting biomass in all treatments was 110.2 (± 5.7 sd) mg C m$^{-3}$ (Fig. 3 B) and the community biomass was dominated by dinoflagellates (~50%) with smaller contributions from nanophytoplankton (~13%), cryptophytes (~11%), diatoms (~9%), coccolithophores (~8%), *Synechococcus* (~6%) and picophytoplankton (~3%). Total biomass increased significantly in all treatments over time (Table 1) and at T10, it was significantly higher in the high temperature treatment when the biomass reached 752 (± 106 sd) mg C m$^{-3}$. At T36 however, total biomass was significantly higher in the high pCO$_2$ treatment (Table 1) and reached 2481
(± 182.68 sd) mg C m⁻³, which increased more than 20-fold from T0. Total biomass in the high temperature treatment increased more than 15-fold to 1735 (± 169.24 sd) mg C m⁻³ at T36 and was significantly higher than the combination treatment and ambient control, which were 525 (± 28.02 sd) mg C m⁻³ and 378 (± 33.95 sd) mg C m⁻³, respectively (Table 2). Measured POC followed the same trends as estimated biomass in all treatments between T0 and T36 (Fig. 3C) and despite some variability between the two measures, POC was within the range of estimates ($R^2 = 0.914$, Fig. 3D). At T36, POC was significantly greater in the high pCO₂ treatment (2086 ± 155.19 sd mg m⁻³) followed by the high temperature treatment (1594 ± 162.24 sd mg m⁻³), which were significantly greater than the control and combination treatment (Table 1). PON followed the same trends as POC over the course of the experiment (Fig. 3E, Table 1): at T36 concentrations were 147 (± 12.99 sd) and 133 (± 15.59 sd) mg m⁻³ in the high pCO₂ and high temperature treatments respectively, while PON was 57.75 (± 13.07 sd) mg m⁻³ in the combination treatment and 47.18 (± 9.32 sd) mg m⁻³ in the control (Table 1). POC:PON ratios increased significantly over time in all treatments except for the control. The largest increase of 33%, from 10.72 to 14.26 mg m⁻³ (± 1.73 sd) was in the high pCO₂ treatment, followed by an increase of 32% to 9.83 (± 1.82 sd) mg m⁻³ in the combination treatment, and an increase of 17% to 12.09 (± 2.14 sd) mg m⁻³ in the high temperature treatment. In contrast, the POC:PON ratio in the control declined by 20% from T0 to T36, from 10.33 to 8.26 (± 0.50 sd) mg m⁻³ (Fig. 3F, Table 1).

3.5 Community composition

At T36 diatoms dominated the phytoplankton community biomass in the ambient control with a substantial contribution from nanophytoplankton (Fig. 4A), while the high temperature and high pCO₂ treatments exhibited near mono-specific dominance of nanophytoplankton (Figs. 4B & C). The most diverse community was in the combination treatment where dinoflagellates and *Synechococcus* became more prominent (Fig. 4D).

Between T10 and T24 the community shifted to nanophytoplankton in all experimental treatments. This dominance was maintained through to T36 in the high temperature and high pCO₂ treatments whereas in the ambient control and combination treatment, the community shifted away from nanophytoplankton (Fig. 5A). At T36 nanophytoplankton biomass was significantly higher in the high pCO₂ treatment followed by the high temperature treatment (Table 2) when biomass attained 2216 (± 189.67 sd) mg C m⁻³ and 1489 (± 170.32 sd) mg C m⁻³, respectively. In the combination treatment nanophytoplankton biomass was 238 (± 14.16 sd) mg C m⁻³ at T36 which was significantly higher compared to the ambient control (162 ± 20.02 sd mg C m⁻³; Table 2). In addition to significant differences in nanophytoplankton biomass
amongst the experimental treatments, treatment-specific differences in cell size was observed. Larger nano-flagellates dominated the control (mean cell diameter of 6.34 µm), smaller nano-flagellates dominated the high temperature and combination treatments (mean cell diameters of 3.61 µm and 4.28 µm) whereas *Phaeocystis* spp. dominated the high pCO$_2$ treatment (mean cell diameter 5.04 µm) and was not observed in any other treatment (Supporting Information, Fig. S2 A-D).

Low starting biomass of diatoms at T0 was dominated by *Coscinodiscus wailesii* (48%; 4.99 mg C m$^{-3}$), *Pleurosigma* (25%; 2.56 mg C m$^{-3}$) and *Thalassiosira subtilis* (19%; 1.94 mg C m$^{-3}$). Small biomass contributions were made by *Navicula distans*, undetermined pennate diatoms and *Cylindrotheca closterium*. Biomass in the diatom group remained low from T0 to T24 but increased at T36 in all treatments, with significantly higher biomass in the high pCO$_2$ treatment (235 ± 21.41 sd mg C m$^{-3}$, Fig. 5 B, Table 2). The highest diatom contribution to total community biomass at T36 was in the ambient control (52 % of biomass; 198 ± 17.28 sd mg C m$^{-3}$). In both the high temperature and combination treatments diatom biomass was significantly lower at T36 (151 ± 10.94 sd and 124 ± 19.16 sd mg C m$^{-3}$, respectively). In all treatments at T36, diatom biomass shifted away from dominance of the larger *C. wailesii* to the comparatively smaller *C. closterium*, *N. distans*, *T. subtilis* and *Tropidoneis* spp., the relative contributions of which were treatment-specific. Overall *N. distans* dominated diatom biomass in all treatments at T36 (ambient control: 112 ± 24.86 sd mg C m$^{-3}$, 56 % of biomass; high temperature: 106 ± 17.75 sd mg C m$^{-3}$, 70 % of biomass; high pCO$_2$: 152 ± 19.09 sd mg C m$^{-3}$, 61 % of biomass; and combination: 111 ± 20.97 sd mg C m$^{-3}$, 89 % of biomass; Supporting Information, Fig. S3 A-D).

The starting dinoflagellate community was dominated by *Gyrodinium spirale* (91 %; 49 mg C m$^{-3}$), with smaller contributions from *Katodinium glaucum* (5 %; 2.76 mg C m$^{-3}$), *Prorocentrum cordatum* (3 %; 1.78 mg C m$^{-3}$) and undetermined Gymnodiniales (1 %; 0.49 mg C m$^{-3}$). At T36 dinoflagellate biomass was significantly higher in the combination treatment (90 ± 16.98 sd mg C m$^{-3}$, Fig. 5 C, Table 2) followed by the high temperature treatment (57 ± 6.87 sd mg C m$^{-3}$, Table 2). There was no significant difference in dinoflagellate biomass between the high pCO$_2$ treatment and ambient control at T36 when biomass was low. In the combination treatment, dinoflagellate biomass shifted away from the larger *G. spirale* and was dominated by *P. cordatum* which contributed 59 ± 12.95 sd mg C m$^{-3}$ (66 % of biomass in this group).

Synechococcus biomass was significantly higher at T36 in the combination treatment (59.9 ± 4.30 sd mg C m$^{-3}$, Fig. 5 D, Table 2) followed by the high temperature treatment (30 ± 5.98 sd mg C m$^{-3}$, Table 2). In both the high pCO$_2$ treatment and ambient control at T36 *Synechococcus* biomass was low (~7 mg C m$^{-3}$ in both treatments). Relative to the other phytoplankton groups,
biomass of picophytoplankton (Fig. 5 E), cryptophytes (Fig. 5 F) and coccolithophores (Fig. 5 G) remained low in all treatments throughout the experiment. Though picophytoplankton responded positively to the high pCO₂ and combination treatments at T36 (high pCO₂: 6.93 ± 0.63 sd mg C m⁻³; combination: 11.26 ± 0.79 sd mg C m⁻³; Table 2).

3.6 Chl fluorescence-based photophysiology

At T36, FRRf PI parameters were strongly influenced by the experimental treatments. P₈被人ₐ was significantly higher in the high pCO₂ treatment (18.93 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹), followed by the high temperature treatment (9.58 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹; Fig. 6, Tables 3 & 4). There was no significant difference in P₈被人ₐ between the ambient control and combination treatment (2.77 and 3.02 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹). Light limited photosynthetic efficiency (α₈) also followed the same trend and was significantly higher in the high pCO₂ treatment (0.13 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹ (µmol photon m⁻² s⁻¹)⁻¹) followed by the high temperature treatment (0.09 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹ (µmol photon m⁻² s⁻¹)⁻¹) (Tables 3 & 4). α₈ was low in both control and combination treatments (0.03 and 0.04 mg C (mg Chl α)⁻¹ m⁻³ h⁻¹ (µmol photon m⁻² s⁻¹)⁻¹, respectively). The light saturation point of photosynthesis (Iₛₐ) was significantly higher in the high pCO₂ treatment relative to all treatments where Iₛₐ was 144.13 µmol photon m⁻² s⁻¹, though significantly lower in the combination treatment relative to both the high pCO₂ and high temperature treatments (Tables 3 & 4).

3.7 Natural variability of biomass in the WEC, station L4 time series.

Nanophytoplankton is a critical component of the station L4 carbon budget. The mean annual total nanophytoplankton biomass over the time series (1993-2014) was 586 (± 16.54 sd) mg C m⁻³ with maximum annual biomass of 1182 mg C m⁻³ in 2002 (62 % of total annual phytoplankton biomass) and minimum annual biomass of 262 mg C m⁻³ in 2008 (23 % of total annual phytoplankton biomass). In 8 of the 21 years of time series observations, nanophytoplankton contributed more than 40 % of the station L4 carbon budget. Consistently over the seasonal cycle at L4, mean nanophytoplankton biomass > 10 mg C m⁻³ occurred from early April until the end of October, exhibiting sustained long-term seasonality relative to other phytoplankton groups, though maximal biomass was constrained between April and the 3rd week of June with one exception (Fig. 7 A).

N. distans dominated diatom biomass in the experimental communities though was found to be a very minor component of the diatom carbon budget at station L4 (0.04 % of total annual diatom biomass). Weekly *N. distans* biomass averaged over the time series was very low and ranged from below the limit of detection to ~0.2 mg C m⁻³ with maximum total annual biomass.
of ~0.5 mg C m\(^{-3}\) in 2005 (Fig. 7 B). Seasonality of maximal \(N.\ distans\) biomass was constrained to September-October when the mean maximal biomass was 0.03 mg C m\(^{-3}\).

\(P.\ cordatum\) dominated the dinoflagellate biomass in the experimental communities, and made a significant contribution to total biomass in the combination treatment. Weekly \(P.\ cordatum\) biomass averaged over the time series at L4 ranged from 0.004 to 107 mg C m\(^{-3}\) and exhibited strong seasonality. Mean total annual \(P.\ cordatum\) biomass was 25.5 mg C m\(^{-3}\) with maximum annual biomass of 233 mg C m\(^{-3}\) in 2006 (minimum annual biomass of 0.004 mg C m\(^{-3}\) in 1994). The bloom peak (taken as an increase in biomass > 1.0 mg C m\(^{-3}\)) usually occurred in September although as early as mid-June (2001 and 2013) in some cases (Fig. 7 C). Mean maximal biomass was 12.7 mg C m\(^{-3}\) with positive anomalies occurring in 5 out of 21 years throughout the time-series (ranging from 15 to 107 mg C m\(^{-3}\)). \(P.\ cordatum\) contributed on average, 9.2 % of the total annual dinoflagellate biomass with a maximum contribution of ~55 % in 2006 and 12 % and 63 %. when averaged over the bloom period from mid-June to end-September. \(P.\ cordatum\) contributed 3.4 % of total phytoplankton biomass during the bloom period and ~32 % of total phytoplankton biomass in 2006 during an unprecedented bloom when biomass attained 107 mg C m\(^{-3}\) (Fig. 7 D).

4. Discussion

Individually, elevated temperature and pCO\(_2\) resulted in the highest biomass and maximum photosynthetic rates (\(P_{\text{B m}}\)), when nanophytoplankton dominated. The interaction of these two factors had little effect on total biomass with values close to the ambient control, and no effect
on Pm. The combination treatment, however, exhibited the greatest diversity of phytoplankton functional groups with dinoflagellates and *Synechococcus* becoming more prominent.

Elevated pCO\textsubscript{2} has been shown to enhance the growth and photosynthesis of some phytoplankton species which have active uptake systems for inorganic carbon (Giordano et al., 2005; Reinfelder, 2011). Elevated pCO\textsubscript{2} may therefore lead to lowered energetic costs of carbon assimilation in some species and a redistribution of the cellular energy budget to other processes (Tortell et al., 2002). In the present study, under elevated pCO\textsubscript{2} where the dominant group was nanophytoplankton, the community was dominated by the bloom-forming haptophyte *Phaeocystis* spp. Photosynthetic carbon fixation in *Phaeocystis* spp. is presently near saturation with respect to current levels of pCO\textsubscript{2} (Rost et al., 2003). Inorganic carbon acquisition in this species has been shown to be equal to, or more efficient than that of diatoms. Indeed, in *Phaeocystis* spp, extracellular carbonic anhydrase is regulated by CO\textsubscript{2} (aq), and HCO\textsubscript{3}− is utilized as a carbon source in photosynthesis, indicating more efficient use of CO\textsubscript{2} (Elzenga et al., 2000; Rost et al., 2003), and thus providing an advantage to *Phaeocystis* spp. when more CO\textsubscript{2} is present. Therefore, the increased biomass and photosynthetic carbon fixation seen here under elevated pCO\textsubscript{2} can be attributed to the community shift to *Phaeocystis* spp. The increased biomass seen in the high temperature treatment in this study, may be attributed to enhanced enzymatic activities, since algal growth commonly increases with temperature until after the optimal range (Boyd et al., 2013; Goldman and Carpenter, 1974; Savage et al., 2004) and optimum growth temperatures for marine phytoplankton are often several degrees higher than environmental temperatures (Eppley, 1972; Thomas et al., 2012).

4.1 Chl \(a\)

Chl \(a\) concentration was significantly higher in the combination treatment at T36 when total biomass was lower, but Chl \(a\) was significantly lower in the high pCO\textsubscript{2} treatment when biomass was significantly higher than all other treatments. This contrasts the results reported in comparable studies as Chl \(a\) is generally highly correlated with biomass, (e.g. Feng et al., 2009). Similar results were reported however by Hare et al., (2007) which indicates that Chl \(a\) may not always be a reliable proxy for biomass in mixed communities. Differences in Chl \(a\) may therefore be attributed to taxonomic differences in community composition.

4.2 Biomass

This study shows that the phytoplankton community response to elevated temperature and pCO\textsubscript{2} is highly variable. pCO\textsubscript{2} elevated to ~800 µatm induced higher community biomass in agreement with Kim et al., (2006) and Riebesell et al., (2007), whereas in other natural community studies no CO\textsubscript{2} effect on biomass was observed (Delille et al., 2005; Maugendre et al.,...
2017; Paul et al., 2015). A ~4.5 °C increase in temperature also resulted in higher biomass in this study, similar to the findings of Feng et al., (2009) and Hare et al., (2007) though elevated temperature has previously reduced biomass of natural nanophytoplankton communities in the Western Baltic Sea and Arctic Ocean (Coello-Camba et al., 2014; Moustaka-Gouni et al., 2016).

When elevated temperature and pCO$_2$ were combined, community biomass exhibited little response, similar to the findings of Gao et al., (2017), though an increase in biomass has also been reported (Calbet et al., 2014; Feng et al., 2009). Geographic location and season also play an important role in structuring the community and its response in terms of biomass to elevated temperature and pCO$_2$, e.g. (Li et al., 2009; Morán et al., 2010).

4.3 Carbon:Nitrogen

In agreement with others, the results of this experiment showed highest increases in C:N under elevated pCO$_2$ alone (Riebesell et al., 2007). C:N also increased under high temperature, consistent with the findings of Lomas and Glibert, (1999) and Taucher et al., (2015) and was stimulated to a lesser degree when pCO$_2$ and temperature were elevated simultaneously, which was also observed in the study of Calbet et al., (2014), but contrasts other studies that have observed C:N to be unaffected by the combined influence of elevated pCO$_2$ and temperature, e.g. (Deppeler and Davidson, 2017; Kim et al., 2006; C. Paul et al., 2015). C:N is a strong indicator of cellular protein content (Woods and Harrison, 2003) and increases under elevated pCO$_2$ and warming may likely lead to lowered nutritional value of phytoplankton with consequences for zooplankton reproduction and biogeochemical cycles.

4.4 Photosynthetic carbon fixation rates

At T36, under elevated pCO$_2$ P^α_m was > 6 times higher than the ambient control, which has also been reported in elevated pCO$_2$ perturbation experiments by Riebesell et al., (2007) and Tortell et al., (2008), but contrasts other observations on natural populations where the effect of elevated pCO$_2$ alone was found to reduce P^α_m (Feng et al., 2009; Hare et al., 2007). Studies on laboratory cultures have shown that increases in temperature increase photosynthetic rates (Feng et al., 2008; Fu et al., 2007; Hutchins et al., 2007), similar to our findings. We found that there was no effect on P^α_m under the combined treatment which has also been observed in experiments on natural populations (Coello-Camba and Agustí, 2016; Gao et al., 2017). This strongly contrasts the findings of Feng et al., (2009) and Hare et al., (2007) who observed the highest P^α_m when temperature and pCO$_2$ were elevated simultaneously. Increases in α^α and I_k under elevated pCO$_2$ and a decrease in these parameters when elevated pCO$_2$ and temperature were combined is opposite to the trends reported by Feng et al., (2009).
Photosynthetic rates have been demonstrated to decrease beyond a temperature of 20 °C (Raven and Geider, 1988) which can be modified through photoprotective rather than photosynthetic pigments (Kiefer and Mitchell, 1983). This may explain the difference in P_{mm} between the high pCO$_2$ and high temperature treatments (in addition to differences in nanophytoplankton community composition in relation to *Phaeocystis* spp. discussed above), as the experimental high temperature treatment in the present study was ~4.5 °C higher than ambient.

There was no significant effect of combined elevated pCO$_2$ and temperature on P_{mm}, which was strongly influenced by taxonomic differences between the experimental treatments. Warming has been shown to lead to smaller cell sizes in nanophytoplankton (Atkinson et al., 2003; Peter and Sommer, 2012), which was observed in the combined treatment together with decreased nanophytoplankton biomass. Diatoms also shifted to smaller species with reduced biomass, while dinoflagellate and *Synechococcus* biomass increased at T36. Dinoflagellates are the only photoautotrophs with form II RuBisCO (Morse et al., 1995) which has the lowest carboxylation:oxygenation specificity factor among eukaryotic phytoplankton (Badger et al., 1998), giving dinoflagellates a disadvantage in carbon fixation under present ambient pCO$_2$ levels. Dinoflagellates generally grow at slower rates in surface waters with high pH (≥9) resulting from photosynthetic removal of CO$_2$ by previous blooms (Hansen, 2002; Hinga, 2002). Though growth under high pH provides indirect evidence that dinoflagellates possess CCMs, direct evidence is limited and points to the efficiency of CCMs in dinoflagellates as moderate in comparison to diatoms and some haptophytes (Reinfelder, 2011 and references therein). This may explain the lower P_{mm} in the combined treatment compared to elevated pCO$_2$ and temperature individually.

4.5 Community composition

Phytoplankton community structure changes were observed, with a shift from dinoflagellates to nanophytoplankton which was most pronounced under single treatments of elevated temperature and pCO$_2$. Amongst the nanophytoplankton, a distinct size shift to smaller cells was observed in the high temperature and combination treatments, while in the high pCO$_2$ treatment *Phaeocystis* spp. dominated. Under combined pCO$_2$ and temperature at T36 however, dinoflagellate and *Synechococcus* biomass increased at the expense of nanophytoplankton.

An increase in pico- and nanophytoplankton has previously been reported in natural communities under elevated pCO$_2$ (Bermúdez et al., 2016; Boras et al., 2016; Brussaard et al., 2013; Engel et al., 2008) while no effect on these size classes has been observed in other studies (Calbet et al., 2014; Paulino et al., 2007). Moustaka-Gouni et al., (2016) also found no CO$_2$ effect
on natural nanophytoplankton communities but increased temperature reduced the biomass of this group. Kim et al., (2006) observed a shift from nanophytoplankton to diatoms under elevated pCO$_2$ alone while a shift from diatoms to nanophytoplankton under combined elevated pCO$_2$ and temperature has been reported (Hare et al., 2007). A variable response in Phaeocystis spp. to elevated pCO$_2$ has also been reported with increased growth (Chen et al., 2014; Keys et al., 2017), no effect (Thoisen et al., 2015) and decreased growth (Hoogstraten et al., 2012) observed. Phaeocystis spp. can outcompete other phytoplankton and form massive blooms (up to 10 g C m$^{-3}$) with impacts on food webs, global biogeochemical cycles and climate regulation (Schoemann et al., 2005). While not a highly toxic algal species, Phaeocystis spp. are considered a harmful algal bloom (HAB) species when biomass reaches sufficient concentrations to cause anoxia through the production of mucus foam which can clog the feeding apparatus of zooplankton and fish (Eilertsen & Raa, 1995).

The response of diatoms to elevated pCO$_2$ and temperature has been variable. For example, a study by Taucher et al., (2015) showed that Thalassiosira weissflogii incubated at 1000 µatm pCO$_2$ increased growth by 8 % while for Dactyliosolen fragilissimus, growth increased by 39 %; temperature elevated by + 5°C also had a stimulating effect on T. weissflogii but inhibited the growth rate of D. fragilissimus; and when the treatments were combined growth was enhanced in T. weissflogii but reduced in D. fragilissimus. In partial agreement, the results of the present experiment show that elevated pCO$_2$ increased biomass in diatoms but elevated temperature and the combination of these factors reduced biomass. A distinct size-shift in diatom species was observed in all treatments, from the larger Coscinodiscus spp., Pleurosigma and Thalassiosira subtilis to the smaller Navicula distans. This was most pronounced in the combination treatment where N. distans contributed 89 % of diatom biomass. Navicula spp. previously exhibited a differential response to both elevated temperature and pCO$_2$. At + 4.5 °C and 960 ppm CO$_2$ Torstensson et al., (2012) observed no synergistic effects on the benthic Navicula directa. Elevated temperature increased growth rates by 43 % while a reduction of 5 % was observed under elevated CO$_2$. No effects on growth were detected at pH ranging from 8 – 7.4 units on Navicula spp. (Thoisen et al., 2015), while growth in N. distans was significantly stimulated along a CO$_2$ gradient at a shallow cold-water vent system (Baragi et al., 2015).

Synechococcus grown under pCO$_2$ elevated to 750 ppm and temperature elevated by 4 °C resulted in increased growth and a 4-fold increase in P$_{\text{m}}$ (Fu et al., 2007) which is similar to the results of the present study.

The combination of elevated temperature and pCO$_2$ significantly increased dinoflagellate biomass which almost doubled, accounting for 17 % of total biomass. This was due to P. cordatum which increased biomass by more than 30-fold between T0 and T30 (66 % of...
dinoflagellate biomass in this treatment). Despite the global increase in the frequency of HABs few studies have focussed on the response of dinoflagellates to elevated pCO$_2$ and temperature. In laboratory studies at 1000 ppm CO$_2$, growth rates of the HAB species *Karenia brevis* increased by 46 %, at 1000 ppm CO$_2$ and +5 °C temperature it’s growth increased by 30 % but was reduced under elevated temperature alone (Errera et al., 2014). A combined increase in pCO$_2$ and temperature enhanced both the growth and P$_{bm}$ in the dinoflagellate *Heterosigma akashiwo*, whereas in contrast to the present findings, only pCO$_2$ alone enhanced these parameters in *P. cordatum* (Fu et al., 2008).

Among HAB species, *P. cordatum* is widely distributed geographically in temperate and subtropical waters, has detrimental effects at the organismal and environmental levels and is potentially harmful to humans via shellfish poisoning (Heil et al., 2005). Recent increases in the frequency, magnitude and distribution of harmful phytoplankton species has focussed attention on the unique physiological, ecological and toxicological aspects of the species involved (Anderson et al., 2002; Hallegraeff, 1993). Ocean acidification combined with warming could potentially affect the growth and toxicity of HAB species (Fu et al., 2012). Recent studies on several diatom and dinoflagellate species suggest that ocean acidification combined with elevated temperature may dramatically increase the toxicity of some harmful groups (e.g. Flores-Moya et al., 2012; Fu et al., 2010; Sun et al., 2011; Tatters et al., 2012). The ecology and bloom dynamics of *P. cordatum* have been well documented in selected environments (e.g. Chesapeake Bay, Baltic Sea). The spread of this species to previously unreported areas through either ballast water transport, aquaculture development, or increasing eutrophication, has been reported (Heil et al., 2005). In Chesapeake Bay *P. cordatum* ‘mahogany tides’ have been associated with anoxic/hypoxic events, fish kills, aquaculture shellfish kills and the loss of aquatic vegetation (Tango et al., 2005). Over the last two decades *P. cordatum* has established itself as a dominant summer phytoplankton species in the Baltic Sea but so far there are no reports of toxic blooms (Hajdu et al., 2000). However, for the first time a *P. cordatum* bloom was recorded in February 2002 at Bolinao, Northern Philippines and was coincident with a mass aquaculture fish kill resulting in losses estimated at US$120,000 (Azanza et al., 2005). Several clones of *P. cordatum* were found to produce a water-soluble neuro-toxin during bloom decline in culture studies (Grzebyk et al., 1997). More recently, a series of positive bioassays for tetrodotoxins (TTXs) was observed in mussels (Vlamis et al., 2015) which coincided with the simultaneous presence of a *P. cordatum* bloom. Data analysis from previous years (2006 – 2012) identified multiple sample cases for toxins in aquaculture production areas coinciding with *P. cordatum* blooms.
In addition to strong links to toxic algal events, mixotrophy has also been reported in *P. cordatum*. In a study by Stoecker et al., (1997) up to 50% of *P. cordatum* sampled from Chesapeake Bay in the summer contained cryptophyte material. The authors concluded that *P. cordatum* feeding is a mechanism for supplementing carbon nutrition and this may explain why the ratio of nanophytoplankton: dinoflagellates was significantly lower in our combination experimental community compared to the other treatments.

4.6 Natural variability of biomass in the WEC, station L4 time series.

During autumn in the WEC, sea surface temperature and pCO$_2$ start to decline following their respective time series maximal values at station L4. During October, mean seawater temperatures at 10 m decrease from 15.39 °C (± 0.49 sd) to 14.37 °C (± 0.62 sd). Following a period of CO$_2$ oversaturation in late summer, pCO$_2$ returns to near-equilibrium at station L4 in October when mean pCO$_2$ values decrease during this month from 455.32 µatm (± 63.92 sd) to 404.06 µatm (± 38.55 sd) (Kitidis et al., 2012). As is the case with seawater warming, predicted future ocean acidification is likely to impact coastal phytoplankton communities in autumn when the present upper limit of the pCO$_2$ threshold increases during this period of surface ocean-atmosphere equilibrium (Riebesell, 2004).

From a biological perspective, the autumn period at station L4 is characterised by the decline of the late summer diatom and dinoflagellate blooms (Widdicombe et al., 2010) when biomass of these two groups approaches values close to the time series minima (diatom biomass range: 6.01 (± 6.88 sd) – 2.85 (± 3.28 sd) mg C m$^{-3}$; dinoflagellate biomass range: 1.75 (± 3.28 sd) – 0.66 (± 1.08 sd) mg C m$^{-3}$). Typically, over this period nanophytoplankton becomes numerically dominant when biomass of this group ranges from 20.94 (± 33.25 sd) – 9.38 (± 3.31 sd), though the time series shows high variability in this biomass.

Comparative analyses of the WEC time series and the dominant species from the experimental treatments showed that nanophytoplankton contributes significantly to the station L4 carbon budget. The in-situ bimodal distribution of nanophytoplankton biomass at cold and warm temperature ranges indicates a potential tolerance to temperature increase. Most nanophytoplankton biomass occurred at an in-situ pCO$_2$ range between 245-410 µatm but almost 10% of biomass was distributed between 515-680 µatm, indicating some tolerance to elevated pCO$_2$ during periods of CO$_2$ oversaturation at station L4. The dominant diatom species in the experimental communities, *N. distans*, was a very minor contributor to diatom biomass over the time series with most biomass constrained to very narrow in-situ temperature and pCO$_2$ ranges of 14-16 °C and 245-410 µatm. *P. cordatum* dominated dinoflagellate biomass in the combination treatment but was generally a low biomass contributor to dinoflagellate
biomass over the time series, with the exception of one unprecedented bloom in 2006. *P. cordatum* biomass exhibited higher thermal in-situ optima with most biomass observed between 14-16 °C and almost a quarter of biomass above 16 °C, indicating tolerance to temperature increase, though the majority of biomass at station L4 occurred at times of low in-situ pCO$_2$ (245-350 µatm) with just 3% beyond 410 µatm. These trends suggest conditions of warming may favour nanophytoplankton and *P. cordatum*, elevated pCO$_2$ may favour nanophytoplankton and both factors combined may favour both species. These observations are consistent with the experimental results.

5. Implications

Increased biomass, P$_{Bm}$ and a community shift to nanophytoplankton under individual increases in temperature and pCO$_2$ suggests a potential positive feedback on atmospheric CO$_2$, whereby more CO$_2$ is removed from the ocean, and hence from the atmosphere by photosynthetic activity. The selection of *Phaeocystis* spp. under elevated pCO$_2$ indicates the potential for negative impacts on ecosystem function and food web structure associated with this species (Schoemann et al., 2005; Verity et al., 2007). However, while more CO$_2$ is photosynthesised, selection for nanophytoplankton in both of these treatments may actually result in reduced carbon sequestration due to slower sinking rates of these smaller phytoplankton cells (Bopp et al., 2001; Laws et al., 2000). When temperature and pCO$_2$ were elevated simultaneously, community biomass showed little response and no effects on P$_{Bm}$ were observed, suggesting a negative feedback on atmospheric CO$_2$ and climate warming in future warmer high CO$_2$ oceans. Additionally, combined elevated pCO$_2$ and temperature significantly modified taxonomic composition, by reducing diatom biomass relative to the ambient control with increasing dinoflagellate biomass dominated by the HAB species, *P. cordatum*. This has implications for fisheries, ecosystem function and human health.

6. Conclusion

These experimental results provide new evidence that increases in pCO$_2$ coupled with rising sea temperatures may have antagonistic effects on the autumn phytoplankton community in the WEC. Under future global change scenarios, the size range and biomass of diatoms may be reduced with increased dinoflagellate biomass and the selection of HAB species. The experimental simulations of year 2100 temperature and pCO$_2$ demonstrate that the effects of warming can be offset by elevated pCO$_2$ potentially reducing coastal phytoplankton productivity and significantly altering the community structure, and in turn these shifts will have consequences on carbon biogeochemical cycling in the WEC.
Data availability: Experimental data used for analysis will be made available (DOI will be created)

Author contributions: Matthew Keys collected, measured, processed and analysed the data and prepared the figures. Drs Gavin Tilstone and Helen Findlay conceived, directed and sought the necessary funds to support the research. Matthew Keys and Dr Gavin Tilstone wrote the paper with input from Claire Widdicombe and Professor Tracy Lawson. Claire Widdicombe supervised and advised on phytoplankton taxonomic classifications.

Competing interests: The authors declare that they have no conflict of interest.

Acknowledgements: G.H.T, H.S.F. and C.E.W were supported by the UK Natural Environment Research Council's (NERC) National Capability – The Western English Channel Observatory (WCO). C.E.W was also partly funded by the NERC and Department for Environment, Food and Rural Affairs, Marine Ecosystems Research Program (Grant no. NE/L003279/1). M.K. was supported by a NERC PhD studentship (grant No. NE/L50189X/1). We thank Glen Tarran for his training, help and assistance with flow cytometry, The National Earth Observation Data Archive and Analysis Service UK (NEODAAS) for their help in providing the MODIS image used in Fig 1. and the crew of RV Plymouth Quest for their helpful assistance during field sampling.

References

Alley, D., Berntsen, T., Bindoff, N. L., Chen, Z. L., Chidthaisong, A., Friedlingstein, P., Gregory, J., G., H., Heimann, M., Hewitson, B., Hoskins, B., Joos, F., Jouzel, Kattsov, V., Lohmann, U., Manning, M., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Qin, D.H., Raga, G. Ramaswamy, V., Ren, J.W., Rusticucci, M., Solomon, S. and Somerville, R., Stocker, T.F., Stott, P., Stouffer, R.J. Whetton, P., Wood, R.A. & Wratt, D.: Climate Change 2007. The Physical Science basis: Summary for policymakers. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, in ... Climate Change 2007. The Physical Science Basis, Summary for Policymakers. [online] Available from: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Climate+Change+2007+:+Th...
Azanza, R. V., Fukuyo, Y., Yap, L. G. and Takayama, H.: *Prorocentrum minimum* bloom and its possible link to a massive fish kill in Bolinao, Pangasinan, Northern Philippines, Harmful Algae, 4(3), 519–524, doi:10.1016/j.hal.2004.08.006, 2005.

Badger, M. R., Andrews, T. J., Whitney, S. M., Ludwig, M., Yellowlees, D. C., Leggat, W. and Price, G. D.: The diversity and coevolution of Rubisco, plastids, pyrenoids, and chloroplast-based CO₂-concentrating mechanisms in algae 1, Can. J. Bot., (76), 1052–1071, 1998.

Baragi, L. V., Khandeparker, L. and Anil, A. C.: Influence of elevated temperature and pCO₂ on the marine periphytic diatom *Navicula distans* and its associated organisms in culture, Hydrobiologia, 762(1), 127–142, doi:10.1007/s10750-015-2343-9, 2015.

Beardall, J. and Stojkovic, S.: Microalgae under Global Environmental Change: Implications for Growth and Productivity, Populations and Trophic Flow, Sci. Asia, 1, 1–10, doi:10.2306/scienceasia1513-1874.2006.32(s1).001, 2006.

Bermúdez, J. R., Riebesell, U., Larsen, A. and Winder, M.: Ocean acidification reduces transfer of essential biomolecules in a natural plankton community, Sci. Rep., 6(1), 27749, doi:10.1038/srep27749, 2016.

Booth, B. C.: Size classes and major taxonomic groups of phytoplankton at two locations in the subarctic pacific ocean in May and August, 1984, Mar. Biol., 97(2), 275–286, doi:10.1007/BF00391313, 1988.

Bopp, L., Monfray, P., Aumont, O., Dufresne, J.-L., Le Treut, H., Madec, G., Terray, L. and Orr, J. C.: Potential impact of climate change on marine export production, Global Biogeochem. Cycles, 15(1), 81–99, doi:10.1029/1999GB001256, 2001.

Boras, J. A., Borrull, E., Cardelu, C., Cros, L., Gomes, A., Sala, M. M., Aparicio, F. L., Balague, V., Mestre, M., Movilla, J., Sarmento, H., Va, E. and Lo, A.: Contrasting effects of ocean acidification on the microbial food web under different trophic conditions, ICES J. Mar. Sci., 73(73(3)), 670–679, 2016.

Boyd, P. W. and Doney, S. C.: Modelling regional responses by marine pelagic ecosystems to global climate change, Geophys. Res. Lett., 29(16), 1–4, 2002.

Boyd, P. W., Ryne, A., Armstrong, E. A., Fu, F., Hayashi, K., Hu, Z., Hutchins, D. A., Kudela, R. M., Litchman, E., Mulholland, M. R., Passow, U., Strzepek, R. F., Whittaker, K. A., Yu, E. and Thomas, M. K.: Marine Phytoplankton Temperature versus Growth Responses from Polar to Tropical Waters - Outcome of a Scientific Community-Wide Study, PLoS One, 8(5).
doi:10.1371/journal.pone.0063091, 2013.

Brussaard, C. P. D., Noordeloos, A. A. M., Witte, H., Collenteur, M. C. J., Schulz, K., Ludwig, A. and Riebesell, U.: Arctic microbial community dynamics influenced by elevated CO$_2$ levels, Biogeosciences, 10(2), 719–731, doi:10.5194/bg-10-719-2013, 2013.

Calbet, A., Sazhin, A. F., Nejstgaard, J. C., Berger, S. a, Tait, Z. S., Olmos, L., Sousoni, D., Isari, S., Martínez, R. a, Bouquet, J.-M., Thompson, E. M., Båmstedt, U. and Jakobsen, H. H.: Future climate scenarios for a coastal productive planktonic food web resulting in microplankton phenology changes and decreased trophic transfer efficiency., PLoS One, 9(4), e94388, doi:10.1371/journal.pone.0094388, 2014.

Chen, S., Beardall, J. and Gao, K.: A red tide alga grown under ocean acidification upregulates its tolerance to lower pH by increasing its photophysiological functions, Biogeosciences, 11, 4829–4837, doi:10.5194/bg-11-4829-2014, 2014.

Coello-Camba, A. and Agustí, S.: Acidification counteracts negative effects of warming on diatom silicification, Biogeosciences Discuss., 30(October), 1–19, doi:10.5194/bg-2016-424, 2016.

Coello-Camba, A., AgustÁ, S., Holding, J., Arrieta, J. M. and Duarte, C. M.: Interactive effect of temperature and CO$_2$ increase in Arctic phytoplankton, Front. Mar. Sci., 1(October), 1–10, doi:10.3389/fmars.2014.00049, 2014.

Delille, B., Harlay, J., Zondervan, I., Jacquet, S., Chou, L., Wollast, R., Bellerby, R. G. J., Frankignoulle, M., Borges, A. V., Riebesell, U. and Gattuso, J.-P.: Response of primary production and calcification to changes of pCO$_2$ during experimental blooms of the coccolithophorid Emiliania huxleyi, Global Biogeochem. Cycles, 19(2), n/a-n/a, doi:10.1029/2004GB002318, 2005.

Deppeler, S. L. and Davidson, A. T.: Southern Ocean Phytoplankton in a Changing Climate, Front. Mar. Sci., 4 (February), doi:10.3389/fmars.2017.00040, 2017.

Dickson, A. G. and Millero, F. J.: A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media, Deep Sea Res. Part I Oceanogr. Res. Pap., 34 (111), 1733–1743, 1987.

Edwards, M., Johns, D., Letterme, S. C., Svendsen, E. and Richardson, A. J.: Regional climate change and harmful algal blooms in the northeast Atlantic, Limnol. Oceanogr., 51(2), 820–829, doi:10.4319/lo.2006.51.2.0820, 2006.

Eilertsen, H. and Raa, J.: Toxins in seawater produced by a common phytoplankter: Phaeocystis pouchetii, J. Mar. Biotechnol., 3(1), 115–119 [online] Available from:
http://ci.nii.ac.jp/naid/10002209414/en/ (Accessed 28 January 2016), 1995.

Elzenga, J. T. M., Prins, H. B. A. and Stefels, J.: The role of extracellular carbonic anhydrase
activity in inorganic carbon utilization of *Phaeocystis globosa* (Prymnesiophyceae): A
comparison with other marine algae using the isotopic disequilibrium technique, 45(2), 372–
380, 2000.

Engel, A., Schulz, K. G., Riebesell, U., Bellerby, R., Delille, B. and Schartau, M.: Effects of CO₂
on particle size distribution and phytoplankton abundance during a mesocosm bloom experiment
(PeECE II), Biogeosciences, 5, 509–521, doi:10.5194/bg-4-4101-2007, 2008.

Eppley, R. W.: Temperature and phytoplankton growth in the sea, Fish. Bull., 70(4), 1063–1085,
1972.

Errera, R. M., Yvon-Lewis, S., Kessler, J. D. and Campbell, L.: Responses of the dinoflagellate
Karenia brevis to climate change: pCO₂ and sea surface temperatures, Harmful Algae, 37, 110–
116, doi:10.1016/j.hal.2014.05.012, 2014.

Feng, Y., Warner, M. E., Zhang, Y., Sun, J., Fu, F.-X., Rose, J. M. and Hutchins, D. A.: Interactive
effects of increased pCO₂, temperature and irradiance on the marine coccolithophore *Emiliania
huxleyi* (Prymnesiophyceae), Eur. J. Phycol., 43(1), 87–98, doi:10.1080/09670260701664674,
2008.

Feng, Y., Hare, C., Leblanc, K., Rose, J., Zhang, Y., DiTullio, G., Lee, P., Wilhelm, S., Rowe, J., Sun, J.,
Nemcek, N., Gueguen, C., Passow, U., Benner, I., Brown, C. and Hutchins, D.A.: Effects of increased
pCO₂ and temperature on the North Atlantic spring bloom. I. The phytoplankton community and
biogeochemical response, Mar. Ecol. Prog. Ser., 388, 13–25, doi:10.3354/meps08133, 2009.

Flores-Moya, A., Rouco, M., García-Sánchez, M. J. S, García-Balboa, C., González, R., Costas, E. and
López-Rodas, V.: Effects of adaptation, chance, and history on the evolution of the toxic
dinoflagellate *Alexandrium minutum* under selection of increased temperature and acidification,
Ecol. Evol., 2(6), 1251–1259, doi:10.1002/ece3.198, 2012.

Fu, F., Tatters, A. and Hutchins, D. A: Global change and the future of harmful algal blooms in the
ocean, Mar. Ecol. Prog. Ser., 470, 207–233, doi:10.3354/meps10047, 2012.

Fu, F.-X., Warner, M. E., Zhang, Y., Feng, Y. and Hutchins, D. A.: Effects of Increased Temperature
and Co 2 on Photosynthesis, Growth, and Elemental Ratios in Marine *Synechococcus* and
Prochlorococcus (Cyanobacteria), J. Phycol., 43(3), 485–496, doi:10.1111/j.1529-
8817.2007.00355.x, 2007a.

Fu, F.-X., Zhang, Y., Warner, M. E., Feng, Y., Sun, J. and Hutchins, D. A: A comparison of future...
increased CO₂ and temperature effects on sympatric *Heterosigma akashiwo* and *Prorocentrum minimum*, Harmful Algae, 7(1), 76–90, doi:10.1016/j.hal.2007.05.006, 2008.

Fu, F. X., Place, A. R., Garcia, N. S. and Hutchins, D. A.: CO₂ and phosphate availability control the toxicity of the harmful bloom dinoflagellate *Karlodinium veneficum*, Aquat. Microb. Ecol., 59(1), 55–65, doi:10.3354/ame01396, 2010.

Gao, G., Jin, P., Liu, N., Li, F., Tong, S., Hutchins, D. A. and Gao, K.: The acclimation process of phytoplankton biomass, carbon fixation and respiration to the combined effects of elevated temperature and pCO₂ in the northern South China Sea, Mar. Pollut. Bull., 118(1–2), 213–220, doi:10.1016/j.marpolbul.2017.02.063, 2017.

Giordano, M., Beardall, J. and Raven, J. A.: CO₂ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution., Annu. Rev. Plant Biol., 56(January), 99–131, doi:10.1146/annurev.arplant.56.032604.144052, 2005.

Goldman, J. and Carpenter, E.: A kinetic approach to the effect of temperature on algal growth, Limnol. Oceanogr., 19(5), 756–766, doi:10.4319/lo.1974.19.5.0756, 1974.

Grzebyk, D., Danardou, A., Berland, B. and Pouchas, Y. F.: Evidence for a new toxin in the red-tide dinoflagellate *Prorocentrum minimum*, J. Plankton Res., 19(8), 1111–1124, doi:10.1093/plankt/fbq021, 1997.

Hajdu, S., Edler, L., Olenina, I. and Witek, B.: Spreading and establishment of the potentially toxic dinoflagellate *Prorocentrum minimum* in the Baltic Sea, Int. Rev. Hydrobiol., 85(5–6), 561–575, doi:10.1002/1522-2632(200011)85:5/6<561::AID-IROH561>3.0.CO;2-3, 2000.

Hallegraeff, G. M.: A review of harmful algal blooms and their apparent global increase, Phycologia, 32(2), 79–99, doi:10.2216/i0031-8884-32-2-79.1, 1993.

Hansen, P.: Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession, Aquat. Microb. Ecol., 28, 279–288, doi:10.3354/ame028279, 2002.

Hare, C., Leblanc, K., DiTullio, G., Kudela, R., Zhang, Y., Lee, P., Riseman, S. and Hutchins, D. A.: Consequences of increased temperature and CO₂ for phytoplankton community structure in the Bering Sea, Mar. Ecol. Prog. Ser., 352, 9–16, doi:10.3354/meps07182, 2007.

Harris, R.: The L4 time-series: the first 20 years, J. Plankton Res., 32(5), 577–583, doi:10.1093/plankt/fbq021, 2010.

Heil, C. A., Gilbert, P. M. and Fan, C.: *Prorocentrum minimum* (Pavillard) Schiller: A review of a harmful algal bloom species of growing worldwide importance, Harmful Algae, 4(3), 449–470,
Herberich, E., Sikorski, J. and Hothorn, T.: A Robust Procedure for Comparing Multiple Means under Heteroscedasticity in Unbalanced Designs, PLoS One, 5(3), e9788, doi:10.1371/journal.pone.0009788, 2010.

Hinga, K. R.: Effects of pH on coastal marine phytoplankton, Mar. Ecol. Prog. Ser., 238, 281–300, 2002.

Hoogstraten, A., Peters, M., Timmermans, K. R. and De Baar, H. J. W.: Combined effects of inorganic carbon and light on *Phaeocystis globosa* Scherffel (Prymnesiophyceae), Biogeosciences, 9(5), 1885–1896, doi:10.5194/bg-9-1885-2012, 2012.

Hutchins, D. A., Fu, F.-X., Zhang, Y., Warner, M. E., Feng, Y., Portune, K., Bernhardt, P. W. and Mulholland, M. R.: CO$_2$ control of *Trichodesmium* N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry, Limnol. Oceanogr., 52(4), 1293–1304, doi:10.4319/lo.2007.52.4.1293, 2007.

Keys, M., Tilstone, G., Findlay, H. S., Widdicombe, C. E. and Lawson, T.: Effects of elevated CO$_2$ on phytoplankton community biomass and species composition during a spring *Phaeocystis* spp. bloom in the western English Channel, Harmful Algae, 67, 92–106, doi:10.1016/j.hal.2017.06.005, 2017.

Kiefer, D. A. and Mitchell, B. G.: A simple steady state description of phytoplankton growth based on absorption cross section and quantum efficiency, Limnol. Oceanogr., 28(4), 770–776, doi:10.4319/lo.1983.28.4.0770, 1983.

Kim, J.-M., Lee, K., Shin, K., Kang, J.-H., Lee, H.-W., Kim, M., Jang, P.-G. and Jang, M.-C.: The effect of seawater CO$_2$ concentration on growth of a natural phytoplankton assemblage in a controlled mesocosm experiment, Limnol. Oceanogr., 51(4), 1629–1636, doi:10.4319/lo.2006.51.4.1629, 2006.

Kitidis, V., Hardman-mountford, N. J., Litt, E., Brown, I., Cummings, D., Hartman, S., Hydes, D., Fishwick, J. R., Harris, C., Martinez-vicente, V., Woodward, E. M. S. and Smyth, T. J.: Seasonal dynamics of the carbonate system in the Western English Channel, Cont. Shelf Res., 42, 2–12, 2012.

Kolber, Z. S., Prášil, O. and Falkowski, P. G.: Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: Defining methodology and experimental protocols, Biochim. Biophys. Acta - Bioenerg., 1367(1–3), 88–106, doi:10.1016/S0005-2728(98)00135-2, 1998.
Kovala, P. E. and Larrance, J. D.: COMPUTATION OF PHYTOPLANKTON CELL NUMBERS, CELL VOLUME, CELL SURFACE AND PLASMA VOLUME PER LITER, FROM MICROSCOPICAL COUNTS., DTIC Document., 1966.

Laws, E. A., Falkowski, P. G., Smith, W. O., Ducklow, H. W. and McCarthy, J. J.: Temperature effects on export production in the open ocean, Global Biogeochem. Cycles, 14(4), 1231–1246, doi:10.1029/1999GB001229, 2000.

Li, W. K. W., McLaughlin, F. A., Lovejoy, C. and Carmack, E. C.: Smallest Algae Thrive As the Arctic Ocean Freshens, Science (80-.), 326(5952), 539–539, doi:10.1126/science.1179798, 2009.

Lomas, M. W. and Gilbert, P. M.: Interactions between NH₄⁺ and NO₃⁻ uptake and assimilation: Comparison of diatoms and dinoflagellates at several growth temperatures, Mar. Biol., 133(3), 541–551, doi:10.1007/s002270050494, 1999.

Love, B. A., Olson, M. B. and Wuori, T.: Technical Note: A minimally-invasive experimental system for pCO₂ manipulation in plankton cultures using passive gas exchange (Atmospheric Carbon Control Simulator), Biogeosciences Discuss., (December), 1–19, doi:10.5194/bg-2016-502, 2016.

Maugendre, L., Gattuso, J. P., Poulton, A. J., Dellisanti, W., Gaubert, M., Guieu, C. and Gazeau, F.: No detectable effect of ocean acidification on plankton metabolism in the NW oligotrophic Mediterranean Sea: Results from two mesocosm studies, Estuar. Coast. Shelf Sci., 186, 89–99, doi:10.1016/j.ecss.2015.03.009, 2017.

Mehrbach, C., Culberson, C. H., Hawley, J. E. and Pytkowicz, R. M.: Measurement of the Apparent Dissociation Constants of Carbonic Acid in Seawater at Atmospheric Pressure, Limnol. Oceanogr., 18(1932), 897–907, 1973.

Menden-Deuer, S. and Lessard, E. J.: Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton, Limnol. Oceanogr., 45(3), 569–579, doi:10.4319/lo.2000.45.3.0569, 2000.

Morán, X. A. G., López-Urrutia, Á., Calvo-Díaz, A. and Li, W. K. W.: Increasing importance of small phytoplankton in a warmer ocean, Glob. Chang. Biol., 16(3), 1137–1144, doi:10.1111/j.1365-2486.2009.01960.x, 2010.

Morse, D., Salois, P., Markovic, P. and Hastings, J. W.: A nuclear-encoded form II RuBisCO in dinoflagellates., Science, 268(5217), 1622–1624, doi:10.1126/science.7777861, 1995.

Moustaka-Gouni, M., Kormas, K. A., Scotti, M., Vardaka, E. and Sommer, U.: Warming and Acidification Effects on Planktonic Heterotrophic Pico- and Nanoflagellates in a Mesocosm.
Oxborough, K., Moore, C. M., Suggett, D. J., Lawson, T., Chan, H. G. and Geider, R. J.: Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRF) data, Limnol. Oceanogr. Methods, 10, 142–154, doi:10.4319/lom.2012.10.142, 2012.

Paul, C., Matthiessen, B. and Sommer, U.: Warming, but not enhanced CO$_2$ concentration, quantitatively and qualitatively affects phytoplankton biomass, Mar. Ecol. Prog. Ser., 528, 39–51, doi:10.3354/meps11264, 2015.

Paulino, A. I., Egge, J. K. and Larsen, A.: Effects of increased atmospheric CO$_2$ on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom, Biogeosciences Discuss., 4(6), 4173–4195, doi:10.5194/bg-4-4173-2007, 2007.

Peter, K. H. and Sommer, U.: Phytoplankton Cell Size: Intra- and Interspecific Effects of Warming and Grazing, PLoS One, 7(11), doi:10.1371/journal.pone.0049632, 2012.

Pierrot, D., Lewis, E. and Wallace, D. W. R.: MS Excel program developed for CO$_2$ system calculations, ORNL/CDIAC-105a. Carbon Dioxide Inf. Anal. Center, Oak Ridge Natl. Lab. US Dep. Energy, Oak Ridge, Tennessee, 2006.

Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G. and Field, C. B.: Global and regional drivers of accelerating CO$_2$ emissions, Proc. Natl. Acad. Sci. U. S. A., 104(24), 10288–93, doi:10.1073/pnas.0700609104, 2007.

Raven, J. A., Caldeira, K., Elderfield, H., H.-G. and others: Ocean acidification due to increasing atmospheric carbon dioxide, R. Soc., (June), 2005.

Raven, J. A. and Geider, R. J.: Temperature and algal growth, New Phytol., 110(4), 441–461, doi:10.1111/j.1469-8137.1988.tb00282.x, 1988.

Riebesell, U.: Carbon Concentrating Mechanisms in Eukaryotic Marine Phytoplankton, Ann. Rev. Mar. Sci., 3(1), 291–315, doi:10.1146/annurev-marine-120709-142720, 2011.

Riebesell, U.: Effects of CO$_2$ Enrichment on Marine Phytoplankton, J. Oceanogr., 60(4), 719–729, doi:10.1007/s10872-004-5764-z, 2004.

Riebesell, U., Schulz, K. G., Bellery, R. G. J., Botros, M., Fritsche, P., Meyerhöfer, M., Neill, C., Nondal, G., Oschlies, a, Wohlers, J. and Zöllner, E.: Enhanced biological carbon consumption in a high CO$_2$ ocean, Nature, 450(7169), 545–8, doi:10.1038/nature06267, 2007.

Riebesell, U., Fabry, V. J., Hansson, L. and Gattuso, J.-P.: Guide to best practices for ocean
acidification, edited by L. H. and J.-P. G. L. U. Riebesell, V. J. Fabry, Publications Office Of The European Union., 2010.

Rost, B., Riebesell, U., Burkhardt, S. and Su, D.: Carbon acquisition of bloom-forming marine phytoplankton, Limnol. Oceanogr., 48(1), 55–67, 2003.

Savage, V. M., Gillooly, J. F., Brown, J. H., West, G. B. and Charnov, E. L.: Effects of Body Size and Temperature on Population Growth, Am. Nat., 163(3), 429–441, doi:10.1086/381872, 2004.

Schoemann, V., Becquevort, S., Stefels, J., Rousseau, V. and Lancelot, C.: Phaeocystis blooms in the global ocean and their controlling mechanisms: a review, J. Sea Res., 53(1–2), 43–66, doi:10.1016/j.seares.2004.01.008, 2005.

Schulz, K. G., Ramos, J. B., Zeebe, R. E. and Riebesell, U.: Biogeosciences CO₂ perturbation experiments : similarities and differences between dissolved inorganic carbon and total alkalinity manipulations, Biogeosciences, 6, 2145–2153, 2009.

Shi, D., Xu, Y. and Morel, F. M. M.: Effects of the pH/pCO₂ control method on medium chemistry and phytoplankton growth, Biogeosciences, 6(7), 1199–1207, doi:10.5194/bg-6-1199-2009, 2009.

Smetacek, V. and Cloern, J. E.: On Phytoplankton Trends, Science (80-.), 319(5868), 1346–1348 [online] Available from: http://www.jstor.org/stable/20053523, 2008.

Smyth, T. J., Fishwick, J. R., AL-Moosawi, L., Cummings, D. G., Harris, C., Kitidis, V., Rees, A., Martinez-Vicente, V. and Woodward, E. M. S.: A broad spatio-temporal view of the Western English Channel observatory, J. Plankton Res., 32(5), 585–601, doi:10.1093/plankt/fbp128, 2010.

Stoecker, D. K., Li, A. S., Coats, D. W., Gustafson, D. E. and Nannen, M. K.: Mixotrophy in the dinoflagellate Prorocentrum minimum, Mar. Ecol. Prog. Ser., 152(1–3), 1–12, doi:10.3354/meps152001, 1997.

Sun, J., Hutchins, D. A., Seubert, E. L., Feng, Y., Caron, D. A. and Fu, F.-X.: Effects of changing pCO₂ and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries, Limnol. Oceanogr., 56, 829–840, doi:10.4319/lo.2011.56.3.0829, 2011.

Tango, P. J., Magnien, R., Butler, W., Luckett, C., Luckenbach, M., Lacouture, R. and Poukish, C.: Impacts and potential effects due to Prorocentrum minimum blooms in Chesapeake Bay, Harmful Algae, 4(3), 525–531, doi:10.1016/j.hal.2004.08.014, 2005.
Tarran, G. A., Heywood, J. L. and Zubkov, M. V.: Latitudinal changes in the standing stocks of nano- and picoeukaryotic phytoplankton in the Atlantic Ocean, Deep Sea Res. Part II Top. Stud. Oceanogr., 53(14–16), 1516–1529, doi:10.1016/j.dsr2.2006.05.004, 2006.

Tatters, A. O., Fu, F. X. and Hutchins, D. A.: High CO$_2$ and silicate limitation synergistically increase the toxicity of *Pseudo-nitzschia fraudulenta*, PLoS One, 7(2), doi:10.1371/journal.pone.0032116, 2012.

Taucher, J., Jones, J., James, A., Brzezinski, M. A., Carlson, C. A., Riebesell, U. and Passow, U.: Combined effects of CO$_2$ and temperature on carbon uptake and partitioning by the marine diatoms *Thalassiosira weissflogii* and *Dactyliosolen fragilissimus*, Limnol. Oceanogr., 60(3), 901–919, doi:10.1002/lno.10063, 2015.

Thoisen, C., Riisgaard, K., Lundholm, N., Nielsen, T. and Hansen, P.: Effect of acidification on an Arctic phytoplankton community from Disko Bay, West Greenland, Mar. Ecol. Prog. Ser., 520, 21–34, doi:10.3354/meps11123, 2015.

Thomas, M. K., Kremer, C. T., Klausmeier, C. A. and Litchman, E.: A Global Pattern of Thermal Adaptation in Marine Phytoplankton, Science (80-.), 338(6110), 1085–1088, doi:10.1126/science.1224836, 2012.

Torsstensson, A., Chierici, M. and Wulff, A.: The influence of increased temperature and carbon dioxide levels on the benthic/sea ice diatom *Navicula directa*, Polar Biol., 35(2), 205–214, doi:10.1007/s00300-011-1056-4, 2012.

Tortell, P., DiTullio, G., Sigman, D. and Morel, F.: CO$_2$ effects on taxonomic composition and nutrient utilization in an Equatorial Pacific phytoplankton assemblage, Mar. Ecol. Prog. Ser., 236, 37–43, doi:10.3354/meps236037, 2002.

Tortell, P. D., Payne, C. D., Li, Y., Trimborn, S., Rost, B., Smith, W. O., Riesselman, C., Dunbar, R. B., Sedwick, P. and DiTullio, G. R.: CO$_2$ sensitivity of Southern Ocean phytoplankton, Geophys. Res. Lett., 35(4), L04605, doi:10.1029/2007GL032583, 2008.

Utermöhl, H.: Zur vervollkommnung der quantitativen phytoplankton-methodik, Mitt. int. Ver. theor. angew. Limnol., 9, 1–38, 1958.

Verity, P. G., Brussaard, C. P., Nejstgaard, J. C., Van Leeuwe, M. a., Lancelot, C. and Medlin, L. K.: Current understanding of *Phaeocystis* ecology and biogeochemistry, and perspectives for future research, edited by M. A. van Leeuwe, J. Stefels, S. Belviso, C. Lancelot, P. G. Verity, and W. W. C. Gieskes, Springer Netherlands., 2007.

Vlamis, A., Katikou, P., Rodriguez, I., Rey, V., Alfonso, A., Papazachariou, A., Zacharaki, T., Botana,
A. M. and Botana, L. M.: First detection of tetrodotoxin in greek shellfish by UPLC-MS/MS potentially linked to the presence of the dinoflagellate *Prorocentrum minimum*, Toxins (Basel), 7(5), 1779–1807, doi:10.3390/toxins7051779, 2015.

Webb, W. L., Newton, M. and Starr, D.: Carbon dioxide exchange of *Alnus rubra*, Oecologia, 17(4), 281–291, doi:10.1007/BF00345747, 1974.

Welschmeyer: Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments, Limnol. Oceanogr., 39(8), 1985–1992, 1994.

Widdicombe, C. E., Eloire, D., Harbour, D., Harris, R. P. and Somerfield, P. J.: Long-term phytoplankton community dynamics in the Western English Channel, J. Plankton Res., 32(5), 643–655, doi:10.1093/plankt/fbp127, 2010.

Wolf-gladrow, B. D. A., Riebesell, U. L. F., Burkhardt, S. and Jelle, B.: Direct effects of CO₂ concentration on growth and isotopic composition of marine plankton, Tellus, 51B, 461–476, 1999.

Woods, H. A. and Harrison, J. F.: Temperature and the chemical composition of poikilothermic organisms, *Sidell 1998*, 237–245, 2003.
Fig. 1. (A). MODIS weekly composite chl a image of the western English Channel covering the period 30th September – 6th October 2015 (coincident with the week of phytoplankton community sampling for the present study), processing courtesy of NEODAAS. The position of coastal station L4 is marked with a white diamond. (B). Profiles of weekly nutrient and chl a concentrations from station L4 at a depth of 10 m over the second half of 2015 in the months prior to phytoplankton community sampling (indicated by black arrow and text).
Fig. 2. Carbonate system values of the experimental phytoplankton incubations. (A), partial pressure of CO₂ in seawater (pCO₂), (B), pH on the NBS scale, (C), carbonate concentration (CO₃²⁻) and (D), bicarbonate concentration (HCO₃⁻) were estimated from direct measurements of total alkalinity and dissolved inorganic carbon.
Fig. 3. Time course of chl a (A), estimated phytoplankton biomass (B), POC (C), regression of estimated phytoplankton carbon vs measured POC (D), PON (E) and POC:PON (F).
Fig. 4. Percentage contribution to community biomass by phytoplankton groups/species throughout the experiment in the control (A), high temperature (B), high CO$_2$ (C) and combination treatments (D).
Fig. 5. Response of individual phytoplankton groups to experimental treatments.
Fig. 6. Fitted parameters of FRRf-based photosynthesis-irradiance curves for the experimental treatments on the final experimental day (T36)
Fig. 7. (A) Temporal weekly profile of total phytoplankton carbon biomass at station L4 between 1993-2014. Black line is smoothed running average of total phytoplankton, grey area is standard deviation, dotted line is smoothed running average of total nanophytoplankton biomass and grey circles are maximal nanophytoplankton biomass from weekly observations (mean maxima of 70 mg C m\(^{-3}\)). (B) Seasonal profiles of *Navicula distans* (common log scale) between 1993-2014. Black line is smoothed running average over the time series, grey area is standard deviation and all symbols are observed data values by year. (C) Seasonal profiles of *Prorocentrum cordatum* (common log scale) between 1993-2014. Black line is smoothed running average over the time series, grey area is standard deviation and all symbols are observed data values by year. (D) Maximal *P. cordatum* biomass values relative to total phytoplankton biomass. Black line is smoothed running average of total phytoplankton biomass, grey area is standard deviation, dotted line is mean *P. cordatum* biomass and symbols are maximal *P. cordatum* biomass from weekly observations by year (as per figure legend for B & C.).
Fig. 8. Frequency distribution of biomass at station L4 along the in-situ gradients of temperature (1993-2014) and pCO$_2$ (2008-2014) for nanophytoplankton (A & D) *N. distans* (B & E) and *P. cordatum* (C & F).
Table 1. Results of generalised least-squares model testing for main effects of time, high temperature, high CO$_2$ and all interactions on chl a, phytoplankton biomass and particulate organic nitrogen. Significant results are in bold; * $p < 0.05$, ** $p < 0.001$, *** $p < 0.0001$.

Response variable	n	df	t-value	p	sig
Chla (mg m$^{-3}$)					
Time	80	72	3.782211	0.0003	**
High temp	80	72	0.688339	0.4935	
High CO$_2$	80	72	0.765811	0.4463	
Time x high temp	80	72	0.303431	0.742	
Time x high CO$_2$	80	72	-0.596962	0.5524	
High temp x high CO$_2$	80	72	0.338096	0.7363	
Time x high temp x high CO$_2$	80	72	1.302498	0.1969	
Estimated biomass (mg C m$^{-3}$)					
Time	80	72	3.339498	0.0013	*
High temp	80	72	-0.144359	0.8856	
High CO$_2$	80	72	-1.008942	0.3164	
Time x high temp	80	72	3.189888	0.0021	*
Time x high CO$_2$	80	72	4.751901	0.0000	***
High temp x high CO$_2$	80	72	0.341905	0.7334	
Time x high temp x high CO$_2$	80	72	0.449075	0.6547	
POC (mg m$^{-3}$)					
Time	48	40	-0.27037	0.7883	
High temp	48	40	-1.2607	0.2147	
High CO$_2$	48	40	-1.13796	0.2619	
Time x high temp	48	40	5.31006	0.0000	***
Time x high CO$_2$	48	40	6.24182	0.0000	***
High temp x high CO$_2$	48	40	-0.38194	0.7045	
Time x high temp x high CO$_2$	48	40	1.21692	0.2308	
PON (mg m$^{-3}$)					
Time	48	40	0.276438	0.7836	
High temp	48	40	-1.447791	0.1555	
High CO$_2$	48	40	-1.571726	0.1239	
Time x high temp	48	40	4.78625	0.0000	***
Time x high CO$_2$	48	40	5.493647	0.0000	***
High temp x high CO$_2$	48	40	0.95334	0.3461	
Time x high temp x high CO$_2$	48	40	-0.126291	0.9001	
POC:PON (mg m$^{-3}$)					
Time	48	40	-3.248155	0.0024	*
High temp	48	40	-0.206777	0.8372	
High CO$_2$	48	40	-0.555076	0.9556	
Time x high temp	48	40	2.433457	0.0195	*
Time x high CO$_2$	48	40	3.358128	0.0004	***
High temp x high CO$_2$	48	40	-2.932253	0.0055	*
Time x high temp x high CO$_2$	48	40	2.40294	0.021	*
Table 2. Results of generalised linear model testing for significant effects of temperature, CO\(_2\) and temperature x CO\(_2\) on chl \(a\) and phytoplankton biomass at the experiment end (T36). Significant results are in bold; * \(p < 0.05\), ** \(p < 0.001\), *** \(p < 0.0001\).

Response variable	n	df	z-value	\(p\)	sig
Chl \(a\) mg m\(^{-3}\)					
High temp	16	12	7.413	< 0.0001	***
High CO\(_2\)	16	12	0.804	0.437	
High temp x high CO\(_2\)	16	12	18.043	< 0.0001	***
Total biomass (mg C m\(^{-3}\))					
High temp	16	12	28.953	< 0.0001	***
High CO\(_2\)	16	12	36.042	< 0.0001	***
High temp x high CO\(_2\)	16	12	5.899	< 0.0001	***
Diatoms (mg C m\(^{-3}\))					
High temp	16	12	-4.43	< 0.0001	***
High CO\(_2\)	16	12	3.036	0.0024	**
High temp x high CO\(_2\)	16	12	-7.243	< 0.0001	***
Dinoflagellates (mg C m\(^{-3}\))					
High temp	16	12	9.848	< 0.0001	***
High CO\(_2\)	16	12	1.805	0.2927	
High temp x high CO\(_2\)	16	12	11.902	< 0.0001	***
Nanophytoplankton (mg m\(^{-3}\))					
High temp	16	12	32.9	< 0.0001	***
High CO\(_2\)	16	12	39.04	< 0.0001	***
High temp x high CO\(_2\)	16	12	5.22	< 0.0001	***
Synechococcus (mg m\(^{-3}\))					
High temp	16	12	7.045	< 0.0001	***
High CO\(_2\)	16	12	-0.091	0.928	
High temp x high CO\(_2\)	16	12	10.739	< 0.0001	***
Picophytoplankton (mg m\(^{-3}\))					
High temp	16	12	0.413	0.679486	
High CO\(_2\)	16	12	2.02	0.043435	*
High temp x high CO\(_2\)	16	12	3.773	< 0.0001	***
Coccolithophores (mg C m\(^{-3}\))					
High temp	16	12	0.276	0.782	
High CO\(_2\)	16	12	-0.368	0.713	
High temp x high CO\(_2\)	16	12	-1.265	0.206	
Cryptophytes (mg C m\(^{-3}\))					
High temp	16	12	0.404	0.686	
High CO\(_2\)	16	12	0.273	0.785	
High temp x high CO\(_2\)	16	12	1.341	0.18	
Table 3. FRRf-based photosynthesis-irradiance curve parameters for the experimental treatments on the final day (T36).

Parameter	Control	sd	High temp	sd	High CO₂	sd	Combination	sd
P₉₅₅	2.77	1.63	9.58	1.94	18.93	2.65	3.02	0.97
α	0.03	0.01	0.09	0.01	0.13	0.01	0.04	0.00
Iₖ	85.33	45.47	110.93	6.09	144.13	17.91	86.38	33.06

Table 4. Results of generalised linear model testing for significant effects of temperature, CO₂ and temperature x CO₂ on phytoplankton photophysiology; P₉₅₅ (maximum photosynthetic rates), α (light limited slope) and Iₖ (light saturated photosynthesis). Significant results are in bold; * p < 0.05, ** p < 0.001, *** p < 0.0001.

Response variable	n	df	t-value	p	sig
P₉₅₅					
High temp	12	8	7.353	< 0.0001	***
High pCO₂	12	8	8.735	< 0.0001	***
High temp x high pCO₂	12	8	-8.519	< 0.0001	***
α					
High temp	12	8	13.03	< 0.0001	***
High pCO₂	12	8	15.15	< 0.0001	***
High temp x high pCO₂	12	8	-14.82	< 0.0001	***
Iₖ					
High temp	12	8	2.018	0.0783	
High pCO₂	12	8	2.541	0.0347	*
High temp x high pCO₂	12	8	-2.441	0.0405	*