Information Theory based on Non-additive Information Content

Takuya Yamano
Department of Applied Physics, Faculty of Science, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo,152-8551, Japan

We generalize the Shannon’s information theory in a nonadditive way by focusing on the source coding theorem. The nonadditive information content we adopted is consistent with the concept of the form invariance structure of the nonextensive entropy. Some general properties of the nonadditive information entropy are studied, in addition, the relation between the nonadditivity \(q \) and the codeword length is pointed out.

05.20.y, 89.70.+c

I. INTRODUCTION

The intuitive notion of what a quantitative expression for information should be has been addressed in the development of transmission of information which led to the information theory (IT). The IT today is considered to be the most fundamental field which connects other various fields such as physics (thermodynamics), electrical engineering (communication theory), mathematics (probability theory and statistics), computer science (Kolmogorov complexity) and so on [1]. Accordingly, the selection of the information measure becomes an influential matter. The introduction of logarithmic form of information measure dates back to Hartley [2]. He defined the practical measure of information as the logarithm of the number of possible symbol sequences. After that, Shannon established the logarithmic based IT from the reasons: (a) practical usefulness, (b) closeness to our intuitive feeling, (c) easiness of mathematical manipulation [3,4].

On the other hand, however, non-logarithmic form of (or nonextensive) entropy is currently considered as a useful measure in describing thermostatistical properties of a certain class of physical systems which entail long-range interactions, long-time memories and (multi)fractal structures. The form of the nonextensive entropy proposed by Tsallis [5] has been intensively applied to many such systems [6]. The reason why the formalism violating the extensivity of the statistical mechanical entropy seems to be essential for convincing description of these systems is not sufficiently revealed in the present status. Nevertheless the successful application to some physical systems seems to lead us to investigate into the possibility of the nonadditive IT since Shannon’s information entropy has the same form as the logarithmic statistical mechanical entropy.

It is desirable to employ the nonadditive information content which the associated IT contains Shannon’s IT in a special case. The concept of the form invariance to the structure of nonextensive entropies was considered to provide a guiding principle for a clear basis for generalizations of logarithmic entropy [7]. This structure seems to give a hint at the selection of the nonadditive information content. The form invariant structure require normalization of the original Tsallis entropy by \(\sum_i p_i^q \), where \(p_i \) is a probability of event \(i \) and \(q \) is a real number residing in the interval \((0, 1)\) from the preservation of concavity of the entropy. In addition, Kullback-Leibler (KL) relative entropy which measures distance between two probability distribution is also modified [7].

This paper explores consequences of adopting nonadditive information content in the sense that the associated average information i.e entropy takes a form of the modified Tsallis entropy. The use of modified form of Tsallis entropy is in conformity with the appropriate definitions of expectation value (the normalized \(q \)-expectation value [8]) of the nonadditive information content. Since the information theoretical entropy is defined as the average of information content, it is desirable to unify the meaning of the average as the normalized \(q \)-expectation value throughout the nonadditive IT. Moreover we shall later see how the Shannon’s additive IT is extended to the nonadditive one by addressing the source coding theorem which is the one of the most fundamental theorem in IT.

The organization of this paper is as follows. In Sec.II, we present the mathematical preliminaries of the nonadditive entropy and the generalized KL entropy. Sec.III addresses an optimal code word within the framework of nonadditive context. We shall attempt to give a possible meaning of nonadditive index \(q \) in terms of codeword length there. Sec.IV deals with the extension of the Fano’s inequality which gives upper bound on the conditional entropy with an error probability in a channel. In the last section, we devote to concluding remarks.
II. NONADDITIVE ENTROPY AND THE GENERALIZED KL ENTROPY

A. Properties of nonadditive entropy of information

For a discrete set of states with probability mass function \(p(x) \), where \(x \) belongs to alphabet \(H \), we consider the following nonadditive information content \(I_q(p) \),

\[
I_q(p) \equiv -\ln_q p(x),
\]

where \(\ln_q x \) is a \(q \)-logarithm function defined as \(\ln_q x = (x^{1-q} - 1)/(1-q) \). In the limit \(q \to 1 \), \(\ln_q x \) recovers the standard logarithm \(\ln x \). In Shannon’s additive IT, an information content is expressed as \(-\ln p(x) \) in \(\text{nat} \) unit, which is monotonically decreasing function with respect to \(p(x) \). This behavior matches our intuition in that we get more information in the case the least-probable event occurs and less information in the case the event with high probability occurs. It is worth noting that this property is qualitatively valid for nonadditive information content for all \(q \) except the fact that there exists upper limit \(1/(1-q) \) at \(p(x) = 0 \). Therefore the Shannon’s reason (b) we referred in Sec.I is considered to be no crucial element for determining the logarithmic form. Moreover, it is easy to see that the Renyi information of order \(q \) \[9\],

\[
H_R^q = \ln \sum_{x \in H} p^q(x) / (1-q),
\]

which is additive information measure can be written with this nonadditive information content as

\[
H_R^q = \ln \sum_{x \in H} [1 - (1-q)I_q(p(x))]^{1-q}.
\]

The entropy \(H_q(X) \) of a discrete random variable \(X \) is defined as an average of the information content, where the average means the normalized \(q \)-expectation value \[8\],

\[
H_q(X) = \frac{-\sum_{x \in H} p^q(x) \ln_q p(x)}{\sum_{x \in H} p^q(x)} = \frac{1 - \sum_{x \in H} p^q(x)}{(q-1)\sum_{x \in H} p^q(x)},
\]

where we have used the normalization of probability \(\sum_{x \in H} p(x) = 1 \). In a similar way, we define the nonadditive conditional information content and the joint one as follows

\[
I_q(y \mid x) = \frac{p^{1-q}(y \mid x) - 1}{q-1},
\]

\[
I_q(x, y) = \frac{p^{1-q}(x, y) - 1}{q-1},
\]

where \(y \) belongs to a different alphabet \(Y \). Corresponding entropy conditioned by \(x \) and the joint entropy of \(X \) and \(Y \) becomes

\[
H_q(Y \mid x) = \frac{\sum_{y \in Y} p^q(y \mid x)I_q(y \mid x)}{\sum_{y \in Y} p^q(y \mid x)} = \frac{1 - \sum_{y \in Y} p^q(y \mid x)}{(q-1)\sum_{y \in Y} p^q(y \mid x)},
\]

and

\[
H_q(X, Y) = \frac{\sum_{x \in H, y \in Y} p^q(x, y)I_q(x, y)}{\sum_{x \in H, y \in Y} p^q(x, y)} = \frac{1 - \sum_{x \in H, y \in Y} p^q(x, y)}{(q-1)\sum_{x \in H, y \in Y} p^q(x, y)},
\]

respectively. Then we have the following theorem.

Theorem 1.

The joint entropy satisfies
\[H_q(X,Y) = H_q(X) + H_q(Y \mid X) + (q-1)H_q(X)H_q(Y \mid X). \] (8)

Proof.
From Eq(8) we can rewrite \(H_q(X,Y) \) with the relation \(p(x,y) = p(x)p(y \mid x) \) as
\[
H_q(X,Y) = \frac{1}{q-1} \left[\frac{1}{\sum_{x \in \mathcal{H}} p^q(x) \sum_{y \in \mathcal{Y}} p^q(y \mid x)} - 1 \right].
\] (9)

Since Eq(8) gives \(\sum_{y \in \mathcal{Y}} p^q(y \mid x) = [1 + (q-1)H_q(Y \mid x)]^{-1} \), we get
\[
H_q(X,Y) = \frac{1}{q-1} \left[\frac{1}{\sum_{x \in \mathcal{H}} 1 + (q-1)H_q(Y \mid x)} - 1 \right].
\] (10)

Here, we introduce the following definition [10]
\[
(\frac{1}{1 + (q-1)H_q(Y \mid x)})^q = \frac{1}{1 + (q-1)H_q(Y \mid X)}
\] (11)
where the bracket denotes the normalized \(q \)-expectation value with respect to \(p(x) \). Then we have from Eq(10),
\[
H_q(X,Y) = \frac{1}{q-1} \left[\frac{1 + (q-1)H_q(Y \mid X)}{\sum_{x \in \mathcal{H}} p^q(x)} - 1 \right].
\] (12)

Putting \(\sum_{x \in \mathcal{H}} p^q(x) = [1 + (q-1)H_q(X)]^{-1} \) into this yields the theorem. \(\square \)

This theorem has a remarkable similarity to the relation with which the Jackson basic number in \(q \)-deformation theory satisfies, which was pointed out in Ref. [7]. That is, \([X]_q = (q^X - 1)/(q - 1)\) is the Jackson basic number of a quantity \(X \). Then, for the sum of two quantities \(X \) and \(Y \), the associated basic number \([X + Y]_q\) is shown to become \([X]_q + [Y]_q + (q-1)[X]_q[Y]_q\). Obviously this theorem recovers ordinary relation \(H(X,Y) = H(X) + H(Y \mid X) \) in the limit \(q \to 1 \). In this modified Tsallis formalism, \(q \) appears as \(q-1 \) instead of as \(1-q \) [11,12]. When \(X \) and \(Y \) are independent events each other, Eq(8) gives the pseudoadditivity relation [8]. However, it is converse to the case of the original Tsallis one in that \(q > 1 \) yields superadditivity and \(q < 1 \) subadditivity. It is worth mentioning that the concept of nonextensive conditional entropy in the framework of the original Tsallis entropy has firstly introduced for discussing quantum entanglement in Ref. [11]. From this theorem, we immediately have the following corollary concerning the equivocation.

Corollary.
\[
H_q(Y \mid X) = \frac{H_q(Y,Z \mid X) - H_q(Z \mid Y,X) + (q-1)(H_q(X)H_q(Y,Z \mid X) - H_q(X,Y)H_q(Z \mid Y,X))}{1 + (q-1)H_q(X)}.
\] (13)

Proof.
In Eq(8), when we see \(Y \) as \(Y,Z \) we have
\[
H_q(X,Y,Z) = H_q(X) + H_q(Y,Z \mid X) + (q-1)H_q(X)H_q(Y,Z \mid X),
\] (14)
on the other hand, when we regard \(X \) as \(Y \) and \(Y \) as \(Z \), we get
\[
H_q(X,Y,Z) = H_q(X,Y) + H_q(Y,Z \mid X) + (q-1)H_q(X,Y)H_q(Z \mid Y,X).
\] (15)
Subtracting the both sides of the above two equations and arranging with respect to \(H_q(Y \mid X) \) with Eq(8), we obtain the corollary. \(\square \)
Theorem 2. Hierarchical structure of entropy H_q

The joint entropy of n random variables X_1, X_2, \ldots, X_n satisfies

$$H_q(X_1, X_2, \cdots, X_n) = \sum_{i=1}^{n} [1 + (q - 1)H_q(X_{i-1}, \cdots, X_1)] H_q(X_i | X_{i-1}, \cdots, X_1).$$

(16)

Proof.

From Eq(8), $H_q(X_1, X_2) = H_q(X_1) + [1 + (q - 1)H_q(X_1)] H_q(X_2 | X_1)$ holds. Next, from Eq(14), we have

$$H_q(X_1, X_2, X_3) = H_q(X_1) + H_q(X_2, X_3 | X_1) + (q - 1)H_q(X_1)H_q(X_2, X_3 | X_1).$$

(17)

Since $H_q(X_2, X_3 | X_1)$ is written using Eq(13) as

$$H_q(X_2, X_3 | X_1) = H_q(X_2 | X_1) + \frac{1 + (q - 1)H_q(X_1, X_2)}{1 + (q - 1)H_q(X_1)} H_q(X_3 | X_2),$$

(18)

Eq(17) can be rewritten as

$$H_q(X_1, X_2, X_3) = H_q(X_1) + [1 + (q - 1)H_q(X_1)] H_q(X_2 | X_1) + [1 + (q - 1)H_q(X_1, X_2)] H_q(X_3 | X_2, X_1).$$

(19)

Similarly, repeating application of the corollary gives the theorem. □

Remark: In the additive limit, we get $H(X_1, X_2, \cdots, X_n) = \sum_{i=1}^{n} H(X_i | X_{i-1}, \cdots, X_1)$ which states that the entropy of n variables is constituted by the sum of the conditional entropies (Chain rule). From this relation Eq(13), we need all joint entropy below the level of n random variables to acquire the joint entropy $H_q(X_1, \ldots, X_n)$, which the situation is similar to the BBGKY hierarchy in the N-body distribution function. Let us next define the mutual information $I_q(Y; X)$, which quantifies the amount of information that can be gained from one event X about another event Y;

$$I_q(Y; X) = H_q(Y) - H_q(Y | X) = \frac{H_q(X) + H_q(Y) - H_q(X, Y) + (q - 1)H_q(X)H_q(Y)}{1 + (q - 1)H_q(X)H_q(Y)}.$$

(20)

Therefore $I_q(Y; X)$ expresses the reduction in the uncertainty of Y due to the acquisition of knowledge of X. Here we postulate that the mutual information in nonadditive case is non-negative. The non-negativity may be considered to be a requirement rather than the one to be proved in order to be in consistent with the usual additive mutual information. $I_q(Y; X)$ also converges to the usual mutual information $I(Y; X) = H(Y) - H(Y | X) = H(X) + H(Y) - H(X, Y)$ in the additive case $(q \to 1)$. We note that the mutual information of a random variable with itself is the entropy itself $I_q(X; X) = H_q(X)$. When X and Y are independent variables, we have $I_q(Y; X) = 0$. Then, we have the following theorem.

Theorem 3. Independence bound on entropy H_q

$$H_q(X_1, X_2, \ldots, X_n) \leq \sum_{i=1}^{n} [1 + (q - 1)H_q(X_{i-1}, \ldots, X_1)] H_q(X_i)$$

(21)

with equality if and only if each X_i is independent.

Proof.

From the assumption of $I_q(X; Y) \geq 0$ introduced above, we have

$$\sum_{i=1}^{n} H_q(X_i | X_{i-1}, \ldots, X_1) \leq \sum_{i=1}^{n} H_q(X_i)$$

(22)

with equality if and only if each X_i is independent of X_{i-1}, \ldots, X_1. Then the theorem holds from the previous theorem Eq(13). □
B. The generalized KL entropy

The KL entropy or the relative entropy is a measure of the distance between two probability distributions $p_i(x)$ and $p_i'(x)$. Here, we define it as the normalized q-expectation value of the change of the nonadditive information content $\Delta I_q \equiv I_q(p'(x)) - I_q(p(x))$ [14],

$$D_q(p(x) \parallel p'(x)) = \frac{\sum_{x \in H} p^q(x) \Delta I_q}{\sum_{x \in H} p^q(x)} = \frac{\sum_{x \in H} p^q(x) (\ln_q p(x) - \ln_q p'(x))}{\sum_{x \in H} p^q(x)}.$$

(23)

We note that the above generalized KL entropy satisfies the form invariant structure which has introduced in Ref. [14]. We review the positivity of the generalized KL entropy in case of $q > 0$ which can be considered to be a necessary property to develop the IT.

Theorem 4. Information inequality

For $q > 0$, we have

$$D_q(p(x) \parallel p'(x)) \geq 0$$

(24)

with equality if and only if $p(x) = p'(x)$ for all $x \in H$.

Proof.

The outline of the proof is the same as the one in Ref. [10,11] except for the factor $\sum_{x \in H} p^q(x)$. From the definition Eq(23),

$$D_q(p(x) \parallel p'(x)) = \frac{1}{1-q} \sum_{x \in H} p(x) \left\{ 1 - \left(\frac{p'(x)}{p(x)} \right)^{1-q} \right\} / \sum_{x \in H} p^q(x)$$

(25)

$$\geq \frac{1}{1-q} \left\{ 1 - \left(\sum_{x \in H} p(x) \frac{p'(x)}{p(x)} \right)^{1-q} \right\} / \sum_{x \in H} p^q(x) = 0$$

(26)

where Jensen’s inequality for the convex function has been used: $\sum_x p(x) f(x) \geq f (\sum_x p(x)x)$ with $f(x) = -\ln_q(x)$, $f''(x) > 0$. We have equality in the second line if and only if $p'(x)/p(x) = 1$ for all x, accordingly $D_q(p(x) \parallel p'(x)) = 0$. □

III. SOURCE CODING THEOREM

Having presented some properties of the nonadditive entropy and the generalized KL entropy as a preliminary, we are now in a status to address our main results that the Shannon’s source coding theorem can be extended to the nonadditive case. Let us consider encoding the sequence of source letters generated from an information source we are now in a status to address our main results that the Shannon’s source coding theorem can be extended to the nonadditive case. Let us consider encoding the sequence of source letters generated from an information source

\[\sum_{i} D^{-b_i} \leq 1 \]

(27)
where \(l_i \) is a code length of the \(i \)-th codeword \((i = 1, \ldots, M)\). Moreover if a code is uniquely decodable, the Kraft inequality holds for it \([13]\). We usually hope to encode the sequence of source letters to the sequence of codewords as short as possible, that is our problem is finding a prefix condition code with the minimum average length of a set of codewords\(\{l_i\}\). The optimal code is given by minimizing the following functional constrained by the Kraft inequality,

\[
J = \frac{\sum_i p_i^q l_i}{\sum_i p_i^q} + \lambda \left(\sum_i D^{-l_i} \right)
\]

where \(p_i \) is the probability of realization of the word length \(l_i \) and \(\lambda \) is a Lagrange multiplier. We have assumed equality in the Kraft inequality and have neglected the integer constraint on \(l_i \). Differentiating with respect to \(l_i \) and setting the derivative to 0 yields

\[
D^{-l_i} = \frac{p_i^q}{(\sum_i p_i^q) \lambda \log D}.
\]

Here, it is worth noting that from the Kraft inequality the Lagrange multiplier \(\lambda \) is related as \(\lambda \geq (\log D)^{-1} \). Furthermore when the equality holds, the fraction \(D^{-l_i^*} \) is given by the optimal codeword length \(l_i^* \) is expressed as

\[
D^{-l_i^*} = \frac{p_i^q}{\sum_i p_i^q}.
\]

Therefore \(l_i^* \) can be written as \(\log_D (\sum_i p_i^q) - q \log_D p_i \) and in the additive limit, we obtain \(l_i^* = -\log_D p_i \). However, we can not always determine the optimal codeword length like this since the \(l_i \)'s must be integers. We have the following theorem.

Theorem 5.

The average codeword length \(\langle L \rangle_q \) of any prefix code for a random variable \(X \) satisfies

\[
\langle L \rangle_q \geq H_q(X)
\]

with equality if and only if \(p_i = [1 - (1 - q)l_i]^{1 \over q} \).

Proof.

From Eq\([28]\) the generalized KL entropy between two distributions \(p \) and \(r \) is written as

\[
D_q(p \parallel r) = \sum_i p_i^q (\ln p_i^q - \ln r_i^q) = \frac{1 - \sum_i p_i^q r_i^{1-q}}{(1-q) \sum_i p_i^q}
\]

\[
= \frac{1 - \sum_i p_i^q}{(1-q) \sum_i p_i^q} - \frac{\sum_i p_i^q (r_i^{1-q} - 1)}{(1-q) \sum_i p_i^q}.
\]

If we take the information content associated with probability \(r \) as the \(i \)-th codeword length \(l_i \), i.e., \(- (r_i^{1-q} - 1) / (1-q) = l_i \), then the average codeword length can be written from Eq\([22]\) as

\[
\langle L \rangle_q = H_q(X) + D_q(p \parallel r)
\]

Since \(D_q(p \parallel r) \geq 0 \) for \(q > 0 \) from Theorem 4, we have the theorem. The equality holds if and only if \(p_i = r_i \). \(\square \)

We note that the relation \(-(r_i^{1-q} - 1) / (1-q) = l_i \) means that the codeword length \(l_i \) equals to the information content different from \(p \), \(l_i = I_q(r) \). When the equality is realized in the above theorem, we can derive an interesting interpretation on the nonadditivity parameter \(q \). The condition of the equality states that the probability is expressed as the Tsallis’ canonical ensemble like factor in an i-wise manner. Then each \(l_i \) has the limit in length corresponding to \(q \) such as \(l_i^{max} = 1 / (1-q) \).

Since \(\log_D (\sum_i p_i^q) - q \log_D p_i \) obtained by the optimization problem is not always equal to an integer, we impose the integer condition on the codewords \(\{l_i\} \) by rounding it up as \(l_i = [\log_D (\sum_i p_i^q) - q \log_D p_i] \), where \([x]\) denotes the smallest integer \(\geq x \) \([14]\). Moreover the relation \([\log_D (\sum_i p_i^q) - q \log_D p_i] \geq \log_D (\sum_i p_i^q) - q \log_D p_i \) leads to

\[
\sum_i D^{-[\log_D (\sum_i p_i^q) - q \log_D p_i]} \leq \sum_i D^{(-[\log_D (\sum_i p_i^q) - q \log_D p_i])} = \sum_i \frac{p_i^q}{\sum_i p_i^q} = 1.
\]
Hence \(\{ l_i \} \) satisfies the Kraft inequality. Moreover, we have the following theorem.

Theorem 6.

The average codeword length assigned by \(l_i = [\log_D (\sum_i p_i^q) - q \log_D p_i] \) satisfies

\[
H_q(p) + D_q(p \parallel r) \leq \langle L \rangle_q < H_q(p) + D_q(p \parallel r) + 1.
\]

Proof.

The integer codeword lengths satisfies

\[
\log_D \left(\sum_i p_i^q \right) - q \log_D p_i \leq l_i < \log_D \left(\sum_i p_i^q \right) - q \log_D p_i + 1.
\]

Multiplying by \(p_i^q / \sum_i p_i^q \) and summing over \(i \) with Eq(33) yields the theorem. \(\square \)

This means that the distribution different from the optimal one provokes a correction of \(D_q(p \parallel r) \) in the average codeword length as does in the case of additive one.

We have discussed the properties of the nonadditive entropy in the case of one letter so far. Next, let us consider the codeword length as does in the case of additive one.

The integer codeword lengths satisfies

\[
\log_D \left(\sum_i p_i^q \right) - q \log_D p_i \leq l_i < \log_D \left(\sum_i p_i^q \right) - q \log_D p_i + 1.
\]

IV. THE GENERALIZED FANO’S INEQUALITY

Fano’s inequality is an essential ingredient to prove the converse to the channel coding theorem which states that the probability of error that arises over a channel is bounded away from zero when the transmission rate exceeds the channel capacity. \[16\]. In the estimation of an original message generated from the information source, the original variable \(X \) may be estimated as \(X' \) on the side of a destination. Therefore, we introduce the probability of error \(P_e = P_{Y \neq X} \) due to the noise of the channel through which the signal is transmitted. With an error random variable \(E \) defined as

\[
E = \begin{cases}
1 & \text{if } X' \neq X \\
0 & \text{if } X' = X
\end{cases}
\]

we have the following theorem which is considered to be the generalized (nonadditive version) Fano’s inequality.

Theorem 7. The generalized Fano’s inequality

\[
H_q(X \mid Y) \leq H_q(P_e) + \frac{1 + (q-1)H_q(E,Y)}{1 + (q-1)H_q(Y)} \frac{P_e^q}{P_e^q + (1 - P_e)^q} \frac{1 - (|\mathcal{H}| - 1)^{1-q}}{(|\mathcal{H}| - 1)^{1-q}}
\]

where \(|\mathcal{H}| \) denotes the size of the alphabet of the information source.

Proof.

The proof can be done along the line of the usual Shannon’s additive case(e.g. \[1\]). Using the corollary Eq(13), we have two different expressions for \(H_q(E, X \mid Y) \),

\[
H_q(E, X \mid Y) = H_q(X \mid Y) + \frac{1 + (q-1)H_q(X,Y)}{1 + (q-1)H_q(Y)} H_q(E \mid X, Y)
\]

and
\[H_q(E, X | Y) = H_q(E | Y) + \frac{1 + (q - 1)H_q(E, Y)}{1 + (q - 1)H_q(Y)} H_q(X | E, Y) \]

where we have used the corollary by regarding \(H_q(E, X | Y) \) as \(H_q(X, E | Y) \) in the second expression Eq(42). We are now considering the following situation. That is, we wish to know the genuine random variable \(Y \) which can be related to the \(X \) by the nonadditive conditional information content \(I_q(y \mid x) \). Hence we calculate \(X' \), an estimate of \(X \), as a function of \(Y \) such as \(g(Y) \) [1]. Then we see \(H_q(E \mid X, Y) \) becomes 0 since \(E \) is a function of \(X \) and \(Y \) by the definition Eq(11). Therefore the first expression of \(H_q(E, X \mid Y) \) reduces to \(H_q(Y | X) \). On the other hand, from the non-negativity property of \(I(E; Y) \) we assumed and from the relation \(H_q(E) = H_q(P_e) \), we can evaluate \(H_q(E \mid Y) \) as \(H_q(E \mid Y) \leq H_q(E) = H_q(P_e) \). Moreover, \(H_q(X \mid E, Y) \) can be written as

\[
H_q(X \mid E, Y) = \frac{\sum_{E}(Pr\{E\})^q H_q(X \mid Y, E)}{\sum_{E}(Pr\{E\})^q} = \frac{(1 - P_e)^q H_q(X \mid Y, 0) + P_e^q H_q(X \mid Y, 1)}{P_e^q + (1 - P_e)^q}.
\]

For \(E = 0 \), \(g(Y) \) gives \(X \) resulting in \(H_q(X \mid Y, 0) = 0 \) and for \(E = 1 \), we have upper bound on \(H_q(X \mid Y, 1) \) by the maximum entropy comprising of the remaining outcomes \(|\mathcal{H}| - 1\),

\[
H_q(X \mid Y, 1) \leq \frac{1 - (|\mathcal{H}| - 1)^{1-q}}{(1-q)(|\mathcal{H}| - 1)^{1-q}}.
\]

Then it follows from Eq(43) that

\[
[P_e^q + (1 - P_e)^q] H_q(X \mid E, Y) \leq P_e^q \frac{1 - (|\mathcal{H}| - 1)^{1-q}}{(1-q)(|\mathcal{H}| - 1)^{1-q}}.
\]

Combining the above results with Eq(12), we have the theorem.\(\square \)

Remark: In the additive limit, we obtain the usual Fano’s inequality \(H(X \mid Y) \leq H(P_e) + P_e \ln(|\mathcal{H}| - 1) \) in nat unit.

V. CONCLUDING REMARKS

We have attempted to extend the Shannon’s additive IT to the nonadditive case by using the nonadditive information content Eq(1). In developing the nonadditive IT, this postulate of the nonadditive information content seems to plausible selection in terms of the unification of the meaning of average throughout the entire theory. As a consequence, the information entropy becomes the modified type of Tsallis nonextensive entropy. We have shown that the properties of the nonadditive information entropy, conditional entropy and the joint entropy in the form of theorem, which are necessary elements to develop IT. These results recover the usual Shannon’s ones in the additive limit\((q \rightarrow 1)\). Moreover, the source coding theorem can be generalized to the nonadditive case. As we have seen in the theorem 5, the nonadditivity of the information content can be regarded that it determines the longest codeword we can transmit to the channel. Philosophy of the present attempt can be positioned as a reverse of Jaynes’s pioneering work [20,21]. Jayneses has brought a concept of IT to statistical mechanics in the form of maximizing entropy of a system (Jaynes maximum entropy principle). The information theoretical approach to statistical mechanics is now considered to be very robust in discussing some areas of physics. In turn, we have approached IT in a nonadditive way. We believe that the present consideration based on the nonadditive information content may trigger some practical future applications in such an area of the information processing.

ACKNOWLEDGMENTS

The author would like to thank Dr.S.Abe for useful comments at the Yukawa Institute for Theoretical Physics, Kyoto, Japan and for suggesting him the nonadditive conditional entropy form Eq(11).

[1] T.M. Cover and J.A. Thomas, *Elements of Information Theory* (Wiley,New York,1991).
[2] R.V.L Hartley, Bell Syst. Tech. J. 7, 535 (1928).
[3] C.E.Shannon, Bell Syst. Tech. J. 27, 379 (1948); ibid 623 (1948).
[4] C.E. Shannon and W.Weaver, The Mathematical Theory of Communication (University of Illinois Press, Urbana,1963).
[5] C. Tsallis, J. Stat. Phys. 52, 479 (1988); E.M.F. Curado and C. Tsallis, J.Phys.A 24, L69 (1991); Corrigenda: 24, 3187 (1991) and 25, 1019 (1992).
[6] http://tsallis.cat.cbpf.br/biblio.htm for an updated bibliography.
[7] A.K. Rajagopal and S. Abe, Phys. Rev. Lett. 83, 1711 (1999).
[8] C. Tsallis, R.S. Mendes and A.R. Plastino, Physica A 261, 534 (1998).
[9] J.Balatoni and A.Renyi, Pub.Math. Int. Hungarian Acad Sci. 1, 9 (1956); A.Renyi, Probability Theory (North-Holland, Amsterdam 1970).
[10] The definition Eq(11) corresponds to taking the nonadditive conditional entropy as the form
$$H_q(Y \mid X) = \frac{1}{q-1} \left[\left(1 + (q-1)H_q(Y \mid x)^{(X)} \right)^{-1} - 1 \right].$$
[11] S.Abe and A.K. Rajagopal, Physica A 289, 157 (2001).
[12] S.Abe, Phys. Lett. A 271, 74 (2000).
[13] From the definition, we can easily confirm
$$H_q(Y \mid X) = H_q(Y) \text{ if and only if } X \text{ and } Y \text{ are independent variables. That is, } H_q(Y \mid x) = H_q(Y).$$
Moreover, since
$$\langle [1 + (q-1)H_q(Y)]^{-1} \rangle^{(X)} = \left(\sum_{y \in Y} p^q(y) \right)^{(X)} = \left(\sum_{y \in Y} \right),$$
we obtain
$$H_q(Y \mid X) = \frac{\left(\sum_{y \in Y} - \ln x \right) - 1}{q-1} = H_q(Y).$$
[14] S. Kullback and R.A. Leibler, Ann. Math. Stat. 22, 79 (1951); S. Kullback, Information Theory and Statistics (Wiley,New York,1959).
[15] We also note that our definition of $\ln_q x$ corresponds to $-\ln_q x^{-1}$ in the Ref. 7.
[16] C.Tsallis, Phys. Rev. E 58, 1442 (1998).
[17] L. Borland, A.R. Plastino, C. Tsallis, J. Math. Phys. 39, 6490 (1998); Errata:ibid 40, 2196 (1999).
[18] R.G. Gallager, Information Theory and Reliable Communication (Wiley,New York,1968).
[19] We will report the extension of the theorem elsewhere.
[20] E.T.Jaynes, Phys. Rev. 106, 620 (1957); 108, 171 (1957).
[21] E.T.Jaynes: Papers on Probability, Statistics and Statistical Physics, ed. R.D.Rosenkrantz (D.Reidel, Boston, 1983); E.T.Jaynes in Statistical Physics, ed. W.K.Ford, Benjamin, New York (1963).