Dilute Solution Properties of Nettle Seed Gum (Urtica pilulifera) as a Function of Temperature

Zahra Zamani 1, Seyed Mohammad Ali Razavi 1, 2

1 Department of Food Science and Technology, Ferdowsi University of Mashhad, PO Box: 91775-1163, Mashhad, Iran
2 Correspondence: s.razavi@um.ac.ir (S.M.A.R.);
Scopus Author ID 14058852900
Received: 25.09.2021; Accepted: 1.12.2021; Published: 15.01.2022

Abstract: This research focused on determining some molecular properties and intrinsic properties of Nettle seed gum (NSG), as one of the novel and natural sources of hydrocolloids, at different temperatures (10, 25, 40, 55, and 70°C) in the dilute region. The results showed that among the models studied, the Higiro 2 model with the highest R2 and lowest RMSE values was the most proper model for determining the intrinsic viscosity of the NSG. Based on this model, the intrinsic viscosity value of NSG was obtained in the range of 0.15–0.21 dl/g. It was also found that, as the temperature raised, the intrinsic viscosity of NSG declined. The shape factor of NSG at 40°C was spherical; however, increasing the temperature from 40°C to 70°C, it to an ellipsoidal shape. Berry number and master curve slope showed that NSG solution at all temperatures was within the dilute regime and that no molecular entanglements existed. The parameter b values acquired for NSG at the intended temperatures showed that the molecular conformation of NSG was the random coil. The activation energy and chain flexibility parameters calculated for NSG at the tested temperatures were 0.488×10^7 J/kg mol and 587.2, respectively.

Keywords: hydrocolloid; intrinsic viscosity; seed mucilage; shape factor; temperature; Urtica pilulifera.

© 2022 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Urtica pilulifera L. is a member of the Urticaceae family [1]. Urtica pilulifera L. plant grows widely in Mediterranean climates [2]. This plant has been applied to treat gastritis, urinary infections, enteritis, rheumatism, liver inflammation, and skin diseases [3].

When Urtica pilulifera seeds are placed in water, the mucilaginous layer around the seeds absorb water and swell. Recently, the optimal conditions for extraction of Nettle seed (Urtica pilulifera) mucilage (NSG) were identified by the response surface methodology (RSM) [4]. Also, some physicochemical, rheological, and functional properties of NSG as a novel and natural hydrocolloid source have been recently perused [5]. The chemical compositions of NSG were reported as follows: moisture, 9.50%; ash, 15.30%; protein, 10.42%; lipids, 1.02%; carbohydrate, 63.09%. And uronic acids, 10.75%, indicating the polyelectrolyte nature of this hydrocolloid. The constituent sugars of NSG were composed of rhamnose (13.98%), arabinose (0.02%), galactose (2.99%), glucose (2.61%), xylose (0.07%), and galacturonic acid (24.71%). Besides, the effects of shear rate (14–400 s^-1), concentration (3–5%), and temperature (10–70°C) on the rheological properties of NSG were studied and
modeled. It was also revealed that the NSG could be used as an emulsion/foam stabilizer in the food and pharmaceutical systems [5].

Viscosity estimation in the dilute solution regime, in which individual polysaccharide coils are well separated from each other, and are free to move independently, is crucial in providing information on how molecules behave in solution and how the structure and fundamental properties of biopolymers are related [6]. The intrinsic viscosity, \([\eta]\), is a characteristic of macromolecules that directly depends on their ability to disturb the flow and indirectly on the size and shape of the molecules [7]. Attractive and repulsion interactions between macromolecules chains affect hydration. As a result, the hydrodynamic volume of the molecules is mainly related to the conformation of macromolecules in the solution. The changes in the molecular parameters such as hydrodynamic volume, conformation, shape, and macromolecular entanglements can be witnessed by variations in the intrinsic viscosity [8]. Many types of research have been done to determine the intrinsic viscosity of different hydrocolloids [9-16]. The molecular parameters, including solution viscosities, molecular shape & conformation, voluminosity, etc., seem to be beneficial for understanding and predicting the functional properties of hydrocolloids in the semi-dilute solution regime at various conditions like temperature, pH, etc. Due to the diversity in biopolymers’ structure and external conditions in the fluid flow systems, the dilute solution properties greatly depend on the selected biopolymer [15]. The literature review displays the absence of perfect and enough data concerning this emerging hydrocolloid in the dilute solution domain. Therefore, this research aimed at the effect of temperature (at the levels of 10, 25, 40, 55, and 70°C) on some dilute solution properties (intrinsic viscosity; voluminosity, and shape factor; molecular conformation; activation energy and chain flexibility parameter) of the NSG to evaluate its potentials in the food and pharmaceutical systems.

2. Materials and Methods

2.1. Sample preparation.

Nettle seed (\textit{Urtica pilulifera}) gum was produced under the optimized conditions, as expressed by Zamani \textit{et al.} [4]. Nettle seeds were soaked in the distilled water at a water/seed ratio of 40:1 and a set temperature of 59±1.0 °C for a period of 3.4 h (204 min). Then, the mucilage was extracted from the swelled seeds by a lab-scale extractor (model 402, Pars-Khazar Com., Iran) and dried in a forced-convention laboratory oven (model 4567, Kimya Pars Com., Iran) at 36 °C, milled and sieved by applying a mesh 18 sifter. NSG powders were packaged in seal bags and maintained in a cool and dry place for further measurements.

2.2. Estimation of intrinsic viscosity.

Gum solutions (2.5 g/dl) were prepared by dispersing the NSG powder in deionized water. The samples were then stirred (500 rpm) with a magnetic stirrer for 60 min at 25°C until complete dissolution, and the solutions were placed in a refrigerator at 4 °C for 24 h to complete the hydration. The dynamic viscosity of the NSG solutions (\(\eta\)) and the solvent (\(\eta_s\), deionized water) were measured at three replications in a thermostatic water bath, using an Ubbelohde capillary viscometer (Cannon Instrument, USA; capillary tube No. 100, \(K=0.019908 \text{ mm}^2/\text{s}\)). The measurements were performed at five temperature levels of 10, 25, 40, 55, and 70°C. To obtain the dynamic viscosity of the samples, the time of passage between two lines marker
the viscometer was recorded. Data were used to calculate the relative viscosity (η_{rel}) and specific viscosity (η_{sp}) using the following relationships (Eqns. 1, 2):

\[
\eta_{rel} = \frac{\eta}{\eta_S} \quad (1)
\]

\[
\eta_{sp} = \eta - \frac{\eta_S}{\eta_S} = \eta_{rel} - 1 \quad (2)
\]

The intrinsic viscosity [η] is often estimated using the Huggins equation (Eq. 3) and Kraemer equation (Eq. 4) models. According to these models, the reduced viscosity (η_{sp}/C) and inherent viscosity ($ln\eta_{rel}/C$) data versus the gum concentration were plotted, and then the curves were extrapolated to zero concentration. The intercepts were considered as the intrinsic viscosity [17].

Huggins’ equation [18]:

\[
\frac{\eta_{sp}}{C} = [\eta] + K_H[\eta]^2 C \quad (3)
\]

Kraemer’s equation [19]:

\[
\frac{ln\eta_{rel}}{C} = [\eta] + K_K[\eta]^2 C \quad (4)
\]

where K_H, K_K, and C are the Huggins constant, the Kraemer constant, and the gum concentration, respectively. McMillan et al. [20] stated that methods of intrinsic viscosity determination based on slopes of plots (e.g., Tanglertpaibul-Rao’s model equation (Eq. 5) and Higiro’s model’s equations (Eq. 6), and (Eq. 7) have a higher correlation coefficient and a lower standard error than the methods based on the extrapolation (e.g., Huggins and Kraemer models). Nickerson et al. [21] also stated that since polymer concentrations are provided by sequential dilution, the error in the expression (η_{sp}/C) increases, and the data fitting to the Huggins model is difficult. Therefore, in the present study, three following slope-based models were applied to estimate the intrinsic viscosity of the samples.

Tanglertpaibul-Rao’s equation [7]:

\[
\eta_{rel} = 1 + [\eta]C \quad (5)
\]

Higiro’s equations [22]:

\[
\eta_{rel} = e^{[\eta]C} \quad (6)
\]

\[
\eta_{rel} = \frac{1}{1-[\eta]C} \quad (7)
\]

2.3. Estimation of shape factor and swollen volume parameters.

Based on the following equation (Eq. 8), intrinsic viscosity depends on two crucial molecular parameters, namely the shape factor and swollen volume [23]:

\[
[\eta] = \nu. \nu_S \quad (8)
\]

where ν is the biopolymer shape factor, known as the viscosity increment, and ν_S is the biopolymer swollen volume or the voluminosity. The swollen volume depends on relative viscosity and is determined from the intercept of the plot of Y versus the concentration as follows (Eq. 9):

\[
Y = \eta_{rel}^{0.5} - 1/[C(1.35\eta_{rel}^{0.5} - 0.1) \quad (9)
\]

2.4. Estimation of molecular conformation.

The power-law relationship equation (Eq. 10) was applied to determine the exponent b, as the slope of the logarithmic diagram of the specific viscosity versus the concentration. This parameter is generally used to describe the polysaccharide conformation [24].
\[\eta_{sp} = aC^b \]

(10)

2.5. Determination of the chain flexibility parameter and activation energy.

The reduction in the viscosity of the polymer solution in the Newtonian domain with increasing temperature mostly follows the Arrhenius-type equation (Eq. 11) [12]:

\[[\eta] = Ae^{E_a/RT} \]

(11)

where \([\eta]\) is the intrinsic viscosity (dl/g), \(A\) is the model constant, \(E_a\) is the activation energy (kJ/kgmol), \(R\) is the universal gas constant (kJ/kgmol.K), and \(T\) is the absolute temperature (K).

Typically, the \(E_a/R\) value is an indicator of the biopolymer’s chain flexibility so that high values of \(E_a/R\) indicate low chain flexibility [25].

2.6. Statistical analysis.

To survey the effect of temperature (at five levels of 10, 25, 40, 55, and 70°C) on the dilute solution properties of NSG, a completely randomized design with three repetitions and Duncan test at a 95% confidence level were applied for statistical analysis and comparing means by SPSS software version 22, respectively. Also, MATLAB software (R2013a) was used to select the most appropriate model for intrinsic viscosity estimation. Microsoft Excel 2010 software was used to draw the graphs.

3. Results and Discussion

3.1. Intrinsic viscosity.

Intrinsic viscosity is indicative of the hydrodynamic volume occupied by each macromolecule [26], which provides an in-depth insight into the molecular characteristics [10]. The interaction between various polymers, the fragments of a polymer chain, and the polymer chains and the solvent molecules affect the polymer conformation. On the other hand, polymer conformation is affected by temperature and polymer concentration [27]. In this study, the intrinsic viscosity was specified by two methods; that in the first method, it was estimated using the Huggins and Kraemer equations (Eq. 3), and (Eq. 4), while in the second method, it was computed by the Tanglertpaibul & Rao equation (Eq. 5) and Higiro 1 & 2 equations (Eq. 6), and (Eq. 7) [11, 20]. Figures 1 and 2 show the results of fitting the investigated models to the experimental data obtained for NSG in the dilute regime.

![Figure 1. A typical dual Huggins (*) and Kraemer (■) plots of Nettle seed gum (NSG) in deionized water (25°C).](https://nanobioletters.com/)
In the present research, due to the lack of a logical relationship between intrinsic viscosity and temperature changes, Huggins and Kramer’s equations were not considered as the appropriate models (Table 1). Slope-based relations (Tanglertpaibul-Rao, Higiro 1 & Higiro 2) showed high efficiency for estimating the intrinsic viscosity of NSG at 25°C, because they displayed a better linear fit with maximum R^2 minimum RMSE values (Table 2).

Table 1. Comparison of intrinsic viscosity ([η], dl/gr) of Nettle seed gum (NSG) solution using Huggins and Kraemer models at different temperatures.

Temperature (°C)	Huggins	Kraemer				
	[η]	R^2	RMSE	[η]	R^2	RMSE
10	0.100±0.042b	0.844	0.037	0.168±0.033b	0.689	0.052
25	0.179±0.004a	0.974	0.007	0.217±0.003a	0.920	0.004
40	0.138±0.003b	0.975	0.005	0.181±0.001b	0.868	0.005
55	-0.395±0.011d	0.872	0.017	-0.249±0.006d	0.781	0.013
70	-0.041±0.016c	0.970	0.006	0.027±0.010c	0.943	0.005

Results are expressed as means ± SD for three replications. a-d: Means followed by the same letters in the same column for each temperature are not significantly different (P > 0.05).

Table 2. Comparison of intrinsic viscosity ([η], dl/gr) of Nettle seed gum (NSG) solution using Tanglertpaibul & Rao and Higiro models at different temperatures.

Temperature (°C)	Higiro (1)	Tanglertpaibul & Rao							
	[η]	R^2	RMSE	[η]	R^2	RMSE	[η]	R^2	RMSE
10	0.269±0.001a	0.947	0.057	0.208±0.001a	0.986	0.031	0.356±0.001a	0.849	0.114
25	0.268±0.001a	0.977	0.023	0.208±0.001a	0.991	0.009	0.356±0.002a	0.899	0.081
40	0.245±0.001a	0.959	0.023	0.195±0.001a	0.991	0.007	0.315±0.002ab	0.868	0.066
55	0.189±0.001b	0.813	0.180	0.157±0.001b	0.896	0.133	0.233±0.002bc	0.718	0.248
70	0.181±0.001b	0.792	0.042	0.150±0.000b	0.875	0.022	0.222±0.001c	0.706	0.072

Results are expressed as means ± SD for three replications. a-c: Means followed by the same letters in the same column for each temperature are not significantly different (P > 0.05).

McMillan [20], and Razavi et al. [11], also found that slope-based methods had higher significant correlation coefficients and lower standard errors than those intercept-based methods. It is probably due to the sequential dilution in sample preparation that increases the error in η_sp/C term [21]. Besides, Launay [28] reported that the Huggins equation is credible $\eta_sp<0.7$. In this research, the η_sp value of the NSG was between 0.2 and 1.0. Behrouzian et al. [9], Lai et al. [24], and Higiro et al. [29] also applied slope-based methods to estimate the intrinsic viscosity of cress seed gum, Hessian Tsao gum, and xanthan gum, respectively. Lapasin and Prickel [30] stated that for non-ionic polysaccharides (such as acacia bean gum), reduced viscosity (η_sp/C) increases with a small uniform slope as polymer concentration
elevates, and for ionic polysaccharides (such as xanthan), due to the electrostatic repulsion between the chains and the dimensions of the developed helix, reduced viscosity (η_{sp}/C) increases steadily with very rapidly sloping with increasing polymer concentration. According to Figure 1, the behavior of NSG is similar to that described for ionic polysaccharides by Lapasin and Prickel [30]. As shown in Table 2, about the effect of temperature, the Higiro 2 model (Eq. 7) displayed the highest efficiency among the applied models because of the higher R^2 and lower RMSE values obtained. Therefore, this model was selected as the most appropriate model for computing the intrinsic viscosity of the NSG. According to this model, the intrinsic viscosity value of NSG has been obtained as 0.2 dl/gram at 25°C. When the temperature was enhanced from 10°C to 70°C, the intrinsic viscosity of NSG decreased from 0.2 to 0.15 dl/gram (Table 2). Increasing the vibrations of molecules and intermolecular distance may be attributed to the abrupt change in the gyration of NSG macromolecules resulting from increasing their chains’ flexibility [28, 31]. These results were in accordance with previous observations [10, 12, 13, 32, 33]. Oppositely, Stivala and Bahary [34] expressed that by raising the temperature from 25 to 57°C, the intrinsic viscosity of Levan was increased. Furthermore, Haug and Smidsrød [35] stated that the temperature has little effect on the intrinsic viscosity of alginate. In comparison, the intrinsic viscosity of NSG was almost the same as reported for Anghouzeh gum (0.213 dl/gram) [36], and Albizia gum (0.23 dl/gram) [37], and lower than guar (0.25 dl/gram) [38], xanthan gum (214.21 dl/gram) [22], and Nettle seed (Urtica dioica) gum (8.56dl/gram) [16], and higher than cashew gum (0.1 dl/gram at 20°C) [39], and gum Arabic (0.177 dl/gram at 25°C) [40].

3.2. Voluminosity and shape factor.

The intrinsic viscosity depends on two critical molecular parameters, namely the shape factor (ψ) and voluminosity (ψ_s). The shape factor is a dimensionless parameter, which indicates the shape of a polymer in solution [41]. If the amount of the shape factor (ψ) is equal to 2.5, the macromolecule shape is spherical, a higher amount is relevant to the ellipsoidal shape, and amounts less than 2.5 show oblate or prolate shapes [23]. As observed in Table 3, at temperatures below 40°C, the shape factor value was less than 2.5, indicating that the NSG macromolecules are oblate/prolate in shape. At 40°C, the shape factor was 2.5, so the NSG polymers are spherical. With increasing the temperature from 40°C to 70°C, the shape factor value of NSG increased from 2.55 to 7.24, representing more expanded conformation (ellipsoidal) at high temperatures (Table 3). These findings were consistent with intrinsic viscosity data (Table 2). Regarding the impact of temperature on the shape factor value, similar findings were reported by Yousefi et al. [12] and Razavi et al. [11]. Shape factor values smaller than 2.5 were reported for cress seed gum and dextran gum by Mohammad Amini et al. [10] and Antonio et al. [23].

Table 3. Voluminosity (ψ_s) and shape factor (ψ) of Nettle seed gum (NSG) at different temperatures.	Temperature (°C)	ψ_s (dl/gram)	ψ
10	0.092±0.019*	2.310±0.418*	
25	0.089±0.001*	2.330±0.019*	
40	0.076±0.001*	2.550±0.025*	
55	0.036±0.002*	4.380±0.272*	
70	0.021±0.004*	7.240±1.119*	

Results are expressed as means ± SD for three replications. a-c: Means followed by the same letters in the same column for each temperature are not significantly different (P > 0.05).
The voluminosity or the swollen specific volume (v_s) represents the polymer configuration in various solvent conditions [11, 23]. Solvent bonding causes the anhydrous macromolecule to expand when dissolved or dispersed in water so that v_s can be supposed as a scale of solvent bonding with macromolecule or the macromolecule volume in solution per unit mass of biopolymer without water [42]. The values of voluminosity (v_s) of NSG at different temperatures are shown in Table 3. The swollen specific volume declined by elevating the temperature from 10°C to 70°C, showing the NSG polymer dimensions or the solvent power decreased [11]. As voluminosity is described as the volume of the hydrated biopolymer per unit mass of dry biopolymer, the achieved results from v_s validated the obtained findings of the intrinsic viscosity (Table 3). Similar findings regarding the impact of temperature on v_s were reported by Razavi et al. [11].

3.3. The molecular conformation.

The coil overlap parameters, including the master curve slope (MCS) and the Berry number ($C[\eta]$) of NSG were determined at different temperatures. The plot of log (η_∞) versus log $C[\eta]$, which is known as the “master curve”, is applied to designate the coil overlap parameters in the dilute regime [43,44]. The Berry number is a dimensionless parameter representing the volume of polymer molecules in the solution [43, 44]. The molecular entanglements occur when the Berry number ($C[\eta]$) is higher than one [45, 46], so in semi-dilute solutions, the Berry number is in the range of 1.0-10.0 [45]. In the present research, this parameter calculated for NSG solution was in the range of 0.21-0.52 at 25°C, which indicates that no coil overlap and molecular entanglements happened (Table 4).

Table 4. The values of master curve slope (MCS), Berry number ($C[\eta]$), and exponent b (slope of log η_∞ vs. log C) of Nettle seed gum (NSG) solution at different temperatures.

Temperature (°C)	MCS	$C[\eta]$	b
10	0.76±0.00	0.29-0.51	1.42±0.40a
25	0.81±0.00	0.21-0.52	1.44±0.01b
40	1.12±0.00	0.25-0.48	1.56±0.01
55	1.32±0.40	0.21-0.39	1.95±0.04a
70	1.40±0.00	0.24-0.37	2.21±0.07a

Results are expressed as means ± SD for three replications. a-b: Means followed by the same letters in the same column for each temperature are not significantly different (P > 0.05).

In a dilute solution, the master curve slope (MCS) value is less than 1.4, whereas for semi dilutes regime, the MCS has been found in some cases close to 3.75. However, the published values of the slopes may vary for random coil polymers in good solvent from 3.4 up to 5 [43]. At the temperature range of 10-70°C, the master curve slop for the NSG solution was less than 1.4, indicating that it was within the dilute solution domain and that no molecular entanglements were present (Table 4).

The parameter b, the slope of the power-law model (Eq. 10), is displayed in Table 4. Morris et al. [44] reported that parameter b values higher than number one are relevant to random coil conformation within the dilute domain. In contrast, fewer values are a demonstration of rod-like conformation. The parameter b values for NSG at selected temperatures were ranged from 1.42 to 2.2, confirming the random coil conformation of the NSG macromolecules. Similar data were reported by Yousefi et al. [12] for sage seed gum. They also found that by elevating the temperature from 25 to 65°C, the amount of parameter b increases.
3.4. Chain flexibility parameter and activation energy.

The reduction in the viscosity of the polymer solution in the Newtonian domain with increasing the temperature generally follows the Arrhenius law. If the intrinsic viscosity was used in place of the Newtonian viscosity, the slope of the logarithmic plot of the intrinsic viscosity \((\ln[\eta])\) against the inverse of absolute temperature \((1/T)\) is applied as an indicator of macromolecular chain flexibility \((E_a/R)\) [47]. Thus, a high \(E_a/R\) value indicates low chain flexibility [25]. The chain flexibility parameter \((E_a/R)\) and activation energy \((E_a)\) calculated for the NSG at the tested temperatures were 587.2 K and 0.488\times10^7 \text{ J/kgmol}, respectively. The chain flexibility parameter of NSG was lower than the value obtained for sage seed gum (3046.45) [12], Balangu seed gum (1156.53) [10], xanthan (1100) [48], cellulose diacetate (645) [49], Qodumeh Shirazi seed gum (618.54) [15], but it was more than chitosan (488) [50], indicating greater flexibility of the macromolecular chain of NSG in comparison to most hydrocolloids. Also, the value for the activation energy \((E_a)\) of NSG was lower than sage seed gum (2.53\times10^7 \text{ J/kgmol}) [12], chitosan (2.5\times10^7 \text{ J/kgmol}) [51], Balangu seed gum (1.00\times10^7 \text{ J/kgmol}) [10], and almost similar to Qodumeh Shirazi seed gum (0.51\times10^7 \text{ J/kgmol}) [15].

4. Conclusions

In this paper, the influence of temperature (10, 25, 40, 55, and 70°C) on some molecular parameters and the intrinsic viscosity of NSG in the dilute regime have been examined. After fitting different models, the Higiro 2 model was selected as the best model to explain the behavior of the dilute solution of NSG. According to the results, increasing the temperature, the amount of intrinsic viscosity and voluminosity \((v_s)\) decreased. The results of the shape factor \((v)\) showed that at temperatures below 40°C, the NSG macromolecules are oblate/prolate in shape, but at 40°C, they are spherical. With raising the temperature from 10°C to 70°C, the shape of NSG changed to ellipsoidal, indicating more expanded conformation at that high temperatures. Berry number and master curve slope \((MCS)\) showed that NSG solution at all temperatures was within the range of dilution solution regime and that no molecular entanglements existed. The value of the \(b\) parameter at different temperatures was acquired in the range of 1.4-2.2, which indicates the NSG conformation was the random coil. Based on the Arrhenius-type model parameters, which expresses the chain flexibility parameter of the macromolecules, it was shown that NSG has a relatively flexible chain.

Funding

This project was funded by the Iran National Science Foundation (INSF), Iran (Grant No., 96015540) and the Deputy of Research, Ferdowsi University of Mashhad (FUM), Iran (Grant No. 49170).

Acknowledgments

The financial supports from INSF and FUM are gratefully acknowledged.

Conflicts of Interest

The authors declare no conflict of interest.
References

1. Davis, P.H. *Flora of Turkey*. Edinburgh University Press, Edinburgh, Volume 7, 1982; pp. 633.
2. Irshaid, F.; Mansi, K. Effects of Leaf Extract of Urtica pilulifera L. on Male Reproductive System of Streptozotocin-Diabetic Rats. *American Journal of Pharmacology and Toxicology* 2009, 4, 22-28.
3. Kavalali, G.; Tuncel, H. Anti-Inflammatory Activities of Urtica pilulifera. *International Journal of Pharmacognosy* 1997, 35, 138-140, https://doi.org/10.1076/phpi.35.2.138.13286.
4. Zamani, Z.; Razavi, S.M.A.; Amiri, M.S. Determination of physicochemical properties of Nettle seed (Urtica pilulifera) and optimization of its mucilage extraction conditions using response surface methodology. *Research and Innovation in Food Science and Technology* 2020, 9, 143-160.
5. Zamani, Z.; Razavi, S.M.A. Physicochemical, rheological and functional properties of Nettle seed (Urtica pilulifera) gum. *Food Hydrocolloids* 2021, 112, https://doi.org/10.1016/j.foodhyd.2020.106304.
6. Pamies, R.; Hernández Cifre, J.G.; del Carmen López Martínez, M.; García de la Torre, J. Determination of intrinsic viscosities of macromolecules and nanoparticles. Comparison of single-point and dilution procedures. *Colloid and Polymer Science* 2008, 286, 1223-1231, https://doi.org/10.1007/s00396-008-1902-2.
7. Tanglertpaibul, T.; Rao, M.A. Intrinsic Viscosity of Tomato Serum as Affected by Methods of Determination and Methods of Processing Concentrates. *Journal of Food Science* 1987, 52, 1642-1645, https://doi.org/10.1111/j.1365-2621.1987.tb05895.x.
8. van Aken, G.A. Polysaccharides in Food Emulsions. In: *Food polysaccharides and their applications*. 2nd ed.; Stephen, A.M.; Phillips, GO.; Williams, PA. Eds.; CRC Press, 2006; pp. 525.
9. Behrouzian, F.; Razavi, S.M.A.; Karazhiyan, H. Intrinsic viscosity of cress (Lepidium sativum) seed gum: Effect of salts and sugars. *Food Hydrocolloids* 2014, 35, 100-105, https://doi.org/10.1016/j.foodhyd.2013.04.019.
10. Mohammad Amini, A.; Razavi, S.M.A. Dilute solution properties of Balangu (Lallemantia royleana) seed gum: Effect of temperature, salt, and sugar. *International Journal of Biological Macromolecules* 2012, 51, 235-243, https://doi.org/10.1016/j.ijbiomac.2012.05.018.
11. Razavi, S.M.A.; Moghaddam, T.M.; Emadzadeh, B.; Salehi, F. Dilute solution properties of wild sage (Salvia macrosiphon) seed gum. *Food Hydrocolloids* 2012, 29, 205-210, https://doi.org/10.1016/j.foodhyd.2012.02.020.
12. Yousefi, A.R.; Razavi, S.M.A.; Khodabaksh Aghdam, S.H. Influence of temperature, mono- and divalent cations on dilute solution properties of sage seed gum. *International Journal of Biological Macromolecules* 2014, 67, 246-253, https://doi.org/10.1016/j.ijbiomac.2014.03.026.
13. Karazhiyan, H.; Razavi, S.M.A.; Phillips, G.O.; Fang, Y.; Al-Assaf, S.; Nishinari, K. Physicochemical aspects of hydrocolloid extract from the seeds of Lepidium sativum. *International Journal of Food Science & Technology* 2011, 46, 1066-1072, https://doi.org/10.1111/j.1365-2621.2011.02583.x.
14. Razavi, S.M.A.; Cui, S.W.; Guo, Q.; Ding, H. Some physicochemical properties of sage (Salvia macrosiphon) seed gum. *Food Hydrocolloids* 2014, 35, 453-462, https://doi.org/10.1016/j.foodhyd.2013.06.022.
15. Hesarinejad, M.A.; Razavi, S.M.A.; Koocheki, A. Alyssum homolocarpum seed gum: Dilute solution and some physicochemical properties. *International Journal of Biological Macromolecules* 2015, 81, 418-426, https://doi.org/10.1016/j.ijbiomac.2015.08.019.
16. Kutlu, G.; Bozkurt, F.; Tornuk, F. Extraction of a novel water-soluble gum from nettle (Urtica dioica) seeds: Optimization and characterization. *International Journal of Biological Macromolecules* 2020, 162, 480-489, https://doi.org/10.1016/j.ijbiomac.2020.06.179.
17. Da Silva, J.A.L.; Rao, M.A. Viscoelastic Properties of Food Hydrocolloid Dispersions. In: *Viscoelastic Properties of Foods*. Ed.; Rao, M.A.; Steffe, J.F. Elsevier Applied Science, New York, 1992; pp. 285-315.
18. Huggins, M.L. The Viscosity of Dilute Solutions of Long-Chain Molecules. IV. Dependence on Concentration. *Journal of the American Chemical Society* 1942, 64, 2716-2718, https://doi.org/10.1021/ja01263a056.
19. Kraemer, E.O. Molecular Weights of Cellulosles and Cellulose Derivates. *Industrial & Engineering Chemistry* 1938, 30, 1200-1203, https://doi.org/10.1021/ie05346a023.
20. McMillan, D.E. A comparison of five methods for obtaining the intrinsic viscosity of bovine serum albumin. *Biopolymers* 1974, 13, 1367-1376, https://doi.org/10.1002/bip.1974.360130708.
21. Nickerson, M.T.; Paulson, A.T.; Hallett, F.R. Dilute solution properties of k-carrageenan polysaccharides: effect of potassium and calcium ions on chain conformation. *Carbohydrate Polymers* 2004, 58, 25-33, https://doi.org/10.1016/j.carbpol.2004.06.017.
22. Higiro, J.; Herald, T.J.; Alavi, S. Rheological study of xanthan and locust bean gum interaction in dilute solution. *Food Research International* 2006, 39, 165-175, https://doi.org/10.1016/j.foodres.2005.07.011.
23. Antoniou, E.; Themistou, E.; Sarkar, B.; Tsiangou, M.; Alexandridis, P. Structure and dynamics of dextran in binary mixtures of a good and a bad solvent. *Colloid and Polymer Science* 2010, 288, 1301-1312, https://doi.org/10.1007/s00396-010-2259-x.
24. Lai, L.S.; Tung, J.; Lin, P.S. Solution properties of hsian-tsa0 (Mesona procumbens Hemsli) leaf gum. *Food Hydrocolloids* 2000, 14, 287-294, https://doi.org/10.1016/S0266-050X(99)00069-7.
25. Chen, R.H.; Lin, W.C. Effect of shear rate, temperature, ionic strength and pH on the rheological properties of chitosan solution. J. Fisheries Society of Taiwan 1992, 19, 299–309, https://doi.org/10.29822/JFST.199212.0008.
26. Qian, K.Y.; Cui, S.W.; Wu, Y.; Goff, H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocolloids 2012, 28, 275-283, https://doi.org/10.1016/j.foodhyd.2011.12.019.
27. Wang, Q.; Cui, S.W. Understanding the conformation of polysaccharides. In: Food carbohydrates: Chemistry, physical properties, and applications. CRC press, 2005; pp. 219.
28. Launay, B. Flow properties of aqueous solutions and dispersions of polysaccharides. In: Functional properties of food macromolecules. 1986; pp. 1-19.
29. Higiro, J.; Herald, T.J.; Alavi, S.; Bean, S. Rheological study of xanthan and locust bean gum interaction in dilute solution: Effect of salt. Food Research International 2007, 40, 435-447, https://doi.org/10.1016/j.foodres.2006.02.002.
30. Lapasin, R.; Pricl, S. Rheology of polysaccharide systems. In: Rheology of industrial polysaccharides: Theory and applications. 1st ed. Springer US, 1995; pp. 250-494, https://doi.org/10.1007/978-1-4615-2185-3.
31. Mirabolhassani, S.E.; Rafe, A.; Razavi, S.M.A. The influence of temperature, sucrose and lactose on dilute solution properties of basil (Ocimum basilicum) seed gum. International Journal of Biological Macromolecules 2016, 93, 623-629, https://doi.org/10.1016/j.ijbiomac.2016.09.021.
32. Ma, X.; Pawlik, M. Intrinsic viscosities and Huggins constants of guar gum in alkali metal chloride solutions. Carbohydrate Polymers 2007, 70, 15-24, https://doi.org/10.1016/j.carbpol.2007.02.024.
33. Lai, L.-S.; Chiang, H.-F. Rheology of decolorized hsian-tsao leaf gum in the dilute domain. Food Hydrocolloids 2002, 16, 427-440, https://doi.org/10.1016/S0268-005X(01)00119-9.
34. Stivala, S.S.; Bahary, W.S. Some dilute-solution parameters of the levan of streptococcus salivarius in various solvents. Carbohydrate Research 1978, 67, 17-21, https://doi.org/10.1016/S0008-6215(00)83726-X.
35. Haug, A.; Smidsrod, O. Determination of intrinsic viscosity of alginates. Acta Chem. Scand 1962, 16, 1569-1578.
36. Milani, J.; Maleki, G. Hydrocolloids in food industry. In: Food industrial processes–Methods and equipment. Ed.; Valdez, B. Volume 2, 2012; pp. 2-37, https://doi.org/10.5772/32358.
37. Pachuat, L.; Lalhlemnawia, H.; Mazumder, B. Characteristics and composition of Albizia procera (Roxb.) Benth gum. Industrial Crops and Products 2012, 40, 90-95, https://doi.org/10.1016/j.indcrop.2012.03.003.
38. Richardson, P.H.; Willmer, J.; Foster, T.J. Dilute solution properties of guar and locust bean gum in sucrose solutions. Food Hydrocolloids 1998, 12, 339-348, https://doi.org/10.1016/S0268-005X(98)00025-3.
39. Rao, A.M. Rheology of fluid and semisolid fluids: principles and applications. Aspen Publication, Gaithersburg, MD, 1999.
40. Lin, H.-Y.; Lai, L.-S. Isolation and viscometric characterization of hydrocolloids from mulberry (Morus alba L.) leaves. Food Hydrocolloids 2009, 23, 840-848, https://doi.org/10.1016/j.foodhyd.2008.03.018.
41. Joseph, R.; Devi, S.; Rakshit, A.K. Viscosity behaviour of acrylonitrile-acrylate copolymer solutions in dimethyl formamide. Polymer International 1991, 26, 89-92, https://doi.org/10.1002/pi.4990260206.
42. Harding, S.E. The intrinsic viscosity of biological macromolecules. Progress in measurement, interpretation and application to structure in dilute solution. Progress in biophysics and molecular biology 1997, 68, 207-262, https://doi.org/10.1016/s0079-6107(97)00027-8.
43. Launay, B.; Cuvelier, G.; Martinez-Reyes, S. Viscosity of locust bean, guar and xanthan gum solutions in the Newtonian domain: a critical examination of the log (ηsp)/log c[η] master curves. Carbohydrate Polymers 1997, 34, 385-395, https://doi.org/10.1016/S0144-8617(97)00104-5.
44. Morris, E.R.; Cutler, A.N.; Ross-Murphy, S.B.; Rees, D.A.; Price, J. Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydrate Polymers 1981, 1, 5-21, https://doi.org/10.1016/0144-8617(81)90011-4.
45. Graessley, W.W. The entanglement concept in polymer rheology. In: The entanglement concept in polymer rheology. Springer, Berlin, Heidelberg. 1974; pp. 1-179, https://doi.org/10.1007/BFb0031037.
46. Hager, B.L.; Berry, G.C. Moderately concentrated solutions of polystyrene. I. Viscosity as a function of concentration, temperature, and molecular weight. Journal of Polymer Science: Polymer Physics Edition 1982, 20, 911-928, https://doi.org/10.1002/pol.1982.082020513.
47. Rinaudo, M.; Domard, A. Solution properties of chitosan. In: Chitin and Chitosan. Skjak-Braek, G.; Anthonsen, T.; Stanford, P. ed. Kluwer Academic Publisher; Dordrecht, The Netherlands: 1989; pp. 71–86.
48. Milas, M.; Rinaudo, M. Properties of xanthan gum in aqueous solutions: Role of the conformational transition. Carbohydrate Research 1986, 158, 191-204, https://doi.org/10.1016/0008-6215(86)84017-4.
49. Kamide, K.; Saito, M. Cellulose and cellulose derivatives: Recent advances in physical chemistry. In: Biopolymers. Springer, Berlin, Heidelberg. 1987; pp. 1-56, https://doi.org/10.1007/BFb0023331.
50. Pogodina, N.V.; Pavlov, G.M.; Bushin, S.V.; Mel’nikov, A.B.; Lysenko, Y.B.; Nud’ga, L.A.; Marsheva, V.N.; Marchenko, G.N.; Tsvetkov, V.N. Conformational characteristics of chitosan molecules as demonstrated by diffusion-sedimentation analysis and viscometry. Polymer Science U.S.S.R. 1986, 28, 251-259, https://doi.org/10.1016/0032-3950(86)90076-6.
51. Wang, W.; Xu, D. Viscosity and flow properties of concentrated solutions of chitosan with different degrees of deacetylation. *International Journal of Biological Macromolecules* **1994**, *16*, 149-152, https://doi.org/10.1016/0141-8130(94)90042-6.