Evidence for s-channel Single-Top-Quark Production in Events with one Charged Lepton and two Jets at CDF

CDF Collaboration; Canelli, F; Kilminster, B; et al

Abstract: We report evidence for s-channel single-top-quark production in proton-antiproton collisions at center-of-mass energy $\sqrt{s} = 1.96\text{TeV}$ using a data set that corresponds to an integrated luminosity of 9.4fb^{-1} collected by the Collider Detector at Fermilab. We select events consistent with the s-channel process including two jets and one leptonically decaying W boson. The observed significance is 3.8 standard deviations with respect to the background-only prediction. Assuming a top-quark mass of $172.5\text{GeV}/c^2$, we measure the s-channel cross section to be $1.41^{+0.44}_{-0.42}\text{pb}$.

DOI: https://doi.org/10.1103/PhysRevLett.112.231804

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-108365
Journal Article
Accepted Version

Originally published at:
CDF Collaboration; Canelli, F; Kilminster, B; et al (2014). Evidence for s-channel Single-Top-Quark Production in Events with one Charged Lepton and two Jets at CDF. Physical Review Letters, 112:231804.
DOI: https://doi.org/10.1103/PhysRevLett.112.231804
Evidence for single-Channel Top-Quark Production in Events with One Charged Lepton and two Jets at CDF

T. Aaltonen,21 S. Amerio,39 D. Amidei,31 A. Anastassov,15 A. Annovi,17 J. Antos,12 G. Apollinari,15 J.A. Appel,15 T. Arisawa,52 A. Artikov,13 J. Asaadi,47 W. Ashmanskas,15 B. Auerbach,2 A. Aurisano,37 F. Azfar,38 W. Badgett,15 T. Bae,25 A. Barbaro-Galtieri,26 V.E. Barnes,43 B.A. Barnett,23 P. Barria,41 P. Bartos,12 M. Bause,39 F. Bedeschi,41 A. Belahi,15 M. Bellettini,41 J. Bellinger,54 D. Benjamin,14 A. Beretvas,15 A. Bhatti,45 K.R. Bland,5 B. Blumenfeld,23 A. Bocci,14 A. Bock,44 D. Bortoletto,43 J. Boudreau,42 A. Boveia,11 L. Brigliadori,6 C. Bromberg,32 E. Brucken,21 J. Budagov,13 H.S. Budi,44 K. Burkett,15 G. Busetto,39 P. Bussey,19 P. Butti,41 A. Buzatu,19 A. Calamba,19 S. Camarda,4 M. Campanelli,28 F. Canelli,16 B. Cars,22 D. Carlsmith,54 R. Carosi,41 S. Castillo,16 B. Casal,7 M. Casarsa,48 A. Castro,6 P. Castanini,20 D. Cauz,47,48 V. Cavalleri,22 M. Cavalli-Sforza,4 A. Cerri,26 L. Cerroti,28 Y.C. Chen,1 M. Chertok,7 G. Chiarelli,41 G. Chlachidze,15 K. Cho,25 D. Chokheli,13 A. Clark,18 C. Clarke,53 M.E. Convery,15 J. Conway,7 M. Corbo,15 M. Cordelli,17 C.A. Cox,7 D.J. Cox,7 M. Cremonesi,41 D. Cruz,17 J. Cuevas,9 R. Culbertson,15 N. d’Ascenzo,15 M. Datta,15 P. de Barbara,44 L. Demortier,45 M. Deninno,6 M. D’Errico,39 F. Devoto,21 A. Di Cante,41 B. Di Ruzza,15 J.R. Dittmann,5 S. Donatelli,41 K. Donofrio,27 M. Dorigo,48 A. Driutti,47,48 K. Ebina,52 R. Edgar,31 A. Elagin,47 R. Ebacher,7 S. Errede,22 B. Esham,22 S. Farrington,35 J.P. Fernández Ramos,29 R. Field,16 G. Flanagan,15 R. Forrest,7 M. Franklin,20 J.C. Freeman,15 H. Frisch,11 Y. Funakoshi,52 C. Galloni,41 A.F. Garfinkel,43 P. Garosi,41 H. Gerberich,22 E. Gerchtein,15 S. Giagu,46 V. Giakoumopoulou,9 K. Gibson,12 C.M. Ginsburg,15 N. Giokaris,3 P. Giromini,17 G. Giorgi,23 V. Gligolev,13 D. Glenzinski,15 M. Gold,34 D. Goldin,47 A. Golossano,15 G. Gomez,9 G. Gomez-Ceballos,30 M. Goncharov,30 O. González López,29 I. Gorelov,34 A.T. Goshaw,14 K. Goulian,45 E. Gramellini,6 S. Grinstein,4 C. Gross-Pilcher,11 R.C. Group,51 J. Guimarães da Costa,20 S.R. Hahn,15 Y. Han,44 F. Happpacher,17 K. Hara,49 M. Hare,50 R.F. Harr,51 T. Harrington-Taber,45 K. Hatakeyama,5 C. Hays,38 J. Heinrich,40 M. Herndon,45 A. Hocker,15 Z. Hong,47 W. Hopkins,15 S. Hou,15 R.E. Hughes,35 U. Husemann,55 M. Hussein,32 J. Huston,32 G. Introzzi,26,41 M. Iori,46 A. Ivanov,7 E. James,15 D. Jiang,10 B. Jayatilaka,15 E.J. Jeon,25 S. Jindariani,15 M. Jones,43 K.K. Joo,25 S.Y. Jun,10 T.R. Junk,15 M. Kambeitz,24 T. Kamon,25,47 P.E. Karchin,53 A. Kasmi,5 Y. Kato,37 W. Ketchum,99,15 J. Keung,40 B. Kilian,15 F.H. Kim,25 H.S. Kim,25 J.E. Kim,25 M.J. Kim,17 S.H. Kim,49 S.B. Kim,25 Y.J. Kim,25 Y.K. Kim,11 N. Kimura,52 M. Kirby,15 K. Knoepel,15 K. Kondo,52, A. Kong,25 J. Konigsberg,16 A.V. Kotwal,14 M. Kreps,24 J. Kroll,40 M. Kruse,14 T. Kruh,24 M. Kurata,49 A.T. Laasanen,43 S. Lammel,15 M. Lancaster,28 K. Lannon,35 G. Latino,41 H.S. Lee,25 J.S. Lee,25 S. Leo,41 S. Leone,41 J.D. Lewis,15 A. Limosani,14 E. Lipeles,40 A. Lister,18 H. Liu,51 Q. Liu,43 T. Liu,15 S. Lockwitz,55 A. Logino,55 D. Lucchesi,33 A. Luca,17 J. Lueck,24 P. Lujan,26 P. Lukens,15 G. Lungu,15 J. Lys,26 R. Lysak,12 R. Madrak,15 P. Maestro,41 S. Malik,5 G. Manca,6,27 A. Manousakis-Katsikakis,3 L. Marchese,6,6 F. Margaroli,46 P. Marino,41 M. Martínez,5 K. Matera,22 M.E. Mattsson,53 A. Mazzacone,15 M. Mazzanti,6 R. McNulty,27 A. Mehta,21 C. Mesropian,42 T. Miao,15 D. Mietlicki,31 A. Mitra,1 H. Miyake,49 S. Moed,15 N. Moggi,6 C.S. Moon,15 R. Moore,14,15 M.J. Morello,41 A. Mukherjee,15 Th. Muller,24 P. Murat,15 M. Mussini,6 J. Nachtman,15 Y. Nagai,49 J. Naganoma,52 I. Nakano,36 A. Napier,50 J. Nett,47 C. Neu,31 T. Nigmanov,22 L. Nodulman,2 S.Y. Noh,25 O. Norniella,22 L. Oakes,48 S.H. Oh,44 Y.D. Oh,25 I. Oksuzian,15 T. Okusawa,37 R. Orava,21 L. Ortolan,48 C. Pagliarone,48 E. Palencia,9 P. Palni,34 V. Papadimitriou,15 W. Parker,54 G. Pauletta,47,48 M. Paulini,10 C. Paus,30 T.J. Phillips,14 G. Piacentino,41 E. Pianori,40 J. Pilot,7 K. Pitts,22 C. Plager,8 L. Pondrom,54 S. Poprocki,15 K. Potamianos,26 A. Pronko,26 F. Prokoskin,13 J. Ptohos,17 G. Punzi,41 N. Ranjan,43 I. Redondo Fernández,29 P. Renton,18 M. Rescigno,46 F. Rimondi,9 L. Ristori,41 A. Robson,19 T. Rodriguez,40 S. Rolli,50 M. Ronzanii,41 R. Roser,15 J.L. Rosner,41 F. Ruffini,41 A. Ruiz,9 J. Russ,10 V. Rusin,15 W.K. Sakamoto,44 Y. Sakurai,52 L. Santagati,48 K. Sato,49 V. Savaleiu,15 A. Savoy-Navarro,15 P. Schlabach,15 E.E. Schmidt,15 T. Schwarz,31 L. Scodellaro,9 F. Scru,41 S. Seidel,34 Y. Seitai,37 A. Semenov,13 F. Sforza,41 S.Z. Shalhout,7 T. Shears,27 P.F. Shepard,42 M. Shimojima,49 M. Shochet,11 I. Shreyber-Tecker,43 A. Simonenko,15 K. Siwaju,40 J.R. Smith,7 F.D. Snider,15 H. Song,42 V. Sorin,4 R. St. Denis,19 M. Stancari,15 D. Stentz,15 J. Strologas,34 Y. Sudo,49 A. Sukhanov,15 I. Suslov,13 K. Takemasa,49 Y. Takeuchi,49 J. Tang,11 M. Tecchio,31 P.K. Teng,1 J. Thom,15 E. Thomson,40 V. Thuyl,17 D. Toback,47 S. Tokar,12 K. Tollefson,32 T. Tomura,49 D. Tonelli,15 S. Torre,17 D. Torretta,15 P. Totaro,39
M. Vidal, M. Trovato, K. Yorita, B.L. Winer, D. Yamato, J. Vizán, R. Vilar, D. Yamato, K. Yamamoto, D. Yamato, T. Yang, U.K. Yang, Y.C. Yang, W.-M. Yao, G.P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, F. Ukegawa, P. Wittich, K. Uozumi, M. Uozumi, S. Uozumi, F. Vázquez, G. Velev, C. Vellidis, C. Vernieri, M. Vidal, R. Vilar, J. Vizán, M. Vogel, G. Volpi, P. Wagner, R. Wallny, S.M. Wang, D. Waters, W.C. Wester III, D. Whiteson, A.B. Wicklund, S. Wilbur, H.H. Williams, J.S. Wilson, P. Wilson, B.L. Winer, P. Wittich, S. Wolbers, H. Wolfe, T. Wright, X. Wu, Z. Wu, K. Yamamoto, D. Yamato, T. Yang, U.K. Yang, Y.C. Yang, W.-M. Yao, G.P. Yeh, K. Yi, J. Yoh, K. Yorita, T. Yoshida, G.B. Yu, I. Yu, A.M. Zanetti, Y. Zeng, C. Zhou, S. Zucchelli

(CDF Collaboration)
In proton-antiproton collisions, top quarks can be singly produced through electroweak interactions. This process provides a unique opportunity to test the standard model (SM) and search for non-SM physics. Each channel of the single-top-quark process is sensitive to different classes of SM extensions: the s-channel process, in which an intermediate W boson decays into a top (antitop) quark and an antibottom (bottom) quark, is sensitive to contributions from additional heavy bosons [1]; the t-channel process, in which a bottom quark transforms into a top quark by exchanging a W boson with another quark, is more sensitive to flavor-changing neutral currents [1]. Independently studying the production rate of these channels provides more restrictive constraints on SM extensions than just studying the combined production rate [2].

Single-top-quark production was first observed independently by the CDF and D0 experiments in 2009 [3, 4]. The t-channel production was first observed in 2011 by the D0 experiment [5], and confirmed in 2012 by the ATLAS [6] and CMS [7] experiments. The ATLAS [8] and CMS [9] experiments also reported evidence for top-quark associated production with a W boson. The s-channel process has not yet been observed. Because of the smaller production cross section and larger backgrounds, it is more difficult to isolate it compared to the t-channel process in proton-antiproton collisions. It is even more difficult at the Large Hadron Collider, although the absolute production rate is higher, as proton-proton collisions yield a significantly smaller signal-to-background ratio compared to the Tevatron. Recently the D0 collaboration announced the first evidence for the s-channel process in the charge lepton (ℓ) +jets channel with a data set corresponding to 9.7 fb$^{-1}$ of integrated luminosity [10].

In this Letter, we present the measurement of the single-top-quark s-channel cross section with the full CDF Run II data set in the ℓ+jets final state [11]. The data are collected with the general-purpose Collider Detector at Fermilab (CDF II) [12] and correspond to an integrated luminosity of 9.4 fb$^{-1}$. The CDF II detector is a solenoid magnetic spectrometer surrounded by calorimeters and muon detectors.

Since top-bottom quark coupling is much larger than the magnitudes of the top-down and top-strange quark couplings, we assume that all top quarks decay into W bosons. The W boson decays leptonically into an electron or a muon with a corresponding neutrino. Electrons or muons from τ decay are also accepted. Thus, the final state of the signal process consists of one reconstructed electron or muon, one corresponding neutrino, and two jets originating from bottom quarks (b jets). Since the final state of this process is the same one as used in the search for a Higgs boson (H) produced in association with a W boson [13], the techniques used in this Letter are based on this recent search but with a discriminant optimized for the present measurement.

There are important differences in the jet selection strategy between this s-channel-optimized analysis and the previous measurements [14], which were optimized for the t-channel process. The t-channel process usually yields one light-flavor jet in the forward region (pseudorapidity $|η| > 2.0$), which is crucial to distinguish the t-channel signal from background events. Since including these forward jets does not lead to a more powerful discriminator for the s-channel measurement, only central jets ($|η| < 2.0$) are included. Moreover, for the s-channel process, events with two b jets provide the most sensitivity, while most t-channel events have only one reconstructable b jet. As a result, the sensitivity of the s-channel analysis has been improved with a more efficient b-jet selection algorithm [15].
Events are collected using three classes of online selection requirements (triggers). In order to improve the lepton acceptance, a novel inclusive trigger strategy is used for events including a central electron or central muon ($|\eta| < 1.0$) with large transverse momentum p_T [16]. This improves the trigger efficiency by 4.7% for electrons and 12.6% for muons compared to the previous single-top-quark cross section measurement [3]. The details of this technique are discussed in Ref. [13]. Events triggered by E_T-based triggers [16], which require $E_T > 45$ GeV or $E_T > 35$ GeV plus two jets, are also included. These events allow the inclusion of additional identified muon types and are referred to as the extended muon category [14].

The algorithms for identifying leptons and jets are the same as those used in Ref. [14]. Events passing the trigger requirements are further selected by requiring exactly one isolated charged lepton with reconstructed transverse momentum $p_T > 20$ GeV/c. The E_T threshold is 20 GeV for events containing central electrons and extended muons, and 10 GeV for events containing central muons. Events are also required to have exactly two jets with transverse energy $E_T > 20$ GeV and pseudorapidity $|\eta| < 2.0$. A support-vector-machine algorithm [17] is used to reduce the contamination from multijet events that do not contain a W boson.

The invariant mass of the reconstructed top-quark candidate provides the greatest discrimination between s-channel single-top-quark and non-top-quark backgrounds. The z-component of the neutrino momentum is necessary for the invariant-mass calculation and can be constrained by implementing the W-boson invariant-mass requirement. We choose the smaller solution when there are two real solutions to this quadratic equation. As tested with simulated samples, the probability for this algorithm to yield the correct answer is about 70%. Correctly selecting the b jet that originated from top-quark decay is necessary to improve the mass resolution of the reconstructed top quark. A neural network is employed to select the correct jet out of the two candidate jets in each event. The neural network uses the following information on both jets: jet transverse momentum, p_T; invariant mass of the lepton and one jet, $M_{\ell j}$; invariant mass of the lepton, the neutrino and one jet, $M_{\ell\nu j}$; and the jet direction in the off-shell W-boson rest frame, $\cos \theta_j$. This algorithm selects the correct jet in 84% of simulated SM single-top-quark s-channel events.

To further suppress backgrounds, such as light-flavor jets produced in association with a W boson, at least one of the two jets in each event is required to be a b jet. Because there are several observable properties of b jets that can be used to discriminate them from other jets, a neural-network tagging algorithm [15] is used to preferentially select b jets. Jets are classified based on the output value of the algorithm as untagged, loose (L), or tight (T) tagged. For T (L) jets, as measured from simulation, the overall efficiency for selecting true b jets is $42\% \pm 1.6\%$ ($70\% \pm 6.5\%$), while the misidentification rate for charm-quark jets is $8.5\% \pm 0.7\%$ ($27\% \pm 5\%$), and the misidentification rate for jets originating from other quarks and gluons is $0.89\% \pm 0.16\%$ ($8.9\% \pm 0.9\%$). The tagging efficiency and misidentification rate applied to each jet depend on the jet E_T and η. The scale factors for these variables are also applied to each jet to bring the b-tagging efficiencies in simulation into agreement with those in data. By applying these tagging requirements to each jet in an event, we construct four non-overlapping tagging categories: TT, TL, T, and LL. For the double-tag categories, the category with the highest signal-to-background ratio is chosen if an event satisfies more than one category; for the single-tag category, one jet of the event is required to be tight tagged and the other one is untagged.

Signal and background events are modeled using a combination of data-driven methods and Monte Carlo (MC) simulation including the CDF II detector response modeled by GEANT3 [18] with CTEQ5L parton distribution function [19] and tuned to the Tevatron underlying-event data [20]. The single-top-quark events are modeled using POWHEG [21] with the top-quark mass set to 172.5 GeV/c^2, while quark shower and hadronization are performed by PYTHIA [22]. Signal events generated by POWHEG are at next-to-leading-order (NLO) accuracy in the strong coupling α_s, which is an improved model compared to the leading-order model used in Ref. [14]. The background model remains unchanged from the previous measurement [14]. The diboson (WW, WZ, ZZ), $tt\bar{t}$, and Higgs-boson processes (with the Higgs-boson mass set to 125 GeV/c^2) are modeled using simulated events generated with PYTHIA and normalized to the cross section calculated in Refs. [23–25].

Events in which a W or Z boson is produced in association with jets ($W/Z+$jets) are generated with ALPGEN [26] [27], at leading order with up to four partons with generator-to-reconstructed-jet matching [28, 29] and their hadronic shower simulated with PYTHIA. The background from the multijet process, which does not contain a W boson, is predicted using a data-driven model. The normalizations of multijet and $W+$jets processes are determined in a control sample (pretag sample) that includes events without any b-tag requirement. There are 122 039 events in the pretag sample, which is dominated by $W+$jets and multijet events. Since multijet events typically have smaller E_T than W-boson events, their normalizations are determined by fitting the E_T distribution in the control sample. Normalization in the b-tagged signal sample for the $W+$heavy-flavor-jets background is calculated by applying the tagging efficiency and the fraction of heavy-flavor jets to the rates calculated in the pretag sample. The fraction of heavy-flavor jets is derived from fitting jet-flavor-sensitive variables in the b-tagged $W+$one-jet data sample [14]. For the $W+$light-
flavor background, where one or two light-quark jets or gluon jets are misidentified as b jets, the normalization is calculated from the W+jets pretag sample by subtracting the heavy-flavor fraction and multiplying by the per-jet b-tag misidentification rate. For the multijet background, a b-tag rate derived from data is used to estimate the normalization of the tagged multijet background.

The estimated event yields are shown in Table I. Here, and in all following figures, we combine b-tag categories with similar signal purity (TT with TL and T with LL). Table I shows that the predicted background and its uncertainty are larger than the expected signal. By using variables with different distributions for signal and backgrounds, we improve signal purity in some regions of these distributions. The invariant mass distribution of top-quark candidates, shown in Fig. 1, is the most powerful single discriminating variable.

We train a set of artificial neural networks \cite{30} to further discriminate the signal process using the combined information on the reconstructed top-quark mass and several other variables. The neural networks incorporate the following variables: invariant mass of the top-quark candidate, $M_{\ell jj}$; invariant mass of all signal final-state particles, $M_{\ell\nu jj}$; transverse momentum of the charged lepton, p_T; invariant mass of the two jets, M_{jj}; angle between the charged-lepton momentum and the momentum of the jet from the top-quark decay in the top-quark rest frame, $\cos \theta_{\ell jj}$; scalar sum of transverse energy of the two jets, the charged lepton, and the neutrino, H_T; transverse mass of the top-quark candidate, M_{T^*}, defined to be the invariant mass calculated using the projections of the three-momentum components in the plane perpendicular to the beam axis; and output value of the neural network that determines the b jet most likely to originate from the top-quark decay. We optimize the neural networks separately for each tagging category and for different lepton categories using different input variables. The variable M_{T^*} is used only for extended muon events, and the output value of the b-jet-selector neural network only for the central-lepton events. In the neural network training, the background samples consist of all backgrounds predicted by simulation, and the fractional yields among background samples are set as predicted by the background model.

We use the pretag sample to check the modeling of each input variable. We investigate the neural-network output in the b-tagged signal region only after ensuring that all variables are well modeled in the control sample. The distributions of neural-network output are shown in Fig. 1, with categories having similar signal purities combined.

We employ a binned-likelihood technique to extract the single-top-quark s-channel cross section from the neural-network-output distribution. We assume a uniform prior probability density for all non-negative values of the cross section and integrate the posterior probability density over the parameters of effects associated with all sources of systematic uncertainties, parametrized using Gaussian priors truncated to avoid negative probabilities. We include the rate uncer-

![FIG. 1. Distribution of invariant mass of the reconstructed top-quark candidates (left), and distribution of the neural network output (right). We combine b-tag categories with comparable signal purity: TT+TL for panels (a) and (b), and T+LL for panels (c) and (d). Events in the pretag control sample are shown in panel (e). Statistical uncertainties are shown for the data points.](image)

| Table I. Summary of background and signal predictions in two summed tagging categories. The predicted uncertainties include statistical and systematic contributions. |
|---------------------------------|---------|---------|
| Category | TT+TL | T+LL |
| $t\bar{t}$ | 357 ± 40| 560 ± 57|
| Diboson | 58.7± 7.8| 279 ± 34|
| Higgs | 12.5± 1.0| 12.0± 0.9|
| Z+jets | 31.6± 3.5| 190 ± 21|
| Multijet | 76 ± 31 | 326 ± 130|
| W+heavy-flavor jet | 712 ±286| 2597 ±1046|
| W+light-flavor jet | 66 ± 14 | 1220 ± 175|
| t and tW-channel | 53.4± 6.7| 265 ± 30 |
| s-channel | 116 ± 12| 127 ± 12 |
| Total prediction | 1484 ±403| 5574 ±1501|
| Observed | 1231 | 5338 |
tainties from the following sources: b-tag scale factor; charm-quark-jet-misidentification rate; light-flavor-jet-misidentification rate; luminosity uncertainties; lepton-acceptance uncertainties; theoretical cross section uncertainties; initial- and final-state radiation; normalization of multijet, Z+jets, and W+jets backgrounds; and jet-energy scale. Shape uncertainties on the final discriminant output that arise from initial-state and final-state radiation, the jet-energy scale, the renormalization and factorization scales, and the electron multijet sample are also taken into account. The standard deviation of the expected cross section distribution obtained from pseudoexperiments is reduced by 17% if the measurement is performed without including any of the systematic uncertainties. The most relevant systematic uncertainties are, in descending order of importance: the luminosity uncertainties, the b-tag scale-factor uncertainties, the normalization of W+jets, and the uncertainties from initial- and final-state radiation.

The posterior probability density of the s-channel cross section is shown in Fig. 2. The most probable s-channel cross section is 1.41$^{+0.44}_{-0.42}$ pb, assuming that the top-quark mass is 172.5 GeV/c^2. This result is in good agreement with the theory prediction calculated at next-to-next-to-leading-order accuracy of 1.05 ± 0.05 pb [31], which assumes the same top-quark mass, and the uncertainty is assigned to cover the imperfect estimation of the parton distribution functions. This result also agrees with the previous measurement from the D0 experiment [10]. The cross section is also measured in separate b-tagging and lepton categories, and the results in each independent measurement are all consistent with each other and the theory prediction.

The sensitivity is defined to be the significance ex-

pected assuming the SM cross section, and as measured from pseudoexperiments with the background-only assumption is 2.9 standard deviations. From background-only pseudoexperiments, we determine the significance of the excess of the measured cross section over the expected backgrounds as corresponding to a p-value of 5.5×10^{-3}, equivalent to 3.8 standard deviations. We interpret the observed excess as evidence of the single-top-quark production through the s-channel process.

In summary, we perform a measurement of the single-top-quark s-channel cross section in the final state with a charged lepton and two jets using the full CDF Run II data set. We find evidence for the single-top-quark s-channel process, and we measure the s-channel cross section to be 1.41$^{+0.44}_{-0.42}$ pb, in agreement with the SM prediction.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean World Class University Program, the National Research Foundation of Korea; the Science and Technology Facilities Council and the Royal Society, United Kingdom; the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovación, and Programa Consolider-Ingenio 2010, Spain; the Slovak R&D Agency; the Academy of Finland; the Australian Research Council (ARC); and the EU community Marie Curie Fellowship Contract No. 302103.

The posterior probability density distribution for the s-channel cross section measurement, with the SM prediction shown as the vertical dashed line.

FIG. 2. Posterior probability density distribution for the s-channel cross section measurement, with the SM prediction shown as the vertical dashed line.

* Deceased

† With visitors from a University of British Columbia, Vancouver, BC V6T 1Z1, Canada, bIstituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy, cUniversity of California Irvine, Irvine, CA 92697, USA, dInstitute of Physics, Academy of Sciences of the Czech Republic, 182 21, Czech Republic, eCERN, CH-1211 Geneva, Switzerland, fCornell University, Ithaca, NY 14853, USA, gUniversity of Cyprus, Nicosia CY-1678, Cyprus, hOffice of Science, U.S. Department of Energy, Washington, DC 20585, USA, iUniversity College Dublin, Dublin 4, Ireland, jETH, 8092 Zürich, Switzerland, kUniversity of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017, lUniversity Iberoamericana, Lomas de Santa Fe, México, C.P. 01219, Distrito Federal, mUniversity of Iowa, Iowa City, IA 52242, USA, nKinki University, Higashi-Osaka City, Japan 577-8502, oKansas State University, Manhattan,
The third process, $t\bar{t}W$ production, contributes negligibly in pp collisions, given the cross section of $0.25\,\text{pb}$ [31].

Using CTEQ6L [32] parton distribution functions.

The factorization and renormalization scale in the $\overline{\text{MS}}$ scheme is zero for all partons except that $m_t^2 = m_t^2 + p_t^2/c^2$, m is zero for all partons except that $m_\text{c} = 4.7\,\text{GeV}/c^2$, and $m_\text{b} = 1.5\,\text{GeV}/c^2$.

The factorization and renormalization scale in the $\overline{\text{MS}}$ scheme are both set to be $\sqrt{M_W^2 + \sum_{\text{partons}} m_i^2}$, where $m_\text{c}^2 = m^2 + p_t^2/c^2$, m is zero for all partons except that $m_\text{c} = 4.7\,\text{GeV}/c^2$, and $m_\text{b} = 1.5\,\text{GeV}/c^2$.

The factorization and renormalization scale in the $\overline{\text{MS}}$ scheme are both set to be $\sqrt{M_W^2 + \sum_{\text{partons}} m_i^2}$, where $m_\text{c}^2 = m^2 + p_t^2/c^2$, m is zero for all partons except that $m_\text{c} = 4.7\,\text{GeV}/c^2$, and $m_\text{b} = 1.5\,\text{GeV}/c^2$.