Conservative management of esophageal perforation after a fall

Arthur P. Delos Reyes a, *, Christopher Clancy a, Joseph Lach a, William A. Olorunto a, Mallory Williams b

a University of Toledo Medical Center, 3000 Arlington Ave, MS 1095, Toledo, OH 43614, United States
b Division of Trauma, Critical Care, and Acute Care Surgery, University of Toledo College of Medicine, 3000 Arlington Ave, MS 1095, Toledo, OH 43614, United States

A R T I C L E I N F O

Article history:
Received 16 January 2013
Accepted 2 February 2013
Available online 24 February 2013

Keywords:
Blunt
Trauma
Esophagus
Perforation
Conservative
Management

A B S T R A C T

INTRODUCTION: Esophageal perforation in the setting of blunt trauma is rare, and diagnosis can be difficult due to atypical signs and symptoms accompanied by distracting injury.

PRESENTATION OF CASE: We present a case of esophageal perforation resulting from a fall from height. Unexplained air in the soft tissues planes posterior to the esophagus as well as subcutaneous emphysema in the absence of a pneumothorax on CT aroused clinical suspicions of an injury to the aerodigestive tract. The patient suffered multiple injuries including bilateral first rib fractures, C6 lamina fractures, C4–C6 spinous process fractures, a C7 right transverse process fracture with associated ligamentous injury and cord contusion, multiple comminuted nasal bone fractures, and a right vertebral artery dissection. Esophageal injury was localized using a gastrograffin esophagram to the cervical esophagus and was most likely secondary to cervical spine fractures. Because there were no clinical signs of sepsis and the esophagram demonstrated a contained rupture, the patient was thought to be a good candidate for a trial of conservative management consisting of broad spectrum intravenous antibiotics, oral care with chlorhexidine gluconate, NPO, and total parenteral nutrition. No cervical spine fixation or procedure was performed during this trial of conservative management. The patient was received another gastrograffin esophagram on hospital day 14 and demonstrated no evidence of contrast extravasation.

DISCUSSION: Early diagnosis and control of the infectious source are the cornerstones to successful management of esophageal perforation from all etiologies. Traditionally, esophageal perforation relied on a high index of clinical suspicion for early diagnosis, but the use of CT scan for has proved to be highly effective in diagnosing esophageal perforation especially in patients with atypical presentations. While aggressive surgical infection control is paramount in the majority of esophageal perforations, a select subset of patients can be successfully managed non-operatively.

CONCLUSION: In the setting of blunt trauma, esophageal perforation is rare and is associated with a high morbidity. In select patients who do not show any clinical signs of sepsis, contained perforations can heal with non-operative management consisting of broad spectrum antibiotics, strict oral hygiene, NPO, and total parenteral nutrition.

© 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
2. Presentation of case

A 51 year old female fell from a height of 10 feet, hitting the ground face first. She was resuscitated with the ATLS protocol. Her airway was intact, and breathing was spontaneous and unlabored. Palpation of her groin revealed her to be bradycardic with 2+ pulses, and she was found to have no sensation or motor function below the nipple line. Her hand grip was also found to be weak 3/5, and her GCS 15. Initial vitals showed her to be normothermic at 97.5 F, normotensive at 96/65, bradycardic with a heart rate of 44, and breathing comfortably 13 times per minute with a saturation of 97% on 3 L nasal cannula. Her trauma bay chest X-ray showed possible bilateral 1st rib fractures with no evidence of pneumothorax. A pelvic X-ray was not taken in the trauma bay. EKG showed sinus bradycardia without evidence of PVCs, PACs, or other ectopy. During the secondary survey, palpation of her cervical spine was significant for midline tenderness and a palpable step-off at C4–C5. Palpation of the thoracic spine found tenderness at T4. Rectal tone was absent on exam. The remainder of her primary and secondary survey revealed no other gross deformity or obvious injury.

CT of the cervical spine, and chest showed extensive bony injuries including a C6 lamina fracture, C4–C6 spinous process fractures, and a C7 right transverse process fracture, as well as bilateral first rib fractures. Furthermore, the CT revealed subcutaneous emphysema adjacent to the esophagus extending into the cervical soft tissues (Fig. 1). CT of the facial bones showed comminuted nasal bone fractures and a nasal septal fracture with right-sided deviation. CTA of the neck revealed opacification of the right vertebral artery from its origin throughout its course in the transverse foramen with reconstitution at the foramen magnum consistent with traumatic vertebral artery dissection. Esophagram showed a contained esophageal perforation at the C3–C4 level (Fig. 2). MRI ruled out spinal cord transection, but showed spinal cord contusion, hematoma, and prevertebral swelling with an associated ligamentous tear involving the interspinous and spinal laminar ligament of the posterior column between C4 and C7.

The patient was admitted to the ICU with neurogenic and spinal shock, eventually requiring tracheostomy for respiratory failure on hospital day 6. The contained esophageal perforation was managed non-operatively taking nothing per mouth, broad-spectrum empiric antibiotics, and total parenteral nutrition. Oral hygiene to reduce bacterial load was maintained with a chlorexidine gluconate rinse twice daily. Nasogastric tube was not utilized to prevent any potential esophageal trauma during NG tube placement. During her ICU course, she remained afebrile and her white blood cell count remained within normal limits.

On hospital day 14, a gastrograffin esophagram was repeated and showed no evidence of perforation (Fig. 3). A follow-up CTA of the neck showed no abnormal fluid collections or abscesses, and complete resolution of the retropharyngeal and mediastinal air (Fig. 4). The patient was started on a liquid diet and slowly advanced. She was discharged to a rehab facility shortly thereafter. Neurosurgery planned to keep her in a Miami J collar for 6 weeks and reassess her need for cervical spine fixation at that time. At her 2 week follow-up, her upper arm strength was improving, and she was able to feed herself. At 2 months, lower extremity motor recovery was slow, but she was regaining some ability to move her toes. She reported no issues with swallowing.
The clinical features most common to all types of esophageal perforation are pain (most common), fever, dyspnea, and crepitus. Traditionally, the mediastinal emphysema was described as a “crunch” heard on auscultation known as Hammon’s sign. Likewise, Mackler’s triad which includes chest pain, vomiting, and subcutaneous emphysema suggest esophageal perforation but is only found in a minority of patients. While clinical signs and symptoms may be highly suggestive of the diagnosis, trauma patients often have distracting injuries or may have atypical presentations which make the clinical diagnosis unreliable.

Chest X-ray can be highly suggestive of esophageal perforation in up to 90% of patients revealing pleural effusions, pneumomediastinum, and hydrothorax, but may miss early or small perforations. While contrast esophagogram is the gold standard for diagnosis and localization of esophageal perforation, several adjunctive diagnostic studies can be utilized to identify perforation. In patients where findings on esophagogram are equivocal, upper endoscopy has been employed to not only identify the injury, but also to evaluate the surrounding pathology. Instrumentation of the esophagus not only carries a risk of worsening the injury, but could potentially cause further contamination of the perforation site. CT scan of the neck is proving to be a valuable diagnostic study in patients who are critically ill or have atypical clinical presentations. CT of the neck has been reported to detect up to 92% of esophageal perforation, and in certain cases, CT was the first finding to suggest the diagnosis. CT findings most commonly found with perforation include extraluminal air, mediastinal air or fluid, pleural effusions, and esophageal thickening. The use of CT may expedite the diagnosis of esophageal perforation in the critically ill or in patients with non-specific or atypical symptoms.

Once diagnosed, management of esophageal perforation focuses on controlling the source of contamination, providing adequate drainage if needed, augmenting host defenses, and maintaining nutrition. In patients with free rupture, surgical therapy may involve primary closure, surgical drainage, exclusion and diversion, and esophagectomy. A contained perforation can be managed non-operatively if strict criteria are met as first described by Cameron and later extended by Altorfay. These criteria include drainage of the cavity back into the esophagus, minimal signs of clinical sepsis, non-neoplastic etiology, cervical or thoracic location. Even meeting these criteria, up to 20% of patients managed non-operatively will require surgical intervention. In our patient, these criteria were met, making her a good candidate for non-operative management which included NPO, TPN, broad-spectrum antibiotics, and strict oral hygiene. If at any point during her non-operative course our patient had developed any signs of sepsis, emergent operative management would have been undertaken.

4. Conclusion

Esophageal perforation due to any cause is associated with a high morbidity and mortality. In the setting of blunt trauma, perforation is extremely rare, but failure or delay of the diagnosis can have devastating consequences. For patients who have contained ruptures and are show no clinical signs of sepsis, a trial of conservative management may be successful in healing the esophagus. The conservative management consists of broad spectrum antibiotics, oral hygiene with chlorhexidine gluconate, NPO, and total parental nutrition or enteral nutrition through a jejunostomy tube. Cervical spinal stabilization procedures are delayed until repeat esophagogram reveals that the esophagus has healed.
Conflict of interest statement

None

Funding

None

Ethical approval

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Author contributions

Delos Reyes – writing, clinical management; Clancy – clinical management; Lach – clinical management; Olorunto – clinical management; Williams – study design, clinical management.

References

1. Beal SL, Pottmeyer EW, SPisso JM. Esophageal perforation following external blunt trauma. The Journal of Trauma 1988;26(10):1425–32.
2. Strass DC, Tandon R, Mason RC. Distal thoracic oesophageal perforation secondary to blunt trauma: case report. World Journal of Emergency Surgery 2007;2(8).
3. Onat S, Ulku R, Cigdem K, Avci A, Ozcelik C. Factors affecting the outcome of surgically treated non-iatrogenic traumatic cervical esophageal perforation: 28 years experience at a single center. Journal of Cardiothoracic Surgery 2010;5:46.
4. Vogel SB, Rout WR, Martin TD, Abbit PL. Esophageal perforation in adults, aggressive, conservative treatment lowers morbidity and mortality. Annals of Surgery 2005;241(6):1016–23.
5. Henderson E, Echave V, Lalancette M, Langlois G. Esophageal perforation in closed neck trauma. Canadian Journal of Surgery 2007;50(5).
6. Gupta NM, Kaman L. Personal management of 57 consecutive patients with esophageal perforation. The American Journal of Surgery 2004;187:58–63.
7. Wu JF, Mattos K, Wall M. Esophageal perforations: new perspectives and treatment paradigms. The Journal of Trauma 2007;63:1173–84.
8. Brinster C, Singal S, Lee L, et al. Evolving options in the management of esophageal perforation. Annals of Thoracic Surgery 2004;77:1475–83.
9. Abbas G, Schuchert MJ, Pettiford BL, et al. Contemporaneous management of esophageal perforation. Surgery 2009;146(4):745–55.
10. Eigenberg M, Arrangoiz R, Nigliazzo A, et al. Nonoperative management of an esophageal perforation following combitube placement. Journal of Surgical Radiology 2010;1:45–9.
11. White C, Templeton P, Attar S. Esophageal perforation: CT findings. American Journal of Radiology 1993;160:767–70.
12. Fadoo F, Ruiz D, Dawn S, et al., Helical CT. Esophagography for evaluation of suspected esophageal perforation or rupture. American Journal of Radiology 2004;182:1177–9.
13. Young C, Menias C, Bhatta S, et al. CT features of esophageal emergencies. Radiographics 2008;28:1541–53.
14. Koivukangas V, Biancari F, Merilainen S, et al. Esophageal stenting for spontaneous esophageal perforation. The Journal of Trauma Acute Care Surgery 2012;73(4):1011–3.
15. Blocksom JM, Sugawa C, Tokouka S, Williams M. The hemoclips: a novel approach to endoscopic therapy for esophageal perforation. Digestive Diseases and Sciences 2004;7:8:1136–8.
16. Weigelt JA, Thal ER, Snyder WH, et al. Diagnosis of penetrating esophageal injuries. American Journal of Surgery 1987;154:619–22.
17. Cameron JL. Current surgical therapy. 10th ed. Philadelphia: Elsevier; 2012.