Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis

Christiaan DM Wijers¹, James F Chmiel¹ and Benjamin M Gaston¹

Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial infection of the respiratory tract is one of the major clinical features of this disease, PCD airway microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology. This review aims to summarize the current understanding of bacterial infections in patients with PCD, including infections with *Pseudomonas aeruginosa*, *Staphylococcus aureus*, and *Moraxella catarrhalis*, as it relates to bacterial infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed at improving the care of patients with PCD suffering from recurring bacterial infections.

Keywords
PCD, CF, microbiology, infections, airways

Date received: 16 March 2016; accepted: 3 January 2017

Introduction
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with defects in ciliary biogenesis, structure, and function and is characterized by chronic oto-sinopulmonary disease.¹,² Although first described in 1936,³ PCD was not attributed to “immotile cilia” and impaired mucociliary clearance until 1976.⁴

One of the clinical features of PCD is persistent or recurring bacterial infection of the sinuses, ears, and airways.²,⁵ The microbiology of the PCD airways is understudied, and assumptions about colonization make use of data from cystic fibrosis (CF). However, the pathophysiology of the two diseases is different. In contrast to PCD, CF is caused by a defect in the CF transmembrane conductance regulator (CFTR) protein which leads to the accumulation of thick sticky mucus in the airways. Nonetheless, both diseases are in part characterized by impaired mucociliary clearance. In PCD, the impaired mucociliary clearance is caused by malfunctioning cilia, which fail to propel mucus upward.¹ In CF, there is increased secretion of mucus and decreased airway fluid from the excessive absorption of water by the airway epithelia. The dehydrated, thick mucous layer compresses the cilia, thereby inhibiting their function and severely impairing mucociliary clearance.⁶–⁸

Indeed, the microbiology of the airways in patients with PCD seems to mirror that of CF.

¹ Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA

Corresponding author:
Benjamin M Gaston, Department of Pediatrics, Rainbow Babies and Children’s Hospital, Case Western Reserve University School of Medicine, 2109 Adelbert Road, Cleveland, OH 44106, USA.
Email: BMG46@case.edu

Creative Commons CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-Non Commercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
patients to some extent.2,9–19 In addition, the bacterial colonization patterns in an individual CF patient’s airways change relatively little over time if the patient is clinically stable.20,21 Similar trends have been reported in patients with PCD.9 However, there are important differences in airway microbiology between CF and PCD.

Considering the fact that bacterial infections are a principal cause of morbidity and mortality for patients with CF,22 and are associated with morbidity and mortality for patients with PCD, a thorough understanding of the airway microbiology of both diseases is fundamental to improving patient care. This review aims to summarize the current understanding of bacterial infections in patients with PCD as it compares to bacterial infections in patients with CF.

Pathogens recovered from PCD airways

In contrast to CF, where Pseudomonas aeruginosa and Staphylococcus aureus are the most common bacterial pathogens,10,11,14 Haemophilus influenzae is the pathogen most commonly isolated from patients with PCD, at least until adolescence/early adulthood.2,17,18 P. aeruginosa is also common, especially in adult patients,2,18,19 but mucoid P. aeruginosa is not typically isolated from PCD patients until after age 30.2 Other bacterial species commonly recovered from sputum samples of patients with PCD include S. aureus, Streptococcus pneumoniae, and nontuberculous Mycobacteria,2,15,17 and species of the genus Ralstonia, Moraxella catarrhalis, and Achromobacter xylosidans have been isolated as well.9,16,19 Interestingly, Burkholderia cepacia complex (Bcc) organisms, some of which are important bacterial pathogens in patients with CF,23 have to date not been isolated from patients with PCD.

Haemophilus influenzae. H. influenzae is a gram-negative coccobacillus that can grow both aerobically and anaerobically.24 The strains of H. influenzae can be subdivided into typeable (polysaccharide capsule present) serotypes (a through f) and nontypeable (polysaccharide capsule absent) numbered biotypes.24

H. influenzae is commonly isolated from young children with CF, with an estimated prevalence of 20% in children under the age of 1 year, and of approximately 32% in children with CF between the age of 2 and 5.11,14 After age 5, however, the prevalence of H. influenzae declines with age, and its estimated prevalence in adults with CF between the age 18 and 24 is less than 10%.11,14 However, the overall percentage of people with CF infected with H. influenzae has remained relatively steady (between 15% and 20%) since 1995.14 The majority of H. influenzae strains isolated from CF patients are nontypeable, with biotype 1 being the most prevalent.10,17,25

In patients with CF, H. influenzae infection most commonly manifests as a chronic lung infection and may be associated with acute exacerbations.12 Additionally, H. influenzae is speculated to be a cause of pneumonia in children and adults with CF, although the available evidence is limited.26 Similar to other bacterial species, the reasons as to why H. influenzae has a predilection to infect the CF airway is unknown and is an area of great research interest. Although H. influenzae possesses a variety of virulence factors, biofilm formation by this pathogen, in particular, appears to contribute to the establishment of chronic infections in CF airways.12,26,27

In patients with PCD, H. influenzae persists into adolescence/early adulthood as the organism most commonly isolated from the airways, with one study reporting a prevalence of 80% in children under age 18 and a prevalence of 22% in adults.2 More recent studies, however, reported a prevalence of 32–65% in children and adolescents,9–19 and of approximately 21–27% in adults.18,19 Therefore, data from these studies indicate that the prevalence of H. influenzae infection in patients with PCD declines with age, comparable to what is observed in CF.2,18,19

Interestingly, several studies reported no significant impact of H. influenzae infection on lung function, as measured by forced expiratory volume in 1 second (FEV\textsubscript{1}), in patients with PCD.2,9,16,17

P. aeruginosa (mucoid and nonmucoid). P. aeruginosa is a gram-negative, rod-shaped, opportunistic pathogen that is metabolically diverse.28 Although P. aeruginosa prioritizes aerobic respiration, it is well adapted to anaerobic conditions.29–31 P. aeruginosa has been isolated from a variety of environments, including soil, water, hospitals, and human skin.28–32

P. aeruginosa has long been recognized as an important pathogen in patients with CF, with an estimated prevalence of approximately 50% in 2014.14 For patients with CF, acquisition of this pathogen often occurs early in life. In 2014, approximately 20% of patients under age 5 were reported to have been infected with P. aeruginosa.14 In addition, it is estimated that 60–70% of patients with CF are infected by this organism by age 20,33 and that prevalence
peaks at approximately 75% in patients between the age of 35 and 44.14 Interestingly, recent data suggest that administration of inhaled antibiotics such as tobramycin, colistin, levofloxacin, or aztreonam may decrease P. aeruginosa density in sputum; and in some cases, inhaled antibiotics may eradicate it from the airways of patients with CF in which it has been isolated for the first time or has not been isolated in 2 years or more.34–39 Moreover, the most recent guidelines from the CF Foundation recommend the administration of inhaled tobramycin (without the addition of oral antibiotics) for 28 days for the eradication of early P. aeruginosa infection.40 Other strategies for the eradication of P. aeruginosa infection in patients with CF include the administration of oral antibiotics such as ciprofloxacin, either alone or in combination with inhaled antibiotics,41 or the administrations of intravenous antibiotics.42 None of these other strategies have been evaluated in large, randomized clinical trials. Although there is general agreement regarding the use of inhaled antibiotics, particularly 28 days of tobramycin, as the primary management strategy for the eradication of first isolates of P. aeruginosa, there is no consensus on the management if this strategy fails to eradicate P. aeruginosa or if the P. aeruginosa is reisolated on subsequent cultures shortly thereafter. In accordance with these findings, the CF Foundation has reported a decline in the overall prevalence of P. aeruginosa infection.14

P. aeruginosa produces many virulence factors, including exoenzymes that damage host cells, a flagellum for motility, biofilm formation for protection, lipopolysaccharides for host cell entry, and pili for attachment.10,28 Furthermore, studies have indicated that the sputum environment inside the CF airways contains hypoxic/anaerobic zones and that P. aeruginosa is well adapted to these conditions.30,31,43,44 Two important aspects that enable this organism to thrive in this environment are biofilm formation and anaerobic respiration/denitrification. These functions depend on a variety of factors, including nitric oxide (NO) reductase to decrease the buildup of toxic NO, the rhl quorum sensing system, and the OprF outer membrane protein.31,44 Further, P. aeruginosa colonization affects the nitrogen redox ecology in the CF lungs. Gaston and colleagues showed that sputum from patients with CF who were exclusively colonized with P. aeruginosa contained more NH4+, a denitrification product, than the sputum from non-CF control patients.45 In addition, sputum NH4+ concentrations decreased after antipseudomonal therapy.45 Since high NH4+ concentrations inhibit chloride transport in the intestinal epithelium,46 eliminating P. aeruginosa may attenuate some of the defects in epithelial chloride transport.45

Another important aspect of P. aeruginosa infection in patients with CF is (the transition to) the mucoid phenotype, which is characterized by the secretion of large amounts of slimy polysaccharide that surround the bacterial cells.10 Early in the course of infection, nonmucoid varieties of P. aeruginosa predominate.47,48 The transition to the mucoid phenotype appears to be important for the establishment of chronic P. aeruginosa infections in CF airways, and the mucoid phenotype therefore becomes the most common phenotype later in the course of infection.10,49,50 Further, the conversion to the mucoid phenotype has been associated with an accelerated decline in lung function.51

In patients with PCD, P. aeruginosa is an important pathogen as well, with a reported prevalence of 20–36% and 5–7% for nonmucoid and mucoid phenotypes, respectively, in children and adolescents.2,16,17 Further, Chang et al. recently reported a total prevalence of 35% for both P. aeruginosa phenotypes in pediatric patients.18 In adult patients, the overall prevalence of nonmucoid and mucoid P. aeruginosa is higher and is estimated to be approximately 27% for each phenotype.2 Accordingly, the total prevalence of P. aeruginosa infection (nonmucoid and mucoid) in adult patients has recently been reported at 51%.18 Therefore, the prevalence of P. aeruginosa appears to increase with age, especially after age 30.2,9,18,19 Perhaps, after years of progressive bronchiectasis, impaired mucociliary clearance and lung damage, the environment inside the airways of patients with PCD is more suitable for (chronic) P. aeruginosa infection.

Interestingly, it has been suggested that the transition to the mucoid phenotype occurs typically much later in patients with PCD, not until after age 30.2 In patients with CF, the conversion to the mucoid phenotype is often the result of a mutation in the mucA gene, transcription of which normally prevents overproduction of alginate.8,52 This mutation, in turn, may be induced by mutagenic reactive oxygen species produced by neutrophils, such as hydrogen peroxide.8,53

In addition, although it is widely recognized that (chronic) infection with P. aeruginosa is associated with a decrease in lung function and an increased risk of death in patients with CF,10,11,51,54 it is unclear to what extent (chronic) P. aeruginosa infection contributes to the clinical outcomes of PCD patients. In
2013, Rogers and colleagues reported a negative correlation between the abundance of *Pseudomonas* in PCD airways and lung function. In 2004, Noone and colleagues reported that especially infection with mucoid *P. aeruginosa* may be associated with a decrease in lung function. However, more recently, Maglione and colleagues and Davis and colleagues reported no significant correlations between *P. aeruginosa* infection and lung function.

Staphylococcus aureus. *S. aureus* is a gram-positive, facultative anaerobic, coccoid bacterium that is a permanent part of the normal flora of the nostrils of approximately 20% of the population and is carried intermittently by approximately 30% of the population. The most concerning strains of *S. aureus* are the methicillin-resistant strains (MRSA). In 2004, the National Nosocomial Infection Surveillance reported that more than 60% of *S. aureus* isolates from US hospital intensive care units represent MRSA.

S. aureus was not only the first organism recognized to cause chronic infections in patients with CF, but it was believed to be the leading cause of mortality in patients with CF early on as well. Currently, *S. aureus* is still one of the pathogens most commonly isolated from patients with CF. More specifically, in 2014, approximately 80% of patients aged 6 to 17 years with CF were reported to be infected by this pathogen. Furthermore, although the prevalence of *S. aureus* infection decreases somewhat as patients reach adulthood, it still remains significant and is estimated to be between 40% and 50%.

S. aureus employs a variety of virulence factors to cause disease. Adhesion proteins for attachment to airway epithelial cells, and a wide array of factors involved in host immune evasion, are among the most significant. Moreover, MRSA strains possess the *mecA* gene, which codes for penicillin-binding protein 2a (PBP2a). This protein is insensitive to the action of methicillin and thereby confers methicillin resistance to the organism.

Both methicillin-resistant and methicillin-sensitive strains have been associated with a decline in lung function in pediatric and adolescent patients with CF. In 2008, Dasenbrook and colleagues reported that the decline in FEV₁ was 43% more rapid in CF patients (aged 8–21) with a persistent MRSA infection than in uninfected patients. In 2013, Wolter and colleagues reported that pediatric CF patients infected with methicillin-sensitive *S. aureus* experienced a 7.9% decline in FEV₁ compared to a 1.9% decline in uninfected patients. Interestingly, Ren and colleagues reported a stronger decline in lung function in CF patients infected with MRSA in comparison to patients infected with methicillin-sensitive *S. aureus*.

Several studies have not found an association between persistent infection with *S. aureus* to a decline in lung function in patients with PCD. According to recent studies, the approximate prevalence of *S. aureus* infection in pediatric and adolescent patients with PCD is 35–46%. Interestingly, at least according to two recent studies, the prevalence of *S. aureus* infection peaks during adolescence. However, the prevalence of *S. aureus* tends to decrease as PCD patients reach adulthood and beyond, with studies reporting a prevalence of 6–20% in adult patients.

Streptococcus pneumoniae. *S. pneumoniae* is a gram-positive, facultative anaerobic coccus that is usually found in pairs, known as diplococci. Currently, there are 92 known serotypes of this organism, which differ greatly in prevalence and in their ability to cause disease. *S. pneumoniae* is commonly carried in the upper respiratory tract of healthy, young children under age 6, although the exact prevalence varies widely depending on the study population. In healthy infants and children, the serotypes 3, 19F, 23F, 19A, 6B, and 14 are the ones most commonly carried.

One of the most characteristic virulence factors of *S. pneumoniae* is its polysaccharide capsule, which is unique for each serotype and aids in the protection against the host’s immune system. Studies indicate that the capsule protects against phagocytosis and that it may influence the amount of antibody that is able to bind to the organism’s surface antigens.

For patients with CF, *S. pneumoniae* is primarily considered to be a transient pathogen. In children with CF, the prevalence of *S. pneumoniae* infection is approximately between 5% and 20%. In adults with CF, the prevalence (approximately 5%) of this pathogen is even lower. In patients with CF, the serotypes 19F, 5, 4, 3, 23F, 6A, 6B, and 9V are most commonly isolated. The contribution of *S. pneumoniae* to lung disease in patients with CF is not clear, in part because *S. pneumoniae* is isolated in association with other bacterial respiratory pathogens approximately 84.1% of the time. In 2005, Del Campo and colleagues reported that 35% of CF patients with *S. pneumoniae*
infection presented with acute exacerbations, but that only 27% of these patients were not colonized by any other common CF pathogen.71 Recently, Paganin and colleagues reported a significant association between \textit{S. pneumonia} infection and a decline in lung function in patients with CF,74 but a different group found no such correlation.70

\textit{S. pneumoniae} is commonly isolated from pediatric and adult patients with PCD as well.9,15,16,18 One study reports that \textit{S. pneumoniae} is the second most commonly isolated pathogen from the airways of pediatric and adolescent patients with PCD after \textit{H. influenzae} with an estimated prevalence of 52%.17 Davis and colleagues and Chang and colleagues, on the other hand, recently reported a prevalence of 21–30\% in pediatric and adolescent patients.16,18 Further, at least one large, recent study suggests that the prevalence of \textit{S. pneumoniae} infection declines with age.18 Currently, no significant relationship between \textit{S. pneumoniae} infection and lung function in patients with PCD has been reported.9,16,17

\textit{Moraxella catarrhalis}. \textit{M. catarrhalis} is a nonmotile, gram-negative, aerobic, diplococcal bacterium.75 Among the general pediatric population, acquisition of this pathogen is quite common, although the prevalence varies widely depending on the population studied.75 Furthermore, \textit{M. catarrhalis} is one of the most common causes of acute otitis media in children, and it is estimated that 15–20\% of the episodes of acute otitis media are caused by this pathogen.75 In addition, \textit{M. catarrhalis} has been associated with otitis media with effusion,79 chronic obstructive pulmonary disease,77 and sinusitis.78

\textit{M. catarrhalis} possesses a wide variety of virulence factors that cause disease in the sinuses, ears, and airways. For example, \textit{M. catarrhalis} biofilms are frequently detected in children with chronic otitis media.79 Other virulence factors include adhesins for attachment to human epithelial cells,80–82 and the outer membrane protein OlpA, which serves to protect \textit{M. catarrhalis} from the bactericidal effects of human serum.83 Resistance to antibiotics is of concern as well, with studies reporting that over 95\% of clinical \textit{M. catarrhalis} isolates are resistant to the \textit{\beta}-lactamase family of antibiotics.84,85 Polymicrobial biofilms composed of \textit{M. catarrhalis} and \textit{S. pneumoniae} appear to contribute to antibiotic resistance in patients with otitis media.86

Interestingly, \textit{M. catarrhalis} is relatively rarely recovered from the airways of patients with CF,87–89 with one study reporting a prevalence of 7.40\% in pediatric patients between 3 months and 17 years of age.90

In patients with PCD, \textit{M. catarrhalis} is regularly isolated from the airways. Davis and colleagues report that \textit{M. catarrhalis} was isolated at least once in 19\% of the children included in their study.16 In addition, Alanin and colleagues reported that 19\% of the samples from children younger than 12 years, 9\% of the samples from patients between 13 and 25 years of age, and 7\% of the samples from adults older than 25 years were positive for \textit{M. catarrhalis}.19 Therefore, the prevalence of \textit{M. catarrhalis} infection in patients with PCD appears to be decreasing with age.19 Chang et al. report a similar trend, although their study indicates that the prevalence of \textit{M. catarrhalis} infection spikes during adolescence and then decreases into adulthood.18 Lastly, Davis et al. reported no association between \textit{M. catarrhalis} infection and lung disease severity in patients with PCD.16

\textit{A. xylosoxidans} and \textit{Ralstonia} species: Emerging pathogens. \textit{A. xylosoxidans} is an aerobic, gram-negative bacillus that is considered to be an emerging pathogen for patients with CF. The estimated prevalence of \textit{A. xylosoxidans} infection in patients with CF varies widely, ranging anywhere from 3\% to 30\%.14,91–94

Unfortunately, little is known about the pathogenesis and virulence factors of this organism on a molecular level.91 Some virulence factors, such as a cytotoxin,95 and biofilm formation,96 have yet to be characterized. Furthermore, the extent to which \textit{A. xylosoxidans} contributes to CF lung disease is currently unclear, as there are limited data available.91 At least one study, however, has demonstrated that \textit{A. xylosoxidans} infection may be associated with a more rapid decline in \textit{FEV}$_1$.97 In contrast, De Baets and colleagues found that infected patients with CF tended to have lower \textit{FEV}$_1$s at the time of the first positive culture but did not exhibit a more rapid decline in lung function afterward.98 In addition, Trancassini and colleagues found an increased prevalence of biofilm producing strains of \textit{A. xylosoxidans} in patients with severely impaired lung function.96 These results, therefore, suggest that patients with more severe lung disease may be predisposed to \textit{A. xylosoxidans} infection. Lastly, as a species capable of denitrification, \textit{A. xylosoxidans} isolated from CF patients has been shown to produce increased nitrous oxide (\textit{N}$_2$\textit{O}) when supplemented with nitrate ion.
(NO3). A. xylosoxidans, therefore, may affect the nitrogen redox ecology in the CF lungs.

Species from the gram-negative genus Ralstonia have been identified as an emerging pathogen in patients with CF over the past decade or so. Coenye and colleagues isolated at least 5 different Ralstonia species from patients with CF: R. mannilalytica, R. respiraculi, R. pickettii, R. basilensis, and R. metallidurans, with R. mannilalytica being the most common, representing 46% of the Ralstonia isolates. The exact prevalence of Ralstonia infection in patients with CF is unclear, in part because the organism is difficult to isolate but is likely very low. Coenye and colleagues found only 42 Ralstonia isolates in 38 patients out of 4000 total specimens. In addition, the contribution of Ralstonia infections to lung disease in patients with CF is currently unclear.

Both pathogens have also been isolated from the airways of patients with PCD. Alanin and colleagues recovered A. xylosoxidans from 1% of the samples from children between 0 and 12 years of age, 2% of the samples from patients between 13 and 25, and 6% of the samples from adults older than 25 years, suggesting that A. xylosoxidans is more common in adults. Rogers and colleagues detected Ralstonia species in 17 out of 24 patients with PCD, of which R. pickettii was by far the most common. Rogers and colleagues found no association between lung function and Ralstonia infection, and currently no data are available on the contribution of A. xylosoxidans to lung disease in patients with PCD.

Nontuberculous mycobacteria

Nontuberculous mycobacteria (NTM) are a group of rod-shaped bacilli of the mycobacterial genus of Actinobacteria that are specifically not associated with tuberculosis or leprosy. The incidence of NTM infection in the general population is estimated at 1–1.8 in 100,000, but NTM is a far more common cause of disease in susceptible patients such as patients with CF. The prevalence of NTM infection in patients with CF is estimated to be anywhere between 6% and 13% and appears to be increasing. The vast majority of NTM infections in patients with CF in the United States are caused by one of two species complexes: Mycobacterium avium complex, which accounts for approximately 72% of the NTM infections, and Mycobacterium abscessus complex, which accounts for 16–68% of the NTM infections. Other species, such as Mycobacterium simiae and Mycobacterium kansasi, have been isolated as well. Interestingly, in CF, NTM infection appears to be associated with older age.

Previously, there was no consensus on the risks and clinical outcomes associated with NTM infections for patients with CF. At least two studies reported that NTM infection had no impact on the progression of disease in patients with CF. However, it is becoming more clear that NTM infections present a major threat to the lung health of people with CF. More recent studies have reported that NTM infection may be associated with a decline in FEV1. In addition, the prevalence of NTM is increasing in CF. Further, NTM infection appears to be relatively common in patients with end-stage CF referred for lung transplantation, with one study reporting a prevalence of 19.7%. The NTM may be associated with severe complications in lung transplant recipients and therefore may be considered a contraindication by some centers. Nonetheless, there is evidence that post-transplant NTM infection can be treated successfully and that favorable survival can be achieved.

In order to cause disease, NTM species such as M. avium complex species must penetrate the airway epithelium. They appear to do so at damaged sites, and fibronectin attachment proteins appear to play an important role in bacterial attachment and invasion. In addition, the cellular envelope appears to be important for NTM intracellular survival. Lastly, it appears as though some NTM species are able to acquire virulence genes from other bacterial CF pathogens such as P. aeruginosa and B. cepacia.

The NTM is also more commonly isolated from adult than pediatric PCD patients, with one study reporting prevalences of 18% and 0%, respectively. One recent study reported that NTM was isolated from only 3 of 118 pediatric and adolescent patients with PCD. On the other hand, Alanin and colleagues and Chang and colleagues reported that NTM was isolated from only 1 of 107 and 11% of patients (pediatric and adult), respectively. Unfortunately, although Noone and colleagues point out that NTM may require an aggressive multidrug treatment regimen, much knowledge regarding NTM infections in patients with PCD remains to be further investigated.

B. cepacia complex species. The B. cepacia complex (Bcc) is a group of similar species of gram-negative,
metabolically diverse bacilli. Some members of the *B. cepacia* complex are opportunistic pathogens that may cause disease in susceptible patients, such as patients with granulomatous disease and patients with CF.

The Bcc species most commonly isolated from the airways of patients with CF are *B. multivorans*, *B. cenocepacia*, and *B. vietnamiensis*, accounting for approximately 37%, 31%, and 5% of Bcc infections, respectively, between 1997 and 2007. Overall, the prevalence of Bcc infection in patients with CF is relatively low, ranging from less than 3% to approximately 8%, and appears to be higher in adult patients.

Despite their low prevalence, the clinical consequences of Bcc infection may be severe. For example, Bcc infection has been associated with increased morbidity and mortality in patients with CF. Although some infected patients will exhibit a gradual decline in lung function, others (approximately 20%) may suffer from fatal “cepacia syndrome,” which is characterized by necrotizing pneumonia and sometimes septicemia, and may result in death in less than 1 year.

Research into the virulence factors of Bcc species, particularly over the last decade, has increased our understanding of how Bcc species cause disease. Notable virulence factors include biofilm formation for protection, flagella for motility and host cell invasion, and RpoE, an alternative sigma factor that allows *B. cenocepacia* to delay phagolysosomal fusion. Another distinctive virulence factor is the capsule, which allows for bacterial binding to the epithelium of CF airways. This particular virulence factor is associated with certain strains such as J2315, a multidrug-resistant strain associated with patient-to-patient transmission. Furthermore, Bcc species may affect the nitrogen redox ecology in the CF lungs, as Kolpen and colleagues have demonstrated that *B. multivorans*, isolated from CF patients, produced increased N₂O, when supplemented with NO₃⁻.

Another intriguing attribute of Bcc species is that they are able to “communicate” with *P. aeruginosa* through quorum sensing. Riedel and colleagues demonstrated that *B. cepacia* is able to utilize N-acyl-homoserine lactone (AHL) signals produced by *P. aeruginosa*, and, indeed, Bcc species are able to form mixed biofilms with *P. aeruginosa*. Schwab and colleagues even suggest that Bcc species may inhibit the growth of *P. aeruginosa* biofilms.

Interestingly, Bcc species have not been isolated to date from the airways of patients with PCD. Rogers and colleagues, using quantitative polymerase chain reaction (PCR), did not find Bcc isolates from the airways of patients with PCD. Therefore, it remains to be investigated whether Bcc member species are able to infect the airways of patients with PCD, and if not, the reasons should be investigated.

Anaerobic bacteria

Although not routinely screened for in sputum, anaerobic bacterial species have been isolated from the lungs of patients with CF using specific anaerobic culture and culture-independent methods. Tunney and colleagues detected anaerobic bacteria in 64% of sputum samples from patients with CF. In addition, Bittar et al., using molecular techniques, reported that 30% of the bacterial species isolated from the sputum of patients with CF were anaerobes. Overall, species from the genera *Prevotella*, *Veillonella*, *Propionibacterium*, and *Actinomyces* are among the anaerobes most commonly isolated from CF airways.

The role that anaerobic bacteria play in CF lung disease is unclear. For example, one study indicates that the *Streptococcus milleri* group is associated with pulmonary exacerbations and thereby contributes to CF lung disease. However, Worlitzsch and colleagues reported that after therapy with antibiotics, lung function improved without a reduction in the number of obligate anaerobes. The latter study, therefore, may suggest that anaerobes play little to no role in CF lung disease.

While conventional microbiological practices fail to detect anaerobic bacteria, at least one study has reported the isolation of anaerobic bacteria from the airways of patients with PCD using quantitative PCR. The isolated anaerobes include species from the genera *Prevotella*, *Neisseria*, *Porphyromonas*, *Actinomyces*, and *Veillonella*, some of which have been isolated from the lungs of patients with CF as well. The anaerobic genus *Prevotella* was considered to be dominant in two patients included in their study. Although Rogers et al. did not find any negative correlations between the presence of anaerobic bacteria such as *Prevotella* and lung function as determined by FEV₁, the contribution of anaerobic bacteria to lung disease in PCD remains unclear.
Current and potential treatment strategies for bacterial infections in PCD

Recently, Shapiro et al. published extensive consensus guidelines on the diagnosis, monitoring, and treatment of PCD, including the treatment of (recurring) bacterial infections. In addition to antibiotics and other treatment options reviewed by Shapiro and colleagues, other strategies to combat bacterial infections in patients with CF and PCD may be available in the future.

One such strategy is bacteriophage therapy. Bacteriophages are viruses that exclusively infect bacteria, and one of the major advantages in utilizing them as a treatment strategy is their high specificity to target bacteria. Various studies have demonstrated the ability of phages to eliminate common CF pathogens in vitro. Alemayehu and colleagues showed how two phages are able to drastically reduce the amount of *P. aeruginosa* cells growing in a biofilm on CF airway cells. More recently, Saussereau and colleagues demonstrated that a cocktail of 10 bacteriophages is effective at reducing the levels of *P. aeruginosa* in sputum samples from patients with CF. However, there is also substantial evidence demonstrating that *P. aeruginosa* biofilms may develop phage resistance in as little as 24 hours, which may limit the clinical utility of phage therapy to treat *P. aeruginosa* infections. Clinical data on the safety or efficacy of phage therapy for patients with CF are scarce and are limited to case reports. Therefore, larger, randomized clinical trials are necessary.

Conclusion and future directions

As demonstrated in this review, there is overlap in types of respiratory infections between patients with CF and PCD. Other strategies to combat bacterial infections in patients with CF and PCD may be available in the future.

One such strategy is bacteriophage therapy. Bacteriophages are viruses that exclusively infect bacteria, and one of the major advantages in utilizing them as a treatment strategy is their high specificity to target bacteria. Various studies have demonstrated the ability of phages to eliminate common CF pathogens in vitro. Alemayehu and colleagues showed how two phages are able to drastically reduce the amount of *P. aeruginosa* cells growing in a biofilm on CF airway cells. More recently, Saussereau and colleagues demonstrated that a cocktail of 10 bacteriophages is effective at reducing the levels of *P. aeruginosa* in sputum samples from patients with CF. However, there is also substantial evidence demonstrating that *P. aeruginosa* biofilms may develop phage resistance in as little as 24 hours, which may limit the clinical utility of phage therapy to treat *P. aeruginosa* infections. Clinical data on the safety or efficacy of phage therapy for patients with CF are scarce and are limited to case reports. Therefore, larger, randomized clinical trials are necessary.

Table 1. Summary of airway microbiology in patients with CF and patients with PCD.

Airway pathogen	Common in pediatric patients	Common in adult patients	Associated with lung disease/decline in lung function		
Haemophilus influenzae	++²	+	+	Unclear	Y
Pseudomonas aeruginosa	+	++	++³	+	Y
Staphylococcus aureus	++/+	++³	+/+	++	Y
Streptococcus pneumoniae	++/+	±/-	±/+	-	-
Moxella catarrhalis	±/+	±/-	±/-	-	-
Achromobacter xylooxidans	-	+/-	-	+/±/	-
Ralstonia sp.	Unknown	-	Unknown	-	-
NTM	b⁻	±/-	±/-	-	Unknown
Burkholderia cepacia complex species*	b⁻	±/-	b⁻	±/-	Y
Anaerobes	Unknown	+	Unknown	+	-

PCD: primary ciliary dyskinesia; CF: cystic fibrosis; NTM: nontuberculous mycobacteria; sp.: species.

*Pathogens most commonly isolated from patients with this disease at this stage (pediatric/adult); ++ indicates very common pathogens (prevalence >50% or greater); + indicates common pathogens (prevalence >25%); ± indicates relatively common pathogens (prevalence >10%); - indicates rare pathogens (prevalence <5%); – indicates very rare pathogens (prevalence <1% and less).

*Pathogen has to date not been isolated from the airways of this patient population.

As demonstrated in this review, there is overlap in types of respiratory infections between patients with CF and PCD. Other strategies to combat bacterial infections in patients with CF and PCD may be available in the future. For instance, many bacterial species, such as *H. influenza*, *S. pneumoniae*, and *S. aureus*, tend to decrease in prevalence with age, after which *P. aeruginosa* becomes the dominant airway pathogen (Table 1).

These similarities have enabled the extrapolation of information from CF airway microbiology to PCD airway microbiology. However, likely in part due to the differences in pathophysiology and underlying etiology, the airway microbiology in patients with PCD is unique and significantly different from the airway microbiology in patients with CF. Although *S. aureus* is the most common pathogen during childhood for patients with CF, *H. influenza* and *S. pneumoniae* appear to be the most common pathogens during early childhood in patients with PCD (Table 1). In addition, although many pathogens tend to decrease in prevalence with age in patients with PCD, this decrease appears to occur at a slower rate than in patients with CF.
Because of the observed differences in airway microbiology between patients with CF and patients with PCD (Table 1), it is important that bacterial infections in patients with PCD be further investigated both on a clinical and a basic science level. A PCD patient registry database, like the one managed by the CF Foundation for patients with CF, may facilitate such microbiological research in PCD.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

References
1. Lobo J, Zariwala MA, and Noone PG. Primary ciliary dyskinesia. *Semin Respir Crit Care Med* 2015; 36: 169–179.
2. Noone PG, Leigh MW, Sannuti A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. *Am J Respir Crit Care Med* 2004; 169: 459–467.
3. Kartagener M and Horlacher A. Situs viscerum inversus and polyposis nasi in eine um falle familiarer bronchiectasien. *Beitr Klin Tub* 1936; 87: 331–333.
4. Afzelius BA. A human syndrome caused by immotile cilia. *Science* 1976; 193(4250): 317–319.
5. Leigh MW, O’Callagan C, and Knowles MR. The challenges of diagnosing primary ciliary dyskinesia. *Proc Am Thorac Soc* 2011; 8: 434–437.
6. Boucher RC. Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. *Annu Rev Med* 2007; 58: 157–170.
7. Riordan JR. CFTR function and prospects for therapy. *Annu Rev Biochem* 2008; 77: 701–726.
8. Hassett DJ, Sutton MD, Schurr MJ, et al. *Pseudomonas aeruginosa* hypoxic and anaerobic biofilm infections within cystic fibrosis. *Trends Microbiol* 2009; 17(3): 130–138.
9. Rogers GB, Carroll MP, Zain NMM, et al. Complexity, temporal stability, and clinical correlates of airway bacterial community composition in primary ciliary dyskinesia. *J Clin Microbiol* 2013; 51(12): 4029–4035.
10. Gilligan PH. Microbiology of airway disease in patients with cystic fibrosis. *Clin Microbiol Rev* 1991; 4(1): 35–51.
11. LiPuma JJ. The changing microbial epidemiology in cystic fibrosis. *Clin Microbiol Rev* 2010; 23: 299–323.
12. Cardines R, Giufre’ M, Pompilio A, et al. *Haemophilus influenza* in children with cystic fibrosis: antimicrobial susceptibility, molecular epidemiology, distribution of adhesins and biofilm formation. *Int J Med Microbiol* 2012; 302: 45–52.
13. Coutinho HDM, Falcão-Silva VS, and Gonçalves GF. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers. *Int Arch Med* 2008; 1: 24.
14. Cystic Fibrosis Foundation. *Cystic Fibrosis Foundation patient registry: Annual data report 2014*. Bethesda: Cystic Fibrosis Foundation, 2015, pp. 33–37.
15. Ellerman A and Bisgaard H. Longitudinal study of lung function in a cohort of primary ciliary dyskinesia. *Eur Respir J* 1997; 10: 2376–2379.
16. Davis SD, Ferkol TW, Rosenfeld M, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. *Am J Respir Crit Care Med* 2015; 191(3): 316–324.
17. Maglione M, Bush A, Nielsen KG, et al. Multicenter analysis of body mass index, lung function, and sputum microbiology in primary ciliary dyskinesia. *Pediatr Pulmonol* 2014; 49: 1243–1250.
18. Chang H, Adjemian J, Dell SDM, et al. Prevalence of airway microbial flora in primary ciliary dyskinesia. *Am J Respir Crit Care Med* 2015; 191(3): A1798.
19. Alain MC, Nielsen KG, Von Buchwald C, et al. A longitudinal study of lung bacterial pathogens in patients with primary ciliary dyskinesia. *Clin Microbiol Infect* 2015; 21(12): 1093.
20. Zhao J, Schloss PD, Kalikin LM, et al. Decade-long bacterial community dynamics in cystic fibrosis airways. *Proc Natl Acad Sci USA* 2012; 109(15): 5809–5814.
21. Stressman FA, Rogers GB, Van der Gast CJ, et al. Long-term cultivation-independent microbial diversity analysis demonstrates that bacterial communities infecting the adult cystic fibrosis lung show stability and resilience. *Thorax* 2012; 67: 867–873.
22. Ciufu O, Hansen CR and Høiby N. Respiratory bacterial infections in cystic fibrosis. *Curr Opin Pulm Med* 2013; 19(3): 251–258.
23. LiPuma JJ, Spilker T, Gill LH, et al. Disproportionate distribution of *Burkholderia cepacia* complex species
and transmissibility markers in cystic fibrosis. *Am J Respir Crit Care Med* 2001; 164: 92–96.
24. King P. *Haemophilus influenzae* and the lung (*Haemophilus* and the lung). *Clin Transl Med* 2012; 1(1): 10.
25. Watson KC, Kerr EJ, and Hinks CA. Distribution of biotypes of *Haemophilus influenzae* and *h. parainfluenzae* in patients with cystic fibrosis. *J Clin Path* 1985; 38(7): 750–753.
26. Agrawal A and Murphy T. *Haemophilus influenzae* infections in the *h. influenzae* type b conjugate vaccine era. *J Clin Microbiol* 2011; 49: 3728–3732.
27. Starner TD, Zhang N, Kim G, et al. *Haemophilus influenzae* forms biofilms on airway epithelia: implications in cystic fibrosis. *Am J Respir Crit Care Med* 2006; 174(2): 213–220.
28. Zago A and Chugani S. *Pseudomonas*. In: Moselio S (ed.) Encyclopedia of Microbiology. 3rd ed. Oxford: Academic Press, 2009, pp. 245–260.
29. Frangipani E, Slaveykova VI, Reimann C, et al. Adaptation of aerobically growing *Pseudomonas aeruginosa* to copper starvation. *J Bacteriol* 2008; 190(20): 6706–6717.
30. Schobert M and Jahn D. Anaerobic physiology of *Pseudomonas aeruginosa* in the cystic fibrosis lung. *Int J Med Microbiol* 2010; 300(8): 549–556.
31. Yoon SS, Hennigan RF, Hilliard GM, et al. *Pseudomonas aeruginosa* anaerobic respiration in biofilms: relationships to cystic fibrosis pathogenesis. *Dev Cell* 2002; 3: 593–603.
32. Cogen AL, Nizet V, and Gallo RL. Skin microbiota: a source of disease or defense? *Br J Dermatol* 2008; 158: 442–455.
33. Folkesson A, Jelsbak L, Yang L, et al. Adaptation of *Pseudomonas aeruginosa* to the cystic fibrosis airway: an evolutionary perspective. *Nat Rev Microbiol* 2012; 10: 841–851.
34. Ratjen F, Döring G, and Nikolaizik WN. Effect of inhaled tobramycin on early *Pseudomonas aeruginosa* colonization in patients with cystic fibrosis. *Lancet* 2001; 358(9286): 983–984.
35. Langton Hewer SC and Smyth AR. Antibiotic strategies for eradicating *Pseudomonas aeruginosa* in people with cystic fibrosis. *Cochrane Database Syst Rev* 2014; 11: CD004197.
36. Stockmann C, Hillyard B, Ampofo K, et al. Levofloxacin inhalation solution for the treatment of chronic *Pseudomonas aeruginosa* infection among patients with cystic fibrosis. *Expert Rev Respir Med* 2015; 9(1): 13–22.
37. Hansen C and Skov M. Evidence for the efficacy of aztreonam for inhalation solution in the management of *Pseudomonas aeruginosa* in patients with cystic fibrosis. *Ther Adv Respir Dis* 2015; 9(1): 16–21.
38. Gibson RL, Emerson J, McNamara S, et al. Significant microbiological effect of inhaled tobramycin in young children with cystic fibrosis. *Am J Respir Crit Care Med* 2003; 167(6): 841–849.
39. Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N, et al. Comparative efficacy and safety of 4 randomized regimens to treat early *Pseudomonas aeruginosa* infection in children with cystic fibrosis. *Arch Pediatr Adolesc Med* 2011; 165(9): 847–856.
40. Mogayzel PJ, Naueckas ET, Robinson KA, et al. Cystic fibrosis foundation pulmonary guideline. Pharmacologic approaches to prevention and eradication of initial *Pseudomonas aeruginosa* infection. *Ann Am Thorac Soc* 2014; 11(10): 1640–1650.
41. Rubio TT and Shapiro C. Ciprofloxacin in the treatment of *Pseudomonas* infection in cystic fibrosis patients. *J Antimicrob Chemother* 1986; 18(Suppl D): 147–152.
42. Beringer P. The clinical use of colistin in patients with cystic fibrosis. *Curr Opin Pulm Med* 2001; 7(6): 434–440.
43. Worritzsch D, Tarran R, Ulrich M, et al. Effects of reduced mucus oxygen concentration in airway *Pseudomonas* infections of cystic fibrosis patients. *J Clin Invest* 2002; 109(3): 317–325.
44. Eichner A, Günther N, Arnold M, et al. Marker genes for the metabolic adaptation of *Pseudomonas aeruginosa* to the hypoxic cystic fibrosis lung environment. *Int J Med Microbiol* 2014; 304: 1050–1061.
45. Gaston B, Ratjen F, Vaughan JW, et al. Nitrogen redox balance in the cystic fibrosis airway: effects of antipseudomonal therapy. *Am J Respir Crit Care Med* 2002; 165(3): 387–390.
46. Prasad M, Smith JA, Resnick A, et al. Ammonia inhibits cAMP-regulated intestinal Cl− transport: asymmetric effects of apical and basolateral exposure and implications for epithelial barrier function. *J Clin Invest* 1995; 96: 2142–2151.
47. Ramphal R and Vishwanath S. Why is *Pseudomonas* the colonizer and why does it persist? *Infection* 1987; 15(4): 281–287.
48. Wijers et al. 401...
50. Govan JR and Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60(3): 539–574.

51. Demko CA, Byard PJ, and Davis PB. Gender differences in cystic fibrosis: Pseudomonas aeruginosa infection. J Clin Epidemiol 1995; 48(8): 1041–1049.

52. Ramsey DM and Wozniak D. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 2005; 56(2): 309–322.

53. Mathee K, Ciofu O, Sternberg C, et al. Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 1999; 145(6): 1349–1357.

54. Emerson J, Rosenfeld M, McNamara S, et al. Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 2002; 34(2): 91–100.

55. Wertheim HFL, Melles DC, Landry JS, et al. Clinical implications factors in evasion from innate immune defenses in cystic fibrosis lung. Microbiology 2003; 71(1): 239–248.

56. Ahlgren HG, Benedetti A, Landry JS, et al. Clinical outcomes associated with Staphylococcus aureus and Pseudomonas aeruginosa airway infections in adult cystic fibrosis patients. BMC Pulm Med 2015; 15: 64.

57. Zecconi A and Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett 2013; 150: 12–22.

58. Stapleton PD and Taylor PW. Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 2002; 85(1): 57–72.

59. Dassenbrook EC, Merlo CA, Diener-West M, et al. Persistent methicillin-resistant Staphylococcus aureus and rate of FEV1 decline in cystic fibrosis. Am J Respir Crit Care Med 2008; 178: 841–821.

60. Wolter DJ, Emerson JC, McNamara S, et al. Staphylococcus aureus small-colony variants are independently associated with worse lung disease in children with cystic fibrosis. Clin Infect Dis 2013; 57(3): 384–391.

61. Ren CL, Morgan WJ, Konstan MW, et al. Presence of methicillin resistant Staphylococcus aureus in respiratory cultures from cystic fibrosis patients is associated with lower lung function. Pediatr Pulmonol 2007; 42: 513–518.

62. Weinberger DM, Harboe ZB, Sanders EAM, et al. Association of serotype with risk of death due to pneumococcal pneumonia: a meta-analysis. Clin Infect Dis 2010; 51(6): 692–699.

63. Regev-Yochay G, Raz M, Dagan R, et al. Nasopharyngeal carriage of Streptococcus pneumoniae by adults and children in community and family settings. Clin Infect Dis 2004; 38: 632–639.

64. Marchisio P, Esposito S, Schito GC, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy children: implications for the use of heptavalent pneumococcal conjugate vaccine. Emerg Infect Dis 2002; 8(5): 479–484.

65. Le Polain de Waroux O, Flasche S, Prieto-Merino D, et al. Age-dependent prevalence of nasopharyngeal carriage of Streptococcus pneumoniae before conjugate vaccine introduction: a prediction model based on a meta-analysis. PLoS One 2014; 9(1) e86136: 1–11.

66. Kadioglu A, Weiser JN, Paton JC, et al. The role of Streptococcus pneumoniae virulence factors in host respiratory colonization and disease. Nat Rev Microbiol 2008; 6: 288–301.

67. Lee C, Banks SD, and Li JP. Virulence, immunity, and vaccine related to Streptococcus pneumoniae. Crit Rev Microbiol 1991; 18(2): 89–114.

68. Abeyta M, Hardy GG, and Yother J. Genetic alteration of capsule type but not PspA type affects accessibility to surface-bound complement and surface antigens of Streptococcus pneumoniae. Infect Immun 2003; 71(1): 218–225.

69. Thornton CS, Brown EL, Alcantara J, et al. Prevalence and impact of Streptococcus pneumoniae in adult cystic fibrosis patients: a retrospective chart review and capsular serotyping study. BMC Pulm Med 2015; 15: 49.

70. Del Campo R, Morosini M, De La Pedrosa EG, et al. Population structure, antimicrobial resistance, and mutation frequencies of Streptococcus pneumoniae isolates from cystic fibrosis patients. J Clin Microbiol 2005; 43(5): 2207–2214.
74. Paganin P, Fiscarelli EV, Tuccio V, et al. Changes in cystic fibrosis airway microbial community associated with a severe decline in lung function. PLoS One 2015; 10(4): e0124348.
75. Murphy TF and Parameswaran GI. Moraxella catarrhalis, a human respiratory tract pathogen. Clin Infect Dis 2009; 49(1): 124–131.
76. Hendolin P, Paulin L, and Ylikoski J. Clinically applicable multiplex PCR for four middle ear pathogens. J Clin Microbiol 2000; 38(1): 125–132.
77. Murphy TF, Brauer AL, Grant BJB, et al. Moraxella catarrhalis in chronic obstructive pulmonary disease: burden of disease and immune response. Am J Resp Crit Care Med 2005; 172(2): 195–199.
78. Brook I, Foote PA, and Hausfeld JN. Frequency of recovery of pathogens causing acute maxillary sinusitis in adults before and after introduction of vaccination of children with the 7-valent pneumococcal vaccine. J Med Microbiol 2006; 55(7): 943–946.
79. Hall-Stoodley L, Hu FZ, Gieseke A, et al. Direct detection of bacterial biofilms on the middle-ear mucosa of children with chronic otitis media. J Am Med Assoc 2006; 296(2): 202–211.
80. Lafontaine ER, Cope LD, Aebi C, et al. The UspA1 protein and a second type of UspA2 protein mediate adherence of Moraxella catarrhalis to human epithelial cells in vitro. J Bacteriol 2000; 182: 1364–1373.
81. Holm MM, Vanlerberg SL, Sledjeski DD, et al. The hag protein of Moraxella catarrhalis strain O35E is associated with adherence to human lung and middle ear cells. Infect Immun 2003; 71: 4977–4984.
82. Timpe JM, Holm MM, Vanlerberg SL, et al. Identification of a Moraxella catarrhalis outer membrane protein exhibiting both adhesion and lipolytic activities. Infect Immun 2003; 71: 4341–4350.
83. Bernhard S, Fleury C, Su YC, et al. Outer membrane protein OLPa contributes to Moraxella catarrhalis serum resistance via interaction with factor H and the alternative pathway. J Infect Dis 2014; 210(8): 1306–1310.
84. Levy F and Walker ES. BRO β-lactamase alleles, antibiotic resistance and a test of the BRO-1 selective replacement hypothesis in Moraxella catarrhalis. J Antimicrob Chemother 2004; 53(2): 371–374.
85. Saito R, Nonaka S, Fujinami Y, et al. The frequency of BRO β-lactamase and its relationship to antimicrobial susceptibility and serum resistance in Moraxella catarrhalis. J Infect Chemother 2014; 20(1): 6–8.
86. Perez AC, Pang B, King LB, et al. Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog Dis 2014; 70(3): 280–288.
87. Döring G, Parameswaran IG, and Murphy TF. Differential adaptation of microbial pathogens to airways of patients with cystic fibrosis and chronic obstructive pulmonary disease. FEMS Microbiol Rev 2011; 35(1): 124–146.
88. Michon AL, Jumas-Bilak E, Imbert A, et al. Intragenomic and intraspecific heterogeneity of the 16S rRNA gene in seven bacterial species from the respiratory tract of cystic fibrosis patients assessed by PCR-Temporal Temperature Gel Electrophoresis. Pathol Biol (Paris) 2012; 60(3): e30–e35.
89. Deneuville E, Dabadie A, Donnio PY, et al. Pathogenicity of Moraxella catarrhalis in cystic fibrosis. Acta Paediatr 1995; 84(10): 1212.
90. Trandafir LM, Moscalu M, Diaconu G, et al. The impact of respiratory tract infections on the nutritional state of children with cystic fibrosis. Rev Med Chir Soc Med Nat Iasi 2013; 117(4): 863–869.
91. Parkins MD and Floto RA. Emerging bacterial pathogens and changing concepts of bacterial pathogenesis in cystic fibrosis. J Cyst Fibros 2015; 14(3): 293–304.
92. Spicuzza L, Sciuto C, Vitaliti G, et al. Emerging pathogens in cystic fibrosis: ten years of follow-up in a cohort of patients. Eur J Clin Microbiol Infect Dis 2009; 28(2): 191–195.
93. Amoureux L, Bador J, Siebor E, et al. Epidemiology and resistance of Achromobacter xylosoxidans from cystic fibrosis patients in dijon, burgundy: first french data. J Cyst Fibros 2013; 12(2): 170–176.
94. Lambiase A, Catania MR, Del Pezzo M, et al. Achromobacter xylosoxidans respiratory tract infection in cystic fibrosis patients. Eur J Clin Microbiol Infect Dis 2011; 30(8): 973–980.
95. Mantovani RP, Levy CE, and Yano T. A heat-stable cytotoxic factor produced by Achromobacter xylosoxidans isolated from brazilian patients with CF is associated with in vitro increased proinflammatory cytokines. J Cyst Fibros 2012; 11(4): 305–311.
96. Trancassini M, Iebsa V, Tuccio V, et al. Outbreak of Achromobacter xylosoxidans in an italian cystic fibrosis center: genome variability, biofilm production, antibiotic resistance, and motility in isolated strains. Front Microbiol 2014; 5: 138.
97. Ronne Hansen C, Pressler T, Hoiby N, et al. Chronic infection with Achromobacter xylosoxidans in cystic fibrosis patients; a retrospective case control study. J Cyst Fibros 2006; 5(4): 245–251.
98. De Baets F, Schelstraete P, Van Daele S, et al. Achromobacter xylosoxidans in cystic fibrosis: prevalence and clinical relevance. J Cyst Fibros 2007; 6(1): 75–78.
99. Kolpen M, Norskov Kragh K, Bjarnsholt T, et al. Denitrification by cystic fibrosis pathogens – *stentrophomonas maltophilia* is dormant in sputum. *Int J Med Microbiol* 2015; 305(1): 1–10.

100. Mahenthiralingam E. Emerging cystic fibrosis pathogens and the microbiome. *Paediatr Respir Rev* 2014; 15 Suppl 1: 13–15.

101. Coenye T, Spilker T, Reik R, et al. Use of PCR analysis to define the distribution of ralstonia species recovered from patients with cystic fibrosis. *J Clin Microbiol* 2005; 43(7): 3463–3466.

102. Green H and Jones AM. The microbiome and emerging pathogens in cystic fibrosis and non-cystic fibrosis bronchiectasis. *Semin Respir Crit Care Med* 2015; 36(2): 225–235.

103. Coenye T, Vandamme P, and LiPuma JJ. *Mycobacterium abscessus* sp. nov., isolated from the respiratory tract of cystic fibrosis patients. *Int J Syst Evol Microbiol* 2003; 53(Pt 5): 1339–1342.

104. Horsburgh CR Jr. Epidemiology of *Mycobacterium avium* complex. In: Korvick JA and Benson CA (eds) *Mycobacterium avium complex infection: Progress in research and Treatment*. New York: Marcel Dekker, 1996, pp. 1–22.

105. Martiniano SL and Nick JA. Nontuberculous mycobacterial infections in cystic fibrosis. *Clin Chest Med* 2015; 36: 101–115.

106. Bar-On O, Mussaffi H, Mei-Zahav M, et al. Increasing nontuberculous mycobacteria infection in cystic fibrosis. *J Cyst Fibros* 2015; 14: 53–62.

107. Olivier KN, Weber DJ, Wallace RJ Jr, et al. Nontuberculous mycobacteria. I: multicenter prevalence study in cystic fibrosis. *Am J Respir Crit Care Med* 2003; 167(6): 828–834.

108. Rodman DM, Polis JM, Heltshe SL, et al. Late diagnosis defines a unique population of long-term survivors of cystic fibrosis. *Am J Respir Crit Care Med* 2005; 171(6): 621–626.

109. Keating CL, Liu X, and Dimango EA. Classic respiratory disease but atypical diagnostic testing distinguishes adult presentation of cystic fibrosis. *Chest* 2010; 137: 1157–1163.

110. Torrens JK, Dawkins P, Conway SP, et al. Non-tuberculous mycobacteria in cystic fibrosis. *Thorax* 1998; 53(3): 182–185.

111. Esther CR Jr, Esserman DA, Gilligan P, et al. Chronic *Mycobacterium abscessus* infection and lung function decline in cystic fibrosis. *J Cyst Fibros* 2010; 9(2): 117–123.

112. Martiniano SL, Sontag MK, Daley CL, et al. Clinical significance of a first positive nontuberculous mycobacteria culture in cystic fibrosis. *Ann Am Thorac Soc* 2014; 11(1): 36–44.

113. Chalermskulrat W, Sood N, Neuringer IP, et al. On-tuberculous mycobacteria in end stage cystic fibrosis: implications for lung transplantation. *Thorax* 2006; 61: 507–513.

114. Hill UG, Floto RA and Haworth CS. Non-tuberculous mycobacteria in cystic fibrosis. *J R S Med* 2012; 105(Suppl 2): S14–S18.

115. Lobo LJ, Chang LC, Esther CR Jr, et al. Lung transplant outcomes in cystic fibrosis patients with pre-operative *Mycobacterium abscessus* respiratory infections. *Clin Transplant* 2013; 27(4): 523–529.

116. McGarvey J and Bermudez LE. Pathogenesis of nontuberculous mycobacteria infections. *Clin Chest Med* 2002; 23: 569–583.

117. Secott TE, Lin TL, and Wu CC. Fibronectin attachment protein is necessary for efficient attachment and invasion of epithelial cells by *Mycobacterium avium* subsp. *Paratuberculosis*. *Infect Immun* 2002; 70(5): 2670–2675.

118. Middleton AM, Chadwick MV, Nicholson AG, et al. Inhibition of adherence of *Mycobacterium avium* complex and *Mycobacterium tuberculosis* to fibronectin on the respiratory mucosa. *Respir Med* 2004; 98(12): 1203–1206.

119. Fratti RA, Chua J, Vergne I, et al. *Mycobacterium tuberculosis* glycosylated phosphatidylinositol causes phagosome maturation arrest. *Proc Natl Acad Sci USA* 2003; 100(9): 5437–5442.

120. Ripoll F, Pasek S, Schenowitz C, et al. Non-mycobacterial virulence genes in the genome of the emerging pathogen *Mycobacterium abscessus*. *PLoS One* 2009; 4(6): e5660.

121. Mahenthiralingam E, Urban TA, and Goldberg JB. The multifarious, multireplicon *Burkholderia cepacia* complex. *Nat Rev Microbiol* 2005; 3(2): 144–156.

122. Speert DP, Bond M, Woodman RC, et al. Infection with *Pseudomonas cepacia* in chronic granulomatous disease: role of nonoxidative killing by neutrophils in host defense. *J Infect Dis* 1994; 170(6): 1524–1531.

123. Hart CA and Winstanley C. Persistent and aggressive bacteria in the lungs of cystic fibrosis children. *Br Med Bull* 2002; 61(1): 81–96.

124. Keating D and Schaffer K. *Burkholderia cepacia* complex infection in an adult cystic fibrosis centre over a ten year period. *J Cyst Fibros* 2015; 14: S76.
Wijers et al. 405

125. Willekens J, Wanyama S, Thomas M, et al. Burkholderia cepacia complex acquisition: a threat in all CF patients? J Cyst Fibros 2015; 14: S54.

126. Tablan OC, Chorba TL, Schedlow DV, et al. Pseudomonas cepacia colonization in patients with cystic fibrosis: risk factors and clinical outcome. J Pediatr 1985; 107(3): 382–387.

127. Corey M and Farewell V. Determinants of mortality from cystic fibrosis in Canada, 1970–1989. Am J Epidemiol 1996; 143(10): 1007–1017.

128. Govan JR, Hughes JE, and Vandamme P. Evidence for Burkholderia cepacia virulence determinant research. Microbiology 1998; 27(Suppl 1): S117–124.

129. Quinn JP. Clinical problems posed by multiresistant nonfermenting Gram-negative pathogens. Clin Infect Dis 1998; 27(Suppl 1): S117–124.

130. Loutet SA and Valvano MA. A decade of Burkholderia cenocepacia virulence determinant research. Infect Immun 2010; 78(10): 4088–4100.

131. Tomich M, Herfst CA, Golden JW, et al. Role of flagella in host cell invasion by Burkholderia cepacia. Infect Immun 2002; 70(4): 1787–1795.

132. Flannagan RS and Valvano MA. Burkholderia cenocepacia requires RpoE for growth under stress conditions and delay of phagolysosomal fusion in macrophages. Microbiology 2008; 154: 643–653.

133. Sajjan US, Sylvester FA, and Forstner JF. Cable-piliated Burkholderia cepacia binds to cytokeratin 13 of epithelial cells. Infect Immun 2000; 68(4): 1787–1795.

134. Holden MT, Seth-Smith HM, Crossman LC, et al. The genome of Burkholderia cenocepacia J2315, an epidemic pathogen of cystic fibrosis patients. J Bacteriol 2009; 191(1): 261–277.

135. Govan JR, Brown PH, Maddison J, et al. Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis. Lancet 1993; 342(8862): 15–19.

136. Riedel K, Hentzer M, Geizenberger O, et al. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 2001; 147: 3249–3262.

137. Tomlin KL, Coll OP, and Ceri H. Interspecies biofilms of Pseudomonas aeruginosa and Burkholderia cepacia. Can J Microbiol 2001; 47(10): 949–954.

138. Bragonzi A, Farulla I, Paroni M, et al. Modelling co-infection of the cystic fibrosis lung by Pseudomonas aeruginosa and Burkholderia cenocepacia reveals influences on biofilm formation and host response. PLoS One 2012; 7(12): e52330.

139. Schwab U, Abdullah LH, Perlmott OS, et al. Localization of Burkholderia cepacia complex bacteria in cystic fibrosis lungs and interactions with Pseudomonas aeruginosa in hypoxic mucus. Infect Immun 2014; 82(11): 4729–4745.

140. Chmiel JF, Aksamit TR, Chotirmall SH, et al. Antibiotic management of lung infections in cystic fibrosis. II. Nontuberculous mycobacteria, anaerobic bacteria, and fungi. Ann Am Thorac Soc 2014; 11(8): 1298–1306.

141. Jones AM. Anaerobic bacteria in cystic fibrosis: pathogens or harmless commensals? Thorax 2011; 66: 558–559.

142. Tunney MM, Field TR, Moriarty TF, et al. Detection of anaerobic bacteria in high numbers in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 2008; 177(9): 995–1001.

143. Bittar F, Richet H, Dubus J, et al. Molecular detection of multiple emerging pathogens in sputa from cystic fibrosis patients. PLoS One 2008;3(8): e2908.

144. Lambiasse A, Catania MR, and Rossano F. Anaerobic bacteria infection in cystic fibrosis airway disease. New Microbiol 2010; 33: 185–194.

145. Sibley CD, Parkins MD, Rabin HR, et al. A polymicrobial perspective of pulmonary infections exposes an enigmatic pathogen in cystic fibrosis patients. Proc Natl Acad Sci USA 2008; 105(39): 15070–15075.

146. Worlitzsch D, Rintelen C, Böhm K, et al. Antibiotic-resistant obligate anaerobes during exacerbations of cystic fibrosis patients. Clin Microbiol Infect 2009; 15(5): 454–460.

147. Shapiro AJ, Zariwala MA, Ferkol T, et al. Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol 2016; 51(2): 115–132.

148. Nobrega FL, Costa A, Kluskens LD, et al. Revisiting phage therapy: new applications for old resources. Trends Microbiol 2015; 23(4): 185–191.

149. Alemayehu D, Casey PG, McAuliffe O, et al. Bacteriophages φMR299-2 and φNH-4 can eliminate Pseudomonas aeruginosa in the murine lung and on cystic fibrosis airway cells. Mbio 2012; 3(2): e00029–12.

150. Saussereau E, Vachier I, Chiron R, et al. Effectiveness of bacteriophages in the sputum of cystic fibrosis patients. Clin Microbiol Infect 2014; 20(12): O983–990.
151. Pires D, Sillankorva S, Faustino A, et al. Use of newly isolated phages for control of *Pseudomonas aeruginosa* PAO1 and ATCC 10145 biofilms. *Res Microbiol* 2011; 162(8): 798–806.

152. Fu W, Forster T, Mayer O, et al. Bacteriophage cocktail for the prevention of biofilm formation by *Pseudomonas aeruginosa* on catheters in an in vitro model system. *Antimicrob Agents Chemother* 2010; 54(1): 397–404.

153. Hraiech S, Brégeon F, and Rolain J. Bacteriophage-based therapy in cystic fibrosis-associated *Pseudomonas aeruginosa* infections: rationale and current status. *Drug Des Devel Ther* 2015; 9: 3653–3663.