ABSTRACT

Objective: The current investigation was pointed at developing and progressively validating novel, simple, responsive and stable UPLC method for the measurement of active pharmaceutical ingredients of Mitomycin and Fluorouracil.

Methods: A simple, selective, validated and well-defined stability that shows isocratic UPLC methodology for the quantitative determination of Mitomycin and Fluorouracil. The chromatographic strategy utilized Inertsil ODS column of dimensions 250×4.6 mm, 5 micron, using isocratic elution with a mobile phase of acetonitrile and 0.1 percent formic acid (70:30). A flow rate of 1 ml/min and a detector wavelength of 255 nm utilizing the PDA detector was given in the instrumental settings. Validation of the proposed method was carried out according to an international conference on harmonization (ICH) guidelines.

Results: LOD and LOQ for the two active ingredients were established with respect to test concentration. The calibration charts plotted were linear with a regression coefficient of R²>0.999, means the linearity was within the limit. Recovery, specificity, linearity, accuracy, robustness, ruggedness were determined as a part of method validation and the results were found to be within the acceptable range.

Conclusion: The proposed method to be fast, simple, feasible and affordable in assay condition. During stability tests, it can be used for routine analysis of production samples and to verify the quality of drug samples during stability studies.

Keywords: Mitomycin, Fluorouracil, UPLC, Development, Validation

INTRODUCTION

The mitomycins are a family of aziridine-containing natural products isolated from Streptomyces caesipitosus or Streptomyces lavendulae [1, 2]. They include mitomycin A, mitomycin B, and mitomycin C. When the name mitomycin occurs alone, it usually refers to mitomycin C, its international nonproprietary name. Mitomycin C is used as a medicine [3] for treating various disorders associated with the growth and spread of cells. In the bacterium Legionella pneumophila [4-6], mitomycin C induces competence for transformation [7]. Natural transformation is a process of DNA transfer [8, 9] between cells and is regarded as a form of bacterial sexual interaction. In the fruit fly Drosophila melanogaster [10, 11], exposure to mitomycin C increases recombination during meiosis [12, 13], a key stage of the sexual cycle [14]. In the plant Arabidopsis thaliana [15, 16], mutant strains defective in genes necessary for recombination during meiosis and mitosis [17, 18] are hypersensitive to killing by mitomycin C [19]. Mitomycin C has been shown to have activity against stationary phase persisters caused by Borrelia burgdorferi, a factor in lyme disease [20, 21]. Mitomycin C is used to treat symptoms of pancreatic and stomach cancer and is under clinical research for its potential to treat gastrointestinal strictures [22]. Wound healing from glaucoma surgery [23] corneal excimer laser surgery [24] and endoscopic dacrocystorhinostomy [25].

Fluorouracil (5-FU), sold under the brand name Adrucil among others, is a medication used to treat cancer [26]. By injection into a vein it is used for colon cancer [27], esophageal cancer [28], stomach cancer, pancreatic cancer [29], breast cancer [30], and cervical cancer [31]. As a cream, it is used for actinic keratoses, skin cancers and Bowen’s disease [32] and as eye drops for the treatment of ocular surface squamous neoplasia. Others uses include ocular injections into a previously created trabeculectomy [33] to inhibit healing and cause scarring of tissue, thus allowing adequate aqueous humor flow to reduce intraocular pressure [40]. The present study aims the development and validation of Mitomycin and Fluorouracil using UPLC.

Fig. 1: Structure of (A) Mitomycin and (B) Fluorouracil

MATERIALS AND METHODS

Chemicals

Acetonitrile (HPLC grade), formic acid, water (HPLC grade), were purchased from Merck India Ltd, Mumbai, India. APIs of Mitomycin, Fluorouracil standards were procured from Glen mark, Mumbai.
The instrumentation
Waters Acquity model UPLC with quaternary pump, PDA detector
with empower 2.0 software was used [41].

Preparation of buffer
1 ml of formic acid is dissolved in 1 L of HPLC grade water and filter
through 0.45 µ filter paper.

Chromatographic conditions
The analysis was performed on reverse phase UPLC system with
isocratic elution mode using a mobile phase of acetonitrile and 0.1%
formic acid (70:30) and Inertsil ODS column (250x4.6 mm, 5 µ)
column with a flow rate of 1 ml/min.

Diluent
Water and Acetonitrile in the ratio (50:50) is used as diluent.

Validation procedure
The analytical parameters such as system suitability, precision,
specificity, accuracy, linearity, robustness, LOD, LOQ, forced
degradation and stability were validated according to ICH Q2 (R1)
guidelines [42-47].

Preparation of the standard stock solution
For standard stock solution preparation, add 70 ml of diluents to
100 mg of Mitomycin and 100 mg of Fluorouracil taken in a 100 ml
volumetric flask and sonicate for 10 min to fully dissolve the
contents and then makeup to the mark with diluent.

Preparation of standard solution
1 ml of solution is drawn from the above normal stock solution into
a 10 ml volumetric flask and diluted up to the level.

Preparation of sample solution
Take 130 mg of the sample drug Mitomycin and 100 mg of the
sample drug Fluorouracil into a 100 ml volumetric flask and add 70
ml of diluents and sonicate for 10 min to fully dissolve the contents
and then make up the mark with diluent. This solution is filtered into
a device using a 0.45µ nylon syringe in a vial.

RESULTS AND DISCUSSION
The main analytical challenge during development of a new method
was to separate active Pharma ingredients. In order to provide a
good performance the chromatographic conditions were optimized.

Method optimization
To optimize the chromatographic conditions, different ratios of
phosphate buffer and the acetonitrile in the mobile phase with
isocratic and gradient mode was tested. However, the mobile phase
composition was modified at each trial to enhance the resolution
and also to achieve acceptable retention times. Finally, 0.1% formic
acid buffer and acetonitrile with isocratic elution was selected
because it results in a greater response of active pharmacy
ingredients. During the optimization of the method, various
stationary phases such as C8, C18 phenyl and amino, inertsil ODS
columns were tested. From these trials the peak shapes were
relatively good with a inertsil ODS column of 250 x 4.6 mm, 5 µ. The
mobile phase flow rate has been done at 25 5 nm in order to obtain
enough sensitivity. By using above conditions, we get retention times
of Mitomycin and Fluorouracil were about 1.869 min. and 2.750 min
with a tailing factor of 1.05 and 1.11. The number of theoretical plates
for Mitomycin and Fluorouracil was 3624,5748, which indicate the
column’s successful output the % RSD for six replicate injections was
around 0.17% (Mitomycin) and 0.50% (Fluorouracil); the proposed
approach suggests that it is extremely precise. According to ICH
guidelines, the method established was validated.

System suitability
System suitability parameters have been calculated to check the
performance of the system. The parameters can be measured and
found to be within the limit, including USP plate count, USP tailing,
and percent RSD. Results of system suitability were given in the
following table 1 [48].

System suitability parameter	Acceptance criteria	Drug name	Mitomycin	Fluorouracil
USP Plate Count	NLT 2000	36.28	5.467	
USP Tailing	NMT 2.0	1.02	1.11	
USP Resolution	NLT 2.0	-	8.64	
% RSD	NMT 2.0	0.17	0.50	

Specificity
The capacity to test the analyte unequivocally in the presence of
other elements, such as impurities, Excitements that might be
assumed in order to be present in the sample solution and norm
solution, is specificity.

According to the test method placebo, sample and standard
solutions were analyzed individually to examine the interference.
The below fig. shows that the active ingredients were well separated
from blank and their exipients and there was no interference of
placebo with the principal peak. Hence the method is specific.

Table 1: Results of system suitability

Fig. 2: Chromatogram of system suitability
Fig. 3: Chromatogram of blank

Table 2: Linearity of mitomycin and fluorouracil

S. No.	Conc. µg/ml	Mitomycin area count	Conc. µg/ml	Fluorouracil area count
1	2.00	17504	5.00	236501
2	5.00	45653	12.50	603257
3	10.00	95687	25.00	1205746
4	20.00	191546	50.00	2451068
5	25.00	228167	62.50	2825715
6	30.00	280568	75.00	3498601
	Correl coef	0.9996		0.9990
	Slope	9328.11		46375.47
	intercept	134.12		22075.56

Fig. 4: Calibration plots of (A) Mitomycin (B) Fluorouracil
Linearity
The area of the linearity peak versus different concentrations has been evaluated for Mitomycin, Fluorouracil, as 10, 25, 50, 100, 125, 150 percent respectively. The linear regression analysis was plotted with the peak area versus concentration data. The correlation coefficients of regression, Percent, y-intercept and slope of the calibration curves were calculated. The correlation coefficients achieved greater than 0.999 for all.

Accuracy
In this method, Accuracy was conducted in triplicate by analyzing active pharma ingredient sample solution spiked with known amounts of all the impurities at three kinds of concentration levels of 50, 100 and 150% of each at a specified limit. For all impurities, percentage recoveries were measured and found to be within the limit. The accuracy and reliability of the developed method were established. The percentage recovery values were found to be in the range of 100.13-100.59% for Mitomycin and 99.81-99.95% for Fluorouracil. The results are given in table 3, 4 and 5.

Precision
The precision of an analytical technique is the degree of closeness of series of measurements derived from multiple homogeneous mixture samplings. The exactness of the process of related substances was performed by injection of six individual injection determinations of Mitomycin (20 ppm) and Fluorouracil (50 ppm).

Table 3: Results of accuracy

S. No.	% Level	Mitomycin % recovery	Fluorouracil % recovery
1	50	100.24	99.98
2	100	100.59	99.81
3	150	100.13	99.95
mean		100.32	99.91
SD		0.240	0.091

Mean±SD (n=3)

Table 4: Intraday precision results of mitomycin and fluorouracil

S. No.	Conc. (µg/ml)	Area counts	% Assay as is	Conc. (µg/ml)	Area counts	% Assay as is
1	20	191365	100	50	2451991	100.2
2	191143	99.9	2451387	100.1		
3	191650	100.2	2435647	99.5		
4	191554	100.1	2458475	100.4		
5	190546	99.6	2455305	100.3		
6	193341	101	2461250	100.5		

% RSD 0.49 0.47 0.37 0.36
Mean 100.13 100.17
SD 0.47188 0.35590

Mean±SD (n=6)

Intermediate precision
Six replicates of the sample solution were studied by various researchers, and on separate days different instruments were tested. The peak regions used to determine to mean percent RSD values have been calculated. The results are given in the following table.

Intraday precision
Six replicates of a sample solution containing Mitomycin (20µg/ml) and Fluorouracil (50µg/ml) were analysed on the same day. Peak areas were calculated, which were used to calculate mean, SD and % RSD values.

Interday precision
Six replicates of a sample solution containing Mitomycin (20µg/ml) and Fluorouracil (50µg/ml) were analysed on a different day. Peak areas were calculated which were used to calculate mean, SD and % RSD values. The present method was found to be precise as the RSD values were less than 2% and also the percentage assay values were close to be 100%. The results are given in table 5 [49].

Fig. 5: Chromatogram of sample
Table 5: Inter-day outcomes of accuracy of mitomycin and fluorouracil

S. No.	Conc. (µg/ml)	Area counts	% assay as is	Conc. (µg/ml)	Area count	% Assay as is
1	20	191884	100.2	50	2451206	100.1
2	20	191327	100.0	50	2451954	100.2
3	191009	99.8		2434567	99.4	
4	191567	100.1		2454877	100.3	
5	191256	99.9		2448512	100	
6	192368	100.5		2425457	99.1	

%RSD 0.26 0.25
Mean 100.08 99.85
SD 0.24833 0.48477

Mean±SD (n=6)

LOD and LOQ

LOD for LOD and LOQ were calculated separately using the calibration curve process. The LOD and LOQ of the compound were calculated using the developed RP-HPLC method by injecting increasingly lower concentrations of the standard solution. The LOD and LOQ concentrations and their S/N values were shown in the following table. The method is validated as per the ICH guidelines [50]. LOD and LOQ results were tabulated in table 6.

Table 6: LOD and LOQ for mitomycin and fluorouracil

LOD	Mitomycin	Fluorouracil	
LOD	LOD	LOD	
Concentration	s/n	Concentration	s/n
0.025 µg/ml	4	0.0083 µg/ml	28
0.208 µg/ml	2	0.065 µg/ml	7
0.208 µg/ml	25		

Fig. 6: Chromatogram of (A) LOD and (B) LOQ

Table 7: Robustness data of mitomycin and fluorouracil

Parameter name	% RSD Mitomycin	% RSD Fluorouracil
Flow minus (0.8 ml/min)	0.32	0.26
Flow plus (1.2 ml/min)	0.24	0.40
Organic minus (-10%)	0.21	0.68
Organic plus (+10%)	0.10	0.85
Robustness
The conditions of the experiment were designed to test the robustness of the established system intentionally altered, such as flow rate, mobile phase in organic percentage in all these varied conditions. The resolution between active Pharma ingredients from impurities was not significantly affected and there was no significant influence on the time of retention, plate count and tailing factor. Hence this method was robust [51].

Stability
The standard and sample solution was kept at room temperature and at 2-8 °C up to 24 h. Then these solutions were pumped into the device and calculate the % of deviation from initial to 24 h [52]. There was no significant deviation observed and confirmed that the solutions were stable up to 24 h percentage of the assay was not quite 2%. There is no effect in storage conditions for Mitomycin and Fluorouracil drugs.

Degradation studies
The Fluorouracil and Mitomycin sample was subjected into various forced degradation conditions to effect partial degradation of the drug. Studies of forced degradation have carried out to find out that the method is suitable for products of degradation [53, 54]. In addition, the studies provide details about the conditions during which the drug is unstable in order that the measures are often taken during formulation to avoid potential instabilities.

Acid degradation
1 ml of standard stock solution passed on to a volumetric flask of 10 ml of 1N HCl and leaves it for 15 min. After 15 min add 1 ml of 1N NaOH and made up to the mark with diluents.

Alkali degradation
1 ml of standard stock solution was put in a 10 ml volumetric flask and add 1 ml of 1N NaOH and leave it for 15 min. After 15 min add 1 ml of 1N HCl and made up to the mark with diluents.

Peroxide degradation
In a 10 ml volumetric flask, 1 ml of standard stock solution was transferred, add 0.3 ml of 30% hydrogen peroxide and made up to the mark with diluents.

Reduction degradation
In a 10 ml volumetric flask, 1 ml standard stock solution was transferred and add 1 ml of 30% sodium bi sulphate solution and made up to the mark with diluents.

Table 8: Stability results of mitomycin and fluorouracil at RT

Stability	Mitomycin	Fluorouracil
Initial	100	100
6 H	99.9	99.9
12 H	99.8	99.2
18 H	99.7	98.8
24 H	99.6	98.4

Stability	Mitomycin	Fluorouracil
Initial	100.2	100
6 H	100.1	99.8
12 H	99.9	99.3
18 H	99.8	98.9
24 H	99.7	98.4

Table 9: Stability results of mitomycin and fluorouracil at 2-8 °C

Degradation condition	Mitomycin	Fluorouracil		
% assay	% Deg	% assay	% Deg	
Acid degradation	84.7	15.2	83.2	16.5
Alkali degradation	86.9	13.1	83.3	16.7
Peroxide degradation	86.3	13.7	87.7	12.3
Reduction degradation	88.5	11.5	85.4	14.6
Thermal degradation	89.1	10.9	88.9	11.1

The standard solution was set in an oven at 105° for 6 h. The resultant solution was injected into HPLC.

CONCLUSION
We present in this article simple, selective, validated and well-defined stability that shows gradient RP-UPLC methodology for the quantitative determination of Mitomycin and Fluorouracil. All the products of degradation formed during the stress conditions and the related active pharma ingredients are well separated and peaks were well resolved from each other and separate with an appropriate retention time, indicating that the proposed method to be fast, simple, feasible and affordable in assay condition. Therefore the developed method during stability tests, it can be used for routine analysis of production samples and to verify the quality of drug samples during stability studies.

ACKNOWLEDGEMENT
The authors are grateful to the management of Shree Icon Pharmaceutical Laboratory, Labbipeta, Vijayawada, Andhra Pradesh, India, for providing the necessary facilities and assistance in carrying out this study.

FUNDING
Nil

AUTHORS CONTRIBUTIONS
All authors have contributed equally.
CONFLICTS OF INTERESTS
Declared none

REFERENCES
1. Baltz DM, Bush JA, Bradner WT, Doyle TW, O’Herron FA. Nettleton DE. Isolation of lavendamycin, a new antibiotic from streptomycyes lavendulae. J Antibiot 1982;35:259-65.
2. Hosted TJ, Wang T, Horan AC. Characterization of the streptomycyes lavendulae IMRU 3455 linear plasmid pLiV45S. Microbiology 2004;150:1819-27.
3. Addison K, Braden JH, Cupp JF, Emert D, Hall LA, Hall T, et al. Update: guidelines for defining the legal health record for disclosure purposes. JAHMA 2005;76:64A-64G.
4. Emsminger AW. Legionella pneumophila, armed to the hilt: justifying the largest arsenal of effectors in the bacterial world. Curr Opin Microbiol 2015;10:841–51.
5. Best, Ashley, Kwak, Yousef Abu. Evolution of the arsenal of legionella pneumophila effectors to modulate protist hosts. mBio 2019;10:e01141.3.
6. Charpentier X, Kay E, Schneider D, Shuman HA. Antibiotics and UV radiation induce competence for natural transformation in legionella pneumophila. J Bacteriol 2011;193:1114–21.
7. Saito Y, Taguchi H, Akamatsu T. DNA taken into bacillus subtilis competent cells by lysed-lystoplast transformation is not ssDNA but dsDNA. Int J Biosci Biotech 2006;10:334-9.
8. Yoyedinok NL, Blume YaB. Advances, problems, and prospects of DNA taken into bacillus subtilis competent cells by lysed-lystoplast transformation is not ssDNA but dsDNA. J Biosci Bioeng 2006;10:334–9.
9. Balitz DM, Bush JA, Bradner WT, Doyle TW, O’Herron FA, Hosted TJ, Wang T, Horan AC. Diagnostic accuracy of CT scan in staging resectable esophageal cancer. JPMMA. J Puch Med Assoc 2016;66:90–2.
10. Polistina F, Di Natale G, Boniaccelli G, Ambrosino G, Frego M. Neoadjuvant strategies for pancreatic cancer. World J Gastroenterol 2014;20:937–83.
11. Burstein HJ, Temin S, Anderson H, Buchholz TA, Davidson NE, Germon KE, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. J Clin Oncol 2014;32:2255–69.
12. Luhn P, Walker J, Schillman M, Zuna RE, Dunn ST, Gold MA, et al. The role of co-factors in the progression from human papillomavirus infection to cervical cancer. Gynecol Oncol 2013;128:265-70.
13. Askew DA, McKean SM, Soper H, Wilkinson D. Effectiveness of 5-fluorouracil treatment for actinic keratosis—a systematic review of randomized controlled trials. Int J Dermatol 2009;48:53-63.
14. Fusco N, Lopez G, Gianelli U. Basal-cell carcinoma and seborrheic keratoses: when opposites attract. Int J Surg Pathol 2015;23:464.
15. Moore AV. Clinical applications for topical 5-fluorouracil in the treatment of dermatological disorders. J Dermatol Treat 2009;20:329–35.
16. Matera, Carlo, Gombia, Alexandre MJ, Camaeraro. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018;140:15764–73.
17. Peters GJ, Backus HH, Freemantle S, Van Triest B, Codacci Pisanelli G. Induction of thymidylate synthase as a 5-fluorouracil resistance mechanism. Biochem Biophys Acta 2002;1587:194-201.
18. World Health Organization. World Health Organization model list of essential medicines: 21st list 2019. Geneva: World Health Organization; 2019.
19. Bethune G, Campbell J, Rocker A, Bell D, Rendon R, Merrimen J. Clinical and pathologic factors of prognostic significance in penile squamous cell carcinoma in a North American population. Urology 2012;79:1092–7.
20. Wang X, Khan R, Coleman A. Device-modified trabecelectomy for glaucoma. Cochrane Database Syst Rev 2015;12:CD010472.
21. Pardianto G. Recent awareness and consideration of intraocular pressure fluctuation during eye surgery. J Cataract Refract Surg 2015;41:695.
22. Cijo M Xavier, Kanakapura Basawiah. RP-UPLC development and validation of metformin hydrochloride in pure drug and pharmaceutical formulations. World J Pharm Pharm Sci 2015;4:1649-68.
23. Shalini K, Ilango K. Development, evaluation and RP-HPLC method for simultaneous estimation of doravirine, tenofovir disoproxil fumarate and lamivudine. Int J Pharm Pharm Sci 2021;13:153-9.
24. Shalini K, Ilango K. Development, evaluation and RP-HPLC method for simultaneous estimation of doravirine, tenofovir disoproxil fumarate and lamivudine. Int J Pharm Pharm Sci 2021;13:153-9.
25. Heng SM, Feng YF, Xu L, Li Y, Huang JH. Efficacy of mitomycin c in endoscopic dacrocyctorhinostomy: a systematic review and meta-analysis. PLoS One 2013;8:e62737.
26. Holick MF. Vitamin D, sunlight and cancer connection. Anticancer Agents Med Chem 2013;13:70–82.
27. Emilsson L, Holme O, Borgenauer M, Cook NR, Buring JE, Leberg M, et al. Systematic review with meta-analysis: the comparative effectiveness of aspirin vs. screening for colorectal cancer prevention. Aliment Pharmacol Ther 2017;45:193–204.
28. Sultan, Rizwan, Haider, Zishaw, Chawla, Tabish Umer. Diagnostic accuracy of CT scan in staging resectable esophageal cancer. JPMMA. J Puch Med Assoc 2016;66:90–2.
impurity profiling of sodium nitroprusside in injection dosage form. Int J Appl Pharm 2021;13:160-9.
47. Sanathoiba Singha L, Srinivasa Rao T. Development and validation of an RP-HPLC method for the determination of ulipristal acetate in pharmaceutical dosage form. Asian J Pharm Clin Res 2021;14:83-9.
48. Asha Eluru, Surendra Babu K. A study of method development, validation and forced degradation for simultaneous quantification of povidone-iodine and ornidazole in bulk and pharmaceutical dosage form by using RP-HPLC. IJPSR 2021;12:1217-22.
49. Malathi S, Devakumar D. Development and validation of RP-HPLC method for the estimation of escitalopram oxalate and flupentixol dihydrochloride in combined dosage form and plasma. Int J Pharm Pharm Sci 2021;13:61-6.
50. Rafi S, Rambabu K. Stability indicating validated HPLC method for the determination of aceclofenac and misoprostol in bulk and pharmaceutical formulation. Int J Res Pharm Sci 2020;11:7848-53.
51. Raviteja G, Rambabu K. A study of development and validation of a method for simultaneous estimation of cidofovir and famciclovir using RP-HPLC. Int J Res Pharm Sci 2020;11:7878-84.
52. Sruthi A, Uttam Prasad P. Stability indicating method development and validation of fimasartan by reverse phase high-performance liquid chromatography in bulk and pharmaceutical dosage form. Asian J Pharm Clin Res 2021;14:138-46.
53. Mohinish Sahai, N Devanna. Validated stability indicating HPLC approach for quantifying tricholine citrate and cyproheptadine simultaneously in syrup forms. Int J Appl Pharm 2021;13:207-13.
54. Abdul Raziq, Syed Umer Jan. Relative comparison of stability and degradation of methylcobalamin tablets of different brands at different storage settings. Int J Appl Pharm 2021;13:171-5.