Determination of charm quark mass from temporal moment of charmonium correlator with Mobius Domain Wall fermion

[arxiv:1606.01002]

NAKAYAMA Katsumasa (Nagoya Univ.)

S. Hashimoto, B. Fahy (KEK) for JLQCD Collaboration

2016/07/25@LATTICE2016
◇ Charm quark mass from the temporal moment

- Determination of charm quark mass with $\delta m_c < 1.0\%$

◇ New calculation with Domain-Wall fermion
 (at α: 0.083 ~ 0.044 fm).

Previous works (HPQCD 2008-14)
- Staggered fermion
- Lattice spacings: 0.15 ~ 0.06 fm

This work
- Domain-Wall fermion
- 0.083 ~ 0.044 fm

$m_c(m_c) = 1.272(10)$ GeV

- Truncation of perturbative expansion is a significant source of uncertainty in moment method
Update since Lattice 2015

- Estimations of perturbative truncation error
- Consistency check with the experimental data (Vector)
 - Improved measurement with the \mathbb{Z}_2 noize source
 \implies Less statistical error
 - Leading effect subtracted using an effective theory
 \implies Flatter continuum extrapolation
What is the Moment?
diamond Correlator and moment

Current correlator

\[q^2 \Pi(q^2) = i \int dx e^{i qx} \langle j_5(x) j_5(0) \rangle \]

Moment: Derivative in terms of \(q^2 \)

\[g_{2n} = \frac{1}{n!} \left(\frac{\partial}{\partial q^2} \right)^n (q^2 \Pi(q^2))_{q^2=0} \]

Perturbative expansion available as a function of \(m_c^{\overline{\text{MS}}} \), \(\alpha^{\overline{\text{MS}}} \).

[K. G. Chetyrkin et al. (2006)]
[R. Boughezal et al. (2006)]
[A. Maier et al. (2009)]
Moment on the lattice

- **Coordinate space**

\[i \int dx \frac{1}{n!} \left(\frac{\partial}{\partial q^2} \right)^n e^{iqt} \rightarrow a^4 \sum_x t^{2n} \]

- **Correlator** \(G(t) \) **on the lattice**

\[G(t) = a^6 \sum_x (am_{0c})^2 \langle j_5(x)j_5(0) \rangle \]

- **Moment is easily calculated from** \(G(t) \)

\[G_n = \sum_t \left(\frac{t}{a} \right)^n G(t) \]
What’s the Moment?

Typical energy scale of the moment $G_m \sim m/n$

$$G_n = \sum_t \left(\frac{t}{a} \right)^n G(t)$$

$am\eta_c \sim 0.6636$
What’s the Moment? (From comparison with experiment)

- Vector moment can be measured in the experiment.

\[
\frac{1}{n!} \left(\frac{\partial}{\partial q^2} \right)^n (\Pi(q^2))_{q^2=0} = \frac{1}{12\pi Q_f^2} \int ds \frac{1}{s^{n+1}} R(s)
\]

- Moment is a weighted integral of the R-ratio.

\[
R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadron})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}
\]
What’s the Moment? (From comparison with experiment)

- **Vector** moment can be measured in the experiment.

- Moment is a weighted integral of the **R-ratio**.

\[
R(s) = \frac{\sigma(e^+e^- \rightarrow \text{hadron})}{\sigma(e^+e^- \rightarrow \mu^+\mu^-)}
\]
Consistency with experiment (Vector)

$R_n / (1 + f_1 (m_u + m_d + m_s) / m_c)$

- **Exp+Pheno**
- **Lattice result**

$n = 6$

$n = 8$

- [B. Dehnadi et al. (2011)]
- [J. H. Kuhn et al. (2007)]
- [J. H. Kuhn et al. (2001)]
- [A. H. Hoang et al. (2004)]

◎ Good agreement with the experimental + phenomenological analysis.
\(m_c \) Extraction
Correspondence between lattice and continuum

\[G_n^{(\text{Lat})} = g_n^{(\text{cont})} \left(m_c^{\overline{\text{MS}}} , \alpha_{\overline{\text{MS}}} \right) \bigg/ (am_c^{\overline{\text{MS}}})^{n-4} \]

Define the reduced moment \(R_n \)
with \(G_n \) and \(G_n^{(0)} \), the counterparts at the tree-level,

Lattice

\[R_n = \frac{am_c \eta_c}{2am_c} \left(\frac{G_n}{G_n^{(0)}} \right)^{\frac{1}{n-4}} \]

Continuum

\[r_n = \left(\frac{g_n}{g_n^{(0)}} \right)^{\frac{1}{n-4}} \]

\[R_n = \frac{m_{\eta_c}^{\text{exp}}}{2m_c^{\overline{\text{MS}}}} r_n \left(m_c^{\overline{\text{MS}}} , \alpha_{\overline{\text{MS}}} \right) \]
Lattice setup

- Mobius Domain Wall Fermion formalism

- $n_f = 2 + 1$ in the sea;

3 different lattice spacings for taking continuum limit.

β	a^{-1} [GeV]	$L \times T$	L_5	am_{ud}	am_s	conffgs	m_π [MeV]	$m_\pi L$
4.17	2.4531(40)	$32^3 \times 64$ ($L = 2.6$ fm)	12	0.0035	0.040	300	230	3.0
				0.007	0.030	300	310	4.0
				0.007	0.040	300	310	4.0
				0.012	0.030	300	400	5.2
				0.012	0.040	300	400	5.2
				0.019	0.030	300	500	6.5
				0.019	0.040	300	500	6.5
		$48^3 \times 96$ ($L = 3.9$ fm)	12	0.0035	0.040	401	230	4.4
4.35	3.6097(89)	$48^3 \times 96$ ($L = 2.6$ fm)	8	0.0042	0.0180	300	300	3.9
				0.0042	0.0250	300	300	3.9
				0.0080	0.0180	301	410	5.4
				0.0080	0.0250	297	410	5.4
				0.0120	0.0180	298	500	6.6
				0.0120	0.0250	300	500	6.6
4.47	4.4961(92)	$64^3 \times 128$ ($L = 2.8$ fm)	8	0.0030	0.015	397	280	4.0
Construct moments from $G(t)$, \[G_n = \sum_{t} \left(\frac{t}{a} \right)^n G(t) \]

Interpolate to the physical point by tuning \((3m_{J/\psi} + m_{\eta_c})/4 \)

Chiral extrapolation
Extrapolation to continuum ($a = 0$)

$$R_n(a) = R_n(0) \left(1 + c_1(a m_c)^2\right) \times \left(1 + f_1 \frac{m_u + m_d + m_s}{m_c}\right)$$

R_n	(Stat.)($O(a^4)$) (Vol.)
R_6	1.5048(5)(5)(4)
R_8	1.3570(4)(22)(3)
R_{10}	1.2931(4)(27)(5)

Essentially flat (~1) term

\[R_6 = 1.5048(5)(5)(4)\]
\[R_8 = 1.3570(4)(22)(3)\]
\[R_{10} = 1.2931(4)(27)(5)\]
Possible systematic errors

\[R_n = \frac{m_{\eta_c}^{\text{exp}}}{2m_c^{\text{MS}}} r_n(m_c^{\overline{\text{MS}}}, \alpha_{\overline{\text{MS}}}) \]

(1): Truncation error from perturbative expansion of \(r_n \)

(2): Input meson mass \(m_{\eta_c}^{\text{exp}} \) error

After correcting for...
(a) Electromagnetic effect,
(b) Disconnected diagram contributions.

(3): Gluon condensate contribution
Error 1 Perturbative truncation

\[R_n = \frac{m_{\eta c}^{\text{exp}}}{2m_{c}^{\overline{\text{MS}}}} r_n(m_{c}^{\overline{\text{MS}}}, \alpha_{\overline{\text{MS}}}) \]

should depend on the renormalization scale \(\mu \) at all order of perturbative series.

\[(r_6)^2 = 1 + \left(3.9 + 2.0 \log \frac{m_{c}(\mu)^2}{\mu^2} \right) \frac{\alpha_s}{\pi} + \left(13.6 + 3.0 \log \frac{m_{c}(\mu)^2}{\mu^2} - 0.08 \left(\log \frac{m_{c}(\mu)^2}{\mu^2} \right)^2 \right) \left(\frac{\alpha_s}{\pi} \right)^2 + \left(13.2 + 14.2 \log \frac{m_{c}(\mu)^2}{\mu^2} + 1.03 \left(\log \frac{m_{c}(\mu)^2}{\mu^2} \right)^2 + 0.06 \left(\log \frac{m_{c}(\mu)^2}{\mu^2} \right)^3 \right) \left(\frac{\alpha_s}{\pi} \right)^3 \]

Estimate the truncation error from \(\mu \) dependence of \(\frac{r_n(\mu)}{m_{c}^{\overline{\text{MS}}}(\mu)} \)
Estimation with $\mu_m = \mu_\alpha$.

Error is estimated in this region
Estimation with $\mu_m \neq \mu_\alpha$ as conservative one

	$\mu_m = \mu_\alpha$	$\mu_m \neq \mu_\alpha$
$m_c(3\text{GeV})$	0.26%	0.77%
$\alpha_s(3\text{GeV})$	1.9%	4.7%

Similar analysis with [B. Dehnadi et al. (2013),(2015)]

→ More conservative estimation

Error is estimated in this region
Result with three inputs.
(Gluon condensate is another free parameter)

\[R_n = \frac{m_{\eta_c}^{\text{exp}}}{2m_c^{\overline{\text{MS}}}} r_n(m_c^{\overline{\text{MS}}}, \alpha_s^{\overline{\text{MS}}}) \]
Result ($\mu_m \neq \mu_\alpha$)

- More conservative estimation of the perturbative error.

	Lattice	m_{η_c}(negligible)							
$m_c(3\text{GeV})$ [GeV]	$1.0033(96)$	(77) \(1/2\)	4	$O(a^4)$	30	4	(3)	(4)	(6)
$\alpha_s(3\text{GeV})$	$0.2528(127)$	(120)	32	2	(26)	1	(0)	(0)	(1)

- Perturbative error is $\times 2$ larger than that of $\mu_m = \mu_\alpha$ and dominant source of the systematic error.

- ~1% precision is achieved for $m_c^{\overline{\text{MS}}}$.

- $R_6/R_8, R_8, \& R_{10}$
Result ($\mu_m \neq \mu_\alpha$)

	This work	PDG(2014)
$m_c^{\overline{\text{MS}}} (\mu = 3 \text{ GeV})$	1.003(10) GeV	
$m_c^{\overline{\text{MS}}} (\mu = m_c^{\overline{\text{MS}}})$	1.287(12) GeV	1.275(25) GeV
$\alpha_{\overline{\text{MS}}} (\mu = 3 \text{ GeV})$	0.253(13)	0.2567(34)
$\alpha_{\overline{\text{MS}}} (\mu = M_Z)$	0.1177(26)	0.1185(6)
$\Lambda_{\overline{\text{MS}}}^{n_f=4}$	286(37) MeV	297(8) MeV
$\Lambda_{\overline{\text{MS}}}^{n_f=5}$	205(32) MeV	214(7) MeV
Summary

- We extract $m_c^{\overline{\text{MS}}}$ and $\alpha_{\overline{\text{MS}}}$ from the temporal moments of charmonium current correlators.

- Take continuum limit by the data at $a^{-1} = 2.4, 3.6, 4.5$ GeV. Discretization effect is significant but controllable, and perturbative truncation is more important.

- In the vector channel, The moments are consistent with the experimental R-ratio.

\[
m_c^{\overline{\text{MS}}}(3 \ \text{GeV}) = 1.003(10) \ \text{GeV} \\
\alpha_{\overline{\text{MS}}}(3 \ \text{GeV}) = 0.253(13)
\]
Backup slides
Typical energy scale depends on the weight factor n

$$a^{-1} \gg (\text{Energy scale}) \gg \Lambda_{\text{QCD}} \quad \rightarrow \quad 6 \leq n \ll 20$$

Window

Energy scale

Contains Discretization effect

$\Lambda_{\text{QCD}} \sim 300 \text{ MeV}$

$am_{\eta_c} \sim 0.6636$
Error 1 Input meson mass $m^{\text{exp}}_{\eta_c}$ error

- We use PDG value, $m^{\text{exp}}_{\eta_c} = 2.9836(7)$ GeV, after correcting for...
 - (a) Electromagnetic effect,
 - (b)Disconnected diagram contributions.

- Estimates from previous works (lattice, pheno):

 Electromagnetic

 \[
 m_{\eta_c} - m_{\eta_c}^{\text{no EM}} = -2.4(8) \text{ MeV}
 \]

 [E. Follana, et al. (2007)]

 Disconnected

 \[
 m_{\eta_c} - m_{\eta_c}^{\text{no Disconnect}} = -2.6(13) \text{ MeV}
 \]

 [C. T. H. Davis, et al. (2007)]
Error \(\mathbf{1} \) Input meson mass \(m_{\eta_c}^{\text{exp}} \) and error
Error \(\circledast\) Finite volume effect

- Prepare two ensembles (same setup except for the volume)

\[
\begin{align*}
R_n(L = 32) & \quad m_\pi L \sim 3.0 \\
R_n(L = 48) & \quad m_\pi L \sim 4.4
\end{align*}
\]

Finite volume error

\[
\delta_L R_n = |R_n(L = 48) - R_n(L = 32)|
\]
Error ❹ Gluon condensate

- Perturbative calculation does not contain gluon condensate.

It is known to 2-loop by OPE.

\[\langle \left(\frac{\alpha_s}{\pi} \right) G^{\mu\nu} G_{\mu\nu} \rangle \frac{1}{n-4} \]

- We may extract it as a solution of the equations, \(n = 6, 8, \) & 10.

\[\frac{\langle \left(\frac{\alpha_s}{\pi} \right) G^{\mu\nu} G_{\mu\nu} \rangle}{m^4} = -0.0006(78) \]
Dependence is almost canceled out.
Actually, we consider $\mu_\alpha \neq \mu_m (\alpha(\mu_\alpha), m_c(\mu_m))$, not only $\mu_\alpha = \mu_m$ [B. Dehnadi, A. H. Hoang, and V. Mateu (2015)]
Consistency with experiment (Vector)

\[G^{(\text{Lat})}_n = g^{(\text{conti})}_n \left(\frac{m_c^{\text{MS}}}{am_c^{\text{MS}}} \right)^{n-4} \]

\[\tilde{Z}_V(x) = Z_V + c_{-2}x^{-2} + c_4x^4 + c_6x^6 + O(x^8) \]

\[Z_V(a^{-1} = 4.47 \, \text{GeV}) = 0.9651(46) \]
Vector current Moment

\[R_n = \frac{m_{\eta_c}^{\text{exp}}}{2m_{c}^{\text{MS}}} r_n(m_{c}^{\text{MS}}, \alpha_{\text{MS}}) \]

Charm quark mass and Strong coupling…?
\[R_n = \frac{m_n^{\text{exp}}}{2m_c^{\overline{\text{MS}}}} r_n(m_c^{\overline{\text{MS}}}, \alpha^{\overline{\text{MS}}}) \]
Error ❶ Input meson mass $m_{\eta_c}^{\text{exp}}$ error

- Finally we use...

\[
m_{\eta_c}^{\text{modified}} = 2983.6 + 2.4_{\text{Disc.}} + 2.6_{\text{EM}} \pm (0.7)_{\text{PDG}} \pm (0.8)_{\text{Disc.}} \pm (1.3)_{\text{EM}} \pm (2.3)_{\text{split}}
\]

◆ Note: All of these error sources are negligible.
Moment and R-ratio

Residue theorem (or Dispersion relation)

\[
\frac{1}{n!} \left(\frac{\partial}{\partial q^2} \right)^n (\Pi(q^2))_{q^2=Q_0^2} = \int \frac{dq^2}{2\pi i} \frac{1}{(q^2 - Q_0^2)^{n+1}} \Pi(q^2)
\]

Contour integral

\[
= \int \frac{dq^2}{2\pi i} \frac{1}{(q^2 - Q_0^2)^{n+1}} 2i \text{Im} [\Pi(q^2)]
\]

Optical theorem

\[
= \int \frac{dq^2}{\pi} \frac{q^2}{(4\pi\alpha)^2 Q_f^2} \frac{1}{(q^2 - Q_0^2)^{n+1}} \sigma_{e^+ e^- \rightarrow \text{hadron}}(q^2)
\]

\[
= \frac{1}{12\pi Q_f^2} \int dq^2 \frac{1}{(q^2 - Q_0^2)^{n+1}} \frac{\sigma_{e^+ e^- \rightarrow \mu^+ \mu^-}(q^2)}{\sigma_{e^+ e^- \rightarrow \text{hadron}}(q^2)}
\]

Take \(Q_0 = 0 \)

\[
\frac{1}{n!} \left(\frac{\partial}{\partial q^2} \right)^n (\Pi(q^2))_{q^2=0} = \frac{1}{12\pi Q_f^2} \int ds \frac{1}{s^{n+1}} R(s)_{e^+ e^- \rightarrow \text{hadron}}
\]
Perturbative moment

k	\(C_k^{(0)} \)	\(C_k^{(10)} \)	\(C_k^{(11)} \)	\(C_k^{(20)} \)	\(C_k^{(21)} \)	\(C_k^{(22)} \)	\(C_k^{(30)} \)	\(C_k^{(31)} \)	\(C_k^{(32)} \)	\(C_k^{(33)} \)
1	1.3333	3.1111	0.0000	0.1154	-6.4815	0.0000	-1.2224	2.5008	13.5031	0.0000
2	0.5333	2.0642	1.0667	7.2362	1.5909	-0.0444	7.0659	-7.5852	0.5505	0.0321
3	0.3048	1.2117	1.2190	5.9992	4.3373	1.1683	14.5789	7.3626	4.2523	-0.0649
4	0.2032	0.7128	1.2190	4.2670	4.8064	2.3873	13.3285	14.7645	11.0345	1.4589
5	0.1478	0.4013	1.1821	2.9149	4.3282	3.4971	16.0798	16.6772	4.4685	
6	0.1137	0.1944	1.1366	1.9656	3.4173	4.4992	14.1098	19.9049	8.7485	
7	0.0909	0.0500	1.0912	1.3353	2.2995	5.4104	10.7755	20.3500	14.1272	
8	0.0749	-0.0545	1.0484	0.9453	1.0837	6.2466	7.2863	17.9597	20.4750	

n=4,6,8,10
Z_V factor extraction

\[
\begin{array}{c|c}
\text{Input } Z_V & \text{Predict } R_n \\
\end{array}
\]

then invert it...

\[
\begin{array}{c|c}
\text{Input } R_n & \text{Predict } Z_V \\
\end{array}
\]

- Moment is known perturbatively (and experimentally).

\[
\begin{array}{c|c}
\text{(Input Experiment)} & \delta Z_V \sim 1\% \\
\end{array}
\]

\[
\begin{array}{c|c}
\text{Input Perturbation} & \delta Z_V \sim 3\% \\
\end{array}
\]

(or 2% with PDG α_{MS})
TABLE IX. Numerical results for $m_c(\mu)$ (top panel), $\alpha_s(\mu)$ (mid panel) and $<\alpha/\pi G^2>$ (bottom panel). The scale dependent quantities, $m_c(\mu)$ and $\alpha_s(\mu)$, are renormalized at $\mu = 3$ GeV. The results are listed for different choices of three input quantities out of R_6, R_8, R_{10} and R_6/R_8. In addition to the central values with combined errors, the breakdown of the error is presented. They are the estimated errors from the truncation of perturbative expansion, the input value of $t_{1/2}$, statistical, discretization error of $O(a^4)$ (or $O(\alpha_s a^2)$), finite volume, experimental data for $m_{\eta_c}^{\text{exp}}$, disconnected contribution, electromagnetic effect, in the order given. The total error is estimated by adding the individual errors in quadrature.

inputs	$m_c(\mu)$ [GeV]	pert $t_{1/2}$	stat $O(a^4)$	vol $m_{\eta_c}^{\text{exp}}$	disc EM
R_6, R_8, R_{10}	$1.0032(98)$	(82)	(51)	(5)	(16)
R_6, R_6/R_8, R_{10}	$1.0031(194)$	(176)	(78)	(6)	(18)
R_6/R_8, R_8, R_{10}	$1.0033(96)$	(77)	(49)	(4)	(30)

inputs	$\alpha_s(\mu)$	pert $t_{1/2}$	stat $O(a^4)$	vol $m_{\eta_c}^{\text{exp}}$	disc EM
R_6, R_8, R_{10}	$0.2530(256)$	(213)	(134)	(12)	(38)
R_6, R_6/R_8, R_{10}	$0.2528(127)$	(120)	(33)	(2)	(25)
R_6/R_8, R_8, R_{10}	$0.2528(127)$	(120)	(32)	(2)	(26)

inputs	$<\alpha/\pi G^2>$	pert $t_{1/2}$	stat $O(a^4)$	vol $m_{\eta_c}^{\text{exp}}$	disc EM
R_6, R_8, R_{10}	$-0.0005(99)$	(85)	(45)	(4)	(23)
R_6, R_6/R_8, R_{10}	$-0.0006(144)$	(133)	(49)	(4)	(23)
R_6/R_8, R_8, R_{10}	$-0.0006(78)$	(68)	(29)	(3)	(22)