Association of immunological features with COVID-19 severity: a systematic review and meta-analysis

Zhicheng Zhang
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Guo Ai
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Liping Chen
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Shunfang Liu
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Chen Gong
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Xiaodong Zhu
Huang Gang Central Hospital

Chunli Zhang
Huang Gang Central Hospital

Hua Qin
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Jinjin Huang (✉ zczhang@tjh.tjmu.edu.cn)
Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology

Research article

Keywords: COVID-19, Severity, Immune cells, Cytokines, Meta-analysis

DOI: https://doi.org/10.21203/rs.3.rs-38914/v1

License: ☺️ ☑️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background

We aim to explore the association of immunological features with COVID-19 severity.

Methods

We conducted a meta-analysis to estimate mean difference (MD) of immune cells and cytokines levels with COVID-19 severity in PubMed and Web of Science.

Results

A total of 16 studies with 1689 COVID-19 patients were included. Compared with mild cases, severe cases showed significantly lower levels of immune cells, CD3+ T cell ($\times 10^6$, MD, -413.87; 95%CI, -611.39 to -216.34), CD4+ T cell ($\times 10^6$, MD, -225.89; 95%CI, -306.36 to -145.43), CD8+ T cell ($\times 10^6$, MD, -138.59; 95%CI, -176.36 to -100.82), B cell ($\times 10^6$/L; MD, -23.87; 95%CI, -43.97 to -3.78) and NK cell ($\times 10^6$/L; MD, -57.12; 95%CI, -81.18 to -33.06), and significantly higher levels of cytokines, TNF-α (pg/ml; MD, 0.34; 95%CI, 0.09 to 0.59), IL-5 (pg/ml; MD, 14.2; 95%CI, 3.99 to 24.4), IL-6 (pg/ml; MD, 13.07; 95%CI, 9.80 to 16.35), and IL-10 (pg/ml; MD, 2.04; 95%CI, 1.32 to 2.75). However, no significant differences were found in other indicators, IFN-γ (pg/ml; MD, 0.26; 95%CI, -0.05 to 0.56), IL-2 (pg/ml; MD, 0.05; 95%CI, -0.49 to 0.60), IL-4 (pg/ml; MD, -0.03; 95%CI, -0.68 to 0.62), Treg cell ($\times 10^6$, MD, -0.13; 95%CI, -1.40 to 1.14), and CD4+/CD8+ ratio (MD, 0.17; 95%CI, -0.14 to 0.49).

Conclusion

Our meta-analysis revealed significant lower levels in immune cells (CD3+ T, CD4+ T, CD8+ T, B and NK cells) and significant higher levels in cytokines (TNF-α, IL-5, IL-6 and IL-10) in severe cases compared with mild cases of COVID-19. Measurement of immunological features could help to assess disease severity for effective triage of COVID-19 patients.

Background

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has been spreading all over the world [1]. Till June 16, 2020, the SARS-CoV-2 has infected over 8 million patients and caused over 440,000 deaths. The severity of COVID-19 may be strongly related to immune status of patients, but this is poorly understood. Therefore, it is necessary to explore the association of immunological features with COVID-19 severity, which may help to identify immune markers of disease severity for effective triage of COVID-19 patients.

Some studies focused on the association between immunologic features and COVID-19 severity, but the conclusions remain controversial. Chen et al. found that the SARS-CoV-2 infection may decrease primarily T lymphocytes, particularly CD4+ and CD8+ T cells [2]. Qin et al. showed that the increase in
cytokines levels (tumor necrosis factor alpha (TNF-α), interleukin-5 (IL-5), IL-6 and IL-10) correlated with COVID-19 course, especially in severe cases [3]. However, other studies revealed no significant differences in CD4\(^+\) and CD8\(^+\) T cell [3] and some cytokines (IL-5, IL-6 and IL-10) [4] between severe cases and mild cases. Thus, we presented a meta-analysis of 15 studies in order to assess the association between immune cells (CD4\(^+\) T, CD8\(^+\) T, CD3\(^+\) T, Treg, B, and NK cells) and cytokines (TNF-α, interferon gamma (IFN-γ), IL-2, IL-4, IL-5, IL-6 and IL-10) and COVID-19 severity.

Methods

Search Strategy

We performed a systematic literature search to identify relevant studies published up to June 16, 2020 in PubMed and Web of Science. The following combined search terms were used: 1) (“Novel coronavirus” OR “Coronavirus disease 2019” OR “Coronavirus 2019” OR “nCoV-2019” OR “2019-nCoV” OR “COVID-19” OR “SARS-CoV-2”) and (“CD3\(^+\)T” OR “CD4\(^+\)T” OR “CD8\(^+\)T” OR “CD4\(^+\)/CD8\(^+\)” OR “Treg” OR “B cell” OR “NK cell”); 2) (“Novel coronavirus” OR “Coronavirus disease 2019” OR “Coronavirus 2019” OR “nCoV-2019” OR “2019-nCoV” OR “COVID-19” OR “SARS-CoV-2”) and (“interferon gamma” OR “tumor necrosis factor alpha” OR “IL-2” OR “IL-4” OR “IL-5” OR “IL-6” OR “IL-10”).

Study selection

Inclusion criteria of the study were as follows: 1) it provided data on immune cells (CD4\(^+\) T, CD8\(^+\) T, CD3\(^+\) T, CD4\(^+\)/CD8\(^+\), Treg, B and NK cells), and cytokines (IFN, TNF-α, IL-2, IL-4, IL-5, IL-6 and IL-10) with mean ± standard deviation (SD) or median (interquartile range, IQR); 2) patients could be grouped into severe cases and mild cases; and 3) it provided clear information on COVID-19 confirmation and included patients.

Two investigators developed the search strategy and one investigator conducted the primary systematic search for all studies meeting the predetermined inclusion criteria. The titles and abstracts of the retrieved articles were screened for duplicates and relevance to the topic. A second investigator checked study eligibility, quality assessment, and data extraction, for validity and consistency. Full-text reports of the identified citations were reviewed by both the primary and secondary investigators in order to select the final studies. Any discrepancy was resolved by consensus, and if necessary, by consultation with the third investigator.

Data extraction

The following data were extracted from each study: 1) the first author and year of publication; 2) study design; 3) the country where the study was conducted; 4) ages; 5) sample size; 6) sex; 7) the levels of immune cells (CD4\(^+\) T, CD8\(^+\) T, CD3\(^+\) T, CD4\(^+\)/CD8\(^+\), Treg, B and NK cells), and cytokines (IFN, TNF-α, IL-2, IL-4, IL-5, IL-6 and IL-10) and COVID-19 severity.
IL-4, IL-5, IL-6 and IL-10). Median (IQR) were converted to mean ± SD using mathematical formulas according to Hozo et al [5].

Quality assessment

Quality assessments of the studies were carried out based on the Newcastle-Ottawa Scale (NOS). The total NOS score ≥7 indicated a good research quality of the included study.

Data synthesis and analysis

Data entry and analysis were carried out with Review Manager 5.3 (The Cochrane Collaboration, Oxford, England). Heterogeneity of effect estimates within each group of studies were assessed by Q test and I^2 statistic, where I^2 >50% or p < 0.05 indicated heterogeneity and the random-effects model was used. When I^2 ≤50% or p ≥0.05, the fixed-effects model was used. For continuous data, we calculated mean differences (MD) and 95% confidence intervals (CI) between severe cases and mild cases. To investigate the potential publication bias, we visually examined the funnel plots. For robustness of results, we performed sensitivity analysis by removing one study each time through sensitivity analysis.

Results

Search results and characteristics of included studies

Fig 1 provides the flow diagram for study selection. Based on the inclusion criteria, 36 full articles were retrieved and 15 of these were included in the final meta-analysis. Duplicate publications, reviews, editorials, case reports, and studies without median (IQR) and mean ± SD of indicators, were excluded. Table 1 presents the characteristics of the 15 included studies, with 628 severe cases and 951 mild cases of COVID-19 reported. All but one prospective study of the studies included in this meta-analysis were retrospective studies, which were performed in China. All studies were deemed of high quality with 7 or more NOS scores and details can be found in Table 2.

Association of immune cells with COVID-19 severity

Compared with mild cases, severe cases showed significantly lower levels of immune cells, CD3^+ T cell (×10^6, MD, -413.87; 95%CI, -611.39 to -216.34; I^2, 100%; p<0.001, Fig 2a), CD4^+ T cell (×10^6, MD, -225.89; 95%CI, -306.36 to -145.43; I^2, 99%; p<0.001, Fig 2b), CD8^+ T cell (×10^6, MD, -138.59; 95%CI, -176.36 to -100.82; I^2, 99%; p<0.001, Fig 2c), B cell (×10^6/L; MD, -23.87; 95%CI, -43.97 to -3.78; I^2, 87%; p<0.001, Fig 2f), and NK cell (×10^6/L; MD, -57.12; 95%CI, -81.18 to -33.06; I^2, 92%; p<0.001, Fig 2g). However, no significant differences were found in other indicators, CD4^+/CD8^+ ratio (MD, 0.17; 95%CI, -0.14 to 0.49; I^2, 98%; p<0.001, Fig 2d) and Treg cell (×10^6, MD, -0.13; 95%CI, -1.40 to 1.14; I^2, 90%; p<0.001, Fig 2e).
Association of cytokines with COVID-19 severity

Compared with mild cases, severe cases showed significantly higher levels of cytokines, TNF-α (pg/ml; MD, 0.34; 95%CI, 0.09 to 0.59; I^2, 98%; p<0.001, Fig 2h), IL-5 (pg/ml; MD, 14.20; 95%CI, 3.99 to 24.4; I^2, 99%; p<0.001, Fig 2i), IL-6 (pg/ml; MD, 13.07; 95%CI, 9.80 to 16.35; I^2, 100%; p<0.001, Fig 2m), and IL-10 (pg/ml; MD, 2.04; 95%CI, 1.32 to 2.75; I^2, 99%; p<0.001, Fig 2n). However, there were no significant differences found in other cytokines, IFN-γ (pg/ml; MD, 0.26; 95%CI, -0.05 to 0.56; I^2, 98%; p<0.001, Fig 2i), IL-2 (pg/ml; MD, 0.05; 95%CI, -0.49 to 0.6; I^2, 100%; p<0.001, Fig 2j), and IL-4 (pg/ml; MD, -0.03; 95%CI, -0.68 to 0.62; I^2, 100%; p<0.001, Fig 2k).

Sensitivity Analysis

Strong evidences of heterogeneity were found in all the comparisons (Fig 2). Sensitivity analyses demonstrated that the results were not obviously altered by excluding any one specific study and therefore our results were reliable and believable.

Publication bias

Given that the number of included studies for each indicator was not large enough, we did not assess the publication bias.

Discussion

It is necessary to explore the host immune response to SARS-CoV-2, which may help to identify immune markers of disease severity for effective triage of COVID-19 patients [18]. Our study mainly compared the level differences of immune cells and cytokines between mild and severe patients with COVID-19.

The variations of immune cells levels are inconsistent in different reports. Most of our included studies found significant lower levels of immune cells (CD8^+ T, CD4^+ T, CD3^+ T, B and NK cells) in severe cases compared with mild cases [2, 8, 12]. Only two studies reported no significant decrease in CD8^+ T cell level [3, 16], while one study reported higher levels of B cell [11] in severe cases. Synthesizing all the collected evidence, our meta-analysis results found that the levels of immune cells (CD8^+ T, CD4^+ T, CD3^+ T, B and NK) were significantly lower in severe cases compared with mild cases, but Treg cell level and CD4^+ /CD8^+ ratio showed no significant differences.

The mechanism underlying the association between the reduction of immune cells levels and COVID-19 severity remain to be determined. CD8^+ T cells exert their effects mainly through two mechanisms, including cytolytic activities against target cells and secretion of cytokines [17]. CD4^+ T cells could activate the CD8^+ T cell response to acute respiratory virus infection [18]. SARS-CoV-2 and associated
autoimmune antibodies may lead to growth inhibition and apoptosis of hematopoiesis [19], which may decrease the production and maturation of immune cells [4].

Regarding cytokines, the conclusions of different studies are also inconsistent. With the exception of one study on IL-6 [4] and another study on TNF-α, most of our included studies, found that of IL-6 and TNF-α levels were significantly higher in severe cases compared with mild cases [3, 13, 17, 20]. Some of our included studies found no significant differences in the levels of IL-2, IL-4, IL-5, and IFN-γ, while an nearly equivalent number of studies of each indicator found that they were significantly higher in severe cases. Synthesizing all the collected evidence, our meta-analysis results found that IL-5, IL-6, IL-10 and TNF-α levels were significantly higher in severe cases compared with mild cases. However, the levels of IL-2, IL-4, IFN-γ, Treg cell and CD4+/CD8+ ratio showed no significant differences.

In severely infected individuals, SARS-CoV-2 could induce excessive cytokine response, such as IL-6, IL-10, and TNF-α surge, known as cytokine storm. Cytokine storm could contribute to acute respiratory distress syndrome (ARDS) or multiple-organ dysfunction, leading to physiological deterioration and death [21]. Cytokines such as IL-10, IL-6, and TNF-α are also involved in T cell reduction. IL-6 contributes to host defense via stimulation of acute phase responses [22]. TNF-α is a pro-inflammatory cytokine that can promote T cell apoptosis [23]. Patients requiring ICU admission have significantly higher levels of IL-6, IL-10, and TNF-α. Further, the levels of IL-6, IL-10, and TNF-α inversely correlate with CD4+ and CD8+ T cell counts [24]. This fact is strengthened by our meta-analysis results.

Limitations

Several limitations of our study should be considered. First, the number of studies and participants was not large enough for publication bias analysis of most indicators. Second, all but one prospective trial of the studies included in this meta-analysis were retrospective studies. Third, the overall generalizability of the meta-analysis results should be interpreted with caution as all included studies were conducted in China. It would be better to include as many studies with a broad geographic scope, to gain a more comprehensive understanding of immunological features of COVID-19 patients.

Conclusions

Our synthesized results revealed significant lower levels in immune cells (CD3+ T, CD4+ T, CD8+ T, B and NK cells) and significant higher levels in cytokines (TNF-α, IL-5, IL-6 and IL-10) in severe cases compared with mild cases of COVID-19 patients. However, the levels of IL-2, IL-4, IFN-γ, Treg cell and CD4+/CD8+ ratio showed no significant differences. Measurement of immune cells and cytokines may help to identify immune markers of COVID-19 severity and contribute to the development of immunologic therapies and vaccine design of COVID-19.

Abbreviations
COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; MD: Mean difference; IQR: Interquartile range; IL-2: Interleukin-2; IL-4: Interleukin-4; IL-5: Interleukin-5; IL-6: Interleukin-6; IL-10: Interleukin-10; TNF-α: Tumor necrosis factor alpha; IFN-γ: Interferon gamma; NK cell: Natural killer cell; CI: Confidence interval; NOS: Newcastle-ottawa scale; ARDS: Acute respiratory distress syndrome; SD, Standard deviation;

Declarations

Availability of data and materials

All relevant data for this study are presented in tables, figures and supplementary materials.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

The study is supported in part by a research grant from the Fundamental Research Funds for the Central Universities (project No.2016YXMS111), and 2017 Teaching Research Project of Huazhong University of Science and Technology (project No.105).

Authors’ contributions

Conception: ZZ, HJ. Literature search: ZZ, HJ. Selection of studies: ZX, ZC. Full texts search: ZZ, LS. Data extraction: GC. Data synthesis and analysis: ZZ, AG. Data interpretation: CL. Manuscript drafting: ZZ, HJ. Manuscript editing and revision: LS. Manuscript final version approval: ZZ, QH. Guarantor of the review: HJ.

Acknowledgments

We thank Yunsheng, Fang, Ph.D (University of California, Los Angeles, California, UCLA) for revision of the manuscript.
References

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi:10.1016/S0140-6736(20)30183-5.

2. Chen G, Di Wu, Guo W, Cao Y, Huang D, Wang H, et al. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130:2620–9. doi:10.1172/JCI137244.

3. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020. doi:10.1093/cid/ciaa248.

4. He R, Lu Z, Zhang L, Fan T, Xiong R, Shen X, et al. The clinical course and its correlated immune status in COVID-19 pneumonia. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020;127:104361. doi:10.1016/j.jcv.2020.104361.

5. Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13. doi:10.1186/1471-2288-5-13.

6. Chen R, Sang L, Jiang M, Yang Z, Jia N, Fu W, et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J Allergy Clin Immunol. 2020. doi:10.1016/j.jaci.2020.05.003.

7. Du R-H, Liang L-R, Yang C-Q, Wang W, Cao T-Z, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J. 2020. doi:10.1183/13993003.00524-2020.

8. Jiang M, Guo Y, Luo Q, Huang Z, Zhao R, Liu S, et al. T cell subset counts in peripheral blood can be used as discriminative biomarkers for diagnosis and severity prediction of COVID-19. The Journal of infectious diseases 2020. doi:10.1093/infdis/jiaa252.

9. Liu Y, Liao W, Wan L, Xiang T, Zhang W. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19. Viral Immunol. 2020. doi:10.1089/vim.2020.0062.

10. Ma J, Yin J, Qian Y, Wu Y. Clinical characteristics and prognosis in cancer patients with COVID-19: A single center's retrospective study. J Infect. 2020. doi:10.1016/j.jinf.2020.04.006.

11. Sun D-W, Zhang D, Tian R-H, Li Y, Wang Y-S, Cao J, et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: a sentinel? Clin Chim Acta. 2020. doi:10.1016/j.cca.2020.05.027.

12. Wan S, Yi Q, Fan S, Lv J, Zhang X, Guo L, et al. Relationships among lymphocyte subsets, cytokines, and the pulmonary inflammation index in coronavirus (COVID-19) infected patients. Br J Haematol. 2020;189:428–37. doi:10.1111/bjh.16659.

13. Wang F, Yang Y, Dong K, Yan Y, Zhang S, Ren H, et al. CLINICAL CHARACTERISTICS OF 28 PATIENTS WITH DIABETES AND COVID-19 IN WUHAN, CHINA. Endocr Pract. 2020. doi:10.4158/EP-2020-0108.

14. Zhang J, Yu M, Tong S, Liu L-Y, Tang L-V. Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. Journal of clinical virology: the official
15. Zheng Y, Xu H, Yang M, Zeng Y, Chen H, Liu R, et al. Epidemiological characteristics and clinical features of 32 critical and 67 noncritical cases of COVID-19 in Chengdu. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020;127:104366. doi:10.1016/j.jcv.2020.104366.

16. Zhou Y, Zhang Z, Tian J, Xiong S. Risk factors associated with disease progression in a cohort of patients infected with the 2019 novel coronavirus. Ann Palliat Med. 2020;9:428–36. doi:10.21037/apm.2020.03.26.

17. Zhu Z, Cai T, Fan L, Lou K, Hua X, Huang Z, Gao G. Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019. Int J Infect Dis. 2020;95:332–9. doi:10.1016/j.ijid.2020.04.041.

18. Rogers MC, Lamens KD, Shafagati N, Johnson M, Oury TD, Joyce S, Williams JV. CD4 + Regulatuy T Cells Exert Differential Functions during Early and Late Stages of the Immune Response to Respiratory Viruses. J Immunol. 2018;201:1253–66. doi:10.4049/jimmunol.1800096.

19. Yang M, Li CK, Li K, Hon KLE, Ng MHL, Chan PKS, Fok TF. Hematological findings in SARS patients and possible mechanisms (review). Int J Mol Med. 2004;14:311–5.

20. Zhang J, Yu M, Tong S, Liu L-Y, Tang L-V. Predictive factors for disease progression in hospitalized patients with coronavirus disease 2019 in Wuhan, China. Journal of clinical virology: the official publication of the Pan American Society for Clinical Virology. 2020;127:104392. doi:10.1016/j.jcv.2020.104392.

21. Moore JB, June CH. Cytokine release syndrome in severe COVID-19. Science. 2020;368:473–4. doi:10.1126/science.abb8925.

22. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol. 2018;18:773–89. doi:10.1038/s41577-018-0066-7.

23. Gupta S, Bi R, Kim C, Chiplunkar S, Yel L, Gollapudi S. Role of NF-kappaB signaling pathway in increased tumor necrosis factor-alpha-induced apoptosis of lymphocytes in aged humans. Cell Death Differ. 2005;12:177–83. doi:10.1038/sj.cdd.4401557.

24. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020;11:827. doi:10.3389/fimmu.2020.00827.

Tables

Table 1. Main characteristics and quality of the included studies.
Age is described as mean ± SD or median (IQR)

Table 2. Newcastle-Ottawa Scale (NOS) of included studies

Author	Study Design	Country	Age (years)	Sample size (Severe)	Sample size (Mild)	Sample size (Male)	Quality	
Chen G. 2020[2]	Retrospective	China	56.0	11	10	21	17	8
Chen R. 2020[6]	Retrospective	China	56.0±14.	155	345	500	313	8
Du R. 2020[7]	Prospective	China	69.7±7.7	21	42	63	30	8
He R. 2020[4]	Retrospective	China	49 (34-)	69	135	204	79	8
Jiang M. 2020[8]	Retrospective	China	46 (17-)	17	86	103	58	8
Liu Y. 2020[9]	Retrospective	China	/	30	46	76	/	7
Ma J. 2020[10]	Retrospective	China	62	17	20	37	20	8
Qin C. 2020[3]	Retrospective	China	58 (47-)	27	17	44	235	8
Sun D. 2020[11]	Retrospective	China	65	11	25	36	29	8
Wan S. 2020[12]	Retrospective	China	46	21	102	123	66	8
Wang F. 2020[13]	Retrospective	China	68.6 ±	14	14	28	21	8
Zhang J. 2020[14]	Retrospective	China	38 (32-)	93	18	111	46	9
Zheng Y. 2020[15]	Retrospective	China	49.4	26	63	89	/	8
Zhou Y. 2020[16]	Retrospective	China	42	5	12	17	6	9
Zhu Z. 2020[17]	Retrospective	China	50.9	111	16	127	45	9

Figures
Figure 1

Flow diagram for studies selection
aCD5 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
bCD4 Test						

cCD5 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
dCD4 CDS ratio						

eCD8 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
F4/80						

gCD8 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
hCD8 Test						

iNK Cell Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
hTRF-a						

jIL-2 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
hIL-4						

nIL-5 Test

Study of Substance	Mean	SD	Total	Weight	(t)	P Value
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
DOS						
Ctrl 2015	1.16	0.1	158.5	118.5	-1.72	0.086
Ctrl 2015	1.72	0.1	208.5	208.5	-2.12	0.035
Ctrl 2016	1.16	0.1	158.5	158.5	-1.72	0.086
Total						
Figure 2

Mean difference of immunological features with COVID-19 severity. Weights were calculated from binary random-effects model analysis.