Renormalon-based resummation for QCD observables

Gorazd Cvetic
Department of Physics, Universidad Técnica Federico Santa María, Casilla 110-V, Valparaíso, Chile

(Dated: October 17, 2019)

A method of evaluation of spacelike QCD observables \(\mathcal{D}(Q^2) \) is presented, motivated by the renormalon structure of these quantities.

I. INTRODUCTION

The theory of renormalons, and its use in the evaluation of QCD observables, has been known for some time \[1\], and it has remained an area of active interest; for some new ideas that have emerged in this area more recently, see Refs. \[2\] \[4\].

Borel transforms of (the leading-twist part of) the spacelike observables have specific renormalon structures, which include poles, cuts and branching points in the Borel plane. On the other hand, in the large-momentum transfers \(Q \to \infty \), some new ideas that have emerged in this area more recently, see Refs. \[2\] \[4\], and it has remained an area of active interest; for some new ideas that have emerged in this area more recently, see Refs. \[2\] \[4\].

In this presentation we summarize the method of Ref. \[5\] where \(\tilde{D} \) is introduced, which in principle contains the entire information on all the expansion coefficients of the original observable \(\mathcal{D}(Q^2) \), but is renormalization scale independent only at the one-loop level, and agrees with \(\mathcal{D}(Q^2) \) at one-loop level. Motivated by a specific renormalization scale dependence of the Borel transform \(B[\mathcal{D}](b) \), a large-\(\beta_0 \) type of ansatz is made for \(B[\mathcal{D}](b) \). This leads to the correct ("dressed") structure of the Borel transform \(B[\mathcal{D}](b) \) of the original observable. Subsequently, in Sec. \[III\] a Neubert-type of the characteristic (distribution) function \(G_D(t) \) for the original \(\mathcal{D}(Q^2) \) is obtained from the simple Borel transform \(B[\mathcal{D}](b) \). This renormalon-based characteristic function permits evaluation (resummation) of the original observable \(\mathcal{D}(Q^2) \). As a specific illustration, the method is applied to the evaluation of the (leading-twist) massless Adler function and the related (timelike) decay ratio of the \(\tau \) lepton semihadronic decays. At the end, the presented results are summarized.

II. THE METHOD

The perturbation expansion of the considered spacelike observable is

\[
\mathcal{D}(Q^2)_{pt} = \sum_{n \geq 0} d_n(\kappa) a(\kappa Q^2)^{n+1},
\]

where \(\mu^2 \equiv \kappa Q^2 \) is the renormalization scale, and \(a(\mu^2) \equiv \alpha_s(\mu^2)/\pi \). The coupling \(a(\mu^2) \) satisfies the renormalization group equation (RGE)

\[
\frac{da(\mu^2)}{d\ln \mu^2} = -\beta_0 a(\mu^2)^2 - \beta_1 a(\mu^2)^3 - \beta_2 a(\mu^2)^4 - \ldots
\]

We can reorganize the power expansion (1) into expansion in the logarithmic derivatives where

\[
\tilde{d}_{n+1}(\mu^2) = \frac{(-1)^n}{\beta_0^n n!} \left(\frac{d}{d\ln \mu^2} \right)^n a(\mu^2),
\]

(where \(n = 0, 1, \ldots \)), which coincide with the powers \(a(\mu^2)^{n+1} \) only at the one-loop level. We thus obtain the expansion

\[
\mathcal{D}(Q^2)_{pt} = \sum_{n \geq 0} \tilde{d}_n(\kappa) \tilde{d}_{n+1}(\kappa Q^2).
\]

The new expansion coefficients \(\tilde{d}_n \) are unique functions of the coefficients \(d_j (j \leq n) \), and contain all the information about them; these relations can also be inverted, and have similar structure

\[
d_n = \sum_{s=0}^{n-1} k_s (n+1-s) \tilde{d}_{n-s},
\]

where \(n = 1, 2, \ldots \), and \(k_0(m) = 0 \). An auxiliary quantity \(\tilde{D} \) can be introduced, which is the power expansion with the coefficients \(\tilde{d}_n \)

\[
\tilde{D}(Q^2; \kappa) = \sum_{n \geq 0} \tilde{d}_n(\kappa) a(\kappa Q^2)^{n+1}.
\]

It has some renormalization scale (\(\kappa \))-dependence when going beyond the one-loop level. The “reorganized” coefficients \(\tilde{d}_n(\kappa) \) have a significantly simpler (one-loop-type) renormalization scale dependence than the original coefficients \(d_n \)

\[
\frac{d}{d\ln \kappa} \tilde{d}_n(\kappa) = n \beta_0 \tilde{d}_{n-1}(\kappa) \quad (n \geq 1),
\]

and \(\tilde{d}_0 \) is \(\kappa \)-independent. As a consequence, the Borel transform of the auxiliary quantity \(\tilde{D} \)

\[
B[\tilde{D}](u, \kappa) = \sum_{n=0}^{\infty} \frac{\tilde{d}_n(\kappa)}{n! \beta_0^n} u^n
\]

*email: gorazd.cvetic@usm.cl; talk given by G.C. at the 22th International Conference in Quantum Chromodynamics (QCD 19), 2-5 July 2019, Montpellier, France
has the simple one-loop-type (or: large-\(\beta_0\)-type) renormalization scale dependence

\[
B[\tilde{D}](u; \kappa) = \kappa^w B[\tilde{D}](u).
\]

This suggests that the Borel transform \(B[\tilde{D}](u)\) has a one-loop (large-\(\beta_0\)) type renormalon structure (poles):

\[
B[\tilde{D}](u) \sim 1/(p \pm u)^{k}, \ln(1 \pm u/p),
\]

where \(p\) and \(k\) are positive integers. Such ansätze for \(B[\tilde{D}](u)\) will be used to generate the coefficients \(d_n\), and thus via Eqs. (3) the coefficients \(d_n\) of the power expansion of the full \(D(Q^2)\) observable. However, an important question is whether these (large-\(\beta_0\))-type ansätze for \(B[\tilde{D}](u)\) give us correctly behaved \(d_n\) coefficients of \(D(Q^2)\), i.e., whether the Borel transform \(B[\tilde{D}](u; \kappa)\) has the (full-loop) renormalon structure expected theoretically. It can be shown numerically that this is really the case, and the reader is referred for details to Ref. [5].

III. APPLICATION TO THE MASSLESS ADLER FUNCTION

The Adler function \(D(Q^2)\) is the logarithmic derivative of the quark current-current correlator. In the massless limit, the vector and axial vector channels coincide, and the perturbation expansion (4) of this quantity is known exactly up to order \(a^4\) [7,9]. Further, the leading-\(\beta_0\) (LB) parts \(\tilde{d}^{(\text{LB})}_{\nu} = d^{(\text{LB})}_n\) of the coefficients are known to all orders \(n\), and thus the LB Borel transform \(B[\tilde{D}](u)^{(\text{LB})}\) of the (massless) Adler function is known [10]: it has simple pole \((k = 1)\) at \(u = 2\) [the leading infrared (IR) renormalon], and double poles \((k = 2)\) at \(u = 3, 4, \ldots\) (IR renormalons) and at \(u = -1, -2, \ldots\) (ultraviolet (UV) renormalons).

A. The Borel transform of \(\tilde{D}\) of Adler

The first ansatz for the Borel \(B[\tilde{D}](u)\) includes the first two IR renormalon poles, and the first ultraviolet (UV) pole \(u = -1\):

\[
B[\tilde{D}](u)^{(4P)} = \exp \left(K u \right) \pi \left\{ \frac{1}{1 - u} + \tilde{\alpha}(-1) \ln \left(1 - \frac{u}{2} \right) \right\}
+ \frac{\tilde{d}^{\text{IR}}_{3,2}}{(3 - u)^2} + \frac{\tilde{d}^{\text{UV}}_{1/2}}{(1 + u)^2},
\]

which has four parameters: \(K, \tilde{d}^{\text{IR}}_{3,2}, \tilde{d}^{\text{IR}}_{1/2}\) and \(\tilde{d}^{\text{UV}}_{1/2}\). The values of these four parameters can be determined by requiring that the values of the first four (exactly known) perturbation expansion coefficients \(d_n\) \((n = 0, 1, 2, 3)\) be correctly reproduced.

In practice, this ansatz is made in a specific renormalization scheme, the Lambert MiniMOM (LMM) [33], because in that scheme the IR-safe (and holomorphic) QCD coupling was constructed \(a(Q^2) \rightarrow A(Q^2)\) [16], which at high \(Q^2\) practically coincides with the underlying pQCD coupling \(a(Q^2)\) (in LMM), reproduces the correct semihadronic \(\pi\)-decay ratio \(r_\tau \approx 0.20\), and behaves as \(A(Q^2) \sim Q^2\) when \(Q^2 \rightarrow 0\) as suggested by large-volume lattice data on gluon and ghost propagator dressing functions in the Landau gauge [13-15]. This QCD variant is called \(\Delta\)QCD, because the spectral (discontinuity) function \(\rho_A(\sigma) \equiv \ln A(Q^2) = -\sigma - i\epsilon\) in the low-\(\sigma\) regime \((0 \leq \sigma \lesssim 1 \text{ GeV}^2)\) is parametrized by three Dirac-delta functions, while \(\rho_A(\sigma)\) for higher \(\sigma\) coincides with its underlying pQCD version \(\rho_0(\sigma)\). The reason that the Borel transform (11) is made in a renormalization scheme where a known holomorphic IR-safe QCD coupling \(A(Q^2)\) is available, will become clear in the next Section [11,13].

The parameter \(\tilde{\alpha}\), appearing at the \(u = 2\) “pole term with \(k = 0\) multiplicity” in Eq. (11), is not independent, because of the knowledge of the subleading part of the \(D = 4\) Wilson coefficient (we refer for details to [2,9]). In the LMM scheme, the obtained value is \(\tilde{\alpha}_{\text{LMM}} = -0.14 \pm 0.12\).

For comparison, the Adler function is constructed also in another renormalization scheme, called Lambert scheme: it has a given value of the \(c_2\) parameter [55], and \(c_n = c_2^{n-1}/c_2^{n-2}\) for \(n \geq 3\). The \(c_2 = -4.9\) Lambert scheme was used in the construction of the \(2\sigma\) QCD model [17] which has a holomorphic and IR-safe coupling. In this \(c_2 = -4.9\) Lambert scheme, we can now require that the first four coefficients are the exact ones (in that scheme), and that \(d_4\) coefficient corresponds to that obtained in the LMM case; therefore, now five parameters can be fixed, and the ansatz in the Lambert scheme is

\[
B[\tilde{D}](u)^{(5P)} = \exp \left(K u \right) \pi \left\{ \frac{1}{2 - u} + \tilde{\alpha}(-1) \ln \left(1 - \frac{u}{2} \right) \right\}
+ \frac{\tilde{d}^{\text{IR}}_{3,2}}{(3 - u)^2} + \frac{\tilde{d}^{\text{IR}}_{1/2}}{(3 - u)} + \frac{\tilde{d}^{\text{UV}}_{1/2}}{(1 + u)^2}.
\]

We are interested in the Adler function in this \(c_2 = -4.9\) Lambert scheme, because in this scheme an IR-safe (and holomorphic) QCD coupling \(A(Q^2)\) was constructed [17], which at high \(Q^2\) practically coincides with the underlying pQCD coupling \(a(Q^2)\) and reproduces the correct \(r_\tau \approx 0.20\); however, at \(Q^2 \rightarrow 0\) the coupling is nonzero, \(0 < A(0) < \infty\), in contrast with the aforementioned
3δ AQCD coupling[16]. This QCD variant is called 2δ AQCD, because its spectral function \(\rho_\Delta(\sigma) \equiv \text{Im} A(Q^2 = -\sigma - i\epsilon) \) in the low-\(\sigma \) regime is parametrized by two Dirac-delta functions.

For comparison, the mentioned five-parameter Borel transform can also be applied in the \(\overline{\text{MS}} \) scheme (five-loop, with \(c_n = 0 \) for \(n \geq 5 \), in the same way, and the parameters are fixed.

The results are given in Table. The \(\tilde{\alpha} \) parameters are:
\[
\tilde{\alpha}_{\text{LMM}} = -0.14 \pm 0.12; \quad \tilde{\alpha}_{\text{Lamb.}} = -0.10 \pm 0.14; \quad \tilde{\alpha}_{\text{MS}} = -0.255 \pm 0.010.
\]

B. Characteristic function of the Adler function

The characteristic (or: distribution) function \(D(tQ^2) \) of a spacelike observable \(D(Q^2) \) is usually defined as such a function of \(t > 0 \) that

\[
D_{\text{res}}(Q^2) = \int_{t_0}^{+\infty} \frac{dt}{t} F_D(t) a(tQ^2)
\]

represents the (leading-twist) resummation of \(D(Q^2) \). Taylor expansion of the coupling \(a(tQ^2) \) in \(\ln(tQ^2) \) around \(\ln Q^2 \) then implies that the moments of \(F_D(t) \) are precisely the coefficients \(\tilde{a}_n \) appearing in the auxiliary quantity \(D(tQ^2) \)

\[
(-\beta_0)^n \int_0^{+\infty} \frac{dt}{t} F_D(t) \ln^n \left(\frac{t}{\kappa} \right) = \tilde{a}_n(\kappa),
\]

where \(n = 0, 1, \ldots \) Using these relations, with \(\kappa = 1 \), and the expansion [8] in powers of \(u \) for the Borel transform \(B[D](u) \), one obtains

\[
B[D](u) = \int_0^{+\infty} \frac{dt}{t} F_D(t) t^{-u}
\]

Hence \(B[D](u) \) is the Mellin transform of \(F_D(t) \). The inverse Mellin then gives the characteristic function \(F_D(t) \) in terms of \(B[D](u) \) (cf. [18] for application in the large-\(\beta_0 \) (one-loop) context)

\[
F_D(t) = \frac{1}{2\pi i} \int_{1-i\infty}^{1+i\infty} du \ B[D](u) t^u,
\]

For the Borel transforms [11] and [13], this inverse Mellin transform can be performed explicitly [5], and the result has the form

\[
D(Q^2)_{\text{res}} = \int_0^1 \frac{dt}{t} G_D^{(-)}(t) a(t e^{-K} Q^2) + \int_1^{+\infty} \frac{dt}{t} G_D^{(+)}(t) a(t e^{-K} Q^2) + \int_0^1 \frac{dt}{t} G_D^{(\text{SL})}(t) \left[a(t e^{-K} Q^2) - a(e^{-K} Q^2) \right],
\]

where the (characteristic) functions \(G_D^{(-)}(t) \) and \(G_D^{(\text{SL})}(t) \) involve the parameters of the mentioned Borel transforms [11] and [13], and powers of \(t \) and \(\ln t \), cf. [5].

C. Numerical evaluation

If the running coupling \(a(Q^2) \) is holomorphic (analytic) in the complex \(Q^2 \) plane excluding the timelike axis \([a(Q^2) \to A(Q^2)] \) [36], it is IR-safe (finite when \(Q^2 \to 0 \)), and thus the integration Eq. [18] can be performed. The problem of analyticity of QCD running couplings was addressed systematically already in the nineties [19, 21], with a QCD variant called Analytic Perturbation Theory (APT) (for extensions and reviews, cf. [22, 23]). Several versions of QCD holomorphic couplings have been applied in evaluations of various QCD quantities [24, 27, 37].

Two recently constructed QCD variants with holomorphic couplings \(A(Q^2) \), the aforementioned 2δ AQCD [17] and 3δ AQCD [16], fulfill several phenomenological constraints of the low-\(Q^2 \) QCD \((|Q^2| \lesssim 1 \text{ GeV}^2)\) as mentioned earlier. The integrals in Eq. [18] can be performed in both variants \((a \to A)\) without ambiguity because of the IR-safety of such couplings.

On the other hand, in pQCD in the usual schemes such as \(\overline{\text{MS}} \), the running coupling \(a(Q^2) \) is not holomorphic and not IR safe; it has Landau singularities for positive small values of \(Q^2 \), which makes the evaluation of the integrals in [18] ambiguous. To avoid this ambiguity, one may take the generalized principal value of these integrals, i.e., the integration is slightly shifted above the real positive axis, \(a(t e^{-K} Q^2) \to a(t e^{-K} Q^2 + i\epsilon) \), and the real part of the result is taken. Taking instead the imaginary part and dividing by \(\pi \) \([\pm (1/\pi) \text{Im} \ldots\] gives us a measure of ambiguity of such a result.

The results of this evaluation, for positive values of \(Q^2 \), are presented in Fig. 1. When the two holomorphic ver-

![FIG. 1: The radiative Adler function resummed with the characteristic function according to Eq. (18) (where \(a \to A \)), as a function of \(Q \equiv \sqrt{Q^2} \), for positive \(Q^2 \): in 3δ AQCD (in the LMM renormalization scheme), and 2δ AQCD (in the Lambert \(c_2 = -4.9 \) renormalization scheme). Included for comparison is the resummed pQCD Adler function \(D(Q^2)_{\text{pQCD}} \), in the (five-loop) \(\overline{\text{MS}} \) scheme, using modification of Eq. (18) as described in the text. All the three frameworks correspond to \(\alpha_s(M_{Z}^2; \overline{\text{MS}}) = 0.1185 \).](https://example.com/fig1.png)
also note that the two holomorphic results in the Figure start differing at \(Q < 0.5 \text{ GeV} \); this is so because the 2\(\delta \) AQCD coupling \(A(Q^2) \) tends to a positive finite value when \(Q^2 \to 0 \), and the 3\(\delta \) AQCD coupling tends to zero (as \(\sim Q^2 \)) when \(Q^2 \to 0 \).

4. SUMMARY

- A method of evaluation of spacelike QCD observables \(D(Q^2) \) was developed, motivated by the renormalon structure of these quantities.
- A related auxiliary quantity \(\bar{D}(Q^2) \) was introduced, which is renomalization scale independent only at the one-loop level, and agrees with \(D(Q^2) \) at one-loop level.
- A large-\(\beta_0 \)-type renormalon-motivated ansatz is made for the Borel transform \(B[D](u) \) of \(D(Q^2) \). This leads to a correctly “dressed” Borel transform \(B[D](u) \) of the considered observable \(D(Q^2) \).
- Subsequently, a Neubert-type characteristic (distribution) function, \(G_D^{(\pm)}(t) \) and \(G_D^{SL}(t) \), is obtained for the considered observable \(D(Q^2) \) as the inverse Mellin transform of the Borel transform of \(\bar{D}(Q^2) \).
- As an illustration, the method is applied to the massless Adler function and the related decay ratio of the \(\tau \) lepton semihadronic decays.

scheme	\(\tilde{K} \)	\(\tilde{d}_{2,1}^{IR} \)	\(\tilde{d}_{3,2}^{IR} \)	\(\tilde{d}_{2,1}^{IR} \)	\(\tilde{d}_{2,2}^{UV} \)
LMM	-0.7704536	-1.830666	11.0498	-	0.00588513
Lamb.	0.2228125	4.745825	-1.04837	-5.89714	0.0276003
NS	0.5190386	1.108265	-0.481538	-0.511642	-0.0117704

[1] M. Beneke, “Renormalons,” Phys. Rept. 317 (1999) 1 [hep-ph/9807443], and references therein.
[2] M. Beneke and M. Jamin, “\(a_s \) and the \(\tau \) hadronic width: fixed-order, contour-improved and higher-order perturbation theory,” JHEP 0809 (2008) 044 [arXiv:0806.3156 [hep-ph]]; M. Beneke, D. Boito and M. Jamin, “Perturbative expansion of \(\tau \) hadronic spectral function moments and \(a_s \) extractions,” JHEP 1301 (2013) 125 [arXiv:1210.8038 [hep-ph]].
[3] A. Maiezza and J. C. Vasquez, “Renormalons in a general Quantum Field Theory,” Annals Phys. 394 (2018) 84 [arXiv:1802.06022 [hep-th]]; “Non-local Lagrangians from Renormalons and Analyzable Functions,” Annals Phys. 407 (2019) 78 [arXiv:1902.05847 [hep-th]].
[4] D. Boito, P. Masjuan and F. Ollani, “Higher-order QCD corrections to hadronic \(\tau \) decays from Padé approximants,” JHEP 1808, 075 (2018) [arXiv:1807.01567 [hep-ph]].
[5] G. Cvetić, “Renormalon-motivated evaluation of QCD observables,” Phys. Rev. D 99 (2019) no.1, 014028 [arXiv:1812.01580 [hep-ph]].
[6] C. Ayala, X. Lobregat and A. Pineda, “Superasymptotic and hyperasymptotic approximation to the operator product expansion,” Phys. Rev. D 99 (2019) no.7, 074019 [arXiv:1902.07736 [hep-th]]; “Hyperasymptotic approximation to the top, bottom and charm pole mass,” arXiv:1909.01370 [hep-ph].
[7] K. G. Chetyrkin, A. L. Kataev and F. V. Tkachov, “Higher order corrections to \(\sigma_T(e^+e^- \to \text{hadrons}) \) in Quantum Chromodynamics,” Phys. Lett. B 85 (1979) 277; M. Dine and J. R. Sapirstein, “Higher order QCD corrections in e^+e^- annihilation,” Phys. Rev. Lett. 43 (1979) 668; W. Celnaster and R. J. Gonsalves, “An analytic calculation of higher order Quantum Chromodynamic corrections in e^+e^- annihilation,” Phys. Rev. Lett. 44 (1980) 560.
[8] S. G. Gorishnii, A. L. Kataev and S. A. Larin, “The \(\mathcal{O}(\alpha_s^4) \) corrections to \(\sigma_{t\bar{t}}(e^+e^- \to \text{hadrons}) \) and \(\Gamma(\tau^- \to \nu_\tau + \text{hadrons}) \) in QCD,” Phys. Lett. B 259 (1991) 144; L. R. Surguladze and M. A. Samuel, “Total hadronic cross-section in e^+e^- annihilation at the four loop level of perturbative QCD,” Phys. Rev. Lett. 66 (1991) 560 Erratum: Phys. Rev. Lett. 66 (1991) 2416.
[9] P. A. Baikov, K. G. Chetyrkin and J. H. Kühn, “Order \(\alpha_s^4 \) QCD corrections to \(Z \) and \(\tau \) Decays,” Phys. Rev. Lett. 101 (2008) 012002 [arXiv:0801.1821 [hep-ph]].
[10] D. J. Broadhurst, “Large N expansion of QED: asymptotic photon propagator and contributions to the muon anomaly, for any number of loops,” Z. Phys. C 58 (1993) 339; D. J. Broadhurst and A. L. Kataev, “Connections between deep inelastic and annihilation processes at next-to-leading order and beyond,” Phys. Lett. B 315 (1993) 179 [hep-ph/9308274].

[11] L. von Smekal, K. Maltman and A. Sterneck, “The strong coupling and its running to four loops in a minimal MOM scheme,” Phys. Lett. B 681 (2009) 336 [arXiv:0903.1606 [hep-ph]].

[12] P. Boucaud, F. De Soto, J. P. Leroy, A. Le Yaouanc, J. Micheli, O. Pene and J. Rodriguez-Quintero, “Ghost-gluon running coupling, power corrections and the determination of Lambda(MS-bar),” Phys. Rev. D 79 (2009) 014508 [arXiv:0811.2059 [hep-ph]]; K. G. Chetyrkin and A. Retey, “Three-loop three-linear vertices and four-loop MOM β functions in massless QCD,” hep-ph/0007088.

[13] I. L. Bogolubsky, E.-M. Ilgenfritz, M. Müller-Preussker and A. Sterneck, “Lattice gluodynamics computation of Landau gauge Green’s functions in the deep infrared,” Phys. Lett. B 676 (2009) 69 [arXiv:0901.0736 [hep-lat]]; A. G. Duarte, O. Oliveira and P. J. Silva, “Lattice Gluon and Ghost Propagators, and the Strong Coupling in Pure SU(3) Yang-Mills Theory: Finite Lattice Spacing and Volume Effects,” Phys. Rev. D 94 (2016) no. 1, 014502 [arXiv:1605.00594 [hep-lat]].

[14] E.-M. Ilgenfritz, M. Müller-Preussker, A. Sterneck and A. Schiller, “Gauge-variant propagators and the running coupling from lattice QCD,” hep-lat/0601027; B. Blossier et al., “Strong running coupling at τ and Z0 mass scales from lattice QCD,” Phys. Rev. Lett. 108 (2012) 262002 [arXiv:1201.5770 [hep-ph]]; “Ghost-gluon coupling, power corrections and A_{MS} from lattice QCD with a dynamical charm,” Phys. Rev. D 85 (2012) 034503 [arXiv:1110.5829 [hep-lat]].

[15] A. Athenodorou, P. Boucaud, F. De Soto, J. Rodríguez-Quintero and S. Zafeiropoulos, “Gluon Green functions free of quantum fluctuations,” Phys. Lett. B 760 (2016) 354 [arXiv:1604.08887 [hep-ph]]; A. Athenodorou, D. Binosi, P. Boucaud, F. De Soto, J. Papavassiliou, J. Rodríguez-Quintero and S. Zafeiropoulos, “On the zero crossing of the three-gluon vertex,” Phys. Lett. B 761 (2016) 444 [arXiv:1607.01278 [hep-ph]]; P. Boucaud, F. De Soto, J. Rodríguez-Quintero and S. Zafeiropoulos, “Refining the detection of the zero crossing for the symmetric and asymmetric three-gluon vertices,” Phys. Rev. D 95 (2017) no.11, 114503 [arXiv:1701.07390 [hep-lat]].

[16] C. Ayala, G. Cvetič, R. Kogerler and I. Kondrashuk, “Nearly perturbative lattice-motivated QCD coupling with zero IR limit,” J. Phys. G 45 (2018) no. 3, 035001 [arXiv:1703.01321 [hep-ph]].

[17] C. Ayala, C. Contreras and G. Cvetič, “Extended analytic QCD model with perturbative QCD behavior at high momenta,” Phys. Rev. D 85 (2012) 114043 [arXiv:1203.6897 [hep-ph]]; C. Ayala and G. Cvetić, “anQCD: a Mathematica package for calculations in general analytic QCD models,” Comput. Phys. Commun. 190 (2015) 182 [arXiv:1408.6868 [hep-ph]].

[18] M. Neubert, “Scale setting in QCD and the momentum flow in Feynman diagrams,” Phys. Rev. D 51 (1995) 5924 doi:10.1103/PhysRevD.51.5924 [hep-ph/9412265]; “Resummation of renormalon chains for cross-sections and inclusive decay rates,” hep-ph/9502264.

[19] D. V. Shirkov and I. L. Solovtsov, “Analytic QCD running coupling with finite IR behaviour and universal α_s(0) value,” JINR Rapid Comm. (1996) No. 2(76)-96, 5, hep-ph/9604363; “Analytic model for the QCD running coupling with universal alpha(s)-bar(0) value,” Phys. Rev. Lett. 79 (1997) 1209 [hep-ph/9704333].

[20] K. A. Milton and I. L. Solovtsov, “Analytic perturbation theory in QCD and Schwinger’s connection between the beta function and the spectral density,” Phys. Rev. D 55 (1997) 5295 [hep-ph/9611438].

[21] D. V. Shirkov, “Analytic perturbation theory for QCD observables,” Theor. Math. Phys. 127 (2001) 409 [hep-ph/0012283]; “Analytic perturbation theory in analyzing some QCD observables,” Eur. Phys. J. C 22 (2001) 331 [hep-ph/0107282].

[22] A. P. Bakulev, S. V. Mikhailov and N. G. Stefanis, “QCD analytic perturbation theory: From integer powers to any power of the running coupling,” Phys. Rev. D 72 (2005) 074014 [Erratum: Phys. Rev. D 72, 119908 (2005)] [hep-ph/0506311]; “Fractional Analytic Perturbation Theory in Minkowski space and application to Higgs boson decay into a b anti-b pair,” Phys. Rev. D 75, 056005 (2007) [Erratum: Phys. Rev. D 77 (2008) 079901] [hep-ph/0607040]; “Higher-order QCD perturbation theory in different schemes: From FOPT to CIPT to FAPT,” JHEP 1006 (2010) 085 [arXiv:1004.4125 [hep-ph]].

[23] D. V. Shirkov and I. L. Solovtsov, “Ten years of the analytic perturbation theory in QCD,” Theor. Math. Phys. 150 (2007) 132 [hep-ph/0611229]; G. M. Prosperi, M. Raciti and C. Simolo, “On the running coupling constant in QCD,” Prog. Part. Nucl. Phys. 58 (2007) 387 [hep-ph/0607209]; G. Cvetič and C. Valenzuela, “Analytic QCD: a short review,” Braz. J. Phys. 38 (2008) 371 [arXiv:0804.0872 [hep-ph]]; A. P. Bakulev, “Global Fractional Analytic Perturbation Theory in QCD with Selected Applications,” Phys. Part. Nucl. 40, 715 (2009) arXiv:0805.0829 [hep-ph] [arXiv preprint in Russian]; N. G. Stefanis, “Taming Landau singularities in QCD perturbation theory: The Analytic approach,” Phys. Part. Nucl. 44 (2013) 494 [Phys. Part. Nucl. 44 (2013) 494] [arXiv:0902.4805 [hep-ph]]; A. Deur, S. J. Brodsky and G. F. de Teramond, “The QCD running coupling,” Prog. Part. Nucl. Phys. 90, 1 (2016) [arXiv:1604.08082 [hep-ph]].

[24] K. A. Milton, I. L. Solovtsov and O. P. Solovtsova, “The Bjorken sum rule in the analytic approach to perturbative QCD,” Phys. Lett. B 439 (1998) 421 [hep-ph/9809510]; R. S. Pasechnik, D. V. Shirkov, O. V. Teryaev, O. P. Solovtsova and V. L. Khadramai, “Nucleon spin structure and pQCD frontier on the move,” Phys. Rev. D 81 (2010) 016010 [arXiv:0911.3297 [hep-ph]]; R. S. Pasechnik, J. Soffer and O. V. Teryaev, “Nucleon spin structure at low momentum transfers,” Phys. Rev. D 82 (2010) 076007 [arXiv:1009.3355 [hep-ph]]; V. L. Khadramai, R. S. Pasechnik, D. V. Shirkov, O. P. Solovtsova and O. V. Teryaev, “Four-loop QCD analysis of the Bjorken sum rule vs data,” Phys. Lett. B 706 (2012) 340 [arXiv:1106.6352 [hep-ph]]; C. Ayala, G. Cvetić, A. V. Kotikov and B. G. Shaikhatdenov, “Bjorken sum rule in QCD frameworks with analytic (holomorphic) coupling,” Int. J. Mod. Phys. A 33 (2018) no. 18n19, 1850112 [arXiv:1708.06284 [hep-ph]]; “Bjorken polarized sum rule and infrared-safe QCD
couplings,” Eur. Phys. J. C 78 (2018) no. 12, 1002 [arXiv:1812.01030 [hep-ph]].

[25] G. Cvetič, A. Y. Illarionov, B. A. Kniehl and A. V. Kotikov, “Small-x behavior of the structure function F_2 and its slope $\partial \ln F_2/\partial \ln(1/x)$ for ‘frozen’ and analytic strong-coupling constants,” Phys. Lett. B 679 (2009) 350 [arXiv:0906.1925 [hep-ph]]; A. V. Kotikov, V. G. Krivoklížhín and B. G. Shakhvatdenov, “Analytic and ’frozen’ QCD coupling constants up to NNLO from DIS data,” Phys. Atom. Nucl. 75 (2012) 507 [arXiv:1008.0545 [hep-ph]]; C. Ayala and S. V. Mikhailov, “How to perform a QCD analysis of DIS in analytic perturbation theory,” Phys. Rev. D 92 (2015) 014028 [arXiv:1503.00541 [hep-ph]]; A. V. Sidorov and O. P. Solovtsova, “The QCD analysis of xF_3 structure function based on the analytic approach,” Nonlin. Phenom. Complex Syst. 16 (2013) 397 [arXiv:1312.3082 [hep-ph]]; “The QCD analysis of the combined set for the F_3 structure function data based on the analytic approach,” Mod. Phys. Lett. A 29 (2014) no. 36, 1450194 [arXiv:1407.6858 [hep-ph]]; “QCD analysis of the F_3 structure function based on inverse Mellin transform in analytic perturbation theory,” Phys. Part. Nucl. Lett. 14 (2017) no. 1, 1; “Non-singlet Q^2-evolution and the analytic approach to Quantum Chromodynamics,” Nonlin. Phenom. Complex Syst. 18 (2015) 222.

[26] P. Allendes, C. Ayala and G. Cvetič, “Gluon Propagator in Fractional Analytic Perturbation Theory,” Phys. Rev. D 89 (2014) 054016 [arXiv:1401.1192 [hep-ph]].

[27] E. G. S. Luna, A. L. dos Santos and A. A. Natale, “QCD effective charge and the structure function F_2 at small-x,” Phys. Lett. B 698 (2011) 52 [arXiv:1012.4443 [hep-ph]]; D. A. Fagundes, E. G. S. Luna, M. J. Menon and A. A. Natale, “Aspects of a Dynamical Gluon Mass Approach to elastic hadron scattering at LHC,” Nucl. Phys. A 886 (2012) 48 [arXiv:1112.4680 [hep-ph]]; C. A. S. Bahia, M. Broilo and E. G. S. Luna, “Energy-dependent dipole form factor in a QCD-inspired model,” J. Phys. Conf. Ser. 706, 052006 (2016) [arXiv:1508.07359 [hep-ph]]; “Nonperturbative QCD effects in forward scattering at the LHC,” Phys. Rev. D 92 (2015) 074039 [arXiv:1510.00727 [hep-ph]]; D. Hadjimichel, E. G. S. Luna and M. Peláez, arXiv:1907.07577 [hep-ph].

[28] B. A. Magradze, “The gluon propagator in analytic perturbation theory,” Conf. Proc. C 980518 (1999) 158 [hep-ph/9808247].

[29] S. Peris, M. Perrot and E. de Rafael, “Matching long and short distances in large-N_c QCD,” JHEP 9805 (1998) 011 [hep-ph/9805442].

[30] M. Baldicchi, A. V. Nesterenko, G. M. Prosperi, D. V. Shirkov and C. Simolo, “Bound state approach to the QCD coupling at low energy scales,” Phys. Rev. Lett. 99 (2007) 242001 [arXiv:0705.0329 [hep-ph]]; M. Baldicchi, A. V. Nesterenko, G. M. Prosperi and C. Simolo, “QCD coupling below 1 GeV from quarkonium spectrum,” Phys. Rev. D 77 (2008) 034013 [arXiv:0705.1695 [hep-ph]].

[31] B. A. Magradze, “Testing the concept of quark-hadron duality with the ALEPH τ decay data,” Few Body Syst. 48 (2010) 143 Erratum: [Few Body Syst. 53 (2012) 365 [arXiv:1005.2674 [hep-ph]]]; “Strong coupling constant from τ decay within a dispersive approach to perturbative QCD,” Proceedings of A. Razmadze Mathematical Institute 160 (2012) 91-111 [arXiv:1112.5958 [hep-ph]].

[32] A. V. Nesterenko and J. Papavassiliou, “A novel integral representation for the Adler function,” J. Phys. G 32, 1025 (2006) [hep-ph/0511215]; A. V. Nesterenko, “On the low-energy behavior of the Adler function,” Nucl. Phys. Proc. Suppl. 186, 207 (2009) [arXiv:0808.2043 [hep-ph]].

[33] A. V. Nesterenko, “Dispersive approach to QCD and inclusive tau lepton hadronic decay,” Phys. Rev. D 88 (2013) 056009 [arXiv:1306.4970 [hep-ph]]; “Inclusive τ lepton hadronic decay in vector and axial-vector channels within dispersive approach to QCD,” AIP Conf. Proc. 1701 (2016) 040016 [arXiv:1508.03705 [hep-ph]]; “Hadronic vacuum polarization function within dispersive approach to QCD,” JHEP 014 (2017) 052 [arXiv:1611.06070 [hep-ph]]; “Strong interactions in spacelike and timelike domains: dispersive approach,” Elsevier, Amsterdam, 2016, eBook ISBN: 9780128034484.

[34] LMM [16] is the lattice MiniMOM (MM) scheme [11, 12] rescaled to the conventional MS scale, i.e., $\Lambda_{MM} \rightarrow \Lambda$, i.e., in the leading order it coincides with the MS scheme, but has different scheme (β) coefficients $\beta_n (n \geq 2)$.

[35] We recall that the scheme parameters are: $c_n \equiv \beta_n/\beta_0$, for $n \geq 2$. For convenience, the leading scheme parameter A here (and in the LMM scheme) is such that the scaling is in the MS convention; i.e., the scheme is characterized only by the parameters c_2, c_3, \ldots.

[36] This means holomorphic in the generalized spacelike regime, $Q^2 \in C \setminus (-\infty, -M_{th}^2]$, where $M_{th} \lesssim 0.1$ GeV is a threshold scale comparable with the lightest meson mass.

[37] Yet another approach is to apply the requirement of the holomorphic behavior directly to QCD spacelike observables, cf. Refs. [25] [33].