Efficient light-emitting diodes based on oriented perovskite nanoplatelets

Jieyuan Cui1†, Yang Liu3, Yunzhou Deng1†, Chen Lin3†, Zhishan Fang3, Chensheng Xiang4, Peng Bai5, Kai Du6, Xiaobing Zuo6, Kaichuan Wen7, Shaolong Gong8, Haiping He3, Zhizhen Ye3,9*, Yunan Gao5, He Tian4, Baodan Zhao10, Jianpu Wang7, Yizheng Jin1*

Solution-processed planar perovskite light-emitting diodes (LEDs) promise high-performance and cost-effective electroluminescent devices ideal for large-area display and lighting applications. Exploiting emission layers with high ratios of horizontal transition dipole moments (TDMs) is expected to boost the photon outcoupling of planar LEDs. However, LEDs based on anisotropic perovskite nanoemitters remain to be inefficient (external quantum efficiency, EQE <5%) due to the difficulties of simultaneously controlling the orientations of TDMs, achieving high photoluminescence quantum yields (PLQYs) and realizing charge balance in the films of assembled nanostructures. Here, we demonstrate efficient electroluminescence from an in situ grown perovskite film composed of a monolayer of face-on oriented nanoplatelets. The ratio of horizontal TDMs of the perovskite nanoplatelet film is ~84%, which leads to a light-outcoupling efficiency of ~31%, substantially higher than that of isotropic emitters (~23%). In consequence, LEDs with a peak EQE of 23.6% are achieved, representing highly efficient planar perovskite LEDs.

INTRODUCTION
Photon emission characteristics in semiconductors are mediated by transition dipole moments (TDMs). The optical TDMs of inorganic nanostructures with reduced dimensions, such as nanoplatelets and nanorods, are highly anisotropic (1–4). This unique structure-property relationship is of interest for planar light-emitting diodes (LEDs) because the outcoupling efficiency of the devices is fundamentally correlated to the orientation of emissive TDMs (5–9). In general, TDMs that are horizontally oriented with respect to the electrode interface are favored for light outcoupling, while the vertically oriented TDMs largely contribute to the energy loss (see figs. S1 and S2 for detailed illustrations) (10).

Metal halide perovskite is an emerging class of solution-processed semiconductors with intriguing properties, such as high photoluminescence quantum yields (PLQYs) and tunable emission wavelengths (11–13). Since the first report of the room temperature–operating perovskite LEDs (PeLEDs) in 2014 (14), remarkable progress has been made on device efficiency (15–26). We note that these state-of-the-art planar PeLEDs are based on films with isotropic TDMs (table S1). Enhancing the ratio of horizontally oriented TDMs is expected to further improve light outcoupling and boost the upper limit for the external quantum efficiencies (EQEs) of PeLEDs.

Here, we report efficient LEDs based on in situ grown perovskite films, which simultaneously demonstrate high ratios of horizontal TDMs and high PLQYs. The emitters are oriented perovskite nanoplatelets with a high in-plane TDM ratio of ~84%, leading to LEDs with a light extraction efficiency of ~31%. In contrast, using isotropic emitters (in-plane TDM ratio of 67%) in the same device structure would limit the light extraction efficiency to ~23%. Furthermore, we find that the PLQY of the perovskite film can be boosted to more than 75% by introducing lithium bromide (LiBr) into the precursor solution. These combined efforts enable green PeLEDs with a record EQE of 23.6%, the highest value in planar PeLEDs.

RESULTS
Structural characterization of the in situ formed nanoplatelets
Figure 1A shows a cross-sectional view of our device, including the perovskite layer, analyzed by aberration-corrected scanning transmission electron microscopy (STEM). Our devices consist of multilayers of nickel oxide (NiO; ~7 nm), poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)-diphenylamine)/poly(9-vinylcarbazole) (TFB/PVK, ~38 nm), perovskite (~9 nm), 2,2′,2″-(1,3,5-benzinetriyl) tris(1-phenyl-1H-benimidazole) (TPBi; ~48 nm), lithium fluoride (LiF; ~1 nm), and aluminum (Al; ~100 nm) sequentially deposited onto indium tin oxide (ITO)–coated glass substrates (see Materials and Methods for details). The perovskite film was deposited from a precursor solution comprising LiBr, phenylbutylammonium bromide (PBABr), phenylethyl-ammonium bromide (PEABr), cesium bromide (CsBr), and lead bromide (PbBr2) dissolved in dimethyl sulfoxide (DMSO) with a molar ratio of 0.25:0.75:0.25:1.75:1.4.

1Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. 2Zhejiang Key Laboratory for Excited-State Materials, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. 3State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. 4Centre of Electron Microscope, State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China. 5China State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China. 6X-Ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA. 7Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials, Zhejiang University, Hangzhou 310027, China. 8Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, China. 9ZJU-WZ Novel Materials Science & Technology Innovation Center, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, China. 10State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310027, China. *These authors contributed equally to this work.
The high-angle annular dark-field (HAADF) image indicates a continuous and pinhole-free perovskite film with a thickness of 8.6 ± 1.5 nm (Fig. 1A and fig. S3). Zoom-in observations (Fig. 1B) show an atomic-resolution image with well-resolved atom columns, revealing the high crystallinity of the perovskite nanoplatelets. The crystal structure of the nanoplatelet matches that of tetragonal β-CsPbBr3 (27). The perovskite crystal is oriented with the [001] crystal face parallel to the substrate surface. Atomic force microscopy characterizations on a perovskite film show a low root mean square surface roughness of ~1.2 nm (fig. S4), which is in line with the cross-sectional observations. The perovskite nanoplatelets were transferred and dispersed onto a copper grid for high-resolution transmission electron microscopy (HRTEM) analyses (28). The results (Fig. 1C and fig. S5) indicate that the perovskite crystals are nanoplatelets with an average lateral size of 25.8 ± 6.8 nm (Fig. 1D). The Grazing-incidence wide-angle x-ray scattering (GIWAXS) measurement (Fig. 1E) of a perovskite film shows discrete diffraction spots. The diffraction spot on $q_z = 1.065 \text{ Å}^{-1}$ corresponds to a real-space distance of 5.89 Å, which can be assigned as the d-spacing of the [001] crystal face of tetragonal β-CsPbBr3. These features suggest that the assemblies of the perovskite nanoplatelets are highly ordered and all nanoplatelets share the same orientation with the [001] crystal face parallel to the substrate. The GIWAXS data, together with the STEM-HAADF and HRTEM observations, suggest that the perovskite films consist of a monolayer of face-on oriented nanoplatelets with an average thickness of 8.6 ± 1.5 nm and a lateral size of 25.8 ± 6.8 nm.

Optical analyses of the in situ formed nanoplatelet film

We expect the electronic and optical properties of the perovskite film to be influenced by the quantum confinement effect because the out-of-plane dimension of the nanoplatelets is comparable to the Bohr diameter of CsPbBr3 (7 nm) (29). The photoluminescence (PL) spectrum of the perovskite film shows the symmetric shape and its peak position is at 516 nm (Fig. 2A), corresponding to an optical bandgap of 2.41 eV. This value is larger than the bandgap of bulk β-CsPbBr3, ~2.36 eV (30). The excitonic absorption features of quasi–two-dimensional (2D) perovskites in the strong confinement regime, such as $n = 2$ and $n = 3$ (where n is the number of PbBr3 octahedral layers within a crystallite layer) perovskites, are absent in the ultraviolet-visible absorption spectrum (Fig. 2A). This feature suggests that our film composed of perovskite nanoplatelets is distinctive from the previously reported perovskite films of multiple quantum wells or quantum dots embedded in quasi-2D phase (16, 17, 22). The perovskite nanoplatelet film exhibits a high PLQY of ~75% at a low excitation power density of ~0.02 mW/cm² (Fig. 2B). This result indicates efficient radiative recombination of the photogenerated excitons in the perovskite nanoplatelets.

The orientation of TDMs of the perovskite nanoplatelet film is quantified by the ratio of horizontal TDMs, Θ. This parameter is defined as $\Theta = p_1 / (p_1 + p_2)$, where p_1 and p_2 stand for contributions from horizontal and vertical components of the optical TDMs, respectively. We used the angle-dependent PL technique, which provides an ensemble measurement (photoexcitation spot size ~1 mm) of the intensity of p-polarized emission against the detection angle.
substrate and 0 is the wave vector in the vacuum. By fitting the line-cut data in Fig. 3C, the wavevector in the substrate is determined to be $\sim 87\%$. The BFP data of four spots from different regions (fig. S8) demonstrate excellent spatial uniformity of the orientations of TDMs in our film. The results of both measurements unambiguously demonstrate that the emission of our perovskite nanoplatelet film is dominated by horizontal TDMs.

We suggest that the anisotropy of local fields in the nanoplatelet, i.e., dielectric confinement, largely contributes to the anisotropy of the dipole orientation (3, 36). The local electric field normal to the nanoplatelet plane, E_{\perp}, is reduced (screened) due to the dielectric confinement, while the local field in the horizontal directions, E_{\parallel}, is less affected. The spontaneous radiative transition probability of the nanoplatelet, which is proportional to the square of local fields, is thus substantially reduced in the normal direction. For our closely packed oriented nanoplatelets, the local field in the horizontal directions is expected to be even less affected owing to the near continuum of the high dielectric constant perovskite material in the lateral directions.

Key factors affecting the perovskite films

Two issues, namely, the concentrations of the bulky organic ammonium cations and the introduction of LiBr in the precursor solution, are critical for the formation of oriented perovskite nanoplatelet film with high PLQY. Without the use of the bulky organic ammonium cations, the resulting perovskite film shows an optical bandgap of ~ 2.37 eV (fig. S9A) and excitation intensity–dependent PLQY (fig. S9C). These features indicate the formation of 3D CsPbBr$_3$ crystals. Doubling the concentration of the bulky organic ammonium cations leads to the formation of perovskite films with strong excitonic absorption peaks at ~ 430, ~ 460, and ~ 475 nm, which corresponds to the $n = 2$, $n = 3$, and $n = 4$ layered perovskites, respectively (fig. S9B). The emission peak of this perovskite film locates at ~ 501 nm, implying efficient energy transfer from the perovskites with small n values (larger bandgaps) to the emissive centers with smaller bandgaps. The emissive centers are determined to be nanocrystals with a size of ~ 10 nm (fig. S9D). BFP measurements on the films processed from the precursor solution with various contents of bulky organic ammonium cations indicate that only the oriented perovskite nanoplatelet films have high ratios of horizontal TDMs (fig. S10). Furthermore, control experiments show that other investigated parameters, i.e., the concentration of the precursor solution, the choice of bulky organic ligands, and the underlying substrates, have little impacts on the Θ values of perovskite films (fig. S11). We suggest that the horizontal orientation of the perovskite nanoplatelets on flat substrates may originate from the van der Waals interactions as reported in the literature (37, 38). Besides, the ultrathin film of ~ 9 nm would also favor horizontally aligned perovskite nanoplatelets (39).

Further experiments show that the introduction of LiBr in the precursor solution is beneficial for improving the PLQY of the perovskite film. GIWAXS, angle-dependent PL, and BFP measurements (fig. S12) on the perovskite films processed from the precursor solution without LiBr indicate the formation of oriented nanoplatelets with anisotropic emission (Θ: 84%). The PLQY of perovskite nanoplatelet films processed from the precursor solution with and without LiBr is $\sim 75\%$ and $\sim 50\%$ (fig. S13), respectively. Temperature-dependent PL characterizations (fig. S14) indicate a scenario that the with-Li sample has fewer energy levels below excitonic levels and, thereby, fewer nonradiative losses of photo-generated excitons. We suggest that the introduction of LiBr in the precursor solution may result in perovskite nanoplatelets with better surface passivation.

Characterization of the PeLEDs

The electroluminescence (EL) spectrum of our perovskite nanoplatelet film (fig. 4A) displays a symmetric peak centered at ~ 518 nm with a full width at half maximum of 16 nm (74 meV), representing one of the narrowest emission line widths for high-efficiency PeLEDs (20, 24–26, 40–42). The ultrapure green emission corresponds to Commission Internationale de l’Eclairage color coordinates of (0.09, 0.78) (fig. S15). The angular emission intensity of our PeLEDs follows the Lambertian profile (fig. 4B). The EL spectra at different viewing angles are identical (fig. S16). The current density–voltage–luminance curves of a typical device are shown in Fig. 4C. Owing to the pinhole-free morphology of the nanoplatelet film, the device shows negligible leakage current. The current density and luminance increase rapidly once a turn-on voltage of ~ 3 V is reached. At 7 V, the device shows a brightness of ~ 3140 cd/m2. The champion device demonstrates a peak EQE of 23.6% (fig. 4D), which is a record efficiency among PeLEDs (table S1). The statistical diagram of 36 devices (fig. 4E) indicates an average EQE of 21.3% with a small relative SD of 4.4% demonstrating the excellent reproducibility of our green LEDs. The device shows a typical T_{50} lifetime of ~ 15 min at an initial luminance of ~ 1080 cd/m2 (fig. S17).

We performed optical simulations on the PeLEDs by using the classical dipole model developed for planar microcavities (see fig. S18 for details) (33, 34). The result suggests a light-outcoupling efficiency of 31.1% for our perovskite devices based on the oriented nanoplatelet film with Θ of 84% (fig. S18B). In contrast, a control
we highlight that previous work aiming to control the orientations of TDMs focuses on assemblies of anisotropic colloidal nanostructures to realize anisotropic colloidal nanostructures with high PLQY controlling the orientations of the anisotropic colloidal nanostructures to realize films with high ratios of horizontal TDMs, minimizing energy transfer between the neighboring nanoemitters to maintain high PLQYs and efficient and balanced charge injection into the individual nanoemitters. Fulfilling these stringent requirements is challenging and often imposes dilemmas in material design and assembly. As a result, the EQEs of the LEDs based on colloid anisotropic perovskite nanoemitters are currently lower than 5% (see table S2 for more information) (47). Expanding the scope to all solution-processed planar LEDs using inorganic emitters with oriented TDMs (table S2), the reported highest EQE is 12.1% (43). In contrast, our LEDs based on in situ grown perovskite nanoplatelet films demonstrate high EQEs of up to 23.6%.

DISCUSSION

We demonstrate that controlling the orientation of TDMs of the perovskite films overcomes the light-outcoupling limitation of
The NiO$_x$ precursor was deposited on ITO-coated glass substrates (1 ml) followed by stirring for 2 hours at 50°C. The LiBr pre-electrodes was 3.24 mm2.

The device area defined by the overlapping area of the ITO and Al was purchased from Alfa Aesar. PVK (with a molecular weight of 25,000), LiF (99.9%), and hydrobromic acid (48 weight % in water) were purchased from Acros. DMSO (99.9%), CsBr (99.999%), nickel acetate tetrahydrate (>99.0%), and chlorobenzene (>98.0%) were purchased from Sigma-Aldrich. TPBi was purchased from Xi’an Polymer Light Technology Corp.

NiO$_x$ precursor was prepared by following a literature method (48). PBABr and PEABr were synthesized following the instruction of the previous report (28). Briefly, hydrobromic acid (2.56 ml) was slowly added into a solution of PEA (3 ml) in methanol (20 ml) at 0°C, and then stirred for 2 hours. Next, the solution was evaporated at 45°C to obtain precipitates, which were washed thrice with a mixed solution of ethyl acetate and diethyl ether with a volume ratio of 1:1. Then, the precipitates were dried at 50°C in the vacuum for 24 hours.

The precursor solution for the perovskite nanoplatelet film was prepared by mixing a CsPbBr$_3$ precursor solution (1 ml), a LiBr precursor solution (0.25 ml), and DMSO (0.5 ml). The CsPbBr$_3$ precursor solution was prepared by mixing PBABr (18.9 mg), PEABr (5.5 mg), CsBr (40.8 mg), and PbBr$_2$ (56.2 mg) in DMSO (1 ml) followed by stirring for 2 hours at 50°C. The LiBr precursor solution was prepared by dissolving LiBr (9.55 mg) in DMSO (1 ml).

Device fabrication

The NiO$_x$ precursor was deposited on ITO-coated glass substrates (square resistance of 20 ohms) by a literature method (22). The TFB (in chlorobenzene, 8 mg/ml) was spin-coated at 2000 rpm and then annealed at 150°C for 30 min. Then, the TFB film was spin-rinsed by chlorobenzene, leaving an ultrathin layer. Next, the PVK layer was deposited by spin-coating PVK solution (in chlorobenzene, 8 mg/ml) at 2000 rpm, followed by annealing at 150°C for 30 min. The perovskite film was prepared by spin-coating the precursor solution at 4000 rpm for 2 min, followed by annealing at 100°C for 25 min. Next, the TPBi (48 nm), LiF (1 nm), and Al (100 nm) were sequentially deposited by using a thermal evaporating system (Trovato C300) at a high-vacuum environment (under 2 x 10$^{-7}$ torr). The device area defined by the overlapping area of the ITO and Al electrodes was 3.24 mm2.

Structural and optical characteristics

The cross-sectional samples were prepared by using focused ion beam equipment (Quata 3D FEG). The TEM observations were conducted using a Cs aberration–corrected scanning transmission electron microscope, Titan G2 80-200 ChemiSTEM microscope, operated at 200 kV.

Atomic force microscopy analyses were conducted with a Cypher-S (Asylum Research) atomic force microscope located in a glovebox filled with nitrogen. GIWAXS measurements were performed at Beamline 12-ID-B of Advanced Photon Source (Argonne National Laboratory, USA). A PerkinElmer detector, XRpad 4343F, was applied in the measurements with a sample-to-detector distance of 18 cm. The energy of x-ray radiation was 13.3 keV.

The angle-dependent PL spectra of the perovskite nanoplatelet films (deposited on quartz/TFB/PVK substrate) were collected by using a molecular orientation characteristic measurement system CI4234-11 (Hamamatsu Photonics K.K., Japan; fig. S6). The range of angles is 0° to 90°. The excitation wavelength is 365 nm.

The BFP imaging experiments were performed on an optical system as schematically shown in fig. S7. The excitation wavelength is 457 nm and the diameter of the excitation spot is ~750 nm.

The refractive index (n) and extinction coefficient (k) of all layers of the PeLEDs were measured by an ellipsometer (J.A. Woollam, USA). Ultraviolet-visible absorption spectra of the samples were collected by using a Cary 5000 (Agilent) spectrophotometer.

Steady-state PL, transient PL, and temperature-dependent PL spectra were performed on an Edinburgh Instruments (FLS920) spectrometer. Excitation density–dependent PLQYs of the perovskite films were obtained by following the published method (22). The angle dependence of emission intensity of the PeLED was measured using a Thorlabs PDA100A detector at a fixed distance of 200 mm from the EL device (16).

All LEDs were measured in a glovebox filled with nitrogen at room temperature. A system consisting of an integration sphere (FOIS-1), a Keithley 2400 source meter, and a QE-Pro spectrometer (Ocean Optics) was used for the measurements (49). The devices were scanned from zero bias at a rate of 0.1 V s$^{-1}$. The integral time for each step is 500 ms. The EL characteristics of the LEDs were cross-checked at Zhejiang University (Yizheng Jin group), University of Cambridge (Richard Friend group), and Nanjing Tech University (Jianpu Wang group).

REFERENCES AND NOTES

1. R. Scott, J. Beckmann, A. V. Prudnikau, A. Antanovich, A. Mikhailov, N. Owshimikow, M. Artemyev, J. I. Climente, U. Woggon, N. B. Grosje, A. W. Achtstein, Directed emission of CdSe nanoplatelets originating from strongly anisotropic 2D electronic structure. Nat. Nanotechnol. **12**, 1155–1160 (2017).
2. Y. Gao, M. C. Weidman, W. A. Tisdale, CdSe nanoplatelet films with controlled orientation of their transition dipole moment. Nano Lett. **17**, 3837–3843 (2017).
3. M. J. Jurow, T. Morgenstern, C. Eisler, J. Kang, E. Penzo, M. Do, M. Engelmayr, W. T. Osoviecki, Y. Bekenstein, C. Tassone, L. W. Wang, A. P. Alivisatos, W. Brutting, Y. Liu, Manipulating the transition dipole moment of CsPbBr$_3$ perovskite nanocrystals for superior optical properties. Nano Lett. **19**, 2489–2496 (2019).
4. J. Jagielski, S. F. Solari, L. Jordan, D. Scullion, B. Blulle, Y. T. Li, F. Krumeich, Y. C. Chiu, B. Ruhstaller, E. J. G. Santos, C. J. Shih, Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nat. Commun. **11**, 387 (2020).
5. J.-S. Kim, P. K. H. Ho, N. C. Greenham, R. H. Friend, Electroluminescence emission pattern of organic light-emitting diodes: Implications for device efficiency calculations. J. Appl. Phys. **88**, 1073–1081 (2000).
6. X.-W. Chen, W. C. H. Choy, S. He, Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes. J. Disp. Technol. **3**, 110–117 (2007).
7. J.-I. Kim, Y. Leong, C. Mayr, Y. S. Park, K.-H. Kim, J.-H. Lee, C.-K. Moon, W. Brutting, J.-I. Kim, Organic light-emitting diodes with 30% external quantum efficiency based on a horizontally oriented emitter. Adv. Funct. Mater. **23**, 3896–3900 (2013).
Z. K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, S. D. Stranks, H. J. Snaith, Metal-halide perovskites for photovoltaic and light-emitting diodes. Nat. Photonics 10, 391–402 (2015).

W. L. Barnes, Fluorescence near interfaces: The role of photonic mode density. J. Opt. Soc. Am. A 17, 900–907 (2018).

Y. A. Zvyagin, A. M. Balbashov, D. V. Maslov, A. G. Sokolov, S. D. Stranks, H. J. Snaith, Novel optical properties of perovskite nanocrystals. Nat. Nanotechnol. 11, 106–110 (2016).

K. A. Neyts, Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

L. Wang, H. Zhu, B. Zhao, D. Di, R. H. Friend, Y. Jin, Efficient blue light-emitting diodes based on organometal halide perovskite nanomaterials: Synthesis and applications. Chem. Sci. 8, 2522–2536 (2017).

R. Quintero-Bermudez, A. Gold-Parker, A. H. Prope, R. Muntiz, Y. S. Zhao, S. D. Stranks, H. J. Snaith, Compositional and orientational control in perovskite nanocrystal light-emitting diodes. Adv. Mater. 30, 1805409 (2018).

J. R. Manders, S.-W. Tsang, M. J. Hartel, T.-H. Lai, S. Chen, C. M. Amb, J. R. Reynolds, F. So, Solution-processed nickel oxide hole transport layers in high-efficiency polymer photovoltaic cells. Adv. Mater. 23, 2993–3001 (2011).

X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Hao, X. Liang, L. Chen, J. Wang, X. Peng, Solution-processed, high-performance light-emitting diodes based on quantum-confined colloid light-emitting diodes. Nat. Commun. 11, 5145–5154 (2019).

J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan, H. Zeng, Organic-inorganic hybrid perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 30, 1805409 (2018).

S. Kumar, J. Jagojisi, C.-J. Shih, Quantum confined colloidal perovskite nanoplatelets for extremely pure green and efficient LEDs, in Novel Optical Materials and Applications (Optical Society of America, 2018), pp. NoTu3.C2.

X. Hu, H. Zhou, Z. Jiang, X. Wang, S. Yuan, J. Lan, Y. Fu, X. Zhang, W. Zheng, X. Wang, X. Zhu, L. Liu, L. Xu, S. Jin, A. Pan, Direct vapor growth of perovskite CsPbBr3 nanobeam electroluminescent devices. ACS Nano 11, 9669–9876 (2017).
53. D. Yang, Y. Zou, P. Li, Q. Liu, L. Wu, H. Hu, Y. Xu, B. Sun, Q. Zhang, S.-T. Lee, Large-scale growth and anion exchange conversion of CH$_3$NH$_3$PbX$_3$ nanorod arrays for light-emitting diodes. Nano Lett. 15, 5519–5524 (2015).

54. B. Liu, S. Delikanli, Y. Gao, D. Dede, K. Gungor, H. V. Demir, Nanocrystal light-emitting diodes based on type II nanoplatelets. Nano Energy 4, 295–302 (2014).

55. Z. Chen, B. Nadal, B. Mahler, H. Aubin, B. Dubertret, Quasi-2D colloidal semiconductor nanoplatelets for narrow electroluminescence. Adv. Funct. Mater. 24, 3441–3448 (2018).

56. F. Zhang, S. Wang, L. Wang, Q. Lin, H. Shen, W. Cao, C. Yang, Y. Wang, L. Yu, Z. Du, J. Xue, L. S. Li, Super color purity green quantum dot light-emitting diodes fabricated by using CdSe/CdS nanoplatelets. Nano Letters 8, 12182–12188 (2016).

57. R. A. M. Hikmet, P. T. K. Chin, D. V. Talapin, H. Weller, Polarized-light-emitting quantum-rod diodes. Adv. Mater. 17, 1436–1439 (2005).

58. N. Oh, S. Nam, Y. Zhou, Y. Zhai, E. C. Trefonas, M. Shim, Double-heterojunction nanorods. Nat. Commun. 3, 3642 (2012).

59. P. Rastogi, F. Palazon, M. Prato, F. Di Stasio, R. Krahne, Enhancing the performance of CdSe/CdS dot-in-rod light-emitting diodes via surface ligand modification. ACS Appl. Mater. Inter. 10, 5665–5672 (2018).

60. A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti, M. Lorenzon, L. Manna, I. Moreels, U. Giovanella, S. Brovelli, High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polymeric ligands. Sci. Adv. 7, eabg8458 (2021).