EMBEDDING LENS SPACES IN DEFINITE 4-MANIFOLDS

PAOLO ACETO AND JUNGHWAN PARK

Abstract. Every lens space has a locally flat embedding in a connected sum of 8 copies of the complex projective plane and a smooth embedding in n copies of the complex projective plane for some positive integer n. We show that there is no n such that every lens space smoothly embeds in n copies of the complex projective plane.

1. Introduction

Every closed 3-manifold embeds in S^5 [Hir61, Roh65, Wal65]. On the other hand, there are strong restrictions on which closed 3-manifolds can embed in S^4. It was shown by Hantzsche [Han38] that if a rational homology 3-sphere Y embeds in S^4, then $H_1(Y;\mathbb{Z}) \cong G \oplus G$. In particular, no lens space (other than S^3 and $S^1 \times S^2$) embeds in S^4. Further, a punctured lens space $L(p,q)_0$ admits an embedding in S^4 if and only if p is odd [Zee65, Eps65]. Also, we have a complete understanding of which connected sums of lens spaces can be smoothly embedded in S^4 by Donald [Don15] (see also [KK83, GL83, FSS7]). There are also various interesting results on embedding other 3-manifolds in S^4 [Kaw77, CH81, Hil96, CH98, BB08, Hil09, IM18].

Even though the embedding problem of lens spaces in S^4 is completely solved, there are many interesting generalizations. In this paper, we focus on the embedding problem of lens spaces in definite 4-manifolds (the embedding problem of lens spaces in spin 4-manifolds has been studied in [AGL17]). In [EL96], Edmonds and Livingston showed that every lens space smoothly embeds in $\#_n\mathbb{CP}^2$ for some positive integer n. Further, they showed that there is a family of lens spaces that do not have locally flat embeddings in $\#_n\mathbb{CP}^2$. Later, Edmonds [Edm05] showed that every lens space has a locally flat embedding in $\#_8\mathbb{CP}^2$ using independent works of Boyer [Boy93] and Stong [Ste93] which extend Freedman’s [Fre82] realization result. In contrast, we show that there is no n such that every lens space smoothly embeds in $\#_n\mathbb{CP}^2$. Our main argument relies on Donaldson’s diagonalization theorem [Don87] and is based on the combinatorics of integral lattices.

Theorem 1.1. Let $L(p,q)$ be a lens space bounded by the canonical positive definite plumbed manifold $P(p,q)$ with the plumbing graph

$$
\begin{array}{cccc}
& a_1 & a_2 & \cdots & a_m \\
\bullet & \bullet & \cdots & \bullet
\end{array}
$$

Suppose that $a_i \geq 6$ for all i. If $L(p,q)$ smoothly embeds in a definite 4-manifold W with $b_1(W) = 0$, then $b_2(W) > m$. In particular, if $L(p,q)$ smoothly embeds in $\#_n\mathbb{CP}^2$, then $n > m$.

Furthermore, we show that if a lens space $L(p,q)$ as in Theorem 1.1 bounds a smooth, positive definite 4-manifold, there is a strong restriction on its intersection form. This also reflects the big discrepancy between the smooth and the topological category in dimension 4 since for every 3-manifold Y and a \mathbb{Z}-valued symmetric bilinear form Q that presents the linking form of Y, Q is realized as the intersection form of a simply

2010 Mathematics Subject Classification. 57M27, 57N13, 57N35.
connected, topological 4-manifold bounded by Y. For instance, every lens space bounds a simply connected, positive definite, topological 4-manifold X with $b_2(X) \leq 6$. Recall that an integral lattice is a pair (G, Q), where G is a finitely generated free abelian group and Q is a \mathbb{Z}-valued symmetric bilinear form defined on G. The integral lattice with the standard positive definite form is denoted by $(\mathbb{Z}^N, \text{Id})$. A morphism of integral lattices is a homomorphism of abelian groups which preserves the form. An embedding is an injective morphism. To a given 4-manifold X, we associate the integral lattice $(H_2(X; \mathbb{Z})/\text{Tors}, Q_X)$, where Q_X is the intersection form on X.

Theorem 1.2. Let $L(p, q)$ be a lens space that satisfies the assumption of Theorem 1.1. If $L(p, q)$ bounds a smooth, positive definite 4-manifold X, then $b_2(X) \geq m$ and there is an embedding

$$(H_2(X; \mathbb{Z})/\text{Tors}, Q_X) \hookrightarrow (H_2(P(p, q); \mathbb{Z}), Q_{P(p, q)}) \oplus (\mathbb{Z}^{b_2(X)-m}, \text{Id}).$$

Moreover, $b_2(X) = m$ if and only if X and $P(p, q)$ have isomorphic intersection forms.

Acknowledgments. This project started when both authors were at the Max-Planck-Institut für Mathematik. We would like to thank the MPIM for providing an excellent environment for research.

2. Proof of Theorem 1.1 and 1.2

We work in the smooth category and all manifolds are oriented. Recall that the lens space $L(p, q)$ is the result of $-p/q$ Dehn surgery on the unknot. Up to orientation preserving diffeomorphism, we may assume that $p > q > 0$. For the rest of this article we only consider lens spaces $L(p, q)$ that bound the canonical positive definite plumbed manifolds $P(p, q)$ with the plumbing graph $\Gamma_{p,q} :=$

\[
\begin{array}{cccc}
\bullet & \cdots & \bullet & \cdots & \cdots & \cdots & \cdots & \cdots & \bullet \\
\end{array}
\]

where $a_i \geq 6$ for all i.

Let $-L(p, q)$ be the lens space $L(p, q)$ with the reversed orientation, then there is an orientation preserving diffeomorphism between $-L(p, q)$ and $L(p, p-q)$. Using Riemenschneider’s point rule [Rie74] (see also [Lis07, Lec12]), we see that $L(p, p-q)$ bounds a canonical positive definite plumbed manifold $P(p, p-q)$ with the plumbing graph $\Gamma_{p,p-q} :=$

\[
\begin{array}{cccc}
\bullet & \cdots & \bullet & \cdots & \cdots & \cdots & \cdots & \cdots & \bullet \\
a_1 & a_2 & \cdots & a_{m-2} & a_{m-1} & a_m \\
\end{array}
\]

We denote the integral lattice associated to $P(p, q)$ as $(\mathbb{Z}\Gamma_{p,q}, Q_{p,q})$ and call it the integral lattice associated with $L(p, q)$. Similarly, we also have a dual positive definite integral lattice $(\mathbb{Z}\Gamma_{p,p-q}, Q_{p,p-q})$ associated with $L(p, p-q)$.

Proposition 2.1. If there is an embedding from $(\mathbb{Z}\Gamma_{p,p-q}, Q_{p,p-q})$ to $(\mathbb{Z}^N, \text{Id})$, then $N \geq m + \text{rk}(\mathbb{Z}\Gamma_{p,p-q})$.

Proof. We label the first a_1 vertices of $\Gamma_{p,p-q}$ as follows

\[
\begin{array}{cccc}
\bullet & \cdots & \bullet & \cdots & \cdots & \cdots \\
x_1 & x_{a_1-2} & x_{a_1-1} & x_{a_1} \\
\end{array}
\]

...
Let \(\{e_1, \ldots, e_N\} \) be the standard basis for \((\mathbb{Z}^N, \text{Id})\). By abuse of notation we identify \((\mathbb{Z} \Gamma_{p,p-q}, Q_{p,p-q})\) with its image in the standard lattice. It is straightforward to see that a chain of 2’s with length longer than 3 has a unique embedding. Hence up to reordering and changing sign of the standard basis elements we may write

\[x_i = e_i + e_{i+1} \quad \text{for} \quad 1 \leq i \leq a_1 - 2. \]

Further, since \(x_{a_1-1} \) intersects with \(x_{a_1-2} \) once and has norm 3,

\[x_{a_1-1} = e_{a_1-1} + \sum_{a_1-1 < j} e_j e_j. \]

Lastly, \(x_{a_1} \) has a trivial intersection with \(e_{a_1-1} \) since it is disjoint from the first chain of 2’s and it has norm 2. Therefore, \(x_{a_1-1} - e_{a_1-1} \) is disjoint from the first chain of 2’s and intersects \(x_{a_1} \) once. Now, if we only consider \(x_{a_1-1} - e_{a_1-1} \) and all the vertices that reside on the right hand side of \(x_{a_1-1} \), we get to the same situation as we have started with. Hence we can repeat the same argument to get the following identifications

\[
\begin{align*}
2 & \quad 2 & \quad \cdots & \quad 2 \\
\bullet & \quad \bullet & \quad \cdots & \quad \bullet
\end{align*}
\]

for each chain of 2’s where \(n_\ell = \sum_{k=1}^{\ell-1} a_k + (3 - \ell) \) and \(2 \leq \ell \leq m - 1 \), and

\[
\begin{align*}
2 & \quad 2 & \quad \cdots & \quad 2 \\
\bullet & \quad \bullet & \quad \cdots & \quad \bullet
\end{align*}
\]

for the \(m \)-th chain of 2’s where \(n_m = \sum_{k=1}^{m-1} a_k + (3 - m) \). The \(\ell \)-th vertex with weight 3 shares one coordinate from its left chain and one coordinate from its right chain. Further, it needs an extra coordinate, which we denote it by \(e_{n_{\ell+1}-1} \).

In total, we have used \(\sum_{k=1}^{m} a_k - m + 1 \) coordinates which implies that \(N \geq \sum_{k=1}^{m} a_k - m + 1 \).

The proof is complete by observing that \(m + \text{rk}(\mathbb{Z} \Gamma_{p,p-q}) = \sum_{k=1}^{m} a_k - m + 1 \). \(\square \)

Remark 2.2. In fact, the proof of Proposition 2.1 shows that there is a **unique** embedding up to change of basis from \((\mathbb{Z} \Gamma_{p,p-q}, Q_{p,p-q})\) to \((\mathbb{Z}^N, \text{Id})\) when \(N \geq m + \text{rk}(\mathbb{Z} \Gamma_{p,p-q})\).

Proposition 2.3. If \(L(p,q) \) bounds a positive definite 4-manifold \(X \), then \(b_2(X) \geq m \).

Proof. Let \(W \) be the closed 4-manifold obtained by gluing \(X \) with \(P(p,p-q) \) along \(L(p,q) \). We obtain the following embedding

\[(H_2(X;\mathbb{Z})/\text{Tors}, Q_X) \oplus (\mathbb{Z} \Gamma_{p,p-q}, Q_{p,p-q}) \hookrightarrow (H_2(W;\mathbb{Z})/\text{Tors}, Q_W). \]

Further, by Donaldson’s diagonalization theorem \([\text{Don87}]\) we have

\[(H_2(W;\mathbb{Z})/\text{Tors}, Q_W) \cong (\mathbb{Z}^{b_2(W)}, \text{Id}). \]

Combining Proposition 2.1 with \(b_2(W) = b_2(X) + \text{rk}(\mathbb{Z} \Gamma_{p,p-q}) \) completes the proof. \(\square \)

Proof of Theorem 1.1. Suppose \(L(p,q) \) smoothly embeds in a definite 4-manifold \(W \). Since \(L(p,q) \) embeds in \(W \) if and only if \(L(p,q) \) embeds is \(-W\), we may assume that \(W \) is positive definite. Then \(L(p,q) \) separates \(W \) into two positive definite components, the closures of which we denote by \(X_1 \) and \(X_2 \). Note that by the MayerVietoris sequence we have \(b_2(X_1) + b_2(X_2) = b_2(W) \) and the result follows from Proposition 2.3 and the fact that \(L(p,q) \) does not bound a rational ball (see \([\text{Lis07}]\)). \(\square \)
The rest of the section is devoted to proving Theorem 1.2. Suppose there is an embedding of an integral lattice \(\phi : \Gamma \hookrightarrow \Gamma' \). Then the orthogonal complement of \(\Gamma \) with respect to \(\phi \) is defined as follows,

\[
\Gamma_{\phi}^\perp := \{ x \in \Gamma' \mid x \cdot \phi(y) = 0 \text{ for all } y \in \Gamma \}.
\]

Proposition 2.4. Suppose there is an embedding

\[
\phi : (Z\Gamma_{p,p,q}, Q_{p,p,q}) \hookrightarrow (Z^N, \text{Id}),
\]

then \((Z\Gamma_{p,p,q}, Q_{p,p,q})_{\phi}^\perp \cong (Z\Gamma_{p,q}, Q_{p,q}) \oplus (Z^{N-m-rk(Z\Gamma_{p,p,q})}, \text{Id})\). In particular, if \(N = m + rk(Z\Gamma_{p,p,q}) \), then \((Z\Gamma_{p,p,q}, Q_{p,p,q})_{\phi}^\perp \cong (Z\Gamma_{p,q}, Q_{p,q})\).

Proof. From Proposition 2.1 and Remark 2.2, we know that there is a unique embedding up to change of basis from \((Z\Gamma_{p,p,q}, Q_{p,q})\) to \((Z^N, \text{Id})\). Hence we may decompose \(\phi \) as follows

\[
\phi : (Z\Gamma_{p,p,q}, Q_{p,p,q}) \hookrightarrow (Z^{m+rk(Z\Gamma_{p,p,q})}, \text{Id}) \oplus (Z^{N-m-rk(Z\Gamma_{p,p,q})}, \text{Id}),
\]

where the image of \(\phi \) on the second summand is trivial. Let \(\pi \) be the projection map from \((Z^N, \text{Id})\) to \((Z^{m+rk(Z\Gamma_{p,p,q})}, \text{Id})\), then we have the following identification

\[
(Z\Gamma_{p,p,q}, Q_{p,p,q})_{\phi}^\perp \cong (Z\Gamma_{p,p,q}, Q_{p,p,q})_{\phi \circ \pi} \oplus (Z^{N-m-rk(Z\Gamma_{p,p,q})}, \text{Id}).
\]

Let \(W \) be the closed 4-manifold obtained by gluing \(P(p,q) \) with \(P(p,p-q) \) along \(L(p,q) \). Using Donaldson’s diagonalization theorem [Don77], we have an embedding

\[
\psi : (Z\Gamma_{p,q}, Q_{p,q}) \oplus (Z\Gamma_{p,p,q}, Q_{p,p-q}) \hookrightarrow (Z^{m+rk(Z\Gamma_{p,p,q})}, \text{Id}).
\]

Again, since there is a unique embedding up to change of basis from \((Z\Gamma_{p,p,q}, Q_{p,p-q})\) to \((Z^{m+rk(Z\Gamma_{p,p,q})}, \text{Id})\), we may assume that the embedding \(\psi \) restricted to \((Z\Gamma_{p,p,q}, Q_{p,p-q})\), denoted by \(\psi_{p,p,q} \), coincides with \(\pi \circ \phi \). In particular,

\[
(Z\Gamma_{p,p,q}, Q_{p,p-q})_{\psi,\phi}^\perp \cong (Z\Gamma_{p,p,q}, Q_{p,p-q})_{\psi_{p,p,q}}^\perp.
\]

Further, we can use the coordinates from the proof of Proposition 2.1

By restricting \(\psi \) to \(Z\Gamma_{p,q} \), denoted by \(\psi_{p,q} \), we have

\[
\psi_{p,q} : (Z\Gamma_{p,q}, Q_{p,q}) \hookrightarrow (Z\Gamma_{p,q}, Q_{p,q})_{\phi_{p,q}}^\perp.
\]

Now, suppose \(x = \sum_{i=1}^{N} c_i e_i \in (Z\Gamma_{p,p,q}, Q_{p,p-q})_{\psi_{p,p,q}}^\perp \). Since \(x \) needs to have trivial intersections with all the chain of \(2's \), we have

\[
c_1 = \cdots = c_{a_1-1}, c_{a_\ell} = \cdots = c_{n_\ell+a_\ell-3}, \text{ for } 2 \leq \ell \leq m-1, \text{ and } c_{n_m} = \cdots = c_{n_m+a_m-2}
\]

where \(n_\ell = \sum_{\ell=1}^{\ell-1} a_\ell + (3-\ell) \) for \(2 \leq \ell \leq m \). Further, \(x \) has trivial intersections with vertices with weight 3. This implies

\[
c_{n_{\ell+1}-2} + c_{n_{\ell+1}-1} + c_{n_{\ell+1}} = 0, \text{ for } 1 \leq \ell \leq m-1.
\]

From the above relations, we see that \(\{ x_\ell \} \) forms a basis for \((Z\Gamma_{p,p,q}, Q_{p,p-q})_{\psi_{p,p,q}}^\perp\), where

\[
x_1 = e_1 - e_2 + \cdots + (-1)^{a_1} e_{n_2-1},
\]

\[
x_\ell = e_{n_\ell-1} - e_{n_\ell} + \cdots + (-1)^{a_\ell} e_{n_{\ell+1}-1}, \text{ for } 2 \leq \ell \leq m-1,
\]

\[
x_m = e_{n_m-1} - e_{n_m} + \cdots + (-1)^{a_m} e_{n_m+a_m-2}.
\]

Finally, it is straightforward to check that the matrix, denoted by \(M \), that represents the intersection form of \((Z\Gamma_{p,p,q}, Q_{p,p-q})_{\psi_{p,p,q}}^\perp\) with respect to the basis \(\{ x_\ell \} \) coincides with the matrix, denoted by \(M_{p,q} \), that represents \(Q_{p,q} \) with respect to the obvious basis.
for $\mathbb{Z}\Gamma_{p,q}$. Note that we have $M = P^T M_{p,q} P$ where P is a matrix that represents $\psi_{p,q}$. This implies that P is unimodular and $\psi_{p,q}$ is an isomorphism. Then the result follows from (2.1) and (2.2). □

Proposition 2.4 is motivated by [ACP18] Proposition 4.1. By restricting to a smaller family of lens spaces, Proposition 2.4 gives the same conclusion as [ACP18] Proposition 4.1 with a weaker assumption. We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let W be the closed 4-manifold resulting from gluing X and $P(p, p - q)$ along $L(p, q)$. Again, by Donaldson’s theorem [Don87] we have an embedding

$$\psi: (H_2(X; \mathbb{Z})/\text{Tors}, Q_X) \oplus (\mathbb{Z}\Gamma_{p,p-q}, Q_{p,p-q}) \hookrightarrow (\mathbb{Z}^{b_2(X)} + \text{rk}(\mathbb{Z}\Gamma_{p,p-q}), \text{Id}).$$

Let $\psi_{p,p-q}$ be the embedding obtained by restricting ψ to $\mathbb{Z}\Gamma_{p,p-q}$. Further, by restricting ψ to $H_2(Z; \mathbb{Z})/\text{Tors}$ we have the following embedding

$$\psi|_{H_2(X;\mathbb{Z})/\text{Tors}}: (H_2(X; \mathbb{Z})/\text{Tors}, Q_X) \hookrightarrow (\mathbb{Z}\Gamma_{p,p-q}, Q_{p,p-q})^\perp_{\psi_{p,p-q}}.$$

Then the first part of the theorem follows from Proposition 2.3 and Proposition 2.4.

Suppose now that $m = b_2(X)$, then by Proposition 2.4 we have

$$(\mathbb{Z}\Gamma_{p,p-q}, Q_{p,p-q})^\perp_{\psi_{p,p-q}} \cong (\mathbb{Z}\Gamma_{p,q}, Q_{p,q}).$$

Let M_X and $M_{p,q}$ be matrices that represent Q_X and $Q_{p,q}$, respectively. Then $M_X = P^T M_{p,q} P$ where P is a matrix that represents $\psi|_{H_2(X;\mathbb{Z})/\text{Tors}}$. Recall that M_X presents a subgroup of $H_1(L(p,q); \mathbb{Z})$ (see, for instance, [OS06] Section 2) and $M_{p,q}$ presents $H_1(L(p,q); \mathbb{Z})$. In particular, $\det(M_X) \leq p$ and $\det(M_{p,q}) = p$, which implies that P is unimodular and concludes the proof. □

References

[ACP18] Paolo Aceto, Daniele Celoria, and JungHwan Park. Rational cobordisms and integral homology. arXiv:1811.01433, 2018.

[AGL17] Paolo Aceto, Marco Golla, and Kyle Larson. Embedding 3-manifolds in spin 4-manifolds. J. Topol., 10(2):301–323, 2017.

[BB08] Ryan Budney and Benjamin A. Burton. Embeddings of 3-manifolds in S^4 from the point of view of the 11-tetrahedron census. arXiv:0810.2346, 2008.

[Boy93] Steven Boyer. Realization of simply-connected 4-manifolds with a given boundary. Comment. Math. Helv., 68(1):20–47, 1993.

[CH81] Andrew J. Casson and John L. Harer. Some homology lens spaces which bound rational homology balls. Pacific J. Math., 96(1):23–36, 1981.

[CH98] John S. Crisp and Jonathan A. Hillman. Embedding Seifert fibred 3-manifolds and S^3-manifolds in 4-space. Proc. London Math. Soc. (3), 76(3):685–710, 1998.

[Don87] Simon K. Donaldson. The orientation of Yang-Mills moduli spaces and 4-manifold topology. J. Differential Geom., 26(3):397–428, 1987.

[Don15] Andrew Donald. Embedding Seifert manifolds in S^4. Trans. Amer. Math. Soc., 367(1):559–595, 2015.

[Edm05] Allan L. Edmonds. Homology lens spaces in topological 4-manifolds. Illinois J. Math., 49(3):827–837, 2005.

[EL96] Allan L. Edmonds and Charles Livingston. Embedding punctured lens spaces in four-manifolds. Comment. Math. Helv., 71(2):169–191, 1996.

[Eps65] David B. A. Epstein. Embedding punctured manifolds. Proc. Amer. Math. Soc., 16:175–176, 1965.

[Fre82] Michael H. Freedman. The topology of four-dimensional manifolds. J. Differential Geom., 17(3):357–453, 1982.

[FS87] Ronald Fintushel and Ronald Stern. Rational homology cobordisms of spherical space forms. Topology, 26(3):385–393, 1987.

[GL83] Patrick M. Gilmer and Charles Livingston. On embedding 3-manifolds in 4-space. Topology, 22(3):241–252, 1983.

[Han38] W. Hantzsche. Einlagerung von Mannigfaltigkeiten in euklidische Räume. Math. Z., 43(1):38–58, 1938.
[Hil96] Jonathan A. Hillman. Embedding homology equivalent 3-manifolds in 4-space. Math. Z., 223(3):473–481, 1996.

[Hil09] Jonathan A. Hillman. Embedding 3-manifolds with circle actions. Proc. Amer. Math. Soc., 137(12):4287–4294, 2009.

[Hir61] Morris W. Hirsch. The imbedding of bounding manifolds in euclidean space. Ann. of Math. (2), 74:494–497, 1961.

[IM18] Ahmad Issa and Duncan McCoy. Smoothly embedding seifert fibered spaces in S^4. arXiv:1810.04770, 2018.

[Kaw77] Akio Kawauchi. On quadratic forms of 3-manifolds. Invent. Math., 43(2):177–198, 1977.

[KK80] Akio Kawauchi and Sadayoshi Kojima. Algebraic classification of linking pairings on 3-manifolds. Math. Ann., 253(1):29–42, 1980.

[Lec12] Ana G. Lecuona. On the slice-ribbon conjecture for Montesinos knots. Trans. Amer. Math. Soc., 364(1):233–285, 2012.

[Lis07] Paolo Lisca. Lens spaces, rational balls and the ribbon conjecture. Geom. Topol., 11:429–472, 2007.

[OS06] Brendan Owens and Sašo Strle. Rational homology spheres and the four-ball genus of knots. Adv. Math., 200(1):196–216, 2006.

[Rie74] Oswald Riemenschneider. Deformationen von Quotientensingularitäten (nach zyklischen Gruppen). Math. Ann., 209:211–248, 1974.

[Roh65] V. A. Rohlin. The embedding of non-orientable three-manifolds into five-dimensional Euclidean space. Dokl. Akad. Nauk SSSR, 160:549–551, 1965.

[Sto93] Richard Stong. Simply-connected 4-manifolds with a given boundary. Topology Appl., 52(2):161–167, 1993.

[Wal65] C. T. C. Wall. All 3-manifolds imbed in 5-space. Bull. Amer. Math. Soc., 71:564–567, 1965.

[Zee65] E. C. Zeeman. Twisting spun knots. Trans. Amer. Math. Soc., 115:471–495, 1965.

Mathematical Institute University of Oxford, Oxford, United Kingdom
E-mail address: paoloaceto@gmail.com
URL: www.maths.ox.ac.uk/people/paolo.aceto

School of Mathematics, Georgia Institute of Technology, Atlanta, GA, USA
E-mail address: junghwan.park@math.gatech.edu
URL: people.math.gatech.edu/~jpark929/