Can denosumab be a substitute, competitor, or complement to bisphosphonates?

1Department of Anesthesia and Pain Medicine, School of Medicine, Pusan National University, Yangsan, Korea, 2Department of Orthopedics, Ludwig-Maximilian-University Munich, Grosshadern Campus, Munich, Germany

Su Young Kim 1, Hwoe Gyeong Ok 1, Christof Birkenmaier 2, and Kyung Hoon Kim 1

Osteoblasts, originating from mesenchymal cells, make the receptor activator of the nuclear factor kappa B ligand (RANKL) and osteoprotegerin (OPG) in order to control differentiation of activated osteoclasts, originating from hematopoietic stem cells. When the RANKL binds to the RANK of the pre-osteoclasts or mature osteoclasts, bone resorption increases. On the contrary, when OPG binds to the RANK, bone resorption decreases. Denosumab (AMG 162), like OPG (a decoy receptor), binds to the RANKL, and reduces binding between the RANK and the RANKL resulting in inhibition of osteoclastogenesis and reduction of bone resorption. Bisphosphonates (BPs), which bind to the bone mineral and occupy the site of resorption performed by activated osteoclasts, are still the drugs of choice to prevent and treat osteoporosis. The merits of denosumab are reversibility targeting the RANKL, lack of adverse gastrointestinal events, improved adherence due to convenient biannual subcutaneous administration, and potential use with impaired renal function. The known adverse reactions are musculoskeletal pain, increased infections with adverse dermatologic reactions, osteonecrosis of the jaw, hypersensitivity reaction, and hypocalcemia. Treatment with 60 mg of denosumab reduces the bone resorption marker, serum type 1 C-telopeptide, by 3 days, with maximum reduction occurring by 1 month. The mean time to maximum denosumab concentration is 10 days with a mean half-life of 25.4 days. In conclusion, the convenient biannual subcutaneous administration of 60 mg of denosumab can be considered as a first-line treatment for osteoporosis in cases of low compliance with BPs due to gastrointestinal trouble and impaired renal function. (Korean J Pain 2017; 30: 86-92)

Key Words: Bisphosphonates; Bone mineral density; Bone resorption; Denosumab; Hypocalcemia; Monoclonal antibodies; Osteoclast; Osteoporosis; Osteoprotegerin; RANK ligand.

INTRODUCTION

The U.S. Food and Drug Administration (FDA)-approved pharmacologic options for osteoporosis include bisphosphonates (zoledronate, alendronate, ibandronate, and risedronate, in order of affinity for binding to the bone mineral matrix), calcitonin, estrogen agonist/antagonist (raloxifene), estrogens and/or hormone therapy, tissue-selective estrogen complex (conjugated estrogen/bazedoxifene), human parathyroid hormone 1–34 (teriparatide), and the re-
Table 1. The U.S. Food and Drug Administration (FDA)-Approved Indications for Denosumab (Prolia® and Xgeva®)

Approved indications for 60 mg of Prolia®	Date	Approved indications for 120 mg of Xgeva®	Date
Postmenopausal women with osteoporosis at high risk for fracture	June 1, 2010	Bone metastasis from solid tumors	November 18, 2010
Bone loss in patients with prostate or breast cancer undergoing hormone ablation therapy	September 19, 2011	Giant cell tumor of bone	June 13, 2013
Bone loss in men with osteoporosis at risk for fracture	September 21, 2012	Adults and skeletally mature adolescents with giant cell tumor of the bone that is unresectable or where surgical resection is likely to result in severe morbidity	June 13, 2013
phase (activation of pre-osteoclasts), 3) the resorption phase (resorption by the activated osteoclasts), 4) the reversal phase (the transition from bone resorption to bone formation), 5) the formation phase (bone formation by the osteoblasts), and 6) the mineralization phase (Fig. 1) [15–18].

1) During the resting phase, the bone surface is covered with flattened bone-lining cells (inactive non-remodeling forms of osteoblasts). The osteoblasts are destined to become osteocytes, bone lining cells, or undergo apoptosis [19].

2) In the activation phase, pre-osteoclasts from the hematopoietic cells differentiate into activated osteoclasts via mature osteoclasts under the influence of the RANKL and OPG, secreted from the osteoblasts. Denosumab, like OPG (a decoy receptor produced by osteoblasts), binds the RANKL and prevents the RANKL from binding to the

Fig. 1. Bone remodeling cycle and medications for the treatment of osteoporosis. Bone remodeling cycle consists of at least 6 different phases: 1) resting, 2) activation, 3) resorption, 4) reversal, 5) formation, and 6) mineralization. Drugs for the treatment or prevention of osteoporosis act on different phases. In the activation phase, *denosumab*, like OPG (a decoy receptor produced by osteoblasts), binds the RANKL and blocks the RANKL from binding to the RANK, inhibits the differentiation steps from pre-osteoclasts via mature osteoclasts to activated osteoclasts, and finally reduces bone resorption. In the resorption phase, *bisphosphonates* bind to the bone mineral and take the space where activated osteoclasts attach at sites of bone resorption. *Odanacatib*, a cathepsin K inhibitor, inhibits the osteoclastic enzyme that degrades collagens. *Saracatinib*, a c-src inhibitor, inhibits osteoclastic activation. Selective estrogen receptor modulators (*SERMs*) and hormone (estrogen) replacement therapy interfere with various osteoblast-derived factors that stimulate osteoclasts. In the formation phase, *strontium ranelate* stimulates pre-osteoblasts to differentiate into osteoblasts, and stimulates osteoblasts to secrete OPG in order to prevent pre-osteoclasts from becoming activated osteoclasts via mature osteoclasts, as well. *Parathyroid hormone (PTH)* analogues and PTH-related protein (PTHrP) analogues increase the number and activity of osteoblasts. *Romosozumab* (*AMG 785*) and *bisphosphonate,* anti-sclerostin monoclonal antibodies, bind to the sclerostin (a glycoprotein inhibitor of osteoblast Wnt signaling produced by osteocytes) and inhibit its action. Cbl: Casitas B-lineage lymphoma, FAK: focal adhesion kinase, OPG: osteoprotegerin, PI3k: phosphoinositide 3-kinase, PTH: parathyroid hormone, PTHrP: PTH-related protein, RANK: the nuclear factor kappa B, RANKL: RANK ligand, SERMs: selective estrogen receptor modulators, Src: Src family kinase (a group of non-receptor tyrosine kinases). Modified from Connelly D. Osteoporosis: moving beyond bisphosphonates. *Pharmaceutical Journal* 2016 Nov [2016 Nov 23]. Available at http://www.pharmaceutical-journal.com/news-and-analysis/infographics/osteoporosis-moving-beyond-bisphosphonates/20201978.article.
RANK, inhibits the differentiation steps from pre-osteoblasts via mature osteoclasts to activated osteoclasts, and finally reduces bone resorption [20,21].

3) In the resorption phase, activated osteoclasts break down the old bone mineral and matrix in order to create an erosion cavity. This phase ranges from the time of osteoclast adherence to the bone to the release of calcium and phosphate ions into the blood stream. This osteoclastic bone resorption is controlled by 4 main hormones: calcitonin, parathyroid hormone, vitamin D3, and estrogen [22]. BPs bind to the bone mineral and take the space where activated osteoclasts attach at sites of bone resorption. Even though the disabled osteoclasts survive, they cause loss of resorptive function [3]. Odanacatib, a cathepsin K inhibitor, inhibits the osteoclastic enzyme that degrades collagen, Saracatinib, a c-src inhibitor, inhibits osteoclastic activation. Selective estrogen receptor modulators (SERMs) and hormone (estrogen) replacement therapy interfere with various osteoblast-derived factors that stimulate osteoclasts.

4) In the reversal phase (from bone resorption to formation), mesenchymal stem cells prepare the bone surface for new osteoblasts (with several steps from osteoprogenitors via pre-osteoblasts to osteoblasts) to start building bone.

5) In the (bone) formation phase, mature osteoblasts synthesize new bone matrix. Strontium ranelate stimulates pre-osteoblasts to differentiate into osteoblasts, and stimulates osteoblasts to secrete OPG in order to prevent pre-osteoclasts from becoming activated osteoclasts via mature osteoclasts, as well. Parathyroid hormone (PTH) analogues and PTH-related protein (PTHrP) analogues increase the number and activity of osteoblasts. Romosozumab (AMG 785) and blosozumab, anti-sclerostin monoclonal antibodies, bind to the sclerostin (a glycoprotein inhibitor of osteoblast Wnt signaling produced by osteocytes) and inhibit its action [23].

6) In the mineralization phase, the newly deposited osteoid is mineralized. Calcium and phosphate, with the aid of vitamin D, make hydroxyapatite to increase the mechanical strength and hardness of the bone through the primary and secondary mineralization phases [15,24].

3. Pharmacodynamics

After subcutaneous administration of 60 mg of denosumab, the bone resorption marker, serum type I C-telopeptide (CTX), reduced approximately 85% after 3 days, with maximal reductions occurring at 1 month. The level decreased below the limit of assay quantitation (0.049 ng/ml) in 39% to 68% of patients in 1 to 3 months. It maintained a decreased state of a maximal reduction of 45% to 80% 6 months after administration, and returned to baseline within 12 months. The degree of inhibition of CTX in re-initiation of denosumab was similar to that of its initial use [25].

Consistent with the physiological coupling of bone formation and resorption in bone remodeling, the bone formation markers, such as osteocalcin and procollagen type I N-terminal peptide (PINP), are also reduced subsequently.

4. Pharmacokinetics

After a single subcutaneous injection of 60 mg of denosumab in healthy volunteers, the mean maximal serum concentration was reached at 10 days, and the mean half-life was 25.4 days, and declined over a period of 4 to 5 months [9]. There was no accumulation or change in the pharmacokinetics of denosumab over time in those who take it every 6 months. It did not show any differences in pharmacokinetics related to age, race, body weight, or hepatorenal function. Carcinogenesis, mutagenesis, or impaired fertility has not reported [26].

5. Precautions related to contraindications and complications

1) Contraindications

The known common contraindications of denosumab are hypocalcemia, pregnancy, and hypersensitivity to denosumab, such as anaphylaxis, facial swelling, and urticaria [27].

Hypocalcemia should be corrected before using denosumab, because it exacerbates preexisting hypocalcemia for weeks or months. If hypocalcemia persists, intravenous or oral calcium with/without vitamin D should be supplied. Therefore, monitoring of calcium with phosphorus and magnesium levels is strongly recommended.

In addition, in cases of mineral metabolism disturbances, such as a history of hypothyroidism, thyroid surgery, parathyroid surgery, malabsorption syndrome, excision of the small intestine, or severe renal impairment (creatinine clearance < 30 ml/min or receiving dialysis), frequent monitoring of calcium and other electrolytes is required.

2) Complications

The known complications related to denosumab are
Table 2. Differences between Denosumab and Bisphosphonates

	Denosumab	Bisphosphonates
Chemistry	Monoclonal antibody	Chemical agent
Targets	Selectively binds the RANKL, similar to the OPG	Selective uptake by hydroxyapatite
Distribution	Circulating in the blood and extracellular fluid	Bone mineral surface
Major bone target cells	Pre-osteoclasts via mature osteoclasts to activated osteoclasts	Activated osteoclasts
Mechanism of action	It prevents the RANKL from binding to its receptor, the RANK, and inhibits the development, activation, and survival of osteoclasts.	They bind the bone mineral and inhibit the resorptive function of the osteoclasts at the site of bone resorption.
Mode of administration	Subcutaneous (60 mg biannually)	Oral (daily, weekly, or monthly) or intravenous (quarterly or yearly)
Onset of action (serum CTX)	Faster	Slower
Inhibition of bone resorption (serum CTX)	Greater	Lesser
Effect on BMD	Greater	Lesser
Serum calcium monitoring	Essential	Sometimes
Reversibility of effect after stopping treatment	Fully reversible and relatively rapid offset of action	Slow offset of action

BMD: bone mineral density, CTX: C-terminal telopeptide, FPP: farnesyl pyrophosphate, OPG: osteoprotegerin, RANK: receptor activator of the nuclear factor kappa B, RANKL: receptor activator of the nuclear factor kappa B ligand. Modified from Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 2011; 48: 677-92.
tis with focal pathologic bone resorption due to excessive activity of the osteoclasts, combined with an anti–tumor necrosis factor (TNF) agent or with disease modifying anti–rheumatic drugs (DMARDs) [32].

CONCLUSIONS

Denosumab prevents the RANKL from binding to its receptor, the RANK, thereby inhibiting the development, activation, and survival of osteoclasts; however, the familiar antiresorptive agents, BPs, bind to the bone mineral and inhibit the resorptive function of osteoclasts by being taken up by osteoclasts at the site of resorption, though the disabled osteoclasts may persist. The two anti–resorptive agents are unlikely to be used in combined treatment due to the inhibitory action of osteoclasts in the same pathway. It is more reasonable to use combined anabolic and anti–catabolic treatment [33].

Therefore, even though denosumab has better compliance (a single subcutaneous injection every 6 months) with rapid onset, strong inhibition of osteoclastic activity, reversibility of its action after discontinuance, and advantages to patients with gastrointestinal trouble and impaired renal function, the economic status and cost/benefit comparison, the immune status with infection susceptibility, and compliance with taking calcium/vitamin D supplements and frequent monitoring of calcium or other minerals should be considered (Table 2).

ACKNOWLEDGEMENTS

This study was supported by a 2017 clinical research grant from Pusan National University Yangsan Hospital.

REFERENCES

1. Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, et al. Clinician’s guide to prevention and treatment of osteoporosis. Osteoporos Int 2014; 25: 2359–81.
2. Drake MT, Clarke BL, Khosla S. Bisphosphonates: mechanism of action and role in clinical practice. Mayo Clin Proc 2008; 83: 1032–45.
3. Baron R, Ferrari S, Russell RG. Denosumab and bisphosphonates: different mechanisms of action and effects. Bone 2011; 48: 677–92.
4. McClung MR, Lewiecki EM, Cohen SB, Bolognese MA, Woodson GC, Moffett AH, et al. Denosumab in postmenopausal women with low bone mineral density. N Engl J Med 2006; 354: 821–31.
5. Cheung AM, Frame H, Ho M, Mackinnon ES, Brown JP. Bone strength and management of postmenopausal fracture risk with antiresorptive therapies: considerations for women’s health practice. Int J Womens Health 2016; 8: 537–47.
6. Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med 2009; 361: 756–65.
7. Khosla S. Increasing options for the treatment of osteoporosis. N Engl J Med 2009; 361: 818–20.
8. Rizzoli R, Yasothan U, Kirkpatrick P. Denosumab, Nat Rev Drug Discov 2010; 9: 591–2.
9. Zaheer S, LeBoff M, Lewiecki EM. Denosumab for the treatment of osteoporosis. Expert Opin Drug Metab Toxicol 2015; 11: 461–70.
10. Janjan N. Bone metastases: approaches to management. Semin Oncol 2001; 28: 28–34.
11. Weinfurt KP, Li Y, Castel LD, Saad F, Timbie JW, Glendenning GA, et al. The significance of skeletal–related events for the health–related quality of life of patients with metastatic prostate cancer. Ann Oncol 2005; 16: 579–84.
12. Yong M, Jensen Å, Jacobsen JB, Nørregaard M, Fryzek JP, Sørensen HT. Survival in breast cancer patients with bone metastases and skeletal–related events: a population–based cohort study in Denmark (1999–2007). Breast Cancer Res Treat 2011; 129: 495–503.
13. Cassinello Espinosa J, González Del Alba Baamonde A, Rivera Herrero F, Holgado Martín E; SEOM (Spanish Society of Clinical Oncology). SEOM guidelines for the treatment of bone metastases from solid tumours. Clin Transl Oncol 2012; 14: 505–11.
14. von Moos R, Costa L, Ripamonti C, Nipoli D, Santini D. Improving quality of life in patients with advanced cancer: targeting metastatic bone pain. Eur J Cancer 2017; 71: 80–94.
15. Raggatt LJ, Partridge NC. Cellular and molecular mechanisms of bone remodeling. J Biol Chem 2010; 285: 25103–8.
16. Proff P, Römer P. The molecular mechanism behind bone remodelling: a review. Clin Oral Invest 2009; 13: 355–62.
17. Ghayor C, Weber FE. Epigenetic regulation of bone remodelling and its impacts in osteoporosis. Int J Mol Sci 2016; 17: E1446.
18. Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helrich MH. Bone remodelling at a glance. J Cel Sci 2011; 124: 991–8.
19. Miller SC, de Saint-Georges L, Bowman BM, Jee WS. Bone lining cells: structure and function. Scanning Microsc 1989; 3: 953–60.
20. Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: mechanism of action and clinical outcomes, Int J Clin Pract.
21. Xing L, Xiu Y, Boyce BF. Osteoclast fusion and regulation by RANKL-dependent and independent factors. World J Orthop 2012; 3: 212–22.
22. Martin TJ. Paracrine regulation of osteoclast formation and activity: milestones in discovery. J Musculoskelet Neuronal Interact 2004; 4: 243–53.
23. Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas 2014; 78: 199–204.
24. Boivin G, Farlay D, Bala Y, Doubler A, Meunier PJ, Delmas PD. Influence of remodeling on the mineralization of bone tissue. Osteoporos Int 2009; 20: 1023–6.
25. Bone HG, Bolognese MA, Yuen CK, Kendler DL, Wang H, Liu Y, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women. J Clin Endocrinol Metab 2009; 93: 2149–57.
26. Sohn W, Simiens MA, Jaeger K, Hutton S, Jang G. The pharmacokinetics and pharmacodynamics of denosumab in patients with advanced solid tumours and bone metastases: a systematic review. Br J Clin Pharmacol 2014; 78: 477–87.
27. Miller PD. A review of the efficacy and safety of denosumab in postmenopausal women with osteoporosis. Ther Adv Musculoskelet Dis 2011; 3: 271–82.
28. Martin M, Bell R, Bourgeois H, Brutsky A, Diel I, Eniu A, et al. Bone-related complications and quality of life in advanced breast cancer: results from a randomized phase III trial of denosumab versus zoledronic acid. Clin Cancer Res 2012; 18: 4841–9.
29. Kendler DL, Roux C, Benthamou CL, Brown JP, Lillestol M, Siddhanti S, et al. Effects of denosumab on bone mineral density and bone turnover in postmenopausal women transitioning from alendronate therapy. J Bone Miner Res 2010; 25: 72–81.
30. Fizazi K, Carducci M, Smith M, Damillo R, Brown J, Karsh L, et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: a randomised, double-blind study. Lancet 2011; 377: 813–22.
31. Anastasilakis AD, Polyzos SA, Anastasilakis CD, Toulis KA, Makras P. Denosumab and bisphosphonates: rivals or potential “partners”? A “hybrid” molecule hypothesis. Med Hypotheses 2011; 77: 109–11.
32. Chiu YG, Ritchlin CT. Denosumab: targeting the RANKL pathway to treat rheumatoid arthritis. Expert Opin Biol Ther 2017; 17: 119–28.
33. Tsai JN, Uhlein AV, Lee H, Kumbhani R, Siwila–Sackman E, McKay EA, et al. Teriparatide and denosumab, alone or combined, in women with postmenopausal osteoporosis: the DATA study randomised trial. Lancet 2013; 382: 50–6.