The prevalence of iron deficiency anemia in a Saudi University female students

Nora Nasir Al Hassan*

College of Medicine Taibah University, Almadinah Almunaawarah, Saudi Arabia

A R T I C L E I N F O

Article history:
Received 28 August 2014
Received in revised form 12 November 2014
Accepted 16 November 2014
Available online 23 November 2014

Keywords:
Anemia
Iron deficiency
Nutritional habits

A B S T R A C T

The study aims to determine the prevalence of anemia in apparently healthy university female students. This study was conducted in 2007–2008 at Taibah University and a total of 268 female students participated in this research. In order to assess iron deficiency and iron deficiency anemia, the venous blood samples were collected from consecutive female students at the medical center of Taibah University excluding those already on iron supplementation for iron-deficiency anemia. One hundred and seventy-one (64%) students were found to be anemic. The overall prevalence of mild (10–11 g/dL), moderate (7–10 g/dL), and severe (Hb <7 g/dL) anemia was 45%, 49%, and 6%, respectively. Out of the anemic students, 81% showed microcytic (MCV <80 fL) and 1.6% had macrocytic (MCV >96 fL) variety. The results of this study warrant further evidence-based surveys on a larger scale to validate these findings and eventually set a stage to develop well-organized educational and nutritional programs to safeguard and improve the nation’s health. The high prevalence of iron deficiency anemia in the present study might be related to life style of female students as well as to their dietary habits. It is recommended that female students never skip breakfast as it is essential for their cognitive functions and physical activities.

© 2014 Saudi Society of Microscopes. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nutritional anemia occurs due to insufficient intake of nutrients by cells. Among the most important nutrients whose deficiency can lead to nutritional anemia are iron, folic acid, vitamin B12, vitamin B6, vitamin C and protein. Iron deficiency anemia is one of the most frequent health problems in the world [1]. The World Health Organization recently reported that 1.62 billion of the world population is anemic. The rate among students is 25.4% and in preschool age children anemia reaches its highest percentage of 47.4 [2]. Iron deficiency anemia accounts for 75% of all types of anemia in the third world, affecting 30% of population [3]. In females of childbearing age, the most frequent cause of iron-deficiency anemia is loss of iron in blood due to significant menstruation or pregnancy. Iron-deficiency anemia can also be caused by a poor diet or by certain intestinal diseases that affect how the body absorbs iron. The condition is normally treated with iron supplements.

Literature about anemia in adolescents and youth is scarce, as compared to that focusing on women and children. In Saudi Arabia the overall country prevalence of iron deficiency anemia was 30–56% [4]. A cross-sectional study conducted in Riyadh City among schoolgirls showed that the prevalence was 40.5% among female adolescents (16–18) years old [5].

The current study is an attempt to present a glimpse of prevalence of iron deficiency anemia in the Saudi female students of Taibah University Almadinah Almunawarah Saudi Arabia. The clinical associations of iron deficiency anemia are discussed with a view to highlight the need for
the establishment of a national level program to overcome the nutritional deficiencies of the Saudi nation.

2. Materials and methods

During this cross-sectional observational study done through year 2007–2008, the hemoglobin levels of the apparently healthy female students of medicine, science, and education colleges of Taibah University Almadinah Almunawwarah Saudi Arabia were analyzed. A written informed consent was taken from all the participants entailing the purpose of the investigation and ensuring the confidentiality of the results. The venous blood samples were collected from consecutive female students at the medical center of Taibah University excluding those already on iron supplementation for iron-deficiency anemia. The results were produced from venous blood samples collected in 3 ml EDTA vacuum tubes (Becton Dickenson, USA) and were tested by the laboratory technologist using the semi-automated Medonic CA 620 hematology analyzer (Adolfsberg Svagen, Sweden). The cut-off value for the determination of anemia was defined as blood Hb concentration <12 g/dL [6]. The analysis was done on day-to-day basis and the results were saved in excel sheets for further analysis.

A secondary analysis of those found to be anemic was carried out including hematocrit (Hct), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), and mean corpuscular hemoglobin concentration (MCHC). The severity of anemia was classified into three stages: mild (10–11 g/dL), moderate (7–10 g/dL), or severe (Hb <7 g/dL). On the basis of RBC indices, an anemia with MCV <80 fl was classified as microcytic, an MCV >96 fl as macrocytic and an MCH <27 pg for hypochromic anemia. The data was stored and analyzed on Microsoft Excel 2007.

3. Results

A total of 268 female students were incorporated in this research; age range 20–31 years with a mean of 24.5 years. One hundred and seventy-one (64%) students were found to be anemic (Table 1 and Fig. 1). The mean Hb concentration for the study sample was 9.8 ± 7 g/dL with a range from 5.7 to 17.4 g/dL. Forty-one percent students from the education college, 40% from the science college and 39% from the medical college were reported to have hemoglobin less than 12 g/dL (Figs. 2–7). The overall prevalence of mild (10–11 g/dL), moderate (7–10 g/dL), and severe (Hb <7 g/dL) anemia was 45%, 49%, and 6%, respectively.

The distribution of anemia among the investigated population is also illustrated in Figs. 3, 5 and 7 which show that the medical college students had the lowest prevalence of anemia. Out of the anemic students, 81% showed microcytic (MCV <80 fl) and 1.6% had macrocytic (MCV >96 fl) variety.

Hemoglobin levels (mg%)	No. of students	Percentage of anemia
Less than or equal to 12	171	64%
More than 12	97	36%
Total	268	100%
can reduce the power of perception and learning power [3].
Due to effects on learning ability, anemia reduces the learning power which causes academic dropout among students [11]. In children, iron deficiency anemia causes cognitive disorder before any other signs [12]. Mild iron deficiency can cause many disorders including movement disorders, the evolution of speech, language disorders and also learning focusing problems on children and students.

Iron deficiency apart from learning disabilities; also cause series of behavioral disorders [13]. A recent study investigated the effect of iron therapy on anemic patients by prescribing 2 Ferro sulfate tablets for 8 weeks. At the end of 8th week the indicators were assessed again which showed that all hematological and biochemical indices, which were less than the normal amounts before the ferrous sulfate supplementation, remarkably increased.

There was a significant correlation between hemoglobin concentration and pictorial memory \(r = 0.31, P < 0.05\), optical memory and hematocrit \(r = 0.32, P < 0.05\) and MCH with verbal memory \(r = 0.33, P < 0.05\). According to the results, increase of iron level led to increase of concentration and improvement of memory in the anemic patients [14].

Other cognitive deficiency symptoms observed with iron-deficiency anemia include deficits in attention, perceptual motor speed, memory and verbal fluency, and lead to impaired psychomotor development and cognitive performance [15].

Lundberg’s “unhealthy life career hypothesis”, states that poor childhood living conditions would be a principal factor starting a chain of unhealthy living conditions, leading to a low level of education, restricted opportunities on the labor market, and thus, to poor living conditions in adulthood with increased illness risks [16]. This hypothesis seems more valid in Saudi Arabia where socio-economic standards, suboptimal literacy rate, low and below average public awareness campaigns can be held responsible for the deteriorating health of the nation on the whole. This study has shown that iron is an important cause of anemia in Saudi female university students but it cannot predict what contributions to anemia are made by other nutrients, such as vitamin A, copper, and vitamin B12. Ascorbic acid is known as a powerful enhancer of iron absorption from non-meat foods when consumed within a meal [17]. Important iron absorption inhibitors are polyphenols (galloloyl groups), present in tea, coffee and cocoa. Many studies have reported such an inhibitory effect [18].

The strikingly high prevalence of iron deficiency anemia in the present study might be related to life style of female students as well as to their dietary habits. Breakfast is often skipped by 28% of our students at various grades and never taken by 17% of secondary school female students [19]. Breakfast skipping is common in other parts of the world; it is highly prevalent in the United States and Europe (10–30%) [20]. It is well-known that breakfast is often neglected and omitted more by teenagers and young adults than by any other age group. Studies have demonstrated that, compared to other meals, breakfasts provide significantly fewer nutrients, but do supply energy; this is essential for better cognitive functions and physical activities [21,22]. Farghaly et al. [19] have hypothesized one likely explanation as to why females at that age are more

4. Discussion

Although anemia in the women and children has been studied extensively in most parts of the world, there is a dearth of information on its prevalence in the university female students in the Saudi Arabia. In the present study, the mean Hb 9.8 g/dl was pretty low as compared to the report from Emirati college students with a measured mean Hb of 12.3 g/dl [7]. In that study, the overall estimated sample prevalence of anemia (Hb <12 g/dl) was 26.7% which contrasts to the present study’s prevalence of anemia (64%). Another report published mean Hb concentration of the entire sample of 12.7 g/dl [8] which is not consistent with the current study’s findings. The published range of prevalence of iron deficiency anemia from the developing countries account from 16.5% to 62.6% [9,10].

Lethargy, lack of energy, apathy, fatigue and numbness, loss of strength and unwillingness to physical activities like sports, are some of the signs that teachers and parents can be notice among the students. Sufficient iron is essential for healthy growth, and provides a favorable context for learning in educational period. Its deficiency in all stages of life
apt to miss breakfast is the pursuit of thinness and frequent dieting attempts. Looking into the cultural habits of the Saudi population, university students are not inclined to take breakfast at home and this habit obliges them to take unhealthy food in the campus thus leading to specific nutritional deficiencies.

5. Conclusion

Health programs targeting public awareness to improve the health and nutritional status of the university students should be implemented to focus on the improvement of nutritional habits and quality and quantity of the diet. Moreover, school health and nutrition programs directed toward school students and their parents are crucial to help them recognize the healthy nutritional habits and the body’s requirements from the different nutrients.

Conflict of interest

The author declares no conflict of interest.

References

[1] Soleimani N, Abbaspazadeh N. Relationship between anaemia, caused from the iron deficiency, and academic achievement among third grade high school female students. Procedia: Soc Behav Sci 2011;29(0):1877–84.
[2] Benoist B, McLean E, Egli I, Cogswell M. Worldwide prevalence of anaemia 1993–2005: WHO global database on anaemia. World Health Organization; 2005.
[3] Soleimani N. Relationship between anaemia, caused from the iron deficiency, and academic achievement among third grade high school female students. Procedia: Soc Behav Sci 2011;29:1877–84.
[4] Verster A, van der Pols JC. Anaemia in the Eastern Mediterranean region. East Mediterr Health J 1995;1(1):64–79.
[5] Musaiger AO. Iron deficiency anaemia among children and pregnant women in the Arab Gulf countries: the need for action. Nutr Health 2002;16(3):161–71.
[6] Gibson RS. Principles of nutritional assessment. USA: Oxford University Press; 2005.
[7] Sultan AH. Anemia among female college students attending the University of Sharjah, UAE: prevalence and classification. J Egypt Public Health Assoc 2007;82:261–71.
[8] Jackson RT, Al-Mousa Z. Iron deficiency is a more important cause of anaemia than hemoglobinopathies in Kuwaiti adolescent girls. J Nutr 2000;130(5):1212–6.
[9] Abidoye R, Akande P. Nutritional status of public primary school children: a comparison between an upland and riverine area of Ojo LGA, Lagos State Nigeria. Nutr Health 2000;14(4):225–40.
[10] Abalkhail B, Shawky S. Prevalence of daily breakfast intake, iron deficiency anaemia and awareness of being anaemic among Saudi school students. Int J Food Sci Nutr 2002;53(6):519–28.
[11] Gari MA. Prevalence of iron deficiency anaemia among female elementary school children in Northern Jeddah, Saudi Arabia. J King Abdulaziz Univ Med Sci 2008;15(1):63–75.
[12] Rogers PJ, Lloyd HM. Nutrition and mental performance. Proc Nutr Soc 1994;53(2):443.
[13] Addison G, Beamish M, Hales C, Hodgkins M, Jacobs A, Llewelin P. An immunoradiometric assay for ferritin in the serum of normal subjects and patients with iron deficiency and iron overload. J Clin Pathol 1972;25(4):326–9.
[14] Hanan S, Giliani A, Haq I. Anemia in adolescent college girls: effect of age, nutritional status and nutrient intake; 2010.
[15] Becker W, Brasseur D, Bresson J, Flynn A, Jackson A, Lagiou P, et al. Opinion of the scientific panel on dietetic products, nutrition and allergies on a request from the commission relating to the evaluation of allergic foods for labelling purposes. EFSA J 2004;32:1–197.
[16] Lundberg O. The impact of childhood living conditions on illness and mortality in adulthood. Soc Sci Med 1993;36(8):1047–52.
[17] Hunt JR. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 2003;78(3):633S–9S.
[18] Tseng M, Chakraborty H, Robinson DT, Mendez M, Kohlmeier L. Adjustment of iron intake for dietary enhancers and inhibitors in population studies: bioavailable iron in rural and urban residing Russian women and children. J Nutr 1997;127(8):1456–68.
[19] Farghaly NF, Ghazali BM, Al-Wabel HM, Sadek AA, Abbag FL. Lifestyle and nutrition and their impact on health of Saudi school students in Abha, Southwestern region of Saudi Arabia. Saudi Med J 2007;28(3):415.
[20] Rampersaud GC, Pereira MA, Girard BL, Adams J, Metzl JD. Breakfast habits, nutritional status, body weight, and academic performance in children and adolescents. J Am Diet Assoc 2005;105(5):743–60.
[21] Szajewska H, Rusczyński M. Systematic review demonstrating that breakfast consumption influences body weight outcomes in children and adolescents in Europe. Crit Rev Food Sci Nutr 2010;50(2):113–9.
[22] Matths C, De Henauw S, Bellemans M, De Maeyer M, De Backer G. Breakfast habits affect overall nutrient profiles in adolescents. Public Health Nutr 2007;10(04):413–21.