Symmetries of Polytopes with Fixed Edge Lengths

E. A. Morozov

Abstract

We consider an interesting class of combinatorial symmetries of polytopes which we call edge-preserving symmetries. These symmetries not only preserve the combinatorial structure of a polytope but also map each edge of the polytope to an edge of the same length. We prove a simple sufficient condition for a polytope to realize all edge-preserving symmetries by isometries of ambient space. The proof of this condition uses Cauchy’s rigidity theorem in an unusual way.

Keywords: polytope, isometry, edge-preserving symmetry, circle pattern.

Mathematics Subject Classification (2010): 52B15.

1 Introduction and motivation

Take a convex 3-dimensional polytope P and consider an isometry mapping P to itself. This isometry induces an automorphism of the combinatorial structure of the polytope. However the converse is not always true: a given combinatorial symmetry is not necessarily realizable by an isometry of ambient space. But if a combinatorial symmetry is realizable, then it maps each edge of the polytope to an edge of the same length. Such combinatorial symmetry is called edge-preserving (for formal definitions see Sections 2 and 3).

Our main result (Theorem 2) states that if each 2-dimensional face of a convex 3-dimensional polytope is inscribed, then the polytope realizes all its own edge-preserving combinatorial symmetries. Moreover, we prove an analogous result for convex plane graphs with inscribed faces (Theorem 3). Note that such graphs (which are also known as circle patterns) appear naturally in discrete complex analysis [3], [7].

The proof of the main result is surprisingly short. We consider each edge-preserving combinatorial symmetry separately and show that the given polytope realizes the symmetry by using Cauchy’s rigidity theorem. In fact, we prove that the given polytope is congruent to itself with nontrivial permutation of vertices.

The idea of studying combinatorial symmetries of polytopes is not new. In a particular case (for simplicial polytopes only) edge-preserving symmetries appear in [6, § 2]. Furthermore, it is known that for any polytope P there exists a polytope Q such that P and Q are combinatorially equivalent and Q realizes all its own combinatorial symmetries (see [8, p. 279] and [9, Theorem 2 in introduction]; Q is called a canonical form of polytope P). This result is a simple corollary of a similar assertion about circle packings (for which Möbius transformations are considered instead of isometries). Circle packings are related to discrete complex analysis as well. We suggest the existence of an edge-preserving analogue of a canonical form as a conjecture (Conjecture 2).

2 Definitions and notation

First recall some basic definitions concerning convex polytopes. The majority of these definitions is taken from [2] and [10].

A convex polytope is a bounded intersection of finitely many closed half-spaces in \mathbb{R}^n. Suppose that P is a convex polytope and W is a subspace of \mathbb{R}^n such that $P \subset W$. The minimal possible dimension of W is called the dimension of P. Any hyperplane H divides \mathbb{R}^n into two half-spaces H_+ and H_-. The hyperplane H is called supporting if P is contained in one of the half-spaces H_+ or H_-. In this case, the intersection $H \cap P$ is a face of the polytope P. Note that faces of a convex polytope are also convex polytopes. The 0-dimensional and 1-dimensional faces are called vertices and edges respectively. Denote by $V(P)$ and $E(P)$ the sets of vertices and edges of the convex polytope P respectively and by $|V(P)|$ the number of vertices.

*National Research University Higher School of Economics, Faculty of Mathematics
gorg.morozov@gmail.com
Define an indexed polytope as a polytope P with vertices indexed by the elements of some $|V(P)|$-element set. Usually this set is just $\{1, \ldots, |V(P)|\}$. In the sequel, we consider only indexed polytopes. Note that the indexing of each face of P is induced by the indexing of P.

Two indexed polytopes are called congruent if they are indexed by the elements of the same set and there exists an isometry of ambient space \mathbb{R}^n such that vertices with the same indices are identified by the isometry.

Denote by $L(P)$ the set of all faces of a polytope P. The set $L(P)$, ordered by inclusion, is called the face lattice of the polytope P. Two polytopes P and P' are called combinatorially equivalent if there exists an order-preserving bijection $\sigma: L(P) \rightarrow L(P')$ such that for each vertex $v \in V(P)$ the indices of v and $\sigma(v)$ are the same (in particular, the vertices of P and P' are indexed by the elements of the same set). In the latter case, faces $x \in L(P)$ and $\sigma(x) \in L(P')$ are called corresponding. More generally, elements (e.g., angles) of polytopes P and P' are called corresponding if these elements are formed by corresponding faces.

Example 1 (three quadrilaterals). Our definitions of congruence and combinatorial equivalence of polytopes depend on the indexing of vertices. For example, in Fig. 1 the quadrilaterals a and b are combinatorially equivalent but not congruent, whereas the quadrilateral c is not combinatorially equivalent to the quadrilaterals a and b. However if we do not index the vertices, then all three polytopes become congruent.

The key to our proof of the main theorem is one of the most celebrated assertions about the rigidity of convex polytopes.

Theorem 1 (Cauchy, [4]). If each two corresponding 2-dimensional faces of two given polytopes are congruent, then these polytopes are congruent.

Theorem 1 was proved by Cauchy in 1813 by the famous «Cauchy’s signs method». This proof is widely known (see [1] pp. 81–83 or [5] Theorem 24.1).

Remark 1. Actually Theorem 1 is usually stated in terms of polytopes without indexing of vertices. However the proof of our version of the theorem is almost literally the same.

3 Statements and proofs

Suppose that P is a convex polytope and σ is an arbitrary permutation of vertex indices of P. Let us reindex the vertices of P as follows: the vertex with index i gets the new index $\sigma^{-1}(i)$. Let P' be the resulting indexed polytope. The permutation σ is called a combinatorial symmetry of P, if P and P' are combinatorially equivalent; in other words, if one can extend the permutation $\sigma: V(P) \rightarrow V(P')$ to an isomorphism $\tilde{\sigma}: L(P) \rightarrow L(P')$. In the sequel, we often write just «symmetry» instead of «combinatorial symmetry».

Example 2. The permutation $(1, 2, 3, 4 \ 1 \ 2 \ 3)$ is a combinatorial symmetry of the quadrilateral in Fig. a.

The symmetry σ is called edge-preserving if for each edge e of the polytope P the lengths of the edges e and $\tilde{\sigma}(e)$ are equal. We say that the polytope P realizes its symmetry σ if the polytopes P and $\tilde{\sigma}(P)$ are congruent, i.e., σ extends to an isometry of \mathbb{R}^3.

Example 3 (parallelepipeds). A generic parallelepiped does not realize all its own edge-preserving symmetries. Only a rectangular parallelepiped has this property. However a generic rectangular parallelepiped does not realize all its own symmetries. Only a cube has the latter property.

The main result of this paper is the following theorem.
Theorem 2 (main theorem). If each 2-dimensional face of a convex 3-dimensional polytope \(P \) is inscribed, then \(P \) realizes all its own edge-preserving symmetries.

Corollary 1. If convex 3-dimensional polytope \(P \) is inscribed in a sphere, then \(P \) realizes all its own edge-preserving symmetries.

Corollary 2. If each 2-dimensional face of a convex 3-dimensional polytope \(P \) is a triangle, then \(P \) realizes all its own edge-preserving symmetries.

A plane graph \(G \) is called convex if each bounded face of \(G \) is a convex polygon and the unbounded face of \(G \) is a complement to a polygon. Vertices indexing, congruence, combinatorial symmetry, and edge-preserving symmetry for convex plane graphs are defined in the same way as for polytopes.

Example 4. As a convex polytope, a convex plane graph does not necessarily realize all its own edge-preserving symmetries. For example, consider a parallelogram distinct from a rectangle.

For convex plane graphs, the following analogue of the main theorem holds.

Theorem 3. If each 2-dimensional face of a convex plane graph \(G \) is inscribed, then \(G \) realizes all its own edge-preserving symmetries.

Now proceed to the proofs. We need the following simple geometric lemma.

Lemma 1. If each two corresponding sides of the two given inscribed polygons are congruent, then these polygons themselves are congruent.

Proof of Lemma 1 Suppose that \(P = A_1A_2 \ldots A_n \) and \(P' = A'_1A'_2 \ldots A'_n \) are the given polygons, \(A_iA_{i+1} = A'_iA'_{i+1} \) for each \(i = 1, \ldots , n \) (hereafter \(A_{n+1} := A_1 \)), \(P \) is inscribed in a circle of center \(O \) and radius \(r \), and \(P' \) is inscribed in a circle of center \(O' \) and radius \(r' \). Assume that \(r' \geq r \). Consider the isosceles triangles \(\triangle A_iOA_{i+1} \) and \(\triangle A'_iO'A'_{i+1} \) for each \(i = 1, \ldots , n \). Since \(r' \geq r \) and \(A_iA_{i+1} = A'_iA'_{i+1} \), it follows that \(\angle A_iOA_{i+1} \leq \angle A'_iO'A'_{i+1} \). But \(\sum_{i=1}^n \angle A_iOA_{i+1} = 2\pi = \sum_{i=1}^n \angle A'_iO'A'_{i+1} \). Hence \(\angle A'_iO'A'_{i+1} = \angle A_iOA_{i+1} \) for each \(i = 1, \ldots , n \). This implies that the polygons \(P \) and \(P' \) are congruent.

Proof of Theorem 3 First recall that \(P \) is an indexed polytope. Let \(\sigma \) be an arbitrary edge-preserving symmetry of the polytope \(P \). Then \(\sigma(P) \) is an indexed polytope as well. The latter polytope is different from \(P \) in the vertices indices only. To prove the theorem it suffices to show that the polytopes \(P \) and \(\sigma(P) \) are congruent.

Take an arbitrary 2-dimensional face \(F \) of the polytope \(P \) and the corresponding face \(\sigma(F) \) of the polytope \(\sigma(P) \). Since the symmetry \(\sigma \) is edge-preserving, it follows that the corresponding sides of the polygons \(F \) and \(\sigma(F) \) are equal. Moreover, the polygons \(F \) and \(\sigma(F) \) are inscribed. It follows that \(F \) and \(\sigma(F) \) satisfy the conditions of Lemma 1 and therefore are congruent. Thus each two corresponding 2-dimensional faces of the polytopes \(P \) and \(\sigma(P) \) are congruent and from Cauchy’s theorem it follows that \(P \) and \(\sigma(P) \) are congruent.

To prove Theorem 3 we need the following analogue of Cauchy’s theorem for convex plane graphs.

Lemma 2 (degenerate Cauchy’s theorem). If each two corresponding bounded faces of two given convex plane graphs are congruent, then the graphs themselves are congruent.

The proof of Lemma 2 is by induction on the number of bounded faces \(f \) of the given graphs \(G \) and \(G' \). For the case \(f = 1 \) there is nothing to prove. Assume that the lemma holds for all graphs with at most \(f - 1 \) faces. Let us prove that the lemma holds for graphs with \(f \) faces.

Let \(F \) be an arbitrary bounded face of the graph \(G \) such that \(F \) has a common edge with the unbounded face of \(G \). Remove all the common edges of \(F \) and the unbounded face (if we get some isolated vertices, then remove them as well). Then \(G \) decomposes into a union of graphs \(G_1, \ldots , G_k \); these graphs may have common vertices but not common edges (see Fig. 3).

(Alternatively, one can define the graphs \(G_1, \ldots , G_k \) in terms of the dual graph. For this delete the vertices corresponding to the face \(F \) and to the unbounded face of \(G \) from the dual of \(G \). Then the graphs \(G_1, \ldots , G_k \) correspond to the connected components of the obtained graph.)

Let \(F' \) be the face of the graph \(G' \) such that \(F \) and \(F' \) are corresponding. Remove all the common edges of \(F' \) and the unbounded face of \(G' \). Then \(G \) decomposes into a union of graphs \(G_1', \ldots , G_k' \). Since \(G \) and \(G' \) are combinatorially equivalent, it follows that \(k = l \), the graphs \(G_i' \) and \(G_i \) are combinatorially equivalent as well, and they consist of at most \(f - 1 \) faces (for each \(i = 1, \ldots , k \)). By the inductive hypothesis, the graphs \(G_i' \) and \(G_i \) are congruent.
Now note that F and F' are congruent. Hence there exists an isometry ρ taking F to F'. It suffices to prove that ρ takes G_i to G'_i for each $i = 1, \ldots, k$. Indeed, for each $i = 1, \ldots, k$ the graph G_i has a common edge e_i with the face F, the graph G'_i has a common edge e'_i with the face F', and the edges e_i and e'_i are corresponding. Therefore $F \cup G_i$ and $F' \cup G'_i$ are congruent convex plane graphs for each $i = 1, \ldots, k$. Since ρ takes F to F', it follows that ρ takes $F \cup G_i$ to $F' \cup G'_i$. In particular, ρ takes G_i to G'_i.

The proof of Theorem 3 is almost literally the same as the proof of Theorem 2, one should just replace the word «polytope» by «convex plane graph» and refer to Lemma 2 instead of Theorem 1.

4 Open problems

Some generalizations of Theorem 2 to higher dimensions are possible but one has to generalize Cauchy’s theorem to higher dimensions for the proofs. It is quite strange that we could not find such generalization in literature (although the reader can find a sketch of a statement and a proof in [2, chapter 3.6]).

Conjecture 1. If each 2-dimensional face of a convex n-dimensional polytope P is inscribed (where $n \geq 2$), then P realizes all its own edge-preserving symmetries.

Theorem 2 gives only a sufficient condition for a polytope to realize all its own edge-preserving symmetries. This condition is not necessary as the following example shows.

Example 5. Consider the polytope P obtained as a union of an octahedron and a regular tetrahedron with a common face (see Fig. 3 to the left). The polytope has 4 triangular faces and 3 rhombic faces with acute angle $\pi/3$. It is easy to see that P realizes all its own edge-preserving symmetries. Nevertheless not all faces of P are inscribed. To obtain an analogous example for convex plane graphs, take a regular hexagon divided into three rhombi again with acute angle $\pi/3$ (see Fig. 3 to the right).

Taking into account these examples, the following conjecture seems to be very interesting.

Conjecture 2. For each convex 3-dimensional polytope P there exists a convex 3-dimensional polytope Q such that Q is combinatorially equivalent to P, the lengths of each two corresponding edges of P and Q are equal, and Q realizes all its own edge-preserving symmetries.
Note that the latter conjecture is not true for convex plane graphs!

Example 6. Consider a convex plane graph G in Fig. 4 to the left. This graph consists of the two squares (1234) and (5678) with a common center. Clearly, if the angle between the sides (12) and (56) of the squares is small enough, then all bounded faces of G are convex quadrilaterals, i.e., G is indeed a convex plane graph.

Let us prove that there is no convex plane graph G' such that G' is combinatorially equivalent to G, the lengths of each two corresponding edges of G and G' are equal, and G' realizes all its own edge-preserving symmetries. Assume the converse. Then G' realizes the symmetry $(1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8)$. It follows that $\angle(125) = \angle(126)$ in G'. Similarly, $\angle(215) = \angle(237) = \angle(348) = \angle(415) = \angle(415) = \angle(437) = \angle(148) = \angle(126) = \angle(237) = \angle(348) = \angle(415) = \angle(126) = \angle(237) = \angle(348) = \angle(415) = \angle(126)$ in G' (the last equality holds since the sum of all eight angles is 2π). Hence the quadrilaterals (1234) and (5678) in G' are squares with a common center and parallel sides. But if the sizes of these squares are fixed, then the length of the edge (15) grows as the angle between the sides (12) and (56) grows. Thus the edge (15) cannot have the same length in both graphs G and G'.

However the graph G can be considered as a «degenerate» polytope with all the faces lying in one plane. Under this point of view, there exists a polytope P such that P has the same face lattice as G, the lengths of the corresponding edges of G and P are equal, and P realizes all its own edge-preserving symmetries. This polytope is square frustum (see Fig. 4 to the right).

Let us conclude the paper by yet another natural conjecture. An automorphism of a 3-dimensional polytope is a map of the surface of the polytope to itself. An automorphism is called metric if it preserves the intrinsic metric of the surface of the polytope (see the definition of the latter term in [2]). If each face of polytope is a triangle, then each edge-preserving symmetry extends to a metric automorphism (this situation is considered in [3]). The following conjecture is about metric automorphisms.

Conjecture 3 (I. Kh. Sabitov). Each metric automorphism of a 3-dimensional convex polytope extends to an isometry of ambient space. In particular, each metric automorphism is an edge-preserving symmetry of the polytope.

Acknowledgements

I am grateful to my scientific supervisor M. B. Skopenkov for constant attention to this work and great help in preparing this text. I am also grateful to I. Kh. Sabitov for some useful comments and Conjecture 3. Thanks to M. S. Tyomkin for interesting discussions.

Fig. 3 to the left is taken from https://en.wikipedia.org/wiki/Diminished_trapezohedron.

Fig. 4 to the right is taken from https://en.wikipedia.org/wiki/Frustum.

References

[1] A. Aigner, G. M. Ziegler Proofs from THE BOOK. Springer, 2010 (fourth edition, 274 pages).

[2] A. D. Alexandrov Convex polyhedra. Springer, 2005 (542 pages).

[3] A. I. Bobenko, B. A. Springborn Variational principle for circle patterns, and Koebe’s theorem // Transactions of the American Mathematical Society. 2004. V. 356. P. 659—689.
[4] A. L. Cauchy Sur les polygones et polyédres, Second mémoire // J. de l’École Polytechnique. 1813. V. 9. P. 87—98.

[5] D. B. Fuchs, S. L. Tabachnikov Mathematical Omnibus. AMS, 2007 (463 pages).

[6] R. V. Galiulin, S. N. Mikhalev, I. Kh. Sabitov Some applications of the formula for the volume of an octahedron // Mathematical Notes. 2004. V. 76. I. 1—2. P. 25—40.

[7] R. Kenyon An introduction to the dimer model. https://arxiv.org/abs/math/0310326

[8] P. Mani Automorphismen von polyedrischen Graphen // Math. Ann. 1971. V. 192. P. 279—303.

[9] B. A. Springborn A unique representation of polyhedral types. Centering via Möbius transformations // Math. Zeitschrift. 2005. V. 249. P. 513—517.

[10] G. M. Ziegler Lectures on Polytopes. Springer, 1995 (370 pages).
Симметрии многогранников с фиксированными длинами ребер

Е. А. Морозов

Anнотация

При изучении комбинаторной структуры выпуклого многогранника обычно рассматриваются только отношения инцидентности между его гранями. Если же добавить в комбинаторную структуру еще и длины ребер многогранника, то возникает естественный объект — комбинаторные симметрии многогранника, сохраняющие длины его ребер. В работе дано достаточное условие для того, чтобы каждая комбинаторная симметрия многогранника, сохраняющая длины его ребер, реализовывалась как движение пространства, переводящее многогранник в себя. Доказательство этого условия неожиданным образом использует известную теорему Коши о жесткости выпуклых многогранников.

Ключевые слова: многогранник; движение; симметрия, сохраняющая длины ребер; выпуклый плоский граф.

Mathematics Subject Classification (2010): 52B15.

1 Введение

Возьмем произвольный выпуклый трехмерный многогранник и рассмотрим движения, переводящие этот многогранник в себя. Каждое такое движение является одновременно автоморфизмом (комбинаторной симметрией) комбинаторной структуры этого многогранника. Однако совсем необязательно каждая комбинаторная симметрия многогранника реализуется при помощи какого-то движения (достаточно рассмотреть произвольный параллелепипед, не являющийся кубом). Если же многогранник все-таки реализовал какую-то свою комбинаторную симметрию, то эта симметрия переводит каждое ребро многогранника в ребро той же длины, т. е. она сохраняет длины ребер. Основным результатом данной работы является теорема 2, согласно которой всякий выпуклый многогранник, каждая грань которого вписана в окружность, реализует все свои симметрии, сохраняющие длины ребер. Кроме того, мы показываем, что аналогичный результат верен и для выпуклых плоских графов, все грани которых вписаны в окружность (теорема 3). Это в точности класс графов, возникающий при дискретизации комплексного анализа [1], [3].

Доказательства теоремы 2 оказывается удивительно короткими. Ключевой идеей является применение теоремы Коши (теорема 1) для доказательства реализуемости каждой отдельно взятой комбинаторной симметрии.

Сама идея изучения комбинаторных симметрий многогранника не является новой. Понятие симметрии, сохраняющей длины ребер, вводится в [8 и 2] (правда, лишь для многогранников, все грани которых являются треугольниками). Кроме того, известно, что существует многогранник с данной комбинаторной структурой, реализующий все свои комбинаторные симметрии движениями (см. [4, стр. 279] и [5, теорема 2]). Этот результат выводится из аналогичного утверждения про упаковки кругов [1, теорема 2 в введении] (вместо движений в этом случае рассматриваются преобразования Мёбиуса; эта версия тоже тесно связана с дискретизацией комплексного анализа). Похожее утверждение для многогранников с фиксированными ребрами мы предлагаем в качестве гипотезы (гипотеза 2).

2 Определения и обозначения

Сперва напомним несколько базовых определений из теории выпуклых многогранников. Определения, касающиеся многогранников с занумерованными вершинами, хотя формально являются новыми, на самом деле представляют собой естественные аналоги классических определений для многогранников, вершины которых не занумерованы. Большая часть этих классических определений взята из книг [7] и [10].
Пусть P — выпуклый многогранник, т. е. ограниченное пересечение конечного числа замкнутых полупространств в \mathbb{R}^n. Размерностью многогранника называется наименьшая размерность подпространства, в котором этот многогранник содержится. Всякая гиперплоскость H разбивает пространство \mathbb{R}^n на два замкнутых полупространства. Если P лежит целиком в одном из этих полупространств, то гиперплоскость H называется опорной для многогранника P. В этом случае пересечение $H \cap P$ называется гранью многогранника P (кроме того, сам многогранник P мы тоже считаем своей гранью). Грани выпуклого многогранника, очевидно, сами являются выпуклыми многогранниками. Нульмерные грани называются вершинами, а одномерные — ребрами. Множества вершин и ребер многогранника P обозначаются через $V(P)$ и $E(P)$ соответственно.

Два многогранника называются равными, если их вершины занумерованы элементами одного и того же множества, и существует движение пространства, совмещающее вершины с одинаковыми номерами.

Ключевым утверждением в доказательстве основной теоремы (теорема 2) является, пожалуй, самая знаменитая теорема о жесткости многогранников.

Теорема 1 (Коши, [2]). Пусть у двух выпуклых комбинаторно эквивалентных многогранников совпадают двумерные грани. Тогда эти многогранники равны.

Пример 1 (три четырехугольника).

Принятые нами определения равенства и комбинаторной эквивалентности многогранников существенным образом зависят от нумерации вершин. Так, на Рис. 1 четырехугольники a и b комбинаторно эквивалентны, но не равны, а четырехугольник c даже не комбинаторно эквивалентен четырехугольникам a и b. Однако если нумерацию вершин не учитывать, то все три четырехугольника становятся равными.

Рис. 1: к определениям равенства и комбинаторной эквивалентности многогранников

![Рис. 1](image)
3 Внутренние симметрии многогранников и основная теорема

Пусть \(P \) — выпуклый многогранник, а \(\sigma \) — произвольная перестановка множества номеров его вершин. Перенумеруем вершины многогранника \(P \) следующим образом: вершина под номером \(i \) получает новый номер \(\sigma^{-1}(i) \). Перестановка \(\sigma \) называется комбинаторной симметрией многогранника \(P \), если многогранник, полученный из \(P \) после перенумерации вершин комбинаторно эквивалентен \(P \), т. е. \(\sigma : V(P) \to V(P) \) продолжается до некоторого изоморфизма \(\delta : L(P) \to L(P) \). Далее в тексте для краткости вместо «комбинаторная симметрия» мы иногда пишем просто «симметрия».

Пример 2. Перестановка \((1 3 2 4) \) является комбинаторной симметрией четырёхугольника, изображенного на Рис. [1].

Будем говорить, что симметрия \(\sigma \) сохраняет длины ребер, если для любого ребра \(e \) многогранника \(P \) длины ребер \(e \) и \(\delta(e) \) равны. Многогранник \(P \) реализует свою симметрию \(\sigma \), если многогранники \(P \) и \(\delta(P) \) равны.

Пример 3 (параллелепипеды). Произвольный параллелепипед, вообще говоря, не реализует все свои симметрии, сохраняющие длины ребер. Этим свойством обладает только прямоугольный параллелепипед. Однако он не реализует вообще все свои симметрии — этим свойством из всех параллелепипедов обладает один лишь куб.

Основным результатом данной работы является следующая теорема.

Теорема 2 (основная). Если каждая грань выпуклого трехмерного многогранника \(P \) вписана в окружность, то он реализует все свои симметрии, сохраняющие длины ребер.

Следствие 1. Если многогранник вписан в сферу, то он реализует все свои симметрии, сохраняющие длины ребер.

Следствие 2. Если каждая ограничена грань выпуклого многогранника является треугольником, то этот многогранник реализует все свои симметрии, сохраняющие длины ребер.

Плоский граф называется выпуклым, если каждая его ограниченная грань — выпуклый многоугольник, а неограниченная грань — дополнение к многоугольнику (необязательно выпуклому). Понятия нумерации вершин, равенства, комбинаторной эквивалентности, комбинаторной симметрии и симметрии, сохраняющей длины ребер, для выпуклых плоских графов определяются по аналогии с многогранниками.

Пример 4. Выпуклый плоский граф, как и выпуклый многогранник, не всегда реализует все свои симметрии, сохраняющие длины ребер — достаточно рассмотреть произвольный параллелограмм, не являющийся прямоугольником.

Для выпуклых плоских графов также верен аналог теоремы [2]

Теорема 3. Если каждая ограниченная грань выпуклого плоского графа вписана в окружность, то этот граф реализует все свои симметрии, сохраняющие длины ребер.

Для доказательства теоремы [2] кроме уже упомянутой в предыдущем разделе теоремы Коши (теорема [1]), нам потребуется следующая несложная геометрическая лемма.

Лемма 1. Если у двух вписанных n-угольников на плоскости равны соответствующие стороны, то сами эти многоугольники равны.

Доказательство леммы [1] Пусть многоугольники \(P = A_1 A_2 \ldots A_n \) и \(P' = A'_1 A'_2 \ldots A'_n \) такие, что \(A_i A_{i+1} = A'_i A'_{i+1} \) для \(i = 1, \ldots, n \) (здесь и далее считаем \(A_{n+1} = A_1 \)). Пусть \(P \) вписан в окружность с центром в \(O \) и радиусом \(r \), а \(P' \) вписан в окружность с центром в \(O' \) и радиусом \(r' \). Для определенности предположим, что \(r' \geq r \). Рассмотрим равнобедренные треугольники \(\Delta A_i O A_{i+1} \) и \(\Delta A'_i O' A'_{i+1} \) для всех \(i = 1, \ldots, n \). Поскольку \(r' \geq r \) и \(A_i A_{i+1} = A'_i A'_{i+1} \), то \(\angle A_i O A_{i+1} \geq \angle A'_i O' A'_{i+1} \). Но \(\sum_{i=1}^{n} \angle A_i O A_{i+1} = 2 \pi = \sum_{i=1}^{n} \angle A'_i O' A'_{i+1} \), следовательно, \(\sum_{i=1}^{n} \angle A'_i O' A'_{i+1} = \sum_{i=1}^{n} \angle A_i O A_{i+1} \) для всех \(i = 1, \ldots, n \). Тогда многоугольники \(P \) и \(P' \) равны.

Доказательство теоремы [2] Рассмотрим многогранник \(P \) с занумерованными вершинами. Пусть \(\sigma \) — произвольная симметрия многогранника \(P \), сохраняющая длины его ребер. Тогда \(\delta(P) \) — тоже многогранник с занумерованными вершинами (который отличается от \(P \) только нумерацией вершин). Чтобы доказать, что \(P \) реализует симметрию \(\sigma \), нам достаточно показать, что многогранники \(P \) и \(\delta(P) \) равны.
Возьмем произвольную двумерную грань F многогранника P и соответствующую ей грань $\delta(F)$. Поскольку симметрия σ сохраняет длины ребер, то у многоугольников F и $\delta(F)$ равны длины соответствующих сторон. Кроме того, по условию теоремы эти многоугольники вписаны в окружность. Следовательно, они удовлетворяют условиям леммы 1, т. е. они равны. Но тогда все соответствующие двумерные грани многогранников P и $\delta(P)$ равны, и из теоремы Коши (теорема 1) мы получаем, что эти многогранники равны, что и требовалось.

Для доказательства теоремы 3 достаточно заметить, что для выпуклых плоских графов верен следующий аналог теоремы Коши.

Лемма 2 (вырожденная теорема Коши). Пусть у двух комбинаторно эквивалентных выпуклых плоских графов соответствующие грани равны. Тогда сами эти графы равны.

Доказательство леммы 2 проведем индукцией по количеству f граней данных графов G и G'. В случае $f = 1$ доказывать нечего. Предположим, что утверждение теоремы доказано для графов с не более чем $f - 1$ гранью и докажем его для графов с f гранями. Пусть F — некоторая ограниченная грань графа G, граничащая с его неограниченной гранью. Удалим ребра графа G, по которым грань F граничит с неограниченной гранью. Тогда граф G распадется в объединение нескольких выпуклых плоских графов G_1, \ldots, G_k, которые могут иметь общие вершины, но не имеют общих ребер (см. Рис. 2; эти графы соответствуют компонентам связности двойственного графа к графу G, из которого удалили вершины, соответствующие грани F и неограниченной грань).

Рассмотрим теперь грань F' графа G', соответствующую грани F графа G, и удалим ребра, по которым грань F' граничит с неограниченной гранью. Так как графы G и G' комбинаторно эквивалентны, то G' распадется в объединение выпуклых плоских графов G'_1, \ldots, G'_k таких, что G'_i и G_i комбинаторно эквивалентны и содержат не более $f-1$ грани ($i = 1, \ldots, k$). Графы G'_i и G_i, таким образом, удовлетворяют предположению индукции, т. е. они равны.

Рассмотрим теперь движение, совмещающее равные грани F и F' графов G и G'. Достаточно доказать, что это движение также совмещает графы G_i и G'_i для всех $i = 1, \ldots, k$. Для этого заметим, что для всех $i = 1, \ldots, k$ граф G_i имеет с гранью F некоторое общее ребро e_i, а граф G'_i имеет с гранью F' общее ребро e'_i, соответствующее ребру e_i. Поэтому $F \cup G_i$ и $F' \cup G'_i$ также являются равными множествами плоскими графами для всех $i = 1, \ldots, k$. Рассматриваемое движение совмещает грани F и F' этих графов, следовательно, оно совмещает и сами эти графы, в частности, их подграфы G_i и G'_i.

Доказательство теоремы 3 почти дословно повторяет доказательство теоремы 2. Достаточно всюду заменить слово «многогранник» на «выпуклый плоский граф» и ссылку на теорему 1 на ссылку на лемму 2.

4 Открытые вопросы о симметриях многогранников

Возможны обобщения теоремы 2 на высшие размерности, однако для этого необходима точная формулировка многомерного обобщения теоремы Коши, как ни странно, отсутствующая в современной литературе (хотя в [7, стр. 178] приведен набросок формулировки и доказательства).
Гипотеза 1. Если каждая двумерная грань выпуклого n-мерного многогранника \(P \) вписана в окружность \((n \geq 2) \), то он реализует все свои симметрии, сохраняющие длины ребер.

Теорема 2 дает лишь достаточное условие того, что многогранник реализует все свои симметрии, сохраняющие длины ребер. Однако, как показывает следующий пример, это условие не является необходимым.

Пример 5. Рассмотрим многогранник, полученный «приклеиванием» правильного тетраэдра к одной из граней октаэдра (Рис. 3 слева). Этот многогранник имеет 4 треугольные грани и 3 грани в форме ромба с углом \(\pi/3 \), и при этом реализует все свои симметрии, сохраняющие длины ребер. Тем не менее, не все его грани можно вписать в окружность. Аналогичным контрпримером в случае выпуклых плоских графов является правильный шестиугольник, разбитый на 3 ромба с тем же углом \(\pi/3 \) (Рис. 3 справа).

Рис. 3: примеры, не подходящие под условие теорем 2 и 3, но реализующие все свои симметрии, сохраняющие длины ребер

В связи с этими примерами, следующая гипотеза, на наш взгляд, представляет значительно больший интерес.

Гипотеза 2. Для любого выпуклого трехмерного многогранника \(P \) найдется комбинаторно эквивалентный ему многогранник \(Q \) такой, что длины соответствующих ребер многогранников \(P \) и \(Q \) равны, и \(Q \) реализует все свои симметрии, сохраняющие длины ребер.

Однако следует иметь в виду, что если в последней гипотезе многогранники заменить выпуклыми плоскими графами, то утверждение становится неверным!

Пример 6. Рассмотрим выпуклый плоский граф \(G \), изображенный на Рис. 4 слева. Он состоит из двух квадратов \((1234)\) и \((5678)\) с общим центром и повернутых друг относительно друга на небольшой угол \(\alpha \). Легко видеть, что если угол \(\alpha \) достаточно мал, то все ограниченные грани этого графа являются выпуклыми четырехугольниками, т. е. \(G \) действительно является выпуклым плоским графом.

Рис. 4: К обобщению гипотезы 2 на выпуклые плоские графы

Предположим, что существует вложение \(G' \) графа \(G \) в плоскость, реализующее все свои симметрии, сохраняющие длины ребер. В частности, \(G' \) реализует симметрию \((1 2 3 4 5 6 7 8)\), откуда \(\angle(215) = \angle(126) \) в \(G' \). Аналогичным образом доказывается, что \(\angle(215) = \angle(326) = \angle(437) = \angle(148) = \angle(126) = \angle(237) = \angle(348) = \angle(415) = \pi/4 \) в \(G' \) (последнее равенство верно т. к. сумма всех восьми углов равна \(2\pi \)). Следовательно, четырехугольники \((1234)\) и \((5678)\) в \(G' \) являются квадратами с общим центром и параллельными сторонами. Но если размеры квадратов фиксированы, то длина ребра \((15)\) увеличивается с
ростом угла между отрезками (12) и (56). Поэтому ребро (15) не может иметь одинаковую длину в G и G'.

Тем не менее этот пример можно «спасти», если не ограничиваться одиними лишь выпуклыми плоскими графами. Заметим, что решетка граней графа G изоморфна решетке граней куба. Однако многогранник с такой решеткой граней, теми же длинами соответствующих ребер, и реализующий все свои симметрии, сохраняющие длины ребер, существует — это усечённая правильная четырёхугольная пирамида (см. Рис. 4 справа). Фактически граф G в этом случае рассматривается как «вырожденный многогранник», все грани которого лежат в одной плоскости.

Отображение многогранника в себя (автоморфизм) называется метрическим, если оно сохраняет его внутреннюю метрику (определение последнего понятия см. в [3]). Если каждая граница многогранника является треугольником, то вся его симметрия, сохраняющая длины ребер, продолжается до метрического автоморфизма (это случай рассматривается в [3]). С метрическими автоморфизмами связана следующая гипотеза.

Гипотеза 3 (И. Х. Сабитов). Всякий метрический автоморфизм выпуклого многогранника продолжается до движения всего пространства. В частности, всякий метрический автоморфизм является комбинаторной симметрией, сохраняющей длины ребер.

Благодарности
Я признателен своему научному руководителю М. Б. Скопенкову за постоянное внимание к работе и помощь в подготовке данного текста. Также хотелось бы поблагодарить И. Х. Сабитова за полезные комментарии и формулировку гипотезы 3. Спасибо М. С. Тёмкину за интересные обсуждения.

Рис. 3 слева заимствован с веб-страницы https://en.wikipedia.org/wiki/Diminished_trapezohedron.
Рис. 4 справа заимствован с веб-страницы https://en.wikipedia.org/wiki/Frustum.

Список литературы

[1] A. I. Bobenko, B. A. Springborn Variational principle for circle patterns, and Koebe’s theorem // Transactions of the American Mathematical Society. 2004. V. 356. P. 659–689.

[2] A. L. Cauchy Sur les polygones et polyédres, Second mémoire // J. de l’École Polytechnique. 1813. V. 9. P. 87–98.

[3] R. Kenyon An introduction to the dimer model. https://arxiv.org/abs/math/0310326

[4] P. Mani Automorphismen von polyedrischen Graphen // Math. Ann. 1971. V. 192. P. 279–303.

[5] B. A. Springborn A unique representation theorem for polyhedral types: Centering via Möbius transformations // Math. Zeitschrift. 2005. V. 249. P. 513–517.

[6] A. Айгер, Г. М. Циглер Доказательства из книги. М.: БИНОМ. Лаборатория знаний, 2015. (англ. оригинал: A. Aigner, G. M. Ziegler Proofs from THE BOOK. Springer, 1998)

[7] A. D. Александров Выпуклые многогранники. М.: Гостехиздат, 1950. (англ. перевод: A. D. Alexandrov Convex Polyhedra. Springer, 2005.)

[8] P. В. Галущин, С. Н. Михалёв, И. Х. Сабитов Некоторые приложения формулы для объема октаэдра // Математические заметки. 2004. Т. 76. В. 1. Стр. 25–40.

[9] С. Л. Табачников, Д. Б. Фукс Математический дивертисмент. М.: МЦНМО, 2011. (англ. оригинал: D. B. Fuchs, S. L. Tabachnikov Mathematical Omnibus. AMS, 2007.)

[10] Г. М. Циглер Теория многогранников. М.: МЦНМО, 2014. (англ. оригинал: G. M. Ziegler Lectures on Polytopes. Springer, 1995.)