Treatment of pig serum-induced rat liver fibrosis with *Boschniakia rossica*, oxymatrine and interferon-α

Chun-Song Wu, Xi-Xu Piao, Dong-Ming Piao, Yong-Ri Jin, Cheng-Hao Li

INTRODUCTION
Liver fibrosis results from chronic hepatitis, ethanol abuse or other conditions. It is a very common disease in China and severely affects people’s health. All countries in the world including China have not approved any drug on liver fibrosis therapy[1]. Herbal medicine has been used to treat liver fibrosis in China for thousands of years. It is found that Chinese herbal medicine has the direct function of preventing liver fibrosis besides the effect of protecting hepatocytes[2]. Many ingredients of Chinese herbs have been proved in previous studies on liver fibrosis. Boschniakia rossica (BR) Fedtsch Et Flerov is a parasitic plant growing on the root of Alnus plant[3]. Dried BR is used to nourish the kidney, strengthen Yang, lose the bowel, arrest bleeding, and prolong life[4,5]. BR is called “anti-senility herb” (bu lao cao) among civilians. Oxymatrine (OM) is a preparation of alkaloid aqueous solution extracted from herbal medicine matrine. It has biological functions of anti-inflammation, antibacteria, antivirus, anti-tumor and immunosuppression. There are many reports about the prophylactic effect of OM on liver fibrosis and its function to suppress activation of hepatic stellate cells[6,7]. In the present study, a rat liver fibrosis model was established with pig serum and the therapeutic effect and mechanism of BR, OM and IFN-α on liver fibrosis were investigated.

MATERIALS AND METHODS

Drugs and animals
BR was accredited and extracted by a meddicative botanist, Professor Yong-Zhen Liu from Medical College, Yanbian University. OM injection concentration was 200 mg/2 mL (Ningxia Pharmaceutical Factory). Interferon-alpha 1b was purchased from Shenzhen Kexing Bioproducts Co., LTD.

Male Wistar rats, 7 wk old and weighing 150-180 g, were obtained from Animal Facility of Yanbian University Medical College. After a week acclimation period on a basal diet, the rats were divided randomly into experimental groups.

Experimental protocol
The experiment was started on Monday (d 1), and the total study period was 10 wk. Five experimental groups were designed: control group (n = 8), model group (n = 10), BR group (n = 10), OM group (n = 10) and IFN-α group (n = 10). Each group except for control group received 0.5 mL pig serum twice a week for 10 wk via intraperitoneal injection. At the beginning of the 6th wk (Day 36), BR group received 500 mg/kg of BR by oral administration. OM group received 60 mg/kg of OM, and IFN-α group received 50 000u IFN-α via muscle injection. At the same time, control group received 0.5 mL of saline injection twice a week for 10 wk. All the rats were killed under ether anesthesia, blood was obtained from the right ventricle, and the livers were excised for TGF-β1 mRNA assay and pathological examination.

Serummarkers
At end of the experiment, serum ALT was assayed by a HITACHI 7600-010 autobiochemical analyser, while serum PCIII and CIV by radioimmunoassay.
Histological examination and immunohistochemical staining

Three μm thick sections from right lobes of all rat livers were processed routinely for hematoxylin and eosin and Sirius-red staining. α-SMA for detection of activated hepatic stellate cells was assessed immunohistochemically by the avidin-biotin-peroxidase complex method. Anti-α-SMA monoclonal antibody (Zhongshan Bio-tech Company) was also used.

Morphological examination of liver tissue

The results of sirius-red staining were examined under optical microscope. The level of liver fibrosis was divided into five grades\(^{12}\): grade 0: no fibrosis; grade 1: fibrosis located within portal area with a tendency to become worse; grade 2: fibrosis involving 2/3 liver lobule; grade 3: fibrosis reaching the surroundings of central vein; grade 4: the total liver lobule had permeant fibrosis, with false lobule formation and changes in grade 3.

TGF-β1 mRNA assay

RT-PCR was used to examine TGF-β1 mRNA in liver tissue. Total RNA was extracted with Trizol (Invitrogen Chemical Co.). The sense primer sequence was 5’ GCC TCC GCA TCC CAC CTT TG 3’ and the sequence of antisense primer was 5’GCG GGT GAC TTC TTT GGC GT 3’ (synthesized by Sino-American Biotechnology Company). RT-PCR was performed with Access Quick™ RT-PCR system (Promega), and the procedures were as follows. First, reverse translation was incubated for 45 min at 48 °C and initial denaturation for 2 min at 95 °C. Each PCR cycle was at 95 °C for 45 s, at 60 °C for 45 s and at 70 °C for 45 s, the number of cycles was 25 and the final extension was carried out at 70 °C for 5 min. RT-PCR products were resolved on 1.0% agarose gel and then visualized with ultraviolet assay and photography. The results were determined with computerized image analysis (CMIAS).

Statistical analysis

Results were presented as mean±SD, differences of ordinal data were analyzed using Kroskal-Wallis test and measurement data were analyzed using one-way analysis of variance (ANOVA). The results were analyzed by SPSS 10.0 software.

RESULTS

General condition

The condition did not change in control group, but the activity was reduced, urine became yellow and most rats had diarrhea in model group. General conditions in BR, OM and IFN-α groups were much better than those in model group.

Liver/weight index

Liver/weight index in model group was slightly higher than that in other groups, but the difference had no statistical significance (\(P=0.169\)).

Serum markers

Serum ALT was not increased after administration of pig serum for 10 wk in model group. IFN-α at doses up to 50 000u also had no effect on serum ALT level, but serum ALT in OM group was excessively increased and significantly higher than that in model and IFN-α groups (\(P<0.009\)). Serum ALT in BR group had no considerable changes compared with model group, but was significantly lower than that in OM group (\(P=0.021\)). The serum ALT level was significantly higher in BR group than in IFN-α group (\(P=0.043\)). Only serum IV collagen in model group was significantly higher than in other groups (\(P<0.048\)). The PCIII level in model group was also significantly higher than that in BR, OM and IFN-alpha groups (\(P<0.001\)), and the PCIII level in IFN-α group had almost no change compared with that in control group (\(P=0.341\)), but serum PCIII in OM group was significantly higher than that in control group (\(P=0.028\), Table 1).

Histological findings

In model group, the rat liver stained with Sirius-red and HE showed an extensive accumulation of collagens (Figures 1: C, D),
fibrotic septum increased and was found between port to port and port to central vein in some parts of lobules, in some serious units false lobules presented. But no hepatocyte necrosis was found. The accumulation of collagens in BR \((P = 0.003)\), OM \((P = 0.009)\) and IFN-\(\alpha\) \((P = 0.0237)\) groups was obviously lower than that in model group (Figure 1 A, B, E-J). The grades of liver fibrosis are shown in Table 2.

Table 1

	Control	Model	OM	IFN	BR
ALT (U/L)	48.00±3.0	51.33±6.5	67.70±3.3	41.33±1.8	53.80±5.2
PCIII (µg/L)	5.83±0.4	9.91±3.1	7.46±0.7	6.68±0.3	6.56±0.4
CIV (µg/L)	0.93±0.7	4.13±1.4	0.97±0.9	0.90±0.6	0.40±0.4

1Significantly different compared with model group, 2significantly different compared with control group.

Expression of TGF-\(\beta1\) mRNA in liver tissue

The RT-PCR products of TGF-\(\beta1\) mRNA were electrophoresed with 1.0% agarose gel (Figure 2 A). The TGF-\(\beta1\) mRNA expression in control group was not significant, but was significant in model group and the expression of TGF-\(\beta1\) mRNA in BR,OM and IFN-\(\alpha\) groups was significantly lower than that in model group \((P<0.05)\).

Table 2

Group	0	I	II	III	IV
Control	8	8	0	0	0
Model	10	0	5	1	1
OM	10	2	7	0	1
IFN	9	2	6	1	0
BR	10	4	5	0	1

Immunohistochemical assay

Activated hepatic stellate cells, characterized by expression of \(\alpha\)-SMA and called myofibroblast-like cells, were markedly increased in the liver of rats that received pig serum for 10 wk (Figure 2 B). In BR,OM and IFN-\(\alpha\) groups, the number of \(\alpha\)-SMA positive cells in liver was much lower than that in model group \((P<0.05\), Figures 2C-F), and the distribution of \(\alpha\)-SMA positive cells was similar to that of collagen in the liver.

DISCUSSION

Fibrosis is a dynamic process associated with the continuous deposition and resorption of connective tissues and collagens.
Therapeutic strategies have shown that this dynamic process can be modulated. Many results in previous studies suggest that BR could markedly enhance the immune reactivation of Kupffer cells. Kupffer cells are the necessary cells when the body responds to TD antigen immune reaction[13]. BR could significantly restore superoxide dismutase (SOD) activation reduced by CCL4 intoxication and CCL4-induced lipid peroxidation products[14,15]. Researches also show that BR could inhibit swelling of carageen gel-induced rat podsum, PGE release from swollen podsum and permeability of rat celiac capillaries[16,17]. Song et al[8] found that OM could inhibit fibroblastic proliferation and expression of type III collagen mRNA in vitro. Chen et al[8] compared the effects of OM and IFN-α on cultured rat hepatic stellate cells, and found that OM had the similar inhibitory effect as IFN-α on rat stellate cells in vitro, indicating that OM has prophylactic effects on D-galactosamine-induced rat liver fibrosis, since it can protect hepatocytes and suppress activation of hepatic stellate cells through anti-liperoxidation in vivo[10]. It was reported that IFN-α could inhibit hepatic stellate cell activation and lipid peroxidation in liver mitochondria, and enhance biological defense activities against oxidative stress and function as a potent fibrosuppressant by protecting hepatocytes and hepatic stellate cells from lipid peroxidation in vivo[17]. It could inhibit the proliferation and collagen synthesis of stellate cells, down-regulate the expression of procollagen types I and III mRNA and reduce the deposition of collagen types I and III in fibrotic liver[18]. IFN-α could improve the function and composition of liver cells and erythrocyte membrane[19]. Early and long-term administration of IFN-α could prevent the development of liver fibrosis and portal-collateral circulation in the CCL4 model[20]. Clinical researches on IFN-α have shown that IFN-α elevates MMP-1/TIMP-1 ratio and decreases the extent of liver fibrosis[21], reduces the number of α-SMA-positive cells and decorin expression[22], and improves liver inflammation and fibrosis in patients with chronic hepatitis C[23]. IFN-α could also reduce liver fibrosis independent of its antiviral action[24,25]. In the present study, an immune liver fibrosis model was established by intraperitoneal injection of pig serum, and the model was designed according to the fact that many kinds of fibrosis are related to type III immune reaction[26]. The present study showd that serum ALT was not increased and there was no obvious hepatocyte necrosis except for liver fibrosis in model group. In IFN-α group serum ALT had no change, and this result is similar to that treated with IFN-γ[27]. The obvious increase of serum ALT in OM group indicated that OM has hepatotoxicity to rat liver fibrosis induced by pig serum. Radioimmunopossay showed that serum PCIII and CTIV were significantly decreased, indicating that BR, OM and IFN-α inhibit synthesis of collagens, and that serum PCIII is higher than CTIV, which is in line with the result that PCIII was the main collagen accumulated in primenal fibrosis[28]. TGF-β-1 activates hepatic stellate cells and increases α-SMA expression[29]. On the other hand, the activated hepatic stellate cells release a lot of TGF-β[30]. The present study showed that BR, OM and IFN-α could inhibit the activation of hepatic stellate cells and the release of TGF-β1. Pathological results further indicate BR, OM and IFN-α have anti- fibrosis actions. This study compared the anti-fibrosis action of BR, OM and IFN-α, and found that BR had no effect on liver serum ALT, and is thus being very convenient for use. BR is an effective herb with a promising prospect of application.

In conclusion, the results in the present study indicate that BR, OM and IFN-α can prevent pig serum-induced liver fibrosis by inhibiting the activation of stellate cells and synthesis of collagens. OM has hepatotoxicity to liver fibrosis induced by pig serum.
Yano Y, Nakaji M, Hayashi Y. Significance of serum matrix metalloproteinases and their inhibitors on the antifibrogenetic effect of interferon-alfa in chronic hepatitis C patients. *Interreirology* 2001; 44: 227-231

22 Jarmay K, Gallai M, Karacsony G, Oszvar Z, Schaff Z, Lonovics J, Kovalszky I. Decorin and actin expression and distribution in patients with chronic hepatitis C following interferon- alpha-2b treatment. *J Hepatol* 2000; 32: 993-1002

23 Serejo F, Costa A, Oliveira AG, Ramalho F, Batista A, De Moura MC. Alpha-interferon improves liver fibrosis in chronic hepatitis C: clinical significance of the serum N-terminal propeptide of procollagen type III. *Dig Dis Sci* 2001; 46: 1684-1689

24 Vendemiale G, Grattagliano I, Caruso ML, Serviddio G, Valentini AM, Pirrelli M, Altorome E. Increased oxidative stress in dimethylpolarsamine-induced liver fibrosis in the rat: effect of N-acetylcysteine and interferon-alpha. *Toxicol Appl Pharmaol* 2001; 175: 130-139

25 Mazzoran L, Tamaro G, Mangiarotti MA, Marchi P, Baracetti S, Gerini U, Fanni-Cannelles M, Zorat F, Pozzato G. Effects of interferon therapy on fibrosis serum markers in HCV-positive chronic liver disease. *Eur J Gastroenterol Hepatol* 1998; 10: 125-131

26 Cheng ML. The basically study and clinic of liver fibrosis. Beijing: people’s Medical Publishinghouse of China 1996: 17-50

27 Sakaida I, Uchida K, Matsumura Y, Okita K. Interferon gamma treatment prevents procollagen gene expression without affecting transforming growth factor-beta expression in pig serum-induced rat liver fibrosis *in vivo.* J Hepatol 1998; 28: 471-479

28 Zhan YT, Wei HS. The effect and sence of transforming growth factor-beta in liver fibrosis. Guowai Yixue Mianyixue Fence 2000; 24: 230-233

29 Kanzler S, Lohse AW, Keil A, Henninger J, Dienes HP, Schirmacher P, Rose-John S, zum Buschenfeld KH, Blessing M. TGF-beta1 in liver fibrosis: an inducible transgenic mouse model to study liver fibrogenesis. *Am J Physiol* 1999; 276: G1059-G1068

30 Wang BE. Hepatic stellate cell and liver fibrosis. *Zhonghua Ganzhangbing Zazhi* 2000; 8: 197-199

Edited by Wang XL and Zhang JZ. Proofread by Ma JY