THE DEGREE OF THE THIRD SECANT VARIETY OF A SMOOTH CURVE OF GENUS 2

ANDREA HOFMANN

Abstract. We give a new method of computation of the degree of the third secant variety \(\text{Sec}_3(C) \) of a smooth curve \(C \subseteq \mathbb{P}^{d-2} \) of genus 2 and degree \(d \geq 8 \), using the presentation of \(\text{Sec}_3(C) \) as the union of all scrolls that are defined via a \(g_1^3 \) on \(C \).

1. Introduction

Berzolari’s formula from 1895 (cf. [2], Section 4) computes the number of trisecant lines to a smooth curve of genus \(g \) and degree \(d \) in \(\mathbb{P}^4 \), in the case this number is finite. This number is equal to \(\binom{d-2}{3} - g(d-4) \).

In this paper \(C \) denotes a smooth and irreducible curve of genus 2 and degree \(d \geq 8 \) embedded in \(\mathbb{P}^{d-2} \).

The third secant variety of \(C \), \(\text{Sec}_3(C) \), is defined as the closure of the union of all trisecant planes to \(C \):

\[
\text{Sec}_3(C) = \bigcup_{D \in C_3} \text{span}(D),
\]

where \(C_3 := (C \times C \times C)/S_3 \) parametrizes effective divisors of degree 3 on \(C \), and \(\text{span}(D) \) denotes the plane spanned by the three points in \(D \).

The dimension of \(\text{Sec}_3(C) \) is equal to \(\dim(C_3) + \dim(\text{span}(D)) = 5 \), i.e. in order to find the degree of \(\text{Sec}_3(C) \) we have to intersect with five general hyperplanes.

Let now \(V \) denote the intersection of five general hyperplanes in \(\mathbb{P}^{d-2} \), i.e. \(V \) is a general space of codimension 5 in \(\mathbb{P}^{d-2} \). Since \(\dim(\text{Sec}_2(C)) = 3 \) and \(\text{codim}(V) = 5 \), \(V \) and \(\text{Sec}_2(C) \) do not intersect. This implies that \(V \) cannot intersect any trisecant plane to \(C \) in a line, since every trisecant plane to \(C \) contains three lines in \(\text{Sec}_2(C) \), and so if \(V \) intersects a trisecant plane to \(C \) in a line \(L \), then \(L \) intersects at least one of those lines in \(\text{Sec}_2(C) \) in a point which obviously lies in \(\text{Sec}_2(C) \).

Projecting from \(V \) to \(\mathbb{P}^4 \) gives us the equality of the degree of \(\text{Sec}_3(C) \) and the number of trisecant lines to a curve \(C \subseteq \mathbb{P}^4 \) of genus 2 and the same degree \(d \) in the following way: Since \(V \) was chosen to be a general space of codimension 5, \(V \) does not intersect the curve \(C \), and thus the image of \(C \) under the projection from \(V \) is a curve of degree \(d \) and genus 2 in \(\mathbb{P}^4 \). Moreover, the fact that \(V \) does not intersect \(\text{Sec}_2(C) \) implies that the image curve is smooth as well.
A trisecant plane to $C \subseteq \mathbb{P}^{d-2}$ which intersects V in one point projects down to a trisecant line to the image curve in \mathbb{P}^4.

Summarizing, the number of trisecant planes to $C \subseteq \mathbb{P}^{d-2}$ that intersect V in one point is equal to the number of trisecant lines to the image curve in \mathbb{P}^4, and thus it follows that the degree of $\text{Sec}_3(C)$ is equal to the number of trisecant lines to the image curve in \mathbb{P}^4.

Consequently, the degree of $\text{Sec}_3(C)$ is equal to $(d-2) - 2(d-4)$, and our motivation is now to compute the degree of $\text{Sec}_3(C)$ in a different way, identifying $\text{Sec}_3(C)$ as the union of all scrolls defined via a g^1_3 on C.

Any abstract curve C of genus 2 can be embedded as a smooth curve of degree $d \geq 5$ into \mathbb{P}^{d-2}.

In this paper we restrict ourselves to the case $d \geq 8$, since for a curve C of genus 2 and degree $d = 6$ or $d = 7$, although Berzolari’s formula of course being valid, taking Berzolari’s formula to compute the degree of $\text{Sec}_3(C)$ does not make sense, since for these values of d the third secant variety $\text{Sec}_3(C)$ is equal to the ambient space \mathbb{P}^{d-2}. For $d = 5$ the following holds: There are infinitely many trisecant lines to a curve $C \subseteq \mathbb{P}^3$ of genus 2 and degree 5, since C lies on a quadric on which there exists a one-dimensional family of lines that each intersects C in three points.

2. Preliminaries

Let C be a smooth curve of genus 2 and degree $d \geq 8$ embedded in projective space \mathbb{P}^{d-2}. For each g^1_3 on C, which we denote by $|D|$, we set

$$V_{|D|} := \bigcup_{D' \in |D|} \text{span}(D'),$$

where $\text{span} D'$ denotes the plane spanned by the three points in $|D|$. Each $V_{|D|}$ is a threedimensional rational normal scroll. (For general theory about rational normal scrolls we refer to [3].)

We set $G^1_3(C) := \{g^1_3 \text{‘s on } C\}$. Since our aim is to identify $\text{Sec}_3(C) = \bigcup_{|D| \in G^1_3(C)} V_{|D|}$, we want to find the dimension of $\bigcup_{|D| \in G^1_3(C)} V_{|D|}$, and for this purpose we need the dimension of the family $G^1_3(C)$, which we will now compute:

Proposition 2.1. Let C be a curve of genus 2. The family $G^1_3(C) = \{g^1_3 \text{‘s on } C\}$ is two-dimensional.

Proof. If D is a divisor of degree 3 on C, then $h^0(\mathcal{O}_C(D)) = 2$ by the Riemann-Roch theorem for curves (see e.g. [5], Thm. 1.3 in Chapter IV.1), i.e. each linear system $|D|$ of degree 3 is a g^1_3 on C. The set of all effective divisors of degree 3 on C is given by $C_3 := (C \times C \times C)/S_3$, where S_3 denotes the symmetric group on 3 letters. The dimension of this family is equal to 3, and since each linear system $|D|$ of degree 3 on C has dimension 1, as shown above, the family of g^1_3’s on C has to be two-dimensional. □
We obtain that the dimension of $\bigcup_{|D| \in G^2_3(C)} V_{|D|}$ is equal to 5, which is also the dimension of $\text{Sec}_3(C)$, as we have seen in the introduction, and since each scroll $V_{|D|}$ obviously is contained in $\text{Sec}_3(C)$, we obtain equality:

$$\text{Sec}_3(C) = \bigcup_{|D| \in G^2_3(C)} V_{|D|}.$$

For an integer $k \geq 0$ we denote by $\text{Pic}^k(C)$ the set of all line bundles of degree k on C modulo isomorphism. In this paper we will consider $k = 0$ and $k = 3$.

We use the definition of the Jacobian variety of C, $\text{Jac}(C)$, as in [6], namely that $\text{Jac}(C)$ is defined as the abelian variety that represents the functor $T \to \text{Pic}^0(C/T)$ from schemes over the base field k to abelian groups (cf. [6], Theorem 1.1).

By fixing a divisor D_0 of degree 3 we obtain an isomorphism

$$\mu : \text{Pic}^0(C) \to \text{Pic}^3(C),$$

$$[\mathcal{O}_C(D)] \mapsto [\mathcal{O}_C(D + D_0)].$$

Hence $\text{Pic}^3(C)$ is isomorphic to the Jacobian variety $\text{Jac}(C)$. Fixing a point P_0 on C gives an embedding

$$\nu : C \to \text{Jac}(C),$$

$$R \mapsto [\mathcal{O}_C(R - P_0)].$$

The dimension of $\text{Jac}(C)$ is equal to the genus of C, which is equal to 2. Hence $\text{Jac}(C)$ is an abelian surface. The theta divisor Θ on $\text{Jac}(C)$ is the image of C under the above map ν.

For fixed points P and Q on C we define

$$\Theta_{P,Q} := \{[\mathcal{O}_C(P + Q + R)] | R \in C\}.$$

$\Theta_{P,Q}$ is a divisor on $\text{Pic}^3(C)$, and using the above isomorphism μ with $D_0 = P + Q + P_0$ we see that the divisor $\Theta_{P,Q}$ is isomorphic to Θ. It is this $\Theta_{P,Q}$ we will use in Sections 4 and 5 when we consider Θ on $\text{Pic}^3(C)$.

Proposition 2.2. The divisor Θ has self-intersection $\Theta^2 = 2$.

Proof. Choose points P, P', Q_1 and Q_2, $Q_1 \neq Q_2$, on C such that $P + P'$ is a divisor in the canonical system on C, $|K_C|$, and such that $Q_1 + Q_2$ is not a divisor in $|K_C|$. There exist points Q'_1 and Q'_2 on C such that $Q_1 + Q'_1 \in |K_C|$ and $Q_2 + Q'_2 \in |K_C|$. We obtain the following:

$$\Theta^2 = \Theta_{P,Q_1} \cdot \Theta_{P',Q_2} = \#\{[\mathcal{O}_C(Q_1 + Q_2 + R)] | R \in \{Q'_1, Q'_2\}\} = 2.$$

\square
Consider now the following projections:

\[
\begin{array}{c}
C 	imes \text{Pic}^3(C) \\
\downarrow p \\
C
\end{array}
\quad \quad \quad
\begin{array}{c}
C 	imes C_3 \\
\downarrow \pi \\
C_3
\end{array}
\quad \quad \quad
\begin{array}{c}
\text{Pic}^3(C) \\
\downarrow q \\
C
\end{array}
\]

Let \(P \) be a point on \(C \) such that \(2P \) is a divisor in the canonical system \(|K_C| \), and set \(f := p^*(P) \).

In the rest of this paper we will use the notation \(P \) and \(f \) both as varieties and as classes.

As before, we define \(C_3 \) to be the threedimensional family of all effective divisors of degree 3 on \(C \).

Let \(\Delta \) be the universal divisor on \(C \times C_3 \), i.e. \(\Delta|_{C \times \{D\}} \cong D \) for all \(D \in C_3 \).

For any point \(Q \) on \(C \) set \(X_Q := \{ D \in C_3 | Q \in D \} \), which is a divisor on \(C_3 \).

Finally, let \(u : C_3 \to \text{Pic}^3(C) \) be the map given by \(u(D) := [O_C(D)] \).

Now we are able to define a line bundle \(L \) on \(C \times \text{Pic}^3(C) \) which turns out to be a Poincaré line bundle. In Section 5 we will compute the degree of \(\text{Sec}^3(C) \) by identifying \(\text{Sec}^3(C) \) as a degeneracy locus of a map of vector bundles involving this Poincaré line bundle \(L \).

3. The Poincaré line bundle \(\mathcal{L} \)

We will first give the definition of a Poincaré line bundle:

Definition 3.1. A Poincaré line bundle of degree \(k \) is a line bundle \(\mathcal{L} \) on \(C \times \text{Pic}^3(C) \) such that \(\mathcal{L}|_{C \times [O_C(D)]} \cong O_C(D) \) for all points \([O_C(D)] \) in \(\text{Pic}^3(C) \).

Set \(\mathcal{L} := (1 \times u)_* (O_{C \times C_3} (\Delta - \pi^*(X_Q))) \). \(\mathcal{L} \) is a Poincaré line bundle of degree 3 (cf. [1], Chapter IV, §2, p. 167).

Let \(|H| \) be the linear system of degree \(d \) that embeds \(C \) into projective space \(\mathbb{P}^{d-2} \). Set \(\mathcal{H} := q_* (\mathcal{L}) \) and \(\mathcal{G} := q_* (p^* O_C(H) \otimes \mathcal{L}^{-1}) \).

Since the fiber of \(\mathcal{H} \) over a point \([O_C(D)] \in \text{Pic}^3(C) \) is equal to \(H^0(O_C(D)) \), the rank of \(\mathcal{H} \) is equal to \(h^0(O_C(D)) = 2 \), and since the fiber of \(\mathcal{G} \) over a point \([O_C(D)] \in \text{Pic}^3(C) \) is equal to \(H^0(O_C(H - D)) \), the rank of \(\mathcal{G} \) is equal to \(h^0(O_C(H - D)) = d - 4 \).

We will use these vector bundles \(\mathcal{H} \) and \(\mathcal{G} \) in Section 3 to define a map of vector bundles which degeneracy locus is equal to the third secant variety of \(C \), \(\text{Sec}^3(C) \). We will need the Chern classes of \(\mathcal{H} \) and \(\mathcal{G} \), and for this purpose we need the Chern classes of \(\mathcal{L} \). We will find all of these Chern classes in the next section.

4. The Chern classes of \(\mathcal{L}, \mathcal{H} \) and \(\mathcal{G} \)

In this section we will find the Chern classes of \(\mathcal{L}, \mathcal{H} \) and \(\mathcal{G} \) as defined in Section 3.
4.1. The Chern class of L. By [1], Chapter VIII, §2 (pp. 333-336) we obtain that the first Chern class of L is equal to $c_1(L) = 3f + \gamma$, where γ is the diagonal component of $c_1(L)$ in the term $H^1(C) \otimes H^1(\text{Pic}^3(C))$ of the Künneth decomposition

$$H^2(C \times \text{Pic}^3(C)) = (H^2(C) \otimes H^0(\text{Pic}^3(C)))$$

$$\oplus (H^1(C) \otimes H^1(\text{Pic}^3(C)))$$

$$\oplus (H^0(C) \otimes H^2(\text{Pic}^3(C))).$$

The following is satisfied: $\gamma^2 = -2f.q^*(\Theta)$, $\gamma^3 = f.\gamma = 0$, where now Θ on $\text{Pic}^3(C)$ is equal to $\Theta_{P,Q}$ as defined in Section 2.

Thus for the Chern character of L we obtain:

$$\text{ch}(L) = e^{c_1(L)} = 1 + 3f + \gamma - f.q^*(\Theta).$$

4.2. The Chern classes of H. Recall that we had defined $H := q_*L$. The Chern character of H we obtain by the Grothendieck-Riemann-Roch Theorem (cf. [4], Thm. 15.2):

$$\text{ch}(q_*(L)) \cdot \text{td}(\text{Pic}^3(C)) = q_*(\text{ch}(L) \cdot \text{td}(C \times \text{Pic}^3(C))).$$

Before we can continue our computation of $\text{ch}(H)$ we need some Todd classes and pushforwards.

Definition 4.1. (cf. [4], Example 3.2.4) The Todd class of a vector bundle E of rank r on a variety X is defined as

$$\text{td}(E) = \prod_{i=1}^{r} \frac{\alpha_i}{1 - e^{\alpha_i}},$$

where $\alpha_1, \ldots, \alpha_r$ are the Chern roots of E.

If Y is a variety, then by $\text{td}(Y)$ we denote $\text{td}(T_Y)$, the Todd class of the tangent bundle of Y.

We will need Todd classes only in the cases when the dimension of X is equal to 1 or 2. In these cases $c_i(E) = 0$ for $i \geq 3$, and expanding the above product yields:

$$\text{td}(E) = 1 + \frac{1}{2}c_1(E) + \frac{1}{12}(c_1^2(E) + c_2(E)).$$

Lemma 4.2. We have the following Todd classes:

1. $\text{td}(\text{Pic}^3(C)) = 1$.
2. $\text{td}(C) = 1 - P$.
3. $\text{td}(C \times \text{Pic}^3(C)) = 1 - f$.

Proof.

1. Since $\text{Pic}^3(C) \cong \text{Jac}(C)$ is an abelian variety, we have $K_{\text{Pic}^3(C)} = 0$ and thus also $c_1(T_{\text{Pic}^3(C)}) = 0$.
2. $\text{td}(C) = 1 + \frac{1}{2}c_1(T_C) = 1 - \frac{1}{2}[K_C] = 1 - P.$
\((3) \, \text{td}(C \times \text{Pic}^3(C)) = \text{td}(p^*(C)). \text{td}(q^* \text{Pic}^3(C)) = 1 - f. \) \\

Lemma 4.3. We have the following pushforwards:

(1) \(q_*(1) = 0. \)

(2) \(q_*(f) = 1. \)

(3) \(q_*(\gamma) = 0. \)

Proof.

(1) \(q_*(1) = q_*([C \times \text{Pic}^3(C)]) = 0, \) since \(\dim(q(C \times \text{Pic}^3(C))) = \dim(\text{Pic}^3(C)) = 2 < 3 = \dim(C \times \text{Pic}^3(C)). \)

(2) Since \(q(f) = \text{Pic}^3(C) \) has the same dimension as \(f, \) we have \(q_*(f) = a[\text{Pic}^3(C)] \) for a positive integer \(a. \) By the projection formula (cf. \[4\], Prop. 2.5(c)) we obtain for every point \([O_C(D_0)] \in \text{Pic}^3(C): \)

\[
\begin{align*}
a &= q_*(f).[O_C(D_0)] = q_*(f.q^*[O_C(D_0)]) = f.q^*[O_C(D_0)] \\
&= [P \times \text{Pic}^3(C)].[C \times O_C(D_0)] = 1,
\end{align*}
\]

where we could use the equality \(q_*(f.q^*[O_C(D_0)]) = f.q^*[O_C(D_0)], \) since \(f.q^*[O_C(D_0)] \) is 0-dimensional.

(3) Since \(\gamma \) is of codimension 1 on \(C \times \text{Pic}^3(C), q_*(\gamma) = a[\text{Pic}^3(C)] \) for some non-negative integer \(a. \) By the projection formula we have for every point \([O_C(D_0)] \in \text{Pic}^3(C): \)

\[
\begin{align*}
a &= q_*(\gamma).[O_C(D_0)] = q_*(\gamma.q^*[O_C(D_0)]) = \gamma.q^*[O_C(D_0)] \\
&= c_1(\mathcal{L}).q^*[O_C(D_0)] - q_*(3f) = 3 - 3 = 0,
\end{align*}
\]

where, analogously to (2), we could use the equality \(q_*(\gamma.q^*[O_C(D_0)]) = \gamma.q^*[O_C(D_0)] \) since \(\gamma.q^*[O_C(D_0)] \) is 0-dimensional.

Now, by Lemma 4.2 we obtain:

\[
\begin{align*}
\text{ch}(\mathcal{H}) &= \text{ch}(q_*(\mathcal{L})) \\
&= q_*(\text{ch}(\mathcal{L}).(1 - f)) = q_*((1 + 3f + \gamma - f.q^*(\Theta)).(1 - f)) \\
&= q_*(1 + 2f + \gamma - f.q^*(\Theta)).
\end{align*}
\]

By Lemma 4.3 and the projection formula we can conclude:

\[
\text{ch}(\mathcal{H}) = 2 - q_*(f).\Theta = 2 - \Theta.
\]

Consequently we obtain for the Chern polynomial of \(\mathcal{H}: \)

\[
(1) \quad c_t(\mathcal{H}) = e^{-\Theta t}.
\]
4.3. The Chern classes of \mathcal{G}. Now we want to find the Chern classes of the vector bundle $\mathcal{G} := q_*(p^*(\mathcal{O}_C(H) \otimes \mathcal{L}^{-1}))$, where $|H|$ denotes the linear system of degree d that embeds C into projective space. In order to do so we use again the Grothendieck-Riemann-Roch formula:

$$\text{ch}(q_*(p^*(\mathcal{O}_C(H) \otimes \mathcal{L}^{-1}))). \text{td}(\text{Pic}^3(C)) = q_*(\text{ch}(p^*(\mathcal{O}_C(H) \otimes \mathcal{L}^{-1}))). \text{td}(C \times \text{Pic}^3(C)).$$

By Lemma 4.2, Lemma 4.3 and the projection formula we obtain

$$\text{ch}(\mathcal{G}) = q_*(\text{ch}(p^*(\mathcal{O}_C(H) \otimes \mathcal{L}^{-1})).(1 - f))$$

$$= q_*(p^*(\text{ch}(\mathcal{O}_C(H))). \text{ch}(\mathcal{L}^{-1}).(1 - f))$$

$$= q_*(1 + p^*(H)).(1 - 3f - \gamma - f.q^*(\Theta)).(1 - f))$$

$$= q_*(1 + df).(1 - 4f - \gamma - f.q^*(\Theta)))$$

$$= q_*(1 + (d - 4)f - \gamma - f.q^*(\Theta))$$

$$= d - 4 - \Theta.$$

This yields for the Chern polynomial of \mathcal{G}:

$$c_t(\mathcal{G}) = e^{-\Theta t}. \quad (2)$$

5. The degree of Sec$_3(C)$

Set $E := \mathcal{G} \boxtimes \mathcal{O}_{\mathbb{P}^{d-2}}(-1)$ and $F := \mathcal{H}^* \boxtimes \mathcal{O}_{\mathbb{P}^{d-2}}$. These are two vector bundles on $\text{Pic}^3(C) \times \mathbb{P}^{d-2}$. The rank of E is equal to $d - 4$, and the rank of F is equal to 2.

The multiplication of fibers

$$H^0(\mathcal{O}_C(H - D)) \otimes H^0(\mathcal{O}_C(D)) \to H^0(\mathcal{O}_C(H))$$

induces a map of vector bundles $\Phi : E \to F$. Set

$$X_1 := X_1(\Phi) := \{x \in \text{Pic}^3(C) \times \mathbb{P}^{d-2} | \text{rk}(\Phi_x) \leq 1\}$$

Consider the two projections

$$\begin{array}{ccc}
\text{Pic}^3(C) \times \mathbb{P}^{d-2} & \xrightarrow{p_1} & \text{Pic}^3(C) \\
& & \text{Pic}^3(C)
\end{array}$$

$$\begin{array}{ccc}
\text{Pic}^3(C) \times \mathbb{P}^{d-2} & \xrightarrow{p_2} & \mathbb{P}^{d-2} \\
& & \mathbb{P}^{d-2}
\end{array}$$

We have the following:

(i) Over every point $[\mathcal{O}_C(D)] \in \text{Pic}^3(C)$ the fiber of $p_1|X_1$ is a 3-dimensional rational normal scroll $V_{[D]} \subseteq [\mathcal{O}_C(D)] \times \mathbb{P}^{d-2} \cong \mathbb{P}^{d-2}$.

(ii) The image of such a fiber under the projection p_2 is thus the rational normal scroll $V_{[D]}$ in \mathbb{P}^{d-2}.

(iii) Consequently, $p_2(X_1)$ is the union of all $g_3^1(C)$-scrolls V_D in \mathbb{P}^{d-2} which again is equal to Sec$_3(C)$.

Set x_1 to be the class of X_1. From the above we have $(p_2)_*(x_1) = [\text{Sec}_3(C)]$. Let $h' \subseteq \mathbb{P}^{d-2}$ be a hyperplane class and set $h := (p_2)^*(h') \subseteq \text{Pic}^3(C) \times \mathbb{P}^{d-2}$. Since Sec$_3(C) \subseteq \mathbb{P}^{d-2}$ has dimension 5, we obtain the degree of Sec$_3(C)$ by intersecting with $(h')^5$. Now we have the following:

\[
\text{deg}(\text{Sec}_3(C)) = [\text{Sec}_3(C)](h')^5 = (p_2)_*(x_1)^5 = (p_2)_*(x_1.h^5) = x_1.h^5.
\]

That is, now we have to find the class x_1 of $X_1(\Phi)$. Since $X_1(\Phi)$ has expected dimension $5 = \dim(\text{Pic}^3(C) \times \mathbb{P}^{d-2}) - (d - 4 - 1)(2 - 1)$, by Porteous’ formula ([1], Chapter II, (4.2)) we obtain the following:

\[
x_1 = \Delta_{1,d-5}(c_t(F - E))
\]

where $c_i := c_i(F - E)$, and $c_i(F - E)$ is defined via $c_t(F - E) := \frac{c_t(F)}{c_t(E)}$.

Again we use $\Theta_{P,Q}$ as defined in Section 2 when we talk about Θ on $\text{Pic}^3(C) \cong \text{Jac}(C)$. Equations (1) and (2) gave us the following Chern polynomials:

\[
c_t(H) = c_t(G) = e^{-\Theta t}.
\]

We thus obtain

\[
c_t(F) = c_t(p_1^*H) = c_{-t}(p_1^*H) = e^{p_1^*\Theta t}.
\]

We compute $c_t(E)$:

Let α_i be the Chern roots of G, i.e. $c_t(G) = \prod_{i=1}^{d-4} (1 + \alpha_i t)$, and set $\beta_i := p_1^*(\alpha_i)$. Then we obtain the following:
\[
c_i(E) = \prod_{i=1}^{d-4} (1 + (\beta_i - h)t) = \prod_{i=1}^{d-4} (1 - ht) \left(1 + \beta_i \frac{t}{1 - ht} \right)
\]
\[
= (1 - ht)^{d-4} \prod_{i=1}^{d-4} \left(1 + \beta_i \frac{t}{1 - ht} \right) = (1 - ht)^{d-4} c_{\frac{t}{1-h}} \left(p^* \mathcal{G} \right)
\]
\[
= (1 - ht)^{d-4} e^{-\frac{p^* \Theta t}{1-h t}}.
\]

In the following we will identify \(\Theta \) with \(p^* (\Theta) \), it will be clear from the context if we mean \(\Theta \) on \(\text{Pic}^3(C) \) or \(\Theta \) on \(\text{Pic}^3(C) \times \mathbb{P}^{d-2} \).

We conclude now:

\[
c_i(F - E) = e^{\Theta t} (1 - ht)^{4-d} e^{\frac{\Theta t}{1-h t}} = (1 - ht)^{4-d} e^{\frac{2\Theta t - \Theta h t^2}{1-h t^2}}
\]
\[
= (1 - ht)^{4-d} \sum_{j=0}^{\infty} \frac{1}{j!} (2\Theta t - \Theta h t^2)^j (1 - ht)^{-j}
\]
\[
= \sum_{j=0}^{\infty} (1 - ht)^{4-d-j} \frac{1}{j!} (2\Theta t - \Theta h t^2)^j.
\]

Since \(\Theta^3 = 0 \), we only get some contribution from \(j = 0, 1, 2 \) and thus obtain the following:

\[
c_i(F - E) = (1 - ht)^{4-d} + (1 - ht)^{3-d}(2\Theta t - \Theta h t^2)
\]
\[
+ \frac{1}{2} (1 - ht)^{2-d}(4\Theta^2 t^2 - 4\Theta^2 h t^3 + \Theta^2 h^2 t^4)
\]
\[
= \sum_{k=0}^{\infty} \begin{pmatrix} d + k - 3 \\ k \end{pmatrix} h^k t^k
\]
\[
+ \sum_{k=0}^{\infty} \begin{pmatrix} d + k - 3 \\ k \end{pmatrix} (2\Theta h^k - 2h^{k+1}) t^{k+1}
\]
\[
+ \sum_{k=0}^{\infty} \begin{pmatrix} d + k - 3 \\ k \end{pmatrix} (2\Theta^2 h^k - 3\Theta h^{k+1} + h^{k+2}) t^{k+2}
\]
\[
+ \sum_{k=0}^{\infty} \begin{pmatrix} d + k - 3 \\ k \end{pmatrix} (\Theta h^{k+2} - 2\Theta^2 h^{k+1}) t^{k+3}
\]
\[
+ \sum_{k=0}^{\infty} \frac{1}{2} \begin{pmatrix} d + k - 3 \\ k \end{pmatrix} \Theta^2 h^{k+2} t^{k+4}.
\]
This implies that
\[
c_i(F - E) = \left(\binom{d - 3 + i}{i} - 2 \binom{d - 4 + i}{i - 1} + \binom{d - 5 + i}{i - 2} \right) h^i
+ \left(2 \binom{d - 4 + i}{i - 1} - 3 \binom{d - 5 + i}{i - 2} + \binom{d - 6 + i}{i - 3} \right) \Theta h^{i-1}
+ \left(2 \binom{d - 5 + i}{i - 2} - 2 \binom{d - 6 + i}{i - 3} + \frac{1}{2} \binom{d - 7 + i}{i - 4} \right) \Theta^2 h^{i-2}
= \binom{d - 5 + i}{i} h^i
+ \left(\binom{d - 5 + i}{i - 1} + \binom{d - 6 + i}{i - 1} \right) \Theta h^{i-1}
+ \left(2 \binom{d - 6 + i}{i - 2} + \frac{1}{2} \binom{d - 7 + i}{i - 4} \right) \Theta^2 h^{i-2}.
\]

Now the last step in the computation of \(x_1 \) is to find the determinant of the matrix \(A_{d-5} \):

Proposition 5.1. Set \(c_i := c_i(F - E) \), where \(c_i(F - E) \) is defined via \(c_t(F - E) := \frac{c_t(F)}{c_t(E)} \).

For \(d \geq 8 \) the determinant of the matrix

\[
A_{d-5} = \begin{pmatrix}
c_1 & c_2 & c_3 & \cdots & c_{d-6} & c_{d-5} \\
1 & c_1 & c_2 & \cdots & c_{d-7} & c_{d-6} \\
0 & 1 & c_1 & \cdots & c_{d-8} & c_{d-7} \\
& & & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & c_1 & c_2 \\
0 & 0 & 0 & \cdots & 1 & c_1 \\
\end{pmatrix}
\]
is equal to

\[
D_{d-5} = \left(\frac{1}{2} \binom{d - 2}{3} - (d - 4) \right) \Theta^2 h^{d-7}
+ \left(\binom{d - 3}{2} - 1 \right) \Theta h^{d-6}
+ (d - 4) h^{d-5}.
\]

Proof. Let \(d \) be fixed. Set \(d_0 := 1 \) and for \(n = 1, \ldots, d - 5 \), \(k = 2, \ldots, d - 6 \), set
THE DEGREE OF THE THIRD SECANT VARIETY OF A SMOOTH CURVE OF GENUS 2

\[d_n := \det \begin{pmatrix} c_1 & c_2 & c_3 & \cdots & c_n \\ 1 & c_1 & c_2 & \cdots & c_{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & c_1 & c_2 \\ 0 & 0 & \cdots & 1 & c_1 \end{pmatrix} \]

and

\[b_{n,k} := \det \begin{pmatrix} c_k & c_{k+1} & c_{k+2} & \cdots & c_{n-1} & c_n \\ 1 & c_1 & c_2 & \cdots & c_{n-(k+1)} & c_{n-k} \\ 0 & 1 & c_1 & \cdots & c_{n-(k+2)} & c_{n-(k+1)} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & c_1 & c_2 \\ 0 & 0 & 0 & \cdots & 1 & c_1 \end{pmatrix}. \]

By expansion with respect to the first column we have for each \(n \) and \(k \):

\[d_n = c_1d_{n-1} - b_{n,2} \]

and

\[b_{n,k} = c_kd_{n-k} - b_{n,k+1}. \]

This gives us by induction:

\[d_n = \sum_{i=1}^{n} (-1)^{i-1}c_id_{n-i}. \]

Computing \(d_n \) for low \(n \) leads us to the following statement:

Lemma 5.2. For \(n \geq 3 \) we have

\[
\begin{align*}
d_n &= \binom{d-4}{n} h^n + \left(\binom{d-3}{n} - \binom{d-5}{n} \right) \Theta h^{n-1} \\
&\quad + \left(\frac{1}{2} \binom{d-2}{n} - \binom{d-4}{n} + \frac{1}{2} \binom{d-6}{n} \right) \Theta^2 h^{n-2}.
\end{align*}
\]
Proof. By induction over n:

\[
d_n = \sum_{i=1}^{n} (-1)^{i-1} c_i d_{n-i}
\]

\[
= \sum_{i=1}^{n} (-1)^{i-1} \binom{d-5+i}{i} \binom{d-4}{n-i} h^n
\]

\[
+ \sum_{i=1}^{n} (-1)^{i-1} \left(\binom{d-5+i}{i} \binom{d-3}{n-i} - \binom{d-5+i}{i} \binom{d-5}{n-i} \right)
\]

\[
+ \left(\binom{d-4}{n-i} \binom{d-6+i}{i-1} + \binom{d-4}{n-i} \binom{d-5+i}{i-1} \right) \Theta h^{n-1}
\]

\[
+ \sum_{i=1}^{n} (-1)^{i-1} \left(\frac{1}{2} \left(\binom{d-5+i}{i} \binom{d-2}{n-i} - \binom{d-5+i}{i} \binom{d-4}{n-i} \right) \right.
\]

\[
+ \frac{1}{2} \left(\binom{d-5+i}{i} \binom{d-6}{n-i} + \binom{d-6+i}{i-1} \binom{d-3}{n-i} \right)
\]

\[
- \left(\binom{d-6+i}{i-1} \binom{d-5}{n-i} + \binom{d-5+i}{i-1} \binom{d-3}{n-i} \right)
\]

\[
- \left(\binom{d-5+i}{i-1} \binom{d-5}{n-i} + 2 \binom{d-6+i}{i-2} \binom{d-4}{n-i} \right)
\]

\[
+ \frac{1}{2} \left(\binom{d-7+i}{i-4} \binom{d-4}{n-i} \right) \Theta^2 h^{n-2}.
\]

Using the binomial identities

(a) Upper negation: $\binom{-r}{m} = (-1)^m \binom{r+m-1}{m}$ for $r, m \in \mathbb{N}$,

(b) Vandermonde’s identity: $\sum_{k=0}^{r} \binom{m}{k} \binom{s}{r-k} = \binom{m+s}{r}$ for $m, r, s \in \mathbb{N}$

we obtain the formula for d_n as given in Lemma 5.2. \qed

To finish the proof of Proposition 5.1 we use Lemma 5.2 taking $n = d - 5 \geq 3$:
\[D_{d-5} = d_{d-5} = \binom{d-4}{d-5} h^{d-5} + \left(\binom{d-3}{d-5} - \binom{d-5}{d-5} \right) \Theta \cdot h^{d-6} + \left(\frac{1}{2} \binom{d-2}{d-5} - \binom{d-4}{d-5} + \frac{1}{2} \binom{d-6}{d-5} \right) \Theta^2 \cdot h^{d-7} \]

\[= (d-4) h^{d-5} + \left(\binom{d-3}{2} - 1 \right) \Theta \cdot h^{d-6} + \left(\frac{1}{2} \binom{d-2}{3} - (d-4) \right) \Theta^2 \cdot h^{d-7}. \]

Now we are able to deduce the formula for the degree of \(\text{Sec}_3(C) \) where \(C \) is a curve of genus 2 and degree \(d \geq 8 \) in \(\mathbb{P}^{d-2} \).

Proposition 5.3. The degree of the third secant variety \(\text{Sec}_3(C) \) of a smooth curve of genus 2 and degree \(d \geq 8 \) in \(\mathbb{P}^{d-2} \) is equal to

\[\binom{d-2}{3} - 2(d-4). \]

Proof. Since \(\text{Sec}_3(C) \) has dimension 5, we have to intersect with \((h')^5 \) where \(h' \) is a hyperplane class in \(\mathbb{P}^{d-2} \) in order to obtain the degree of \(\text{Sec}_3(C) \). From the above remarks we now have to find \(\deg x_1.h^5 \), where \(h = (p_2)^*(h') \).

We have

\[\deg x_1.h^5 = \deg D_{d-5}.h^5 = \deg \left(\frac{1}{2} \binom{d-2}{3} - (d-4) \right) \Theta^2 \cdot h^{d-2}. \]

Since \(\deg \Theta^2 \cdot h^{d-2} = 2 \), (cf. Proposition 2.2) we finally obtain

\[\deg D_{d-5}.h^5 = 2 \left(\frac{1}{2} \binom{d-2}{3} - (d-4) \right) = \binom{d-2}{3} - 2(d-4). \]

\[\square \]
Acknowledgements. This paper originated from a part of my Ph.D. thesis. I wish to thank my advisor Kristian Ranestad for continuous helpful advice.

References

[1] E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris: *Geometry of Algebraic Curves*, Springer-Verlag, 1985.
[2] E. Ballico and A. Cossidente: Surfaces in \mathbb{P}^5 which do not admit trisecants, *Rocky Mountain Journal of Mathematics* **29**(1) (1999) 77–91.
[3] D. Eisenbud and J. Harris: On Varieties of Minimal Degree (A Centennial Account), *Proceedings of Symposia in Pure Mathematics* **46**(1) (1987) 3–13.
[4] W. Fulton: *Intersection Theory*, Springer-Verlag, 1998.
[5] R. Hartshorne: *Algebraic Geometry*, Springer-Verlag, 1977.
[6] J. S. Milne: Jacobian Varieties. In G. Cornell, J. H. Silverman (editors): *Arithmetic Geometry*, Springer-Verlag, 1986, 167–212.

Matematisk Institutt, Universitetet I Oslo, PO Box 1053, Blindern, NO-0316 Oslo, Norway

E-mail address: andrehof@math.uio.no