INGHAM TYPE INEQUALITIES
IN LATTICES

VILMOS KOMORNIK, ANNA CHIARA LAI, AND PAOLA LORETI

ABSTRACT. A classical theorem of Ingham extended Parseval’s formula of the trigonometrical system to arbitrary families of exponentials satisfying a uniform gap condition. Later his result was extended to several dimensions, but the optimal integration domains have only been determined in very few cases. The purpose of this paper is to determine the optimal connected integration domains for all regular two-dimensional lattices.

1. INTRODUCTION

A classical theorem of Ingham [7] extended the Parseval’s formula of the trigonometrical system to arbitrary families of exponentials satisfying a uniform gap condition. Later Beurling [3] determined the critical length of the intervals on which these estimates hold.

Kahane [8] extended these results to several dimensions. His theorem was improved and generalized in [1] (see also [10]), but the optimal integration domains have only been determined in very particular cases.

The purpose of this paper is to determine the optimal connected integration domains for all regular two-dimensional lattices.

2. A GENERAL FRAMEWORK

Consider M disjoint translates of \mathbb{Z}^N by vectors $u_1, \ldots, u_M \in \mathbb{R}^N$, and consider the functions of the form

$$f(x) = \sum_{j=1}^{M} \sum_{k \in \mathbb{Z}^N} a_{jk} e^{i(u_j + k, x)} = \sum_{j=1}^{M} e^{i(u_j, x)} f_j(x)$$

with square summable complex coefficients a_{jk}.

Let us observe that the functions

$$f_j(x) = \sum_{k \in \mathbb{Z}^N} a_{jk} e^{i(k, x)}$$

2010 Mathematics Subject Classification. 42B05, 52C20.

Key words and phrases. Fourier series, combinatorics, non-harmonic analysis, lattices, tilings.
are 2π-periodical in each variable, so that

\begin{equation}
\frac{1}{|\Omega_0|} \int_{\Omega_0} |f_j(x)|^2 \, dx = \sum_{k \in \mathbb{Z}^N} |a_{jk}|^2
\end{equation}

on $\Omega_0 := (0, 2\pi)^N$ by Parseval’s equality for multiple Fourier series, where $|\Omega_0| = (2\pi)^N$ denotes the volume of the cube Ω_0.

Next we consider M vectors $v_1, \ldots, v_M \in \mathbb{R}^N$ satisfying the following two conditions:

(A1) the coordinates of each v_k are multiples of 2π;

(A2) the matrix $E := \left(e^{i(u_j,v_k)}\right)_{j,k=1}^M$ is invertible.

It follows from (A1) that the translated sets

$$\Omega_k := v_k + \Omega_0, \quad k = 1, \ldots, M$$

are non-overlapping, i.e., their interiors are pairwise disjoint.

Finally we fix an invertible linear transformation L of \mathbb{R}^N, we introduce the lattice

$$\Lambda := \bigcup_{j=1}^M L^* (u_j + \mathbb{Z}^N) \subset \mathbb{R}^N$$

(here L^* denotes the adjoint of L) and the set

$$\Omega := L^{-1} (\Omega_1 \cup \cdots \cup \Omega_M) \subset \mathbb{R}^N.$$

Remark 2.1. Let us emphasize that the volume of $|\Omega|$ of Ω does not depend on the particular choice of M and the vectors $v_1, \ldots, v_M \in \mathbb{R}^N$ satisfying (A1).

We prove the following Ingham type generalization of Parseval’s formula:

Theorem 2.2. Assume (A1) and (A2).

(i) There exist two positive constants c_1, c_2 such that

\begin{equation}
c_1 \sum_{\lambda \in \Lambda} |a_\lambda|^2 \leq \int_{\Omega} \left| \sum_{\lambda \in \Lambda} a_\lambda e^{i(\lambda,x)} \right|^2 \, dx \leq c_2 \sum_{\lambda \in \Lambda} |a_\lambda|^2
\end{equation}

for all square summable families $(a_\lambda)_{\lambda \in \Lambda}$ of complex coefficients.

(ii) The estimates fail if we remove any non-empty open subset from Ω.

Proof. Let us first consider the case where L is the identity map.
Using \((A1)\) we have

\[
\int_{\Omega} |f(x)|^2 \, dx = \sum_{k=1}^{M} \int_{\Omega_0} |f(v_k + x)|^2 \, dx
\]

\[
= \sum_{k=1}^{M} \int_{\Omega_0} \left| \sum_{j=1}^{M} e^{i(u_j,v_k + x)} f_j(v_k + x) \right|^2 \, dx
\]

\[
= \sum_{k=1}^{M} \int_{\Omega_0} \left| \sum_{j=1}^{M} e^{i(u_j,v_k)} \cdot e^{i(u_j,x)} f_j(x) \right|^2 \, dx.
\]

Furthermore, by \((A2)\) there exist two positive constants \(c'_1, c'_2\) such that

\[
c'_1 \sum_{j=1}^{M} \left| e^{i(u_j,x)} f_j(x) \right|^2 \leq \sum_{k=1}^{M} \sum_{j=1}^{M} \left| e^{i(u_j,v_k)} \cdot e^{i(u_j,x)} f_j(x) \right|^2
\]

\[
\leq c'_2 \sum_{j=1}^{M} \left| e^{i(u_j,x)} f_j(x) \right|^2,
\]

or equivalently

\[
c'_1 \sum_{j=1}^{M} |f_j(x)|^2 \leq c'_2 \sum_{j=1}^{M} \left| \sum_{k=1}^{M} e^{i(u_j,v_k)} \cdot e^{i(u_j,x)} f_j(x) \right|^2 \leq c'_2 \sum_{j=1}^{M} |f_j(x)|^2
\]

for all \(x\). Integrating over \(\Omega_0\) and using the last equality we obtain the estimates

\[
c'_1 \sum_{j=1}^{M} \int_{\Omega_0} |f_j(x)|^2 \, dx \leq \sum_{k=1}^{M} \int_{\Omega_0} |f(v_k + x)|^2 \, dx \leq c'_2 \sum_{j=1}^{M} \int_{\Omega_0} |f_j(x)|^2 \, dx
\]

Since \(|\Omega| = M |\Omega_0|\) by \((A2)\), using \((2.2)\) the estimates \((2.3)\) follow with \(c_1 = c'_1 |\Omega_0|\) and \(c_2 = c'_2 |\Omega_0|\).

Now we show that the above estimates fail if we remove from \(\Omega\) a non-empty open subset \(\omega\). We may assume that \(\omega \subset \Omega_k\) for some \(k \in \{1, \ldots, M\}\).

Let \(f \in L^2(\Omega)\) be the characteristic function of \(\omega\). Thanks to Assumption \((A2)\) the linear system

\[
f(v_k + x) = \sum_{j=1}^{M} e^{i(u_j,v_k)} e^{i(u_j,x)} f_j(x), \quad k = 1, \ldots, M
\]

has a unique solution

\[
e^{i(u_j,x)} f_j(x), \quad j = 1, \ldots, M
\]

for each \(x \in \Omega_0\), and \(f_1, \ldots, f_M \in L^2(\Omega_0)\). Extending the functions \(f_j\) by \(2\pi\)-periodicity in each variable, we get \((2.1)\) for each \(j\) with square summable
coefficients \(a_{jk} \). Since, furthermore,

\[
f(x) = \sum_{j=1}^{M} e^{i(u_j, x)} f_j(x)
\]

by Assumption (A1), we conclude that

\[
f(x) = \sum_{j=1}^{M} \sum_{k \in \mathbb{Z}^N} a_{jk} e^{i(u_j + k, x)}
\]

in \(\Omega \).

Since \(\omega \) has a positive measure, the coefficients \(a_{jk} \) do not vanish identically. On the other hand,

\[
\int_{\Omega \setminus \omega} |f(x)|^2 \, dx = 0,
\]

so that the first estimate of (2.2) fails.

In order to complete the proof of the first part of the theorem it suffices to show that if the estimates (2.3) hold for some \(\Lambda \) and \(\Omega \), and \(L \) is an invertible linear transformation of \(\mathbb{R}^N \), then the estimates

\[
c_1 \sum_{\lambda \in \Lambda} |a_\lambda|^2 \leq \frac{1}{|L^{-1}(\Omega)|} \int_{L^{-1}(\Omega)} \left| \sum_{\lambda \in \Lambda} a_\lambda e^{i(L^* \lambda, x)} \right|^2 \, dx \leq c_2 \sum_{\lambda \in \Lambda} |a_\lambda|^2
\]

also hold. This follows from the change of variable formula: if \(x = Lx' \), then

\[
\int_{\Omega} \left| \sum_{k \in \mathbb{Z}^N} a_k e^{i(k, x)} \right|^2 \, dx = |\text{det} L| \int_{L^{-1}(\Omega)} \left| \sum_{k \in \mathbb{Z}^N} a_k e^{i(L^* k, x')} \right|^2 \, dx',
\]

where \(\text{det} L \) denotes the determinant of \(L \), and

\[
|L^{-1}(\Omega)| = \frac{|\Omega|}{|\text{det} L|}.
\]

Since \(L \) transforms non-empty open sets into non-empty open sets, the second part of the theorem also holds in the general case. \(\square \)

Remarks 2.3.

(i) A standard application of the triangle inequality implies that the assumptions (A1) and (A2) are not necessary for the second inequality in (2.3).

(ii) The assumption (A2) is not necessary for Part (ii) of the theorem. This may be shown by taking a maximal subset of the vectors for which the corresponding columns of the matrix \(E \) are linearly independent, and by completing this subset to a new set of vectors satisfying (A1) and (A2).
Given a lattice

\[(2.4) \quad \Lambda := \bigcup_{j=1}^{M} L^*(u_j + \mathbb{Z}^N) \subset \mathbb{R}^N \]

we may wonder whether there exists another representation

\[(2.5) \quad \Lambda = \bigcup_{j=1}^{M_0} L^*_0 (\tilde{u}_j + \mathbb{Z}^N) \subset \mathbb{R}^N \]

with another invertible matrix \(L_0\) and a smaller integer \(M_0\). As we will see in the rest of the paper choosing the minimal \(M\) may substantially simplify the study of optimal integration domains.

The following simple condition will allow us to determine the smallest \(M\) in all but one of the examples in this work. Given two points \(a, b \in \mathbb{R}^N\), let us introduce the lattice

\[\Lambda(a,b) := \{a + k(b - a) : k \in \mathbb{Z}\}\]

generated by \(a\) and \(b\).

Lemma 2.4. If there exist \(M\) points \(a_1, \ldots, a_M \in \mathbb{R}^N\) such that \(\Lambda(a_i, a_k) \not\subset \Lambda\) for all \(i \neq k\), then the number \(M\) in the representation \((2.4)\) of \(\Lambda\) is the smallest possible.

Proof. If two points \(a_i\) and \(a_k\) belong to the same set \(L^*_0 (\tilde{u}_j + \mathbb{Z}^N)\) in another representation \((2.5)\), then

\[\Lambda(a_i, a_k) \subset L^*_0 (\tilde{u}_j + \mathbb{Z}^N) \subset \Lambda,\]

contradicting our hypothesis. Therefore each point \(a_i\) corresponds to a different \(j\), and thus \(M \leq M_0\). \(\square\)

3. Triangular and hexagonal lattices

We illustrate Theorem 2.2 by two examples.

3.1. Regular triangular lattice

Choosing\(^1\)

\[N = 2, \quad M = 1, \quad u_1 = v_1 = (0,0)\]

and

\[L = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}\]

(as usual, we identify the linear transformations with their matrices in the canonical basis of \(\mathbb{R}^2\)),

\[\Lambda = \left\{ \begin{pmatrix} k_1 + k_2 \frac{\sqrt{3}}{2} \\ -k_2 \frac{\sqrt{3}}{2} \end{pmatrix} : k \in \mathbb{Z}^2 \right\}\]

\(^1\)We write the vectors as row vectors but we consider them as column vectors in the computations with matrices.
is a triangular lattice formed by equilateral triangles of unit side. Furthermore, since

$$L^{-1} = \begin{pmatrix} 1 & 0 \\ -\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{3}} \end{pmatrix},$$

$$\Omega = L^{-1}(\Omega_0)$$ is a parallelogram of vertices

$$(0, 0), \quad (2\pi, -\frac{2\pi}{\sqrt{3}}), \quad (0, \frac{4\pi}{\sqrt{3}}), \quad (2\pi, \frac{2\pi}{\sqrt{3}}).$$

Its area is equal to $\frac{8\pi^2}{\sqrt{3}}$; see Figure 1.

Since every disk D_R of radius

$$R > \frac{1}{2} \text{diam}(\Omega) = \frac{1}{2} \left\| \left(0, \frac{4\pi}{\sqrt{3}}\right) - \left(2\pi, -\frac{2\pi}{\sqrt{3}}\right) \right\| = 2\pi \approx 6.28$$

contains a translate of Ω, Theorem 2.2 implies that if $R > 2\pi$, then

$$c_1(R) \sum_{\lambda \in \Lambda} |a_\lambda|^2 \leq \int_{D_R} \left| \sum_{\lambda \in \Lambda} a_\lambda e^{i(\lambda, x)} \right|^2 \, dx \leq c_2(R) \sum_{\lambda \in \Lambda} |a_\lambda|^2$$

with two positive constants $c_1(R), c_2(R)$, for all square summable families $(a_\lambda)_{\lambda \in \Lambda}$ of complex coefficients.

In fact, these estimates hold under the weaker condition $R > 2 \rho_2 \approx 4.8096$, where $\rho_2 \approx 2.4048$ denotes the smallest positive root of the Bessel function $J_0(x)$. This follows by applying [10, Theorem 8.1] and a following remark on the same page with $p = 2$ and $\gamma = 1$.

On the other hand, it follows from Remark 2.1 and Remark 2.3 (ii) that if (3.1) holds for some disk D_R of radius R, then the area of this disk is.
bigger than equal to the area of Ω:
\[
R^2 \pi \geq \frac{8\pi^2}{\sqrt{3}} \iff R \geq \frac{2\sqrt{2\pi}}{3^{1/4}} \approx 3.8.
\]
Indeed, a smaller disk could be covered by a set
\[
\Omega := L^{-1}(\Omega_1 \cup \cdots \cup \Omega_M) \subset \mathbb{R}^2
\]
for a sufficiently large number of vectors v_1, \ldots, v_M satisfying (A1).
It would be interesting to determine the critical radius R for the validity of (3.1).

3.2. Regular hexagonal lattice. Now we choose
\[
N = M = 2, \quad u_1 = (0, 0), \quad u_2 = (2/3, -1/3)
\]
and
\[
L = \sqrt{3} \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ 0 & 1 \end{pmatrix}.
\]
Now Λ is the honeycomb lattice of unit side, see Figure 2. Furthermore, since
\[
L^{-1}(\Omega_0) \text{ is the parallelogram of vertices}
\]
\[
(0, 0), \quad \left(-\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}} \right), \quad \left(\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}} \right), \quad \left(\frac{4\pi}{3}, 0 \right);
\]
see Figure 3.
If we choose $v_1 = (0, 0)$ and $v_2 = (2\pi, 0)$, then the conditions (A1) and (A2) are satisfied because
\[
\det E = \begin{vmatrix} 1 & 1 \\ 1 & e^{i\frac{4\pi}{3}} \end{vmatrix} \neq 0.
\]
Furthermore,
\[
\Omega = L^{-1}(\Omega_0 \cup (\Omega_0 + v_2))
\]
is the parallelogram of vertices
\[
(0, 0), \quad \left(-\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}} \right), \quad \left(\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}} \right), \quad \left(\frac{8\pi}{3}, 0 \right);
\]
its area of the latter one is equal to $\frac{16\pi^2}{3\sqrt{3}}$. See Figure 3.

Remark 3.1. If we compare the case of the parallelogram lattice and the hexagonal lattice, then we see that the integration parallelogram is 1.5 times larger in the first case. This corresponds to the fact that the density of the corresponding lattice is also 1.5 times larger.
Figure 2. The honeycomb lattice Λ

Figure 3. Domain Ω associated to the honeycomb lattice and to $v_2 = (2\pi,0)$, the shadowed area corresponds to its subset $L^{-1}(\Omega_0)$.

Since every disk D_R of radius

$$R > \frac{1}{2} \text{diam}(\Omega) = \frac{1}{2} \left\| \left(-\frac{2\pi}{3}, \frac{2\pi}{\sqrt{3}} \right) - \left(\frac{8\pi}{3}, 0 \right) \right\| = \frac{2\pi\sqrt{7}}{3} \approx 5.54$$

contains a translate of Ω, Theorem 2.2 implies that if $R > \frac{2\pi\sqrt{7}}{3}$, then the estimates (3.1) hold with two positive constants $c_1(R), c_2(R)$, for all square summable families $(a_\lambda)_{\lambda \in \Lambda}$ of complex coefficients.

If we choose $v_1 = (0,0)$ and $v_2 = (0,2\pi)$ instead, then the conditions (A1) and (A2) are still satisfied because the matrix E remains the same:

$$E = \begin{pmatrix} 1 & 1 - e^{-i\frac{2\pi}{3}} \\ 1 & e^{i\frac{4\pi}{3}} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & e^{i\frac{4\pi}{3}} \end{pmatrix}.$$

Now

$$\Omega = L^{-1}(\Omega_0 \cup (\Omega_0 + v_2))$$

is the parallelogram of vertices

$$(0,0), \left(-\frac{4\pi}{3}, \frac{4\pi}{\sqrt{3}} \right), \left(0, \frac{4\pi}{\sqrt{3}} \right), \left(\frac{4\pi}{3}, 0 \right);$$

its area is still equal to $\frac{16\pi^2}{3\sqrt{3}}$. See Figure 4.
Since
\[\frac{1}{2} \text{diam}(|\Omega|) = \frac{1}{2} \left\| \left(-\frac{4\pi}{3}, \frac{4\pi}{\sqrt{3}} \right) - \left(\frac{4\pi}{3}, 0 \right) \right\| = \frac{2\pi\sqrt{7}}{3} \approx 5.54, \]
we obtain the same condition for the validity of (3.1) as before.

As in the preceding case, we may apply [10, Theorem 8.1] \(p = 2 \) and \(\gamma = 1 \) to conclude that the estimates (3.1) hold under the weaker condition \(R > 2\rho_2 \approx 4.8096 \). This also follows from the fact that the hexagonal lattice is a sublattice of the triangular one.

On the other hand, the validity of (3.1) implies that
\[R^2 \pi \geq \frac{16\pi^2}{3\sqrt{3}} \iff R \geq \frac{4\sqrt{\pi}}{3^{3/4}} \approx 3.11. \]

It would be interesting to determine the critical radius \(R \) for the validity of (3.1).

4. TILING OF THE PLANE BY TWO DIFFERENT SQUARES

Let us consider the tiling of \(\mathbb{R}^2 \) with two squares of different sides \(R > r \) as shown on the Figure 5.

Translating and rotating the tiling such that segments connecting the centers of the closest small squares are parallel to the coordinate axes and that the origin is one of these centers, we have
\[\Lambda = L^* \left(\sum_{j=1}^{4} (u_j + \mathbb{Z}^2) \right) \]
where L is the homothety of coefficient $\sqrt{R^2 + r^2}$, and the vectors u_j are defined by the formulas $\alpha := \arctan \frac{r}{R}$ and

$$u_j = \frac{r}{\sqrt{2(R^2 + r^2)}}(\cos(-\alpha + j\pi/2), \cos(-\alpha + j\pi/2)), \quad j = 1, 2, 3, 4.$$

See Figure 6.

Choosing

$$\{v_1, \ldots, v_4\} := 2\pi \{(0, 0), (1, 0), (0, 1), (1, 1)\}$$
the conditions (A1), (A2) are satisfied (see Remark 4.1 below) and Theorem
2.2 may be applied with
\[\Omega = \left(0, \frac{4\pi}{\sqrt{R^2 + r^2}} \right)^2. \]

For some examples of domains satisfying (A2) see Figures 7–9.

Remark 4.1. Fix \(r < R \) and let \(A = \frac{r}{\sqrt{2(R^2 + r^2)}} \) so that
\[e^{i(u_k, v_k)} = e^{iA2\pi \cos(-\alpha + j)v_k^{(1)} + \sin(-\alpha + j)v_k^{(2)}}. \]
Let \(C := e^{Ai\pi \cos \alpha} \) and \(D := e^{Ai\pi \sin \alpha} \). We have
\[
E := (e^{i(u_k, v_k)})^2_{j,k} = \begin{pmatrix}
1 & 1 & 1 & 1 \\
D & C & D^{-1} & C^{-1} \\
DC^{-1} & CD & CD^{-1} & (CD)^{-1}
\end{pmatrix}
\]
and
\[
\Delta := \det E = (C^2 - 1)(D^2 - 1)(C^2D^2 - 4CD + C^2 + D^2 + 1)
\]
by a direct computation.

Since \(\alpha \in (0, \pi/2) \) by definition, we have \(A \cos \alpha \), \(A \sin \alpha \in (0, 1) \), and thus \(C^2, D^2 \neq 1 \). In order to prove \(\Delta \neq 0 \), it suffices to show that
\[C^2D^2 - 4CD + C^2 + D^2 + 1 \neq 0. \]

We will show that even the imaginary part of this expression is different from zero.

Setting \(\beta = \pi \cos \alpha \) and \(\gamma = \pi \sin \alpha \) we have
\[
\Im(C^2D^2 - 4CD + C^2 + D^2 + 1) = \sin(2\beta + 2\gamma) - 4\sin(\beta + \gamma) + \sin(2\beta) + \sin(2\gamma)
\]
\[= 2\sin(\beta + \gamma)\cos(\beta + \gamma) - 4\sin(\beta + \gamma) + 2\sin(\beta + \gamma)\cos(\beta - \gamma)
\]
\[= 2\sin(\beta + \gamma)(\cos(\beta + \gamma) - 2 + \cos(\beta - \gamma))
\]
\[= 4\sin(\beta + \gamma)(\cos \beta \cos \gamma - 1). \]

Since \(\cos \alpha, \sin \alpha \in (0, 1) \), we have
\[\cos \alpha + \sin \alpha \neq 1 \quad \text{and} \quad \cos \beta, \cos \gamma \in (-1, 1). \]

They imply the inequalities
\[\sin(\beta + \gamma) \neq 0 \quad \text{and} \quad \cos \beta \cos \gamma - 1 \neq 0, \]
respectively. This concludes the proof.

Remark 4.2. The result is not true in the limiting cases \(r = 0 \) and \(r = R \) because then many lattice points collide.
Figure 7. Two square tilings: the 9 (over 1820) domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with (v_k) not satisfying condition (A2) when $r = 1$ and $R = 2$.

Figure 8. Two square tilings: the 28 (over 1820) domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with (v_k) not satisfying condition (A2) when $r = 1$ and $R = 3$.

5. Semi-regular bidimensional tilings

5.1. Elongated triangular tiling.

$$\Lambda = \bigcup_{j=1}^{2} L^*(u_j + \mathbb{Z}^2)$$ where

- $u_1 = (0, 0)$
- $u_2 = (-1 + \sqrt{3}, 4 - 2\sqrt{3})$

and

$$L^* = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 + \frac{\sqrt{3}}{2} \end{pmatrix}.$$
Figure 9. Two square tilings: the 4 (over 1820) domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with (v_k) not satisfying condition (A2) when $r = 1$ and $R = 5$. (All domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ satisfy condition (A2) when $r = 1$ and $R = 4$.)

Figure 10. Elongated triangular tiling

See Figure 11 for the list of domains contained in $[0,2]^2$ (up to translation) and satisfying condition (A2).

5.2. Trihexagonal tiling.

$$\Lambda = \bigcup_{j=1}^{3} L^* (u_j + \mathbb{Z}^2)$$

where

$$u_1 = (0,0), \quad u_2 = (0, \frac{1}{2}), \quad u_3 = (\frac{1}{2}, 0)$$

and

$$L^* = \begin{pmatrix} \sqrt{3} & \sqrt{3} \\ 1 & -1 \end{pmatrix}.$$

See Figure 13 for the list of connected domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with (v_k) satisfying condition (A2). We extended our investigation of condition (A2) to the set of domains $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with $(v_k) \in \mathbb{Z}^2 \cap [0,2]^2$, see Figure
Figure 11. Domains contained in $[0,2]^2$ (up to translations) satisfying condition (A2) and related constants c_1 and c_2, sorted by the increasing value of the ratio c_2/c_1.

Figure 12. Trihexagonal tiling

14. By a direct computation, 36 over the 84 domains of this form satisfy condition (A2) and the associated constants c_1 and c_2 are constantly equal to 1 and 4, respectively.

Figure 13. Trihexagonal tiling: the connected domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with (v_k) satisfying condition (A2).
Figure 14. Trihexagonal tiling: the 36 (over 84) domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ with $(v_k) \in \mathbb{Z}^2 \cap [0, 3]^2$ satisfying condition (A2).
5.3. Snub square tiling.

\[\Lambda = \bigcup_{j=1}^{4} L^*(u_j + \mathbb{Z}^2) \] where
\[
\begin{align*}
 u_1 &= (0, 0) \\
 u_2 &= (1 - \frac{\sqrt{3}}{2}, \frac{1}{2}) \\
 u_3 &= \left(\frac{1}{2}(3 - \sqrt{3}), \frac{1}{2}(-1 + \sqrt{3}) \right) \\
 u_4 &= \left(\frac{1}{2}, \frac{\sqrt{3}}{2} \right)
\end{align*}
\]
and
\[L^* = \begin{pmatrix} 1 + \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & 1 + \frac{\sqrt{3}}{2} \end{pmatrix}. \]

By a direct computation, for every \(\{v_1, \ldots, v_4\} \) such that \(\bigcup_{k=1}^{4} v_k + \Omega_0 \) is a connected set, the condition (A2) is satisfied – see Figure 16.
Figure 16. Snub square tiling: the five representatives of the 19 connected domains satisfying (A2), and related constants. In this case, constants c_1 and c_2 are invariant with respect to reflections and rotations. The best ratio $c_2/c_1 = 6.12$ is achieved by the configuration (D).

Figure 17. Fixed tetrominoes, i.e., the possible connected domains when $M = 4$.
Figure 18. Snub square tiling: the 76 (over 1820) domains of the form $\bigcup_{k=1}^{4} \Omega_0 + v_k$ not satisfying condition (A2).
5.4. Truncated square tiling.

\[\Lambda = \bigcup_{j=1}^{4} L^*(u_j + \mathbb{Z}^2) \]

where

\[u_1 = (0,0) \]
\[u_2 = (1 - \frac{\sqrt{2}}{2}, 0) \]
\[u_3 = (0, 2 - \sqrt{2}) \]
\[u_4 = (\frac{\sqrt{2}}{2}, 2 - \sqrt{2}) \]

and

\[L^* = \begin{pmatrix} 2 + \sqrt{2} & 1 + \frac{\sqrt{2}}{2} \\ 0 & 1 + \frac{\sqrt{2}}{2} \end{pmatrix} \]

By a direct computation, the set of connected domains of the form \(\bigcup_{k=1}^{4} \Omega_0 + v_k \) with \(v_k \) satisfying condition (A2) contains 9 elements, depicted in Figure 20. See also Figure 17 for the complete list of connected domains (up to translations) and Figure 21 for some examples of (possibly disconnected) domains not satisfying condition (A2).
Figure 20. Truncated square tiling: connected domains satisfying (A2) and related constants. The smallest ratio c_2/c_1 corresponds to case (C).
Figure 21. Truncated square tiling: first 80 of the 892 (over 1820) domains of the form $\bigcup_{k=1}^4 \Omega_0 + v_k$ not satisfying condition (A2).
5.5. Snub-hexagonal tiling.

\[\Lambda = \bigsqcup_{j=1}^{6} L^*(u_j + \mathbb{Z}^2) \] where

\[
\begin{aligned}
 u_1 &= \frac{1}{7}(0, 0) & u_2 &= \frac{1}{7}(3, 1) \\
 u_3 &= \frac{1}{7}(2, 3) & u_4 &= \frac{1}{7}(5, 4) \\
 u_5 &= \frac{1}{7}(1, 5) & u_6 &= \frac{1}{7}(4, 6)
\end{aligned}
\]

and

\[L^* = \begin{pmatrix} \sqrt{3} & \frac{\sqrt{3}}{2} \\ 2 & -\frac{\sqrt{3}}{2} \end{pmatrix} \]

Example. Choosing

\[
\begin{aligned}
 v_1 &= (0, 0) & v_2 &= (0, 1) \\
 v_3 &= (0, 2) & v_4 &= (0, 3) \\
 v_5 &= (0, 4) & v_6 &= (1, 4)
\end{aligned}
\]

condition (A2) is satisfied and the corresponding constants are \(c_1 = 1 \) and \(c_2 = 7 \).

Example. Choosing

\[
\begin{aligned}
 v_1 &= (0, 0) & v_2 &= (0, 1) \\
 v_3 &= (0, 2) & v_4 &= (0, 3) \\
 v_5 &= (0, 4) & v_6 &= (1, 4)
\end{aligned}
\]

condition (A2) is not satisfied.
5.6. **Rhombitrihexagonal tiling.**

\[
\Lambda = \bigcup_{j=1}^{6} L^*(u_j + \mathbb{Z}^2) \text{ where }
\]

\[
u_1 = (0, 0) \quad u_2 = \left(\frac{1}{2}(-1 + \sqrt{3}), 0\right) \\
u_3 = (-1 + \frac{2}{3}\sqrt{3}, 1 - \frac{\sqrt{3}}{3}) \quad u_4 = \left(\frac{1}{2}(-1 + \sqrt{3}), \frac{1}{2}(3 - \sqrt{3})\right) \\
u_5 = \left(\frac{1}{6}(3 + \sqrt{3}), 1 - \frac{\sqrt{3}}{3}\right) \quad u_6 = \left(\frac{1}{6}(3 + \sqrt{3}), \frac{1}{6}(3 + \sqrt{3})\right)
\]

and

\[
L^* = \begin{pmatrix}
1 + \sqrt{3} & \frac{1}{2}(1 + \sqrt{3}) \\
0 & \frac{1}{2}(3 + \sqrt{3})
\end{pmatrix}
\]

Example. Choosing

\[
v_1 = (0, 0) \quad v_2 = (0, 1) \quad v_3 = (0, 2) \quad v_4 = (0, 3) \quad v_5 = (0, 4) \quad v_6 = (1, 4)
\]

condition (A2) is not satisfied (see Examples of the previous section).

Example. Choosing

\[
v_1 = (0, 0) \quad v_2 = (0, 1) \quad v_3 = (0, 2) \quad v_4 = (0, 3) \quad v_5 = (1, 3) \quad v_6 = (1, 4)
\]

condition (A2) is satisfied and the corresponding constants are \(c_1 = 0.47\) and \(c_2 = 11.92\).
5.7. Truncated hexagonal tiling.

\[\Lambda = \bigcup_{j=1}^6 L^* \left(u_j + \mathbb{Z}^2 \right) \]

where

\[u_1 = \left(\frac{\sqrt{3}}{3}, 2 - \frac{2\sqrt{3}}{3} \right) \quad u_2 = \left(1 - \frac{\sqrt{3}}{3}, -1 + \frac{2\sqrt{3}}{3} \right) \]
\[u_3 = \left(-1 + \frac{2\sqrt{3}}{3}, 1 - \frac{\sqrt{3}}{3} \right) \quad u_4 = \left(2 - \frac{2\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right) \]
\[u_5 = \left(\frac{\sqrt{3}}{3}, \frac{\sqrt{3}}{3} \right) \quad u_6 = \left(1 - \frac{\sqrt{3}}{3}, 1 - \frac{\sqrt{3}}{3} \right) \]

and

\[L^* = \begin{pmatrix} 1 + \frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & 1 + \frac{\sqrt{3}}{2} \end{pmatrix} \]

Example. As in Section 5.6, choosing

\[v_1 = (0, 0) \quad v_2 = (0, 1) \quad v_1 = (0, 0) \quad v_2 = (0, 1) \]
\[v_3 = (0, 2) \quad v_4 = (0, 3) \quad v_3 = (0, 2) \quad v_4 = (0, 3) \]
\[v_5 = (0, 4) \quad v_6 = (0, 5) \quad v_5 = (0, 4) \quad v_6 = (1, 4) \]

condition (A2) is not satisfied. On the other hand, again as in Section 5.6, the choice

\[v_1 = (0, 0) \quad v_2 = (0, 1) \]
\[v_3 = (0, 2) \quad v_4 = (0, 3) \]
\[v_5 = (1, 3) \quad v_6 = (1, 4) \]

satisfies condition (A2). The corresponding constants are \(c_1 = 0.15 \) and \(c_2 = 15.6 \).
5.8. Truncated trihexagonal tiling. $\Lambda = \bigcup_{j=1}^{12} u_j + L^* \mathbb{Z}^2$ where

\[
\begin{align*}
 u_1 &= \frac{1}{6}(2, 5 - \sqrt{3}) & u_2 &= \frac{1}{6}(-1 + \sqrt{3}, 5 - \sqrt{3}) \\
 u_3 &= \frac{1}{6}(-1 + \sqrt{3}, 2) & u_4 &= \frac{1}{6}(2, -1 + \sqrt{3}) \\
 u_5 &= \frac{1}{6}(5 - \sqrt{3}, -1 + \sqrt{3}) & u_6 &= \frac{1}{6}(5 - \sqrt{3}, 2) \\
 u_7 &= \frac{1}{6}(4, 7 - \sqrt{3}) & u_8 &= \frac{1}{6}(1 + \sqrt{3}, 7 - \sqrt{3}) \\
 u_9 &= \frac{1}{6}(1 + \sqrt{3}, 4) & u_{10} &= \frac{1}{6}(4, 1 + \sqrt{3}) \\
 u_{11} &= \frac{1}{6}(7 - \sqrt{3}, 1 + \sqrt{3}) & u_{12} &= \frac{1}{6}(7 - \sqrt{3}, 4)
\end{align*}
\]

and

\[
L^* = \begin{pmatrix}
 \frac{1}{2} (3 + \sqrt{3}) & \frac{1}{2} (3 - \sqrt{3}) \\
 \frac{1}{2} (3 - \sqrt{3}) & \frac{1}{2} (3 + \sqrt{3})
\end{pmatrix}
\]

Example. Choosing

\[
\begin{align*}
 v_1 &= (0, 0) & v_2 &= (0, 1) & v_7 &= (3, 0) & v_8 &= (3, 1) \\
 v_3 &= (1, 0) & v_4 &= (1, 1) & v_9 &= (4, 0) & v_{10} &= (4, 1) \\
 v_5 &= (2, 0) & v_6 &= (2, 1) & v_{11} &= (5, 0) & v_{12} &= (5, 1)
\end{align*}
\]

condition (A2) is satisfied with constants $c_1 = 2.71$ and $c_2 = 28.02$.

Example. Choosing

\[
\begin{align*}
 v_1 &= (0, 0) & v_2 &= (0, 1) & v_7 &= (1, 2) & v_8 &= (1, 3) \\
 v_3 &= (0, 2) & v_4 &= (0, 3) & v_9 &= (2, 0) & v_{10} &= (2, 1) \\
 v_5 &= (1, 0) & v_6 &= (1, 1) & v_{11} &= (2, 2) & v_{12} &= (2, 3)
\end{align*}
\]

condition (A2) is not satisfied.
References

[1] C. Baiocchi, V. Komornik, P. Loreti, Ingham type theorems and applications to control theory, Bol. Un. Mat. Ital. B (8) 2 (1999), no. 1, 33–63.
[2] C. Baiocchi, V. Komornik, P. Loreti, Ingham–Beurling type theorems with weakened gap conditions, Acta Math. Hungar. 97 (2002), 1–2, 55–95.
[3] J.N.J.W.L. Carleson and P. Malliavin, editors, The Collected Works of Arne Beurling, Volume 2, Birkhäuser, 1989.
[4] Cureton, L. M., and J. R. Kuttler. Eigenvalues of the Laplacian on regular polygons and polygons resulting from their dissection. Journal of sound and vibration 220.1 (1999): 83–98.
[5] S. Gasmi, A. Haraux, N-cyclic functions and multiple subharmonic solutions of Duffing’s equation, J. Math. Pures Appl., 97 (2012), 411–423.
[6] A. Haraux, Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. Math. Pures Appl. 68 (1989), 457–465.
[7] A. E. Ingham, Some trigonometrical inequalities with applications in the theory of series, Math. Z. 41 (1936), 367–379.
[8] J.-P. Kahane, Pseudo-périodicité et séries de Fourier lacunaires, Ann. Sci. de l’E.N.S. 79 (1962), 93–150.
[9] V. Komornik, P. Loreti, Ingham type theorems for vector-valued functions and observability of coupled linear systems, SIAM J. Control Optim. 37 (1998), 461–485.
[10] V. Komornik, P. Loreti, Fourier Series in Control Theory, Springer-Verlag, New York, 2005.
[11] V. Komornik, P. Loreti, Multiple-point internal observability of membranes and plates, Appl. Anal. 90 (2011), 10, 1545–1555.
[12] V. Komornik, P. Loreti, Observability of rectangular membranes and plates on small sets, Evol. Equations and Control Theory 3 (2014), 2, 287–304.
[13] V. Komornik, B. Miara, Cross-like internal observability of rectangular membranes, Evol. Equations and Control Theory 3 (2014), 1, 135–146.
[14] J.-L. Lions, Contrôle des systèmes distribués singuliers, Gauthier-Villars, Paris, 1983.
[15] J.-L. Lions, Exact controllability, stabilizability, and perturbations for distributed systems, Siam Rev. 30 (1988), 1–68.
[16] J.-L. Lions, Contrôlabilité exacte et stabilisation de systèmes distribués I-II, Masson, Paris, 1988.
[17] P. Loreti, On some gap theorems, Proceedings of the 11th Meeting of EWM, CWI Tract (2005).
[18] P. Loreti and M. Mehrenberger, An Ingham type proof for a two-grid observability theorem, ESAIM Control Optim. Calc. Var. 14 (2008), no. 3, 604–631.
[19] P. Loreti and V. Valente, Partial exact controllability for spherical membranes, SIAM J. Control Optim. 35 (1997), 641–653.
[20] M. Mehrenberger, An Ingham type proof for the boundary observability of a N–d wave equation, C. R. Math. Acad. Sci. Paris 347 (2009), no. 1-2, 63–68.
[21] Sun, Jia-chang. On approximation of Laplacian eigenproblem over a regular hexagon with zero boundary conditions. J. Comp. Math., international edition, 22.2 (2004), 275–286.
16 rue de Copenhague, 67000 Strasbourg, France

E-mail address: vilmos.komornik@gmail.com

Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, via A. Scarpa n. 16, 00161 Roma, Italy

 E-mail address: anna.lai@sbai.uniroma1.it

Sapienza Università di Roma, Dipartimento di Scienze di Base e Applicate per l’Ingegneria, via A. Scarpa n. 16, 00161 Roma, Italy

 E-mail address: paola.loreti@sbai.uniroma1.it