Geothermal Boreholes in Poland—Overview of the Current State of Knowledge

Tomasz Sliwa *, Aneta Sapięska-Śliwa, Andrzej Gonet, Tomasz Kowalski and Anna Sojczyńska

Abstract: Geothermal energy can be useful after extraction from geothermal wells, borehole heat exchangers and/or natural sources. Types of geothermal boreholes are geothermal wells (for geothermal water production and injection) and borehole heat exchangers (for heat exchange with the ground without mass transfer). The purpose of geothermal production wells is to harvest the geothermal water present in the aquifer. They often involve a pumping chamber. Geothermal injection wells are used for injecting back the produced geothermal water into the aquifer, having harvested the energy contained within. The paper presents the parameters of geothermal boreholes in Poland (geothermal wells and borehole heat exchangers). The definitions of geothermal boreholes, geothermal wells and borehole heat exchangers were ordered. The dates of construction, depth, purposes, spatial orientation, materials used in the construction of geothermal boreholes for casing pipes, method of water production and type of closure for the boreholes are presented. Additionally, production boreholes are presented along with their efficiency and the temperature of produced water measured at the head. Borehole heat exchangers of different designs are presented in the paper. Only 19 boreholes were created at the Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas, AGH University of Science and Technology in Krakow; however, it is a globally unique collection of borehole heat exchangers, each of which has a different design for identical geological conditions: heat exchanger pipe configuration, seal/filling and shank spacing are variable. Using these boreholes, the operating parameters for different designs are tested. The laboratory system is also used to provide heat and cold for two university buildings. Two coefficients, which separately characterize geothermal boreholes (wells and borehole heat exchangers) are described in the paper.

Keywords: geothermal wells; borehole heat exchangers; geothermal boreholes; geothermal waters; geothermal energy; geoenergetics

1. Introduction

Renewable energy sources are increasingly used around the world. These include geothermal energy, which is exploited by geothermal boreholes. Two types of boreholes are used: geothermal wells (production and injection) and borehole heat exchangers (BHE).

A geothermal well is a borehole that allows production or injection of geothermal waters from both deep and shallow aquifers. The deep layers are used for production and injection of geothermal waters, whereas the shallow layers are mostly used as low-temperature waters for geothermal heat pumps.

Geothermal boreholes may be vertical, inclined or directional. They can also (earlier) fulfill an exploratory role. As a rule, the construction of the first geothermal borehole must take into account detailed specialist tests, including geophysical and hydrogeological research of the aquifer with geothermal water or thermal response tests in the case of BHEs [1]. In addition, the heat accumulated in the greater depths of the rock mass (mostly between 3000 and 6000 m [2]) can be exploited using HDR and EGS systems [3,4]. Hydraulic frac-
turing is a procedure for greater consumption of geothermal energy from such significant depths [2]. An increasing amount of EGS research demonstrates its development [5–8].

(Very) low-temperature heat can be used by shallow geothermal boreholes known as borehole heat exchangers (BHEs). Borehole heat exchangers are becoming more and more popular. They are used in heating systems or heating and cooling installations with heat pumps [9]. Exploiting the heat of the shallow layers, besides geothermal heat in the Earth, also includes solar heat, which is accumulated in the surface layers as a result of solar radiation and higher temperatures of atmospheric air. The system’s basic parameter is the obtainable heating power. This parameter is affected mainly by the depth, the number and the location of borehole heat exchangers, exploiting parameters and construction of the BHE [10]. The topic of borehole heat exchangers design is also considered by Aresti et al. 2018 [11]. It is also necessary to mention the so-called ground-coupled heat exchangers (GSHE) or hybrid systems for space heating/cooling [12] with heat/cold storage in the rock mass. In addition, there is a growing interest regarding the geothermal resources available at shallow depths beneath urban areas [13]. Computer modeling and simulations [14–16] are used to properly design the installations of borehole heat exchangers.

One of the most important tests performed to understand the properties of rocks, and simultaneously the appropriate selection of borehole heat exchanger’s design is the Thermal Response Test—TRT [17,18]. The main parameters which can be determined using TRT are effective thermal conductivity and borehole resistance [19]. Currently, Thermal Response Tests are being conducted in an increasingly advanced form [20,21].

New ideas for using geothermal boreholes have been described in the last few years. Examples include the geothermal energy-assisted natural gas hydrate recovery method, which can simultaneously exploit geothermal energy and natural gas hydrates by injecting water into a geothermal heat exchange well, proposed by Liu et al. [22]. Dai et al. described a deep geothermal well with a downhole coaxial open-loop design [23]. Multilateral wells can be also used for heat extraction in enhanced geothermal systems [24].

Every year more papers describe the use of abandoned oil and gas wells. Advanced geothermal utilizations have been described by Nian and Cheng [25]. The utilization of closed mines is also mentioned in the scientific articles [26,27]. Recently, many publications have also been made regarding the use of new heat carriers in geothermal systems, for instance using CO₂, as indicated by Esteves et al. [28] and Shi et al. [29]. Various organic fluids were analyzed by Cheng et al. [30] and Van Erdeweghe [31].

Currently in Poland hydrogeothermal resources are utilized, for which the energy carrier is hot groundwater extracted from the geothermal wells [32] with various economic benefits [33]. Additionally, the number of geothermal heat pumps based on borehole heat exchangers grows every year. The Laboratory of Geoenergetics conducts research on the effectiveness of various borehole solutions for very low-temperature heat extraction. Under similar geological and hydrogeological conditions, 19 BHEs were drilled. Each of them has a different design. Thermal Response Tests are ongoing to identify the most energy-efficient design and the optimal operating parameters, primarily the flow rate of the heat carrier [19]. An energy pile was also studied in the Laboratory. The combination of the load-bearing pile with the borehole heat exchanger gives double the benefit—it increases the load capacity of the rock mass and provides a source of heat/cold [34].

Development in the field of geothermal wells is stimulated by the oil and gas industry. New solutions in drilling and borehole engineering can often be adapted to suit geothermal solutions. Examples include drilling using pads (shale gas/oil), and horizontal drilling, which are becoming some of the most influential innovations in the oil and gas industry of recent years. Those methods have become the standard for increasingly efficient exploitation, and it is expected that they will become more widespread. In addition, previously exploited oil wells can be adapted for geothermal purposes, e.g., as deep borehole heat exchangers.
2. Materials and Methods

Effective exploration and sharing of geothermal water resources is possible across modern technology for drilling. At present, the rotary method with the right circulation of the mud is used [1].

2.1. Materials Used in Geothermal Wells

The casing pipes are usually made of steel, and therefore are susceptible to corrosion. While selecting the type of steel used for casing pipes, one should avoid carbon steel and low-alloy steel, because they are highly vulnerable to corrosion. In many cases non-alloyed steel with high strength, such as J-55 (Pyrzyce GT-4) and N-80 (LidzbarkWarmiński GT–1), is used [35].

In recent years, lining the inside of steel pipes with plastic has found wide application. Fiberglass pipes are also used. An example of steel pipes with an inner coating are Pyrzyce GT–2 and Pyrzyce GT–4 boreholes [36], as well as Toruń TG-1 where fiberglass pipes were used in the construction [37]. Such applications are used in order to reduce unfavorable processes in geothermal wells, such as corrosion [35,38].

There are many methods limiting processes and results of corrosion, as well as precipitation of secondary mineral substances in geothermal installations. They aim to recover production parameters in geothermal systems. These methods include: application of inhibitors, soft acidizing treatments and processes using non-organic and organic acid solutions [39].

In geothermal wells, Class G cement slurries with various additives and admixtures are most commonly used [40–42]. Most often silica flour is added in a quantity varying from 20 to even 100% BWOC (by weight of cement) together with additives and admixtures depending on the need to achieve the appropriate parameters of fresh cement slurry. Additives and admixtures include bentonite, carboxymethylcellulose or lime [40,41]. Another type of cement used in geothermal drilling is Class A cement [43]. The literature also includes the use of Class F and Class J cements in geothermal systems [41].

2.2. List of Geothermal Wells with Their Parameters in Poland

This subsection presents a list of geothermal borehole parameters in Poland (Table 1). Presented parameters such as: borehole name, year of construction, depth, production or injection rate, aquifer opening, geothermal water temperature at the head, borehole type, borehole purpose, spatial orientation, construction material, borehole bottom.

In Poland new boreholes are most often drilled for geothermal wells. In Table 1, those are specified as type “New”. Boreholes drilled for other purposes, or geothermal wells made much earlier, in which reconstruction and adaptation works are necessary for the needs of obtaining geothermal water, are specified as type “Archival” in Table 1.

Table 1 does not include boreholes in: Dębica GT-1, Łądek Zdrój LZT-1, Sękowa GT-1 and others due to the lack of data in available publications.
Table 1. Collective data on geothermal borehole parameters in Poland (based on [37–39,44–86]).

Borehole Name	Year of Implementation	Depth H, m	Production (Injection) Rate V[h], m³/h	Aquifer	Geothermal Water Temperature at the Wellhead T{}_{\text{WP}}, °C	Potential Theoretical Heat Flow Heating Power by Cooling to 8 °C, kW/MW	Average Density, Average Spec. Heat Capacity—for Distilled Water in T{}_{\text{WP}} (kg/m³, W/m°C)	Borehole Type	Borehole Purpose	Spatial Orientation	Construction Material: Technical Column/Pumping Column	Borehole Bottom	Comments		
Bątoska IG-1	1979/91 [39,50,67]	5245 [39,51,52,58,60,67]	120 [39,49,50,60,62]	Namurian limestone (middle Eocene) and limestone and dolomites (middle Triassic) [68]	At the beginning 60, after the intensification 82 [51,52]	82 [51,52,53,66,69,89,90,91]	86 [51,52,53,66,69,89,90,91]	Archival **** Production [38,60]	Vertical	Steel/-	Perforated in borehole				
Bątoska PCP-1	1997 [39,72]	3242 [39,50,67]	520 [39,49,50,60,62]	Marly limestone (middle Eocene) and limestone and dolomites (middle Triassic) [68]	86 [51,52,53,66,69,89,90,91]	87 [51,52,53,66,69,89,90,91]	55.78 (911.1, 4179) New *** Production ** [39,60]	Vertical	Steel/-	Perforated on surface, 2012–2014 uncased [72]					
Bątoska PCP-3k	2012–2013	3500 MD [75]	3508 MD TVD [75]	Middle Triassic	82.4 to 85.8 [61]	85 [54,68,70]	26.9 (911.1, 4179) New *** [38] Production ** [60]	Directional [18]	Steel/-	-	-				
Bałka/Tatrzańska GT-1	2007 [75]	2500 [75]	32 [50]	-	72 [57]	77 [49,50,54]	2.66 (903.7, 4179) New **** Production	Vertical	-	-					
Budy/Doroszyń PAN-1	1989 [39,53]	2364 [39,50,58]	270 [49]	Conglomerates (middle Eocene) and limestone and dolomites (middle Triassic) [68]	82 [49,50,53,66,89,90,91]	86 [50]	25.49 (911.1, 4179) New **** Injection ** [38,60]	Vertical	-	-					
Budy/Doroszyń PAN-2	1996/97 [39,72]	2450 [39,50,58]	179 [49]	-	30.6 [91]	-	3.09 (994.4, 4179) New **** Production	Vertical	-	-					
Bolków/Tatrzańska PPG/TPG-1	1992 [59]	3780 [51,58]	40 [50]	-	48 [50]	79 [59]	-	New ****	-	-	-				
Ciełów GT-1	2014 [21]	3500 [75]	13504 [43]	-	-	-	-	-	-	-	-				
Ciełów GT-2	2013–2015 [55]	1234 [75]	-	-	-	-	-	-	-	-	-				
Czchowice PPG-1	1999/90 [70]	3572 [51,58,70]	120 [49,50,53,58,60,67,89]	Dolomites and limestones (middle Eocene)—depth 3218–3572 m [59]	82 [49,50,53,66,89,90,91]	90 [51,52,53,66,89,90,91]	11.33 (911.1, 4179) New **** Production ** Vertical	-	-	-					
Czepieć/Zadzior GT-1	1997/99 [70]	2002 [75]	750 [50]	-	28 [59]	-	5.05 (990.6, 4179) New **** Injection	Vertical	-	-					
Czepieć/Zadzior GT-2	2011 [75]	2853 [75]	-	-	-	-	2.04 (955.9, 4178) New **** Injection	Vertical	-	-					
Działoszyń/Zadzior GT-1	2002 [75]	1605 [66]	30 ** [79]	Conglomerates (middle Eocene) and sandstones (Jurassic and Triassic)—depth 2003–2014 uncased [61]	61.5 [49,50,53,66,89,90,91]	6.29 (995.7, 4179) New **** [74]	-	-	-	-					
Farniakowa PPG-1	1988/90 [57]	2524 [51,58,59]	60 [59]	-	40 [49,50,53,58,60,67,89]	610.5 [49,50,53,66,89,90,91]	6.29 (995.7, 4179) New **** [74]	Inactive (unemployed) **	-	-	-	Flow rate 60 m³/h in [57] in Table 4, and 90 m³/h in [57] in Table 1			
Gostyn GT-1	2007 [47]	2774 [41,47,67]	120 [50,64]	Lower Jurassic (15,72,63,64)	82 [41,47,64,74]	11.33 (911.1, 4179) New **** Production [37,38]	Vertical	Steel/steel [37,38]	Widened, bare foot [37,38]						
Jachynchma GT-1	2008 [47]	2774 [41,47,67]	120 [50,64]	Lower Jurassic (15,72,63,64)	82 [41,47,64,74]	11.33 (911.1, 4179) New **** Production [37,38]	Vertical	Steel/steel [37,38]	Widened, bare foot [37,38]						
Jaworze IG-1	1981	1525 [57,67]	0 [49,50,53,58,60,69]	-	44 [70]	23 [57,68]	10.02 (999.5, 4178) New **** Injection	Vertical	-	-					
Jaworze IG-2	1981	1450 [57,67]	47 [49,50,53,58,60,69]	-	54 [71]	2.76 (995.9, 4178) New **** Injection	Vertical	-	-						
Karpniki KU-I	1997 [75]	1997 [75]	44 [70]	-	-	-	-	-	-	-	-				
Karczmierz-Wielka GT-1	2015 [61]	790	250–300	-	-	-	-	-	-	-	-				
Borehole Name	Year of Implementation	Depth H, m	Production (Injection) Rate V[H], m³/h	Aquifer	Geochemical Water Temperature at the Wellhead T[H],[°C]	Potential Theoretical Heat Flow—Heating Power By Cooling t[H] – (C) P, MW	Average Density, Average Spec. Heat Capacity—for Distilled Water m[H], kJ/kg	Borehole Type	Borehole Purpose	Spatial Orientation	Construction Material: Technical Column/Pumping Column	Borehole Bottom	Comments		
---------------	------------------------	-----------	---------------------------------------	---------	---	---	--	-----------------	----------------	------------------	---	-----------------	---------		
Kluczezw GT-1	2009	1620	750	Lower Jurassic	52 [51,52]	52.2 [51,52]	12.03 (996.9; 4179)	New	Production	[37,38]	Vertical	Steel/steel	None widened, bare foot [37]	52.2 with Flow rate 202.6 during measuring pumping [13]	
Kluczezw GT-2	2010/11	1725	2400 [50]	Lower Jurassic	45.9 [50]	12.79 (997.6; 4180)	New	Production	[37,38]	Vertical	Steel/steel	Fiberglass/- [37]	Widened, filtered [37,38]		
Kols GT-1	2018	3905	260 [37]	-	86 [37]	25.72 (991.1; 4179)	New	Injection	[37,38]	Vertical	-	-	-	-	
Konin GT-1	2014	2660	130–150 [61,64]	-	95 [57]	14.17 (988.5; 4180)	New	Injection	[37,38]	Vertical	-	-	-	-	
Ładzibiki/ Warmianki GT-1	2011	1300 [64]	120 [64]	Lower Jurassic	24 [64]	3.35 (999.6; 4180)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Flow rate 60 m³/h in [47]		
Mazocznik IG-1	1976	1700 [63]	55 [63]	60 after reconstruction [44]	Lower Jurassic	40 [51,52]	9.12 (998.5; 4180)	Not for geothermal purposes [49]	Archival	[37,38]	Vertical	Steel/steel	Perforated pipes [37,38]	Temperature 40 °C [63]	
Ostha S-Luch w Grabnie	2011/12	1892 [64]	120 [51,52]	Lower Jurassic	45 [51,52]	6.26 (997.6; 4180)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Reservoir 12.1 m³/day with the initial documented resource [51,52], also referred to as the outflow of a year 1975 [16]		
PonizkoWiska IG-1	1975/75	2002 [48]	12.1 [48,51,52]	Upper Cretaceous	42 [48,51,52]	0.59 (999.8; 4181)	Archival	Production	Vertical	Steel/-	Filtered [48]	-	-		
Poddynie GT-2	2009/10 [37,38,64] 2010 [71]	2100 [64]	115 [48,51,52]	Lower Cretaceous	72 [48,51,52]	9.55 (999.7; 4179)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Total flow rate from Pyrzycz GT-1 and GT-2 is 540 m³/h [13,43]. At the turn of 2008/09 the geothermal heating plant in Pyrzycz GT-2 and GT-4 have installed HDPE—High Density Poly Ethylene lining [37,63]		
Porzelen PAN-1	1998/89 [54]	3005 [49,50]	70 [49,51,52]	Middle Jurassic—depth 1765–1855 m	65 [49,50,51]	5.09 (995.1; 4179)	New	Inactive	Vertical	Steel/-	-	-	-		
Pyrzych GT-1	1992 [37]	1632 [45]	170 [39,41]	Lower Jurassic	63–65 [34]	11.98 (995.4; 4178)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Total flow rate from Pyrzycz GT-1 and GT-2 is 540 m³/h [13,43]. At the turn of 2008/09 the geothermal heating plant in Pyrzycz GT-2 and GT-4 have installed HDPE—High Density Poly Ethylene lining [37,63]		
Pyrzych GT-2	1992/95 [37]	1523 [45]	63 [34]	Lower Jurassic	63 [34]	11.98 (995.4; 4178)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Total flow rate from Pyrzycz GT-1 and GT-2 is 540 m³/h [13,43]. At the turn of 2008/09 the geothermal heating plant in Pyrzycz GT-2 and GT-4 have installed HDPE—High Density Poly Ethylene lining [37,63]		
Pyrzych GT-3	1992/95 [37]	1632 [45]	170 [39,41]	Lower Jurassic	61–65 [34]	11.98 (995.4; 4178)	New	Production	[37,38]	Vertical	Steel/steel	Widened, filtered [37,38]	Total flow rate from Pyrzycz GT-1 and GT-2 is 540 m³/h [13,43]. At the turn of 2008/09 the geothermal heating plant in Pyrzycz GT-2 and GT-4 have installed HDPE—High Density Poly Ethylene lining [37,63]		
Pyrzych GT-4	1992/95 [37]	1523 [45]	-	Lower Jurassic	-	-	New	Injection	[37,38]	Vertical	Steel/-	-	-	-	
Pyrzych GT-1 bis	2017 [39]	1648 [46]	200 [37]	-	65 [37]	15.01 (994.5; 4178)	New	Directional	[44]	-	-	-			
Rakia IG-1	2017 [39]	1215 [37]	14.2 [37]	-	13 (993.3; 4187)	New	Production	Vertical	-	-	-	-			
Sieradz GT-1	2018	1605 [71,82]	240 [71]	Lower Jurassic	31.8	14.98 (996.8; 4179)	New	Research and Production	Vertical	-	-	-	-		
Table 1. Cont.

Borehole Name	Year of Implementation	Depth H, m	Production (Injection) Rate V[m3/h]	Aquifer	Geothermal Water at the Wellhead T Ug, °C	Potential Theoretical Heat Flow—Heating Power (by Cooling 1°C C) P, MW Average Density, Average Spec. Heat Capacity—for Distilled Water in T Ug (20)	Borehole Type	Borehole Purpose	Spatial Orientation	Construction Material Column/Pumping Column	Borehole Bottom	Comments
Szwedawka EG-1	1972/73 [36]	856 [51,59]	4 [49,50,59]	conglomerates (middle Eocene) and sandstones (Jurassic) and limestones (Jurassic and Cretaceous)—depth 2003–2224 m [59]	20 [43,50,59]	0.09 (999.8; 4192) Archival "xxxx" Inactive (unemployed); "**" [40] - - - -	-	-	-	Filtered [39]		
Skarszewice GT-1	1990/91 [34]	3001 [30]	70 [39] (53)	Sandstones, siliciclastites, claystones (Lower Jurassic) depth 2975–2941 m [39]	69.2 [39]	5.59 (994.1; 4176) New "xxxx" Inactive - Vertical -	-	-	-	Filtered [39]		
Skarszewice GT-2	1996/97 [34]	2900 [30]	86.6 [39]	Lower Jurassic depth 2275–2806 m [39]	57.8 [39]	5.76 (990.0; 4176) New "xxxx" Inactive - Vertical -	-	-	-	Filtered [39]		
Sochaczew GT-1	2018	1540 [75]	Min. 180	Lower Jurassic	87 [63]	20/01 (996.4; 4176) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Stanislawki ST-1	1501 [74]	201.5 [74]	-	Lower Jurassic	37.3 [7]	0.89 (996.4; 4182) New - - - -	-	-	-	Filtered [39]		
StargardSzczecinski GT-1	2003 [38,72]	2672 [72]	200 [63]	Lower Jurassic	87 [55]	20/01 (996.4; 4176) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Stargard Szczecinski GT-2	2005 [37]	2970 [72]	200 [63]	Lower Jurassic	37.3 [7]	0.89 (996.4; 4182) New - - - -	-	-	-	Filtered [39]		
Stargard GT-3	2019 [36]	2645.6 [36]	-	Lower Jurassic	37.3 [7]	0.89 (996.4; 4182) New - - - -	-	-	-	Filtered [39]		
Swarzędz IGH-1	1982 [62]	1306.6 [62]	33.84 to 73.36 [62]	Lower Jurassic	36.6 to 42.2 [62]	1.44 (998.7; 4183) - - - -	-	-	-	Filtered [39]		
Symonowski GT-1	2006 [75,36]	1726 [75,36]	70 [36]	-	27 [69,36]	2.20 (999.3; 4157) New "xxxx" Production Vertical - Vertical -	-	-	-	Filtered [39]		
TarneckPodgorecki GT-1	2010 [75,36]	1200 [64,75]	-	Lower Jurassic	44 [63,44]	11.23 (998.9; 4181) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Tomaszewskiego GT-1	2000 [61, 100%]	2400 [61,100%]	-	Lower Jurassic	64 [63,44]	25.87 (995.1; 4176) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Toruń GT-1 [38]	2009 [75,64]	1200 [37,64]	-	Lower Jurassic	44 [63,44]	11.23 (998.9; 4181) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Toruń GT-2 [38]	2009 [75,64]	390 [63,44]	-	Lower Jurassic and middle Jurassic [61]	64 [63,44]	25.87 (995.1; 4176) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Toruń GT-3 [38]	2009 [75,64]	355 [37,64]	-	Lower Jurassic	27 [64]	5.65 (999.9; 4157) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Trzebieszki GT-1	2012 [37,64]	1200 [64]	1200 [64]	Lower Jurassic	27 [64]	5.65 (999.9; 4157) New "xxxx" Production [37,38] Vertical	-	-	-	Filtered [39]		
Ursynów IG-1	1979 [62,88]	2135 [62]	55 [61]	Lower Cretaceous	68 [62]	4.32 (994.4; 4176) Archival "xxxx" Injection [37,38] Vertical	-	-	-	Filtered [39]		
Ursynów PK/AGH-1	1980/91 [38,67]	2065 [62,67]	90.14 [62]	Lower Cretaceous	68 [62]	4.32 (994.4; 4176) Archival "xxxx" Injection [37,38] Vertical	-	-	-	Filtered [39]		

The exploitation reservoirs are 70 m /according to hydrogeological surveys from 1990/91, and from 1997 the final borehole flow rate 13 m /h [39].

Temperature of geothermal water was 69.2 °C in 1990/91 [39].

Flow rate 18.6 m /h with temperature 57.5 °C [39].

In 2008 the role of geothermal bores was changed [37].

In 2008 the role of geothermal bores was changed [37].

The exploitation reservoirs are 70 m /according to hydrogeological surveys from 1990/91, and from 1997 the final borehole flow rate 13 m /h [39].

Temperature of geothermal water was 69.2 °C in 1990/91 [39].

Flow rate 18.6 m /h with temperature 69 °C [39].

Flow rate 18.6 m /h with temperature 57.5 °C [39].

Flow rate 18.6 m /h with temperature 57.5 °C [39].

Flow rate 250 m /h [63].

Flow rates [66].

Flow rates [66].
Borehole Name	Year of Implementation	Depth H, m	Production (Injection) Rate \(V_{\text{I}}, \text{m}^3/\text{h} \)	Aquifer	Geothermal Water Temperature at the Wellhead \(T_{\text{wh}}, ^\circ \text{C} \)	Potential Theoretical Heat Flow—Heating Power by Cooling \(T_{\text{I}}, ^\circ \text{C} \) P, MW (Average Density, Average Spec. Heat Capacity—for Distilled Water in \(T_{\text{wh}} \))	Borehole Type	Borehole Purpose	Spatial Orientation	Construction Material Technical Column/Pumping Column	Borehole Bottom	Comments
Uniejów PIG/AGH-2	1990/91 [38,66]	2023 [38,67]	120 [66]	Lower Cretaceous [38,39,57,66]	69.4 [66]	9.58 (994.1, 4176)	Archival [54]	Production [38,39,66]	Vertical	Steel/steel [37,38]	Perforated pipes [37-39]	Flow rate 120 m\(^3\)/h and temperature 69 \(^\circ\)C in 2005 [66]
Ustroń IG-3	1837 [27]	1087 [27]	150 [27]	Kwadzolanka [57]	6 [57]	0.15 (999.77; 4191)	-	-	-	-	-	
Węczu CT-1	2018 [27]	1688 [27]	150 [27]	-	60 [27]	0.96 (998.3, 4182)	-	-	-	-	-	
Zakopane IG-1	1961/62 [56] 1963 [56]	3072.2 [56] 3072 [56]	50 [49,50,59]	Marl and limestone (lower Jurassic) [59]	30 [58]	2.09 (998.7, 4185)	Archival	-	Vertical	-	-	-
Zakopane 2	1973 [56] 1975 [56]	1113 [56] 90 [56]	80 [49,50,59] 90 [59]	Namulite limestones (middle Eocene) and limestones and dolomites (middle Triassic) [59]	26 [50,59]	2.42 (999.5, 4186)	Archival	-	-	-	-	-
Zakopane IG-1	1985/86 [56]	680 [51,59]	25 [49,50,59] 25 [50]	Namulite limestones (middle Eocene) and limestones and dolomites (middle Triassic) [59]	22 [49,50,59]	0.64 (999.8, 4191)	Archival	-	-	-	-	-
Total							12,823	66,287	735.4			

* temperatures are variable with the actual flow rate and with the production time, ** self-outflow (head pressure by natural temperature profile in the well), *** the geothermal wells for direct use, **** the geothermal wells exploratory or research, ***** the exploratory wells (but not for geothermal exploration), ****** the hydrogeological wells.
Geothermal waters in Poland are most often used for recreational, heating and health purposes. Geothermal waters are used in heating plants in Stargard, Pyrzyce, Uniejów, Mszczonów, Poddebice and in Podhale [87]. Often, boreholes in Poland, as well as in other countries, are located in poorly urbanized areas. The distribution of geothermal installations in Poland is shown in Figure 1.

![Geothermal uses in Poland in 2018](image_url)

Figure 1. Geothermal uses in Poland in 2018: 1. District heating plants; 2. Health resorts; 3. Recreation centers; 4. Wood drying; 5. Fish farming; 6. Some recreation centers in realization; 7. Heating system in realization; 8. Individual heating systems (individual heating systems in some recreation centers are not marked) [87].

Indicators of the ratio between the depth of geothermal boreholes and their power were proposed. The depth/efficiency ratio indicator was first proposed, according to the formula:

\[N_V = \frac{\sum \dot{V}}{\sum H} \]

(1)

where \(\dot{V} \) is the flowrate of possible geothermal water and \(H \) is the depth of the borehole.

Qualification of boreholes to be included in the indicator is a debatable issue (1). The issue of selection is difficult because irrespective of the end use of the borehole (whether exploitation or injection), pumping tests are performed to determine the serviceability of the boreholes. Hence, the depth/efficiency ratio can be defined for different borehole configurations. Among the geothermal boreholes in Poland are: exploited production and injection boreholes, negative boreholes (boreholes planned and drilled in order to exploit geothermal water, in which the water was not found), boreholes not in operation. Efficiency is also debatable due to differences in values between multiple sources (cf. Table 1). Geothermal boreholes have approved resources of efficiency (productivity) and absorbency. Taking into account all geothermal boreholes for which data are available, the value of the indicator is \(N_V = 0.04879 \) m³/h/m. The indicator takes into account all efficiency values, including injection boreholes (e.g., the Bialy Dunajec PGP-2 has the approved productivity of 175 m³/h and an absorbance of 400 m³/h, so only the first
value was included in the calculation). Approved productivity means water resources determined by research conducted during pumping tests.

If the number of negative boreholes increases, the value of the indicator decreases. Considering, for example, the best geothermal borehole operating in Poland, its indicator equals $0.154 \, \text{m}^3/\text{h}/\text{m}$. Another issue is the depth of the boreholes, which previously served as reconnaissance boreholes. For example, the Bańska IG-1 well has a depth of 5261 m, while the aquifer which is being exploited occurs at a much smaller depth. The difference between the depth of the geothermal borehole and the depth of the bottom of the aquifer varies for each borehole. The proposed indicator illustrates the “unitary” effort incurred for drilling for geothermal energy (from geothermal waters) in relation to the flow rate of water available for exploitation.

The second indicator proposed is the ratio of depth/theoretical power, according to the formula:

$$N_P = \frac{\sum P}{\sum H}$$

(2)

where P is the theoretical heating power, assuming water cooling from the well head temperature to $0 \, ^\circ\text{C}$ according to:

$$P = \dot{V} \cdot \rho (T_{wh}/2) \cdot c (T_{wh}/2) \cdot T_{wh}$$

(3)

Figure 2 depicts the heads of selected geothermal boreholes in Poland.
Figure 2. Well head of borehole: (a) Bańska IG-1, (b) Bańska PGP-1, (c) Bańska PGP-3, (d) BiałkaTatrzańska GT-1, (e) Bukowina Tatrzańska PIG/PNiG-1, (f) Chochołów PIG-1, (g) Kleszczów GT-1, (h) Mszczonów IG-1, (i) Poddębice GT-2, (j) Uniejów PIG/AGH-1, (k) Uniejów IG-1, (l) Uniejów PIG/AGH-2.
3. Borehole Heat Exchangers

The advantages of the collection of the Earth’s heat with borehole heat exchangers include the lack of risk connected with prospecting drilling, very high durability (lifetime) and minimal impact on the environment [89]. This chapter presents the materials most commonly used in borehole heat exchangers, as well as the innovative constructions of BHE at AGH UST in Krakow.

3.1. Materials Used in Geothermal BHEs

Borehole heat exchangers have basic construction [89]:

- Single U-pipe,
- Double U-pipe,
- Multi U-pipe,
- Coaxial exchanger.

Types of plastics are most often used as the material for borehole heat exchangers. Their main advantage is the lack of corrosion on contact with water. The most commonly used materials are [88]:

- Chlorinated polyvinyl chloride,
- Polybutylene,
- Polyethylene,
- Polypropylene.

Table 2 summarizes the basic properties of materials used in borehole heat exchangers.

Material	Density, ρ_p, kg/m³	Thermal Expansion Coefficient, Δl, 1/K	Thermal Conductivity, λ_p, W/(mK)	Specific Heat, c_p, kJ/(kgK)	Young’s Modulus, E, GPa
chlorinated polyvinyl chloride	960	8×10^{-5}	0.41	1.84	2.5
polybutylene	939	-	0.22	-	0.34
polyethylene	940–970	10^{-5}	0.42	1.15	0.2
polypropylene	909	1.5×10^{-5}	0.22	1.7	1.5–2.0

The most appropriate materials, according to the authors [89,90], for the production of borehole heat exchangers’ tubes are polypropylene and polyethylene.

For the grouting of borehole heat exchangers, most commonly used are mixtures with trade names Calidutherm by Terra Calidus, Hekoterm by Hekobentonity, RaugeoTherm by Rehau, StüwaTherm by Stüwa and Thermocem Plus by Görázdże. Hekoterm is also known under brands such as TermorotaS or MuoviTerm [91]. The key parameter that should be specified for grout is increased thermal conductivity.

Grout with increased thermal conductivity is a constantly evolving research topic. The use of graphite as an additive to grout was considered by many authors, such as Lee et al., Sliwa et al., Delaleux et al., Sapińska-Sliwa [92–97].

Studies of the heat flow through BHE can be found in the literature. One of the methods is the use of the laboratory model described by Shirazi and Bernier to simulate the well conditions. Moreover, they compared the numerical and experimental results [98]. In classic methods of analyzing a ground heat exchanger, the heat capacity of boreholes is often neglected. Analytical solutions to this issue are presented in the works of Lemarche [99,100]. Taking into account the influence of the thermal capacity of the borehole on the thermal response of the ground was also described by Nian and Cheng [101].

3.2. Borehole Heat Exchangers at AGH UST in Krakow

Borehole heat exchangers are the subject of research both in Poland and around the world. The Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas at AGH UST...
in Krakow has two research stations equipped with borehole heat exchangers of various constructions (Table 3). The first installation includes five BHEs made in January and February 2008 [102]. The second geothermal field station was constructed in the summer of 2017 on the occasion of the 10th anniversary of the Geoenergetics Laboratory. This installation consists of 14 borehole heat exchangers made using the rotary method [10].

![Figure 3. Innovative system](image)

Table 3. Constructions of borehole heat exchangers (Laboratory of Geoenergetics at the Faculty of Drilling, Oil and Gas at AGH UST in Krakow) [10,103].

Name of Borehole Heat Exchanger	Constructions of Borehole Heat Exchanger	Type of Grout	Outer Diameter of Inner Pipes, D₂ (d₂), mm	Wall thickness of Pipes, b, mm	Type of Pipes Material
LG-1a	coaxial	cement slurry	Casing (outside) pipe D₂ = 90 mm and b = 5.4 mm; inner pipe d₂ = 40 mm and b = 2.4 mm	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-2a	single U-pipe	cement slurry	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-3a	single U-pipe	cement slurry with increased value of thermal conductivity (ThermoCem) gravel, size 8–16 mm and two clay plugs (Compactonit)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-4a	single U-pipe	cement slurry with increased value of thermal conductivity (Termorota) cement slurry with increased value of thermal conductivity (TermorotaS)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-5a	double U-pipe	cement slurry	32	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-1b	double U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	32	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-2b	single U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	32	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-3b	double U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-4b	double U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-5b	single U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)
LG-6b	single U-pipe	cement slurry with increased value of thermal conductivity (TermorotaS) cement slurry with increased value of thermal conductivity (TermorotaS)	40	PE, internally smooth pipe (laminar collector)	PE, internally smooth pipe (laminar collector)

The presence of pipelines (water supply, sewage, heat pipes) in the extensive urban infrastructure, e.g., in Krakow has two research stations equipped with borehole heat exchangers of various constructions (Table 3). The first installation includes five BHEs made in January and February 2008 [102]. The second geothermal field station was constructed in the summer of 2017 on the occasion of the 10th anniversary of the Geoenergetics Laboratory. This installation consists of 14 borehole heat exchangers made using the rotary method [10].
For borehole heat exchangers, there is no reason for the N_p indicator. Similar to the geothermal boreholes, one can be tempted to determine the value of the indicator N_p. BHEs work with varying loads. The way to determine BHE’s energy efficiency is to perform a Thermal Response Test [19]. TRT allows for the determination of the effective thermal conductivity. Thermal conductivity can also be determined by analyzing the undisturbed temperature profile in the borehole [104]. The natural temperature profile can be examined with the NIMO-T probe. Many of the temperature–depth plots show some correctness. In general, the temperature in the near-surface layers varies depending on the season. In some profiles, a decrease in the rocks’ temperature to a great depth can be observed. High heat penetration from the surface is related to the city infrastructure, not only solar radiation. The main factor influencing the soil environment is the extensive urban infrastructure, e.g., the presence of pipelines (water supply, sewage, heat pipelines), asphalt, and black road surfaces, which cause the absorption of additional amounts of solar heat from the surface. The foundations of heated buildings also cause heat transfer to the subsurface rocks. In cities, the depth of periodic heat penetration is usually greater than in non-urban areas [103]. The easiest, but least accurate approach is to determine the thermal conductivity of the ground, based on lithology and literature data [89,105].

Since the proper operation of the plate of geothermal systems is planned for decades, an important issue is to show the long-term behavior of exchangers. The thermal response of slender geothermal boreholes to subannual harmonic excitations is described by Hermanns and Ibanez [106]. Simple empirical formulas correlate the effective thermal conductivity with the unitary heating power of BHEs [107]:

$$q_1 = 20 \cdot \lambda_{eff}$$ (4)
However, it is not possible to determine the global (national) value of the indicator N_P for BHEs, due to the lack of data on the number and depth of BHEs made in Poland, and the small percentage of TRTs conducted. The collection of data on the created heat pump installations with borehole exchangers is not required, hence it is impossible to identify and collect all information about the created systems. Moreover, there is no legal regulation in Poland regarding the obligation to perform TRT, therefore these tests are performed sporadically and only on large investments. Specification of the individual values for local geology and a given depth is very much possible. For example, for boreholes located in the Laboratory of Geoenergetics AGH UST, the thermal conductivity value of rocks based on literature data (for BHEs LG1a-LG5a) equals 2.039 W/(mK) [89]. The N_P value as the mean of q_1 and q_2 from Equations (4) and (5) is 38.64 W/m. It is many times less than the value $N_P = 3523$ W/m for boreholes that exploit geothermal water. As opposed to geothermal waters, which do not occur everywhere, BHEs can be created regardless of geological conditions, and using increasingly affordable methods [108].

TRT tests are currently underway for BHEs belonging to the Laboratory of Geoenergetics AGH UST. Their results will determine the impact of various design parameters on the effective heat conductivity, borehole thermal resistance [109,110] and operational parameters [101].

A not very common variant of BHE is the deep borehole heat exchanger (DBHE). Until now, they have been studied and used only in the USA, Germany, Switzerland and Poland [111], and most recently also in China.

In 1999, one of the world’s deepest borehole heat exchangers (2780 m) was made in Poland. It has been used for research purposes only. Due to the use of an inadequate centric tube column, satisfactory results were not obtained [112]. A key structural element in DBHEs is the internal insulating pipe column [99]. The longest-running DBHE is now an exchanger in Prenzlau (Germany), which has been in operation since 1992 [113].

Deep borehole heat exchangers are not currently used for economic reasons. Such installations are unprofitable at current heat prices. They are, however, a forward-looking source of heat when one considers™ hundreds of millions of drilled oil wells around the world.

Research on systems based on exploited and negative oil and gas wells should be carried out, as such installations can be used for heating in the future. Areas with old, decommissioned, or intended-for-decommissioning wells may then become more valuable due to the availability of an independent heat source. Only the energy which drives the heat pump (not always necessary—depending on the borehole depth) and the circulation of the heat carrier in the exchanger would have to be provided.

For instance, in the years 2016–2017, more than 120,000 oil and gas exploration and reconnaissance boreholes with a total depth of over 337.5 million meters [114] were made worldwide. With a careful approach, they could exchange heat with a rock mass reaching the heating power of more than 8 GW. It seems prudent to consider drilling new boreholes with potential future use in the form of deep borehole heat exchangers. For example, appropriately modified sealing slurry (with adjustable thermal conductivity) could be used.

Table 4 shows the present deep geothermal district heating plants and other uses for heating. Table 5 summarizes the data on geothermal heat pumps in Poland.

Table 4. Present deep geothermal district heating plants and other uses for heating in 2018 [87].

Geothermal District Heating	Geothermal Heat in Agriculture and Industry	Geothermal Heat for Buildings	Geothermal Heat in Balneology and Other		
Capacity, MW	Production, GWh/y	Capacity, MW	Production, GWh/y	Capacity, MW	Production, GWh/y
74.6	250.4	4	6	>10	>25
12	>35				
Table 5. Geothermal heat pumps in Poland [87].

Description	Number	Capacity, MW	Production, GWh/y
In operation end of 2017	56,000	650	861
Projected total by 2020	74,000	860	1140

4. Conclusions

Renewable energy sources are increasingly used around the world. These include geothermal energy, which is exploited by geothermal boreholes and borehole heat exchangers. The authors came to the following conclusions:

1. In Polish geothermal wells, casing pipes are usually made of steel.
2. The first geothermal boreholes in Poland were vertical and made of steel pipes. Currently, directional boreholes and fiberglass pipes are present, which reflects the development of techniques and technology.
3. Borehole heat exchangers (BHEs) are increasingly used. The advantages of collecting Earth’s heat with borehole heat exchangers include no risk connected with prospecting drilling, very high durability (lifetime) and minimal impact on the environment.
4. There are two installations of borehole heat exchangers on the site of the AGH UST in Krakow. The first consists of 5, while the second of 14 borehole heat exchangers with an innovative system. It is the largest installation of BHEs with different designs in the world.
5. Comparative indicators for drilling efficiency for geothermal boreholes in Poland have been proposed. These indicators can be determined in any country where exploitation boreholes for geothermal heat are made. This applies both to geothermal boreholes (i.e., those related to geothermal water) as well as borehole heat exchangers (i.e., openings which obtain the Earth’s heat without hydraulic contact with the rock mass).
6. Two indicators for the effectiveness of drilling were proposed for geothermal boreholes. The first is the “unitary” cost of obtaining geothermal water’s one unit of efficiency N_{μ}, the second is the indicator of theoretical power per one meter of existing and created boreholes N_P. For geothermal boreholes in Poland, $N_{\mu} = 0.04879 \text{ m}^3/\text{h/m}$ and $N_P = 3523 \text{ W/m}$. For borehole heat exchangers, it is impossible to determine the values of these indicators for the entire country due to the reasons described in the article. Local (individual) N_P values can be determined based on the rock’s heat conductivity. For BHEs located in AGH UST, N_P equals 38.64 W/m. The difference is also reflected in the cost. The unitary cost of drilling the BHE is many times less than the unitary cost of drilling a geothermal borehole.
7. Boreholes drilled in the past (including those already decommissioned) and those which will be drilled in the future can be adapted for geothermal purposes. If there is no aquifer present, they can be used for deep borehole heat exchangers. For this purpose, they can currently be designed taking into consideration future geothermal applications.

Author Contributions: Conceptualization, T.S. and A.S.-Ś.; methodology, T.S.; software, A.S.; validation, A.G.; formal analysis, A.G.; investigation, T.K.; resources, A.S.; data curation, A.S.; writing—original draft preparation, T.K.; writing—review and editing, T.S.; visualization, T.S.; supervision, T.S.; project administration, A.S.-Ś.; funding acquisition, T.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the Norway Grants 2014–2021 via the National Centre for Research and Development in Warsaw. Research project supported also by program “Excellence initiative—research university” for the AGH University of Science and Technology.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

- H borehole depth, m,
- V_i borehole injection rate, m3/h,
- V borehole production rate, m3/h,
- N_d depth/efficiency ratio, m3/h/m,
- N_p depth/theoretical power ratio, W/m,
- λ_{eff} effective thermal conductivity, W/(mK),
- T_{wh} geothermal water temperature at the wellhead, °C,
- ρ_p density of the material, kg/m3,
- c_p specific heat of the material, kJ/(kgK),
- λ_p thermal conductivity of the material, W/(mK),
- Δl thermal expansion coefficient of the material, 1/K,
- D_x outer diameter of inner pipes, mm,
- P potential theoretical heat flow, MW,
- q unitary heating power, W,
- b pipe wall thickness, mm,
- E Young's modulus, GPa.

References

1. Sapirńska-Śliwa, A.; Wiglusz, T.; Kruszewski, M.; Śliwa, T.; Kowalski, T. Wiercenia Geotermalne: Doświadczenia Techniczne i Technologiczne (Geothermal Drilling: Techniques and Side Aspects); Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2017; Volume 3. (In Polish)

2. Zhou, Z.; Jin, Y.; Zeng, Y.; Youn, D. Experimental Study of Hydraulic Fracturing in Enhanced Geothermal System. In Proceedings of the ARMA-2018-148, American Rock Mechanics Association, 52nd US Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018.

3. Olasolo, P.; Juarez, M.C.; Morales, M.P.; D’Amico, S.; Liarte, I.A. Enhanced geothermal systems (EGS): A review. Renew. Sustain. Energy Rev. 2016, 56, 133–144. [CrossRef]

4. Lu, S.M. A global review of enhanced geothermal system (EGS). Renew. Sustain. Energy Rev. 2018, 81, 2902–2921. [CrossRef]

5. Ng, K.W.; Poudel, R.; Kyle, W.; Tan, G.; Podgorny, R. A Laboratory Experimental Study of Enhanced Geothermal Systems. In Proceedings of the ARMA-2017-0415, American Rock Mechanics Association, 51st US Rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 25–28 June 2017.

6. Yoo, H.; Park, S.; Xie, L.; Min, K.B.; Rutqvist, I.; Rinaldi, A.P. Numerical Modeling of Coupled Hydromechanical Behavior of Fractured Geothermal Reservoir at Pohang Enhanced Geothermal System (EGS) Site. In Proceedings of the ISRM-YSS-2017-089, International Society for Rock Mechanics and Rock Engineering, 4th ISRM Young Scholars Symposium on Rock Mechanics, Jeju, Korea, 10–13 May 2017.

7. Deng, M.; Li, H.; Tang, C. Study on Deep Underground Geometrical Model for Enhanced Geothermal System Based on Excavation. In Proceedings of the ISRM-ARMS10-2018-034, International Society for Rock Mechanics and Rock Engineering, ISRM International Symposium—10th Asian Rock Mechanics Symposium, Singapore, 29 October–3 November 2018.

8. Han, S.; Cheng, Y.; Gao, Q.; Yan, C.; Wei, J.; Zhang, J. Simulation Study on Heat Extraction in Enhanced Geothermal Reservoirs with Random Fracture Distribution. In Proceedings of the ARMA-2019-1857, American Rock Mechanics Association, 53rd US Rock Mechanics/Geomechanics Symposium, New York, NY, USA, 23–26 June 2019.

9. Florides, G.; Christodoulides, P.; Theofanous, E.; Lazari, L.; Messeritis, V. Modeling of Geothermal Heat Exchangers. In Proceedings of the ISOPE-I-13-168, International Society of Offshore and Polar Engineers, The 23rd International Offshore and Polar Engineering Conference, Anchorage, AK, USA, 30 June–5 July 2013.

10. Sliwa, T.; Goneń, A.; Złotkowski, A.; Sapirńska-Śliwa, A.; Bieda, A.; Kowalski, T. Geotermia na Wydziale Wiertniczo-Wydobywczej w Krakowie. Laboratorium Geoenergetyki: 10 lat działalności (Laboratory of Geoenergetics: 10 years of activity: Geothermics at Drilling, Oil and Gas Faculty of AGH University of Science and Technology in Krakow); Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2017; Volume 4. (In Polish)

11. Anesti, L.; Christodoulides, P.; Florides, G. A review of the design aspect of ground heat exchangers. Renew. Sustain. Energy Rev. 2018, 92, 757–773. [CrossRef]

12. Soni, S.K.; Pandey, M.; Bartaria, V.N. Hybrid ground coupled heat exchanger systems for space heating/cooling applications: A review. Renew. Sustain. Energy Rev. 2016, 60, 724–738. [CrossRef]
13. Bayer, P.; Attard, G.; Blum, P.; Menberg, K. The geothermal potential of cities. *Renew. Sustain. Energy Rev.* **2019**, *106*, 17–30. [CrossRef]

14. Sliwa, T.; Gonet, A. Theoretical model of borehole heat exchanger. *J. Energy Resour. Technol.* **2005**, *127*, 142–148. [CrossRef]

15. Jaszczur, M.; Polepszyc, I.; Sapinska-Sliwa, A. Numerical analysis of the boundary conditions model impact on the estimation of heat resources in the ground. *Pol. J. Environ. Stud.* **2015**, *24*, 60–66.

16. Cui, Y.; Zhu, J.; Twaha, S.; Riffat, S. A comprehensive review on 2D and 3D models of vertical ground heat exchangers. *Renew. Sustain. Energy Rev.* **2018**, *94*, 84–114. [CrossRef]

17. Spitler, J.D.; Gehlin, S.E.A. Thermal response testing for ground source heat pump systems—An historical review. *Renew. Sustain. Energy Rev.* **2015**, *50*, 1125–1137. [CrossRef]

18. Zarrella, A.; Emmi, G.; Graci, S.; De Carli, M.; Cultrea, M.; Dalla Santa, G.; Galgaro, A.; Bertermann, D.; Muller, J.; Pckele, L.; et al. Thermal Response Testing Results of Different Types of Borehole Heat Exchangers: An Analysis and Comparison of Interpretation Methods. *Energies* **2017**, *10*, 801. [CrossRef]

19. Sapinska-Sliwa, A.; Rosen, M.A.; Gonet, A.; Kowalczyk, J.; Sliwa, T. A new method based on thermal response tests for determining effective thermal conductivity and borehole resistivity for borehole heat exchangers. *Energies* **2019**, *12*, 1072. [CrossRef]

20. Wilke, S.; Menberg, K.; Steger, H.; Blum, P. Advanced thermal response tests: A review. *Renew. Sustain. Energy Rev.* **2020**, *119*, 109575. [CrossRef]

21. Zhang, X.; Zhang, T.; Li, B.; Jiang, Y. Comparison of Four Methods for Borehole Heat Exchanger Sizing Subject to Thermal Response Test Parameter Estimation. *Energies* **2019**, *12*, 4067. [CrossRef]

22. Liu, Y.; Hou, J.; Zhao, H.; Liu, X.; Xia, Z. Numerical simulation of simultaneous exploitation of geothermal energy and natural gas hydrates by water injection into a geothermal heat exchange well. *Renew. Sustain. Energy Rev.* **2019**, *106*, 467–481. [CrossRef]

23. Dai, C.; Li, J.; Shi, Y.; Zeng, L.; Lei, H. An experiment on heat extraction from a deep geothermal well using a downhole coaxial open loop design. *Appl. Energy* **2019**, *252*, 113447. [CrossRef]

24. Song, X.; Shi, Y.; Li, G.; Yang, R.; Wang, G.; Zheng, R.; Li, J.; Lyu, Z. Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells. *Appl. Energy* **2018**, *218*, 325–337. [CrossRef]

25. Nian, Y.; Cheng, W. Insights into geothermal utilization of abandoned oil and gas wells. *Renew. Sustain. Energy Rev.* **2018**, *87*, 44–60. [CrossRef]

26. Menendez, J.; Ordonez, A.; Alvarez, R.; Loredo, J. Energy from closed mines: Underground energy storage and geothermal applications. *Renew. Sustain. Energy Rev.* **2019**, *108*, 498–512. [CrossRef]

27. Hall, A.; Scott, J.A.; Shang, H. Geothermal energy recovery from underground mines. *Renew. Sustain. Energy Rev.* **2011**, *15*, 916–924. [CrossRef]

28. Esteves, A.F.; Santos, F.M.; Pires, J.C.M. Carbon dioxide as geothermal working fluid: An overview. *Renew. Sustain. Energy Rev.* **2019**, *114*, 1–8. [CrossRef]

29. Shi, Y.; Song, X.; Wang, G.; McLennan, J.; Forbes, B.; Li, X.; Li, J. Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system. *Appl. Energy* **2019**, *249*, 14–27. [CrossRef]

30. Cheng, W.L.; Li, T.T.; Nian, Y.L.; Xie, K. Evaluation of working fluids for geothermal power generation from abandoned oil wells. *Appl. Energy* **2014**, *118*, 238–245. [CrossRef]

31. Van Erdeweghe, S.; Van Bael, J.; Laenen, B.; D’haezeleer, W. Design and off-design optimization procedure for low-temperature geothermal organic Rankine cycles. *Appl. Energy* **2019**, *242*, 716–731. [CrossRef]

32. Sowizral, A. Geothermal energy resources in Poland—Overview of the current state of knowledge. *Renew. Sustain. Energy Rev.* **2018**, *82*, 4020–4027. [CrossRef]

33. Huculak, M.; Jarczewski, W.; Dej, M. Economic aspects of the use of deep geothermal heat in district heating in Poland. *Renew. Sustain. Energy Rev.* **2015**, *49*, 29–40. [CrossRef]

34. Fai zal, M.; Bouazza, A.; Singh, R.M. Heat transfer enhancement of geothermal energy piles. *Renew. Sustain. Energy Rev.* **2016**, *57*, 16–33. [CrossRef]

35. Gonet, A.; Sapińska-Sliwa, A.; Kowalski, T.; Sliwa, T.; Bieda, A. Drilling of geothermal boreholes and casing design in Poland. In *Proceedings of the European Geothermal Congress 2016*, Strasbourg, France, 19–24 September 2016.

36. Biernat, H.; Kulik, S.; Noga, B. Problemy związane z eksploatacją ciepłowni geotermalnych wykorzystujących wody termalne z kolektorów porowych (Problems associated with exploitation geothermal plants to use thermal water with rock pores). *Tech. Poszuk. Geol. Geoterm. Zróznoważony Rozw.* **2010**, *1–2*, 17–28. (In Polish)

37. Biernat, H.; Noga, B.; Kosma, Z. Przegląd konstrukcji archiwalnych i nowych otworów wiertniczych na Niżu Polskim w celu pozyskania energii geotermalnej (Review of archival and new wells constructions located in polish lowlands in order to raise a geothermal Energy). *Modelowanie Inż.* **2012**, *44*, 21–28. (In Polish)

38. Sapińska-Sliwa, A.; Biernat, H.; Sliwa, T.; Noga, B. Konstrukcje otworów geotermalnych w Polsce (Geothermal wells construction in Poland). In *Proceedings of the Prezentacja IV Ogólnopolski Kongres Geotermalny (Proceedings IV Polish Geothermal Congress)*, Zakopane, Poland, 30 September–2 October 2013. (In Polish).
60. Kleszcz, A.; Tomaszewska, B. Prognozowanie Scalingu na przykładzie wód ujmowanych otworem Bańska PGP-1 (Prediction of scaling phenomenon based on Bańska PGP-1 geothermal well). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2013, 1, 115–122. (In Polish)

61. Korzec, K.; Kmiecik, E.; Mika, A.; Tomaszewska, B.; Wątor, K. Metodyka opróbowania ujęć wód termalnych—Aspekt techniczny (Metodology of thermal water sampling—Technical aspects). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2016, 1, 75–87. (In Polish)

62. Latour, T.; Drobnik, M. Możliwości wykorzystania wód termalnych występujących na terenie Wielkopolski do celów leczniczych i rekreacyjnych (Thermal waters in the Wielkopolska region and possibilities of their use for therapeutics and recreation). *Prz. Geol.* 2010, 58, 609–612. (In Polish)

63. Noga, B.; Biernat, H.; Kapuściński, J.; Martyka, P. Analiza parametrów otworów geotermalnych wykonanych na Niziu Polskim pod kątem możliwości budowy silowni binarnej wykorzystujących ciepło wewnątrziemna Ziemi (Analysis of parameters of geothermal well located on Polish Lowlands for the possibility of building the binary power plants which are using the heat from inside the earth). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2013, 2, 127–139. (In Polish)

64. Noga, B.; Biernat, H.; Kapuściński, J.; Martyka, P.; Nowak, K.; Pi Jewski, G. Perspektywy zwiększenia pozyskiwania ciepła geotermalnego w świetle nowych inwestycji zrealizowanych na terenie Niziu Polskiego (Possibility of obtaining more geothermal heat in the view of the new investments completed on Polish Lowland). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2013, 2, 75–84. (In Polish)

65. Pratkowski, W.; Biernat, H.; Noga, B. Wyniki badań zmierzających do rozpoznania i udokumentowania wód termalnych w rejonie miejscowości Celejów (Research Results aimed at identifying and documenting thermal waters in the region of Celejów). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2016, 2, 33–43. (In Polish)

66. Sapińska-Sliwa, A. Technologiczne i Ekonomiczne Zagadnienia Zagospodarowania Wody Termalnej na Przykładzie Uniejowa (Technological and Economic Issues Relating to Thermal Water Utilisation with the Use of an Example of Uniejów); Wydawnictwa AGH: Kraków, Poland, 2010. (In Polish)

67. Sokolowski, J. Dokumentacja geosynoptyczna otworu geotermalnego Bańska IG-1 (Geosynoptical documentation of the Banska IG-1 geothermal borehole). In *Geosynoptyka i Geotermia;* Tom 1; CPGSMiE PAN: Kraków, Poland, 1992. (In Polish)

68. Śliąek, C.; Okularczyk, B. Energia geotermalna w praktyce, 20 lat doświadczeń PEC Geotermia Podhalańska (Geothermal energy in practice, 20 years of PEC Geotermia Podhalańska experience). In Proceedings of the Materiały z Seminarium Eksperskiego “Czy mamy potencjał energii geotermalnej w Polsce?” (Materials from the Expert Seminar “Do We Have the Potential of Geothermal Energy in Poland?”), Warsaw, Poland, 1–3 October 2014. (In Polish)

69. Tomaszewska, B. Uzdatnianie wód termalnych ujętych otworem Bańska IG-1 do celów pitnych jako jeden z kierunków ich kompleksowego wykorzystania (Treatment of geothermal water from Banska IG-1 well to produce drinking water as one of directions of its wide use). *Prz. Geol.* 2009, 57, 21–28. (In Polish)

70. Tomczyk, B. Analiza możliwości technicznych wykorzystania energii wód geotermalnych do produkcji energii elektrycznej dla otworu Bańska PGP-3 (Analysis of the technical possibilities in using geothermal energy FOR electricity generation for the Banska PGP-3 borehole). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2016, 2, 117–134. (In Polish)

71. Uliasz-Misiak, B.; Dubiel, S. Problemy rekonstrukcji odwiertów geotermalnych (Problems of geothermal wells workover operations). *Prz. Gór.* 2015, 7, 55–61. (In Polish)

72. Wardzała, M.; Kilar, J. Doświadczenia Użytkane Przez PNIG Jasło w Trakcie Wykonywania Otworów Geotermalnych w Latach 1990–2008 (Experiences Obtained by PNIG Jasło while drilling Geothermal Wells in 1990–2008), in: *Praca Zbiorowa, “Konferencja Naukowo-Techniczna—Wiercenia Geotermalne Nowe Technologie Wiercenia i Udostępniania Wód Geotermalnych oraz Perspektywy Wykorzystania Energii Geotermalnej w Światło Polityki Energetycznej Kraju” (Collective Work “Scientific and Technical Conference—Geothermal Drilling New Technologies for Drilling and Sharing Geothermal Waters and Prospects for Using Geothermal Energy in the Light of the Country’s Energy Policy”);* Stowarzyszenie Naukowo-Techniczne Inżynierów i Techników Przemysłu Naftowego i Gazowniczego: Kraków, Polska, 2009; pp. 85–121. (In Polish)

73. Wartak, W. Geotermal heating in Podhale—project implemented with the support of the Ministry of Foreign Affairs of the Republic of Poland under the Polish development cooperation program. In Proceedings of the International Seminar Titled: Improvement of Energy Management in typical Public Buildings of the City and Oblast Ivano-Frankivsk, Zakopane, Poland, 9–12 August 2013. (In Ukranian)

74. Liber-Makowska, E.; Łukaczyński, I. Charakterystyka nowo rozpoznanego złoża wód termalnych w Karpnikach na tle warunków geotermalnych Kotliny Jeleniogórskiej (Characteristics of newly recognized deposit of thermal waters in Karpniki on the background of the geothermal conditions of Jelenia Góra valley). *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2016, 2, 5–16. (In Polish)

75. Firma G-Drilling. Geothermal Wells. Available online: http://www.g-drilling.pl/realizacje/otwory-geotermalne/ (accessed on 10 March 2020). (In Polish)

76. Wybrane Otwory Wiertnicze (Selected Wells). Available online: http://otworywiertnicze.pgi.gov.pl/ (accessed on 15 December 2019). (In Polish)

77. Chowaniec, J.; Poprawa, D.; Witek, K. Występowanie wód termalnych w polskiej części Karpat (Occurrence of thermal waters in the Polish part of the Carpathians). *Prz. Geol.* 2001, 49, 734–742. (In Polish)
Dobrzyński, D.; Gruszczynski, T.; Birski, L. German as a reference for hydrogeochemical conditions in the Jelenia Góra Geothermal System. *Prz. Geol.* 2017, 65, 946–950. (In Polish)

Fistek, J. Hydrogeochemical investigations at thermal water deposits in Poland (Thermal water use in health resorts of the Sudety Mountains in Poland). *Tech. Poszuk. Geol.* 2008, 47, 3–16. (In Polish)

Szafranski, M. Geotherm—Zasana czy kłopot (Geothermal energy—Opportunity or Trouble?). *Prz. Konin. Dod. Prz. Konin.* 2019, 26, 2–3. (In Polish)

Kazimierza Wielka—Budowa Pierwszego w Polsce Otwartego Termalnego Basenu Siarczkowego! (Kazimierza Wielka—Construction of the First Open Thermal Sulphide Pool in Poland!). Available online: www.globenergia.pl/magazyn/kazimierza-wielka-budowa-pierwszego-w-polsce-otwartego-termalnego-basenu-siarczkowego/ (accessed on 15 December 2019).

Firma Pro-Invest Solution. Available online: https://proinsol.pl/portfolio-item/sieradz/ (accessed on 15 December 2019).

Ponad 13 Mln zł na Geotermie w Tomaszowie! (Over PLN 13 Million for Geothermal Energy in Tomaszów!). Available online: http://www.tomaszow-maz.pl/aktualnosc/-ponad-13-mln-zl-na-geotermie-w-tomaszowie/ (accessed on 27 January 2020). (In Polish)

Geotermia—Zasana czy Kłopot? (Geothermal energy—Opportunity or Trouble?). Available online: https://mmpec.konin.pl/index.php/aktualnosci-jedna/geotermiaszansaczyklopot.html (accessed on 5 March 2020). (In Polish)

Jesionka, B. Impact of Flow Rate and Heating Power on the Thermal Conductivity of Solidified Borehole Grouts. *Appl. Therm. Eng.* 2012, 33, 34–42. [CrossRef]

Kepińska, B. Geothermal Energy Country Update Report from Poland, 2015–2019. In *Proceedings of the World Geothermal Congress 2020*, Reykjavik, Iceland, 26 April–2 May 2020. Available online: https://pangea.stanford.edu/ERE/db/IGAstandard/record_detail.php?id=29373 (accessed on 23 April 2021).

Hajto, M. United Nations Framework Classification of Geothermal Resources (UNFC-2009) against the Polish classification and methodology of geothermal resources assessment. *Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw.* 2016, 1, 129–142. Available online: https://min-pan.krakow.pl//wydawnictwo/wp-content/uploads/sites/4/2017/12/11-Hajto.pdf (accessed on 27 January 2020). (In Polish)

Sliwa, T.; Gonet, A.; Sapiński-Śliwa, A.; Złotkowski, A. Influence of graphite and diatomite in cement slurries. *Hutnicza w Krakowie (Geoenergetics Laboratory—10 years of activity at the AGH University of Science and Technology in Krakow).* Tech. Poszuk. Geol. Geoterm. Zrównoważony Rozw. 2016, 1, 141–163. (In Polish)

Sliwa, T.; Sowa, M.; Stryczek, S.; Sapiński-Śliwa, A.; Jaszczur, M.; Pycha, D. Influence of Flow Rate and Heating Power on the Thermal Conductivity Applied in Borehole Heat Exchangers. *J. Phys. Conf. Ser.* 2016, 745, 1–8. [CrossRef]

Lee, C.; Moonseo, P.; Min, S.; Kang, S.H.; Sohn, B.; Choi, H. Comparison of Effective Thermal Conductivity in Closed-Loop Vertical Ground Heat Exchangers. *Appl. Therm. Eng.* 2011, 31, 3669–3676. [CrossRef]

Sliwa, T.; Sowa, M.; Stryczek, S.; Gonet, A.; Zlotkowski, A.; Sapińska-Śliwa, A.; Knez, D. Badania stwardniałych zaczynów cementowych z dodatkiem grafitu (The study of hardened cement slurries with addition of graphite). *Wiert. Naft. Gaz* 2011, 28, 571–583. (In Polish)

Dealeux, F.; Py, X.; Olives, R.; Domínguez, R. Enhancement of geothermal borehole heat exchanger performances by improvement of bentonite grouts conductivity. *Appl. Therm. Eng.* 2012, 33–34, 92–99. [CrossRef]

Sliwa, T.; Kowalski, T.; Stryczek, S.; Wiśniowski, D.; Bieda, A.; Piwowarczyk, S.; Besłej, J.; Naklici, M.; Sapiński-Śliwa, A. The impact of graphite on the thermal conductivity of solidified grout. *AGH Drill. Oil Gas* 2017, 34, 811–820. [CrossRef]

Sapiński-Śliwa, A.; Sliwa, T.; Wiśniowski, R. Grafit i diatomit jako dodatki do zaczynów uszczelniających otworów w geotermii (Graphite and diatomite as additives for grouts for boreholes in geothermics). *Przem. Chem.* 2017, 96, 1723–1725. (In Polish) [CrossRef]

Sliwa, T.; Stryczek, S.; Wysoglad, T.; Skakuj, A.; Wiśniowski, R.; Sapiński-Śliwa, A.; Bieda, A.; Kowalski, T. Wpływ grafitu i diatomitu na parametry wytrzymałościowe stwardniałych zaczynów cementowych (Impact of graphite and diatomite on the strength parameters of hardened cement slurries). *Przem. Chem.* 2017, 96, 960–963. (In Polish) [CrossRef]

Shirazi, S.A.; Bernier, M. A small-scale experimental apparatus to study heat transfer in the vicinity of geothermal boresoles. *HVAC&R Res.* 2014, 20, 819–827.

Lamarche, L.; Beauchamp, B. New solutions for the short-time analysis of geothermal vertical boreholes. *Int. J. Heat Mass Transf.* 2007, 50, 1408–1419. [CrossRef]

Lamarche, L. Short-time analysis of vertical boreholes, new analytic solutions and choice of equivalent radius. *Int. J. Heat Mass Transf.* 2015, 91, 800–807. [CrossRef]
101. Nian, Y.L.; Cheng, W.L. Analytical g-function for vertical geothermal boreholes with effect of borehole heat capacity. *Appl. Therm. Eng.* **2018**, *140*, 733–744. [CrossRef]

102. Sliwa, T.; Sapińska-Śliwa, A.; Knez, D.; Bieda, A.; Kowalski, T.; Zlotkowski, A. *Borehole Heat Exchangers: Production and Storage of Heat in the Rock Mass*; Laboratory of Geoenergetics Book Series; Drilling, Oil and Gas Foundation: Krakow, Poland, 2016; Volume 2.

103. Sliwa, T.; Kruszewski, M.; Zare, A.; Assadi, M.; Sapińska-Śliwa, A. Potential application of vacuum insulated tubing for deep borehole heat exchangers. *Geothermics* **2018**, *75*, 58–67. [CrossRef]

104. Sliwa, T.; Sojczyńska, A.; Rosen, M.A.; Kowalski, T. Evaluation of temperature profiling quality in determining energy efficiencies of borehole heat exchangers. *Geothermics* **2019**, *78*, 129–137. [CrossRef]

105. Somerton, W.H. *Thermal Properties and Temperature–Related Behavior of Rock/Fluid Systems*, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1992.

106. Hermanns, M.; Ibanez, S. Thermal Response of Slender Geothermal Boreholes to Subannual Harmonic Excitations. *SIAM J. Appl. Math.* **2019**, *79*, 230–256. [CrossRef]

107. Barthel, P. Einsatz von Geoinformationssystemen (GIS) zur geologischen Standortbewertung, zur Analyse des regionalen Potentials und als Planungshilfsmittel für die thermische Nutzung des flachen Untergrundes bis 200 m Tiefe als Wärmequelle und Wärmespeicher in Unterfranken/Bayern. Ph.D. Thesis, Bayerischen Julius-Maximilians-Universität Würzburg, Würzburg, Germany, 2000. (In German).

108. Bieda, A.; Kowalski, T.; Sliwa, T.; Skowroński, D.; Kowalska-Kubisk, I.; Rado, R. Udarowo-obrotowa metoda wiercenia otworowych wymienników ciepła jako alternatywa wiertnicza przyjazna środowisku (Rotary-percussion drilling for borehole heat exchangers as an environmentally friendly drilling alternative). *Przem. Chem.* **2018**, *97*, 864–986. (In Polish) [CrossRef]

109. Sliwa, T.; Rosen, M.A. Efficiency analysis of borehole heat exchangers as grout varies via thermal response test simulations. *Geothermics* **2017**, *69*, 132–138. [CrossRef]

110. Sapińska-Śliwa, A. Efektywność Pozyskiwania Ciepła z Górotworu w Aspekcie Sposobu Udostępniania Otworami Wiertniczymi (Effectiveness of Heat Recovery from Rock Mass in the Context of the Production Method by Means of Boreholes); Rozprawy Monografie Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie nr 364; Wydawnictwa AGH: Krakow, Poland, 2019. (In Polish)

111. Sapińska-Śliwa, A.; Rosen, M.A.; Gonet, A.; Sliwa, T. Deep borehole heat exchangers—A conceptual and comparative review. *Int. J. Air-Cond. Refrig.* **2016**, *24*, 1–15. [CrossRef]

112. Sliwa, T.; Kotyza, J. Dobór optymalnego otworowego wymiennika ciepła w otworze Jachówka 2K do głębokości 2870 m (Selection of optimal construction of borehole heat exchangers based on Jachówka 2K well to a depth 2870 m). In *Metodyka i technologia uzyskiwania użytecznej energii geotermicznej z pojedynczego otworu wiertniczego* (Methodology and Technology of Obtaining Useful Geothermal Energy from a Single Borehole); Sokołowski, J., Ed.; Polgeotermia-IPA-IPPGSMiE PAN: Kraków, Poland, 2000. (In Polish)

113. Schneider, D.; Strotkóff, T.; Broßmann, E. Die 2800 m von Prenzlau oder die tiefste Erdwärmesonde der Welt. *Geotherm. Energ.* **1996**, *16*, 10–12. (In German)

114. Zagórski, J. Krótkie wieści z kraju i ze świata. Ilość wierczeń na świecie rośnie (Short news from the country and the world. The number of drillings in the world is increasing). *Wiad. Naft. Gazow.* **2018**, *10*, 240. (In Polish)