Granulocyte macrophage colony-stimulating factor-specific autoantibodies and cerebral nocardia with pulmonary alveolar proteinosis

Charlotte Berthoux1,2, Morgane Mailhe1,2, Frédéric Vély3,5, Clarisse Gauthier4, Jean-Louis Mège3, Jean-Christophe Lagier1,2, Cléa Melenotte1,2

1Aix-Marseille Univ, IRD, APHM, MEPHI, Marseille, France
2IHU-Méditerranée Infection, Marseille, France
3Assistance Publique des Hôpitaux de Marseille, Hôpitaux Conception et Timone, Service d'Immunologie, France
4Assistance Publique des Hôpitaux de Marseille, Hôpital Nord, Service de pneumologie et maladies respiratoires rares
5Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France

Corresponding author: melenottee@e.com

Cléa Melenotte (MD, PHD)
Institut Hospitalo-Universitaire Méditerranée Infection
19-21 boulevard Jean Moulin
13005 Marseille

Alternate corresponding author, Charlotte Berthoux: charlotte.berthoux@gmail.com

© The Author(s) 2020. Published by Oxford University Press on behalf of Infectious Diseases Society of America.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
We report here the history of a 40-year-old man with a primary cerebral abscess caused by *Nocardia abscessus* that led to the discovery of autoimmune pulmonary alveolar lipoproteinosis (anti-GM-CSF autoantibodies). Anti-GM-CSF autoantibodies promote immunodeficiency and should be monitored to prevent opportunistic and disseminated infections and to diagnose asymptomatic pulmonary alveolar lipoproteinosis.

In April 2018, a 40-year-old man, who was an active smoker (10 pack-years), consulted the hospital for subacute left brachiofacial deficit and headaches. He had no medical history. He previously worked as an order picker and reported a former professional exposure to dust. On admission, he presented with moderate left facial paralysis and left brachial deficit (4/5). Pulmonary auscultation was normal. A voluminous right parietal lesion compatible with a cerebral abscess was identified on cerebral imaging and quickly drained by neurosurgeons (Figure 1). The patient underwent a full body Computed Tomodensitometry (CT) scan, that did not show any secondary infectious focus but did identify an unexpected diffuse interstitial lung disease with “crazy paving” aspect (Figure 1). Further pulmonary examinations showed a restrictive ventilatory disorder with a decrease in vital capacity and 60% decrease in total pulmonary capacity, associated with a severe alteration of alveolocapillary diffusion (DLCO at 31%).

Per operative samples of surgical drainage showed partially necrotic polymuclear neutrophils in histopathology, with negative direct examination. Cultures returned positive after 72 hours for *Nocardia spp*. The MALDI-TOF technique was used to identify *Nocardia abscessus*. Molecular biology performed on abscess samples to eliminate other pathogens such as aspergillus, mycobacteria, candidas, cryptococcus, histoplasma and cysticercus was negative. Bronchoalveolar lavage (BAL) fluid was opalescent, microbiological culture and molecular biology searching for pneumocystis, aspergillus, mycobacteria, *Streptococcus*
pneumoniae, mycoplasma, Bordetella pertussis, as well as for cytomegalovirus, herpes simplex virus, enterovirus, rhinovirus, respiratory syncytial virus, metapneumovirus and influenza virus were negative as well. Histopathologic BAL analysis revealed extracellular periodic acid-Schiff staining (PAS)-positive material evocative of pulmonary alveolar lipoproteinosis. Less than 1% of lymphocytes were detected in the BAL fluid, with mainly T cells and an inverse CD4/CD8 ratio. Phenotypic and functional analyses of circulating lymphocytes did not reveal any obvious immunodeficiency: CD4+ T, CD8+ T, B and NK cell counts were normal, as were mitogen-induced T cell proliferation and Th1/Th2/Th17 cytokine production. Similarly, B cell function indicated by immunoglobulin production evaluation was normal. Anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies, evaluated by the functional method of TF1 cell line proliferation inhibition were highly positive in the serum (titer of 155), confirming the neutralizing power of antibodies and therefore the autoimmune origin of PAP.

The patient was treated with a combination of meropenem administered intravenously for 6 weeks and high dose of trimethoprim-sulfamethoxazole relayed per os (800/160 mg three times a day) from the 7th day; treatment was continued for one year and then replaced with a secondary prophylactic regimen with sulfamethoxazole-trimethoprim at 800/160 mg once a day (ongoing treatment). The patient clinically improved, with total neurological recuperation and total regression of the cerebral abscess on cerebral CT scan control imaging performed in October 2019. Primary pulmonary alveolar proteinosis was initially treated with dose escalation of recombinant GM-CSF (Sargramostim/LEUKINE) subcutaneous injection, at 500 µg per day. Despite excellent hematopoietic tolerance, recombinant GMCSF was not effective enough, as the patient presented three respiratory distress syndromes during the year, requiring hospitalization in intensive care units and whole lung lavages. Inefficient
LEUKINE treatment was interrupted and second-line Rituximab was initiated with good tolerance and clinical stabilization.

Here, we report the first case of *N. abscessus* cerebral infection with anti-GM-CSF autoantibodies and documented PAP (tables 1 & 2). In the literature, 3 cases of nocardial infection with anti-GM-CSF antibodies and documented PAP have been reported: 36 cases of PAP associated with nocardial infection without specifying the presence of anti-GM-CSF autoantibodies and 4 cases of nocardial infection with anti-GM-CSF autoantibodies without PAP were found (tables 1 & 2). These observations highlight the promotive role of anti-GM-CSF autoantibodies in the occurrence of these two diseases, nocardial infection and PAP.

PAP is mostly autoimmune (90% of cases), and in such cases, it is characterized by high level of anti-GM-CSF autoantibodies, whereas hereditary PAP results in mutations in genes encoding the GM-CSF receptor 7,9.

Secondary infection is the most common and threatening complication of PAP, occurring in 5-13% of cases and accounting for 10-20% of deaths 7. Patients with PAP are known to be more susceptible to bacterial, mycobacterial and fungal infections such as nocardiosis, mycobacteriosis, aspergillosis and cryptococcosis 7. The association between PAP and opportunistic infection has been reported since the first description of the disease in 1958 by Rosen et al., with 2 cases of cryptococcosis and 2 cases of nocardiosis among the 27 patients described 14. More recently, a review of opportunistic infections occurring in 75 patients with PAP found 43% positivity for *Nocardia spp.* infection, followed by mycobacterial and fungal infections representing 37% and 20% of the patients, respectively (table 1)11. Disseminated or meningeal cryptococcal infections have led investigations to identify the presence of anti-GM-CSF autoantibodies in patients without a history of PAP (Table 2)13. Similarly, by screening the serum of 7 patients presenting with central nervous system or disseminated nocardiosis, Rosen et al. detected anti-GM-CSF autoantibodies in 5
of the 7 samples. None of the patients had PAP initially, and 2 developed PAP during follow-up (table 2)\(^8\).

We decided to treat the patient with prolonged trimethoprim-sulfamethoxazole as a secondary prophylaxis because we considered the patient immunocompromised. In addition, whereas whole-lung lavage is still the gold standard for autoimmune PAP, subcutaneous and inhaled GM-CSF supplementations were reported to be beneficial \(^7\). In prospective studies, daily injection of GM-CSF was effective in 43\% to 75\% of patients at one year and 12 weeks, respectively. Additionally, inhaled GM-CSF presents several advantages: reduced cost, reduced side effects and 66\% efficiency at 3 years. Two clinical trials evaluating the effect of inhaled GM-CSF on PAP patients are ongoing: IMPALA and PAGE \(^7\). More recently, rituximab has been proposed as a therapeutic option for the treatment of autoimmune PAP with controversial results. Some series of patients treated with rituximab showed PaO\(_2\), pulmonary function test and chest CT scan lesion amelioration, whereas retrospective reports on 13 PAP patients did not support rituximab as a second-line therapy \(^7,17\). Plasmapheresis has not shown promising results, and few cases of lung transplantation to treat severe PAP have been reported \(^7\).

GM-CSF, a cytokine produced by T cells, B cells, macrophages, endothelial cells and fibroblasts, is involved in proinflammatory functions such as the differentiation, adhesion, chemotaxis, and activation of inflammatory and immune cells such as monocytes, macrophages, neutrophils, microglia and dendritic cells \(^2\). GM-CSF is also a hematopoietic growth factor that activates the proliferation of myeloid cells from bone marrow progenitors \(^2,20\). While overproduction of GM-CSF is associated with rheumatoid arthritis, multiple sclerosis, juvenile myelomonocytic leukemia and chronic myelomonocytic leukemia, GM-CSF deficiency induces a lack of maturation of alveolar macrophages and accumulation of surfactant in the alveolar space, leading to PAP \(^7\). Anti-GM-CSF antibodies neutralize and
clear GM-CSF in cases of PAP, which could induce an immune deficiency favoring opportunistic diseases \(^{10}\). Indeed, GM-CSF deficiency causes impaired antigen presentation, and reductions in dendritic cell numbers in nonlymphoid tissues, as well as in phagocytosis and bactericidal activities of neutrophils, promoting immunodeficiency \(^{10}\). Thus, the role of GM-CSF is not limited to the lungs and seems to be decisive in the host’s defense against pathogens, especially against opportunistic infections such as nocardia. On the basis of our experience and the research developed here, we therefore propose to test all patients with cerebral or disseminated nocardiosis for immunodeficiency with at least serum protein electrophoresis, immunophenotyping of circulating lymphocytes, presence and neutralizing activity of anti GM-CSF antibodies and chest CT scan to diagnose asymptomatic pulmonary alveolar lipoproteinosis.

In conclusion, the presence of anti-GM-CSF autoantibodies should be considered an underdiagnosed immunodeficiency. Systematic screening of these autoantibodies in patients with nocardial, fungal or mycobacterial infection will allow us to characterize this immunodeficiency and prevent the outbreak of disseminated infectious and pulmonary diseases.
Funding source:

URMITE, IHU Méditerranée Infection.

This work was supported by the French Government under the « Investissements d’avenir » (Investments for the Future) programme managed by the Agence Nationale de la Recherche (ANR, fr: National Agency for Research), (reference: Méditerranée Infection 10-IAHU-03).

This work was also supported by Région Provence-Alpes-Côte d’Azur and European funding FEDER PRIMMI (Fonds Européen de Développement Régional - Plateformes de Recherche et d’Innovation Mutualisées Méditerranée Infection).

No conflict of interest

Patient Consent Statement:

The patient’s written consent was obtained.

The design of the work has been approved by local ethical committees under the number of registration : 2016-024
1. Athayde RAB de, Arimura FE, Kairalla RA, Carvalho CRR, Baldi BG. Characterization and outcomes of pulmonary alveolar proteinosis in Brazil: a case series. *J Bras Pneumol.* 2018;44(3):231-236. doi:10.1590/S1806-3756201700000168

2. Becher B, Tugues S, Greter M. GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. *Immunity.* 2016;45(5):963-973. doi:10.1016/j.immuni.2016.10.026

3. Carrasco García de León S, González AH, Rivas NV, Gómez JJB. Brain abscess due to Nocardia infection in an immunocompetent patient with asymptomatic pulmonary alveolar proteinosis. *Acta Neurol Belg.* 2019;119(2):281-283. doi:10.1007/s13760-017-0815-6

4. Ekici S, Malur A, Thomassen MJ, Murray DL, Wylam ME. Utilization of LC-MS to Determine Monoclonal Gammopathy-Associated Granulocyte Macrophage Colony Stimulating Factor Antibody and Novel Treatment of Pulmonary Alveolar Proteinosis. *J Appl Lab Med.* 2020;5(2):394-400. doi:10.1093/jalm/jfz024

5. Garmilla Ezquerra P, Gómez Roman J, Garcia de la Fuente C, Nan Nan D. [Alveolar proteinosis in an immunocompetent patient with previous Legionella and Nocardia infections]. *Rev Clin Esp (Barc).* 2014;214(1):e1-3. doi:10.1016/j.rce.2013.08.010

6. Huang H, Lu Z, Xu Z. [A clinical analysis of 9 cases of pulmonary alveolar proteinosis with secondary infection]. *Zhonghua Nei Ke Za Zhi.* 2011;50(3):216-220.

7. Jouneau S, Ménard C, Lederlin M. Pulmonary alveolar proteinosis. *Respirology.* Published online May 3, 2020:resp.13831. doi:10.1111/resp.13831

8. Kuo C-Y, Wang S-Y, Shih H-P, et al. Disseminated Cryptococcosis Due to Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Absence of Pulmonary Alveolar Proteinosis. *J Clin Immunol.* 2017;37(2):143-152. doi:10.1007/s10875-016-0364-4

9. Nakata K, Sugi T, Kuroda K, et al. Validation of a new serum granulocyte-macrophage colony-stimulating factor autoantibody testing kit. *ERJ Open Res.* 2020;6(1). doi:10.1183/23120541.00259-2019

10. Piccoli L, Campo I, Fregni CS, et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. *Nat Commun.* 2015;6:7375. doi:10.1038/ncomms8375

11. Punatar AD, Kusne S, Blair JE, Seville MT, Vikram HR. Opportunistic infections in patients with pulmonary alveolar proteinosis. *J Infect.* 2012;65(2):173-179. doi:10.1016/j.jinf.2012.03.020

12. Rosen LB, Freeman AF, Yang LM, et al. Anti-GM-CSF autoantibodies in patients with cryptococcal meningitis. *J Immunol.* 2013;190(8):3959-3966. doi:10.4049/jimmunol.1202526

13. Rosen LB, Rocha Pereira N, Figueiredo C, et al. Nocardia-induced granulocyte macrophage colony-stimulating factor is neutralized by autoantibodies in
disseminated/extrapulmonary nocardiosis. *Clin Infect Dis.* 2015;60(7):1017-1025. doi:10.1093/cid/ciu968

14. Rosen SH, Castleman B, Liebow AA. Pulmonary alveolar proteinosis. *N Engl J Med.* 1958;258(23):1123-1142. doi:10.1056/NEJM195806052582301

15. Saijo T, Chen J, Chen SC-A, et al. Anti-granulocyte-macrophage colony-stimulating factor autoantibodies are a risk factor for central nervous system infection by *Cryptococcus* gattii in otherwise immunocompetent patients. *mBio.* 2014;5(2):e00912-00914. doi:10.1128/mBio.00912-14

16. Shirani K, Poulsen AN, Hakamifard A. Nocardial brain abscess in a patient with pulmonary alveolar proteinosis. *Adv Biomed Res.* 2015;4:185. doi:10.4103/2277-9175.164004

17. Soyez B, Borie R, Menard C, et al. Rituximab for auto-immune alveolar proteinosis, a real life cohort study. *Respir Res.* 2018;19(1):74. doi:10.1186/s12931-018-0780-5

18. Stevenson B, Bundell C, Mulrennan S, McLean-Tooke A, Murray R, Brusch A. The significance of anti-granulocyte-macrophage colony-stimulating factor antibodies in *cryptococcal* infection: case series and review of antibody testing. *Intern Med J.* 2019;49(11):1446-1450. doi:10.1111/imj.14637

19. Uchida K. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. *Blood.* 2003;103(3):1089-1098. doi:10.1182/blood-2003-05-1565

20. Uchida K, Beck DC, Yamamoto T, et al. GM-CSF autoantibodies and neutrophil dysfunction in pulmonary alveolar proteinosis. *N Engl J Med.* 2007;356(6):567-579. doi:10.1056/NEJMoa062505

21. Yamaguchi S, Takayanagi N, Tokunaga D, Sugita Y, Kawabata Y. [A case of pulmonary alveolar proteinosis which initially deteriorated rapidly with exacerbation of pulmonary nocardiosis, responded promptly to treatment of the pulmonary nocardiosis]. *Nihon Kokyuki Gakkai Zasshi.* 2010;48(8):580-583.
Figure 1. Cerebral and thoracic imaging of a 40-year-old man with cerebral nocardiosis and pulmonary alveolar proteinosis. **A-C.** Magnetic resonance imaging showing a voluminous cerebral parietal abscess. **D-E.** Thoracic CT scan showing diffuse and bilateral interstitial syndrome with thickening of the interlobular septa and a “crazy paving” aspect, which is classically found in pulmonary alveolar lipoproteinosis.
Table 1. Nocardiosis (cerebral and/or disseminated) associated with with Pulmonar Alveolar Proteinosis with or whithout anti GM-CSF autoantibodies

Number of patients / date/country	Age/sex	Infectious focus	Species	Anti GMCSF antibodies	Treatment	Evolution	Ref	
32 patients 1950 – 2010 Worldwide	65% male 35% female Mean age 35	75% pulmonar (n=24) 19% (n=6) cerebral 6% other (n=2)	N. asteroides 19 (59%) N. brasiliensis 1 (3%) N. farcinica 1 (3%) Nocardia spp. 11 (34%)	Not performed	Unspecified antibiotherapy (n=20) Surgery (n=6)	41% died	11	
1 patient 2010 Japan	37/male	Pulmonar	NA	Presence	NA	NA	21	
2 patients 1990 – 2010 China	NA	NA	NA	NA	NA	NA	6	
1 patient 2014 Spain	50/male	Pulmonar	N. farcinica	Not performed	Amikacin 6weeks and TMP-SMX 6 months	Full recovery	5	
1 patient 2015 Iran	42/male	Cerebral abscesses	N. asteroides	Not performed	TMP-SMX, meropenem and amikacin 2months, relayed TMP-SMX	No improvement	16	
1 patient 2017 Spain	49/male	Cerebral abscess	N. farcinica	Not performed	12 months of AMC and minocycline	Full recovery	3	
Patient	Year	Gender	Location	Manifestation	Pathogen	Treatment	Outcomes	Notes
---------	------	--------	----------	---------------	----------	-----------	----------	-------
1 patient 2002-2016 Brazil	NA	NA	Not performed	Adapted antibiotherapy (not specified)	Full recovery	1		
1 patient 2020 US	62/male	Pulmonar	N. brasiliensis	Presence	Amikacin 6 weeks and TMP-SMX 6 months	Full recovery	4	
1 patient 2018 France	40/male	Cerebral abscess	N. abscessus	Presence	Meropenem 6 weeks and TMP-SMX 12 months	Full recovery	Our case	

Abbreviations: AMC, amoxicillin/clavulanate; AmphoB, amphotericin B; CNS, central nervous system; FLC, fluconazole; GM-CSF, granulocyte macrophage colony-stimulating factor; IgG, immunoglobulin G; LP, lumbar puncture; MXF, moxifloxacin; NA, not available; PAP, pulmonary alveolar proteinosis; TMP-SMX, trimethoprim-sulfamethoxazole; 5-FC, 5-flucytosine.
Table 2. Reported cases of opportunistic infections associated with anti GMCSF autoantibodies without Pulmonary Alveolar Proteinosis

Infectious agent	Age/sex	Infection focus	Species	Anti GMCSF antibodies	Presence of PAP	Treatment	Outcome	Ref
Nocardiosis	1	44/male cerebral	*N. paucivorans*	Presence	Scanographic infiltrates but normal respiratory function tests, PAP diagnosis not retained	Amikacin and TMP-SMX 8weeks, TMP-SMX and linezolide 8 weeks, then TMP-SMX alone	Full recovery	13
	2	73/male cutaneous, pulmonary and subsequent cerebral nocardiosis -pulmonary aspergillosis	*Nocardia spp A. fumigatus*	Presence	No evidence of PAP	Imipenem amikacin voriconazole, then TMP-SMX, AMC, voriconazole per os + subcutaneous GMCSF	Neurologic relapse	
	3	61/male cerebral nocardiosis	*N. farcinica*	Presence	No evidence of PAP	Imipenem amikacin IV 8weeks and TMP-SMX and moxifloxacin	Neurologic relapse	
	Age	Sex	Diagnosis	Pathogen	Presence	Treatment	Outcome	
---	-----	-----	------------------------------------	-------------	----------	--	--------------------	
4	50	male	cerebral nocardiosis N. paucivorans	Presence	No evidence of PAP	12 months of TMP-SMX, imipenem, and moxifloxacin	Full recovery	
5	52	female	cerebral and pulmonary nocardiosis and disseminated cryptococcosis N. asteroides	Presence	No evidence of PAP	NA	NA	

Cryptococcus

	Age	Sex	Diagnosis	Pathogen	Presence	Treatment	Outcome		
1	49	female	meningitidis C. gattii	Presence	NA	NA	NA		
2	NA	female	meningitidis C. gattii	Presence	NA	NA	NA		
3	NA	female	meningitidis C. gattii	Presence	NA	NA	NA		
4	NA	male	meningitidis C. gattii	Presence	NA	NA	NA		
5	NA	female	meningitidis C. gattii	Presence	NA	NA	NA		
6	NA	female	meningitidis C. gattii	Presence	NA	NA	NA		
7	NA	male	meningitidis C. gattii	Presence	NA	NA	NA		
8	20	female	meningitidis C. neoformans	Presence	Develop PAP a year later	AmphoB + 5-FC, relayed by FLC	Full recovery		
	Age/sex	Diagnosis	Pathogen	Presence	Therapies	Course			
---	---------	-----------	----------	----------	-----------	--------			
9	31/female	Meningitis	*C. gattii*	Presence	NA	AmphoB + 5FC, relayed by FLC + 5FC	Full recovery		
10	48/male	Cryptococcal meningitis	*C. neoformans*	Presence	NA	AmphoB, relayed by FLC	Antifungal therapy	Full recovery	
11	47/male	Meningitis	*C. neoformans*	Presence	Develop asymptomatic PAP 4 years later	AmphoB + FLC, relayed by FLC	Full recovery		
12	26/male	Meningitis	*C. gattii*	Presence	NA	AmphoB + 5FC	Full recovery		
13	34/male	Meningitis	*C. gattii*	Presence	NA	AmphoB + 5FC + therapeutic LP	Sequelae		
14	32/male	Meningitis	*C. gattii*	Presence	NA	AmphoB + 5FC + therapeutic LP	Sequelae		
15	48/male	Pulmonary cryptococcoma, and subsequent cerebral cryptococcosis	*C. gattii*	Presence	Scanographic infiltrates but normal respiratory function tests, PAP diagnosis not retained	AmphoB + 5-FC, relayed by FLC	Full recovery		
	Patient No.	Age	Gender	Location of Infection	A.	Presence	NA	Therapy for Infection	Outcome
---	-------------	-----	--------	-----------------------	----	----------	----	-----------------------	---------
16	43/male	43	Male	Solitary cerebral abscess	C. gattii	Presence	NA	Surgically treated, amphoB + 5-FC, relayed by several triazoles	Full recovery
17	37/male	37	Male	Disseminated	NA	Presence	No evidence of PAP	AmphoB + 5FC + therapeutic LP	Death
18	40/male	40	Male	Disseminated	NA	Presence	No evidence of PAP	AmphoB + 5-FC, relayed by FLC	Severe sequelae
19	59/female	59	Female	Ocular	NA	Presence	No evidence of PAP	Intraoculaire amphoB relayed by voriconazole	Full recovery
20	37/male	37	Male	meningitidis	NA	Presence	No evidence of PAP	AmphoB + 5-FC 2 weeks, relayed by FLC	Full recovery

Abbreviations: AMC, amoxicillin/clavulanate; AmphoB: amphotericin B; CNS, central nervous system; FLC: fluconazole; GM-CSF, granulocyte macrophage colony-stimulating factor; IgG, immunoglobulin G; LP: lumbar puncture; MXF, moxifloxacin; NA: not available; PAP, pulmonary alveolar proteinosis; TMP-SMX, trimethoprim-sulfamethoxazole; 5-FC: 5-flucytosine.
