UPPER BOUNDS FOR THE DIAMETER OF A DIRECT POWER OF NON-ABELIAN SOLVABLE GROUPS

AZIZOLLAH AZAD AND NASIM KARIMI

Abstract. Let G be a finite group with a generating set A. By the (symmetric) diameter of G with respect to A we mean the maximum over $g \in G$ of the length of the shortest word in $(A \cup A^{-1})A$ expressing g. By the (symmetric) diameter of G we mean the maximum of (symmetric) diameter over all generating sets of G. Let $n \geq 1$, by G^n we mean the n-th direct power of G. For $n \geq 1$ and finite non-abelian solvable group G we find an upper bound, growing polynomially with respect to n, for the symmetric diameter and the diameter of G^n.

1. Introduction

Let G be a finite group with a generating set A. By the (symmetric) diameter of G with respect to A we mean the maximum over $g \in G$ of the length of the shortest word in $(A \cup A^{-1})A$ expressing g. Producing a bound for the (symmetric) diameter of a finite group is an important area of research in finite group theory. It is worth to mention to the Babai’s conjecture [3]: every non-abelian finite simple group G has diameter $\leq \log^k|G|$, where k is an absolute constant; the conjecture is still open, despite great progress towards a solution both for alternating groups and for groups of Lie type. Asymptotic estimate of the symmetric diameters of non-abelian simple groups with respect to various types of generating sets can be find in the survey [2], which also lists related work, e.g., on the diameters of permutation groups. Furthermore, the area has progressed a lot over the last few years (see for instance [8, 5, 9]). A more modest question is that of finding bounds for the diameter of direct products of finite groups, depending on the diameter of their factors. In this direction the papers [10, 6] in which produced upper bounds for the diameter of direct product of non-abelian simple groups are significant.

Let $n \geq 1$, by G^n we mean the n-th direct power of G. In [11] have been appeared the following question: How large can be the diameter of G^n with respect to any generating set? There have been proved that if G is abelian, then the diameter of G^n with respect to any generating set is $O(n)$ and if G is nilpotent, symmetric or dihedral, then there exist a generating set of minimum size which the diameter of
G^n with respect to this generating set is $O(n)$. In [6] have been proved that if G is a non-abelian simple group, then the diameter of G^n with respect to any generating set is $O(n^3)$.

Our main goal here is to present upper bounds for the diameter and the symmetric diameter of G^n, in which G is a non-abelian solvable group. In fact, we prove that if G is a non-abelian solvable group, then

$$D^s(G^n) \leq \frac{1}{4}(4n)^l |G|$$

and

$$D(G^n) \leq n^l |G| \prod_{i=0}^{l-2} (|G^{(i)}| + 1),$$

in which l is the length of derived series of G.

2. Preliminaries

Throughout the paper all groups are considered to be finite. The subset $A \subseteq G$ is a generating set of G, if every element of G can be expressed as a sequence of elements in A. By the rank of G, denoted by rank(G), we mean the cardinality of any of the smallest generating sets of G. By the length of a non identity element $g \in G$, with respect to A, we mean the minimum length of a sequence expressing g in terms of elements in A. Denote this parameter by $l_A g$. Similarly we define the symmetric length of a non identity element $g \in G$, with respect to A, to be the minimum length of a sequence expressing g in terms of elements in $A \cup A^{-1}$. Denote this parameter by $l^s_A g$.

Convention 2.1. We consider the (symmetric) length of identity to be zero, i.e. $l_A(1) = l^s_A(1) = 0$ for every generating set A.

Definition 2.2. Let G be a finite group with generating set A. By the diameter of G with respect to A we mean

$$\text{diam}(G, A) := \max\{l_A(g) : g \in G\}.$$ And by the symmetric diameter of G with respect to A we mean

$$\text{diam}^s(G, A) := \max\{l^s_A(g) : g \in G\}.$$

Notation 2.3. Let G be a finite group with a generating set A. Let S be a subset of G. Denote by $Ml_A(S)$ the maximum of $l_A(s)$ over all s in S. Note that $Ml_A(G) = \text{diam}(G, A)$.

\[a\] Usually $A \subseteq G$ is considered to be a generating set, if every element of G can be expressed as a sequence of elements in $A \cup A^{-1}$. When G is finite the definitions coincide.
Notation 2.4. Denote by \((D^s(G))\) the maximum (symmetric) diameter over all generating sets of \(G\).

The following theorem has been proved by Wiegold in [15].

Theorem 2.5. [15] Let \(G\) be a finite non-trivial solvable group, and set \(\text{rank}(G) = \alpha, \text{rank}(G/G') = \beta\). Then
\[
\text{rank}(G^n) = \beta n,
\]
for \(n \geq \alpha/\beta\).

Lemma 2.6. [14] Let \(G\) be a finite group and \(k\) be a positive integer. Then
\[
(1) \quad k \text{rank}(G/G') \leq \text{rank}(G^k) \leq k \text{rank}(G),
\]
where \(G'\) is the commutator subgroup of \(G\).

Corollary 2.7. Let \(G\) be a finite group. If \(\text{rank}(G) = \text{rank}(G/G')\), then the following equality holds:
\[
(2) \quad \text{rank}(G^n) = n \text{rank}(G).
\]
In particular, nilpotent groups satisfy this property.

Proof. The first statement is an immediate consequence of Lemma 2.6. We prove the second statement. Note that, if \(H\) is a homomorphic image of a finite group \(G\), then \(\text{rank}(H) \leq \text{rank}(G)\). Therefore, it is enough to show that \(\text{rank}(G) \leq \text{rank}(G/G')\) for every finite nilpotent group \(G\). Let \(A = \{g_1G', g_2G', \ldots, g_kG'\}\) be a generating set of \(G/G'\) of minimum size. Consider an arbitrary element \(g \in G\). There exist some \(i_1, i_2, \ldots, i_l \in \{1, 2, \ldots, k\}\) such that \(gG' = g_{i_1}g_{i_2} \ldots g_{i_l}G'\). This shows that \(G\) is generated by \(\{g_1, g_2, \ldots, g_k\}\) together with some elements in \(G'\). Because \(G\) is nilpotent, it is generated by \(\{g_1, g_2, \ldots, g_k\}\) alone, see [12] page 350. Therefore, \(\text{rank}(G) \leq \text{rank}(G/G')\), which completes the proof. \(\square\)

3. Main results

We start by presenting an upper bound for the symmetric diameter of a direct power of a non-abelian solvable group. Let \(G\) be a non-abelian solvable group. Since solvable groups have a derived series of finite length our strategy is to find a relation between the diameter of a solvable group and the diameter of its derived subgroup. For this we need to establish a relation between the generating sets of the group and the generating sets of its subgroups. The following lemma, well known as Schreier Lemma, gives a generating set for a subgroup of a group with respect to a generating
set of the whole group. The generators of the subgroup are usually called Schreier generators. Using Schreier generators we derive a relation between the diameter of a group and the diameter of its subgroup.

Definition 3.1. Let H be a subgroup of a group G. By a right transversal for G mod H, we mean a subset of G which intersects every right coset Hg in exactly one element.

Remark 3.2. Let G be a finite group with a generating set X and a normal subgroup H. It is easy to see that the set $HX = \{ Hx : x \in X \}$ is a generating set of G/H. Given an arbitrary element $Hg \in G/H$, Hg can be written as a product of at most $D(G/H)$ elements in XH. Hence, there exist $x_1, x_2, \ldots, x_{D(G/H)} \in X$ such that $gH = x_1Hx_2H \ldots x_{D(G/H)}H = x_1x_2 \ldots x_{D(G/H)}H$. It shows that there always exists a right transversal T for G mod H such that

$$Ml_X(T) \leq D(G/H), \ 1 \in T.$$

Lemma 3.3. $\{1\} \leq G = \langle X \rangle$ and let T be a right transversal for G mod H, with $1 \in T$. Then the set

$$\{ txt_{t_1}^{-1} | t, t_1 \in T, x \in X, txt_{t_1}^{-1} \in H \}$$

generates H.

Using Schreie’s Lemma leads to the following Lemma which is [4, Lemma 5.1].

Lemma 3.4. If $1 \neq N$, $N \triangleleft G$, then the following inequalities hold:

$$D^s(G) \leq 2D^s(G/N)D^s(N) + D^s(G/N) + D^s(N) \leq 4D^s(G/N)D^s(N).$$

Now we are ready to prove the first main theorem.

Theorem 3.5. If G is a non-abelian solvable group then

$$D^s(G^n) = \frac{1}{4}(4n)!|G|,$$

where l is the length of the derived series of G.

Proof. Let

$$\{1\} = G^{(l)} \triangleleft G^{(l-1)} \triangleleft \cdots \triangleleft G'' \triangleleft G' \triangleleft G$$

be the derived series of the group G. Since for $1 \leq i \leq l$ we have

$$(G^{(i)})^n = (G^n)^{(i)},$$

the series

$$\{1\} = (G^{(l)})^n \triangleleft (G^{(l-1)})^n \triangleleft \cdots \triangleleft (G'')^n \triangleleft (G')^n \triangleleft G^n$$

is the derived series of the group G^n. Using the second inequality in Lemma 3.4, the maximum of the diameter of the group G^n is bounded above by

\begin{equation}
4^{l-1} D^s(G^n/(G^n)) D^s((G')^n/(G'')^n) \cdots D^s((G^{(l-2)})^n/(G^{(l-1)})^n) D^s((G^{(l-1)})^n).
\end{equation}

Whereas, for $1 \leq i \leq l - 1$ we have

\begin{equation}
(G^{(i)})^n/(G^{(i+1)})^n \cong (G^{(i)}/G^{(i+1)})^n
\end{equation}

and the factors in a derived series are abelian, by [11, theorem 3.2] we get

\begin{equation}
D^s(G^{(i)})^n/(G^{(i+1)})^n \leq n |G^{(i)}/G^{(i+1)}| = n |G^{(i)}|/|G^{(i+1)}|
\end{equation}

for $1 \leq i \leq l - 1$ and

\begin{equation}
D^s((G^{(l)})^n) \leq n |G^{(l)}|.
\end{equation}

Substituting the inequalities (4) and (5) in (3), we get

\begin{equation}
D^s(G^n)^{1/4}(|G|^{1/4})\leq 2(|X|+1)(|X|+1)\ln|G|,
\end{equation}

which is the desired conclusion. \hfill \Box

In 2006, Babai and Seress has been presented a relation between diameter and symmetric diameter of a finite group (See [1, Corollary 2.2]). We apply this relation with the theorem 3.5 to find an upper bound for the diameter of G^n, where G is a p-group.

Lemma 3.6. Let G be a finite group and X be a set of generators. The diameter and the symmetric diameter are related as follows:

\begin{equation}
diam(G, X) \leq 2(\diam^s(G, X) + 1)(|X| + 1)\ln|G|.
\end{equation}

Proof. See [1, Corollary 2.2]. \hfill \Box

Theorem 3.7. Let G be a solvable group of derived length l and let A be a generating set of G^n of minimum size. Set rank(G) = α, rank(G/G') = β. The following inequality holds,

\begin{equation}
D(G^n, A) \leq 2(1/4)(4n)^l|G| + 1)(n\beta + 1)n \ln|G|,
\end{equation}

for $n \geq \alpha/\beta$. In particular, if G a p-group, then

\begin{equation}
D(G^n) \leq 2(1/4)(4n)^l|G| + 1)(n\beta + 1)n \ln|G|,
\end{equation}

for $n \geq 1$.\hfill \Box
Proof. By Lemma 3.6 we have,
\[\text{diam}(G^n, A) \leq 2(\text{diam}^s(G^n, A) + 1)(|A| + 1)n \ln |G|. \]
In addition, \(\text{diam}^s(G^n, A) \leq D^s(G^n) \) by definition. Now by using theorem 3.5 and Theorem 2.5 we get the desired conclusion. The second statement follows from these two facts: First, if \(G \) is a \(p \)-group then every minimal generating set is a generating set of minimum size, which follows from the Burnside’s Basis Theorem [7]. Second, by Corollary 2.7, if \(G \) is a nilpotent group (note that every \(p \)-group is nilpotent) then \(\text{rank}(G) = \text{rank}(G/G') \). □

Now we prove a non symmetric version of Shereier Lemma (Lemma 3.4). This Lemma is essential in the proof of our main theorem.

Lemma 3.8. Let \(G \) be a finite group with a generating set \(X \) and a normal subgroup \(H \). Let \(T \) be a right transversal of \(G/H \) such that
\[\text{ML}_X(T) \leq D(G/H), \ 1 \in T. \]
The following inequality holds:
\[\text{diam}(G, X) \leq D(G/H) + (D(G/H) + 1 + \text{ML}_X(\{t^{-1} \mid t \in T\}))D(H). \]
Furthermore, we have
\[D(G^n) \leq D(G^n/H^n) + (1 + |G|D(G^n/H^n))D(H^n). \]

Proof. Given \(g \in G \), we have \(g = ht \) for some \(h \in H \) and \(t \in T \). Hence
\[l_X(g) \leq l_X(t) + l_X(h). \]
Since \(\text{ML}_X(T) \leq D(G/H) \), then \(l_X(g) \leq D(G/H) + l_X(h) \). Using Lemma 3.3 we get \(l_X(h) \leq (D(G/H) + 1 + \text{ML}_X(\{t^{-1} \mid t \in T\}))D(H) \). Combining these two facts gives the upper bound in the first inequality. Now we prove the second statement. Let \(X' \) be a generating set of \(G^n \) and let \(T' \) be a right transversal of \(G^n/H^n \) such that
\[\text{ML}_{X'}(T') \leq D(G^n/H^n). \]
Proceeding as above for the case \(n = 1 \), it suffices to show that
\[\text{ML}_{X'}(\{t^{-1} \mid t \in T'\}) \leq (|G| - 1)D(G^n/H^n). \]
For given \(t \in T' \) we have
\[l_{X'}(t) \leq D(G^n/H^n). \]
Since
\[t^{-1} = t^{o(t)-1}, \]
then we obtain
\[l_{X'}(t^{-1}) \leq (o(t) - 1)l_{X'}(t). \]
Hence, we have

\[l_{X'}(t^{-1}) \leq (|G| - 1)D(G^n/H^n), \]

since

\[o(g) \leq |G|, \]

for every element \(g \in G^n \). The proof is complete. \(\square \)

Now we are ready to prove our main theorem.

Theorem 3.9. Let \(G \) be a non-abelian solvable group. Let

\[\{1\} = G^{(l)} \triangleleft G^{(l-1)} \triangleleft \ldots \triangleleft G'' \triangleleft G' \triangleleft G \]

be the derived series of \(G \). For \(n \geq 2 \), the following inequality holds:

\[D(G^n) \leq n^l|G| \prod_{i=0}^{l-2} (|G^{(i)}| + 1). \]

Proof. Since \((G^k)' = (G')^k\) for \(k \geq 1 \), then the derived series of \(G^n \) is

\[\{1\} = (G^{(l)})^n \triangleleft (G^{(l-1)})^n \triangleleft \ldots \triangleleft (G'')^n \triangleleft (G')^n \triangleleft G^n. \]

Applying Lemma 3.8 to the group \(G^n \) with the subgroup \((G')^n\) gives

\[D(G^n) \leq D(G^n/(G')^n) + 1 + |G|D(G^n/(G')^n)D((G')^n) \]

\[= D(G^n/(G')^n) + 1 + |G|D(G^n/(G')^n)D((G')^n) \]

\[\leq D(G^n/(G')^n)D((G')^n) + |G|D(G^n/(G')^n)D((G')^n) \]

\[= D(G^n/(G')^n)D((G')^n)(1 + |G|), \]

the second inequality follows from the fact that \(D(G^n/(G')^n), D((G')^n) > 1 \) and this is because the quotient group \(G/G' \) and the commutator subgroup \(G' \) are not trivial. By repeating the process for the other subgroups in the series (6) we have

\[D(G^n) \leq D(G^n/(G')^n)D((G')^n/(G''^n)) \ldots D((G^{(l-1)})^n) \prod_{i=0}^{l-2} (|G^{(i)}| + 1). \]

1 Since for every group \(G \) with a normal subgroup \(H \) we have \(G^n/H^n \cong (G/H)^n \), then

\[D(G^n) \leq D((G/G')^n)D((G'/G'')^n) \ldots D((G^{(l-1)})^n) \prod_{i=0}^{l-2} (|G^{(i)}| + 1). \]

All the quotient groups in the inequality (8) and the group \(G^{(l-1)} \) are abelian. On the other hand, for any abelian group \(A \) we have

\[D(A^n) \leq n(|A| - \text{rank}(A)) \leq n|A| \]
(see [11, theorem 3.2]). Then we get

\[D(G^n) \leq nD(G/G')D(G'/G'') \cdots \]

\[D(G^{(l-2)}/G^{(l-1)})D((G^{(l-1)}) \prod_{i=0}^{l-2}(|G^{(i)}| + 1)) \]

\[\leq n|G/G'||G'/G''| \cdots |G^{(l-2)}/G^{(l-1)}||G^{(l-1)}| \prod_{i=0}^{l-2}(|G^{(i)}| + 1) \]

\[= n|G| \prod_{i=0}^{l-2}(|G^{(i)}| + 1). \]

□

Note that the upper bound presented in theorem 3.7 is just satisfied for \(p \)-groups. While, the upper bound presented in theorem 3.9 not only is better, but also is satisfied for all non-abelian solvable groups.

As an example of a non-abelian solvable group which is also a 2-group we justify the upper bounds in theorems 3.7 and 3.9 for quaternion group \(Q_8 \). Let \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k \} \) be the quaternion group in which

\[i^2 = j^2 = k^2 = -1 \]

and

\[ij = k, jk = i, ki = j, ji = -k, kj = -i, ik = -j. \]

We have \(Q'_8 \cong Z_2 \) and \(Q_8/Q'_8 \cong Z_2 \times Z_2 \). The length of the derived series of \(Q_8 \) is 2. Hence, \(l = 2 \) and \(\beta = \text{rank}(Z_2 \times Z_2) = 2 \) in the notations of theorems 3.7 and 3.9. Therefore by theorem 3.7 we have

\[D(Q_8^n) \leq 2n(32n^2 + 1)(2n + 1)ln(8), \]

and by theorem 3.9 we have

\[D(Q_8^n) \leq 72n^2. \]

We now present a better upper bound for the diameter of the direct power of the quaternion group \(Q_8 \) by using Lemma 3.8 directly.

Example 3.10. For \(n \geq 1 \) we have \(D(Q_8^n) \leq 8n^2 + 3n. \)

Proof. Consider the normal subgroup \(H = \{1, -1\} \). Let \(X \) be a generating set of \(Q_8^n \). We have \(H^n \triangleleft Q_8^n \). Let \(T \) be a right transversal of \(Q_8^n \) mod \(H^n \) such that

\[1 \in T, \text{ML}_X(T \setminus \{1\}) \leq D(Q_8^n/H^n). \]

Using Lemma 3.8 we have

\[\text{diam}(Q_8^n, X) \leq D(Q_8^n/H^n) + (D(Q_8^n/H^n) + 1 + \text{ML}_X(\{t^{-1} | t \in T\}))D(H^n). \]
On the other hand, since $H \cong Z_2$, $Q_8/H \cong Z_2 \times Z_2$, we have
\begin{equation}
(9) \quad \text{diam}(Q_8^n, X) \leq 2n + (2n + 1 + ML_X(\{t^{-1} \mid t \in T\})n).
\end{equation}
Since for every $g \in Q_8^n$, $g^4 = 1$, for every $t \in T$, $t^{-1} = t^3$. Hence, the following inequality holds:
\[l_X(t^{-1}) \leq 3l_X(t) \leq 3D(Q_8^n/H^n) \leq 6n.\]
Substituting $6n$ for $ML_X(\{t^{-1} \mid t \in T\}$ in (9) we get
\[D(Q_8^n) \leq 8n^2 + 3n. \quad \square\]

4. ACKNOWLEDGMENTS

The second author wishes to thank the University of Arak, for the invitation and hospitality. And the International Science and Technology Interactions (ISTI) for financial support.

REFERENCES

1. L. Babai, On the diameter of Eulerian orientations of graphs, Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms (New York), ACM, 2006, pp. 822–831. MR 2368881
2. L. Babai, G. Hetyei, W.M. Kantor, A. Lubotsky, and A. Seress, On the diameter of finite groups, 31st Annual Symposium on Foundations of Computer Science I, II (1990), 857–865.
3. L. Babai and A. Seress, On the diameter of Cayley graphs of the symmetric group, J. Combin. Theory Ser. A 49 (1988), no. 1, 175–179. MR 957215
4. , On the diameter of permutation groups, European J. Combin. 13 (1992), no. 4, 231–243. MR 1179520 (93h:20001)
5. J. Bamberg, N. Gill, T. P. Hayes, H. A. Helfgott, A. Seress, and P. Spiga, Bounds on the diameter of Cayley graphs of the symmetric group, J. Algebraic Combin. 40 (2014), no. 1, 1–22. MR 3226815
6. D. Dona, The diameter of products of finite simple groups, ARS MATHEMATICA CONTEMPORANEA 22 (2022).
7. Jr. M. Hall, The theory of groups, Chelsea Publishing Co., New York, 1976, Reprinting of the 1968 edition. MR 0414669 (54 #2765)
8. H. A. Helfgott and A. Seress, On the diameter of permutation groups, ann. math. 179 (2014), no. 2, 611–658.
9. H. A. Helfgott, A. Seress, and A. Zuk, Random generators of the symmetric group, J. Algebra (2014), no. 421, 349–368.
10. H.A. Helfgott, Growth in linear algebraic groups and permutation groups: towards a unified perspective, C. M. Campbell, C. W. Parker, M. R. Quick, E. F. Robertson and C. M. Roney-Dougal (eds.), Groups St Andrews 2017 in Birmingham, Cambridge University Press, Cambridge, volume 455 of London Mathematical Society Lecture Note Series 455 (2019), 300–345.
11. N. Karimi, Diameter of a direct power of a finite group, Communications in Algebra 45 (2017), no. 11, 4869–4880.
12. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory: presentations of groups in terms of generators and relations, Dover publications, INC, New York, 1976.
13. A. Seress, *Permutation group algorithms*, Cambridge Tracts in Mathematics, vol. 152, Cambridge University Press, Cambridge, 2003. MR 1970241 (2004c:20008)

14. J. Wiegold, *Growth sequences of finite groups*, J. Austral. Math. Soc. 17 (1974), 133–141.

15. ____, *Growth sequences of finite groups. II*, J. Austral. Math. Soc. 20 (1975), no. part 2, 225–229. MR 0376856 (51 #13031)

Department of Mathematics, Faculty of Sciences Arak University, Arak, Iran.
Email address: a-azad@araku.ac.ir

Instituto de Matemática e estatística, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, Brasil
Email address: nasim@ime.uerj.br