The RNA helicase UPF1 associates with mRNAs co-transcriptionally and is required for the release of mRNAs from transcription sites

Anand K. Singh¹, Subhendu Roy Choudhury¹, Sandip De³¶, Jie Zhang², Stephen Kissane¹, Vibha Dwivedi¹, Preethi Ramanathan¹, Luisa Orsini¹, Daniel Hebenstreit² and Saverio Brogna¹*

¹. School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
². Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
¶. Present address: Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

Summary

UPF1 is an RNA helicase that is required for efficient nonsense-mediated mRNA decay (NMD) in eukaryotes, and the predominant view is that UPF1 mainly operates on the 3’UTRs of mRNAs that are directed for NMD in the cytoplasm. Here we offer evidence, obtained from Drosophila, that UPF1 constantly moves between the nucleus and cytoplasm and that it has multiple functions in the nucleus. It is associated, genome-wide, with nascent RNAs at most of the active Pol II transcription sites and at some Pol III-transcribed genes, as demonstrated microscopically on the polytene chromosomes of salivary gland and by ChIP-seq analysis in S2 cells. Intron recognition seems to interfere with association and translocation of UPF1 on nascent pre-mRNA transcripts, and cells depleted of UPF1 show defects in several nuclear processes essential to correct gene expression – most strikingly, the release of mRNAs from transcription sites and mRNA export from the nucleus.

*Corresponding author: s.brogna@bham.ac.uk

Running title: UPF1 also acts on nuclear RNAs

Key words: UPF1, NMD, transcription, splicing, mRNA export, RNA helicases, polytene chromosomes, Drosophila
Introduction

UPF1 (UP-Frameshift-1) is a universally conserved eukaryotic protein that was first identified in a *Saccharomyces cerevisiae* genetic screen for mutations that enhance up-frameshift tRNA suppression (Culbertson et al., 1980; Leeds et al., 1992), and gained other names – including *NAM7* (*S. cerevisiae*) and *SMG2* (*Caenorhabditis elegans*) – from other genetic screens (Altamura et al., 1992; Hodgkin et al., 1989; Pulak and Anderson, 1993). Cells that lack active UPF1, accumulate mRNAs with nonsense, frameshift or other mutant alleles that introduce a premature translation termination codon (PTC) (Leeds et al., 1991; Pulak and Anderson, 1993).

These observations are generally interpreted as evidence that UPF1 and related proteins are primarily required for nonsense-mediated mRNA decay (NMD), a conserved mRNA surveillance mechanism of eukaryotes that detects and destroys mRNAs at which translation terminates prematurely (Fatscher et al., 2015; He and Jacobson, 2015; Karousis et al., 2016; Kurosaki and Maquat, 2016). NMD is mainly regarded as a quality control mechanism that prevents cells from wastefully making truncated (and potentially toxic) proteins and that regulates the selective expression of specific mRNA isoforms during cell homeostasis and differentiation (Goetz and Wilkinson, 2017; Lykke-Andersen and Jensen, 2015).

Standard NMD models postulate that UPF1 monitors translation termination on ribosomes by interacting with a peptide release factor (eRF1 or eRF3). However, recent reports on mammalian translation systems have suggested, in contrast to earlier reports on other organisms (Czaplinski et al., 1998; Ivanov et al., 2008; Kashima et al., 2006; Keeling et al., 2004; Singh et al., 2008; Wang et al., 2001), that UPF1 does not bind to either of these. They suggested, instead, that UPF3B may contact release factors, slow the termination of translation and facilitate post-termination release of ribosomes – and so fulfil the termination monitoring role that has been assigned to UPF1 (Gao and Wilkinson, 2017; Muhlemann and Karousis, 2017; Neu-Yilik et al., 2017).
UPF1 is an ATP-driven helicase that unwinds RNA secondary structures and so can displace RNA-bound proteins (Bhattacharya et al., 2000; Chakrabarti et al., 2011; Czapinski et al., 1995; Fiorini et al., 2015). Its helicase activity is required for NMD, but how this helps to target particular transcripts for NMD is not clear (Brogna et al., 2016; Brogna and Wen, 2009). UPF1 is predominantly associated with 3’UTRs of cytoplasmic mRNAs and it might be selectively recruited to or activated on NMD targets with abnormally long 3’UTRs (Karousis et al., 2016; Kurosaki and Maquat, 2016). However, UPF1 appears to bind mRNAs fairly indiscriminately, whatever the position of their stop codon or PTC and whether or not they include NMD-inducing features such as an abnormally long 3’UTR or an exon junction downstream of the stop codon (Hogg and Goff, 2010; Hurt et al., 2013; Zund et al., 2013).

UPF1 is most abundant in the cytoplasm and its roles discussed above depend on ribosomal translation and occur on cytoplasmic mRNAs. However, UPF1 traffics in and out of the nucleus, it interacts with chromatin, it co-purifies with the catalytic subunits of DNA polymerase δ, and UPF1 depletion impairs DNA replication and telomere maintenance (Ajamian et al., 2015; Azzalin and Lingner, 2006; Azzalin et al., 2007; Carastro et al., 2002; Chawla et al., 2011; Mendell et al., 2002). Moreover, there is evidence that UPF1 might contribute directly to RNA processing, at least in specific instances, and is required for nuclear export of HIV-1 genomic RNAs in HeLa cells (Ajamian et al., 2015; Brogna et al., 2016; de Turris et al., 2011; Flury et al., 2014; Varsally and Brogna, 2012).

In the present study we show direct evidence that UPF1 is globally involved in the formation and nuclear processing of mRNAs in Drosophila. First, we demonstrate that UPF1 is a highly mobile protein that constantly shuttles between the nucleus and cytoplasm, and its distribution in the cell, with more in the cytoplasm than the nucleus, approximately reflects that of mRNA. UPF1 associates with nascent transcripts on chromosomes – mostly with Pol II transcripts, but also with some Pol III-transcribed genes – and more of the transcript-associated UPF1 is bound with exons than with introns, suggesting that 5’ splice sites might act as a roadblock to the 5’-to-3’ transit of
UPF1 along the pre-mRNA. Most strikingly, UPF1 is needed for the efficient release of polyadenylated mRNA from most chromosomal transcription sites and for its export from nuclei. These observations show that UPF1 starts scanning pre-mRNA transcripts whilst they are still being assembled in ribonucleoprotein (RNP) complexes on chromosomes and suggest that it fulfils previously unrecognised role(s) in facilitating nuclear processes of gene expression and mRNA export. The broad and dynamic association with mRNAs redefines UPF1 from being primarily an NMD-inducing factor to being a global player in mRNA processing in the nucleus as well as in the cytoplasm, and might also explain why none of the prevailing models satisfactorily explains how UPF1 could target specific transcript to NMD.
Results

Drosophila anti-UPF1 antibodies

To explore the functions of UPF1, we generated three monoclonal anti-peptide antibodies that target regions of Drosophila UPF1 outside the RNA helicase domain: one epitope in the N-terminal flanking regions (antibody 1C13 against Pep2), and two near the C-terminus (Ab 7D17 vs. Pep11; and Ab 7B12 vs. Pep12) (see Figure S1 and Supplementary Table S1). Each antibody detected UPF1 as a single band by Western blotting of Drosophila S2 cell extracts, with minimal cross-reactivity with other proteins, and also detected a second, larger band of the expected molecular mass in extracts from S2 cells that over-express UPF1-GFP (Figure 1A-1C; Figure S1). Unless otherwise indicated, antibody 7B12 was used in the experiments described below. As expected, UPF1 RNAi specifically reduced the amount of UPF1 in S2 cells (Figure 1B) without affecting the levels of several other proteins we tested as controls (Figure 1B).

UPF1 rapidly shuttles between nucleus and cytoplasm

We examined the subcellular localization of immunostained UPF1 in Drosophila salivary glands, which are made up of large secretory cells with polytene nuclei. UPF1 was most abundant in the cytoplasm and perinuclear region, and there was also distinct but less intense nuclear staining, mainly around the chromosomes (Figure 1D). Following cell fractionation of S2 cells, α-tubulin and RNA Pol II were, as expected, restricted to the cytoplasmic and nuclear fractions, respectively – and a small proportion of the UPF1 co-purified with nuclei whilst most was in the cytoplasmic fraction (Figure 1C).

Both cytoplasmic and nuclear UPF1 were also present in other larval tissues, with varying relative immunostaining intensities. Perinuclear and intra-nuclear UPF1 were more abundant in Malpighian tubules and gut (Figure S2). In enterocytes (EC), staining was similar in the cytoplasm and within the nucleus, and the most intense UPF1 signal was perinuclear (Figure S2B).
In salivary glands expressing UPF1-GFP (Figure S3A) the perinuclear signals co-localised with binding of wheat germ agglutinin (WGA) – a lectin that predominantly interacts with O-GlcNAc-modified nuclear pore proteins (Mizuguchi-Hata et al., 2013) – and this UPF1-GFP may be associated with components of the nuclear pore complex, as has been proposed for S. cerevisiae UPF1 (Nazarenus et al., 2005). It is noteworthy, unexplained though, that UPF1 RNAi reduced the perinuclear WGA binding in salivary glands (Figure 3SB); cells were also smaller, as would be predicted from its requirement in cell growth during Drosophila development (Metzstein and Krasnow, 2006).

Since UPF1 is present both in cytoplasm and nuclei, with the relative quantities varying between cell-types, we wondered how rapidly UPF1 shuttles between cell compartments. Such trafficking has been reported in HeLa cells, with UPF1 accumulating in the nuclei following treatment with leptomycin B (LMB) (Ajamian et al., 2015; Mendell et al., 2002); this drug selectively inhibits CRM1-mediated protein export from the nucleus in most eukaryotes (Fukuda et al., 1997).

We therefore explored the intracellular localization and dynamics of UPF1 in Drosophila salivary glands. Immunostained endogenous UPF1 and UPF1-GFP showed similar intracellular distributions, with an intense cytoplasmic signal and a weaker but still obvious signal in the regions occupied by chromosomes (Figure S4A: the cytoplasmic texture of the salivary cells in these confocal images reflects the fact that they are packed with secretory vesicles at this stage of larval development). In glands treated with LMB for 60 minutes most of the UPF1-GFP was within the nucleus but largely excluded from the nucleolus (Figure S4A, right panels), suggesting that UPF1 exit from the nucleus utilises a CRM1-dependent mechanism. This UPF1 redistribution was rapid in living glands: UPF1 was accumulating in the nucleus by the earliest time we could collect images (within ~5-6 min), and much of the cell’s UPF1 was in the nucleus within half an hour (Figure S4B).

Heat-shock caused a similar redistribution of much of UPF1 from cytoplasm to nucleus, and this was partially reversed when the tissue was returned to its initial
temperature (Figure S4C).

We next used two live cell imaging techniques – Fluorescence Loss in Photo-bleaching (FLIP) and Fluorescence Recovery after Photo-bleaching (FRAP) (Singh and Lakhotia, 2015) – to examine the mobility of UPF1-GFP in salivary gland cells. FLIP revealed that sustained photobleaching of a small area of the cytoplasm led, within the continuously illuminated area, to an initial rapid decrease in UPF1-GFP fluorescence followed by a continued slower reduction. Fluorescence also declined steadily both elsewhere in the cytoplasm, and, more slowly, within the nucleus (Figure 1E). These observations demonstrate ongoing diffusion of UPF1 throughout the cytoplasm, and that nuclear UPF1 can leave the nucleus and enter the photodepletable cytoplasmic UPF1 pool at a fairly steady rate.

The FRAP studies monitored the speed with which unbleached UPF1-GFP diffuses into and repopulates a photobleached region of the cytoplasm or nucleus. Almost all of the UPF1 in each cell compartment was rapidly mobile, and the halftime for repopulation of each bleached area was only a few seconds (Figure 1F).

These observations indicate that UPF1 is freely mobile within cell compartments and that it constantly moves in and out of the nucleus by mechanisms that include the CRM1-dependent nuclear protein export pathway.

UPF1 associates with transcribing regions of the chromosomes

To gain insight into the role(s) of UPF1 in the nucleus, we used immunostaining to examine whether it associates with the polytene chromosomes of *Drosophila* salivary glands. These well-characterised giant interphase chromosomes are formed after multiple rounds of endoreplication without chromosomal segregation, and they provide a powerful system in which to visualise transcription and pre-mRNA processing at individual gene loci.

UPF1 was present predominantly at interbands and puffs: cytologically distinct chromosome regions in which the chromatin is less condensed and that correspond to transcriptionally active sites (Figure 2A). The immunofluorescence signal appears to
be specific, as: a) UPF1-RNAi drastically depletes the endogenous UPF1 chromosomal signal (Figures S5A and S5B); and b) transgenically over-expressed UPF1-GFP, detected either by its fluorescence or with an anti-GFP antibody, shows a similar banding pattern at the chromosomes (Figure S5C).

We then undertook double immunostaining of chromosomes for UPF1 and for Ser2 Pol II – the form of Pol II that transcribes through the main body of genes which is characterised by having the C-terminal domain (CTD) of its largest subunit Ser2-phosphorylated (Boehm et al., 2003). Much of the UPF1 co-localized with Ser2 Pol II, as would be expected from this type of banding pattern (Figure S6A).

The association of UPF1 with the chromosomes depends on transcription. This is illustrated by the changes in UPF1 immunostaining that followed heat-shock, which induces transcription at specific cytological puffs encoding heat-shock proteins and of hsrω lncRNAs at locus 93D (Lakhotia et al., 2012). This revealed a pattern of UPF1 association at heat shock puffs and of detachment from most other transcription sites (Figure 2B). UPF1 was recruited to activated heat-shock genes that contained (33B, 63B, 64F, 67B, 70A and 93D) or lacked (87A, 87C and 95D) introns (Figure 2B).

These observations suggested that UPF1 associates with genes that are being transcribed. UPF1 was also recruited to other genes following transcription activation, such as an ecdysone-inducible transgene (S136 at chromosomal position 63B) at normal temperature (Choudhury et al., 2016). No UPF1 was found at this locus while it is inactive, but when ecdysone activated the transgene it produced a cytologically distinguishable transcription puff with which UPF1 was associated (Figure 2C).

UPF1 mainly associates with Pol II sites that are undergoing transcription and depends on the nascent transcript

We examined the association of UPF1 and of Ser2 Pol II with multiple gene loci by chromatin immunoprecipitation (ChIP) of S2 cell extracts, followed by high-throughput DNA sequencing (ChIP-Seq). UPF1 was associated with many transcriptionally active genes, most of which are Pol II transcription sites. Figure 3A
shows enrichment profiles of UPF1 and of Ser2 Pol II across a representative chromosome region. *Actin5C* provided a striking example of correspondence between the ChIP-seq and polytene immunostaining results: it was one of the most UPF1-enriched genes in the ChIP-seq data (Table S2, Figure S9 shows the UPF1 ChIP-seq profile of *Actin5C*) and displayed one of the brightest UPF1 chromosomal signals at the gene locus corresponding to interband 5C on the X chromosome (Figure 2A). The ChIP-seq data also show UPF1 association with a few Pol III genes (Table S2, to be discussed later).

The enrichment profile of UPF1 at Pol II loci closely followed that of Ser2 Pol II, and UPF1 enrichment was greatest at highly expressed genes (Figure 3A; and Figure S8A and S9 show additional examples of UPF1-enriched genes). There was a close correlation between UPF1 and Ser2 Pol II ChIP-seq signals, and also between these and mRNA levels (Figure 3B and 3C). Real-time PCR was used to validate the ChIP-seq data at several genes, both in S2 cells and salivary glands (Figure S7; and other examples are shown below). UPF1-RNAi drastically reduced the UPF1 enrichment at transcription sites, both confirming the specificity of the antibody and validating the ChIP protocol (Fig S7C).

A metagene analysis of the ChIP-seq data shows that UPF1 is associated with genes, and particularly with highly expressed genes (blue trace), throughout their transcription units (Figure 3D) whereas Ser2 Pol II typically shows higher loading around transcription start sites (TSS) – as previously reported in *Drosophila* and other organisms (Adelman and Lis, 2012; Muse et al., 2007). Typically, therefore, most gene-associated UPF1 was further downstream than the TSS-proximal Ser2 Pol II peak, especially at highly expressed genes (Figure 3E: striking examples of this pattern are the *Su(z)2* and *Psc* genes (Figure 3A) and the *α-Tub84B* gene (Figure S8A).

A comparison of the UPF1 loading of genes with different Ser2 Pol II loading profiles suggests that UPF1 association depends on transcription elongation: UPF1 did not associate with genes at which Ser2 Pol II was associated only with the TSS pausing site and which were not being actively transcribed (*e.g.* *Adam TS-A*, panel 5 in Figure
The association of UPF1 with Pol II transcription sites is partially sensitive to RNase treatment, suggesting that UPF1 loads onto nascent RNA. This was apparent both for immunostained UPF1 on polytene chromosomes (Figure S6B and C) and when assayed by ChIP at specific genes by qPCR in S2 cells (Figure S7D). UPF1 association was, though, less sensitive to RNase treatment than that of the RNA binding protein hnRNPA1 (Figure S6B-C), which is almost all detached following the same RNase treatment. Some of UPF1 co-purifies with Ser2 Pol II in a standard immunoprecipitation of S2 cell nuclear extracts, the interaction is similarly sensitive to RNase treatment though (Figure S7E): less than that of hnRNPA1, but comparable to that of eIF4AIII, one of the exon junction complex (EJC) proteins that are loaded onto nascent RNAs (Choudhury et al., 2016).

We also examined the effect on salivary glands of 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a drug that blocks Pol II transcription by inhibiting Ser2 phosphorylation (Bensaude, 2011). In the presence of DRB, unphosphorylated Pol II (Pol II) initiates transcription but does not engage in productive elongation as this would require Ser2-phosphorylated Pol II (Ser2 Pol II) (Adelman and Lis, 2012). DRB treatment left interbands and puffs cytologically unaffected, as expected, but it markedly reduced the amount of UPF1 associated with gene loci (Figure S6D-E), providing further evidence that transcript elongation into the body of the gene is needed for this association to occur. DRB also reduced the association of UPF1 and Ser2 Pol II with genes, such as the highly expressed RpL23A, in S2 cells (Figure 3F).

UPF1 at Pol III transcription sites

UPF1 was found mainly at Pol II transcription sites, most of which are protein-coding genes, but our ChIP-seq data also revealed it at a minority of Pol III genes. The latter included 7SK and both paralogous genes of 7SL snRNAs (Figure S8B) – but not, for example, the much more numerous Pol III-transcribed tRNA genes (Figure S8C, Table S2).
Intron recognition interferes with UPF1 association with nascent transcripts

UPF1 was recruited both to intron-containing and intronless genes that were undergoing transcription (Figure S9A, and see also the earlier discussion of heat-shock gene activation), so recruitment did not depend on pre-mRNA splicing. Within intron-containing genes, however, more UPF1 was associated with exons than with introns – as can be seen in the ChIP-seq profiles of highly UPF1-enriched genes such as Xrp1 (Figure 4A; and Figure S9 shows other examples of genes displaying this pattern).

This exon-biased UPF1 enrichment was confirmed by real time PCR in multiple ChIP experiments (Figure 4B); and it is genome-wide, as demonstrated by comparing UPF1 association with introns and with their flanking exons in the ChIP-seq data from many genes (Figure 4C, UPF1 enrichment is significantly higher for both the left (P = 6.737e-8) and the right flanking exon (2.391e-9); for details of how we corrected for possible bias in chromatin fragmentation or sequencing coverage, see Methods). This pattern is made visually apparent by plotting normalized enrichment in exons and introns, each scaled as a percentage of their full length (Figure 4D), and by comparing the density plots of normalised UPF1 enrichment values in introns and flanking exons, which show more values that are enriched in exons than introns (Fig 4E, compare red and yellow lines vs. the blue line in the right half of the graph).

The lower frequency with which UPF1 associated with introns suggested that some features of unspliced transcripts must interfere with the UPF1 interaction. We hypothesised that 5’ splice sites (5’ss) at the starts of introns, where the initial U1 snRNP spliceosome complex would bind, might act as road-blocks to UPF1 translocation along nascent pre-mRNAs and that removal of U1 might allow UPF1 to move on through the intron (Figure 4G). We therefore used ChIP in S2 cells to compare the enrichment of UPF1 at exons and introns in the Xrp1 gene in cells that had been depleted either of the U1 snRNP protein U1-70K or of Y14 or eIF4III (two of the EJC proteins that bind the nascent pre-mRNA but are not likely to play a direct splicing role in Drosophila; see (Choudhury et al., 2016)). The normal bias towards
UPF1-exon association in Xrp1 transcripts was abolished in the U1-70K-depleted cells but persisted in cells depleted of eIF4AIII or Y14 (Figure 4F).

Moreover, genes with the most marked exon-biased UPF1 enrichment, such as Xrp1, are efficiently co-transcriptionally spliced (see the Nascent RNA-seq profile in Figure 4A), whereas genes with no detectable exon-biased UPF1 enrichment, such as CG5059, are poorly co-transcriptionally spliced (Figure S9C) and are typically expressed at low levels, as reported (Khodor et al., 2011). It seems therefore, that intron recognition interferes with the association of UPF1 with the unspliced nascent transcript.

Pol II tends to stall near Transcription Start Sites (TSSs) in UPF1-depleted cells

We next determined whether the availability of UPF1 influences the relative amounts of unphosphorylated Pol II and Ser2 Pol II that associate with genes in S2 cells.

Both unphosphorylated and, to a lesser extent, Ser2-phosphorylated Pol II were most frequently associated with the start of genes (Figure 5A-5D). Its loading peaked 20 to 60 nucleotides downstream of the TSS (as shown in the expanded depiction in Figure 5B that is based on many more genes), at a position that corresponds to the average distance from TSSs to Pol II pausing sites (Adelman and Lis, 2012). Significantly more unphosphorylated Pol II accumulated there in cells depleted of UPF1 ($P = 0.011$; light blue line in Figure 5B, based on quantifying the aggregate Pol II signal over a +/- 100bp span at each of 25440 TSSs): many TSSs showed a 1.2-fold or greater increase in the UPF1-depleted cells (Table S3). Conversely, the amount of Ser2 Pol II associated with these TSSs was unchanged or marginally reduced in UPF1-depleted cells (Figure 5C-5D).

The increase in unphosphorylated Pol II loading downstream of the TSS in UPF1-depleted cells, alongside fairly constant Ser2 Pol II loading, is illustrated here by Xrp1 and RpS3A (Figure 5E), two genes that are highly transcribed and show strong UPF1 association (Figure 4A, Table S2).
We also assessed transcription by monitoring the repopulation of genes by newly phosphorylated Ser2 Pol II following the withdrawal of DRB treatment. As expected, DRB treatment of S2 cells led to a drastic depletion of Ser2 Pol II and accumulation of unphosphorylated Pol II in cell extracts (Figure 5F, compare Control lanes 9 and 10 with DRB-treated lanes 1 and 2). Ser2 Pol II levels began to recover soon after DRB removal, and were similar to those of untreated control cells within 10 minutes (Figure 5F, compare lanes 7-8 with control lanes 9-10). However, this recovery seemed slower in the UPF1-depleted cells (Figure 5F, compare lanes 3 vs. 4 and 5 vs. 6). A similarly blunted recovery of gene-associated Ser2 Pol II in UPF1-depleted cells was detected by ChIP at the two gene loci (Socs36E and Xrp1) that were assayed by real-time PCR (Figure 5G).

Comparable genome-wide observations were made using polytene chromosome spreads. There were no obvious changes in Ser2 Pol II distribution when UPF1 was simply depleted (Figure S10A). When, though, UPF1 was depleted and the glands were also DRB treated, there was then a delay in the recovery of the Ser2 Pol II signal when DRB was removed (Figures S10B, S10C).

Cumulatively, these observations suggest that UPF1 might, by associating with nascent transcripts, influence the phosphorylation of Pol II and hence the transcription of some genes.

UPF1 depletion leads to nuclear mRNA retention

We also assessed whether depleting UPF1 in the salivary gland cells of 3rd instar larvae would have any effect on mRNA release from transcription sites and its subsequent processing and export from the nucleus.

First we examined the overall cellular distribution of poly(A) RNA – which is referred to from here on simply as poly(A) – by oligo(dT) FISH (fluorescence *in situ* hybridization): this should detect mRNA that has been transcribed, spliced, released from Pol II and polyadenylated. In wild-type cells poly(A) was abundant and fairly evenly distributed throughout the cytoplasm, as would be expected for mature mRNA.
and there was little in the nuclei (Figure 6A). By contrast, the nuclei of UPF1-depleted cells retained a substantial amount of poly(A), and the cells appeared to contain less cytoplasmic poly(A) than wild-type cells. Much of the nuclear-retained poly(A) in the UPF1-depleted cells formed large cluster(s) in inter-chromosomal spaces (Figure 6A) that seemed neither to be linked to or in the proximity of any specific chromosomal region(s) or defined transcription site(s).

An appreciable amount of poly(A) signal, which was not within clusters, was clearly at the chromosomes though, in the UPF1-depleted cells (Figure 6A, panels III and VI). We therefore used oligo(dT) FISH on polytene chromosome spreads to compare wild-type and UPF1-depleted cells and to assess whether there is retention of poly(A) near transcription sites. There was little poly(A) associated with most of the wild-type chromosomes. However, a few interbands – such as 2C at the distal end of the X chromosome (Figure 6B) – showed clear poly(A) signals (Figure 6B, left panel), suggesting that some completed mRNAs that have been cleaved and polyadenylated remain associated, at least briefly, with transcription sites. Additionally, since UPF1 was obviously not associated with 2C (see Figure 2A), the poly(A) accumulation at 2C in wild-type cells may be a consequence of UPF1 not being normally associated with this transcription site.

Both the number of transcriptional sites showing poly(A) accumulation and the amount of poly(A)RNA associated with these sites were strikingly increased in UPF1-depleted cells (Figure 6B, right panel). For example, there was no visible poly(A) accumulation at site 5C, which corresponds to the highly transcribed Actin5C gene, in wild-type, but this band was obviously fluorescent in UPF1-depleted cells. Another example was site 2B – where constitutively expressed sta and rush are probably the most active genes at this larval stage – which showed a faint poly(A) signal in wild-type glands and a strong signal in UPF1-depleted cells. UPF1 was clearly associated with these transcription sites (2B and 5C) on polytene chromosomes (Fig 2A) and in S2 cells (as detected by ChIP; see Table S2 and Figure S9 for the UPF1 profile of Actin5C).
Cumulatively, these data make it clear that UPF1 plays important role(s) both in the release of mRNAs from transcription sites and in their transport out of the nucleus (Figure 6C shows a cartoon of a transcription site of either a wild-type or UPF1 depleted cell with or without mRNA retention).
Discussion

The RNA helicase UPF1 is usually most abundant in the cytoplasm and is mainly discussed in relation to NMD, leading to the common assumption that it acts mainly on mRNPs that have been exported from the nucleus. In contrast, we present evidence that UPF1 moves constantly within and between cell compartments, that it interacts with mRNA both in the nucleus and the cytoplasm, and that it starts its mRNA association(s) at transcription sites, cotranscriptionally and before pre-mRNA processing is complete.

Within the nucleus we found UPF1 associated with many actively transcribing Pol II sites, to which it seems mainly to be recruited by an interaction with nascent pre-mRNA. More of this transcript-tethered UPF1 is associated with exons than with the introns that separate them. However, this distinction is lost in cells depleted of the spliceosome component U1 snRNP, suggesting that when U1 snRNP is bound to the 5’ss of an intron at the initial stage of splicing, it may hinder UPF1 translocation along the pre-mRNA and cause it to dissociate. It is conceivable that this scanning of pre-mRNAs by UPF1 might influence splice site recognition and pre-mRNA splicing in a manner consistent with reported observations that UPF1 depletion provokes changes in the relative concentrations of many alternatively spliced transcripts in S2 cells (Brooks et al., 2015) – and with the model offered in Figure 4G.

Simple affinity of UPF1 for RNA is not likely to be the primary reason why UPF1 associates with some nascent transcripts, for several reasons: UPF1 does not associate with some highly transcribed Pol II genes, such as spliceosomal snRNAs; nor with snRNA U6 or other highly active Pol III genes; nor with rRNA genes transcribed by Pol I; there would be no differential affinity for introns vs. exons within a transcript; and UPF1 appears to be excluded from the nucleolus, including its RNA-packed centre where rRNA genes are transcribed (McLeod et al., 2014). What features of some nascent transcripts, most often of Pol II-transcribed genes, dictate that UPF1 becomes associated with them remain to be determined. One obvious candidate would be the 7-methylguanosine (m7G) cap that is added co-transcriptionally to the 5’ end of
pre-mRNAs but not to Pol I and Pol III transcripts (Ghosh and Lima, 2010). Since the m7G caps added to snRNAs and other small non-mRNA Pol II transcripts are further modified though by hypermethylation to generate 2',2,7-trimethylguanosine (m(3)G) structures (Mouaikel et al., 2002), it might explain why these classes of transcripts are not UPF1-associated.

The association of UPF1 with nascent transcripts seems to be dynamic, and its putative 5’-to-3’ scanning along RNA seems likely to be fast and, at least on intron-containing pre-mRNA, discontinuous. This pattern also suggests that when it encounters a steric block that cannot be removed UPF1 must be capable of quickly dissociating and re-loading elsewhere on the transcript. In vitro, UPF1 can translocate along RNAs over long distances – but only at a maximum scanning velocity of ~80 base/min (Fiorini et al., 2015), which is much slower than the 2-3 kb/min of Pol II (Fiorini et al., 2015; Fukaya et al., 2017); possibly UPF1 translocates faster in vivo. We did not detect any major impairment of Pol II transcription in UPF1-depleted cells, but Pol II pausing downstream of the TSS was more apparent at some genes – for example, at Xrp1, a strikingly UPF1-associated gene. And transcription appears to recover more slowly from DRB inhibition in UPF1-depleted cells.

The most striking effects of UPF1 depletion were retention of poly(A) RNA at transcription sites and then its failure to be exported effectively from the nucleus. Completed mRNA transcripts that have been cleaved and polyadenylated are normally expected to be speedily released from transcription sites, but our data show that this is not always the case. We have both: a) identified some sites on polytene chromosomes that apparently accumulate poly(A) RNA even in wild-type glands; and b) shown that most of the active Pol II genes accumulate poly(A) RNA in UPF1-depleted glands. Poly(A) RNA accumulation in UPF1-depleted cells is most marked at genes with which UPF1 associates strongly in wild-type, such as Actin5C (as shown both microscopically and by ChIP-seq). Conversely, those few transcription sites at which poly(A) accumulates even in wild-type cells, may not normally be associated with UPF1, a striking example is transcription site 2C on the polytene chromosomes, which
showed the most apparent poly(A) accumulation but no obvious UPF1 association.

Evidence of retention of poly(A) and specific mRNAs in discrete nuclear foci or “dots” has previously been reported in cells defective in RNA processing, initially in mRNA export and processing mutants in yeast (Jensen et al., 2001). But whether these foci corresponded to intranuclear mRNP aggregates at sites adjacent to rather than at transcription sites is not clear – and so far these nuclear poly(A) foci have only been reported in cells in which one of several RNA processing reactions are impaired (Abruzzi et al., 2006; Paul and Montpetit, 2016). Whether the previously described “dots” correspond to the poly(A) clusters that accumulate in the inter-chromosomal spaces of UPF1-depleted nuclei and/or to accumulations of poly(A) at transcription sites, which we identified here, remains to be determined.

In summary, our results indicate that UPF1 plays an important genome-wide role in nuclear processes of mRNA formation and in their release from transcription sites and export to the cytoplasm, at least in Drosophila. Possibly, in the absence of UPF1 function mRNPs acquire or remain in native conformations that hinder their release from the chromosome and make them prone to aggregation and hence nuclear retention. This global role could explain better than NMD why UPF1 is universally conserved in eukaryotes and why its depletion noticeably affects the expression of a large fraction of the genome.
Materials and Methods

Antibodies

These antibodies were used for immunostaining: mouse anti-UPF1 (described in this paper 7B12, typically diluted 1:100), mouse IgM anti-Ser2 Pol II (H5, Covance AB_10143905, 1:500), mouse anti-hnRNPA1 (Hrb87F, P11, 1:50)(Hovemann et al., 1991), mouse anti-GFP (B-2, Santa Cruz, SC-9996, 1:200), Tetramethylrhodamine Conjugate Wheat Germ Agglutinin (Thermo Fisher, W7024, 10µg/mL). The antibodies were used in Western blotting: mouse anti-UPF1 (7B12, 1:1000), mouse anti-α-tubulin (Sigma- Aldrich, T5168, 1:2500), rat anti-Ser2 Pol II (3E10, Merck Millipore, 04-1571, 1:5000), mouse anti-Rpb1 (7G5, 1:5000)(Conic et al., 2018); mouse anti-hnRNPA1 (1:200), rabbit anti-eIF4AIII (1:1000), rabbit anti-Y14 (1:1000); the last two antibodies were described previously (Choudhury et al., 2016). The antibodies used in ChIP are mouse anti-UPF1 (7B12, see below, 5-10 µg), rabbit anti-Ser2 Pol II (Abcam, ab5095, 5 µg), mouse anti-Pol II (8WG16, Abcam, ab817, 5µg) and mouse anti-GFP (B-2, Santa Cruz, 5 µg).

Drosophila Stocks

Flies were reared in standard corn meal fly food media at 24°C. The yw strain was used as wild type. UAS-UPF1-RNAi (43144) and UAS-GFP-UPF1 (24623) were obtained from the Bloomington stock centre. The forkhead (Fkh) Gal4 has a salivary gland specific expression from early stage of development (Henderson and Andrew, 2000). The transgenes expressing the lacO-tagged and ecdysone inducible S136 construct was described before (Choudhury et al., 2016).

Cell culture and RNA interference

S2 cells were cultured in Insect–XPRESS media (Lonza) supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin-Glutamine mix (P/S/G, Invitrogen) at 27°C. To make the RNAi constructs for UPF1, eIF4AIII, Y14 and snRNPU1-70k mRNA, the specific sequences were PCR amplified from S2 cell genomic DNA by using corresponding primer pairs (Table S4). Along with the desired
gene sequence, all these primer pairs carried the T7 promoter sequence (in bold) at their 5’ end (5’-TTAATACGACTCACTATAGGGGAGA-3’). The amplified PCR fragments were purified using Monarch® PCR and DNA Cleanup Kit (T1030S, NEB) and dsRNA was synthesized using the T7 RiboMAX express RNAi system (P1700, Promega). To induce RNAi, a six-well culture dish was seeded with 10^6 cells/well in serum-free media and mixed with 15 µg of dsRNA/well. Following 1 hr incubation at RT, 2 mL of complete media was added to each well and the cells were incubated for the next three days to knockdown the corresponding RNA and then harvested. The RNAi efficiency of UPF1, eIF4AIIII and Y14 was measured by Western blotting while snRNPU1-70k was measured by real time PCR.

Generation of monoclonal antibodies against Drosophila UPF1

Antigens design, preparation, mice immunization and hybridoma generation were carried out by Abmart (Shanghai). Twelve peptide sequences predicted to be highly immunogenic were selected from *D. melanogaster* UPF1 (Table 1) and cloned in-frame in an expression vector to produce a recombinant protein incorporating all 12 antigens which were used as the immonogen (Abmart, SEAL™ technology). Hybridoma clones were generated and used to induce 18 ascites, which were then screened by Western blotting of S2 cell protein extracts. Out of these, three that showed a single band of the expected size and minimal cross-reactivity were selected and more of the monoclonal antibodies subsequently purified from the corresponding hybridoma cell culture *in vitro*. Unless otherwise specified, 7B12 was used as the anti-UPF1 antibody throughout this study.

Larval tissue immunostaining

Whole-mount immunostaining was performed as previously described (Choudhury et al., 2016). In brief, the internal organs of 3rd instar larvae were dissected in 1X PBS (13 mM NaCl, 0.7 mM Na2HPO4, 0.3 mM NaH2PO4, pH 7.4) and fixed in 4% formaldehyde for 20 minutes at RT. Tissues were washed in 1XPBS followed by 1% Triton X-100 treatment for 20 minutes. Tissues were washed and incubated in blocking solution (10% Fetal Bovine Serum (FBS), 0.05% Sodium Azide in 1X PBS)
for 2 hrs at RT and then incubated in primary antibodies at 4°C overnight. Tissues were washed and further incubated with appropriate fluorescent-tagged secondary antibodies for 2 hrs typically. After washing, tissues were incubated in DAPI (4–6-diamidino-2-phenylindole, Sigma-Aldrich, 1 μg/mL) for 10 minutes and mounted in PromoFluor Antifade Reagent (PK-PF-AFR1, PromoKine) mounting medium and examined using a Leica TCS SP2-AOBS confocal microscope.

LMB, DRB and larvae heat shock treatment

Wandering 3rd instar larvae were dissected in M3 media and tissues incubated with or without Leptomycin B (LMB, 50 nM) for 1 hr at RT. To examine the real-time effect of LMB treatment in the living cell, salivary glands were dissected in M3 media and incubated with a hanging drop of 50 nM LMB in M3 media in a cavity slide (Singh and Lakhotia, 2015). The fluorescence signal was acquired at 5-minute intervals with a Leica TCS SP2-AOBS confocal microscope. For ecdysone treatment, salivary glands were dissected in M3 media and incubated in 20-hydroxyecdysone (Sigma-Aldrich, H5142, 1µM) for 1 hr at RT. For RNase treatment, salivary glands were dissected in M3 media and incubated in 0.1% Triton X-100 for 2 minutes prior to adding RNase A (Invitrogen, 100µg/mL) a further 1 hr incubation at RT. To examine the effect of 5, 6-Dichlorobenzimidazole 1-β-D-ribofuranoside (DRB) treatment, salivary glands were dissected in M3 media and incubated with DRB (Sigma-Aldrich, 125µM) for 1 hr at RT. For heat shock response, larvae were placed in a pre-warmed microfuge tube lined with moist tissue paper and incubated in water-bath maintained at 37±1°C for 1 hr.

Live cell imaging (FRAP and FLIP)

Fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) methods have been previously described (Klonis et al., 2002). Salivary glands expressing UPF1-GFP were dissected from 3rd instar larvae and mounted as a hanging drop in M3 media. For the FRAP the region of interest (ROI, a circle of fixed diameter) was rapidly photobleached with 100 iterations of 100% power Argon laser (488 nm) exposure. Subsequent recovery of fluorescence in the
photobleached region was examined at defined time intervals. As a control, fixed cells were examined to confirm irreversible photobleaching. FRAP experiments were carried out on salivary glands at room temperature. The fluorescence signal in ROI was normalized and data analysed following published methods (Phair and Misteli, 2000; Singh and Lakhotia, 2015). FLIP experiments were done as previously described (Phair and Misteli, 2000). Following an acquisition of five control images, GFP fluorescence in ROI1 was continuously photobleached with Argon laser (488 nm) at 100 % power by 50 iterations. The loss in fluorescence in another region of interest, the ROI2 was measured for the same length of time. Fluorescence intensities at ROI1 and ROI2 were normalized and data analysed as described (Nissim-Rafinia and Meshorer, 2011). Both photobleaching experiments have been done using a Leica TCS SP2-AOBS confocal microscope.

Polytene Chromosomes Immunostaining

Apart from the changes detailed below, the procedure was mostly as previously described (Rugjee et al., 2013). Briefly, actively wandering 3rd instar larvae were dissected in 1X PBS and salivary glands were fixed first with 3.7% formaldehyde in 1X PBS and then with 3.7% formaldehyde in 45% acetic acid for 1 min each (Singh and Lakhotia, 2012). For Pol II immunostaining, salivary glands dissected in 1XPBS were incubated directly with 3.7% formaldehyde in 45% acetic acid for 3 minutes. Salivary glands were squashed in the same solution under the coverslip. Slides were briefly dipped in liquid nitrogen, the coverslips were flipped off with a sharp blade and then immediately immersed in 90% ethanol and stored at 4°C. For immunostaining, the chromosomes were air dried and then rehydrated by incubating the slide with 1XPBS in a plastic Coplin jar. Chromosomes were incubated in blocking solution (as for the tissue immunostaining) for 1 hr at RT and then incubated with primary antibodies diluted in blocking solution in a humid chamber overnight at 4°C. Chromosomes were washed with 1X PBS three times and further incubated with fluorescent tagged appropriate secondary antibodies diluted in blocking solution for 2 hrs at RT in the humid chamber. After washing, chromosomes were counterstained with DAPI and mounted in
PromoFluor mounting media. Chromosomes were examined under Nikon Eclipse Ti epifluorescence microscope, equipped with ORCA-R2 camera (Hamamatsu Photonics).

Fluorescent Oligo (dT) in situ hybridization (FISH)

Oligo (dT) FISH was done as previously described for mammalian cells with some adaptations (Tripathi et al., 2015). Salivary glands of 3rd instar larvae were dissected in 1XPBS and fixed in 4% formaldehyde for 15 min at RT. Glands were then washed with 1XPBS and incubated in 0.1% Triton X-100 with 1U/µL Ribolock RNase Inhibitor (ThermoFisher Scientific, EO0381) in 1XPBS for 10 min on ice and then rinsed further with 1XPBS three times with 5 min intervals and then with 2XSSC for 10 min. Salivary glands were incubated with 5ng/µL rhodamine-labelled oligo(dT)45 probe (IDT) in hybridization solution (25% Formamide, 2X SSC pH 7.2, 10% w/v Dextran sulfate (Sigma Aldrich), 1 mg/mL E. coli tRNA (Sigma-Aldrich, R1753) for 12 hrs at 42°C. Glands were then washed with freshly made wash buffer (50% Formamide in 2XSSC pH 7.2), followed by 2XSSC, 1XSSC and finally with 1XPBS 3 times each with 5 min interval. Nuclei were counterstained with DAPI and tissues were mounted in PromoFluor Antifade mounting medium and examined under Leica TCS SP2-AOBS confocal microscope.

For polytene chromosomes oligo(dT) FISH, salivary glands were dissected in 1XPBS and incubated with fixing solution (1.85% formaldehyde in 45% acetic acid) for 5 min at RT. Chromosomes were squashed in the same solution and examined immediately under phase-contrast microscope to check if properly spread. Slides with good chromosomes were briefly dipped in liquid nitrogen and the coverslips were flipped off with a sharp blade. Slides were immediately dipped in 90% alcohol and stored at 4°C. Before hybridization, slides were air dried and rehydrated in 1XPBS and then washed and hybridized as described above for whole salivary glands. Chromosomes were counterstained with DAPI and mounted in PromoFluor Antifade mounting medium and examined under Nikon Eclipse Ti epifluorescence microscope.
Immunoprecipitation

Immunoprecipitation was performed as previously described (Hintermair et al., 2016), with some modifications as detailed below. S2 cells (4 X 10^7) were harvested and washed with ice-cold 1X PBS containing 1X PhosSTOP (Roche, 04906845001) and 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail (Roche, 04693159001). Cells were incubated in the hypotonic AT buffer (15 mM HEPES pH 7.6, 10 mM KCl, 5mM MgOAc, 3mM CaCl2, 300 mM Sucrose, 0.1% Triton X-100, 1mM DTT, 1X PhosSTOP, 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail and 1U/µL Ribolock RNase Inhibitor) for 20 min on ice and lysed with 2mL Dounce homogenizer by 30 strokes with the tight pestle. Lysate was centrifuged at 5000 RPM for 5 min at 4°C in microcentrifuge and the nuclear pellet was resuspended in 500 µL IP buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 1% NP-40 (Roche), 1X PhosSTOP, 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail, 1U/µL Ribolock RNase Inhibitor) for 20 min on ice. Nuclear lysates were sonicated using a Bioruptor sonicator (Diagenode) for 3 cycles of 30 sec ON and 30 sec OFF with maximum intensity. Following sonication, the lysates were centrifuged at 13000 RPM for 15 min at 4°C in a microfuge and the antibody (5µg) was added to the clear supernatant, with or without addition of RNase A (100µg/mL), and incubated overnight at 4°C on a rocker. Following incubation, 20 µL of prewashed paramagnetic Dynabeads (ThermoFisher Scientific, 10004D) were added and incubated further for 2 hrs at 4°C on a rocker. Beads were washed 5 times with IP buffer using a magnetic rack and proteins were extracted by adding 40µL SDS-PAGE sample buffer.

ChIP-Seq

S2 cells (2 X 10^7) were harvested and fixed with 1% formaldehyde (EM grade, Polyscience) for 10 min at RT. Following fixation, cross-linking reaction was stopped by adding 125 mM Glycine for 5 min at RT. Cells were centrifuged at 2000 RPM for 5 min at 4°C, the pellet was washed twice with ice-cold 1X PBS containing 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail. The cell pellet was resuspended in 1 mL of cell lysis buffer (5mM PIPES pH 8.0, 85mM KCl, 0.5%...
NP-40) supplemented with 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail and 1X PhosStop and incubated for 10 min at 4°C. Cells were centrifuged and the pellet was resuspended in 1 mL nuclear lysis buffer (50mM Tris pH 8.0, 10 mM EDTA, 1.0% SDS) supplemented with 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail and 1X PhosStop and incubated for 10 min at 4°C. The cell suspension was further diluted with 500 µL IP dilution buffer (16.7 mM Tris pH 8.0, 1.2 mM EDTA, 167 mM NaCl, 1.1% Triton X-100, 0.01% SDS) and sonicated for 5 cycles at 30sec ON, 30 sec OFF with maximum intensity by using a Bioruptor sonicator (Diagenode); this produced an average fragment size of ~500 bp. Samples were centrifuged at 13000 RPM for 20 min in a microcentrifuge and the clear supernatant was transferred to a 15 mL tube. An aliquot of 100 µL supernatant was kept to extract input DNA. The supernatant was further diluted with 5 volume of IP dilution buffer. For each ChIP, typically we added 5 to 10 µg of antibody to this supernatant and incubated overnight at 4°C on a rocker. Prewashed 20 µL Dynabeads were added to the lysate-antibody mix and incubated further for 1 hr at 4°C on a rocker. Beads were washed 6 times with low salt buffer (0.1% SDS, 1% Triton X-100, 2mM EDTA, 20 mM Tris pH 8.0, 150 mM NaCl), once with high salt buffer (0.1% SDS, 1% Triton X 100, 2mM EDTA, 20 mM Tris pH 8.0, 500 mM NaCl) and once with 1X TE buffer (10mM Tris pH 8.0, 1mM EDTA). The beads were then incubated with 250 µL elution buffer (0.1M NaHC03, 1% SDS) at RT for 15 min and eluted chromatin was reverse cross-linked by adding 38 µL de-crosslinking buffer (2M NaCl, 0.1M EDTA, 0.4M Tris pH 7.5) and then incubated at 65°C for overnight on a rotator. Proteins were digested by adding 2 µL Proteinase K (50 mg/mL) and incubated at 50°C for 2 hrs on a rocker. DNA was isolated by using Monarch® PCR and DNA Cleanup Kits. Real-time PCR quantification of DNA samples was carried out using the SensiFAST SYBR Hi-ROX Kit (Bioline, BIO-92005) in 96-well plates using an ABI PRISM 7000 system (Applied Biosystems). For NGS sequencing, ChIP and input DNA were further fragmented to 200 bp fragment size using a Bioruptor Pico (Diagenode). All ChIP-DNA libraries were produced using the NEBNext Ultra II DNA Library Prep Kit (New England Biolab E7645L) and NEBnext Multiplex Oligos
for Illumina Dual Index Primers (New England Biolabs E7600S), using provided protocols with 10ng of fragmented ChIP DNA. Constructed libraries were assessed for quality using the Tapestation 2200 (Agilent G2964AA) with High Sensitivity D1000 DNA ScreenTape (Agilent 5067-5584). Libraries were tagged with unique barcodes and sequenced simultaneously on a HiSeq4000 sequencer.

Nascent RNA isolation from S2 cells

Nascent RNA isolation was performed as previously described (Khodor et al., 2011). Briefly, S2 cells (4 X 10^7) were harvested and washed twice with ice-cold 1X PBS via centrifugation at 2000g for 5 min each. Cells were resuspended in 1 mL ice-cold buffer AT and incubated on ice for 10 minutes. Cells were lysed using a 2mL Dounce homogenizer by 30 strokes with the tight pestle. The lysate was divided into two aliquots and each aliquot of 500 µL was layered over a 1mL cushion of buffer B (15 mM HEPES-KOH at pH 7.6, 10 mM KCl, 5 mM MgOAc, 3 mM CaCl2, 1 M sucrose, 1 mM DTT, 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail), and centrifuged at 8000 RPM for 15 min at 4°C in a microcentrifuge. The supernatant was removed and the pellet was resuspended in 5 volumes of nuclear lysis buffer (10 mM HEPES-KOH pH 7.6, 100 mM KCl, 0.1 mM EDTA, 10% Glycerol, 0.15 mM Spermine, 0.5 mM Spermidine, 0.1 M NaF, 0.1 M Na3VO4, 0.1 mM ZnCl2, 1 mM DTT, 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail and 1U/µL Ribolock RNase Inhibitor) and resuspended using a 2mL Dounce homogenizer by 3 strokes with loose pestle and 2 strokes with tight pestle. Equal volume of 2X NUN buffer (50 mM HEPES-KOH pH 7.6, 600 mM NaCl, 2 M Urea, 2% NP-40, 1 mM DTT, 1X cOmplete™, Mini, EDTA-free Protease Inhibitor Cocktail and 1U/µL Ribolock RNase Inhibitor) was added to the nuclear suspension drop by drop while vortexing and the suspension was placed on ice for 20 min prior to spinning at 13,000 RPM for 30 min at 4°C. The supernatant was removed and TRI Reagent (Sigma, T9424) was added to the histone–DNA-Pol II-RNA pellet. The TRI Reagent–pellet suspension was incubated at 65°C with intermittent vortexing to dissolve the pellet, and RNA was extracted following the manufacturer’s protocol. Poly(A) depletion was
performed with Dynabeads™ Oligo(dT)25 (ThermoFisher Scientific). The purification of nascent RNA was assessed by RT-PCR of CG12030, CG5059 and CG10802 genes which have slow rates of co-transcriptional splicing (Khodor et al., 2011); cDNA synthesis was performed using qScript cDNA synthesis kit (Quanta Biosciences, 95047-025).

RNA-seq

Extracted RNA samples were quantified using a Nanodrop-8000 Spectrophotometer (ThermoFisher ND-8000-GL) to assess quality and to determine concentrations. Aliquots of each sample were diluted to ~5ng/µl, and tested with an Agilent Tapestation 2200 (Agilent G2964AA) using High Sensitivity RNA ScreenTapes kit (Agilent 5067-5579) to determine the RNA Integrity Number.

Total-RNA (1µg) was first poly(A) selected using the NEBNext® Poly(A) mRNA Magnetic Isolation Module (New England Biolabs E7490L) prior to library construction. Nascent RNA samples (100 ng) were processed without poly(A) selection. RNA libraries were prepared using a NEBNext Ultra Directional RNA Library Prep Kit (New England Biolab E7420L) and NEBnext Multiplex Oligos for Illumina Dual Index Primers (New England Biolabs E7600S), following standard protocols. RNA libraries were checked for quality using the Tapestation 2200 (Agilent G2964AA) with High Sensitivity D1000 DNA ScreenTape (Agilent 5067-5584). Multiplexed libraries were sequenced (50-bp single-end reads) on a HiSeq4000 sequencer.

CHIP-seq and RNA-seq data analysis

ChIP-seq and RNA-seq data were initially viewed and analysed using the Lasergene Genomics Suite version 14 (DNASTAR). Pre-processing, assembly and mapping of the sequencing reads in the FASTQ files were performed by the SeqMan NGen software of this package automatically after selecting the NCBI *D. melanogaster* Dm6 genome release and accompanying annotations. Assembly and alignment output files for each genome contig were then analysed with the ArrayStar and GenVision Pro
software (from the same package) to view and compare data track on the genome. Profiles at selected regions were saved as high-resolution images.

To perform the metagene analyses, an index for Dm6 was downloaded from the HISAT2 website. HISAT2 v2.1.0 was then used to align the FASTQ files on it. The resulting SAM files were converted to BAM format, sorted, and indexed with Samtools 1.6. For the cytoplasmic RNA-seq data, the NCBI RefSeq gene annotations for Dm6 were downloaded as a GTF file from UCSC Table Browser (genome.ucsc.edu). Custom scripts were then used to produce read counts per gene in an HTSeq-count compatible format based on the GTF file. Transcript lengths were also obtained from the GTF file and used together with total mapped sequencing reads to convert counts into RPKM values. For both ChIP-seq and nascent RNA-seq data, the BAM files were converted to Bedgraph files. This was carried out with the genomeCoverageBed command and options -bga and -ibam from the Bedtools v2.26.0 suite. Custom Perl scripts were then used to filter the Dm6 annotations either for genes separated by a minimum distance to avoid overlapping signals or RNA-seq expression levels. Subsequently, custom scripts were used to extract the signal from the Bedgraph files for each entry in the filtered gene list. A single base resolution was used for flanking regions, while the signal in gene bodies was binned into 16 bins to take account of different gene lengths. Each dataset was normalized by the total mapped sequencing reads in that dataset. Cross-referencing between different datasets was done based on the ‘name’ field, after filtering the annotations for multiple entries with the identical name.

A custom script was used to extract from the Bedgraph files the sequencing read coverage for each exon/intron/exon region in the dm6 annotation file xon_fly_gene (downloaded from UCSC Table Browser). To normalise for any bias in the sequencing, the UPF1 signal of each exon or intron was divided by the average coverage in the input sample. The fold change of UPF1 signal/input signal in introns was compared to that of their flanking exons using Wilcox.test (two sided and unpaired) in R (www.r-project.org). This analysis was done using either all introns
annotated in Dm6 (151623) or those longer than 100bp (76708), in either case flanking exons are significantly more enriched than introns. Here we have shown the result of analysis using just the longer introns as these were considered to be more informative because of the predicted lower resolution of ChIP at discriminating between closely adjacent sequences and because the lower sequencing coverage of shorter introns compared to longer introns. All ChIP-seq and RNA-seq raw sequencing data and Bedgraph files were deposited in the GEO repository (Accession No GSE116808)
Acknowledgments

We thank Bob Michell for critically reading the manuscript and valuable discussions. Thanks also to Michael Rosbash and Michael Marr (USA) for providing a detailed Nascent RNA-seq protocol, Harald Saumweber (Germany) for the P11 antibody and Laszlo Tora (France) for the 7G5 antibody. Bloomington is also acknowledged for providing fly stocks. Thanks also to Alessandro Di Maio and the Birmingham Advanced Light Microscopy (BALM) facility; our School Drosophila research community, fly food facility and Shrikant Jondhale for fly stocks maintenance; our NGS facility; and, Mike Tomlinson for providing Odyssey infrared imaging system for Western blot detection. We thank also Pawel Grzechnik for reagents, and his and our group for help and continuous discussions. This project was funded by a Leverhulme Trust (RPG-2014-291) and BBSRC (BB/M022757/1) project grants, and at its start, Wellcome Trust (9340/Z/09/Z) to SB. DH was supported by BBSRC grants BB/M017982/1 and BB/L006340/1.
References

Abruzzi, K.C., Belostotsky, D.A., Chekanova, J.A., Dower, K., and Rosbash, M. (2006). 3’-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J 25, 4253-4262.

Adelman, K., and Lis, J.T. (2012). Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13, 720-731.

Ajamian, L., Abel, K., Rao, S., Vyboh, K., Garcia-de-Gracia, F., Soto-Riño, R., Kulozik, A.E., Gehring, N.H., and Mouland, A.J. (2015). HIV-1 Recruits UPF1 but Excludes UPF2 to Promote Nucleocytoplasmic Export of the Genomic RNA. Biomolecules 5, 2808-2839.

Altamura, N., Groudinsky, O., Dujardin, G., and Slonimski, P.P. (1992). Nam7 nuclear gene encodes a novel member of a family of helicases with a Zn-ligand motif and is involved in mitochondrial functions in Saccharomyces cerevisiae. Journal of Molecular Biology 224, 575-587.

Azzalin, C.M., and Lingner, J. (2006). The human RNA surveillance factor UPF1 is required for S phase progression and genome stability. Curr Biol 16, 433-439.

Azzalin, C.M., Reichenbach, P., Khoriauli, L., Giulotto, E., and Lingner, J. (2007). Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318, 798-801.

Bensaude, O. (2011). Inhibiting eukaryotic transcription: Which compound to choose? How to evaluate its activity? Transcription 2, 103-108.

Bhattacharya, A., Czaplinski, K., Trifillis, P., He, F., Jacobson, A., and Peltz, S.W. (2000). Characterization of the biochemical properties of the human Upf1 gene product that is involved in nonsense-mediated mRNA decay. RNA 6, 1226-1235.

Boehm, A.K., Saunders, A., Werner, J., and Lis, J.T. (2003). Transcription factor and polymerase recruitment, modification, and movement on dhsp70 in vivo in the minutes following heat shock. Mol Cell Biol 23, 7628-7637.

Brogna, S., McLeod, T., and Petric, M. (2016). The Meaning of NMD: Translate or Perish. Trends Genet 32, 395-407.

Brogna, S., and Wen, J. (2009). Nonsense-mediated mRNA decay (NMD) mechanisms. Nat Struct Mol Biol 16, 107-113.

Brooks, A.N., Duff, M.O., May, G., Yang, L., Bolisetty, M., Landolin, J., Wan, K., Sandler, J., Booth, B.W., Celniker, S.E., et al. (2015). Regulation of alternative splicing in Drosophila by 56 RNA binding proteins. Genome Res 25, 1771-1780.

Carastro, L.M., Tan, C.K., Selg, M., Jack, H.M., So, A.G., and Downey, K.M. (2002). Identification of delta helicase as the bovine homolog of HUPF1: demonstration of an interaction with the third subunit of DNA polymerase delta. Nucleic Acids Res 30, 2232-2243.
Chakrabarti, S., Jayachandran, U., Bonneau, F., Fiorini, F., Basquin, C., Domecke, S., Le Hir, H., and Conti, E. (2011). Molecular mechanisms for the RNA-dependent ATPase activity of Upf1 and its regulation by Upf2. Mol Cell 41, 693-703.

Chawla, R., Redon, S., Raftopoulou, C., Wischnewski, H., Gagos, S., and Azzalin, C.M. (2011). Human UPF1 interacts with TPP1 and telomerase and sustains telomere leading-strand replication. EMBO J 30, 4047-4058.

Choudhury, S.R., Singh, A.K., McLeod, T., Blanchette, M., Jang, B.Y., Badenhorst, P., Kanhere, A., and Brogna, S. (2016). Exon junction complex proteins bind nascent transcripts independently of pre-mRNA splicing in Drosophila melanogaster. Elife 5.

Conic, S., Desplancq, D., Ferrand, A., Fischer, V., Heyer, V., Reina San Martin, B., Pontabry, J., Oulad-Abdelgani, M., Babu, N.K., Wright, G.D., et al. (2018). Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 217, 1537-1552.

Culbertson, M.R., Underbrink, K.M., and Fink, G.R. (1980). Frameshift suppression in Saccharomyces Cerevisiae II. Genetic properties of group II suppressors. Genetics 95, 833-853.

Czaplinski, K., RuizEchevarria, M.J., Paushkin, S.V., Han, X., Weng, Y.M., Perlick, H.A., Dietz, H.C., TerAvanesyan, M.D., and Peltz, S.W. (1998). The surveillance complex interacts with the translation release factors to enhance termination and degrade aberrant mRNAs. Genes & development 12, 1665-1677.

Czaplinski, K., Weng, Y., Hagan, K.W., and Peltz, S.W. (1995). Purification and characterization of the Upf1 protein - a factor involved in translation and messenger RNA degradation. RNA 1, 610-623.

de Turris, V., Nicholson, P., Orozco, R.Z., Singer, R.H., and Muhlemann, O. (2011). Cotranscriptional effect of a premature termination codon revealed by live-cell imaging. RNA 17, 2094-2107.

Fatscher, T., Boehm, V., and Gehring, N.H. (2015). Mechanism, factors, and physiological role of nonsense-mediated mRNA decay. Cell Mol Life Sci 72, 4523-4544.

Fiorini, F., Bagchi, D., Le Hir, H., and Croquette, V. (2015). Human Upf1 is a highly processive RNA helicase and translocase with RNP remodelling activities. Nature communications 6, 7581.

Flury, V., Restuccia, U., Bachi, A., and Muhlemann, O. (2014). Characterization of Phosphorylation-and RNA-Dependent UPF1 Interactors by Quantitative Proteomics. J Proteome Res 13, 3038-3053.

Fukaya, T., Lim, B., and Levine, M. (2017). Rapid Rates of Pol II Elongation in the Drosophila Embryo. Curr Biol 27, 1387-1391.

Fukuda, M., Asano, S., Nakamura, T., Adachi, M., Yoshida, M., Yanagida, M., and Nishida, E. (1997). CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390, 308-311.

Gao, Z., and Wilkinson, M. (2017). An RNA decay factor wears a new coat: UPF3B modulates
translation termination. F1000Res 6, 2159.

Ghosh, A., and Lima, C.D. (2010). Enzymology of RNA cap synthesis. Wiley Interdiscip Rev RNA 1, 152-172.

Goetz, A.E., and Wilkinson, M. (2017). Stress and the nonsense-mediated RNA decay pathway. Cell Mol Life Sci 74, 3509-3531.

He, F., and Jacobson, A. (2015). Nonsense-Mediated mRNA Decay: Degradation of Defective Transcripts Is Only Part of the Story. Annu Rev Genet.

Henderson, K.D., and Andrew, D.J. (2000). Regulation and function of Scr, exd, and hth in the Drosophila salivary gland. Dev Biol 217, 362-374.

Hintermair, C., Voss, K., Forne, I., Heidemann, M., Flatley, A., Kremmer, E., Imhof, A., and Eick, D. (2016). Specific threonine-4 phosphorylation and function of RNA polymerase II CTD during M phase progression. Sci Rep 6, 27401.

Hodgkin, J., Papp, A., Pulak, R., Ambros, V., and Anderson, P. (1989). A new kind of informational suppression in the nematode Caenorhabditis elegans. Genetics 123, 301-313.

Hogg, J.R., and Goff, S.P. (2010). Upf1 senses 3'UTR length to potentiate mRNA decay. Cell 143, 379-389.

Hovemann, B.T., Dessen, E., Mechler, H., and Mack, E. (1991). Drosophila snRNP associated protein P11 which specifically binds to heat shock puff 93D reveals strong homology with hnRNP core protein A1. Nucleic Acids Res 19, 4909-4914.

Hurt, J.A., Robertson, A.D., and Burge, C.B. (2013). Global analyses of UPF1 binding and function reveal expanded scope of nonsense-mediated mRNA decay. Genome Res 23, 1636-1650.

Ivanov, P.V., Gehring, N.H., Kunz, J.B., Hentze, M.W., and Kulozik, A.E. (2008). Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. Embo J 27, 736-747.

Jensen, T.H., Patricio, K., McCarthy, T., and Rosbash, M. (2001). A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol Cell 7, 887-898.

Karousis, E.D., Nasif, S., and Muhlemann, O. (2016). Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdiscip Rev RNA 7, 661-682.

Kashima, I., Yamashita, A., Izumi, N., Kataoka, N., Morishita, R., Hoshino, S., Ohno, M., Dreyfuss, G., and Ohno, S. (2006). Binding of a novel SMG-1-Upf1-eRF1-eRF3 complex (SURF) to the exon junction complex triggers Upf1 phosphorylation and nonsense-mediated mRNA decay. Genes Dev 20, 355-367.

Keeling, K.M., Lanier, J., Du, M., Salas-Marco, J., Gao, L., Kaenjak-Angeletti, A., and Bedwell, D.M.
Leaky termination at premature stop codons antagonizes nonsense-mediated mRNA decay in S. cerevisiae. RNA 10, 691-703.

Khodor, Y.L., Rodriguez, J., Abruzzi, K.C., Tang, C.H., Marr, M.T., 2nd, and Rosbash, M. (2011). Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 25, 2502-2512.

Klonis, N., Rug, M., Harper, I., Wickham, M., Cowman, A., and Tilley, L. (2002). Fluorescence photobleaching analysis for the study of cellular dynamics. Eur Biophys J 31, 36-51.

Kurosaki, T., and Maquat, L.E. (2016). Nonsense-mediated mRNA decay in humans at a glance. J Cell Sci 129, 461-467.

Lykke-Andersen, S., and Jensen, T.H. (2015). Nonsense-mediated mRNA decay: an intricate machinery that shapes transcriptomes. Nat Rev Mol Cell Biol 16, 665-677.

Mendell, J.T., ap Rhys, C.M., and Dietz, H.C. (2002). Separable roles for rent1/hUpf1 in altered splicing and decay of nonsense transcripts. Science 298, 419-422.

Metzstein, M.M., and Krasnow, M.A. (2006). Functions of the nonsense-mediated mRNA decay pathway in Drosophila development. PLoS genetics 2, e180.

Mizuguchi-Hata, C., Ogawa, Y., Oka, M., and Yoneda, Y. (2013). Quantitative regulation of nuclear pore complex proteins by O-GlcNAcylation. Biochim Biophys Acta 1833, 2682-2689.

Mouaikel, J., Verheggen, C., Bertrand, E., Tazi, J., and Bordonne, R. (2002). Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 9, 891-901.

Muhlemann, O., and Karousis, E.D. (2017). New functions in translation termination uncovered for NMD factor UPF3B. EMBO J 36, 2928-2930.

Muse, G.W., Gilchrist, D.A., Nechaev, S., Shah, R., Parker, J.S., Grissom, S.F., Zeitlinger, J., and Adelman, K. (2007). RNA polymerase is poised for activation across the genome. Nat Genet 39,
Nissim-Rafinia, M., and Meshorer, E. (2011). Photobleaching assays (FRAP & FLIP) to measure chromatin protein dynamics in living embryonic stem cells. J Vis Exp.

Paul, B., and Montpetit, B. (2016). Altered RNA processing and export lead to retention of mRNAs near transcription sites and nuclear pore complexes or within the nucleolus. Mol Biol Cell 27, 2742-2756.

Phair, R.D., and Misteli, T. (2000). High mobility of proteins in the mammalian cell nucleus. Nature 404, 604-609.

Pulak, R., and Anderson, P. (1993). Messenger RNA surveillance by the Caenorhabditis elegans smg genes. Genes & development 7, 1885-1897.

Rugjee, K.N., Roy Chaudhury, S., Al-Jubran, K., Ramanathan, P., Matina, T., Wen, J., and Brogna, S. (2013). Fluorescent protein tagging confirms the presence of ribosomal proteins at Drosophila polytene chromosomes. PeerJ 1, e15.

Singh, A.K., and Lakhotia, S.C. (2012). The hnRNP A1 homolog Hrp36 is essential for normal development, female fecundity, omega speckle formation and stress tolerance in Drosophila melanogaster. J Biosci 37, 659-678.

Singh, A.K., and Lakhotia, S.C. (2015). Dynamics of hnRNPs and omega speckles in normal and heat shocked live cell nuclei of Drosophila melanogaster. Chromosoma 124, 367-383.

Singh, G., Rebbapragada, I., and Lykke-Andersen, J. (2008). A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol 6, e111.

Tripathi, V., Fei, J., Ha, T., and Prasanth, K.V. (2015). RNA fluorescence in situ hybridization in cultured mammalian cells. Methods Mol Biol 1206, 123-136.

Varsally, W., and Brogna, S. (2012). UPF1 involvement in nuclear functions. Biochem Soc Trans 40, 778-783.

Wang, W.R., Czapinski, K., Rao, Y., and Peltz, S.W. (2001). The role of Upf proteins in modulating the translation read-through of nonsense-containing transcripts. Embo Journal 20, 880-890.
Zund, D., Gruber, A.R., Zavolan, M., and Muhlemann, O. (2013). Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3’ UTRs. Nat Struct Mol Biol 20, 936-943.
Figures and legends
Figure 1. UPF1 continuously shuttles between nucleus and cytoplasm. (A) Western blotting of whole-cell lysate from either normal (lane 1) or transfected S2 cells expressing UPF1-GFP (lane 2), probed with the UPF1 monoclonal antibody 7B12. The proteins run according to their expected molecular weights: UPF1 (~130 kDa), and UPF1-GFP (~157 kDa) (B) Western blotting of S2 cells treated with dsRNA targeting UPF1 or the other RNA binding proteins indicated, used as controls. Separate sections of the membrane were probed with anti-UPF1 (7B12, top row), anti-eIF4AIII (row 2), anti-Y14 (row 3) or anti-α-tubulin (row 4) as a loading control. (C) Western blotting of UPF1 following nuclear (Nucl) and cytoplasmic (Cyto) fractionation of S2 cell. RNA Pol II and α-tubulin were detected by the corresponding antibodies using the same blot (shown below). (D) Fluorescence immunolocalization of UPF1 (Cy3, red) in 3rd instar larval salivary gland. The arrowheads in panel II and III (magnified view of boxed area in panel I) point to the nucleolus, identified by no DAPI staining, which as other nucleoli shows no UPF1 signal in its centre. (E) Plot shows fluorescence loss in photobleaching (FLIP) of UPF1-GFP in salivary gland cells photobleached in ROI1 (red circle, cytoplasm) and then GFP signal measured at the identical time points in two separate ROI2s (red rings), in either cytoplasm or nucleus; both equidistant from ROI1. The different lines show rate of GFP fluorescence loss in either the photobleached ROI1 (blue line), or ROI2’ in the cytoplasm (red line) or ROI2” in nucleus (purple line). Change during in fluorescence intensity at equivalent regions in neighbouring cells was measured as a control during the same time-course (black line). Y-axis shows normalized relative fluorescence intensity and X-axis time (seconds) from start of imaging. Quantification based on imaging experiments in 8 different cells. (F) Plot shows fluorescence recovery after photobleaching (FRAP) of UPF1-GFP in either cytoplasm (ROI’, blue line) or nucleus (ROI”, red line) of salivary gland cells. Line values are the average of 8 separate measurements in different cells.
Figure 2. UPF1 binds at transcriptionally active sites on the polytene chromosomes. (A) Fluorescence immunolocalization of UPF1 (Cy3, red, I) on polytene chromosomes (DAPI, blue, II). Chromosome arms (X, 2L, 2R, 3L and 3R) and chromocentre (CC) are labelled. The labels indicate cytological locations of interband regions at the X chromosome, presenting apparent UPF1 signal. The line profile (III, white panel) shows signal intensities along the white line drawn on the X chromosome, UPF1 (red) and DAPI (blue). (B) Immunolocalization of UPF1 (red) on polytene chromosomes derived from larvae subjected to a 40 min heat shock at 37°C. UPF1 signals are primarily detected at heat shock gene loci, indicated by their cytological locations, using their standard nomenclature. (C) Immunolocalization of UPF1 (red) at an ecdysone induced transgene (named S136) located at cytological position 63B (Yellow line) and the same region on the wild type chromosome after ecdysone treatment. The white dotted lines indicate flanking bands as mapping reference. Chromosomes were stained with DAPI (grey in middle panel or blue in bottom panel).
Figure 3. UPF1 associates at Pol II transcription sites. (A) Genome browser visualization of UPF1 (red) and Ser2 Pol II (pink) ChIP-seq enrichment profiles at a representative chromosomal region in S2 cells, including highly active genes (green) and low or inactive genes (orange). The input profile (grey) is shown in the bottom panel on the same scale as that of UPF1. (B) Scatter plot showing correlation between normalised exon reads in UPF1 and Ser2 Pol II ChIP-seq samples. (C) Scatter plot showing relationship between normalised UPF1 ChIP-reads vs. mRNA-seq expression levels; data points corresponding to either exons (blue) or introns (red). (D) Metagene profiles showing average UPF1 occupancy at either active (blue, RPKM >1) or inactive/low expressed transcription units (RPKM <1, orange), gene body (scaled to 16 bins of gene full length) plus 500 bp from either end. The number of individual transcription units (N) used for this analysis is given on the top. Corresponding normalised input profiles are shown by dotted lines. (E) Superimposed metagene plots of UPF1 (red), Ser2 Pol II (pink) at highly expressed gene loci (RPKM >50). The input enrichment profile for same gene set is shown by the dotted line (black). (F) Graph shows ChIP-seq enrichment profiles of UPF1 (red) and Ser2 Pol II (pink) at the RpL23A gene. Bottom, shows real-time PCR quantification of Ser2 Pol II (left) and UPF1 (right) average enrichment at RpL23A gene based on two separate ChIP replicates from either normal or DRB treated S2 cells. The relative position of the three amplicons tested (Start, Middle and End of the gene) are indicated by black boxes underneath the gene schematic on top.
Figure 4. Intron recognition interferes with UPF1 association on nascent transcripts. (A) Schematic of the Xrp1 locus (top) showing its two main transcription units. Below, UPF1 (red) and Ser2 Pol II (pink) ChIP-seq profiles at this gene; that of the input is shown below (grey). The bottom two panels show nascent RNA-seq (blue) and poly(A) RNA-seq (purple) profiles. (B) Real-time PCR quantification of average enrichment in different regions in either exons (E1, E3, E4 and E6) or introns (I3 or I4) in multiple UPF1 ChIP replicates. (C) Box plots of normalised UPF1 ChIP-seq reads mapping at either left exon (shown on left), intron (middle) or right exon (on right). Whiskers correspond to +/- 1.5 interquartile range with respect to quartiles. Wilcoxon rank sum test values are: left exon vs. intron, p-value = 6.737e-08; right exon vs intron, p-value = 2.391e-09; and, left exon vs. right exon p-value = 0.606. *** p < 0.001 for difference in UPF1 signal between intron and its flanking exon. (D) Line profile of average UPF1 ChIP-seq/input enrichment expressed as percentage of full length in either exons or intron. Analysis is based on 151623 introns of any length (orange line) or 76708 introns longer than 100 bp (red line) as annotated in the dm6 genome release. (E) Density plots of UPF1 enrichment at either the exon before (red line), exon after (orange line) or the intron (blue line). The x-axis shows the log2 of the normalized (by input) UPF1 ChIP signal; the right half of the graph shows the density of the values that are enriched, the left half (shadowed) those that are not. (F) Real-time PCR quantification of UPF1 ChIP enrichment (two replicates) at intron (I4) or exon (E6) of the Xrp1 gene, in either normal S2 cells or cells RNAi depleted of the proteins indicated. (G) Proposed model of how UPF1 scanning of the nascent transcript is connected to intron recognition during spliceosome assembly; spliceosomal snRNPs (U1, U2/U6 and U5) are represented by orange oval shapes, the squiggle drawing within U1 snRNP signifies the base pairing between U1snRNA and the 5’ ss; TSS indicate the transcription start site; and TES, the transcription end site.
Figure 5. Depletion of UPF1 increases Pol II stalling at TSSs. (A) Metagene line plots showing average occupancy of unphosphorylated Pol II at gene bodies (scaled as 16 bins of full length) and ± 500 bp from either end, in normal S2 cells (control, dark blue) or UPF1-RNAi S2 cells (UPF1KD, light blue); analysis based on 3934 (N) transcription units that do not overlap within 500 bp of either ends. (B) Metagene plots showing unphosphorylated Pol II at TSS ± 100bp, based on 25440 TSSs that are not closer than 200 bp. (C) Metagene plots as in A showing Ser2 Pol II occupancy; in normal S2 cells (control, dark orange line) and UPF1-RNAi S2 cells (UPF1KD, light orange line). (D) As for B but showing the Ser2 Pol II profiles. (E) Normalised ChIP-seq profile of either Pol II (blue lines) or Ser2 Pol II (orange lines) at the Xrp1 gene, ± 1000bp from the TSS (transcript, NM_001275790, the shorter of the two transcripts shown in Figure 3A). The equivalent plots for RpS3A (NM_166714) are shown below. Dark lines refer to normal S2 cells, light lines to UPF1-RNAi, as indicated in the legend below the plots. (F) Schematics of the timeframe (top) of the recovery from DRB treatment in S2 cells. Panel below shows Western blot of Ser2 Pol II (top row) and un-phosphorylated Pol II (middle row) at different time points from DRB removal in normal (N) and UPF1-RNAi (U) cells. The α-tubulin was detected as a loading control (bottom row). (G) Line graphs show real-time PCR quantifications of average Ser2 Pol II enrichment at either Socs36E gene (on left) or Xrp1 gene (on right) following DRB treatment (T0), at three time points from recovery: 2.5 min (T2.5), 5 minutes (T5) and 10 minutes (T10). Both primer pairs are ~ 4kb downstream of the TSS (see Table S4).
Figure 6. UPF1 knockdown results in nuclear accumulation and transcription sites retention of poly(A) mRNA. (A) Fluorescence in situ hybridization (FISH) of rhodamine-labelled oligo (dT)45 mer in salivary gland cells of either wild type (top panel) or UPF1-RNAi (bottom panel) 3rd instar larva. Chromosomes were counterstained with DAPI (blue). (B) Oligo (dT) 45 mer FISH (as above) of 3rd instar larval salivary gland polytene chromosomes from either wild type or UPF1-RNAi. Chromosomes were counterstained with DAPI (blue). (C) Proposed model of accumulation of newly transcribed poly(A) mRNA at the site of transcription in UPF1KD (right) compared with wild type (left). Abbreviations: NPC for nuclear pore complex and CPC for cleavage and polyadenylation complex.
Supplementary Figures and legends
Figure S1. Generation of monoclonal antibodies against Drosophila UPF1. (A) Schematics of UPF1 showing its different structural domains. The peptides used as immunogens and their respective amino acid locations are given in brackets (sequences are in Table S1). The peptides indicated by red color produced the monoclonal antibodies with highest specificity, as shown below (B) Western blotting of S2 cell protein extracts, probed with 18 ascites induced with hybridomas previously screened for their reactivity to the corresponding peptides (terminal numbers correspond to different peptides indicated in A). Lanes labelled M show a molecular weight marker. (C) Western blotting of whole-cell S2 lysate with the UPF1 monoclonal antibody (mab) 1C13. From either normal (lane 2) or transfected S2 cells expressing UPF1-GFP (lane 3) in which the two bands correspond to either endogenous UPF1 or UPF1-GFP. (D) As in C, using mab 7D17. Western blotting with 7B12 is shown in Figure 1A.
Figure S2. UPF1 subcellular localization in different larval tissues. (A) Fluorescence immunolocalization of UPF1 (Cy3, red) in 3rd instar larval Malpighian tubule (I to IV). Panel III shows magnified view of boxed area in panel I, white arrow indicates UPF1 signal within nucleus of a Principal Cell (PC). Tissues were counter-stained with DAPI (blue). Line profiles (V) show both Cy3 and DAPI fluorescence intensities along the yellow line drawn (IV). (B) Immunolocalization of UPF1 (Cy3, red) in gut cells (I to IV). Panel III shows magnified view of boxed area panel I. Arrow and arrowhead in (III) indicate presence of UPF1 within nuclei of Enterocytes Cell (EC) and Adult Midgut Progenitor Cells (AMPs), respectively. The line profiles show both Cy3 and DAPI fluorescence intensities along the yellow line (IV) across both EC and AMPs cells (V).
Figure S3. UPF1 may associate with nuclear membrane. (A) Fluorescence imaging of tetramethylrhodamine conjugated Wheat Germ Agglutinin (WGA, red) and UPF1-GFP (green) in salivary gland cells. Lower panels are magnified view of boxed area in upper panels. (B) Imaging of WGA (red) in wild type (upper panel) and FkhGAL4>UPF1-RNAi (lower panel) salivary gland cells. Yellow arrow indicates nuclear envelope. Cells were counter-stained with DAPI (blue).
Figure S4

A

Control	Merged	LMB Treatment	Merged
UPF1-GFP	**Merged**	**UPF1-GFP**	**Merged**
![Image](image1)	![Image](image2)	![Image](image3)	![Image](image4)
![Image](image5)	![Image](image6)	![Image](image7)	![Image](image8)
![Image](image9)	![Image](image10)	![Image](image11)	![Image](image12)

B

Live Cell Imaging of LMB treatment

- **Start**
- **T=5'**
- **T=15'**
- **T=25'**

C

1 hr Heat shock	Merged	1 hr Recovery	Merged
UPF1-GFP	**Merged**	**UPF1-GFP**	**Merged**
![Image](image13)	![Image](image14)	![Image](image15)	![Image](image16)
![Image](image17)	![Image](image18)	![Image](image19)	![Image](image20)
![Image](image21)	![Image](image22)	![Image](image23)	![Image](image24)
Figure S4. UPF1 is highly dynamic within both nucleus and cytoplasm. (A) Imaging of 3rd instar larval salivary glands transgenically expressing UPF1-GFP (green), incubated for 1 hr in either normal M3 media (Control, I to IV) or supplemented with 100µM LMB (LMB, V to VIII). Panels II, IV, VI and VIII are magnified views of the boxed areas in panel I, III, V and VII, respectively. The arrows in II, IV, VI and VIII indicate the nucleoli. Nuclei were counter-stained with DAPI (blue). (B) Time-lapse live cell imaging showing changes in the cellular distribution of UPF1-GFP in 3rd instar larval salivary gland at different time intervals of LMB treatment. Start* refers to the first image acquired straight after dissection and mounting of the tissues in a cavity slide, the procedure takes ~5-6 minutes in which cells have been exposed to LMB. (C) Localization of UPF1-GFP (green) in salivary glands after 1 hr heat shock (I to IV) or after 1 hr recovery following heat shock (V to VIII). Lower panels are magnified views of boxed area in upper panel, with or without DAPI counter-staining (blue).
Figure S5. UPF1 RNAi depletes 7B12 mab signal. (A) Fluorescence immunolocalization of UPF1 using the 7B12 monoclonal antibody (Cy3, red) on polytene chromosomes (blue) of wild type (I, II) and UPF1-RNAi (III, IV) salivary glands. (B) Western blotting probed with 7B12 mab for protein extracts of 3rd instar larval salivary gland from FkhGAL4>UPF1-GFP (lane I), wild type (lane II) and FkhGAL4>UPF1-RNAi (lane III). Ponceau staining of the same blot showing equal protein loading. (C) Immunolocalization of UPF1-GFP (FITC, green, I, III) on polytene chromosomes of FkhGAL4>UPF1-GFP salivary glands, detected using anti-GFP antibody. Chromosomes were counter stained with DAPI (blue, II, III). Line profiles in IV show both signal intensities along the white line traced on the chromosome arm in III. Note that UPF1 signal peaks at chromatin-decondensed regions characterised by low DAPI signal.
Figure S6. UPF1 chromosomal association is transcription and nascent RNA dependent. (A) Co-immunolocalization of UPF1 (FITC, green, I, III) and Ser2 Pol II (Cy3, red, II, III) at polytene chromosomes, counterstained with DAPI (blue). Line profiles in IV show all signal intensities along the white line drawn in III. (B) Immunolocalization of UPF1 (red, I and II) and hnRNPA1 (red, III and IV) at polytene chromosomes of either untreated (I and III) or RNase treated salivary glands (II and IV). (C) Graph shows normalized fluorescence intensity of the hnRNPA1 and UPF1 signals in control and after RNase treatment, based on mean intensities of 8-10 different nuclear spreads. (D) Immunolocalization of UPF1 (red, I and II) and Ser2 Pol II (red, III and IV) at polytene chromosomes from untreated (I and III) or DRB treated glands (II and IV). (E) Graph shows normalized fluorescence intensity of Ser2 Pol II and UPF1 in control and after DRB treatment, based on mean intensities of 8 different nuclear spreads.
Figure S7. Real-time PCR validation of UPF1 ChIP association at selected genes.
(A) UPF1 (red) and Ser2 Pol II (pink) ChIP-seq enrichment profiles at RpL23A (on left) and RpS12 (on right) gene loci. (B) Real-time PCR quantification of average ChIP signal of either endogenous UPF1 (red) or GFP (as negative control, grey) at the RpL23 and RpS12 genes in salivary glands expressing GFP. The locations of the primer pairs used are indicated by the black boxes (P) shown below the genes schematics in A. (C) Real-time PCR quantification of average UPF1 association in control (red) or UPF1-RNAi (blue) S2 cells. (D) Real-time PCR quantification of average UPF1 association at three distinct regions of RpL23 in S2 cells (same primers pairs as in Figure 3F) with (blue) or without (red) RNase A treatment. (E) Ser2 Pol II immunoprecipitation of S2 cell nuclear extracts using anti-Ser2 Pol II antibody (ab5095) and detection (same blot) of Ser2 Pol II, UPF1, eIF4AIII and hnRNPA1, in control (lanes 2-3) or RNase treated samples (lanes 4-5). IP refers to immunoprecipitated fractions, Ub to unbound fractions.
Figure S8. ChIP-seq profiles of UPF1 at representative Pol II genes and some Pol III loci. (A) ChIP-seq profiles of UPF1 (red) and Ser2 Pol II (pink) at different active genes characterised by either paused or not paused Pol II at the TSS (panels 1-3). Panels 4 and 5 show absence of Upf1 at two inactive genes, with or without paused Pol II. (B) ChIP-seq profile of UPF1 (red) and Ser2 Pol II (pink) at the three Pol III transcribing gene loci indicated. (C) ChIP-seq profiles showing no UPF1 signal at three highly transcribing Pol III genes (snRNU6, 5SrRNA and tRNA:Arg).
Figure S9. Additional examples of UPF1 ChIP-seq profiles at genes with or without introns. (A) ChIP-seq profiles showing enrichment of UPF1 (red) and Ser2 Pol II (pink) at genes without intron. (B) ChIP-seq profile showing enrichment of UPF1 (red) and Ser2 Pol II (pink) at other highly expressing intron-containing genes. Dotted lines demarcate regions around intron/exon borders at which UPF1 shows higher association with exons despite uniform Ser2 distribution. (C) UPF1 ChIP-seq profile (red) and Ser2 Pol II (pink) at CG5059 gene, which as indicated by the nascent RNA-seq profile underneath (blue) show high intronic sequencing reads, indicative of inefficient co-transcriptional splicing.
Figure S10

A

Wild type | FkhGAL4>UPF1RNAi

Ser2 Pol II

I

II

III

IV

Ser2 Pol II + DAPI

B

Wild type | FkhGAL4>UPF1RNAi

T0

I

II

T5

III

IV

T10

V

VI

C

Recovery from DRB

Average Mean Intensity of Ser2 Pol II

	WT	UPF1RNAi
T0		
T5		
T10		

Graph showing the average mean intensity of Ser2 Pol II over time (T0, T5, T10) for wild type (WT) and FkhGAL4>UPF1RNAi conditions.
Figure S10. Depletion of UPF1 slows Pol II transcription recovery from DRB treatment. (A) Immunolocalization of Ser2 Pol II (Cy3, red) on polytene chromosomes (DAPI, blue) of wild type (I, II) or FkhGAL4>UPF1-RNAi (III, IV) 3rd instar larval salivary glands. (B) Immunolocalization of Ser2 Pol II (Cy3, red) on polytene chromosomes (DAPI, blue) of wild type (I-III) or FkhGAL4>UPF1-RNAi (IV-VI) salivary glands, at different time points after recovery from DRB treatment for 0 min (T0), 5 min (T5) and 10 min (T10). (C) Top, schematics of the timeframe of the recovery from DRB treatment in S2 cells. Panel below shows average mean intensity of Ser2 Pol II signal on polytene chromosomes of wild type (red) or UPF1-RNAi (blue) salivary glands treated with DRB and at two time points after its removal. The mean of intensity was calculated by measuring signals in 10 different chromosome spreads.
No.	Start	End	Peptide					
1	43	52	TSQSQTQNDQ					
2	85	94	DEPGSSYVK					
3	1084	1093	PGGNKKTNKL					
4	342	351	HYVGEHYNPW					
5	788	797	QYQGSLHSL					
6	27	36	DTQPTQYDRY					
7	528	537	KSREAIDSPV					
8	60	69	SAGDSHPRLA					
9	1140	1149	SQQPELSQDF					
10	259	268	KPGIDSEPAH					
11	1060	1069	QTGNFSPGNS					
12	1117	1126	AAPYSQHPMP					
No.	Transcript	Chromosome	Cytological Location	Strand	Gene	UPF1 Enrichment		
-----	------------	------------	---------------------	--------	------	-----------------		
1	NR_002554	chr2R	60A3	-	snoRNA:Psi18S-176	20.92784248		
2	NR_073860	chr2R	45F1	+	CR43651	19.84962099		
3	NR_073861	chr2R	45F1	+	CR43651	19.58870612		
4	NM_078901	chr2R	42A7	-	Act42A	16.53573972		
5	NM_166890	chrX	2B1	-	sta	15.7976555		
6	NM_001297856	chrX	2B1	-	sta	14.65188523		
7	NM_057402	chrX	2B1	-	sta	14.65188523		
8	NM_001316458	chr3L	70A6	+	Nplp2	14.2141182		
9	NM_144173	chr3L	70A6	+	Nplp2	14.2141182		
10	NM_166889	chrX	2B1	-	sta	14.0181416		
11	NM_206272	chr3L	63F5	-	Ubi-p63E	13.10522634		
12	NR_001992	chr3R	84A5	-	7LRNA:CR32864	13.04190544		
13	NR_037753	chr2R	84A5	-	7LRNA:CR42652	13.04190544		
14	NM_001274454	chr3L	63F5	-	Ubi-p63E	12.94301365		
15	NM_168043	chr3L	63F5	-	Ubi-p63E	12.86898148		
16	NM_079185	chr3L	63F5	-	Ubi-p63E	12.8642403		
17	NM_001299392	chr2R	48C5	+	Ef1alpha48D	12.7336405		
18	NR_002067	chr3R	93D	+	Hsromega	12.6383098		
19	NR_002069	chr3R	93D	+	Hsromega	12.6383098		
20	NM_001300130	chr3L	70A6	+	Nplp2	12.652198		
21	NM_001316502	chr3R	86D8	+	Tctp	11.88147055		
22	NM_058027	chr2R	48C5	+	Ef1alpha48D	11.51812571		
23	NM_001014455	chr2L	21 E2	+	PNUTS	11.50911291		
24	NR_048444	chr3R	93D	+	Hsromega	11.47018513		
25	NM_001297855	chrX	2B1	+	Hsromega	11.45428524		
26	NM_130567	chrX	2B1	+	Hsromega	11.36293998		
27	NM_170070	chr3R	94 E10-94 13	-	pnt	11.36070171		
28	NM_141791	chr3R	86D8	+	Tctp	11.3160895		
29	NM_001298659	chr2L	23F3-23F6	+	Thor	11.29086613		
30	NM_057284	chr3R	93 E13	+	Rp53	10.9579823		
31	NM_001014454	chr2L	21 E2	+	PNUTS	10.86549487		
32	NM_001298210	chrX	10-E3 to 10 E4	-	Hsc70-3	10.85467784		
33	NR_133429	chr3R	93D	+	Hsromega	10.74841913		
34	NM_167307	chrX	10-E3 to 10 E4	-	Hsc70-3	10.70276539		
35	NM_165850	chr2R	48C5	+	Ef1alpha48D	10.69805745		
36	NM_001202085	chr3L	61B2	-	CG42846	10.5511492		
37	NM_001275943	chr3R	94 E10-94 13	-	pnt	10.42349043		
38	NM_079983	chr2R	57C3	+	Xbp1	10.40232605		
39	NM_166427	chr2R	57C3	+	Xbp1	10.39685831		
40	NM_001202063	chr2R	59B6	-	CG3800	10.39235699		
41	NM_079175	chr3L	63B11	+	Hsp83	10.35797394		
42	NM_001299393	chr2R	48C5	+	Ef1alpha48D	10.3424767		
Gene ID	Chromosome	Start	End	Description	Genomic Position			
------------	------------	-------	-----	-------------	------------------			
NM_143714	chrX	SD2		mab-21	10.22106132			
NM_167180	chrX	8C14		His3.3B	10.19996373			
NM_057947	chr2L	23F3-23F6	+	Thor	10.10779488			
NM_001103474	chrX	9D2		spri	10.09939045			
NM_001272490	chrX	9D2		spri	10.0968423			
NM_001272491	chrX	9D2		spri	10.0968423			
NM_001298516	chrX	18D3		Rp510b	10.05584386			
NM_001274433	chr3L	63B11	+	Hsp83	9.962334214			
NM_167065	chrX	5 E4		Ubi-p5E	9.845904641			
NM_167306	chrX	10 E3-10 E4	-	Hsc70-3	9.739493741			
NM_167308	chrX	10 E3-10 E4	-	Hsc70-3	9.739493741			
NM_206223	chr3L	61B2		CG3229	9.726778964			
NM_169625	chr3R	88 E4	+	Hsc70-4	9.714744345			
NM_001300552	chr3R	94 E13	+	Rp53	9.705903021			
NM_176503	chr3R	88 E4	+	Hsc70-4	9.687864086			
NM_001347750	chrX	2B1	+	mei-38	9.661728876			
NM_078497	chrX	5C7		Act5C	9.593373151			
NM_168070	chr3L	64A10	-	Impl2	9.571757664			
NM_134543	chrX	19C5	+	l(1)G0004	9.506154816			
NM_169841	chr3R	91D3	+	Xrp1	9.489137734			
NM_079879	chr4	101 F1	-	Rp53A	9.472988193			
NM_166714	chr4	101 F1	-	Rp53A	9.472988193			
NM_001275657	chr3R	88 E4	+	Hsc70-4	9.464906214			
NM_001298008	chrX	5 E4	-	Ubi-p5E	9.44989544			
NM_169626	chr3R	88 E4	+	Hsc70-4	9.391845758			
NM_176502	chr3R	88 E4	+	Hsc70-4	9.391845758			
NM_176719	chrX	8C14		His3.3B	9.373510295			
NM_169627	chr3R	88 E4	+	Hsc70-4	9.33994534			
NM_137895	chr2R	59B6	-	CG3800	9.317056284			
NM_0012722174	chrX	1C5	+	Sec22	9.263596844			
NM_130507	chrX	1C5	+	Sec22	9.263596844			
NM_164617	chr2L	25C1	+	Col4a1	9.208538686			
NM_057786	chrX	1C4	-	Rpl22	9.203239849			
NM_164615	chr2L	25C1	+	Col4a1	9.190852727			
NM_165869	chr2R	48 E8-48 E9	-	Rp511	9.137225506			
NM_00104453	chr2L	21 E2	+	PNUTS	9.022927536			
NM_001272921	chr2L	21 E2	+	PNUTS	9.022927536			
NM_164616	chr2L	25C1	+	Col4a1	9.013677552			
NM_001275501	chr3R	85 E1	-	Calr	9.013384298			
NM_001014725	chrX	5C7	+	Act5C	8.989781735			
NM_132656	chrX	11F1	+	CG1673	8.981761268			
NM_079569	chr3R	85 E1	-	Calr	8.981419499			
NM_079632	chr3R	88 E4	+	Hsc70-4	8.957987156			
NM_001273288	chr2L	85 E1	-	Rack1	8.945814985			
NM_057921	chr2L	85 E1	-	Rack1	8.945814985			
	Accession	Chromosome	Start	Orientation	Gene	Score		
---	------------	------------	-------	-------------	------	-------		
88	NM_132800	chrX	13C4	-	CG15642	8.919897052		
89	NM_001014726	chrX	5C7	+	Act5C	8.909849299		
90	NM_001299958	chr3L	61B2	+	CG33229	8.850750946		
91	NM_079355	chr3L	71B5	-	Pdi	8.830574597		
92	NM_080366	chr2L	39 E7	-	EF2	8.804229445		
93	NM_001298794	chr2L	85 E1	-	Rack1	8.793822499		
94	NM_165395	chr2L	39 E7	-	EF2	8.793744101		
95	NM_165394	chr2L	39 E7	-	EF2	8.732148442		
96	NR_123764	chrX	1C4	+	CR44965	8.355359116		
97	NR_002545	chr2R	54A2	+	snoRNA:U3:54Ab	8.034844038		
98	NR_002544	chr2R	54A2	+	snoRNA:U3:54Aa	7.685229313		
99	NR_002493	chr3R	84D4	-	snRNA:7SK	7.602249655		
100	NR_073616	chr4	102B7	+	CR44027	7.389972024		
101	NR_133116	chr2R	50A1-A3	-	CR44206	7.36480527		
102	NR_047918	chr2L	27F4	+	mir-305	7.207345421		
No.	Transcript	Chromosomes	Strand	Genes	Control	UPF1KD	Ratio	
-----	------------	-------------	--------	---------	----------	----------	---------	
8	NM_00120163	chrX		CG15347	1.029076	3.690992	3.586707	
19	NM_078758	chr2L	+	TotM	1.150733	3.240686	2.816192	
28	NM_00125932	chr2R	+	stan	1.123977	2.963514	2.636632	
30	NM_080176	chr3R	+	GstD6	1.134011	2.97221	2.620972	
47	NM_078909	chr2R	+	Tsp42Eg	1.69464	4.053704	2.392073	
52	NM_00127306	chr2L	-	Mad	1.257132	2.864851	2.278879	
65	NM_079000	chr2R	-	Mdr49	2.383408	5.241766	2.199273	
70	NM_168173	chr3L	+	CB8398	2.433956	5.29505	2.175475	
73	NR_124533	chr2R	+	CR45140	4.407069	9.507183	2.15258	
75	NM_00127421	chr2R	+	Reep1	1.042245	2.242202	2.15132	
77	NM_136328	chr2R	-	CG30440	1.228076	2.627998	2.139931	
81	NM_00130045	chr3L	+	CG32365	1.249607	2.64792	2.119003	
83	NM_079535	chr3R	-	alpha-Est8	1.381507	2.913392	2.10885	
91	NM_137110	chr2R	-	CB8617	2.225169	4.610262	2.07187	
92	NR_125056	chr3L	-	CR45174	1.604756	3.319743	2.06689	
95	NM_134978	chr2L	+	bdl	1.778463	3.670754	2.046003	
112	NM_137127	chr2R	-	CB1268	1.712826	3.422832	1.998353	
113	NM_141775	chr3R	-	CB14695	2.77702	5.548821	1.998121	
118	NM_00116915	chrX	-	CB13375	1.032629	2.050411	1.985622	
121	NM_00116949	chr2L	+	CG4085	5.326819	10.50741	1.972548	
124	NM_00127249	chrX	-	spri	1.997113	3.910928	1.958291	
143	NM_00129980	chr2R	+	CB4269	1.701957	3.244165	1.906138	
152	NM_136294	chr2L	+	CB3635	1.419133	2.677962	1.88704	
163	NM_00127339	chr2L	-	CB5381	5.247804	9.80238	1.867901	
164	NM_00129796	chrX	+	CB15784	1.096594	2.047407	1.867061	
166	NM_169568	chr3R	+	Npc2b	2.965778	5.530954	1.864926	
171	NM_00110396	chr2R	+	CB43795	5.672353	10.55958	1.861588	
187	NM_137526	chr2R	+	Cyp12b2	1.685234	3.062018	1.816969	
196	NR_073936	chr3L	-	CR43971	1.159304	2.078397	1.792797	
199	NM_00114442	chr3L	+	PGRP-LD	5.392874	9.615648	1.783029	
201	NM_132388	chrX	-	CB2909	1.354751	2.412648	1.780879	
202	NM_206407	chr3L	+	siz	3.179829	5.650172	1.776879	
203	NR_125016	chr3L	-	CR45677	1.552706	2.757176	1.775273	
204	NM_140770	chr3L	-	CB13698	2.428978	4.312535	1.775453	
207	NM_00120207	chr2R	-	Mmp1	1.21198	2.149231	1.773322	
	gene ID	chromosome	strand	gene	log2FoldChange	meanLogFoldChange	FDR	
---	-----------	------------	--------	------	----------------	------------------	--------	
2	NM_001298798	chr2L	+	lectin-28C	1.355169	2.393674	1.766329	
214	NM_168961	chr3L	+	SPoCk	1.125231	1.986059	1.765023	
216	NM_001299324	chr2R	-	CG1648	1.748362	3.055536	1.747656	
226	NM_001259456	chr2R	-	CG43103	7.397721	12.884	1.741618	
227	NM_001260323	chr3R	+	p53	2.809002	4.889648	1.740706	
228	NM_001272217	chrX	-	AnxB11	1.066284	1.836946	1.725288	
233	NM_001272687	chr3R	-	Drs	1.873574	3.22614	1.721918	
240	NM_079177	chr3L	+	CG10359	13.40286	23.07186	1.721414	
245	NM_166424	chr2R	+	CG2201	2.905576	4.972183	1.711256	
251	NM_001308842	chr2L	-	CG2201	2.905576	4.972183	1.711256	
252	NM_001308843	chr2L	-	CG2201	2.905576	4.972183	1.711256	
257	NM_141658	chr3R	+	CG8301	1.528876	2.609341	1.706705	
260	NM_165416	chr2R	+	CG3107	1.37879	2.345134	1.704189	
269	NM_167534	chrX	-	Sep-04	4.446994	7.541204	1.695798	
271	NM_001104305	chr3R	+	CG34383	6.187204	10.48622	1.694823	
272	NM_142053	chr3R	+	CG34383	6.187204	10.48622	1.694823	
274	NR_124532	chr2R	+	CR45140	7.73782	13.1022	1.693268	
277	NM_137111	chr2R	-	Arc1	54.63151	92.43434	1.69196	
282	NM_135181	chr2L	+	CG13982	1.249607	2.107964	1.686902	
288	NM_141217	chr3R	-	CG31523	2.061705	3.460305	1.678371	
291	NM_206122	chr2R	+	CG33462	2.486671	4.170865	1.677289	
297	NM_169167	chr3R	+	CG1943	1.512154	2.503916	1.673716	
299	NM_001274141	chr2R	+	CG10916	5.2292	8.735955	1.671115	
306	NM_206554	chr3R	-	p38c	1.494595	2.48285	1.66122	
310	NM_132212	chrX	+	CG1575	1.7446	2.885664	1.653998	
311	NM_001299242	chr2R	+	CG30377	1.387151	2.294221	1.653909	
313	NM_001272980	chr2L	-	aop	4.699299	7.768413	1.653101	
314	NM_001299270	chr2R	-	Cyp6a14	1.591587	2.624203	1.648797	
315	NM_001276150	chr3R	+	CG1969	1.218461	2.008036	1.648011	
317	NM_138186	chr3L	-	mthl10	1.773028	2.915131	1.644154	
323	NM_001144328	chr2L	-	CG9527	1.277826	2.093734	1.638512	
324	NM_166895	chrX	+	br	1.563158	2.558744	1.636907	
326	NM_167100	chrX	-	CG32732	1.640292	2.681598	1.63483	
Startline	NM (GeneID)	Chrom	Sign	Gene	ExpRatio	ExpRatio2	ExpRatio3	
----------	-------------	-------	------	------	----------	-----------	-----------	
331	NM_142133	chr3R	+	CG14855	2.545828	4.149678	1.629992	
333	NM_00127581	chr3R	+	CG4662	1.190868	1.938309	1.627643	
334	NM_169877	chr3R	+	CG4662	1.190868	1.938309	1.627643	
340	NM_176503	chr3R	+	Hsc70-4	1.436692	2.335331	1.625491	
344	NR_124415	chr2L	+	CR44993	1.187332	1.926608	1.622089	
349	NR_124437	chr2L	+	CG7220	1.795604	2.900743	1.615469	
350	NM_00110379	chr2R	+	CR44993	1.187732	1.926608	1.622089	
355	NM_00129970	chr2R	-	CG7220	1.795604	2.900743	1.615469	
356	NM_00129888	chr2L	-	CG17124	6.169018	9.932981	1.61014	
357	NM_00131651	chr2L	-	Bin1	5.658139	9.099883	1.608282	
366	NM_00129832	chrX	-	CG9518	1.40262	2.251214	1.605007	
372	NM_142316	chr3R	-	CG14906	2.565477	4.110783	1.602346	
377	NM_137897	chr2R	-	CG3831	5.798191	9.269064	1.598613	
379	NM_057805	chr2L	-	toc	1.719516	2.747531	1.597852	
390	NR_047772	chrX	+	CR43461	2.038084	3.239896	1.589677	
394	NR_124767	chr3L	+	CR45424	1.180834	1.87285	1.586039	
395	NM_00127623	chr3L	-	CG40178	1.529712	2.423241	1.584116	
399	NM_00103875	chrX	+	drd	1.128785	1.780986	1.57779	
403	NR_124544	chr2R	+	CR44366	1.210726	1.906528	1.574698	
406	NM_168492	chr3L	+	CG32099	1.056459	1.661452	1.572662	
407	NM_00127313	chr2L	-	hoe1	4.204305	6.608337	1.571802	
408	NM_168468	chr3L	+	CG32091	12.99712	20.42394	1.571421	
410	NM_00129885	chr2L	-	CG5853	2.551054	4.007377	1.570871	
413	NM_00126006	chr3R	+	CG8369	2.024287	3.174437	1.568175	
414	NM_141514	chr3R	+	CG18249	1.478081	2.316041	1.566924	
418	NM_00127362	chr2L	+	mib2	5.335808	8.344103	1.563794	
420	NM_170484	chr3R	+	Fer2LCH	1.287024	2.008511	1.560586	
423	NM_130655	chrX	-	elf3ga	4.732326	7.375976	1.558637	
425	NM_00127249	chrX	-	Rph	1.544972	2.404426	1.556291	
438	NM_00110388	chr2R	-	CG30460	1.86354	2.889359	1.550468	
443	NM_135175	chr2L	+	CG9505	2.710338	4.19901	1.549257	
444	NM_170219	chr3R	-	CG10550	3.654127	5.654915	1.547542	
	Accession	Chromosome	Strand	Gene/Protein	Log2Ratio	AvgFoldChange	AdjPvalue	
---	---------------	------------	--------	--------------	------------	---------------	-----------	
445	NM_001038945	chr3L	-	CG33969	2.677519	4.138927	1.545806	
446	NM_135327	chr2L	-	Wwox	1.589496	2.455496	1.544827	
451	NM_080174	chr3R	+	GstD4	3.653082	5.631514	1.541579	
452	NM_144186	chr3L	+	CG13315	1.909737	2.941852	1.540449	
453	NR_073874	chr2R	-	CR43918	1.057713	1.628249	1.539405	
459	NM_001274148	chr2R	-	Jabba	3.721854	5.720374	1.536969	
460	NM_137527	chr2R	-	Jabba	3.721854	5.720374	1.536969	
464	NM_205901	chr2L	-	CG34394	3.812366	5.855086	1.535812	
468	NM_141260	chr3R	-	CG2604	1.680635	2.57756	1.533682	
474	NM_001169707	chr2R	-	Sema1b	3.332842	5.104998	1.531725	
475	NM_001104123	chr3L	-	CG10663	1.596185	2.444903	1.531716	
479	NM_176214	chr2R	-	mthl4	2.097449	3.210645	1.530738	
481	NM_001300537	chr3R	-	pinta	1.841383	2.816152	1.529369	
485	NM_001297917	chrX	+	CG2930	4.304642	6.574975	1.527415	
492	NM_167198	chrX	-	Ptpmeg2	2.940275	4.472703	1.521683	
493	NM_078499	chrX	-	CG2300	1.289323	1.964872	1.523956	
496	NM_078914	chr2R	+	Tsp42El	4.519111	6.876655	1.521683	
502	NM_136945	chr2R	+	Dh44-R2	2.946546	4.472703	1.517948	
503	NM_165907	chr2R	+	Dh44-R2	2.946546	4.472703	1.517948	
509	NM_001299591	chr2R	+	CG11400	3.981057	6.027746	1.51107	
514	NM_168070	chr3L	-	Impl2	3.674613	5.556569	1.512151	
516	NM_001273397	chr2L	+	GATAd	2.089715	3.15657	1.510526	
518	NM_135525	chr2L	-	CGS604	2.471412	3.730837	1.509597	
520	NM_170440	chr3R	-	Zip99C	1.651998	2.492969	1.509064	
522	NM_001259659	chr3L	-	CG11537	12.7352	19.20189	1.50778	
523	NM_001274425	chr3L	-	CG11537	12.7352	19.20189	1.50778	
524	NM_080175	chr3R	+	GstD5	10.76025	16.21956	1.507359	
527	NM_078513	chrX	-	fz4	1.019878	1.537017	1.50706	
528	NM_001144160	chr2R	-	KNCNQ	2.826352	4.254349	1.505244	
532	NM_001275243	chr3L	-	Wnk	2.503812	3.763724	1.503198	
533	NM_001297887	chrX	-	CG3091	1.205082	1.811344	1.503087	
535	NM_134877	chr2L	-	CG18557	7.171128	10.77478	1.502522	
536	NM_001298631	chr2L	-	NLaz	2.276592	3.420303	1.502379	
542	NM_136206	chr2L	+	CG2617	1.91559	2.869753	1.498104	
547	NM_136290	chr2L	+	CG42748	2.311082	3.458408	1.496445	
556	NM_133101	chrX	+	CG7101	1.804174	2.690769	1.491413	
Locus	Chromosome	Strand	Description	Value1	Value2	Value3	Value4	
---------	------------	--------	-------------	--------	--------	--------	--------	
NM_167760	chrX	-	GCS2alpha	2.017598	3.007627	1.490697		
NM_001300180	chr3L	-	Cyp12c1	2.170611	3.235152	1.490434		
NM_001042794	chrX	+	sgg	1.555842	2.316041	1.488609		
NM_001169494	chr2L	-	bun	4.503852	6.700991	1.487836		
NM_079242	chr3L	+	RNaseX25	1.804593	2.684286	1.487475		
NM_166625	chr2R	+	CG4797	2.350381	3.489082	1.484093		
NM_142734	chr3R	+	CG6656	4.045858	6.000392	1.483095		
NM_142983	chr3R	+	CG6356	3.393462	5.03274	1.48307		
NM_170216	chr3R	+	CG31370	2.251508	3.33334	1.480493		
NM_001273764	chr2L	+	CG17493	2.679401	3.957571	1.477036		
NM_169083	chr3R	+	CG31549	1.974119	2.915447	1.476835		
NM_001298049	chrX	-	unc-119	1.927087	2.845087	1.476367		
NM_132161	chrX	-	unc-119	1.927087	2.845087	1.476367		
NM_135323	chr2L	+	CG7231	4.658537	6.864638	1.473561		
NM_001299594	chr2R	-	CG6568	2.024287	2.970471	1.476416		
NM_165570	chr2R	+	Cul1	2.636222	3.859699	1.465548		
NM_165512	chr2R	+	pk	3.973114	5.821882	1.46532		
NR_048324	chr3R	-	snRNA:U4atac:82E	2.2467	3.289543	1.464167		
NM_001273805	chr2R	+	Eb1	1.93064	2.825639	1.463576		
NM_001300384	chr3R	+	Dic1	2.87213	4.202804	1.463306		
NR_001982	chr3R	-	snRNA:U1:82Eb	25.57262	37.30252	1.45869		
NM_001275275	chr3L	+	olf413	5.500318	8.022975	1.458638		
NM_001276084	chr3R	-	dsd	2.533286	3.694471	1.458371		
NM_001014498	chr2L	-	Clamp	5.707053	8.316749	1.457276		
NM_136660	chr2R	+	CG1827	1.509645	2.199037	1.456658		
NM_139552	chr3L	-	CG14969	1.265702	1.843599	1.456582		
NM_140355	chr3L	+	CG14118	2.48918	3.624427	1.456073		
NM_001274545	chr3L	-	Impl3	5.37866	7.831026	1.455944		
NR_073836	chr2R	-	CR44127	2.485417	3.61826	1.455796		
NM_143322	chr3R	+	CG12883	2.20991	3.211435	1.453197		
NM_135462	chr2L	+	CG13116	1.732894	2.515105	1.45139		
NM_165690	chr2R	+	GstT2	3.316537	4.813279	1.451297		
NM_057417	chr2R	-	tra2	2.492106	3.616363	1.451127		
NM_001273924	chr2R	-	mlt	3.737741	5.422331	1.450697		
NM_001299838	chr2R	-	CG9815	3.684228	5.340586	1.449581		
NM_165689	chr2R	+	CG1902	1.363112	1.975623	1.449347		
Gene ID	Chromosome	Strand	Gene Symbol	Genes (homo sapiens)	Location	Expression 1	Expression 2	Expression 3
------------	------------	--------	-------------	----------------------	----------------	-------------	-------------	-------------
NM_057386	chr2L	-	aub			1.557305	2.256906	1.449239
NM_133088	chrX	-	Ing3			1.345553	1.94827	1.447932
NM_078585	chrX	+	CkIalpha			1.711572	2.477949	1.447762
NR_124023	chr2L	+	CR44976			2.440266	3.53114	1.447031
NM_141930	chr3R	-	lig3			5.873653	8.496207	1.446495
NM_00110354	chrX	+	upd3			5.715414	8.261093	1.445406
NM_142718	chr3R	-	Archease			4.072405	5.88576	1.445279
NR_123961	chrX	-	CR45501			1.019669	1.473614	1.445189
NM_080360	chr2L	+	Hrs			1.496685	2.162197	1.444657
NM_133049	chrX	-	upd2			4.396199	6.348715	1.444137
NM_00127612	chr3R	+	Inx3			12.8689	18.5789	1.443698
NM_169336	chr3R	-	Timp			6.94252	10.0761	1.442775
NM_00127320	chr2L	+	Cpr			1.111226	1.602318	1.441937
NM_168262	chr3L	-	Bl1			1.761531	2.539929	1.441887
NM_00110370	chr2L	+	Fas3			6.86991	9.89930	1.440965
NM_00127527	chr3L	+	CG14561			1.376908	1.983055	1.440222
NM_166783	chr4	-	gw			2.618572	3.768784	1.439252
NM_140058	chr3L	+	CG3529			2.270739	3.266775	1.43864
NM_167192	chrX	+	CG32700			1.332802	1.916647	1.438058
NM_164549	chr2L	-	CG31778			1.512363	2.171051	1.435356
NM_168513	chr3L	-	Hip1			1.486233	2.13089	1.433752
NM_170444	chr3R	-	Zip99C			10.0390	14.3805	1.432457
NM_132531	chrX	-	CG11802			1.589078	2.275406	1.431903
NM_137040	chr2R	-	CG6145			1.821733	2.608234	1.431732
NM_139627	chr3L	+	CG1311			1.549989	2.214216	1.428537
NM_130718	chrX	+	HIP			2.10602	3.005414	1.427059
NR_125316	chr2L	+	CR44268			1.546853	2.201092	1.422948
NM_137717	chr2R	+	Lapsyn			1.686279	2.397311	1.421657
NM_142019	chr3R	+	CG32473			1.672065	2.377072	1.421639
NM_136697	chr2R	+	Adam			1.61458	2.293905	1.420744
NM_134992	chr2L	-	CG15439			2.786426	3.956938	1.420076
NR_133475	chr3R	+	CR46104			1.000438	1.420172	1.41955
NM_00127221	chrX	-	CG14812			3.494843	4.941509	1.413943
NM_00130007	chr3L	+	CG33926			5.22711	7.3891	1.413611
NM_00116955	chr2L	-	sky			3.39531	4.716039	1.412186
NM_00127343	chr2L	+	CG16743			2.446328	3.451136	1.410741
NM_00125952	chr2R	+	mahj			2.27742	3.210803	1.409837
Gene	Chromosome	Position	Expression	Fold Change				
----------	------------	----------	------------	-------------				
NM_00110409	chr3L	-	i-2	1.433975				
NM_137805	chr2R	+	CG11275	3.361479				
NM_166740	chr4	-	CG2316	1.940256				
NM_134998	chr2L	-	HP6	1.868139				
NM_166968	chrX	+	dnc	2.302512				
NM_135986	chr2L	-	beat-Illc	3.601451				
NM_135923	chr2L	-	Ku80	2.441938				
NR_002129	chrX	-	snRNA:U5:14B	23.42103				
NM_132317	chrX	-	CG12121	1.222014				
NM_168306	chr3L	-	pix	2.589098				
NM_167956	chr3L	+	dos	8.708784				
NM_080198	chr3R	+	Pp1-87B	2.8073				
NM_132196	chrX	-	mahe	3.790209				
NM_00127495	chr3L	+	dop	3.205749				
NM_206362	chr3L	+	CG9425	2.241744				
NM_166780	chr4	-	gw	2.600177				
NM_170046	chr3R	+	Gr94a	5.577242				
NM_00104287	chr2L	+	Mnn1	1.754062				
NM_167758	chrX	-	GCS2alpha	3.111475				
NM_138221	chr3L	+	CG13890	1.381716				
NM_00129893	chr2L	+	ThrRS	3.986492				
NM_079858	chr3R	-	Sap-r	6.908163				
NM_137537	chr2R	-	CG15099	3.05608				
NM_140762	chr3L	-	CG5535	4.27266				
NM_00129869	chr2L	+	Bub1	2.172284				
NM_141832	chr3R	+	wkd	1.907646				
NM_170445	chr3R	-	Zip99C	1.328831				
NM_00129846	chrX	+	Vps4	1.697776				
NM_169811	chr3R	+	koko	1.412235				
NM_141659	chr3R	+	P58IPK	5.512024				
NM_143666	chr4	-	bip2	3.717465				
NM_132868	chrX	+	CG8931	1.098684				
NM_166482	chr2R	-	Tango11	3.441331				
NM_136176	chr2L	+	bwa	5.604208				
NM_00127399	chr2R	-	CG17574	4.079303				
NM_206309	chr3L	+	Pdxk	2.304811				
NM_141932	chr3R	-	Cyp9f2	2.438593				
NM_135061	chr2L	-	Rpn11	4.680485				
NM_00127285	chrX	+	S6kII	2.243146				
NM_00117038	chr3L	+	CG40160	1.068374				
	Accession	Chromosome	Strand	Description	Log2 Fold Change			
---	-------------	------------	--------	-------------	-----------------			
830	NR_124606	chr3R	+	CR44417	3.531424			
832	NR_133522	chrX	+	CR32636	1.932521			
833	NM_142644	chr3R	+	CG5466	1.204037			
834	NM_169467	chr3R	+	Desat1	7.069538			
835	NM_00130061	chr3R	+	tx	1.556051			
838	NM_143401	chr3R	+	Cpsf100	1.519679			
840	NM_169223	chr3R	-	CG45263	9.144411			
841	NM_139527	chr3L	-	CG14966	2.022197			
843	NM_206363	chr3L	-	CG17839	3.076755			
845	NR_133323	chr3R	+	CR45999	1.709273			
846	NR_133324	chr3R	+	CR45999	1.709273			
847	NR_124416	chr2L	+	CR43144	3.013646			
848	NR_048035	chr2L	+	CR43148	1.42645			
851	NM_057251	chr2L	+	stc	2.380064			
852	NM_078611	chrX	+	mRpL3	1.461149			
853	NM_00127593	chr3R	+	Irk1	1.076526			
856	NM_00127602	chr3R	-	CG33494	5.493211			
857	NM_142123	chr3R	+	CG3505	1.320051			
859	NM_142925	chr3R	-	CG10217	1.897195			
860	NM_057614	chr2L	+	Ror	1.177281			
862	NR_073662	chrX	-	CR43981	1.467629			
865	NM_132683	chrX	-	CR12177	1.924578			
867	NM_141526	chr3R	-	Sgt1	2.071947			
868	NM_169558	chr3R	+	Dip-B	2.960343			
871	NM_079850	chr3R	-	Ceca2	1.092413			
872	NM_170651	chr3R	-	pnt	5.19241			
873	NM_142929	chr3R	-	CG10208	1.501702			
874	NM_00127336	chr2L	+	CG13117	18.8829			
875	NM_132539	chrX	-	Uspf1	2.024915			
876	NM_00120211	chr3L	-	Eip63F-1	1.591587			
879	NM_139641	chr3L	+	slow	6.694948			
883	NM_00127430	chr3L	+	Usp10	1.894059			
884	NM_137371	chr2R	-	Tes	1.812118			
885	NM_168692	chr3L	+	CG32170	4.154973			
886	NM_00125933	chr2R	-	CG9005	2.481236			
887	NM_00120208	chr3L	+	CG7991	14.96455			
888	NM_142640	chr3R	-	CG16953	2.607493			
Gene Accession	Chromosome	Strand	Gene Symbol	Start	Stop	Log2 Fold Change		
---------------	------------	--------	-------------	-------	------	-----------------		
NM_132790	chrX	-	CG9123	2.103302	2.877817	1.368237		
NM_00129824	chrX	-	CG32647	8.492434	11.61878	1.368134		
NM_00127319	chr2L	+	Cpr	1.793723	2.452809	1.36744		
NM_00127499	chr3L	-	Zn72D	4.739851	6.479949	1.367121		
NM_00116957	chr2L	-	CG31612	1.187314	1.619394	1.363914		
NM_00127482	chr3R	+	CathD	5.344796	7.292334	1.36438		
NM_142218	chr3R	-	AOX1	12.31212	16.81185	1.365472		
NM_136893	chr2R	-	EndoG	2.044146	2.789906	1.364827		
NM_057214	chr2L	+	Ab	5.344796	7.292334	1.36438		
NM_00116957	chr2L	-	CG31612	1.187314	1.619394	1.363914		
NM_00129953	chr2R	+	CG42524	4.579731	6.246258	1.363892		
NM_00116957	chr2L	-	CG31612	1.187314	1.619394	1.363914		
NM_00127482	chr3R	-	Pbgs	1.063984	1.450371	1.363151		
NM_170253	chr3R	+	Nf1	1.334056	1.818143	1.362868		
NM_00134775	chr3L	-	CathD	1.880681	2.549258	1.355497		
NM_00127227	chrX	+	CG3603	2.48479	3.382197	1.36116		
NM_137887	chr2R	-	EMC8-9	2.876729	3.912351	1.36		
NM_141619	chr3R	+	VhaM8.9	4.922547	6.6885	1.358748		
NM_00131649	chr3R	-	Agt	1.282843	1.743039	1.358731		
NM_00129922	chr2R	-	Tsp42Ed	5.565745	7.561127	1.358511		
NM_166469	chr2R	+	CG42365	2.813392	3.82191	1.358471		
NM_137907	chr2R	+	I(2)K09913	3.613157	4.905459	1.357666		
NM_00129786	chrX	+	East	1.494386	2.027801	1.356946		
NR_001972	chr3L	+	SnRNA:U5:23D	40.69855	55.21199	1.356608		
NM_166435	chr2R	+	MFS16	2.673339	3.625692	1.356241		
NM_00134781	chr2L	-	Sur	1.880681	2.549258	1.355497		
NM_134670	chr2L	-	CG3625	9.920974	13.4393	1.354635		
NM_137739	chr2R	-	CG10795	1.68398	2.28094	1.354943		
NM_205893	chr2L	+	CG31690	5.317622	7.200945	1.354166		
NM_00127507	chr3L	-	CG44006	13.21034	17.87247	1.352916		
NM_166635	chr2R	-	Serca	2.186289	2.957822	1.352896		
NM_169562	chr3R	+	Lpp	1.043917	1.411476	1.352096		
NM_166529	chr2R	+	Gp150	7.854879	10.6184	1.351822		
NR_002465	chrX	+	SnRNA:U3:9B	61.05785	82.53678	1.35178		
NM_141798	chr3R	-	Gcc88	1.033883	1.397087	1.351301		
NR_002076	chr3R	+	SnRNA:U1:95Cc	71.28402	96.2806	1.350662		
NM_00116994	chr3L	-	CG6091	1.593886	2.151761	1.35009		
		chr						
---	---	-----	---	---	---	---	---	---
6	NM_206580	chr3R	-	Trc8	1.956142	2.640805	1.350007	
8	NM_058130	chr2L	+	Sps2	1.863958	2.516212	1.349929	
9	NM_00129816	chrX	-	CG1582	1.570474	2.119348	1.349496	
10	NM_136044	chr2L	+	CG10333	1.481635	1.998866	1.349095	
11	NR_073677	chr2L	+	CR44218	1.220342	1.645641	1.348508	
12	NM_166279	chr2R	+	GstE9	5.758057	7.760665	1.347792	
13	NM_135509	chr2L	-	CG5734	6.210198	8.36276	1.346617	
14	NM_00129948	chr2R	-	Opa1	2.34411	3.155147	1.345989	
15	NM_057858	chr2R	-	sktl	6.058648	8.154525	1.345931	
16	NR_037757	chr3R	-	CR31514	1.268629	1.707305	1.345788	
17	NM_138256	chr3L	+	msd1	2.158278	2.90438	1.345693	
18	NM_143130	chr3R	-	CHKov2	14.6117	19.66026	1.345515	
19	NM_080029	chrX	-	Smyd3	1.04329	1.403728	1.345482	
20	NM_138249	chr3L	+	Rabex-5	3.222263	4.335303	1.345422	
21	NM_143555	chr3R	-	CG9717	2.234576	3.006046	1.345242	
22	NM_00110410	chr3L	+	Adi1	2.118144	2.84904	1.345064	
23	NM_057473	chr2L	-	tam	1.099938	1.479464	1.345043	
24	NM_133165	chr3L	+	Fie	2.693197	3.619525	1.343951	
25	NM_140647	chr3L	+	Rpn12	2.540602	3.413029	1.343394	
26	NM_167827	chr3L	-	fwpd	6.288377	8.44403	1.3428	
27	NM_165390	chr2L	+	Cul2	1.68816	2.263547	1.340837	
28	NM_169139	chr3R	+	godzill	2.495869	3.344883	1.340168	
29	NM_00126037	chr3R	+	Nup358	2.700931	3.614624	1.338288	
30	NM_00117020	chr3R	-	CG34034	1.364784	1.826364	1.338207	
31	NM_143738	chr2R	-	Ady43A	2.22496	2.97553	1.337341	
32	NM_136546	chr2R	+	Cyp6a13	1.457596	1.948902	1.337066	
33	NM_137728	chr2R	-	CG30392	1.126067	1.505395	1.33686	
34	NM_00125878	chrX	-	Pp2B-14D	2.469321	3.300137	1.336455	
35	NM_133105	chrX	-	CG7322	1.217206	1.626035	1.335875	
36	NM_141107	chr3L	+	CG7407	1.878173	2.507832	1.335251	
37	NM_00127432	chr3L	-	CG12084	3.44802	4.601566	1.334553	
38	NM_138268	chr3L	-	CG12084	3.44802	4.601566	1.334553	
39	NM_080199	chr2L	-	CIAPIN1	4.595409	6.132575	1.3345	
40	NR_073614	chr4	-	CR43956	1.38088	1.842176	1.334059	
41	NM_00127579	chr3R	+	Xrp1	27.5388	36.72762	1.333668	
42	NM_141970	chr3R	+	CG12279	1.840755	2.453915	1.333102	
43	NM_00127556	chr3R	-	CG4848	1.546017	2.060688	1.332901	
44	NM_137345	chr2R	+	CG15611	12.65347	16.85217	1.331822	
Gene	Chromosome	Location	Gene Symbol	Fold Change	p-Value			
--------	------------	----------	-------------	-------------	----------			
NM_166704	chr2R	-	zip	8.147736	10.85067	1.33174		
NM_00127216	chrX	+	CG32817	2.562969	3.411923	1.331239		
NM_141604	chr3R	-	CG11984	2.0454	2.722708	1.331137		
NM_167462	chrX	-	CG8974	2.791025	3.713761	1.330608		
NM_139887	chr3L	-	CG7506	1.301029	1.730864	1.330381		
NM_164909	chr2L	-	CYLD	1.206337	1.604532	1.330086		
NM_00110417	chrX	+	Blos3	1.015906	1.350602	1.329558		
NM_164979	chr2L	+	escl	3.171049	4.212924	1.328558		
NM_164550	chr2L	-	CG31777	2.161832	2.86797	1.326513		
NM_079428	chr3L	-	CSN1b	2.135912	2.831648	1.325732		
NM_00131656	chr3R	+	Not10	1.201738	1.592831	1.32544		
NM_00127535	chr3R	-	PEK	1.046216	1.386178	1.324944		
NM_079054	chr2R	-	Dcr-2	3.532469	4.677934	1.324267		
NR_003121	chr3L	-	snRNA:U11	26.65395	35.29416	1.324162		
NM_137360	chr2R	-	CG6568	1.971402	2.608866	1.323356		
NM_169116	chr3R	-	CG2017	5.827038	7.709753	1.3231		
NM_00129819	chrX	+	Spase25	2.548963	3.37192	1.322859		
NM_00101547	chr3L	+	ND-AGGG	1.69485	2.239356	1.321271		
NM_134492	chrX	-	CG12237	4.504479	5.951535	1.321248		
NM_00129924	chr2R	+	CG1882	10.19606	13.47092	1.32188		
NM_143711	chr3R	-	Ref1	2.791443	3.687672	1.321063		
NM_136622	chr2R	+	Rad51D	1.178953	1.555991	1.319807		
NM_00101462	chr3R	+	gish	7.51453	9.910055	1.318852		
NM_00127569	chr3R	+	gish	7.51453	9.910055	1.318852		
NM_137543	chr2R	+	Jheh3	2.479146	3.269463	1.318786		
NM_00104298	chr2R	+	CG17486	2.960343	3.902548	1.318276		
NM_00120199	chr2R	+	CG6701	5.33508	7.029867	1.318057		
NM_166264	chr2R	+	pAbp	7.849026	10.34439	1.31792		
NM_00104293	chr2L	+	Slmap	1.910364	2.517002	1.317551		
NR_124833	chr3L	+	CR44526	3.321554	4.375938	1.317437		
NM_137694	chr2R	+	ND-B14.7	1.089486	1.435035	1.317166		
NM_142290	chr3R	+	CG14883	2.123997	2.796388	1.316569		
NM_140071	chr3L	-	CG3408	4.363799	5.740612	1.315508		
Gene ID	Chromosome	Strand	Gene Symbol	Log2 Fold Change				
---------	------------	--------	-------------	-----------------				
NM_080005	chrX	-	Rab18	2.56509				
NM_145191	chr3L	-	CG4098	3.055453				
NM_00129968	chr2R	+	CG7461	4.813431				
NM_140239	chr3L	-	CG11652	1.703629				
NM_00117036	chr2L	-	CG12567	3.245465				
NM_00127551	chr3R	-	FBXO11	5.062182				
NM_166924	chrX	-	CG4199	3.487736				
NM_00129800	chrX	-	sqh	4.664808				
NM_134791	chr2L	+	CG7289	1.516125				
NM_138028	chr2R	+	CG3163	1.719934				
NM_139888	chr3L	+	PGRP-SD	1.129621				
NM_00127224	chrX	+	Unc-76	1.652207				
NM_00125960	chr3L	-	mthl10	15.66795				
NM_140986	chr3L	+	CG4858	2.085116				
NM_135971	chr2L	-	CG13283	1.442336				
NM_057318	chrX	-	arm	5.330373				
NM_00104295	chr2L	+	lt	2.417481				
NM_00131653	chr3R	-	Tango9	1.868348				
NM_142745	chr3R	-	CG6028	1.934194				
NM_142122	chr3R	-	l(3)1231	3.5193				
NM_135023	chr2L	+	CG11927	1.489996				
NM_00110380	chr2R	+	pyr	20.44313				
NM_143025	chr3R	+	CG42331	2.425215				
NM_142191	chr3R	-	CG6218	4.756783				
NM_00129995	chr3L	-	CG7028	5.076187				
NM_164784	chr2L	+	Bsg	5.400608				
NM_078520	chrX	-	sws	2.093478				
NM_167140	chrX	-	sws	2.093478				
NM_132796	chrX	+	CG11655	2.067767				
NM_142963	chr3R	+	Kal1	3.097911				
NM_00125881	chrX	+	CrebB	1.459059				
NM_00127376	chr2L	+	cta	2.142601				
NM_00116930	chrX	-	CG43658	2.160996				
NM_169029	chr3R	-	CG2604	2.562342				
NM_143687	chr4	-	CG11077	1.686697				
NM_142134	chr3R	+	CG14856	1.663285				
NM_169465	chr3R	+	Desat1	2.520953				
Gene ID	Chrm	Start	End	Strand	Name	Fold Change		
--------	------	-------	-----	--------	-------	-------------		
NM_001014478	chr2L	11.32777	14.75828	1.30284				
NM_136412	chr2R	2.212209	2.880504	1.302094				
NM_169115	chr3R	1.034092	1.346333	1.301947				
NM_142986	chr3R	1.799576	2.342762	1.301841				
NM_166139	chr2R	3.463488	4.508437	1.301704				
NM_001272521	chrX	4.279349	5.567479	1.301011				
NM_167285	chrX	4.279349	5.567479	1.301011				
NM_001272885	chr2L	3.402032	4.42606	1.301005				
NM_170365	chr3R	3.475194	4.520612	1.300823				
NM_057990	chrX	2.035993	2.646497	1.299855				
NM_001042989	chr2R	3.368587	4.378468	1.299794				
NM_135950	chr2L	5.326192	6.922033	1.299621				
NM_166481	chr2R	3.697606	4.804741	1.299419				
NM_170109	chr3R	5.83958	7.58769	1.299355				
NM_137273	chr2R	1.230794	1.59884	1.299032				
NM_176097	chr2R	6.073071	7.888895	1.298996				
NM_001274865	chr3L	3.310266	4.297988	1.298382				
NM_001273030	chr2L	2.520953	3.272941	1.298295				
NM_001103722	chr2R	4.825137	6.264283	1.29826				
NM_001316406	chr2R	4.825137	6.264283	1.29826				
NM_165959	chr2R	1.737702	2.255958	1.298242				
NM_141306	chr3R	8.979901	11.65768	1.298197				
NM_165659	chr2R	13.55733	17.59103	1.297529				
NR_003825	chr2R	51.68518	67.06098	1.29749				
NM_168926	chr3L	1.584898	2.056261	1.297409				
NM_176301	chr3L	5.839371	7.574092	1.297073				
NM_001299592	chr2R	3.108757	4.030619	1.296537				
NM_001103392	chrX	4.155182	5.385807	1.296166				
NM_079998	chr2R	15.63304	20.26267	1.296144				
NM_143370	chr3R	1.198184	1.552987	1.296117				
NM_001299867	chr2R	3.78561	4.906408	1.296068				
NM_166639	chr2R	3.78561	4.906408	1.296068				
NR_133383	chr3R	3.007794	3.897488	1.295796				
NM_001170089	chr3R	1.914126	2.479372	1.295302				
NM_168145	chr3L	8.687463	11.25259	1.295268				
NM_170217	chr3R	4.587465	5.940467	1.294935				
NM_001298427	chrX	3.295843	4.267631	1.294853				
Location	Gene ID	Chromosome	Strand	Start	End	Expression Ratio		
----------	---------	------------	--------	-------	-----	------------------		
1208	NM_167017	chrX	+	1(1)G0334	3.139485	4.065088	1.294826	
1209	NM_167019	chrX	+	1(1)G0334	3.139485	4.065088	1.294826	
1210	NM_00127247	chrX	-	alpha-Man-1a	1.185224	1.534171	1.294415	
1211	NM_00127377	chr2R	+	l(1)G0334	3.139485	4.065088	1.294253	
1213	NM_137846	chrX	+	1(1)G0334	3.139485	4.065088	1.294191	
1214	NM_00130012	chr3L	+	CG11279	1.845145	2.387033	1.293683	
1215	NM_143679	chr3L	-	MED26	3.35918	4.345422	1.293596	
1218	NM_160935	chr3R	+	Hexim	7.416953	9.590034	1.292988	
1220	NM_135005	chr2L	+	CG11929	1.644939	2.112707	1.292619	
1221	NM_135329	chr2L	-	CG12560	13.82281	17.86599	1.292501	
1222	NM_134687	chr2L	+	Tspo	9.505623	12.28555	1.29245	
1224	NM_00130015	chr3L	+	CG9674	13.20323	17.06341	1.292366	
1227	NM_168900	chr3L	+	CG32440	1.063357	1.373687	1.291839	
1229	NM_00129825	chrX	+	CG2200	1.438992	1.85862	1.291612	
1230	NM_169744	chr3R	-	Keap1	5.503453	7.107658	1.291491	
1231	NM_00110445	chr3R	-	LpR2	5.379496	6.947015	1.291388	
1232	NM_00120192	chr2L	-	CG10165	1.232884	1.592041	1.291314	
1234	NM_00110390	chr2R	+	Phb2	3.103113	4.006112	1.290998	
1235	NM_00129790	chrX	-	CG18508	3.057962	3.946503	1.290567	
1236	NM_00131642	chr2R	+	PRAS40	18.93913	24.44207	1.290559	
1238	NM_00127591	chr3R	-	wge	2.926688	3.776215	1.290269	
1242	NM_142404	chr3R	-	CG7357	2.287671	2.950232	1.289623	
1246	NM_206616	chrX	-	CG2658	1.081961	1.394558	1.288089	
1249	NM_142100	chr3R	-	NK7.1	7.40441	9.53754	1.28804	
1250	NM_079914	chr3L	-	skd	15.98464	20.58886	1.28804	
1251	NM_168879	chr3L	-	skd	15.98464	20.58886	1.28804	
1252	NR_037751	chr3L	-	CR32218	1.810654	2.332168	1.288025	
1253	NM_138089	chr2R	+	uri	2.210328	2.846826	1.287966	
1254	NM_167336	chrX	+	CG4004	3.334932	4.294826	1.28783	
1256	NM_140664	chr3L	+	CG9706	1.378581	1.775136	1.287655	
1257	NM_00120209	chr3L	-	Rap1	3.342248	4.30289	1.287424	
1261	NM_142791	chr3R	-	Rpn7	2.916028	3.752498	1.286853	
1262	NM_167476	chrX	-	ND-20	1.803547	2.320626	1.286701	
1263	NM_00127272	chrX	+	CG12991	1.881517	2.420712	1.286574	
1264	NM_169587	chr3L	-	Msr-110	13.47079	17.32761	1.28631	
1265	NM_165957	chr2R	-	Nmda1	3.152863	4.055443	1.286273	
1266	NM_165958	chr2R	-	Nmda1	3.152863	4.055443	1.286273	
Gene Symbol	Chromosome	Allele	Gene Symbol	start	end			
-------------	------------	--------	-------------	-------	-----			
NM_137558	chr2R	-	CG11906	1.617507	2.080452	1.286209		
NM_00117009	chr3R	-	Vps15	1.366039	1.756953	1.286166		
NM_141611	chr3R	-	Vps15	1.366039	1.756953	1.286166		
NM_135373	chr2L	+	Wdr82	1.643009	2.112707	1.285877		
NM_170033	chr3R	-	loco	14.11127	18.14459	1.285822		
NM_140995	chr3L	-	Pex16	2.150962	2.765556	1.28573		
NM_165960	chr2R	-	Nmda1	2.357279	3.029447	1.285146		
NM_141173	chr3L	+	BoYb	1.930013	2.480162	1.285049		
NM_169490	chr3R	+	CtBP	7.8461	10.8003	1.284718		
NM_00127266	chrX	-	CG42354	2.386544	3.064706	1.284161		
NM_169392	chr3R	-	PGRP-LB	1.205918	1.54856	1.284133		
NM_206737	chrX	+	Gbeta13F	5.721894	7.34467	1.283608		
NM_206739	chrX	+	Gbeta13F	5.721894	7.34467	1.283608		
NM_00127407	chr2R	-	Khc-73	4.875932	6.258591	1.283568		
NM_140901	chr3L	+	Rpn1	4.619866	5.929874	1.28356		
NM_00126022	chr3R	+	pasi1	1.473482	1.891191	1.283484		
NM_080188	chr3R	+	Hsp70Bb	182.2273	233.8322	1.28319		
NM_00127416	chr2R	-	hpo	2.389261	3.065339	1.282965		
NM_169033	chr3R	-	CG12163	8.017926	10.28557	1.282822		
NM_169034	chr3R	-	CG12163	8.017926	10.28557	1.282822		
NM_166709	chr2R	+	CG30428	1.212608	1.554884	1.282265		
NM_140288	chr3L	+	[3]2D3	1.176863	1.508873	1.282115		
NM_166192	chr2R	-	unc-104	1.98917	2.549732	1.281807		
NM_00120176	chr2L	+	Msp300	10.87647	13.94052	1.281713		
NM_00120176	chr2L	+	Msp300	10.87647	13.94052	1.281713		
NM_137318	chr2R	+	Int58	1.308972	1.677264	1.281359		
NM_164839	chr2L	-	C1GalTA	2.645328	3.383864	1.280886		
NM_134929	chr2L	-	pgant2	2.663514	3.411132	1.280689		
NM_176148	chr2R	-	GalT1	1.089277	1.394558	1.280259		
NM_00127338	chr2L	-	Rsf1	2.686926	3.439434	1.280063		
NR_0001933	chr3L	+	snRNA:U5:63BC	64.80563	82.94202	1.279858		
NM_00127371	chr2L	+	CG9338	5.17506	6.622725	1.279739		
NM_140642	chr3L	-	CG42514	1.30939	1.675525	1.279622		
NM_136251	chr2L	+	CG9246	2.970585	3.801039	1.279559		
NM_137901	chr2R	-	CG9896	11.2149	14.34876	1.279438		
NM_206514	chr3R	-	fru	6.741145	8.624753	1.27942		
NM_142517	chr3R	+	NP15.6	1.938792	2.479846	1.279067		
NM_00101445	chr2L	+	PNUTS	17.90734	22.90379	1.279017		
Line	Gene ID	Chr/Strand	Operation	Gene/Protein	Log2FoldChange	Adjusted p-value		
------	-----------	------------	-----------	--------------	----------------	-----------------		
1325	NM_057862	chr2	-	SdhA	1.638828	1.278834		
1326	NM_170635	chr3L	+	Lmpt	6.392058	1.278795		
1327	NR_133104	chr2R	+	CR46064	3.52808	1.27859		
1328	NM_00129849	chrX	+	CG7378	2.058569	1.278534		
1329	NM_141778	chr3R	-	CG14696	24.40015	1.278512		
1330	NM_206426	chr3R	+	Gel	8.921999	1.277984		
1331	NM_00125917	chr2L	+	Fs(2)Ket	4.623419	1.277854		
1332	NM_058133	chr3R	-	elf2D	1.445472	1.277761		
1333	NM_00104299	chr2R	+	conu	3.066114	1.27744		
1334	NM_143629	chr3R	+	CG1896	3.817801	1.277437		
1335	NR_124417	chr2L	+	CR43144	3.268668	1.277166		
1336	NM_00125860	chrX	-	tay	2.701767	1.27666		
1337	NM_00116951	chr2L	-	CG5953	1.578836	1.276653		
1338	NM_097944	chr3L	-	cyc	2.497123	1.27548		
1339	NM_166880	chrX	+	AMPKalpha	1.390078	1.275412		
1340	NR_124417	chr2L	+	CR43144	3.268668	1.275336		
1341	NM_00127265	chrX	-	Tre1	1.520097	1.27533		
1342	NM_00116951	chr2L	-	CG5953	1.560022	1.275326		
1343	NM_097944	chr3L	-	Tbp	1.921234	1.275285		
1344	NM_168209	chr3L	-	pst	20.0058	1.275237		
1345	NM_00129919	chrX	+	CG2116	4.639306	1.275182		
1346	NM_00125860	chrX	-	CG14231	1.86563	1.274563		
1347	NM_00116951	chr2L	-	CG5953	1.560022	1.275326		
1348	NM_097944	chr3L	-	Tbp	1.921234	1.275285		
1349	NM_168209	chr3L	-	pst	20.0058	1.275237		
1350	NM_132216	chrX	+	CG2116	4.639306	1.275182		
1351	NM_00129919	chr2L	+	CG8677	5.439489	1.274819		
1352	NM_00125883	chrX	-	CG14231	1.86563	1.274563		
1353	NM_00129898	chr2L	-	Smg5	2.529941	1.274496		
1354	NM_00129898	chr2L	-	Smg5	2.529941	1.274496		
1355	NM_134793	chr2L	+	Npc2a	8.766896	1.27437		
1356	NM_00116961	chr2R	+	lig	1.474946	1.273742		
1357	NM_00130019	chr3L	-	CG14182	2.9501	1.27333		
1358	NM_00125955	chr2R	+	snama	2.452808	1.27332		
1359	NM_00125955	chr2R	+	snama	2.452808	1.27332		
1360	NM_00101535	chr3R	+	CG41099	5.119039	1.273235		
1361	NM_00101536	chr3R	+	CG41099	5.119039	1.273235		
1362	NM_00101536	chr3R	+	CG41099	5.119039	1.273235		
1363	NM_00111098	chr3R	+	CG41099	5.119039	1.273235		
1364	NM_00111098	chr3R	+	CG41099	5.119039	1.273235		
1365	NM_00101536	chr3R	+	CG41099	5.119039	1.273235		
1366	NM_057933	chr2R	+	Alas	7.50182	1.272923		
1367	NM_132777	chrX	-	Rpl37a	6.053631	1.272243		
1368	NM_137488	chr2R	+	CG12263	1.128158	1.272156		
i	nuc_name	chrom	strand	gene	start	end	log2FC	Padj
----	--------------	--------	--------	------	-------	-------	-------	--------
1374	NM_141325	chr3R	-	CG2091	2.814437	3.578732	1.271562	
1377	NM_142663	chr3R	+	CG15695	5.213523	6.628259	1.271359	
1378	NM_00117037	chr3L	+	Set1	2.151589	2.735357	1.271319	
1379	NM_079414	chr3L	-	rpr	24.84602	31.5842	1.271198	
1380	NM_142145	chr3R	-	CG7265	1.733312	2.203306	1.271154	
1381	NM_00127535	chr3R	+	CG1172	4.045021	5.141364	1.271035	
1382	NM_170353	chr3R	-	CG12428	1.782017	2.264812	1.270926	
1383	NM_170354	chr3R	-	CG12428	1.782017	2.264812	1.270926	
1384	NM_00127212	chr4	+	CG32850	4.321574	5.498945	1.270335	
1385	NM_166753	chr4	+	CG32850	2.150753	2.733301	1.270858	
1387	NM_205948	chr2L	+	Apoltp	10.07148	12.79783	1.270701	
1388	NM_139949	chr3L	-	CG7185	4.744032	6.027746	1.270596	
1389	NM_00116966	chr3L	+	Kdm4B	1.4739	1.871901	1.270032	
1390	NM_176726	chrX	+	Nna1	1.788497	2.271927	1.2703	
1391	NM_168830	chr3L	+	CG7668	4.029762	5.117963	1.270041	
1392	NM_136377	chr2R	+	CG9410	1.4739	1.871901	1.270032	
1393	NM_00129960	chr2R	+	CG14478	9.937696	12.62106	1.270019	
1394	NM_166519	chr2R	-	Swim	21.26108	27.00034	1.269942	
1396	NM_170453	chr3R	-	Acph1	1.701121	2.160299	1.269927	
1397	NM_00129809	chrX	+	Rbm13	1.591378	2.020844	1.269871	
1399	NM_132160	chrX	+	CG2059	1.442336	1.831424	1.269762	
1400	NM_142304	chr3R	-	CG14903	2.166431	2.750852	1.269762	
1401	NM_167047	chrX	-	IntS6	1.055205	1.33985	1.269754	
1402	NM_00120165	chrX	-	jub	2.961179	3.75993	1.269741	
1403	NM_00129830	chrX	-	jub	2.961179	3.75993	1.269741	
1404	NM_00125938	chr2R	-	shot	18.54238	23.5432	1.269697	
1406	NM_00110447	chr3R	+	CG9398	1.636738	2.077606	1.269358	
1407	NM_00127273	chrX	-	Socs16D	2.666232	3.382988	1.268827	
1412	NM_140394	chr3L	-	CG10133	4.490264	5.696024	1.268528	
1415	NM_00129843	chrX	+	CGSO10	11.52343	14.61044	1.26789	
1416	NM_00129870	chr2L	+	CG1034	8.039456	10.19308	1.267881	
1417	NM_130644	chrX	-	ltp6	2.494614	3.162736	1.267826	
1418	NM_080201	chr2L	-	fs(2)ltOP43	4.550884	5.767175	1.267265	
1419	NM_176062	chr2L	-	fs(2)ltOP43	4.550884	5.767175	1.267265	
1420	NM_079113	chr2R	-	gek	4.563844	5.782354	1.266992	
1423	NM_141400	chr3R	+	Zif	1.746481	2.21216	1.266639	
1424	NM_079483	chr3L	+	CycH	9.869551	12.50042	1.266564	
Entry	Chromosome	Orientation	Gene(s)	Start	End	Log of Ratio		
-------	------------	-------------	---------	-------	-----	--------------		
1426	chr3L	-	CG15715	1.460313	1.849133	1.266258		
1427	chr3L	+	Cbl	1.72495	2.184174	1.266224		
1428	chr3L	+	Cbl	1.72495	2.184174	1.266224		
1429	chr3L	-	CG6512	3.232714	4.092758	1.266044		
1430	chr3L	-	CG6512	3.232714	4.092758	1.266044		
1431	chr2R	+	AIMP3	1.375445	1.741141	1.265875		
1432	chrX	+	dtn	1.771565	2.242202	1.265662		
1433	chr3R	+	Droj2	2.718908	3.440383	1.265355		
1436	chr2L	+	CG10470	1.526786	1.93151	1.265082		
1437	chr3R	+	CG2641	4.459118	5.640843	1.265013		
1438	chr2R	+	enok	3.891799	4.923168	1.265011		
1439	chr2R	+	CG9410	1.806683	2.285367	1.264952		
1441	chr2L	+	PGAP5	1.056041	1.335423	1.264556		
1445	chr2L	+	CG9886	1.259013	1.590934	1.263636		
1446	chr3R	+	CSN5	2.667068	3.369706	1.26345		
1448	chrX	+	rush	4.154973	5.248881	1.263277		
1449	chr2R	+	CG1882	4.531235	5.723852	1.263199		
1450	chr3L	+	Syx7	3.228325	4.077895	1.263161		
1451	chrX	+	prage	9.049928	11.42984	1.262976		
1452	chrX	-	Int54	2.492106	3.147241	1.262884		
1454	chrX	-	CR43656	3.115237	3.932589	1.262372		
1457	chr2L	+	Spn31A	3.313402	4.181933	1.262127		
1458	chr3L	+	CG12012	4.004051	5.053611	1.262125		
1459	chr2L	-	Smg5	3.136768	3.95852	1.261974		
1460	chr3L	-	nst	1.433766	1.809288	1.261913		
1461	chr3L	-	DNAPol-eta	3.089735	3.897962	1.261585		
1462	chr3L	+	CG6878	1.804593	2.276354	1.261423		
1464	chrX	+	Cktibeta	2.57133	3.242109	1.260869		
1465	chr2R	+	Hmg-2	2.533913	3.194833	1.26083		
1467	chrX	-	CG7766	1.514662	1.909374	1.260594		
1468	chrX	-	DIP1	7.967131	10.04192	1.260419		
1469	chr3L	+	CG34250	2.43065	3.063599	1.260403		
1470	chr3L	+	CG34250	2.43065	3.063599	1.260403		
1471	chr2R	+	d4	2.042264	2.573449	1.260096		
1472	chr3L	+	Syx13	2.76176	3.480069	1.260091		
1473	chr2R	-	CG18190	2.354562	2.966834	1.260037		
Gene	Chromosome	Gene Symbol	Orientation	Description	Log2 Fold Change	Normalized Log2 Fold Change	p-value	
--------	------------	-------------	-------------	-------------	-----------------	---------------------------	----------	
NR_133415	chr3R	CR46035	+	4.58203	5.773184	1.259962		
NM_168112	chr3L	shep	-	5.351485	6.739729	1.259413		
NM_001299577	chr2R	Ef1beta	+	5.716877	7.198889	1.258677		
NM_079891	chr4	pho	-	1.491668	1.878226	1.257698		
NM_143298	chr3R	CG3368	+	2.18363	2.748954	1.256734		
NM_001272910	chr2L	CG13689	+	1.35057	1.699716	1.255559		
NM_143694	chr2L	CG13689	+	1.35057	1.699716	1.255559		
NM_137795	chr2R	CG6613	+	2.88028	3.624743	1.258275		
NM_136213	chr2R	CG9890	-	2.25318	2.832912	1.257295		
NM_136849	chr2R	CG6613	+	2.18363	2.748954	1.256734		
NM_136205	chr2R	CG6613	-	2.18363	2.748954	1.256734		
NM_136213	chr2R	CG6613	+	2.88028	3.624743	1.258275		
NM_136849	chr2R	CG6613	-	2.18363	2.748954	1.256734		
NM_136213	chr2R	CG6613	+	2.88028	3.624743	1.258275		
NM_136849	chr2R	CG6613	-	2.18363	2.748954	1.256734		
Gene Symbol	Chromosome	Strand	Gene	Expression Ratio				
-------------	------------	--------	------	-----------------				
NM_079581	chr3R	-	TflIIFbeta	1.860823 2.331694 1.253045				
NM_140998	chr3L	-	CG11396	3.070713 3.846417 1.252614				
NM_132343	chrX	+	Gga	1.165784 1.460016 1.25239				
NM_166335	chr2R	+	hppy	8.520026 10.66995 1.252337				
NM_205886	chr2L	-	rempA	1.515289 1.897515 1.252246				
NM_00110417	chr3L	+	CG32425	4.767653 5.969244 1.25203				
NM_00130024	chr3R	-	ksr	3.965379 4.963486 1.251705				
NM_00129831	chrX	+	CG14414	1.019251 1.275656 1.251563				
NM_176729	chrX	+	CG14414	1.019251 1.275656 1.251563				
NM_165454	chr2R	+	Pngl	5.895601 7.378664 1.251554				
NM_142637	chr3R	-	CG10877	4.106268 5.138201 1.251307				
NM_00120173	chrX	+	CG6762	1.401784 1.753632 1.251001				
NM_00129987	chr2R	+	Sox14	8.131641 10.16636 1.250222				
NM_166630	chr2R	+	kcc	3.202613 4.00374 1.250148				
NM_137481	chr2R	+	GstE3	15.5442 19.42483 1.249651				
NM_00127297	chrX	-	CG14229	3.134677 3.917252 1.249651				
NM_00103240	chr3R	+	kay	36.81971 46.01044 1.249614				
NM_00129991	chr2R	-	SerT	1.751289 2.188285 1.249529				
NM_136927	chr2R	+	CG8501	1.126485 1.407253 1.249482				
NM_00120185	chr2L	+	Lip4	1.325695 1.656077 1.249214				
NM_078691	chrX	+	AP-1-2beta	2.501513 3.124789 1.24916				
NM_078508	chrX	-	Rpl7A	5.496764 6.865745 1.249052				
NM_136621	chr2R	-	CG8046	10.41868 13.01097 1.248811				
NM_135798	chr2L	-	ND-B22	1.771774 2.215288 1.2482				
NM_206487	chr3R	-	Sp212	2.608747 3.256181 1.248178				
NM_176486	chr3R	+	Hsp70Bbb	150.2379 187.47 1.247821				
NM_080045	chr2L	-	abo	4.267016 5.323984 1.247707				
NM_00127303	chr2L	-	CG3077	3.46742 4.322496 1.247566				
NM_134865	chr2L	-	CG3077	3.46742 4.322496 1.247566				
NM_00111098	chr3R	+	Alg-2	2.75319 3.434533 1.247474				
NM_00127378	chr2R	+	CG1344	3.500905 4.365661 1.247009				
NM_166434	chr2R	+	MFS16	2.389052 2.979167 1.247008				
NM_136199	chr2L	+	CG2611	4.064043 5.067841 1.246995				
NM_079488	chr3L	+	Ddx1	1.864167 2.323472 1.246386				
NM_00127501	chr3L	-	roq	4.190718 5.222001 1.246087				
NM_00131652	chr3R	+	fray	1.537656 1.915856 1.245959				
R	NM	chr						
---	------	------	-----	-----	-----	-----		
1580	NM_00117023	chr3R	+	CG33108	1.036392	1.291152	1.245814	
1581	NM_176551	chr3R	+	CG33108	1.036392	1.291152	1.245814	
1582	NM_167174	chrX	+	CG32708	1.068165	1.330522	1.245615	
1583	NM_166973	chrX	-	CG12206	2.633831	3.280689	1.24596	
1584	NM_00131662	chrX	-	I(1)G0289	5.862783	7.302295	1.245534	
1585	NM_079972	chr2R	+	Hmgs	2.354353	2.932207	1.245441	
1586	NM_164995	chr2L	+	Thrs	1.267375	1.578127	1.245194	
1587	NM_00129798	chrX	+	CG12728	12.28097	15.29207	1.245142	
1588	NM_206643	chrX	-	I(1)G0193	7.484053	9.318712	1.245142	
1589	NM_058162	chrX	+	Jafrc1	2.335748	2.90777	1.24469	
1590	NM_057686	chr2R	-	tsr	11.93376	14.85583	1.244587	
1591	NM_00129851	chrX	+	RpS10b	1.96743	2.449014	1.244778	
1592	NM_134686	chr2L	-	remPA	4.184029	5.207455	1.244603	
1593	NM_140672	chr3L	+	CG9951	1.242499	1.546346	1.244545	
1594	NM_143182	chr3R	+	CG5913	3.016573	3.753605	1.244328	
1595	NM_00129920	chr2R	-	Gprk1	2.811719	3.497778	1.244	
1596	NM_00127575	chr3R	+	osa	7.110299	8.842317	1.243593	
1597	NM_00129807	chrX	-	Gclc	7.077481	8.797413	1.243015	
1598	NM_079305	chr3L	+	Klp68D	2.07362	2.577402	1.242948	
1599	NM_00129809	chrX	+	CG11284	3.30758	4.110783	1.242777	
1600	NM_00103207	chr2L	+	cana	1.417461	1.761538	1.242742	
1601	NM_00127226	chrX	+	sgg	4.52789	5.626929	1.242726	
1602	NM_139578	chr3L	-	Ccz1	1.169128	1.452901	1.242722	
1603	NM_139942	chr3L	-	cert	4.744241	5.893982	1.242345	
1604	NM_00101464	chr3R	+	CG7956	6.023739	7.483177	1.242281	
1605	NM_00117020	chr3R	+	CG7956	6.023739	7.483177	1.242281	
1606	NM_139892	chr3L	+	CG12262	13.70219	17.02024	1.242155	
1607	NM_079990	chr2R	+	Sara	3.12553	3.878514	1.242097	
1608	NM_168789	chr3L	+	Bet1	2.538512	3.151985	1.241666	
1609	NM_140544	chr3L	-	comm2	11.70111	14.5238	1.241232	
1610	NM_137246	chr2R	-	CG10734	1.135892	1.40863	1.240109	
1611	NM_136659	chr2R	+	Rpl31	8.619735	10.68813	1.23996	
1612	NM_00116958	chr2R	+	vlc	7.060549	8.753774	1.239815	
1613	NM_079506	chr3R	-	Ubc6	3.698652	4.585122	1.239674	
1614	NM_080525	chrX	+	cv	2.054179	2.546411	1.239625	
ID	Accession	Chromosome	Gene Symbol	Function	Value 1	Value 2	Value 3	
-------------	-----------	------------	-------------	----------	---------	---------	---------	
1627	NM_00127593 2	chr3R	+	Irk1	3.103949	3.847682	1.239609	
1628	NM_166505	chr2R	+	Synj	2.744201	3.401645	1.239576	
1630	NM_132150	chrX	-	CG12541	6.762466	8.380785	1.239309	
1631	NM_137695	chr2R	+	cpa	3.903087	4.835415	1.238869	
1632	NM_00101509 5	chr2R	-	MFS17	5.551113	6.876339	1.238732	
1633	NM_00111089 5	chr2R	-	MFS17	5.551113	6.876339	1.238732	
1634	NM_00127622 9	chr2R	-	MFS17	5.551113	6.876339	1.238732	
1635	NM_166449	chr2R	-	Sdc	13.90015	17.21567	1.238524	
1639	NM_135432	chr2L	+	CG13108	1.694431	2.098003	1.238175	
1640	NM_00127256 7	chrX	-	Pde9	6.082269	7.527923	1.237683	
1641	NM_135461	chr2L	-	CG4364	2.481445	3.071189	1.237661	
1642	NM_176070	chr2L	+	Tif-IA	2.981873	3.69036	1.237598	
1643	NM_169933	chr3R	+	Rps30	4.51284	5.584239	1.237411	
1645	NM_00129783 2	chrX	+	CG16989	2.83973	3.512957	1.237074	
1646	NM_00110375 2	chr2R	+	CG34430	2.84621	3.519123	1.236424	
1647	NM_169098	chr3R	-	Sec8	2.955535	3.653678	1.236215	
1648	NM_00126033 0	chr3R	-	cnc	8.859916	10.95123	1.236042	
1649	NM_00126033 1	chr3R	-	cnc	8.859916	10.95123	1.236042	
1650	NM_00110377 5	chr2R	-	CG12929	1.298939	1.605164	1.235751	
1651	NM_141618	chr3R	+	Ibf1	1.052069	1.30006	1.235666	
1652	NM_00116927 7	chrX	+	rdgB	9.695217	11.97976	1.235636	
1653	NM_141532	chr3R	-	Coq2	1.723069	2.128835	1.23549	
1654	NM_134771	chr2L	-	Rim2	4.979195	6.151548	1.23545	
1656	NM_00127414 6	chr2R	-	GEFmeso	20.7826	25.67061	1.235197	
1657	NM_166265	chr2R	+	pAbp	1.879218	2.320942	1.235058	
1658	NM_00125892 3	chr2L	+	Hydr2	12.74022	15.73478	1.235048	
1659	NM_00127306 4	chr2L	+	Hydr2	12.74022	15.73478	1.235048	
1660	NM_139536	chr3L	+	CG11505	2.314009	2.856471	1.234425	
1661	NM_00125932 6	chr2R	+	RanBPM	3.737741	4.613266	1.234239	
1662	NM_00129781 6	chrX	-	CG13366	2.756325	3.401487	1.234066	
1663	NM_079372	chr3L	+	CkIIalpha-i1	1.911618	2.358889	1.233975	
1664	NM_143064	chr3R	-	Smg6	3.458471	4.267314	1.233873	
1665	NM_00129967 3	chr2R	+	ena	12.44005	15.3482	1.233773	
1666	NM_166330	chr2R	+	ena	12.44005	15.3482	1.233773	
Gene ID	Chromosome	Orientation	Gene	Start	End	log2 Ratio	Fold Change	
----------	------------	-------------	------	-------	-------	------------	-------------	
NM_00127368 1	chr2L	+	sick	11.52364	14.21437	1.233496		
NM_140316	chr3L	-	CG32104	1.622106	2.000131	1.233046		
NM_142994	chr3R	-	CG18528	1.36792	1.686434	1.232846		
NM_00125895 7	chr2L	+	cype	3.695307	4.555238	1.232709		
NM_167337	chrX	-	CG3812	1.566921	1.931352	1.232578		
NM_132429	chrX	+	CG2202	2.050208	2.526964	1.23254		
NM_00125880 7	chrX	-	ari-1	2.196323	2.705631	1.231892		
NM_00127274 3	chrX	-	ari-1	2.196323	2.705631	1.231892		
NM_169504	chrX	+	CG32473	1.566921	1.931352	1.232578		
NM_139602	chrX	+	Ack	2.050208	2.526964	1.23254		
NM_00125942 6	chrX	-	Mlf	3.087436	3.800565	1.230978		
NM_137042	chrX	+	Roe1	3.315701	4.081532	1.230971		
NM_00125884 3	chrX	+	Hers	1.076944	1.322142	1.227679		
1731	NM_144474	chr3R	+	Desat1	3.417501	4.195215	1.227568	
1732	NM_00104298	chr2R	+	CG17883	1.364994	1.675525	1.227496	
1734	NM_143815	chr3R	+	Invadolysin	14.29167	17.53316	1.22681	
1735	NM_00125953	chr2R	+	rad50	1.978927	2.427669	1.22676	
1736	NM_166533	chr2R	+	rad50	1.978927	2.427669	1.22676	
1737	NM_169485	chr3R	-	CG7381	3.759063	4.610578	1.226523	
1738	NM_137625	chr2R	-	CG16868	1.497312	1.836484	1.22652	
1739	NM_168448	chr3L	+	IRSp53	7.041736	8.631869	1.225815	
1740	NM_135182	chr2L	+	CR45371	7.107791	8.710767	1.225524	
1741	NM_166123	chr2R	-	Mlf	3.007166	3.687672	1.225433	
1742	NM_00127261	chrX	+	ben	2.097031	2.56918	1.225151	
1743	NM_00116926	chrX	-	CG1998	8.183481	10.2579	1.225126	
1744	NM_140693	chr3L	+	beg	1.304583	1.598207	1.225072	
1745	NM_057293	chr2R	-	mle	3.666669	4.491361	1.224916	
1746	NM_00129801	chrX	-	RpL7A	8.338793	10.2111	1.22453	
1747	NM_00110357	chrX	+	CG34334	2.66874	3.266933	1.224148	
1748	NM_139621	chr3L	+	CG1265	4.546494	5.565423	1.224113	
1749	NM_130495	chrX	+	CG13367	2.98898	3.658737	1.224075	
1750	NM_079727	chr3R	+	CSN6	3.100396	3.794556	1.223894	
1751	NM_136395	chr2R	-	ubl	2.790189	3.414769	1.223849	
1752	NM_142317	chr3R	-	CG14907	8.295941	10.1526	1.223803	
1753	NM_00103882	chr2L	-	Pax	10.21968	12.50627	1.223744	
1754	NM_079560	chr3R	+	mRpl19	1.632557	1.997285	1.223409	
1755	NM_138985	chr3L	+	26-29-p	12.71994	15.55691	1.223033	
1756	NM_057753	chr2R	+	SdhB	2.999432	3.668382	1.223026	
1757	NM_00127297	chr2L	-	CG4259	7.894596	9.65177	1.223011	
1758	NM_00101452	chr2R	-	U3-55K	1.079662	1.320403	1.222978	
1759	NM_00129815	chrX	-	Atg8a	1.164739	1.424283	1.222835	
Gene	Chromosome	Strain	Feature	Name	Start	End	log2 Fold Change	p-value
--------	------------	--------	---------	------	-------	-------	----------------	---------
NM_168336	chr3L	-	elf-4E	3.189444	3.899702	1.22269		
NM_078655	chrX	+	mRpL22	2.49336	3.048579	1.222679		
NM_00104299	chr2R	-	CG17528	2.061705	2.519532	1.222063		
NM_139956	chr3L	+	GAPcena	1.128994	1.379062	1.221497		
NM_169577	chr3R	+	PR-Set7	5.094791	6.223174	1.221478		
NM_134310	chr3R	+	Rab11	6.541726	7.990087	1.221404		
NM_170212	chr3R	-	CG31098	5.883477	7.184343	1.221105		
NM_142322	chr3R	-	CG18622	16.31993	19.92778	1.221071		
NM_00125975	chr3L	+	dally	19.51962	23.8346	1.221059		
NM_164980	chr2L	+	Ada1-2	3.138231	3.829499	1.220273		
NM_078725	chr2L	-	aru	4.312585	5.26153	1.220041		
NM_167267	chrX	+	Klp10A	1.970566	2.403793	1.219849		
NM_00125817	chrX	+	kek5	11.97369	14.60427	1.219697		
NM_170043	chr3R	-	Nha2	7.250352	8.842791	1.219636		
NM_079809	chr3R	+	Mtl	1.509436	1.84012	1.219078		
NM_00125878	chrX	-	CanA-14F	1.509436	1.84012	1.218654		
NM_206613	chrX	+	sgg	4.575759	5.547435	1.218254		
NM_057892	chr2L	-	dbe	3.650992	4.446773	1.217963		
NM_079049	chr2R	+	cyp33	1.988125	2.421186	1.217824		
NM_139608	chr3L	+	Ero1L	6.396447	7.789442	1.217776		
NM_057225	chr2L	-	hook	3.788745	4.61374	1.217749		
NM_00127440	chr3L	-	msn	15.03228	18.30112	1.217455		
NM_079940	chr3L	-	msn	15.03228	18.30112	1.217455		
NM_00125984	chr3L	-	DCP2	5.704126	6.941323	1.216895		
NM_137248	chr2R	-	CG8435	1.304583	1.587456	1.21683		
NM_132049	chrX	+	CG12236	2.960761	3.602291	1.216677		
NM_167054	chrX	+	CG12236	2.960761	3.602291	1.216677		
NM_058083	chr2L	-	esc	1.249398	1.520099	1.216666		
NR_0001679	chr2L	-	snRNA:U4:39B	73.97638	89.99956	1.216599		
NM_00110409	chr3L	+	nudE	3.365242	4.093548	1.21642		
NM_00114445	chr3L	+	nudE	3.365242	4.093548	1.21642		
NM_00130008	chr3L	+	nudE	3.365242	4.093548	1.21642		
NM_137295	chr2R	-	CG8311	1.439828	1.751419	1.216409		
NM_135259	chr2L	-	CG4502	4.027672	4.898818	1.21629		
NM_164741	chr2L	-	CG4502	4.027672	4.898818	1.21629		
Gene ID	Chromosome	Strand	Gene Name	Start	End	Exon Size	Coverage	Gene Expression
----------	------------	--------	-----------	-------	-------	-----------	----------	-----------------
NR_133100	chr2L	+	CR46253	3.492753	4.248183	0.755428	1.216285	
NM_00129887	chr2L	-	nmd	4.112957	5.001908	0.889051	1.216134	
NM_00129812	chrX	-	c11.1	2.857289	3.474694	0.617405	1.216081	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
NM_132484	chrX	+	Pa1	1.61458	1.963132	0.348554	1.215878	
NM_00130070	chr2L	-	Yeti	8.33524	10.13236	1.797122	1.215605	
NM_00129887	chr2L	-	Poe	9.620173	11.69389	2.073716	1.215559	
GeneID	Chromosome	Strand	Gene Symbol	Log10 P-value	FDR-corrected P-value			
-----------	------------	--------	-------------	---------------	-----------------------			
NM_167297	chrX	+	PhKgamma	3.016782	3.65178	1.210489		
NM_001298618	chr2L	-	Ets21C	11.03304	13.35518	1.210472		
NR_133278	chr3L	-	CR46048	3.033087	3.67107	1.210341		
NM_141933	chr3R	+	CG5167	2.930451	3.545528	1.209892		
NM_079181	chr3L	+	Scalphia	3.345175	4.046272	1.209585		
NM_168081	chr3L	+	PMP34	2.579482	3.120046	1.209563		
NM_169557	chr3R	+	Dip-B	5.805717	7.020538	1.209246		
NM_001299636	chr2R	+	CG10915	1.976001	2.389405	1.209213		
NM_137833	chr2R	+	CG4610	1.088441	1.316133	1.209191		
NM_079373	chr3R	+	CG34159	3.248392	3.927688	1.209118		
NM_001103667	chr2L	-	CG11665	2.978529	3.599603	1.208817		
NM_170192	chr3R	+	CG11790	5.54087	6.698936	1.208004		
NM_140844	chr3L	+	CG14085	1.146971	1.385861	1.20828		
NM_001298330	chrX	+	ND-B18	1.293713	1.563106	1.208233		
NM_143755	chrX	-	deltaCOP	5.240906	6.331639	1.208119		
NM_079587	chr3R	+	Sodh-2	4.700762	5.677051	1.207687		
NM_001297971	chrX	+	Rpl35	3.906014	4.717146	1.207663		
NM_001298086	chrX	-	Mig2	1.295803	1.564687	1.207504		
NM_0012999196	chr2L	-	CG2201	5.249477	6.33828	1.207412		
NM_001274597	chr3L	+	lqf	8.330641	10.0563	1.207185		
NR_133414	chr3R	+	CR46036	2.544574	3.07024	1.206583		
NM_001144725	chrX	-	CG14408	1.588869	1.916805	1.206396		
NM_001298318	chrX	-	CG14408	1.588869	1.916805	1.206396		
NM_136267	chr2L	+	Lamp1	14.503	17.49632	1.206393		
NM_141346	chr3R	-	CG2017	4.215384	5.084443	1.206164		
NM_132118	chrX	-	Rpl17	2.602894	3.139336	1.206094		
NM_166102	chr2R	-	Flo1	2.843702	3.429157	1.205878		
NM_135532	chr2L	-	I(2)H0834	5.392874	6.502401	1.205739		
NM_141654	chr3R	-	CG16790	1.14509	1.380644	1.205708		
NM_001299408	chr2R	+	Cam	3.204913	3.864126	1.205688		
NM_001169203	chrX	-	CG32767	1.02594	1.236919	1.205644		
Year	Accession	Chromosome/Region	Effect	Gene Symbol	Log2 Fold Change			
------	---------------	-------------------	--------	-------------	-----------------			
1923	NM_00127351	chr2L	B4		4.63072			
1924	NM_00120164	chrX	nej		7.967967			
1925	NM_079903	chrX	nej		7.967967			
1926	NM_143252	chr3R	+	SPARC	12.46116			
1927	NM_137399	chr2R	-	P32	1.880472			
1928	NM_057378	chrX	+	sl	1.318797			
1930	NM_136764	chr2R	-	wde	11.15386			
1931	NM_00127560	chr3R	+	CG11686	11.76549			
1932	NM_137339	chr2R	-	CG9646	4.481067			
1933	NM_143421	chr3R	+	CG11897	14.17231			
1935	NM_057551	chr2R	-	robo1	5.551949			
1938	NM_166118	chr2R	-	Gpo-1	9.920974			
1939	NM_141746	chr3R	-	Cyp12e1	6.547788			
1940	NM_165917	chr2R	-	Sin3A	7.545509			
1941	NM_135978	chr2L	-	CG12288	1.011308			
1942	NR_033163	chr3L	+	Uhg8	7.116361			
1943	NM_079012	chr2R	-	RN-tre	6.662548			
1944	NM_144124	chr2R	-	RN-tre	6.662548			
1945	NM_00110441	chr3R	+	CG7029	4.73797			
1946	NM_164377	chr2L	-	CG3645	2.244191			
1950	NM_166925	chrX	-	CG4199	3.314029			
1951	NM_132906	chrX	+	CG13014	1.630467			
1952	NM_079347	chr3L	+	dlp	26.49404			
1953	NM_136321	chr2R	-	CG10465	1.912663			
1955	NM_141204	chr3R	-	Cont	3.459726			
1956	NR_002496	chr3R	+	snoRNA:Psi28S-291	1.31587			
1959	NM_00120214	chr3L	+	Fhos	24.71913			
1961	NM_00129981	chr2R	+	CG42566	1.58657			
1962	NM_140916	chr3L	-	CG14184	1.771774			
1963	NM_142069	chr3R	+	rdx	14.4336			
1964	NM_140822	chr3L	+	CG6836	2.43713			
1965	NM_135521	chr2L	+	CG4953	1.844309			
1966	NM_164798	chr2L	+	PGAP5	1.394885			
1967	NM_00130000	chr3L	-	CG10866	1.469093			
1969	NM_057319	chr2R	+	pAbp	19.14335			
1970	NM_206295	chr3L	+	Pura	22.0389			
1971	NM_00129838	chrX	-	ND-20	1.731012			
1972	NM_00130042	chr3R	+	Akt1	4.003633			
Year	Accession	Chromosome	Strand	Gene	Log2 Fold Change	p-value	Adjusted p-value	
------	-----------	-------------	--------	------	----------------	---------	-----------------	
1974	NM_143295	chr3R	+	CGS934	2.043937	2.455813	1.201511	
1975	NM_001103849	chr2R	-	Rpb12	3.574067	4.294194	1.201487	
1976	NM_001316436	chr3L	+	Mul1	1.278244	1.535753	1.201455	
1978	NM_164428	chr2L	+	chinmo	2.09515	2.516686	1.201196	
1979	NM_169953	chr3R	-	Rab1	7.22046	8.671239	1.200926	
1981	NM_001276203	chr3R	-	dco	4.219147	5.065786	1.200666	
1982	NM_079863	chr3R	-	dco	4.219147	5.065786	1.200666	
1983	NM_001258477	chr4	+	pan	3.770768	4.527252	1.200618	
1984	NM_080085	chrX	-	ogre	3.864416	4.639671	1.200614	
1985	NM_135691	chr2L	-	CG6734	1.072555	1.287673	1.200566	
1987	NM_001272970	chr2L	+	Su(dx)	1.765294	2.118874	1.200295	
1988	NM_001316528	chr3R	-	Vps24	1.614162	1.93736	1.200226	
1990	NM_001042934	chr2L	+	Slmap	3.274103	3.929427	1.200154	
1991	NM_167315	chrX	+	regucalcin	5.266826	6.320413	1.200042	
No	Primer Name	Primer Sequence						
----	------------------	--						
1	UPF1 RNAi (F)	5’-TTAATACGACTCATAAGGGAGAGGAGAAGCCGACCGTTGA-3’						
2	UPF1 RNA (R)	5’-TTAATACGACTCATAAGGGAGAGACCGTGGCCCAACAGG-3’						
3	Y14 RNAi (F)	5’-TTAATACGACTCATAAGGGAGAGCATGTGGAGCATTGACA-3’						
4	Y14 RNAi (R)	5’-TTAATACGACTCATAAGGGAGAGACGTCGGACTTTGACTTTTT-3’						
5	elf4AIII RNAi (F)	5’-TTAATACGACTCATAAGGGAGAGACGAATTGACCTGAGG-3’						
6	elf4AIII RNAi (R)	5’-TTAATACGACTCATAAGGGAGAGACGCTGGTGACAAGTCAG-3’						
7	snRNP1 U70K RNAi (F)	AGCAGGCTTCATCCTCGTGCAAG-3’						
8	snRNP1 U70K RNAi (R)	TGGAGCGCTTCTTTTTCTT-3’						
9	snRNP1 U70K (F)	AGGATCTACGAGCTCAAAG-3’						
10	snRNP1 U70K (R)	TAACGTTCATCACCTCGCTCT-3’						
11	Rpl23A (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
12	Rpl23A (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
13	Rpl23A m (F)	5’-TAACGCTACCAGCAGACCT-3’						
14	Rpl23A m (R)	5’-TAACGCTACCAGCAGACCT-3’						
15	Xrp1 E1 (F)	5’-AGATCCTACGAGCTCAAAG-3’						
16	Xrp1 E1 (R)	5’-AGATCCTACGAGCTCAAAG-3’						
17	Xrp1 E3 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
18	Xrp1 E3 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
19	Xrp1 I3 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
20	Xrp1 I3 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
21	Xrp1 E4 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
22	Xrp1 E4 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
23	Xrp1 I4 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
24	Xrp1 I4 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
25	Xrp1 I5 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
26	Xrp1 I5 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
27	Xrp1 I6 (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
28	Xrp1 I6 (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
29	Socs36E (F)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
30	Socs36E (R)	5’-TCGAACTATGGTAATGCTTGTGCT-3’						
31	Rp512 (F)	5’-TTAATACGACTCATAAGGGAGAGACGTCGGACTTTGACTTTTT-3’						
32	Rp512 (R)	5’-TTAATACGACTCATAAGGGAGAGACGTCGGACTTTGACTTTTT-3’						
33	Intergenic 2R (F)	5’-TTAATACGACTCATAAGGGAGAGACGTCGGACTTTGACTTTTT-3’						
34	Intergenic 2R (R)	5’-TTAATACGACTCATAAGGGAGAGACGTCGGACTTTGACTTTTT-3’						
35	18s RNA (F)	5’-ACCGGTGGAGTCTTATATGTGAT-3’						
36	18s RNA (R)	5’-ACCGGTGGAGTCTTATATGTGAT-3’						