The landscape of alternative polyadenylation in single cells of the developing mouse embryo

Vikram Agarwal 1,6✉, Sereno Lopez-Darwin 2,6, David R. Kelley 1 & Jay Shendure 2,3,4,5✉

3′ untranslated regions (3′ UTRs) post-transcriptionally regulate mRNA stability, localization, and translation rate. While 3′-UTR isoforms have been globally quantified in limited cell types using bulk measurements, their differential usage among cell types during mammalian development remains poorly characterized. In this study, we examine a dataset comprising ~2 million nuclei spanning E9.5–E13.5 of mouse embryonic development to quantify transcriptome-wide changes in alternative polyadenylation (APA). We observe a global lengthening of 3′ UTRs across embryonic stages in all cell types, although we detect shorter 3′ UTRs in hematopoietic lineages and longer 3′ UTRs in neuronal cell types within each stage. An analysis of RNA-binding protein (RBP) dynamics identifies ELAV-like family members, which are concomitantly induced in neuronal lineages and developmental stages experiencing 3′-UTR lengthening, as putative regulators of APA. By measuring 3′-UTR isoforms in an expansive single cell dataset, our work provides a transcriptome-wide and organism-wide map of the dynamic landscape of alternative polyadenylation during mammalian organogenesis.

https://doi.org/10.1038/s41467-021-25388-8

1 Calico Life Sciences, South San Francisco, CA, USA. 2 Department of Genome Sciences, University of Washington, Seattle, WA, USA. 3 Howard Hughes Medical Institute, Seattle, WA, USA. 4 Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA. 5 Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA. ✉ These authors contributed equally: Vikram Agarwal, Sereno Lopez-Darwin. ✉✉ Email: vagar@calicolabs.com; shendure@uw.edu
During transcriptional elongation, the cleavage and polyadenylation machinery governs the specification of the 3′-terminal end of an mRNA. This regulated process can generate a diversity of 3′-UTR isoforms for any given gene, dramatically altering the 3′-UTR length and sequence of the resulting mature transcripts. This phenomenon, known as alternative polyadenylation (APA), has been observed in over 70% of mammalian genes. Alternative 3′-UTR isoforms bind to different sets of microRNAs and RNA-binding proteins, which collectively modulate a multitude of post-transcriptional gene regulatory mechanisms. These include changes in mRNA localization, degradation rates, and translational efficiency. The differential abundance of a variety of nuclear factors serves to regulate APA in a cell-type-specific manner. Abnormal regulation of the cleavage and polyadenylation machinery has also been associated with hyperproliferative or disease states such as cancer.

Techniques to directly measure APA in the transcriptome largely rely upon the isolation of RNA from bulk tissue, resulting in an average readout of the landscape of 3′-ends in a heterogeneous population of cells. Existing 3′-end sequencing methods include 3′-seq/S3SEQ, 3P-seq, PAS-seq, 3′READS, PolyA-seq, and 2P-seq. The successful application of these methodologies in mammalian cells has led to the annotation of hundreds of thousands of polyadenylation sites (PAS) in both human and mouse genomes. Bulk 3′-end sequencing and similar transcriptomic data have guided the observation that 3′-UTRs generally lengthen during mammalian embryogenesis, with proliferating cell types such as blood exhibiting shortened 3′-UTRs and neuronal ones exhibiting lengthened 3′-UTRs. In contrast to bulk methods, single-cell RNA sequencing (scRNA-seq) protocols capture a rich diversity of individual cell types, with many protocols enriching for mRNA 3′-ends via poly(A) priming. Thus, these technologies inherently offer an unprecedented opportunity to observe APA events during the process of cellular differentiation. They also enable the decomposition of complex tissues into individual cell types, enabling the assessment of APA with greater cell-type resolution. Although a proof-of-concept study has demonstrated the utility of scRNA-seq data in evaluating APA, such methods have not yet been applied to investigate more comprehensive scRNA-seq datasets such as those capturing dozens of cell types during a mammalian developmental time course.

In this study, we examined APA using MOCA (“mammalian organogenesis cell atlas”), a dataset comprising single nucleus transcriptional profiling of ~2 million nuclei encompassing 38 major cell types across five stages (i.e., E9.5, E10.5, E11.5, E12.5, and E13.5) of mouse embryonic development.

Results
An integrated annotation set of 3′-UTRs and poly(A) sites to evaluate APA. Given the reliance of many scRNA-seq protocols on poly(A) priming, such methods enrich for both mRNA 3′-ends as well as internal A-rich stretches of homopolymers. Thus, internal priming artifacts obscure accurate quantitation of APA, even more so in datasets in which immature mRNAs (i.e., without excised introns) are isolated from the nucleus, as is the case with the sci-RNA-seq3 protocol used in MOCA. Please note that in the remainder of the manuscript, we often use the term “cells” in relation to scRNA-seq profiles. However, all MOCA data were derived from nuclei rather than cells. To address the source of bias emerging from internal priming artifacts, we sought to develop a simple computational method to deconvolve the data to specifically isolate and quantify mRNA 3′-ends. Toward this goal, we built integrated databases of poly(A) site (PAS) and 3′-UTR annotations to guide the interpretation of which subset of mapped reads were supported by orthogonal evidence to reflect authentic 3′-termini, as opposed to A-rich sites internal to a mature or nascent transcript. In doing so, our goal was to minimize the shortcomings of any individual database, each of which utilizes different data sources and strategies for PAS and 3′-UTR annotation.

To generate a reliable PAS set, we considered three of the most comprehensive mouse PAS annotation databases available with respect to the mm10 mouse genome build: Gencode M25, which contains 56,592 PASs; PolyA_DB v3, which contains 128,052 PASs; and PolyASite 2.0, which contains 108,938 PASs. The three databases differ in their use of manually curated annotation and Expressed Sequence Tag (EST) data (as in Gencode M25), the amount of 3′-end sequencing data (246 and 178 mouse samples for PolyA_DB v3 and PolyASite 2.0, respectively), and their computational processing pipelines. We intersected the PASs from each pair of these resources to evaluate the consistency among databases. While the majority of sites were present in at least two databases, 40.0%, 29.4%, and 30.4% were unique to PolyA_DB, PolyASite, and Gencode, respectively (Fig. 1a). To verify the reliability of PASs present in only a single database (and therefore the most likely to contain false positives), we plotted the profile of nucleotide frequencies in the ±50 nt region surrounding the annotated cleavage and polyadenylation sites (Supplementary Fig. 1a). The unique PASs of each resource exhibited profiles consistent with positionally enriched mammalian motifs known to guide mRNA cleavage, including several U-rich motifs, the upstream AAUAAA motif, and the downstream GU-rich motif. Moreover, we detected strong enrichment of reads mapping immediately upstream of this set of PASs, with the strongest enrichment spanning the −300 nt to +20 nt region around the PAS (Supplementary Fig. 1b). Given that each PAS database was enriched in known PAS motifs, associated with mapped reads, and held information complementary to the other databases, we carried forward an integrated PAS set derived from the union of the three databases. This integrated PAS set recapitulated these same characteristics, exhibiting both consistency with known PAS motifs and strong read enrichment upstream of the sites (Fig. 1b, c). Finally, to link PASs to specific genes, we utilized our previous 3′-UTR annotation pipeline (“Methods”) to establish an integrated set by carrying forward the longest 3′-UTRs from four resources: (i) Gencode M25, (ii) RefSeq, (iii) 3′-UTRs with extreme lengthening, and (iv) bulk 3P-seq-based annotations derived from ten mouse tissues and cell lines. This integrated 3′-UTR annotation set helped minimize the possibility that a PAS may be annotated outside of a known 3′-UTR and thus remain unlinked to a specific gene.

Using our integrated PAS and 3′-UTR databases (Fig. 1d), we sequentially filtered our scRNA-seq reads from MOCA to focus on the subset mapping to 3′-UTRs within the −300 to +20 vicinity of a known PAS (Fig. 1c). Due to the abundant mapping of reads to introns in the nucleus-derived MOCA dataset (Supplementary Fig. 1c), generally representing internal priming within unspliced transcripts, there was nearly a tenfold loss in read counts after iterative steps of filtering; however, over 200 million reads were carried forward (Supplementary Fig. 1d). As expected, discarded reads were associated with enriched A-richness downstream (but not upstream) of their 3′-termini (Supplementary Fig. 1e), and were not significantly associated with cryptic PASs absent from our unified PAS database (Supplementary Fig. 1f). Next, we counted reads passing the filtering steps towards the single annotated PAS in its vicinity, enabling the tabulation of read counts associated with each PAS (Fig. 1d). In ambiguous cases in which a read was located in the vicinity of two PASs, we used the median read count as a way to reflect the strength and support of each PAS.
vicinity of multiple PASs, we greedily assigned the read to count towards the PAS harboring the most uniquely assignable reads. Finally, based upon the relative counts assigned to each PAS for a given gene, we visualized the “isomeric inclusion rate” (IIIR), reflecting the proportion of 3′-UTR isoforms which include a given nucleotide position.6,9,35 (Fig. 1d).

To validate that these filtering and read-to-PAS assignment procedures led to reliable results, we performed two quality control (QC) comparisons. As a first QC, reasoning that the removal of internal priming artifacts should improve the quantification of relative gene expression levels, we compared the relationship between PAS counts and median gene expression levels computed across a panel of 254 mouse RNA-seq samples.37 While the traditional method of counting reads in the gene body displayed a strong correlation to median expression levels (Pearson $r = 0.81$, Spearman $rho = 0.77$), it displayed a clear bias in inflating estimates for a large cohort of genes (Fig. 1e).

Considering only our filtered PAS-assigned reads ameliorated this bias, which led to a stronger correlation to relative mRNA expression levels (Pearson $r = 0.88$, Spearman $rho = 0.85$) (Fig. 1e). We speculated that the bias in the gene body method relative to the PAS-assigned read counting method could be
explained by the over-abundance of intron-mapping reads (Supplementary Fig. 1c) and enrichment of A-rich stretches that nucleate the production of internal priming artifacts. Indeed, a lasso regression model trained to predict the difference between the two strategies confirmed that intron length was strongly associated with inflated counts; moreover, “AAA” was the top-ranked of all 3-mers associated with inflated counts in the gene body (Pearson $r = 0.56$, Spearman rho = 0.58, Supplementary Fig. 2).

As a second QC, we evaluated the similarity between our IIR profiles to those derived from bulk 3P-seq data. We considered the latter as a gold standard in accurately quantifying PAS abundances due to the involvement of a split-ligation step in the 3P-seq protocol, which specifically removes internal priming artifacts. We found that the IIR profiles for our PAS-assigned reads more strongly mirrored those of bulk data for two representative genes (Fig. 1f). Quantifying the deviation from bulk as the Mean Absolute Deviation (MAD) (Supplementary Fig. 3a) allowed us to measure the deviations between our pre- and post-processed data to bulk 3P-seq measurements. Applying this metric globally to all genes uncovered that 78% of genes exhibited improved similarity to bulk 3P-seq after the reads were assigned to PASs; moreover, 47% of genes achieved MAD ≤ 0.1 after read-to-PAS assignment, relative to only 7% of genes beforehand (Supplementary Fig. 3b). Inspection of IIR profiles for nine representative genes further confirmed the general improvement in consistency with bulk 3P-seq data (Supplementary Fig. 3c).

Global differences in 3’-UTR length across mouse cell types and developmental time. Having assigned reads to PASs and linked them to genes, we next sought to evaluate global properties of 3’-UTR shortening and lengthening (i.e., as quantified by differential PAS usage) across cell types and developmental time. Towards this goal, we computed a “gene by cell” sparse matrix of the mean length among all 3’-UTR isoforms, weighted by their respective counts. For each gene, we then computed each cell’s deviation from the mean of 3’-UTR lengths across cells, considering only nonmissing values. Finally, for each cell, we computed the mean of these deviations across genes as a measure of the global behavior of the transcriptome through the perspective of APA. We projected these measurements onto a global map of 38 t-SNE clusters representing all major mouse cell types. Highlighting the top-ten ranked t-SNE clusters with the largest differences, we discovered the greatest average 3’-UTR lengths among stromal cells and three neuronal cell types; in contrast, the shortest lengths occurred in three blood cell types, hepatocytes, chondrocytes, and osteoblasts (Fig. 2a). UMI counts were only assigned to PASs; moreover, 47% of genes achieved MAD ≤ 0.1 after read-to-PAS assignment, relative to only 7% of genes beforehand (Supplementary Fig. 3b). Inspection of IIR profiles for nine representative genes further confirmed the general improvement in consistency with bulk 3P-seq data (Supplementary Fig. 3c).

Dynamic gene-specific patterns of alternative polyadenylation across early development. While our previous analyses revealed transcriptome-wide trends, it remained unclear how specific changes in APA manifested at the resolution of individual genes. To investigate this, we tabulated read counts assigned to each gene (i.e., for each PAS and developmental stage, aggregating information across cell types), and used a χ^2 test to evaluate statistically significant differences in APA for 8653 genes with at least 100 reads in each of the five developmental stages (Supplementary Data 2). This procedure identified 5169 genes surpassing a Benjamini–Hochberg (BH)-corrected false discovery rate (FDR) P value threshold of 0.05. Evaluating the dynamics of the mean 3’-UTR length for this cohort of significant genes at each stage, we discovered that 62% of genes fell into a large cluster that exhibited consistent lengthening over time (Fig. 4a). While the majority of these genes showed the greatest increase in lengthening from E11.5 to E12.5, a minority lengthened the most strongly from E10.5 to E11.5 (Fig. 4a). About 38% of the significant genes did not simply lengthen across developmental stages, with about half of these progressively shortening over time (Fig. 4a). As an alternative method to evaluate transcriptome-wide changes, we computed the entropy across PASs for each gene and developmental stage. This alternative visualization scheme uncovered that ~75% of genes obey a progressive decrease in entropy, indicating that as developmental time progresses, a few PASs become increasingly dominant for the vast majority of genes; in contrast, ~15% of genes exhibited the opposite pattern of increased entropy across time, with the remaining displaying heterogeneous patterns (Supplementary Fig. 5a, b).

We extended our previous gene-centric IIR plotting scheme (Fig. 1d) to visualize the landscape of APA across the five developmental stages assayed, this time using a χ^2 test to highlight individual PASs which were significantly different in at least one stage (Fig. 4b). Using this scheme, we visualized an assortment of genes from different clusters to dissect the nature of the isoform switching events contributing to changes in 3’-UTR lengths (Fig. 4c). Many of these genes contained dozens of PASs whose relative proportions significantly changed across time. For genes belonging to the dominant cluster (Tmem33, Lrtm1, Delp1b, and Add2 in Fig. 4a), later developmental stages led to the progressive selection of distal isoforms, leading to progressive 3’-UTR
lengthening (Fig. 4c). The opposite pattern was observed for a gene belonging to a smaller cluster (Srl in Fig. 4a), whereby the proximal isofrom was selected more frequently over the distal as time progressed, leading to progressive 3′-UTR shortening (Fig. 4c). For yet other genes, the choice of distal isofroms was highly time-dependent. For example, Mtap displayed a near-complete proximal-to-distal isofrom switching event in E11.5, subsequently lengthening beyond baseline levels in later developmental stages; in contrast, Mrpl22 exhibited progressive shortening, with a dominant distal-to-proximal isofrom switching event occurring in E10.5 (Fig. 4c).

Finally, we performed a similar gene-centric analysis, this time evaluating differences among individual cell types (i.e., aggregating information across the five developmental stages). Among 1491 genes with at least 20 reads in each of the 38 t-SNE clusters, we identified 1078 genes surpassing a BH-corrected FDR P value threshold of 0.05, as evaluated by the χ^2 test (Supplementary Data 4). This subset of significant genes largely clustered into four cell-type groups (C1–C4, Fig. 5a) when evaluating differences in mean 3′-UTR length, with cell types within each group displaying strongly correlated patterns across all of the genes. C1, which consisted primarily of neuronal cell types, was unique in that the vast majority of genes displayed global lengthening; conversely, the primitive erythroid lineage was dominated by genes experiencing 3′-UTR shortening (Fig. 5a). In special cases, we detected a highly gene-specific and cell-type-specific pattern, as in the case of Bclaf1 showing 3′-UTR lengthening within a t-SNE cluster annotated as lens cells (Fig. 5b). However, for most genes, all of the cell types within each cluster displayed a concerted shift toward either 3′-UTR lengthening (e.g., cluster C1 in Gnb1, C1 and C4 in Samm50) or 3′-UTR shortening (e.g., cluster C2 in Polr3k, C1 in HoxD4) (Fig. 5b).

When visualizing PAS usage with respect to entropy, several cell types emerged as displaying interesting patterns: the primitive erythroid lineage showed heightened entropy across most genes, whereas neutrophils—and to a smaller degree, the lens—showed decreased entropy (Supplementary Fig. 6a, b). This observation suggests a potential for cell-type-specific regulatory mechanisms that guide a more stochastic or more deterministic pattern of cell-type regulation.

Putative RNA-binding protein regulators of alternative polyadenylation. Reasoning that changes in the regulation of APA may be coupled to the dynamically changing expression of RNA-binding proteins (RBPs), we searched for RBPs with expression level differences across our five developmental stages and 38 cell types. Having demonstrated that PAS-mapping reads serve as an improved proxy for relative gene expression levels (Fig. 1e), we quantified gene expression levels for all protein-coding genes as counts per million (cpm) (Supplementary Data 6 and 7) and
cross-referenced these genes to a database of putative RBPs in the mouse genome. Evaluating relative differences in RBP expression across our five developmental stages, we observed that about 36% of RBPs increased expression across time (Supplementary Data 8; log2 fold change > 0 for E13.5 relative to E9.5), while the remainder decreased or were stable (Supplementary Fig. 7a). Performing a similar analysis across the 38 cell types (i.e., but independent of the developmental stage), we observed that about 26% of RBPs were enriched in neuronal lineages (Supplementary Data 8; log2 fold change > 0 for neuronal lineages relative to other cell types). Interestingly, the vast majority of RBPs were depleted in neuronal lineages relative to other cell types (Fig. 6a). Given our observation that 3′-UTRs lengthen both across the developmental stages and most dramatically in neurons (Fig. 2c), we sought to identify putative RBP regulators induced or repressed both across time and specifically in neurons relative to other cell types. We observed a statistically significant correlation in the RBP expression differences in these two conditions (Pearson r = 0.59), with a small group of outliers induced by at least twofold along both axes (Fig. 6b).

The most salient factors that were induced comprise a large family of ELAV-like (i.e., “Embryonic Lethal Abnormal Vision”-like) RBPs, including Elavl2-4 (also known as HuB, HuC, and HuD, respectively) and Celf2-6 (CUGBP Elav-like family members, also known as BRUNOL-3, 4, 5, and 6, respectively) as well as splicing regulators Nova1-2 and Rbfox1-3; in contrast, Hnrfp and Ptpb1, which have been implicated in APA regulation, were among those depleted (Fig. 6b). Additional top-ranked RBPs (i.e., including those which are either strongly activated or repressed) also serve as candidate regulators of APA (Supplementary Data 8). The expression of Elavl2-4, Rbfox1-3, and Celf2-6 monotonically increased in expression across the developmental stages (Fig. 6c and Supplementary Fig. 7b, c), and were significantly higher in neuronal cell types, while Elavl1 (also known as HuR) and Celf1 (also known as BRUNOL-2) remained at similar levels in each context (Fig. 6d). In contrast, Hnrfp and Ptpb1 monotonically decreased (Supplementary Fig. 7d) and were relatively higher in other cell types relative to neurons (Fig. 6d). These expression patterns are broadly consistent with the known brain-specific and ubiquitous expression associated with ELAV-like39–41 and Nova42 family members, and support the growing functional evidence for Elavl2-43,44, Rbfox145, and Nova1-246 in the regulation of APA. In addition, we found that ELAVL2-4, CELF2-6, and RBFOX1-3 form an experimentally supported network of protein-protein interactions46 (Supplementary Fig. 7e). Our data are also consistent with the blood-enriched expression of Hnrfp and Ptpb1, factors known to competitively bind with CstF-64 to promote proximal 3′-UTR isomorph choice47–49.

Discussion

Despite the rapid growth of single-cell RNA sequencing data in recent years, the vast majority of analyses routinely overlook the phenomenon of alternative polyadenylation. Although scRNA-seq was initially developed to measure gene expression levels, multiple orthogonal forms of information are also effectively captured. For example, RNA velocity analysis, which estimates future transcriptome state by modeling intron/exon ratios, illustrates the ability to extract dynamical information about cellular differentiation. In this work, we further develop a computational pipeline to quantify 3′-ends in scRNA-seq data by cross-referencing an integrated annotation set of 3′-UTRs and polyadenylation sites. This pipeline closely recapitulates prior bulk measurements, yet further enables a more granular understanding of APA with respect to both time and
cell type. Although the utility of scRNA-seq to give insight into APA has been recognized recently, we extend this line of work to an expansive atlas of cell types in a developmental time course encompassing 61 embryos and spanning multiple stages of embryonic development.

Our findings reinforce the principle that the most proliferative cell types such as blood maintain shorter 3′-UTRs, on average, while lowly proliferative ones such as neurons maintain lengthened 3′-UTRs. As differentiation progresses, cells of all types naturally become less proliferative, leading to an observed global shortening of 3′-UTRs that are significantly different between stages by the χ^2 test ($P < 0.05$). IIR plots for six genes among representative clusters shown in (a), and colored by embryonic stage. See also Supplementary Fig. 5 for clustering according to differences in entropy. See also Supplementary Data 3 for a table of read counts associated with each PAS for each gene and embryonic stage.

A major functional consequence of this is that the global shortening of 3′-UTRs could lead to the evasion of microRNA-mediated repression, resulting in greater mRNA stabilities across the transcriptome and enhanced protein synthesis rates in proliferative cells. In some cases, 3′-UTR shortening might also potentiate enhanced microRNA-mediated repression of anti-proliferative genes. In contrast to previous work, which often binarized the landscape of 3′-termini into proximal and distal isoforms due to a limited PAS annotation set, we develop more general metrics (e.g., changes in mean length and entropy) that consider the relative proportions of the many PASs within each gene. While most genes obey a canonical pattern of 3′-UR lengthening and a concomitant reduction in entropy over time, a small subset of genes deviate from this trend. While the former can be explained by modulation of trans-acting regulators of APA that disfavor weak proximal PASs over time, genes deviating from the trend can potentially be explained by several possible regulatory mechanisms: (i) enhanced recruitment of the cleavage and polyadenylation (CP) machinery to a proximal PAS by a nearby RBP motif; (ii) suppressed post-transcriptional recruitment of CP machinery to distal PASs; or (iii) epigenetic regulation of PAS choice by CpG methylation status, nucleosome positioning, or histone modification state.

In addition, we observed that most cell types can be grouped into one of four clusters that obey similar trends across genes. Collectively, these observations are consistent with the evolution of regulatory mechanisms that act in a gene-specific and tissue-dependent manner.

An investigation into putative RNA-binding protein regulators that are co-activated in cellular contexts experiencing 3′-UTR lengthening revealed the induction of RBPs of the ELAV-like family, including Elavl2-4 and Celf2-6, as well as splicing regulators Nova1-2 and Rbfox1-3. Prior work provides functional evidence that fly orthologs of the ELAV-like induce neural-specific 3′-UTR lengthening through competition with CstF-64, and that mammalian Elavl2-4 can also regulate APA. Moreover, Nova1-2 and Rbfox2 have been directly implicated as regulators of APA in mouse and rat cells, respectively. Although only Celf2 has been shown to regulate APA, evidence for the roles of CELF family proteins in this process include: (i) enriched expression in neurons and later developmental stages; (ii) direct interaction with RBFOX and ELAVL family members; (iii) nuclear localization; (iv) enriched binding to the 3′-UTR terminus; (v) interaction with U2 snRNP, which is known to promote distal isoform usage; and (vi) roles in splicing.

Conversely, we also detect relative induction of Ptbp1 and Hnrnpf in cellular contexts experiencing 3′-UTR shortening, which are also believed to compete with CstF-64 in the blood.

Fig. 4 Identification of distinct gene lengthening patterns and genes responsible for overall data trends across embryonic ages. **a** Heatmap of mean differences in 3′-UTR lengths for 5169 genes with significant differences in PAS usage across embryonic stages. Heatmap is column-centered and clustered by Pearson correlation as a distance metric. **b** Schematic of IIR plot visualization using PAS counts for each of five embryonic stages. Red vertical lines along the 3′-UTR indicate PASs that are significantly different between stages by the χ^2 test ($P < 0.05$). **c** IIR plots for six genes among representative clusters shown in (a), and colored by embryonic stage. See also Supplementary Fig. 5 for clustering according to differences in entropy. See also Supplementary Data 3 for a table of read counts associated with each PAS for each gene and embryonic stage.
During the course of this work, we attempted an analysis to characterize motifs enriched in the vicinity of differentially expressed PASs. This analysis was largely inconclusive because it was highly sensitive to certain parameters such as: (i) the length of the input sequence window around each PAS, (ii) the threshold to consider a PAS differentially expressed, and (iii) a lower threshold for a gene to be considered sufficiently expressed. The most conclusive motif that emerged from this analysis was the well-characterized AAUAAA motif, with less robust support for a repetitive GU-rich element that matched the CELF recognition element.

Given the exaggerated 3′-UTR shortening and lengthening we observed in blood and neuronal cell types, respectively, it is interesting to consider how these observations might give insight into regulatory function in these tissues. In the blood, the bias towards the selection of proximal PASs is partially caused by the induction of CstF-64, which is associated with the G0 to S phase transition cell active in proliferating cells. The levels of CstF-64 and competing factors such as U1A, PTB, and hnRNP F47,48 are thought to regulate the choice of low-affinity PASs associated with proximal 3′-UTR isoforms. These mechanisms influence immunoglobulin (Ig) secretion in plasma cells as well as isoform choice of FKBP1266 and NF-ATc67, key transcription factors which function in T cells. These isoform switching events enable plasma cells to perform their most fundamental function: secreting Ig.

In neurons, it has been previously observed that APA guides differential mRNA localization69,70, and that APA itself is directly regulated by neural activity such as long-term potentiation. These findings open the possibility that APA might serve as an important process in guiding mRNAs to axons and dendrites, thereby modulating synaptic potential. One promising direction for this work is to use our APA atlas, and those derived from...
other single-cell datasets73, to further dissect how differential mRNA localization across neuronal subtypes might contribute to their functional specialization.

We anticipate that the general computational framework that we have developed herein will be broadly applicable toward assessing the landscape of APA in existing and future single-cell RNA-seq datasets from different organisms. Our characterization of APA across genes, cell types, and developmental stages of a mammalian organism will also serve as a resource to further guide the discovery of new regulatory mechanisms that control APA. Finally, it may help to dissect how these changes impact the function of mRNA with respect to its cellular localization, half-life, and translation in cell types throughout the body.

Methods

An integrated set of mouse 3′-UTRs. We established an integrated set of mouse 3′-UTR annotations for protein-coding genes in which each unique stop codon was associated with a representative transcript with the longest annotated 3′-UTR9, using the Gencode M25 "comprehensive" set33 as our initial annotations (Supplementary Data 1). For each unique stop codon, we selected the longest 3′-UTR from three additional resources: (i) RefSeq (March 2020 release)36, (ii) 3′-UTRs with extreme lengthening23, using liftOver74 to remap the coordinates from mm9 to mm10, and (iii) bulk 3P-seq-based annotations derived from mouse muscle, heart, liver, lung, kidney, brain, testes, and white adipose tissues as well as NIH 3T3 and mESC cell lines8. The choose_all_genes_for_TargetScan.pl Perl script in the TargetScanTools Github35 was used to integrate these databases, allowing a 3P-seq read to exist up to 5,400 nt (i.e., the 99th percentile of annotated 3′-UTR lengths) downstream of a stop codon.

In certain scenarios, such as in the case of alternative splicing of the terminal exon, a gene is potentially associated with many unique stop codons, each of which...
is associated with its own 3′-UTR annotation. We, therefore, sought to avoid a bias in which genes with many such transcript isoforms would be overrepresented in the downstream results, and to avoid the possibility that PASs would be counted redundantly in cases in which multiple different 3′-UTRs overlapped the same genomic coordinates. We, therefore, carried forward a single transcript isoform with the greatest number of 3′-UTR mapping reads (or a random top-ranked one in the case of a tie) to represent each gene. To perform this counting, scRNA-seq reads were intersected with our 3′-UTR annotation set using bedtools intersect (\(-w a -w b -s\))\(^{35}\).

An integrated set of mouse poly(A)(A) sites. To generate our union PAS set, we integrated three PAS annotation databases: Gencode M25\(^{33}\), PolyA_DB v3\(^{30}\), and PolyASite 2.0\(^{31}\). First, PASs within ± 10 nt of another PAS within the same database were collapsed by selecting the most downstream PAS. Next, the following procedure was implemented to reduce redundancy between databases: (i) we collected PASs from PolyASite 2.0, (ii) we added PASs from PolyA_DB v3 not within ± 10 nt of the current PAS set, and (iii) we added PASs from Gencode M25 not within ± 10 nt of the current PAS set. This method of sequential addition led to a total of 164,772 PASs in our union set; we provide the genomic coordinates and corresponding read counts associated with this set (Supplementary Data 3 and 5).

Calculation of 3′-UTR lengths, relative length differences, and corresponding visualizations. Reads were mapped to the mm10 genome and collected from previous work\(^{31}\) (GEO ID: GSE119945). Reads were then filtered according to their proximity to a known PAS. Associated motif analyses using DREME v.0.5.0\(^{32}\) and lasso regression models\(^{27}\) demonstrated that these read filtering criteria improved the quantitation of 3′-UTR isoforms. 3′-UTR length corresponding to a given read (i.e., which remained after read filtering) was computed as the distance from the stop codon to the read’s assigned PAS, minus the length of any intervening intron(s). These 3′-UTR lengths were used to compute a "gene by cell" sparse matrix of the mean length among all 3′-UTR isoforms, weighted by their respective counts. For each gene, we then computed each cell’s deviation from the mean of 3′-UTR lengths across cells, considering only nonmissing values. For heatmaps, these counts. For each gene, we then computed each cell

Gene-level isoform inclusion rate plots and corresponding statistics. For each gene, we counted reads assigned to each PAS to build contingency tables of counts for either (PAS by developmental stage) (Supplementary Data 3) or (PAS by cell type) (Supplementary Data 5). We then computed statistical significance using the \(\chi^2\) test for homogeneity as computed by the chi-square function in scRNA-seq, either with respect to the entire gene (Supplementary Data 2 and 4) or with respect to each PAS (axis = none or axis = 1, respectively). In both cases, we provided a matrix of expected counts, based on the joint probability of each cell multiplied with the total counts in the matrix. For the gene-level \(\chi^2\) test, we further derived a Benjamini–Hochberg (BH) based \(q\) value to account for the FDR. Considering the read counts associated with each PAS position, isoform inclusion rates were visualized in the same manner as previous work, which allude to this plotting style as the affected isoform ratio (AIR) plot\(^{8,35}\). Much like a survival curve, the IIR quantifies the proportion of 3′-UTR isoforms that include a given nucleotide position.

Search for putative RBP regulators. To evaluate changes in gene expression associated with RBPs, we first computed gene expression levels for all protein-coding genes. Toward this goal, we summed the counts associated with PAS-mapping reads for all unique PASs (i.e., as assessed by chromosomal coordinate) across all transcripts (i.e., including those with alternative last exons) corresponding to each gene, using our count tables partitioned either by developmental stage (Supplementary Data 3) or by cell type (Supplementary Data 5). Counts were then normalized by the stage or cell type into counts per million (cpm) (Supplementary Data 3) and then log-transformed. Genes were then filtered to clipart RBP if their gene name matched one of 1882 mouse genes annotated as a putative RBP\(^{38}\). For the subset of 1576 RBPs meeting an expression threshold of 2 cpm in at least one of the samples tested, we computed the fold change of each gene across time as \([\log(cpm at E13.5) - \log(cpm at E9.5)]\) and in neurons relative to other cell types as \([-\log(cpm in neurons) - \log(cpm in other cell types)]\) (Supplementary Data 8), where neurons are defined as the cell types in the cluster shown in Fig. 6a.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability

The analyses presented in this study are based on publicly available data, including: RefSeq (March 2020 release)\(^{39}\), 3′-UTRs with extreme lengthening\(^{29}\), Gencode M25\(^{33}\), PolyA_DB v3\(^{30}\), PolyASite 2.0\(^{31}\), bulk 3′-seq data\(^{4}\), scRNA-seq data (GSE119945)\(^{31}\), and a list of mouse RBPs\(^{40}\).

Code availability

The computational pipeline to reproduce the core results of this work is provided under the MIT open-access license at the following link: https://github.com/serenolepoze/dawrin/apanalysis.

Received: 24 March 2021; Accepted: 6 August 2021; Published online: 24 August 2021

References

1. Di Giammartino, D. C., Nishida, K. & Manley, J. L. Mechanisms and consequences of alternative polyadenylation. Mol. Cell 45, 853–866 (2011).
2. Elkon, R., Ugalde, A. P. & Agami, R. Alternative cleavage and polyadenylation: extent, regulation and function. Nat. Rev. Genet. 14, 496–506 (2013).
3. Derti, A. et al. A quantitative atlas of polyadenylation in five mammals. Genome Res. 22, 1173–1183 (2012).
4. Tian, B. & Manley, J. L. Alternative cleavage and polyadenylation: the long and short of it. Trends Biochem. Sci. 38, 312–120 (2013).
5. Tian, R. & Manley, J. L. Alternative polyadenylation of mRNA precursors. Nat. Rev. Mol. Cell Biol. 18, 18–30 (2017).
6. Berkvist, B. D. & Mayr, C. Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522, 363–367 (2015).
7. Lianoglou, S., Garg, V., Yang, J. L., Leslie, C. S. & Mayr, C. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev. 27, 2380–2396 (2013).
8. Nam, J.-W. et al. Global analyses of the effect of different cellular contexts on microRNA targeting. Mol. Cell 53, 1031–1043 (2014).
9. Agarwal, V., Bell, G. W., Nam, J.-W. & Bartel, D. P. Predicting effective microRNA target sites in mammalian mRNAs. elife 4, e05005 (2015).
10. Mayr, C. Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol. 26, 227–237 (2016).
11. Mayr, C. & Bartel, D. P. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138, 673–684 (2009).
12. Sandberg, R., Neilson, J. R., Sarma, A., Sharp, P. A. & Burge, C. P. Proliferating cells express mRNAs with shortened 3′-untranslated regions and fewer microRNA target sites. Science 320, 1643–1647 (2008).
13. Fu, Y. et al. Differential genome-wide profiling of tandem 3′ UTRs among human breast cancer and normal cells by high-throughput sequencing. Genome Res. 21, 741–747 (2011).
14. Elkon, R. et al. EZF mediates enhanced alternative polyadenylation in proliferation. Genome Biol. 13, R59 (2012).
15. Beck, A. H. et al. 3′-end sequencing for expression quantification (3SEQ) from archival tumor samples. PLoS ONE 5, e8768 (2010).
16. Jan, C. H., Friedman, R. C., Graham Ruby, J. & Bartel, D. P. Formation, regulation and evolution of Caenorhabditis elegans 3′ UTRs. Nature 469, 97–101 (2011).
17. Shepard, P. J. et al. Complex and dynamic landscape of RNA polyadenylation revealed by PAS-Seq. RNA 17, 761–772 (2011).
18. Hoque, M. et al. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat. Methods 10, 133–139 (2013).
19. Spies, N., Burge, C. B. & Bartel, D. P. 3′-UTR isoform choice has limited influence on the stability and translational efficiency of most mRNAs in mouse fibroblasts. Genome Res. 23, 2078–2090 (2013).
20. Wang, R., Nambari, R., Zheng, D. & Tian, B. PolyA_DB 3 catalogs cleavage and polyadenylation sites identified by deep sequencing in multiple genomes. Nucleic Acids Res. 46, D313–D319 (2018).
21. Herrmann, C. J. et al. PolyASite 2.0: a consolidated atlas of polyadenylation sites from 3′ end sequencing. Nucleic Acids Res. 48, D174–D179 (2020).
22. Ji, Z., Lee, J. Y., Pan, Z., Jiang, B. & Tian, B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc. Natl Acad. Sci. USA 106, 7028–7033 (2009).
23. Misura, P., Shenker, S., Andreu-Aguiló, C., Westholm, J. O. & Lai, E. C. Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res. 23, 812–825 (2013).
24. Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017).

25. Hashimshony, Y. et al. CEL-Seq: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biol. 17, 17 (2016).

26. Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).

27. Jaitin, D. A. et al. Massively parallel single-cell RNA-seq for marker-free definition of tissues into cell types. Cell 164, 343, 776–779 (2016).

28. Semrau, S. et al. Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells. Nat. Commun. 8, 1096 (2017).

29. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017).

30. Shulman, E. D. & Elkon, R. Cell-type-specific analysis of alternative polyadenylation using single-cell transcriptomics data. Nucleic Acids Res. https://doi.org/10.1093/nar/gkz781 (2019).

31. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

32. Pujana-Sala, B. et al. A single-cell molecular map of mouse gastrulation and early organogenesis. Nature 566, 490–495 (2019).

33. Frankish, A. et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 47, D766–D773 (2019).

34. Tian, B. & Graber, J. H. Signals for pre-mRNA cleavage and polyadenylation. Wiley Interdiscip. Rev.: RNA 3, 385–396 (2012).

35. Lee, S. et al. Overlapping activities of ELAV/Hu RNA binding proteins specify the extended neuronal 3′UTR. Mol. Cell 150, 251–257 (1994).

36. Cao, J. et al. The single-cell transcriptional landscape of mammalian organogenesis. Nature 566, 496–502 (2019).

37. Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell Biol. 28, 2795–2806.e3 (2019).

38. Shi, Y. & Manley, J. L. The end of the message: multiple protein binding sites along the mRNA polyadenylation site. Genes Dev. 29, 889–897 (2015).

39. Takagaki, Y. & Manley, J. L. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol. Cell 2, 761–771 (1998).

40. Takagaki, Y., Seipel, R. L., Peterson, M. L. & Manley, J. L. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87, 941–952 (1996).

41. Martinic, K. et al. Increase in the 64-kDa subunit of the polyadenylation/ cleavage stimulatory factor during the G0 to S phase transition. Proc. Natl Acad. Sci. USA 95, 11095–11100 (1998).

42. Phillips, C., Jung, S. & Gruschow, S. I. Regulation of nuclear poly(A) addition controls the expression of immunoglobulin M secretory mRNA. EMBO J. 20, 6433–6452 (2001).

43. Galli, G., Guise, J. W., McDevitt, M. A., Tucker, P. W. & Nevins, J. R. Relative position and strength of poly(A) sites as well as transcription termination are critical to membrane versus secreted mu-chain expression during B-cell development. Mol. Cell. Biol. 17, 471–481 (1987).

44. Edwards-Gilbert, G., Veraldi, K. L. & Milcarek, C. Alternative poly(A) site selection in complex transcription units: means to an end? Nucleic Acids Res. 25, 2547–2561 (1997).

45. Peatle, D. A., Hsiao, K., Benassuti, M. & Lippke, J. A. Three distinct messenger RNAs can encode the human immunosuppressant-binding protein IKBKAP. J. Biol. Chem. 278, 2201–2207 (2003).

46. Alonso-López, D. et al. APID database: redefining the biological roles of the CUG-BP, Elav-like family of RNA-binding proteins: HuR mRNA during neuronal differentiation by alternative polyadenylation. Nucleic Acids Res. 40, 2734–2746 (2012).

47. Li, Q. et al. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456, 464–469 (2008).

48. Wei, L. et al. Overlapping activities of ELAV/Hu family RNA binding proteins specify the extended neuronal 3′ UTR landscape in Drosophila. Mol. Cell 80, 140–155.e6 (2020).

49. Crescenzi, M. et al. Overlapping activities of ELAV/Hu RNA binding proteins specify multiple neural alternative splicing programs. Cold Spring Harbor Lab. https://doi.org/10.1101/2020.09.21.305912 (2020).

50. Cao, J. et al. Rbo2x is critical for maintaining alternative polyadenylation and mitochondrial health in myoblasts. Cold Spring Harbor Lab. https://doi.org/10.1101/2020.05.13.903913 (2020).

51. Alonso-López, D. et al. APID database redefining the protein–protein interaction experimental evidences and binary interactomes. Database 2019, baz005 (2019).

52. Veraldi, K. L. et al. hnRNP F influences binding of a 64-kilodalton subunit of cleavage stimulation factor to mRNA precursors in mouse B cells. Mol. Cell. Biol. 21, 1228–1238 (2001).

53. Alkan, S. A., Martincic, K. & Milcarek, C. The hnRNPs F and H2 bind to similar sequences to influence gene expression. Biochem. J. 393, 361–371 (2006).

54. Castelo-Branco, P. et al. Polypyrimidine tract binding protein modules efficiency of polyadenylation. Mol. Cell. Biol. 24, 4174–4183 (2004).

55. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).

56. Ulltzy, L. et al. Alternative polyadenylation during zebrafish development. Genome Res. 22, 2054–2066 (2012).

57. Hoffman, Y. et al. 3′UTR shortening potentiates microRNA-based repression of pro-differentiation genes in proliferating human cells. PLoS Genet. 12, e1005879 (2016).

58. Higiers, V., Lemke, S. B. & Levine, M. ELAV mediates 3′ UTR expansion in the Drosophila nervous system. Genes Dev. 22, 2259–2262 (2012).

59. Oktaba, K. et al. ELAV links paused Pol II to alternative polyadenylation in the Drosophila nervous system. Mol. Cell 57, 341–348 (2015).

60. Gawande, B., Robida, M. D., Rahn, A. & Singh, R. Drosophila sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J. 25, 1263–1272 (2006).

61. Zhu, H., Zhou, H.-L., Hasman, R. A. & Lou, H. Hu proteins regulate polyadenylation by blocking sites containing U-rich sequences. J. Biol. Chem. 282, 2203–2210 (2007).
Additional information

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-021-25388-8.

Correspondence and requests for materials should be addressed to V.A. or J.S.

Peer review information Nature Communications thanks Falong Lu and other, anonymous, reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021