THE IMAGES OF GELFAND-SHILOV SPACES UNDER THE BARGMANN TRANSFORM

JOACHIM TOFT

Abstract. We characterize the images of the Gelfand-Shilov spaces and their distribution spaces under the Bargmann transform.

0. Introduction

The aim of the paper is to deduce mapping properties of the Bargmann transform between Gelfand-Shilov spaces and their dual spaces, spaces of Gelfand-Shilov distributions of certain degrees, to convenient sets of entire functions. We also deduce certain duality properties between these dual spaces. We apply these results to characterize the Gelfand-Shilov spaces and their distribution spaces, in terms of short-time Fourier transforms and to show that all these function and distribution spaces are obtained by suitable unions or intersections of the broad family of modulation spaces, introduced in [14].

We remark that less general versions of the results here can be found in [14] and to some extent in [3], where similar investigations can be found. Especially we note that our results here include situations valid for the Gelfand-Shilov space S_t^s and their distribution space $(S_t^s)'$ for $s, t \geq 1/2$, while the largest part of the analysis in [3, 14] require that $s, t > 1/2$, which do not include the limit cases $s = 1/2$ or $t = 1/2$.

We also use the result to characterize the Gelfand-Shilov spaces in terms of the short-time Fourier transform, in a similar way as in [14]. In fact, let $s, t > 0$ be such that

\[s + t \geq 1 \quad \text{and} \quad (s, t) \neq (1/2, 1/2), \quad (0.1) \]

let $\phi \in \Sigma_t^s(\mathbb{R}^d) \setminus 0$, and let f be an appropriate ultra-distribution. Then it is proved in [14] that $f \in (S_t^s)'(\mathbb{R}^d)$, if and only if the estimate

\[(V_{\phi}f)(x, \xi) \lesssim e^{r(|x|^{1/t} + |\xi|^{1/s})}, \quad (0.2) \]

for every constant $r > 0$. Here and in the sequel, $A \lesssim B$ means that $A \leq cB$ for a suitable constant $c > 0$.

By the computations in [14] it also follows that if $s, t > 0$ satisfies (0.1) or $s, t = 1/2$, $\phi \in \Sigma_t^s(\mathbb{R}^d)$ and $f \in (S_t^s)'(\mathbb{R}^d)$, then (0.2) holds.

2010 Mathematics Subject Classification. primary 35Q40; 35S05; 46F05; secondary 33C10; 30Gxx.

Key words and phrases. Gelfand-Shilov estimates, ultradistributions, Bargmann transform.
for some \(r > 0 \). In Section 2 we prove that if \(f \in \mathcal{S}_{1/2}(\mathbb{R}^d) \) and \(\phi \) is Gaussian, then (1.2) holds for every \(r > 0 \).

1. Preliminaries

In this section we recall some basic properties on the Bargmann transform. We shall often formulate these results in the framework of the Gelfand-Shilov space \(\mathcal{S}_{1/2}(\mathbb{R}^d) \) and its dual \(\mathcal{S}'_{1/2}(\mathbb{R}^d) \) (see e.g. [7]). The reader who is not interested in this general situation may replace \(\mathcal{S}_{1/2}(\mathbb{R}^d) \) and \(\mathcal{S}'_{1/2}(\mathbb{R}^d) \) by \(\mathcal{S}(\mathbb{R}^d) \) and \(\mathcal{S}'(\mathbb{R}^d) \) respectively. Here \(\mathcal{S}(\mathbb{R}^d) \) is the set of Schwartz functions on \(\mathbb{R}^d \), and \(\mathcal{S}'(\mathbb{R}^d) \) is the set of tempered distributions on \(\mathbb{R}^d \); see for example [3].

1.1. Gelfand-Shilov spaces. We start by recalling some facts about Gelfand-Shilov spaces. Let \(0 < h, s, t \in \mathbb{R} \) be fixed. Then \(\mathcal{S}_{s,h}(\mathbb{R}^d) \) consists of all \(f \in C^\infty(\mathbb{R}^d) \) such that

\[
\|f\|_{\mathcal{S}_{s,h}^t} \equiv \sup_{x \in \mathbb{R}^d} \left| \frac{x^\beta \partial^\alpha f(x)}{h^{\alpha+|\beta|} \alpha! \beta!} \right|
\]

is finite. Here the supremum should be taken over all \(\alpha, \beta \in \mathbb{N}^d \) and \(x \in \mathbb{R}^d \).

Obviously \(\mathcal{S}_{s,h}^t \) is a Banach space which increases with \(h, s \) and \(t \) and \(\mathcal{S}_{s,h}^t \hookrightarrow \mathcal{S} \). Here and in what follows we use the notation \(A \hookrightarrow B \) when the topological spaces \(A \) and \(B \) satisfy \(A \subseteq B \) with continuous embeddings. Furthermore, if \(s + t \geq 1 \) and \((s, t) \neq (1/2, 1/2) \), or \(s = t = 1/2 \) and \(h \) is sufficiently large, then \(\mathcal{S}_{s,h}^t \) contains all finite linear combinations of Hermite functions. Since such linear combinations are dense in \(\mathcal{S} \) and in \(\mathcal{S}_{s,h}^t \), it follows that the dual \((\mathcal{S}_{s,h}^t)'(\mathbb{R}^d) \) of \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \) is a Banach space which contains \(\mathcal{S}'(\mathbb{R}^d) \).

The Gelfand-Shilov spaces \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \) and \(\Sigma_{s,h}^t(\mathbb{R}^d) \) are defined as the inductive and projective limits respectively of \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \). This implies that

\[
\mathcal{S}_{s,h}^t(\mathbb{R}^d) = \bigcup_{h>0} \mathcal{S}_{s,h}^t(\mathbb{R}^d) \quad \text{and} \quad \Sigma_{s,h}^t(\mathbb{R}^d) = \bigcap_{h>0} \mathcal{S}_{s,h}^t(\mathbb{R}^d), \quad (1.1)
\]

and that the topology for \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \) is the strongest possible one such that the inclusion map from \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \) to \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \) is continuous, for every choice of \(h > 0 \). The space \(\Sigma_{s,h}^t(\mathbb{R}^d) \) is a Fréchet space with seminorms \(\| \cdot \|_{\mathcal{S}_{s,h}^t} ; h > 0 \). Moreover, \(\Sigma_{s,h}^t(\mathbb{R}^d) \neq \{0\} \), if and only if \(s + t \geq 1 \) and \((s, t) \neq (1/2, 1/2) \), and \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \neq \{0\} \), if and only if \(s + t \geq 1 \). From now on we assume that the Gelfand-Shilov parameter pair \((s, t) \) are admissible, or GS-admissible, that is, \(s + t \geq 1 \) and \((s, t) \neq (1/2, 1/2) \) when considering \(\Sigma_{s,h}^t(\mathbb{R}^d) \), and \(s + t \geq 1 \) when considering \(\mathcal{S}_{s,h}^t(\mathbb{R}^d) \).

The Gelfand-Shilov distribution spaces \((\mathcal{S}_{s,h}^t)'(\mathbb{R}^d) \) and \((\Sigma_{s,h}^t)'(\mathbb{R}^d) \) are the projective and inductive limit respectively of \((\mathcal{S}_{s,h}^t)'(\mathbb{R}^d) \). This means
We remark that in \([7, 10]\) it is proved that \(S^s_t(R^d)\) is the dual of \(S^s_0(R^d)\), and \(\Sigma_t^s(R^d)\) is the dual of \(\Sigma_t^s(R^d)\) (also in topological sense). For convenience we set
\[
S_s = S^s_0, \quad S'_s = (S^s_0)' , \quad \Sigma_s = \Sigma^s_t, \quad \Sigma'_s = (\Sigma^s_t)'.
\]

For every admissible \(s, t > 0\) and \(\varepsilon > 0\) we have
\[
\Sigma^s_t(R^d) \hookrightarrow S^s_t(R^d) \hookrightarrow \Sigma^{s+\varepsilon}_{t+\varepsilon}(R^d)
\]
and
\[
(\Sigma^{s+\varepsilon}_{t+\varepsilon})'(R^d) \hookrightarrow (S^s_t)'(R^d) \hookrightarrow (\Sigma^s_t)'(R^d).
\]

The Gelfand-Shilov spaces possess several convenient mapping properties, and in the case \(s = t\) they are invariant under several basic transformations. For example they are invariant under translations, dilations, tensor products and under (partial) Fourier transformations.

From now on we let \(\mathcal{F}\) be the Fourier transform which takes the form
\[
(\mathcal{F} f)(\xi) = \hat{f}(\xi) = (2\pi)^{-d/2} \int_{\mathbb{R}^d} f(x) e^{-i(x, \xi)} \, dx
\]
when \(f \in L^1(R^d)\). Here \(\langle \cdot, \cdot \rangle\) denotes the usual scalar product on \(R^d\). The map \(\mathcal{F}\) extends uniquely to homeomorphisms on \(\mathcal{F}'(R^d)\), from \((S^s_0)'(R^d)\) to \((S^s_0)'(R^d)\) and from \((\Sigma^s_t)'(R^d)\) to \((\Sigma^s_t)'(R^d)\). Furthermore, \(\mathcal{F}\) restricts to homeomorphisms on \(\mathcal{F}(R^d)\), from \(S^s_0(R^d)\) to \(S^s_0(R^d)\) and from \(\Sigma^s_t(R^d)\) to \(\Sigma^s_t(R^d)\), and to a unitary operator on \(L^2(R^d)\).

It follows from the following lemma that elements in Gelfand-Shilov spaces can be characterized by estimates of the form
\[
|f(x)| \lesssim e^{-\varepsilon|x|^{1/t}} \quad \text{and} \quad |\hat{f}(\xi)| \lesssim e^{-\varepsilon|\xi|^{1/s}}.
\]

The proof is omitted, since the result can be found in e.g. [4][9].

Lemma 1.1. Let \(s, t > 0\) and \(f \in S^t_{1/2}(R^d)\). Then the following is true:

1. if \(s + t \geq 1\), then \(f \in S^s_0(R^d)\), if and only if \((1.3)\) holds for some \(r > 0\);
2. if \(s + t \geq 1\) and \((s, t) \neq (1/2, 1/2)\), then \(f \in \Sigma^s_t(R^d)\), if and only if \((1.3)\) holds for any \(r > 0\).

Gelfand-Shilov spaces and their distribution spaces can also, in some sense more convenient ways, be characterized by means of estimates of short-time Fourier transforms, (see e.g. [11][12]). We recall here the details and start by recalling the definition of the short-time Fourier transform.
Let $\phi \in \mathcal{S}'(\mathbb{R}^d)$ be fixed. Then the short-time Fourier transform $V_\phi f$ of $f \in \mathcal{S}'(\mathbb{R}^d)$ with respect to the window function ϕ is the Gelfand-Shilov distribution on \mathbb{R}^{2d}, defined by

$$V_\phi f(x, \xi) \equiv (\mathcal{F}_2(U(f \otimes \phi)))(x, \xi) = \mathcal{F}(f \phi(\cdot - x))(\xi),$$

where $(UF)(x, y) = F(y, y - x)$. If $f, \phi \in \mathcal{S}_s(\mathbb{R}^d)$, then it follows that

$$V_\phi f(x, \xi) = (2\pi)^{-d/2} \int f(y)\overline{\phi(y - x)}e^{-i(y, \xi)} \, dy.$$

The next two results show that both spaces of Gelfand-Shilov functions and Gelfand-Shilov distributions can be completely identified with growth and decay properties of the short-time Fourier transforms for the involved functions and distributions. The conditions are of the forms

$$|V_\phi f(x, \xi)| \lesssim e^{-r(|x|^{1/s} + |\xi|^{1/s})},$$

(1.4)

$$|(\mathcal{F}(V_\phi f))(\xi, x)| \lesssim e^{-r(|x|^{1/s} + |\xi|^{1/s})}$$

(1.5)

and

$$|V_\phi f(x, \xi)| \lesssim e^{r(|x|^{1/s} + |\xi|^{1/s})}.$$ \(1.4)'

Proposition 1.2. Let $s, t, s_0, t_0 > 0$ be such that $s_0 + t_0 \geq 1$, $s_0 \leq s$ and $t_0 \leq t$, and let $\phi \in \mathcal{S}_{s_0}^{\alpha_0}(\mathbb{R}^d) \setminus 0$ and $f \in (\mathcal{S}_{s_0}^{\alpha_0})'(\mathbb{R}^d)$. Then the following is true:

1. $f \in \mathcal{S}_s^t(\mathbb{R}^d)$, if and only if (1.4) holds for some $r > 0$;
2. if in addition $\phi \in \Sigma_{\alpha_0}^t(\mathbb{R}^d)$, then $f \in \Sigma_s^t(\mathbb{R}^d)$, if and only if (1.4) holds for every $r > 0$.

A proof of Theorem 1.2 can be found in e.g. [6] (cf. [6, Theorem 2.7]). The corresponding result for Gelfand-Shilov distributions is the following, which is essentially a restatement of [14, Theorem 2.5].

Proposition 1.3. Let $s, t, s_0, t_0 > 0$ be such that $s_0 + t_0 \geq 1$, $s_0 \leq s$, $t_0 \leq t$ and $(s_0, t_0) \neq (1/2, 1/2)$, and let $\phi \in \Sigma_{\alpha_0}^t(\mathbb{R}^d) \setminus 0$, and let $f \in (\Sigma_{\alpha_0}^t)'(\mathbb{R}^d)$. Then the following is true:

1. $f \in (\mathcal{S}_s^t)'(\mathbb{R}^d)$, if and only if (1.4)' holds for every $r > 0$;
2. $f \in (\Sigma_s^t)'(\mathbb{R}^d)$, if and only if (1.4)' holds for some $r > 0$.

We note that in (2) in [14, Theorem 2.5] it should stay $(\Sigma_s^t)'(\mathbb{R}^d)$ instead of $\Sigma_s^t(\mathbb{R}^d)$.

Remark 1.4. The short-time Fourier transform can also be used to identify the elements in $\mathcal{S}(\mathbb{R}^d)$ and in $\mathcal{S}'(\mathbb{R}^d)$. In fact, if $\phi \in \mathcal{S}(\mathbb{R}^d) \setminus 0$ and $f \in (\mathcal{S}_{1/2})'(\mathbb{R}^d)$, then the following is true:

1. $f \in \mathcal{S}(\mathbb{R}^d)$, if and only if for every $N \geq 0$, it holds
 $$|V_\phi f(x, \xi)| \lesssim \langle x, \xi \rangle^{-N};$$

2. $f \in \mathcal{S}'(\mathbb{R}^d)$, if and only if for every $N \geq 0$, it holds
 $$\langle x, \xi \rangle^N |V_\phi f(x, \xi)| \lesssim 1.$$
(2) $f \in S'(\mathbb{R}^d)$, if and only if for some $N \geq 0$, it holds

$$|V_\phi f(x, \xi)| \lesssim \langle x, \xi \rangle^N,$$

(Cf. [3, Chapter 12].)

1.2. The Bargmann transform. Next we recall some facts about the Bargmann transform and start by recalling some function spaces in [14].

Let $p \in [1, \infty]$ and let $\omega \in L^\infty_{\text{loc}}(\mathbb{C}^d)$ be a positive function. Then the set $B^p_\omega(\mathbb{C}^d)$ is the set of all $F \in L^p_{\text{loc}}(\mathbb{C}^d)$ such that

$$\|F\|_{B^p_\omega(\mathbb{C}^d)} \equiv \|F \cdot e^{-|\cdot|^2/2} \cdot \omega\|_{L^p}$$

is bounded. We also let

$$A^p_\omega(\mathbb{C}^d) = B^p_\omega(\mathbb{C}^d) \cap A(\mathbb{C}^d),$$

$$\|F\|_{A^p_\omega(\mathbb{C}^d)} \equiv \|F\|_{B^p_\omega(\mathbb{C}^d)}$$

when $F \in A^p_\omega(\mathbb{C}^d)$, and let the topologies of $A^p_\omega(\mathbb{C}^d)$ and $B^p_\omega(\mathbb{C}^d)$ be defined through these norms. We also use the notations A^p and B^p instead of A^p_ω and B^p_ω, respectively, when $\omega = 1$.

By letting $d\mu(z) = \pi^{-d} e^{-|z|^2} d\lambda(z)$, where $d\lambda(z)$ is the Lebesgue measure on \mathbb{C}^d, it follows that $B^2(\mathbb{C}^d)$ is a Hilbert space with scalar product

$$(F, G)_{B^2} \equiv \int_{\mathbb{C}^d} F(z) \overline{G(z)} \, d\mu(z), \quad F, G \in B^2(\mathbb{C}^d). \quad (1.6)$$

We also equip $A^2(\mathbb{C}^d)$ with the scalar product

$$(F, G)_{A^2} \equiv (F, G)_{B^2}, \quad F, G \in A^2(\mathbb{C}^d). \quad (1.7)$$

For every $f \in S_{1/2}^1(\mathbb{R}^d)$, the Bargmann transform $\mathfrak{B}_d f$ is the entire function on \mathbb{C}^d, defined by

$$(\mathfrak{B}_d f)(z) = \langle f, \mathfrak{A}_d(z, \cdot) \rangle, \quad (1.8)$$

where the Bargmann kernel \mathfrak{A}_d is given by

$$\mathfrak{A}_d(z, y) = \pi^{-d/4} \exp \left(-\frac{1}{2} \langle z, z \rangle + |y|^2 + 2^{1/2} \langle z, y \rangle \right).$$

Here

$$\langle z, w \rangle = \sum_{j=1}^d z_j w_j, \quad z = (z_1, \ldots, z_d) \in \mathbb{C}^d, \quad w = (w_1, \ldots, w_d) \in \mathbb{C}^d,$$

and otherwise $\langle \cdot, \cdot \rangle$ denotes the duality between test function spaces and their corresponding duals. We note that the right-hand side in (1.8) makes sense when $f \in S_{1/2}^1(\mathbb{R}^d)$ and defines an element in the set $A(\mathbb{C}^d)$ of all entire functions on \mathbb{C}^d. In fact, $y \mapsto \mathfrak{A}_d(z, y)$ can be interpreted as an element in $S_{1/2}(\mathbb{R}^d)$ with values in $A(\mathbb{C}^d)$.
If in addition f is an integrable function, then $\mathcal{V}_d f$ takes the form
\[
(\mathcal{V}_d f)(z) = \int \mathcal{A}_d(z, y) f(y) \, dy,
\]
or
\[
(\mathcal{V}_d f)(z) = \pi^{-d/4} \int_{\mathbb{R}^d} \exp \left(-\frac{1}{2} (\langle z, z \rangle + |y|^2) + 2^{1/2} (\langle z, y \rangle) \right) f(y) \, dy.
\]

Several properties for the Bargmann transform were established by Bargmann in \cite{1,2}. For example, in \cite{1} it is proved that $A^2(\mathbb{C}^d)$ is a Hilbert space under the scalar product (1.7), and that $f \mapsto \mathcal{V}_d f$ is a bijective and isometric map from $L^2(\mathbb{R}^d)$ to the Hilbert space $A^2(\mathbb{C}^d)$. Furthermore, if \mathcal{V}_d^* is the adjoint of \mathcal{V}_d, i.e. \mathcal{V}_d and \mathcal{V}_d^* should fulfill
\[
(\mathcal{V}_d f, G)_{B^2} = (f, \mathcal{V}_d^* G)_{L^2},
\]
when $f \in L^2(\mathbb{R}^d)$ and $G \in B^2(\mathbb{C}^d)$, then the inverse of $\mathcal{V}_d : L^2(\mathbb{R}^d) \rightarrow A^2(\mathbb{C}^d)$ is given by \mathcal{V}_d^*. For future references we note that \mathcal{V}_d^* is given by
\[
(\mathcal{V}_d^* G)(x) = \pi^{-d/4} \int_{\mathbb{R}^d} \exp \left(-\frac{1}{2} (\langle z, z \rangle + |x|^2) + 2^{1/2} \langle z, x \rangle \right) G(z) \, d\mu(z),
\]
when $G \in B^2(\mathbb{C}^d)$.

Later on we need the following result, based on \cite[Theorem 3.2]{14}.

Proposition 1.5. Let $p_1, p_2 \in [1, \infty]$, $h_1, h_2 \in \mathbb{R}$ be such that $h_2 < h_1$, and let
\[
M_{s,t}(x + i\xi) = |x|^{1/t} + |\xi|^{1/s},
\]
\[
v_{s,t,h}(z) = e^{hM_{s,t}(z)}, \quad x, \xi \in \mathbb{R}^d.
\]
Then
\[
A^{p_2}_{(v_{s,t,h})}(\mathbb{C}^d) \subseteq A^{p_1}_{(v_{s,t,h})}(\mathbb{C}^d),
\]
and
\[
\|F\|_{A^{p_2}_{(v_{s,t,h})}} \lesssim \|F\|_{A^{p_1}_{(v_{s,t,h})}}, \quad F \in A(\mathbb{C}^d).
\]

Proof. Let Ω be the set of all weights $z \mapsto v_{s,t,h}(z) \langle z \rangle^r$, where $r \in \mathbb{R}$. Then Ω is an admissible family of weights in the sense of \cite[Definition 1.4]{14}. By Theorem 3.2 in \cite{14} we get
\[
\|F\|_{A^{p_2}_{(v_{s,t,h})}} \lesssim \|F\|_{A^{p_1}_{(v)}}, \quad F \in A(\mathbb{C}^d),
\]
where $v(z) = v_{s,t,h}(z) \langle z \rangle^N$, for some $N \geq 0$. Since $v \lesssim v_{s,t,h_1}$, we get
\[
\|F\|_{A^{p_1}_{(v)}} \lesssim \|F\|_{A^{p_1}_{(v_{s,t,h})}}, \quad F \in A(\mathbb{C}^d),
\]
and the result follows from these estimates. \qed
In [1] it is also proved that the Hermite functions are mapped by the Bargmann transform into convenient monomials. More precisely, for any multi-index $\alpha \in \mathbb{N}^d$, the Hermite function h_α of order α is defined by
\[
h_\alpha(x) = \pi^{-d/4}(-1)^{|\alpha|}(2^{|\alpha|} \alpha!)^{-1/2}e^{|x|^2/2}(\partial^\alpha e^{-|x|^2}).
\]
It follows that
\[
h_\alpha(x) = \frac{1}{(2\pi)^{d/2}}e^{-|x|^2/2}p_\alpha(x),
\]
for some polynomial p_α on \mathbb{R}^d, which is called the Hermite polynomial of order α.

The set $\{h_\alpha\}_{\alpha \in \mathbb{N}^d}$ is an orthonormal basis for $L^2(\mathbb{R}^d)$. It is also a basis for any of the Gelfand-Shilov spaces and their distribution spaces at above.

In [1] it is then proved that
\[(Vh_\alpha)(z) = z^\alpha \sqrt{\alpha!}, \quad z \in \mathbb{C}^d. \tag{1.11}\]

Next we recall the links between the Bargmann transform and the short-time Fourier transform, when the window function ϕ is given by
\[
\phi(x) = \pi^{-d/4}e^{-|x|^2/2}. \tag{1.12}
\]
More precisely, let S be the dilation operator given by
\[(SF)(x, \xi) = F(2^{-1/2}x, -2^{-1/2}\xi), \tag{1.13}\]
when $F \in L^1_{\text{loc}}(\mathbb{R}^{2d})$. Then it follows by straightforward computations that
\[
(V_d f)(z) = (\mathfrak{M} h_\alpha)(z) = \frac{z^\alpha}{\sqrt{\alpha!}}, \quad z \in \mathbb{C}^d.
\]
\[V_\phi f(x, \xi) = (2\pi)^{-d/2}e^{-|x|^2/4}e^{-i(x, \xi)}V_d f(2^{-1/2}x, -2^{-1/2}\xi) = (2\pi)^{-d/2}e^{-|x|^2/2}e^{-i(x, \xi)}(S^{-1}(V_\phi f))(x, \xi), \tag{1.14}\]
or equivalently,
\[
V_\phi f(x, \xi) = (2\pi)^{-d/2}e^{-|x|^2/2}e^{-i(x, \xi)/2}V_d f(2^{-1/2}x, -2^{-1/2}\xi).
\]
(1.15)

For future references we observe that (1.14) and (1.15) can be formulated into
\[
\mathfrak{M} = U_\phi \circ V_\phi, \quad \text{and} \quad U_\phi^{-1} \circ \mathfrak{M} = V_\phi, \tag{1.16}\]
where U_ϕ is the linear, continuous and bijective operator on $\mathfrak{S}'(\mathbb{R}^{2d}) \simeq \mathfrak{D}'(\mathbb{C}^d)$, given by
\[
(U_\phi F)(x, \xi) = (2\pi)^{d/2}e^{(|x|^2 + |\xi|^2)/2}e^{-i(x, \xi)}F(2^{1/2}x, -2^{1/2}\xi). \tag{1.17}
\]
2. Mapping properties of Gelfand-Shilov spaces and their distribution spaces, under the Bargmann transform

In this section we discuss the image of the Bargmann transform on Gelfand-Shilov and tempered function spaces, and their distribution spaces. A part of the analysis is based on dual properties of these spaces. In the end we also apply our results to deduce continuity properties of Short-time Fourier transform with Gaussians as window functions. We also use the results to show that the Gelfand-Shilov spaces of functions or distributions can be obtained by appropriate unions or intersections of certain modulation spaces, introduced in [14].

For every \(s, t \geq 1/2 \), we consider the sets

\[
A_{0,t}^s(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2} - rM_{s,t}(z)} \text{ for every } r > 0 \},
\]

\[
A_s(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2} - rM_{s,t}(z)} \text{ for some } r > 0 \},
\]

\[
A_{\infty}(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2}(z)^{-N}} \text{ for every } N > 0 \},
\]

\[
A_{\infty}'(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2}N} \text{ for some } N > 0 \},
\]

\[
(A_s)'(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2+2rM_{s,t}(z)}} \text{ for every } r > 0 \},
\]

\[
(A_{0,t})'(C^d) \equiv \{ F \in A(C^d) ; |F(z)| \lesssim e^{\frac{|z|^2}{2+2rM_{s,t}(z)}} \text{ for some } r > 0 \},
\]

with canonical topologies. Here \(M_{s,t} \) is given by (1.10). We also set

\[
A_s = A_s^s \quad \text{and} \quad A_s' = (A_s')',
\]

of entire functions.

By Proposition [15] we have the following relations between the spaces here above and \(A_{p(v, s, t, h)}^p \).

Proposition 2.1. Let \(p \in [1, \infty] \), \(s, t \geq 1/2 \) and let \(v_{s,t,h} \) be the same as in Proposition [1,15]. Then

\[
\bigcup_{h > 0} A_{p(v_{s,t,h})}^p(C^d) = A_s(C^d)
\]

The next result concerns convenient estimates for the reproducing kernel operator \(\Pi_A \) in [1,14]. More precisely, let \(\Omega \) be the set of all \(F \in L^1_{\text{loc}}(C^d) \) such that

\[
\int_{C^d} |F(z)||e^{-\frac{|z|^2}{2} + N|z|}| d\lambda(z) < \infty \quad (2.1)
\]

for every \(N \geq 1 \). Then \(\Pi_A \) is the operator from \(\Omega \) to \(\mathcal{D}'(C^d) \), defined by the formula

\[
(\Pi_A F)(z) \equiv \int_{C^d} F(w)e^{z,w} d\mu(w).
\]
We note that \(\Pi_A F = F \) when \(F \in \Omega \cap A(C^d) \). In view of Lemma 4.1 in [14].

Lemma 2.2. Let \(h_1, h_2 \) be such that \(0 < 2h_1 \leq h_2 < 1/2, F \in L^1_{loc}(C^d) \) be such that (2.1) holds for every \(N \geq 1 \). Then

\[
\| (\Pi_A F) e^{-|z|^2/2 + h_2 M_{s,t}(z)} \|_{L^1} \lesssim \| F e^{-|z|^2/2 + h_1 M_{s,t}(z)} \|_{L^1}.
\]

Proof. Let

\[
G(z) = F(z) e^{-|z|^2/2 + h_1 M_{s,t}(z)}
\]

and

\[
H(z) = e^{-|z|^2/2 + 2h_1 M_{s,t}(z)}.
\]

Then \(H \in L^1 \) due to the assumptions. Futhermore,

\[
| (\Pi_A F)(z) e^{-|z|^2/2 + h_2 M_{s,t}(z)} | \leq \int |G(w)| e^{-|z-w|^2/2 + h_1 M_{s,t}(w) - h_2 M_{s,t}(z)} d\lambda(w) \tag{2.2}
\]

Since

\[
h_1 M_{s,t}(w) - h_2 M_{s,t}(z) \leq h_1 (M_{s,t}(w) - 2M_{s,t}(z)) \leq 2h_1 M_{s,t}(z - w),
\]

it follows from (2.2) that

\[
| (\Pi_A F)(z) e^{-|z|^2/2 + h_2 M_{s,t}(z)} | \leq (|G| * H)(z).
\]

The result now follows by applying the \(L^1 \)-norm on the last inequality, and using Young’s inequality. \(\square \)

In the following two results we deduce dual properties of \(A^s_t(C^d) \), and links between our classes of analytic functions and Gelfand-Shilov spaces.

Proposition 2.3. Let \(s, t \geq 1/2 \). Then the \(A^2 \)-form \((\cdot, \cdot)_{A^2} \) on \(A_{1/2}(C^d) \) extends uniquely to a continuous sesqui-linear form from \(A^s_t(C^d) \times (A^s_t)'(C^d) \) to \(C \), and from \((A^s_t)'(C^d) \times A^s_t(C^d) \) to \(C \). Furthermore, the dual space of \(A^s_t(C^d) \) can be identified with \((A^s_t)'(C^d) \) through this form.

Proposition 2.3 follows in the case \(s, t > 1/2 \) from Theorems 3.4, 3.9 and 4.7 in [14]. In the following we give a proof which also covers the cases when \(s = 1/2 \) or \(t = 1/2 \).

Theorem 2.4. The map \(f \mapsto \mathcal{M}_d f \) from \(L^2(R^d) \) to \(\Lambda^2(C^d) \) extends uniquely to a homeomorphism from \(S^1_{1/2}(R^d) \) to \(A^1_{1/2}(C^d) \). Furthermore the following is true:

(1) if \(s, t \geq 1/2 \), then the map \(f \mapsto \mathcal{M}_d f \) restricts to homeomorphisms from \(S^s_t(R^d) \) to \(A^s_t(C^d) \), and from \((S^s_t)'(R^d) \) to \((A^s_t)'(C^d) \);

(2) if \(s, t > 1/2 \), then the map \(f \mapsto \mathcal{M}_d f \) restricts to homeomorphisms from \(\Sigma^s_t(R^d) \) to \(A^s_{0,t}(C^d) \), and from \((\Sigma^s_t)'(R^d) \) to \((A^s_{0,t})'(C^d) \);
(3) the map \(f \mapsto \Omega_d f \) restricts to homeomorphisms from \(\mathcal{S}(\mathbb{R}^d) \) to \(\mathcal{A}_\infty(\mathbb{C}^d) \), and from \(\mathcal{S}'(\mathbb{R}^d) \) to \(\mathcal{A}'_\infty(\mathbb{C}^d) \).

We shall first prove Theorem 2.4 (2), (3) and the first part of (1). Thereafter we prove Proposition 2.3 and then we prove the last part of Theorem 2.4 (1).

Proof of Theorem 2.4 Let \(\phi \) be given by (1.16), \(s, t \geq 1/2 \) and \(s_0, t_0 > 1/2 \). Then it follows from (1.13), Proposition 1.2 and Remark 1.4 that the Bargmann transform restricts to continuous and injective mappings from \(\mathcal{S}_t^s \) to \(\mathcal{A}_t^s \), from \(\Sigma_{t_0}^{s_0} \) to \(\mathcal{A}_{0,t_0}^{s_0} \), and from \(\mathcal{S} \) to \(\mathcal{A}_\infty \). From these relations and Proposition 1.3 it also follows that the Bargmann transform extends uniquely to continuous and injective mappings from \((\mathcal{S}_t^{s_0})' \) to \((\mathcal{A}_t^{s_0})' \), from \((\Sigma_{t_0}^{s_0})' \) to \((\mathcal{A}_{0,t_0}^{s_0})' \), and from \(\mathcal{S}' \) to \(\mathcal{A}'_\infty \).

The surjectivity follows from Remark 1.7 in [13], and Theorems 3.4 and 3.9 in [14] in the case \(s, t > 1/2 \).

It remains to prove the surjectivity for (1) when \(s \) and \(t \) may attain 1/2. First we consider the map

\[
\mathcal{U}_d : \mathcal{S}_t^s(\mathbb{R}^d) \to \mathcal{A}_t^s(\mathbb{C}^d),
\]

and assume that \(F \in \mathcal{A}_{\mathbb{C}^d} \) be arbitrary.

Let \(s_0 > s \) and \(t_0 > t \). Then \(\mathcal{S}_s^t \subseteq \mathcal{S}_s^{t_0} \), and from the first part of the proof it follows that there is a unique element \(f \in \mathcal{S}_s^{t_0} \) such that \(F \mathcal{U}_d f \).

It now follows from Proposition 1.2 and (1.15) that \(f \in \mathcal{S}_t^s \), and the result follows in this case as well.

Proof of Proposition 2.3 For any \(G \in L^1_{\text{loc}}(\mathbb{C}^d) \) which satisfies

\[
G(z) e^{N|z| - |z|^2} \in L^1(\mathbb{C}^d),
\]

the form

\[
\ell_G(F) \equiv (F, G)_{B^2} = \int_{\mathbb{C}^d} F(z) G(z) \, d\mu(z)
\]

is well-defined for every (analytic) polynomial \(F \) on \(\mathbb{C}^d \). The definition of \(\ell_G \) extends in usual ways to other situations, provided \(G \) satisfies appropriate conditions.

Evidently, from the definitions it follows that \(\ell_G \) belongs to the dual of \(\mathcal{S}_t^s(\mathbb{C}^d) \) when \(G \in (\mathcal{S}_t^s)'(\mathbb{C}^d) \). Hence

\[
(\mathcal{S}_t^s)'(\mathbb{C}^d) \subseteq (\mathcal{S}_t^s(\mathbb{C}^d))'.
\]

We need to prove the opposite inclusion, and that the map \(G \mapsto \ell_G \) from \((\mathcal{S}_t^s)'(\mathbb{C}^d) \) to \((\mathcal{S}_t^s(\mathbb{C}^d))' \) is injective.

For any \(s, t \geq 1/2 \) and \(h \in \mathbb{R} \), let \(\mathcal{B}_t^s(\mathbb{C}^d) \) be the set of all \(F \in L^1_{\text{loc}}(\mathbb{C}^d) \) such that

\[
\|F\|_{\mathcal{B}_t^s} \equiv \int_{\mathbb{C}^d} |F(z)| e^{-((|z|^2/2 + hM_s)(z))} \, d\lambda(z)
\]
is finite. Also let $A_{t,h}^s(C^d) = B_{t,h}^s(C^d) \cap A(C^d)$, with topology inherited from $B_{t,h}^s(C^d)$. Then
\[A_t^s(C^d) = \bigcup_{h>0} A_{t,h}^s(C^d), \quad (2.4) \]
with inductive limit topology. Since $A_{t,h}^s$ is decreasing with respect to h, we may assume that $h < h_0$ in (2.4) for some small h_0 such that $A_{t,h_0}^s(C^d)$ is non-trivial.

Let $\ell \in (A_{t,h}^s(C^d))^\prime$. By Hahn-Banach’s theorem, ℓ is extendable to a continuous form on $B_{t,h}^s(C^d)$. Hence there is an element $G \in L^\infty_{loc}(C^d)$ such that
\[\text{ess sup}_{z \in C^d} |G(z)e^{-|z|^2/2-hM_{t,s}(z)}| < \infty \quad (2.5) \]
and $\ell(F) = \ell_G(F)$.

By letting $G_0 = \Pi_A G$, it follows from Lemma 4.1 in [14], Proposition 1.5 and Lemma 2.2 that $G_0 \in A_{t,-3h}^s(C^d)$ and $\ell_G(F) = \ell_{G_0}(F)$ when F is a polynomial. Since the Hermite functions are dense in S_t^s and in $S_{t,h}^s$, it follows from (1.1) and the first part of Theorem 2.4 (1) that polynomials are dense in A_t^s and in $A_{t,h}^s$. This gives $\ell_G(F) = \ell_{G_0}(F)$ when $F \in A_{t,h}^s$. Hence
\[(A_{t,h}^s(C^d))^\prime \subseteq A_{t,-3h}^s(C^d) \quad (2.6) \]
Since
\[(A_t^s(C^d))^\prime = \bigcap_{h>0} (A_{t,h}^s(C^d))^\prime \quad \text{and} \quad (A_t^s(C^d))^\prime = \bigcap_{h>0} A_{t,-h}^s(C^d), \]
with projective limit topologies on the left-hand sides, (2.6) shows that equality is attained in (2.3). Hence the map $G \mapsto \ell_G$ is continuous and surjective from $(A_t^s(C^d))^\prime$ to $(A_t^s(C^d))^\prime$.

By Remark 4.3 in [14] it also follows that the latter map is injective. This gives the result. \hfill \square

\textbf{The end of the proof of Theorem 2.4.} It remains to prove that \mathfrak{G}_d is continuous and bijective from $(S_t^s)'(R^d)$ to $(A_t^s)'(C^d)$. We shall consider the adjoint $T = \mathfrak{G}_d^*$, acting from $(A_t^s)'(C^d)$ to $(S_t^s)'(R^d)$.

Evidently, by the assumptions it follows by straight-forward computations that T is well-defined and continuous map from $(A_t^s)'(C^d)$ to $(S_t^s)'(R^d)$, and that
\[(F,G)_A^2 = (f,g)_{L^2}, \quad f = \mathfrak{G}_d^*F, \quad g = \mathfrak{G}_d^*G, \quad F \in A_t^s(C^d), \quad G \in (A_t^s)'(C^d). \]
We claim that T is injective.

In fact, if $G_1, G_2 \in (A_t^s)'(C^d)$ are chosen such that $TG_1 = TG_2$ and $g_j = TG_j$, then for some positive constants c_α we have
\[(G_1, z^\alpha)_A^2 = c_\alpha(g_1, h_\alpha) = c_\alpha(g_2, h_\alpha) = (G_2, z^\alpha)_A^2. \]
This implies that \((G_1, F)_{A^2} = (G_2, F)_{A^2}\) for every analytic polynomial \(F\), and since the set of such polynomials are dense in \(\mathcal{A}^s\) we get \(G_1 = G_2\), and the injectivity follow.

We need to prove that \(T\) is surjective. Therefore, let \(\ell \in (\mathcal{S}_r^s(\mathbb{R}^d))'\).

Then \(\ell \circ T \in (\mathcal{A}_r^s(\mathbb{C}^d))'\). By Proposition 2.3, there is an element \(G \in (\mathcal{A}_r^s(\mathbb{C}^d))'\) such that \(\ell(T F) = (F, G)_{B^2}\). Hence, if \(F = \mathfrak{H}_d f\) and \(g = TG\) we get
\[
\ell(f) = \ell(T F) = (F, G)_{B^2} = (f, TG)_{L^2}.
\]
This shows that \(T\) from \((\mathcal{A}_r^s(\mathbb{C}^d))'\) to \((\mathcal{S}_r^s(\mathbb{R}^d))' \cong (\mathcal{S}_r^s(\mathbb{R}^d))'\) is surjective, and the result follows. \[\square\]

By combining the links (1.14) and (1.15) between the Bargmann transform and the short-time Fourier transform with Gaussian window, and Theorem 2.4, we get the following complementary result to Proposition 1.3.

Proposition 2.5. Let \(s, t \geq 1/2, \phi \in C^\infty(\mathbb{R}^d) \setminus \{0\}\) be Gaussian, and let \(f \in \mathcal{S}_s^t(\mathbb{R}^d)\). Then \(f \in (\mathcal{S}_s^t(\mathbb{R}^d))'\), if and only if (1.15) holds for every \(r > 0\).

Remark 2.6. Especially the cases when \(s = 1/2\) or \(t = 1/2\) in Theorem 2.3 and Propositions 2.3 and 2.5 seem to be new, and are often not taken into account in e.g. [14]. In fact, in [14] it is usually assumed that the involved weights should belong to \(\mathcal{P}_r^q\) or the slightly larger class \(\mathcal{P}_r^q\). Here we note if \(\omega \in \mathcal{P}_r^q\), then
\[
e^{-r|x|^2} \lesssim \omega(x) \lesssim e^{r|x|^2}, \quad \text{for every } r > 0,
\]
which is one of the basic conditions in the definitions of the classes \(\mathcal{P}_r^q(\mathbb{R}^d)\) and \(\mathcal{P}_r^q(\mathbb{R}^d)\).

By replacing the condition (2.7) by the relaxed condition
\[
e^{-r|x|^2} \lesssim \omega(x) \lesssim e^{r_0|x|^2}, \quad \text{for every } r > 0 \text{ and some } r_0 > 0,
\]
in the definitions of \(\mathcal{P}_r^q\) and its subclasses, it follows that the results in [14], except Theorem 4.7 and Lemma 4.11, still hold in these more general situations.

The next result extends Theorem 3.9 in [14], and follows from Theorems 3.2 and 3.4 in [14], and Theorem 2.4. Here we refer to [14] for the definition of the general type of modulation spaces \(M(\omega, \mathcal{B})\).

Proposition 2.7. Let \(\mathcal{B}\) be a mixed quasi-norm space on \(\mathbb{R}^{2d}\), and set
\[
\omega_r(x, \xi) \equiv e^{r(|x|^{1/h} + |\xi|^{1/h})}, \quad h > 0.
\]
Then the following is true:

1. If \(s, t \geq 1/2\), then
\[
\bigcup_{r>0} M(\omega_r, \mathcal{B}) = \mathcal{S}_r^s(\mathbb{R}^d) \quad \text{and} \quad \bigcap_{r>0} M(1/\omega_r, \mathcal{B}) = (\mathcal{S}_r^s)^*(\mathbb{R}^d);
\]
(2) if \(s, t > 1/2 \), then
\[
\bigcap_{r>0} M(\omega_r, \mathcal{B}) = \Sigma^*_s(\mathbb{R}^d) \quad \text{and} \quad \bigcup_{r>0} M(1/\omega_r, \mathcal{B}) = (\Sigma^*_s)'(\mathbb{R}^d).
\]

REFERENCES

[1] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math., 14 (1961), 187–214.
[2] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform. Part II. A family of related function spaces. Application to distribution theory., Comm. Pure Appl. Math., 20 (1967), 1–101.
[3] (with M. Cappiello, L. Rodino) Radial symmetric elements and the Bargmann transform, Integral Transform. Spec. Funct. 25 (2014), 756–764.
[4] J. Chung, S.-Y. Chung, D. Kim, Characterizations of the Gelfand-Shilov spaces via Fourier transforms, Proc. Amer. Math. Soc. 124 (1996), 2101–2108.
[5] K. H. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
[6] K. Gröchenig, G. Zimmermann, Spaces of test functions via the STFT J. Funct. Spaces Appl. 2 (2004), 25–53.
[7] I. M. Gelfand, G. E. Shilov, Generalized functions, II-III, Academic Press, New York London, 1968.
[8] L. Hörmander, The Analysis of Linear Partial Differential Operators, vol I–III, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1983, 1985.
[9] F. Nicola, L. Rodino, Global pseudo-differential calculus on Euclidean spaces, Pseudo-Differential Operators. Theory and Applications 4 Birkhäuser Verlag, Basel, 2010.
[10] S. Pilipović, Generalization of Zemanian spaces of generalized functions which have orthonormal series expansions, SIAM J. Math. Anal. 17 (1986), 477–484.
[11] M. Signahl, J. Toft, Mapping properties for the Bargmann transform on modulation spaces, J. Pseudo-Differ. Oper. Appl. 3 (2012), 1–30.
[12] N. Teofanov, Ultradistributions and time-frequency analysis. In “Pseudo-differential operators and related topics”, 173–192, Oper. Theory Adv. Appl., 164, Birkhäuser, Basel, 2006.
[13] J. Toft Continuity properties for modulation spaces with applications to pseudo-differential calculus, II, Ann. Global Anal. Geom., 26 (2004), 73–106.
[14] J. Toft, The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl. 3 (2012), 145–227.

DEPARTMENT OF MATHEMATICS, LINNÉUS UNIVERSITY, VÄXJÖ, SWEDEN
E-mail address: joachim.toft@lnu.se