1 μm EXCESS SOURCES IN THE UKIDSS. I. THREE T DWARFS IN THE SLOAN DIGITAL SKY SURVEY SOUTHERN EQUATORIAL STRIPE∗

Y. Matsuoka1, B. A. Peterson2, K. L. Murata3, M. Fujiwara4, T. Nagayama1, T. Suenaga3, K. Furusawa4, N. Miyake4, K. Omori4, D. Suzuki5, and K. Wada5

1 Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan; matsuoka@a.phys.nagoya-u.ac.jp
2 Mount Stromlo Observatory, Research School of Astronomy and Astrophysics, Australian National University, Weston Creek P.O., ACT 2611, Australia
3 Department of Astronomical Sciences, Graduate University for Advanced Studies (Sokendai), 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
4 Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan
5 Department of Earth and Space Science, Osaka University, Osaka 560-0043, Japan

Received 2011 May 20; accepted 2011 June 20; published 2011 July 19

ABSTRACT

We report the discovery of two field brown dwarfs, ULAS J0128−0041 and ULAS J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the course of our follow-up observation program of 1 μm excess sources in the United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini Multi-Object Spectrographs spectra at red optical wavelengths (6500–10500 Å) are presented, which reveal that they are early-T dwarfs. The classification is also supported by their optical to near-infrared colors. It is noted that ULAS J0321+0051 is one of the faintest currently known T dwarfs. The estimated distances to the three objects are 50–110 pc, thus they are among the most distant field T dwarfs known. The dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey allows us to perform a simple time-series analysis of the dwarfs. We create stacked images of each year from 2002–2007 and find significant proper motions of 150–290 mas yr−1 or transverse velocities of 40–100 km s−1 for ULAS J0128−0041 and ULAS J0226+0051. We also find that there are no detectable, long-term (a-few-year) brightness variations above a few times 0.1 mag for the two brown dwarfs.

Key words: brown dwarfs – stars: individual (ULAS J0128−0041, ULAS J0226+0051, ULAS J0321+0051) – stars: low-mass – surveys

Online-only material: color figure

1. INTRODUCTION

Brown dwarfs are low-mass substellar objects that do not ignite hydrogen fusion in their collapsing phases. They occupy the transition zone between stars and planets in physical parameters such as mass and temperature, and hence their studies provide vital information on the formation of both populations. However, their dim nature has prevented the discovery of brown dwarfs despite the great efforts made by early observers (see Kirkpatrick 2005, for a review). The presence of the population was first confirmed observationally by the discovery of GD 165B (Becklin & Zuckerman 1988) and Gl 229B (Nakajima et al. 1995), which are now classified as spectral types L and T, respectively.

Thanks to the advent of wide-field surveys such as the Sloan Digital Sky Survey (SDSS; York et al. 2000), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), the Deep Near Infrared Survey of the Southern Sky (DENIS; Epchtein et al. 1999), the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007), and the Canada–France Brown Dwarf Survey (Delorme et al. 2008), brown dwarfs are now continuously being found. About 600 L dwarfs and 200 T dwarfs are known today (compiled in DwarfArchive.org6), and the focus of the latest surveys tends to be on the discovery of the latest T and even cooler Y dwarfs. On the other hand, the number of known early-T dwarfs is still small, only 10–20 objects in a spectral subclass.

Nonetheless, early-T dwarfs represent some key phenomena necessary for understanding the whole brown dwarf population. One such phenomenon is the so-called J-band brightening (Dahn et al. 2002; Knapp et al. 2004; Vrba et al. 2004), wherein early-T dwarfs have higher J-band luminosity than earlier type objects which should have hotter temperatures. It is interesting to note that a higher binary frequency of the L/T transition objects relative to early/mid-L and mid/late-T subclasses are suggested (Burgasser et al. 2005), which may be related to the cause of J-band brightening (Liu et al. 2006). While the construction of models of their atmospheres is actively attempted in order to parameterize their observational behaviors, the small number of known objects has hampered conclusive arguments about the statistical properties of the population.

In this paper, we report the discovery of two field early-T dwarfs, as well as the rediscovery of one, in the SDSS southern equatorial stripe. The dense temporal coverage achieved by the SDSS-II Supernova Survey allows us to constrain their transverse velocities and variability. This is the first paper from our follow-up observation program of 1 μm excess sources in the UKIDSS. We give a minimum description of the observation strategy in the following section, while the full description is given in a companion paper (Y. Matsuoka et al. 2011, in preparation). Throughout this paper, magnitudes are given in

http://DwarfArchive.org6)

Received 2011 May 20; accepted 2011 June 20; published 2011 July 19

Abstract

We report the discovery of two field brown dwarfs, ULAS J0128−0041 and ULAS J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the course of our follow-up observation program of 1 μm excess sources in the United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini Multi-Object Spectrographs spectra at red optical wavelengths (6500–10500 Å) are presented, which reveal that they are early-T dwarfs. The classification is also supported by their optical to near-infrared colors. It is noted that ULAS J0321+0051 is one of the faintest currently known T dwarfs. The estimated distances to the three objects are 50–110 pc, thus they are among the most distant field T dwarfs known. The dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey allows us to perform a simple time-series analysis of the dwarfs. We create stacked images of each year from 2002–2007 and find significant proper motions of 150–290 mas yr−1 or transverse velocities of 40–100 km s−1 for ULAS J0128−0041 and ULAS J0226+0051. We also find that there are no detectable, long-term (a-few-year) brightness variations above a few times 0.1 mag for the two brown dwarfs.

Key words: brown dwarfs – stars: individual (ULAS J0128−0041, ULAS J0226+0051, ULAS J0321+0051) – stars: low-mass – surveys

Online-only material: color figure

1. INTRODUCTION

Brown dwarfs are low-mass substellar objects that do not ignite hydrogen fusion in their collapsing phases. They occupy the transition zone between stars and planets in physical parameters such as mass and temperature, and hence their studies provide vital information on the formation of both populations. However, their dim nature has prevented the discovery of brown dwarfs despite the great efforts made by early observers (see Kirkpatrick 2005, for a review). The presence of the population was first confirmed observationally by the discovery of GD 165B (Becklin & Zuckerman 1988) and Gl 229B (Nakajima et al. 1995), which are now classified as spectral types L and T, respectively.

Thanks to the advent of wide-field surveys such as the Sloan Digital Sky Survey (SDSS; York et al. 2000), the Two Micron All Sky Survey (2MASS; Skrutskie et al. 2006), the Deep Near Infrared Survey of the Southern Sky (DENIS; Epchtein et al. 1999), the United Kingdom Infrared Telescope (UKIRT) Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007), and the Canada–France Brown Dwarf Survey (Delorme et al. 2008), brown dwarfs are now continuously being found. About 600 L dwarfs and 200 T dwarfs are known today (compiled in DwarfArchive.org6), and the focus of the latest surveys tends to be on the discovery of the latest T and even cooler Y dwarfs. On the other hand, the number of known early-T dwarfs is still small, only 10–20 objects in a spectral subclass.

Nonetheless, early-T dwarfs represent some key phenomena necessary for understanding the whole brown dwarf population. One such phenomenon is the so-called J-band brightening (Dahn et al. 2002; Knapp et al. 2004; Vrba et al. 2004), wherein early-T dwarfs have higher J-band luminosity than earlier type objects which should have hotter temperatures. It is interesting to note that a higher binary frequency of the L/T transition objects relative to early/mid-L and mid/late-T subclasses are suggested (Burgasser et al. 2005), which may be related to the cause of J-band brightening (Liu et al. 2006). While the construction of models of their atmospheres is actively attempted in order to parameterize their observational behaviors, the small number of known objects has hampered conclusive arguments about the statistical properties of the population.

In this paper, we report the discovery of two field early-T dwarfs, as well as the rediscovery of one, in the SDSS southern equatorial stripe. The dense temporal coverage achieved by the SDSS-II Supernova Survey allows us to constrain their transverse velocities and variability. This is the first paper from our follow-up observation program of 1 μm excess sources in the UKIDSS. We give a minimum description of the observation strategy in the following section, while the full description is given in a companion paper (Y. Matsuoka et al. 2011, in preparation). Throughout this paper, magnitudes are given in

http://DwarfArchive.org6)
2. OBSERVATIONS

2.1. Target Selection

The three T dwarfs, ULAS J0128−0041 (R.A. 01h28m14s41, decl. −00°41′53.5′′), ULAS J0226+0051 (R.A. 02h26m37s55, decl. +00°51′54.4′′), and ULAS J0321+0051 (R.A. 03h21m05s5, decl. +00°51′05′′2), are found on the UKIDSS Large Area Survey (LAS) images of the SDSS7 southern equatorial stripe, also known as stripe 82, where the SDSS-II Supernova Survey has been carried out (Frieman et al. 2008). The SDSS i, z and the UKIDSS Y, J, H, and K-band magnitudes of the targets are summarized in Table 1.5 Note that the UKIDSS 2′8 aperture is larger enough than the typical seeing of 0′′8 (Warren et al. 2007), so that the aperture losses have little influence on this work. The targets have been selected in the course of our follow-up observation program of 1 μm excess sources in the UKIDSS (Y. Matsuoka et al. 2011, in preparation). Their extremely red Y−Vega, J−Vega, and H−Vega colors, along with their stellar appearances, suggested that they can be either of the two rare populations, i.e., either highest-redshift (z > 6.5) quasars or brown dwarfs (e.g., Venemans et al. 2007). The discovery of the former objects is our ultimate goal, which has not been achieved in previous projects such as the SDSS quasar survey (Fan et al. 2006 and references therein), the Canada–France High−z Quasar Survey (Willott et al. 2010 and references therein), and the Tokyo-Stromlo Photometry Survey (Matsuoka et al. 2008).

2.2. Spectroscopy

Based on the revised photometry, we selected 15 objects with the strongest 1 μm excesses and obtained their spectra. The three T dwarfs found in the above targets are the subject of this paper, while the rest of them appear to be other classes of objects. The results of the entire observations will be presented in a subsequent paper. The spectroscopy was carried out using the Gemini Multi-Object Spectrographs (GMOS; Hook et al. 2004) mounted on the Gemini North telescope (Program ID: GN-2010B-Q-102). The observation journal is given in Table 2. The R400-G5305 grating with the central wavelength set to 8500 Å was used with the blocking filter RG610-G0307, so that the wavelength range from 6500 Å to 10500 Å was covered. Since the targets are too faint to view on the acquisition images, we adopt either of the following acquisition techniques. For ULAS J0226+0051, the “blind offset” acquisition was performed using a nearby bright star as a reference source. For the other two targets without suitable nearby stars, we acquired

Table 1

Object	iAB (mag)	zAB (mag)	YVega (mag)	JVega (mag)	HVega (mag)	KVega (mag)
ULAS J0128−0041	>25.64	20.57 (0.04)	18.48 (0.07)	17.62 (0.05)	16.91 (0.04)	16.52 (0.06)
ULAS J0226+0051	>25.88	21.32 (0.08)	19.16 (0.11)	18.33 (0.08)	17.83 (0.12)	17.69 (0.16)
ULAS J0321+0051	>25.84	22.23 (0.17)	20.06 (0.18)	19.19 (0.10)	18.76 (0.20)	18.74 (0.26)

Notes. Given above are the PSF magnitudes for the SDSS i and z bands and the 2′8 aperture magnitudes for the UKIDSS Y, J, H, and K bands. Values in the parentheses represent 1σ errors, while 2σ upper limits are given for the non-detected sources. The magnitudes are extracted from the SDSS DR 7 and the UKIDSS DR 3.

Table 2

Object	Date	Exp. Time (s)	Type
ULAS J0128−0041	2010 Aug 30	1800	Science target
ULAS J0226+0051	2010 Sep 19	3600	Science target
EG 131	2010 Sep 20	120	Standard star
ULAS J0321+0051	2010 Sep 22	10800	Science target

We carried out the follow-up photometry of a few dozen 1 μm excess sources, including the present three objects, before the final spectroscopy. The optical imaging observations were carried out during 2009 August–September, with a special i-band filter with the blueward transmission extending to 6300 Å (at half of the maximum transmission) installed to the Imager mounted on the Australian National University (ANU) 2.3 m Advanced Technology Telescope at the Siding Spring Observatory. At near-IR wavelengths, the SIRIUS camera (Nagashima et al. 1999; Nagayama et al. 2003) of the Infrared Survey Facility (IRSF) 1.4 m telescope at Sutherland, South African Astronomical Observatory was used for the follow-up observations. They were conducted in two periods, 2009 June–July and September–October. The magnitudes listed in Table 1 are found to be robust in these follow-up photometry. The 1.8 m Microlensing Observations in Astrophysics (MOA; Bond et al. 2001; Sumi et al. 2003) II telescope is also used for our project, although the present three targets are not covered by the MOA observations.
the bright stars within a few arcminutes at the slit center and configured the instrument position angles so that the targets fall off-center from the slit. In order to avoid a large flux loss due to misalignment of the slit, which may be caused by the blind acquisitions, we adopted the relatively wide slit of 1.5′ in width. It resulted in the moderate wavelength resolution of $R \sim 600$, which is still enough for identifying the objects. The single exposure time was 900 s for all the science targets. The targets were offset by 10″ along the spatial axis of the slit between the exposures, which enables good subtraction of the sky background from the prominent fringe patterns at the red part of the spectra.

The data were reduced in a standard manner using the Gemini IRAF9 package, version 1.10. First, the bias subtraction and flat fielding were performed, then the CuAr spectra were used to rectify and give the wavelength solutions to the images. The fringe patterns were successfully eliminated by subtracting the adjacent exposures. Then, the residual sky background was estimated from the fluxes of the nearby pixels in the spatial direction and removed. The instrument sensitivity was calibrated with the observed spectrum of the spectroscopic standard star EG 131. We did not observe a telluric standard star on each night, hence an accurate correction for the atmospheric absorption is not possible.

We show the reduced spectra in Figure 1. They are not detected above 3σ significance at the wavelengths $\lambda < 8000$ Å, where we give the broadband 2σ upper limits calculated in the wavelength intervals $\lambda = 6500–6800$, 6800–7100, 7100–7400, 7400–7700, and 7700–8000 Å. Note that the H$_2$O absorption bands at $\lambda \sim 9300$ Å are contaminated with the telluric absorptions.

3. ANALYSIS

3.1. Spectral Type

Since the signal-to-noise ratios of our spectra are not very high, we determine the spectral types of the targets with their broadband spectral energy distributions (SEDs) rather than with the individual absorption features. The extremely red SEDs suggest that they are brown dwarf members with spectral types later than L. In Figure 1 we compare the observed spectra with those of the L8, T2, T5, and T8 dwarfs which are commonly used as reference objects (anchor points) for classification at the red optical wavelengths (Kirkpatrick et al. 1999; Burgasser et al. 2003), namely, 2MASSW J1632291+190441 (L8), SDSSp J125453.90−012247.4 (T2), 2MASSI J0559191−140448 (T5), and 2MASSI J0415195−093506 (T8). The three targets are clearly redder than the L8 dwarf and show overall agreements.

9 IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.
with the T-dwarf spectra, while the spectral slopes at the longest wavelengths (>9800 Å) indicate that they are not in late-T subclasses.

Their classification as early-T type is also supported by their optical to near-IR colors. We show the \(z - J \) versus \(J - K \) two-color diagram of stars and brown dwarfs in Figure 2. The colors of O–M stars and L, T dwarfs are obtained from the compilation by Hewett et al. (2006), while the empirical mean relation between the colors of M–T dwarfs is taken from Kakazu et al. (2010). Note that all the near-IR magnitudes are consistently based on the Mauna Kea Observatories (MKO) system (Tokunaga et al. 2002), which is important because different photometric systems can lead to different near-IR magnitudes, up to 0.4 mag for T dwarfs (Stephens & Leggett 2004). The three targets are located in the region occupied by the early-T dwarfs, and the most plausible classification would be T1 for ULAS J0128−0041, T2 for ULAS J0226+0051, and T3 for ULAS J0321+0051 (summarized in Table 3). However, we emphasize that the above typing is not meant to be conclusive: the uncertainty of ±1 subclass seems plausible. We note that ULAS J0321+0051 is one of the faintest T dwarfs known.

While ULAS J0128−0041 and ULAS J0321+0051 are newly discovered T dwarfs, ULAS J0226+0051 has previously been reported by Liu et al. (2002). The object, named IFA 0230−Z1 in the discovery paper, was identified in the Institute for Astronomy (IFA) Deep Survey conducted at the University of Hawai‘i. Liu et al. (2002) present an \(H \)-band spectrum as well as \(I, z, J, \) and \(H \)-band magnitudes of the object, from which they estimate a spectral type of T3−T4. Later, the updated near-IR classification of T3 is given by Burgasser et al. (2006). Our spectral typing is consistent with these near-IR classifications considering the typical uncertainty of one spectral subclass.

3.2. Distance, Proper Motion, and Variability

We estimate the distances to the three T dwarfs by using the luminosity–spectral type relation provided by Liu et al. (2006). The \(H \)-band magnitudes are used for this purpose, since the \(H \)-band luminosity of early-T dwarfs is relatively independent of the spectral subclasses, which are not precisely known in the present case. Assuming the \(H \)-band absolute magnitude of 13.5 ± 0.5 mag (Liu et al. 2006) for T1–3 spectral types, the distance estimates to ULAS J0128−0041, ULAS J0226+0051, and ULAS J0321+0051 are 50 ± 10 pc, 70 ± 20 pc, and 110 ± 30 pc, respectively. The lower limit of the estimate for ULAS J0226+0051 is consistent with 49 ± 9 pc presented by Liu et al. (2002). As compiled by Kakazu et al. (2010), there are only a handful of spectroscopically confirmed T dwarfs known today at distances beyond 60 pc and only a few beyond 100 pc. Therefore, the objects presented here are among the most distant T dwarfs.

The three dwarfs are found in the SDSS southern equatorial stripe, where the intensive repeat scans were carried out in the SDSS-II Supernova Survey. The dense temporal coverage over several years allows us a simple time-series analysis of the objects. We retrieve all the \(z \)-band images of the target fields from the SDSS DR 7 archive (Abazajian et al. 2009) and create stacked images of each year. Stacking is not performed when less than five images are available in a year. It resulted in deep images of the years 2002, 2005, 2006, 2007 for ULAS J0128−0041, years 2002, 2003, 2005, 2006, 2007 for ULAS J0226+0051, and years 2002, 2005, 2006, 2007 for ULAS J0321+0051. We measure the coordinates and magnitudes of the objects with the Source Extractor, version 2.5 (Bertin & Arnouts 1996), if the targets are detected on the stacked images (more than four adjacent pixels above 1.5σ of the local background are defined as detections). The results for the detected sources are summarized in Table 4. Unfortunately, ULAS J0321+0051 is too faint to be detected on any of the year-based stacked images. The coordinates are shown as the relative offsets (milliarcsecond; mas) from the UKIDSS positions. The magnitudes are measured in 3′0 apertures and are corrected so that the mean measured magnitudes match the point-spread function (PSF) magnitudes listed in Table 1, whose differences represent the mean aperture losses (−0.25 and −0.20 mag are added to the measured magnitudes).
magnitudes of ULAS J0128–0041 and ULAS J0226+0051, respectively).

The positional information of ULAS J0226+0051 is also available from Liu et al. (2002), who report the coordinate obtained on the epoch of 2001 October with the Suprime-Cam mounted on the Subaru telescope. Its relative offset from the UKIDSS position is ΔR.A. = +0h4 +1300 mas and Δdecl. = +300 mas (since Liu et al. 2002 round the R.A. to first decimal place in the paper, we assume it to be 02h26m37z = 20.547 \pm 0.007 (mag).

Year	ΔR.A. (mas)	Δdecl. (mas)	z_{AB} (mag)
2002	+320	+170	20.57 (0.15)
2005	+20	-40	20.55 (0.09)
2006	-60	-30	20.59 (0.09)
2007	-350	-210	20.55 (0.08)

ULAS J0226+0051

Year	ΔR.A. (mas)	Δdecl. (mas)	z_{AB} (mag)
2006	+190	-200	21.32 (0.14)
2007	+350	+40	21.32 (0.15)

Notes. Coordinates are given as the relative offsets from the UKIDSS positions. Values in the parentheses represent 1σ photometry errors.

4. SUMMARY

This is the first paper from our follow-up observation program of 1 μm excess sources in the UKIDSS. In this paper, we present the two newly discovered brown dwarfs, ULAS J0128–0041 and ULAS J0321+0051, as well as the re-discovered ULAS J0226+0051 (IfA 0230-Z1), in the SDSS southern equatorial stripe. The follow-up imaging observations were carried out with the optical Imager on the ANU 2.3 m telescope and the near-IR SIRIUS camera on the IRSF telescope. Then we obtained their red optical (6500–10500 Å) spectra with the GMOS on the Gemini North telescope in order to identify the targets. The spectra reveal that the objects belong to early-T dwarf subclasses, which is also supported by their optical to near-IR colors. ULAS J0321+0051 turns out to be one of the faintest currently known T dwarfs.

We estimate the distances to the dwarfs to be 50–110 pc from the empirical luminosity–spectral type relation of brown dwarfs. By taking advantage of the dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey, we create stacked images of each year from 2002–2007 and conduct a simple time-series analysis. As a result, we find the significant proper motions of 150 and 290 mas yr$^{-1}$, which are converted to the transverse velocities of 40 and 100 km s$^{-1}$, for ULAS J0128–0041 and ULAS J0226+0051, respectively. It suggests that ULAS J0128–0041 is a member of typical field T dwarfs, while ULAS J0226+0051 may have a higher velocity than average and be an older member of the Galactic thick disk or halo population. We also look into the possible long-term (a few-year) brightness variations of the two objects, and find no detectable variations above a few times 0.1 mag. This suggests that the variability of early-T dwarfs does not cause significant uncertainty in the selection strategies of high-redshift quasars or brown dwarfs from photometry data taken on different dates, although more observations are needed to reach a firm conclusion.

We are grateful to the referee, Sandy Leggett, for giving very useful comments and suggestions. We thank the staff of the Siding Spring Observatory, the South African Astronomical Observatory, and the Gemini Observatory (including Alexander Fritz) for the support during the observations. The IRSF team at Nagoya University, Kyoto University, and the National Astronomical Observatory of Japan has provided a great help for the IRSF observations. This work was supported by Grants-in-Aid for Scientific Research (21840027, 22684005) and the Global COE Program of Nagoya University “Quest for Fundamental Principles in the Universe” from JSPS and MEXT of Japan.

REFERENCES

Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, ApJS, 182, 543

Artigau, E., Bouchard, S., Doyon, R., & Lafrenière, D. 2009, ApJ, 701, 1534

Becklin, E. E., & Zuckerman, B. 1988, Nature, 336, 656

Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bond, I. A., Abe, F., Dodd, R. J., et al. 2001, MNRAS, 327, 868
Burgasser, A. J., Geballe, T. R., Leggett, S. K., Kirkpatrick, J. D., & Golimowski, D. A. 2006, ApJ, 637, 1067
Burgasser, A. J., Kirkpatrick, J. D., Liebert, J., & Burrows, A. 2003, ApJ, 594, 510
Burgasser, A. J., Reid, I. N., Leggett, S. K., et al. 2005, ApJ, 634, L177
Clarke, F. J., Hodgkin, S. T., Oppenheimer, B. R., Robertson, J., & Haubois, X. 2008, MNRAS, 386, 2009
Dahn, C. C., Harris, H. C., Vrba, F. J., et al. 2002, AJ, 124, 1170
Delorme, P., Willott, C. J., Forveille, T., et al. 2008, A&A, 484, 469
Enoch, M. L., Brown, M. E., & Burgasser, A. J. 2003, AJ, 126, 1006
Epchtein, N., Deul, E., Derriere, S., et al. 1999, A&A, 349, 236
Faherty, J. K., Burgasser, A. J., Cruz, K. L., et al. 2009, AJ, 137, 1
Fan, X., Strauss, M. A., Richards, G. T., et al. 2006, AJ, 131, 1203
Friedman, J. A., Bassett, B., Becker, A., et al. 2008, AJ, 135, 338
Hewett, P. C., Warren, S. J., Leggett, S. K., & Hodgkin, S. T. 2006, MNRAS, 367, 454
Hook, I. M., Jørgensen, I., Allington-Smith, J. R., et al. 2004, PASP, 116, 425
Kakazu, Y., Hu, E. M., Liu, M. C., et al. 2010, ApJ, 723, 184
Kirkpatrick, J. D. 2005, ARA&A, 43, 195
Kirkpatrick, J. D., Reid, I. N., Liebert, J., et al. 1999, ApJ, 519, 802
Knapp, G. R., Leggett, S. K., Fan, X., et al. 2004, AJ, 127, 2553
Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MNRAS, 379, 1599
Liu, M. C., Leggett, S. K., Golimowski, D. A., et al. 2006, ApJ, 647, 1393
Liu, M. C., Wainscoat, R., Martín, E. L., Barriš, B., & Torry, J. 2002, ApJ, 568, L107
Matsuoka, Y., Peterson, B. A., Oyabu, S., et al. 2008, ApJ, 685, 767
Nagashima, C., Nagayama, T., Nakajima, Y., et al. 1999, in Star Formation, ed. T. Nakamoto (Nagoya: Nobeyama Radio Observatory), 397
Nagayama, T., Nagashima, C., Nakajima, Y., et al. 2003, Proc. SPIE, 4841, 459
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., et al. 1995, Nature, 378, 463
Nordström, B., Mayor, M., Andersen, J., et al. 2004, A&A, 418, 989
Pier, J. R., Munn, J. A., Hindsley, R. B., et al. 2003, AJ, 125, 1559
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Stephens, D. C., & Leggett, S. K. 2004, PASP, 116, 9
Sumi, T., Abe, F., Bond, I. A., et al. 2003, ApJ, 591, 204
Tokunaga, A. T., Simons, D. A., & Vacca, W. D. 2002, PASP, 114, 180
Venemans, B. P., McMahon, R. G., Warren, S. J., et al. 2007, MNRAS, 376, L76
Vrba, F. J., Henden, A. A., Lugtenburg, C. B., et al. 2004, AJ, 127, 2948
Warren, S. J., Hambly, N. C., Dye, S., et al. 2007, MNRAS, 375, 213
Willott, C. J., Delorme, P., Reylé, Céline, et al. 2010, AJ, 139, 906
York, D. G., Adelman, J., Anderson, J. E., Jr., et al. 2000, AJ, 120, 1579