BCOV INVARIANT FOR CALABI-YAU PAIRS

YEPING ZHANG

ABSTRACT. We construct BCOV invariant for Calabi-Yau pairs. The construction covers the classical BCOV invariant and certain equivariant BCOV invariant. The BCOV invariant obtained is expected to be well-behaved under birational equivalence.

CONTENTS

0. Introduction 1
1. Preliminary 4
1.1. Chern form and Bott-Chern form 4
1.2. Hodge form 5
1.3. BCOV torsion 7
2. BCOV invariant for Calabi-Yau pairs 8
2.1. Construction of $\tau(X, Y)$ 8
2.2. Curvature of $\tau(X, Y)$ 9
3. Example 10
3.1. Boundary behavior 10
3.2. Relation with Yoshikawa’s equivariant BCOV invariant 14
4. Behavior of $\tau(X, Y)$ under blowing up 15
4.1. Vanishing of curvature 15
4.2. Case $\dim X = 2$ 16
5. Appendix 19
References 21

0. INTRODUCTION

The BCOV torsion is an invariant for Calabi-Yau manifolds. Bershadsky, Cecotti, Ooguri and Vafa initiated the study of BCOV torsion for Calabi-Yau threefold in the outstanding papers [1, 2]. Their work extended the mirror symmetry conjecture of Candelas, de la Ossa, Green and Parkes [11]. Fang and Lu [15] studied the BCOV torsion for Calabi-Yau manifolds of arbitrary dimension.

The BCOV invariant is another invariant for Calabi-Yau manifolds, which could be viewed as a normalization of the BCOV torsion. Fang, Lu and Yoshikawa [16] constructed and studied the BCOV invariant for Calabi-Yau threefolds. Their work confirmed a conjecture of Bershadsky, Cecotti, Ooguri and Vafa [1, 2] concerning the BCOV torsion of quintic mirror threefolds. Eriksson, Freixas and Mourougane [14] extended these constructions to Calabi-Yau manifolds of arbitrary dimension.

Date: February 22, 2019.
Since the BCOV torsion is defined as a product of certain Quillen metrics, the works of Bismut, Gillet and Soulé [5, 6, 7] on the Quillen metric is of fundamental importance in the study of BCOV invariant. The formula of Bismut and Lebeau [8] is another powerful tool in the study of BCOV invariant.

In this paper, we extend the BCOV invariant to Calabi-Yau pairs. Let X be a Kähler manifold. Let K_X be its canonical bundle. Let $m \in \mathbb{Z} \setminus \{0, -1\}$. Let K_X^m be the m-th tensor power of K_X. We assume that $H^0(X, K_X^m) \neq 0$. Let $\gamma \in H^0(X, K_X^m) \setminus \{0\}$. Let Y be the zero locus of γ, which we call a m-canonical divisor. We assume that Y is a smooth reduced divisor. We call (X, Y) a Calabi-Yau pair. We will construct a real number $\tau(X, Y)$ depending only on the complex structure of (X, Y). In particular, if X is Calabi-Yau, the real number $\tau(X, \emptyset)$ is exactly the BCOV invariant of X.

Curvature of $\tau(X, Y)$. Let $\pi_X : \mathcal{D} \to S$ be a holomorphic fibration. We denote $X_s = \pi_X^{-1}(s)$ for $s \in S$. Let $\mathcal{Y} \subseteq \mathcal{D}$ be a complex hypersurface such that the restricted map $\pi_{\mathcal{Y}} := \pi_{\mathcal{D}} |_{\mathcal{Y}}$ is also a fibration. For $s \in S$, we denote $Y_s = \pi_{\mathcal{Y}}^{-1}(s)$. We assume that (X_s, Y_s) is a Calabi-Yau pair for each $s \in S$. Let $\tau(X, Y)$ be the function $s \mapsto \tau(X_s, Y_s)$.

Our central result is a formula relating the BCOV torsion $\tau(X, Y)$ to the Hodge form and the Weil-Petersson form.

First we introduce the Hodge form. Let $g^{H^{p,q}(X)}$ be Hermitian metrics on the holomorphic vector bundles $H^{p,q}(X)$ over S such that $g^{H^{p,q}(X)}(u, u) = g^{H^{p,q}(X)}(\pi, \pi)$ for $u \in H^{p,q}(X)$. The Hodge form associated with $H^\bullet(X)$ can be defined by

$$
\omega_{H^\bullet(X)} = \frac{1}{2} \sum_{0 \leq p, q \leq \dim X} (-1)^{p+q}(p-q)c_1(H^{p,q}(X), g^{H^{p,q}(X)}) \in \Omega^{1,1}(S),
$$

which is independent of the Hermitian metrics $g^{H^{p,q}(X)}$. In [1.2] we will give an intrinsic definition of the Hodge form, which does not involve any metric. We remark that (0.1) is exactly the Hermitian form of the Hodge metric considered in [15]. The Hodge form $\omega_{H^\bullet(Y)} \in \Omega^{1,1}(S)$ associated with $H^\bullet(Y)$ can be defined the same way.

Now we introduce the Weil-Petersson form. Locally we have a holomorphic map $s \mapsto \gamma_s \in H^0(X_s, K_{X_s}^m)$ such that Y_s is the zero locus of γ_s. The function

$$
P : s \mapsto \log \int_{X_s \setminus Y_s} |\gamma_s \bar{\gamma_s}|^{1/m}
$$

is well-defined up to harmonic functions, where $|\gamma_s \bar{\gamma_s}|^{1/m}$ is the unique real positive volume form on $X_s \setminus Y_s$ such that m-th power equals $i^{n^2} \gamma_s \wedge \bar{\gamma_s}$. The Weil-Petersson form is defined by

$$
\omega_{\pi_{\mathcal{D}}, \pi_{\mathcal{Y}}} = -\frac{\partial \bar{\partial} P}{2\pi i} \in \Omega^{1,1}(S).
$$

In fact, the Weil-Petersson form $\omega_{\pi_{\mathcal{D}}, \pi_{\mathcal{Y}}}$ is the Kähler form of the Weil-Petersson metric ([12, 22], cf. [17]).

We denote

$$
w(X, m) = \frac{\chi(X)}{12} - \frac{\chi(Y)}{12(m+1)} = \frac{1}{12} \int_X c_n(TX) - \frac{1}{12(m+1)} \int_Y c_{n-1}(TY).$$
Theorem 0.1. The function $\tau(X, Y)$ satisfies the following equation,

\begin{equation}
\frac{\partial^2}{\partial \tau} \tau(X, Y) = \omega_{H^*} - \frac{1}{m+1} \omega_{H^*} - w(X, m) \omega_{\pi_X, \pi_Y}.
\end{equation}

Relation with Yoshikawa’s equivariant BCOV invariant and Borcherds product.
We consider the case $m = -2$, $\dim X = 2$. Then X admits a ramified 2-cover $X' \to X$ whose branch locus is Y. Moreover, X' is a 2-elementary K3 surface, i.e., X' is a K3 surface equipped with an involution ι commuting with $X' \to X$. Yoshikawa [25] constructed an equivariant BCOV invariant for 2-elementary K3 surfaces, which we denote by $\tau(X', \iota)$.

Theorem 0.2. For $m = -2$ and X a del Pezzo surface with K_X^2 very ample, we have

\begin{equation}
\tau(X, Y) = -\tau(X', \iota) + \nu(X),
\end{equation}

where $\nu(X)$ depends only on X.

The proof of Theorem 0.2 is based on Theorem 0.1 and [8, Theorem 0.1]. Let (\cdot, \cdot) be the intersection form on $\text{Pic}(X)$. By [18, Chapter III, 3.4 Proposition], if $\deg X := (K_X, K_X) \geq 2$, then K_X^2 is very ample.

Let g be the genus of the curve Y. By [19, Theorem 0.1], the function

\begin{equation}
(X', \iota) \mapsto \exp \left(-2g(2g+1)\tau(X', \iota) \right)
\end{equation}

on the moduli space of (X', ι) is the product of a Borcherds product [9] and a Siegel modular form. By Theorem 0.2, the same result holds for $\tau(X, Y)$ if X is rigid, i.e., X admits no deformation, which holds for $\deg X \geq 5$.

Behavior of $\tau(X, Y)$ under blowing up. Let (X, Y) be a Calabi-Yau pair with $m = 1$ and $Z \subseteq X$ be a sub manifold of codimension 2 such that $Z \cap Y = \emptyset$. Let X' be the blowing up of X along Z. We denote by $f : X' \to X$ the canonical projection. Set $Y' = f^{-1}(Y \cup Z) \subseteq X'$. Then (X', Y') is also a Calabi-Yau pair with $m = 1$. We are interested in the value of

\begin{equation}
\tau(X', Y') - \tau(X, Y).
\end{equation}

Here the technical conditions $Z \cap Y = \emptyset$ and $\text{codim} Z = 2$ are due to our hypothesis that the canonical divisor Y' is smooth and reduced.

Theorem 0.3. There exists $\nu \in \mathbb{R}$ such that for X, Y, Z, X', Y' as above with $\dim X = 2$ and Z a single point, we have

\begin{equation}
\tau(X', Y') - \tau(X, Y) = \nu.
\end{equation}

In other words, ν is a universal constant.

The proof of Theorem 0.3 is based on [8, Theorem 0.1] and [4, Theorem 8.10].

This paper is organized as follows. In [11] we introduce several fundamental notions and constructions. In [2] we construct the BCOV invariant $\tau(X, Y)$ and establish
Theorem 0.1. In §3, we establish Theorem 0.2. In §4, we establish Theorem 0.3 together with a weak result about (0.8) in arbitrary dimension. In the appendix §5, we explicitly calculate several Bott-Chern forms, which will be used in §3.

Notations. For $p, q \in \mathbb{N}$ and a complex vector bundle F over a complex manifold S, we denote by $\Omega^{p,q}(S, F)$ (resp. $A^{p,q}(S, F)$) the vector space of (p, q)-forms (resp. (p, q)-current) on S with values in F. For ease of notation, we denote $\Omega^{p,q}(S) = \Omega^{p,q}(S, \mathbb{C})$ (resp. $A^{p,q}(S) = A^{p,q}(S, \mathbb{C})$). For a differential form (resp. current) ω on S, its component of degree (p, q) is denoted by $\{\omega\}^{(p,q)}$.

For $k \in \mathbb{N}$ and a complex manifold S, we denote by $H^k(S)$ the k-th de Rham cohomology of S with coefficients in \mathbb{C}. For $p, q \in \mathbb{N}$ and a complex manifold S, we denote $H^{p,q}(S) = H^q(S, \Omega^p_S)$. If S is a compact Kähler manifold, we identify $H^{p,q}(S)$ with a sub vector space of $H^{p+q}(S)$ via the Hodge theory.

Acknowledgments. The author is grateful to Professor Ken-Ichi Yoshikawa who is the author’s postdoctoral advisor and a member of the author’s dissertation committee. Prof. Yoshikawa drew the author’s attention to the BCOV invariant and suggested the author to study the special case $m = -2$.

The author is grateful to Doctor Yang Cao who was the author’s neighbor. Dr. Cao taught the author a lot about algebraic geometry and related topics.

This work was supported by JSPS KAKENHI Grant Number JP17F17804.

1. Preliminary

1.1. Chern form and Bott-Chern form. Let S be a complex manifold. Let E be a holomorphic vector bundle over S. Let g^E be a Hermitian metric on E. Let

$$R^E \in \Omega^{1,1}(S, \text{End}(E))$$

be the Chern curvature of (E, g^E). For $k \in \mathbb{N}$, we denote by c_k the k-th elementary symmetric polynomial. The k-th Chern form of (E, g^E) is defined by

$$c_k(E, g^E) := c_k \left(-\frac{R^E}{2\pi i} \right) \in \Omega^{k,k}(S).$$

The k-th Chern class of E is defined by

$$c_k(E) := [c_k(E, g^E)] \in H^{2k}(S),$$

which is independent of g^E.

We denote

$$c(E, g^E) = 1 + c_1(E, g^E) + c_2(E, g^E) + ... \in \bigoplus_{k \in \mathbb{N}} \Omega^{k,k}(S).$$

The total Chern class is defined by

$$c(E) := [c(E, g^E)] \in H^\bullet(S).$$

For a short exact sequence of holomorphic vector bundles over S,

$$0 \to E' \to E \to E'' \to 0,$$
we have

\(c(E) = c(E')c(E'') \in H^*(S) \).

Let \(g^E \) be a Hermitian metric on \(E \). Let \(g^{E'} \) be the Hermitian metric on \(E' \) induced by \(g^E \) via the embedding \(E' \to E \). Let \(g^{E''} \) be the quotient Hermitian metric on \(E'' \) induced by \(g^E \) via the surjection \(E \to E'' \). The Bott-Chern form \([5, \text{Section 1f}]\)

\[
\tilde{c}(E, E', g^E) \in \bigoplus_{k \in \mathbb{N}} \Omega^{k,k}(S) \\
\partial \Omega^{k-1,k}(S) + \bar{\partial} \Omega^{k,k-1}(S)
\]
is such that

\[
\frac{\partial \bar{\partial}}{2\pi i} \tilde{c}(E, E', g^E) = c(E, g^E) - c(E', g^{E'})c(E'', g^{E''}).
\]

1.2. Hodge form. Let \(S \) be a complex manifold. Let \(H^\bullet_Z \) be a local system of finitely generated graded \(\mathbb{Z} \)-module over \(S \). We assume that \(H^k_Z = 0 \) for \(k < 0 \) and \(k > n \). We denote \(H^\bullet_C = H^\bullet_Z \otimes \mathbb{C} \), which a graded flat complex vector bundle over \(S \).

For \(k = 0, \ldots, n \), let

\[
H^k_C = F^0 H^k_C \supseteq F^1 H^k_C \supseteq \cdots \supseteq F^k H^k_C \supseteq F^{k+1} H^k_C = 0
\]
be a filtration of \(H^k_C \) by holomorphic sub vector bundles. We assume that there exists a decomposition of \(H^k_C \) by smooth complex sub vector bundles

\[
H^k_C = \bigoplus_{0 \leq p+q \leq n} H^{p,q}_C
\]
such that

\[
F^p H^k_C = \bigoplus_{p' = p}^k H^{p',k-p'}_C, \quad H^{p,q}_C = \overline{H^{p',q'}_C}.
\]

We remark that the decomposition (1.11) is uniquely determined by the filtration (1.10) via the following identity,

\[
H^{p,q}_C = F^p H^{p+q}_C \cap F^{q+1} H^{p+q}_C.
\]

Moreover, the identification

\[
H^{p,q}_C = F^p H^{p+q}_C / F^{p+1} H^{p+q}_C
\]
induces a holomorphic structure on \(H^{p,q}_C \). We call \(H^\bullet := (H^\bullet_Z, F^\bullet H^\bullet_C) \) a variation of Hodge structure over \(S \).

Set

\[
\lambda = \bigotimes_{0 \leq p+q \leq n} \left(\det H^{p,q}_C \right)^{(-1)^{p+q}p}, \quad \lambda_{\text{dR}} = \bigotimes_{k=1}^n \left(\det H^k_C \right)^{(-1)^k}.
\]

Then \(\lambda \) (resp. \(\lambda_{\text{dR}} \)) is a holomorphic (resp. flat) line bundle over \(S \). We have

\[
\lambda_{\text{dR}} = \lambda \otimes \lambda.
\]
Let $U \subseteq S$ be a small open subset. Let $\tau \in H^0(U, \lambda)$ be a nowhere vanishing holomorphic section. Let $\sigma \in \mathcal{C}^\infty(U, \lambda_{\operatorname{dR}})$ be a non zero constant section. There exists $f \in \mathcal{C}^\infty(U, \mathbb{C})$ such that

\begin{equation}
\sigma = e^\tau \otimes \tau .
\end{equation}

Then $\overline{\partial \partial} \operatorname{Ref} \in \Omega^{1,1}(U)$ is independent of τ and σ. The Hodge form $\omega_{H^\bullet} \in \Omega^{1,1}(S)$ associated with the variation of Hodge structure H^\bullet is defined by

\begin{equation}
\omega_{H^\bullet}|_U = \overline{\partial \partial} \operatorname{Ref} / 2\pi i .
\end{equation}

Let g^{H^ξ} be a Hermitian metric on H^ξ_C such that

\begin{equation}
g^{H^\xi}(u, v) = 0 , \quad \text{for } u \in H^{p,q}_C, v \in H^{p',q'}_C \text{ with } (p, q) \neq (p', q') ,
\end{equation}

\begin{equation}
g^{H^\bullet}(u, u) = g^{H^\bullet}(\pi, \pi) , \quad \text{for } u \in H^\bullet_C .
\end{equation}

Let $g^{H^{\xi q}}$ be the restriction of g^{H^ξ} to $H^{p,q}_C$. Let $c_1(H^{p,q}_C, g^{H^{p,q}}) \in \Omega^{1,1}(S)$ be the first Chern form of $(H^{p,q}_C, g^{H^{p,q}})$.

Proposition 1.1. The following identity holds,

\begin{equation}
\omega_{H^\bullet} = \frac{1}{2} \sum_{0 \leq p, q \leq n} (-1)^{p+q} (p - q) c_1(H^{p,q}_C, g^{H^{p,q}}) .
\end{equation}

Proof. Let $\| \cdot \|_\lambda$ (resp. $\| \cdot \|_{\lambda_{\operatorname{dR}}}$) be the norm on λ (resp. $\lambda_{\operatorname{dR}}$) induced by g^{H^ξ}.

Let $U \subseteq S$ be a small open subset. Let $\tau \in H^0(U, \lambda)$ be a nowhere vanishing holomorphic section. Let $\sigma \in \mathcal{C}^\infty(U, \lambda_{\operatorname{dR}})$ be a non zero constant section. Let $f \in \mathcal{C}^\infty(U, \mathbb{C})$ be as in (1.17). By (1.17) and (1.19), we have

\begin{equation}
\operatorname{Ref} = - \log \| \tau \|^2_\lambda + \frac{1}{2} \log \| \sigma \|^2_{\lambda_{\operatorname{dR}}} .
\end{equation}

By the Poincaré-Lelong formula, (1.18) and (1.21), we have

\begin{equation}
\omega_{H^\bullet} = c_1(\lambda, \| \cdot \|_\lambda) - \frac{1}{2} c_1(\lambda_{\operatorname{dR}}, \| \cdot \|_{\lambda_{\operatorname{dR}}}) .
\end{equation}

On the other hand, by (1.19), we have

\begin{equation}
c_1(\lambda, \| \cdot \|_\lambda) = \sum_{0 \leq p, q \leq n} (-1)^{p+q} p c_1(H^{p,q}_C, g^{H^{p,q}}) ,
\end{equation}

\begin{equation}
c_1(\lambda_{\operatorname{dR}}, \| \cdot \|_{\lambda_{\operatorname{dR}}}) = \sum_{0 \leq p, q \leq n} (-1)^{p+q} (p + q) c_1(H^{p,q}_C, g^{H^{p,q}}) .
\end{equation}

By (1.22) and (1.23), we obtain (1.20). This completes the proof. \hfill \square

For $r \in \mathbb{N}$, we denote by $H^\bullet[r]$ the r-th right shift of H^\bullet, i.e.,

\begin{equation}
H^k_Z[r] = H^{k-2r}_Z , \quad H^{p,q}_C[r] = H^{p-r,q-r}_C .
\end{equation}

Proposition 1.2. The following identity holds,

\begin{equation}
\omega_{H^\bullet} = \omega_{H^\bullet[r]} .
\end{equation}

Proof. The right hand side of (1.20) is invariant under right shift. \hfill \square
1.3. BCOV torsion. Let \(X \) be a compact Kähler manifold. Let \(n = \dim X \). Let \(\omega \) be a Kähler form on \(X \). For \(p = 1, \cdots, n \), set

\[
\lambda_p(X) = \bigotimes_{q=0}^{n} \left(\det H^{p,q}(X) \right)^{(-1)^q}.
\]

Let \(\| \cdot \|_{\lambda_p(X),\omega} \) be the Quillen metric [21, 5] on \(\lambda_p(X) \) associated with \(\omega \). Set

\[
\lambda(X) = \bigotimes_{p=1}^{n} \left(\lambda_p(X) \right)^{(-1)^p} = \bigotimes_{0 \leq p,q \leq n} \left(\det H^{p,q}(X) \right)^{(-1)^{p+q}}.
\]

Let \(\| \cdot \|_{\lambda(X),\omega} \) be the metric on \(\lambda(X) \) induced by \(\| \cdot \|_{\lambda_p(X),\omega} \). Set

\[
\lambda_{\text{dR}}(X) = \lambda(X) \otimes \bar{\nabla}(X) = \bigotimes_{k=1}^{n} \left(\det H^k(X) \right)^{(-1)^k}.
\]

Let \(\| \cdot \|_{\lambda_{\text{dR}}(X),\omega} \) be the metric on \(\lambda_{\text{dR}}(X) \) induced by \(\| \cdot \|_{\lambda(X),\omega} \).

Let \(\sigma_{k,1}, \cdots, \sigma_{k,m_k} \in \text{Im} \left(H^k(X,\mathbb{Z}) \to H^k(X,\mathbb{R}) \right) \) be a basis of the lattice. Set

\[
\sigma_k = \sigma_{k,1} \wedge \cdots \wedge \sigma_{k,m_k} \in \det H^k(X),
\]

which is well-defined up to \(\pm 1 \). Set

\[
\sigma = \bigotimes_{k=1}^{n} \sigma_k^{(-1)^k} \in \lambda_{\text{dR}}(X).
\]

The BCOV torsion of \((X,\omega)\) is defined by

\[
\tau_{\text{BCOV}}(X,\omega) = \log \| \sigma \|_{\lambda_{\text{dR}}(X),\omega}.
\]

Now let \(\pi_{\mathcal{X}} : \mathcal{X} \to S \) be a holomorphic fibration. We denote \(X_s = \pi_{\mathcal{X}}^{-1}(s) \) for \(s \in S \). Let \(\omega \in \Omega^{1,1}(\mathcal{X}) \) be a fiberwise Kähler form on \(\mathcal{X} \), i.e., the restriction of \(\omega \) to each fiber is a Kähler form. Let \(g^{TX} \) be the fiberwise Kähler metric induced by \(\omega \). Let \(\omega_{H^\ast}(X) \in \Omega^{1,1}(S) \) be the Hodge form associated with the variation of Hodge structure \(H^\ast(X) \) over \(S \). We denote by \(\tau_{\text{BCOV}}(X,\omega) \) the function \(s \mapsto \tau_{\text{BCOV}}(X_s,\omega|_{X_s}) \) on \(S \).

Theorem 1.3. We have

\[
\frac{\overline{\partial \partial}}{2\pi i} \tau_{\text{BCOV}}(X,\omega) = \omega_{H^\ast}(X) + \frac{1}{12} \int_X c_1(TX,g^{TX}) c_n(TX,g^{TX}).
\]

Proof. We may assume that \(S \) a unit disc in \(\mathbb{C} \). Let \(\tau \in H^0(S,\lambda(X)) \) be a nowhere vanishing holomorphic section. Let \(f \in \mathcal{C}^\infty(S,\mathbb{R}) \) such that \(\sigma = \pm e^f \tau \otimes \bar{\tau} \). By the definition of Hodge form in [1,2], the definition of BCOV torsion and the Poincaré-Lelong formula, we have

\[
\frac{\overline{\partial \partial}}{2\pi i} \tau_{\text{BCOV}}(X,\omega) = \frac{\overline{\partial \partial} f}{2\pi i} + \frac{\overline{\partial \partial} \log \| \tau \|_{\lambda(X),\omega}^2}{2\pi i} = \omega_{H^\ast}(X) - c_1(\lambda(X),\| \cdot \|_{\lambda(X),\omega}).
\]
By [5] Theorem 0.1] and [2, page 374], we have

\[
c_1(\lambda(X), \| \cdot \|_{\lambda(X), \omega})
= \sum_{k=1}^{n} (-1)^k k \left(\int_X Td(TX, g^{TX}) \text{ch}(A^k(T^*X), g^{T^*X}) \right)_{(1,1)}
= -\frac{1}{12} \int_X c_1(TX, g^{TX}) c_n(TX, g^{TX}) \cdot
\]

(1.35)

By (1.34) and (1.35), we obtain (1.33). This completes the proof.

2. BCOV INVARINANT FOR CALABI-YAU PAIRS

2.1. Construction of \(\tau(X, Y) \). Let \(m, X, \gamma \) and \(Y \) be as in the introduction. We denote \(n = \dim X \).
Let \(\omega \) be a Kähler form on \(X \). Let \(\| \cdot \|_{\omega} \) be the norm on \(K_X^m \) induced by \(\omega \). Let \(g^{TX} \) be the metric on \(TX \) induced by \(\omega \). Recall that we defined Chern forms in \(\S 1.1 \). Set

\[
a_X(\gamma, \omega) = \frac{1}{12} \int_X c_n(TX, g^{TX}) \log \| \gamma \|_{\omega}^2.
\]

(2.1)

Let \(N_Y \) be the normal bundle of \(Y \subseteq X \). Let \(\nabla \) be a connection on \(K_X^m \). Set

\[
\gamma' = \nabla \gamma \bigg|_Y \in H^0(Y, N_Y^{-1} \otimes K_X^m) = H^0(Y, N_Y^{-m-1} \otimes K_Y^m),
\]

(2.2)

which is independent of \(\nabla \). Let \(\| \cdot \|_{\omega} \) be the norm on \(N_Y^{-m-1} \otimes K_Y^m \) induced by \(\omega \). Let \(g^{TY} \) be the metric on \(TY \) induced by \(\omega \). Set

\[
a_Y(\gamma, \omega) = \frac{1}{12} \int_Y c_{n-1}(TY, g^{TY}) \log \| \gamma' \|_{\omega}^2.
\]

(2.3)

Recall that we defined Bott-Chern forms in \(\S 1.1 \). Set

\[
b_Y(\omega) = \frac{1}{12} \int_Y \bar{c}(TX \big|_Y, TY, g^{TX} \big|_Y). \]

(2.4)

Recall that we defined BCOV torsion in \(\S 1.3 \). Recall that we defined \(w(X, m) \in \mathbb{N} \) in \(\S 0.4 \). Set

\[
\tau(X, \gamma, \omega) = \tau_{BCOV}(X, \omega) - \frac{1}{m+1} \tau_{BCOV}(Y, \omega|_Y)
- \frac{1}{m} a_X(\gamma, \omega) + \frac{1}{m(m+1)} a_Y(\gamma, \omega) + \frac{1}{m} b_Y(\omega)
\]

+ \(w(X, m) \log \int_{X \setminus Y} |\gamma|^{1/m} \).

(2.5)

Theorem 2.1. The real number \(\tau(X, \gamma, \omega) \) is independent of \(\omega \).

Proof. Let \(\omega \) be a fiberwise Kähler form on \(X \times \mathbb{C}P^1 \). Then \(a_X(\gamma, \omega), a_Y(\gamma, \omega), b(\gamma, \omega) \) and \(\tau(X, \gamma, \omega) \) become real functions on \(\mathbb{C}P^1 \). It suffices to show that \(\tau(X, \gamma, \omega) \) is a constant functions on \(\mathbb{C}P^1 \).
By (1.33), we have
\[
\frac{\partial \partial }{2 \pi i} \tau_{BCOV}(X, \omega | X) = \frac{1}{12} \int_X c_1(TX, g^{TX}) c_n(TX, g^{TX}) ,
\]
(2.6)
\[
\frac{\partial \partial }{2 \pi i} \tau_{BCOV}(Y, \omega | Y) = \frac{1}{12} \int_Y c_1(TY, g^{TY}) c_{n-1}(TY, g^{TY}) .
\]

By the Poincaré-Lelong formula, we have
\[
\frac{\partial \partial }{2 \pi i} a_X(\gamma, \omega) = \frac{m}{12} \int_X c_n(TX, g^{TX}) + \frac{1}{12} \int_Y c_n(TX, g^{TX}) ,
\]
(2.7)
\[
\frac{\partial \partial }{2 \pi i} a_Y(\gamma, \omega) = \frac{1}{12} \int_Y c_{n-1}(TY, g^{TY}) (m c_1(TY, g^{TY}) + (m + 1) c_1(N_Y, g^{N_Y})) .
\]

By the definition of Bott-Chern form in §1.1, we have
\[
\frac{\partial \partial }{2 \pi i} b_Y(\omega) = \frac{1}{12} \int_Y c_n(TX, g^{TX}) - \frac{1}{12} \int_Y c_{n-1}(TY, g^{TY}) c_1(N_Y, g^{N_Y}) .
\]
(2.8)

By (2.6)-(2.8), we get
\[
\frac{\partial \partial }{2 \pi i} \tau(X, \gamma, \omega) = 0 .
\]
(2.9)
Since CP1 is compact, \(\tau(X, \gamma, \omega) \) is constant on CP1. This completes the proof. \(\square \)

For \(z \in \mathbb{C}^* \), a direct calculation yields
\[
a_X(z \gamma, \omega) - a_X(\gamma, \omega) = \frac{\chi(X)}{12} \log |z|^2 ,
\]
(2.10)
\[
a_Y(z \gamma, \omega) - a_Y(\gamma, \omega) = \frac{\chi(Y)}{12} \log |z|^2 ,
\]
\[
\log \int_{X \setminus Y} |z^{m-g} \gamma|^{1/m} = \log \int_{X \setminus Y} |\gamma|^{1/m} = \frac{1}{m} \log |z|^2 .
\]

As a consequence, we have
\[
\tau(X, z \gamma, \omega) = \tau(X, \gamma, \omega) .
\]
(2.11)

Definition 2.2. The BCOV invariant of \((X, Y)\) is defined by
\[
\tau(X, Y) = \tau(X, \gamma, \omega) .
\]
(2.12)
By Theorem 2.1 and (2.11), the BCOV invariant \(\tau(X, Y) \) is well-defined.

2.2. Curvature of \(\tau(X, Y) \). Recall that \(\omega_{H^{\bullet}(X)}, \omega_{H^{\bullet}(Y)} \in \Omega^{1,1}(S) \) are Hodge forms (see §1.2) associated with the variations of Hodge structure \(H^{\bullet}(X) \) and \(H^{\bullet}(Y) \) over \(S \).

Proof of Theorem 0.1. We may suppose that \(S \) is a unit disc in \(\mathbb{C} \). Let \(\omega \) be a fiberwise Kähler form on \(X \). By (1.33), we have
\[
\frac{\partial \partial }{2 \pi i} \tau_{BCOV}(X, \omega | X) = \omega_{H^{\bullet}(X)} + \frac{1}{12} \int_X c_1(TX, g^{TX}) c_n(TX, g^{TX}) ,
\]
(2.13)
\[
\frac{\partial \partial }{2 \pi i} \tau_{BCOV}(Y, \omega | Y) = \omega_{H^{\bullet}(Y)} + \frac{1}{12} \int_Y c_1(TY, g^{TY}) c_{n-1}(TY, g^{TY}) .
\]
Noticing that (2.7) and (2.8) equally hold for $(\pi_{\mathcal{O}}, \pi_{\mathcal{O}^*})$, formula (0.5) follows from (2.7), (2.8), (2.13) and the definition of the Weil-Petersson form (see (0.3)).

3. Example

In the whole section, we assume that X is a del Pezzo surface, i.e., $\dim X = 2$ and K_X^{-1} is ample. We also assume that $Y \subseteq X$ is a smooth reduced (-2)-canonical divisor.

3.1. Boundary behavior. Let $\gamma \in H^0(X, K_X^{-2})$ with zero locus Y. We have

$$\gamma' := \nabla \gamma|_Y \in H^0(Y, N_Y^{-1} \otimes K_X^{-2}) = H^0(Y, K_Y^{-1} \otimes K_X^{-1}).$$

Let

$$\gamma'^{-1} \in H^0(Y, K_Y \otimes K_X)$$

be the inverse of γ'.

Let $\gamma : Y \to X$ be the canonical embedding. We have a short exact sequence of coherent sheaves on X,

$$0 \to \mathcal{O}_X(K_X) \to \mathcal{O}_X(K_X^{-1}) \to j_* \mathcal{O}_Y(K_Y) \to 0,$$

where $\mathcal{O}_X(K_X) \to \mathcal{O}_X(K_X^{-1})$ is defined by γ, $\mathcal{O}_X(K_X^{-1}) \to j_* \mathcal{O}_Y(K_Y)$ is defined by $(\gamma')^{-1}$. Since K_X^{-1} is ample, by the Kodaira-Nakano vanishing theorem and Serre duality, we have

$$H^{<2}(X, K_X) = H^{>0}(X, K_X^{-1} \otimes K_X)^* = 0,$$

$$H^{>0}(X, K_X^{-1}) = H^{>0}(X, K_X^{-2} \otimes K_X) = 0.$$

Taking the long exact sequence associated with (3.3) and applying (3.4), we get the following isomorphisms,

$$H^0(X, K_X^{-1}) \to H^{1,0}(Y), \quad H^{1,1}(Y) \to H^{2,2}(X).$$

The first isomorphism in (3.5) could be explicitly calculated as follows,

$$H^0(X, K_X^{-1}) \to H^{1,0}(Y) \quad \phi \mapsto (\gamma')^{-1} \phi|_Y.$$

The second isomorphism in (3.5) is just the dual of the canonical identification

$$H^{0,0}(X) = H^{0,0}(Y) = \mathbb{C}.$$

Set

$$\lambda_1 = \bigotimes_{q=0}^2 (\det H^q(X, K_X^{-1}))^{(-1)^q} = \det H^0(X, K_X^{-1}),$$

$$\lambda_2 = \bigotimes_{q=0}^2 (\det H^q(X, K_X))^{(-1)^q} = H^{2,2}(X).$$

Let ω be a Kähler form on X. Let $\| \cdot \|_{\lambda_1, \omega}$ (resp. $\| \cdot \|_{\lambda_2, \omega}$) be the Quillen metric (see [21, 5]) on λ_1 (resp. λ_2) associated with ω.

Let g be the genus of Y. By the first isomorphism in (3.5), we have

$$g = \dim H^0(X, K_X^{-1}).$$
We fix a basis \(\phi_1, \ldots, \phi_g \in H^0(X, K_X^{-1}) \). Set
\[
(3.10) \quad \phi_X = \phi_1 \wedge \cdots \wedge \phi_g \in \det H^0(X, K_X^{-1}) = \lambda_1.
\]
Let \(\varphi_1, \ldots, \varphi_g \in H^1(Y) \) be the images of \(\phi_1, \ldots, \phi_g \in H^0(X, K_X^{-1}) \) via the first isomorphism in (3.5). Let \(\langle \cdot, \cdot \rangle \) be the intersection form on \(H^1(Y) \). Set
\[
(3.11) \quad J(\gamma, \phi_X) = \det \left(\langle \varphi_i, \bar{\varphi}_j \rangle_{1 \leq i, j \leq g} \right),
\]
which is determined by \(\gamma \) and \(\phi_X \).

Let \(1_X \in H^{0,0}(X) \) be the constant function 1 on \(X \). Let
\[
(3.12) \quad 1_X^* \in H^{2,2}(X) = \lambda_2
\]
be the dual of \(1_X \), i.e., \(1_X^* \) is represented by a volume form on \(X \) of volume 1.

We denote
\[
\alpha_X(\gamma, \omega) = \frac{1}{12} \int_X c_1^2(TX, g^{TX}) \log \| \gamma \|_\omega^2,
\]
\[
\alpha_Y(\gamma, \omega) = \frac{1}{12} \int_Y c_1(TX, g^{TX}) \log \| \gamma \|_\omega^2,
\]
\[
\beta_Y(\gamma, \omega) = \frac{1}{12} \int_Y \log \| \gamma \|_\omega^2 \frac{\bar{\partial} \partial}{\partial \tau} \log \| \gamma \|_\omega^2.
\]

Proposition 3.1. We have
\[
\tau(X, Y) = \tau_{\text{BCOV}}(X, \omega) + \log \| 1_X^* \|_{\omega_{\lambda_2, \omega}}^2 - \log \| \phi_X \|_{\lambda_1, \omega}^2 + \log J(\gamma, \phi_X)
\]
\[
+ 3\alpha_X(\gamma, \omega) + \frac{3}{2} \alpha_Y(\gamma, \omega) + \frac{9}{2} \beta_Y(\gamma, \omega) - \frac{3}{2} \beta_Y(\gamma, \omega)
\]
\[
+ w(X, -2) \log \int_X |\gamma|^{-1/2} + \text{constant}.
\]

Here 'constant' means a number depending only on the topology of \(X \).

Proof: The proof consists of several steps. All the metrics involved in the proof are induced by \(\omega \).

Step 1. We show that the right hand side of (3.14) is independent of \(\omega \).

Let \(\omega \) be a fiberwise Kähler form on \(X \times \mathbb{C}P^1 \). Then all the terms involved become functions on \(\mathbb{C}P^1 \). By [5, Theorem 0.1], we have
\[
\frac{\bar{\partial} \partial}{2\pi i} \log \| 1_X^* \|_{\omega_{\lambda_2, \omega}}^2 - \frac{\bar{\partial} \partial}{2\pi i} \log \| \phi_X \|_{\lambda_1, \omega}^2
\]
\[
= \left\{ \int_X \text{Td}(TX, g^{TX}) \left(\text{ch}(K_X^{-1}, g^{K_X^{-1}}) - \text{ch}(K_X, g^{K_X}) \right) \right\}^{(1,1)}
\]
\[
= \frac{1}{2} \int_X c_1^3(TX, g^{TX}) + \frac{1}{6} \int_X c_1(TX, g^{TX}) c_2(TX, g^{TX}) \in \Omega^{1,1}(\mathbb{C}P^1).
\]

By the Poincaré-Lelong formula, we have
\[
\frac{\bar{\partial} \partial}{2\pi i} \alpha_X(\gamma, \omega) = \frac{1}{12} \int_Y c_1^2(TX, g^{TX}) - \frac{1}{6} \int_X c_3^2(TX, g^{TX}) \in \Omega^{1,1}(\mathbb{C}P^1).
\]
By the Poincaré-Lelong formula and (3.1), we have
\begin{equation}
\frac{\partial \bar{\partial}}{2\pi i} \log \|\gamma^\prime\|_\omega^2 = c_1(N, g^N) - 2c_1(TX, g^{TX}) - c_1(TY, g^{TY}) - c_1(TX, g^{TX}) \in \Omega^{1,1}(X \times \mathbb{C}P^1).
\end{equation}

By (2.6)-(2.8) and (3.15)-(3.17), the right hand side of (3.14), viewed as a function on \(\mathbb{C}P^1\), is harmonic. Thus it is independent of \(\omega\).

Step 2. We show the following identity under the assumption \(\|\gamma^\prime\|_\omega = 1\),
\begin{equation}
\tau_{BCOV}(Y, \omega|Y) = \log \left(\frac{1}{\beta^1} \right) + \log \frac{1}{\beta^2} + \log \frac{1}{\beta^3} + \cdots + \log \frac{1}{\beta^n} + \text{constant}.
\end{equation}

Let \(1_Y \in H^{0,0}(Y)\) be the constant function 1 on \(Y\). Let \(1^*_Y \in H^{1,1}(Y)\) be the dual of \(1_Y\). Let \(\alpha_1, \cdots, \alpha_{2g} \in H^1(Y)\) be a basis of the lattice \(H^1(Y, \mathbb{Z})\). Set
\begin{equation}
\alpha_Y = \alpha_1 \wedge \cdots \wedge \alpha_{2g} \in \det H^1(Y).
\end{equation}

By the definition of BCOV torsion in (1.3), we have
\begin{equation}
\tau_{BCOV}(Y, \omega|Y) = \log \left(\frac{1}{\beta^1} \right) + \log \left(\frac{1}{\beta^2} \right) + \log \left(\frac{1}{\beta^3} \right) + \cdots + \log \left(\frac{1}{\beta^n} \right) + \text{constant}.
\end{equation}

Under the isomorphism (3.5), we have
\begin{equation}
1^*_X = 1^*_Y, \quad \phi_X \otimes \overline{\phi_X} = J(\gamma, \phi_X) \alpha_Y.
\end{equation}

By (3.21) and (3.22), we have
\begin{equation}
\tau_{BCOV}(Y, \omega|Y) = \log \left(\frac{1}{\beta^1} \right) + \log \left(\frac{1}{\beta^2} \right) + \log \left(\frac{1}{\beta^3} \right) + \cdots + \log \left(\frac{1}{\beta^n} \right) + \text{constant}.
\end{equation}

We remark that the assumption \(\|\gamma^\prime\|_\omega = 1\) is equivalent to assumption(A) in [3, Definition 1.5]. Now, by [8, Theorem 0.1], (5.2) and (5.7), we have
\begin{equation}
\log \left(\frac{1}{\beta^1} \right) + \log \left(\frac{1}{\beta^2} \right) + \log \left(\frac{1}{\beta^3} \right) + \cdots + \log \left(\frac{1}{\beta^n} \right) + \text{constant}.
\end{equation}

Here the 'constant' comes from the integrations in [8, (0.5)] involving \(R(x)\). By (3.23) and (3.24), we get (3.18).

Step 3. We conclude.

By Step 1, it is sufficient to prove (3.14) with a Kähler form \(\omega\) satisfying \(\|\gamma^\prime\|_\omega = 1\).

This assumption implies \(\alpha_Y(\gamma, \omega) = \beta_Y(\gamma, \omega) = 0\). Now, by (2.5), (2.12) and Step 2, we obtain (3.14). This completes the proof. \(\square\)

We denote
\begin{equation}
D = \left\{ t \in \mathbb{C} : |t| < 1 \right\}, \quad D^* = \left\{ t \in \mathbb{C} : 0 < |t| < 1 \right\}.
\end{equation}
Let
\[(3.26) \quad \left(\gamma_t \in H^0(X, K_X^{-2}) \setminus \{0\} \right)_{t \in D} \]
be a holomorphic family. Let \(Y_t \subseteq X\) be the zero locus of \(\gamma_t\). Let \(l \in \mathbb{N}\). We assume that
- the family \((Y_t)_{t \in D^*}\) is smooth;
- the family \((Y_t)_{t \in D}\) has \(l\) ordinary double points at \(t = 0\).

Proposition 3.2. As \(t \to 0\), we have
\[(3.27) \quad \tau(X, Y_t) = \frac{1}{8} \log |t|^2 + \mathcal{O} \left(\log(- \log |t|) \right). \]

Proof. Let \(x_1, \ldots, x_l \in X\) be the singular points of \(Y_0 \subseteq X\). We fix a Kähler form \(\omega \in \Omega^{1,1}(X)\) such that the curvature of the Kähler metric induced by \(\omega\) vanishes near \(x_1, \ldots, x_l\). All the metrics involved in the proof are induced by \(\omega\).

We fix \(\phi_X \in \text{det} H^0(X, K_X^{-1})\). By Proposition 3.1, we have
\[(3.28) \quad \tau(X, Y_t) = \tau_{\text{BCOV}}(X, \omega) + \log \|1^*_X\|_{\lambda_2, \omega} - \log \|\phi_X\|_{\lambda_1, \omega} + \log J(\gamma_t, \phi_X)
+ 3\alpha_X(\gamma_t, \omega) + \frac{3}{2} a_X(\gamma_t, \omega) + \frac{9}{2} \alpha_Y(\gamma_t, \omega) - \frac{3}{2} b_Y(\omega) - \frac{3}{2} \beta_Y(\gamma_t, \omega)
+ w(X, -2) \log \int_X |\gamma_t|^{-1/2} + \text{constant}. \]

Since the Kähler form \(\omega\) is independent of \(t\), as \(t \to 0\), we obviously have
\[(3.29) \quad \tau_{\text{BCOV}}(X, \omega) = \mathcal{O}(1), \quad \log \|1^*_X\|_{\lambda_2, \omega} = \mathcal{O}(1), \quad \log \|\phi_X\|_{\lambda_1, \omega} = \mathcal{O}(1). \]

Since \(c_1(TX, g^{TX})\) and \(c_2(TX, g^{TX})\) vanish near \(x_1, \ldots, x_l\), as \(t \to 0\), we have
\[(3.30) \quad \alpha_X(\gamma_t, \omega) = \mathcal{O}(1), \quad \alpha_Y(\gamma_t, \omega) = \mathcal{O}(1), \quad \beta_Y(\gamma_t, \omega) = \mathcal{O}(1). \]

Proceeding in the same way as Step 3 in the proof of [26, Theorem 5.1], as \(t \to 0\), we have
\[(3.31) \quad b_Y(\omega) = \mathcal{O}(1). \]

By a direct calculation, as \(t \to 0\), we have
\[(3.32) \quad \log \int_X |\gamma_t|^{-1/2} = \mathcal{O}(1). \]

By the Hodge theory, as \(t \to 0\), we have
\[(3.33) \quad \log J(\gamma_t, \phi_X) = \mathcal{O} \left(\log(- \log |t|) \right). \]

Proceeding in the same way as in the proof of [24, Theorem 4.1], as \(t \to 0\), we have
\[(3.34) \quad \beta_Y(\gamma_t, \omega) = \frac{l}{12} \log |t|^2 + \mathcal{O}(1). \]

By (3.28)-(3.34), we obtain (3.27). This completes the proof. \(\square\)
3.2. Relation with Yoshikawa’s equivariant BCOV invariant. Let \(f : X' \to X \) be the ramified 2-cover whose branch locus is \(Y \). Let \(\iota \) be the involution on \(X' \) commuting with \(f \). Then \((X', \iota)\) is a 2-elementary K3 surface.

Let \(\tau(X', \iota) \) be Yoshikawa’s equivariant BCOV invariant for \((X', \iota)\) \cite{25, Definition 5.1}.

Proof of Theorem 0.2 Let \(S \) be a compact Riemann surface. Let \(\Delta \subseteq S \) be a finite subset. Let

\[
(3.35) \quad \left([\gamma_s] \in \mathbb{P}(H^0(X, K_X^{-2})) \right)_{s \in S}
\]

be a holomorphic family. Let \(Y_s \subseteq X \) be the zero locus of \(\gamma_s \). We assume that

- the family \((Y_s)_{s \in S \setminus \Delta}\) is smooth;
- the family \((Y_s)_{s \in S} \) has exactly one ordinary double points at each \(s \in \Delta \).

We may view \(S \) as a curve in \(\mathbb{P}(H^0(X, K_X^{-2})) \). Since \(K_X^{-2} \) is very ample, a generic curve in \(\mathbb{P}(H^0(X, K_X^{-2})) \) satisfies the same properties as \(S \).

For \(s \in S \setminus \Delta \), we denote by \((X'_s, \iota_s)\) the 2-elementary K3 surface corresponding to \((X, Y_s)\), i.e., we have a ramified cover \(f_s : X'_s \to X \) with branch locus \(Y_s \subseteq X \).

Let \(\tau(X, Y) \) (resp. \(\tau(X', \iota) \)) be the function \(s \mapsto \tau(X, Y_s) \) (resp. \(s \mapsto \tau(X'_s, \iota_s) \)) on \(S \setminus \Delta \). It is sufficient to show that the function \(\tau(X, Y) + \tau(X', \iota) \) is constant on \(S \setminus \Delta \).

Step 1. We show that the function \(\tau(X, Y) + \tau(X', \iota) \) is harmonic.

Recall that \(g \) is the genus of \(Y \). By the Hirzebruch-Riemann-Roch formula, (3.4) and (3.5), we have

\[
(3.36) \quad g = \int_X \text{Td}(TX) \text{ch}(K_X^{-1}) = \frac{13}{12} \int_X c_1^2(TX) + \frac{1}{12} \int_X c_2(TX),
\]

\[
1 = \int_X \text{Td}(TX) \text{ch}(K_X) = \frac{1}{12} \int_X c_1^2(TX) + \frac{1}{12} \int_X c_2(TX).
\]

By (0.4) and (3.36), we have

\[
(3.37) \quad w(X, -2) = \frac{1}{12} \int_X c_1(TX) + \frac{1}{12} \int_Y c_1(TY) = \frac{13 - g}{12} + \frac{2 - 2g}{12} = \frac{5 - g}{4}.
\]

By Theorem 0.1 and (3.37), we have

\[
(3.38) \quad \frac{\partial \partial}{2\pi i} \tau(X, Y) = \omega_{H^*} + \frac{g - 5}{4} \omega_{\iota_{X'}, \iota_{Y'}}.
\]

Let \(\eta_s \in H^0(X'_s, K_{X'_s}) \) such that

\[
(3.39) \quad f^*_s \gamma_s^{-1} = \eta_s^2 \in H^0(X'_s, K_{X'_s}^2).
\]

Let \(\int_{X'_s} \left| \eta \right|^2 \) be the function \(s \mapsto \int_{X'_s} \left| \eta_s \right|^2 \) on \(S \setminus \Delta \). Recall that \(J(\gamma, \phi_X) \) was defined by (3.11). By Theorem 1.5, 5.9, equation (5.4) in \cite{25} and the paragraph between equations (5.12), (5.13) in \cite{25}, we have

\[
(3.40) \quad \frac{\partial \partial}{2\pi i} \tau(X', \iota) = -\frac{5 - g}{4} \frac{\partial \partial}{2\pi i} \log \int_{X'} \left| \eta \right|^2 - \frac{\partial \partial}{2\pi i} \log J(\gamma, \phi_X).
\]
By the definition of $\omega_{H^\bullet(Y)}$ in \[L.2 \ (0.3) \text{ and } (3.40), \text{ we have}

\begin{equation}
\frac{\partial \bar{\partial}}{2 \pi i} \tau(X', \iota) = \frac{5 - g}{4} \omega_{\pi_{x'}, \pi_{y'}} - \omega_{H^\bullet(Y)}.
\end{equation}

By \[(3.38) \text{ and } (3.41), \text{ the function } \tau(X, Y) + \tau(X', \iota) \text{ is harmonic.}

Step 2. We show that the function $\tau(X, Y) + \tau(X', \iota)$ admits at most log log-singularity near $\Delta \subseteq S$.

Let $s_0 \in \Delta \subseteq S$. We identify a neighborhood of $s_0 \in S$ with the unit disc D such that s_0 is identified with $0 \in D$. Let $t \in D$ be the coordinate.

By Proposition \[3.2 \text{, as } t \to 0,

\begin{equation}
\tau(X, Y) = \frac{1}{8} \log |t|^2 + \mathcal{O}(\log(-\log |t|)).
\end{equation}

By \[[25] \text{ Theorem 6.6, as } t \to 0,

\begin{equation}
\tau(X', \iota) = -\frac{1}{8} \log |t|^2 + \mathcal{O}(\log(-\log |t|)).
\end{equation}

By \[(3.42) \text{ and } (3.43), \text{ the function } \tau(X, Y) + \tau(X', \iota) \text{ admits at most log log-singularity near } \Delta \subseteq S.

By Step 1 and Step 2, the function $\tau(X, Y) + \tau(X', \iota)$ is constant on S. This completes the proof.

\[\square \]

4. BEHAVIOR OF $\tau(X, Y)$ UNDER BLOWING UP

In this section, we take $m = 1$. Let $X, \gamma \in H^0(X, K_X)$ and $Y \subseteq X$ be as before. We assume that $n = \dim X \geq 2$.

4.1. Vanishing of curvature. Let S be a complex manifold. Let $(X_s, Y_s)_{s \in S}$ be a holomorphic family of Calabi Yau pairs with $m = 1$ and $\dim X_s \geq 2$. Let $(Z_s \subseteq X_s)_{s \in S}$ be a holomorphic family of sub complex manifolds of codimension 2. We assume that $Z_s \cap Y_s = \emptyset$ for each $s \in S$. Let X_s' be the blowing up of X_s along Z_s. Let $f_s : X_s' \to X_s$ be the canonical projection. Set $Y'_s = f_s^{-1}(Y_s \cup Z_s)$. Then $(X'_s, Y'_s)_{s \in S}$ is a holomorphic family of Calabi Yau pairs with $m = 1$.

Let $\tau(X, Y')$ (resp. $\tau(X', Y')$) be the function $s \mapsto \tau(X_s, Y_s)$ (resp. $s \mapsto \tau(X'_s, Y'_s)$) on S.

Proposition 4.1. We have

\begin{equation}
\overline{\partial} \partial \left(\tau(X', Y') - \tau(X, Y) \right) = 0.
\end{equation}

In particular, if S admits a compactification \overline{S} such that $\overline{S} \setminus S$ is of codimension ≥ 2, then $\tau(X'_s, Y'_s) - \tau(X_s, Y_s)$ is independent of $s \in S$.

Proof: We consider the variations of Hodge structure $H^\bullet(X)$, $H^\bullet(Y)$, $H^\bullet(X')$, $H^\bullet(Y')$ and $H^\bullet(Z)$ over S. By \[[23] \text{ Théorème 7.31}, \text{ we have}

\begin{equation}
H^\bullet(X') = H^\bullet(X) \oplus H^\bullet(Z)[1], \quad H^\bullet(Y') = H^\bullet(Y) \oplus H^\bullet(Z) \oplus H^\bullet(Z)[1].
\end{equation}

By Proposition \[1.2 \text{ and } (4.2), \text{ we have}

\begin{equation}
\omega_{H^\bullet(X')} = \omega_{H^\bullet(X)} + \omega_{H^\bullet(Z)}, \quad \omega_{H^\bullet(Y')} = \omega_{H^\bullet(Y)} + 2 \omega_{H^\bullet(Z)}.
\end{equation}
Recall that \(w(\cdot, \cdot) \) was defined in \((0.4)\). Since
\[
\chi(X'_s) = \chi(X_s) + 1, \quad \chi(Y'_s) = \chi(Y_s) + 2,
\]
we have
\[
w(X'_s, 1) = w(X_s, 1).
\]
By \((0.3)\), the Weil-Petersson forms of \((X_s, Y_s) \in S\) and \((X'_s, Y'_s) \in S\) coincide. Now, applying Theorem \(0.1\), \((4.3)\) and \((4.5)\), we obtain \((4.1)\).

\[\square\]

4.2. Case \(\dim X = 2\). Let \(X\) be a Kähler manifold of dimension 2. Let \(x \in X\). Let \(X'\) the blowing up of \(X\) along \(\{x\}\). Let \(f : X' \to X\) be the canonical projection. Set \(E = f^{-1}(x) \subseteq X'\), which is isomorphic to \(\mathbb{C}P^1\). Let \(j : E \to X'\) be the canonical embedding. Let \(N_E\) be the normal bundle of \(E \subseteq X'\).

We have a short exact sequence of coherent sheaves on \(X'\),
\[
0 \to f^* \mathcal{O}_X(K_X) \to \mathcal{O}_{K'}(K_{X'}) \to j_* \mathcal{O}_E(N_E^{-1} \otimes K_E) \to 0.
\]
Since \(\mathcal{O}_E(N_E^{-1} \otimes K_E) \simeq \mathcal{O}_{\mathbb{C}P^1}(-1)\), its cohomology vanishes. Taking the long exact sequence associated with \((4.6)\), we get
\[
H^0(X', f^* K_X) = H^2\bullet(X').
\]
On the other hand, using the spectral sequence, we can show that
\[
H^2\bullet(X) = H^0\bullet(X', f^* K_X).
\]
Recall that \(\lambda_p(\cdot)\) was defined by \((1.26)\). By \((4.7)\) and \((4.8)\), we have
\[
\lambda_2(X) = \lambda_2(X').
\]
Applying the same argument to the identity \(f^* \mathcal{O}_X = \mathcal{O}_{X'}\), we get
\[
H^0\bullet(X) = H^0\bullet(X').
\]
As a consequence, we have
\[
\lambda_0(X) = \lambda_0(X').
\]
Let \(\omega\) (resp. \(\omega'\)) be a Kähler form on \(X\) (resp. \(X'\)). For \(p = 0, 2\), let \(\| \cdot \|_{\lambda_p(X), \omega}\) (resp. \(\| \cdot \|_{\lambda_p(X'), \omega'}\)) be the Quillen metric on \(\lambda_p(X)\) (resp. \(\lambda_p(X')\)) associated with \(\omega\) (resp. \(\omega'\)).

Lemma 4.2. The following identity holds,
\[
\tau_{BCOV}(X', \omega') - \tau_{BCOV}(X, \omega) = -\frac{1}{2} \log 2 - 2 \log \pi - \sum_{p=0, 2} (-1)^{p/2} \log \frac{\| \cdot \|_{\lambda_p(X'), \omega'}^2}{\| \cdot \|_{\lambda_p(X), \omega}^2}.
\]
Proof. Set

\[\lambda_{\text{Eul}}(X) = \bigotimes_{k=0}^{4} \left(\det H^k(X) \right)^{(-1)^k} \]

(4.13)

\[= \bigotimes_{0 \leq p, q \leq 2} \left(\det H^{p,q}(X) \right)^{(-1)^{p+q}} = \bigotimes_{p=0}^{2} \left(\lambda_p(X) \right)^{(-1)^p}. \]

(4.14)

Let \(\cdot \| \cdot \|_{\lambda_{\text{Eul}}(X)} \) be the metric on \(\lambda_{\text{Eul}}(X) \) induced by \(\cdot \| \cdot \|_{\lambda_p(X), \omega} \). By [7], the metric \(\cdot \| \cdot \|_{\lambda_{\text{Eul}}(X)} \) is independent of \(\omega \). Similarly to (1.31), we denote by

\[\sigma^X_{\text{Eul}} \in \lambda_{\text{Eul}}(X) \]

the product of a basis of the lattice \(\operatorname{Im} (H^*(X, \mathbb{Z}) \to H^*(X, \mathbb{R})) \). Then \(\sigma^X_{\text{Eul}} \) is well-defined up to \(\pm 1 \). Let \(\sigma^X \in \lambda_{\text{dR}}(X) \) be as in (1.31). For \(p = 0, 2 \), let

\[\sigma_p \in \lambda_p(X) \]

be non zero elements such that

\[\sigma^X = \sigma^X_{\text{Eul}} \otimes \sigma_0^{-1} \otimes \sigma_2 \otimes \sigma_1. \]

(4.15)

(4.16)

By the definition of Ray-Singer torsion (see [1, (0.3)] and (4.16), we have

\[\tau_{\text{BCOV}}(X, \omega) = \log \| \sigma^X_{\text{Eul}} \|_{\lambda_{\text{Eul}}(X)}^2 - \sum_{p=0,2} (-1)^{p/2} \log \| \sigma_p \|_{\lambda_p(X), \omega}^2. \]

(4.17)

We equip \(\mathbb{C} \) with the obvious Hodge structure of weight 0. By [23, Théorème 7.31], we have

\[H^*(X') = H^*(X) \oplus \mathbb{C}[1]. \]

(4.18)

Let \(1 \in \mathbb{C}[1] \) be the image of 1 \(\in \mathbb{C} \). By (4.17) and (4.18), we have

\[\tau_{\text{BCOV}}(X', \omega') = \log \| \sigma^X_{\text{Eul}} \otimes 1 \|_{\lambda_{\text{Eul}}(X')}^2 - \sum_{p=0,2} (-1)^{p/2} \log \| \sigma_p \|_{\lambda_p(X'), \omega'}^2. \]

(4.19)

By (4.17) and (4.19), we have

\[\tau_{\text{BCOV}}(X', \omega') - \tau_{\text{BCOV}}(X, \omega) \]

\[= \log \| \sigma^X_{\text{Eul}} \otimes 1 \|_{\lambda_{\text{Eul}}(X')}^2 - \log \| \sigma^X_{\text{Eul}} \|_{\lambda_{\text{Eul}}(X)}^2 - \sum_{p=0,2} (-1)^{p/2} \log \frac{\| \cdot \|_{\lambda_p(X'), \omega'}}{\| \cdot \|_{\lambda_p(X), \omega}}. \]

(4.20)

We denote

\[\chi'(X) = \sum_{k=0}^{2} (-1)^k k \dim H^k(X). \]

(4.21)

Let \(\| \cdot \|_{\lambda_{\text{Eul}}(X), \text{RS}} \) be the Ray-Singer metric on \(\lambda_{\text{Eul}}(X) \). By the definition of Ray-Singer metric (cf. [10, (0.3)]) and the definition of Quillen metric (cf. [3, Definition 1.10]), we have

\[\| \cdot \|_{\lambda_{\text{Eul}}(X)}^2 = 2^{\chi'(X)/\chi(X)/2} (2\pi)^{2\chi(X)} \| \cdot \|_{\lambda_{\text{Eul}}(X), \text{RS}}^2. \]

(4.22)
Let $\| \cdot \|_{\lambda_{\text{Eul}}(X), M}^2$ be the Milnor metric (cf. [10] Definition 1.6) on $\lambda_{\text{Eul}}(X)$. By the Cheeger-Müller theorem [13, 20], we have

\begin{equation}
\| \cdot \|_{\lambda_{\text{Eul}}(X), M}^2 = \| \cdot \|_{\lambda_{\text{Eul}}(X), M}^2.
\end{equation}

Let $U \subseteq X$ be a small subset containing x. Let $V = f^{-1}(U)$. We have

\begin{equation}
H^*(U) = H^*(\{ x \}) = \mathbb{C}, \quad H^*(V) = H^*(E) = \mathbb{C} \oplus \mathbb{C}[1].
\end{equation}

We consider the following commutative diagram,

\begin{equation}
\cdots \to H^k(U) \to H^k(X) \to H^k(X, U) \to \cdots
\end{equation}

\begin{equation}
\cdots \to H^k(V) \to H^k(X') \to H^k(X', V) \to \cdots.
\end{equation}

Since $X \setminus U = X' \setminus V$, the map $H^k(X, U) \to H^k(X', V)$ is isomorphic. By [10] (3.71), we have

\begin{equation}
\log \| \sigma_{\text{Eul}} \otimes 1 \|_{\lambda_{\text{Eul}}(X), M}^2 - \log \| \sigma_{\text{Eul}} \|_{\lambda_{\text{Eul}}(X), M}^2 = \log \| 1 \otimes 1 \|_{\lambda_{\text{Eul}}(V), M}^2 - \log \| 1 \|_{\lambda_{\text{Eul}}(U), M}^2 = 0.
\end{equation}

By (4.20), (4.22), (4.23) and (4.26), we obtain (4.12). \hfill \Box

Proof of Theorem 0.3 Let

\begin{equation}
\varphi : \{(z_1, z_2) \in \mathbb{C}^2 : |z_1| < 1, |z_2| < 1\} \to X
\end{equation}

be a holomorphic local chart such that $\varphi(0, 0) = x$. Let $U \subseteq X$ be the image of φ. We denote $V = f^{-1}(U)$. We assume that

\begin{equation}
\varphi^* \gamma = dz_1 \wedge dz_2, \quad \varphi^* \omega = \frac{i}{2} \sum_{k=1}^{2} dz_k \wedge d\bar{z}_k, \quad f^* \omega \big|_{X' \setminus V} = \omega' \big|_{X' \setminus V}.
\end{equation}

We identify N_E with a holomorphic sub vector bundle of $TX|_E$ in the obvious way. We assume that the decomposition $TX|_E = TE \oplus N_E$ is orthogonal with respect to ω'. Let ∇ be a connection on K_X. We denote

\begin{equation}
(f^* \gamma)' = \nabla f^* \gamma \big|_E \in H^0(E, N_E^{-1} \otimes K_X') = H^0(E, N_E^{-2} \otimes K_E).
\end{equation}

Let $\| \cdot \|_{\omega'}$ be the norm on $N_E^{-2} \otimes K_E$ induced by ω'. We further assume that

\begin{equation}
\| (f^* \gamma)' \|_{\omega'} = 1.
\end{equation}

By (2.3), (2.12) and our assumptions, we have

\begin{equation}
\tau(X', Y') - \tau(X, Y) = \tau_{\text{BCOV}}(X', \omega') - \tau_{\text{BCOV}}(X, \omega) - \frac{1}{2} \tau_{\text{BCOV}}(E, \omega')|_E
\end{equation}

\begin{equation}
- \frac{1}{12} \int_V c_2(TX', g^{TX'}) \log \| f^* \gamma \|_{\omega'}^2.
\end{equation}

We denote

\begin{equation}
\lambda(f^* K_X) = \det H^*(X', f^* K_X).
\end{equation}
By (4.7) and (4.8), we have

\[(4.33) \quad \lambda_2(X) = \lambda(f^*K_X) = \lambda_2(X').\]

We equip \(TX'\) with the Kähler metric induced by \(\omega'\). We equip \(f^*K_X\) with the Hermitian metric induced by \(\omega\). Let \(\cdot \|_{\lambda(f^*K_X), \omega, \omega'}\) be the associated Quillen metric. By [4, Theorem 8.10] and our assumptions, we have

\[(4.34) \quad \log \frac{\| \cdot \|_{\lambda_0(X'), \omega'}^2}{\| \cdot \|_{\lambda_0(X), \omega}^2} - \log \frac{\| \cdot \|_{\lambda(f^*K_X), \omega, \omega'}^2}{\| \cdot \|_{\lambda_2(X), \omega}^2} = 0 .\]

We denote

\[(4.35) \quad \lambda(N_E) = \det H^•(E, N_E).\]

Since \(H^•(E, N_E) = 0\), we have

\[(4.36) \quad \lambda(N_E) = \mathbb{C}.\]

Let \(1 \in \lambda(N_E)\) be the image of \(1 \in \mathbb{C}\). We equip \(N_E\) with the Hermitian metric induced by \(\omega'\). We equip \(TE\) with the Kähler metric associated with \(\omega'|_E\). Let \(\cdot \|_{\lambda(N_E), \omega'}\) be the associated Quillen metric. Let \(\zeta\) be the Riemann zeta function. Using [8, Theorem 0.1] in the same way as in proof of Proposition 3.1, we get

\[(4.37) \quad \log \frac{\| \cdot \|_{\lambda(N_E), \omega'}^2}{\| \cdot \|_{\lambda_0(X'), \omega'}^2} + \log \frac{\| \cdot \|_{\lambda_2(X), \omega'}^2}{\| \cdot \|_{\lambda(f^*K_X), \omega, \omega'}^2} = -\frac{1}{12} \int_V c_2(TX', g^{TX'}) \log \| f^*\gamma \|_{\omega'}^2 + 2\zeta'(-1) - \frac{1}{12}.\]

Here \(2\zeta'(-1) - \frac{1}{12}\) comes from the integrations in \([8, (0.5)]\) involving \(R(x)\).

By (4.31), (4.34) and (4.37), we obtain

\[(4.38) \quad \tau(X', Y') - \tau(X, Y) = \log \frac{\| \cdot \|_{\lambda(N_E), \omega'}^2}{\| \cdot \|_{\lambda_0(X'), \omega'}^2} - \frac{1}{2} \tau_{BCOV}(E, \omega'|_E)\]

\[-\frac{1}{2} \log 2 - 2 \log \pi + \frac{1}{12} - 2\zeta'(-1).\]

The right hand side of (4.38) is a priori determined by \(\omega'\). On the other hand, since the left hand side of (4.38) is independent of \(\omega'\), so is the right hand side of (4.38). Hence (4.38) is a universal constant. This completes the proof. \(\Box\)

Remark 4.3. We can equally show that (4.38) is a universal constant by considering a fiberwise Kähler form on \(E \times \mathbb{C}P^1\) and applying Theorem 1.3.

5. Appendix

Let \((\pi_X, \pi_Y)\) be as in the introduction. We denote by \(X\) (resp. \(Y\)) the fiber of \(\pi_X\) (resp. \(\pi_Y\)). \(\pi_X\) assumes that \(\dim X = 2\) and \(Y \subseteq X\) is a \((-2)\)-canonical divisor.

Let \(\omega\) be a fiberwise Kähler form on \(\mathcal{X}\). All the metrics involved will be induced by \(\omega\).
We have
\[
\left\{ \text{Td}^{-1}(N_Y, g^{N_Y}) \text{Td}(TX|_Y, g^{TX}|_Y) - \text{Td}(TY, g^{TY}) \right\}^{(\leq 2, \leq 2)}
\]
\[
= \frac{1}{12} c_2(TX|_Y, g^{TX}|_Y) - \frac{1}{12} c_1(N_Y, g^{N_Y}) c_1(TY, g^{TY}) \in \Omega^{\leq 2, \leq 2}(\mathcal{Y}).
\]

By (5.1), we have
\[
\frac{\partial}{\partial \gamma} \frac{\partial}{\partial \gamma} \omega_Y(\omega)
\]
\[
= \left\{ \int_{\mathcal{Y}} \left(\text{Td}^{-1}(N_Y, g^{N_Y}) \text{Td}(TX, g^{TX}) - \text{Td}(TY, g^{TY}) \right) \right\}^{(1,1)} \in \Omega^{1,1}(S).
\]

We assume that \(\|\gamma\|_\omega = 1\). The assumption implies
\[
c_1(TY, g^{TY}) = -c_1(TX|_Y, g^{TX}|_Y) \in \Omega^{1,1}(\mathcal{Y}),
\]
\[
c_1(N_Y, g^{N_Y}) = 2c_1(TX|_Y, g^{TX}|_Y) \in \Omega^{1,1}(\mathcal{Y}).
\]

We have
\[
\left\{ \text{Td}(TY, g^{TY}) \text{ch}(K_Y, g^{K_Y}) \right\}^{(2,2)} = \frac{1}{12} c_1^2(TY, g^{TY}) \in \Omega^{2,2}(\mathcal{Y}).
\]

We have
\[
\left\{ \text{Td}(TX, g^{TX}) \left(\text{ch}(K_{X}^{-1}, g^{K_{X}^{-1}}) - \text{ch}(K_{X}, g^{K_{X}}) \right) \right\}^{(3,3)}
\]
\[
= \frac{1}{2} c_1^2(TX, g^{TX}) + \frac{1}{6} c_1(TX, g^{TX}) c_2(TX, g^{TX}) \in \Omega^{3,3}(\mathcal{X}).
\]

By (5.1) and (5.3)-(5.5), we have
\[
\left\{ \text{Td}^{-1}(N_Y, g^{N_Y}) \text{Td}(TX, g^{TX}) \text{ch}(K_Y, g^{K_Y}) \delta_Y \\
- \text{Td}(TX, g^{TX}) \left(\text{ch}(K_{X}^{-1}, g^{K_{X}^{-1}}) - \text{ch}(K_{X}, g^{K_{X}}) \right) \right\}^{(3,3)}
\]
\[
= \left\{ \left(\text{Td}^{-1}(N_Y, g^{N_Y}) \text{Td}(TX, g^{TX}) - \text{Td}(TY, g^{TY}) \right) \text{ch}(K_Y, g^{K_Y}) \delta_Y + \text{Td}(TY, g^{TY}) \text{ch}(K_Y, g^{K_Y}) \delta_Y \\
- \text{Td}(TX, g^{TX}) \left(\text{ch}(K_{X}^{-1}, g^{K_{X}^{-1}}) - \text{ch}(K_{X}, g^{K_{X}}) \right) \right\}^{(3,3)}
\]
\[
= \left(\delta_Y - 2c_1(TX, g^{TX}) \right) \left(\frac{1}{4} c_1^2(TX, g^{TX}) + \frac{1}{12} c_2(TX, g^{TX}) \right) \in A^{3,3}(\mathcal{X}).
\]
By (5.6), we have
\[
\frac{\partial \bar{\partial}}{2\pi i} \left\{ \frac{1}{4} \int_X c_1^2(T_X, g_T X) \log \|\gamma\|_\omega + \frac{1}{12} \int_X c_2(T_X, g_T X) \log \|\gamma\|_\omega \right\} = \left\{ \int_Y \text{Td}^{-1}(N_Y, g_Y^N) \text{Td}(T_X, g_T X) \text{ch}(K_Y, g_Y^{K_Y}) \\
- \int_X \text{Td}(T_X, g_T X) \left(\text{ch}(K_X^{-1}, g_X^{K_X^{-1}}) - \text{ch}(K_X, g_X^{K_X}) \right) \right\}^{(1,1)} \in \Omega^{1,1}(S).
\]

REFERENCES

1. M. Bershadsky, S. Cecotti, H. Ooguri, and C. Vafa, Holomorphic anomalies in topological field theories, Nuclear Phys. B 405 (1993), no. 2-3, 279–304.
2. , Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Comm. Math. Phys. 165 (1994), no. 2, 311–427.
3. J.-M. Bismut, Superconnection currents and complex immersions, Invent. Math. 99 (1990), no. 1, 59–113.
4. , Quillen metrics and singular fibres in arbitrary relative dimension, J. Algebraic Geom. 6 (1997), no. 1, 19–149.
5. J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. I. Bott-Chern forms and analytic torsion, Comm. Math. Phys. 115 (1988), no. 1, 49–78.
6. J.-M. Bismut, H. Gillet, and C. Soulé, Analytic torsion and holomorphic determinant bundles. II. Direct images and Bott-Chern forms, Comm. Math. Phys. 115 (1988), no. 1, 79–126.
7. , Analytic torsion and holomorphic determinant bundles. III. Quillen metrics on holomorphic determinants, Comm. Math. Phys. 115 (1988), no. 2, 301–351.
8. J.-M. Bismut and G. Lebeau, Complex immersions and Quillen metrics, Inst. Hautes Études Sci. Publ. Math. (1991), no. 74, ii+298 pp. (1992).
9. R. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math. 132 (1998), no. 3, 491–562.
10. J. Brüning and X. Ma, An anomaly formula for Ray-Singer metrics on manifolds with boundary, Geom. Funct. Anal. 16 (2006), no. 4, 767–837.
11. P. Candelas, X. de la Ossa, P. Green, and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991), no. 1, 21–74.
12. P. Candelas, T. Hubsch, and R. Schimmrigk, Relation between the Weil-Petersson and Zamolodchikov metrics, Nuclear Phys. B 329 (1990), no. 3, 583–590.
13. J. Cheeger, Analytic torsion and the heat equation, Ann. of Math. (2) 109 (1979), no. 2, 259–322.
14. D. Eriksson, G. Freixas, and C. Mourougane, BCOV invariants of Calabi-Yau manifolds and degenerations of Hodge structures, arXiv:1809.05452v1.
15. H. Fang and Z. Lu, Generalized Hodge metrics and BCOV torsion on Calabi-Yau moduli, J. Reine Angew. Math. 588 (2005), 49–69.
16. H. Fang, Z. Lu, and K.-I. Yoshikawa, Analytic torsion for Calabi-Yau threefolds, J. Differential Geom. 80 (2008), no. 2, 175–259.
17. J. Jolany, Canonical metric on moduli space of log calabi-yau varieties, arXiv:1709.05471v1.
18. J. Kollár, Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 32, Springer-Verlag, Berlin, 1996.
19. S. Ma and K.-I. Yoshikawa, K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space IV, arXiv:1506.00437.
20. W. Müller, Analytic torsion and R-torsion of Riemannian manifolds, Adv. in Math. 28 (1978), no. 3, 233–305.
21. D. Quillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funct. Anal. Appl. 19 (1985), 31–34.
22. G. Tian, *Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric*, Mathematical aspects of string theory (San Diego, Calif., 1986), Adv. Ser. Math. Phys., vol. 1, World Sci. Publishing, Singapore, 1987, pp. 629–646.

23. C. Voisin, *Théorie de Hodge et géométrie algébrique complexe*, Cours Spécialisés [Specialized Courses], vol. 10, Société Mathématique de France, Paris, 2002.

24. K.-I. Yoshikawa, *Smoothing of isolated hypersurface singularities and Quillen metrics*, Asian J. Math. 2 (1998), no. 2, 325–344.

25. , *K3 surfaces with involution, equivariant analytic torsion, and automorphic forms on the moduli space*, Invent. Math. 156 (2004), no. 1, 53–117.

26. , *On the singularity of Quillen metrics*, Math. Ann. 337 (2007), no. 1, 61–89.

Department of Mathematics, Faculty of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

E-mail address: yp.zhang@math.kyoto-u.ac.jp