A New Formulation of the Spectral Energy Budget of the Atmosphere, With Application to Two High-Resolution General Circulation Models

Pierre Augier,* and Erik Lindborg
Linné Flow Centre, KTH Mechanics, Stockholm, Sweden

Abstract

A new formulation of the spectral energy budget of kinetic and available potential energies of the atmosphere is derived, with spherical harmonics as base functions. Compared to previous formulations, there are three main improvements: (i) the topography is taken into account, (ii) the exact three-dimensional advection terms are considered and (iii) the vertical flux is separated from the energy transfer between different spherical harmonics. Using this formulation, results from two different high resolution GCMs are analyzed: the AFES T639L24 and the ECMWF IFS T1279L91. The spectral fluxes show that the AFES, which reproduces quite realistic horizontal spectra with a $k^{-5/3}$ inertial range at the mesoscales, simulates a strong downscale energy cascade. In contrast, neither the $k^{-5/3}$ vertically integrated spectra nor the downscale energy cascade are produced by the ECMWF IFS.

1 Introduction

The atmospheric horizontal spectra of velocity components and temperature show a robust $k^{-5/3}$ range at the mesoscales (10-500 km) (Nastrom and Gage, 1985). This power law and the corresponding one for the horizontal second order structure functions ($r^{2/3}$) are obtained from signals measured in the troposphere and the stratosphere, over both land and sea (see e.g., Frehlich and Sharmar, 2010). It still remains a challenge to reproduce these results in simulations. Some general circulation models (GCMs) (e.g. Koshyk and Hamilton, 2001; Hamilton et al, 2008) and mesoscale numerical weather prediction (NWP) models (Skamarock, 2004) reproduce quite realistic mesoscale spectra. Other GCMs, as for example ECMWF’s weather prediction model Integrated Forecast System, produce mesoscale spectra significantly steeper and with smaller magnitude than the measured ones, even with relatively high resolution versions (e.g. Shutts, 2003). The inability of some GCMs to simulate realistic mesoscale spectra must have important consequences in terms of predictability (Vallis, 2006), dispersiveness of ensemble prediction systems (Palmer, 2001) and, evidently, mesoscale NWP.

Even though one can now simulate realistic mesoscale spectra, it is still unclear what physical mechanisms produce them. Theoretically, the only convincing explanation of the $k^{-5/3}$ power law is the hypothesis that it is produced by an (upscale or downscale) energy cascade with a constant energy flux through the scales. Therefore, most of the different theories proposed are based on the hypothesis of an energy cascade: upscale cascade due to 2D-stratified turbulence (Gage, 1979; Lilly, 1983) or downscale cascade due to internal gravity waves (Dewan and Good, 1986; Smith et al., 1987), quasi-geostrophic dynamics (Tung and Orlando, 2003), surface-quasigeostrophic dynamics (Tulloch and Smith, 2009) or 3D-strongly stratified turbulence (Lindborg, 2006).

The principle of energy conservation strongly constrains the dynamics of the atmosphere. In order to explain the maintenance of the general circulation, Lorenz (1955) developed the concept of available potential energy (APE) and derived an approximate expression proportional to the variance of the temperature fluctuation. His work has laid the foundations for several studies investigating APE (e.g., Boer, 1989; Shepherd, 1993; Siegmund, 1994; Molemaker and McWilliam, 2010) and the atmospheric energy budget through diagnostics of data from global meteorological analysis and GCMs (e.g., Boer and Lambert, 2008; Steinheimer et al., 2008). Due to the multiscale nature of atmospheric motions, spectral analysis can reveal valuable pieces of information from the data (Fjørtoft, 1953) and have therefore become a standard method for diagnostics. However, drawbacks of different used formulations of the spectral energy budget severely limit the results. First of all, the attention has been focused on the budget of kinetic energy (KE) so that in many studies the APE budget is not considered. Most studies investigate only the budget integrated over the total height of the atmosphere and thus the vertical fluxes of energy are not computed. Another very important limitation is that most studies are based on the formulation proposed by Fjørtoft (1953), in which only the purely horizontal and non-divergent flow is considered (e.g., Burrows, 1976; Boer and Shepherd, 1983; Shepherd, 1987; Boer, 1994; Straus and Ditlevsen, 1999; Burgess et al, 2013). This approximation is justified for the very large scales of the atmosphere for which the divergence is indeed very small. However, the approximation may lead to large errors at

*Corresponding author address: Pierre Augier, Linné Flow Centre, KTH Mechanics, Stockholm, Sweden.
E-mail: pierre.augier@mech.kth.se

Preprint accepted to J. Atmos. Sci. February 15, 2013
the mesoscales. Atmospheric measurements show that divergent and rotational spectra are of the same order (Lindborg, 2007) and atmospheric simulations produce divergent spectra of the same order of magnitude as rotational spectra at the mesoscales (e.g., Hamilton et al., 2008; Burgess et al., 2013). Moreover, these results are consistent with theoretical results showing that strongly stratified and weakly rotating flows tend to evolve toward states in which the divergent and rotational components are of the same order of magnitude (Billant and Chomaz, 2001; Lindborg and Brethouwer, 2003; Augier et al., 2012). Therefore the spectral energy budget formulations based on the two-dimensional vorticity equation can not capture the dynamics at the mesoscales.

There is no theoretical obstacle in considering the exact three-dimensional advection including both rotational and divergent components of the flow. Lambert (1984) have developed a formulation of the spectral energy budget considering both KE and APE and taking into account the exact advection term. However, the diagnostics was integrated over the total height of the atmosphere so vertical fluxes were not considered. Koshyk and Hamilton (2001) performed a diagnostic of the equation for the KE spectrum (the APE budget was not investigated). The exact advection was computed but the vertical flux was not separated from the energy transfer between spherical harmonics, so it was impossible to define spectral fluxes in a conservative way. Koshyk and Hamilton (2001) separated the spectral pressure term into adiabatic conversion and vertical flux. However, the separation was only approximate. Moreover, as in all previous studies on the spectral energy budget, the topography was neglected. Recently, Brune and Becker (2012) have investigated the effect of the vertical resolution in a mechanistic GCM. Just as in Koshyk and Hamilton (2001), all the terms in the kinetic spectral energy equation were computed at different pressure levels and it was demonstrated that they balance each other. However, spectral fluxes were defined in a non-conservative way and actually also included vertical fluxes.

In order to investigate the energetics of the mesoscales simulated by GCMs, it would be desirable to formulate the spectral energy budget considering both KE and APE, taking the topography into account and making an exact separation of the advection terms into spectral transfer and vertical flux and a corresponding separation of the pressure term into adiabatic conversion and vertical flux. A formulation meeting these requirements is derived in section 2. In section 3 results from two high resolution GCMs are analyzed.

2 Formulation of the spectral energy budget

2.1 Governing equations in p-coordinates

The analysis is performed in pressure-coordinates in which variables are functions of time, longitude , latitude (the horizontal coordinates are denoted by) and pressure. The main advantage of the p-coordinates is that mass conservation can be expressed in the same way as for an incompressible fluid: where is the gradient operator and is the total velocity, with the horizontal gradient operator, the horizontal velocity and is the pressure vector (is the material derivative). The hydrostatic equation is where is the geopotential and is the volume per unit mass.

In the p-coordinates, the evolution equations can be written as

\[
D_t \mathbf{u} = -f(\varphi)\mathbf{e}_z \wedge \mathbf{u} - \nabla_h \Phi + D_u(\mathbf{u}),
\]

\[
D_t H = \omega + \tilde{Q} + D_H(H),
\]

where is the Coriolis parameter, is the upward (radial) unit vector, is the enthalpy per unit mass, is the rate of production of internal energy by heating and and are diffusion terms. The thermodynamic equation (2) can be rewritten as a conservation equation for the potential temperature with where is the potential temperature fluctuation and is the mean over regions above the surface (the brackets denote the mean over a pressure level).

2.2 Kinetic and available potential energy forms

Lorenz (1955) showed that the sum of the globally integrated kinetic energy (KE) and available potential energy (APE) is approximately conserved. The mean energies per unit mass are and with equal to one above the surface and to zero below. The potential temperature fluctuation is defined as where is the representative mean, i.e., the mean over regions above the surface. The energy budget can be written as

\[
\partial_t E_K(p) = C(p) + \partial_p F_{K1}(p) - D_K(p) + S(p),
\]

\[
\partial_t E_A(p) = G(p) - C(p) + \partial_p F_{A2}(p) - D_A(p) + J(p),
\]

where and are forcing by heating (differential heating at very large scales and latent heat release), is conversion of APE to KE, and are vertical fluxes, and are diffusion terms. The last terms of (5) and (6), and correspond to diabatic processes which do not conserve the sum of the KE and the
Lorenz APE. However, when integrated over the whole atmosphere, these terms are negligible so that the sum of the total kinetic energy and the total Lorenz APE is approximately conserved. [Siegmund 1994] showed that the globally integrated exact APE and Lorenz APE differ by less than 3%. In appendix B, we show how equations (5-6) can be related to the equation of total energy conservation.

2.3 Spectral analysis based on spherical harmonic transform

For clarity, the spectral energy budget is here derived for levels above the topography for which \(\beta(x_h, p) = 1 \). In this section, we do not include the non-conservative term corresponding to \(J(p) \), i.e. we considered \(\gamma \) as a constant. The general formula used for the numerical computations are given in appendix A. Each scalar function defined on the sphere can be expanded as a sum of spherical harmonics functions \(Y_{lm}(x_h) \), which are the normalized eigenfunctions of the horizontal Laplacian operator on the sphere:

\[(\nabla_h \cdot \nabla_h) Y_{lm} = -l(l+1) Y_{lm} / a^2, \]

and the total and zonal wavenumbers (for details, see Boer, 1983). The potential temperature fluctuation is written as

\[\theta'(x_h, p) = \sum_{l \geq 1} \sum_{-l \leq m \leq l} \theta_{lm}^t(p) Y_{lm}(x_h), \]

and the other scalar variables are written in the corresponding way. It follows that the mean over a pressure level of the product of two functions can be written as

\[\langle \omega \Phi \rangle = \sum_{l \geq 1} \sum_{-l \leq m \leq l} (\omega \Phi)_{lm}, \]

where, by definition,

\[(\omega \Phi)_{lm} \equiv \Re \{ \omega \Phi_{lm}^* \}, \]

\(\Re \) denoting the real part. The spectral APE function can thus be defined as

\[E_A^{\text{lim}}(p) = \frac{\gamma(p)}{2} \frac{\theta^t_{lm}(p)^2}{2} \]

so as the mean APE at a pressure surface is given by

\[E_A(p) = \sum_{l,m} E_A^{\text{lim}}(p). \]

The meridional and azimuthal components of a vector field on the sphere are multiple-valued at the poles because of the coordinate singularity. In order to expand a vector field in spherical harmonics, it is thus appropriate to decompose it in terms of two scalar functions. For example, the velocity field is decomposed as

\[u = -\nabla_h \cdot (\psi_e z) + \nabla_h \chi, \]

where \(\psi(x_h, p) \) is the spherical stream function and \(\chi(x_h, p) \) the spherical potential velocity. The vertical component of the vorticity is given by

\[\zeta \equiv \text{rot}_h(u) \equiv e_z \cdot (\nabla_h \times u) = \nabla_h \psi \]

and the horizontal divergence by

\[d \equiv \text{div}_h(u) \equiv \nabla_h \cdot u = \nabla_h \chi. \]

Our formulation is based on a result obtained from the rotational-divergent split. The mean value over a sphere with radius \(a \) (in our case the radius of the Earth) of the scalar product between two horizontal vector fields \(\mathbf{a} \) and \(\mathbf{b} \) can be written as

\[(\mathbf{a} \cdot \mathbf{b}) = \sum_{l \geq 1} \sum_{-l \leq m \leq l} (\mathbf{a} \cdot \mathbf{b})_{lm}, \]

where, by definition,

\[(\mathbf{a} \cdot \mathbf{b})_{lm} \equiv \frac{a^2}{l(l+1)} \Re \{ \text{rot}_h(\mathbf{a})_{lm} \cdot \text{rot}_h(\mathbf{b})_{lm} \}
+ \text{div}_h(\mathbf{a})_{lm} \cdot \text{div}_h(\mathbf{b})_{lm}, \]

which rests on the fact that \(Y_{lm} \) are eigenfunctions of the Laplace operator. Here, we have used a similar notation on the LHS of (9) and (12). It should be understood that when the two arguments of \((\cdot, \cdot)_{lm} \) are scalars, we use \(\Re \) and when the arguments are two vector fields, we use \(\Re \). From (11), it is clear that the spectral KE function can be defined as

\[E_K^{\text{lim}}(p) = \frac{(\mathbf{u} \cdot \mathbf{u})_{lm}}{2} = \frac{a^2(|\chi_{lm}|^2 + |\psi_{lm}|^2)}{2(l+1)}. \]

The spectral energy budget is derived by substituting (9) and (11) into the time differentiations of equations (6) and (10), that is \(\partial_t E_A^{\text{lim}}(p) = (\mathbf{u} \cdot \partial_t \mathbf{u})_{lm} \) and \(\partial_t E_K^{\text{lim}}(p) = \gamma(p) (\theta^t \cdot \partial_t \theta^t)_{lm} \), respectively. Reorganizing the different terms, the spectral energy budget can be written as

\[\partial_t E_A^{\text{lim}}(p) = C^{\text{lim}}(p) + T_A^{\text{lim}}(p) + L^{\text{lim}}(p) + D^{\text{lim}}(p), \]

\[\partial_t E_K^{\text{lim}}(p) = C^{\text{lim}}(p) + T_K^{\text{lim}}(p) + L^{\text{lim}}(p) + D^{\text{lim}}(p), \]

where \(T_A^{\text{lim}}(p) \) and \(T_K^{\text{lim}}(p) \) are spectral transfer terms due to nonlinear interactions, \(L^{\text{lim}}(p) \) is a spectral transfer term arising from the Coriolis term. Each of the other terms corresponds to a term in (5-6).

We first focus on the nonlinear term \(-\gamma(\theta^t, \mathbf{v} \cdot \nabla \theta^t)_{lm} \). From the expression of \(F_A(p) \) in equation (5), it is clear that the APE vertical flux can be written as

\[F_A^{\text{lim}}(p) = -\gamma(\theta^t, \omega \theta^t)_{lm}/2. \]

A simple method to obtain the spectral transfer term is to compute the complementary part of the nonlinear term

\[T_A^{\text{lim}}(p) = -\gamma(\theta^t, \mathbf{v} \cdot \nabla \theta^t)_{lm} + \gamma(\theta^t, \omega \theta^t)_{lm}/2. \]

It is straightforward to show that the sum over all spherical harmonics of \(T_A^{\text{lim}}(p) \) is equal to \(-\gamma(\nabla_h \cdot (\mathbf{u} \theta^t/2)/2) = 0 \), meaning that this transfer term is exactly conservative and only redistributes energy among the different spherical harmonics at a pressure level. The diabatic term, the conversion term and the APE diffusion term are

\[G^{\text{lim}}(p) = \gamma(\theta^t, Q^t)_{lm}, \]

\[C^{\text{lim}}(p) = -\langle \omega, \alpha \rangle_{lm}, \]

\[D_A^{\text{lim}}(p) = -\gamma(\theta^t, D \theta^t)_{lm}. \]

Using the continuity equation, the hydrostatic equation and the fact that the spherical harmonics are eigenfunctions
of the Laplace operator, the pressure term is separated into conversion and vertical flux:

\[-(u, \nabla_h \Phi)_{lm} = C^{(lm)}(p) - \partial_p (\omega, \Phi)_{lm}. \quad (21)\]

The total KE vertical flux is the sum of the pressure flux plus the turbulent KE flux

\[F^{lm}_{K T}(p) = -(\omega, \Phi)_{lm} - (u, \omega u)_{lm}/2. \quad (22)\]

The nonlinear KE spectral transfer is computed as the complementary part of the nonlinear terms

\[T_{K}^{lm}(p) = -(u, v \cdot \nabla u)_{lm} + \partial_p (u, \omega u)_{lm}/2, \quad (23)\]

which assures that it conserves energy at a pressure level. The horizontal advection of the horizontal velocity is computed using the relation \(u \cdot \nabla_h u = \nabla_h |u|^2/2 + \zeta e_z \times u \). A transfer term arises from the Coriolis term

\[L^{lm}(p) = -(u, f(\varphi)e_z \times u)_{lm} = (\psi, \text{rot}_h (f(\varphi)e_z \times u))_{lm} + (\chi, \text{div}_h (f(\varphi)e_z \times u))_{lm}. \quad (24)\]

At the \(f\)-plane, where \(f\) is constant and a Fourier decomposition is used, the corresponding term is zero. Using the definition of the Coriolis parameter \(f(\varphi) = f_0 \sin \varphi\) and splitting the velocity in rotational and divergent parts, one can show that

\[L^{lm}(p) = f_0 ((\psi, \sin \varphi d + \cos \varphi \partial_x \chi/a^2)_{lm} - (\chi, \sin \varphi \zeta + \cos \varphi \partial_x \psi/a^2)_{lm}). \quad (25)\]

This implies that the linear transfer does not involve rotational-rotational (or divergence-divergence) interactions.

To sum up, in contrast to the previous formulations, here, the APE budget is included, the exact three-dimensional advection is considered and the vertical flux terms and the horizontal spectral transfer terms are exactly separated. Moreover, the topography, which has been neglected in this section for clarity, can consistently be taken into account in the spectral analysis, as shown in appendix A.

2.4 Vertical integration, summation over zonal wavenumbers and cumulative summation over total wavenumbers

Since the density strongly varies with height in the atmosphere we prefer to include the density when we integrate spectral energies over layers, so that our quantities have the dimension of energy rather than energy per unit mass as in most other studies. With the formulation by Boer, this can be done easily even for pressure levels pierced by the topography. The vertically integrated KE spectrum is defined as

\[E^K[p]_{|p_l} = \int_{p_l}^p dp \sum_{-n \leq m \leq n} E^K_{lm}(p). \quad (26)\]

The vertically integrated nonlinear spectral flux of kinetic energy is defined as

\[\Pi^K[p]_{|p_l} = \sum_{n \geq 1} \int_{p_l}^{p_0} dp \sum_{-n \leq m \leq n} T^K_{lm}(p), \quad (27)\]

and the spectral flux of APE is defined in the corresponding way. When (14) and (15) are vertically integrated, divided by \(g\) and summed as in (27) over all the spherical harmonics with total wavenumber \(n \geq 1\), we obtain

\[
\partial_t \mathcal{E}^k[p]_{|p_l} = \mathcal{C}^k[p]_{|p_l} + \mathcal{I}^k[p]_{|p_l} + \mathcal{C}^l[p]_{|p_l} + \mathcal{I}^l[p]_{|p_l} - \mathcal{K}^k[p]_{|p_l} - \mathcal{K}^l[p]_{|p_l} - \mathcal{D}^k[p]_{|p_l} - \mathcal{D}^l[p]_{|p_l}, \quad (28)
\]

where the terms named \(\mathcal{F}_l[p](n) = \sum_{n \geq 1} F_l[n] \) are cumulative vertical fluxes and each of the other terms is an integrated cumulation of a corresponding term in (14) and (15). For example, \(\mathcal{E}^k[p]_{|p_l} = \sum_{n \geq 1} E^k[n]_{|p_l} \) is the cumulative kinetic energy and \(\mathcal{C}^k[p]_{|p_l} = \sum_{n \geq 1} C^k[n]_{|p_l} \) the cumulative conversion of APE into KE. Putting \(l = 0\) in equations (28) and (29) we recover equations (15) and (6) integrated between two pressure surfaces.

3 Application to two GCMs

3.1 Presentation of the data and the models

We have analyzed two data sets produced with two spectral GCMs: the Atmospheric GCM for the Earth Simulator (AFES) and ECMWF’s weather prediction model Integrated Forecast System (IFS). For a precise descriptions of both simulations, see [Hamilton et al., 2008] and [ECMWF, 2010], respectively. The two simulations and the two models are quite different. The AFES is a climate model using a spectral advection scheme. It has been run at high resolution for research purposes. The horizontal resolution is T639, which corresponds to a minimum wavelength of roughly 60 km. The model is formulated in sigma coordinates with 24 vertical levels from the ground to about 1 hPa leading to a vertical grid space corresponding to approximately 2 km in the high troposphere. [Takahashi et al., 2004] and [Hamilton et al., 2006] showed that the AFES reproduces many features of the atmospheric spectra, especially a realistic \(k^{-5/3}\) power law at the mesoscales. For each truncation wavenumber \(l_T\), the value of the horizontal hyperdiffusion coefficient \(c_{h}\) was adjusted by trial-and-error to produce power law spectra that agree with observations. However, for the runs at sufficiently large resolution (T639 and T1279) the existence of a distinct \(k^{-5/3}\) mesoscale range was shown to be independent of the hyperdiffusion employed. Moreover, [Takahashi et al., 2006] showed that the tuned horizontal hyperdiffusion coefficient scales with the truncation wavenumber as \(c_{h} \propto l_T^{-3/2}\). According to energy cascade phenomenology this coefficient should only depend on the energy flux \(\Pi\), through the inertial range, and the resolution scale so that the dissipation will take place at the smallest resolved scales and will

\[c_{h} \propto l_T^{-3/2}.\]
be approximately equal to Π. Dimensional considerations then give $\kappa_h \approx \Pi^{1/3} T^{10/3}$. This good agreement between the theoretical and the empirically determined scaling laws indicates that the $k^{-3/3}$ spectra in the AFES models are produced by a downslope energy cascade [Hamilton et al., 2008]. ECMWF IFS is a model developed and used for operational deterministic forecast. It uses a semi-Lagrangian advection scheme with a horizontal resolution T1279, which corresponds to a minimum wavelength of roughly 30 km. The model is formulated in hybrid coordinates with 91 vertical levels and a minimum pressure of 1 Pa. This leads to a vertical grid space corresponding to approximately 500 m in the high troposphere. A semi-implicit time scheme makes it possible to run this model with a much larger time step (600 s) than the one used for the AFES T639 model (100 s). The AFES and the ECMWF simulations correspond to June and December, respectively. We have averaged over 10 days (40 times) for the AFES data set and over 25 days (5 different times) for the ECMWF data set. The time variations of the spectra and of the terms involved in the spectral energy budget are not very large, such that averages over such limited statistics represent the important features of the models, especially at the mesoscales for which a statistical convergence seems to be achieved. Other computations for the ECMWF model for August have shown that seasonality can not explain the main differences between the models.

The AFES data are already linearly interpolated from the model levels and consist of the horizontal velocity, the pressure and temperature at pressure levels. The geopotential is computed by integrating the hydrostatic relation from the ground. The ECMWF data are raw data from the model outputs. They contain the vorticity, the divergence, the pressure velocity and the temperature at hybrid vertical levels. We compute horizontal velocity and the geopotential and then linearly interpolate the data at pressure levels. The interpolation method is thus the same for both models. Since we do not have access to the heating rate and to the total dissipative terms, the APE forcing $G[l]_{\text{ps}}$ and the dissipative terms $D_K[l]_{\text{ps}}$ and $D_A[l]_{\text{ps}}$ have not been computed. Since the surface fluxes are modeled in a GCM, we focus on the vertical flux at pressure levels not pierced by the topography. Finally, we have computed the terms $C[l]_{\text{ps}}$, $\Pi_K[l]_{\text{ps}}$, $\Pi_A[l]_{\text{ps}}$ and $L[l]_{\text{ps}}$ for all levels and the vertical fluxes $F_{\text{KE}}[l](p)$ and $F_{\text{AE}}[l](p)$ for pressure levels not pierced by the topography. The spectral flux arising from the Coriolis term $L[l]_{\text{ps}}$ is completely negligible at wavenumbers $l \geq 10$, consistent with previous computations by Koshyk and Hamilton (2001). At larger scales, it is not negligible and is quite similar for both models. The Coriolis strength leads to a positive vertically integrated spectral flux of the order of 1 W/m² from $l \approx 2$ to $l \approx 6$ with dominant contribution from the stratosphere. The linear flux $L[l](p)$ is small in the troposphere for all wavenumbers. Since our main interest here is the dynamics of the mesoscales and for clarity, this spectral flux is not included in the figures.

3.2 Vertically integrated spectral energy budget

Figure 1(a) presents the globally integrated spectral fluxes and cumulative conversion for the AFES model. When vertically integrated over the total height of the atmosphere these quantities are simply denoted $\Pi_K[l]$, $\Pi_A[l]$ and $C[l]$, i.e., without the top and bottom pressures in subscript and exponent. By construction the fluxes are equal to zero at $l = l_{\text{max}}$ and should also be equal to zero at $l = 0$, since they represent conservative processes. The total spectral flux (black thick line) is positive at all wavenumbers, which means that in average, the energy is transferred toward large wavenumbers. At leading order, energy is forced at the very large planetary scales and dissipated at smaller scales, and a substantial part is dissipated at the smallest scales simulated.

However, the total spectral flux has a somewhat intricate shape. It reaches a maximum equal to 1.3 W/m² around $l = 4$, decreases to 0.55 W/m² at $l \approx 20$, increases again to reach a plateau between $l \approx 70$ and $l \approx 200$ where $\Pi[l] \approx 0.82$ W/m² before dropping down to zero at the largest wavenumbers. At $l < 15$, the total flux is largely dominated by the APE spectral flux (blue line), which also increases abruptly around $l = 2$ and decreases abruptly between $l = 6$ and $l = 20$. This indicates that there is a transfer of APE from wavelengths of the order of 10000 km to wavelengths between 2000 km and 5000 km. The strong decrease of $\Pi_A[l]$ is associated with a strong increase of the KE spectral flux (red line) and a strong decrease of the cumulative conversion (dashed dotted line) from $C[l] = 1.13$ W/m² to $C[l] = -0.14$ W/m². The amount of energy which is converted from APE to KE in the wavenumber range $[l_1, l_2]$ is equal to $\Delta C \equiv C[l_1] - C[l_2]$. (Note here the non-standard definition of the difference operator Δ.) Therefore, the strong decrease of the cumulative conversion over the range of wavelengths between 1000 km to 5000 km corresponds to a conversion of APE to KE of $\Delta C \approx 1.27$ W/m². This large conversion at the synoptic scales and the spectral transfer of APE from the planetary scales toward the synoptic scales are mainly due to the baroclinic instability. It is interesting to compare these results with the spectral energy budget of an equilibrated Eady flow [Molemaker and McWilliams, 2010]. The general picture is very similar with a dominance of the APE flux at large scales and a stronger KE flux at small scales. The increase of the total nonlinear flux at wavelengths between 700 km to 2000 km indicates that there is a direct forcing of APE at these scales, most probably due to latent heat release organized at large scales. This interpretation is consistent with results by Hamilton et al. (2008), who reported spectral magnitude at the mesoscales much smaller for the dry dynamical core than for the full AFES.

As already shown, the KE is mainly forced (by a conversion of APE) over a range of wavelengths between 1000 km to 5000 km. At larger scales, the KE spectral flux is negative and reaches a minimum value approximately equal to -0.5 W/m². A portion of the KE is transferred upscale, toward the planetary scales, and feeds the large-scale zonal winds. At smaller scales, the KE spectral flux reaches a plateau at 0.62 W/m². This shows that a non-negligible
portions of the KE cascades toward small scales at the mesoscales. The value 0.62 W/m², which after conversion gives 6.1 x 10⁻⁵ m²/s³, is consistent with previous estimates for the KE spectral flux and for the small-scale dissipation rate (Cho and Lindborg, 2001). Remarkably, the cumulative conversion C[l] increases at the large mesoscales (the local conversion is negative), showing that the conversion is from KE to APE. This demonstrates that the KE k⁻⁵/₃ spectrum is not produced by direct forcing of the KE. Note that this conversion from KE to APE is consistent with strong stratified turbulence.

The nonlinear KE spectral flux computed only with the rotational flow, Πrot, is plotted as a red dotted line. The interactions between the rotational modes conserve both KE and enstrophy (|∇h x u|^2/2), exactly as in two-dimensional turbulence. Note that Πrot[l] is the spectral flux computed when the framework based on the two-dimensional vorticity equation is adopted, as for example in Boer and Shepherd (1983). We see that these interactions are responsible for the upscale flux, which actually starts at wavelengths of the order of 2000 km. In contrast, the complementary flux, ΠK[l]−Πrot[l], (red dashed line) is responsible for the downscale energy flux which starts at wavelengths of 3000 km. Indeed, the downscale energy cascade is produced by interactions involving the divergent part of the velocity field (Volek et al., 2013; Deusebio et al., 2013).

As shown by Lambert (1984), the variations of the cumulative conversion at very small wavenumber l < 8 are due to the Hadley and Ferrel circulations. The decrease of C[l] at l = 2 corresponding to a conversion of APE to KE of approximately 0.6 W/m² is mainly the signature of the Hadley cell. The increase of C[l] at l = 4 corresponding to a conversion of KE to APE of approximately 0.5 W/m² is mainly the signature of the Ferrel cell. The conversion at l = 2 is weaker than previously computed by Lambert (1984). Further investigations are necessary to understand if this effect is due to averaging over an insufficient amount of data or if it is a robust aspect of the AFES.

Figure 1(b) presents the globally integrated spectral fluxes and cumulative conversion as in figure 1(a) but for the ECMWF model. The planetary-scale features are overall quite similar to the results for the other model even though the conversion at wavenumbers smaller than 4 corresponding to the Hadley cell is much stronger (∆C ≃ 1 W/m²). The total conversion C[l = 0] is equal to 2.9 W/m², consistent with results by Boer and Lambert (2008) who computed averaging over a more longer time a total conversion for the ECMWF model of 3.1 W/m². The baroclinic instability leads to large-scale positive APE flux and strong conversion at the synoptic scales ∆C ≃ 1.5 W/m². However, the KE flux increases much less than for the AFES, indicating that there is strong dissipation at wavelengths of the order of 2000 km. The total spectral flux for the AFES is also plotted in dashed black line for comparison. The total flux for the ECMWF model is slightly smaller than for the AFES at the synoptic scales and is negative and very small at the mesoscales. This is related to the weakness of the downscale mesoscale KE cascade (ΠK[l] ≃ 0.15 W/m²) and to the fact that the APE flux is negative (ΠA[l] ≃ −0.3 W/m²). This unexpected result could be due to direct forcing of APE by release of latent heat at the smallest resolved scales of the order of 50 km. This interpretation is consistent with the sign of the local conversion at the mesoscales, from APE to KE, in contrast to the case of the AFES.

We shall now present a quantitative comparison between the two models. In a stationary state, the amount of KE which is dissipated in a wavenumber range [l₁, l₂] can be estimated as

$$\Delta D_K \simeq \Delta C + \Delta \Pi_K,$$

(30)

where ∆C ≡ C[l₁] − C[l₂] is the amount of APE converted to KE in the range [l₁, l₂] and ∆ΠK ≡ ΠK[l₁] − ΠK[l₂] is the net amount of energy going into the range [l₁, l₂] by
the nonlinear fluxes at \(l_1 \) and \(l_2 \). The effective forcing of APE can be evaluated in the corresponding way as

\[
\Delta G - \Delta D_A \simeq \Delta C - \Delta \Pi_A. \tag{31}
\]

Finally, the effective total forcing can be evaluated as

\[
\Delta G - \Delta D \simeq - \Delta \Pi, \tag{32}
\]

where \(\Delta D[l] = \Delta K[l] + \Delta A[l] \) is the total energy dissipation and \(\Pi[l] \) the total energy spectral flux. Any increase (respectively decrease) of the total energy flux implies a net positive (respectively negative) forcing of the total energy.

Table 1: Quantitative energy budget for the range of wavenumbers going from \(l_1 = 12 \) to \(l_2 = 40 \), i.e., for wavelengths between 1000 km and 3200 km corresponding approximately to the synoptic scales, for the AFES and the ECMWF models. All values are in W/m². The quantities \(\Delta C, \Delta K, \Delta A \) and \(\Delta \Pi \) are directly obtained from figure 1. The other quantities are evaluated using the equations \([30][32]\).

	AFES	ECMWF
\(\Delta C \)	0.73	1.23
\(\Delta \Pi_K \)	-0.63	-0.51
\(\Delta \Pi_A \)	0.54	1.83
\(\Delta \Pi \)	-0.09	0.32
\(\Delta D_K \)	0.10	0.72
\(\Delta G - \Delta D_A \)	0.19	0.41
\(\Delta G - \Delta D \)	0.09	-0.31

Table 2: Same as table 1 but for \(l_2 \) equal to the largest wavelength resolved by the model and for \(l_1 = 100 \), which corresponds to a wavenumber of approximately 400 km. This range of wavenumbers includes the mesoscales and the smallest length scales resolved by the models.

	AFES	ECMWF
\(\Delta C \)	-0.13	0.11
\(\Delta \Pi_K \)	0.62	0.13
\(\Delta \Pi_A \)	0.19	-0.30
\(\Delta \Pi \)	0.81	-0.17
\(\Delta D_K \)	0.48	0.24
\(\Delta G - \Delta D_A \)	-0.32	0.41
\(\Delta G - \Delta D \)	-0.81	0.17

Table 1 summarizes the main differences between the two models in terms of the energy budget of the synoptic scales, with \(l_1 = 12 \) and \(l_2 = 40 \), corresponding to wavelengths between 1000 km and 3200 km. The most important difference for these scales is the amount of kinetic energy dissipation, \(\Delta D_K \), which is equal to 0.10 W/m² for the AFES model and to 0.72 W/m² for the ECMWF model. As already mentioned, the ECMWF model is very dissipative at the synoptic scales. We have verified that a large part of this synoptic-scale dissipation takes place in the free atmosphere, i.e., far from the surface. This unexpected and anomalous result could explain the lack of downscape energy cascade at the mesoscales observed for this model. For both models, there is a net positive effective forcing of APE, \(\Delta G - \Delta D_A \), which is the signature of release of latent heat organized at the synoptic scales. For the AFES, this release of latent heat is larger than the KE dissipation (\(\Delta G - \Delta D > 0 \)), which leads to an increase of the total energy flux \(\Pi[l] \). In contrast, for the ECMWF model the KE dissipation is larger than the effective forcing of APE (\(\Delta G - \Delta D < 0 \)) so that the total flux decreases to approximately zero at \(l = 1000 \).

Table 2 presents a similar energy budget as table 1 but for \(l > 10 \), i.e., for the mesoscales and the smallest length scales resolved by the models. Only a small fraction (0.24 W/m²) of the total KE dissipation (\(\Pi[0] = 2.9 \) W/m²) takes place at these scales for the ECMWF model whereas these scales account for a significant part of the KE dissipation for the AFES. Remarkably, the net APE forcing \(\Delta G - \Delta D_A \) is negative for the AFES (-0.32 W/m²) and positive for the ECMWF model (0.41 W/m²). In this model, the APE and the KE are directly forced at small scales by latent heat release and conversion characterized by a weak spatial coherence.

3.3 Vertically integrated non-dimensional spectra

If it is assumed that the \(l^{-5/3} \) range of the kinetic energy spectrum is of a similar form as the Kolmogorov spectrum of isotropic turbulence, then \(E_K \propto \Pi_K^{2/3}l^{-5/3} \). If it is further assumed that the only other parameters that determine the spectrum are the radius of the Earth, \(a \), and the total mass per unit area, which is equal to \(\langle p_s \rangle / g \), then dimensional considerations give

\[
E_K[l] = C(\langle p_s \rangle / g)^{1/3}(a \Pi_K)^{2/3}l^{-5/3}, \tag{33}
\]

where \(C \) is a constant supposedly of the order of unity. In the following, we choose as the typical KE flux the maximum of the KE flux: \(\bar{\Pi}_K = \max(\Pi_K) = 0.62 \). (This value is marked by a cross in figure 1.ii.) In figure 2(a) the non-dimensional compensated spectra \(\bar{E}[l]^{5/3}(\langle p_s \rangle / g)^{-1/3}(a \Pi_K)^{-2/3} \) for the AFES model are plotted as a function of the total wavenumber. At \(l = 1 \), the APE spectrum (blue line) is much larger than the KE spectrum (red line), as predicted by \textit{Lorenz} (1954). This leads to a ratio mean APE over mean KE approximately equal to 3. However, for other wavenumbers (except at the largest ones), both spectra are of the same order of magnitude. At the synoptic scales, the KE spectrum is quite steep. It shallows at the mesoscales and presents a flat plateau corresponding to a \(l^{-5/3} \) inertial range from 650 km up to the large-wavenumber dissipative range. Remarkably, the constant \(C \) in equation \([33]\) is very close to unity, which indicates that the \(l^{-5/3} \) mesoscale range may be explained in a similar way as \textit{Kolmogorov} (1941) explained the \(k^{-5/3} \) range of isotropic turbulence. At wavelengths between 700 km to 2000 km, the APE spectrum (blue line) is equal to or larger than the KE spectrum and there are fluctuations resembling noise. However, the fluctuations do not seem related to lack of statistics. They could be due to the direct forcing of APE at this scales (see figure 1.ii).
In figure 2 are also plotted the rotational spectrum $E_{rot}[l]$ and the divergent spectrum $E_{div}[l]$ computed as in (13). At large scales, the rotational spectrum $E_{rot}[l]$ (dashed red line) totally dominates over the divergent spectrum $E_{div}[l]$ (dashed dotted red line). Remarkably, the compensated divergence spectrum increases with l, meaning that $E_{div}[l]$ is shallower than a $l^{-5/3}$ power law. Such very shallow divergent spectra were also obtained by simulations of strongly stratified and strongly rotating turbulence forced in geostrophic modes (Densebo et al., 2013) and of strongly stratified turbulence forced with rotational modes (Augier et al., 2013). However, other simulations with higher resolution would be necessary in order to check whether the divergent spectra are sensitive to model parametrizations and resolution. At the mesoscales, both spectra are of the same order of magnitude even though $E_{rot}[l]$ is larger than $E_{div}[l]$.

Figure 2(b) shows the non-dimensional compensated spectra for the ECMWF model (we use the same value as for the AFES of Π_K in order to allow an easier comparison between both models). The planetary-scale features are quite similar to the AFES. At the synoptic scales, the ratio $E_K[l]/E_A[l]$ is approximately equal to 2, indicating that the energy is partitioned equally between the two components of KE and the APE, as predicted by Charney (1971). In contrast to the KE spectrum, the APE spectrum becomes more shallow at high wavenumbers. This is probably due to direct forcing of APE at the mesoscales. Interestingly, the compensated divergent spectrum is flat, which means that it follows a $l^{-5/3}$ power law. However, its magnitude is very small so that the vertically integrated KE spectrum at the mesoscales is nearly unaffected. It is interesting to note the similarity with the $k^{-5/3}$ divergent spectra obtained by Waite and Snyder (2009) simulating a baroclinic life cycle.

3.4 Vertical decomposition and vertical energy fluxes

Figure 3 presents the spectral fluxes and the cumulative conversion integrated over two different layers corresponding approximately to the upper troposphere (a,b) and the stratosphere (c,d). Figures (a,c) correspond to the AFES T639 simulation and figures (b,d) to the ECMWF IFS T1279 simulation. Figure 3 also presents the cumulative total vertical fluxes, $\mathcal{F}_t[l](p_b)$, at the bottom, and $\mathcal{F}_t[l](p_t)$, at the top of the layer (magenta dashed and dashed-dotted lines, respectively). The balance between these two inward and outward terms, $\Delta \mathcal{F}_p[l](p_b) = \mathcal{F}_t[l](p_b) - \mathcal{F}_t[l](p_t)$, is plotted in magenta as a continuous line.

For the AFES simulation, the spectral fluxes and the cumulative conversion integrated over the upper troposphere (figure 3a) present roughly the same features as the globally integrated terms shown in figure 1(a). The KE flux in the upper troposphere accounts for approximately one third of the globally integrated KE spectral flux. The cumulative vertical flux $\Delta \mathcal{F}_p[l]$ is relatively small at the mesoscales and at the synoptic scales, indicating that at leading order, the energy budget in this layer and at these scales is dominated by the spectral fluxes rather than by the vertical fluxes. However, at the top and the bottom of the layer, there are large vertical fluxes which are approximately equal. These fluxes through the upper troposphere (upward at wavenumbers $7 \leq l \leq 20$ and downward at wavenumbers $3 \leq l \leq 6$) account for exchanges of energy between the lower troposphere and the stratosphere. At wavenumbers $1 \leq l \leq 2$, $\mathcal{F}_t[l](p_t)$ decreases from 0.8 W/m² to 0 W/m² indicating a strong upward vertical flux at $p_t = 233$ hPa. Since the vertical flux at the bottom layer is small at these wavenumbers, the layer loses energy. The wavenumber ranges of the upward and downward fluxes at the planetary scales nearly coincide with the wavenumber ranges of the conversion due to the Hadley and Ferrel cells, which seems to indicate that these vertical fluxes are related to the large-scale cells. In contrast, the upward flux at the synoptic scales indicates the presence of upward propagating planetary waves. At $l > 70$, $\mathcal{F}_t[l](p_b)$ and $\mathcal{F}_t[l](p_t)$ increase meaning that there is a downward vertical flux at these scales. This shows that in the AFES, the mesoscales of the upper troposphere are not directly forced by upward propagating gravity waves, as was the case in the simulation by Koshyk and Hamilton (2001) using the SKYHI model.

Figure 3(b) presents the same quantities as figure 3(a), also integrated over the upper troposphere but for the ECMWF model. Comparing figures 3(a) and 3(b), we see the same differences as we saw between figures 1(a) and 1(b). The vertical fluxes are also quite different from the AFES with small upward fluxes at the mesoscales and a smaller magnitude of the variations of the cumulative fluxes at large scales.

Figure 3(c) shows the same quantities as figure 3(a), also for the AFES but integrated over the stratosphere. At the large scales, the spectral fluxes and the cumulative conversion are quite different from the terms integrated over the height of the atmosphere and over the upper troposphere. The APE flux has no large peak at $l \approx 4$ and there is a conversion from KE to APE at synoptic scales rather than the other way around, as in the upper troposphere. On the other hand, there is a strong upward energy flux at large scales from the bottom layer at $p_b = 233$ hPa while the corresponding flux at the top layer at $p_t = 15$ hPa is very small. Thus, the stratosphere is not directly forced by baroclinic instability but by an energy flux from the troposphere, due to upwards propagating planetary waves and possibly also the effects of the Hadley and the Ferrel cells (see figure 3). At the mesoscales, there is a conversion of KE into APE and a strong downscale cascade of KE and APE accounting for approximately half the globally integrated flux. At $l > 80$, $\Delta \mathcal{F}_p[l] \simeq \mathcal{F}_t[l](p_b)$ increases, meaning that the stratosphere loses energy by a downward flux through the tropopause.

Figure 3(d) presents the same quantities as figure 3(c), also integrated over the stratosphere but for the ECMWF model. Note that the vertical axis is different from figure 3(c). In contrast to the AFES, the downscale energy cascade is very small and the stratospheric mesoscales are directly forced by an upward energy flux.
Figure 2: Non-dimensional compensated spectra versus total wavenumber for (a) the AFES T639 simulation and (b) the ECMWF IFS T1279 simulation. The black dashed line represents the prediction with $\Pi_{K} = 0.62$ (value marked by a cross in figure (a)). The continuous straight line indicates the l^{-3} power law.

Figure 3: Same as figures 2 but integrated over layers corresponding approximately to (a,b) the stratosphere and (c,d) the upper troposphere. Figures (a,c) correspond to the AFES T639 simulation and figures (b,d) to the ECMWF IFS T1279 simulation. The legend is given in (a) and $\Delta_{p_1}^{p_2}\mathcal{F}_{r}[l] = \int_{p_1}^{p_2} \mathcal{F}_{r}[l] dp$ is the cumulative inward vertical flux.
Figure 4 presents the KE and APE spectra integrated over three layers corresponding approximately to the lower troposphere, the upper troposphere and the upper atmosphere. The straight black lines indicate the l^{-3} and $l^{-5/3}$ dependencies as guides for the eye. Note that the axes and the straight lines are exactly the same in (a) and (b).

4 Conclusions

A new formulation of the spectral energy budget has been presented and applied to study the results of two different GCMs. In contrast to previous formulations, both KE and APE are considered and the topography is taken into account. Moreover, the advection terms are exactly separated into transfer of energy and vertical flux and the pressure term is exactly separated into adiabatic conversion and vertical flux.

The spectral fluxes show that the AFES, which produces realistic $k^{-5/3}$ KE spectra at the mesoscales, simulates a strong downslope energy cascade of $\Pi[l] \approx 0.8 \text{ W/m}^2$. The vertical fluxes for the upper troposphere show that the mesoscales are not directly energized by gravity waves propagating from the ground. Moreover, the spectra collapse on the prediction based on the existence of the cascade, indicating that the mesoscale $k^{-5/3}$ power law is due to the downscale energy cascade. In contrast, neither the $k^{-5/3}$ KE spectrum nor the downscale energy cascade are produced by the ECMWF model. The analysis of the spectra and their tendencies integrated over different layers reveals that in the ECMWF, the stratospheric mesoscales are directly forced by gravity waves propagating from the troposphere. In contrast to this, the stratospheric spectra of the AFES are forced by the downscale energy cascade and at the mesoscales, gravity waves produced in the stratosphere propagate to the troposphere.

These results show that our spectral energy budget formulation is a convenient tool to investigate the issue of the mesoscale dynamics and its simulation by GCMs. In particular, we have shown that the flux computed only with the rotational part of the velocity field Π_{rot} (as i.e., in Fjørtoft, 1953; Boer and Shepherd, 1983) accounts only for the upscale KE flux. Since the downscale energy cascade is pro-
duced by interactions involving the divergent part of the velocity field \cite{Vallgren2011, Dusebho2013, Molemaker2010}, one must consider the nonlinear transfers computed with the total advection term. To do this in a consistent way, the advection terms in the spectral energy budget have to be split as shown in section 2.

Our results raise many interesting questions. In particular, we have shown that the two studied models simulate very different dynamics at the mesoscales. The AFES model reproduces a downscale energy cascade at the mesoscales, whereas such a cascade is absent in the ECMWF model. One important difference between the two models is the vertical resolution. The vertical grid space in the high troposphere in approximately 500 m for the ECMWF model and 2 km for the AFES model. A coarser resolution should be a drawback for simulating the mesoscale dynamics, both gravity waves and strongly stratified turbulence. The ECMWF model can simulate gravity waves with smaller vertical resolution than those simulated by the AFES model. Stratified turbulence is very demanding and requires very different dynamics at the mesoscales. The question is then, how is it possible that any of these two models is able to simulate a downscale energy cascade? Our tentative answer to this question is that vertical resolution does not seem to be very critical in order to reproduce a downscale energy cascade, because such a cascade seems to be a very general property of rotating and stratified hydrodynamic systems which are not too close to the quasigeostrophic regime. That a downscale energy cascade emerges in such systems has been demonstrated in recent simulations \cite{Molemaker2010} that do not have extremely fine vertical resolution. Dynamically, the downscale cascade is characterized by the importance of the interactions involving ageostrophic modes. This raises the question of how ageostrophic motions at scales of the order of thousands of kilometers are produced from geostrophic motions at large scales. In particular, the baroclinic instability does not produce ageostrophic motions. Our results indicate that other ageostrophic instabilities are active and very important in the AFES model.

In subsection 33.2, we have discussed the energy budget of the synoptic scales (see table 1). We have shown that the ECMWF model is very dissipative, even at these very large scales. In the atmosphere, the dissipation takes place at scales of the order of one centimeter or smaller. In a GCM, dissipation, namely loss of energy at resolved scales, has to correspond to physical processes transferring energy to unresolved scales. It seems unlikely that physical processes could account for such large highly non-local transfer from the synoptic scales to the unresolved scales, which are relatively small for the ECMWF T1279L91 model. This indicates that the synoptic-scale dissipation for the ECMWF model is too large. Since energy is removed at the synoptic scales, it is not available to feed the downscale energy cascade. Our interpretation of the data analysis is that the ECMWF model does not simulate the downscale cascade at the mesoscales because of an excessive dissipation at the synoptic scales. If this interpretation is correct, a decrease of the dissipation at the synoptic scales would have strong consequences in terms of the mesoscale dynamics. Thus, it would be important to understand why the ECMWF model is so dissipative at the synoptic scales. One explanation could be numerical dissipation related to the semi-Lagrangian semi-implicit scheme. However, it seems unlikely that the numerical scheme could account for such large dissipation at scales approximately 200 times larger than the typical horizontal grid scale, which is equal to 16 km. Therefore, it would be interesting to explicitly compute the dissipation spectrum of all non-conservative terms related to e.g. the turbulent scheme and the wave drag.

Future investigations could also compare different models varying the resolution, the convection schemes, the advection scheme and the turbulent models. It would be desirable to analyze simulations over long periods to obtain better statistical convergence at large scales. It could be informative to analyze idealized simulations using dry dynamical core and/or aquaplanet versions of the models with variation of physical parameters such as the rotation rate and the large-scale forcing. Other interesting aspects for future work are the consideration of the effects of the water content and the adaptation of the formulation for non-hydrostatic simulations.

We wish to thank Kevin Hamilton and Nils Wedi for providing the data. We thank Kevin Hamilton for showing nice hospitality in Hawaii, Erland Källén and Nils Wedi for inviting us to ECMWF where we had interesting discussions and Nathanael Schaeffer for providing his library for spherical harmonic transform SHTs \cite{Schaeffer2013}.

Appendix A Technical details on topography in p-coordinates

Following \cite{Boer1982}, the equations are extended over a domain including subterranean pressure levels. For any function $f(x_h, p)$ whose values below the surface have been obtained by interpolation, we define a corresponding function $\tilde{f}(\mathbf{x}_h, p) = \beta(x_h, p)f(x_h, p)$, where $\beta(x_h, p) = H(p_\rho(x_h) - p)$ and H is the Heaviside function. In the extended domain, the boundary condition at the Earth surface is expressed as $D_t \beta = 0$, with $D_t = \partial_t + \mathbf{v} \cdot \nabla$. Using the chain rules $\partial_t \beta = \delta \partial_t p_\rho$, $\nabla_h \beta = \delta \nabla_h p_\rho$ and $\partial_p \beta = -\delta$, we recover the classical boundary condition for the atmospheric domain in pressure coordinates: $D_t \beta = \delta(\partial_t p_\rho + \mathbf{u} \cdot \nabla_h p_\rho - \omega_s) = 0$, where $\delta = \delta(p_\rho - p)$ is the Dirac distribution with impulse at the surface. Note that taking into account the topography has of course no influence for the high troposphere and the stratosphere. However, the increase of the accuracy is important for the lower troposphere, especially through the computation of the representative mean temperature without using interpolated subterranean data.

For each pressure level, even those pierced by the troposphere,
pography, the spectral energy functions are defined as
\[E_{K}^{(lm)}(p) = \frac{(\bar{\mathbf{u}}, \bar{\mathbf{u}})_{lm}}{2} \quad \text{and} \quad E_{A}^{(lm)}(p) = \frac{\gamma(p)(\bar{\theta}^{2}_{lm}(p))^2}{2}. \]

The spectral energy budget is derived as in section 2, i.e., using the relations \(\partial_{t}E_{K}^{(lm)}(p) = (\bar{\mathbf{u}}, \partial_{t}\bar{\mathbf{u}})_{lm} \) and \(\partial_{t}E_{A}^{(lm)}(p) = \gamma(p)(\bar{\theta}^{2}, \partial_{t}\bar{\theta})_{lm} \). For levels pierced by the topography, a surface term arises from the pressure term \((\bar{u}, \beta \nabla p_{s} \Phi)_{lm}\), and can be expressed as
\[S_{(lm)}(p) = -\left(\bar{\mathbf{u}}, \partial_{t} \Phi_{s}\right)_{lm} - (\delta \mathcal{D}_{s} \Phi_{s})_{lm} + (\bar{\mathbf{u}}, \delta \Phi_{s} \nabla p_{s} \Phi)_{lm}, \tag{34} \]

The sum over all spherical harmonics of \(S_{(lm)}(p) \) is equal to the surface term \(S(p) \) in equation (4). However, the term \(S_{(lm)}(p) \) is difficult to evaluate and has not been computed. The expressions of the other terms are very similar as those derived in section 2. The nonlinear transfers can be written as
\[T_{K}^{(lm)}(p) = -\left(\bar{\mathbf{u}}, \mathbf{u} \cdot \nabla_{h} \bar{\mathbf{u}} + d \bar{\mathbf{u}} / 2\right)_{lm} + \left(\partial_{t} \bar{\mathbf{u}}, \mathbf{u} \cdot \nabla_{h} \bar{\theta} + d \bar{\theta} / 2\right)_{lm} / 2, \tag{35} \]
\[T_{A}^{(lm)}(p) = -\gamma(\bar{\theta}, \mathbf{u} \cdot \nabla_{h} \bar{\theta} + d \bar{\theta} / 2)_{lm} + \gamma(\partial_{t} \bar{\theta}, \mathbf{u} \cdot \nabla_{h} \bar{\theta} + d \bar{\theta} / 2)_{lm} / 2. \tag{36} \]

The linear transfer arising from the Coriolis strength is
\[L^{(lm)}(p) = f_{0}(\bar{\psi}, \sin \varphi \text{div}_{h}(\mathbf{u}) + \cos \varphi \partial_{y} \bar{\chi})_{lm} + (\bar{\chi}, \sin \varphi \text{rot}_{h}(\mathbf{u}) - \cos \varphi \partial_{x} \bar{\psi})_{lm}, \tag{37} \]
where \(\bar{\psi} \) and \(\bar{\chi} \) are the stream function and velocity potential computed from \(\bar{\mathbf{u}} \). The diabatic term, the conversion term and the diffusion terms are
\[G^{(lm)}(p) = \gamma(\bar{\theta}, \bar{Q}_{s})_{lm}, \tag{38} \]
\[C^{(lm)}(p) = -\left(\bar{\mathbf{u}}, \partial_{t} \Phi_{s}\right)_{lm}, \tag{39} \]
\[D_{K}^{(lm)}(p) = -\left(\bar{\mathbf{u}}, \beta D_{A} \mathbf{u}\right)_{lm}, \tag{40} \]
\[D_{A}^{(lm)}(p) = -\gamma(\bar{\theta}, \beta D_{A} \partial_{t} \theta)_{lm}. \tag{41} \]

The vertical fluxes and the non-conservative term can be computed as
\[F_{K}^{(lm)}(p) = -\left(\bar{\mathbf{u}}, \bar{\Phi}\right)_{lm} - (\bar{\mathbf{u}}, \omega \bar{\mathbf{u}})_{lm} / 2, \tag{42} \]
\[F_{A}^{(lm)}(p) = -\gamma(\bar{\theta}, \bar{\omega})_{lm} / 2, \tag{43} \]
\[j^{(lm)}(p) = -\partial_{t} \log \gamma F_{A}^{(lm)}(p). \tag{44} \]

In practice, computing the spherical harmonics transform of \(\bar{\mathbf{u}} = \beta \mathbf{u} \) is not numerically feasible at pressure levels pierced by the topography, i.e., where \(\beta \) is equal to 1 or to 0. We must use a modified smooth \(\beta \). Moreover, the spherical harmonic transform of \(\bar{\mathbf{u}} = \beta \mathbf{u} \) should not reflect the spectral content of the topography rather than that of \(\mathbf{u} \). Therefore, it is convenient to use an alternative \(\beta \) computed with a time-averaged pressure surface \(\mathcal{T}_{\infty}(\mathbf{x}_{s}, t) \) \citep{Boe}. A smooth low-pass filter with a cutoff total wavenumber equal to 40 is then applied to this function \(\mathcal{T}(\mathbf{x}_{s}) - p \). As a consequence, a large part of the interpolated subterranean data (mainly under the large topographic highs, i.e., Antarctic continent, Himalaya and Andean mountain ranges) are not used in the calculations, but the spectral quantities at relatively high wavenumbers are not affected by the high wavenumber content of the topography.

Appendix B Total energy conservation and APE

In this appendix, we investigate the meaning of the surface term appearing in equation (5) and show how equations (5) can be related to the total energy conservation. Neglecting all diabatic processes, it is straightforward to derive the local conservation equation
\[\partial_{t}(E_{K} + H) = -\nabla \cdot (\mathbf{v} \Phi), \tag{45} \]
with \(E_{K}(\mathbf{x}_{h}, p) = |\mathbf{u}|^2 / 2 \). By computing \(\partial_{t}(\beta(E_{K} + H)) \), we obtain an equation which is valid over a domain including subterranean pressure levels
\[\partial_{t}(\tilde{E}_{K} + \tilde{H}) = -\mathbf{v} \cdot (\Phi \mathbf{v}) = -\mathbf{v} \cdot (\tilde{\Phi} \mathbf{v}) + \Phi \mathbf{v} \cdot \nabla \beta. \tag{46} \]
Taking the horizontal mean and integrating over pressure gives
\[\partial_{t} \int_{0}^{\infty} (\tilde{E}_{K} + \tilde{H}) dp = -\partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g, \tag{47} \]
where we have used the relations \(\Phi \mathbf{v} \cdot \nabla \beta = -\Phi \partial_{t} \beta = -\delta \Phi \partial_{t} p_{s} \) and the fact that \(\Phi_{s}(\mathbf{x}_{h}) \) is not a function of time.

Using the hydrostatic equation, it can be shown that \(E_{I} + \Phi = H + \partial_{t} (p \Phi) \), which after integration gives
\[\partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g = \partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g, \tag{48} \]
where \(E_{I} \) is the internal energy per unit mass. Substituting this result into (47) finally gives the total energy conservation equation
\[\partial_{t} \int_{0}^{\infty} (\tilde{E}_{K} + \tilde{E}_{I} + \tilde{H}) dp / g = 0. \tag{49} \]

Note that (47) and (48) can be rewritten as
\[\partial_{t} \int_{0}^{\infty} (\tilde{E}_{K}) dp / g = \int_{0}^{\infty} C(p) dp / g - \partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g, \tag{50} \]
\[\partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g = -\int_{0}^{\infty} C(p) dp / g + \partial_{t} \int_{0}^{\infty} (\tilde{E}_{I} + \tilde{H}) dp / g, \tag{51} \]
which shows that the term \(\partial_{t} \int_{0}^{\infty} (\Phi_{s} p_{s}) / g \) can be interpreted as a conversion of \(E_{K} \) into \(E_{I} + \Phi \). Using the hydrostatic equation we find that \((\Phi_{s} p_{s}) / g = (\Phi_{s} \rho_{h}) \), where \(\rho_{h}(\mathbf{x}_{h}, t) \) is the mass per unit area of the total depth of the atmosphere. Thus, \((\Phi_{s} p_{s}) / g \) may be interpreted as the mean potential energy per unit area of an atmosphere where the centre of mass of each air column has been moved to the ground. This quantity can change only if the density distribution is changed with respect to topography, so that high or low density air on average is moved to high or low topography regions.
The sum of equations (5) and (6) integrated over pressure is
\[
\partial_t \int_0^\infty (\tilde{E}_K + \tilde{E}_A)dp/g = \int_0^\infty (S(p) + J(p))dp/g,
\]
\[
= -\partial_t \langle \Phi_s p_s \rangle / g + \int_0^\infty J(p)dp/g.
\]
(52)
The sum of the integrated KE and the Lorentz APE is not exactly conserved and can be produced by two adiabatic non-conservative terms, the volumetric term \(J(p)\) related to the non-linearity of the potential temperature profile and the surface term \(S(p)\). The total mass conservation can be written as \(\partial_t \langle p_s \rangle = 0\), which implies that \(\partial_t \langle \Phi_s p_s \rangle = \partial_t \langle \Phi_s p'_s \rangle\), where \(p'_s = p_s - \langle p_s \rangle\). Moreover, since \(\Phi_s\) does not vary with time, we also have \(\partial_t \langle \Phi_s p'_s \rangle = \partial_t \langle \Phi_s (p'_s - \langle p'_s \rangle) \rangle\), where the bar denotes the temporal average. We have computed the quantity \(\langle \Phi_s (p'_s - \langle p'_s \rangle) / g \rangle\) and it is very small compared to the horizontally averaged vertically integrated KE and APE. This explains why it is relevant to neglect the topography as done by Lorenz (1955).

References

Augier, P., P. Billant, and J.-M. Chomaz, 2013: Stratified turbulence forced with columnar dipoles. Part 2. Numerical study. submitted to J. Fluid Mech.

Augier, P., J.-M. Chomaz, and P. Billant, 2012: Spectral analysis of the transition to turbulence from a dipole in stratified fluids. J. Fluid Mech., 713, 86–108.

Billant, P. and J.-M. Chomaz, 2001: Self-similarity of strongly stratified inviscid flows. Phys. Fluids, 13, 1645–1651.

Boer, G. and S. Lambert, 2008: The energy cycle in atmospheric models. Clim. Dyn., 30, 371–390.

Boer, G. J., 1982: Diagnostic equations in isobaric coordinates. Monthly Weather Review, 110, 1801–1820.

Boer, G. J., 1983: Homogeneous and Isotropic Turbulence on the Sphere. J. Atmos. Sci., 40, 154–163.

Boer, G. J., 1989: On exact and approximate energy equations in pressure coordinates. Tellus, 41, 97–108.

Boer, G. J., 1994: Mean and Transient Spectral Energy and Enstrophy Budgets. J. Atmos. Sci., 51 (13), 1765–1779.

Boer, G. J. and T. G. Shepherd, 1983: Large-Scale Two-Dimensional Turbulence in the Atmosphere. J. Atmos. Sci., 40, 164–184.

Brune, S. and E. Becker, 2012: Indications of Stratified Turbulence in a Mechanistic GCM. J. Atmos. Sci., 70 (1), 231–247.

Burgess, B. H., A. R. Erler, and T. G. Shepherd, 2013: The troposphere-to-stratosphere transition in kinetic energy spectra and nonlinear spectral fluxes as seen in ECMWF analyses. J. Atmos. Sci., in press.

Burrows, W., 1976: Diagnostic Study of Atmospheric Spectral Kinetic Energetics. J. Atmos. Sci., 33 (12), 2308–2321.

Charney, J. G., 1971: Geostrophic Turbulence. J. Atmos. Sci., 28 (6), 1087–&.

Cho, J. Y. N. and E. Lindborg, 2001: Horizontal velocity structure functions in the upper troposphere and lower stratosphere 1. Observations. J. Geophys. Res.-Atmos., 106 (D10), 10223–10232.

Deusebio, E., A. Vallgren, and E. Lindborg, 2013: Rossby and Froude number dependence in geostrophic turbulence. Submitted to J. Fluid Mech.

Dewan, E. M. and R. E. Good, 1986: Saturation and the universal spectrum for vertical profiles of horizontal scalar winds in the atmosphere. J. Geophys. Res.-Atmos., 91 (D2), 2742–2748.

ECMWF, 2010: IFS documentation, version CY36r1. http://www.ecmwf.int/research/ifsdocs.

Fjortoft, R., 1953: On the Changes in the Spectral Distribution of Kinetic Energy for Twodimensional, Nondivergent Flow. Tellus, 5 (3), 225–230.

Frehlich, R. and R. Sharman, 2010: Climatology of Velocity and Temperature Turbulence Statistics Determined from Rawinsonde and ACARS/AMDR Data. J. Appl. Meteor. Climatol., 49, 1149–1169.

Gage, K. S., 1979: Evidence for a \(k^{-5/3}\) Law Inertial Range in Mesoscale Two-Dimensional Turbulence. J. Atmos. Sci., 36 (10), 1950–1954.

Hamilton, K., Y. O. Takahashi, and W. Ohfuchi, 2008: Mesoscale spectrum of atmospheric motions investigated in a very fine resolution general global circulation model. J. Geophys. Res.-Atmos., 113, D18 110.

Kolmogorov, A. N., 1941: The local structure of turbulence in incompressible viscous fluids for very large reynolds numbers. Compt. Rend. Acad. Sci. (USSR), 30, 301–305.

Koshyk, J. N. and K. Hamilton, 2001: The Horizontal Kinetic Energy Spectrum and Spectral Budget Simulated by a High-Resolution Troposphere-Stratosphere-Mesosphere GCM. J. Atmos. Sci., 58 (4), 329–348.

Lambert, S., 1984: A global available potential energy-kinetic energy budget in terms of the two-dimensional wavenumber for the FGGE year. Atmos.-Ocean, 22, 265–282.

Lilly , D. K., 1983: Stratified Turbulence and the Mesoscale Variability of the Atmosphere. J. Atmos. Sci., 40, 749–761.

Lindborg, E., 2006: The energy cascade in a strongly stratified fluid. J. Fluid Mech., 550, 207–242.

Lindborg, E., 2007: Horizontal Wavenumber Spectra of Vertical Vorticity and Horizontal Divergence in the Upper Troposphere and Lower Stratosphere. J. Atmos. Sci., 64 (3), 1017–1025.
Lindborg, E. and G. Brethouwer, 2007: Stratified turbulence forced in rotational and divergent modes. *J. Fluid Mech.*, **586**, 83–108.

Lorenz, E. N., 1955: Available potential energy and the maintenance of the general circulation. *Tellus*, **7**, 157.

Molemaker, M. J. and J. C. McWilliams, 2010: Local balance and cross-scale flux of available potential energy. *J. Fluid Mech.*, **645**, 295–314.

Molemaker, M. J., J. C. McWilliams, and X. Capet, 2010: Balanced and unbalanced routes to dissipation in an equilibrated Eady flow. *J. Fluid Mech.*, **654**, 35–63.

Naström, G. D. and K. S. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. *J. Atmos. Sci.*, **42 (9)**, 950–960.

Palmer, T., 2001: A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models. *Q. J. R. Meteorol. Soc.*, **127 (572, Part b)**, 279–304.

Schaeffer, N., 2013: Efficient Spherical Harmonic Transforms aimed at pseudo-spectral numerical simulations. *Geochem. Geophys. Geosyst* (2013), in press.

Shepherd, T., 1987: A Spectral View of Nonlinear Fluxes and Stationary Transient Interaction in the Atmosphere. *J. Atmos. Sci.*, **44 (8)**, 1166–1178.

Shepherd, T. G., 1993: A Unified Theory of Available Potential Energy. *Atmos.-Ocean*, **31 (1)**, 1–26.

Shutts, G., 2005: A kinetic energy backscatter algorithm for use in ensemble prediction systems. *Q. J. R. Meteorol. Soc.*, **131 (612)**, 3079–3102.

Siegmund, P., 1994: The generation of available potential energy, according to Lorenz’ exact and approximate equations. *Tellus*, **46 A**, 566–582.

Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. *Mon. Weather Rev.*, **132 (12)**, 3019–3032.

Smith, S. A., D. C. Fritts, and T. E. Vanzandt, 1987: Evidence for a Saturated Spectrum of Atmospheric Gravity-Waves. *J. Atmos. Sci.*, **44 (10)**, 1404–1410.

Steinheimer, M., M. Hantel, and P. Bechtold, 2008: Convection in Lorenz’s global energy cycle with the ECMWF model. *Tellus A*, **60**, 1001–1022.

Straus, D. and P. Ditlevsen, 1999: Two-dimensional turbulence properties of the ECMWF reanalyses. *Tellus Ser. A-Dyn. Meteorol. Oceanol.*, **51 (5)**, 749–772.

Takahashi, Y. O., K. Hamilton, and W. Ohfuchi, 2006: Explicit global simulation of the mesoscale spectrum of atmospheric motions. *Geophys. Res. Lett.*, **33 (12)**, 1–4.

Tulloch, R. and K. S. Smith, 2009: Quasigeostrophic Turbulence with Explicit Surface Dynamics: Application to the Atmospheric Energy Spectrum. *J. Atmos. Sci.*, **66**, 450–467.

Tung, K. K. and W. W. Orlando, 2003: The k^{-3} and $k^{-5/3}$ Energy Spectrum of Atmospheric Turbulence: Quasigeostrophic Two-Level Model Simulation. *J. Atmos. Sci.*, **60 (6)**, 824–835.

Vallgren, A., E. Deusebio, and E. Lindborg, 2011: Possible Explanation of the Atmospheric Kinetic and Potential Energy Spectra. *Phys. Rev. Lett.*, **107 (26)**.

Vallis, G. K., 2006: *Atmospheric and Oceanic Fluid Dynamics*. Cambridge University Press.

Waite, M. L., 2011: Stratified turbulence at the buoyancy scale. *Physics of Fluids*, **23 (6)**, 066602.

Waite, M. L. and P. Bartello, 2004: Stratified turbulence dominated by vortical motion. *J. Fluid Mech.*, **517**, 281–308.

Waite, M. L. and C. Snyder, 2009: The Mesoscale Kinetic Energy Spectrum of a Baroclinic Life Cycle. *J. Atmos. Sci.*, **66 (4)**, 883–901.