MAGNETIC HELICITY REVERSALS IN A CYCLIC CONVECTIVE DYNAMO

MARK S. MIESCH¹, MEI ZHANG², AND KYLE C. AUGUSTSON³

¹ High Altitude Observatory, National Center for Atmospheric Research, Boulder, CO 80307-3000, USA; miesch@ucar.edu
² Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Datun Road A20, Chanyang District, Beijing 100012, China
³ CEA/DRF/IRFU Service d’Astrophysique, CEA-Saclay, Batiment 709, F-91191 Gif-sur-Yvette Cedex, France

Received 2016 May 5; revised 2016 May 31; accepted 2016 May 31; published 2016 June 10

ABSTRACT

We investigate the role of magnetic helicity in promoting cyclic magnetic activity in a global, 3D, magnetohydrodynamic (MHD) simulation of a convective dynamo. This simulation is characterized by coherent bands of toroidal field that exist within the convection zone, with opposite polarities in the northern hemisphere (NH) and southern hemisphere (SH). Throughout most of the cycle, the magnetic helicity in these bands is negative in the NH and positive in the SH. However, during the declining phase of each cycle, this hemispheric rule reverses. We attribute this to a global restructuring of the magnetic topology that is induced by the interaction of the bands across the equator. This band interaction appears to be ultimately responsible for, or at least associated with, the decay and subsequent reversal of both the toroidal bands and the polar fields. We briefly discuss the implications of these results within the context of solar observations, which also show some potential evidence for toroidal band interactions and helicity reversals.

Key words: dynamo – magnetohydrodynamics (MHD) – stars: activity – Sun: activity – Sun: interior – Sun: magnetic fields

1. INTRODUCTION

Magnetic helicity, \(H_m \), is a known agent of self-organization in turbulent magnetohydrodynamic (MHD) flows. As an invariant of the ideal MHD equations, it can promote large-scale dynamo action by linking large and small scales. This may occur in a self-similar manner, as in the inverse cascade of magnetic helicity in homogeneous MHD turbulence, or non-locally in spectral space, as in the turbulent \(\alpha \)-effect of mean field dynamo theory (Brandenburg & Subramanian 2005).

The emerging magnetic flux that forms solar active regions is known to be helical in nature, suggesting that magnetic helicity plays an important role in the solar dynamo. Photospheric and coronal observations reveal a systematic hemispheric rule, such that magnetic loops in the northern hemisphere (NH) tend to have a negative helicity while loops in the southern hemisphere (SH) tend to have a positive helicity (Pevtsov et al. 2014). The hemispheric helicity rule is rather weak, with large scatter, but it is exhibited by 60%–75% of large active regions. Other proxies for \(H_m \) exhibit stronger hemispheric rules, such as the chirality of quiescent magnetic filaments (Pevtsov et al. 2014).

Several recent studies suggest that this hemispheric rule may reverse in the declining phase of the solar cycle, when the subsurface toroidal flux that gives rise to active regions is presumably diminishing (Tiwari et al. 2009; Hao & Zhang 2011). In particular, Hao & Zhang (2011) studied a sample of 64 active regions spanning the declining phase of Cycle 23 and the rising phase of Cycle 24 (2006–2010). They found that the data in the rising phase were consistent with the hemispheric helicity rule but that the data for the declining phase showed the opposite trend. Again, both trends were weak (correlation coefficients \(\lesssim 0.2 \)) but significant. Of the 30 active regions studied during the declining phase of Cycle 23, only 8 (27%) obeyed the hemispheric rule.

In this paper we investigate the role of magnetic helicity in a global three-dimensional (3D) MHD simulation of a convective dynamo. This simulation exhibits regular magnetic cycles and is described in detail by Augustson et al. (2015), hereafter ABMT15. We demonstrate that the polarity reversals that sustain the magnetic cycles in this simulation involve a restructuring of the magnetic topology that is reflected in and perhaps regulated by the evolution of the magnetic helicity. A notable feature of this evolution is a weak helicity reversal in the declining phase of each magnetic cycle.

2. MODEL AND ANALYSIS

In this paper we consider a convective dynamo simulation K3S, which is described in detail in ABMT15. The simulation is a result from the Anelastic Spherical Harmonic (ASH) code, which solves the 3D MHD equations in a rotating spherical shell under the anelastic approximation (Clune et al. 1999; Brun et al. 2004). In terms of its setup, this is a typical ASH simulation but with one exception: the explicit subgrid-scale (SGS) viscosity has been replaced by an implicit numerical diffusion that operates at the grid scale. Meanwhile, the magnetic diffusion is similar to previous ASH simulations, with an explicit SGS magnetic diffusivity \(\eta (r) = 8 \times 10^2 (\rho_s / \rho)^{1/2} \), where \(\rho_s \) is the density at the outer boundary. This implicit large-eddy simulation approach has enabled K3S to achieve a higher effective Reynolds number (~350) and a lower effective magnetic Prandtl number (~0.23) than in previous ASH simulations. The magnetic Reynolds number is about 80. The spatial resolution is \(N_r, N_{\theta}, N_\phi = 200, 256, 512 \), corresponding to a maximum spherical harmonic degree of \(\ell_{\text{max}} = 170 \).

The computational domain extends from \(r = 0.72–0.97R \), where \(R \) is the solar radius. The entire domain is convective; there is no overshoot region and no tachocline. The density contrast across the shell is 45 and the boundaries are impenetrable and stress-free, with a fixed heat flux (constant \(\partial S / \partial r \), where \(S \) is the specific entropy). The inner boundary is assumed to be a perfect electrical conductor and the outer boundary is matched to an external potential field.

The rotation rate of the coordinate system \(\Omega_0 = 7.8 \times 10^{-6} \text{rad s}^{-1} \) is a factor of three larger than the solar rotation rate in order to promote and investigate the large-scale

...
dynamo action induced by helicity and shear. The Rossby number varies from about 0.12 to 0.33, depending on the phase of the magnetic cycle. No mean flows are imposed. Rather, they are established self-consistently by the convective momentum and energy transport. The differential rotation is solar-like in the sense that the equator rotates about 30% faster than the poles, but Ω contours are more cylindrical (aligned with the rotation axis) than the solar internal rotation inferred from helioseismology.

A striking feature of K3S is that it exhibits regular cycles with an average duration of $P_{\text{cyc}} \sim 3.1$ years, which corresponds to a full magnetic cycle period of 6.2 years. Though this cycle period is significantly shorter than the 11 year solar cycle, the ratio of P_{cyc} to the rotation period P_{rot} is comparable (243 for Case K3S, 287 for the Sun). This regular cycle has persisted throughout the entire simulation interval, which now exceeds 110 years. However, it was interrupted temporarily by a grand minimum phase that lasted for about five cycles (15.3 years). After the grand minimum, the regular cycle resumed. For a detailed discussion of the cycle characteristics and the grand minimum, see ABMT15.

Here we focus on the role of the magnetic helicity, which we define as

$$H_m = 2 \int_V h_m dV = 2 \int_V AB_r dV,$$ \hspace{1cm} (1)

where $h_m = AB_r$ is the magnetic helicity density and the integration proceeds over the computational volume V. The toroidal and poloidal magnetic potentials A and C are defined by the Chandrasekhar–Kendall decomposition:

$$B = \nabla \times A = \nabla \times (A\hat{r}) + \nabla \times \nabla \times (C\hat{r}).$$ \hspace{1cm} (2)

Throughout this paper we use spherical polar coordinates r, θ, ϕ, and \hat{r} is the radial unit vector.

Even though there is a nonzero radial magnetic field at the outer surface of the computational domain, the helicity defined by Equation (1) is independent of the gauge chosen for the vector potential A (Berger 1985). Furthermore, for the special case of a spherical annulus, H_m defined in this way is equal to the relative helicity, H_R, defined by Berger & Field (1984). For a proof that $H_m = H_R$ and a physical interpretation, see Berger (1985), Low (2006), and Pevtsov et al. (2014). In short, h_m represents the toroidal component of A, $A\hat{r}$, dotted into the poloidal component of B, $\nabla \times \nabla \times (C\hat{r})$. Since $A\hat{r}$ describes closed magnetic loops on a horizontal surface, the product AB_r captures the full linkage of the poloidal and toroidal field components.

We will also be interested in the current helicity H_c and its associated density h_c:

$$H_c = \frac{c}{4\pi} \int_V h_c dV = \frac{c}{4\pi} \int_V J \cdot BdV,$$ \hspace{1cm} (3)

where $J = \nabla \times B$ is proportional to the electrical current density. Unlike H_m, H_c is not an invariant of the ideal MHD equations (though these topological properties are compromised at the moderate magnetic Reynolds number of 80 employed here). However, the vertical component of h_m, J_B, is a common observational proxy used to quantify the helicity of solar magnetic fields (Pevtsov et al. 2014).

Figure 1 shows some highlights from Case KS3, including the structure of the convective motions (a) and the strong, coherent toroidal bands (b) and (c) that form within the convection zone (CZ) at low latitudes, despite the disruptive effects of turbulent mixing and magnetic buoyancy. Following Brown et al. (2010) we will refer to these low-latitude bands as magnetic wreaths in order to distinguish them from the weaker, oppositely signed toroidal bands at high latitudes, as seen in Figure 1(c).

Figures (b) and (c) highlight the magnetic wreaths at cycle maximum, when the toroidal magnetic energy peaks, and during the rising phase of the following cycle, after the polarity of the wreaths has reversed. Note the antisymmetry about the equator, which corresponds to a negative (diapolar) parity for both B_y and B_z, as in the Sun. Angular brackets denote averages over longitude. Also shown in Figures 1(d) and (e) are the mean and fluctuating components of the magnetic helicity density $\langle h_m \rangle$ at the same instant as in Figure 1(c). We discuss these in the following section.

3. MAGNETIC HELICITY IN A CYCLIC CONVECTIVE DYNAMO

In Figure 1 we have decomposed the zonally averaged magnetic helicity density into its (d) mean component $\langle A \rangle \langle B_r \rangle$ and its (e) fluctuating (non-axisymmetric) component $\langle A - \langle A \rangle \rangle \langle B_r - \langle B_r \rangle \rangle$. During the rising phase of the cycle, as the wreaths are being built, these two components have opposite signs. This demonstrates that the wreaths are helical in nature and suggests that the upscale spectral transfer of magnetic helicity from fluctuating to mean fields is playing an important role in their formation (at both low and high latitudes). This interpretation is supported by considering the generation of magnetic helicity through ohmic dissipation (not shown), which is negative in the vicinity of the northern wreath and positive for the southern wreath during the rising phase of the cycle. However, the main source of both mean magnetic helicity and toroidal magnetic energy is the Ω-effect.

The net result from both contributions (spectral transfer and the Ω-effect) is a magnetic helicity that is predominantly negative in the NH and positive in the SH, as inferred from solar observations. This arises mainly from the mean field associated with the wreaths and is independent of the polarity of the cycle. However, the mean helicity density at higher latitudes is reversed and shows a stronger anti-correlation with the fluctuating helicity (Figures 1(d) and (e)).

The magnetic helicity also appears to play an important role in the reversal of the toroidal and poloidal fields at the end of each cycle, as illustrated in Figure 2. Frames (a) and (f) show the mean poloidal field and magnetic helicity at cycle maximum, corresponding to the same time as the toroidal field in Figure 1(b). As time proceeds, a small “bubble” of oppositely signed poloidal field appears at the equator near the base of the CZ (Figure 2(b)). This is associated with a sign reversal of $\langle h_m \rangle$, producing a localized region of positive helicity in the NH and negative in the SH (Figure 2(g)). It is tempting to attribute the formation of this bubble to a magnetic helicity flux across the equator from south to north, but a more comprehensive analysis (to be presented in a forthcoming paper) indicates that this is not the case. Instead, cross-equatorial magnetic linkages between the wreaths promote a change in $\langle h_m \rangle$ through resistive reconnection. As time proceeds, this bubble rises through the CZ, amplifies, and unfurls toward higher latitudes, triggering a polar field reversal (Figures 2(c)–(e), (b)–(j)).
The nature of this time evolution suggests that the polar field reversal is a response to a change in the magnetic topology induced by the interaction of the wreaths across the equator. This creates a magnetic bubble of opposite helicity that is set off from its environment by well-defined magnetic separatrices. The subsequent evolution of this bubble occurs on an Alfvénic timescale, suggesting a magnetic relaxation process that occurs despite the high value of the plasma β (10^6–10^8).
To elaborate on this point we take a typical poloidal field strength at a cycle max of ~6 kG (Figure 2(a)), and a density corresponding to the mid-CZ, $\rho \sim 0.06$ g cm$^{-3}$. This give an Alfvénic timescale to cross the CZ of $\sim 0.3 R / V_\lambda \sim 0.05$ years, where $V_\lambda = B (4\pi \rho)^{-1/2}$. The subsequent unfurling of the poloidal field near the top of the CZ at the end of the cycle ($B \sim 0.6$ kG, $\rho \sim 4 \times 10^{-3}$ g cm$^{-3}$) could then proceed on a timescale of about $\pi R / (2 V_\lambda) \sim 1.3$ years. This suggests that the entire unfurling process, from the formation of the bubble to the polar field reversal, could occur in roughly 1.35 years if it were due to magnetic restructuring induced by the Lorentz force. This implies that the bubble would expand to mid-latitudes in about half that time, or about 0.675 years. Compare this to the time interval of 0.63 years between frames (b) and (e) of Figure 2.

Figure 3 shows the time evolution in more detail. The butterfly diagram for $\langle B_0 \rangle$ in the upper CZ (Figure 3(b)) shows the slight equatorward propagation emphasized by ABMT15. When the wreaths meet at the equator, it triggers a helicity reversal (Figure 3(c)) as seen in Figure 2(g). This new helicity propagates poleward in conjunction with a new high-latitude toroidal band (Figures 3(b) and (c)). Within 1–2 years of the helicity reversal at $r = 0.94$R, the polar fields at the surface reverse (Figure 3(a)). This is due to the poleward migration of oppositely signed radial flux from lower latitudes. There is also a weak, localized, transient loop of opposing radial field that threads through the surface at low latitudes just before the global poloidal and toroidal fields reverse (also seen in ABMT15, Figure 3).

Also shown in Figure 3(d) is the mean current helicity density $\langle h_c \rangle$, at the same radial level as the magnetic helicity in Figure 3(c). We find the current helicity to be much less structured than the magnetic helicity, exhibiting mixed polarity in both hemispheres, with a less pronounced hemispheric asymmetry. Furthermore, we find that the current helicity is a poor proxy for the magnetic helicity, particularly within the wreaths where $\langle h_c \rangle$ and $\langle h_m \rangle$ often have the opposite sign (Figure 3(c)).

The vertical dotted lines in Figure 3 mark the times when the wreaths in the upper CZ begin to decay. To quantify this, we first integrate the mean toroidal field $\langle B_t \rangle$, over a latitude range of 0°–30° and -30°–0° and then either integrate over radius (thin green line in Figure 4(a)) or sample the field at $r = 0.94$ (black line), the same level as shown in Figures 3(b)–(d). We then normalize these fluxes with the effective area to give a mean toroidal field strength for the northern and southern wreaths. We then square these two components and add them. The times indicated by the vertical dotted lines coincide with the appearance of the magnetic bubble in Figures 2(b) and (g), which is seen as a prominent, repeating, quadrupolar pattern in the butterfly diagram of Figure 3(c). This suggests that the magnetic restructuring triggered by the interaction of the wreaths is responsible for their subsequent demise. Similar cross-equatorial interactions among helical toroidal field structures have been reported by Mitra et al. (2010) and Brown et al. (2011).

We define the declining phase of each magnetic cycle as the time interval when the mean toroidal magnetic energy in the wreaths is decaying, as quantified by the thin green line in Figure 4(a). Note that the phasing of the polar field reversals is not solar-like, in the sense that they occur near cycle minima. As shown in Figure 4(c), the declining phase coincides with a weak reversal in the magnetic helicity.

The current helicity also exhibits a weak reversal during the declining phase of each cycle (Figure 4(d)). This precedes the
reversal of $\langle h_m \rangle$ and helps to bring it about, since the time derivative of h_m involves a term that is proportional to $-\eta h_c$ (Brandenburg & Subramanian 2005; Mitra et al. 2010). Thus, the generation of negative h_c in the NH promotes the generation of positive h_m through ohmic dissipation (vice versa for the SH). This also accounts for why the signs of $\langle h_c \rangle$ and $\langle h_m \rangle$ are often opposite.

4. CONCLUSION

We have demonstrated that the cyclic magnetic reversals in a convective dynamo simulation are linked to a global restructuring of the magnetic topology as reflected by the magnetic helicity. This global restructuring is triggered by the cross-equatorial interaction of toroidal magnetic bands (wreaths) that give birth to an axisymmetric magnetic bubble that is topologically disconnected from it surroundings. The subsequent expansion and poleward migration of this bubble appear to be responsible for, or at least associated with, the diminishing of the toroidal bands and the reversal of the poloidal fields.

Throughout most of the cycle, the magnetic helicity is negative in the NH and positive in the SH. However, in the declining phase of the cycle, this hemispheric rule briefly reverses, due to the formation of the magnetic bubble. This is reminiscent of solar observations, which show a similar hemispheric rule and possible evidence for a helicity reversal in the declining phase of the cycle (Section 1). Thus, if this observed helicity reversal is confirmed, our results suggest that it may arise from the interaction of subsurface toroidal bands.

However, estimates of the magnetic helicity from photospheric measurements are sometimes based on the vertical component of the current helicity density, $B_r J_r$. In our simulation, we find that the current helicity is a poor proxy for the magnetic helicity $\langle h_c \rangle$ is much less structured than $\langle h_m \rangle$, with mixed polarity in both hemispheres. This may account for why the observed hemispheric helicity rules are weak, with large scatter.

Other possible evidence for interactions among toroidal bands in the solar convection zone or tachocline has recently been reported by several authors based on close scrutiny of the sunspot butterfly diagrams and related short-term solar variability (McIntosh et al. 2015; Cameron & Schüssler 2016; Munoz-Jaramillo et al. 2016). Continued work on toroidal band interactions and the role of magnetic helicity from both an observational and a modeling perspective promises to provide further insights into the subsurface dynamics that give rise to the solar cycle.

We thank the anonymous referee and Kevin Dalmasse for constructive comments on the manuscript. M. Zhang acknowledges the support of the National Natural Science Foundation of China (grants No. 11125314 and No. U1531247) and the Strategic Priority Research Program (grant No. XDB09000000) of the Chinese Academy of Sciences. Computational resources were provided by NASA’s High End Computing (HEC) Program and the NCAR/Wyoming Supercomputing Center (NWSC). The National Center for Atmospheric Research is sponsored by the National Science Foundation.
REFERENCES

Augustson, K. C., Brun, A. S., Miesch, M. S., & Toomre, J. 2015, ApJ, 809, 149
Berger, M. A. 1985, ApJS, 59, 433
Berger, M. A., & Field, G. B. 1984, JFM, 147, 133
Brandenburg, A., & Subramanian, K. 2005, PhR, 417, 1
Brown, B. P., Browning, M. K., Brun, A. S., Miesch, M. S., & Toomre, J. 2010, ApJ, 711, 424
Brown, B. P., Miesch, M. S., Browning, M. K., Brun, A. S., & Toomre, J. 2011, ApJ, 731, 69
Brun, A. S., Miesch, M. S., & Toomre, J. 2004, ApJ, 614, 1073
Cameron, R., & Schüssler, M. 2016, A&A, in press (arXiv:1604.07340)
Cameron, R., & Schüssler, M. 2016, A&A, in press (arXiv:1604.07340)
Clune, T. C., Elliott, J. R., Miesch, M. S., Toomre, J., & Glatzmaier, G. A. 1999, ParC, 25, 361
Hao, J., & Zhang, M. 2011, ApJL, 733, L27
Low, B. C. 2006, ApJ, 646, 1288
McIntosh, S. W., Leamon, R. L., Krista, L. D., et al. 2015, NatCo, 6, 6491
Mitra, D., Candelaresi, S., Chatterjee, P., Tavakol, R., & Brandenburg, A. 2010, AN, 331, 130
Munoz-Jaramillo, A., Tlatov, A. G., Balmaceda, L. A., Arlt, R., & Martens, P. C. H. 2016, ApJ, submitted
Pevtsov, A. A., Berger, M. A., Nindos, A., Norton, A. A., & van Driel-Gesztelyi, L. 2014, SSRv, 186, 285
Tiwari, S. K., Venkatakrishnan, P., & Sankarasubramanian, K. 2009, ApJL, 702, L133