Hoshin Kanri’s Strategic Planning Methodology through Dijkstra Algorithm within Industrial Engineering and Stakeholder Perspectives

H C Ho* and K E N Soebandria
Industrial Engineering Department, Bina Nusantara University, Jakarta, Indonesia 11480

*Corresponding author: hhchie@binus.edu

Abstract. Hoshin Kanri is defined as strategic planning methodology to reinforce strategic work. This paper elaborates Hoshin Kanri’s strategic planning methodology through Dijkstra algorithm within industrial Engineering and stakeholder perspectives. Dijkstra’s algorithm is categorized as the single source shortest path algorithm. This algorithm is beneficial to measure the shortest distance on a directed and undirected path within delivery optimization. This paper objective is to evaluate strategic planning in term of delivery optimization and scheduling. Subsequently, by implementing the strategic planning, it is expected to improve existing distribution process in supply chain. Other than that, it is expected to reduce and optimize delivery’s cost within its scheduling process through lens of industrial engineering and stakeholder priority. The research methodology in this paper refers to the quantitative approaches. These approaches are within sales performance’s data collection in modern market and its customer address. Furthermore, the data analysis proceeds to purchasing power of each customer. Ultimately, the mentioned analysis scheduling method through routing planning is using Dijkstra’s Algorithm. The mentioned Dijkstra Algorithm’s delivery optimization and scheduling is through lens of industrial engineering and Stakeholder. The result and discussion of this paper elaborates analysis and its decision making toward strategic planning in order to accommodate stakeholder perspectives.

1. Introduction
Hoshin Kanri is defined as strategic planning methodology to reinforce strategic work. This paper elaborates Hoshin Kanri’s strategic planning methodology through Dijkstra algorithm within industrial Engineering and stakeholder perspectives.

Dijkstra’s algorithm is categorized as the single source shortest path algorithm. This algorithm is beneficial to measure the shortest distance on a directed and undirected path within delivery optimization.
Table 1. Hoshin Kanri Methodologies Involvement in Selected Scholar Works

[1]	Saraph, Benson, and Schroeder (1989)	[12]	Dow, Sampson, and Ford (1999)
[2]	Anderson, Schroeder, and Deverage (1995)	[13]	Wilson and Collier (2000)
[3]	Choi and Liker (1995)	[14]	Cua, McKone, and Schroeder (2001)
[4]	Flynn, Schroeder, and Sakibara (1995)	[15]	Ghobadian and Gallear (2001)
[5]	Powell (1995)	[16]	Kaynak (2003)
[6]	Black and Porter (1996)	[17]	Sebastianelli and Tamimi (2003)
[7]	Adam et al. (1997)	[18]	Taylor and Wright (2003)
[8]	McLachlin (1997)	[19]	Achanga, Shehab, and Nelder (2006)
[9]	Ahire and O’Shaughnessy (1998)	[20]	Ahrens (2006)
[10]	Zbaricki (1998)	[21]	Nair (2006)
[11]	Dale, Broaden, Wilcox, and McQuarter (1999)	[22]	Shah and Ward (2007)

Hoshin Kanri (HK) as strategic planning encompass wide spectrum of strategic planning; Leadership and management involvement; attitudes and communication; involvement, commitment and responsibility; goals and plans [23].

Hoshin Kanri is a methodology that was coined in Japan. Currently this methodology constitutes indispensable strategic management systems that are integrated in several systems. The integrated systems refer to the following but not limited to Total Quality Management (TQM), Lean Management, Six Sigma and Balanced Scorecard (BSC). Its implemented has produced successful implementation in wide spectrum of institutions [24].

This paper focuses the HK’s strategic planning methodology through Dijkstra algorithm within Industrial Engineering and Stakeholder Perspectives.

Searching algorithms or query process in probabilistic roadmaps are selected through the scholar work representative. The implementations of aforementioned searching algorithms are referring scholar work. Precisely, the implementation of, A* and Dijkstra algorithms are merely within the specified circumstances.

Those circumstances refer to the problem solving process, in which A*, Dijkstra algorithm or heuristic-based algorithms are frequently capitalized. To some extent, the optimal approaches are capitalized for problem solving process within coordinate system. There are wide spectrum and extensive research that elaborates searching algorithms for several circumstances in reasonable time. The algorithms, several wide spectrum of research, are categorized into its capacity as classic algorithms or heuristic-based algorithms [25, 26, 27].

2. Materials

This paper objective, through Hoshin Kanri, is to evaluate strategic planning in term of delivery optimization and scheduling. Subsequently, by implementing the strategic planning, it is expected to improve existing distribution process in supply chain.

Other than that, it is expected to reduce and optimize delivery’s cost within its scheduling process through lens of industrial engineering and stakeholder priority, through CEO and Leadership Team of Unit Analysis of Organization in Figure 1 [28].
3. Methods

The research methodology in this paper refers to the quantitative approaches. In these approaches, Hoshin Kanri and CEO Leadership for Strategic Planning play a vital role in its one policy through priority issue and objectives through strategy and action plan. These approaches are within sales performance’s data collection in modern market and its customer address. Furthermore, the data analysis proceeds to purchasing power of each customer [29], [30], [31], [32].

4. Result and Discussion

This algorithm is beneficial to measure the shortest distance on a directed and undirected path within delivery optimization. This paper objective is to evaluate strategic planning in term of delivery optimization and scheduling. Subsequently, by implementing the strategic planning, it is expected to improve existing distribution process in supply chain. Other than that, it is expected to reduce and optimize delivery’s cost within its scheduling process through lens of industrial engineering and stakeholder priority.

In term of classic algorithms; Dijkstra Algorithm is deemed as capitalized algorithm toward problem solving [33] This algorithm provides the network and its optimal outcome, during the situation in which 100% of its distances are positive. The A* algorithm is capitalized toward the problem solving in finding the shortest path problem on network [34].

Furthermore, in term of heuristic based algorithm; There are many heuristic-based methods for the collision-free path planning (CFPP) problem. Wavefront algorithm is one of the heuristics algorithms that are originated from potential field ideas within its wide spectrum specifications. Precisely, the aforementioned Wavefront algorithm is capitalized toward problem solving with 3D normal distributions transformations [35]. Wide spectrum of the metaheuristic are implemented toward the collision-free path planning (CFPP) problem within its algorithm of either network or coordinate system.
Evolutionary algorithms, such as the Genetic algorithm (GA), are frequently scrutinized within network system [36] that are relevant CFPP. In addition to the other circumstances, the wide spectrum of algorithms are deployed under coordinate system conditions [37]. Some novel algorithms within Genetic algorithm are generated from related scholars outcomes [38].

5. Conclusion

Hoshin Kanri is defined as strategic planning methodology to reinforce strategic work. This paper elaborates Hoshin Kanri’s strategic planning methodology through Dijkstra algorithm within industrial Engineering and stakeholder perspectives. Dijkstra’s algorithm is categorized as the single source shortest path algorithm.

This algorithm is beneficial to measure the shortest distance on a directed and undirected path within delivery optimization. This paper objective is to evaluate strategic planning in term of delivery optimization and scheduling. Subsequently, by implementing the strategic planning, it is expected to improve existing distribution process in supply chain. Other than that, it is expected to reduce and optimize delivery’s cost within its scheduling process through lens of industrial engineering and stakeholder priority.

The research methodology in this paper refers to the quantitative approaches. These approaches are within sales performance’s data collection in modern market and its customer address. Furthermore, the data analysis proceeds to purchasing power of each customer.

Ultimately, the mentioned analysis scheduling method through routing planning is using Dijkstra’s Algorithm. The mentioned Dijkstra Algorithm’s delivery optimization and scheduling is through lens of industrial engineering and Stakeholder. The result and discussion of this paper elaborates analysis and its decision making toward strategic planning in order to accommodate stakeholder perspectives.

In term of classic algorithms; Dijkstra Algorithm is deemed as capitalized algorithm toward problem solving. This algorithm provides the network and its optimal outcome, during the situation in which 100% of its distances are positive. The A* algorithm is capitalized toward the problem solving in finding the shortest path problem on network. Furthermore, in term of heuristic based algorithm; There are many heuristic-based methods for the collision-free path planning (CFPP) problem. Wavefront algorithm is one of the heuristics algorithms that are originated from potential field ideas within its wide spectrum specifications. Precisely, the aforementioned Wavefront algorithm is capitalized toward problem solving with 3D normal distributions transformations. Wide spectrum of the metaheuristic are implemented toward the collision-free path planning (CFPP) problem within its algorithm of either network or coordinate system.

References

[1] Saraph J, Benson G and Schroeder R 1989 An instrument for measuring the critical factors of quality management Decision Sciences 20 810 – 829
[2] Anderson J C, Rungtusanatham M, Schroeder R G and Devaraj S 1995 A path analytic model of a theory of quality management underlying the Deming management method: Preliminary analytical findings Decision Sciences 26 (5) 637 – 658
[3] Choi T and Liker J 1995 Bringing Japanese continuous improvement approaches to US manu- facturing: The role of process orientation and communications. Decision Sciences, 26 (5) 589 – 620
[4] Flynn B B, Schroeder R G and Sakibara S 1995 The impact of quality management practices on performance and competitive advantage Decision Sciences 26 659 – 691
[5] Powell T 1995 Total quality management as competitive advantage: A review and empirical study Strategic Management Journal 16 15 – 37
[6] Black S and Porter L 1996 Identification of the critical factors of TQM Decision Sciences 27 1–21
[7] Adam E E, Corbett L M, Flores B E, Harrison N J, Lee T S, Rho B H and Westbrook R 1997. An international study of quality improvement approach and firm performance International Journal of Operations and Production Management 17 842–873
[8] McLachlin R 1997 Management initiatives and just-in-time manufacturing Journal of Operations Management 15 271 – 292
[9] Ahire S L and O’Shaughnessy K C 1998 The role of top management commitment in quality management: An empirical analysis of the auto parts industry International Journal of Quality Management 3 (1) 5-37
[10] Zbaricki M 1998 Rhetoric and reality of total quality management Administrative Science Quarterly 42 366-394
[11] Dale B G, Broaden R J, Wilcox M and McQuarter R E 1999 Sustaining continuous improvement: What are the key issues? Quality Engineering 11 369 – 377
[12] Dow D, Samson D and Ford S 1999 Exploding the myth: Do all quality management practices contribute to superior performance? Production and Operations Management 8 1 – 27
[13] Wilson D and Collier G 2000 An empirical investigation of the Malcolm Baldrige National Quality award causal model Decision Sciences 31 361-383
[14] Cua K, McKone K and Schroeder R 2001 Relationships between implementation of TQM, JIT, and TPM and manufacturing performance Journal of Operations Management 19 675 – 694
[15] Ghobadian A and Gallear D 2001 TQM implementation: An empirical examination and proposed generic model Omega 29 343 – 359
[16] Kaynak H 2003 The relationship between total quality management practices and their effects on firm performance Journal of Operations Management 21 405 –435
[17] Sebastianelli R and Tamimi N 2003 Understanding the obstacles to TQM Success Quality Management Journal 10 (3) 45 – 54
[18] Taylor W and Wright G 2003 A longitudinal study of TQM implementation: Factors influencing success and failure Omega 31 97 – 111
[19] Achanga P, Shehab E, Roy R and Nelder G 2006 Critical success factors for lean implementation within SMEs Journal of Manufacturing Technology Management 17 (4) 460-471
[20] Ahrens T 2006 Lean production: Successful implementation of organisational change in operations instead of short term cost reduction efforts. Seefeld Germany: Lean Alliance GmbH.
[21] Nair A 2006 Meta-analysis of the relationship between quality management practices and firm performance Journal of Operations Management 24 948 – 975
[22] Shah R and Ward P 2007 Defining and developing measures of lean production Journal of Operations Management 25 785 – 805
[23] Nicholas J 2014 Hoshin kanri and critical success factors in quality management and lean production Total Quality Management and Business Excellence 27 (3-4) 250-264
[24] Ahmed H O 2016 A Proposed Systematic Framework for Applying Hoshin Kanri Strategic Planning Methodology in Educational Institutions European Scientific Journal 12 (16) 158-194
[25] Masehian E and Sedighizadeh D 2007 Classic and Heuristic Approaches in Robot Motion Planning--A Chronological Review World Acad. Sci. Eng. Technol 29 101–106
[26] Mac T T, Copot C, Tran D T and De Keyser R 2016 Heuristic approaches in robot path planning: A survey. Robot. Auton. Syst. 86 13–28
[27] Mohant P and Parhi D 2013 Controlling the Motion of an Autonomous Mobile Robot Using Various Techniques: A Review. J. Adv. Mech. Eng. 1 24–39
[28] Liedtke C A 2017 Big Data in Hoshin Kanri Singapore: Asian Network for Quality Congress.

[29] Basias N and Pollais, Y 2018 Quantitative and Qualitative Research in Business & Technology: Justifying a Suitable Research Methodology Review of Integrative Business and Economics Research 7 91-105

[30] Goertz G and Mahoney J 2012 A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences New York: Princeton University Press.

[31] Martin, W and Bridgmon, K 2012 Quantitative and Statistical Research Methods. From Hypothesis to Results New York: John Wiley & Sons

[32] Yin, R 2011 Applications of Case Study Research New York: SAGE Publications

[33] Dijkstra E W 1959 A note on two problems in connexion with graphs Numer. Math, 1 269–271

[34] Hart P E, Nilsson N J and Raphael B 1968 A Formal Basis for the Heuristic Determination of Minimum Cost Paths IEEE Trans. Syst. Sci. Cybern. 4 100–107

[35] Stoyanov T, Magnusson M, Andreasson H, Lilienthal A J 2010 Path planning in 3D environments using the Normal Distributions Transform Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems 3263–3268

[36] Jiang A, Yao X and Zhou J 2018 Research on path planning of real-time obstacle avoidance of mechanical arm based on genetic algorithm Journal Engineering 1579–1586

[37] Yang Q and Yoo S J 2018 Optimal UAV Path Planning: Sensing Data Acquisition Over IoT Sensor Networks Using Multi-Objective Bio-Inspired Algorithms IEEE Access 6 13671–13684

[38] Lee H-Y, Shin, H and Chae J 2018 Path Planning for Mobile Agents Using a Genetic Algorithm with a Direction Guided Factor Electronics 7 212