ON THE EQUIVARIANT COHOMOLOGY OF SUBVARIETIES OF A \mathcal{B}-REGULAR VARIETY

JAMES B. CARRELL AND KIUMARS KAVEH

To Bert Kostant on his 80th birthday.

Abstract. By a \mathcal{B}-regular variety, we mean a smooth projective variety over \mathbb{C} admitting an algebraic action of the upper triangular Borel subgroup $\mathcal{B} \subseteq SL_2(\mathbb{C})$ such that the unipotent radical in \mathcal{B} has a unique fixed point. A result of M. Brion and the first author [4] describes the equivariant cohomology algebra (over \mathbb{C}) of a \mathcal{B}-regular variety X as the coordinate ring of a remarkable affine curve in $X \times \mathbb{P}^1$. The main result of this paper uses this fact to classify the \mathcal{B}-invariant subvarieties Y of a \mathcal{B}-regular variety X for which the restriction map $i_Y : H^*(X) \to H^*(Y)$ is surjective.

1. Introduction

A nilpotent element e in the Lie algebra \mathfrak{g} of a complex semi-simple Lie group G is regular if it lies in a unique Borel subalgebra \mathfrak{b} of \mathfrak{g}. If we let B be the unique Borel subgroup of G with $\text{Lie}(B) = \mathfrak{b}$ and recall that the flag variety G/B of G parameterizes the family of all Borel subalgebras of \mathfrak{g}, it follows that the one parameter group $\exp(te)$ ($t \in \mathbb{C}$) of G acts on G/B by left translation with unique fixed point the identity coset B or, equivalently, the unique Borel subalgebra \mathfrak{b} containing e. By the Jacobson-Morosov Lemma, e determines a two dimensional solvable subalgebra \mathfrak{e} of \mathfrak{g} isomorphic to the Lie algebra of the upper triangular Borel subgroup \mathcal{B} of $SL_2(\mathbb{C})$. The two dimensional solvable subgroup E of G determined by e is thus isomorphic to a Borel either in $SL_2(\mathbb{C})$ or $\mathbb{P}SL_2(\mathbb{C})$ and hence is a homomorphic image of \mathcal{B}. Consequently, \mathcal{B} acts on G/B, via E, such that its unipotent radical \mathcal{U} has exactly one fixed point, namely B.

In view of this, one may generalize the notion of a regular nilpotent by considering an algebraic action $\mathcal{B} \circ X$ of the upper triangular group \mathcal{B} on a smooth complex projective variety X such that its unipotent radical \mathcal{U} has a unique fixed point $o \in X$. For such an action, the maximal torus \mathcal{T} on the diagonal of \mathcal{B} is known to have a finite fixed point set (see [5]). In [4,5], such an action is called regular and X is called a regular variety. Slightly changing this terminology, we will henceforth call the action \mathcal{B}-regular and say that X is a \mathcal{B}-regular variety. By the above remarks, the flag variety G/B and, more generally, all algebraic homogeneous spaces G/P, P a parabolic in G, give a rich class of \mathcal{B}-regular varieties.

The main goal of this paper is to study the cohomology algebras of \mathcal{B}-invariant subvarieties of a \mathcal{B}-regular variety. For example, Schubert varieties in a G/B or G/P (that is, closures of B-orbits) form an important class of
examples of \(\mathfrak{B} \)-invariant subvarieties to which our results will apply. Moreover, certain nilpotent Hessenberg varieties (including the Peterson variety) \cite{12} and certain Springer fibres corresponding to nilpotents in the centralizer of a regular nilpotent \(e \in \mathfrak{g} \) give further interesting examples of \(\mathfrak{B} \)-invariant subvarieties in \(G/B \) which we hope to investigate in a future work.

If \(X \) is a \(\mathfrak{B} \)-regular variety, then one knows the remarkable fact that its cohomology algebra \(H^\ast(X) \) over \(\mathbb{C} \) is isomorphic with the coordinate ring \(A(Z) \) of the zero scheme \(Z \) associated to the algebraic vector field on \(X \) generated by \(\mathfrak{u} \) (cf. \cite{1, 2, 5}). Moreover, its \(\mathcal{T} \)-equivariant cohomology \(H_\mathcal{T}^\ast(X) \) is isomorphic to the coordinate ring of a canonical \(\mathcal{T} \)-stable affine curve \(\mathcal{Z}_X \) in \(X \times \mathbb{P}^1 \). That is, \(\text{Spec}(H_\mathcal{T}^\ast(X)) = \mathcal{Z}_X \). These isomorphisms extend to what we will call principal subvarieties: namely, \(\mathfrak{B} \)-invariant subvarieties \(Y \) of \(X \) for which the natural restriction map \(i_Y^\ast : H_\mathcal{T}^\ast(X) \to H_\mathcal{T}^\ast(Y) \) is surjective (cf. Theorem 1). In particular, if \(Y \) is principal, then \(\text{Spec}(H_\mathcal{T}^\ast(Y)) \) is the (reduced) affine curve \(\mathcal{Z}_X \cap (Y \times \mathbb{C}) \). Furthermore, if \(Y \cap Z \) denotes the schematic intersection of \(Y \) and \(Z \), then the coordinate ring \(A(Y \cap Z) \) is isomorphic to \(H^\ast(Y) \) as long as \(\dim A(Y \cap Z) = \dim H^\ast(Y) \).

With these facts as motivation, our aim is to classify the principal subvarieties of a \(\mathfrak{B} \)-regular variety. This will follow from a general result which describes the image of \(H_\mathcal{T}^\ast(X) \) in \(H_\mathcal{T}^\ast(Y) \) under \(i_Y^\ast \) for any \(\mathfrak{B} \)-invariant subvariety \(Y \) of a \(\mathfrak{B} \)-regular variety \(X \).

The curve \(\mathcal{Z}_X \) admits a natural description. Consider the diagonal action of \(\mathfrak{B} \) on \(X \times \mathbb{P}^1 \), where \(\mathfrak{B} \) acts on \(\mathbb{P}^1 \) by the standard action of \(SL_2(\mathbb{C}) \) on \(\mathbb{C}^2 \). Then the irreducible components of \(\mathcal{Z}_X \) have the form \(\mathfrak{B} \cdot (\zeta, \infty) \setminus (\zeta, \infty) \), where \(\zeta \) ranges over all of \(X^{\mathcal{T}} \) and \(\infty \) denotes the point \([0, 1] \in \mathbb{P}^1 \). The complete description of the equivariant cohomology of a \(\mathfrak{B} \)-regular variety \(X \) and principal subvariety \(Y \) proved in \cite{4} is given by

\textbf{Theorem 1.} (cf. \cite{4}) If \(X \) is a \(\mathfrak{B} \)-regular variety, then there exists a graded \(\mathbb{C} \)-algebra isomorphism \(\rho_X : H_\mathcal{T}^\ast(X) \to \mathbb{C}[\mathcal{Z}_X] \). Furthermore, if \(Y \) is a principal subvariety and \(\mathcal{Z}_Y \) is the (reduced) affine curve \(\mathcal{Z}_X \cap (Y \times \mathbb{C}) \), then there is also a graded \(\mathbb{C} \)-algebra isomorphism \(\rho_Y : H_\mathcal{T}^\ast(Y) \to \mathbb{C}[\mathcal{Z}_Y] \) making the diagram

\[
\begin{array}{ccc}
H_\mathcal{T}^\ast(X) & \xrightarrow{\rho_X} & \mathbb{C}[\mathcal{Z}_X] \\
\downarrow i_Y^\ast & & \downarrow \overline{i_Y}^\ast \\
H_\mathcal{T}^\ast(Y) & \xrightarrow{\rho_Y} & \mathbb{C}[\mathcal{Z}_Y],
\end{array}
\]

commutative, where the vertical maps are natural restrictions. Moreover, the horizontal maps are \(\mathbb{C}[v] \)-module maps under the standard \(\mathbb{C}[v] \)-module structure on \(H_\mathcal{T}^\ast(X) \) and \(H_\mathcal{T}^\ast(Y) \) and the \(\mathbb{C}[v] \)-module structure on \(\mathbb{C}[\mathcal{Z}_X] \) and \(\mathbb{C}[\mathcal{Z}_Y] \) induced by the second projection.

One easily sees from the definitions that if \(v \) is an affine coordinate on \(\mathbb{C} = \mathbb{P}^1 \setminus [1, 0] \), then \(\mathbb{C}[\mathcal{Z}_X]/(v)\mathbb{C}[\mathcal{Z}_X] \cong A(Z) \). Hence, Theorem 1 allows one to see the isomorphism \(H^\ast(X) \cong A(Z) \) in a natural way from elementary properties of equivariant cohomology. Indeed, it turns out that \(\rho_X \) maps the augmentation ideal \((v)H_\mathcal{T}^\ast(X)\) in \(H_\mathcal{T}^\ast(X) \) to \((v)\mathbb{C}[\mathcal{Z}_X] \), so \(A(Z) \cong H^\ast(X) \).
since $H^*_T(X)/(v)H^*_T(X) \cong H^*(X)$. Similarly, $H^*(Y) \cong \mathbb{C}[Z_Y]/(v)\mathbb{C}[Z_Y]$ if Y is principal. However, it is not in general true that $\mathbb{C}[Z_Y]/(v)\mathbb{C}[Z_Y]$ is isomorphic to $A(Y \cap Z)$.

Since surjectivity of $i_Y^* : H^*(X) \to H^*(Y)$ is equivalent to surjectivity of $i_Y^* : H^*_T(X) \to H^*_T(Y)$, \[1\] suggests an approach to the surjectivity question. Namely, since $i_Y^* : \mathbb{C}[Z_X] \to \mathbb{C}[Z_Y]$ is surjective for any \mathfrak{B}-invariant subvariety Y, the question of surjectivity of i_Y^* boils down to determining if there exists an injective map $\rho_Y : H^*_T(Y) \to \mathbb{C}[Z_Y]$ such that \[1\] is commutative.

We will resolve this question by showing

Theorem 2. A \mathfrak{B}-invariant subvariety Y of a \mathfrak{B}-regular variety X is principal if and only if $H^*_T(Y)$ (equivalently, $H^*(Y)$) is generated by Chern classes of \mathfrak{B}-equivariant algebraic vector bundles on Y.

An example of a \mathfrak{B}-invariant subvariety which is not principal is easily obtained. In fact, let X be \mathfrak{B}-regular, and let Y denote the union of all the \mathfrak{B}-stable curves in X. Then $X^\mathfrak{T} = Y^\mathfrak{T}$, and it is not hard to see that i_Y^* is not surjective if dim $X > 1$. However, $H^*_T(Y)$ is not generated by \mathfrak{B}-equivariant vector bundles. We will verify this claim for $X = \mathbb{P}^2$ in Section 5.

Schubert varieties in G/B or a G/P are well known to be principal. Indeed, the B-orbits are affine cells, and every Schubert variety is a union of B-orbits. Moreover, certain Springer fibres in $SL_n(\mathbb{C})/B$ are principal. To see this, first recall that a Springer fibre in G/B is by definition the fixed point set of a unipotent element of G. Viewing G/B as the variety of Borel subalgebras of \mathfrak{g}, this definition is equivalent defining a Springer fibre to be the set of all Borels in \mathfrak{g} containing a fixed nilpotent in \mathfrak{g}. By classical result of Spaltenstein [11], the cohomology map $H^*(G/B) \to H^*(Y)$ is surjective for every Springer fibre Y provided $G = SL_n(\mathbb{C})$. Let e denote a regular nilpotent in $\text{Lie}(B)$, and let $\mathfrak{B} \circ G/B$ denote the regular action determined by e as explained in the first paragraph. Any Springer fibre in G/B corresponding to a nilpotent in the centralizer \mathfrak{g}^e of e which is also a \mathfrak{T}-weight vector is \mathfrak{B}-invariant. Thus such Springer fibres form a class of principal subvarieties of $SL_n(\mathbb{C})/B$. This example shows that principal subvarieties need not be irreducible.

2. Preliminaries

Let $\lambda : \mathbb{C}^* \to \mathfrak{T}$ and $\varphi : \mathbb{C} \to \mathfrak{U}$ denote the one parameter subgroups

$$
\lambda(t) = \begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix}, \quad \varphi(v) = \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix}.
$$

Then $\lambda(t)\varphi(v)\lambda(t)^{-1} = \varphi(t^2v)$ for all $t \in \mathbb{C}^*$ and $v \in \mathbb{C}$. Suppose X is a \mathfrak{B}-regular variety with $X^\mathfrak{U} = \{o\}$, and note that $o \in X^\mathfrak{T}$. Put

$$
X_o = \{x \in X \mid \lim_{t \to \infty} \lambda(t) \cdot x = o\}.
$$

Recall from [2] (also see [3]) that X_o is an open neighborhood of o isomorphic with $T_o(X)$. Thus, if a_1, \ldots, a_n ($n = \text{dim } X$) are the weights of λ on
$T_0(X)$ repeated with multiplicities, then all $a_i < 0$ and there exist affine coordinates u_1, \ldots, u_n on X, which are quasi-homogeneous of positive degrees $-a_1, \ldots, -a_n$ with respect to λ. That is,

$$\lambda(t) \cdot u_i = t^{-a_i} u_i,$$

for all i. The induced positive grading on $\mathbb{C}[X_0] = \mathbb{C}[u_1, \ldots, u_n]$ is frequently called the principal grading. Since the fixed point set X^T of the torus T is finite and contains o (2), we will write $X^T = \{\zeta_1, \ldots, \zeta_r\}$, where $\zeta_1 = o$.

Note that the natural action of $SL_2(\mathbb{C})$ on \mathbb{P}^1 induces a regular action. If \mathfrak{B} denotes the upper triangular matrices and \mathfrak{T} the diagonals, then $\zeta_1 = [1,0], \zeta_2 = [0,1]$ and the big cell is $\{(1,v) \mid v \in \mathbb{C}\}$.

From now on, \mathfrak{B} will denote the upper triangular Borel in $SL_2(\mathbb{C})$ and \mathfrak{T} will be the diagonal torus; X will always denote a \mathfrak{B}-regular variety. To simplify the notation, we will put $0 = [1,0]$, and let $X^T = \mathbb{P}^1 = \{0, \infty\}$.

Notice that the diagonal action $\mathfrak{B} \subset (X \times \mathbb{P}^1)$ is also regular with \mathfrak{B}-fixed point $(o,0)$. Define a projective curve $Z_X \subset X \times \mathbb{P}^1$ as follows: let Z_i be Zariski closure of the orbit $\mathfrak{B}(\zeta_i, \infty)$, where $i \geq 1$, and let

$$Z_X = \bigcup_{1 \leq i \leq r} Z_i.$$

Thus Z_X is a \mathfrak{B}-stable curve with $r = |X^T|$ irreducible components. Moreover, the second projection $p_2 : X \times \mathbb{P}^1 \to \mathbb{P}^1$ induces an isomorphism on each component. Hence Z_X is a bouquet of $r \mathbb{P}^1$s passing through $(o,0)$.

Now define an affine curve

$$Z_X = Z_X \cap (X_0 \times \mathbb{C}),$$

where the intersection is assumed to be in the sense of varieties, i.e. reduced. This curve is \mathfrak{T}-stable but not \mathfrak{B}-stable. In fact, Z_X is obtained from X by removing the point at infinity on each irreducible component. In particular, the coordinate ring $\mathbb{C}[Z_X]$ is a graded \mathbb{C}-algebra via the principal grading, and the projection p_2 induces a $\mathbb{C}[v]$-module structure on $\mathbb{C}[Z_X]$, where v denotes the affine coordinate on \mathbb{C}. For later use, we observe (cf. [4, p.192])

$$\text{if } v \neq 0, \text{ then } (x,v) \in Z_X \text{ if and only if } \varphi(-v^{-1}) \cdot x \in X^T.$$

We now recall the basic isomorphism $\rho_X : H^*_T(X) \to \mathbb{C}[Z_X]$. Since the odd cohomology of a \mathfrak{B}-regular variety is trivial, the localization theorem in equivariant cohomology implies $i^* : H^*_T(X) \to H^*_T(X^T)$ is injective, where $i : X^T \to X$ is the inclusion map. Thus, to each $\alpha \in H^*_T(X)$, one may assign an r-tuple $(\alpha_1, \ldots, \alpha_r) \in \bigoplus_i \mathbb{C}[v]$. Now define a function $\rho_X(\alpha)$ on Z_X by putting

$$\rho_X(\alpha)(x, v) = \alpha_i(v),$$

if $(x,v) \in Z_i$. A key fact is that $\rho_X(\alpha)$ is a regular function on Z_X.

3. Some applications of surjectivity

We will now use Theorem 1 to draw some conclusions about surjectivity. Suppose that Y is another \mathfrak{B}-regular variety and $F : Y \to X$ a \mathfrak{B}-equivariant map. We claim F induces a \mathfrak{T}-equivariant map $\overline{F} : Z_Y \to Z_X$ by putting
ON THE EQUIVARIANT COHOMOLOGY OF SUBVARIETIES OF A \mathfrak{B}-REGULAR VARIETY

$\overline{F}(y,v) = (F(y),v)$. For $F(Y) \subset X$, so if $(y,v) \in Z_Y$, say $(y,v) = (b \cdot y_i, b \cdot \infty)$ for some $y_i \in Y$ and $b \in \mathfrak{B}$, we see that

$$(F(y),v) = (F(b \cdot y_i), b \cdot \infty) = (b \cdot F(y_i), b \cdot \infty) = b \cdot (F(y_i), \infty) \in Z_X.$$ But $b \cdot (F(y_i), \infty) \neq (F(y_i), \infty)$ unless $b = 1$, hence the claim. Thus there is a commutative diagram

$$
\begin{array}{ccc}
H^*_T(X) & \overset{\rho_X}{\longrightarrow} & C[Z_X] \\
F^* \downarrow & & \downarrow F^*
\end{array}

(5)

H^*_T(Y) \overset{\rho_Y}{\longrightarrow} C[Z_Y].

We now derive some consequences of this.

Theorem 3. Assume $F : Y \to X$ is a \mathfrak{B}-equivariant map of \mathfrak{B}-regular varieties such that the differential dF_o of F at o is injective. Suppose also that $F|Y$ is injective. Then the restriction map $F^* : H^*_T(X) \to H^*_T(Y)$ is surjective. Consequently, $F^* : H^*(X) \to H^*(Y)$ is also surjective.

Proof. First suppose Y is a \mathfrak{B}-invariant subvariety of X which is also \mathfrak{B}-regular and $F = i_Y$. By Theorem 1, the morphism ρ_T in the diagram (5) is an isomorphism. Thus i_Y^* is surjective. Now consider the general case. Since dF_o is injective, it follows that $F(Y)$ is smooth at o. By the Borel Fixed Point Theorem applied to the singular locus of $F(Y)$, it follows that $F(Y)$ is smooth, hence \mathfrak{B}-regular. Hence $i^*_Y : H^*_T(X) \to H^*_T(F(Y))$ is surjective. As F is injective on Y and \mathfrak{B}-equivariant, it follows that $\overline{F} : Z_Y \to Z_{F(Y)}$ is also injective. Since F has a local holomorphic inverse G in a neighborhood of o, G in fact induces (by equivariant extension) a holomorphic map $\overline{G} : Z_{F(Y)} \to Z_Y$ which is an inverse (in the analytic category) to \overline{F}. Note that $F(Y)^T = F(Y)$; that is, $F|Y$ is a bijection with $F(Y)^T$. For, if $w \in F(Y)^T$, then, by the Borel Fixed Point Theorem, the subvariety $F^{-1}(w)$ of Y contains a T-fixed point due to the fact that it is T-invariant. Therefore $\overline{F} : C[Z_{F(Y)}] \to C[Z_Y]$ is an isomorphism, giving the result. □

Moreover, we also get

Theorem 4. Two principal subvarieties of a \mathfrak{B}-regular variety with the same fixed point set have isomorphic cohomology algebras (both equivariant and classical). In particular, two such subvarieties have the same dimension.

Proof. This is an immediate consequence of Theorem 1. □

Consequently, regular actions have a rather special property.

Corollary 5. If X is \mathfrak{B}-regular and Y is a \mathfrak{B}-invariant subvariety of X such that $Y \cap X \cap X = X$, then either $Y = X$ or Y is singular.

Proof. By the previous theorem, if Y is smooth, hence \mathfrak{B}-regular, then $\dim Y = \dim X$. Since a \mathfrak{B}-regular variety is necessarily irreducible, $Y = X$. □
Of course, there are examples of torus actions on smooth projective varieties $Y \subseteq X$ for which $X^T = Y^T$ and the conclusion of Corollary 5 fails. For example, if X is the wonderful compactification of a semi-simple algebraic group G (over \mathbb{C}) with maximal torus T, then all the fixed points of the (torus) action of $T \times T$ on X lie on the unique closed $G \times G$-orbit Y (cf. [5]). This gives a proper smooth $T \times T$-stable subvariety Y of X for which $X^T \times T = Y^T \times T$. It also shows that a wonderful compactification doesn’t admit a regular action.

Finally, we have

Theorem 6. Let X and Y be \mathcal{B}-regular varieties or principal subvarieties, and let $F : Y \to X$ be a \mathcal{B}-equivariant map such that $F(Y^\mathcal{B}) = X^\mathcal{B}$. Then $F^* : H^*_\mathcal{B}(X) \to H^*_\mathcal{B}(Y)$ is injective. In particular, if F is surjective, then $F(Y^\mathcal{B}) = X^\mathcal{B}$, so F^* is injective on equivariant cohomology.

Proof. Since $F(Y^\mathcal{B}) = X^\mathcal{B}$, $F : Z_Y \to Z_X$ is also surjective. Since Z_X and Z_Y are affine, it follows that the comorphism $F^* : \mathbb{C}[Z_X] \to \mathbb{C}[Z_Y]$ is injective. Therefore, $F^* : H^*_\mathcal{B}(X) \to H^*_\mathcal{B}(Y)$ is injective. If F is surjective, then the Borel Fixed Point Theorem implies $F(Y^\mathcal{B}) = X^\mathcal{B}$. \square

Remark. If X and Y are smooth projective varieties and $F : Y \to X$ is surjective, it is well known that F^* is always injective on ordinary cohomology.

4. A REMARK ON A FORMULA OF KOSTANT AND MACDONALD

Let G be a complex semi-simple algebraic group, B a Borel subgroup of G and put $\mathfrak{b} = \text{Lie}(B)$. We will now describe an interesting class of \mathcal{B}-regular subvarieties of G/B which includes all smooth Schubert varieties. Let $e \in \mathfrak{b}$ be a regular nilpotent in \mathfrak{g}, and recall from Section 1 that e determines a regular action $\mathcal{B} \circ G/B$ on the flag variety of G by left translation such that the identity coset $B \in G/B$ is the unique \mathfrak{b}-fixed point. To simplify notation, let us identify \mathfrak{g} with its homomorphic image in G such that $e \in \text{Lie}(\mathcal{B})$ (see the comment in the first paragraph of the Introduction). Let \mathfrak{h} denote a Lie(\mathcal{B})-submodule of \mathfrak{g} containing \mathfrak{b}, and put $Y_\mathfrak{h} = \exp(\mathfrak{h})B$.

Lemma 7. $Y_\mathfrak{h}$ is a \mathcal{B}-invariant subvariety of G/B.

Proof. Since the exponential map $\exp : \mathfrak{g} \to G$ is G-equivariant for the adjoint action of G on \mathfrak{g}, for any $x \in \text{Lie}(\mathcal{B})$, we have

$$\exp \left(\text{Ad} \left(\exp(tx) \right) y \right) B = \exp(tx) \exp(y) \exp(-tx) B = \exp(tx) \exp(y) B.$$

But for any $x, y \in \mathfrak{g}$, $\text{Ad} \left(\exp(tx) \right) (y) = e^{ad(tx)}(y)$, so the term on the left side of the above identity is in $\exp(\mathfrak{h})B$ if $y \in \mathfrak{h}$. Thus $Y_\mathfrak{h}$ is stable under \mathcal{B}. \square

Remark: If \mathfrak{h} is B-stable, then $Y_\mathfrak{h}$ is also B-stable and hence is a Schubert variety.

When the variety $Y_\mathfrak{h}$ is smooth, it is a \mathcal{B}-regular variety and one can now apply the formula in [2] for the Poincaré polynomial of a \mathcal{B}-regular variety X to find an interesting class of polynomials associated to any complex
semisimple Lie algebra \(g \). Let us first recall the formula. Let \(a_1, \ldots, a_n \)
\((n = \dim X)\) denote the weights of \(\lambda \) on \(T_\alpha(X) \) introduced in Section 2, and
recall the \(a_i \) are negative integers. Then

\[
P(X, t^{1/2}) = \prod_{1 \leq i \leq n} \frac{(1 - t^{-a_i+1})}{(1 - t^{-a_i})}.
\]

In the case \(X = Y_\alpha = G/B \), the weights \(a_i \) are the negatives of the heights of
the positive roots with respect to any maximal torus \(T \) of \(G \) contained in
\(B \), so we recover a well known formula

\[
P(G/B, t^{1/2}) = \prod_{\alpha > 0} \frac{(1 - t^{ht(\alpha)+1})}{(1 - t^{ht(\alpha)})}
\]

of Kostant and Macdonald.

5. A Lemma and an Example

We will now prove some facts about \(\mathfrak{g} \)-invariant subvarieties of a \(\mathfrak{g} \)-
regular variety \(X \). First note

\textbf{Lemma 8.} Let \(Y \) be a \(\mathfrak{g} \)-invariant subvariety of \(X \) with vanishing odd
cohomology, and let \(I(Z_Y) \subset \mathbb{C}[Z_X] \) denote the ideal of \(Z_Y \). Then:

(i) \(\rho_X(H^*_X(X,Y)) = I(Z_Y) \); and

(ii) \(\) there exists a \(\mathbb{C}[v] \)-algebra isomorphism

\[
\psi_Y : \mathbb{C}[Z_Y] \rightarrow i_Y^*(H^*_X(X)) \subset H^*_X(Y).
\]

In fact, \(\psi_Y = i_Y^* \rho_X^{-1}(i_Y)^{-1} \).

\textbf{Proof.} We first show that putting \(\psi_Y = i_Y^* \rho_X^{-1}(i_Y)^{-1} \) gives a well defined
map. Since \(Z_Y \) is the union of the irreducible components of \(Z_X \) which
meet \(Y \times \mathbb{C} \), the indeterminacy introduced by \((i_Y)^{-1}\) is supported on the
complement of \(Z_Y \). Thus \(\psi_Y \) is indeed well defined since \(i_Y \) is surjective,
and two classes in \(H^*_X(X) \) which have the same image under \(i_Y^* \rho_X \) have the
same image under \(i_Y^* \), by the localization theorem and the definition of \(\rho_X \).

We now show \(\rho_X(H^*_X(X,Y)) = I(Z_Y) \). Since \(Z_Y \) is an affine curve with
\(|Y^\mathbb{Z}| \) components, and \(p_2 : Z_Y \rightarrow \mathbb{C} \) is a flat map whose restriction to each
component is an isomorphism (by \textbf{[4] Prop. 2}), the rank of \(\mathbb{C}[Z_Y] \) over \(\mathbb{C}[v] \)
is \(|Y^\mathbb{Z}| \). Furthermore, by the long exact sequence of cohomology and the
localization theorem, the rank of \(H^*_X(X,Y) \) is \(|X^\mathbb{Z}| - |Y^\mathbb{Z}| \). But the rank
of \(\ker \overline{i_Y^*} \) is also \(|X^\mathbb{Z}| - |Y^\mathbb{Z}| \). As shown above, \(\ker \overline{i_Y^*} \subset \rho_X(H^*_X(X,Y)) \), so
it follows that \(\overline{i_Y^*}(\rho_X(H^*_X(X,Y))) \) has rank zero in the free module \(\mathbb{C}[Z_Y] \),

hence is trivial. Therefore, \(I(Z_Y) = \rho_X(H^*_X(X,Y)) \). To finish, we only need
to show \(\psi_Y \) is injective. But this follows immediately from part (i). \(\square \)

The following example shows that non-principal subvarieties exist. Let

\[
\lambda(t) = \begin{pmatrix} t^2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & t^{-2} \end{pmatrix}
\]
Then $\lambda(t)\varphi(v)(\lambda(t))^{-1} = \varphi(t^2v)$, so λ and φ determine a two-dimensional solvable subgroup of $SL_3(\mathbb{C})$, and hence a regular action $\mathcal{B} \cap \mathbb{P}^2$. The fixed points are $o = [1,0,0]$, $\zeta_2 = [0,1,0]$, and $\zeta_3 = [0,0,1]$. Let w_1 and w_2 be the usual affine coordinates around o. Then the closures of $Y_1 = \{w_2 = 0\}$ and $Y_2 = \{2w_2 = w_1^2\}$ are the two \mathcal{B}-curves in \mathbb{P}^2. Let $Y = \overline{Y_1} \cup \overline{Y_2}$. Then Y is a \mathcal{B}-invariant subvariety such that $H^*(\mathbb{P}^2) \to H^*(Y)$ is not surjective. Indeed, $\dim H^2(\mathbb{P}^2) < \dim H^2(Y)$. On the other hand, $H^2_T(Y)$ is not generated by Chern classes of equivariant vector bundles. To see this, note that Y has vanishing odd cohomology, so one can use the localization theorem to compute its equivariant cohomology. In fact, by a well-known result of Goresky, Kottwitz and MacPherson [9] (also see [3]), the image of $H^*_T(Y)$ in $H^*_T(Y^\mathcal{B})$ consists of triples $(f_1(t), f_2(t), f_3(t))$ with all $f_i \in \mathbb{C}[t]$ such that $f_1(0) = f_2(0) = f_3(0)$. But not all classes of this form arise as polynomials in Chern classes of equivariant line bundles on Y, due to the fact that equivariance forces the further condition $f_2 = f_3 = -f_1$.

Remark. We do not know of an example of an irreducible \mathcal{B}-invariant subvariety of a \mathcal{B}-regular variety which is not principal.

6. Equivariant Chern classes

Let Y be a \mathcal{B}-invariant subvariety of a \mathcal{B}-regular variety X. The purpose of this section is to consider when the fundamental isomorphism $\rho_X : H^*_T(X) \to \mathbb{C}[Z_X]$ defined in [14] can be defined for Y. For this, we need to consider \mathcal{B}-equivariant vector bundles on Y.

Recall that if V is an algebraic variety with an action of an algebraic group G, then a G-linearization of an algebraic vector bundle E on V is an action $G \times E \to E ((g, h) \to g \cdot h)$ such that for all $y \in V$, the restriction of $g \in G$ is a \mathbb{C}-linear map $E_y \to E_{g \cdot y}$. In particular if $y \in V^G$, one obtains a representation of G on E_y and hence a representation of $\text{Lie}(G)$ on E_y. For $\xi \in \text{Lie}(G)$, we let ξ_y denote the corresponding endomorphism of E_y.

Suppose the vector bundle E admits a G-linearization. Recall that the k-th equivariant Chern class $c^G_k(E) \in H^G_{2k}(V)$ of E is the k-th Chern class of the vector bundle $E_G = (E \times \mathcal{E})/G$, where \mathcal{E} is a contractible free G-space. The restriction of $c^G_k(E)$ to each $y \in V^G$ is the polynomial on $\text{Lie}(G)$ defined as

$$c^G_k(E)_y(\xi) = \text{Tr}_{\mathcal{E}/y}^E(\xi_y).$$

We now turn to the case $G = \mathcal{B}$, X \mathcal{B}-regular and Y a \mathcal{B}-invariant subvariety. Put

$$W = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad V = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}.$$
By [4, Lemma 1], if E is \mathfrak{B}-equivariant and $(y,v) \in \mathcal{Z}_X$, then

$$\rho_X(c^\mathfrak{B}_k(E))(y,v) = \text{Tr}_{\mathcal{H}^k E_y}(v\mathcal{W} - 2\mathcal{V})_y,$$

where $(v\mathcal{W} - 2\mathcal{V})_y$ is the endomorphism determined by $v\mathcal{W} - 2\mathcal{V} \in \text{Lie}(\mathfrak{B})$. This is a key fact since the smoothness of X implies $H^*_X(X)$ is generated by Chern classes of \mathfrak{B}-equivariant vector bundles on X [5, Prop. 3].

Let $H^*_\mathfrak{B}(Y)$ denote the subalgebra of $H^*_Y(Y)$ generated by equivariant Chern classes of \mathfrak{B}-equivariant vector bundles on Y. As just noted, $H^*_\mathfrak{B}(X) = H^*_X(X)$. The goal of the remainder of this section is to prove that if E is a \mathfrak{B}-linearized vector bundle on Y then $\rho_Y(c^\mathfrak{B}_k(E))$ is a regular function on the affine curve \mathcal{Z}_Y. Thus, there exists a well defined map

$$\rho_Y : H^*_\mathfrak{B}(Y) \to \mathbb{C}[\mathcal{Z}_Y]$$

such that the diagram

$$(8) \quad \begin{array}{ccc}
H^*_X(X) & \xrightarrow{\rho_X} & \mathbb{C}[\mathcal{Z}_X] \\
\downarrow \iota^*_Y & & \downarrow \iota^*_Y \\
H^*_\mathfrak{B}(Y) & \xrightarrow{\rho_Y} & \mathbb{C}[\mathcal{Z}_Y].
\end{array}$$

is commutative.

Before beginning the proof, assume $v \neq 0$ and define

$$\mathfrak{H}_v = \varphi(1/v)\overline{\varphi}(-1/v).$$

By [4], $(y,v) \in \mathcal{Z}_Y$ if and only if $y \in Y^{\mathfrak{H}_v}$. Also, put

$$\mathcal{H} = \bigcup_{v \neq 0} \mathfrak{H}_v \times \{v\} \subset \mathfrak{B} \times \mathbb{C}.$$

Lemma 9. Let $\pi : \mathcal{H} \to \mathbb{C}$ be projection on the second factor. Then:

$$\pi^{-1}(0) = \mathfrak{U} \cup -(\mathfrak{U}).$$

Proof. First note the identity

$$(9) \quad \begin{pmatrix}
1 & v^{-1} \\
0 & 1
\end{pmatrix}
\begin{pmatrix}
a & 0 \\
0 & a^{-1}
\end{pmatrix}
\begin{pmatrix}
1 & -v^{-1} \\
0 & 1
\end{pmatrix} =
\begin{pmatrix}
a & (1 - a^2)/(av)^{-1} \\
0 & a^{-1}
\end{pmatrix}.$$

One must find all the possible finite limits of the right-hand side as $v \to 0$. Take a sequence $(a_i, v_i) \neq (0,0)$ such that $v_i \to 0$, and the right-hand side of (9) has a finite limit. In order for this to happen, $(1 - a_i^2)/a_i \to 0$, so $a_i^2 \to 1$. Hence, if a limit exists, it lies in $\mathfrak{U} \cup -(\mathfrak{U})$. The reverse inclusion is similar.

Consequently, if we put $\mathfrak{h}_v = \text{Lie}(\mathfrak{H}_v)$ for $v \neq 0$ and set $\mathfrak{h}_0 = \text{Lie}(\mathfrak{U})$, then the family of Lie algebras of the fibres of \mathcal{H} is

$$\mathfrak{h} = \bigcup_{v \in \mathbb{C}} \mathfrak{h}_v \times \{v\} \subset \text{Lie}(\mathfrak{B}) \times \mathbb{C},$$

and, moreover, $v\mathcal{W} - 2\mathcal{V}$ is a non-vanishing regular section of π. For convenience, let $s(v) = v\mathcal{W} - 2\mathcal{V}$.
Now let E be a \mathcal{B}-linearized vector bundle on Y, and let \tilde{E} be the pullback of E to $Y \times \mathbb{C}$. Assume $v \in \mathbb{C}$ and $y \in Y^{\mathcal{B}e}$. That is, $(y, v) \in Z_Y$. Then E_y admits an \mathfrak{h}_v-representation and hence an \mathfrak{h}_e-representation. For $\xi \in \mathfrak{h}_v$ let ξ_y denote the corresponding endomorphism on E_y. Then the upshot of our discussion is the following:

Lemma 10. The map from Z_Y to $\text{End}(\tilde{E}|_{Z_Y})$ given by

$$(y, v) \mapsto s(v)_y,$$

is a regular section of the bundle $\text{End}(\tilde{E}|_{Z_Y})$. Consequently the map

$$(y, v) \mapsto \text{Tr}_{\wedge^k E_y}(s(v)_y)$$

is a regular function on Z_Y.

Lemma 11. Let E be a \mathcal{B}-linearized vector bundle on Y. Then $\rho_Y(c^\mathcal{B}_k(E))$ is a regular function on $\mathbb{C}[Z_Y]$.

Proof. View v as an element of $\text{Lie} (\mathfrak{T})$. As above let v_{ξ_j} denote the corresponding endomorphism on E_{ξ_j}. By Equation (7) we have

$$c^\mathcal{B}_k(E)_{\xi_j} = \text{Tr}_{\wedge^k E_y}(s(v)_{\xi_j}).$$

Put $\zeta_j = \varphi(v^{-1})\zeta_j$. Then the $\zeta_j(v)$ are the fixed points of \mathfrak{h}_v. Recall that $s(v) \in \mathfrak{h}_v$, hence it gives an endomorphism $s(v)_{\zeta_j(v)}$ of the fibre $E_{\zeta_j(v)}$. Since E is \mathcal{B}-linearized, the element $\varphi(v^{-1})$ gives an isomorphism $E_{\zeta_j} \to E_{\zeta_j(v)}$; moreover the endomorphism $v_{\zeta_j(v)}$ on $E_{\zeta_j(v)}$ is conjugate to the endomorphism v_{ζ_j} on E_{ζ_j}. Put $y = \zeta_j(v)$. Then $(y, v) \in Z_Y$ and

$$\text{Tr}_{\wedge^k E_{\zeta_j}}(v_{\zeta_j}) = \text{Tr}_{\wedge^k E_y}(s(v)_y).$$

But by Lemma 11, the function $(y, v) \mapsto \text{Tr}_{\wedge^k E_y}(s(v)_y)$ is a regular function on Z_Y.

To summarize the discussion of this section, we state

Theorem 12. If Y is a \mathcal{B}-invariant subvariety of a \mathcal{B}-regular variety X, then we obtain a $\mathbb{C}[v]$-algebra homomorphism $\rho_Y : \mathcal{H}^*_\mathcal{B}(Y) \to \mathbb{C}[Z_Y]$ such that the diagram (8) is commutative.

7. Classification of Principal Subvarieties

We now classify principal subvarieties. First, we describe the image of $H^*_\mathcal{B}(X)$ in $H^*_\mathcal{T}(Y)$ for a \mathcal{B}-invariant subvariety Y with vanishing odd cohomology.

Theorem 13. Suppose Y is \mathcal{B}-invariant subvariety of a \mathcal{B}-regular variety X with vanishing odd cohomology. Then

(i) $\rho_Y : \mathcal{H}^*_\mathcal{B}(Y) \to \mathbb{C}[Z_Y]$ is an isomorphism, and

(ii) $i^*_Y(H^*_\mathcal{T}(X)) = \mathcal{H}^*_\mathcal{B}(Y)$.

Consequently, $\mathcal{H}_B^*(Y)$ is exactly the subalgebra generated by Chern classes of B-equivariant vector bundles on Y which are pull backs of B-equivariant vector bundles on X.

Proof. It is clear from the commutativity of (8) that ρ_Y is surjective. The definition of ρ_Y and localization (applied to Y) implies it is injective. This proves (i). We now show (ii). By Lemma 8 we have an isomorphism $\psi_Y : \mathbb{C}[Z_Y] \to i_Y^*(H^*_T(X))$. We claim that $\rho_Y \psi_Y = 1$. In fact, by (8) and the definition of ψ_Y,

$$\rho_Y \psi_Y = \rho_Y i_Y^* \rho_X^{-1} i_Y^{-1} = i_Y^* \rho_X \rho_X^{-1} i_Y^{-1},$$

which is clearly the identity. Thus

$$\rho_Y (i_Y^* (H^*_T(X)) = \mathbb{C}[Z_Y],$$

which certainly implies (ii). \square

Corollary 14. A B-invariant subvariety Y of a B-regular variety X is principal if and only if $\mathcal{H}_B^*(Y) = H^*_T(Y)$.

Proof. The necessity is clear. But if $\mathcal{H}_B^*(Y) = H^*_T(Y)$, then Y has vanishing odd cohomology, so the result follows from Theorem 13 (b). \square

Theorem 2 follows immediately from this corollary. We conclude with an application.

Corollary 15. Suppose Y is a normal B-invariant subvariety of a B-regular variety X such that $H^*(Y)$ is generated by Chern classes of line bundles. Then Y is principal.

Proof. Let L be an algebraic line bundle on Y. By [10], some power L^m is B-equivariant. Hence the first Chern classes of B-equivariant lines bundles on Y generate $H^*(Y)$. This is equivalent to saying that $\mathcal{H}_B^*(Y) = H^*_T(Y)$. \square

Acknowledgement: We would like to thank Michel Brion and Jochen Kuttler who each noticed an error in a previous version of this paper.
References

[1] E. Akyildiz and J.B. Carrell: Cohomology of projective varieties with regular SL_2 actions. Manuscripta Math. 58 (1987), 473–486.
[2] E. Akyildiz and J.B. Carrell: A generalization of the Kostant-Macdonald identity, Proc. Nat. Acad. Sci. U.S.A. 86 (1989), 3934–3937.
[3] M. Brion: Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal, PQ, 1997),1–37, Kluwer Acad. Publ., Dordrecht, 1998.
[4] M. Brion and J.B. Carrell: The equivariant cohomology ring of regular varieties. Michigan Math. J. 52 (2004), 189–203.
[5] J. B. Carrell: Deformation of the nilpotent zero scheme and the intersection rings of invariant subvarieties, J. Reine Angew. Math. 460 (1995), 37–54.
[6] J. B. Carrell and D. I. Lieberman: Holomorphic vector fields and compact Kaehler manifolds. Invent. Math 21 (1973), 303–309.
[7] J. B. Carrell and D. I. Lieberman: Vector fields and Chern numbers. Math. Ann. 225 (1977), 263–273.
[8] C. De Concini and C. Procesi: Complete symmetric varieties. Invariant theory (Montecatini, 1982), 1–44, Lecture Notes in Math., 996, Springer, Berlin, 1983.
[9] M. Goresky, R. Kottwitz and R. MacPherson: Equivariant cohomology, Koszul duality, and the localization theorem. Invent. Math. 131 (1998), 25–83.
[10] F. Knop, H. Kraft, D. Luna and T. Vust: Local properties of algebraic group actions. Algebraische Transformationsgruppen und Invariantentheorie, 63–75, DMV Sem. 13, Birkhäuser, Basel, 1989.
[11] N. Spaltenstein: The fixed point set of a unipotent transformation on the flag manifold. Indag. Math. 38 (1976), 452–456.
[12] J. Tymoczko: Paving Hessenberg varieties by affines. Selecta Math. (N.S.) 13 (2007), 353–367

James B. Carrell, University of British Columbia, Vancouver, B.C., Canada
Email address: carrell@math.ubc.ca

Kiumars Kaveh, University of Toronto, Toronto, ON., Canada
Email address: kaveh@math.toronto.edu