Memory-Efficient Semi-Supervised Continual Learning: The World is its Own Replay Buffer

James Smith
Georgia Institute of Technology
Atlanta, Georgia, USA
jamessealesmith@gatech.edu

Yen-Chang Hsu
Samsung Research America
Mountain View, CA, USA
yenchang.hsu@samsung.com

Jonathan Balloch
Georgia Institute of Technology
Atlanta, Georgia, USA
balloch@gatech.edu

Zsolt Kira
Georgia Institute of Technology
Atlanta, Georgia, USA
zkira@gatech.edu

Abstract—Rehearsal is a critical component for class-incremental continual learning, yet it requires a substantial memory budget. Our work investigates whether we can significantly reduce this memory budget by leveraging unlabeled data from an agent’s environment in a realistic and challenging continual learning paradigm. Specifically, we explore and formalize a novel semi-supervised continual learning (SSCL) setting, where labeled data is scarce yet non-i.i.d. unlabeled data from the agent’s environment is plentiful. Importantly, data distributions in the SSCL setting are realistic and therefore reflect object class correlations between, and among, the labeled and unlabeled data distributions. We show that a strategy built on pseudo-labeling, consistency regularization, Out-of-Distribution (OoD) detection, and knowledge distillation reduces forgetting in this setting. Our approach, DistillMatch, increases performance over the state-of-the-art by no less than 8.7% average task accuracy and up to 54.5% average task accuracy in SSCL CIFAR-100 experiments. Moreover, we demonstrate that DistillMatch can save up to 0.23 stored images per processed unlabeled image compared to the next best method which only saves 0.08. Our results suggest that focusing on realistic correlated distributions is a significantly new perspective, which accentuates the importance of leveraging the world’s structure as a continual learning strategy. Our code is available at https://github.com/GT-RIPL/DistillMatch-SSCL.

I. INTRODUCTION

Computer vision models in the real-world are often frozen and not updated after deployment, yet they may encounter novel data in the environment. Unlike the typical supervised learning setting, class-incremental continual learning challenges the learner to incorporate new information as it sequentially encounters new object classes without forgetting previously-acquired knowledge (catastrophic forgetting). Research has shown that rehearsal of prior classes is a critical component for class-incremental continual learning [1][2]. Unfortunately, rehearsal requires a substantial memory budget, either in the form of a coreset of stored experiences or a separate learned model to generate samples from past experiences. This is not acceptable for memory-constrained applications which cannot afford to increase the size of their memory as they encounter new classes.

Instead, we consider a novel real-world setting where an incremental learner’s labeled task data is a product of its environment and the learner encounters a vast stream of unlabeled data in addition to the labeled task data. In such a setting (visualized in Figure 1), the unlabeled datastream is intrinsically correlated to each learning tasks due to the underlying structure of the environment. We explore many ways in which this correlation may exist. For example, when an incremental learner is tasked to learn samples of the previously-unseen class c_i at time i in the real world, examples of c_i may be encountered in the environment (in unlabeled form) during some future task. In such a setting, an incremental learner could use the unlabeled data in its environment as a source of memory-free rehearsal, though it would need a method to determine which unlabeled data is relevant to the incremental task (i.e. detecting in-distribution data).

We formalize this realistic paradigm in the semi-supervised continual learning (SSCL) setting, wherein unlabeled and labeled data are not i.i.d. as they are correlated through the underlying structure of the environment. We propose and conduct experiments over a realistic setting in which this correlation may exist, in the form of label super-class structure (e.g. unlabeled examples of household furniture such as chairs, couches, and tables will appear while learning the labeled examples of household electrical devices such as lamp, keyboard, and television [3][4]). We measure the final-task accuracy A, the accuracy over all tasks $Ω$, and the coreset memory required to attain a specific level of $Ω$ accuracy over several realistic SSCL settings. Our experiments demonstrate that state-of-the-art continual learning methods [5] perform inconsistently in the novel SSCL paradigm with no prior method performing “best” across all settings. This leads us to ask “How can an approach to catastrophic forgetting be robust to several realistic, memory-constrained continual learning scenarios?”

To answer the above question, we propose a novel learning approach that works well in both the simple (i.e., no correlations) and realistic SSCL settings: DistillMatch. We leverage unlabeled data not only for knowledge distillation (in which
Knowledge Distillation in Continual Learning: Several related methods leverage distillation losses on past tasks to mitigate catastrophic forgetting using soft labels from a frozen copy of the previous task’s model \[7, 8, 9, 10\]. For example, learning using two teachers, with one teacher distilling knowledge from previous tasks and another distilling knowledge from the current task, has been found to increase adaptability to a new task while preserving knowledge on the previous tasks \[5, 8\]. Class-balancing and fine-tuning have been used to encourage the model’s final predicted class distribution to be balanced across all tasks \[5, 7\]. These methods are related in that they rely on distillation losses to mitigate catastrophic forgetting, but the losses are designed to distill knowledge about specific local tasks and cannot discriminate between classes from different tasks (crucial for class incremental learning). More context on where our work fits into the greater body of continual learning research is provided in Appendix \[H\].

Global distillation (GD) introduces a global teacher which provides a knowledge ensemble from both the past tasks and current task \[5\]. This addresses a crucial shortcoming of common knowledge distillation methods which do not reconcile information from the local tasks (i.e. the groups of object classes presented sequentially to the learner) with the global task (i.e. all object classes seen at any time). GD leverages a large stream of uncorrelated unlabeled data from sources such as data mining social media or web data \[5\] to boost its distillation performance. Similar to GD, we leverage an unlabeled datastream to mitigate forgetting, but we take the perspective that this datastream is from the agent’s environment and reflects object-object correlation structures imposed by the world (i.e. correlations between the task data and the unlabeled data).

Out of Distribution Detection: Leveraging unlabeled data for rehearsal is key to our work, but it can contain a mix of classes not in the distribution of the data seen by the learner thus far. Therefore, we include Out-of-Distribution (OoD) Detection \[11\] \[12\] \[13\] to select unlabeled data corresponding to the classes our learner has seen so far with high confidence. Semantic OoD detection is a difficult challenge \[11\] and we do not have access to any known OoD data to calibrate our confidence. We therefore build on a recent method, Decomposed Confidence (DeConf) \[11\], which can be calibrated using only in-distribution training data. The method consists of decomposed confidence scoring with a learned temperature scaling in addition to input pre-processing. For further details, the reader is referred to \[11\].

Semi-Supervised Learning: In semi-supervised learning (which motivates the SSCL setting), models are given a (typically small) amount of labeled data and leverage unlabeled data to boost performance. This is an active area of research given that large, labeled datasets are expensive, but most applications have access to plentiful, cheap unlabeled data. There are several approaches to semi-supervised learning \[6\] \[14\] \[15\] \[16\] \[17\] \[18\] \[19\] \[20\] \[21\] which involve balancing a supervised loss \(\ell_s\) applied to the labeled data with an unsupervised loss \(\ell_u\) applied to unlabeled data. Additional details on these methods are provided in Appendix \[H\].

III. SSCL Setting

In class-incremental continual learning, a model is gradually introduced to labeled data corresponding to \(M\) semantic object classes \(c_1, c_2, \ldots, c_M\) over a series of \(N\) tasks, where tasks are non-overlapping subsets of classes. We use the notation \(T_n\) to denote the set of classes introduced in task \(n\), with \(|T_n|\) denoting the number of object classes in task \(n\). Each class appears in only a single task, and the goal is to incrementally learn to classify new object classes as they are introduced while retaining performance on previously learned classes. The class-incremental learning setting \(\{1\}\) is a challenging continual learning settings because no task indexes are provided to the learner during inference and the learner must support classification across all classes seen up to task \(n\).

We extend the class-incremental continual learning setting in the realistic semi-supervised continual learning (SSCL) setting, where data distributions reflect existing object class correlations between, and among, the labeled and unlabeled data distributions. The amount of labeled data in this setting is drastically reduced as is common in semi-supervised learning. For example, our experiments reduce the number of labeled examples per class by 80% compared to a prior setting \[5\]. At task \(n\), we denote batches of labeled data as \(X_n = \{(x_b, y_b) : b \in (1, \ldots, B) \mid y_b \in T_n\}\) and batches of unlabeled data as \(U_n = \{u_b : b \in (1, \ldots, \mu B)\}\). Here, \(B\) refers
to batch-size and μ is a hyperparameter describing the relative size of \mathcal{X}_n to \mathcal{U}_n. The goal in task n is to learn a model θ_n, which predicts object class labels for any query input over all classes seen in the current and previous tasks ($\mathcal{T}_1 \cup \mathcal{T}_2 \cup \cdots \cup \mathcal{T}_n$). The index n on θ_n indicates that our model is updated each task; i.e. θ_{n-1} refers to model from the previous task and θ_n refers to the model from the current task.

To simulate an environment where unlabeled and labeled data are naturally correlated, we leverage well-defined relationships between objects derived from a super-class structure (i.e. various animals within one super-class). We use the CIFAR-100 dataset because object correlations among classes and parent classes, crucial to our experiments, are well defined and explored. This dataset contains eight unbalanced super-classes, which we use to simulate realistic data environments. Each super-class contains a number of parent classes (e.g. one super-class contains the parent classes flowers, fruits/vegetables, and trees). There are 20 parent classes in total which form the 20 continual learning tasks, with each parent class consisting of five object classes (e.g. flowers parent class consists of orchids, poppies, roses, sunflowers, tulips). For a single task, when our learner is being shown labeled training data from one of the parent classes (e.g. flowers, fruit/vegetables, or trees), the unlabeled data for this task will contain examples from the entire super-class (e.g. flowers, fruits/vegetables, and trees).

SSCL with this realistic super-class "environment" structure is our main setting, but we also explore several other correlation combinations, including the simple SSCL setting without any super-class structure. We use the following terminology to describe the correlations of the tasks (i.e. labeled data): RandomClass Tasks, where no correlations exist in task classes, and ParentClass Tasks, where tasks are introduced by CIFAR-100 parent classes (i.e. each task is to learn the five classes of a single CIFAR-100 parent class). For the unlabeled data distribution we have: Uniform Unlabeled, where all classes are uniformly distributed in unlabeled data for all tasks, PositiveSuperclass Unlabeled, where the unlabeled data of each task consists of the parent classes in the same super-class as the current task, NegativeSuperclass Unlabeled, where the unlabeled data of each task consists of parent classes from different super-class as the current task, and RandomUnlabeled, where the unlabeled data of each task consists of 20 randomly sampled classes (roughly equal to the average class size in a super-class). Further discussion and details, including figures depicting example streams for each task sequence, are provided in Appendix F.

IV. Approach

Local Distillation - Preserve Past Tasks 1 . . . $n - 1$ Using Unlabeled Data: Our approach, summarized in Figure 2, is a distillation-based approach and therefore uses a standard local distillation loss (as in prior methods). The intuition of knowledge distillation is that the current model should make similar predictions to previous models over the set of classes associated with the previous tasks. Refining prior notation, this loss depends on $\theta_{t, n}$: the model of θ at time t that has been trained up to, and including, data with the classes from task n. For example, $\theta_{n, 1:n}$ refers to the model trained during task n and its logits associated with all tasks up to and including class n. Let us denote $p_\theta(y \mid x)$ as the predicted class distribution produced by model θ for input x. Using this notation, ℓ_{dst} during the training of task n is given as:

$$\ell_{dst} = \frac{1}{n - 1} \sum_{t=1}^{n-1} \sum_{b=1}^{B} \log p_\theta(y \mid x_b),$$

for $b \in \mathcal{B}$, where \mathcal{B} is the set of tasks.

Fig. 1: Unlike standard replay (scheme A) which requires a substantial memory budget, we explore the potential of an unlabeled datastream to serve as replay and significantly reduce the required memory budget. Unlike previous work which requires access to an external datastream uncorrelated to the environment (scheme B), we consider the datastream to be a product of the continual learning agent’s environment (scheme C).
We use unlabeled data considered as in-distribution for a previous state-of-the-art method GD [5]. We found that eq. (1) works well at preserving performance where \(\tau \) and \(\alpha \) denotes weak data augmentations such as random horizontal flips and crops. This loss acts as a regularization penalty to encourage the current model to make similar predictions to the previous model for all tasks \(1 \ldots n - 1 \).

OoD Detector Training and Calibration: We train and calibrate an OoD detector in the SSCL setting in order to identify unlabeled data previously seen by the agent. OoD detection calculates a scalar score \(S(u_b) \) for unlabeled input \(u_b \), and rejects \(u_b \) as out-of-distribution if \(S(u_b) < \tau_{OoD} \), where \(\tau_{OoD} \) is a calibrated threshold. OoD scores in our SSCL setting include the time index \(n \), \(S_n(u_b) \), and are generated from a separate OoD model \(\theta_n \) using the method in [11]. We use unlabeled data considered as in-distribution for a hard distillation loss, and we use all unlabeled data for soft knowledge distillation and consistency losses. We use a separate model because calibrating the decision threshold \(\tau_{OoD} \) requires labeled hold-out data, which we cannot afford to sacrifice in our main classification model given we are already working in a limited labeled data regime. We hold-out 50% of the labeled training data (across all tasks) when training \(\theta_n \) for this calibration decision. At the end of each task \(n \), we calibrate \(\tau_{OoD} \) to operate at a \(\delta \% \) true-positive ratio (TPR) using the hold-out labeled data, where \(\delta \) is a scalar hyperparameter. For computational efficiency, we exclude unlabeled losses when training \(\theta_n \). We note that our implementation uses the same number of models (and therefore parameters) as used in the prior state-of-the-art method GD [5].

Confidence-Based Hard Distillation - Preserve Past Tasks \(1 \ldots n - 1 \) Using Unlabeled Data: In our experiments, we found that eq. (1) works well at preserving performance on local tasks, but does not work well on distilling knowledge from the global task (i.e. object classes from tasks \(1 \ldots n \)). We demonstrate hard distillation (cross entropy loss with a one-hot vector label) is preferable over soft distillation because hard distillation distills knowledge across all classes (i.e. the global task). Specifically, we distill global knowledge from task \(n - 1 \) into task \(n \) by using a frozen copy of \(\theta_{n-1,1:n-1} \) to pseudo-label unlabeled data by generating predicted class distributions for unlabeled images as: \(q_{b,n-1} = p_{\hat{\theta}_{n-1,1:n-1}}(y | \alpha(u_b)) \), and one-hot pseudo-labels as \(\hat{q}_{b,n-1} = \arg \max(q_{b,n-1}) \). We identify highly confident data on task \(n - 1 \) using the DeConf OoD detection described in Section [II].

Let \(S_{n-1}(u_b) \) denote the score of our OoD detector for past task classes of our pseudo-label model, \(\hat{\theta}_{n-1,1:n-1} \). Then, our confidence-based hard distillation loss for the pseudo-labeled data \(\ell_{pl} \) becomes:

\[
\ell_{pl} = \frac{1}{B_{pl}} \sum_{b=1}^{\mu B} \mathbb{1}(S_{n-1}(u_b) \geq \tau_{OoD})
\]

where \(\mathcal{L}_{CE}(p,q) \) is the cross-entropy between probability distributions \(p \) and \(q \) and \(B_{pl} \) is the number of pseudo-labeled examples in the given batch identified with OoD detection. We normalize the batch by \(B_{pl} \) and not \(\mu B \) so that \(\ell_{pl} \) can be class balanced alongside the labeled training data (described in the next subsection). Note that we only need to retain \(\theta_{n-1,1:n-1} \) at task \(n \).

Semi-Supervised Class Balancing - Balance Past Tasks \(1 \ldots n - 1 \) with New Task \(n \) Using Labeled and Unlabeled Data: Our method is designed to work even in the absence of a coreset (stored images) when unlabeled data from past tasks is available. This is due to the design choice of including hard pseudo-labeled data from a frozen model copy. A problem arises from this approach in sensitivity to class imbalance, however. Specifically, the distribution of classes for a given batch becomes imbalanced when considering both labels \(y \) and pseudo-labels \(\hat{q}_{b,n-1} \). This is because the number of examples per class in the labeled training data is unlikely to equal the number of examples per class in the pseudo-
labeled training data, given these come from two different distributions. To address this, we weight loss components proportionally to the distribution of both labeled training data and hard pseudo-labeled unlabeled data. Specifically, we scale the gradient computed from a data with label or pseudo-label $k \in (1, \cdots, K)$ by:

$$w(k) = \frac{1}{K} \left(\frac{|\{(x, y) \in X_n\}| + |\{u \in U_n\}|}{|\{(x, y) \in X_n \mid y = k\}| + |\{u \in U_n \mid \hat{q}_{n-1} = k\}|} \right)$$ \hspace{1cm} (3)

Consistency Regularization - Learn New Task n Using Unlabeled Data: We examine the effects of a consistency loss introduced in FixMatch [19] in the SSCL setting to leverage unlabeled data for learning the current task (rather than only preserving knowledge on the past tasks). This loss enforces consistency between weakly and strongly augmented versions of unlabeled data which increases robust decisions on highly confident unlabeled examples. Strong data augmentations, denoted as A, include RandAugment [23]. The model generates a predicted class distribution from a weakly-augmented version of the unlabeled image: $q_b = p_{\theta_{n,1:n}}(y \mid \alpha(u_b))$. Using a generated one-hot pseudo-label $\hat{q}_b = \text{arg max}(q_b)$, the unlabeled loss ℓ_{ul} is calculated as:

$$\ell_{ul} = \frac{1}{\mu_B} \sum_{b=1}^{\mu_B} \mathbb{I}(\text{max}(q_b) \geq \tau_{FM}) \cdot CE(\hat{q}_b, p_{\theta_{n,1:n}}(y \mid A(u_b)))$$ \hspace{1cm} (4)

where τ_{FM} is a confidence threshold (scalar hyperparameter) above which a pseudo-label is retained.

Final Loss - Our final, balanced loss ℓ_{total} is given as:

$$\ell_{total} = \frac{1}{B + B_{pl}} \cdot (\ell_s + \ell_{pl}) + \lambda_{uct} \ell_{ul} + \lambda_{dst} \ell_{dst}$$ \hspace{1cm} (5)

$$\ell_s = \sum_{b=1}^{B} w(y_b) \cdot LC_E(y_b, p_{\theta_{n,1:n}}(y \mid \alpha(x_b)))$$ \hspace{1cm} (6)

$$\ell_{pl} = \sum_{b=1}^{\mu_B} w(\hat{q}_{b,n-1}) \cdot \mathbb{I}(S_n - (u_b) \geq \tau_{OdD})$$

$$\ell_{ul} = \sum_{b=1}^{\mu_B} \mathbb{I}((\hat{q}_b, p_{\theta_{n,1:n}}(y \mid \alpha(u_b)))$$

where ℓ_{ul} is taken from eq. (4), ℓ_s is the supervised task loss, ℓ_{dst} is from eq. (1), and $\lambda_{uct}, \lambda_{dst}$ are hyperparameters which weight of unlabeled consistency loss and local distillation, respectively.

V. EXPERIMENTS

We evaluate DistillMatch and state-of-the-art baselines under several realistic SSLC scenarios with the CIFAR-100 dataset using 100 labeled examples per class. We choose recent distillation methods which can leverage the unlabeled data with distillation losses: Distillation and Retrospection (DR) [8], End-to-End incremental learning (E2E) [7], and Global Distillation (GD) [5]. Similar to GD [5], we do not compare to model-regularization methods (i.e., methods which penalize changes to model parameters, as discussed in Appendix [4]) because distillation methods have been found to perform better in the class-incremental learning setting [5]. Besides, these methods are orthogonal to our contribution and could be combined with our approach (and the competing approaches) for better performance. We use implementations of DR and E2E from [5], which are adapted from incremental task learning to incremental class learning. These implementations of DR and E2E use the unlabeled data for their respective knowledge distillation loss(es). We also compare to a neural network trained only with cross entropy loss on labeled data (Base). In Table I we visualize the high level differences of each method, including how the unlabeled data is used by each method. Not that E2E, DR, and GD all use both a coreset (if available) and unlabeled data from the environment, so the comparison is fair.

A. Metrics

We evaluate our methods using: (I) final performance, or the performance with respect to all past classes after having seen all N tasks (referred to as $A_{N,1:N}$); and (II) Ω, or the average (over all tasks) normalized task accuracy with respect to an offline oracle method [23]. As before, we use index i to index tasks through time and index n to index tasks with respect to test/validation data (for example, $A_{i,n}$ describes the accuracy of our model after task i on task n data). Specifically:

$$A_{i,n} = \frac{1}{|D_{test}^i|} \sum_{(x,y) \in D_{test}^i} \mathbb{I}(\hat{y}(x, \theta_{i,n}) = y \mid \hat{y} \in T_n) \hspace{1cm} (8)$$

$$\Omega = \frac{1}{N} \sum_{i=1}^{N} \sum_{n=1}^{i} \frac{|T_n|}{|T_{1:n}|} \cdot A_{i,1:n} \hspace{1cm} (9)$$

Ω is designed to evaluate the global task and is therefore computed with respect to all previous classes. For the final task accuracy in our results, we will denote $A_{N,1:N}$ as simply A_N.

B. Other Details

We do not tune hyperparameters on the full task set because tuning hyperparameters with hold out data from all tasks may violate the principal of continual learning that states each task in visited only once [2]. Following [5], we include a coreset for many experiments (although we show our method does not need a coreset when certain object correlations are present between unlabeled and labeled data) which is used for both the labeled cross entropy loss and the distillation loss. Given that our SSL tasks use 20% of the labeled data from [5], we also reduce the coreset to 20% of their coreset size (from 2000 to 400). Notice that no methods have a memory budget for unlabeled data (i.e., the unlabeled data is from a stream and discarded after use rather than stored). We include supplementary details and metrics in our Appendix: additional ablations [A], additional experiment details [B], hyperparameter selection [C], full results including standard deviation and plots [D], OoD performance [E], and super-parent class associations [F].
TABLE I: Comparison of distillation methods. L refers to labeled data from the current task, C refers to labeled coreset data from past tasks (if available), and U refers to unlabeled data from the environment.

Component	Base	E2E	DR	GD	DM (ours)
Classification Loss	L/C	L/C	L/C	L/C	L/C
Per-Task Distillation over Previous Tasks (eq. 1)	-	C/U	-	-	C/U
Single-Task Distillation over Previous Tasks	-	-	C/U	C/U	-
Distill Current Task from Separate Trained Model	-	-	L/U	L/U	-
Soft Global Distillation (All-Tasks)	-	-	-	U	-
Hard Global Distillation (All-Tasks) (eq. 2)	-	-	-	-	U
Consistency Loss (All-Tasks) (eq. 1)	-	-	-	-	U
Confidence Calibration	-	-	-	C/U	-
OoD Detection	-	-	-	U	-
Fine-Tuning	-	L/C	L/C	L/C	L/C/U
Class-Balancing	-	L/C	-	L/C	L/C/U

C. Results

We do not need to store coreset data in an environment with uniform unlabeled data. We first evaluate our methods in a scenario where unlabeled data is drawn from a uniform distribution over all classes (Table IIa). This represents the situation where labeled task data is presented sequentially by a teacher but unlabeled data from all tasks is freely available. We evaluate these experiments with no coreset for replay given that unlabeled examples for all classes are present in each task. Across these experiments, we see that our proposed method (DM) establishes strong performance for SSCL. With respect to final classification accuracy A_N and average normalized task accuracy Ω, we see that DM has considerably higher performance. The local distillation baselines E2E and DR perform no better than Base, which makes sense because local distillation does not distill the global task. The results suggest that when the unlabeled data distribution contains all past task classes, methods which distill across the global task (GD and DM) achieve high performance despite having no coreset.

Class correlations in the labeled task data negatively affect performance of all distillation methods. We explore a scenario where object correlations exist in the class distribution of the labeled data but not the unlabeled data (Table IIb). This extends the previous scenario by considering learning tasks of similar object types. We evaluate these experiments with and without a coreset to make direct comparisons with both the previous experiment and the next experiment. Compared to the previous experiments, we see that the introduction of super-classes entails a more difficult problem, as every method decreases in performance; yet DM largely outperforms all other methods. For example, in Table IIb (no coreset), GD results in 37.4% Ω and DM results in 57.8% Ω, indicating a 54.5% increase over state of the art. Overall, these results pose an interesting question of why parent class tasks would negatively affect performance; we plan to more fully explore this in future works.

The DistillMatch approach is robust to several realistic unlabeled data correlations; the other methods are not. We evaluate our methods with several unlabeled data distributions (beyond a uniform distribution) with the above ParentClass Tasks (Table IIc). The unlabeled data correlations represent the realistic SSCL scenario, a vastly different perspective compared to prior experimental methodologies. We evaluate these experiments with a coreset of 400 images for replay and show that our method is state of art in each realistic scenario. Surprisingly, we found that the global distillation method actually performs worse than Base. This can be explained in that the global distillation loss expects the unlabeled data to contain examples which are either in the distribution of the past tasks or out of distribution for the global task (i.e. it assumes the unlabeled data does not contain examples of the current task), and actually hurts performance when this assumption is not held. Our method, on the other hand, performs the same or better compared to the other methods (DR, E2E) which have no such an assumption. These results suggest that our reminding based solution is the only evaluated method which performs well in a memory constrained setting regardless of the correlations between unlabeled and labeled data.

The DistillMatch approach saves memory. Here, we perform a study to quantify the memory budget savings from our method (Figure 5). We see that DM performs considerably higher than the leading baseline, GD, in the RandomClass Tasks with Uniform Unlabeled Data Distribution scenario (10 task). All other methods require a large coreset to match DM. We specifically find the necessary coreset size for Base required to match our performance. We show base requires roughly 935 and 338 stored images to match the performance of DM and GD, respectfully. This is equivalent to 0.23 and 0.08 stored images per unlabeled image (calculated using the number of unlabeled images per task in this scenario, which is 4000).

Each component of DistillMatch contributes to its performance gains. We perform an extensive ablation study of our method in Table IIIa for the scenario with no coreset (further ablations are found in Appendix A). We show that while the semi-supervised consistency loss ℓ_1, class balancing ℓ_3, and soft distillation loss ℓ_4 are all important to our method, the most important contribution is the hard distillation loss ℓ_2. In summary, we find that our design performs well across a range of conditions, namely with different amounts of coresets (including none at all), as well as under different unlabeled distributions. This is a key aspect of our experimental setting, which better reflects the flexibility that is necessary from a continual learning algorithm.
TABLE II: Results (%) CIFAR-100 with 20% Labeled Data for (a) RandomClass Tasks on for various task sizes (no Coreset, Uniform Unlabeled Data Distribution), (b) ParentClass Task for various coreset sizes (20 Tasks, Uniform Unlabeled Data Distribution), and (c) ParentClass Task for various unlabeled data distributions (20 Tasks, with 400 image Coreset). Results are reported as an average of 3 runs, with std provided in the supplementary material. UB refers to the upper bound, given by the offline oracle.

Tasks	5	10	20			
Metric (↑)	A_N	Ω	A_N	Ω	A_N	Ω
UB	56.7	100	56.7	100	56.7	100
Base	15.6	52.5	8.2	34.7	4.3	22.0
E2E	12.5	46.1	7.5	32.3	4.0	21.1
DR	16.0	53.7	8.3	36.4	4.3	22.4
GD	32.1	69.9	21.4	60.0	13.4	42.7
DM	44.8	84.4	37.5	76.9	21.0	60.8

(b)

Coreset	0	400		
Metric (↑)	A_N	Ω	A_N	Ω
UB	56.7	100	56.7	100
Base	3.5	18.5	14.6	53.4
E2E	3.2	18.1	19.5	59.3
DR	3.7	19.4	20.1	57.8
GD	10.5	37.4	21.4	57.7
DM	20.8	57.8	24.4	67.5

(c)

UL. Data Corr.	Positive	Negative	Random Sample			
Metric (↑)	A_N	Ω	A_N	Ω	A_N	Ω
UB	56.7	100	56.7	100	56.7	100
Base	14.6	53.4	14.6	53.4	14.6	53.4
E2E	18.9	59.4	19.9	60.1	19.8	60.0
DR	18.8	62.8	20.1	62.1	19.9	61.8
GD	17.9	50.2	18.1	50.5	21.3	59.9
DM	19.7	63.3	20.7	64.8	22.4	65.1

TABLE III: Results (%) for (a) Selected Ablation Studies for CIFAR-100 with 20% Labeled Data (RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset), and (b) Tiny-ImageNet with 20% Labeled Data for RandomClass Tasks with Uniform Unlabeled Data Distribution (10 Tasks, no Coreset). Results are reported as an average of 3 runs, with std provided in the supplementary material. For (a), Each row represents a part of our method which is removed as part of the study. UB refers to the upper bound, given by the offline oracle.

(a)

Ablation	A_N	Ω
ℓ_{pl} - eq. (4)	7.7	32.0
$w(k)$ - eq. (5)	30.2	69.6
ℓ_{rot} - eq. (6)	33.3	71.2
Full Method	35.2	74.1
UB	40.7	100.0

(b)

Metric	A_N (↑)	Ω (↑)
UB	6.8	35.1
E2E	5.8	30.3
DR	6.8	35.3
GD	11.9	50.6
DM	24.8	74.7

Fig. 3: Ω (%) vs Coreset Size for Base, with GD and DM (no corset) plotted horizontally. We show base requires roughly 935 and 338 stored images to match the performance of DM and GD, respectfully. This is equivalent to 0.23 and 0.08 stored images per unlabeled image (calculated using the number of unlabeled images per task in this scenario, which is 4,000).

VI. CONCLUSIONS

We formalize the SSCL setting, which mirrors the underlying structure in the real world where a continual agent’s learning task is a product of its environment, and determine its effect on the continual learning problem. To address the unique challenges of the SSCL setting, we propose a novel learning approach that works within these constraints, DistillMatch, notably outperforming closest prior art. Our approach consists of pseudo-labeling and consistency regularization, distillation for continual learning, and out-of-distribution (OoD) detection for confidence selection. Our analysis shows that our reminding-based approach performs well in a memory constrained setting regardless of the correlations between unlabeled and labeled data, unlike existing approaches. A challenge for future work is increasing the effectiveness of semantic OoD detection, and exploring better techniques for calibrating OoD detectors in a continual (online) manner. We acknowledge other concurrent works push realistic continual learning settings as well [25, 26], but the contributions are orthogonal to our setting.

Our results scale to larger image sizes. We report results for the Tiny-ImageNet dataset [24], which contains 200 classes of 64x64 resolution images with 500 training images per class, in Table IIIb. We experimented in a similar setting to Table IIa (20% labeled data with RandomClass Tasks, no Coreset, Uniform Unlabeled Data Distribution) with a ten-task sequence (20 classes per task). In this experiment, there are 20,000 labeled images and 80,000 unlabeled images; thus, we both double the number of data and double the image resolution. We find that the conclusions from Table IIa scale to this experiment.
ACKNOWLEDGEMENTS

This work is partially supported by both the Lifelong Learning Machines (L2M) program of DARPA/MTO: Cooperative Agreement HR0011-18-2-0019 and Samsung Research America.

REFERENCES

[1] Y.-C. Hsu, Y.-C. Liu, A. Ramasamy, and Z. Kira, “Re-evaluating continual learning scenarios: A categorization and case for strong baselines,” arXiv preprint arXiv:1810.12488, 2018.

[2] G. M. van de Ven and A. S. Tolias, “Three scenarios for continual learning,” arXiv preprint arXiv:1904.07734, 2019.

[3] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” Tech Report, 2009.

[4] X. Zhu and M. Bain, “B-cnn: branch convolutional neural network for hierarchical classification,” arXiv preprint arXiv:1709.09890, 2017.

[5] K. Lee, K. Lee, J. Shin, and H. Lee, “Overcoming catastrophic forgetting with unlabeled data in the wild,” in Proceedings of the IEEE International Conference on Computer Vision, pp. 312–321, 2019.

[6] A. Oliver, A. Odena, C. A. Raffel, E. D. Cubuk, and I. Goodfellow, “Realistic evaluation of deep semi-supervised learning algorithms,” in Advances in Neural Information Processing Systems, pp. 3235–3246, 2018.

[7] F. M. Castro, M. J. Marín-Jiménez, N. Guil, C. Schmid, and K. Alahari, “End-to-end incremental learning,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 233–248, 2018.

[8] S. Hou, X. Pan, C. Change Loy, Z. Wang, and D. Lin, “Lifelong learning via progressive distillation and retrospection,” in Proceedings of the European Conference on Computer Vision (ECCV), pp. 437–452, 2018.

[9] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis and machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[10] S. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and representation learning,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR’17, pp. 5533–5542, 2017.

[11] Y.-C. Hsu, Y. Shen, H. Jin, and Z. Kira, “Generalized odin: Detecting out-of-distribution image without learning from out-of-distribution data,” arXiv preprint arXiv:2002.11297, 2020.

[12] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework for detecting out-of-distribution samples and adversarial attacks,” in Advances in Neural Information Processing Systems, pp. 7167–7177, 2018.

[13] S. Liang, Y. Li, and R. Srikant, “Enhancing the reliability of out-of-distribution image detection in neural networks,” arXiv preprint arXiv:1706.02690, 2017.

[14] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised learning,” in Advances in Neural Information Processing Systems, pp. 5050–5060, 2019.

[15] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks,” ICML 2013 Workshop: Challenges in Representation Learning (WREPL), 07 2013.

[16] D. P. Kingma, D. J. Rezende, S. Mohamed, and M. Welling, “Semi-supervised learning with deep generative models,” in Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA), pp. 3581–3589, MIT Press, 2014.

[17] C.-W. Kuo, C.-Y. Ma, J.-B. Huang, and Z. Kira, “Manifold graph with learned prototypes for semi-supervised image classification,” arXiv preprint arXiv:1906.05202, 2019.

[18] T. Miyato, S.-i. Maeda, S. Ishii, and M. Koyama, “Virtual adversarial training: a regularization method for supervised and semi-supervised learning,” IEEE transactions on pattern analysis and machine intelligence, 2018.

[19] K. Sohn, D. Berthelot, C.-L. Li, Z. Zhang, N. Carlini, E. D. Cubuk, A. Kurakin, H. Zhang, and C. Raffel, “Fixmatch: Simplifying semi-supervised learning with consistency and confidence,” arXiv preprint arXiv:2001.07685, 2020.

[20] J. T. Springenberg, “Unsupervised and semi-supervised learning with categorical generative adversarial networks,” arXiv preprint arXiv:1511.06390, 2015.

[21] A. Tarvainen and H. Valpola, “Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 1195–1204, Curran Associates, Inc., 2017.

[22] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment: Practical automated data augmentation with a reduced search space,” arXiv preprint arXiv:1909.13719, 2019.

[23] T. L. Hayes and C. Kanan, “Lifelong machine learning with deep streaming linear discriminant analysis,” arXiv preprint arXiv:1909.01520, 2019.

[24] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, 2015.

[25] M. Mundt, Y. W. Hong, I. Plushch, and V. Ramesh, “A wholistic view of continual learning with deep neural networks: Forgotten lessons and the bridge to active and open world learning,” arXiv preprint arXiv:2009.01797, 2020.

[26] M. Ren, M. L. Iuzzolino, M. C. Mozer, and R. S. Zemel, “Wandering within a world: Online contextualized few-shot learning,” arXiv preprint arXiv:2007.04546, 2020.

[27] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” in Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS’17, (USA), pp. 6470–6479, Curran Associates Inc., 2017.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learn-
ing for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

[29] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter, “Continual lifelong learning with neural networks: A review,” Neural Networks, vol. 113, pp. 54 – 71, 2019.

[30] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and L. Page-Caccia, “Online continual learning with maximal interfered retrieval,” in Advances in Neural Information Processing Systems, pp. 11849–11860, 2019.

[31] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection for online continual learning,” in Advances in Neural Information Processing Systems, pp. 11816–11825, 2019.

[32] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with a-GEM,” in International Conference on Learning Representations, 2019.

[33] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ranzato, “Continual learning with tiny episodic memories,” arXiv preprint arXiv:1902.10486, 2019.

[34] A. Gepperth and C. Karaoguz, “Incremental learning with self-organizing maps,” 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM), pp. 1–8, 2017.

[35] T. L. Hayes, N. D. Cahill, and C. Kanan, “Memory efficient experience replay for streaming learning,” in 2019 International Conference on Robotics and Automation (ICRA), pp. 9769–9776, IEEE, 2019.

[36] R. Kemker, M. McClure, A. Abitino, T. Hayes, and C. Kanan, “Measuring catastrophic forgetting in neural networks,” AAAI Conference on Artificial Intelligence, 2018.

[37] A. Robins, “Catastrophic forgetting, rehearsal and pseudorehearsal,” Connection Science, vol. 7, no. 2, pp. 123–146, 1995.

[38] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experience replay for continual learning,” in Advances in Neural Information Processing Systems, pp. 348–358, 2019.

[39] J. von Oswald, C. Henning, J. Sacramento, and B. F. Grewe, “Continual learning with hypernetworks,” arXiv preprint arXiv:1906.00695, 2019.

[40] N. Kamra, U. Gupta, and Y. Liu, “Deep generative dual memory network for continual learning,” arXiv preprint arXiv:1710.10368, 2017.

[41] R. Kemker and C. Kanan, “Fearnet: Brain-inspired model for incremental learning,” International Conference on Learning Representations (ICLR), 2018.

[42] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,” in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 2990–2999, Curran Associates, Inc., 2017.

[43] X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D. Bagdanov, S. Jui, and J. van de Weijer, “Generative feature replay for class-incremental learning,” arXiv preprint arXiv:2004.09199, 2020.

[44] S. Ebrahimi, F. Meier, R. Calandra, T. Darrell, and M. Rohrbach, “Adversarial continual learning,” arXiv preprint arXiv:2003.09553, 2020.

[45] S. Lee, J. Ha, D. Zhang, and G. Kim, “A neural dirichlet process mixture model for task-free continual learning,” arXiv preprint arXiv:2001.00689, 2020.

[46] V. Lomonaco and D. Maltoni, “Core50: a new dataset and benchmark for continuous object recognition,” arXiv preprint arXiv:1705.03550, 2017.

[47] D. Maltoni and V. Lomonaco, “Continuous learning in single-incremental-task scenarios,” Neural Networks, vol. 116, pp. 56–73, 2019.

[48] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint arXiv:1606.04671, 2016.

[49] J. Smith, S. Baer, C. Taylor, and C. Dovrolis, “Unsupervised progressive learning and the stam architecture,” arXiv preprint arXiv:1904.02021, 2019.

[50] R. Aljundi, F. Babiloni, M. Elhoseiny, M. Rohrbach, and T. Tuytelaars, “Memory aware synapses: Learning what (not) to forget,” in ECCV, 2018.

[51] S. Ebrahimi, M. Elhoseiny, T. Darrell, and M. Rohrbach, “Uncertainty-guided continual learning with bayesian neural networks,” arXiv preprint arXiv:1906.02425, 2019.

[52] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic forgetting in neural networks,” Proceedings of the national academy of sciences, 2017.

[53] M. K. Titsias, J. Schwarz, A. G. d. G. Matthews, R. Pascanu, and Y. W. Teh, “Functional regularisation for continual learning with gaussian processes,” in International Conference on Learning Representations, 2019.

[54] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic inference,” in International Conference on Machine Learning, 2017.

[55] K. Javed and M. White, “Meta-learning representations for continual learning,” in Advances in Neural Information Processing Systems, pp. 1818–1828, 2019.

[56] S. Beaulieu, L. Frati, T. Miconi, J. Lehman, K. O. Stanley, J. Clune, and N. Cheney, “Learning to continually learn,” arXiv preprint arXiv:2002.09571, 2020.

[57] X. He, J. Sygnowski, A. Galashov, A. A. Rusu, Y. W. Teh, and R. Pascanu, “Task agnostic continual learning via meta learning,” arXiv preprint arXiv:1906.05201, 2019.

[58] G. Saha, I. Garg, A. Ankit, and K. Roy, “Structured compression and sharing of representational space for continual learning,” arXiv preprint arXiv:2001.08650,
2020.

[59] L. Jing and Y. Tian, “Self-supervised visual feature learning with deep neural networks: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
APPENDIX

Supplementary Metrics: In addition to the metrics used in the main paper, we also report backwards Backward Transfer (BWT) and Forgetting (FTG). BWT is a measurement of increase in performance on task \(n \) after training across all tasks \(1 \ldots N \). A higher value is better, indicating that the learner is better at performing task \(n \) after learning the subsequent tasks. A negative value indicates a drop in performance, which is typically expected in class incremental learning. A weakness of this metric is that it measures performance relative to local tasks and does not reflect performance on the global task of class incremental learning (i.e. the softmax outputs are across only the local per-task categories, not across all of the categories encountered throughout training). FTG is a measurement of decrease in performance on task \(n \) with respect to the global task; it is essentially negative backward transfer adopted for class incremental learning. A lower value is better, indicating that the learner has experienced less average performance decrease on task \(n \) throughout training. A weakness of this metric is that it does not account for natural decrease in performance due to the increasingly more difficult global task characteristic in class incremental learning. A key difference between BWT and FTG is that when evaluating task \(n \) performance for BWT, only task \(n \) classes can be returned during inference, whereas for FTG, all tasks classes \(1 \ldots n \) can be returned. We include both of these metrics for experiment results during all subsequent sections because while neither is regularly used for class incremental learning, they may be useful to the reader.

\[
BWT = \frac{1}{N-1} \sum_{n=1}^{N-1} (A_{N,n} - A_{n,n})
\]

\[
FTG = \frac{1}{N-1} \sum_{i=2}^{N} \frac{1}{|T_i|} \sum_{n=1}^{i-1} (R_{n,n} - R_{i,n})
\]

where:

\[
R_{i,n} = \frac{1}{|D_{n}^{\text{test}}|} \sum_{(x,y) \in D_{n}^{\text{test}}} 1(\hat{y}(x, \theta_{1:n}) = y)
\]

A. DistillMatch Ablation Study

Here, we ablate our method in two experiment scenarios: RandomClass Tasks with Uniform Unlabeled Data Distribution (Table IVa) and ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution (Table IVb). \(\Omega \) curves for both Tables are given in Figure 4. In the former case, we find that the hard distillation loss is the most significant contribution, but the semi-supervised consistency loss, class balancing, and soft distillation loss add significant performance gains as well. In the later case, we actually find the semi-supervised consistency loss and distillation loss to be the most important, while class balancing and hard distillation loss perform very similarly. This reflects the strength of our method: DM performs well in all of our experiments because it has components which vary in importance depending on the scenario (i.e. coreset size and object-object correlations).

B. Additional Experiment Details

We use consistent coreset sampling and class-balancing strategies (when applicable) for all methods (taken from from [5]) for a fair comparison. We used a batch size of 64 for labeled training data and 128 for unlabeled training data. As done in [5], we train over 200 epochs per task with a tuned learning rate decaying by 0.1 after 120, 160, and 180 epochs. When a coreset is present, we include finetuning of the final layer in our model using only the coreset and class balancing, as introduced in GD [5]. If finetuning, the model is trained over the first 180 epochs in the same manner, but after 180 epochs the learning rate is reset to 10% of the initial learning rate and is trained for 20 additional epochs with decays by 0.1 after 10, 15 epochs. We use stochastic gradient decent with 0.9 momentum and 0.0005 L2 weight decay.

As also done in [5], we hold \(\lambda_{\text{dst}} \) to a constant value, 1, and include a small temperature scaling, 2, for the softmax activations used in eq. 1. All results are averaged over 3 repeats and generated with a common deep learning architecture (WRN-28-2) [28]. Results were generated using a combination of Titan X and 2080 Ti GPUs. Although we did not record specific run-times here as they are machine specific, we find our method to have a similar run-time to GD.

C. Hyperparameter Selection

We tuned hyperparameters using a grid search. We did this for two scenarios: (i) RandomClass Tasks with Uniform Unlabeled Data Distribution and (ii) ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution. The former is applied for all experimental scenarios which do not include a coreset, and the latter is applied for all scenarios which do include a coreset. We chose this division as we found the coreset size to greatly affect the other hyperparameters. DR and E2E use hyperparameters chosen for GD (as done in [5]), while Base uses hyperparameters from DM. The hyperparameters were tuned using k-fold cross validation with three folds of the training data on only half of the tasks. We do not tune hyperparameters on the full task set because tuning hyperparameters with hold out data from all tasks may violate the principal of continual learning that states each task in visited only once [2]. The results reported outside of this section are on the CIFAR-100 testing split (defined in the dataset).

D. Full Results

We provide additional detail to the results from Section V-C by reporting (i) the original results with additional metrics and standard deviations (Tables VI,VII, and VIII) and (ii) \(\Omega \) curves for each experiment in Figures 5 and 6.
TABLE IV: Results (%) for Selected Ablation Studies on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with mean and standard deviation. Each row represents a part of our method which is removed as part of the study.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Ablation	A_N (%)	$Ω$ (%)	BWT (%)	FGT (%)
$ℓ_{pl}$ - eq. 7	7.7 ± 0.5	32.0 ± 0.2	−5.8 ± 1.9	56.6 ± 1.9
$w(k)$ - eq. 3	30.2 ± 1.9	69.6 ± 0.5	−4.8 ± 0.2	10.5 ± 0.5
$ℓ_{ul}$ - eq. 4	33.3 ± 0.9	71.2 ± 2.3	−0.7 ± 0.3	7.7 ± 0.2
$ℓ_{dst}$ - eq. 1	35.2 ± 1.1	74.1 ± 1.7	−4.8 ± 0.4	8.0 ± 0.9
Full Method	37.5 ± 0.7	76.9 ± 2.5	−1.0 ± 1.0	6.5 ± 0.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Ablation	A_N (%)	$Ω$ (%)	BWT (%)	FGT (%)
$ℓ_{pl}$ - eq. 7	19.3 ± 1.1	64.6 ± 0.9	−17.9 ± 0.3	28.8 ± 1.0
$w(k)$ - eq. 3	19.4 ± 0.6	63.1 ± 1.4	−17.4 ± 0.4	27.2 ± 0.7
$ℓ_{ul}$ - eq. 4	17.1 ± 0.7	57.6 ± 1.5	−14.0 ± 0.1	21.8 ± 0.6
$ℓ_{dst}$ - eq. 1	17.7 ± 0.8	58.1 ± 1.5	−15.9 ± 0.9	22.7 ± 1.0
Full Method	19.7 ± 0.8	63.3 ± 2.1	−18.2 ± 0.7	24.9 ± 0.6

Fig. 4: $Ω$ curves showing task number t on the x-axis and $A_{t,1:t}$ on the y-axis.

(a) $Ω$ curve for Table IVa

(b) $Ω$ curve for Table IVb

TABLE V: Hyperparameters, chosen with grid search

Coreset	Range	DM	GD	DM	GD
Learning Rate	5e-3, 1e-2, 5e-2, 1e-1, 5e-1	1e-1	1e-1	1e-1	5e-3
Weight FixMatch Loss	0.1, 0.5, 1, 5	1.0	1.0	1.0	1.0
TPR	0.01, 0.05, 0.1, 0.2, 0.5, 0.8, 0.95	0.05	-	0.5	-
$ϵ$ (Fix Match)	0.7, 0.85, 0.9, 0.95	0.9	-	0.9	-
TABLE VI: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with standard deviation. The results from these tables do not include a coreset (and use the same set of hyperparameters, as described in Appendix C).

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 5 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	15.6 ± 0.9	52.5 ± 2.5	-25.7 ± 26.2	43.8 ± 2.3
E2E	12.5 ± 0.9	46.1 ± 0.9	1.4 ± 0.6	42.5 ± 1.2
DR	16.0 ± 0.9	53.7 ± 0.7	0.3 ± 0.7	41.6 ± 1.5
GD	32.1 ± 0.2	69.9 ± 0.9	0.5 ± 0.8	5.0 ± 0.3
DM	44.8 ± 1.4	84.4 ± 3.0	2.5 ± 0.1	1.2 ± 0.1

(b) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	8.2 ± 0.1	34.7 ± 0.8	-32.2 ± 24.6	56.2 ± 2.0
E2E	7.5 ± 0.5	32.3 ± 0.6	-0.5 ± 0.4	56.0 ± 1.8
DR	8.3 ± 0.3	36.4 ± 0.2	-1.9 ± 0.3	57.4 ± 1.3
GD	21.4 ± 0.6	60.0 ± 1.9	-14.6 ± 0.1	18.4 ± 1.5
DM	37.5 ± 0.7	76.9 ± 2.5	-1.0 ± 1.0	6.5 ± 0.5

(c) RandomClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	4.3 ± 0.4	22.0 ± 0.8	-41.6 ± 13.8	69.4 ± 0.5
E2E	4.0 ± 0.3	21.1 ± 0.6	-4.1 ± 0.8	67.7 ± 1.4
DR	4.3 ± 0.4	22.4 ± 0.7	-7.1 ± 0.2	70.6 ± 1.2
GD	13.4 ± 1.9	42.7 ± 1.1	-29.2 ± 3.5	37.4 ± 0.8
DM	21.1 ± 1.0	60.8 ± 0.8	-8.8 ± 0.7	17.3 ± 1.7

(d) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	3.5 ± 0.1	18.5 ± 0.5	-33.5 ± 6.0	54.3 ± 0.8
E2E	3.2 ± 0.2	18.1 ± 0.6	-14.6 ± 3.5	53.0 ± 0.1
DR	3.7 ± 0.1	19.4 ± 0.6	-17.6 ± 1.3	56.6 ± 0.1
GD	10.5 ± 0.2	37.4 ± 1.8	-25.1 ± 0.1	29.1 ± 0.8
DM	20.8 ± 0.8	57.8 ± 1.4	-10.8 ± 0.8	14.8 ± 0.3
TABLE VII: Full results (%) on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with standard deviation. The results from these tables are with a 400 image coreset (and use the same set of hyperparameters, as described in Appendix C).

(a) ParentClass Tasks with Uniform Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	14.6 ± 1.4	53.4 ± 2.4	−14.7 ± 6.4	29.8 ± 0.6
E2E	19.5 ± 0.9	59.3 ± 1.7	−14.5 ± 0.2	23.1 ± 0.5
DR	20.1 ± 0.8	57.8 ± 1.5	−15.2 ± 0.4	31.9 ± 3.3
GD	21.4 ± 0.9	57.7 ± 1.8	−12.5 ± 0.4	8.0 ± 1.7
DM	24.4 ± 0.4	67.5 ± 1.3	−15.1 ± 1.3	21.9 ± 1.5

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	14.6 ± 1.4	53.4 ± 2.4	−14.7 ± 6.4	29.8 ± 0.6
E2E	18.9 ± 1.2	59.4 ± 1.3	−16.6 ± 1.0	22.2 ± 0.3
DR	18.8 ± 1.0	62.8 ± 1.7	−17.6 ± 0.7	27.5 ± 0.3
GD	17.9 ± 0.8	50.2 ± 0.8	−10.6 ± 0.8	−2.1 ± 2.0
DM	19.7 ± 0.8	63.3 ± 2.1	−18.2 ± 0.7	24.9 ± 0.6

(c) ParentClass Tasks with NegativeSuperclass Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	14.6 ± 1.4	53.4 ± 2.4	−14.7 ± 6.4	29.8 ± 0.6
E2E	19.9 ± 1.2	60.1 ± 0.5	−16.1 ± 1.0	22.5 ± 0.4
DR	20.1 ± 1.9	62.1 ± 1.8	−16.8 ± 0.2	28.7 ± 1.0
GD	18.1 ± 0.6	50.5 ± 0.7	−10.9 ± 1.2	−1.7 ± 1.6
DM	20.7 ± 1.5	64.8 ± 1.3	−17.4 ± 0.7	24.7 ± 1.3

(d) ParentClass Tasks with Random Unlabeled Data Distribution, 20 Tasks

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
Base	14.6 ± 1.4	53.4 ± 2.4	−14.7 ± 6.4	29.8 ± 0.6
E2E	19.8 ± 0.5	60.0 ± 1.5	−15.1 ± 0.3	23.7 ± 0.6
DR	19.9 ± 1.7	61.8 ± 1.2	−15.7 ± 0.6	29.9 ± 1.6
GD	21.3 ± 0.5	59.9 ± 0.5	−13.7 ± 0.2	8.3 ± 2.7
DM	22.4 ± 1.3	65.1 ± 1.8	−16.1 ± 0.3	23.3 ± 0.9

TABLE VIII: Full results (%) on Tiny-ImageNet with 20% Labeled Data for RandomClass Tasks with Uniform Unlabeled Data Distribution (10 Tasks, no Coreset). Results are reported as an average of 3 runs with standard deviation. The results from this table use the set of hyperparameters described in Appendix C.

Metric	A_N (↑)	Ω (↑)	BWT (↑)	FGT (↓)
UB	40.7 ± 0.3	100.0 ± 0.0	3.8 ± 0.5	5.2 ± 0.5
Base	6.5 ± 0.6	35.1 ± 2.5	−10.4 ± 2.4	45.1 ± 2.9
E2E	5.8 ± 0.6	30.3 ± 1.9	0.9 ± 0.6	39.3 ± 3.1
DR	6.8 ± 0.4	35.3 ± 1.1	−1.7 ± 0.7	45.0 ± 2.7
GD	11.9 ± 1.3	50.6 ± 2.9	−17.4 ± 2.6	12.5 ± 1.3
DM	24.8 ± 0.7	74.7 ± 1.6	−5.9 ± 0.4	7.6 ± 0.1
Fig. 5: Ω curves showing task number t on the x-axis and Ω up to task t on the y-axis

(a) Ω curve for Table VIa
(b) Ω curve for Table VIb
(c) Ω curve for Table VIc
(d) Ω curve for Table VIId
(e) Ω curve for Table VIIa
(f) Ω curve for Table VIIb
(g) Ω curve for Table VIIc
(h) Ω curve for Table VIIId
E. Performance of OOD Detection

We show AUROC (a metric for OOD detection) over time for DM in both RandomClass Tasks with Uniform Unlabeled Data Distribution (Figure 7a) and ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution (Figure 7b). A high AUROC means the distributions of the ID data and OoD data are separable. As we can see, AUROC is decreasing over time. In the RandomClass scenario, this is a smooth decline (as expected). In the ParentClass scenario, the decline is not smooth, likely due to the correlations between tasks making the task difficulty highly deviate between runs.

F. Super class and parent class associations for CIFAR-100

We visualize example streams for each task sequence in (Figure 8). As a reminder, we use the following terminology to describe the correlations of the tasks (i.e. labeled data): RandomClass Tasks, where no correlations exist in task classes, and ParentClass Tasks, where tasks are introduced by CIFAR-100 parent classes (i.e. each task is to learn the five classes of a single CIFAR-100 parent class). For the unlabeled data distribution we have: Uniform Unlabeled, where all classes are uniformly distributed in unlabeled data for all tasks, PositiveSuperclass Unlabeled, where the unlabeled data of each tasks consists of the parent classes in the same superclass as the current task, NegativeSuperclass Unlabeled, where the unlabeled data of each tasks consists of parent classes from different super-class as the current task, and RandomUnlabeled, where the unlabeled data of each tasks consists of 20 randomly sampled classes (roughly equal to the average class size in a super-class). We also show the relationship between super classes and parent classes for CIFAR-100 (Figure 9) as defined by [4].

G. Additional Studies

We found that confidence calibration in GD [5] had mixed effects in our experiments. We ablate this contribution for RandomClass Tasks with Uniform Unlabeled Data Distribution (Table IXa), ParentClass Tasks with PositiveSuperclass Unlabeled Data Distribution (Table IXb), and ParentClass Tasks with Random Unlabeled Data Distribution (Table IXc). We contribute this finding to the assumption made in GD that the unlabeled data does not contain data from the current task (which is heavily violated in some of our experiments). Even though removing this mechanism can boost GD performance for some of the experiments (Tables IXa and IXb) and makes it worse for others (Table IXc), it is still significantly below our method (DM) in each case.

H. Additional Background and Related Work

Continual Learning Approaches: Approaches to mitigate catastrophic forgetting in continual learning can be broadly organized into three types: rehearsal, architectural, and regularization [29]. Rehearsal methods include storage to "replay" data or experiences from previous tasks to mitigate catastrophic forgetting [10, 27, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. Rather than storing raw data, some methods train a generative model [40, 41, 42] or replay compressed data representations in a late layer [43]. Architectural approaches typically avoid overwriting the current model by expanding the model parameters to make room for knowledge related to novel tasks [44, 45, 46, 47, 48, 49]. Finally, regularization approaches focus on penalizing changes to parameters important to past tasks. Approaches include regularization penalties [50, 51, 52, 53, 54], meta learning [55], model compression [56, 57, 58], or knowledge distillation [5, 7, 8, 9].
Fig. 8: Example streams for each task sequence
Table IX: Results (%) for GD Confidence Calibration Ablation on CIFAR-100 with 20% Labeled Data. Results are reported as an average of 3 runs with mean and standard deviation.

(a) RandomClass Tasks with Uniform Unlabeled Data Distribution, 10 Tasks, no Coreset

Confidence Calibration	\(A_N\) (Mean)	\(\Omega\) (Mean)	BWT (Mean)	FGT (Mean)
✓	21.4 ± 0.6	60.0 ± 1.9	−14.6 ± 0.1	18.4 ± 1.5
	23.7 ± 1.2	67.0 ± 3.1	−5.5 ± 1.8	20.3 ± 2.0

(b) ParentClass Tasks with PositiveSuperclass Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence Calibration	\(A_N\) (Mean)	\(\Omega\) (Mean)	BWT (Mean)	FGT (Mean)
✓	17.9 ± 0.8	50.2 ± 0.8	−10.6 ± 0.8	−2.1 ± 2.0
	19.5 ± 0.4	54.4 ± 3.8	−12.6 ± 1.0	7.2 ± 3.5

(c) ParentClass Tasks with Random Unlabeled Distribution, 20 Tasks, 400 image coreset

Confidence Calibration	\(A_N\) (Mean)	\(\Omega\) (Mean)	BWT (Mean)	FGT (Mean)
✓	21.3 ± 0.5	59.9 ± 0.5	−13.7 ± 0.2	8.3 ± 2.7
	18.1 ± 0.9	54.1 ± 0.7	−12.0 ± 1.2	20.3 ± 2.8

Semi-Supervised Learning: Semi-supervised learning leverages plentiful available unlabeled data to boost model performance when given a (typically small) amount of labeled data. Semi-supervised learning is popular because labeling large datasets is an expensive process. A simple yet popular technique is to provide pseudo-labels [15] for confident unlabeled data based on the current model’s predictions and to treat this pair (the unlabeled data and pseudo-label) as if it were a labeled data pair. Many following methods build on this idea of using predictions on the unlabeled data to boost performance. For example, mean teachers [21] involve averaging model weights for a temporal ensembling approach which encourages consistent label predictions over time. Virtual Adversarial Training (VAT) smooths the decision boundary around each unlabeled data point to be robust against adversarial perturbations. More recent methods include MixMatch [14], which involves using low-entropy labels and strong data augmentations for a Mix-Up loss, and FixMatch [19], which enforces consistent labeling between weakly and strongly augmented versions of unlabeled data. Other approaches for leveraging unlabeled data is to use it for an auxiliary loss such as generative loss [16] [20] or self-supervised learning [59]. The reader is referred to [6] for a recent survey of popular techniques and evaluations.