Scans of the MYC mRNA reveal multiple stable secondary structures—including a 3' UTR motif, conserved across vertebrates, that can affect gene expression.

Collin A. O'Leary¹,†, Ryan J. Andrews¹,†, Van S. Tompkins¹, Jonathan L. Chen², Jessica L. Childs-Disney², Matthew D. Disney², and Walter N. Moss¹,*

¹Roy J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, IA 50011, United States of America
²Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, United States of America.

†These authors contributed equally to this work

*Corresponding Author: wmoss@iastate.edu

Short Title: MYC structure scan

Keywords

MYC, UTR, post-transcriptional regulation, RNA, miRNA

Abstract

The MYC gene encodes a human transcription factor and proto-oncogene that is dysregulated in over half of all known cancers. To better understand potential post-transcriptional regulatory features affecting MYC expression, we analyzed secondary structure in the MYC mRNA using a program that is optimized for finding small locally-folded motifs with a high propensity for function. This was accomplished by calculating folding metrics across the MYC sequence using a sliding analysis window and generating unique consensus base pairing models weighted by their lower-than-random predicted folding energy. A series of 30 motifs were identified, primarily in the 5’ and 3’ untranslated regions, which show evidence of structural conservation and compensating mutations across vertebrate MYC homologs. This analysis was able to recapitulate known elements found within an internal ribosomal entry site, as well as discover a novel element in the 3' UTR that is unusually stable and conserved. This novel motif was shown...
to affect MYC expression: likely via modulation of miRNA target accessibility. In addition to providing basic insights into mechanisms that regulate MYC expression, this study provides numerous, potentially druggable RNA targets for the MYC gene, which is considered “undruggable” at the protein level.

Introduction

The MYC proto-oncogene is an important transcription factor that is required for programmed cell death (apoptosis) and cell proliferation [1]. It is a key component of oncogenesis [2] and, indeed, MYC is dysregulated in >50% of all cancers [3]. Post-transcriptional control plays significant roles in the regulation of many genes including MYC. Within the 5’ untranslated region (UTR) of the MYC mRNA is a structured internal ribosomal entry site (IRES) that stimulates cap-independent translation under conditions where cap-dependent translation is inhibited: e.g. during apoptosis [4]. Consistent with other IRESs [5] the MYC IRES secondary structure, deduced from in vitro chemical probing data [6], is complex and contains two pseudoknots—motifs comprised of “non-nested” base pairing between looped out regions of RNA [7]. In addition to the IRES, other post-transcriptional regulatory mechanisms affect MYC expression—e.g. microRNAs (miRs) [8]—that may be affected by RNA structure [9].

To determine if other structured RNA regulatory elements can be playing roles in MYC expression, we applied a methodological pipeline for RNA motif discovery that was optimized from studies of the Xist lncRNA [10], as well as the Human [11], Zika and HIV genomes [12]. There are two major steps in this pipeline: (1) a scanning step, where the RNA is examined using a sliding analysis window to record predicted metrics important for analyzing RNA secondary structure (e.g. the thermodynamic stability); and, (2) an analysis step where unique local motifs are defined then evaluated vs. comparative sequence/structure and/or experimental probing data. Each step is achieved using the programs ScanFold-Scan and ScanFold-
 respectively. Used together these programs define the potential RNA structural properties of long sequences and identify motifs likely to be ordered to form, presumably functional, defined structures. This is accomplished by generating consensus structure models across all scanning windows, where base pairs are weighted by their thermodynamic z-score: a measure of the unusual stability of a sequence that is calculated by comparison to the folding energy of matched randomized control sequences. Here, negative values indicate sequences that are ordered to fold and that may be functional [13]. While the primary goal is to deduce what nucleotides may be functionally significant, ScanFold-Fold models can also increase prediction accuracy [12].

In this report, ScanFold-Scan and ScanFold-Fold were applied to the longest MYC RefSeq mRNA isoform to generate a map of its folding landscape as well as deduce motifs important to the regulation of expression. Numerous motifs were deduced, including those that recapitulated known structures in the MYC IRES.

Results

ScanFold-Scan mapping of secondary structure in the MYC mRNA

To predict RNA secondary structural characteristics important to MYC function, the RefSeq mRNA (NM_001354870) was analyzed using the program ScanFold-Scan [12]. This isoform was selected for analysis, as it would contain all potential structural elements found in other (shorter) MYC isoforms. The mRNA sequence was analyzed using a 1 nt step and 70 nt window size (Figure 1 and Document S1). Several folding metrics were calculated across analysis windows, which are described in detail in the Materials and Methods and in reference [12]. Briefly, the ΔG° measures the minimum (lowest or most stable) predicted change in the Gibb’s free energy upon RNA folding and indicates the thermodynamic stability of RNA structure. The ensemble diversity (ED) is a measure of the structural diversity predicted in the folding
ensemble: low numbers indicate one or few dominant structures, while higher numbers indicate multiple conformations or a lack of structure. The z-score measures the propensity of a sequence to be ordered to fold into stable structures. Negative z-scores give the number of standard deviations more thermodynamically stable a sequence is vs. random (see Eq. 1).

The global trends in each metric are shown at the top of Figure 1. The trend in the predicted thermodynamic stability approximately follows the GC% and decreases across MYC: going from the highly stable 5' UTR to the relatively unstable 3' UTR. This trend is also discernible in the distributions of predicted ΔGs for windows spanning the 5' UTR, coding region and 3' UTR of the mRNA (Fig. S1). The windows spanning the 5' and 3' UTR junctions are less stable than flanking sequences. ED values are more evenly distributed across MYC, however, jumps in values for windows spanning the 5' and 3' UTR coding region junctions were observed (Figs. 1 and S1). Thermodynamic z-scores ranged from highly negative (-5.0; or 5 standard deviations more stable than random) values to positive ones (+2.8). The average z-score across MYC was only slightly negative (-0.4) and there was no evidence of global bias in z-score toward negative values. Notably, windows spanning the 5' UTR junction were shifted toward positive z-scores (average of +1.4). These trends in RNA structural stability are more striking when considering "short" UTR isoforms for MYC (Fig. S2), which end just upstream of the MYC IRES and downstream of Motif 17 (Fig. 1).

ScanFold-Fold prediction of functional RNA structural motifs

To deduce local RNA folding that may be functionally significant, all ScanFold-Scan prediction windows were analyzed using ScanFold-Fold. The ScanFold-Fold program generates weighted consensus secondary structures, where minimum free energy (MFE) base pairs that contribute to low z-scores are deduced across the scans. Using a cutoff of -1 ScanFold-Fold identified 354 bp (Document S2) across the mRNA, while a cutoff of -2 yields 46 bp that are
localized to the 3' UTR. Refolding the mRNA with -1 ScanFold-Fold bp as constraints added 153 bp to the discovered motifs: e.g. by extending helices or closing unpaired bases in the consensus prediction (Document S2). These 507 bp are divided into 30 motifs that span the MYC mRNA (Fig. 1). Motif locations, as expected, correspond to negative dips in z-score; however, dips in ΔG° and ED are also observed at motif sites. The most prominent regions with dips in metrics occur at Motifs 17 and 18 (Fig. 1), which contain very low z-score base pairs (cutoff < -2) deduced by ScanFold-Fold. These two motifs, particularly Motif 17, had the most favorable ScanFold metrics of any region/motif predicted for MYC.

All motif bp were analyzed versus an alignment of 15 vertebrate mRNA sequences (Document S3). Motif 17 had the highest conservation of structure and was supported by the greatest number of consistent and compensatory mutations (Fig. 1). In general, Motifs 7–19 showed evidence of conservation, however, little conservation data was found outside these regions: particularly downstream of Motif 19, where the long 3' UTR annotated for the human MYC RefSeq mRNA is not present in the RefSeq mRNA annotations of other species (Document S3).

Analysis of the MYC 5' and 3' UTRs

Motifs 8 and 9 overlap a previously-studied structural feature of the MYC mRNA: the IRES [4, 6]. Motif 8 is recapitulated in the MYC IRES structure Domain 1; only the base pairs in the hairpin spanning nt 110 to 136 (Fig. S3) are shifted over to allow the formation of pseudoknot helix α. Motif 9 partially overlaps Domain 2, where nt 284 to 299 of Domain 2 are refolded into two hairpins (Fig. S3). Structure models were compared vs. an alignment of 50 vertebrate MYC UTR sequences (Document S4). The alternative models for Doman 2/Motif 9 are roughly equally well supported by comparative data. Both are comprised of base pairs conserved across vertebrates and that show evidence of possible compensatory mutations: e.g. C279–G284 in Domain 2 vs. A307–U334 and G309–C332 in Motif 9 (Fig. S3). Neither model can be discarded based on these data. Nucleotides within Motif 9 were found to be highly reactive to chemicals in
the previous in vitro analysis of the MYC UTR [6], thus their modeling as single stranded RNA.

When overlaid on Motif 9, however, only 4 out of 21 modification sites were inconsistent with the ScanFold-Fold generated model (Fig. S3); additionally, sites of AMV reverse transcriptase pausing suggest that this region is structured.

Across the MYC mRNA, predicted structural metrics are most favorable in the windows that overlap Motif 17 in the 3' UTR (Fig. 1). There are marked dips in the ΔG°, ED and z-score; all indicating importance of structure in this region. The ScanFold-Fold predicted base pairs in Motif 17 are also the best-conserved across the 15 vertebrate alignment. Previous work on post-transcriptional regulation of MYC found that inclusion of the short 3' UTR sequence led to repression of luciferase expression [14] due to the inclusion of a miR-34 binding site. To determine if RNA structural features in the short 3' UTR (beyond Motif 17) could be playing additional roles, the entire sequence was refolded while constraining Motif 17 base pairs. The resulting global short UTR model (Fig. 2) places the ScanFold-Fold predicted Motif 17 into a multibranch loop structure that includes a novel short hairpin. An additional hairpin is also predicted downstream of the multibranch loop. The short 3' UTR model was analyzed vs. an alignment of 59 vertebrate MYC 3' UTR sequences (Document S5). This found the highest levels of base pair conservation in the two long Motif 17 hairpins (92% conservation), while the remaining structures are not well-conserved (64% conservation of base pairing). When mutations occur in the highly-conserved Motif 17 they preserve base pairing: e.g. four compensatory (double point) mutations are found in each hairpin in addition to four and two consistent (single point) mutations, respectively (Fig. 2). To see if an orthogonal approach would confirm the 3' UTR model structure or, perhaps, yield a better-conserved alternative model, the program RNAalifold [15] was used to evaluate the short 3' UTR alignment without any base pairing constraints. The RNAalifold program considers both the folding energy and comparative sequence data (implicitly) in prediction; the resulting consensus model (Figure S5) predicts
conserved structures that correspond to the two highly-conserved Motif 17 hairpins predicted by ScanFold-Fold.

Functional analyses of the MYC 3' UTR

As the most significant motifs predicted in MYC occurred in the 3' UTR, a known site of miRNA targeting, the locations of MYC-targeting miRNA binding sites were queried vs. predictions of structure. Of nine miRNAs with known interaction sites [8, 14, 16-20], seven occurred within Motif 17 (Fig. 3A and B). miR-34a/b/c, miR-449c and let-7a have overlapping seed binding sites in the unstructured region between the two highly-conserved Motif 17 hairpins (Fig. 3A and B). miR-145 binds downstream and partially overlaps the second hairpin. miR-148 has a seed binding site on the terminal stem-loop of the second hairpin. Interestingly, the two miRNAs that bind outside Motif 17 also do so in other ScanFold-Fold predicted structural motifs: miR-24 binds in the stem region of Motif 18 (Fig. 3C), while miR-185 binds toward the 5' end of Motif 15 (Fig. 3D). In all cases, conserved RNA structures are predicted to partially occlude miRNA target binding, potentially modulating their effects.

Motif 17 was selected for additional experimental analysis due to it having the strongest ScanFold prediction metrics (Fig. 1), high level of structure conservation (Fig. 2), and the presence of multiple miRNA binding sites (Fig. 3A and B). To assess the potential gene regulatory roles of this motif, a luciferase reporter construct was generated incorporating Motif 17, along with 27 nt upstream and 11 nt downstream (including a poly(U) tract; Fig. 2). This sequence was inserted into the 3' UTR of the Renilla luciferase (RL) expressing pIS2 vector (referred to as the pIS2-M17 [Motif 17] vector; detailed in the Experimental Procedures). When assayed, the pIS2-M17 vector showed a significant decrease in both relative response ratio (RRR; Fig. 4)—a measure of luciferase activity—and translational efficiency (TE) when compared to the unregulated pIS2 control: a ~24% and ~68% decrease in RRR and TE, respectively. This is consistent with previous analyses of the MYC 3' UTR, where the entire
short UTR isoform was incorporated into pLSV (an analogous Luciferase vector) and, using a similar analysis pipeline, was shown to lead to gene repression [14]. Similarly, ablation of the miR-34a-c seed (and also, seed regions for miRs 449c and let-7a) showed that miRNA targeting was responsible for the repressive effects of this region.

To determine if RNA structure present in Motif 17 influences miRNA binding/repression, two mutant constructs, pIS2-AS1 (ablate stem 1) and pIS2-LS1 (lock stem 1), were designed to increase or decrease miRNA site accessibility respectively (Fig. 4) according to the ΔΔG metric of Kurtesz et. al [21]. This metric accounts for both the energy needed to break native mRNA secondary structure and the energy gained by miRNA binding, and it was used to predict miRNA site accessibility for the WT and mutant constructs. The WT sequence, pIS2-M17, has a predicted ΔΔG of -4.67, whereas pIS2-AS1 and pIS2-LS1 have values of -13.56 (more accessible) and +2.55 (less accessible) respectively. When assayed, pIS2-AS1 shows (Fig. 4) a ~11% decrease in its RRR and an increase in TE of ~20% compared to pIS2-M17, however, these values are not significantly different from each other (Fig. 4). pIS2-LS1 showed a substantial increase in both RRR and TE (~68% and ~70% increase respectively) when compared to pIS2-M17.

Discussion

The analyses performed in this report provide insights into the functions of RNA secondary structure in expression of MYC. The ScanFold-Scan results map out global features of RNA structure across the MYC mRNA. Interesting trends are observed moving across the sequence, where RNA structure thermodynamic stability decreases going 5' to 3', with marked “jumps” in instability observed at the UTR/coding-region junctions (Figs. S1 and S2). Likewise shifts toward more positive ED and z-score values were observed in junction-spanning windows: most dramatically at the 5' junction, which includes both the CUG (non-canonical) and AUG

CC-BY 4.0 International license, provided that the author/funder has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
(canonical) translation initiation sites. These results indicate a lack of stable structure here, reiterating previous observations that indicate inhibitory roles for thermodynamically stable RNA secondary structure at initiation sites [22]. We additionally find evidence that evolution may be specifically selecting for MYC initiation site sequences that are ordered to be less-stable than that predicted for sequences of similar composition (thus the positive z-scores); as well, the junction sequence is expected to have a volatile conformational ensemble, where no particular structure dominates (high ED).

The high and low respective thermodynamic stabilities of the 5' and 3' UTRs (Figs. S1 and S2) indicate differing roles for RNA folding in these regions. The highly-stable 5' UTR would be expected to inhibit canonical translation by obstructing scanning ribosomes; thus, the presence of an IRES in the MYC mRNA. This can provide mechanisms for fine-tuning the post-transcriptional regulation of the MYC gene by allowing it to be translated in a cap-independent manner. The MYC IRES was shown to be active in some, but not all tissue types and the variability of activity is attributed to the presence, or lack of, trans-regulatory elements (e.g. RBPs; [4]). This demonstrates how cis-elements of the mRNA can interact with trans-regulatory elements to diversify (i.e. regulate) the cellular levels of a protein.

In contrast, the low stability of the 3' UTR suggests a need for increased accessibility of the mRNA sequence: e.g. for intermolecular interactions with post-transcriptional regulatory factors such as miRNAs and regulatory proteins. Counterintuitively, the sites with the greatest evidence of having been ordered to fold into a specific structure are in the 3' UTR (e.g. Motifs 17 and 18 in Fig. 1). Motif 17, for example, is the most well-conserved structured region in MYC—even more so than the IRES domain (Figs. 2 and S3)—and is supported via multiple compensatory and consistent base mutations. The highly favorable metrics and deep conservation of this motif throughout vertebrates indicated its biological importance, which was borne out by the analysis of miRNA binding sites (Fig. 3A and B) and Motif 17 function (Fig. 4). This motif acts as a hub.
for miRNA interactions and may organize the MYC miRNA target sites for interactions: e.g. the
two highly-conserved hairpins may act as a “structure cassette” for maintaining the single-
strandedness of the miR-34, -449c, and -let-7a seed binding regions, while modulating the
accessibility of additional bases for miRNA pairing that can affect the outcome of miRNA
targeting: e.g. translational repression.

The second most favorable motif (Motif 18; Fig. 1) contains a miR-24 interacting region (Fig.
3C). Notably, this interaction is “seedless” [17]—only three of the miR-24 seed nt are base
paired to MYC (Fig. 3C). Most of the miR-24-interacting nt on MYC are predicted to be bound
up in structure. Here, as in other interaction sites, RNA folding may be modulating accessibility.

We observed that reducing the accessibility of miRNA binding in Motif 17 via pIS2-LS1
increased RRR and TE—potentially by reducing the amounts of miRNA-mediated gene
repression. On the other hand, pIS2-M17 (the WT motif) and pIS2-AS1 (that ablates the first
stem loop) had similar RRR and TE. Additional cellular factors may influence how these
structures affect miRNA targeting: e.g. interactions with RNA binding proteins or post-
transcriptional modifications can affect RNA folding. Thus, structural motifs and their additional
interactions and alterations may be a way to fine tune the effects of miRNA regulation of MYC.

Conserved RNA structural motifs may also serve other functions in regulating MYC expression.
Both Motif 17 and 18 occur in a particularly GC-poor and thermodynamically unstable region of
the 3' UTR (Fig. 1). This is due to long stretches of highly-conserved poly(U) (uridine) tracts that
occur between and around these structural motifs (Documents S3 and S5). Interestingly,
poly(U) tracts have been found to stabilize mRNA sequences via structural interactions with the
poly(A) (adenosine) tail [23]. Thus, an additional function of MYC 3' UTR structural motifs may
be to organize poly(U) tracts to facilitate interactions with the poly(A) tail. For example, in Figure
2 the poly(U) sequence is bulged out between the second Motif 17 hairpin and the basal stem of
the predicted multibranch loop, which could allow the poly(A) tail to “wind” around this structure:
e.g. in an analogous way to poly(U)-poly(A) interactions in viral and ncRNA stabilizing elements [24, 25]. Notably, our qPCR data does not indicate degradation of miRNA targeted RL transcripts. Instead, slight transcript accumulation is observed in experimental samples (which contain the poly(U) tract) compared to unregulated pIS2 samples (Table S1). Motif 17, in addition to regulating miRNA target accessibility, may be affecting transcript stability by modulating interactions of the poly(U) tract with the poly(A) tail of the mRNA. More investigation is needed to parse out these interactions.

Additional functional motifs are predicted beyond Motif 18 (Fig. 1), which may also be functionally significant. Interestingly, cancer-associated MYC translocations [26] can lead to UTR truncations that delete predicted motifs: potentially impacting function and contributing to MYC dysregulation. Likewise, seven predicted motifs fall within the MYC coding region, which may be functionally significant: e.g. by providing roadblocks for translation that can affect protein folding [27] or by affecting interactions with regulatory factors [28]. Notably, miR-185 targets a sequence that overlaps Motif 15 (Fig. 3D), which falls within the MYC coding region (Fig. 1).

Awareness of the importance of miRNA targeting in coding regions is growing [29] and, presumably, additional MYC miRNA interactors remain to be discovered.

To conclude, this report provides valuable information on MYC mRNA secondary structure that has implications toward a better understanding of post-transcriptional gene regulation. In addition to providing global structural data, discreet local motifs with a high propensity for function are proposed, including a particularly interesting motif in the 3' UTR that has been functionally validated. We showed Motif 17 possesses post-transcriptional regulatory function and, at the very least, this function is a result of structure regulated miRNA targeting. Our findings illustrate the utility of ScanFold-Scan and ScanFold-Fold in finding structured, regulatory motifs and highlight the important role of RNA secondary structure in the post-transcriptional gene regulation of MYC expression. This study provides a roadmap for further
analyses of the structure/function relationships in the MYC mRNA and a framework for understanding other experimental results. For example, identified clinically significant sequence variants can be cross-referenced to these results to deduce their potential impact on RNA folding. Additionally, these results generate a large list of structural motifs that may be druggable targets [30, 31] for MYC, which is considered undruggable at the protein level [3].

Materials and Methods

In silico analyses

The Homo sapiens MYC RefSeq mRNA sequence was downloaded from the NCBI nt database (GenBank Accession: NM_002467.5). ScanFold-Scan was run using a single nt step size and window sizes of 70 (Document S1) and 120 nt (results with the longer window size were unchanged [data not shown], this 70 nt window was used in subsequent analyses). RNA structural metrics were calculated for windows using the RNAfold algorithm [32] using the Turner energy model [33, 34] at 37 °C. Z-score calculations were performed using the following equation (adapted from the approach of [13]):

\[
\text{z-score} = \frac{(\Delta G_{\text{native}} - \Delta G_{\text{random}})}{\sigma} \quad \text{(Eq. 1)}
\]

Here, \(\Delta G_{\text{native}}\) is the native sequence minimum free energy (MFE) predicted by RNAfold. \(\Delta G_{\text{random}}\) is the average MFE predicted for 100X mononucleotide randomized sequences. The standard deviation, \(\sigma\), is calculated across all sequences. The other calculated data are: the P-value, which measures the fraction of random sequences that are more stable than native in the z-score calculation (this acts as a quality control measure for the z-score); the MFE \(\Delta G^o\), which measures the thermodynamic stability of RNA secondary structure formation; the MFE base pairs that generate the MFE \(\Delta G^o\), which are output in “dot-bracket” notation; the ensemble diversity (ED), which provides an estimate of the structural diversity in the RNA conformational
ensemble (e.g. low ED indicates a single dominant conformation); the fraction of the (f)MFE in
the ensemble, which estimates the contribution of the MFE conformation to the ensemble; the
ensemble centroid structure, which is the conformation most similar to others in the ensemble;
and the nt frequencies and GC percentages.

ScanFold-Scan prediction windows were next analyzed using the program ScanFold-Fold to deduce consensus motifs weighted by the z-score. The ScanFold-Fold method is detailed in [12]. Resulting output consisted of a list of all base pairing partners predicted for each nucleotide of the MYC mRNA (Document S6) and a list of the most favorable base pairing partners when weighting by z-score (Document S7). From the latter, base pairs which contributed to consistently negative z-scores (i.e. bps with average z-scores less -1 from Document S7) were used as constraints in an RNAfold prediction on the entire mRNA under the additional constraint of a maximum bp distance of 300 nt. Base pairs that extended ScanFold-Fold helixes were identified and used to generate the final motif models (Document S2). For visualizing the results of modeling, 2D rendering were generated using VARNA [35] and figures were produced with Adobe Illustrator.

For the analysis of conservation of ScanFold-Fold motifs across MYC, homologous mRNAs for 14 representative vertebrates were obtained from the NCBI RefSeq RNA database [36]. This database was also queried using BLAST [37] to deduce homologs for the “short” MYC 5’ and 3’ UTR sequences. Alignments for the mRNA (Document S3) and UTRs (Documents S4 and S5) were performed using MAFFT [38], implementing the MAFFT-E-INS-i and MAFFT-G-INS-i strategies, respectively [39].

A global model for the short 3’ UTR (defined/used in a previous study of miRNA targeting [14] was generated by constraining base pairs from Motif 17 and refolding the remaining sequence.
using RNAfold [32]. A consensus secondary structure for the short MYC 3' UTR was predicted (Fig. S3) using RNAalifold [15] with the 3' UTR alignment (Document S5) as input.

Experimental analyses

Cell Culture. HeLa cells were incubated at 37°C and 5% CO₂ and maintained in DMEM supplemented with 10% FBS, penicillin and streptomycin, and L-glutamine. Cells were passaged at 60-80% confluence and used between 3-40 passages.

Luciferase Vectors. For our experiments, two luciferase plasmid vector backbones were used. Both the transfection control vector, pIS0, which encoded firefly (FF) luciferase, and the experimental vector, pIS2, which encoded renilla (RL) luciferase, were gifts from David Bartel (Addgene plasmid # 12178 ; http://n2t.net/addgene:12178; RRID:Addgene_12178) and (Addgene plasmid # 12177; http://n2t.net/addgene:12177; RRID:Addgene_12177). The pcDNA3.1-miR34a vector was a gift from Heidi Schwarzenbach (Addgene plasmid # 78125; http://n2t.net/addgene:78125; RRID:Addgene_78125).

To test the post-transcriptional regulation of ScanFold-Fold predicted motifs, the Motif 17 sequence, along with 27 nt upstream and 11 nt downstream were incorporated into the 3'-UTR of pIS2 to generate pIS2-M17. Mutants that destabilize, pIS2-AS1, or stabilize, pIS2-LS1, the structure present in pIS2-M17 were generated. For pIS2-AS1, 6 mutations were incorporated that disrupt canonical base pairing in the first conserved hairpin. To generate pIS2-LS1, 3 mutations and 1 base deletion were introduced in the bulge on the upstream side of the first conserved hairpin. Mutations that destabilize or stabilize Motif 17 were predicted using the ΔΔG metric as a measure of miRNA site accessibility (Kertesz et al., 2007). 70 nt upstream and 70 nt downstream of the miRNA target site were included in our ΔΔG calculations.

The sequences for pIS2-M17, pIS2-AS1, and pIS2-LS1 were ordered as gBlocks from IDT and cloned using AgeI (5') and Spe1 (3') restriction sites (sequences in Supplemental Table S2).
Insertion of experimental sequences into the 3'-UTR of pIS2 required double restriction enzyme digest (using AgeI and SpeI from NEB) of both the gBlock and pIS2, following digestion, fragment and vector DNA were purified (Zymo DNA Clean and Concentrator kit), ligated (T4 Ligase from ThermoFischer), and transformed into DH5α-T1 competent cells using standard procedures. Carbenicillin selected colonies were cultured and plasmids were extracted (Qiaprep kit) and sequenced using an Applied Biosystems 3730xl DNA Analyzer.

Dual Luciferase Assay. Dual luciferase assays followed recommendations of an established method (Etten et al., 2013). In brief, the pIS0 vector (FF) is transfected at constant levels across all samples to serve as an internal control to which RL luciferase expression is normalized. All samples were run as biological triplicates. HeLa cells were counted using a hemocytometer and plated in a 24-well dish at a density of 50,000 cells per well. After 48 hours, cells were transfected using Lipofectamine 3000 (ThermoFischer) with 500 nanograms total plasmid DNA at a 1:1:8 ratio (pIS0:pIS2-based:pcDNA3.1-miR34a). Twenty-four hours later, cells were trypsinized, resuspended, and split into each of a 24-well plate for RNA analysis (1 ml) and a 96-well plate for the dual luciferase assay (0.2 ml). After another 24-hour incubation, cells in the 96-well dish were lysed, and luciferase activity was measured using Promega’s Dual Luciferase Reagent Assay kit on a Biotek Synergy 2 plate reader with a collection time of 10 seconds. Relative response ratios (RRR), the ratio of RL to FF relative light units (RLUs), were calculated for each sample and then normalized to the empty, unregulated pIS2 RRR. Cells from the 24-well plate were placed in TRIzol (ThermoFisher) and either stored at -80°C or immediately processed as below.

RNA Processing and qPCR Analysis. Cellular RNA was purified from samples in TRIzol using Zymo’s Direct-Zol RNA Miniprep kit. Purified RNA was then Dnase I treated (NEB) for 2 hours at 37°C and the resulting DNase-treated RNA was purified with Zymo’s RNA Clean and
Concentrator kit. Reverse transcription was done using 1 microgram of purified RNA, random hexamers, and Superscript III (ThermoFisher).

Relative abundance of RL transcripts across samples were measured by qPCR, performed using PowerUp SYBR Green Master Mix on 1% cDNA input on an Applied Biosystems QuantStudio 3 instrument (ThermoFisher). Data were analyzed using the ΔΔCt method, where the relative abundance of RL transcripts in the samples were determined using the FF transcript as the reference gene. Translational efficiencies (TE), a normalization metric \(\frac{\text{RRR}}{2^{\Delta \Delta C_{\text{RL}}}} \), were calculated for each sample. Primers used in qPCR were: RL FWD 5’-ggaattatagtctttacgctgc-3’; RL REV 5’-cttgagaaaaatgaagaccttttac-3’; FF FWD 5’-ctcactgagactacatcagc-3’; and FF REV 5’-tccagatccacaaccttgctgc-3’.

All data are available in the Supplemental Information. ScanFold-Scan and ScanFold-Fold are available for download from GitHub: https://github.com/moss-lab/ScanFold. RNAfold and RNAalifold are both bundled within the ViennaRNA package [32]: available at: https://www.tbi.univie.ac.at/RNA/.

Acknowledgments

This research was supported by NIH/NIGMS grant R00GM112877 (WNM) and startup funds from the Iowa State University College of Agriculture and Life Sciences and the Roy J. Carver Charitable Trust (WNM) as well as R01-GM097455 (MDD).

Figure Legends

Figure 1. Summary of ScanFold-Scan and ScanFold-Fold results for the short UTR MYC mRNA. At the top are charts indicating the predicted ScanFold-Scan metrics across the mRNA. The bars are set at the 1st nt of the 70 nt window, thus data corresponds to the 70 nt downstream of the bar. Below these is a cartoon of the MYC mRNA with UTRs and coding...
region represented in thin and thick black lines, respectively. This cartoon is annotated with boxes which depict the location and extent of ScanFold-Fold predicted motifs shaded red based on the average z-score of windows in which motif base pairs occurred. Below these are RNA secondary structure arc diagrams which depict the most favorable base pairs predicted via ScanFold-Fold, colored according the average z-scores of windows in which they appear (with blue, green and yellow corresponding to less than -2, -1 and 0 z-scores averages respectively). Below these, are refolded models of the motifs built with -1 average z-score bps as constraints. Each is annotated with their bp conservation as determined from an alignment of 15 representative mRNAs (Document S3) indicated by shading on the base pair (see key). Circled bases are sites of putative structure-preserving consistent and compensatory mutations.

Figure 2. Short MYC 3' UTR model. HP2–3 comprise Motif 17 of the ScanFold-Fold results, which were constrained in the calculation. Base pair conservation shading indicated in the key and data are taken from a comparison of 59 RefSeq mRNA vertebrate alignment (Document S5).

Figure 3. Annotations of miRNA binding sites on ScanFold-Fold predicted motifs. (A) Shows miRNA sequences above the “dot-bracket” structure of Motif 17 (matched brackets indicated base pairs). Seed sites and the complements on Motif 17 are colored. (B) Shows miRNA seed binding sites annotated on the 2D model of Motif 17. (C) Shows base-pairing between miR-24 and the 2D model of Motif 15. (C) Shows base-pairing between miR-24 and the 2D model of Motif 18.

Figure 4. RRRs and TEs were calculated for each set of samples and normalized to the unregulated activity of pIS2. Error bars report the standard error. Experimental vectors pIS2-M17, pIS2-AS1, and pIS2-LS1 all display activity that differs from pIS2. pIS2-M17 and pIS2-AS1 both show decreased RRRs while pIS2-LS1, which was designed to have a more stable and less accessible 3'-UTR, shows an increase in RRR compared to pIS2. pIS2-MSC displays a
large decrease in TE and pIS2-AS1, which is predicted to have a more accessible miRNA site, displays a TE which is slightly increased compared to pIS2-M17. The TE of pIS2-LS1 is markedly greater than pIS2-M17, possibly reflecting the decrease in miRNA target site accessibility. The ΔΔG values for pIS2-M17, pIS2-AS1, and pIS2-LS1 are also shown along with destabilizing pIS2-AS1 mutations (displayed in red) and stabilizing pIS2-LS1 mutations (displayed in green).

Supplemental Material

Supplemental material is available for this report.

References

1. Dang CV. c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol. 1999;19(1):1-11. Epub 1998/12/22. PubMed PMID: 9858526; PubMed Central PMCID: PMCPMC83860.
2. Dang CV. MYC on the path to cancer. Cell. 2012;149(1):22-35. Epub 2012/04/03. doi: 10.1016/j.cell.2012.03.003. PubMed PMID: 22464321; PubMed Central PMCID: PMCPMC3345192.
3. Dang CV, Reddy EP, Shokat KM, Soucek L. Drugging the 'undruggable' cancer targets. Nat Rev Cancer. 2017;17(8):502-8. Epub 2017/06/24. doi: 10.1038/nrc.2017.36. PubMed PMID: 28643779; PubMed Central PMCID: PMCPMC5945194.
4. Stoneley M, Subkhankulova T, Le Quesne JP, Coldwell MJ, Jopling CL, Belsham GJ, et al. Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res. 2000;28(3):687-94. Epub 2000/01/19. PubMed PMID: 10637319; PubMed Central PMCID: PMCPMC102558.
5. Yamamoto H, Unbehaun A, Spahn CMT. Ribosomal Chamber Music: Toward an Understanding of IRES Mechanisms. Trends Biochem Sci. 2017;42(8):655-68. Epub 2017/07/08. doi: 10.1016/j.tibs.2017.06.002. PubMed PMID: 28684008.
6. Le Quesne JP, Stoneley M, Fraser GA, Willis AE. Derivation of a structural model for the c-myc IRES. J Mol Biol. 2001;310(1):111-26. Epub 2001/06/23. doi: 10.1006/jmbi.2001.4745. PubMed PMID: 11419940.
7. Liu B, Mathews DH, Turner DH. RNA pseudoknots: folding and finding. F1000 Biol Rep. 2010;2:8. doi: 10.3410/B2-8. PubMed PMID: 20495679; PubMed Central PMCID: PMCPMC2873773.
8. Jackstadt R, Hermeking H. MicroRNAs as regulators and mediators of c-MYC function. Biochim Biophys Acta. 2015;1849(5):544-53. Epub 2014/04/15. doi: 10.1016/j.bbadis.2014.04.003. PubMed PMID: 24727092.
9. Wan Y, Kertesz M, Segal E, Chang HY. Understanding the transcriptome through RNA structure. Nat Rev Genet. 2011;12(9):641-55. doi: 10.1038/nrg3049. PubMed PMID: 21850044; PubMed Central PMCID: PMCPMC3858389.
10. Fang R, Moss WN, Rutenberg-Schoenberg M, Simon MD. Probing Xist RNA Structure in Cells Using Targeted Structure-Seq. PLoS Genet. 2015;11(12):e1005668. doi:
10.1371/journal.pgen.1005668. PubMed PMID: 26646615; PubMed Central PMCID: PMCPMC4672913.

11. Andrews RJ, Baber L, Moss WN. RNAStructuromeDB: A genome-wide database for RNA structural inference. Sci Rep. 2017;7(1):17269. doi: 10.1038/s41598-017-17510-y. PubMed PMID: 29222504; PubMed Central PMCID: PMCPMC5722888.

12. Andrews RJ, Moss WN. ScanFold: an approach for genome-wide discovery of local RNA structural elements—applications to Zika virus and HIV. PeerJ Preprints. 2018;6:e6136. doi: https://doi.org/10.7717/peerj.6136

13. Clote P, Ferre F, Kranakis E, Krizanc D. Structural RNA has lower folding energy than random RNA of the same dinucleotide frequency. RNA. 2005;11(5):578-91. doi: 10.1261/rna.7220505. PubMed PMID: 15840812; PubMed Central PMCID: PMCPMC1370746.

14. Kong YW, Cannell IG, de Moor CH, Hill K, Garside PG, Hamilton TL, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci U S A. 2008;105(26):8866-71. Epub 2008/06/27. doi: 10.1073/pnas.0800650105. PubMed PMID: 18579786; PubMed Central PMCID: PMCPMC2449332.

15. Bernhart SH, Hofacker IL, Will S, Gruber AR, Stadler PF. RNAalifold: improved consensus structure prediction for RNA alignments. BMC Bioinformatics. 2008;9:474. doi: 10.1186/1471-2105-9-474. PubMed PMID: 19014431; PubMed Central PMCID: PMCPMC2621365.

16. Luan W, Wang Y, Chen X, Shi Y, Wang J, Zhang J, et al. PKM2 promotes glucose metabolism and cell growth in gliomas through a mechanism involving a let-7a/c-Myc/hnRNPA1 feedback loop. Oncotarget. 2015;6(15):13006-18. Epub 2015/05/08. doi: 10.18632/oncotarget.3514. PubMed PMID: 25948776; PubMed Central PMCID: PMCPMC4536995.

17. Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell. 2009;35(5):610-25. Epub 2009/09/15. doi: 10.1016/j.molcel.2009.08.020. PubMed PMID: 19748357; PubMed Central PMCID: PMCPMC2757794.

18. Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A. 2009;106(9):3207-12. Epub 2009/02/10. doi: 10.1073/pnas.0808042106. PubMed PMID: 19202062; PubMed Central PMCID: PMCPMC2651330.

19. Liao JM, Lu H. Autoregulatory suppression of c-Myc by miR-185-3p. J Biol Chem. 2011;286(39):33901-9. Epub 2011/08/13. doi: 10.1074/jbc.M111.262030. PubMed PMID: 21832077; PubMed Central PMCID: PMCPMC3190790.

20. Miao LJ, Huang SF, Sun ZT, Gao ZY, Zhang RX, Liu Y, et al. MiR-449c targets c-Myc and inhibits NSCLC cell progression. FEBS Lett. 2013;587(9):1359-65. Epub 2013/03/20. doi: 10.1016/j.febslet.2013.03.006. PubMed PMID: 23507140.

21. Kertesz M, Ivino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39(10):1278-84. Epub 2007/09/26. doi: 10.1038/ng2135. PubMed PMID: 17893677.

22. Gu W, Zhou T, Wilke CO. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes. PLoS Comput Biol. 2010;6(2):e1000664. Epub 2010/02/09. doi: 10.1371/journal.pcbi.1000664. PubMed PMID: 20140241; PubMed Central PMCID: PMCPMC2816680.

23. Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell. 2014;156(4):812-24. Epub 2014/02/18. doi: 10.1016/j.cell.2013.12.026. PubMed PMID: 24529382; PubMed Central PMCID: PMCPMC3939777.
24. Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA. Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep. 2012;2(1):26-32. Epub 2012/07/31. doi: 10.1016/j.celrep.2012.05.020. PubMed PMID: 22840393; PubMed Central PMCID: PMCPMC3430378.

25. Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA. Formation of triple-helical structures by the 3'-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci U S A. 2012;109(47):19202-7. Epub 2012/11/07. doi: 10.1073/pnas.1217338109. PubMed PMID: 23129630; PubMed Central PMCID: PMCPMC3511071.

26. Ott G, Rosenwald A, Campo E. Understanding MYC-driven aggressive B-cell lymphomas: pathogenesis and classification. Blood. 2013;122(24):3884-91. Epub 2013/09/07. doi: 10.1182/blood-2013-05-498329. PubMed PMID: 24009228.

27. Faure G, Ogurtsov AY, Shabalina SA, Koonin EV. Role of mRNA structure in the control of protein folding. Nucleic Acids Res. 2016;44(22):10898-911. doi: 10.1093/nar/gkw671. PubMed PMID: 27466388; PubMed Central PMCID: PMCPMC5159526.

28. Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 2008;582(14):1977-86. Epub 2008/03/18. doi: 10.1016/j.febslet.2008.03.004. PubMed PMID: 18342629; PubMed Central PMCID: PMCPMC2858862.

29. Zhang K, Zhang X, Cai Z, Zhou J, Cao R, Zhao Y, et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat Struct Mol Biol. 2018;25(11):1019-27. Epub 2018/10/10. doi: 10.1038/s41594-018-0136-3. PubMed PMID: 29297778; PubMed Central PMCID: PMCPMC6219929.

30. Tran T, Disney MD. Identifying the preferred RNA motifs and chemotypes that interact by probing millions of combinations. Nat Commun. 2012;3:1125. Epub 2012/10/11. doi: 10.1038/ncomms2119. PubMed PMID: 23047683; PubMed Central PMCID: PMCPMC3533436.

31. Angelbello AJ, Chen JL, Childs-Disney JL, Zhang P, Wang ZF, Disney MD. Using Genome Sequence to Enable the Design of Medicines and Chemical Probes. Chem Rev. 2018;118(4):1599-663. Epub 2018/01/13. doi: 10.1021/acs.chemrev.7b00504. PubMed PMID: 29322778; PubMed Central PMCID: PMCPMC5989578.

32. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, et al. ViennaRNA Package 2.0. Algorithms Mol Biol. 2011;6:26. doi: 10.1186/1748-7188-6-26. PubMed PMID: 22115189; PubMed Central PMCID: PMCPMC3319429.

33. Mathews DH, Disney MD, Childs JL, Schroeder SJ, Zuker M, Turner DH. Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure. Proc Natl Acad Sci U S A. 2004;101(19):7287-92. doi: 10.1073/pnas.0401799101. PubMed PMID: 15128312; PubMed Central PMCID: PMCPMC4099911.

34. Turner DH, Mathews DH. NNDB: the nearest neighbor parameter database for predicting stability of nucleic acid secondary structure. Nucleic Acids Res. 2010;38(Database issue):D280-2. Epub 2009/11/03. doi: 10.1093/nar/gkp892. PubMed PMID: 19880381; PubMed Central PMCID: PMCPMC2808915.

35. Darty K, Denise A, Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25(15):1974-5. doi: 10.1093/bioinformatics/btp250. PubMed PMID: 19398448; PubMed Central PMCID: PMCPMC2712331.

36. O'Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733-45. Epub 2015/11/11. doi: 10.1093/nar/gkv1189. PubMed PMID: 26553804; PubMed Central PMCID: PMCPMC4702849.

37. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403-10. Epub 1990/10/05. doi: 10.1016/S0022-2836(05)80360-2. PubMed PMID: 2231712.
38. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059-66. Epub 2002/07/24. PubMed PMID: 12136088; PubMed Central PMCID: PMCPMC135756.

39. Katoh K, Standley DM. MAFFT: iterative refinement and additional methods. Methods Mol Biol. 2014;1079:131-46. Epub 2013/10/31. doi: 10.1007/978-1-62703-646-7_8. PubMed PMID: 24170399.
Figure 2

Motif 17

% conservation
<50
51-60
61-70
71-80
81-90
91-99
100

poly(U) tract
miR-145

miR-let-7a

miR-449c

miR-34c

miR-34b

miR-34a

miR-148a

5′-ACAACCUUGCUGAGUCAGUAUGAGAAUGAAACUGGCUUGGCAUAAGAAGAACACUUUUUGGUACCA-3′

Figure 3
Figure 4

- piS2-M17: ΔΔG = -4.67 kcal/mol
- piS2-AS1: ΔΔG = -13.56 kcal/mol
- piS2-LS1: ΔΔG = +2.55 kcal/mol
