Multiaxial Lenticular Stress-Strain Relationship of Native Myocardium is Preserved by Infarct-Induced Natural Heart Regeneration in Neonatal Mice

Hanjay Wang¹,², Ross Bennett-Kennett³, Michael J. Paulsen¹, Camille E. Hironaka¹, Akshara D. Thakore¹, Justin M. Farry¹, Anahita Eskandari¹, Haley J. Lucian¹, Hye Sook Shin¹, Matthew A. Wu¹, Annabel M. Imbrie-Moore¹,⁴, Amanda N. Steele¹,⁵, Lyndsay M. Stapleton¹,⁵, Yuanjia Zhu¹,⁵, Reinhold H. Dauskardt³, Y. Joseph Woo¹,²,⁵*

¹ Department of Cardiothoracic Surgery, Stanford University, Stanford CA
² Stanford Cardiovascular Institute, Stanford University, Stanford CA
³ Department of Materials Science and Engineering, Stanford University, Stanford CA
⁴ Department of Mechanical Engineering, Stanford University, Stanford CA
⁵ Department of Bioengineering, Stanford University, Stanford CA

*Corresponding Author:
Y. Joseph Woo, MD
Department of Cardiothoracic Surgery, Stanford University
Falk Building CV-235, 300 Pasteur Drive, Stanford, CA 94305-5407, USA
Phone: (650) 725-3828; Fax: (650) 725-3846; E-Mail: joswoo@stanford.edu
Supplemental Figure 1. Experimental Stress-Strain Curves. Representative stress-strain curves for left ventricular tissue after sham or myocardial infarction (MI) surgery in neonatal mice on postnatal day 1 (P1) or postnatal day 7 (P7), derived from lenticular hydrostatic deformation testing at 4 weeks after surgery. One representative heart from the (a) P1 sham group, (b) P1 MI group, (c) P7 sham group, and (d) P7 MI group were selected. The composite multiaxial modulus (E) is indicated for each sample.
Supplemental Figure 2. Study Flowchart. Sham or myocardial infarction (MI) surgery was performed in neonatal mice either on postnatal day 1 (P1) or postnatal day (P7). Mice were designated to undergo either assessment of successful left anterior descending (LAD) coronary artery ligation, or histological analyses, or echocardiography and lenticular hydrostatic deformation testing.