Title
Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport.

Permalink
https://escholarship.org/uc/item/3qq1g28c

Journal
The Journal of cell biology, 158(4)

ISSN
0021-9525

Authors
Rao, Mala V
Garcia, Michael L
Miyazaki, Yukio
et al.

Publication Date
2002-08-19

DOI
10.1083/jcb.200202037

Peer reviewed
Gene replacement in mice reveals that the heavily phosphorylated tail of neurofilament heavy subunit does not affect axonal caliber or the transit of cargoes in slow axonal transport

Mala V. Rao,1,2 Michael L. Garcia,4,5,6 Yukio Miyazaki,4,5,6 Takahiro Gotow,8 Aidong Yuan,1 Salvatore Mattina,1 Chris M. Ward,4,5,6 Nigel A. Calcutt,7 Yasuo Uchiyama,9 Ralph A. Nixon,1,2,3 and Don W. Cleveland4,5,6

1Nathan Kline Institute, 2Department of Psychiatry, and 3Department of Cell Biology, New York University School of Medicine, Orangeburg, NY 10962
4Ludwig Institute for Cancer Research, 5Department of Cellular and Molecular Medicine, 6Department of Neuroscience, and 7Department of Pathology, University of California at San Diego, La Jolla, CA 92093
8Laboratory of Cell Biology, College of Nutrition, Koshien University, Hyogo 665-0006, Japan
9Department of Cell Biology and Neuroscience, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan

The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.

Introduction

Neurofilaments (NFs),* the most abundant structural component of large myelinated axons, are obligate heteropolymers (Ching and Liem, 1993; Lee et al., 1993) composed of neurofilament heavy (NF-H, 200 kD), neurofilament medium (NF-M, 160 kD), and neurofilament light (NF-L, 68 kD) subunits. A series of experiments have implicated NFs in establishment of proper axonal diameters (Friede and Samorajski, 1970; Hoffman et al., 1987; Ohara et al., 1993; Xu et al., 1996; Zhu et al., 1997), itself a principal determinant of the velocity at which nerve impulses are propagated along axons (Gasser and Grundfest, 1939; Rushton, 1951; Waxman, 1980).

Earlier efforts with classical genetics, transgenic and gene-targeted mice have demonstrated that neurofilaments are essential for the establishment of normal axonal calibers. Absence (Ohara et al., 1993; Zhu et al., 1997) or strong reduction in axonal neurofilament numbers (Eyer and Peterson, 1994; Marszalek et al., 1996; Elder et al., 1998a; Jacomy et al., 1999) markedly suppresses the growth in axonal diameter that initiates during myelination. Simultaneous overexpression of NF-L and NF-M or NF-H increases overall radial growth (Xu et al., 1996; Meier et al., 1999), but the effect on caliber is sensitive to the ratio of the three neurofilament subunits as increases in any single subunit inhibit radial growth (Monteiro et al., 1990; Cote et al., 1993; Collard et
Figure 1. **Substitution of NF-H^tail^ for wild-type NF-H does not affect stoichiometry of the neurofilament subunits.** (A) Construction of an NF-H^tail^ allele in which the COOH-terminal 612 amino acids of the 660 amino acid tail of NF-H are replaced with a Myc epitope tag. The four exons of the NF-H gene are indicated by the filled boxes interrupted by three introns. ATG and TGA denote the translation initiation and termination codons. Dotted lines indicate the two regions where homologous recombination could take place between the targeting vector and the endogenous NF-H allele. (B and C) Screening of mouse tail DNAs for targeted deletion of NF-H tail. (B) Genomic DNA blots of mouse tails hybridized to the domain denoted as 5’T probe in A. (C) A similar blot as in B but hybridized with the sequence in A marked 3’T probe. DNAs are from littermate mice with (lane 1) two wild-type NF-H alleles, (lane 2) heterozygous, or (lane 3) homozygous for the NF-H^tail^.
al., 1995; Tu et al., 1995; Marszalek et al., 1996; Wong et al., 1996; Xu et al., 1996) even in the presence of higher numbers of axonal neurofilaments (Monteiro et al., 1990; Xu et al., 1996).

Several prior efforts have implicated phosphorylation of the NF-H tail as a regional influence on accumulation of neurofilaments, interfilament spacing and axonal calibers. The NF-M and NF-H subunits at steady state contain up to 15 and 50 moles of phosphate (Jones and Williams, 1982; Julien and Mushynski, 1982; Geisler et al., 1987; Goldstein et al., 1987; Lee et al., 1988), respectively, and are among the most extensively phosphorylated proteins in neurons (Julien and Mushynski, 1982, 1983; Carden et al., 1985). The COOH-terminal tail domains of NF-M and NF-H are phosphorylated at multiple lysine–serine–proline (KSP) repeat motifs. These phospho groups appear on NF-M and NF-H only after they enter the axon (Sternberger and Sternberger, 1983; Lee et al., 1986; Glicksman et al., 1987; Oblinger et al., 1987; Nixon et al., 1987, 1990) and are metabolized relatively slowly compared to the NH2-terminal phosphates (Nixon and Lewis, 1986; Sihag and Nixon, 1991). It has also been postulated that neurofilament behavior is regulated by complex phosphorylation of neurofilament (Nixon and Sihag, 1991; Nixon, 1993). NF-H tail phosphorylation has been closely linked to neurofilament-dependent control of axonal diameters (de Waegh et al., 1992; Hsieh et al., 1994; Nixon et al., 1994; Sanchez et al., 1996, 2000; Yin et al., 1998). One particularly persuasive finding used grafting of normal and myelinating defective Schwann cells onto wild-type axons to demonstrate the presence of a signaling cascade from the myelinating cell to the axon (de Waegh et al., 1992). NF-H phosphorylation was markedly reduced in unmyelinated axonal segments, and this correlated with markedly reduced calibers, despite normal neurofilament content.

Axonal proteins are principally derived from those synthesized in the cell bodies and subsequently transported into the axon by slow and fast axonal transport mechanisms. Neurofilament, tubulin, and smaller amounts of fodrin and actin are transported as slow component a at the rate of 0.1–1 mm/day (Hoffman and Lasek, 1975; Black and Lasek, 1980). Other neuronal proteins advance as a slow component b at the rate of 2–20 mm/day, including more than 100 different proteins (e.g., actin, fodrin, myosin-like protein, clathrin, and many metabolic enzymes [Willard, 1977; Black and Lasek, 1979; Willard et al., 1979; Brady and Lasek, 1981; Garner and Lasek, 1981]). A longstanding controversy has been whether the neurofilament subunit proteins are transported as filaments, oligomers, or subunits (Terada et al., 1996; Bass and Brown, 1997; Hirokawa et al., 1997; Yabe et al., 1999; Prahlad et al., 2000; Roy et al., 2000; Shah et al., 2000; Wang et al., 2000; Shah and Cleveland, 2002).

As to the consequences of phosphorylation of the neurofilament tails, some observations in optic nerves have been proposed that heavily phosphorylated NF-H subunits detach from the transport carrier and reside in the axon for months, whereas less phosphorylated variants are transported at normal slow axonal transport rates and have a short residence time in the axon (Lewis and Nixon, 1988). These observations have led to a model in which the COOH-terminal phosphorylation of neurofilament subunits regulates the interaction with a transport carrier and/or stationary axonal structures and thereby controls the rate of movement and residence time of neurofilaments within axons (Lewis and Nixon, 1988; Nixon and Sihag, 1991).

Consistent with this hypothesis is the finding that complete deletion of NF-H increases the rate of transport of the remaining neurofilament subunits in sciatic nerves (Zhu et al., 1998). Moreover, in cell culture studies in optic nerve axons, hypophosphorylated neurofilament subunits have been interpreted to undergo axonal transport more rapidly than subunits more extensively phosphorylated at their tail domains (Jung et al., 2000a), and the COOH-terminal phosphorylation of the NF-H subunit correlates with decreased neurofilament axonal transport velocity (Jung et al., 2000b, Yabe et al., 2001). Phosphorylation of KSP motifs triggered by a Schwann cell signal (see above) has been proposed as a key determinant of local control of neurofilament accumulation, interfilament spacing and radial growth of myelinated axons (de Waegh et al., 1992; Nixon et al., 1994; Sanchez et al., 1996, 2000; Yin et al., 1998).

To test these proposed in vivo functions of the NF-H subunit tail domain and its phosphorylation, we have now constructed NF-H tailless (NF-Htail−) mice by embryonic stem cell mediated gene knock in approach and analyzed the consequence of chronic loss of all 51 known phosphorylation sites on the murine NF-H subunit.

**Results**

**Stoichiometric replacement of NF-H with an NF-H tailless subunit**

To produce mice without the tail domain of NF-H (NF-Htail−), a gene targeting vector was constructed from the mouse NF-H gene in which the COOH-terminal 612 amino acids of NF-H were replaced with a Myc epitope tag and a neomycin phosphotransferase gene (Fig. 1 A). After electroporation, 2 out of 120 ES cell clones were identified to carry an NF-H gene allele correctly recombined into the allele: (D–N) Loss of NF-H tail (and accumulation of NF-Htail−) has no effect on levels of NF-L, NF-M, or tubulin. Parallel immunoblots of sciatic nerve extracts from each of four sets of 3-mo-old wild-type, NF-Htail− heterozygous and NF-Htail− homozygous mice were fractionated on 7% SDS-polyacrylamide gels and stained with Coomassie blue (D) or immunoblotted (E–N) with antibodies that recognize: (E) NF-H in a phosphoin-dependent manner; (F) NF-Htail− with Myc antibodies; (G) NF-L; (H) NF-M; (I) α tubulin; (I) β tubulin; and (K) neuron-specific β tubulin. (D, lanes 13 and 14) Quantification standards at right are provided by a twofold dilution series of a neurofilament preparation. Open (o) and closed dots mark the positions of NF-H and NF-Htail− subunits, respectively. (L–N) NF-H phosphorylation levels in sciatic nerve extracts determined with three phosphorylation sensitive antibodies. (O) Measurement of the relative levels of accumulation of wild-type NF-H and NF-Htail− using IFA (Pruss et al., 1981). (P and Q) Axonal microtubule density in motor (P) and sensory (Q) axons from L5 ventral or dorsal roots of wild-type or littermate homozygous NF-Htail− mice. Density was measured by counting all microtubules in a given cross-sectional area. Counts are an average from 14 axons for each genotype of 6-mo-old animals.
NF-H gene. Both clones were injected into C57BL/6J blastocysts, producing chimeric animals that when bred to C57BL/6J mice transmitted the NF-H<sup>tailA</sup> allele to their progeny. Mating pairs of mice heterozygous for the NF-H<sup>tailA</sup> allele produced homozygous animals (Fig. 1, B and C, respectively) at the expected Mendelian frequency. These were viable and fertile, with no overt phenotype, up to 2 y of age.

Coomassie blue staining of sciatic nerve extracts revealed loss of full-length NF-H and appearance of a new polypeptide of 62 kD just below NF-L in NF-H<sup>tailA</sup> homozygous animals (Fig. 1 D, lanes 6, 9, and 12). Immunoblotting with an antibody raised against the 13 COOH terminus amino acids of NF-H (Xu et al., 1993; pAb-NF-H<sub>COOH</sub>) confirmed the absence of NF-H protein in sciatic nerve extracts of homozygous NF-H<sup>tailA</sup> mice (Fig. 1, D and E). Heterozygous NF-H<sup>tailA</sup> mice had 50–70% the normal level of full-length NF-H (Fig. 1 E, middle). With an antibody to its epitope tag, the NF-H<sup>tailA</sup> subunit was confirmed to accumulate in a dose dependent manner (Fig. 1 F). Parallel immunobots of sciatic nerve extracts revealed that NF-L (Fig. 1 G) and NF-M levels were unaffected by the absence of NF-H tails (Fig. 1 H).

To add further weight to the determination of the molar amounts of the NF-H<sup>tailA</sup> subunit relative to the normal level of the full-length NF-H, we exploited monoclonal antibody IFA, which has been identified to bind to a conserved sequence element near the end of the helical domain of almost every intermediate filament subunit (Pruss et al., 1981; Geissler et al., 1983). This revealed an accumulated molar level for the NF-H<sup>tailA</sup> subunit (at the expected 62 kD mobility) in NF-H<sup>tailA</sup> homozygous mice that was similar to that for the full-length NF-H protein in wild-type nerve extracts (Fig. 1 O, compare lanes 1 and 3). This analysis also confirmed that there was no significant change in the levels of NF-L regardless of the presence or absence of the NF-H tails (Fig. 1 O). Identical results were found in analysis of optic nerve axons (unpublished data). Using two antibodies known to react with phosphorylated epitopes on NF-M (monoclonal antibody [mAb] RT97 and mAb SMI-31), in

**Figure 2.** Absence of NF-H tails does not markedly affect survival and radial growth of motor axons. (A) Cross sections of L5 motor (ventral root) axonal profiles from wild-type, NF-H<sup>tailA</sup> heterozygous and NF-H<sup>tailA</sup> homozygous mice at 3 (top) or 6 mo (bottom) of age. Bar, 20 μm. (B and C) Numbers of small (<4 μm diameter, black bars) and large (>4 μm diameter, crosshatched bars) axons in L5 motor roots of 3- (B) or 6-mo-old (C) wild-type and NF-H<sup>tailA</sup> heterozygous and homozygous mice. Counts are average from three to four animals for each genotype. (D–E) Distributions of axonal diameters in motor axons in 2- (D) or 6-mo-old (E) wild-type and NF-H<sup>tailA</sup> heterozygous and homozygous animals. Points represent the averaged distribution of axon diameters from the entire roots of 5 mice for each genotype and age group.
the absence of NF-H tail it was found that NF-M was phospho-
ylated to a significantly higher level (Fig. 1, L and M) than in wild-type nerves, whereas unphosphorylated NF-M was diminished (Fig. 1 N).

**Interactions between NF-H tails and tubulin do not affect axonal microtubule content**

It has been proposed that NF-H tails specifically interact with the COOH-terminal region of β-tubulin and that this interaction may be regulated by τ protein kinase II (Miyasaka et al., 1993). Dephosphorylated neurofilaments have also been reported to bind more avidly to microtubules (Hisanaga and Hirokawa, 1990), and phosphorylation of the NF-H tail domain (by CDC2 kinase) has been shown to dissociate neurofilaments from microtubules in vitro (Hisanaga et al., 1991). When coupled with the earlier finding that deletion of NF-H leads to an elevation of tubulin content and number of axonal microtubules (Rao et al., 1998; Zhu et al., 1998), this raised the possibility that phosphorylation of the NF-H tail directly affects axonal microtubule content. However, examination of tubulin levels in the nerves of the NF-H<sup>tail<sup>Δ</sup> mice revealed no change relative to wild-type mice in the axonal content of α-tubulin (Fig. 1 I), β-tubulin (Fig. 1 J), or the neuron-specific isoform β<sub>III</sub>-tubulin (Fig. 1 K). This was confirmed by counting microtubule numbers in cross sections of motor or sensory axons from ventral or dorsal roots, respectively, from wild-type and littermate NF-H<sup>tail<sup>Δ</sup> mice. Microtubule content was indistinguishable in both motor (Fig. 1 P) and sensory (Fig. 1 Q) axons. Thus, in contrast to earlier predictions, the heavily phosphorylated NF-H tails do not affect axonal microtubule content.

**NF-H tails are not essential for the axonal growth of myelinated motor axons**

In the absence of changes in NF-L and NF-M subunit levels (Fig. 1, G and H), the influence on radial axonal growth of the NF-H tail and its phosphorylation was examined by comparison of motor axons in the L5 ventral roots of ho...
mozygous NF-H<sup>tail</sup> mice and their control littermates. Axonal profiles were found to be qualitatively indistinguishable (Fig. 2 A). To test this more precisely, cross-sectional areas of every axon within each ventral root (Fig. 2 A) were measured from 2- and 6-mo-old animals and effective diameters calculated from a circle of equivalent area. By 6 mo of age, wild-type and NF-H<sup>tail</sup> homozygotes displayed indistinguishable, bimodal distributions of axonal sizes, peaking at 1.5 and 6.5 μm (Fig. 2 E). Axon number in either size pool (as well as total number of axons) was not affected by absence of the NF-H tail (Fig. 2, B and C). Examination of younger animals revealed a possible slowing in the rate of growth of the largest axons in NF-H<sup>tail</sup> homozygotes (Fig. 2 D).

These results demonstrate that without the confounding influences of compensatory changes in neurofilament number, NF-M content, and microtubules found when the entire NF-H subunit is deleted (Rao et al., 1998; Zhu et al., 1998), the NF-H tail and its multiple phosphorylation sites are neither the primary determinants of neurofilament-dependent radial growth of motor axons (Fig. 2 E). However, at young ages it may affect the kinetics of growth of the largest axons (Fig. 2 D).

NF-H tails are not essential for the axonal growth of sensory axons

Loss of axonal NF-H in dorsal roots had previously been found to result in a loss of ~19% of sensory axons (Rao et al., 1998). To examine changes associated with the loss of NF-H tails on survival and calibers of sensory axons, axons of the L5 dorsal roots were counted and their diameters determined for wild-type and homozygous NF-H<sup>tail</sup> mice. No loss of either the smaller (<2 μm diameter) or larger (between 2 and 9 μm) caliber sensory axons (Fig. 3, B and C) was found in comparing the NF-H<sup>tail</sup> homozygotes with wild-type littermates. Although complete deletion of NF-H has been shown to slow caliber growth of the largest sensory axons (Rao et al., 1998), this was not found for the NF-H<sup>tail</sup> homozygotes at 2 (Fig. 3 D, two-tailed t test, P > 0.16) or 6 mo (Fig. 3 E). Thus, the NF-H tail and its multiple phosphorylation sites are neither the primary determinants of neurofilament-dependent radial growth of large myelinated sensory axons nor central to the ability of NF-H to stimulate survival of sensory axons in the first several months of postnatal development.

NF-H and its tails crossbridge between neurofilaments in vivo

To examine whether loss of the NF-H tail and its phosphorylation contributes to overall three dimensional organization of axoplasm, neurofilament and microtubule organization and interfilament distances were compared in cross-section electron micrographs of motor (Fig. 4, A and B) or sensory (unpublished data) axons. This revealed that the overall den-
sity (number/cross-sectional area) and general spatial distributions of neurofilaments and microtubules were not affected by absence of the NF-H tail, consistent with the unchanged content of tubulin and the three neurofilament subunits (Fig. 1). Inter-filament spacing was not significantly altered between NF-HtailΔ axons (Fig. 4 B) and those from littermate controls (Fig. 4 A). Histograms of all inter-filament distances from multiple axons from three 6-mo-old animals of each genotype were not distinguishable (Fig. 4 C; n = 55,000 and 49,000 for wild-type and NF-HtailΔ motor axons, respectively). When considered with unaltered filament spacing after loss of the entirety of NF-H (Elder et al., 1998b; Rao et al., 1998), these findings imply that nearest neighbor distances are not primarily determined by NF-H (despite its ability to link adjacent neurofilaments [Chen et al., 2000]) or that such properties are shared with the NF-M subunit (despite its ability to link adjacent neurofilaments [Chen et al., 2000]) or that such properties are shared with the NF-M subunit.

Loss of NF-H tails does not influence the propagation of electric impulses along the nerve

An earlier report found a reduced axonal conduction velocity in mice deleted in NF-H (Zhu et al., 1998) despite no significant loss in axonal diameter or myelination. To test whether the loss of the NF-H tail and its influence on axoplasmic structure also affected axonal conduction, velocity of transmission was measured in motor axons of sciatic nerves from 5-mo-old wild-type, NF-HtailΔ, and NF-H deleted mice (Table I). As found previously, velocity in NF-H deleted mice was reduced by 30% relative to wild-type mice (36.4 ± 0.9 m/s for NF-H−/− vs. 52.2 ± 1.9 m/s for wild-type). However, conduction velocity in 5-mo-old mice was not decreased in NF-HtailΔ mice (53.6 ± 1.2 m/s).

Discussion

The developing mammalian nervous system undergoes two phases of growth. Axons first extend from their point of origin to their targets where they form stable synapses. Subsequently, and concomitant with myelin formation, axons undergo a rapid phase of radial growth. This large increase in axonal volume is essential for basic neuronal properties such as rates of nerve conduction. Alterations in expression after sciatic nerve injury initially implicated a role for neurofilaments in establishing the diameter of large myelinated fibers (Hoffman et al., 1987). Genetics unequivocally established this role for neurofilaments: radial growth is severely compromised by absence of neurofilaments resulting from gene mutation (Ohara et al., 1993) or deletion (Zhu et al., 1997). Radial growth is significantly lower in NF-H tail-deleted mice than in NF-H tail-intact or wild-type mice.

Table I. Absence of NF-H, but not its tail, slows nerve conduction velocity

| Genotype          | Conduction velocity (m/s) ± SEM |
|-------------------|---------------------------------|
| NF-H+/+           | 52.2 ± 1.95                     |
| NF-HtailΔTAILΔ    | 53.6 ± 1.19                     |
| NF-H−/−           | 36.4 ± 0.949                    |

Nerve conduction velocity measurements were performed on motor axons in the sciatic nerve from control, NF-HtailΔ, and NF-H−/− mice. Values shown are from a minimum of five animals for each genotype, and the recordings are done in triplicate for each animal.
also dependent on signaling to the axons by myelinating cells, as demonstrated conclusively by loss of caliber in axonal segments ensheathed by myelin defective Schwann cells (de Waegh et al., 1992; Sanchez et al., 1996). The presence of functional myelin triggers a cascade of neurofilament phosphorylation (or inhibition of phosphatase action or both) leading to axonal expansion in myelinated internodes and absence of such growth in the initial unmyelinated axonal segment and unmyelinated nodes (Hsieh et al., 1994). Moreover, radial growth is correlated with the nearly stoichiometric phosphorylation of the NF-H tail (Julien and Mushynski, 1983; Carden et al., 1985; Lee et al., 1988).

A possible explanation for radial growth being associated with phosphorylation of NF-H is that phosphorylation is linked with a reduction in the rate of slow axonal transport, possibly allowing phosphorylated neurofilaments to incorporate into the existing cytoskeletal network (Nixon et al., 1982, 1987, 1994; Lewis and Nixon, 1988; Nixon and Sihag, 1991; Yin et al., 1998; Jung et al., 2000a, 2000b; Sanchez et al., 2000; Yabe et al., 2001). Consistent with these observations, deletion of NF-H subunit yielded decreased survival and reduced radial growth in the largest sensory axons (Rao et al., 1998). Therefore, it seemed reasonable to predict that the tail domain of NF-H, with its 51 potential phosphorylation sites, is required for survival and radial growth of sensory axons. However, our evidence here demonstrates that this cannot be so. A primary contributor to radial growth cannot simply be phosphorylation of the NF-H tail, as loss of all phosphorylation sites, without compensatory changes in other major cytoskeletal components, does not compromise survival or caliber development.

However, the organization of axoplasm in NF-Htail mice is subtly altered: there is reduction in the density of projections from the core of each neurofilament and an increased frequency in neurofilaments that longitudinally contact each other for distances of up to 300 nm (Fig. 4 E). This is as expected if the NF-H tail is a major linker that combines with others to set a spacing of ~40 nm between filaments. From stochastic considerations, without NF-H, the reduction in overall linkers would be expected to yield close apposition of filaments, depending on how many such linkers were required or available per unit length of filament. Although, the nearest neighbor filament spacing is not significantly affected by the loss of NF-H tail, again as expected if other crossbridgers were still present, such as NF-M that could establish a similar spacing. In any event, our evidence indicates that the overall composition of the neurofilament network contributes much more to axonal survival and maturation than does the NF-H tail and its phosphorylation.

Earlier biochemical evidence supported an influence of the NF-H tail, but not the NF-M tail, on tubulin subunits as a function of the phosphorylation state of NF-H. Such an interaction has been proposed to be controlled by associated protein kinase II and CDC2 like kinase (Hisanaga and Hirokawa, 1990; Hisanaga et al., 1991; Miyasaka et al., 1993). Indeed, the loss of the entire NF-H subunit yields elevated levels of microtubules in sciatic nerves (Rao et al., 1998; Zhu et al., 1998). However, loss of NF-H tails in NF-Htail mice...
NF-H tails do not control the rate of slow axonal transport | Rao et al. 689

did not yield an increase in either total tubulin or microtubule density in axons (or levels or speed of tubulin transport), from which we conclude that in vivo the heavily phosphorylated NF-H tail does not contribute significantly to microtubule content or organization in the axon.

Neurofilament phosphorylation has also been closely linked to the rate of slow axonal transport in optic nerves and cell culture models (Nixon et al., 1982, 1987, 1994; Lewis and Nixon, 1988; Nixon and Sihag, 1991; Yin et al., 1998; Jung et al., 2000a, 2000b; Sanchez et al., 2000; Yabe et al., 2001). Moreover, it has long been proposed that incorporation of the NF-H subunit slows the speed of slow axonal transport (Willard and Simon, 1983). Consistent with this, less phosphorylated species of NF-H are transported at a much faster rate than more phosphorylated forms (Lewis and Nixon, 1988; Jung et al., 2000a, 2000b). Repetitive phosphorylation of the COOH-terminal tail of NF-H has thus seemed a reasonable mechanism to modulate slow transport rates. However, our evidence here does not offer confirmation of this hypothesis. In optic nerve axons, COOH-terminal truncation, resulting in complete loss of all potential tail domain phosphorylation sites, does not affect slow transport rates (Fig. 6). Additionally, previous evidence had indicated that slow transport rates of about half the neurofilament subunits within motor axons of the sciatic nerve are accelerated by complete removal of NF-H (Zhu et al., 1998), with a corresponding increase in NF-M content and microtubules (Rao et al., 1998; Zhu et al., 1998). Conversely, increased expression of NF-H is associated with slowed rates of neurofilament transport (Collard et al., 1995; Marszalek et al., 1996). Because the subunit stoichiometry of neurofilaments is not altered by truncating the NF-H tail (Fig. 1), it might be predicted that slow transport rates within the sciatic nerve of the NF-Htail mice would remain unchanged relative to wild-type mice. A direct test of this is now underway.

Both NF-H deletion (Rao et al., 1998) and COOH-terminal truncation (Fig. 2 D) retarded the initial rate of radial growth of motor neurons, although by 6 mo wild-type axon diameters were achieved. For the NF-Htail mice, such slowing of radial growth cannot be explained by compensatory changes in other members of the neurofilament gene family or other known cytoskeletal components. Presumably, the volume determining axonal scaffold, of which neurofilaments are one important component, is assembled with at least partially redundant linkers. Thus, absence of the cross-bridges from the NF-H tail kinetically delays, but does not preclude, establishment of a fully functional three-dimensional filament array.

Slowed radial growth offers an explanation for the otherwise unexpected reduction in conduction velocity in motor axons of the NF-H deleted mice, despite little effect on diameters measured in the motor roots. An initial proposal for the reduced velocity was a possible NF-H–dependent effect on the clustering of K+ channels at nodes (Kriz et al., 2000). It seems to us much more likely that the significant loss of conduction velocity arises from a slowed propagation in radial growth distally along the nerves. For peripheral motor neurons, radial growth measurements can only be sampled in motor roots, that is, at a position within the first 5% of the length along these long axons (well before sensory and motor axons intermingle to form mature nerves). However, motor conduction velocities are measured much more distally in the nerve segment. Thus, in the absence of NF-H (and in the

Figure 6. Absence of the NF-H tail and its phosphorylation does not affect the rate or composition of slow axonal transport in optic axons. (A–D) Slow axonal transport was measured as noted in the legend to Fig. 5, except using wild-type (A and C) or (B and D) NF-Htail mice.
presence of the accompanying elevation in microtubules and NF-M), the simplest view is that growth in caliber is retarded both proximally (as we have measured in motor roots of 2-mo-old animals) and along most of the length of sciatic nerve axons (as we have measured through conduction velocities in 5-mo-old animals), so as to suppress overall conduction speed, just as we have found. A prediction of this model is that the conduction velocity in even older animals would eventually reach wild-type rates, as normal caliber is achieved throughout the length of the axons.

Our data reinforce a model (depicted schematically in Fig. 7 A) in which the key determinant(s) of radial growth are not mediated (solely) by the crossbridges provided by the extensively phosphorylated NF-H tails. Rather, linkages of the NF-M tail between filaments (Nakagawa et al., 1995) and longer-range interactions that rely upon additional putative linkers are likely to be central to structuring axoplasm. Possible candidates for such linkers within sensory axons include the plakin family of proteins such as BPAGn/dystonin, proposed as a crossbridging protein between neurofilaments and actin filaments (Yang et al., 1996) or microtubules (Yang et al., 1999). BPAG1n isoforms are essential for the postnatal survival of sensory neurons during the phase of rapid radial growth (Brown et al., 1995; Guo et al., 1995). Within motor axons, another cytoskeletal-linker protein is plectin and its isoforms (Rao et al., 1998) that carry binding sites for intermediate filaments, actin and microtubules (Wiche, 1989). This is an essential crosslinker in mice (Andra et al., 1997), and some isoforms of it are expressed in many neurons, including motor neurons (Errante et al., 1994). Indeed, linkers of both types (i.e., linear and the more complex forked pattern characteristic of plectin) are clearly seen in the quick-freeze deep-etch elec-
Materials and methods

Construction of NF-HTL mice by ES cell mediated knock-in approach

A targeting vector was constructed with a genomic clone isolated from a mouse 129 Svj library (Rao et al., 1998) by using PCR to introduce a Bsp HI site after codon 475 of the NF-H protein. An in-frame Myc-tag sequence with translation stop and a segment specifying polyadenylation signaling were ligated after Bsp HI digestion. A PGK-NEO cassette (Tytuliewicz et al., 1991) was added along with a Bam HI-Eco RV (RV) fragment of NF-H gene as a 3’ arm for homologous recombination. The targeting vector was linearized with Sal I and electroporated into ES cells, provided by Dr. Andreas Nagy (University of Toronto, Toronto, Canada), and cells were selected for resistance to 200 μg/ml G418 and 2 μM gancyclovir. All cell manipulations were performed as described (Joyner, 1994). Drug resistant colonies were amplified, and DNA was prepared, digested with Hind III, separated on 0.8% agarose gels and transferred to Hybond N membranes (Lopata and Cleveland, 1987). Protein concentration was determined using bicinchoninic acid assay kit (Pierce Chemical Co.). Protein extracts, as well as known amounts of neurofilament standards, were separated on 7% polyacrylamide gels with SDS and transferred to nitrocellulose membranes (Lopata and Cleveland, 1987). The NF-H and NF-L subunits were identified using an affinity-purified rabbit polyclonal antibodies pAB-NF-H COOH, and pAB-NF-L COOH, raised against the COOH-terminal 12 amino acids of mouse NF-H and NF-L, respectively (Xu et al., 1993). The NF-H COOH subunit was detected with an affinity-purified polyclonal Myc antibody (Gill et al., 1990), followed by 125I-conjugated sheep antimouse antibody. After autoradiography, and quantified by phosphorimaging (Molecular Dynamics) using known amounts of purified mouse spinal cord neurofilament standards.

Detection and quantification of neurofilament and tubulin proteins by immunoblotting

Sciatic and optic nerves extracts were made as described (Rao et al., 1998). Nerve conduction velocity measurements

Nerve conduction velocities were measured in the sciatic nerve, interosseus muscle system of 5-mo-old mice (Calcutt et al., 1990). Briefly, mice were anesthetized with halothane (4% in O2 for induction, 2-3% for maintenance), and rectal temperature was maintained at 37°C by a heating lamp and thermal pad connected to a temperature regulator and the rectal thermometer probe. The sciatic nerve was stimulated with single supramaximal square wave pulses (4-8 V and 0.05 ms duration) via fine needle electrodes placed at the sciatic notch and Achilles tendon. Evoked electromyograms were recorded from the interosseus muscles of the ipsilateral foot via two fine needle electrodes and displayed on a digital storage oscilloscope. The distance between the two sites of stimulation was measured using calipers, and conduction velocity was calculated as described (Calcutt et al., 1990). Measurements were made in triplicate from a minimum of five animals for each genotype, and the median was used as the measure of velocity. Statistical ANOVA was done with a Bonferroni Multiple Comparisons Test post-hoc analysis using Instat.

Slow axonal transport studies in optic nerves

Retinal ganglion cells from NF-H−/−, NF-H−deleted, or their control littermate animals were radiolabeled in situ with 80 μCi of 35S-methionine by intravitreal injection with a calibrated micropipette apparatus into anesthetized mice at 3 to 4 months of age (Nixon, 1980). 1 wk after injection, mice were sacrificed by cervical dislocation, and optic pathways were dissected. Three to four animals were analyzed for each genotype. The optic pathways were frozen and cut into nine consecutive segments of each 1.1 mm. Each was homogenized with a buffer containing 1% Triton X-100, 50 mM Tris, pH 6.8, 2 mM EDTA, 1 mM PMSF, and 50 μg/ml of protease inhibitors (Roche). After centrifugation, the Triton insoluble cytoskeleton and soluble protein fractions were analyzed on 5–15% polyacrylamide gradient gels, transferred to nitrocellulose membranes and quantified by phosphorimaging.

Reference

Andra, K., H. Lasman, R. Bittner, S. Shonny, R. Fassler, F. Propst, and G. Wiche. 1997. Targeted inactivation of plexin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev. 11:3134–3156.
Goldstein, M.E., L.A. Sternberger, and N.H. Sternberger. 1987. Varying degrees of phosphorylation of neurofilament protein isoforms in dysmyelinating axons located in the central nervous system of the mouse dysontogenus model Lmna
tof phosphatase activity in axonemes of axonemes: implications for polyaxonal development and survival. J. Cell Biol. 102:363–366.
Carden, M.J., W.W. Schaefer, and V.M.-Y. Lee. 1985. The structure, biochemical properties, and immunogenicity of neurofilament peripheral regions are determined by phosphorylation state. J. Biol. Chem. 260:9805–9817.
Chen, J., T. Nakata, Z. Zhang, and N. Hirokawa. 2000. The C-terminal tail domain of neurofilament protein H (NF-H) forms the cross-bridges and regulates neurofilament bundle formation. J. Cell Sci. 113:861–869.
Ching, G.Y., and R.K. Liem. 1993. Assembly of type IV neuronal intermediate filaments in nonneuronal cells in the absence of preexisting cytoplasmic intermediate filaments. J. Cell Biol. 122:1323–1335.
Collard, J.F., F. Cote, and J.-P. Julien. 1995. Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature. 375:614–618.
Cote, F., J.F. Collard, and J.-P. Julien. 1993. Progressive neuropathy in transgenic mice expressing the human neurofilament heavy chain; a mouse model of amyotrophic lateral sclerosis. Cell. 73:35–46.
Dalpe, G., N. Leclerc, A. Vallee, A. Mattieu, Y.-D. Repentigny, and S.T. Brady. 1992. Local modulation of neurofilament phosphorylation, axonal caliber, and slow axonal transport by myelinating Schwann cells. Cell. 68:451–453.
Elder, G.A., V.L. Frederic, Jr., C. Kang, P. Basco, A. Gourav, P.-H. Tu, V.M.-Y. Lee, and R.A. Lazzarini. 1998a. Absence of mid-sized neurofilament subunit decreases axonal caliber, levels of neurofilament (NF-L), and neurofilament content. J. Cell Biol. 141:727–739.
Elder, G.A., V.L. Frederich, Jr., C. Kang, P. Basco, A. Gourav, P.-H. Tu, B. Zhang, V.-Y.-Y. Lee, and R.A. Lazzarini. 1998b. Requirement of heavy neurofilament subunit in the development of axons with large calibers. J. Cell Biol. 143:195–205.
Errante, L.D., G. Wiche, and G. Shaw. 1994. Distribution of plectin, an intermediate filament associated protein, in the adult rat central nervous system. J. Neurosci. Res. 37:515–528.
Eyer, J., and A. Peterson. 1994. Neurofilament deficient axons and perikaryal aggregates in viable transgenic mice expressing a neurofilament-β-galactosidase fusion protein. Neuron. 12:389–405.
Friede, R.L., and T. Samorajski. 1970. Axon caliber related to neurofilaments and dystonia musculorum gene is a neural isoforms of bullous pemphigoid antigen. J. Biol. Chem. 245:10467–10470.
Jacobson, H., Q. Zhu, S. Couillard-Despres, J.-M. Beauclerc, and J.-P. Julien. 1999. Disruption of type IV intermediate filament network in mice lacking the neurofilament medium and heavy subunits. J. Neurochem. 73:972–984.
Jones, S.M., and R.C. Williams. 1982. Phosphate content of mammalian neurofilaments. J. Biol. Chem. 256:9992–9995.
Joyner, A.L. 1994. Gene Targeting. A Practical Approach. IRL Press, New York. 234 pp.
Julien, J.-P., and W.E. Mushynski. 1982. Multiple phosphorylation sites in mammalian neurofilament polypeptides. J. Biol. Chem. 257:243–257.
Julien, J.-P., and W.E. Mushynski. 1983. The distribution of phosphorylation sites among identified proteolytic fragments of mammalian neurofilaments. J. Biol. Chem. 258:4019–4025.
Lee, V.M.-Y., M.J. Carden, and J.Q. Trojosenko. 1986. Novel monoclonal antibodies provide evidence for the in situ existence of a nonphosphorylated form of the largest neurofilament subunit. J. Neurosci. 6:850–858.
Lee, V.M.-Y., L. Orvoss, Jr., M.J. Carden, M. Hollios, B. Dietzschold, and R.A. Lazzarini. 1988. Identification of the major polymerization site in mammalian neurofilament polypeptides. Proc. Natl. Acad. Sci. USA. 85:1998–2002.
Lee, M.K., J.B. Turtle, L.I. Reibbum, D.W. Cleveland, and A. Frankfurter. 1990. The expression and posttranslational modification of a neuron-specific β-tubulin isotype during chick embryogenesis. Cell Motil. Cytoskeleton. 17:118–132.
Lee, M.K., Z. Xu, P.C. Wong, and D.W. Cleveland. 1993. Neurofilaments are oblige heteropolymers in vivo. J. Cell Biol. 122:1337–1350.
Leung, C.L., D. Sun, M. Zheng, D.R. Knowles, and R.K. Leim. 1999. Microtubule actin cross-linking factor (MACF): a hybrid of dystonin-dystrophin that can interact with the actin and microtubule cytoskeleton. J. Cell Biol. 147:1275–1286.
Leung, C.L., M. Zheng, S.M. Prater, and R.K.H. Liem. 2001. The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles. J. Cell Biol. 154:691–697.
Lewis, S.E., and R.A. Nixon. 1998. Multiple phosphorylated variants of high molecular weight neurofilament subunit of retinal cell neurons: characterization and evidence for their differential association with stationary and moving neurofilaments. J. Cell Biol. 107:2689–2701.
Lopata, M.A., and D.W. Cleveland. 1987. In vivo microtubules are copolymers of available β-tubulin isotypes: localization of each of six vertebrate β-tubulin isotypes using polyclonal antibodies elicited by synthetic peptide antigens. J. Cell Biol. 105:1707–1720.
Matsuzake, R., T.L. Williamson, M.K. Lee, Z.-S. Xu, T.O. Crawford, P.N. Hoffman, and D.W. Cleveland. 1996. Neurofilament subunit H modulates axonal diameter by affecting the rate of neurofilament transport. J. Cell Biol. 135:711–724.
Meier, J., S. Couillard-Despres, H. Jacomy, C. Gravel, and J.P. Julien. 1999. Extra strength and cell migration in stratified epithelia and neurologic degeneration. Cell. 81:233–43.
Hirokawa, N., S. Terada, T. Funnakoshi, and S. Terada. 1997. The slow axonal transport: the subunit model. Trends Cell Biol. 7:384–388.
Hisanaga, S., and N. Hirokawa. 1990. Dephosphorylation-induced interaction of neurofilaments with microtubules. J. Biol. Chem. 265:21852–21858.
Hisanaga, S., M. Kiusuha, E. Okumura, and T. Kishimoto. 1991. Phosphorylation of neurofilament H subunit at the tail domain by CDC2 kinase dissociates the association to microtubules. J. Biol. Chem. 266:21793–21803.
Hoffman, P.N., and R.J. Lasek. 1975. The slow component of axonal transport: identification of major structural polypeptides of the axon and their generalization among mammalian neurons. J. Cell Biol. 66:351–366.
Hoffman, P.N., D.W. Cleveland, J.W. Griffin, P.W. Landes, N.J. Cowan, and D.L. Price. 1987. Neurofilament gene expression: a major determinant of axonal caliber. Proc. Natl. Acad. Sci. USA. 84:3472–3476.
Hisieh, S.-T., G.J. Kidd, T.O. Crawford, Z.-S. Xu, B.D. Trapp, D.W. Cleveland, and J.W. Griffin. 1994. Regional modulation of neurofilament organization by myelination in normal axons. J. Neurosci. 14:692–6401.
Hua, W.-Y., and D. Cleveland. 1990. Axonal caliber related to neurofilaments and dystonia musculorum gene is a neural isoforms of bullous pemphigoid antigen. J. Biol. Chem. 265:21852–21858.
prescription of the human NF-H gene in mice. J. Neuropathol. Exp. Neurol. 58: 1099–1110.

Miyasaka, H., S. Okabe, K. Ishiguro, T. Uchida, and N. Hirokawa. 1993. Interaction of the tail domain of high molecular weight subunits of neurofilaments with the COOH-terminal region of tubulin and its regulation by τ protein kinase II. J. Biol. Chem. 268:22095–22702.

Montero, M.J., P.N. Hofmann, J.D. Gearhart, and D.W. Cleveland. 1990. Expression of NF-L in both neuronal and nonneuronal cells of transgenic mice: increased neurofilament density without affecting the caliber. J. Cell Biol. 111:1543–1557.

Nakagawa, T., J. Chen, Z. Zhang, Y. Kanai, and N. Hirokawa. 1995. Two distinct functions of the carboxyl-terminal tail domain of NF-M upon neurofilament assembly: cross-bridge formation and longitudinal elongation of filaments. J. Cell Biol. 129:411–429.

Nixon, R.A. 1980. Protein degradation in mouse visual system. I. Degradation of axonally transported and retinal proteins. Brain Res. 200:69–85.

Nixon, R.A. 1993. The regulation of neurofilament protein dynamics by phosphorylation: clues to neurofibrillary pathology. Brain Pathol. 3:29–38.

Nixon, R.A., and S.E. Lewis. 1986. Differential turnover of phosphate groups on neurofilament subunits in mammalian neurons in vivo. J. Biol. Chem. 261:16298–16301.

Prahlad, V., B.T. Helfand, G.M. Longford, R.D. Vale, and R.D. Goldman. 2000. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments in mammalian neurons. J. Neurosci. 7:1145–1158.

Prahlad, V., S.T. Brady, I.G. McQuarrie, and R.J. Lasek. 1987. Cytotypic differences in the protein composition of the axonally transported cytoskeleton of a neurofilament protein during axoplasmic transport: implications for retrograde transport of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2:137–141.

Roy, S., P. Coffee, G. Smith, R.K.H. Liem, S.T. Brady, and M.M. Black. 2000. Localization of neurofilaments along microtubules mediated in part by dynein/dynactin. Mol. Biol. Cell. 11:3495–3508.

Shah, R.K., and R.A. Nixon. 1991. Identification of Ser-55 as a major protein kinase A phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Sternberger, L.A., and N.H. Sternberger. 1983. Monoclonal antibodies distinguish phosphorylated and nonphosphorylated form of neurofilaments in situ. Proc. Natl. Acad. Sci. USA. 80:6126–6130.

Svitkina, T.M., A.B. Verkhovsky, and G.G. Borisy. 1996. Plectin side arms mediate interaction of intermediate filaments with microtubules and other components of cytoskeleton. J. Cell Biol. 135:991–1007.

Terada, S., T. Nakata, A.C. Peterson, and N. Hirokawa. 1996. Visualization of slow axonal transport in vivo. Science. 273:784–788.

Theodorakis, N.G., and D.W. Cleveland. 1992. Physical evidence for the cotranslational regulation of beta-tubulin m-RNA degradation. Mol. Cell. Biol. 12: 791–799.

Tu, P.-H., G. Elder, R.A. Lazzarini, D. Nelson, J.Q. Trojanowski, and V.M. Lee. 1995. Overexpression of human NF-L subunit in transgenic mice modifies the level of endogenous NF-L and the phosphorylation state of NF-H subunits. J. Cell Biol. 129:1629–1640.

Tu, P.-H., G. Elder, R.A. Lazzarini, D. Nelson, J.Q. Trojanowski, and V.M. Lee. 1995. Overexpression of human NF-L subunit in transgenic mice modifies the level of endogenous NF-L and the phosphorylation state of NF-H subunits. J. Cell Biol. 129:1629–1640.

Waxman, S.G. 1980. Determinants of conduction velocity in myelinated nerve fibers. Muscle Nerve. 3:141–150.

Wiche, G. 1989. Plectin: general overview and appraisal of its potential role as a subunit protein of the cytomatrix. Crit. Rev. Biochem. Mol. Biol. 24:41–67.

Willard, M. 1977. The identification of two intra-axonally transported polypeptides resembling myosin in some respects in the rabbit visual system. J. Cell Biol. 75:1–11.

Willard, M., and C. Simon. 1983. Modulation of neurofilament axonal transport during the development of rabbit retinal ganglion cells. Cell. 35:551–559.

Xu, Z., J.R. Marszalek, M.K. Houseweart, T.L. Williamson, T.O. Crawford, J. Folmer, and T.O. Crawford. 1993. Increased expression of a neurofilament protein during axoplasmic transport: implications for retrograde transport of axonal neurofilaments interrupted by prolonged pauses. Nat. Cell Biol. 2:137–141.

Yang, Y., J. Dowling, Q.C. Yu, P. Kouklis, D.W. Cleveland, and E. Fuchs. 1996. An essential cytoskeletal linker protein connecting actin microfilaments to intermediate filaments. Cell. 86:655–665.

Yang, Y., C. Bauer, G. Strasser, R. Wollman, J.P. Julien, and E. Fuchs. 1999. Interactions of the neurofilament protein subunits in mammalian neurons with the COOH-terminal region of tubulin and its regulation by τ protein kinase II. J. Biol. Chem. 268:22095–22702.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Yabe, J.T., A. Pimenta, and T.B. Shea. 1999. Kinesin-mediated transport of neurofilaments along microtubules in rabbit retinal ganglion cells. J. Cell Biol. 143:195–205.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.

Yabe, J.T., T. Chylinski, F.-S. Wang, A. Pimenta, S.D. Kattar, M.-D. Linsley, W.K.-H. Chan, and T.B. Shea. 2001. Neurofilaments consist of distinct populations that can be distinguished by C-terminal phosphorylation, but not NF-L phosphorylation site on the 70-kDa subunit of neurofilaments: early turnover during axonal transport. J. Biol. Chem. 266:18861–18867.