Abstract. The paper is devoted to generalizations of actions of topological groups on manifolds. Instead of a topological group, we consider a local topological group generalizing the notion of a germ or a neighborhood in a topological group. The notion of an action of a local group on a topological space is introduced.

The paper constructs the theory of local sharply n-transitive groups and local n-pseudofields. Local sharply n-transitive groups are reduced to simpler algebraic objects — local n-pseudofields, similarly to the way Lie groups are reduced to Lie algebras, and sharply two-transitive groups, are reduced to neardomains. This can be useful, since, opposite to locally compact and connected sharply n-transitive groups, which are absent for $n > 3$, local sharply n-transitive groups exist for any n, for example, the group $GL_n(\mathbb{R})$. Being boundedly sharply n-transitive, the groups under consideration are also Lie groups, which gives extra methods for their study.

Keywords: Local topological group, local sharply n-transitive group, local n-pseudofield.

MSC Classification: 22A99, 22A30, 18F60, 20B22.

1 Introduction

C. Jordan [1] discovered in 1872 that among finite groups, with the exception of the symmetric groups S_n, alternating groups A_{n+2} and Mathieu groups M_{11} and M_{12}, there are no sharply n-transitive groups for $n > 3$.

In 1931 Carmichael [2] came to the conclusion that finite sharply 2-transitive permutation groups are groups of affine transformations $x \mapsto xb + a, b \neq 0$, of a finite nearfield. In 1936 Zassenhaus [3, 4] recovered this result and in addition showed that every finite sharply 3-transitive group is isomorphic to a group of transformations $x \mapsto \frac{xb + c}{xd + e}$ with suitable conditions on a, b, c, d over a field $\mathbb{F} \cup \{\infty\}$ and, in certain cases, over a nearfield.

Tits [5] showed that if a sharply 2-transitive group is locally compact and connected and acts on a topological space, then it is isomorphic to the group of transformations $x \mapsto xb + a, b \neq 0$, of the field of real numbers \mathbb{R}, or the field of complex numbers \mathbb{C}, or the skew-field of quaternions \mathbb{H}. In this case a sharply 3-transitive group is isomorphic to the group of transformations $x \mapsto \frac{xb + c}{xd + e}$ with the condition $ad - cb \neq 0$. Such a group can be constructed only over the fields \mathbb{R} or \mathbb{C}. In spite of the absence of infinite sharply k-transitive groups for $k > 3$, it is known [6] that infinite k-transitive but not $(k + 1)$-transitive groups exist for arbitrary k.

If we do not require the group to be locally compact and connected, then a sharply 2-transitive group is isomorphic to the affine group of transformations $x \mapsto xb + a$ of some pseudo-field. At the beginning of the 1950s Tits [7] defined a pseudo-field as an algebraic system $\mathbb{B} = \langle B; +, -, \cdot, 0 \rangle$ with two binary operations satisfying the following axioms:

1) $\langle B; +, -, 0 \rangle$ is a magma with neutral element 0;
2) $a + (-a) = 0 \Rightarrow (-a) + a = 0$;
3) \(\langle B_1; ·, -1, 1 \rangle \) is a group with neutral element 1, where \(B_1 = B \setminus \{0\} \);
4) \(x \cdot 0 = 0 \cdot x = 0 \);
5) \((x + y) \cdot z = x \cdot z + y \cdot z \);
6) \((\exists r_{ab} \in B_1) \) such that \((x + a) + b = x \cdot r_{ab} + (a + b) \) for any \(x \in B \).

Isomorphic sharply 2-transitive groups can be constructed over non-isomorphic pseudo-fields. To avoid such a situation, in the mid-1960s Karzel [7, 8] introduced a similar algebraic system, a neardomain, as a system \(\mathbb{B} \) with two binary operations. Here, axiom 1) was strengthened and axiom 4) was changed:

1*) \(\langle B; +, - , 0 \rangle \) is a loop with neutral element 0;
4*) \(x \cdot 0 = 0 \).

Along with the generalization of a nearfield to a neardomain, a KT-field was introduced in [9] for the construction of sharply 3-transitive groups in the infinite case. This is a pair \((\mathbb{B}, \varepsilon) \), where \(\mathbb{B} \) is a neardomain and \(\varepsilon \) is an automorphism of the group \(B_1 \). This automorphism satisfies the identity

\[
\varepsilon(1 - \varepsilon(x)) = 1 - \varepsilon(1 - x). \tag{1}
\]

P.M. Cohn [10, Lemma 7.5.1.] considered an equivalent definition of a skew-field \(\mathbb{F} = \langle F; ·, +, -1, -1, -1, 1, 0 \rangle \), which he constructed using a unary operation \(\varphi : F_0 \to F_0 \) acting on a multiplicative group \(F_1 = \langle F_1; ·, -1, 1 \rangle \), where \(F_0 = F_1 \setminus \{1\} \). The operation \(\varphi \) satisfies the following axioms:

1. \(\varphi(yxy^{-1}) = y\varphi(x)y^{-1}, \ x, y \in F_0 \);
2. \(\varphi(\varphi(x)) = x, \ x \in F_0 \);
3. \(\varphi(xy^{-1}) = \varphi(\varphi(x)(\varphi(y))^{-1})\varphi(y^{-1}), \ x, y \in F_0, x \neq y \);
4. the element \(b = \varphi(x^{-1})x(\varphi(x))^{-1} \) does not depend on the chosen \(x \in F_0 \).

Here it turns out that \(b = -1 \) and \(\varphi(x) = 1 - x \).

W. Leissner obtained similar results independently (see [11]). He also showed in [12] that when only part of the requirements on the function \(\varphi : B_0 \to B_0 \) were applied, one could obtain a nearfield (using only Axioms 2, 3, and 4) or a neardomain (only by Axioms 2 and 3).

When developing his approach with a view to constructing sharply \((k + 1)\)-transitive groups, instead of a single automorphism \(\varepsilon \subseteq Aut(\mathbb{B}_1) \) with condition (1) for a KT-field, Leissner included a symmetric group of automorphisms \(S_{k-1} \subseteq Aut(\mathbb{B}_1) \) such that \(S_k = \langle \varphi, S_{k-1} \rangle \). By using such an algebraic system Leissner constructed the sharply \(n \)-transitive groups \(S_n, S_{n+1}, A_{n+2} \) and the sharply 4- and 5-transitive Mathieu groups \(M_{11}, M_{12} \). He called the algebra that he introduced a \(\mathbb{B}_1 \)-field of degree \(n \) (see [13]), where \(\mathbb{B}_1 \) is the multiplicative group over which the field of degree \(n \) is constructed. For example, a \(\mathbb{B}_1 \)-field of degree 3 is associated with a KT-field.

In [14], A. A. Simonov constructed a generalization of sharply \(n \)-transitive groups to boundedly sharply \(n \)-transitive groups. Among them, there are local sharply 2-transitive groups that cannot be constructed over local neardomains.

\[\text{1This notation means that the group } S_k \text{ is generated by the subgroup } S_{k-1} \text{ and the element } \varphi.\]
The paper develops the theory of local sharply n-transitive groups and local n-pseudofields in line with [12, 13] and [14]. Local sharply n-transitive groups are reduced to simpler algebraic objects — local n-pseudofields. It can be useful because, opposite to locally compact and connected sharply n-transitive groups, which are absent for $n > 3$, there are local sharply n-transitive groups for arbitrary n, for example, the group $\text{GL}_n(\mathbb{R})$.

In Section 2, we give the definitions of a local group, a local group isomorphism, a continuous group of transformations, and a local n-pseudofield.

Section 3 contains the main constructions. A local sharply 2-transitive group is constructed in Theorem 1 from a local pseudofield. Then the result is extended, and a local sharply n-transitive group is constructed from a local n-pseudofield in Theorem 2.

At the next step, Theorem 3 is applied to solve the inverse problem — a local n-pseudofield is constructed from a local sharply n-transitive group. The section is finished by Theorem 4, which proves the equivalence of the categories of local sharply n-transitive groups and local n-pseudofields.

We now explain our terminology. To describe sharply 2-transitive groups, in [5], Tits introduced the algebraic system, a pseudofield, as the generalization of the concepts of a field, a skew-field, and a nearfield. But later, a close concept, a near-domain, was applied for describing such groups, and so the term pseudofield got vacant. In [13], Leissner introduced the notion of a G-field of degree n for describing sharply n-transitive groups. In this article, following the previously introduced notion of an n-pseudofield (see [14]), we define a local n-pseudofield for describing the algebraic systems associated with local sharply n-transitive groups.

2 Definitions

2.1 A local group

Give the definition of local topological groups and a local isomorphism (see [15, §23]):

Definition 1 A topological space G is called a local group if the product $ab \in G$ is defined for some pairs a, b of elements of G; moreover, the following conditions must be satisfied:

1. If the products $ab, (ab)c, bc, a(bc)$ are defined then the equality $(ab)c = a(bc)$ holds.
2. If the product ab is defined then, for every neighborhood W of ab, there are neighborhoods U and V of a and b respectively such that if $x \in U$ and $y \in V$ then the product xy is defined and $xy \in W$.
3. G contains a distinguished element e, called the unit, such that if $a \in G$ then the product ea is defined and $ea = a$.
4. If the product ab is determined for a pair a, b and $ab = e$ then a is said to be the left inverse for b, $a = b^{-1}$. If b has a left inverse then, for every neighborhood V of b, there is a neighborhood U of b^{-1} such that each $y \in V$ has a left inverse $y^{-1} \in U$.
Let G be a local group. Refer to any neighborhood U of the unit e in G as a part of the local group G. Every part U of a local group G is itself a local group with the operations induced from G.

Definition 2 Let G and G' be two local groups and let U and U' be their parts. A mapping f is said to be a local isomorphism from G onto G' if f is a homeomorphism from U onto U' and the following conditions hold:

1. If the product ab is defined in U then the product $f(a)f(b)$ is defined in U' and $f(ab) = f(a)f(b)$.
2. f takes the unit into the the unit.
3. f is invertible, and its inverse f^{-1} satisfies the same conditions as f.

If there is a local isomorphism from a local group G onto a local group G' then G and G' are said to be locally isomorphic.

Two local isomorphisms of f and f' of a group G onto a group G' are called equivalent if they coincide on some part of G. Below we will analyze local isomorphisms only up to equivalence.

Let us give also the definitions of the groups of transformations [15, §24]:

Definition 3 A topological group G is called a continuous group of transformations of a topological space Γ if for any element $x \in G$ there corresponds a transformation x^* of Γ so that $(xy)^* = x^*y^*$ and the function σ of two variables $x \in G$ and $\xi \in \Gamma$ defined by the relation $\sigma(x, \xi) = x^*(\xi)$ is continuous, i.e. gives a continuous mapping of the direct product $G \times \Gamma$ of the topological spaces G and Γ onto Γ.

If different elements in the group G give different transformations then G is called an effective group of transformations. In this case, the elements G can be treated as transformations ($x = x^*$).

A continuous group G of transformations of a space Γ is called transitive if the abstract group G of transformations of Γ is transitive.

Henceforth, by a continuous group of transformations we mean a pair (Γ, G), where G is a topological group and Γ is a topological space. Let us now consider mappings $\psi : G \to G'$ and $\chi : \Gamma \to \Gamma'$.

Definition 4 A pair of mappings (χ, ψ) is called a similarity of the pair (Γ, G) onto the pair (Γ', G') if $\psi : G \to G'$ is a group isomorphism, $\chi : \Gamma \to \Gamma'$ is a homeomorphism of topological spaces, and

$$\chi[g(x)] = \psi(g)(\chi[x]),$$

where $g \in G$, $x \in \Gamma$.

If there is a pair of mappings (χ, ψ) that is a similarity of (Γ, G) and (Γ', G') then the pairs $(\Gamma, G), (\Gamma', G')$ are called similar.

Definition 5 Call a continuous group of transformations (Γ, G) acting on a space Γ as locally sharply n-transitive if G is a local group acting on some open subspace $M \subset \Gamma^n$ sharply transitively.
2.2 A local pseudofield

Consider the symmetric group S_n and a group of transformations (G, S_n), acting locally $G \times S_n \to G$ in the space G. In other words, local homeomorphisms f_α are defined in G; they are indexed by elements $\alpha \in S_n$ for which $f_\beta(f_\alpha(x)) = f_{\alpha \beta}(x)$.

It is known that S_n is generated by the transpositions $(1, i)$, where $i = 2, 3, \ldots, n$. Note that

$$(1, i)(1, j)(1, i) = (1, j)(1, i)(1, j) = (i, j) \quad \text{for} \quad i \neq j.$$

Denote the involute local homeomorphisms defined by transpositions as follows:

$$f_{(1,i)} = e_i, \quad \text{for} \quad (i = 2, \ldots, n).$$

The binary operation $(\cdot) : G \times G \to G$ is defined almost everywhere in G^2 and its restriction to G_1 gives the local structure $(G_1; \cdot, E, e)$ on $G_1 \subset G$. Using the local homeomorphisms e_i, from the local group $(G_1; \cdot, E, e)$, construct the locally isomorphic groups

$$\varphi_i : (G_1; \cdot, E, e) \to (G_1; \cdot, E_i, e_i),$$

where $E(x) = x^{-1}$ is the local homeomorphism of taking the inverse in the group G_1, and $x \cdot_i y = \varphi_i(\varphi_i(x)\varphi_i(y))$, $E_i(x) = \varphi_i(E(\varphi_i(x)))$ are the multiplication and the inverse taken in G_i; $e_i = \varphi_i(e)$ are the local units of the local groups G_1 and G_i respectively.

Definition 6 Say that a group of transformations (G, S_n) defines a local n-pseudofield $(G; \cdot, E, \varphi_2, \ldots, \varphi_n, e)$ if the following conditions are fulfilled:

1. if the products $a \varphi_i(b^{-1})$, $\varphi_i(a \varphi_i(b^{-1}))b$, $a \cdot_i b$, are defined then

$$a \cdot_i b = \varphi_i(\varphi_i(a)\varphi_i(b)) = \varphi_i(a \varphi_i(b^{-1}))b;$$

2. if the product $a \cdot_i b$ is defined then, for every neighborhood W of the element $a \cdot_i b$ there exist neighborhoods U and V of a and b such that for $x \in U$, $y \in V$ the products $x \cdot_i y$, $x \varphi_i(y^{-1})$, $\varphi_i(x \varphi_i(y^{-1}))y$ are defined and $x \cdot_i y = \varphi_i(x \varphi_i(y^{-1}))y \in W$.

3. The local homeomorphism $\sigma_{ij} = \varphi_j \varphi_i \varphi_j$ for $i \neq j$ is a local automorphism of the group G_1.

4. If $\varphi_i E \varphi_i(a)$ and $E \varphi_i E(a)$ are defined for some $a \in G$ then

$$\varphi_i E \varphi_i(a) = E \varphi_i E(a).$$

5. The elements $e_i = \varphi_i(e) \in G$ are left zeros for the binary operation in G, i.e., $e_i \cdot x = e_i$, for $x \in U$ from a neighborhood of the unit $e \in G_1$.

Equation (2) can be written down as a relation between two group operations:

$$(a \cdot_i b)b^{-1} = \varphi_i(a) \cdot_i b^{-1}$$

for $a \in G, b \in V \subset U \cap \varphi_i(U)$.

\footnote{The dimension of the space where the operation is undefined is less than the dimension of $G.$}
3 Basic constructions

3.1 A local sharply 2-transitive group

Theorem 1 From a local 2-pseudofield \(\langle G; \cdot, E, \varphi_2, e \rangle \), one can construct a local sharply 2-transitive group of transformations \((G, G^2)\).

Consider the topological space \(G \) and its square \(G^2 \). Separate neighborhoods \(U, U_2 \subset G \); \(W, W_2 \subset G^2 \) of the local units \(e \in U \), \(e_2 \in U_2 = \varphi_2(U) \), \(W \subset G \times U \), \(W_2 \subset U_2 \times G \), such that the following hold for arbitrary \(x \in G \), \((y_1, y_2) \in W \) and \(x' \in U_2 \), \((y'_1, y'_2) \in W_2 \):

\[
\varphi_2(y_1 y_2^{-1}) \in U, \quad \varphi_2(x \varphi_2(y_1 y_2^{-1})) y_2 \in G
\]

and

\[
\varphi_2(y'_2 \cdot 2 E_2(y'_1)) \in U_2, \quad \varphi_2(x' \cdot 2 \varphi_2(y'_2 \cdot 2 E_2(y'_1))) \cdot 2 y'_1 \in G.
\]

Define the functions \(f_1 : G \times G^2 \to G \),

\[
f_1(x, y_1, y_2) = \varphi_2(x \varphi_2(y_1 y_2^{-1})) y_2, \quad \text{for } x \in G, (y_1, y_2) \in W \quad (3)
\]

and

\[
f_2(x, y_1, y_2) = \varphi_2(x \cdot 2 \varphi_2(y_2 \cdot 2 E_2(y_1))) \cdot 2 y_1, \quad \text{for } x \in G, (y_1, y_2) \in W_2. \quad (4)
\]

For \(x \in G \), \((y_1, y_2) \in W \cap W_2 \), both functions \(f_1(x, y_1, y_2) \) and \(f_2(x, y_1, y_2) \) are defined and coincide with account taken of (2):

\[
f_2(x, y_1, y_2) = \varphi_2(x \cdot 2 \varphi_2(y_2 \cdot 2 E_2(y_1))) \cdot 2 y_1 = (\varphi_2(x) \cdot (y_2 \cdot 2 E_2(y_1))) \cdot 2 y_1
\]

\[
= \varphi_2(\varphi_2(x) \cdot \varphi_2(\varphi_2(y_2) \varphi_2 E_2(y_1))) \cdot \varphi_2(y_1)
\]

\[
= \varphi_2(x \varphi_2(\varphi_2(y_1) E \varphi_2(y_2)) \cdot \varphi_2 E(y_2)) y_2
\]

\[
= \varphi_2(x \varphi_2(y_1 E(y_2)) E \varphi_2 E(y_2) \varphi_2 E(y_2)) y_2
\]

\[
= \varphi_2(x \varphi_2(y_1 E(y_2))) y_2 = f_1(x, y_1, y_2).
\]

For \(x = e \) and \((y_1, y_2) \in W \), we have

\[
f_1(e, y_1, y_2) = \varphi_2(e \varphi_2(y_1 y_2^{-1})) y_2 = \varphi_2(\varphi_2(y_1 y_2^{-1})) y_2 = (y_1 y_2^{-1}) y_2 = y_1. \quad (5)
\]

For \(x = e_2 \) and \((y_1, y_2) \in W_2 \), by analogy, we have the second function:

\[
f_2(e_2, y_1, y_2) = y_2. \quad (6)
\]

Consider the function \(f_2 \) for \(x \in U, y \in U \cap U_2 \):

\[
f_2(x, y, e_2) = \varphi_2(x \cdot 2 \varphi_2(e_2 \cdot 2 E_2(y))) \cdot 2 y
\]

\[
= \varphi_2(x \cdot 2 \varphi_2 E_2(y)) \cdot 2 y = \varphi_2 \left((x \cdot 2 \varphi_2 E_2(y)) \cdot \varphi_2(y) \right)
\]

\[
= \varphi_2 \left(x \cdot 2 \varphi_2 E_2(y) \right) \cdot \varphi_2(y) = \varphi_2 \left(\varphi_2(x) \cdot 2 \varphi_2(y) \right) = x \cdot y. \quad (7)
\]

Similarly, for the function \(f_1 \) and \(x \in U_2, y \in U \cap U_2 \), we have:

\[
f_1(x, e_1, y) = x \cdot 2 y.
\]
Define a function f as follows:

$$
\begin{cases}
 f_1(x, y, z) \quad &\text{for } x \in G, (y, z) \in W, \\
 x \cdot y \quad &\text{for } x, y \in U, z = e_2, \\
 f_2(x, y, z) \quad &\text{for } x \in G, (y, z) \in W_2, \\
 x \cdot _z \quad &\text{for } x, z \in U_2, y = e.
\end{cases}
$$

Further define a binary local operation $(\circ_2) : G^2 \times G^2 \to G^2$ as follows:

$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
\circ_2
\begin{pmatrix}
 y_1 \\
 y_2
\end{pmatrix}
=
\begin{pmatrix}
 f(x_1, y_1, y_2) \\
 f(x_2, y_1, y_2)
\end{pmatrix}.
$$

For convenience, we do not differ the pairs from G^2 written as a column
$$
\begin{pmatrix}
 x_1 \\
 x_2
\end{pmatrix}
$$
and a row (x_1, x_2).

2°. Check condition (1) of Definition 1 of a local group (the associativity of the product of pairs):

$$(x_1, x_2), (y_1, y_2), (z_1, z_2) \in G^2.$$

On the one hand, for the ith component of the product

$$(x_1, x_2) \circ_2 ((y_1, y_2) \circ_2 (z_1, z_2)),$$

we can write

$$
\varphi_2(\varphi_2(x_1, \varphi_2(y_1, y_2^{-1})) \varphi_2(z_1, z_2^{-1})) z_2
\begin{equation}
= \varphi_2(\varphi_2(x_1, \varphi_2(y_1, y_2^{-1})) \varphi_2(y_2, \varphi_2(z_1, z_2^{-1}))) z_2
= \varphi_2(x_1, \varphi_2(y_1, y_2^{-1})) \varphi_2(y_2, \varphi_2(z_1, z_2^{-1})) \varphi_2(y_2, \varphi_2(z_1, z_2^{-1})) z_2.
\end{equation}
$$

The transformation of φ_2 has led to a representation of the ith component already of the product $((x_1, x_2) \circ_2 (y_1, y_2)) \circ_2 (z_1, z_2)$ so that the local operation (its local nature will be checked later) \circ_2 is associative, and so it one can assert that $(G^2; \circ_2)$ is a local semigroup.

3°. Let us check condition (2) of Definition 1 of a local group.

Suppose that the value $f(a, b, c)$ is defined for some a, b, c. Since a local group and a group isomorphic to it with multiplication (\cdot) are defined in G, for every neighborhood W_1 of the element cb^{-1}, there are neighborhoods U_1 and V_1 of c and b^{-1} such that the product xy is defined for $x \in U_1, y \in V_1$ and $xy \in W_1$. Then, for every neighborhood W_2 of $a' \cdot b'$, there are neighborhoods U_2 and V_2 of a' and b' such that the product $x \cdot y$ is defined for $x \in U_2, y \in V_2$ and $x \cdot y \in W_2$. And finally, for every neighborhood W_3 of $a''b''$, there are neighborhoods U_3 and V_3 of a'' and b'' such that the product xy is defined for $x \in U_3, y \in V_3$ and $xy \in W_3$. Then, by superposition, for an arbitrary neighborhood $W = W_3 \ni f(a, b, c)$, there exist neighborhoods $U = \varphi_2(U_2), V' \subseteq V_3 \cap E(V_1), V \subseteq U_1$, with $V_2 \subseteq W_1, U_3 \subseteq W_2$ such that $f(x, y, z) \in W$ holds for arbitrary $x \in U, y \in V', z \in V$.

7
Consider arbitrary pairs \((a_1, a_2), (b_1, b_2)\) for which
\[
(c_1, c_2) = (f(a_1, b_1), f(a_2, b_1, b_2)),
\]
is defined but, in this case, from the previous construction, for any neighborhood \(W \ni (c_1, c_2)\), there exist neighborhoods \(U \ni (a_1, a_2), V \ni (b_1, b_2)\) such that, for arbitrary \((x_1, x_2) \in U, (y_1, y_2) \in V\), we have
\[
(f(x_1, y_1, y_2), f(x_2, y_1, y_2)) = (x_1, x_2) \circ_2 (y_1, y_2) \in W.
\]
Hence, the operation \(\circ_2\) is local.

4°. Consider the pair \((e, e_2)\) as the local unit; then, reckoning with \((5)\) and \((6)\), we have: \((e, e_2) \circ_2 (y_1, y_2) = (y_1, y_2)\). Thus, the pair \((e, e_2) \in G^2\) is the local unit, whereas \(\langle G^2; \circ_2 \rangle\) is the local magma.

Verify that the left inverse to \((x_1, x_2)\) is
\[
\begin{pmatrix}
\varphi_2(x_2^{-1}) E\varphi_2(x_1 x_2^{-1}) \\
E\varphi_2(x_1 x_2^{-1})
\end{pmatrix}
\]
Indeed, in the product,
\[
\begin{pmatrix}
\varphi_2(x_2^{-1}) E\varphi_2(x_1 x_2^{-1}) \\
E\varphi_2(x_1 x_2^{-1})
\end{pmatrix} \circ_2 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}
\]
for the first component, we have
\[
f_1(\varphi_2(x_2^{-1}) E\varphi_2(x_1 x_2^{-1}), x_1, x_2) = \varphi_2(\varphi_2(x_2^{-1}) E\varphi_2(x_1 x_2^{-1}) \varphi_2(x_1 x_2^{-1})) x_2 = \varphi_2^2(x_2^{-1}) x_2 = x_2^{-1} x_2 = e.
\]
For the second component, we get
\[
f_2(E\varphi_2(x_1 x_2^{-1}), x_1, x_2) = \varphi_2 \left(E\varphi_2(x_1 x_2^{-1}) \cdot_2 \varphi_2 \left(x_2 \cdot_2 E(x_1) \right) \right) \cdot_2 x_1
\]
\[
= \left(\varphi_2 E \varphi_2(x_1 x_2^{-1}) \cdot_2 \varphi_2 \left(x_2 \cdot_2 E(x_1) \right) \right) \cdot_2 x_1
\]
\[
= \left(\varphi_2 E \varphi_2(x_1 x_2^{-1}) \cdot_2 \varphi_2 \left(x_2 E(x_1) \right) \right) \cdot_2 x_1
= \varphi_2 E \varphi_2(x_1) \cdot_2 x_1 = E(x_1) \cdot_2 x_1 = e_2.
\]
Condition (4) of Definition 1 of the local group follows from the superposition of the local group operations, the local nature of the transformations \(\varphi_2\), and taking the inverse in the local group. As a result, \(\langle G^2; \circ_2 \rangle\) is a local group. The theorem is proved.

Note that the group \(G\) is embedded in \(G^2\) as \(G \ni x \mapsto (x, e_2) \in G^2\), and the image of \(G\) under this embedding coincides with the stabilizer \(G \simeq (G^2)_{e_2}\) of \(e_2\) in \(G^2\), as follows from \((7)\) and the definition of function \((8)\).

As an example of a group \(G\), consider the multiplicative group \(\mathbb{R}^+\) and the function \(\varphi_2(x) = -x + 1\). The corresponding group \(G^2\) is constructed with the use of the function \(f(x, a, b) = x(a - b) + b\) and is isomorphic to the affine group of transformations of the set \(\mathbb{R}\).
3.2 Infix–postfix notation

Above, using a homeomorphism \(\varphi_2 \) and a group of transformations \((G, G)\), we constructed a group \((G, G^2)\). Considering \(n\)-pseudofields, as \(n\) grows from 2 to 3 and more, the number of parentheses rises substantially. To avoid their complication, we will use the combined infix and postfix notation of formulas.

The postfix notation for a group can be written as group action on itself \(G \times G' \rightarrow G\). For instance, the binary operation of multiplication in \(G\) can be written as a function (or a unary operation) \(x \cdot y \equiv f_y(x)\), whereas, in the postfix notation, it is done through the right action \(f_y(x) \equiv x \cdot [y]\), where \(x \in G, [y] \in G'\). For multiplying three elements, we have

\[
(x \cdot y) \cdot z = f_z(f_y(x)) = x \cdot [y][z].
\]

Associativity leads to the identity

\[
x \cdot [y][z] = x \cdot (y \cdot z) = f_{y \cdot z}(x) = x \cdot [y \cdot z].
\]

For brevity, we omit the multiplication dot, so that

\[
x \cdot [y][z] = x \cdot [y \cdot z] = x \cdot [yz].
\]

For the inverse operation \(x^{-1} = E(x)\), the identity \(E(E(x)) = x\) in the postfix notation looks as follows:

\[
x \cdot EE = x \quad \text{or in short} \quad EE = id.
\]

The identity \(a b b^{-1} = a\) for the group in the postfix notation looks as

\[
a \cdot [b][b^{-1}] = a \quad \text{or in short} \quad [b][b^{-1}] = id.
\]

Finally, in the postfix notation, when the inverse of an element succeeds multiplication by this element, we reduce the product.

Identity 2 of Definition 6 is written down as follows:

\[
a \cdot \varphi_i[\varphi_i(b)]\varphi_i = a \cdot [\varphi_iE(b)]\varphi_i[b],
\]

where \(\varphi_iE(b) = \varphi_i(b^{-1})\), then, for \(b' = \varphi_i(b)\), it is written down briefly as

\[
\varphi_i[b']\varphi_i = [E_i(b')]\varphi_i[\varphi_i(b')],
\]

where, as we recall, \(E_i = \varphi_iE\varphi_i = E\varphi_iE\). The identity

\[
\sigma_{ij}(\sigma_{ij}(x)y) = x\sigma_{ij}(y),
\]

which holds for the automorphism \(\sigma_{ij}\) in Definition 6(3), for a group \(G\) is rewritten as follows:

\[
\sigma_{ij}[y]\sigma_{ij} = [\sigma_{ij}(y)].
\]

For \(\varphi_i\) and \(\sigma_{jk}\), we have

\[
\varphi_i\sigma_{jk} = \sigma_{jk}\varphi_i,
\]

for \(i \neq j, k\) and

\[
\varphi_i\sigma_{ij} = \varphi_j\varphi_i.
\]

Let us sum up the transition to the mixed infix-postfix notation:
• the formulas partition into functions (unary operations) — φ_1, E, σ_{ij}, and postmultiplication $[y]$ and are written in the postfix form;

• if an element $y = f(x)$ in the unary operation of the postmultiplication $[y]$ is a function then, in the infix form, it looks as $[f(x)]$.

Write the function (3) obtained in theorem 1 as the couple

$$f_1(x, y_1, y_2) \equiv x \cdot [y_1, y_2] = x \cdot [\varphi_2(y_1y_2^{-1})] \varphi_2[y_2]. \quad (15)$$

(Note that, under no circumstances, the notation in square b rackets that we consider the commutator of the elements y_1 and y_2; it is just the notation for a pair. Moreover, we do not have to consider such a commutator anywhere, and so this notation should not confuse.) Then, for the function f_2, we may write

$$f_2(x, y_1, y_2) = x \cdot \varphi_2[\varphi_2(y_2), \varphi_2(y_1)] \varphi_2,$$

and agree the following for the natural notation of function (8):

$$[x, e_2] = [x], \ [e, y] = \varphi_2[\varphi_2(y)] \varphi_2.$$

Prove the following assertion:

Lemma 3.1 If, for some $x \in U \subset G$ and $(y_1, y_2) \in W \subset G^2$, for which, $x \cdot [y_1, y_2] \varphi_2$ and $x \cdot [\varphi_2(y_1), \varphi_2(y_2)]$, $x \cdot \varphi_2[y_1, y_2]$, and $[x, y_1, y_2]$ are defined then

$$[y_1, y_2] \varphi_2 = [\varphi_2(y_1), \varphi_2(y_2)] \text{ and } \varphi_2[y_1, y_2] = [y_2, y_1].$$

Indeed, transform the first equality:

$$x \cdot [y_1, y_2] \varphi_2 = \varphi_2(\varphi_2(x \varphi_2(y_1y_2^{-1})) y_2)$$

$$= \varphi_2(x \varphi_2(y_1y_2^{-1}) \varphi_2 E \varphi_2(y_2)) \varphi_2(y_2)$$

$$= \varphi_2(x \varphi_2(y_1) \varphi_2 E \varphi_2(y_2)) \varphi_2(y_2^{-1}) \varphi_2 E \varphi_2(y_2) \varphi_2(y_2)$$

$$= \varphi_2(x \varphi_2(y_1 E \varphi_2(y_2))) \varphi_2(y_2) = x \cdot [\varphi_2(y_1), \varphi_2(y_2)].$$

For the second equality, we have

$$x \cdot \varphi_2[y_1, y_2] = \varphi_2(\varphi_2(x) \varphi_2(y_1y_2^{-1})) y_2$$

$$= \varphi_2(x \varphi_2(y_2y_1^{-1})) y_1y_2^{-1}y_2 = \varphi_2(x \varphi_2(y_2y_1^{-1})) y_1 = x \cdot [y_2, y_1].$$

3.3 A locally sharply n–transitive group

For a collection $(x_1, \ldots, x_{n-1}, x_n) \in G^n$, define a tuple function as the superposition of a tuple of a lesser dimension and the function φ_n:

$$[x_1, \ldots, x_{n-1}, x_n] = [\varphi_n(x_1x_n^{-1}), \ldots, \varphi_n(x_{n-1}x_n^{-1})] \varphi_n[x_n]. \quad (16)$$
Lemma 3.2 For tuple (16), we have the following equalities for $i \leq n$:

$$[x_1, \ldots, x_{n-1}, x_n] \varphi_i = [\varphi_i(x_1), \ldots, \varphi_i(x_{n-1}), \varphi_i(x_n)],$$ \hspace{1cm} (17)

$$[x_1, \ldots, x_{n-1}, x_n] [y] = [x_1y, \ldots, x_{n-1}y, x_ny]$$ \hspace{1cm} (18)

and

$$\varphi_i [x_1, \ldots, x_i, \ldots, x_n] = [x_i, x_2, \ldots, x_{i-1}, x_i, x_{i+1}, \ldots, x_n].$$ \hspace{1cm} (19)

Prove the lemma by induction. Expression (18) is obtained just from the definition of (16) and the equality

$$x_i^{-1} x_n^{-1} = x_i y (x_n y)^{-1}.$$

For obtaining (17), write

$$[x_1, \ldots, x_{n-1}, x_n] \varphi_i \overset{(16) \text{ and } (11)}{=} \varphi_n(x_1 x_n^{-1}), \ldots, \varphi_n(x_{n-1} x_n^{-1})] \varphi_n E_i(x_n) \varphi_i [\varphi_i(x_n)],$$

which, for $i = n$, with account taken of the induction, transforms into the equality

$$[x_1, \ldots, x_{n-1}, x_n] \varphi_n = [\varphi_n(x_1 x_n^{-1}) E_n(x_n), \ldots, \varphi_n(x_{n-1} x_n^{-1}) E_n(x_n)] \varphi_n [\varphi_n(x_n)]$$

$$= [\varphi_n(\varphi_n(x_1) E \varphi_n(x_n)), \ldots, \varphi_n(\varphi_n(x_{n-1}) E \varphi_n(x_n))] \varphi_n [\varphi_n(x_n)]$$

$$= [\varphi_n(x_1), \ldots, \varphi_n(x_{n-1}), \varphi_n(x_n)].$$

For considering the case $i \in \{2, \ldots, n-1\}$, recall that the identity $\varphi_n \varphi_i = \varphi_i \sigma_{in}$ follows from the definition of the automorphism σ_{ij}. Hence,

$$\varphi_n(x_1 x_n^{-1}), \ldots, \varphi_n(x_{n-1} x_n^{-1})] \varphi_i \sigma_{in} [E_i(x_n)] \varphi_i [\varphi_i(x_n)]$$

$$\overset{(12)}{=} [\varphi_i \varphi_n(x_1 x_n^{-1}), \ldots, \varphi_i \varphi_n(x_{n-1} x_n^{-1})] [\sigma_{in} E_i(x_n)] \sigma_{in} \varphi_i [\varphi_i(x_n)]$$

$$= [\sigma_{in} \varphi_i(x_1 x_n^{-1}) \sigma_{in} E_i(x_n), \ldots, \sigma_{in} \varphi_i(x_{n-1} x_n^{-1}) \sigma_{in} E_i(x_n)] \varphi_i \varphi_n [\varphi_i(x_n)]$$

$$= [\sigma_{in} (\varphi_i(x_1) E \varphi_i(x_n)), \ldots, \sigma_{in} (\varphi_i(x_{n-1}) E \varphi_i(x_n))] \varphi_i \varphi_n [\varphi_i(x_n)]$$

$$= [\varphi_n(x_1), \ldots, \varphi_n(x_{n-1}), \varphi_n(x_n)].$$

Thus, expression (17) is proved. Let us now check (19). For $n = 2$, it was validated in Lemma 3.1. Let us now consider $n = 3$ for φ_3:

$$\varphi_3[y_1, y_2, y_3] = \varphi_3[\varphi_3(y_1 y_3^{-1}), \varphi_3(y_2 y_3^{-1})] \varphi_3[y_3]$$

$$= \varphi_3[y_1^{(1)}, y_2^{(1)}] \varphi_3[y_3]$$

$$= \varphi_2 \sigma_{23} \varphi_2[y_1^{(1)}, y_2^{(1)}] \varphi_3[y_3]$$

$$= \varphi_2 \sigma_{23} \varphi_2[y_1^{(1)} E(y_1^{(1)})] \sigma_{23} \varphi_2[y_1^{(1)}] \varphi_3[y_3]$$

$$= \varphi_2 \varphi_3 (y_1^{(1)} E(y_1^{(1)})) \varphi_3[y_3]$$

$$= \varphi_2 \varphi_3 (y_1^{(1)} E(y_1^{(1)})) \varphi_2 \varphi_3 [y_1^{(1)}] \varphi_3[y_3]$$
Let us now show that (19) holds if it is fulfilled for tuples of lesser dimension:

\[
\varphi_n[y_1, \ldots, y_{n-2}, y_{n-1}, y_n] = \varphi_{n-1}\sigma_n, n-1\varphi_{n-1-1}[y_1^{(1)}, \ldots, y_{n-2}^{(1)}, y_{n-1}]{\varphi_n[y_n]}
\]

\[
= \varphi_{n-1}\sigma_n, n-1[y_{n-1}^{(1)}, y_2^{(1)}, \ldots, y_{n-2}^{(1)}, y_{n-1}]{\varphi_n[y_n]}
\]

where

\[
y_i^{(1)} = y_i \cdot [E(y_n)]\varphi_n \text{ and } y_i^{(2)} = y_i^{(1)} \cdot [E(y_1^{(1)})]\varphi_{n-1}.
\]

Apply \(\sigma_{n,n-1}\):

\[
\sigma_{n,n-1}(y_i^{(2)}) = y_i \cdot [E(y_n)]\varphi_n[E\varphi_n(y_1{y_n}^{-1})]\varphi_{n-1}\sigma_{n,n-1}
\]

\[
= y_i \cdot [E(y_n)]\varphi_n[E\varphi_n(y_1{y_n}^{-1})]\varphi_{n-1}
\]

\[
= y_i \cdot [E(y_n)][E\varphi_n(y_1{y_n}^{-1})]\varphi_n[E\varphi_n(y_1{y_n}^{-1})]\varphi_{n-1}
\]

\[
= y_i \cdot [E(y_1)]\varphi_n[E\varphi_n(y_1{y_n}^{-1})]\varphi_{n-1} = (y_i^{(2)}).
\]

Continue expression (20) with account taken of (21) and (22):

\[
= \varphi_{n-1}\sigma_n, n-1[y_{n-1}^{(2)}, y_2^{(2)}, \ldots, y_{n-2}^{(2)}, y_{n-1}]{\varphi_n[y_n]}
\]

\[
= \varphi_{n-1}[(y_{n-1}^{(1)})^{(2)}, (y_2^{(1)})^{(2)}, \ldots, (y_{n-2}^{(1)})^{(2)}]{\sigma_n, n-1\varphi_{n-1-1}[y_1^{(1)}]{\varphi_n[y_n]}
\]

\[
= \varphi_{n-1}[(y_{n-1}^{(1)})^{(2)}, (y_2^{(1)})^{(2)}, \ldots, (y_{n-2}^{(1)})^{(2)}]{\varphi_{n-1}\varphi_n[y_1^{(1)}]{\varphi_n[y_n]}
\]

\[
= \varphi_{n-1}[(y_{n-1}^{(1)})^{(2)}, (y_2^{(1)})^{(2)}, \ldots, (y_{n-2}^{(1)})^{(2)}]{\varphi_{n-1}[E\varphi_n(y_1{y_n}^{-1})]\varphi_n(y_1{y_n}^{-1})]{\varphi_n[y_n]}
\]

\[
= \varphi_{n-1}[(y_{n-1}^{(1)})^{(2)}, (y_2^{(1)})^{(2)}, \ldots, (y_{n-2}^{(1)})^{(2)}]{\varphi_{n-1}[E\varphi_n(y_1{y_n}^{-1})]\varphi_n(y_1{y_n}^{-1})]{\varphi_n[y_1]}
\]

\[
= \varphi_{n-1}[(y_{n-1}^{(1)})^{(1)}, (y_2^{(1)})^{(1)}, \ldots, (y_{n-2}^{(1)})^{(1)}]{\varphi_n[y_1]}
\]

where \((y_i^{(1)})^{(1)} = \varphi_n(y_1{y_n}^{-1})\).

It remains to verify (19) for \(n\) and \(\varphi_i\) for \(i < n:\)

\[
\varphi_n[y_1, \ldots, y_i, \ldots, y_n] = \varphi_i[y_1^{(1)}, \ldots, y_i^{(1)}, \ldots, y_{n-1}^{(1)}]{\varphi_n[y_n]}
\]
\[\left[y_1^{(1)}, \ldots, y_1^{(1)}, \ldots, y_{n-1}^{(1)} \right] \varphi_n[y_n] = \left[y_1, \ldots, y_i, \ldots, y_n \right]. \]

The lemma is proved. \hfill \Box

Define a function \(f : G \times G^n \to G \):

\[
f(x; y_1, \ldots, y_n) = \begin{cases}
 x \cdot [y_1, \ldots, y_{n-1}] & \text{for } y_n = e_n, \\
 x \cdot [y_1, \ldots, y_n] & \text{for } x \in U, \\
 x \cdot \varphi_i [\varphi_i(y_i), \ldots, \varphi_i(y_1), \ldots, \varphi_i(y_n)] \varphi_i & \text{for } x \in \varphi_i(U),
\end{cases}
\]

where \(U \subset G \) is a neighborhood of the unit \(e \in G \). If \(x \in \varphi_i(U) \cap U \) then, with Lemma 3.2 taken into account:

\[x \cdot [y_1, \ldots, y_n] = x \cdot \varphi_i [\varphi_i(y_i), \ldots, \varphi_i(y_1), \ldots, \varphi_i(y_n)] \varphi_i. \]

Using function (23), construct multiplication in \(G^n \):

\[
\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} f(x_1, y_1, \ldots, y_n) \\ \vdots \\ f(x_n, y_1, \ldots, y_n) \end{pmatrix},
\]

for collections \((x_1, \ldots, x_n), (y_1, \ldots, y_n) \in G^n \).

Theorem 2 From a local \(n \)-pseudofield, it is possible to construct a local sharply \(n \)-transitive group of transformations \((G, G^n)\) with multiplication (24).

10. Verify condition (1) of the definition 1 of a local group — the associativity of operation (24).

It follows from the definition of tuples (15) and (16) with account taken of Lemma 3.2 that

\[[x_1, x_2, \ldots, x_n] = \left[x_1^{(n-1)} \right] \varphi_2 \left[x_2^{(n-2)} \right] \ldots \left[x_{n-1}^{(1)} \right] \varphi_n \left[x_n \right], \]

where \(x_j^{(k)} = \varphi_{n+1-k} \left(x_j^{(k-1)} E \left(x_{n+1-k}^{(k-1)} \right) \right) \) and \(x_j^{(0)} = x_j \). Then, with account taken of (17) and (18), the multiplication of tuples \([x_1, \ldots, x_n], [y_1, \ldots, y_n] \) is written down as follows:

\[[x_1, \ldots, x_n] [y_1, \ldots, y_n] = [x_1 \cdot [y_1, \ldots, y_n], \ldots, x_n \cdot [y_1, \ldots, y_n]]. \]
Therefore,

\[
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix}
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{pmatrix}
=
\begin{pmatrix}
 x_1 \bullet [y_1, \ldots, y_n] \\
 \vdots \\
 x_n \bullet [y_1, \ldots, y_n]
\end{pmatrix}
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{pmatrix}
=
\begin{pmatrix}
 x_1 \bullet [y_1, \ldots, y_n] \cdot [z_1, \ldots, z_n] \\
 \vdots \\
 x_n \bullet [y_1, \ldots, y_n] \cdot [z_1, \ldots, z_n]
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix}
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{pmatrix}
=
\begin{pmatrix}
 x_1 \\
 \vdots \\
 x_n
\end{pmatrix}
\begin{pmatrix}
 y_1 \\
 \vdots \\
 y_n
\end{pmatrix}
\begin{pmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{pmatrix}.
\]

Condition (2) of Definition 1 is fulfilled by superposition.

20. Verify condition (3) of Definition 1 of a local group. Make sure that
\((e,e_2,\ldots,e_n) \in G^n\) defines the left neutral element. For the unit \(e\) we have:

\[
f(e, x_1, \ldots, x_n) = e \bullet [x_1, \ldots, x_n]
= e \bullet [\varphi_n(x_1 x_n^{-1}), \ldots, \varphi_n(x_n x_n^{-1})] \varphi_n [x_n] = \varphi_n(x_1 x_n^{-1}) \bullet \varphi_n [x_n] = x_1.
\]

Hence, for \(i \geq 2\), we infer

\[
f(e, y_1, \ldots, y_n) = e_i \bullet \varphi_i [\varphi_i(y_1), \ldots, \varphi_i(y_1), \ldots, \varphi_i(y_n)] \varphi_i
= e \bullet [\varphi_i(y_1), \ldots, \varphi_i(y_1), \ldots, \varphi_i(y_n)] \varphi_i = \varphi_i(y_i) \bullet \varphi_i = y_i.
\]

30. Check condition (4) of Definition 1 of a local group.

Suppose that, in the local group \(G^{n-1}\), for \((x_1, \ldots, x_{n-1}) \in G^{n-1}\), there exists an inverse \((x_1, \ldots, x_{n-1})^{-1} \in G^{n-1}\) such that

\[
(x_1, \ldots, x_{n-1})^{-1} (x_1, \ldots, x_{n-1}) = (e_1, \ldots, e_{n-1}),
\]

where \(e_1 = e\). Then the tuple \([x_1, \ldots, x_{n-1}]\) has an inverse tuple \([x_1, \ldots, x_{n-1}]^{-1}\), and, for any \(y \in U\),

\[
y \bullet [x_1, \ldots, x_{n-1}]^{-1} [x_1, \ldots, x_{n-1}] = y.
\]

The inverse to an element \((x_1, \ldots, x_n) \in G^n\) is

\[
\left(\begin{array}{c}
 x_1 \\
 \vdots \\
 x_n
\end{array}\right)^{-1}
= \left(\begin{array}{c}
 \varphi_n(x_n^{-1}) \bullet [x_1^{(1)}, \ldots, x_{n-1}^{(1)}]^{-1} \\
 \vdots \\
 E \varphi_n(x_1) \bullet \varphi_n([\varphi_1(x_1)]^{(1)}, \ldots, ([\varphi_n(x_n)]^{(1)})^{-1} \varphi_i \\
 \vdots \\
 E \varphi_n(x_1) \bullet \varphi_n([\varphi_n(x_n)]^{(1)}, \ldots, ([\varphi_n(x_{n-1})]^{(1)})^{-1} \varphi_n
\end{array}\right),
\]

(27)
Hence, as a local group of transformations G, the corresponding group T of transformations φ down with the use of the function $E\varphi = (\varphi_1, \ldots, \varphi_n$).

Multiplication by (x_1, \ldots, x_n) from the right leads to multiplication by a tuple. For the first component, we have
\[
\varphi_1(x_1) = \varphi_1(x_1)^{(1)} = \varphi_n(x_1)E\varphi(x_1), \quad 1 \leq i < n,
\]
\[
\varphi_1(x_1) = \varphi_n(x_1)E\varphi(x_1), \quad i = n.
\]

Thus, $E\varphi(x_1) = (\varphi_1(x_1), \ldots, \varphi_{n-1}(x_1), \varphi_n(x_1))$ defines the inverse in the local group G^n.

For the components with the numbers $i = 2, \ldots, n - 1$, we infer
\[
\varphi_i E\varphi_i(x_1) = \varphi_i((\varphi_i(x_1))^{(1)}, \ldots, (\varphi_i(x_n-1))^{(1)}, \varphi_i(x_n))
\]
\[
= \varphi_i E\varphi_i(x_1) \cdot \varphi_i((\varphi_i(x_1))^{(1)}, \ldots, (\varphi_i(x_n-1))^{(1)}, \varphi_i(x_n))
\]
\[
= \varphi_i E\varphi_i(x_1) \cdot \varphi_i E\varphi_i(x_1) = E\varphi_i(x_1) \cdot \varphi_i(x_n) = \varphi_i(e) = e_i.
\]

Finally, for the last component, we have
\[
E\varphi_n(x_1) \cdot \varphi_n((\varphi_n(x_1))^{(1)}, \ldots, (\varphi_n(x_n-1))^{(1)}, \varphi_n(x_n))
\]
\[
= E\varphi_n(x_1) \cdot \varphi_n E\varphi_n(x_1) \cdot (\varphi_n(x_1))^{(1)}, \ldots, (\varphi_n(x_n-1))^{(1)}, \varphi_n(x_n))
\]
\[
= E\varphi_n(x_1) \cdot [\varphi_n(x_1)] \varphi_n = \varphi_n(e) = e_n.
\]

Thus, (27) defines the inverse in the local group G^n.

The constructed local group G^n is sharply transitive under the action on itself. Hence, as a local group of transformations G^n of G, it is sharply n-transitive.

The theorem is proved.

Thus, we have constructed a mapping $F_2 : (G, \varphi_2, \ldots, \varphi_n) \to (G, G^n)$, i.e., a procedure that, given an arbitrary n-pseudofield $(G, \varphi_2, \ldots, \varphi_n)$, constructs the corresponding group of transformations (G, G^n).

3.4 Examples

As a simplest example of a local sharply 2-transitive group, consider the group of affine transformations of the field of real or complex numbers $x \to xa + b$, for which the corresponding group T_2 can be written as
\[
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \cdot \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} x_1(y_1 - y_2) + y_2 \\ x_2(y_1 - y_2) + y_2 \end{pmatrix}.
\]

Here $(1, 0)$ is the neutral element. The corresponding local 2-pseudofield is written down with the use of the function $\varphi_2(x) = -x + 1$ acting on the multiplicative group G.
Extending this example to the case $n = 3$, pass to the locally isomorphic group $\psi : G \to G'$ by means of the transformation $\psi(x) = \frac{2x}{1 + x}$ and its inverse $\psi^{-1}(x) = \frac{x}{2x}$ so that the multiplication in G' has the form

$$x \cdot' y = \frac{2xy}{1 + x + y - xy}$$

with the functions

$$\varphi'_2(x) = \psi^{-1} \varphi_2 \psi(x) = \frac{1 - x}{1 + 3x} \text{ and } \varphi'_3(x) = -x$$

acting on this group and $e'_1 = 1, e'_2 = 0, e'_3 = -1$. In this case, the group multiplication in T_3 can be written through the tuple function

$$x \bullet [y_1, y_2, y_3] = \frac{x(2y_1y_3 - y_2(y_1 + y_3)) + y_2(y_3 - y_1)}{x(y_1 - 2y_2 + y_3) + y_3 - y_1}.$$

Other examples for the groups T_n of transformations of \mathbb{R}^2 for $n \leq 4$ can be found in [17].

The group $GL_n(\mathbb{R})$ is an example of a local sharply n-transitive group of transformations in \mathbb{R}^n constructed by means of the local n-pseudofield with distinguished elements

$$e_1 = (1, 0, \ldots, 0), e_2 = (0, 1, 0, \ldots, 0), \ldots, e_n = (0, \ldots, 0, 1),$$

from the multiplicative group G with the multiplication

$$(x_1, x_2, \ldots, x_n)(y_1, y_2, \ldots, y_n) = (x_1y_1, x_1y_2 + x_2, \ldots, x_1y_n + x_n)$$

and the functions φ_i which, under the action at the row (x_1, \ldots, x_n), replace two elements x_i and x_j leaving the remaining coordinates fixed.

Using the same group G and the same functions φ_i for $i < n$ but φ_n, which is replaced by

$$\varphi_n(x_1, \ldots, x_n) = (1 - x_1 - x_2 - \ldots - x_{n-1}, x_2, \ldots, x_n),$$

the Mikhaĭlichenko group T_n is constructed [18]; it is nonisomorphic to GL_n but embeddable in GL_{n+1}.

3.5 A local n-pseudofield

Let us show that it is possible to construct a local n-pseudofield from a local sharply n-transitive group. Namely, we have the following assertion:

Theorem 3 Given a local sharply n-transitive group T_n of transformations of a set G, it is possible to construct a local n-pseudofield from T_n.

16
10. Since T_n is a local sharply n-transitive group, the stabilizer of arbitrary n of various elements from G is trivial. Consider n different elements e_1, \ldots, e_n from G for which there is a nontrivial stabilizer of e_2, \ldots, e_n. Fix this collection $[e_1, \ldots, e_n]$.

The action of the group T_n on G is written as $a \mapsto a \cdot x$, where $x \in T_n$, $a \in G$. Define a structure of a local group on G^n. With an element $x \in T_n$, associate a tuple $[x_1, \ldots, x_n]$ from G^n by the rule

$$[x_1, \ldots, x_n] = [e_1 \cdot x, \ldots, e_n \cdot x] = [e_1, \ldots, e_n] \cdot x.$$

Then the neutral element $e \in T_n$ element determines the tuple $[e_1, \ldots, e_n] \in G^n$. Define the multiplication operation of such sets in accordance with the rule:

$$[x_1, \ldots, x_n][y_1, \ldots, y_n] = [e_1, \ldots, e_n] \cdot (xy) = [x_1, \ldots, x_n] \cdot y$$

$$= [x_1 \cdot y_1, \ldots, x_n \cdot y] = [x_1 \cdot [y_1, \ldots, y_n], \ldots, x_n \cdot [y_1, \ldots, y_n]],$$

(28)

where we use that, owning to the correspondence $T_n \ni x \mapsto [x_1, \ldots, x_n] \in G^n$, the elements of the group G^n act at elements of G by the rule

$$a \cdot [x_1, \ldots, x_n] \equiv a \cdot x, \quad \text{где} \quad a \in G, \ x \in T_n.$$

By construction, the local groups T_n and G^n are locally isomorphic.

The action of G^n at the elements e_i follows from the identity

$$[e_1, \ldots, e_n] \cdot [x_1, \ldots, x_n]$$

$$= [e_1 \cdot [x_1, \ldots, x_n], \ldots, e_n \cdot [x_1, \ldots, x_n]] = [x_1, \ldots, x_n].$$

(29)

Denote the stabilizer of e_2, \ldots, e_n in G^n by G^1. If $[y_1, \ldots, y_n] \in G^1$ then, by the definition of the stabilizer,

$$e_i \cdot [y_1, \ldots, y_n] = e_i, \quad \text{for} \quad i \in \{2, \ldots, n\}.$$

Consequently, reckoning with (29), the stabilizer G^1 consists of the elements

$$[y_1, e_2, \ldots, e_n] \in G^n.$$

Put $[y_1] = [y_1, e_2, \ldots, e_n]$, then

$$a \cdot [y_1, e_2, \ldots, e_n] = a \cdot [y_1], \quad e_i \cdot [y_1] = y_1 \quad \text{and} \quad e_i \cdot [y_1] = e_i, \quad \text{where} \ i > 1.$$

(30)

The following equality holds in G^1:

$$[x_1][y_1] = [x_1, e_2, \ldots, e_n][y_1, e_2, \ldots, e_n] = [x_1 y_1, e_2, \ldots, e_n] = [x_1 y_1].$$

Basing on it, determine the inverse x_1^{-1} for x_1:

$$[x_1^{-1}] = [x_1]^{-1} = [x_1, e_2, \ldots, e_n]^{-1}.$$

Thus, we have transferred the structure of the group G^1 to the set G itself and have obtained a group G in which the multiplication is written without a dot. Then we
can state that (30) implies identity (5) in definition 6, i.e., the elements e_i for $i > 1$
are left zeros for the elements of G.

Now, denote by G_i^2 the stabilizer of the elements

$e_2, \ldots, e_{i-1}, e_{i+1}, \ldots, e_n$

in G^n. It is easily to see that every element in G_i^2 looks as $[x_1, e_2, \ldots, x_i, \ldots, e_n]$ for
some $x_1, x_i \in G$. Introduce the following notation for elements of G_i^2:

$[x_1, x_i] \equiv [x_1, e_2, \ldots, x_i, \ldots, e_n]$.

In the stabilizer G_i^2, the element $[e_1, e_i]$ is neutral, and $[e_i, e_1] \in G_i^2$ is an involution:

$[e_i, e_1][e_i, e_1] = [e_1, e_i]$.

Then, for any $[x_1, x_i] \in G_i^2$, we have the equalities:

$[e_i, e_1][x_1, x_i] = [x_i, x_1]; \quad [x_1, x_i][e_i, e_1] = [\phi_i(x_1), \phi_i(x_i)]$, \quad (31)

where, by definition,

$\phi_i(a) = a \cdot [e_i, e_1], \quad a \in G$.

Note that $\phi_i(e_1) = e_i$.

For arbitrary $[e_i, x_i]$, we have

$[e_i, x_i] = [x_i^{-1}, e_i][x_i, e_2] = [\phi_i(x_i^{-1}), e_i][e_i, e_1][x_i, e_i] = [\phi_i(x_i^{-1})][e_i, e_1][x_i]$.

On the other hand, with account taken of (31), we get

$[e_i, x_i] = [e_i, e_1][\phi_i(x_i^{-1}), e_i][e_i, e_1] = [e_i, e_1][\phi_i(x_i^{-1})][e_i, e_1]$.

Thus,

$\phi_i[\phi_i(x_i)] \phi_i = [\phi_i(x_i^{-1})] \phi_i [x_i]$. \quad (32)

Acting at an element $a \in G$ by both sides of the equality, we obtain expression (2)
from definition 6.

Since this identity is obtained on the local group G^n, condition (2) of definition 6
is fulfilled.

20. Consider $x_i \in G$ for which $\phi_i(x_i^{-1}), E\phi_i(x_i^{-1}) \in U$, and (32) can be considered
at the action on $E\phi_i(x_i^{-1})$. Then, taking (30) into account, on the one hand, we have

$E\phi_i(x_i^{-1}) \cdot [\phi_i(x_i^{-1})] \phi_i [x_i] = e_i \cdot \phi_i [x_i] = e_i \cdot [x_i] = e_i$,

and on the other hand, we obtain

$E\phi_i(x_i^{-1}) \cdot \phi_i [\phi_i(x_i)] \phi_i = \phi_i (\phi_i E\phi_i(x_i^{-1}) \phi_i(x_i))$.

Consequently,

$\phi_i E\phi_i(x_i^{-1}) \phi_i(x_i) = e_1$,

from which we get identity (4) of Definition 6.
3. For proving Assertion (3) of Definition 6, given arbitrary $X = [x_1, \ldots, x_n] \in G^n$, construct the element $X_{ij} \in G^n$ obtained from X by interchanging x_i and x_j. It follows from (29) that

$$E_{ij}X = X_{ij},$$

where $E_{ij} = [e_1, \ldots, e_n]_{ij}$. On the other hand, $E_{ii}^2 = E = [e_1, \ldots, e_n]$, for $i \in \{2, \ldots, n\}$ and

$$E_{ii}E_{ij}E_{ii} = E_{ij}E_{ii}E_{ij} \quad \text{at} \quad i \neq j.$$

In addition to the above-introduced $\phi_i(x) = x \cdot E_{ii}$, $x \in G$, define $\varepsilon_{ij} : G \to G$ as

$$\varepsilon_{ij}(x) = x \cdot E_{ij} = x \cdot E_{ij}E_{ii}E_{ij} = \varphi_j \varphi_i \varphi_j(x).$$

Then, for arbitrary $x \in U$, $y \in \phi_i(U) \cap U$, we have

$$x \cdot [y, e_2, \ldots, e_n]E_{ij} = x \cdot E_{ij}E_{ij}[y, e_2, \ldots, e_n]E_{ij} = x \cdot E_{ij}[\varepsilon_{ij}(y), e_2, \ldots, e_n],$$

and so we arrive at the equality

$$\varepsilon_{ij}(xy) = \varepsilon_{ij}(x)\varepsilon_{ij}(y).$$

Therefore, ε_{ij} belongs to the group of automorphisms of the local group G, which leads us to the fulfillment of condition (3) of Definition 6. The theorem is proved.

Thus, we have constructed the map

$$F_1 : (G, T_n) \to \langle G, \phi_2, \ldots, \phi_n \rangle,$$

which associates with a local group of transformations (G, T_n) the corresponding local n-pseudofield.

3.6 Categorical equivalence

Definition 7 For any class of algebras $K\mathfrak{A}$, denote by $\overline{K}\mathfrak{A}$ the category whose objects are algebras $\mathfrak{A} \in K\mathfrak{A}$ and morphisms are homomorphisms of algebras.

Let us now give the definition of an equivalence of categories (see [16, §4.4]):

Definition 8 A functor $\overline{F}_2 : \overline{K}\mathfrak{A}_1 \to \overline{K}\mathfrak{A}_2$ is called an equivalence of categories and the categories $\overline{K}\mathfrak{A}_1$ and $\overline{K}\mathfrak{A}_2$ are called equivalent if there is an (opposed) functor $\overline{F}_1 : \overline{K}\mathfrak{A}_2 \to \overline{K}\mathfrak{A}_1$ and natural isomorphisms:

$$\overline{F}_1 \overline{F}_2 \cong I : \overline{K}\mathfrak{A}_1 \to \overline{K}\mathfrak{A}_1 \quad \text{and} \quad \overline{F}_2 \overline{F}_1 \cong I : \overline{K}\mathfrak{A}_2 \to \overline{K}\mathfrak{A}_2.$$

Henceforth we will consider the group of transformations (G, G^n) as a two-sorted algebra $\langle G, G^n; \bullet, g, E \rangle$, where $g : G^n \times G^n \to G^n$ is the group operation, E is the unary operation of taking the inverse in G^n. The action of the group G^n on the topological space G is written as the multiplication

$$(\bullet) : G \times G^n \to G.$$
Recall that a homomorphism of two groups of transformations
\[(G, G^n) = \langle G, G^n; \cdot, g, E \rangle \quad \text{and} \quad (G', G'^n) = \langle G', G'^n; \cdot', g', E' \rangle \]
is a pair of mappings
\[\mu : G \to G' \quad \text{and} \quad \lambda : G^n \to G'^n \]
such that the diagrams
\[
\begin{array}{ccc}
G^n & \xrightarrow{E} & G^n \\
\downarrow{\lambda} & & \downarrow{\lambda} \\
G'^n & \xrightarrow{E'} & G'^n
\end{array}
\]
\[
\begin{array}{ccc}
G^n \times G^n & \xrightarrow{g} & G^n \\
\downarrow{\lambda \times \lambda} & & \downarrow{\lambda} \\
G'^n \times G'^n & \xrightarrow{g'} & G'^n
\end{array}
\]
\[
\begin{array}{ccc}
G \times G^n & \xrightarrow{(\cdot)} & G \\
\downarrow{\mu \times \lambda} & & \downarrow{\mu} \\
G' \times G'^n & \xrightarrow{(\cdot')} & G'
\end{array}
\]
commute.

Regard a local n-pseudofield \(\langle G, \varphi_2, \ldots, \varphi_n \rangle \) as the algebra \(\langle G; \cdot, -^1, \varphi_2, \ldots, \varphi_n \rangle \).

Let \(\mathcal{K}_2 = K\langle G, G^n; \cdot, g, E \rangle \) and \(\mathcal{K}_1 = K\langle G; \cdot, -^1, \varphi_2, \ldots, \varphi_n \rangle \) be the classes of the algebras of local sharply n-transitive groups and local n-pseudofields.

Consider the categories \(\overline{\mathcal{K}}_2, \overline{\mathcal{K}}_1 \), whose objects are the corresponding algebras and whose morphisms are homomorphisms of algebras that preserve the numbers \(n \) (these numbers are the degree of the pseudofield and the sharp transitivity degree of the local group of transformations).

Theorem 4 The category \(\overline{\mathcal{K}}_2 \) of local sharply n-transitive groups and and the category \(\overline{\mathcal{K}}_1 \) of local n-pseudofields are equivalent.

In Theorems 3 and 2, we constructed two mappings \(F_1 \) and \(F_2 \), and hence, for the corresponding functors \(\overline{F}_1 \) and \(\overline{F}_2 \), we constructed the mappings of the objects of the categories. It remains to define the mappings of morphisms of these categories.

For an arbitrary morphism \(h \in \text{mor}(\overline{\mathcal{K}}_1) \), from the corresponding algebras,
\[
\text{dom} \ h = \langle G; \cdot, -^1, \varphi_2, \ldots, \varphi_n \rangle \quad \text{and} \quad \text{cod} \ h = \langle G^h; h, -^{1h}, \varphi_2^h, \ldots, \varphi_n^h \rangle,
\]
using \(F_2 \), construct their images
\[
\langle G, G^n; \cdot, g, E \rangle \quad \text{and} \quad \langle G^h, (G^h)^n; \cdot', g', E' \rangle.
\]

With account taken of the construction of the group operation \(g \), using the tuple function, we conclude that, in the category \(\overline{\mathcal{K}}\langle G, G^n; \cdot, g, E \rangle \) of transformation groups, the morphism \(\overline{F}_2(h) \) is defined by the pair of morphisms
\[
h : G \to G^h \quad \text{and} \quad h \times \ldots \times h : G^n \to (G^h)^n
\]
so that \(\overline{F}_2(h) = (h, h \times \ldots \times h) \). Under this mapping, the identity morphism is mapped to the identity morphism
\[
\overline{F}_2 : \text{id}_{\mathcal{A}_1} \mapsto \text{id}_{\mathcal{A}_2}
\]
and for arbitrary \(f, h \in \text{mor}(\overline{\mathcal{K}}_1) \), for which the composition \(f \circ h \) is defined, the composition
\[
\overline{F}_2(f \circ h) = \overline{F}_2(f) \circ \overline{F}_2(h)
\]
is also defined.

In the first part of Theorem 3, choosing an arbitrary collection \([e_1, \ldots, e_n] = e \in G^n \), we passed to the isomorphic group

\[
(id, f_e) : \langle G, T_n; \cdot, ^{-1} \rangle \mapsto \langle G, G^n; \bullet, g, E \rangle,
\]

For arbitrary homomorphic groups of transformations such that

\[
(\mu, \lambda) : \langle G, T_n; \cdot, ^{-1} \rangle \mapsto \langle G', T'_n; \cdot', ^{-1'} \rangle
\]

fixing collections \(e \in G^n, e' \in G'^n \), construct the isomorphic groups

\[
(id, f_e) : \langle G, T_n; \cdot, ^{-1} \rangle \mapsto \langle G, G^n; \bullet, g, E \rangle,
\]

\[
(id, f_{e'}) : \langle G', T'_n; \cdot', ^{-1'} \rangle \mapsto \langle G', G'^n; \bullet', g', E' \rangle.
\]

Then the mapping \((\mu', \lambda') = (id, f_{e'})(\mu, \lambda)(id, f_e)^{-1}\) is a homomorphism of the groups \(\langle G, G^n; \bullet, g, E \rangle \rightarrow \langle G', G'^n; \bullet', g', E' \rangle \), and the diagram

\[
\begin{array}{c}
\langle G, G^n; \bullet, g, E \rangle \\
\downarrow (id, f_e)(\mu, \lambda)(id, f_e)^{-1} \\
\langle G', G'^n; \bullet', g', E' \rangle
\end{array}
\]

\[
\begin{array}{c}
\langle G, G^n; \bullet, ^{-1} \rangle \\
\downarrow (id, f_e)(\mu, \lambda) \\
\langle G', G'^n; \bullet', ^{-1'} \rangle
\end{array}
\]

commutes.

In Theorem 3, from the group \(\langle G, G^n; \bullet, g, E \rangle \), we constructed an \(n \)-pseudofield \(\langle G; \cdot, ^{-1}, \phi_2, \ldots, \phi_n \rangle \). Denoting this mapping by \(f_1 \), represent \(F_1 = f_1 \circ (id, f_e) \) so that the following diagram holds:

\[
\begin{array}{c}
\langle G, T_n; \cdot, ^{-1} \rangle \\
\downarrow F_1 \\
\langle G; \cdot, ^{-1}, \phi_2, \ldots, \phi_n \rangle
\end{array}
\]

\[
\begin{array}{c}
\langle G, G^n; \bullet, g, E \rangle \\
\downarrow f_1 \\
\langle G'; \cdot', ^{-1}, \phi_2, \ldots, \phi_n \rangle
\end{array}
\]

The mapping \(F_2 \) of Theorem 2 is inverse to \(f_1 \). We have the commutative diagram

\[
\begin{array}{c}
\langle G, G^n; \bullet, g, E \rangle \\
\downarrow (\mu', \lambda') \downarrow f_1 \circ (\mu', \lambda') \circ f_1^{-1} \\
\langle G', G'^n; \bullet', g', E' \rangle
\end{array}
\]

\[
\begin{array}{c}
\langle G; \cdot, ^{-1}, \phi_2, \ldots, \phi_n \rangle \\
\downarrow f_1 \circ (\mu', \lambda') \circ f_1^{-1} \\
\langle G'; \cdot', ^{-1'}, \phi_2, \ldots, \phi_n' \rangle
\end{array}
\]

where the morphism \(f_1 \circ (\mu', \lambda') \circ f_1^{-1} \) defines the morphism of the corresponding algebras. Thus, we have constructed the mapping \(F_1 : (\mu', \lambda') \rightarrow f_1 \circ (\mu', \lambda') \circ f_1^{-1} \). This mapping takes the identity morphism in \(\mathbb{K}_2 \) to the identity morphism in \(\mathbb{K}_1 \). If

\[
(f_1, f_2), (h_1, h_2) \in \text{mor}(\mathbb{K}_2)
\]

21
and the composition \((f_1, f_2) \circ (h_1, h_2)\) is defined then

\[
\overline{F_1}((f_1, f_2) \circ (h_1, h_2)) = \overline{F_1}(f_1, f_2) \circ \overline{F_1}(h_1, h_2)
\]

is also defined. Considering the compositions of the mappings \(F_1\) and \(F_2\) of Theorems 3 and 2:

\[
F_1 \circ F_2 \left((G; \cdot,^{-1}, \varphi_2, \ldots, \varphi_n) \right) = F_1 \left((G, G^n; g, E) \right) = (G; \cdot,^{-1}, \phi_2, \ldots, \phi_n)
\]

and

\[
F_2 \circ F_1 \left((G, T_n; \bullet, -,^{-1}) \right) = F_2 \left((G; \cdot,^{-1}, \varphi_2, \ldots, \varphi_n) \right) = (G, G^n; g, E),
\]

we come to a natural isomorphism \(\overline{F_1} \circ \overline{F_2} \cong I\) and \(\overline{F_2} \circ \overline{F_1} \cong I\).

The theorem is proved. \(\square\)

4 Conclusion

The paper shows that local sharply \(n\)-transitive groups can be constructed over simpler objects — local \(n\)-pseudofields, which are proved to be categorically equivalent.

In conclusion, we want to formulate some problems:

1. Let \(G\) be a Lie group. Classify functions \(\varphi : G \to G\) (possibly, defined only on an open subset) such that

 (a) \(\varphi(\varphi(x)\varphi(y)) = \varphi(x\varphi(E(y)))y\),

 (b) \(\varphi(\varphi(x)) = x\),

 (c) \(\varphi E\varphi(x) = E\varphi E(x)\).

2. At present, the authors are familiar with a classification\(^3\) of local sharply \(n\)-transitive groups of transformations of the set \(\mathbb{R}^2\) [19, 20]. There arises the problem of: as a minimum, to find possible 2-pseudofields over 3D groups, and as a maximum, to construct a classification of local \(n\)-pseudofields for subsequently constructing the corresponding local \(n\)-transitive groups of transformations of \(\mathbb{R}^3\).

3. A more general task is to find the constraints imposed on the Lie algebras for local sharply \(n\)-transitive groups of transformations when they are associated with the corresponding local \(n\)-pseudofields.

References

[1] C. Jordan, “Recherches sur les substitutions,” J. Math. Pures Appl. (2), 17 (1872), 351–367.

[2] R. D. Carmichael, “Algebras of certain doubly transitive groups”, Amer. J. Math. 53:3 (1931), 631–644.

\(^3\)In the case of the set \(\mathbb{R}\), it coincides with the global classification.
[3] H. Zassenhaus, “Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen”, Abh. Math. Sem. Univ. Hamburg 11:1 (1935/1936), 17–40.

[4] H. Zassenhaus, “Über endliche Fastkörper”, Abh. Math. Sem. Univ. Hamburg 11:1 (1935/1936), 187–220.

[5] J. Tits, “Sur les groupes doublement transitiif continus,” Comment. Math. Helv., 26 (1952), 203–224; “Sur les groupes doublement transitiif continus: correction et complements”, Comment. Math. Helv., 30 (1956), 234–240.

[6] A. Barlotti, K. Strambach, “k-Transitive permutation groups and k-planes,” Math. Z., 185:4 (1984), 465–485.

[7] H. Karzel, Inzidenzgruppen I. Lecture Notes by Pieper, I. and Sorensen, K., University of Hamburg (1965), 123–135.

[8] H. Karzel, “Zusammenhänge zwischen Fastbereichen, scharf zweifach transitiven Permutationsgruppen und 2-Strukturen mit Rechtecksaxiom,” Abh. Math. Sem. Univ. Hamburg, 32:3-4 (1968), 191–206.

[9] W. Kerby, H. Wefelscheid, “Über eine scharf 3-fach transitiven Gruppen zugeordnete algebraische Struktur,” Abh. Math. Sem. Univ. Hamburg, 37:3-4 (1972), 225–235.

[10] P. M. Cohn, Free Rings and Their Relations, London–New York: Academic Press (1971).

[11] W. Leissner, Eine Charakterisierung der multiplikativen Gruppe eines Körpers, Jber. Deutsch. Math.–Verein. 73 (1971/72), 92–100

[12] W. Leissner, Ein Stufenaufbau der Fastereiche, Fastkörper und Körper aus ihrer multiplikativen Gruppe. Abh. Math. Sem. Univ. Hamburg 46 (1977), 55–89.

[13] W. Leissner, On sharply n-transitive groups. The Eighteenth International Symposium on Functional Equations, August 26–September 6, 1980, Waterloo and Scarborough, Ontario, Canada.

[14] A.A. Simonov, “On generalized sharply n-transitive groups,” Izv. Math., vol. 78 , no. 6 , 1207–1231 (2014).

[15] L. S. Pontryagin, Topological Groups, Moscow: Nauka (1973) [in Russian].

[16] S. Mac Lane, Categories for the working mathematician. 2nd ed. Graduate Texts in Mathematics. 5. New York, NY: Springer (1998).

[17] A. A. Simonov, “Correspondence between near-domains and groups,” Algebra Logika 45:2, 239–251 (2006); translation in: Algebra Logic 45:2, 139–146 (2006).
[18] V. G. Bardakov and A. A. Simonov, “Rings and groups of matrices with a non-standard product,” Sib. Mat. Zh. 54:3 (2013), 504–519; translation in: Sib. Math. J. 54, 393–405 (2013).

[19] G. G. Mikha’lichenko, “Dimetric physical structures and complex numbers,” Dokl. Akad. Nauk SSSR 321:4, 677–680 (1991); translation in: Sov. Math., Dokl. 44:3, 775–778 (1992).

[20] G. G. Mikha’lichenko, “Bimetric physical structures of rank $(n + 1, 2)$,” Sib. Mat. Zh. 34:3, 132–143 (1993); translation in: Sib. Math. J. 34:3, 513–522 (1993).
Information about authors

Mikhail V. Neshchadim
Sobolev Institute of mathematics SB RAS
4 Koptyug Ave.,
630090, Novosibirsk, Russia
E-mail: neshch@math.nsc.ru

Andrei A. Simonov
Novosibirsk State university,
2 Pirogova str.
630090, Novosibirsk, Russia
E-mail: a.simonov@g.nsu.ru