Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Effect of prone versus supine position in COVID-19 patients: A systematic review and meta-analysis

Ee Xin Chua, MBBSa, Syed Mohd Ikmal Syed Mohd Zahir, MBBSa, Ka Ting Ng, MBChBa,*, Wan Yi Teoh, MBChBb, Mohd Shahnaz Hasan, MAnaesa, Shairil Rahayu Binti Ruslan, MAnaesa, Mohammed F. Abosamak, MDc

a Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Jalan Universiti, Kuala Lumpur, Malaysia
b Faculty of Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
c Department of Anaesthesia and Intensive care medicine, Faculty of medicine, Tanta University, Egypt

\textbf{ARTICLE INFO}

\textbf{Keywords:}
Prone
Supine
Coronavirus Disease 2019
Oxygenation
Meta-analysis

\textbf{ABSTRACT}

\textit{Study objective:} To review the effects of prone position and supine position on oxygenation parameters in patients with Coronavirus Disease 2019 (COVID-19).

\textit{Design:} Systematic review and meta-analysis of non-randomized trials.

\textit{Patients:} Databases of EMBASE, MEDLINE and CENTRAL were systematically searched from its inception until March 2021.

\textit{Interventions:} COVID-19 patients being positioned in the prone position either whilst awake or mechanically ventilated.

\textit{Measurements:} Primary outcomes were oxygenation parameters (PaO\textsubscript{2}/FiO\textsubscript{2} ratio, PaCO\textsubscript{2}, SpO\textsubscript{2}). Secondary outcomes included the rate of intubation and mortality rate.

\textit{Results:} Thirty-five studies (n = 1712 patients) were included in this review. In comparison to the supine group, prone position significantly improved the PaO\textsubscript{2}/FiO\textsubscript{2} ratio (study = 13, patients = 1002, Mean difference, MD = 52.15, 95% CI 37.08 to 67.22; \textit{p} < 0.00001) and SpO\textsubscript{2} (study = 11, patients = 998, MD 4.17, 95% CI 2.53 to 5.81; \textit{p} \leq 0.00001). Patients received prone position were associated with lower incidence of mortality (study = 5, patients = 688, Odd ratio, OR 0.44, 95% CI 0.24 to 0.80; \textit{p} = 0.007). No significant difference was noted in the incidence of intubation rate (study = 5, patients = 626, OR 1.20, 95% CI 0.77 to 1.86; \textit{p} = 0.42) between the supine and prone groups.

\textit{Conclusion:} Our meta-analysis demonstrated that prone position improved PaO\textsubscript{2}/FiO\textsubscript{2} ratio with better SpO\textsubscript{2} than supine position in COVID-19 patients. Given the limited number of studies with small sample size and substantial heterogeneity of measured outcomes, further studies are warranted to standardize the regime of prone position to improve the certainty of evidence.

\textbf{PROSPERO Registration:} CRD42021234050

1. Introduction

The surge of Coronavirus Disease 2019 (COVID-19) cases has overwhelmed the healthcare services in some countries [1]. Persistent hypoxemia is a common presentation in patients with severe COVID-19. Large numbers of hospitalized COVID-19 patients fulfilled the criteria of acute respiratory distress syndrome (ARDS), which require invasive mechanical ventilation and high level of patient care [2]. The need for invasive mechanical ventilation has exceeded the capacity of healthcare systems, especially for those heavily affected countries.

Prior to this pandemic of COVID-19, the application of prone position has been studied in awake patients with acute respiratory failure to avoid endotracheal intubation and reduce the need for intensive care units (ICU) admissions [3–5] In view of a huge demand for mechanical ventilation among COVID-19 patients, the method of prone position has been extensively utilized to improve oxygenation, minimize incidence of intubation rate and ICU admission. The method of awake self-pronation can be applied in spontaneously breathing patients.
receiving non-invasive ventilation or high-flow nasal cannula (HFNC) in the setting of outside ICU. Some studies have reported an improved oxygenation with a decrease in respiratory effort when applied early in COVID-19 patients with acute respiratory failure [6]. Prone position improves the ventilation/perfusion ratio and recruitment of the dorsal lung segments, resulting in the opening of collapsed dorsal alveoli with better gas exchange and oxygenation [7,8]. In mechanically ventilated non COVID-19 patients with severe ARDS, those who received prone ventilation had a lower mortality rate [9]. However, the clinical outcomes of prone position in COVID-19 (intubated/non-intubated) patients remain unclear from the literature. Therefore, a systematic review and meta-analysis is warranted to examine the effectiveness and safety of prone position in COVID-19 patients before any recommendation can be made.

We hypothesized that prone position improved oxygenation parameters in COVID-19 patients. Our primary aim was to investigate the effect of prone position on partial pressure of arterial oxygen/fraction of inspired oxygen (PaO₂/FIO₂) ratio. Secondary aims were to examine the effect of prone position on peripheral oxygen saturation (SpO₂), arterial partial pressure of carbon dioxide (PaCO₂), incidence of intubation, mortality rate and number of patients discharged alive.

2. Method

2.1. Data sources and searches

The review was conducted and reported in accordance to the Cochrane Handbook Systematic Reviews of Interventions [10] and the Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA statement) 2015 [11], respectively. Our review protocol was published in a public database (PROSPERO CRD42021234050) prior to the literature search. The Population (COVID-19 patients), Intervention (prone position), Comparison (supine position) and Outcomes approach was used to formulate our review questions (Online Supplement eTable 1). Databases of EMBASE (OvidSP), MEDLINE (OvidSP) and Cochrane Central Register of Controlled Trials (CENTRAL) were systematically searched from their inception until March 2021. The ClinicalTrials.gov and WHO International Clinical Trials Registry Platform Search Portal were searched for any ongoing or unpublished trials. The search terms and strategy used are showed in Online Supplement eTable 2. Inclusion criteria were:

1. Cohort or case-control observational studies (prospective or retrospective)
2. Randomized controlled trials
3. Examining prone position versus supine position
4. Adults (≥ 18 years old) diagnosed with COVID-19 infection

Case series, case reports and editorials were excluded. There was no restriction applied to the publication language and publication date. The reference lists of all the included studies were manually searched for any new or additional papers. The authors of relevant studies were contacted at least twice for any missing or unclear data.

2.2. Study selection, data items, data collection, and assessment of validity

Titles and abstracts were independently screened by two authors (EC and SMI) based on the pre-defined inclusion and exclusion criteria. Studies coded with “no” were excluded. Any studies coded with “yes” were retrieved for full text screening and screened independently by two authors (EC and SMI). Studies coded with “maybe” at any stage of study selection were reviewed by third author (KN) via a discussion to achieve consensus. The selection of final included studies was discussed and agreed by all the authors.

Data of all included studies were extracted independently by two authors (EC and SMI) using a standardized online data extraction form, which was piloted prior to the data extraction. Any disagreements were resolved by a third author (KN). In addition to the measured outcome, the following data, namely author, year of publication, country, study design, total sample size, mean age, gender, body mass index, citation, severity of APACHE II, duration of prone position and types of oxygen delivered were extracted.

2.3. Outcomes

Primary outcome of this review was PaO₂/FIO₂ ratio after prone and supine position. Secondary outcomes included SpO₂, PaCO₂, mortality rate, incidence of intubation rate and number of patients discharged alive.

2.4. Risk of bias in individual studies, summary of findings and GRADE assessment

The risk of bias for all included observational studies was independently assessed by two authors (EC and SMI) using the Newcastle-Ottawa Scale [12]. Study which scored ≥7 was considered as low risk of bias. Any disagreements were discussed and resolved by a third author (KN). The certainty of evidence (GRADE) was conducted by two authors (EC and SMI) independently. Several domains, namely the risk of bias, inconsistency, imprecision, indirectness and publication bias were assessed for all the measured outcomes. Any conflicts were discussed with a third author (KN).

2.5. Summary measures and synthesis of results

Review Manager version 5.3 (The Cochrane Collaboration, Copenhagen, Denmark) was used for all statistical analyses. A two-sided p-value of <0.05 was denoted as statistically significant. Findings were reported as odds ratio (OR) for dichotomous outcomes and mean difference (MD) for continuous outcomes, along with 95% confidence interval (CI). When the data were presented as median and range/interquartile range, these data were converted to mean and standard deviation [13]. I-square (I²) test was used to assess heterogeneity of studies. I² of less than 40%, 40–60% and more than 60% were categorized as low, moderate and substantial heterogeneity, respectively [10]. In view of the limited number of studies with high heterogeneity, the random-effect model (DerSimonian-Laird method) was used to pool data for all the measured outcomes. Subgroup analysis based on intubated and non-intubated COVID-19 studies was performed on the measured outcomes to explore the substantial degree of heterogeneity. Funnel plots were used to assess for publication bias.

3. Results

3.1. Study selection

The study selection process is summarized in the PRISMA flow diagram (Fig. 1). The search strategy yielded 1012 articles for titles and abstracts screening, of which 47 articles were retrieved for full text screening. After applying inclusion and exclusion criteria, thirty-five studies with a total of 1712 patients were included in this review. The list of excluded studies is showed in the Online Supplement eTable 3. Searching of trial registries found 9 ongoing studies (Online Supplement eTable 4).

3.2. Clinical characteristics of eligible studies

The clinical characteristics of included studies are demonstrated in Table 1. All the included studies were cohort studies. There were no randomized clinical studies investigating the effect of supine and prone position in COVID-19 patients. Of all, seven studies [14–20] had two
separate cohorts for intervention and a control group whilst the rest of them [21–48] only had one cohort with pre-intervention (supine position) and post-intervention (prone position). The majority of included studies were of single centered, except two which were multi-centered [14,29]. The total sample size varied across all the included studies, ranging from 9 patients to 261 patients. Most of the recruited COVID-19 patients were from general wards, emergency departments and ICUs. The mean age of all the included studies ranged between 53 and 68 years old. Out of the 35 studies, twenty-one studies [14–16,18–20,23–26,29–36,38–40] utilized non-invasive ventilation (nasal cannula, simple face mask, venturi mask, non-rebreather mask, continuous positive airway pressure, bi-level positive airway pressure or high flow nasal cannula) and 14 studies [17,21,22,27,28,37,41–48] included mechanically ventilated COVID-19 patients. The duration of prone position sessions varied across all the studies from 30 min, 4 h and 16 h. The risk of bias for 27 studies [14–23,27,29–34,38–40,42–48] were assessed as low risk bias (≥7) based on the three domains of study selection, comparability and exposure (eTable 5). Five [24,26,36,37,41] and three [25,28,35] studies were rated as 6 and 5, respectively due to high risk of bias in the domain of comparability. The PRISMA checklist is outlined in the Online Supplementary eTable 6. The summary of findings and certainty of evidence assessment are showed in the Tables 2 and 3, respectively.

3.3. Primary outcome: PaO₂/FiO₂ ratio

In the combined data of thirteen studies [14,21,22,30,32,34,37,40,41,43,45–47] involving 1002 patients, our review demonstrated that COVID-19 patients with prone position were associated with higher PaO₂/FiO₂ ratio as compared to the supine group (MD 52.15, 95% CI 37.08 to 67.22; p < 0.00001, Fig. 2). However, statistical heterogeneity was observed as substantial (I² = 87%). The magnitude and effect size of subgroup analysis for both intubated (studies = 8, n = 579 patients, MD 46.74, 95% CI 33.34 to 60.15; p < 0.00001) and non-intubated (studies = 5, n = 423 patients, MD 68.81, 95% CI 15.94 to 121.69; p = 0.01) studies remained significant, which was consistent with the overall finding of PaO₂/FiO₂ ratio. Funnel plot was asymmetry, suggestive of publication bias.

3.4. Secondary outcomes: SpO₂, PaCO₂, incidence of mortality, incidence of intubation, number of patients discharged alive

Eleven studies [16,18,21,24,25,28,32,34,38,39,43] (n = 998 patients) examined the SpO₂ in COVID-19 patients who received prone and
Author et al.	Year	Design	N	Country/Country Setting	Age (mean ± SD)	BMI (mean ± SD)	Severity	Types of Oxygen Delivery Interface	Intervention	Successful duration of proning (standard)	Successful duration of proning (Total)	Average/Total duration of proning	
Ferrando et al	2020	Multicenter Cohort study (Non-intubated)	199	Spain & Andorra	62.2 (12.1)	60.0% obese	Int: 27.6 (4.0)	Int: 11 (4.5)	Int: 4.3 (0.8)	High flow nasal oxygen therapy	Awake PP	>16 h/day	NR
Jagan et al	2020	Single Center Cohort study (Non-intubated)	205	USA	60.9 (15.4)	58% obese	Int: 60.0%	Int: 6.7	Int: 2.3	Non-invasive ventilation	Awake PP	≥1 continuous hr on ≥5 occasions per day & for ≥1 continuous hr overnight at least 4 h twice daily up to 15 days	NR
Padrao et al	2020	Single Center Cohort study (Non-intubated)	261	Brazil ED	58.1 (14.1)	58% BMI > 30	Int: 64 (13.4)	Int: 17.9	Int: 64%	Mechanical ventilation	PP	at least 16 h	NR
Shelhamer et al	2020	Single Center Cohort study (Intubated)	42	USA Across all hospital services (medicine, surgery, ICU)	59.9 (13.4)	55% BMI > 30	Int: 59.2	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Weiss et al	2020	Single Center Cohort study (Intubated)	50	USA	55.2 (13.4)	55% BMI > 30	Int: 55.2	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Berrill et al	2020	Single Center Cohort study (Intubated)	34	UK ICU	58.5 (11.1)	55% BMI > 30	Int: 58.5	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Burton et al	2020	Single Center Cohort study (Non-intubated)	20	UK ICU	53.4 (8.3)	55% BMI > 30	Int: 53.4	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Caputo et al	2020	Single Center Cohort study (Non-intubated)	50	USA ED	59 (13.7)	55% BMI > 30	Int: 59	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Ishak et al	2020	Single Center Cohort study (Non-intubated)	21	Turkey Ambulance	69.2 (13.1)	55% BMI > 30	Int: 69.2	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Kelly et al	2020	Single Center Cohort study (Non-intubated)	17	UK Ward & critical care	62.3 (11.3)	55% BMI > 30	Int: 62.3	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Mittermaier et al	2020	Single Center Cohort study (Non-intubated)	9	Germany ICU	62 (14.2)	55% BMI > 30	Int: 62	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Perrier et al	2020	Single Center Cohort study (Intubated)	9	France	54.0 (8.7)	55% BMI > 30	Int: 54.0	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Solverson et al	2020	Multicenter Cohort study (Non-intubated)	17	Canada ICU & ward	56 (38)	55% BMI > 30	Int: 56	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	
Winears et al	2020	Single Center Cohort study (Non-intubated)	24	UK	62 (13)	55% BMI > 30	Int: 62	Int: 14 (4.7)	Mechanical ventilation	PP	at least 16 h	NR	

(continued on next page)
Author	Year	Design	N	Country	Setting	Age (mean ± SD)	BMI (mean ± SD)	Severity	Interface	Types of Oxygen Delivery	Intervention	Successful duration of proning (standard)	Average/Total duration of proning	
Thompson et al	2020	Single Center Cohort study (Non-intubated)	25	USA	Intensive Care Unit	Intu: 68.7 (26.7) Non-intu: 61 (20.4)	27.5 (8.6) Non-intu: 32.3 (20.4)	NR	NR	1) 6 L/min nasal cannula 2) 15 L/min non-rebreather face mask	Awake PP	NR	Total: 10 (5) days	
Coppo et al	2020	Single Center Cohort study (Non-intubated)	56	Italy	Medical wards, ED & respiratory HDU	57.4 (7.4)	27.5 (3.7)	NR	NR	79% Helmet CPAP 16% Reservoir mask 5% Venturi mask	PP	at least 3 h	Total duration: intubated: 2.0 (1.7) days non-intubated: 2.7 (3.3) days	
Elharrar et al	2020	Single Center Cohort study (Non-intubated)	24	France	Non-ICU	66.1 (10.2)	23% BMI > 30	NR	NR	67% < 4 L/min 33% > 4 L/min or HFNC	PP	NR	<1 h (n = 4) to <3 h (n = 5) ≥ 3 h (n = 15)	
Tabouada et al	2020	Single Center Cohort study (Non-intubated)	29	Spain	Non-ICU	64 (12)	29.2 (3.6)	NR	NR	Nasal cannula or face mask	PP	At least 30 min 3 times a day	Mean duration: 9 h Per session: 3.3 (4.1) hrs	
Golestane-rahg et al	2020	Single Center Cohort study (Non-intubated)	10	NR	NR	NR	NR	NR	NR	Non-invasive ventilation	PP	NR	Mean duration: 9 h Per session: 3.3 (4.1) hrs	
Santini et al	2020	Single Center Cohort study (Non-intubated)	15	Italy	General wards	59 (6.5)	24 (3.4)	NR	NR	Non-invasive ventilation	PP	NR	Mean duration: 9 h Per session: 3.3 (4.1) hrs	
Astua et al	2020	Single Center Cohort study (Intubated)	31	USA	NR	58.3 (1.7)	27.9 (3.8)	NR	NR	Mechanical ventilation	PP	16 h each day	Mean duration: 9 h Per session: 3.3 (4.1) hrs	
Zang et al	2020	Single Center Cohort study (Non-intubated)	60	China	ICU	Int: 62.65 (10.83) Con: 66.14 (9.19)	28.8 (5.8)	NR	NR	High Flow Nasal Cannula	PP	10 or 30 min	30 min	
Wormser et al	2021	Single Center Cohort study (Non-intubated)	27	France	Wards	70.67 (14.87)	NR	NR	NR	74% > 6 L/min	PP	61 sessions	NR	
Wendt et al	2020	Single Center Cohort study (Non-intubated)	31	USA	ED	62 (12)	31 (5)	NR	NR	2 to 21 L/min by nasal cannula and/or non-rebreather mask Conventional Oxygen therapy or High Flow Nasal Cannula	Awake PP	At least 3 h a day	3 consecutive days	
Prudhomme et al	2021	Single Center Bicentric study (Non-intubated)	96	France	Outside ICU	Int: 62 (11) Con: 61 (18)	Int: 27 (5) Con: 28 (5)	NR	NR	Awake PP	At least 3 h a day	3 consecutive days	Mean duration: 111 (74.5)	
Taylor et al	2020	Single Center Pilot study (Non-intubated)	40	USA	NR	Int: 55.7 (16.4) Con: 59 (7.5)	Int: 31.3 (10.2) Con: 22.3 (7.8)	NR	NR	Awake PP	At least 48 h	Lie prone between 10 and 120 minures per day	Mean duration: 111 (74.5)	
Dubosh et al	2020	Single Center Cohort study (Non-intubated)	22	USA	ED	58.7 (11.9)	NR	NR	NR	Awake PP	PP	At least 30 min	Mean duration: 111 (74.5)	
Khullar et al	2020	Single Center Cohort Study (Intubated)	23	USA	NR	53.5 (13.0)	32.3 (6.0)	NR	NR	PP	≥ 16 consecutive hrs of PP for ≥ 1 day	Mean duration: 5.1 (4.6)		
Douglas et al	2020	Single Center Cohort Study (Intubated)	61	USA	ICU	56.7 (13.5)	33.39 (8.9)	NR	NR	Mechanical ventilation	PP	NR	Mean duration: 5.1 (4.6)	(continued on next page)
Author	Year	Design	N	Country	Setting	Age (mean + SD)	BMI (mean + SD)	Severity	Types of Oxygen Delivery Interface	Intervention	Successful duration of proning (standard)	Average/Total duration of proning		
-----------------	------	-------------------------------	-----	---------	---------	----------------	-----------------	----------	-------------------------------------	--------------	--	-------------------------------		
Clarke et al	2020	Single Center Cohort study (Intubated)	20	Ireland	ICU	52.8 (11.6)	36.5 (10.7)	NR	Mechanical ventilation	PP	At least 16 h	NR		
Osama et al	2020	Single Center Cohort study (Intubated)	25	France	ICU	61.0 (5.5)	30.0 (3.1)	NR	Mechanical ventilation	PP	At least 16 h	NR		
Doussot et al	2020	Single Center Cohort study (Intubated)	67	France	ICU	67.5 (8.3)	30.0 (6.1)	NR	Mechanical ventilation	PP	Mean duration: 17 min (6.9)	NR		
Gleisman et al	2020	Single Center Cohort study (Intubated)	44	Sweden	ICU	61.0 (13.0)	50% BMI > 30	NR	Mechanical ventilation	PP	1 h each session	Median for 5 sessions: 14 (12-17)		
Sang et al	2020	Single Center Cohort Study (Intubated)	20	China	ICU	69.5 (9.5)	NR	24.1 (3.4)	Mechanical ventilation	PP	18–20 h	NR		
Sharp et al	2020	Retrospective Observational Study (Intubated)	12	UK	ICU	56.5 (14.1)	NR	NR	Mechanical ventilation	PP	Successful 2 or more full proning cycles	NR		

USA: United States of America; UK: United Kingdom; ED: Emergency Department; ICU: Intensive Care Unit; HDU: High Dependency Unit; Intu: Intubated; Non-intu: Non-intubated; SD: Standard Deviation; NR: Not reported; Int: Intervention; Con: Control; BMI: Body Mass Index; APACHE II: Acute Physiology and Chronic Health Evaluation II; SOFA: Sequential Organ Failure Assessment; CPAP: Continuous positive airway pressure; BiPAP: Bilevel Positive Airway Pressure; PP: Prone Positioning; min: minute; hr: hour.
Table 2
Summary of findings for primary and secondary outcomes.

No	Outcomes	Trials	N	I² (%)	MD/OR (95% CI)	p-value
1	PaO₂/FiO₂	13	1002	87	52.15 (37.08, 67.22)	<0.00001
	- Intubated group	8	579	78	46.74 (33.34, 60.15)	<0.00001
	- Non-intubated group	5	423	91	68.81 (15.94, 121.69)	0.01
	Heterogeneity: Tau²				541.13; Chi² = 0.00001; I² = 87%	
	Test for overall effect: Z				= 6.78 (P < 0.00001)	
	Test for subgroup differences: Chi²				= 1 (P = 0.43); I² = 0%	

2. PaCO₂ (mmHg)

No	Outcomes	Trials	N	I² (%)	MD/OR (95% CI)	p-value
		10	793	92	0.57 (-2.74, 3.88)	0.74
	- Intubated group	6	436	93	1.07 (-4.12, 6.26)	0.69
	- Non-intubated group	4	357	0	-0.08 (-1.41, 1.26)	0.91
	Heterogeneity: Tau²				24.70; Chi² = 107.86; df = 9 (P < 0.00001); I² = 92%	
	Test for overall effect: Z				= 0.34 (P = 0.74)	
	Test for subgroup differences: Chi²				= 1 (P = 0.68); I² = 0%	
	SpO₂ (%)	11	998	94	4.17 (2.53, 5.81)	<0.00001
	- Intubated group	3	432	0	1.67 (1.08, 2.26)	<0.00001
	- Non-intubated group	8	566	95	5.51 (3.17, 7.85)	<0.00001
	Heterogeneity: Tau²				6.57; Chi² = 158.60; df = 10 (P < 0.00001); I² = 94%	
	Test for overall effect: Z				= 4.98 (P < 0.00001)	
	Test for subgroup differences: Chi²				= 1 (P = 0.002); I² = 89.7%	

3. Incidence of intubation

No	Outcomes	Trials	N	I² (%)	MD/OR (95% CI)	p-value
		5	626	25	1.20 (0.77, 1.86)	0.42
	- Intubated group	5	626	25	1.20 (0.77, 1.86)	0.42
	Heterogeneity: Tau²				2.06; Chi² = 5.37; df = 4 (P = 0.25); I² = 25%	
	Test for overall effect: Z				= 0.81 (P = 0.42)	
	Test for subgroup differences: Not applicable					

Table 2 (continued)

No	Outcomes	Trials	N	I² (%)	MD/OR (95% CI)	p-value
5	Mortality rate	5	688	31	0.44 (0.24, 0.80)	0.007
	- Intubated group	1	261	-	0.66 (0.32,1.33)	0.24
	- Non-intubated group	4	427	28	0.35 (0.16, 0.75)	0.007
	Heterogeneity: Tau²				= 0.14; Chi² = 5.78; df = 4 (P = 0.22); I² = 31%	
	Test for overall effect: Z				= 2.69 (P = 0.007)	
	Test for subgroup differences: Chi²				= 1.43; df = 1 (P = 0.23); I² = 30.2%	

6. Number of patients discharged alive

No	Outcomes	Trials	N	I² (%)	MD/OR (95% CI)	p-value
		3	532	63	1.72 (0.85, 3.48)	0.13
	- Intubated group	1	261	-	1.49 (0.72, 3.08)	0.28
	- Non-intubated group	2	271	82	1.90 (0.55, 6.63)	0.31
	Heterogeneity: Tau²				= 0.25; Chi² = 5.47; df = 2 (P = 0.07); I² = 63%	
	Test for overall effect: Z				= 1.50 (P = 0.13)	
	Test for subgroup differences: Chi²				= 0.11; df = 1 (P = 0.74); I² = 0%	

PaO₂/ FiO₂: Ratio of partial pressure of arterial oxygen/fractional concentration of inspired oxygen; PaCO₂: Partial Pressure of Carbon Dioxide; SpO₂: Peripheral capillary oxygen saturation; I²: heterogeneity; MD: Mean difference; OR: Odds ratio; REM: Random effect model; FEM: Fixed effect model.

The summary of findings revealed that the prone group had a higher SpO₂ reading than the supine group (MD 4.17, 95% CI 2.53 to 5.81; p < 0.0001, I² = 94%). In terms of PaCO₂, the combined data of ten studies [14,21,25,32,33,37,42,43,46,47], (n = 793 patients) found no significant difference in both the prone and supine group (MD 0.57, 95% CI -2.74 to 3.88; p = 0.74, I² = 92%). Of note, both outcomes were noted to have substantial degree of heterogeneity.

Five studies [15–19] (n = 688 patients) assessed the mortality rate in COVID-19 patients who received prone and supine position. The pooled data demonstrated that the prone group had a lower mortality rate than the supine group (OR 0.44, 95% CI 0.24 to 0.80; p = 0.007, I² = 31%), which was statistically significant. In term of incidence of intubation rate (studies = 5 [14–16,18,19], n = 626 patients, OR 1.20, 95% CI 0.77 to 1.86; p = 0.42) and number of patients discharged alive (studies = 3 [15–17], n = 532, OR 1.72, 95% CI 0.85 to 3.48; p = 0.13), no significant differences were noted between the prone and supine groups. In the subgroup analysis of secondary outcomes, the effect size and direction of findings remained unchanged in both intubated and non-intubated groups for the outcomes of SpO₂, PaCO₂, incidence of intubation and number of patients discharged alive, except the incidence of mortality. The incidence of mortality became non-significant in the subgroup analysis of intubated group (studies = 1, n = 215, OR 0.66, 95% CI 0.32 to 1.33; p = 0.24, Fig. 3). Funnel plots were suggestive of publication bias for all the secondary outcomes, except for the number of patients discharged alive.
Explanations

Position were associated with higher PaO₂.

CI:

Certainty of evidence assessment.

Study design	Risk of bias	Inconsistency	Indirectness	Imprecision	Other considerations	
PaO₂/FiO₂	observational studies	not serious	very serious	not serious	not serious	publication bias strongly suspected ²
13						MD 52.15 higher (95% CI: 37.08 to 67.22 higher)

| **PaCO₂ (mmHg)** | observational studies | not serious | very serious | not serious | not serious | publication bias strongly suspected ² |
| 10 | | | | | | MD 0.57 higher (95% CI: 0.44 to 0.70 higher) |

| **SpO₂ (%)** | observational studies | not serious | very serious | not serious | not serious | publication bias strongly suspected ² |
| 11 | | | | | | MD 4.17 higher (95% CI: 3.88 to 4.41 higher) |

| **Incidence of intubation** | observational studies | not serious | not serious | not serious | serial | publication bias strongly suspected ² |
| 5 | | | | | | OR 1.20 (95% CI: 0.77 to 1.86) |

| **Incidence of death** | observational studies | not serious | not serious | not serious | not serious | publication bias strongly suspected ² |
| 5 | | | | | | OR 0.44 (95% CI: 0.24 to 0.80) |

| **Number of patients discharged alive** | observational studies | not serious | not serious | not serious | serial | publication bias strongly suspected ² |
| 3 | | | | | | OR 1.72 (95% CI: 0.85 to 3.48) |

CI: Confidence interval; MD: Mean difference; OR: Odds ratio.

Explanation.

¹ Substantial heterogeneity I² > 60%.
² Funnel plot suggested of publication bias.
³ Different threshold of intubation criteria varied across all included studies.
⁴ Total number of events is less than 300.

4. Discussion

Our meta-analysis demonstrated that COVID-19 patients with prone position were associated with higher PaO₂/FiO₂ ratio and SpO₂ than those with supine position. However, no significant differences were observed in the PaCO₂ level, incidence of intubation and number of patients discharged alive. The certainty of evidence for our measured outcomes was very low due to observational studies in nature, inconsistency, indirectness and suggestive of publication bias. It is believed that prone position expands the collapsed dorsal lung region, resulting in a better ventilation/perfusion ratio and more homogenous distribution of lung ventilation [49–51]. The changes of regional ventilation in the prone and supine position can be observed in both normal and ARDS lung, indicating an even distribution of distending forces throughout the lung tissues [52]. The distribution of pulmonary blood flow in the normal or diseased lung is mainly directed dorsally whether one is in supine or prone position. With this relatively constant regional perfusion in the prone position along with a significant improvement in lung homogeneity, the effect of shunt fraction is expected to reduce and lead to a marked improvement in oxygenation. This has been demonstrated in animal and human studies that the relative shunt fraction of prone position was reduced by 30% than the supine group with injured lungs [53,54]. However,Gattinoni and colleagues reported that the improvement in oxygenation during prone position did not persist after returning to supine position and the PaO₂/FiO₂ ratio returned to baseline at 6 h following re-supination [55]. This may be explained by the re-collapsed of the previously opened dorsal lung units during prone position, resulting in ventilation/perfusion mismatch and rebound hypoxemia.

Our finding did not show an improvement in PaCO₂ after the application of prone position in COVID-19 patients. This finding has to be interpreted with caveat as our review included both spontaneously breathing and mechanically ventilated patients. The outcome of PaCO₂ may not be accurate in awake spontaneously breathing patients due to the variation in respiratory rate, tidal volume and minute ventilation. However, in the mechanically ventilated patients, controlled ventilation in prone position decreased the shunt fraction and promoted elimination of carbon dioxide [56]. Prone position is believed to reduce areas of atelectasis and promote ventilation of previously collapsed lung regions [57].
In this review, we demonstrated no significant differences in the rate of intubation and number of patients discharged alive between the prone and supine groups. Ferrando et al. emphasized that it may be due to non-standardized or non-protocolized intubation criteria, which may limit the generalizability of the results [14]. Among all the three included studies, there was only one paper reporting their intubation criteria [16]. The duration of prone position varied at the discretion of treating physicians across all the included studies, which introduced significant bias to our findings. Pavlov and colleagues reported that COVID-19 patients with longer duration of awake prone position were associated with lower incidence of intubation [57]. The absence of standardized intubation criteria can limit the interpretation of our findings [58].

Our meta-analysis reported that the mortality rate was lower in those who received prone ventilation. The level of evidence for mortality rate was low due to limited number of studies with small sample size. Among the five included studies, four studies included awake spontaneously breathing patients and only one study examined mechanically ventilated patients. The benefit of prone position was not significant in the

Table 1: Comparison of Prone and Supine Groups

Study or Subgroup	Prone	Supine	Mean Difference IV, Random, 95% CI
Sharp 2020	110.2	89.0	21.20 [1.91, 40.49] 2020
Oleissman 2020	144.7	104.6	40.70 [22.25, 59.15]
Osama 2020	123.3	102.4	21.30 [-2.95, 45.55]
Weiss 2020	211.5	134.3	77.20 [45.07, 109.33]
Artus 2020	152.8	108.6	44.80 [40.42, 49.19]
Berilli 2020	151.9	89.7	62.30 [43.36, 81.64]
Clarke 2020	276.3	127.5	148.80 [93.89, 207.31]
Douglas 2020	134.7	100.1	34.70 [19.29, 50.11]
Subtotal (95% CI)	324	255	68.50 [33.34, 60.15]

Heterogeneity: Tau² = 244.71, Chi² = 31.67, df = 7 (P < 0.0001); I² = 78%

Test for overall effect: Z = 6.84 (P < 0.0001)

Fig. 2. PaO₂/FiO₂ ratio.

Fig. 3. Incidence of mortality.
non-intubated COVID-19 patients remains uncertain as the pathophysiology of classical ARDS and COVID-induced ARDS were different. In view of the absence of randomized controlled trials in the literature, our review included observational studies only to summarize the evidence of prone and supine position on oxygenation parameters in COVID-19 patients. In this meta-analysis, a set of strict criteria were applied to assess the included observational studies, which utilized complete full prone position as an intervention group with a control group of supine ventilation. Studies with prone position sessions that were not conducted in full prone position, namely lateral position were excluded [68,61]. There are currently two randomized controlled trials (NCT04350723–350 patients; NCT04395144–346 patients) assessing the effect of awake prone position in COVID-19 patients. The safety on prone position remains uncertain, especially in the hospital setting where back-up for invasive ventilation is not readily available. Most of our included studies did not report adverse events of both prone and supine position. In a recently published article evaluating the safety of prolonged prone position in mechanically ventilated COVID-19 patients, there were nearly 72% (38/61) developed ventral pressure wounds and 95% (58/61) had limb weakness with 8% (5/61) suffered from brachial plexus injury [47]. In another case-control study by Ibarra and team, patient’s nutritional status and duration of more than 24 h in prone position were found to be the risk factors for the development of pressure sores in mechanically ventilated COVID-19 patients [62]. It is believed that awake prone position may be associated with lesser adverse events as the duration of prone position would be determined by patients as tolerated. Hyman et al. showed that COVID-19 patients who were intubated and mechanically ventilated earlier in the course of hospital admission were associated with an improved survival rate [63]. Hence, one should consider early invasive ventilation in a select group of awake prone position patients, especially when there is an excessive respiratory drive which may lead to further lung damage through patient self-inflicted lung injury [64]. The recommendations on prone position in mechanically ventilated ARDS patients are clear, but it remains uncertain for awake prone position in COVID-19 patients. The updated ‘Surviving Sepsis Campaign Guidelines on the Management of Adults with Coronavirus Disease 2019 (COVID-19) in the ICU’ stated that there is insufficient evidence to issue a recommendation on the use of awake prone position in non-intubated adults with severe COVID-19 [65]. There were several confounding factors, namely indication, timing, duration, frequency of prone position and type of oxygen supplementation techniques were not standardized across all the included studies. However, the World Health Organisation COVID-19 Clinical Management Living Guidance (25 Jan 2021) suggested a conditional recommendation for awake prone position of severely ill Covid-19 patients requiring supplemental oxygen (including high-flow nasal oxygen) [66]. The recently updated ‘British Thoracic Society/ Intensive Care Society Guidance: Respiratory care in patients with Acute Hypoxaemic Respiratory Failure associated with COVID-19’ also suggested prone position or side repositioning for COVID-19 patients in the respiratory support pathway [67]. A recent expert consensus for the management of COVID-19 related acute respiratory failure (2021) concluded that awake self-prone position may be considered to improve oxygenation and it should be used when supplemental oxygenation is required to maintain SpO2 > 90% [68]. At present, awake prone position may be used to delay the respiratory deterioration in selected patients who require oxygen supplementation. This will decrease the demand for invasive mechanical ventilation and further offload the pressure placed on intensive care services worldwide, especially in the resource-limited countries. In the meantime, we await the findings of ongoing high-quality clinical trials to address the uncertainties surrounding this intervention.

Our review had several limitations, which included observational studies in nature, high degree of heterogeneity, high risk of publication bias, low level of evidence, non-standardized regime of prone position and different mode of ventilation across all the included studies. Previous studies have shown that awake prone position may be most effective when started early during the exudative phase, as opposed to the intermediate phase of ARDS [49,69]. An optimum duration of prone ventilation needs to be studied further to ensure no delay in intubation if hypoxemia condition deteriorates. The clinical criteria for endotracheal intubation should be defined to minimize heterogeneity of our measured outcomes. Different adjuvant of respiratory assist devices, namely high flow nasal cannula, continuous positive airway pressure or bi-level positive airway pressure were used across included studies, which may introduce variances to our findings.

5. Conclusion

In this meta-analysis, prone position improved PaO2/FiO2 ratio with better SpO2 than supine position in COVID-19 patients. Given the limited number of studies with small sample size and substantial heterogeneity of measured outcomes, further studies are warranted to standardize the regime of prone position to improve the certainty of evidence.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Contributions

EC: Data curation; Methodology; Project administration; Writing - original draft; Writing - review & editing. SMI: Data curation; Methodology; Project administration; Writing - original draft. KN: Conceptualization; Formal analysis; Investigation; Methodology; Project administration; Software; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing. WT: Conceptualization; Formal analysis; Investigation; Methodology; Project administration; Software; Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing. MS: Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing. MA: Supervision; Validation; Visualization; Writing - original draft; Writing - review & editing.

Source of funding

No funding was received in support of this project.

Declaration of Competing Interest

All authors have declared that they do not have any conflicts of interest in this review.

Acknowledgements

We would like thank Mr. Bryan Allan for his effort in proof-reading our manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.jclinane.2021.110406.
References

[1] Hussein NR, Saleem ZS, Ibrahim N, Muna DH, Naajid IA. The impact of COVID-19 pandemic on patients with kidney diseases in Duhok City, Kurdistan region of Iraq. Diabetes Metab Syndr Clin Res Rev 2020;14:1551-3.

[2] Zieher DR, Alladina J, Petri CR, et al. Respiratory pathophysiology of mechanically ventilated patients with COVID-19: a cohort study. Am J Respir Crit Care Med 2020;201:1560-4.

[3] Ding L, Wang L, Ma W, He H. Efficacy and safety of early prone positioning combined with HFNC or NIV in moderate to severe ARDS: a multi-center prospective cohort study. Crit Care 2020;24:8.

[4] Scaravilli V, Grasselli G, Castagna L, et al. Prone positioning improves oxygenation in acute lung injury. Am J Respir Crit Care Med 1994;150:184-93.

[5] Bellone A, Basile A. Prone positioning in severe acute hypoxic respiratory failure in the emergency ward. Emerg Care J 2018;14.

[6] NG Zq, Tay WC, Ho CHB. Awake prone position for non-intubated oxygen dependent COVID-19 pneumonia patients. Eur Respir J 2020;56:2001198.

[7] Munch G, Layfield JH, Harris RS, et al. Topographical distribution of pulmonary perfusion and ventilation, assessed by PET in supine and prone patients. J Appl Physiol 2002;93:1841-51.

[8] Lamm JW, Graham MM, Albert RK. Mechanism by which the prone position improves oxygenation in acute lung injury. Am J Respir Crit Care Med 1994;150:184-93.

[9] Gattinoni L, Vagginelli F, Carlesso E, et al. Decrease in Paco2 with prone position is a surrogate marker of physiologic improvement in patients with severe acute respiratory failure. Am J Respir Crit Care Med 2005;172:480.

[10] Higgins JPT, Thomas J, Chandler J, et al. Cochrane handbook for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ Open 2015;4(9):e007642.

[11] Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxic acute respiratory failure. JAMA 2020;323:2338-40.

[12] Wells GA, Shea B, O’Connell D, et al. The Jadad scale: a tool for the quality assessment of randomized clinical trials. Clin Trials 1999;6:53-8.

[13] Rusin G, Rosenthal CA, Swanson DD, et al. Safety and outcomes of prolonged prone positioning for severe acute respiratory distress syndrome in COVID-19. Intensive Care Med 2021;47:1061-70.

[14] Jagan N, Morrow LE, Walters RW, et al. The positioned study: prone positioning in hypoxaemic adult patients with COVID-19. J Intensive Care Soc 2020. https://doi.org/10.1016/j.jamemresic.2020.10.036.

[15] Zang XF, Wang Q, Zhou H, Liu SH, Xue XY. Efficacy of early prone position for COVID-19 patients in the prone position outside the intensive care unit. JAMA 2020;323:2536-44.

[16] Astua A, Michaels E, Michaels A. Proning During Pandemic: The Rapid Institution of a Safe, Transferable, and Effective Prone Positioning Program at Nyc/Lowerman Hospital, A Situational Resource Limited Facility, During the Peak of the Covid 19 Surge. 2020. p. 1-16.

[17] Dubois NM, Wong ML, Grosestreuer AV, et al. Early, awake proning in emergency department patients with COVID-19. Am J Emerg Med 2021;52:249-55.

[18] Elharrar X, Trigui Y, Dols AM, et al. Effectiveness of prone positioning in nonintubated intensive care unit patients with moderate to severe acute respiratory distress syndrome by coronavirus disease 2019. Anesth Analg 2021;132:25-30.

[19] Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[20] Elharrar X, Trigui Y, Dols AM, et al. Use of prone positioning in nonintubated patients with COVID-19 and hypoxic acute respiratory failure. JAMA 2020;323:2338-40.

[21] Coppo A, Bellani G, Winterton D, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[22] Eran J, Elion C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome due to COVID-19: a cohort study and analysis of perfusion and gas exchange. J Intensive Care Med 2021;36:241-52.

[23] Weiss TT, Cerda F, Scott JB, et al. Prone positioning for patients intubated for COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care 2020;24:597.

[24] Zang XF, Wang Q, Zhou H, Liu SH, Xue XY. Efficacy of early prone position for COVID-19 patients with severe hypoxia: a single-center prospective cohort study. Intensive Care Med 2020. doi:10.1007/s00134-020-06182-4.

[25] Prudhomme MN, Skarzynski H, Sheikh M, et al. Prone positioning reduces the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy; a multi-center, unadjusted cohort study. Crit Care 2020;24:1996.

[26] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[27] Arach O, Haye G, Belys C, et al. Hypoxemia and prone position in mechanically ventilated Covid-19 patients: a prospective cohort study. Can J Anaesth 2020;67:1098.

[28] Doussot A, Ciceron F, Cerutti E, et al. Prone positioning for severe acute respiratory distress syndrome in COVID-19 patients by a dedicated team: a safe and pragmatic reallocation of medical and surgical workforce in response to the outbreak. Am Surg 2020;272:311-35.

[29] Guijt B, Zentgraf H, Rechberger A, et al. Prone positioning for severe acute respiratory distress syndrome in COVID-19 patients by a dedicated team: a safe and pragmatic reallocation of medical and surgical workforce in response to the outbreak. Am Surg 2020;272:311-35.

[30] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[31] Arach O, Haye G, Belys C, et al. Hypoxemia and prone position in mechanically ventilated Covid-19 patients: a prospective cohort study. Can J Anaesth 2020;67:1098.

[32] Arach O, Haye G, Belys C, et al. Hypoxemia and prone position in mechanically ventilated Covid-19 patients: a prospective cohort study. Can J Anaesth 2020;67:1098.

[33] Luchinat V, Ghezzi P, Carlesso E, et al. Prone positioning reduces the risk of intubation in COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care 2020;24:597.

[34] Weiss TT, Cerda F, Scott JB, et al. Prone positioning for patients intubated for COVID-19 treated with high-flow nasal oxygen therapy: a multicenter, adjusted cohort study. Crit Care 2020;24:597.

[35] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[36] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[37] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.

[38] Kheradmand V, Kazemzadeh A, Firoozan Y, et al. Feasibility and physiological effects of prone positioning in non-intubated patients with acute respiratory failure due to COVID-19 (PRON-COVID): a prospective cohort study. Lancet Respir Med 2020;8:765-74.
[57] Pavlov I, He H, Mcnicholas B, et al. Awake Prone Positioning in Non-intubated Patients With Acute Hypoxemic Respiratory Failure Due to COVID-19: A Systematic Review and Meta-analysis. Research Square COVID-19 Preprints. 2020. https://doi.org/10.21203/rs.3.rs-125426/v1.

[58] Ponnapa Reddy M, Subramaniam A, Lim ZJ, et al. Prone positioning of non-intubated patients with COVID-19 - a systematic review and meta-analysis. MedRxiv 2020. https://doi.org/10.1101/2020.10.12.20211748.

[59] Mathews KS, Soh H, Shaefi S, et al. Prone positioning and survival in mechanically ventilated patients with coronavirus disease 2019-related respiratory failure. Crit Care Med 2021. https://doi.org/10.1097/CCM.0000000000004938.

[60] Schifino G, de Grauw AJ, Daniile F, Comellini V, Fasano L, Pisani L. Effects of prone and lateral position in non-intubated patients with 2019 novel coronavirus (COVID-19) pneumonia. Pulmonology 2021;27:167–71.

[61] Retucci M, Aliberti S, Ceruti C, et al. Prone and lateral positioning in spontaneously breathing patients with COVID-19 pneumonia undergoing noninvasive helmet CPAP treatment. Chest 2020;158:e2431–5.

[62] Ibarra G, Rivera A, Fernandez-Ibarburu B, Lorca-Garcia C, Garcia-Ruano A. Prone position pressure sores in the COVID-19 pandemic: the Madrid experience. J Plast Reconstr Aesthet Surg 2021. https://doi.org/10.1016/j.bjps.2020.12.057.

[63] Hyman JB, Leibner ES, Tandon P, et al. Timing of intubation and in-hospital mortality in patients with coronavirus disease 2019. Crit Care Explor 2020;2:e0254.

[64] Grieco DL, Menga LS, Eleuteri D, Antonelli M. Patient self-inflicted lung injury: implications for acute hypoxemic respiratory failure and ARDS patients on non-invasive support. Minerva Anestesiol 2019;85:1014–23.

[65] Alhazzani W, Evans L, Alshamsi F, et al. Surviving Sepsis Campaign Guidelines on the Management of Adults with Coronavirus Disease 2019 (COVID-19) in the ICU: first update. Crit Care Med 2021;49.

[66] World Health Organisation. Clinical Management Clinical Management : Living Guidance COVID-19. World Health Organisation; 2021. https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2021-1 (accessed on 27th February 2021).

[67] Messer B, Antoine-Pitterson P, Blundell A, et al. BTS/ICS Guidance: Respiratory Care in Patients with Acute Hypoxemic Respiratory Failure Associated with COVID-19. 2021. file:///C:/Users/User/Downloads/BTS%20Guidance%20%20Respiratory%20Care%20%20in%20Patients%20%20with%20%20Acute%20Hypoxaeemic%20Respiratory%20Failure.pdf (Accessed on 27th February 2021).

[68] Nasa F, Azoulay E, Khanna AK, et al. Expert consensus statements for the management of COVID-19-related acute respiratory failure using a Delphi method. Crit Care 2021;25:106.

[69] Kallet RH. A comprehensive review of prone position in ARDS. Respir Care 2015;60:1660–87.