Fine-Grained Complexity of Regular Path Queries

Katrin Casel¹, Markus L. Schmid²

¹ HPI, University of Potsdam, Germany
² HU Berlin, Germany

ICDT 2021
Querying Graphs with Regular Expressions

Graph databases

 directed, edge-labelled multigraphs.
Querying Graphs with Regular Expressions

Graph databases
directed, edge-labelled multigraphs.

Graph Databases	**Expression**
Σ	finite alphabet (edge labels)
V_D	vertices (or nodes)
$E_D \subseteq V_D \times \Sigma \times V_D$	edges (or arcs)
Graph database	$D = (V_D, E_D)$
Graph databases

Directed, edge-labelled multigraphs.

Graph Databases

\[
\begin{align*}
\Sigma & \quad \text{finite alphabet (edge labels)} \\
V_D & \quad \text{vertices (or nodes)} \\
E_D & \subseteq V_D \times \Sigma \times V_D \quad \text{edges (or arcs)} \\
\text{Graph database} & \quad \mathcal{D} = (V_D, E_D)
\end{align*}
\]

Regular Path Queries (RPQs)

Regular expressions \(q \) over \(\Sigma \).

\[q(\mathcal{D}) = \{ (u, v) \mid \exists \ u\text{-to-}v \text{ path labelled by a word from } \mathcal{L}(q) \} \]
Regular Path Query Example

Graph database \mathcal{D}:
Regular Path Query Example

Graph database \mathcal{D}:

Regular path query:

$$q = a^*(b \lor c)$$
Different Variants of RPQs
Different Variants of RPQs

Query results:
- Only node pairs \((u, v)\).
- Node pairs \((u, v)\) and a witness path.
- Node pairs \((u, v)\) and all witness paths.
Different Variants of RPQs

Query results:
- Only node pairs \((u, v)\).
- Node pairs \((u, v)\) and a witness path.
- Node pairs \((u, v)\) and all witness paths.

Path semantics: \((u, v) \in q(D)\) if there is
- an arbitrary path.
- a simple path.
- a trail.
- a shortest path.
Product Graph Approach (PG-Approach)

\[D: \text{Graph database} \]
\[q: \text{Regular path query} \]
\[M: \text{NFA for } q \text{ with state set } Q \]
Product Graph Approach (PG-Approach)

\mathcal{D}:	Graph database
q:	Regular path query
M:	NFA for q with state set Q

Product Graph

\[
G(\mathcal{D}, q) = (V(\mathcal{D}, q), E(\mathcal{D}, q))
\]

\[
V(\mathcal{D}, q) = V_\mathcal{D} \times Q
\]

\[
E(\mathcal{D}, q) \subseteq (V(\mathcal{D}, q) \times V(\mathcal{D}, q)):
\]

\[
(u, p) \rightarrow (v, p') \iff \exists x \in \Sigma : u \xrightarrow{x} v \land p \xrightarrow{x} p'.
\]
PG-Approach Example
PG-Approach Example
RPQ Evaluation Tasks

Name	Input	Task		
RPQ-Boole	D, q	Decide whether $q(D) = \emptyset$.		
RPQ-Eval	D, q	Compute the whole set $q(D)$.		
RPQ-Count	D, q	Compute $	q(D)	$.
(Sorted) RPQ-Enum	D, q	Enumerate the whole set $q(D)$ (lexicographically ordered).		
RPQ Evaluation Tasks

Name	Input	Task		
RPQ-Boole	D, q	Decide whether $q(D) = \emptyset$.		
RPQ-Eval	D, q	Compute the whole set $q(D)$.		
RPQ-Count	D, q	Compute $	q(D)	$.
(Sorted) RPQ-Enum	D, q	Enumerate the whole set $q(D)$ (lexicographically ordered).		

Updates: Adding/deleting isolated nodes, adding/deleting arcs.
Research Question

- PG-approach good for simple tasks like checking $q(D) = \emptyset$ or $(u, v) \in q(D)$.
 What about computing, counting or enumerating $q(D)$?
- Is the PG-approach optimal?
- Can we complement upper bounds with conditional lower bounds?
Fine-Grained Complexity and Conditional Lower Bounds
Orthogonal Vectors (OV)

Input: Sets A, B each containing n Boolean d-dimensional vectors.

Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?
Orthogonal Vectors (OV)

Input: Sets A, B each containing n Boolean d-dimensional vectors.
Question: Are there orthogonal vectors $\vec{a} \in A$ and $\vec{b} \in B$?

OV-Hypothesis

For every $\epsilon > 0$, OV cannot be solved in $O(n^{2-\epsilon} \text{poly}(d))$.
Boolean Matrix Multiplication

Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.
Task: Compute $A \times B$.
Boolean Matrix Multiplication (BMM)

Input: Boolean $n \times n$ matrices A, B.

Task: Compute $A \times B$.

com-BMM-Hypothesis

For every $\epsilon > 0$, BMM cannot be solved in $O(n^{3-\epsilon})$ by a combinatorial algorithm.
Boolean Matrix Multiplication (BMM)
Input: Boolean $n \times n$ matrices A, B.
Task: Compute $A \times B$.

com-BMM-Hypothesis
For every $\epsilon > 0$, BMM cannot be solved in $O(n^{3-\epsilon})$ by a combinatorial algorithm.

SBMM-Hypothesis
BMM cannot be solved in $O(m)$, where $m =$ number of 1-entries.
Our Results
Theorem

RPQ-Boole can be solved in time $O(|D||q|)$.
Theorem

RPQ-Boole can be solved in time $O(|D| |q|)$.

Theorem
If RPQ-Boole can be solved in time
★ $O(
★ $O(
★ $O(
Theorem

RPQ-Boole can be solved in time $O(|D||q|)$.

Theorem

If RPQ-Boole can be solved in time

- $O(|D|^{2-\epsilon} + |q|^2)$, then OV-hypothesis fails.
- $O(|D|^2 + |q|^{2-\epsilon})$, then OV-hypothesis fails.
- $O(|V_D|^{3-\epsilon} + |q|^{3-\epsilon})$, com-BMM-hypothesis fails.

Data Complexity

From now on ALL bounds in data complexity!
RPQ-Eval and RPQ-Count

Theorem
RPQ-Eval (and RPQ-Count) can be solved in time \(O(
Theorem

RPQ-Eval and RPQ-Count

Theorem

RPQ-Eval (and RPQ-Count) can be solved in time $O(|V_D||D|)$.

Theorem

If RPQ-Eval can be solved in time

- $O((|V_D||D|)^{1-\epsilon})$, then com-BMM-hypothesis fails.
- $O((|q(D)| + |D|))$, then SBMM-hypothesis fails.
RPQ-Eval and RPQ-Count

Statement
Theorem
RPQ-Eval (and RPQ-Count) can be solved in time $O(

Statement
Theorem
If RPQ-Eval can be solved in time $O((
If RPQ-Eval can be solved in time $O((

Statement
Theorem
If RPQ-Count can be solved in time $O((
Theorem

Sorted RPQ-Enum can be solved with preprocessing $O(|\mathcal{D}|)$, delay $O(|\mathcal{D}|)$ and $O(1)$ updates.
Theorem

Sorted RPQ-Enum can be solved with preprocessing $O(|D|)$, delay $O(|D|)$ and $O(1)$ updates.

Some Thoughts

- Linear preprocessing is reasonable.
- Linear delay is bad.
- What about updates??
RPQ-Enum – Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

► constant delay? No!
Conditional Lower Bounds

Linear preprocessing and
 ▶ constant delay? No!
 ▶ delay sublinear in $|V_D|$? No!
Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $|V_D|$? No!
- delay sublinear in $|\mathcal{D}|$? Not if we also want updates!
Conditional Lower Bounds

Linear preprocessing and
- constant delay? No!
- delay sublinear in $|V_D|$? No!
- delay sublinear in $|D|$? Not if we also want updates!

Open Question

RPQ-Enum with $O(|D|)$ preprocessing and $O(|V_D|)$ delay???
RPQ-Enum – Lower Bounds

Conditional Lower Bounds

Linear preprocessing and

- constant delay? No!
- delay sublinear in $|V_D|$? No!
- delay sublinear in $|D|$? Not if we also want updates!

Open Question

RPQ-Enum with $O(|D|)$ preprocessing and $O(|V_D|)$ delay???

Next objective:

Just any enumeration that guarantees delay sublinear in $|D|$.
Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set
A “representative” subset $A \subseteq q(D)$ can be enumerated with linear preprocessing and constant delay.
Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A “representative” subset $A \subseteq q(D)$ can be enumerated with linear preprocessing and constant delay.

$\Delta(D)$ denotes the average degree of D.

Second Approach: Super-Linear Preprocessing

Sorted RPQ-Enum can be solved with preprocessing $O(\log(\Delta(D)) \Delta(D) |D|)$ and delay $O(|V_D|)$.
Three Approaches to Sublinear Delay

First Approach: Representative Subset of Solution Set

A “representative” subset $A \subseteq q(D)$ can be enumerated with linear preprocessing and constant delay.

$\Delta(D)$ denotes the average degree of D.

Second Approach: Super-Linear Preprocessing

Sorted RPQ-Enum can be solved with preprocessing $O(\log(\Delta(D)) \Delta(D) |D|)$ and delay $O(|V_D|)$.

$\Delta(D)$ denotes the maximum degree of D.

Third Approach: Restricted Class of RPQs

For a $Q \subseteq \text{RPQ}$, RPQ-Enum can be solved with preprocessing $O(|D|)$ and delay $O(\Delta(D))$.
Third Approach: Restricted Class of RPQs

- **Short RPQ (S-RPQ):**

 \[q = (x_1 \lor \ldots \lor x_k) \text{ or } q = (x_1 \lor \ldots \lor x_k)(y_1 \lor \ldots \lor y_{k'}) \]

 where \(x_1, \ldots, x_k, y_1, \ldots, y_{k'} \in \Sigma \).

 Example: \(q = (a \lor b)(a \lor c \lor d) \).
Third Approach: Restricted Class of RPQs

- **Short RPQ (S-RPQ):**
 \[q = (x_1 \lor \ldots \lor x_k) \text{ or } q = (x_1 \lor \ldots \lor x_k)(y_1 \lor \ldots \lor y_{k'}), \]
 where \(x_1, \ldots, x_k, y_1, \ldots, y_{k'} \in \Sigma. \)

 Example: \(q = (a \lor b)(a \lor c \lor d). \)

- **Basic Transitive RPQ (BT-RPQ):**
 \[q = (x_1 \lor \ldots \lor x_k)^* \text{ or } q = (x_1 \lor \ldots \lor x_k)^+, \]
 where \(x_1, \ldots, x_k \in \Sigma. \)

 Example: \(q = (a \lor c \lor d)^+. \)
Third Approach: Restricted Class of RPQs

- **Short RPQ (S-RPQ):**
 \[q = (x_1 \lor \ldots \lor x_k) \text{ or } q = (x_1 \lor \ldots \lor x_k)(y_1 \lor \ldots \lor y_{k'}) \]
 where \(x_1, \ldots, x_k, y_1, \ldots, y_{k'} \in \Sigma \).

 Example: \(q = (a \lor b)(a \lor c \lor d) \).

- **Basic Transitive RPQ (BT-RPQ):**
 \[q = (x_1 \lor \ldots \lor x_k)^* \text{ or } q = (x_1 \lor \ldots \lor x_k)^+, \]
 where \(x_1, \ldots, x_k \in \Sigma \).

 Example: \(q = (a \lor c \lor d)^+ \).

- **Alternation Closure:**
 \[\lor(S-RPQ \cup BT-RPQ) = \]
 \[\{(q_1 \lor \ldots \lor q_m) \mid q_i \in S-RPQ \cup BT-RPQ, 1 \leq i \leq m\} \]

 Example: \(q = (ab \lor c^* \lor b(c \lor d) \lor (a \lor b \lor d)^+) \)
Theorem

Semi-sorted Enum(\(\bigvee (S\text{-RPQ} \cup BT\text{-RPQ})\)) can be solved with preprocessing \(O(|\mathcal{D}|)\) and delay \(O(\Delta(\mathcal{D}))\).
Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum(\(\bigvee (S-RPQ \cup BT-RPQ)\)) can be solved with preprocessing \(O(|D|)\) and delay \(O(\Delta(D))\).

Proof Sketch

- *Semi-sorted* Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing \(O(|D|)\) and delay \(O(\Delta(D))\).
Third Approach: Restricted Class of RPQs

Theorem
Semi-sorted Enum(\(\bigvee (S\text{-RPQ} \cup BT\text{-RPQ})\)) can be solved with preprocessing \(O(

Proof Sketch
▶ *Semi-sorted* Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing \(O(
▶ For every \(Q \subseteq \text{RPQ}:\) Semi-sorted Enum(\(Q\)) can be solved with linear preprocessing and some delay, then Enum(\(\bigvee (Q)\)) can be solved with the same preprocessing and delay.
Third Approach: Restricted Class of RPQs

Theorem

Semi-sorted Enum(\(\bigvee (S\text{-RPQ} \cup BT\text{-RPQ})\)) can be solved with preprocessing \(O(|D|)\) and delay \(O(\Delta(D))\).

Proof Sketch

- **Semi-sorted** Enum(S-RPQ) and Enum(BT-RPQ) can be solved with preprocessing \(O(|D|)\) and delay \(O(\Delta(D))\).
- For every \(Q \subseteq RPQ\): Semi-sorted Enum(\(Q\)) can be solved with linear preprocessing and some delay, then Enum(\(\bigvee (Q)\)) can be solved with the same preprocessing and delay.

\(\square\)

Theorem

If RPQ-Enum(S-RPQ) can be solved with preprocessing \(O(|V_D|^{3-\epsilon})\) and delay \(O(|\Delta(D)|^{1-\epsilon})\), then the com-BMM-hypothesis fails.
Thank you very much for your attention.