Immunogenicity of HGV NS5 protein expressed from Sf9 insect cells

Hao Ren, Fen Lu Zhu, Shi Ying Zhu, Yan Bin Song and Zhong Tian Qi

Subject headings: hepatitis agents, GB/immunology; recombinant proteins; electrophoresis, polyacrylamide gel; flaviviridae infections; Blotting, western; insect vectors; polymerase chain reaction

Ren H, Zhu FL, Zhu SY, Song YB, Qi ZT. Immunogenicity of HGV NS5 protein expressed from Sf9 insect cells. World J Gastroenterol, 2001;7 (1):98-101

INTRODUCTION

Although reliable assays for the detection of hepatitis C virus and E virus became available, still 10%-20% hepatitis are not caused by hepatitis A-E virus[1-3]. In 1996, two research groups isolated this agent independently and almost simultaneously and named hepatitis G virus and GB virus C, respectively[4,5]. The nucleotide and amino acid homologies between GBV-C and hepatitis G virus (HGV) were 85% and 95%[6,7]. Therefore, GBV-C and HGV were considered as two different isolates of the same virus, referred to as HGV in this paper. HGV is a single-strand, positive sense RNA virus with approximately 9.4kb in length, and classified as a member of Flaviviridae. HGV is mainly transmitted through transfusion and could be responsible for chronic liver infection. HGV RNA has been detected in the serum of intravenous drug users (IVDUs), volunteer and commercial blood donors, and patients with cryptogenic hepatitis[8-10]. Until now, RT-PCR is the most commonly used method for the diagnosis of HGV infection. It is necessary to develop a more convenient antibody detection assay. The baculovirus expression system is of a strong polyhedrin promoter[11], and can carry out many types of postranslation modification for a variety of proteins. Most of the expressed proteins were usually shown to be antigenic, immunological, and functionally similar to their authentic counterparts[12-16]. In this study, we used the baculovirus expression system to express HGV NS5 protein in Sf9 cells, and studied its immunogenecity.

MATERIALS AND METHODS

Materials

HGV positive sera were collected from HGV RNA positive hemodialyzed patients. The plasmid pFastBac HTa, E.coli DH10 Bac cell, Spodoptera frugiperda (Sf9) cell and recombinant plasmid HGV Iwh6 were prepared previously in this laboratory[17]. The pPROEX HTa, Lipofectin and Grace’s medium were purchased from GIBCO/BRL; and expand™ Long Template PCR System was purchased from Boehringer Mannherm Company. PCR primers were designed according to HGV-Iwh6 and synthesized by Sangon Biotechnology Company. Two restriction enzyme sites Bam H I and Kpn I were added to the 5' end of sense and antisense primers separately. The primer sequences are sense: 5'-GGC GAT CCC TAT CGG CTG CTG TAG CTA AG-3'; antisense: 5'-GCG GTA CCT TA T TGA GCG GCC CTC TTA GC-3'.

Amplification and sequence analysis of HGV NS5 fragment

HGV NS5 fragment was amplified using HGV RNA as the template (PCR condition: predenature 94°C 2 min, followed by 94°C 30 s, 60°C 1 min, 68°C 2 min, 35 cycles, and extension 10 min before the ending of the reaction). The amplified fragments and pPROEX HTa were digested with Bam H I and Kpn I. Fragment and vector were recovered respectively and ligated by T4 DNA ligase to obtain recombinant plasmid pHTNS5. Sequence analysis was carried out using ABI PRISM 377 DNA sequencer (PE Company) with M13/pUC primer.

Cloning into transposing vector pFastBac HTa

pHTNS5 and transposing vector pFastBac HTa were digested with Bam H I and Kpn I, and were ligated by T4 DNA ligase. The ligation mixture was transformed into DH5α competent cell, the positive colonies were chosen on selecting agar plate (ampicillin 100 µg/mL) and identified with endonuclease digestion to obtain the recombinant plasmid pFHTNS5.

Transposon between pFHTNS5 and bacmid

Plasmid pFHTNS5 was transformed into DH10Bac competent cells containing bacmid with a mini-att Tn7 site and helper plasmid. Following hot-shock at 42°C for 45 s, the transformation mixture was placed in a shaking incubator at 37°C for 4 h. Recombinant...
Bacmid was selected on selecting plate agar containing kanamycin 50 µg/mL, gentamicin 7 µg/mL, tetracycline 10 µg/mL, X-gal 200 µg/mL, and IPTG 40 µg/mL after 24 h-48 h incubation at 37°C.

Transfection of Sf9 cells
Recombinant bacmid was extracted according to the procedure of Bac-to-Bac system. For transfection, Sf9 insect cells were grown to 60%-70% confluence. The recombinant bacmid DNA 2 µg was transfected into insect cells Sf9 with Lipofectin. After 5 d-6 d incubation at 27°C until the morphology of the cells had obvious changes, Sf9 cells and viral supernatant were harvested respectively.

Expression of recombinant protein in insect cells and SDS-PAGE, Western-blot analysis
Twenty µL viral supernatant harvested from the transfected cells was used to infect fresh insect cells. After 5 d-6 d incubation at 27°C, the cells were harvested for protein expression analysis. The cells were washed twice with PBS and analyzed by SDS-PAGE according to the standard procedure. Western-blot was performed using HGV RNA positive sera (1:40 dilution).

RESULTS
Amplification of HGV NS5 fragment and sequence analysis
PCR product was analyzed by agarose gel electrophoresis and the length was the same as expected (Figure 1). Sequence analysis showed that the HGV NS5 fragment was cloned into the vector with correct orientation (data not shown).

Construction of recombinant transposing plasmid pFHTNS5
Figure 2 shows the construction of recombinant transposing plasmid pFHTNS5. Figure 1 shows the analysis of recombinant plasmid on agarose gel by restriction endonuclease digestion which verified that target fragment was correctly cloned into the transposing vector. The results demonstrated a successful construction of recombinant transposing plasmid pFHTNS5.

Screening of recombinant bacmid
After transforming competent cell DH10Bac with transposing plasmid pFHTNS, the recombinant bacmid was screened by colour selection. White clones (lacZ-) were selected as positive recombinant bacmid in a background of blue colonies (lacZ+). The recombinant bacmid was extracted according to the procedures described in the manual of Bac-to-Bac system.

Figure 2 Construction of recombinant plasmid pFHTNS5.
Morphology of transfected or infected Sf9 cells
The morphology of Sf9 cells changed gradually after transfection or infection. The cells became big and round obviously at 4 d-5 d after transfection or infection. Cytopathic effects (CPE) were seen whereas no pathological effects were observed in normal cells (Figure 3).

SDS-PAGE and Western blot analysis of the recombinant protein
Transfected or infected Sf9 cells were harvested and analyzed on 12.5% polyacrylamide gels. Figure 4 shows the result of expressed target HGV NS5 protein with a molecular weight of M_r 41 500. Scanning results indicated that the recombinant protein amounted to 11.7% of the total proteins. Western blot results implied that the recombinant protein could react with HGV RNA positive sera (Figure 5).

DISCUSSION
Although easy and reliable assays for the clinical diagnosis of HBV and HCV infection have been established[18-26], there still existed 10%-20% parenterally and community acquired hepatitis cases of unknown cause[4,5,7]. Transmission and molecular biology of these viruses have been studied thoroughly[27-34]. Clinical studies suggest that some of these may be of viral origin. HGV is a potential aetiopathological agent for viral hepatitis. As a member of Flaviviridae, HGV is a single-stranded RNA virus with a genome of 9 400 bp in length which includes 5' non-coding region, structural gene region C, E1, E2, non-structural gene region NS2, NS3, NS4, NS5a, NS5b and 3' non-coding region. The genome contains a single open reading frame (ORF) which encodes a 2 900 amino acid polyprotein precursor. Many researches have been carried out since the discovery of HGV, the studies of its antigencity is one of them[17,35-39]. HGV NS5B protein functions as RNA-dependent RNA polymerase. In addition, Pilot-Matias et al[40] also found that C26, C27, C28 (2047-2376 aa) of HGV NS5 gene had potential antigen epitopes. Wang et al[41] reported that two linear epitopes (P22, P6) might exist in HGV NS5 gene. The obtained HGV NS5 recombinant protein will provide important materials for studying its structure and function.

The Bac-to-Bac system was established by Luckow[11] in 1993, and a variety of proteins have been expressed with the control of a strong polyhedrin promoter since then. It is based on site-specific transposition (transposon Tn7) of an
expression cassette into baculovirus shuttle vector (bacmid) propagated in Escherichia coli. After selection of blue-white colonies, recombinant bacmid DNA was extracted for the transfection of SF9 cells. Insect cells can identify and run many modifications of post-transcription and make the expressed protein close to natural protein.

In this study, HGV NS5 protein fragment amplified by PCR was confirmed by restriction enzyme and sequence analysis, and cloned into baculovirus transposing vector pFastBacHTa. Recombinant bacmid was obtained with site-specific transposition, SF9 cell was transfected with recombinant bacmid or infected with viral supernatant. On the polyacrylamide gel, an expected protein band was seen at M₀, 41,000. Western blot found that HGV NS5 recombinant protein could react strongly with HGV RNA positive sera, which implied that recombinant HGV NS5 protein could be used as antigen to detect HGV infection.

REFERENCES

1. Kuo GC, Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyanaga T, Dienstag JL, Alter MJ, Stevens CE. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. J Biol Chem 1989; 264:362-364
2. Dawson GJ, Chau KH, Cabal CM, Yarborough PO, Reyes GR, Mushahwar IK. Solid-phase enzyme-linked immunosorbent assay for hepatitis E virus IgG and IgM antibodies utilizing recombinant antigens and synthetic peptides. J Virol Methods 1992; 38:175-186
3. Schlauder GG, Mushahwar IK. Detection of hepatitis C virus and the common virus by the polymerase chain reaction. J Virol Methods 1994; 47:243-253
4. Simons JN, Pilot-Matias TJ, Leary TP, Dawson GJ, Desai SM, Schlauder GG, Muerhoff AS, Erker JC, Buijk SL, Chalmers ML. Identification of two flavivirus-like sequences in the GB hepatitis agent. Proc Natl Acad Sci USA 1995; 92:3401-3405
5. Leary TP, Muerhoff AS, Simons JN, Pilot-Matias TJ, Erker JC, Chalmers ML, Schlauder GG, Dawson GJ, Desai SM, Mushahwar IK. Sequence and genomic organization of GBV-C: a novel member of the flaviviridae associated with human non-A, non-B hepatitis. J Med Virol 1998; 46:60-77
6. Iwami J, Wages J, Zhang X, Keck ZY, Fry KE, Kravchynsky KZ, Alter HJ, Koonin E, Gallagher M, Alter M, Hadziyannis S, Karayanni P, Fung K, Nakatsuyu Y, Shih JW, Young L, Piatak M Jr, Hoover C, Fernandez J, Chen S, Zou JC, Morris T, Hyams KC, Ismay S, Lifson JD, Hess G, Fong SKH, Thomas H, Bradley D, Margolis H, Kim JP. Molecular cloning and disease association of hepatitis G virus: a transfection-transmissible agent. Science 1996; 271:505-508
7. Simons JN, Leary TP, Dawson GJ, Pilot-Matias TJ, Muerhoff AS, Schlauder GG, Desai SM, Mushahwar IK. Isolation of novel virus-like sequences associated with human hepatitis. Nat Med 1995; 1:564-569
8. Zhuang H. Study of hepatitis G virus infection in our country. Zhonghua Ganzang Bing Zhi 1998; 6:3-4
9. Chang JH, Wei L, Du SC, Wang H, Sun Y, Tao QM. Hepatitis G virus infection in patients with chronic non-A, non-B hepatitis. China J New Gastroenterol 1997; 3:143-146
10. Wang XT, Zhuang H, Song HB, Li HM, Zhang HY, Yu Y. Partial sequencing of 5 non-coding region of 7 HGV strains isolated from different areas of China. World J Gastroenterol 1999; 5:361-364
11. Luckow VA, Lee SC, Barry GF, Olins PO. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol 1991; 67:4566-4579
12. Deng XZ, Diao ZY, He L, Qiao RL, Zhang LY. HBeAg gene expression with baculovirus vector in silk worm cells. World J Gastroenterol 1999; 5:167-171
13. Bae JE, Toth T. Cloning and kinetics of expression of Brucella abortus heat shock proteins by baculovirus recombinants. Vet Microbiol 2000; 75:199-204
14. Nernut MV, Hockley DJ, Brook T, Thomas D, Zhang WH, Jones IM. Further evidence for hexagonal organization of HIV gag protein in prebudding assemblies and immature virus-like particles. J Struct Biol 1998; 123:143-149
15. Li TC, Yamakawa Y, Suzuki K, Tatsami M, Razaq MA, Uchida T, Takeda N, Miyanaga T. Expression and self-assembly of empty virus-like particles of hepatitis E virus. J Virol 1997; 71:7027-7123
16. Conner ME, Zarley FD, Hu B, Parsons S, Drabinski D, Greiner S, Smith R, Jiang B, Corsaro B, Vang V, Maulhe HP, Crawford S, Esteved MK. Virus-like particles as a rotavirus subunit vaccine. J Infect Dis 1996; 167 (Suppl 1):SS89-92
17. Zhu FL, Qi ZT, Ren H, Song YB, Shao L. Splicing and cloning of the full-length genomic cDNA of GBV-C virus Hepatitis G virus. Dier Jiany 1998; 19:301-306
18. Song CH, Wu MY, Wang XL, Dong Q, Tang RH, Fan XL. Correlation between HDV infection and HBV serum markers. China J New Gastroenterol 1996; 2:230-231
19. Zhou P, Cai Q, Chen YC, Zhang MS, Guan J, Li XJ. Hepatitis C virus RNA detection in serum and peripheral blood mononuclear cells of patients with hepatitis C. China J New Gastroenterol 1997; 3:106-110
20. Assy N, Minuk GY. A comparison between previous and present histologic assessments of chronic hepatitis C viral infections in humans. World J Gastroenterol 1999; 5:359-361
21. Chen K, Han BG, Ma XK, Zhang HQ, Meng L, Wang GH, Xia F, Song XG, Ling SG. Establishment and preliminary use of hepatitis B virus preS1/S2 antigen assay. World J Gastroenterol 1999; 5:450-552
22. Gao J, Tao QM, Guo JP, Ji HP, Lang ZW, Yu F. Preparation and application of monoclonal antibodies against hepatitis C virus nonstructural proteins. China J New Gastroenterol 1997; 3:114-116
23. Zhu FL, Lu HY, Li Z, Qi ZT. Cloning and expression of NS3 cDNA fragment of HCV genome of HeBe isolate in E. coli. World J Gastroenterol 1998; 4:165-168
24. Sun DG, Liu CY, Meng ZD, Sun YD, Wang SY, Yang YQ, Liang ZL, Zhuang H. A prospective study of vertical transmission of hepatitis C virus. China J New Gastroenterol 1997; 3:111-113
25. Zhang SZ, Liang JJ, Qi ZT, Hu YP. Cloning of the non-structural gene 3 of hepatitis C virus and its inducible expression in cultured cells. World J Gastroenterol 1999; 5:125-127
26. Wei L, Wang Y, Chen HS, Tao QM. Sequencing of hepatitis C virus cDNA with polymerase chain reaction directed sequencing. China J New Gastroenterol 1997; 3:12-15
27. Wang SL, Han XB, Yue YF. Relationship between HBV viremia level of pregnant women and intrauterine infection: nested PCR for detection of HBV DNA. World J Gastroenterol 1998; 4:61-63
28. Jiang RL, Lu QS, Luo KX. Cloning and expression of core gene cDNA of Chinese hepatitis C virus in Cosmid pTM3. World J Gastroenterol 2000; 6:220-222
29. Dai YM, Shou ZP, Ni CR, Wang NJ, Zhang SP. Localization of HCV RNA and capsid protein in human hepatocellular carcinoma. World J Gastroenterol 2000; 6:136-137
30. Zhao LS, Qin S, Zhou TY, Tang H, Liu L, Lei BJ. DNA-based vaccination induces humoral and cellular immune responses against hepatitis B virus surface antigen in mice without activation of C-myc. World J Gastroenterol 2000; 6:239-243
31. Wang XT, Zhuang H, Song HB, Li HM, Zhang HY, Yu Y. Partial sequencing of 5 non-coding region of 7 HGV strains isolated from different areas of China. World J Gastroenterol 1999; 5:432-434
32. Zhu FL, Qi ZT, Ren H, Shao L. A Preliminary Study on Macaluta Infected by Intrahepatic Injection of GBV-C/HGV RNA Transcripts produced in vitro. Bingdu Xenobio 2000; 16:170-179
33. Zhu FL, Ren H, Zhu SY, Song YB, Qi ZT. High-level expression of GBV-C/HGV NS3 protein in S99 insect Cells Using Baca to-2Bac Vectors. Bingdu Xenobio 2000; 16:269-273
34. Zhu FL, Ren H, Song YB, Qi ZT. Expression of GBV-C/HGV NS3 protein in Escherichia coli. Zhonghua Xiaowangxue He Mianyixue Zazhi 1999; 19:475-478
35. Zhu SY, Pan W, Qiz T. Expression of E2 glycoprotein gene of hepatitis G virus of insect cells. Zhonghua Bingduxue He Mianyixue Zazhi 1999; 15:135-139
36. Zhu SY, Pan W, Qiz T. Expression of E2 glycoprotein gene of hepatitis G virus of insect cells. Zhonghua Bingduxue He Mianyixue Zazhi 1999; 15:135-139
37. Wang XT, Zhuang H, Li HM, Zhang HY, Qi ZB, Wang YC, Pan HP, Chen ZY. Evaluation of peptide antigens for detection of antibodies to GBV-C. Zhonghua Weishengxue He Mianyixue Zazhi 1997;17:157-159