Numerical radius and zero pattern of matrices

Vladimir Nikiforov
Department of Mathematical Sciences, University of Memphis,
Memphis TN 38152, USA, email: vnkifrv@memphis.edu

October 16, 2018

Abstract

Let A be an $n \times n$ complex matrix and r be the maximum size of its principal submatrices with no off-diagonal zero entries. Suppose A has zero main diagonal and x is a unit n-vector. Then, letting $\|A\|$ be the Frobenius norm of A, we show that

$$|\langle Ax, x \rangle|^2 \leq (1 - 1/2r - 1/2n) \|A\|^2.$$

This inequality is tight within an additive term $O\left(n^{-2}\right)$.

If the matrix A is Hermitian, then

$$|\langle Ax, x \rangle|^2 \leq (1 - 1/r) \|A\|^2.$$

This inequality is sharp; moreover, it implies the Turán theorem for graphs.

AMS classification: 15A42, 05C50

Keywords: numerical radius; Turán’s theorem; zero pattern; (0,1)-matrices; Motzkin-Straus’s inequality

1 Introduction

Let G be a simple graph, $\mu(G)$ be the spectral radius of its adjacency matrix, $\omega(G)$ be the maximum size of its complete subgraphs, and $e(G)$ be the number of its edges. In [7] it is shown that

$$\mu^2(G) \leq \left(2 - \frac{2}{\omega(G)}\right) e(G).$$ \hspace{0.5cm} (1)

The aim of this note is to extend this result to square matrices with zero main diagonal.

Let $\eta(A)$ be the numerical radius of a square matrix A, i.e.,

$$\eta(A) = \max_{\|x\|=1} |\langle Ax, x \rangle|.$$

The value $\eta(A)$ has been extensively studied, see, e.g., [2]-[4], [6] and their references.
Given a complex matrix \(A = \{a_{ij}\} \), write \(\|A\| \) for its Frobenius's norm, i.e., \(\|A\| = \sqrt{\sum_{i,j} |a_{ij}|^2} \). We are interested in upper bounds on \(\eta(A) \) in terms of \(\|A\| \). It is easy to see that \(\eta(A) \leq \|A\| \) with equality holding, e.g., if \(A \) is a constant matrix. In this note we give conditions for the zero pattern of a square matrix \(A \) that imply \(\eta(A) \leq (1 - c) \|A\| \) for some \(c \in (0, 1) \) independent of the order of \(A \).

Given a square matrix \(A \), let \(\omega(A) \) be the maximum size of its principal submatrices with no off-diagonal zero entries.

Note that if \(A \) is the adjacency matrix of a graph \(G \), then \(\omega(A) = \omega(G) \), \(\mu(G) = \eta(A) \), and \(\|A\|^2 = 2e(G) \). Thus, the following theorem extends inequality (1).

Theorem 1 For every Hermitian matrix \(A \) with zero main diagonal,

\[
\eta^2(A) \leq \left(1 - \frac{1}{\omega(A)}\right) \|A\|^2. \tag{2}
\]

Inequality (2) is sharp: for all \(n \geq r \geq 2 \), there exists an \(n \times n \) symmetric \((0, 1)\)-matrix \(A \) with zero main diagonal and \(\omega(A) = r \) such that equality holds in (2).

Note that inequality (2) implies a concise form of the fundamental theorem of Turán in extremal graph theory (see [1] for details). Indeed, if \(A \) is the adjacency matrix of a graph \(G \) with \(n \) vertices and \(m \) edges, then

\[
(2m/n)^2 \leq \eta^2(A) \leq (2 - 2/\omega(A)) m = 2 \left(1 - 1/\omega(G)\right) m,
\]

and so,

\[
m \leq \left(1 - \frac{1}{\omega(G)}\right) \frac{n^2}{2}. \tag{3}
\]

Moreover, inequality (2) follows from a result of Motzkin and Straus [5], following in turn from (3) (see [8] for details). The implications

\[(2) \implies (3) \implies \text{MS} \implies (2) \]

justify regarding inequality (2) as a matrix form of Turán’s theorem.

We state without a proof a characterization of Hermitian matrices for which equality holds in (2).

Proposition 2 Let \(A = \{a_{ij}\} \) be an \(n \times n \) Hermitian matrix with zero main diagonal with \(\omega(A) = r \geq 2 \). Then the equality \(\eta^2(A) = (1 - 1/r) \|A\|^2 \) holds if and only if there exist a complex number \(c \neq 0 \), a partition \([n] = \bigcup_{i=0}^{r} N_i\), and a unit vector \(\mathbf{x} = (x_1, \ldots, x_n) \) such that:

(i) \(x_i = 0 \) for all \(i \in N_0 \).
(ii) \(\sum_{i \in N_i} |x_i|^2 = 1/r \) for all \(1 \leq i \leq r \).
(iii) \(a_{ij} = cx_i x_j \) for all \(1 \leq i < j \leq n \).

It turns out that Theorem 1 has analogues for non-Hermitian matrices as well.
Theorem 3 For every complex $n \times n$ matrix A with zero main diagonal,

$$
\eta^2(A) \leq \left(1 - \frac{1}{2\omega(A)} - \frac{1}{2n} \right) \|A\|^2.
$$

Inequality (4) is tight: for all $n \geq r \geq 2$, there exists an $n \times n$ matrix A with zero main diagonal and $\omega(A) = r$ such that

$$
\eta^2(A) \geq \left(1 - \frac{1}{2\omega(A)} - \frac{1}{2n} + O\left(n^{-2}\right) \right) \|A\|^2.
$$

Let P_n be the set of vectors (x_1, \ldots, x_n) with $x_1 \geq 0, \ldots, x_n \geq 0$, and $x_1 + \cdots + x_n = 1$. Recall a result of Motzkin and Straus [5]: if A is the adjacency matrix of a graph G of order n, and $x \in P_n$, then

$$
\langle Ax, x \rangle \leq 1 - 1/\omega(G).
$$

We shall need the following extension of this result.

Lemma 4 For every square $(0,1)$-matrix A of size n with zero main diagonal and every $x \in P_n$,

$$
\langle Ax, x \rangle \leq 1 - \frac{1}{2\omega(A)} - \frac{1}{2n}.
$$

Inequality (6) is tight: for all $n \geq r \geq 2$, there exists a square $(0,1)$-matrix A of size n with zero main diagonal and $\omega(A) = r$ such that,

$$
\langle Ax, x \rangle = 1 - \frac{1}{2r} - \frac{1}{2n} + O\left(n^{-2}\right)
$$

for some $x \in P_n$.

2 Proofs

Proof of Lemma 4 Define the $n \times n$ matrix $B = \{b_{ij}\}$ setting $b_{ij} = a_{ij}a_{ji}$ for all $i, j \in [n]$; let $C = A - B$. Note that for every two distinct $i, j \in [n]$, we have

$$
c_{ij} + c_{ji} = a_{ij} + a_{ij} - 2a_{ij}a_{ji} \leq 1.
$$

We may and shall assume that $c_{ij} + c_{ji} = 1$ for all distinct $i, j \in [n]$ with $b_{ij} = 0$, since otherwise some off-diagonal zero entry of A can be changed to 1 so that $\omega(A)$ remains the same and the left-hand side of (4) does not decrease. Hence, for every $x = (x_1, \ldots, x_n)$,

$$
\langle Bx, x \rangle + 2 \langle Cx, x \rangle = 1 - \|x\|^2.
$$

Since B is a symmetric $(0,1)$-matrix with zero main diagonal, the result of Motzkin and Straus implies that

$$
\langle Bx, x \rangle \leq 1 - 1/\omega(B)
$$

3
for every $x \in P_n$. Since $\omega(B) = \omega(A)$, we find that

$$
\langle Ax, x \rangle = \langle Bx, x \rangle + \langle Cx, x \rangle = \frac{1}{2} \left(1 - \|x\|^2 \right) + \frac{1}{2} \langle Bx, x \rangle \leq 1 - \frac{1}{2\omega(A)} - \frac{1}{2n}.
$$

completing the proof of (6).

Let G be a complete r-partite graph whose vertex classes differ in size by at most 1. Let $T = \{t_{ij}\}$ be the adjacency matrix of G; set $t_{ij} = 1$ for $i < j$ and write A for the resulting matrix. We have

$$
\|A\|^2 = \binom{n}{2} + \frac{1}{2} \|T\|^2 = \binom{n}{2} + \frac{\binom{r}{2} n^2 - \nu^2}{r^2} + \binom{\nu}{2},
$$

Letting x to be the n-vector $(1/n, \ldots, 1/n) \in P_n$, we find that

$$
\langle Ax, x \rangle = \frac{1}{n^2} \|A\|^2 = \frac{1}{n^2} \left(\binom{n}{2} + \frac{\binom{r}{2} n^2 - \nu^2}{r^2} + \binom{\nu}{2} \right) = 1 - \frac{1}{2r} - \frac{1}{2n} + \frac{1}{r^2} \binom{\nu^2}{2} - \frac{1}{2} \binom{\nu^2}{2} - \frac{1}{2} \binom{\nu^2}{2} - \frac{1}{8n^2},
$$

completing the proof of the lemma. \qed

Proof of Theorem 1 Select $y = (y_1, \ldots, y_n)$ with $\|y\| = 1$ and $\eta(A) = |\langle Ay, y \rangle|$. We have, by the Cauchy-Schwarz inequality,

$$
\eta^2(A) = \left| \sum_{i,j} a_{ij} y_i y_j \right|^2 \leq \sum_{i,j} |a_{ij}|^2 \sum_{i,j} |y_i|^2 |y_j|^2 = \|A\|^2 \sum_{a_{ij} \neq 0} |y_i|^2 |y_j|^2.
$$

Define a graph G with $V(G) = [n]$, joining i and j if $a_{ij} \neq 0$. Obviously, $\omega(G) = \omega(A)$. Since $\|y\| = 1$, the result of Motzkin and Straus implies that

$$
\sum_{a_{ij} \neq 0} |y_i|^2 |y_j|^2 = \sum_{ij \in E(G)} |y_i|^2 |y_j|^2 \leq 1 - \frac{1}{\omega(A)},
$$

completing the proof of (2).

Let A be the adjacency matrix of the union of a complete graph on r vertices and $n - r$ isolated vertices. Since $\omega(A) = r$, $\eta(A) = r - 1$, and $\|A\|^2 = r (r - 1)$, we see that

$$
\eta^2(A) = \mu^2(A) = (1 - 1/\omega(A)) \|A\|^2,
$$

completing the proof of the theorem. \qed

Proof of Theorem 3 Select $y = (y_1, \ldots, y_n)$ with $\|y\| = 1$ and $\eta(A) = |\langle Ay, y \rangle|$. Lemma 4 implies that

$$
\eta^2(A) = \left| \sum_{i,j} a_{ij} y_i y_j \right|^2 \leq \sum_{i,j} |a_{ij}|^2 \sum_{a_{ij} \neq 0} |y_i|^2 |y_j|^2 = \|A\|^2 \sum_{a_{ij} \neq 0} |y_i|^2 |y_j|^2 \leq \left(1 - \frac{1}{2\omega(A)} - \frac{1}{2n} \right) \|A\|^2,
$$

4
proving (4).

To complete the proof, select A as in the proof of Lemma 4. Hence, letting ν be the remainder of n modulo r, we have

$$\|A\|^2 = \sum_{i,j} a_{ij} = \left(\binom{n}{2} + \binom{r}{2} \frac{n^2 - \nu^2}{r^2} + \binom{\nu}{2}\right).$$

Selecting x to be the n-vector $(n^{-1/2}, \ldots, n^{-1/2})$, as in the proof of Lemma 4, we find that

$$\eta^2(A) \geq \frac{1}{n^2} \|A\|^2 = 1 - \frac{1}{2r} - \frac{1}{2n} + \left(\frac{\nu^2}{2r} - \frac{\nu}{2}\right) \frac{1}{n^2} \geq 1 - \frac{1}{2r} - \frac{1}{2n} - \frac{r}{8n^2},$$

completing the proof of the theorem. \qed

Concluding remarks

- The example constructed in the proof of Lemma 4 shows that equality may hold in (4) and (6) whenever n is a multiple of r.
- It would be interesting to drop the requirement for zero main diagonal in Theorem 1 and 3. Note that inequalities (5) and (6) are no longer valid if ones are present on the main diagonal of A.
- Since the spectral radius of a square matrix does not exceed its numerical radius, Theorem 1 and 3 provide upper bounds on the spectral radius as well.

References

[1] B. Bollobás, Modern Graph Theory, Graduate Texts in Mathematics, 184, Springer-Verlag, New York (1998), xiv+394 pp.

[2] K. Fuad, A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix, Studia Math. 158 (2003), 11–17.

[3] C.-K. Li, B.-S. Tam, P.Y. Wu, The numerical range of a nonnegative matrix, Linear Algebra Appl. 350 (2002), 1–23.

[4] J. Merikoski, R. Kumar, Lower bounds for the numerical radius, Linear Algebra Appl. 410 (2005), 135–142.

[5] T. Motzkin, E. Straus, Maxima for graphs and a new proof of a theorem of Turán, Canad. J. Math. 17 (1965), 533-540.

[6] J. Maroulas, P.J. Psarrakos, M.J. Tsatsomeros, Perron–Frobenius type results on the numerical range, Linear Algebra Appl. 348 (2002), 49–62.

[7] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin. Probab. Comput. 11 (2002), 179–189.

[8] V. Nikiforov, An extension of Maclaurin’s inequalities, submitted for publication.