The combination of Taguchi and Proximity Indexed Value methods for multi-criteria decision making when milling

Nguyen Lam Khanh, Nguyen Van Cuong*
University of Transport and Communications, Hanoi, Vietnam
*Email: nguyencuong@utc.edu.vn

Received: February 27, 2021. Revised: July 29, 2021. Accepted: August 25, 2021. Published: August 27, 2021.

Abstract- Milling is a commonly used method in mechanical machining. This is considered to be the method for the highest productivity among cutting methods. Moreover, the quality of the machined surface is increasingly improved as well as the machining productivity is increasingly enhanced thanks to the development of machine tool and cutting tool manufacturing technology. Therefore, in each specific processing condition (about machine, tool and part material, and other conditions), specific studies are required to determine the value of technological parameters in order to improve productivity and machining accuracy. Only in this way can we take full advantage of the capabilities of modern equipment. The process parameters in the milling method in particular and in the machining and cutting methods in general can be easily adjusted by the machine operator as the parameters of the cutting parameters or the change of tool types. In this article, the combination of Taguchi and Proximity Indexed Value (PIV) methods is presented for multi-criteria decision making in milling. An experimental matrix was designed according to Taguchi method with five input parameters, including the insert materials (TiN, TiCN, and TiAlN), nose radius, cutting velocity, feed rate and depth of cut. The total number of experiments that were performed was twenty-seven. The workpiece used during the experiment was SCM440 steel. At each experiment, the surface roughness was measured and the Material Removal Rate (MRR) was calculated. The weights of these two parameters have been chosen by the decision maker on the basis of consultation with experts. The PIV method was applied to determine the experiment at which the minimum surface roughness and the maximum MRR were simultaneously guaranteed. In addition, the influence of input parameters on surface roughness was also found in this study.

Keywords: Milling, Multi-criteria decision-making, Taguchi, PIV, surface roughness, MRR

I. INTRODUCTION

Milling is a very commonly used method in mechanical machining. This is considered to be the most productive of all cutting methods [1, 2]. On the other hand, with the development of the manufacturing technology of machine tools and cutting tools as well as many other factors, the milling method also provides more and more high accuracy. In order to fully exploit the advantages of equipment and tools in the milling field, a number of studies have been conducted to determine the value of technological parameters for the purpose of simultaneously ensuring certain criteria. This problem is known as multi-criteria decision making in milling (some studies also call this type of multi-criteria decision making problem a multiple objective optimization problem).

There are many mathematical methods for multi-criteria decision making such as Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [3], VIKOR [4], Multiobjective Optimization On the basis of Ratio Analysis (MOORA) [5], Complex PROportional ASessment (COPRAS) [6], Reference Ideal Method (RIM) [7], Proximity indexed value (PIV) [8] etc. Several of these methods have been combined with the Taguchi method for multi-criteria decision making during the milling process. The Taguchi and MOORA methods were combined to make a decision for choosing the value of cutting parameters to simultaneously ensure the minimum flank wear and the maximum MRR [9]. The authors of this study designed a matrix of experiments according to the Taguchi method with a total of twenty-seven experiments. The test material used was medium steel. As a result, they identified one experiment out of a total of twenty-seven experiments performed (i.e. determining the value of cutting speed, feed rate and depth of cut) in which both roughness and Surface and tool wear are minimized.

The Taguchi and MOORA methods have also been combined to make a decision for choosing the insert material, the cutting velocity and the feed rate in order to simultaneously ensure the minimum surface roughness and the maximum MRR [10]. The type of workpiece material used in this study is the Ti-6Al-4V alloy. Two types of insert have been used, PVD coated and CVD coated. A matrix of eighteen experiments was designed according to the Taguchi method. This study identified the best experiment (out of a total of eighteen experiments performed) where the cutting piece
material was CVD, the cutting speed was 150 m/min, and the feed rate was 0.09 mm/min.

The Taguchi method has been combined with the RIM method to determine the material of inserts and the value of the cutting velocity, the feed rate and the depth of cut to ensure simultaneous the minimum surface roughness and the maximum MRR [11]. The test material used was SKD11 steel. In this study, a matrix of twenty-seven experiments was also designed according to the Taguchi method with input parameters being the cutting material (including three types: TiN, TiCN and TiAlN), nose radius, cutting speed, feed rate and depth of cut. This study has determined the experiment in which the insert material is TiCN, 0.3 mm is the value of the tip radius, 125 m/min is the value of the cutting velocity, the feed is 500 mm/min, and 0.45 is the value of the depth of cut. With these values of the input parameters, the maximum MRR, the minimum cutting force and the minimum surface roughness are guaranteed.

However, when using methods such as TOPSIS, VIKOR, MOORA, COPRAS, RIM to rank the alternatives, it is very easy to occur the reversal to solutions. That is, if we add or subtract a certain solution, the order of the previously ranked solutions will not be maintained, sometimes even creating an opposite ranking compared to the original ranking [8]. The PIV method is known as a multi-criteria decision making method which enables to minimize the possibility of reversibility to solutions [8]. This method has been successfully applied in multi-criteria decision making when ranking and selecting E-learning sites [12], for the selection of materials for manufacturing some parts of automobiles [13], for the selection of elements for logistics activities of the EU countries [14], for the selection of additives in a production process [15], etc. However, until now, there have been no studies that apply this method for multi-criteria decision making in milling.

From the above arguments, this study will conduct an experiment on the milling process according to the matrix designed by the Taguchi method. The PIV method will be applied for multi-criteria decision making. The ultimate goal of this study is to determine the type of insert material, nose radius, cutting velocity, feed rate and depth of cut in order to simultaneously ensure the minimum surface roughness and the maximum MRR. The results of this study can be directly applied to the selection of the insert material, the nose radius, and the cutting parameters to ensure the minimum surface roughness and the maximum MRR when milling SCM440 steel. In addition, the methodology presented in this study can also be applied to perform multi-criteria decision-making studies in other machining processes.

II. MILLING EXPERIMENT

HAAS 3-axis CNC milling machine was used to perform the experiments. This machine uses HASS (USA) operating system, using touch screen. The tool travel in the X, Y and Z directions is 3048 mm, 813 mm and 762 mm, respectively. The maximum speed of the spindle is 7500 rpm, the power is 22.4KW. The maximum feed rates along the X, Y, and Z axes are 9.1 m/min, 15.2 m/min and 15.2 mm/min, respectively. The tool holder is SMTC type, can hold thirty-one tools at the same time. Spindle speed and feed speed in all directions are steplessly adjusted according to the intended use.

SCM440 steel was selected to perform the experiments in this study. This steel has a hight content of Cr and Mo. Thanks to that, it has the advantage of high hardness but still ensures toughness. This steel is often used to make parts that are subject to heavy loads and require high wear resistance such as gears, plastic injection molds, sliding surfaces or some parts in automobile engines. These parts often have planes that need to be machined to ensure high accuracy. The workpieces have the length, width, and height of 100 mm, 50 mm, and 40 mm, respectively. Before performing the experiments, the workpieces were subjected to rough milling to ensure the same size and quality of all samples. The experimental matrix was designed according to the Taguchi method with five input parameters including insert material, nose radius, cutting velocity, feed rate and depth of cut. Each input parameter is selected with three value levels as shown in Table 1. The selection of values for input parameters according to their values in the study [11]. The experimental matrix of twenty-seven experiments is shown in Table 2. In each experiment, two new inserts of the same type with the diameter of 14 mm were installed on the tool body, these two inserts were installed symmetrically. The fact that each chip is used only once is intended to reduce the influence of flank wear on responses.

During the experiment, the coolant was Tectyl cool 240 (Korea) oil, mixed with water to reach a concentration of 8%, with a flow of 22 liters/min. This coolant type is commonly used in CNC milling technology [16].

Surface roughness was measured with the SJ201 machine of Mitutoyo - Japan, with the standard length of the measurement being 0.8 mm. Before surface roughness measurement, the workpieces were washed with alcohol, then allowed to dry. The purpose of this is to ensure the surface of the part is clean and pure, ensuring the accuracy of the measurement. In addition, in order to minimize the errors that may appear in the measurement process, each sample was measured at least three times in a row. Taking the average value of consecutive measurements, we will get the surface roughness value at each experiment.

MRR is calculated according to formula (1).

\[
\text{MRR} = V_f \cdot a_p \cdot b_w (\text{mm}^2/\text{min})
\]

Of which:
\(V_f\) is the feed rate in minutes.
\(a_p\) is the average cutting speed. In this case a symmetrical milling was performed, which means that the milling width is equal to the diameter of the tool itself, i.e. \(b_w = 14\ \text{mm}\).
Table 1. The value of input parameters at levels

Parameter	Symbol	Unit	1	2	3
Insert material	IM		TiN	TiCN	TiAlN
Tool nose radius	r	mm	0.3	0.5	0.8
Cutting velocity	v_c	m/min	100	125	150
Feed rate	V_f	mm/min	300	400	500
Depth of cut	a_p	mm	0.25	0.35	0.45

Table 2. Experimental matrix and results

Trial	Code value	Actual value	Response	
	IM r v_c f_z a_p	IM r v_c V_f a_p	Ra (μm)	MRR (mm³/min)
1	1 1 1 1 1	TiN 0.3 100 300 0.25	0.823	1050
2	1 1 1 1 2	TiN 0.3 100 300 0.35	1.556	1470
3	1 1 1 1 3	TiN 0.3 100 300 0.45	1.812	1890
4	1 2 2 2 1	TiN 0.5 125 400 0.25	1.642	1400
5	1 2 2 2 2	TiN 0.5 125 400 0.45	0.966	1960
6	1 2 2 2 3	TiN 0.5 125 400 0.45	1.053	2520
7	1 3 3 3 1	TiN 0.8 150 500 0.25	2.355	1750
8	1 3 3 3 2	TiN 0.8 150 500 0.35	1.690	2450
9	1 3 3 3 3	TiN 0.8 150 500 0.45	0.921	3150
10	2 1 2 3 1	TiCN 0.3 125 500 0.25	0.267	1750
11	2 1 2 3 2	TiCN 0.3 125 500 0.35	0.327	2450
12	2 1 2 3 3	TiCN 0.3 125 500 0.45	0.733	3150
13	2 2 3 1 1	TiCN 0.5 150 300 0.25	0.985	1050
14	2 2 3 1 2	TiCN 0.5 150 300 0.35	2.661	1470
15	2 2 3 1 3	TiCN 0.5 150 300 0.45	0.928	1890
16	2 3 1 2 1	TiCN 0.8 100 400 0.25	0.902	1400
17	2 3 1 2 2	TiCN 0.8 100 400 0.35	2.829	1960
18	2 3 1 2 3	TiCN 0.8 100 400 0.45	1.418	2520
19	3 1 3 2 1	TiAlN 0.3 150 400 0.25	0.508	1400
20	3 1 3 2 2	TiAlN 0.3 150 400 0.35	0.287	1960
21	3 1 3 2 3	TiAlN 0.3 150 400 0.45	0.481	2520
22	3 2 1 3 1	TiAlN 0.5 100 500 0.25	1.209	1750
23	3 2 1 3 2	TiAlN 0.5 100 500 0.35	2.681	2450
24	3 2 1 3 3	TiAlN 0.5 100 500 0.45	0.728	3150
25	3 3 2 1 1	TiAlN 0.8 125 300 0.25	0.758	1050
26	3 3 2 1 2	TiAlN 0.8 125 300 0.35	2.153	1470
27	3 3 2 1 3	TiAlN 0.8 125 300 0.45	2.225	1890

III. EXPERIMENT RESULTS AND DISCUSSION

The experimental results have also been included in Table 2. Figure 1 shows a chart representing the influence of input parameters on the surface roughness. The influence of the interaction between input parameters on the surface roughness is presented in Figure 2.
Based on the difference between the points represented at level 1 and level 3 of each graph in Figure 1, it shows that the nose radius is the parameter with the greatest influence on the surface roughness, followed by the influence of the cutting velocity, the feed rate has the influence on the surface roughness at position 3, while the insert material and the depth of cut have little followed on the surface roughness. These phenomena are explained as follows. When changing the nose radius, it changes both the shape and size of the scratch left by the cutting tool on the surface of the part, thereby changing the surface roughness. When the cutting speed and the feed rate change, the contact time between a point on the workpiece surface and the cutting tool will change, that is, the degree of "re-cut" of the cutting tool to the surface will change, thus affecting the surface roughness. The type of insert material and the cutting depth have little influence on the surface roughness, which is explained by the fact that all three types of inserts have high titanium content and therefore have high temperature resistance, which is the cause of reduced phenomenon plastic deformation of the surface metal layer (plastic deformation of the surface metal layer is one of the main causes affecting the surface roughness). Therefore, changes in the insert material and cutting depth have little effect on the surface roughness.

In Figure 2 there are ten sub-figures, each of which corresponds to the interaction effect between the two input parameters on the surface roughness. Observing these sub-figures shows that the interaction effect of input parameters on surface roughness is very complex. Just analyzing some of these ten figures will further clarify this statement. For example, let's analyze figure a and figure b.

- In the first sub-figure (figure a), when the insert material is TiN, the surface roughness will decrease if the nose radius increases from 0.3 mm to 0.5 mm, but if the nose radius increases from 0.5 mm to 0.8 mm, the surface roughness will increase. For two types of chips, TiCN and TiAlN, when the nose radius increases from 0.3 mm to 0.5 mm, the surface roughness increases rapidly, but if the nose radius increases from 0.5 mm to 0.8 mm, the surface roughness increases slowly.

- In the second sub-figure (figure b), when the insert material is TiN, the surface roughness will decrease slowly as the cutting velocity increases from 100 m/min to 125 m/min, but if the cutting velocity increases from 125 m/min to 150
m/min, the surface roughness will increase slowly. When the insert material is TiCN, the surface roughness will decrease rapidly if the cutting velocity increases from 100 m/min to 125 m/min, but the surface roughness will increase rapidly if the cutting velocity increases from 125 m/min to 150 m/min. In the case the insert material is TiAlN, if the cutting velocity increases from 100 m/min to 125 m/min, the surface roughness increases slowly, but if the cutting velocity increases from 125 m/min to 150 m/min, the surface roughness will decrease rapidly.

The detailed analysis above indicates that the input parameters and their interactions have a very complex influence on the surface roughness. When simultaneously considering two parameters, surface roughness and MRR, it is also shown that the input parameters have a very complex influence on both of these parameters. It can be said that because as analyzed above (for example: considering Figure 1), the depth of cut has little influence on the surface roughness but has much influence on MRR. In contrast, the cutting velocity has significant influence on the surface roughness but had no influence on MRR. Similarly, the nose radius has great influence on the surface roughness but has no influence on MRR. Thereby, it shows that it is impossible to determine the value of input parameters to simultaneously ensure the minimum surface roughness and the maximum MRR if only observing the graph in Figures 1 and 2. When observing the experimental data in Table 2, it shows that MRR has the maximum value of 3150 mm³/min in experiments 9, 12 and 24. But also in these experiments, the surface roughness has the corresponding values of 0.921, 0.733 µm and 0.728 µm. These three values are not the minimum one for surface roughness in Table 2. The minimum value of surface roughness is 0.267 µm, corresponding to experiment 10, but MRR in this experiment is quite small (equal to 1750 mm³/min). This affirms that it is impossible to obtain an experiment at which the minimum surface roughness and the maximum MRR are simultaneously guaranteed. The concept of “minimum” for surface roughness and the concept of “maximum” for MRR can only be understood relatively. And of course, in order to determine the experiment at which the “minimum” surface roughness and the “maximum” MRR are simultaneously guaranteed, it is necessary to study multi-criteria decision making. This content will be presented in the next part of this article.

IV. MULTI-CRITERIA DECISION MAKING WHEN MILLING

A. PIV method

PIV is a method for multi-criteria decision making that was first introduced in 2018 [8]. The steps to implement multi-criteria decision making according to this method are as follows:

Step 1: Describe solutions Ai (with j = 1, 2, ..., m) and criteria Ci (with j = 1, 2, ..., n).

Step 2: Build a decision-making matrix Y by arranging the solutions by rows and the criteria by columns as in the form of formula (2).

\[
Y = \begin{bmatrix}
Y_{11} & Y_{12} & \cdots & Y_{1j} & \cdots & Y_{1n} \\
Y_{21} & Y_{22} & \cdots & Y_{2j} & \cdots & Y_{2n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
Y_{m1} & \cdots & \cdots & Y_{mj} \cdots & \cdots & Y_{mn}
\end{bmatrix}
\]

(2)

Of which \(Y_{ij}\) represents the alternative performance value of the criterion j in the solution i.

Step 3: Determine the normalized decision-making matrix using the formula (3)

\[
R_j = \frac{Y_{ij}}{\sqrt{\sum_{i=1}^{m} Y_{ij}^2}}
\]

(3)

Of which \(Y_{ij}\) is the actual decision value of option i.

Step 4: Determine the weighted normalized decision-making matrix according to the formula (4)

\[
v_j = w_j \times R_j
\]

(4)

Of which \(w_j\) is the weight of the criterion j.

Step 5: Evaluate the weighted proximity index according to the formula (5).

\[
u_i = \begin{cases}
V_{i} - V_{i} & \text{for beneficial attributes} \\
V_{i} - V_{min} & \text{for cost attributes}
\end{cases}
\]

(5)

Step 6: Determine the overall proximity value according to the formula (6).

\[
d_i = \sum_{j=1}^{n} u_i
\]

(6)

Step 7: Rank the solutions according to the principle that the solution with the smallest \(d_i\) is the best one.

B. Multi-criteria decision making

In order to facilitate the calculation process, we put IM = X₁, r = X₂, \(v_c = X_3\), \(V_f = X_4\), \(d_p = X_5\), \(R_a = Y_1\), MRR = \(Y_2\). Thus, we have the decision-making matrix as shown in Table 3. The task of the multi-criteria decision making problem is to choose the solution \(A_1\) where \(Y_1\) is considered the minimum and \(Y_2\) is considered the maximum.

Solutions	\(X_1\)	\(X_2\)	\(X_3\)	\(X_4\)	\(X_5\)	\(Y_1\)	\(Y_2\)
\(A_1\)	TiCN	0.3	100	300	0.25	0.823	1050
\(A_2\)	TiCN	0.3	100	300	0.35	1.556	1470
\(A_3\)	TiCN	0.3	100	300	0.45	1.812	1890
Apply the formula (3), it is able to determine the normalized matrix as shown in Table 4.

Table 4. Normalized Matrix

Solutions	R_j	
Y_1	Y_2	
A_1	0.0869	103.2926
A_2	0.3107	202.4534
A_3	0.4213	334.6679
A_4	0.3460	183.6312
A_5	0.1197	359.9172
A_6	0.1423	594.9652
A_7	0.7116	286.9238
A_8	0.3665	562.3707
A_9	0.1088	929.6331
A_{10}	0.0091	286.9238
A_{11}	0.0137	562.3707
A_{12}	0.0689	929.6331
A_{13}	0.1245	103.2926
A_{14}	0.9086	202.4534
A_{15}	0.1105	334.6679
A_{16}	0.1044	183.6312
A_{17}	1.0269	359.9172
A_{18}	0.2580	594.9652
A_{19}	0.0331	183.6312
A_{20}	0.0106	359.9172
A_{21}	0.0297	594.9652
A_{22}	0.1876	286.9238
A_{23}	0.9223	562.3707
A_{24}	0.0680	929.6331
A_{25}	0.0737	103.2926
A_{26}	0.5948	202.4534
A_{27}	0.6352	334.6679

Apply the formula (4) to determine the weighted normalized matrix as shown in Table 5. Of which the determination of
the weight to the surface roughness and MRR is done according to the opinion of experts. These viewpoints suggest that the weight of these two parameters should be equal, i.e. \(w_1 = w_2 = 0.5 \).

Table 5. Weighted Normalized Matrix

Solutions	\(w_i \)	\(Y_1 \)	\(Y_2 \)
A1	0.0435	51.6463	
A2	0.1553	101.2267	
A3	0.2106	167.3340	
A4	0.1730	91.8156	
A5	0.0599	179.9586	
A6	0.0711	297.4826	
A7	0.3558	143.4619	
A8	0.1832	281.1853	
A9	0.0544	464.8166	
A10	0.0046	143.4619	
A11	0.0069	281.1853	
A12	0.0345	464.8166	
A13	0.0622	51.6463	
A14	0.4543	101.2267	
A15	0.0553	167.3340	
A16	0.0522	91.8156	
A17	0.5135	179.9586	
A18	0.1290	297.4826	
A19	0.0166	91.8156	
A20	0.0053	179.9586	
A21	0.0148	297.4826	
A22	0.0938	143.4619	
A23	0.4611	281.1853	
A24	0.0340	464.8166	
A25	0.0369	51.6463	
A26	0.2974	101.2267	
A27	0.3176	167.3340	

Apply the formula (5) to determine the proximity index as shown in Table 6. Apply the formula (6) to determine the total proximity value, also included in Table 6.

Solutions	\(w_i \)	\(Y_1 \)	\(Y_2 \)
A1	0.039	413.170	413.2092
A2	0.151	363.590	363.7406
A3	0.206	297.483	297.6887
A4	0.168	373.001	373.1693
A5	0.055	284.858	284.9132
A6	0.067	167.334	167.4005
A7	0.351	321.355	321.7059
A8	0.179	183.631	183.8099
A9	0.050	0.000	0.0498
A10	0.000	321.355	321.3547
A11	0.002	183.631	183.6335
A12	0.030	0.000	0.0299
A13	0.058	413.170	413.2279
A14	0.450	363.590	364.0396
A15	0.051	297.483	297.5333
A16	0.048	373.001	373.0486
A17	0.509	284.858	285.3668
A18	0.124	167.334	167.4584
A19	0.012	373.001	373.0129
A20	0.001	284.858	284.8587
A21	0.010	167.334	167.3442
A22	0.089	321.355	321.4439
A23	0.457	183.631	184.0878
A24	0.029	0.000	0.0294
A25	0.032	413.170	413.2026
A26	0.293	363.590	363.8827
A27	0.313	297.483	297.7956

The solutions are ranked based on the values of \(d_i \), the results are presented in Table 7.

Solutions	IM	\(r \) (mm)	\(v_c \) (m/min)	\(f_c \) (mm/min)	\(d_p \) (mm)	\(Ra \) (\(\mu \)m)	\(MRR \) (mm\(^3\)/min)	Rank
A1	TiN	0.3	100	300	0.25	0.823	1050	26
A2	TiN	0.3	100	300	0.35	1.556	1470	19
A3	TiN	0.3	100	300	0.45	1.812	1890	14
From the ranking order of options in Table 7, it shows that the A24 option is the best, and the A13 option is the worst. For the option A13 (and the options A1, A23), the MRR is equal to 1050 mm³/min which is the minimum value in Table 7, and the surface roughness in the option A13 is also quite large. For the option A24 (and the options A9, A12), the MRR is equal to 3150 mm³/min which is the maximum value in Table 7. The surface roughness in the options A24 of 0.728 μm is a rather small value, only larger than the surface roughness in the options A10, A11, A19, A20 and A21. Thus, the option A24 has surface roughness at position 6 and MRR at position 1. Therefore, it can be said that it is completely appropriate to confirm that this option is the best. Thereby, we can come to the conclusion, in order to ensure the minimum surface roughness and the maximum MRR at the same time, it is required to choose the insert material as TiAlN, the nose radius equal to 0.5 mm, the cutting velocity equal to 100 m/min, the feed rate equal to 500 mm/min and the depth of cut equal to 0.45 mm.

V. CONCLUSION

In this study, the SCM440 steel milling experiment was conducted according to a matrix designed by the Taguchi method. At each experiment, five parameters were changed, including the insert material, nose radius, cutting velocity, feed rate and depth of cut. Surface roughness and MRR are two parameters that were determined in each experiment. The PIV method was applied for multi-criteria decision making. Some conclusions are drawn as follows:

- Nose radius is the parameter that has the greatest influence on surface roughness, followed by the influence of cutting velocity and feed rate. The insert material and depth of cut have no significant influence on the surface roughness.
- In order to ensure the minimum surface roughness and maximum MRR simultaneously, it is required to select the insert material as TiAlN, the value of the tip radius, cutting velocity, feed rate and depth of cut are 0.5 mm, 100 m/min, 500 mm/min and 0.45 mm, respectively.
- The PIV method has been successfully applied in multi-criteria decision making in several studies [7, 11-14]. This method was applied for the first time and also succeeded in multi-criteria decision-making of the SCM440 steel milling process in this study. The application of PIV method for multi-criteria decision making is also a research direction that should be carried out for other machining processes.
- This study only considers two criteria to evaluate the milling process: surface roughness and MRR. In order to evaluate the milling process more comprehensively, other parameters should also be considered such as cutting force, tool wear, etc. On the other hand, the weight of the criteria...
(surface roughness and MRR) was chosen by the decision maker. The weighting of the criteria according to mathematical methods such as Entropy, Analytic Hierarchy Process (AHP), etc. also need to be considered. In the future, these works will be carried out by the authors of this paper.

ACKNOWLEDGMENT

This research is funded by University of Transport and Communications (UTC) under grant number T2021-CK-003.

REFERENCES

[1]. D. D. Trung, Influence of Cutting Parameters on Surface Roughness during Milling AISI 1045 Steel, Tribology in Industry, Vol. 42, No. 4, pp. 658-665, 2020, https://doi.org/10.24874/ti.969.09.20.11

[2]. K. Dudzik, The possibility of applying acoustic emission method to optimize determination of milling parameters, WSEAS transactions on Systems and Control, Vol. 15, pp. 302-310, 2020, https://doi.org/10.37394/23203.2020.15.31

[3]. C. –L. Hwang, Y. –J. Lai, Ting Yun Liu, A new approach for multiple objective decision making. Computers & Operations Research, Vol. 20, No. 8, pp. 889–899, 1993, https://doi.org/10.1016/0305-0548(93)90109-V

[4]. S. Opricovic, G. -H. Tzeng, Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, Vol. 156, No. 2, pp. 445-455, 2004, https://doi.org/10.1016/S0377-2217(03)00020-1

[5]. W. Brauers, Optimization methods for a stakeholder society. A revolution in economic thinking by multi-objective optimization, Publisher: springer before Kluwer, https://doi.org/10.1007/978-1-4419-9178-2

[6]. Triantaphyllou, Evangelos, Multi-criteria Decision Making Methods: A Comparative Study, Springer – Science + Business media, 2020, https://www.springer.com/gp/book/9780792366072

[7]. E. Cables Perez , M.T. Lamata , J.L. Verdegay, RIM-Reference Ideal Method in Multicriteria Decision Making, Information Sciences, vol. 337-338, No. 10, pp. 1-10, 2016, https://doi.org/10.1016/j.ins.2015.12.011

[8]. S. Mufazzal, S. M. Muzakkir, A New Multi-Criterion Decision Making (MCDM) Method Based on Proximity Indexed Value for Minimizing Rank Reversals, Computers & Industrial Engineering, pp.1-38, 2018, https://doi.org/10.1016/j.cie.2018.03.045

[9]. V. Gadakh, Application of MOORA method for parametric optimization of milling process, International journal of applied engineering research, Dindigul, Vol. 1, No. 4, pp. 743-758, 2011.

[10]. S. K. Shihab, A. K. Chanda, Multi Response Optimization Of Milling Process Parameters Using Moora Method, International Journal of Mechanical And Production Engineering, Vol. 3, No. 4, pp. 67-71, 2015.

[11]. D. D. Trung, Multi-objective optimization of SKD11 steel milling process by Reference Ideal Method, International journal of geology, Vol. 15, pp. 1-16, 2021, https://doi.org/10.46300/9105.2021.15.1

[12]. N. Z. Khan, T. S. A.Ansari, A. N. Siddiquee, Z. A. Khan, Selection of E-learning websites using a novel Proximity Indexed Value (PIV) MCDM method, Journal of Computers in Education, Vol. 6, pp. 241-256, 2019, https://doi.org/10.1007/s40692-019-00135-7

[13]. S. Wakeel, S. Bingol, M. N. Bashir, S. Ahmad, Selection of sustainable material for the manufacturing of complex automotive products using a new hybrid Goal Programming Model for Best Worst Method–Proximity Indexed Value method, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, Vol. 0, No. 0, pp. 1-15, 2020, https://doi.org/10.1177/1464420720966347

[14]. A. Ulutaş, Ç. Karakoy, An analysis of the logistics performance index of EU countries with an integrated MCDM model , Economics and Business Review, Vol. 5 (19), No. 4, pp. 49-69, 2019, https://doi.org/10.18559/ebrr.2019.4.3

[15]. J. Raigar, V. S. Sharma, S. Srivastava, R. Chand, J.Singh, A decision support system for the selection of an additive manufacturing process using a new hybrid MCDM technique, Sădhană, Vol. 45, No. 101, pp. 1-14, 2020, https://doi.org/10.1007/s12046-020-01338-w

[16]. http://daunhonchinhang.vn/product/dau-cat-got-phuoc-TECTYL-cool-240/ (at July 20. 2021)