Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Prevalence of post-traumatic stress disorder during the COVID-19 pandemic in Saudi Arabia

Fahad S. Alshehri,1,* Yasser Alatawi, Badrah S. Alghamdi, Abdullah A. Alhifany, Adnan Alharbi

Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia

Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia

Department of Physiology, Neuroscience Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia

Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia

Article history:
Received 22 September 2020
Accepted 25 October 2020
Available online 30 October 2020

Keywords:
Mental health
Post-traumatic stress disorder
COVID-19
Resilience
Disease prevalence
Saudi Arabia

ABSTRACT

Background: The coronavirus diseases of 2019 (COVID-19) pandemic was classified as one of the worst pandemics in the 21st century. Its rapid transmission, unpredicted mortality rate, and the uncertainty surrounding its transmission method have evoked additional fear and anxiety. Nonetheless, to the best of our knowledge, no prior study has explored PTSD prevalence three months after the start of the quarantine procedures in Saudi Arabia nor has examined PTSD prevalence by three different methods.

Objective: This observational cross-sectional study aimed to identify the prevalence, severity, and influencing factors of PTSD in different regions of Saudi Arabia three months after the onset of the quarantine procedures related to the COVID-19 pandemic.

Methods: Through the month of June 2020, 1374 people (49.05% men and 50.95% women) completed a 35-item, 10-minute online. The prevalence of PTSD was measured using PCL-S (specific for COVID-19) that assesses the 17 symptoms of PTSD. Resilience was measured using 2-items Arabic version of the Connor-Davidson Resilience Scale 2 (CD-RISC 2).

Results: We calculated the prevalence by three methods, namely, PTSD cut-off score, criteria, and combined, and the prevalence was 22.63%, 24.8%, and 19.6%, respectively. Female participants showed higher prevalence than male. As well, participants who were either tested positive or suspected of having been infected with COVID-19 showed higher PTSD prevalence. Higher resilience was associated with lower PTSD prevalence.

Conclusions: This was the first study to report PTSD prevalence by three differential methods three months after the onset of the quarantine procedures related to the COVID-19 pandemic in Saudi Arabia. We observed a significant impact of the COVID-19 pandemic in the Saudi population; therefore, great attention should be performed in implementing new procedures that deal with the highlighted risk factors, especially in vulnerable groups, to overcome the psychological impact of the COVID-19 pandemic.

© 2020 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many Saudis still remember the psychological trauma caused by the Middle East respiratory syndrome-related coronavirus (MERS-CoV) outbreak in 2012, especially survivors and those who had direct contact with infected patients (Zaki et al., 2012). Several studies have reported that MERS-CoV survivors suffered social stigmatization and traumatic fear (Almutairi et al., 2018). The general public also showed higher levels of distress and anxiety attributable to susceptibility to infection (Al Najjar et al., 2016). Correlatively, the novel coronavirus disease of 2019 (COVID-19) presented a new global threat owing to its dangerous characteristics (e.g., rapid transmission, unpredicted mortality rate, and the
uncertainty about its transmission method, incubation period, and manifestation), which rapidly evoked fear and anxiety in the Saudi population and worldwide. As a safety measure to deal with the COVID-19 pandemic, the Saudi government imposed several precautionary rules to the entire country (e.g., quarantine, 24-hour curfew, and lockdown) to reduce the fast spread of the contagious disease (Al-Tawfiq & Memish, 2020; Yezli & Khan, 2020). Logically, these precautionary measures and the COVID-19 pandemic have a significant impact on mental health, leading to widespread fear, stress, anxiety, and depression (Al Sulais et al., 2020; AlHumaid et al., 2020). Together, these factors could increase the prevalence of post-traumatic stress disorder (PTSD) caused by the quarantine and experiences related to the COVID-19 pandemic.

Cumulative reports have found that natural disasters can be significant traumatic stressors, causing survivors to experience PTSD (Galea et al., 2005; Neria et al., 2008; Sprang & Silman, 2013). In 2003, the Severe Acute Respiratory Syndrome (SARS) outbreak was defined as a bio-disaster, having a severe impact on survivors owing to the traumatic situations they have experienced (Cheng et al., 2008; Chong et al., 2004). A study measured PTSD incidence related to the SARS outbreak, showing that the numbers were equivalent to those reported for natural disasters (Hawryluck et al., 2004). Another study showed that SARS survivors faced traumatic experiences related to dealing with a new deadly infection, witnessing unknown adverse events, an uncertain prognosis, and high risk of intensive care unit admission (Wu et al., 2005b). SARS survivors reportedly presented PTSD symptoms (i.e., increased anxiety and depression) in the early stages of recovery (Cheng et al., 2004; Wu et al., 2005b). Moreover, societal stigma was reported, with people tending to avoid and socially exclude SARS survivors (Lee et al., 2005). Additionally, a study examining SARS survivors' psychological characteristics 30 months after recovery reported that they had long-term PTSD symptoms, further confirming it as the most prevalent long-term psychiatric condition in this population (Mak et al., 2009). In SARS survivors, PTSD symptom severity was correlated with quarantine length (Hawryluck et al., 2004). Moreover, studies show that other disease outbreaks have caused similar effects; for example, Ebola survivors reportedly had a risk of developing PTSD owing to having been exposed to severe traumatic events related to distress thoughts about having a higher mortality rate (Hugo et al., 2015).

Several studies have suggested that most individuals experience trauma have a psychological balance that prevents and protects the overall mental health (Bonanno, 2004; Bonanno et al., 2006). Therefore, researchers have dedicated great attention to exploring the correlation of individual strengths and adaptational responses facing environmental adversity and trauma (Russo et al., 2012; Wu et al., 2013). Resilience is known as the ability to adapt to trauma, tragedy, or extreme threats (Charney, 2004). In fact, resilience is an essential part of coping, and adjustment experience in trauma recovery process (Anderson & Danis, 2006) A wide range of studies suggested that individuals with higher resilience traits are less susceptible to PTSD symptoms (Bensimon, 2012; Lepore & Revenson, 2006; Levine et al., 2009). Then, suggesting that if an individual experienced extreme stressor or trauma and did not show any PTSD symptoms, resilience is present. Consequently, the adaptability against trauma and extreme stressor such as COVID-19 pandemic is an essential factor that needs to be investigated.

Given the background above and the characteristics of the COVID-19 pandemic, it is reasonable to infer that it may evoke traumatic stressors similar to those related to the SARS epidemic. Untreated PTSD symptoms are unlikely to disappear and can contribute to drug abuse, depression, and sleep problems, all of which negatively influence people’s communication and productivity (Dansky et al., 1998; Goenjian et al., 2005; Kobayashi et al., 2007). Several sociodemographic factors have been suggested to play an essential role in developing PTSD. For instance, gender has a significant role in this matter, with higher chances of developing PTSD-related symptoms in females as compared to males in response to severe stressful experiences (Luxton et al., 2010; Norris et al., 2002; Olff et al., 2007). As well, healthcare providers who work in close contact with MERS and SARS patients were at higher risk of developing PTSD (Lee et al., 2018; Su et al., 2007). Similarly, patients with a history of psychiatric conditions are at high risk of developing PTSD than healthy individuals (kmert Danielson et al., 2010; Naeem et al., 2011; Oh et al., 2016). Due to the lack of previous research studies exploring the impact of COVID-19 pandemic on mental health and PTSD; this study aimed to identify the prevalence, severity, and influencing factors of PTSD in different regions of Saudi Arabia three months after the onset of the quarantine procedures related to the COVID-19 pandemic.

2. Methods

2.1. Questionnaire

This cross-sectional study was conducted through the whole month of June 2020; namely, approximately three months after the onset of the quarantine procedures in Saudi Arabia related to the COVID-19 pandemic. The PTSD symptoms usually begin within the first three months after experiencing stressful trauma; however, the degree of severity can differ from one individual to another (Carty et al., 2006; Dunmore et al., 1999; Mayou et al., 2002; Sadeghi-Bazargani et al., 2011). We distributed a survey through different social media platforms. Participants consent was completed at the beginning of the survey. The study inclusion criteria were: Being aged 18 years or older and be currently living in Saudi Arabia. Respondents were asked to complete a 10-minute online survey through the Survey Monkey platform (https://www.surveymonkey.com) regarding the following topics in the context of the COVID-19 pandemic: Sociodemographic data, Psychological impact, PTSD symptoms, and resilience. The significant impact of the COVID-19 pandemic in the Saudi population was investigated among different variables identified as risk factors, such as gender, family death, social stigma toward COVID-19 patients/survivors/suspected patients, marital status, chronic illness such as diabetes mellitus, hypertension, cancer or pulmonary diseases, and current/previous psychiatric condition. In total, 1374 people completed a 35-item questionnaire.

2.2. Instruments

We used a specific version of the PTSD checklist in the Diagnostic and Statistical Manual of Mental Disorders (DSM) survey (PCL-S) was used as a self-report tool to measure the 17 PTSD symptoms described in the DSM-V (Weathers et al., 1993). The PCL-S is a widespread and validated screening tool for making a provisional PTSD diagnosis for a specific event (Boals & Schuettler, 2011). We utilized a version that was translated from English to Arabic and compared it to a validated PCL-C Arabic version (Alhalal et al., 2017). Participants were asked to rate their experiences with the COVID-19 pandemic during the last month. Participants responded through a 5-point scale, ranging from 1 (Not at all) to 5 (Extremely). Their scores were calculated by different methods, which are described hereinafter.

The first method is named PTSD cut-off score; it measures participants’ symptomatic severity through a score range of 17–85. Prior researches show that a cut-off score of 45 or higher should be used when measuring PTSD symptoms through the PCL-S score because it minimizes false-positive diagnoses (Blanchard et al.,
thus, we utilized this well-established cutoff score to determine if participants were within the severity threshold of a PTSD diagnosis.

The second method is named PTSD criteria; it was used to check whether participants met the DSM-V symptom criteria for PTSD. Namely, participants must have had at least one symptom from the B category (items 1–5), three from the C category (items 6–12), and at least two from the D category (items 13–17) to meet the criteria. Responses in the range of 3–5 denoted that patients had the symptom described in each of the aforementioned items; participants who had scores for all the aforementioned items in the range of 3–5 were deemed as having the symptomatic pattern of a PTSD diagnosis.

The third method is named PTSD combined; to ensure result reliability, we combined the first and second methods, in that participants had to meet both the severity threshold and the symptomatic pattern described above to be diagnosed with PTSD. All three methods were approved and validated by the National Center for PTSD (Weathers).

We measured resilience using the Arabic version of the Connor-Davidson Resilience Scale 2 (CD-RISC 2) (Vaishnavi et al., 2007); we obtained the Arabic version with the permission from Dr. Jonathan R.T. Davidson. Resilience was scored with a total of two items, on a five-point scale from 0 (rarely true) to 4 (true nearly all of the time). The 2-item CD-RISC 2 includes two statements; (‘Able to adapt to change’) and (‘Tend to bounce back after illness or hardship’) with a higher score of 8 reflecting greater resilience. The shortened version CD-RISC 2 was introduced to the reduced time needed to complete the scale and therefore increased total usages by participants.

2.3. Statistical analysis

We reported participants’ descriptive statistics as frequencies and percentages. We applied a Chi-square test to examine the association between sociodemographic data and PTSD cut-off score, criteria and combined. We used stepwise multivariable logistic regression analyses to explore whether the four aforementioned variables were predictors of PTSD. The models were adjusted for several predictor variables including: age, gender, education level, monthly income, marital status, employment, working outside home during COVID-19, location, lockdown neighbors, infected with COVID-19, quarantine, and family death. We calculated the odds ratio (OR) and 95% confidence interval (CI) by the probability of having PTSD based on the three analysis methods. We set statistical significance as P < 0.05 for all analyses, and these were performed using SAS software.

3. Results

3.1. Sociodemographic data

Participants’ sociodemographic data are shown in Table 1. Among the 1374 participants, we observed similar distributions by gender (49.05% men and 50.95% women). Most participants were aged between 25 and 34 years (37.05%), married (53.28%), worked in governmental jobs (38.72%), and had a university or college degree (61.86%). The survey sample showed a diversity regarding participants monthly income, with higher percentage of participants reported lower income than 1000 SAR monthly (37.48%). Participants were divided into five categories by resident location in Saudi Arabia (i.e., East, Middle, North, South, and West), and most resided in the West (54.37%). Regarding quarantine measurements, (2.77%) of participants reported living in complete lockdown areas, and (9.61%) were isolated from others due to COVID-19 related safety measurements. Approximately 3.71% positive test for COVID-19, (1.97%) were suspected; however, most participants have not been infected with COVID-19 (94.32%). Moreover, 4% of the participants reported previous psychiatric conditions, whereas 12.66% reported a history of chronic health illnesses such as DM, HTN, cancer, or pulmonary diseases.

Table 1	Sociodemographic data and quarantine related psychosocial variables.												
Variables	All sample												
Age 18–24	N %												
18–24	342 24.89												
25–34	509 37.05												
35–44	348 25.33												
45–55	138 10.04												
More than 55	37 2.69												
Gender													
Male	674 49.05												
Female	700 50.95												
Education level													
Below high school	31 2.26												
High school	225 16.38												
University or college	850 61.86												
Monthly income													
Less than 1000 SAR	515 37.48												
1000–5000 SAR	195 14.19												
5001–10,000 SAR	217 15.79												
10,001–20,000 SAR	305 22.20												
More than 20,000 SAR	142 10.33												
Marital status													
Single	595 43.30												
Married	732 53.28												
Divorced/ Widowed	47 3.42												
Employment													
Government	532 38.72												
Private	173 12.59												
Freelancer	30 2.18												
Student	275 20.01												
Retired	30 2.18												
Unemployed	334 24.31												
Did your work outside your home during COVID-19?	Yes 382 27.8												
Location													
Eastern Region	90 6.55												
Middle Region	241 17.54												
North Region	157 11.43												
South Region	139 10.12												
Western Region	747 54.37												
Living in total lockdown isolated neighbors	Yes 38 2.77												
Are you, or have you been, infected with COVID-19?	Confirmed 51 3.71												
No / Don’t know	1296 94.32												
Suspected	27 1.97												
Did you infect others with COVID-19?	Yes 13 0.95												
Do you know people in your immediate social environment who are or have been infected with COVID-19?	Confirmed 514 37.41												
No / Don’t know	826 60.12												
Suspected	34 2.47												
Death related to COVID-19 in family or friends	Yes 165 12.01												
Have you been isolated because of COVID-19 pandemic?	132 9.61												
Previous psychiatric condition before COVID-19?	Yes 55 4.00												
Do you have a chronic illness such as DM, HTN, Cancer or pulmonary disease	Yes 174 12.66												
Variables	PTSD cut-off score	PTSD cut-off score	P value	PTSD criteria	PTSD criteria	P value	PTSD combined	PTSD combined	P value				
---------------------------------	--------------------	--------------------	---------	---------------	---------------	---------	---------------	---------------	---------				
Age	Yes	No	0.62	N	N	0.708	N	N	0.72				
	18–24	24.76	265	24.93	87	25.51	253	24.69	64				
	25–34	40.19	384	36.12	133	23.64	107	36.41	107				
	35–44	24.44	272	25.39	84	24.63	264	25.56	70				
	45–55	8.36	112	10.54	28	8.21	110	10.65	22				
	More than 55	2.25	30	2.82	9	2.64	28	2.71	7				
Gender	Yes	No	0.017	N	N	0.18	N	N	0.11				
	Male	45.02	560	52.68	103	47.88	537	51.98	126				
	Female	54.98	503	47.32	178	52.2	496	48.02	144				
Education level	Yes	No	0.94	N	N	0.83	N	N	0.97				
	Below high school	2.25	24	2.26	7	2.05	24	2.32	6				
	High school	15.76	176	16.56	61	17.89	164	15.88	46				
	University or college	63.34	653	61.43	206	60.41	644	62.34	164				
	Postgraduate or above	18.65	210	19.76	67	19.65	201	19.65	54				
Monthly income	Yes	No	0.16	N	N	0.70	N	N	0.57				
	Less than 1000 SAR	39.55	392	36.88	133	39.0	382	36.98	103				
	1000–5000	17.68	140	13.17	53	15.54	142	13.75	46				
	5001–10,000	13.83	174	16.37	51	14.96	166	16.07	39				
	10,001–20,000	19.61	244	22.95	74	21.7	231	22.36	57				
	More than 20,000	9.32	113	10.63	30	8.88	112	10.84	25				
Marital status	Yes	No	0.015	N	N	0.11	N	N	0.13				
	Single	43.09	461	43.37	147	43.11	448	43.37	144				
	Married	50.8	574	54	174	51.03	55	54.02	139				
	Divorced/Widowed	6.11	28	2.63	20	5.87	27	2.61	17				
Employment	Yes	No	0.34	N	N	0.94	N	N	0.11				
	Government	34.41	425	39.98	119	34.9	413	39.98	96				
	Private	12.86	133	12.51	46	13.49	127	12.29	34				
	Freelancer	3.22	10	1.88	10	2.93	20	1.94	10				
	Student	18.33	218	20.51	66	19.35	209	20.23	46				
	Retired	1.93	24	2.26	6	1.76	24	2.32	6				
	Unemployed	29.26	243	22.86	94	27.57	240	23.23	78				
Did your work outside your home during COVID 19?	Yes	No	0.099	81	23.75	260	76.25	0.054					
Location	Yes	No	0.0589	N	N	0.135	N	N	0.04				
	Eastern Region	9.32	61	5.74	31	9.09	59	5.71	26				
	Middle Region	60.58	177	16.65	65	19.06	176	17.04	56				
	North Region	10.93	123	11.57	33	9.68	124	12.02	28				
	South Region	8.36	113	11.57	36	10.56	103	9.97	20				
	Western Region	50.8	589	55.41	176	51.61	571	55.28	140				
Living in total lockdown isolated neighbors	Yes	No	0.875	11	3.23	330	96.77	0.55	8	2.96	262	97.04	0.82
Are you, or have you been, infected with COVID-19?	Yes	No	0.074	14	4.11	37	3.58	0.29	12	4.44	39	3.53	0.14
Did you infect others with COVID-19?	Yes	No	0.319	3	0.88	338	99.12	0.88	1	0.37	269	99.63	0.48
Do you know people in your immediate social environment who are or have been infected with COVID-19?	Yes	No	0.003	144	42.23	370	35.82	0.004	116	42.96	398	36.05	0.003
Death related to COVID-19 in family or friends	Yes	No	0.0005	57	16.72	284	83.28	0.002	50	18.52	220	81.48	0.0002
Previous psychiatric condition before COVID-19 pandemic?	Yes	No	0.0001	99	25.59	250	74.41	0.0001	64	25.39	278	74.61	0.017
Do you have a chronic illness such as DM, HTN, Cancer or pulmonary disease	Yes	No	0.276	49	14.37	292	85.63	0.274	42	15.56	228	84.44	0.11
3.2. PTSD prevalence

The overall prevalence of PTSD cut-off score, criteria, and combined were 22.63%, 24.8%, and 19.6%, respectively (Fig. 1). Table 2 shows the association between sociodemographic data, predictor variables, and PTSD prevalence, and Fig. 2 shows the results of the regression analysis. We observed a significant association between gender and PTSD prevalence: Females participants showed higher prevalence than males (coefficients; $P < 0.05$). Moreover, participants who were either confirmed or suspected of having been infected with COVID-19 showed higher PTSD prevalence (coefficients; $P < 0.05$) compared to their counterparts (coefficients; $P < 0.05$). Participants who experienced a family member die owing to COVID-19 (coefficients; $P < 0.05$) and who had previous psychiatric conditions (coefficients; $P < 0.05$) showed higher PTSD prevalence compared to their counterparts (i.e., participants without family member deaths: coefficients; $P < 0.05$; without psychiatric conditions: coefficients; $P < 0.05$). Conversely, participants with high resilience scores showed lower PTSD prevalence (coefficients; $P < 0.05$) compared to their lower resilience counterparts (coefficients; $P < 0.05$).
4. Discussion

This study aimed to investigate the prevalence, severity, and influencing factors of PTSD in different Saudi Arabia regions three months after the onset of the quarantine procedures related to the COVID-19 pandemic. Our results showed that the prevalence by the three methods of PTSD cut-off score, criteria, and combined were 22.63%, 24.8%, and 19.6%, respectively. Several studies using PTSD cut-off score to report on PTSD prevalence showed similar or higher results: In the USA (31.8%) (C. H. Liu et al., 2020), Italy (29.5%) (Forte et al., 2020), and Spain (15.8%) (González-Sanguino et al., 2020); others have reported lower prevalence, such as in China, in which it ranged from 2.7% to 12.8% (Li et al., 2020; N. Liu et al., 2020; Tang et al., 2020). These differential results could be explained, for example, by shorter periods between the onset of the COVID-19 outbreak and data collection, different sample sizes, or even a different method of analysis. Nonetheless, our study stressed a negative influence of the quarantine owing to the COVID-19 pandemic in Saudi Arabia on people’s psychological health, specifically regarding PTSD symptoms. Correlatively, in the Lebanese population, it was reported that PTSD symptoms were correlated with quarantine length (Fawaz & Samaha, 2020).

Our results emphasized that women had a greater propensity to experience PTSD symptoms than men. Confirming, several studies have reported that disease outbreaks have a higher effect on women than on men, demonstrating that women are at higher risk of developing PTSD symptoms (Lai et al., 2020; N. Liu et al., 2020; Mak et al., 2010). Further, reports have shown that women respond differently to extremely stressful events compared with men: Women with PTSD experience greater brainstem activation in response to threats (i.e., they may respond more intensely and abruptly and less reflectively under these conditions), while men showed greater capacity to contextualize fear-related stimuli (Felmingham et al., 2010). Others have justified gender differences by hormones, in that estrogen—which is generally less present in men than in women—could be a great influencing factor of women’s responses to trauma and PTSD symptoms (Glover et al., 2012; Lebrón-Milad et al., 2012). However, regardless of the several studies that have provided evidence on these influencing factors, they are not sufficient to explain why women have presented higher risk of developing PTSD symptoms than men in our study; thus, further research is warranted to explore this topic.

Our results also demonstrated a higher prevalence of PTSD in COVID-19 survivors/suspected patients. Correlatively, the COVID-19 infection made patients and survivors experience psychological outcomes associated with PTSD symptoms (Bo et al., 2020). Similar experiences have been reported for SARS survivors: A study highlighted that they reported increased anxiety, depression, and PTSD symptoms owing to the epidemic (Wu et al., 2005a), and another that they had higher stress levels one year after the SARS outbreak (Lee et al., 2007). Therefore, COVID-19 survivors may be at higher risk of developing PTSD, possibly owing to experiences related to prolonged stress and fear.

Our results also demonstrated that family death owing to COVID-19 was a substantial risk factor for PTSD. Generally, family death or loss of a loved one can cause depression in family members close to the deceased (Pochard et al., 2005). The funeral process and receiving grieving support were both shown to help family members in their recovery and healing process (Gammu et al., 2000). However, owing to the COVID-19 pandemic and social distancing requirements, funeral practices have been restricted internationally and in Saudi Arabia (Yezli & Khan, 2020); in addition to such hindrances and their consequent limited social sup-
Authorship and copyright

All authors the work described has not been published previously and it is not under consideration for publication elsewhere. This manuscript is approved by all authors and tacitly and explicitly by the responsible authorities where the work was carried out. It will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Ethics approval

The Biomedical Committee of Research Ethics at the faculty of medicine at Umm Al-Qura University approved the study (Approval no. HAPO-02-K-012-2020-06-394).

Author contribution

Fahad Alshehri, Yasser AlAtawi, Badrah Alghamdi, Abdullah Alhifany, Adnan Alharbi participated protocol design, data collection and in conducting the study. Fahad Alshehri wrote the manuscript. Yasser AlAtawi analyzed the data. All authors reviewed the final manuscript.

Funding

This work was funded by the Research and Development Grants Program for National Research Institutions and Centers (GRANTS), Target Research Program, Infectious Diseases Research Grant Program, King Abdulaziz City for Science and Technology (KACST), Kingdom of Saudi Arabia under grant [S-20-01-007-0021].

Declaration of Competing Interest

No potential competing interest was reported by the authors.

References

Al-Tawfiq, J.A., Memish, Z.A., 2020. COVID-19 in the Eastern Mediterranean Region and Saudi Arabia: prevention and therapeutic strategies. Int. J. Antimicrob. Agents 55 (5), 105688. https://doi.org/10.1016/j.ijantimicag.2020.105688.

Al Najjar, N.S., Attar, L.M., Farahat, F.M., Al Thaqafi, A., 2016. Psychobehavioural responses to the 2014 Middle East respiratory syndrome-corona virus (MERS-CoV) among adults in two shopping malls in Jeddah, western Saudi Arabia. EMHJ-Eastern Mediterranean Health J. 22 (11), 817–823 https://apps.who.int/hris/handbook/106/1665/260277.

Al Sulais, E., Mosli, M., ALameel, T., 2020. The psychological impact of COVID-19 pandemic on physicians in Saudi Arabia: A cross-sectional study. Saudi J. Gastroenterol. 26 (5), 249–255. https://doi.org/10.4103/sjg.SJG_174_20.

Alhalal, E., Ford-Gilboe, M., Wong, C., AlBuhairan, F., 2017. Reliability and validity of the Connor-Davidson Resilience Scale (CD-RISC). Depress. Anxiety 18 (2), 76–82. https://doi.org/10.1002/da.10113.

Anderson, K.M., Danis, F.S., 2006. Adult Daughters of Battered Women: Resistance and Prevalence of PTSD Symptomatology Among Treated and Untreated Adolescents 5 Years After a Catastrophic Attack. Psychol. Sci. 17 (3), 181–186. https://doi.org/10.1111/j.1467-9280.2006.01682.x.

Bo, H.X., Li, W., Yang, Y., Wang, Y., Zhang, Q., Cheung, T., Wu, X., Xiang, Y.T., 2020. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol. Med. 1–2. https://doi.org/10.1017/S0033291720000999.

Bonanno, G.A., 2004. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events?. Am. Psychol. 59 (1), 20–28. https://doi.org/10.1037/0003-066X.59.1.20.

Bonanno, G.A., Gala, S., Buccelli, A., Vlahos, N., 2004. Psychological Resilience After Disaster: New York City on the Aftermath of the September 11th Terrorist Attack. Psychol. Sci. 17 (3), 181–186. https://doi.org/10.1111/j.1467-9280.2006.01682.x.

Bo, H.X., Li, W., Yang, Y., Wang, Y., Zhang, Q., Cheung, T., Wu, X., Xiang, Y.T., 2020. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol. Med. 1–2. https://doi.org/10.1017/S0033291720000999.

Bolsa, A., Schuettler, D., 2011. A double-edged sword: Event centrality, PTSD and posttraumatic growth. Appl. Cognit. Psychol. 25 (5), 817–822. https://doi.org/10.1002/acp.1753.

Bonanno, G.A., 2004. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events?. Am. Psychol. 59 (1), 20–28. https://doi.org/10.1037/0003-066X.59.1.20.

Bonanno, G.A., Gala, S., Buccelli, A., Vlahos, N., 2004. Psychological Resilience After Disaster: New York City on the Aftermath of the September 11th Terrorist Attack. Psychol. Sci. 17 (3), 181–186. https://doi.org/10.1111/j.1467-9280.2006.01682.x.

Bo, H.X., Li, W., Yang, Y., Wang, Y., Zhang, Q., Cheung, T., Wu, X., Xiang, Y.T., 2020. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol. Med. 1–2. https://doi.org/10.1017/S0033291720000999.

Bolsa, A., Schuettler, D., 2011. A double-edged sword: Event centrality, PTSD and posttraumatic growth. Appl. Cognit. Psychol. 25 (5), 817–822. https://doi.org/10.1002/acp.1753.

Bonanno, G.A., 2004. Loss, trauma, and human resilience: have we underestimated the human capacity to thrive after extremely aversive events?. Am. Psychol. 59 (1), 20–28. https://doi.org/10.1037/0003-066X.59.1.20.

Bonanno, G.A., Gala, S., Buccelli, A., Vlahos, N., 2004. Psychological Resilience After Disaster: New York City on the Aftermath of the September 11th Terrorist Attack. Psychol. Sci. 17 (3), 181–186. https://doi.org/10.1111/j.1467-9280.2006.01682.x.

Bo, H.X., Li, W., Yang, Y., Wang, Y., Zhang, Q., Cheung, T., Wu, X., Xiang, Y.T., 2020. Posttraumatic stress symptoms and attitude toward crisis mental health services among clinically stable patients with COVID-19 in China. Psychol. Med. 1–2. https://doi.org/10.1017/S0033291720000999.
Horn, S.R., Charney, D.S., Feder, A. et al. 2016. Understanding resilience: New approaches for preventing and treating PTSD. Exp. Neurol. 284 (Pt B), 119–132. https://doi.org/10.1016/j.expneurol.2016.07.009.

Horn, S.R., Feder, A. 2018. Understanding Resilience and Preventing and Treating PTSD. HARP. Rev Psychiatry 26 (3), 158–174. https://doi.org/10.1097/HRP.0000000000000194.

Horn, S.R., Charney, D.S., Severly, N., Ghabai, O.-B.-M., Deecoo, T., Van Herp, M. 2015. Post-Traumatic Stress Reactions in Ebola Virus Disease Survivors in Sierra Leone. Emerg Med. Open Access 05 06, 1–4. https://doi.org/10.4172/2165-7548.1000285.

Jacono, A.T., Bello, B.M. 2014. Psychosocial facets of resilience: implications for preventing posttrauma psychopathology, training trauma survivors, and enhancing community resilience. Europ. J. Psychotraumatol. 5 (1), 23970. https://doi.org/10.3402/ejpt.v5.23970.

Kmet Danielson, C., Macdonald, A., Amstadter, A.B., Hanson, R., de Arellano, M.A., Saunders, B.E., Kilpatrick, D.G. 2010. Risky Behaviors and Depression in Conjunction With—or in the Absence of—Lifetime History of PTSD Among Sexually Abused Adolescents. Child Maltreat 15 (1), 101–107. https://doi.org/10.1177/1077559509350077.

Kobayashi, I., Boarts, J.M., Delahanty, D.L. 2007. Polysomnographically measured sleep abnormalities in PTSD: A meta-analytic review. Psychophysiology 44 (4), 660–669. https://doi.org/10.1111/j.1469-8986.2007.00537.x.

Lai, J., Ma, S., Wang, Y., Tai, H., Wu, J., Du, H., Chen, T., Li, R., Tan, H., Kang, L., Yao, L., Huang, M., Wang, H., Wang, G., Liu, Z., Su, S. 2016. Factors Associated With Mental Health Outcomes Among Health Care Workers Exposed to Coronavirus Disease 2019. JAMA Netw Open 3 (3), e203976. https://doi.org/10.1001/jamanetworkopen.2020.3976.

Lebron-Milad, K., Graham, B.M., Milad, M.R. 2012. Low Estradiol Levels: A Conjunction With—or in the Absence of—Lifetime History of PTSD Among Adults With Depression, Anxiety, and PTSD Symptomatology During the COVID-19 Outbreak in a Sample Collected in Northern Spain. Am. J. Geriatric Psychiatry 28 (9), 993–998. https://doi.org/10.1016/j.jagp.2020.05.022.

Pochard, F., Marmon, J., Fossier, B., Bollaert, P.E., Cheval, C., Cologner, M., Merouani, A., Moulis, S., Pigne, E., Pintat, J., Zabar, J.R., Schleimer, B., Azoely, E., French, F.G. 2005. Symptoms of anxiety and depression in family members of intensive care unit patients before discharge or death. A prospective multicenter study. J Crit Care 20 (1), 90–96. https://doi.org/10.1016/j.jcc.2004.08.004.

Russio, J.J., Murrough, J.W., Han, M.-H., Charney, D.S., Nestler, E.J. 2012. Neurobiology of resilience. Nat. Neurosci. 15 (11), 1475–1484. https://doi.org/10.1038/nn.3234.

Rutten, B.P.F., Hammers, C., Geschwind, N., Menne-Lothmann, C., Pishva, E., Schuurs, K., den Hove, D., Kenis, G., Os, J., Wichers, M. 2013. Resilience in mental health: linking psychological and neurobiological perspectives. Acta Psychiatr. Scand. 128 (1), 20–30. https://doi.org/10.1111/acps.12095.

Sadeghi-Bazargani, H., Maghsoudi, H., Soudmand-Niri, M., Ranjbar, F., Mathadi-Abbodali, H. 2011. Stress disorder and PTSD after burn injuries: a prospective study of predictors of PTSD in Sana Burn Center, Iran. Neuropsychiatr. Dis. Treat. 7, 393–400. https://doi.org/10.2147/NDT.S20405.

Sprang, G., Silman, M. 2013. Posttraumatic Stress Disorder in Parents and Youth After Health-Related Disasters. Disaster Med. Public Health Prep. 7 (1), 105–110. https://doi.org/10.1017/dmp.2013.22.

Su, T., Lien, T., Yang, C., Su, Y., Wang, J., Tsai, S., Yin, J. 2007. Prevalence of psychiatric morbidity and psychological adaptation of the nurses in a structured SARS caring unit during outbreak: A prospective and periodical assessment study in Taiwan. J. Psychiatr. Res. 41 (1–2), 119–130. https://doi.org/10.1016/j.jpsychires.2005.12.006.

Tang, W., Hu, T., Hu, B., Jin, C., Wang, G., Xie, C., Chen, S., Xu, J. 2020. Prevalence and correlates of PTSD and depressive symptoms one month after the outbreak of the COVID-19 epidemic in a sample of home-quarantined Chinese university students. Front. Psychiatr. 11, 103. https://doi.org/10.3389/fpsyt.2020.00135.

Waaktaar, T., Torgersen, S. 2010. How resilient are resilience scales? The Big Five correlates of PTSD and depressive symptoms one month after the outbreak of the COVID-19 pandemic in Chinese youths following the COVID-19 epidemic. J Psychiatr. Psychosom. Psychother. (Psychiatr. Scand.) 28 (9), 993–998. https://doi.org/10.1016/j.jppsy.2020.07.0577.

Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., Keane, T. M. 1993. The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. Annual convention of the international society for trauma studies, San Antonio, TX. Weathers, F. W., Litz, B. T., Keane, T. M., Palmieri, P. A., Marx, B. P., Schnurr, P. P. 2013. The PTSD Checklist for DSM-5 (PCL-5). Scale available from the National Center for PTSD at www ptsd va gov.

Wu, G., Feder, A., Cohen, H., Kim, J.J., Calderon, S., Charney, D.S., Mathe, A.A. 2013. Understanding resilience. Front. Behav. Neurosci. 7, 10. https://doi.org/10.3389/fnbeh.2013.00010.

Wu, K.K., Chan, S.K., Ma, T.M. 2005a. Posttraumatic stress after SARS. Emerg Infect Dis. 11 (8), 1297–1300. https://doi.org/10.3201/eid1108.041083.

Wu, K.K., Chan, S.K., Ma, T.M. 2005b. Posttraumatic stress, anxiety, and depression in survivors of severe acute respiratory syndrome (SARS). J. Traum. Stress 18 (1), 39–42. https://doi.org/10.1002/jt.20004.

Yezi, S., Khan, A. 2020. COVID-19: Social distancing in the Kingdom of Saudi Arabia: Bold measures in the face of political, economic, social and religious challenges. Travel Med. Infect. Dis. 37, 101692. https://doi.org/10.1016/j.tmaid.2020.101692.

Zeevi, D., Gozal, D., Boheen, S., Bestremen, T.M., Osterhaus, A.D.M.E., Fouchier, R.A.M. 2012. Isolation of a Novel Coronavirus from a Man with Pneumonia in Saudi Arabia. N. Engl. J. Med. 367 (19), 1814–1820. https://doi.org/10.1056/NEJMoa1211721.