Shewanella spp. infections in Gran Canaria, Spain: retrospective analysis of 31 cases and a literature review

Alberto J. Martin-Rodríguez, Oriol Martin-Pujol, Fernando Artiles-Campelo, Margarita Bolaños-Rivero and Ute Römling

Abstract

Introduction. Shewanella spp. can cause severe skin and soft-tissue infections, gastrointestinal infections, otitis and bacteremia, generally upon contact with seawater or consumption of raw seafood. Recently, a new condition termed 'patera foot' characterized by acute skin and soft-tissue infection has been described in irregular immigrants arriving to the Canary Islands, Spain, in rudimentary boats. Most infections are caused by a single species, Shewanella algae. The improvement of the diagnostic capabilities in clinical microbiology laboratories has resulted in a growing number of cases being reported worldwide, most of them coming from warm regions.

Case presentation. In this work, we reviewed the medical records of all the patients with Shewanella infections in the two university hospitals of Gran Canaria (the Canary Islands, Spain) during the period 2000–2016, resulting in the identification of 31 cases. We also conducted a literature review of Shewanella infections reported worldwide in recent years.

Conclusion. This case series suggests that Shewanella infections are nosocomially acquired more frequently than previously thought. In addition, the unexpectedly high proportion of multidrug-resistant isolates raises concerns.

INTRODUCTION

Shewanella spp. are Gram-negative rods abundant in marine and freshwater environments [1]. While the broad respiratory versatility of this genus has been intensively researched for biotechnological and environmental applications [2], only a few Shewanella species have been described as causative agents of human infections. Previously, Shewanella spp. had often been misidentified in the clinical microbiology laboratory, as API test strips were not sufficiently discriminatory for clinically relevant Shewanella spp. [3], leading to Shewanella algae being misidentified as Shewanella putrefaciens. Refined identification procedures have diagnosed a growing number of cases that required re-evaluation of the pathogenic potential of certain Shewanella spp., in particular S. algae. Current state-of-the-art knowledge indicates that one species, S. algae, is responsible for around 80% of all cases [3]. The molecular mechanisms enabling S. algae to cause infections are unknown. S. algae is often isolated in the context of polymicrobial infections; thus, its clinical impact has not been fully defined. However, Shewanella infections are still largely considered exceptional.

Herein, we report the experience from Gran Canaria, the Canary Islands, Spain. We retrospectively reviewed all cases of Shewanella infections diagnosed during the period 2000–2016 at the two university hospitals, Hospital Insular and the Hospital Doctor Negrín, that serve the island of Gran Canaria, with a population of approximately 850 000. We have covered the epidemiology, microbiology and outcome of the infectious episodes, and discuss our findings from a microbial ecology perspective. In addition, we conducted a literature update on recently reported cases of Shewanella infections worldwide.

METHODS

Patients

We conducted a retrospective analysis of the medical records from 2000 to 2016 at the Hospital Insular and Hospital Doctor Negrín, Las Palmas de Gran Canaria, Spain.
Demographic and epidemiological data from the patients were retrieved. Microbiological data included species identification, co-isolates and antimicrobial susceptibility, as well as clinical data and the outcome of the infection episode.

Microbiology

Bacterial identification and antibiotic-susceptibility testing differed between the two hospitals and over time, and was conducted as stated below.

Hospital Universitario Insular de Gran Canaria

Since March 2014, Shewanella spp. have been identified by matrix-associated laser desorption ionization-time of flight (MALDI-TOF) MS. Before this time, all Shewanella isolates were initially identified as S. putrefaciens by using the API20E/API20NE system (bioMérieux). At all times, phenotypic characteristics such as growth at 42 °C, growth in 6.5 % NaCl and β-haemolysis were identification criteria for S. algae. MALDI-TOF MS identification results were further validated using the Vitek-2 automatic system, as described below.

In vitro susceptibility testing was performed using the disc-diffusion method on Mueller–Hinton agar with an inoculum corresponding to a McFarland 0.5 turbidity standard. Readouts were taken after 18 h of incubation at 35 °C. Isolates were considered resistant (R), intermediate resistant (I) or susceptible (S) to the tested antibiotics following the interpretative standards of the Clinical and Laboratory Standards Institute (CLSI) for 'other non-Enterobacteriaceae' [4].

Hospital Universitario de Gran Canaria ‘Doctor Negrín’

Bacterial identification and antibiotic-susceptibility testing of the isolates was performed with the Vitek-2 (bioMérieux) automatic system. Species identification was considered positive if the type index was 0.95 or higher. The isolates were ranked resistant (R), intermediate resistant (I) or sensitive (S) to the tested antibiotics as described in the CLSI guidelines [4].

RESULTS

Case series in Gran Canaria, Spain

A total of 31 cases occurred in 31 patients with the main clinical manifestations summarized in Table 1. Twenty-three patients (74.2 %) were men and eight (25.8 %) women. The mean age of the patients was 50.7 years, ranging from 15 to 87 years. Isolates were from skin and soft-tissue infections (18), blood (8), peritoneal lesions (2), bronchial aspiration (1), bile (1) and ear swab (1). A total of 15 of the 31 isolates had been identified as S. putrefaciens; the other 16 were identified as S. algae. Fourteen of the thirty-one isolates were from polymicrobial infections with other opportunistic Gram-positive and Gram-negative pathogens. Nine infections were associated with irregular African refugees arriving in rudimentary boats after a transoceanic journey lasting several days in overcrowded conditions. During this time, they had been exposed to weather inclemencies, water splashes and prolonged immersion of their feet in seawater coming into the boats, possibly contaminated with traces of urine, faeces and dirt. Otherwise, recent exposure to seawater was only unambiguously associated with one additional case, and could not be retrieved from the history of 20 patients. One wound infection case was associated with sand contamination from a local park.

Antimicrobial-susceptibility testing revealed several multi-drug-resistant isolates (e.g. strains 5, 7, 8, 14; Fig. 1). Remarkably, uncommon for S. algae and S. putrefaciens, a number of isolates were highly resistant to aminoglycosides, cephalosporins and ciprofloxacin. In addition, sensitivity to amoxicillin/clavulanic acid, tested for in 24 strains, unravelled 18 resistant isolates. A higher number of susceptible isolates was observed for pipercillin/tazobactam. A combination of tetracyclines, β-lactams, cephalosporins and/or quinolones was required for the successful treatment of most infections in this case series.

Literature review

Here, we review 34 reports of Shewanella infection from the literature between 2013 and 2016 in the literature [5–35]. In 2013, two extensive retrospective studies from Liu et al. [36] and Vignier et al. [37], including a literature review, were reported. Therefore, the selected timeframe of our review aims to provide an update of the new cases reported since then. The reader is referred to the paper by Srinivas et al. [38] for a prospective study (2010–2014) of Shewanella spp. skin and soft-tissue infections in Kerala, India.

The mean age of patients was 52.1 years (range 0–92 years). Twenty-four patients (70.6 %) were men. Most infections occurred in countries with warm climates, which included the Mediterranean region, South-Eastern Asia and the Caribbean. In most cases, the patients presented an underlying condition, such as cardiovascular disease (12 cases), diabetes (9 cases), hepatobiliary disease (6 cases), renal disease (5 cases), cancer (5 cases) and respiratory disease (2 cases). Less than half of the patients (44.1 %) reported recent contact with seawater or consumption of seafood. Clinical presentations were mostly skin and soft-tissue infections (12 cases, 30 %), gastrointestinal infections (10 cases, 25 %), bacteraemia (6 cases, 15 %) and respiratory infections (4 cases, 10 %). Two cases of immunocompromised individuals were reported. Only for five patients was there no basal pathology or underlying condition. Twenty-two infections (56.4 %) were attributed to S. algae, whereas 35.9 % were associated with S. putrefaciens. Of note, two cases of infection were by Shewanella xiamensis [31, 39] and one case by Shewanella xiamensis, isolated from rectal swabs of a 1-year-old child [12]. S. xiamensis was not the causative agent of the infection, but its intestinal carriage mimicked the presence of a pathogenic Klebsiella pneumoniae strain that caused a previous infection in the patient. Nine isolates (23.1 %) were associated with a polymicrobial infection. A summary of the epidemiological data of the patients, clinical manifestations and antibiotic-susceptibility profiles of the
Table 1. Characteristics of *Shewanella* spp. infections in Gran Canaria between 2000 and 2016

Case	Date	Origin	Isolate	Co-isolate	Age (years)	Sex	Exposure to seawater	Sample	Underlying condition	Clinical findings	Treatment	Outcome
1	27/10/00	C	*S. putrefaciens*	N	57	M	NS	Ear swab	AHT, DM	Severe external otitis	NS	Favourable
2	19/02/01	C	*S. putrefaciens*	N	68	M	NS	Blood	AHT, DM, dyslipidemia, IC (bypass)	Fever while hospitalized at Neurology department	NS	Favourable
3	27/05/03	NSC	*S. putrefaciens*	*E. coli*	70	M	NS	SST (abscess)	Colon carcinoma, AHT, DM, IC (bypass surgery)	Rectal bleeding, diarrhoea, nausea, epigastric pain, surgical wound infection	NS	NS
4	01/12/03	NSC	*S. putrefaciens*	N	56	F	NS	Blood	AHT, IC, DM, vascular disease (2 stents)	Fever while hospitalized at Cardiology department	Gentamicin+ceftriaxone	Favourable
5	06/03/04	C	*S. putrefaciens*	Acinetobacter *haemolyticus*	32	F	NS	Blood	Severe asthma, hastral hernia, gastrooesophageal reflux, obesity, hypercholesterolaemia	NS	Levofloxacin	Favourable
6	23/03/04	C	*S. putrefaciens*	N	64	M	NS	Blood	Lung cancer (lobectomy, 2001), DM, asthma	Pericardial effusion and pericarditis, hospitalized at Cardiology department	NS	Favourable
7	10/02/05	C	*S. putrefaciens*	N	80	F	NS	Blood	Colon and cervix carcinoma, choledocctectomy, pancreatic mass of unknown origin	Nausea, vomiting, fever, abdominal pain; hospitalized at Oncology department	Antibiotics (NS)	Favourable
8	28/08/06	NSC	*S. putrefaciens*	N	67	F	NS	Blood	DM, chronic renal failure (renal transplant), AHT, IC	Sepsis that required intensive care	Antibiotics (NS)	Death (unrelated to infection)
9	29/06/07	C	*S. putrefaciens*	*Staphylococcus aureus*	20	M	Y (patera)	SST (abscess)	Septic shock, renal failure, rhabdomyolysis	Hypothermia after patera sinking, septic shock, cellullis in inferior limbs, malodorous purulent ulcer in a finger	Antibiotics (NS)	Surgical debridement of the lesions; amputation of the finger; otherwise favourable
10	21/08/07	C	*S. putrefaciens*	N	25	M	Y (patera)	SST (cutaneous wound swab)	–	Necrosis of the left foot (dorsal); multiple wounds on the left thigh	Piperacillin+tazobactam +doxycycline, followed by cefazolin +cephalexin	Surgical debridement of the lesions; amputation of several fingers and skin graft; slow recovery; otherwise favourable
11	13/08/08	C	*S. putrefaciens*	N	74	M	NS	Blood	AHT, colon carcinoma, liver and lung metastases, choledocctectomy	Sepsis of abdominal origin, high fever, vomiting, diarrhoea, unconsciousness, dehydration	Piperacillin+tazobactam +levofloxacin	Favourable
12	04/09/08	C	*S. algae*	N	21	M	Y (patera)	SST (ulcer)	Septic shock, renal failure, rhabdomyolysis	Multiple dermal erosions in the legs	Linezolid	Favourable
13	05/09/08	C	*S. algae*	Bacteroides *thetaiotaomicron*	24	M	Y (patera)	SST (phlyctena)	–	Dehydration, rhabdomyolysis, contusions in the legs	Cefazidime+doxycycline	Debridement, skin graft, amputation of one phalanx and two fingers; slow recovery; favourable
14	09/09/08	C	*S. algae*	*A. salmonicida*	20	M	Y (patera)	SST (cutaneous biopsy)	–	Vomiting and diarrhoea after ingestion of seawater, anorexia (6days), fever, dehydration, cutaneous excoriations, tumefaction, cellullis in left leg with phlyctena	Imipenem+ceftazidime +doxycycline +clindamycin	Debridements, amputation of several fingers; slow recovery; favourable
Case	Date	Origin	Co isolate	Age (years)	Sex	Exposure to seawater	Sample	Clinical findings	Treatment	Outcome		
------	------------	--------	------------	-------------	-----	---------------------	--------	--	--	-----------		
15	09/09/08	C	S. putrefaciens	20	M	Y (patera)	SST (wound)	General health deterioration Right knee arthritis	Cefotaxime+amoxicillin/clavulanic acid (NS)	Favourable		
16	09/12/08	C	S. algae	20	M	Y (patera)	SST (wound)	Compliated scale of choleystasis in the right arm Traumatic wound in the left	Ciprofloxacin+vancocin + vancomycin + amoxicillin/clavulanic acid (NS)	Favourable		
17	12/10/10	C	S. algae	72	M	NS	SST (exudate from catheter site)	Chronic renal disease, renal transplant (1999), peritoneal dialysis catheter (2010), multiple myeloma, osteoporosis	Metronidazole + other antibiotics (NS)	NS		
18	04/09/10	C	S. putrefaciens	70	M	NS	Blood	Fever	Cefotaxime+amoxicillin/clavulanic acid	NS		
19	14/03/11	C	S. algae	70	M	NS	SST (abscess)	AHT, dyslipidaemia, chronic liver disease, alcoholism Traumatic wound in the left parieto-occipital region with necrotic, malodorous areas; fever	Ceftriaxone (NS)	Favourable		
20	05/10/11	NSC	S. algae	87	M	NS	SST (abcess)	Abdominal pain; faecal vomiting; constipation; sepsis from peripheric insertion central catheter	Ciprofloxacin+vancomycin + amoxicillin/clavulanic acid (NS)	Favourable		
21	06/06/12	C	S. algae	50	M	NS	SST (abcess)	Chronic renal failure Acute peritonitis in patient with peritoneal dialysis	Ceftriaxone (NS)	NS		
22	23/06/13	NSC	S. algige	71	F	NS	FNS	Polytrauma after impact with a zodiac (thorax, abdomen, pelvis and right arm)	Imipenem+linezolid (empirical); changed to ciprofloxacin after antibiogram	Favourable		
23	02/06/14	C	S. putrefaciens	40	F	NS	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	Favourable		
24	25/09/14	C	S. algige	43	M	NS	Y	Supracondylar fracture with a zodiac (thorax, abdomen, pelvis)	Ceftriaxone	NS		
25	12/09/14	C	S. algige	36	M	NS	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	Favourable		
26	17/09/15	C	S. algige	67	M	NS	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	NS		
27	11/09/15	C	S. algige	32	M	Y (patera)	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	Favourable		
28	17/09/15	C	S. algige	67	M	NS	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	NS		
29	21/09/15	C	S. algige	15	M	Y (patera)	SST (wound)	Infection and necrosis signs in the arm, foot, and thigh after car accident	Ceftriaxone	Favourable		
Infections caused by *Shewanella* spp. are being continuously reported, with the causative agent being mainly *S. algae*. Of note, isolates from 2000 to 2007 in our case series were identified as *S. putrefaciens*, potentially due to experimental limitations [3]. In contrast, 81% of cases retrieved from 2008 were identified as *S. algae*. State-of-the-art methods can discriminate between *S. algae* and *S. putrefaciens* on the basis of their biochemical and phenotypic characteristics [1]. Similar tests have been reported, though, to be inconclusive for discrimination of *S. algae* from other emerging pathogenic *Shewanella*, thereby requiring molecular techniques that include 16S rRNA and/or *gyrB* DNA sequencing for accurate species identification [39, 40]. Byun et al. reported the inability to discriminate between *S. algae* and *S. haliotis* on the basis of biochemical and phenotypic assays [39]. Even 16S rRNA sequencing, not routinely conducted in the clinical microbiology laboratory, can be insufficient to determine the identity of an isolate at the species level (E. Fernández-Rodríguez et al., unpublished results). Characteristics that can contribute to the virulence of *S. algae* are the presence of haemolysin genes, the ability to adhere to human epithelial cells, biofilm formation and exotoxin production, including tetrodotoxin [11], which might be associated with food intoxications [41].

A total of 14 of 31 *Shewanella* isolates in the case series were part of polymicrobial infections in combination with other opportunistic Gram-positive and Gram-negative pathogens (e.g., *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae*). The skin has a temperature of around 30°C, which, in combination with the infection history, may have contributed to a successful colonization. In general, *Shewanella* infections are more frequent in males than females, although it is not yet known if this is a consequence of genetic or socio-cultural factors with a higher exposure rate [1] in our case study. The higher exposure rate of *Shewanella* isolates in our study compared to the patient group being tested may be due to the higher number of patients with a history of being at sea for multiple days. The skin has a temperature of around 30°C, which, in combination with the infection history, may have contributed to a successful colonization.

A total of 14 of 31 *Shewanella* isolates in the case series were part of polymicrobial infections in combination with other opportunistic Gram-positive and Gram-negative pathogens (e.g., *Escherichia coli*, *Staphylococcus aureus*, *Klebsiella pneumoniae*). The skin has a temperature of around 30°C, which, in combination with the infection history, may have contributed to a successful colonization. In general, *Shewanella* infections are more frequent in males than females, although it is not yet known if this is a consequence of genetic or socio-cultural factors with a higher exposure rate [1] in our case study. The higher exposure rate of *Shewanella* isolates in our study compared to the patient group being tested may be due to the higher number of patients with a history of being at sea for multiple days. The skin has a temperature of around 30°C, which, in combination with the infection history, may have contributed to a successful colonization.

Table 1.

Case	Date	Origin	Isolate	Co-isolate	Age (years)	Sex	Exposure to seawater	Sample	Underlying condition	Clinical findings	Treatment	Outcome
30	18/05/16	NSC	*S. algae*	N	60	F	NS	SST (surgical) wound	Obesity, smoking, diverticular disease, Arnold-Chiari malformation, waiting for abdominal surgery	Desloughing, malodorous wound with necrotic signs; no fever, stable	Piperacillin-tazobactam	Favourable
31	07/07/16	C	*S. algae*	*Staphylococcus aureus*	68	M	NS	SST (abscess)	DM, arrhythmia, diabetic foot; left leg amputated (infra-condylar)	Pain, cyanosis and necrosis in right foot	Amoxicillin/clavulanic acid + metronidazole	Infra-condylar amputation of right leg; otherwise favourable

AHT, Arterial hypertension; C, community; DM, diabetes mellitus; DVT, deep venous thrombosis; F, female; IC, ischaemic cardiomyopathy; M, male; N, no; NS, not stated; NSC, nosocomial; SST, skin and soft tissue; XDR, extensively drug resistant; Y, Yes.

The patient was not exposed to seawater directly, but to sand from a local park.
Septic shock, dehydration, rhabdomyolysis and multiple skin lesions were common conditions among the irregular travellers after their ocean journey on small, rudimentary fishing boats, termed pateras. In fact, a condition termed ‘patera foot’ has been coined to describe *Shewanella* skin and soft-tissue infections in the lower limbs of these patients, likely from a pre-existing skin lesion that comes into contact with contaminated water. Those patients were generally young, with a good health status before travelling [45]. Infections, caused by *S. algae* in 66.7% of the patients, were very aggressive, involving cellulitis, abscesses and necrosis. Surgical debridement was carried out, but the response to broad-spectrum antimicrobial chemotherapy was generally poor. Amputation of one or several fingers was necessary in most cases. Recovery was very slow, but otherwise favourable. Among local people, 14 patients presented underlying hypertension, hypercholesterolaemia, obesity or diabetes, complicated with chronic cardiovascular conditions or cancer. These risk factors have been associated with *Shewanella* spp. and other opportunistic infections [1].

Shewanella infections have been frequently associated with coastal areas and warm climates. Located in the sub-tropical Penicillins Cephalosporins Carba- penem Aminoglycosides Fluoro quinolone Tetracyclines T/S

Isolate	A/C	P/T	CTX	CEP	IMP	GEN	TOB	AMK	CIP	MIN/TET	TIG	T/S
1												
2												
3												
4												
5												
6												
7												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												

Fig. 1. Heatmap showing the antibiotic-susceptibility profile of *S. algae* and *S. putrefaciens* isolates from Gran Canaria, Spain. Strain numbers refer to case numbers in Table 1. A/C, amoxicillin/clavulanic acid; P/T, piperacillin/tazobactam; CTX, cefotaxime; CEP, cephe- pime; IMP, imipenem; GEN, gentamicin; TOB, tobramycin; AMK, amikacin; CIP, ciprofloxacin; MIN/TET, minocycline/tetracycline; TIG, tigecycline; T/S, trimethoprim/sulfamethoxazole. Colour code: red, resistant; orange, intermediate; green, susceptible; grey, not tested.
Atlantic Ocean, the Canary Islands match such a profile, even though the mean water temperature of around 21 °C is lower than that of other ‘hotspots’ around the equator or the tropics. Indeed, seasonal *Shewanella* infection episodes related to unusually warm conditions have been reported in Denmark [46] and Australia [47]. Even if a seasonal correlation cannot be deduced, most infections in our study were diagnosed from June to November, matching the time when a peak in the number of pateras arriving at the Canary Islands, due to the good weather conditions at sea, is registered. Sea contact, even with materials placed at sea or consumption of seafood, which are reported risk factors for *Shewanella* infections, however, was not reported for most patients. The only case from a local person with documented contact with seawater was a 43-year-old man who impacted with the helix of an inflatable boat while diving. The patient suffered multiple traumatic injuries from which *S. algæ* was isolated in pure culture.

Remarkably, six patients were hospitalized at the time of the infection, therefore 19.4% of infections were potentially nosocomial. The source of the infection could be identified in only one case (patient 30). The *S. algæ* isolate was obtained several days after admission, without clear signs of infection. In this afebrile patient, a surgical wound abscess had been vacuum-drained. To avoid obstructions, the vacuum-assisted closure had been washed regularly, and on some occasions surgeons made replacements of the device. Washings had been performed with hypertonic saline solution, thereby contributing to the presence of the *S. algæ* isolate.

Shewanellae are susceptible to most antibiotics, including aminoglycosides, fluoroquinolones, extended-spectrum cephalosporins, β-lactamase inhibitors, carbapenems, macrolides, aztreonam and trimethoprim/sulfamethoxazole [48]. However, the emergence of resistant strains is a concern [49, 50], as highlighted for several isolates in our case series. The antibiotic susceptibility of the isolates in this case series was highly variable including a number of multidrug-resistant strains (Fig. 1). Seventeen isolates were resistant to amoxicillin/clavulanic acid. Given that clavulanic acid is an efficient inhibitor of class A β-lactamases [51], such resistance suggests the presence of class B, C and/or D β-lactamases, as reported to be present in several *Shewanella* spp. including *S. algæ* [52–54]. Resistance to a combination of piperacillin/tazobactam, with a broader spectrum than amoxicillin, was observed, as well as resistance towards the third-generation cephalosporin cefotaxime and the fourth-generation cephalosporin cefepime. Resistance to aminoglycosides is uncommon in *Shewanella* spp.; however, resistance to gentamicin, tobramycin and amikacin was observed. Indeed, the amikacin-resistant isolate (14) exhibited broad-spectrum resistance to all the tested penicillins and aminoglycosides. Several strains also displayed resistance towards antibiotics typically effective towards *shewanellae*, including carbapenems, tetracyclines, trimethoprim/sulfamethoxazole and fluoroquinolones (Fig. 1). Also of note is the marked differences in the antimicrobial-resistance profile observed in the isolates from patients univocally exposed to seawater during the same trip (e.g. 12–14 and 18–19), indicating that these infections involved different *S. algæ* strains.

S. algæ is in fact the environmental reservoir of *qnrA* genes that confer resistance to quinolones [55, 56]. Four variants of this gene (*qnrA2-5*) have been found to be chromosomally encoded in *S. algæ* [57]. Since quinolones are extensively used in aquaculture and are stable in seawater, selective evolutionary pressure transfers these genes to enterobacteria [57, 58], giving rise to the widespread problem of plasmid-mediated resistance to quinolones in Enterobacteriaceae [59, 60]. Furthermore, *S. algæ* is frequently reported to be resistant to colistin [3, 61]. Resistance to colistin in *S. algæ* is mediated by the expression of ethanolamine phosphotransferase (EptA), which alters the lipopolysaccharide in the outer membrane [62].

The literature review of the last 4 years gives further support to the findings from our case series, such as the abundance of patients without recent contact with aquatic environments and/or consumption of products of marine origin. Consequently, the origin of the isolates is frequently unknown and might suggest a more widespread distribution of pathogenic *Shewanella* spp. than previously thought. Water supply systems, soil or foods can be contaminated with *Shewanella* spp. A recently reported case of intestinal colonization by *S. xiamenensis* suggests temporary colonization of the human host by *Shewanella* spp. and transfer of *blaOXA-48*-like genes to *K. pneumoniae* [12].

Even though *Shewanella* spp. infections in humans are scarce, the number of reports has significantly increased over the last decade, suggesting that species within the *Shewanella* genus, in particular *S. algæ*, have indeed a pathogenic potential. *Shewanella* spp., particularly in warm coastal areas, can be considered emerging pathogens.

Herein, we have reported a case series in Gran Canaria, Spain. In a significant number of cases, the patients were irregular immigrants with patera foot syndrome, developed after prolonged exposure to seawater, which often led to amputation, followed by a complex recovery process. The response to broad-spectrum antibiotics, generally, third or fourth generation cephalosporins or alternatively, aminoglycosides, piperacillin/tazobactam, ciprofloxacin or tigecycline, recommended as an empirical therapy [63] was poor. In general, a concerning antibiotic-resistance profile that includes resistance to these commonly used antibiotics has been observed. Indeed, the arising of antibiotic resistance in *Shewanella* spp. is a concern, even if a relatively low number of infections have been reported. The genetic markers that confer such resistance, which may be horizontally transferred to other pathogenic bacteria, are still poorly characterized.

An interesting finding is the ability of *Shewanella* to colonize the human body. *Shewanella* spp. are known for their broad respiratory versatility. In an anoxic
microenvironment such as the intestinal tract, *Shewanella* spp. may take advantage of the abundance of terminal anaerobic electron acceptors to colonize such niches. Indeed, several publications describe *Shewanella* spp. colonization in marine animals [64–66]. The presence of *shewanellae* in a variety of human tissues has been reported in the context of different microbiome studies [67–69]. It is not clear, though, whether this is the result of a transient colonization or a more permanent condition. Interestingly, a recent study in patients with and without sphincter of Oddi laxity strengthens the latter hypothesis [70]. Such colonization might also explain the high proportion of cases unrelated to recent contact with seawater. Certainly, a better understanding of the microbial ecology of the genus *Shewanella* and its pathogenic potential is required.

Funding information
The authors received no specific grant from any funding agency.

Conflicts of interest
The authors declare that there are no conflicts of interest.

Ethical statement
Informed patient consent was not necessary because of the retrospective nature of the study, the anonymization/dissociation of patient data and the fact that results did not affect the clinical management of patients.

References
1. Janda JM, Abbott SL. The genus *Shewanella*: from the briny depths below to human pathogen. Crit Rev Microbiol 2014;40:293–312.
2. Hau HH, Granlick JA. Ecology and biotechnology of the genus *Shewanella*. Annu Rev Microbiol 2007;61:237–258.
3. Holt HM, Gahrn-Hansen B, Bruun B. *Shewanella algae* and *Shewanella putrefaciens*: clinical and microbiological characteristics. Clin Microbiol Infect 2009;11:347–352.
4. CLSI. Performance Standards for Antimicrobial Susceptibility Testing, M100S, 26th ed. Wayne, PA: Clinical and Laboratory Standards Institute; 2015.
5. Mohr M, Köstler J, Salzberger B, Hанses F. Polymicrobial soft tissue infection including *Shewanella putrefaciens*. Infection 2016;44:563–564.
6. Lee WS, Ou TY, Chen FL, Hsu CW, Jean SS. *Shewanella putrefaciens* bacteremia in a uremic patient receiving hemodialysis. J Microbiol Immunol Infect 2016;49:159–160.
7. Muñoz-Gallego I, Chaves F, Orellana MA. Epidemiological and clinical characteristics of *Shewanella* spp. infections in a tertiary hospital in Madrid. Infect Dis 2016;48:760–762.
8. Tang TH, Cheng NH, Ho RT, Chan HS, Lam KW et al. *Shewanellla* related bacteremia and Fournier’s gangrene: a case report. Open Forum Infect Dis 2016;3:ofw148.
9. Rajchgot J, Glicksman R, Bogoch II. *Shewanella algae* bacteremia from a foot ulcer exposed to seawater during a Caribbean vacation. J Travel Med 2016;23:taw014.
10. Fluke EC, Carayannopoulos NL, Lindsey RW. Pyogenic flexor tenosynovitis caused by *Shewanella algae*. J Hand Surg Am 2016;41:e203–e206.
11. Cimmino T, Olaitan AO, Rolain JM. Whole genome sequence to decipher the resistome of *Shewanella algae*, a multidrug-resistant bacterium responsible for pneumonia, Marseille, France. Expert Rev Anti Infect Ther 2016;14:269–275.
12. Antonelli A, di Palo DM, Galano A, Becciani S, Montagnani C et al. Intestinal carriage of *Shewanella xiamensis* simulating carriage of OXA-48-producing Enterobacteriaceae. Diagn Microbiol Infect Dis 2015;82:1–3.
13. Muñoz L, Velez J, Molano D, Susunaga P, Gómez M. Seudoquiste pancreatico infectado por *Shewanella putrefaciens*: reporte de caso. Infectio 2015;19:179–182.
14. Duan M, Wang D, Wang J, Xiao X, Han L et al. A case report of intracranial infection caused by *Shewanella putrefaciens*. Neurol Sci 2015;36:625–629.
15. Stanimirova I, Petrova A, Murdjeva M. Case of *Shewanella putrefaciens* gastroenteritis in Bulgaria – an evaluation of *Shewanella* role in infectious diarrhea. SMU Med J 2015;2:215–227.
16. Ostwal K, Shah P, Pathak S, Jadhav A, Shaikh N. New enterant in the class of uropathogens-*Shewanella algae*. Asian J Med Sci 2015;6:92–95.
17. Charles MVP, Srirangaraj S, Kali A. Neonatal sepsis caused by *Shewanella algae*: case report. Australias Med J 2015;8:64–66.
18. Dey S, Bhattacharya D, Roy S, Nadgir SD, Patil A et al. *Shewanella algae* in acute gastroenteritis. Indian J Microbiol 2015;55:172–175.
19. Constant J, Chernev I, Gomez E, Constant J, Chernev I. *Shewanella putrefaciens* infective endocarditis. Braz J Infect Dis 2014;18:686–688.
20. Baruah FK, Grover RK. Case report and literature review of carbapenem resistant *Shewanella algae* isolated from ascitic fluid. J Clin Diagn Res 2014;8:DD01–DD02.
21. Taherzadeh M, Katouli M, Amirinejad R, Farzaneh MR, Gharibi O. A case of wound infection caused by *Shewanella algae* in the south of Iran. New Microbes New Infect 2014;2:29–30.
22. Mohan N, Sharma S, Padhi TR, Basu S, Das TP. Traumatic endophthalmitis caused by *Shewanella putrefaciens* associated with an open globe fishhook injury. Eye 2014;28:235.
23. Jeffery S. *Shewanella* dysentery in a patient with underlying malignancy. Med J Malaysia 2014;69:284–285.
24. Smith JR, Morgan M, Palmer JH. *Shewanella algae* infection complicating an open lower limb fracture. J Plast Reconstr Aesthet Surg 2014;67:e99–e100.
25. Ananth AL, Nassiri N, Pamoukian VN. *Shewanella algae*: a rare cause of necrotizing fasciitis. Surg Infect 2014;15:336–338.
26. Liu PY, Shi ZY, Shyu CL, Wu ZY, Lai KL et al. Cobra bite wound infection caused by *Shewanella algae*. Int J Infect Dis 2014;20:11–12.
27. Jacob-Kokura S, Chan CY, Kaplan L. Bacteremia and empyema caused by *Shewanella algae* in a trauma patient. Ann Pharmacother 2014;48:128–136.
28. Yiallourous P, Mavri A, Attilakos A, Moustaki M, Leontsini F et al. *Shewanella putrefaciens* bacteremia associated with terminal ileitis. Paediatr Int Child Health 2013;33:193–195.
29. Carlson RM, Dux K. *Shewanella putrefaciens*, a rare cause of osteomyelitis. Int J Low Extrem Wounds 2013;12:231–233.
30. Ahmed N, Casey K, Liu E, Funne L. Necrotizing fasciitis of the lower extremity caused by *Shewanella algae*. Surg Infect 2013;14:165–166.
31. Poovorawan K, Chatsuwan T, Lakananurak N, Chansaenroj J, Komolmit P et al. *Shewanella haliotis* associated with severe soft tissue infection, Thailand, 2012. Emerg Infect Dis 2013;19:1019–1021.
32. Prinjha A, Singh J, Davis N, Urwin G. A rare cause of wound infection after an open fracture: *Shewanella putrefaciens*. BMJ Case Rep 2013;2013:bcr201208537.
33. Kim BK, Cho SY, Kang B, Kim IK, Byun JH et al. A case of spontaneous bacterial peritonitis with bacteremia caused by *Shewanella algae*. Infect Chemother 2014;46:264–268.
34. Tena D, Losa C, Carrasco G, Sáez-Nieto JA. Cellulitis caused by *Shewanella haliotis*. Infect Dis Clin Pract 2016;24:76–78.
35. Tena D, Losa C, Carrasco G, Sáez-Nieto JA. Surgical site infection caused by *Shewanella putrefaciens*. *Infec Dis Clin Pract* 2016;24:18–23.

36. Liu PY, Lin CF, Tung KC, Shyu CL, Wu MJ et al. Clinical and microbiological features of *Shewanella* bacteraemia in patients with hepatobiliary disease. *Intern Med* 2013;52:431–438.

37. Vignier N, Barreau M, Olive C, Baubion E, Théodore R et al. Human infection with *Shewanella putrefaciens* and *S. alga*: report of 16 cases in Martinique and review of the literature. *J Clin Microbiol* 2013;51:1401–156.

38. Srinivas J, Pillai M, Vinod V, Dinesh RK. Skin and soft tissue infections due to *Shewanella algae* - an emerging pathogen. *J Clin Diagn Res* 2015;9:DC16–DC20.

39. Byun JH, Park H, Kim S. The phantom menace for patients with hepatobiliary diseases: *Shewanella halotolerans*, often misidentified as *Shewanella algae* in biochemical tests and MALDI-TOF analysis. *Jpn J Infect Dis* 2017;70:177–180.

40. Zong Z. Nosocomial peripneumonic infection associated with *Shewanella xianensis*. *J Med Microbiol* 2011;60:1387–1390.

41. Wang D, Wang Y, Huang H, Lin J, Xiao D et al. Identification of tetrodotoxin-producing *Shewanella* spp. from feces of food poisoning patients and food samples. *Gut Pathog* 2013;5:15.

42. Iginosa IH, Igumbor EU, Aghdasi F, Tom M, Okoh AI. Emerging *Aeromonas* species infections and their significance in public health. *Sci World J* 2012;2012:1–13.

43. Kamble R. *Aeromonas salmonicida* furunculosis in an adult male. *Int J Curr Microbiol App Sci* 2015;4:59–63.

44. Tewari R, Dudeja M, Nandy S, das AK. Isolation of *Aeromonas salmonicida* from human blood sample: a case report. *J Clin Diagn Res* 2014;8:139–140.

45. Ternavasio-de-La-Vega HG, Angel-Moreno A, Hernández-Cabrera M, Piscos-Alamo E, Bolaños-Rivero M et al. Skin and soft tissue infections (patera foot) in immigrants, Spain. *Emerg Infect Dis* 2009;15:598–600.

46. Vogel BF, Hoit HM, Gerner-Smidt P, Bundvad A, Segaard P et al. Homogeneity of Danish environmental and clinical isolates of *Shewanella algae*. *Appl Environ Microbiol* 2000;66:443–448.

47. Mcauliffe GN, Hennessy J, Baird RW. Relative frequency, characteristics, and antimicrobial susceptibility patterns of *Vibrio* spp., *Aeromonas* spp., *Chromobacterium violaceum*, and *Shewanella* spp. in the Northern Territory of Australia, 2000–2013. *Am J Trop Med Hyg* 2015;92:605–610.

48. Janda JM. *Shewanella*: a marine pathogen as an emerging cause of human disease. *Clin Microbiol News* 2014;36:25–29.

49. Youssi K, Touati A, Bekal S. Complete genome sequence of an extensively drug-resistant *Shewanella xianensis* strain isolated from Algerian hospital effluents. *Genome Announc* 2016;4:e01236-16.

50. Kim DM, Kang CI, Lee CS, Kim HB, Kim EC et al. Treatment failure due to emergence of resistance to carbapenem during therapy for *Shewanella algae* bacteraemia. *J Clin Microbiol* 2006;44:1172–1174.

51. Drawz SM, Bonomo RA. Three decades of beta-lactamase inhibitors. *Clin Microbiol Rev* 2010;23:160–201.

52. Walther-Rasmussen J, Haiby N. OXA-type carbapenemases. *J Antimicrob Chemother* 2006;57:373–383.

53. Poirel L, Héritier C, Nordmann P. Genetic and biochemical characterization of the chromosome-encoded class B beta-lactamases from *Shewanella livingstonensis* (SLB-1) and *Shewanella frigidimarina* (SFB-1). *J Antimicrob Chemother* 2005;55:680–685.

54. Jacoby GA. Beta-lactamases. *Clin Microbiol Rev* 2009;22:161–182.

55. Kim HB, Park CH, Gavin M, Jacoby GA, Hooper DC. Cold shock induces *qnrA* expression in *Shewanella alga*. *Antimicrob Agents Chemother* 2011;55:414–416.

56. Poirel L, Rodriguez-Martinez JM, Mammeri H, Liard A, Nordmann P. Origin of plasmid-mediated quinolone resistance determinant *qnrA*. *Antimicrob Agents Chemother* 2005;49:3523–3525.

57. Cantón R. Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. *Clin Microbiol Infect* 2009;15:20–25.

58. Cattoir V, Poirel L, Aubert C, Soussy CJ, Nordmann P. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in environmental *Aeromonas* spp. *Emerg Infect Dis* 2008;14:231–237.

59. Nordmann P, Poirel L. Emergence of plasmid-mediated resistance to quinolones in *Enterobacteriaceae*. *J Antimicrob Chemother* 2005;56:463–469.

60. Lascols C, Podglajen I, Verdet C, Gautier V, Gutmann L et al. A plasmid-borne *Shewanella algae* gene, *qnrA3*, and its possible transfer in vivo between *Klyvera ascorbata* and *Klebsiella pneumoniae*. *J Bacteriol* 2008;190:5217–5223.

61. Myung DS, Jung YS, Kang SJ, Song YA, Park KH et al. Primary *Shewanella algae* bacteraemia mimicking *Vibrio* septicemia. *J Korean Med Sci* 2009;24:1192–1194.

62. Telke AA, Rolain JM. Functional genomics to discover antibiotic resistance genes: the paradigm of resistance to colistin mediated by ethanolamine phosphotransferase in *Shewanella algae* MARS 14. *Int J Antimicrob Agents* 2015;46:648–652.

63. Mensa Pueyo J, Gatell Artigas JM, García Sánchez JE, Letang E, López-Suñé E et al. *Guía de Terapéutica Antimicrobiana*: 24th ed., vol. 2014. Barcelona: Antares; 2014.

64. Dailey FE, Mcgraw JE, Jensen BJ, Bishop SS, Lokken JP et al. The microbiota of freshwater fish and freshwater niches contain omega-3 fatty acid-producing *Shewanella* species. *Appl Environ Microbiol* 2015;82:218–231.

65. Suo Y, Li E, Li T, Jia Y, Qin JG et al. Response of gut health and microbiota to sulfide exposure in Pacific white shrimp *Litopenaeus vannamei*. *Fish Shellfish Immunol* 2017;63:87–96.

66. King GM, Judd C, Kuske CR, Smith C. Analysis of stomach and gut microbiomes of the eastern oyster (*Crassostrea virginica*) from coastal Louisiana, USA. *PLoS One* 2012;7:e51475.

67. Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC et al. *Shewanella algae*: a marine pathogen as an emerging cause of human disease. *Clin Microbiol News* 2014;36:25–29.

68. Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC et al. *Shewanella algae*: a marine pathogen as an emerging cause of human disease. *Clin Microbiol News* 2014;36:25–29.

69. Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC et al. *Shewanella algae*: a marine pathogen as an emerging cause of human disease. *Clin Microbiol News* 2014;36:25–29.

70. Angelakis E, Yasir M, Bachar D, Azhar EI, Lagier JC et al. *Shewanella algae*: a marine pathogen as an emerging cause of human disease. *Clin Microbiol News* 2014;36:25–29.