Loss of Effector Function of Human Cytolytic T Lymphocytes Is Accompanied by Major Alterations in N- and O-Glycosylation*§

Received for publication, November 4, 2011, and in revised form, February 3, 2012. Published, JBC Papers in Press, February 13, 2012, DOI 10.1074/jbc.M111.320820

Aristotelis Antonopoulos§, Nathalie Demotte†, Vincent Stroobant§, Stuart M. Haslam†, Pierre van der Bruggen§, and Anne Dell††

From the§ Division of Molecular Biosciences, Imperial College London, London SW7 2AZ, United Kingdom and the§ Ludwig Institute for Cancer Research, WELBIO and Université Catholique de Louvain, de Duve Institute, 74 av. Hippocrate, P. O. Box B1-7403, B-1200 Brussels, Belgium

Background: Most human tumors escape the immune system because of the immunosuppressive tumor microenvironment.

Results: N-Acetyllactosamine units, the ligands for galectin-3, and branching on N-linked glycans are increased in the recently activated cytolytic T lymphocytes.

Conclusion: The increased galectin-3-lattices decrease the motility of key surface glycoproteins.

Significance: Loss of effector functions on cytolytic T lymphocytes may be linked to reduced motility of surface glycoproteins.

Most human tumors are not eliminated by the immune system, and therapeutic vaccination shows poor results, a fact that can be explained at least partially by an immunosuppressive tumor microenvironment that is abundant in galectin-3. On cytolytic T lymphocyte (CTL) clones, maintained in culture by regular stimulation, recently activated CTLs present low effector functions. However, these functions are restored after a short treatment with LacNAc. The latter, which is in agreement with the glycoprotein-galectin lattice concept involving reduced motility, poses the question why galectin-3 ligands improve effector functions. We employed ultrasensitive MALDI-TOF-MS on resting and recently activated CTL clones combined with various glycosidase digestions and GC-MS linkage analyses. Our results showed that compared with the resting CTLs, the N-glycans of the recently activated CTLs consisted of (i) larger LacNAc oligomers of which a significant portion was longer than four units and (ii) more multi-antennary structures. Interestingly, our results showed that the poly-LacNAc appeared to be equally distributed on all available N-glycan branches and not selectively enriched on a specific branch. The above structural alterations in the recently activated CTLs are expected to increase the galectin-3-LacNAc lattices and multivalent interactions and, therefore, reduce the motility of surface glycoproteins, such as the T-cell receptor. These findings suggest that the loss of effector functions on CTLs may be linked to reduced motility of surface glycoproteins. In addition, our results showed that recently activated CTLs had a reduced abundance of NeuAcα2,6-linked N-glycans and an increased abundance of disialylated core 1 and monosialylated core 2 O-glycan structures.

Human tumors are usually not spontaneously eliminated by the immune system, and therapeutic vaccination of cancer patients with defined antigens is followed by tumor regressions only in a small minority of patients (1, 2). The poor vaccination effectiveness could be explained by an immunosuppressive tumor microenvironment. Because T cells that do infiltrate tumor metastases have an impaired ability to lyse target cells or to secrete cytokines when they are stimulated ex vivo, i.e. tested on untreated and uncultured samples (3–7), many researchers are trying to decipher the underlying immunosuppressive mechanisms.

We suggested that extracellular galectin-3, abundant in solid tumor and carcinoma ascites, impairs human tumor-infiltrating T lymphocyte (TIL)§ function (8). The motility of surface molecules, such as the T-cell receptor (TCR), which are necessary for T cell activation and function, can be reduced because they are trapped in a lattice of glycoproteins clustered by extracellular galectin-3 (9). Several of our results support this hypothesis. First, human tumor-infiltrating CD8+ TILs from diverse histological origins, in contrast with CD8+ blood cells, have an impaired ability to secrete IFN-γ upon ex vivo stimulation (6). We documented by FRET the physical dissociation of TCR and CD8 on these TILs. Second, TILs harbor surface galectin-3, which can be detached by treatment of CD8+ TIL with an anti-galectin-3 antibody. A 2-h treatment of TIL with this antibody followed by overnight stimulation with beads coated with anti-CD3 antibodies, which mimic an antigenic stimulation, boosted their secretion of IFN-γ (6). Third, two galectin ligands, N-acetyllactosamine (Galβ1,4GlcNAc; 2 The abbreviations used are: TIL, tumor-infiltrating T lymphocyte; CTL, cytolytic T lymphocyte; LacNAc, Galβ1,4GlcNAc; Leα, Galβ1,4(Fucα1,3)GlcNAc; sLeα, NeuAcα2,3Galβ1,4(Fucα1,3)GlcNAc; TCR, T-cell receptor.

§1 This work was supported by Biotechnology and Biological Sciences Research Council Grants B19088 and BBF083091 (to A. D. and S. M. H.). This work was also supported by grants from the Fondation contre le Cancer (Belgium) and Fonds de la Recherche Scientifique Médicale (Belgium) (to P. B.).

† This article contains supplemental Table S1 and Figs. S1–S9.

© 2012 by The American Society for Biochemistry and Molecular Biology, Inc. Published in the U.S.A.
T cells can secrete galectin-3. In in vitro cultures of CTL clones, galectin-3 can be secreted by the tumor cells used as stimulators, the immortalized B cells used as feeder cells, and possibly by the activated T cells themselves. Indeed, expression of galectin-3 is increased after murine T cell activation by the mitogen concanavalin A. Also, galectin-3 secretion is enhanced in response to calcium ionophore when T cells are previously activated (12).

N-Glycans harbored by murine splenocyte T cells have been previously compared with those found at the surface of splenocyte T cells, which were activated by anti-CD3 antibody and collected 3 days later. Activation resulted in a decreased expression of the sialyltransferase ST6Gal1 and increased expression of the galactosyltransferase α1,3GalIT (13). Accordingly, activation resulted in reduction of sialylated biantennary N-glycans carrying the terminal NeuGcα2,6Gal sequence and a corresponding increase in glycans carrying the Galα1,3Gal sequence. Murine T cells, however, are not good models for potential galectin-mediated processes in the human immune system because they are poor in tri- and tetra-antennary poly-LacNAc glycans (14).

Here, we characterized global changes in N- and O-glycans of two human CTL clones that were analyzed either in a resting state or 4 days after antigenic stimulation. Applying ultra-sensitive matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF-MS) combined with various glycosidase digestions and gas chromatography (GC)-MS linkage analyses, we present direct evidence that galectin-3 ligands in recently activated human CTLs, compared with the resting state CTLs, are increased. N-Glycans of recently activated CTLs exhibited poly-LacNAc chains of which a portion was found longer than four LacNAc units. Moreover, recently activated CTL clones present more branched (multi-antennary) N-glycans. Differences in the non-reducing N-glycan terminal epitopes and O-glycan structures are also discussed.

EXPERIMENTAL PROCEDURES

CTL Clones and Stimulation Conditions—Anti-MAGE-3.A1 CTL clones LB2586–7/1F3.2 (clone F3.2) and LAU147–810/A10 (clone A10) were described previously (8). Every two weeks, stimulation was performed as described. LacNAc was purchased from Carbosynth.

Antigen Recognition Assays for CTL Clones—CTL clones (10,000) were stimulated for 20 h in round-bottomed microwells in 100 µl of Iscove’s modified Dulbecco’s medium, 10% human serum, 0.24 mM l-asparagine, 0.55 mM l-arginine, 1.5 mM l-glutamine with 10,000 HLA-A1-irradiated allogeneic Epstein-Barr virus immortalized B cells previously incubated with MAGE-3 peptide EVDPIGHLHY. Amounts of IFN-γ secreted after overnight co-culture were measured by ELISA using BIOSOURCE Cytoset reagents (Invitrogen). When indicated, CTL clones (10,000) were previously incubated for 2 h in round-bottomed microwells in 50 µl of Iscove’s modified Dulbecco’s medium, 10% human serum, 0.24 mM l-asparagine, 0.55 mM l-arginine, 1.5 mM l-glutamine with 2 mM LacNAc before adding the stimulator cells.

Cell Pellets—Cells were collected and washed. Dead cells were removed by a depletion selection strategy using the Dead
Glycomics on Human Cytolytic T Lymphocytes

Cell Removal Kit (AutoMACS system, Miltenyi Biotec). Cells were then washed, and the remaining Epstein-Barr virus immortalized B cells were removed by a positive selection strategy using magnetic beads coated with anti-CD19 (AutoMACS system). Cells were finally washed in PBS, dry-pelleted, and stored at −80 °C.

Processing of CTL Clones to Obtain N- and O-Glycans—All human CTL clones (clones A10 and F3.2) were treated as described previously (15). Briefly, each CTL clone (~20 million) was subjected to sonication in the presence of detergent (CHAPS), reduction in 4 M guanidine-HCl (Pierce), carboxymethylation, and trypsin digestion. The digested glycoproteins were then purified by C18-Sep-Pak (Waters Corp., Hertfordshire, UK). N-Glycans were released by peptide N-glycosidase F (E.C. 3.5.1.52; Roche Applied Science) digestion, whereas O-glycans were released by reductive elimination. Released N- and O-glycans were permethylated using the sodium hydroxide procedure and purified by C18-Sep-Pak. The results shown are representative of three independent experiments.

Sialidase Digestions—Cleavage of the all sialic acids (NeuAc) or of α2,3 specific from the CTL clones A10 and F3.2 was performed with a sialidase-A (Arthrobacter ureafaciens; E.C. 3.2.1.18; Prozyme, GK80040) and sialidase-S (Streptococcus pneumoniae; E.C. 3.2.1.18; Prozyme, GK80020) digestions, respectively. Released N-glycans were incubated in 200 µl of 50 mM sodium acetate (pH 5.5). 170 milliunits of the enzyme were added to the sample for 24 h.

Remove of Fucose Residues—Removal of all fucose residues attached to antennae of N-glycans was performed with hydrofluoric acid (HF) treatment. 50 µl of HF (48% v/v) was added to the sample for 48 h at 4 °C. The reaction was terminated by drying the sample under a gentle stream of nitrogen.

Galactosidase Digestion—Cleavage of galactose residues was performed with a β(1–3,4)-galactosidase from bovine testis (E.C. 3.2.1.23; Prozyme, GKX-5013). Released N-glycans were incubated in 200 µl of 50 mM sodium acetate (pH 4.6, 37 °C) for 24 h. 10 milliunits of the enzyme were added with a fresh aliquot added after 12 h.

Hexosaminidase Digestion—Cleavage of β-N-acetylglucosamine residues was performed with a β-N-acetyhexosaminidase (S. pneumoniae; E.C. 3.2.1.52; Prozyme, GK80050). Released N-glycans were incubated in 200 µl of 50 mM sodium formate (pH 5.0, 37 °C) for 24 h. 80 milliunits of the enzyme was added with a fresh aliquot being added after 12 h.

Endo-β-galactosidase Digestion—Endo-β-galactosidase (Escherichia freundii; E.C. 3.2.1.103; Seikagaku Corp, AMS Biotechnology Ltd, 100455) digestion was carried out in 200 µl of sodium acetate (pH 5.8, 37 °C). 20 milliunits of the enzyme were added to the sample for 48 h with a fresh aliquot added after 24 h.

E. freundii endo-β-galactosidase hydrolyzes the internal β-galactosidic linkages of both the type 1 and type 2 linear polyglactosamine chains having as a minimum structural requirement the structure GlcNAcβ1–3Galβ1–3GlcNAc (or β1–4GlcNAc for type 2) (16, 17). The action of E. freundii endo-β-galactosidase is inhibited by fucosylation of residues in close proximity to the internal β-galactosidic linkage (16, 17). For example, for the mono-fucosylated structure Galβ1–4GlcNAcβ1–3Galβ1–4(Fucα1–3)GlcNAc, the cleavage at the β-galactose residue is inhibited by the fucose on the GlcNAc residue.

Mass Spectrometry—MS data were acquired using either a Voyager-DE STR MALDI-TOF or a 4800 MALDI-TOF/TOF (Applied Biosystems, Darmstadt, Germany) mass spectrometer. MS/MS data were acquired using a 4800 MALDI-TOF/TOF mass spectrometer. Permethylated samples were dissolved in 10 µl of methanol, and 1 µl of dissolved sample was premixed with 1 µl of matrix (20 mg/ml 2,5-dihydroxybenzoic acid in 70% (v/v) aqueous methanol), spotted onto a target plate, and dried under vacuum. For the MS/MS studies the collision energy was set to 1 kV, and argon was used as collision gas. The 4700 Calibration standard kit, calmix (Applied Biosystems), was used as the external calibrant for the MS mode, and [Glu1] fibrinopeptide B human (Sigma) was used as an external calibrant for the MS/MS mode.

Analyses of MALDI Data—The MS and MS/MS data were processed using Data Explorer 4.9 Software (Applied Biosystems). The processed spectra were subjected to manual assignment and annotation with the aid of a glycobioinformatics tool, GlycoWorkBench (18). The proposed assignments for the selected peaks were based on 13C isotopic composition together with knowledge of the biosynthetic pathways. The proposed structures were then confirmed by data obtained from MS/MS and linkage analysis experiments.

GC-MS Linkage Analysis—Partially methylated alditol acetates were prepared as previously described (15). Linkage analysis of partially methylated alditol acetates was performed on a PerkinElmer Life Sciences Clarus 500 instrument fitted with a RTX-5 fused silica capillary column (30 m × 0.32 mm inner diameter; Restek Corp.). The sample was dissolved in ~20–50 µl of hexanes and injected manually (2–3 µl). Injector temperature was set at 250 °C. Partially methylated alditol acetates were eluted with the following linear gradient oven. Initially, the oven temperature was set at 65 °C for 1 min, heated to 290 °C at a rate of 8 °C per min, held at 290 °C for 5 min, and finally heated to 300 °C at a rate of 10 °C per min.

RESULTS

CTL clones A10 and F3.2 were both directed against MAGE-3 peptide EVDPIGHLY presented by HLA-A1. They were expanded in vitro by stimulation every 14 days using peptide-pulsed HLA-A1 cells. To assess the effector capability of the CTL at various points of the stimulation cycle, cells were collected at either 4 days (activated) or 14 days (resting) after antigenic stimulation and co-culturing with peptide-pulsed HLA-A1 cells. Amounts of IFN-γ secreted by the CTL were estimated by ELISA in the supernatant of overnight co-cultures. Compared with CTL collected on day 0, CTL collected on day 4 secreted lower levels of IFN-γ upon re-stimulation (Fig. 1 and supplemental Fig. S1). But when recently activated CTLs, collected on day 4, were treated for 2 h with galec tin ligand LacNAc, their ability to secrete high levels of IFN-γ upon restimulation was restored. On the contrary, LacNAc treatment did not affect IFN-γ secretion on resting CTL clones (supplemental Fig. S2). Extracellular galec tin-1 and galec tin-3 were both detected at the surface of recently activated CTL. The
Glycomic Analysis of CTLs Revealed Differences on N- and O-Glycans—The N-glycomic profile of resting CTL clone A10 consisted of high mannose and complex structures (Fig. 2A). Compositional and MALDI-TOF-TOF MS/MS analyses suggested that the latter were mainly core fucosylated and non-biected, and corresponded to bi-, tri-, and tetra-antennary N-glycan structures occasionally extended with LacNAc repeats. The non-reducing ends of these glycan either remained unmodified (m/z 2244, 2489, 2938, 4490) or were further modified, mainly with terminal NeuAc residues (m/z 2605, 3416, 4402, 5300). The sLea terminal epitope was also detected in bi-antennary (m/z 3140, 3314) and tri-antennary (m/z 3951 and 4125) N-glycan structures. However, it was of low abundance compared with other terminal structures.

The N-glycomic profile of recently activated CTL clone A10 exhibited similar N-glycans to the resting state CTLs but with the following differences being observed (Fig. 2B). (i) N-Glycans with extended poly-LacNAc structures were of higher abundance compared with the resting state, resulting in higher molecular weight N-glycan structures reaching up to 7000 mass units; (ii) sLea-terminated glycan were of higher abundance. For example, comparing the ratios of m/z 3140 with m/z 2966 on both the resting and recently activated states (Fig. 2A and B), it was concluded that the sLea-terminated core glycan were of higher abundance. In addition, the sLea-terminated N-glycans were overlapped with other dominant structures. For example, the tri-antennary sLea structure detected at m/z 3951 (Fig. 2B) was observed as a minor peak in the m/z 3953-3-ion cluster that corresponded to a monosialylated core fucosylated N-glycan.

The O-glycomic profile of the resting CTL clone A10 mainly exhibited the monosialylated core 1 structure (m/z 895) together with a tiny amount of a non-sialylated core 2 (m/z 983) structure (Fig. 3A). Recently activated A10 CTLs (Fig. 3B) contained, in addition to the core 1 O-glycan at m/z 895, disialylated core 1 O-glycans (m/z 1256) and a higher abundance of core 2 O-glycans, either unmodified (m/z 983) or terminated with one NeuAc residue (m/z 1344) or with a Lea terminal epitope (m/z 1157).

The glycomic profiles of resting and recently activated CTL clone F3.2 were similar to the CTL clone A10 structures with complex N-glycans extended with LacNAc repeats and elaborated with the same terminal epitopes, whereas O-glycans consisted of core 1 and core 2 structures terminated with NeuAc, Lea and minor abundances of sLea terminal epitopes (supplementary Figs. 34 and S5).

Endo-β-galactosidase Digestion Revealed Differences in Relative Abundance of Various Terminal Epitopes and Polylactosamine-type N-Glycans—The N-glycome of CTL clones A10 and F3.2 suggested differences in the relative abundance of the terminal epitopes and LacNAc repeats. Therefore, we performed an endo-β-galactosidase digestion on the N-glycans of both CTLs (supplementary Fig. S6) with a 2-fold aim: (i) to verify whether any of the N-glycans of the aforementioned CTLs contained linear polylactosamine chains and (ii) to characterize and reveal any potential differences in the relative abundances on the non-reducing terminal epitopes between resting and recently activated CTLs. The existence of the above should be revealed by the new molecular ions in the low mass region corresponding to antennae fragments released by the enzyme. The low mass permethylated products of the CTL clone A10 in both states (resting and recently activated) are depicted in Fig. 3. Disaccharides released from within the polylactosamine chains gave the signal at m/z 518 corresponding to the GlcNac-Gal sequence (Fig. 3, A and B). The molecular ions at m/z 722, 896, 1083, and 1257 were consistent with the terminal sequences Gal-GlcNac-Gal, Gal-(Fuc)GlcNac-Gal, NeuAc-Gal-GlcNAc-Gal, and NeuAc-Gal-(Fuc)GlcNAc-Gal, respectively, which were predicted digestion products of uncapped, fucosylated, sialylated, and sLea polylactosamine chains, respectively. Evidence for the m/z 896 and 1257 components being terminated by Lea and sLea epitopes was provided by MALDI-TOF-TOF MS/MS that yielded major fragments at m/z 690 and 1051, respectively (data not shown). Molecular ions at m/z 967, 1141, 1171, and 1345 were assigned to pauci-mannose N-glycans Man3GlcNAc2, Man2GlcNAc-(Fuc)GlcNAc,
Man$_3$GlcNAc$_2$, and Man$_3$GlcNAc-(Fuc)GlcNAc, which did not correspond to fragments released by the endo-β-galactosidase. Moreover, endo-β-galactosidase digestion revealed the presence of disialylated and Vim-2 terminal epitopes in very low abundance (supplemental Fig. S7).

Analysis of the relative abundances of the above terminal epitopes revealed that compared with the resting state, the recently activated CTL clone A10 had higher levels of unmodified, Lex, and sLex terminal epitopes and lower levels of sialylated terminal epitopes. Summing up the relative abundances of all the terminal epitopes at m/z 722, 896, 1083, and 1257, we found that compared with the resting state, recently activated CTL clone A10 was characterized by a decrease in the abundance of sialylated LacNAc repeats at m/z 1083 (~24%) and an increase in the abundance of unmodified LacNAcs at m/z 722 (~10%). Endo-β-galactosidase digestion on CTL clone F3.2 revealed similar abundances to the CTL clone A10 fragments in both states (supplemental Fig. S8). Uncapped, Lea, sialylated, and sLea polylactosamine chains characterized the resting and recently activated CTL clone F3.2. Again, compared with the resting state, recently activated CTL clone F3.2 was characterized by a decrease in the abundance of sialylated LacNAc repeats (~36%) and an increase in the abundance of unmodified LacNAcs (~196%). The reduction in glycan complexity on both CTL clones A10 and F3.2 afforded by the endo-β-galactosidase digestion revealed additional signals that corresponded to N-glycans terminated with multiples of sLea epitopes (supplemental Fig. S6). These signals existed in the original glycomic profiles but were in minor abundance, and the isotopic cluster of more abundant ions partly masked them. For example, the ions at m/z 4761 and 4935 corresponded to tetra-antenary N-glycans with a single and a double sLea epitope (supplemental Fig. S6, A and B).

Taken together, the endo-β-galactosidase digestion data on N-glycans of both CTL clones A10 and F3.2 confirmed the presence of polylactosamine chains that remained unmodified or were terminated with Lea, sialyl, and sLea epitopes. The data also suggested that, compared with the resting state, in the recently activated state there was an increase in the relative abundance of poly-LacNAc and a decrease in the relative abundance of sialylated terminal epitopes.

Linkage Analysis Revealed Differences in Polylactosamine-type Abundances—The N-glycans of both the resting and recently activated CTLs contain linear LacNAc units whose abundances appeared to be modified in the resting-activation CTLs cycle. Therefore, to express the percent difference of the polylactosamine-type chains between the resting and recently activated CTLs, we performed GC-MS linkage analysis. Comparing the relative abundances of the 3-linked galactose and 4-linked GlcNAc residues (that together make-up the LacNAc

FIGURE 2. MALDI-TOF mass spectra of permethylated N-glycans of CTL clone A10 derived from resting and recently activated state. N-Glycomic profiles of resting (A) and recently activated (B) CTL clone A10 were obtained from the 50% MeCN fraction from a C$_{18}$ Sep-Pak column ("Experimental Procedures"). Annotated structures are according to the Consortium for Functional Glycomics guidelines. All molecular ions are [M+Na]$^+$.

Putative structures are based on composition, tandem MS, and the biosynthetic knowledge. Structures that show sugars outside a bracket have not been unequivocally defined.
unit in poly-LacNAc) between resting and recently activated CTLs, we are able to relatively quantify the different abundance of the LacNAc units between the aforementioned CTLs. Linkage analysis was performed on desialylated N-glycans after digestion with broad specificity sialidase-A. This is because \(^{2,3}\)-linked NeuAc residues potentially could be linked to galactose residues and supplementing the \(^3\)-linked galactose from the polylactosamine-type chains. Results from linkage analysis from both CTLs clones are depicted in Table 1. Recently activated CTL clone A10 presented a 121 and 344% increase of the \(^3\)-linked galactose and \(^4\)-linked GlcNAc abundance, respectively, compared with resting CTLs, whereas for the CTL clone F3.2 the increase was 48 and 69%, respectively. These data show that in both CTLs, the N-glycans in the recently activated state contained more LacNAc chains than in the resting state. Additional linkage data confirmed structural differences between the resting and recently activated CTLs. For example, the increase of 3,4-GlcNAc residues on the recently activated CTLs was in accordance with the increase of sLe\(^\a\) epitopes. This increase was 363 and 29% that for the CTL clones A10 and F3.2, respectively (Table 1).

Endo-\(\beta\)-galactosidase Digestion Revealed Differences in Multi-branched N-Glycans—We next investigated whether there was a difference in the abundance of complex bi-, tri-, and tetra-antennary N-glycans between the resting and recently activated CTLs that carry LacNAc repeats. Endo-\(\beta\)-galactosidase digestion on resting CTL clone A10 showed that the most abundant N-glycans carrying LacNAc extensions corresponded to bi-antennary (m/z 1836) and to a less extent to tri- (m/z 2081 and 2285) and tetra-antennary (m/z 2326) N-glycan structures (Fig. 5A). On the contrary, recently activated CTL clone A10 showed a decrease in the relative abundance of bi-antennary structures and an increase in the abundance of tri- and tetra-antennary N-glycans (Fig. 5B). Summing-up the relative abundances of the ions at m/z 1836, 2081, 2285, 2326, and 2530, we found that compared with the resting state, the tri- and tetra-antennary N-glycans (m/z 2081, 2285, 2326, and 2530) on the recently activated clone A10 were increased by \(-89\%\). The same decrease of the bi-antennary and increase of tri- and tetra-antennary N-glycans was observed when resting and recently activated CTLs clone F3.2 were compared.
Table 1

CTL clones	Relative abundance	% Difference (on activated)					
	3-Gal	4-GlcNAc	3,4-GlcNAc	3-Gal	4-GlcNAc	3,4-GlcNAc	
A10	Resting	0.279	0.086	0.008	+121	+344	+363
	R. activated	0.616	0.382	0.037	+48	+69	+29
F3.2	Resting	0.273	0.184	0.024			
	R. activated	0.403	0.311	0.031			

*The upper panel values express the resting state CTLs relative abundance; the lower panel values express the recently activated CTLs relative abundance. Relative abundance of 3-linked Gal, 4-linked GlcNAc and 3,4-linked GlcNAc were obtained normalizing the integrated area peak of the extracted ion current (XIC) chromatogram of a specific residue to the summed integrated areas of the XICs of 3,6-linked mannose and 3,4,6-linked mannose.

*Percent difference of the relative abundance between resting and recently activated CTL clones (recently activated – resting)/resting %.

Figure 5. Middle mass MALDI-TOF spectra of permethylated N-glycans derived from endo-β-galactosidase digestion of resting and recently activated CTL clone A10. N-Glycomic profiles of CTL clone A10 in resting (A) and recently activated (B) states are shown. Profiles of N-glycans are from the 35% MeCN fraction from a C18 Sep-Pak (‘Experimental Procedures’). All molecular ions are [M + Na]+. Putative structures are based on composition, tandem mass spectrometry, and the literature shown. Annotated structures are according to the Consortium for Functional Glycomics guidelines.

(supplemental Fig. S9). By similar calculations we found that the tri- and tetra-antennary N-glycans on the recently activated clone F3.2 were increased by ~90%. Taken together, the data suggest that recently activated CTLs contain more branched N-glycans that carry LacNAc chains than the resting CTLs.

More Polylactosamine Chains Are Found on Recently Activated CTLs— All previous experiments showed that the N-glycans exist as multibranched structures extended with LacNAc repeats and terminated with various epitopes and that all these are modified in the resting-activation CTLs cycle. However, none of above experiments gave a cumulative indication on the length of these LacNAc repeats. This was an important factor to consider because the binding affinity of galectin-3 is expected to be affected by the length of these LacNAc repeats as well as by the relative abundance of these terminal epitopes. Therefore, we determined the minimum length of the LacNAc chains on the resting and recently activated CTL clone F3.2 and additionally where these poly-LacNAcs were mainly formed, i.e. on bi-, tri-, or tetra-antennary N-glycans (Fig. 6).

We removed all fucose and sialic acid residues substituting the antennae by hydrofluoric acid treatment and by a nonspecific sialidase enzymatic digestion, respectively, of the N-glycans of the CTL clone F3.2 leaving only the core-fucose and the LacNAc extensions (Fig. 6A, upper structure). Then, performing two cycles of enzymatic digestions with subsequent incubations of β-galactosidase and β-N-acetylhexosaminidase, we reduced the N-glycan LacNAc chains of the CTL clone F3.2 by 2 LacNAc repeats. Finally, we incubated the resultant N-glycans with endo-β-galactosidase (Fig. 6A, upper structure). The new signals appearing in the spectra or the ones that were greatly enhanced corresponded to N-glycans deriving from the above process, and their structures depended on the number of LacNAc repeats originally present in each branch (Fig. 6A, lower structure).

According to this procedure, most of the N-glycan structures detected on the resting and recently activated CTL clone F3.2 (supplemental Fig. S4, A and B) should be fully digested to the basic N-glycan core structure Man3GlcNAc(±Fuc)GlcNAc (see Fig. 6A). Indeed, ions detected at m/z 1171 and 1345 corresponded to all complex bi-, tri-, and tetra-antennary N-glycans that were extended with up to 2 LacNAc units that were terminated with Le4, sialic acid, and sLe4 epitopes (Fig. 6B). Ions at m/z 1416 and 1590 corresponded to complex structures where one branch was extended with 4 LacNAc repeats or more. Ions detected at m/z 1661 and 1836 corresponded to N-glycans that had two branches that originally contained 4 LacNAc repeats or more. The ions detected at m/z 1866, 2111, and 2285 had originally one branch extended with three LacNAc repeats and one or two branches (depending if they were bisected or not) with four LacNAc repeats or more (Fig. 6,
A and B). The ion detected at m/z 2530 corresponded to an N-glycan with two or three branches extended with 4-LacNAc-units or more (depending if it was bisected or not), although the ion at m/z 2775 corresponded to a bisected tetra-antennary N-glycan that had one branch extended with 3 LacNAc repeats whereas the rest were at least 4 LacNAc units long. Finally, the ions at m/z 1906, 2081, 2326, and 2571 corresponded to bi-, tri-, and tetra-antennary N-glycans that had all of their branches extended with 4 LacNAc repeats or more. The above data suggest that a part of the resting and recently activated CTL clone F3.2 N-glycans had all their branches extended with at least four LacNAc repeats.

To express the percent difference of the poly-LacNAc chains between the resting and the recently activated CTLs, we calculated the relative abundance of all the N-glycans with more than one terminal GlcNAc and compared it with the summed relative abundance of the ions at m/z 1141 and 1345 that corresponded to N-glycans with two LacNAc units or less. The results showed that compared with the resting, recently activated CTLs contained ~30% more N-glycans with one or more terminal GlcNAc N-glycans. Therefore, the data suggest that recently activated CTLs contained N-glycans with more branches of at least four LacNAc units.

We then performed GC-MS linkage analysis of the above resulting N-glycans where any possible variations in the levels of 2,4-linked mannosae and 2,6-linked mannose would directly positively correlate with the abundance of tri- or and tetra-antennary N-glycans but specifically for those that were elongated with more than 4-LacNAc units. Our data showed that 2,4-linked mannosae and 2,6-linked mannosae increased by ~80 and 60% on the recently activated clone F3.2 CTLs (supplementary Table S1), suggesting that more branches of at least 4-LacNAc units were found on the recently activated CTLs than the resting CTLs. In addition, combining the data from the MALDI-TOF-MS which indicated that the most abundant structure corresponded to triple-terminated GlcNAc N-glycan (m/z 2081) and the data from the GC-MS linkage analysis that the 2,4-linked mannosae residue was more abundant than the 2,6-linked mannosae residue, we concluded that the most abundant poly-LacNAc N-glycan corresponded to the tri-antennary N-glycan structures of GlcNAc2-Man2-3.(GlcNAcβ2-4)Manβ1-3.

Recently Activated CTLs Have Lower Abundance of α2,6-Linked NeuAc—Endo-β-galactosidase digestion suggested that, compared with the resting state, there was a decrease in the sialylation of the N-glycans in the recently activated state of both CTLs. However, the previous experiments did not reveal any information concerning the linkage of the NeuAc residues. Therefore, we applied α2-3-specific sialidase digestion on resting and recently activated CTL clone A10 to relatively quantify the ratio of α2,3-NeuAc/α2,6-NeuAc residues between these different conditions.

Fig. 7 depicts the MALDI-TOF mass spectra of permethylated N-glycans of CTL clone A10 in resting and recently activated states after sialidase-S ($α2-3$ specific) digestion. Compar-
ing the ratio of sialylation to the base core fucosylated bi-antennary N-glycan (m/z 2244), we found that resting state CTL clone A10 was characterized by a high abundance of mono-sialylated (m/z 2605, 2850, 3054, and 3299) and di-sialylated (m/z 2966) N-glycans (Fig. 7A). On the contrary, the recently activated CTL clone A10 exhibited a lower abundance of mono- and di-sialylated N-glycans (Fig. 7B). These data suggest that the recently activated CTL clone A10 has N-glycans with lower abundance of 2,6-linked NeuAc residues than the resting state. This ratio was found to be ~106% lower in the recently activated CTLs.

The abundance of 2,6-linked NeuAc is directly correlated with the abundance of the 6-linked galactose residue. Therefore, we performed GC-MS linkage analysis on both the resting and recently activated CTL clone A10 to detect any possible difference in the abundance of 6-linked galactose residues. The results suggested that recently activated CTL clone A10 contained 56% less 6-linked galactose residue compared with their resting state (data not shown). Taken altogether, the data suggested that recently activated CTLs contained less 2,6-linked NeuAc residues than their resting state CTLs.

DISCUSSION

Defining the underlying immunosuppressive mechanisms of how tumor microenvironment impairs TIL function is of great importance. The level of galectins, abundant in solid tumors, has been correlated with the aggressiveness of the tumor, and it has been hypothesized that they might modulate tumor progression and influence the disease outcome (19, 20). This suggestion appears to hold true because cells highly regulate the expression of endogenous galectins and their ligands to regulate cellular functions, suggesting that exogenous galectins or modification in the expression of galectin ligands could lead to pathology (21). The results presented here have been obtained with clones and, therefore, are expected to be more rigorous than polyclonal splenocytes that may contain different cell types. Applying ultrasensitive MALDI-TOF-MS combined with various glycosidase digestions and GC-MS linkage analyses, we make the novel observation that the N-glycome of the recently activated human CD8+ CTLs, when compared with the N-glycome of the resting CTLs (i) consists of longer LacNAc chains of which a portion are longer that four units ((LacNAc)4, poly-LacNAcs) and (ii) contains more branched (multi-antennary) N-glycans. These observations verify our working hypothesis that activation of human CTLs and TILs results in the expression of surface glycoproteins that exhibit higher abundance of galectin-3 ligands and possibly other galectin ligands such as galectin-1. This combined with the high abundance of extracellular galectin-3 found in tumor microenvironments could potentially explain the loss of TIL functions through a mechanism of reduced motility of surface molecules.

Galectin-3 is a β-galactoside binding lectin that binds to internal LacNAc repeats, and it is not severely affected by the terminal epitopes at the non-reducing end of long-LacNAc-extended glycans (22, 23). Therefore, binding to the long poly-LacNAc chains is not affected by the variations of the abundance of sialic acids, sLea, and Lea epitopes found here. Thus, our data suggest that on the recently activated CTLs the increased abundance of LacNAc repeats increases the galectin-
Glycomics on Human Cytolytic T Lymphocytes

3-LacNAc interactions and blocks the mobilization of various glycoproteins. Simultaneously, galectin-3 is a lectin that possesses multivalent carbohydrate binding and cross-linking activity (24). Surprisingly, on the recently activated CTLs, these poly-LacNAc extensions were found to be more abundant on tri-antennary \(N \)-glycans with GlcNAc\(\beta_1-2\)GlcNAc\(\beta_1-4\)-Man\(\beta_1-3\)GlcNAc\(\beta_1-2\)Man\(\beta_1-6\)Man branches and less abundant on tetra-antennary \(N \)-glycans, whereas resting CTLs exhibited reduced abundance of these tri- and tetra-antennary branches. Most interestingly, our data suggest that these poly-LacNAc repeats appeared to be mainly equally distributed on all available \(N \)-glycan branches and not selectively enriched on a specific \(N \)-glycan branch. The above suggest that recently activated human CTLs can form more multivalent galectin-3-LacNAc lattices, a fact that combined with the high levels of galectin-3 found in tumor microenvironments could further explain the reduced motility of surface glycoproteins.

Our results are consistent with previous mouse studies highlighting the importance of \(N \)-glycosylation and specifically how LacNAc abundance and branching could block T cell activation by regulating the mobility of key surfaces molecules, such as the TCR (9). However, those data suggested the selective extension of LacNAc repeats on the \(\beta_1,6 \)-GlcNAc branch, something that has not been verified from our data. Considering the data obtained here, it is possible that variations of LacNAc extensions are taking place on all available branches of mouse \(N \)-glycans, but only variations of the \(\beta_1,6 \)-branch were detected by the Phaseolus vulgaris leukoagglutinin binding lectin (9, 25). The possibility that mouse TCR is specifically decorated either with tri-antennary \(N \)-glycans of type GlcNAc\(\beta_1-2\)-(GlcNAc\(\beta_1-6\)-Man\(\beta_1-6\)Man) or tetra-antennary \(N \)-glycans cannot be excluded. In such a case, a possible down-regulation of the Mgat5 gene would provoke a reduced abundance of the LacNAc “density,” which is expected to decrease the galectin-3-LacNAc lattices.

A major surface glycoprotein that could be affected from the above galectin-3-LacNAc lattices is the TCR. In the recently activated human CTLs, characterized by the loss of effector functions and the absence of co-localization of TCR and CD8, the TCR was found in close proximity to galectin-3. A treatment of these CTL with galectin ligands (LacNAc) resulted within 2 h in TCR/CD8 co-localization, detaching the galectin-3 from the TCR, and was accompanied by restored functions (8). This suggests that galectin-3, which is involved in distancing the TCR from CD8 (8), could potentially regulate CTLs functions. Several lines of evidence support this concept, meaning that loss of effector functions on human CTLs could be associated with the galectin-3-LacNAc/TCR lattices. First, treatment of human TIL with anti-galectin-3 antibody detached galectin-3 from cells and boosted their functions (6). Second, human TCR \(\alpha \)-chain, in contrast to \(\beta \)-chain, has been shown to be occupied exclusively by complex \(N \)-glycans (26). Third, a previous study showed that the removal of a \(N \)-glycosylation site from the human TCR \(\alpha \)-chain resulted in improved sensitivity of a T cell response (functional avidity) (11). Finally and most importantly, a key step in T cell effector function is the phosphorylation of immunoreceptor tyrosine-based activation motifs within the CD3 complex, which in turn is dependent on LCK activation (27). However, a recent study has shown that LCK is already activated in resting human T cells, enough to initiate TCR signaling (28). Moreover, the expression-activation of LCK did not appear to depend on TCR or co-receptor expression-contact with pMHC. Hence, the above collectively suggest that the increased galectin-3-LacNAc lattices occurring in the recently activated CTLs and accompanied by the loss of effector functions could be linked, although not exclusively, to the de-localization of the TCR from the CD8 molecule. This in turn could potentially prevent the immunoreceptor tyrosine-based activation motif phosphorylation by keeping the TCR-CD3 complex distant from LCK, which is stably associated with the CD8 co-receptor (29) and, therefore, prevent further signaling. This concept has already been shown in mouse studies. Mgat5-deficient mice after stimulation exhibited increased association of the Zap-70 kinase with immunoreceptor tyrosine-based activation motifs, compared with WT mice, exhibiting a negative regulation of galectin-3-LacNAc lattices and immunoreceptor tyrosine-based activation motif phosphorylation (9).

Our data showed that the changes in LacNAc abundance between the resting and recently activated states of clone F3.2 were less prominent than those of clone A10. For TILs present in a tumor microenvironment of a given concentration of galectins and activated by the same peptide-MHC complex, the ones with a smaller increase in LacNAc abundance (such as clone F3.2) would be expected to present a relatively higher motility of surface molecules such as the TCR compared with other TILs with a more pronounced increase in LacNAc abundance (such as of clone A10). This is because the reduced increase of LacNAc abundance should induce a reduced increase of galectin-3-LacNAc lattices and, therefore, should have a smaller impact on the motility of surface molecules. Hence, a reduced increase of LacNAc abundance in activated T cells would be expected to result in higher motility of surface molecules and possibly effector functions. This concept has already been proposed in a previous study, suggesting that either the peptide-MHC complexes that would be predicted to overcome the negative regulation by the galectin lattice or the reduced \(N \)-glycan branching that would reduce the interaction of TCR for galectin would lead to activation (30).

Our data showed that recently activated human CD8\(^+\) CTL clones exhibited a lower abundance of terminal \(\alpha_2,6 \)-linked NeuAc residues than resting CTLs. This fact is expected to affect galectin-1-glycoprotein binding interactions. Galectin-1 binds to terminal LacNAc units either in their unmodified state or when they are decorated with \(\alpha_2,3 \)-linked NeuAc (31, 32), but this binding is blocked by \(\alpha_2,6 \)-linked NeuAc (23, 33, 34). Therefore, our data suggest that more galectin-1-ligand binding interactions are expected to be formed in recently activated CTLs than in the resting CTLs. Interactions of the TCR with galectin-1, instead of galectin-3, which may contribute to lattice formation and restrain TCR function, cannot be excluded either. Indeed, we detected extracellular galectin-1 in addition to galectin-3, and both have been detected in TILs (6). However, in a previous study the anti-galectin-3 monoclonal antibody B2C10, although being able to boost TIL function, seemed unable to detach galectin-1, suggesting that detaching galec-
Glycomics on Human Cytolytic T Lymphocytes

tin-3 from TIL was sufficient to restore function while not excluding the contribution of other galectins (6). Exactly how and if this could be related to loss of effector functions related to TCR on the recently activated human CTLs is currently unknown. Moreover, the possibility of additional molecules that contribute to the mechanism, such as the CD45, with galectin-1 and/or galectin-3, cannot be excluded either (13, 14).

The increased abundance of core 2 O-glycans on recently activated CTLs exhibited increased abundance of disialylated core 1 and monosialylated core two structures than the resting CTLs. The increased abundance of core 2 O-glycans on recently activated CTLs is in accordance with previous studies showing increased abundance of core 2 O-glycans in human leukosialin after activation of human T cells (37). Exactly how and if changes in O-glycosylation could be related to loss of effector functions in the recently activated human CTLs is currently unknown. Noteworthy, when our CTLs were activated and cultured for 4 days in the presence of swainsonine, an inhibitor of mannosidase II, neither their functions nor the TCR-CD8 co-localization was lost (8). Previous studies have shown that changes in O-glycan structures affect CD8 co-receptor signaling by either altering the conformation of its stalk region (38–40) or by regulating its avidity (41). Further studies will show if O-glycosylation affects the loss of effector functions.

In conclusion, our results show that the N-glycome of the recently activated CTL clones after antigenic stimulation result in increased abundance/density of poly-LacNAc chains that is able to sustain galectin-3 lattices without excluding the participation of other galectins and reduce the motility of key surface molecules, such as the TCR that is accompanied by the loss of effector functions of TIL. The possibility that certain surface glycoproteins do not follow the alteration of glycosylation presented here cannot, however, be excluded either.

REFERENCES

1. Boon, T., Coulié, P. G., Van den Eynde, B. J., and van der Bruggen, P. (2006) Human T cell responses against melanoma. *Annu. Rev. Immunol.* **24**, 175–208

2. Wieërs, G., Demotte, N., Godelaine, D., and van der Bruggen, P. (2011) Immune suppression in tumors as a surmountable obstacle to clinical efficacy of cancer vaccines. *Cancers* **3**, 2904–2954

3. Van den Hove, L. E., Van Gool, S. W., Van Poppel, H., Baert, L., Coorevits, L., Van Damme, B., and Ceuppens, J. L. (1997) Phenotype, cytokine production and homing of CD40L-positive melanoma cells in a patient with malignant melanoma ascites. *Cancer Immunol. Immunother.* **55**, 1185–1197

4. Van den Hove, L. E., Van Gool, S. W., Van Poppel, H., Baert, L., Coorevits, L., Van Damme, B., and Ceuppens, J. L. (1997) Phenotype, cytokine production and homing of CD40L-positive melanoma cells in a patient with malignant melanoma ascites. *Cancer Immunol. Immunother.* **55**, 1185–1197

5. Demotte, N., Wéeër, G., Van Der Smissen, P., Moser, M., Schmidt, C., Thielemans, K., Squiflet, J. L., Weynand, B., Carrasco, J., Lurquin, C., Courtoy, P. J., and van der Bruggen, P. (2010) A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. *Cancer Res.* **70**, 7476–7488

6. Demotte, N., Wéeër, G., Van Der Smissen, P., Moser, M., Schmidt, C., Thielemans, K., Squiflet, J. L., Weynand, B., Carrasco, J., Lurquin, C., Courtoy, P. J., and van der Bruggen, P. (2010) A galectin-3 ligand corrects the impaired function of human CD4 and CD8 tumor-infiltrating lymphocytes and favors tumor rejection in mice. *Cancer Res.* **70**, 7476–7488

7. Wang, S. F., Fouquet, S., Chapon, M., Salmon, H., Regnier, F., Labroquerie, K., Badoual, C., Damotte, D., Validire, P., Maubec, E., Delongchamps, N. B., Cazes, A., Gibault, L., Gargette, M., Dieu-Nojes, M. C., Zerbi, M., Avril, M. F., Prévost-Blondel, A., Randriamampita, C., Trautmann, A., and Bercovici, N. (2011) Early T cell signaling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. *PLoS ONE* **6**, e17621

8. Demotte, N., Stroobant, V., Courtoy, P. J., van Der Smissen, P., Colau, D., Luescher, I. F., Hivroz, C., Nicaise, J., Squiflet, J. L., Mourad, M., Godelaine, D., Boon, T., and van der Bruggen, P. (2008) Restoring the association of the T-cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. *Immunity* **28**, 414–424

9. Demetriou, M., Granovsky, M., Quaggin, S., and Dennis, J. W. (2001) Negative regulation of T-cell activation and autoimmunity by MgtN's O-glycosylation. *Nature* **409**, 733–739

10. Kuball, J., Haupert, F., Bartsch, D., Antunes, E., Voss, R. H., Wolff, M., Strong, R., Theobald, M., and Greenberg, P. D. (2009) Increasing functional avidity of TCR redirected T cells by removing defined O-glycosylation sites in the TCR constant domain. *J. Exp. Med.* **206**, 463–475

11. Too, H. G., Goedegebuure, P. S., Sadanaga, N., Nagoshi, M., von Bernstorff, W., and Eberlein, T. J. (2001) Expression and function of galectin-3, a β-galactoside-binding protein in activated T lymphocytes. *J. Leukoc. Biol.* **69**, 555–564

12. Comelli, E. M., Sutton-Smith, M., Yan, Q., Amado, M., Panico, M., Gilmore, S., Whisenant, T., Lanigan, C. M., Head, S. R., Goldberg, D., Morris, H. R., Dell, A., and Paulson, J. C. (2006) Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. *J. Immunol.* **177**, 2431–2440

13. Antonopoulos, A., North, S. J., Haslam, S. M., and Dell, A. (2011) Glycosylation of mouse and human immune cells. Insights emerging from N-glycosomics analyses. *Biosci. Rep.* **39**, 1334–1340

14. Jang-Lee, J., North, S. J., Sutton-Smith, M., Goldberg, D., Panico, M., Morris, H., Haslam, S., and Dell, A. (2006) Glycomic profiling of cells and tissues by mass spectrometry. Fingerprinting and sequencing methodologies. *Methods Enzymol.* **415**, 59–86

15. Nakagawa, H., Yamada, T., Chien, J. L., Gardas, A., Kitamura, M., Li, S. C., and Li, Y. T. (1980) Isolation and characterization of an endo-β-galactosidase from a new strain of *Escherichia freundii*. *J. Biol. Chem.* **255**, 5955–5959

16. Fujikura, M. N. (1981) Purification and characterization of endo-β-galactosidase from *Escherichia freundii* induced by hog gastric mucin. *J. Biol. Chem.* **256**, 3900–3905

17. Ceroni, A., Mass, K., Geyer, H., Geyer, R., Dell, A., and Haslam, S. M. (2008) GlycoWorkbench. A tool for the computer-assisted annotation of mass spectra of glycans. *J. Proteome Res.* **7**, 1650–1659

18. Liu, F. T., and Rabinovich, G. A. (2005) Galectins as modulators of tumor progression. *Nat. Rev. Cancer* **5**, 29–41

19. Rabinovich, G. A., and Toscano, M. A. (2009) Turning "sweet" on immunity. Galectin-N-glycan interactions in immune tolerance and inflammation. *Nat. Rev. Immunol.* **9**, 338–352

20. Dam, T. K., and Brewer, F. C. (2010) Maintenance of cell surface glycan density by lectin-glycan interactions: A homeostatic and innate immune regulatory mechanism. *Glycobiology* **20**, 1061–1064

21. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W. E., Yagi, F., and Kasai, K. (2002) Oligosaccharide specificity of galectins. A search by frontal affinity chromatography. *Biochem. Biophys. Acta* **1572**, 232–254

22. Stowell, S. R., Arthur, C. M., Mehta, P., Slanina, K. A., Blixt, O., Leffler, F., Smith, D. F., and Cummings, R. D. (2008) Galectin-1, -2, and -3 exhibit...
differential recognition of sialylated glycans and blood group antigens. J. Biol. Chem. **283**, 10109–10123
24. Ahmad, N., Gabius, H. J., André, S., Kaltner, H., Sabesan, S., Roy, R., Liu, B., Macaluso, F., and Brewer, C. F. (2004) Galectin-3 precipitates as a pentamer with synthetic multivalent carbohydrates and forms heterogeneous cross-linked complexes. J. Biol. Chem. **279**, 10841–10847
25. Cummings, R. D., and Kornfeld, S. (1982) Characterization of the structural determinants required for the high affinity interaction of asparagine-linked oligosaccharides with immobilized *Phaseolus vulgaris* leucoagglutinating and erythroagglutinating lectins. J. Biol. Chem. **257**, 11230–11234
26. Clevers, H., Alarcon, B., Wileman, T., and Terhorst, C. (1988) The T-cell receptor-CD3 complex. A dynamic protein ensemble. Annu. Rev. Immunol. **6**, 629–662
27. Friedl, P., den Boer, A. T., and Gunzer, M. (2005) Tuning immune responses. Diversity and adaptation of the immunological synapse. J. Biol. Chem. **282**, 35361–35372
28. Nika, K., Soldani, C., Salek, M., Paster, W., Gray, A., Etzensperger, R., Fugger, L., Polzella, P., Cerundolo, V., Dushek, O., Höfer, T., Viola, A., and Acuto, O. (2010) Constitutively active Lck kinase in T cells drives antigen receptor signal transduction. Immunity **32**, 12694–12704
29. Barber, E. K., Dasgupta, J. D., Schlossman, S. F., Trevillyan, J. M., and Rudd, C. E. (1989) The CD4 and CD8 antigens are coupled to a protein-tyrosine kinase (p56lck) that phosphorylates the CD3 complex. Proc. Natl. Acad. Sci. U.S.A. **86**, 532–545
30. Pace, K. E., Lee, C., Stewart, P. L., and Baum, L. G. (1999) Restricted receptor segregation into membrane microdomains occurs on human T cells during apoptosis induced by galectin-1. J. Immunol. **163**, 3801–3811
31. Leppänen, A., Stowell, S., Blixt, O., and Cummings, R. D. (2005) Dimeric galectin-1 binds with high affinity to α2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J. Biol. Chem. **280**, 5549–5562
32. Lobsanov, Y. D., Gitt, M. A., Leffler, H., Barondes, S. H., and Rini, J. M. (1993) X-ray crystal structure of the human dimeric S-Lac lectin, L-14-II, in complex with lactose at 2.9 Å resolution. J. Biol. Chem. **268**, 27034–27038
33. Earl, L. A., Bi, S., and Baum, L. G. (2010) N- and O-glycans modulate galectin-1 binding, CD45 signaling, and T cell death. J. Biol. Chem. **285**, 2232–2244
34. Irles, C., Symons, A., Michel, F., Bakker, T. R., van der Merwe, P. A., and Acuto, O. (2003) CD45 ectodomain controls interaction with GEMS and Lck activity for optimal TCR signaling. Nat. Immunol. **4**, 189–197
35. Sato, T., Furukawa, K., Autero, M., Gahmberg, C. G., and Kobata, A. (1993) Structural study of the sugar chains of human leukocyte common antigen CD45. Biochemistry **32**, 12694–12704
36. Piller, F., Piller, V., Fox, R. I., and Fukuda, M. (1999) Human T-lymphocyte activation is associated with changes in O-glycan biosynthesis. J. Biol. Chem. **263**, 15146–15150
37. Moody, A. M., Chui, D., Reche, P. A., Priatel, J. J., Marth, J. D., and Reinherz, E. L. (1999) Developmentally regulated glycosylation of the CD8αβ coreceptor stalk modulates ligand binding. Cell **107**, 501–512
38. Daniels, M. A., Demetriou, M. (2007) Lateral compartmentalization of T-cell receptor versus CD45 by galectin-N-glycan binding and microfilaments coordinate basal and activation signaling. J. Biol. Chem. **282**, 55361–55372
39. Merry, A. H., Gilbert, R. J., Shore, D. A., Royle, L., Miroshnychenko, O., Vuong, M., Wormald, M. R., Harvey, D. J., Dwek, R. A., Classon, B. J., Rudd, P. M., and Davis, S. J. (2003) Sialic acid capping of CD8αβ core 1-O-glycans controls thymocyte-major histocompatibility complex class I interaction. J. Biol. Chem. **278**, 7240–7246
40. Merry, A. H., Gilbert, R. J., Shore, D. A., Royle, L., Miroshnychenko, O., Vuong, M., Wormald, M. R., Harvey, D. J., Dwek, R. A., Classon, B. J., Rudd, P. M., and Davis, S. J. (2003) O-Glycan sialylation and the structure of the stalk-like region of the T cell co-receptor CD8. J. Biol. Chem. **278**, 27119–27128