Transfection with the Inducible Nitric Oxide Synthase
Gene Suppresses Tumorigenicity and Abrogates
Metastasis by K-1735 Murine Melanoma Cells

By Keping Xie,* Suyun Huang,* Zhongyun Dong,*
Shin-Hun Juang,* Mordechai Gutman,* Qiao-wen Xie,~
Carl Nathan,‡ and Isaiah J. Fidler*

From the *Department of Cell Biology, The University of Texas M. D. Anderson Cancer
Center, Houston, Texas 77030; and the ‡Department of Medicine, Cornell University Medical
College, New York 10021

Summary
Previous studies from our laboratory demonstrated an inverse relationship between the expression
level of inducible nitric oxide synthase (iNOS) and the metastatic potential of murine K-1735
melanoma cells. The purpose of this study was to provide direct evidence that the expression
of iNOS suppresses metastatic potential of melanoma cells. Highly metastatic K-1735 clone 4
cells (C4.P), which express low levels of iNOS, were transfected with a functional iNOS (C4.L8),
inactive-mutated iNOS (C4.S2), or neomycin-resistance (C4.Neo) genes in medium containing
3 mM Na-methyl-L-arginine (NMA). Positive transfectants were identified by Southern and
Northern blot analyses and homogeneous staining with a specific anti-iNOS monoclonal antibody.
Semiconfluent cultures of C4.P (parental), C4.Neo.3 (control transfection), C4.S2.3 (inactive
iNOS), and C4.L8.5 (functional iNOS) were harvested, and viable cells were injected intravenously
into syngeneic C3H/HeN mice and athymic BALB/c nude mice. C4.P, C4.Neo.3,
and C4.S2.3 cells were highly metastatic whereas C4.L8.5 cells were not metastatic. Experiments with
\[125\text{I}\]IdUrd-labeled tumor cells demonstrated that the initial arrest in the lung microvasculature
did not differ among the lines, but that C4.L8.5 cells died by 48-72 h after injection. Enhanced
survival of all K-1735 C4 cells (including C4.L8.5) was found in mice given twice daily injections
of 20 mg NMA. The C4.L8.5 cells produced slow growing subcutaneous tumors in nude mice,
whereas the other three lines produced fast growing tumors. In vitro studies confirmed that
the expression of iNOS in C4.L8.5 cells induced apoptosis. Collectively,
these data demonstrate that the expression of recombinant iNOS in melanoma cells is associated
with apoptosis, suppression of tumorigenicity, and abrogation of metastasis.

Cancer metastasis is produced by metastatic cells that
preexist within a parental neoplasm (1, 2). During he-
matogenous metastasis, tumor cells are subjected to such ex-
treme selection pressures that the majority of tumor cells en-
tering the circulation rapidly die regardless of their metastatic
potential (2-5). Tumor cell features, such as deformability (6),
aggregation (7), and cell surface adhesion molecules (7, 8)
and host factors, such as blood turbulence (6, 9), platelets
(10, 11), T cells (12), NK cells (13, 14), and macrophages
(15), all influence the survival of blood-borne tumor emboli.
Furthermore, passage of tumor cells through capillaries leads
to cell lysis by shear forces (6) and by nitric oxide (NO)1
produced by cytokine-activated endothelial cells (16, 17).

1 Abbreviations used in this paper: iNOS, inducible nitric oxide synthase;
MTT, dimethylthiazole dephenyl tetrazolium bromide; NMA, Na-methyl-L-
arginine; NO, nitric oxide; NOS, nitric oxide synthase.

NO is derived from the terminal guanido-nitrogen of
L-arginine (18, 19), which is catalyzed by constitutive nitric
oxide synthases (NOS) or inducible nitric oxide synthase
(iNOS) (18-27). NO produces multiple effects that can
influence the outcome of metastasis. Specifically, NO regu-
lates vasodilatation (23, 24) and platelet aggregation (25, 26),
which affect tumor cell arrest in capillaries (1, 16, 17). NO
is also a major cytotoxic mediator secreted by activated macro-
phages (18-24) and endothelial cells (17) shown to be respon-
sible for the destruction of tumor cells passing through cap-
illary beds. Moreover, we have recently shown that the
production of endogenous NO is associated with apoptosis
of tumorigenic cells (27). Taken together, these results sug-
gest the possibility that production of endogenous NO may
be detrimental to tumor cell survival and production of
metastasis.

Previous studies from Fidler’s laboratory have shown that

Volume 181 April 1995 1333-1343

1333 J. Exp. Med. © The Rockefeller University Press • 0022-1007/95/04/1333/11 $2.00

nonmetastatic melanoma cells die rapidly after they are introduced into the circulation, whereas many metastatic cells survive (3, 4). Subsequent studies concluded that nonmetastatic cells exhibited high levels of iNOS activity and NO, whereas metastatic cells did not, thus demonstrating an inverse correlation between production of endogenous NO and the ability of K-1735 cells to survive in syngeneic mice to produce lung metastases (28).

The purpose of this study was to provide evidence of a causal relation between enhanced iNOS activity in tumor cells and decreased metastatic potential. Q. W. Xie et al. have recently reported the cloning and characterization of iNOS cDNAs from mouse macrophages (29) that encode two isoforms of iNOS. The enzymatically active iNOS-L8 has a longer coding region and the other, enzymatically inactive iNOS-S2 has a shorter coding region differing at the COOH terminus (30). The inactivity of iNOS-S2 has been attributed to its inability to bind NADPH (30). In this study, we transfected these iNOS genes into highly metastatic iNOS-deficient K-1735 C4 melanoma cells. Transfection with cDNA encoding-active iNOS induces apoptosis, suppresses tumor growth, and abrogates production of metastasis.

Materials and Methods

Reagents. Eagle's MEM, HBSS, PBS, and fetal bovine serum (FBS) were purchased from M. A. Bioproducts (Walkersville, MD). [3H]dThd (sp act, 1 mCi/ml) was purchased from ICN Biomedicals, Inc. (Costa Mesa, CA). [32P]IdUrd (sp act, 1 mCi/ml) was purchased from New England Nuclear Corp. (Boston, MA). N-Glutathione peroxidase was inactivated by incubating the cells with 3% hydrogen peroxide diluted in methanol for 12 min. The coverslips were then briefly rinsed in PBS. The endogenous peroxidase was inactivated by incubating the cells with 3% hydrogen peroxide diluted in methanol for 12 min, followed by a rinse with PBS. To minimize nonspecific adsorption of the antibodies to the coverslips, the samples were incubated with a blocking buffer containing 1% BSA and 1% normal goat serum in PBS for 10-20 min, and then mouse anti-iNOS mAb (Transduction Laboratories, Lexington, KY) diluted in the same blocking buffer (4/xg/ml) or preimmune IgG was added. The coverslips were incubated overnight at 4°C and then washed three times in PBS and incubated with blocking buffer solution for 5-10 min, followed by a 30-60-min incubation with peroxidase-conjugated secondary antibodies (rabbit anti-mouse IgG [H + L]) antibody, peroxidase conjugated; Boehhringer Mannheim, Indianapolis, IN) diluted 1:250 in blocking buffer. The samples were then washed and incubated for 10 min with 3,3-diaminobenzidine, rinsed with distilled water, counterstained for 10 s with aqueous hematoxylin, washed three times with PBS and once with water, and studied under microscopy.

Immunohistochemistry Using Specific Anti-iNOS Antibody. Tumor cells were plated on glass coverslips, and 10-12 h later, the cells were fixed by immersing the coverslips in ice-cold acetone for 10 min. The coverslips were then briefly rinsed in PBS. The endogenous peroxidase was inactivated by incubating the cells with 3% hydrogen peroxide diluted in methanol for 12 min, followed by a rinse with PBS. To minimize nonspecific adsorption of the antibodies to the coverslips, the samples were incubated with a blocking buffer containing 1% BSA and 1% normal goat serum in PBS for 10-20 min, and then mouse anti-iNOS mAb (Transduction Laboratories, Lexington, KY) diluted in the same blocking buffer (4/xg/ml) or preimmune IgG was added. The coverslips were incubated overnight at 4°C and then washed three times in PBS and incubated with blocking buffer solution for 5-10 min, followed by a 30-60-min incubation with peroxidase-conjugated secondary antibodies (rabbit anti-mouse IgG [H + L] antibody, peroxidase conjugated; Boehhringer Mannheim, Indianapolis, IN) diluted 1:250 in blocking buffer. The samples were then washed and incubated for 10 min with 3,3-diaminobenzidine, rinsed with distilled water, counterstained for 10 s with aqueous hematoxylin, washed three times with PBS and once with water, and studied under microscopy.

In Vitro Cytolysis Assay. Cells in their exponential growth phase were incubated for 18 h in medium containing 0.1 #Ci/ml [3H]dThd. The cells were washed twice with MEM containing 5 mM t-arginine and harvested by trypsinization, and 1.5-2.0 x 106 viable cells were seeded in triplicate into 30-mm multiple culture dishes for 4-6 h. After removal of nonadherent cells, the monolayers were incubated in MEM alone or MEM-NMA. The dishes were placed in a 37°C incubator, and cultures were termi-
nated at different times. Supernatants were removed and the monolayers washed three times with PBS (containing Ca\(^{2+}\) and Mg\(^{2+}\)). The adherent cells were lysed by 0.1 N NaOH, and the radioactivity was monitored in a beta counter. The cytotoxicity was calculated according to the formula: cytotoxicity (%) = (A - B) / A × 100 where A is the counts per minute of plated cells and B is the counts per minute of adherent surviving cells.

In Vitro Cytostasis Assay. K-175 cells were plated at the density of 10\(^4\) cells per 38-mm\(^2\) well of 96-well plates in medium containing MEM-NMA (control) or MEM (test). After 72 h, cell number was determined by the dimethylthiazole dephenyl tetrazolium bromide (MTT, Sigma Chemical Co.) assay. After incubation for 2 h in medium containing MTT at 0.42 mg/mL, the medium was removed, and the cells were lysed in dimethyl sulfoxide. The conversion of MTT to formazan by metabolically viable cells was calculated according to the formula: cytostasis (%) = (1 - (A/B)) × 100, where A is the absorbance of test cells incubated in medium or NMA and B is the absorbance of the control cells incubated in medium.

Nitrite Analysis. Nitrite concentration in culture supernatants was determined by a microplate assay described by Ding et al. (35). Briefly, 50-μl samples were harvested from conditioned medium and allowed to react with an equal volume of Griess reagent (1% sulfanilamide-0.1% naphthylethylene diamine dihydrochloride-2.5% H\(_3\)PO\(_4\)) at room temperature for 10 min. The absorbance at 540 nm was monitored with a microplate reader. Nitrite concentrations were determined by using sodium nitrite as a standard.

Extraction and Measurement of iNOS Activity. Tumor cells were scraped into a lysis buffer (20 mM Tris/HCl, pH 7.5, 137 mM NaCl, 1 mM PMSF, 10 μg/ml aprotinin, 10 μg/ml leupeptin, and 5 μg/ml pepstatin A) at a density of 4 × 10\(^4\) cells/ml and disrupted by sonication (Soniprep 150; Curtin Matheson Scientific, Inc., Chantilly, VA). Percent cytostasis was calculated by the formula: cytostasis (%) = [1 - (A/B)] × 100, where A is the absorbance of test cells incubated in medium or NMA and B is the absorbance of the control cells incubated in medium.

Southern Blot Analysis. DNA was extracted from different cell lines. Equal amounts of DNA (20 μg) were digested with HindIII and XbaI for 18 h at 37°C. After precipitation, DNA was dissolved in TE buffer and treated with proteinase K. An equivalent amount of DNA (C) was treated with proteinase K and precipitated with ethanol at -70°C overnight after extraction with phenol and chloroform. The DNA was then pelleted and dissolved in 0.25 N HC1 for 10 min and denatured in 0.5 N NaOH/1.5 M NaCl for 60 min. DNA was transferred to a Nytran membrane (Schleicher & Schuell, Inc., Keene, NH) in 20x SSC. After being baked at 80°C for 2 h and prehybridized for 4 h, the filter membranes were hybridized for 16-18 h to a \(^{32}\)P-labeled iNOS cDNA probe (see below). Hybridization reactions were performed in 25 mM KPO\(_4\), pH 7.5, 5× SSC, 5× Denhardt's solution, 50 μg/ml salmon sperm DNA, 50% formamide, and 10% dextran sulfate. The filters were washed in 2× SSC/0.5% SDS twice for 30 min at room temperature and 0.1× SSC/0.1% SDS twice for 60 min at 65°C. The filter membrane was exposed for 4-24 h to Kodak X-Omat XAR Film (Eastman Kodak, Rochester, NY).

iNOS mRNA Transcript Analysis. Cellular mRNA was prepared by using FastTrack kit (Invitrogen). The mRNA samples (2 μg) were separated electrophoretically in 1.0% agarose gels containing MOPS buffer with 0.66 M formaldehyde. The RNA was transferred to a GeneScreen membrane (New England Nuclear) in 20× SSC and UV-cross-linked with a UV Stratalinker 1800 (Stratagene, La Jolla, CA). The XbaI- and HindIII-digested 4.0-kb cDNA insert from pNiNOS-L8 was used as the probe for iNOS (29) and labeled with \(^{32}\)PdCTP using a random labeling kit (Boehringer Mannheim). The membranes were prehybridized for 4 h and then hybridized for 16-18 h in a buffer containing 2% Genius blocking reagent, 5× SSC, 0.1% sodium dextran sulfate, and 50 mM NaPO\(_4\), pH 6.8, at 42°C. Equal loading of RNA samples was monitored by hybridization with a murine glyceraldehyde-3-phosphate dehydrogenase (GAPDH) cDNA probe. Filters were exposed for 6-48 h to Kodak X-Omat XAR film.

DNA Fragmentation Assay. Quantitative DNA damage was assayed according to previously published procedures with minor modifications (27, 40-43). Briefly, 1.5-2.0 × 10\(^6\) \[^{3}H\]dThd-labeled cells were seeded in triplicate into 30-mm dishes in 2 ml of MEM or MEM-NMA. Cells were harvested at different times and centrifuged at 2,500 rpm for 10 min. The supernatant fluids (A) were collected and DNA was precipitated by 5% TCA. The cell pellets were suspended in a lysis buffer consisting of 8 mM EDTA, 20 mM Tris (pH 8.0), and 0.2% (vol/vol) Triton X-100. After 20 min at room temperature, the lysates were centrifuged at 13,000 g for 5 min. The low molecular weight DNA in the postnuclear supernatant (B) was collected and intact chromatin DNA (C) was dissolved in TE buffer consisting of 10 mM Tris (pH 7.5) and 1 mM EDTA. Radioactivity in the three preparations (A, B, and C) was determined in a beta counter. DNA fragmentation expressed as a percentage was calculated by the formula [(A + B)/(A + B + C)] × 100.

Qualitative Analysis of Internucleosomal DNA Fragmentation. Internucleosomal DNA fragmentation was determined qualitatively by agarose gel electrophoresis (27, 40-43). Briefly, the low molecular weight DNA in the postnuclear supernatant (B) and intact chromatin DNA in the pellet (C) were treated with proteinase K and precipitated with ethanol at -70°C overnight after extraction with phenol and chloroform. The DNA was then pelleted and dissolved in TE buffer and treated with RNase I. An equivalent amount of materials from 10\(^4\) cells was loaded and electrophoresed on a 1.5% agarose gel. The gel was stained with 1 μg/ml ethidium bromide and photographed with Polaroid type 55 film (Sigma Chemical Co.) using a UV transilluminator and an MP-3 Polaroid camera setup.

Mice. Specific pathogen-free female C3H/HeN mice and male athymic BALB/c nude mice were purchased from the Animal Protection Area of the National Cancer Institute Frederick Cancer Research Facility (Frederick, MD). The mice were maintained in laminar air-flow cabinets under specific pathogen-free conditions in facilities approved by the American Association for Accreditation of Laboratory Animal Care and in accordance with current regulations and standards of the United States Department of Agriculture, Department of Health and Human Services, and National Institutes of Health. The mice were used between the ages of 8 and 12 wk.

Tumorigenicity and Experimental Metastasis. To produce tumors, 2 × 10\(^4\) cells suspended in 0.1 ml HBSS were injected subcutaneously into the flank region of nude mice (n = 5). Tumor take and size were monitored three times per week. Tumor mass exceeding 3 mm in diameter was recorded as a positive take. To produce experimental lung metastasis, unanesthetized C3H/HeN mice were injected with viable tumor cells suspended in 0.2 ml
HBSS into the lateral tail vein. The mice were killed 6 wk later and the lungs were removed, washed, and fixed in Bouin’s solution to differentiate the neoplastic lesions from the organ parenchyma. The lung nodules were counted with the aid of a dissecting microscope.

In Vitro Labeling of Cells with [3H]IdUrd. Tumor cells were seeded into 150-cm² tissue culture flasks at 4 × 10⁶ cells/flask in MEM-NMA. 24 h later, 0.3 μCi/ml [3H]IdUrd was added. 24 h after that, the cell monolayers were rinsed twice with excess Ca²⁺- and Mg²⁺-free HBSS to remove nonbound radiodiode (3). Cell monolayers were then overlaid with a thin layer of 0.25% tryssin-0.02% EDTA solution for 1 min. The cells were dislodged from the plastic and suspended in medium. The cell suspension was washed and resuspended in Ca²⁺- and Mg²⁺-free HBSS at a final concentration of 10⁶ cells per 0.2 ml, the inoculum volume per mouse.

Distribution and Fate of [3H]IdUrd-labeled Cells after Intravenous Injection. Labeled cells were injected intravenously into unanesthetized mice, and groups of five mice were killed at intervals thereafter. Lung, liver, kidneys, and spleen of each mouse were collected and placed in test tubes containing 70% ethanol. In addition, 0.2 ml of blood from each mouse was collected and placed in a test tube for direct measurement of radioactivity. The ethanol was replaced daily for 3 d to remove all soluble ³¹I released from dead cells (3). The radioactivity in all of the organ samples was determined using a gamma counter (Gamma-Trac model 1185; TM Analytic, Elk Grove, IL). Triplicate input tubes (containing 0.2 ml of inoculum) were retained, and the radioactivity was counted at the same time as the sample organs. The mean counts in organs from each group of five animals per time point were expressed as the percentage of input counts. Measurements were corrected for radioactive decay in input cells.

We also monitored the survival and fate of [³¹I]IdUrd-labeled cells in mice injected intraperitoneally twice daily with 20 μg/dose NMA dissolved in HBSS. The treatment dose and schedule produced 70% inhibition in levels of nitrate induced in C3H/HeN mice by injection of 50 μg LPS. NMA was administered 1 d before and 3 d after the intravenous injection of radiolabeled cells. Cell survival in vivo was determined as described above.

Statistical Analysis. The in vitro data were analyzed for significance by the Student’s t test (two-tailed), and the in vivo data were analyzed by the Mann-Whitney U test.

Results

Transfection and Selection of iNOS-expressing Cells. To establish stable transfectants, the K-1735 C4 parental cells (C4.P) were cotransfected with pcDNA/Neo and either piNOS-L8 (active iNOS) or piNOS-S2 (inactive iNOS) genes (29, 32). Cells transfected with only pcDNA/Neo served as a vector control. The MEM was free of t-arginine and contained 3 mM of NMA. Endogenous iNOS DNA was found in C4.P cells growing in MEM and in C4.P cells and C4.Neo.3 cells growing in MEM-NMA. Both recombinant and endogenous iNOS DNA was found in C4.S2.3 and C4.L8.5 cells growing in MEM-NMA (data not shown). Gene expression for iNOS was analyzed by Northern blot (Fig. 1) showing highly specific iNOS mRNA transcripts in C4.S2.3 and C4.L8.5. iNOS-positive clones were further characterized by immunocytochemistry using specific anti-iNOS mAb; homogeneously staining clones were identified for in vivo analysis (Fig. 2). The functional activity of iNOS was measured by an enzymatic activity assay. Only the protein preparations from the C4.L8.5 cells had significant enzymatic activity (Fig. 3; P <0.001). These data confirm the introduction into and expression of iNOS genes in K-1735 C4 cells.

Tumorogenicity. Tumor cells were injected subcutaneously into groups of nude mice. C4.P, C4.Neo.3, and C4.S2.3 cells produced rapidly growing tumors. By day 21 after injection, no tumors (a mass >3 mm in diameter) were produced by C4.L8.5 cells (data not shown).

Production of Metastasis by Cells Transfected with Functional iNOS Gene. In the next set of experiments, C3H/HeN mice were injected intravenously with 50,000 viable K-1735 C4 parental (C4.P) and several Neo-transfected clones. The median number of lung metastases produced by these cells was less than that of parental cells (Table 1). The C4.Neo.3 clone produced an average number of metastases and was chosen for all further studies. The incubation of C4 cells in MEM-NMA did not affect their metastatic potential. C4 cells incubated in MEM alone or MEM-NMA produced a median number of 56 and 45 lung metastases, respectively (data not shown). For all experiments, we therefore used cells cultured in MEM-NMA. In the next set of experiments, C3H/HeN mice were injected intravenously with 100,000 viable C4.P cells and several piNOS-S2 (inactive) or piNOS-L8 (active) transfected clones (Table 1). By day 21 after injection, C4.P cells produced a median of >200 lung metastases. C4.S2.3, C4.S2.4, and C4.S2.6 cells produced a median of 94, 72, and 112 lung metastases, respectively. C4.S2.3 cells were chosen for further studies. Mice injected with C4.L8 cells were killed on day 45 after i.v. injection. Even then, C4.L8.5, C4.L8.11, and C4.L8.13 cells were not metastatic. Only a single metastasis in a single mouse was found (Table 1). The single lung metastasis was isolated and a line established in culture. These cells did not produce NO (in the absence of NMA), and the loss of iNOS gene expression was confirmed by a negative Northern blot analysis (data not shown). C4.L8.5 cells were chosen for further studies.

To rule out that the abrogation of metastatic potential by C4.L8 cells was due to immune rejection (1, 13-15), we repeated the studies in athymic nude mice (Table 2). C4.P, C4.Neo.3, C4.S2.3, and C4.L8.5 cells were injected intravenously into nude mice at the inoculum of 100,000 (Expt. 1) and 125,000 (Expt. 2) viable cells. The mice were killed after 28 d. C4.P, C4.Neo.3, and C4.S2.3 cells were all highly
metastatic. In contrast, C4.L8.5 cells were not metastatic. (Only a single metastasis in a single mouse was found).

Distribution and Fate of $[^{125}]$IIdUrd-labeled Tumor Cells. The organ distribution and fate of $[^{125}]$IIdUrd-labeled C4.P, C4.Neo.3, C4.S2.3, and C4.L8.5 cells were followed for from 10 min to 72 h after i.v. injection (Fig. 4 A). The only organ in which significant proportions of labeled cells were detected was the lung. At 10 min and 24 h after injection, there were no discernible differences among the lines in the percentage of input cells remaining in the lungs. By 72 h, however, significant differences had emerged in the number of cells surviving in the lungs, making it possible to separate the lines. The percentage of viable C4.P, C4.Neo.3, and C4.S2.3 cells surviving in the lungs was 4, 4, and 2%, respectively. In contrast, the percentage of C4.L8.5 cells surviving in the lung was <0.2%. These data clearly agreed with a previous report on survival of metastatic and nonmetastatic K-1735 clones in lungs of syngeneic mice (28, 44).

In the next set of experiments, we injected $[^{125}]$IIdUrd-labeled C4.P, C4.Neo.3, C4.S2.3, and C4.L8.5 cells intravenously into normal mice or mice injected intraperitoneally with 20 mg NMA twice a day for 4 d (1 d before and 3 d after tumor injection). The percentage of surviving cells in the lungs of mice was determined on day 3 after i.v. injection (Fig. 4 B). Regardless of the tumor cells injected, enhanced survival of tumor cells was found in the lungs of mice treated
Figure 3. iNOS enzymatic activity. Cells were cultured in MEM-NMA to semiconfluence, at which point protein was extracted and NOS activity was measured and expressed as nmole of (nitrite/nitrate)/mg protein. The values are mean ± SD of triplicate cultures. This is one representative experiment of three.

with NMA, suggesting that one major factor that contributes to the death and clearing of tumor cells from the lung (28) is the production of NO.

Expression of Recombinant iNOS and Apoptosis. Previous studies from our laboratory demonstrated that synthesis of recombinant NO induces apoptosis in murine-transformed fibroblasts (27). We next determined whether expression of recombinant iNOS in the K-1735 C4 cells was associated with apoptosis. The cells were cultured in MEM or MEM-NMA. Nitrite accumulation was only detected in the cultures of C4.L8.5 cells growing in MEM (Fig. 5 A). The peak level of nitrite was reached by 48 h of incubation in MEM (Fig. 5 B). In parallel studies, we determined whether the expression of recombinant iNOS correlates with inhibition of cell growth or cell lysis. Tumor cells were cultured in MEM or MEM-NMA. Significant cytostasis (Fig. 6 A) and cytolysis (Fig. 6 B) were found only in C4.L8.5 cells cultured in MEM. The inhibition of NO by NMA prevented death of the C4.L8.5 cells.

The death of the C4.L8.5 cells (cultured in MEM) was associated with genomic DNA damage. The data shown in Fig. 7 A reveal that by 48 h, significant DNA fragmentation occurred in C4.L8.5 cells incubated in medium without NMA. This DNA fragmentation could be inhibited by 3 mM NMA. To characterize the genomic DNA damage, we electrophoresed genomic DNA fragments (Fig. 7 B, lanes 1–6) and the corresponding intact chromatin DNA (Fig. 7 B, lanes 7–12) from the various cultures (after 48 h incubation) on a 1.5% agarose gel. DNA laddering of C4.L8.5 cells was found (lane 5), indicating that cell death occurred by apoptosis.

Discussion

The process of metastasis consists of multiple sequential steps that include motility, invasion, survival in the circulation, adhesion, extravasation, and growth (1–4). During metastasis, tumor cells are subjected to such extreme selection pressures that the majority of tumor cells that enter the

Table 1. Experimental Lung Metastasis Produced by K-1735 C4 Cells Transfected with the iNOS Gene

Cell line*	Incidence	Median	Range
Expt. 1			
C4.P	5/5	50	21–70
C4.Neo.1	5/5	28	12–35
C4.Neo.2	5/5	39	31–56
C4.Neo.3	5/5	33	23–50
C4.Neo.4	5/5	27	16–31
C4.Neo.5	5/5	48	43–68
Expt. 2			
C4.P	10/10	>200	All >200
C4.S2.3	10/10	94	34–123
C4.S2.4	10/10	72	39–156
C4.S2.6	10/10	112	51–182
C4.L8.5	0/10	0*	All 0
C4.L8.11	1/10	0*	0–1
C4.L8.13	0/10	0*	All 0

* Syngeneic mice were injected intravenously with 50,000 (Expt. 1) and 100,000 (Expt. 2) viable tumor cells and killed after 21 or 45 d (C4.L8) when the number of experimental lung metastases was determined using a dissecting microscope.

† p <0.001, Mann-Whitney test.

Table 2. Abrogation of Metastatic Potential in K-1735 C4 Cells Transfected with the iNOS Gene and Injected into Nude Mice

Cell line*	Incidence	Median	Range
Expt. 1			
C4.P	10/10	174	114–>200
C4.Neo.3	10/10	146	77–>200
C4.S2.3	10/10	110	41–184
C4.L8.5	0/10	0*	All 0
Expt. 2			
C4.P	10/10	>200	All >200
C4.Neo.3	10/10	>200	All >200
C4.S2.3	6/6	180	102–>200
C4.L8.5	1/10	0*	0–1

* BALB/c nude mice were injected intravenously with 100,000 viable cells (Expt. 1) or 125,000 viable cells (Expt. 2) and killed 28 d later. The number of experimental lung metastases was determined using a dissecting microscope.

† p <0.001, Mann-Whitney test.
circulation rapidly die (7–11). This selection pressure may explain the finding that metastases are clonal in origin (45) and can develop from single progenitor cells (31). Neoplasms exhibit heterogeneity for invasion and metastasis (1, 4), which is expressed in differences in survival between nonmetastatic cells and metastatic cells (46). Studies using the well-characterized murine K-1735 melanoma system of clones, cell lines, and somatic cell hybrids (between nonmetastatic and metastatic cells) concluded that nonmetastatic cells exhibited high levels of iNOS, whereas metastatic cells did not (28). The in vitro treatment of tumor cells with cytokines, such as TNF-α, IL-1, and IFN-γ, induced production of NO and then apoptosis and both sequela could be blocked by NMA (28). These data suggest that one factor contributing to the death of circulating tumor cells is the production of NO, but its causal relationship to metastasis remained unclear.

The present results demonstrate that the transfection of highly metastatic K-1735 C4 cells (which express low levels of iNOS) with an enzymatically active iNOS expression vector renders the cells nonmetastatic by inducing high levels of NO production. In the presence of NMA, the cells’ proliferation in vitro and survival in vivo was very similar to that of parental cells transfected with a control vector (neomycin resistance) or cells transfected with inactive iNOS cDNA. The transfection of K-1735 C4 cells with an enzymatically active iNOS expression vector renders the cells nonmetastatic by inducing high levels of NO production. In the presence of NMA, the cells’ proliferation in vitro and survival in vivo was very similar to that of parental cells transfected with a control vector (neomycin resistance) or cells transfected with inactive iNOS cDNA. The
growth (tumorigenicity) of the active iNOS cDNA transfected cells was inhibited and production of metastasis was abrogated, providing direct evidence for the role of iNOS/NO in the prevention of cancer metastasis.

The successful transfection of the K-1735 C4 cells with the enzymatically active iNOS gene L8 (29, 30, 33) required the use of l-arginine-free medium and the continuous presence of 3 mM NMA. In medium containing l-arginine and devoid of NMA, the transfected C4.L8 cells produced high levels of NO and underwent apoptosis. To examine the growth of the various K-1735 C4 cells under in vivo conditions, we injected them into the subcutis of nude mice. All the control cells produced rapidly growing tumors, whereas the C4.L8.5 cells did not. Because the kinetics of subcutaneous growth are difficult to assess, we used the cells in a well-established experimental metastasis assay.

Experimental metastases are tumor colonies produced after i.v. injection of cells. Although these tumor cells bypass the initial steps of metastasis (separation from primary neoplasm and invasion and release into blood vessels or lymphatics),
all of the subsequent steps in the metastatic process must occur for metastases to be formed. In this study, we equate experimental metastasis with the blood-borne spread of tumor cells. The transfection of neo resistance gene or enzymatically inactive iNOS gene into the highly metastatic K-1735 C4 cells reduced the number of lung metastases. In contrast, the transfection of enzymatically active iNOS gene into the highly metastatic C4 cells abrogated production of lung metastasis after i.v. injection.

To rule out that the abrogation of metastasis by C4.L8 cells was due to immune rejection (1, 13, 15), we repeated the experiment using athymic nude mice. Even in the immune-deficient mice, C4.L8.5 cells were not metastatic, whereas C4.P, C4.Neo.3, and C4.S2.3 cells were still highly metastatic. Collectively, these data show that although transfection per se can somewhat reduce metastatic potential of K-1735 C4 cells, only transfection with piNOS-L8 gene renders the cells (C4.L8.5, C4.L8.11, C4.L8.13) nonmetastatic.

To determine whether the abrogation of metastasis by C4.L8.5 cells (active iNOS gene) was due to initial cell arrest or to later events, we studied the fate of $^{[125]}$IIdUrd-labeled tumor cells in normal and NMA-treated mice. The initial arrest and survival of $^{[125]}$IIdUrd-labeled K-1735 C4 cells (transfected with enzymatically active iNOS gene) in the lungs of syngeneic mice was very similar to that of all control cells. Within 24–72 h however, only 0.1% of the iNOS-transfected cells survived, whereas >2% of control cells survived. The low survival rate of C4.L8.5 cells was very similar to that found for nonmetastatic clones of K-1735 (28).

The death of K-1735 C4.L8.5 cells could have been due to factors unrelated to transfection with the enzymatically active iNOS gene. To examine this possibility, we studied the fate and survival of $^{[125]}$IIdUrd-labeled cells in mice treated twice daily with i.p. injections of 20 mg NMA (a dose sufficient to inhibit 70% of production in mice injected with 50 μg LPS). Enhanced survival of all K-1735 cells was found in NMA-treated mice with significant increase in survival for C4.L8.5 cells. These in vivo data confirm that NO is a major factor that contributes to the death of circulating tumor cells. Since lung metastases produced by K-1735 melanoma cells can originate from single surviving cells (31, 44), the survival of cells in the lung at 72 h after injection predicts the development of visible metastases (4, 46).

The production of NO by tumor cells may reduce their capacity to produce metastasis by at least two nonmutually exclusive mechanisms. The aggregation of platelets around tumor cells enhanced arrest in capillary beds (10, 11) and NO has been shown to inhibit platelet aggregation (25, 26, 47). More likely, however, the production of NO can induce cell death in normal, transformed, and tumorigenic cells by an apoptotic process (27). The K-1735 C4 cells transfected with the enzymatically active iNOS gene (C4.L8.5) but not the enzymatically inactive iNOS gene (C4.S2.3) or the Neo resistance gene (C4.Neo.3) produced high levels of NO followed by genomic DNA damage and cell death, as monitored by both cytostasis and cytolysis analyses. These data provide direct evidence that NO can induce DNA fragmentation and apoptosis and suggest the usefulness of this cell system to study apoptosis.

In summary, the introduction of an enzymatically active iNOS gene into highly metastatic murine melanoma cells induces apoptosis, suppresses growth, and abrogates metastasis. These data provide direct evidence that expression of iNOS and production of NO can induce apoptosis and is responsible for inhibiting the malignant potential of tumor cells. The use of the iNOS gene for treatment of malignant melanoma metastases is now under investigation.

We thank Kenneth Dunner, Jr., for help in microphotography, and Lola Lopez for her expert help in the preparation of the manuscript.

This research was supported in part by funds from Cancer Center Support grant CA-16672, from grant R35-CA-42107 from the National Cancer Institute, and by the Josef Steiner Foundation (I. J. Fidler), and from grant AI-34543 from the National Institutes of Health (C. Nathan).

Address correspondence to Dr. I. J. Fidler, Department of Cell Biology (173), The University of Texas M. D. Anderson Center, 1515 Holcombe Boulevard, Houston, TX 77030.

Received for publication 31 August 1994 and in revised form 18 November 1994.

References
1. Fidler, I.J. 1990. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes Memorial Award Lecture. Cancer Res. 50:6130–6138.
2. Fidler, I.J., and L.M. Ellis. 1994. The implications of angiogenesis for the biology and therapy of cancer metastasis. Cell. 79:185–189.
3. Fidler, I.J. 1970. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with $^{[125]}$I-5-iodo-2'-deoxyuridine. J. Natl. Cancer Inst. 46:773–782.
4. Price, J.E., S.L. Aukerman, and I.J. Fidler. 1986. Evidence that the process of murine melanoma metastasis is sequential and selective and contains stochastic elements. Cancer Res. 46: 5172–5178.
5. Weiss, L. 1986. Metastatic inefficiency: causes and consequences.
20. Stuehr, D.J., and C.F. Nathan. 1989. Nitric oxide: a macro-

21. Stuehr, D.J., and O.W. Griffith. 1992. Mammalian nitric oxide

22. Hibbs, Jr., J.B., R.R. Taintor, and Z. Vavrin. 1987. Macro-

23. Palmer, R.M.J., D.D. Rees, D.S. Ashton, and S. Moncada.

24. Ignarro, L.J., G.M. Buga, K.S. Wood, R.E. Byrns, and G.

25. Radomski, M.W., R.M.J. Palmer, and S. Moncada. 1990. An

26. Radomski, M.W., R.M.J. Palmer, and S. Moncada. 1990. Char-

27. Xie, K., S. Huang, Z. Dong, and I.J. Fidler. 1993. Cytokine-

28. Dong, Z., A.H. Staroselsky, X. Qi, K. Xie, and I.J. Fidler. 1994.

29. Xie, Q.-W., H.J. Cho, J. Calaycay, R.A. Mumford, K.M. Swiderek,

30. Xie, Q.-W., H.J. Cho, Y. Kashiwabara, M. Baum, J.R. Weidner,

31. Kripke, M.L. 1979. Speculations on the role of ultraviolet radia-

32. Fidler, I.J., and J.E. Talmadge. 1986. Evidence that intrave-

33. Karupiah, G., Q. Xie, R. Mark, L. Buller, C. Nathan, C. Durate,

34. Fan, D., C.D. Bucana, C.A. O'Brien, L.A. Zwelling, C. Seid,

35. Ding, A., C. Nathan, and D.J. Stuehr. 1988. Release of reac-

36. Ding, A., C. Nathan, and D.J. Stuehr. 1988. Release of reac-

37. Schmidt, H.H.H.W., T.D. Warner, M. Nakane, U. Forster-

38. Dong, Z., Z. Qi, K. Xie, and I.J. Fidler. 1993. Protein tyro-

39. Bradford, M.M. 1976. A rapid and sensitive method for the

40. Duke, R.C., P.M. Persechini, S. Chang, C.-C. Liu, J.J. Cohen,

Expression of Inducible Nitric Oxide Synthase and Metastasis
41. Senllins, K.S., and J.J. Cohen. 1987. Gene induction by γ-irradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139:3199–3204.

42. Zychlinsky, A., M.C. Provost, and P.J. Sansonetti. 1992. Shigella flexneri induces apoptosis in infected macrophages. Nature (Lond.). 359:167–169.

43. Hogquist, K.A., M.A. Nett, E.R. Unanue, and D.D. Chaplin. 1991. Interleukin is processed and released during apoptosis. Proc. Natl. Acad. Sci. USA. 88:8485–8489.

44. Staroselsky, A.H., S. Pathak, Y. Chernajovsky, S.I. Tucker, and I.J. Fidler. 1991. Predominance of the metastatic phenotype in somatic cell hybrids of the K-1735 murine melanoma. Cancer Res. 51:6292–6298.

45. Talmadge, J.E., S.R. Wolman, and I.J. Fidler. 1982. Evidence for the clonal origin of spontaneous metastases. Science (Wash. DC). 217:361–363.

46. Aukerman, S.L., J.E. Price, and I.J. Fidler. 1986. Different deficiencies in the prevention of tumorigenic-low metastatic murine K-1735b melanoma cells from producing metastases. J. Natl. Cancer Inst. 77:915–924.

47. Radomski, M.K., D.C. Jenkins, L. Holmes, and S. Moncada. 1991. Human colorectal adenocarcinoma cells: differential nitric oxide synthesis determines their ability to aggregate platelets. Cancer Res. 51:6073–6078.