A robust signature of immune-related long non-coding RNA to predict the prognosis of bladder cancer

Cong Lai¹,2 | Zhenyu Wu¹,2 | Zhuohang Li¹,2 | Hao Yu¹,2 | Kuiqing Li¹,2 | Zhuang Tang¹,2 | Cheng Liu¹,2 | Kewei Xu¹,2

¹Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
²Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China

Correspondence
Kewei Xu and Cheng Liu, Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107th Yanjiang Road, Yuexiu District, Guangzhou, Guangdong 510120, P. R. China.
Email: xukewei@mail.sysu.edu.cn (K. X.) and liuch278@mail.sysu.edu.cn (C. L.)

Funding information
National Natural Science Foundation of China, Grant/Award Number: 81572511, 81702525 and 81702528; Medical Scientific Research Foundation of Guangdong Province, Grant/Award Number: C2018060; Natural Science Foundation of Guangdong Province, Grant/Award Number: 2016A030313317; Yixian Clinical Research Project of Sun Yat-sen Memorial Hospital, Grant/Award Number: sys-c-201802; Guangzhou Science and Technology Program, Grant/Award Number: 201803010029

Abstract
Background: Bladder cancer is the second most common malignant tumor in the urogenital system. The research investigated the prognostic role of immune-related long non-coding RNA (IncRNA) in bladder cancer.

Methods: We extracted 411 bladder cancer samples from The Cancer Genome Atlas database. Single-sample gene set enrichment analysis was employed to assess the immune cell infiltration of these samples. We recognized differentially expressed lncRNAs between tumors and paracancerous tissues, and differentially expressed lncRNAs between the high and low immune cell infiltration groups. Venn diagram analysis detected differentially expressed lncRNAs that intersected the above groups. LncRNAs with prognostic significance were identified by regression analysis. Multivariate Cox analysis was used to establish the risk score model. Then we established and evaluated the nomogram. Additionally, we performed gene set enrichment analysis to explore the potential functions of the screened lncRNAs in tumor pathogenesis.

Results: Three hundred and twenty differentially expressed lncRNAs were recognized. We randomly divided patients into the training data set and the testing data set at a 2:1 ratio. In the training data set, 9 immune-related lncRNAs with prognostic significance were identified. The risk score model was constructed to classify patients as high- and low-risk cohorts. Patients in the low-risk cohort had better survival outcomes than those in the high-risk cohort. The nomogram was established based on the indicators including age, gender, tumor-node-metastases stage, and risk score. The model’s predictive performance was confirmed by the receiver operating characteristic curve analysis, concordance index method, calibration curve, and decision curve analysis. The testing data set also achieved similar results. Bioinformatics analysis suggested that the 9-lncRNA signature
1 | INTRODUCTION

Bladder cancer is the second most common urological malignancy in the world with approximately 573,000 new cases and 213,000 deaths in 2020. It was reported that the prognosis of bladder cancer patients was strictly related to the immune microenvironment of tumor tissues. Accumulated evidence has verified the therapeutic role of immune checkpoint inhibitors in bladder cancer, including atezolizumab, avelumab, durvalumab, nivolumab, and pembrolizumab. A recent research demonstrated that pembrolizumab could prolong the progression-free survival of patients with high RNA-based immune signature scores, which suggested that we might identify immune-related prognostic indicators to improve the prognosis of bladder cancer patients and guide their treatment.

Long non-coding RNAs (lncRNAs) are a group of RNAs that participate in the human physiological and pathological processes by interacting with specific RNAs and proteins. In recent years, it has been discovered that lncRNAs were involved in tumor growth and progression. In bladder cancer, lncRNA plays a vital role in lymphatic metastasis, epithelial-mesenchymal transformation, proliferation, migration, and apoptosis of tumor cells. LncRNA SOX2OT could maintain the stemness phenotype of bladder cancer stem cells and serve as an adverse indicator of clinical outcomes and prognosis. Furthermore, the exosomal lncRNA LNMAT2 could stimulate the formation and migration of lymphatic endothelial cells tube, and intensify the cancer lymphangiogenesis and lymphatic metastasis in bladder cancer. Therefore, lncRNA, as a novel biological marker, offers broad prospects for the early diagnosis and prognosis prediction of bladder cancer.

Studies have demonstrated that immune-related lncRNAs have a unique value in the prognosis of several cancers. The heterogeneous expression of lncRNAs was identified among different immune-infiltrating groups in muscle-invasive bladder cancer. Shen et al. recognized 11 immune-related lncRNAs as prognostic markers for breast cancer, whose signature was related to the infiltration of immune cell subtypes. Li et al. screened seven immune-related lncRNAs in low-grade glioma and confirmed that these lncRNAs have prognostic value in patients. Cao et al. have screened five immune-related lncRNAs in bladder cancer but the signature’s area under the curve (AUC) was relatively low (AUC = 0.666). Tong et al. have raised an epithelial-mesenchymal transition-related lncRNA signature in bladder cancer, which has included too many lncRNAs. Therefore, we aimed to propose a novel signature of immune-related lncRNA to predict the prognosis of bladder cancer.

In the study, we analyzed the data set of lncRNAs and corresponding clinical information from the Cancer Genome Atlas (TCGA) and screened for immune-related lncRNAs by single-sample gene set enrichment analysis (ssGSEA). Furthermore, we established a prognostic model based on these lncRNAs and explored their potential biological functions in bladder cancer.

2 | MATERIALS AND METHODS

2.1 | Bladder cancer sample sources and grouping

Gene expression data (RNA-Seq), lncRNA sequencing data, and corresponding clinical data of bladder cancer were downloaded from the TCGA database (https://portal.gdc.cancer.gov). Twenty-nine immune cell data sets were applied to evaluate the infiltration level of immune cells through the ssGSEA method (Table S1). After that, patients were classified as the high and low immune cell infiltration groups using the hclust package. The stromal score, immune score, and tumor purity score were calculated by the ESTIMATE algorithm to verify the effectiveness of ssGSEA groupings. In addition, we assessed the difference between the two groups by analyzing the expression of the human leukocyte antigen (HLA) gene. CIBERSORT algorithm was employed to determine the infiltration of various immune cells in the tumor sample and verify the potency of the immune groupings again.
2.2 | Screening of immune-related lncRNA

$|\log_2 \text{Fold Change (FC)}| > 0.5$ and $p < 0.05$ were set as the standard to recognize the differentially expressed lncRNAs between the high and low immune cell infiltration groups by edgeR package. Differentially expressed lncRNAs between bladder cancer and adjacent tissues were also identified by the same method. Venn diagram analysis was used to screen out immune-related lncRNAs in bladder cancer from the above two sets.

2.3 | Construction of the risk score model

Patients with a follow-up of more than 30 days were randomly divided into the training and testing sets at a ratio of 2:1 (cross-validation method). In the training set, univariate Cox regression was performed on immune-related lncRNAs and clinical data to identify prognosis-related lncRNAs. We conducted the least absolute shrinkage and selection operator (LASSO) regression analysis to screen crucial lncRNAs which were tightly associated with overall survival (OS). Survival analyses were performed on the lncRNAs, respectively, to further screen lncRNAs with prognostic significance. The multivariate Cox regression model was utilized to calculate the respective coefficients (β_i) of selected lncRNAs. Then, a risk score model consisting of β_i and lncRNA expression levels (Expi) was established to appraise the risk score of each patient. We set the median risk score as a cutoff value and divided patients into high-risk and low-risk groups. Kaplan–Meier survival analysis was performed to compare the OS between the two groups. Receiver operating characteristic (ROC) curve analysis was utilized to evaluate the predictive efficacy of the model. The risk curve and scatter plot were generated to illustrate the risk score and survival status of each sample. The heatmap showed the expression profiles of the signature in the two groups. The correlation between risk scores and immune infiltration subtypes was analyzed by the Pearson correlation. The testing data set was applied to validate the above results.

2.4 | Establishment and evaluation of the nomogram

We evaluated the prognostic significance of risk score and clinical variables such as age, gender, and tumor-node-metastases (TNM) stage by univariate and multivariate Cox regression analyses. The nomogram was established according to the results of multivariate Cox regression to predict each patient’s 3- and 5-year OS. We conducted the ROC curve analysis, concordance index (C-index) method, calibration curve method, and decision curve analysis (DCA) to assess the model’s accuracy. Finally, the testing set data were used to evaluate the above results.

2.5 | Gene set enrichment analysis

We executed Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to investigate the potential pathways in which the immune-related lncRNAs may participate.

2.6 | Statistical analysis

All statistical analysis was accomplished by R version 3.6.2 (Institute for Statistics and Mathematics, Vienna, Austria; https://www.r-project.org). The correlation was determined by Pearson correlation analysis. Chi-square test and t-test were utilized to compare clinical variables. Survival status was assessed by the Cox regression analysis. OS was generated by the Kaplan–Meier method and evaluated by the log-rank test. Two-tailed $p < 0.05$ was considered statistically significant.

3 | RESULTS

3.1 | Grouping and identification of bladder cancer samples

The flowchart of our research is shown in Figure 1. Information on 411 bladder cancer tissues and 19 adjacent tissues were obtained from the TCGA database. Three hundred and ninety-three patients with a follow-up of more than 30 days were included in the study (Table S2). The transcriptome data of bladder cancer samples were analyzed by the ssGSEA method to assess the level of immune cell infiltration level. An unsupervised hierarchical clustering algorithm was employed to divide patients into the high immune cell infiltration group ($n = 85$) and the low immune cell infiltration group ($n = 326$) (Figure 2A). The ESTIMATE algorithm was used to calculate the ESTIMATE score, immune score, stromal score, and tumor purity of all samples. Compared with the low immune cell infiltration group, the high immune cell infiltration group ($p < 0.001$) (Figure 2B–E). The expression of HLA family genes in the high immune cell infiltration group was higher than that in the low immune cell...
infiltration group ($p < 0.001$) (Figure 2F). In addition, the CIBERSORT method revealed that the high immune cell infiltration group had a higher density of immune cells (Figure 2G). Overall, our results indicated that the bladder cancer grouping was feasible.

3.2 Identification of the immune-related lncRNAs

We recognized 2067 differentially expressed lncRNAs between tumors and adjacent tissues (Figure 3A) and 1076 differentially expressed lncRNAs between the high and low immune cell infiltration groups (Figure 3B). The Venn diagram analysis detected 320 differentially expressed lncRNAs that intersected the above groups (Figure 3C). Taking together, we screened 320 immune-related lncRNAs in bladder cancer.

3.3 Construction and assessment of the risk score model

In the training data set, univariate Cox regression was performed on immune-related lncRNAs to identify 38 prognosis-associated lncRNAs (Figure 4A). LASSO
regression analysis further screened nine crucial lncRNAs (Figure 4B,C). Survival analyses of immune-related lncRNAs revealed that nine lncRNAs were significantly related to OS, including AC126773.2 ($p = 0.039$), RRN3P2 ($p = 0.04$), AL022322.1 ($p = 0.003$), Z84484.1 ($p = 0.00001$), AL645940.1 ($p = 0.008$), AL357054.4 ($p = 0.043$), AL662844.4 ($p = 0.04$), AL136084.3 ($p = 0.013$), and LINC01679 ($p = 0.035$) (Figure S1). β_i was calculated (Table 1) to establish the risk score model: Risk score $= \sum_{i=1}^{9} (\beta_i \times \exp_i)$. We set the median risk score as a cutoff value and divided 411 patients into high-risk and low-risk groups. The Kaplan–Meier curve disclosed that the OS in the low-risk group was significantly better than that in the high-risk group ($p = 7.542 \times 10^{-5}$) (Figure 5A). The risk curve and scatter plot indicated that the risk coefficient and mortality of patients in the high-risk group were significantly higher than those in the low-risk group.
higher than those in the low-risk group (Figure 5B,C). The heatmap exhibited the expression profiles of the 9-lncRNAs signature in the two groups (Figure 5D). The correlation status of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils with risk score were plotted in Figure S2. The correlation values (infiltration status) of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils with risk score were −0.157, −0.200, 0.167, −0.005, 0.428, and −0.046, respectively, in the training data set. And the correlation values of B cells, CD4+ T cells, CD8+ T cells, dendritic cells, macrophages, and neutrophils with risk score were −0.186, −0.009, 0.106, −0.061, 0.239, and 0.036, respectively, in the testing data set. Similar results were obtained using the same method on the testing data set (Figure 5E–H).

Immune-related gene	Coef	Hazard ratio (HR)
AC126773.2	−0.245674785	0.782176559
RRN3P2	−0.439240487	0.644525761
AL022322.1	−0.210005673	0.810579648
AL662844.1	−0.136995376	0.87174258
AL357054.4	−0.717602304	0.48792074
AL136084.3	−0.731805115	0.481039873
LINC01679	−0.174892219	0.839547503
Univariate Cox regression showed that the risk score and clinical indicators including age, gender, and TNM stage were firmly related to OS (Figure 6A). We further conducted the multivariate Cox analysis and found that the 9-lncRNAs signature was an independent prognostic factor for bladder cancer ($p < 0.001$) (Figure 6B). ROC curve analysis validated the predictive performance of the signature (Figure 6C). We then established a nomogram including age, gender, TNM stage, and risk score (Figure 7A). The AUCs for 3-, 5-year OS predicted by the model were 0.784 and 0.790, respectively (Figure 7B). The C-index of the nomogram was 0.751. The calibration curves and DCA of the prognostic model showed that the model had

3.4 Construction and evaluation of the prognostic model

Univariate Cox regression showed that the risk score and clinical indicators including age, gender, and TNM stage were firmly related to OS (Figure 6A). We further conducted the multivariate Cox analysis and found that the 9-lncRNAs signature was an independent prognostic factor for bladder cancer ($p < 0.001$) (Figure 6B). ROC curve analysis validated the predictive performance of the signature (Figure 6C). We then established a nomogram including age, gender, TNM stage, and risk score (Figure 7A). The AUCs for 3-, 5-year OS predicted by the model were 0.784 and 0.790, respectively (Figure 7B). The C-index of the nomogram was 0.751. The calibration curves and DCA of the prognostic model showed that the model had
an excellent predictive effect (Figure 7C–F). We acquired similar results using the same method on the testing data set (Figures 6D–F and 7G–L).

3.5 | Gene set enrichment analysis

We performed GO enrichment analysis and KEGG pathway analysis on the differentially expressed genes between the high-risk and low-risk groups. GO enrichment analysis indicated that the genes were enriched in the ephrin receptor signaling pathway, epidermal growth factor receptor (EGFR) signaling pathway, ERBB signaling pathway, mRNA splicing site selection, DNA adenosine diphosphate (ADP) ribosyltransferase activity, and T cell selection (Figure 8A). KEGG pathway analysis showed that these genes were involved in amino sugar and nucleotide sugar metabolism, antigen processing and presentation, extracellular matrix (ECM) receptor interaction, focal adhesion, primary immunodeficiency, and T cell receptor signaling pathway (Figure 8B).

4 | DISCUSSION

Bladder cancer has the characteristics of a high recurrence rate and poor prognosis. Accurately predicting the prognosis of bladder cancer patients is of great importance for guiding their treatment. Prognostic models based on immune-related genes have been developed and proved to have excellent predictive efficacy in bladder cancer patients. Using lncRNAs to construct a prognostic model may be an important supplement to predict the prognosis of bladder cancer.

We analyzed the lncRNA data set from the TCGA database and screened 320 immune-related lncRNAs. Nine immune-related lncRNAs with prognostic significance were ultimately identified. Furthermore, our findings indicated that AL136084.3 was an adverse prognostic factor for bladder cancer, whereas the other lncRNAs were favorable prognostic factors. Multivariate Cox analysis was used to construct the risk score model. We found that

FIGURE 6 The prognostic value of risk score and clinical variables. (A, D) Univariate Cox analysis showed that risk score and clinical variables including age, gender, and TNM stage were significantly related to overall survival (OS) in training and testing data sets, respectively. (B, E) Multivariate Cox analysis manifested that the 9-long non-coding RNAs (lncRNAs) signature was an independent prognostic indicator for bladder cancer in training and testing data sets, respectively. (C, F) ROC curve analysis of the 9-lncRNAs signature demonstrated that area under the curves in the training data set and in the testing data set were 0.727 and 0.752, respectively.
patients in the low-risk group had longer OS than that of the high-risk group. In addition, we noticed that the infiltration of B cells was significantly negatively correlated with the prognosis of bladder cancer, while that of macrophages was on the contrary. B cells have long been recognized as effector cells of humoral immunity that inhibited tumor progression through secreting immunoglobulins, activating T cells, and killing tumor cells directly. A high density of CD20+ B cells was independently correlated with a prolonged time to recurrence in bladder cancer. Moreover, macrophages could contribute to tumor progression by accelerating genetic instability, promoting metastasis, nurturing cancer stem cells, and taming protective immunity. In bladder cancer, a higher expression of M2 macrophage is associated with a worse grade and stage of the tumor.

Subsequently, we established a nomogram including age, gender, TNM stage, and risk score. The ROC curve analysis, C-index, calibration curves, and DCA confirmed the model’s predictive power. Compared to models based on other sequencing data, the prognostic model constructed by immune-related lncRNAs presented better efficacy according to the ROC curve method.

Furthermore, we performed GO enrichment analysis and KEGG pathway analysis to explore the potential functions of the 9-lncRNAs signature in bladder cancer. The results showed that these lncRNAs were involved in various immune responses, antigen processing, and presentation, T cell receptor signaling pathway, ECM receptor interaction, focal adhesion, and primary immunodeficiency. Epidermal growth factor was reported to activate the androgen receptor and increase the expression of TRIP13 to promote bladder cancer progression. Notably, ECM modification could not only promote tumor cells to escape, but also help generate and maintain the cancer stem cell niche. Moreover, high infiltration of memory-activated CD4+ T cell subsets were associated with prolonged OS and reduced risk of tumor recurrence in bladder cancer. Chobutskiy et al. demonstrated that lower CDR3 region isoelectric point in T cell receptor was associated with better survival outcomes in bladder cancer.

However, there are some limitations to our research. It is a retrospective study whose data were obtained from the TCGA database that lacked information including treatment and recurrence records. In vivo or in vitro experiments and prospective clinical researches are needed to validate our conclusions.

5 | CONCLUSION

In summary, the present study identified a 9-lncRNAs signature that possessed prognostic value for bladder cancer patients. The immune-related lncRNAs may regulate tumor pathogenesis through the modulation of various immune responses, antigen processing and presentation, and T cell receptor signaling pathway. Our research proposes a predictive model and biomarkers for bladder cancer patients.

ACKNOWLEDGMENTS

We thank the patients and investigators who participated in the TCGA database for providing data. We thank the ResearchSquare for providing a pre-publication platform to communicate with other researchers. This work was funded by grants from the National Natural Science Foundation of China (grant numbers: 81572511, 81702525, 81702528), Guangzhou Science and Technology Program key projects (grant number: 201803010029), Natural Science Foundation of Guangdong Province (grant numbers: 2016A030313317), Medical Scientific Research Foundation of Guangdong Province (grant number: C2018060), and Yixian Clinical
CONFLICT OF INTEREST
The authors declare no conflicts of interest.

AUTHOR CONTRIBUTION
Kewei Xu and Cheng Liu designed and directed the research. Cong Lai, Zhenyu Wu, and Zhuohang Li analyzed the data and drafted the manuscript. Hao Yu and Kuiqing Li collected references and revised the manuscript. Zhuang Tang collected the data. All authors read and approved the final manuscript.

DATA AVAILABILITY STATEMENT
The original contributions presented in the study are publicly available. This data can be found here: https://portal.gdc.cancer.gov (TCGA-BLCA).

ORCID
Kewei Xu https://orcid.org/0000-0003-4649-4619

REFERENCES
1. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209-249.
2. Song D, Powles T, Shi L, Zhang L, Ingersoll MA, Lu YJ. Bladder cancer, a unique model to understand cancer immunity and develop immunotherapy approaches. J Pathol. 2019;249(2):151-165.
3. Grimm MO, Bex A, De Santis M, et al. Safe use of immune checkpoint inhibitors in the multidisciplinary management of urological cancer: the European Association of Urology Position in 2019. Eur Urol. 2019;76(3):368-380.
4. Necchi A, Raggi D, Gallina A, et al. Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant pembrolizumab in muscle-invasive bladder cancer. Eur Urol. 2020;77(6):701-710.
5. Huang Z, Zhou JK, Peng Y, He W, Huang C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol Cancer. 2020;19(1):77.
6. Martens-Uzunova ES, Böttcher R, Croce CM, Jenster G, Visakorpi T, Calin GA. Long noncoding RNA in prostate, bladder, and kidney cancer. Eur Urol. 2014;65(6):1140-1151.
7. Zhang Q, Su M, Lu G, Wang J. The complexity of bladder cancer: long noncoding RNAs are on the stage. Mol Cancer. 2013;12(1):101.
8. Zhan Y, Chen Z, He S, et al. Long non-coding RNA SOX2OT promotes the stemness phenotype of bladder cancer cells by modulating SOX2. Mol Cancer. 2020;19(1):25.
9. Chen C, Luo Y, He W, et al. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest. 2020;130(1):404-421.
10. Jiang W, Zhu D, Wang C, Zhu Y. An immune relevant signature for predicting prognoses and immunotherapeutic responses in patients with muscle-invasive bladder cancer (MIBC). Cancer Med. 2020;9(8):2774-2790.
11. Shen Y, Peng X, Shen C. Identification and validation of immune-related IncRNA prognostic signature for breast cancer. Genomics. 2020;112(3):2640-2646.
12. Li X, Meng Y. Survival analysis of immune-related lncRNA in low-grade glioma. BMC Cancer. 2019;19(1):813.
13. Cao R, Yuan L, Ma B, Wang G, Tian Y. Immune-related long noncoding RNA signature identified prognosis and immunotherapeutic efficiency in bladder cancer (BLCA). Cancer Cell Int. 2020;20:276.
14. Tong H, Li T, Gao S, Yin H, Cao H, He W. An epithelial-mesenchymal transition-related long noncoding RNA signature correlates with the prognosis and progression in patients with bladder cancer. Biosci Rep. 2021;41(1):BSR20203944.
15. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782-795.
16. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
17. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457.
18. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
19. Qiu H, Hu X, He C, Yu B, Li Y, Li J. Identification and validation of an individualized prognostic signature of bladder cancer based on seven immune related genes. Front Genet. 2020;11:12.
20. Cao J, Yang X, Li J, et al. Screening and identifying immune-related cells and genes in the tumor microenvironment of bladder urothelial carcinoma: based on TCGA database and bioinformatics. Front Oncol. 2019;9:1533.
21. Huang D, Chen J, Yang L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018;19(10):1112-1125.
22. Pei X, Wang X, Li H. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol. 2018;118(Pt A):24-30.
23. Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J. An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol. 2018;55(5):3684-3697.
24. Tokunaga R, Naseem M, Lo JH, et al. B cell and B cell-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol. 2018;55(5):3684-3697.
25. Tong H, Li T, Gao S, Yin H, Cao H, He W. An epithelial-mesenchymal transition-related long noncoding RNA signature correlates with the prognosis and progression in patients with bladder cancer. Biosci Rep. 2021;41(1):BSR20203944.
15. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39(4):782-795.
16. Yoshihara K, Shahmoradgoli M, Martínez E, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.
17. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12(5):453-457.
18. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
19. Qiu H, Hu X, He C, Yu B, Li Y, Li J. Identification and validation of an individualized prognostic signature of bladder cancer based on seven immune related genes. Front Genet. 2020;11:12.
20. Cao J, Yang X, Li J, et al. Screening and identifying immune-related cells and genes in the tumor microenvironment of bladder urothelial carcinoma: based on TCGA database and bioinformatics. Front Oncol. 2019;9:1533.
21. Huang D, Chen J, Yang L, et al. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat Immunol. 2018;19(10):1112-1125.
22. Pei X, Wang X, Li H. LncRNA SNHG1 regulates the differentiation of Treg cells and affects the immune escape of breast cancer via regulating miR-448/IDO. Int J Biol Macromol. 2018;118(Pt A):24-30.
23. Zhou M, Zhang Z, Zhao H, Bao S, Cheng L, Sun J. An immune-related six-lncRNA signature to improve prognosis prediction of glioblastoma multiforme. Mol Neurobiol. 2018;55(5):3684-3697.
24. Tokunaga R, Naseem M, Lo JH, et al. B cell and B cell-related pathways for novel cancer treatments. Cancer Treat Rev. 2019;73:10-19.
25. Wahlin S, Nordin B, Leandersson K, Boman K, Jirström K. Clinical impact of T cells, B cells and the PD-1/PD-L1 pathway in muscle invasive bladder cancer: a comparative study of transurethral resection and cystectomy specimens. Oncoimmunology. 2019;8(11):e1644108.
26. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416.
27. Sharifi L, Nowroozzi MR, Amini E, Arami MK, Ayati M, Mohsenzadegan M. A review on the role of M2 macrophages in bladder cancer: pathophysiology and targeting. Int Immunopharmacol. 2019;76:105880.
28. He A, He S, Peng D, et al. Prognostic value of long non-coding RNA signatures in bladder cancer. *Aging (Albany NY)*. 2019;11(16):6237-6251.
29. Zhao D, Peng Q, Wang L, et al. Identification of a six-lncRNA signature based on a competing endogenous RNA network for predicting the risk of tumour recurrence in bladder cancer patients. *J Cancer*. 2020;11(1):108-120.
30. Yin XH, Jin YH, Cao Y, et al. Development of a 21-miRNA signature associated with the prognosis of patients with bladder cancer. *Front Oncol*. 2019;9:729.
31. Wang L, Shi J, Huang Y, et al. A six-gene prognostic model predicts overall survival in bladder cancer patients. *Cancer Cell Int*. 2019;19:229.
32. Izumi K, Zheng Y, Li Y, Zaengle J, Miyamoto H. Epidermal growth factor induces bladder cancer cell proliferation through activation of the androgen receptor. *Int J Oncol*. 2012;41(5):1587-1592.
33. Gao Y, Liu S, Guo Q, et al. Increased expression of TRIP13 drives the tumorigenesis of bladder cancer in association with the EGFR signaling pathway. *Int J Biol Sci*. 2019;15(7):1488-1499.
34. Malanchi I, Santamaria-Martínez A, Susanto E, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. *Nature*. 2011;481(7379):85-89.
35. Zhang C, Shen L, Qi F, Wang J, Luo J. Multi-omics analysis of tumor mutation burden combined with immune infiltrates in bladder urothelial carcinoma. *J Cell Physiol*. 2020;235(4):3849-3863.
36. Chobrutskiy BI, Zaman S, Diviney A, Mihyu MM, Blanck G. T-cell receptor-α CDR3 domain chemical features correlate with survival rates in bladder cancer. *J Cancer Res Clin Oncol*. 2019;145(3):615-623.

SUPPORTING INFORMATION
Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Lai C, Wu Z, Li Z, et al. A robust signature of immune-related long non-coding RNA to predict the prognosis of bladder cancer. *Cancer Med*. 2021;10:6534–6545. https://doi.org/10.1002/cam4.4167