Brain metastases free survival differs between breast cancer subtypes

BACKGROUND: Brain metastases (BM) are frequently diagnosed in patients with HER-2-positive metastatic breast cancer; in addition, an increasing incidence was reported for triple-negative tumours. We aimed to compare brain metastases free survival (BMFS) of breast cancer subtypes in patients treated between 1996 until 2010.

METHODS: Brain metastases free survival was measured as the interval from diagnosis of extracranial breast cancer metastases until diagnosis of BM. HER-2 status was analysed by immunohistochemistry and reanalysed by fluorescent in situ hybridisation if a score of 2+ was gained. Oestrogen-receptor (ER) and progesterone-receptor (PgR) status was analysed by immunohistochemistry. Brain metastases free survival curves were estimated with the Kaplan–Meier method and compared with the log-rank test.

RESULTS: Data of 213 patients (46 luminal/124 HER-2/43 triple-negative subtype) with BM from breast cancer were available for the analysis. Brain metastases free survival differed significantly between breast cancer subtypes. Median BMFS in triple-negative tumours was 14 months (95% CI: 11.34–16.66) compared with 18 months (95% CI: 14.46–21.54) in HER-2-positive tumours (P = 0.001), and 34 months (95% CI: 23.71–44.29) in luminal tumours (P = 0.001), respectively. In HER-2-positive patients, co-positivity for ER and HER-2 prolonged BMFS (26 vs 15 m; P = 0.033); in luminal tumours, co-expression of ER and PgR was not significantly associated with BMFS. Brain metastases free survival in patients with lung metastases was significantly shorter (17 vs 21 months; P = 0.014).

CONCLUSION: Brain metastases free survival in triple-negative breast cancer; as well as in HER-2-positive/ER-negative, is significantly shorter compared with HER-2/ER co-positive or luminal tumours, mirroring the aggressiveness of these breast cancer subtypes.

Keywords: advanced breast cancer; brain metastases; carcinomatous meningitis; human epidermal growth factor receptor 2 (HER-2)-positive breast cancer; triple-negative disease

In the last decade, overall survival of metastatic breast cancer patients has improved due to advances in systemic treatment (Lin and Winer, 2007; Kiely et al, 2011). Despite this success, the rising incidence of brain metastases (BM) as late complication became a major clinical problem (Weil et al, 2005; Pestalozzi et al, 2006). About 10–15% of all metastatic breast cancer patients will eventually develop symptomatic BM during their course of disease. Brain metastases decrease quality of life and increase morbidity and mortality. Currently, survival of patients with BM ranges from 2 to 16 months (Weil et al, 2005).

Prognosis and clinical behaviour of breast cancer differs between subtypes (Perou et al, 2000; Sorlie et al, 2001; Kennecke et al, 2010). Patients with triple-negative tumours, defined by the absence of oestrogen-receptor (ER), progesterone-receptor (PgR) and Her-2-receptor expression, are at higher risk of being diagnosed with BM compared with the luminal or HER-2-positive subtypes (Heitz et al, 2009). HER-2-positive patients, on the other hand, have a higher incidence of BM than patients with HER-2-negative breast cancer (Sanna et al, 2007). Especially since the introduction of trastuzumab, a growing incidence of symptomatic BM was reported. As trastuzumab cannot penetrate the blood–brain barrier due to its molecular weight, a tumour cell sanctuary is created. Furthermore, trastuzumab improves systemic disease control, which leads to a ‘unmasking’ of BM in patients who would otherwise have died from progression of systemic disease.

Apart from triple-negative or HER-2-positive disease, established risk factors for the development of BM are young age at first diagnosis, presence of lung metastases and short disease-free interval (Weil et al, 2005).

Treatment of BM remains challenging and consists of surgery, whole-brain irradiation, radiosurgery and systemic therapy (Weil et al, 2005). Surgery or radiosurgery is an option for patients with
one to three metastases. Whole-brain irradiation, while offering activity also in patients with >3 metastases, causes long-term sides effects such as memory loss and cognitive impairment. Effect of systemic therapy is limited by the blood–brain barrier. Thus, limited therapy options for symptomatic BM substantiates the urgent need for better understanding of risk factors and possibilities of prevention.

Importantly, treatment with lapatinib resulted in a decreased incidence of BM in HER-2-positive disease (Geyer et al, 2006). Other preventive measures such as prophylactic cranial radiotherapy, while well established in small-cell-lung cancer, is not routinely used in breast cancer, as no survival benefit was observed so far (Saip et al, 2009). Even screening for BM is not a part of routine follow-up, as no evidence for a benefit from early detection exists (Niwinska et al, 2007). This, however, might be rather due to the lack of appropriate selection criteria for a potential screening cohort. Therefore, a more precise definition of patients and breast cancer subtypes at high risk for early development of BM is needed (Heitz et al, 2009).

The objective of this study therefore was to determine clinical and histopathological risk factors associated with early development of BM. This might identify a high-risk population deriving the largest benefit from screening and prevention.

PATIENTS AND METHODS

Two Austrian centres contributed information relating to demographics, case history and survival. Data were processed at the Medical University of Vienna, Austria. This retrospective analysis was conducted in accordance with the ethical regulations of the Medical University of Vienna and approval by the local ethics committee was obtained.

Patients

Patients treated for symptomatic BM from breast cancer between 1996 and 2010 were identified from a breast cancer database. No routine screening for BM was conducted, and none of the patients available for this analysis participated in trials of BM screening or prevention. Data were analysed as of August 2011.

Hormone-receptor and HER-2 status

Oestrogen-receptor and progesterone-receptor status was assessed by immunohistochemistry (ERx antibody, clone 1D5, Dako A/S, Glostrup, Denmark; and PR antibody, Dako A/S). Receptor expression was estimated as the percentage of positively stained tumour cells. Results were given as 1+, 2+ and 3+ positive or negative staining, with a cutoff value of <10% positive tumour cells (Hammond et al, 2010). HER-2 status was assessed by immunohistochemistry (Herceptest; Dako A/S) or dual colour fluorescent in situ hybridisation (FISH; PathVision HER-2 DNA probe kit, Vysis Inc., Downers Grove, IL, USA). Tumours were classified as HER-2-positive if they had a staining intensity of 3+ on the Herceptest; if a score of 2+ was gained, tumours were reanalysed by FISH (Wolff et al, 2007).

Breast cancer subtypes

Breast cancer subtypes were defined according to the results of the immunohistochemical analysis. Tumours heralding hormone-receptor expression in the absence of HER-2-receptor overexpression were summarised as belonging to the luminal subtype, without further differentiation. The HER-2 subtype was defined by overexpression of the HER-2 receptor and/or amplification of the HER-2/neu gene. Tumours were defined as triple-negative in the absence of ER, PgR as well as HER-2 expression (Anders et al, 2011; Duan et al, 2011).

Treatment plan and patient evaluation

In metastatic patients, routine re-evaluation of patients’ tumour status was performed every 3 months with contrast-enhanced CT scans of the chest and the abdomen, with additional work up if indicated. In patients with early breast cancer, follow-up was done according to local protocol. Brain imaging was performed only when symptoms of CNS metastases or carcinomatous meningitis occurred. Brain metastases were diagnosed by CT and/or MRI and histologically confirmed in case neurosurgery was performed. Carcinomatous meningitis was defined as enhancement of the meninges as detected by MRI and/or detection of tumour cells in the cerebrospinal fluid. Metastatic breast cancer and BM were treated according to the current evidence-based standard of care including surgery, radiotherapy, systemic therapy, targeted therapy and endocrine treatment (Beslja et al, 2007). Follow-up of BM was conducted every 3 months with either contrast-enhanced cranial CT or MRI scans.

Study end points

We defined brain metastases free survival (BMFS) as the interval from diagnosis of metastatic disease until the development of BM. Therefore, patients with BM as first site of metastatic disease were excluded from analysis of BMFS. Furthermore, we analysed the association of breast cancer subtypes with brain as first site of disease progression, number of BM, time to development of BM (<24 months vs >48 months), and development of carcinomatous meningitis.

Statistical analysis

Brain metastases free survival was estimated by the Kaplan–Meier product limit method. To test the differences between BMFS curves, the log-rank test was used. For correlation of two parameters, the χ²-test and the likelihood ratio were used. Two-tailed P-values <0.05 were considered to indicate statistical significance. Variables exhibiting significance (P<0.05) or near significance (P<0.09) at univariate analysis were included into a Cox proportional hazards models.

The association of the following variables with BMFS were investigated using univariate analysis: breast cancer subtype (luminal vs triple-negative vs Her-2-positive), presence of pulmonary metastases, presence of any visceral metastases, age at primary diagnosis (>65 years; <35 years), grading (grades 1 and 2 vs 3), stage at primary diagnosis (localised vs metastatic) and time to progression after first diagnosis of early breast cancer (<24 months vs >24 months). Correlation analysis was performed for subtype and BM as first site of recurrence, time to progression to the brain (<24 months, >48 months), number of BM (1–3 vs >3 BM) and presence of carcinomatous meningitis.

All statistics were calculated using statistical package for the social sciences (SPSS) 17.0 software (SPSS Inc., Chicago, IL, USA).

RESULTS

Patient characteristics

Overall, 250 patients with BM from breast cancer were identified from two Austrian centres between 1996 and 2010 (absolute incidence of breast cancer in Austria 1996–2010: 68 661 patients). Thirty-seven patients had to be excluded due to incomplete information about breast cancer subtype (e.g., missing data concerning Her-2 status, hormone-receptor status). Therefore, 213 patients were available for this retrospective analysis.

According to the immunohistochemical analysis of the primary tumour, patients were divided into three groups: luminal subtype, HER-2 subtype and triple-negative subtype. Forty-six patients...
Brain metastases in breast cancer

A Berghoff et al

Clinical Studies

Table 1 Patient characteristics (a) without BM and (b) with BM as first site of progression

(a) entered patients \((n = 169)\)

Characteristics	\(n\)	%
Median age at first diagnosis (years)	50	
Range	25–82	
Age >65 years	17	10.1
Age <35 years	17	10.1
Grade 3 tumour	116	73.9
Invasive ductal carcinoma	135	87.1
Stage IV	32	18.9
Subtype		
Luminal subtype	36	21.3
HER-2 subtype	102	60.4
Triple-negative subtype	31	18.3
Adjuvant chemotherapy	115	83.9
Adjuvant endocrine therapy	53	38.1
Adjuvant trastuzumab	12	8.8
Median time to progression (months)	22	
Range	0–166	
Visceral metastases	121	72.0
Brain as first site of metastatic disease	0	0
Median metastatic sites	2	
Range	1–5	
Lung	79	47.0
Liver	71	42.3
Bones	81	48.2
Lymph nodes	48	28.6
Soft tissue	54	32.1
Skin	17	10.1
Others	11	6.6
Palliative chemotherapy before BM	152	89.9
Palliative endocrine therapy before BM	63	37.5
Palliative trastuzumab before BM	85	50.3
Palliative lapatinib before BM	2	1.2
Response to systemic therapy at time of BM diagnosis		
CR	3	3.3
PR	29	31.9
SD	32	35.2
PD	27	29.7
Median BM free survival (months)	19	
Range	1–170	
Median OS from first diagnosis (months)	58.5	
Range	3–218	
Median OS from diagnosis of metastatic disease	33	
Range	2–125	
Median OS from diagnosis of BM (months)	5.5	
Range	0–81	

(b) entered patients \((n = 44)\)

Characteristics	\(n\)	%
Median age at first diagnosis (years)	54	
Range	27–79	
Age >65 years	5	11.4
Age <35 years	4	9.1
Grade 3 tumour	31	75.6
Invasive ductal carcinoma	30	72.2
Stage IV	4	9.1
Subtype		
Luminal subtype	10	22.7
HER-2 subtype	22	50.0
Triple-negative subtype	12	27.3

Brain metastases free survival

Median BMFS was 19 months (95% CI: 15.18–22.82) in the population of 169 patients with metastatic breast cancer who did not have BM as first site of progression. Univariate analysis revealed a significant difference in median BMFS between breast cancer subtypes. In the luminal subtype, median BMFS was 34 months (95% CI: 23.71–44.29) compared with 18 months (95% CI: 14.46–21.54) in the HER-2-positive subtype (\(P = 0.001\), log-rank test) and 14 months (95% CI: 11.34–16.66) in the triple-negative subtype (\(P = 0.001\), log-rank test) (Figure 1).

In patients with lung metastases, median BMFS was 17 months (95% CI: 14.10–19.90) compared with 21 months (95% CI: 15.45–26.55) in patients with no evidence of lung metastases (\(P = 0.014\), log-rank test) (Figure 2). In patients with time to extracranial progression after first diagnosis of early breast cancer of \(<24\) months, median BMFS was significantly shorter compared to patients with time to extracranial progression after first diagnosis over 24 months (14 vs 24 months; \(P < 0.001\), log-rank test). None of the other variables included into the univariate model displayed a significant influence on BMFS (Table 2).
In the multivariate analysis of BMFS, presence of lung metastases and breast cancer subtype as well as time to extracranial progression after first diagnosis of early breast cancer retained statistical significance. Hazard ratio (HR) for non-luminal breast cancer subtypes was 1.51 (95% Cl: 1.17–1.95; \(P = 0.002 \), Cox proportional hazards model), 1.39 (95% Cl: 1.01–1.93; \(P = 0.047 \), Cox proportional hazards model) for presence of lung metastases and 1.49 (95% Cl: 1.07–2.08; \(P = 0.019 \), Cox proportional hazards model) for time to progression after first diagnosis of early breast cancer of <24 months, respectively.

\(\chi^2 \)-test and likelihood ratio

The likelihood ratio of developing BM as first site of metastatic disease did not differ significantly between the breast cancer subtypes (luminal subtype 21.7%; HER-2 subtype 17.7%; triple-negative subtype 20.7%; \(P = 0.372 \), \(\chi^2 \)-test).

On the other hand, the likelihood of being diagnosed with BM in <24 months (BMFS <24 months) correlated significantly with the breast cancer subtype. Within the luminal subtype, 30.6% (11 patients) of patients developed BM in <24 months; in the HER-2 subtype, 59.4% (60 patients) and in the triple-negative subtype, 77.4% (24 patients) of patients had a BMFS <24 months (\(P < 0.001 \), \(\chi^2 \)-test). Furthermore, the likelihood of BMFS > 48 months again correlated significantly with the breast cancer subtype. Only one patient (3.2%) within the triple-negative subtype had a BMFS > 48 months, while 12 patients (17.6%) of the HER-2 group and 12 patients (33.3%) of the luminal group had a BMFS > 48 months, respectively (\(P = 0.006 \), \(\chi^2 \)-test).

In all, 92 (48.7%) patients had over three BM at first diagnosis of BM. Accordingly, 32.3% of patients had a single metastasis, 9.5% had two BM and 9.5% three BM. The number of BM at time of first diagnosis of BM did not differ between the subtypes. In all, 24 patients (58.3%) within the luminal subtype had three or less metastases, corresponding numbers for the HER-2-positive and triple-negative subtypes were 50.9% and 50.0%, respectively (\(P = 0.666 \), \(\chi^2 \)-test).

The likelihood ratio for the development of carcinomatous meningitis again significantly correlated with breast cancer subtype. In all, 19.6% (nine patients) of the luminal subtype compared with 3.2% (four patients) of the HER-2 subtype and 9.3% (four patients) of the triple-negative subtype developed carcinomatous meningitis (\(P = 0.002 \), \(\chi^2 \)-test).

BMFS in subsets of the HER-2-positive subtype

In HER-2-positive patients, we further analysed whether HER-2/ER co-positivity or trastuzumab-based therapy had any influence on BMFS. In patients who received trastuzumab-based therapy before the development of BM, median BMFS was 17 months (95% Cl: 13.41–20.53) compared with 21 months (95% Cl: 8.53–33.47) in HER-2-positive patients who had not received trastuzumab-based treatment (\(P = 0.939 \), log-rank test). Therefore, trastuzumab did not prolong BMFS.

In patients with ER/HER-2 co-positive tumours, median BMFS was 26 months (95% Cl: 16.40–35.60) and therefore significantly
Brain metastases in breast cancer

A Berghoff et al

In the field of BM prevention in Her-2-positive disease, promising results of lapatinib were reported, a dual tyrosine-kinase inhibitor of EGFR and HER-2 (Cameron et al, 2008). Other preventive strategies such as prophylactic cranial irradiation currently have no role in breast cancer treatment, as supporting data are missing (Saip et al, 2009). Also, screening for BM is not established, since early detection of BM was not found to influence survival henceforth (Niwinska et al, 2010). This, however, might result from the inclusion of patients at relatively low risk for developing BM into the respective clinical trials; therefore, a better definition of risk groups is warranted as first step to establish effective strategies of screening and prevention.

Clinical and translational research redefined breast cancer as a heterogeneous disease, divided into different subtypes defined by divergent gene expression profiles. In daily clinical practice, grading as well as immunohistochemical assessment of hormone-receptor status, Her-2, and Ki-67 are usually used as approximation. Therefore, breast cancer is assigned to the luminal, the HER-2 or the triple-negative phenotype at first diagnosis. This classification influences estimation of prognosis and treatment decisions (Perou et al, 2000; Sorlie et al, 2001, 2003). In the present study, we show that different breast cancer subtypes associate with time to development of BM. Patients with triple-negative disease had a significantly shorter BMFS (14 months) compared with 34 months in patients with luminal tumours (P=0.001). Previously, the triple-negative subtype was identified to have a higher overall risk of developing BM; furthermore, BM are diagnosed relatively early during the course of disease (Pestalozzi et al, 2004; Heitz et al, 2009). Here, we could demonstrate tremendous differences of BMFS in triple-negative disease in comparison to luminal tumours, as BMFS of luminal subtypes is almost doubled. This finding indicates that triple-negative breast cancer warrants further research of BM-preventive strategies (Pestalozzi, 2009).

A higher incidence of BM was observed in HER-2-positive disease as well. Different authors suggested a connection to trastuzumab, a monoclonal antibody targeting the extracellular domain of HER-2. As trastuzumab cannot penetrate the blood–brain barrier, the CNS becomes a safe haven for tumour cells (Clayton et al, 2004). Also, improved control of systemic disease may eventually lead to the ’unmasking’ of BM (Lin and Winer, 2007). In our analysis, BMFS within the HER-2 subtype was 18 months and was significantly different from the other two subtypes (P=0.001). Compared with luminal cancers, shorter BMFS was observed in Her-2-positive disease, while BMFS was longer compared with triple-negative tumours. No influence of trastuzumab-based therapy on BMFS was observed. This finding indicates that biological behaviour rather than systemic treatment defines the risk for early or late development of BM in patients with HER-2-positive breast cancer (Burstein et al, 2005; Pestalozzi et al, 2006; Lin and Winer, 2007).

Several studies postulated the absence of ER expression as an unfavourable factor for the probability of developing BM (Slimane et al, 2004; Weil et al, 2005). Therefore, we performed an analysis of BMFS in the HER-2-positive subtype in dependence of ER expression. Patients with ER-negative/HER-2 co-positive disease were shown to have significantly longer BMFS compared with patients with ER-negative/HER-2-positive disease (26 months vs 15 months; P=0.033). This once again shows that the Her-2-positive phenotype comprises heterogeneous subtypes.

Brain metastases are usually diagnosed rather late in the course of metastatic disease (Weil et al, 2005). Previous studies indicate a correlation of visceral and pulmonary metastases and the occurrence of BM (Well et al, 2005; Kennecke et al, 2010). Our findings further support this investigation, as pulmonary metastases remained a significant risk factor associated with shorter BMFS in the Cox regression model (HR 1.49; P=0.016). Therefore, we suggest that patients with triple-negative tumours and pulmonary metastases might be the most suitable

DISCUSSION

Brain metastases are an increasing issue in modern breast cancer therapy, as up to 15% of patients with stage IV disease will eventually be diagnosed with symptomatic BM (Well et al, 2005). Therefore, development of adequate preventive strategies is urgently required.

Figure 3 Kaplan–Meier estimates for BMFS. Median BMFS in HER-2/ER co-positive patients was 26 months (95% CI: 16.40 – 35.60) compared to (15 months; 95% CI: 10.77 – 19 – 23) in patients with HER-2-positive/ER-negative disease (P=0.033, log-rank test).

BMFS in subsets of the luminal subtype

Expression of progesterone receptor did not significantly influence BMFS in patients with breast cancer of the luminal subtype. In PgR-positive patients, median BMFS was 35 months (95% CI: 17.39 – 52.62) compared with 34 months (95% CI: 18.35 – 49.66) in PgR-negative patients (P=0.692, log-rank test).

Overall survival after diagnosis of BM

Median overall survival after the diagnosis of BM was 5 months (95% CI: 2.64 – 7.36) in the luminal group, 7 months (95% CI: 4.31 – 969) in HER-2-positive group and 5 months (95% CI: 1.83 – 8.17) in triple-negative breast cancer patients (P=0.364, log-rank test). HER-2-positive patients treated with trastuzumab-based therapy after completion of local therapy for BM (surgery, radiotherapy) had a significantly longer overall survival after diagnosis of BM (4 vs 14 months; 95% CI: 2.40 – 5.61 vs 7.22 – 20.78; P<0.001, log-rank test).

Clinical and translational research redefined breast cancer as a heterogeneous disease, divided into different subtypes defined by divergent gene expression profiles. In daily clinical practice, grading as well as immunohistochemical assessment of hormone-receptor status, Her-2, and Ki-67 are usually used as approximation. Therefore, breast cancer is assigned to the luminal, the HER-2 or the triple-negative phenotype at first diagnosis. This classification influences estimation of prognosis and treatment decisions (Perou et al, 2000; Sorlie et al, 2001, 2003). In the present study, we show that different breast cancer subtypes associate with time to development of BM. Patients with triple-negative disease had a significantly shorter BMFS (14 months) compared with 34 months in patients with luminal tumours (P=0.001). Previously, the triple-negative subtype was identified to have a higher overall risk of developing BM; furthermore, BM are diagnosed relatively early during the course of disease (Pestalozzi et al, 2004; Heitz et al, 2009). Here, we could demonstrate tremendous differences of BMFS in triple-negative disease in comparison to luminal tumours, as BMFS of luminal subtypes is almost doubled. This finding indicates that triple-negative breast cancer warrants further research of BM-preventive strategies (Pestalozzi, 2009).

A higher incidence of BM was observed in HER-2-positive disease as well. Different authors suggested a connection to trastuzumab, a monoclonal antibody targeting the extracellular domain of HER-2. As trastuzumab cannot penetrate the blood–brain barrier, the CNS becomes a safe haven for tumour cells (Clayton et al, 2004). Also, improved control of systemic disease may eventually lead to the ‘unmasking’ of BM (Lin and Winer, 2007). In our analysis, BMFS within the HER-2 subtype was 18 months and was significantly different from the other two subtypes (P=0.001). Compared with luminal cancers, shorter BMFS was observed in Her-2-positive disease, while BMFS was longer compared with triple-negative tumours. No influence of trastuzumab-based therapy on BMFS was observed. This finding indicates that biological behaviour rather than systemic treatment defines the risk for early or late development of BM in patients with HER-2-positive breast cancer (Burstein et al, 2005; Pestalozzi et al, 2006; Lin and Winer, 2007).

Several studies postulated the absence of ER expression as an unfavourable factor for the probability of developing BM (Slimane et al, 2004; Weil et al, 2005). Therefore, we performed an analysis of BMFS in the HER-2-positive subtype in dependence of ER expression. Patients with ER-negative/HER-2 co-positive disease were shown to have significantly longer BMFS compared with patients with ER-negative/HER-2-positive disease (26 months vs 15 months; P=0.033). This once again shows that the Her-2-positive phenotype comprises heterogeneous subtypes.

Brain metastases are usually diagnosed rather late in the course of metastatic disease (Weil et al, 2005). Previous studies indicate a correlation of visceral and pulmonary metastases and the occurrence of BM (Well et al, 2005; Kennecke et al, 2010). Our findings further support this investigation, as pulmonary metastases remained a significant risk factor associated with shorter BMFS in the Cox regression model (HR 1.49; P=0.016). Therefore, we suggest that patients with triple-negative tumours and pulmonary metastases might be the most suitable
Brain metastases in breast cancer
A Berghoff et al

REFERENCES

Anders CK, Deal AM, Miller CR, Khourram C, Meng H, Burrows E, Livasy C, Fritchie K, Ewend MG, Perou CM, Carey LA (2011) The prognostic contribution of clinical breast cancer subtype, age, and race among patients with breast cancer brain metastases. Cancer 117(8): 1602 – 1611

Blesiia S, Bonnetere J, Burstein H, Cocqyt V, Gaunt M, Goodwin P, Heinemann V, Jassem J, Kuyler WJ, Kramer M, Menard S, Petit T, Petruzelka L, Possinger K, Schmid P, Stadtmauer E, Stockler M, Van Belle S, Vogel C, Wielken N, Wiltschke C, Zielinski CC, Zwierzina H (2007) Second consensus on medical treatment of metastatic breast cancer. Ann Oncol 18(2): 215 – 225

Burstein HJ, Lieberman G, Slamon DJ, Winer EP, Klein P (2005) Isolated central nervous system metastases in patients with HER2-overexpressing advanced breast cancer treated with first-line trastuzumab-based therapy. Ann Oncol 16(11): 1772 – 1777

Cameron D, Casey M, Press M, Lindquist D, Pienkowski T, Romieu CG, Chan S, Jagiello-Crusfeld A, Kaufman B, Crown J, Chan A, Campone M, Viens P, Davidson N, Gorbounova V, Raats JF, Skarlos D, Newstut B, Roychowdhury D, Paoletti P, Oliva C, Rubin S, Stein S, Geyer CE (2008) A phase III randomized comparison of lapatinib plus cetuximab versus cetuximab alone in women with advanced breast cancer that has progressed on trastuzumab: updated efficacy and biomarker analyses. Breast Cancer Res Treat 112(3): 533 – 543

Clayton AJ, Danson S, Jolly S, Ryder WD, Burt PA, Stewart AL, Wilkinson PM, Welch RS, Magee B, Wilson G, Howell A, Wardley AM (2004) Incidence of cerebral metastases in patients treated with trastuzumab for metastatic breast cancer. Br J Cancer 91(4): 639 – 643

de Azevedo CR, Cruz MR, Chinlen LT, Peres SV, Peterlevitz MA, da Azevedo Pereira AE, Fanelli MF, Gimenes DL (2011) Meningeal carcinomatosis in breast cancer: prognostic factors and outcome. J Neurooncol 104(2): 565 – 572

Duan XP, Dong NN, Zhang T, Li Q (2011) The prognostic analysis of clinical breast cancer subtypes among patients with liver metastases from breast cancer. Int J Clin Oncol; e-pub ahead of print 27 October 2011; doi:10.1007/s10147-011-0336-x

Garr RJ, Marsh JC, Rao RD, Griem SKL (2011) Predictive factors for oligometastatic vs non-oligometastatic involvement of the central nervous system by brain metastases from breast cancer. 2011 Breast Cancer Symposium

Geyer CE, Forster J, Lindquist D, Chan S, Romieu CG, Pienkowski T, Jagiello-Crusfeld A, Crown J, Chan A, Kaufman B, Skarlos D, Campone M, Davidson N, Berger M, Oliva C, Rubin SD, Stein S, Cameron D (2006) Lapatinib plus cetuximab for HER2-positive advanced breast cancer. N Engl J Med 358(26): 2733 – 2743

Goldhirsch A, Wood WC, Gelber RD, Coates AS, Thurlimann B, Senn HJ (2007) Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol 18(7): 1133 – 1144

Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, Fitzgibbons PL, Francis G, Goldstein NS, Hayes M, Hicks DG, Lester S, Love R, Mangue PB, McShane L, Miller K, Osborne CK, Paik S, Perlmutter J, Rhodes A, Sasano H, Schwartz JN, Sweep FC, Taube S, Torlakovci EE, Valenstein P, Viale G, Visscher D, Wheeler T, Williams RB, Wittifl JJ, Wolff AC (2010) American Society of Clinical Oncology/College Of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol 28(16): 2784 – 2795

Heitz F, Harter P, Lueck HJ, Fissler-Eckhoff A, Lorenz-Salehi F, Schell-Bertram S, Traut A, du Bois A (2009) Triple-negative and HER2-overexpressing breast cancers exhibit an elevated risk and an earlier occurrence of cerebral metastases. Eur J Cancer 45(16): 2792 – 2798

Kamar FG, Posner JB (2010) Brain metastases. Semin Neurol 30(3): 217 – 235

Kennecke H, Yerushalmi R, Woods R, Cheang MC, Voduc D, Speers CH, Nielsen TO, Gelmon K (2010) Metastatic behavior of breast cancer subtypes. J Clin Oncol 28(20): 3271 – 3277

Kiely BE, Soon YY, Tattersall MH, Stockler MR (2011) How long have I got? Estimating typical, best-case, and worst-case scenarios for patients starting first-line chemotherapy for metastatic breast cancer: a systematic review of recent randomized trials. J Clin Oncol 29(4): 456 – 463

Lee S, Ahn HK, Park YH, Nam do H, Lee JI, Park W, Choi DH, Huh SJ, Park KT, Ahn JS, Im YH (2011) Leptomeningeal metastases from breast cancer: intrinsic subtypes may affect unique clinical manifestations. Breast Cancer Res Treat 129(3): 809 – 817

Lin NU, Winer EP (2007) Brain metastases: the HER2 paradigm. Clin Cancer Res 13(6): 1648 – 1655

Niwinska A, Pogoda K, Murawska M, Niwinski P (2011a) Factors influencing survival in patients with breast cancer and single or solitary brain metastasis. Eur J Surg Oncol 37(7): 635 – 642

Niwinska A, Tacikowska M, Murawska M (2010) The effect of early detection of occult brain metastases in HER2-positive breast cancer patients on survival and cause of death. Int J Radiat Oncol Biol Phys 77(4): 1134 – 1139

Niwinska A, Tacikowska M, Pienkowski T (2007) Occult brain metastases in HER2-positive breast cancer patients: frequency and response to radiotherapy. Acta Oncol 46(7): 1027 – 1029

Niwinska AM, Rudnicka H, Murawska M (2011b) Breast cancer carcinomatous meningitis: differences in survival depending on biological subtype, performance status, and treatment methods. J Clin Oncol 29: suppl abstr 1073

Perou CM, Sorli T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D (2000) Molecular portraits of human breast tumours. Nature 406(6797): 746 – 752

Pestalozzi BC (2009) Brain metastases and subtypes of breast cancer. Ann Oncol 20(5): 803 – 805

Pestalozzi BC, Zarieh D, Price KN, Holmberg SB, Lindtner J, Collins A, Crivellari D, Fey MF, Murray E, Pagani O, Simoncini E, Castiglione-Gertsch M, Gelber RD, Coates AS, Goldhirsch A (2006) Identifying breast...
cancer patients at risk for Central Nervous System (CNS) metastases in trials of the International Breast Cancer Study Group (IBCSG). *Ann Oncol* 17(6): 935–944

Saip P, Cicin I, Eralp Y, Karagol H, Kucucuk S, Cosar Alas R, Yavuz E, Dincer M, Saglam E, Topuz E (2009) Identification of patients who may benefit from the prophylactic cranial radiotherapy among breast cancer patients with brain metastasis. *J Neurooncol* 93(2): 243–251

Sanna G, Franceschelli L, Rotmensz N, Botteri E, Adamoli L, Marenghi C, Munzone E, Cossu Rocca M, Verri E, Minchella I, Medici M, Catania C, Magni E, Goldhirsch A, Nole F (2007) Brain metastases in patients with advanced breast cancer. *Anticancer Res* 27(4C): 2865–2869

Slimane K, Andre F, Delaloge S, Dunant A, Perez A, Grenier J, Massard C, Spielmann M (2004) Risk factors for brain relapse in patients with metastatic breast cancer. *Ann Oncol* 15(11): 1640–1644

Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Marsden JD, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. *Proc Natl Acad Sci USA* 98(19): 10869–10874

Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Perou CM, Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Perou CM, Lenning PE, Brown PO, Borresen-Dale AL, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. *Proc Natl Acad Sci USA* 100(14): 8418–8423

Weil RJ, Palmieri DC, Bronder JL, Stark AM, Steeg PS (2005) Breast cancer metastasis to the central nervous system. *Am J Pathol* 167(4): 913–920

Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, Dowsett M, Fitzgibbons PL, Hanna WM, Langer A, McShane LM, Paik S, Pegram MD, Perez EA, Press MF, Rhodes A, Sturgeon C, Taube SE, Tubbs R, Vance GH, van de Vijver M, Wheeler TM, Hayes DF (2007) American Society of Clinical Oncology/College of American Pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. *J Clin Oncol* 25(1): 118–145

This work is published under the standard license to publish agreement. After 12 months the work will become freely available and the license terms will switch to a Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License.