Abstract

Trust management is an approach to access control in distributed systems where access decisions are based on policy statements issued by multiple principals and stored in a distributed manner. In trust management, the policy statements of a principal can refer to other principals’ statements; thus, the process of evaluating an access request (i.e., a goal) consists of finding a “chain” of policy statements that allows the access to the requested resource. Most existing goal evaluation algorithms for trust management either rely on a centralized evaluation strategy, which consists of collecting all the relevant policy statements in a single location (and therefore they do not guarantee the confidentiality of intensional policies), or do not detect the termination of the computation (i.e., when all the answers of a goal are computed). In this paper we present GEM, a distributed goal evaluation algorithm for trust management systems that relies on function-free logic programming for the specification of policy statements. GEM detects termination in a completely distributed way without the need of disclosing intensional policies, thereby preserving their confidentiality. We demonstrate that the algorithm terminates and is sound and complete with respect to the standard semantics for logic programs.

KEYWORDS: Trust management, distributed goal evaluation, policy confidentiality

1 Introduction

The widespread availability of the Internet has led to a significant increase in the number of collaborations, services and transactions carried out over networks spanning multiple administrative domains (e.g., web services). Such collaborations are frequently characterized by the interaction of users and institutions (hereafter indistinctly referred to as principals) who do not know each other beforehand. For this reason, in such distributed settings, attribute-based approaches to access control are mostly preferred to identity-based solutions (Ellison et al. 1999). Consider, for instance, an international medical research project Alpha involving several companies worldwide. Project Alpha is funded and coordinated by the multinational pharmaceutical company mc which, among its tasks, appoints the partners of the project consortium. In this scenario, it is likely that company mc does not know the project members of each partner company personally, i.e., does not know their identity. Therefore, rather than on the identity of the project members, the policies regulating
the access to project’s documents will be based on their attributes (e.g., project membership, specialization) and their relationships with other principals (e.g., partner companies, departments within a company).

Trust management is an approach to access control in distributed systems where access decisions are based on the attributes of principals, which are attested by digitally signed certificates called digital credentials (Blaze et al. 1996). Digital credentials (or simply credentials) are the digital counterpart of paper credentials. Credentials are defined and derived by means of policy statements that specify the conditions upon which a credential is issued, where conditions are in turn represented by credentials. A distinguishing ingredient of trust management is that all the principals in a distributed system are free to define such policy statements and determine where to store them. The set of policy statements defined by a principal forms the policy of that principal. In the scenario above, for instance, the rules of company mc dictating the conditions for the membership of a user to project Alpha (e.g., a Master degree in chemistry) form the policy of mc. These statements can be stored by mc or at another principal’s location (e.g., by each partner company).

In trust management languages, policy statements are often expressed as Horn clauses (Li and Mitchell 2003) where each atom represents a credential, and is possibly annotated with the storage location of the statements defining the credential. Depending on the language, the location can be expressed implicitly (Czenko and Etalle 2007; Li et al. 2003) or explicitly (Alves et al. 2006; Becker 2005). While typically principals do not have direct access to each other policies, the statements of a principal can refer to other principals’ policies, thereby delegating authority to them. For instance, assume that a hospital h authorizes the members of project Alpha certified by the local pharmaceutical company c1 to access the (anonymized) medical records of its patients suffering from genetic diseases. The policies governing this scenario can be represented by the following clauses:

1. $\text{mayAccessMedRec}(h, X) \leftarrow \text{memberOfAlpha}(c1, X)$.
2. $\text{memberOfAlpha}(c1, X) \leftarrow \text{projectPartner}(mc, Y), \text{memberOfAlpha}(Y, X)$.
3. $\text{projectPartner}(mc, c2)$.
4. $\text{projectPartner}(mc, c3)$.
5. $\text{projectPartner}(mc, c4)$.
6. $\text{memberOfAlpha}(c2, X) \leftarrow \text{memberOfAlpha}(c1, X)$.
7. $\text{memberOfAlpha}(c2, alice)$.
8. $\text{memberOfAlpha}(c3, bob)$.
9. $\text{memberOfAlpha}(c4, charlie)$.

where the first parameter of each atom denotes the location where the credential that the atom represents is defined. Here, hospital h relies on the policy statements of c1 to determine who is authorized to access the hospital’s medical records (clause 1); in turn, c1 relies on the policy statements of mc and the partner companies appointed by mc for the definition of project Alpha’s members (clause 2). Therefore, the process of evaluating a request to access the hospital’s medical records (i.e., a goal) consists of deriving a “chain” of policy statements that delegates the authority from hospital h (i.e., the resource owner) to the members of project Alpha (i.e., the authorized principals). This process, usually referred to as credential chain discovery (Li et al. 2003), can be addressed using goal evaluation algorithms.
Since in trust management policies are stored at different locations, goal evaluation algorithms require principals to disclose their policy statements to other principals to enable credential chain discovery. In particular, for a successful computation, principals need to disclose at least (part of) their extensional policy, that is, the credentials that can be derived from their policy and are required for an access decision. For example, suppose that hospital h wants to determine who can access the medical records of its patients. To compute the answers of this goal, it is clear that c_1 has to disclose to h the credentials certifying all the project members. Most of the existing goal evaluation algorithms (e.g., (Czenko and Etalle 2007; Li et al. 2003)), however, rely on a centralized evaluation strategy and require principals to disclose also (part of) their intensional policy, i.e., the policy statement used to derive those credentials (e.g., clause 2 in the example policy).

We argue that one of the advanced desiderata of goal evaluation algorithms for trust management is that the amount of information about intensional policies that principals reveal to each other should be minimized. In fact, intensional policies might contain sensitive information about the relationships among principals, whose disclosure would leak valuable business information that can be exploited by other principals in the domain (e.g., rival companies) (Yu and Winslett 2003). For example, if c_1’s policy was disclosed to other principals for evaluation (e.g., to hospital h), the involvement of mc in project Alpha along with the list of all project partners would be exposed. As a consequence, some competitors of mc could start investing on similar projects, or could try to get at the project members to acquire sensitive information and project results. Furthermore, the loss of confidentiality of intensional policies can result in attempts by other principals to influence the policy evaluation process (Stine et al. 2008), and allows adversaries to know what credentials they need to forge to illegitimately get access to a resource (Frikken et al. 2006).

To protect the confidentiality of intensional policies, it is necessary to design a completely distributed goal evaluation algorithm that discloses as few information on intensional policies as possible. Since bottom-up approaches to goal evaluation (e.g., fixpoint semantics (Park 1969), magic templates (Ramakrishnan 1991) and magic sets (Chen 1997)) require knowledge of all the policy statements that depend on a given credential, they do not represent an applicable solution to our problem. Hence, a top-down approach to goal evaluation needs to be employed. The design of a distributed top-down algorithm, however, requires addressing two main problems: (a) loop detection, and (b) termination detection. In addition, to reduce network overhead, the goal evaluation algorithm should attempt to decrease the number of messages that principals exchange.

Loops are formed when the evaluation of a goal leads to a new request for the same goal. In our scenario, for example, to determine the set of project members without disclosing its intensional policy to hospital h, c_1 should first request the list of project partners to mc, and then the list of their project members to c_2, c_3 and c_4. Since c_2 in turn relies on the policy statements of c_1 to determine its project members, c_2 would pose the same request back to c_1, forming a loop. Figure 1 shows the “call graph” originating from this sequence of requests. Intuitively, c_1 should detect the loop and refrain from evaluating c_2’s request, as doing so could lead to a non-terminating chain of requests. Even though in the example scenario loops could be avoided, for instance, by requiring a single company (e.g., mc) to define the set of project members, this cannot be guaranteed in distributed systems characterized by the absence of a coordinating principal. Examples of such scenarios include self-
organizing networks (Di Marzo Serugendo et al. 2004) and access control policies based on independent information sources (e.g., the Friend of a Friend - FOAF - project (FOA)).

Existing goal evaluation algorithms employ tabling techniques (Bry 1989; Chen and Warren 1996; Tamaki and Sato 1986; Vieille 1987) for the detection of loops. Although some of these algorithms resort to a distributed tabling strategy (e.g., (Damário 2000; Hu 1997)), they rely on centralized data structures to detect termination - i.e., to detect when all the answers have been collected - thus leaking some policy information. In fact, the real challenge in designing a goal evaluation algorithm that does not disclose intensional policies lies in detecting termination distributedly. In the example, we have the following possible answer flow: c_3 returns bob as answer to c_1, which forwards it to h and c_2; c_4 returns $charlie$ as answer to c_1; c_1 sends $charlie$ as additional answer to h and c_2; c_2 returns $alice$, bob, and $charlie$ as answer to c_1, which sends $alice$ as additional answer to h and c_2. At this point, all the requests have been fully evaluated, but c_1 does not know whether c_2 will ever send additional answers. In other words, c_1 is waiting for c_2 to announce that its evaluation has terminated, and in turn c_2 is waiting for c_1 to announce that its evaluation has terminated. This situation is not acceptable in the context of access control, where a decision (positive or negative) always needs to be made. A few top-down goal evaluation algorithms are able to detect the termination of a computation distributedly (Alves et al. 2006; Zhang and Winslett 2008); however, they do not detect when the single goals within a computation are fully evaluated. In top-down goal evaluation, detecting when the evaluation of a goal has terminated is necessary to allow (a) for memory deallocation and (b) the use of negation, which is employed by some trust management systems to express non-monotonic constraints (e.g., separation of duty) (Czenko et al. 2006; Dong and Dulay 2010).

Finally, another non-trivial issue in designing a distributed goal evaluation algorithm is determining when a principal should send the answers to a request. The simplest solution is to force each principal to send an answer as soon as the principal has computed it, as done, for example, in (Alves et al. 2006). This is, however, suboptimal from the viewpoint of network overhead; in the example above, c_1 eventually sends three distinct messages to h and c_2, one for each answer. A more network-efficient solution would be for c_1 to wait for the answers from c_3 and c_4 before sending its answers to the other principals. A na"{i}ve “wait” mechanism, on the other hand, might cause deadlocks. For instance, if c_1 also waits for c_2’s answers, the computation deadlocks. In a trust management system, where network latency is likely to be a bigger bottleneck than computational power, it is preferable to have a mechanism that allows principals to wait until they collect the maximum possible set of answers before sending them to the requester, while avoiding deadlocks. Even though this solution may delay the identification of the answers of ground goals (i.e., goals
expecting a single answer), the “superfluous” computed answers might become relevant for the evaluation of other goals, reducing the delay in future computations.

In this paper we present GEM, a goal evaluation algorithm for trust management systems that addresses all the above mentioned problems. In GEM, policy statements are expressed as function-free logic programming clauses; each statement is stored by the principal defining it. GEM computes the answers of a goal in a completely distributed way without disclosing intensional policies of principals, thereby preserving their confidentiality. The algorithm deals with loops in three steps: (1) detection, (2) processing, and (3) termination. To enable loop detection, we employ a distributed tabling strategy and associate an identifier to each request for the evaluation of a goal. After its detection, a loop is processed by iteratively evaluating the goals in the loop until a fixpoint is reached, i.e., no more answers of the goals in the loop are computed, at which point their evaluation is terminated. This three-steps approach enables GEM to detect both when the whole computation has terminated, and when the single goals within a computation are fully evaluated, allowing for the use of non-monotonic constraints in policies. In addition, by exploiting the information stored in the table of a goal, principals are able to delay the response to a request until a “maximal” set of answers of the goal has been computed without running the risk of deadlocks. We demonstrate that GEM terminates and is sound and complete with respect to the standard semantics for logic programs.

The remainder of the paper is structured as follows. Section 2 presents preliminaries on logic programming and SLD resolution. Section 3 introduces GEM and its implementation. Section 4 demonstrates the soundness, completeness and termination of the algorithm, and discusses what information is disclosed by GEM during the evaluation of a goal. Section 5 presents the results of experiments conducted to evaluate the performance of GEM. A possible extension of GEM to deal with negation is presented in Section 6. Section 7 discusses related work. Finally, Section 8 concludes and gives directions for future work.

2 Preliminaries on Logic Programming

In this section we revisit the concepts of logic programming (Apt 1990) that are relevant to this paper. In particular, we review function-free logic programs.

An atom is an object of the form \(p(t_1, \ldots, t_n) \) where \(p \) is an \(n \)-ary predicate symbol and \(t_1, \ldots, t_n \) are terms (i.e., variables or constants). An atom is ground if \(t_1, \ldots, t_n \) are constants. A clause is an expression of the form \(H \leftarrow B_1, \ldots, B_n \) (with \(n \geq 0 \)), where \(H \) is an atom called head and \(B_1, \ldots, B_n \) (called body) are atoms. If \(n = 0 \), the clause is a fact. A program is a finite set of clauses. We say that an atom \(A \) is defined in the program \(P \) if and only if there is a clause in \(P \) that has an atom \(A' \) in its head such that \(A \) and \(A' \) are unifiable. Finally, a goal is a clause with no head atom, i.e., a clause of the form \(\leftarrow B_1, \ldots, B_n \). Without loss of generality, in this paper we restrict to goals with \(0 \leq n \leq 1 \), that is, consisting of at most one atom. The empty goal is denoted by \(\emptyset \).

SLD resolution (Selective Linear Definite clause resolution) (Kowalski 1974) is the standard operational semantics for logic programs. In this paper, we refer to SLD resolution with leftmost selection rule (extending the algorithm to an arbitrary selection rule is trivial). Computations are constructed as sequences of “basic” steps. Consider a goal \(G = B_1, \ldots, B_n \) and a clause \(c \) in a program \(P \). Let \(H \leftarrow B'_1, \ldots, B'_{m} \) be a variant of \(c \) vari-
able disjoint from \(\leftarrow B_1, \ldots, B_n \). Let \(B_1 \) and \(H \) unify with most general unifier (mgu) \(\theta \). The goal \(G_1 = \leftarrow (B'_1, \ldots, B'_m, B_2, \ldots, B_n)\theta \) is called a resolvent of \(G_0 \) and \(c \) with selected atom \(B_1 \) and mgu \(\theta \). An SLD derivation step is denoted by \(G_0 \rightarrow \theta G_1 \). Clause \(H \leftarrow B'_1, \ldots, B'_m \) is called input clause, and atom \(B_1 \) is called the selected atom of \(G_0 \).

An SLD derivation is obtained by iterating derivation steps. The sequence \(\delta := G_0 \rightarrow \theta_1 G_1 \rightarrow \theta_2 \cdots \rightarrow \theta_n G_n \rightarrow \cdots \) is called a derivation of \(P \cup \{ G_0 \} \), where at every step the input clause employed is variable disjoint from the initial goal \(G_0 \) and from the substitutions and the input clauses used at earlier steps. Given a program \(P \) and a goal \(G_0 \), SLD resolution builds a search tree for \(P \cup \{ G_0 \} \), called (derivation) tree of \(G_0 \), whose branches are SLD derivations of \(P \cup \{ G_0 \} \). Any selected atom in the SLD resolution of \(P \cup \{ G_0 \} \) is called a subgoal. SLD derivations can be finite or infinite. If \(\delta := G_0 \rightarrow \theta_1 \cdots \rightarrow \theta_n G_n \) is a finite prefix of a derivation, we say that \(\theta = \theta_1 \cdots \theta_n \) is a partial derivation and \(\theta \) is a partial computed answer substitution of \(P \cup \{ G_0 \} \). If \(\delta \) ends with the empty goal \(\emptyset \), \(\theta \) is called computed answer substitution (c.a.s.). Let \(G_0 = \leftarrow B_1 \). Then, we also call \(\theta \) a solution of \(G_0 \) and \(B_1 \theta \) an answer of \(G_0 \). The length of a (partial) derivation \(\delta \), denoted by \(\text{len}(\delta) \), is the number of derivation steps in \(\delta \).

The most commonly employed technique to prevent infinite derivations is tabling (Bry 1989; Chen and Warren 1996; Guo and Gupta 2001; Shen et al. 2001; Tamaki and Sato 1986; Vieille 1987; Zhou and Sato 2003). Given a goal \(G_0 \) consisting of an atom defined in a program \(P \), tabling-based goal evaluation algorithms create a table for each (sub)goal in the SLD resolution of \(P \cup \{ G_0 \} \), to keep track of the previously evaluated goals and thus avoid the reevaluation of a subgoal. Tabling algorithms differ mainly in the data structures employed for the evaluation of goal \(G_0 \). Linear tabling (Shen et al. 2001; Zhou and Sato 2003) and DRA (Guo and Gupta 2001), for instance, evaluate \(G_0 \) by building a single derivation tree of \(G_0 \). In SLG resolution (Chen and Warren 1996), on the other hand, goal \(G_0 \) is evaluated by producing a forest of (partial) derivation trees, one for each subgoal in the resolution of \(P \cup \{ G_0 \} \). In SLG, the evaluation of \(G_0 \) starts by ordinary resolution with the clauses in \(P \); as in SLD, a subgoal \(G_1 \) is selected in a resolvent of \(G_0 \). If a tree for a variant of \(G_1 \) already exists, \(G_1 \) is added to the set of consumers of the corresponding table. Otherwise, a tree for \(G_1 \) is created. When a new answer of a subgoal is found, it is stored in the respective table and it is propagated to its consumer subgoals. The evaluation of a goal by means of a forest of derivation trees proposed by SLG resolution is at the basis of the distributed goal evaluation algorithm proposed in this paper.

3 The GEM Algorithm

In this section we first introduce some definitions and basic assumptions underlying our work. Then, we present GEM and discuss its implementation.

3.1 Definitions and Assumptions

Similarly to other works on trust management (e.g., (Li et al. 2003; Alves et al. 2006)), we consider policy statements expressed as function-free logic programming clauses. As in most trust management systems, policy statements are stored at different locations: each
location is controlled by a principal who is responsible for defining and evaluating the policy statements at that location. We assume a one-to-one correspondence between locations and principals; accordingly, we use a principal’s identifier to refer to the location she controls. To represent the location where a policy statement is stored, we require every atom to have the form \(p(\text{loc}, t_1, \ldots, t_n) \), where \(\text{loc} \) is a mandatory term that represents the location where the atom is defined, and \(t_1, \ldots, t_n \) are terms. For instance, \(p(\text{bob}, \ldots) \) refers to \(p \) as defined by Bob and thus stored at Bob’s location.

Let \(a \) be a principal in the trust management system. We call the set of policy statements defined by \(a \) the local trust management policy (or simply the policy) of principal \(a \). The set of clauses with non-empty body in \(a \)'s policy is the intensional policy of \(a \), while the set of facts that can be derived from principal \(a \)'s policy forms the extensional policy of \(a \). The set of all the local policies in the trust management system is called the global trust management policy.

Since we consider the confidentiality of intensional policies to be a main concern in trust management systems, we assume that principals do not have access to the policies at other principals’ locations. As a consequence, the answers of a goal cannot be derived by building the derivation tree of the goal as done by SLD resolution, as this might involve input clauses defined by different principals. Similarly to SLG resolution, in GEM a principal computes the answers of a goal defined in her policy by building the partial derivation tree of the goal. Differently from a derivation tree, in the partial derivation tree of a goal the answers of the first derivation step is obtained by resolution with the clauses defining \(G \); all the subsequent steps are by substitution with the solutions of the subgoals of \(G \).

Definition 1
Let \(G \leftarrow A \) be a goal and \(P_A \) be the policy in which \(A \) is defined. A partial derivation tree of \(G \) is a derivation tree with the following properties:

- the root is the node \((A \leftarrow A)\);
- there is a derivation step \((A \leftarrow A) \overset{\theta}{\rightarrow} (A \leftarrow B_1, \ldots, B_n)\theta\), where \((A \leftarrow A)\) is the root, if there exists a clause \(H \leftarrow B_1, \ldots, B_n \) in \(P_A \) (renamed so that it is variable disjoint from \(A \)) s.t. \(A \) and \(H \) unify with \(\theta = \text{mgu}(A, H) \);
- let \((A \leftarrow B_1, \ldots, B_n)\) be a non-root node, and \(\text{Ans} \) be a set of answers of goal \(A \leftarrow B_1 \); for each answer \(B'_1 \in \text{Ans} \) (renamed so that it is variable disjoint from \(B_1 \)) there is a derivation step \((A \leftarrow B_1, \ldots, B_n) \overset{\theta}{\rightarrow} (A \leftarrow B_2, \ldots, B_n)\theta\), where \(\theta = \text{mgu}(B_1, B'_1) \);
- for each branch \((A \leftarrow A) \overset{\theta_0}{\rightarrow} (A \leftarrow B_1, \ldots, B_n)\theta_0 \overset{\theta_1}{\rightarrow} \cdots \overset{\theta_n}{\rightarrow} (A \leftarrow \emptyset)\theta_0\theta_1 \cdots \theta_n\), we say that \(A\theta \) (with \(\theta = \theta_0\theta_1 \cdots \theta_n \)) is an answer of \(G \) using clause \(H \leftarrow B_1, \ldots, B_n \).

Notice that in order to enable the evaluation of an atom \(B_1 \) in the partial derivation tree of goal \(G \), the location where \(B_1 \) is defined must be known by the principal evaluating \(G \). A straightforward solution for guaranteeing that this requirement is satisfied would be to impose the location parameter of each atom in a policy to be ground at policy definition time. This, however, would limit the constraints that a principal can express. Consider, for instance, clause 2 on page 2. In the clause, the location parameter of the body atom \(\text{memberOfAlpha}(Y, X) \) is determined at runtime based on the answers of the first body
atom \textit{projectPartner}(mc, Y)$. Therefore, rather than relying on a “static” safety condition, we require the location parameter of an atom to be ground when the atom is selected for evaluation. If this is not the case, the computation flounders. A discussion on how to write flounder-free programs and queries is orthogonal to the scope of this paper. Here, we just mention that there exist well-established techniques based on \textit{modes} (Apt and Marchiori 1994) which guarantee that certain parameters of an atom are ground when the atom is selected for evaluation.

Finally, we define a classification criteria for goal evaluation algorithms based on disclosed policy information. We will use such criteria to compare GEM with the existing algorithms (see Section 7). The classification criteria consists of two elements: an extensional policy confidentiality level and an intensional policy confidentiality level. Intuitively, the first characterizes algorithms in terms of how much information about extensional policies they disclose during goal evaluation, while the second refers to the disclosure of intensional policies. Confidentiality levels define an increasing scale used to characterized from the most conservative approaches where no policy information is disclosed, to the least confidentiality-preserving solutions which disclose respectively extensional and intensional policies in full. The extensional and intensional confidentiality levels are presented in Figure 2. In a goal evaluation algorithm classified as E1-I2, for example, principals disclose to a requester all the answers of the requested goals. In addition, all the dependencies among the goals in the global policy are disclosed to the principals responsible for goal evaluation.

\begin{table}
\begin{tabular}{|c|c|}
\hline
Level & Disclosed Information \hline
E0 & None \hline
E1 & Answers of a goal \hline
\end{tabular}
\end{table}

\begin{table}
\begin{tabular}{|c|c|}
\hline
Level & Disclosed Information \hline
I0 & None \hline
I1 & Part of the dependency graph \hline
I2 & Full dependency graph \hline
I3 & Clauses \hline
\end{tabular}
\end{table}

Fig. 2. Classification of Goal Evaluation Algorithms in Terms of Disclosed Policy Information

\textbf{3.2 Intuition}

In this section we describe how GEM computes the answers of a goal. Given a goal G, GEM computes the answers of G by evaluating one branch of its partial derivation tree at a time; this may involve the generation of evaluation requests for subgoals that are processed by different principals at different locations. When all the answers from each branch of the tree of G have been computed, they are sent to the principal(s) that requested the evaluation of G. G is completely evaluated when no more answers of G can be computed.

To illustrate how GEM works in detail, we consider the scenario presented in Section 1, where several pharmaceutical companies collaborate in the research project \textit{Alpha}. However, we slightly modify the global (trust management) policy to better focus on the algorithm’s features. In particular, we assume that company $c1$ already knows which are the partner companies in project \textit{Alpha}, without needing to request them to mc, and we reduce the partner companies to $c2$ and $c3$ only. Furthermore, we consider a research institute
ri that works on project Alpha in partnership with company c2. As a result, we have the following global policy:

1. \(\text{memberOfAlpha}(c_1, X) \leftarrow \text{memberOfAlpha}(c_2, X) \).
2. \(\text{memberOfAlpha}(c_1, X) \leftarrow \text{memberOfAlpha}(c_3, X) \).
3. \(\text{memberOfAlpha}(c_2, X) \leftarrow \text{memberOfAlpha}(ri, X) \).
4. \(\text{memberOfAlpha}(c_2, alice) \).
5. \(\text{memberOfAlpha}(c_3, bob) \).

Recall that the first parameter of the atom in the head indicates the principal storing and evaluating a clause: clauses 1 and 2 are evaluated by c1, clauses 3 and 4 by c2, and clause 5 by c3. Suppose that hospital h sends to company c1 a request for (the evaluation of) goal \(\text{memberOfAlpha}(c_1, X) \) (for a matter of readability, from here on we omit the \(\leftarrow \) symbol when referring to a goal \(\leftarrow A \), and we simply refer to it as A). Figure 3 shows the call graph of the evaluation of \(\text{memberOfAlpha}(c_1, X) \) with respect to the example global policy. A call graph is a directed graph where nodes represents goals and edges connect each goal to its subgoals (Leuschel et al. 1998). In other words, edges represent (evaluation) requests.

GEM performs a depth-first computation. When c1 receives the initial goal, it evaluates the first applicable clause in its policy (i.e., clause 1) and sends a request for \(\text{memberOfAlpha}(c_2, X) \) to c2. In turn, c2 sends a request for \(\text{memberOfAlpha}(ri, X) \) to ri. ri does not have any clause applicable to \(\text{memberOfAlpha}(ri, X) \) and returns an empty set of answers to c2. c2 evaluates the next applicable clause (i.e., \(\text{memberOfAlpha}(c_2, alice) \)), which is a fact. Since c2 does not have any other clause to evaluate, it sends the computed answer to c1. c1 applies the next clause (clause 2) and sends a request for \(\text{memberOfAlpha}(c_3, X) \) to c3, that returns answer \(\text{memberOfAlpha}(c_3, bob) \) to c1 after applying clause 5. At this point, \(\text{memberOfAlpha}(c_1, X) \) is completely evaluated and c1 sends answers \(\text{memberOfAlpha}(c_1, alice) \) and \(\text{memberOfAlpha}(c_1, bob) \) to hospital h.

The evaluation of a subgoal of a goal G, however, may lead to new requests for G, forming a loop. In our scenario, this reflects the “sharing” of project members among partner companies. Consider, for instance, the global policy above with the following two additional clauses, stored by c2 and ri respectively:

6. \(\text{memberOfAlpha}(c_2, X) \leftarrow \text{memberOfAlpha}(c_1, X) \).
7. \(\text{memberOfAlpha}(ri, X) \leftarrow \text{memberOfAlpha}(c_2, X) \).

The new call graph is shown in Figure 4(a). Now, when ri receives the request for mem-
berOfAlpha(ri,X) from c2, it applies clause 7 and sends a request for memberOfAlpha(c2,X) back to c2, forming a loop. Similarly, the evaluation of clause 6 by c2 leads to another loop. The requests forming a loop are identified by boxed atoms in Figure 4(a). Formally, a loop is defined as follows.

Definition 2

Let C be the call graph of the evaluation of a goal G with respect to a global policy P. A **loop** is a maximal subgraph of C consisting of goals G1, ..., Gk such that for each Gi ∈ {G1, ..., Gk} there exists a path that leads from G1 to Gi and from Gi to (a variant of) G1. Then, we say that goals G1, ..., Gk are **involved** in the loop.

Intuitively, requests forming a loop should not be further evaluated. However, in the example above c1 and c2 cannot detect whether a request forms a loop, as in a distributed system several independent requests for the same goal can occur. In most of the existing goal evaluation algorithms (e.g., (Chen and Warren 1996; Damásio 2000; Li et al. 2003)), loop detection (and termination) is made possible by the system’s “global view” on the derivation process. For example, centralized goal evaluation algorithms such as SLG (Chen and Warren 1996) and RT (Li et al. 2003) identify loops by observing goal dependencies respectively in the call stack and in the call graph of the global policy. In a similar way, the distributed algorithm proposed by Damasio (Damásio 2000) requires the dependency graph of the global policy to be known to all principals in the trust management system.
Such global view, however, implies the loss of policy confidentiality. GEM detects loops and their termination in a completely distributed way without resorting to any centralized data structure. In GEM, loops are handled in three steps: (1) detection, (2) processing, and (3) termination.

Loop Detection. Loops are detected by dynamically identifying Strongly Connected Components (SCCs). A SCC is a set of mutually dependent subgoals. More precisely, a set of goals \(G_1, \ldots, G_k \) is part of a SCC if for each \(G_i \in \{ G_1, \ldots, G_k \} \) there exists a goal \(G_j \in \{ G_1, \ldots, G_{i-1}, G_{i+1}, \ldots, G_k \} \) such that \(G_i \) and \(G_j \) are involved in a common loop. To enable the identification of SCCs, we assign to each request a unique identifier from an identifier domain.

Definition 3
An identifier domain is a triple \(\langle I, \sqsubseteq, \hookrightarrow \rangle \), where:

- \(I \) is a set of sequences of characters called identifiers;
- \(\sqsubseteq \) is a partial order on the identifiers in \(I \). Given two identifiers \(id_1, id_2 \in I \) s.t. \(id_1 \sqsubseteq id_2 \), we say that \(id_1 \) is lower than \(id_2 \), and \(id_2 \) is higher than \(id_1 \);
- \(\hookrightarrow \) is a partial order on the identifiers in \(I \). Given two identifiers \(id_1, id_2 \in I \) s.t. \(id_1 \hookrightarrow id_2 \), we say that \(id_2 \) is side of \(id_1 \).
- The following property holds: \(\forall id_1, id_2, id_3, id_4 \in I \) if \(id_1 \sqsubseteq id_2, id_3 \sqsubseteq id_4 \), and \(id_2 \hookrightarrow id_4 \), then \(id_1 \hookrightarrow id_3 \). \(\square \)

Intuitively, \(\sqsubseteq \) defines a top-down ordering and \(\hookrightarrow \) defines a left-to-right ordering with respect to the call graph of the global policy. In other words, \(\sqsubseteq \) reflects the order in which the subgoals in a branch of the graph are evaluated, whereas \(\hookrightarrow \) reflects the order in which the branches are inspected. Several identifier domains can be employed whose identifiers respect these partial orders (e.g., based on alphanumeric ordering). For the sake of simplicity, in the sequel we consider identifiers obtained as follows: given a request for a goal \(G \) with identifier \(id_0 \), the identifier of the request for a subgoal \(G_1 \) of \(G \) has the form \(id_0s_1 \), denoting the concatenation of \(id_0 \) with a sequence of characters \(s_1 \). Then, \(\sqsubseteq \) is a prefix relation, and we have that \(id_0s_1 \sqsubseteq id_0 \). Ordering \(\hookrightarrow \) is a partial order on the strings composing the identifiers. For example, consider another subgoal \(G_2 \) of \(G \) with identifier \(id_0s_2 \), which is evaluated after \(G_1 \). Then, we have that \(id_0s_1 \hookrightarrow id_0s_2 \). Even though identifiers from this domain leak some policy information (see Section 4.2 for more details), they allow for an easy visualization of the relationships among identifiers. When applying GEM in practice, more confidentiality-preserving identifier domains can be employed.

A loop is detected when a principal receives a request with identifier \(id_2 \) for a goal \(G \) such that a request \(id_1 \) for a variant of \(G \) has been previously received and \(id_2 \sqsubseteq id_1 \). Accordingly, we call request \(id_2 \) a lower request for \(G \), while request \(id_1 \) is a higher request for \(G \). We use the identifier of the higher request for \(G \), \(id_1 \), as the loop identifier. Goal \(G \) is called the coordinator of the loop. An SCC may contain several loops. Given two loops with identifiers \(id_1 \) and \(id_2 \), we say that loop \(id_2 \) is lower than loop \(id_1 \) if \(id_2 \sqsubseteq id_1 \). The coordinator of the highest loop of the SCC (i.e., the loop with the highest identifier) is called the leader of the SCC.

Figure 4(b) represents a compact version of the call graph in Figure 4(a), where loop coordinators are depicted only once. In addition, in the call graph in Figure 4(b), edges are...
labeled with the corresponding request identifier. In the remainder of the paper, we concatenate the identifier of a request for a goal evaluated by company c_1 with meta-variables of the form c_1i. Thus, for instance, c_11 and c_12 are two distinct sequences of characters generated by c_1. In the figure, identifiers h_1, h_1c_11, h_1c_12, and $h_1c_11c_21$ identify higher requests for goals $memberOfAlpha(c_1,X)$, $memberOfAlpha(c_2,X)$, $memberOfAlpha(c_3,X)$, and $memberOfAlpha(ri,X)$ respectively; identifiers $h_1c_11c_21ri1$ and $h_1c_11c_22$ identify lower requests for goals $memberOfAlpha(c_2,X)$ and $memberOfAlpha(c_1,X)$ respectively. Goals inherit the ordering associated with the identifier of their higher request. Therefore, in Figure 4(b) goal $memberOfAlpha(c_1,X)$ is higher than $memberOfAlpha(c_2,X)$, $memberOfAlpha(c_3,X)$, and $memberOfAlpha(ri,X)$. Goals $memberOfAlpha(c_2,X)$ and $memberOfAlpha(c_1,X)$ are the coordinators of loops h_1c_11 and h_1 respectively. Loop h_1c_11 is lower than loop h_1, which is the highest loop of the SCC; therefore, goal $memberOfAlpha(c_1,X)$ is the leader of the SCC. Looking at the identifier of the lower requests, c_1 and c_2 can determine the subgoals involved in the loop, which are $memberOfAlpha(c_2,X)$ and $memberOfAlpha(ri,X)$ respectively.

Loop Processing. When a loop is detected, GEM sends the answers of the coordinator already computed to the requester of the lower request together with a notification about the loop. The loop is then processed iteratively as follows: in turn, each principal (a) processes the received answers, (b) “freezes” the evaluation of the subgoal involved in the loop and evaluates other branches of the partial derivation tree of the locally defined goal. Then, when all branches have been evaluated, (c) the new answers are sent to the requester of the higher request with a notification about the loop. We call the execution of actions (a), (b), and (c) a loop iteration step.

Definition 4

Let G be a goal, and G_1, \ldots, G_k be the subgoals of G s.t. G,G_1,\ldots,G_k are involved in a loop id. A loop iteration step for goal G is a three-phases process in which the principal evaluating G:

(a) Receives a set of answers of the subgoals G_1,\ldots,G_k of G.
(b) Evaluates all the nodes in the partial derivation tree of G whose selected atom is not involved in a loop.
(c) Sends the newly derived answers of G to the requester of G. \square

The definition above applies to all the goals involved in a loop but the loop coordinator. The loop iteration step for a loop coordinator differs in the order in which the phases occur. In particular, for the coordinator phase (c) precedes (a) and (b), and the latter two are executed only after a loop iteration step for the other goals in the loop has been performed. In other words, the processing of the coordinator occurs only after all the other goals in the loop have been processed. This is because the coordinator, being the “highest goal” in the loop, is assigned the task of overseeing its processing. More precisely, it is in charge of starting (phase (c)) a new loop iteration whenever the answers of its subgoals lead to new answers of the coordinator (computed in phases (a) and (b)), i.e., until a fixpoint is reached. This difference is reflected in the definition below.
Definition 5

Let G_1, \ldots, G_k be the goals involved in a loop id_1 s.t. goal G_1 is the loop coordinator. A loop iteration is a process where:

1. The answers of the coordinator G_1 that have not been previously sent are sent to the requesters of the lower requests for G_1 (phase (c) of the loop iteration step for the coordinator).
2. For each $G_i \in \{G_2, \ldots, G_k\}$ a loop iteration step for G_i is performed, s.t. for each $G_j \in \{G_2, \ldots, G_k\}$, if G_j is lower than G_i then the loop iteration step for G_j is executed before the loop iteration step for G_i.
3. The principal evaluating G_1 receives a set of answers of the subgoals of G_1 involved in loop id_1 (phase (a) of the loop iteration step for G_1). All the nodes in the partial derivation tree of G_1 whose selected atom is not involved in a loop are processed (phase (b) of the loop iteration step).

If the processing of the received answers leads to new answers of the coordinator, these new answers are sent to the requesters of lower requests, starting a new iteration. Otherwise, a fixpoint has been reached (i.e., all possible answers of the goals in the loop have been computed) and the answers of the coordinator are sent to the requester of the higher request. Notice that a goal in a higher loop may eventually provide new answers to a goal in a lower loop: the fixpoint for a loop must be recalculated every time new answers of its coordinator are computed.

In the example (Figure 4(b)), when c_2 identifies loop h_1c_1, it informs ri that they are both involved in loop h_1c_1. Since ri has no more clauses to evaluate, it returns an empty set of answers to c_2 notifying it that $\text{memberOfAlpha}(ri,X)$ is in loop h_1c_1. The further evaluation of $\text{memberOfAlpha}(c_2,X)$ leads to the identification of loop h_1 and to a new answer $\text{memberOfAlpha}(c_2,alice)$, which is sent first to ri in the context of loop h_1c_1. In turn, ri computes answer $\text{memberOfAlpha}(ri,alice)$ and sends it to c_2. Now, a fixpoint for loop h_1c_1 has been reached and c_2 sends $\text{memberOfAlpha}(c_2,alice)$ to c_1 notifying it that $\text{memberOfAlpha}(c_2,X)$ is in loop h_1. Notice that $\text{memberOfAlpha}(c_2,X)$ is also in loop h_1c_1, but since this loop does not involve c_1, c_1 is not notified of it. Next, c_1 computes answers $\text{memberOfAlpha}(c_1,alice)$ and $\text{memberOfAlpha}(c_1,bob)$ (the latter being found through the evaluation of $\text{memberOfAlpha}(c_3,X)$), and sends them to c_2 in the context of loop h_1. In turn, c_2 computes $\text{memberOfAlpha}(c_2,bob)$. Now, c_2 has to find a fixpoint for loop h_1c_1 given the new answer before proceeding with the evaluation of loop h_1. It is worth noting that ri is not aware of loop h_1. This is because loop notifications are only transmitted to higher requests (except for the lower request that has formed the loop).

Loop Termination. The termination of the evaluation of all the goals in an SCC is initiated by the principal handling the leader of the SCC when a fixpoint for the loop it coordinates has been reached. In the example, when the answers of $\text{memberOfAlpha}(c_2,X)$ do not lead to new answers of $\text{memberOfAlpha}(c_1,X)$, c_1 informs c_2 (which in turn informs ri) that the evaluation of $\text{memberOfAlpha}(c_1,X)$ is terminated and sends answers $\text{memberOfAlpha}(c_1,alice)$ and $\text{memberOfAlpha}(c_1,bob)$ to h.
Side Requests. So far we have only considered “linear” loops, i.e., loops formed by lower requests. However, higher requests can also lead to a loop. Consider, for instance, the following additional clause stored by company \(c_3 \):

8. \(\text{memberOfAlpha}(c_3, X) \leftarrow \text{memberOfAlpha}(ri, X) \).

The new (compact) call graph is shown in Figure 5(a). Now, the evaluation of goal \(\text{memberOfAlpha}(c_3, X) \) by \(c_3 \) leads to a request for goal \(\text{memberOfAlpha}(ri, X) \), which is involved in loop \(h_1c_1 \). \(ri \) can identify that the request originates from the evaluation of a goal in the same SCC as \(\text{memberOfAlpha}(ri, X) \), since the request identifier \(h_1c_1c_2c_3 \) is side of the identifier \(h_1c_1c_2 \) of the initial request for \(\text{memberOfAlpha}(ri, X) \) (i.e., \(h_1c_1c_2c_3 \)). However, it cannot identify the loop in which the goal evaluated by \(c_3 \) is involved. This is because loop notifications are only transmitted to higher goals, and thus \(ri \) is not aware of loop \(h_1 \). We refer to the request from \(c_3 \) as a side request, and we call \(\text{memberOfAlpha}(c_3, X) \) a side goal.

The main problem with side requests is that it is difficult to determine when they should be responded to. For example, if \(ri \) sends answers to \(c_3 \) at every iteration of loop \(h_1c_1 \), \(c_1 \) would not know when to stop waiting for answers from \(c_3 \) (since \(c_1 \) does not know on which goals \(\text{memberOfAlpha}(c_3, X) \) depends). On the other hand, \(ri \) cannot wait until a fixpoint is reached for loop \(h_1c_1 \), since only \(c_2 \) (the principal handling the coordinator) is aware of that. To enable the detection of termination, however, a side request should be responded to only when a fixpoint is computed for all the loops lower than the loop in which the side goal is involved.

A simple yet effective solution to this problem is to treat a side request for a goal as a “new” request (i.e., a request for a goal that has not yet been evaluated) and to reevaluate the goal. Accordingly, when a side request is received, GEM creates a new partial derivation tree for the goal and proceeds with its evaluation. This corresponds to inspecting multiple times some branches of the call graph of the program (Figure 5(b)); however, it allows us to obtain a call graph formed only by linear loops which, as shown previously in this section, can be successfully evaluated by GEM. Notice that, despite in the unfolded graph in Figure 5(b) some nodes and edges are duplicated with respect to the folded graph in Figure 5(a), the flow of answers among goals is equivalent. This can be easily seen by the fact that edges connect the same nodes in both call graphs. In Section 4 (Theorem 3) we show that a call graph is always finite.

Even though possible in theory, we expect side requests not to occur frequently in the evaluation of a global policy. For instance, no side request was present in any of the example policies presented in the literature. Therefore, we believe the overhead imposed by the proposed solution to be negligible in practice. Nevertheless, we point out that the size of the unfolded graph is in the worst case exponential with respect to the number of nodes in the original graph. The reevaluation of side requests, in fact, resembles the approach adopted by SLD resolution, which reevaluates every goal encountered during a computation. However, thanks to our ability to detect loops, the number of goals evaluated by GEM during a computation is never higher than the number of goals that would be evaluated using SLD resolution.

Since we treat side requests in the same way as new requests, the partial order \(\leftrightarrow \) is
not exploited by the version of GEM presented here. An alternative solution that prevents
the reevaluation of side requests and thus requires their identification could be achieved
by transmitting loop notifications to the requesters of both higher and lower requests, so
that all the principals evaluating a goal in an SCC would be aware of the identifiers of
all the loops in the SCC. Furthermore, when a fixpoint for a loop is reached, the principal
handling the loop coordinator should start a new loop iteration to inform all the goals in the
loop that the fixpoint has been reached. These two modifications would enable principals
that receive a side request to know (a) in which loop the side request is involved, and (b)
when to reply to the side request, that is, when all the loops lower than the one in which
the side goal is involved have reached a fixpoint. Given the complexity of the solution, in
this paper we present only the “basic” version of GEM, which reevaluates side requests;
the implementation of the described optimization is subject of future work.

To conclude, we point out that evaluating every higher request for a goal that is not yet
completely evaluated is fundamental for enabling loop detection. Consider, for instance, a
global policy consisting only of clauses 1 and 6 on page 9. Assume that hospital h issues at
the same time a request for goals $\text{memberOfAlpha}(c_1, X)$ and $\text{memberOfAlpha}(c_2, X)$ with
identifier id_1 and id_2 respectively. The evaluation of the request by principals c_1 and c_2
leads to a higher request for goals $\text{memberOfAlpha}(c_2, X)$ and $\text{memberOfAlpha}(c_1, X)$ respec-
tively. When these second higher requests are received, a partial derivation tree for the
requested goals already exists. If the requests were not further processed, the loop identi-
fication would not be possible as no lower request would be issued, and the computation would deadlock. Therefore, both initial requests must be processed independently. This “problem” is common to all the distributed goal evaluation algorithms whose termination detection exploits request identifiers (e.g., (Alves et al. 2006)). Even though relatively simple solutions to this problem can be found (e.g., using timestamped requests, where only the oldest is evaluated), in this paper we focus on a “basic” solution for distributed goal evaluation, and do not address efficiency-related issues.

3.3 Implementation

Here, we introduce the data structures and procedures used by GEM to evaluate a goal.

Data Structures. In GEM, principals communicate by exchanging request and response messages. We rely on blocking communication, that is, whenever a principal a sends (respectively receives) a request or response message, no other operation is performed by a until the sending (resp. receipt) process is completed. In addition, we assume that a message sent by principal a to a principal b is always received (once) by principal b.

Definition 6
A request is a triple \(\langle id, req, G \rangle \), where:
- \(id \) is the request identifier;
- \(req \) is the principal issuing the request, called requester;
- \(G \) is a goal \(\leftarrow p(loc, t_1, \ldots, t_n) \), where \(loc \) is a constant.

A response to a request \(r \) is a tuple \(\langle id, Ans, S_{ans}, Loops \rangle \), where:
- \(id \) is the response identifier;
- \(Ans \) is a (possibly empty) set of answers of \(G \);
- \(S_{ans} \in \{active, loop(id_1), disposed\} \) is the status of the evaluation of \(G \), where \(id_1 \) is a loop identifier;
- \(Loops \) is a set of loop identifiers.

As discussed in Section 3.2, GEM computes the answers of a goal by a depth-first evaluation of its partial derivation tree (Definition 1), which may involve the generation of requests for subgoals evaluated at different locations. In the implementation, we represent a partial derivation tree as a data structure called evaluation tree. Compared to partial derivation trees, an evaluation tree keeps track of the identifier of the request and status of the evaluation of the selected atom of each node in the evaluation tree.
Definition 8
A node is a triple \((id, c, S) \), where:

- \(id \) is the node identifier;
- \(c \) is a clause;
- \(S \in \{ \text{new}, \text{active}, \text{loop}(ID), \text{answer}, \text{disposed} \} \) is the status of the evaluation of the selected atom in \(c \), where \(ID \) is a set of loop identifiers.

The status of a node is \(\text{new} \) if no atom from the body of \(c \) has yet been selected for evaluation. It is set to \(\text{active} \) when a body atom is selected, and to \(\text{disposed} \) when the selected atom is completely evaluated. The status is set to \(\text{loop}(ID) \) if the selected atom is involved in some loops, where \(ID \) is the set of identifiers of those loops, and to \(\text{answer} \) if \(c \) is a fact. As mentioned in Section 2, we employ the leftmost selection rule. Thus, the selected atom of \(c \) is always the first body atom.

Definition 9
The evaluation tree of a goal \(G = \leftarrow A \) is a tree with the following properties:

- the root is node \((id_0, A \leftarrow A, S_0) \);
- there is an edge from the root to a node \((id_1, A \leftarrow B_1, \ldots, B_n, \theta, S_1) \), where \(id_1 \subseteq id_0 \), iff there exists a derivation step \((A \leftarrow A) \xrightarrow{\theta} (A \leftarrow B_1, \ldots, B_n, \theta) \) in the partial derivation tree of \(G \);
- there is an edge from node \((id_2, A \leftarrow B_1, \ldots, B_n, S_2) \) to node \((id_3, A \leftarrow B_2, \ldots, B_n, \theta, S_3) \), where \(id_2 \subset id_0 \) and \(id_3 \subset id_0 \), iff there exists a derivation step \((A \leftarrow B_1, \ldots, B_n) \xrightarrow{\theta} (A \leftarrow B_2, \ldots, B_n, \theta) \) in the partial derivation tree of \(G \).

When a principal receives a higher request for a goal \(G \), it creates a table for \(G \). A table contains all the information about the evaluation of \(G \).

Definition 10
The table of a goal \(G \), denoted \(\text{Table}(G) \), is a tuple \(\langle HR, LR, ActiveGoals, AnsSet, Tree \rangle \), where:

- \(HR \) is a higher request for \(G \);
- \(LR \) is a set of lower requests for \(G \);
- \(ActiveGoals \) is a set of pairs \(\langle id, counter \rangle \) where \(id \) is a loop identifier and \(counter \) is an integer value;
- \(AnsSet \) is a set of pairs \(\langle ans, ID \rangle \) where \(ans \) is an answer of \(G \) and \(ID \) is a set of request identifiers;
- \(Tree \) is the evaluation tree of \(G \).

The table of a goal \(G \) stores the higher request \(HR \) for which it has been created, the set of answers computed so far (\(AnsSet \)), and the evaluation tree of \(G \) (\(Tree \)). Possible lower requests for \(G \) are stored in \(LR \). \(ActiveGoals \) keeps a counter for each loop in which \(G \) is involved. The counter of a loop \(id \) indicates the number of subgoals of \(G \) which are involved in loop \(id \), i.e., the number of nodes in \(Tree \) with status \(\text{loop}(ID) \) such that \(id \in ID \). The counter is decreased whenever an answer of one of these subgoals is received. The status of the root node of \(Tree \) indicates the status of the evaluation of \(G \). When \(G \) is completely evaluated, the fields of its table are erased, but the answers of \(G \) are maintained to speed up the evaluation of future requests for \(G \).
Fig. 6. Interaction among the Procedures for the Evaluation of a Goal G

Procedures. To initiate the evaluation of a goal G, a principal a generates a unique sequence of characters id_0 and sends a request $\langle id_0, a, G \rangle$ to the principal defining G. A response $\langle id_0, Ans, disposed, {} \rangle$ is returned to a when the evaluation of G terminates. GEM computes the answers of G (defined in the policy P_G) by means of the following procedures:

- **PROCESS REQUEST:** if the request is not a lower request, invokes CREATE TABLE to initiate the evaluation of G. Otherwise, it sends a loop notification to the requester;
- **CREATE TABLE:** creates a table for G and initializes its evaluation tree with the applicable clauses in P_G;
- **ACTIVATE NODE:** activates a new node in the evaluation tree of G;
- **PROCESS RESPONSE:** processes the answers received for a subgoal of G;
- **GENERATE RESPONSE:** determines the requesters of G to whom a response must be sent. It is invoked when there are no more nodes in the evaluation tree of G to activate;
- **SEND RESPONSE:** sends the computed answers of G to the requesters of G;
- **TERMINATE:** disposes the table of G. It is invoked when G is completely evaluated.

Each principal in the trust management system runs a listener that waits for incoming requests and responses. Whenever a request is received, the listener invokes PROCESS REQUEST. Similarly, PROCESS RESPONSE is invoked upon receiving a response to a previously issued request. The interactions and dependencies among the different procedures are shown in Figure 6.

PROCESS REQUEST (Algorithm 1) takes as input a request $\langle id_0, req, G \rangle$ and, if there exists no table for a variant of G, invokes procedure CREATE TABLE to create a table for G (lines 11-12). If another request for goal G (or a variant of G) has been previously received, three situations are possible:

1. The request refers to a goal which has been completely evaluated (lines 3-4). In this
Algorithm 1: PROCESS REQUEST

```plaintext
input: a request \((id_0, req, G)\)
1 if \(\exists Table(G') = \{(id_1, req', G'), LR, AG, AS, T\} s.t. G' is a variant of G\) then
2 let \(S_{root}\) be the status of the root node of \(T\)
3 if \(S_{root} = disposed\) then
4 SEND RESPONSE((id_0, req, G'), disposed, \{\})
5 else if \(id_0 \subset id_1\) then
6 \(LR := LR \cup \{(id_0, req, G')\}\)
7 SEND RESPONSE((id_0, req, G'), active, \{id_1\})
8 else
9 let \(G''\) be a variable renaming of \(G\) s.t. \(\exists Table(G'')\)
10 CREATE TABLE((id_0, req, G''))
11 else
12 CREATE TABLE((id_0, req, G))
```

Algorithm 2: CREATE TABLE

```plaintext
input: a request \((id_0, req, G = \leftarrow A)\)
1 create Table(G)
2 initialize Table(G) to \((id_0, req, G), \{\}, \{\}, \{\}, \{id_0, A \leftarrow A, new\})
3 foreach clause \(H \leftarrow B_1, \ldots, B_n\) applicable to \(G\) in the local policy do
4 let \(H' \leftarrow B'_1, \ldots, B'_n\) be a variable renaming of the clause s.t. it is variable disjoint from \(A\), and \(\theta = mgu(A, H')\)
5 let \(s\) be a unique sequence of characters
6 add subnode \((id_0, s, (H' \leftarrow B'_1, \ldots, B'_n)\theta, new)\) to the root
7 end
8 ACTIVATE NODE(G)
```

A response with all the answers of \(G\) is sent to the requester by invoking SEND RESPONSE.

2. The request is a lower request for \(G\) (lines 5-7). This corresponds to the detection of a loop \(id_1\), where \(id_1\) is the identifier of \(HR\). The request is added to the set of lower requests \(LR\) and the answers computed so far are sent to the requester together with a notification about loop \(id_1\), initiating the loop processing phase.

3. The request is a side request or originates from a different initial request (lines 8-10). We treat the request as a new request; accordingly, a new table for \(G\) is created by invoking CREATE TABLE.

CREATE TABLE (Algorithm 2) inputs a request \((id_0, req, G)\) and creates a table for goal \(G\) with \(HR\) set to \((id_0, req, G)\), and Tree initialized with the clauses in the local policy applicable to \(G\) (renamed so that they share no variable with \(G\)) (lines 1-7). The identifiers of the subnodes of the root are obtained by concatenating \(id_0\) with a unique sequence of characters \(s\). When the initialization of the table of \(G\) is terminated, ACTIVATE NODE is invoked (line 8).

ACTIVATE NODE (Algorithm 3) activates a new node from the evaluation tree of a goal \(G\). First, it sets the status of the root node of the evaluation tree \(T\) of goal \(G\) to active (lines 5-7). Then, a node with status new is selected from \(T\) (line 8). If the node’s clause is a fact and represents a new answer, it is added to the set of answers \(AS\) (with an empty set of recipients), and ACTIVATE NODE is invoked again (lines 9-13). The answer subsumption check (line 11) is important to avoid sending the same answers of a goal more than once. If the clause is not a fact, the leftmost body atom \(B_1\) of the node’s clause is selected for
Algorithm 3: ACTIVATE NODE

input: a goal $G \leftarrow A$

1. let $Table(G)$ be (HR, LR, AG, AS, T)
2. if (\text{a non-root node } t \in T \text{ with status } new) \text{ or } ((A, ID) \in AS) \text{ then}
3. \hspace{1cm} GENERATE RESPONSE(G)
4. else
5. \hspace{1cm} let S_{root} be the status of the root node of T
6. \hspace{1.5cm} if $S_{root} = new$ then
7. \hspace{2.5cm} set the status of t to answer
8. \hspace{2.5cm} if H is not subsumed by any answer in AS then
9. \hspace{3.5cm} $AS := AS \cup \{(H, \{\})\}$
10. \hspace{1.5cm} ACTIVATE NODE(G)
11. else
12. \hspace{2.5cm} if the location of B_1 is not ground then
13. \hspace{3.5cm} halt with an error message /* floundering */
14. \hspace{2.5cm} else
15. \hspace{3.5cm} set the status of t to active
16. \hspace{3.5cm} send request $(id_1, local, B_1)$ to the location of B_1

Algorithm 4: SEND RESPONSE

input: a request (id_0, req, G), a response status S_{ans}, a set of loop identifiers $Loops$

1. let $Table(G)$ be (HR, LR, AG, AS, T)
2. $Ans := \{\}$
3. $\text{foreach } (ans, ID) \in AS \text{ s.t. } id_0 \notin ID \text{ do}$
4. \hspace{1cm} $Ans := Ans \cup \{ans\}$
5. \hspace{1cm} $ID := ID \cup \{id_0\}$
6. $\text{send response } (id_0, Ans, S_{ans}, Loops) \text{ to Req}$

evaluation. In case that the location parameter of B_1 is not ground, an error is raised and the computation is aborted by floundering (lines 15-16). Otherwise, a request for B_1 is sent to the corresponding location; the node identifier is used as request identifier (lines 17-19). If there are no more nodes with status new, or G is in the set of computed answers AS, GENERATE RESPONSE is invoked (lines 2-3).

SEND RESPONSE (Algorithm 4) inputs a request, a response status, and a set of loop identifiers and sends a response message to the requester, which includes the answers of G that have not been previously sent to that requester (lines 3-7).

Response messages are processed by PROCESS RESPONSE (Algorithm 5). The node t to which the response refers is identified by looking at the response identifier (line 1). If the status of the response is disposed, the selected atom B_1 of t is completely evaluated. Therefore, t is disposed and, if B_1 is in a loop, also all the other nodes in any loop of the SCC are disposed (lines 5-8). This is because the termination of a loop is ordered by the principal handling the leader of the SCC once all the goals (and consequently, all the loops) in the SCC are completely evaluated.

Otherwise, the status of t is updated depending on whether the response contains a loop notification, i.e., set $Loops$ contains some loop identifier (lines 10-13). In this case, an entry is added to the set of active goals AG for each new loop in $Loops$ (line 14). If the
response has been sent in the context of the evaluation of a loop \(id_3\), the counter of \(id_3\) in AG is decreased and the status of the table is changed to \(loop(\{id_3\})\) (lines 15-18).

After updating the node and table status, the set of answers in the response is processed (lines 19-23). In particular, a new subnode of the new node is not waiting for a response for any subgoal in the evaluation tree of goal \(G\) (lines 19-23). This corresponds to starting a new loop iteration for loop \(id_1\). The status of the root node of the evaluation tree \(T\) is updated to keep track of the loops that are currently being processed (lines 8-11) and the counter of \(id_1\) in the set of active goals AG is set to the number of subgoals in \(T\) involved in loop \(id_1\) (i.e., the number of nodes with status \(loop(ID)\) such that \(id_1 \in ID\), line 7). This number corresponds to the number of subgoals for which a response in the context of loop \(id_1\) will be returned.

Algorithm 5: PROCESS RESPONSE

Input: a response \((id_0, Ans, S_{ans}, Loops)\)

1. let \(t = (id_0, H \leftarrow B_1, \ldots, B_n, St)\) be the node in the evaluation tree of goal \(G \leftarrow A\) to which the response refers
2. let Table(\(G\)) be \((HR, LR, AG, AS, T)\)
3. let \((id_1, A \leftarrow A, S_{root})\) be the root node of \(T\)
4. if \(S_{root} \neq disposed\) then
 5. if \(S_{ans} = disposed\) then
 6. if \(S_t = loop(ID)\) then
 7. dispose all the nodes in \(T\) involved in any loop
 8. \(S_1 := disposed\)
 9. else
 10. if \(S_t = loop(ID)\) then
 11. \(ID := ID \cup Loops\)
 12. else if \(Loops \neq \{\}\) then
 13. \(S_t := loop(Loops)\)
 14. \(AG := AG \cup \{(id_2, 0)|id_2 \in Loops\} \notin AG\)
 15. if \(S_{sna} = loop(id_3)\) then
 16. decrease the counter of \(id_3\) in AG by 1
 17. if \(S_{root} = active\) then
 18. \(S_{root} := loop(\{id_3\})\)
 19. foreach \(ans \in Ans\) do
 20. let \(ans'\) be a variable renaming of \(ans\) s.t. it is disjoint from \(B_1\), and \(\theta = mgu(B_1, ans')\)
 21. let \(s\) be a unique sequence of characters
 22. add subnode \((id_1s, (H \leftarrow B_2, \ldots, B_n)\theta, new)\) of \(t\)
 23. end
 24. if \((S_{root} = active)\) or \((S_{root} = loop(ID)\) and \(\forall id_4 \in ID, (id_4, 0) \notin AG)\) then
 25. Activate Node(\(G\))

Algorithm 5: PROCESS RESPONSE

- **Input:** a response \((id_0, Ans, S_{ans}, Loops)\)
- **Output:** Table(\(G\)) and \(S_{root}\)

1. let \(t = (id_0, H \leftarrow B_1, \ldots, B_n, St)\) be the node in the evaluation tree of goal \(G \leftarrow A\) to which the response refers
2. let Table(\(G\)) be \((HR, LR, AG, AS, T)\)
3. let \((id_1, A \leftarrow A, S_{root})\) be the root node of \(T\)
4. if \(S_{root} \neq disposed\) then
 5. if \(S_{ans} = disposed\) then
 6. if \(S_t = loop(ID)\) then
 7. dispose all the nodes in \(T\) involved in any loop
 8. \(S_1 := disposed\)
 9. else
 10. if \(S_t = loop(ID)\) then
 11. \(ID := ID \cup Loops\)
 12. else if \(Loops \neq \{\}\) then
 13. \(S_t := loop(Loops)\)
 14. \(AG := AG \cup \{(id_2, 0)|id_2 \in Loops\} \notin AG\)
 15. if \(S_{sna} = loop(id_3)\) then
 16. decrease the counter of \(id_3\) in AG by 1
 17. if \(S_{root} = active\) then
 18. \(S_{root} := loop(\{id_3\})\)
 19. foreach \(ans \in Ans\) do
 20. let \(ans'\) be a variable renaming of \(ans\) s.t. it is disjoint from \(B_1\), and \(\theta = mgu(B_1, ans')\)
 21. let \(s\) be a unique sequence of characters
 22. add subnode \((id_1s, (H \leftarrow B_2, \ldots, B_n)\theta, new)\) of \(t\)
 23. end
 24. if \((S_{root} = active)\) or \((S_{root} = loop(ID)\) and \(\forall id_4 \in ID, (id_4, 0) \notin AG)\) then
 25. Activate Node(\(G\))

After updating the node and table status, the set of answers in the response is processed (lines 19-23). In particular, a new subnode of \(t\) is created for each answer. The clause of the new node is \((H \leftarrow B_2, \ldots, B_n)\theta\), where \(\theta\) is the \(mgu\) of \(B_1\) and the answer, and its identifier is obtained by concatenating the identifier \(id_1\) of the root node of \(T\) with a unique sequence of characters \(s\). When all answers have been processed, if the principal is not waiting for a response for any subgoal in the evaluation tree of goal \(G\), Activate Node is invoked to proceed with the evaluation of \(G\) (line 25).

Generate Response (Algorithm 6) is invoked when all the clauses in the evaluation tree of a goal \(G\) (except for the ones in a loop) have been evaluated. If \(G\) is not part of a loop, Terminate is invoked (lines 2-3). Otherwise, we distinguish three cases:

1. If set LR is not empty, then goal \(G\) is the coordinator of a loop \(id_1\), where \(id_1\) is the identifier of the higher request for \(G\). If there are new answers of \(G\) that have not yet been sent to the lower requests in LR, a response with status \(loop(id_1)\) is sent to each of them (lines 6-14). This corresponds to starting a new loop iteration for loop \(id_1\). The status of the root node of the evaluation tree \(T\) is updated to keep track of the loops that are currently being processed (lines 8-11) and the counter of \(id_1\) in the set of active goals AG is set to the number of subgoals in \(T\) involved in loop \(id_1\) (i.e., the number of nodes with status \(loop(ID)\) such that \(id_1 \in ID\), line 7). This number corresponds to the number of subgoals for which a response in the context of loop \(id_1\) will be returned.
Algorithm 6: Generate Response

Input: a goal $G \leftarrow A$
1. let Table(G) be (HR, LR, AG, AS, T)
2. if $\exists (id_0, req, loop(ID)) \in T$ then
3. Terminate(G)
4. else
5. let $(id_1, A \leftarrow A, S_{root})$ be the root node of T
6. if G is the coordinator of a loop id_1 and $\exists ans \in AS$ s.t. ans has not been sent to some request in LR then
7. set the counter of id_1 in AG to the number of subgoals in T involved in loop id_1
8. if $S_{root} = loop(ID_1)$ then
9. $S_{root} := loop(ID_1 \cup \{id_1\})$
10. else
11. $S_{root} := loop(\{id_1\})$
12. foreach $(id_2, req, G) \in LR$ do
13. Send Response($(id_2, req, G), loop(id_1), \{\})$
14. end
15. else if G is the leader of the SCC then
16. Terminate(G)
17. else
18. let $Loops$ be the set $\{id_3 | (id_3, G) \in AG$ and $id_1 \sqsubseteq id_3\}$
19. set the counter of each $id_3 \in Loops$ to the number of subgoals in T in loop id_3
20. if $S_{root} = loop(ID_1)$ and $\exists id_4 \in ID_1$ s.t. $id_3 \sqsubseteq id_4$ then
21. Send Response($(HR, loop(id_4), Loops)$)
22. else
23. Send Response($(HR, active, Loops)$)
24. $S_{root} := active$

Algorithm 7: Terminate

Input: a goal G
1. let Table(G) be (HR, LR, AG, AS, T)
2. dispose all non-answer nodes in T
3. foreach $(id_0, req, G) \in (HR) \cup LR$ do
4. Send Response($(id_0, req, G), disposed, \{\})$
5. end
6. $HR := null$
7. $LR := AG := \{\}$

2. If G is the leader of the SCC and no new answers of G have been computed, the loop is terminated by invoking Terminate (lines 15-16). G is the leader of the SCC if the only loop identifier in set AG is the identifier of the higher request for G.

3. Otherwise, a response including the identifier of the loops in which G is involved is sent to the requester of HR (lines 18-24). The status of the response depends on whether HR is involved in one of the loops that are currently being processed (lines 20-23).

Terminate (Algorithm 7) is responsible of disposing a table once all the answers of its goal G have been computed. More precisely, all the table fields are erased except for the set AS of answers of G, which are kept in case of future requests for goal G. A response with status disposed is sent to the requester of HR and LR (lines 3-5).

An example of the execution of GEM is given in Appendix A.
4 Properties of GEM

In this section we prove the soundness, completeness and termination of the GEM algorithm. Furthermore, we discuss what information is disclosed by GEM during the evaluation of a goal.

4.1 Soundness, Completeness and Termination

Here, we refer to an arbitrary but fixed set P_1, \ldots, P_n of policies, and to the corresponding global policy $P = P_1 \cup \ldots \cup P_n$. To prove its soundness and completeness, we demonstrate that GEM computes a solution if and only if such a solution can be derived via SLD resolution, which has been proved sound and complete (Apt 1990). As mentioned in Section 3.3, we assume that given a request or response message M sent by a principal a to a principal b, one and only one instance of message M is received by b. In other words, we assume no message duplication, and that messages are always received.

We introduce one last definition.

Definition 11

Let S be the set of tables resulting from running GEM on a goal G w.r.t. $P = P_1 \cup \ldots \cup P_n$. Let G_1 be a goal whose table is in S. Let θ be a solution of G_1 using clause $H \leftarrow B_1, \ldots, B_n$. Then, by construction $\exists \theta_0, \ldots, \theta_n$ s.t. $\theta_0 = \text{mgu}(G_1, H)$ and θ_j is a solution of $B_j \theta_0 \cdots \theta_{j-1}$ (with $j \in \{1, \ldots, n\}$). The ranking of θ is defined inductively as follows:

- $\text{rank}(\theta) = 1$ if $n = 0$ (i.e., the clause is a fact),
- $\text{rank}(\theta) = 1 + \max(\text{rank}(\theta_1), \ldots, \text{rank}(\theta_n))$ otherwise, where $\text{rank}(\theta_j)$ is the ranking of solution θ_j.

The following theorem states that each solution computed by GEM can also be derived via SLD resolution using the global policy P, and is thus correct. Intuitively, this is due to the fact that the solutions generated by the algorithm are obtained using the clause resolution mechanism, which produces correct results.

Theorem 1 (Soundness)

Let G_1 be a goal. Let S be the set of tables resulting from running GEM on G_1 w.r.t. $P = P_1 \cup \ldots \cup P_n$. Let G_1, \ldots, G_k be the goals for which there exists a table in S. For each goal $G_i \in \{G_1, \ldots, G_k\}$ let $\text{Sol}_i = \{\theta_{i,1}, \ldots, \theta_{i,k_i}\}$ be the (possibly empty) set of solutions of G_i generated by the algorithm. Then, for each $G_i \in \{G_1, \ldots, G_k\}$ and for each $\theta_{i,j} \in \text{Sol}_i$ there exists an SLD derivation of $P \cup \{G_i\}$ with c.a.s. σ s.t. $G_i \theta_{i,j}$ is a renaming of $G_i \sigma$.

Proof. We proceed by contradiction and assume that there exists at least a “wrong” solution $\theta_{i,j}$ in Sol_i, i.e., a solution s.t. there is no corresponding SLD derivation of $P \cup \{G_i\}$ with c.a.s. σ where $G_i \theta_{i,j}$ is a renaming of $G_i \sigma$ (hypothesis).

Let us choose $\theta_{i,j}$ to be a “wrong” solution with minimal ranking (\ast). Let $G_i = \leftarrow A_i$. Since $\theta_{i,j}$ is a solution of G_i, there exists an evaluation tree of G_i in S created by CREATE TABLE (lines 2-7) with root $(id, A_i \leftarrow A_i, new)$, a subnode with clause $c =$...
H \leftarrow B_1, \ldots, B_n and substitutions θ_0, \ldots, θ_n s.t. θ_0 = mgu(A_i, H), and for each l \in \{1, \ldots, n\} there exists:

- A node in the evaluation tree of G_i with selected atom \(B_lθ_0 \cdots θ_{l-1}\) (ACTIVATE NODE, lines 8, 18-19).
- An evaluation tree of \(\leftarrow B_lθ_0 \cdots θ_{l-1}\) created by CREATE TABLE (lines 2-7) at the location of \(B_lθ_0 \cdots θ_{l-1}\).
- A solution \(θ_i\) of \(\leftarrow B_lθ_0 \cdots θ_{l-1}\); the answer \(B_lθ_0 \cdots θ_i\) is sent to the requester of \(\leftarrow B_lθ_0 \cdots θ_{l-1}\) by GENERATE RESPONSE (lines 12-14 or 20-23) if \(\leftarrow B_lθ_0 \cdots θ_{l-1}\) is involved in a loop, or by TERMINATE (lines 3-5) otherwise.
- A node with clause \((H \leftarrow B_{l+1}, \ldots, B_n)θ_0 \cdots θ_i\) added to the evaluation tree of G_i by PROCESS RESPONSE (lines 20-23).

Then, \(θ_{i,j} = θ_0 \cdots θ_n\). If the body of c is empty, then there is a trivial 1-step SLD derivation of \(P \cup \{G_i\}\) with c.a.s. \(σ_i\) (namely the mgu of \(G_i\) and c), therefore contradicting the hypothesis. So, let us now assume that \(n > 0\); by construction, for each \(l \in \{1, \ldots, n\}\), \(rank(θ_l) < rank(θ_{i,j})\). So, by the minimality argument (\(\ast\)), for each \(l \in \{1, \ldots, n\}\) there exists an SLD derivation of \(P \cup \{\leftarrow B_lθ_0 \cdots θ_{l-1}\}\) with c.a.s. \(σ_l\) s.t. \(B_lσ_0 \cdots σ_{l-1}σ_l = B_lθ_0 \cdots θ_{l-1}θ_l\). But then, by standard logic programming results (given the presence of clause c), there exists a successful SLD derivation of \(P \cup \{G_i\}\) with c.a.s. \(σ\) s.t. \(G_iσ = G_iθ_{i,j}\), contradicting the hypothesis. \(\square\)

Since GEM employs a “wait” mechanism to determine when the answers of a goal should be sent to the requester, both the completeness and termination properties of the algorithm depend on the correctness of this mechanism. Therefore, before demonstrating that GEM is complete and always terminates, we prove that the “wait” mechanism is correctly implemented, i.e., that the answers of a goal are eventually sent to the requester. This is particularly challenging in the presence of loops.

In the implementation of GEM proposed in Section 3.3, the “wait” mechanism for goals involved in a loop consists of loop counters: at each iteration of a loop \(id\), the answers of a goal \(G\) are only sent when the counter of loop \(id\) in set ActiveGoals is 0 (procedure PROCESS RESPONSE, line 24). Since the counter is set to the number \(k\) of subgoals of \(G\) which are involved in loop \(id\) (GENERATE RESPONSE, lines 7 and 19), at each iteration of loop \(id\) the principal evaluating \(G\) should thus receive \(k\) response messages. In order to prove this, we first show that GEM correctly keeps track of the loops in which the subgoals of \(G\) are involved.

Proposition 1
Let \(G_1, \ldots, G_m\) be the goals involved in a loop \(id_1\). Let \(G_i, G_j \in \{G_1, \ldots, G_m\}\) be two goals s.t. \(G_j\) is a subgoal of \(G_i\). Then, the node in the evaluation tree of \(G_i\) with selected atom \(G_i\) has status loop(\(ID_1\)), where \(id_1 \in ID\).

Proof. Let \(G_i\) be the coordinator of loop \(id_1\). Let \(G_1, \ldots, G_k\) be a subset of \(G_1, \ldots, G_m\) s.t. for each \(i \in \{2, \ldots, k\}\) goal \(G_i\) is a subgoal of \(G_{i-1}\), and \(G_1\) is a subgoal of \(G_k\). The node in the evaluation tree of \(G_1, \ldots, G_k\) with selected atom \(G_2, \ldots, G_k, G_1\) respectively has status loop(\(ID_1\)), where \(id_1 \in ID\), because of the following observations:
The identifiers \(id_2, \ldots, id_k\) of the requests for goals \(G_1, \ldots, G_k\) and the identifier \(id_{k+1}\) of the request for goal \(G_1\) are constructed by procedures `CREATE TABLE` (lines 5-6) and `PROCESS RESPONSE` (lines 21-22) in such a way that \(id_j \in id_1\), for each \(j \in \{2, \ldots, k + 1\}\), and thus the lower request \(id_{k+1}\) for \(G_1\) can be identified.

Upon receiving the lower request \(id_{k+1}\), the principal evaluating \(G_1\) returns a response \((id_{k+1}, Ans_{k+1}, S_{k+1}, \{id_1\})\) to the principal evaluating \(G_k\) (procedure `PROCESS REQUEST`, lines 5-7).

The status of the node in the evaluation tree of \(G_k\) with selected atom \(G_1\) is set to \(loop(\{id_1\})\) (`PROCESS RESPONSE`, lines 12-13).

A counter for loop \(id_1\) is added to set `ActiveGoals` in the table of goal \(G_k\) (`PROCESS RESPONSE`, line 14).

For each \(i \in \{2, \ldots, k\}\), the principal evaluating goal \(G_i\) sends to the principal evaluating goal \(G_{i-1}\) a response of the form \((id_i, Ans_i, S_i, ID)\), where \(ID\) is the set of all loops in `ActiveGoals` whose identifier is higher than \(id_i\) (`GENERATE RESPONSE`, lines 18, 21, and 23), and thus \(id_1 \in ID\).

The status of the node in the evaluation tree of goal \(G_{i-1}\) with selected atom \(G_i\) is set to \(loop(ID)\), where \(id_1 \in ID\) (`PROCESS RESPONSE`, lines 12-13).

\[\square\]

Corollary 1

Let \(G\) be a goal involved in a loop \(id\). Let \(k\) be the number of nodes in the evaluation tree of \(G\) with status \(loop(id)\) s.t. \(id \in ID\). When a response is sent to the requester of the higher request for \(G\) (or lower request, if \(G\) is the loop coordinator), the counter of loop \(id\) in set `ActiveGoals` in the table of \(G\) is set to \(k\).

At each loop iteration, the counters of the loops in which a goal \(G\) is involved are set to the number of subgoals of \(G\) involved in those loops by procedure `GENERATE RESPONSE`, lines 7 and 19. Hence, we now need to show that at each iteration of a loop \(id\) the number of response messages with status \(loop(id)\) received by the principal evaluating \(G\) is equal to the number of subgoals of \(G\) involved in loop \(id\), i.e., that counters correctly keep track of the number of response messages received by the principal evaluating \(G\) at each iteration of loop \(id\).

Informally, the correctness of counters stems from the fact that at each loop iteration step for a goal \(G\) there is only one choice of loop identifier to include in the response to the requester of a higher request for \(G\). This is because of the following considerations:

1. Let \(G\) be a goal involved in one or more loops. In the loop processing phase, the loop identifier included by the principal evaluating \(G\) in the response sent to the requester of a higher request for \(G\) is taken from the status of the root node of the evaluation tree of \(G\) (procedure `GENERATE RESPONSE`, lines 20-21).

2. After a response for \(G\) is sent by `GENERATE RESPONSE` (lines 20-23), the status of the root node of the evaluation tree of \(G\) is set to `active` (line 24).

3. If \(G\) is a non-coordinator goal, then there can be at most one loop identifier per time in the status of the root node of its evaluation tree. Therefore, when sending a response for \(G\), procedure `GENERATE RESPONSE` has only one choice of loop identifier to include in the response status. The reason why a non-coordinator goal can have at most one loop identifier in the status of the root of its evaluation tree is
the following. The only point where the status of the root node of a non-coordinator goal \(G \) is modified to take into account the loop being processed is on line 18 of procedure \texttt{PROCESS RESPONSE}, and the check on line 17 updates the status only in case it is currently set to \textit{active}. We point out that when the response for a subgoal of \(G \) is processed by \texttt{PROCESS RESPONSE} the status of the root of the evaluation tree of \(G \) is always \textit{active}, due to point (2) above and the fact that GEM only processes one goal at a time (which is due to condition on line 24 of \texttt{PROCESS RESPONSE}), and thus no response will be received by the principal evaluating \(G \) in the context of a loop unless a response for \(G \) was previously sent.

4. if \(G \) is the coordinator of a loop \(\text{id}_l \), then there can be \textbf{at most two} loop identifiers per time in the status of the root node of its evaluation tree: one for loop \(\text{id}_l \), and \textbf{at most one} for a higher loop \(\text{id}_h \). Remember that as loop identifiers we use the identifier of the higher request for the coordinator; hence, in this case \(\text{id}_l \) is the identifier of the higher request for \(G \). Given the condition on line 20 of \texttt{GENERATE RESPONSE}, only \(\text{id}_h \) can be included in the status of a response for \(G \) sent to the requester of a higher request. In fact, \(\text{id}_h \) (denoted \(\text{id}_4 \) in the procedure) is the only identifier in the status of the root node of the evaluation tree of \(G \) that is higher than \(\text{id}_l \) (denoted \(\text{id}_1 \) in the procedure), i.e., higher than the identifier of the higher request for \(G \). Therefore, when sending a response for \(G \), \texttt{GENERATE RESPONSE} has only one choice of loop identifier to include in the response status, namely \(\text{id}_h \).

Technically, a coordinator can have at most two loop identifiers in the status of the root node of its evaluation tree because of the following. Similarly to non-coordinators, due to condition on line 17 of \texttt{PROCESS RESPONSE} only one loop identifier can be added to the root’s status on line 18 of \texttt{PROCESS RESPONSE}. This occurs when \(G \) receives a response from one of its subgoals in the context of a higher loop \(\text{id}_h \). A second loop identifier (the identifier of loop \(\text{id}_l \)) can be added to the root status on lines 8-9 of \texttt{GENERATE RESPONSE} if the response received by the principal evaluating \(G \) in the context of loop \(\text{id}_h \) leads to new answers of \(G \), which need to be sent to the goals involved in loop \(\text{id}_l \). No more than two loops at a time will be processed by the principal evaluating \(G \) (i.e., \(\text{id}_l \) and at most one higher loop \(\text{id}_h \)) because of the following reasons. Upon receiving a response in the context of a higher loop \(\text{id}_h \):

- a response for \(G \) in the context of loop \(\text{id}_h \) will not be sent to a higher goal until a fixpoint for the loop \(\text{id}_l \) of which \(G \) is the coordinator is reached, during which time the status of the root node of the evaluation tree of \(G \) is \textit{loop}\(\{\text{id}_h, \text{id}_l\}\)), and
- due to the condition on line 24 of \texttt{PROCESS RESPONSE} no responses for higher goals can be received by the principal evaluating \(G \) until a response for \(G \) in the context of loop \(\text{id}_h \) is sent upwards. In fact, the counter of loop \(\text{id}_h \) in the table of higher goals cannot be 0, because no response for \(G \) in the context of loop \(\text{id}_h \) was sent upwards yet. When a response for \(G \) is sent upwards, the status of the root node of its evaluation tree becomes \textit{active} again (see point (2)).

Formally, the correctness of counters is demonstrated by the following Proposition.
Let \(G \) be a goal and \(G_1, \ldots, G_k \) be the subgoals of \(G \) s.t. \(G, G_1, \ldots, G_k \) are involved in a loop \(id_l \). At each iteration of loop \(id_l \), the principal evaluating \(G \) receives \(k \) response messages, one for each subgoal \(G_i \in \{ G_1, \ldots, G_k \} \).

Proof. Let \(G, G_1, \ldots, G_k, \ldots, G_m \) be all the goals involved in loop \(id_l \), where \(m \geq k \). Let \(id, id_1, \ldots, id_m \) be the identifiers of the requests for goals \(G, G_1, \ldots, G_m \) respectively. The proof is by induction on the number \(\ell \) of goals \(G_j \in \{ G_1, \ldots, G_m \} \) s.t. \(id_j \sqsubset id \), that is, the number of goals whose request identifier is lower than the identifier \(id \) of the request for \(G \).

Base case: \(\ell = 1 \). Then, also \(k = 1 \). Let \(G_j \in \{ G_1, \ldots, G_m \} \) be the only goal s.t. \(id_j \sqsubset id \). It is straightforward to see that goal \(G_j \) is (a variant of) the coordinator of loop \(id_l \), and \(id_j \) denotes the lower request for \(G_j \). When there are no more nodes with status \textit{new} in the evaluation tree of \(G_j \), i.e., when all the branches of the evaluation tree of \(G_j \) have been evaluated, procedure \texttt{GENERATE RESPONSE} is invoked by \texttt{ACTIVATE NODE} (lines 2-3). By procedure \texttt{GENERATE RESPONSE} (lines 12-14), at each loop iteration one and only one response to the request for the coordinator \(G_j \) is sent by \texttt{GEM} to the principal evaluating \(G \). Thus, at each iteration of loop \(id_l \) the principal evaluating \(G \) receives \(k = 1 \) response messages. Q.e.d.

Inductive case: Now, assume that \(G \) has \(\ell \) such goals \(G_j \in \{ G_1, \ldots, G_m \} \) s.t. \(id_j \sqsubset id \), where \(\ell > 1 \). In this case, each subgoal \(G_i \in \{ G_1, \ldots, G_k \} \) of \(G \) is either the coordinator of loop \(id_l \) or a goal with at most \(\ell - k \) subgoals \(G_p \in \{ G_1, \ldots, G_m \} \) s.t. \(id_p \sqsubset id_l \). If \(G_i \) is the coordinator of loop \(id_l \), by the same reasoning done in the base case, one and only one response to the request for \(G_i \) is sent by \texttt{GEM} to the principal evaluating \(G \) at each loop iteration.

On the other hand, if \(G_i \) is not the loop coordinator, there exist at most \(\ell - k \) goals \(G_p \in \{ G_1, \ldots, G_m \} \) s.t. \(id_p \sqsubset id_l \). Let \(t \) be the number of subgoals of \(G_i \) involved in loop \(id_l \). Since \(\ell - k \leq \ell - 1 \), by the inductive hypothesis (\(* \)) the principal evaluating \(G_i \) receives \(t \) response messages at each iteration of loop \(id_l \). By Corollary 1, at each loop iteration the counter of loop \(id_l \) in the table of goal \(G_i \) is set to \(t \), and is decreased by 1 every time a response to the requests for its subgoals involved in the loop is received (procedure \texttt{PROCESS RESPONSE}, lines 15-16). Therefore, after \(t \) response messages, the counter of loop \(id_l \) in the table of \(G_i \) is 0, and procedure \texttt{PROCESS RESPONSE} (lines 24-25) resumes the evaluation of goal \(G_i \). When there are no more nodes with status \textit{new} in the evaluation tree of \(G_i \), procedure \texttt{ACTIVATE NODE} (lines 2-3) invokes \texttt{GENERATE RESPONSE}. By procedure \texttt{GENERATE RESPONSE} (lines 20-21), one and only one response to the request for \(G_i \) is sent by \texttt{GEM} to the principal evaluating \(G \) at each iteration of loop \(id_l \). Therefore, at each iteration of loop \(id_l \) the principal evaluating goal \(G \) receives \(k \) response messages. \(\square \)

Finally, we show that procedure \texttt{TERMINATE} is eventually invoked for any goal in a computation.

Proposition 3

Let \(G_1 \) be a goal. Procedure \texttt{TERMINATE} is eventually called for \(G_1 \).
Proof. The proof is divided into two parts. First, we show that TERMINATE is eventually called for a goal \(G_1 \) that is not involved in a loop. Then, we show that it is always invoked also if \(G_1 \) is involved in one or more loops.

The first part of the proof is straightforward, and is given by the fact that the number of answers of goal \(G_1 \) is finite. This is because of the following observations:

1. The global policy \(P \) is finite, and the terms in \(P \) that are not variables are constants defined in \(P \); thus, the Herbrand model of \(P \) is finite.
2. Let \(P_{G_1} \in P \) be the policy where goal \(G_1 \) is defined. The answers of \(G_1 \) are computed by GEM through the clauses in \(P_{G_1} \) applicable to \(G_1 \) (procedure CREATE TABLE, lines 3-7). Each clause can be either a fact or have the form \(H \leftarrow B_1, \ldots, B_m \), such that \(B_1, \ldots, B_m \) are defined in a policy in \(P \). By (1), both the number of facts in \(P_{G_1} \) and the number of answers of subgoals \(B_1, \ldots, B_n \) are finite.

Thus, the number of answers of goal \(G_1 \) is finite. When all the answers of \(G_1 \) have been computed and all the nodes in the partial tree of \(G_1 \) have been evaluated, procedure ACTIVATE NODE (lines 2-3) invokes GENERATE RESPONSE, which in turn (lines 2-3) invokes TERMINATE.

Consider now the case in which \(G_1 \) is part of an SCC consisting of loops \(id_1, \ldots, id_k \), s.t. \(id_k \subseteq \ldots \subseteq id_1 \). Let \(G_1, \ldots, G_m \) be all the goals involved in loops \(id_1, \ldots, id_k \) (where \(m \geq k \)), and goal \(G_{c_i} \in \{G_1, \ldots, G_m\} \) be the coordinator of loop \(id_i \in \{id_1, \ldots, id_k\} \).

Because the number of answers of each goal \(G_1, \ldots, G_m \) is finite, we have that:

- At each iteration of loop \(id_i \), if new answers of the loop coordinator \(G_{c_i} \) are derived, they are sent to the requesters of the lower requests for \(G_{c_i} \), starting a new iteration of loop \(id_i \) (procedure GENERATE RESPONSE, lines 6-14). On the contrary, if no answer of \(G_{c_i} \) is computed, the answers of \(G_{c_i} \) are sent to the requester of the higher request for \(G_{c_i} \) (GENERATE RESPONSE, lines 20-23). The loops higher than \(id_i \) in the SCC are then processed.

- At each iteration of loop \(id_1 \), if new answers of the leader \(G_{c_1} \) are derived, they are sent to the requesters of the lower requests for \(G_{c_1} \), starting a new iteration of loop \(id_1 \) (procedure GENERATE RESPONSE, lines 6-14). Notice that this might cause a fixpoint for the loops lower than \(id_1 \) in the SCC to be recomputed. On the contrary, if no answer of \(G_{c_1} \) is computed, the answers of \(G_{c_1} \) are sent to the requester of the higher request for \(G_{c_1} \), and a response with status disposed is sent to the requesters of the lower requests for \(G_{c_1} \) (GENERATE RESPONSE, lines 15-16 and TERMINATE, lines 3-5).

- For each goal \(G_j \in \{G_1, \ldots, G_m\} \), all the nodes in the evaluation tree of \(G_j \) are disposed (PROCESS RESPONSE, lines 5-8); then, procedure ACTIVATE NODE is invoked, which immediately invokes GENERATE RESPONSE (lines 2-3).

- The principal evaluating goal \(G_j \) sends a response with status disposed to the requester of the higher request for \(G_j \). If \(G_j \) is a loop coordinator, the principal evaluating \(G_j \) also sends a response with status disposed to the requesters of the lower requests for \(G_j \) (GENERATE RESPONSE, lines 2-3 and TERMINATE, lines 3-5).

Therefore, procedure TERMINATE is always invoked for goal \(G_1 \). \(\square \)
Proposition 3 implies that the table of a goal involved in a computation is always disposed. In fact, the disposal of the table of a goal is carried out by procedure \textsc{Terminate} (lines 2, 6, and 7). Consider, for instance, the following variation of the global policy introduced in Section 3.2, where the research institute \(ri \) refers to goal \(\text{memberOfAlpha}(c_1, X) \) instead of \(\text{memberOfAlpha}(c_2, X) \):

\[
\text{memberOfAlpha}(c_1, X) \leftarrow \text{memberOfAlpha}(c_2, X).
\]

\[
\text{memberOfAlpha}(c_2, X) \leftarrow \text{memberOfAlpha}(ri, X).
\]

\[
\text{memberOfAlpha}(ri, X) \leftarrow \text{memberOfAlpha}(c_1, X).
\]

First of all, let us recall that the termination of the evaluation of the goals involved in a loop is commanded by the leader of the SCC (goal \(\text{memberOfAlpha}(c_1, X) \) in the example policy). When no new answer of the leader is computed by \(c_1 \) during a loop iteration, procedure \textsc{Terminate} is invoked (lines 15-16 of \textsc{Generate \textbf{Response}}), which disposes the table of the goal and sends a response with status \textit{disposed} both to the requesters of the higher and lower requests for \(\text{memberOfAlpha}(c_1, X) \) (lines 3-5). When \(ri \) receives the response, it disposes all the nodes in the evaluation tree of \(\text{memberOfAlpha}(ri, X) \) involved in a loop (lines 5-8 of \textsc{Process \textbf{Response}}), which in this case corresponds to disposing all the non-root nodes. At this point, the status of the root node of the evaluation tree of \(\text{memberOfAlpha}(ri, X) \) is \textit{active} (see point 2 of the discussion preceding Proposition 2). Therefore, the condition on line 24 of \textsc{Process \textbf{Response}} is satisfied, and procedure \textsc{Activate \textbf{Node}} is invoked for \(\text{memberOfAlpha}(c_1, X) \). Since all the non-root nodes in the evaluation tree of \(\text{memberOfAlpha}(c_1, X) \) have status \textit{disposed}, \textsc{Generate \textbf{Response}} is invoked (lines 2-3 of \textsc{Activate \textbf{Node}}), which in turn (lines 2-3) invokes procedure \textsc{Terminate}. \textsc{Terminate} disposes the table of goal \(\text{memberOfAlpha}(ri, X) \) and sends a response with status \textit{disposed} to \(c_2 \). Similarly to \(\text{memberOfAlpha}(ri, X) \), \textsc{Process \textbf{Response}} disposes all the nodes in the evaluation tree of goal \(\text{memberOfAlpha}(c_2, X) \), and a response with status \textit{disposed} is sent by \(c_2 \) to \(c_1 \) by procedure \textsc{Terminate}. Since the root of the evaluation tree of \(\text{memberOfAlpha}(c_1, X) \) had already been disposed, in this case the response message is ignored by \(c_1 \) (line 4 of \textsc{Process \textbf{Response}}).

We now state and prove the completeness result.

\textit{Theorem 2 (Completeness)}

Let \(G_1 \) be a goal. Let \(S \) be the set of tables resulting by running GEM on \(G_1 \) (w.r.t. \(P = P_1 \cup \ldots \cup P_n \)). Assume that running GEM on \(G_1 \) (w.r.t. \(P = P_1 \cup \ldots \cup P_n \)) did not result in floundering. If there exists an SLD derivation of \(P \cup \{ G_1 \} \) with c.a.s. \(\theta \), then there exists a solution \(\sigma \) of \(G_1 \) in \(S \) s.t. \(G_1 \sigma \) is a renaming of \(G_1 \theta \).

\textit{Proof.} We proceed by contradiction, and assume that \(S \) is missing a solution of \(G_1 \). That is, there exists a successful SLD derivation of \(P \cup \{ G_1 \} \) with c.a.s. \(\theta \) and there is no solution \(\sigma \) of \(G_1 \) generated by the algorithm s.t. \(G_1 \theta = G_1 \sigma \) (hypothesis).

This implies that there exist a (maximal) set of goals \(G_1, \ldots, G_k \) in \(S \) s.t. for each \(i \in \{1, \ldots, k\} \) there is a non-empty maximal set of substitutions \(\{ \theta_{i,1}, \ldots, \theta_{i,m_i} \} \) s.t.:

\begin{enumerate}
 \item \(G_i \) is a goal in \(S \).
 \item \(\theta_{i,1}, \ldots, \theta_{i,m_i} \) are correct solutions of \(G_i \) according to SLD resolution: for each \(\theta_{i,j} \) there exists a successful SLD derivation of \(P \cup \{ G_i \} \) with c.a.s. \(\theta_{i,j} \) (up to renaming).
\end{enumerate}
(c) The algorithm does not generate the answers $G_i\theta_{i,1}, \ldots, G_i\theta_{i,m_i}$ (up to renaming).

The set G_1, \ldots, G_k is not empty as it contains at least G_1 (the finiteness of the construction is demonstrated in the proof of Proposition 3).

For each i, j, let $der_{i,j}$ be the SLD derivation of $P \cup \{G_i\}$ with c.a.s. $\theta_{i,j}$ of minimal length. Let us choose integers p, q in such a way that $der_{p,q}$ has minimal length among the derivations in the set $\{der_{i,j}\}$. The fact that $der_{p,q}$ has minimal length implies that for any goal G' in S, the following holds: if there exists an SLD derivation of $P \cup \{G'\}$ of length smaller than $len(der_{p,q})$ with c.a.s. θ', then the algorithm generates a solution θ' for which $G'\theta'$ is a renaming of $G'\theta'$ (**) .

Let c be the clause used in the first step of the derivation $der_{p,q}$. If c is a fact, we immediately have a contradiction: since G_p is a goal in S, this means that there exists an evaluation tree of $G_p = \leftarrow A_p$ created by CREATE TABLE (lines 2-7) with root node $\langle id, A_p = A_p, \text{new} \rangle$ and a node with clause c as subnode of the root node. Therefore, the algorithm will compute a c.a.s. equivalent to $\theta_{p,q}$ (ACTIVATE NODE), contradicting the hypothesis.

If c is a rule $H \leftarrow B_1, \ldots, B_n$, and $\sigma_0 = \text{mgu}(G_p, H)$, then by hypothesis there exist SLD derivations $der_{B_1}, \ldots, der_{B_n}$, and substitutions $\sigma_1, \ldots, \sigma_n$ s.t. $H\sigma_0 \cdots \sigma_n = G_p\theta_{p,q}$, and for each $i \in \{1, \ldots, n\}$:

- der_{B_i} is an SLD derivation of $P \cup \{\leftarrow B_i, \sigma_0 \cdots \sigma_i-1\}$.
- The c.a.s. of der_{B_i} is σ_i, and $len(der_{B_i}) < len(der_{p,q})$. (***)

Since G_p is a goal in S, there exists an evaluation tree of G_p created by CREATE TABLE (lines 2-7) with root node $\langle id, A_p = A_p, \text{new} \rangle$ and a node with clause c as subnode of the root node. Then, it is easy to see that for each $i \in \{1, \ldots, n\}$:

- There exists a node in the evaluation tree of G_p with selected atom $B_i, \sigma_0 \cdots \sigma_{i-1}$ (ACTIVATE NODE, lines 8, 18-19).
- There exists an evaluation tree of $\leftarrow B_i, \sigma_0 \cdots \sigma_{i-1}$ created by CREATE TABLE (lines 2-7) at the location of $B_i, \sigma_0 \cdots \sigma_{i-1}$.
- Since $len(der_{B_i}) < len(der_{p,q})$, by (***) the algorithm computes a solution equivalent to σ_i of the goal $\leftarrow B_i, \sigma_0 \cdots \sigma_{i-1}$.
- By Propositions 2 and 3, the answer $B_i, \sigma_0 \cdots \sigma_i$ is sent to the requester of $\leftarrow B_i, \sigma_0 \cdots \sigma_{i-1}$ by GENERATE RESPONSE (lines 12-14 or 20-23) if $\leftarrow B_i, \sigma_0 \cdots \sigma_{i-1}$ is involved in a loop, or by TERMINATE (lines 3-5) otherwise.
- There exists a node with clause $(H \leftarrow B_{i+1}, \ldots, B_n)\sigma_0 \cdots \sigma_i$ added to the evaluation tree of G_p by PROCESS RESPONSE (lines 20-23).

Therefore, $\sigma_1 \cdots \sigma_n$ is (equivalent to) a solution of the evaluation tree of G_p, contradicting (a), (b), and (c).

Finally, we prove that GEM always terminates.

Theorem 3 (Termination)
Given a goal G evaluated w.r.t. a finite global policy P, GEM terminates.

Proof. We assume that nodes (i.e., goals) in the call graph of P inherit the identifier (and the associated ordering) of the request for which they are created. Termination follows from

...
two observations: (i) the call graph of P is finite, and (ii) the number of response messages exchanged by the principals involved in the evaluation of G is finite.

The call graph of P is finite (i) for the following reasons:

1. The set of goals over predicates in P (up to renaming) is finite. This is because terms that are not variables are constants in P.
2. There is no infinite path in the call graph of P composed of nodes id_1, \ldots, id_n s.t. $id_n \sqsubseteq \ldots \sqsubseteq id_1$. This is because of (1) and because the algorithm never creates a new node with identifier id_i for a goal if a node with identifier id_j already exists for a variant of that goal and $id_i \sqsubseteq id_j$.
3. The outdegree of each node in the call graph of P is finite. This is because the number of atoms in the body of each clause in P is finite.

The number of response messages is finite (ii) because:

1. The number of answers of each goal defined in P is finite (see the proof of Proposition 3).
2. The (possibly empty) set of answers of a goal are transmitted only when a table for the goal is first created (and a node representing the goal is added to the call graph of P) or new answers of its subgoals are received.
3. For any nodes id_1 and id_2, a set of answers that flows from id_2 to id_1 in response to a request id_2 never contains answers previously communicated in response to request id_2 (SEND RESPONSE, lines 3-4).
4. An empty set of answers may flow from id_2 to id_1 only if $id_2 \sqsubseteq id_1$ (GENERATE RESPONSE, lines 20-23, and TERMINATE, lines 3-5), or id_1 identifies a lower request and a loop id_2 has just been identified (PROCESS REQUEST, lines 5-7).
5. There is no infinite path composed of nodes id_n, \ldots, id_1 in the call graph of P through which the answers flow s.t. $id_n \sqsubseteq \ldots \sqsubseteq id_1$.
6. By Proposition 3, procedure TERMINATE is eventually invoked for any goal. □

4.2 Disclosed Information

A primary objective of GEM is to preserve the confidentiality of intensional policies. Here, we discuss what policy information principals are able to collect during the evaluation of a goal, and classify GEM according to the confidentiality levels defined in Section 2.

First, let us define the following notation. Let P be a global policy, and G_a and G_b be two goals in P defined by principals a and b respectively. We say that goal G_a depends on goal G_b if there is a path from G_a to G_b in the call graph of the evaluation of G_a with respect to P. Since each edge in the call graph represents a request in GEM, and in trust management each request corresponds to a delegation of authority, if G_a depends on G_b then we say that there is a chain of trust from principal a to principal b.

We also introduce some notation on request identifiers. As mentioned in Section 3.2, the identifiers in an identifier domain can be defined in several ways (e.g., applying a hash function to the identifier of a higher request). In this paper, we have considered an identifier domain where identifiers are obtained by concatenating the identifier of a higher request with a sequence of characters. Here, we thus employ this identifier domain to discuss what information is disclosed by GEM during goal evaluation. We classify identifiers obtained
by concatenation according to two dimensions: traceability and length. Given two request identifiers \(id_1\) and \(id_2\) for goals \(G_1\) and \(G_2\) respectively, such that \(id_2 \sqsubseteq id_1\), the traceability dimension refers to the ability of a principal to infer which principals are involved in the evaluation of the goals in the path from \(G_1\) to \(G_2\). On the other hand, the length dimension defines the ability to determine the number of goals in the path from \(G_1\) to \(G_2\).

Let \(id_0s_1 \cdots s_n\) be a request identifier, where \(id_0\) is the identifier of the initial request in a computation and each \(s_i\) (for \(i \in \{1, \ldots, n\}\)) is a sequence of characters added by a principal \(p_i\) to the identifier \(id_0s_1 \cdots s_{i-1}\) of a higher request. For what concerns the traceability dimension, we say that \(id_0s_1 \cdots s_n\) is a traceable identifier if each string \(s_i\) uniquely identifies (the location of) principal \(p_i\) (as done, for instance, by the identifiers in the example in Section 3.2); otherwise, we say that identifier \(id_0s_1 \cdots s_n\) is untraceable. The length dimension is defined based on the number of characters concatenated by each principal \(p_i\) to the request identifier \(id_0s_1 \cdots s_{i-1}\). Let \(\text{len}(s_i)\) denote the number of characters in the string \(s_i\). If \(\text{len}(s_i) = \ldots = \text{len}(s_n)\), then we say that \(id_0s_1 \cdots s_n\) is a fixed-length identifier; otherwise, we say that \(id_0s_1 \cdots s_n\) is a variable-length identifier (we assume that cryptographic techniques are in place to avoid collision of identifiers (Hoch and Shamir 2008)). Notice that a traceable identifier does not necessarily disclose information about the number of goals in the path between two goals; this is because a goal defined by a principal \(a\) can have several subgoals defined in \(a\)'s policy. Consider, for instance, the traceable request identifier \(h : 12c1 : 345\), obtained by concatenating a request identifier with a principal’s identifier and a variable-length sequence of digits for each goal evaluated by the principal. Even though identifier \(h : 12c1 : 345\) shows that the principals involved in the computation are hospital \(h\) and company \(c1\), it does not confer information about the number of goals evaluated by those principals. Company \(c1\), for example, might have evaluated two locally defined goals, concatenating the higher request \(h : 12c1 : 345\) received from hospital \(h\) first with its identifier \(c1\) and digit “3” (separated by a semicolon), and then with the sequence of digits “45”.

We are now ready to present what information a principal \(b\) is able to learn about the local policy of a principal \(a\) where a goal \(G_a\) is defined. First of all, by requesting the evaluation of \(G_a\), \(b\) learns the set of answers to the request, i.e., the extensional policy relative to \(G_a\); this is necessary for any goal evaluation algorithm. As mentioned in Section 1, the confidentiality of extensional policies can be protected, for instance, by relying on hidden credentials (Bradshaw et al. 2004; Frikken et al. 2006) or trust negotiation algorithms (Winsborough et al. 2000; Winslett 2003). Here, we are more interested in what \(b\) can learn about the intensional policy defining \(G_a\).

By sending a request for \(G_a\) (say, with identifier \(id_1\)), \(b\) can learn whether \(G_a\) depends on some goal \(G_b\) defined in her policy. Indeed, if \(b\) receives a request for \(G_b\) with identifier \(id_2\) such that \(id_2 \sqsubseteq id_1\), then \(b\) knows that \(G_a\) depends on \(G_b\).

If \(G_a\) depends on a number of goals defined by \(b\), then by requesting \(G_a\), \(b\) learns:

- what are the goals \(G_{b_1}, \ldots, G_{b_n}\) defined in her policy on which \(G_a\) depends;
- for each \(G_{b_i} \in \{G_{b_1}, \ldots, G_{b_n}\}\), \(b\) knows who is the principal \(p_i\) that requested \(G_{b_i}\); therefore, \(b\) learns that \(G_a\) depends on a goal defined by \(p_i\), i.e., that there is a chain of trust from \(a\) to \(p_i\) (and from \(p_i\) to \(b\)). Principal \(b\), however, does not necessarily learn which is the goal defined by \(p_i\) on which \(G_a\) depends;
• depending on how the identifiers are constructed, b might be able to learn additional information about the path from G_a to G_b. In particular, if the identifier of the request for G_b is fixed-length, b is able to infer the number of goals in the path from G_a to G_b. Additionally, if the identifier is traceable, b also learns who are the principals defining those goals.

Thus, GEM can be classified as E1-I1 according to the classification criteria in Section 2. In fact, principals learn all the answers of a goal along with some dependencies among the goals involved in an evaluation.

We now illustrate the concepts presented above with an example, using the global policy introduced in Section 3.2 and the call graph shown in Figure 5(a) on page 14 (ignore, for now, the request identifiers depicted in the figure). Assume that the research institute ri requests goal $\text{memberOfAlpha}(c_1,X)$ to c_1. If the identifiers used in the computation were variable-length and untraceable, ri would be able to learn that:

- $\text{memberOfAlpha}(c_1,X)$ depends on goal $\text{memberOfAlpha}(ri,X)$ defined in its policy;
- $\text{memberOfAlpha}(c_1,X)$ depends on some goal G_{c2} defined in c_2’s policy and on some goal G_{c3} defined by c_3; however, it does not learn which goals they are. Furthermore, due to the loop notification received from c_2 following the evaluation of goal $\text{memberOfAlpha}(c_2,X)$, ri learns that $\text{memberOfAlpha}(c_2,X)$ depends on some goal in the path from $\text{memberOfAlpha}(c_1,X)$ to G_{c2}.

Figure 7(a) represents ri’s “view” of Figure 5(a), that is, the part of the call graph that ri can infer. In the graph, we denote with dots (“...”) the predicate symbols and terms that ri does not learn; a dashed edge from a goal G_1 to a goal G_2 indicates that ri is able to infer that G_1 depends on G_2, but not the (number of) goals and principals in the path from G_1 to G_2. Since ri does not learn that G_{c2} is actually goal $\text{memberOfAlpha}(c_2,X)$, with respect to the call graph in Figure 5(a), in Figure 7(a) goal $\text{memberOfAlpha}(c_2,X)$ is “duplicated”. The
reason why \(ri \) is not able to infer that \(G_{C_2} \) is goal \(\text{memberOfAlpha}(c_2, X) \), and even more, does not learn whether \(\text{memberOfAlpha}(c_2, X) \) is in the path from \(\text{memberOfAlpha}(c_1, X) \) to \(\text{memberOfAlpha}(ri, X) \) or is a lower goal, is that the only information that \(ri \) receives in response to the request for \(\text{memberOfAlpha}(c_2, X) \) (besides the answers of the goal) is a notification that \(\text{memberOfAlpha}(c_2, X) \) is in a loop, say with identifier \(id_l \). \(ri \) can observe that \(id_l \) corresponds to a request higher than the request for \(\text{memberOfAlpha}(ri, X) \), i.e., that the loop coordinator is higher than \(\text{memberOfAlpha}(ri, X) \). However, \(ri \) cannot infer whether the loop was formed by its own request (in which case \(ri \) would learn that \(G_{C_2} \) is \(\text{memberOfAlpha}(c_2, X) \)), or by a request issued by \(c_2 \) when evaluating goal \(\text{memberOfAlpha}(c_2, X) \), or even by the evaluation of a goal on which \(\text{memberOfAlpha}(c_2, X) \) depends. In other words, because of the variable-length and untraceable nature of identifiers, \(ri \) does not know the number of goals in the path from \(\text{memberOfAlpha}(ri, X) \) to the loop coordinator.

In addition to the information above, if the identifiers used in the computations were fixed-length, \(ri \) would also be able to learn that:

- one of the paths from \(\text{memberOfAlpha}(c_1, X) \) to \(\text{memberOfAlpha}(ri, X) \) consists of three goals: \(\text{memberOfAlpha}(c_1, X) \), \(G_{C_2} \), and \(\text{memberOfAlpha}(ri, X) \). Furthermore, \(ri \) can infer that \(G_{C_2} \) is the coordinator of loop \(id_l \). However, \(ri \) still does not learn whether \(G_{C_2} \) is \(\text{memberOfAlpha}(c_2, X) \);
- the other path from \(\text{memberOfAlpha}(c_1, X) \) to \(\text{memberOfAlpha}(ri, X) \) consists of three goals: \(\text{memberOfAlpha}(c_1, X) \), \(G_{C_3} \), and \(\text{memberOfAlpha}(ri, X) \).

The part of the call graph that \(ri \) can infer in a computation with fixed-length identifiers is shown in Figure 7(b). Note that, in this example, the information that \(ri \) would be able to infer is the same independently from the traceability of the identifiers. This is because \(ri \) already knows all the principals in the paths from \(\text{memberOfAlpha}(c_1, X) \) to \(\text{memberOfAlpha}(ri, X) \): \(c_1 \) is the principal to whom \(ri \) sent the initial request, and \(c_2 \) and \(c_3 \) are the principals from whom \(ri \) received the request for \(\text{memberOfAlpha}(ri, X) \). Even with traceable identifiers, \(ri \) would not be able to infer more information about the path from \(\text{memberOfAlpha}(c_2, X) \) to \(G_{C_2} \), as the only information received by \(ri \) from \(c_2 \) is the loop identifier.

A principal might attempt to infer a bigger portion of the call graph by issuing several requests for the goals defined by different principals in the trust management system. For instance, \(ri \) can infer more information by issuing a request for each goal defined by companies \(c_1 \), \(c_2 \), and \(c_3 \). In particular, by issuing a request for goal \(\text{memberOfAlpha}(c_2, X) \), in a computation with fixed-length and traceable identifiers \(ri \) would learn that \(\text{memberOfAlpha}(c_2, X) \) is the goal defined by \(c_2 \) that depends on \(\text{memberOfAlpha}(ri, X) \) (Figure 8(a)). By also issuing a request for goal \(\text{memberOfAlpha}(c_3, X) \), \(ri \) could infer the whole call graph (Figure 8(b)). Notice, however, that the global policy considered here is a relatively simple policy with few goals and few principals defining them. A more complex policy would complicate and sometimes prevent the inference of goal dependencies. Furthermore, some information about the example global policy would not be deducible by \(ri \) when using variable-length and untraceable identifiers. All the edges in the call graph in Figure 8(b), for instance, would be dashed edges if variable-length untraceable identifiers were used. Finally, it is worth noting that even though \(ri \) might be able to learn the whole call graph,
that call graph might correspond to different intensional policies (Costantini 2001). For example, \(ri \) is not able to learn whether \(\text{memberOfAlpha}(c_2, X) \) and \(\text{memberOfAlpha}(c_3, X) \) are connected by disjunction or conjunction in \(c_1 \)'s policy.

To conclude, we argue that when using an appropriate identifier domain the knowledge about goal dependencies disclosed by GEM is not sufficient for a principal \(b \) to infer the intensional policy relative to a goal \(G_a \) defined by a principal \(a \). Principal \(b \) always learns whether goal \(G_a \) depends on goals defined in her policy, but most likely not all the goals in the global policy on which \(G_a \) depends. Consider, for instance, clause 2 on page 2. A principal other than \(c_1 \) and \(mc \) cannot learn that \(\text{memberOfAlpha}(c_1, X) \) depends on \(\text{projectPartner}(mc, Y) \). We believe that the information that principal \(b \) can infer is consistent with the concept of trust management. In fact, if \(G_a \) depends on a goal defined by \(b \), then there is a chain of trust from principal \(a \) to principal \(b \); it seems legitimate that the existence of such a chain of trust may not remain secret to \(b \).

5 Practical Evaluation

We implemented the algorithms presented in Section 3.3 in Java and conducted several experiments to evaluate the performance of GEM. In particular, we first tested the implementation with the example policies defined in Section 3.2 and Appendix A. Then, we modified those policies to assess the scalability of GEM with respect to an increase in the
number of principals in the trust management system and the number of clauses in the global policy.

We carried out the experiments by running GEM on four machines located in different area networks. More precisely, we employed two machines located within the Eindhoven University of Technology (TU/e) network, and two located at the University of Twente (UT). The two TU/e machines mount an Intel Core 2 Quad 2.4 GHz processor with 3 GB of RAM and a 32 bit Windows operating system. The UT machines are 32 bit Ubuntu machines with the same processor but 2 GB of RAM. In each experiment, we have assigned approximately one fourth of the principals (i.e., one fourth of the local policies) in the global policy to each machine. The exchange of messages between principals on different machines is via HTTP (javax.servlet.http Servlet API).

To present the results of the experiments, we group them into two sets. The first set of experiments (Section 5.1) studies the performance of GEM for an increasing number of principals, clauses, and loops in the global policy. The second set (Section 5.2) shows, for some of the global policies in the first set, the effects of increasing the size of the extensional policy (i.e., the number of facts in the global policy). For each experiment we report the following results:

- the number of principals involved in the computation (denoted by \textit{Princ});
- the number of tables created by GEM during the computation (\textit{Tab});
- the number of clauses evaluated (\textit{Clauses});
- the sum of the computation times on the four machines, expressed in milliseconds (\textit{CTime});
- the total time (\textit{TTime}), expressed in milliseconds, given by the \textit{CTime} plus network communication time;
- the total memory occupied by GEM on the four machines, expressed in kilobytes (\textit{TMem});
- the maximum memory occupied by the tables of the goals created by GEM on the four machines, expressed in kilobytes (\textit{TabMem});
- the memory occupied by the tables of the goals created by GEM on the four machines after the tables’ disposal, expressed in kilobytes (\textit{EndTabMem});
- the number of requests issued during the computation between principals on different machines (\textit{Req});
- the number of loops identified during the computation (\textit{Loops});
- the number of response messages exchanged between principals on different machines (\textit{Resp});
- the number of non-empty response messages (i.e., response messages containing at least one answer) exchanged between principals on different machines (\textit{Resp&Ans});
- the total number of answers computed by GEM during the evaluation of the policy (\textit{Ans}).

5.1 Experiments Set 1: Increasing the Number of Principals, Clauses, and Loops

In the first set of experiments we conducted three groups of (sub)experiments to evaluate the performance of GEM in response to an increase in: (1) the number of principals and
Fig. 9. Call Graph of the Global Policies Used in the Experiments Set 1
D. Trivellato, N. Zannone, S. Etalle

ID	Princ	Tab	Clauses	TTime (CTime) in ms	TMem in kB	TabMem (EndTabMem) in kB	Req	Loops	Resp (Resp&Ans)	Ans
1.0	4	4	6	286.1 (6.3)	32	18 (15)	5	1	9 (6)	9
1.1	7	7	12	305.9 (8.3)	53	39 (27)	9	2	17 (11)	26
1.2	10	10	18	315.2 (11.2)	78	66 (44)	13	3	25 (17)	49
1.3	13	13	24	322.8 (14.7)	108	97 (65)	17	4	33 (22)	78
1.4	16	16	30	327.0 (17.0)	140	134 (85)	21	5	41 (27)	113
1.5	19	19	36	351.7 (19.8)	180	175 (108)	25	6	49 (33)	154
2.0	6	6	8	830.5 (10.3)	47	37 (32)	10	4	31 (17)	20
2.1	5	10	10	103.7 (13.3)	68	61 (50)	16	6	48 (19)	32
2.2	6	15	12	1283.8 (16.5)	92	91 (74)	23	8	72 (30)	46
2.3	7	21	14	1459.9 (19.9)	125	122 (100)	31	10	95 (34)	62
2.4	8	28	16	1673.6 (23.4)	163	153 (127)	40	12	125 (47)	80
2.5	9	36	18	1840.3 (27.2)	206	189 (159)	50	14	134 (53)	100
3.0	4	6	8	830.3 (10.7)	47	37 (32)	10	4	31 (17)	20
3.1	7	16	16	1653.6 (25.9)	151	149 (110)	28	12	113 (171)	112
3.2	10	36	24	3029.0 (45.2)	458	427 (297)	64	28	309 (199)	388
3.3	13	70	32	3672.4 (78.5)	1210	1157 (752)	136	60	775 (535)	1088
3.4	16	150	40	10479.7 (134.4)	3024	2827 (1824)	280	124	1789 (1276)	2800
3.5	19	316	48	21939.3 (310.2)	7285	6862 (4267)	568	252	4569 (3477)	6816

Table 1. Performance Evaluation Results: Experiments Set 1

clauses, (2) the number of loops, and (3) both the number of principals, clauses and loops in a global policy. To this end, we modified the global policies defined in Section 3.2 and Appendix A as shown in Figure 9. In particular, we created six variants of the global policy in Appendix A to evaluate GEM in response to an increase in the number of principals and clauses (experiments group 1). The call graph of the six variants of the global policy is shown in Figure 9(a); in the figure, we use identifiers from 1.0 to 1.5 to denote the variants, where variant 1.0 represents the original policy in Appendix A. To keep the figure as simple yet informative as possible, we label the nodes in the graph with the identifier of the principal evaluating the goal they represent rather than with the goal itself, as for the purpose of this section the number of principals involved in a computation is more relevant than the goals they evaluate.

In the second group of experiments we created six variant of the global policy defined in Section 3.2 to increase the number of loops in the global policy. Figure 9(b) shows the call graph of the six variants of the policy, which are denoted by identifiers 2.0 to 2.5; variant 2.0 corresponds to the original global policy. Similarly, other six variants of the same policy were created for the experiments in the third group, in order to increase the number of both principals, clauses, and loops; the call graph of the six variants, denoted by identifiers 3.0 to 3.5 (where 3.0 corresponds to the original global policy defined in Section 3.2), is shown in Figure 9(c). Notice that, for the sake of compactness, Figures 9(b) and 9(c) show the folded graph of the global policies, i.e., they do not represent the reevaluation of goals due to side requests. Since in GEM the computation is based on the unfolded versions of the graph (e.g., the graph in Figure 5(b) on page 14 for variants 2.0 and 3.0), the number of lower requests occurring in the actual computation is higher than the one displayed by the figures. For instance, the number of lower requests for the leader of the SCC goes up to seven in experiments 2.5 and 3.5.

Table 1 presents the results of the three groups of experiments. Each row in the table...
shows the results for the variant of the global policy with identifier indicated in column ID. The total time (T_{Time}) and the computation time (C_{Time}) are the average times for 100 runs of each experiment; the values in all the other columns are constant for every run, as they depend on the structure of the global policy.

Before interpreting the results of the experiments, let us provide some general comments on the relationship between the values in different columns of Table 1. First of all, in every experiment the number of requests (R_{eq}) is equal to the number of tables generated (T_{ab}) plus the number of loops identified by GEM (L_{oops}); this is because in GEM a request is either a higher request, which leads to the creation of a table, or a lower request, and thus forms a loop. Second, the number of response messages (R_{esp}) is always at least as large as the number of requests, since to every request is given a response, even if with an empty set of answers. The number of empty response messages (i.e., response messages with an empty set of answers) can be observed by subtracting the number of response messages containing at least one answer ($R_{esp}\&A_{ns}$) from the total number of response messages R_{esp}. Finally, for some of the experiments (namely in the computation of variants 2.2 to 2.5 and 3.2 to 3.5), the number of tables generated by GEM is higher than the number of clauses (C_{lases}) and thus the number of goals defined in the global policy. This is because while in column T_{ab} we report the total number of tables generated during a computation, column C_{lases} shows the number of different clauses being evaluated. In other words, we do not count twice the clauses used for the evaluation of a goal that is reevaluated because of a side request. The reason behind this choice is that, on the one hand, we are interested in showing the impact of the number of tables generated and answers computed (A_{ns}) during the evaluation of a policy on the memory usage (T_{Mem} and $T_{ab}M_{em}$); on the other hand, considering the number of different clauses gives a better insight on the size of a policy. Therefore, we point out that the number of clauses actually evaluated during a computation is higher than the value reported in column C_{lases}, since some of those clauses are used in more than one table.

A first interesting outcome of the experiments is that the time and memory results in Table 1 increase approximately linearly with the number of loops in the global policy (Figure 10). When the number of loops is low (experiments in groups 1 and 2) the time and memory usage are negligible, but as the number of loops increases considerably (experiments group 3), the T_{Time}, T_{Mem}, and $T_{ab}M_{em}$ get substantially higher. This is because an increase in the number of loops (especially if nested, as in the global policy in Figure 9(c)), leads to an increase in the number of response messages, answers, and (since GEM reevaluates side requests) tables generated in a computation.

Another interesting result is represented by the difference between total time and computation time (Figure 10(b)). In fact, the T_{Time} ranges from 16.7 times the C_{Time} for policy variant 1.5, up to 80.1 times the C_{Time} for variant 2.1. This implies that most of the T_{Time} is devoted to network communication. In the graph in Figure 10(b), the number of messages represented on the x-axis is given by the sum of the request (R_{eq}) and response (R_{esp}) messages in Table 1; therefore, we can conclude that the larger the number of requests and response messages and the number of answers per response message, the higher the proportion between T_{Time} and C_{Time}. Furthermore, we point out that in a real distributed system where to each principal corresponds a different machine (possibly
in a different area network) the $TTime$ would be much higher than the results in Table 1, especially when the number of principals increases.

Finally, Table 1 shows that the number of answers in a computation is always larger than the number of response messages containing at least one answer; in other words, each message in $Resp\&Ans$ carries more than one answer on average. This information, combined with the observation on the difference between $TTime$ and $CTime$ displayed in Figure 10(b), suggests that GEM can consistently reduce network overhead with respect to other goal evaluation algorithms which send one message for each computed answer (e.g., (Alves et al. 2006)), especially when the number of principals and facts in the global policy increases.
Table 2. Performance Evaluation Results: Experiments Set 2

ID	Princ	Tab	Clauses	TTime (CTime) in ms	TMem in kB	TabMem (EndTabMem) in kB	Req	Loops	Resp (Resp&Ans)	Ans
1.0	4	4	6	286,1 (6,3)	32	18 (15)	5	1	9 (6)	9
1.0a	4	4	24	293,7 (13,5)	81	69 (58)	5	1	9 (6)	72
1.0b	4	4	104	334,8 (33,9)	308	300 (255)	5	1	9 (6)	352
1.0c	4	4	204	519,8 (78,8)	598	586 (498)	5	1	9 (6)	912
1.5	19	19	56	331,7 (19,8)	180	175 (108)	25	6	49 (33)	154
1.5a	19	19	144	391,6 (80,3)	1215	1210 (790)	25	6	49 (33)	1432
1.5b	19	19	624	1309,4 (817,7)	3837	3764 (3786)	25	6	49 (33)	1712
1.5c	19	19	1224	3356,3 (2986,9)	11111	11584 (1098)	25	6	49 (33)	18412
2.0	4	6	8	830,3 (10,7)	47	37 (32)	10	4	31 (17)	20
2.0a	4	6	26	843,7 (25,9)	192	184 (144)	10	4	31 (17)	200
2.0b	4	6	106	948,4 (68,0)	846	844 (631)	10	4	31 (17)	1000
2.0c	4	6	206	1441,2 (101,3)	1672	1658 (1279)	10	4	31 (17)	2000
2.5	9	36	18	1840,0 (27,2)	206	189 (159)	50	14	154 (53)	100
2.5a	9	36	36	1871,8 (58,1)	1017	916 (726)	50	14	154 (53)	1000
2.5b	9	36	116	2491,1 (259,1)	4063	4534 (3315)	50	14	154 (53)	10000
2.5c	9	36	216	3875,9 (755,2)	9225	8984 (6538)	50	14	154 (53)	100000
3.2	10	36	24	3029,0 (45,2)	454	427 (297)	64	28	309 (196)	384
3.2a	10	36	78	3142,3 (138,1)	3308	3259 (2081)	64	28	309 (196)	3840
3.2b	10	36	318	6277,3 (1889,6)	16103	15934 (10012)	64	28	309 (196)	39200
3.2c	10	36	618	13906,3 (6346,1)	31938	31883 (9968)	64	28	309 (196)	384000

Table 2. Performance Evaluation Results: Experiments Set 2

5.2 Experiments Set 2: Increasing the Size of Extensional Policies

In a real-world policy, we expect the size of the extensional policy (i.e., the number of facts that can be derived from the policy) to substantially exceed the size of the intensional policy (i.e., the number of clauses used to derive new facts). Consider, for example, the students of a university: while there are only a few rules that define the procedure for becoming a student, the number of students usually goes beyond several thousands. The goal of the experiments presented in this section is to evaluate the impact on the performance of GEM of an increase in the number of facts in a global policy. To this end, we considered some of the global policies introduced in Section 5.1 and increased the size of their extensional policies by a factor of 10, 50, and 100; in particular, we modified variants 1.0, 1.5, 2.0, 2.5, and 3.2. We could not perform experiments on variants 3.3 to 3.5 due to the limited memory available on some of the machines used in the experiments.

Table 2 shows the results of the second set of experiments. In the table, suffix “a” on a variant’s identifier indicates an increase by a factor of 10 of the number of facts in that variant of the global policy, suffix “b” indicates an increase by a factor of 50, and suffix “c” indicates an increase by a factor of 100. Notice that the number of answers (Ans) computed in the experiments on variants 1.0 and 1.5 grows less than a factor of 10, 50, and 100 because, in order not to modify the structure of the global policy, the number of facts in the (local) policies of principals mc1 to mc6 in Figure 9(a) was not increased; more precisely, the policy of principals mc1 to mc6 always consists of only two facts. Similarly to the previous experiments, the total time (TTime) and the computation time (CTime) are the average times for 100 runs of each experiment.
The results in Table 2 show that memory usage (T_{Mem} and Tab_Mem) and computation time grows faster than the other values for policies with a very large number of computed answers (i.e., variants 1.5c, 2.5c, and 3.2c). For what concerns memory usage (Figure 11(a)), the extra overhead is due to the accompanying increase of the information that needs to be stored in tables (i.e., clauses, loops, answers). After the disposal of the tables employed in the computation, there is a decrease of up to 38% of the memory usage (End_Tab_Mem). This suggests that it is very important to delete as much information as possible from the table of a goal when the goal is completely evaluated, as this leads to a substantial reduction of memory usage. In this respect, GEM has the advantage of enabling principals to detect when the evaluation of the single goals involved in a computation is completed, and immediately clean up the table of those goals.

Further to the increase in the number of exchanged messages, we believe the extra over-
head in T_{Time} and C_{Time} in computations with a large number of answers (the peaks for variants 1.5c, 2.5c, and 3.2c in Figure 11(b)) to be due to the growth of the data structures used by GEM to search, for example, for new answers and clauses to be activated. In addition, contrarily to experiments set 1, in this set of experiments the T_{Time} is not always dominated by network communication time. In particular, for variant 1.5c the C_{Time} is twice the network time, and for variant 1.5b the C_{Time} is slightly larger than the network time. In the remaining experiments the T_{Time} ranges from 2.2 times the C_{Time} for policy variant 3.2c, up to 77.7 times the C_{Time} for variant 2.0. Furthermore, we can notice that the difference between T_{Time} and C_{Time} always decreases as the number of facts in the global policy grows. This is due to the fact that the number of messages exchanged between principals remains constant while the size of the extensional policy is increased.

To conclude, we highlight again how the “wait” mechanism that GEM employs to collect a maximum set of answers before sending a response can contribute to reduce the network overhead, especially for global policies with a large extensional policy. For example, in the experiment on variant 3.2c, GEM sends “only” 196 response messages, while other distributed goal evaluation algorithms (e.g., (Alves et al. 2006)) would send 38400 messages, one for each computed answer. Intuitively, the latter approach would lead to a network communication time much higher than the 7.5 seconds spent by GEM.

6 Dealing with Negation

GEM is devised to work with definite logic programs, i.e., programs without negation. Negation is used by some trust management systems (e.g., (Czenko et al. 2006; Dong and Dulay 2010)) to express non-monotonic constraints in the body of a clause, such as separation of duty or “distrust” in principals with certain attributes (e.g., employees of a rival company). Here, we discuss how GEM can be extended to support the use of negation as failure.

Negation as failure is an inference rule that derives the truth of a negated body atom $\text{not}(B)$ by the failure to derive B. The problem when allowing the use of negation (as failure) is that in the presence of loops through negation (i.e., loops involving negated atoms) a program may have several minimal models (Gelfond and Lifschitz 1988). For instance, program $p \leftarrow \text{not}(q), q \leftarrow \text{not}(p)$ has two minimal models: $\{p\}$ and $\{q\}$. In addition, these two models are not well-founded (Van Gelder et al. 1991), as there is no clause in the program demonstrating that p respectively q are true. Another undesired consequence of loops through negation is that they may introduce “inconsistencies” in a program, as shown in the example at the end of this section. Actually, there are additional consequences of loops through negation (Apt and Bol 1994; Van Gelder et al. 1991), which we do not discuss further as they go beyond the scope of this paper. In fact, our goal here is not to have a full-fledge handling of negation, but to allow the use of negation in policies though preventing loops through negation.

Loops through negation are a very well-studied issue in the logic programming literature. There are three standard solutions to the problems they raise: (a) forbidding the presence of loops through negation, as done by the weakly perfect model semantics (Przymusinska and Przymusinski 1990), which is defined only for weakly stratified programs (that include locally stratified (Przymusinski 1988) and stratified programs (Apt et al. 1988)); (b) using
a three-valued semantics (Przymusinski 1990), including the truth value undefined next to true and false, as done, e.g., by the well-founded semantics (Van Gelder et al. 1991) and the Fitting’s semantics (Fitting 1985), where the semantics of p in the program $p ← \text{not}(p)$ is undefined; (c) following a multi-model approach, as in the case of stable models (Gelfond and Lifschitz 1988).

Our solution follows an approach similar to (a), since solutions (b) and (c) are not suitable for trust management systems. In fact, relying on a three-valued semantics (b) requires additional mechanisms to determine whether the truth value of the goals involved in a loop through negation is true, false, or undefined (e.g., delaying in SLG resolution (Chen and Warren 1996)). In trust management, however, loops through negation are inherently wrong, as they indicate conflicting policy statements issued by principals among which there is a mutual trust relationship, and thus should not be processed. Similarly, solution (c) would imply that an access request should be either granted or revoked depending on which (truth) value we “choose” to assign to the goals in a computation, which is clearly not a safe approach. Solution (a) can also not be applied straightforwardly in our context because the definition of weakly stratified program relies on a “global ordering” among all the (ground) atoms in a global policy. This would require principals to agree beforehand on the allowed dependencies among (ground) goals; however, in a trust management system principals often do not know each other until their first interaction. Therefore, rather than forbidding the presence of loops through negation, we prevent their evaluation. In this respect, the added value of GEM is its ability to detect loops at runtime. We exploit this feature by introducing an additional runtime check to the algorithm, which causes the computation to flounder if a loop involving a negated goal is detected. The check is safe in that if the computation does not flounder, then it always returns a correct answer.

In summary, GEM can be extended to allow the use of negation in policy statements as follows. Given a clause with a literal not(B) selected for evaluation:

1. if B is not ground, an error is raised and the computation flounders;
2. if the evaluation of atom B succeeds with an answer, then not(B) fails and the clause is disposed;
3. if B is completely evaluated and has no answers, then not(B) succeeds and a new node is added to the evaluation tree of the goal, removing not(B) from the body;
4. if a loop notification for atom B is received, an error is raised and the computation flounders.

Conditions (1), (2) and (3) are standard when defining negation as failure: (1) is necessary to guarantee correctness (Apt 1990), while (2) and (3) define the semantics of negation. Notice that condition (3) captures also the case of infinite failure, as done, for instance, by the well-founded semantics (Van Gelder et al. 1991). For example, given a policy composed of clauses $q ← \text{not}(p)$ and $p ← p$ and a goal q, GEM first completely evaluates clause $p ← p$ by detecting the loop and deducing that no answer of p can be derived; consequently, it concludes that q is true. Condition (4) states that the algorithm flounders if it detects a loop through negation. The “floundering message” is propagated through all the goals involved in the loop similarly to a response message, so that their evaluation is aborted.

Note that floundering due to condition (1) can be avoided by restricting to well-modeled
programs (Apt and Marchiori 1994). Differently from weakly stratified programs, which require an ordering among all the goals in a global policy, the definition of well-moded program requires each clause \emph{independently} to be well-moded. Therefore, by requiring local policies to be well-moded, this type of floundering can be prevented.

It is straightforward to demonstrate that the proposed extension of GEM:

- always terminates (for arbitrary global policies and requests), because the only difference with the standard GEM algorithm (which terminates) is the presence of an additional termination condition, and
- for non-floundering computations, it is sound and complete with respect to the stable models and well-founded semantics.

We now show how the extended algorithm deals with negation by means of an example. We consider a scenario inspired by the one introduced in Section 1, where the pharmaceutical company \(c_1\) needs to determine the set of principals participating to project \(\textit{Alpha}\).

Project \(\textit{Alpha}\) is a multidisciplinary project which requires the collaboration of experts from several fields: physicians, biologists, chemists, etc. Company \(c_1\) already formed a team of qualified chemists to work on the project, and delegates to the partner company \(c_2\) the authority of determining the remaining project members. To avoid interference with the work of its trusted chemists, however, \(c_1\) wants to prevent chemists of \(c_2\) to take part to the project. In its definition of project members, \(c_2\) includes also the members of project \(\textit{Alpha}\) at \(c_1\). This scenario can be represented by the following policy statements:

1. \(\text{memberOfAlpha}(c_1,X) \leftarrow \text{memberOfAlpha}(c_2,X), \text{not}(\text{chemist}(c_2,X))\).
2. \(\text{memberOfAlpha}(c_1,david)\).
3. \(\text{chemist}(c_1,david)\).
4. \(\text{memberOfAlpha}(c_2,X) \leftarrow \text{memberOfAlpha}(c_1,X)\).
5. \(\text{memberOfAlpha}(c_2,alice)\).
6. \(\text{chemist}(c_2,alice)\).
7. \(\text{memberOfAlpha}(c_2,eric)\).

To compute the answers of goal \(\text{memberOfAlpha}(c_1,X)\), GEM proceeds as follows. First, clause 1 is evaluated by \(c_1\), leading to a request for goal \(\text{memberOfAlpha}(c_2,X)\) to \(c_2\). The evaluation of the first applicable clause in \(c_2\)'s policy (clause 4) forms a loop, identified by \(c_1\). The loop processing phase continues at \(c_2\), which identifies the first two answers of goal \(\text{memberOfAlpha}(c_2,X)\) (i.e., \(\text{memberOfAlpha}(c_2,alice)\) and \(\text{memberOfAlpha}(c_2,eric)\), clauses 5 and 7 respectively) and sends them to \(c_1\). For each of these answers, \(c_1\) requests to \(c_2\) whether the project member is a chemist. The evaluation of goal \(\text{chemist}(c_2,alice)\) succeeds at \(c_2\) (clause 6), while goal \(\text{chemist}(c_2,eric)\) fails; therefore, their negated counterpart in clause 1 fails and succeeds respectively, leading to a new answer at \(c_1\), namely \(\text{memberOfAlpha}(c_1,eric)\). This answer, together with the answer derived by evaluating clause 2 (i.e., \(\text{memberOfAlpha}(c_1,david)\)), is sent by \(c_1\) to \(c_2\), starting the second iteration of the loop. In this iteration, \(c_2\) finds one new answer, \(\text{memberOfAlpha}(c_2,david)\), which is immediately returned to \(c_1\). Now, \(c_1\) evaluates clause 1 based on the new answer received from \(c_2\). Since David is not a chemist at \(c_2\), \(c_1\) derives again answer \(\text{memberOfAlpha}(c_1,david)\), which had already been computed in the previous iteration. As a result, the evaluation
of goal `memberOfAlpha(c1,X)` terminates with two answers: `memberOfAlpha(c1,eric)` and `memberOfAlpha(c1,david)`.

The example above shows that GEM can easily support policies including both loops and negation. We now show an example of how GEM operates in the presence of loops through negation. Consider, for instance, the following policy statements complementing the global policy above:

8. `chemist(c2,X) ←memberOfAlpha(c1,X), chemist(c3,X)`.
9. `chemist(c3,eric)`.

Clause 8 states that all the members of project Alpha at c1 that work as chemists at the other partner company c3 are also chemists at c2. Notice that this clause is “inconsistent” with clause 1. In fact, clause 1 defines as members of project Alpha principals that are not chemists at company c2; at the same time, clause 8 states that chemists at c2 are members of project Alpha at c1. For this reason, when c1 ascertains that goals `memberOfAlpha(c1,eric)` and `chemist(c2,eric)` are in a loop, it raises an error and the computation flounders. In fact, in the example computation above, the evaluation of goal `chemist(c2,eric)` by c2 would lead to a contradiction: if Eric were not a chemist at c2, he would be a member of project Alpha; however, if Eric were a member of project Alpha, he would be a chemist at c2.

7 Related Work

Research on goal evaluation has been carried out both in the field of logic programming and trust management. In this section we compare our work with existing frameworks focusing on the information disclosed during the evaluation process, i.e., based on the classification criteria defined in Section 3.1. Additionally, we indicate whether the analyzed systems employ a centralized or distributed goal evaluation strategy and discuss the termination detection mechanism they adopt. Within termination detection, we distinguish between termination of the whole computation initiated by a particular request and termination of the single goals involved in the computation (i.e., detecting when a goal is completely evaluated). Table 3 summarizes the results of this analysis. In the table, LP denotes the algorithms proposed in the logic programming domain, while TM denotes trust management systems.

SLG resolution (Chen and Warren 1996), TP-resolution (Shen et al. 2001), DRA (Guo and Gupta 2001), OPTYap (Rocha et al. 2005), and the work by Hulin (1989) are centralized tabling systems in which the complete program (i.e., the global policy) is available during the evaluation. Therefore, these five systems are classified as E1-I3 according to the classification criteria defined in Section 3.1, that is, they do not preserve the confidentiality of neither extensional nor intensional policies. SLG identifies loops by observing goal dependencies in the “call stack” of the program; termination is detected when no more operations can be applied to the goals in the stack. SLG resolution is employed in a number of Prolog systems such as, for instance, XSB (Swift and Warren 2012). The evaluation strategy employed by GEM is similar to the XSB scheduling strategy called local evaluation, which completely evaluates a SCC before returning the answers of the leader to a goal
outside the SCC. Similarly to SLD resolution (Kowalski 1974), in TP-resolution and DRA a goal is evaluated by building a single derivation tree for the goal. Loops are detected when a subgoal appears more than once in a branch of the tree, and the evaluation of a goal terminates when there are no more nodes in the derivation tree to be evaluated. OPTYap and Hulin propose a parallel tabled execution strategy to improve the efficiency of goal evaluation. OPTYap resorts to centralized data structures to identify loops and detect termination. In (Hulin 1989), each process communicates its termination to a global variable, whose access is limited to one process at a time by means of a deadlock mechanism.

Distributed goal evaluation frameworks are presented in (Hu 1997) and (Damásio 2000). To detect termination, the work by Hu (1997) assumes the presence of global data structures and requires goal dependencies to be propagated among the different principals. In (Damásio 2000), termination detection resorts to a static dependency graph known to all principals and determined at compile time. Consequently, the confidentiality of (part of) the intensional policies is not preserved, and both algorithms are classified as E1-I2.

In trust management, distributed goal evaluation is a main issue since policies are distributed among principals. The trust management frameworks RT (Li et al. 2003) and Tulip (Czenko and Etalle 2007) rely on a centralized goal evaluation strategy, where all the clauses necessary for the evaluation of a goal are collected in a single location. Similarly, SecPAL (Becker et al. 2010) assumes all the clauses in a global policy to be available to the principal responsible for the evaluation of a goal. In SD3 (Jim and Suciu 2001), when queried for a goal, a principal returns to the requester the clauses defining the goal, with the locally defined (body) atoms already evaluated. Becker et al. (2009) present an algorithm in which the body atoms of the clauses defining a goal are sent in turn to the principals defining them; each principal evaluates the atom(s) defined in her policy and sends its answers and the remaining atoms to the next principal, until the evaluation fails or all the atoms are evaluated. As a result, policy confidentiality is not preserved by any of

Frameworks	Evaluation	Computation Termination	Goal Termination	Classification
SLG (Chen and Warren 1996)	centralized	centralized	centralized	E1-I3
TP resolution (Shen et al. 2001)	centralized	centralized	centralized	E1-I3
DRA (Guo and Gupta 2001)	centralized	centralized	centralized	E1-I3
OPTYap (Rocha et al. 2005)	centralized	centralized	centralized	E1-I3
Hulin (1989)	centralized	centralized	centralized	E1-I3
Damaso (2000)	distributed	distributed	distributed	E1-I2
Hu (1997)	distributed	distributed	distributed	E1-I2
RT (Li et al. 2003)	centralized	centralized	centralized	E1-I3
Tulip (Czenko and Etalle 2007)	centralized	centralized	centralized	E1-I3
SecPAL (Becker et al. 2010)	centralized	centralized	centralized	E1-I3
SD3 (Jim and Suciu 2001)	distributed	N/A	N/A	E1-I3
Becker et al. (2009)	distributed	N/A	N/A	E1-I3
Cassandra (Becker 2005)	distributed	no	no	E1-I0
PeerTrust (Alves et al. 2006)	distributed	distributed	no	E1-I1
MTN (Zhang and Winslett 2008)	distributed	distributed	distributed	E1-I2
GEM	distributed	distributed	distributed	E1-I1

Table 3. Comparison Between Goal Evaluation Algorithms
these algorithms, which are thus classified as E1-I3. Furthermore, neither Jim and Suciu
(2001) nor Becker et al. (2009) discuss how termination is detected. Cassandra (Becker
2005) employs a distributed evaluation strategy in which no information about intensional
policies is disclosed. However, it does not detect neither the complete evaluation of single
goals, nor the termination of the whole computation.

PeerTrust (Alves et al. 2006) and MTN (Zhang and Winslett 2008) detect termination of
the computation started by a particular request in a fully distributed way; this is achieved by
“observing” when no more messages are exchanged among principals and all the goals are
quiescent. In (Alves et al. 2006), the authors present two solutions: the first, based on the
work in (Damásio 2000), is also able to detect the completion of single goals, but requires
the dependency graph of the global policy to be known to all principals beforehand. The
second solution, which is also adopted in (Zhang and Winslett 2008), detects termination
of the computation without disclosing information about intensional policies. However,
since all request and response messages are tagged with the identifier of the initial request,
some information about goal dependencies can be inferred (hence the E1-I1 classification);
more precisely, a principal can learn whether a given goal depends on a goal defined in her
policy. In addition, neither PeerTrust nor MTN features a loop identification mechanism.
Consequently, they are not able to detect termination of individual goals, which is required
to free the resources used during the computation and to allow the use of negation. Fur-
thermore, when using negation, the detection of loops through negation allows to preserve
the soundness and completeness of the computation with respect to the standard seman-
tics for logic programs. We enable the identification of loops and the detection of goal
termination at the cost of possibly revealing more information about goal dependencies. In
fact, in GEM all the principals involved in a loop are notified about the loop: on the one
hand, this enables the principal(s) handling negated goals to terminate the computation
with floundering. On the other hand, this implies that GEM discloses information about
the presence of mutual dependencies among goals to more principals than PeerTrust and
MTN. In the example in Section 4.2, for instance, with PeerTrust and MTN the research
institute ri would not receive any loop notification from company c_2; therefore, ri would
not learn that there exists a mutual dependency between goals $memberOfAlpha(ri,X)$ and
$memberOfAlpha(c_2,X)$.

Besides the protection of intensional policies, preserving the confidentiality of exten-
sional policies is also an important requirement of trust management systems, as the an-
swers of a goal might contain sensitive information (e.g., the list of patients of a mental
hospital). Even though none of the existing goal evaluation algorithms satisfies this re-
quirement (see Table 3), GEM can be easily adapted to protect the confidentiality of ex-
tensional policies. In particular, by enabling the distributed evaluation of policies, GEM
allows principals to discriminate between goals that may be accessed by other principals
and goals that may only be used for internal computations, because of their sensitivity. This
distinction is not possible when using an algorithm that relies on a centralized evaluation
strategy. A finer-grained protection of extensional policies can be achieved by integrating
GEM with trust negotiation algorithms (Winsborough et al. 2000; Winslett 2003). Trust
negotiation algorithms protect the disclosure of extensional policies (i.e., possibly sensi-
tive credentials) by means of disclosure policies that specify which credentials a requester
must provide to get access to the requested credentials. Some trust negotiation algorithms
deal also with the protection of disclosure policies (e.g., (Seamons et al. 2001)); however, they assume that all the credentials of the principals in a trust management system have been already derived when a transaction takes place (Winsborough and Li 2002). GEM, on the other hand, provides a way of deriving those credentials. Thus, GEM and trust negotiation algorithms can be combined in such a way that a GEM request is evaluated only if the requester satisfies the disclosure policy of that goal, i.e., if she is trustworthy enough to see the answers to the request. The resulting integrated algorithm enables distributed goal evaluation while preserving the confidentiality of both intensional and extensional policies. A similar approach is presented in (Koshutanski and Massacci 2008; Lee et al. 2009). However, in (Koshutanski and Massacci 2008) the authors do not discuss how to deal with recursive policy statements, while the algorithm presented in (Lee et al. 2009) raises an error in the case that cyclic dependencies are detected, and for this reason is not complete. MTN (Zhang and Winslett 2008) also applies trust negotiation strategies to distributed goal evaluation, but as discussed in Section 7 this algorithm is not able to detect termination of individual goals within a computation. In (Minami et al. 2011), the authors present a framework to analyze and compare distributed goal evaluation algorithms based on the information about extensional policies that they disclose during a computation.

To conclude, we point out that contrarily to other works on goal evaluation (e.g., (Lee et al. 2010)), the distributed evaluation strategy of GEM does not allow to build the complete “proof” of a goal. Building such a proof is in fact similar to constructing the derivation tree of a goal having as root the initial goal, as branches the clauses used to evaluate the goal, and as leaf nodes the answers of its subgoals. Even though cryptographic techniques can be employed to prevent the disclosure of the facts used in the derivation process (Lee et al. 2009), the construction of such a proof cannot be obtained without disclosing the intensional policies of the principals involved in the evaluation, which is what GEM aims at avoiding. We argue that the approach followed by GEM is consistent with the concept of trust management. In trust management, in fact, if the policy of a principal \(a\) refers to the policy statements of a principal \(b\), then principal \(a\) trusts \(b\) for the definition and evaluation of those statements. In circumstances where the proof of a goal is required, the confidentiality requirement should be put aside in favor of a goal evaluation strategy that allows the construction of such a proof (e.g., RT (Li et al. 2003)).

8 Conclusions

In this paper we have presented GEM, a distributed goal evaluation algorithm for trust management systems. Differently from many of the existing algorithms, GEM detects the termination of a computation in a completely distributed way without disclosing intensional policies, thereby preserving their confidentiality. In addition, GEM is able to detect when the single goals within a computation are fully evaluated, by enabling the identification of strongly connected components. Even though this may lead to the disclosure of some additional information about goal dependencies, it also enables the use of negation (as failure) in policies. In Section 4.2 we show that the information disclosed by GEM is not sufficient to infer the intensional policy of a principal; thus, we believe that the benefits of our solution overcome the drawbacks. GEM always terminates and is sound and com-
plete with respect to the standard semantics for logic programs. As future work, we plan to extend GEM to support constraint rules (Li and Mitchell 2003) and subsumptive tabling.

Although efficiency is not a primary objective of this paper, GEM can contribute to keep network traffic low. In fact, in most distributed goal evaluation systems (e.g., (Alves et al. 2006)) answers are sent as soon as they are computed. On the contrary, GEM delays the communication of the answers of a goal until all possible answers have been computed, i.e., until all the branches of the partial derivation tree of the goal have been inspected. This strategy may delay the identification of the answers of ground goals. However, it simplifies the termination detection mechanism and we believe reduces the number of messages exchanged by principals during a computation. The experiments presented in Section 5 suggest that since the computation time is dominated by network communication, a reduction in the number of messages exchanged between principals leads to a consistently lower computation time. In addition, since the answers of a goal can be reused for future computations, the proposed solution may reduce the computation time of later evaluations.

Based on the results of the experiments presented in Section 5, we can conclude that GEM performs well both in terms of computation time and memory occupation even for very large global policies. To confirm this conviction, we have employed GEM in some prototype of real-world distributed systems in the maritime safety and security (Trivellato et al. 2011) and employability (Böhmer et al. 2010) domains. In addition, we are currently designing an advanced version of GEM that implements an “early loop detection” strategy to avoid the reevaluation of side requests. Finally, since the policy language proposed in this paper can be used to represent the semantics of several existing trust management languages (e.g., RT (Li et al. 2003) and PeerTrust (Alves et al. 2006)), we point out that GEM can be used to evaluate goals over policies expressed in any of those languages.

Acknowledgements

This work has been carried out as part of the POSEIDON project under the responsibility of the Embedded Systems Institute (ESI). This project is partially supported by the Dutch Ministry of Economic Affairs under the BSIK03021 program. This work has been also funded by the EU-IST-IP-216287 TAS3 project.

References

The Friend of a Friend (FOAF) project. http://www.foaf-project.org/.

Alves, M., Damasio, C. V., Neidt, W., and Olmedilla, D. 2006. A Distributed Tabling Algorithm for Rule Based Policy Systems. In Proceedings of the 7th IEEE International Workshop on Policies for Distributed Systems and Networks, POLICY’06. IEEE Computer Society, Washington, DC, USA, 123–132.

APT, K. R. 1990. Logic programming. In Handbook of theoretical computer science (vol. B): formal models and semantics. MIT Press, Cambridge, MA, USA, 493–574.

APT, K. R., Blair, H. A., and Walker, A. 1988. Towards a theory of declarative knowledge. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 89–148.

APT, K. R. and Bol, R. N. 1994. Logic programming and negation: A survey. Journal of Logic Programming 19/20, 9–71.

APT, K. R. and Marchiori, E. 1994. Reasoning about Prolog programs: from Modes through Types to Assertions. Formal Aspects of Computing 6, 6A, 743–765.
BECKER, M. Y. 2005. Cassandra: flexible trust management and its application to electronic health records. Ph.D. thesis, Computer Laboratory, University of Cambridge, UK.

BECKER, M. Y., FOURNET, C., AND GORDON, A. D. 2010. SecPAL: Design and semantics of a decentralized authorization language. *Journal of Computer Security* 18, 619–665.

BECKER, M. Y., MACKAY, J. F., AND DILLAWAY, B. 2009. Abductive Authorization Credential Gathering. In *Proceedings of the 10th IEEE international conference on Policies for distributed systems and networks, POLICY’09*. IEEE Press, Piscataway, NJ, USA, 1–8.

BLAZE, M., FEIDENBAUM, J., AND LACY, J. 1996. Decentralized Trust Management. In *Proceedings of the 1996 IEEE Symposium on Security and Privacy, SP’96*. IEEE Computer Society, 164–173.

BÖHM, K., ETALLE, S., DEN HARTOG, J., HÜTTER, C., TRABELSI, S., TRIVEL LATO, D., AND ZANNONE, N. 2010. Flexible Architecture for Privacy-Aware Trust Management. *Journal of Theoretical and Applied Electronic Commerce Research* 5, 77–96.

BRADSHAW, R. W., HOLT, J. E., AND SEAMONS, K. E. 2004. Concealing complex policies with hidden credentials. In *Proceedings of the 11th ACM conference on Computer and Communications Security, CCS’04*. ACM, New York, NY, USA, 146–157.

BRY, F. 1989. Query Evaluation in Recursive Databases: Bottom-up and Top-down Reconciled. In *Proceedings of the First International Conference on Deductive and Object-Oriented Databases, DOOD’89*. North-Holland/Elsevier Science Publishers, 25–44.

CHEN, W. AND WARREN, D. S. 1996. Tabled Evaluation With Delaying for General Logic Programs. *Journal of the ACM* 43, 1 (January), 20–74.

CHEN, Y. 1997. Magic sets and stratified databases. *International Journal of Intelligent Systems* 12, 3, 203–231.

COSTANTINI, S. 2001. Comparing different graph representations of logic programs under the Answer Set semantics. In *Proceedings of the 1st International Workshop on Answer Set Programming, ASP’01*. AAAI Press.

CZENKO, M. AND ETALLE, S. 2007. Core TuLiP logic programming for trust management. In *Proceedings of the 23rd international conference on Logic programming, ICLP’07*. LNCS, vol. 4670. Springer-Verlag, Berlin, Heidelberg, 380–394.

CZENKO, M., TRAN, H., DOUMEN, J., ETALLE, S., HAU, P., AND DEN HARTOG, J. 2006. Nonmonotonic Trust Management for P2P Applications. *Electronic Notes in Theoretical Computer Science* 157, 3 (May), 113–130.

DAMÁSIO, C. V. 2000. A Distributed Tabling System. In *Proceedings of the 2nd Conference on Tabulation in Parsing and Deduction, TAPD’00*. 65–75.

DI MARZO SERUGENDO, G., FOUKIA, N., HASSAS, S., KARAGEORGOS, A., MOSTÉFAOU, S. K., RANA, O. F., ULIERU, M., VALCKENAERS, P., AND VAN AART, C. 2004. Self-Organisation: Paradigms and Applications. *Engineering Self-Organising Systems 2977*, 1–19.

DONG, C. AND DULAY, N. 2010. Shinren: Non-monotonic Trust Management for Distributed Systems. In *Proceedings of the 4th IFIP WG 11.11 International Conference on Trust Management, IFIP’10*. IFIP, vol. 321. Springer Boston, 125–140.

ELLISON, C., FRANTZ, B., LAMPSON, B., RIVEST, R., THOMAS, B., AND YLonen, T. 1999. SPKI Certificate Theory.

FITTING, M. 1985. A Kripke-Kleene-semantics for general logic programs. *Journal of Logic Programming* 2, 4, 295–312.

FRITKEN, K., ATALLAH, M., AND LI, J. 2006. Attribute-Based Access Control with Hidden Policies and Hidden Credentials. *IEEE Transactions on Computers* 55, 1259–1270.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In *Proceedings of the 5th International Conference and Symposium on Logic Programming, ICLP’88*. MIT Press, 1070–1080.
GUO, H.-F. AND GUPTA, G. 2001. A Simple Scheme for Implementing Tabled Logic Programming Systems Based on Dynamic Reordering of Alternatives. In Proceedings of the 17th International Conference on Logic Programming, ICLP ’01. Springer-Verlag, London, UK, UK, 181–196.

HOCH, J. AND SHAMIR, A. 2008. On the Strength of the Concatenated Hash Combiner When All the Hash Functions Are Weak. In Automata, Languages and Programming, LNCS, vol. 5126. Springer-Verlag, Berlin, Heidelberg, 616–630.

HU, R. 1997. Efficient tabled evaluation of normal logic programs in a distributed environment. Ph.D. thesis, State University of New York at Stony Brook.

HULIN, G. 1989. Parallel processing of recursive queries in distributed architectures. In Proceedings of the 15th international conference on Very large data bases, VLDB ’89. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 87–96.

JIM, T. AND SUCIU, D. 2001. Dynamically distributed query evaluation. In Proceedings of the 20th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of database systems, PODS ’01. ACM, New York, NY, USA, 28–39.

KOSHUTANSKI, H. AND MASSACCI, F. 2008. Interactive access control for autonomic systems: From theory to implementation. ACM Transactions on Autonomous and Adaptive Systems 3, 3 (August), 1–31.

KOWALSKI, R. 1974. Predicate logic as a programming language. Information Processing 74, 556–574.

LEE, A. J., MINAMI, K., AND BORISOV, N. 2009. Confidentiality-preserving distributed proofs of conjunctive queries. In Proceedings of the 4th International Symposium on Information, Computer, and Communications Security, ASIACCS’09. ACM, New York, NY, USA, 287–297.

LEE, A. J., MINAMI, K., AND WINSLETT, M. 2010. On the Consistency of Distributed Proofs with Hidden Subtrees. ACM Transactions on Information and System Security 13, 3 (July), 1–32.

LEUSCHEL, M., MARTENS, B., AND SAGONAS, K. 1998. Preserving Termination of Tabled Logic Programs While Unfolding. In Proceedings of the 7th International Workshop on Logic Program Synthesis and Transformation, LOPSTR ’98. LNCS, vol. 1463. Springer-Verlag, Berlin, 189–205.

LI, N. AND MITCHELL, J. C. 2003. Datalog with Constraints: A Foundation for Trust Management Languages. In Proceedings of the 5th International Symposium on Practical Aspects of Declarative Languages, PADL ’03. LNCS, vol. 2562. Springer-Verlag, London, UK, UK, 58–73.

LI, N., WINSBOROUGH, W. H., AND MITCHELL, J. C. 2003. Distributed credential chain discovery in trust management. Journal of Computer Security 11, 1 (February), 35–86.

MINAMI, K., BORISOV, N., WINSLETT, M., AND LEE, A. J. 2011. Confidentiality-preserving proof theories for distributed proof systems. In Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ASIACCS ’11. ACM, New York, NY, USA, 145–154.

PARK, D. 1969. Fixpoint induction and proofs of program properties. Machine Intelligence 5, 59–78.

PRZYMUSINSKA, H. AND PRZYMUSINSKI, T. C. 1990. Weakly stratified logic programs. Fundamenta Informaticae 13, 1, 51–65.

PRZYMUSINSKI, T. 1990. The Well-Founded Semantics Coincides with Three-Valued Stable Semantics. Fundamenta Informaticae 13, 4, 445–463.

PRZYMUSINSKI, T. C. 1988. On the declarative semantics of deductive databases and logic programs. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 193–216.

RAMAKRISHNAN, R. 1991. Magic templates: a spellbinding approach to logic programs. Journal of Logic Programming 11, 189–216.

ROCHA, R., SILVA, F., AND COSTA, V. S. 2005. On applying or-parallelism and tabling to logic programs. Theory and Practice of Logic Programming 5, 1-2, 161–205.

SEAMONS, K. E., WINSLETT, M., AND YU, T. 2001. Limiting the Disclosure of Access Control Policies during Automated Trust Negotiation. In Proceedings of the Network and Distributed System Security Symposium, NDSS ’01. The Internet Society.
Appendix A Example

In this section we show how GEM computes the answers of a goal using the procedures presented in Section 3.3. As an example global policy, we use a fragment of the policy introduced in Section 1. In particular, we consider the following policy statements:

1. `memberOfAlpha(c1,X) ← projectPartner(mc,Y), memberOfAlpha(Y,X).`
2. `projectPartner(mc,c2).`
3. `projectPartner(mc,c3).`
4. `memberOfAlpha(c2,X) ← memberOfAlpha(c1,X).`
5. `memberOfAlpha(c2,alice).`
6. `memberOfAlpha(c3,bob).`
The call graph of the global policy is shown in Figure A 1. We illustrate the computation for an initial request \((h_1,h,\text{memberOfAlpha}(c_1,X))\) from hospital \(h\) to company \(c_1\). Table A 1 shows the list of all procedure calls made by GEM to produce the response to the initial request. The first column of the table indicates the order in which the calls are made; the second column denotes the principal and location where each procedure is evaluated. GEM computes the answers of goal \(\text{memberOfAlpha}(c_1,X)\) by making 53 procedure calls; the number of messages exchanged between different principals, however, is only 14, consisting of 5 request messages and 9 response messages (including the initial request and its response). Next, we present and discuss some “screenshots” showing the status of the computation at various stages.

When principal \(c_1\) receives the request for goal \(\text{memberOfAlpha}(c_1,X)\) from \(h\), it calls procedure \textsc{Process Request} (Algorithm 1 in Section 3.3) that initializes the table of the goal. Table A 2 shows the table of \(\text{memberOfAlpha}(c_1,X)\) resulting from the execution of \textsc{Process Request} on the initial request. The table field \(HR\) (higher request) is set to the initial request, and the evaluation tree of the goal, \(Tree\), is initialized by adding to the root node a subnode representing the only clause in \(c_1\)’s local policy applicable to the goal, i.e., clause 1. The node status is set to \(\text{new}\), and the node identifier is obtained by concatenating the request identifier \(h_1\) with string \(c_1\). To keep the representation more compact, in Table A 2 and in the other tables presented in this section the evaluation tree of a goal is represented as a list of nodes rather than as the structure defined in Section 3.3.

In order to compute the list of project members, \(c_1\) needs to first retrieve from \(mc\) the list of partner companies in the project, and then for each of these companies the list of its project members. Table A 3 shows the status of the computation after goal \(\text{projectPartner}(mc,Y)\) has been completely evaluated by \(mc\) (procedure calls 2 to 7 in Table A 1), i.e., after the set of project partners has been computed. The request for goal \(\text{projectPartner}(mc,Y)\) from \(c_1\) to \(mc\) is generated by the activation of node \(h_1c_1\) in \(c_1\)’s table (procedure call 2, \textsc{Activate Node}), which results in a change of status from \(\text{new}\) to \(\text{active}\) of both the root node and the node itself. Similarly to \(c_1\), when \(mc\) receives the request it creates the table of the goal (call 3 in Table A 1), setting \(HR\) to the higher request and initializing \(Tree\) with clauses 2 and 3 of the global policy presented above. Two calls to procedure \textsc{Activate Node} (calls 4 and 5) lead to the identification of two answers of the goal, namely \(\text{projectPartner}(mc,c_2)\) and \(\text{projectPartner}(mc,c_3)\), which are added to \(\text{AnsSet}\) with an empty list of request identifiers. At the next call to \textsc{Activate Node} (call 6), the evaluation tree of goal \(\text{projectPartner}(mc,Y)\) has no more nodes to activate (i.e., all the branches of the evaluation tree have been inspected) and procedure \textsc{Generate-}
GEM: a Distributed Goal Evaluation Algorithm

Call	Principal	Procedure
1	c1	PROCESS REQUEST((h1,h,memberOfAlpha(c1,X)))
2	c1	ACTIVATE NODE(memberOfAlpha(c1,X))
3	mc	PROCESS REQUEST((h1,c1,c1,projectPartner(mc,Y)))
4	mc	ACTIVATE NODE(projectPartner(mc,Y))
5	mc	ACTIVATE NODE(projectPartner(mc,Y))
6	mc	ACTIVATE RESPONSE(projectPartner(mc,Y))
7	mc	GENERATE RESPONSE(projectPartner(mc,Y))
8	mc	TERMINATE(projectPartner(mc,Y))
9	mc	SEND RESPONSE((h1,c1,c1,projectPartner(mc,Y)),disposed,\{\})
10	c1	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),projectPartner(mc,c3),disposed,\{\})
11	c1	ACTIVATE NODE(memberOfAlpha(c1,X))
12	c1	PROCESS REQUEST((h1,c1,c2,c1,memberOfAlpha(c1,X)))
13	c1	ACTIVATE NODE(memberOfAlpha(c2,X))
14	c1	GENERATE RESPONSE(memberOfAlpha(c2,X))
15	c1	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),active,\{h1\})
16	c2	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),active,\{h1\})
17	c2	ACTIVATE NODE(memberOfAlpha(c2,X))
18	c2	ACTIVATE NODE(memberOfAlpha(c2,X))
19	c2	GENERATE RESPONSE(memberOfAlpha(c2,X))
20	c2	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),active,\{h1\})
21	c1	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),active,\{h1\})
22	c1	ACTIVATE NODE(memberOfAlpha(c1,X))
23	c3	PROCESS REQUEST((h1,c1,c2,c1,memberOfAlpha(c1,X)),active,\{h1\})
24	c3	ACTIVATE NODE(memberOfAlpha(c3,X))
25	c3	ACTIVATE NODE(memberOfAlpha(c3,X))
26	c3	GENERATE RESPONSE(memberOfAlpha(c3,X))
27	c3	TERMINATE(memberOfAlpha(c3,X))
28	c3	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c3,X)),disposed,\{\})
29	c1	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c3,X)),disposed,\{\})
30	c1	ACTIVATE NODE(memberOfAlpha(c1,X))
31	c1	ACTIVATE NODE(memberOfAlpha(c1,X))
32	c1	GENERATE RESPONSE(memberOfAlpha(c1,X))
33	c1	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),loop(h1),\{\})
34	c2	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),loop(h1),\{\})
35	c2	ACTIVATE NODE(memberOfAlpha(c2,X))
36	c2	ACTIVATE NODE(memberOfAlpha(c2,X))
37	c2	GENERATE RESPONSE(memberOfAlpha(c2,X))
38	c2	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c2,X)),loop(h1),\{\})
39	c2	ACTIVATE NODE(memberOfAlpha(c1,X))
40	c2	ACTIVATE NODE(memberOfAlpha(c1,X))
41	c2	GENERATE RESPONSE(memberOfAlpha(c1,X))
42	c2	TERMINATE(memberOfAlpha(c1,X))
43	c1	SEND RESPONSE((h1,h,memberOfAlpha(c1,X)),disposed,\{\})
44	c1	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),disposed,\{\})
45	c2	PROCESS RESPONSE((h1,c1,c2,c1,memberOfAlpha(c1,X)),disposed,\{\})
46	c2	ACTIVATE NODE(memberOfAlpha(c2,X))
47	c2	GENERATE RESPONSE(memberOfAlpha(c2,X))
48	c2	TERMINATE(memberOfAlpha(c2,X))
49	c2	SEND RESPONSE((h1,c1,c2,c1,memberOfAlpha(c2,X)),disposed,\{\})
50	c1	PROCESS REQUEST((h1,c1,c2,c1,memberOfAlpha(c1,X)),disposed,\{\})

Table A 1. Procedure Call Stack For the Example Global Policy

After the termination of the main thread (call 49), the processing of the remaining threads is necessary. In particular, since the goal is not involved in any loop, its evaluation
Table A 2. Status of the Computation After Procedure Call 1 in Table A 1

| Principal c1 |
|--------------|---|
| HR | \(\{ (h_1, h_{\leftarrow \text{memberOfAlpha}(c_1, X))} \} \) |
| LR | \{ \} |
| ActiveGoals | \{ \} |
| AnsSet | \{ \} |
| Tree | \(\{ \text{memberOfAlpha}(c_1, X) \leftarrow \text{memberOfAlpha}(c_1, X), \text{new} \} \) |
| | \(\{ \text{memberOfAlpha}(c_1, X) \leftarrow \text{projectPartner}(mc, Y), \text{memberOfAlpha}(Y, X), \text{new} \} \) |

Table A 3. Status of the Computation After Procedure Call 7 in Table A 1

| Principal mc |
|--------------|---|
| HR | \(\{ (h_{1c_1}, c_{1}, \leftarrow \text{projectPartner}(mc, Y)) \} \) |
| LR | \{ \} |
| ActiveGoals | \{ \} |
| AnsSet | \(\{ \{ \text{projectPartner}(mc, c_2), \{ \} \}, \{ \text{projectPartner}(mc, c_3), \{ \} \} \} \) |
| Tree | \(\{ \text{memberOfAlpha}(c_1, X) \leftarrow \text{memberOfAlpha}(c_1, X), \text{active} \} \) |
| | \(\{ \text{memberOfAlpha}(c_1, X) \leftarrow \text{projectPartner}(mc, Y), \text{memberOfAlpha}(Y, X), \text{active} \} \) |

is completed and procedure TERMINATE is executed next (line 3 of Algorithm 6 in Section 3.3).

As a result of the execution of procedure TERMINATE, the root node of the evaluation tree of goal \(\text{projectPartner}(mc, Y) \) is disposed and the answers identified are sent to \(c_1 \) through procedure SEND RESPONSE (procedure call 9, results shown in Table A 4). The response message received by \(c_1 \) is processed by procedure PROCESS RESPONSE; the message contains the two answers \(\{ \text{projectPartner}(mc, c_2), \{ \} \}, \{ \text{projectPartner}(mc, c_3), \{ \} \} \) and an empty set of loop identifiers, and has status \text{disposed}, indicating that no more answers of goal \(\text{projectPartner}(mc, Y) \) will be received. The evaluation tree of goal \(\text{memberOfAlpha}(c_1, X) \) is updated by adding two subnodes to node \(h_{1c_1} \), one for each project partner (see \(c_1 \)'s table in Table A 4).

The activation of node \(h_{1c_1} \) by \(c_1 \) leads to the request for goal \(\text{memberOfAlpha}(c_2, X) \) to \(c_2 \). Accordingly, \(c_2 \) creates a table for the goal; the evaluation tree of the goal consists of three nodes: the root node and two subnodes, representing clauses 4 and 5 of the global pol-
Table A.4. Status of the Computation After Procedure Call 15 in Table A.1

icy, with identifiers \(h_{1c12c21} \) and \(h_{1c12c22} \) respectively. The activation of node \(h_{1c12c21} \) by \(c2 \), in turn, leads to a request for goal \(memberOfAlpha(c1,X) \) to \(c1 \), forming a loop. The loop is identified by \(c1 \) in procedure \(PROCESS REQUEST \) (call 14 in Table A.1): in fact, the identifier of the higher request for \(memberOfAlpha(c1,X) \) (\(h_1 \)) is a prefix of the identifier of \(c2 \)’s request (\(h_{1c12c21} \)). Therefore, the lower request is added by \(c1 \) to set \(LR \), and a response is sent from \(c1 \) to \(c2 \) with a notification of loop \(h_1 \) (call 15).

The loop notification sent from \(c1 \) to \(c2 \) starts the loop processing phase, which involves procedure calls from 16 to 34 in Table A.1. The results of the loop processing phase are shown in Table A.5. Upon receiving the loop notification, \(c2 \) sets the status of the node whose evaluation formed the loop to \(loop(h_1) \) and “freezes” its evaluation; then, it proceeds with the evaluation of the other nodes of the evaluation tree. The activation of node \(h_{1c12c22} \) (procedure call 17), in particular, leads to the first answer of the goal, i.e., \(memberOfAlpha(c2,alice) \). Since at this point there are no more nodes to be activated, the computed answer can be sent to \(c1 \) with a notification about the loop.
Table A.5. Status of the Computation After Procedure Call 34 in Table A.1

Before sending the answer, \(c_2 \) sets the counter in \(ActiveGoals \) to 1 (procedure GENERATE RESPONSE, call 19) and adds the identifier of \(HR \) to the set of recipients of answer \(memberOfAlpha(c_2,alice) \) in \(AnsSet \) (procedure SEND RESPONSE, call 20).

The loop is now processed at \(c_1 \). After adding a subnode to the evaluation tree of goal \(memberOfAlpha(c_1,X) \) for the answer received from \(c_2 \), \(c_1 \) freezes node \(h_1c_1 \) and
starts the evaluation of node h_1c_3 (procedure call 22). This results in a request from c_1 to c_3 for the evaluation of goal $memberOfAlpha(c_3,X)$. The only clause applicable to $memberOfAlpha(c_3,X)$ (clause 6 of the global policy) is a fact; therefore, the goal is completely evaluated after one call to procedure ACTIVATE NODE (call 24). The answer of the goal, $memberOfAlpha(c_3,bob)$, is returned to c_1 (procedure call 28). Since the status of the response message is disposed, c_1 disposes node h_1c_3 and adds subnode h_1c_{15} to it reflecting the answer received from c_3 (procedure PROCESS RESPONSE, call 29). The next two executions of procedure ACTIVATE NODE at c_1 lead to the identification of two answers of goal $memberOfAlpha(c_1,X)$, namely $memberOfAlpha(c_1,alice)$ and $memberOfAlpha(c_1,bob)$. Before returning these answers to the requester of HR (i.e., h), however, all the loops need to be fully processed. For this reason, c_1 sends the two answers to c_2 in response to LR first; the status of the response message is $loop(h_1)$, and the status of the root node of the evaluation tree in c_1’s table is changed accordingly (procedure calls 33 and 34 in Table A.1).

Now, the second iteration of the loop processing phase starts (procedure calls 35-44). In this second iteration, c_2 identifies a new answer of its goal, i.e., $memberOfAlpha(c_2,bob)$, which is sent back to c_1. This answer, however, does not lead to new answers at c_1. Since h_1 is the only loop in the SCC (and hence $memberOfAlpha(c_1,X)$ is the leader of the SCC), and no new answers of $memberOfAlpha(c_1,X)$ have been computed, the loop termination phase can start (line 15 of Algorithm 6 in Section 3.3). In this phase, c_1 sends a response message with status disposed to both c_2 (the other principal in the loop) and h (to which also the answers are sent). Upon receiving this message, c_2 disposes all the nodes in the evaluation tree of $memberOfAlpha(c_2,X)$ that are involved in some loop (procedure PROCESS RESPONSE), and forwards the message back to c_1 (calls 51 and 52). c_1 simply ignores the message, as the status of the root node of the evaluation tree of $memberOfAlpha(c_1,X)$ is already disposed (line 4 of Algorithm 5 in Section 3.3), and the computation terminates. Table A.6 shows the status of the tables of all the goals at the end of the computation.
Table A 6. Final Status of the Computation for the Example Global Policy