Wavelet neural network sliding mode control of two rigid joint robot manipulator

Hatem Tlijani1, Ameni Jouila2 and Khaled Nouri3

Abstract
To solve the problems of low accuracy and poor stability due to uncertainties, external disturbances and unknown load, which exist in the position control of rigid joint robot manipulator; this article is to propose Non-Singular Fast Terminal Sliding Mode Control strategy with Wavelet neural networks observer (NSFTSMCW). The wavelet observer is designed using the online approximation capability of the neural network, which is used to online estimate the modeling error, external disturbances and uncertainties generated by the dynamic surface control of the joint robot online. Combining the above strategies, the robot manipulators position controller is designed. The stability of this control strategy is demonstrated by stability analysis using the Lyapunov criterion. Simulations on the 2-Link Rigid Joint (2LRJ) robot show that the control strategy can overcome the chattering phenomena ensures the accuracy and stability of the joint robot position control.

Keywords
Robot manipulator, non-singular fast terminal sliding mode control, wavelet neural networks, stability

Introduction
Nowadays, robotic manipulators are presenting in different fields, such as space exploration, surgical robot, industrial application. In order to meet the requirements of control performance, various advanced control technologies could be applied to the controllers of robotic manipulators. Racking control of robot manipulators, which is required to provide high accuracy, stability and safety, in the presence of huge uncertainties, disturbance has been a critical issue in both academic and industrial applications. How to improve the tracking performance and transient response for robot manipulators, particularly in the presence of external disturbance and possible actuation failures is still a challenge research community.

In the literature, several methodologies have been developed in order to increase the tracking performance, and reliability of robot manipulators. In the initial approaches, PID controller, optimal control, learning control, robust control, adaptive control, backstepping control, fuzzy control, sliding mode control, and neural network control have been developed. Among these controllers, the Sliding Mode Control (SMC) has proven to be very robust against uncertainties and disturbances for non-linear systems. As a result, (SMC) has been widely taking into account for application in real systems. However, traditional
(SMC) has drawbacks that limit its performance. It does not provide a finite time convergence, it is worst to tackle the rapid variations effects of disturbances. It is still suffers from chattering behavior, and the design procedure requires a prior knowledge of the upper bound value of the uncertainties, and disturbance.14

Beside the references cited above, many several other approaches have been developed to preserve the benefits and reduce or eliminate the drawbacks of the conventional (SMC). For example, to mimic the property of the integral component in the (PID) controller to enhance the transient response of the conventional (SMC), Integral Sliding Mode Control (ISMC) or PID-based SMC (PID-SMC) has been developed. In order to obtain both fast transient response and finite time convergence, Integral Terminal Sliding Mode Control (ITSMC), has been worked out.15

To eliminate the chattering, several approaches have been improved by using either boundary method or disturbance observer or High-Order Sliding Mode Control (HOSMC).16 In addition, Fast Terminal Sliding Mode Control (FTSMC) and Nonsingular Terminal Sliding Mode Control (NTSMC), have been realized separately.14,17 Unfortunately, the individual approaches based on (FTSMC) or (NTSMC) have just only solved one aspect and ignored the other problems of the conventional SMC. In order to obtain both fast finite time convergence and singular elimination, Nonsingular Fast Terminal Sliding Mode Control (NFTSMC) has been proposed.18–21

However, chattering is not suppressed by applying a high frequency reaching control term to the control input of the above systems. One of the key issues when designing a (NFTSM) controller is to know the bounded value of dynamic perturbations and uncertainties.22–27 In order to tackle this dependence, several attempts have been introduced as observers, neural networks.28,29 Recently, researchers have developed a considerable interest in using the Wavelet Neural Network (WNN) to approximate the bound value of uncertainties.30,31 In summary, each drawback of the conventional (SMC) has been tackled by a corresponding approach that considers all the drawbacks of (SMC) together and solve them simultaneously.

Motivated by the above issues, this paper presents a new approach allowing a finite time convergence without singular problem, fast transient response, high tracking precision and less chattering. Therefore the proposed approach is based on a Non-Singular Fast Terminal Sliding Mode Control with compensation term based on Wavelet neural network observer (NSFTSMCW), As wavelet has the capability to approximate unknown functions faster and with fewer nodes than conventional neural networks, it is capable of working out the target threat evaluation contrasted with the other traditional approaches.

The main contributions of this paper are as follows:

- Unlike the existing robust approaches which are formulated under the assumption that the bound of the system uncertainty and disturbances are usually required to be known in advance, an adaptive parameter-tuning procedure is proposed here to estimate the unknown upper bounds. Therefore, the bound of the lumped uncertainty is unnecessary.

- The nonsingular fast terminal sliding manifold is proposed in the same way as other research work on the same topic, but the method used to approximate the bound value of uncertainties is dealt with differently.

- Based on the good performance of using Neural Network (NN) to estimate the upper bound of uncertainty, and due to the superiority of Wavelet Neural Network (WNN) over (NN), we admit in this paper the (WNN) as the approximation tool instead of adaptive laws. Owing to (WNN) estimation properties, the chattering phenomenon is remarkably reduced.

- In addition, a robust term is proposed in this paper to elevate the effect of approximation errors. The proposed controller (NFTSMCW) inherits the benefits of NFTSMC, WNN, adaptive rules, and the robust term, as a consequence, the tracking performance is enhanced considerably despite the presence of uncertainties and external disturbances.

The remainder of this paper is organized as follows. Section II outlines the problem formulation. Section III details the design of the Non-Singular Fast Terminal Sliding Mode Control with compensation term based on Wavelet neural network observer (NFTSMCW), then the globally asymptotic stability proof is discussed using the Lyapunov criterion. Section IV describes the simulation model and results. Finally, in section V some observations, conclusions and prospects for the future research are given.

Problem formulation

Figure 1 exhibits the chosen architecture of the robot. The dynamic model of the (2LRJ) manipulator, is described by the following equation (1):

$$M(q)\ddot{q} + C(q, \dot{q}) + G(q) = \tau(t) + \tau_d(t) \quad (1)$$

Where \(q(t), \dot{q}(t), \ddot{q}(t)\) denote the position, velocity, and acceleration of the link, \(M(q)\) represents the positive-definite inertia matrix, \(C(q, \dot{q})\) represents the centripetal-Coriolis matrix, and \(G(q)\) denotes the gravitational...
and frictional effects of the link dynamics, \(\tau(t) \) denotes the input joint matrix, and \(\tau_d(t) \) denotes the load disturbance matrix.

The 2LRJ robotic manipulator dynamics can be examined as the following matrix equation (2).

\[
\begin{pmatrix}
M_{11}(q) & M_{12}(q) \\
M_{21}(q) & M_{22}(q)
\end{pmatrix}
\begin{pmatrix}
\ddot{q}_1 \\
\ddot{q}_2
\end{pmatrix}
+
\begin{pmatrix}
C_{11}(q, \dot{q}) & C_{12}(q, \dot{q}) \\
C_{21}(q, \dot{q}) & C_{22}(q, \dot{q})
\end{pmatrix}
\begin{pmatrix}
\dot{q}_1 \\
\dot{q}_2
\end{pmatrix}
+
\begin{pmatrix}
G_1(q) \\
G_2(q)
\end{pmatrix}
= \begin{pmatrix}
\tau_1 \\
\tau_2
\end{pmatrix}
\tag{2}
\]

Where \(L_1, L_2 \) denote the length of the link, \(m_1, m_2 \) denote the mass of the link, \(I_1, I_2 \) denote the inertia of the link and \(g \) denotes the gravity acceleration. The different notations used in the matrix equation (2) are explained in the following equations (3).

\[
M_{11}(q) = (m_1 + m_2)L_2^2 + m_2L_1^2 + 2m_1L_1L_2 \cos(q_2) + I_1
\]
\[
M_{12}(q) = M_{21}(q) = m_2L_2^2 + 2m_1L_1L_2 \cos(q_2)
\]
\[
M_{22}(q) = m_2L_2^2 + I_2
\]
\[
C_{11}(q, \dot{q}) = -2m_2L_1L_2 \sin(q_2)\dot{q}_2
\]
\[
C_{12}(q, \dot{q}) = -m_2L_1L_2 \sin(q_2)\dot{q}_2
\]
\[
C_{21}(q, \dot{q}) = m_2L_1L_2 \sin(q_2)\dot{q}_1
\]
\[
C_{22}(q, \dot{q}) = 0
\]
\[
G_1(q) = (m_1 + m_2)gL_1 \cos(q_1) + m_2gL_2 \cos(q_1 + q_2)
\]
\[
G_2(q) = m_2gL_2 \cos(q_1 + q_2)
\tag{3}
\]

Controller design

NSFTSMC

In order to use a simple form of equation (1), we introduce the notation \(F, \Delta, \) and \(B, \) which leads to the equation (4):

\[
\ddot{q} = F(q, \dot{q}) + B(q)\tau(t) + \Delta_r(q, \dot{q}, t)
\tag{4}
\]

Where:

\[
F(q, \dot{q}) = -M^{-1}(q, \dot{q})\dot{q} + G(q);
\]

the nominal dynamic model of the robot manipulator without perturbations and uncertainties.

\[
\Delta_r(q, \dot{q}, t) = M^{-1}(q)[\tau_d - \Delta M(q)\dot{q} - \Delta C(q, \dot{q})\dot{q} - \Delta G(q)];
\]

stands for the lumped unknown component including perturbations and uncertainties, and \(B(q) = M^{-1}(q) \)

Assumption A1. The inertia matrix \(M(q) \) is an invertible, positive definite, and symmetric that adheres to the bounded condition:

\[
\lambda_m \leq M(q) \leq \lambda_M : \lambda_m > 0, \lambda_M > 0
\tag{5}
\]

Assumption A2. The lumped unknown disturbance acting on the system denoted by \(\Delta_r \) satisfies (6) with \(\Omega \) indicates the upper bound of lumped uncertainties.

\[
|\Delta_r(q, \dot{q}, t)| \leq \Omega
\tag{6}
\]

Assuming, that the control input does not involve the acceleration signal, the upper bound of the lumped uncertainty is a function consisting only of position and velocity measurements, therefore \(\Omega \) can be described by equation (7):

\[
\Omega = b_0 + b_1|e| + b_2|\dot{e}| : b_i > 0, i = 1, 2, 3
\tag{7}
\]

with \(b_0, b_1, \) and \(b_2 \) are all positive numbers, \(e = q - q_d \) and \(\dot{e} \) denote the error and its derivative between the actual position \(q \) and the desired \(q_d \) one respectively. In order to specify the sliding surface, we need the following notations:

for a variable vector \(x = [x_1, x_2, ..., x_n]^T \in R^n \) for all \(\alpha > 1 \) as follows:

\[
\begin{aligned}
\text{sign}(x)^\alpha &= |x|^\alpha \text{sign}(x) \\
\frac{d}{dt}(\text{sign}(x)^\alpha) &= \alpha|x|^{\alpha-1}\dot{x}
\end{aligned}
\]

The sliding surface can be chosen as the following equation (8):

\[
x(t) = e + k_1\text{sign}(e)^\gamma_1 + k_2|\dot{e}|^\gamma_2
\tag{8}
\]

Then time derivative of the sliding surface is expressed by the equation (9):

\[
\dot{x}(t) = \dot{e} + \gamma_1k_1|e|^{\gamma_1-1}\dot{e} + \gamma_2k_2|\dot{e}|^{\gamma_2-1}\dot{e}
\tag{9}
\]

Where, the terminal sliding manifold is defined as:

\[
(k_1, k_2) > 0, \quad (\gamma_1, \gamma_2) > 0 \quad \text{and} \quad \gamma_2 < \gamma_1, \quad 1 < \gamma_2 < 2
\]

When the state of the system is far from the equilibrium state, the sub-element \(k_1\text{sign}(e)^\gamma_1 \) dominates \(k_2|\dot{e}|^{\gamma_2} \), which guarantees a high convergence rate.
Additionally, when the system state is close to the equilibrium state, the sub-element $k_2\text{sign}(\dot{e})^{\gamma_2}$ guarantees system convergence in a finite-time. Then, we design the equivalent control term τ_{eq}, by replacing the expression (4) into the derivative sliding surface $\dot{s}(t)$ and recognizing that $\dot{s} = 0$, we obtain:

$$\tau_{eq} = B^{-1}(q)\left\{ \hat{q}_d - F(q, \dot{q}) - \frac{1}{\gamma_2 k_2} |\dot{e}|^{\gamma_2} (1 + \gamma_1 k_1 |e|^{\gamma_1}) \text{sign}(\dot{e}) \right\}$$

(10)

The switching control law τ_{sw} is given by:

$$\tau_{sw} = -B^{-1}(q)(\Omega + Y)\text{sign}(s)$$

(11)

Where: $\Omega > 0$ and Ω the uncertainties upper bound. The overall control law is depicted in the following equation (12):

$$\tau = \tau_{eq} + \tau_{sw} + \tau_c$$

$$\tau = B^{-1}(q)\left\{ \hat{q}_d - F(q, \dot{q}) + (\Omega + Y)\text{sign}(s) - Ks \right\}$$

(12)

Where: $\tau_c = -B^{-1}Ks$, $K \geq 0$. τ_c used as a compensation term to suppress the effects of uncertainties of the system. Substituting the proposed global term (12) into (9) provides:

$$\dot{s}(t) = \dot{e} + \gamma_1 k_1 |e|^{\gamma_1} \dot{e} + \gamma_2 k_2 \ddot{e}$$

$$= \dot{e} + \gamma_1 k_1 |e|^{\gamma_1} \dot{e} + \gamma_2 k_2 |e|^{\gamma_2} (\ddot{q} - \ddot{q}_d)$$

$$= \dot{e} + \gamma_1 k_1 |e|^{\gamma_1} \dot{e} + \gamma_2 k_2 |e|^{\gamma_2} - [F(q, \dot{q}) + B(q)\tau(t) + \Delta_s(q, \dot{q}, t) - \ddot{q}_d]$$

$$\dot{s}(t) = \dot{e} + \gamma_1 k_1 |e|^{\gamma_1} \dot{e} + \gamma_2 k_2 |e|^{\gamma_2} - [F(q, \dot{q}) + B(q)\tau_{eq} + \tau_{sw} + \tau_c + \Delta_s(q, \dot{q}, t) - \ddot{q}_d]$$

(13a)

We get the final equation (13b):

$$\dot{s} = \gamma_2 k_2 |e|^{\gamma_2} [\Delta_s(q, \dot{q}, t) - (\Omega + Y)\text{sign}(s) - Ks]$$

(13b)

Wavelet estimator design

Wavelets Neuron Network (WNN), a family of functions from signal and image processing, which have recently been shown to possess the property of universal approximation. Combined with efficient learning algorithms, they constitute a powerful modeling tool for nonlinear processes. Therefore, the output $\hat{\Omega}$ of (WNN), can be used as estimator which precisely approximates the unknown upper bound of uncertainty.

$$\hat{\Omega} = \hat{W}^T \Psi(x, m, d)$$

(14)

Where:

$x \in R^{N \times 1}$: input vector of the network,
\hat{W}: stands for the weighting variables,
m: translation parameter,
d: dilation parameter,
Ψ: multidimensional wavelet.

$$\Psi_j = \prod_{i=1}^{N} \Psi\left(\frac{x_i - m_{ij}}{d_{ij}} \right) = \prod_{i=1}^{N} \Psi(z_i)$$

(15)

N_i: number of neurons in the input layer,
N_H: number of the neurons in the hidden layer,
m_{ij}: translation parameter,
d_{ij}: dilation parameter.

Mexican hat function is chosen as the mother wavelet as given in the following equation (19):

$$\Psi(z_i) = (1 - z_i^2)e^{z_i^2}$$

(16)

Assumption A3. For any small positive constant χ, there is always an optimal wavelet neuron network architecture $\hat{\Omega}^*$ with its optimal parameters W^* that satisfy the following form:

$$\hat{\Omega}^* = W^* + \chi$$

(17)

$$\left\{ \begin{array}{l} \hat{\Omega}^* = W^* \Psi(x, m, d) \\ \hat{\Omega} = \hat{\Omega} - \hat{\Omega} \end{array} \right.$$

(18)

$\hat{\Omega}^*$ is defined as the optimal output of the wavelet neural network.
χ: is the approximation error and is assumed to bounded by $|\chi| \leq \chi_N$, $\chi_N \leq Y$.

In the new sliding mode control, firstly, uncertainties are approximated with wavelet network. Next, we combine the outputs of (WNN) with (NSFTSMC). Through this combination, the overall control law can be shown in the following equation (19):

$$\tau = \tau_{eq} + \tau_{aw} + \tau_{ac}$$

(19)

Where τ_{aw} and τ_{ac} are respectively expressed by:

$$\tau_{aw} = -B^{-1}(q)[\hat{\Omega} + Y] \text{sign}(s)$$

(20)

$$\tau_{ac} = -B^{-1}(q)\hat{K}s$$

(21)

$\hat{\Omega}$ is defined as an estimation of the upper bound of the uncertainties and external disturbances defined as Ω.

The proposed control approach is summarized in Figure 2. Substituting the overall control law (19) into \(\dot{s}(t) \) in (9) yields:

\[
\dot{s} = \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\Delta_r(q, \dot{q}, t) - (\Omega + \Psi) |s| \right] - \dot{\tilde{K}} s
\]

(22)

The parameters of the proposed controller are adjusted on-line as following:

\[
\begin{cases}
\dot{W} = \omega_w \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} |s| \Psi(x, m, d) \\
\dot{\tilde{K}} = \omega_K \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} s^2
\end{cases}
\]

(23)

Where \(\omega_w \) and \(\omega_K \) are positive constants.

If the (NSFTSMCW) is defined by (8), assumptions A1, A2, A3, and A4 are satisfied and the control approach is elaborated as (19). With its online adaptation method described in (23), the proposed controller ensures the convergence of the tracking error to zero in a finite time.

NSFTSMCW stability

The Lyapunov function \(V_2 \) is described as the following form (26):

\[
V_1 = \frac{1}{2} \dot{s}^2 + \frac{1}{2 \omega_w} \dot{W}^T \dot{W} + \frac{1}{2 \omega_K} \tilde{K}^T \tilde{K}
\]

(24)

Where: \(\dot{W} = W^* - \dot{W} \) and \(\tilde{K} = \tilde{K} - K \), we get the derivative of (24) as:

\[
\dot{V}_1 = s \ddot{s} - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

(25)

According to (23), in terms of assumption A2 and A4, we get:

\[
\dot{V}_1 = \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\Delta_r(q, \dot{q}, t) s - (\Omega + \Psi) |s| - \dot{\tilde{K}} s^2 \right] - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

\[
\leq \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\left| \Delta_r(q, \dot{q}, t) \right| |s| - (\Omega + \Psi) |s| - \dot{\tilde{K}} s^2 \right] - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

\[
\leq \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\left| \Omega + \Psi \right| s + \lambda |s| - \dot{\tilde{K}} s^2 \right] - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

\[
\leq \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\Omega^T \Psi s + (\lambda - \dot{\tilde{K}}) |s| \right] - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

\[
\leq \gamma_2 k_2 |\dot{e}|^{\gamma_2 - 1} \left[\Omega^T \Psi s + (\lambda - \dot{\tilde{K}}) |s| \right] - \frac{1}{\omega_w} \dot{W}^T \dot{W} + \frac{1}{\omega_K} \tilde{K}^T \tilde{K}
\]

(26)
The WNN architecture used for the synthesis of the estimator is based on 10 nodes in the hidden layer, initial parameters were set randomly, and the (WNN) input was selected as: \(x = (e \hspace{0.1cm} \dot{e} \hspace{0.1cm} s)^T \). The parameters values corresponding to this controller are defined in Table 1.

To ascertain the robustness of the proposed strategy, we evaluate the system performance while introducing parameter variation and external disturbances into the system which are modeled as follows:

\[
\tau_d(t) = \begin{pmatrix} \tau_{1d}(t) \\ \tau_{2d}(t) \end{pmatrix} = \begin{pmatrix} 2 \sin(t) + 0.5 \sin(200\pi t) \\ \cos(2t) + 0.5 \sin(200\pi t) \end{pmatrix}
\]

For dynamic parameters, an additive variance of 20% of their nominal values is considered. Two typical cases are considered. Firstly, the performance of the established proposal (NSFTSMCW) is checked in the presence of uncertainties and external disturbances. Secondly, a variation of the payload is considered to further test the efficiency of the proposed adaptive approach. The position and velocity tracking performances under uncertainties and time-varying external disturbances are illustrated in Figures 3 and 4, respectively. Figures 3 and 4 show that in the absence of the term of compensation, a degradation in the performance of the controller is clearly observed. It comes in the form of a decrease in speed which directly influences the tracking performance.

Figure 5 verifies, that the control input is smooth which demonstrates the insensitivity of the suggested (NSFTSMCW) to unknown parameter variations and external disturbances. Furthermore, a small control effort at the beginning is noticed, which helps to avoid the harmful saturation of the control inputs. The effectiveness of the (NSFTSMCW) is also demonstrated in Figure 6, where the sliding manifold is chattering free. The tracking performance is enhanced due to the capability of the (NSFTSMCW) to cancel estimation errors and disturbances.

In the presence of the uncertainty and time varying external disturbances, the position and velocity tracking are illustrated in Figures 7 and 8. For testing, a load is picked by the robotic manipulator at \(t = 10s \), and the mass of link 2 is increased from 1.5 to 2.5 kg. Figures 7 and 8, present a smooth control input, a small control effort at the beginning is also noticed, which makes it possible to avoid the harmful saturation of the control inputs. The Figure 8 confirms, that the finite time

Discussion and results

In this section, the proposed strategy was applied to a pathway tracking control for the (2LRJ) robot manipulator shown in Figure 1. For numerical simulation the desired trajectories for the position tracking is defined as the following form (29):

\[
q_d = \begin{pmatrix} q_{1d} \\ q_{2d} \end{pmatrix} = \begin{pmatrix} 1.25 - \frac{7}{4}e^{-t} + \frac{7}{4}e^{-4t} \\ 1.25 + e^{-t} + \frac{7}{4}e^{-4t} \end{pmatrix}
\]

The initial values of the system are selected as:

\(q_1(0) = 1, \hspace{0.1cm} q_2(0) = 1.5, \hspace{0.1cm} q_1(0) = 0, \hspace{0.1cm} q_2(0) = 0 \)

The following nominal parameters are considered for the robot manipulator model:

\[
\begin{align*}
L^0_1 &= 1 m, & L^0_2 &= 0.8 m, & m^0_1 &= 0.5 kg, \\
m^0_2 &= 1.5 kg, & l^0_1 &= l^0_2 &= 5 kgm^2
\end{align*}
\]
Figure 3. Position tracking: (a) joint 1 - and (b) joint 2.

Figure 4. Velocity tracking: (a) joint 1 - and (b) joint 2.

Figure 5. Control torque: (a) joint 1 - and (b) joint 2.

Figure 6. Sliding surface: (a) joint 1 - and (b) joint 2.
tracking performance of the robotic arm is always achieved as the load on link 2 varies.

Figure 9 illustrates the control input torques, while Figure 10 depicts the sliding surfaces of both joints. The simulation result confirms that the engineered (NFTSMCW) is insensitive to variations in unknown parameters and external disturbances. This observation is validated by the smooth shape of the curve recorded in Figure 9(j), indicates the presence of an additional control effort which can overcome the undesirable saturation of the control inputs.
Conclusion

In this paper, we have developed a new robust control approach. The proposed strategy (NFTSMCW) is a combination of (NFTSMC) and (WNN) acting as estimator of uncertainties and external disturbances. The validation of the developed controller is tested for trajectory tracking of a two-link rigid robot manipulator arm. In terms of robustness, the proposed controller is adopted in order to reduce the stresses at start-up while maintaining fast convergence toward zero. The numerical simulations illustrate improvements made by the proposed approaches. Future work will involve the use of the recurrent wavelet network instead of the conventional wavelet network. The effects of the measurement noises and sensor faults to the system control performance will be studied. Tuning mechanisms will also be developed to obtain the optimal values for the major parameters of the proposed controller.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Hatem Tlijani https://orcid.org/0000-0003-0066-5718

References

1. Wang H, Fang L, Wang J, et al. Adaptive neural sliding mode control with prescribed performance of robotic manipulators subject to backlash hysteresis. Proc IMechE, Part C: J Mechanical Engineering Science 2022; 236: 1826–1837.
2. Van M, Mavrovouniotis M and Ge SS. An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans Syst Man Cybern B Cybernet 2019; 49: 1448–1458.
3. Yu W and Rosen J. Neural PID control of robot manipulators with application to an upper limb exoskeleton. IEEE Trans Cybern 2013; 43: 673–684.
4. Peng H, Li F, Liu J, et al. A symplectic instantaneous optimal control for robot trajectory tracking with differential-algebraic equation models. IEEE Trans Ind Electron 2020; 67: 3819–3829.
5. Yang Y, Dai T, Hua C, et al. Composite NNs learning full-state tracking control for robotic manipulator with joints flexibility. Neurocomputing 2020; 409: 296–305.
6. Mareli M and Twala B. An adaptive cuckoo search algorithm for optimisation. Appl Comput Inform 2018; 14: 107–115.
7. Ming C and Wang X. Nonsingular Terminal Sliding Mode Control-based prescribed performance guidance law with Impact Angle Constraints. Int J Control Autom Syst 2022; 20: 715–726.
8. Nguyen V, Su S, Wang N, et al. Adaptive finite-time neural network control for redundant parallel manipulators. Asian J Control 2020; 22: 2534–2542.
9. Hacıoğlu Y and Yagız N. Fuzzy robust backstepping with estimation for the control of a robot manipulator. Trans Inst Meas Contr 2019; 41: 2816–2825.
10. Bai Y, Biggs JD, Wang X, et al. Attitude tracking with an adaptive sliding mode response to reaction wheel failure. Eur J Control 2018; 42: 67–76.
11. Xu D, Liu J, Yan XG, et al. A novel adaptive neural network constrained control for a multi-area interconnected power system with Hybrid Energy Storage. IEEE Trans Ind Electron 2018; 65: 6625–6634–55.
12. Liu Q, Li D, Ge SS, et al. Adaptive bias RBF neural network control for a robotic manipulator. Neurocomputing 2021; 447: 213–223.
13. Wu C, Hu Z, Liu J, et al. Secure estimation for cyber-physical systems via Sliding Mode. IEEE Trans Cybern 2018; 48: 3420–3431.
14. Vo AT and Kang HJ. A Chattering-Free, adaptive, robust tracking control scheme for nonlinear systems with uncertain dynamics. IEEE Access 2019; 7: 10457–10466.
15. Yin S and Xiao B. Tracking control of surface ships with disturbance and uncertainties rejection capability. IEEE/ASME Trans Mechatron 2017; 22: 1154–1162.
16. Dehkordi NM, Sadati N and Hanzeh M. A robust backstepping high-order sliding mode control strategy for grid-connected DG units with harmonic/interharmonic current compensation capability. IEEE Trans Sustain Energy 2017; 8: 561–572.
17. Boukattaya M, Gassara H and Damak T. A global time-varying sliding-mode control for the tracking problem of uncertain dynamical systems. ISA Trans 2020; 97: 155–170.
18. Jafari M, Mobayen S, Roth H, et al. Nonsingular terminal sliding mode control for micro-electromechanical gyroscope based on disturbance observer: Linear matrix inequality approach. J Vib Control 2022; 28: 1126–1134.
19. Bao X and Wang D. Non-singular fast terminal sliding mode control for spinning missiles based on extended State Observer. Int J Pattern Recognit Artif Intell 2019; 33: 56.
20. Sai H, Xu Z, He S, et al. Adaptive nonsingular fixed-time sliding mode control for uncertain robotic manipulators under actuator saturation. ISA Trans 2022; 123: 46–60.
21. Wang Y, Chen J, Zhu K, et al. Practical tracking control of cable-driven robots using adaptive non-singular fast terminal sliding mode. IEEE Access 2018; 6: 68057–68069.
22. Xu Z, Huang W, Li Z, et al. Nonlinear Nonsingular Fast Terminal Sliding Mode control using deep deterministic policy gradient. Appl Sci 2021; 11: 4685.
23. Al-Dujaili AQ, Falah A, Humaidi AJ, et al. Optimal super-twisting sliding mode control design of robot manipulator: design and comparison study. Int J Adv Robot Syst 2020; 17: 1–17.
24. Wang Y, Yan F, Chen J, et al. Continuous non-singular fast terminal sliding mode control of cable-driven manipulators with super-twisting algorithm. *IEEE Access* 2018; 6: 49626–49636.

25. Baek J and Kwon W. Practical Adaptive Sliding-mode control approach for precise tracking of robot manipulators. *Appl Sci* 2020; 10: 2909–2916.

26. Azarbani A, Menhaj MB and Fakharian A. An adaptive nonsingular fast terminal sliding mode controller for dynamic walking of a 5-Link planar biped robot in both single and Double Support Phases. *Hindawi Mathematical Problems in Engineering* 2022; 2022: 1–15.

27. Nicolis D, Allevi F and Rocco P. Operational space model predictive sliding mode control for redundant manipulators. *IEEE Trans Robot* 2020; 36: 1348–1355–30.

28. Feng Y, Zhou M, Yu X, et al. Full-order sliding-mode control of rigid robotic manipulators. *Asian J Control* 2019; 21: 1228–1236–29.

29. Peng J, Dubay R and Ding S. Observer-based adaptive neural control of robotic systems with prescribed performance. *Appl Soft Comput* 2022; 114: 108142.

30. Yang Q, Yu H, Meng X, et al. Neural network dynamic surface position control of n-joint robot driven by PMSM with unknown load observer. *IET Control Theory Appl* 2022; 16: 1208–1226.

31. Hamedani MH, Zekri M, Sheikholeslam F, et al. Recurrent fuzzy wavelet neural network variable impedance control of robotic manipulators with fuzzy gain dynamic surface in an unknown varied environment. *Fuzzy Sets Syst* 2021; 416: 1–26.

32. Zhihong M and Yu X. Adaptive terminal sliding mode tracking control for rigid robotic manipulators with uncertain dynamics. *JSME Int J Ser C Mech SystMach Elem Manuf* 1997; 40: 493–502.

33. Zhihong M and Xing-Huo Y. Terminal sliding mode control of MIMO Linear Systems. *IEEE Trans Circuits Syst I Fundam Theory Appl* 1997; 44: 1065–1070.

34. Li W, Liang L, Liu W, et al. State of charge estimation of lithium-ion batteries using a discrete-time nonlinear observer. *IEEE Trans Ind Electron* 2017; 64: 8557–8565.