Internet of Dental Things (IoDT), Intraoral Wireless Sensors, and Teledentistry: A Novel Model for Prevention of Dental Caries

Smita Salagare · Ramjee Prasad

Accepted: 19 October 2021 / Published online: 30 October 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Dental caries is a complex, multifactorial, transmissible biofilm-initiated oral disease, which results in loss of tooth structure. Oral microbial flora, pH of biofilm, consumption of carbohydrates, and oral hygiene are few of those major factors, which cause dental caries. However, it is possible to monitor those cariogenic factors with the help of new technology, and that will result in the prevention and early detection of dental caries. Internet of Dental Things (IoDT) is an advanced cloud-based digital technology, which could be successfully used in this innovative model. Our goal is to generate such a technology-based model. This paper proposes a novel innovative model, which is based on Internet of Dental Things, intraoral wireless sensors and teledentistry, which will achieve prevention and detection of dental caries in its initial stages.

Keywords Internet of dental things (IoDT) · Intraoral wireless sensors · Teledentistry · Caries prevention model · Dental caries

1 Introduction
Dental caries is one of the most prevalent diseases worldwide even today [1]. Dental caries occurrence is still elevated in economically developed, developing and underdeveloped nations [2]. It is an infectious, micro-bacterial biofilm-initiated disease, which is reversible in the incipient stages, caused by interaction between the biofilm bacteria on fermentable carbohydrates, which leads to acid demineralization and proteolytic destruction of hard inorganic and organic tissues of tooth; this disease commonly occurs in all age groups of patients due to imbalance in demineralization and remineralization process [3], this process is shown in Fig. 1.
Figure 1 illustrates the action of biofilm bacteria on fermentable carbohydrates, which causes the changes in plaque pH over time. The critical pH of enamel is 5.5, while for dentin it is 6.2, where hydroxyapatite crystals breakdown and demineralization process of normal tooth structure starts and finally results in dental caries. While fluorides usage and biofilm control measures increase the pH of biofilm, which results in remineralization of the carious tooth structure in its initial stages.

In this paper, we have emphasized on effective implementation of a novel model for improvement of prevention and management of dental caries. This innovative caries prevention model is based on advanced IoDT technology, intraoral wireless sensors mounted on the dental appliances and tele dentistry application. This technology-based model provides insights in control of caries causing factors and monitors those factors in oral cavity.

This paper is formulated into five sections as described below. The first section introduces dental caries as a prevalent health problem in world today, and this section also narrates, how caries process occurs on tooth surface. The second section overviews the details of dental caries issue in society plus, it also describes the etiology of dental caries. The third section outlines new innovative IoDT based Dental-Care Model for prevention and management of dental caries. The fourth section discusses conceptual IoDT based Caries Prevention Model in detail. This fourth section also outlines data monitoring process as well as enumerates advantages of this hi-tech model. The fifth and last section describes about conclusions in detail.

2 Dental Caries as a Predominant Health Issue in Society

Dental caries is a prevalent health problem, which affects all patients’ age groups. A current review on epidemiological data shows, there is a significant increase in percentage of dental caries prevalence in the world in primary as well as in permanent dentition [4].
According to 2000 American report, the children (between 5 and 10 years) show prevalence of dental caries more than 52–55% [5]. On the other hand, in teenager and young adults, the occurrence of dental caries is more than any other diseases seen in that age group e.g., asthma and hay fever.

Dental caries affects masticatory function, esthetics, psychosocial health, self-esteem, as well as well-being of patient [6]. However, it is the most commonly found oral disease in our society.

2.1 Etiology of Dental Caries

Many factors affect occurrence of dental caries in patients. Frequency of intake of fermentable carbohydrates [7, 8], oral hygiene measures for biofilm control [9], pH, as well as bacterial flora in the biofilm formed on the tooth surface in oral cavity (ex. Streptococci Mutants and Lactobacilli) [10] are few of those etiological factors. Fermentable carbohydrate diet compromised oral hygiene measures causes a higher occurrence of this biofilm initiated oral disease. Figure 2 illustrates etiology of dental caries and different factors influencing the occurrence of dental caries.

2.2 Traditional Models for Prevention of Dental Caries

Conventionally caries prevention model is based on fluoride susceptibility, dietary regulation of fermentable carbohydrates, and optimal oral care achievements by removal oral biofilm as well as oral hygiene measures. But it is important to introduce modern measures in addition to those primary prevention factors into a new context.

Different caries prevention models are discussed till date.

Svante Twetman (2018) has introduced usage of probiotics in order to achieve caries prevention. Probiotics cause biofilm disruption and promote microbial diversity by growth of good healthy flora in oral cavity [11].
Kim Kutch (2013) has introduced “Caries management by risk assessment” (CAMBRA) model. This model has assessed common disease pattern of progression of caries and evaluated their therapeutic strategies for the usage of model to practicing dentist [12].

3 New Innovative IoDT Based Dental-Care Model for Dental Caries Prevention and Management

It is common to introduce and implement the innovative health care model for prevention and management of chronic diseases [13].

Caries is one of the common plaque-initiated oral diseases, which arise with lifestyle changes and compromised oral hygiene in children and adults [14, 15]. Caries management procedures are expensive and time consuming for patient itself and to overall society [16].

Currently, caries management by risk assessment method is used in clinical practice with application of CAMBRA based principle on the caries balance/imbalance model, but this method is not simple and easy to apply [17].

Hence, it is necessary to introduce new advanced digital-based caries prevention and management model, which could be easily used at community level, plus it should be cost effective, as well as it should be effectively used by patients continuously and regularly on daily basis.

Advanced caries management model should be such that, firstly it should cause prevention of dental caries, secondly it should help in early detection of incipient dental caries; lastly it should be a great tool in risk-assessment procedures.

However, it is an innovative approach to introduce dental caries prevention model based on Internet of Dental Things (IoDT). Internet of Things is an advanced cloud based digital innovation in science and technology today; medical field is already invaded by this web-based technology [18].

Internet of Medical Things is used successfully in prevention and management of chronic diseases by monitoring patient’s daily health-status through wearable sensors, monitoring wireless devices [19]. We have already introduced IoT application in dentistry as IoDT (Internet of Dental Things) in our previous paper [20].

It is already proven, that future disease detection and monitoring will be based on primarily “mobile phones plus its wireless network, cloud computing technology based on Internet of things, and direct automation process” [21].

Thus, we tried to monitor caries cariogenic factors with intraoral sensors. Figure 3 shows IoDT based novel caries prevention model.

4 Conceptual IoDT Based Caries Prevention Model Overview

The conceptual IoDT based model is inspired from the use of Internet of Medical Things (IoMT) in monitoring of chronic systemic diseases e.g., Diabetes mellitus [22], Parkinson’s disease [23, 24], and Chronic obstructive pulmonary disease [25].

In this conceptual model, there are four important factors: data, information, knowledge, and technology [20]. The main aim of this model is to achieve a perfect caries-prevention model, which could utilize available data, and information in combination with deeper knowledge that is used along with digitization and application of new technology. Figure 4 shows main factors contributing in IoDT based conceptual caries prevention model. Patient
data, application of knowledge, available information and technology are very crucial key factors in this model.

This IoDT based caries prevention model could be easily applied at the community dental care level.

There are few elements, which are extremely important to consider during application of this model.

1. **Monitoring system design** It is very important that uninterrupted disease monitoring of patients should be possible with patient’s personal phones/ tablets through an app. In monitoring appliances, oral factors will be monitored with the help of intraoral sensors [26]. Those intraoral sensors will be incorporated within oral appliance, which patients can easily use on daily basis in the oral cavity. The design of those appliances with sensors should be such that continuous monitoring of patients will be possible [27]. Those data monitoring sensors will be small in size, weightless, biocompatible to oral tissues, and easy to use.

2. **Advanced patient monitoring system** This model consists of advanced clinical monitoring system, which assess different caries causing cariogenic factors in oral cavity with the help of Internet of Dental Things (IoDT), smart phones/tablets, intraoral sensors, as well as tele dentistry. Internet of Dental Things is an internet-based advanced technology...
that is used efficiently in supervising patient diseases, prevention, and management of chronic diseases [28].

Sensor technology and cloud network plays a vital role in Internet of Things (IoT) technology. When data monitoring sensors are used in patient’s body for tracking diseases, those sensors transfer data to patient’s personal mobiles phones /tablets, and forms sensor technology associated “Body-Area Network” [28]. Today this advanced sensor technology and smart phones are used in collection, monitor, transfer, and analyze data for disease prevention and diagnostics purpose.

Tele dentistry is also an advanced tool based on telecommunication technology and is used effectively for patient consultation as well as to provide dental management advice across different geographic areas [29].

Clinical studies and evidence show that, it provides great help in diagnosis and detection of dental caries [30], oral health screening [31], as well shows similar diagnostics outcome as real patient examinations [32].

3. **IoDT and technology-based education** This model could easily provide oral health education, technology derived monitoring training to dentists; in addition, it can also allow collection /transfer of information, and customization of technology [33].

4. **Patient self-oral care monitoring and management** Patient could be easily monitored for their oral health care on daily basis.

5. **Data analysis storage and further research** Technology used in this conceptual model consists of following cutting-edge technology: Internet of Dental Things (IoDT), Wireless sensors, and Tele dentistry. This technology helps in analysis of data and research. Figure 5 enumerates technology used in this caries prevention model.

In this model, we could monitor patient’s oral health through wireless sensors, electronic devices by constant supervising different oral cariogenic factors. These wireless sensors are connected to cellphones or tablets though a mobile app to carry out continuous, uninterrupted monitoring activity. Figure 6 shows monitoring process of caries causing factors with the help of IoDT, while Fig. 7 illustrates IoDT based monitoring by dental specialist/dentist.

4.1 Data Monitoring Process in Prevention of Dental Caries Model

The data monitoring process in IoDT based model will be carried out in three different stages; this process is described in Fig. 8.
1. **Oral data collection stage** In this first step, intraoral sensors are used to monitor different factors like pH of oral cavity, presence of biofilm, temperature of oral cavity. The generated data is collected continuously and interruptedly from patients.

2. **Oral data transferring stage** This collected oral care data gets transferred to the cloud server through mobile phones or tablet app.

3. **Analysis of data and storage stage** IoDT application, Artificial Intelligence (AI) and tele dentistry carries out the analysis of data and storage.

4.2 Advantages of IoDT Based Caries Prevention Model

This high-tech model has the following advantages,

1. It is Actual Time–Data control system that assesses the patients’ caries contributing factors.
2. This model could be used for larger group of patients. It could be easily applied at community level with help of cloud server.
3. It decreases the oral care cost to the patient by prevention of disease [32].
4. Analysis of cariogenic factors and prevention of dental caries are possible 24 X 7.

Fig. 5 Technology incorporated in caries prevention model

Fig. 6 Monitoring process of caries causing factors with use of IoDT
Fig. 7 IoDT based monitoring by IoDT specialist/oral health care staff

Fig. 8 Data monitoring process in prevention of dental caries model
5. It will also increase patients’ interest in oral health care.
6. It will provide alerts and data all the time through sensors.
7. It could be the best tool for physically challenged and chronically ill patients.
8. It will not only cause prevention but also early detection of oral diseases.

The following Fig. 9 highlights advantages of IoDT based caries prevention model.

5 Conclusions

Dental caries is a complicated, multifactorial disease, which could be prevented or early detected by the new technology along with conventional measures. Many etiological factors contribute to the formation of dental caries like, dietary intake of carbohydrates, oral biofilm, pH of biofilm, fluoride usage, and routine oral care measures. These factors could be easily tracked every single day by intraoral sensors, new generation of app-integrated smart phones, IoDT and cloud server. Intraoral sensors mounted on appliances are easily used to monitor cariogenic factors e.g., biofilm pH, presence of biofilm, temperature of oral cavity. This data is collected continuously from patient’s oral cavity and transferred to the cloud server through mobile or tablet app. Finally, analysis of data is carried out by the IoDT, artificial intelligence and tele dentistry.

IoDT is an advanced technology, which is introduced in prevention of dental caries. We have successfully conceptualized this hi-tech model in this paper, which works on IoDT, intraoral sensors, tele dentistry. This IoDT based caries prevention model could be easily used in clinical monitoring process and oral data collection step. In addition it also provides analysis of the collected data, causes prevention and early detection of dental caries. This model could be easily applied at community level.

Authors’ Contributions All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Smita Salagare. The first draft of the manuscript was written by Smita Salagare and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Funding This research was self-supported.
Declarations

Conflicts of interest This research was supported by Department of Business Development and Technology, CTIF Global Capsule, Aarhus University, Herning, Denmark.)

References

1. Selwitz, R. H., Ismail, A. I., & Pitts, N. B. (2007). Dental caries. *Lancet*, 369(9555), 51–59. https://doi.org/10.1016/S0140-6736(07)60031-2 PMID: 17208642.
2. Dental Diseases and Oral Health—World health organization https://www.who.int/oral_health/publications/en/orh_fact_sheet.pdf
3. Rechmann, P., Kinsel, R., & Featherstone, J. D. B. (2018). Integrating caries management by risk assessment (CAMBRA) and prevention strategies into the contemporary dental practice. *Compendium of Continuing Education in Dentistry*, 39(4), 226–233. quiz 234, PMID: 29600870.
4. Bagramian, R. A., Garcia-Godoy, F., & Volpe, A. P. (2009). The global increase in dental caries. A pending public health crisis. *American Journal of Dentistry*, 22, 3–8.
5. Oral Health in America: A report of the surgeon General, Department of Health and Human Services, U.S. Public Health Service, https://www.nidcr.nih.gov/sites/default/files/201710/hck1occ.%40www.surgeon.fullrpt.pdf
6. Kaur, P., Singh, S., Mathur, A., Makkar, D. K., Aggarwal, V. P., Batra, M., Sharma, A., & Goyal, N. (2017). Impact of dental disorders and its influence on self esteem levels among adolescents. *Journal of Clinical and Diagnostic Research*, 11(4), ZC05–ZC08. https://doi.org/10.7860/JCDR/2017/23362. 9515 Published online 2017.
7. Giacaman, R. A. (2018). Sugars and beyond. The role of sugars and the other nutrients and their potential impact on caries. *Oral Diseases*, 24(7), 1185–1197. https://doi.org/10.1111/odi.12778 Epub 2017 Oct 6.
8. Harel-Raviv, M., Laskaris, M., & Chu, K. S. (1996). Dental caries and sugar consumption into the 21st century. *American Journal of Dentistry*, 9(5), 184–190. PMID: 9545901.
9. Maltz, M., Alves, L. S., & Zenkner, J. E. D. A. (2017). Biofilm control and oral hygiene practices. *Monographs in Oral Science*, 26, 76–82. https://doi.org/10.1159/000479348 Epub 2017 Oct 19.
10. Krzyściak, W., Jurczak, A., Kościelnia, D., Bystrowska, B., & Skalniak, A. (2014). The virulence of Streptococcus mutans and the ability to form biofilms. *European Journal of Clinical Microbiology & Infectious Diseases*, 33(4), 499–515. https://doi.org/10.1007/s10096-013-1993-7 Epub 2013 Oct 24.
11. Twetman, S. (2018). Prevention of dental caries as a non-communicable disease. *European Journal of Oral Sciences*, 126(Suppl 1), 19–25. https://doi.org/10.1111/eos.12528
12. Kutsch, V. K. (2014). Dental caries: An updated medical model of risk assessment. *Journal of Prosthetic Dentistry*, 111(4), 280–285. https://doi.org/10.1016/j.prosdent.2013.07.014 Epub 2013 Dec 10 PMID: 24331852.
13. Clarke, J. L., Scott Bourn, R. N., Skoufalos, A., Beck, E. H., & Castillo, D. J. (2017). An innovative approach to health care delivery for patients with chronic conditions. *Population Health Management*, 20(1), 23–30. https://doi.org/10.1089/pop.2016.0076 Published online 2017.
14. Marcenes, W., Kassebaum, N. J., Bernabé, E., Flaxman, A., Naghavi, M., Lopez, A., & Murray, C. J. (2013). Global burden of oral conditions in 1990–2010: A systematic analysis. *Journal of Dental Research*, 92(7), 592–7.
15. Nithila, A., Bourgeois, D., Barnes, D. E., & Murtomaa, H. (1998). WHO global oral data bank, 1986–96: An overview of oral health surveys at 12 years of age. *Bulletin of the World Health Organization*, 76(3), 237–244.
16. Ladewig, N. M., Camargo, L. B., Tedesco, T. K., Flóriano, L., Gimenez, T., Imparato, J. C. P., Mendes, F. M., Braga, M. M., & Raggio, D. P. (2018). Management of dental caries among children: A look at the cost-effectiveness. *Expert Review of Pharmacoeconomics & Outcomes Research*, 18(2), 127–134. https://doi.org/10.1080/14737167.2018.1414602 Epub 2017 Dec 9.
17. Young, D. A., & Featherstone, J. D. (2013). Caries management by risk assessment. *Community Dentistry and Oral Epidemiology*, 41(1), e53–63. https://doi.org/10.1111/cdeo.12031
18. Konstantinidis, E. I., Bamparopoulos, G., Billis, A., Bamidis, P. D., et al. (2015). Internet of things for an age-friendly healthcare. *Studies in Health Technology and Informatics*, 210, 587–591.
19. Dimitrov, D. V. (2016). Medical internet of things and big data in healthcare. *Healthcare Informatics Research*, 22(3), 156–163. https://doi.org/10.4258/hir.2016.22.3.156
20. Salagare, S., & Prasad, R. (2020). An overview of internet of dental things: New frontier in advanced dentistry. *Wireless Personal Communications, 110*, 1345–1371. https://doi.org/10.1007/s11277-019-06794-0

21. Lopez-Barbosa, N., Gamarra, J. D., Osma, J. F., et al. (2016). The future point-of-care detection of disease and its data capture and handling. *Analytical and Bioanalytical Chemistry, 408*(11), 2827–37. https://doi.org/10.1007/s00216-015-9249-2 Epub 2016 Jan 15.

22. Basatneh, R., Najafi, B., Armstrong, D. G., et al. (2018). Health sensors, smart home devices, and the internet of medical things: An opportunity for dramatic improvement in care for the lower extremity complications of diabetes. *Journal of Diabetes Science and Technology, 12*(3), 577–586.

23. Pashousta, C. F., Gassner, H., Winkler, J., Klucken, J., Eskofier, B. M., et al. (2015). An emerging era in the management of Parkinson’s disease: Wearable technologies and the internet of things. *IEEE Journal of Biomedical and Health Informatics, 19*(6), 1873–1881. https://doi.org/10.1109/jbhi.2015.2461555

24. Rovini, E., Marenmani, C., Cavallo, F., et al. (2018). Automated systems based on wearable sensors for the management of Parkinson’s disease at home: A systematic review. *Telemedicine Journal E-Health. https://doi.org/10.1089/tmj.2018.0035*

25. Narango-Hernández, D., Talaminos-Barroso, A., Reina-Tosina, J., Roa, L. M., Barbarov-Rostan, G., Cejudo-Ramos, P., et al. (2018). Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing. *Sensors (Basel), 18*, 2144.

26. Choi, J. E., Lyons, K. M., Kieser, J. A., & Waddell, N. J. (2017). Diurnal variation of intraoral pH and temperature. *BDJ Open, 30*(3), 17015. https://doi.org/10.1038/bdjopen.2017.15 PMID:29607085; PMCID:PMC5842828.

27. Sun, J., Guo, Y., Wang, X., Zeng, Q., et al. (2016). mHealth For Aging China Opportunities and challenges. *Aging Disease, 7*(1), 53–67. https://doi.org/10.14336/ad.2015.1011 (eCollection 2016 Jan).

28. Deng, Y. Y., Chen, C. L., Tsaur, W. J., Tang, Y. W., Chen, J. H., et al. (2017). Internet of things (IoT) based design of a secure and lightweight body area network (BAN) healthcare system. *Sensors (Basel), 17*(12), E2919. https://doi.org/10.3390/s17122919

29. Jampani, N. D., Nutalapati, R., Donta, B. S. K., Boyapati, R., et al. (2011). Applications of teledentistry: A literature review and update. *Journal of International Society of Preventive and Community Dentistry, 1*(2), 37–44.

30. Estai, M., Bunt, S., Kanagasingam, Y., Kruger, E., Tennant, M., et al. (2016). Diagnostic accuracy of teledentistry in the detection of dental caries: A systematic review. *Journal of Evidence Based Dental Practice, 16*(3), 161–172. https://doi.org/10.1016/j.jebdp.2016.08.003 Epub 2016 Sep 7.

31. Irving, M., Stewart, R., Spallek, H., Blinkhorn, A., et al. (2018). Using teledentistry in clinical practice as an enabler to improve access to clinical care: A qualitative systematic review. *Journal of Telemedicine and Telecare, 24*(3), 129–146. https://doi.org/10.1177/1357633X16686776 Epub 2017 Jan 16.

32. Duka, M., Mihailović, B., Miladinović, M., Janković, A., Vujčić, B., et al. (2009). Evaluation of telemedicine systems for impacted third molars diagnosis. *Vojnosanitetski Pregled, 66*(12), 985–91.

33. Arora, S. (2020). IoMT (internet of medical things) reducing cost while improving patient care. *IEEE Pulse, 11*(5), 24–27. https://doi.org/10.1109/MPULS.2020.3022143 PMID: 33064641.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Smita Salagare has a B.D.S. (Bachelor of Dental Surgery) from Mumbai University, and M.D.S. (Master of Dental Surgery in Conservative Dentistry and Endodontics) from Pune University, India. She has completed “Det Tandlæge Authorization Forløb” from Copenhagen University, Denmark. She previously worked at “Den Regionale Tandpleje”, in South Denmark. She currently works at Regional Specialtandpleje, Region Midtjylland. She had also previously worked as Senior Lecturer at Oman Dental College and Hospital, Muscat, Oman, as well as Mahatma Gandhi Dental College and Hospital, Navi Mumbai, India. Smita is also a member of Indian Dental Association, Tandlæge Forening, Denmark.

Ramjee Prasad Fellow IEEE, IET, IETE, and WWRF, is a Professor of Future Technologies for Business Ecosystem Innovation (FT4BI) in the Department of Business Development and Technology, Aarhus University, Herning, Denmark. He is the Founder President of the CTIF Global Capsule (CGC). He is also the Founder Chairman of the Global ICT Standardization Forum for India, established in 2009. GISFI has the purpose of increasing of the collaboration between European, Indian, Japanese, North-American and other worldwide standardization activities in the area of Information and Communication Technology (ICT) and related application areas. He has been honored by the University of Rome “Tor Vergata”, Italy as a Distinguished Professor of the Department of Clinical Sciences and Translational Medicine on March 15, 2016. He is Honorary Professor of University of Cape Town, South Africa, and University of KwaZulu-Natal, South Africa. He has received Ridderkorset af Dannebrogordenen (Knight of the Dannebrog) in 2010 from the Danish Queen for the internationalization of top-class telecommunication research and education. He has received several international awards such as: IEEE Communications Society Wireless Communications Technical Committee Recognition Award in 2003 for making contribution in the field of “Personal, Wireless and Mobile Systems and Networks”, Telenor’s Research Award in 2005 for impressive merits, both academic and organizational within the field of wireless and personal communication, 2014. IEEE AES Out- standing Organizational Leadership Award for: “Organizational Leadership in developing and globalizing the CTIF (Center for TeleInFrastruktur) Research Network”, and so on. He has been Project Coordinator of several EC projects namely, MAGNET, MAGNET Beyond, eWALL and so on. He has published more than 40 books, 1000 plus journal and conference publications, more than 15 patents, over 100 PhD Graduates and larger number of Masters (over 250). Several of his students are today worldwide telecommunication leaders themselves.