Peptide Elongation Factor eEF1A-2/S1 Expression in Cultured Differentiated Myotubes and Its Protective Effect against Caspase-3-mediated Apoptosis*

Received for publication, November 7, 2001, and in revised form, November 21, 2001
Published, JBC Papers in Press, November 27, 2001, DOI 10.1074/jbc.M110685200

Louis-Bruno Ruest‡§¶, Richard Marcotte†, and Eugenia Wang‡§¶||
From the ‡Bloomfield Center for Research in Aging, Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, the Department of Medicine, McGill University, Montreal, Quebec H3T 1E2, Canada, and the §Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40202

Peptide elongation factor eEF1A-2/S1, which shares 92% homology with eEF1A-1/EF-1α, is exclusively expressed in brain, heart, and skeletal muscle. In these tissues, eEF1A-2/S1 is the only type 1A elongation factor expressed in adulthood because a transition from eEF1A-1/EF-1α to eEF1A-2/S1 occurs in early postnatal development. In this article, we report that the expression of eEF1A-2/S1 protein is activated upon myogenic differentiation. Furthermore, we show that upon serum deprivation-induced apoptosis, eEF1A-2/S1 protein disappears and is replaced by its homolog eEF1A-1/EF-1α in dying myotubes; cell death is characterized by the activation of caspase-3. In addition, we show that the continuous expression of eEF1A-2/S1 resulting from adenoviral gene transfer protects differentiated myotubes from apoptosis by delaying their death, thus suggesting a prosurvival function for eEF1A-2/S1 in skeletal muscle. In contrast, myotube death is accelerated by the introduction of the homologous gene, eEF1A-1/EF-1α, whereas cells transfected with antisense eEF1A-1/EF-1α are protected from apoptosis. These results demonstrate that the two sister genes, eEF1A-1/EF-1α and eEF1A-2/S1, regulate myotube survival with the former exerting prodeath activity and the latter a prosurvival effect.

Apoptosis is an active process enabling normal metazoan development and tissue homeostasis by permitting the deletion of unwanted or damaged cells (1, 2). In mammalian cells, the control of cell death or survival is governed by the interplay between the Bcl-2 family members and the activation of caspase proteases. For review, see Refs. 3–7). Once activated, caspases can cleave several proteins to inactivate their functions. In contrast, myotube death is accelerated by the introduction of the homologous gene, eEF1A-1/EF-1α, whereas cells transfected with antisense eEF1A-1/EF-1α are protected from apoptosis. These results demonstrate that the two sister genes, eEF1A-1/EF-1α and eEF1A-2/S1, regulate myotube survival with the former exerting prodeath activity and the latter a prosurvival effect.

* This work was supported in part by National Institutes of Health Research Operating Grant P01 AG 10821-06 (to E. W.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
† Recipient of a doctoral research award from the Medical Research Council of Canada (now Canadian Institute of Health Research).
‡ To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Louisville, 470 S. Preston St., Rm. 304, Louisville, KY 40202. Tel.: 502-852-2554; Fax: 502-852-2555; E-mail: Eugenia.wang@louisville.edu.
¶ Recipient of a doctoral research award from the Medical Research Council of Canada (now Canadian Institute of Health Research).
||© 2002 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.

The abbreviations used are: eEF1A, eukaryotic elongation factor 1A; DME, Dulbecco's modified Eagle's medium; PBS, phosphate-buffered saline; PARP, poly(ADP-ribose) polymerase; CHAPS, 3-[3-cholamidopropyl]dimethylammonio]-1-propanesulfonic acid; PIPES, 1,4-piperazinediethanesulfonic acid; AFC, 7-amino-4-trifluoromethylchloroamidopropyl)dimethylammonio]-1-propanesulfonic acid; CMV, cytomegalovirus; TUNEL, terminal nucleotidyl transferase-mediated UTP nick end labeling; DEVD, Asp-Glu-Val-Asp peptide; YVAD, Tyr-Val-Ala-Asp peptide.
an increase of eEF1A-1/EF-1α protein abundance, and the activation of caspase-3. Adenoviral transfer of the eEF1A-2/S1 gene or eEF1A-1/EF-1α antisense gene transfection rescues cultured myotubes from apoptotic cell death induction. These results suggest that differentiated myotubes can be induced to die via apoptosis, and the suicidal event can be either slowed down or accelerated by homologous peptide elongation factor eEF1A-2/S1 or eEF1A-1/EF-1α, respectively. This may illustrate one reason behind the peptide eEF1A developmental switch, so that all those long lived, terminally differentiated cells are protected from accidental induction of programmed cell death.

MATERIALS AND METHODS

Cell Culture—The mouse-derived skeletal myoblast C2C12 cell line (American Type Culture Center, ATCC) and rat-derived cultured myoblast L6A line (a generous gift from Dr. Dan Goldman, University of Michigan, Ann Arbor) were grown in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 50 units/ml penicillin, and 50 μg/ml streptomycin and kept at 37°C in a 10% CO2 humidified atmosphere incubator. After confluent cultures were rinsed twice with serum-free DMEM, myoblast differentiation was induced by replacing the chemically defined culture medium by DMEM supplemented with 2% horse serum. The yield of myotubes achieved was visually estimated to be between 60 and 80%. For serum deprivation, myotubes were rinsed twice with serum-free DMEM to remove all trace of serum and then cultured after the third change in the same medium. Cultured C2C12 cells were harvested for analysis at 3, 6, 9, 12, and 15 days of differentiation and at 3, 6, and 9 days of serum deprivation. Cultured L6 cells were collected daily after induction of either differentiation or apoptosis.

DNA Fragmentation Assays—Cultured C2C12 and L6 myotubes were processed in the same manner. The medium of serum-deprived cells was collected and added to the scraped cells to allow centrifugation of both adhering and floating cells. Cell pellets were resuspended in lysis buffer (10 mM Tris-HCl, pH 8.0, 25 mM EDTA, 100 mM NaCl, 0.5% SDS, and 0.5 mg/ml proteinase K) and incubated overnight at 56°C. Afterward, samples were treated with 50 μg/ml RNase A for 2 h followed by a phenol/chloroform extraction. The DNA was precipitated using 0.3 M final concentration of sodium acetate, pH 5.2, and isopropyl alcohol. The DNA pellet was then rinsed with 75% cold ethanol and resuspended in water. After being spun for 20 min in a microcentrifuge, samples were added to 1.2% agarose gel containing ethidium bromide to allow electrophoretic separation of the fragmented DNA. The separated fragments were visualized on the agarose gel using a UV transilluminator, and profiles of oligonucleotides were taken with a digital camera.

In Situ DNA Degradation Assay by Terminal Nucleotidyl Transferase-mediated UTP Nick End Labeling (TUNEL) Staining Reaction—DNA fragmentation analysis of individual cell nuclei was performed by DNA nicked-end labeling using terminal-d transferase, as described by Gavrieli et al. (23). Differentiated L6 myotubes were treated with trypsin and then grown on coverslips; one set was serum deprived 2 days after seeding. Differentiated cells were fixed using cold methanol/acetic acid (1:1) at −20°C for 10 min. Fixed cells were rehydrated with PBS for 30 min at room temperature and then rinsed twice with double-distilled water. Afterward, coverslips were covered with terminal transferase reaction buffer (30 mM Tris-HCl, pH 6.8, 100 mM sodium citrate, 5 mM cobalt chloride, 0.5 mM dithiothreitol, 0.1 mg/ml bovine serum albumin, 10 μM biotin-16-UlT (Roche), and terminal transferase (Promega) at 0.3 unit/ml); the reaction was performed at 37°C for 1 h in a humidified chamber and then terminated by transferring the coverslip samples to a TB buffer containing 300 mM sodium chloride and 30 mM sodium citrate for 15 min at room temperature. The specimens were then rinsed in double distilled water and incubated in 2% bovine serum albumin for 10 min. After the addition of serum albumin, the specimens were incubated with 20 μg/ml streptavidin and fluorescein isothiocyanate (Roche) in PBS for 30 min at room temperature and subsequently washed twice in PBS along with 0.4 μg/ml propidium iodide in the second staining. The propidium iodide was removed by rinsing the samples twice in PBS. Coverslips were mounted in PBS containing 50% glycerol and examined with a Nikon fluorescence microscope.

Protein Extraction, Gel Electrophoresis, and Western Blotting—Myotubes cultures were rinsed with PBS and then gently scraped into 1 ml of PBS. Collected cells were centrifuged at 4,000 rpm for 3 min. The pellets were resuspended into RIPA buffer (10 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1% Triton X-100, 0.1% SDS, and 1 mM EDTA) containing fresh protease inhibitors (0.5 mM phenylmethylsulfonyl fluoride, 10 μg/ml aprotinin, and 2 μg/ml of both leupeptin and pepstatin). Afterward, cell extracts were sonicated for 1 min to break cell membranes; proteins were quantified by a modified Bradford method, using the Bio-Rad protein assay according to the manufacturer’s instructions, and compared with a γ-globulin standard curve. Equal amounts of total protein for each sample were separated on a SDS-polyacrylamide gel and then transferred onto a nitrocellulose membrane by the standard transfer method. Membranes were blocked in Tris-buffered saline solution containing 0.25% Tween 20 and 5% fat-free powdered milk. Blotting of primary antibodies, membranes were rinsed in Tris-buffered saline-Tween 20 solution. Primary antibodies used were HT7 for eEF1A-1/EF-1α, CB5 for eEF1A-2/S1 (22), MF-20 monoclonal antibody for myosin heavy chain (24) (the clone was a generous gift from Dr. L. Chailifour, Lady Davis Institute, Montreal, Canada); Caspase-3 (H-277) and polyclonal antibodies (PARP) (H-250) antibodies were purchased from Santa Cruz, and monoclonal β-actin antibody from Amersham Biosciences, Inc. After incubation overnight at 4°C or 1 h at room temperature, the membranes were washed four times, 10 min each, in Tris-buffered saline-Tween 20. Blots were subjected to a second hybridization with either horseradish peroxidase-conjugated goat anti-rabbit IgG antibodies (Cappel) or goat anti-mouse antibodies (Cappel) and then washed five times with Tris-buffered saline-Tween 20 solution. Films were quantified by densitometry (Molecular Dynamics) and expressed as the ratio to the maximal level of detection.

Caspase Assays—Viability tests were performed using the trypan blue exclusion assay, as described by Duttaroy et al. (25). Viability percentages were calculated by dividing the number of dead blue cells by the total cell number. Each experiment was repeated three times. A cell-permeable, irreversible peptide inhibitor of caspase-3, DEVD-FMK (Calbiochem), was dissolved in dimethyl sulfoxide and added to the culture medium at a final concentration of 75 μM. The culture medium was changed every day, with the addition of fresh inhibitor-containing medium, and control cells were plated with the same concentration of dimethyl sulfoxide without inhibitor. Cell viability was measured as described above.

Caspase Assays—Serum-deprived and control cell cultures were rinsed once in cold PBS and then collected in cold PBS by scraping the plates with a rubber policeman. After centrifugation and removal of PBS, cell pellets were kept at −80°C until caspase assays were performed. The frozen pellets were resuspended in caspase lysis buffer (10 mM HEPES, pH 7.4, 2 mM EDTA, and 0.1% CHAPS) supplemented with protease inhibitors (5 mM dithiothreitol, 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml pepstatin A, 10 μg/ml aprotinin, and 20 μg/ml leupeptin). Freeze-thaw lysis cycles were performed by alternatively freezing the sample at −70°C and thawing it to 37°C. The mixture was homogenized and then centrifuged at 12,000 rpm in a cold microcentrifuge. Assays were performed in caspase buffer (10 mM PIPES, pH 7.4, 2 mM EDTA, 0.1% CHAPS, and 5 mM dithiothreitol, final concentration), to which 50 μl final concentration of substrate and 5 μl of protein extract were added to yield a final volume of 100 μl. Caspase-3 DEVD-APC and caspase-1 YVAD-APC peptide substrates (Biomol) were dissolved in dimethyl sulfoxide. The assays were performed in black wall, clear bottom plates using a Bio-Rad fluorometer and read at 598 nm after excitation at 390 nm wavelengths. The results were compared against an AUC curve generated during the reaction. To measure specific activity, proteins were quantified according to the method described above.

Adenovirus Construction, Cell Infection, and β-Galactosidase Assay—Recombinant adenovirus expressing eEF1A-2/S1 was prepared by ADENO-QUEST (Quantum Biotechnologies, Montreal). Mouse eEF1A-2/S1 DNA (26) was subcloned into the pQBI-AdCMV5 transfer vector. Cotransfection of QBI-293A cells with viral DNA and the transfer vector was performed by the precipitated calcium phosphate procedure, according to the manufacturer’s protocol. Plaques were picked up according to the following instructions, and the plaque was transferred to QBI-293A cells. After 24 h, further retraction was performed by Western blotting using CB5 antibody, which specifically recognizes eEF1A-2/S1 protein (22). Among the positive clones, one named A5.4 was used to generate the experimental virus. Control virus for mock infection was generated by transfection of QBI-293A cells with nondigested viral DNA. The β-galactosidase gene was already included in the viral DNA by the manufacturer; insertion of a new gene
into the vector does not affect its transcription and thus can be used as a marker of infection. After amplification, cells were broken by freeze/thaw cycles; and after centrifugation, the supernatant culture media containing viruses were kept frozen. Virus titration was done according to the manufacturer's instructions. Growing cultures of L6 cells were infected with mock or recombinant adenovirus supernatant diluted to 200 multiplicity of infection, enough to cover the cell monolayer at 37 °C for 1.5 h. After incubation, the medium was changed to fresh DMEM supplemented with 10% fetal bovine serum. Infection efficiency was measured after 2 days and again after 6 days (corresponding to 4 days of differentiation) by β-galactosidase assay, using the following protocol. Cells were fixed for 10 min with 0.2% glutaraldehyde and 2% formaldehyde in PBS and then washed three times for 10 min with PBS. Afterward, an enzymatic reaction was performed in β-galactosidase buffer (5 mM K2Fe(CN)6, 5 mM K4Fe(CN)6, 2 mM MgCl2 in PBS) with 1 mM 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (Sigma) as substrate. After 3–5 h at 37 °C, β-galactosidase-positive blue cells were counted, and the results were expressed as percentage of the total number of cells.

eEF1A-1/EF-1α Transfection and Viability Assay—Cultured L6 myoblasts were grown and differentiated in six-well plates, as described above. After 3 days of differentiation, cells were cotransfected with 5 μg of constitutively expressing Rous sarcoma virus β-galactosidase vector, along with 10 μg of pBK CMV-eEF1A-1/EF-1α sense or antisense (full-length), or empty pBK CMV vector used as a control (19, 20) using LipofectAMINE 2000 (Invitrogen), with the exception that the cells were not subcultured the previous day. Efficiency of transfection was measured by β-galactosidase staining, which revealed that myotubes were transfected. Cells were serum deprived 24 h after transfection and collected on a daily basis as described previously into cold PBS. After centrifugation, pellets were kept frozen at −80 °C until protein extraction was performed. For the extraction, the pellets were resuspended in 100 μl of 0.25 M Tris-HCl, pH 7.8, and then submitted to three freeze/thaw cycles by transferring the samples between an ethanol-dry ice water bath. Afterward, the extracts were centrifuged at 12,000 rpm for 8 min in a refrigerated bench top centrifuge, and the supernatants were retained for the assay. Viability was quantified by measuring β-galactosidase activity, as described by Chen et al. (19) and Oral et al. (27). The activity was assessed in 300 μl of reaction solution containing 3.33 μl of 100 × magnesium buffer (0.1 M MgCl2, 4.5 mM β-mercaptoethanol), 66 μl of 4 mg/ml o-nitrophenyl-β-D-galactopyranoside, 230.67 μl of 0.1 M sodium phosphate buffer, pH 7.5 (41 μl of 0.2 M Na2HPO4, 9 ml of 0.2 M NaH2PO4, and 50 ml of water), to which 20 μl of protein extract was added. After a 10-min incubation at 37 °C in a water bath, the reaction was terminated by the addition of 500 μl of 1 M Na2CO3, and the optical density of the samples was measured by spectrophotometry at 420 nm. Blanks were generated at the same time, and proteins from a positive sample were added after reaction termination with sodium carbonate. Efficiency of transfection was determined by β-galactosidase staining of the cells, as described above. For Western blotting, cells were selected with 250 μg/ml of Geneticin for 4 days before collection.

RESULTS

Differentiation and Serum Deprivation of Mouse C2C12 and Rat L6A Myoblast Cell Lines—To initiate our study on the functions of eEF1A-1/EF-1α and eEF1A-2/S1, mouse C2C12 and rat L6 myoblasts were first cultured to confluence and then induced to differentiate into multinucleated myotubes by serum deprivation. Myotubes were differentiated during the serum deprivation experiment; differentiation was performed. For the extraction, the pellets were resuspended in 100 μl of 0.25 M Tris-HCl, pH 7.8, and then submitted to three freeze/thaw cycles by transferring the samples between an ethanol-dry ice water bath. Afterward, the extracts were centrifuged at 12,000 rpm for 8 min in a refrigerated bench top centrifuge, and the supernatants were retained for the assay. Viability was quantified by measuring β-galactosidase activity, as described by Chen et al. (19) and Oral et al. (27). The activity was assessed in 300 μl of reaction solution containing 3.33 μl of 100 × magnesium buffer (0.1 M MgCl2, 4.5 mM β-mercaptoethanol), 66 μl of 4 mg/ml o-nitrophenyl-β-D-galactopyranoside, 230.67 μl of 0.1 M sodium phosphate buffer, pH 7.5 (41 μl of 0.2 M Na2HPO4, 9 ml of 0.2 M NaH2PO4, and 50 ml of water), to which 20 μl of protein extract was added. After a 10-min incubation at 37 °C in a water bath, the reaction was terminated by the addition of 500 μl of 1 M Na2CO3, and the optical density of the samples was measured by spectrophotometry at 420 nm. Blanks were generated at the same time, and proteins from a positive sample were added after reaction termination with sodium carbonate. Efficiency of transfection was determined by β-galactosidase staining of the cells, as described above. For Western blotting, cells were selected with 250 μg/ml of Geneticin for 4 days before collection.

Cell Viability and DNA Fragmentation Assay—Cell viability of serum-deprived C2C12 and L6 myotubes was measured using the trypan blue exclusion assay, where blue cells are counted as dead. As seen in Fig. 3A, only 15% of C2C12 myotube cultures remain alive after 8 days of serum deprivation, whereas more than 60% of the control cells cultured with 2%
terestain for all nuclei (Fig. 4, C and D), and phase contrast pictures (Fig. 4, A and B) reveal that the cells were indeed differentiated myotube syncytia.

Caspase-3 and PARP Western Blots, Caspase Activity, and Caspase-3 Inhibitor Effects on Cell Viability—We have assessed the apoptotic biochemical program by measuring caspase-3 activity with the cleavage of DEVD-AFC fluorescent peptide substrate. High caspase-3 activity is observed after 2 days of serum deprivation, whereas the activity in control cells remains close to the base-line level for the same period of time (Fig. 5A). As expected for caspase-mediated cell death, caspase-3 activity is seen when the cells are dying as shown by the kinetic of viability measurements (Fig. 5C). Caspase-1 fluorescent TVAD-AFC peptide was used as a negative control; caspase-1 activity remains constant in both serum-deprived and control myotube cultures. To verify that caspase-3 activity indeed occurs in apoptotic myotube cultures, proteins from control and serum-deprived cells were processed for Western blotting with caspase-3 and PARP rabbit polyclonal antibodies. As shown in Fig. 5B, the p17 catalytic fragment of active caspase-3 protein, obtained after activation by cleavage of p32 zymogen form of caspase-3, is seen on the Western blot at both 2 and 3 days of serum deprivation. These time points correspond to the peak of activity level in caspase-3 fluorogenic peptide cleavage assays (Fig. 5A). During the same period of time, a p38-cleaved PARP fragment, a marker of cellular caspase-3 protein activity (28), is detected in the same samples, demonstrating that caspase-3 is indeed activated in differentiated myotube cultures after serum deprivation. To confirm further that a caspase-3-dependent death mechanism indeed occurs, DEVD-FMK caspase-3 peptide inhibitor was used in differentiated cell cultures. As seen in Fig. 5C, after 3 days of serum deprivation in the presence of the inhibitor, around 60% of the differentiated cells are still alive, whereas less than 10% of serum-deprived control cells are viable. As expected, the untreated control shows serious cell death (Fig. 5B). As expected for caspase-mediated cell death, caspase-3 activity is seen when the cells are dying as shown by the kinetic of viability measurements (Fig. 5C). Caspase-1 fluorescent TVAD-AFC peptide was used as a negative control; caspase-1 activity remains constant in both serum-deprived and control myotube cultures. To verify that caspase-3 activity indeed occurs in apoptotic myotube cultures, proteins from control and serum-deprived cells were processed for Western blotting with caspase-3 and PARP rabbit polyclonal antibodies. As shown in Fig. 5B, the p17 catalytic fragment of active caspase-3 protein, obtained after activation by cleavage of p32 zymogen form of caspase-3, is seen on the Western blot at both 2 and 3 days of serum deprivation. These time points correspond to the peak of activity level in caspase-3 fluorogenic peptide cleavage assays (Fig. 5A). During the same period of time, a p38-cleaved PARP fragment, a marker of cellular caspase-3 protein activity (28), is detected in the same samples, demonstrating that caspase-3 is indeed activated in differentiated myotube cultures after serum deprivation. To confirm further that a caspase-3-dependent death mechanism indeed occurs, DEVD-FMK caspase-3 peptide inhibitor was used in differentiated cell cultures. As seen in Fig. 5C, after 3 days of serum deprivation in the presence of the inhibitor, around 60% of the differentiated cells are still alive, whereas less than 10% of serum-deprived control cells are viable.
of apoptotic nuclei (magnification (ptosis myotube (panel F). Phase contrast pictures show control (panel A) and apoptotic (panel B) myotubes. Propidium iodide was used as a counterstain to reveal the presence of multinucleated myofibers (panels C and D). TUNEL staining revealed the absence of positive apoptotic myonuclei in the control myotube (panel E) and bright, condensed positive myonuclei in apoptotic myotube (panel F). Open arrows indicate the presence of non-apoptotic nuclei (panels C and E), and full arrows indicate the presence of apoptotic nuclei (panels D and F). All pictures were taken at the same magnification (×400).

of the serum-deprived control cells remain viable. The inhibitor was potent to protect differentiated cells against serum deprivation-induced myotube cell death. This protection from cell death by the use of caspase-3 inhibitor confirms that upon serum deprivation of differentiated myotubes, the cell death mechanism is caspase-3-dependent, as suggested by Western blotting.

Western Blots and Viability of eEF1A-2/S1-infected Cells—Previous figures have shown that eEF1A-2/S1 was lost in cultures of dying myotubes but present before induction of apoptosis (see Fig. 2). Adenovirus clone A5.4 expressing eEF1A-2/S1 was used to infect undifferentiated L6 cells to see whether eEF1A-2/S1 protects or rescues cells from serum deprivation-induced apoptosis. In general, infection efficiency, determined by β-galactosidase assay, is on average about 85%, whereas infection efficiency for C2C12 cells is too low (around 40%); therefore only L6 cultures were used for this study. Undifferentiated L6 cells were infected and allowed to differentiate into myotubes. After differentiation, cells were serum deprived, and their viability was measured by trypan blue exclusion assay. As shown in Fig. 6A, about 45% of eEF1A-2/S1-infected myotube cultures remain alive after 3 days of serum deprivation, whereas only about 15% of the control (uninfected) and mock-infected (β-galactosidase) cells remain viable. After 2 days of serum deprivation, mock-infected cultures seem protected by the adenoviral infection, but that effect was not seen after 3 days of serum deprivation, revealing the true protective effect of eEF1A-2/S1. To confirm further the protective effect of eEF1A-2/S1, caspase-3 activity was measured in serum-deprived eEF1A-2/S1-infected differentiated L6 cells. After 2 days of serum deprivation, A5.4-infected cultures exhibit between 50 and 60% of the caspase-3 activity of control cultures (Fig. 6B). As mentioned above, the adenoviral infection seems to protect myotubes cultures after 2 days of serum deprivation, but this protection is not seen when caspase-3 activity is measured (no significant difference), thus confirming that the adenovirus does not protect myotubes cultures, as seen after 3 days of serum deprivation viability. The reduced caspase-3 activity and low eEF1A-1/EF-1α protein expression seen in eEF1A-2/S1-infected cells confirm the role of eEF1A-2/S1 as a rescuer from cell death in differentiated skeletal myocyte cultures. As shown in Fig. 6C, eEF1A-1/EF-1α and eEF1A-2/S1 Western blots were performed to verify the efficiency of eEF1A-2/S1 adenoviral expression as well as the corresponding change in eEF1A-1/EF-1α expression. As expected, only A5.4-infected cells express eEF1A-2/S1 protein before differentiation, revealing the efficiency of transfection. The absence of myosin heavy chain expression was used as a marker for the undifferentiated state in these samples. After differentiation, all samples express eEF1A-2/S1 protein, but after 3 days of serum deprivation, only the A5.4-infected myotubes still express eEF1A-2/S1 protein as shown by Western blotting. Interestingly, A5.4-inf-
In this report, we demonstrate that eEF1A-2/S1 and eEF1A-1/EF-1 β protein expressions are regulated inversely in differentiated myotube cultures during differentiation and apoptosis. When eEF1A-2/S1 protein is up-regulated during differentiation, eEF1A-1/EF-1α protein is down-regulated with the reverse pattern of expression in apoptotic events. Apoptotic cell death is also associated with the activation of caspase-3 protease, which can be inhibited by specific cell-permeable, irreversible inhibitor. The presence of this inhibitor protects differentiated cultures of myotubes from serum deprivation-induced cell death, thus confirming the death mechanism is caspase-3-dependent in differentiated myotube cultures. DNA fragmentation analysis confirms the apoptotic nature of the death in cultured myotubes and indeed reveals that differentiated myotubes are capable of apoptotic cell death, as TUNEL-positive multinucleated syncytia are observed.

In an attempt to determine eEF1A-2/S1 function in apoptotic cells, the effect of continuous expression of eEF1A-2/S1 was assessed in dying myotubes. eEF1A-2/S1-infected myotubes are more resistant to serum deprivation-induced apoptosis than virus alone infected (β-galactosidase) or uninfected cells, as observed after 3 days. This result is the first to ascribe a protective or rescuing function to eEF1A-2/S1 protein in apoptosis. Cultures of myotubes bearing the transfected sense eEF1A-1/EF-1α gene die more rapidly, whereas cells transfected with the antisense are protected and die more slowly from serum deprivation-induced apoptosis, similar to what was observed previously (19, 20). This experiment essentially shows the opposite effects of eEF1A-1/EF-1α and eEF1A-2/S1 on myotube survival. In terminally differentiated muscle cells, eEF1A-2/S1 may possibly replace eEF1A-1/EF-1α, functioning not only in protein synthesis but also preventing apoptosis. This is the first noncanonical function associated with eEF1A-2/S1 and may help unravel the mystery behind the developmental switch between peptide elongation factor 1A observed in brain neurons, heart, and skeletal muscles; the switch may be beneficial to preserve and protect these long lasting cells from inopportune apoptotic cell death. Thus, the absence of eEF1A-2/S1 protein, and its replacement by eEF1A-1/EF-1α in dying muscles, as observed in injured muscles (22) and in cultured myotubes, is a mechanism permitting apoptosis to occur.

Both eEF1A-2/S1 and eEF1A-1/EF-1α proteins have a similar elongation function in vitro (15, 16), and probably in vivo, because only eEF1A-2/S1 protein is expressed in mature brain neurons, heart, and skeletal muscles, where protein translation is maintained. The similarities between eEF1A-2/S1 and eEF1A-1/EF-1α may not extend to other noncanonical functions not directly associated with protein biosynthesis. For example, eEF1A-1/EF-1α is capable of secreting microtubules, whereas no similar function has been shown for eEF1A-2/S1 (29). It is known that microtubule severing or anti-microtubule agents induce apoptosis (30, 31). The increase in eEF1A-1/EF-1α protein levels observed during apoptosis may serve to
facilitate rapid death of cells, by dismantling their cytoskeleton. In contrast, eEF1A-2/S1, which may not be capable of microtubule severing, may thus indirectly protect cells from apoptosis.

Our study of apoptotic cell death in myotube cultures reveals a caspase-3-dependent mechanism. Caspase-3 activation was confirmed by a specific inhibitor, and by Western blot analysis of caspase-3 and PARP cleavage, a cellular marker of caspase-3 activity (28). In differentiated L6 cells, however, caspase-3 activity is lower when eEF1A-2/S1 is present, as seen in A5.4-infected cells; after 2 days of serum deprivation, half of the control caspase-3 activity is present in A5.4-infected cells. This may explain why, after 3 days of serum deprivation, about twice as many A5.4-infected cells survive serum deprivation-induced apoptosis. These results suggest that the protection exerted by eEF1A-2/S1 may include a mechanism involved in the regulation of caspase-3 activity. Disruption of the muscle architectural organization triggers the activation of caspase-3, as observed previously in the muscle cell death in muscular dystrophy (32). It will be interesting to analyze the possible analogy between caspase-3 activation in muscle cell death in muscular dystrophy (32). It will be interesting to study in vivo the expression and effect of eEF1A-2/S1 in skeletal muscle during aging and to determine whether the loss of eEF1A-2/S1 may expedite the age-dependent myofiber decline in skeletal muscle.

Acknowledgments—We thank Dr. Denis Bourbeau for A5.4 eEF1A-2/S1 adenovirus cloning and Alan Bloch for proofreading the text.

REFERENCES

1. Jacobson, M. D., Weil, M., and Raff, M. C. (1997) Cell 88, 347–354
2. Thompson, C. B. (1995) Science 267, 1456–1462
3. Ashkenazi, A., and Dixit, V. M. (1998) Science 281, 1305–1308
4. Fadely, B., Zhitovtovski, B., and Orrenius, S. (1999) FASEB J. 13, 1647–1657
5. Green, D. R., and Reed, J. C. (1998) Science 281, 1309–1312
6. Gross, A., McDonnell, J. M., and Korsmeyer, S. J. (1999) Genes Dev. 13, 1899–1911
7. Thornberry, N. A., and Lazebnik, Y. (1998) Science 281, 1312–1316
8. Wang, J., and Walsh, K. (1996) Science 273, 359–361
9. Wang, J., Guo, K., Wills, K. N., and Walsh, R. (1997) Cancer Res. 57, 351–354
10. Lee, S., Wolfrain, L. A., and Wang, E. (1993) J. Biol. Chem. 268, 24453–24459
11. Khalyfa, A., Bourbeau, D., Chen, E., Petroulakis, E., Pan, J., Xu, S., and Wang, E. (2001) J. Biol. Chem. 276, 29375–29382
12. Ann, D. K., Moutsatsos, I. K., Nakamura, V., Lin, H. H., Mao, P. L., Lee, M. J., Chin, S., Liem, R. K., and Wang, E. (1991) J. Biol. Chem. 266, 14564–14568
13. Lee, S., Francoeur, A. M., Liu, S., and Wang, E. (1992) J. Biol. Chem. 267, 21994–21998
14. Lee, S., LeBlanc, A., Dutтарow, A., and Wang, E. (1995) Exp. Cell Res. 219, 589–597
15. Karsa, S., Lund, A., Kristensen, P., Knausen, C. R., Clark, B. F. C., Cavalli, J., and Merrick, W. C. (1998) Nucleic Acids Res. 26, 1884–1890
16. Kristensen, P., Lund, A., Clark, B. F. C., Cavalli, J., and Merrick, W. C. (1998) Biochem. Biophys. Res. Commun. 254, 810–814
17. Mercken, W. C. (1999) Microbiol. Rev. 56, 301–315
18. Chambers, D. M., Peters, J., and Abbott, C. M. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 4463–4468
19. Chen, E., Proestou, G., Bourbeau, D., and Wang, E. (2000) Exp. Cell Res. 259, 140–148
20. Dutтарow, A., Bourbeau, D., Wang, X. L., and Wang, E. (1998) Exp. Cell Res. 256, 168–176
21. Kato, M. V., Sato, H., Nagayoshi, M., and Ikawa, Y. (1997) Blood 90, 1373–1378
22. Khalyfa, A., Carlson, B. M., Carlson, J. A., and Wang, E. (1999) Dev. Biol. 216, 267–273

FIG. 7. Effect of transient sense and antisense eEF1A-1/EF-1α transfection in serum-deprived L6 myotube cultures. Panel A, viability of differentiated L6 cells after serum deprivation is measured by β-galactosidase activity after transient cotransfection of β-galactosidase reporter vector and the gene of interest. Cells cotransfected with pBK CMV empty vector were used as control (black bars). Cells cotransfected with antisense eEF1A-1/EF-1α in pBK CMV vector were represented by the white bars, and cells cotransfected with the sense eEF1A-1/EF-1α gene in pBK CMV vector by the gray bars. The asterisks represent a significant difference analyzed by Student’s t test (p < 0.001). Panel B, Western blotting of cotransfected cells to show the efficiency of the transfection. The experiment was performed in duplicate from two different cell samples. β-Actin was used as a loading control. Panel C, relative expression of eEF1A-1/EF-1α protein in transfected L6 myotube cultures, including the S.D.
23. Gavrieli, Y., Shennon, Y., and Ben-Sasson, J. A. (1992) J. Cell Biol. 119, 493–501
24. Gambke, B., and Rubinstein, N. A. (1984) J. Biol. Chem. 259, 12092–12100
25. Duttaroy, A., Qian, J. F., Smith, J. S., and Wang, E. (1997) J. Cell. Biochem. 64, 434–446
26. Lee, S., Ann, D. K., and Wang, E. (1994) Biochim. Biophys. Res. Commun. 203, 1371–1377
27. Oral, H. B., Arancibia-Carcamo, C. V., Haskard, D. O., and George, A. J. T. (1999) Anal. Biochem. 267, 196–202
28. Tewari, M., Quan, L. T., O’Dourke, R., Desnoyers, S., Zeng, Z., Beidler, D. R., Pozier, G. G., Salvesen, G. S., and Dixit, V. M. (1995) Cell 81, 801–809
29. Shiina, N., Gotoh, Y., Kubomura, N., Iwamatsu, A., and Nishida, E. (1994) Science 266, 282–285
30. Kato, M. V. (1999) Leukemia Lymphoma 33, 181–186
31. Wang, L. G., Liu, X. M., Kreis, W., and Budman, D. R. (1999) Cancer Chemother. Pharmacol. 44, 355–361
32. Mukasa, T., Momoi, T., and Momoi, M. Y. (1999) Biochem. Biophys. Res. Commun. 260, 139–142
33. Johannes, G., Carter, M. S., Eisen, B. M., Brown, P. O., and Sarnow, P. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 13118–13123
34. Zong, Q., Schummer, M., Hood, L., and Morris, D. R. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 10632–10636