Activated Platelets and Platelet-Derived Extracellular Vesicles Mediate COVID-19-Associated Immunothrombosis

Marie Ebeyer-Masotta, Tanja Eichhorn, René Weiss, Lucia Lauková and Viktoria Weber*

Center for Biomedical Technology, Department for Biomedical Research, University for Continuing Education Krems, Krems, Austria

Activated platelets and platelet-derived extracellular vesicles (EVs) have emerged as central players in thromboembolic complications associated with severe coronavirus disease 2019 (COVID-19). Platelets bridge hemostatic, inflammatory, and immune responses by their ability to sense pathogens via various pattern recognition receptors, and they respond to infection through a diverse repertoire of mechanisms. Dysregulated platelet activation, however, can lead to immunothrombosis, a simultaneous overactivation of blood coagulation and the innate immune response. Mediators released by activated platelets in response to infection, such as antimicrobial peptides, high mobility group box 1 protein, platelet factor 4 (PF4), and PF4+ extracellular vesicles promote neutrophil activation, resulting in the release of neutrophil extracellular traps and histones. Many of the factors released during platelet and neutrophil activation are positively charged and interact with endogenous heparan sulfate or exogenously administered heparin via electrostatic interactions or via specific binding sites. Here, we review the current state of knowledge regarding the involvement of platelets and platelet-derived EVs in the pathogenesis of immunothrombosis, and we discuss the potential of extracorporeal therapies using adsorbents functionalized with heparin to deplete platelet-derived and neutrophil-derived mediators of immunothrombosis.

Keywords: apheresis, coagulopathy, COVID-19, extracellular vesicles, heparin, immunothrombosis, platelets, platelet factor 4

INTRODUCTION

Next to the lung inflammatory syndrome, thrombotic events and endothelial dysfunction are key pathogenic mechanisms of severe coronavirus disease-19 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Bonaventura et al., 2021; Hottz et al., 2020; Klok et al., 2020; Middeldorp et al., 2020; Middleton et al., 2020; Tang N. et al., 2020). Here, we focus on the involvement of platelets and platelet-derived extracellular vesicles (pEVs) in COVID-19-related immunothrombosis. We discuss the interaction of heparan sulfate and heparin with activated platelets and with mediators of immunothrombosis and highlight potential therapeutic implications of this interaction.
IMMUNOTHROMBOSIS AS A HALLMARK OF COVID-19

SARS-CoV-2 is an enveloped, single-stranded RNA virus (Masters, 2006; Zhou et al., 2020; Hu et al., 2021). Binding to its target cells depends mainly on the interaction of the viral spike protein with angiotensin-converting enzyme 2 (ACE2) on the surface of its target cells.

The clinical spectrum of COVID-19 ranges from asymptomatic or mild forms to severe disease requiring intensive care (Wiersinga et al., 2020). COVID-19 was first described as a pulmonary condition (Zhou et al., 2020; Zhu et al., 2020), but can be associated with gastrointestinal, cardiovascular, renal, or neurological dysfunctions alike (Gupta et al., 2020; Renu et al., 2020). Severe SARS-CoV-2 infection frequently induces a prothrombotic state, which can progress to multiorgan failure (Yang et al., 2020; Lopes-Pacheco et al., 2021).

Laboratory parameters associated with a higher thrombotic risk in COVID-19 patients include elevated D-dimer levels, low fibrinogen, and low lymphocyte counts (Thomas and Scully, 2022).

The thrombotic events associated with severe COVID-19 are best described as immunothrombosis, a simultaneous overactivation of coagulation and the innate immune system (Engelmann and Massberg, 2013; Ackermann et al., 2020; Connors and Levy, 2020; Skendros et al., 2020). During immunothrombosis, deregulated complement activation enhances neutrophil activation and recruitment to the infected lungs, and promotes tissue factor (TF) expression, resulting in microvascular thrombosis and endothelial dysfunction (Bonaventura et al., 2021). The excessive release of neutrophil extracellular traps (NETs), which consist in DNA fibers associated with neutrophil elastase, antimicrobial peptides, TF citrullinated histone H3 (Nomura et al., 2019) as well as with
PLATELETS AS MEDIATORS OF IMMUNOTHROMBOSIS
Platelets Are Sentinels of Endogenous and Exogenous Signals of Infection
Platelets are small (1–3 µm), short-lived (up to 9 days), anucleate entities derived from megakaryocytes residing in the bone marrow. With a concentration of 150,000 to 400,000 platelets per µL, they represent the second most abundant formed elements of blood (Ghoshal and Bhattacharyya, 2014). They are equipped with an array of surface and intracellular receptors to detect pathogens, enabling their function as intravascular sentinels. Platelets can contribute to the propagation of inflammatory processes through the release of mediators from their dense- and α-granules and through their interaction with other immune cells (Morrell et al., 2014).

SARS-CoV-2 can trigger an innate immune response via pathogen-associated molecular patterns (PAMPs) such as single-stranded RNA or the spike protein (Khan et al., 2021), pathogen-associated molecular patterns (PAMPs) such as high-mobility group box 1 protein (HMGB1) (Garcia-Romo et al., 2011) and activated platelets (Brinkmann et al., 2004; Li et al., 2020), further promotes thrombosis and tissue damage (Middleton et al., 2020). In addition to this complement/neutrophil/TF axis, platelets are centrally involved in initiating and propagating immunothrombosis in COVID-19 (Foley and Conway, 2016; Martinod and Deppermann, 2021), as discussed in detail below and shown in Figure 1. Altogether, the disproportionate activation of the innate immune response after infection with SARS-CoV-2 leads to an excessive release of inflammatory mediators (Fara et al., 2020; Huang et al., 2020), giving rise to a tissue-damaging environment (Elrobaa and New, 2021) and uncontrolled microthrombus formation (Helms et al., 2020; Iba et al., 2020; McFadyen et al., 2020).

Platelets also express the nucleotide-binding domain leucine rich repeat containing protein (NLRP3) (Hottz et al., 2015, 2013), a major sensor for the activation of the inflammasome by bacterial, viral or tissue damage signals.

In addition, they express C-type lectin receptor 2 (CLEC2) (Sung et al., 2019), which can recognize viral surface glycan patterns, as previously shown for human immunodeficiency virus (Chaipan et al., 2006) and dengue virus (Sung et al., 2019). CLEC2 might also interact with sialylated O-glycans of SARS-CoV-2 spike proteins (Gadanec et al., 2021), resulting in tyrosine-kinase-associated signal transduction and platelet activation (Meng et al., 2021).

Platelets can thus sense and respond to SARS-CoV-2 infection via different PRRs. There is no clear consensus, however, whether human platelets express the ACE2 on their surface, which has been identified as one of the main entry routes for SARS-CoV-2 into host cells (Lan et al., 2020). Some groups have described ACE2 expression on platelets (Zhang et al., 2020; Koupkova et al., 2021), while others have been unable to confirm its presence (Manne et al., 2020; Song et al., 2020; Zaid et al., 2020; Campbell et al., 2021a; Li et al., 2022). Platelets may also use other receptors to interact with SARS-CoV-2, including CD147 as well as glucose regulated protein 78 and kringle containing transmembrane protein 1 (Shen et al., 2021).

Platelet Activation in COVID-19
Following pathogen recognition and activation, platelets mediate and propagate the innate immune response by various mechanisms, such as the release of chemokines including platelet factor 4 (PF4), modulation of leukocyte migration (Pan et al., 2015; Chimpen et al., 2020; Middleton et al., 2020), leukocyte recruitment to thrombi (Swystun and Liaw, 2016), induction of NET formation (Clark et al., 2007), monocyte expression of TF (Lindemark et al., 2000; Ivanov et al., 2019) as well as the release of extracellular vesicles (EVs) (Suedes et al., 2022). In addition, platelets sustain inflammation via the release of mediators from their α- and dense granules (D’Atri and Schattner, 2017), triggering the release of pro-inflammatory cytokines and inflammasome assembly by neutrophils and macrophages (Chen et al., 2017), complement activation (del
PF4 is an abundant platelet α-granule chemokine released during platelet activation. In addition to its soluble form, PF4 is displayed on the surface of activated platelets and of pEVs. PF4 expression is strongly elevated following trauma as well as in sepsis (Maharaj and Chang, 2018; Wegrzyn et al., 2021) and COVID-19 (Comer et al., 2021). Due to its positive charge at physiological pH, PF4 binds to endogenous heparan sulfate and other glycosaminoglycans as well as to exogenously administered heparin with high affinity, thereby promoting blood coagulation (Kowalska et al., 2010). By neutralizing the negatively charged heparan sulfate side chains of glycosaminoglycans on the surface of platelets and endothelial cells, PF4 facilitates platelet aggregation and thrombus formation. Its affinity for heparan sulfate induces the re-binding of soluble PF4 to the surface of platelets, pEVs, and monocytes (George and Onofre, 1982; Witt and Lander, 1994; Rauova et al., 2006, 2010). Beyond its hemostatic activity, PF4 is responsible for neutrophil recruitment to sites of inflammation/infection and strongly induces the formation of NETs, which are central mediators of COVID-19-associated coagulopathy (Middleton et al., 2020; Zuo et al., 2020).

PF4 shares its affinity for glycosaminoglycans with HMGB1, which is expressed and released by activated platelets (Rouhaïinen et al., 2006; Maugeri et al., 2012; Vogel et al., 2015). HMGB1 interacts with heparin via two positively charged domains, box A and box B (Martinotti et al., 2015), and via its heparin-binding domain (Xu et al., 2011). HMGB1 plasma levels are elevated in conditions associated with abnormal coagulation, including sepsis (Eichhorn et al., 2021) and COVID-19, where HMGB1 has been correlated with disease severity (Chen et al., 2020). The biological functions of HMGB1 resemble those of activated platelets, including the induction of DNA externalization in neutrophils (Maugeri et al., 2014; Hoste et al., 2019) and microvascular thrombosis (Ito et al., 2007). HMGB1 signals through agonist receptors, such as the receptor for advanced glycation end products (RAGE) as well as other PRRs, including TLR2, TLR4 and TLR9 (Park et al., 2006, 2004). There is evidence that HMGB1-induced NET formation depends on the integrity of RAGE. Interaction of HMGB1 with heparin induces a conformational change and decreases its affinity for RAGE (Ling et al., 2011), abrogating the ability of activated platelets to elicit NET formation (Maugeri et al., 2014).

Beyond elevated levels of PF4 and HMGB1, patients suffering from severe COVID-19 display elevated markers of platelet activation including thromboxane A2 (Hottz et al., 2020; Zhang et al., 2020), surface expressed P-selectin (CD62P) and CD63 (Hottz et al., 2020; Manne et al., 2020; Nicolai et al., 2020; Taus et al., 2020; Zhang et al., 2020), activated glycoprotein (GP) IIB/IIa (Bongiovanni et al., 2021; Léopold et al., 2021), as compared to healthy controls or to patients suffering from other pulmonary infections. Variable and partially conflicting results regarding the expression of individual platelet activation markers obtained in different studies may partly be due to the heterogeneity of COVID-19 patients. Furthermore, studies investigating single time points of platelet activation can merely provide snapshots of a highly dynamic process. As an example, increased platelet-monocyte aggregate formation has been described to trigger TF expression and immunothrombosis in critically ill COVID-19 patients (Hottz et al., 2020; Manne et al., 2020; Zaid et al., 2020), whereas other studies found diminished levels of circulating platelet-leukocyte aggregates in fatally ill patients, linked to a hypo-responsive platelet phenotype with impaired GPIIb/IIIa activation (Schrottmaier et al., 2021).

PLATELET-DERIVED EVS IN INFLAMMATION AND COAGULATION

EVs are membrane-enclosed vesicles released by almost all cell types and present in all body fluids (Lötvall et al., 2014; Yáñez-Mó et al., 2015). Platelet-derived EVs are the most abundant EV subset in the circulation (Arraud et al., 2014; Berckmans et al., 2019), and their release is enhanced under pathological conditions, including sepsis (Raevens et al., 2018) and COVID-19 (Cappellano et al., 2021; Krishnamachary et al., 2021; Traby et al., 2022). They are most commonly characterized in blood or plasma samples using flow cytometry. Typically, phosphatidylserine exposed on EVs is detected by staining with Annexin V or lactadherin, while CD41 is used as a marker for platelet origin (Weiss et al., 2018; Tripisciano et al., 2020).

Platelet activation mediated by PRRs as described above, or through platelet agonists, such as thrombin, ADP, or collagen triggers the release of pEVs (Heijnen et al., 1999; Taus et al., 2019). The release of pEVs from plasma membrane is associated with actin cytoskeletal rearrangement and depends on GPIIb/IIIa (Heinzmann et al., 2020). EV release alters the phospholipid composition of the plasma membrane monolayers, leading to an exposure of phosphatidylserine on the outer membrane of the EVs (Stähl et al., 2019).

It is well established that the properties of pEVs depend on the agonists triggering their release and on their environment. Activation of platelets with ADP, thrombin, collagen, or with a combination of thrombin and collagen induces different responses in terms of surface protein patterns and EV cargo (Milioli et al., 2015), entailing functional differences of the resulting EV populations. As an example, pEVs enriched from platelet-rich plasma under physiological conditions support tissue regeneration (Wu et al., 2021), while pEVs released under pathological conditions sustain coagulation and immunothrombosis (Zaid and Merhi, 2022).

Platelet-Derived EVs Provide a Large Pro-coagulant Surface

The exposure of phosphatidylserine on EVs results in the formation of a pro-coagulant surface (Niewland et al., 2000; Freyssinet and Toti, 2010). In fact, it has been estimated that the pro-coagulant activity of EVs is 50–100 fold higher than that of platelets (Sinauridze et al., 2007). Phosphatidylserine forms a catalytic, negatively charged surface, facilitating the formation of the tenase (factors VIlia, IXa) and prothrombinase (factors Va,
Xa) complexes of the coagulation cascade (Furie and Furie, 1992; Tripisciano et al., 2020). Beyond their ability to propagate coagulation by exposing phosphatidylserine, EVs may be initiators of coagulation via their exposure of TF. This is well-established for EVs derived from activated monocytes or endothelial cells (Niewland et al., 2000; Tripisciano et al., 2017; Hell et al., 2021), whereas TF expression on activated platelets and pEVs has long been controversial (Zillmann et al., 2001; Siddiqui et al., 2002; Panes et al., 2007; Bouchard et al., 2010, 2012; Camera et al., 2012; Österud and Bouchard, 2019). Our own data do not support TF exposure on EVs released upon activation of platelets from medical grade platelet concentrates in vitro (Tripisciano et al., 2017). Still, TF might be transferred from monocytes to platelets in vivo in settings of inflammation. We and others have previously shown that pEVs shed from activated platelets preferentially bind to monocytes (Fendl et al., 2018; Weiss et al., 2018; Chimen et al., 2020) in the circulation. This binding is mediated by the interaction of P-selectin on pEVs and P-selectin glycoprotein ligand-1 (PSGL-1) on monocytes (Chimen et al., 2020). The P-selectin/PSGL-1 interaction enhances the exposure of TF on monocytes (Ivanov et al., 2019) and induces the release of TF-bearing monocyte EVs that can bind to activated platelets via P-selectin/PSGL-1 interaction (del Conde et al., 2005b). Increased EV-TF activity associated with severe COVID-19 has consistently been described by several groups (Hottz et al., 2020; Campbell et al., 2021b; Guervilly et al., 2021; Krishnamachary et al., 2021; Rosell et al., 2021). The assays used in these studies, however, did not further differentiate the cellular origin of the TF-exposing EVs.

Platelet-Derived EVs Expose and Release Mediators of Immunothrombosis

Next to their pro-coagulant surface, pEVs expose and release mediators supporting immunothrombosis (Puhm et al., 2020). Like platelets, pEVs carry PF4 and HMGB1 on their surface, partially due to re-binding of soluble PF4 and HMGB1 to the pEV surface. Elevated levels of PF4+ pEVs have been reported in sepsis (Sartori et al., 2020), and there is evidence that HMGB1+ pEVs are significantly elevated in COVID-19 (Maegeri et al., 2022). In addition, oxidation-specific epitopes generated by lipid peroxidation in settings of inflammation and cell death (Miller et al., 2011; Weismann and Binder, 2012; Binder et al., 2016) have been identified on EVs (Tsiantoulas et al., 2015) and can further enhance immunothrombosis by acting as DAMPs.

Platelet-Derived EVs Support NET Formation and Influence Other Immune Cells

Given that PF4 (Carestia et al., 2016) and HMGB1 (Denning et al., 2019) induce NET formation, PF4+ and HMGB1+ pEVs contribute to NET-associated coagulopathy. Moreover, pEVs have been directly associated with induction of NETosis in viral infection. Interaction of dengue virus with platelet CLEC2 was shown to trigger the release of pEVs, activating neutrophils through heterocomplexes of TLR2 and CLEC5A (Sung et al., 2019). EVs released from platelets after CLEC2 activation during SARS-CoV-2 infection might enhance neutrophil activation by a similar mechanism (Sung and Hsieh, 2021, 2019).

Furthermore, pEVs can propagate and spread platelet activation via the interaction of phosphatidylserine on EVs and CD36 exposed on platelets (Nergiz-Unal et al., 2011). As a scavenger receptor, CD36 recognizes oxidized phospholipids and lipoproteins, and participates in the internalization of apoptotic cells, certain bacterial and fungal pathogens, as well as modified low-density lipoproteins, and there is evidence that signaling following the interaction of phosphatidylserine and CD36 mediates a prothrombotic phenotype in platelets (Ghosh et al., 2008; Ramakrishnan et al., 2016).

Studies from our own group and others have further indicated that activated platelets and pEVs can shift the distribution of monocyte subsets towards intermediate CD14+CD16+ monocytes, which possess inflammatory characteristics (Passacquale et al., 2011; Fendl et al., 2019, 2021; Lee et al., 2021). The CD16 induction on monocytes appears to be triggered by platelet-derived transforming growth factor-beta and monocyte derived IL-6, suggesting an important role of activated platelets and pEVs in modulating phenotypical and functional features of human monocytes.

Platelet-Derived EVs May Support Viral Propagation

There are indications that pEVs can propagate infection through the delivery of functional viral RNA from cell to cell (Valadi et al., 2007), which has already been described for several viruses (Bello-Morales et al., 2020; Nomura et al., 2020). Since SARS-CoV-2 RNA has been detected by reverse transcription-droplet digital polymerase chain reaction in exosomes isolated from plasma of COVID-19 patients (Barberis et al., 2021), it is conceivable that EVs might be involved in viral spreading.

THERAPEUTIC POTENTIAL OF PLATELET-DERIVED EV DEPLETION DURING COVID-19

Extracorporeal blood purification has been proposed as a supportive measure for the treatment of COVID-19 (Rock et al., 2021; Ronco et al., 2021). Given the central role of immunothrombosis, removing mediators of excessive cellular activation from the circulation may indeed be beneficial (Morris et al., 2021; Tang L. et al., 2020).

Potential extracorporeal approaches include plasma exchange (Rock et al., 2021), depletion of cytokines using polystyrene based adsorbents (Nassiri et al., 2021; Ruiz-Rodríguez et al., 2021), as well as hemadsorption using beads functionalized with heparin. The Seraph-100 Microbind Affinity Blood Filter consists of ultra-high molecular weight polyethylene beads with endpoint-attached heparin (Seffer et al., 2021). It has been developed following a biomimetic approach with the assumption that bacterial as well as viral pathogens bind to immobilized heparin in the same way as they interact with cellular heparan sulfate. In fact, heparan sulfate is an essential cofactor in
SARS-CoV-2 infection, as it modifies the conformation of the spike protein to facilitate its recognition by ACE2 (Clausen et al., 2020).

So far, Seraph-100 has been exploited for its ability to deplete carbapenem-resistant Enterobacteriaceae in vitro, where it yielded promising results (McCrea et al., 2014). First clinical case reports on the capacity of the Seraph-100 Microbind Affinity Blood Filter to eliminate Staphylococcus aureus from the circulation have been published recently (Seffer et al., 2020). There is evidence that the viral load is associated with increased disease severity and mortality in COVID-19 (Fajnzylber et al., 2020), and that heparan sulfate is a co-factor for viral entry, as discussed further above (Kalra and Kandimalla, 2021; Tandon et al., 2021). It was therefore obvious to consider the application of Seraph-100 as a supportive therapy in COVID-19. The Seraph-100 Microbind Affinity Blood Filter obtained emergency use authorization for COVID-19 by the FDA in 2020, followed by a case series assessing its use in SARS-CoV-2 infected patients early in critical illness (Rüfkin and Stewart, 2022). This study however did not collect data on virus elimination from the circulation. A follow-up study provided evidence that treatment with Seraph-100 decreased the SARS-CoV-2 nucleocapsid protein in critically ill patients (Kielstein et al., 2021), while effects on clinically relevant outcome parameters remain to be further assessed. A recently published interim analysis of a multicenter observational study in 12 hospitals monitoring 102 treatment sessions in 82 patients confirmed that the treatment was well tolerated. Mortality was correlated with late initiation of the treatment as well as with bacterial super-infection (Schmidt et al., 2022). Although the efficacy of this approach has yet to be consistently demonstrated, current data suggest that it can be deployed as an adjunct measure until directed pharmacologic countermeasures are available (Chitty et al., 2022).

While this extracorporeal approach is currently mainly explored regarding pathogen depletion, we have provided evidence that heparin-immobilized adsorbents may exert beneficial effects by binding and depleting mediators of immunothrombosis, including activated platelets and platelet-derived extracellular vesicles (EVs), platelet factor 4 (PF4) and high mobility group box 1 protein (HMGB1). As suggested in Figure 2, and we are currently assessing the ability of heparin-functionalized adsorbents to deplete NETs.

CONCLUSION

Platelets are sentinels of viral infection and can propagate immunothrombosis at multiple levels, e.g., by the release or exposure of mediators, by providing pro-coagulant surfaces, by inducing a shift towards inflammatory monocyte subsets, and by contributing to viral spread via EVs. Activated platelets and pEVs are markers and central mediators of immunothrombosis in COVID-19 (Puhm et al., 2021). Adverse outcome in COVID-19 patients appears to be linked to increased basal platelet activation and diminished platelet reactivity, which aggravates over the course of the disease.

Both, cellular heparan sulfate and exogenous heparin interact with activated platelets, pEVs, and with various mediators of
immunothrombosis in many ways, and thus both, extracorporeal therapy with immobilized heparin and administration of heparin may provide approaches to alleviate excessive immunothrombosis.

AUTHOR CONTRIBUTIONS

VW and ME-M wrote the manuscript; ME-M designed the figures using BioRender.com; TE, RW, and LL contributed to the manuscript by critical discussion and by providing feedback on the draft.

FUNDING

ME-M and TE received funding from the Lower Austrian Society for Research Funding Organization (FTI Call, project ID K3-F-744/005-2019). Open Access funding was provided by the University for Continuing Education Krems.

REFERENCES

Ackermann, M., Verleden, S. E., Kuehnel, M., Haverich, A., Welte, T., Laenger, F., et al. (2020). Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. *N. Engl. J. Med.* 383, 120–128. doi:10.1056/NEJMoas2015342

Anabel, A.-S., Eduardo, P.-C., Pedro Antonio, H.-C., Carlos, S.-M., Juana, N.-M., Honorio, T.-A., et al. (2014). Human Platelets Express Toll-like Receptor 3 and Respond to Poly I:C. *Hum. Immunol.* 75, 124–1251. doi:10.1016/j.humimm.2014.09.013

Arraud, N., Linares, R., Tan, S., Gounou, C., Pasquet, J.-M., Mornet, S., et al. (2014). Extracellular Vesicles from Blood Plasma: Determination of Their Morphology, Size, Phenotype and Concentration. *J. Thromb. Haemost.* 12, 614–627. doi:10.1111/j.tih.12554

Aslam, R., Speck, E. R., Kim, M., Crow, A. R., Bang, K. W. A., Nestel, F. P., et al. (2006). Platelet Toll-like Receptor Expression Modulates Lipopolysaccharide-Induced Thrombocytopenia and Tumor Necrosis Factor-a Production In Vivo. *Blood* 107, 637–641. doi:10.1182/blood-2005-06-2202

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., Veen, W., Brüggen, M. C., et al. (2016). Mediators and Molecular Pathways Involved in the Regulation of Neutrophil Extracellular Trap Formation Mediated by Activated Platelets. *J. Leukoc. Biol.* 99, 153–162. doi:10.1189/jlb.3A0415-161R

Chajran, C., Soilleux, E. J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., et al. (2006). DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. *J. Virol.* 80, 8951–8960. doi:10.1128/JVI.01136-06

Chen, R., Huang, Y., Quan, J., Liu, J., Wang, H., Billiar, T. R., et al. (2020). HMGB1 as a Potential Biomarker and Therapeutic Target for Severe COVID-19. *Heliyon* 6, e06572. doi:10.1016/j.heliyon.2020.e06572

Chen, S.-T., Li, F.-J., Hsu, T.-y., Liang, S.-M., Yeh, Y.-C., Liao, W.-Y., et al. (2017). CLEC5A Is a Critical Receptor in Innate Immunity against Listeria Infection. *Nat. Commun.* 8, 299. doi:10.1038/ncomms14364

Boucard, B., A., Krudysz-Amblo, J., and Butenas, S. (2012). Platelet Tissue Factor Expression Modulates Lipopolysaccharide-Induced Thrombocytopenia and Tumor Necrosis Factor-a Production In Vivo. *Blood* 107, 637–641. doi:10.1182/blood-2005-06-2202

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., Veen, W., Brüggen, M. C., et al. (2016). Mediators and Molecular Pathways Involved in the Regulation of Neutrophil Extracellular Trap Formation Mediated by Activated Platelets. *J. Leukoc. Biol.* 99, 153–162. doi:10.1189/jlb.3A0415-161R

Chajran, C., Soilleux, E. J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., et al. (2006). DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. *J. Virol.* 80, 8951–8960. doi:10.1128/JVI.01136-06

Chen, R., Huang, Y., Quan, J., Liu, J., Wang, H., Billiar, T. R., et al. (2020). HMGB1 as a Potential Biomarker and Therapeutic Target for Severe COVID-19. *Heliyon* 6, e06572. doi:10.1016/j.heliyon.2020.e06572

Chen, S.-T., Li, F.-J., Hsu, T.-y., Liang, S.-M., Yeh, Y.-C., Liao, W.-Y., et al. (2017). CLEC5A Is a Critical Receptor in Innate Immunity against Listeria Infection. *Nat. Commun.* 8, 299. doi:10.1038/ncomms14364

Boucard, B., A., Krudysz-Amblo, J., and Butenas, S. (2012). Platelet Tissue Factor Expression Modulates Lipopolysaccharide-Induced Thrombocytopenia and Tumor Necrosis Factor-a Production In Vivo. *Blood* 107, 637–641. doi:10.1182/blood-2005-06-2202

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., Veen, W., Brüggen, M. C., et al. (2016). Mediators and Molecular Pathways Involved in the Regulation of Neutrophil Extracellular Trap Formation Mediated by Activated Platelets. *J. Leukoc. Biol.* 99, 153–162. doi:10.1189/jlb.3A0415-161R

Chajran, C., Soilleux, E. J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., et al. (2006). DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. *J. Virol.* 80, 8951–8960. doi:10.1128/JVI.01136-06

Chen, R., Huang, Y., Quan, J., Liu, J., Wang, H., Billiar, T. R., et al. (2020). HMGB1 as a Potential Biomarker and Therapeutic Target for Severe COVID-19. *Heliyon* 6, e06572. doi:10.1016/j.heliyon.2020.e06572

Chen, S.-T., Li, F.-J., Hsu, T.-y., Liang, S.-M., Yeh, Y.-C., Liao, W.-Y., et al. (2017). CLEC5A Is a Critical Receptor in Innate Immunity against Listeria Infection. *Nat. Commun.* 8, 299. doi:10.1038/ncomms14364

Boucard, B., A., Krudysz-Amblo, J., and Butenas, S. (2012). Platelet Tissue Factor Expression Modulates Lipopolysaccharide-Induced Thrombocytopenia and Tumor Necrosis Factor-a Production In Vivo. *Blood* 107, 637–641. doi:10.1182/blood-2005-06-2202

Azkur, A. K., Akdis, M., Azkur, D., Sokolowska, M., Veen, W., Brüggen, M. C., et al. (2016). Mediators and Molecular Pathways Involved in the Regulation of Neutrophil Extracellular Trap Formation Mediated by Activated Platelets. *J. Leukoc. Biol.* 99, 153–162. doi:10.1189/jlb.3A0415-161R

Chajran, C., Soilleux, E. J., Simpson, P., Hofmann, H., Gramberg, T., Marzi, A., et al. (2006). DC-SIGN and CLEC-2 Mediate Human Immunodeficiency Virus Type 1 Capture by Platelets. *J. Virol.* 80, 8951–8960. doi:10.1128/JVI.01136-06

Chen, R., Huang, Y., Quan, J., Liu, J., Wang, H., Billiar, T. R., et al. (2020). HMGB1 as a Potential Biomarker and Therapeutic Target for Severe COVID-19. *Heliyon* 6, e06572. doi:10.1016/j.heliyon.2020.e06572
Ivanov, I. I., Apta, B. H. R., Bonna, A. M., and Harper, M. T. (2019). Platelet P-Selectin Triggers Rapid Surface Exposure of Tissue Factor in Monocytes. Sci. Rep. 9, 13397. doi:10.1038/s41598-019-49635-7
Kalra, R. S., and Kandimalla, R. (2021). Engaging the Spikes: Heparan Sulfate Facilitates SARS-CoV-2 Spike Protein Binding to ACE2 and Potentiates Viral Infection. Sig Transduct. Target Ther. 6, 39. doi:10.1038/s41392-021-00470-1
Khan, S., Shafei, M. S., Longoria, C., Schoggins, J. W., Savani, R. C., and Zaki, H. (2021). SARS-CoV-2 Spike Protein Induces Inflammation via TLR2-dependent Activation of the NF-κB Pathway. eLife 10, e68563. doi:10.7554/eLife.68563
Kielstein, J. T., Borchina, D.-N., Fühner, T., Hwang, S., Mattoon, D., and Ball, A. J. (2021). Hemofiltration with the Seraph 100 Microbind Affinity Filter Decreases SARS-CoV-2 Nucleocapsid Protein in Critically Ill COVID-19 Patients. Crit. Care 25, 190. doi:10.1186/s13054-021-03597-3
Klok, F. A., Krup, M. J. H. A., van der Meer, N. J. M., Arbous, M. S., Gommers, D. A. M. P. J., Kant, K. M., et al. (2020). Incidence of Thrombotic Complications in Critically Ill ICU Patients with COVID-19. Thrombosis Res. 191, 145–147. doi:10.1016/j.thromres.2020.04.013
Koupenova, M., Courty, H. A., Vitevska, O., Tanriverdi, K., Somasundaran, M., Liu, P., et al. (2021). SARS-CoV-2 Initiates Programmed Cell Death in Platelets. Circ. Res. 129, 631–646. doi:10.1161/CIRCRESAHA.120.319117
Koupenova, M., Mick, E., Mikhaliev, E., Benjamin, E. J., Tanriverdi, K., and Freedman, J. E. (2021). Sex Differences in Platelet Toll-like Receptors and Their Association with Cardiovascular Risk Factors. Arterioscler. Thromb. Vasc. Biol. 132, e150101. doi:10.1172/JCI150101
Lee, S. J., Yoon, B. R., Kim, H. Y., Yoo, S.-J., Kang, S. W., and Lee, W.-W. (2021). SARS-CoV-2 Nucleocapsid Protein in Critically Ill COVID-19 Patients. Crit. Care 25, 190. doi:10.1186/s13054-021-03597-3
Maugeri, N., De Lorenzo, R., Clementi, N., Aggrey, A. A., Chapman, L. M., and Modjeski, K. L. (2014). Minimal Experimental Requirements for Definition of Extracellular Vesicles and Their Functions: a Position Statement from the International Society for Extracellular Vesicles. J. Extracell. Vesicles 3, 26913. doi:10.3402/jev.v3.26913
Maugeri, N., Franchini, S., Campina, L., Baldini, M., Ramirez, G. A., Sabadini, M. G., et al. (2012). Circulating Platelets as a Source of the Damage-Associated Molecular Pattern HMGB1 in Patients with Systemic Sclerosis. Autoimmunity 45, 584–587. doi:10.3109/08916934.2012.719946
McCrea, K., Ward, R., and LaRosa, S. P. (2014). Removal of Carbapenem-Resistant Enterobacteriaceae (CRE) from Blood by Heparin-Functional Hemoperfusion Media. PLoS ONE 9, e114422. doi:10.1371/journal.pone.0114422
McFadyen, J. D., Stevens, H., and Peter, K. (2020). The Emerging Threat of (Micro) Thrombosis in COVID-19 and its Therapeutic Implications. Circ. Res. 127, 571–587. doi:10.1161/CIRCRESAHA.120.317447
Meng, D., Luo, M., and Liu, B. (2021). The Role of CLEC-2 and its Ligands in Immunothrombosis. Front. Immunol. 12, 1258–1262. doi:10.3389/fimmu.2021.1347555
Merrill, C. N., Aggrey, A. A., Chapman, L. M., and Modjeski, K. L. (2014). Emerging Roles for Platelets as Immune and Inflammatory Cells. Blood 123, 2759–2767. doi:10.1182/blood-2013-11-462432
Morriss, G., Bortolaci, C. C., Puri, B. K., Olve, L., Marx, W., O'Neill, A., et al. (2021). Preventing the Development of Severe COVID-19 by Modifying Immunothrombosis. Life Sci. 264, 118617. doi:10.1016/j.lfs.2020.118617
