A Berry–Esseen theorem and Edgeworth expansions for uniformly elliptic inhomogeneous Markov chains

Dmitry Dolgopyat¹,² · Yeor Hafouta¹,²

Received: 8 November 2021 / Revised: 5 November 2022 / Accepted: 9 November 2022 / Published online: 19 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
We prove a Berry–Esseen theorem and Edgeworth expansions for partial sums of the form $S_N = \sum_{n=1}^{N} f_n(X_n, X_{n+1})$, where $\{X_n\}$ is a uniformly elliptic inhomogeneous Markov chain and $\{f_n\}$ is a sequence of uniformly bounded functions. The Berry–Esseen theorem holds without additional assumptions, while expansions of order 1 hold when $\{f_n\}$ is irreducible, which is an optimal condition. For higher order expansions, we then focus on two situations. The first is when the essential supremum of f_n is of order $O(n^{-\beta})$ for some $\beta \in (0, 1/2)$. In this case it turns out that expansions of any order $r < \frac{1}{1-2\beta}$ hold, and this condition is optimal. The second case is uniformly elliptic chains on a compact Riemannian manifold. When f_n are uniformly Lipschitz continuous we show that S_N admits expansions of all orders. When f_n are uniformly Hölder continuous with some exponent $\alpha \in (0, 1)$, we show that S_N admits expansions of all orders $r < \frac{1+\alpha}{1-\alpha}$. For Hölder continues functions with $\alpha < 1$ our results are new also for uniformly elliptic homogeneous Markov chains and a single functional $f = f_n$. In fact, we show that the condition $r < \frac{1+\alpha}{1-\alpha}$ is optimal even in the homogeneous case.

Mathematics Subject Classification 60F05

1 Introduction

Let Y_1, Y_2, Y_3, \ldots be a sequences of independent square integrable random variables. Set $\bar{S}_N = \sum_{n=1}^{N} (Y_n - \mathbb{E}(Y_n)), V_N = \text{Var}(S_N)$ and $\sigma_N = \sqrt{V_N}$. The classical central

*

Yeor Hafouta
yeor.hafouta@mail.huji.ac.il

¹ University of Maryland, College Park, USA
² The Ohio State University, Columbus, USA

DD was partially supported by the NSF and the BSF.
limit theorem (CLT) states that if $\sigma_N \to \infty$ then, as $N \to \infty$, the distribution of $\hat{S}_N = \hat{S}_N / \sigma_N$ converges to the standard normal distribution. A related classical result is the Berry–Esseen theorem [27] which is a quantification of the CLT stating that there is an absolute constant $C_0 > 0$ so that for every $N \geq 1$,

$$
\sup_{t \in \mathbb{R}} \left| \mathbb{P}(\hat{S}_N \leq t) - \Phi(t) \right| \leq C_0 \sigma_{-3}^{-1} \sum_{j=1}^{N} \mathbb{E}[|Y_j - \mathbb{E}[Y_j]|^3] \quad (1.1)
$$

where Φ is the standard normal distribution function (we refer to [5] for similar result obtained simultaneously). In [28], Esseen proved, in particular, that the optimal constant C_0 in the RHS of (1.1) is greater than 0.4. Since then there were many efforts to provide close to tight upper bounds on C_0, and currently the smallest possible known choice for C_0 is $C_0 = 0.56$, see [63] and references therein. Note that when Y_i are centered and identically distributed with $Y_1 \in L^3$ then (1.1) yields the well known CLT rate $C_0 \mathbb{E}|Y_1|^3 / \sigma_{-1}^{3} \sqrt{n} = O(\sigma_{-1}^{-1})$, where $\sigma_2 = \mathbb{E}[Y_1^2]$. However, the non iid case is more complicated, and to get the rates $O(\sigma_{-1}^{-1})$ it is natural to assume that Y_n are uniformly bounded, and then with $\|Y\|_{\infty} = \sup_n \|Y_n\|_{\infty}$ we have

$$
\sup_{t \in \mathbb{R}} \left| \mathbb{P}(\hat{S}_N \leq t) - \Phi(t) \right| \leq C_0 \|Y\|_{\infty} \sigma_{-1}^{-1}. \quad (1.2)
$$

However, in general the RHS of (1.1) can be much larger than σ_{-1}^{-1}.

The rate of σ_{-1}^{-1} in (1.2) is optimal, see below. By now the optimal convergence rate in the CLT was obtained for wide classes of stationary Markov chains [42, 53, 54] and other weakly dependent random processes including chaotic dynamical systems [35, 37, 42, 45, 46, 58], uniformly bounded stationary sufficiently fast ϕ-mixing sequences [56], U-statistics [9, 34] and locally dependent random variables [3, 8, 11] (the last three papers use Stein’s method).

The rate σ_{-1}^{-1} is optimal for two reasons. First, for the lattice random variables the distribution function $t \mapsto \mathbb{P}(\hat{S}_N \leq t)$ has jumps of order σ_{-1}^{-1}. Secondly even if the distributions of the summands have smooth densities the rate of convergence is still $O\left(\sigma_{-1}^{-1}\right)$ if the third moment of the sum is different from Gaussian. To address the moment obstacle one could introduce appropriate corrections. Namely, fix $r \geq 1$. We say that the Edgeworth expansions of order r hold if there are polynomials $P_{1,N}, \ldots, P_{r,N}$ with degrees not depending on N and coefficients uniformly bounded in N so that

$$
\sup_{t \in \mathbb{R}} \left| \mathbb{P}(\hat{S}_N \leq t) - \Phi(t) - \sum_{j=1}^{r} \sigma_{j}^{-1} P_{j,N}(t) \phi(t) \right| = o\left(\sigma_{-r}^{-1}\right) \quad (1.3)
$$

\footnote{In the case the arithmeticity obstacle is present, that is, the distribution is lattice, one can consider asymptotic expansions of $\mathbb{P}(S_N = k)$ see [18, 29, 33, 44] and references wherein.}
where \(\phi(t) = \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \) is the standard normal density function. These expansions provide a more accurate approximations of the distribution function of \(\hat{S}_N \) in comparison with the Berry–Esseen theorem.

For independent random variables it was proven by Esseen in [27], that the expansion of order 1 holds iff the distribution of \(S_N \) is non-lattice. The conditions for higher order expansions are not yet completely understood. Sufficient conditions for the Edgeworth expansions of an arbitrary order were first obtained in [13] under the assumption that the characteristic function of the sum \(\mathbb{E}(e^{i t S_N}) \) decays exponentially in \(N \) uniformly for large \(t \). Later the same expansions were obtained in [1, 6, 8, 27, 29] under weaker decay conditions, where the second paper considered non identically distributed variables and the fourth and fifth considered random iid vectors. Later Edgeworth expansions were proven for several classes of weakly dependent random variables including stationary Markov chains [30, 53, 54], chaotic dynamical systems [12, 30, 31] and certain classes of local statistics [4, 7, 10, 41]. In particular, Hervé–Pène proved in [43] that for several classes of stationary processes the first order Edgeworth expansion holds if the system is irreducible, in the sense that \(S_N \) cannot be represented as \(S'_N + H_N \) where \(S'_N \) is lattice valued and \(H_N \) is bounded. We would also like to mention a recent result [47], in which precise conditions are given to pass from a Berry–Esseen theorem to first order Edgeworth expansions for certain classes of stationary functionals of a Bernoulli shift. Finally, [2, 57] study so called weak expansions, i.e. expansions of the form \(\mathbb{E}(\phi(S_N/\sigma_N)) \) where \(\phi \) is a smooth test function.

Both Berry–Esseen Theorem and Edgeworth expansions require a detailed control of the characteristic function. For dependent variables, the most powerful method for analyzing the characteristic function is the spectral approach developed by Nagaev [53, 54] (see [36, 42] for the detailed exposition of the spectral method). Since the spectral method relies on perturbation theory for the spectrum of linear operators, extending it to a non stationary setting turned out to be a non trivial task. Recently a significant progress on this problem was achieved by using a contraction properties of the projective metric which allows to prove spectral gap type estimates for the non-stationary compositions of linear operators [25, 26, 49, 60]. In particular, complex sequential Perron–Frobenius Theorem, proven in [40] provides a powerful tool for proving the Central Limit Theorem and its extensions in the non stationary case. This theorem replaces the spectral methods in the stationary case discussed above, and it allows to obtain both Berry–Esseen theorem [39, 40] and Edgeworth expansions [24, 38] in the non stationary setting for both Markov chains and dynamical systems.

However, the results of [24, 38–40] are in a certain sense perturbative. Namely, those papers study either a small perturbation of a fixed stationary system, or they deal with random systems assuming that a system comes to a small neighborhood of a fixed system with a positive frequency. One difficulty in studying the non-stationary case is that there could be large cancellations of the consecutive terms, so that the variance of the sum, can be much smaller then either the number of summands or the the sum of the variances of the summands. This makes it difficult to control the rates of convergence

2 The decay conditions used in the above papers are optimal, since one can provide examples where the decay is slightly weaker and there are oscillatory corrections to Edgeworth expansion, see [17, 18].
in terms of powers of the variance, since there is no simple way of computing the variance from the marginal distribution of the summands. Recently [20] developed a structure theory for Markov chains which allows to find, for each additive functional, a representative in the same homology class (the homologous functionals satisfy the same limit theorems) with the smallest L^2 distance from either zero or from a given lattice in \mathbb{R}. This structure theory was used in [20] to prove the local limit theorem for non-stationary Markov chains in both diffusive and large deviations regimes.

In the present paper we combine the methods of [40] and [20] to obtain several optimal results concerning the convergence rate in the CLT for bounded additive functionals of uniformly elliptic non-stationary Markov chains. Our results include

- Berry–Esseen bound, which holds without any additional assumptions;
- first order Edgeworth expansion in the irreducible case, extending theorems of Esseen and of Hervé–Pène;
- higher order expansions for the chains with either decaying L^∞ norm or with bounded Hölder norm.

We emphasize that our assumptions concern only regularity of the observables. No additional assumptions dealing with either the growth of variance or with the decay of characteristic function away from zero are made.

Our approach is the following. We will introduce a block decomposition of S_N, so that the number of blocks is proportional to the variance of the underlying partial sum. Then the results of [20] allow to control the moments of the sum in each block, while the results of [40] make it possible to related those moments to the sequential pressure\(^3\) inside the block. The asymptotic expansion of the characteristic function near zero then follows from the additivity of the sequential pressure. This is sufficient for proving Berry Esseen bound. In order to obtain the Edgeworth expansions we need to control characteristic function far from the origin. To this end we combine the structure theory of [20] with the ideas of [15].

Let us describe the structure of the paper. Section 2 contains the precise statements of our results. The necessary background from [20, 40] is given in Sect. 3. In Sect. 4 we discuss the Edgeworth expansions. In general, those expansions follow from the asymptotics of the characteristic function around 0, together with decay of the characteristic functions over appropriate domains. In Sect. 4 we will show that the desired expansions around the origin hold under certain logarithmic growth conditions. We demonstrate that under the above growth conditions the asymptotics of the characteristic function near zero always comes from the Edgeworth polynomials (regardless of whether the Edgeworth expansions hold or not). Those polynomials are defined canonically, and we show that under our logarithmic growth conditions the polynomials have bounded coefficients. The main step in our proofs is a verification of the latter growth conditions for the uniformly elliptic Markov chains considered in this paper. This is accomplished in Sect. 5. Using the sequential complex Perron–Frobenius Theorem from [40], the required estimates are obtained by studying the behavior around the origin of a resulting sequential complex pressure functions. For independent variables the n-th pressure function coincides with the logarithm of the characteristic function.

\(^3\) See Sect. 5.2 for the definition of the sequential pressure.
of the n-th summand, and our arguments essentially reduce to the ones in [27, 29]. In comparison with [40], where the Markov chains in random environment were studied, the main difficulty is that the variance does not grow linearly fast in the number of summands N. The Berry–Essen theorem is a direct consequence of the detailed asymptotics of the characteristic function near zero established in Sect. 5. The first order expansion also follows by combining the same estimates with the results of [20].

In order to achieve the desired rate of decay away from 0, an additional structure is needed. Thus we consider two special classes of additive functionals. The first is when the essential supremum of the n-th summand converges to 0 as $n \to \infty$. We show in Sect. 6 that if $\|f_n\|_{\infty} = O\left(n^{-\beta} \right)$ for some $\beta \in (0, 1/2)$ then the partial sums admit expansions of any order $r < \frac{1}{1-2\beta}$, and that this condition is optimal. The second type of additive functionals we consider are Hölder continuous functions. If $\{X_n\}$ is a Markov chain evolving on a compact Riemannian manifold with uniformly bounded and bounded away from 0 densities and $S_N = \sum_{n=1}^{N} f_n(X_n, X_{n+1})$, then we show in Sect. 7 that when f_n’s are uniformly bounded Lipschitz functions then S_N admits Edgeworth expansions of all orders, while when f_n’s are uniformly bounded Hölder continuous functions with exponent $\alpha \in (0, 1)$, then S_N admits expansions of every order $r < \frac{1+\alpha}{1-\alpha}$, and that the latter condition is optimal. In fact, we will show that the condition $r > \frac{1+\alpha}{1-\alpha}$ is optimal even in the stationary case when $\{X_n\}$ is homogeneous Markov chain and $f_n = f$ does not depend on n.

2 Main results

2.1 A Berry–Esseen theorem and expansions of order 1

Let $(\mathcal{X}_i, \mathcal{F}_i), i \geq 1$ be a sequence of measurable spaces. For each i, let $R_i(x, dy), x \in \mathcal{X}_i$ be a measurable family of (transition) probability measures on \mathcal{X}_{i+1}. Let μ_1 be any probability measure on \mathcal{X}_1, and let X_1 be an \mathcal{X}_1-valued random variable with distribution μ_1. Let $\{X_j\}$ be the Markov started from X_1 with the transition probabilities

$$\mathbb{P}(X_{j+1} \in A|X_j = x) = R_j(x, A),$$

where $x \in \mathcal{X}_j$ and $A \subset \mathcal{X}_{j+1}$ is a measurable set. Each R_j also gives rise to a transition operator given by

$$R_jg(x) = \mathbb{E}[g(X_{j+1})|X_j = x] = \int g(y)R_j(x, dy)$$

which maps an integrable function g on \mathcal{X}_{j+1} to an integrable function on \mathcal{X}_j (the integrability is with respect to the laws of X_{j+1} and X_j, respectively). We assume here that there are probability measures $m_j, j > 1$ on \mathcal{X}_j and families of transition probabilities $p_j(x, y)$ so that
\[R_j g(x) = \int g(y) p_j(x, y) dm_{j+1}(y). \]

Moreover, there exists \(\varepsilon_0 > 0 \) so that for any \(j \) we have

\[\sup_{x, y} p_j(x, y) \leq 1/\varepsilon_0, \quad (2.1) \]

and the transition probabilities of the second step transition operators \(R_j \circ R_{j+1} \) of \(X_{j+2} \) given \(X_j \) are bounded from below by \(\varepsilon_0 \) (this is the uniform ellipticity condition)

\[\inf_{j \geq 1} \inf_{x, z} \int p_j(x, y) p_{j+1}(y, z) dm_{j+1}(y) \geq \varepsilon_0. \quad (2.2) \]

Remark 1 The assumptions that we have uniform lower bound on the two step density and that the summands \(f_n \) introduced below depend only on two variables are taken form [20]. In fact, the arguments of [20] also work in the case we have uniform ellipticity after \(k \) steps where \(k \) is an arbitrary fixed number, and \(f_n \) depend on finitely many variables \((X_n, \ldots, X_{n+k-1}) \). The main change in the argument is that when we define the structure constants (see Sect. 3.2) the hexagons need to be replaced by \((2k + 2)\)-gons describing two different ways of getting from \(X_n \) to \(X_{n+k} \), (see §1.3.3 of [20] for additional discussion). On the other hand there are some new effects in the case \(f \) depends on two variables which could not be seen in the case (considered in [14]) where \(f_n \) depend on a single variable, cf. Remark 3 below. In this paper we keep the convention from [20] and assume two step ellipticity and two step dependence for additive functionals. Treating larger \(k \) would not require any new ideas but it would significantly complicate the notation. We refer to the Appendix for an example of a Markov chains satisfying (2.1) and (2.2), but with densities \(p_n(x, y) \) which vanish on a large set.

By [20, Proposition 1.22] Markov chains satisfying (2.2) are exponentially fast \(\psi \)-mixing. That is, if we denote by \(\mathcal{F}_k \) the \(\sigma \)-algebra generated by \(\{X_1, \ldots, X_k\} \) and \(\mathcal{F}^{(m)} \) the \(\sigma \)-algebra generated by \(\{X_j : j \geq m\} \) then there are constants \(C > 0 \) and \(\delta \in (0, 1) \) which depend only on \(\varepsilon_0 \) such that for every \(n \in \mathbb{N} \),

\[\psi(n) := \sup_k \sup \left\{ \left| \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A) \mathbb{P}(B)} - 1 \right| : A \in \mathcal{F}_k, B \in \mathcal{F}^{k+n}, \mathbb{P}(A) \mathbb{P}(B) > 0 \right\} \leq C \delta^n. \]

Next, for a uniformly bounded sequence of measurable functions \(f_n : X_n \times X_{n+1} \to \mathbb{R} \) we set \(Y_n = f_n(X_n, X_{n+1}) \) and

\[S_N = \sum_{n=1}^{N} (Y_n - \mathbb{E}(Y_n)). \quad (2.3) \]

Set \(V_N = \text{Var}(S_N) \) and \(\sigma_N = \sqrt{V_N} \).
Remark 2 The above assumptions were considered recently in [20] in the context of local limit theorems. The proofs in [20] involved certain type of decay rates of the characteristic functions on compact sets. Two other related results are [51, 52], where local limit theorems where obtained under conditions similar to (2.1) and (2.2), where in [51] a condition \(\varepsilon_0 \leq p_n(x, y) \leq \varepsilon_0^{-1} \) was assumed, while in [52] only the lower bounds \(\varepsilon_0 \leq p_n(x, y) \) where assumed [we refer to the appendix for an example in which \(p_n(x, y) \) might vanish but (2.1) and (2.2) hold]. The proof of these results also involved decay rates of the characteristic functions on appropriate compact sets.

The main difference in our setting is that our results also require certain expansions of the characteristic functions around the origin (and not only bounds), as well as precise estimates on the characteristic functions on intervals of length \(O(\|S_N\|_{L^2}) \).

Remark 3 Note that when \(f_n(X_n, X_{n+1}) \) depends only on \(X_n \) and (2.2) is replaced by the stronger condition

\[
\inf_i \inf_{x,y} p_i(x, y) \geq \varepsilon_0
\]

(2.4)

then by [14] (see also [62]) we have

\[
C_1 \sum_{n=1}^{N} \text{Var}(Y_n) \leq V_N \leq C_2 \sum_{n=1}^{N} \text{Var}(Y_n)
\]

(2.5)

for some constants \(C_1, C_2 \) which depend only on the first correlation coefficient of the chain. However, even if (2.4) holds, the lower bound might fail when \(f_n \) truly depends on two variables.\(^4\) In our setup by [20, Theorem 2.2] we have \(\lim_{N \to \infty} V_N = \infty \) if and only if one can not decompose \(Y_n \) as

\[
Y_n = \mathbb{E}(Y_n) + a_{n+1}(X_{n+1}) - a_n(X_n) + g_n(X_n, X_{n+1})
\]

where \(a_n \) are uniformly bounded functions and \(\sum_n g_n(X_n, X_{n+1}) \) converges almost surely.

2.2 Optimal CLT rates and first order Edgeworth expansions

The CLT in the case \(V_N \to \infty \) is due to [14], see [62] for a modern proof. Our first result is a version of the Berry–Esseen theorem. Denote

\[
\hat{S}_N = (S_N - \mathbb{E}[S_N]) / \sigma_N.
\]

(2.6)

\(^4\) For instance, let \((X_n) \) be a sequence of independent uniformly random variable so that \(\mathbb{E}[X_1] = 0, \mathbb{E}[X_1^2] = 1 \). Let \(Y_n = \varepsilon_n X_n + (X_n - X_{n+1}) \). Then \(\text{Var}(S_N) = \sum_{n=1}^{N} \varepsilon_n^2 + O(1) \) can grow arbitrarily slow (or be bounded) but \(\sum_{n=1}^{N} \text{Var}(Y_n) = \sum_{n=1}^{N} (2 + 2\varepsilon_n + \varepsilon_n^2) \geq 2N \).
Theorem 4 Suppose that \(\lim_{N \to \infty} V_N = \infty \). Then there is a constant \(C > 0 \) which depends only on \(\sup_n \|Y_n\|_{L^\infty} \) and \(\varepsilon_0 \) so that for any \(N \geq 1 \),

\[
\sup_{t \in \mathbb{R}} \left| \mathbb{P}(\hat{S}_N \leq t) - \Phi(t) \right| \leq C\sigma_N^{-1}
\]

(2.7)

where \(\Phi \) is the standard normal distribution function.

Next we introduce some terminology from [20]. We say that a sequence \(Z_N \) of random variables is center tight if there are constants \(c_N \) such that \(\{Z_N - c_N\} \) is tight. Two additive functionals \(f_n \) and \(\tilde{f}_n \) are homologous if \(\sum_{n=1}^N (f_n(X_n, X_{n+1}) - \tilde{f}_n(X_n, X_{n+1})) \) is center tight. We say that \(\{f_n\} \) is reducible if it is homologous to an additive functional taking values in \(h\mathbb{Z} \) for some \(h > 0 \). If \(\{f_n\} \) is not reducible, it is called irreducible.

Theorem 5 If \(V_N \) diverges and \(\{f_n\} \) is irreducible then \(S_N \) satisfies the Edgeworth expansion of order 1, where

\[
P_{1,N}(t) = \frac{\mathbb{E}[(S_N - \mathbb{E}[S_N])^3]}{6V_N}(t^3 - 3t).
\]

Remark 6 When \(S_N = \xi_1 + \cdots + \xi_N \) is a sum of iid non-constant random variable \(\xi_j \) then \(V_N = N\mathbb{E}[\xi_1^2] \) and \(\mathbb{E}[(S_N - \mathbb{E}[S_N])^3] = \mathbb{E}[S_N^3] = N\mathbb{E}[\xi_1^3] \) and thus

\[
P_{1,N}(t) = \frac{\mathbb{E}[\xi_1^3]}{6\mathbb{E}[\xi_1^2]}(t^3 - 3t)
\]

which is the classical first order correction term (see [29]). To see why in the setup of this paper the coefficients of \(P_{1,N} \) are bounded, note that by [20, Lemma 2.6] we have \(\mathbb{E}[(S_N - \mathbb{E}[S_N])^3] = O(V_N) \).

Next, we say that \(f_n \) stably\(^5\) obeys Edgeworth expansion of order \(r \) if any additive functional homologous to \(f_n \) satisfies Edgeworth expansions of order \(r \).

Corollary 7 \(f_n \) stably obeys Edgeworth expansion of order 1 iff it is irreducible.

Proof If \(f_n \) is irreducible then any homologous additive functional \(\tilde{f}_n \) is also irreducible, so by Theorem 5, \(\tilde{f}_n \) obeys Edgeworth expansion of order 1.

If \(f_n \) is reducible then its homology class contains an \(h\mathbb{Z} \) valued functional \(\tilde{f}_n \), for some \(h > 0 \). By the LLT of [20, Section 5], \(\tilde{S}_N \) has jumps of order \(1/\sqrt{V_N} \), so \(\tilde{S}_N \) does not obey expansion of order 1. \(\square \)

\(^5\) The notion of stable Edgeworth expansion is motivated by the notion of stable local limit theorem studied in [55, 59]. We note that [18] obtains conditions for the stability of Edgeworth expansions for the sums of independent integer valued random variables (in the integer case one studies the expansions for \(\mathbb{P}(S_N = kN) \)), see also an extension to Markov chains [19].
2.3 Higher order expansions

2.3.1 Summands with small essential supremum

We obtain the following extension of the Edgeworth expansions for function f_n which converge to 0 as $n \to \infty$.

Theorem 8 Suppose that $\lim_{N \to \infty} V_N = \infty$, and that there are $C > 0$ and $\beta \in (0, 1/2)$ so that for all $n \in \mathbb{N}$ we have $\|f_n\|_\infty \leq \frac{C}{n^\beta}$. Let $r \geq 1$ be an integer satisfying

$$r < \frac{1}{1 - 2\beta}. \tag{2.8}$$

Then S_N admits an Edgeworth expansion of order r. In particular, if $\|f_n\|_\infty = O(n^{-1/2})$ then S_N admits Edgeworth expansions of all orders.

The following result shows that the conditions of Theorem 8 are optimal.

Theorem 9 For every $\beta \in (0, 1/2)$ there exists a sequence of centered independent6 random variables X_n so that $C_1 n^{-\beta} \leq \|X_n\|_{L^\infty} \leq C_2 n^{-\beta}$ for some $C_1, C_2 > 0$ and all n large enough, $V(S_N)$ is of order $N^{1 - 2\beta}$ but $S_N = \sum_{n=1}^N X_n$ fails to satisfy Edgeworth expansions of any order s such that $s > \frac{1}{1 - 2\beta}$.

Taking $\beta \in (0, 1/4)$ we have $\frac{1}{1 - 2\beta} < 2$, and we get from Theorem 9 that S_N might not admit Edgeworth expansions of order larger than 1 if $\|f_n\|_\infty \asymp n^{-\beta}$.

Remark 10 The main purpose of Theorem 9 is to consider the case when $\|f_n\|_{L^\infty} \to 0$, but it is also true when $\beta = 0$. In this case we arrive to the conclusion that the first order expansions fails, which is consistent with Corollary 7 since our examples for X_n will have a certain lattice structure (in fact, for $\beta = 0$ we can just take $X_n = Y_n$).

2.3.2 Markov chains on compact Riemannian manifolds

Let us assume that $\{X_n\}$ is a Markov chain on a compact Riemannian manifold M with transition densities $p_n(x, y)$ bounded and bounded away from 0, uniformly in n. Let $\alpha \in (0, 1]$ and let $f_n : M \times M \to \mathbb{R}$ be observables satisfying $\|f_n\|_\alpha := \max(\sup |f_n|, v_\alpha(f_n)) \leq 1$, where $v_\alpha(f_n)$ is the Hölder constant of f_n corresponding to the exponent α. Consider the sum

$$S_N = \sum_{n=1}^N f_n(X_n, X_{n+1}).$$

Theorem 11 Suppose that $V_N = V(S_N) \to \infty$.

6 Note that the proof of Theorem 9 proceeds similarly when X_n is has the form $X_n = f_n(Z_n)$ for a one step elliptic Markov chains Z_n (s.t. $\mathbb{P}(Z_n = \pm 1) = \frac{1}{2}$). The present formulation of Theorem 9 shows that the condition (2.8) is already optimal for independent random variables.
(i) If $\alpha = 1$ then S_N satisfies the Edgeworth expansion of all orders.
(ii) If $\alpha < 1$ then S_N satisfies the Edgeworth expansion of any order $r < \frac{1+\alpha}{1-\alpha}$.

For smooth functions, expansions of all orders were obtained in [30] for stationary Markov chains and functions $f_n = f$ which do not depend on n. Here we have to overcome the difficulty that the variance of $f_n(X_n, X_{n+1})$ might be small, and hence the proof differs from the one in [30] even for smooth functions. Note that it was assumed in [30] that the transition densities $p(x, y)$ of the chain are smooth, while our results only involves additional assumptions on the functions, and hence Theorem 11 (i) is also new in the stationary case (even for smooth functions). In addition, we are not aware of any kind of results for $\alpha < 1$ in the stationary case (even for smooth functions $p(x, y)$), and so Theorem 11 (ii) seems to be a new result also in the stationary case.

The proof of Theorem 11 follows the approach of [15]. We note that similar estimates are used in [15, 16] to prove polynomial bounds for the decay of correlations for hyperbolic suspension flows with Hölder roof functions. However, the bound of [15, 16] are not explicit whereas here we get an explicit (and optimal, see below) control on the possible location of resonances.

We see that as $\alpha \to 1$, the largest order of the expansions ensured by Theorem 11(ii) diverges to ∞. The following theorem shows that the conditions of Theorem 11(ii) are optimal.

Theorem 12 Let $\{x_n\}$ be iid random variables uniformly distributed on $[-1, 1]$. For every $0 < \alpha < 1$ there exists an increasing odd function $f : [-1, 1] \to [-1, 1]$ which is Hölder continuous with exponent α and is onto $[-1, 1]$, so that $S_n = \sum_{j=1}^{n} f(x_j)$ does not admit Edgeworth expansion of any order $r > \frac{1+\alpha}{1-\alpha}$.

Theorem 12 show that the conditions of Theorem 11(ii) are optimal even in the stationary case. The idea in the proof of Theorem 12 is to first approximate α by numbers of the form $\frac{\ln(p)}{\ln(p+q)}$, for some $p, q \geq 2$ so that $q|\{(p-1)$. Then, the restriction of the function f to $[0, 1]$ will be the, so called, Cantor function (see [32]) corresponding to a certain Cantor set with Hausdorff dimension $\alpha_{q,p}$.

2.4 The canonical form of the Edgeworth polynomials

We note that in the non-stationary setting, (1.3) does not define the Edgeworth polynomials uniquely since we could always modify the coefficients by terms of order $o(\sigma_N^{-r})$. However, it turns out that one could make a canonical choice which a simple computation of its coefficient in a quite general setting including additive functionals of uniformly elliptic Markov chains considered here.

Given a nonconstant random variable S with finite moments of all orders, let $a_j(S)$ denote the normalized cumulant

$$a_j(S) = \left. \frac{1}{\text{Var}(S) i^j} \frac{d^j}{dt^j} \right|_{t=0} \ln \left[\mathbb{E}\left(e^{it(S - \mathbb{E}(S))} \right) \right].$$
Theorem 13 There exist polynomials $\mathcal{P}_j(z; a_3, a_4, \ldots, a_{j+2})$ such that for each integer $r \geq 1$ there is a positive constant $\delta_r = \delta_r(\varepsilon_0, K)$, $K = \sup_{n} \|f_n(X_n, X_{n+1})\|_{L^\infty}$, such that if S_N and \hat{S}_N are given by (2.3) and (2.6), respectively, then denoting

$$P_{j,N}(z) = \mathcal{P}_j(z; a_3(S_N), \ldots, a_{j+2}(S_N)).$$

(2.9)

$$\mathcal{E}_{r,N}(z) = \Phi(z) + \phi(z) \sum_{j=1}^r \sigma_N^{-j} P_{j,N}(z)$$

and letting $\hat{\mathcal{E}}_{r,N}$ denote the Fourier transform of $\mathcal{E}_{r,N}(z)$ we have

$$\int_{-\delta_r \sigma_N}^{\delta_r \sigma_N} \frac{\mathbb{E} \left(e^{it\hat{S}_N} \right) - \hat{\mathcal{E}}_{r,N}(t)}{t} \, dt = O \left(\sigma_N^{-(1+r)} \right).$$

(2.10)

We note that our proofs of Theorems 5, 8 and 11 provide the Edgeworth expansions with the above polynomials $P_{j,n}$.

The polynomials \mathcal{P}_j are given in Definition 21. In Sect. 5.4 we show that for additive functionals of the Markov chains considered in this paper the Edgeworth polynomials have bounded coefficients. This is done by verifying Assumption 23 which ensures the boundness for an abstract sequence of random variables.

We note that (2.10) holds without any additional assumptions. However, to ensure that the term $\mathcal{E}_{r,N}(z)$ provides a good approximation to $\mathbb{P}(\hat{S}_N \leq z)$ we need to control the LHS of (2.10) on longer intervals of size $B \sigma_N$ for an arbitrary B. In the case $r = 1$ the contribution of $[-B \sigma_N, B \sigma_N] \setminus [-\delta_1 \sigma_N, \delta_1 \sigma_N]$ is analyzed in [20]. The case $r > 1$ is addressed in Sects. 6 and 7 where we control the characteristic function of \hat{S}_N under the assumptions of Theorems 8 and 11, respectively.

3 Background

3.1 A sequential Perron–Frobenius theorem

For all $j \in \mathbb{N}$ and $z \in \mathbb{C}$, let $R_z^{(j)}$ the operator given by

$$R_z^{(j)} g(x) = \mathbb{E}[g(X_{j+1})e^{zf_j(X_j, X_{j+1})}|X_j = x] = R_j(e^{zf_j(x, \cdot)} g)(x)$$

where $g : \mathcal{X}_{j+1} \to \mathbb{R}$ is a bounded function. Denote by B_j the space of bounded functions on \mathcal{X}_j, equipped with the supremum norm $\| \cdot \|_{\infty}$. For every integer $j \geq 1$, $n \in \mathbb{N}$ and $z \in \mathbb{C}$ consider the n-th order iterates $R_z^{j,n} : B_{j+n} \to B_j$ given by

$$R_z^{j,n} = R_z^{(j)} \circ R_z^{(j+1)} \circ \cdots \circ R_z^{(j+n-1)}.$$

(3.1)

Let B_j^* be the dual space to the Banach space B_j and $(R_z^{(j)})^* : B_j^* \to B_{j+1}^*$ be the dual operator of $R_z^{(j)}$.

We have the following.
Theorem 14 There exists a complex neighborhood U of 0 which depends only on $\|f\|_\infty := \sup_j \sup |f_j|$ and ε_0 (from the definition of the uniform ellipticity) so that for any $z \in U$ and an integer $j \geq 1$ there exists a triplet $\lambda_j(z), h_j^{(z)}$ and $v_j^{(z)}$ consisting of a nonzero complex number $\lambda_j(z)$, a complex function $h_j^{(z)} \in B_j$ and a continuous linear functional $v_j^{(z)} \in B_j^*$ satisfying that $v_j^{(z)}(I) = 1$, $v_j^{(z)}(h_j^{(z)}) = 1$ and

$$R_z^{(j)} h_j^{(z)} = \lambda_j(z) h_j^{(z)}, \quad \text{and} \quad (R_z^{(j)})^* v_j^{(z)} = \lambda_j(z) v_j^{(z)}.$$

When $z = t \in \mathbb{R}$ then $h_j^{(t)}$ is strictly positive, $v_j^{(t)}$ is a probability measure and there exist constants $a, b > 0$, which depend only on $\|f\|_\infty$ and ε_0 so that $\lambda_j(t) \in [a, b]$ and $h_j^{(t)} \geq a$. When $t = 0$ we have $\lambda_j(0) = 1$ and $h_j^{(0)} = I$. Moreover, this triplet is analytic and uniformly bounded. Namely, the maps

$$\lambda_j(\cdot) : U \rightarrow \mathbb{C}, \quad h_j^{(\cdot)} : U \rightarrow B_j \quad \text{and} \quad v_j^{(\cdot)} : U \rightarrow B_j^*$$

are analytic, and there exists a constant $C > 0$ so that

$$\max \left(\sup_{z \in U} |\lambda_j(z)|, \sup_{z \in U} \|h_j^{(z)}\|_\infty, \sup_{z \in U} \|v_j^{(z)}\|_\infty \right) \leq C \quad (3.2)$$

where $\|v\|_\infty$ is the operator norm of a linear functional $v : B_j \rightarrow \mathbb{C}$. Furthermore, there exist constants $C > 0$ and $\delta \in (0, 1)$ such that for all $n \geq 1$, $j \in \mathbb{N}$, $z \in U$ and $q \in B_{j+n}$,

$$\left\| \frac{R_z^{j,n} q}{\lambda_{j,n}(z)} - \left(v_{j+n}(q) \right) h_j^{(z)} \right\|_\infty \leq C \|q\|_\infty \cdot \delta^n \quad (3.3)$$

and

$$\left\| \frac{(R_z^{j,n})^* \mu}{\lambda_{j,n}(z)} - \left(\mu h_j^{(z)} \right) v_{j+n} \right\|_\infty \leq C \|\mu\|_\infty \cdot \delta^n \quad (3.4)$$

where $\lambda_{j,n}(z) = \prod_{k=0}^{n-1} \lambda_{j+k}(z)$.

Remark 15 In the homogeneous case (i.e. when $R_j = R$ and $f_j = f$ do not depend on j), Theorem 14 follows from the spectral gap of R, together with an appropriate analytic perturbation theorem. This approach to proving limit theorems based on the spectral theory of twisted Markov operators is called the Nagaev-Guivarch method, and it dates back to [54].

The proof of Theorem 14 was given in [40, Ch.4&6] by a successive application of the complex projective contraction. We remark that the arguments in [40, Ch.4&6] formally require us to have a two sided sequence of operators, which can be achieved
by setting \(\mathcal{X}_j = \mathcal{X}_1 \) and \(R^{(j)}_z \) for \(j \leq 0 \). This amounts to taking independent copies \(\{Z_j: j \leq 0\} \) of \(X_1 \), setting \(X_j = Z_j \) and \(f_j = 0 \) for \(j \leq 0 \).

In fact, in \([40, \text{Ch.4&6}]\) the setup included random operators \(R^{(j)}_z = R^{(j)}_{\Theta_\omega} \), when \(\omega \in \Omega \) and \((\Omega, \mathcal{F}, \mathbb{P}, \theta)\) is some invertible measure preserving system, which is not necessarily ergodic. The main reason for considering random operators in \([40]\), and not just a sequence of operators, is that the random Perron–Frobenius theorem was needed in the proof of the local CLT from \([40, \text{Ch. 2}]\), where random operators arise after a certain conditioning argument. The measurability of the resulting Perron–Frobenius triplets \(\lambda_\omega(z), h_\omega(z), v_\omega(z) \) as functions of \(\omega \) played an important rule in that proof, which lead to a more general setup of random operators in \([40, \text{Ch. 4}]\), for which there is meaning to such measurability. However, in our purely sequential setup such measurability issues do not arises, and thus we can just repeat the arguments from \([40, \text{Ch. 4]}\) pertaining to a fixed \(\omega \) and ignore the ones addressing measurability. Finally, let us note that Theorem 14 is also true when \(f_n(x, y) = f_n(x) \) depends only on the first variable \(x \) and \(\sup_n \|f_n(X_n)\|_{L^2} < \infty \) (see, for instance, the proof of \([19, \text{Theorem 10}]\)).

Remark 16 In the proof of the Berry–Esseen theorem and the Edgeworth expansions it will be convenient to assume that \(a_n := \mathbb{E}[f_n(X_n, X_{n+1})] = 0 \). This amount to replacing \(f_n \) with \(f_n - a_n \), and hence to replacing \(R^{(j)}_z \) with \(e^{-a_j z}R^{(j)}_z \) and replacing \(\lambda_j(z) \) with \(e^{-a_j} \lambda_j(z) \).

3.2 The structure constants

As it was mentioned in the introduction a new feature of our work is that we do not make any assumptions on how slow variance of \(S_N \) grows. In this section we recall a few results from \([20]\) which provide some geometric control on the variance.

By a random hexagon based at \(n \) we mean a tuple

\[
P_n = (\mathcal{X}_{n-2}, \mathcal{X}_{n-1}, \mathcal{X}_n; \mathcal{Y}_{n-1}, \mathcal{Y}_n, \mathcal{Y}_{n+1})
\]

where \((\mathcal{X}_{n-2}, \mathcal{X}_{n-1})\) and \((\mathcal{Y}_n, \mathcal{Y}_{n+1})\) are independent, \((\mathcal{X}_{n-2}, \mathcal{X}_{n-1})\) and \((X_{n-2}, X_{n-1})\) are equality distributed, \((\mathcal{Y}_n, \mathcal{Y}_{n+1})\) and \((X_n, X_{n+1})\) are equality distributed and \(\mathcal{X}_n \) and \(\mathcal{Y}_{n-1} \) are conditionally independent given the previous choices and are sampled according to the bridge distributions

\[
\mathbb{P}(\mathcal{X}_n \in E | \mathcal{X}_{n-1} = x_{n-1}, \mathcal{Y}_{n+1} = y_{n+1}) = \mathbb{P}(X_n \in E | X_{n-1} = x_{n-1}, X_{n+1} = y_{n+1})
\]

and

\[
\mathbb{P}(\mathcal{Y}_{n-1} \in E | \mathcal{X}_{n-2} = x_{n-2}, \mathcal{X}_n = y_n) = \mathbb{P}(X_{n-1} \in E | X_{n-2} = x_{n-2}, X_n = y_n).
\]

The balance \(\Gamma(P_n) \) of the hexagon is given by

\[
\Gamma(P_n) = f_{n-2}(\mathcal{X}_{n-2}, \mathcal{X}_{n-1}) + f_{n-1}(\mathcal{X}_{n-1}, \mathcal{X}_n) + f_n(\mathcal{X}_n, \mathcal{Y}_{n+1})
\]

\[
-f_{n-2}(\mathcal{X}_{n-2}, \mathcal{Y}_{n-1}) - f_{n-1}(\mathcal{Y}_{n-1}, \mathcal{Y}_n) - f_n(\mathcal{Y}_n, \mathcal{Y}_{n+1}).
\]
Next, let
\[u_n^2 = E[\Gamma(P_n)^2]. \] \hfill (3.5)

Theorem 17 ([20], Theorem 2.1) *There exist positive constants \(C_1, C_2, C_3, C_4 \) so that for any \(m \geq 0 \) and \(N \geq 3 \),
\[C_1 \sum_{n=m+3}^{m+N} u_n^2 - C_2 \leq V_N = \text{Var}(S_N - S_m) \leq C_3 \sum_{n=m+3}^{m+N} u_n^2 + C_4. \] \hfill (3.6)

It turns out that the hexagon process also allows to control the characteristic function of \(S_N \). Denote
\[d_n(\xi)^2 = E[|e^{i\xi \Gamma(P_n)} - 1|^2] = 4E[\sin^2(\xi \Gamma(P_n)/2)], \quad D_N(\xi) = \sum_{n=1}^{N} d_n^2(\xi). \] \hfill (3.7)

Lemma 18 ([20], eq. (4.2.6)) *There are constants \(C, c > 0 \) so that for each \(N \) and \(\xi \in \mathbb{R} \), the characteristic function \(\Phi_N(\xi) = E(e^{i\xi S_N}) \) satisfies*
\[|\Phi_N(\xi)| \leq Ce^{-cD_N(\xi)}. \] \hfill (3.8)

3.3 Mixing and moment estimates

Next we discuss the mixing properties of \(\{X_n\} \).

Lemma 19 (Proposition 1.11 (2), [20]) *There exist \(\delta \in (0, 1) \) and \(C > 0 \) which depends only on \(\varepsilon_0 \) [from (2.1) and (2.2)] such that for all \(n, k \in \mathbb{N} \) we have*
\[|\text{Cov}(f_n(X_n, X_{n+1}), f_{n+k}(X_{n+k}, X_{n+k+1}))| \leq A\delta^k. \]

where \(A = C \sup_n \|f_n(X_n, X_{n+1})\|^2_{L^2} \).

Next, for each \(j \) and \(n \) consider the random variable \(S_{j,n} \) given by
\[S_{j,n} = \sum_{k=j}^{j+n-1} f_k(X_k, X_{k+1}). \] \hfill (3.9)

Then \(S_{1,n} = S_n \).

Lemma 20 (Lemma 2.16, [20]) *For every integer \(p \geq 1 \) there are constants \(C_p, R_p > 0 \) which depend only on \(p, \varepsilon_0 \) and \(\sup_n \|Y_n\|_{L^\infty} \) so that for all \(j \) and \(n \),
\[|E\left[(S_{j,n} - E(S_{j,n}))^p]\right| \leq R_p + C_p\left(\text{Var}(S_{j,n})\right)^{[p/2]}. \]

We note that Lemma 20 is also a consequence of [50, Theorem 6.17] together with [20, Proposition 1.22].
4 Edgeworth expansions under logarithmic growth assumptions

4.1 The Edgeworth polynomials

Let S be a random variable with finite moments of all orders. We recall that the k-th cumulant of S is given by

$$\Gamma_k(S) = \frac{1}{i^k} \frac{d^k}{dt^k} \left(\ln \mathbb{E}[e^{itS}] \right)|_{t=0}. $$

Note that $\Gamma_k(aS) = a^k \Gamma_k(S)$ for every $a \in \mathbb{R}$. Moreover, $\Gamma_1(S) = \mathbb{E}[S]$, $\Gamma_2(S) = \text{Var}(S)$ and for $k \geq 3$ by (1.34) in [61], we have

$$\Gamma_k(S) = \sum_{v=1}^{k} (-1)^{v-1} \sum_{k_1 + \cdots + k_v = k} \frac{k!}{k_1! k_2! \cdots ! k_v!} \alpha_{k_1} \alpha_{k_2} \cdots \alpha_{k_v} (4.1)$$

where $\alpha_m = \alpha_m(S) = \mathbb{E}[S^m]$ (this formula is a consequence of the Taylor expansion of the function $\ln(1+z)$).

The cumulants of order $k \geq 3$ measure the distance of the distribution of $\hat{S} = \frac{S - \mathbb{E}[S]}{\sigma}$ from the standard normal distribution, where $\sigma = \sqrt{\text{Var}(S)}$, assuming of course that $\sigma > 0$. We have $\Gamma_k(S) = 0$ for all $k \geq 3$ if and only if \hat{S} is standard normal, and we refer to [61] for conditions on $\Gamma_k(\hat{S})$ which insure that the distribution function of \hat{S} is close to the standard normal distribution function in the uniform metric. We also refer to [2, 57] for expansions of expectations of smooth functions of \hat{S} which involve growth properties of cumulants.

Next, let us assume that $\mathbb{E}[S] = 0$ and $\sigma^2 = \mathbb{E}[S^2] > 0$. Consider the function

$$\Lambda(t; S) = \ln \mathbb{E}[e^{itS/\sigma}] + \frac{t^2}{2}. $$

Then $\Lambda(0; S) = 0$, $\Lambda'_n(0; S) = \mathbb{E}[S] = 0$, $\Lambda''_n(0; S) = \mathbb{E}[S^2]/\sigma^2 - 1 = 0$, and for $k \geq 3$ we have

$$\Lambda^{(k)}(0) := \frac{d^k}{dt^k} \Lambda(t; S)|_{t=0} = i^k \Gamma_k(S) \sigma^{-k}. $$

Thus, the k-th Taylor polynomial of $\Lambda(t; S)$ is given by

$$\mathcal{P}_k(t; S) = \sum_{j=3}^{k} \frac{i^j \Gamma_j(S)}{j! \sigma^j} t^j = \sum_{j=3}^{k} i^j a_j(S) \sigma^{-(j-2)} t^j. $$

[Springer]
where \(a_j(S) = \frac{\Gamma_j(S) \sigma^2}{j! \sigma^2} \). Consider the formal power series

\[
\Gamma(t; S) = \sum_{j \geq 3} \frac{i^j \Gamma_j(S)}{j! \sigma^j} t^j = \sum_{j \geq 3} \frac{i^j a_j(S) \sigma^{-(j-2)} t^j}{j!},
\]

where \(a_j(S) \) is viewed as a variable independent of \(\sigma \). This leads to the following formal series

\[
\exp(\Gamma(t; S)) = 1 + \sum_{j \geq 1} \frac{i^j \Gamma(t; S)^j}{j!} = 1 + \sum_{j \geq 1} \sigma^{-j} A_j(t; S)
\]

where \(A_j(t; S) \) is the polynomial given by

\[
A_j(t; S) = \sum_{m=1}^{j} \frac{1}{m!} \sum_{k_1, \ldots, k_m \in A_{j,m}} \prod_{u=1}^{m} i^{k_i} a_{k_i} t^{i+2m}
\]

and \(A_{j,m} \) is the set of all \(m \)-tuples \((k_1, \ldots, k_m) \) of integers such that

\[
k_i \geq 3 \quad \text{and} \quad \sum_i k_i = 2m + j.
\]

Definition 21 The \(j \)-th Edgeworth polynomial \(S \) is the unique polynomial \(P_j(t; S) \) so that the Fourier transform of \(\phi(t) P_j(t; S) \) is \(e^{-t^2/2} A_j(t; S) \), where \(\phi(t) \) is the standard normal density.

Notice that the polynomials \(A_j(t; S) \) and \(P_j(t; S) \) depend on \(S \) only through the first \(3j \) moments. Note also that \(A_j(0; S) = 0 \) for all \(j \).

Remark 22 In order to compute \(A_j(t; S) \) for \(j \leq k \) it is enough to expand \(e^{\mathcal{P}_{k+2}(t; S)} \) to a power series and represent it in the form

\[
1 + \sum_{j \geq 1} \sigma^{-j} \tilde{A}_j(t; S).
\]

Indeed, it follows that \(\tilde{A}_j(t; S) = A_j(t; S) \) for all \(j \leq k \) since

\[
\Gamma(t, S) - \mathcal{P}_{k+2}(t; S) = \sigma^{-(k+1)} \sum_{j=k+3}^{\infty} i^j a_j(S) \sigma^{-(j-k-3)} t^j.
\]

Thus, to compute \(A_j(t; S) \), \(j \leq k \) we first write

\[
e^{\mathcal{P}_{k+2}(t; S)} = 1 + \sum_{j=1}^{\infty} \frac{\mathcal{P}_{k+2}(t; S)^j}{j!}.
\]

7 The reason we divide \(\Gamma_j(S) \) by \(\sigma^2 \) is that under suitable restrictions on \(S \), the quantities \(|\Gamma_j(S) \sigma^{-2}| \) will be bounded by a constant independent of \(S \) (see next section). This will be the case when \(S = S_n \), for which the latter quantities will be bounded in \(n \). Here \(S_n \) are the sums considered in Sect. 2.
Now, since \(P_k(t; S) \) has a factor \(8 \sigma^{-1} \), we can compute \(A_j(t; S) \), \(j \leq k \) by considering only the first \(k \) summands

\[
1 + \sum_{j=1}^{k} \frac{P_{k+2}(t; S)^j}{j!}.
\]

After writing the above expression in the form \(1 + \sum_{j=1}^{\infty} \sigma^{-j} \tilde{A}_{j,k}(t; S) \) (this is a finite sum) we have \(A_j(t; S) = \tilde{A}_{j,k}(t; S) \) for all \(j \leq k \).

In particular \(P_3(t; S) = \frac{i^3a_3(S)t^3}{6\sigma} = \frac{A_1(t; S)}{\sigma} \), whence

\[
P_1(t; S) = \frac{a_3(S)}{6} (t^3 - 3t) = \frac{\mathbb{E}[(S - \mathbb{E}[S])^3]}{6\sigma^2}(t^3 - 3t)
\]

where we have used that the transform Fourier of \((t^3 - 3t)\phi(t) \) is \(i^3e^{-\frac{1}{2} \xi^2} \xi^3 \).

4.2 A Berry–Esseen theorem and Edgeworth expansions via decay of characteristic functions

Let \(W_n \) be a sequence of centered random variables so that \(\lim_{n \to \infty} \text{Var}(W_n) = \infty \).

Let us set

\[
\Gamma_n(t) = \Gamma(t; W_n), \quad \Lambda_n(t) = \Lambda(t; W_n/\sigma_n), \quad A_{j,n}(t) = A_j(t; W_n), \quad P_{j,n}(t) = P_j(t; W_n),
\]

where \(\sigma_n = \sqrt{\text{Var}(W_n)} \). We will prove here Edgeworth expansions under the following logarithmic growth assumptions.

Assumption 23 For some \(k \geq 3 \), for all \(j \leq k \) there exist constants \(C_j, \varepsilon_j > 0 \) so that

\[
\sup_{t \in [-\varepsilon_j \sigma_n, \varepsilon_j \sigma_n]} |\Lambda_n^{(j)}(t)| \leq C_j \sigma_n^{-(j-2)}.
\] (4.2)

Note that under Assumption 23 the polynomials \(A_{j,n} \) and \(P_{j,n} \), \(j \leq k \) have bounded coefficients (for that it is enough to only consider \(t = 0 \)). For \(t = 0 \) conditions of the form \(|\Lambda_n^{(j)}(0)| = |\Gamma_j(W_n/\sigma_n)| \leq (j!)^{1+\gamma} \sigma_n^{-(j-2)} \), \(\gamma \geq 0 \) appear in literature [21, 23, 61] in the context of moderate deviations and related results (see also references therein).

The relevance of Assumption 23 stems from the following facts proven in Sect. 4.4.

Proposition 24 Let Assumption 23 hold with \(k = 3 \). Then there exists a constant \(C > 0 \) so that for every \(n \geq 1 \) we have

\[
\sup_{t \in \mathbb{R}} |\mathbb{P}(W_n/\sigma_n \leq t) - \Phi(t)| \leq C \sigma_n^{-1}
\]
where \(\Phi \) is the standard normal distribution and density function.

Proposition 25 Let \(r \geq 1 \) be an integer. Let Assumption 23 hold with \(k = r + 3 \). Suppose also that for every \(B > 0 \) and all \(\delta > 0 \)

\[
\int_{\delta \leq |x| \leq B\sigma_n^{-1}} |\mathbb{E}(e^{i x W_n})/x| dx = o(\sigma_n^{-r}).
\]

Then

\[
\sup_t \left| \mathbb{P}(W_n/\sigma_n \leq t) - \Phi(t) - \sum_{j=1}^{r} \sigma_n^{-j} P_{j,n}(t)\phi(t) \right| = o(\sigma_n^{-r})
\]

where \(\Phi \) and \(\phi \) are the standard normal distribution and density function, respectively.

4.3 Auxiliary estimates

Here we present several technical estimates needed in the proofs of Propositions 24 and 25.

We need two lemmata.

Lemma 26 Let \(k \geq 3 \) be an integer and let Assumption 23 hold with this \(k \). Set \(A_k = \max_{3 \leq j \leq k} C_j \) and \(B_k = k A_k \). Then for every \(t \in [-\sigma_n, \sigma_n] \)

\[
|\mathcal{P}_{k,n}(t)| \leq B_k \sigma_n^{-1} |t|^3 = B_k t^2 |t/\sigma_n|.
\]

Therefore, for every \(t \in [-\delta_k \sigma_n, \delta_k \sigma_n] \), \(\delta_k = \frac{1}{4B_k} \), we have

\[
|e^{\mathcal{P}_{k,n}(t)}| \leq e^{t^2/4}.
\]

Lemma 27 Let Assumption 23 hold with \(k = 3 \) and set \(\delta_0 = \min(\frac{1}{3C_3}, \varepsilon_3) \). Then for every real \(t \) such that \(|t/\sigma_n| \leq \delta_0 \) we have \(|e^{\Lambda_n(t)}| \leq e^{t^2/3} \).

Proof of Lemmas 26 and 27 Let us first prove Lemma 26. By taking \(t = 0 \) in (4.2) and using that \(\Gamma_j(aW) = a^j W \) we have \(|\Gamma_j(W_n)| \leq C_j \sigma_n^2 \). Thus, if \(|t/\sigma_n| \leq 1 \) then

\[
|\mathcal{P}_{k,n}(t)| \leq \sum_{j=3}^{k} \frac{|\Gamma_j(W_n)| |t|^j}{j! \sigma_n^j} \leq A_k t^2 \sum_{j=3}^{k} \frac{|t/\sigma_n|^{j-2}}{j!} \leq A_k t^2 \sum_{j=3}^{k} \frac{|t/\sigma_n|}{j!} \leq B_k |t|^3 \sigma_n^{-1}.
\]

Hence, if \(|t/\sigma_n| \leq \frac{1}{4B_k} = \delta_k \) then \(|\mathcal{P}_{k,n}(t)| \leq t^2/4 \) and so

\[
|e^{\mathcal{P}_{k,n}(t)}| \leq e^{t^2/4}.
\]
Next, since the second Taylor polynomial \(P_{2,n}(t) \) of \(\Lambda_n \) around the origin vanishes, we can write \(\Lambda_n(t) = P_{2,n}(t) + R_{2,n}(t) \), where \(R_{2,n}(t) \) is the Taylor remainder of order 2 around the origin. Then by the Lagrange form of the Taylor remainder we can write \(R_{2,n}(t) = \frac{t^3 \Lambda_n''(t_1)}{3!} \) for some \(t_1 \) such that \(|t_1| \leq |t| \). Therefore, by Assumption 23 we have

\[
|R_{2,n}(t)| \leq C_3 |t|^3 \sigma_n^{-1} = C_3 t^2 \cdot |t/\sigma_n|, \text{ if } |t| \leq \varepsilon_3.
\]

Thus when also \(|t/\sigma_n| < \frac{1}{3C_3} \) we have \(|\Lambda_n(t)| = |R_{2,n}(t)| < t^2/3 \), and Lemma 27 follows.

Corollary 28 Under assumption 23 with \(k = 3 \) there exist constants \(c > 0 \) and \(\delta > 0 \) so that for every natural \(n \) and \(t \in [-\delta, \delta] \) we have

\[
|\mathbb{E}[e^{itW_n}]| \leq e^{-ct^2\sigma_n^2}.
\]

In fact, we can take \(c = \frac{1}{6} \) and \(\delta = \delta_0 \), but we will not be using the specific form of \(c \) and \(\delta \) in this paper.

The key step in estimating the rate of convergence for the CLT is the following.

Proposition 29 Let \(r \geq 0 \) be an integer and let Assumption 23 hold with \(k = r + 3 \). Then there is a constant \(\delta_r > 0 \) such that

\[
\int_{-\delta_r \sigma_n}^{\delta_r \sigma_n} \left| \frac{\mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2}(1 + Q_{r,n}(t))}{|t|} \right| \, dt = O(\sigma_n^{-r-1}).
\]

where for \(r = 0 \) we set \(Q_{0,n}(t) = 0 \) and for \(r \geq 1 \)

\[
Q_{r,n}(t) = \sum_{j=1}^{r} \sigma_n^{-j} A_{j,n}(t).
\]

Proof Write

\[
\mathbb{E}[e^{itW_n/\sigma_n}] = e^{-t^2/2} e^{\Lambda_n(t)} = e^{-t^2/2} e^{P_{r+2,n}(t) + R_{r+2,n}(t)}
\]

where \(R_{r+2,n}(t) \) is the Taylor remainder of order \(r + 2 \) around 0. Using the Lagrange form of Taylor remainders together with Assumption 23 we get that

\[
R_{r+2,n}(t) = O \left(t^{r+3} \sigma_n^{-(r+1)} \right).
\]

Next, by the mean value theorem and Lemmas 26 and 27 there are constants \(\delta_r > 0 \), \(C_0 > 0 \) and \(b_0 \in (0, 1/2) \) so that if \(|t/\sigma_n| \leq \delta_r \) then

\[
|e^{\Lambda_n(t)} - e^{P_{r+2,n}(t)}| \leq C_0 e^{b_0 t^2} |R_{r+2,n}(t)|.
\]
Moreover, by Lemma 26 and the Lagrange form of Taylor remainders,

\[
\left| e^{P_{r+2,n}(t)} - \left(1 + \sum_{j=1}^{r} \frac{P_{j+2,n}(t)}{j!} \right) \right| \leq D_r e^{b_0 t^2} \sigma_n^{-(r+1)} |t|^{3(r+2)} \tag{4.8}
\]

where \(D_r > 0 \) is some constant (when \(r = 0 \) then the left hand side vanishes since \(P_{2,n}(t) = 0 \)). Combining (4.5), (4.6), (4.7) and (4.8), for every real \(t \) so that \(|t/\sigma_n| \leq \delta_r\) we have

\[
\left| \mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2} \left(1 + \sum_{j=1}^{r} \frac{P_{j+2,n}(t)}{j!} \right) \right| \leq C e^{-c r^2} \sigma_n^{-(r+1)} \max(|t|, |t|^{(r+3)(r+2)})
\]

where \(c = 1/2 - b_0 > 0 \). Next, by Remark 22, we have

\[
\sum_{j=1}^{r} \frac{P_{j+2,n}(t)}{j!} = Q_{r,n}(t) + \max(|t|, |t|^{(r+2)}) O(\sigma_n^{-r-1})
\]

where the term \(\max(|t|, |t|^{(r+2)}) O(\sigma_n^{-r-1}) \) comes from the terms which include powers of \(\sigma_n^{-1} \) larger than \(r \) (when \(r = 0 \) both the left hand side and \(Q_{r,n}(t) \) equal 0). We conclude that

\[
\left| \mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2} (1 + Q_{r,n}(t)) \right| \leq C e^{-c r^2} \sigma_n^{-(r+1)} \max(|t|, |t|^{(r+3)(r+2)}).
\]

Therefore,

\[
\int_{-\delta_r \sigma_n}^{\delta_r \sigma_n} \frac{\left| \mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2} (1 + Q_{r,n}(t)) \right|}{|t|} \, dt \leq C \sigma_n^{-(r+1)} \int_{-\infty}^{\infty} e^{-c r^2} \left(1 + |t|^{(r+3)(r+2)-1} \right) \, dt \leq C' \sigma_n^{-(r+1)}
\]

completing the proof of the proposition. \(\square \)

4.4 Proofs of Propositions 24 and 25

Proof of Proposition 24 The first step in the proof is quite standard. We use generalized Esseen inequality [29, §XVI.3]. Let \(F : \mathbb{R} \to \mathbb{R} \) be a probability distribution function and \(G : \mathbb{R} \to \mathbb{R} \) be a differential function with bounded derivative so that \(G(-\infty) = 0 \). Let \(f(t) = \int e^{itx} dF(x) \) and \(g(t) = \int e^{itx} dG(x) \) be the corresponding Fourier
transforms. Then for every $T > 0$ we have
\[
\sup_{x \in \mathbb{R}} |F(x) - G(x)| \leq 2 \int_{-T}^{T} \left| \frac{f(t) - g(t)}{t} \right| dt + \frac{24 \|G'\|_{\infty}}{\pi T}.
\]

(4.9)

Taking F to be the distribution of W_n/σ_n, G to be the standard normal distribution and $T_n = \delta_1 \sigma_n$ where δ comes from Lemma 26 we conclude that Proposition 24 will follow if we prove that
\[
\int_{-\delta_1 \sigma_n}^{\delta_1 \sigma_n} \left| \frac{\mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2}}{t} \right| dt \leq C \sigma_n^{-1}
\]

(4.10)

for some constant C. Finally, (4.10) follows from Proposition 29 with $r = 0$. \hfill \Box

Proof of Proposition 25 Relying on Proposition 29, the proof proceeds essentially in the same way as [27, 29]. We provide the details for readers’ convenience.

Let $F = F_n$ be the distribution function of W_n/σ_n, and $G = G_n, r$ be the function whose Fourier transform is $e^{-t^2/2} (1 + Q_{n, r}(t))$, where $Q_{n, r}$ comes from Proposition 29. Then G_n, r has the form

\[
G_n, r(t) = \Phi(t) + \sum_{j=1}^{r} \sigma_n^{-j} P_{j, n}(t) \phi(t)
\]

where $P_{j, n}$’s are the Edgeworth polynomials of W_n.

Let $\varepsilon > 0$ and $B = 1/\varepsilon$. Applying (4.9) with $F = F_n$, $G = G_n$ and $T = B \sigma_n^r$ we obtain

\[
\sup_{t} \left| P(W_n/\sigma_n \leq t) - \Phi(t) - \sum_{j=1}^{r} \sigma_n^{-j} P_{j, n}(t) \phi(t) \right| \leq I_1 + I_2 + I_3 + O(\varepsilon) \sigma_n^{-r}
\]

where for δ small enough

\[
I_1 = \int_{-\delta \sigma_n}^{\delta \sigma_n} \left| \frac{\mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2}(1 + Q_{r, n}(t))}{t} \right| dt
\]

\[
I_2 = \int_{\delta \sigma_n}^{\delta \sigma_n} \left| \frac{\mathbb{E}[e^{itW_n/\sigma_n}] - e^{-t^2/2}(1 + Q_{r, n}(t))}{t} \right| dt, \quad I_3 = \int_{\delta \sigma_n}^{\delta \sigma_n} e^{-t^2/2} \left| \frac{1 + Q_{r, n}(t)}{t} \right| dt.
\]

By Proposition 29 we have $I_1 = o(\sigma_n^{-r})$, (4.3) gives that $I_2 = o(\sigma_n^{-r})$, while $I_3 = O(e^{-c \sigma_n^2})$ for some $c > 0$ since $Q_{r, n}$ is a polynomial with bounded coefficients and degree depending only on r. \hfill \Box
5 Application to uniformly elliptic inhomogeneous Markov chains

5.1 Verification of Assumption 23

In this section we consider uniformly bounded additive functional \(S_N \) of a Markov chain \(X_n \) which satisfies (2.1) and (2.2). We prove the following.

Proposition 30 The sequence of random variables \(S_n \) verifies Assumption 23 for every \(k \), namely, if \(\Lambda_n(t) = \ln \mathbb{E}[e^{itS_n/\sigma_n}] + t^2/2 \) then for every \(k \geq 3 \) there exist constants \(\delta_k, C_k > 0 \) so that for all \(n \),

\[
\sup_{t \in [-\sigma_n \delta_k, \sigma_n \delta_k]} |\Lambda_n^{(k)}(t)| \leq C_k \sigma_n^{-(k-2)}.
\]

The proof of Proposition 30 is based on the construction of sequential pressure functions described in Sect. 5.2.

Remark 31 In [61, Theorem 4.26] the authors show that if \(S_n = \sum_{j=1}^n Y_j/\sigma_n \), and \(\{Y_j\} \) is an exponentially fast \(\phi \)-mixing uniformly bounded centered Markov chain, such that \(\text{Var}(Y_j) \) is bounded away from 0 then there is a constant \(C \) such that for all \(m \in \mathbb{N} |\Gamma_j(S_n/\sigma_n)| \leq C^m m! \sigma_n^{-(m-2)} \). It follows that the function \(\Lambda_n \) is real analytic and, hence, Assumption 23 holds for every \(k \). By [20, Proposition 1.22], the Markov chains \(\{X_n\} \) considered in this paper are also exponentially fast \(\phi \)-mixing, however, we consider functionals \(Y_n = f_n(X_n, X_{n+1}) \) whose variance can be small, and so Proposition 30 cannot be derived from [61, Theorem 4.26] despite the related setup.

5.2 The sequential pressure function. Definition and basic properties

Recall Theorem 14. For every \(j \geq 1 \), denote by \(\mu_j \) the distribution of \(X_j \) (which is a probability measure on \(\mathcal{X}_j \)). Recall that \(\lambda_j(z) \) is uniformly bounded in \(j \) and \(\lambda_j(0) = 1 \). Let \(\Pi_j(z) \) denote the analytic branch of the logarithms of \(\lambda_j(z) \), such that \(\Pi_j(0) = 0 \). We call \(\Pi_j(z) \) the **sequential pressure functions**. Then

\[
\sup_j \sup_{|z| \leq s_0} |\Pi_j(z)| \leq c_0 \tag{5.1}
\]

where \(s_0 \) and \(c_0 \) are some positive constants. We note that all the derivatives of \(\Pi_j \) at \(z = 0 \) are real numbers, since the function \(\lambda_j(z) \) is positive for real \(z \)’s.

Remark 32 By Remark 16, upon replacing \(f_n \) with \(f_n - \mathbb{E}[f_n(X_n, X_{n+1})] \), the resulting pressure function becomes \(\Pi_j(z) - \mathbb{E}[f_n(X_n, X_{n+1})]z \). This has no affect on the value of the pressure function at \(z = 0 \) and on the derivatives of it of any order larger than 1. Thus, it will essentially make no difference in the following arguments if we have already centralized \(f_n \) or not.
Let \(j, n \) be positive integers. Set

\[
\Gamma_{j,n}(z) = \ln \mathbb{E}[e^{zS_{j,n}}], \quad \Pi_{j,n}(z) = \sum_{s=j}^{j+n-1} \Pi_s(z)
\]

where \(S_{j,n} \) is defined in (3.9).

Lemma 33 There is a constant \(a > 0 \) with the following property: for every integer \(k \geq 0 \) there exists \(c_k > 0 \) such that for each \(j, n \) for all complex \(z \) so that \(|z| \leq a \) we have

\[
|\Gamma_{j,n}(z) - \Pi_{j,n}(z)| \leq c_k
\]

(5.2)

where \(g^{(k)}(z) \) denotes the \(k \)-th derivative of a function \(g(z) \).

Note that for \(k = 0, 1, 2 \) and \(z = 0 \) we have \(\Gamma'_{j,n}(0) = \mathbb{E}[S_{j,n}], \Gamma''_{j,n}(0) = \text{Var}(S_{j,n}) \) while for larger \(k \)'s \(\Gamma_{j,n}(0) \) is just the \(k \)-th cumulant of \(S_{j,n} \). In particular,

\[
\Pi'_{1,n}(0) = \mathbb{E}(S_n) + O(1) \quad \text{and} \quad \Pi''_{1,n}(0) = \sigma_n^2 + O(1).
\]

Proof Since \(h_j(0) = 1 \) and the norms \(\|h_j^{(z)}\|_{\infty} \) are uniformly bounded in \(j \) around 0, it follows from the Cauchy integral formula that \(\frac{\partial h_j}{\partial z} \) is uniformly bounded around the origin. Hence, if \(\delta_0 \) is small enough then for any complex \(z \) with \(|z| \leq \delta_0 \) we have

\[
\frac{1}{2} < \inf_j \left| \mu_j(h_j^{(z)}) \right|.
\]

(5.3)

Recall that \(\mathbb{E}[e^{zS_{j,n}}] = \mu_j(R_z^{j,n}1) \). By (3.3), if \(|z| \) is sufficiently small then for all \(j \) and \(n \) we have

\[
\mathbb{E}[e^{zS_{j,n}}] = e^{S_{j,n}(z)} \sum_{s=j}^{j+n-1} \Pi_s(z) \left(\mu_j(h_j^{(z)}) + \delta_{j,n}(z) \right)
\]

(5.4)

where \(\delta_{j,n} \) is an analytic function so that \(|\delta_{j,n}(z)| \leq C \delta^n \) for some \(C > 0 \) and \(\delta \in (0, 1) \) which do not depend on \(j \) and \(n \). In fact, since \(h_j^{(0)} = 1 \) we have \(\delta_{j,n}(0) = 0 \) and so Cauchy integral formula also implies \(|\delta_{j,n}(z)| \leq C|z|\delta^n \). Using (5.3), we can take the logarithms of both sides of (5.4) and derive that when \(|z| \) is sufficiently small, there is a constant \(c_0 \) so that

\[
|\Gamma_{j,n}(z) - \Pi_{j,n}(z)| \leq c_0
\]

(5.5)

Applying the Cauchy integral formula once more we conclude that for each \(k \) there exists a constant \(c_k > 0 \) so that for every \(j \) and \(n \) we have

\[
|\Gamma_{j,n}^{(k)}(z) - \Pi_{j,n}^{(k)}(z)| \leq c_k
\]

(5.6)

and the lemma follows. \(\square \)
5.3 The derivatives of the pressure function around the origin

Here we prove several useful auxiliary estimates.

Lemma 34 Let $k \geq 2$ be an integer, and let S be a real-valued random variable with finite first k moments. Let us define $\varphi(t) = \mathbb{E}(e^{itS})$ and $\Lambda(t) = \ln \varphi(t)$. Then there exists a constant D_k which depends only on k so that with $r_0 = \frac{1}{2\sqrt{\mathbb{E}(S^2)}}$ we have

$$\sup_{t \in [-r_0, r_0]} |\Lambda^{(k)}(t)| \leq D_k \mathbb{E}[|S|^k].$$

Proof We first recall that for the characteristic function $\varphi(t) = \mathbb{E}(e^{itS})$ of a random variable S with finite first k moments and any real t we have

$$|\varphi(t) - 1| \leq |t| \mathbb{E}[|S|] \leq |t| \|S\|_{L^2}$$

and that for $j = 0, 1, 2, \ldots, k$ we have

$$|\varphi^{(j)}(t)| \leq \mathbb{E}[|S|^j]. \quad (5.7)$$

Next, let $\Lambda(t) = \ln \varphi(t)$ and $r_0 = \frac{1}{2\sqrt{\mathbb{E}(S^2)}}$. Then $|\varphi(t)| \geq \frac{1}{2}$ for all $t \in [-r_0, r_0]$. By Faà di Bruno’s formula (see [48, Section 1.3]), for every $t \in [-r_0, r_0]$ we have

$$|\Lambda^{(k)}(t)| = \left| \sum_{m_1, \ldots, m_k} \frac{k!}{m_1! \cdots m_k!} \prod_{j=1}^k \frac{1}{\varphi(t)} \sum_{j=m_j}^{m_k} \left(\frac{i}{t} \right)^j \mathbb{E}[S_j e^{itS}] \right|$$

where (m_1, \ldots, m_k) range over all the k-tuples of nonnegative integers such that $\sum_j jm_j = k$. Now the lemma follows from (5.7) and the Hölder inequality. \qed

Lemma 35 Fix some integer $k \geq 2$ and let $B_1 < B_2$ be constants. Then if B_1 is sufficiently large there are constants D and r_0 depending only on B_1, B_2 and k so that for every $t \in [-r_0, r_0]$ and each $j, n \in \mathbb{N}$ such that $B_1 \leq \text{Var}(S_{j,n}) \leq B_2$, we have

$$|\Pi_{j,n}^{(k)}(it)| \leq D.$$

Proof Let $\Lambda_{j,n}(t) = \ln \mathbb{E}[e^{itS_{j,n}}]$. Then, in the notation of Lemma 33, $\Lambda_{j,n}(t) = \Gamma_{j,n}(it)$. Applying Lemma 34 with $S = S_{j,n}$ and using (5.6) and Lemma 20 we obtain that for every $t \in [-r_0, r_0]$ we have

$$|\Pi_{j,n}^{(k)}(it)| \leq c_k + |\Lambda_{j,n}^{(k)}(t)| \leq c_k + D_k \mathbb{E}[|S_{j,n}|^k] \leq c_k + C \left(\text{Var}(S_{j,n}) \right)^{k/2} \leq c_k + C B_2^{k/2}$$

completing the proof of the lemma. \qed
Corollary 36 For every $k \geq 2$ there exist constants $\epsilon_k > 0$ and $C_k > 0$ so that for each $n \in \mathbb{N}$ and $t \in [-\epsilon_k, \epsilon_k]$,

$$\left| \Pi_{1,n}^{(k)}(it) \right| \leq C_k \sigma_n^2.$$

Hence, with $\tilde{\Pi}_n(t) = \Pi_{1,n}(it/\sigma_n)$ we have

$$\sup_{t \in [-\epsilon_k \sigma_n, \epsilon_k \sigma_n]} \left| \tilde{\Pi}_n^{(k)}(t) \right| \leq C_k \sigma_n^{-k}(k-2).$$

Proof Fix some $k \geq 2$. Let B_1 and B_2 be large constants so that Lemma 35 holds. Let r_0 be the constant specified in Lemma 35. Let I_1, I_2, \ldots, I_{mn} be disjoint intervals whose union cover $\{1, \ldots, n\}$ so that

$$B_1 \leq \text{Var}(S_{I_l}) \leq B_2$$

where for each l we set $S_{I_l} = \sum_{j \in I_l} f_j(X_j, X_{j+1})$. Note that it is indeed possible to find such intervals if B_1 and B_2/B_1 are sufficiently large because of Theorem 17. Indeed, with u_2^n denoting the structural constants appearing there, there are constants $C_1, C_2 > 0$ so that for any $n \geq 3$ and j,

$$C_1^{-1} \sum_{m=j}^{j+n-1} u_m^2 - C_2 \leq \text{Var}(S_{j,n}) \leq C_1 \sum_{m=j}^{j+n-1} u_m^2 + C_2. \quad (5.8)$$

It is also clear that m_n/σ_n^2 is uniformly bounded away from 0 and ∞ (if n is large enough). Now, by Lemma 35 there are $\epsilon_k > 0$ and $A_k > 0$ so that for each $1 \leq l \leq m_n$ and $t \in [-\epsilon_k, \epsilon_k]$,

$$\left| \sum_{j \in I_l} \Pi_j^{(k)}(it) \right| \leq A_k.$$

Hence, $|\Pi_{1,n}(it)| \leq \sum_{l} \left| \sum_{j \in I_l} \Pi_j^{(k)}(it) \right| \leq A_k m_n \leq C_k \sigma_n^2$.

\[5.4\] Verification of Assumption 23

Proof of Proposition 30 Since both sides of (5.4) with $j = 1$ are analytic, $|\delta_{1,n}(z)| \leq C |z|^{\delta^n}$ for some $\delta \in (0, 1)$ and $C > 0$. Moreover $\mu_1(h_1^{(0)}) = 1$. Hence, if $|z|$ is small enough then

$$\ln \mathbb{E}[e^{zS_n}] = \Pi_{1,n}(z) + G_n(z)$$
where \(G_n(z) = \ln (\mu_1(h_1(z)) + \delta_{1,n}(z)) \), which is an analytic and uniformly bounded function around the origin (uniformly in \(n \)). Thus Proposition 30 follows from Corollary 36.

\[\cot \]

\(\text{Corollary 37 } \) Let \(r \geq 1 \). Suppose that for any \(B > 0 \) and \(\delta > 0 \) small enough,

\[\int_{\delta \leq |x| \leq B \sigma_{n}^{-1}} |\mathbb{E}(e^{ixS_n})/x| dx = o(\sigma_{n}^{-r}). \]

Then

\[\sup_{t} \left| \mathbb{P}(\frac{(S_n - \mathbb{E}[S_n])}{\sigma_n} \leq t) - \Phi(t) - \sum_{j=1}^{r} \sigma_{n}^{-j} P_{j,n}(t) \phi(t) \right| = o(\sigma_{n}^{-r}) \]

where \(\Phi \) and \(\phi \) are the standard normal distribution and density function, respectively, and \(P_{j,n}(t) = P_{j}(t, S_n) \) are the Edgeworth polynomials of \(\tilde{S}_n = S_n - \mathbb{E}[S_n] \).

Corollary 37 follows from Proposition 25 since \(S_n \) verifies Assumption 23.

\[\cot \]

5.5 A Berry–Esseen theorem and Expansions of order 1

\[\text{Proof of Theorems 4 and 5 } \] First, Theorem 4 follows from Propositions 30 and 24. Next, applying \([20, \text{Theorem 3.5}]\) and \([20, \text{(4.2.7)}]\) we see that if \(\{f_n\} \) is irreducible then condition (5.9) with \(r = 1 \) is satisfied. This proves Theorem 5. \(\Box \)

6 High order expansions for summands with small essential supremum, proof of Theorems 8 and 9

6.1 Existence of expansions

Recall (3.7). In order to prove Theorem 8, we need the following:

\[\text{Lemma 38 } [20, \text{eq. (3.3.7)}] \exists \delta > 0 \text{ s.t. if } \|f_n\|_{\infty} |\xi| \leq \delta \text{ then } d_{n}^{2}(\xi) \geq \frac{\xi^{2} u_{n}^{2}}{2}. \]

\[\text{Proof of Theorem 8 } \] Let us fix some \(r < \frac{1}{1 - 2\beta} \), and take some \(r < r_{0} < \frac{1}{1 - 2\beta} \). We claim that there are constants \(c, C > 0 \) so that for all \(N \) large enough we have

\[|\Phi_{N}(\xi)| \leq \exp \left(-c \xi^{2} V_{N} \right) \text{ for } |\xi| \leq C \sigma_{n}^{r_{0} - 1}. \]

This is enough for the Edgeworth expansion of order \(r \) to hold by Corollary 37.

In order to prove the claim, let \(N_{0} = N_{0}(N) \) be the smallest positive integer such that \(\sigma_{n}^{r_{0} - 1} \|f_n\|_{\infty} \leq \delta \) for all \(n > N_{0} \) where \(\delta \) is the number from Lemma 38. Then,
since $\|f_n\| = O(n^{-\beta})$

$$N_0 = O\left(\frac{r_0^{-1}}{\sigma_N^{-\beta}}\right) = O\left(\frac{r_0^{-1}}{V_N^{-2\beta}}\right).$$ \hfill (6.1)

Let us show now that $N_0 = o(N)$, which in particular yields that $N_0 < N/2$ if N is large enough. The assumption that $\|f_n\|_\infty = O(n^{-\beta})$ also implies that $u_n^2 = O(n^{-2\beta})$ and so by (3.6),

$$V_N = O(N^{1-2\beta}).$$ \hfill (6.2)

Combining this with $r_0 < \frac{1}{1-2\beta}$ we see that $\sigma_N^{-\beta} = O(N^\kappa)$, where

$$\kappa = \frac{(r_0 - 1)}{2\beta} (1 - 2\beta) = 1 - \frac{1 - r_0 (1 - 2\beta)}{2\beta} < 1.$$ \hfill (6.3)

Therefore, $N_0 = O(N^\kappa)$.

Next, let us write

$$\sum_{n=N_0+1}^{N} u_n^2 = \sum_{k=0}^{3} \sum_{N_0 < n \leq N \atop n \mod 4 = k} u_n^2 := \sum_{k=0}^{3} U_{N_0, N, k}.$$

Let k_N be so that $U_{N_0, N, k} = \max\{U_{N_0, N, k} : 0 \leq k \leq 3\}$. Then by (3.6) there are constants $C, D > 0$ so that

$$V(S_N - S_{N_0}) \leq CU_{N_0, N, k_N} + D.$$ \hfill (6.4)

Combining (3.8), Lemma 38, and (6.4) we see that the characteristic function of S_N satisfies

$$|\Phi_N(\xi)| \leq \exp\left(-c\xi^2 V(S_N - S_{N_0})\right) \text{ for } |\xi| \leq C\sigma_N^{r_0-1}$$ \hfill (6.5)

where $C > 0$ is some constant which depends on β, r_0, and ϵ_0 but not on ξ or N. Note that by Lemma 19 we have

$$V_N = V_{N_0} + V(S_N - S_{N_0}) + 2\text{Cov}(S_{N_0}, S_N - S_{N_0}) = V_{N_0} + V(S_N - S_{N_0}) + O(1).$$

It follows that

$$V(S_N - S_{N_0}) = V_N - V_{N_0} + O(1).$$

On the other hand, by (6.2),

$$V_{N_0} \leq N_{0}^{1-2\beta} \leq C' V_N^\kappa.$$
where \(\kappa \) is given by (6.3). Therefore \(V(S_N - S_{N_0}) = V_N + O\left(V_N^\kappa\right) \). Combining this with (6.5) gives

\[
|\Phi_N(\xi)| \leq \exp\left(-c\xi^2(V_N + O(V_N^\kappa))\right) \quad \text{for } |\xi| \leq C\sigma_{\alpha_0}^{-1}
\]

and the claim follows since \(\kappa < 1 \). \(\Box \)

6.2 Optimality

Proof of Theorem 9 Fix some \(0 < \beta < 1/2 \), and take an integer \(s > \frac{1}{1 - 2\beta} \). Then

\[
s_\beta := (s - 1)\left(\frac{1}{2} - \beta\right) > \beta.
\]

Take \(c \in (\beta, s_\beta) \). Set \(q_n = 2^{[c \log_2 n]} \) and \(p_n = [n^{-\beta} q_n] \). Let

\[
a_n = \frac{p_n}{q_n}.
\]

Since \(c > \beta \) we have

\[
n^{-\beta}(1 + o(1)) = n^{-\beta} - 2^{-[c \log_2 n]} \leq a_n \leq n^{-\beta}.
\]

Let \(Y_n \) be an iid sequence of random variables so that \(P(Y_n = \pm 1) = \frac{1}{2} \). Set

\[
X_n = a_n Y_n = \frac{p_n}{q_n} Y_n.
\]

Then, \(\mathbb{E}[X_n] = 0 \), \(|X_n| = a_n \asymp n^{-\beta} \) and \(V(X_n) = a_n^2 \asymp n^{-2\beta} \). Next, since \(q_n \) divides \(q_N \) if \(n \leq N \) we have

\[
q_N S_N = S_N 2^{[c \log_2 N]} \in \mathbb{Z}
\]

and so the minimal jump of \(S_N \) is at least \(\frac{1}{q_N} \). Therefore, if \(\alpha_N \) is a possible value of \(S_N \) then

\[
\mathbb{P}\left(S_N \in (\alpha_N, \alpha_N + 2^{-[c \log_2 N]}]\right) = 0.
\]
On the other hand, if S_N obeyed an expansion of order s then, choosing $\alpha_N = O(\sigma_N)$ and denoting $\varepsilon_N = 2^{\left[-c\log_2 N\right]}\sigma_N^{-1}$, we would get

$$0 = \mathbb{P}(S_N \in (\alpha_N, \alpha_N + 1/2^{\left[-c\log_2 N\right]})) = \mathbb{P}(S_N/\sigma_N \in (\alpha_N/\sigma_N, \alpha_N/\sigma_N + \varepsilon_N))$$

$$= \mathbb{P}(S_N/\sigma_N \leq \alpha_N/\sigma_N + \varepsilon_N) - \mathbb{P}(S_N/\sigma_N \leq \alpha_N/\sigma_N)$$

$$= \Phi(\alpha_N/\sigma_N + \varepsilon_N) - \Phi(\alpha_N/\sigma_N)$$

$$+ \frac{1}{\sqrt{2\pi}} \sum_{j=1}^{s} \left(P_{j,N}(\alpha_N/\sigma_N + \varepsilon_N)e^{-\frac{1}{2}(\alpha_N/\sigma_N+\varepsilon_N)^2} - P_{j,N}(\alpha_N/\sigma_N)e^{-\frac{1}{2}\alpha_N^2}\sigma_N^{-2} \right) \sigma_N^{-j}$$

$$+ o(\sigma_N^{-s}) \geq C\varepsilon_N + o(\sigma_N^{-s}) \geq C'2^{-c\log_2 N}\sigma_N^{-1} + o(\sigma_N^{-s}).$$

Since σ_N^2 if of order $\sum_{n=1}^{N} n^{-2\beta} \asymp N^{1-2\beta}$ we must have

$$c > \frac{(s-1)(1-2\beta)}{2} = s\beta$$

which contradicts that $c \in (\beta, s\beta)$. Taking $s = s(\beta)$ to be the smallest integer such that $s > \frac{1}{1-2\beta}$ we see that the expansions of orders $r > \frac{1}{1-2\beta}$ do not hold. \qed

7 High order expansions for Hölder continuous functions on Riemannian manifolds

7.1 Distribution of Hölder functions

The following estimate plays an important role in the proof of Theorem 11.

Lemma 39 For every Riemannian manifold \mathcal{X} there is a constant c such that for each real-valued function φ on \mathcal{X} with $\|\varphi\|_\alpha \leq 1$ and each t, ε

$$\nu(\varphi \in [t, t + \varepsilon]) \geq c\varepsilon^{1/\alpha}\min(\nu(\varphi \geq t + \varepsilon), \mu(\varphi \leq t))$$

where ν is the normalized Riemannian volume on \mathcal{X}.

Proof Since \mathcal{X} is compact, it can be covered by a finite number of coordinate charts. Hence for any given ε' we can cover \mathcal{X} by the C^r images of coordinate cubes of size ε' so that the multiplicity of the cover is bounded by a constant K which is independent of ε'.

Now, let $\varepsilon' = \delta\varepsilon^{1/\alpha}$ where δ is so small that the diameter of each partition element is smaller than $\varepsilon^{1/\alpha}/2$. Consider the cover of \mathcal{X} described above and let A be the union of all cover elements Q such that $\varphi(x) \geq t + \varepsilon/2$ for each $x \in Q$ and S be the union of all partition elements which intersect ∂A. By the Isoperimetric Inequality,

$$\text{Area}(\partial A) \geq \frac{h}{\mathcal{R}} \min(\nu(A), \nu(A^c)) \geq \frac{h}{\mathcal{R}} \min(\nu(\varphi \geq t + \varepsilon), \nu(\varphi \leq t))$$
where h is the Cheeger constant of \mathcal{X}. On the other hand, there exists a constant κ which does not depend on ε or α so that

$$\text{Area}(\partial A) \leq \text{Area}(\partial S) \leq \delta \kappa \varepsilon^{1/\alpha} \nu(S)$$

since for each cover element $Q \subset S$ we have

$$\text{Area}(\partial S \cap \partial Q) \leq \kappa \varepsilon^{1/\alpha} \nu(Q).$$

Since $\varphi \in [t, t + \varepsilon]$ on S the result follows. \qed

7.2 Proof of Theorem 11

For the rest of Sect. 7 we consider the following setting. Let $\{X_n\}$ evolve on a compact Riemannian manifold M with transition densities $p_n(x, y)$ bounded and bounded away from 0. Let us assume that $f_n : M \times M \rightarrow \mathbb{R}$ satisfy $\|f_n\|_{\alpha} := \max(\sup |f_n|, \nu_{\alpha}(f_n)) \leq 1$ for some $0 < \alpha \leq 1$. Denote $\Phi_N(\xi) = \mathbb{E}(e^{\xi S_N})$.

Proposition 40 For all $0 < \alpha \leq 1$ and $\delta > 0$ there exists $C_1(\alpha, \delta), c_1 = c_1(\alpha, \delta) > 0$ so that for every $n \in \mathbb{N}$ and $\xi \in \mathbb{R}$ with $|\xi| \geq \delta$, we have

$$|\Phi_N(\xi)| \leq C_1 \exp \left(-c_1 V_N |\xi|^{1-\frac{1}{\alpha}} \right).$$

Theorem 11 follows by Proposition 40 together with Corollary 37.

The main step in the proof of Proposition 40 is the following.

Lemma 41 For every Riemannian manifold \mathcal{X} for every $\delta > 0$ there is a constant \hat{c} such that for each real-valued function φ on \mathcal{X} with $\|\varphi\|_{\alpha} \leq 1$ and each ξ such that $|\xi| \geq \delta$,

$$\iint \sin^2 \left(\frac{\xi[\varphi(x_1) - \varphi(x_2)]}{2} \right) \nu(x_1) d\nu(x_2) \leq \hat{c} |\xi|^{1-(1/\alpha)}$$

and

$$\iint [\varphi(x_1) - \varphi(x_2)]^2 \nu(x_1) d\nu(x_2).$$

where ν is the normalized Riemannian volume on \mathcal{X}.

The lemma will be proven in Sect. 7.3. Here we complete the proof of the proposition based on the lemma.

Let μ denote the normalized Riemannian volume on M. Fix some $n \in \mathbb{N}$ and consider a random hexagon $P_n = (x_{n-2}, x_{n-1}, x_n; y_{n-1}, y_n, y_{n+1})$ based at n.

Recall (3.5) and (3.7). By uniform ellipticity we have

$$u_n^2 \asymp \int \Gamma^2(P_n) d\mu^6(P_n), \quad d_n^2(\xi) \asymp \int \sin^2 \left(\frac{\xi \Gamma(P_n)}{2} \right) d\mu^6(P_n). \quad (7.1)$$
where
\[
\Gamma(P_n) = f_{n-2}(x_{n-2}, x_{n-1}) + f_{n-1}(x_{n-1}, x_n) + f_n(x_n, y_{n+1}) \\
- f_{n-2}(x_{n-2}, y_{n-1}) - f_{n-1}(y_{n-1}, y_n) - f_n(y_n, y_{n+1})
\]
is the balance of \(P_n \).

Applying Lemma 41 with \(X = M \times M \) and
\[
\phi_{x_{n-2},y_{n+1}}(x_{n-1}, x_n) = f_{n-2}(x_{n-2}, x_{n-1}) + f_{n-1}(x_{n-1}, x_n) + f_n(x_n, y_{n+1})
\]
and integrating with respect to \(x_{n-2} \) and \(y_{n+1} \) we obtain \(d_n^2(\xi) \geq C \xi^{1-(1/\alpha)} u_n^2 \).

Now Proposition 40 follows from (3.8).

7.3 The proof of Lemma 41

Set
\[
\Delta(x_1, x_2) = |\varphi(x_1) - \varphi_n(x_2)|, \quad \varepsilon = \xi^{-1}, \quad u^2 = \iint \Delta^2(x_1, x_2)\nu(x_1)d\nu(x_2),
\]
\[
\vartheta^2(\xi) = \iint \sin^2 \left(\frac{\Delta(x_1, x_2)}{2\varepsilon} \right) \nu(x_1)d\nu(x_2).
\]

Decompose \(X \times X = A_1 \cup A_2 \) where \(A_1 = \{(x_1, x_2) : \Delta \leq \varepsilon/8\} \) and \(A_2 \) is its complement. We split the proof of Lemma 41 into two cases.

Case 1 If the integral of \(\Delta^2 \) over \(A_1 \) is larger than the integral over \(A_2 \) then using that \(|\sin t| \geq c \) for \(|t| \leq 1/8 \) we get
\[
\vartheta^2(\xi) \geq \iint_{A_1} \sin^2 \left(\frac{\Delta(x_1, x_2)}{2\varepsilon} \right) d\nu(x_1)d\nu(x_2) \geq \frac{c^2\xi^2}{4} u^2.
\]

Case 2 Now we assume that the integral over \(A_2 \) is larger. Let
\[
l_k = 2^k \varepsilon, \quad k^* = \text{argmax} \{l_k(\nu \times \nu)(\Delta \in [l_k, 2l_k])\}, \quad l = l_{k^*}
\]
and
\[
v = l(\nu \times \nu)(\Delta \in [l, 2l]).
\]

Note that under the assumptions of Case 2 we have
\[
u^2 \leq C_0 \sum_{k=-3}^{\log_2(1/\varepsilon)} \sum_k l_k^2(\nu \times \nu)(\Delta \in [l_k, 2l_k]) \leq C_0 v \sum_{k=-3}^{\log_2(1/\varepsilon)} l_k \leq C v. \quad (7.2)
\]
Next, let m denote a median of φ with respect to ν, $\tilde{\varphi} = \varphi - m$ and

$$\Omega_1 = \{\tilde{\varphi} \leq 1/2\}, \quad \Omega_2 = \{\tilde{\varphi} \in (-1/2, 1/2)\}, \quad \Omega_3 = \{\tilde{\varphi} \geq 1/2\}.$$

Let us assume that $\mu(\Omega_3) \geq \mu(\Omega_1)$, the case where the opposite inequality holds being similar. Since $\Delta(x_1, x_2) < 1$ for $(x_1, x_2) \in \Omega_2 \times \Omega_2$ we have

$$(\nu \times \nu)(\Delta \geq 1) \leq 2[\nu(\Omega_1) + \nu(\Omega_3)] \leq 4\nu(\Omega_3).$$

Let

$$\Omega'_j = \{\tilde{\varphi} \in [(j + 0.1)\epsilon, (j + 0.2)\epsilon]\} \quad \Omega''_j = \{\tilde{\varphi} \in [(j + 0.3)\epsilon, (j + 0.4)\epsilon]\}.$$

Since m is a median, $\nu(\Omega_1 \cup \Omega_2) \geq \frac{1}{2}$. Hence Lemma 39 shows that for $j \leq \frac{1}{4\epsilon}$ we have

$$\nu(\Omega'_j) \geq c\epsilon^{1/\alpha}\nu(\Omega_3), \quad \nu(\Omega''_j) \geq c\epsilon^{1/\alpha}\nu(\Omega_3). \quad (7.3)$$

On the other hand there is a constant $\delta_0 > 0$ such that for each $x_1 \in X$ we have that

$$\sin^2 \left(\frac{\Delta(x_1, x_2)}{2\epsilon}\right) \geq \delta_0$$

either for all j and all $x_2 \in \Omega'_j$ or for all j for all $x_2 \in \Omega''_j$. It follows that if A_2 dominates then

$$\tilde{o}^2(\xi) \geq \delta_0 \min \left(\sum_{j=1}^{l/4\epsilon} \nu(\Omega'_j), \sum_{j=1}^{l/4\epsilon} \nu(\Omega''_j)\right) \geq c\epsilon^{1/\alpha-1}(\nu \times \nu)(\Delta \in [1, 2l]) = c\epsilon^{1/\alpha-1}\nu.$$

Combining this with (7.2) we obtain that if A_2 dominates then $\tilde{o}^2(\xi) \geq c\epsilon^{1/\alpha-1}u^2$. Combining the estimates of cases 1 and 2 we obtain the result. \square

7.4 Cantor functions

In order to show the optimality of Theorem 11 we need to consider a function f for which the estimate of Lemma 41 is optimal. Moreover, we want f to grow on a set of small Hausdorff dimension and we want the distribution of f to have atoms at values which are commensurable with each other. It turns out that Cantor functions studied in [22, 32] satisfy these conditions. So in this subsection we describe briefly the construction and properties of Cantor functions.

Let us fix some integers $p \geq 3, k \geq 1$ and let $q = (p - 1)k$. Set

$$\alpha_{p, p+q} = \frac{1}{\log_p (q + p)} = \frac{\ln p}{\ln(p + q)}.$$

On $[0, 1]$, let $C_{p, p+q}$ (where $q = (p - 1)k$) be the Cantor set of all numbers of the form $x = \sum_{j=1}^{\infty} \frac{(k + 1)a_j}{(p + q)^j}, a_j = 0, 1, \ldots, p - 1$. In other words $C_{p, p+q}$ consists

\[\text{Springer} \]
of all numbers in \([0, 1]\) which can be written in base \(p + q\) so that all its digits are divisible by \(k + 1\).

Let \(f\) be the corresponding Cantor function (\([32]\)). Namely, for \(x \in C_{p,p+q}\) we have

\[
f(x) = \sum_j a_j \frac{1}{p^j}, \quad \text{if} \quad x = \sum_j (k+1)a_j \frac{1}{(p+q)^j},
\]

while outside \(C_{p,p+q}\) we have

\[
f(x) = \sup_{y \in C_{p,p+q}, y \leq x} f(y) = \sum_{j=1}^n b_j \frac{1}{p^j} \quad \text{where} \quad x = \sum_j x_j \frac{1}{(p+q)^j}, \quad b_j = \left\lfloor \frac{x_j}{k+1} \right\rfloor + 1
\]

and \(n\) is the first index so that \(x_n\) is not divisible by \(k + 1\). By [32, Theorem 2] (see also [22]), \(f\) is Hölder continuous with exponent \(\alpha_{p,q}\), which is also the the Hausdorff dimension of \(C_{p,q+p}\). Note that \(f\) is increasing (see [32, Theorem 1]) and that \(f(0) = 0\) and \(f(1) = 1\).

Lemma 42 For each \(n \in \mathbb{N}\)

\[
\text{Leb}\{x \in [0, 1] : p^n f(x) \notin \mathbb{Z} \} = \left(\frac{p}{p+q}\right)^n. \tag{7.4}
\]

Proof To prove the lemma we explain the inductive construction of \(f\) by following the recursive construction of the set \(C_{p,q+p}\). First, we split \([0, 1]\) into \(p + q\) closed intervals \(I_1, I_2, \ldots, I_{p+q}\) of the same length \(\frac{1}{p+q}\) so that \(I_s\) is to the left of \(I_{s+1}\) for each \(s\). Next, define intervals \(J_1, J_2, \ldots, J_{2p+1}\) as follows: we define \(J_1 = I_1\), and then inductively \(J_{2l+1} = I_{j_l+k+1}\), if \(J_{2l-1} = I_{j_l}\). For \(1 \leq l < p\) we define and \(J_{2l}\) to be the union of the intervals \(I_s\) between \(J_{2l-1}\) and \(J_{2l+1}\). On \(J_{2l}\) we define \(f|J_{2l} = \frac{l}{p}\).

The reconstruction of the function \(f\) now proceeds by induction. Suppose that at the \(n\)-th step of the construction \(f\) was additionally defined on a union of closed intervals \(U_1, \ldots, U_{j_n}\), \(j_n = (p-1)p^{n-1}\) of length \(k(p+q)^{-n}\) so that \(f|U_j = jp^{-n}\), \(U_j\) is to the left of \(U_{j+1}\), and the gap between \(U_j\) and \(U_{j+1}\) is \((p+q)^{-n}\), where \(U_0 = \{0\}\) and \(U_{j_1+1} = \{1\}\). Split the interval between \(U_j\) and \(U_{j+1}\) into equal \(p + q\) intervals \(I_{1,j,n+1}, I_{2,j,n+1}, \ldots, I_{p+q,j,n+1}\) of length \((p + q)^{-n-1}\) so that \(I_{s,j,n+1}\) is to the left of \(I_{s+1,j,n+1}\) for each \(s\). In the \((n+1)\)-th step the intervals \(J_1, j, n+1, J_2, j, n+1, \ldots, J_{2p+1, j, n+1}\) are defined as follows: we define \(J_{1, j, n+1} = I_{1, j, n+1}\), and then inductively \(J_{2l+1, j, n+1} = I_{j_l+k+1, j, n+1}\), if \(J_{2l-1, j, n+1} = I_{j_l, j, n+1}\). For \(1 \leq l < p\) we define and \(J_{2l, j, n+1}\) to be the union of the intervals \(I_{s,j,n+1}\) between \(J_{2l-1, j, n+1}\) and \(J_{2l+1, j, n+1}\). On \(J_{2l, j, n+1}\) we define

\[
f|J_{2l,j,n+1} = \frac{jp+l}{p^{n+1}} = \frac{j}{p^n} + \frac{l}{p^{n+1}}.
\]

In view of the above recursive construction of \(f\), we obtain (7.4) since in the \((n+1)\)-th step there are \(p^n\) intervals of length \((p + q)^{-n}\) on which \(f\) has not been defined.
yet, and the values of f in all the steps following the n-th step do not have the form s/p^n for $s \in \mathbb{Z}$.

\square

7.5 Optimality

Proof of Theorem 12 We first observe that it is enough to prove Theorem 12 for a dense set of numbers α in $(0, 1)$. Indeed, if the theorem holds for α belonging to a dense set A, given $\alpha_0 \in (0, 1)$ and $r > \frac{\alpha_0 + 1}{1 - \alpha_0}$, we can find $\alpha \in A$ so that $\alpha > \alpha_0$ and $r > \frac{\alpha + 1}{1 - \alpha}$. Now, the α-Hölder continuous function we get from Theorem 12 with this α is also α_0-Hölder continuous so the result follows.

Next, let us consider the set

$$A = \left\{ \frac{\ln p}{\ln(p + q)} : p, q \in \mathbb{N}, p \geq 3, q|(p - 1) \right\}.$$

This set is dense in $(0, 1)$. Indeed, let $0 < a < b < 1$. Then, using that $\frac{\ln p}{\ln(p + q)} = \frac{1}{\log_p(q + p)}$, for all $p \geq 3$ and denoting $k = \frac{q}{(p - 1)}, k \in \mathbb{N}$ we have

$$\frac{1}{\log_p(q + p)} \in (a, b) \iff p^{1/b - 1} < k + 1 - \frac{1}{p} < p^{1/a - 1}.$$

Since $\lim_{p \to \infty} p^{1/a - 1} - p^{1/b - 1} = \infty$, we can find a number k satisfying the above inequality provided that p is large enough.

Thus we fix some integers $p \geq 3, k \geq 1$ and let $q = (p - 1)k$. Set

$$\alpha = \alpha_{p, p+q} = \frac{1}{\log_p(q + p)} = \frac{\ln p}{\ln(p + q)}.$$

Let $f : [-1, 1] \to [-1, 1]$ be the odd function whose restriction to $[0, 1]$ is the Cantor function from Sect. 7.4. We will now show that $S_n f$ does not obey Edgworth expansions of any order $r > \frac{\alpha + 1}{\alpha - 1}$. Let $r = r(\alpha)$ be the smallest integer so that $r > \frac{\alpha + 1}{\alpha - 1}$, where $\alpha = \alpha_{p, q}$. Let us take $\frac{\alpha}{1 - \alpha} < c < \frac{r}{2} - \frac{1}{2}$ and set $k_N = p^{[c \log_p N]}$. Then

$$\mathbb{P}(k_N S_N \notin \mathbb{Z}) \leq N \mathbb{P}(k_N f \notin \mathbb{Z}) = N \left(\frac{p}{p + q} \right)^{[c \log_p N]} = O \left(N^{1 - [1/(\alpha) - 1]c} \right) = o_{N \to \infty} (1)$$

where the second step follows from Lemma 42 and the last step follows since

$$c \left(\frac{1}{\alpha} - 1 \right) = \frac{c (1 - \alpha)}{\alpha} > 1.$$

Let $p_N = p^{[c \log_p N]} \sigma_N = k_N \sigma_N$ which is of order $N^{c + 1/2}$. Then

$$\lim_{N \to \infty} \mathbb{P}(S_N / \sigma_N \in (p_N)^{-1/2} \mathbb{Z}) = 1.$$
Thus, by considering points in \((pN)^{-1} \mathbb{Z}\) which are of order 1, we find that if \(C\) is large enough then denoting

\[m_N = \text{argmax}\{ \mathbb{P}(S_N / \sigma_N = k / pN) : |k / pN| \leq C \} \]

and recalling that \(c + \frac{1}{2} > r\) we have

\[\mathbb{P}(S_N / \sigma_N = m_N / pN) \geq C_1 p_N^{-1} \geq C_2 N^{-c-1/2} \geq C_3 \sigma_N^{-r} \tag{7.5} \]

where \(C_1, C_2\) and \(C_3\) are positive constants. On the other hand, if \(S_N\) obeyed expansions of order \(r\) then

\[\mathbb{P}\left(\frac{S_N}{\sigma_N} = \frac{m_N}{pN} \right) \leq \lim sup_{\delta \to 0^+} \left[\mathbb{P}\left(\frac{S_N}{\sigma_N} \leq \frac{m_N}{pN} \right) - \mathbb{P}\left(\frac{S_N}{\sigma_N} \leq \frac{m_N}{pN} - \delta \right) \right] = o(\sigma_N^{-r}) \]

which is inconsistent with (7.5).

\[\square \]

Declarations

Conflict of interest The authors have no conflict of interests to declare.

Appendix A. A dynamically defined example of a two step uniformly elliptic Markov chain on the unit interval

Let \(\mathcal{X} = [0, 1)\) and for each \(n \in \mathbb{N}\) consider a map \(f_n : \mathcal{X} \to \mathcal{X}\) such that there is a partition of \([0, 1)\) into finitely many intervals \(I_i(n) = [a_i(n), b_i(n)]\) so that on each \(I_i(n)\) the function \(g_{i,n} := f_n|_{I_i(n)}\) is differentiable, monotone and is onto \(\mathcal{X}\). Moreover, we suppose that there is a bounded sequence of positive numbers \((m_n)\) and constants \(K > 0\) such that

\[m_n \leq |g_{i,n}'(x)| \leq K m_n, \quad \text{for every } x \in I_i(n). \tag{A.1} \]

Since \(g_{i,n}(I_i(n)) = \mathcal{X}\), it follows that the length of \(I_i(n)\) is between \(\frac{1}{K m_n}\) and \(\frac{1}{m_n}\). A simple example is the case when \(f_n(x) = (m_n x) \mod 1\) for some integer \(m_n \geq 2\) and in this case \(I_{i,n} = [\frac{i-1}{m_n}, \frac{i}{m_n}]\) for \(i = 1, 2, \ldots, m_n\) and \(g_{i,n}(x) = m_n x -(i-1)\).

Next, take a sequence \((\varepsilon_n)\) of positive numbers in \((0, 1/2)\) and a sequence \((U_n)\) of independent random variables which are uniformly distributed on \([-\varepsilon_n, \varepsilon_n]\) \(\mod 1\).

Let \(X_0\) be a random variable independent of \((U_n)\) and let us define recursively

\[X_{n+1} = f_n(X_n) + U_{n+1} \quad (\mod 1). \tag{A.2} \]

Then \((X_n)\) is a Markov chain.

Lemma 43 If \(m_n \varepsilon_n \geq 1\) for all \(n\) then there exists \(\varepsilon_0 > 0\) such that the Markov chain \((X_n)\) satisfies (2.1) and (2.2) with \(\mu_j = \text{Lebesgue measure}\).
Note that one step ellipticity condition fails in this case since X_{n+1} conditioned on X_n is uniformly distributed on a segment of length $2\varepsilon_n < 1$.

Proof We regard \mathcal{X} as the circle by identifying its endpoints. First, (2.1) holds because m_n is bounded above. Let us now show that (2.2) is satisfied. Fix x and consider our Markov chain conditioned on $X_n = x$. Then X_{n+1} is uniformly distributed on an interval $J_{n+1} = J_{n+1}(x)$ of length $2\varepsilon_{n+1}$. Note that J_{n+1} contains some interval I_{n+1} where f_{n+1} is continuous. Otherwise J_{n+1} would intersect at most two continuity intervals of f_{n+1} which is impossible since $\varepsilon_{n+1} \geq 1/m_{n+1}$. Next for each interval $L \in \mathcal{X}$ we have

$$\mathbb{P}_x(f_{n+1}(X_{n+1}) \in L) \geq \mathbb{P}_x(f_{n+1}(X_{n+1}) \in L, X_{n+1} \in I_{n+1}) \geq \frac{|L|}{2\varepsilon_{n+1}K m_{n+1}}$$

since the conditional density of X_{n+1} equals to $1/(2\varepsilon_{n+1})$ and $|f_{n+1}'(x)| \leq K m_{n+1}$.

Thus the density of $f_{n+1}(X_{n+1})$ is at least $(2\varepsilon_{n+1}K m_{n+1})^{-1}$. Since rotations of the circle preserve the Lebesgue measure, the density of X_{n+2} has the same lower bound.

Suppose now that f_n are fixed but we start decreasing (ε_n). We saw above that one step ellipticity condition fails if $\varepsilon_n < 1/2$. Decreasing (ε_n) even further we may cause the failure of the two step ellipticity as well. On the other hand, suppose that there is $\lambda > 1$ such that $f_n'(x) \geq \lambda$ for all n and all continuity points of f_n (in particular, f_n preserves the orientation and so they induce a continuous map of the circle). Assume moreover that there is $\bar{\varepsilon} > 0$ such that $\varepsilon_n \geq \bar{\varepsilon}$ for all n. We claim that k step ellipticity condition holds provided that $2\bar{\varepsilon}\lambda^{k-1} > 1$. Indeed as before it suffices to fix X_n as well as ε_j for $j > n + 1$ and obtain a uniform lower bound on X_{n+k} after the conditioning.

As before X_{n+1} is uniformly distributed on a segment J_{n+1} whose length is at least $2\bar{\varepsilon}$. Next, denote $\tilde{f}_j(z) = f_j(z) + \varepsilon_{j+1}$. Then for each interval L with $\tilde{f}_j(L)$ covers the circle or it is an interval whose length is at least $\lambda|L|$. Thus the image of J_{n+1} will grow after each application of \tilde{f}_j until it would cover the whole circle giving required ellipticity.

Therefore Theorems 4, 5 and 11 hold for our chain. This provides an illustration of the usefulness of relaxing one step ellipticity.

References

1. Angst, J., Poly, G.: A weak Cramér condition and application to Edgeworth expansions. Electron. J. Probab **22**(59), 1–24 (2017)
2. Barbour, A.D.: Asymptotic expansions based on smooth functions in the central limit theorem. Probab. Theory Relat. Fields **72**, 289–303 (1986)
3. Barbour, A.D., Chen, L.H.Y.: An Introduction to Stein’s Method. Singapore University Press, Singapore (2005)
4. Bentkus, V., Gotze, F., Van Zwet, W.: An Edgeworth expansion for symmetric statistics. Ann. Stat. **25**, 851–896 (1997)
5. Berry, W.: The accuracy of the Gaussian approximation to the sum of independent variates. Trans. AMS **49**, 122–136 (1941)
6. Bhattacharya, R.N., Ranga Rao, R.: Normal Approximation and Asymptotic Expansions, p. xiv+274. Wiley, New York (1976)
7. Bickel, P., Gotze, F., Van Zwet, W.: The Edgeworth expansion for U-statistics of degree two. Ann. Stat. 14, 1463–1484 (1986)
8. Breuillard, E.: Distributions diophantiennes et theoreme limite local sur d. Probab. Theory Relat. Fields 132, 39–73 (2005)
9. Callaert, H., Janssen, P.: The Berry–Esseen theorem for U statistics. Ann. Stat. 6, 417–421 (1978)
10. Callaert, H., Janssen, P., Veraverbeke, N.: An Edgeworth expansion for U-statistics. Ann. Stat. 8, 299–312 (1980)
11. Chen, L.H.Y., Shao, Q.M.: Normal approximation under local dependence. Ann. Probab. 32, 1985–2028 (2004)
12. Coelho, Z., Parry, W.: Central limit asymptotics for shifts of finite type. Isr. J. Math. 69, 235–249 (1990)
13. Cramer, H.: On the composition of elementary errors. Skand. Aktuarietid skr. 1, 13–74; 141–180 (1928)
14. Dobrushin, R.: Central limit theorems for non-stationary Markov chains I, II. Theory Probab. Appl. 1, 65–80, 329–383 (1956)
15. Dolgopyat, D.: On decay of correlations in Anosov flows. Ann. Math. 147, 357–390 (1998)
16. Dolgopyat, D.: Prevalence of rapid mixing in hyperbolic flows. Ergod. Theory Dyn. Syst. 18, 1097–1114 (1998)
17. Dolgopyat, D., Fernando, K.: An error term in the central limit theorem for sums of discrete random variables. Preprint
18. Dolgopyat, D., Hafouta, Y.: Edgeworth expansion for independent bounded integer valued random variables. Stoch. Proc. Appl. 152, 486–532 (2022)
19. Dolgopyat, D., Hafouta, Y.: Edgeworth expansions for integer valued additive functionals of uniformly elliptic Markov chains. arXiv:2203.15907
20. Dolgopyat, D., Sarig, O.: Local limit theorems for inhomogeneous Markov chains. Accepted to Springer Lecture Notes in Mathematics. arXiv:2109.05560
21. Döring, H., Eichelsbacher, P.: Moderate deviations via cumulants. J. Theor. Probab. 26, 360–385 (2013)
22. Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function. Expo. Math. 24, 1–37 (2006)
23. Doukhan, P., Neumann, M.H.: Probability and moment inequalities for sums of weakly dependent random variables, with applications. Stoch. Proc. Appl. 117, 878–903 (2007)
24. Dragičević, D., Hafouta, Y.: Limit theorems for random expanding or Anosov dynamical systems and vector valued observables. Ann. Henri Poincaré 21, 3869–3917 (2020)
25. Dubois, L.: Projective metrics and contraction principles for complex cones. J. Lond. Math. Soc. 79, 719–737 (2009)
26. Dubois, L.: An explicit Berry–Esseen bound for uniformly expanding maps on the interval. Isr. J. Math. 186, 221–250 (2011)
27. Esseen, C.-G.: Fourier analysis of distribution functions. A mathematical study of the Laplace–Gaussian law. Acta Math. 77, 1–125 (1945)
28. Esseen, C.-G.: A moment inequality with an application to the central limit theorem. Skand. Aktuarietidsskr. 39, 160–170 (1956)
29. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2, 2d edn. Wiley, New York (1971)
30. Fernando, K., Liverani, C.: Edgeworth expansions for weakly dependent random variables. Ann. l’Inst. Henri Poincare Prob. Stat. 57, 469–505 (2021)
31. Fernando, K., Pène, F.: Expansions in the local and the central limit theorems for dynamical systems. Commun. Math. Phys. 389, 273–347 (2022)
32. Gilman, R.E.: A class of functions continuous but not absolutely continuous. Ann. Math. 33, 433–442 (1932)
33. Gnedenko, B.V., Kolmogorov, A.N.: Limit Distributions for Sums of Independent Random Variables. Addison, Cambridge (1954)
34. Grams, W.F., Serfling, R.J.: Convergence rates for U-statistics and related statistics. Ann. Stat. 1, 153–160 (1973)
35. Gouëzel, S.: Berry–Esseen theorem and local limit theorem for non uniformly expanding maps. Ann. IHP Prob. Stat. 41, 997–1024 (2005)
36. Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. Proc. Sympos. Pure Math. 89, 161–193 (2015)
37. Guivarc’h, Y., Hardy, J.: Théorèmes limites pour une classe de chaînes de markov et applications aux difféomorphismes d’anosov. Ann. IHP Prob. Stat. 24, 73–98 (1988)
38. Hafouta, Y.: On the asymptotic moments and Edgeworth expansions of some processes in random dynamical environment. J. Stat. Phys. 179, 945–971 (2020)
39. Hafouta, Y., Kifer, Y.: Nonconventional Limit Theorems and Random Dynamics. World Scientific, Singapore (2018)
41. Hall, P.: Edgeworth expansion for student’s t statistic under minimal moment conditions. Ann. Probab. 15, 920–931 (1987)
42. Hennion, H., Hervé, L.: Limit theorems for Markov chains and stochastic properties of dynamical systems by quasi-compactness. In: Springer Lecture Notes in Mathematics, vol. 1766 (2001)
43. Hervé, L., Pène, F.: The Nagaev–Guivarch method via the Keller–Liverani theorem. Bull. Soc. Math. France 138, 415–489 (2010)
44. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables, p. 443. Wolters-Noordhoff Publishing, Groningen (1971)
45. Jirak, M.: Berry–Esseen theorems under weak dependence. Ann. Probab. 44, 2024–2063 (2016)
46. Jirak, M.: A Berry–Esseen bound with (almost) sharp dependence conditions. arXiv:2008.07332
47. Jirak, M., Wu, W.B., Zhao, O.: Sharp connections between Berry–Esseen characteristics and Edgeworth expansions for stationary processes. Trans. AMS 374, 4129–4183 (2021)
48. Krantz, S.G., Parks, H.R.: A Primer of Real Analytic Functions, 2nd edn. Birkhauser, Boston (2002)
49. Liverani, C.: Decay of correlations. Ann. Math. 142, 239–301 (1995)
50. Merlevède, F., Peligrad, M., Utev, S.: Functional Gaussian Approximation for Dependent Structures. Oxford University Press, Oxford (2019)
51. Merlevède, F., Peligrad, M., Peligrad, C.: On the local limit theorems for psi-mixing Markov chains. ALEA 18, 1221–1239 (2021)
52. Merlevède, F., Peligrad, M., Peligrad, C.: On the local limit theorems for lower psi-mixing Markov chains. ALEA 19, 1103–1121 (2022)
53. Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2, 378–406 (1957)
54. Nagaev, S.V.: More exact statements of limit theorems for homogeneous Markov chains. Theory Probab. Appl. 6, 62–81 (1961)
55. Prokhorov, Yu.V.: On a local limit theorem/or lattice distributions. Dokl. Akad. Nauk SSSR 98, 535–538 (1954)
56. Rio, E.: Sur le théorème de Berry–Esseen pour les suites faiblement d?endantes. Probab. Theory Relat. Fields 104, 255–282 (1996)
57. Rinott, Y., Rotar, V.: On Edgeworth expansions for dependency-neighborhoods chain structures and Stein’s method. Probab. Theory Relat. Fields 126, 528–570 (2003)
58. Rousseau-Egele, J.: Un théorème de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Probab. 11, 772–788 (1983)
59. Rozanov, Yu.A.: On a local limit theorem for lattice distributions. Theory Probab. Appl. 2, 275–281 (1957)
60. Rugh, H.H.: Cones and gauges in complex spaces: spectral gaps and complex Perron–Frobenius theory. Ann. Math. 171, 1707–1752 (2010)
61. Saulis, L., Statulevicius, V.A.: Limit Theorems for Large Deviations. Kluwer, Dordrecht (1991)
62. Sethuraman, S., Varadhan, S.R.S.: A martingale proof of Dobrushin’s theorem for non-homogeneous Markov chains. Electron. J. Probab. 10, 1221–1235 (2005)
63. Shevtsova, I.: An improvement of convergence rate estimates in the Lyapunov theorem. Dokl. Math. 82, 862–864 (2010)