Robustness of Control Barrier Functions for Safety Critical Control

Xiangru Xu, Paulo Tabuada, Jessy W. Grizzle, Aaron D. Ames †‡

Abstract

Barrier functions (also called certificates) have been an important tool for the verification of hybrid systems, and have also played important roles in optimization and multi-objective control. The extension of a barrier function to a controlled system results in a control barrier function. This can be thought of as being analogous to how Sontag extended Lyapunov functions to control Lyapunov functions in order to enable controller synthesis for stabilization tasks. A control barrier function enables controller synthesis for safety requirements specified by forward invariance of a set using a Lyapunov-like condition. This paper develops several important extensions to the notion of a control barrier function. The first involves robustness under perturbations to the vector field defining the system. Input-to-State stability conditions are given that provide for forward invariance, when disturbances are present, of a “relaxation” of set rendered invariant without disturbances. A control barrier function can be combined with a control Lyapunov function in a quadratic program to achieve a control objective subject to safety guarantees. The second result of the paper gives conditions for the control law obtained by solving the quadratic program to be Lipschitz continuous and therefore to gives rise to well-defined solutions of the resulting closed-loop system.

Keywords: Barrier function, Invariant set, Quadratic program, Robustness, Continuity

1 Introduction

Lyapunov functions are used to certify stability properties of a set without calculating the exact solution of a system. In a similar manner, barrier certificates (functions) are used to verify temporal properties (such as safety, avoidance, eventuality) of a set, without the difficult task of computing the system’s reachable set; see [1], [2]. These same references show that when the vector fields of

*Correction to Theorem 3 and some typos of the paper appeared in IFAC Conference on Analysis and Design of Hybrid Systems, Atlanta, GA, USA, page 54-61, 2015.

†This research is supported by NSF CPS Awards 1239055, 1239037 and 1239085.

‡X. Xu and J. W. Grizzle are with the Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, email:{xuxiangr, grizzle}@umich.edu.

P. Tabuada is with the Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, CA, email:tabuada@ucla.edu. A. D. Ames is with the Woodruff School of Mechanical Engineering, the School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, email:aames@gatech.edu.
the system are polynomial and the sets are semi-algebraic, barrier certificates can be computed by sum-of-squares optimization. In the original formulation of [2], all sublevel sets of the barrier certificate were required to be invariant because the derivative of the barrier certificate along solutions was required to be non-positive. This condition was relaxed by [3] and [4] so that tighter over-approximations of the reachable set could be obtained, and such that more expressive barrier certificates could be synthesized using semi-definite programming. The key idea there was to only require that a single sublevel set be invariant, namely, the set of points where the barrier certificate was non-positive.

The natural extension of barrier functions to a system with control inputs is a control barrier function (CBF), first proposed by [5]; this work used the original condition of a barrier function that imposes invariance of all sublevel sets. The unification of control Lyapunov functions (CLFs) with CBFs appeared at the same conference in [6] and [7], using two contrasting formulations. The objective of [6] was to incorporate into a single feedback law the conditions required to simultaneously achieve asymptotic stability of an equilibrium point, while avoiding an unsafe set. The feedback law was constructed using Sontag’s universal control formula ([8]), provided that a “control Lyapunov barrier function” inequality could be met. Importantly, if the stabilization and safety objectives were in conflict, then no feedback law could be proposed. In contrast, the approach of [7] was to pose a feedback design problem that mediates the safety and stabilization requirements, in the sense that safety is always guaranteed, and progress toward the stabilization objective is assured when the two requirements “are not in conflict”.

The essential difference between these two approaches is perhaps best understood through an example. A vehicle equipped with Adaptive Cruise Control (ACC) seeks to converge to and maintain a fixed cruising speed, as with a common cruise control system. Converging to and maintaining fixed speed is naturally expressed as asymptotic stabilization of a set. With ACC, the vehicle must in addition guarantee a safety condition, namely, when a slower moving vehicle is encountered, the controller must automatically reduce vehicle speed to maintain a guaranteed lower bound on time headway or following distance, where the distance to the leading vehicle is determined with an onboard radar. When the leading car speeds up or leaves the lane, and there is no longer a conflict between safety and desired cruising speed, the adaptive cruise controller automatically increases vehicle speed. The time-headway safety condition is naturally expressible as a control barrier function. In the approach of [7], a Quadratic Program (QP) mediates the two inequalities associated with the CLFs and CBFs; in particular, relaxation is used to make the stability objective a soft constraint while safety is maintained as a hard constraint. In this way, safety and stability do not need to be simultaneously satisfiable. On the other hand, the approach of [6] is only applicable when the two objectives can be simultaneously met.

A second, although less important, difference in the two approaches is that [6] used the more restrictive invariance condition of [1], while [7] used the relaxed condition of [3], appropriately interpreted for the type of barrier function often used in optimization, see [9], where the barrier function is unbounded on the boundary of the allowed set, instead of vanishing on the set boundary.

The present paper builds on previous work in two important directions. First, the robustness of barrier functions and control barrier functions under model perturbation is investigated. An Input-to-State (ISS) stability property
of a safe set is established when perturbations are present and the barrier function vanishes on the set boundary. The second result gives conditions that guarantee local Lipschitz continuity of the feedback law arising from the QP used to mediate safety and asymptotic convergence to a set. The analysis is based on the constraint qualification conditions along with the KKT conditions for optimality. While the result is applicable to the type of barrier function in \[7\], it will be stated for barrier functions used in this paper that vanish on the set boundary.

The remainder of the paper is organized as follows. Section 2 defines zeroing barrier functions and zeroing control barrier functions, and establishes a robustness property under model perturbations. Section 3 develops the conditions for the solution of the QP to be locally Lipschitz continuous in the problem data. The theory developed is illustrated in Section 4 on adaptive cruise control. Section 5 summarizes the conclusions.

Notation: The set of real, positive real and non-negative real numbers are denoted by \(\mathbb{R} \), \(\mathbb{R}^+ \) and \(\mathbb{R}^+_0 \), respectively. The Euclidean norm is denoted by \(\| \cdot \| \). The transpose of matrix \(A \) is denoted by \(A^\top \). The interior and boundary of a set \(S \) are denoted by \(\text{Int}(S) \) and \(\partial S \), respectively. The distance from \(x \) to a set \(S \) is denoted by \(\| x \|_S = \inf_{s \in S} \| x - s \| \). For any essentially bounded function \(g: \mathbb{R} \to \mathbb{R}^n \), the infinity norm of \(g \) is denoted by \(\| g \|_\infty = \text{esssup}_{t \in \mathbb{R}} \| g(t) \| \).

A function \(f: \mathbb{R}^n \to \mathbb{R}^m \) is called Lipschitz continuous on \(I \subseteq \mathbb{R}^n \) if there exists a constant \(L \in \mathbb{R}^+ \) such that \(\| f(x_2) - f(x_1) \| \leq L \| x_2 - x_1 \| \) for all \(x_1, x_2 \in I \), and called locally Lipschitz continuous at a point \(x \in \mathbb{R}^n \) if there exist constants \(\delta \in \mathbb{R}^+ \) and \(M \in \mathbb{R}^+ \) such that \(\| f(x) - f(x') \| \leq M \| x - x' \| \) holds for all \(\| x - x' \| \leq \delta \). A continuous function \(\beta_1 : [0, a) \to [0, \infty) \) for some \(a > 0 \) is said to belong to class \(\mathcal{K} \) if it is strictly increasing and \(\beta_1(0) = 0 \). A continuous function \(\beta_2 : [0, b) \times [0, \infty) \to [0, \infty) \) for some \(b > 0 \) is said to belong to class \(\mathcal{KL} \) if for each fixed \(s \), the mapping \(\beta_2(r, s) \) belongs to class \(\mathcal{K} \) with respect to \(r \) and for each fixed \(r \), the mapping \(\beta_2(r, s) \) is decreasing with respect to \(s \) and \(\beta_2(r, s) \to 0 \) as \(s \to \infty \).

2 Zeroing (Control) Barrier Functions

The barrier function and control barrier function considered in this paper are based on \[3\], \[4\], and \[5\]. As in \[7\], the primary focus is to establish forward invariance of a given set \(\mathcal{C} \), which one may interpret as an under approximation of the “initial set” and the “safe set” in previous formulations of barrier functions. The main contribution of the section is a robustness property under model perturbations.

Consider a nonlinear system on \(\mathbb{R}^n \),

\[
\dot{x} = f(x),
\]

with \(f \) locally Lipschitz continuous. Denote by \(x(t, x_0) \) the solution of (1) with initial condition \(x_0 \in \mathbb{R}^n \). To simplify notation, the solution is also denoted by \(x(t) \) whenever the initial condition does not play an important role in the discussion. The maximal interval of existence of \(x(t, x_0) \) is denoted by \(I(x_0) \). When \(I(x_0) = \mathbb{R}^+_0 \) for any \(x_0 \in \mathbb{R}^n \), the differential equation (1) is said to be forward complete. A set \(S \) is called forward invariant if for every \(x_0 \in S \), \(x(t, x_0) \in S \) for all \(t \in I(x_0) \).
For $\epsilon \geq 0$, define the family of closed sets C_ϵ as

$$C_\epsilon = \{ x \in \mathbb{R}^n : h(x) \geq -\epsilon \},$$

$$\partial C_\epsilon = \{ x \in \mathbb{R}^n : h(x) = -\epsilon \},$$

$$\text{Int}(C_\epsilon) = \{ x \in \mathbb{R}^n : h(x) > -\epsilon \},$$

where $h : \mathbb{R}^n \to \mathbb{R}$ is a continuously differentiable function. By construction, $C_{\epsilon_2} \subset C_{\epsilon_1}$ for any $\epsilon_2 > \epsilon_1 \geq 0$. For simplicity, the set C_0 is denoted by C.

The definition of a barrier function is made easier through an appropriate extension of the notion of class K function.

Definition 1. (Based on [10]) A continuous function $\beta : (-b, a) \to (-\infty, \infty)$ for some $a, b > 0$ is said to belong to extended class K if it is strictly increasing and $\beta(0) = 0$.

2.1 Zeroing Barrier Functions

The class of barrier functions considered in this paper is defined as follows.

Definition 2. Consider a dynamical system (1) and the set C defined by (2)-(4) for some continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$. If there exist a locally Lipschitz extended class K function α and a set D with $C \subseteq D \subset \mathbb{R}^n$ such that

$$L_fh(x) \geq -\alpha(h(x)), \forall x \in D,$$

then the function h is called a zeroing barrier function (ZBF).

Existence of a ZBF implies the forward invariance of C, as shown by the following theorem.

Theorem 1. Given a dynamical system (1) and a set C defined by (2)-(4) for some continuously differentiable function $h : \mathbb{R}^n \to \mathbb{R}$, if h is a ZBF defined on the set D with $C \subseteq D \subset \mathbb{R}^n$, then C is forward invariant.

Proof. Note that for any $x \in \partial C$, $L_fh(x) \geq -\alpha(h(x)) = 0$. According to Nagumo’s theorem ([11]), the set C is forward invariant. \qed

Recall that the original barrier condition in [2] requires that $\dot{h} \geq 0$, when expressed in the notation of the present paper, which implies that all superlevel sets of h inside C are invariant. As in [4], [3] and [7], inequality (5) relaxes the conventional condition by requiring a single superlevel set of h, which is C itself, to be invariant.

2.2 Robustness Properties of ZBFs

In this section, the extent to which forward invariance of the set C, asserted in Theorem 1 is robust with respect to different perturbations on the dynamics (1) is investigated. This will be accomplished by showing that existence of a ZBF implies asymptotic stability of the set C.

Recall that a closed and forward invariant set $S \subseteq \mathbb{R}^n$ is said to be locally asymptotically stable for a forward complete system (1) if there exist an open set \mathcal{R} containing S and a class KL function β such that for any $x_0 \in \mathcal{R}$

$$\|x(t, x_0)\|_S \leq \beta(\|x_0\|_S, t).$$

$$\|x(t, x_0)\|_S \leq \beta(\|x_0\|_S, t).$$

(6)
Whenever the set S is compact, inequality (6) implies $I(x_0) = \mathbb{R}_0^+$ for all $x_0 \in \mathbb{R}$. Therefore, the forward completeness assumption on (1) is no longer needed. Note that asymptotic stability of S implies invariance of S as can be seen by noting that $x_0 \in S$ implies $\|x_0\|_S = 0$ and $\beta(\|x_0\|_S, t) = 0$ which, in turn, implies $\|x(t, x_0)\|_S = 0$ and $x(t, x_0) \in S$.

Once asymptotic stability of C is established, several robustness results in the literature will be used to characterize the robustness of forward invariance of the set C. The critical observation, upon which all the results in this section rely, is that, if D is open, then a ZBF h induces a Lyapunov function $V_C : D \to \mathbb{R}_0^+$ defined by:

$$V_C(x) = \begin{cases}
0, & \text{if } x \in C, \\
-h(x), & \text{if } x \in D \setminus C.
\end{cases}$$

(7)

It is easy to see that: 1) $V_C(x) = 0$ for $x \in C$; 2) $V_C(x) > 0$ for $x \in D \setminus C$; and 3) $L_f V_C(x)$ satisfies the following inequality for $x \in D \setminus C$:

$$L_f V_C(x) = -L_f h(x) \leq \alpha \circ h(x) = \alpha(-V_C(x)) < 0,$$

where α is the locally Lipschitz extended class K function introduced in Definition 2. It thus follows from these three properties, from the fact that V_C is continuous on its domain and continuously differentiable at every point $x \in D \setminus C$, and from Theorem 2.8 in [12] that the set C is asymptotically stable whenever (1) is forward complete or the set C is compact. The preceding discussion is summarized in the following result.

Proposition 1. Let $h : D \to \mathbb{R}$ be a continuously differentiable function defined on an open set $D \subseteq \mathbb{R}^n$. If h is a ZBF for the dynamical system (1), then the set C defined by h is asymptotically stable. Moreover, the function V_C defined in (7) is a Lyapunov function.

The relationships between asymptotic stability and different robustness properties are well documented in the literature. For the reader’s benefit, the following proposition paraphrases several existing results using the notation of this paper.

Proposition 2. Under the assumptions of Proposition 1, the following statements hold:

- There exist $\varepsilon \in \mathbb{R}_0^+$ and class K function $\sigma : [0, \varepsilon] \to \mathbb{R}_0^+$ such that for any continuous function $g_1 : \mathbb{R}^n \to \mathbb{R}^n$ satisfying $\|g_1(x)\| \leq \sigma(\|x\|_C)$ for $x \in D \setminus \text{Int}(C)$, the set C is still asymptotically stable for the system $\dot{x} = f(x) + g_1(x)$ describing the effect of a disturbance modeled by g_1 on system (1).

- There exist a constant $k \in \mathbb{R}^+$ and class K function γ such that the set $C_{\gamma(\|g_2\|_{\infty})} \subseteq D$ is locally asymptotically stable for the system $\dot{x} = f(x) + g_2(t)$ describing the effect of a disturbance modeled by g_2, and satisfying $\|g_2\|_{\infty} \leq k$, on system (1).

\(^1\)While Theorem 2.8 requires the function V to be smooth, V can always be smoothed as shown in Proposition 4.2 in [12].
The first result in Proposition 2 corresponds to Theorem 2.8 in [13]. A disturbance satisfying the inequality \(\|g_1(x)\| \leq \sigma(\|x\|_C) \) is called a vanishing perturbation since its magnitude decreases as the state \(x \) approaches the set \(C \) and it vanishes on the boundary of \(C \). For this type of perturbation, the set \(C \) remains invariant. Moreover, even if a disturbance pushes the state into \(D \setminus C \), the set \(C \) is asymptotically reached.

The second result in Proposition 2 corresponds to the observation that the system \(\dot{x} = f(x) + u \) is locally input-to-state stable when \(u \) is seen as a disturbance input. In this case, the disturbance \(u(t) = g_2(t) \) is called a non-vanishing perturbation and the only assumption is that it is sufficiently small, in the sense that \(\|g_2\|_{\infty} \leq k \). Note that the “size” of the new asymptotically stable set \(C_{\gamma(\|g_2\|_{\infty})} \), as measured by \(\gamma(\|g_2\|_{\infty}) \), is an increasing function of the disturbance bound \(\|g_2\|_{\infty} \). Similarly to vanishing perturbations, if a disturbance pushes the state into \(D \setminus C_{\gamma(\|g_2\|_{\infty})} \), the set \(C_{\gamma(\|g_2\|_{\infty})} \) is asymptotically reached.

2.3 Zeroing Control Barrier Functions

Consider an affine control system of the form
\[
\dot{x} = f(x) + g(x)u,
\]
with \(f \) and \(g \) locally Lipschitz continuous, \(x \in \mathbb{R}^n \) and \(u \in U \subset \mathbb{R}^m \).

Definition 3. Given a set \(C \subset \mathbb{R}^n \) defined by \((2) - (4) \) for a continuously differentiable function \(h: \mathbb{R}^n \rightarrow \mathbb{R} \), the function \(h \) is called a zeroing control barrier function (ZCBF) defined on set \(D \) with \(C \subseteq D \subset \mathbb{R}^n \), if there exists an extended class \(K \) function \(\alpha \) such that
\[
\sup_{u \in U} [L_fh(x) + L_g h(x)u + \alpha(h(x))] \geq 0, \quad \forall x \in D.
\]
(9)

The ZCBF \(h \) is said to be locally Lipschitz continuous if \(\alpha \) and the derivative of \(h \) are both locally Lipschitz continuous.

If \(U = \mathbb{R}^m \) and \(L_g h(x) \neq 0 \) for \(x \in D \), then the function \(h \) is always a ZCBF.

Given a ZCBF \(h \), define the set for all \(x \in D \)
\[
K_{zcbf}(x) = \{ u \in U : L_fh(x) + L_g h(x)u + \alpha(h(x)) \geq 0 \}.
\]

Similar to Corollary 1 in [7], the following result that guarantees the forward invariance of \(C \) can be given.

Corollary 1. Given a set \(C \subset \mathbb{R}^n \) defined by \((2) - (4) \) for a continuously differentiable function \(h \), if \(h \) is a ZCBF on \(D \), then any Lipschitz continuous controller \(u: D \rightarrow U \) such that \(u(x) \in K_{zcbf}(x) \) will render the set \(C \) forward invariant.

Inspired by the pointwise minimum-norm controller in [14] for rendering a control Lyapunov function negative definite, consider a control input of minimum norm that meets the control barrier function inequality in (9). When the norm arises from an inner product, the resulting controller is the solution of a quadratic program (QP). The QP perspective is especially interesting because it allows the unification of performance and safety ([7]). Specifically, the inequality for a control Lyapunov function (CLF) can be added as an additional
soft constraint via a relaxation parameter, while the control barrier function inequality is maintained as a hard constraint for guaranteed safety. The question arises, however, is such a feedback law locally Lipschitz continuous? Conditions that ensures local Lipschitz continuity will be discussed in the next section.

3 Lipschitz Continuity of a Quadratic Program for Safety and Performance

The main result of this section provides sufficient conditions for a QP-based feedback controller to be locally Lipschitz continuous, as required in Corollary 1 of [7] and Corollary 1 in Subsection 2.3. It will be assumed throughout this section that $U = \mathbb{R}^m$.

3.1 Quadratic Program Only With the Control Barrier Constraint

For an affine control system (8) and a set $C \subset \mathbb{R}^n$ defined by (2)-(4), consider the set of controllers $u(x) \in K_{zcbf}(x)$ meeting the control barrier function condition in (9). The controller that pointwise minimizes the Euclidean norm can be found by solving the following parameterized quadratic program

$$P_1(x) : \forall x \in D,$$

$$u^*(x) = \arg\min_{u \in \mathbb{R}^m} u^\top u,$$

$$\text{s.t.} \quad L_g h(x) u + L_f h(x) + \alpha(h(x)) \geq 0, \quad (10)$$

where $u \in \mathbb{R}^m$ is the control input and constraint (10) is the ZCBF condition shown in (9).

The following result establishes the key condition for $u^*(x)$ to be locally Lipschitz continuous: the control barrier function should be relative degree one uniformly on D in the sense that $L_g h$ does not vanish on D.

Theorem 2. Assume that vector fields f and g in the control system (8) are both locally Lipschitz continuous, and that $h : D \to \mathbb{R}$ is a locally Lipschitz continuous ZCBF. Suppose furthermore that the relative degree one condition, $L_g h(x) \neq 0$ for all $x \in D$, holds. Then the solution, $u^*(x)$, of $P_1(x)$ is locally Lipschitz continuous for $x \in D$.

Proof. Because $L_g h(x) \neq 0$ for $x \in D$, the linear independent constraint qualification condition is satisfied ([15]). Hence, the KKT optimality conditions imply there exists $\mu(x) \geq 0$ such that $u^*(x)$ and $\mu(x)$ satisfy

$$\begin{align*}
 u^*(x)^\top &= \mu(x)L_g h(x), \\
 L_f h(x) + L_g h(x) u^*(x) + \alpha(h(x)) &\geq 0, \\
 \mu(x) &= 0 \text{ if } L_f h(x) + L_g h(x) u^*(x) + \alpha(h(x)) > 0.
\end{align*}$$

Because the objective is convex and the inequality constraints are affine, the KKT necessary conditions are also sufficient (pg. 244 in [9]). Hence, the closed
The element of the minimum-norm controller of Freeman and Kokotovic chooses pointwise in with the control barrier function inequality.

Suppose now that the desired performance of the system (8) can be captured respect to x then the solution of the modified QP is also locally Lipschitz continuous with H.

If the objective function of f_3 is locally Lipschitz continuous on a set I_2 such that $f_3(I_1) \subset I_2$, then the composition $f_2 \circ f_1$ is locally Lipschitz continuous on I_1.

With these facts in mind, define

$$
\omega_1(r) = \left\{ \begin{array}{ll}
0, & \text{if } r > 0, \\
r, & \text{if } r \leq 0,
\end{array} \right. \quad \omega_2(x) = L_fh(x) + \alpha(h(x)), \ x \in D,
\omega_3(x) = - \frac{L_h(x)^\top}{L_h(x)L_g(x)^\top}, \ x \in D.
$$

The following facts about Lipschitz continuous functions are recalled.

Fact 1. If f_1 and f_2 are locally Lipschitz continuous on a set I, then whenever their sum, $f_1 + f_2$, or product, f_1f_2, makes sense, they are each locally Lipschitz continuous on I. Furthermore, if f_2 is real valued, then in a neighborhood of any point $x \in I$ where $f_2(x) \neq 0$, the reciprocal $1/f_2$ is locally Lipschitz.

Fact 2. If f_1 is locally Lipschitz continuous on a set I_1 and f_2 is locally Lipschitz continuous on a set I_2 such that $f_1(I_1) \subset I_2$, then the composition $f_2 \circ f_1$ is locally Lipschitz continuous on I_1.

The proof is completed by noting that

$$
u^*(x) = \omega_1(\omega_2(x))\omega_3(x), \ x \in D.
$$

Because $\omega_1(\omega_2(x))$ is locally Lipschitz continuous with respect to $x \in D$ by Fact 2, its product with $\omega_3(x)$ is locally Lipschitz continuous by Fact 1, and thus $\nu^*(x)$ is locally Lipschitz continuous with respect to $x \in D$.

Remark 1. If the objective function of $\mathcal{P}_1(x)$ is changed to $\frac{1}{2}u^\top Hu + F^\top u$, where H is an $m \times m$ positive definite matrix and F is an $m \times 1$ column vector, then the solution of the modified QP is also locally Lipschitz continuous with respect to $x \in D$.

3.2 Quadratic Program Incorporating both Control Barrier and Lyapunov Constraints

Suppose now that the desired performance of the system [8] can be captured by a CLF V, as in [16, 17]. This yields the set of control inputs that stabilize the system [8], namely

$$
K_{cb}(x) = \{ u \in \mathbb{R}^m : L_fV(x) + L_gV(x)u + cV(x) < 0\},
$$

The minimum-norm controller of Freeman and Kokotovic chooses pointwise in x the element of $K_{cb}(x)$ that minimizes the Euclidean norm. This is now combined with the control barrier function inequality.
In particular, given a CLF V and a ZCBF h with relative degree 1 in \mathcal{D}, the two “specifications” are combined via the following parameterized quadratic program

$$\mathcal{P}_2(x) : \forall x \in \mathcal{D},$$

$$\mathbf{u}^*(x) = \arg\min_{\mathbf{u} = [u^T, \delta]^T \in \mathbb{R}^{m+1}} \mathbf{u}^T \mathbf{u}$$

$$\text{s.t.} \quad L_\theta V(x)u + L_f V(x) + cV(x) - \delta \leq 0,$$

$$L_\theta h(x)u + L_f h(x) + \alpha(h(x)) \geq 0,$$

where c is a positive constant, $u \in \mathbb{R}^m$ is the control input, δ is a relaxation parameter\footnote{A weight is traditionally used on the relaxation parameter. This is taken care of after the proof of the main result.}, constraint (14) is the ZCBF condition and constraint (13) is the CLF condition.

Remark 2. The QP $\mathcal{P}_2(x)$ is always feasible, because $L_\theta h \neq 0$ ensures that there exists u such that (14) holds, which implies that the safety guarantee can always be satisfied, while the relaxation parameter δ ensures that (13) can always be satisfied. Due to the relaxation parameter, the performance objective, such as asymptotic stabilization to an equilibrium point, may not necessarily be achieved. When the control objective and the safety guarantee are not conflicting—and a weight is appropriately added to the objective function—the solution will result in $\delta \approx 0$. Indeed, if the objective function is $u^T u + k^2 \delta^2$ with $k \neq 0$ the weight for δ, and $\mathbf{u} = (u^T, 0)^T$ is a feasible point for constraints (13) and (14), then the optimal solution $\mathbf{u}^* = (u^T, \delta^*)^T$ satisfies $u^T u^* + k^2 \delta^{*2} \leq \hat{u}^T \hat{u}$, which implies that $\delta^{*2} \leq \hat{u}^T \hat{u} / k^2$. Therefore, δ^* can be made arbitrarily small if sufficiently large weight k is chosen.

The following theorem is the main result of this subsection.

Theorem 3. Let V be a CLF for the control system \footnote{The vector fields f and g in the control system \cite{8} are both locally Lipschitz continuous and that $h: \mathcal{D} \to \mathbb{R}$ is a locally Lipschitz continuous ZCBF. Suppose furthermore that the relative degree one condition, $L_\theta h(x) \neq 0$ for all $x \in \mathcal{D}$, holds. Then the solution, $\mathbf{u}^*(x)$, of $\mathcal{P}_2(x)$ is locally Lipschitz continuous for $x \in \mathcal{D}$.} with the derivative of V locally Lipschitz continuous. Assume that the vector fields f and g in the control system \cite{8} are both locally Lipschitz continuous and that $h: \mathcal{D} \to \mathbb{R}$ is a locally Lipschitz continuous ZCBF. Suppose furthermore that the relative degree one condition, $L_\theta h(x) \neq 0$ for all $x \in \mathcal{D}$, holds. Then the solution, $\mathbf{u}^*(x)$, of $\mathcal{P}_2(x)$ is locally Lipschitz continuous for $x \in \mathcal{D}$.

Proof. The proof is based on \cite{17}(Chapter 3), which as a special case includes minimization of a quadratic cost function subject to affine inequality constraints. Define

$$y_1(x) = [L_\theta V(x), -1]^T, \quad p_1(x) = -L_f V(x) - cV(x),$$

$$y_2(x) = [L_\theta h(x), 0]^T, \quad p_2(x) = -L_f h(x) + \alpha(h(x)),$$

and note that for all $x \in \mathcal{D}$, $y_1(x)$ and $y_2(x)$ are linearly independent in \mathbb{R}^{m+1}.

The optimization problem $\mathcal{P}_2(x)$ is then equivalent to

$$\mathbf{u}^*(x) = \arg\min_{\mathbf{u} = [u^T, \delta]^T \in \mathbb{R}^{m+1}} \mathbf{u}^T \mathbf{u}$$

$$\text{s.t.} \quad \langle y_1(x), \mathbf{u} \rangle \leq p_1(x),$$

$$\langle y_2(x), \mathbf{u} \rangle \geq p_2(x),$$

$$\mathbf{u} = \mathbf{u}^*$$

$$\delta = \delta^*$$

where $\mathbf{u} = (u^T, \delta)^T$ is an optimal solution to the QP $\mathcal{P}_2(x)$.
\(\langle y_2(x), u \rangle \leq p_2(x) \).

From \cite{17}(Chapter 3), the solution to \cite{15} is computed as follows. Let
\(G(x) = [G_{ij}(x)] = [(y_i(x), y_j(x))], \ i, j = 1, 2 \) be the Gram matrix. Due to
the linear independence of \(\{y_1(x), y_2(x)\} \), \(G(x) \) is positive definite. The unique
solution to \cite{15} is
\[
\mathbf{u}^*(x) = \lambda_1(x)y_1(x) + \lambda_2(x)y_2(x),
\]
where \(\lambda(x) = [\lambda_1(x), \lambda_2(x)]^\top \) is the unique solution to
\[
G(x)\lambda(x) \leq p(x),
\]
\[
\lambda(x) \leq 0,
\]
\[
[G(x)\lambda(x)]_i < p_i(x) \Rightarrow \lambda_i(x) = 0,
\]
where \([\cdot]\) denotes the \(i \)-th row of the quantity in brackets, \(p(x) = [p_1(x), p_2(x)]^\top \),
and the inequalities hold componentwise. Because \(G(x) \) is \(2 \times 2 \), a closed form
solution can be given. Define the Lipschitz continuous function
\[
\omega(r) = \begin{cases} 0, & \text{if } r > 0, \\ r, & \text{if } r \leq 0. \end{cases} \quad r \in \mathbb{R}.
\]
For \(x \in D \), \(\lambda_1, \lambda_2 \) can be expressed in closed form as
\textbf{If:} \(G_{21}(x)\omega(p_2(x)) - G_{22}(x)p_1(x) < 0 \),
\[
\begin{bmatrix} \lambda_1(x) \\ \lambda_2(x) \end{bmatrix} = \begin{bmatrix} 0 \\ \omega(p_2(x)) \end{bmatrix},
\]
\textbf{Else if:} \(G_{12}(x)\omega(p_1(x)) - G_{11}(x)p_2(x) < 0 \),
\[
\begin{bmatrix} \lambda_1(x) \\ \lambda_2(x) \end{bmatrix} = \begin{bmatrix} \omega(p_1(x)) \\ 0 \end{bmatrix},
\]
\textbf{Otherwise:}
\[
\begin{bmatrix} \lambda_1(x) \\ \lambda_2(x) \end{bmatrix} = \begin{bmatrix} \omega(G_{21}(x)p_1(x) - G_{22}(x)p_2(x)) \\ \omega(G_{11}(x)p_2(x) - G_{12}(x)p_1(x)) \end{bmatrix},
\]
Because the Gram matrix is positive definite, for all \(x \in D \), \(G_{11}(x)G_{22}(x) - G_{12}(x)G_{21}(x) > 0 \). Using standard properties for the composition and product
of locally Lipschitz continuous functions, each of the expressions in \cite{15} - \cite{20}
is locally Lipschitz continuous on \(D \). Hence, the functions \(\lambda_1(x) \) and \(\lambda_2(x) \) are
locally Lipschitz on each domain of definition and have well defined limits on
the boundaries of their domains of definition relative to \(D \). If these limits agree
at any point \(x \) that is common to more than one boundary, then \(\lambda_1(x) \) and
\(\lambda_2(x) \) are locally Lipschitz continuous on \(D \). However, the limits are solutions to
\cite{17}, and solutions to \cite{17} are unique \cite{17}. Hence the limits agree at common
points of their boundary relative to \(D \) and the proof is complete. \(\square \)

\textbf{Remark 3.} If the objective function of \(P_2(x) \) is changed to \(\frac{1}{2} u^\top H u + F^\top u \) with
\(H \) an \((m+1) \times (m+1) \) positive definite matrix and \(F \) an \((m+1) \times 1 \) a column
vector, then the modified QP is also locally Lipschitz continuous with respect to
\(x \in D \).

As an example, the only non-zero solutions of \cite{17} occur when \(p_2(x) < 0 \), in which case,
\(G_{21}(x)p_2(x) - G_{22}(x)p_1(x) = 0 \), and therefore \cite{20} reduces to \cite{15}. The other cases are
similar.
4 Example

In this section, the theoretical results of the paper are illustrated on adaptive cruise control (ACC). The lead and following vehicles are modeled as point-masses moving on a straight road with uncertain slope or grade [13, 19]. The following vehicle is equipped with ACC, while the lead vehicle and the road act as disturbances to the following vehicle’s performance objective of cruising at a given constant speed. The safety constraint is to maintain a safe following distance as specified by a time headway.

Let \(v_l \) and \(v_f \) be the velocity (in m/s) of the lead car and the following car, respectively, and \(D \) be the distance (in m) between the two vehicles. Let \(x = (v_l, v_f, D) \) be the state of the system, whose dynamics can be described as

\[
\begin{bmatrix}
\dot{v}_l \\
\dot{v}_f \\
\dot{D}
\end{bmatrix} =
\begin{bmatrix}
a_l & 0 & 0 \\
-F_r/m & g \Delta \theta & 0 \\
v_l - v_f & 0 & 0
\end{bmatrix}
\begin{bmatrix}
u_f \\
\Delta f(x) \\
\hat{g}(x)
\end{bmatrix}
+ \begin{bmatrix}
0 \\
1/m \\
0
\end{bmatrix} u,
\]

(21)

where \(u \) and \(m \) are the control input (in Newtons) and the mass (in kg) of the following car, respectively, \(g \) is the gravitational constant (in \(m^2/s^2 \)), \(a_l \) is the acceleration (in \(m^2/s^2 \)) of the lead car, \(\Delta \theta \) is a perturbation to \(\dot{v}_f \) (reflecting unmodeled road grade or aerodynamic force), and \(F_r = f_0 + f_1 v_f + f_2 v_f^2 \) is the aerodynamic drag term (in Newtons) with constants \(f_0, f_1 \) and \(f_2 \) determined empirically. The values of \(m, f_0, f_1 \), and \(f_2 \) are the same as those in [7].

Two constraints are imposed on the following car. The hard constraint requires the following car to keep a safe distance from the lead car, which can be expressed as \(D/v_f \geq \tau_{des} \) with \(\tau_{des} \) the desired time headway. Define the function \(h = D - \tau_{des} v_f \), by which the hard constraint can be expressed as \(h \geq 0 \) and the set \(C \) can be defined by (2)-(4). The soft constraint requires that when adequate headway is assured, the following car achieves a desired speed \(v_d \), which can be expressed as \(v_f - v_d \to 0 \), leading to the candidate CLF, \(V = (v_f - v_d)^2 \).

The controller is designed on the basis of the nominal model \(\dot{x} = f(x) + \hat{g}(x)u \) corresponding to \(\Delta f(x) = 0 \). The hard constraint is encoded by the ZCBF condition (9) and the soft constraint by the CLF condition (12). The headway is selected as \(\tau_{des} = 1.8 \) following the “half the speedometer rule” [20]. The feedback controller \(u(x) \) can then be obtained by the following QP

\[
u^*(x) = \arg\min_{u \in [u, d]^2} \frac{1}{2} u^T H u + F^T u
\]

s.t. \(A_{clf} u \leq b_{clf} \), \(A_{zcbf} u \leq b_{zcbf} \),

where

\[
H = 2 \begin{bmatrix}
1/m^2 & 0 \\
0 & p_{sc}
\end{bmatrix},
F = -2 \begin{bmatrix}
F_r/m^2 \\
0
\end{bmatrix},
\]

as given in [7] with \(p_{sc} \) the weight for \(\delta \),

\[
A_{clf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{zcbf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{clf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{zcbf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{clf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{zcbf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{clf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{zcbf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{clf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]

\[
A_{zcbf} = \begin{bmatrix}
2(v_f - v_d)/m, -1
\end{bmatrix},
\]
\[b_{\text{clf}} = \frac{2(v_f - v_d)}{m} F_r - (v_f - v_d)^2, \]

and

\[A_{\text{clf}} = \begin{bmatrix} -\frac{1.8}{m} & 0 \\ \frac{1.8 F_r}{m} - (v_l - v_f) + \alpha(h(x)) \end{bmatrix}, \]

where the corresponding extended class \(K \) function \(\alpha \) is simply chosen as \(\alpha(h) = \kappa h \) for some constant \(\kappa > 0 \). For the perturbed system (21), the same input \(u \) ensures

\[L_f + \dot{\theta} V_C \leq -\kappa V_C, \]

where \(V_C \) defined in (7) equals to \(1.8 v_f - D \) for points outside \(C \) and equals to 0 for points inside \(C \). In the absence of perturbations, the input \(u \) arising from solutions of the QP ensures

\[L_f + \dot{\theta} V_C \leq -\kappa V_C, \]

Thus, for any \(x \in \mathbb{R}^3 \), \(V_C(x) \) is asymptotically stable.

Figure 1 shows the time evolution of \(v_l(t) \) and \(v_f(t) \), the evolution of the specification \(h(x(t)) \), the change of the road slope when \(\kappa = 5 \), the perturbation \(\Delta \theta(t) = 0.1 \cos(2\pi t/20) \), and the desired speed \(v_d = 22 \). The initial state is \(v_l(0) = 20, \ v_f(0) = 18, \) and \(D(0) = 80 \). To simplify the discussion we denote \(\gamma (\|\Delta \theta\|_\infty) \) by \(\gamma_{\text{max}} \) which is \(\gamma_{\text{max}} = 0.3532 \) for \(\|\Delta \theta\|_\infty = 0.1 \), i.e., the maximum headway distance error is 0.3532m. The top plot of Fig. 1 shows that the following car first accelerates to approximately its desired speed \(v_d \). The vehicle then decelerates to and maintains the same final speed as the lead car in order to maintain a safe headway. Note that due to the unmeasured perturbation in road grade, the achieved tracking speeds are in a neighborhood of \(v_d \) and the lead car’s final speed. The middle plot shows that the values of \(h \) are greater than \(-0.3525 \), which implies that \(x \) is within the set \(C_{\text{max}} \). The bottom plot shows the vertical rise of the road with respect to the horizontal run of the car, assuming the perturbation term is exclusively interpreted as the change of road slope.

Figure 2 shows the quantities \(-\min h \), the amount the safety condition is violated in meters, \(\gamma_{\text{max}} + \min h \), the tightness of the error bound in meters, and \(u/mg \), the braking effort in fractions of \(g \), as \(\kappa \) ranges from 1 to 10 (rate of
Figure 1: Simulation results when choosing $\kappa = 5$, $\|\Delta \theta\|_{\infty} = 0.1$ and initial states $v_l(0) = 20$, $v_f(0) = 18$, $D(0) = 80$. (top) speed of the two cars; (middle) evolution of $h = D - 1.8 v_f$; (bottom) the vertical rise of the road with respect to the horizontal run of the car.

Note that larger κ means a stricter barrier function condition, while larger $\|\Delta \theta\|_{\infty}$ means more uncertainty in the dynamics. The evolution of the road grade perturbation is given by $\Delta \theta(t) = 0.1 K \cos(2\pi t/20)$ for a constant $K > 0$, which implies $\|\Delta \theta\|_{\infty} = 0.1 K$. The top plot shows that $-\min h$ increases as κ decreases or $\|\Delta \theta\|_{\infty}$ increases, which is intuitive because with a weaker barrier function condition or larger perturbations, the specification $h > 0$ is more likely to be violated. The middle plot shows that the discrepancies between γ_{\max} and $\min h$ are positive, which implies that x is always within the set $C_{\gamma_{\max}}$ as

$$
\begin{align*}
\min h &:= \min_{0 \leq t \leq 60} h(x(t)) \\
\min u &:= \min_{0 \leq t \leq 60} u(t).
\end{align*}
$$

convergence back to safe set and $\|\Delta \theta\|_{\infty}$ ranges from 10% to 40% (road grade perturbation), where

$$
\begin{align*}
\min h &:= \min_{0 \leq t \leq 60} h(x(t)) \\
\min u &:= \min_{0 \leq t \leq 60} u(t).
\end{align*}
$$

Note that larger κ means a stricter barrier function condition, while larger $\|\Delta \theta\|_{\infty}$ means more uncertainty in the dynamics. The evolution of the road grade perturbation is given by $\Delta \theta(t) = 0.1 K \cos(2\pi t/20)$ for a constant $K > 0$, which implies $\|\Delta \theta\|_{\infty} = 0.1 K$. The top plot shows that $-\min h$ increases as κ decreases or $\|\Delta \theta\|_{\infty}$ increases, which is intuitive because with a weaker barrier function condition or larger perturbations, the specification $h > 0$ is more likely to be violated. The middle plot shows that the discrepancies between γ_{\max} and $\min h$ are positive, which implies that x is always within the set $C_{\gamma_{\max}}$ as
Figure 2: Tradeoff analysis in terms of road grade uncertainty and speed of convergence to the safe set. (top) $-\min h$ increases as κ decreases and $\|\Delta \theta\|_{\infty}$ increases; (middle) positiveness of the discrepancies of γ_{max} and $\min h$ implies x is within the set $C_{\gamma_{\text{max}}}$; (bottom) the magnitude of the braking force u increases as $\|\Delta \theta\|_{\infty}$ and κ increases. According to the Guinness Book of World Records, the steepest street in the world is Baldwin Street in New Zealand, with a grade of 38%.

Proposition 1 guarantees. The bottom plot shows that the magnitude of the braking force u increases as $\|\Delta \theta\|_{\infty}$ or κ increases.

5 Conclusions

This paper defined (control) zeroing barrier functions for a given set and investigated their robustness properties under model perturbations. In particular, when the barrier function was designed to be negative on the complement of the
closure of a safe set, and its derivative along solutions of the model was positive, a Lyapunov analysis showed that the set was automatically locally asymptotically stable. This led to various Input-to-State Stability (ISS) results in the presence of model perturbations. For this result to hold, it was important to consider barrier functions that vanish on the set boundary (i.e., zeroing barrier functions) rather than barrier functions that tend to infinity on the set boundary (i.e. reciprocal barrier functions). The reason is that “there are two sides of zero” and only “one side of infinity.” More formally speaking, if a perturbation (or model error) makes it impossible to satisfy the invariance condition for a reciprocal barrier function, then the solution of the model must cease to exist because the control input must become unbounded as well; see Sect. III.B of [7], eqn. (CBF). On the other hand, if a perturbation (or model error) makes it impossible to satisfy the invariance condition for a zeroing barrier function, then the solution can cross the set boundary without the control input becoming unbounded.

A second result presented conditions that guarantee local Lipschitz continuity of the solution of a Quadratic Program (QP) that mediates safety (represented as a control barrier function (CBF)) and a control objective (represented as a control Lyapunov function (CLF)). A uniform relative degree condition on the CBF and relaxation of the inequality required for a CLF were shown to provide local Lipschitz continuity of the resulting feedback control law, and hence local existence and uniqueness of solutions of the associated closed-loop system. This result is applicable to both types of barrier functions.

Future studies will consider control zeroing barrier functions with constraints on the inputs, as in [7]. There are many interesting open questions on existence, computation, and composition, as well as applications to systems of greater complexity than ACC.

References

[1] S. Prajna and A. Rantzer, “Convex programs for temporal verification of nonlinear dynamical systems,” in *SIAM Journal of Control and Optimization*, vol. 46, no. 3, 2007, pp. 999–1021.

[2] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic safety verification using barrier certificates,” *Automatic Control, IEEE Transactions on*, vol. 52, no. 8, pp. 1415–1428, 2007.

[3] H. Kong, F. He, X. Song, W. Hung, and M. Gu, “Exponential-condition-based barrier certificate generation for safety verification of hybrid systems,” in *CAV13, volume 8044 of LNCS*. Springer, 2013, pp. 242–257.

[4] L. Dai, T. Gan, B. Xia, and N. Zhan, “Barrier certificates revisited,” 2013, (preprint).

[5] P. Wieland and F. Allgöwer, “Constructive safety using control barrier functions,” in *Proceedings of the 7th IFAC Symposium on Nonlinear Control System*, 2007.
[6] M. Z. Romdlony and B. Jayawardhana, “Uniting control Lyapunov and control barrier functions,” in IEEE Conference on Decision and Control, 2014, pp. 2293–2298.

[7] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic programs with application to adaptive cruise control,” in IEEE Conference on Decision and Control, 2014.

[8] E. Sontag, “A ’universal’ contraction of Artstein’s theorem on nonlinear stabilization,” Systems & Control Letters, vol. 13, pp. 117–123, 1989.

[9] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[10] H. K. Khalil, Nonlinear Systems, 3rd ed. Prentice Hall, 2002.

[11] F. Blanchini and S. Miani, Set Theoretic Methods In Control. Birkhäuser Basel, 2008.

[12] Y. Lin, E. Sontag, and Y. Wang, “A smooth converse lyapunov theorem for robust stability,” SIAM Journal on Control and Optimization, vol. 34, no. 1, pp. 124–160, 1996.

[13] A. Bacciotti and L. Rosier, Liapunov functions and stability in control theory. Springer, 2005.

[14] R. A. Freeman and P. V. Kokotovic, “Inverse optimality in robust stabilization,” SIAM Journal on Control and Optimization, vol. 34, no. 4, pp. 1365–1391, 1996.

[15] D. P. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[16] A. D. Ames, K. Galloway, J. W. Grizzle, and K. Sreenath, “Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics,” IEEE Trans. Automatic Control, vol. 59, no. 4, pp. 876–891, 2014.

[17] D. G. Luenberger, Optimization by Vector Space Methods. Wiley, 1997.

[18] P. A. Ioannou and C.-C. C. Chien, “Autonomous intelligent cruise control,” Vehicular Technology, IEEE Transactions on, vol. 42, no. 4, pp. 657–672, 1993.

[19] K. J. Aström and R. M. Murray, Feedback systems: an introduction for scientists and engineers. Princeton university press, 2010.

[20] K. Vogel, “A comparison of headway and time to collision as safety indicators,” Accident Analysis & Prevention, vol. 35, no. 3, pp. 427 – 433, 2003.