ABSTRACT

In this paper we argue in favor of an integration between statistically and syntactically based parsing, where syntax is inserted in terms of shallow parsing with elementary trees. None of the statistically based analyses produce an accuracy level comparable to the one obtained by means of linguistic rules [1]. Of course their data are strictly referred to English, with the exception of [2, 3, 4]. As to Italian, purely statistically based approaches are inefficient basically due to great sparsity of tag distribution - 50% or less of unambiguous tags when punctuation is subtracted from the total count as reported by [5]. We shall discuss our general statistical and syntactic framework and then we shall report on an experiment with four different setups: the first two approaches are bottom-up driven, i.e. from local tag combinations: A. Statistics only tagging; B. Statistics plus syntactic biases; C. Syntactic-driven disambiguation with conditional probabilities computed on syntactic constituents. The second two approaches are top-down driven, i.e. driven from syntactic structural cues in terms of elementary trees: A. Statistics only tag disambiguation; B. Statistics plus syntactic biases; C. Syntactic-driven disambiguation with no statistics; D. Syntactic-driven disambiguation with conditional probabilities computed on syntactic constituents. We assume, together with [1] that POS tagging is essentially a syntactically-based phenomenon and that by cleverly coupling stochastic and linguistic processing one should be able to remedy some if not all of the drawbacks usually associated with the two approaches, when used in isolation. However, as will be shown in detail in the following section, rather than using FSA we use Elementary Trees organized in an RTN both for training and for parsing. As to the statistical part, we don't use HMMs but only conditional probabilities on the basis of trigram information as discussed below. Syntactic driven disambiguation is accomplished by using an RTN made up of 1700 arcs and 22 nets, which we use in a non-recursive way, as explained below. Data for the construction of the RTN were derived from the manual annotation of 60,000 token corpus suite which is then used as test set. Frequency of occurrence associated to each rewrite rule is used as organizing criteria in the ordering of the arcs contained in each node of each net. However, in the experiment, we let conditional probabilities at the level of major constituent, or net, do the choice for the best path.

1. INTRODUCTION

We assume, together with [1] that POS tagging is essentially a syntactically-based phenomenon and that by cleverly coupling stochastic and linguistic processing one should be able to remedy some if not all of the drawbacks usually associated with the two approaches, when used in isolation. However, as will be shown in detail in the following section, rather than using FSA we use Elementary Trees organized in an RTN both for training and for parsing. As to the statistical part, we don't use HMMs but only conditional probabilities on the basis of trigram information as discussed below.

Syntactic driven disambiguation is accomplished by using an RTN made up of 1700 arcs and 22 nets, which we use in a non-recursive way, as explained below. Data for the construction of the RTN were derived from the manual annotation of 60,000 token corpus suite which is then used as test set. Frequency of occurrence associated to each rewrite rule is used as organizing criteria in the ordering of the arcs contained in each node of each net. However, in the experiment, we let conditional probabilities at the level of major constituent, or net, do the choice for the best path.

Rather than flattening the Phrase Structure Grammar as [8] suggest in their shift-reduce algorithm, we only check for reentrancy in nonterminal symbols. So, even though the formal structure of RTN is recursive, the disambiguating algorithm does not use recursive calls and all computation is flattened down to one level, that of tags corresponding to preterminals in the RTN. The syntactic-statistical disambiguator (hence SSD) can be defined as a slightly augmented finite state transducer which works at a single level of computation and has access to higher level information when needed. For the details of the implementations the reader should look at [10].

2. STATISTICAL VS. SYNTACTIC DISAMBIGUATION

The SSD is the final module of our syntactic tagger of Italian. Input to the SSD is the complete and redundant output of the morphological analyzer and lemmatizer, IMMORTELLE [10]. IMMORTELLE finds all possible and legal tags for the word/token under analysis on the basis of morphological generation from a root dictionary of Italian made up of 80,000 entries and a dictionary of invariant words - function words, polywords, names and surnames, abbreviations etc. - of over 12,000 entries.

As commented by [6], the application of stochastic techniques in automatic part-of-speech tagging is particularly appealing given the cases with which the necessary statistics can be automatically acquired and the fact that very little handcrafted knowledge need to be built into the system (bid., 152). However both probabilistic models and Brill's algorithm need a large tagged corpus where to derive most likely tagging information. It is a well known fact that in lack of sufficient training data, sparsity in the probabilistic matrix will cause many bigrams or trigrams to be insufficiently characterized and prone to generate wrong hypotheses. This in turn will introduce errors in the tagging prediction procedure. Italian is a language which has not yet made available to the scientific community such large corpus. In lack of such an important basic resource, there are two possibilities:

1. manually building it by yourself;
Probabilistic Transition Table for local syntactic transition network where the learning phase is initiated. We use a Viterbi-like algorithm to find and select the best candidates in any given context, given the trigram matrix information. However, since we only computed trigram for a comparable small quantity of training data - we would need 700K trigrams for our 90 tags, but we only use 30K! - we often find no data available. In a similar way to the reductionist statistical approach proposed by [2], we induce the best tag from the set of available tags in the context of an unambiguous tag by recursively calling all contextually allowable combinations, from where we select the ones corresponding to the current ambiguity class. We then compute trigram conditional probabilities, according to the formula suggested in [2]. We remove low-probability candidate tags by ignoring the tail of the Viterbi output list, on the basis of a fixed threshold. In case no data are available, rather than computing zero probability we let the current procedure fail - the algorithm is implemented in Prolog - and use information coming from Elementary Trees (ETs) or Networks which can be superimposed on each tag in a given context: the most adequate ETs will be chosen in the top-down syntactically driven disambiguating procedure. The final aim of the disambiguation is to produce information reusable by the following shallow parser, which will then be in charge of combining ETs previously assigned by the SSD.

3. SYNTACTIC CONSTITUENCY ANNOTATION

The first problem to be solved when starting work on a corpus in order to produce a syntactic structure annotation, is the choice of representation, or the syntactic annotation scheme. As with tagging, the scheme must be consistent, it could be used as gold standard for parser testing or as a basis for the induction of stochastic grammars and lexical representations. The main sources of information in the field of syntactic annotation scheme are related to the Penn Treebank (hence PT) [11], which is remarkable as to extension of the coverage and documentation of linguistic phenomena. The PT uses a generative constituency which is related to chomskian syntax of the 60s/70s which we do not share: as a result, much of the bracketing is not comparable. In addition, syntactic constituency has been enriched with functional labels and other non-standard additional labels which increased the overall number of constituents but reduced its perspicuity. As a result, PT uses 22 symbols for main constituent and 32 more for functional annotation. We also use 22 symbols for syntactic constituency but they are different from the PT's ones.

The inventory we use follows the basic intuitions of the XBAR syntax, while having as its main goal that to serve as an interface as simple as possible to the following levels of representations: the functional, LFG-style, and the semantic ones. In particular, whereas PT uses Chomsky-adjunction and VP, we opted for a separated IBAR constituent with all tensed verbal constituents and its adjoining minor constituents, like negation, clitics and certain adverbials. We then qualify all verbal complements according to their lexical subcategorization frame. Seen that they only have
one layer of syntactic representation, whereas we allow for
two, they include all semantic information at constituent
level. In particular, they introduce all possible empty
categories in the syntactic constituents with coindexation. In
case of discontinuous or non canonical order of constituents,
they use special constituent names, like SINV (Inverted Sentence), to allow for the subject NP to be automatically recovered. We introduce no empty category of syntactic
level, while leaving their computation for the functional and
semantic level. As an example we report the bracketing for
"John's decision to leave":

\[(NP (NP John's)) \]

\[(VP to (VP leave))) \]

compared to the Italian, "la decisione di Gino di partire"
SN-[la-art, decisione-n],
SPD-[di-pd, SN-[Gino-nb]]
SV2-[di-pd, partire-via]]

where we can see that the level of embedding in PT is 4
brackets, whereas it is 2 brackets in our representation. We
report here below the list of constituents in our
representation for Italian corpora.

**TABLE 1. List of Syntactic Constituents and their
meaning**

F	sentence, starting with subject SN or SV2; or in case subject is missing starting with IBAR
SN	noun phrase, including its complements and/or adjuncts
SA	adjectival phrase, including its complements and/or adjuncts
SP	prepositional phrase
SPD	prepositional phrase DI/"di"
SPDAD	prepositional phrase DA/"da,""from"
SAVV	adverbial phrase, including its complements and/or adjuncts
IBAR	verbal nucleus with finite tense and all adjoined elements like glides, adverbs and negation
SV2	F for infinitival clause
SV3	F for participial clause
SV5	F for pronominal clause
FAC	CP for sentential complement
FC	CP for Coordinate sentences (also ellipsed and gapped)

FS	CP for Subordinate sentence
FINT	CP for **wh** interrogative sentence **(**
FP	CP for punctuation marked parenthetical or appositional sentence
F2	CP for relative clause
CP	Genetically for dislocated or fronted, sentential adjuncts
COORD	Coordination with coordinating conjunction as head
COMPT	Transitive/Passive/Reflexive/Complement
COMPIN	Intransitive/Unaccusative Complement
COMPC	Copeutive/Predicative Complement

4. AUTOMATIC SYNTACTIC TAGGING

Being language-dependent the tagger needs to be based on an accurate analysis of corpora with an as broad as possible coverage of genre, style and other social and communicative variables. To answer these needs we built our syntactic shallow parser on the basis of manually
annotated texts for 60,000 words chosen from different corpora and satisfying the above-mentioned criteria. The
annotation was carried out twelve years ago to be used for a
text-to-speech system for Italian (DexTalk Italian version) with unlimited vocabulary.

We report here below the list of the 10 main constituents or net labels used by the annotators, which are a supersets of our current syntactic tagset which is subsumed by it. As can be easily seen, lexical subcategorization information for verbs was not included: also, no information was available as to DUTA (of/bi-from) PPs, nor a subdivision of sentences in simplex and complex with subordination. Sequences of preterminal symbols, category labels or simple POS tags may reasonably belong to three levels of constituency: in the most desirable case, they may be part of the same constituent, e.g. NP(art, quant, noun); else, they may belong
to a parent node, whose head is followed by the
Complement node, any head dependent constituent in a
dependent node, e.g. NP(adv, noun (AP(adj)); finally, it may
belong to two sibling nodes from a common higher parent
node, as for instance in the case of CP(AdvP(adv, NP),
IP(NP, VP)).

However, our tagset of elementary trees is different from the one used within the LTAG approach [12], where they are
called Supertags: in our framework, elementary trees
only belong to the syntactic constituency domain. On
the contrary, in the LTAG framework they are constituted by
both syntactic and functional constituent labels.

Table 2. Net Accessibility Preterminals and their Frequency

NET	TAG
FP	PK
F	CONG
T	COSU
A	N
SA	AVV

FREQ	NET	TAG	FREQ
25	SN	Q	189
218	SN	ORG	338
294	SN	ART	3792
353	SN	DIM	117
239	SN	N	1662
1479	SP	PART	5234

NET	TAG	FREQ	NET	TAG	FREQ
FS	CP	6160	SV	VG	147
FINT	CP	656	SV	VPP	144
FP	CP	244	SV	VSUP	518
F2	CP	363	SV2	P	173
CP	CP	388	SV2	PT	529
COMPC	CP	318	SV2	VI	217
Disambiguation proceeds as follows. Fully ambiguous cases such as the following: Tag1 = [ag, n], Tag2 = [ag, n], cannot be solved by relying on frequency of occurrence given the fact that 75% of all NP rules take the pair Noun/Adjective, and only 25% take Adjective/Noun.

We use biases for these cases. Biases take into account a list of exceptions - ambiguous cases which prefer Prepositional and only then to use local cues provided by the RTN.

At first we try to traverse the network by continuing in the network accessible from the left highest score tag, as explained below. Net traversal is worked out trying to proceed from the arc associated with that tag onto a following one as encoded in the RTN and extracted from the current tag-list. The arc in question is called from the network they belong to. The output is the associated arc, which is represented as follows:

\[
\text{arc}(\text{Net}, \text{Category}, \text{InputNode}, \text{OutputNode})
\]

In case the current tag-list is accepted by the RTN no further computation is needed: the associated network will be used for further processing.

1. In case of failure, we execute in the following procedures:
 a. The two tags belong to two separate networks which are in an inclusion relation;
 b. The two tags belong to non inclusive networks.

 Case a. is further expanded as follows:
 Tag 1 belongs to a network which includes the network to which Tag 2 belongs. Network for Tag 2 is then simply asserted as the first network that Tag 2 may be a proper starting category for.

 This information is recovered from a Network Accessibility Table Lookup (NATL) as indicated in Table 2, where all category symbols are cross-tabulated against the network they may provide access for. NATLs are computed at runtime and are encoded as sets of starting symbols for each network with a given probability.

 Match for tags is a simple membership check.

 \[
 \text{Tag1/Tag2} = \Rightarrow \text{Net1/Tag1}
 \]

Table 3. EXPERIMENTAL RESULTS

	Tot.	% Tot	Syntax Only	Syntax + Biases	Trigrams only	Trigr. + Biases	Syntax + Statistics
Culture	28,000	62%	90%	97.5%	93.5%	96.5%	98.97
Politics	7,000	10%	87%	95.5%	92.5%	94.5%	98.05
S.Admin.	10,000	100%	86.5%	93.3%	90.5%	93.3%	97.85
Total	45,000	100%					

References

1. Lecomte J. (1998), Le Categorisuror Brilliant/ILS / WinBrill-0.3, DNL/CRNRS.
2. Chouet J.P., P.Tapanainen (1995), Tagging French - combining a statistical and a constraint-based method, Proc. EACL'95, pp.149-156.
3. Delmonte R., E.Pianta (1999), Tag Disambiguation in Italian, in Proc. Treebank Workshop ATALA, Paris, pp.23-25.
4. Brill E. (1992), A Simple Rule-Based Part of Speech Tagger, in Proc. 1st Conf. ANLP, Trento, 152-155.
5. Tapanainen A. & P. Tapanainen (1995), Ambiguity resolution in a reductionistic parser, in Sixth Conference of the European Chapter of the ACL, pp. 394-403. Utrecht.
6. Perrins F., R.Wright., (1991), Finite-State Approximation of Phrase Structure Grammars, in Proc. 29th ACL, Berkeley, 246-255.
7. Delmonte R., E.Pianta (1996), "IMMORTALE - Analizzazione Morfologica, Tagger e Lemmatizzatori per l'Italiano", in Atti V Convegno 41MA, Napoli, 19-22.
8. Marcus M. et al. (1993), Building a Large Annotated Corpus of English: The Penn Treebank, Computational Linguistics, Vol.19.
9. Bangalore S. & A.K.Joshi (1998), SuperTagging: An Approach to Almost Parsing, in Computational Linguistics, 22.