Escape Probabilities for Branching Brownian Motion Among Soft Obstacles

Jean-François Le Gall · Amandine Véber

Received: 18 March 2010 / Revised: 26 October 2010 / Published online: 9 February 2011
© Springer Science+Business Media, LLC 2011

Abstract We derive asymptotics for the quenched probability that a critical branching Brownian motion killed at a small rate ε in Poissonian obstacles exits from a large domain. Results are formulated in terms of the solution to a semilinear partial differential equation with singular boundary conditions. The proofs depend on a quenched homogenization theorem for branching Brownian motion among soft obstacles.

Keywords Branching Brownian motion · Poissonian obstacles · Super-Brownian motion · Escape probability · Homogenization · Semilinear partial differential equation

Mathematics Subject Classification (2000) Primary 60K37 · 60J80 · Secondary 60J68

1 Introduction

In the present work, we are interested in the long-term behavior of branching Brownian motion killed in Poissonian obstacles. Let us start by describing a simple special case of our results. We consider a critical branching Brownian motion in \mathbb{R}^d ($d \geq 1$), where all initial particles start at the origin. We assume that particles are killed at a (small) rate $\varepsilon > 0$ within random balls of fixed radius, whose centers are distributed according to a homogeneous Poisson point process on \mathbb{R}^d. Then, how many initial particles do we need so that, with high probability, one of their descendants reaches...
distance R from the origin? Let $p_\varepsilon(R)$ be the (quenched) probability for our randomly killed branching Brownian motion starting with a single particle at 0 to visit the complement of a large ball of radius R centered at the origin. The preceding question is equivalent to determining the limiting behavior of $p_\varepsilon(R)$ when ε tends to 0 and simultaneously R tends to infinity.

The answer involves several regimes depending on the respective values of ε and R. If ε is small in comparison with $1/R^2$, the killing phenomenon does not matter and the result is the same as if there were no killing: $p_\varepsilon(R)$ behaves like a constant times $1/R^2$ (informally, the branching process must survive up to a time of order R^2 so that at least one of the particles travels a distance R, and well-known estimates for critical branching processes then lead to the correct asymptotics). On the other hand, if ε is large in comparison with $1/R^2$, then the probability $p_\varepsilon(R)$ decreases exponentially fast as a function of $R\sqrt{\varepsilon}$; see Proposition 1 below.

Our main results focus on the critical regime where εR^2 converges to a constant $a > 0$. We show that the probability $p_\varepsilon(R)$ behaves like R^{-2}, as in the case without killing, but with a multiplicative constant which depends on a and can be identified as the value at the origin of the solution of a semilinear partial differential equation with singular boundary conditions. A key tool to derive these asymptotics is a quenched homogenization theorem which shows that our branching Brownian motions among obstacles, suitably rescaled, are close to super-Brownian motion killed at a certain rate depending on a.

Let us formulate our assumptions more precisely in order to state our results. First, let us define the collection of obstacles. We denote the set of all compact subsets of \mathbb{R}^d by \mathcal{K}. This set is equipped with the usual Hausdorff metric d_H. Recall that (\mathcal{K}, d_H) is a Polish space. For every $r > 0$, \mathcal{K}_r denotes the subset of \mathcal{K} which consists of all compact sets that are contained in the closed ball of radius r centered at the origin. Let Θ be a finite measure on \mathcal{K}, and assume that Θ is supported on \mathcal{K}_{r_0} for some $r_0 > 0$. Let

$$N = \sum_{i \in I} \delta_{(x_i, K_i)}$$

be a Poisson point measure on $\mathbb{R}^d \times \mathcal{K}$ with intensity $\lambda_d \otimes \Theta$, where λ_d stands for Lebesgue measure on \mathbb{R}^d. We assume that this point measure is defined on a probability space (Ω, \mathcal{F}, P) and we denote the generic element of Ω by ω. Our set of obstacles is then defined by

$$\Gamma_\omega = \bigcup_{i \in I} (x_i + K_i), \quad (1)$$

where obviously $x_i + K_i = \{z = x_i + y : y \in K_i\}$. Note that we use the notation Γ_ω to emphasize that the set of obstacles depends on the variable ω representing the environment. Let us also define a constant κ by

$$\kappa = P(0 \in \Gamma_\omega) = 1 - \exp \left(-\int_{\mathcal{K}} \Theta(dK) \lambda_d(K) \right).$$

To avoid trivial cases, we assume that $\kappa > 0$, or equivalently, $\Theta(\lambda_d(K) > 0) > 0$. By translation invariance, we also have $P(x \in \Gamma_\omega) = \kappa$ for every $x \in \mathbb{R}^d$.

\mathbb{C} Springer