A RELAXED EVALUATION SUBGROUP

TOSHIHIRO YAMAGUCHI

Abstract. Let \(f : X \to Y \) be a pointed map between connected CW-complexes. As a generalization of the evaluation subgroup \(G_n(Y, X; f) \), we will define the relaxed evaluation subgroup \(\mathcal{G}_n(Y, X; f) \) in the homotopy group \(\pi_n(Y) \) of \(Y \), which is identified with \(\mathrm{Im} \pi_n(\tilde{ev}) \) for the evaluation map \(\tilde{ev} : \text{map}(X, Y; f) \times X \to Y \) given by \(\tilde{ev}(h, x) = h(x) \). Especially we see by using Sullivan model in rational homotopy theory for the rationalized map \(f_\mathbb{Q} \) that \(\mathcal{G}_n(Y_\mathbb{Q}, X_\mathbb{Q}; f_\mathbb{Q}) = \pi_n(Y_\mathbb{Q}) \otimes \mathbb{Q} \) if the map \(f \) induces an injection of rational homotopy groups. Also we compare it with more relaxed subgroups by several rationalized examples.

1. Introduction

Let \(f : X \to Y \) and \(g : B \to Y \) be pointed maps of connected CW complexes. Recall the definition of pairing with axes \(f \) and \(g \) \([O]\), which is given by the existence of a map \(F_{g,f} : B \times X \to Y \) in the homotopy commutative diagram:

\[
\begin{array}{ccc}
B \times X & \xrightarrow{i_B} & B \\
& i_X \searrow & \downarrow f \\
& B & \rightarrow Y,
\end{array}
\]

where \(i_B(b) = (b, \ast) \) and \(i_X(x) = (\ast, x) \). In particular, when \(B = Y = X \) and \(f = g = \text{id} \), \(X \) is an H-space of the multiplication \(F_{\text{id}, \text{id}} \). In this paper, we consider whether or not there exist a section \(s : B \to B \times X \) and a map \(F : B \times X \to Y \) such that the diagram

\[
\begin{array}{ccc}
B \times X & \xrightarrow{i_B} & B \\
& i_X \searrow & \downarrow F \\
& B & \rightarrow Y,
\end{array}
\]

homotopically commutes. Here a section means a map \(s : B \to B \times X \) which satisfies \(p_B \circ s \simeq \text{id}_B \) for the projection \(p_B : B \times X \to B \) with \(p_B(b, x) = b \).

The \(n \)th Gottlieb group \(G_n(X) \) of a space \(X \) is the subgroup of the \(n \)th homotopy group \(\pi_n(X) \) of \(X \) consisting of homotopy classes of maps \(a : S^n \to X \) such that the wedge \((a|\text{id}_X) : S^n \vee X \to X \) extends to a map \(F_a : S^n \times X \to X \) \([G]\). The \(n \)th evaluation subgroup \(G_n(Y, X; f) \) of a map \(f : X \to Y \) is the subgroup of \(\pi_n(Y) \) represented by maps \(a : S^n \to Y \) such that \((a|f) : S^n \vee X \to Y \) extends to a map...
$F_{a,f} : S^n \times X \to Y$ inducing the homotopy commutative diagram

\[
\begin{array}{c}
\xymatrix{ S^n \times X \ar[r]^{i_X} \ar[d]_{i_{S^n}} & X \ar[d]^f \ar[dl]_{F_{a,f}} & \nonumber \\
S^n \ar[r]_a & Y & \nonumber }
\end{array}
\tag{3}
\]

which is the case of $B = S^n$ in (1). The map $F_{a,f}$ in (3) is the adjoint of a map $F_{a,f}'$ in the homotopy commutative diagram

\[
\begin{array}{c}
\xymatrix{ \text{map}_f(X,Y) \ar[d]^{ev} & \nonumber \\
S^n \ar[r]^a & Y & \nonumber }
\end{array}
\tag{3}'
\]

where $F_{a,f}'(b)(x) := F_{a,f}(b, x)$ for $b \in S^n$ and $x \in X$. Here $\text{map}_f(X,Y)$ is the connected component of f in the mapping space $\text{map}(X,Y)$ from X to Y with the compact open topology and ev is the evaluation map given by $ev(h) = h(\ast)$. Then

\[
G_n(Y, X; f) = \text{Im} (\pi_n(ev) : \pi_n(\text{map}_f(X,Y)) \to \pi_n(Y))
\]

in $\pi_n(Y)$ and therefore it is called an ‘evaluation’ subgroup of a map. Notice that (3) is a special case of the homotopy commutative diagram

\[
\begin{array}{c}
\xymatrix{ S^n \times X \ar[r]^{i_X} \ar[d]_s & X \ar[d]^f \ar[dl]_F & \nonumber \\
S^n \ar[r]_a & Y & \nonumber }
\end{array}
\tag{4}
\]

in which $\eta : X \xrightarrow{i_X} S^n \times X \xrightarrow{p_X} S^n$ is a trivial fibration with a section $s : S^n \to S^n \times X$. Here we can put $s(b) = (b, \tau(b))$ for a map $\tau : S^n \to X$.

Definition A. For a map $f : X \to Y$, the nth relaxed evaluation subgroup of f is given as

\[
G_n(Y, X; f) := \{ a \in \pi_n(Y) \mid \text{there are a section } s : S^n \to S^n \times X \text{ and a map } F : S^n \times X \to Y \text{ such that } F \circ s \simeq a, f \simeq F \circ i_X \}.
\]

The map F in (4) is the adjoint of a map \tilde{F}' in the homotopy commutative diagram

\[
\begin{array}{c}
\xymatrix{ \text{map}_f(X,Y) \times X \ar[d]^{ev} & \nonumber \\
S^n \ar[r]^a & Y & \nonumber }
\end{array}
\tag{4}'
\]

where $\tilde{F}'(b) := (F'(b), \tau(b))$ with $F'(b)(x) = F(b, x)$ and $s(b) = (b, \tau(b))$ for $b \in S^n$ and $x \in X$. Here $ev : \text{map}(X,Y; f) \times X \to Y$ is the evaluation map given by $ev(h, x) = h(x)$. Thus
Claim. \(\mathcal{G}_n(Y, X; f) = \text{Im}(\pi_n(\tilde{ev}) : \pi_n(\text{map}_f(X, Y) \times X) \to \pi_n(Y)) \).

In this paper, we will estimate \(\text{Im} \pi_n(\tilde{ev}) \) in several cases according to Definition A. We note that it is a naturally generalized object of an ordinary evaluation subgroup. Indeed, for a subcomplex \(X' \) of \(X \), we can put
\[
\mathcal{G}_n(Y, X; f)(X') := \{ a \in \pi_n(Y) \mid \text{there are a section } s : S^n \to S^n \times X' \text{ and a map } F : S^n \times X \to Y \text{ such that } F \circ s \simeq a, \ f \simeq F \circ i_X \}.
\]

Then we have
\[
\mathcal{G}_n(Y, X; f) \supset \mathcal{G}_n(Y, X; f)(X') \supset \mathcal{G}_n(Y, X; f)(*) = G_n(Y, X; f)
\]
and \(\mathcal{G}_n(Y, X; f)(X') = \text{Im}(\pi_n(\tilde{ev}) : \pi_n(\text{map}_f(X, Y) \times X') \to \pi_n(Y)) \). In the following, we see several properties of a relaxed evaluation subgroup.

Lemma 1.1. For a subspace \(X \) of a space \(Y \) and a map \(g : B \to Y \) with \(\text{Im} g \subset X \), there are a section \(s : B \to B \times X \) and a map \(F : B \times X \to X \) such that the diagram

\[
\begin{array}{ccc}
B \times X & \xrightarrow{i_X} & X \\
\downarrow & & \downarrow \\
B & \xrightarrow{g} & Y
\end{array}
\]

commutes.

Indeed, put \(s(b) = (b, g(b)) \) and \(F((b, x)) = x \) for \((b, x) \in B \times X \).

In particular, in the case of \(B = S^n \) and \(X = Y^m \), the \(m \)-skelton of \(Y \), we have by cellular approximation theorem

Proposition 1.2. For \(n \leq m \), \(\mathcal{G}_n(Y, Y^m; i_{Y^m}) = \pi_n(Y) \) for \(i_{Y^m} : Y^m \subset Y \). In particular, \(\mathcal{G}_n(Y, Y; id_Y) = \pi_n(Y) \).

Of course \(\mathcal{G}_n(Y, *; *) = G_n(Y, *; *) = \pi_n(Y) \) for the constant map \(* : * \to Y \) and we know \(G_n(Y) = G_n(Y, Y; id_Y) \subset \mathcal{G}_n(Y, X; f) \) for any map \(f : X \to Y \). In contrast, \(\mathcal{G}_n(Y, X; f) \subset \mathcal{G}_n(Y, Y; id_Y) \) from Proposition 1.2. Note that \(\mathcal{G}_n(Y, X; f) \) may be zero for a map \(f : X \to Y \) even if \(\pi_n(Y) \neq 0 \) (see Example 2.0 and examples in Section 3).

Also as an evaluation subgroup satisfies it, a relaxed evaluation subgroup satisfies

\[
\pi_n(g)(\mathcal{G}_n(Y, X; f)) \subset \mathcal{G}_n(Y', X; g \circ f)
\]

for a pointed map \(g : Y \to Y' \). Thus there is a map \(\pi_n(f) : \pi_n(X) = \mathcal{G}_n(X, X; id_X) \to \mathcal{G}_n(Y, X; f) \). Therefore the relaxed evaluation subgroups \(\mathcal{G}_n(X, Z; j) \) and \(\mathcal{G}_n(Y, X; f) \) are embedded into parts of the homotopy exact sequence of a fibration \(\xi : Z \xrightarrow{f} X \xrightarrow{j} Y \), respectively.

Corollary 1.3. For a fibration \(\xi : Z \xrightarrow{j} X \xrightarrow{f} Y \) and any \(n \), there are the sequences

\[
\pi_{n+1}(Y) \xrightarrow{\partial_{n+1}} \pi_n(Z) \xrightarrow{\pi_n(j)} \mathcal{G}_n(X, Z; j) \xrightarrow{\pi_n(f)} \pi_n(Y)
\]

and

\[
\pi_n(Z) \xrightarrow{\pi_n(j)} \pi_n(X) \xrightarrow{\pi_n(f)} \mathcal{G}_n(Y, X; f) \xrightarrow{\partial_n \circ} \pi_{n-1}(Z)
\]

which are both exact. Moreover, for the connecting map \(\tilde{\partial} : \Omega Y \to Z \) of \(\xi \),

\[
\pi_{n+1}(X) \xrightarrow{\pi_{n+1}(f)} \pi_{n+1}(Y) \xrightarrow{\partial_{n+1} \circ} \mathcal{G}_n(Z, \Omega Y; \tilde{\partial}) \xrightarrow{\pi_{n+1}(j)} \pi_n(X)
\]
is exact.

Note that, for a pointed map \(g : X' \to X \), there is an inclusion \(G_n(Y, X; f) \subset G_n(Y, X'; f \circ g) \). But it does not hold for relaxed evaluation subgroups in general.

Lemma 1.4. For a map \(g : B \to Y \) and a map \(f : X \to Y \) such that \(f_* : [B, X] \to [B, Y] \) is surjective, there are a section \(s : B \to B \times X \) and a map \(F : B \times X \to X \) such that the diagram

\[
\begin{array}{ccc}
B \times X & \xrightarrow{i_X} & X \\
\downarrow{s} & & \downarrow{f} \\
B & \xrightarrow{g} & Y \\
\end{array}
\]

homotopically commutes.

Indeed, there is a lift \(\tilde{g} : B \to X \) such that \(f \circ \tilde{g} \simeq g \) from the assumption. Then put \(s(b) = (b, \tilde{g}(b)) \) and \(F((b, x)) = f(x) \) for \((b, x) \in B \times X \).

In particular, in the case of \(B = S^n \), we have

Proposition 1.5. If a map \(f : X \to Y \) induces a surjection \(\pi_n(f) : \pi_n(X) \to \pi_n(Y) \), then \(G_n(Y, X; f) = \pi_n(Y) \).

Suppose that \(f_Q : X_Q \to Y_Q \) is a rationalized map with \(X \) and \(Y \) simply connected CW complexes of finite type [HMR]. We consider the relaxed evaluation subgroup of a map and more relaxed subgroups from a point of view of rational homotopy. By using Sullivan’s minimal model arguments, we show

Theorem 1.6. If a map \(f : X \to Y \) induces an injection \(\pi_*(f) \otimes \mathbb{Q} : \pi_*(X) \otimes \mathbb{Q} \to \pi_*(Y) \otimes \mathbb{Q} \) on rational homotopy groups, then \(G_*(Y_Q, X_Q; f_Q) = \pi_*(Y) \otimes \mathbb{Q} \).

From Proposition 1.5 and Theorem 1.6, we have

Corollary 1.7. If the homotopy fiber of a map \(f : X \to Y \) has the rational homotopy type of the Eilenberg-MacLane space \(K(\mathbb{Q}, n) \) for some \(n \), then \(G_*(Y_Q, X_Q; f_Q) = \pi_*(Y) \otimes \mathbb{Q} \).

In Section 2, we prove Theorem 1.6 after preparing of the notion of derivations of model. In Section 3, we will define more relaxed subgroups of the homotopy group of \(Y \), the trncz subgroup \(T_*(Y, X; f) \) and the sectional subgroup \(S_*(Y, X; f) \), for a map \(f : X \to Y \). They are defined by relaxing the trivial fibration \(\eta \) in (4). We compare \(G_*(Y, X; f) \) with them by several rationalized examples.

2. Sullivan models

We use the Sullivan minimal model \(M(Y) \) of a simply connected CW complex \(Y \) of finite type. It is a free \(\mathbb{Q} \)-commutative differential graded algebra (DGA) \((\Lambda W, dy)\) with a \(\mathbb{Q} \)-graded vector space \(W = \bigoplus_{i \geq 2} W^i \) where \(\dim W^i < \infty \) and a decomposable differential. Here \(\Lambda^+ W \) is the ideal of \(\Lambda W \) generated by elements of positive degree. Denote the degree of a homogeneous element \(x \) of \(\Lambda W \) as \(|x|\). Then \(xy = (-1)^{|x||y|}yx \) and \(d(xy) = d(x)y + (-1)^{|x|}xd(y) \). Recall \(M(Y) \) determines the rational homotopy type of \(Y \). Especially there is an isomorphism
We denote the dual element of \(a \in \pi_1(Y) \otimes \mathbb{Q} \) as \(a^* \). Put \(M(Y) = (AW, d_Y) \). Then the model of a map \(f : X \to Y \) is given by a KS-extension
\[
(W^i \cong \text{Hom}(\pi_i(Y), \mathbb{Q}). \quad \text{where} \quad M(Y) = (AW, d_Y).
\]
with \(D|_{AW} = d_Y \) and the minimal model \((AV, \mathcal{D})\) of the homotopy fiber of \(f \) or
\[
(H^*(Y; \mathbb{Q}), 0) \xrightarrow{i} (AW \otimes AV, D) \xrightarrow{\delta} (AV, \mathcal{D})
\]
when \(Y \) is formal (for example, when \(Y \) is a sphere) \([\text{FHT}]\). In general, \(D \) is not decomposable and it is decomposable if and only if \(\pi_*(f) \otimes \mathbb{Q} : \pi_*(X) \otimes \mathbb{Q} \to \pi_*(Y) \otimes \mathbb{Q} \) is a surjection. See \([\text{FHT}]\) for a general introduction and the standard notations.

Let \(A \) be a DGA \(A = (A^*, d_A) \) with \(A^* = \bigoplus_{i \geq 0} A^i \), \(A^0 = \mathbb{Q} \), \(A^1 = 0 \) and the augmentation \(\epsilon : A \to \mathbb{Q} \). Define \(\text{Der}_A \) the vector space of self-derivations of \(A \) decreasing the degree by \(i > 0 \), where \(\theta(xy) = \theta(x)y + (-1)^{|x|}x\theta(y) \) for \(\theta \in \text{Der}_i A \). We denote \(\bigoplus_{i \geq 0} \text{Der}_i A \) by \(\text{Der}A \). The boundary operator \(\delta : \text{Der}_A \to \text{Der}_{A-1} A \) is defined by \(\delta(\sigma) = d_A \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A \). For a DGA-map \(\phi : A \to B \), define a \(\phi \)-derivation of degree \(n \) to be a linear map \(\theta : A^* \to B^{*-n} \) with \(\theta(xy) = \theta(x)\phi(y) + (-1)^{|x|}\phi(x)\theta(y) \) and \(\text{Der}(A, B; \phi) \) the vector space of \(\phi \)-derivations. The boundary operator \(\delta_\phi : \text{Der}_n(A, B; \phi) \to \text{Der}_{n-1}(A, B; \phi) \) is defined by \(\delta_\phi(\sigma) = d_B \circ \sigma - (-1)^{|\sigma|} \sigma \circ d_A \). Note that \(\delta_\phi(\theta) = 0 \).

Theorem 2.1. \([\text{FHT}, \text{LS}]\) \(G_n(Y_Q, X_Q; f_Q) \cong G_n(M(Y), M(X); M(f)) = G_n((AW, d_Y), (AW \otimes AV, D)) \).

Thus \(G_n(Y_Q, X_Q; f_Q) \) is completely determined by the derivations only. For a DGA-map \(\phi : (AV, d) \to (AZ, d') \), the symbol \((v, h) \in \text{Der}(AV, AZ; \phi) \) means the \(\phi \)-derivation sending an element \(v \in V \) to \(h \in AZ \) and the other to zero. Especially \((v, 1) = v^* \).

Example 2.2. Consider the fibration \(S^3 \to X \xrightarrow{f} Y = S^2 \times S^2 \) whose KS-extension is given by
\[
(A(w_1, w_2, w_3, w_4), d_Y) \to (\Lambda(w_1, w_2, w_3, w_4, v), D) \to (\Lambda(v), 0),
\]
where \(|w_1| = |w_2| = 2 \), \(|w_3| = |w_4| = |v| = 3 \), \(d_Y w_1 = d_Y w_2 = 0 \), \(d_Y w_3 = w_1^2 \), \(d_Y w_4 = w_2^2 \) and \(Dv = w_1 w_2 \). Since \(D \) is decomposable, \(\pi_*(f) \otimes \mathbb{Q} : \pi_*(X) \otimes \mathbb{Q} \to \pi_*(Y) \otimes \mathbb{Q} \) is surjective. So we have \(G_2(Y_Q, X_Q; f_Q) = \pi_2(Y) \otimes \mathbb{Q} \) from Proposition \([\text{FHT}]\). On the other hand, from Theorem 2.1, \(G_2(Y_Q, X_Q; f_Q) = 0 \) since
\[
\delta_f((w_1, 1)) = 2(w_{i+2}, w_i) \not\in \delta_f(\text{Der}(AW, \Lambda W \otimes \Lambda^+ v))
\]
for \(i = 1, 2 \) and \(W = \mathbb{Q}(w_1, w_2, w_3, w_4) \). Note that \(f_Q \) has no section \(\{\Pi\} \).

Proof of Theorem 2.1. Fix an element \(a \in \pi_n(Y) \otimes \mathbb{Q} \). From the assumption, there is a DGA-projection \(p_{W,V} : (AW, d_Y) \to (\Lambda V, d_Y) \) as the model of \(f \). A model of
the (non homotopy commutative) diagram

\[
\begin{array}{c}
\begin{array}{c}
E \\
p
\end{array}
\end{array}
\xrightarrow{\ i \ } \begin{array}{c}
\begin{array}{c}
X_Q \\
f_Q
\end{array}
\end{array}
\xrightarrow{\ f_0 \ } \begin{array}{c}
\begin{array}{c}
S^n_Q \\
a
\end{array}
\end{array}
\xrightarrow{\ \sigma \ } \begin{array}{c}
\begin{array}{c}
Y_Q
\end{array}
\end{array}
\end{array}
\]

is given by

\[
\begin{array}{c}
(\Lambda x/x^2 \otimes \Lambda V, D') \xrightarrow{\ q \ } (\Lambda V, d_Y) \\
\cup
\end{array}
\xrightarrow{\ pw.V \ } \begin{array}{c}
\begin{array}{c}
(\Lambda x/x^2, 0) \xleftarrow{\ M(a) \ } (\Lambda W, d_Y)
\end{array}
\end{array}
\]

where \(|x| = n, i_{V,W} : V \subset W\) and \(p_{W,V}(\Lambda W) = \Lambda W = \Lambda V\) with \(p_{W,V} \circ i_{V,W} = id_V\). Here \(\Lambda x/x^2 = \Lambda x\) if \(n\) is odd and \(\Lambda x/x^2 = Q[x]/(x^2)\) if \(n\) is even.

We will construct a rationally trivial fibration of the form \(\eta : X_Q \to E \to S^n_Q\) together with a suitable map \(F : E \to Y_Q\), in model terms. Define a graded \(\mathbb{Q}\)-algebra map \(F' : \Lambda W \to \Lambda x/x^2 \otimes \Lambda V\) by

\[
F'(w) = \overline{w} + (-1)^{|w|} \sigma(w)x
\]

where \(\sigma \in \text{Der}_n(\Lambda W, \Lambda V; p_{W,V})\) with \((-1)^{|\sigma|} \sigma(u)x = M(a)(u)\) for \(u \in W\). Also define the differential \(D'\) by \(D'(x) = 0\) and

\[
D'_{|\Lambda V} = \overline{d_Y} - \delta_{\overline{\sigma}_y} \cdot x,
\]

where \(\overline{\sigma} \in \text{Der}_n(\Lambda V)\) is uniquely given by \(\overline{\sigma}(w) = \sigma(w)\) for \(w \in \Lambda W\) and \((\theta x)(z) := (-1)^{|\theta|} \theta(z)x\) for a derivation \(\theta\). Then \(D' \circ D' = 0\) from \(\delta_{\overline{\sigma}_y} \circ \delta_{\overline{\sigma}_y} = 0\) and \(F'\) is a DGA-map by

\[
F'd_Y(w) = \overline{d_Y}(w) + (-1)^{|w|+1} \sigma(d_Y w)x
\]

\[
= \overline{d_Y}(w) - (-1)^{|\sigma|+1} \delta_{\overline{\sigma}_y}(\overline{\sigma})(\overline{w})x + (-1)^{|\sigma|} \overline{d_Y}\sigma(w)x
\]

\[
= D'(\overline{w} + (-1)^{|\sigma|} \sigma(w)x) = D'F'(w)
\]

for \(w \in \Lambda W\). Thus we have the KS-model of \(\eta\)

\[
(\Lambda x/x^2, 0) \xrightarrow{\ i \ } (\Lambda x/x^2 \otimes \Lambda V, D') \xrightarrow{\ q \ } (\Lambda V, d_Y)
\]

and a map

\[
F' : (\Lambda W, d_Y) \to (\Lambda x/x^2 \otimes \Lambda V, D').
\]

Since \(\delta_{\overline{\sigma}_y}(\overline{\sigma}) \in \text{Der}(\Lambda V, \Lambda^+ V)\), the fibration \(\eta\) has a section \(s\) \((T)\). Moreover the definition of \(D'\) indicates the rational triviality of \(\eta\):

\[
(\Lambda x/x^2 \otimes \Lambda V, D') \cong (\Lambda x/x^2, 0) \otimes (\Lambda V, d_Y)
\]

over \((\Lambda x/x^2, 0)\) since then the homotopy class of the classifying map \(S^n\to \text{Baut}_1 X_Q\), \([\delta_{\overline{\sigma}_y}(\overline{\sigma})]\), is zero in \(\pi_n(\text{Baut}_1 X) \otimes \mathbb{Q} = H_{n-1}(\text{Der}M(X)) \mathbb{Q}\). We
can choose the model of s by $M(s)(x) = x$ and $M(s)(z) = 0$ for $z \in \Lambda V$, then $M(s) \circ F' = M(a)$. Thus there is a DGA-commutative diagram

$$
\begin{array}{cccc}
(\Lambda x/x^2 \otimes \Lambda V, D') & \xrightarrow{q} & (\Lambda V, D') \\
M(s) & \downarrow & \downarrow_{pW, V} \\
(\Lambda x/x^2, 0) & \xleftarrow{M(a)} & (\Lambda W, d_Y).
\end{array}
$$

It is the rational model of (4).

Proof of Corollary 1.7. Put the model of homotopy fiber $(\Lambda V, 0)$. When Dv is decomposable, we have from Proposition 1.5. Also when Dv is not decomposable, there is a surjection $M(Y) = (\Lambda W, d_Y) \rightarrow M(X) = (\Lambda V, d_X)$ with $\dim V = \dim W - 1$. Then we have from Theorem 1.6.

Remark 1. In the proof of above, the fibration $\eta: X_Q \xrightarrow{\eta} E_P S^n_Q$ is trivial, that is, there is a homotopy commutative diagram

$$
\begin{array}{ccc}
E & \xrightarrow{i} & X_Q \\
\downarrow_i & & \downarrow_i \\
S^n_Q & \xrightarrow{p \circ i} & S^n_Q \times X_Q
\end{array}
$$

where g is a homotopy equivalence. The model $M(g)$ is given by $id - \sigma \cdot x$, which is a quasi-isomorphism. But the map g does not induce the homotopy commutative diagram with a section s of p

$$
\begin{array}{ccc}
E & \xrightarrow{i} & X_Q \\
\downarrow{s} & & \downarrow{s} \\
S^n_Q & \xrightarrow{p \circ s} & S^n_Q \times X_Q
\end{array}
$$

in general. Therefore, even if $\pi_*(f) \otimes \mathbb{Q}$ is surjective or injective, we can not induce $G_*(Y_Q, X_Q; f_Q) = \pi_*(Y) \otimes \mathbb{Q}$ in general. For example, see Example 2.2 or Example 2.5, respectively.

In the followings, we consider some examples, whose models are given by $M(s)(x) = x$ and $M(s)(z) = 0$ for $z \in M(X)$ as in the proof of Theorem 1.6. The index of an element means the degree.

Example 2.3. For $n > 0$, $G_*(S^n_Q, S^n_Q; id_{S^n_Q}) = \pi_n(S^n) \otimes \mathbb{Q}$ is given by the following commutative diagrams with $|x| = n$.

$$(n: \text{odd}) \quad (\Lambda x/x^2 \otimes \Lambda w_n, 0) \xrightarrow{q} (\Lambda w_n, 0)$$

$$
\begin{array}{ccc}
(\Lambda x/x^2, 0) & \xrightarrow{M(s)} & (\Lambda w_n, 0) \\
\downarrow_{M(s)} & & \downarrow_{M(s)}
\end{array}
$$

$$(n: \text{even}) \quad (\Lambda x/x^2 \otimes \Lambda w_n, 0) \xrightarrow{q} (\Lambda w_n, 0)$$
where $M(s)(x) = x$, $M(s)(w_n) = 0$ and $F(w_n) = w_n + cx$ for $M(a)(w_n) = cx$ with $c \in \mathbb{Q}$.

\[
(n : \text{even}) \quad (\Lambda x/x^2 \otimes \Lambda(w_n, w_{2n-1}), D') \xrightarrow{\delta} (\Lambda(w_n, w_{2n-1}), d_Y)
\]

\[
M(s) \quad F \quad M(a)
\]

where $d_Y w_n = 0, d_Y w_{2n-1} = w_n^2$, $D' w_n = 0, D' w_{2n-1} = w_n^2 + 2cw_n x, F(w_n) = w_n + cx$ and $F(w_{2n-1}) = w_{2n-1}$.

Example 2.4. For the Hopf fibration $S^3 \to S^7 \xrightarrow{\eta} S^4$, we know $G_4(S^4_\mathbb{Q}; S^7_\mathbb{Q}; f_\mathbb{Q}) = \pi_4(S^4) \otimes \mathbb{Q}$ \cite{LS2}. Indeed, the KS-extension is given by

\[
(\Lambda(w_4, w_7), d_Y) \to (\Lambda(w_4, w_7, v_3), D) \to (\Lambda(v_3), 0)
\]

with $d_Y w_4 = 0, d_Y w_7 = w_4^2$ and $Dv_3 = w_4$. Then, from Theorem 2.1, $G_4(S^4_\mathbb{Q}; S^7_\mathbb{Q}; f_\mathbb{Q}) = G_4(\Lambda(w_4, w_7, d_Y), (\Lambda(w_4, w_7, v_3), D)) = \mathbb{Q}(w_4^4)$ since $\delta_f((w_4, 1 - 2(w_7, v_3)) = 0$. Thus we have

\[
G_4(S^4_\mathbb{Q}, S^7_\mathbb{Q}; f_\mathbb{Q}) = G_4(S^4_\mathbb{Q}, S^7_\mathbb{Q}; f_\mathbb{Q}) = \pi_4(S^4) \otimes \mathbb{Q} \cong \mathbb{Q}.
\]

Also for the product fibration $S^3 \to X = S^7 \times S^4 \xrightarrow{f \times id} S^4 \times S^4 = Y$ with the trivial fibration $\ast \to S^4 \to S^4$, we have $G_4(Y_\mathbb{Q}, X_\mathbb{Q}; (f \times id)_\mathbb{Q}) \cong \mathbb{Q}$ and $G_4(Y_\mathbb{Q}, X_\mathbb{Q}; (f \times id)_\mathbb{Q}) = \pi_4(Y) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}$.

Example 2.5. Suppose that the model of a map $f : X \to Y$ is given by the projection

\[
p_{W,V} : M(Y) = (\Lambda(w_3, w_5, w_7, w_9), d_Y) \to (\Lambda(w_3, w_7, w_9), d_Y) = M(X)
\]

where $p_{W,V}(w_5) = \overline{w}_5 = 0$, $d_Y w_5 = d_Y w_3 = d_Y w_7 = 0$, $d_Y w_7 = w_3 w_9, d_Y w_9 = w_3 w_7$ and $d_Y w_3 = d_Y w_7 = 0$ and $d_Y w_9 = w_3 w_7$. Then we have $G_3(Y_\mathbb{Q}, X_\mathbb{Q}; f_\mathbb{Q}) = G_3(Y_\mathbb{Q}, X_\mathbb{Q}; f_\mathbb{Q}) = 0$ by the direct calculations of derivations. But we have $G_3(Y_\mathbb{Q}, X_\mathbb{Q}; f_\mathbb{Q}) = \pi_4(Y) \otimes \mathbb{Q}$ from Theorem 1.6.

Example 2.6. When $f : S^3 \times S^3 \to S^6$ is the map collapsing $S^3 \cup S^3$, then we show

\[
G_6(S^6, S^3 \times S^3; f) = 0.
\]

By degree arguments, any fibration $\eta : S^3 \times S^3 \xrightarrow{i} E \xrightarrow{p} S^6$ is rationally trivial, especially $D = 0$ in the KS-extension

\[
(Q[w_6]/(w_6^2), 0) \to (Q[w_6]/(w_6^2) \otimes \Lambda(u_3, v_3), D) \to (\Lambda(u_3, v_3), 0),
\]

where $H^*(S^6; \mathbb{Q}) = Q[w_6]/(w_6^2)$ and $M(S^3 \times S^3) = (\Lambda(u_3, v_3), 0)$. In particular $E_\mathbb{Q} \cong (S^6 \times S^3 \times S^3)_\mathbb{Q}$.

For $a \neq 0 \in \pi_6(S^6)$, suppose that there exists a map $F : E \to S^6$ in

\[
\begin{array}{ccc}
E^i & \xrightarrow{i} & S^3 \times S^3 \\
\downarrow F & \searrow f & \\
S^6 & \xrightarrow{a} & S^6,
\end{array}
\]
Then
\[M(F_{f,g})(w_6) = cx + u_3v_3 \]
for some non-zero \(c \in \mathbb{Q} \) associated to \(a \). Then \(w_6^2 = 0 \) in \(H^{12}(S^6; \mathbb{Q}) \) but
\[[M(F_{f,g})(w_6)]^2 = [2cxu_3v_3] \neq 0 \]
in \(H^{12}(E; \mathbb{Q}) = H^{12}(S^6 \times S^3 \times S^3; \mathbb{Q}) \). It is a contradiction.

3. THE OTHER SUBGROUPS

Further we will relax Definition A. For pointed maps \(f : X \to Y \) and \(g : B \to Y \), consider whether or not there exists the homotopy commutative diagram
\[
\begin{array}{c}
E \\
\downarrow \eta \\
B \\
\end{array} \xleftarrow{i} \begin{array}{c} X \\
\downarrow f \\
Y \\
\end{array}
\]
in which \(\eta : X \xrightarrow{i} E \xrightarrow{p} B \) is a fibration with the section \(s \).

Recall that a fibration \(Z \xrightarrow{i} X \xrightarrow{p} Y \) is said to be tncz (totally non-cohomologous to zero) if \(H^*(X) \cong H^*(Z) \otimes H^*(Y) \) as \(H^*(Y) \)-modules by \(p^* : H^*(Y) \to H^*(X) \).

Definition B. For a map \(f : X \to Y \), the \(n \)th tncz subgroup of \(f \) is given as
\[
T_n(Y, X; f) := \{ a \in \pi_n(Y) \mid \text{there are a tncz fibration } \eta : X \xrightarrow{i} E \xrightarrow{p} S^n \text{ with} \}
\[
a \text{ a section } s \text{ and a map } F : E \to Y \text{ such that } F \circ s \simeq a, \ f \simeq F \circ i \}.
\]

Definition C. For a map \(f : X \to Y \), the \(n \)th sectional subgroup of \(f \) is given as
\[
S_n(Y, X; f) := \{ a \in \pi_n(Y) \mid \text{there are a fibration } \eta : X \xrightarrow{i} E \xrightarrow{p} S^n \text{ with} \}
\[
a \text{ a section } s \text{ and a map } F : E \to Y \text{ such that } F \circ s \simeq a, \ f \simeq F \circ i \}.
\]

Remark 2. Note that \(S_n(Y, X; f) \) is a group. For \(a, b \in S_n(Y, X; f) \), there is a homotopy commutative diagram
\[
\begin{array}{c}
E_{a+b} \xrightarrow{h} E_a \cup_X E_b \\
\downarrow \text{pull-back} \\
S^n \\
\end{array} \xleftarrow{i} \begin{array}{c} X \\
\downarrow f \\
Y \\
\end{array}
\]
where \(q \) is the pinching comultiplication and the dotted arrow \(G \) is given by the universality of push-out from \(F_{a,f} : E_a \to Y \) and \(F_{b,f} : E_b \to Y \). A section \(s : S^n \to E_{a+b} \) is given by \(s(x) := (x, s'(q(x))) \) for a section \(s' : S^n \vee S^n \to E_a \cup_X E_b \) with \(G \circ s' \simeq (a|b) \). Also \(i_{a+b} : X \to E_{a+b} \) is given by the universality of pull-back.
from \(i : X \to E_a \cup X E_b \) and \(* : X \to S^n \). Thus we have a homotopy commutative diagram

\[
\begin{array}{ccc}
E_{a+b} & \xrightarrow{f} & X \\
\downarrow{S} & \downarrow{Goh} & \downarrow{f} \\
S^n & \xrightarrow{a+b} & Y.
\end{array}
\]

That is \(a + b := (a|b) \circ q \in S_n(Y, X; f) \). When \(\eta_a : X \to E_a \to S^n \) and \(\eta_b : X \to E_b \to S^n \) are trivial (tncz), the fibration \(X \to E_{a+b} \to S^n \) is trivial (tncz). Thus \(G_n(Y, X; f) \) is a group too.

We have the sequence of inclusions of groups:

\[
G_n(f) \subset G_n(f) \subset T_n(f) \subset S_n(f) \subset \pi_n(Y)
\]

for a map \(f : X \to Y \).

We consider them under some conditions on \(X \). For the KS-extension of a fibration \(\eta : X \to E \to S^n \), we see \(D' - d_X = 0 \) if \(\pi_{\geq n}(X) \otimes \mathbb{Q} = 0 \). Thus

Proposition 3.1. If \(\pi_{\geq n}(X) \otimes \mathbb{Q} = 0 \), \(S_n(Y, X; f) = G_n(Y, X; f) \).

For example, \(G_6(f_Q) = G_6(f_Q) = T_6(f_Q) = S_6(f_Q) = 0 \) for the map \(f \) in Example 2.6. We know that a fibration \(X \to E \to B \) is homotopically trivial if the classifying map \(B \to \text{Baut}X \) is homotopically trivial if the constant map. Therefore we have

Proposition 3.2. If \(\pi_n(\text{Baut}X) \otimes \mathbb{Q} = 0 \), \(G_n(Y, X; f_Q) = S_n(Y, X; f_Q) \).

In Example 3.4 and Example 3.5 below, \(\pi_n(\text{Baut}X) \otimes \mathbb{Q} \neq H_{n-1}(\text{Der}M(X)) \neq 0 \). But it is known that any fibration over \(CP^m \), the \(m \)-dimensional complex projective space, is rationally tncz. In general, we note

Lemma 3.3. For \(n > 1 \), any fibration with fiber \(X \) over \(S^n \) is rationally tncz if and only if the map \(\rho : H_{n-1}(\text{Der}M(X)) \to \text{Der}n_{n-1}H^*(X; \mathbb{Q}) \) with \(\rho([\sigma])([w]) = [\sigma(w)] \) is zero. Here \(\text{Der}n_{n-1}H^*(X; \mathbb{Q}) \) means the derivations of the graded algebra \(H^*(X; \mathbb{Q}) \) decreasing the degree by \(n-1 \) (POT 9.7.2).

Proof. The KS-extension of a fibration \(X \to E \to S^n \) is given by the differential \(Dv = dv + \sigma(v)x \) for some \([\sigma] \in H_{n-1}(\text{Der}M(X)) \) with the differential \(d(M) \) and \(v \in M(X) \). Then an element \([w] \) of \(H^*(X; \mathbb{Q}) \) is extend to an element \([w + w'x] \) of \(H^*(E; \mathbb{Q}) \) if and only if \(dv' = \sigma(w) \).

Example 3.4. For the associated fibration \(S^2 \to CP^3 \xrightarrow{f} S^4 \) of the Hopf fibration \(S^3 \to S^7 \xrightarrow{f} S^4 \), the KS-model is given by

\[
(\Lambda(w_4, w_7), dv_4) \to (\Lambda(w_4, w_7, v_2, v_3), D) \to (\Lambda(v_2, v_3), d)
\]

where \(dv_4 = 0, dv_7 = w_4^2, Dv_2 = dv_2 = 0, dv_3 = v_2^2 \) and \(Dv_3 = v_2^2 - w_4 \). Also \(M(CP^3) \cong (\Lambda(v_2, w_7), dx) \) with \(dx v_2 = 0, dx w_7 = v_2^3 \) and then \(M(f)(w_4) = v_2^3, M(f)(w_7) = w_7 \). Then we have

\[
T_4(S^4, CP^3; f) = \pi_4(S^4) \otimes \mathbb{Q} = \mathbb{Q}.
\]
Indeed, for \(a \in \pi_4(S^4) \otimes \mathbb{Q} \) with \(M(a)(w_4) = cx \) \((c \in \mathbb{Q})\) and \(M(a)(w_7) = 0 \), put

\[
D'v_2 = 0, \quad D'w_7 = v_2^4 + 2cv_2^2x
\]

and

\[
F(w_4) = v_2^2 + cx, \quad F(w_7) = w_7
\]
in

\[
\begin{array}{ccc}
(\Lambda x/x^2 \otimes \Lambda(v_2, w_7), D') & \stackrel{F}{\longrightarrow} & (\Lambda(v_2, w_7), dx) \\
\downarrow & & \downarrow M(f) \\
(\Lambda x/x^2, 0) & \stackrel{M(a)}{\longrightarrow} & (\Lambda(w_4, w_7), dy).
\end{array}
\]

Thus \(a \in \mathcal{T}_4(S^4_2, \mathbb{CP}^2_2; f_Q) \). On the other hand, \(\mathcal{G}_4(S^4_2, \mathbb{CP}^2_2; f_Q) = 0 \) since \((\Lambda x/x^2 \otimes \Lambda(v_2, w_7), D')\) can not be isomorphic to \((\Lambda x/x^2, 0)(\Lambda(v_2, w_7), dx)\) over \((\Lambda x/x^2, 0)\) for any \(D' \).

Example 3.5. For the map \(f: \mathbb{CP}^2 \to S^4 \) collapsing the 2-cell, \(M(f): M(S^4) = (\Lambda(w_4, w_7), dy) \to (\Lambda(v_2, v_5), dx) = M(\mathbb{CP}^2) \) is given by \(M(f)(w_4) = v_2^2 \) and \(M(f)(w_7) = v_2v_5 \). Then we have

\[
\mathcal{T}_4(S^4_2, \mathbb{CP}^2_2; f_Q) = \pi_4(S^4) \otimes \mathbb{Q} = \mathbb{Q}.
\]

Indeed, for \(a \in \pi_4(S^4) \otimes \mathbb{Q} \) with \(M(a)(w_4) = cx \) \((c \in \mathbb{Q})\) and \(M(a)(w_7) = 0 \), put

\[
D'(v_2) = 0, \quad D'(v_5) = v_2^4 + 2cv_2x
\]

and

\[
F(w_4) = v_2^2 + cx, \quad F(w_7) = v_2v_5
\]
in

\[
\begin{array}{ccc}
(\Lambda x/x^2 \otimes \Lambda(v_2, v_5), D') & \stackrel{F}{\longrightarrow} & (\Lambda(v_2, v_5), dx) \\
\downarrow & & \downarrow M(f) \\
(\Lambda x/x^2, 0) & \stackrel{M(a)}{\longrightarrow} & (\Lambda(w_4, w_7), dy).
\end{array}
\]

Thus \(a \in \mathcal{T}_4(S^4_2, \mathbb{CP}^2_2; f_Q) \). On the other hand, we have \(\mathcal{G}_4(S^4_2, \mathbb{CP}^2_2; f_Q) = 0 \) since \((\Lambda x/x^2 \otimes \Lambda(v_2, v_5), D')\) can not be isomorphic to \((\Lambda x/x^2, 0)(\Lambda(v_2, v_5), dx)\) over \((\Lambda x/x^2, 0)\) for any \(D' \).

Example 3.6. Put \(\xi: \Omega X \xrightarrow{i} LX \xrightarrow{\xi} X \) the fibration of free loops, in which \(\Omega X \) is the loop space and \(LX = map(S^1, X) \) is the free loop space of a simply connected space \(X \). It has the section \(s: X \to LX \) with \(s(z) \) the constant loop at a point \(z \) in \(X \). Consider the case that \(X = S^2 \). Then \(S_2(LS^2, \Omega S^2; i) \ni s \) since we can choose \(F = id_{LS^2} \) as

\[
\begin{array}{ccc}
LS^2 & \xrightarrow{i} & \Omega S^2 \\
\downarrow s & & \downarrow i \\
S^2 & = & LS^2.
\end{array}
\]

Thus we have \(S_2(LS^2, \Omega S^2; i) \neq 0 \). Especially, we see \(S_2(LS^2_2, \Omega S^2_2; i_Q) \neq 0 \) since \(s \) is the torsion free generator of \(\pi_2(LS^2) \).

But \(\mathcal{T}_2(LS^2_2, \Omega S^2_2; i_Q) = 0 \). Indeed, the KS-model of \(\xi \) is given by

\[
(\Lambda(x, y), dy) \to (\Lambda(x, y, \overline{x}, \overline{y}), D) \to (\Lambda(\overline{x}, \overline{y}), 0)
\]
where \(M(S^2) = (\Lambda(x,y),d_Y) \) with \(@|x| = 2, |y| = 3, d_Y x = 0, d_Y y = x^2, |\bar{\tau}| = 1, |\bar{\eta}| = 2, D(\bar{\tau}) = 0, \) and \(D(\bar{\eta}) = 2x \bar{\tau} \) [VS]. For the KS-model of a fibration \(\eta : \Omega S^2 \rightarrow E \rightarrow S^2 \) with a section is given as
\[
(\Lambda(x,y),d_Y) \rightarrow (\Lambda(x,y,\bar{\tau},\bar{\eta}),D') \rightarrow (\Lambda(x,y,\bar{\eta}),0)
\]
where \(D'(\bar{\tau}) = 0 \) and \(D'(\bar{\eta}) = cx \bar{\tau} \) for some \(c \in \mathbb{Q} \) by the degree arguments. If \(c = 0 \), there does not exist a map \(F : (\Lambda(x,y,\bar{\tau},\bar{\eta}),D) \rightarrow (\Lambda(x,y,\bar{\tau},\bar{\eta}),D') = (\Lambda(x,y,\bar{\eta}),d_Y) \) that we want. If \(c \neq 0 \), it is not rationally tncz since
\[
H^*(\Omega S^2;\mathbb{Q}) = \Lambda(\bar{\tau},\bar{\eta})
\]
and
\[
H^*(E;\mathbb{Q}) \cong \mathbb{Q}[x,\{u_i\}_{i>0}] \otimes \Lambda(\bar{x},x\bar{x},\{xu_i\},\{xu_iu_j\}) \cup \mathbb{Q}[x].
\]

Example 3.7. Put \(\xi : S^1 \rightarrow K \rightarrow S^1 \) the fiber bundle with total space a Klein bottle \(K \). Then \(G_1(K,S^1,j) = G_1(K,S^1,j) = \mathcal{T}_1(K,S^1,j) = \mathbb{Z} \) and \(S_1(K,S^1,j) = \pi_1(K) \).

References

[FH] Y. Félix and S. Halperin, *Rational LS category and its applications*, Trans. A.M.S. 273 (1982) 1-38

[FHT] Y. Félix, S. Halperin and J.-C. Thomas, *Rational homotopy theory*, Springer G.T.M. 205 [2001].

[FOT] Y. Félix, J. Oprea and D. Tanré, *Algebraic models in geometry*, Oxford 17 [2008]

[G] D.H. Gottlieb, *Evaluation subgroups of homotopy groups*, Amer. J. Math. 91 (1969) 729-756

[HMR] P. Hilton, G. Mislin and J. Reitberg, *Localization of nilpotent groups and spaces*, North-Holland Math. Studies 15 (1975)

[LS] G. Lupton and S. B. Smith, *Rationalized evaluation subgroups of a map. I. Sullivan models, derivations and G-sequences*, J. Pure Appl. Algebra 209 (1) (2007) 159-171

[LS2] G. Lupton and S. B. Smith, *The evaluation subgroup of a fibre inclusion*, Topology and its Applications 154 (2007) 1107-1118

[O] N. Oda, *Pairings and copairings in the category of topological spaces*, Publ. Res. Inst. Math. Sci. Kyoto Univ. 28 (1992) 83-97

[S] D. Sullivan, *Infiniteesimal computations in topology*, Publ. IHES 47 (1978) 269-331

[T] J.-C. Thomas, *Rational homotopy of Serre fibrations*, Ann. Inst. Fourier, Grenoble 31 (1981) 71-90

[VS] M. Vigué-Poirrier and D. Sullivan, *The homology theory of the closed geodesic problem*, ibid. 11 (1976) 633-644

[WK] M. H. Woo and J. R. Kim, *Certain subgroups of homotopy groups*, J. Korean Math. Soc. 21 (1984) 109-120

Faculty of Education, Kochi University, 2-5-1, Kochi, 780-8520, Japan

E-mail address: tyamag@kochi-u.ac.jp