Localization of the number of photons of ground states in nonrelativistic QED

Fumio Hiroshima

October 31, 2018

Abstract

One electron system minimally coupled to a quantized radiation field is considered. It is assumed that the quantized radiation field is massless, and no infrared cutoff is imposed. The Hamiltonian, H, of this system is defined as a self-adjoint operator acting on $L^2(\mathbb{R}^3) \otimes \mathcal{F} \cong L^2(\mathbb{R}^3; \mathcal{F})$, where \mathcal{F} is the Boson Fock space over $L^2(\mathbb{R}^3 \times \{1, 2\})$. It is shown that the ground state, ψ_g, of H belongs to $\bigcap_{k=1}^\infty D(1 \otimes N^k)$, where N denotes the number operator of \mathcal{F}. Moreover it is shown that, for almost every electron position variable $x \in \mathbb{R}^3$ and for arbitrary $k \geq 0$, $\| (1 \otimes N^{k/2}) \psi_g(x) \|_{\mathcal{F}} \leq D_k e^{-\delta|x|^{m+1}}$ with some constants $m \geq 0$, $D_k > 0$, and $\delta > 0$ independent of k. In particular $\psi_g \in \bigcap_{k=1}^\infty D(e^{\beta|x|^{m+1}} \otimes N^k)$ for $0 < \beta < \delta/2$ is obtained.

1 Introduction

1.1 The Pauli-Fierz Hamiltonian

In this paper one spinless electron minimally coupled to a massless quantized radiation field is considered. It is the so-called Pauli-Fierz model of the nonrelativistic QED. The Hilbert space of state vectors of the system is given by

$$\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F},$$

where \mathcal{F} denotes the Boson Fock space defined by

$$\mathcal{F} = \bigoplus_{n=0}^\infty \left[\otimes_n L^2(\mathbb{R}^3 \times \{1, 2\}) \right],$$

*Department of Mathematics and Physics, Setsunan University, 57-8508, Osaka, Japan, e-mail hiroshima@mpg.setsunan.ac.jp
where $\otimes_n^s L^2(\mathbb{R}^3 \times \{1,2\})$, $n \geq 1$, denotes the n-fold symmetric tensor product of $L^2(\mathbb{R}^3 \times \{1,2\})$ and $\otimes_n^0 L^2(\mathbb{R}^3 \times \{1,2\}) = \mathbb{C}$. The Fock vacuum Ω is defined by $\Omega = \{1,0,0,...\}$. Let

$$\mathcal{F}_0 = \{ \oplus_{n=0}^\infty \Psi^{(n)} \in \mathcal{F} | \Psi^{(n)} = 0 \text{ for } n \geq m \text{ with some } m \}. $$

For each $(k,j) \in \mathbb{R}^3 \times \{1,2\}$, the annihilation operator $a(k,j)$ is defined by, for $\Psi = \oplus_{n=0}^\infty \Psi^{(n)} \in \mathcal{F}_0$,

$$(a(k,j)\Psi^{(n)})(k_1,j_1,...,k_n,j_n) = \sqrt{n+1}\Psi^{(n+1)}(k,j,k_1,j_1,...,k_n,j_n).$$

The creation operator $a^*(k,j)$ is given by $a^*(k,j) = (a(k,j|\mathcal{F}_0)^*$. They satisfy the canonical commutation relations on \mathcal{F}_0

$$[a(k,j), a^*(k',j')] = \delta(k-k')\delta_{jj'},$$

$$[a(k,j), a(k',j')] = 0,$$

$$[a^*(k,j), a^*(k',j')] = 0.$$

The closed extensions of $a(k,j)$ and $a^*(k,j)$ are denoted by the same symbols respectively. The annihilation and creation operators smeared by $f \in L^2(\mathbb{R}^3)$ are formally written as

$$a^f(k,j) = \int a^*(k,j)f(k)dk, \quad a^f = a \text{ or } a^*,$$

and act as

$$(a(f,j)\Psi^{(n)} = \sqrt{n+1} \int f(k)\Psi^{(n+1)}(k,j,k_1,j_1,...,k_n,j_n)dk,$$

$$a^*(f,j)\Psi^{(n)} = \frac{1}{\sqrt{n}} \sum_{j_i=j} f(k)\Psi^{(n-1)}(k_1,j_1,...,j_i,j_i,...,k_n,j_n),$$

where $\sum_{j_i=j}$ denotes to sum up j_i such that $j_i = j$, and \widehat{X} means neglecting X. We work with the unit $\hbar = 1 = c$. The dispersion relation is given by

$$\omega(k) = |k|.$$

Then the free Hamiltonian H_f of \mathcal{F} is formally written as

$$H_f = \sum_{j=1,2} \int \omega(k)a^*(k,j)a(k,j)dk,$$
and acts as

$$(H_t \Psi)^{(n)}(k_1, j_1, \ldots, k_n, j_n) = \sum_{j=1}^{n} \omega(k_j) \Psi^{(n)}(k_1, j_1, \ldots, k_n, j_n), \quad n \geq 1,$$

$$(H_t \Psi)^{(0)} = 0$$

with the domain

$$D(H_t) = \left\{ \Psi = \bigoplus_{n=0}^{\infty} \Psi^{(n)} \bigg| \sum_{n=0}^{\infty} \| (H_t \Psi)^{(n)} \|_{L^2(\mathbb{R}^3 \times \{1, 2\})}^2 \right\}.$$

Since H_t is essentially self-adjoint and nonnegative, we denote the self-adjoint extension of H_t by the same symbol H_t. Under the identification

$$H \cong \int_{\mathbb{R}^3} F dx,$$

the quantized radiation field A with a form factor φ is given by the constant fiber direct integral

$$A = \int_{\mathbb{R}^3} A(x) dx,$$

where $A(x)$ is the operator acting on F defined by

$$A(x) = \frac{1}{\sqrt{2}} \sum_{j=1,2} \int \frac{e(k, j)}{\sqrt{\omega(k)}} \left\{ a^*(k, j)e^{-ik \cdot x} \varphi(-k) + a(k, j)e^{ik \cdot x} \varphi(k) \right\} dk.$$

Here φ denotes the Fourier transform of φ and $e(k, j)$, $j = 1, 2$, are polarization vectors such that $(e(k, 1), e(k, 2), k/|k|)$ forms a right-handed system, i.e., $k \cdot e(k, j) = 0$, $e(k, j) \cdot e(k, j') = \delta_{jj'}$, and $e(k, 1) \times e(k, 2) = k/|k|$ for almost every $k \in \mathbb{R}^3$. We fix polarization vectors through this paper.

The decoupled Hamiltonian is given by

$$H_0 = H_p \otimes 1 + 1 \otimes H_t.$$

Here

$$H_p = \frac{1}{2} p^2 + V$$

denotes a particle Hamiltonian, where $p = (-i\nabla_{x_1}, -i\nabla_{x_2}, -i\nabla_{x_3})$ and $x = (x_1, x_2, x_3)$ are the momentum operator and its conjugate position operator in $L^2(\mathbb{R}^3)$, respectively, and $V : \mathbb{R}^3 \to \mathbb{R}$ an external potential. We are prepared to define the total Hamiltonian, H, of this system, which is given by the minimal coupling to H_0. I.e., we replace $p \otimes 1$ with $p \otimes 1 - eA$,

$$H = \frac{1}{2} (p \otimes 1 - eA)^2 + V \otimes 1 + 1 \otimes H_t,$$

where e denotes the charge of an electron.
1.2 Assumptions on V and fundamental facts

We give assumptions on external potentials. We say $V \in K_3$ (the three dimensional Kato class [23]) if and only if
\[
\lim_{\epsilon \to 0} \sup_{x \in \mathbb{R}^3} \int_{|x-y|<\epsilon} \frac{|V(y)|}{|x-y|} dy = 0,
\]
and $V \in K_3^{\text{loc}}$ if and only if $1_R V \in K_3$ for all $R \geq 0$, where
\[
1_R(x) = \begin{cases} 1, & |x| < R, \\ 0, & |x| \geq R. \end{cases}
\]

Let us define classes K and V_{\exp} as follows.

Definition 1.1

1. We say $V \in K$ if and only if $V = V_+ - V_-$ such that $V_+ \geq 0$, $V_+ \in K_3^{\text{loc}}$ and $V_- \in K_3$.

2. We say $V \in V_{\exp}$ if and only if $V = Z + W$ such that $\inf Z > -\infty$, $Z \in L_1^{\text{loc}}(\mathbb{R}^3)$, $W < 0$, and $W \in L^p(\mathbb{R}^3)$ for some $p > 3/2$.

For $V \in K$ a functional integral representation of $e^{-t(-\frac{1}{2}\Delta + V)}$ by means of the Wiener measure on $C([0, \infty); \mathbb{R}^3)$ is obtained. See e.g., [23]. For $V \in K \cap V_{\exp}$, using this functional integral representation, it can be proven that a ground state, f_p, of $-\frac{1}{2}\Delta + V$ decays exponentially, i.e.,
\[
|f_p(x)| \leq c_1 e^{-c_2|x|^3}
\]
for almost every $x \in \mathbb{R}^3$ with some positive constants c_1, c_2, c_3. Similar estimates are available to the Pauli-Fierz Hamiltonian H with $V \in K \cap V_{\exp}$. See Proposition 1.5.

Furthermore we need to define class $V(m), m = 0, 1, 2, \ldots$ to estimate constant c_3 in (1.1) precisely.

Definition 1.2 Suppose that $V = Z + W \in V_{\exp} \cap K$, where the decomposition $Z + W$ is that of the definition of V_{\exp}.

1. We say $V \in V(m), m \geq 1$, if and only if $Z(x) \geq \gamma|x|^{2m}$ for $x \notin O$ with a certain compact set O and with some $\gamma > 0$.

2. We say $V \in V(0)$ if and only if $\lim \inf_{|x| \to \infty} Z(x) > \inf \sigma(H)$, where $\sigma(H)$ denotes the spectrum of H.

4
A physically reasonable example of V is the Coulomb potential $-\frac{eZ}{4\pi|x|}$, where $Z > 0$ denotes the charge of a nucleus. Actually we see the following proposition.

Proposition 1.3 Assume that

$$\int_{\mathbb{R}^3} \frac{|\hat{\varphi}(k)|^2}{\omega(k)} \frac{dk}{\omega(k)} < \frac{Z^2}{2(4\pi)^2}.$$

Then

$$-\frac{eZ}{4\pi|x|} \in V(0)$$

for all $e > 0$.

Proof: It is known that $-\frac{1}{|x|} \in K_3 \cap V_{\exp}$. Then we shall show $\inf \sigma(H) < 0$. Let $V = -eZ/(4\pi|x|)$ and f be the ground state of $H_p = -\frac{1}{2}\Delta + V$, $H_p f = -E_0 f$, where

$$E_0 = \frac{e^2 Z^2}{2(4\pi)^2}.$$

Then we have

$$\inf \sigma(H) \leq (f \otimes \Omega, H f \otimes \Omega)_H = (f, H_p f)_{L^2(\mathbb{R}^3)} + \frac{e^2}{2}(f \otimes \Omega, A^2 f \otimes \Omega)_H$$

$$= -E_0 + \frac{e^2}{2} \sum_{\mu=1,2,3} \int_{\mathbb{R}^3} \left(1 - \frac{k^2}{|k|^2}\right) \frac{|\hat{\varphi}(k)|^2}{\omega(k)} dk = -\frac{e^2}{2} \left(\frac{Z^2}{(4\pi)^2} - 2 \int_{\mathbb{R}^3} \frac{|\hat{\varphi}(k)|^2}{\omega(k)} dk\right) < 0.$$

Thus the proposition follows. \qed

We introduce Hypothesis \mathbb{H}_m, $m = 0, 1, 2, ...$.

Hypothesis \mathbb{H}_m

1. $D(\Delta) \subset D(V)$ and there exists $0 \leq a < 1$ and $0 \leq b$ such that for $f \in D(\Delta)$,

$$\|V f\|_{L^2(\mathbb{R}^3)} \leq a\|\Delta f\|_{L^2(\mathbb{R}^3)} + b\|f\|_{L^2(\mathbb{R}^3)},$$

2. $\hat{\varphi}(-k) = \overline{\hat{\varphi}(k)}$, and $\hat{\varphi}/\omega$, $\sqrt{\omega \hat{\varphi}} \in L^2(\mathbb{R}^3)$,

3. $\inf \sigma_{\text{ess}}(H_p) - \inf \sigma(H_p) > 0$, where $\sigma(H_p)$ (resp. $\sigma_{\text{ess}}(H_p)$) denotes the spectrum (resp. essential spectrum) of H_p,

4. $V \in V(m).$
Proposition 1.4 We assume (1) and (2) of \mathbb{H}_m. Then for arbitrary $e \in \mathbb{R}$, H is self-adjoint on $D(\Delta \otimes 1) \cap D(1 \otimes H_f)$ and bounded from below, moreover essentially self-adjoint on any core of $-\Delta \otimes 1 + 1 \otimes H_f$.

Proof: See [14, 15].

The number operator of F is defined by

$$N = \sum_{j=1,2} \int a^*(k,j)a(k,j)dk.$$

The operator N^k, $k \geq 0$, acts as, for $\Psi = \oplus_{n=0}^{\infty} \Psi^{(n)}$,

$$(N^k \Psi)^{(n)} = n^k \Psi^{(n)}$$

with the domain

$$D(N^k) = \left\{ \Psi = \oplus_{n=0}^{\infty} \Psi^{(n)} \left| \sum_{n=0}^{\infty} n^{2k}\|\Psi^{(n)}\|_{L^2(\mathbb{R}^3 \times \{1,2\})}^2 < \infty \right. \right\}.$$

We give a remark on notations. We can identify \mathcal{H} with the set of \mathcal{F}-valued L^2-functions on \mathbb{R}^3, i.e.,

$$\mathcal{H} \cong L^2(\mathbb{R}^3; \mathcal{F}). \quad (1.2)$$

Under this identification, $\Psi \in \mathcal{H}$ can be regarded as a vector in $L^2(\mathbb{R}^3; \mathcal{F})$. Namely for almost every $x \in \mathbb{R}^3$,

$$\Psi(x) \in \mathcal{F}.$$

We use identification (1.2) without notices in what follows. The following proposition is well known.

Proposition 1.5 Suppose \mathbb{H}_m. Then there exists $e_0 < \infty$ such that for all $|e| \leq e_0$, (i) H has a ground state ψ_g, (ii) it is unique, (iii) $\| (1 \otimes N^{1/2}) \psi_g \|_\mathcal{H} < \infty$, (iv) $\| \psi_g(x) \|_\mathcal{F} \leq De^{-\delta|x|^{m+1}}$ for almost every $x \in \mathbb{R}^3$ with some constants $D > 0$ and $\delta > 0$.

Proof: See [5, 10] for (i) and (iii), [13] for (ii) and [16] for (iv).

Remark 1.6 It is not clear directly from Proposition 1.5 that $\psi_g \in D(e^{\delta|x|^{m+1}} \otimes N^{1/2})$.

See Corollary 1.11.
The condition
\[I = \int_{\mathbb{R}^3} \frac{|\hat{\varphi}(k)|^2}{\omega(k)^3} dk < \infty \] (1.3)
is called the infrared cutoff condition. (1.3) is not assumed in Proposition 1.5. For suitable external potentials, \(e_0 = \infty \) is available in Proposition 1.5. This is established in [10]. In the case where \(\inf\text{ess}(H_p) - \inf \sigma(H_p) = 0 \), examples for \(H \) to have a ground state is investigated in [17, 19]. It is unknown, however, whether such a ground state decays in \(x \) exponentially or not. When electron includes spin, \(H \) has a twofold degenerate ground state for sufficiently small \(|e| \), which is shown in [18].

1.3 Localization of the number of bosons and infrared singularities for a linear coupling model

The Nelson Hamiltonian [22] describes a linear coupling between a nonrelativistic particle and a scalar quantum field with a form factor \(\varphi \). Let \(H_N = L^2(\mathbb{R}^3) \otimes \mathcal{F}_N \), where \(\mathcal{F}_N = \bigoplus_{n=0}^\infty [\otimes_n L^2(\mathbb{R}^3)] \). The Nelson Hamiltonian is defined as a self-adjoint operator acting in the Hilbert space \(\mathcal{H}_N \), which is given by

\[H_N = H_p \otimes 1 + 1 \otimes H_f^N + g\phi, \]

where \(g \) denotes a coupling constant, \(H_f^N = \int \omega(k)a^*(k)a(k)dk \) is the free Hamiltonian in \(\mathcal{F}_N \), and under identification \(\mathcal{H}_N \cong \mathcal{F}_N \otimes \mathcal{F}_N \), \(\phi \) is defined by \(\phi = \int_{\mathbb{R}^3} \phi(x)dx \) with

\[\phi(x) = \frac{1}{\sqrt{2}} \int \left\{ a^*(k)e^{-ikx} \frac{\hat{\varphi}(k)}{\sqrt{\omega(k)}} + a(k)e^{ikx} \frac{\hat{\varphi}(k)}{\sqrt{\omega(k)}} \right\} dk. \]

It has been established in [2, 4, 9, 25] that the Nelson Hamiltonian has the unique ground state, \(\psi_g^N \), under the condition

\[I < \infty. \]

Let us denote the number operator of \(\mathcal{F}_N \) by the same symbol \(N \) as that of \(\mathcal{F} \). In [6] it has been proven that \(\psi_g^N \) decays superexponentially, i.e.,

\[\| e^{+\beta(1 \otimes N)}\psi_g^N \|_{\mathcal{H}_N} < \infty \] (1.4)

for arbitrary \(\beta > 0 \). This kind of results has been obtained in [11, Section 3] and [24] for relativistic polaron models, and [26, Section 8] for spin-boson models. Moreover in [6] we see that

\[\lim_{I \to \infty} \| (1 \otimes N^{1/2})\psi_g^N \|_{\mathcal{H}_N} = \infty. \] (1.5)
Actually in the infrared divergence case,

\[I = \infty, \]

(1.6)

it is shown in [20] that the Nelson Hamiltonian with some confining external potentials has no ground states in \(\mathcal{H}_N \). Then we have to take a non-Fock representation to investigate a ground state with (1.6). See [1, 3, 21] for details. That is to say, as the infrared cutoff is removed, the number of bosons of \(\psi_N^g \) diverges and the ground state disappears. A method to show (1.4) and (1.5) is based on a path integral representation of \((\psi_N^g, e^{+\beta (1 \otimes N)} \psi_N^g)_{\mathcal{H}_N}\). Precisely it can be shown that in the case \(I < \infty \) there exists a probability measure \(\mu \) on \(C(\mathbb{R}; \mathbb{R}^3) \) such that for arbitrary \(\beta > 0 \),

\[
(\psi_N^g, e^{+\beta (1 \otimes N)} \psi_N^g)_{\mathcal{H}_N} = \int_{C(\mathbb{R}; \mathbb{R}^3)} e^{-(g^2/2)(1-e^{+\beta})} \int_{0}^{\infty} ds \int_{-\infty}^{\infty} dt W(q_s - q_t, s - t) \mu(dq),
\]

(1.7)

where \((q_t)_{-\infty < t < \infty} \in C(\mathbb{R}; \mathbb{R}^3)\), and

\[
W(X, T) = \int_{\mathbb{R}^3} e^{-|T|\omega(k)} e^{ik \cdot X} \frac{|\hat{\phi}(k)|^2}{\omega(k)} dk.
\]

(1.8)

Note that the double integral \(\int_{-T}^{0} ds \int_{0}^{T} dt W(q_s - q_t, s - t) \) is estimated uniformly in path and \(T \) as

\[
\left| \int_{-T}^{0} ds \int_{0}^{T} dt W(q_s - q_t, s - t) \right| \leq I.
\]

(1.9)

This uniform bound is a core of the proof of identity (1.7).

1.4 The main theorems

In contrast to the Nelson Hamiltonian, for the Pauli-Fierz Hamiltonian, as is seen in Proposition 1.5, it is shown that the ground state, \(\psi_g \), exists and \(\|(1 \otimes N^{1/2}) \psi_g\|_{\mathcal{H}} < \infty \) even in the case \(I = \infty \). We may say that the infrared singularity for the Pauli-Fierz Hamiltonian is not so singular in comparison with the Nelson Hamiltonian, and one may expect that

\[
\|e^{+\beta (1 \otimes N)} \psi_g\|_{\mathcal{H}} < \infty
\]

(1.10)

holds for some \(\beta > 0 \) under \(I = \infty \). Unfortunately, however, we can not show (1.10), since the similar path integral method as the Nelson Hamiltonian is not available on account of the appearance of the so-called double stochastic integral ([13]) instead of
\[f_0^\infty ds f_0^\infty dt W(q_s - q_t, s - t) \] in (1.7). The double stochastic integral is formally written as

\[\sum_{\mu, \nu = 1, 2, 3} \int_{-\infty}^0 dq_{\mu, s} \int_{0}^\infty dq_{\nu, t} W_{\mu \nu}(q_s - q_t, s - t), \tag{1.11} \]

where \((q_s)_{-\infty < s < \infty} = (q_{1, s}, q_{2, s}, q_{3, s})_{-\infty < s < \infty} \in C(\mathbb{R}, \mathbb{R}^3)\) and

\[W_{\mu \nu}(X, T) = \int_{\mathbb{R}^3} \left(\delta_{\mu \nu} - \frac{k_{\mu} k_{\nu}}{|k|^2} \right) e^{-|T|\omega(k)} e^{ik \cdot X} \frac{|\hat{\varphi}(k)|^2}{\omega(k)} dk. \]

Actually we can not estimate (1.11) uniformly in path such as (1.9). Therefore we are not concerned here with (1.10). In place of this we will show the following theorems.

Theorem 1.7 Assume \(\mathbb{H}_m \). Then \(\psi_g \in \bigcap_{k=1}^\infty D(1 \otimes N^{k/2}) \).

Remark 1.8 Theorem 1.7 automatically follows if one assumes that photons have artificial positive mass, \(\nu \), i.e., \(\omega(k) = \sqrt{|k|^2 + \nu^2} \).

Theorem 1.9 Assume \(\mathbb{H}_m \). Then for a fixed \(k \geq 0 \) there exist positive constants \(D_k \), and \(\delta \) independent of \(k \) such that

\[\| (1 \otimes N^{k/2}) \psi_g(x) \|_F \leq D_k e^{-\delta |x|^{m+1}} \tag{1.12} \]

for almost every \(x \in \mathbb{R}^3 \).

Remark 1.10 We do not assume \(\mathcal{I} < \infty \) in Theorems 1.7 and 1.9.

From Theorems 1.7 and 1.9 the following corollary is immediate.

Corollary 1.11 Assume \(\mathbb{H}_m \). Then \(\psi_g \in \bigcap_{k=0}^\infty D(e^{2\beta |x|^{m+1}} \otimes 1) \) for \(\beta < \delta/2 \).

Proof: Since \(\psi_g \in D(e^{2\beta |x|^{m+1}} \otimes 1) \cap D(1 \otimes N^{k/2}) \) for all \(k \geq 0 \), the corollary follows from the fact that \(D(e^{2\beta |x|^{m+1}} \otimes 1) \cap D(1 \otimes N^k) \subset D(e^{\beta |x|^{m+1}} \otimes N^{k/2}) \). \(\square \)

1.5 Outline of proofs of the main theorems

For notational convenience, in the following we mostly omit the tensor notation \(\otimes \), e.g., we express as \(H_f \) for \(1 \otimes H_f \), \(a^\sharp(k, j) \) for \(1 \otimes a^\sharp(k, j) \), \(\Delta \) for \(\Delta \otimes 1 \), \(|x| \) for \(|x| \otimes 1 \), etc., and set

\[k = (k, j) \in \mathbb{R}^3 \times \{1, 2\} \]
and
\[\sum_{j_1, \ldots, j_n=1,2} \ldots dk_1 \ldots dk_n = \sum_{j_1, \ldots, j_n=1} \ldots \int_{j_1, \ldots, j_n} dk_1 \ldots dk_n. \]

The strategy of this paper is as follows. We check in Lemma 3.2 that
\[\sum_{j_1, \ldots, j_n=1} \ldots dk_1 \ldots dk_n = \sum_{j_1, \ldots, j_n=1,2} \ldots \int_{j_1, \ldots, j_n} \Psi = \sum_{j_1, \ldots, j_n=1,2} \ldots \int_{j_1, \ldots, j_n} \]
if and only if
\[\Psi \in D(N^{k/2}). \]

Thus in order to prove Theorem 1.7 it is enough to show that \(\psi_\gamma \in D(a(k_1) \ldots a(k_l)) \) for almost every \((k_1, \ldots, k_l) \in \mathbb{R}^l\), and
\[\sum_{j_1, \ldots, j_n=1} \ldots dk_1 \ldots dk_n < \infty \]
holds for all \(l \geq 0 \). One subtlety to show 1.14 is that we do not assume \(\mathcal{I} < \infty \). Bach-Fröhlich-Sigal [5] proved 1.14 for \(l = 1 \). We extend it to \(l \geq 1 \).

To see (1.14) for all \(l \) we make a detour through the modified annihilation operator defined by
\[b(k, j) = a(k, j) - i \frac{e}{\sqrt{2}}(x \cdot e(k, j)) \frac{e^{-ik \cdot x}}{\sqrt{\omega(k)}} \hat{\phi}(k). \]

For some \(\Psi \in \mathcal{H} \) we establish in Lemma 3.6 that
\[\|a(k_1) \ldots a(k_n)\|_{\mathcal{H}} \leq \sum_{l=0}^n \sum_{(p_1, \ldots, p_l) \subset (1, \ldots, n)} \prod_{j=1}^l \frac{e^{i\hat{\phi}(p_j)}}{\sqrt{2\omega(p_j)}} \|b(k_1) \ldots b(p_j) \ldots b(k_n)\|_{\mathcal{H}} \|x^m \Psi\|_{\mathcal{H}}, \quad (1.15) \]

where \(\hat{\phi} \) means neglecting the term below, and \(\sum_{(p_1, \ldots, p_l) \subset (1, \ldots, n)} \) denotes to sum up all the combinations to choose \(l \) numbers from \(\{1, 2, \ldots, n\} \). In Lemma 3.7 we show that there exist constants \(c_k^{n,l} \) such that
\[\sum_{l=0}^n \sum_{k=1}^{n-l} c_k^{n,l} \|N^{k/2} |x^{m+l}| \Psi\|_{\mathcal{H}}^2, \quad (1.16) \]

Combining (1.15) and (1.16), we see in Lemma 3.8 that
\[\sum_{l=0}^n \sum_{k=1}^{n-l} c_k^{n,l} \|N^{k/2} |x^{m+l}| \Psi\|_{\mathcal{H}}^2, \quad (1.17) \]
with some constants \(d^n_l\), where

\[
\mathcal{R}_{n,m}(\Psi) = \sum_{l=0}^{n} \sum_{k=1}^{n-l} c^n_{k,l} \|N^{k/2}|x|^{m+l}\Psi\|_H^2.
\]

Furthermore if \(\psi_g \in D(N^{k/2})\) then we see that

\[
N^{k/2}\psi_g = e^{-tH}e^{tE}N^{k/2}\psi_g + e^{tE}[N^{k/2}, e^{-tH}]\psi_g,
\]

where

\[E = \inf \sigma(H).\]

Using this identity we show in Lemma 2.12 that if \(\psi_g \in D(N^{k/2})\) then for all \(l \geq 0\),

\[
|x|^l\psi_g \in D(N^{k/2}). \tag{1.18}
\]

Under these preparations we prove Theorem 1.7 by means of an induction. Let us assume that

\[
\psi_g \in D(N^{(n-1)/2}). \tag{1.19}
\]

Hence

\[
\sum \|a(k_1)...a(k_l)\psi_g\|_H^2 dk_1...dk_l < \infty, \quad l = 1,2,...,n-1. \tag{1.20}
\]

Then we see that by (1.19),

\[
\sum_{l=1}^{n} d^n_l \mathcal{R}_{n-l,l}(\psi_g) < \infty.
\]

Moreover by using pull through formula (2.14) we prove in Lemma 3.4 that

\[
\|b(k_1)...b(k_n)\psi_g\|_H \leq \sum_{p=1}^{n} \delta_1(k_p)\|b(k_1)...b(k_p)...b(k_n)|x|+1\psi_g\|_H
\]

\[+
\sum_{p=1}^{n} \sum_{q<p} \delta_2(k_p, k_q)\|b(k_1)...b(k_q)...b(k_p)...b(k_n)|x|\psi_g\|_H \tag{1.21}
\]

with

\[\delta_1 \in L^2(\mathbb{R}^3), \quad \delta_2 \in L^2(\mathbb{R}^3 \times \mathbb{R}^3).\]

By (1.16), (1.18) and assumption (1.19), we show that

\[
\sum \|b(k_1)...b(k_n)\psi_g\|_H dk_1...dk_n < \infty.
\]
Hence by (1.17) we have
\[\sum_{k_1, \ldots, k_n} \|a(k_1) \ldots a(k_n) \psi_g \|^2_H dk_1 \ldots dk_n \]
\[\leq 2^n \left\{ \sum_{k_1, \ldots, k_n} \|b(k_1) \ldots b(k_n) \psi_g \|^2_H dk_1 \ldots dk_n + \sum_{l=1}^n d_l R_{n-l,l}(\psi_g) \right\} < \infty, \]
which implies, together with (1.20), that
\[\psi_g \in D(N^{n/2}). \]

Since \(\psi_g \in D(N^{1/2}) \) is known, we obtain
\[\psi_g \in \bigcap_{k=1}^{\infty} D(N^{k/2}). \]

This paper is organized as follows. In Section 2 we establish (1.21) by means of the pull-through formula. In Section 3 we give a proof of the main theorems. In Section 4 we show (1.18) by virtue of a functional integral representation.

2 Pull-through formula and exponential decay

2.1 Fundamental facts

Let \(T \) be an operator. We set
\[C^\infty(T) = \bigcap_{k=1}^{\infty} D(T^k). \]

Lemma 2.1 We have \(\psi_g \in C^\infty(\Delta) \cap C^\infty(D_\Omega). \)

Proof: By Proposition 1.4, \(D(H) = D(\Delta) \cap D(H_\Omega) \). Then \(\psi_g \in D(H) \), which implies \(\psi_g \in D(\Delta) \). By Proposition 1.5 (2) it holds that \(\psi_g \in C^\infty(\Delta) \). It is obtained in [8] that \(H_\Omega^l(\Delta) \) is bounded for all \(l \geq 0 \). Recall that \(E = \inf \sigma(H) \). Then it follows that for arbitrary \(l \geq 0 \),
\[\|H^l \psi_g\| = \|H^l(\Delta - i)^{-l} (E - i)^l \psi_g\| \leq \|(E - i)^l\| \|H^l(\Delta - i)^{-l}\| \||\psi_g\| \).

Then \(\psi_g \in D(H_\Omega^l) \) for all \(l \geq 0 \). Thus the lemma follows. \(\square \)

Let
\[\mathcal{F}_{\omega} = \mathcal{L}\{a^*(f_1,j_1) \ldots a^*(f_n,j_n) \Omega, \Omega | f_j \in C^\infty_0(\mathbb{R}^3), j = 1, \ldots, n, n = 0, 1, \ldots \}, \]
where $\mathcal{L}\{\ldots\}$ denotes the set of the finite linear sum of $\{\ldots\}$. We define

$$
\mathcal{D} = C^\infty(|x|) \cap C^\infty(H_t),
$$

and

$$
\mathcal{C} = C_0^\infty(\mathbb{R}^3) \otimes \mathcal{F}_\omega.
$$

Lemma 2.2 Let $m \geq 0$ and $n \geq 0$. Then $(H_t + 1)^n + |x|^m$ is self-adjoint on $D((H_t + 1)^n) \cap D(|x|^m)$ and essentially self-adjoint on \mathcal{C}.

Proof: The self-adjointness is trivial. Since $C_0^\infty(\mathbb{R}^3)$ and \mathcal{F}_ω are the set of analytic vectors of $|x|^m$ and $(H_t + 1)^n$ respectively, $C_0^\infty(\mathbb{R}^3)$ and \mathcal{F}_ω are cores of $|x|^m$ and $(H_t + 1)^n$ respectively. Hence $\mathcal{C} = C_0^\infty(\mathbb{R}^3) \otimes \mathcal{F}_\omega$ is a core of $(H_t + 1)^n + |x|^m$. □

Remark 2.3 Let $p, q \geq 0$. From Lemma 2.2 it follows that for $\Psi \in \mathcal{D} \subset D((H_t + 1)^p + |x|^q)$ there exists a sequence $\{\Psi_m\} \subset \mathcal{C}$ such that $\Psi_m \to \Psi$ and $((H_t + 1)^p + |x|^q)\Psi_m \to ((H_t + 1)^p + |x|^q)\Psi$ strongly as $m \to \infty$.

Let $f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\})$, $j = 1, \ldots, n$, and $\Psi \in \mathcal{C}$. Then it is well known and easily proven that

$$
\sum_{j=1}^n \prod_{i=1}^n f_j(k_j)\|a(k_1)\ldots a(k_n)\Psi\|_{\mathcal{H}} dk_1 \ldots dk_n \leq \epsilon(f_1, \ldots, f_n)\|(H_t + 1)^{n/2}\Psi\|_{\mathcal{H}} \quad (2.1)
$$

with some constant $\epsilon(f_1, \ldots, f_n)$ independent of Ψ.

Let A and B be operators. We say $f \in D(AB)$ if $f \in D(B)$ and $Bf \in D(A)$.

Lemma 2.4 Let $\Psi \in \mathcal{D}$. Then there exists $\mathcal{M}_\mathcal{D}(\Psi) \subset \mathbb{R}^{3n}$ with the Lebesgue measure zero such that

$$
\Psi \in D(a(k_1)\ldots a(k_n)) \quad (2.2)
$$

and

$$
a(k_1)\ldots a(k_n)\Psi \in \mathcal{D} \quad (2.3)
$$

for $(k_1, \ldots, k_n) \notin \mathcal{M}_\mathcal{D}(\Psi)$. Moreover assume that $\{\Psi_m\} \subset \mathcal{C}$ satisfies that $\Psi_m \to \Psi$ and $(H_t + 1)^{n/2}\Psi_m \to (H_t + 1)^{n/2}\Psi$ strongly as $m \to \infty$. Then there exists a subsequence $\{m'\} \subset \{m\}$ and $\mathcal{M}_\mathcal{D}(\Psi, \{\Psi_m\}, \{m'\}) \subset \mathbb{R}^{3n}$ with the Lebesgue measure zero such that for $(k_1, \ldots, k_n) \notin \mathcal{M}_\mathcal{D}(\Psi, \{\Psi_m\}, \{m'\})$, (2.2) and (2.3) are valid and

$$
s - \lim_{m' \to \infty} a(k_1)\ldots a(k_n)\Psi_{m'} = a(k_1)\ldots a(k_n)\Psi.
$$
Proof: See Appendix A.

Lemma 2.5 The operator $|x|$ leaves \mathcal{D} invariant.

Proof: Let $\Psi \in \mathcal{D}$. It is clear that $|x|\Psi \in C^\infty(|x|)$. We choose a sequence $\{\Psi_m\} \subset \mathcal{C}$ such that $\Psi_m \to \Psi$ and $((H_t + 1)^{2n} + |x|^2)\Psi_m \to ((H_t + 1)^{2n} + |x|^2)\Psi$ strongly as $m \to \infty$. In particular

$$|x|\Psi_m \to |x|\Psi$$

strongly as $m \to \infty$. $H^n_t|x|\Psi_m$ is well defined and it is obtained that

$$\|H^n_t|x|\Psi_m\|^2_{\mathcal{H}} \leq \|H^n_{2n}\Psi_m\|^2_{\mathcal{H}}\|\Psi_m\|^2_{\mathcal{H}} \leq \|(H_t + 1)^{2n} + |x|^2\|=\Psi_m\|^2_{\mathcal{H}}.$$

Then $H^n_t|x|\Psi_m$ converges strongly as $m \to \infty$. Since H^n_t is closed, by (2.4) we have $|x|\Psi \in D(H^n_t)$. Here n is arbitrary, hence $|x|\Psi \in C^\infty(H_t)$. The proof is complete. \square

Let

$$\beta(k) = \frac{e^{i\beta(k)}e^{-ix\cdot k}}{\sqrt{2\sqrt{\omega(k)}}}$$

and

$$b(k) = e^{i\beta(k)}a(k) - i\beta(k).$$

For simplicity we set $-ix \cdot \beta(k_j) = \theta_j$. Then

$$b(k_j) = a(k_j) + \theta_j.$$

Lemma 2.6 Let $\Psi \in \mathcal{C}$ and $f_j \in C^\infty_0(\mathbb{R}^3 \setminus \{0\})$, $j = 1, \ldots, n$. Then there exists a constant $c'(f_1, \ldots, f_n)$ independent of Ψ such that

$$\sum |\prod_{j=1}^n f_j(k_j)||b(k_1)\cdots b(k_n)\Psi|_{\mathcal{H}}dk_1\cdots dk_n \leq c'(f_1, \ldots, f_n)||((H_t + 1)^{2n} + |x|^2)\Psi||_{\mathcal{H}}.$$ (2.5)

Proof: Since $[\theta_j, a(k)] = 0$ on \mathcal{C}, we have

$$b(k_1)\cdots b(k_n)\Psi = (a(k_1) + \theta_1)\cdots(a(k_n) + \theta_n)\Psi$$

$$= \sum_{p_1=0}^n \cdots \sum_{p_n=0}^n \theta_{p_1}\cdots\theta_{p_n}\hspace{1cm}a(k_1)p_1\cdots\cdots\cdots a(k_n)p_n.$$

Hence by (2.1),

$$\sum |\prod_{j=1}^n f_j(k_j)||b(k_1)\cdots b(k_n)\Psi|_{\mathcal{H}}dk_1\cdots dk_n$$
\[\leq \sum_{l=0}^{n} \sum_{\{p_1, \ldots, p_l\} \subseteq \{1, \ldots, n\}} \left(\prod_{i=1}^{l} \frac{|e^{\hat{\varphi}(k)}|}{\sqrt{2\omega(k)}} f_{p_i}(k) \right) \times e(f_1, \ldots, \hat{f}_{p_1}, \ldots, \hat{f}_{p_l}, \ldots, f_n) \| (H_f + 1)^{(n-l)/2} |x|^l \Psi \|_H. \]

Since \(\| (H_f + 1)^{(n-l)/2} |x|^l \Psi \|_H \leq c_n \| ((H_f + 1)^n + |x|^{2n}) \Psi \|_H \) with some constant \(c_n \).

Thus (2.5) follows. \(\square \)

Lemma 2.7 Let \(\Psi \in \mathcal{D} \). Then there exists \(\mathcal{N}_D(\Psi) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero such that
\[\Psi \in D(b(k_1) \ldots b(k_n)) \quad (2.6) \]
and
\[b(k_1) \ldots b(k_n) \Psi \in \mathcal{D} \quad (2.7) \]
for \((k_1, \ldots, k_n) \notin \mathcal{N}_D(\Psi) \). Moreover assume that \(\{\Psi_m\} \subset \mathcal{C} \) satisfies that \(\Psi_m \to \Psi \) and \(((H_f + 1)^n + |x|^{2n}) \Psi_m \to ((H_f + 1)^n + |x|^{2n}) \Psi \) strongly as \(m \to \infty \). Then there exists a subsequence \(\{m'\} \subset \{m\} \) and \(\mathcal{N}_D(\Psi, \{\Psi_m\}, \{m'\}) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero such that for \((k_1, \ldots, k_n) \notin \mathcal{N}_D(\Psi, \{\Psi_m\}, \{m'\}) \), (2.6) and (2.7) are valid and
\[s - \lim_{m' \to \infty} b(k_1) \ldots b(k_n) \Psi_{m'} = b(k_1) \ldots b(k_n) \Psi. \]

Proof: See Appendix A.

2.2 Pull-through formula

Lemma 2.8 We have
\[\mathcal{C} \subset D(Hb(k_1) \ldots b(k_n)) \cap D(b(k_1) \ldots b(k_n)H) \quad (2.8) \]
for all \((k_1, \ldots, k_n) \in \mathbb{R}^{3n} \), and for \(\Psi \in \mathcal{C} \),
\[[H, b(k_1) \ldots b(k_n)]\Psi = \mathcal{R}_0 \Psi + \mathcal{R}_1 \Psi + \mathcal{R}_2 \Psi. \]

Here
\[\mathcal{R}_0 = \mathcal{R}_0(k_1, \ldots, k_n) = -\sum_{p=1}^{n} \omega(k_p) b(k_1) \ldots b(k_n), \]
\[\mathcal{R}_1 = \mathcal{R}_1(k_1, \ldots, k_n) = \sum_{p=1}^{n} \varphi_1(k_p) b(k_1) \ldots \hat{b}(k_p) \ldots b(k_n), \]
\[R_2 = R_2(k_1, \ldots, k_n) = \sum_{p=1}^{n} \sum_{q<p} \vartheta_2(k_p, k_q) b(k_1) \ldots b(k_q) \ldots b(k_p) \ldots b(k_n), \]

and

\[\vartheta_1(k) = \vartheta_1(k, x, p) = \frac{i}{2} \left\{ (x \cdot \beta(k)) k \cdot (p - eA) + k \cdot (p - eA) (x \cdot \beta(k)) \right\} - i \omega(k) (x \cdot \beta(k)), \]

\[\vartheta_2(k, k') = \vartheta_2(k, k', x) = (x \cdot \beta(k))(x \cdot \beta(k'))(k \cdot k'). \]

Proof: (2.8) is trivial. On \(C \) we have

\[[H, b(k)] = -\omega(k) b(k) + \vartheta_1(k). \tag{2.9} \]

Moreover

\[[b(k'), \vartheta_1(k)] = \vartheta_2(k, k'). \tag{2.10} \]

By (2.9) and (2.10) we have

\[
[H, b(k_1) \ldots b(k_n)] \Psi = \sum_{p=1}^{n} b(k_1) \ldots \{ -\omega(k_p) b(k_p) + \vartheta_1(k_p) \} \ldots b(k_n) \Psi
\]

\[= - \sum_{p=1}^{n} \omega(k_p) b(k_1) \ldots b(k_n) \Psi + \sum_{p=1}^{n} \vartheta_1(k_p) b(k_1) \ldots b(k_p) \ldots b(k_n) \Psi
\]

\[+ \sum_{p=1}^{n} \sum_{q<p} \vartheta_2(k_p, k_q) b(k_1) \ldots b(k_q) \ldots b(k_p) \ldots b(k_n) \Psi. \]

The lemma follows. \(\square \)

\(\overline{B} \) denotes the closure of \(B \). We simply set \(\overline{R_1} = \overline{R_1|_C}. \)

Lemma 2.9 Let \(\Psi \in D \cap D(\Delta) \). Then there exists \(N(\Psi) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero such that for \((k_1, \ldots, k_n) \notin N(\Psi),\)

\[\Psi \in D(R_0(k_1, \ldots, k_n)) \cap D(\overline{R_1}(k_1, \ldots, k_n)) \cap D(R_2(k_1, \ldots, k_n)). \]

Proof: By Lemma 2.7, \(\Psi \in D(b(k_1) \ldots b(k_n)) \) and \(b(k_1) \ldots b(k_n) \Psi \in D \) for \((k_1, \ldots, k_n) \notin N_D(\Psi). \) Thus \(b(k_1) \ldots b(k_n) \Psi \in D(\sum_{p=1}^{n} \omega(k_p)) \cap D(\vartheta_2(k_p, k_q)), \) which implies that \(\Psi \in D(R_0(k_1, \ldots, k_n)) \cap D(R_2(k_1, \ldots, k_n)). \) Next we shall prove \(D(\overline{R_1}(k_1, \ldots, k_n)) \ni \Psi. \)

Simply we set \(K_n = ((H + 1)^n + |x|^{2n}). \) We have on \(C \)

\[R_1 = \sum_{p=1}^{n} i x \cdot \beta(k_p)(k_p \cdot p) b(k_1) \ldots b(k_q) \ldots b(k_p) \ldots b(k_n) + \sum_{p=1}^{n} R_x(k_p) b(k_1) \ldots b(k_p) \ldots b(k_n), \]
where
\[R_x(k_p) = (-ie)(x \cdot \beta(k_p))(k \cdot A) - \frac{i}{2}(i\beta(k_p) \cdot k_p + x \cdot \beta(k_p)|k_p|^2) - i\omega(k_p)(x \cdot \beta(k_p)). \]
It follows that for \(\Phi \in \mathcal{C} \),
\[\sum \int \prod_{j=1}^n f_j(k_j) R_x(k_p)b(k_1) \ldots b(k_p) \Phi \|_{\mathcal{H}} dk_1 \ldots dk_n \leq c_1 \| K_{m_1} \Psi \|_{\mathcal{H}} \]
with some constants \(c_1 \) and \(m_1 \), and
\[ix \cdot \beta(k_p)(k_p \cdot p)b(k_1) \ldots b(k_p) \Phi = ix \cdot \beta(k_p)b(k_1) \ldots b(k_p)(k_p \cdot p) \Phi \]
\[+ \sum_{q \neq p} R_x(k_p, k_q)b(k_1) \ldots b(k_q) \ldots b(k_p) \Phi, \quad (2.11) \]
where
\[R_x(k_p, k_q) = ix \cdot \beta(k_p) (-k_q \beta(k_q) + ix \cdot \beta(k_q)(k_p \cdot k_q)). \]
The second term of (2.11) is estimated as
\[\sum \int \prod_{j=1}^n f_j(k_j) \sum_{q \neq p} R_x(k_p, k_q)b(k_1) \ldots b(k_q) \ldots b(k_p) \Phi \|_{\mathcal{H}} dk_1 \ldots dk_n \]
\[\leq c_2 \| K_{m_2} \Psi \|_{\mathcal{H}} \]
with some constants \(c_2 \) and \(m_2 \). By (2.5) the first term of (2.11) is estimated as
\[\sum \int \prod_{j=1}^n f_j(k_j) (x \cdot \beta(k_p)) b(k_1) \ldots b(k_p) \Phi \|_{\mathcal{H}} dk_1 \ldots dk_n \]
\[\leq \epsilon'(f_1, \ldots, f_p, \ldots, f_n) \int |f(k_p)| \frac{|\tilde{\phi}(k_p)|}{2^{1/2} \sqrt{\omega(k_p)}} \| K_{n-1} |x| (k_p \cdot p) \Phi \|_{\mathcal{H}} dk_p. \]
Let \(Q = K_{n-1} \). Note that
\[\| Q |x|(k_p \cdot p) \Phi \|_{\mathcal{H}} = (|x|^2 Q^2 \Phi, (k_p \cdot p)^2 \Phi)_H + (\Phi, [(k_p \cdot p), Q^2|x|^2](k_p \cdot p) \Phi)_H. \]
Since \([(k_p \cdot p), |x|] = -i(k_p \cdot x)/|x| \), we have \([(k_p \cdot p), Q^2|x|^2] = k_p \cdot P \), where
\[P = 2 \left\{ (H_l + 1)^n(-i)x \frac{|x|}{|x|} + (-i)x(|x| + 1)^{2n-3} + (-i)x \frac{|x|}{|x|} (|x| + 1)^{2n-2} \right\}. \]
Then
\[\| Q |x|(k_p \cdot p) \Phi \|_{\mathcal{H}}^2 \leq |k_p|^2 \left(\| |x|^2 Q^2 \Phi \|_{\mathcal{H}} \| \Delta \Phi \|_{\mathcal{H}} + \| P \Phi \|_{\mathcal{H}} \| p \Phi \|_{\mathcal{H}} \right). \]
Hence
\[\|Q|x|(k_p \cdot p)\Phi\|_H \leq |k_p| (c_3\|K_{m_3}\Psi\|_H + c'\|\Delta\Phi\|_H) \]
follows with some constants \(c_3, c' \) and \(m_3 \). Thus for \(\Phi \in C \)
\[\sum_j \| \prod f_j(k_j)R_1(k_1, \ldots, k_n)\Phi \|_H dk_1 \ldots dk_n \leq c\|K_m\Phi\|_H + c'\|\Delta\Phi\|_H \quad (2.12) \]
follows with some constants \(c \) and \(m \). Set \(K = -\Delta + K_m = -\Delta + |x|^{2m} + (f + 1)^m \).
Then \(K \) is self-adjoint on \(D(-\Delta + |x|^{2m}) \cap D((f + 1)^m) \) and essentially self-adjoint on \(C \). Then for \(\Psi \in D \cap D(\Delta) \) there exists a sequence \(\{\Psi_l\} \subset C \) such that \(\Psi_l \to \Psi \) and \(K\Psi_l \to K\Psi \) strongly as \(l \to \infty \). By (2.12) it follows that
\[\sum_j \| \prod f_j(k_j)R_1(k_1, \ldots, k_n)\Psi_l \|_H dk_1 \ldots dk_n \leq c\|K_m\Psi_l\|_H + c'\|\Delta\Psi_l\|_H. \]

Then there exist \(\mathcal{N}_D(\Psi)' \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero and a subsequence \(\{l'\} \subset \{l\} \) such that \(\mathcal{R}_1(k_1, \ldots, k_n)\Psi_{l'} \) strongly converges as \(l' \to \infty \) for \((k_1, \ldots, k_n) \notin \mathcal{N}_D(\Psi)' \). Then \(\Psi \in D(\overline{\mathcal{R}_1(k_1, \ldots, k_n)}) \) for \((k_1, \ldots, k_n) \notin \mathcal{N}_D(\Psi)' \). Set
\[\mathcal{N}(\Psi) = \mathcal{N}_D(\Psi) \cup \mathcal{N}_D(\Psi)' \]
We get the desired results. \(\Box \)

The following lemma is a variant of the pull-through formula.

Lemma 2.10 For \((k_1, \ldots, k_n) \notin \mathcal{N}(\psi_g) \), the following (1), (2) and (3) hold;

1. \(\psi_g \in D(b(k_1)b(k_n)) \cap D(\mathcal{R}_0) \cap D(\overline{\mathcal{R}_1}) \cap D(\mathcal{R}_2) \),
2. \(b(k_1)b(k_n)\psi_g \in D(H) \),
3. \(\left(H - E + \sum_{p=1}^n \omega(k_p) \right) b(k_1)b(k_n)\psi_g = \overline{\mathcal{R}_1}\psi_g + \mathcal{R}_2\psi_g \quad (2.13) \)

In particular it follows that for \((k_1, \ldots, k_n) \notin \mathcal{N}(\psi_g) \) and \((k_1, \ldots, k_n) \neq (0, \ldots, 0) \),
\[b(k_1)b(k_n)\psi_g = \left(H - E + \sum_{p=1}^n \omega(k_p) \right)^{-1} \left(\overline{\mathcal{R}_1}\psi_g + \mathcal{R}_2\psi_g \right). \quad (2.14) \]
Proof: Note that \(\psi_g \in D \cap D(\Delta) = C^\infty(|x|) \cap C^\infty(H_t) \cap D(\Delta) \). Then (1) follows from Lemma 2.9. Since \(C \) is a core of \(H \), we have \(\phi_m \in D \) such that \(\phi_m \to \psi_g \) and \(H\phi_m \to H\psi_g = E\psi_g \) strongly as \(m \to \infty \). Then we have for \(\phi \in C \)

\[
(H\phi, b(k_1) \ldots b(k_n) \phi_m)_\mathcal{H} = \sum_{j=0,1,2} (\phi, R_j \phi_m)_\mathcal{H} + (\phi, b(k_1) \ldots b(k_n) H\phi_m)_\mathcal{H}.
\]

It follows that

\[
\lim_{m \to \infty} (H\phi, b(k_1) \ldots b(k_n) \phi_m)_\mathcal{H} = \lim_{n \to \infty} (b^*(k_n) \ldots b^*(k_1) H\phi, \phi_m)_\mathcal{H}
= (b^*(k_n) \ldots b^*(k_1) H\phi, \psi_g)_\mathcal{H} = (H\phi, b(k_1) \ldots b(k_n) \psi_g)_\mathcal{H}.
\]

\[
\lim_{m \to \infty} (\phi, R_j \phi_m)_\mathcal{H} = \lim_{m \to \infty} (R_j^* \phi, \psi_g)_\mathcal{H} = (R_j^* \phi, \psi_g)_\mathcal{H} = (\phi, R_j \psi_g)_\mathcal{H},
\]

and

\[
\lim_{m \to \infty} (\phi, b(k_1) \ldots b(k_n) H\phi_m)_\mathcal{H} = \lim_{n \to \infty} (b^*(k_n) \ldots b^*(k_1) \phi, H\phi_m)_\mathcal{H}
= (b^*(k_n) \ldots b^*(k_1) \phi, E\psi_g)_\mathcal{H} = (\phi, b(k_1) \ldots b(k_n) \psi_g)_\mathcal{H}.
\]

Hence

\[
(H\phi, b(k_1) \ldots b(k_n) \psi_g)_\mathcal{H} = \sum_{j=0,1,2} (\phi, R_j \psi_g)_\mathcal{H} + E(\phi, b(k_1) \ldots b(k_n) \psi_g)_\mathcal{H}.
\]

Then \(b(k_1) \ldots b(k_n) \psi_g \in D(H) \) and we have

\[
Hb(k_1) \ldots b(k_n) \psi_g = \sum_{j=0,1,2} R_j \psi_g + Eb(k_1) \ldots b(k_n) \psi_g.
\]

Note that \(R_0 \psi_g = R_0 \psi_g \) and \(R_2 \psi_g = R_2 \psi_g \). Then (2.13) follows. \(\square \)

2.3 Exponential decay of \(N^{k/2} \psi_g \)

Lemma 2.11 Suppose that \(\psi_g \in D(N^{k/2}) \). Then there exist positive constants \(D_k \), and \(\delta \) independent of \(k \) such that

\[
\|N^{k/2} \psi_g(x)\|_F \leq D_k e^{-\delta |x|^{m+1}}
\]

for almost every \(x \in \mathbb{R}^3 \). In particular \(N^{k/2} \psi_g \in D(e^{\delta |x|^{m+1}}) \).

The proof of Lemma 2.11 is based on a functional integral representation of \(e^{-tH} \). Essential ingredients of the proof have been obtained in [14]. The proof is, however, long and complicated. Then we move it to Appendix B.
Lemma 2.12 Suppose that \(\psi_g \in D(N^{k/2}) \). Then \(|x|^{l} \psi_g \in D(N^{k/2}) \) for all \(l \geq 0 \).

Proof: This lemma is immediately follows from Lemma 2.11 and the following fundamental lemma. \(\square \)

Lemma 2.13 Let \(\mathcal{K} \) be a Hilbert space, and \(A \) and \(B \) self-adjoint operators such that \([e^{-itsA}, e^{-isB}] = 0\) for \(s, t \in \mathbb{R} \). Suppose that \(\phi \in D(A) \cap D(B) \) and \(A\phi \in D(B) \). Then \(B\phi \in D(A) \) with \(AB\phi = BA\phi \).

Proof: It follows that \(t^{-1}(e^{-itA} - 1)e^{-isB}\phi = t^{-1}e^{-isB}(e^{-itA} - 1)\phi \). Take \(t \to 0 \) on the both sides. Then it follows that \(e^{-isB}\phi \in D(A) \) with \(Ae^{-isB}\phi = e^{-isB}A\phi \). From this identity we have \(s^{-1}A(e^{-isB} - 1)\phi = s^{-1}(e^{-isB} - 1)A\phi \). Take \(s \to 0 \) on the both sides. Since \(A \) is closed and assumption \(A\phi \in D(B) \), we see that \(B\phi \in D(A) \) and \(AB\phi = BA\phi \). \(\square \)

Proof of Lemma 2.12

In Lemma 2.13 we set \(\mathcal{K} = \mathcal{H} \), \(A = N^{k/2} \) and \(B = |x|^l \). Since \(\psi_g \in D(N^{k/2}) \cap D(|x|^l) \) and \(N^{k/2}\psi_g \in D(|x|^l) \) by Lemma 2.11, the lemma follows. \(\square \)

3 Proof of the main theorems

Lemma 3.1 The following statements are equivalent.

(1) \(\Psi \in D(a(k_1)...a(k_n)) \) for almost every \((k_1, ..., k_n) \in \mathbb{R}^{3n} \) and
\(\sum_{k_1}^{f} \|a(k_1)...a(k_n)\Psi\|_{H}dk_{1}...dk_{n} < \infty \). \hspace{1cm} (3.1)

(2) \(\Psi \in D(\prod_{j=1}^{n}(N - j + 1)^{1/2}) \).

Moreover if (1) or (2) is satisfied, then it holds that
\(\sum_{k_1}^{f} \|a(k_1)...a(k_n)\Psi\|_{H}dk_{1}...dk_{n} = \prod_{j=1}^{n}(N - j + 1)^{1/2}\Psi\|_{H}^{2} \).

Proof: We prove \((1) \implies (2) \). We identify \(\mathcal{H} \) as
\(\mathcal{H} \cong \bigoplus_{n=0}^{\infty} \mathcal{H}_{n} \). \hspace{1cm} (3.2)
where
\[\mathcal{H}_n = L^2(\mathbb{R}^3 \times (\mathbb{R}^3 \times \{1, 2\})^n_{sym}) \]

We note that
\[\left(\prod_{j=1}^{n} (N - j + 1)^{1/2} \Psi \right)^{(k)} = \begin{cases} 0, & k = 0, 1, \ldots, n - 1, \\ \sqrt{k(k - 1) \ldots (k - n + 1)} \Psi^{(k)}, & k \geq n. \end{cases} \]

Define \(\Psi_p = \oplus_{m=0}^{\infty} \Psi_p^{(m)} \in \mathcal{H} \) by
\[
\Psi_p^{(m)} = \begin{cases} \Psi^{(m)}, & m \leq p, \\ 0, & m > p. \end{cases} \tag{3.3}
\]

By the definition of \(a(k) \) we have
\[
(a(k_1) \ldots a(k_n) \Psi_p)^{(l)}(x, k_1', \ldots, k_l') = \sqrt{l + 1} \sqrt{l + 2} \ldots \sqrt{l + n} \Psi_p^{(l+n)}(x, k_1, \ldots, k_n, k_1', \ldots, k_l').
\]

Then
\[
\|a(k_1) \ldots a(k_n) \Psi_p\|_{\mathcal{H}}^2 = \sum_{l=0}^{\infty} (l + 1)(l + 2) \ldots (l + n) \sum_{k} \|\Psi_p^{(l+n)}(\cdot, k_1, \ldots, k_n, k_1', \ldots, k_l')\|_{L^2(\mathbb{R}^3)}^2 dk_1' \ldots dk_l'.
\]

By (1) we see that
\[
\lim_{p \to \infty} \|a(k_1) \ldots a(k_n) \Psi_p\|_{\mathcal{H}}^2 = \lim_{p \to \infty} \sum_{k} \|a(k_1) \ldots a(k_n) \Psi^{(k)}\|_{\mathcal{H}_k}^2.
\]

21
\[= \|a(k_1) \ldots a(k_n) \Psi\|^2_H \]

(3.6)

for almost every \((k_1, \ldots, k_n) \in \mathbb{R}^{3n}\), and

\[\|a(k_1) \ldots a(k_n) \Psi\|^2_H \in L^1(\mathbb{R}^{3n}). \]

Thus the Lebesgue dominated convergence theorem yields that

\[\lim_{p \to \infty} \sum_{j \in \mathbb{Z}} \|a(k_1) \ldots a(k_n) \Psi_p\|^2_H dk_1 \ldots dk_n < \infty. \]

Then from (3.5), it follows that

\[\lim_{p \to \infty} \sum_{j \in \mathbb{Z}} \|a(k_1) \ldots a(k_n) \Psi\|^2_H dk_1 \ldots dk_n < \infty. \]

Thus (2) follows.

We prove (2) \(\Rightarrow\) (1). By (3.5) and (2) we see that

\[\lim_{p \to \infty} \sum_{j \in \mathbb{Z}} \|a(k_1) \ldots a(k_n) \Psi_p\|^2_H dk_1 \ldots dk_n < \infty, \]

and by (3.4), \(\|a(k_1) \ldots a(k_n) \Psi\|^2_H\) is increasing in \(p\). Then we have by the Lebesgue monotone convergence theorem,

\[\lim_{p \to \infty} \sum_{j \in \mathbb{Z}} \|a(k_1) \ldots a(k_n) \Psi_p\|^2_H dk_1 \ldots dk_n = \sum_{j \in \mathbb{Z}} \lim_{p \to \infty} \|a(k_1) \ldots a(k_n) \Psi_p\|^2_H dk_1 \ldots dk_n < \infty. \]

(3.7)

Then (1) follows from (3.6).

\[\square \]

Lemma 3.2 The following statements are equivalent.

(1) \(\Psi \in D(a(k_1) \ldots a(k_n))\) for almost every \((k_1, \ldots, k_n) \in \mathbb{R}^{3n}\) and

\[\sum_{j \in \mathbb{Z}} \|a(k_1) \ldots a(k_n) \Psi\|^2_H dk_1 \ldots dk_n < \infty \]

for \(n = 1, 2, \ldots, k\).

(2) \(\Psi \in D(N^{k/2})\).

Proof: By Lemma 3.1, it is enough to show that

\[\bigcap_{k=1}^{n} D\left(\prod_{j=1}^{k} (N - j + 1)^{1/2}\right) = D(N^{k/2}). \]
Assume that
\[\Psi \in \bigcap_{k=1}^{n} D(\prod_{j=1}^{k} (N^n - j + 1)^{1/2}). \] (3.8)

Let \(\Psi_p \) be defined by (3.3). Let \(W_n = \prod_{j=1}^{n} (N - j + 1) \). For example
\(N = W_1, N^2 = W_2 + W_1, N^3 = W_3 + 3W_2 + W_1, N^4 = W_4 + 6W_3 + 7W_2 + W_1 \), etc. One can inductively see that there exist constants \(a_j, j = 1, \ldots, k \), such that on \(\mathcal{F}_0 \),
\[N^k = \sum_{j=1}^{n} a_j W_j. \]

Then it follows that
\[\| N^{k/2} \Psi_p \|_{\mathcal{H}}^2 = a_1 \| W_1^{1/2} \Psi_p \|_{\mathcal{H}}^2 + a_2 \| W_2^{1/2} \Psi_p \|_{\mathcal{H}}^2 + \cdots + a_k \| W_k^{1/2} \Psi_p \|_{\mathcal{H}}^2. \] (3.9)

As \(n \to \infty \), from (3.8) it follows that the right hand side of (3.9) converges to
\[a_1 \| W_1^{1/2} \Psi \|_{\mathcal{H}}^2 + a_2 \| W_2^{1/2} \Psi \|_{\mathcal{H}}^2 + \cdots + a_k \| W_k^{1/2} \Psi \|_{\mathcal{H}}^2. \]

Since
\[\| N^{k/2} \Psi \|_{\mathcal{H}}^2 = \lim_{p \to \infty} \sum_{k=0}^{p} \| (N^{k/2} \Psi)^{(k)} \|_{\mathcal{H}}^2 = \lim_{p \to \infty} \| N^{k/2} \Psi_p \|_{\mathcal{H}}^2 < \infty, \]
\(\Psi \in D(N^{k/2}) \) follows. Then
\[\bigcap_{k=1}^{n} D(\prod_{j=1}^{k} (N^n - j + 1)^{1/2}) \subset D(N^{k/2}). \] (3.10)

Next we assume that
\[\Psi \in D(N^{k/2}). \]

Note that
\[\Psi \in \bigcap_{l=1}^{k} D(N^{l/2}). \]

It is seen that there exist constants \(b^n_l, l = 1, \ldots, n \), such that
\[\| \prod_{j=1}^{n} (N - j + 1)^{1/2} \Psi_p \|^{2} = (\Psi_p, \prod_{j=1}^{n} (N - j + 1) \Psi_p) \]
\[= (\Psi_p, N(N - 1)(N - 2) \cdots (N - n + 1) \Psi_p) \leq \sum_{l=1}^{n} b^n_l \| N^{l/2} \Psi_p \|^{2}. \] (3.11)
Take $p \to \infty$ on the both sides above. Then the right hand side of (3.11) converges to
\[
\sum_{l=1}^{n} b_{n}^{l} \| N^{l/2} \Psi \|^{2}.
\]
Hence
\[
\| \prod_{j=1}^{n} (N - j + 1)^{1/2} \Psi \|^{2}_{\mathcal{H}} = \lim_{p \to \infty} \sum_{k=0}^{p} \| \left(\prod_{j=1}^{n} (N - j + 1)^{1/2} \Psi \right)^{(k)} \|^{2}_{\mathcal{H}_{k}}
\]
\[
= \lim_{p \to \infty} \| \prod_{j=1}^{n} (N - j + 1)^{1/2} \Psi_{p} \|^{2}_{\mathcal{H}} < \infty.
\]
Thus $\Psi \in \cap_{k=1}^{n} D(\prod_{j=1}^{n} (N - j + 1)^{1/2})$. We obtain
\[
\bigcap_{k=1}^{n} D(\prod_{j=1}^{n} (N - j + 1)^{1/2}) \supset D(N^{k/2}). \tag{3.12}
\]
The lemma follows from (3.10) and (3.12). \hfill \box

We set
\[
\mathcal{R}_{\omega} = \mathcal{R}_{\omega}(k_{1}, \ldots, k_{n}) = \left(H - E + \sum_{p=1}^{n} \omega(k_{p}) \right)^{-1}.
\]

Lemma 3.3 There exist $\delta_{1}(\cdot) \in L^{2}(\mathbb{R}^{3})$ and $\delta_{2}(\cdot, \cdot) \in L^{2}(\mathbb{R}^{3} \times \mathbb{R}^{3})$ such that for $\Psi \in \mathcal{D}$,
\[
\| \mathcal{R}_{\omega} \varphi_{1}(k_{q}) \Psi \|_{\mathcal{H}} \leq \delta_{1}(k_{q}) \| (|x| + 1) \Psi \|_{\mathcal{H}}, \tag{3.13}
\]
and
\[
\| \mathcal{R}_{\omega} \varphi_{2}(k_{q}, k_{p}) \Psi \|_{\mathcal{H}} \leq \delta_{2}(k_{q}, k_{p}) \| |x|^{2} \Psi \|_{\mathcal{H}}. \tag{3.14}
\]

Proof: By the closed graph theorem there exists a constant C such that
\[
\| (-\Delta + H_{I}) \Psi \|_{\mathcal{H}} \leq C \| (H + 1) \Psi \|_{\mathcal{H}}.
\]
First we shall prove that $\mathcal{R}_{\omega}(p \cdot k_{q})$ and $\mathcal{R}_{\omega}(A \cdot k_{q})$ are bounded with
\[
\| \mathcal{R}_{\omega}(p \cdot k_{q}) \| \leq c_{1}(k_{q}) \tag{3.15}
\]
and
\[
\| \mathcal{R}_{\omega}(A \cdot k_{q}) \| \leq c_{2}(k_{q}), \tag{3.16}
\]
where $c_{1}(k_{q}) = \sqrt{(|k_{q}| + |1 + E|)C}$ and $c_{2}(k_{q}) = \sqrt{2} (c_{1}(k_{q}) + 1) (2 \| \varphi/\omega \| + \| \varphi/\sqrt{\omega} \|)$. Let $\Psi \in \mathcal{C}$. Since
\[
\| (p \cdot k_{q}) \Psi \|^{2}_{\mathcal{H}} \leq |k_{q}|^{2} \| (\Psi, C(H + 1) \Psi) \| \leq |k_{q}|^{2} C \left\{ \| (H - E)^{1/2} \Psi \|^{2}_{\mathcal{H}} + |1 + E| \| \Psi \|^{2}_{\mathcal{H}} \right\},
\]
we see that
\[\| (p \cdot k_q) R_\omega \Psi \|^2_{L^2} \leq C |k_q| \| \Psi \|^2_{L^2} + C |1 + E \| \Psi \|^2_{L^2}. \]
Thus (3.15) follows. Note that
\[\| a(f, j) \Psi \|_\mathcal{H} \leq \| f / \sqrt{\omega} \| \| H_1^{1/2} \Psi \|_F, \]
and
\[\| a^*(f, j) \Psi \|_F \leq \| f / \sqrt{\omega} \| \| H_1^{1/2} \Psi \|_F + \| f \| \| \Psi \|_F. \]
Since
\[\| (A \cdot k_q) \Psi \|_\mathcal{H} \leq \sqrt{2} |k_q| \left(2 \| \tilde{\varphi} / \omega \| + \| \tilde{\varphi} / \sqrt{\omega} \| \right) \left(\| H_1^{1/2} \Psi \|_\mathcal{H} + \| \Psi \|_\mathcal{H} \right) \]
and
\[\| H_1^{1/2} \Psi \|_\mathcal{H}^2 \leq C (\Psi, (H + 1) \Psi)_\mathcal{H} \leq C \| (H - E)^{1/2} \Psi \|^2_{\mathcal{H}} + C |1 + E \| \| \Psi \|^2_{\mathcal{H}}, \]
we have
\[|k_q|^2 \| H_1^{1/2} R_\omega \Psi \|^2_{L^2} \leq C |k_q| \| \Psi \|^2_{L^2} + C |1 + E \| \| \Psi \|^2_{L^2}. \]
Hence
\[\| (A \cdot k_q) R_\omega \Psi \|_\mathcal{H} \leq \sqrt{2} \left(2 \| \tilde{\varphi} / \omega \| + \| \tilde{\varphi} / \sqrt{\omega} \| \right) \left(\| H_1^{1/2} \Psi \|_\mathcal{H} + |k_q| \| R_\omega \Psi \|_\mathcal{H} \right) \]
\[\leq \sqrt{2} \left\{ \sqrt{(|k_q| + |1 + E|)C + 1} \right\} \left(2 \| \tilde{\varphi} / \omega \| + \| \tilde{\varphi} / \sqrt{\omega} \| \right) \| \Psi \|_\mathcal{H}. \]
Thus (3.16) follows. We have on \(\mathcal{C} \)
\[\Phi_1(k) = i(p - eA) \cdot k(x \cdot \beta(k)) + \frac{i}{2} \left(i \beta(k) \cdot k + x \cdot \beta(k) |k|^2 \right) - i \omega(k)(x \cdot \beta(k)). \]
Then by (3.15) and (3.16) we have for \(\Psi \in \mathcal{C}, \)
\[\| R_\omega i(p - eA) \cdot k_p, (x \cdot \beta(k_p)) \Psi \|_\mathcal{H} \leq (c_1(k_p) + |e|c_2(k_p)) \frac{|e| \| \tilde{\varphi}(k_p) \|}{\sqrt{2} \omega(k_p)} \| x \| \| \Psi \|_{L^2}, \]
\[\| R_\omega (-i \omega(k_p)(x \cdot \beta(k_p))) \Psi \|_\mathcal{H} \leq \frac{|e|}{\sqrt{2} \omega(k_p)} \| \tilde{\varphi}(k_p) \| \| x \| \| \Psi \|_{L^2}, \]
and
\[\| R_\omega \frac{i}{2} \left(i \beta(k_p) \cdot k_p + x \cdot \beta(k_p) |k_p|^2 \right) \Psi \|_\mathcal{H} \leq \frac{1}{2} \frac{|e|}{\sqrt{2} \omega(k_p)} \left(\| \tilde{\varphi}(k_p) \| \| \Psi \|_{L^2} + \| \tilde{\varphi}(k_p) \| \| x \| \| \Psi \|_{L^2} \right). \]
Since $\|\hat{\varphi}\| < \infty$, $\|\sqrt{\omega}\hat{\varphi}\| < \infty$ and $\|\hat{\varphi}/\omega\| < \infty$, (3.13) follows for $\Psi \in \mathcal{C}$. By a limiting argument it can be extended for $\Psi \in \mathcal{D}$. (3.14) is rather easier than (3.13). We have for $\Psi \in \mathcal{C}$,

$$
\|R_\omega \varphi_2(k_p, k_q)\psi\|_{\mathcal{H}} \leq \frac{c^2}{2} \sqrt{\omega(k_p)\omega(k_q)|\hat{\varphi}(k_q)\hat{\varphi}(k_p)||x|^2\Psi\|_{\mathcal{H}}.
$$

Thus the lemma follows from a limiting argument and $\|\sqrt{\omega}\hat{\varphi}\| < \infty$. \hfill \Box

From Lemma 3.3 the next lemma immediately follows.

Lemma 3.4 For almost every $(k_1, \ldots, k_n) \in \mathbb{R}^{3n}$ it follows that

$$
\psi_g \in D(b(k_1) \ldots b(k_n)) \cap \bigcap_{p=1}^n D(b(k_1) \ldots b(k_p)(|x| + 1)) \cap \bigcap_{q \leq p} D(b(k_1) \ldots b(k_q) \ldots b(k_p)(|x|^2))
$$

and

$$
\|b(k_1) \ldots b(k_n)\psi_g\|_{\mathcal{H}} \leq \sum_{p=1}^n \delta_1(k_p)\|b(k_1) \ldots b(k_p) \ldots b(k_n)(|x| + 1)\psi_g\|_{\mathcal{H}}
$$

$$
+ \sum_{p=1}^n \sum_{q < p} \delta_2(k_p, k_q)\|b(k_1) \ldots b(k_q) \ldots b(k_p) \ldots b(k_n)|x|^2\psi_g\|_{\mathcal{H}}.
$$

Proof: Note that for $(k_1, \ldots, k_n) \notin \mathcal{N}(\psi_g)$ and $(k_1, \ldots, k_n) \neq (0, \ldots, 0),

$$
b(k_1) \ldots b(k_n)\psi_g = R_\omega(k_1, \ldots, k_n)R_1(k_1, \ldots, k_n)\psi_g + R_\omega(k_1, \ldots, k_n)R_2(k_1, \ldots, k_n)\psi_g.
$$

Let $\Psi \in \mathcal{C}$ and $f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\})$, $j = 1, \ldots, n$. It is obtained that

$$
\sum_{j=1}^n \prod_{j=1}^n f_j(k_j)\|R_\omega(k_1, \ldots, k_n)R_1(k_1, \ldots, k_n)\psi\|_{\mathcal{H}dk_1 \ldots dk_n}
$$

$$
\leq \sum_{p=1}^n \prod_{j=1}^n f_j(k_j)\|\delta_1(k_p)\|b(k_1) \ldots b(k_p) \ldots b(k_n)(|x| + 1)\psi\|_{\mathcal{H}dk_1 \ldots dk_n}.
$$

(3.18)

Similarly we obtain that

$$
\sum_{j=1}^n \prod_{j=1}^n f_j(k_j)\|R_\omega(k_1, \ldots, k_n)R_2(k_1, \ldots, k_n)\psi\|_{\mathcal{H}dk_1 \ldots dk_n}
$$

$$
\leq \sum_{p=1}^n \prod_{j=1}^n f_j(k_j)\|\delta_2(k_p, k_q)\|b(k_1) \ldots b(k_q) \ldots b(k_p) \ldots b(k_n)|x|^2\psi\|_{\mathcal{H}dk_1 \ldots dk_n}.
$$

(3.19)
We choose a sequence \(\{ \Psi_m \} \subset C \) such that \(\Psi_m \to \psi_g \) and \((H_1 + 1)^K + |x|^{2K} \Psi_m \to (H_1 + 1)^K + |x|^{2K} \psi_g\) strongly as \(m \to \infty \) for sufficiently large \(K \). Note that \(|x|^j \Psi_m \to |x|^j \Psi\) and \(((H_1 + 1)^n + |x|^{2n}) |x|^j \Psi_m \to ((H_1 + 1)^n + |x|^{2n}) |x|^j \Psi\) strongly as \(m \to \infty \) for \(j = 1, 2 \), since \(K \) is sufficiently large. By Lemma 2.7 there exists a subsequence \(\{ m' \} \subset \{ m \} \) such that for almost every \((k_1, \ldots, k_n) \in \mathbb{R}^n \), (3.17) follows and

\[
\begin{align*}
&b(k_1)\ldots b(k_n) \Psi_{m'} \to b(k_1)\ldots b(k_n) \psi_g, \\
&\quad b(k_1)\ldots \hat{b}(k_p)\ldots b(k_n) (|x| + 1) \Psi_{m'} \to b(k_1)\ldots \hat{b}(k_p)\ldots b(k_n) (|x| + 1) \psi_g,
\end{align*}
\]

and

\[
\begin{align*}
&b(k_1)\ldots \hat{b}(k_q)\ldots b(k_p)\ldots b(k_n) |x|^2 \Psi_{m'} \to b(k_1)\ldots \hat{b}(k_q)\ldots b(k_p)\ldots b(k_n) |x|^2 \psi_g
\end{align*}
\]

strongly as \(m' \to \infty \). Moreover

\[
\sum_{j=1}^{n} | \prod_{j=1}^{n} f_j(k_j) \delta_1(k_p) ||b(k_1)\ldots \hat{b}(k_p)\ldots b(k_n) (|x| + 1) \Psi_{m'} ||_{H} dk_1 \ldots dk_n
\]

\[
\leq \left(\int \delta_1(k_p) |f_p(k_p)| dk_p \right) e' \left(f_1, \ldots, \hat{f}_p, \ldots, f_n \right) \|((H_1 + 1)^{n-1} + |x|^{2n-2})(|x| + 1) \Psi_{m'} \|_{H}
\]

and

\[
\sum_{j=1}^{n} | \prod_{j=1}^{n} f_j(k_j) \delta_2(k_p, k_q) ||b(k_1)\ldots \hat{b}(k_q)\ldots b(k_p)\ldots b(k_n) |x|^2 \Psi_{m'} ||_{H} dk_1 \ldots dk_n
\]

\[
\leq \left(\int \delta_2(k_p, k_q) |f_p(k_p)| f_q(k_q) dk_p dk_q \right)
\]

\[
\times e' \left(f_1, \ldots, \hat{f}_p, \ldots, \hat{f}_q, \ldots, f_n \right) \|((H_1 + 1)^{n-2} + |x|^{2n-2}) |x|^2 \Psi_{m'} \|_{H}.
\]

Then we have by (3.18) and (3.19)

\[
\sum_{j=1}^{n} | \prod_{j=1}^{n} f_j(k_j) ||b(k_1)\ldots b(k_n) \Psi_{m'} ||_{H} dk_1 \ldots dk_n
\]

\[
\leq \sum_{j=1}^{n} \sum_{p=1}^{n} | \prod_{j=1}^{n} f_j(k_j) \delta_1(k_p) ||b(k_1)\ldots \hat{b}(k_p)\ldots b(k_n) (|x| + 1) \Psi_{m'} ||_{H} dk_1 \ldots dk_n
\]

\[
+ \sum_{p=1}^{n} \sum_{q<p} \sum_{j=1}^{n} | \prod_{j=1}^{n} f_j(k_j) \delta_2(k_p, k_q) ||b(k_1)\ldots \hat{b}(k_q)\ldots b(k_p)\ldots b(k_n) |x|^2 \Psi_{m'} ||_{H} dk_1 \ldots dk_n
\]

\[
\leq C' \|((H_1 + 1)^K + |x|^{2K}) \Psi_{m'} \|_{H} \leq C'' \|((H_1 + 1)^K + |x|^{2K}) \psi_g \|_{H}
\]

27
with some constant C and C'. Thus by the Lebesgue dominated convergence theorem
and (3.20), (3.21) and (3.22), we have

$$\sum_{j=1}^{n} \prod_{j=1}^{n} f_j(k_j) \|b(k_1)\ldots b(k_n)\psi_g\|_\mathcal{H} dk_1\ldots dk_n$$

$$\leq \sum_{p=1}^{n} \sum_{j=1}^{n} f_j(k_j) \delta_1(k_p) \|b(k_1)\ldots b(k_p)\|_\mathcal{H} dk_1\ldots dk_n$$

$$+ \sum_{p=1}^{n} \sum_{q<p}^{n} f_j(k_j) \delta_2(k_q, k_p) \|b(k_1)\ldots b(k_p)\|_\mathcal{H} dk_1\ldots dk_n$$

Since $f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\})$, $j = 1,\ldots, n$, are arbitrary, the lemma follows. \qed

Lemma 3.5 Let $\Psi \in \mathcal{D}$. Then for almost every $(k_1,\ldots, k_n) \in \mathbb{R}^{3n}$ it follows that

$$\Psi \in D(b(k_1)\ldots b(k_n)) \bigcap_{l=0}^{\infty} \bigcap_{(p_1,\ldots, p_l) \subset \{1,\ldots, n\}} D(a(k_1)\ldots a(k_{p_1})\ldots a(k_{p_l})\ldots a(k_n)|x|^l)$$

and

$$\|b(k_1)\ldots b(k_n)\psi\|_\mathcal{H}$$

$$\leq \sum_{l=0}^{n} \sum_{(p_1,\ldots, p_l) \subset \{1,\ldots, n\}} \prod_{j=1}^{l} \frac{c_2(k_{p_j})}{\sqrt{2\omega(k_{p_j})}} \|a(k_1)\ldots a(k_{p_1})\ldots a(k_{p_l})\ldots a(k_n)|x|^l\psi\|_\mathcal{H}. \quad (3.23)$$

Proof: Take a sequence $\{\Psi_m\} \subset \mathcal{C}$ such that $\Psi_m \to \Psi$ and $(H_1^K + |x|^{2K} + 1)\Psi_m \to (H_1^K + |x|^{2K} + 1)\Psi$ strongly as $m \to \infty$ for sufficiently large K. (3.23) is valid for Ψ replaced by Ψ_m, since

$$b(k_1)\ldots b(k_n)\Psi_m = (a(k_1) + \theta_1)\ldots (a(k_n) + \theta_n)\Psi_m$$

$$= \sum_{l=0}^{n} \sum_{(p_1,\ldots, p_l) \subset \{1,\ldots, n\}} \theta_{p_1}\ldots \theta_{p_l} a(k_1)\ldots a(k_{p_1})\ldots a(k_{p_l})\ldots a(k_n)\Psi_m.$$

Note that $|x|^l\Psi_m \to |x|^l\Psi$ and $((H_1 + 1)^n + |x|^{2n})|x|^l\Psi_m \to ((H_1 + 1)^n + |x|^{2n})|x|^l\Psi$ strongly as $m \to \infty$, since K is sufficiently large. By Lemmas 2.4 and 2.7 there exists a subsequence $\{m'\} \subset \{m\}$ such that for almost every $(k_1,\ldots, k_n) \in \mathbb{R}^{3n}$,

$$b(k_1)\ldots b(k_n)\Psi_{m'} \to b(k_1)\ldots b(k_n)\Psi$$

and

$$a(k_1)\ldots a(k_{p_1})\ldots a(k_{p_l})\ldots a(k_n)|x|^l\Psi_{m'} \to a(k_1)\ldots a(k_{p_1})\ldots a(k_{p_l})\ldots a(k_n)|x|^l\Psi.$$

Thus the proof is complete. \qed

28
Lemma 3.6 Let $\Psi \in \mathcal{D}$. Then for almost every $(k_1, \ldots, k_n) \in \mathbb{R}^n$,
\[
\Psi \in D(a(k_1) \ldots a(k_n)) \cap \{x_{l=0}^n \cap \{(p_1, \ldots, p_l) \in \{1, \ldots, n\} \mid D(b(k_1) \ldots b(k_{p_1}) \ldots b(k_{p_l}) \ldots b(k_n)|x|^l]\}
\]
and
\[
\|a(k_1) \ldots a(k_n)\| \leq \sum_{l=0}^n \sum_{\{(p_1, \ldots, p_l) \in \{1, \ldots, n\}\}} \prod_{j=1}^l \left| e_{\mathcal{F}}(k_{p_j}) \right| \|b(k_1) \ldots b(k_{p_1}) \ldots b(k_{p_l}) \ldots b(k_n)|x|^l\|_\mathcal{H}.
\]

Proof: Note $b(k_1) \ldots b(k_n) = (a(k_1) - \theta_1) \ldots (a(k_n) - \theta_n)$. The lemma is proven in the similar way as Lemma 3.5. \(\square\)

Lemma 3.7 Suppose that $|x|^z \Psi \in D(N^{n/2}) \cap \mathcal{D}$ for $z = m, m+1, \ldots, m+n$. Then there exist constants $c_k^{n,l}$ such that
\[
\mathcal{P} \int \|b(k_1) \ldots b(k_n)|x|^m\|_\mathcal{H}^2 dk_1 \ldots dk_n \leq \sum_{l=0}^n \sum_{k=1}^{n-l} c_k^{n,l} \|N^{k/2}|x|^{m+l}\|_\mathcal{H}^2.
\] (3.24)

Proof: We have by Lemma 3.5 and $|\sum_{j=1}^N x_j|^2 \leq N \sum_{j=1}^N x_j^2$,
\[
\mathcal{P} \int \|b(k_1) \ldots b(k_n)|x|^m\|_\mathcal{H}^2 dk_1 \ldots dk_n \leq 2^n \sum_{l=0}^n \sum_{\{(p_1, \ldots, p_l) \in \{1, \ldots, n\}\}} \left(\left\| \frac{e_{\mathcal{F}}}{\sqrt{2\omega}} \right\| \right)^l \times
\]
\[
\times \mathcal{P} \int \|a(k_1) \ldots a(k_{p_1}) \ldots a(k_{p_l}) \ldots a(k_n)|x|^{m+l}\|_\mathcal{H}^2 dk_1 \ldots dk_{p_1} \ldots dk_{p_l} \ldots dk_n.
\]
By the assumption it follows that $|x|^{m+l}\Psi \in D(N^{n/2})$. Thus we see that
\[
\mathcal{P} \int \|a(k_1) \ldots a(k_{p_1}) \ldots a(k_{p_l}) \ldots a(k_n)|x|^{m+l}\|_\mathcal{H}^2 dk_1 \ldots dk_{p_1} \ldots dk_{p_l} \ldots dk_n
\]
\[
= \prod_{j=1}^{n-l} (N - j + 1)^{1/2} |x|^{m+l}\Psi \|_\mathcal{H}^2 \leq \sum_{l=0}^{n-l} a_{k}^{n,l} \|N^{k/2}|x|^{m+l}\|_\mathcal{H}^2
\]
with some constants $a_{k}^{n,l}$. Then
\[
\mathcal{P} \int \|b(k_1) \ldots b(k_n)|x|^m\|_\mathcal{H}^2 dk_1 \ldots dk_n
\]
\[
\leq \sum_{l=0}^n \sum_{\{(p_1, \ldots, p_l) \in \{1, \ldots, n\}\}} \left(\left\| \frac{e_{\mathcal{F}}}{\sqrt{2\omega}} \right\| \right)^l \sum_{k=1}^{n-l} a_{k}^{n,l} \|N^{k/2}|x|^{m+l}\|_\mathcal{H}^2.
\]
Hence we conclude (3.24). \(\square\)

We set the right hand side of (3.24) by $\mathcal{R}_{n,m}(\Psi)$, i.e.,
\[
\mathcal{R}_{n,m}(\Psi) = \sum_{l=0}^n \sum_{k=1}^{n-l} c_k^{n,l} \|N^{k/2}|x|^{m+l}\|_\mathcal{H}^2.
\]
Lemma 3.8 Let $\Psi \in D$. Then there exist constants d^n_l such that

$$\sum \|a(k_1)...a(k_n)\Psi\|_{H}^2 dk_1...dk_n$$

$$\leq 2^n \left\{ \sum \|b(k_1)...b(k_n)\Psi\|_{H}^2 dk_1...dk_n + \sum_{l=1}^{n} d^n_l \mathcal{R}_{n-l,l}(\Psi) \right\}.$$

Proof: We have by Lemma 3.6,

$$\sum \|a(k_1)...a(k_n)\Psi\|_{H}^2 dk_1...dk_n \leq 2^n \sum_{l=0}^{n} \sum_{\{p_1,...,p_l\} \subset \{1,...,n\}} \left(\left\| \frac{e^\phi}{\sqrt{2\omega}} \right\|^2 \right)^l \times$$

$$\times \int \|b(k_1)...b(k_{p_1})...b(k_{p_l})b(k)\|_{H}^2 dk_1...dk_{p_1}...dk_{p_l}...dk_n. \quad (3.25)$$

The term with $l = 0$ in (3.25) is just $\sum \|b(k_1)...b(k_n)\Psi\|_{H}^2 dk_1...dk_n$. The lemma follows from Lemma 3.7. \hfill \Box

Proof of Theorem 1.7

We prove the theorem by means of an induction. It is known that

$$\psi_g \in D(N^{1/2}).$$

Suppose that

$$\psi_g \in D(N^{(n-1)/2}).$$

Then by Lemma 3.2,

$$\sum \|a(k_1)...a(k_l)\psi_g\|_{H}^2 dk_1...dk_n < \infty, \quad l = 1, 2, ..., n-1, \quad (3.26)$$

and by Lemma 2.12,

$$\|N^{l/2}|x|^m \psi_g\|_H < \infty \quad (3.27)$$

follows for all $m \geq 0$ and $l \leq n-1$. By Lemma 3.8

$$\sum \|a(k_1)...a(k_n)\psi_g\|_{H}^2 dk_1...dk_n$$

$$\leq 2^n \left\{ \sum \|b(k_1)...b(k_n)\psi_g\|_{H}^2 dk_1...dk_n + \sum_{l=1}^{n} d^n_l \mathcal{R}_{n-l,l}(\Psi) \right\}.$$

By (3.27) we see that

$$\mathcal{R}_{n-l,l}(\Psi) < \infty.$$
From Lemma 3.4 it follows that
\[
\sum_{k_1=1}^{n} \sum_{k_n=1}^{n} \| b(k_1) \cdots b(k_n) \psi_g \|_{H}^2 dk_1 \cdots dk_n \\
\leq \delta_1 \sum_{p=1}^{n} \sum_{k_p=1}^{n} \| b(k_1) \cdots \hat{b}(k_p) \cdots b(k_n) (|x| + 1) \psi_g \|_{H}^2 dk_1 \cdots \hat{dk}_p \cdots dk_n \\
+ \delta_2 \sum_{p=1}^{n} \sum_{q=p+1}^{n} \sum_{k_q=1}^{n} \sum_{k_p=1}^{n} \| b(k_1) \cdots \hat{b}(k_q) \cdots \hat{b}(k_p) \cdots b(k_n) |x|^2 \psi_g \|_{H}^2 dk_1 \cdots \hat{dk}_q \cdots \hat{dk}_p \cdots dk_n, \tag{3.28}
\]
where \(\delta_1 = \int \delta_1(k) dk \) and \(\delta_2 = \int \delta_2(k, k') dk dk' \). Then the right hand side of (3.28) is finite by Lemma 3.7. Hence
\[
\sum_{k_1=1}^{n} \sum_{k_n=1}^{n} \| a(k_1) \cdots a(k_n) \psi_g \|_{H}^2 dk_1 \cdots dk_n < \infty
\]
follows, which implies, together with (3.26), that
\[
\psi_g \in D(N^{n/2})
\]
by Lemma 3.2. Thus the theorem follows. \(\square \)

Proof of Theorem 1.9

This follows from Theorem 1.7 and Lemma 2.11. \(\square \)

4 Appendix

4.1 Appendix A

Lemma 4.1 Let \(\Psi \in D(H_t^{n/2}) \). Then there exists \(\mathcal{M}(\Psi) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero such that
\[
\Psi \in D(a(k_1) \cdots a(k_n)) \tag{4.1}
\]
for \((k_1, \ldots, k_n) \not\in \mathcal{M}(\Psi) \). Moreover assume that \(\{\Psi_m\} \subset \mathcal{C} \) satisfies that \(\Psi_m \to \Psi \) and \((H_t + 1)^{n/2} \Psi_m \to (H_t + 1)^{n/2} \Psi \) strongly as \(m \to \infty \). Then there exists a subsequence \(\{m'\} \subset \{m\} \) and \(\mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero such that (4.1) follows and
\[
\lim_{m' \to \infty} a(k_1) \cdots a(k_n) \Psi_{m'} = a(k_1) \cdots a(k_n) \Psi
\]
for \((k_1, \ldots, k_n) \not\in \mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) \).
Proof: We fix a sequence \(\{ \Psi_m \} \). The lemma is proven inductively. Note that
\[
\| (H_l + 1)^p \Psi \| \leq \| (H_l + 1)^q \Psi \| \quad (4.2)
\]
for \(p \leq q \). By (2.1) we see that
\[
\sum_j |f_1(k_1)||a(k_1)\Psi_m\|_\mathcal{H}dk_1 \leq \epsilon(f_1)(H_l + 1)^{1/2}\Psi_m\|_\mathcal{H} \quad (4.3)
\]
for arbitrary \(f_1 \in C^\infty_0(\mathbb{R}^3 \setminus \{0\}) \). The right hand side of (4.3) converges as \(m \to \infty \) by (4.2). Then the left hand side of (4.3) is a Cauchy sequence. Then there exist \(N_1(\Psi) \subset \mathbb{R}^3 \) with the Lebesgue measure zero and a subsequence \(\{m_1\} \subset \{m\} \) such that \(a(k)\Psi_{m_1}\) converges strongly as \(m_1 \to \infty \) for \(k_1 \not\in N_1(\Psi) \). Since \(a(k_1) \) is closed, it follows that for \(k_1 \not\in N_1(\Psi) \), \(\Psi \in D(a(k_1)) \) and
\[
s - \lim_{m_1 \to \infty} a(k_1)\Psi_{m_1} = a(k_1)\Psi.
\]
For \(\Psi_{m_1} \) we have by (2.1)
\[
\sum_j |f_1(k_1)f_2(k_2)||a(k_1)a(k_2)\Psi_{m_1}\|_\mathcal{H}dk_1dk_2 \leq \epsilon(f_1,f_2)(H_l + 1)^{1/2}\Psi_{m_1}\|_\mathcal{H}
\]
for arbitrary \(f_1, f_2 \in C^\infty_0(\mathbb{R}^3 \setminus \{0\}) \). Then we also see that there exist \(N_2(\Psi) \subset \mathbb{R}^3 \times \mathbb{R}^3 \) with the Lebesgue measure zero and a subsequence \(\{m_2\} \subset \{m_1\} \) such that \(a(k_1)a(k_2)\Psi_{m_2}\) converges strongly as \(m_2 \to \infty \) for \((k_1, k_2) \not\in N_2(\Psi) \). Since \(a(k_2)\Psi_{m_2} \to a(k_2)\Psi \) strongly as \(m_2 \to \infty \) for \(k_2 \not\in N_1(\Psi) \) and \(a(k_1) \) is closed, we see that for \((k_1, k_2) \not\in N_2(\Psi) \cup [\mathbb{R}^3 \times N_1(\Psi)] \), \(a(k_2)\Psi \in D(a(k_1)) \) and
\[
s - \lim_{m_2 \to \infty} a(k_1)a(k_2)\Psi_{m_2} = a(k_1)a(k_2)\Psi.
\]
Repeating this procedure we see that there exist subsets \(N_j(\Psi) \subset \mathbb{R}^{3j} \), \(j = 1, \ldots, n \), with the Lebesgue measure zero and subsequences \(\{m_n\} \subset \{m_{n-1}\} \subset \ldots \subset \{m\} \) such that for \((k_1, \ldots, k_n) \not\in N_n(\Psi) \), \(a(k_1)\ldots a(k_n)\Psi_{m_n} \) converges strongly as \(m_n \to \infty \) and \(a(k_2)\ldots a(k_n)\Psi_{m_n} \to a(k_2)\ldots a(k_n)\Psi \) strongly as \(m_n \to \infty \) for \((k_2, \ldots, k_n) \not\in N_{n-1}(\Psi) \cup [\mathbb{R}^3 \times N_{n-2}(\Psi)] \cup \ldots \cup [\mathbb{R}^{3(n-2)} \times N_1(\Psi)] \). Let
\[
\mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) = N_n(\Psi) \cup [\mathbb{R}^3 \times N_{n-1}(\Psi)] \cup \ldots \cup [\mathbb{R}^{3(n-1)} \times N_1(\Psi)]
\]
Since \(a(k_1) \) is closed, we see that for \((k_1, \ldots, k_n) \not\in \mathcal{M}_p(\Psi, \{\Psi_m\}, \{m'\}) \),
\[
a(k_2)\ldots a(k_n)\Psi \in D(a(k_1))
\]
and
\[s - \lim_{\substack{m \to \infty}} a(k_1) \ldots a(k_n) \Psi_{m} = a(k_1) \ldots a(k_n) \Psi. \]

Thus the proof is complete. \(\square\)

We define \(\text{ad}_A^l(B)\) by \(\text{ad}^0_A(B) = B\) and \(\text{ad}_A^l(B) = [A, \text{ad}_A^{l-1}(B)]\). Note that on \(\mathcal{F}_\omega\)
\[
[H^l, a(k_1) \ldots a(k_n)] = \sum_{l=1}^p \left(\begin{array}{c} p \\ l \end{array} \right) \text{ad}_{H^l}^l(a(k_1) \ldots a(k_n)) H^{p-l},
\]
\[
\text{ad}_{H^l}^l(a(k_1) \ldots a(k_n)) = \sum_{p_1=0}^{l-p_1} \sum_{p_2=0}^{l-p_2} \cdots \sum_{p_n=0}^{l-p_n} \left(\begin{array}{c} l \\ p_1 \\ p_2 \\ \vdots \\ p_n \end{array} \right) \left(l - p_1 \right) \left(l - p_2 \right) \cdots \left(l - \sum_{i=1}^{n-1} p_i \right)
\]
\[
\times \text{ad}_{H^l}^{p_1}(a(k_1)) \text{ad}_{H^l}^{p_2}(a(k_2)) \cdots \text{ad}_{H^l}^{p_n}(a(k_n)),
\]
and
\[
\text{ad}_{H^l}^l(a(k)) = (-1)^p \omega(k)^p a(k).
\]

Hence we have
\[
[H^p, a(k_1) \ldots a(k_n)] = \sum_{l=1}^p \left(\begin{array}{c} p \\ l \end{array} \right) \sum_{p_1=0}^{l-p_1} \sum_{p_2=0}^{l-p_2} \cdots \sum_{p_n=0}^{l-p_n} \left(\begin{array}{c} l \\ p_1 \\ p_2 \\ \vdots \\ p_n \end{array} \right) \left(l - p_1 \right) \left(l - p_2 \right) \cdots \left(l - \sum_{i=1}^{n-1} p_i \right)
\]
\[
\times (-1)^l \omega(k_1)^{p_1} \omega(k_2)^{p_2} \ldots \omega(k_n)^{p_n} a(k_1) \ldots a(k_n).
\] (4.4)

Lemma 4.2 Let \(\Psi \in C^\infty(H_t)\). Then there exists \(\mathcal{M}_\infty(\Psi) \subset \mathbb{R}^{3n}\) with the Lebesgue measure zero such that for \((k_1, \ldots, k_n) \notin \mathcal{M}_\infty(\Psi)\),
\[
\Psi \in D(a(k_1) \ldots a(k_n))
\]
and
\[
a(k_1) \ldots a(k_n) \Psi \in C^\infty(H_t).
\]

Proof: Let \(\{\Psi_m\} \subset \mathcal{C}\) be such that \(\Psi_m \to \Psi\) and \((H_t + 1)^q \Psi_m \to (H_t + 1)^q \Psi\) strongly as \(m \to \infty\) for \(q = (n/2) + p\). In particular, \((H_t + 1)^{n/2} \Psi_m \to (H_t + 1)^{n/2} \Psi\) strongly as \(m \to \infty\). By Lemma 4.1, there exists a subsequence \(\{m'\} \subset \{m\}\) such that for \((k_1, \ldots, k_n) \notin \mathcal{M}(\Psi, \{\Psi_m\}, \{m'\})\),
\[
\Psi \in D(a(k_1) \ldots a(k_n))
\]
and
\[
\lim_{m' \to \infty} a(k_1) \ldots a(k_n) \Psi_{m'} = a(k_1) \ldots a(k_n) \Psi.
\] (4.5)
We reset \(m' \) as \(m \). By (4.4), for \(f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\}) \), \(j = 1, \ldots, n \),

\[
\sum_j \left| \prod f_j(k_j) \right| ||H_t^p a(k_1) \ldots a(k_n) \Psi_m||_H dk_1 \ldots dk_n \leq \sum_j \left| \prod f_j(k_j) \right| ||a(k_1) \ldots a(k_n) H_t^p \Psi_m||_H dk \\
+ \sum_{l=1}^p \frac{p^l}{l} \sum_{p_1=0} \sum_{p_2=0} \cdots \sum_{p_{n-1}=0} \frac{1}{p} \left(\frac{l-1}{p_1} \right) \left(\frac{l-1}{p_2} \right) \cdots \left(\frac{l-1}{p_{n-1}} \right) \times \sum_j \left| \prod f_j(k_j) \omega(k_j)^{p_j} \right| ||a(k_1) \ldots a(k_n) H_t^{n-l} \Psi_m||_H dk_1 \ldots dk_n \\
\leq \varepsilon(f_1, \ldots, f_n) ||(H_t + 1)^{n/2} H_t^p \Psi_m||_H \\
+ \sum_{l=1}^p \frac{p^l}{l} \sum_{p_1=0} \sum_{p_2=0} \cdots \sum_{p_{n-1}=0} \frac{1}{p} \left(\frac{l-1}{p_1} \right) \left(\frac{l-1}{p_2} \right) \cdots \left(\frac{l-1}{p_{n-1}} \right) \times \varepsilon(\omega^{p_1} f_1, \ldots, \omega^{p_n} f_n) ||(H_t + 1)^{n/2} H_t^{(p-l)} \Psi_m||_H \\
\leq C ||(H_t + 1)^{(n/2) + p} \Psi_m||_H
\tag{4.6}
\]

with some constant \(C \). The right hand side of (4.6) converges strongly as \(m \to \infty \). Since \(f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\}) \), \(j = 1, \ldots, n \), are arbitrary, there exist \(N_p(\Psi) \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero and a subsequence \(\{m'\} \subset \{m\} \) such that \(H_t^p a(k_1) \ldots a(k_n) \Psi_{m'} \) strongly converges as \(m' \to \infty \) for \((k_1, \ldots, k_n) \notin N_p(\Psi) \). Since \(H_t^p \) is closed, we obtain by (4.5) that

\[a(k_1) \ldots a(k_n) \Psi \in D(H_t^p) \]

for \((k_1, \ldots, k_n) \notin \Omega_p = N_p(\Psi) \cup \mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) \). Define

\[\mathcal{M}_\infty(\Psi) = \bigcup_p \Omega_p. \]

Then it follows that \(a(k_1) \ldots a(k_n) \Psi \in C^\infty(H_t) \) for \((k_1, \ldots, k_n) \notin \mathcal{M}_\infty \). \(\square \)

Proof of Lemma 2.4

Let \(\{\Psi_m\} \subset \mathcal{C} \) be such that \(\Psi_m \to \Psi \) and \(((H_t + 1)^{n/2} + |x|^{2p}) \Psi_m \to ((H_t + 1)^{n/2} + |x|^{2p}) \Psi \) strongly as \(m \to \infty \). From Lemma 4.2 it follows that for \((k_1, \ldots, k_n) \notin \mathcal{M}_\infty(\Psi) \),

\[a(k_1) \ldots a(k_n) \Psi \in C^\infty(H_t) \]

34
and from Lemma 4.1

\[s - \lim_{m' \to \infty} a(k_1) \ldots a(k_n) \Psi_{m'} = a(k_1) \ldots a(k_n) \Psi \]

(4.7)

with some subsequence \(\{m'\} \) for \((k_1, \ldots, k_n) \not\in \mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) \). We reset \(m' \) as \(m \). Let \(f_j \in C_0^\infty(\mathbb{R}^3 \setminus \{0\}) \), \(j = 1, \ldots, n \). Since \(|x|^p, a(k_1) \ldots a(k_n) \Psi_m = 0 \), we have

\[
\left(\sum_{j=1}^{n} | \prod_{j=1}^{n} f_j(k_j)| |x|^p a(k_1) \ldots a(k_n) \Psi_m \right)_{H} dk_1 \ldots dk_n \leq \epsilon(f_1, \ldots, f_n)^2 \left\| |x|^p \Psi \right\|_{H} \leq \epsilon(f_1, \ldots, f_n)^2 \left\| (H_1 + 1) + |x|^p \right\|_{H} \Psi_m.
\]

Since the right hand side converges as \(m \to \infty \), there exist \(\mathbf{N}_p(\Psi)' \subset \mathbb{R}^{3n} \) with the Lebesgue measure zero and a subsequence \(\{m'\} \) such that \(|x|^p a(k_1) \ldots a(k_n) \Psi_{m'} \) strongly converge as \(m' \to \infty \) for \((k_1, \ldots, k_n) \in \mathbf{N}_p(\Psi)' \). Since \(|x|^p \) is closed and by (4.7),

\[a(k_1) \ldots a(k_n) \Psi \in D(|x|^p) \]

follows for \((k_1, \ldots, k_n) \not\in \Omega'_p = \mathbf{N}_p(\Psi)' \cup \mathcal{M}(\Psi, \{\Psi_m\}, \{m'\}) \). Then for \((k_1, \ldots, k_n) \not\in \cup_p \Omega'_p, \]

\[a(k_1) \ldots a(k_n) \Psi \in C^\infty(|x|). \]

Let

\[\mathcal{M}_{D}(\Psi, \{\Psi_m\}, \{m'\}) = \mathcal{M}_\infty(\Psi) \bigcup [\cup_p \Omega'_p]. \]

Then the lemma follows. \(\square \)

Proof of Lemma 2.6

Applying (2.5) instead of (2.1), we can show the lemma in the similar way as Lemmas 4.1, 4.2 and 2.4. \(\square \)

4.2 Appendix B

In this section we prove Lemma 2.11. In [14] we proved that \(e^{-tH} \) maps \(D(N^{k/2}) \) into itself for the case when \(V = 0 \). We extend this result for some nonzero potential \(V \).

We see that if \(\psi_g \in D(N^{k/2}) \) then the identity

\[N^{k/2} \psi_g = e^{-tH} e^{tE} N^{k/2} \psi_g + e^{tE} [N^{k/2}, e^{-tH}] \psi_g \]

(4.8)

is well defined. Using (4.8) we shall prove that \(\|N^{k/2} \psi_g(x)\|_\mathcal{F} \) decays exponentially. To see it we prepare some probabilistic notations.
It is known that there exist a probability space \((Q, \mu)\) and Gaussian random variables \((\phi(f), f \in \oplus^3 L^2_{\text{real}}(\mathbb{R}^3))\) such that
\[
\int_Q \phi(f) \phi(g) d\mu = \frac{1}{2} \sum_{\mu, \nu=1,2,3} \int_{\mathbb{R}^3} \left(\delta_{\mu} - \frac{k_\mu k_\nu}{|k|^2} \right) \tilde{f}_\mu(k) \tilde{g}_\nu(k) dk.
\]
For a general \(f \in \oplus^3 L^2(\mathbb{R}^3)\), we set \(\phi(f) = \phi(\Re f) + i\phi(\Im f)\). It is also known that there exists a unitary operator implementing \(1 \cong \Omega, L^2(Q) \cong \mathcal{F}\) and \(\phi(\oplus_{\nu=1}^3 \delta_{\mu \nu} \lambda(\cdot - x)) \cong \Lambda_\mu(x)\), where \(\lambda\) is the inverse Fourier transform of \(\tilde{\lambda} = \tilde{\phi} / \sqrt{\omega}\).

The free Hamiltonian in \(L^2(Q)\) corresponding to \(H_t\) in \(\mathcal{F}\) is denoted by \(\tilde{H}_t\). To have a functional integral representation of \(e^{-i\tilde{H}_t}\), we go through another probability space \((Q_0, \nu_0)\) and Gaussian random variables \((\phi_0(f), f \in \oplus^3 L^2_{\text{real}}(\mathbb{R}^4))\) such that
\[
\int_{Q_0} \phi_0(f) \phi_0(g) d\nu_0 = \frac{1}{2} \sum_{\mu, \nu=1,2,3} \int_{\mathbb{R}^4} \left(\delta_{\mu} - \frac{k_\mu k_\nu}{|k|^2} \right) \tilde{f}_\mu(k, k_0) \tilde{g}_\nu(k, k_0) dk dk_0.
\]
Here \(\phi_0(f)\) is also extended to \(f \in \oplus^3 L^2(\mathbb{R}^4)\) such as \(\phi(f)\). Let \(j_t : L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^4)\) be the isometry defined by
\[
\tilde{j}_t f(k, k_0) = \frac{e^{-itk_0}}{\sqrt{\pi}} \sqrt{\omega(k) / (\omega(k)^2 + |k_0|^2)} \tilde{f}(k)
\]
and \(J_t : L^2(Q) \to L^2(Q_0)\) by
\[
J_t \phi(f_1) \ldots \phi(f_n) := \phi_0([\oplus^3 j_t] f_1) \ldots \phi_0([\oplus^3 j_t] f_n),
\]
\[J_1 1 = 1.\]
Here \(\hat{X}\): denotes the Wick power of \(X\) inductively defined by
\[
\hat{x}(f) := \phi_x(f),
\]
\[
\hat{x}(f) \hat{x}(f_1) \ldots \hat{x}(f_n) := \phi_x(f) \hat{x}(f_1) \ldots \hat{x}(f_n);
\]
\[
- \sum_{j=1}^n (\phi_x(f_j) \hat{x}(f))_{L^2(Q_0)} \hat{x}(f_1) \ldots \hat{x}(f_j) \ldots \hat{x}(f_n),
\]
where \(Q_x = Q, Q_0\) and \(\phi_x = \phi, \phi_0\). Then \(J_t\) can be extended to an isometry and \(J^*_t J_s = e^{-|t-s|H_t}\) follows for \(t, s \in \mathbb{R}\). We identify \(\mathcal{H} = L^2(\mathbb{R}^3) \otimes \mathcal{F}\) with \(L^2(\mathbb{R}^3; L^2(Q))\). Under this identification \(\Psi \in \mathcal{H}\) can be regarded as \(L^2(Q)\)-valued \(L^2\)-function on \(\mathbb{R}^3\),
i.e., $\Psi(x) \in L^2(Q)$ for almost every $x \in \mathbb{R}^3$. In [14, Lemma 4.9] and [12] we established that

$$
\left(e^{-tH}\Psi \right)(x) = \mathbb{E}^Q_x \left(e^{-\int_0^t V(X_s)ds} \mathcal{J}_t\Psi(X_t) \right)
$$

for almost every $x \in \mathbb{R}^3$. Here $(X_t)_{t \geq 0} = (X_{1,t}, X_{2,t}, X_{3,t})_{t \geq 0} \in C([0, \infty); \mathbb{R}^3)$ denotes an \mathbb{R}^3-valued continuous path, \mathbb{E}^Q_x an $L^2(Q)$-valued expectation value with respect to the wiener measure P_x on $C([0, \infty); \mathbb{R}^3)$ with $P_x(X_0 = x) = 1$, and

$$
\mathcal{J}_t = \mathcal{J}_t(x, X.) : L^2(Q) \rightarrow L^2(Q)
$$

is given by

$$
\mathcal{J}_t = J^*_0 e^{-i\phi_0(K(x, X_0))} J_t,
$$

where $K(x, X.)$ is a $\oplus^3 L^2(\mathbb{R}^4)$-valued stochastic integral defined by

$$
K = K(x, X.) = \oplus_{\mu=1,2,3} \int_0^t j_{s\lambda}(\cdot - X_s) dX_{\mu,s}.
$$

Let N and N_0 be the number operators in $L^2(Q)$ and $L^2(Q_0)$, respectively. Note that

$$
J_t N = N_0 J_t
$$
on a dense domain. The expectation value with respect to P_x is denoted by \mathbb{E}_x. We show a fundamental inequality.

Lemma 4.3 Let $\xi = \xi(x, X.) = \|K(x, X.)\|_{\oplus^3 L^2(\mathbb{R}^4)}$. Then, for all $m \geq 0$,

$$
\mathbb{E}_x \left(\xi^{2m} \right) \leq \frac{3(2m)!}{2m} t^{m-1} \mathbb{E}_x \left(\int_0^t \| j_{s\lambda}(\cdot - X_s) \|_{L^2(\mathbb{R}^4)}^{2m} ds \right) = \frac{3(2m)!}{2m} t^m \| \hat{\phi}/\sqrt{\omega} \|_{2m}^{2m}. \quad (4.9)
$$

In particular $\sup_{x \in \mathbb{R}^3} \mathbb{E}_x (\xi^{2m}) < \infty$.

Proof: See [14, Theorem 4.6].

Lemma 4.4 For each $(x, X.) \in \mathbb{R}^3 \times C([0, \infty); \mathbb{R}^3)$ and $\Psi \in D(N^{k/2})$,

$$
\| [N^{k/2}, \mathcal{J}_t(x, X.)] \Psi \|_{L^2(Q)} \leq P_k(\xi) \| (N + 1)^{k/2} \Psi \|_{L^2(Q)},
$$

with some polynomial $P_k(\cdot)$.
Proof: Note that for each \((x,X), \mathcal{J}_t = \mathcal{J}_t(x,X)\) maps \(D(N^{k/2})\) into itself. We have

\[
\begin{aligned}
[N^{k/2}, \mathcal{J}_t] \Psi &= J_0^* e^{-ie\phi_0(K)} [e^{ie\phi_0(K)} N_0^{k/2} e^{-ie\phi_0(K)} - N_0^{k/2}] J_t \Psi \\
&= J_0^* e^{-ie\phi_0(K)} \left\{ \left(N_0 - e\phi'_0(K) + \frac{e^2}{2} \xi \right)^{k/2} - N_0^{k/2} \right\} J_t \Psi \\
&= -J_t N^{k/2} \Psi + J_0^* e^{-ie\phi_0(K)} \left\{ \left(N_0 - e\phi'_0(K) + \frac{e^2}{2} \xi \right)^{k/2} \right\} J_t \Psi,
\end{aligned}
\]

where \(\phi'_0(K) = i[N_0, \phi_0(K)]\). We see that

\[
\|J_t N^{k/2} \Psi\|_{L^2(Q)} \leq \|N^{k/2} \Psi\|_{L^2(Q)}.
\]

Note that

\[
\|\phi_0(K) \Psi\| \leq \sqrt{2} \xi \|(N_0 + 1)^{1/2} \Psi\|.
\]

Then it is obtained that

\[
\| \left(N_0 - e\phi'_0(K) + \frac{e^2}{2} \xi \right)^k J_t \Psi\|_{L^2(Q)} \leq R_k(\xi) \|(N + 1)^k \Psi\|_{L^2(Q)}
\]

with some polynomial \(R_k(\cdot)\). Then

\[
\|[N^{k/2}, \mathcal{J}_t] \Psi\|_{L^2(Q)} \leq R_k(\xi) \|(N + 1)^{k/2} \Psi\|_{L^2(Q)} + \|N^{k/2} \Psi\|_{L^2(Q)}
\]

\[
\leq (R_k(\xi) + 1) \|(N + 1)^{k/2} \Psi\|_{L^2(Q)}.
\]

Thus the proof is complete.

Proposition 4.5 Let \(1 \leq p \leq \infty\) and \(a \geq 0\). Then there exists a constant \(c_p = c_p(a)\) such that

\[
\sup_{x \in \mathbb{R}^3} \left| \mathbb{E}_x \left(e^{-a \int_0^t V(X_s) ds} f(X_t) \right) \right| \leq c_p \|f\|_{L^p(\mathbb{R}^3)}.
\]

Proof: See [23, Theorem B.1.1].

Lemma 4.6 We see that \(e^{-tH}\) maps \(D(N^{k/2})\) into itself.
Proof: Let \(\Phi, \Psi \in D(N^{k/2}) \). We have
\[
(N^{k/2}\Phi, e^{-tH}\Psi)_{\mathcal{H}} = \int \left((N^{k/2}\Phi)(x), \mathbb{E}_x^Q \left(e^{-\int_0^t V(X_s)ds} \mathcal{J}_t\Psi(X_t) \right) \right)_{L^2(Q)} dx
\]
\[
= \int \mathbb{E}_x \left\{ (N^{k/2}\Phi(x), \mathcal{J}_t\Psi(X_t))_{L^2(Q)} e^{-\int_0^t V(X_s)ds} \right\} dx.
\]
Then
\[
(N^{k/2}\Phi, e^{-tH}\Psi)_{\mathcal{H}} = \int \mathbb{E}_x \left\{ \left(\Phi(x), \mathcal{J}_tN^{k/2}\Psi(X_t) \right)_{L^2(Q)} e^{-\int_0^t V(X_s)ds} \right\} dx
\]
\[
+ \int \mathbb{E}_x \left\{ \left(\Phi(x), [N^{k/2}, \mathcal{J}_t]\Psi(X_t) \right)_{L^2(Q)} e^{-\int_0^t V(X_s)ds} \right\} dx.
\]
Hence we have by Lemma 4.4
\[
|(N^{k/2}\Phi, e^{-tH}\Psi)_{\mathcal{H}}| \leq \int \mathbb{E}_x \left(e^{-\int_0^t V(X_s)ds} \| \Phi(x) \|_{L^2(Q)} \| N^{k/2}\Psi(X_t) \|_{L^2(Q)} \right) dx \tag{4.11}
\]
\[
+ \int \mathbb{E}_x \left(P_k(\xi)e^{-\int_0^t V(X_s)ds} \| \Phi(x) \|_{L^2(Q)} \| (N + 1)^{k/2}\Psi(X_t) \|_{L^2(Q)} \right) dx. \tag{4.12}
\]
The first term (4.11) is estimated as
\[
(4.11) = \left(\| \Phi(\cdot) \|_{L^2(Q)}, e^{-tH_p} \| N^{k/2}\Psi(\cdot) \|_{L^2(Q)} \right)_{L^2(\mathbb{R}^3)} \leq e^{-tE_p} \| \Phi \|_{\mathcal{H}} \| N^{k/2}\Psi \|_{\mathcal{H}},
\]
where \(E_p = \inf \sigma(H_p) \). The second term (4.12) is estimated as
\[
(4.12) \leq \int \| \Phi(x) \|_{L^2(Q)} \times
\]
\[
\times \left(\mathbb{E}_x P_k(\xi)^2 e^{-2\int_0^t V(X_s)ds} \right)^{1/2} \left(\mathbb{E}_x \| (N + 1)^{k/2}\Psi(X_t) \|_{L^2(Q)}^2 \right)^{1/2} dx
\]
\[
\leq \int \| \Phi(x) \|_{L^2(Q)} \left(\mathbb{E}_x P_k(\xi)^4 \right)^{1/4} \times
\]
\[
\times \left(\mathbb{E}_x e^{-4\int_0^t V(X_s)ds} \right)^{1/4} \left(\mathbb{E}_x \| (N + 1)^{k/2}\Psi(X_t) \|_{L^2(Q)}^2 \right)^{1/2} dx.
\]
By Lemma 4.3 we have
\[
\theta = \sup_{x \in \mathbb{R}^3} \left(\mathbb{E}_x P_k(\xi)^4 \right)^{1/4} < \infty,
\]
and by (4.10),
\[
\eta = \sup_{x \in \mathbb{R}^3} \left(\mathbb{E}_x e^{-4\int_0^t V(X_s)ds} \right)^{1/4} < \infty.
\]
Then we have
\[
(4.12) \leq \theta \eta \int \| \Phi(x) \|_{L^2(Q)} \left(\mathbb{E}_x \| (N + 1)^{k/2}\Psi(X_t) \|_{L^2(Q)}^2 \right)^{1/2} dx
\]
39
Thus we conclude that
\[|(N^{k/2} \Phi, e^{-tH} \Psi)_H| \leq \| \Phi \|_H \left(e^{-tE_0} \| N^{k/2} \Psi \|_H + \theta \eta \| (N + 1)^{k/2} \Phi \|_H \right). \]
This implies that \(e^{-tH} \Psi \in D(N^{k/2}) \).

Lemma 4.7 Assume that \(\psi_g \in D(N^{k/2}) \). Then \(\sup_{x \in \mathbb{R}^3} \| N^{k/2} \psi_g(x) \|_{L^2(Q)} < \infty \).

Proof: By Lemma 4.6 the identity \(N^{k/2} \psi_g = e^{tE} e^{-tH} N^{k/2} \psi_g + e^{tE} [N^{k/2}, e^{-tH}] \psi_g \) is well defined, and we obtained that
\[N^{k/2} \psi_g(x) = e^{tE} \mathbb{E}_x \left(e^{-\int_0^t V(x_s) ds} \mathcal{J}_t N^{k/2} \psi_g(X_t) \right) + e^{tE} \mathbb{E}_x \left(e^{-\int_0^t V(x_s) ds} [N^{k/2}, \mathcal{J}_t] \psi_g(X_t) \right) \]
for almost every \(x \in \mathbb{R}^3 \). We see that by Lemma 4.4
\[\| N^{k/2} \psi_g(x) \|_{L^2(Q)} \leq e^{tE} \mathbb{E}_x \left(e^{-\int_0^t V(x_s) ds} \| N^{k/2} \psi_g(X_t) \|_{L^2(Q)} \right) + e^{tE} \mathbb{E}_x \left(e^{-\int_0^t V(x_s) ds} P_k(\xi) \| (N + 1)^{k/2} \psi_g(X_t) \|_{L^2(Q)} \right). \]
By (4.10) it is obtained that
\[\sup_{x \in \mathbb{R}^3} (4.13) < \infty. \] (4.15)
(4.14) is estimated as
\[(4.14) \leq \left(\mathbb{E}_x P_k(\xi)^2 \right)^{1/2} \left(\mathbb{E}_x e^{-\int_0^t V(x_s) ds} \| (N + 1)^{k/2} \psi_g(X_t) \|_{L^2(Q)}^2 \right)^{1/2}. \]
By (4.10) we yield that
\[\sup_{x \in \mathbb{R}^3} \mathbb{E}_x \left(e^{-\int_0^t V(x_s) ds} \| (N + 1)^{k/2} \psi_g(X_t) \|_{L^2(Q)}^2 \right) < \infty, \]
and by Lemma 4.3, \(\sup_{x \in \mathbb{R}^3} \mathbb{E}_x (P_k(\xi)^2) < \infty \). Hence
\[\sup_{x \in \mathbb{R}^3} (4.14) < \infty. \] (4.16)
Thus the lemma follows from (4.15) and (4.16). \(\square \)
Proof of Lemma 2.11

It is enough to prove the lemma for sufficiently large $|x|$ by Lemma 4.7. Set $\theta = \sup_{x \in \mathbb{R}^3} \|(N + 1)^{k/2} \psi_g(x)\|_{L^2(Q)} < \infty$. We have by (4.13) and (4.14) for almost every $x \in \mathbb{R}^3$

$$\|N^{k/2} \psi_g(x)\|_{L^2(Q)} \leq E_x \left(e^{-\int_0^t V(X_s)ds} (1 + P_k(\xi)) \right) e^{tE} \theta$$

$$\leq \left\{ E_x \left((1 + P_k(\xi))^2 \right) \right\}^{1/2} \left(E_x e^{-2 \int_0^t V(X_s)ds} \right)^{1/2} e^{tE} \theta.$$

By (4.9) we have

$$E_x \left((1 + P_k(\xi))^2 \right) \leq Q_k(t),$$

where Q_k is some polynomial of the same degree as P_k. Then we have

$$\|N^{k/2} \psi_g(x)\|_{L^2(Q)} \leq \theta Q_k(t) e^{tE} E_x \left(e^{-2 \int_0^t V(X_s)ds} \right).$$

Here t is arbitrary. Take $t = t(x) = |x|^{1-m}$. Then by [7] we see that there exist positive constants D and δ such that for sufficiently large $|x|$,

$$e^{t(x)E} E_x \left(e^{-2 \int_0^{t(x)} V(X_s)ds} \right) \leq De^{-\delta|x|^{m+1}}.$$

In the case of $m \geq 1$ it is trivial that $Q_k(t(x)) \leq \theta'$ with some constant θ' independent of x. Hence

$$\|N^{k/2} \psi_g(x)\|_{L^2(Q)} \leq \theta' De^{-\delta|x|^{m+1}}$$

follows for sufficiently large $|x|$. Thus the lemma follows for $m \geq 1$. In the case of $m = 0$, we see that $\|N^{k/2} \psi_g(x)\|_{L^2(Q)} \leq \theta Q_k(|x|) De^{-\delta|x|}$, and hence

$$\|N^{k/2} \psi_g(x)\|_{L^2(Q)} \leq \theta D' e^{-\delta'|x|}$$

follows for $\delta' < \delta$ with some constant D' for sufficiently large $|x|$. The lemma is complete. \hfill \Box

Acknowledgment I thank M. Griesemer for pointing out an error in the first manuscript. This work is in part supported by Grant-in-Aid 13740106 for Encouragement of Young Scientists from the Ministry of Education, Science, Sports, and Culture.

References

[1] A. Arai, Ground state of the massless Nelson model without infrared cutoff in a non-Fock representation, Rev. Math. Phys. 13 (2001), 1075–1094.
[2] A. Arai and M. Hirokawa, On the existence and uniqueness of ground states of a generalized
spin-boson model, J. Funct. Anal. 151 (1997), 455–503.
[3] A. Arai, M. Hirokawa, and F. Hiroshima, On the absence of eigenvectors of Hamiltonians in
a class of massless quantum field models without infrared cutoff, J. Funct. Anal. 168 (1999),
470–497.
[4] V. Bach, J. Fröhlich, I. M. Sigal, Quantum electrodynamics of confined nonrelativistic particles,
Adv. Math. 137 (1998), 299–395.
[5] V. Bach, J. Fröhlich, I. M. Sigal, Spectral analysis for systems of atoms and molecules coupled
to the quantized radiation field, Commun. Math. Phys. 207 (1999), 249–290.
[6] V. Betz, F. Hiroshima, J. Lörinczi, R. A. Minlos and H. Spohn, Gibbs measure associated with
particle-field system, Rev. Math. Phys., 14 (2002), 173–198.
[7] R. Carmona, Pointwise bounds for Schrödinger operators, Commun. Math. Phys. 62 (1978),
97–106.
[8] J. Fröhlich, M. Griesemer and B. Schlein, Asymptotic electromagnetic fields in a mode of
quantum-mechanical matter interacting with the quantum radiation field, Adv. in Math. 164
(2001), 349–398.
[9] C. Gérard, On the existence of ground states for massless Pauli-Fierz Hamiltonians, Ann. Henri
Poincaré 1 (2000), 443–459.
[10] M. Griesemer, E. Lieb and M. Loss, Ground states in non-relativistic quantum electrodynamics,
Invent. Math. 145 (2001), 557–595.
[11] L. Gross, The relativistic Polaron without cutoffs, Commun. Math. Phys. 31 (1973), 25–73.
[12] F. Hiroshima, Functional integral representation of a model in quantum electrodynamics, Rev.
Math. Phys. 9 (1997), 489–530.
[13] F. Hiroshima, Ground states of a model in nonrelativistic quantum electrodynamics I, J. Math.
Phys. 40 (1999), 6209–6222, II, J. Math. Phys. 41 (2000), 661–674.
[14] F. Hiroshima, Essential self-adjointness of translation-invariant quantum field models for arbi-
trary coupling constants, Commun. Math. Phys. 211 (2000), 585–613.
[15] F. Hiroshima, Self-adjointness of the Pauli-Fierz Hamiltonian for arbitrary values of coupling
constants, Ann. Henri Poincaré, 3 (2002), 171–201.
[16] F. Hiroshima, Analysis of ground states of atoms interacting with a quantized radiation fields,
to be published in Int. J. Mod. Phys. B.
[17] F. Hiroshima and H. Spohn, Enhanced binding through coupling to a quantum field, Ann. Henri
Poincaré 2 (2001), 1159–1187.
[18] F. Hiroshima and H. Spohn, Ground state degeneracy of the Pauli-Fierz model with spin, Adv.
Theor. Math. Phys. 5 (2001), 1091–1104.
[19] C. Hainzl, V. Vougalter and S. A. Vugalter, Enhanced binding in non-relativistic QED, mp-arc
01-455, preprint, 2001.
[20] J. Lörinczi, R. A. Minlos and H. Spohn, The infrared behaviour in Nelson’s model of a quantum
particle coupled to a massless scalar field, Ann. Henri Poincaré 3 (2001), 1–28.
[21] J. Lörinczi, R. A. Minlos and H. Spohn, Infrared regular representation of the three dimensional
massless Nelson model, Lett. Math. Phys. 59 (2002), 189–198.
[22] E. Nelson, Interaction of nonrelativistic particles with a quantized scalar field, *J. Math. Phys.* 5 (1964), 1190–1197.

[23] B. Simon, Schrödinger semigroups, *Bull. Amer. Math. Soc.* 7 (1982), 447–526. *J. Funct. Anal.* 32 (1979), 97–101.

[24] A. Sloan, The polaron without cutoffs in two space dimensions, *J. Math. Phys.* 15 (1974), 190–201.

[25] H. Spohn, Ground state of quantum particle coupled to a scalar boson field, *Lett. Math. Phys.* 44 (1998), 9–16.

[26] H. Spohn, Ground state(s) of the spin-boson Hamiltonian, *Commun. Math. Phys.* 123 (1989), 277–304.