Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review article

Prevalence of stress, depression, anxiety and sleep disturbance among nurses during the COVID-19 pandemic: A systematic review and meta-analysis

Mohammed Al Maqbali a,b,*, Mohammed Al Sinani b, Badriya Al-Lenjawi c

a Ministry of Health – Oman, Oman
b Reproductive and Developmental Biology Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
c Hamad Medical Corporation, Doha, Qatar

ARTICLE INFO

Keywords:
COVID-19
Nurses, stress
Anxiety
Depression, sleep disturbance
Systematic review
Meta-analysis

ABSTRACT

Background: The new coronavirus disease’s (COVID-19) high risk of infection can increase the workload of healthcare workers, especially nurses, as they are most of the healthcare workforce. These problems can lead to psychological problems. Therefore, the aim of this systematic review and meta-analysis is to ascertain the present impact of the COVID-19 outbreak on the prevalence of stress, anxiety, depression and sleep disturbance among nurses.

Methods: A systematic review and meta-analysis were conducted. The following databases were searched: PubMed, CHINAL, MEDLINE, EMBASE, PsycINFO, MedRxiv and Google Scholar, from January 2020 up to 26th October 2020. Prevalence rates were pooled with meta-analysis using a random-effects model. Heterogeneity was tested using I-squared (I^2) statistics.

Results: A total of 93 studies ($n = 93,112$), published between January 2020 and September 2020, met the inclusion criteria. The overall prevalence of stress was assessed in 40 studies which accounted for 43% (95% CI 37–49). The pooled prevalence of anxiety was 37% (95% CI 32–41) in 73 studies. Depression was assessed in 62 studies, with a pooled prevalence of 35% (95% CI 31–39). Finally, 18 studies assessed sleep disturbance and the pooled prevalence was 43% (95% CI 36–50).

Conclusion: This meta-analysis found that approximately one third of nurses working during the COVID-19 epidemic were suffering from psychological symptoms. This highlights the importance of providing comprehensive support strategies to reduce the psychological impact of the COVID-19 outbreak among nurses under pandemic conditions. Further longitudinal study is needed to distinguish psychological symptoms during and after the infectious disease outbreaks.

1. Introduction

At the end of December 2019, the new coronavirus disease (COVID-19) emerged in Wuhan City, Hubei province, China, and subsequently spread worldwide [1]. COVID-19 has seriously threatened human health. As of 30th January 2020, the World Health Organization (WHO) declared a public health emergency and considered COVID-19 a pandemic [2]. Globally, the WHO reported 65.6 million confirmed cases worldwide, with nearly 1.5 million deaths up until 6th December 2020 [3]. This increasing number of confirmed cases can overwhelm healthcare systems with thousands of patients needing urgent care.

This high risk of infection from COVID-19 increases the workload of healthcare workers who are involved directly in diagnoses, treatment and care of patients with COVID-19. This is particularly true of nurses, as they are most of the healthcare workforce, and they are in the closest proximity to patients with COVID-19. In June 2020, the International Council of Nurses (ICN) estimated that more than 600 nurses have died from COVID-19 worldwide [4]. In battling the sudden emergency by working at high risk of infection from patients, this can lead to mental health problems such as stress, anxiety and depression.

Previous research on the Severe Acute Respiratory Syndrome (SARS) or Middle East Respiratory Syndrome (MERS) epidemics indicates that nurses working at these times were under extraordinary amounts of pressure [5,6]. A systematic thematic review of 22 studies was
conducted by Brooks et al. [7] to identify the social and occupational factors associated with the psychological wellbeing of healthcare workers during the SARS outbreak. The review found that specialized training and preparedness, working at high risk of infection, quarantine, job stress, perceived risk, poor organizational support and stigmatization all impacted on nurses’ personal or professional life.

Two previous systematic reviews have been published which explore the prevalence of psychological outcomes among healthcare workers during infectious disease outbreaks [8,9]. However, to date, the psychological impact of the COVID-19 outbreak on nurses has not yet been systematically reported. Therefore, the aim of this study is to conduct a rapid systematic review and meta-analysis to ascertain the present impact of the COVID-19 outbreak on the prevalence of stress, anxiety, depression and sleep disturbance among nurses.

2. Methods

This systematic review and meta-analysis were undertaken according to the PRISMA standards. The review protocol was registered at PROSPERO (No. CRD42020193300).

2.1. Search strategy

A systematic literature search, between January 2020 and 26th October 2020, was conducted using the following databases: PubMed, CHINAL, MEDLINE, EMBASE, PsycINFO, MedRxiv and Google Scholar. Search terms used both free text words and medical subject headings, i.e. MeSH terms, to search papers in the review (Supplementary Appendix 1). In addition, reference lists were screened of the retrieved studies to identify any further studies.

2.2. Study selection

Two investigators (A.M; A.J) performed the search, scrutinizing all titles and abstracts for eligibility against the inclusion and exclusion criteria. Any disagreements were resolved through discussion with a third investigator (A. B). Studies were included in the review according to the following inclusion criteria: (1) reported prevalence of stress or anxiety or depression or sleep disturbance among nurses during COVID-19 outbreaks; (2) all types of setting; and (3), cross-sectional or cohort survey (only the baseline data were extracted). The exclusion criteria were: (1) protocol papers and conference abstracts; (2) if stress or anxiety or depression or sleep disturbance was assessed via an unvalidated scale; and (3), study did not report prevalence among nurses. For any additional information the study authors were contacted.

2.3. Quality assessment

Upon retrieval of the applicable studies, the quality assessment was completed using the Newcastle-Ottawa Scale (NOS) [10]. This scale consists of eight items that evaluate the non-randomized studies, which covered three criteria: the selection of the participants, comparability of
Study	Preprint	Setting	Frontline	Country	Month	Measure	Events	Total Sample	Instrument Cut Off	NOS
1 Cai et al., (2020)	No NG NG China	February	Stress	72	546	SCL-90	≥160	Moderate		
2 Z. Zhu et al., (2020)	No Hospital Frontline China	February	Anxiety	863	3417	IES-R	≤33	Low		
3 Choudhury et al., (2020)	No NG Mixed UK	April	Depression	489	3417	PHQ-9	≥10	Low		
4 Lai et al., (2020)	No Hospital Mixed China	January	Stress	569	764	IES-R	≥26	Moderate		
5 Liu et al., (2020)	Yes Hospital Mixed China	February	Anxiety	432	2826	SRQ-20	≤7	Low		
6 Yin et al., (2020)	No NG NG China	February	Anxiety	110	246	PCL-5	≥33	Moderate		
7 J. Zhu et al., (2020)	No Hospital Frontline China	February	Anxiety	34	86	SAS	≥50	Moderate		
8 Guo et al., (2020)	Yes Hospital Mixed China	February	Anxiety	1100	5900	SAS	≥50	Moderate		
9 Xiao et al., (2020)	No Hospital Mixed China	January	Anxiety	210	359	HADS	≤8	Low		
10 Wang et al., (2020)	No Hospital Mixed China	February	Anxiety	34	202	PCL-5	≥50	Moderate		
11 Wang et al., (2020)	No Hospital Mixed China	February	Anxiety	29	75	SAS	≥50	Moderate		
12 Zhang et al., (2020)	No Hospital Frontline China	February	Anxiety	473	984	GAD-7	≥10	Moderate		
13 Mo et al., (2020)	No Hospital Frontline China	February	Anxiety	526	984	PHQ-9	≥10	Moderate		
14 Huang et al., (2020)	No Hospital Frontline China	February	Anxiety	59	180	SAS	≥50	Moderate		
15 García-Fernández et al., (2020)	No NG NG Spain	March	Anxiety	105	233	ASDI	≤7	Moderate		
16 Zepkevicski et al., (2020)	No Hospital NG Poland	February	Anxiety	13	62	GAD-7	≤8	Moderate		
17 Cui et al., (2020)	Yes Hospital Frontline China	February	Anxiety	29	62	PHQ-9	≤8	Moderate		
18 Du et al., (2020)	No Hospital Frontline China	January	Anxiety	34	164	BDI-II	≤7	Moderate		
19 Zhou et al., (2020)	No Hospital Frontline China	February	Anxiety	319	1569	SAS	≤8	Moderate		
20 Jiang et al., (2020)	No Hospital Mixed China	February	Anxiety	514	1569	SAS	≤8	Moderate		
21 R. Zhang et al., (2020)	No Hospital Mixed China	February	Anxiety	29	203	IES-R	≤33	Moderate		
22 S. X. Zhang et al., (2020a)	No NG NG Peru, Ecuador, and Bolivia	April	Anxiety	29	203	IES-R	≤33	Moderate		
23 Anwar et al., (2020)	Yes Hospital Mixed China	April	Anxiety	175	62	GAD-7	≤33	Moderate		
24 Taghizadeh et al., (2020)	Yes NG NG Iran	April	Anxiety	175	62	GAD-7	≤33	Moderate		
25 S. X. Zhang et al., (2020a)	No NG NG Iran	February	Anxiety	175	62	GAD-7	≤33	Moderate		
26 Salman et al., (2020)	Yes Hospital Mixed Pakistan	February	Anxiety	35	133	SAS	≤8	Moderate		
27 Zhpu et al., (2020)	Yes NG NG China	January	Anxiety	133	147	SAS	≤8	Moderate		
28 Pan et al., (2020)	No Hospital Frontline China	February	Anxiety	44	148	PHQ-9	≤5	Moderate		

(continued on next page)
Table 1

Study	Preprint	Setting	Frontline	Country	Month	Measure	Events	Total Sample	Instrument	Cut Off	NOS		
29	Ning et al., (2020)	No	Hospital	Mixed	China	February	Insomnia	129	148	PHQ-15	≥10		
							Anxiety	60	295	SAS	≥50	Low	
30	Y. Liu et al., (2020)	Yes	Hospital	Mixed	China	February	Stress	297	577	PSS	≥14	Moderate	
							Anxiety	65	577	GAD-7	≥15	Moderate	
31	Ongcmaater et al., (2020)	No	Hospital	Mongolian	February	Stress	73	577	PHQ-9	≥10			
32	Li et al., (2020)	No	Hospital	Mixed	China	February	Anxiety	1127	3381	IES-R	≥25	Moderate	
							Depression	864	3381	GAD-7	≥28		
33	Y. Liu et al., (2020)	Yes	Hospital	Mixed	China	February	Stress	1280	3381	PHQ-9	≥30	Low	
							Anxiety	1297	3381	GAD-7	≥30	Low	
34	Otgonbaatar et al., (2020)	No	Hospital	Mixed	Mongolia	February	Stress	83	577	PSS	≥14	Moderate	
							Anxiety	577	577	GAD-7	≥15	Moderate	
35	Li et al., (2020)	No	Hospital	Mixed	China	February	Stress	1127	3381	IES-R	≥25	Moderate	
							Anxiety	864	3381	GAD-7	≥28		
36	W. Zhang et al., (2020)	Yes	Hospital	Mixed	China	February	Stress	100	313	PHQ-9	≥10	Moderate	
							Anxiety	39	197	PHQ-4	≥3		
37	Weilenmann et al., (2020)	Yes	Hospital	Mixed	Switzerland	April	Stress	138	553	PHQ-9	≥10	Moderate	
38	Sahin et al., (2020)	No	Hospital	Mixed	Turkey	April	Anxiety	226	301	IES-R	≥25	Moderate	
39	Rossi et al., (2020)	No	Hospital	Mixed	Italy	March	Stress	105	474	PSS	≥3	Low	
40	Kaveh et al., (2020)	No	Hospital	Mixed	Iran	March	Anxiety	225	577	GAD-7	≥25	Low	
41	Guixia and Hui, (2020)	No	Hospital	Mixed	China	February	Stress	38	92	SAS	≥50	Moderate	
42	Al Amer et al., (2020)	Yes	Hospital	Mixed	Jordan	March	Stress	208	405	DASS	≥19	Moderate	
43	Shechter et al., (2020)	No	Hospital	Mixed	USA	April	Stress	200	313	PSS	≥3	Low	
44	Naser et al., (2020)	No	Mixed	NG	Jordan	March	Anxiety	125	313	GAD-2	≥3		
45	Que et al., (2020)	No	Mixed	Mixed	China	February	Stress	107	208	PHQ-9	≥10	Moderate	
46	Jahrami et al., (2020)	No	Mixed	Mixed	Bahrain	April	Stress	95	119	PSS	≥14	Moderate	
47	Koksal et al., (2020)	No	Mixed	Mixed	Turkey	April	Anxiety	197	339	HADS	≥10	Moderate	
48	Tu et al., (2020)	No	Hospital	Frontline	China	February	Stress	130	339	HADS	≥7	Moderate	
49	Yang et al., (2020)	Yes	Hospital	Mixed	China	March	Anxiety	193	1017	SAS	≥50	Moderate	
50	Chekole et al., (2020)	No	Mixed	Mixed	Ethiopia	April	Stress	335	1017	PSS	≥20	Moderate	
51	Fang et al., (2020)	Yes	NG	Mixed	China	January	Anxiety	117	293	PSS	≥40	Moderate	
52	Jia et al., (2020)	No	Hospital	Mixed	Germany	April	Anxiety	156	867	SAS	≥50	Moderate	
53	Zerbini et al., (2020)	No	Hospital	Mixed	Germany	April	Anxiety	34	75	PHQ-9	≥5	Moderate	
54	Poulalizadeh et al., (2020)	No	Hospital	Mixed	Iran	April	Anxiety	165	441	PHQ-9	≥10	Moderate	
55	Gallopeni et al., (2020)	No	Hospital	Mixed	Kosovo	April	Anxiety	137	304	HADS	≥11	Moderate	
56	Li et al., (2020a)	No	Hospital	Mixed	China	February	Anxiety	106	304	HADS	≥11	Moderate	
57	Li et al., (2020b)	Yes	Hospital	Mixed	Malawi	September	Anxiety	136	176	HAM-A	≥14	Moderate	
Table 1 (continued)

Study	Preprint	Setting	Frontline	Country	Month	Measure	Events	Total Sample	Instrument	Cut Off	NOS	
Chorwe-Sungani, (2020)			Frontline	KSA	April	Anxiety	57	123	STA1	≥57	Moderate	
Saricam, (2020)		No	Hospital	Turkey	April	Stress	55	103	DASS	≥10	Moderate	
Arafa et al., (2020)		No	Hospital	KSA & Egypt	April	Anxiety	61	103	DASS	≥8	Moderate	
Siliwal et al., (2020)		No	Hospital	Nepal	April	Stress	24	152	DASS	≥19	Moderate	
Li et al., (2020b)		No	Hospital	China	March	Anxiety	379	4692	IES-R	≥10	Moderate	
Hong et al., (2020)		No	Hospital	China	February	Stress	220	356	PCL-5	≥33	Low	
Hooei et al., (2020)		Yes	Mixed	Austria	July	Stress	1751	2602	PSS	≥14	Moderate	
Xiaozei et al., (2020)		No	Hospital	Frontline	China	March	Stress	250	767	PHQ-9	≥5	Moderate
Zhan et al., (2020a)		No	Hospital	Frontline	China	March	Stress	789	1794	AIS	≥25	Low
AlAteeq et al., (2020)		No	Hospital	Frontline	KSA	March	Anxiety	44	132	GAD-7	≥10	Moderate
Khanal et al., (2020)		No	Hospital	Nepal	May	Anxiety	49	167	HADS	≥7	Moderate	
Bachilo et al., (2020)		Yes	Mixed	Russia	May	Anxiety	55	193	GAD-7	≥5	Moderate	
Waniagasaowriya et al., (2020)		Yes	Hospital	Frontline	UK	July	Stress	226	775	IES-R	≥33	Moderate
Leng et al., (2020)		No	Hospital	Frontline	China	February	Stress	20	90	PSS	≥25	Moderate
Aksoy and Kocak, (2020)		No	Mixed	Turkey	April	Anxiety	264	726	STA1	≥35	Moderate	
Hendy et al., (2020)		No	Hospital	Egypt	April	Stress	293	374	NIS	≥40	Moderate	
Zhan et al., (2020b)		No	Hospital	China	March	Stress	1298	2667	SAS	≥25	Low	
Prasad et al., (2020)		No	Hospital	USA	April	Stress	208	248	IES-R	≥26	Moderate	
Lee et al., (2020)		No	Hospital	Singapore	June	Stress	54	248	PHQ-2	≥3	Moderate	
Azoulay et al., (2020)		No	Hospital	France	May	Anxiety	49	155	HADS	≥11	Moderate	
Xiong et al., (2020)		No	Hospital	Mixed	China	February	Anxiety	94	231	GAD-7	≥10	Moderate
Sampsoa et al., (2020)		No	Mixed	Portugal	April	Stress	210	767	DASS	≥10	Moderate	
Buselli et al., (2020)		No	Hospital	Frontline	Italy	May	Anxiety	20	133	GAD-7	≥10	Moderate
Salopek-Ziha et al., (2020)		No	Mixed	Croatia	April	Stress	10	97	DASS	≥10	Moderate	
Wasim et al., (2020)		No	Hospital	Pakistan	June	Stress	14	97	DASS	≥6	Moderate	
Ahn et al., (2020)		Yes	Hospital	Korea	April	Anxiety	46	78	ISI	≥8	Moderate	
Zheng et al., (2020)		No	Mixed	Mixed	China	February	Anxiety	248	1103	PHQ-9	≥10	Moderate
Gorini et al., (2020)		No	Hospital	Frontline	Italy	May	Stress	125	214	IES-R	≥26	Moderate
An et al., (2020)		No	Hospital	Frontline	China	March	Depression	481	1103	PHQ-9	≥10	Moderate
Zhang et al., (2020)		No	Mixed	Mixed	China	April	Depression	111	468	PCL-5	≥50	Moderate

(continued on next page)
study groups and outcome assessment. The NOS uses a score system with the lowest possible score of zero and the highest possible score of nine. The total points awarded indicate the overall quality of the study. A study was determined to be of low risk of bias when the score was 7–9, of moderate risk of bias if the score was 5–6, and high risk of bias if the score was 0–4 [11].

2.4. Data analyses

To estimate the pooled prevalence, odds ratios (ORs) with 95% Confidence Interval (CI) were calculated as the effect size by using a random-effects model. Heterogeneity was tested using I-squared (I^2) statistics. A value of I^2 was considered to be low with 0–25%, 25–50% as moderate and 50–75% considered as high heterogeneity [12]. In addition, subgroup analyses to test the significant differences in the prevalence of stress, anxiety, depression and sleep disturbance between different groups (setting, frontline or second line; data collection month, NOS,) were performed when there were at least four studies per subgroup. A sensitivity analysis was performed by removing one study at a time to evaluate the impact of pooled prevalence of remining studies [13].

Funnel plots were found to be an inaccurate method for assessing publication bias in meta-analyses of proportion studies [14,15]. Therefore, publication bias was estimated using Egger’s linear regression test and funnel plot [16]. A p value of less than 0.05 was considered as statistically significant. Meta-analysis was conducted using Comprehensive Meta-Analysis software, version 2.2 (Englewood, New Jersey, USA). Forest plots were constructed using a Microsoft Excel spreadsheet constructed by Neyeloff et al. [17].

3. Results

The database search identified 3306 papers; of these, 3100 papers were excluded during title and abstract screening for the following reasons: 556 papers were not conducted during the COVID-19 period; 83 did not give information about nurses; 2430 were duplicated papers. A further, 113 papers were excluded during full text review. As such, 93 studies were identified as eligible for meta-analysis (Fig. 1 shows the PRISMA flow chart).

3.1. General characteristics

Ninety-three studies, involving 93,112 nurses, were included in this meta-analysis. All studies were conducted between January 2020 and September 2020: eight in January, 36 in February, 13 in March, 13 in April, six in May, two in June, two in July and one in September. Twenty preprint studies [18–37] were included in the analyses. All studies included in this meta-analysis were of cross sectional design. The vast majority (n = 67 studies) were conducted in hospital settings; seventeen were mixed setting and only nine studies did not provide setting information. Thirty-four studies involved nurses who worked on the frontline in the fight against the COVID-19 epidemic; however, 49 studies involved mixed nurses, i.e. those working in the frontline and second line, whereas ten studies did not give this information. Forty-nine studies originated from China, four from each Turkey and Iran, three from Italy, two each from Germany, Jordan, Nepal, Pakistan, Spain, the USA and the UK, and one from each of the following: Austrian, Bahrain, Croatia, Egypt, Ethiopia, France, Greece, Korea, Kosovo, Malawi, Mongolian, Poland, Portugal, Russia, Singapore and Switzerland. Two study was conducted in more than one country [38,39]. (See Table 1 for a general characteristics of studies).

3.2. Quality assessment

The studies were assessed using the NOS checklist. Nineteen studies were classified as having a low risk of bias and seventy-four as moderate. The detailed results of the quality assessment of the studies included in this meta-analysis are listed in Table 2.

3.3. Prevalence of stress

Stress was estimated in 40 studies [18,20,25,27,29,33,35,36,39–70]. The overall pooled point estimates of prevalence for stress varied between 10% and 84% (Fig. 2: forest plots). All meta-analyses of prevalence estimates of stress reported by the 40 studies yielded a summary prevalence of 43% (11,139/27,034 participants, 95% CI 37–49). Sensitivity analysis by excluding one study each time demonstrated that no differences in the overall estimation by more or less than 1%. There was significant heterogeneity between studies to estimate the prevalence ($p < 0.000$, $I^2 = 98$).

The pooled prevalence according to the month of data collected was as follows: February: 32% (n = 14; 95% CI 25–41; $I^2 = 98$), March: 45% (n = 6; 95% CI 37–53; $I^2 = 96$) and April: 50% (n = 13; 95% CI 35–66; $I^2 = 98$). Seventeen studies [20,35,36,39,43,44,46,54,57–63,67,69] involving nurses who were working on the frontline showed stress prevalence at 46% (95% CI = 39–54; $I^2 = 97$), whereas 20 studies including mixed nurses working in the frontline and second line showed the stress prevalence was 42% (95% CI = 31–53; $I^2 = 99$). Thirteen studies that used the Perceived Stress Scale (PSS) showed a pooled prevalence of stress at 50% (95% CI = 41–59, $I^2 = 98$), whereas eight studies [35,45,54–56,63,64,67] using the Impact of Event Scale-Revised (IES-R) had a pooled prevalence of 50% (95% CI = 37–63, $I^2 = 99$). The other studies used different scales. In the subgroup analyses using the NOS, the pooled prevalence in studies (n = 9) with low risk of bias accounted for 41% (95% CI = 29–54, $I^2 = 99$), whereas those with a moderate risk of bias (n = 31) accounted for 43% (95% CI = 36–52, $I^2 = 98$).

3.4. Prevalence of anxiety

The overall pooled point estimates of prevalence for anxiety varied between 8% and 91%, which was reported...
Table 2
Quality assessment result of observational studies (n = 93) using the Newcastle-Ottawa Scale:

Study	Representativeness of the sample (One Point)	Sample Size (One Point)	Non-Respondents (One Point)	Ascertainment of the exposure (One Point)	Study controls for other variable (Two Point)	Assessment of Outcome (One Point)	Statistical Test (One Point)	Adequate Follow up time (One Point)	Score	Quality
1	Cai et al., (2020)	1	1	1	0	0	0	1	1	Moderate
2	Z. Zhu et al., (2020)	1	1	1	1	1	1	0	7	Low
3	Choudhury et al., (2020)	0	1	0	1	2	1	1	0	Moderate
4	Lai et al., (2020)	1	1	1	1	2	1	1	0	Low
5	Liu et al., (2020)	1	1	1	1	1	1	0	7	Low
6	Yin et al., (2020)	1	1	0	1	1	1	1	0	Moderate
7	J. Zhu et al., (2020)	0	1	0	1	2	1	1	0	Moderate
8	Guo et al., (2020)	1	1	1	1	2	1	1	0	Low
9	Xiao et al., (2020)	1	1	1	1	1	1	0	7	Low
10	Wang et al., (2020)	0	1	1	1	1	1	1	0	Low
11	Wang et al., (2020)	0	1	1	1	1	1	0	5	Moderate
12	Zhang et al., (2020)	1	1	1	1	1	0	1	0	Moderate
13	Mo et al., (2020)	0	1	1	1	0	1	1	0	Moderate
14	Huang et al., (2020)	0	1	0	1	2	1	1	0	Moderate
15	García-Fernández et al., (2020)	0	1	1	1	1	1	1	0	Moderate
16	Szepietowski et al., (2020)	0	1	1	0	1	1	1	0	Moderate
17	Cai et al., (2020)	0	1	1	1	1	1	1	0	Moderate
18	Du et al., (2020)	0	1	1	1	1	0	1	0	Moderate
19	Zhou et al., (2020)	0	1	1	1	1	0	1	1	Moderate
20	Jiang et al., (2020)	0	1	0	1	2	1	1	0	Moderate
21	R. Zhang et al., (2020)	0	1	1	1	1	1	1	0	Moderate
22	S. X. Zhang et al., (2020)	0	1	1	0	1	1	1	0	Moderate
23	Wan et al., (2020)	0	1	1	1	1	1	1	0	Moderate
24	Taghiadeh et al., (2020)	0	1	1	1	1	0	1	0	Moderate
25	S. X. Zhang et al., (2020)	0	1	1	1	1	0	1	1	Moderate
26	Salman et al., (2020)	0	1	1	1	1	0	1	0	Moderate
27	Zhipu et al., (2020)	0	1	1	1	1	1	1	0	Moderate
28	Pan et al., (2020)	0	1	0	1	2	1	1	0	Moderate
29	Ning et al., (2020)	1	1	1	1	1	1	1	0	Moderate
30	Y. Liu et al., (2020)	0	1	1	1	1	0	1	0	Moderate
31	Otgonbaatar et al., (2020)	0	1	1	1	1	0	1	0	Moderate
32	Li et al., (2020)	0	1	0	1	2	1	1	0	Moderate
33	Lu et al., (2020)	1	1	1	1	2	1	1	0	Moderate
34	Hu et al., (2020)	1	1	1	1	2	1	1	0	Low
35	B. Wang et al., (2020)	0	1	1	1	1	1	1	0	Moderate

(continued on next page)
Study	Representativeness of the sample (One Point)	Sample Size (One Point)	Non-Respondents (One Point)	Ascertainment of the exposure (One Point)	Study controls for other variable (Two Point)	Assessment of Outcome (One Point)	Statistical Test (One Point)	Adequate Follow up time (One Point)	Score		
36	W. Zhang et al., (2020)	0	1	1	1	1	1	0	6	Moderate	
37	Weilenmann et al., (2020)	0	1	0	1	2	1	1	0	6	Moderate
38	Sahin et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
39	Rossi et al., (2020)	1	1	1	1	2	1	1	0	8	Low
40	Kaveh et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
41	Guixia and Hui, (2020)	0	1	0	1	1	0	1	0	5	Moderate
42	Al Amer et al., (2020)	0	1	1	1	1	1	1	0	6	Moderate
43	Shechter et al., (2020)	1	1	1	1	2	1	1	0	8	Low
44	Naser et al., (2020)	1	1	0	1	1	1	1	0	6	Moderate
45	Que et al., (2020)	0	1	1	1	1	1	1	0	6	Moderate
46	Jahrami et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
47	Koksal et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
48	Tu et al., (2020)	1	1	1	1	1	1	1	0	7	Low
49	Yang et al., (2020)	1	1	0	1	1	1	1	0	6	Moderate
50	Chekole et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
51	Fang et al., (2020)	0	1	1	1	1	1	1	0	6	Moderate
52	Jia et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
53	Zerbini et al., (2020)	0	1	0	1	2	1	1	0	6	Moderate
54	Pouralizadeh et al., (2020)	0	1	1	1	1	0	1	1	6	Moderate
55	Gallopeni et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
56	Li et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
57	Chorwe Sungani, (2020)	0	1	1	1	1	0	1	0	5	Moderate
58	Saricam, (2020)	0	1	1	1	1	0	1	0	5	Moderate
59	Arafa et al., (2020)	0	1	1	1	1	1	1	0	6	Moderate
60	Silwal et al., (2020)	1	1	1	1	1	0	1	1	5	Moderate
61	Li et al., (2020)	1	1	1	1	1	1	1	0	7	Low
62	Hong et al., (2020)	1	1	1	1	2	1	1	0	8	Low
63	Hoedl et al., (2020)	0	1	1	1	1	0	1	1	6	Moderate
64	Xiaozheng et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
65	Zhan et al., (2020)	1	1	1	1	1	1	1	0	7	Low
66	AliAteeq et al., (2020)	0	1	1	1	1	0	1	1	6	Moderate
67	Khanal et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate
68	Bachilo et al., (2020)	0	1	1	0	1	1	1	0	5	Moderate
69	Wangasooriya et al., (2020)	1	1	1	0	0	0	1	1	5	Moderate
70	Leng et al., (2020)	0	1	1	1	1	0	1	1	6	Moderate
71	Aksoy and Kocak, (2020)	0	1	1	0	1	1	1	0	5	Moderate
72	Hendy et al., (2020)	0	1	0	1	2	1	1	0	6	Moderate
73		1	1	1	1	2	1	1	0	8	Low

(continued on next page)
by 73 studies \[18–26,28–30,32,34,35,37–39,42–46,48,49,51,53–57,62,64–67,71–106\] (Fig. 3: forest plots). All meta-analyses of prevalence estimates of anxiety yielded a summary prevalence of 37\% (23,535/61,561 participants, 95\% CI 32–41). The pooled prevalence did not change in sensitivity analysis by excluding one study each time by less than 2\%. There was significant heterogeneity between studies to estimate the prevalence (p < 0.000, I² = 99).

The prevalence of anxiety among nurses who worked on the frontline (n = 24) was high at 39\% (95\% CI = 32–46, I² = 98) compared to mixed studies (n = 42), which was 32\% (95\% CI = 27–38, I² = 99). In the subgroup analyses by month, according to when the study was conducted, the pooled prevalence of anxiety was 45\% (n = 7; 95\% CI = 33–58, I² = 99), 32\% (n = 29; 95\% CI = 25–40, I² = 99), 38\% (n = 9; 95\% CI = 26–52, I² = 98), 40\% (n = 18; 95\% CI = 34–46, I² = 95) and 39\% (n = 5; 95\% CI = 28–51, I² = 93) for January, February, March, April and May, respectively. Thirty-two studies used the Generalized Anxiety Disorder-7 (GAD-7) scale, which showed the highest anxiety prevalence at 30\% (95\% CI = 25–35, I² = 98), whereas studies (n = 16) using the Zung Self-Rating Anxiety Scale (SAS) reported anxiety prevalence at 30\% (95\% CI = 22–39, I² = 99). The prevalence of anxiety in the low risk of bias studies (n = 16) was 32\% (95\% CI = 24–41, I² = 99); in studies (n = 57) with a moderate risk of bias, the pooled prevalence was 38\% (95\% CI = 33–43, I² = 97).

3.5. Prevalence of depression

The overall pooled point estimates of depression reported by the 62 studies \[19,22–31,34,35,37,39,42,43,45,48,49,51,53–57,62,64–67,71–74,77–88,90,91,94–96,99–103,105–108\] varied between 9\% and 89\% (Fig. 4: forest plots). The pooled point prevalence of depression was 35\% (25,769/76,992 participants, 95\% CI 31–39). In sensitivity analysis, no study had an implication for the prevalence by more or less than 1\%. There was significant heterogeneity between studies to estimate the prevalence (p < 0.000, I² = 99). The pooled prevalence according to the month of data collected was as follows: January: 49\% (n = 7; 95\% CI 42–56; I² = 95), February: 29\% (n = 24; 95\% CI 24–35; I² = 99), March: 50\% (n = 8; 95\% CI 27–45; I² = 97), April: 31\% (n = 14; 95\% CI 25–39; I² = 95) and May: 35.1\% (n = 5; 95\% CI 27–45; I² = 89). Nineteen studies involving nurses who were working on the frontline showed the depression prevalence at 33\% (95\% CI = 24–43, I² = 99), whereas 36 studies including nurses working on the frontline and second line showed the depression prevalence was 33\% (95\% CI = 29–37, I² = 98).

Twenty-nine studies used the Patient Health Questionare-9 (PHQ-9) scale had a pooled prevalence of 32\% (95\% CI = 25–40, I² = 99), whereas thirteen studies used the Zung Self-Rating Depression Scale (SDS) had a pooled prevalence of 39\% (95\% CI = 32–46, I² = 99). The

Study	Representativeness of the sample (One Point)	Sample Size (One Point)	Non-Respondents (One Point)	Ascertainment of the exposure (One Point)	Study controls for other variable (Two Point)	Assessment of Outcome (One Point)	Statistical Test (One Point)	Adequate Follow up time (One Point)	Score		
Zhan et al., (2020b)	0	1	1	1	1	0	1	1	6	Moderate	
Skoda et al., (2020)	0	1	1	0	0	0	1	1	5	Moderate	
Nie et al., (2020)	1	1	1	1	1	1	1	1	0	Low	
Zhou et al., (2020)	1	1	1	1	1	1	1	1	0	Low	
Chen et al., (2020)	0	1	0	1	2	1	1	1	0	6	Moderate
Tselelis et al., (2020)	0	1	1	0	1	1	1	0	5	Moderate	
Prasad et al., (2020)	0	1	1	1	1	1	0	1	6	Moderate	
Lee et al., (2020)	0	1	1	0	1	1	1	0	5	Moderate	
Azrael et al., (2020)	0	1	1	0	1	1	0	5	Moderate		
Xiong et al., (2020)	0	1	1	0	1	1	1	1	0	5	Moderate
Sampaio et al., (2020)	0	1	1	1	1	1	0	1	6	Moderate	
Baselli et al., (2020)	0	1	1	1	1	0	1	0	5	Moderate	
Salopek-Zha et al., (2020)	0	1	1	0	1	1	1	1	0	6	Moderate
Wasim et al., (2020)	0	1	1	1	1	1	0	1	6	Moderate	
Ahn et al., (2020)	0	1	1	1	1	1	0	1	6	Moderate	
Zheng et al., (2020)	1	1	1	2	1	0	8	Low			
Gorini et al., (2020)	0	1	0	1	2	1	0	6	Moderate		
An et al., (2020)	0	1	0	1	2	1	0	6	Moderate		
Zhang et al., (2020)	0	1	1	1	1	1	0	6	Moderate		
Ruiz-Fernández et al., (2020)	0	1	1	0	1	1	1	0	5	Moderate	
Han et al., (2020)	1	1	1	1	2	1	1	0	8	Low	
Study	Rate (95% CI)										
-------------------------------	--------------										
Salopek-Ziha et al., (2020)	10 (6-18)										
Cai et al., (2020)	13 (11-16)										
R. Zhang et al., (2020)	14 (10-20)										
Liu et al., (2020)	15 (14-17)										
Silwal et al., (2020)	16 (11-23)										
Wang et al., (2020)	17 (12-23)										
B. Wang et al., (2020)	19 (15-24)										
Rossi et al., (2020)	22 (19-26)										
Leng et al., (2020)	22 (15-32)										
Zhang et al., (2020)	24 (20-28)										
Sampaio et al., (2020)	27 (24-31)										
Huang et al., (2020)	29 (22-36)										
Wanigasooriya et al., (2020)	29 (26-33)										
Cui et al., (2020)	30 (26-35)										
Choudhury et al., (2020)	30 (15-52)										
Mo et al., (2020)	33 (26-40)										
Z. Zhu et al., (2020)	33 (32-35)										
Li et al., (2020)	33 (32-35)										
Zhan et al., (2020)	44 (42-46)										
Yin et al., (2020)	45 (39-51)										
Garcia-Fernandez et al., (2020)	45 (39-52)										
Zerbini et al., (2020)	45 (35-57)										
Zhan et al., (2020)	49 (47-51)										
Al Amer et al., (2020)	50 (45-55)										
Tsleebis et al., (2020)	50 (42-58)										
Y. Liu et al., (2020)	52 (47-56)										
Arafa et al., (2020)	53 (44-63)										
Du et al., (2020)	55 (41-67)										
Gorini et al., (2020)	58 (52-65)										
Li et al., (2020)	62 (57-67)										
Shechter et al., (2020)	64 (58-69)										
Otgonbaatar et al., (2020)	65 (61-70)										
Hoedl et al., (2020)	67 (66-69)										
Chekole et al., (2020)	68 (58-76)										
Nie et al., (2020)	74 (68-79)										
Lai et al., (2020)	75 (71-77)										
Ruiz Fernandez et al., (2020)	76 (71-80)										
Hendy et al., (2020)	78 (74-82)										
Jahrami et al., (2020)	80 (72-86)										
Prasad et al., (2020)	84 (79-88)										
	43 (37-49)										

Heterogeneity: $I^2 = 98\%$, $p<0.000$

Fig. 2. Forest Plot of the Prevalence of Stress ($N=40$).
Fig. 3. Forest Plot of the Prevalence of Anxiety (N = 73).
Fig. 4. Forest Plot of the Prevalence of Depression (N = 62).
other studies used different scales. In the subgroup analyses using the NOS, the pooled prevalence in studies (n = 16) with low risk of bias was 39% (95% CI = 32–47, I² = 99), whereas the moderate risk of bias studies (n = 46) accounted for 34% (95% CI = 29–39, I² = 97).

3.6. Prevalence of sleep disturbance

The prevalence rate of sleep disturbance in 18 studies [24,26,36,48,52,55,56,59,72,79,82,84,86,88,96,104,109,110] ranged from 12% to 87% (Fig. 5: Forest plots) with pooled prevalence estimates of 43% (4082/10,697 participants, 95% CI 36–50). In sensitivity analysis, no study had an implication for the pooled prevalence by more or less than 2%. There was significant heterogeneity between studies to estimate the prevalence (p < 0.000, I² = 97). The studies (n = 9) including frontline nurses reported the prevalence of sleep disturbance at 47% (95% CI = 34–60.1, I² = 98), whereas the studies (n = 8) including mixed nurses reported the prevalence at 37% (95% CI = 28–46, I² = 96).

Eight studies used the Insomnia Severity Index (ISI) scale with a pooled prevalence of 36% (95% CI = 30–43, I² = 95), whereas five studies used the Pittsburgh Sleep Quality Index (PSQI) with a pooled prevalence of 41% (95% CI = 22–64, I² = 98). The other studies used different scales. In the subgroup analyses using the NOS, the pooled prevalence in studies (n = 5) with low risk of bias was 38% (95% CI = 27–50, I² = 98), whereas the moderate risk of bias studies (n = 13) accounted for 45% (95% CI = 35–57, I² = 97).

3.7. Publication bias

Funnel plots indicated evidence of publication bias using visual inspection (Fig. 6). However, Egger’s regression test in stress (n = 40) (p = 0.42), anxiety (n = 73) (p = 0.29), depression (n = 38) (p = 0.35) and sleep disturbance (n = 18) (p = 0.38) did not show presence of publication bias.

4. Discussion

The psychological health of nurses during the COVID-19 pandemic is important, as this can impact their performance and reduce the quality of care provided. Sadly, there have been several reports of suicides among healthcare professionals due to psychological pressures and the possible fear of dying [111,112].

This meta-analysis is the first to estimate the aggregate prevalence of stress, anxiety, depression and sleep disturbance among nurses during the COVID-19 pandemic. The review included 93 cross-sectional studies of a total of 93,112 nurses showing high proportions of those symptoms. The aggregate prevalence of stress, anxiety, depression and sleep disturbance (43%, 37%, 35% and 43%, respectively) among nurses during the COVID-19 outbreak suggests that at least one third of nurses have experienced stress, anxiety, depression and sleep disturbance. These results are higher than those reported in the general population during the same period. Shi et al. [113] reported that in the general population, 24% of people had stress, 32% had anxiety, 28% had depression and 29% had insomnia. This was because the nurses were more exposed to patients with COVID-19.

The results of current review are even higher when compared with the reported prevalence during the MERS and SARS epidemics among nurses: 11% for stress [114], 20% for depression [115], 30% for anxiety [116] and 10% for sleep disturbance [117]. This may be because COVID-19 is rapidly spread, is human-to-human transmissible [1], and is potentially fatal. These factors are exacerbated by the shortage of personal protective equipment, increased working hours and new or unfamiliar clinical guidelines for the management of COVID-19 patients [118]. Altogether, these factors can increase nurses’ experience of stress,
anxiety, depression and sleep disturbance.

This meta-analysis found that the pooled prevalence varied between studies; for example, ranging between 10% [66] - 84% [52,64] for stress, 8% [94] - 91% [51] for anxiety, 9% [94] - 89% [51] for depression and 12% [48] - 87% [72] for sleep disturbance. This could be explained by the diversity of the assessment scale, healthcare system, population characteristics and lifestyles. Another possible reasons of differences in prevalence the variation in cut-offs scores of elevated symptoms for same instrument. For example; as shown in Table 1, the cut-off score of IES-R scale in Zhu et al. [54] was ˃33, whereas Lai et al. [55] used ≥26. The GAD-7 cut off score was ≥8 in Zhang et al. [56] and ≥ 10 by Zhpu et al. [24]. In depression, Lv et al. [26] used ≥5, while Li et al. [45] used ≥10 as cut off score of PHQ-9. The ISI cut off score was ≥15 in Que. et al. [82], whereas ’8 in Zhang et al. [88].

The studies’ quality was assessed using the NOS; all studies fell into the medium-quality and low-quality categories. The bias mainly involved the selection and size of samples, and follow-up time. Therefore, the amount of heterogeneity between the studies in terms of pooled prevalence and moderate analyses were low. Most importantly the Egger’s test showed an absence of a publication bias.

The major strength of this meta-analysis is the large sample size of over 93,112 articles drawn from 93 studies, which estimated the psychological impacts on nurses during the COVID-19 outbreak. However, there are several potential limitations to this this meta-analysis. First, this review searched medRxiv’s preprint studies, which are still not peer reviewed, which may introduce publication bias. Second, the majority of the studies (n = 69) were conducted in Asia, the generalization of the finding may be limited. Third, there is a possibility that some studies were not included in this meta-analysis, although this analysis used different MeSH terms and several databases. In addition, only studies published, unpublished or translated into English were included in this analysis. Fourth, stress, anxiety, depression and sleep disturbance were assessed using various scales and measures; this led to variability between studies and could increase the errors of prevalence estimates. Fifth, there were insufficient data available on the demographic and clinical characteristics, so not all information could be eliminated thoroughly. Finally, all findings were derived from cross-sectional design, which can reduce the ability to draw conclusions about changes in the psychological symptoms and associated factor [119]. It is important for further research to conduct a longitudinal study to identify the prevalence of symptoms during and after the infectious disease outbreaks.

Altogether, stress, anxiety, depression and sleep disturbance are significant problems for nurses worldwide during an infection disease outbreaks. The results of this meta-analysis have a number of potential implications for interventions to improve the psychological wellbeing of nurses during crises. For example, organizations should provide counselling support services or online workshops and training material to enable them to come over any psychological problems [120].

In addition, they should improve the working conditions of nurses by increasing manpower and resource allocation. Nurse managers play a crucial role through effective communication, rotating nurses, implementing flexible schedules and encouraging nurses to use psychosocial and psychological support service [121].

5. Conclusions

This is the first systematic review and meta-analysis reporting pooled prevalence estimates for stress, anxiety, depression and sleep disturbance among nurses during the COVID-19 outbreak. The findings show...
that over one third of nurses have experienced stress, anxiety, depression and sleep disturbance during the COVID-19 outbreak, which is higher than the previous MERS and SARS epidemics. Furthermore, these results highlight the need for appropriate interventions that can reduce psychological impacts on nurses.

Funding
No sources of funding.

Contributions
A.M and A.J designed the protocol, literature search, data synthesis interpreted the results, and wrote the manuscript and contributed to the conceptualization and design and the manuscript preparation.

Declaration of Competing Interest
The authors certify that there is no actual or potential conflict of interest in relation to this article.

Appendix A. Supplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.jspychresos.2020.110343.

References
[1] Q. Li, X. Guan, P. Wu, X. Wang, L. Zhou, Y. Tong, R. Ren, K.S.M. Leung, E.H. Y. Lai, J.Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Yao, Y. Zhang, D. Beng, L. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. W. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung, Z. Feng. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Included Pneumonia, N. Engl. J. Med. 382 (2020) 1199–1207. https://doi.org/10.1056/NEJMoa2001316.
[2] World Health Organization. Statement on the second meeting of the International Health Regulations, Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). (2020). https://www.who.int/news-room/detail/30-01-2020-statement-on-the-second-meeting-of-the-international-health-regulations-(2005)-emergency-committee-regarding-the-outbreak-of-novel-coronavirus-2019-ncov.
[3] WHO, WHO Coronavirus Disease (COVID-19) Dashboard. (2021). https://covid19.who.int.
[4] ICN, More than 600 nurses die from COVID-19 worldwide, in: ICN - Int. Counc. Nurses. 2020. https://www.icn.ch/news-more-than-600-nurses-die-from-covid-19-worldwide/
[5] M.-Y. Chong, W.-C. Wang, W.-C. Hsieh, C.-Y. Lee, N.-M. Chiu, W.-C. Yeh, O.-B. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung, Z. Feng. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Included Pneumonia, N. Engl. J. Med. 382 (2020) 1199–1207. https://doi.org/10.1056/NEJMoa2001316.
[6] S.G. Moreno, A.J. Sutton, A. Ades, T.D. Stanley, K.R. Abrams, J.L. Peters, N. T. W. Lam, J.Y. Wong, X. Xing, N. Xiang, Y. Wu, C. Li, Q. Chen, D. Li, T. Liu, J. Zhao, M. Liu, W. Tu, C. Chen, L. Jin, R. Yang, Q. Wang, S. Zhou, R. Wang, H. Liu, Y. Luo, Y. Liu, G. Shao, H. Li, Z. Yao, Y. Zhang, D. Beng, L. Liu, Z. Ma, Y. Zhang, G. Shi, T. T. W. Lam, J.T. Wu, G.F. Gao, B.J. Cowling, B. Yang, G.M. Leung, Z. Feng. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Included Pneumonia, N. Engl. J. Med. 382 (2020) 1199–1207. https://doi.org/10.1056/NEJMoa2001316.
[7] S.K. Brooks, R. Dunn, R. Amlot, G.J. Rubin, N. Greenberg, A systematic, thematic review of social and occupational factors associated with psychological outcomes in healthcare employees during an infectious disease outbreak, J. Occup. Environ. Med. 60 (2018) 248–257. https://doi.org/10.1097/JOM.0000000000001235.
[8] S. Kiley, N. Warren, L. Mcmahon, C. Dalais, L. Henry, D. Stiskind, Occurrence, prevention, and management of the psychological effects of emerging virus outbreaks on healthcare workers: a review and meta-analysis, BMJ 369 (2020), https://doi.org/10.1136/bmj.m1602.
[9] J. Xiao, M. Fang, Q. Chen, B. He, SARS, MERS and COVID-19 among healthcare workers: a narrative review, J. Infect. Public Health. 13 (2020) 843–848. https://doi.org/10.1016/j.jiph.2020.05.019.
[10] G.A. Well, B. Shea, D. O’Connell, J. Peterson, V. Welch, M. Losos, P. Tugwell, The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. 2020. (Accessed 31 December 2019).
[11] M. Li, S.V. Katakireddi, Urban-rural inequalities in suicide among elderly people in China: a systematic review and meta-analysis, Int. J. Equity Health 18 (2019) 2, https://doi.org/10.1186/s12939-018-0881-2.
[12] J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses, Br. Med. J. 327 (2003) 557–560. https://doi.org/10.1136/bmj.327.7414.557.
M. Al Maqbali et al.

Journal of Psychosomatic Research 141 (2021) 110343

Prevalence and risk factors of perceived stress on COVID-19 among health care providers in Dilla town health institutions, southern Ethiopia: a cross-sectional study. Adv. Public Health. 7 (2020), https://doi.org/10.1155/2020/700281.

Depressed, anxious, and stressed: what have healthcare workers on the frontlines in Egypt and Saudi Arabia experienced during the COVID-19 pandemic? J. Affect. Disord. (2020) 211, https://doi.org/10.1016/j.jad.2020.09.080.

Public health professionals in times of COVID-19 - a study provided during the urgent pandemic COVID-19 quarantine period. Psychol. (2020), https://doi.org/10.1007/s11596-020-2226-9.

Stress and Anxiety Response to COVID-19 among Healthcare Workers in South Korea: SAVE study, PsyArXiv (2020), https://doi.org/10.31234/osf.io/9nxth.

Mental health outcomes among frontline and second-line health care workers in the COVID-19 pandemic, Gen. Hosp. Psychiatry 66 (2020) 1 https://doi.org/10.1016/j.genhosppsych.2020.03.011.

Mental health of our Healthcare Workers, J. Occup. Environ. Med. (2020), https://doi.org/10.1097/JOM.00000000000020965.

Mental disorders of frontline nurses in a COVID-19 hospital in Wuhan, China: a cross-sectional study. Psychiatry Res. 113541 (2020), https://doi.org/10.1016/j.psychres.2020.113541.

Mental health during the Covid-19 outbreak: a cross-sectional study. J. Occup. Environ. Med. 62 (2020) 783-787, https://doi.org/10.1097/JOM.0000000000001987.

Mental Health and Coping Strategies of Health Care Workers in South Korea during the COVID-19 Pandemic, Korean J. Psychiatr. 51 (2020) 102111, https://doi.org/10.1016/j.japap.2020.10.003.

Mental health factors associated with post-traumatic stress disorder of nurses exposed to corona virus disease 2019 in Wuhan: a cross-sectional survey, J. Clin. Nurs. 29 (2020) 4321-4226, https://doi.org/10.1111/jocn.15454.

Mediterranean countries: Differences in Distress and Coping with the COVID-19 Pandemic During Lockdown in a Selected Teaching Hospital, King, Nepal, J. Health Allied Sci 10 (2020) 82 https://doi.org/10.3886/E119159V1.

Mental health of front-line nurses exposed to COVID-19 in China: A predictive study, J. Nurs. Manag. n/a (2020), https://doi.org/10.1111/jonm.13146.

Mental health of medical staff in a tertiary infectious disease hospital for COVID-19, Zhonghua Longsheng Weinsh Zhuying Zazhi 38 (2020) 192-195, https://doi.org/10.3760/cma.j.cn121094-20200219-00063.

Mental distress and influencing factors in nurses caring for patients with COVID-19, Nurs. Crit. Care, n/a (2020), https://doi.org/10.1016/j.ncct.2020.07.007.

Mental Health Among Medical Frontline Health Care Workers, Oncology Nursing Forum 16 (2020) 711-718, https://doi.org/10.1188/19-0068.

Mental health of women health professionals in COVID-19 outbreak in China: a cross-sectional study, J. Neurol. Neurosurg. Psychiatry. (2020), https://doi.org/10.1136/jnnp-2018-331344.

Mental disorder and mental health problems during the COVID-19 pandemic, J. Affect. Disord. (2020) 2477, https://doi.org/10.1016/j.jad.2020.09.080.

Mental health of healthcare workers in Wuhan, China during the COVID-19 outbreak: a cross-sectional study, J. Occup. Environ. Med. 62 (2020) 783-787, https://doi.org/10.1097/JOM.0000000000001987.

Mental Health Outcomes Among Medical Frontline Health Care Workers: A National Study, OTO Open 3 (2020) e2010185, https://doi.org/10.1001/otohmscr.2020.0000000020955.

Mental Health and Coping Strategies of Health Care Workers in South Korea during the COVID-19 Pandemic, Korean J. Psychiatr. 51 (2020) 102111, https://doi.org/10.1016/j.japap.2020.10.003.

Mental Health of Healthcare Workers in Specialized COVID-19 Hospitals in Wuhan, China: A cross-sectional study. J. Occup. Environ. Med. (2020), https://doi.org/10.1097/JOM.00000000000020965.

Mental health of nurses combating with COVID-19 in China: a descriptive cross-sectional study, Curr. Med. Sci. (2020) 1-11, https://doi.org/10.1007/s11596-020-2226-9.

Mental Health of Health Care Workers Exposed to COVID-19, Int. J. Environ. Res. Public Health 17 (2020) 5001, https://doi.org/10.3390/ijerph17050001.

Mental health of nurses combating with COVID-19 in China: a descriptive cross-sectional study, Curr. Med. Sci. (2020) 1-11, https://doi.org/10.1007/s11596-020-2226-9.

Mental health of nurses combating with COVID-19 in China: a cross-sectional study, J. Occup. Environ. Med. 62 (2020) 783-787, https://doi.org/10.1097/JOM.0000000000001987.

Mental health of nurses combating with COVID-19 in China: a cross-sectional study, J. Occup. Environ. Med. 62 (2020) 783-787, https://doi.org/10.1097/JOM.0000000000001987.

Mental health of nurses combating with COVID-19 in China: a cross-sectional study, J. Occup. Environ. Med. 62 (2020) 783-787, https://doi.org/10.1097/JOM.0000000000001987.
M. Al Maqbali et al., Journal of Psychosomatic Research 141 (2021) 110343.
[118] J.Z. Ayanian, Mental health needs of health care workers providing frontline COVID-19 care, JAMA Health Forum. 1 (2020) e200397, https://doi.org/10.1001/jamahealthforum.2020.0397.

[119] B.D. Thombs, O. Bonardi, D.B. Rice, J.T. Boruff, M. Azar, C. He, S. Markham, Y. Sun, Y. Wu, A. Krishnan, I. Thombs-Vite, A. Benedetti, Curating evidence on mental health during COVID-19: a living systematic review, J. Psychosom. Res. 133 (2020) 110113, https://doi.org/10.1016/j.jpsychores.2020.110113.

[120] WHO, Coronavirus disease (COVID-19) outbreak: rights, roles and responsibilities of health workers, including key considerations for occupational safety and health. https://www.who.int/docs/default-source/coronaviruse/who-rights-roles-respon-hw-covid-19.pdf?sfvrsn=bcabd401_0, 2020.

[121] WHO, Mental health and psychosocial considerations during the COVID-19 outbreak. https://www.who.int/docs/default-source/coronaviruse/mental-health-considerations.pdf?sfvrsn=6d3578af_2, 2020. (Accessed 19 October 2020).