Data in Brief

Expression profiling of wild type and β-catenin gene disrupted human BxPC-3 pancreatic adenocarcinoma cells

Petter Angell Olsen *, Kaja Lund, Stefan Krauss

Oslo University Hospital-Rikshospitalet, Dep. of Microbiology, Section for Cell Signaling, Gaustadalleen 34, 0373 Oslo, Norway

A R T I C L E I N F O

Article history:
Received 21 March 2015
Accepted 3 April 2015
Available online 15 April 2015

Keywords:
WNT
Beta-catenin
Pancreatic cancer

A B S T R A C T

To study the role of WNT/β-catenin signaling in pancreatic adenocarcinoma, human BxPC-3 cell lines deficient of the central canonical WNT signaling protein β-catenin were established by using zinc-finger nuclease mediated targeted genomic disruption of the β-catenin gene (CTNNB1). Comparison of the global transcription levels in wild type cells with two β-catenin gene disrupted clones identified 85 transcripts that were the most differentially regulated. Gene ontology (GO) term enrichment analysis of these transcripts identified “cell adhesion” as the most significantly enriched GO term. Here we describe the data from the transcription profiling analysis published in the article “Implications of Targeted Genomic Disruption of β-Catenin in BxPC-3 Pancreatic Adenocarcinoma Cells” [1]. Data have been deposited to the Gene Expression Omnibus (GEO) database repository with the dataset identifier GSE63072.

© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Generation of β-catenin deficient cells

BxPC-3 cells with targeted disruption of the β-catenin gene (CTNNB1) were established using CompoZr custom Zinc Finger Nucleases (ZFNs) (Sigma-Aldrich). Briefly, following transfection of the cells with ZFN mRNA targeting exon 3 of the CTNNB1 gene, monoclonal cell populations were obtained by limiting dilution cloning and analyzed for β-catenin expression. From 150 initial clones five β-catenin gene disrupted clones negative for β-catenin expression were identified and selected for further analysis (clone #4, #31, #79, #93 and #111).

RNA isolation microarray analysis

Total RNA from exponentially growing wild type BxPC-3 cells and β-catenin gene disrupted clones #4 and #111 was isolated using the GenElute Mammalian Total RNA Purification Kit (Sigma-Aldrich). The RNA was subjected to microarray analysis using Illumina HumanHT-12 v4 Expression BeadChips (Illumina, CA, USA) at the Norwegian Genomics Consortium core facility (Oslo University Hospital, Norway). For each sample 6 biological replicates were analyzed. Data extraction and quality control was performed in GenomeStudio (Illumina) and the data analysis was performed using J-Express [2].

Differential expression quantification and classification

To identify the most differentially expressed genes between wild type BxPC-3 cells and the β-catenin gene disrupted clones #4 and #111 (average) Significance Analysis of Microarrays (SAM) analysis was carried out [3]. From the SAM analysis a threshold of fold change...
Probe_Id	Symbol	ILMN_GENE	d-Score	Fold change	q-Value
ILMN_1686664	MT2A	MT2A	22.155	2.45	0
ILMN_1659888	LGLA53BP	LGLA53BP	15.656	2.358	0
ILMN_2042771	DPPS2L	DPPS2L	12.37	2.368	0
ILMN_2183409	SCARB1	SCARB1	12.283	2.43	0
ILMN_1673356	FAM83C	FAM83C	11.125	2.327	0
ILMN_3240795	LOC7281188	LOC7281188	10.777	2.446	0
ILMN_1713147	MCK1	MCK1	10.705	2.178	0
ILMN_1655347	SGBE1A1	SGBE1A1	10.414	2.055	0
ILMN_2320250	NOU6	NOU6	10.404	2.087	0
ILMN_1799098	LOC520546	LOC520546	10.398	2.289	0
ILMN_1750324	IGBP5	IGBP5	9.748	2.076	0
ILMN_1737356	COL12A1	COL12A1	9.342	2.264	0
ILMN_2145516	TMEM173	TMEM173	9.246	2.264	0
ILMN_1811972	MYCBP2	MYCBP2	9.226	2.024	0
ILMN_1678707	TAF15	TAF15	9.141	2.081	0
ILMN_1756541	SEMA3A	SEMA3A	9.018	2.024	0
ILMN_1753196	PTTC1	PTTC1	8.995	2.523	0
ILMN_1670323	EN000	EN000	8.897	2.068	0
ILMN_1765701	LOC599942	LOC599942	8.74	2.077	0
ILMN_2400759	CPVL	CPVL	8.644	2.023	0
ILMN_1661366	PGAM1	PGAM1	8.606	2.736	0
ILMN_1740233	UGT1A10	UGT1A10	8.476	2.096	0
ILMN_1676358	RAEB	RAEB	8.265	2.493	0
ILMN_2321153	MUC4	MUC4	8.15	2.477	0
ILMN_3247578	FAT1	FAT1	8.034	2.08	0
ILMN_2419115	ATG4B	ATG4B	7.981	2.191	0
ILMN_1754795	FAT1	FAT1	7.879	3.311	0
ILMN_1678757	B2RN1	B2RN1	7.775	3.991	0
ILMN_1695917	C5orf15	C5orf15	7.679	2.148	0
ILMN_2395389	PSMC4	PSMC4	7.197	2.627	0
ILMN_212982	IGBP5	IGBP5	7.174	4.242	0
ILMN_1676763	PIP5L	PIP5L	7.021	2.131	0
ILMN_2109708	EGF1	EGF1	6.793	2.086	0
ILMN_1795778	P4HA2	P4HA2	6.646	2.211	0
ILMN_2055610	ANXA8	ANXA8	6.489	2.124	0
ILMN_1691563	GAGE12I	GAGE12I	6.241	2.119	0
ILMN_1704342	UBE3C	UBE3C	6.183	2.136	0
ILMN_1779353	PI5T	PI5T	6.17	2.483	0
ILMN_2326717	PPIE	PPIE	6.061	2.363	0
ILMN_1800131	LOC652826	LOC652826	6.011	2.061	0
ILMN_1778180	TXND5C	TXND5C	5.947	2	0
ILMN_2332105	WRN1P1	WRN1P1	5.922	2.222	0
ILMN_1687887	PSMC4	PSMC4	5.851	2.251	0
ILMN_1685798	MAGEA6	MAGEA6	5.832	2.07	0
ILMN_1744765	KRT4	KRT4	5.788	3.158	0
ILMN_3308295	MIR205	MIR205	5.548	2.083	0
ILMN_3204734	LOC100134648	LOC100134648	5.337	2.551	0
ILMN_1766762	DYNLRB1	DYNLRB1	5.207	2.955	0
ILMN_1732074	LOC482120	LOC482120	5.099	2.925	0
ILMN_2261076	NEDD9	NEDD9	5.097	2.074	0
ILMN_1681301	AIM2	AIM2	5.083	2.042	0
ILMN_2371169	ZFY	ZFY	5.063	2.451	0
ILMN_2174127	DCBLD2	DCBLD2	5.038	2.605	0
ILMN_1696187	PYGL	PYGL	5.02	2.216	0
ILMN_1690259	RAE1	RAE1	4.98	2.121	0
ILMN_1680246	MAT2B	MAT2B	4.961	3.137	0
ILMN_1798454	MAD2L1BP	MAD2L1BP	4.925	2.136	0
ILMN_1717102	CLEC2D	CLEC2D	4.921	2.116	0
ILMN_1753449	CST1	CST1	4.802	2.783	0
ILMN_1746465	FJX1	FJX1	4.758	2.225	0
ILMN_1715175	MET	MET	4.688	2.751	0
ILMN_1795542	MLPH	MLPH	4.626	2.108	0
ILMN_1703108	UBE2G6	UBE2G6	4.598	2.721	0
ILMN_2129572	F3	F3	4.593	2.65	0
ILMN_1660345	NGRN	NGRN	4.578	2.387	0
ILMN_1658053	DYNLRB1	DYNLRB1	4.504	3.005	0
ILMN_2150856	SERPINB2	SERPINB2	4.471	2.41	0
ILMN_1664543	ITIH3	ITIH3	4.47	2.218	0
ILMN_1766500	FOXA1	FOXA1	4.469	2.072	0
ILMN_1829845	HS5.53301	HS5.53301	4.408	3.363	0
ILMN_3231944	LOC100130516	LOC100130516	4.399	6.137	0

(continued on next page)
In Table 1 the resulting list of the 85 most differentially regulated probes is shown. To identify relevant shared biological functions associated with the identified 85 most differentially regulated transcripts, Gene Ontology (GO) term enrichment analysis was done using DAVID with the GOTERM_BP_2 annotation (Table 2).

Discussion

We describe the dataset from the transcriptome analysis comparing wild type and β-catenin deficient BxPC-3 cells. In this analysis 85 transcripts were identified to be the most differentially regulated between the two groups. GO term enrichment analysis of the transcripts identified “cell adhesion” as the GO term that was most significantly enriched for. These results together with the rest the data from the previous published article [1] points towards a central role of β-catenin in enabling cell-cell contacts in BxPC3 cells.

References

[1] P.A. Olsen, J.T. Solberg, K. Lund, T. Vehus, M. Gelazauskaite, R.S. Wilson, S. Krauss, Implications of targeted genomic disruption of beta-catenin in BxPC-3 pancreatic adenocarcinoma cells. PLoS One 9 (2014) e115496.

[2] B. Dyvik, I. Jonassen, J-Express: exploring gene expression data using Java. Bioinformatics 17 (2001) 369–370.

[3] V.G. Tusher, R. Tibshirani, G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. U. S. A. 98 (2001) 5116–5121.

[4] D.W. Huang, B.T. Sherman, R.A. Lempicki, Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4 (2009) 44–57.

Table 2

Category: GOTERM_BP_2	Term	Count	% Genes/transcripts	Fold enrichment	Bonferroni
GO:0007155 - cell adhesion	DCBLD2, LGALS3BP, FAT1, NEDD9, COL12A1, SCARB1, MFG8, ZYX, MUC4	9	1.4	3.26	0.46
GO:0008037 - cell recognition	SCARB1, MFG8, SEMA3A	3	0.5	13.83	0.90
GO:0004008 - regulation of growth	DCBLD2, CDKN1A, NEDD9, SEMA3A, IGBP5	5	0.8	3.72	0.99
GO:00065008 - regulation of biological quality	DCBLD2, UGT1A10, CDKN1A, ANXA8, PYGL, TXNDC5, F3, FOXA1, MT2A, SCARB1, SEMA3A	11	1.8	1.90	1.00
GO:0006950 - response to stress	DCBLD2, UGT1A10, CDKN1A, ANXA8, SEMA173, LGALS3BP, ANXAR, F3, WRNIP1, GAGE12I, SERPIN12, SCARB1, PTG1	12	1.9	1.81	1.00
GO:0006905 - response to external stimulus	DCBLD2, UGT1A10, CDKN1A, ANXA8, F3, SERPIN2, SCARB1, SEMA3A	8	1.3	2.22	1.00
GO:0042445 - hormone metabolic process	UGT1A10, FOXA1, SCARB1	3	0.5	7.18	1.00
GO:00022402 - cell cycle process	DCBLD2, CDKN1A, PSMC4, NEDD9, ANLN, PTG1, LOC552826	6	1.0	2.69	1.00
GO:0045926 - negative regulation of growth	DCBLD2, CDKN1A, SEMA3A	3	0.5	6.91	1.00
GO:0032879 - regulation of localization	SCARB1, MFG8, SEMA3A, IGBP5, MYCBP2	6	1.0	2.49	1.00
GO:0044419 - interspecies interaction between organisms	SCARB1, MFG8, ZYX	4	0.6	3.58	1.00