A survey of medical thoracoscopy practices in India

Karan Madan1, Pawan Tiwari1, Balamugesh Thangakunam1,2, Saurabh Mittal1, Vijay Hadda1, Anant Mohan1, Randeep Guleria1

1Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, New Delhi, India, 2Department of Pulmonary Medicine, Christian Medical College, Vellore, Tamil Nadu, India

ABSTRACT

Background: Medical thoracoscopy (MT) is a useful diagnostic and therapeutic procedure for a variety of pleural conditions. There is a lack of literature on prevalent practices of MT in India. Aims and Objectives: The objective of the study was to study the prevalent practices of MT in India. Materials and Methods: A structured online survey on various aspects of thoracoscopy was designed on the “Google Forms” web software. Results: One hundred and eight responses were received, of which 100 respondents performed MT. The majority were pulmonologists, and most had started performing thoracoscopy within the last 5 years. Rigid thoracoscope was the most commonly used instrument. The common indications of procedure included undiagnosed pleural effusion, talc pleurodesis, and adhesiolysis. Local anesthesia with conscious sedation was the preferred anesthetic modality. Midazolam, along with fentanyl, was the most widely used sedation combination. 2% lignocaine was the most commonly used concentration for local infiltrative anaesthesia. Nearly two-thirds of the respondents reported having encountered any complication of thoracoscopy. Significant reported complications included empyema, incision/port-site infection, re-expansion pulmonary edema, and procedure-related mortality. Conclusion: MT is a rapidly evolving interventional pulmonology procedure in India. There is, however, a significant variation in practice and variable adherence to available international guidelines on thoracoscopy. Formal training programs within India and national guidelines for pleuroscopy considering the local resources are required to improve the safety and yield of this useful modality.

KEYWORDS: Lung cancer, pleura, pleural effusion, pneumothorax, thoracoscopy

Address for correspondence: Dr. Karan Madan, Department of Pulmonary, Critical Care and Sleep Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029, India. E-mail: drkaranmadan@gmail.com

Submitted: 24-Apr-2020 Accepted: 01-Jun-2020 Published: 31-Dec-2020

INTRODUCTION

Undiagnosed pleural effusion is a common clinical scenario that pulmonologists encounter in clinical practice. A pleural biopsy is usually the next line of investigation for a pleural effusion that remains undiagnosed despite diagnostic thoracentesis. Medical thoracoscopy (MT)/pleuroscopy allows one to obtain pleural biopsy under direct visualization using a variety of available (rigid or flexi-rigid) instruments.1 Apart from pleural biopsy, other pleural interventions are also feasible during pleuroscopy. MT/pleuroscopy is a rapidly growing facet of interventional pulmonology.2 Pulmonologists are increasingly adopting this modality for a variety of diagnostic and therapeutic indications. Few international guidelines are available on the technical performance of the procedure.3 Limited literature is available regarding the prevalent practices of pleuroscopy in India.

How to cite this article: Madan K, Tiwari P, Thangakunam B, Mittal S, Hadda V, Mohan A, et al. A survey of medical thoracoscopy practices in India. Lung India 2021;38:23-30.
MT practices vary according to individual preference and availability of resources. We designed this survey to study the prevalent practices of MT in India.

MATERIALS AND METHODS

This survey on the practices of MT was a collaborative online survey conducted by the Department of Pulmonary, Critical care, and Sleep Medicine at the All India Institute of Medical Sciences, New Delhi, India, and the Department of Pulmonary Medicine at the Christian Medical College, Vellore, India. The survey consisted of 84 questions, divided into four sections. The online study was undertaken using the “Google Forms” interface in English. Google Forms is a free online tool for the administration of personalized surveys and is commonly utilized in medical research. The responses can be automatically retrieved to a spreadsheet and analyzed.

The structured questionnaire was divided into various sections. It consisted of multiple questions on general information, respondent expertise, mode of learning thoracoscopy, indications, patient preparation, monitoring, periprocedural sedation, local anesthesia, and postprocedural complications of pleuroscopy. A preliminary questionnaire was prepared and circulated among authors for discussion. Subsequently, the survey was mock filled and reviewed, and questions were refined based on individual inputs and discussion. The final questionnaire link was E-mailed to pulmonologists across the country using E-mail lists from major national bodies, i.e., the Indian Association for Bronchology, the Indian Chest Society, and the National College of Chest Physicians of India. Furthermore, personal E-mail lists of authors identified potential respondents. We sent E-mails, and a reminder E-mail was sent 1 month later. The survey link was kept open for responses for the next 6 months. Participation was entirely voluntary and without any financial incentive. For statistical analysis, replies were downloaded as excel spreadsheets and analyzed. Responses from those performing MT were included in the study. Descriptive statistical analysis was performed using STATA statistical analysis package (version 11.2), StataCorp LLC, Texas, USA. Categorical variables were presented as number (percentages) and continuous variables as mean (standard deviation) or median (interquartile range [IQR]). $P < 0.05$ was considered statistically significant.

RESULTS

We received 108 responses, of which 100 responded that they were performing MT. The responses from these 100 participants were included in the final analysis.

Baseline characteristics and indications for the procedure

The baseline demographic characteristics are summarized in Table 1. The mean age of the respondents was 40.5 (±8.46) years, and 95% were males. Pulmonologists

Table 1: Baseline characteristics of the survey respondents

Characteristics	n (%)
Total number of respondents	108
Performing thoracoscopy	100 (92.6)
Age (years), mean (SD)	40.5 (8.46)
Male gender	95 (95.0)
Performing flexible bronchoscopy	96 (96.0)
Area of specialization	
Pulmonologist (adult patients)	95 (95.0)
General physician	4 (4.0)
Thoracic surgeon	1 (1.0)
Duration since performing thoracoscopy	
Less than a year	9 (9.0)
1-3 years	36 (36.0)
3-5 years	22 (22.0)
5-10 years	22 (22.0)
More than ten years	11 (11.0)
Thoracoscopy examinations performed over the last 1 year, median (IQR)	20 (3-90)
Place of work/designation	
Private practitioner (multi-speciality hospital)	47 (47.0)
Teaching faculty medical college	28 (28.0)
Post-MD/DNB/DM or equivalent training	9 (9.0)
Private practitioner (clinic)	9 (9.0)
Postgraduate trainee	2 (2.0)
DM fellow	4 (4.0)
Others	1 (1.0)
Mode of learning thoracoscopy	
Working under someone performing thoracoscopy	33 (33.0)
Formal training program within India	19 (19.0)
Structured training program outside India	17 (17.0)
Training workshop in India	15 (15.0)
Self-learned	13 (13.0)
Others	3 (3.0)
Type of Thoracoscope	
Rigid thoracoscope	42 (42.0)
Flexi-rigid thoracoscope	29 (29.0)
Both	26 (26.0)
Use flexible bronchoscope for thoracoscopic examination	3 (3.0)
If using rigid equipment, type of rigid thoracoscope (%)	
10 mm diameter scope with 5 mm working channel	61.6
7 mm scope with 3 mm working channel	13.7
An optical telescope with optical forceps	13.7
Mini-thoracoscope (Wolf)	8.2
Laparoscope	1.4
Others	1.4
Place of performing thoracoscopy	
OT	48 (48.0)
Bronchoscopy room	45 (45.0)
Intensive care unit	3 (3.0)
Both bronchoscopy room and OT*	4 (4.0)
Number of assistants during the procedure, Median (IQR)	3 (1-5)
Availability of thoracic surgeon/general surgeon backup in case of complications	81 (81)
Availability of separate recovery room for observation following procedure	84 (84)
Indications for performing thoracoscopy	
Pleural biopsy in undiagnosed pleural effusion	99 (99.0)
Talc pleurodesis	71 (71.0)
Adhesiolysis	74 (74.0)
Visceral pleural biopsy	17 (17.0)
Pneumothorax treatment (bleb stapling, mechanical pleurodesis, etc.)	15 (15.0)

Contd...

Lung India • Volume 38 • Issue 1 • January-February 2021
Table 1: Contd...

Characteristics	n (%)
Pinch lung biopsy	11 (11.0)
Sympathectomy	4 (4.0)
Pericardial window	1 (1.0)
Others	4 (4)

*3 of 4 perform in OT for adhesiolysis, 1 performs flexi-rigid thoracoscopy in bronchoscopy room for diagnostic indications and rigid thoracoscopy in operation theater for therapeutic indications. OT: Operation theater, IQR: Interquartile range, SD: Standard deviation

comprised the majority (95%), 4 (4%) were physicians, and one of the respondents (1%) was a thoracic surgeon. Almost two-thirds of the respondents (67%) had begun performing the procedure in the last 5 years. The median number of procedures performed in the previous year was 20 (IQR: 3–90). Of the respondents performing thoracoscopy, the majority practiced in private setup (56%); 28% were teaching faculties in medical colleges, 4% were super-specialty trainees, whereas 2% were postgraduate trainees.Thirty-three percent had learned the procedure by working under someone performing thoracoscopy, 17% had undertaken formal training programs outside India, 15% had learned in a training workshop, whereas 13% were self-taught. Only 19% of the respondents had learned thoracoscopy in a formal training program in India.

Rigid thoracoscope was the most commonly used instrument (42.0%), whereas the flexi-rigid thoracoscope was used by 29.0%. Almost a quarter (26%) of the respondents were utilizing both rigid and flexi-rigid thoroscopes. Three percent of the respondents used a flexible bronchoscope for thorascopic examination. The rigid thoracoscope with a 10-mm diameter (with a 5-mm working channel) was the most commonly used (61.6%) instrument. 8.3% of the respondents were using the mini-thoracoscope. Operation theaters (48%) and bronchoscopy rooms (45.0%) were the standard locations for performing MT. The median number of assistants involved during thoracoscopy was 3 (IQR: 1–5). A video recording facility for the procedure was available in 84% of facilities. Surgical backup for management of potential complications was available with 81% of the respondents, and 68% had availability of separate recovery room for postprocedure monitoring. There was limited availability of instruments such as cryoprobes (18%) and electrocautery-diathermy (24%) in the thoracoscopy units.

The most common indications for thoracoscopy [Table 1] were evaluation of an undiagnosed pleural effusion (99.0%), performing talc pleurodesis (71.0%), and adhesiolysis (74.0%). Others included visceral pleural biopsy (17.0%), treatment of pneumothorax (15.0%), pinch lung biopsy (11.0%), pericardial window (1%), and sympathectomy (4%). All proceduralists used standard personal protective equipment during the procedure.

Patient preparation, sedation, and monitoring
Written informed consent was obtained by most (97%) of the respondents before thoracoscopy. Less than half (45%) of the proceduralists provided an information sheet to the patients while scheduling the procedure. The majority of the respondents tend to obtain hemoglobin levels (91%), platelet counts (96%), and coagulation studies (89%) before the procedure. Blood glucose and renal function parameters were obtained by 70% and 79% of the respondents, respectively. The vast majority (91%) considered a recent chest radiograph or computed tomography (CT) scan of the thorax as an essential prerequisite for performing thoracoscopy. The patient preparation and monitoring details are shown in Table 2.

Almost all respondents (97%) routinely fasted the patients before thoracoscopy. Most of the respondents required patients to fast for >4 h, with the majority (64.3%) asking patients to fast for 4–6 h and 31.6% fasting patients for >6 h [Table 3]. 61.7% would consider discontinuing both aspirin and clopidogrel before thoracoscopy. 28.3% stopped only clopidogrel, whereas 4% allowed patients to continue dual antiplatelets. Most of the respondents required the patients to get admitted to the hospital 1 day prior (56%) or on the day (28.3%) of the procedure. Seventy-seven percent of the respondents considered CT thorax as a mandatory prerequisite before thoracoscopy. Local anesthesia with conscious sedation (76%) was the most commonly preferred anesthetic modality; 18% of the respondents preferred general anesthesia for the procedure. During the procedure, 61.2% administered continuous oxygen supplementation, whereas 34.7% administered oxygen only in case of desaturation during the procedure. Prophylactic low-molecular-weight heparin administration for patients at a high risk of venous thromboembolism was practiced regularly by only 32% of the respondents. These details are summarized in Table 3.

The sedative and anesthesia practices reported in the survey are shown in Table 4. A combination of agents was preferred for sedation by the majority (65.7%). Midazolam, along with fentanyl, was preferred by 54.5%, whereas 18.2% administered only midazolam. Only 7.1% routinely performed thoracoscopy under general anesthesia. 44.2% of the respondents reported the availability of both naloxone and flumazenil in the procedure area. None of the two reversal agents were available in 35.8% of the cases. Anesthesiologists administered sedation for 50% of the respondents, whereas bronchoscopy nurses administered sedation in 24.5%. 2% lignocaine was used most commonly (84.5%) for local infiltrative anesthesia. 36.5% did not monitor or document the total dose of lignocaine. 7.2% of the operators had encountered signs of possible lignocaine toxicity after thoracoscopy.

Procedure performance and technical aspects
The procedure performance characteristics are summarized in Table 5. Thirty-four percent of the respondents preferred IV access on the hand on the same side as that of thoracoscopy. Thirty-eight percent preferred IV access on the contralateral side, and 26% did not have any specific preference.
Nearly half (55.1%) performed a chest ultrasound just before the procedure. Pneumothorax induction before thoracoscopy was routinely performed by only 20% of the individuals. Povidone-iodine was the most preferred agent (86.9%) for skin preparation at the incision site. The intercostal nerve block was only practiced by 21.2% of the respondents, whereas the vast majority (78.9%) performed the procedure under local anesthesia only. The commonly used accessories for pleural insertion were metallic cannula with blunt conical tip trocar (44.9%) and plastic trocar with a cannula (40.8%). The majority of the respondents (79%) used approximately 1–2 cm size incision for trocar introduction. Triangle of safety was the preferred thoracoscopy port creation site in the majority (54.6%). However, 43.4% of the respondents made this decision based on preprocedure ultrasound findings. Only 8.2% of the respondents utilized a second entry port during MT. Most of the respondents (82.8%) routinely obtained a chest radiograph following thoracoscopy.

Postthoracoscopy, the chest drain was removed by most of the respondents after lung expansion, on the same day (23.2%), or the next day (59.6%). In patients with nonexpanding lung following thoracoscopy, 67% discharged the patients with intercostal tube and bag. 11.3% would consider the insertion of an indwelling pleural catheter. Most of the respondents obtained 4–8 pleural biopsy pieces; all respondents sent samples for histopathology and relevant cultures, including for tuberculosis, as indicated. 18.2% of the respondents performed pleural cryobiopsy. Most of the respondents tend to discharge patients by the next day (67.4%), and 9.2% discharge the patients on the same day.

Complications

Around two-thirds (68.8%) of the respondents reported that they had experienced some intraprocedural or procedure-related complications. Infective complications were most common. Empyema and incision/port-site infections were reported by 21.5% and in 7.7% of the respondents, respectively. Other reported complications included persistent air leak >48 h (16.9%), bleeding complications (either from biopsy or port site) (16.9%), failure of lung expansion (13.8%), and re-expansion pulmonary edema (9.2%). 6.2% reported having encountered severe cardiovascular complications (such as acute coronary syndrome and arrhythmias) following thoracoscopy. 7.7% of the respondents reported any procedure-related mortality. Table 6 describes the details of thoracoscopy related complications reported in this survey.

Table 2: Preprocedure investigations and patient preparation before thoracoscopy

Question	Yes (%)	No (%)
Obtain written informed consent before thoracoscopy	97 (97.0)	3 (3.0)
Provide a patient information sheet describing the procedure to patients while scheduling the procedure	45 (45.0)	55 (55.0)
Obtain coagulation studies (PT, INR, and APTT) routinely in patients planned for thoracoscopy	89 (89.0)	11 (11.0)
Obtain hemoglobin levels routinely in patients planned for thoracoscopy	91 (91.0)	9 (9.0)
Obtain blood glucose estimation routinely in patients planned for thoracoscopy	70 (70.7)	29 (29.3)
Obtain urea and creatinine level estimation routinely in patients planned for thoracoscopy	79 (79.0)	21 (21.0)
Obtain platelet counts routinely in patients planned for thoracoscopy	96 (96.0)	4 (4.0)
Viral markers (HIV/hepatitis B/hepatitis C) testing before thoracoscopy		
Always	75 (75.6)	2 (2)
Most of the times	12 (12.0)	
Sometimes	10 (10.1)	
Routinely fast patients before thoracoscopy	97 (97.0)	3 (3.0)
Would consider performing thoracoscopy in the absence of a recent chest radiograph/CT thorax	9 (9.0)	91 (91.0)

APTT: Activated clotting time, CT: Computed tomography, PT: Prothrombin time, INR: International normalized ratio

DISCUSSION

We report the results of a comprehensive national survey on the prevalent practices of MT in India. This survey is the first survey on thoracoscopy practices in India, and the survey questionnaire is one of the most comprehensive, considering the few international studies also undertaken in this regard.

The findings of the survey highlight many vital aspects of thoracoscopy practice in India. There is an urgent need for formal thoracoscopy training programs in the country. Only a limited number of respondents received formal training in performing the procedure. There is greater use of the rigid thoracoscope in India, and these findings are similar to those reported in the USA and UK.

The diagnostic yield of either the rigid or the flexi-rigid thoracoscope is identical. However, pain is likely to be reduced with the use of a flexi-rigid thoracoscope. Interestingly, 26% of the respondents used both scopes. This likely reflects the degree of expertise with the proceduralist, wherein a particular scope may be used depending on the individual scenario. This is also reflected by the fact that a relatively large number of respondents reported the performance of advanced pleural procedures and not just limited to parietal pleural biopsy. This likely indicates that the survey responses likely report the characteristics of experienced operators.

Thoracic societies have published guidelines on the technical considerations of MT. The findings of the survey also highlight differences in prevalent practices as compared with the available guidelines. Checklists have been demonstrated to decrease medical errors and improve quality and patient outcomes. In a recent survey, 75% of the respondents performing thoracoscopy used checklists; however, we did not ask this question in our survey.

Patient information sheets are recommended for a better understanding of the procedure for the patients; however, in the survey, only 45% of the respondents regularly provided written patient information sheets. An important observation...
Table 3: Patient preparation and monitoring details during thoracoscopy

Question	Responses	n (%)
Duration of fasting patients before thoracoscopy (h)		
4-6		63 (64.3)
<4		4 (4.1)
>6		31 (31.6)
If a patient planned for thoracoscopy is receiving aspirin or clopidogrel, what would you do?		
Stop both before the procedure		61 (61.7)
Stop clopidogrel only		28 (28.3)
Stop aspirin only		3 (3.0)
Continue both		4 (4.0)
Others		4 (4.0)
Admit the patient for the procedure - when?		
A day before the procedure		56 (56.0)
Day of procedure		33 (33.0)
More than one day before the procedure		10 (10)
Do not admit (daycare)		1 (1.0)
Do you think CT thorax must be performed before planning a patient for thoracoscopy?		
Yes		77 (77.0)
No		11 (11)
Others		12 (12.0)
Anesthesia modality preferred for thoracoscopy		
Local anesthesia with intravenous Sedation		76 (76.0)
General anesthesia		18 (18.0)
Local anesthesia without intravenous sedation		4 (4.0)
Others		2 (2.0)
Oxygen administration during thoracoscopy (when?)		
Continuously during procedure		60 (61.2)
Only when desaturation occurs		34 (34.7)
Others		4 (4.1)
Prophylactic LMWH administration to patients undergoing thoracoscopy who are at high risk of thromboembolism		
Sometimes		36 (36.0)
Never		32 (32.0)
Most of the times		19 (19.0)
Always		13 (13.0)
Premedication with NSAIDs before starting the procedure		
Never		57 (57.0)
Sometimes		35 (35.0)
Most of the times		7 (7.0)
Always		1 (1.0)
Administer prophylactic antibiotics (before beginning the procedure)		
Never		35 (35)
Always		24 (24)
Sometimes		22 (22)
Most of the times		17 (17)
Only with empyema and parapneumonic effusions		2 (2)
Administer antibiotics after procedure completion		
Always		41 (41)
Sometimes		26 (26)
Most of the times		18 (18)
Never		12 (12)
Others		3 (3)
Duration of patient observation following thoracoscopy		
<30 min		7 (7.0)
30 min-1 h		18 (18.0)
1-2 h		43 (43.0)
>2 h		28 (28.0)
Others		4 (4.0)
Parameters routinely monitored during thoracoscopy (%)		
Oxygen saturation		100
Blood pressure		86
ECG monitoring		74
End-tidal CO₂		10
Heart rate		91
Respiratory rate		2
Equipment available in the procedure area (%)		
Height adjustable table		84
Resuscitation cart/trolley		94
Oxygen source		97
Suction equipment		97
Cardiac monitor with facility for monitoring noninvasive BP, SpO₂ and ECG		95
X-ray view box		94
Trolley for holding all instruments		98
Thoracoscope warmer		22
Formaldehyde chamber		1
Electrocautery		1

LMWH: Low-molecular-weight heparin, NSAID: Nonsteroidal anti-inflammatory drug, BP: Blood pressure, ECG: Electrocardiogram, SpO2: Oxygen saturation, CT: Computed tomography
was that only 32% of the respondents regularly administered prophylactic low-molecular-weight heparin to patients at high risk of venous thromboembolism. Preprocedure nonsteroidal anti-inflammatory drug administration is recommended as an aid to analgesia in local anesthetic thoracoscopy; however, this was practiced routinely only by 8% of the respondents. The use of thoracic ultrasound to decide the entry port is preferable best practice, but this was not routine in the survey. Another important observation was that only 9.3% of the respondents used lignocaine in recommended concentrations (0.5%–1%), and most (84.5%) used 2% lignocaine for local anesthesia. This is important because a higher dose of lignocaine may be associated with adverse consequences.[15] An upper limit of 3 mg/kg for infiltration of lignocaine has been suggested to avoid toxicity; however, more than one-third of the respondents did not document cumulative lignocaine dose. A relatively large proportion used prophylactic antibiotics as a routine. However, this practice has not been found to reduce the risk of infectious complications following thoracoscopy.[12] Pleural cryobiopsy is another commonly utilized method in pleuroscopy, which is safe, albeit without a significant increase in diagnostic yield.[13,14] The use of pleural cryobiopsy in our survey was less as compared to another survey of flexi-rigid thoracoscopy use.[8] In our survey, only 9.2% of the respondents discharged patients on the same day postprocedure. This is different from practice elsewhere.

Table 4: Sedation and local anesthesia during thoracoscopy

Question	Responses	n (%)
The preferred agent for sedation during thoracoscopy	Midazolam	18 (18.2)
	Midazolam + fentanyl	54 (54.5)
	Midazolam + pentazocine	7 (7.1)
	Propofol	7 (7.1)
	Fentanyl	2 (2.1)
	Dexmedetomidine	2 (2.1)
	Midazolam + tramadol	1 (1.0)
	Do not administer sedation	1 (1.0)
	General anesthesia always	7 (7.1)
Preference for single agent or combination sedation	Combination	65 (65.7)
	Single drug	28 (28.3)
	Do not use sedation	6 (6.1)
Availability of naloxone or flumazenil in the procedure area	None available	34 (35.8)
	Both available	42 (44.2)
	Only naloxone available	13 (13.7)
	Only flumazenil available	1 (1.0)
	I don’t know	5 (5.3)
Sedation administrator	Anesthesiologist	49 (50.0)
	Assisting doctor	16 (16.3)
	Assisting technician	9 (9.2)
	Bronchoscopy nurse	24 (24.5)
The concentration of lignocaine solution for local anesthesia	0.5%	1 (1.0)
	1%	8 (8.3)
	2%	82 (84.5)
	4%	5 (5.2)
	I don’t know	1 (1.0)
Monitor and document the total dose of lignocaine	Yes	61 (63.5)
Encountered possible signs of lignocaine toxicity after thoracoscopy	Yes	7 (7.2)
	No	89 (91.8)
	Not aware of the signs of lignocaine toxicity	1 (1.0)

wherein thoracoscopy is largely performed as a day-care procedure.[8,10]

Table 5: Procedural and technical aspects of thoracoscopy

Question	Responses	n (%)	
Routinely administer an intercostal nerve block	Yes	21 (21.2)	
	No	78 (78.8)	
Secure intravenous access on which hand	The side of thoracoscopy	34 (34.0)	
	The side opposite of thoracoscopy	38 (38.0)	
	No specific preference	26 (26.0)	
	Decided by anesthesiologist	2 (2.0)	
Routinely perform chest ultrasound just before the start of the procedure	Yes	54 (55.1)	
	No	44 (44.9)	
Patient position during the procedure	Lateral decubitus with the affected side up	95 (97.9)	
	Depending according to indication	2 (2.1)	
The agent used for skin preparation at the incision site	Povidone-iodine	86 (86.9)	
	Chlorhexidine	13 (13.1)	
	Metallic with blunt conical tip trocar	44 (44.9)	
	Metallic with sharp triangular tip trocar	13 (13.3)	
	Plastic trocar and cannula	40 (40.8)	
	Disposable laparoscopy trocar	1 (1.0)	
Approximate length of incision for trocar introduction (cm)	≤1	20 (20.0)	
	1-2	79 (79.0)	
	>2	1 (1.0)	
The preferred site for the creation of the thoracoscopy port	Fourth or fifth intercostal space in the mid-axillary line (triangle of safety)	54 (54.6)	
	Variable depending on the affected side up	43 (43.4)	
	Ultrasound findings	2 (2.0)	
	Others	1 (1.0)	
	Always	7 (7.2)	
	Most of the times	35 (35.7)	
	Sometimes	55 (56.1)	
	Never	70 (72.9)	
	2-3	15 (15.6)	
	>8	11 (11.4)	
	IQR	5 (4.6-5.5)	
	Number of pleural biopsies taken	1-2	23 (23)
	3-5	50 (50)	
	6-20	11 (11.2)	
	22-26	46 (46.9)	
	28-32	40 (40.8)	
	Variable	1 (1.0)	
Amount of talc used for pleurodesis in case of pneumothorax (g)	1-2	14 (14.4)	
	3-5	62 (63.9)	
	Postprocedure intercostal drain size (Fr)	16-20	11 (11.2)
	22-26	46 (46.9)	
	28-32	40 (40.8)	
	Variable	1 (1.0)	
Suction application following thoracoscopy	Never	45 (45.4)	
	Sometimes	48 (48.5)	
	Most of the times	6 (6.1)	
	Always	53 (53.5)	

Contd...
Table 5: Contd...

Question	Responses	n (%)
When to remove the chest drain	Day after lung expansion	59 (59.6)
	The same day of lung expansion	23 (23.2)
	Day after the procedure, irrespective of lung expansion	4 (4.0)
	After the histopathology report	9 (9.1)
	Drain <50 ml in the last 24 hours	2 (2.0)
	Once the drain is <100 ml	1 (1.0)
Chest radiography before intercostal drain removal after thoracoscopy	Individualized	1 (1.0)
	Always	79 (79.8)
	Most of the times	12 (12.1)
	Sometimes	5 (5.1)
	Never	3 (3.0)
Approach to nonexpanding lung post thoracoscopy	Discharge patient with a chest tube and intercostal drainage bag	65 (67.0)
	Use IPC	11 (11.3)
	Remove chest tube anyway	6 (6.2)
	Surgical opinion	4 (4.1)
	Negative suction	1 (1.0)
	Computed tomography chest	1 (1.0)
Discharge after thoracoscopy	Same day	9 (9.2)
	Next day	57 (58.2)
	3rd to 4th day	6 (6.1)
	After lung expansion and chest tube removal	14 (14.3)
	Case to case basis	9 (9.2)

IPC: Indwelling pleural catheter, IQR: Interquartile range

Table 6: Complications of thoracoscopy encountered by respondents

Question	Responses	n (%)
Encountered any complications during thoracoscopy in the last 1 year	Yes	64 (65.3)
Complications of thoracoscopy	Empyema	14 (21.5)
	Extensive subcutaneous emphysema	13 (20.0)
	Persistent air leak (>48 h)	11 (16.9)
	Pulmonary edema	11 (16.9)
	Failure of lung expansion	9 (13.8)
	Re-expansion pulmonary edema	6 (9.2)
	Bleeding from the biopsy site	6 (9.2)
	Bleeding from port site	5 (7.7)
	Incision site or port-site infection	5 (7.7)
	Mortality/death	5 (7.7)
	Vasovagal attack	3 (4.6)
	Acute coronary syndrome	2 (3.1)
	Arrhythmia	2 (3.1)
	Convolusions	1 (1.5)
	Hemothysis	1 (1.5)
	Fever	1 (1.5)
	Respiratory depression	1 (1.5)
	Xylocaine reaction	1 (1.5)

Our study had certain limitations. Despite using various databases and personal contacts, we may have missed contacting potential respondents. Electronic surveying methodology could potentially have caused the exclusion of some respondents and could introduce a selection bias. We did not cover certain areas such as utilization of thoracoscopy checklist, thoracoscope cleaning and storage practices, modification of anticoagulation before the procedure, and management of complications. However, a more elaborate questionnaire might have reduced response rates or increased frequency of incomplete responses.

CONCLUSION

MT is a rapidly evolving interventional pulmonology procedure in India, with an increasing number of centers and pulmonologists beginning to perform the procedure over the past few years. There is a need to enhance the availability of formal thoracoscopy training programs in India. National guidelines on MT are required to standardize the technical and procedural aspects of thoracoscopy.

References

1. Bansal S, Mittal S, Tiwari P, Jain D, Arava S, Hadda V, et al. Rigid mini-thoracoscopy versus semirigid thoracoscopy in undiagnosed exudative pleural effusion: The MINT randomized controlled trial. J Bronchology Interv Pulmonol 2020;27:163-71. doi: 10.1097/LBR.0000000000000620.
2. Nattusamy L, Madan K, Mohan A, Hadda V, Jain D, Madan NK, et al. Utility of semi-rigid thoracoscopy in undiagnosed exudative pleural effusion. Lung India 2015;32:119-26.
3. Rahman NM, Ali NJ, Brown G, Chapman SJ, Davies RJ, Downer NJ, et al. Local anaesthetic thoracoscopy: British Thoracic Society Pleural Disease Guideline 2010. Thorax 2010;65 Suppl 2:i54-60.
4. Lee W, Shin SY, Seo DW, Sohn CH, Ryu JM, Lee JH, et al. Rapid collection of opinions from healthcare professionals in multiple institutions using short message service and google forms. Healthc Inform Res 2017;23:135-8.
5. Madan K, Mohan A, Agarwal R, Hadda V, Khilnani GC, Guleria R. A survey of flexible bronchoscopy practices in India: The Indian bronchoscopy survey (2017). Lung India 2018;35:98-107.
6. Raman T, Mcclelland S, Bartter T, Meena N. Current practice in management of exudative pleural effusions – A survey of American Association of Bronchology and Interventional Pulmonology (AABIP). J Thorac Dis 2018;10:3874-8.
7. Halflax RJ, Corcoran JP, Psallidas I, Rahman NM. Medical thoracoscopy: Survey of current practice-How successful are medical thoracoscopists at predicting malignancy? Respirioloogy 2016;21:958-60.
8. de Fonseka D, Bhattachar R, Maskell NA. Local anaesthetic (medical) thoracoscopy services in the UK. Respirations 2018;96:560-3.
9. Dhooria S, Singh N, Aggarwal AN, Gupta D, Agarwal R. A randomized trial comparing the diagnostic yield of rigid and semirigid thoracoscopy in undiagnosed pleural effusions. Respir Care 2014;59:756-64.
10. Duncan T, Clarke S, Hoyle I. P188 survey of use of safety checklists and standardisation of practice in thoracoscopy centres in the UK. Thorax 2015;70 Suppl 3:A171.

11. Mittal S, Mohan A, Madan K. Ventricular tachycardia and cardiovascular collapse following flexible bronchoscopy: Lidocaine cardiotoxicity. J Bronchology Interv Pulmonol 2018;25:e24-6.

12. Dhooria S, Sehgal IS, Prasad KT, Bal A, Aggarwal AN, Behera D, et al. A randomized trial of antimicrobial prophylaxis in patients undergoing medical thoracoscopy (APT). Respiration 2017;94:207-15.

13. Dhooria S, Bal A, Sehgal IS, Prasad KT, Muthu V, Aggarwal AN, et al. Pleural cryobiopsy versus flexible forceps biopsy in subjects with undiagnosed exudative pleural effusions undergoing semirigid thoracoscopy: A crossover randomized trial (COFFEE Trial). Respiration 2019;98:133-41.

14. Shafiq M, Sethi J, Ali M, Ghorai UK, Saghie T, Folch E. Pleural cryobiopsy: A systematic review and meta-analysis. Chest 2020;157:223-30.