Usefulness of 18F-fluorodeoxyglucose positron emission tomography/computed tomography angiography in a patient with blood culture-negative prosthetic valve endocarditis complicated with perivalvular abscess: a case report

Shiro Miura 1*, Masanao Naya 2, Takehiro Yamashita 1, and Youhei Ohkawa 3

1Department of Cardiology, Hokkaido Ohno Memorial Hospital, 2-1-16-1 Miyanosawa, Nishi-ku, Sapporo 063-0052, Japan; 2Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Kita-15, Nishi-7, Kita-ku, Sapporo 060-8638, Japan; and 3Department of Thoracic and Cardiovascular Surgery, Hokkaido Ohno Memorial Hospital, 2-1-16-1 Miyanosawa, Nishi-ku, Sapporo 063-0052, Japan

Received 19 March 2019; first decision 20 May 2019; accepted 17 September 2019; online publish-ahead-of-print 11 October 2019

Background

Prosthetic valve endocarditis (PVE) is a life-threatening systemic infection involving a high mortality rate and severe complications, including perivalvular abscess. Early diagnosis and detection of PVE continue to be challenging in clinical settings.

Case summary

A 64-year-old man with a history of mechanical aortic valve implantation 12 years prior was referred to our hospital with a major complaint of high fever and was admitted. Although results of three blood culture tests at admission were negative, transthoracic echocardiography, and transoesophageal echocardiography (TOE) were performed to exclude the possibility of PVE; both, however, were inconclusive. Subsequently, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) was performed; revealing intense hyper-metabolism above the aortic valve prosthesis with a greater intensity at the posterior end, confirming a diagnosis of aortic PVE complicated with perivalvular abscess.

Discussion

Considering the intermediate suspicion of PVE despite negative TOE and negative blood culture tests, 18F-FDG PET/CT can play a central role in diagnosing PVE. However, this new imaging modality often fails to differentiate thrombi, soft atherosclerotic plaques, or foreign body reactions on the surface of prosthetic valves. In this report, we have successfully enhanced the diagnostic accuracy of 18F-FDG PET/CT by focusing on perivalvular involvement, which could be a key finding, because intense 18F-FDG uptake surrounding the aortic annulus was consistent with the thickened area within the aortic annular region observed in the TOE examinations.

Keywords

Case report • Endocarditis • Perivalvular abscess • Positron emission tomography
Introduction

Definitive diagnosis of prosthetic valve endocarditis (PVE) is clinically challenging because of its varying clinical presentation, microorganisms involved, and patient profile. Prosthetic valve endocarditis entails high initial mortality and morbidity rates with a high risk of complications, including perivalvular abscess and fistulae during follow-up and often requires surgical intervention. Therefore, the diagnosis and management of PVE necessitate a collaborative approach involving cardiologists, infectious disease physicians, cardiac imaging specialists, cardiovascular surgeons, and microbiologists.

Recently, 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) has been advocated as an alternative diagnostic imaging modality for PVE, particularly when echocardiography and blood culture results are inconclusive in reaching a definitive PVE diagnosis. Furthermore, 18F-FDG PET/CT can detect distant emboli, metastatic infections, and perivalvular involvement when combined with CT coronary angiography. Additionally, complementary information obtained from less invasive tests are vital for patients with PVE who require early surgery. Herein, we present a challenging case of PVE complicated with perivalvular abscess.

Timeline

Event Description	Date
12 years before admission	25-mm mechanical aortic valve implantation owing to severe aortic regurgitation.
3 days before admission	Fever at night and general fatigue initiated.
Day of admission	Initial transthoracic echocardiography revealed no dysfunction of the mechanical aortic prosthesis, and no embolic events were detected on the whole-body computed tomography (CT). Three blood culture tests were performed and intravenous antibiotic therapy with ceftriaxone (2 g/day) was initiated.
Hospital Day 5	Transoeosphageal echocardiography was inconclusive and fever persisted.
Hospital Day 8	All blood culture tests were negative. 18F-fluorodeoxyglucose (FDG) positron emission tomography/CT revealed considerable uptake of 18F-FDG surrounding the aortic annulus; intensive antibiotic therapy was initiated with intravenous ampicillin (8 g/day) and gentamicin (180 mg/day).
Hospital Day 14	The infected prosthetic valve was surgically replaced with a 25-mm bioprosthesis with extensive debridement of perivalvular abscess.
Hospital Day 51	The patient was discharged well.
6 months after discharge	A 6-month of outpatient oral antibiotic therapy with amoxicillin (750 mg/day) was completed without any recurrences.

Learning points

- Prosthetic valve endocarditis (PVE) can often be a major diagnostic challenge owing to the difficulties in the interpretation of conventional echocardiography, particularly in patients with low-to-intermediate probability for PVE based on the modified Duke criteria.
- We describe a case of PVE complicated by perivalvular abscess where the combination of 18F-fluorodeoxyglucose positron emission tomography and computed tomography angiography aided in the diagnosis of PVE and its complications, shedding light on the additional roles of the new imaging modalities.

Case presentation

A 64-year-old man presented to our outpatient clinic with complaints of general fatigue and high fever (>38°C) at night that persisted for 3 days. He had previously undergone 25-mm mechanical aortic valve implantation (St. Jude Medical Regent; St. Jude Medical, Inc., St. Paul, MN) 12 years prior because of severe aortic regurgitation. Upon examination, no focus of infection could be identified, and he was admitted to our heart centre to exclude the possibility of PVE. After three sets of blood culture were obtained, intravenous ceftriaxone (2 g/day) was empirically initiated. Initial transthoracic echocardiography (TTE) revealed no dysfunction of the mechanical aortic prosthesis, and whole-body CT revealed no embolic events. The patient recovered to a low-grade fever (37–38°C) 48 h after the initial antibiotics therapy and showed improved C-reactive protein level (from 13 to 6.3 mg/dL) in the first 5 days. Subsequently, transoesophageal echocardiography (TOE) performed on the 5th day of hospitalization revealed a 6–11 mm mobile echogenic mass attached to the prosthetic valve and a thickened area within the posterior annular region at the level of the non-coronary sinus of Valsalva (Figure 1). At this point, the patient met two minor diagnostic criteria (predisposing heart condition of prior prosthetic valve implantation and high fever) in the modified Duke diagnostic criteria for infective endocarditis because the TOE findings were considered inconclusive. Subsequently, combined 18F-FDG PET/CT and CT coronary angiography revealed intense hypermetabolism above the aortic valve prosthesis with greater intensity at...
Usefulness of 18F-FDG PET/CT angiography in a patient

Discussion

The modified Duke criteria have been recommended for PVE diagnosis since its proposal by Durack et al.\(^6\) Notwithstanding the presence of well-established clinical criteria, PVE diagnosis poses some challenges. There is a common concern regarding the interpretation of echocardiographic findings, despite TTE or TOE being the primary diagnostic approach.\(^5\) As observed in the patient in this study, echocardiographic findings can often be inconclusive, which can be primarily attributed to the similar appearance of both the thrombus and pannus on the prosthetic valves, which cannot be distinguished from vegetation.\(^7\) This inconclusive diagnosis can lead to difficulty or delay in surgical decisions, particularly in patients with low-to-intermediate likelihood of PVE, such as those with negative blood culture tests. 18F-fluorodeoxyglucose positron emission tomography/computed tomography is an established diagnostic modality in patients with suspected PVE that is used when conventional diagnostic tools fail to provide a definitive diagnosis.\(^5\) In the present patient, perivalvular involvement was a key observation because intense 18FDG uptake confined to the aortic annulus above the prosthetic valve was revealed by 18F-FDG PET/CT imaging, which was compatible with the thickened area within the aortic annular region observed in TOE examinations, implying perivalvular abscess formation. Additionally, detecting perivalvular involvement by utilizing 18F-FDG PET/CT allowed us to improve the diagnostic accuracy of PVE.

As a preoperative risk assessment, CT angiography is more advantageous and safer than invasive coronary angiography in PVE cases involving the aortic valve because invasive coronary angiography potentially involves risks of vegetation embolization or haemodynamic decompensation. Also, CT angiography can provide further information on the valve size, anatomy, and calcification of aortic valve, which are essential for surgical planning.\(^8\) Furthermore, compared with the TOE findings, the combination of PET and CT angiography enhances the accuracy of identification of the infected location, in addition to the delineation of coronary anatomy and detection of fistulae and abscess, distal embolic complications and infected aneurysms at other sites.\(^4\)

Another important case discussion was on how to manage the blood culture-negative patient with PVE with appropriate antibiotic therapy and/or surgical intervention if needed. The patient was initially treated with ceftriaxone in empirical therapy for unexplained fever following three sets of blood culture tests. Although the patient’s condition stabilised in the first week, with improvement in fever and general appearance, we switched ceftriaxone to intravenous ampicillin and gentamicin because the findings of 18F-FDG PET/CT imaging were highly suggestive of PVE. These antibiotic regimens for initial treatment of late PVE were determined based on the current ESC guideline\(^5\) and consultation with the endocarditis team. In a recent review,\(^7\) Viridans group streptococci, coagulase-negative staphylococci (CNS), Enterococcus spp. and Streptococcus bovis were reported to be the most common pathogens in patients with PVE. We carefully selected a combination of ampicillin and gentamicin to mainly treat \(S\).\(\text{aureus}\) or CNS was slightly less likely to occur in the patient. Blood culture-negative infective endocarditis (BCNIE) can be caused by fungi or fastidious slow-growing bacteria, notably obligatory intracellular bacteria.\(^1\) Among them,
Figure 2 (A) 18F-fluorodeoxyglucose positron emission tomography/computed tomography showing significant 18F-fluorodeoxyglucose uptake (arrowheads) at the level of the mechanical aortic valve with inhibition of the rest of the cardiac metabolism, indicating perivalvular abscess. (B) The combination of 18F-fluorodeoxyglucose positron emission tomography and computed tomography angiography provides additional information regarding the accurate location of the vegetation behind the valve surface (arrow) and distribution of the affected perivalvular tissue (arrowheads), in addition to characterizing the coronary arteries, aortic valve, root, and ascending aorta. LMCA, left main coronary artery; RCA, right coronary artery.

Figure 3 (A) Visualization of the mobile vegetation attached to the aortic mechanical prosthesis (arrow). (B) Surgical view of an aortic perivalvular abscess (arrow). (C) Haematoxylin–eosin (H&E)-stained histological section of the mobile vegetation attached to the aortic mechanical prosthesis showing fibrin-rich thrombi and infiltration of neutrophils and macrophages without any evidence of bacteria or tumour tissue. (D) Magnified H&E-stained section of mobile vegetation (square in C) showing microorganisms that were absent in the thrombotic vegetation.
Usefulness of 18F-FDG PET/CT angiography in a patient

Supplementary material

Supplementary material is available at European Heart Journal - Case Reports online.

Slide sets: A fully edited slide set detailing this case and suitable for local presentation is available online as Supplementary data.

Consent: The author/s confirm that written consent for submission and publication of this case report including image(s) and associated text has been obtained from the patient in line with COPE guidance.

Conflict of interest: none declared.

References

1. Wang A, Athan E, Pappas PA, Fowler VG Jr, Olaison L, Paré C, Almirante B, Muñoz P, Rizzi M, Naiber C, Logar M, Tatsnev P, Iarussi DL, Selton-Suty C, Jones SB, Casadevall J, Morris A, Corey GR, Cabell CH; International Collaboration on Endocarditis-Prospective Cohort Study Investigators. Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA 2007;297:1354–1361.

2. Habib G. Management of infective endocarditis. Heart 2004;92:124–130.

3. Kouijzer IJ, Vos FJ, Janssen MJ, van Dijk AP, Oyen WJ, Bleeker-Rovers CP. The value of 18F-FDG PET/CT in diagnosing infectious endocarditis. Eur J Nucl Med Mol Imaging 2013;40:1102.

4. Pizzi MN, Roque A, Fernández-Hidalgo N, Cuellar-Calabria H, Ferreira-González I, González-Alujas MT, Oristrell G, Gracia-Sánchez L, González JJ, Rodríguez-Palomares J, Gafánides M, Maisterra-Santos O, García-Dorado D, Castell-Conesa J, Almirante B, Agudé-Brux S, Tornos P. Improving the diagnosis of infectious endocarditis in prosthetic valves and intracardiac devices with 18F-fluorodeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation 2015;132:1113–1126.

5. Habib G, Lancellotti P, Antunes MJ, Bongiorni MG, Casalta JP, Del Zotti F, Muñoz P, Rizzi M, Naiber C, Logar M, Tatsnev P, Iarussi DL, Selton-Suty C, Jones SB, Casadevall J, Morris A, Corey GR, Cabell CH; International Collaboration on Endocarditis-Prospective Cohort Study Investigators. Contemporary clinical profile and outcome of prosthetic valve endocarditis. JAMA 2007;297:1354–1361.

6. Durack DT, Lukes AS, Bright DK. New criteria for diagnosis of infective endocarditis: utilization of specific echocardiographic findings. Duke Endocarditis Service. Am Heart J 1994;128:200–209.

7. Evangelista A, Gonzalez-Alujas MT. Echocardiography in infective endocarditis. Heart 2004;90:614–617.

8. Feuchtner GM, Stolzmann P, Dichtl W, Schertler T, Bonatti J, Scheffel H, Mueller S, Plass A, Mueller L, Bartel T, Wolf F, Alkadhi H. Multislice computed tomography in infective endocarditis: comparison with transesophageal echocardiography and intraoperative findings. J Am Coll Cardiol 2009;53:436–444.

9. Vogliou CT, Vlachogiannis NL, Palaiodimos L, Kousoulis AA. The causative agents in infective endocarditis: a systematic review comprising 33,214 cases. Eur J Clin Microbiol Infect Dis 2016;35:1227–1245.

Lead author biography

Dr Shiro Miura is working as a chief interventional cardiologist at one of the most outstanding cardiovascular centers in Hokkaido in Japan named Hokkaido Ohno Memorial Hospital with remarkable achievements specializing in interventions on ischemic heart diseases and structural heart disease in the management of inpatients and outpatients with heart failure following the postgraduate course named ‘MSc Statistics with Applications in Medicine’ in University of Southampton in the UK where I was rewarded the Dean’s List Awards for exceptional performance for both the regular term exams and final dissertation.