САЛЬМОНЕЛЛА-ИНДУЦИРОВАННЫЕ ИЗМЕНЕНИЯ КИШЕЧНОГО МИКРОБИОМА КРЫС

Букина Ю. В.
Полищук Н.Н.
Бачурин Г.В.,
Черковская О.С.
Зинич Е.Л.
Лазарик А.Л.
Безуглый М.Б.

Запорожский государственный медицинский университет

SALMONELLA-INDUCED CHANGES OF THE RAT INTESTINAL MICROBIOTA

Bukina Y.V.
Polishchuk N.N.
Bachurin H.V.
Cherkovska O.S.
Zinych O.L.
Lazaryk O.L.
Bezugly M.B.

Zaporozhye State Medical University
Резюме. Микробиом кишечника существенно влияет на функционирование организма: он участвует в защите организма от патогенных микроорганизмов, в процессах обмена веществ, торможении воспалительных реакций, в формировании врожденного и адаптивного иммунного ответа в слизистой оболочке кишечника. Одной из причин изменения микробиоты является использование антибиотиков. Поэтому процессы взаимодействия антибиотиков Salmonella enteritidis и Salmonella typhimurium с представителями нормальной микрофлоры кишечника представляют особый интерес.

Материалы и методы. Проведен количественный и качественный анализ состава микробиоты стенки у крыс бактериологическим методом, проведен статистический анализ данных с использованием программы StatSoft Statistica v12.

Результаты и обсуждение. При введении ванкомицина и S. Enteritidis, S. Typhimurium в группы II, III, IV наблюдалось снижение количественного содержания кишечной палочки в 10, 7 и 110 раз соответственно (р≤0,05). Количество P. Aeruginosa значительно уменьшилось только в третьей группе (p≤0,05). Количество представителей Bacteroides spp. значительно уменьшился в несколько тысяч раз (группа II) и в 70 и 87 раз (группы III и IV) (p≤0,05). Содержание E. Faecalis и E. Faecium уменьшилось в 861, 6 и в несколько тысяч раз (группы II, III, IV) (p≤0,05). Количество Proteus spp. значительно уменьшился во II группе в 27 раз и быстро увеличился в IV группе (p≤0,05). Группа III показала резкое снижение содержания представителей Enterobacter spp. и Klebsiella spp. в 847 и 150 раз, а во II группе наблюдается увеличение их числа в 7 и 46 раз соответственно (p≤0,05). Количество Staphylococcus spp. снизилось в 10 раз только во II группе. Количественное содержание Clostridium spp. снизилось в несколько тысяч раз (группа II) и в 5,5 раз (группа IV) (p≤0,05). Количество Lactobacillus spp. уменьшилось в несколько тысяч раз (группа II). Количество представителей Bifidobacterium spp. значительно снизилось в 10, 9 раза и в несколько тысяч раз (группы III, IV). Количественное содержание...
Повторно отредактировано в тексте.
ИЗМЕНЕНИЯ КИШЕЧНОГО МИКРОБИОМА ПРИ СИВК
10.15789/2220-7619-SIC-1507

Enteritidis и S. Typhimurium в VII и VIII группах интенсивно снижалось (p≤0,05).

Выводы. Введение B. Fragilis может быть использовано при лечении воспалительных заболеваний кишечника или заболеваний с нарушением барьерной функции кишечника.

Ключевые слова: пристеночная микробиота, микробиом, ванкомицин, сальмонелла, бактероиды, крысы.

Abstract. The gut microbiome profoundly affects the body functioning: it participates in host protection against pathogenic microorganisms, metabolic events, inhibition of inflammatory responses, formation of innate and adaptive immune response in the intestinal mucosa. One of the causes altering microbiota community is due to antibiotics. Therefore, the processes of antibiotics interaction from Salmonella Enteritidis and Salmonella Typhimurium with representatives of normal intestinal microflora are of particular interest. Materials and methods. The quantitative and qualitative analysis of the wall microbiota composition in rats was evaluated by bacteriological method, the statistical data analysis was performed using the software StatSoft Statistica v12. Results & discussion. Inoculation of vancomycin and S. Enteritidis, S. Typhimurium in groups II, III, IV resulted in quantitatively decreased E. coli level by 10-, 7- and 110-fold, respectively (p≤0.05). The count of P. Aeruginosa decreased markedly only in the group III (p≤0.05). The count of Bacteroides spp. members was profoundly decreased by several thousand times (group II) as well as 70- and 87-fold (groups III and IV), respectively (p≤0.05). The count of E. Faecalis and E. Faecium decreased by 861-, 6- and several thousand times (groups II, III, IV), respectively (p≤0.05). The count of Proteus spp. markedly decreased in group II by 27-fold and rapidly increased in group IV (p≤0.05). Group III revealed a sharp decline in level of Enterobacter spp. and Klebsiella spp. by 847- and 150-fold, whereas in group II they were increased by 7- and 46-fold, respectively (p≤0.05). The count of Staphylococcus spp. decreased by 10-fold only in group II.
The level of Clostridium spp. decreased by several thousand times (group II) and by 5,500 times (group IV) (p≤0.05). The count of Lactobacillus spp. decreased by several thousand times (group II). The count of Bifidobacterium spp. members significantly decreased by 10.9-fold and by several thousand times (groups III, IV). The level of Peptostreptococcus anaerobius profoundly decreased in all three study groups (p≤0.05). The level of Salmonella spp. increased in group II by 49 times, but markedly increased in groups III and IV (p≤0.05). Inoculation of salmonella after vancomycin pre-treatment caused dramatic change in the microbiota composition in groups V and VI, namely: increased count of E. coli by 65- and 105-fold, markedly increased level of P. Aeruginosa in group V and VI – by 3-fold. In addition, these groups also showed decreased level of Bacteroides spp. by 9- and 10-fold (p≤0.05). The count of E. faecalis and E. faecium decreased dramatically only in group V (p≤0.05). The count of Proteus spp. decreased by 17 times in group V as well as in group VI (p≤0.05). A sharp increase in level of Enterobacter spp. and Klebsiella spp. members was observed in groups V and VI (p≤0.05). However, representatives of Peptostreptococcus anaerobius in groups V and VI decreased by 20 and 9 times, respectively (p≤0.05). The count of Salmonella spp. decreased only in group V by 7 times (p≤0.05). Inoculating experimental animals with B. fragilis conditioned with S. Enteritidis, S. Typhimurium and pretreated with vancomycin resulted in markedly decreased level of E. coli in group VII and VIII by 538 times (p≤0.05). The count of P. aeruginosa in groups VII and VIII decreased profoundly, whereas level of Bacteroides spp. members was reciprocally increased (p≤0.05). The level of Lactobacillus spp. decreased by 10.3 times only in group VI. The count of E. faecalis and E. faecium increased by 10 and 19 times in groups VII and VIII, respectively, whereas level of Proteus spp. decreased only in group VII by 322 times (p ≤0.05). In addition, a sharp decrease in level of Enterobacter spp. and Klebsiella spp. members (p≤0.05) was found in groups VII and VIII. The count of Peptostreptococcus anaerobius and Lactobacillus spp. members was markedly increased by 7-, 12-,
several thousand-fold and 40 times (groups VII and VIII, respectively) (p≤0.05). The count of *S. enteritidis* and *S. typhimurium* in groups VII and VIII decreased rapidly (p≤0.05). **Conclusions.** Inoculation of *B. fragilis* can be used in treatment of inflammatory bowel diseases or disorders with impaired gut barrier function

Key words: parietal microbiota, microbiome, vancomycin, salmonella, bacteroids, rats.
The intestinal microbiome significantly affects the functioning of the body: it participates in metabolic processes, inhibition of pro-inflammatory reactions, in the formation of innate and adaptive immune response in the intestinal mucosa [8, 16, 18, 32]. The most important function of the intestinal microbiome is to protect the body from pathogenic microorganisms - pathogens of bacterial intestinal infections [31, 38]. It is known that dysbiotic changes in the intestine lead to increased susceptibility to pathogenic bacteria, such as salmonella [15, 22], which are the etiological factor of gastroenteritis [36]. One of the most common causes of microbiota changes is the use of antibiotics [5, 26, 41]. Therefore, of particular interest are the processes of interaction of antibiotics, *Salmonella enteritidis* and *Salmonella typhimurium* with representatives of the normal intestinal microbiota [3, 11, 39]. Therefore, in our work, vancomycin was used to induce dysbiotic changes in the intestinal microflora, which acts against gram-positive bacteria and does not affect gram-negative (salmonella). We also paid attention to determining the quantitative and species composition of the microbiota in salmonella-induced intestinal inflammation, which created the basis for further study of the molecular mechanisms of interaction of *Salmonella enteritidis* and *Salmonella typhimurium* with microbiota and gut-associated lymphoid tissue (GALT).

The aim: to analyze changes in the quantitative and species composition of the microbiota of the small intestine in rats with salmonella-induced inflammation of the intestine on the background of the introduction of vancomycin and *B. fragilis*.

Materials and methods. Experiments to determine the quantitative and species content of microorganisms in the parietal intestinal microbiota were performed on 120 rats (males) of the line "Wistar" on the basis of the bacteriological department of the microbiological laboratory of Zaporozhye State Medical University in the bound of scientific research 0118U007141 "Molecular genetic analysis of changes in the transcript of the genes of the immune response and intestinal microbiome in the conditions of experimental pathology and the development of
methods for their correction". Acclimatization of animals (quarantine) lasted 7 days before the study. All experiments were conducted in the autumn-winter period in the vivarium of Zaporizhia State Medical University. Rats were at an air temperature of 18-21 °C, in natural light during daylight 7-00 - 17-00, with free access to food and water. Experimental work with rodents was carried out in accordance with the provisions of the "European Convention for the Protection of Vertebrate Animals Used for Experimental and Other Scientific Purposes" (Strasbourg, 1986). All rodents, except group I (control, intact), received vancomycin and/or suspension of microorganisms. In order to quickly internalize the bacteria in the intestinal mucosa, the suspension with salmonella was administered orally using a probe with a volume of 5 ml size 16-18, length 5-7.5 mm, tip size 2.25. Vancomycin was administered to animals at the rate of 50 mg per kg of body weight, suspensions of microorganisms - in an amount of 15 ml with a concentration of 3×10⁸ CFU/g. Thus, to simulate the imbalance of the intestinal microflora, only vancomycin (TEVA, Hungary, № UA/8995/01/02) was introduced to group II rodents, S. Enteritidis suspension was introduced to group III, and S. Typhimurium suspension was introduced to group IV. Animals V and VI of experimental groups received vancomycin on the first day, but group V after 24 h was administered a suspension of S. Enteritidis, and rats of group VI - a suspension of S. typhimurium. Rodents of groups VII and VIII were also given vancomycin on the first day, but group VII received S. Enteritidis suspension on the second day and B. Fragilis on the third day, while group VIII rats received a suspension of S. Typhimurium on the second day, and on the third - B. Fragilis. As a material for bacteriological studies of the intestinal microbiota used swabs from the ileum of rats. Experimental studies were conducted according to the author's method. To isolate the parietal microflora from the ileum, 0.1 ml of swabs were inoculated on nutrient media. Isolation and identification of salmonella was performed according to the order of the Ministry of Health of Ukraine № 425 of 24.05.2013 "On approval of guidelines" Methods of isolation and identification of salmonella". For salmonella
used a magnesium enrichment medium in which the swabs were dissolved 1:10.
Seedings from the obtained suspensions were performed on bismuth sulfite agar (BSA) and Endo medium immediately and after 24 h of incubation in a thermostat at 37 °C, after which Endo medium was incubated for 20 h, BSA - 48 h at 37 °C. Hi CromeTM nutrient media and HiMedia differential diagnostic media (India) were used to isolate different species of microorganisms. Biochemical identification was performed according to the "Determinant of bacteria Bergi" (1997), in accordance with the instructional and methodological documents and data of modern literature [7]. Identification of members of the genus Pseudomonas was performed in accordance with the methodical recommendations "Biological characteristics and microbiological identification of non-fermenting gram-negative bacteria" (Kharkov, 2010). Determination of bacteroids and peptostreptococci was performed in accordance with the methodical recommendations "Laboratory diagnosis of purulent-inflammatory diseases caused by asporogenic anaerobic microorganisms" (Kharkov, 2000). Belonging of bacteria to the genus Enterococcus was carried out in accordance with the methodical recommendations "Microbiological diagnosis of streptococcal, enterococcal and peptostreptococcal infections" (Kharkov, 2007). The experimental work used strains of *S. Enteritidis* and *S. Typhimurium*, which were obtained from the Museum of Microorganism Strains "Ukrainian Center for Disease Control and Monitoring" of the Ministry of Health of Ukraine (Kyiv) and culture of *Bacteroides fragilis* isolated from the intestines of intact rodents. The affiliation of this strain to the genus Bacteroides was established by cultural characteristics, as well as by PCR ("bactopol" kit for determining *Bacteroides fragilis, vulgatus, thetaiotaomicron, ovatus*). The isolate was confirmed as *Bacteroides fragilis* on a number of biochemical grounds.

Counting the number of microorganisms was performed according to the formula:

\[M = N \times 10^n + 1, \]

where \(M \) is the number of microorganisms in 1 g of the test material,
N is the number of colonies grown on agar,

n is the degree of dilution of the test material.

Statistical analysis of the results was performed using licensed computer programs Microsoft Excel 2010 and StatSoft Statistica v12. When analyzing the distributions of quantitative data, the level of the central tendency - the median (Me), and the level of variance - the interquantal range in the form of 25 and 75 percentiles were determined. The calculation of the significance of the differences between the mean values was evaluated using the nonparametric Mann-Whitney test (U-test). The criterion of statistical significance was the level of p ≤ 0.05.

Results and discussion.

The data obtained during the studies showed that with the introduction of vancomycin and bacterial agents, the quantitative and qualitative composition of the representatives of the parietal microbiota changed dramatically (Table 1). Thus, in groups II, III, IV there was a decrease in the number of *E. Coli* by 10, 7 and 110 times, respectively (p ≤ 0.05), and the frequency of selection of this species was 10 and 14% (groups II, III). The results of studies conducted by scientists showed that the content of *E. Coli* after administration of vancomycin to rats decreased several thousand times, and a decrease was observed in salmonella infection - 2 times [28]. The number of *P. Aeruginosa* decreased significantly only in the third group (p≤0.05). At the same time, Carroll et al. (2010) in their work showed a 2-fold increase in the number of pseudomonads when administered to rats *S. Enteritidis* [4]. The number of representatives of *Bacteroides spp.* significantly decreased several thousand times (group II) and 70 and 87 times (groups III and IV) (p≤0.05) (Table 1). Our data are consistent with the results of researchers who studied the composition of the parietal microflora of the intestine of rats and showed a sharp decrease in bacteroids in 2 times with the introduction of vancomycin, as well as several thousand times with the introduction of salmonella [1]. During similar experiments,
Parkes et al. (2012) concluded that after the introduction of vancomycin and salmonella, the amount of *E. Faecalis*, *E. Faecium* decreased by a small amount [25]. As a result of our studies, the frequency of enterococci was 16% and only in group II, and the level of *E. Faecalis* and *E. Faecium* decreased by 861, 6 and several thousand times (groups II, III, IV) (p≤0.05). The number of *Proteus spp.* significantly decreased in group II 27 times and increased rapidly in group IV (p≤0.05). However, proteases were isolated with a frequency of 22 and 78% in groups III, IV (Table 3). According to the literature data when administered to mice vancomycin, as well as salmonella, the content of *Proteus spp.* increased by 4 and 48 times [24], which is similar to the data obtained during our experiment. In group III there was a sharp decrease in the content of *Enterobacter spp.* and *Klebsiella spp.* in 847 and 150 times, and in group II there was an increase in their number by 7 and 46 times, respectively (p≤0.05). The frequency of selection of these representatives was 87% and only in group II. Turnbaugh (2006) showed in their studies that when vancomycin was administered to rats, the number of members of the Enterobacteriaceae family was reduced in 3 times [35]. At the same time, according to Sekirov I. (2008), with the introduction of vancomycin the number of enterobacteria increased 11 times, and with the introduction of salmonella decreased by 2 times [29], which is consistent with our data. The quantitative composition of *Peptostreptococcus anaerobius* decreased significantly in all three experimental groups (p ≤ 0.05). A group of scientists from America found a 10-fold reduction in the content of peptostreptococci of this species [27], while Kerckhoffs (2009) in his experiments showed a 5-fold reduction in *P. Anaerobius* with the introduction of vancomycin, and their complete absence with salmonella [17]. At the same time, the number of staphylococci in group II decreased 10 times. No significant changes were found when calculating the content of clostridia and lactobacilli, only in group II we found a slight decrease of 550 times in bacteria of the genus Clostridium and 46 times in Lactobacillus. However, lactobacilli were isolated with a frequency of 2.72, 85% in all three
experimental groups. In their studies, Nagpal R. et al. (2018) demonstrated similar changes in the intestinal microbiota in rats with the development of dysbiosis [23].

The frequency of isolation of opportunistic microflora such as: staphylococci, bifidobacteria, Candida, was 10, 77, 81%; 9% (group II) and 5.68% (group II III), respectively. The content of representatives of Salmonella spp. increased in group II by 49 times and, also, its significant growth was observed in groups III and IV (p≤0.05). According to the results of studies conducted by European scientists, after treatment of rats with vancomycin, there was a slight increase in salmonella, and when rats became infected, this figure increased by 1029 times [12], which does not contradict our results.

As a result of comparison of the parameters obtained with the introduction of Salmonella enteritidis and Salmonella typhimurium in rats on a single dose of vancomycin, there was a sharper change in the quantitative and species composition of the microbiota than with the introduction of Salmonella without antibiotics. Thus, in groups V and VI, there was an increase in the amount of E. Coli in 65 and 105 times (p ≤ 0.05), and the frequency of their release in these groups was 35 and 95%. This does not contradict the results of Stecher B. (2010), who demonstrated that after administration of S. Enteritidis and S. Typhimurium to mice under antibiotic therapy, the amount of E. Coli increased 2 times [30]. A significant increase in the content of P. Aeruginosa was observed in the fifth group, and in the sixth, only 3 times (p≤0.05). Ferreira et al. (2011), when examining patients with infectious intestinal diseases, found a slight decrease in the number of pseudomonads [10]. The frequency of lactobacilli in groups V and VI was 30 and 6%, but their number did not change significantly and was isolated from the material from rats of group VI, these indicators corresponded to a decrease of 17 times (Table 3). The results of Marina Lleal (2019), in the study of the intestinal microflora of rats, also indicate a decrease in the number of representatives of this genus [19].
Changes of the intestinal microbiome in SIV

Table 1.

Quantitative content of microorganisms (CFU/g) in the parietal content of the small intestine in rats with the introduction of vancomycin and S. Enteritidis, S. Typhimurium

According to data provided by Turnbaugh et al. (2006), when administered to mice antibiotics and salmonella, the number of representatives of Bacteroides spp. in the parietal contents of the intestine, decreased in 4 times [34]. These data do not contradict the results of our studies, where the introduction of vancomycin and salmonella, in groups V and VI, also showed a decrease in the number of Bacteroides spp. In 9 and 10 times (p≤0.05) (see Table 1). The level of E. Faecalis and E. Faecium decreased significantly only in the fifth group (p ≤ 0.05), and in group VI the frequency of their release was 19% (Table 3). The number of Proteus spp. significantly decreased in 17 times in group V and, also, a significant decrease was observed in group VI (p ≤ 0.05). According to the literature in mice with the introduction of antibiotics also showed increased susceptibility to infectious agents, which led to a decrease in indigenous groups of microorganisms, including Proteus spp., which confirms our data [37].

A sharp increase in the content of Enterobacter spp. and Klebsiella spp. was observed in groups V and VI (p ≤ 0.05). The frequency of secretion of Klebsiella in the parietal contents in these groups was 19 and 15%, respectively. Hyun Joo Song et al. (2009) in their studies showed that in patients with salmonella-induced inflammation, on the background of antibiotic therapy, the number of enterobacteria and Klebsiella increased in 6 times, which is fully consistent with our results [14]. According to the literature, when co-administered to rats vancomycin and salmonella, the number of peptostreptococci decreased in 5 times [13]. These data do not contradict our results, which also showed a decrease in the content of Peptostreptococcus anaerobius in groups V and VI in 20 and 9 times, respectively.
The frequency of excretion in the parietal content of fungi of the genus Candida was 57% (group V) and staphylococci - 95% in the VI experimental group (Table 3). The amount of Salmonella spp. significantly decreased only in group V in 7 times (p≤0.05). However, the data obtained by Barthel et al. (2003), when conducting a similar experiment on mice, talk about an increase in salmonella in the parietal contents of the small intestine in 3 and 5 times [2].

During the experiment, we obtained the results of bacteriological studies, which showed pronounced changes in the quantitative and species composition of the parietal microbiota when administered to experimental animals B. Fragilis (Table 2). Thus, a significant decrease in the content of E. Coli was observed in group VII, and in VIII - 538 times (p ≤ 0.05). The number of P. Aeruginosa in groups VII and VIII decreased significantly, and the number of representatives of Bacteroides spp. naturally increased significantly (p≤0.05).

Table 2.

Quantitative composition of the parietal microbiota of the ileum of rats with the introduction of salmonella, B. Fragilis on the background of vancomycin

The quantitative content of E. Faecalis and E. Faecium increased in 10 and 19 times in groups VII and VIII (p ≤ 0.05), and the amount of Proteus spp. decreased only in group VII in 322 times (p ≤ 0.05). The frequency of enterococci in these groups was 10 and 13%, and proteus - 29% and only in group VIII. Also, in groups VII and VIII there was a sharp decrease in the content of Enterobacter spp. and Klebsiella spp. (p ≤ 0.05). The number of representatives of Peptostreptococcus anaerobius significantly increased in 7 and 12 times (groups VII and VIII) (p ≤ 0.05). Also, bacteriological examination of the intestinal contents of rats revealed an increase in the number of lactobacilli in several thousand (VII) and 40 times (VIII),
and their frequency in these experimental groups was 27 and 40%, respectively. El Aidy et al., 2012 in their studies showed an increase in the number of indigenous microflora due to its correction of *B. Fragilis* [9]. The frequency of staphylococcal excretion was found in 68% and only in group VIII (table 4). With regard to *S. Enteritidis* and *S. Typhimurium*, in groups VII and VIII there was a marked decrease in their number (p ≤ 0.05) (Table 2).

Our results indicate the possibility of using *B. Fragilis* to correct salmonella-induced changes in the intestinal microbiome. We observed a decrease in the level of *Salmonella* spp., *E. Coli*, *P. Aeruginosa*, *Proteus* spp., *Enterobacter* spp., *Klebsiella* spp., as well as an increase in *Bacteroides* spp., *E. Faecalis*, *E. Faecium* and *Peptostreptococcus anaerobius*. The ability of *B. Fragilis* to influence the quantitative content of microorganisms in the development of salmonella-induced inflammatory bowel disease has been shown in a number of other works [6].

B. Fragilis is one of the main producers of short-chain fatty acids (SCFA), which activate cells through free fatty acid receptor 2 (FFAR2), which is expressed in immune system cells, intestinal epitheliocytes and plays an important role in immune regulation, metabolic homeostasis and reduction of colitis-associated inflammation [20, 33]. In addition, polysaccharide A of *B. Fragilis* is an important inducer of Treg cell differentiation [21, 41].

Table 3.

Frequency of excretion of microorganisms in the parietal contents of the intestine of rats with the introduction of vancomycin and *S. Enteritidis*, *S. Typhimurium*.

Table 4.
The frequency of excretion of microorganisms in the parietal contents of the intestine of rats with the introduction of *Salmonella, B. Fragilis* on the background of vancomycin

Conclusions.

1. The data obtained in this study indicate that antibiotic-induced changes in the quantitative and qualitative composition of the parietal microbiota are due to the effect of vancomycin on gram-positive microorganisms. There was a decrease in the number of autochthonous obligate anaerobic bacteria (bacteroids), clostridias, elimination of enterococci, peptostreptococci, staphylococci, bifidobacteria, lactobacilli and an increase in the number of enterobacteria, proteus, *Klebsiella* and *Salmonella*. Reducing the number of *E. Coli* and *Bacteroides spp.* with the introduction of *S. Enteritidis* and *S. Typhimurium* was accompanied by an increase in the parietal contents of the intestine of microorganisms such as *P. Aeruginosa, E. Faecalis, E. Faecium, Enterobacter spp., Klebsiella spp., Peptostreptococcus anaerobius*, which may have occurred due to the latter for intestinal microbiomatter.

2. The introduction of *S. Enteritidis* and *S. Typhimurium*, on the background of pre-treatment with vancomycin, caused a sharp change in the composition of the microbiota in the parietal contents of the small intestine: an increase in *Salmonella spp.*, *E. Coli, P. Aeruginosa, Enterobacter spp., Klebsiella spp.*, and also a sharp decrease in the number of *Bacteroides spp.*, *E. Faecalis, E. Faecium, Proteus spp.*, *Lactobacillus spp.*, *Peptostreptococcus anaerobius*. These data suggest that the vancomycin-induced imbalance of the parietal intestinal microbiota facilitates the penetration and colonization of pathogenic microorganisms (*S. Enteritidis* and *S. Typhimurium*) and promotes the development of intestinal diseases.

3. When administered to experimental animals *B. Fragilis*, which received *S. Enteritidis* or *S. Typhimurium* on the background of pre-treatment with vancomycin, there was a change in the quantitative composition of the microbiota in
the parietal contents of the small intestine, namely: a decrease in Salmonella spp., E. Coli, P Aeruginosa, Proteus spp., Enterobacter spp., Klebsiella spp., as well as an increase in Bacteroides spp., E. Faecalis, E. Faecium, Lactobacillus spp. and Peptostreptococcus anaerobius.
Table 1.

Quantitative content of microorganisms (CFU/g) in the parietal content of the small intestine in rats with the introduction of vancomycin and *S. Enteritidis, S. Typhimurium*

Groups of microorganisms	Control (n=15)	Vancomycin (n=15)	*S. enteritidis* (n=15)	*S. typhimurium* (n=15)	Vancomycin+ *S. enteritidis* (n=15)	Vancomycin+ *S. typhimurium* (n=15)	
E. coli	2,2×10⁵	2,1×10⁴	3,0×10⁴	2,0×10⁴	1,95×10⁶	2,1×10⁵	
	(1,0×10⁵-5,2×10⁵)	(1,6×10⁴-9,0×10⁴)	(1,2×10⁴-8,0×10⁴)	(1,8×10³-2,4×10³)	(1,2×10⁶-2,8×10⁶)	(1,5×10⁵-2,9×10⁵)	
P. aeruginosa	7,05×10⁴	8,7×10⁴	2,2×10⁴	1,25×10⁷	2,2×10⁶	3,7×10⁵	
	(2,4×10⁴-1,5×10⁵)	(3,0×10⁴-3,2×10⁵)	(1,6×10¹-3,2×10¹)	(5,0×10⁵-2,0×1⁴)	(1,4×10⁵-3,5×1⁶)	(2,1×10⁵-1,8×1⁶)	
Bacteroids spp.	1,65×10³	4,0×10¹	2,35×10³	1,9×10³	2,6×10²	1,85×10²	
	(1,2×10⁴-1,3×10¹)	(2,1×10³-1,2×10³)	(1,2×10³-1,8×10²)	(1,2×10³-1,8×10²)			
	E. faecalis	E. faecium	Proteus spp.	Enterobacter spp.	Klebsiella spp.	Peptostreptococcus anaerobius	Staphylococcus
--------------------------	-------------	------------	--------------	-------------------	-----------------	-----------------------------	---------------
	3.6×10^5	1.0×10^7	3.1×10^5	2.1×10^7	4.0×10^5	3.3×10^5	2.6×10^5
E. faecalis i	1.55×10^7	1.8×10^4	2.45×10^4	1.1×10^2	2.3×10^1	2.0×10^2	
E. faecium	(4.0×10^4-	(4.4×10^1-	(1.8×10^4-	(2.9×10^1-	(2.1×10^1-	(1.1×10^2-	
	5.0×10^5)	4.3×10^2)	4.0×10^4)	1.4×10^5)	3.1×10^1)	3.6×10^2)	
Proteus spp.	6.84×10^4	2.5×10^3	1.5×10^3	1.5×10^8	8.7×10^3	2.7×10^1	
	(3.4×10^4-	(1.4×10^3-	(4.1×10^4-	(4.2×10^7-	(4.0×10^3-	(1.6×10^1-	
	2.4×10^5)	3.7×10^3)	2.2×10^5)	2.0×10^8)	2.4×10^4)	1.0×10^2)	
Enterobacter spp.	3.05×10^5	2.25×10^6	3.6×10^2	2.05×10^2	1.9×10^6	2.8×10^6	
	(1.1×10^5-	(1.6×10^6-	(2.1×10^2-	(1.8×10^2-	(4.0×10^5-	(2.4×10^6-	
	4.5×10^5)	4.0×10^6)	6.0×10^2)	3.0×10^2)	3.6×10^6)	6.3×10^6)	
Klebsiella spp.	4.05×10^4	1.85×10^9	2.7×10^2	2.85×10^2	2.2×10^6	2.45×10^6	
	(2.0×10^4-	(4.4×10^5-	(1.8×10^2-	(1.8×10^2-	(6.0×10^5-	(1.4×10^6-	
	4.3×10^5)	2.4×10^6)	4.0×10^2)	4.0×10^2)	3.6×10^6)	3.6×10^6)	
Peptostreptococcus	9.35×10^3	2.7×10^2	5.5×10^2	2.6×10^2	2.7×10^4	2.9×10^4	
anaerobius	(3.2×10^5-	(1.8×10^5-	(4.4×10^2-	(2.0×10^2-	(2.1×10^1-	(1.9×10^1-	
	1.7×10^6)	4.0×10^5)	1.2×10^3)	3.7×10^2)	3.8×10^1)	4.2×10^1)	
Staphylococcus	2.6×10^5	2.65×10^4	2×10^5	2.1×10^5	0	2×10^5	
Changes of the Intestinal Microbiome in SIV

Russian Journal of Infection and Immunity
ISSN 2220-7619 (Print)
ISSN 2313-7398 (Online)

Spp.

Spp.	1×10³-5×10³	1×10⁴-5×10⁴	1×10⁵-7,2×10⁵	1×10⁶-3,2×10⁵
Clostridium spp.	5,5×10⁶ (1×10⁶-1×10⁸)	1×10⁴ (1×10⁴-1×10⁵)	1×10⁶ (1×10⁴-1×10⁸)	1×10⁶ (1×10⁴-1×10⁸)
Lactobacillus spp.	1,6×10⁶ (1×10⁶-8×10⁶)	3,5×10⁴ (2×10⁴-2,8×10⁵)	2,05×10⁶ (5,2×10⁵-4×10⁶)	3,45×10⁶ (8×10⁵-6×10⁶)
Bifidobacterium spp.	5,5×10⁶ (1×10⁶-1×10⁸)	0 (2×10⁴-4×10⁴)	5,05×10⁵ (1×10⁴-5×10⁵)	1×10⁴ (1×10⁴-5×10⁵)
Candida	1,25×10⁵ (2×10⁴-2×10⁵)	2,2×10⁴ (2×10⁴-4×10⁴)	5,5×10⁵ (2×10⁴-8×10⁶)	0 (2×10⁵-7×10⁶)
Salmonella spp.	6,9×10¹ (4,3×10¹-2,3×10²)	3,4×10³ (2,5×10³-4,3×10³)	2,2×10⁶ (1,0×10⁸-4,0×10⁶)	1,45×10⁵ (1,0×10⁵-4,0×10⁵)

Notes: * the significance of differences in the parameters p≤0.05 in relation to the control; a reliability of parameters on...
in relation to the group of *S. enteritidis* *p*≤0.05; b the reliability of the parameters in relation to the group *S. typhimurium* *p*≤0.05.
Table 2.
Quantitative composition of the parietal microbiota of the ileum of rats with the introduction of salmonella, *B. Fragilis* on the background of vancomycin

Groups of microorganisms	Groups of experimental animals			
	Vancomycin+ *S.enteritidis* (n=15)	Vancomycin+ *S.typhimurium* (n=15)	Vancomycin+ *S.enteritidis* +*B.fragilis* (n=15)	Vancomycin+ *S.typhimurium* +*B.fragilis* (n=15)
E. coli	1,95×10^6 (1,2×10^6-2,8×10^6)	2,1×10^3 (1,5×10^5-2,9×10^5)	1,35×10^2 (2,9×10^1-1,8×10^2)	3,9×10^2 (2,0×10^2-6,0×10^2)
P. aeruginosa	2,2×10^6 (1,4×10^5-3,5×10^6)	3,7×10^5 (2,1×10^5-1,8×10^6)	2,05×10^4 (1,2×10^2-3,0×10^2)	1,9×10^4 (1,4×10^2-4,0×10^2)
Bacteroids spp.	2,6×10^2 (1,8×10^2-4,0×10^2)	1,85×10^2 (1,2×10^2-3,3×10^2)	4,15×10^5 (2,1×10^5-3,2×10^6)	8,8×10^6 (4,0×10^6-2,0×10^7)
E. faecalis i	2,3×10^1 (2,1×10^1-3,1×10^1)	2,0×10^2 (1,1×10^2-3,6×10^2)	2,4×10^2 (1,2×10^3-5,6×10^3)	3,75×10^3 (2,5×10^3-7,0×10^3)
E.faecium	8,7×10^3 (4,0×10^3-2,4×10^4)	2,7×10^1 (1,6×10^1-1,0×10^2)	2,7×10^1 (1,2×10^1-3,2×10^1)	7,9×10^1 (6,0×10^1-1,2×10^2)
Proteus spp.	1,9×10^6 (4,0×10^5-3,6×10^6)	2,8×10^6 (2,4×10^6-6,3×10^6)	4,3×10^2 (1,3×10^2-7,0×10^2)	2,3×10^2 (1,8×10^2-2,9×10^2)
Klebsiella spp.	2,2×10^6 2,45×10^6 2,3×10^2 1,6×10^2			
Changes of the Intestinal Microbiom in SIII

Изменения кишечного микробиома при СИВК

Microbiom	Value 1	Value 2	Value 3	Value 4
Peptostreptococcus anaerobius	2,7×10⁷	2,9×10⁷	1,9×10²	3,45×10²
	(2,1×10⁷-3,8×10⁷)	(1,9×10⁷-4,2×10⁷)	(1,5×10⁷-2,1×10⁷)	(3,0×10⁷-5,2×10⁷)
Staphylococcus spp.	0	2×10⁵	2,25×10⁵	2,65×10⁵
	(6×10⁴-3,2×10⁵)	(1,6×10⁵-3,2×10⁵)	(1,5×10⁵-5×10⁵)	(1,5×10⁵-5×10⁵)
Clostridium spp.	1×10⁶	5,05×10⁵	1×10⁵	1×10⁴
	(1×10⁶-1×10⁸)	(1×10⁴-1×10⁶)	(1×10⁴-1×10⁶)	(1×10⁴-1×10⁶)
Lactobacillus spp.	6,2×10⁵	2×10⁵	1,7×10⁵	8×10⁶
	(2×10⁵-2×10⁶)	(1×10⁵-2,5×10⁵)	(2,3×10⁶-2,9×10⁷*)	(4×10⁶-4×10⁷*)
Bifidobacterium spp.	0	1×10⁴	0	0
	(1×10⁴-5×10⁵)			
Candida	1,05×10⁶	0	0	0
	(2×10⁵-7×10⁶)			
Salmonella spp.	3,0×10⁵	4,0×10⁵	1,0×10¹	9,0×10¹
	(2,0×10⁵-4,4×10⁵)	(2,0×10⁵-4,2×10⁶)	(1,2×10¹-2,9×10¹*)	(5,0×10¹-1,4×10²*)

*Note: * the significance of the differences in the parameters p≤0.05 in relation to the groups Vancomycin + *S. enteritidis* and Vancomycin + *S. typhimurium*
Table 3.

Frequency of excretion of microorganisms in the parietal contents of the intestine of rats with the introduction of vancomycin and

S. Enteritidis, S. Typhimurium

Groups of microorganisms	Groups of experimental animals	Control (n=15)	Vancomycin (n=15)	S.enteritidis (n=15)	S.typhimurium (n=15)	Vancomycin+ S.enteritidis (n=15)	Vancomycin+ S.typhimurium (n=15)
	Frequency of excretion (%) of microorganisms						
E. coli		100	10	14	0	35	95
Staphylococcus spp.		100	10	77	81	0	95
Enterococcus spp.		100	0	16	0	0	19
Bifidobacterium spp.		100	0	9	0	0	0
Lactobacillus spp.		100	2	72	85	30	6
Klebsiella spp.		10	87	0	0	19	15
Proteus spp.		10	0	22	78	0	0
Candida		30	5	68	0	57	0

Note: difference of parameters in relation to control; in relation to the group of *S. Enteritidis*; in relation to the group *S. Typhimurium*
The frequency of excretion of microorganisms in the parietal contents of the intestine of rats with the introduction of *Salmonella, B. Fragilis* on the background of vancomycin

Groups of microorganisms	Groups of experimental animals			
	Vancomycin+ *S. enteritidis* (n=15)	Vancomycin+ *S. typhimurium* (n=15)	Vancomycin+ *S. enteritidis* + *B. fragilis* (n=15)	Vancomycin+ *S. typhimurium* + *B. fragilis* (n=15)
E. coli	35	95	0	0
Staphylococcus spp.	0	95	0	68
Enterococcus spp.	0	19	10	13
Bifidobacterium spp.	0	0	0	0
Lactobacillus spp.	30	6	27	40
Klebsiella spp.	19	15	0	0
Proteus spp.	0	0	0	29
Candida	57	0	0	0

Note: difference of parameters in relation to Vancomycin + *S. Enteritidis* and Vancomycin + *S. Typhimurium* groups.
Salmonella-induced changes of the intestinal microbiom of rats.

Сальмонелла-индуцированные изменения кишечного микробиома крыс.

1. Букина¹ Юлия Вячеславовна, ассистент кафедры микробиологии, вирусологии и иммунологии
E-mail: lingvus25@gmail.com
ORCID: 0000-0001-9529-3798

Bukina Yuliia Vyacheslavovna, assistant of Microbiology, Virology and Immunology Department
E-mail: lingvus25@gmail.com
ORCID: 0000-0001-9529-3798

Запорожский государственный медицинский университет
Кафедра микробиологии, вирусологии и иммунологии
Zaporozhye State Medical University
Department of Microbiology, Virology and Immunology

2. Полищук Наталья Николаевна, к. мед. н., доцент кафедры микробиологии, иммунологии и вирусологии
ORCID: 0000-0001-9529-3798

Polishchuk Nataliia Nikolaevna, Ph.D., associate professor of the Department of Microbiology, Virology and Immunology
ORCID: 0000-0001-9529-3798
Запорожский государственный медицинский университет
Кафедра микробиологии, вирусологии и иммунологии
Zaporozhye State Medical University
Department of Microbiology, Virology and Immunology

3. Бачурин Георгий Викторович, д. мед. н., доцент, заведующий кафедрой урологии

ORCID: 0000-0001-9529-3798

Bachurin Heorhii Viktorovich, Head of the Department of Urology, MD, Dsc., Associate Professor

ORCID: 0000-0001-9529-3798

Запорожский государственный медицинский университет
Кафедра урологии
Zaporozhye State Medical University
Department of Urology

4. Черковская Ольга Степановна, к. мед. н., доцент кафедры факультетской хирургии

ORCID: 0000-0002-9875-6409

Cherkovska Olga Stepanovna, PhD, Associate Professor of Faculty Surgery Department

ORCID: 0000-0002-9875-6409
5. Зинич Елена Леонидовна, к. мед. н., доцент кафедры анатомии человека, оперативной хирургии и топографической анатомии

ORCID: 0000-0001-9529-3798

Zinych Olena Leonidivna, Ph.D., Associate Professor, Department of Human Anatomy, Operative Surgery and Topographic Anatomy

ORCID: 0000-0001-9529-3798

6. Лазарик Александра Леонидовна, к. мед. н., доцент кафедры анатомии человека, оперативной хирургии и топографической анатомии

ORCID: 0000-0003-1937-1226

Lazaryk Olexandra Leonidivna, MD PhD, Associate Professor of Department of Human Anatomy, Operative Surgery and Topographic Anatomy
7. Безуглый Максим Борисович, к. мед. н., доцент кафедры офтальмологии

ORCID: 0000-0001-6515-9440

Bezugly Maxym Borysovych, Ph.D., Associate Professor Ophthalmology Department

ORCID: 0000-0001-6515-9440
Key words: parietal microbiota, microbiome, vancomycin, salmonella, bacteroids, rats.

Ключевые слова: пристеночная микробиота, микробиом, ванкомицин, сальмонелла, бактероиды, крысы.

Почтовый адрес для переписки:
Украина, 69035,
м. Запорожье, проспект Маяковского, 26
Запорожский государственный медицинский университет
Кафедра микробиологии, вирусологии и иммунологии

Телефон, e-mail:
Букина Юлия Вячеславовна, тел. +38096-400-46-26; +38095-512-09-29
Кафедра микробиологии, вирусологии и иммунологии ЗГМУ
e-mail: lingvus25@gmail.com

UDC: 579.61:[616.34-002.7-02:579.842.1]-092:599.323.4
METADATA

Bukina¹ Юлия Вячеславовна, ассистент кафедры микробиологии, вирусологии и иммунологии

Bukina Yuliia Vyacheslavovna, assistant of Microbiology, Virology and Immunology Department

Учреждение, где работает автор

Запорожский государственный медицинский университет, кафедра микробиологии, вирусологии и иммунологии

Zaporozhye State Medical University, Department of Microbiology, Virology and Immunology

Почтовый адрес для переписки:

Украина, 69035,
м. Запорожье, проспект Маяковского, 26
Запорожский государственный медицинский университет
Кафедра микробиологии, вирусологии и иммунологии

69035, Ukraine
Maiakovskyyi avenue 26, Zaporizhzhia,
Zaporozhye State Medical University
Department of Microbiology, Virology and Immunology

Телефон, e-mail:
тел. +38096-400-46-26; +38095-512-09-29.
e-mail: lingvus25@gmail.com

Полное название статьи.
Salmonella-induced changes of the intestinal microbiom of rats

Сальмонелла-индуцированные изменения кишечного микробиома крыс
CHANGES OF THE INTESTINAL MICROBIOM IN SIII
ИЗМЕНЕНИЯ КИШЕЧНОГО МИКРОБИОМА ПРИ СИВК
10.15789/2220-7619-SIC-1507

Количество страниц текста – 10
Количество рисунков – 0
Количество таблиц – 4
Раздел журнала – оригинальная статья
Дата отправления работы – 11.06.2020
СПИСОК ЛИТЕРАТУРЫ

1. Awoniyi M, Miller SI, Wilson CB, Hajjar AM, Smith KD. Homeostatic regulation of Salmonella-induced mucosal inflammation and injury by IL-23 // PubMed. 2012. Vol. 7. P. 731-737. doi: 10.1371/journal.pone.0037311. https://pubmed.ncbi.nlm.nih.gov/22624013/

2. Barthel M, Hapfelmeier S, Quintanilla-Martinez L. Pretreatment of mice with streptomycin provides a Salmonella enterica serovar Typhimurium colitis model that allows analysis of both pathogen and host // Infections Immunology. 2003. Vol. 71. P. 2839-2858. doi: 10.1128/iai.71.5.2839-2858.2003. https://pubmed.ncbi.nlm.nih.gov/12704158/

3. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven https://pubmed.ncbi.nlm.nih.gov/19240062/
| | Title | Authors | DOI | URL |
|---|---|---|--|--|
| 4 | Improvement of gut permeability // PubMed. | Carroll IM, Chang YH, Park J. Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome // Gut Pathogenes. | 10.1186/1757-4749-2-19. | https://pubmed.ncbi.nlm.nih.gov/2143915/ |
| 5 | Luminal and mucosal-associated intestinal microbiota in patients with diarrhea-predominant irritable bowel syndrome // Gut Pathogenes. | Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K. Antibiotics in early life alter the murine colonic microbiome and adiposity // Nature. | 10.1038/nature11400. | https://pubmed.ncbi.nlm.nih.gov/22914093/ |
| 6 | Regulation of immune cell function by short-chain fatty acids // Clinical & Translational Immunology. | Corrêa-Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MA. | 10.1038/cti.2016.17. | https://pubmed.ncbi.nlm.nih.gov/27195116/ |
| 7. | De Vos P, Garrity G, Jones D. Identification of Procaryotes // Bergey’s manual of systematic bacteriology. 2009. Vol. 1. P. 1422. | - | https://www.springer.com/gp/book/9780387950419 |
|---|---|---|---|
| 8. | Deplancke B, Gaskins Deplancke HR. Microbial modulation of innate defense: goblet cells and the intestinal mucus layer // The American Journal of Clinical Nutrition. 2001. Vol. 73. P. 1131–1141. doi: 10.1093/ajcn/73.6.1131S. | - | https://pubmed.ncbi.nlm.nih.gov/11393191/ |
| 9. | El Aidy S, van Baarlen P, Derrien M, Lindenbergh-Kortleve DJ, Hooiveld G, Levenez F. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012. P. 5567–5579. doi: 10.1038/mi.2012.32. | - | https://pubmed.ncbi.nlm.nih.gov/22617837/ |
| 10. | Ferreira RB, Gill N, Willing BP, Antunes LC, Russell SL, Croxen MA, Finlay BB. The intestinal microbiota plays a role in Salmonella- | - | https://pubmed.ncbi.nlm.nih.gov/21633507/ |
| | | |
|---|---|---|
| **11.** | Букина Ю.В., Камышный А.М., Полищук Н.Н., Топол И.А. Сальмонелла-индуцированные изменения кишечной микробиоты и транскриптотама генов иммунного ответа на фоне введения ванкомицина и Bacteroides fragilis // Патологія. 2017. Т. 14. № 1 (39). С. 12-19. | http://www.irbis-nbuv.gov.ua/cgi-bin/irbis_nbuvcgiirbis_64.exe?I21DBN=LINK&P21DBN=UJRN&Z21ID=&S21REF=10&S21CNR=20&S21STN=1&S21FM=ASP_meta&C21COM=S&2_S21P03=FILA=&2_S21STR=pathology_2017_14_1_4 |
| **12.** | Grassl G, Finlay B. Pathogenesis of enteric Salmonella infections // Curr. Opin. | https://pubmed.ncbi.nlm.nih.gov/18043228/ |
| | Source | Pages | DOI | Reference |
|---|--|-------------|--|--|
| 13. | Haibo Mu, Hu Bai. Pathogen-targeting glycovesicles as a therapy for salmonellosis // Nature Communications. 2019. Vol. 10. Article number-4039. | - | 10.1097/MOG.0b013e3282f21388. | https://www.nature.com/articles/s41467-019-12066-z |
| 14. | Hyun Joo Song, Ki-Nam Shim, Sung-Ae Jung. Antibiotic-Associated Diarrhea // Korean Journal Internal Medicine. 2008. Vol. 23. P. 9–15. doi: 10.3904/kjim.2008.23.1.9 | - | 10.1097/MOG.0b013e3282f21388. | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2686956/ |
| 15. | Jernberg C, Löfmark S, Edlund C, Jansson JK. Long-term impacts of antibiotic exposure on the human intestinal microbiota // Microbiology. 2010. Vol. 156. P. 3216–3223. doi: 10.1038/ismej.2007.3. | - | 10.1097/MOG.0b013e3282f21388. | https://pubmed.ncbi.nlm.nih.gov/18043614/ |
| 16. | Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system // Nature. 2011. Vol. | - | 10.1097/MOG.0b013e3282f21388. | https://pubmed.ncbi.nlm.nih.gov/21677749/ |
| 17. | Kerckhoffs AP, Samson M, van der Rest ME. Lower Bifidobacteria counts in both duodenal mucosa-associated and fecal microbiota in irritable bowel syndrome patients // PloS One. 2009. Vol. 15. P. 2887-2892. doi: 10.3748/wjg.15.2887. | - | https://pubmed.ncbi.nlm.nih.gov/19533811/ |
| 18. | Macpherson NL, Harris Macpherson AJ. Interactions between commensal intestinal bacteria and the immune system // Nature Reviews Immunology. 2004. Vol. 4. P. 478–485. doi: 10.1038/nri1373. | - | https://pubmed.ncbi.nlm.nih.gov/15173836/ |
| 19. | Marina Lleal, Guillaume Sarrabayrouse, Joseane Willamil, Alba Santiagoa, Marta Pozueloa, Chaysavanh Manichanha. A single faecal microbiota transplantation modulates the microbiome and improves clinical manifestations in a rat model of colitis. EBioMedicine. 2019. | - | https://pubmed.ncbi.nlm.nih.gov/31628021/ |
| Vol. 48. P. 630–641. doi: 10.1016/j.ebiom.2019.10.002. | 20. Maslowski KM, Vieira AT, Ng A, Kranich J, Sierro F, Yu D, Schilter HC, Rolph MS, Mackay F, Artis D, Xavier RJ, Teixeira MM, Mackay CR. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43 // Nature. 2009. Vol. 29. P. 1282-6. doi: 10.1038/nature08530. |
|---|--|
| 21. Miki T, Goto R, Fujimoto M, Okada N, Hardt W.D. The Bactericidal Lectin RegIIIβ Prolongs Gut Colonization and Enteropathy in the Streptomycin Mouse Model for Salmonella Diarrhea // Cell Host Microbe. 2017. Vol. 10. P. 30519-30524. doi: 10.1016/j.chom.2016.12.008. | - |
| 22. Monack DM, Bouley DM, Falkow SJ. Salmonella typhimurium persists with in macrophages in the mesenteric lymph nodes of | - |

https://pubmed.ncbi.nlm.nih.gov/19865172/
https://pubmed.ncbi.nlm.nih.gov/28111202/
https://pubmed.ncbi.nlm.nih.gov/14734525/
23.	Nagpal R, Wang S, Solberg Woods LC. Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse, Rat, Non-human Primate, and Human Feces. Front Microbiol. 2018. Vol. 9. doi:10.3389/fmicb.2018.02897.	-	https://www.ncbi.nlm.nih.gov/pmc/article/PMC6283898/
24.	Panda S, Elkhader I, Casellas F, López Vivancos J, García Cors M, Santiago A. Short-term effect of antibiotics on human gut microbiota // PLoS One. 2014. Vol. 9. P. 954-967. doi:10.1371/journal.pone.0095476.	-	https://pubmed.ncbi.nlm.nih.gov/24748167/
25.	Parkes GC, Rayment NB, Hudspith BN. Distinct microbial population exist in the mucosal-associated microbiota of subgroups of irritable bowel syndrome // Neurogastroenterol Motil.	-	https://pubmed.ncbi.nlm.nih.gov/22070725/
26. Pérez-Cobas AE, Artacho A, Knecht H, Ferrús ML, Friedrichs A, Ott SJ. Differential effects of antibiotic therapy on the structure and function of human gut microbiota // PLoS One. 2013. Vol. 8. P. 201-208. doi: 10.1371/journal.pone.0080201.

27. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F. Recognition of commensally microflora by Toll-like receptors is required for intestinal homeostasis // Cell. 2004. Vol. 118. P. 229–241. doi: 10.1016/j.cell.2004.07.002.

28. Santos RL, Raffatellu M, Bevins CL, Adams LG, Tukel C, Tsolis RM, Baumler AJ. Life in the inflamed intestine, Salmonella style // PubMed. 2009. Vol. 17. P. 498–506. doi: 10.1016/j.tim.2009.08.008.

29. Sekirov I, Tam NM, Jogova M, Robertson ML, Klaenhammer TR, Gasson MJ, et al. Cytotoxins of Salmonella enterica serovar Typhimurium. // J Bacteriol. 2006. Vol. 188. P. 7424–7433. doi: 10.1128/JB.00654-06.
| No. | Reference | DOI | URL | | |
|---|---|---|---|---|---|
| 30 | Li Y. Antibiotic-induced perturbations of the intestinal microbiota alter host susceptibility to enteric infection // PubMed. 2008. Vol. 76. P. 4726–4736. doi: 10.1128/IAI.00319-08. | | |
| 31 | Stecher B, Chaffron S R. Käppeli Like Will to Like: Abundances of Closely Related Species Can Predict Susceptibility to Intestinal Colonization by Pathogenic and Commensal Bacteria // PLoS Pathogens. 2010. Vol. 6. № 1: e1000711. doi: 10.1371/journal.ppat.1000711. | | https://pubmed.ncbi.nlm.nih.gov/20062525/ |
| 32 | Stecher B, Hardt WD. Mechanisms controlling pathogen colonization of the gut // Current Opinion in Microbiology. 2011. Vol. 14. P. 82–91. doi: 10.1016/j.mib.2010.10.003. | | https://pubmed.ncbi.nlm.nih.gov/21036098/ |
| 32 | Stecher B, Hardt WD. The role of microbiota in infectious disease // Trends Microbiology. 2008. Vol. 16. P. 107–114. doi: 10.1016/j.tim.2007.12.008. | | https://pubmed.ncbi.nlm.nih.gov/18280160/ |
| No. | Author(s) | Title | Journal | DOI | PMID |
|-----|-----------|-------|---------|-----|------|
| 33 | Surana NK, Kasper DL. | The yin yang of bacterial polysaccharides: lessons learned from B. fragilis PSA | Immunology Review | 10.1111/j.1600-065X.2011.01075.x | [PubMed](https://pubmed.ncbi.nlm.nih.gov/22168411) |
| 34 | Taylor DN, McKenzie R, Durbin A. | Rifaximin, a nonabsorbed oral antibiotic, prevents shigellosis after experimental challenge | Clinical Infections Diseases | 10.1086/503039 | [PubMed](https://pubmed.ncbi.nlm.nih.gov/16586388) |
| 35 | Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER. | An obesity-associated gut microbiome with increased capacity for energy harvest | PLoS One | 10.1038/nature05414 | [PubMed](https://pubmed.ncbi.nlm.nih.gov/17183312) |
| 36 | Ubeda C, Pamer EG. | Antibiotics, microbiota and immune defense | Trends Immunology | 10.1016/j.it.2012.05.003 | [PubMed](https://pubmed.ncbi.nlm.nih.gov/22677185) |
| # | Reference | DOI | URL |
|----|---|--|--|
| 37 | Ubeda C, Pham N, Trevor C. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans // Current Opinion in Microbiology. 2014. Vol. 17. P. 67–74. doi: 10.1172/JCI43918. | - | https://pubmed.ncbi.nlm.nih.gov/21099116/ |
| 38 | Vollaard EJ, Clasener HA. Colonization resistance // Antimicrobial Agents and Chemotherapy. 1994. Vol. 38. P. 409–414. doi: 10.1128/aac.38.3.409 | - | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC284472/ |
| 39 | Wlodarska M, Willing B, Keeney KM, Menendez A, Bergstrom KS, Gill N. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis // PubMed. 2011. Vol. 79. P. 1536–1545. doi: 10.1128/IAI.01104-10. | - | https://pubmed.ncbi.nlm.nih.gov/21321077/ |
| 40 | Zeng H, Chi H. Metabolic control of regulatory T cell development and function // Trends | - | https://pubmed.ncbi.nlm.nih.gov/25248463/ |
| Immunology. 2015. Vol. 36. P. 3-12. doi: 10.1016/j.it.2014.08.003. | | }

| 41. Zhang Y, Limaye PB, Renaud HJ, Klaassen CD. Effect of various antibiotics on modulation of intestinal microbiota and bile acid profile in mice // Toxicology and Applied Pharmacology. 2014. Vol. 277. P. 138–145. doi: 10.1016/j.taap.2014.03.009. | | https://pubmed.ncbi.nlm.nih.gov/24657338/ |