Upper bound on list-decoding radius of binary codes.

Yury Polyanskiy

Abstract

Consider the problem of packing Hamming balls of a given relative radius subject to the constraint that they cover any point of the ambient Hamming space with multiplicity at most \(L \). For odd \(L \geq 3 \) an asymptotic upper bound on the rate of any such packing is proven. Resulting bound improves the best known bound (due to Blinovsky’1986) for rates below a certain threshold. Method is a superposition of the linear-programming idea of Ashikhmin, Barg and Litsyn (that was used previously to improve the estimates of Blinovsky for \(L = 2 \)) and a Ramsey-theoretic technique of Blinovsky. As an application it is shown that for all odd \(L \) the slope of the rate-radius tradeoff is zero at zero rate.

I. Main result and discussion

One of the most well-studied problems in information theory asks to find the maximal rate at which codewords can be packed in binary space with a given minimum distance between codewords. Operationally, this (still unknown) rate gives the capacity of the binary input-output channel subject to adversarial noise of a given level. A natural generalization was considered by Elias and Wozencraft [1], [2], who allowed the decoder to output a list of size \(L \). In this paper we provide improved upper bounds on the latter question.

Our interest in bounding the asymptotic tradeoff for the list-decoding problem is motivated by our study of fundamental limits of joint source-channel communication [3]. The best known converse bound for that problem – a straightforward extension of [3, Theorem 7] to lists of size \(> 1 \) – reduces to bounding rate for the list-decoding problem.

YP is with the Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139 USA. e-mail: yp@mit.edu.

The research was supported by the NSF grant CCF-13-18620 and NSF Center for Science of Information (CSoI) under grant agreement CCF-09-39370.
We proceed to formal definitions and brief overview of known results. For a binary code $C \subset \mathbb{F}_2^n$ we define its list-size L decoding radius as

$$\tau_L(C) \triangleq \frac{1}{n} \max\{r : \forall x \in \mathbb{F}_2^n \mid |C \cap \{x + B^n_r\}| \leq L\},$$

where Hamming ball B^n_r and Hamming sphere S^n_r are defined as

$$B^n_r \triangleq \{x \in \mathbb{F}_2^n : |x| \leq r\}, \quad (1)$$

$$S^n_r \triangleq \{x \in \mathbb{F}_2^n : |x| = r\} \quad (2)$$

with $|x| = \{|i : x_i = 1\}|$ denoting the Hamming weight of x. Alternatively, we may define τ_L as follows:

$$\tau_L(C) = \frac{1}{n} \left(\min\left\{\text{rad}(S) : S \in \left(\frac{C}{L+1}\right)\right\} - 1\right),$$

where $\text{rad}(S)$ denotes radius of the smallest ball containing S (known as Chebyshev radius):

$$\text{rad}(S) \triangleq \min\max_{y \in \mathbb{F}_2^n} |y - x|.$$

The asymptotic tradeoff between rate and list-decoding radius τ_L is defined as usual:

$$\tau^*_L(R) \triangleq \limsup_{n \to \infty} \max_{C : |C| \geq 2^{nR}} \tau_L(C), \quad (3)$$

$$R^*_L(\tau) \triangleq \limsup_{n \to \infty} \max_{c, \tau_L(C) \geq \tau} \frac{1}{n} \log |C| \quad (4)$$

The best known upper (converse) bounds on this tradeoff are as follows:

- List size $L = 1$: The best bound to date was found by McEliece, Rodemich, Rumsey and Welch [4]:

$$R^*_1(\tau) \leq R_{LP2}(2\tau), \quad (5)$$

$$R_{LP2}(\delta) \triangleq \min \log 2 - h(\alpha) + h(\beta), \quad (6)$$

where $h(x) = -x \log x - (1-x) \log (1-x)$ and minimum is taken over all $0 \leq \beta \leq \alpha \leq 1/2$ satisfying

$$2\alpha(1-\alpha) - \beta(1-\beta) \leq \delta \leq \frac{1 + 2\sqrt{\beta(1-\beta)}}{1 + 2\sqrt{\beta(1-\beta)}}$$
For rates $R < 0.305$ this bound coincides with the simpler bound:

$$\tau_1^*(R) \leq \frac{1}{2} \delta_{LP1}(R),$$ \hspace{1cm} (7)

$$\delta_{LP1}(R) \triangleq \frac{1}{2} - \sqrt{\beta(1-\beta)}, \hspace{0.5cm} R = \log 2 - h(\beta), \hspace{0.5cm} \beta \in [0, 1/2]$$ \hspace{1cm} (8)

$$\delta_{LP1}(R) \triangleq 1 - \frac{1}{2} - \sqrt{\frac{1}{4} - (\sqrt{\tau - 3\tau^2} - \tau)^2}$$ \hspace{1cm} (9)

- List size $L = 2$: The bound found by Ashikhmin, Barg and Litsyn [5] is given as:

$$R_2^*(\tau) \leq \log 2 - h(2\tau) + R_{up}(2\tau, 2\tau),$$

where $R_{up}(\delta, \alpha)$ is the best known upper bound on rate of codes with minimal distance δn constrained to live on Hamming spheres $S_{\alpha n}^n$. The expression for $R_{up}(\delta, \alpha)$ can be obtained by using the linear programming bound from [4] and applying Levenshtein’s monotonicity, cf. [6, Lemma 4.2(6)]. The resulting expression is:

$$R_2^*(\tau) \leq \begin{cases} R_{LP2}(2\tau), & \tau \leq \tau_0 \\ \log 2 - h(2\tau) + h(u(\tau)), & \tau > \tau_0, \end{cases}$$ \hspace{1cm} (10)

where $\tau_0 \approx 0.1093$ and

$$u(\tau) = \frac{1}{2} - \sqrt{\frac{1}{4} - (\sqrt{\tau - 3\tau^2} - \tau)^2}$$

(cf. [6, (9)])

- For list sizes $L \geq 3$: The original bound of Blinovsky [7] appears to be the best (before this work):

$$\tau_L^*(R) \leq \sum_{i=1}^{[L/2]} \left(\frac{2i-2}{i-1}\right)(\lambda(1-\lambda))^i, \hspace{0.5cm} R = 1 - h(\lambda), \lambda \in [0, 1/2]$$ \hspace{1cm} (11)

Note that [7] also gives a non-constructive lower bound on $\tau_L^*(R)$. Results on list-decoding over non-binary alphabets are also known, see [8], [9].

In this paper we improve the bound of Blinovsky for lists of odd size and rates below a certain threshold. To that end we will mix the ideas of Ashikhmin, Barg and Litsyn (namely, extraction of a large spectrum component from the code) and those of Blinovsky (namely, a Ramsey-theoretic reduction to study of symmetric subcodes).

\footnote{This result follows from (fixing typos and) optimizing [5] Theorem 4]. It is slightly stronger than what is given in [5, Corollary 5].}
To present our main result, we need to define exponent of Krawtchouk polynomial $K_{\beta n}(\xi n) = \exp\{nE_\beta(\xi) + o(n)\}$. We have the following parametric expression [10] (see also [11, Lemma 4]):

$$E_\beta(\xi) = \xi \log |1 - \omega| + (1 - \xi) \log |1 + \omega| - \beta \log |\omega|$$ \hspace{1cm} (12)

$$\xi = \frac{1}{2}(1 - (1 - \beta)\omega - \beta\omega^{-1}),$$ \hspace{1cm} (13)

where

$$\omega \in \left[\frac{\beta}{1 - \beta}, \sqrt{\frac{\beta}{1 - \beta}}\right].$$

Our main result is the following:

Theorem 1: Fix list size $L \geq 2$, rate R and an arbitrary $\beta \in [0, 1/2]$ with $h(\beta) \leq R$. Then any sequence of codes $C_n \subset \{0, 1\}^n$ of rate R satisfies

$$\limsup_{n \to \infty} \tau_L(C_n) \leq \max_{j, \xi_0} \xi_0 g_j \left(1 - \frac{\xi_1}{2\xi_0}\right) + (1 - \xi_0) g_j \left(\frac{\xi_1}{2(1 - \xi_0)}\right),$$ \hspace{1cm} (14)

where maximization is over ξ_0 satisfying

$$0 \leq \xi_0 \leq \frac{1}{2} - \sqrt{\beta(1 - \beta)}$$ \hspace{1cm} (15)

and j ranging over $\{0, 1, 3, \ldots, 2k + 1, \ldots, L\}$ if L is odd and over $\{0, 2, \ldots, 2k, \ldots L\}$ if L is even. Quantity $\xi_1 = \xi_1(\xi_0, \delta, R)$ is a unique solution of

$$R + h(\beta) - 2E_\beta(\xi_0) = h(\xi_0) - \xi_0 h \left(\frac{\xi_1}{2\xi_0}\right) - (1 - \xi_0) h \left(\frac{\xi_1}{2(1 - \xi_0)}\right),$$ \hspace{1cm} (16)

on the interval $[0, 2\xi_0(1 - \xi_0)]$ and functions $g_j(\nu)$ are defined as

$$g_j(\nu) \triangleq \frac{1}{L + j} \left(L\nu - \mathbb{E} [\|2W - L - j\|^+]\right), \quad W \sim \text{Bino}(L, \nu)$$ \hspace{1cm} (17)

As usual with bounds of this type, cf. [12], it appears that taking $h(\beta) = R$ can be done without loss. Under such choice, our bound outperforms Blinovsky’s for all odd L and all rates small enough (see Corollary 3 below). The bound for $L = 3$ is compared in Fig. 1 with the result of Blinovsky numerically. For larger odd L the comparison is similar, but the range of rates where our bound outperforms Blinovsky’s becomes smaller, see Table 1.
Evaluation of Theorem 1 is computationally possible, but is somewhat tedious. Fortunately, for small L the maximum over ξ_0 and j is attained at $\xi_0 = \frac{1}{2} - \sqrt{\beta(1-\beta)}$ and $j = 1$. We rigorously prove this for $L = 3$:

Corollary 2: For list-size $L = 3$ we have

$$\tau^*_L(R) \leq \frac{3}{4} \delta - \frac{1}{16} \left(\frac{(2\delta - \xi_1)^3}{\delta^2} + \frac{\xi_1^3}{(1 - \delta)^2} \right), \quad (18)$$

where $\delta \in (0, 1/2]$ and $\xi_1 \in [0, 2\delta(1-\delta)]$ are functions of R determined from

$$R = h \left(\frac{1}{2} - \sqrt{\delta(1 - \delta)} \right), \quad (19)$$

$$R = \log 2 - \delta h \left(\frac{\xi_1}{2\delta} \right) - (1 - \delta) h \left(\frac{\xi_1}{2(1 - \delta)} \right) \quad (20)$$

Another interesting implication of Theorem 1 is that it allows us to settle the question of slope of the curve $R^*_L(\tau)$ at zero rate. Notice that Blinovsky’s converse bound (11) has a non-zero slope, while his achievability bound has a zero slope. Our bound always has a zero slope for odd L (but not for even L, see Remark 2 in Section II-C):

Corollary 3: Fix arbitrary odd $L \geq 3$. There exists $R_0 = R_0(L) > 0$ such that for all rates $R < R_0$ we have

$$\tau^*_L(R) \leq g_1(\delta_{LP1}(R)). \quad (21)$$

Notice that proofs of each of the two Corollaries below contain a different relaxation of the bound (14), which may appear useful separately.
TABLE I

RATES FOR WHICH NEW BOUND IMPROVES STATE OF THE ART

List size L	Range of rates
$L = 3$	$0 < R \leq 0.361$
$L = 5$	$0 < R \leq 0.248$
$L = 7$	$0 < R \leq 0.184$
$L = 9$	$0 < R \leq 0.144$
$L = 11$	$0 < R \leq 0.108$

In particular,\n\[
\frac{d}{d\tau} \bigg|_{\tau = \tau^*_L(0)} R^*_L(\tau) = 0, \tag{22}
\]

where the zero-rate radius is $\tau^*_L(0) = \frac{1}{2} - 2^{-L-1}\left(\frac{L}{2}\right)$.

We close our discussion with some additional remarks on Theorem 1:

1) The bound in Theorem 1 can be slightly improved by replacing $\delta_{LP1}(R)$, that appears in the right-hand side of (15), with a better bound, a so-called second linear-programming bound $\delta_{LP2}(R)$ from [4]. This would enforce the usage of the more advanced estimate of Litsyn [13, Theorem 5] and complicate analysis significantly. Notice that $\delta_{LP2}(R) \neq \delta_{LP1}(R)$ only for rates $R \geq 0.305$. If we focus attention only on rates where new bound is better than Blinovsky’s, such a strengthening only affects the case of $L = 3$ and results in a rather minuscule improvement (for example, for rate $R = 0.33$ the improvement is $\approx 3 \cdot 10^{-5}$).

2) For even L it appears that $h(\beta) = R$ is no longer optimal. However, the resulting bound does not appear to improve upon Blinovsky’s.

3) When L is large (e.g. 35) the maximum in (14) is not always attained by either $j = 1$ or $\xi_0 = \delta_{LP1}(R)$. It is not clear whether such anomalies only happen in the region of rates where our bound is inferior to Blinovsky’s.

II. PROOFS

A. Proof of Theorem 1

Consider an arbitrary sequence of codes C_n of rate R. As in [5] we start by using Delsarte’s linear programming to select a large component of the distance distribution of the code. Namely,
we apply result of Kalai and Linial [14, Proposition 3.2]: For every β with $h(\beta) \leq R$ there exists a sequence $\epsilon_n \to 0$ such that for every code C of rate R there is a ξ_0 satisfying (15) such that

$$A_{\xi_0}(C) \triangleq \frac{1}{|C|} \sum_{x,x' \in C} 1\{|x - x'| = \xi_0 n\} \geq \exp\{n(R + h(\beta) - 2E_\beta(\xi_0) + \epsilon_n)\}.$$ \hfill (23)

Without loss of generality (by compactness of the interval $[0, 1/2 - \sqrt{\beta(1 - \beta)}]$ and passing to a proper subsequence of codes C_{n_k}) we may assume that ξ_0 selected in (23) is the same for all blocklengths n. Then there is a sequence of subcodes C'_n of asymptotic rate

$$R' \geq R + h(\beta) - 2E_\beta(\xi_0)$$

such that each C'_n is situated on a sphere $c_0 + S_{\xi_0}$ surrounding another codeword $c_0 \in C$. Our key geometric result is: If there are too many codewords on a sphere $c_0 + S_{\xi_0}$ then it is possible to find L of them that are includable in a small ball that also contains c_0. Precisely, we have:

Lemma 4: Fix $\xi_0 \in (0, 1)$ and positive integer L. There exist a sequence $\epsilon_n \to 0$ such that for any code $C'_n \subset S_{\xi_0}$ of rate $R' > 0$ there exist L codewords $c_1, \ldots, c_L \in C'_n$ such that

$$\frac{1}{n} \text{rad}(0, c_1, \ldots, c_L) \leq \theta(\xi_0, R', L) + \epsilon_n,$$

where

$$\theta(\xi_0, R', L) \triangleq \max_j \theta_j(\xi_0, R', L)$$ \hfill (25)

$$\theta_j(\xi_0, R', L) \triangleq \xi_0 g_j \left(1 - \frac{\xi_1}{2\xi_0}\right) + (1 - \xi_0)g_j \left(\frac{\xi_1}{2(1 - \xi_0)}\right),$$ \hfill (26)

with $\xi_1 = \xi_1(\xi_0)$ found as unique solution on interval $[0, 2\xi_0(1 - \xi_0)]$ of

$$R' = h(\xi_0) - \xi_0 h\left(\frac{\xi_1}{2\xi_0}\right) - (1 - \xi_0)h\left(\frac{\xi_1}{2(1 - \xi_0)}\right),$$ \hfill (27)

functions g_j are defined in (17) and j in maximization (25) ranging over the same set as in Theorem 1.

Equipped with Lemma 4 we immediately conclude that

$$\limsup_{n \to \infty} \tau_L(C_n) \leq \max_{\xi_0 \in [0, \delta]} \theta(\xi_0, R + h(\beta) - 2E_\beta(\xi_0), L).$$ \hfill (28)

Clearly, (28) coincides with (14). So it suffices to prove Lemma 4
B. Proof of Lemma 4

Let T_L be the $(2^L - 1)$-dimensional space of probability distributions on \mathbb{F}_2^L. If $T \in T_L$ then we have

$$T = (t_v, v \in \mathbb{F}_2^L), \quad t_v \geq 0, \sum_v t_v = 1.$$

We define distance on T_L to be the L_∞ one:

$$\|T - T'\| \triangleq \max_{v \in \mathbb{F}_2^L} |t_v - t'_v|.$$

Permutation group S_L acts naturally on \mathbb{F}_2^L and this action descends to probability distributions T_L. We will say that T is symmetric if

$$T = \sigma(T) \iff t_v = t_{\sigma(v)} \quad \forall v \in \mathbb{F}_2^L$$

for any permutation $\sigma : [L] \to [L]$. Note that symmetric T is completely specified by $L + 1$ numbers (weights of Hamming spheres in \mathbb{F}_2^L):

$$\sum_{v : |v| = j} t_v, \quad j = 0, \ldots, L.$$

Next, fix some total ordering of \mathbb{F}_2^n (for example, lexicographic). Given a subset $S \subset \mathbb{F}_2^n$ we will say that S is given in ordered form if $S = \{x_1, \ldots, x_{|S|}\}$ and $x_1 < x_2 < \cdots < x_{|S|}$ under the fixed ordering on \mathbb{F}_2^n. For any subset of codewords $S = \{x_1, \ldots, x_L\}$ given in ordered form we define its joint type $T(S)$ as an element of T_L with

$$t_v \triangleq \frac{1}{n} |\{j : x_1(j) = v_1, \ldots, x_L(j) = v_j\}|,$$

where here and below $y(j)$ denotes the j-th coordinate of binary vector $y \in \mathbb{F}_2^n$. In this way every subset S is associated to an element of T_L. Note that $T(S)$ is symmetric if and only if the $L \times n$ binary matrix representing S (by combining row-vectors x_j) has the property that the number of columns equal to $[1, 0, \ldots, 0]^T$ is the same as the number of columns $[0, 1, \ldots, 0]^T$ etc. For any code $C \subset \mathbb{F}_2^n$ we define its average joint type:

$$\bar{T}_L(C) = \frac{1}{L! \cdot \binom{|C|}{L}} \sum_{\sigma} \sum_{S \in \binom{C}{L}} \sigma(T(S)).$$

Evidently, $\bar{T}_L(C)$ is symmetric.

Our proof crucially depends on a (slight extension of the) brilliant idea of Blinovsky [7]:
Lemma 5: For every $L \geq 1$, $K \geq L$ and $\delta > 0$ there exist a constant $K_1 = K_1(L, K, \delta)$ such that for all $n \geq 1$ and all codes $C \subset \mathbb{F}_2^n$ of size $|C| \geq K_1$ there exist a subcode $C' \subset C$ of size at least K and a symmetric $T_0 \in T_L$ such that for any $S \in \binom{C}{L}$ we have

$$\|T(S) - \bar{T}_L(C')\| \leq \delta.$$ \hspace{1cm} (29)

Remark 1: Note that if $S' \subset S$ then every element of $T(S')$ is a sum of $\leq 2^L$ elements of $T(S)$. Hence, joint types $T(S')$ are approximately symmetric also for smaller subsets $|S'| < L$.

Proof: We first will show that for any $\delta_1 > 0$ and sufficiently large $|C|$ we may select a subcode C' so that the following holds: For any pair of subsets $S, S' \subset C'$ s.t. $|S| = |S'| \leq L$ we have:

$$\|T(S) - T(S')\| \leq \delta_1$$ \hspace{1cm} (30)

Consider any code $C_1 \subset \mathbb{F}_2^n$ and define a hypergraph with vertices indexed by elements of C and hyper-edges corresponding to each of the subsets of size L. Now define a $\delta_1/2$-net on the space T_L and label each edge according to the closest element of the $\delta_1/2$-net. By a theorem of Ramsey there exists K_L such that if $|C_1| \geq K_L$ then there is a subset $C'_1 \subset C$ such that $|C'_1| \geq K$ and each of the internal edges, indexed by $\binom{C'_1}{L}$, is assigned the same label. Thus, by triangle inequality (30) follows for all $S, S' \in \binom{C'_1}{L}$.

Next, apply the previous argument to show that there is a constant K_{L-1} such that for any $C_2 \subset \mathbb{F}_2^n$ of size $|C_2| \geq K_{L-1}$ there exists a subcode C'_2 of size $|C'_2| \geq K_L$ satisfying (30) for all $S, S' \in \binom{C'_2}{L-1}$. Since C'_2 satisfies the size assumption on C_1 made in previous paragraph, we can select a further subcode $C''_2 \subset C'_2$ of size $\geq K_L$ so that for C''_2 property (30) holds for all S, S' of size L or $L - 1$.

Continuing similarly, we may select a subcode C' of arbitrary C such that (30) holds for all $|S| = |S'| \leq L$ provided that $|C| \geq K_1$.

Next, we show that (30) implies

$$\|T(S_0) - \sigma(T(S_0))\| \leq C\delta_1,$$ \hspace{1cm} (31)

where $S_0 \in \binom{C}{L}$ is arbitrary and $C = C(L)$ is a constant depending on L only.

Now to prove (31) let $T(S_0) = \{t_v, v \in \mathbb{F}_2^L\}$ and consider an arbitrary transposition $\sigma : [L] \to [L]$. It will be clear that our proof does not depend on what transposition is chosen, so for
simplicity we take \(\sigma = \{(L - 1) \leftrightarrow L \} \). We want to show that (30) implies

\[
|t_v - t_{\sigma(v)}| \leq \delta_1, \quad \forall v \in \mathbb{F}_2^L
\]

(32)

Since transpositions generate permutation group \(S_L \), (31) then follows. Notice that (32) is only informative for \(v \) whose last two digits are not equal, say \(v = [v_0, 0, 1] \). Suppose that \(S_0 = \{c_1, \ldots, c_L\} \) given in the ordered form. Let

\[
S = \{c_1, \ldots, c_{L-1}\},
\]

(33)

\[
S' = \{c_1, \ldots, c_{L-2}, c_L\}
\]

(34)

Joint types \(T(S) \) and \(T(S') \) are expressible as functions of \(T(S_0) \) in particular, the number of occurrences of element \([v_0, 0] \) in \(S \) is \(t_{[v_0,0,1]} + t_{[v_0,0,0]} \) and in \(S' \) is \(t_{[v_0,0,0]} + t_{[v_0,1,0]} \). Thus, from (30) we obtain:

\[
|(t_{[v_0,0,1]} + t_{[v_0,0,0]}) - (t_{[v_0,0,0]} + t_{[v_0,1,0]})| \leq \delta
\]

implying (32) and thus (31).

Finally, we show that (31) implies (29). Indeed, consider the chain

\[
\|T(S) - T_L(C')\| = \left\| T(S) - \frac{1}{L!} \cdot \binom{L}{c'} \sum_\sigma \sum_{S' \in \binom{c'}{L}} \sigma(T(S')) \right\|
\]

(35)

\[
\leq \frac{1}{L!} \cdot \binom{L}{c'} \sum_\sigma \sum_{S' \in \binom{c'}{L}} \|T(S) - \sigma(T(S'))\| \quad (36)
\]

\[
\leq \frac{1}{L!} \cdot \binom{L}{c'} \sum_\sigma \sum_{S' \in \binom{c'}{L}} \|T(S) - T(S')\| + \|T(S') - \sigma(T(S'))\| \quad (37)
\]

\[
\leq (1 + C)\delta_1, \quad (38)
\]

where (36) is by convexity of the norm, (37) is by triangle inequality and (38) is by (30) and (31). Consequently, setting \(\delta_1 = \frac{\delta}{1+C} \) we have shown (29).

Before proceeding further we need to define the concept of an average radius (or a moment of inertia):

\[
\text{rad}(x_1, \ldots, x_m) \triangleq \min_y \frac{1}{m} \sum_{i=1}^m |x_i - m|.
\]
Consider now an arbitrary subset $S = \{c_1, \ldots, c_L\}$ and define for each $j \geq 0$ the following functions

$$h_j(S) \triangleq \frac{1}{n} \text{rad}(0, \ldots, 0, c_1, \ldots, c_L).$$

It is easy to find an expression for $h_j(S)$ in terms of the joint-type of S:

$$h_j(S) = \frac{1}{L + j} \left(\mathbb{E}[W] - \mathbb{E}[|2W - L - j|] \right), \quad \mathbb{P}[W = w] = \sum_{v:|v| = w} t_v,$$

(39)

where t_v are components of the joint-type $T(S) = \{t_v, v \in \mathbb{F}_2^L\}$. To check (39) simply observe that if one arranges L codewords of S in an $L \times n$ matrix and also adds j rows of zeros, then computation of $h_j(S)$ can be done per-column: each column of weight w contributes

$$\min(w, L + j - w) = w - |2w - L - j|$$

to the sum. In view of expression (39) we will abuse notation and write

$$h_j(T(S)) \triangleq h_j(S).$$

We now observe that for symmetric codes satisfying (29) average-radii $h_j(S)$ in fact determine the regular radius:

Lemma 6: Consider an arbitrary code C satisfying conclusion (29) of Lemma 5. Then for any subset $S = \{c_1, \ldots, c_L\} \subset C$ we have

$$\frac{1}{n} \text{rad}(0, c_1, \ldots, c_L) - n \cdot \max_j h_j(T_L(C)) \leq 2^L(1 + \delta n),$$

(40)

where j in maximization (40) ranges over $\{0, 1, 3, \ldots, 2k + 1, \ldots, L\}$ if L is odd and over $\{0, 2, \ldots, 2k, \ldots L\}$ if L is even.

Proof: For joint-types of size L and all $j \geq 0$ we clearly have (cf. expression (39))

$$|h_j(T_1) - h_j(T_2)| \leq 2^{L-1} \|T_1 - T_2\|, \quad \forall T_1, T_2 \in T_L.$$

(41)

We also trivially have

$$\frac{1}{n} \text{rad}(0, c_1, \ldots, c_L) \geq h_j(S) \quad \forall j \geq 0.$$

(42)

Thus from (29) and (41) we already get

$$\frac{1}{n} \text{rad}(0, c_1, \ldots, c_L) \geq \max_j h_j(T_L(C)) - 2^{L-1} \delta.$$
It remains to show
\[
\frac{1}{n} \operatorname{rad}(0, c_1, \ldots, c_L) \leq \max_j h_j(\bar{T}_L(\mathcal{C})) + \delta + \frac{2^L}{n}.
\] (43)

This evidently requires constructing a good center \(y \) for the set \(\{0, c_1, \ldots, c_L\} \). To that end fix arbitrary numbers \(q = (q_0, \ldots, q_L) \in [0, 1]^L \). Next, for each \(v \in \mathbb{F}_2^L \) let \(E_v \subset [n] \) be all coordinates on which restriction of \(\{c_1, \ldots, c_L\} \) equals \(v \). On \(E_v \) put \(y \) to have a fraction \(q_{|v|} \) of ones and remaining set to zeros (rounding to integers arbitrarily). Proceed for all \(v \in \mathbb{F}_2^L \). Call resulting vector \(y(q) \in \mathbb{F}_2^n \).

Denote for convenience \(c_0 = 0 \). We clearly have
\[
\operatorname{rad}(c_0, c_1, \ldots, c_L) \leq \min_q \max_p \sum_{i=0}^L p_i |c_i - y(q)|,
\] (44)
where \(p = (p_0, \ldots, p_L) \) is a probability distribution.

Denote
\[
T(S) = \{t_v, v \in \mathbb{F}_2^L\}
\]
(45)
\[
\bar{T}_L(\mathcal{C}) = \{\bar{t}_v, v \in \mathbb{F}_2^L\}
\] (46)

We proceed to computing \(|c_i - y(q)| \).
\[
|c_i - y(q)| \leq n \sum_{v \in \mathbb{F}_2^L} t_v(q_{|v|} 1\{v(i) = 0\} + (1 - q_{|v|}) 1\{v(i) = 1\}) + 2^L,
\] (47)
where \(2^L \) comes upper-bounding the integer rounding issues and we abuse notation slightly by setting \(v(0) = 0 \) for all \(v \) (recall that \(v(i) \) is the \(i \)-th coordinate of \(v \in \mathbb{F}_2^L \)).

By (29) we may replace \(t_v \) with \(\bar{t}_v \) at the expense of introducing \(2^L \delta n \) error, so we have:
\[
|c_i - y(q)| \leq n \sum_{v \in \mathbb{F}_2^L} \bar{t}_v(q_{|v|} 1\{v(i) = 0\} + (1 - q_{|v|}) 1\{v(i) = 1\}) + 2^L(1 + \delta n).
\]

Next notice that the sum over \(v \) only depends on whether \(i = 0 \) or \(i \neq 0 \) (by symmetry of \(\bar{t}_v \)). Furthermore, for any given weight \(w \) and \(i \neq 0 \) we have
\[
\sum_{v:|v|=w} 1\{v(i) = 1\} = \binom{L}{w} \frac{w}{L}.
\]

Thus, introducing the random variable \(\bar{W} \), cf. (39),
\[
\mathbb{P}[\bar{W} = w] \triangleq \sum_{v:|v|=w} \bar{t}_v,
\]
we can rewrite:

\[
\sum_{v \in F^L_2} \tilde{t}_v(q_v) 1\{v(i) = 0\} + (1 - q_v) 1\{v(i) = 1\} = \frac{1}{L} \mathbb{E}[\tilde{W} + (L - 2\tilde{W})q_{\tilde{W}}].
\]

For \(i = 0\) the expression is even simpler:

\[
\sum_{v \in F^L_2} \tilde{t}_v(q_v) 1\{v(0) = 0\} + (1 - q_v) 1\{v(0) = 1\} = \mathbb{E}[q_{\tilde{W}}].
\]

Substituting derived upper bound on \(|c_i - y(q)|\) into (44) we can see that without loss of generality we may assume \(p_1 = \cdots = p_L\), so our upper bound (modulo \(O(\delta)\) terms) becomes:

\[
\min_q \max_{p_1 \in [0, L^{-1}]} (1 - Lp_1) \mathbb{E}[q_{\tilde{W}}] + p_1 \mathbb{E}[\tilde{W} + (L - 2\tilde{W})q_{\tilde{W}}]
\]

\[
= \min_q \max_{p_1 \in [0, L^{-1}]} p_1 \mathbb{E}[\tilde{W}] + \mathbb{E}[q_{\tilde{W}}(1 - 2\tilde{W}p_1)]
\]

By von Neumann’s minimax theorem we may interchange \(\min\) and \(\max\), thus continuing as follows:

\[
= \max_{p_1 \in [0, L^{-1}]} \min_q p_1 \mathbb{E}[\tilde{W}] + \mathbb{E}[q_{\tilde{W}}(1 - 2\tilde{W}p_1)] (48)
\]

\[
= \max_{p_1 \in [0, L^{-1}]} p_1 \mathbb{E}[\tilde{W}] - \mathbb{E}[|2\tilde{W} - L - j|] (49)
\]

The optimized function of \(p_1\) is piecewise-linear, so optimization can be reduced to comparing values at slope-discontinuities and boundaries. The point \(p_1 = 0\) is easily excluded, while the rest of the points are given by \(p_1 = \frac{1}{L+j}\) with \(j\) ranging over the set specified in the statement of Lemma\(^3\). So we continue (49) getting

\[
= \max_{j} \frac{1}{L+j} (\mathbb{E}[\tilde{W}] - \mathbb{E}[|2\tilde{W} - L - j|]) (50)
\]

We can see that expression under maximization is exactly \(h_j(\tilde{T}_L(C))\) and hence (43) is proved.

\[\blacksquare\]

Lemma 7: There exist constants \(C_1, C_2\) depending only on \(L\) such that for any \(C \subset F^n_2\) the joint-type \(\tilde{T}_L(C)\) is approximately a mixture of product Bernoulli distributions, namely:

\[
\left\| \tilde{T}_L(C) - \frac{1}{n} \sum_{i=1}^{n} \text{Bern}^{\otimes L}(\lambda_i) \right\| \leq \frac{C_1}{|C|},
\]

\(\blacksquare\)

\(^3\)The difference between odd and even \(L\) occurs due to the boundary point \(p_1 = \frac{1}{L}\) not being a slope-discontinuity when \(L\) is odd, so we needed to add it separately.

\(^4\)Distribution \(\text{Bern}^{\otimes L}(\lambda)\) assigns probability \(\lambda^{|v|}(1 - \lambda)^{L-|v|}\) to element \(v \in F^n_2\).
where \(\lambda_i = \frac{1}{|C|} \sum_{c \in C} 1\{c(i) = 1\} \) be the density of ones in the \(j \)-th column of a \(|C| \times n\) matrix representing the code. In particular,

\[
|h_j(\tilde{T}_L(C)) - \frac{1}{n} \sum_j g_j(\lambda_j)| \leq \frac{C_2}{|C|},
\]

(52)

where functions \(g_j \) were defined in (17).

Proof: Second statement (52) follows from the first via (41) and linearity of \(h_j(T) \) in the type \(T \), cf. (39). To show the first statement, let \(M = |C|, M_i = \lambda_i M \) and \(p_w \) – total probability assigned to vectors \(v \) of weight \(w \) by \(\tilde{T}_L(C) \). Then by computing \(p_w \) over columns of \(M \times n \) matrix we obtain

\[
p_w = \frac{1}{n} \sum_{i=1}^{n} \binom{M_i}{w} \frac{\binom{M-M_i}{L-w}}{\binom{M}{L}}.
\]

By a standard estimate we have for all \(w = \{0, \ldots, L\} \):

\[
\binom{M_i}{w} \frac{\binom{M-M_i}{L-w}}{\binom{M}{L}} = \binom{L}{w} \lambda_i^w (1 - \lambda_i)^{L-w} + O\left(\frac{1}{M} \right),
\]

with \(O(\cdot) \) term uniform in \(w \) and \(\lambda_i \). By symmetry of the type \(\tilde{T}_L(C) \) the result (51) follows. \(\blacksquare \)

Lemma 8: Functions \(g_j \) defined in (17) are concave on \([0, 1]\).

Proof: Let \(W_\lambda \sim \text{Bino}(L, \lambda) \) and \(V_\lambda \sim \text{Bino}(L-1, \lambda) \). Denote for convenience \(\bar{\lambda} = 1 - \lambda \) and take \(j_0 \) to be an integer between 0 and \(L \). We have then

\[
\frac{\partial}{\partial \lambda} \mathbb{E}[|W_\lambda - j_0|^+] = \sum_{w=j_0+1}^{L} \binom{L}{w} (w-j_0) \{ w\lambda^{w-1}\bar{\lambda}^{L-w} - (L-w)\lambda^w\bar{\lambda}^{L-w-1} \} \]

(53)

\[
= \binom{L}{j_0+1} (j_0+1)\lambda^j_0 \bar{\lambda}^{L-j_0-1}
\]

\[
+ \sum_{w=j_0+1}^{L-1} \binom{L}{w+1} (w+1-j_0)(w+1) - \binom{L}{w} (w-j_0)(L-w)\lambda^w\bar{\lambda}^{L-w-1}
\]

(54)

\[
= L\binom{L-1}{j_0} \lambda^j_0 \bar{\lambda}^{L-1-j_0} + L \sum_{w=j_0+1}^{L-1} \binom{L-1}{w} \lambda^w\bar{\lambda}^{L-1-w}
\]

(55)

\[
= LP[V_\lambda \geq j_0],
\]

(56)

where in (54) we shifted the summation by one for the first term under the sum in (53), and in (55) applied identities \(\binom{L}{w+1} = \frac{L}{w+1} \binom{L-w}{L-w+1} = \binom{L-1}{w+1} \). Similarly, if \(\theta \in [0, 1] \) we have

\[
\frac{\partial}{\partial \lambda} \mathbb{E}[|W_\lambda - j_0 - \theta|^+] = LP[V_\lambda \geq j_0 + 1] + L(1-\theta)LP[V_\lambda = j_0].
\]

(57)
Similarly, one shows (we will need it later in Lemma 9):
\[
\frac{\partial}{\partial \lambda} \mathbb{P}[W_\lambda \geq j_0] = L \mathbb{P}[V_\lambda = j_0 - 1].
\] (58)

Since clearly the function in (57) is strictly increasing in \(\lambda\) for any \(j_0\) and \(\theta\) we conclude that
\[
\lambda \mapsto \mathbb{E} [|W_\lambda - j_0 - \theta|]
\]
is convex. This concludes the proof of concavity of \(g_j\).

\[\blacksquare\]

Proof of Lemma 4
Our plan is the following:

1) Apply Elias-Bassalygo reduction to pass from \(C'_n\) to a subcode \(C''_n\) on an intersection of two spheres \(S_{\xi_0 n}\) and \(y + S_{\xi_1 n}\).

2) Use Lemma 5 to pass to a symmetric subcode \(C'''_n \subset C''_n\).

3) Use Lemmas 7–8 to estimate maxima of average radii \(h_j\) over \(C'''_n\).

4) Use Lemma 6 to transport statement about \(h_j\) to a statement on \(\tau_L(C'''_n)\).

We proceed to details. It is sufficient to show that for some constant \(C = C(L)\) and arbitrary \(\delta > 0\) estimate (24) holds with \(\epsilon_n = C\delta\) whenever \(n \geq n_0(\delta)\). So we fix \(\delta > 0\) and consider a code \(C' \subset S_{\xi_0 n} \subset \mathbb{F}_2^n\) with \(|C'| \geq \exp\{nR' + o(n)\}\). Note that for any \(r\), even \(m\) with \(m/2 \leq \min(r, n-r)\) and arbitrary \(y \in S_r^n \) intersection \(\{y + S_m^n\} \cap S_r^n\) is isometric to the product of two lower-dimensional spheres:
\[
\{y + S_m^n\} \cap S_r^n \cong S_{r-m/2}^r \times S_{m/2}^{n-r}.
\] (59)

Therefore, we have for \(r = \xi_0 n\) and valid \(m\):
\[
\sum_{y \in S_r^n} |\{y + S_m^n\} \cap C'| = |C'| \left(\frac{\xi_0 n}{\xi_0 n - m/2} \right) \left(\frac{n(1 - \xi_0)}{m/2} \right).
\]

Consequently, we can select \(m = \xi_1 n - o(n)\), where \(\xi_1\) defined in (27), so that for some \(y \in S_r^n\):
\[
|\{y + S_m^n\} \cap C'| > n.
\]

Note that we focus on solution of (27) satisfying \(\xi_1 < 2\xi_0(1 - \xi_0)\). For some choices of \(R, \delta\) and \(\xi_0\) choosing \(\xi_1 > 2\xi_0(1 - \xi_0)\) is also possible, but such a choice appears to result in a weaker bound.

Next, we let \(C'' = \{y + S_m^n\} \cap C'\). For sufficiently large \(n\) the code \(C''\) will satisfy assumptions of Lemma 5 with \(K \geq \frac{1}{\tau}\). Denote the resulting large symmetric subcode \(C''\).
Note that because of (59) column-densities \(\lambda_i \)'s of \(C''' \), defined in Lemma 7, satisfy (after possibly reordering coordinates):

\[
\sum_{i=1}^{\xi_0 n} \lambda_i = \xi_1 n/2 + o(n), \quad \sum_{i>\xi_0 n} \lambda_i = \xi_1 n/2 + o(n).
\]

Therefore, from Lemmas 7-8 we have

\[
h_j(T_L(C''')) \leq \xi_0 g_j \left(1 - \frac{\xi_1}{2\xi_0} \right) + (1 - \xi_0) g_j \left(\frac{\xi_1}{2(1 - \xi_0)} \right) + \epsilon' + \frac{C_1}{|C'''|},
\]

where \(\epsilon' \to 0 \). Note that by construction the last term in (60) is \(O(\delta) \). Also note that the first two terms in (60) equal \(\theta_j \) defined in (25).

Finally, by Lemma 6 we get that for any codewords \(c_1, \ldots, c_L \in C''' \), some constant \(C \) and some sequence \(\epsilon''_n \to 0 \) the following holds:

\[
\frac{1}{n} \text{rad}(0, c_1, \ldots, c_L) \leq \theta(\xi_0, R', L) + \epsilon'' + C\delta.
\]

By the initial remark, this concludes the proof of Lemma 4.

\[\]
Next, consider $W_x \sim \text{Bino}(x, L)$ and notice the upper-bound

$$g_j(x) \leq \frac{1}{L + j} \mathbb{E}[W_x 1\{W_x \leq a\} + (L + j - W_x) 1\{W_x \geq a + 1\}].$$

Then, substituting expression for $g_1(x)$ we get

$$g_1(x) - g_0(x) = \frac{1}{L}(\mathbb{P}[W_x \geq a + 1] - g_1(x)) \quad (66)$$

$$g_1(x) - g_j(x) \geq \frac{j - 1}{L + j} (g_1(x) - \mathbb{P}[W_x > a + 1]) \quad (67)$$

Thus, to show (65) it is sufficient to prove that for $x = 1/2$ we have

$$\mathbb{P}[W_{1/2} > a + 1] < g_1(1/2) < \mathbb{P}[W_{1/2} \geq a + 1]. \quad (68)$$

The right-hand inequality is trivial since $\mathbb{P}[W_{1/2} \geq a + 1] = 1/2$ while from (62) we know $g_1(1/2) < 1/2$. Proof of the left-hand inequality is more involved. First, after simple algebra it reduces to showing

$$\sum_{v=1}^{a} (2v + 1) \binom{2a + 1}{a - v} < (2a + 1) \binom{2a + 1}{a}. \quad (69)$$

To show the latter inequality, we consider the bounds

$$1 - x \leq e^{-x}, \quad \frac{1}{1 + x} \leq e^{-x \ln 2}, \quad x \in [0, 1].$$

Then we have the chain

$$\binom{2a + 1}{a - v} = \frac{a}{a + 2} \cdot \frac{a - 1}{a + 3} \cdots \frac{a - v + 1}{a + v + 1} \binom{2a + 1}{a}$$

$$\leq \binom{2a + 1}{a} e^{-\frac{1}{a} v(v-1)} e^{-\frac{\ln 2}{2} v(v+3)} \quad (70)$$

$$= \binom{2a + 1}{a} e^{-\frac{v^2}{a} \ln 2 + 1} e^{-\frac{v}{a} \ln 2 - 1} \quad (71)$$

$$\leq \binom{2a + 1}{a} e^{-c_1 \frac{v^2}{a} - c_2 \frac{v}{a}}, \quad (72)$$

where in the last step we denoted $c_1 = \frac{\ln 2 + 1}{2}, c_2 = \frac{3 \ln 2 - 1}{2}$ and used the fact that $v \geq 1$.

With estimate (73) we have due to monotonicity of the summand:

$$\sum_{v=1}^{a} \binom{2a + 1}{a - v} \leq \binom{2a + 1}{a} e^{-c_2 \frac{a}{a}} \int_{0}^{\infty} e^{-c \frac{v^2}{4a}} dv = \binom{2a + 1}{a} e^{-c_2 \frac{a}{a}} \sqrt{\frac{\pi a}{4c}}. \quad (74)$$
Next, notice that for any non-negative continuous function that has only one extremum on the interval $[b_0, b_1]$ we have

$$\sum_{n=b_0}^{b_1} f(n) \leq \int_{b_0-1}^{b_1+1} f(x) dx + \max_{x \in [b_0, b_1]} f(x).$$

(75)

The maximum of $2ve^{-cv^2/a}$ is given by

$$\max_{v \geq 0} 2ve^{-cv^2/a} = \sqrt{\frac{2a}{ec}}.$$

(76)

Meanwhile, the integral of this very function is

$$\int_0^\infty 2ve^{-cv^2/a} dv = \frac{a}{c}.$$

(77)

Then we can estimate, via (73), (75), (76) and (77):

$$\sum_{v=1}^{a} \left(\frac{2a+1}{a-v} \right) \leq \left(\frac{2a+1}{a} \right)e^{-\frac{c_2}{a}} \left\{ \frac{a}{c} + \sqrt{\frac{2a}{ec}} \right\}.$$

(78)

Together (74) and (78) imply

$$\sum_{v=1}^{a} \left(2v+1 \right) \left(\frac{2a+1}{a-v} \right) \leq \left(\frac{2a+1}{a} \right)e^{-\frac{c_2}{a}} \left\{ \frac{a}{c} + \sqrt{\frac{2a}{ec}} + \sqrt{\frac{\pi a}{4c}} \right\}.$$

(79)

To further upper-bound this sum, notice that for all $a \geq 1$ we have

$$e^{-\frac{c_2}{a}} \left\{ \frac{a}{c} + \sqrt{\frac{2a}{ec}} + \sqrt{\frac{\pi a}{4c}} \right\} < 2a + 1$$

(80)

For $a \gg 1$ the inequality (80) holds since $\frac{1}{2} < 2$. For small a its validity is readily verified numerically. Overall, (79) and (80) imply (69).

Proof of Corollary 3: We first show that (21) implies (22). To that end, fix a small $\epsilon > 0$ such that $\frac{1}{2} - \epsilon$ belongs to the neighborhood existence of which is claimed in Lemma 9. Choose rate so that $\delta_{LP1}(R) = 1/2 - \epsilon$ and notice that this implies

$$R = h(e^2 + o(e^2)),$$

(81)

By Lemma 9 the right-hand side of (21) is

$$\tau_L^*(0) - \text{const} \cdot \epsilon + o(\epsilon),$$

which together with (81) implies (22).
To prove (21) we use Theorem 1 with \(\delta = \delta_{LP1}(R) \). Next, use concavity of \(g_j \)'s (Lemma 8) to relax (14) to
\[
\limsup_{n \to \infty} \tau_L(C_n) \leq \max_j g_j(\xi_0) .
\]
From (63) and (64) it is clear that \(\xi_0 \mapsto g_j(\xi_0) \) is monotonically increasing for all \(j \geq 0 \) on the interval \([0, 1/2]\). Thus, we further have
\[
\limsup_{n \to \infty} \tau_L(C_n) \leq \max_j g_j(\delta_{LP1}(R)) .
\] (82)
Bound (82) is valid for all \(R \in [0, 1] \) and arbitrary (odd/even \(L \)). However, when \(R \) is small (say, \(R < R_0 \)) and \(L \) is odd, \(\delta_{LP1}(R) \) belongs to the neighborhood of \(1/2 \) in Lemma 9 and thus (21) follows from (82) and (61).

Remark 2: It is, perhaps, instructive to explain why Corollary 3 cannot be shown for even \(L \) (via Theorem 1). For even \(L \) the maximum over \(j \) of \(g_j(1/2 - \epsilon) \) is attained at \(j = 0 \) and
\[
g_0(1/2 - \epsilon) = \tau^*_L(0) + c\epsilon^2 + O(\epsilon^3), \epsilon \to 0
\] (83)
Therefore, for \(\delta_{LP1}(R) = 1/2 - \epsilon \) we get from (83) that the right-hand side of (82) evaluates to
\[
\tau^*_L(0) - \text{const} \cdot \epsilon^2 \log \frac{1}{\epsilon}.
\] (84)
Thus, comparing (84) with (81) we conclude that for even \(L \) our bound on \(R^*_L(\tau) \) has positive slope at zero rate. Note that Blinovsky’s bound (11) has non-zero slope at zero rate for both odd and even \(L \).

D. Proof of Corollary 2

Proof: Instead of working with parameter \(\delta \) we introduce \(\beta \in [0, 1/2] \) such that
\[
\delta = \frac{1}{2} - \sqrt{\beta(1 - \beta)}.
\]
We then apply Theorem 1 with \(h(\beta) = R \). Notice that the bound on \(\xi_0 \) in (15) becomes
\[
0 \leq \xi_0 \leq \delta .
\]
By a simple substitution \(\omega = \sqrt{\frac{2}{1-\beta}} \) we get from (12)
\[
E_\beta(\delta) = \frac{1}{2}(\log 2 - h(\delta) + h(\beta)) .
\]
Therefore, when $\xi_0 = \delta$ we notice that

$$R + h(\beta) - 2E_{\beta}(\xi_0) = R - \log 2 + h(\delta)$$

implying that defining equation for ξ_1, i.e. (16), coincides with (20).

Next for $L = 3$ we compute

$$g_0(\nu) = \nu(1 - \nu), \quad (85)$$
$$g_1(\nu) = \frac{3}{4}\nu - \frac{1}{2}\nu^3, \quad (86)$$
$$g_3(\nu) = \frac{1}{2}\nu. \quad (87)$$

Note that the right-hand side of (18) is precisely equal to

$$\delta g_1 \left(1 - \frac{\xi_1}{2\delta}\right) + (1 - \delta)g_1 \left(\frac{\xi_1}{2(1 - \delta)}\right).$$

So this corollary simply states that for $L = 3$ the maximum in (14) is achieved at $j = 1, \xi_0 = \delta$.

Let us restate this last statement rigorously: The maximum

$$\max_{j \in \{0, 1, 3\}} \max_{\xi_0 \in \delta} \xi_0 g_j \left(1 - \frac{x}{2\xi_0}\right) + (1 - \xi_0)g_j \left(\frac{x}{2(1 - \xi_0)}\right) \quad (88)$$

is achieved at $j = 1, \xi_0 = \delta$. Here $x = x(\xi_0, \beta)$ is a solution of

$$2(h(\beta) - E_{\beta}(\xi_0)) = h(\xi_0) - \xi_0h \left(\frac{x}{2\xi_0}\right) - (1 - \xi_0)h \left(\frac{x}{2(1 - \xi_0)}\right). \quad (89)$$

For notational convenience we will denote the function under maximization in (88) by $g_j(\xi_0, x)$.

We proceed in two steps:

- First, we estimate the maximum over ξ_0 for $j = 0$ as follows:

$$\max_{\xi_0} g_0(\xi_0, x) \leq \frac{\log 2 - R}{4 \log 2} \cdot \left(1 - \frac{1 - \delta}{a_{\max}(1 - a_{\max})}\right) + (1 - \delta)g_0(a_{\min}), \quad (90)$$

where $a_{\max}, a_{\min} \leq \frac{1}{2}$ are given by

$$a_{\max} = h^{-1}(\log 2 - R), \quad (91)$$
$$a_{\min} = h^{-1}\left(\log 2 - \frac{R}{1 - \delta}\right). \quad (92)$$

- Second, we prove that for $j = 1$ function

$$\xi_0 \mapsto g_j(\xi_0, x(\xi_0))$$

is monotonically increasing.
Once these two steps are shown, it is easy to verify (for example, numerically) that $g_1(\delta, x(\delta))$ exceeds both $\frac{1}{2}\delta$ (term corresponding to $j = 3$ in (88)) and the right-hand side of (90) (term corresponding to $j = 0$). Notice that this relation holds for all rates. Therefore, maximum in (88) is indeed attained at $j = 1, \xi_0 = \delta$.

One trick that will be common to both steps is the following. From the proof of Lemma 4 it is clear that the estimate (24) is monotonic in R'. Therefore, in equation (89) we may replace $E_\beta(\xi)$ with any upper-bound of it. We will use the well-known upper-bound, which leads to binomial estimates of spectrum components [13, (46)]:

$$E_\beta(\xi_0) \leq \frac{1}{2} \left(\log 2 + h(\beta) - h(\xi_0) \right).$$

(93)

Furthermore, it can also be argued that maximum cannot be attained by ξ_0 so small that

$$h(\beta) - \frac{1}{2} \left(\log 2 + h(\beta) - h(\xi_0) \right) < 0.$$

So from now on, we assume that

$$h^{-1}(\log 2 - h(\beta)) \leq \xi_0 \leq \delta,$$

and that $x = x(\xi_0) \leq 2\xi_0(1 - \xi_0)$ is determined from the equation:

$$\log 2 - R = \xi_0 h\left(\frac{x}{2\xi_0}\right) + (1 - \xi_0)h\left(\frac{x}{2(1 - \xi_0)}\right)$$

(94)

(we remind $R = h(\beta)$).

We proceed to demonstrating (90). For convenience, we introduce

$$a_1 \triangleq 1 - \frac{x}{2\xi_0},$$

$$a_2 \triangleq \frac{x}{2 - 2\xi_0}.$$

(95)

(96)

By constraints on x it is easy to see that

$$0 \leq a_2 \leq \min(a_1, 1 - a_1).$$

Therefore, we have

$$\log 2 - R = \xi_0 h(a_1) + (1 - \xi_0)h(a_2) \geq h(a_2)$$

and thus $a_2 \leq a_{\text{max}}$ defined in (91). Similarly, we have

$$\log 2 - R = \xi_0 h(a_1) + (1 - \xi_0)h(a_2) \leq \xi_0 \log 2 + (1 - \xi_0)h(a_2),$$

September 30, 2014
and since $\xi_0 \leq \delta$ we get that $a_2 \geq a_{\text{min}}$ defined in \(\text{(92)}\).

Next, notice that $\frac{h(x)}{x(1-x)}$ is decreasing on $(0, 1/2]$. Thus, we have

\[
 h(a_1) \geq g_0(a_1)4\log 2 \quad (97)
\]

\[
 h(a_2) \geq h(a_{\text{max}}) \frac{g_0(a_2)}{g_0(a_{\text{max}})} = \frac{\log 2 - R}{a_{\text{max}}(1 - a_{\text{max}})} g_0(a_2) \triangleq c \cdot g_0(a_2), \quad (98)
\]

where in the last step we introduced $c > 4\log 2$ for convenience. Consequently, we get

\[
 \log 2 - R = \xi_0 h(a_1) + (1 - \xi_0) h(a_2) \geq 4\log 2 \cdot \xi_0 g_0(a_1) + (1 - \xi_0) c \cdot g_0(a_2) \quad (100)
\]

\[
 = 4\log 2 \cdot g_0(\xi_0, x) + (1 - \xi_0)(c - 4\log 2) \cdot g_0(a_2) \quad (101)
\]

\[
 \geq 4\log 2 \cdot g_0(\xi_0, x) + (1 - \delta)(c - 4\log 2) \cdot g_0(a_{\text{min}}). \quad (102)
\]

Rearranging terms yield \(\text{(99)}\).

We proceed to proving monotonicity of \(\text{(89)}\). The technique we will use is general (can be applied to $L > 3$ and $j > 1$), so we will avoid particulars of \(L = 3, j = 1\) case until the final step.

Notice that regardless of the function $g(\nu)$ we have the equivalence:

\[
 \frac{d}{d\xi_0} \xi_0 g(a_1) + (1 - \xi_0) g(a_2) \geq 0 \quad \iff \quad \frac{1}{2} \frac{d}{d\xi_0} \right(g'(a_2) - g'(a_1) \big) \geq \int_{a_2}^{a_1} (1 - x)(-g''(x))dx - g'(a_2), \quad (103)
\]

where we recall definition of a_1, a_2 in \(\text{(95)}\) - \(\text{(96)}\). Differentiating \(\text{(94)}\) in ξ_0 (and recalling that R is fixed, while $x = x(\xi_0)$ is an implicit function of ξ_0) we find

\[
 \frac{dx}{d\xi_0} = -2 \frac{\log \frac{1 - a_2}{a_1}}{\log \frac{1 - a_2}{a_1}} < 0 .
\]

Next, one can notice that the map $(\xi_0, x, R) \mapsto (a_1, a_2)$ is a bijection onto the region

\[
 \{ (a_1, a_2) : 0 \leq a_1 \leq 1, 0 \leq a_2 \leq a_1(1 - a_1) \}. \quad (105)
\]

With the inverse map given by

\[
 \xi_0 = \frac{a_2}{1 - a_1 + a_2}, \quad x = \frac{2a_2^2}{1 - a_1 + a_2}, \quad R = \log 2 - \xi_0 h(a_1) - (1 - \xi_0) h(a_2). \quad (106)
\]
Thus, verifying (104) can as well be done for all a_1, a_2 inside the region (105). Substituting $g = g_1$ into (104) we get that monotonicity in (89) is equivalent to a two-dimensional inequality:

$$-2 \log \frac{1-a_2}{a_1} \cdot (a_1^2 - a_2^2) \geq \left(2a_1^2 - \frac{4}{3}a_3^3(a_1^2 - a_2^2) - 1\right) \log \frac{1-a_2}{a-2} \frac{a_1}{1-a_1}. \quad (106)$$

It is possible to verify numerically that indeed (106) holds on the set (105). For example, one may first demonstrate that it is sufficient to restrict to $a_2 = 0$ and then verify a corresponding inequality in a_1 only. We omit mechanical details.

REFERENCES

[1] P. Elias, “List decoding for noisy channels,” MIT, Cambridge, MA, Tech. Rep. RLE-TR-335, 1957.
[2] J. Wozencraft, “List decoding,” MIT, Cambridge, MA, Tech. Rep. RLE Quart. Progr., vol. 48, 1958.
[3] Y. Kochman, A. Mazumdar, and Y. Polyanskiy, “The adversarial joint source-channel problem,” in Proc. 2012 IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, Jul. 2012.
[4] R. McEliece, E. Rodemich, H. Rumsey, and L. Welch, “New upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities,” IEEE Trans. Inf. Theory, vol. 23, no. 2, pp. 157–166, 1977.
[5] A. Ashikhmin, A. Barg, and S. Litsyn, “A new upper bound on codes decodable into size-2 lists,” in Numbers, Information and Complexity. Springer, 2000, pp. 239–244.
[6] A. Samorodnitsky, “On the optimum of Delsarte’s linear program,” J. Comb. Th., Ser. A, vol. 96, pp. 261–287, 2001.
[7] V. Blinovsky, “Bounds for codes in the case of list decoding of finite volume,” Prob. Peredachi Inform., vol. 22, no. 1, pp. 7–19, 1986.
[8] ———, “Code bounds for multiple packings over a nonbinary finite alphabet,” Prob. Peredachi Inform., vol. 41, no. 1, pp. 23–32, 2005.
[9] V. Gururwami and S. Vadhan, “A lower bound on list size for list decoding,” in Approximation, Randomization and Combinatorial Optimization. Algorithms and Techniques. Springer, 2005, pp. 318–329.
[10] M. E. H. Ismail and P. Simeonov, “Strong asymptotics for Krawtchouk polynomials,” J. Comp. and Appl. Math., vol. 100, pp. 121–144, 1998.
[11] Y. Polyanskiy, “Hypercontractivity of spherical averages in Hamming space,” Arxiv preprint arXiv:1309.3014, 2013.
[12] A. Barg and A. McGregor, “Distance distribution of binary codes and the error probability of decoding,” IEEE Trans. Inf. Theory, vol. 51, no. 12, pp. 4237–4246, 2005.
[13] S. Litsyn, “New upper bounds on error exponents,” IEEE Trans. Inf. Theory, vol. 45, no. 2, pp. 385–398, 1999.
[14] G. Kalai and N. Linial, “On the distance distribution of codes,” IEEE Trans. Inf. Theory, vol. 41, no. 5, pp. 1467–1472, 1995.