Density Distributions and Elastic Electron Scattering Form Factors of Proton-rich ^8B, ^{17}F, ^{17}Ne, ^{23}Al and ^{27}P Nuclei

Rafah I. Noori1*, Arkan R. Ridha2

1Deptm of Physics, College of Education Ibn Al Haitham, University of Baghdad, Baghdad, Iraq
2Deptm of Physics, College of Science, University of Baghdad, Baghdad, Iraq

Abstract

In this work, the nuclear density distributions, size radii and elastic electron scattering form factors are calculated for proton-rich ^8B, ^{17}F, ^{17}Ne, ^{23}Al and ^{27}P nuclei using the radial wave functions of Woods-Saxon potential. The parameters of such potential for nuclei under study are generated so as to reproduce the experimentally available size radii and binding energies of the last nucleons on the Fermi surface.

Keywords: Proton rich nuclei, halo nuclei, density distributions, size radii, elastic electron scattering form factors

Introduction

The chosen radial wave functions are played a crucial role in understanding the nuclear structure in the aspect of nuclear sizes and radial distributions of nucleons in any nuclear system [1]. The experimental matter density distributions of exotic nuclei are mainly characterized by long tail behavior at large r [2]. Electron scattering and muonic atoms (μ−) are a powerfoul tool to probe the charge distributions and radii of stable nuclei [3]. Unfortunately, due to very short lifetime of halo nuclei there is no ability to make the target of them; therefore, such nuclei are studied in inverse kinematics [4]. The optical isotope shift provides important information about the very tiny quantities of radioactive nuclei [5]. Experimental matter rms radii are available through nucleus-nucleus scattering in Glauber model [6, 7], besides the proton rms radii can be obtained from charge-changing cross section [8]. The naive radial harmonic-oscillator (HO) wave functions are unable to predict the

*Email: 07710638947rf@gmail.com
long-tail characteristic behavior at large \(r \) for density distributions of halo nuclei [9-12]. Modifications are adopted to improve such shortcoming such as using two HO size parameters for core and halo parts to regenerate the asymptotic behavior and size radii but with adequate results [13-15]. The transformed HO wave functions in local-scale transformation opened new approach to reform the performance of the radial wave functions of halo nuclei in [16-18]. The single-particle wave functions of Woods-Saxon (WS) potential are used with very good agreements with experimental data for both stable and exotic nuclei [19-22].

In present work, we undertook the calculation of rms radii, density distributions and elastic electron scattering form factors for proton-rich \(^8\)B, \(^{17}\)F, \(^{17}\)Ne, \(^{23}\)Al and \(^{27}\)P nuclei utilizing the realistic radial wave functions of WS potential.

Theoretical formulations

The nuclear transition proton \((t_x = 1/2)/\)neutron \((t_x = -1/2)\) density distributions can be written as [13]

\[
\rho_{j,t_x}(r) = \frac{1}{\sqrt{4\pi (2j+1)}} \sum_{a,a'} X_{a,a'}^{j,j} \langle j_a | j_0 \rangle R_{a',t_x}(r)R_{a,t_x}(r)
\]

(1)

where \(a \) and \(a' \) denote the single-particle state \((nlj)\), \(X_{a,a'}^{j,j} \) represents the weight of transition obtained from shell-model calculations. In Eq. (1), the radial wave functions of WS potential \((R_{nlj,t_x}(r))\) are taken from the solution to radial part of the Schrodinger equation using Woods-Saxon potential given below [23]

\[
\left(\frac{\hbar^2}{2\mu} \frac{d^2}{dr^2} - U(r) - \frac{l(l+1)\hbar^2}{2\mu r^2} \epsilon_{nlj,t_x} \right) R_{nlj,t_x}(r) = 0
\]

(2)

In the above equation, \(\mu_{t_x} = \frac{m_{\text{core}}(A-1)}{A} \) is the reduced mass of the core \((A-1)\) and single nucleon, \(m_{t_x} \) is the mass of single nucleon, \(A \) is the atomic mass and \(\epsilon_{nlj,t_x} \) represents the binding energy of single nucleon in the state \(nlj \). The potential \(U(r) \) can be written as

\[
U(r) = U_{\text{cent}}(r) + U_{s.o.}(r) + U_c(r)
\]

(3)

The three terms in the Eq. (3), stand for the central, spin-orbit and Coulomb parts, respectively, given by [23]

\[
U_{\text{cent}}(r) = -\frac{U_0}{1 + e^{(r/\alpha)}},
\]

\[
U_{s.o.}(r) = \left(\frac{\hbar}{m \pi c} \right)^2 \frac{a_{s.o.}}{r} \frac{d}{dr} \left\{ \frac{1-R_{s.o.}}{1+e^{(r-R_{s.o.})/a_{s.o.}}} \right\} (\hat{l}, \hat{\sigma}) = - \left(\frac{\hbar}{m \pi c} \right)^2 \frac{a_{s.o.}}{r} \frac{e^{(r-R_{s.o.})/a_{s.o.}}}{1+e^{(r-R_{s.o.})/a_{s.o.}}} (\hat{l}, \hat{\sigma})
\]

and

\[
U_c(r) = \begin{cases}
\frac{(Z-1)}{2} \frac{e^2}{r} & \text{if } r > R \\
\frac{(Z-1)\hbar^2}{2R} \left(3 - \frac{r^2}{R^2} \right) & \text{if } r < R
\end{cases}
\]

(4)

In the first and second terms of Eq. (4), \(U_0 \), \(a \) and \(R = r_0 (A-1)^{1/3} \) and \(U_{s.o.}, a_{s.o.} \) and \(R_{s.o.} = r_{s.o.} (A-1)^{1/3} \) are the depth of central/spin-orbit part, the diffuseness of central/spin-orbit part and radius parameter of central/spin-orbit part.

\((m_{\pi}c^2 = 139.57 \text{MeV}), \ h c = 197.33 \text{MeV fm} \) and \(\left(\frac{\hbar}{m \pi c} \right)^2 \approx 2 \text{fm}^2 \) (where \(m_{\pi} \) is the pion mass).

The matrix element of \(\langle \hat{l}, \hat{\sigma} \rangle \) written in the second term of Eq. (4) is given by

\[
\langle \hat{l}, \hat{\sigma} \rangle = \begin{cases}
-\frac{1}{2} (l + 1) & \text{for } j = l - \frac{1}{2} \\
\frac{l}{2} & \text{for } j = l + \frac{1}{2}
\end{cases}
\]

(5)

The last term in Eq. (4), indicates the Coulomb potential generated by a homogeneous charged sphere. Besides, the radial wave functions of HO potential is used in Eq. (1) in order to compare with the results of WS.

The ground point proton/neutron density distribution can be written from Eq. (1) as.
The total charge density distribution can be calculated from Eq. (6) by folding the point density distributions of protons and neutrons into the charge density of each one separately as follows

\[\rho_{j=0,ch}(r) = \rho_{ch,t_z=1/2}(r) + \rho_{ch,t_z=-1/2}(r) \]

in the above equation, the first and second terms can be written as

\[\rho_{ch,t_z=1/2}(r) = \int \rho_{j=0,t_z=1/2}(r) \rho_p(r - r') \, dr' \]

and

\[\rho_{ch,t_z=-1/2}(r) = \int \rho_{j=0,t_z=-1/2}(r) \rho_n(r - r') \, dr' \]

\[\rho_p(r') \] [24] and \[\rho_n(r') \] [25] in Eqs. (8) and (9) takes, respectively the following forms

\[\rho_p(r) = \frac{1}{(\sqrt{\pi}a_p)} e^{-r^2/a_p^2} \]

and

\[\rho_n(r) = \frac{1}{(\pi r_i^2)^{3/2}} \sum_i r_i^2 e^{-r^2/r_i^2} \]

The parameters in Eqs. (10) and (11) are taken from Ref. [24] and [25], respectively. The rms radii of neutrons, protons, charge and matter are calculated from

\[\langle r^2 \rangle^{1/2} = \sqrt{\frac{\pi}{t} \int_0^\infty \rho_{j=0,1}(r) r^2 \, dr} \]

where \(i \) stands for \(N \) (number of neutrons), \(Z \) (atomic number), charge and \(A \) (mass number), respectively.

Finally, in the first Born approximation, the longitudinal electron scattering form factors can be written as [26, 27]

\[F^{C}_{j,ch}(q) = \sum_{t_z} F^{C}_{j}(q,t_z) f_{t_z}(q) \]

where

\[F^{C}_{j}(q,t_z) = \frac{1}{Z} \sqrt{\frac{4\pi}{(2J+1)}} \langle J_f \| O^{C}_{j}(q,t_z) \| J_i \rangle \]

The Coulomb multipole operator in Eq. (14) is given by

\[O^{C}_{j,M}(q,t_z) = \sum_{J} j_{J}(q r) Y_{JM}(\Omega_r) \hat{t}_z(\vec{r}) \]

The many-body matrix element in Eq. (14) can be written in terms of single matrix element as follows [27]

\[\langle J_f \| O^{C}_{j}(q,t_z) \| J_i \rangle = \sum_{a,a',a',p/n} X^{J_f,J}_a \sum_{r} \langle a',t_z,q,r,t_z,a,t_z \rangle a_tz \| O^{C}_{j}(q,r,t_z) \| a_tz \]

The single Coulomb multipole operator is given by

\[O^{C}_{j}(q,r,t_z) = \epsilon_{r,z} j_{J}(q r) Y_{J}(\Omega_r) \]

The Coulomb form factor in Eq. (14) can be simplified to

\[|F^{C}_{j,ch}(q)| = \frac{1}{Z} \sqrt{\frac{4\pi}{(2J+1)}} \left| j_{J}(q r) \rho_{j,ch}(r) r^2 \, dr \right| \]

For \(C0 \) component in the above equation can be written as

\[|F^{C}_{j=0,ch}(q)| = \frac{1}{Z} \sqrt{\frac{4\pi}{(2J+1)}} \left| j_{0}(q r) \rho_{j=0,ch}(r) r^2 \, dr \right| \]

The transition density distribution is calculated from the contribution of core-polarization (CP) and model-space (MS) [27]:

\[\rho_{ch,f}(r) = \rho^{CP}_{ch,f}(r) + \rho^{MS}_{ch,f}(r) \]

In the present work, \(\rho^{CP}_{ch,f}(r) \) is calculated using Tassie [27] and Bohr-Mottelson [28] models, respectively.

\[\rho_{ch,f}(r) = N r^{J-1} \frac{d}{dr} \rho_{ch}(r) \]

and

\[\rho_{ch,f}(r) = N r^{J} \frac{d}{dr} \rho_{ch}(r) \]

where, \(N \) in the above two equations are found so as to reproduce the experimental multipole moments and \(\rho_{ch}(r) \) is calculated from Eq. (7).
The radial wave functions of WS potential are used to calculate the density distributions, rms radii and elastic electron scattering charge form factors for 8B, 17F, 17Ne, 23Al and 27P nuclei. The parameters of WS potential (U_0, r_0, a_0, $r_{s.o.}$ and $a_{s.o.}$) displayed in Table-1 are chosen so as to reproduce the experimental single-nucleon binding energies (for the last proton and neutron on Fermi surface) and available experimental rms radii for nuclei under study. The depth of spin-orbit ($U_{s.o.}$) is fixed to be 9.0 MeV.

In Table-2, the calculated and available experimental rms radii for nuclei under study are displayed. It is clear that the experimental data are well generated for the used WS parameters. In Tables-3-7, the single binding energies of protons and neutrons predicted by the fixed parameters of WS potential are presented for 8B, 17F, 17Ne, 23Al and 27P nuclei. It is obvious that the last single nucleon binding energies for both protons and neutrons are well reproduced.

In Figures-(1,2) the calculated matter density distributions for 8B (a), 17F (b), 17Ne (c), 23Al (d) and 27P (e) are represented by solid and dashed curves for WS and HO, respectively are depicted and compared with experimental data represented by the shaded area. From calculations, it is clear that results of WS are in very good agreement with experimental data for all r especially the tail region on contrary to the results of HO which completely failed to reproduce the tail region due to the Gaussian fall-off behavior of radial wave function at asymptotic region. Knowing that the 8B, 23Al and 27P are 1p- halo, 17F is 1p-skin and 17Ne is 2p-halo [2, 4, 7]. The proton and neutron density distributions for nuclei under study are drawn in Figure-2 for 8B (a), 17F (b), 17Ne (c), 23Al (d) and 27P (e). The long tail characteristic is well generated in the proton distribution denoting the existence of halo in 8B, 17Ne, 23Al and 27P nuclei (due to the low binding energies of the last protons) and skin in 17F.

In Figure-3, the C0 component of the elastic Coulomb electron scattering form factors for exotic 8B (a), 17F (b), 17Ne (c), 23Al (d) and 27P (e) nuclei represented by solid curves and compared with the C0 components of the corresponding stable 10B (a), 19F (b), 20Ne (c), 27Al (d) and 31P (e) nuclei, respectively. For stable nuclei mentioned previously, the CKII interaction [29] with 1p-model space (for 10B) and SDBA interaction [30] with sd-shell model space (19F, 20Ne, 27Al and 31P nuclei) are used. The shell model calculations with the aforementioned two effective interactions are done using OXBASH code [31]. It is clear that the 8B, 17F, 17Ne and 27P nuclei have forward and fluctuated downward shifts while 23Al nuclei has backward and fluctuated downward shifts.

In Figure-4, the calculated charge form factors of stable 10B (a), 19F (b), 20Ne (c), 27Al (d) and 31P (e) nuclei are depicted and compared with those of experimental data. The radial wave functions of WS potential are used to calculate the charge form factors. The C0+C2 and C0+C2+C4 components are calculated for 10B and 27Al while C0 components are calculated for 19F, 20Ne and 31P. The higher Cj components for 10B and 27Al are calculated from the contribution of core-polarization, using Tassie (T) [27] (solid curve) and Bohr-Mottelson (BM) [28] (dashed curve) models, and the model space, using Eq. (1). The CKII [29] and SDBA [30] interactions are used for 10B and 19F, 20Ne, 27Al and 31P, respectively. From the overall figures, there are in general good agreements with experimental data.

Table 1 - Woods-Saxon potential Parameters for nuclei under study

$^A_Z X_N$	U_0 (MeV)	r_0 (fm)	a_0 (fm)	$U_{s.o.}$ (MeV)	$r_{s.o.}$ (fm)	$a_{s.o.}$ (fm)
$^8_5 B_3$	Neutrons 58.07	1.35	0.5	9.0	1.35	0.5
Protons 48.1	1.405	0.42	9.0	1.405	0.42	
$^{17}_8 F_8$	Neutrons 59.750	1.23	0.650	9.0	1.23	0.650
Protons 55.17	1.19	0.82	9.0	1.40	0.76	
$^{17}_10 N e_7$	Neutrons 57.690	1.22	0.580	9.0	1.22	0.580
Protons 53.021	1.331	0.405	9.0	1.33	0.405	
$^{23}_15 A l_{10}$	Neutrons 60.941	1.26	0.350	9.0	1.26	0.350
Protons 44.574	1.350	0.30	9.0	1.350	0.30	
$^{27}_15 P_{12}$	Neutrons 60.0	1.280	0.581	9.0	1.280	0.581
Protons 47.423	1.250	0.650	9.0	1.250	0.650	
Table 2-The calculated rms radii for nuclei under study

$^{A}X_{N}$	$\langle r_{p}^{2} \rangle^{1/2}$ fm	Exp. $\langle r_{p}^{2} \rangle^{1/2}$ fm	$\langle r_{n}^{2} \rangle^{1/2}$ fm	Exp. $\langle r_{n}^{2} \rangle^{1/2}$ fm	$\langle r_{ch}^{2} \rangle^{1/2}$ fm	Exp. $\langle r_{ch}^{2} \rangle^{1/2}$ fm	$\langle r_{m}^{2} \rangle^{1/2}$ fm	Exp. $\langle r_{m}^{2} \rangle^{1/2}$ fm
9B_3	2.806	2.76(8) [32]	2.135	2.16(8)	2.825	2.82(6) [33]	2.575	2.55(8) [32]
$^{17}F_{8}$	2.907	2.90±0.15 [34]	2.482	2.478±0.18 [34]	2.995	-	2.715	2.71±0.18 [34]
$^{13}Ne_{7}$	3.008	-	2.443	-	3.063	3.0413 [35]	2.789	2.75(7) [36]
$^{23}Al_{10}$	3.136	3.1±0.25 [34]	2.605	2.634±0.23 [34]	3.211	-	2.917	2.905±0.25 [34]
$^{27}P_{12}$	3.308	3.22±0.163 [34]	2.836	2.754±0.14 [34]	3.386	-	3.107	3.02±0.155 [34]

Table 3-Single-nucleon binding energies for 8B

state	Single-neutron binding energy (MeV)	Single-proton binding energy (MeV)
$1s_{1/2}$	-30.119	-22.048
$1p_{3/2}$	-12.822	-7.078
$1p_{1/2}$	-5.363 [37]	-0.147 [37]

Table 4-Single-nucleon binding energies for ^{17}F

state	Single-neutron binding energy (MeV)	Single-proton binding energy (MeV)
$1s_{1/2}$	-36.813	-25.27
$1p_{3/2}$	-22.266	-12.422
$1p_{1/2}$	-16.8 [37]	-7.481
$1d_{5/2}$	-	-0.60 [37]

Table 5-Single-nucleon binding energies for ^{17}Ne

state	Single-neutron binding energy (MeV)	Single-proton binding energy (MeV)
$1s_{1/2}$	-35.786	-31.582
$1p_{3/2}$	-21.252	-19.044
$1p_{1/2}$	-15.557	-14.224
$1d_{5/2}$	-6.837	-5.862
$2s_{1/2}$	-3.822 [37]	-0.467 [37]

Table 6-Single-nucleon binding energies for ^{23}Al

state	Single-neutron binding energy (MeV)	Single-proton binding energy (MeV)
$1s_{1/2}$	-46.05	-26.860
$1p_{3/2}$	-33.37	-17.134
$1p_{1/2}$	-29.612	-13.692
$1d_{5/2}$	-19.525	-6.496
$2s_{1/2}$	-12.038	-0.141 [37]
$1d_{3/2}$	-11.01 [37]	-

1290
Table 7-Single-nucleon binding energies for ^{27}P

state	Single-neutron binding energy (MeV)	Single-proton binding energy (MeV)
$1s_{1/2}$	-44.336	-24.711
$1p_{3/2}$	-32.408	-14.412
$1p_{1/2}$	-28.894	-10.453
$1d_{5/2}$	-19.764 [37]	-3.901
$2s_{1/2}$	-	-0.870 [37]

Figure 1-Calculated matter density distributions for ^6B (a), ^{17}F (b), ^{17}Ne (c), ^{23}Al (d), and ^{27}P (e). The shaded areas represent experimental data and taken from ^6B [38], ^{17}F [34], ^{17}Ne [41], ^{23}Al [34], and ^{27}P [34].
Figure 2-Proton and neutron density distributions for 8B (a), 17F (b), 17Ne (c), 23Al (d) and 27P (e).
Figure 3- The calculated charge form factors for 8B (a), 17F (b), 17Ne (c), 23Al (d) and 27P (e).
Figure 4: Calculated charge form factors for stable 10B, 19F, 20Ne, 27Al, and 31P nuclei. The experimental data are presented by empty circles [39], [40], triangles [41] 10B, 19F, 20Ne [43], 27Al [44], and 31P [45].

Conclusions

The nuclear density distribution and elastic electron scattering form factors have been calculated using the radial wave functions of WS potential. The parameters of such potential are selected so as to reproduce firstly the binding energy of the single nucleon on the Fermi surface and secondly the available experimental rms radii for proton-rich nuclei under study. For the calculated matter densities, the results are in very good agreement with those of experimental data. It is found a noticeable long tail in 8B, 17Ne, 23Al, and 27P indicating the presence of halo and this is attributed to the low binding energies of the last proton(s), besides the low orbital quantum numbers where the last proton(s) are found to be in $1p_{1/2}$ for 8B, $2s_{1/2}$ for 17Ne, 23Al and 27P while in 25F in spite of very low binding energy of the last proton, it is found a skin behavior due to the existence of such proton in $1d_{5/2}$ (the centrifugal term in effective potential is high pushing the last proton to the core and diminishing the tail). For the calculated charge form factors, the C0 component for 19F, 20Ne, and 31P, The C0+C2 component for 10B
and C0+C2+C4 component for 27Al are calculated and compared with available experimental data. The results for exotic nuclei are left for the future projects on electron-radioactive ion beams which proposed to build to study the access of protons or neutrons on charge form factors.

References

1. Batty, C. J., Friedman, E., Gils, H. J. and Rebel, H. 1989. Experimental methods for studying nuclear density distributions. *Advances in Nuclear Physics*, 19: 1–188.
2. Tanihata, I., Savajols, H. and Kanungo, R. 2013. Recent experimental progress in nuclear halo structure studies. *Progress in Particle and Nuclear Physics*, 68: 215–313.
3. Bohr A. and Mottelson B.R. 1969. "Nuclear structure / Vol. 1, Single-particle motion", New York [etc.]: Benjamin.
4. Tanihata, I. 1996. Neutron halo nuclei. *J. Phys G: Nucl. Part Phys.* 22: 157-198.
5. Otten, W. E. 1987. *Nuclear Radii and Moments of Unstable Isotope, Treatise of Heavy-Ion Physics*. Vol. 8. Plenum Press, New York.
6. Tanihata, I., Hamagaki, H., Hashimoto, O., Nagamiya, S., Shida, Y., Yoshikawa, N., Yamakawa, O., Sugimoto, K., Kobayashi, T., Greiner, D.E., Takahashi, N. and Nojiri, Y. 1985. Measurements of interaction cross sections and radii of He isotopes. *Phys. Lett. B*, 160: 380-384.
7. Ozawa A., Suzuki T., Tanihata I. 2001. Nuclear size and related topics. Nuclear Physics A 693, pp: 32–62. Blank B.,Gaimard J.-J., Geissel H., Schmit K.-H., Stelzer H., Summerer K., Bazin D., Del
8. Moral R., Dufour J. P., Fleury A., Hubert F., Clerc H.-G., Steiner M. 1992. Charge-changing cross sections of the neutron –rich isotopes 8,9,11Li. *Z. Phys. A*, 343: 375-379.
9. Navratil, P. and Barrett, B. R. 1996. No-core shell-model calculations with starting- energy independent multivalued effective interactions. *Physical Review C*, 54(6): 2986-2995.
10. Caurier, E. and Navratil, P. 2006. Proton radii of 4, 6, 8He isotopes from high-precision nucleon-nucleon interactions. *Physical Review C*, 73 (021302(R)): 1-5.
11. Karataglidis, S., Amos, K., Fraser, P., Canton, L. and Svenne, J. P. 2008. Constraints on the spectra of 17, 19C. *Nuclear Physics A*, 813: pp. 235-251.
12. Navratil, P. and Barrett, B. R. 1998. Large - basis shell-model calculations for p-shell. *Physical Review C* (Nuclear Physics), 57(6): 3119-3128
13. Adel K. Hamoudi, Raad A. Radhi, Arkan R. Ridha. 2012. Theoretical study of matter density distribution and elastic electron scattering form factors for the neutron-rich 22C exotic nucleus. *Iraqi Journal of Physics*, 10: 25-34.
14. Radhi R. A., Hamoudi A. K. and Ridha A. R.2013. Elastic Electron Scattering From Unstable Neutron-Rich 19C Exotic Nucleus. *Iraqi Journal of Physics*,54: 324-332
15. Hamoudi A. K., Radhi R. A., Ridha A. R. 2015. Elastic electron scattering from 17Ne and 27P exotic nuclei, *Iraqi Journal of Physics*, 13(28): 68-81
16. Arkan R. Ridha, Mustafa K. Suhayeb.2017. Theoretical Study of Nuclear Density Distributions and Elastic Electron Scattering form Factors for Some Halo Nuclei, *Iraqi Journal of Physics*, 58: 2098-2106.
17. Saja H. Mohammed , Arkan R. Ridha. 2018. Theoretical Study of The Electromagnetic Structure of Boron Isotopes Using Local Scale Transformation Technique, *Iraqi Journal of Science*, 59: 1866-1877.
18. Saja H. Mohammed .2018 .Study of nuclear structure for carbon isotopes using local scale transformation technique in shell model, *Iraqi Journal of Physics*, 16: 103-116.
19. Arkan R. Ridha and Zaid M. Abbas. 2018. Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei, *Iraqi Journal of Physics*, 59: 1046-1056.
20. Arkan R. Ridha. 2016 .Study of charge density distributions, elastic charge form factors and root-mean square radii for 4He, 13C and 16O nuclei using Woods- Saxon and harmonic- oscillator potentials, *Iraqi Journal of Physics*, 14: 42-50.
21. Arkan R. Ridha, Zaid M. Abbas. 2018. Theoretical Study of Density Distributions and Size Radii of 8B and 17Ne. *Iraqi Journal of Physics*, 59: 1046-1056.
22. Arkan R. Ridha.2017. Study of Charge Density Distributions and Elastic Charge Form Factors for 40Ca and 48Ca. Journal of Al-Nahrain University, 20(3): 83-90.
23. Ring, P. and Schuck, P. 1981. The Nuclear Many-Body Problem. Springer-Verlag.
24. Elton, R. B. 1961. "Nuclear Sizes", Oxford University Press.
25. Chandra, H. And Sauer, G. 1976. Relativistic corrections to the elastic electron scattering from 208Pb. Phys. Rev. C, 13: 245-252.
26. Deforest T., J. and Walecka J. D. 1966. Electron scattering and nuclear structure. Advances in Physics, 15(7): 1-109.
27. Brown B. A., Wildenthal B. H., Williamson C. F., Rad F. N., Kowiski H. and O'Brien J. T. 1985. Phys. Rev. C 32: 1127-1145.
28. Bohr, A. and Mottelson, B.R. 1998. “Nuclear Structure Vol II”, World Scientific.
29. Cohen S., Kurath D.1965. Nucl. Phys. 73, pp: 1- and Cohen S., Kurath D.1967. Nucl.Phys. 101, pp: 1
30. Brown B.A. 2006. Phys. Rev. C 74, 034315.
31. Brown B.A., Etchegoyen A., Rae W.D.M. 1986. Computer code OXBASH, MSU Cyclotron Laboratory Report No.524.
32. Chandel, S. S., Dhiman, S. K. and Shyam, R. 2003. “Structure of 8B and astrophysical S17 factor in Skyrme Hartree-Fock theory”. Phys. Rev. C68: 054320.
33. Blank, B., Marchand, C., Pravikoff, M. S., Baumann, T., Bou, F., Geissel, H., Hellström, M., Iwasa, N., Schwab, W., Sammerer, K. and Gai, M. 1997. Total interaction and proton-removal cross-section measurements for the proton-rich isotopes 7Be, 8B, and 9C. Nucl. Phys. A, 624: 242-256.
34. Zhang H.Y., Shen W.Q., Ren Z.Z., Ma Y.G., Jiang W.Z., Zhu Z.Y., Cai X.Z., Fang D.Q., Zhong C., Yu L.P., Wei Y.B., W.L. Zhan b, Z.Y. Guob, G.Q. Xiao b, J.S. Wangb, J.C. Wangb, Q.J. Wang, J.X. Li, M. Wang, Z.Q. Chen. 2002. Measurement of reaction cross section for proton-rich nuclei (A<30) at intermediate energies. Nuclear Physics, A707: 303–324.
35. Angeli, I. and Marinova, K. P. 2013. Table of experimental nuclear ground state charge radii: An update. Atomic Data and Nuclear Data Tables, 99: 69-95.
36. Riisager, K. 2013. Halos and related structures. Phys. Scr. T 152: 014001.
37. Audi, G., Kondev, F.G., Meng Wang, Huang, W.J., and Naimi, S. 2017. The NUBASE2016 evaluation of nuclear properties. Chinese, Physics C, 41 (030001): 1-138.
38. Takeuchi, M., Fukuda, M., Mihara, M., Chinda, T., Matsunaga, T., Matsubara, H., Nakashima, Y., Matsuta, K., Minamisono, T., Koyama, R., Shinosaki, Y., Takahashi, M., Takaizawa, A., Ohtsubo, T., Suzuki, T., Izumikawa, T., Momota, S., Tanaka, K., Suda, T., Sasaki, M., Sato, S.and Kitagawa, A. 2005. Reaction cross-sections for stable nuclei and nucleon density distribution of proton drip-line nucleus 8B. Eur. Phys. J. A, 25: 217-219.
39. Tanaka, K., Fukuda, M., Mihara, M., Takeuchi, M., Chinda, T., Sumikama, T., Kudo, S., Matsuta, K., Minamisono, T., Suzuki, T., Ohtsubo, T., Izumikawa, T., Momota, S., Yamaguchi, T., Onishi, T., Ozawa, A., Tanihata, I. and Tao, Z. 2005. Nucleon density distribution of proton-drip nucleus 17Ne". Eur. Phys. J. A, 25:221-222.
40. Cichocki, A., Dubach, J., Hicks, R. S., Peterson, G. A., De Jager, C. W., De Vries, H., Kalantar-Nayestanaki, N. and Sato, T. 1995. Electron scattering from 10B. Physical Review C, 51: 2406-2426.
41. Stovall, T., Goldemberg, J. and Isabelle, D. B. 1966. Coulomb form factors of 10B and 11B. Nuclear Physics A, 86: 225-240.
42. B. A. Brown, B.A. shell –model analysis of high-resolution data for elastic and inelastic electron scattering on 19F. Phys. Rev. C 32: 1127-1145.
43. E. A. Knight, R. P. Singhal, R. G. Arthur, and M. W. S. Macauley, 1981. Elastic scattering of electrons from 20,22Ne. Journal of Physics G (Nuclear Physics), 7: 1115-1121.
44. Dally, E.B., Croisiaux, M.G. and Schweitz, B. phys. Rev. C2 1970. 2057.
45. Knight, E.A., Singhal, R.P., Arthur, R.G. and Macauley, M.W.S. 1981. Phys. G: Nucl. Phys. 7 (1981) 1115.