Body size, modifying factors, and postmenopausal breast cancer risk in a multiethnic population: the San Francisco Bay Area Breast Cancer Study

Esther M John1,2,*, Amanda I Phipps3 and Meera Sangaramoorthy1

Abstract

Data on body size and postmenopausal breast cancer in Hispanic and African American women are inconsistent, possibly due to the influence of modifying factors. We examined associations between adiposity and risk of breast cancer defined by hormone receptor status in a population-based case-control study conducted from 1995–2004 in the San Francisco Bay Area. Multivariate adjusted odds ratios and 95% confidence intervals were calculated using unconditional logistic regression. Associations with body size were limited to women not currently using menopausal hormone therapy (801 cases, 1336 controls). High young-adult body mass index (BMI) was inversely associated with postmenopausal breast cancer risk, regardless of hormone receptor status, whereas high current BMI and high adult weight gain were associated with two-fold increased risk of estrogen receptor and progesterone receptor positive breast cancer, but only in women with a low young-adult BMI (\leq22.4 kg/m2) or those with \geq15 years since menopause. Odds ratios were stronger among non-Hispanic Whites than Hispanics and African Americans. Waist circumference and waist-to-height ratio increased breast cancer risk in Hispanics and African Americans only, independent of BMI. These findings emphasize the importance of considering tumor hormone receptor status and other modifying factors in studies of racially/ethnically diverse populations.

Keywords: African Americans, Body size, Breast cancer, Estrogen receptor, Hispanics, Progesterone receptor

Introduction

Obesity has long been recognized as a risk factor for postmenopausal breast cancer (BC) in studies of primarily non-Hispanic White (NHW) women (World Cancer Research Fund / American Institute for Cancer Research 2007). Only three studies in Hispanics (Wenten et al. 2002; Slattery et al. 2007; White et al. 2012) and eight studies in African Americans (AA) (White et al. 2012; Austin et al. 1979; Schatzkin et al. 1987; Adams-Campbell et al. 1996; Hall et al. 2000; Zhu et al. 2005; Palmer et al. 2007; Berstad et al. 2010) examined the relation between obesity and postmenopausal BC risk, and some of their findings contradict those reported for NHW women, suggesting differences in effects by racial/ethnic groups (Slattery et al. 2007; Sexton et al. 2011). In NHWs, BC risk is increased by 3-5% both per 2 kg/m2 increase in body mass index (BMI) and per 5 kg of weight gain (World Cancer Research Fund / American Institute for Cancer Research 2007). Young-adult obesity, on the other hand, has been associated with reduced postmenopausal BC risk, both in cohort (Barnes-Josiah et al. 1995; Huang et al. 1997; Morimoto et al. 2002; Ahn et al. 2007) and case–control (Berstad et al. 2010; Chu et al. 1991; Brinton & Swanson 1992; Magnusson et al. 1998) studies. A number of factors appear to modify the relation with body size. Increased risks associated with BMI and weight gain may be limited to women with a low young-adult BMI (Chu et al. 1991; Canchola et al. 2012). Stronger associations with body size have been found in women with estrogen receptor and progesterone receptor positive (ER+PR+) BC (Potter et al. 1995; Huang et al. 2000; Colditz et al. 2004; Suzuki et al. 2009), those not using menopausal hormone therapy (HT) (Morimoto et al. 2002; Friedenreich 2001; Feigelson et al. 2004), or with longer time since...
menopause (Chu et al. 1991; Magnusson et al. 1998; Macinnis et al. 2004). Data on abdominal obesity and BC risk in postmenopausal women are also inconsistent (World Cancer Research Fund / American Institute for Cancer Research 2007) and uncertainties remain whether associations are independent of overall obesity or differ by race/ethnicity.

We report on the relation between overall and abdominal adiposity and risk of postmenopausal BC defined by hormone receptor status in a multiethnic population, and the role of modifying factors.

Materials and methods

Study population

The San Francisco Bay Area Breast Cancer Study, a population-based case-control study (John et al. 2003; John et al. 2005), identified 17,581 women aged 35–79 years with newly diagnosed invasive BC through the Greater Bay Area Cancer Registry. Following telephone screening on study eligibility (83% participation), 2,571 cases were selected (all Hispanics diagnosed from 1995–1999 in the San Francisco Bay Area Cancer Registry). Following telephone screening on study eligibility (83% participation), 2,571 cases were selected (all Hispanics diagnosed from 1995–2002, all AAs diagnosed from 1995–1999, and a 10% random sample of NHWs diagnosed from 1995–1999). An in-person interview was completed by 2,258 (88%) cases, including 1,119 (89%) Hispanics, 543 (87%) AAs, and 596 (86%) NHWs.

Population controls, identified through random-digit dialing, were frequency-matched on race/ethnicity and 5-year age group (John et al. 2003). Of 3,170 eligible controls, 2,706 (85%) completed the in-person interview, including 1,462 (88%) Hispanics, 598 (82%) AAs, and 646 (83%) NHWs.

This analysis was restricted to postmenopausal women (1,389 cases, 1,644 controls). Women were considered postmenopausal if their periods had stopped more than one year prior to diagnosis (cases) or selection into the study (controls), if they reported a bilateral oophorectomy, or if they were aged ≥55 years at the time of diagnosis/selection and had either started hormone therapy prior to the cessation of menses or had had a simple hysterectomy (without oophorectomy).

Data collection

Information on adult height, weight in the reference year (defined as the calendar year before diagnosis for cases or before selection into the study for controls), young-adult weight, and other BC risk factors was collected using a structured questionnaire, administered in English or Spanish. Young-adult weight was based on reported weight at age 25–30 years for cases diagnosed before May 1998 and their matched controls, and on reported weight at age 20–29 years for cases diagnosed in May 1998 or later and their matched controls. Interviewers also took measurements of weight, height, waist and hip circumference (described in (John et al. 2011)). Lifetime physical activity was assessed, as described elsewhere (John et al. 2003). Usual dietary intake and alcohol consumption during the reference year was assessed by a modified version of the Block food frequency questionnaire (Block et al. 1986). Cancer registry information on ER and PR status was available for 85% of cases. The study was approved by the Institutional Review Board of the Cancer Prevention Institute of California and participants provided written informed consent.

Body size variables

Current BMI was calculated as weight (kg) divided by height squared (m²), based on measured height at interview (or self-reported height for 10% of cases and 9% of controls who declined height measurements) and self-reported weight in the reference year (or measured weight at interview for 1% of cases and 3% of controls without self-report). BMI was classified as normal weight (<25.0 kg/m²), overweight (25.0-29.9 kg/m²) and obese (≥30.0 kg/m²) (WHO 2000). Underweight (BMI <18.5 kg/m²) women (9 cases, 16 controls) were grouped with normal weight women. Young-adult BMI was based on measured height at interview and self-reported weight in a woman’s twenties. Adult weight gain was calculated as the difference between self-reported young-adult weight and weight in the reference year. Waist-to-hip ratio (WHR) was calculated as a measure of body fat distribution reflecting both adipose tissue and muscle mass; waist-to-height ratio (WHtR) was calculated as a measure of visceral adiposity independent of height, which may more directly reflect abdominal adiposity (Molarius & Seidell 1998). WHR, WHtR, and waist and hip circumferences were categorized according to the tertile distribution among controls.

Statistical analysis

Unconditional logistic regression was used to calculate odds ratios (OR) and 95% confidence intervals (CI) comparing cases to controls, both overall and separately for each racial/ethnic group. Polytomous logistic regression was used to compare ER+PR+ and ER-PR- case groups with a common control group. For all BCs combined and ER+PR+ BCs, multivariate analyses were adjusted for age (continuous) and factors significantly associated with BC risk in our study: birth place, education, first-degree family history of BC, personal history of benign breast disease, age at menarche, number of full-term pregnancies, age at first full-term pregnancy, lifetime breast-feeding, average lifetime physical activity, alcohol consumption, and caloric intake, categorized as shown in the tables. For ER-PR- BCs, analyses were adjusted for age, birth place, age at menarche, and lifetime breast-feeding. Analyses of all BCs combined were also adjusted for race/ethnicity. Analyses
of current BMI, young-adult BMI and weight gain were mutually adjusted for each other. Linear trends were assessed across ordinal values of categorical variables. Significant differences in ORs between groups were tested using the Wald statistic P value. Two-sided P values are reported for tests of trend and interaction, with P values <0.05 considered statistically significant.

We assessed associations with current BMI and weight change within strata defined by median young-adult BMI (≤ 22.4 kg/m2, >22.4 kg/m2), median time since menopause (<15, ≥ 15 years), and, in analyses of abdominal adiposity, by current BMI (<25.0 kg/m2, ≥ 25.0 kg/m2). Primary analyses were restricted to women not currently using menopausal HT, as previous studies have found no associations with body size among current HT users (Huang et al. 1997; Morimoto et al. 2002). Current HT use was defined as starting HT prior to the year of diagnosis/selection and reported use during the year of diagnosis/selection. All other women were classified as non-current HT users. Time since menopause was calculated as the difference between age at menopause and age at diagnosis/selection. Age at menopause was based on self-report for women with surgical menopause. The final analysis was based on 2,884 postmenopausal women (1,316 cases, 1,568 controls) after excluding 34 cases and 50 controls with missing information on confounding variables and 39 cases and 26 controls with unreliable caloric intake (<600 kcal/day or $>5,000$ kcal/day). Statistical analyses were conducted using SAS version 9.3 software (SAS Institute, Inc., Cary, North Carolina).

Results

Cases were more likely than controls to be U.S.-born, have a first-degree family history of BC, a personal history of benign breast disease, higher education, earlier menarche, fewer full-term pregnancies, a shorter duration of breastfeeding, lower lifetime physical activity, and higher alcohol consumption (Table 1).

Body size characteristics differed by race/ethnicity (Table 2). Among controls, the proportion of currently obese women (BMI ≥ 30.0 kg/m2) was higher in AAs and Hispanics than in NHWs. High young-adult BMI was twice as common in Hispanics as in NHWs, whereas the proportion of women with high weight gain was similar in the two groups. The prevalence of high weight gain, large waist and hip circumferences, and high WHR was lowest in NHWs, intermediate in Hispanics, and more than twice as high in AAs than in NHWs.

For women not currently using HT, associations with current BMI and adult weight gain were limited to those with ER+PR+ tumors, although after adjustment for weight gain, no association remained with current BMI (Table 3). The positive association with weight gain was not altered by adjustment for current BMI (Table 3) or young-adult BMI (data not shown), and was largely driven by the increased risk found for NHW women. Young-adult BMI was associated with reduced risk of postmenopausal BC, with similar results for BC overall (>23.7 vs. ≤ 21.2 kg/m2: OR = 0.68, 95% CI:0.54-0.86, $P_{\text{trend}} = 0.01$) and ER+PR+ BC (>23.7 vs. ≤ 21.2 kg/m2: OR = 0.73, 95% CI:0.54-0.98, $P_{\text{trend}} = 0.04$). Inverse associations, however, were found only among Hispanic and NHW women.

Young-adult BMI was an important modifying factor (Table 4). For ER+PR+ BC, associations with high BMI (OR = 1.97, $P_{\text{trend}} = 0.01$) and high weight gain (OR = 1.71, $P_{\text{trend}} = 0.03$) were limited to women with a young-adult BMI ≤ 22.4 kg/m2. No increased risks were found among women with both high young-adult BMI and high current BMI. Associations were also influenced by time since menopause. High weight gain was associated with two-fold increased risks of BC overall (OR = 2.71, 95% CI:1.29-5.69, $P_{\text{trend}} = 0.01$) and ER+PR+ BC (OR = 2.47, 95% CI:1.03-5.94, $P_{\text{trend}} = 0.03$) only in women who had experienced menopause ≥ 15 years ago. Similarly, the inverse association of young-adult BMI with BC risk overall was seen only in women with ≥ 15 years since menopause (>23.7 vs. ≤ 21.2 kg/m2: OR = 0.59, 95% CI:0.41-0.85, $P_{\text{trend}} < 0.01$).

Waist circumference was associated with ER+PR+ BC in Hispanics ($P_{\text{trend}} = 0.01$) and AAs ($P_{\text{trend}} = 0.05$) only, with two- to three-fold increased ORs for large waist size that were independent of current BMI (Table 5). Associations were slightly stronger for ER+PR+ disease than BC overall. Large hip circumference was associated with elevated ORs in Hispanics and NHWs, with a significant trend in Hispanics ($P_{\text{trend}} = 0.01$). There was no association with WHR (data not shown). High WHtR was associated with elevated ORs in Hispanics and AAs, with a significant trend in Hispanics ($P_{\text{trend}} = 0.01$). For waist and hip circumferences and WHtR, associations did not vary by time since menopause (data not shown). Considering the joint effects of abdominal adiposity and overall adiposity (Table 6), we found that large waist circumference was associated with increased BC risk only in women with a BMI <25 kg/m2. A similar pattern was seen for WHtR. For ER+PR+ disease, ORs were elevated, regardless of BMI, but significant only in women with a BMI ≥ 25 kg/m2.

For ER-PR- BC, there were no associations with current BMI and weight gain, whereas a strong inverse association was found with young-adult BMI (>23.7 vs. ≤ 21.2 kg/m2: OR = 0.61, 95% CI:0.38-0.97, $P_{\text{trend}} = 0.04$) (Table 7). Modest positive associations with waist and hip circumferences were strengthened after adjustment for current BMI ($P_{\text{trend}} = 0.07$ and 0.01, respectively). Sample sizes of ER-PR- cases were too small for
Table 1 Characteristics of postmenopausal cases and controls

Characteristics	Cases (n = 1,316)	Controls (n = 1,568)	P value
Age (years)			
35–44	20 (2)	25 (2)	
45–54	199 (15)	260 (17)	
55–64	531 (40)	625 (40)	
65–74	407 (31)	509 (33)	
≥75	159 (12)	149 (10)	
Race/ethnicity			
Hispanic	614 (47)	804 (51)	
Non-Hispanic White	389 (30)	399 (26)	
African American	313 (24)	365 (23)	
Joint ER/PR status			
ER+PR+	714 (54)		
ER+PR-	168 (13)		
ER-PR+	21 (2)		
ER-PR-	204 (16)		
Missing	209 (16)		
Menopausal hormone therapy use			<0.01
Never	517 (39)	644 (41)	
Former	284 (22)	692 (44)	
Current	498 (38)	214 (14)	
Missing	17 (1)	18 (1)	
Place of birth			<0.01
U.S.-born^b	1,014 (77)	1,036 (66)	
Foreign-born	302 (23)	532 (34)	
Education (years)			<0.01
Some high school or less	398 (30)	600 (38)	
High school or vocational/technical school graduate	373 (28)	426 (27)	
Some college	297 (23)	297 (19)	
College graduate	248 (19)	245 (16)	
Family history of breast cancer in first-degree relatives			<0.01
No	1,089 (83)	1,371 (87)	
Yes	227 (17)	197 (13)	
Personal history of biopsy-confirmed benign breast disease			0.01
No	1,016 (77)	1,274 (81)	
Yes	300 (23)	294 (19)	
Age at menarche			<0.01
≤11	304 (23)	327 (21)	
12	349 (27)	356 (23)	
13	319 (24)	387 (25)	
≥14	344 (26)	498 (32)	
Parity			<0.01
Nulliparous	169 (13)	145 (9)	
Parous	1,147 (87)	1,423 (91)	
further stratification by race/ethnicity (9 NHWs, 48 AAs, 79 Hispanics).

Among women currently using HT (289 cases, 498 controls), there was no evidence of significant associations between any of the body size measures examined and BC risk overall or ER+PR+ disease (data not shown).

Discussion

In postmenopausal women not currently using HT, weight gain was positively associated with risk of ER+PR+ BC and was a stronger predictor of risk than current BMI. The highest elevations in risks were found in subgroups of women with a low young-adult BMI or ≥15 years since menopause. Young-adult obesity was associated with reduced BC risk. High waist circumference and WHtR were associated with increased BC risk, independent of current BMI. Associations with weight gain and young-adult BMI were stronger for NHWs than Hispanics and AAs, whereas associations with waist and WHtR were present only in Hispanic and AA women.

Table 1 Characteristics of postmenopausal cases and controls (Continued)

Number of full-term pregnancies, parous women	<0.01
1	162 14 177 12
2	309 27 303 21
3	263 23 349 25
≥4	413 36 594 42

Age at first full-term pregnancy (years), parous women	<0.01
≤19	302 26 415 29
20–24	462 40 564 40
25–29	235 21 298 21
≥30	148 13 146 10

Lifetime breast-feeding (months), parous women	<0.01
0	541 47 547 38
≤6	250 22 294 21
7–12	97 8 148 10
13–24	126 11 184 13
≥25	133 12 250 18

Lifetime physical activity (hours/week)	0.04
≤6.9	376 29 391 25
7.0–14.1	342 26 390 25
14.2–25.4	291 22 403 26
≥25.5	307 23 384 25

Alcohol consumption (g/day)	<0.01
0	763 58 975 62
0.1–4.9	262 20 312 20
5.0–9.9	68 5 91 6
10.0–19.9	115 9 107 7
≥20	108 8 83 5

Total caloric intake (kcal/day)	0.05
≤1362	287 22 394 25
1363–1798	343 26 385 25
1799–2435	379 29 398 25
≥2436	307 23 391 25

Abbreviations: ER-, estrogen receptor–negative; ER+, estrogen receptor–positive; PR-, progesterone receptor–negative; PR+, progesterone receptor–positive.

* Percentages may not add up to 100% due to rounding.

U.S.-born includes 43 cases and 34 controls born in westernized countries such as Canada, Europe, Australia, or New Zealand.

Quartiles among all postmenopausal controls.

In reference year.

Excludes 39 cases and 26 controls whose total caloric intake was <600 kcal/day or >5,000 kcal/day.
	Hispanics (n = 804)	African Americans (n = 365)	Non-Hispanic Whites (n = 399)	P value^a		
	n	%^b	n	%^b	n	%^b
Current BMI (kg/m²)						
<25.0	147	18	80	22	185	47
25.0-29.9	310	39	124	34	116	29
≥30.0	342	43	159	44	97	24
Young-adult BMI (kg/m²)^{d,e}						
Q1: ≤20.6	125	17	116	32	130	33
Q2: 20.7-22.4	170	23	83	23	118	30
Q3: 22.5-24.7	210	29	84	23	76	19
Q4: >24.7	225	31	77	21	69	18
Weight gain (kg)^f						
Stable^g	80	11	31	9	65	18
Gain, 3.0-9.9	176	25	66	19	113	31
Gain, 10.0-19.9	234	33	91	26	96	26
Gain, 20.0-29.9	142	20	83	24	63	17
Gain, ≥30.0	74	11	76	22	34	9
Waist (cm)^d						
Q1: ≤82.3	170	22	41	14	150	43
Q2: 82.4-90.5	211	27	65	22	77	22
Q3: 90.6-99.8	196	25	90	30	67	19
Q4: >99.8	195	25	102	34	57	16
Hip (cm)^d						
Q1: ≤100.5	206	27	48	16	103	29
Q2: 100.6-107.5	186	24	60	20	107	31
Q3: 107.6-116.2	183	24	85	29	87	25
Q4: >116.2	196	25	105	35	54	15
Waist-to-hip ratio (WHR)^d						
Q1: ≤0.79	172	22	52	18	163	46
Q2: 0.80-0.84	224	29	70	24	83	24
Q3: 0.85-0.88	190	25	83	28	53	15
Q4: >0.88	185	24	92	31	52	15
Waist-to-height ratio (WHtR)^d						
Q1: ≤0.52	138	18	56	19	162	46
Q2: 0.53-0.58	195	25	78	26	82	23
Q3: 0.59-0.64	216	28	81	27	58	17
Q4: >0.64	223	29	83	28	49	14

Abbreviation: BMI, body mass index.

^a Chi-square test for the difference between race/ethnicity; * = P < 0.05 between non-Hispanic Whites and Hispanics; † = P < 0.05 between non-Hispanic Whites and African Americans; ‡ = P < 0.05 between Hispanics and African Americans.

^b Percentages may not add up to 100% due to rounding.

^c Based on self-reported adult weight and measured height at interview (if not available, then based on measured weight at interview and/or self-reported adult height).

^d Based on quartiles among all postmenopausal controls.

^e Based on self-reported young-adult weight and measured height at interview (or self-reported adult height when measured height not available).

^f Self-reported adult weight (or measured weight at interview if self-reported weight not available) minus self-reported young-adult weight; excludes 64 controls who lost >3 kg of weight.

^g Stable weight defined as +/− 3 kg.
All breast cancer	All race/ethnicities	Hispanics	African Americans	Non-Hispanic Whites			
Cases (n = 801)	OR 95% CI	Cases (n = 377)	OR 95% CI	Cases (n = 243)	OR 95% CI	Cases (n = 181)	OR 95% CI
OR 95% CI	Cases (n = 377)	OR 95% CI	Cases (n = 315)	OR 95% CI	Cases (n = 312)		
Weight gain (kg)	Stable	Gain, 3.0-9.9	Gain, 10.0-19.9	Gain, 20.0-29.9	Gain, ≥30.0		

Current BMI (kg/m²) ≤24.9

<25.0	208	329	1.0	81	119	1.0	51	70	1.0
25.0-29.9	278	476	0.95 0.74-1.21	133	273	0.78 0.54-1.14	90	106	1.19 0.74-1.94
≥30.0	312	523	0.94 0.74-1.20	161	312	0.77 0.53-1.12	101	137	1.07 0.66-1.73

Current BMI (kg/m²) – adjusted for weight gain

<25.0	1.0
25.0-29.9	0.90 0.67-1.20
≥30.0	0.79 0.56-1.13

Young-adult BMI (kg/m²)

T1: ≤21.2	286	402	1.0	109	161	1.0	93	122	1.0
T2: 21.3-23.7	259	411	0.87 0.69-1.09	122	209	0.85 0.60-1.20	77	90	1.17 0.76-1.79
T3: >23.7	216	445	0.68 0.54-0.86	115	272	0.63 0.45-0.90	67	98	0.93 0.59-1.45

Weight gain (kg)

Stable	180	291	1.0	36	65	1.0	18	26	1.0	
Gain, 3.0-9.9	217	376	1.15 0.82-1.63	82	149	1.05 0.63-1.76	50	55	1.27 0.59-2.73	
Gain, 10.0-19.9	142	247	1.06 0.76-1.48	101	217	0.88 0.54-1.45	68	80	1.18 0.57-2.44	
Gain, 20.0-29.9	111	154	1.03 0.72-1.48	71	125	1.04 0.61-1.78	44	72	0.91 0.43-1.93	
Gain, ≥30.0	1.19 0.81-1.75	38	67	0.91 0.50-1.66	51	64	1.13 0.54-2.39	22	23	2.63 1.12-6.19

Table 3 BMI and weight gain and breast cancer risk in postmenopausal women not currently using hormone therapy by race/ethnicity and estrogen receptor and progesterone receptor status.
Table 3 BMI and weight gain and breast cancer risk in postmenopausal women not currently using hormone therapy by race/ethnicity a and estrogen receptor and progesterone receptor status (Continued)

Weight gain (kg) – adjusted for current BMI (kg/m²)	Cases (n = 415)	Controls (n = 1,336)	OR b 95% CI	Cases (n = 191)	Controls (n = 709)	OR b 95% CI	Cases (n = 108)	Controls (n = 315)	OR b 95% CI	Cases (n = 116)	Controls (n = 312)	OR b 95% CI
Stable 1 j	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Gain, 3.0-9.9	1.17 0.83-1.65	1.07 0.64-1.90	1.17 0.54-2.56	1.07 0.64-1.90	1.17 0.54-2.56	1.38 0.71-2.67						
Gain, 10.0-19.9	1.14 0.79-1.65	1.00 0.58-2.10	1.00 0.45-2.24	1.00 0.58-2.10	1.00 0.45-2.24	1.92 0.89-4.15						
Gain, 20.0-29.9	1.17 0.77-1.78	1.22 0.66-2.25	0.76 0.32-1.85	0.76 0.32-1.85	0.76 0.32-1.85	1.94 0.75-5.03						
Gain, ≥30.0	1.41 0.88-2.26	1.12 0.55-2.27	0.99 0.39-2.49	0.99 0.39-2.49	0.99 0.39-2.49	4.70 1.48-14.97						
P trend = 0.24				P trend = 0.67	P trend = 0.68							
Current BMI (kg/m²) – adjusted for weight gain d,e	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
<25.0	1.06 0.73-1.54	1.01 0.56-1.94	1.77 0.78-4.06	1.77 0.78-4.06	1.77 0.78-4.06	0.74 0.35-1.56						
25.0-29.9	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
≥30.0	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
P trend = 0.09				P trend = 0.22	P trend = 0.40							
Current BMI (kg/m²)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
<25.0	1.06 0.73-1.54	1.01 0.56-1.94	1.77 0.78-4.06	1.77 0.78-4.06	1.77 0.78-4.06	0.74 0.35-1.56						
25.0-29.9	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
≥30.0	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
P trend = 0.09				P trend = 0.22	P trend = 0.40							
Young-adult BMI (kg/m²) f,g	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
T1: ≤21.2	1.06 0.73-1.54	1.01 0.56-1.94	1.77 0.78-4.06	1.77 0.78-4.06	1.77 0.78-4.06	0.74 0.35-1.56						
T2: 21.3-23.7	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
T3: >23.7	1.01 0.64-1.60	1.17 0.58-2.35	1.29 0.48-3.48	1.29 0.48-3.48	1.29 0.48-3.48	0.64 0.23-1.76						
P trend = 0.04				P trend = 0.33	P trend = 0.39							
Weight gain (kg) h,l	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Stable 1 j	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Gain, 3.0-9.9	0.94 0.61-1.46	0.80 0.41-1.58	1.11 0.40-3.14	1.11 0.40-3.14	1.11 0.40-3.14	1.02 0.48-2.18						
Gain, 10.0-19.9	1.07 0.71-1.62	1.00 0.53-1.88	26 80 0.96 0.36-2.57	26 80 0.96 0.36-2.57	26 80 0.96 0.36-2.57	14 79 1.48 0.70-3.15						
Gain, 20.0-29.9	1.12 0.72-1.74	1.02 0.52-2.03	1.19 0.44-3.18	1.19 0.44-3.18	1.19 0.44-3.18	1.29 0.55-3.04						
Gain, ≥30.0	1.53 0.96-2.45	1.43 0.70-2.94	1.27 0.47-3.42	1.27 0.47-3.42	1.27 0.47-3.42	2.56 0.95-6.88						
P trend = 0.04				P trend = 0.16	P trend = 0.58							
Table 3
BMI and weight gain and breast cancer risk in postmenopausal women not currently using hormone therapy by race/ethnicity and estrogen receptor and progesterone receptor status (Continued)

Weight gain (kg) – adjusted for current BMI	1.0	1.0	1.0	1.0				
Stable j	1.0	1.0	1.0	1.0				
Gain, 3.0–9.9	0.93	0.60–1.44	0.81	0.41–1.59	0.92	0.31–2.67	1.09	0.50–2.38
Gain, 10.0–19.9	1.04	0.66–1.65	0.96	0.49–1.89	0.67	0.22–2.04	1.90	0.77–4.73
Gain, 20.0–29.9	1.10	0.65–1.86	0.93	0.43–2.05	0.85	0.26–2.77	1.80	0.58–5.63
Gain, ≥30.0	1.53	0.85–2.73	1.29	0.55–3.01	1.02	0.29–3.58	3.82	0.99–14.71

P_{trend} = 0.13
P_{trend} = 0.48
P_{trend} = 0.90
P_{trend} = 0.06

Abbreviations: BMI, body mass index; CI, confidence interval; ER+, estrogen receptor–positive; OR, odds ratio; PR+, progesterone receptor–positive.

- All P values for interaction by race/ethnicity were >0.05.
- Adjusted for age (years, continuous), race/ethnicity (non-Hispanic White, African American, Hispanic), place of birth (U.S.-born, foreign-born), education (some high school or less, high school or vocational/technical school graduate, some college, college graduate), first-degree family history of breast cancer (no, yes), personal history of biopsy-confirmed benign breast disease (no, yes), age at menarche (≤11, 12, 13, ≥14 years), number of full-term pregnancies (nulliparous, 1, 2, 3, ≥4), age at first full-term pregnancy (nulliparous, ≤19, 20–24, 25–29, ≥30 years), lifetime breast-feeding (nulliparous, 0, ≤6, 7–12, 13–24, ≥25 months), lifetime physical activity (quartiles, hours/week), alcohol consumption in reference year (0, 0.1–4.9, 5–9.9, 10–19.9, ≥20 g/day), and total caloric intake (quartiles, kcal/day).
- Not adjusted for race/ethnicity.
- Adjusted for above variables, and weight gain.
- Based on self-reported weight and measured height at interview (if not available, then based on measured weight at interview and/or self-reported height).
- Based on tertiles among all postmenopausal controls.
- Based on self-reported young-adult weight and measured height at interview (or self-reported adult height when measured height not available).
- Self-reported weight (or measured weight at interview if self-reported weight not available) minus self-reported young-adult weight.
- Excludes 34 cases and 55 controls who lost >3 kg of weight.
- Stable weight defined as ±/– 3 kg.
- Adjusted for above variables, and current BMI.
- Excludes 15 ER+/PR+ cases and 55 controls who lost >3 kg of weight.
Table 4 BMI and weight gain and breast cancer risk in postmenopausal women not currently using hormone therapy by young-adult BMI and time since menopause

Young-adult BMI	Current BMI (kg/m²) b	<22.4 kg/m²	OR* 95% CI	Cases (n = 413)	Controls (n = 614)	OR* 95% CI	Cases (n = 348)	Controls (n = 644)	OR* 95% CI	P interaction
≤22.4 kg/m²	<25.0	167	243	1.0	38	77	1.0			0.01
	25.0-29.9	131	232	0.77 0.56-1.06	136	217	1.28 0.80-2.05			
	≥30.0	115	138	1.22 0.86-1.74	174	350	0.92 0.58-1.45			
	P trend = 0.42									
Weight gain (kg) c,d	Stable e	35	52	1.0	43	87	1.0			0.12
	Gain, 3.0-9.9	106	142	1.20 0.71-2.03	74	148	1.03 0.64-1.66			
	Gain, 10.0-19.9	109	198	0.82 0.49-1.38	108	176	1.26 0.80-1.99			
	Gain, 20.0-29.9	90	126	1.11 0.65-1.91	51	120	0.81 0.48-1.36			
	Gain, ≥30.0	67	84	1.14 0.64-2.05	44	69	1.08 0.62-1.90			
P trend = 0.04										

ER+PR+ breast cancer	Current BMI (kg/m²) b	<25.0	77	243	1.0	19	77	1.0			
	25.0-29.9	63	232	0.87	0.57	1.32	74	217	1.42	0.78	2.59
	≥30.0	69	138	1.97	1.26	3.09	94	350	1.10	0.61	1.98
P trend = 0.01											
Weight gain (kg) c,d	Stable e	20	52	1.0	24	87	1.0				
	Gain, 3.0-9.9	42	142	0.97	0.50	1.88	37	148	0.99	0.54	1.80
	Gain, 10.0-19.9	52	198	0.83	0.43	1.59	62	176	1.44	0.82	2.54
	Gain, 20.0-29.9	50	126	1.35	0.69	2.64	27	120	0.88	0.46	1.69
	Gain, ≥30.0	41	84	1.71	1.03	3.52	26	69	1.48	0.75	2.94
P trend = 0.03											

<15 Years Since Menopause	Current BMI (kg/m²) b	98	134	1.0	82	138	1.0				
	25.0-29.9	115	187	0.85	0.57	1.26	126	229	0.97	0.67	1.41
	≥30.0	120	227	0.70	0.47	1.03	143	205	1.24	0.84	1.81
P trend = 0.07											

| ≥15 Years Since Menopause| Current BMI (kg/m²) b | 0.09 | 0.04 | 0.22 |
Table 4 BMI and weight gain and breast cancer risk in postmenopausal women not currently using hormone therapy by young-adult BMI and time since menopause (Continued)

Current BMI (kg/m²)	Cases (n = 156)	Controls (n = 552)	OR* 95% CI	Cases (n = 201)	Controls (n = 576)	OR* 95% CI	P interaction
<25.0	42	134	1.0	40	138	1.0	0.45
25.0-29.9	47	187	0.89 0.56-1.42	77	229	1.26 0.79-2.02	
≥30.0	66	227	1.07 0.64-1.78	84	205	1.63 1.00-2.65	
P trend = 0.71							
Current BMI (kg/m²) – adjusted for weight gain b,h							
<25.0	1.0						0.43
25.0-29.9	0.97 0.52-1.81			1.35 0.63-2.87			
≥30.0	1.35 0.63-2.87						
P trend = 0.40							

Weight gain (kg) c,k

Stable e	33	55	1.0	32	68	1.0
Gain, 3.0-9.9	85	116	1.13 0.65-1.96	72	133	1.29 0.76-2.20
Gain, 10.0-19.9	101	165	0.89 0.53-1.52	92	152	1.40 0.83-2.35
Gain, 20.0-29.9	52	98	0.82 0.46-1.48	66	105	1.44 0.83-2.50
Gain, ≥300	40	73	0.69 0.37-1.30	53	55	2.09 1.15-3.81
P trend = 0.08						

Weight gain (kg) – adjusted for current BMI c,k,l

Stable e	1.0			1.0			
Gain, 3.0-9.9	1.16 0.67-2.01		1.34 0.78-2.30				
Gain, 10.0-19.9	0.96 0.54-1.71		1.67 0.93-2.99				
Gain, 20.0-29.9	0.91 0.46-1.82		1.77 0.92-3.38				
Gain, ≥300	0.78 0.36-1.68		2.71 1.29-5.69				
P trend = 0.40							0.01

ER+PR+ breast cancer
Young-adult BMI (kg/m²)	T1: ≤21.2	56	181	1.0	67	163	1.0
T2: 21.3-23.7	49	163		1.00 0.62-1.59	66	174	0.89 0.58-1.37
T3: >23.7	45	181		0.89 0.54-1.46	58	199	0.70 0.45-1.10

$P_{\text{trend}} = 0.64$

Weight gain (kg)	Stable	16	55	1.0	22	68	1.0
Gain, 3.0-9.9	34	116		0.94 0.46-1.93	34	133	0.93 0.48-1.77
Gain, 10.0-19.9	48	165		0.98 0.49-1.94	53	152	1.25 0.68-2.30
Gain, 20.0-29.9	24	98		0.85 0.40-1.84	40	105	1.38 0.72-2.64
Gain, ≥30.0	24	73		0.99 0.45-2.17	33	55	2.32 1.15-4.69

$P_{\text{trend}} = 0.50$

Abbreviations: BMI, body mass index; CI, confidence interval; ER+, estrogen receptor–positive; OR, odds ratio; PR+, progesterone receptor–positive.

* Adjusted for age (years, continuous), race/ethnicity (non-Hispanic White, African American, Hispanic), place of birth (U.S.-born, foreign-born), education (some high school or less, high school or vocational/technical school graduate, some college, college graduate), family history of breast cancer in first-degree relatives (no, yes), personal history of biopsy-confirmed benign breast disease (no, yes), age at menarche (≤11, 12, 13, ≥14 years), number of full-term pregnancies (nulliparous, 1, 2, 3, ≥4), age at first full-term pregnancy (nulliparous, ≤19, 20–24, 25–29, ≥30 years), lifetime breast-feeding (nulliparous, 0, ≤6, 7–12, 13–24, ≥25 months), lifetime physical activity (quartiles, hours/week), alcohol consumption in reference year (0, 0.1–4.9, 5–9.9, 10–19.9, ≥20 g/day), and total caloric intake (quartiles, kcal/day).

* Based on self-reported weight and measured height at interview (if not available, then based on measured weight at interview and/or self-reported height).

* Self-reported weight (or measured weight at interview if self-reported weight not available) minus self-reported young-adult weight.

* Excludes 34 cases and 55 controls who lost >3 kg of weight.

* Stable weight defined as +/- 3 kg.

* Excludes 15 ER+PR+ cases and 55 controls who lost >3 kg of weight.

* Among women with natural or surgical menopause only.

* Adjusted for above variables, and weight gain.

* Based on tertiles among all postmenopausal controls.

* Based on self-reported young-adult weight and measured height at interview (or self-reported adult weight when measured height not available).

* Excludes 28 cases and 46 controls who lost >3 kg of weight.

* Adjusted for above variables, and current BMI.

* Excludes 13 ER+PR+ cases and 46 controls who lost >3 kg of weight.
| Waist (cm) d | All race/ethnicities | Hispanics | African Americans | Non-Hispanic Whites |
|-------------|----------------------|-----------|-------------------|---------------------|
| T1: ≤ 85.0 | 198 385 1.0 | 96 201 1.0 | 30 54 1.0 | 72 130 1.0 |
| T2: 85.1-96.4 | 214 407 0.99 0.77-1.27 | 113 245 0.90 0.63-1.27 | 59 78 1.55 0.85-2.83 | 42 84 0.91 0.55-1.52 |
| T3: >96.4 | 293 412 1.32 1.03-1.69 | 146 232 1.27 0.90-1.79 | 102 120 1.83 1.04-3.21 | 45 60 1.24 0.72-2.13 |
| P trend | 0.02 | 0.14 | 0.05 | 0.52 |

Waist (cm) – adjusted for current BMI d,e	All race/ethnicities	Hispanics	African Americans	Non-Hispanic Whites
T1: ≤ 85.0	1.0	1.0	1.0	1.0
T2: 85.1-96.4	1.09 0.82-1.44	1.08 0.73-1.60	1.64 0.84-3.20	0.80 0.44-1.47
T3: >96.4	1.59 1.15-2.19	1.79 1.14-2.81	2.17 1.05-4.49	0.90 0.42-1.91
P trend	< 0.01	0.01	0.04	0.75

Hip (cm) d	All race/ethnicities	Hispanics	African Americans	Non-Hispanic Whites
T1: ≤ 102.9	194 394 1.0	105 224 1.0	39 60 1.0	50 110 1.0
T2: 103.0-112.7	230 402 1.15 0.90-1.47	119 229 1.13 0.80-1.58	54 77 1.06 0.60-1.88	57 96 1.46 0.87-2.43
T3: >112.7	281 407 1.36 1.07-1.73	131 224 1.22 0.87-1.71	98 115 1.51 0.89-2.56	52 68 1.80 1.03-3.14
P trend	0.01	0.26	0.09	0.04

Hip (cm) – adjusted for current BMI d,e	All race/ethnicities	Hispanics	African Americans	Non-Hispanic Whites
T1: ≤ 102.9	1.0	1.0	1.0	1.0
T2: 103.0-112.7	1.27 0.97-1.66	1.34 0.92-1.94	1.04 0.54-2.00	1.58 0.90-2.79
T3: >112.7	1.66 1.20-2.30	1.64 1.05-2.58	1.68 0.82-3.42	1.88 0.86-4.10
P trend	< 0.01	0.03	0.10	0.09

Waist-to-height ratio d	All race/ethnicities	Hispanics	African Americans	Non-Hispanic Whites								
T1: ≤ 0.54	200 372 1.0	80 153 1.0	42 70 1.0	78 149 1.0								
T2: 0.55-0.61	226 410 1.05 0.81-1.35	117 254 0.88 0.61-1.28	64 85 1.42 0.82-2.24	45 71 1.27 0.76-2.12								
T3: >0.61	279 422 1.27 0.98-1.64	158 271 1.13 0.78-1.62	85 97 1.74 1.02-2.96	36 54 1.16 0.65-2.06								
P trend	0.06	0.37	0.05	0.51								
Waist-to-height ratio – adjusted for current BMI	Cases (n = 415)	Controls (n = 1,336)	ORa 95% CI	Cases (n = 191)	Controls (n = 709)	ORa 95% CI	Cases (n = 108)	Controls (n = 315)	ORa 95% CI	Cases (n = 116)	Controls (n = 312)	ORa 95% CI
---	----------------	----------------------	------------	----------------	-------------------	------------	----------------	-------------------	------------	----------------	-------------------	------------
T1: ≤ 0.54	98	372	1.0	36	153	1.0	14	70	1.0	48	149	1.0
T2: 0.55-0.61	112	410	1.15	0.83-1.59	51	254	0.88	0.53-1.46	30	85	1.94	0.86-4.35
T3: >0.61	153	422	1.61	1.16-2.23	94	271	1.63	1.02-2.62	36	97	2.19	0.99-4.82
P_trend < 0.01												
Hip (cm) – adjusted for current BMI												
T1: ≤ 102.9	92	394	1.0	46	224	1.0	17	60	1.0	29	110	1.0
T2: 103.0-112.7	118	402	1.32	0.96-1.81	56	229	1.23	0.78-1.94	23	77	1.04	0.48-2.28
T3: >112.7	153	407	1.77	1.30-2.42	79	224	1.85	1.19-2.85	40	115	1.54	0.74-3.21
P_trend < 0.01												
Waist-to-height ratio – adjusted for current BMI												
T1: ≤ 0.54	98	372	1.0	36	153	1.0	14	70	1.0	48	149	1.0
T2: 0.55-0.61	112	410	1.15	0.83-1.59	51	254	0.88	0.53-1.46	30	85	1.94	0.86-4.35
T3: >0.61	153	422	1.61	1.16-2.23	94	271	1.63	1.02-2.62	36	97	2.19	0.99-4.82
Table 5 Abdominal adiposity and breast cancer risk in postmenopausal women not currently using hormone therapy by race/ethnicity\(^a\) (Continued)

Waist-to-height ratio – adjusted for current BMI \(^a,b\)	T1: \(\leq 0.54\)	T2: 0.55-0.61	T3: >0.61
T1: \(\leq 0.54\)	1.0	1.13 0.77-1.64	1.55 1.00-2.39
T2: 0.55-0.61	1.0	0.97 0.55-1.73	0.97 0.97-3.47
T3: >0.61	1.0	1.75 0.72-4.26	2.19 0.81-5.93
\(P_{\text{trend}} = 0.04\)		\(P_{\text{trend}} = 0.02\)	\(P_{\text{trend}} = 0.14\)
\(P_{\text{trend}} = 0.02\)		\(P_{\text{trend}} = 0.14\)	\(P_{\text{trend}} = 0.62\)

Abbreviations: BMI, body mass index; CI, confidence interval; ER+, estrogen receptor–positive; OR, odds ratio; PR+, progesterone receptor–positive.

\(^a\) All \(P\) values for interaction by race/ethnicity were \(>0.05\).

\(^b\) Adjusted for age (years, continuous), race/ethnicity (non-Hispanic White, African American, Hispanic), place of birth (U.S.-born, foreign-born), education (some high school or less, high school or vocational/technical school graduate, some college, college graduate), first-degree family history of breast cancer (no, yes), personal history of biopsy-confirmed benign breast disease (no, yes), age at menarche (\(\leq 11\), 12, 13, \(\geq 14\) years), number of full-term pregnancies (nulliparous, 1, 2, 3, \(\geq 4\)), age at first full-term pregnancy (nulliparous, \(\leq 19\), 20–24, 25–29, \(\geq 30\) years), lifetime breast-feeding (nulliparous, 0, \(\leq 6\), 7–12, 13–24, \(\geq 25\) months), lifetime physical activity (quartiles, hours/week), alcohol consumption in reference year (0, 0.1–4.9, 5–9.9, 10–19.9, \(\geq 20\) g/day), and total caloric intake (quartiles, kcal/day).

\(^c\) Adjusted for above variables, except race/ethnicity.

\(^d\) Based on tertiles among all postmenopausal controls.

\(^e\) Adjusted for above variables, and current BMI.
Table 6 Abdominal adiposity and breast cancer risk in postmenopausal women not currently using hormone therapy by current BMI

All breast cancer	Current BMI < 25.0kg/m²		Current BMI ≥ 25.0kg/m²		
------------------	-------------------------		-------------------------		
Waist (cm) b	Cases (n=396) Controls (n=648) OR * 95% CI	Cases (n=402) Controls (n=680) OR * 95% CI		P interaction	
M1: ≤ 90.5	151 272 1.00 140 321 0.87 0.65-1.18		0.25		
M2: > 90.5	27 26 1.90 1.05-3.44 387 585 1.21 0.93-1.57				

Waist-to-height ratio b	Cases (n=194) Controls (n=648) OR * 95% CI	Cases (n=220) Controls (n=680) OR * 95% CI		P interaction	
M1: ≤ 0.58	156 276 1.00 152 310 0.93 0.69-1.24	0.93			
M2: > 0.58	22 22 1.87 0.98-3.56 375 596 1.17 0.90-1.52				

ER+PR+ breast cancer	Current BMI < 25.0kg/m²		Current BMI ≥ 25.0kg/m²		
----------------------	-------------------------		-------------------------		
Waist (cm) b	Cases (n=194) Controls (n=648) OR * 95% CI	Cases (n=220) Controls (n=680) OR * 95% CI		P interaction	
M1: ≤ 90.5	73 272 1.00 67 321 0.92 0.62-1.36		0.16		
M2: > 90.5	10 26 1.53 0.69-3.39 213 585 1.55 1.11-2.17				

Waist-to-height ratio b	Cases (n=194) Controls (n=648) OR * 95% CI	Cases (n=220) Controls (n=680) OR * 95% CI		P interaction	
M1: ≤ 0.58	75 276 1.00 75 310 1.02 0.70-1.50		0.47		
M2: > 0.58	8 22 1.53 0.63-3.68 205 596 1.52 1.08-2.12				

Abbreviations: BMI, body mass index; CI, confidence interval; ER+, estrogen receptor–positive; OR, odds ratio; PR+, progesterone receptor–positive.

* OR and 95% CI adjusted for age (years, continuous), race/ethnicity (non-Hispanic White, African American, Hispanic), place of birth (US-born, foreign-born), education (some high school or less, high school or vocational/technical school graduate, some college, college graduate), family history of breast cancer in first-degree relatives (no, yes), personal history of biopsy-confirmed benign breast disease (no, yes), age at menarche (<11, 12, 13, ≥14 years), number of full-term pregnancies (nulliparous, 1, 2, 3, ≥4), age at first full-term pregnancy (nulliparous, ≤19, 20–24, 25–29, ≥30 years), lifetime breast-feeding (nulliparous, 0, ≤6, 7–12, 13–24, ≥25 months), lifetime physical activity (quartiles, hours/week), alcohol consumption in reference year (0, 0.1–4.9, 5–9.9, 10–19.9, ≥20 g/day), and total caloric intake (quartiles, kcal/day).

b Based on median among all postmenopausal controls.

Consistent with other reports (White et al. 2012; Huang et al. 1997; Ahn et al. 2007; Feigelson et al. 2004), we found that weight gain was an important risk factor for postmenopausal BC, independent of current BMI. For current BMI no association remained after adjustment for weight gain. In agreement with other studies (Vrieling et al. 2010), we found that the relation with weight gain was limited to ER+PR+ BC. Risk was increased two-fold for currently obese women (BMI ≥ 30 kg/m²) who had a young-adult BMI <22.4 kg/m², which is in agreement with other studies (Ahn et al. 2007; Canchola et al. 2012). We found modest effect modification by young adult BMI for weight gain, though some other studies did not (Barnes-Josiah et al. 1995; Feigelson et al. 2004; van den Brandt et al. 1997; Lahmann et al. 2005). In contrast, BC risk was not increased in women who were obese throughout their adult life, consistent with other (Ahn et al. 2007; Canchola et al. 2012), but not all reports (Barnes-Josiah et al. 1995). In agreement with other reports (Chu et al. 1991; Magnusson et al. 1998; Macinnis et al. 2004), we found time since menopause to be another important modifying factor, with two-fold increased risks of ER+PR+ BC with weight gain only among women with ≥15 years since menopause. Weight gain during adulthood largely reflects an increase in body fat which serves as an important source of estrogen production in postmenopausal women (Siiteri 1987). The role of an estrogen-related pathway is further supported by the observation that the associations with BMI and weight gain are limited to ER+PR+ tumors (Suzuki et al. 2009; Vrieling et al. 2010).

Prior findings in AA and Hispanic women for BMI are inconsistent. In our study, OR estimates were increased only for ER+PR+ disease and were of similar magnitude in the three racial/ethnic groups. Two studies in AAs reported elevated risks of ER+PR+ disease (Palmer et al. 2007; Berstad et al. 2010), and, similar to our study, there was no evidence of an association with BMI for BC overall. Other studies did not consider hormone receptor status (White et al. 2012; Schatzkin et al. 1987; Adams-Campbell et al. 1996; Hall et al. 2000; Zhu et al. 2005), and not all found a positive association with BMI (White et al. 2012; Schatzkin et al. 1987; Zhu et al. 2005). In black women from Nigeria (Ogundiran et al. 2010; Okobia et al. 2006; Adebamowo et al. 2003) and Barbados (Nemesure et al. 2009), no associations with BMI were found. In Hispanic women, BMI was not associated with BC overall (Wenten et al. 2002; Slattery et al. 2007; White et al. 2012) and ER+ disease (Slattery et al. 2007), even among women not using HT (Slattery et al. 2007; White et al. 2012).

We found that high weight gain was associated with a two-fold increased risk of ER+PR+ BC in NHW women. In AAs and Hispanics, the associations were much weaker, likely due to the higher prevalence of young-adult obesity in these groups. Of three studies in AAs that reported on
Table 7 Body size and risk of ER-PR- breast cancer in postmenopausal women not currently using hormone therapy

Current BMI (kg/m²)	Cases (n=135)	Controls (n=1,336)	OR*, 95% CI	ORb 95% CI	ORc 95% CI
<25.0	34	329	1.00	1.00	
25.0-29.9	46	476	0.75 0.46-1.22	0.62 0.36-1.08	
≥30.0	54	523	0.72 0.45-1.16	0.58 0.30-1.14	
			P_trend = 0.21	P_trend = 0.13	

Young-adult BMI (kg/m²) e,f

T1: ≤21.2	46	402	1.00		
T2: 21.3-23.7	43	411	0.82 0.52-1.29		
T3: >23.7	37	445	0.61 0.38-0.97		
			P_trend = 0.04	P_trend = 0.13	

Weight gain (kg) g

Stable h	10	140	1.00	1.00	
Gain, 3.0-9.9	31	291	1.38 0.65-2.93	1.47 0.69-3.16	
Gain, 10.0-19.9	42	376	1.31 0.63-2.72	1.67 0.76-3.65	
Gain, ≥20.0	39	401	1.05 0.50-2.19	1.45 0.60-3.48	
			P_trend = 0.63	P_trend = 0.48	

Waist (cm) e

T1: ≤85.0	28	385	1.00	1.00	
T2: 85.1-96.4	40	407	1.13 0.67-1.89	1.43 0.80-5.54	
T3: >96.4	48	412	1.24 0.75-2.06	1.87 0.96-3.64	
			P_trend = 0.41	P_trend = 0.07	

Hip (cm) e

T1: ≤102.9	27	394	1.00	1.00	
T2: 103.0-112.7	41	402	1.40 0.84-2.34	1.85 1.05-3.28	
T3: >112.7	48	407	1.43 0.86-2.37	2.35 1.20-4.59	
			P_trend = 0.19	P_trend = 0.01	

Waist-to-hip ratio

T1: ≤0.81	33	434	1.00	1.00	
T2: 0.82-0.86	34	355	1.14 0.68-1.90	1.21 0.72-2.04	
T3: >0.86	49	413	1.35 0.83-2.18	1.46 0.88-2.39	
			P_trend = 0.22	P_trend = 0.14	

Waist-to-height ratio

T1: ≤0.54	30	372	1.00	1.00	
T2: 0.55-0.61	40	410	0.98 0.59-1.63	1.19 0.66-2.17	
T3: >0.61	46	422	1.05 0.63-1.73	1.44 0.72-2.87	
			P_trend = 0.84	P_trend = 0.30	

Abbreviations: BMI, body mass index; CI, confidence interval; ER-, estrogen receptor-negative; OR, odds ratio; PR-, progesterone receptor-negative.

* OR and 95% CI adjusted for age (years, continuous), race/ethnicity (non-Hispanic White, African American, Hispanic), place of birth (US-born, foreign-born), age at menarche (<11, 12, 13, ≥14 years), and lifetime breast-feeding (nulliparous, 0, ≤6, 7–12, 13–24, ≥25 months).

† Adjusted for above variables, and current BMI.

‡ Adjusted for above variables, and weight gain.

§ Based on self-reported weight and measured height at interview (if not available, then based on measured weight at interview and/or self-reported height).

‖ Based on tertiles among all postmenopausal controls.

* Based on self-reported young-adult weight and measured height at interview (or self-reported adult height when measured height not available).

Self-reported weight (or measured weight at interview if self-reported weight not available) minus self-reported young-adult weight; excludes 5 cases and 55 controls who lost >3 kg of weight.

+ Stable weight defined as +/- 3 kg.
weight gain and BC risk (White et al. 2012; Zhu et al. 2005; Palmer et al. 2007), only one found a significant association with BC risk overall (White et al. 2012). In Hispanic women from New Mexico, large weight gain was associated with a two-fold increased risk of ER+PR+ disease and, for BC overall, a significant trend with weight gain was limited to women with a BMI <22 kg/m² at age 18 years (Wenten et al. 2002). Two other studies in Hispanics found no association with weight gain (Slattery et al. 2007; White et al. 2012). In order to address these inconsistent findings with BMI and weight gain for AA and Hispanic women, future studies should examine the modifying effect of young-adult obesity with larger sample sizes. This is particularly important since AA and Hispanic women have a higher prevalence of young-adult obesity than NHWs, as found in our study as well as others (Flegal et al. 2010).

Our finding of a strong inverse association of postmenopausal BC risk with high young-adult BMI, which was independent of weight change or current BMI, is consistent with other reports (White et al. 2012; Palmer et al. 2007; Berstad et al. 2010; Barnes-Josiah et al. 1995; Huang et al. 1997; Morimoto et al. 2002; Ahn et al. 2007; Chu et al. 1991; Brinton & Swanson 1992; Magnnusson et al. 1998), although in some studies there was no association with young-adult BMI (Canchola et al. 2012; Feigelson et al. 2004; Lahmann et al. 2005). In agreement with a large meta-analysis (Suzuki et al. 2009), we found that the inverse association with young-adult BMI did not differ by tumor hormone receptor status. We further found an inverse association, regardless of HT use, as reported by others (Morimoto et al. 2002; Ahn et al. 2007). These findings do not support an estrogen-related mechanism underlying the association with young-adult BMI.

Abdominal adiposity has been proposed to be more important in estrogen production than adiposity at other body sites (Pinheiro et al. 2009). Studies in primarily NHW women, however, have produced inconsistent results (World Cancer Research Fund / American Institute for Cancer Research 2007). Not all studies considered HT use or ER/PR status, or adjusted for overall adiposity (Canchola et al. 2012; Potter et al. 1995; Huang et al. 2000). Our findings confirm previous reports of positive associations with waist circumference and WHtR only in women not currently using HT (Morimoto et al. 2002; Huang et al. 1999; Friedenreich et al. 2002) and stronger associations for ER+PR+ disease (Canchola et al. 2012; Potter et al. 1995; Huang et al. 2000). We found no association with WHR, whereas elevated WHtR was associated with increased risk, in agreement with another study (Canchola et al. 2012). Both waist circumference and WHtR may be better measures of abdominal adiposity than WHR (Molarius & Seidell 1998; Rankinen et al. 1999). In some studies, the association with abdominal adiposity was attenuated after adjustment for BMI (Morimoto et al. 2002; Lahmann et al. 2004; Tehard & Clavel-Chapelon 2006), whereas in our study associations became stronger after BMI adjustment. Among women with BMI <25 kg/m², large waist circumference and high WHtR were associated with two-fold increased risks of BC overall. Contrary to another study that reported an association between abdominal adiposity and ER+PR+ tumors only in normal-weight women (Canchola et al. 2012), we found elevated ORs for ER+PR+ tumors, regardless of BMI, with statistically significant estimates in overweight/obese women.

Unlike NHW women, for whom we found no associations with waist circumference and WHtR, AAs and Hispanics had two- to three-fold increased risk of ER+PR+ BC. We found no association with WHR in any racial/ethnic group. This latter finding is consistent with two studies in AA women (Hall et al. 2000; Palmer et al. 2007), but contrasts with reports from Nigeria (Ogundiran et al. 2010) and Barbados (Nemesure et al. 2009), where large waist circumference and high WHR increased BC risk. Similarly, the two-fold increased risk of ER+PR+ disease associated with large hip circumference that we observed for NHW and Hispanic women was not seen in AAs, whereas previous studies from Nigeria (Ogundiran et al. 2012) and Barbados (Nemesure et al. 2009) reported inverse associations with hip circumference. In the Nigerian study, associations with abdominal adiposity were stronger or limited to women with a BMI <25 kg/m² (Ogundiran et al. 2012), consistent with our findings. In the only study that examined abdominal adiposity in postmenopausal Hispanic women, hip circumference and WHR were not associated with BC risk in not recent HT users (Slattery et al. 2007), which differs from our finding. Given these conflicting reports, it remains to be determined whether there are true racial/ethnic differences in the effects of abdominal adiposity on BC risk. Abdominal fat comprises different fat stores, and AAs and NHWs differ in abdominal depot-specific body fat (e.g., visceral vs. subcutaneous adipose tissue) (Katzmarzyk et al. 2010). Whether different fat stores affect BC risk differentially has not been examined. Our results suggest that studies should assess multiple measures of adiposity in racially/ethnically diverse populations.

Our analyses of body size and ER-PR+ BC risk were limited by small numbers. Consistent with most other studies (Suzuki et al. 2009; Yang et al. 2011), we found no associations with current BMI and weight gain, although there are some reports of inverse (Berstad et al. 2010; Setiawan et al. 2009) or positive associations with BMI (Ritte et al. 2012) and positive associations with weight gain (Canchola et al. 2012). Unlike other studies (Canchola et al. 2012; Potter et al. 1995), we found a strong inverse association with young-adult BMI and
ER-PR- disease. Adjustment for BMI strengthened the positive association between waist ($P_{\text{trend}} = 0.07$) and hip ($P_{\text{trend}} = 0.01$) circumferences and risk of ER-PR- BC, but, consistent with other studies (Canchola et al. 2012; Potter et al. 1995; Huang et al. 2000), we found no significant association with WHR or WHtR. The association between BMI, weight gain, and abdominal adiposity warrants further examination in studies with larger numbers of ER-PR-cases. This is particularly important since few risk factors have been identified for hormone receptor negative BC (Althuis et al. 2004; Ma et al. 2006), which disproportionately affects AA and Hispanic women (Ray & Polite 2010).

Our findings should be considered in light of some limitations. Due to the concern that weight may be impacted by BC diagnosis and treatment, we relied on self-reported weight during the reference year. Although we cannot exclude the possibility of inaccurately recalled weight, among subjects for whom measured and self-reported weight was available, the correlation between the two measures was high ($r = 0.85$ for cases, $r = 0.92$ for controls). For waist and hip circumference we had to rely on measurements taken after diagnosis which may have also resulted in misclassification. Finally, some subgroup analyses were limited by small sample sizes, and analyses of potential modifying factors (young-adult BMI, time since menopause) could not be further stratified by race/ethnicity. Larger studies or analyses of pooled data will be necessary to further explore the role of these modifying factors in Hispanics and AAs.

Our study also has several important strengths, including a population-based design, high participation rates among cases and controls in each racial/ethnic group, assessment of both overall and abdominal adiposity, detailed data on established BC risk factors, and availability of data on tumor hormone receptor status for most cases. The racial/ethnic diversity of the study population allowed us to assess associations with body size in Hispanic and AA women, thus contributing to the relatively sparse data in these two racial/ethnic populations that experience a greater burden of obesity than NHWs.

It has been estimated that as many as one third of new postmenopausal BC cases may be attributable to adult weight gain (Huang et al. 1997). Given that a number of BC risk factors relate to events well before menopause (e.g., age at menarche, age at first birth) or characteristics that cannot easily be modified (e.g., BC family history), observed associations with body size suggest possible approaches to lowering BC risk in older women through weight maintenance, avoidance of further weight gain and abdominal adiposity, or weight loss. However, promoting overweight at a young age, as a means of reducing BC risk after menopause, should not be encouraged, given the many adverse health effects associated with obesity, including other cancers (Calle & Kaaks 2004; Chen et al. 2011).

Abbreviations

AA: African American; BC: Breast cancer; BMI: Body mass index; CI: Confidence interval; ER: Estrogen receptor; HT: Hormone therapy; OR: Odds ratio; NHW: non-Hispanic white; PR: Progesterone receptor; WHR: Waist-to-hip ratio; WHtR: Waist-to-height ratio.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

EWJ was responsible for the study design, securing funding, directing the study implementation and data analysis, and drafting the manuscript. AIP contributed to the study design and writing of the grant proposal that funded this analysis, performed preliminary analyses, and contributed to the writing of the manuscript. MS was responsible for performing the statistical analyses, helped conduct literature review, and contributed to the writing of the manuscript. All authors read and approved the final manuscript.

Acknowledgments

This work was supported by the National Cancer Institute (grant R03 CA121875). Data collection for the parent study was funded by National Cancer Institute (grants R01 CA63446 and R01 CA77305); the U.S. Department of Defense (grant DAMD17-96-1-6071); and the California Breast Cancer Research Program (grants 4JH-1106 and 7PB-0068). The collection of cancer incidence data used in this study was supported by the California Department of Public Health as part of the statewide cancer reporting program mandated by California Health and Safety Code Section 103885; the National Cancer Institute’s Surveillance, Epidemiology and End Results Program under contract HHSN261201000140C awarded to the Cancer Prevention Institute of California, contract HHSN261201000035C awarded to the University of Southern California, and contract HHSN261201000034C awarded to the Public Health Institute; and the Centers for Disease Control and Prevention’s National Program of Cancer Registries, under agreement U81DP002862-01 awarded to the California Department of Public Health. The ideas and opinions expressed herein are those of the authors and endorsement by the State of California, Department of Public Health the National Cancer Institute, and the Centers for Disease Control and Prevention or their Contractors and Subcontractors is not intended nor should be inferred.

Author details

1 Cancer Prevention Institute of California, 2201 Walnut Ave, Suite 300, Fremont, CA 94538, USA. 2Division of Epidemiology, Department of Health Research and Policy, and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA. 3Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.

Received: 16 April 2013 Accepted: 29 April 2013 Published: 24 May 2013

References

Adams-Campbell LL, Kim KS, Dunston G et al (1998) The relationship of body mass index to reproductive factors in pre- and postmenopausal African-American women with and without breast cancer. Obes Res 4(5):451–466
Adebamowo CA, Ogundiran TO, Adenipeku AA et al (2003) Obesity and height in urban Nigerian women with breast cancer. Ann Epidemiol 13(6):455–461
Ahn J, Schatzkin A, Lacey JV Jr et al (2007) Adiposity, adult weight change, and postmenopausal breast cancer risk, Arch Intern Med 167(19):2091–2102
Althuis MD, Fengerbaum JH, Garcia-Closas M et al (2004) Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 13(10):1558–1568
Austin H, Cole P, Wynder E (1979) Breast cancer in black American women. Int J Cancer 24(5):541–544
Barnes-Josiah D, Potter JD, Sellers TA et al (1995) Early body size and subsequent weight gain as predictors of breast cancer incidence (Iowa, United States).
Cancer Causes Control 6(2):112
Berstad P, Coates RJ, Bernstein L et al (2010) A case–control study of body mass index and breast cancer risk in white and African-American women. Cancer Epidemiol Biomarkers Prev 19(6):1532–1544
Block G, Hartman AM, Dresner CM et al (1985) A data-based approach to diet questionnaire design and testing. Am J Epidemiol 124(3):453–469
Brinton LA, Swanson CA (1992) Height and weight at various ages and risk of breast cancer. Ann Epidemiol 2(5):597–609
Calle EE, Kaaks R (2004) Overweight, obesity and cancer: epidemiological evidence and proposed mechanisms. Nat Rev Cancer 4(8):579–591
Canchola AJ, Anton-Culver H, Bernstein L et al (2012) Body size and the risk of postmenopausal breast cancer subtypes in the California Teachers Study cohort. Cancer Causes Control, Jan 28 (Epub ahead of print).
 Chen L, Maglano DJ, Zimmer PZ (2011) The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol 8(4):228–236
Chu SY, Lee NC, Wingo PA et al (1991) The relationship between body mass and breast cancer among women enrolled in the Cancer and Steroid Hormone Study. J Clin Epidemiol 44(11):1197–1206
Colditz GA, Rosner BA, Chen WY et al (2004) Risk factors for breast cancer according to estrogen and progesterone receptor status. J Natl Cancer Inst 96(3):218–228
Feigelson HS, Jonas CR, Teras LR et al (2012) Body size and the risk of breast cancer in black women. Cancer Epidemiol Biomarkers Prev 21(3):387–394
Flegal KM, Carroll MD, Ogden CL et al (2010) Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(2):235–241
Friedenreich CM (2001) Review of anthropometric factors and breast cancer risk. Eur J Cancer Prev 10(1):15–32
Friedenreich CM, Cournay KS, Bryant HE (2002) Case–control study of anthropometric factors and breast cancer risk. Int J Cancer 99(3):445–452
Hall II, Newman B, Millikan RC et al (2000) Body size and breast cancer risk in black women and white women: the Carolina Breast Cancer Study. Am J Epidemiol 151(8):754–764
Huang Z, Hankinson SE, Colditz GA et al (1997) Dual effects of weight and weight gain on breast cancer risk. Jama 278(17):1407–1411
Huang Z, Willett WC, Colditz GA et al (1999) Waist circumference, waist-to-hip ratio, and risk of breast cancer in the Nurses’ Health Study. Am J Epidemiol 150(12):1216–1224
Huang WY, Newman B, Millikan RC et al (2000) Hormone-related factors and risk of breast cancer in relation to estrogen receptor and progesterone receptor status. Am J Epidemiol 151(7):703–714
John EM, Horn-Ross PL, Koo J (2003) Lifetime physical activity and breast cancer risk in a multiracial population the San Francisco Bay area breast cancer study. Cancer Epidemiol Biomarkers Prev 12(1 Pt 1):1143–1152
John EM, Phips PS, Davis A et al (2005) Migration history, acculturation, and breast cancer risk in Hispanic women. Cancer Epidemiol Biomarkers Prev 14(12):2905–2913
John EM, Sangamamorthy M, Phips PS et al (2011) Adult body size, hormone receptor status, and premenopausal breast cancer risk in a multiracial population: the San Francisco Bay Area breast cancer study. Am J Epidemiol 173(2):201–216
Katzmarzyk PT, Bray GA, Greenway FL et al (2010) Racial differences in abdominal fatness and breast cancer risk in post-menopausal women. Int J Cancer 76(1):29–34
Katzmarzyk PT, Bray GA, Greenway FL et al (2010) Racial differences in abdominal fatness and breast cancer risk in post-menopausal women. Int J Cancer 76(1):29–34
Lahmann PH, Hoffmann K, Allen N et al (2004) Body size and breast cancer risk: findings from the European Prospective Investigation into Cancer And Nutrition (EPIC). Int J Cancer 115(9):762–771
Lahmann PH, Schulz M, Hoffmann K et al (2005) Long-term weight change and breast cancer risk: the European prospective investigation into cancer and nutrition (EPIC). Br J Cancer 93(5):582–589
Ma H, Bernstein L, Pike MC et al (2006) Reproductive factors and breast cancer risk according to joint estrogen and progesterone receptor status: a meta-analysis of epidemiological studies. Breast Cancer Res 8(4):R43
Macinnes RJ, English DR, Gertig DM et al (2004) Body size and composition and risk of postmenopausal breast cancer. Cancer Epidemiol Biomarkers Prev 13(12):2117–2125
Magnusson C, Baron J, Persson I et al (1998) Body size in different periods of life and breast cancer risk in post-menopausal women. Int J Cancer 76(1):29–34
Molarius A, Seidell JC (1998) Selection of anthropometric indicators for classification of abdominal fatness—a critical review. Int J Obes Relat Metab Disord 22(8):719–727
Morimoto LM, White E, Chen Z et al (2002) Obesity, body size, and risk of postmenopausal breast cancer: the Women’s Health Initiative (United States). Cancer Causes Control 13(8):741–751
Nemnes B, Wu SY, Hennis A et al (2009) Body size and breast cancer in a black population—the Barbados National Cancer Study. Cancer Causes Control 20(3):367–394
Ogdundar TO, Huo D, Adinpekan A et al (2010) Case–control study of body size and breast cancer risk in Nigerian women. Am J Epidemiol 172(6):682–690
Ogdundar TO, Huo D, Adinpekan A et al (2012) Body fat distribution and breast cancer risk: findings from the Nigerian breast cancer study. Cancer Causes Control 23(4):565–574
Oklob (2010) Anthropometry and breast cancer risk in Nigerian women. Breast J 12(5):462–466
Palmer JR, Adams-Campbell LL, Boggis DA et al (2007) A prospective study of body size and breast cancer in black women. Cancer Epidemiol Biomarkers Prev 16(9):1975–1802
Pinheiro RL, Sarian LO, Pinto-Neto AM et al (2009) Relationship between body mass index, waist circumference and waist to hip ratio and the steroid hormone receptor status in breast carcinoma of pre- and postmenopausal women. Breast 18(1):8–12
Potter JD, Cerhan JR, Sellers TA et al (1995) Progestosterone and estrogen receptors and mammary neoplasia in the Iowa Women’s Health Study: how many kinds of breast cancer are there? Cancer Epidemiol Biomarkers Prev 4(4):319–326
Ranganathan T, Kim SY, Peruse J et al (1990) The prediction of abdominal visceral fat level from body composition and anthropometry. ROC analysis. Int J Obes Relat Metab Disord 23(8):801–809
Ray M, Polite BN (2010) Triple-negative breast cancers: a view from 10,000 feet. Cancer 16(1):17–22
Ritte R, Lukyanova A, Benino F et al (2012) Adiposity, hormone replacement therapy use and breast cancer risk by age and hormone receptor status: a large prospective cohort study. Breast Cancer Res 14(3):R76
Schatzkin A, Palmer JR, Rosenberg L et al (1987) Risk factors for breast cancer in black women. J Natl Cancer Inst 78(2):213–217
Setiawan VW, Monroe KR, Wilkins LI et al (2009) Breast cancer risk factors defined by estrogen and progesterone receptor status: the multiethnic cohort study. Am J Epidemiol 169(10):1251–1259
Sexton KR, Frannini L, Day RS et al (2011) A review of body size and breast cancer risk in Hispanic and African American women. Cancer 117(3):527–5281
Sletten KL, Sletten M, Sletten M et al (2007) Body size, weight change, fat distribution and breast cancer risk in Hispanic and Non-Hispanic White women. Breast Cancer Res Treat 123(3):641–649
Slattery ML, Sweeney C, Edwards S et al (2007) Body size, weight change, fat distribution and breast cancer risk in Hispanic and Non-Hispanic White women. Breast Cancer Res Treat 102(1):85–101
Suzuki R, Oriini N, Saji S et al (2009) Body weight and incidence of breast cancer defined by estrogen and progesterone receptor status—a meta-analysis. Int J Cancer 124(3):698–712
Tehard B, Cloved-Chapelon F (2006) Several anthropometric measurements and breast cancer risk: results of the E3N cohort study. Int J Cancer 119(3):764–770
van den Brandt PA, Dirx MJ, Ronckers CM et al (1997) Height, weight change, and body mass with breast cancer risk in Hispanic and Non-Hispanic White women. Breast Cancer Res Treat 123(3):641–649
Wenting M, Gilliland FD, Baumgartner K et al (2002) Associations of weight, weight change, and body mass with breast cancer risk in Hispanic and Non-Hispanic White women. Ann Epidemiol 12(6):435–444
White KR, Park SY, Kolonin LN et al (2012) Body size and breast cancer risk: the multiethnic cohort. Int J Cancer 131(5):E705–E716
WHO (2000) Obesity, preventing and managing the global epidemic: report of a WHO Consultation. . WHO Technical Report Series 894. World Health Organization, Geneva
World Cancer Research Fund / American Institute for Cancer Research (2007) Food, Nutrition, Physical Activity, and Prevention of Cancer: A Global Perspective. AICR, Washington, D.C.
Yang XR, Chang-Claude J, Goode EL et al (2011) Associations of breast cancer risk factors with tumor subtypes: a pooled analysis from the Breast Cancer Association Consortium studies. J Natl Cancer Inst 103(3):250–263
Zhu K, Caufield J, Hunter S et al (2005) Body mass index and breast cancer risk in African American women. Ann Epidemiol 15(2):123–128

Cite this article as: John et al.: Body size, modifying factors, and postmenopausal breast cancer risk in a multiracial population: the San Francisco Bay Area Breast Cancer Study. SpringerPlus 2013 2:239.