High Lithium Storage Performance of Co Ion-Doped Li$_4$Ti$_5$O$_{12}$ Induced by Fast Charge Transport

M. Wang1,2*, Y. Chen1, C. X. Yang1, Y. H. Zeng1, P. F. Fang1, W. Wang1 and X. L. Wang1,2

1School of Materials Science and Engineering, Liaoning Technical University, Fuxin, China. 2Key Laboratory of Mineral High Value Conversion and Energy Storage Materials of Liaoning Province, Fuxin, China

In this study, Co$_3$O$_4$-doped Li$_4$Ti$_5$O$_{12}$ (LTO) composite was designed and synthesized by the hydrothermal reduction method and metal doping modification method. The microstructure and electrochemical performance of the Co$_3$O$_4$-doped Li$_4$Ti$_5$O$_{12}$ composite were characterized by XRD, SEM, TEM, electrochemical impedance spectroscopy, and galvanostatic tests. The results showed that Li$_4$Ti$_5$O$_{12}$ particles attached to lamellar Co$_3$O$_4$ constituted a heterostructure and Co ion doped into Li$_4$Ti$_5$O$_{12}$ lattice. This Co ion-doped microstructure improved the charge transportability of Li$_4$Ti$_5$O$_{12}$ and inhibited the gas evolution behavior of Li$_4$Ti$_5$O$_{12}$, which enhanced the lithium storage performance. After 20 cycles, the discharge specific capacity reached stability, and the capacity retention maintained 99% after 1,000 cycles at 0.1 A/g (compared to the capacity at the 20th cycle). It had an excellent rate performance and long cycle stability, in which the capacity reached 174.6 mA h/g, 2.2 times higher than that of Li$_4$Ti$_5$O$_{12}$ at 5 A/g.

Keywords: metallic ion doping, Li$_4$Ti$_5$O$_{12}$, charge transport, lithium storage performance, the microstructure

INTRODUCTION

Lithium-ion batteries have the advantages of high energy density, high charge transport rate, long cycle life, high security, and no memory effect. Therefore, it has been widely used in the field of consumer electronics and electric vehicles (Chen et al., 2013; Liu et al., 2013; Yang et al., 2015a; Yang et al., 2015b; Liu et al., 2015; Li Z et al., 2016; Li H. Z et al., 2016; Li S et al., 2016; Qu et al., 2018; Lu et al., 2019). Li$_4$Ti$_5$O$_{12}$ (LTO) was widely studied as anode material for lithium-ion batteries due to its good electrochemical performance (Zhang et al., 2013; Sun et al., 2014; Yan, 2014; You et al., 2018; Wang, 2020; Wang, 2021). However, the low theoretical specific capacity, the low charge transport rate, and the poor electrical conductivity led to serious polarization during rapid charge and discharge, which greatly limited its wide application (Shen et al., 2012; Kim et al., 2013; Zetsu et al., 2014; Tan and Xue, 2018). In recent years, many researchers have carried out several modification studies of pure LTO, including carbon coating, ion doping, and nanocrystallization. (Tang et al., 2009; Cheng et al., 2010; Shi et al., 2011; Li et al., 2013; Ma et al., 2013; Wang et al., 2013; Cheng et al., 2014; Li et al., 2014; Liu et al., 2014; Zhang et al., 2021). In this study, layered Co$_3$O$_4$ and spherical LTO heterostructures with large specific surface area and short ion diffusion length were prepared by the ion doping method. The composite has excellent electrochemical performance using the microstructure characterization and electrochemical performance test.
FIGURE 1 | Schematic diagrams of the synthesis of the Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ composite.

FIGURE 2 | (A) XRD patterns of Li$_4$Ti$_5$O$_{12}$ and Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ composite. (B–D) XPS patterns of Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ composite. (B) Co 2p; (C) Ti 2p; (D) O 1s.
FIGURE 3 | (A) SEM image of Li$_4$Ti$_5$O$_{12}$ particles; (B) SEM image of Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ composites; (C) TEM morphology of Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ composites (inset: EDS of the Co$_3$O$_4$ sheet and SAED pattern of Li$_4$Ti$_5$O$_{12}$ particle).

FIGURE 4 | (A) The first and second charge/discharge curves of Li$_4$Ti$_5$O$_{12}$. (B) The first and second charge/discharge curves of Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$. (C) The rate performance comparison of Li$_4$Ti$_5$O$_{12}$ and Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$. (D) The EIS (AC impedance) diagram of Li$_4$Ti$_5$O$_{12}$ and Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$. (E) Cycle performance curves comparison of Li$_4$Ti$_5$O$_{12}$ and Li$_4$Ti$_5$O$_{12}$/Co$_3$O$_4$ at 0.1A/g.
EXPERIMENTAL

Firstly, 1.5 mg of CoCl₂ was dissolved in 30 ml dilute ammonia solution (0.3 mol/L). The pH value of the above solution was adjusted to 8.5 by concentrated ammonia solution and stood for 12 h. The formed precipitate (α-Co(OH)₂) was filtered and dried. Then, a certain mass of α-Co(OH)₂, LiOH, and TiO₂ was mixed and placed in a 100 ml Teflon-lined stainless steel autoclave and heated at 90°C for 12 h. After the temperature was cooled to room temperature, the solution was filtered and dried. The precursors were heated at 800°C for 4 h in a tube furnace. The obtained product was LTO/Co₃O₄ powder. Finally, CR2025-type coin cells were assembled in a high-purity Ar-filled ZKX glovebox. The schematic diagram of the synthesis of the LTO/Co₃O₄ composite is shown in Figure 1.

The phase composition of the specimen was characterized by XRD (SHIMADZU XRD-6100). The microstructure and morphology of the specimen were analyzed by SEM (JSM-7500FF) and FEI TEM (Tecnai G2T20). The charge and discharge performance, rate performance, cycle performance, and Coulomb efficiency, among others, were tested on the battery performance test system (NEWARE). Electrochemical impedance spectroscopy (EIS) was tested on the CHI660E electrochemical workstation.

RESULTS AND DISCUSSION

The XRD pattern of LTO and LTO/Co₃O₄ composites prepared by the hydrothermal method is shown in Figure 2. It was found that the diffraction peak of the LTO/Co₃O₄ composite at 18.3°, 35.6°, 62.8°, and 66.1° corresponded to the crystal planes of (111), (311), (440), and (531), respectively. The characteristic diffraction peak of Co₃O₄ at 31.3° and 44.8° corresponded to the crystal plane of LTO, when Co ions were doped into the LTO crystal lattice, the diffraction peak of the composite shifted to the right at approximately 0.5°; the reason for the radius of the Co atom approximately 0.5°; the reason for the radius of the Co atom, and Ti 2p3/2, respectively (see Figure 2C). It can be seen from Figure 2D that the peak intensity of the Ti-O bond was significantly lower than that of the Co-O-Ti bond; the reason for the formation of the Co-O-Ti bond weakened the Ti-O bond, indicating that Co ions were successfully doped into LTO lattice.

Figure 3 shows the SEM morphology and the TEM morphology of LTO and LTO/Co₃O₄ composite. Figure 3A shows that the diameters of pure LTO nanoparticles were approximately 200 nm. It can be seen from Figure 3B that LTO spherical nanoparticles were uniformly attached to the surface and interlayer of Co₃O₄, in which the particle size of LTO was approximately 50 ± 20 nm and the lamellar diameter of Co₃O₄ was approximately 150 ± 50 nm. The addition of Co₃O₄ effectively inhibited the growth of LTO nanoparticles. The grain refinement would improve the specific surface area of the composite (Li et al., 2018). Figure 3C shows that the LTO nanoparticles were uniformly dispersed on the layered surface of Co₃O₄, indicating that LTO and Co₃O₄ combined well. In addition, EDS analysis showed that the composite contained Co and O elements, indicating the existence of Co₃O₄ in the composite (see the inset of Figure 3C).

The first and second charge/discharge curves of LTO and LTO/Co₃O₄ composite at 0.1 A/g are shown in Figures 4A,B, respectively. It can be seen that the first discharge specific capacity of LTO and LTO/Co₃O₄ composite was 175 and 1,178.0 mA h/g, and the first Coulomb efficiency was 76.3% and 77.6%, respectively. The addition of Co₃O₄ improved the ion diffusion rate of the composite, increasing the first discharge specific capacity of the composite. In addition, the second discharge specific capacity of LTO and LTO/Co₃O₄ composite was 133.2 and 473 mA h/g, respectively. The first and second discharge specific capacity of LTO and LTO/Co₃O₄ composite was quite different. The reason was that the anode material would form SEI film at the electrode/electrolyte interface after the first cycle, which consumed part of Li⁺, causing irreversible capacity loss. Compared with LTO (1.55 V vs. Li/Li⁺ (Wang et al., 2016)), the discharge voltage platform of the LTO/Co₃O₄ composite was 1.75 V (vs. Li/Li⁺). The higher discharge voltage platform was beneficial in inhibiting the growth of lithium dendrites and forming a stable SEI film, which improves the cycle performance of the composite. Figure 4C shows the rate performance of LTO and LTO/Co₃O₄ composite for 200 cycles at different current densities. The discharge specific capacity of LTO/Co₃O₄ composite was higher than that of LTO at different current densities, indicating better rate performance. The discharge specific capacity of LTO at 20, 60, 100, and 140 cycles corresponded to 128.8, 110.9, 91.1, and 53.6 mA h/g, respectively. After 160 cycles, the discharge specific capacity was stable at 111.1 mA h/g, and the capacity retention rate was 86.3% (compared to the capacity at the 20th cycle). The discharge specific capacity of LTO/Co₃O₄ at 20, 60, 100, and
140 cycles corresponded to 274.5, 226.2, 201.1, and 174.6 mA h/g, respectively. After 160 cycles, the discharge specific capacity was stable at 230.6 mA h/g, and the capacity retention rate was 84% (compared to the capacity at the 20th cycle). The EIS (AC impedance) test results of LTO and LTO/Co3O4 composite are shown in Figure 4D. The curve in Figure 4D was fitted by an analog circuit, where Rs is ohmic resistance, Cdl is the double capacitance between electrode and electrolyte, and ZF is the series connection between Rct (charge transfer resistance) and Zw (Warburg resistance). The results showed that the internal resistance of LTO and LTO/Co3O4 composite was 9.0 and 2.5 Ω, and the charge transfer resistance was 95.4 and 19.5 Ω, respectively. Compared with pure LTO, the LTO/Co3O4 composite has lower resistance because the incorporation of Co3O4 provided more charge transfer channels, improving the charge transport rate of the LTO/Co3O4 composite. The long cycle performance of the LTO/Co3O4 composite at 0.1 A/g for 1,000 cycles is shown in Figure 4E. Figure 4E shows that the discharge specific capacity of the composite decreased significantly in the first 20 cycles due to the continuous formation of SEI, leading to the continuous decomposition of Li+. With the increase in the cycle number, the internal resistance of LTO and LTO/Co3O4 composite was 9.0 and 2.5 Ω, and the charge transfer resistance was 95.4 and 19.5 Ω, respectively. Compared with pure LTO, the LTO/Co3O4 composite has lower resistance because the incorporation of Co3O4 provided more charge transfer channels, improving the charge transport rate of the LTO/Co3O4 composite. The long cycle performance of the LTO/Co3O4 composite at 0.1 A/g for 1,000 cycles is shown in Figure 4E. Figure 4E shows that the discharge specific capacity of the composite decreased significantly in the first 20 cycles due to the continuous formation of SEI, leading to the continuous decomposition of Li+. With the increase in the cycle number, the SEI film gradually tended to be stable and the discharge specific capacity loss was smaller. After 1,000 cycles, the discharge specific capacity of the LTO and LTO/Co3O4 composite was maintained at 124.3 and 248.4 mA h/g, and the capacity retention rate reached 96.5% and 99% (compared to the capacity at the 20th cycle), respectively. The LTO/Co3O4 composite combined with the advantage of Co3O4 (the high discharge specific capacity) and LTO (the good cycle stability).

The geometric structure model of LTO, Co3O4, and LTO/Co3O4 was optimized based on the density functional theory. As shown in Supplementary Figure S1A, 0 eV was defined as the Fermi level. The bandgap between the conduction band and the valence band was 0.8 eV, indicating that the composite exhibited semi-metallic properties. In addition, the energy value of the LTO/Co3O4 composite was higher than that of LTO and Co3O4 at the Fermi level (see Supplementary Figure S1B). The synergistic effect between LTO and Co3O4 significantly increased the probability of electrons appearing in the LTO/Co3O4 composite at the Fermi level, which was more conducive to electron transfer, improving the charge transfer rate of the LTO/Co3O4 composite.

CONCLUSION

The Co ion-doped LTO composite was prepared using the hydrothermal method. The combination of LTO and Co3O4 by the Co-O-Ti bond not only maintained the structural stability of the composite but also improved the electron/ion diffusion rate of the composite. Compared with LTO, LTO/Co3O4 has a higher first discharge specific capacity, good rate performance, and better cycle stability. The first specific capacity was 1,178 mA h/g at 0.1 A/g. After 1,000 cycles, the discharge specific capacity was 248.4 mA h/g and the capacity retention rate was 99% (compared to the capacity at the 20th cycle). At the same time, the LTO/Co3O4 composite also has a higher discharge specific capacity at high current density (the discharge specific capacity was 174.6 mA h/g at 5 A/g), which was 2.2 times that of pure LTO.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MW: resources, writing—review and editing, supervision, project administration, funding acquisition. YC and CXY: designing and completing experiments, writing—original draft. YHZ, PFF, and WW: investigation, writing—review and editing. XLW: funding acquisition.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (51974152), General Project of Science Research Foundation of Liaoning Province (LJKZ0363), Central Government Guiding Local Project of Science and Technology Development Foundation (2022H6/100100047), and Discipline Innovation Team Project of Liaoning Technical University (LNTU20TD-09 and LNTU20TD-16).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2022.919552/full#supplementary-material

CONCLUSION

The Co ion-doped LTO composite was prepared using the hydrothermal method. The combination of LTO and Co3O4 by the Co-O-Ti bond not only maintained the structural stability of the composite but also improved the electron/ion diffusion rate of the composite. Compared with LTO, LTO/Co3O4 has a higher first discharge specific capacity, good rate performance, and better cycle stability. The first specific capacity was 1,178 mA h/g at 0.1 A/g. After 1,000 cycles, the discharge specific capacity was 248.4 mA h/g and the capacity retention rate was 99% (compared to the capacity at the 20th cycle). At the same time, the LTO/Co3O4 composite also has a higher discharge specific capacity at high current density (the discharge specific capacity was 174.6 mA h/g at 5 A/g), which was 2.2 times that of pure LTO.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/Supplementary Material. Further inquiries can be directed to the corresponding author.

AUTHOR CONTRIBUTIONS

MW: resources, writing—review and editing, supervision, project administration, funding acquisition. YC and CXY: designing and completing experiments, writing—original draft. YHZ, PFF, and WW: investigation, writing—review and editing. XLW: funding acquisition.

FUNDING

This work was financially supported by the National Natural Science Foundation of China (51974152), General Project of Science Research Foundation of Liaoning Province (LJKZ0363), Central Government Guiding Local Project of Science and Technology Development Foundation (2022H6/100100047), and Discipline Innovation Team Project of Liaoning Technical University (LNTU20TD-09 and LNTU20TD-16).

REFERENCES

Cheng, J., Che, R., Liang, C., Liu, J., Wang, M., and Xu, J. (2014). Hierarchical Hollow Li4Ti5O12 Urchin-like Microspheres with Ultra-high Specific Surface Area for High Rate Lithium Ion Batteries. Nano Res. 7 (7), 1043–1053. doi:10.1007/s12274-014-0467-2

Cheng, L., Yan, J., Zhu, G.-N., Luo, J.-Y., Wang, C.-X., and Xia, Y.-Y. (2010). General Synthesis of Carbon-Coated Nanostructure Li4Ti5O12 for a High Rate
