ARTIGO ORIGINAL

Influence of gestational and perinatal factors on body composition of full-term newborns

Sylvia Reis Gonçalves Nehab, Leticia D. Villela, Andrea D. Abranches, Daniele M. Rocha, Leila M.L. da Silva, Yasmin N.V. Amaral, Saint Clair G. Junior, Fernanda V.M. Soares, Maria Dalva Barborsa Beker Méio e Maria Elisabeth L. Moreira

Instituto Nacional de Saúde da Mulher, da Criança e do Adolescente, Instituto Fernandes Figueira (IFF), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, RJ, Brasil

Received on 3 de julho de 2019; accepted on 4 de setembro de 2019

KEYWORDS
Body composition; Newborn; Adiposity; Pregnancy

Abstract
Objective: To evaluate the influence of gestational and perinatal factors on body composition and birth weight of full-term newborns.
Method: This was a cross-sectional study, within a prospective cohort, consisting of 124 postpartum women and their newborns. Data included the following: maternal age; ethnicity; pre-gestational body mass index; gestational weight gain; parity; gestational morbidities (hypertension and gestational diabetes mellitus); gestational age at birth; birth weight; and newborn’s gender. Anthropometric and body composition data of the newborns were collected using air-displacement plethysmography (PeaPod® Infant Body Composition System—LMI; Concord, CA, USA). The stepwise technique was applied to a multiple linear regression model.
Results: The significant variables in the model that explained 84% of the variation in neonatal fat-free mass were: birth weight; maternal age; newborn’s gender and gestational age. For body fat mass: birth weight; newborn’s gender; gestational arterial hypertension; gestational diabetes; and gestational weight gain. These variables explained 60% and 46% of fat mass, in grams and as a percentage, respectively. Regarding birth weight, the significant factors were gestational age, pre-gestational BMI, and gestational weight gain. Female newborns showed higher body fat mass and male newborns had higher fat-free mass.
Conclusion: Gestational and perinatal factors influence neonatal body composition. Early identification of these gestational factors, which may be modifiable, is necessary to prevent obesity and chronic noncommunicable diseases in the future.

© 2019 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

DOI se refere ao artigo: https://doi.org/10.1016/j.jped.2019.09.006
Como citar este artigo: Nehab SR, Villela LD, Abranches AD, Rocha DM, Silva LM, Amaral YN, et al. Influence of gestational and perinatal factors on body composition of full-term newborns. J Pediatr (Rio J). 2020;96:771-7.
* Autor para correspondência.
E-mail: sylvia.nehab@iff.fiocruz.br (S.R. Nehab).

2255-5536 © 2019 Sociedade Brasileira de Pediatria. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob uma licença CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).
PALAVRAS-CHAVE
Composição corporal; Recém-nascido; Adiposidade; Gravidez

Influência de fatores gestacionais e perinatais na composição corporal de recém-nascidos a termo

Resumo
Objetivo: Avaliar a influência de fatores gestacionais e perinatais na composição corporal e no peso de nascimento de recém-nascidos a termo.

Método: Estudo transversal, dentro de uma coorte prospectiva, composto por 124 puérperas e seus recém-nascidos. Os dados incluíram: idade materna; etnia; índice de massa corpórea pré-gestacional; ganho de peso gestacional; paridade; morbididades gestacionais, (hipertensão arterial e diabetes mellitus gestacional); idade gestacional do nascimento; peso de nascimento; e sexo do recém-nascido. Os dados antropométricos e de composição corporal dos recém-nascidos foram coletados com a pleitismografia por deslocamento de ar (PeaPod®). Foi aplicada a técnica de stepwise no modelo de regressão linear múltipla.

Resultados: As variáveis significativas do modelo que explicou 84% da variação da massa livre de gordura neonatal foram: peso de nascimento; idade materna; sexo do recém-nascido; e idade gestacional. Para a massa de gordura corporal: peso de nascimento; sexo do recém-nascido; hipertensão arterial gestacional; diabetes gestacional; e ganho de peso gestacional. Essas variáveis explicaram 60% e 46% da massa de gordura, em gramas e percentual, respectivamente. Em relação ao peso de nascimento os fatores significativos foram: idade gestacional; IMC pré-gestacional; e ganho de peso gestacional. Os recém-nascidos do sexo feminino apresentaram maior massa de gordura corporal e o do sexo masculino maior massa livre de gordura.

Conclusão: Fatores gestacionais e perinatais influenciam a composição corporal neonatal. A identificação precoce desses fatores gestacionais, que podem ser modificáveis, é necessária para prevenção de obesidade e de doenças crônicas não transmissíveis no futuro.

© 2019 Sociedade Brasileira de Pediatria. Publicado por Elsevier Editora Ltda. Este é um artigo Open Access sob uma licença CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introdução

No Brasil, a prevalência de obesidade em crianças menores de 5 anos apresenta-se em crescimento em todas as regiões do país.¹ A taxa de obesidade, em maiores de 18 anos, no Brasil passou de 11,8%, em 2006, para 18,9%, em 2016, é considerada uma questão relevante de saúde pública.¹,²

O período inicial do crescimento e desenvolvimento do feto e da criança apresenta janelas de sensibilidade, também conhecidas como períodos críticos, nas quais fatores ambientais podem aumentar o risco das doenças crônicas não transmissíveis, como a obesidade.³-⁶ As alterações na adiposidade neonatal são em parte explicadas por mecanismos epigenéticos ocorridos no período intraútero.⁵

Vários estudos evidenciaram que a adiposidade neonatal pode ser um melhor marcador da adequação do crescimento intraútero e, consequentemente, ser um melhor preditor de obesidade no futuro.⁵-⁹

Fatores maternos gestacionais, como o índice de massa corporal (IMC) pré-gestacional e o ganho de peso gestacional excessivo, foram associados com o maior peso de nascimento dos recém-nascidos, mas poucas informações sobre sua associação com a composição corporal neonatal estão disponíveis e apresentam resultados conflitantes.⁵,⁹-¹¹

O objetivo deste estudo foi avaliar os fatores gestacionais e perinatais que influenciam a composição corporal e o peso de nascimento de recém-nascidos a termo.

Material e métodos

O presente estudo é um corte transversal de uma coorte prospectiva de recém-nascidos, feito no Instituto Nacional da Saúde da Mulher, da Criança e do Adolescente Fernandes Figueiras. Foram incluídas 124 puérperas e 124 recém-nascidos a termo, nascidos de março de 2016 até agosto de 2017, internados no alojamento conjunto desse Instituto e acompanhados após alta do alojamento conjunto, no ambulatório de pediatria. O estudo foi aprovado pelo Comitê de Ética em Pesquisa em Seres Humanos, do IFF/Fiocruz (CAE 00754612.9.0000.5269), e registrado no clinicaltrials.gov (NCT00875251). O Termo de Consentimento Livre e Esclarecido foi assinado por todos os participantes, antes da coleta dos dados.

O cálculo do número de gestantes e recém-nascidos incluídos no estudo considerou os resultados observados por Hull et al.,¹² que avaliaram a composição corporal de recém-nascidos de gestantes com ganho de peso excessivo (a média de 11,2±5,3 % massa de gordura para o grupo de ganho de peso adequado e 12,7±4,6 de % massa de gordura para o grupo de ganho de peso excessivo), com uma diferença entre os grupos de pelo menos 2,5%, um poder de 80% e um nível de confiança de 95%.

Os recém-nascidos com malformações congênitas e síndromes genéticas, expostos a infecções congênitas do grupo TORCH, vírus da imunodeficiência humana, vírus Zika, incompatibilidade sanguínea em uso de fototerapia e os gemelares foram excluídos do estudo.
Os fatores maternos, coletados por registros dos prontuários e entrevistas com as puérperas, foram os seguintes: idade materna; etnia; estado civil; trabalhar fora de casa; história de fumo na gestação; IMC pré-gestacional; ganho de peso gestacional; número de consultas no pré-natal; tipo de parto; paridade; e morbididades gestacionais, como a hipertensão arterial e o diabetes mellitus gestacional.

Calculou-se o IMC dividindo o peso pré-gestacional pela estatura materna ao quadrado (kg/m²), que foi usado na classificação do estado nutricional: baixo peso (IMC < 18,5); eutrófico (IMC 18,5–24,9); sobre peso (IMC 25,0–29,9); e obesidade (IMC ≥ 30,0).\(^{(13)}\)

O ganho de peso gestacional foi calculado pela subtração do peso da última consulta do pré-natal (38 semanas ± 2 semanas) do peso pré-gestacional e foi classificado como insuficiente, adequado ou excessivo. Foi considerado como adequado, segundo as recomendações do Institute of Medicine (IOM) de 2009: para mulheres de baixo peso, de 12,5 a 18 kg; para eutróficas, de 11,5 a 15,9 kg; as com sobre peso, de 7 a 11,5 kg; e as obesas, de 5 a 9 kg.\(^{(13)}\)

A hipertensão arterial gestacional foi definida quando a pressão arterial sistólica fosse ≥ 140 mmHg e/ou a pressão diastólica fosse ≥ 90 mmHg em dois momentos da gestação.\(^{(14)}\) O diabetes mellitus gestacional foi definido na presença de um dos critérios: glicose de jejum ≥ 92 mg/dL; uma hora após o teste de tolerância oral a glicose (TOTG) ≥ 180 mg/dL; 2 horas após o TOTG ≥ 153 mg/dL, em qualquer momento da gestação.\(^{(15)}\)

A massa de gordura e a massa livre de gordura (gramas e %) foram estimadas por meio da plestilografia por deslocamento de ar (Pea Pod Infant Body Composition System, LMI, Concord, CA), método validado para avaliação da composição corporal neonatal.\(^{(16,17)}\)

O peso em gramas foi obtido através da balança de alta precisão do Pea Pod; o comprimento, em centímetros, pela régua antropométrica recomendada pela Sociedade Brasileira de Pediatria, com a criança deitada sobre uma superfície plana, e o perímetro cefálico foi obtido com uma fita métrica, não extensível, ajustada à cabeça anteriormente na região supraorbitária e, posteriormente, na proeminência occipital.\(^{(18)}\)

Os índices de IMC e o escore Z (calculated para peso/idade, estatura/idade e perímetro cefálico/idade) foram obtidos com base nas curvas de crescimento da OMS 2006. A avaliação do estado nutricional foi feita com o programa WHO Anthros (versão 3.2.2, janeiro 2011).

As variáveis neonatais, como sexo, idade gestacional no nascimento e peso de nascimento, foram obtidas por registros nos prontuários. Os dados antropométricos e a composição corporal dos recém-nascidos foram avaliados até 96 horas de vida. A idade gestacional ao nascimento foi calculada pela ultrasonografia de primeiro trimestre ou pela data da última menstruação.

Os dados do estudo foram armazenados no programa Epidata versão 3.1 e analisados no programa SPSS (Statistical Package for the Social Sciences, versão 22.0). Para todas as análises, adotou-se um nível de significância de 0,05.

As variáveis contínuas foram descritas como média e desvio-padrão e as categóricas por frequência absoluta. Um modelo de regressão linear múltipla Stepwise foi usado para avaliar a relação dos desfechos (massa de gordura em gramas e percentual, massa livre de gordura e peso de nascimento) com o conjunto de variáveis gestacionais e perinatais. O teste t de Student foi usado para avaliar diferenças significativas entre o sexo do recém-nascido e os desfechos da composição corporal.

Resultados

Cento e vinte quatro puérperas e seus recém-nascidos foram incluídos no início da coorte e avaliados nas primeiras 96 horas de vida. Dessas puérperas, 41% apresentaram ganho de peso excessivo durante a gestação, a prevalência de sobre peso e obesidade foi de 46% e de hipertensão arterial e diabetes mellitus foi de 30,6% e 16,1%, respectivamente (tabela 1).

Características gerais das puérperas	Média (DP)
Idade materna (anos)	29,0 (±7,22)
Número de consultas no pré-natal	10,47 (±8,62)
Paridade	1,92 (±1,09)
IMC pré-gestacional (kg/m²)	25,34 (±4,96)
Ganho de peso gestacional (kg)	13,45 (±6,79)

Etnia	n (%)
Branca	48 (39,0%)
Parda	45 (36,6%)
Negra	22 (17,9%)
Outras	8 (6,5%)
Casada	105 (85,4%)
Trabalha fora	55 (44,4%)
Fumante	5 (4,0%)
Parto cesáreo	61 (49,2%)
Hipertensão arterial gestacional	38 (30,6%)
Diabetes mellitus gestacional	20 (16,1%)

Estado nutricional materno pré-gestacional	n (%)
Baixo peso (< 18,5 kg/m²)	5 (4,0%)
Eutrófico (18,5 - 24,9 kg/m²)	61 (49,2%)
Sobre peso (25 - 29,9 kg/m²)	41 (33,1%)
Obesidade (> 30 kg/m²)	17 (13,7%)

Ganho de peso gestacional (segundo critérios IOM 2009)	n (%)
Insuficiente	31 (25,0%)
Adequado	42 (33,8%)
Excessivo	51 (41,1%)

IMC, índice de massa corporal.

Recomendações do IOM 2009 para ganho de peso gestacional: baixo peso pré-gestacional (12,5 a 18 kg); eutróficas (11,5 a 16 kg); sobre peso (7 a 11,5 kg); e obesas (5 a 9 kg).
A tabela 2 apresenta as características gerais dos recém-nascidos. Os recém-nascidos com Apgar maior do que 7, no quinto minuto de vida. Esses recém-nascidos apresentaram a média do peso, ao nascer, de 3,281,6 g (± 464,97) e, massa de gordura de 307,56 (± 165,44) (tabela 2).

Os coeficientes dos modelos de regressão foram estimados considerando idade materna, etnia, IMC pré-gestacional, ganho de peso gestacional, paridade, diabetes mellitus gestacional, hipertensão arterial gestacional, idade gestacional, peso de nascimento e sexo do recém-nascido. A tabela 3 apresenta o ajuste final dos modelos considerando essas variáveis.

Para a massa de gordura, em gramas e percentual, os modelos multivariados identificaram as seguintes variáveis significativas: peso de nascimento, sexo, hipertensão arterial, diabetes gestacional e o ganho de peso gestacional. Essas variáveis explicaram a variação 60,5% da massa de gordura em gramas e 46,8% do percentual. O peso de nascimento, a hipertensão arterial, o diabetes gestacional e o ganho de peso gestacional contribuíram para o aumento da massa de gordura, enquanto que o sexo masculino contribuiu para a redução (tabela 3).

No modelo multivariado para a análise da massa livre de gordura, identificaram-se como variáveis significativas: o sexo, o peso de nascimento, a idade materna e a idade gestacional. O modelo explicou 84% da variação da massa livre de gordura. A idade materna contribuiu com a redução da massa livre de gordura, enquanto que o peso de nascimento, a idade gestacional e o sexo masculino contribuíram com o aumento da massa livre de gordura, em gramas (tabela 3).

A idade gestacional, IMC pré-gestacional e ganho de peso gestacional explicaram, juntos, 26% da variação do peso de nascimento (tabela 3).

Observou-se diferença significativa nos componentes avaliados da composição corporal, em relação ao sexo do recém-nascido (p < 0,01). Os recém-nascidos do sexo feminino apresentaram, no momento do nascimento, maior massa de gordura corporal (tabela 4).

Discussão

Observou-se que os fatores perinatais, como o peso de nascimento, sexo, idade gestacional, e as características da gestante, como a idade, ganho de peso gestacional, IMC pré-gestacional e a presença de morbidades (hipertensão arterial e diabetes mellitus), contribuíram significantivamente para a variação da composição corporal dos recém-nascidos a termo.

No estudo de Au et al.,10 que usou metodologia semelhante ao presente, foi evidenciada a variância de 19% do percentual da massa de gordura corporal, o sexo feminino, a etnia branca e o ganho de peso gestacional em excesso foram os principais fatores associados com o aumento da gordura corporal. Esses autores não observaram a relação do diabetes gestacional com a adiposidade neonatal e descobriram outros fatores que influenciaram na variação do percentual de gordura corporal, como: a idade gestacional, o IMC pré-gestacional, a paridade e a hipertensão materna.10 O modelo do presente estudo evidenciou a variação de 46% do percentual de massa de gordura corporal, os fatores associados foram: peso de nascimento, sexo, hipertensão arterial, diabetes gestacional e o ganho de peso gestacional.

Semelhantemente ao estudo de Au et al.,10 identificamos que o sexo feminino e o ganho de peso gestacional foram fatores associados ao aumento da massa de gordura corporal. Entretanto, em contraste com este estudo, a hipertensão arterial gestacional foi uma das variáveis do modelo que se associaram com o aumento da massa de gordura corporal. Isso talvez possa ser explicado pelo fato de o grupo de gestantes com essa morbidade também apresentar um ganho de peso excessivo na gestação.

Logan et al., em uma revisão sistemática e metanálise, demonstraram que os recém-nascidos de mães com diabetes gestacional apresentaram maior massa de gordura corporal quando comparados aos recém-nascidos de mães não diabéticas.19 No presente estudo, o diabetes gestacional também foi uma variável que se correlacionou positivamente com a adiposidade neonatal. Contrariamente, o estudo de Au et al.10 evidenciou que os recém-nascidos, filhos de gestantes que com baixo controle glicêmico, não apresentaram diferença no percentual de massa de gordura corporal quando comparados com as mães não diabéticas.

Outros estudos evidenciaram que o percentual de massa de gordura corporal dos recém-nascidos aumenta com a idade gestacional e com o maior IMC pré-gestacional.5,8,11 No estudo atual, o IMC pré-gestacional apresentou associação positiva com o peso de nascimento, mas não com a composição corporal.

Catalano et al. observaram que o melhor preditor para o maior peso de nascimento foi a idade gestacional, seguido pelo ganho de peso gestacional, peso materno pré-gestacional, sexo e paridade. Esses fatores juntos explicaram 29% da variação do peso de nascimento.12 No presente estudo, a idade gestacional, o IMC pré-gestacional e o ganho de peso gestacional também foram fatores importantes, que contribuíram com 26% da variação do peso de nascimento.
Tabela 3 Análise de regressão linear múltipla Stepwise (n = 124)

Variáveis perinatais e gestacionais	Coeficiente beta	IC 95%	p valor	R²
Massa livre de gordura (g)				
Peso de nascimento (g)	0,60	[0,54; 0,66]	0,000	0,84
Idade materna (anos)	−4,55	[−8,13; −0,97]	0,013	
Sexo masculino	83,53	[32,44; 134,63]	0,002	
Idade gestacional (semanas)	26,41	[4,81; 48,01]	0,017	
Massa de gordura (g)				0,60
Peso de nascimento (g)	0,24	[0,19; 0,28]	0,000	
Sexo masculino	−88,26	[−128,65; −47,87]	0,000	
Hipertensão arterial gestacional	47,02	[2,57; 91,48]	0,038	
Diabetes mellitus gestacional	67,17	[12,66; 121,68]	0,016	
Ganho de peso gestacional (kg)	3,13	[0,14; 6,12]	0,040	
Massa de gordura (%)				0,46
Peso de nascimento (g)	0,005	[0,004; 0,006]	0,000	
Sexo masculino	−2,78	[−4,01; −1,54]	0,000	
Hipertensão arterial gestacional	1,31	[−0,05; 2,68]	0,059	
Diabetes mellitus gestacional	2,09	[0,41; 3,76]	0,015	
Ganho de peso gestacional (kg)	0,09	[0,00; 0,18]	0,041	
Peso de nascimento				0,26
Idade gestacional (semanas)	151,13	[94,35; 207,90]	0,000	
IMC pré-gestacional (kg/m²)	20,94	[6,09; 35,78]	0,006	
Ganho de peso gestacional (kg)	11,62	[0,81; 22,43]	0,035	

IMC, índice de massa corporal.

Tabela 4 Massa de gordura e massa livre de gordura de recém-nascidos a termo categorizados por sexo, média e desvio padrão

Composição corporal	Feminino (n = 60)	Masculino (n = 64)	p valor
Massa de gordura corporal (%)	10,97 (± 4,66)	9,70 (± 4,46)	0,002
Massa livre de gordura (%)	89,03 (± 4,67)	90,30 (± 4,47)	0,002
Massa de gordura corporal (g)	345,42 (± 172,85)	170,10 (± 298,00)	0,022
Massa livre de gordura (g)	2694,75 (± 321,18)	2778,15 (± 342,87)	0,009

Entretanto, em contraste com estudos anteriores, a paridade não foi um fator na variação da composição corporal e do peso de nascimento.

O sexo é descrito como um fator determinante da composição corporal de recém-nascidos a termo. O estudo de Simon et al. evidenciou que os recém-nascidos a termo e do sexo masculino apresentaram mais massa magra em relação aos do sexo feminino, presumiu-se que a diferença na composição corporal seria explicada devido ao ação dos esteroides sexuais intrauterino. Fields et al. avaliaram a composição corporal de lactentes com um mês de vida e observaram que as meninas tinham percentual de massa de gordura corporal maior e menor massa livre de gordura do que os meninos. Aos 6 meses de vida, no entanto, essa diferença não foi observada. No presente estudo, o sexo foi um fator que contribuiu para o aumento da massa de gordura corporal (sexo feminino) e da massa livre de gordura (sexo masculino).

Outro dado relevante do estudo é a prevalência elevada de sobrepeso/obesidade pré-gestacional (46%), semelhante ao estudo de Starling et al., que evidenciaram uma prevalência de 45% do sobrepeso/obesidade pré-gestacional. A literatura já enfatiza as consequências de curto e longo prazo dessa morbidade, tanto para gestantes como para seus filhos. A hipótese de supernutrição fetal propõe que o excesso de glicose, ácidos graxos livres e triglicerídeos atravessam a placenta, resultam no aumento da secreção de insulina fetal, o que promove a adipogênese e hiperтроfia das células adiposas. Outros fatores, como a desregulação do sistema endócrino hipotálâmico, que regula o apetite e saciedade, assim como alterações epigenéticas, são mecanismos que aumentam o risco de obesidade no futuro.

Entretanto, foi observado que apesar do adequado número de consultas pré-natais, o ganho de peso gestacional em excesso ocorreu em 41,1% das participantes deste estudo e também foi um fator importante na variação da massa de gordura corporal do RN, semelhantemente a estudos prévios. Goldstein et al., em uma revisão sistemática e metanálise, evidenciaram que 47% das mulheres apresentaram ganho de peso acima das recomendações do IOM (2009) e que seus recém-nascidos apresentavam maior risco de nascem grandes para idade gestacional, macrossômicos e de parto cesáreo.

Esses resultados em relação ao ganho de peso gestacional podem indicar que o pré-natal não tem sido efetivo em relação à conscientização e orientação do controle nutricional adequado. Além disso, o local de estudo é um hospital terciário de referência para risco fetal e esse fato também...
pode explicar o alto número de sobrepeso e obesidade na população incluída.

A repercussão das alterações na massa corporal do recém-nascido de mães com sobrepeso/obesidade em longo prazo ainda não estão bem estabelecidas. No entanto, estudos apontam para o fato de que a adiposidade neonatal pode estar relacionada ao maior risco de síndrome metabólica em idades posteriores à infância. Assim, torna-se relevante a detecção precoce dos fatores gestacionais e perinatais relacionados ao aumento da massa de gordura corporal dos recém-nascidos.

No presente estudo, os fatores gestacionais, passíveis de prevenção, influenciaram mais a quantidade de massa de gordura neonatal, enquanto que as características demográficas (idade da mãe, idade gestacional e sexo do recém-nascido) influenciaram mais a quantidade de massa livre de gordura, ao nascer. Isso demonstra que os fatores modificáveis, como obesidade e ganho de peso gestacional, merecem destaque. Além disso, apesar de a avaliação ter sido em apenas um momento (até 4 dias de vida), teve como vantagem a proximidade com o nascimento e permitiu a avaliação da relação dos fatores perinatais com a composição corporal.

Um melhor enfoque no controle nutricional adequado, além do controle glicêmico e da pressão arterial durante o pré-natal, pode modificar a composição corporal do recém-nascido e expô-lo menos aos riscos futuros de obesidade e de doenças crônicas não transmissíveis. Futuros estudos são necessários para esclarecimentos sobre a repercussão em longo prazo do excesso de adiposidade neonatal. Outros fatores, como aleitamento materno, alimentação complementar, microbioma, exposição a xenobióticos, atividades que promovam o desenvolvimento infantil adequado, entre outros, podem influenciar esse desfecho e merecem ser incluídos no estudo de coorte.

Financiamento

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) - Brasil ID: 305090/2016-0, Fundação Carlos Chagas de Amparo à Pesquisa do estado do Rio de Janeiro (Faperj) - Brasil ID: E-26/202.979/2017.

Conflitos de interesse

Os autores declaram não haver conflitos de interesse.

Referências

1. Meller FO, Araujo CP, Madruga SW. Fatores associados ao excesso de peso em crianças brasileiras menores de cinco anos. Cien Saude Colet. 2014;19:943–55.
2. Brasil. Ministério da Saúde. Secretaria de Vigilância em Saúde. Vigetel Brasil, 2016: Vigilância de fatores de risco e proteção para doenças crônicas por qu vìritoletelfônico. Brasília: Ministério da Saúde; 2016. [cited 03 July 2019]. Available from: http://portalarquivos.saude.gov.br/images/pdf/2017/abril/17/Vigetel.pdf.
3. Wells JC. The thrifty phenotype?: an adaptation in growth or metabolism? Am J Hum Biol. 2011;75:65–75.
4. Barker DJ. In utero programming of chronic disease. Clin Sci. 1998;95:115–28.
5. Larqué E, Labain I, Flodmark CE, Lissau I, Czemin S, Moreno LA, et al. From conception to infancy-early risk factors for childhood obesity. Nat Rev Endocrinol. 2019;15:456–78.
6. Gluckman PD. Effect of in utero and early life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.
7. da Cunha AJ, Leite AJ, de Almeida IS. The pediatrician’s role in the first thousand days of the child: the pursuit of healthy nutrition and development. J Pediatr (Rio J). 2015;91: S44–51.
8. Catalano PM, Thomas A, Huston-Presley L, Amini SB. Increased fetal adiposity: avery sensitive marker of abnormal in utero development. Am J Obstet Gynecol. 2003;189: 1698–704.
9. Goldstein RF, Abell SK, Ranasinha S, Misso M, Boyle JA, Black MH, et al. Association of gestational weight gain with maternal and infant outcomes. JAMA. 2017;317:2207–25.
10. Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery H. Fetal and maternal factors associated with neonatal adiposity as measured by air displacement plethysmography: alarge cross-sectional study. Early Hum Dev. 2013;89:839–43.
11. McCarthy FP, Khashan AS, Murray D, Kiely M, Hourihane JO, Pasapathy D. Parental physical and lifestyle factors and their association with newborn body composition. BJOG. 2016;1824–9.
12. Hull HR, Thornton JC, Jr Y, Paley C, Rosem B, Mathews P, et al. Higher infant body fat with excessive gestational weight gain in overweight women. Am J Obstet Gynecol. 2011;205:1–7.
13. Institute of Medicine: National Research Council. Weight gain during pregnancy: reexamining the guidelines. Washington (DC): National Academy of Science; 2009 [cited 03 July 2019]. Available from: www.ncbi.nlm.nih.gov/books/NBK32813.
14. American College of Obstetricians and Gynecologists; Task Force on hypertension in Pregnancy. Hypertension in pregnancy. Obstet Gynecol. 2013;122:1122–31.
15. National Institute for Health and Care Excellence. Diabetes in pregnancy: management from preconception to the postnatal period. NICE. 2015;2–65 [cited 03 July 2019]. Available from: https://www.nice.org.uk/guidance/ng3.
16. Urlanda A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53:486–92.
17. Ma G, Yao M, Liu Y, Zou H, Urlanda A. Validation of a new pediatric air-displacement plethysmograph for assessing body composition in infants. Am J Clin Nutr. 2004;79: 653–60.
18. Villar J, Cheikh Ismail L, Victorca G, Ohoma EP, Bertino E, Altman DG, et al. International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet. 2014;384:857–68.
19. Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2017;102: F65–72.
20. Au CP, Raynes-Greenow CH, Turner RM, Carberry AE, Jeffery HE. Body composition is normal in term infants born to mothers with well-controlled gestational diabetes mellitus. Diabetes Care. 2013;36:562–4.
21. Hawkes CP, Hourihane JO, Kenny LC, Irvine AD, Kiely M, Murray DM. Gender- and gestational age-specific body fat percentage at birth. Pediatrics. 2011;128:645–51.
22. Catalano PM. Factors affecting fetal growth and body composition. Am J Obs Gynecol. 1995;172:1459–63.
23. Al-farsi YM, Brooks DR, Werler MM, Al-Shafae MA, Wallenburg HC. Effect of high parity on occurrence of some fetal growth indices?: a cohort study. Int J Womens Health. 2012:289–93.
24. Simon L, Borrego P, Darmaun D, Legrand A, Roze J, Chauty-Frondas A. Effect of sex and gestational age on neonatal body composition. 2013;1105-8.
25. Fields DA, Krishnan S, Wisniewski AB. Sex differences in body composition early in life. Gend Med. 2009;6:369–75.
26. Starling AP, Brinton JT, Glueck DH, Shapiro AL, Harrod CS, Lynch AM, et al. Associations of maternal BMI and gestational weight gain with neonatal adiposity in the Healthy Start study. Am J Clin Nutr. 2015;101:302–9.
27. Lawlor DA, Relton C, Sattar N, Nelson SM. Maternal adiposity - a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol. 2012;8:679–88.
28. Hull HR, Dinger MK, Knehans AW, Thompson DM, Fields DA. Impact of maternal body mass index on neonate birthweight and body composition. Am J Obstet Gynecol. 2008;198:1–6.
29. Waters TP, Huston-Presley L, Catalano PM. Neonatal body composition according to the revised Institute of Medicine recommendations for maternal weight gain. J Clin Endocrinol Metab. 2012;97:3648–54.
30. Crozier SR, Inskip HM, Godfrey KM, Cooper C, Harvey NC, Cole ZA, et al. Weight gain in pregnancy and childhood body composition: findings from the Southampton Women’s Survey. Am J Clin Nutr. 2010;91:1745–51.