SPECIAL GROUPS, VERSALITY AND THE GROTHENDIECK-SERRE CONJECTURE

ZINOVY REICHSTEIN AND DAJANO TOSSCI

Abstract. Let k be a base field and G be an algebraic group over k. J.-P. Serre defined G to be special if every G-torsor $X \to Y$ is locally trivial in the Zariski topology for every k-scheme Y. In recent papers an a priori weaker condition is used: G is called special if every G-torsor $X \to \text{Spec}(K)$ is split for every field extension K/k. We show that these two definitions are equivalent. We also generalize this fact and propose a strengthened version of the Grothendieck-Serre conjecture based on the notion of essential dimension.

1. Introduction

Let k be a base field and G be an algebraic group (i.e., a group scheme of finite type) over k. Let X be a k-scheme. A morphism $T \to X$ is a pseudo G-torsor if T is equipped with a (left) action of G such that the mapping $G \times_X T \to T \times_X T$ given by $(g, x) \mapsto (x, g \cdot x)$ is an isomorphism. A pseudo G-torsor T is a G-torsor if it is locally trivial in the fpf topology, i.e., if there exists a faithfully flat morphism $X' \to X$, of k-schemes, locally of finite presentation, such that $T \times_X X' \cong G \times_X X'$. We will denote the set of isomorphism classes of G-torsors over X by $\text{Tors}(X, G)$. This set has a marked element, represented by the split torsor $G \times_k X \to X$. If G is affine or if G is smooth and $\dim(X) \leq 1$, then $\text{Tors}(X, G)$ coincides with the Čech cohomology pointed set $H^1(X, G)$, computed in the fpf topology (see [Mil80, Theorem 4.3 and Proposition 4.6]). If A is a commutative k-algebra we will write $\text{Tors}(A, G)$ and $H^1(A, G)$ in place of $\text{Tors}(\text{Spec}A, G)$ and $H^1(\text{Spec}A, G)$, respectively.

In a foundational paper [Ser58] (reprinted in [Ser01]), J.-P. Serre defined G to be special if every G-torsor $T \to X$ is locally trivial in the Zariski topology on X. Here X is assumed to be a scheme over k. It is easy to see that this is equivalent to $\text{Tors}(R, G) = 1$ for every local ring R containing k. Subsequently A. Grothendieck classified special semisimple groups over an algebraically closed field; see [Gro58, Theorem 3]. There has been renewed interest in this notion in recent years. However, many recent papers use an a priori different definition: they define G to be special if $\text{Tors}(K, G) = 1$ for every field K containing k. Some of these papers, e.g., [Hur16] or [Rei00], appeal to Grothendieck’s classification, which is based on the classical definition of special group. Our first result...
below shows that this does not cause any problems because the classical and the modern definitions of special group are, in fact, equivalent.

Theorem 1.1. Let G be an algebraic group defined over a field k. Then the following conditions are equivalent:

1. $\text{Tors}(K, G) = 1$ for every field K containing k,
2. $\text{Tors}(R, G) = 1$ for any local ring R containing k,
3. $\text{Tors}(S, G) = 1$ for any semi-local ring S containing k.

In the sequel, we will say that G is “(1)-special” if it satisfies (1), “(2)-special” if it satisfies (2) and “(3)-special” if it satisfies (3).

The following conjecture arose in the above-mentioned classical papers; see [Ser58, Section 5.5, Remark] and [Gro58, Remark 3, pp. 26-27]. It was presumably motivated by the discrepancy between (1) and (2).

Conjecture 1.2 (Grothendieck-Serre Conjecture). Let R be a regular local ring containing k and G be a smooth reductive algebraic group over k. Then the natural morphism $H^1(R, G) \rightarrow H^1(K, G)$ has trivial kernel.

In the case, where k is an infinite perfect field, Conjecture 1.2 was proved by J.-L. Colliot-Thélène and M. Ojanguren [CO92, Theorem 3.2] for any smooth linear algebraic group (not necessarily reductive). In the case, where k is an arbitrary infinite field, it due to R. Fedorov and I. Panin [FP13]; moreover, they allow R to be an arbitrary semi-local ring. Panin [Pan19, Pan17] recently announced a proof in the case where k is finite (also with R an arbitrary semi-local ring).

Our proof of Theorem 1.1 does not rely on the Grothendieck-Serre conjecture. In the case, where k is infinite, we deduce it from Theorem 1.4 below. The proof of Theorem 1.4 is short and self-contained; see Section 4. In the case, where k is finite, our proof of Theorem 1.1 relies on recent work of M. Huruguen; see Section 5. In order to state Theorem 1.4 we shall need the following definition.

Definition 1.3. Let G be a linear algebraic group over a field k. We will say that a G-torsor $\tau: V \rightarrow Y$ is weakly (1)-versal if every G-torsor $\tau_1: T_1 \rightarrow \text{Spec}(K)$ over an infinite field K containing k can be obtained as a pull-back from τ via some morphism $\text{Spec}(K) \rightarrow Y$. In other words, there exists a Cartesian diagram of k-morphisms

$$
\begin{array}{ccc}
T_1 & \rightarrow & V \\
\tau_1 \downarrow & & \tau \\
\text{Spec}(K) & \rightarrow & Y
\end{array}
$$

Here Y is an integral scheme of finite type over k. Similarly, will say that the G-torsor $\tau: V \rightarrow Y$ is weakly (2)-versal (respectively, weakly (3)-versal) if and every G-torsor $\tau_2: T_2 \rightarrow \text{Spec}(R)$ (respectively, $\tau_3: T_3 \rightarrow \text{Spec}(S)$) over a local ring R (respectively, a

1These papers prove a stronger version of the Grothendieck-Serre conjecture, posed in [Gro68, Remark 11.1a], where G is assumed to be a group scheme over R. We will only be interested in the “constant case”, where G is defined over k. To the best of our knowledge, for a finite base field k, even the constant case of the Grothendieck-Serre conjecture was open prior to Panin’s work.
semi-local ring S containing k can be obtained from τ by pull-back via a morphism $\text{Spec}(R) \to Y$ (respectively, $\text{Spec}(S) \to Y$). Finally, for $n = 1, 2, 3$, we will say that $\tau: V \to Y$ is (n)-versal if the restriction of τ to every dense open subscheme of Y is weakly (n)-versal.

The notion of (1)-versality was studied in [Ser02] and [DR15] under the name of “versality”.

Theorem 1.4. Let G be a linear algebraic group over an infinite field k, Y be an integral scheme of finite type over k, and $\tau: V \to Y$ be a G-torsor. Then

(a) τ is weakly (1)-versal \iff τ is weakly (2)-versal \iff τ is weakly (3)-versal.

(b) τ is (1)-versal \iff τ is (2)-versal \iff τ is (3)-versal.

Let L be a field containing k and $\mu: T \to \text{Spec}(L)$ be a G-torsor. We will say that μ descends to an intermediate subfield $k \subset L_0 \subset L$ if μ is the pull-back of some G-torsor $\mu_0: T_0 \to \text{Spec}(L_0)$, i.e., if there exists a Cartesian diagram of the form

$$
\begin{array}{ccc}
T & \longrightarrow & T_0 \\
\downarrow \mu & & \downarrow \mu_0 \\
\text{Spec}(L) & \longrightarrow & \text{Spec}(L_0).
\end{array}
$$

The essential dimension $\text{ed}(\mu)$ of μ is the smallest value of the transcendence degree $\text{trdeg}(L_0/k)$ such that μ descends to L_0. The essential dimension $\text{ed}(G)$ of G is the maximal value of $\text{ed}(\mu)$, as K ranges over all fields containing k and τ ranges over all G-torsors $T \to \text{Spec}(K)$. Sometimes we will write $\text{ed}_k(\mu)$ in place of $\text{ed}(\mu)$ to emphasize that this number depends on the base field k, and similarly for $\text{ed}_k(G)$. Note that G is (1)-special if and only if $\text{ed}(G) = 0$; see Corollary 2.3. For a detailed discussion of essential dimension and further references, see [Rei10] or [Mer13].

In Section 6 we will prove the following corollary of Theorem 1.4.

Corollary 1.5. Let k be an infinite field, G be a linear algebraic group over k of essential dimension d, S be a semi-local ring containing k and $\tau: T \to \text{Spec}(S)$ be a G-torsor. Then there exists a Cartesian diagram of k-morphisms

$$
\begin{array}{ccc}
T & \longrightarrow & W \\
\downarrow \tau & & \downarrow \nu \\
\text{Spec}(S) & \longrightarrow & Y,
\end{array}
$$

where Y is a d-dimensional geometrically integral scheme of finite type over k, ν is G-torsor and $W(k) \neq \emptyset$.

In a similar spirit, we would like to propose the following variant of the Grothendieck-Serre conjecture.

Conjecture 1.6. Let k be an algebraically closed field, G be a connected reductive linear algebraic group over k, R be a regular local ring containing k, and $\tau: T \to \text{Spec}(R)$ be a G-torsor. Let K be the field of fractions of R and $\tau_K: T_K \to \text{Spec}(K)$ be the G-torsor
obtained by restricting τ to the generic point of $\text{Spec}(R)$. Assume that $\text{ed}_k(\tau_K) = d$. Then there exists a Cartesian diagram of k-morphisms

$$
\begin{array}{ccc}
T & \longrightarrow & W \\
\tau \downarrow & & \nu \downarrow \\
\text{Spec}(R) & \longrightarrow & Y,
\end{array}
$$

where Y is a d-dimensional integral scheme of finite type over k and ν is G-torsor.

One may also consider stronger versions of Conjecture 1.6, where R is allowed to be semi-local, G is not required to be reductive, and/or the assumption on the base field is weakened (e.g., k is only assumed to be infinite or perfect, or perhaps, allowed to be an arbitrary field). If k is not assumed to be algebraically closed, then it makes sense to also ask that $W(k)$ should be non-empty and Y geometrically integral, as in Corollary 1.5, so that Conjecture 1.6 reduces to the Grothendieck-Serre Conjecture 1.2 when $d = 0$. We do not know how to prove or disprove any of these versions. Some (admittedly modest) evidence for Conjecture 1.6 is presented in Section 7.

2. Preliminaries on (1)-special groups

Throughout this paper G will denote an algebraic group defined over a base field k. Unless otherwise specified, we will not assume that G is linear. We will use the terms “linear” and “affine” interchangeably in reference to algebraic groups.

Lemma 2.1. Let X be a scheme over k. Let $G_1 \hookrightarrow G$ be a closed immersion of algebraic groups defined group over k. Then the natural sequence of pointed sets

$$
\begin{array}{ccc}
1 & \longrightarrow & G_1(X) \\
& & \longrightarrow \ G(X) \\
& & \longrightarrow (G\setminus G)(X) \\
& & \longrightarrow \text{Tors}(X, G_1) \\
& & \longrightarrow \text{Tors}(X, G)
\end{array}
$$

is exact for any k-scheme X.

Here $G\setminus G$ denotes the homogeneous space parametrizing the right cosets of G_1 in G. Lemma 2.1 is stated and proved in [Ser58, Proposition 11] under the assumption that G and G_1 are smooth. The proof below proceeds along similar lines; we include it here for completeness.

Proof. The only nontrivial point is exactness at $\text{Tors}(X, G)$. More precisely, it is enough to prove that if the image of a G_1-torsor $\tau : Y \to X$ in $\text{Tors}(X, G)$ is trivial, then τ is the pull-back of the G_1-torsor $G \to G_1\setminus G$ via some morphism $X \to G_1\setminus G$. Now the image of τ in $\text{Tors}(X, G)$ under the natural map $\text{Tors}(X, G_1) \to \text{Tors}(X, G)$ is the G-torsor $\tau' : Y' = Y \times_{G_1\setminus G} G \to X$. By our construction, Y is a closed G-invariant subscheme of Y' over X. Since we are assuming that τ' splits, Y' is G-equivariantly isomorphic to $G \times_k X$. Projecting to the first component, we obtain a G-equivariant morphism $Y' \to G$. Restricting this morphism to Y, we obtain a G-equivariant morphism $f : Y \to G$, i.e., a Cartesian diagram

$$
\begin{array}{ccc}
Y & \longrightarrow & G \\
\downarrow & & \downarrow \\
X & \longrightarrow & G_1\setminus G,
\end{array}
$$
as desired.

We now proceed with the main result of this section.

Proposition 2.2. Let G be a (1)-special algebraic group over a field k. Then

(a) G is smooth,

(b) G is linear,

(c) G is connected.

Our proof of parts (b) and (c) below is adapted from Ser58, Section 4.1, where (2)-special groups are shown to be linear and connected.

Proof.

(a) By TV13, Theorem 1.2], $\text{ed}(G) \geq \dim(G) - \dim(G)$, where G is the Lie algebra of G. If G is (1)-special then, clearly, $\text{ed}(G) = 0$ and this inequality tells us that $\dim(G) = \dim(G)$. This shows that G is smooth.

(b) By faithful descent, EGA IV 2, Proposition 2.6.1], we may assume that k is algebraically closed. By part (a), G is smooth. We now proceed in two steps.

Step 1. Assume that G is connected. By Chevalley’s structure theorem Che60, Con02, there exists a unique normal linear k-subgroup of G such that the quotient is an abelian variety A.

We claim that A is trivial. Assume the contrary. Then by Ser58, Lemma 3, there exists a cyclic subgroup C of G of prime order l, distinct from the characteristic of k, such that the composition $C \hookrightarrow G \twoheadrightarrow A$ is injective. Let $K = k(t)$, where t is an indeterminate. By Lemma 2.1, the inclusion $C \hookrightarrow A$ induces an exact sequence of pointed sets

$$A(K) \rightarrow (C\setminus A)(K) \rightarrow H^1(K, C) \rightarrow H^1(K, A).$$

Since A is smooth over a field and C is affine, as explained in the introduction, the pointed set of torsors coincide with the first Čech cohomology pointed set. Note that $C\setminus A$ is an abelian variety. Hence, every rational map $A^1 \dashrightarrow C\setminus A$ is constant; see, e.g., Mil08, Proposition 3.9. Consequently, $(C\setminus A)(K) = (C\setminus A)(k)$ and thus the morphism $A(K) \rightarrow (C\setminus A)(K)$ is surjective. We conclude that

$$H^1(K, C) \rightarrow H^1(K, A)$$

has trivial kernel.

Now recall that the inclusion $C \hookrightarrow A$ factors through G. Thus the morphism $H^1(K, C) \rightarrow H^1(K, A)$ factors through $H^1(K, G)$. Since we are assuming that G is (1)-special and thus $H^1(K, G) = 1$, we conclude that $H^1(K, C) \rightarrow H^1(K, A)$ is the trivial map. That is, the kernel of this map is all of $H^1(K, C)$. Now (2.1) tells us that $H^1(K, C) = 1$. On the other hand, since l is different from the characteristic of k, C is isomorphic to μ_l and by Kummer theory, $H^1(K, C) \simeq K^*/(K^*)^l \neq 1$, a contradiction.

Step 2. Now let G be an arbitrary (1)-special group over k. By the definition of essential dimension, $\text{ed}(G) = 0$. Denote the connected component of G by G^0. Since G^0 is a closed subgroup of G of finite index, $\text{ed}(G^0) \leq \text{ed}(G)$ (see Bro07, Principle 2.10]) and thus $\text{ed}(G^0) = 0$. Since k is algebraically closed we conclude that G^0 is (1)-special and hence, affine by Step 1. Since k is algebraically closed, every connected component of G
has a k-rational point. Consequently, every connected component is isomorphic to G^0 (as a variety). Thus G is disjoint union of finitely many affine varieties (each isomorphic to G^0). We conclude that G is affine, and hence linear.

(c) By part (a), G is a closed subgroup of GL_n for some $n \geq 1$. The natural projection $\pi : \text{GL}_n \to X = G \setminus \text{GL}_n$ is then a G-torsor. Clearly X is integral. Since we are assuming that G is (1)-versal, π splits over the generic point of X. Consequently, GL_n is birationally isomorphic to $G \times X$. Since GL_n is connected, we conclude that G is also connected. \hfill \Box

Corollary 2.3. Let G be an algebraic group over a field k (not necessarily affine). Then G is (1)-special if and only if $\text{ed}(G) = 0$.

Proof. (a) The implication G is (1)-special $\implies \text{ed}(G) = 0$

follows immediately from the definition of essential dimension. If k is algebraically closed, the converse is also obvious (we have already used this observation in the proof of Step 2 above).

Now assume that k is an arbitrary field and $\text{ed}(G) = 0$. Then clearly $\text{ed}(G_\bar{k}) = 0$, where $G_\bar{k} = G \times_{\text{Spec}(k)} \text{Spec}(\bar{k})$ and \bar{k} denotes the algebraic closure of k. As we pointed out above, this implies that $G_\bar{k}$ is (1)-special. By Proposition 2.2(b), $G_\bar{k}$ is affine. By faithful descent, G is also affine. For an affine group G, a proof of the implication $\text{ed}(G) = 0 \implies G$ is (1)-special

can be found in [Mer09, Proposition 4.4] or [TV13, Proposition 4.3]. \hfill \Box

3. Preliminaries on (3)-special groups

The following lemma will be repeatedly used in the sequel.

Lemma 3.1. (a) Suppose $1 \to G_1 \to G \to G_2 \to 1$ is an exact sequence of algebraic groups defined over k. If G_1 and G_2 are (3)-special, then so is G.

(b) If $G = G_1 \times_k G_2$ is a direct product of G_1 and G_2, then the converse holds as well: G is (3)-special if and only if both G_1 and G_2 are (3)-special.

(c) Let l/k be a field extension of finite degree and G be an algebraic group defined over l. If G is (3)-special over l, then the Weil restriction $R_{l/k}(G)$ is (3)-special over k.

Proof. Throughout the proof, S will denote a semi-local ring containing k.

(a) Since the groups G_1 and G_2 are (3)-special, they are (1)-special. Therefore by Proposition 2.2(b), G_1 and G_2 are linear. Since $G \to G_2$ is a G_1-torsor then, after the base change $G \to G_2$, it is an affine morphism. By faithful descent (see [EGA IV, Proposition 2.7.1]), $G \to G_2$ is an affine morphism. Since G_2 is affine, we conclude that G is affine as well.

As we pointed out in the Introduction, when G is affine, there is a natural isomorphism between $\text{Tors}(X, G)$ and $H^1(X, G)$. From now on, we will write $H^1(X, G)$ in place of $\text{Tors}(X, G)$ and similarly for $H^1(X, G_i)$, $i = 1, 2$. An exact sequence $1 \to G_1 \to G \to G_2 \to 1$ of algebraic groups over k gives rise to an exact sequence

$$1 \to G_1(S) \to G(S) \to G_2(S) \to H^1(S, G_1) \to H^1(S, G) \to H^1(S, G_2);$$
see [Mil80, Section III.4]. Since \(G_1 \) and \(G_2 \) are (3)-special, we have \(H^1(S, G_1) = H^1(S, G_2) = 1 \). Hence, \(H^1(S, G) = 1 \). This completes the proof of part (a).

(b) Suppose \(G \) is (3)-special. Then \(G \) is (1)-special and hence, affine by Proposition 2.2(b). Since \(G_1 \) and \(G_2 \) are isomorphic to closed subgroups of \(G \), they are also affine. Now \(H^1(S, G) = H^1(S, G_1) \times H^1(S, G_2) \). Since \(H^1(S, G) \) is trivial, so are \(H^1(S, G_1) \) and \(H^1(S, G_2) \).

(c) Since \(G \) is (3)-special, it is also (1)-special, and hence, linear by Proposition 2.2(b). By the Faddeev-Shapiro theorem, \(H^1(S, R_{l/k}(G)) = H^1(S \otimes_k l, G) \). Note that \(S \otimes_k l \) is a semi-local ring containing \(l \). Since \(G \) is (3)-special over \(l \), \(H^1(S \otimes_k l, G) = 1 \), and part (c) follows.

Recall that an algebraic \(k \)-group \(U \) is called unipotent if over the algebraic closure \(\overline{k} \) there exists a tower of algebraic groups

\[
1 = U_0 \rightarrow U_1 \rightarrow \cdots \rightarrow U_{r-1} \rightarrow U_r = U
\]

such that each \(U_i \) is normal in \(U_{i+1} \) and the quotient \(U_{i+1}/U_i \) is isomorphic to \(\mathbb{G}_a \) (over \(\overline{k} \)). A unipotent group \(U \) over \(k \) is called split, if there is a tower (3.2) such that the subgroups \(U_i \) and the isomorphisms \(U_{i+1}/U_i \simeq \mathbb{G}_a \) are all defined over \(k \).

Lemma 3.2. The following groups are (3)-special for every positive integer \(n \):

(a) the general linear group \(\text{GL}_n \),

(b) the special linear group \(\text{SL}_n \),

(c) the symplectic group \(\text{Sp}_{2n} \),

(d) \(k \)-split unipotent algebraic groups.

Our proof of Lemma 3.2 is similar to the arguments in [Ser58, Section 4.4], where the same groups are shown to be (2)-special.

Proof. Let \(S \) be a semi-local ring containing \(k \).

(a) Elements of \(H^1(S, \text{GL}_n) \) are in a natural bijective correspondence with projective modules of rank \(n \) over \(S \); see, e.g., [Kmu91, III.(2.8)]. Here a projective \(S \)-module \(M \) is said to be of rank \(n \) if \(M \otimes_S (S/I) \) is an \(n \)-dimensional vector space over \(S/I \) for every maximal ideal \(I \) of \(S \). Part (a) is thus a restatement of [BH93, Lemma 1.4.4]: every projective module of rank \(n \) over a semi-local ring is free.

(b) By (3.1), the exact sequence of algebraic groups

\[
1 \rightarrow \text{SL}_n \rightarrow \text{GL}_n \xrightarrow{\det} \mathbb{G}_m \rightarrow 1
\]

induces an exact sequence

\[
\text{GL}_n(S) \xrightarrow{\det} \mathbb{G}_m(S) \rightarrow H^1(S, \text{SL}_n) \rightarrow H^1(S, \text{GL}_n)
\]

in cohomology. By part (a), \(H^1(S, \text{GL}_n) = 1 \). Thus in order to show that \(H^1(S, \text{SL}_n) = 1 \) it suffices to show that the map \(\text{det}: \text{GL}_n(S) \rightarrow \mathbb{G}_m(S) \) is surjective. On the other hand,
the surjectivity of this map follows from the fact that
\[
\det \begin{pmatrix}
a & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & 1
\end{pmatrix} = a
\]
for any \(a \in \mathbb{G}_m(S)\).

(c) \(H^1(S, \text{Sp}_{2n})\) is in a natural bijective correspondence with isomorphism classes of projective \(S\)-modules \(M\) of rank \(2n\), equipped with a symplectic form; see, e.g., [Kmu91, III. (2.5.1)]. As we saw in part (a), every projective module over a semi-local ring is free, \(M \simeq S^{2n}\). Moreover, up to isomorphism, there is only one symplectic form on \(S^{2n}\), \(x_1 \wedge x_2 + \cdots + x_{2n-1} \wedge x_{2n}\); see, e.g., [KM81, Proposition 2.1]. Thus \(H^1(S, \text{Sp}_{2n}) = 1\), as claimed.

(d) Applying Lemma 3.1(a) to the tower (3.2) recursively, we reduce to the case, where \(U = \mathbb{G}_a\). In this case part (d) follows by [Mil80, Proposition III 3.7] which states that fppf cohomology is the same as Zariski cohomology for coherent sheaves. Note that \(\text{Spec}(S)\) is an affine scheme, and Zariski cohomology of a quasi-coherent sheaf over an affine scheme is trivial.

□

Remark 3.3. Combining Lemma 3.2 with a theorem of N. D. Tăn [Tăn18], we see that for a unipotent group \(U\) defined over \(k\) the following conditions are equivalent: (a) \(U\) is (1)-special, (b) \(U\) is (2)-special, (c) \(U\) is (3)-special, and (d) \(U\) is split. We shall not need this in the sequel.

We are now in a position to prove Theorem 1.1 in the case, where \(G\) is a torus.

Lemma 3.4. Let \(T\) be a torus over \(k\). If \(T\) is (1)-special, then \(T\) is (3)-special.

Recall that a torus \(T\) over \(k\) is called quasi-trivial if its character \(\text{Gal}(k)\)-lattice is a permutation lattice. Equivalently, \(T\) is quasi-trivial if and only if \(T = \mathbb{G}_m \times \mathbb{G}_m\) for some finite field extension \(l/k\).

Proof of Lemma 3.4. By a theorem of Colliot-Thélène’s, \(T\) is (1)-special if and only if it is a direct factor of a quasi-trivial torus; see [Hur16, Theorem 18]. In other words, there exists another torus \(T'\) over \(k\) such that \(Q = T \times T'\) is a quasi-trivial torus. As we mentioned above, every quasi-trivial torus \(Q\) over \(k\) is of the form \(Q = \mathbb{G}_m \times \mathbb{G}_m\) for some finite field extension \(l/k\). By Lemma 3.2(a), \(\mathbb{G}_m = \text{GL}_1\) is (3)-special. Hence, by Lemma 3.3(c), \(Q\) is (3)-special, and by Lemma 3.1(b), \(T\) is (3)-special.

□

4. Proof of Theorem 1.4

Our proof will rely on the following lemma.

Lemma 4.1. Let \(\Gamma\) be a smooth connected algebraic group over \(k\), \(G\) be a closed subgroup also defined over \(k\), and \(S\) be a semi-local ring containing \(k\). Assume that \(\Gamma(k)\) is dense in \(\Gamma\). For any \(G\)-torsor \(\tau : T \to \text{Spec} S\) in the kernel of the natural map \(\text{Tors}(S, G) \to \text{Tors}(S, \Gamma)\) and for any non-empty \(G\)-invariant open subvariety \(U \subset \Gamma\) defined over \(k\) there exists a \(G\)-equivariant morphism \(f : T \to U\).
Remark 4.2. (a) If Γ is (3)-special, then $\text{Tors}(S, \Gamma) = 1$. In this case Lemma 4.1 can be rephrased as follows: the (left) G-torsor $\Gamma \to G \setminus \Gamma$ is a (3)-versal.

(b) Assume Γ is linear and k is infinite, and furthermore, Γ is reductive or k is perfect. Then the condition that $\Gamma(k)$ is dense in Γ is automatic because Γ is unirational over k; see [Bor91, Theorem 18.2].

Proof of Lemma 4.1 Let $X = G \setminus \Gamma$. The natural projection $\pi : \Gamma \to X$ is a G-torsor and $\pi(U)$ is a dense open subvariety of X. By Lemma 2.1, τ lies in the image of the morphism $X(S) \to \text{Tors}(S, G)$. This means that τ is the pull-back of π via a morphism $\alpha : \text{Spec}(S) \to X$. In other words, there exists a Cartesian diagram

$$
\begin{array}{ccc}
T & \overset{\alpha}{\longrightarrow} & \Gamma \\
\Downarrow \tau & & \Downarrow \pi \\
\text{Spec}(S) & \overset{\pi}{\longrightarrow} & X.
\end{array}
$$

Here $\alpha : G \to \Gamma$ is a G-equivariant morphism. Set $Z = X \setminus \pi(U)$ and denote the Zariski closures of the images of the closed points of S under $\overline{\alpha}$ by $X_1, \ldots, X_m \subset X$.

Note that Γ acts on $X = G \setminus \Gamma$ by right translations. We claim that there exists a $g \in \Gamma(k)$ such that $g(X_i) \not\subset Z$ for every $i = 1, \ldots, m$. If we can prove this claim, then the composition $f = t_g \circ \alpha : T \to \Gamma$ is a G-equivariant morphism and its image lies in U, as desired. Here $t_g : \Gamma \to \Gamma$ denotes right multiplication by g^{-1}, $t_g(\gamma) = \gamma \cdot g^{-1}$.

It remains to prove the claim. The points $g \in \Gamma(k)$ such that $g(X_i) \subset Z$ are the k-points of a closed subvariety $\Lambda_i \subset \Gamma$. Since k is infinite, it suffices to show that

$$
(4.1) \quad \Lambda_1 \cup \ldots \cup \Lambda_m \neq \Gamma.
$$

For the purpose of proving (4.1), we may pass to the algebraic closure of k and thus assume that k is algebraically closed. By Kleiman’s Transversality Theorem [Kle74, Theorem 2] there is a dense open subvariety $O_i \subset \Gamma$ such that $g(X_i)$ intersects Z transversely for any $g \in O_i(k)$. Since $Z \neq X$, this implies that $g(X_i) \not\subset Z$ for any $g \in O_i(k)$. We conclude that $O = O_1 \cap \ldots \cap O_m$ is a dense open subvariety of Γ which lies in the complement of $\Lambda_1 \cup \ldots \cup \Lambda_m$. This completes the proof of (4.1) and thus of the claim and of Lemma 4.1. \qed

We are now ready to finish the proof of Theorem 1.4. Part (b) is an immediate consequence of (a) and the definition of versality. In part (a), the implications

$$
\tau \text{ is weakly (3)-versal} \implies \tau \text{ is weakly (2)-versal} \implies \tau \text{ is weakly (1)-versal}
$$

are obvious. So, we will assume that $\tau : V \to Y$ is a weakly (1)-versal G-torsor and will aim to show that τ is weakly (3)-versal.

Recall that we are assuming that G is a linear algebraic group, i.e., a closed subgroup of GL_n for some $n \geq 1$. Set $X = G \setminus \text{GL}_n$, let $\pi : \text{GL}_n \to X$ be the natural projection and η be the generic point of X. Since τ is weakly (1)-versal, π_η is the pull-back of τ. That is, over some dense open subvariety $X_0 \subset X$ defined over k, π is the pull-back of a τ, via
a Cartesian diagram

\[
\begin{array}{cccccc}
\GL_n & \xrightarrow{\text{open}} & U_0 & \xrightarrow{\varphi} & V \\
\pi \downarrow & & \pi \downarrow & & \pi' \downarrow \\
G \setminus \GL_n & \xrightarrow{\text{open}} & X_0 & \xrightarrow{\varphi} & Y.
\end{array}
\]

Here \(U_0 = \pi^{-1}(X_0) \). Now suppose \(S \) is a semi-local ring containing \(k \) and \(\tau_3: T_3 \to \Spec(S) \) be a \(G \)-torsor. (Here the “3” in the subscript indicates that we are testing for (3)-versality.) By Lemma 3.2(a), \(\GL_n \) is (3)-special. Moreover, since \(k \) is infinite, \(\GL_n(k) \) is dense in \(\GL_n \). Applying Lemma 4.1 with \(\Gamma = \GL_n \), we conclude that there exists a \(G \)-equivariant morphism \(f: T_3 \to U_0 \). Composing \(f \) and \(\varphi \) we obtain a Cartesian diagram

\[
\begin{array}{cccc}
T_3 & \xrightarrow{f} & U_0 & \xrightarrow{\varphi} & V \\
\tau_3 \downarrow & & \pi \downarrow & & \pi' \downarrow \\
\Spec(S) & \xrightarrow{\tau} & X_0 & \xrightarrow{\varphi} & Y
\end{array}
\]

which shows that \(\tau \) is (3)-versal.

\[\square\]

5. Proof of Theorem 1.1

The implications \((3) \implies (2) \implies (1) \) are obvious, so we will focus on showing that \((1) \implies (3) \). Suppose \(G \) is (1)-special. Then by Proposition 2.2 \(G \) is smooth, linear and connected. Our goal is to show that \(G \) is (3)-special. We will consider three cases.

Case 1: The base field \(k \) is infinite. Since \(G \) is (1)-special, the trivial torsor \(\pi: G \to \Spec(k) \) is weakly (1)-versal. By Theorem 1.4 \(\pi \) is also weakly (3)-versal. In other words, for any local ring \(S \) containing \(k \) and any \(G \)-torsor \(\mu: T \to \Spec(S) \), there exists a Cartesian diagram

\[
\begin{array}{cccc}
T & \xrightarrow{\mu} & G & \xrightarrow{\pi} & \Spec(k) \\
\Spec(S) & \xrightarrow{\tau} & X_0 & \xrightarrow{\varphi} & Y
\end{array}
\]

We conclude that \(\mu \) is split. Thus shows that \(G \) is (3)-special, as desired.

Case 2: \(G \) is a connected reductive group defined over a finite field \(k \). By [Bor91, Proposition 16.6], a reductive group over a finite field \(k \) is quasi-split, i.e., has a Borel subgroup defined over \(k \). This allows us to appeal to the following result, due to M. Hurruguen [Hur16, Proposition 15]:

A quasi-split reductive linear algebraic group \(G \) over \(k \) is (1)-special if and only if there exists an exact sequence of the form

\[
1 \longrightarrow H \longrightarrow G \longrightarrow T \longrightarrow 1,
\]

where \(T \) is a (1)-special \(k \)-torus, \(H = H_1 \times \ldots \times H_n \), and each \(H_i \) is of the form \(R_{l_i/k}(\SL_{m_i}) \) or \(R_{l_i/k}(\Sp_{2n_i}) \), for some field extension \(l_i/k \) of finite degree.
By Lemma 3.4, T is (3)-special. We claim that H is also (3)-special. If we can prove this claim, then applying Lemma 3.1(a) to the above sequence, we will be able to conclude that G is (3)-special, as desired.

To prove the claim, recall that by Lemma 3.2, SL_n and Sp_{2n} are (3)-special for every n. By Lemma 3.1(c), each H_i is (3)-special, and by Lemma 3.1(b), H is (3)-special, as claimed.

Case 3: G is an arbitrary connected smooth linear algebraic group defined over a finite field k. Let U be the unipotent radical of G. Since k is perfect, U is defined over k and is k-split; see [Bor91, Corollary V.15.5(ii)]. The quotient $\overline{G} = G/U$ is a reductive group over k. By [San81, Lemma 1.13], the natural morphism $H^1(K,G) \to H^1(K,\overline{G})$ is a bijection for any field K containing k. By our assumption G is (1)-special, so $H^1(K,G) = 1$. Hence, $H^1(K,\overline{G}) = 1$ as well. We conclude that \overline{G} is (1)-special.

Now by Case 2, \overline{G} is (3)-special. By Lemma 3.2(d), U is also (3)-special. Applying Lemma 3.1(a) to the exact sequence $1 \to U \to G \to \overline{G} \to 1$, we conclude that G is (3)-special. This completes the proof of Theorem 1.1. □

Remark 5.1. Our argument in Case 2 uses [Hur16, Proposition 15], whose proof, in turn, relies on Grothendieck’s classification of special groups over an algebraically closed field [Gro58, Theorem 3]. In using Grothendieck’s classification, Huruguen implicitly assumed that every (1)-special group G over an algebraically closed field is (2)-special. This does not cause a problem though, either for us or in [Hur16], since we established the equivalence of (1) and (2) for groups over an infinite field in Case 1 by a self-contained argument. Alternatively, the equivalence of (1) and (2) over an infinite perfect field can be deduced from the variant of the Grothendieck-Serre conjecture proved by Colliot-Thélène and Ojanguren in [CO92, Theorem 3.2]. □

6. Proof of Corollary 1.5

Let k be an infinite field, and G be a linear algebraic group over k. We may assume that G is a closed subgroup of GL_n. Let $X = G \setminus \text{GL}_n$, $K = k(X)$ and π_K be the restriction of π to the generic point $\eta: \text{Spec}(K) \to X$ of X. Then $\text{ed}(\pi_K) = \text{ed}(G)$; see [Mer13, Proposition 3.11] or [Rei00, Theorem 3.4]. This means that there exists an intermediate subfield $k \subset K_0 \subset K$ and a pull-back diagram

$$
\begin{array}{ccccc}
\text{GL}_n & \xrightarrow{\pi^{-1}(\text{Spec}(K))} & T_0 & \\
\downarrow \pi & & \downarrow \pi_K & \\
X & \xrightarrow{\eta} & \text{Spec}(K) & \xrightarrow{\eta} & \text{Spec}(K_0)
\end{array}
$$

such that $T_0 \to \text{Spec}(K_0)$ is a G-torsor and $\text{trdeg}_K(L_0) = \text{ed}(G)$. Since K is a finitely generated field extension of k, so is K_0. In other words, there exists a dense open subvariety $X_0 \subset X$ defined over k, such that over X_0, π is the pull-back of a τ, via a Cartesian
diagram

\[
\begin{array}{ccc}
\text{GL}_n & \xrightarrow{\text{open}} & U_0 \\
\pi & \xdownarrow{\pi} & \varphi \\
X & \xrightarrow{\text{open}} & X_0 \\
\varphi & \xdownarrow{\nu} & Y,
\end{array}
\]

where \(U_0 = \pi^{-1}(X_0) \), \(Y \) is a geometrically integral scheme of finite type over \(k \) of dimension \(\dim_k(Y) = \text{ed}(\pi) = \text{ed}(G) \), the function field of \(Y \) is \(K_0 \), \(\nu \) is a \(G \)-torsor and the map \(\varphi \) is dominant. Note that since \(k \)-points are dense in \(\text{GL}_n \), they are also dense in \(W \). Now using Lemma 3.2 as we did in the proof Theorem 1.4, we see that for every semi-local ring \(S \) and every torsor \(\tau: T \to \text{Spec}(S) \), \(\tau \) can be obtained by pull-back from \(\nu \). □

Remark 6.1. The above argument shows that the \(G \)-torsor \(\nu: W \to Y \) in the statement of Corollary 1.5 can be chosen to be versal and independent of the choice of \(S \) or \(\tau \). Here “versal” means “(1)-versal”, “(2)-versal” or “(3)-versal”; these notions are equivalent by Theorem 1.4.

7. Some evidence for Conjecture 1.6

Let \(k \) be an algebraically closed field. Our main observation is the following.

Remark 7.1. Conjecture 1.6 holds if (a) \(\text{ed}(\tau_K) = 0 \) or (b) \(\text{ed}(\tau_K) = \text{ed}(G) \).

Indeed, in case (a) Conjecture 1.6 reduces to the variant of the Grothendieck-Serre Conjecture 1.2 proved in [CO92, Theorem 3.2] and in case (b) Conjecture 1.6 reduces to Corollary 1.5. In particular, if
\[
\text{ed}(\alpha) = 0 \text{ or } \text{ed}(G)
\]
for every field \(K \) containing \(k \) and every \(G \)-torsor \(\alpha: X \to \text{Spec}(K) \), then Conjecture 1.6 is satisfied for every local ring \(R \) and every \(G \)-torsor \(T \to \text{Spec}(R) \).

Condition (7.1) is obviously satisfied if \(\text{ed}(G) = 0 \) (i.e., \(G \) is a special group; see Corollary 2.3) or \(\text{ed}(G) = 1 \). Other examples are given below. For simplicity, we will assume that \(\text{char}(k) \neq 2 \) or 3.

Proposition 7.2. Conjecture 1.6 holds if

(a) \(G \) is the projective linear group \(\text{PGL}_n \), for \(n = 2, 3 \) or 6,

(b) \(G \) is the exceptional group \(G_2 \).

Proof. In view of (7.1), it suffices to show that \(H^1(K, G) = 1 \) for every field extension \(K/k \) of transcendence degree \(\leq \text{ed}(G) \).

(a) Here \(\text{ed}(G) = 2 \); see [Rei00, Lemma 9.4]. Moreover, \(H^1(K, \text{PGL}_n) \) is in a natural bijective correspondence with central simple algebras of degree \(n \) over \(K \). By Tsen’s theorem, \(H^1(K, \text{PGL}_n) = 1 \) for any \(K/k \) of transcendence degree \(\leq 1 \).

(b) Recall that \(H^1(K, G_2) \) is in a bijective correspondence with 3-fold Pfister forms \(\langle\langle a, b, c \rangle\rangle \) over \(K \) and \(\text{ed}(G_2) = 3 \). Let \(K/k \) be a field extension of transcendence degree \(\leq 2 \). By the Tsen-Lang theorem every 3-fold Pfister form is isotropic and hence, hyperbolic over \(K \); cf. [Rei00, Theorem 11.2] and its proof. Thus \(H^1(K, G_2) = 1 \), as desired. □
ACKNOWLEDGEMENTS

The authors are grateful to Shamil Asgarli, Michel Brion and Baptiste Morin for stimulating discussions.

REFERENCES

[BH93] Winfried Bruns and Jürgen Herzog. Cohen-Macaulay rings. Vol. 39. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993, pp. xii+403.

[Bor91] Armand Borel. Linear algebraic groups. Second. Vol. 126. Graduate Texts in Mathematics. Springer-Verlag, New York, 1991, pp. xii+288.

[Bro07] Patrick Brosnan. “The essential dimension of a g-dimensional complex abelian variety is 2g”. In: Transformation Groups 12.3 (2007), pp. 437–441.

[Che60] C. Chevalley. “Une démonstration d’un théorème sur les groupes algébriques”. In: J. Math. Pures Appl. (9) 39 (1960), pp. 307–317.

[CO92] Jean-Louis Colliot-Thélène and Manuel Ojanguren. “Espaces principaux homogènes localement triviaux”. In: Inst. Hautes Études Sci. Publ. Math. 75 (1992), pp. 97–122.

[Con02] Brian Conrad. “A modern proof of Chevalley’s theorem on algebraic groups”. In: J. Ramanujan Math. Soc. 17 (Jan. 2002), pp. 1–18.

[DR15] Alexander Duncan and Zinovy Reichstein. “Versality of algebraic group actions and rational points on twisted varieties”. In: J. Algebraic Geom. 24.3 (2015). With an appendix containing a letter from J.-P. Serre, pp. 499–530.

[EGA IV2] A. Grothendieck. “Eléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. Deuxième Partie”. In: Inst. Hautes Études Sci. Publ. Math. 24 (1965), pp. 1–361.

[Fed07] Roman Fedorov and Ivan Panin. “A proof of the Grothendieck-Serre conjecture on principal bundles over regular local rings containing infinite fields”. In: Publ. Math. Inst. Hautes Études Sci. 122 (2015), pp. 169–193.

[Gro58] A. Grothendieck. “Torsion homologique et sections rationnelles, exposé 5”. In: Séminaire C. Chevalley; 2e année. Anneaux de Chow et applications. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958, iii+134 pp.

[Gro68] Alexander Grothendieck. “Le groupe de Brauer. II. Théorie cohomiologique”. In: Dix exposés sur la cohomologie des schémas. Vol. 3. Adv. Stud. Pure Math. North-Holland, Amsterdam, 1968, pp. 67–87.

[Hur16] Mathieu Huruguen. “Special reductive groups over an arbitrary field”. In: Transform. Groups 21.4 (2016), pp. 1079–1104.

[Kle74] Steven L. Kleiman. “The transversality of a general translate”. In: Compositio Math. 28 (1974), pp. 287–297.

[KM81] B. Kirkwood and B. R. McDonald. “The symplectic group over a ring with one in its stable range”. In: Pacific J. Math. 92.1 (1981), pp. 111–125.

[Knu91] Max-Albert Knus. Quadratic and Hermitian forms over rings. Vol. 294. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles
REFERENCES

of Mathematical Sciences]. With a foreword by I. Bertuccioni. Springer-Verlag, Berlin, 1991, pp. xii+524.

[Mer09] Alexander S. Merkurjev. “Essential dimension”. In: Quadratic forms—algebra, arithmetic, and geometry. Vol. 493. Contemp. Math. Amer. Math. Soc., Providence, RI, 2009, pp. 299–325.

[Mer13] Alexander S. Merkurjev. “Essential dimension: a survey”. In: Transform. Groups 18.2 (2013), pp. 415–481.

[Mil08] James S. Milne. Abelian varieties. www.jmilne.org/math/CourseNotes/AV.pdf. 2008, pp. 1–172.

[Mil80] James S. Milne. Étale cohomology. Vol. 33. Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1980, pp. xiii+323.

[Pan17] Ivan Panin. “Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field”. In: arXiv preprint math/1707.01767 (2017), pp. 1–16.

[Pan19] Ivan Panin. “Nice triples and the Grothendieck-Serre conjecture concerning principal G-bundles over reductive group schemes”. In: Duke Math. J. 168.2 (2019), pp. 351–375.

[Rei00] Z. Reichstein. “On the notion of essential dimension for algebraic groups”. In: Transform. Groups 5.3 (2000), pp. 265–304.

[Rei10] Zinovy Reichstein. “Essential dimension”. In: Proceedings of the International Congress of Mathematicians. Volume II. Hindustan Book Agency, New Delhi, 2010, pp. 162–188.

[San81] J.-J. Sansuc. “Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres”. In: J. Reine Angew. Math. 327 (1981), pp. 12–80.

[Ser01] Jean-Pierre Serre. Exposés de séminaires (1950-1999). Vol. 1. Documents Mathématiques (Paris) [Mathematical Documents (Paris)]. Société Mathématique de France, Paris, 2001, pp. viii+259.

[Ser02] Jean-Pierre Serre. Galois cohomology. English. Springer Monographs in Mathematics. Translated from the French by Patrick Ion and revised by the author. Springer-Verlag, Berlin, 2002, pp. x+210.

[Ser58] Jean-Pierre Serre. “Espaces fibrés algébriques, exposé 1”. In: Séminaire C. Chevalley; 2e année. Anneaux de Chow et applications. Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1958, iii+134 pp. (mimeographed).

[Tân18] Nguyễn Duy Tân. “Special unipotent groups are split”. In: J. Pure Appl. Algebra 222.9 (2018), pp. 2465–2469.

[TV13] Dajano Tossici and Angelo Vistoli. “On the essential dimension of infinitesimal group schemes”. In: Amer. J. Math. 135.1 (2013), pp. 103–114.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA
E-mail address: reichst@math.ubc.ca

UNIV. BORDEAUX, CNRS, BORDEAUX INP, IMB, UMR 5251, TALENCE, FRANCE
E-mail address: dajano.tossici@u-bordeaux.fr