Large Fourier transforms never exactly realized by braiding conformal blocks

Michael H. Freedman¹ and Zhenghan Wang²,³

1Microsoft Project Q, Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030
2Microsoft Project Q, Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106-4030
3Department of Mathematics, Indiana University, Bloomington, IN 47405

Fourier transform is an essential ingredient in Shor’s factoring algorithm. In the standard quantum circuit model with the gate set \{U(2), CNOT, \}, the discrete Fourier transforms \(F_N = \left(\omega^{ij}\right)_{N \times N, i, j = 0, 1, \cdots, N-1, \omega = e^{2\pi i/N}\) can be realized exactly by quantum circuits of size \(O(n^2), n = \log N\), and so can the discrete sine/cosine transforms. In topological quantum computing, the simplest universal topological quantum computer is based on the Fibonacci (2+1)-topological quantum field theory (TQFT), where the standard quantum circuits are replaced by unitary transformations realized by braiding conformal blocks. We report here that the large Fourier transforms \(F_N\) and the discrete sine/cosine transforms can never be realized exactly by braiding conformal blocks for a fixed TQFT. It follows that approximation is unavoidable in implementation of the Fourier transforms by braiding conformal blocks.

Introduction. The simplest topological model for quantum computing which can approximate any quantum circuit efficiently by braiding conformal blocks is based on the Fibonacci topologically quantum field theory (TQFT) [4]. The corresponding conformal field theories (CFTs) for the Fibonacci TQFT include the level-1 WZW \(G_2\) CFT. TQFTs are low energy effective theories for topological phases of matter such as fractional quantum Hall (FQH) liquids, where quasi-particles can be anyons, even non-abelions theoretically. We will use the term anyon loosely here to include also non-abelions. On theoretical and numerical grounds it is believed that the Fibonacci TQFT is an essential part of an effective theory for the FQH liquids at filling fraction \(\nu = 12/5\) [10]. Moore and Read proposed that the ground state wavefunctions for anyons localized at fixed positions are given by the conformal blocks of the corresponding conformal field theory [3]. Thus quantum gates in topological quantum computers are the braiding matrices of the conformal blocks, which are also the braiding statistics of anyons.

A decade ago, Shor discovered the polynomial-time quantum algorithm for factoring integers. A key component of Shor’s algorithm is the application of the discrete Fourier transforms \(F_N\). It is known that the Fibonacci topological quantum computer can simulate Shor’s algorithm efficiently, but the simulation requires approximations of the Fourier transforms [3]. In this paper we present a “no-go” theorem by showing that approximation is unavoidable. Closely related to the Fourier transforms are the discrete sine/cosine transforms which are also useful for signal processing. Our discussion for Fourier transforms applies equally to those transforms.

As the prospect of a topological quantum computer has attracted increased attention, examination of the programming and compiling issues attendant to this design has begun [8]. Even an accurate (10⁻⁵) NOT gate requires several hundred elementary braids according to the known approximation scheme [9]. Audiences seeing such compilations always ask, “yes, but isn’t there a better way? Can’t the arithmetic properties of Fibonacci anyons be matched to the number theory of factoring?” While efficient factoring is still a theoretical possibility, we show no arithmetic wizardry will create the all-important Fourier, sine or cosine transforms inside TQFTs.

A TQFT has a finite label set \(L = \{a, b, c, \cdots\}\), which physically represents the anyon types in the theory. Then a TQFT is a consistent rule to assign each 2-dimensional oriented compact space \(\Sigma\) a vector space \(V(\Sigma)\), and each cobordism \((M, \Sigma_1, \Sigma_2)\) a linear map \(Z(M, \Sigma_1, \Sigma_2) : V(\Sigma_1) \rightarrow V(\Sigma_2)\). In particular, a projective representation of the mapping class group \(\mathcal{M}(\Sigma)\) on \(V(\Sigma)\). When \(\Sigma\) has boundaries, the boundaries will be labelled by anyons.

A TQFT is unitary if each vector space \(V(\Sigma)\) has a positive definite Hermitian inner product \(<\cdot, \cdot>_{\Sigma}\) satisfying the following conditions:

1): The Hermitian inner product is multiplicative with respect to disjoint union of surfaces, and the inner product on \(V(\emptyset)\) for the empty surface \(\emptyset\) is 1.

2): The Hermitian inner product is natural with respect to the mapping class group action.

3): For any cobordism \((M, \Sigma_1, \Sigma_2)\) and any \(x \in V(\Sigma_1)\) and \(y \in V(\Sigma_2)\), we have

\[<Z(M, \Sigma_1, \Sigma_2)(x), y>_{\Sigma_2} = <x, Z(M, \Sigma_2, \Sigma_1)(y)>_{\Sigma_1}.\]

These theses imply that the projective representations of the mapping class groups are unitary. Furthermore, according to [11] for any TQFT and any surface \(\Sigma\) (if \(\partial \Sigma \neq \emptyset\), then \(\partial \Sigma\) should be labelled) a spanning set for \(V(\Sigma)\) is obtained by the functor \(V\) applied to 3-manifolds \(M\) containing a labelled trivalent graph with \(\partial M = \Sigma\). Thus for any \(x, y \in V(\Sigma)\) with \(x = Z(M)\), we have \(<Z(M), y >_{\Sigma} = <Z(M, \emptyset, \partial M)(1), y >_{\Sigma} = <1, Z(M, \partial M, \emptyset)(y)>_{\emptyset}\). It follows from this identity that any Hermitian structure obeying 1)-3) above is determined by the operators \(Z(M, \partial M, \emptyset)\), hence unique. We can use the gluing axiom to reduce the computation of the Hermitian inner products for all surfaces to the computation for annuli and pairs of pants. It follows that if all the quantum dimensions of an Hermitian TQFT are positive,
and the Hermitian products on all pairs of pants are positive definite, then the TQFT is unitary.

F-matrices Given a unitary TQFT and a 4-punctured sphere $S^2_{a,b,c,d}$, where the 4 punctures are labelled by anyons of types a, b, c, d. The 4-punctured sphere can be divided into two pairs of pants (=3-punctured spheres) in two different ways. In FIG. 1, the 4-punctured sphere is the boundary of a thickened neighborhood of the graph in either side, and the two graphs encode the two different pants-decompositions of the 4-punctured sphere. The F-move is just the change of the two pants-decompositions.

By the axioms of a TQFT, each pants decomposition of $S^2_{a,b,c,d}$ determines an orthonormal basis of $V(S^2_{a,b,c,d})$. Therefore the F-move gives rise to a change of orthonormal bases of the same Hilbert space $V(S^2_{a,b,c,d})$, hence induces a unitary matrix $F_{a,b,c,d}$, which is called the F-matrix.

From the definition the F-matrices are unitary, but it is not obvious that the entries of the F-matrices are always algebraic. One of our goals is to show that the entire unitary structure, including the F-matrices, is compatible with algebraic choices for all unitary TQFTs. The difficulty lies in the choices of the F-matrices as they are basis dependent. The obvious “solution”: solve all complex equations in a TQFT such as the pentagon and hexagon equations for their real and imaginary parts independently plus the unitarity constraints for the F-matrices, is not sufficient for the compatibility as the condition of being purely real or purely imaginary is not algebraic. Our approach instead is to satisfy the algebraic conditions first for the F-matrices with certain normalization and then to deduce unitarity from the normalization.

Fibonacci TQFT First we recall the data for the Fibonacci TQFT, our chief example. There is only one non-trivial anyon type τ in the theory. We will also use τ to denote the golden ratio $\tau = \frac{1+\sqrt{5}}{2}$, and no confusions should arise.

There are two unitary TQFTs with anyon types $\{1, \tau\}$ and the fusion rule: $\tau \otimes \tau = 1 \oplus \tau$. One is the mirror (or parity reversed) theory of the other. We list the data for one theory and refer to the resulting theory as the Fibonacci TQFT. The data for the other theory is obtained by complex conjugate all the data below.

Anyon types: $\{1, \tau\}$

Fusion rule: $1 \otimes \tau = \tau \otimes 1 = \tau, \tau \otimes \tau = 1 \oplus \tau$

Quantum dimensions: $\{1, \tau\}$

Twists: $\theta_1 = 1, \theta_\tau = e^{\frac{2\pi i}{\tau}}$

Braidings: $R^\tau_1 = e^{\frac{2\pi i}{\tau}}, R^\tau_\tau = e^{\frac{2\pi i}{\tau^2}}$

S-matrices:

$S_1 = \frac{1}{\sqrt{20}} \begin{pmatrix} 1 & \tau \\ \tau^{-1} & -1 \end{pmatrix}, S_\tau = (e^{\frac{2\pi i}{10}})$

Topological degeneracy:

Let $\Sigma_{g,n}$ be the genus=g oriented surface with n boundaries labelled by τ, then $dim V(\Sigma_{g,n}) = \frac{\tau^n + (-1)^n \tau^{2-2g-n}}{(\tau+2)^{g-n}}$.

Topological inner product:

The Hilbert space $V(\Sigma_{g,n})$ is spanned by labelled uni-trivalent graphs $\{G\}$ in a bounding handlebody $H_{g,n}$ (for simplicity we ignore the framing subtlety.) Given two vectors $v, w \in V(\Sigma_{g,n})$ represented by two graphs G_v, G_w, then the inner product of v, w is the topological invariant of the 3-manifold M with a trivalent graph G inside obtained from doubling the handlebodies and uni-trivalent graphs G_v, G_w: glue the orientation reversed handlebody containing G_v with the handlebody containing G_w by the identity map on their boundaries.

Conformal block basis (FIG. 2):

F-matrices: $F = \begin{pmatrix} \tau^{-1} & \tau^{-1/2} \\ \tau^{-1/2} & -\tau^{-1} \end{pmatrix}$

The braiding of two anyons in a conformal block basis state is represented by the following graph (FIG. 3):

To find the matrix elements, we form the inner products of $\{1, \tau\}$ and the fusion rule: $\tau \otimes \tau = 1 \oplus \tau$. One is the mirror (or parity reversed) theory of the other. We list the data for one theory and refer to the resulting theory as the Fibonacci TQFT. The data for the other theory is obtained by complex conjugate all the data below.

Anyon types: $\{1, \tau\}$

Fusion rule: $1 \otimes \tau = \tau \otimes 1 = \tau, \tau \otimes \tau = 1 \oplus \tau$

Quantum dimensions: $\{1, \tau\}$

Twists: $\theta_1 = 1, \theta_\tau = e^{\frac{2\pi i}{\tau}}$

Braidings: $R^\tau_1 = e^{\frac{2\pi i}{\tau}}, R^\tau_\tau = e^{\frac{2\pi i}{\tau^2}}$
polynomials in $\sqrt{7}, \xi_{20}$ with integer coefficients. Therefore, we have:

Observation: All matrix entries of the braiding matrices with the above choices of data for the Fibonacci TQFT lie inside the number field $\mathbb{Q}(\sqrt{7}, \xi_{20})$ whose Galois group is the non-abelian dihedral group D_4. Furthermore, only $1, 2, 4, 5, 10, 20$-th roots of unity exist in $\mathbb{Q}(\sqrt{7}, \xi_{20})$.

We will now see that there are only finitely many roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$. But to realize all the discrete Fourier transforms F_N, we need infinitely many root of unity, therefore discrete Fourier transforms F_N for large N cannot be realized exactly by braiding conformal blocks. The roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$ determine which Fourier transform can be potentially realized by braiding conformal blocks. The roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$ determine which Fourier transform can be potentially realized by braiding conformal blocks in the Fibonacci TQFT. The notation below is clarified in the following section. Notice that $[\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}(\xi_{20})][\mathbb{Q}(\xi_{20}) : \mathbb{Q}]$. For a primitive m-th root of unity ξ_m, $[\mathbb{Q}(\xi_m) : \mathbb{Q}] = \phi(m)$, where $\phi(m)$ is the Euler function whose value is the number of integers from 1 to $m - 1$ that is relatively prime to m. Since $\tau \in \overline{\mathbb{Q}(\xi_{20})}$, so $[\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}(\xi_{20})] = 2$, and $[\mathbb{Q}(\xi_{20}) : \mathbb{Q}] = \phi(20) = 8$. Hence we have $[\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}] = 16$. It follows that there are only finitely many roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$ since there are only finitely m such that $\phi(m) \leq 16$.

Another consequence of this observation is that the Fibonacci TQFT cannot be realized in an abelian extension of \mathbb{Q} because the Galois group of $\mathbb{Q}(\sqrt{7}, \xi_{20})$ is non-abelian. It suffices to show that the Galois group of $\mathbb{Q}(\sqrt{7}, i) \subset \mathbb{Q}(\sqrt{7}, \xi_{20})$ is non-abelian, which is the same as the Galois group for the minimal polynomial of $f(x) = x^4 - x^2 - 1$. To determine the Galois group of $f(x)$, we use the following fact: let $g(x) = x^4 + ax^2 + b \in \mathbb{Q}(x)$ be irreducible with Galois group G. If neither b nor $b(a^2 - 4b)$ is a square in \mathbb{Q}, then the Galois group of $g(x)$ is the non-abelian dihedral group D_4. For a proof, see Proposition 4.11 of [1] on Page 273 and Ex. 9 on page 277. Now it is obvious that the Galois group of $f(x)$ is D_4.

Finally let us determine all the possible roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$. If a primitive m-th root of unity ξ_m is in $\mathbb{Q}(\sqrt{7}, \xi_{20})$, then $\phi(m)$ is a factor of 16 because $[\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt{7}, \xi_{20}) : \mathbb{Q}(\xi_{20})][\mathbb{Q}(\xi_{20}) : \mathbb{Q}] = 16$. If m is relatively prime to 20 and ≥ 7, then ξ_{20m} would be in $\mathbb{Q}(\sqrt{7}, \xi_{20})$. But $\phi(20m) = 8\phi(m) > 16$, a contradiction. It follows that if $\xi_m \in \mathbb{Q}(\sqrt{7}, \xi_{20})$, then m is of the form $2k \cdot 3 \cdot 5$ for possibly $k = 1, 2, 3$. But first 3 cannot be a factor m because otherwise, $\xi_{60} \in \mathbb{Q}(\sqrt{7}, \xi_{20})$. Since $Q(\xi_{60})$ would be a subfield of $Q(\sqrt{7}, \xi_{20})$ which are both degree 16 extension of Q, we will have $Q(\xi_{60}) = Q(\sqrt{7}, \xi_{20})$. But this is impossible since the Galois group of $Q(\xi_{60})$ is abelian, while the Galois group of $Q(\sqrt{7}, \xi_{20})$ is non-abelian. Exactly the same argument will rule out $k = 3$ with ξ_{60} replacing ξ_{20}. So the only possible primitive roots of unity in $\mathbb{Q}(\sqrt{7}, \xi_{20})$ are $\xi_m, m = 1, 2, 4, 5, 10, 20$, and their powers.

Using the relation $\xi_{20} = e^{2\pi i/c}/8$, we deduce that the central charges of the corresponding CFTs are $c = 14/5 \text{ mod } 8$, which is realized by the level=1 G_2 CFT. Because the central charges $c \neq 0$, we have to either work with projective representations rather than linear representations of the mapping class groups or work with some central extension of the mapping class groups for extended surfaces. For the torus case, the projective representation can always be lifted to a linear representation as follows: direct computation shows that $(st)^3 = \frac{t}{st\xi} = t$, then $(st)^3 = s^2$. It has been shown that a 3rd-root of unity of ξ_{20} is sufficient to lift all projective representations of the mapping class groups to linear representations of the extended mapping class groups [11]. Hence there are at least three different normalizations for a given TQFT, which lead to successively larger number fields:

1. Arbitrary choice for the F-matrices and projective representations for the mapping class groups
2. Unitary normalization for the F-matrices and projective representations for the mapping class groups
3. Unitary normalization for the F-matrices and linear representations for the extended mapping class groups.

For the Fibonacci TQFT, with normalization 1), the Fibonacci TQFT can be described in $\mathbb{Q}(\xi_{20})$; with normalization 2), $\mathbb{Q}(\sqrt{7}, \xi_{20})$; with normalization 3) $\mathbb{Q}(\sqrt{7}, \xi_{20})$. Note this field contains ξ_m for all $m\mid 60$ by an argument similar to the one above.

Unitary TQFTs Let \mathbb{Q} be the field of the rational numbers (a field here is not in the sense field theory in physics, but as in number theory. A field is a generalization of the number systems $\mathbb{Q}, \mathbb{R}, \mathbb{C}$.) A number field is a finitely dimensional vector space K over \mathbb{Q} which is a field: a vector space with a compatible multiplicity. The field K is called an extension field of \mathbb{Q}, and the dimension of K as a vector space over \mathbb{Q} is called the degree of the extension, denoted by $[K : \mathbb{Q}]$. Given a complex number x, $\mathbb{Q}(x)$ is the field of all complex numbers of the form $p(x)/q(x)$, where $p(x), q(x)$ are polynomials in x with coefficients in \mathbb{Q} and $q(x) \neq 0$. For example, $\mathbb{Q}(\sqrt{7})$ is a degree=4 extension of \mathbb{Q}. Fields can be extended repeatedly as follows: let K be an extension of \mathbb{Q} and y a complex number, then $K(y)$ is the field of all complex numbers of the form $p(y)/q(y)$, where $p(y), q(y)$ are polynomials in y with coefficients in K and $q(y) \neq 0$. Given two complex numbers x, y, the number field $\mathbb{Q}(x, y)$ is the extension of first \mathbb{Q} to $\mathbb{Q}(x) = K$ or $\mathbb{Q}(y) = K$, then K to $K(y)$ or $K(x)$, which both are $\mathbb{Q}(x, y)$. The degree of the extension is $[\mathbb{Q}(x, y) : \mathbb{Q}] = [\mathbb{Q}(x) : \mathbb{Q}][\mathbb{Q}(x) : \mathbb{Q}] = [\mathbb{Q}(x) : \mathbb{Q}][\mathbb{Q}(y) : \mathbb{Q}].$

Main Results: 1. Given a unitary TQFT, there is a normalization so that all the entries of the F-matrices are in a number field K, and the F-matrices associated to the F-moves are unitary.

2. Each Hilbert space $V(\Sigma)$ has an orthonormal basis so that every representation matrix of the mapping class group has entries in the number field K. Warning the Galois group $Gal(K/\mathbb{Q})$ is not necessarily abelian.

3. Large Fourier transforms, the discrete sine/cosine transforms cannot be realized exactly in any fixed TQFT by braiding conformal blocks.
Parts 3 follows from Part 2 as follows. We recall that the number of roots of unity in a number field K is always finite. To see this, the degree of the extension of $\mathbb{Q}(\xi_m), \xi_m = e^{2\pi i/m}$ is $\phi(m)$, where $\phi(m)$ is the Euler function. Therefore if $[K : \mathbb{Q}] = n$ and $\phi(m) > n$, then ξ_m cannot be in K because otherwise the extension degree will be $> n$. Similarly for $\mathbb{Q}(\sin(2\pi/m)), \mathbb{Q}(\cos(2\pi/m))$.

Part 2 follows from Part 1. Given a unitary TQFT, there is a unique way to construct compatible topological inner products for $V(\Sigma)$'s [7], Chapter IV, Section 10, and we need an explicit orthonormal basis for each $V(\Sigma)$ to compute the braiding matrices. To do this one sets up a graphical calculus so that each matrix entry is an invariant of a certain trivalent graph, which depends on our choices of the F-matrices and θ symbols. The theorem is reduced to the careful choices of F-matrices and θ symbols which are compatible with the topological inner product. The invariants of such graphs are polynomial of certain roots of unity and 6j symbols F_{ijk}. There are three kinds of contributions of roots of unity: the braiding eigenvalues, the twists, and the higher Frobenius-Schur indicators resulting from bending anyon trajectories. They are in some fixed extension of \mathbb{Q} whose degree is determined by the fusion rules through Vafa’s theorem. The 6j symbols are constrained by the pentagon identities. To have a consistent set of 6j symbols F_{ijk}^{lmn} with graphical calculus, it is sufficient to solve the following set of polynomial equations (for easiness of notation we drop the dependence on trivalent vertices):

1. $F_{ijk}^{j*0} = \sqrt{\frac{d_k}{d_i d_j}} \delta_{ijk}$
2. $F_{kln}^{ijn} = F_{ij*}^{k*ni} = F_{nk*i}^{mj} \sqrt{\frac{d_j d_m}{d_i}}$
3. $\sum_n F_{kpi}^{mnq} F_{ij*}^{q*ln} F_{jkl}*n = F_{ijkl}^{q*} F_{kln}^{q*}$

Any solution of this set of equations will be a consistent choice of 6j symbols for the unitary TQFT. Now we cite a theorem in algebraic geometry: the solution to the polynomial equations above is an algebraic variety over $\mathbb{Q}(\sqrt{d_i}), i = 1, 2, \cdots, R$, where R is the number of anyon types. Since this variety has at least one point which gives rise to the TQFT, then there will be also an algebraic point by Theorem 7 on Page 32 [7]. It follows that every graph invariant will be inside a fixed finite extension of $\mathbb{Q}(\sqrt{d_i})$ and hence in a number field over \mathbb{Q}.

The resulted graphical calculus from the solution of the the pentagon equations with the above normalization has very nice properties. The conformal block basis is an orthogonal basis. The θ symbols $\theta(a, b, c) = \sqrt{d_a d_b d_c}$, where d_a, d_b, d_c are the quantum dimensions of the anyons a, b, c. One consequence of the θ symbol values is that the conformal block basis elements have the same length, independent of the internal labellings. So the F-matrices are change of basis for two orthonormal bases up to overall scalars, hence are unitary.

Approximation by Fibonacci Quantum Computer Since the exact realization of the Fourier transforms is impossible in the Fibonacci TQFT, we would like to approximate them using braiding matrices. Given a prescribed accuracy, it will be interesting to find the explicit approximations. We will only outline an approximation here.

To simulate a standard n-qubit quantum circuit $U_L : (\mathbb{C}^2)^\otimes n \rightarrow (\mathbb{C}^2)^\otimes n$, we embed $(\mathbb{C}^2)^\otimes n$ into the conformal blocks on $2n + 2$ Fibonacci anyons at fixed positions. Since $\dim(V_{2n+2}) = F_{2n+2} > 2^n$ except for $n = 1$, we need to choose an efficiently computable subspace of the conformal blocks. One way to do this is to choose the following subspace $(\mathbb{C}^2)^\otimes n$ of V_{2n+2} with the conformal block basis (FIG. 4).

Then we look for a braid b so that the following diagram commutes up to the prescribed error, where $\rho(b)$ is the braiding matrix of conformal blocks.

$$\begin{align*}
(\mathbb{C}^2)^\otimes n &\rightarrow V_{2n+2} \\
U_L &\downarrow \rho(b) \\
(\mathbb{C}^2)^\otimes n &\rightarrow V_{2n+2}
\end{align*}$$

The standard quantum circuits for the exact realization of the Fourier transforms are given on Page 219 of [8]. Given a precision $\epsilon > 0$, then one finds a braid that approximate F_N by using the approximations of the single qubit gates and CNOT in [8].

Conclusion TQFTs are effective theories for topological phases of matter such as the fractional quantum Hall liquids. Specifically, the braiding matrices of conformal blocks are unitary transformations of the degenerate ground states when anyons are fixed at certain positions. Because polynomial time approximation schemes exist [8,9], the reported obstruction to exact realization of the Fourier transforms will not impose a fundamental physical constraint on topological quantum computing. However as a practical matter there is an important distinction between billions as opposed to millions of braid generators to factor a large number.

The Jones braid representation(s) that we get from Fibonacci anyons can be described as a regularized Fourier transform “FTB” of the braid group(s) B_n. The braid generators correspond to “position” coordinates and the path basis of conformal blocks is a regularized momentum basis for the group algebra of the braid group $\mathbb{C}[B_n]$. The chosen regularization consists of passing to an appropriate semi-simple quotient, the Temperley-Lieb algebra $TL^*_q = \mathbb{C}[B_n]/ \sim, q = e^{2\pi i/5}$. We have shown that one cannot find the FT of large cyclic groups inside these FTB. The most direct application
of FTB is to the estimation of Jones polynomial evaluations \[2\] and \[1\]. The possibility of harnessing FTB for number theoretic application such as factoring should be explored.

Acknowledgements This research has been supported by the NSF under grants DMR-0130388 and DMR-0354772 (Z.W.).

[1] M. Bordewich, M. Freedman, L. Lovsz, and D. Welsh, Approximate counting and quantum computation, Combinatorics, Probability and Computing, 14(5-6):737-754 (2005).
[2] M. H. Freedman, A. Kitaev, M. Larsen and Z. Wang, Topological quantum computation, Bull. Amer. Math. Soc. (N.S.) 40 (2003), no. 1, 31–38.
[3] M. H. Freedman, M. J. Larsen and Z. Wang, Commun. Math. Phys. 227 605 (2002).
[4] J.S. Xia et al., Phys. Rev. Lett. 93, 176809 (2004).
[5] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
[6] T. W. Hungerford, Algebra, GTM vol. 73.
[7] S. Lang, Introduction to algebraic geometry, Interscience Publisher, Inc., 1958.
[8] N. E. Bonesteel et al., Phys. Rev. Lett. 95, 140503 (2005).
[9] M. A. Niesen and I. L. Chuang, Quantum computation and quantum information, Cambridge University Press, 2000.
[10] E.H. Rezayi and N. Read, Non-abelian quantized Hall states of electron at filling factors \[12/5\] and \[13/5\] in the first excited Landau level, cond-mat/0608346.
[11] V. Turaev, Quantum invariants of knots and 3-manifolds, de Gruyter studies in mathematics, vol. 18.