COULOMB SUMS FOR ^7Li NUCLEUS AT 3-MOMENTUM TRANSFERS $q = 1.250 - 1.625 \text{ fm}^{-1}$

A.Yu. Buki, N.G. Shevchenko, I.S. Timchenko

National Scientific Center "Kharkov Institute of Physics and Technology", 61108, Kharkov, Ukraine

(Received June 1, 2008)

The experimental response functions of ^7Li nucleus at effective 3-momentum transfers $q = 1.250; \ 1.375; \ 1.500 \text{ and } 1.625 \text{ fm}^{-1}$ are presented. The longitudinal response functions were used to evaluate the Coulomb sum values. The Coulomb sums for ^6Li obtained by us earlier were applied to analyze these data. The Coulomb sums of lithium isotopes were compared with the well-known Coulomb sums values of the other nuclei.

PACS: 25.30.Fj, 27.20.+n, 24.30.Cz

1. INTRODUCTION

The longitudinal (R_L) and transverse (R_T) response functions represent the spectra of scattered electrons separated into longitudinal and transverse components respectively according to polarization of electromagnetic-interaction field. The relation between the response functions (RF) and the doubly differential electron-scattering cross section ($d^2\sigma/d\Omega d\omega$), according to ref. [1], can be written as

$$
\frac{d^2\sigma}{d\Omega d\omega}(\theta, E_0, \omega) / (\sigma_M(\theta, E_0)) = \frac{q^4}{q^2} \cdot R_L(q, \omega) + \left[\frac{1}{2} \frac{q^2}{q^2 + \tan^2 \frac{\theta}{2}} \right] \cdot R_T(q, \omega),
$$

where E_0 is the initial energy of electron scattered through the angle θ with the transfer of energy ω, effective 3-momentum $q = \xi \cdot \{4E_0[E_0 - \omega] \sin^2(\theta/2) + \omega^2\}^{1/2}$ and 4-momentum $q_m = (q^2 - \omega^2)^{1/2}$ to the nucleus involved; $\sigma_M(\theta, E_0) = Z^2e^4 \cos^2(\theta/2)/[4E_0^2 \sin^4(\theta/2)]$ is the Mott cross section, e is the electron charge. The correction ξ takes into account the distortion of the electron wave by the electrostatic field of nucleus. According to [2], this correction is written as $\xi = 1 + 1.33Ze^2/(E_0 < r^2 >^{1/2})$, where Z and $< r^2 >$ are, respectively, the charge and r.m.s. radius of the nucleus.

At the present time the theoretical calculations of $R_{T/L}$-functions are rather difficult and exist only for nuclei with $A \leq 4$. Therefore, the experimental data are presented as RF moments, which are compared with calculation by the sum-rule approach. The moment of RF have the following form

$$
S_{T/L}^{(n)}(q) = \frac{1}{Z} \int_{\omega_{el}}^{\infty} R_{T/L}(q, \omega) \eta \cdot G^2(q^2) \cdot \omega^\eta d\omega,
$$

where n is the moment number, $G(q^2)$ is the electric form factor of the proton; $\eta = [1 + q^2/(4M^2)] \times [1 + q^2/(2M^2)]^{-1}$ is the correction for the relativistic effect of nucleon motion in the nucleus; M is the proton mass; ω_{el} means that the bottom boundary of the integration domain is the energy transferred that corresponds to elastic scattering of the electron from the nucleus. But the integral does not include the elastic scattering form factor.

Usually the R_L-function moment with $n = 0$ is obtained from the measurements of RF. It is named Coulomb Sum (CS) and denoted as $S_L(q)$.

The investigation of the CS isotopic differences of ^6Li and ^7Li nuclei was the original aim of our measurements. However, as the result of the processing of only part of the experimental data, the interesting features of ^7Li CS values were discovered. The present paper deals with these CS features.

2. EXPERIMENTAL DATA

The spectra of electrons scattered by ^7Li nuclei were obtained at the linear accelerator LUE-300 of NSC KIPT at initial energy $E_0 = 129 \text{ to } 259 \text{ MeV}$ and scattering angles $\theta = 60^\circ 30^\prime \text{ to } 94^\circ 10^\prime$, $\omega = 160^\circ$. The range of the measurements of the 3-momenta and energies transferred to nuclues are shown in fig.1.

The experimental equipment and the measurement method have been described in refs. [3] [4]. The data processing and the error analysis were performed as in refs. [4] [5]. In regard to the last we note that this question has been given some consideration in the paper, because the errors of the experimental RF and, consequently, the errors of CS significantly depend on the systematical errors of the absolutization of the measured cross sections. Then, before and after the measuring of each spectrum of electrons scattered by ^7Li, the measurements of the ^{12}C ground state form factor were carried out. The absolutization of the measured $^7\text{Li}(\epsilon, \epsilon')$ cross sections was performed through the comparison of these data and the particularly precise values of ^{12}C form factor from ref. [6].
At the same time the correction obtained in ref. [7] was applied to data of ref. [6]. As additional verification the comparison of the measured during the experiment 7Li ground state form factor and its magnitude from ref. [8] was done.

As a result of the data processing through the usage of eq. 1, the $R_{T/L}$-function values for 7Li nucleus at $q = 1.250 - 1.625 \text{fm}^{-1}$ were obtained. For instance, RF at $q = 1.375 \text{fm}^{-1}$ is present in fig. 2. It is evident from fig. 2 that to determine experimentally CS, it is essential that RF should be integrated to $\omega = \infty$. For this purpose RF were extrapolated by the function $R \propto \omega^{-\alpha}$ (see refs. [9, 10]) to the region where the measurements are impossible. The value $\alpha = 2.45 \pm 0.15$ of the 7Li longitudinal RF was found by the method of ref. [11]. The obtained in such a way CS values are shown in fig. 3. The shown in the figure errors are statistical.

First of all the characteristic feature of these data is that the average value of 7Li $S_L(q)$ is equal to $1.018 \pm 0.025 \pm 0.029$ (the first error is statistical, and the second is systematical) at the transferred 3-momenta region $q = 1.375 - 1.625 \text{fm}^{-1}$, while for nuclei with $Z > 1$ $S_L(q)$ it is less than 0.8 at $q = 1.5 \text{fm}^{-1}$ (see, for instance, ref. [12]). To consider this phenomenon it is necessary to make sure of its validity. In this connection we note the following:

- At the same time, when the electron scattered by 7Li spectra were measured, we carried out the measurements of 4He($e, e')$ spectra. The obtained from these data CS of 4He were in good agreement both with experimental Bates and Saclay data, and with theoretical calculations (see ref. [5]). Consequently it seems to be improbable that the gross error is present in 7Li data.

- Simultaneous with 7Li the measurements of 6Li(e, e') spectra were carried out. From general considerations the CS of lithium isotopes should not differ significantly. In spite of the fact, that not all 6Li data have been processed, some estimations of 6Li CS may be done. At $q = 1.25 \text{fm}^{-1}$ this estimation showed that the CS values of the lithium isotopes are close (see fig. 4).

![Fig.1. The transferred 3-momenta and energies of the electron scattered spectra. The solid lines label the measured at $\theta = 160^\circ$ spectra, the dashed lines show the measurements at $\theta = 60^\circ 30'$ to $94^\circ 10'$, the dotted lines are the constant values of the transferred 3-momenta, at which the RF are obtained.](image1)

![Fig.2. The longitudinal and transverse 7Li response functions at $q = 1.375 \text{fm}^{-1}$. The solid lines show the extrapolations of RF (see the text)](image2)
Before the measurements with 6Li and 7Li we had carried out the first measurements with 6Li [13]. The 6Li CS from ref. [13] are denoted as $\sigma_i(q)$ and in the term of $\sigma_i(q)$ the modern determination of CS can be written as $S_L(q) = \sigma_i(q)/G^2(q^2)$. 6Li CS values from ref. [13] transformed in the same way are shown in fig.4.

It is evident from fig. 4 that all available data for lithium isotopes CS data are agree with each other. It is the basis to consider the reliability of the obtained 7Li CS values as sufficiently authorized.

3. DISCUSSION AND CONCLUSIONS

The $S_L(q)$ dependence shapes for $A > 2$ nuclei (with the exception of the lithium isotopes) are similar with each other: at transferred 3-momentum region $q = 0 - 2\, fm^{-1}$ the smooth rise with the increasing q is observed, and at $q \geq 2\, fm^{-1}$ $S_L(q)$ it is equal to constant value (plateau is obtained). Let us denote $S_L(q)$ in the plateau region as $S_{L_{max}}$. The value $S_{L_{max}}$ is equal to 1.0 for $A = 3$ nuclei [16][17]. In the case of all investigated in Bates and Saclay labs $A > 4$ the $S_{L_{max}}$ values decrease with the increase of atomic number: from 0.9 ± 0.03 for 4He to 0.5 ± 0.6 for 208Pb (the effect of the Sum rule quenching). As an illustration the straight line approximation of the experimental CS values of 3He is showed in fig. 4.

As it is seen from fig.4 the $S_L(q)$ dependencies of lithium isotopes and 4He ones differ from each other and, as was mentioned, from other nuclei. Let us discuss the following features of lithium nuclei CS value.

- The $S_L(q)$ dependence is equal to constant value already at $q = 1.25\, fm^{-1}$, but in the case of other nuclei the it is equal to constant value only at $q \approx 2\, fm^{-1}$. This phenomenon is probably explained by the fact that lithium isotopes are very cauterized, while there are investigations of noclustered nuclei only in the systematic of $S_L(q)$.

- Reasoning from the observed tendency of the $S_{L_{max}}$ decreasing with the growth of atomic number, in the case of lithium isotopes the $S_{L_{max}} \leq 0.9$ could be expected, but $S_{L_{max}} = 1.0$ was obtained. On the other hand the sum rule quenching ($S_{L_{max}} < 1.0$) can be explained by the nucleon modification inside the nuclear matter which have the density bigger than some critical value (see, for instance, ref. [21]). Following this hypothesis, let us view the relation between $S_{L_{max}}$ and the nuclear matter density in the nucleus center (ρ_0). For

![Graph](image-url)
$A \leq 3$ nuclei $S_{L,\text{max}}$ is equaled 1.0 and $\rho_0 < 0.15$ nucleon/fm3 and for the investigated $A \geq 4$ nuclei (besides $^{6,7}\text{Li}$ nuclei) $S_{L,\text{max}}$ is less than 1.0 and $\rho_0 > 0.15$ nucleon/fm3. In case of $^{6,7}\text{Li}$ $S_{L,\text{max}}$ is equal 1.0 and $\rho_0 < 0.15$ nucleon/fm3 similarly to $A \leq 3$ nuclei (though the atomic numbers of these nuclei are bigger than one of ^4He).

Thus the obtained lithium isotope $S_L(q)$ values may be considered as reason of the nucleon modification inside the nucleus matter.

REFERENCES

1. T. de Forest Jr. and J.D. Walecka, Ann. Phys. NY. 15, 1 (1966).

2. D.R. Yennie, F.L. Boos, D.C. Ravenhall, Phys. Rev. B 137, 882 (1965).

3. A.Yu. Buki et al., Phys. Atom. Nucl. 65, 753 (2002).

4. A.Yu. Buki et al., Phys. Atom. Nucl. 58, 1271 (1995).

5. A.Yu. Buki et al., Phys. Lett. B 641, 156 (2006).

6. W. Reuter et al., Phys. Rew. C 26, 806 (1982).

7. A.Yu. Buki, I.S. Timchenko, PAST. Series: Nuclear-physical investigations (theory and experiment). 5,45 (2007).

8. L.R. Suelzle, M.R. Yearian, H. Crannell, Phys. Rew. 162, 992 (1967).

9. V. Tornow et al., Nucl. Phys. A 348, 157 (1980).

10. G. Orlandini and M. Traini, Rep. Prog. Phys. 54, 257 (1991).

11. A.Yu. Buki et al., The Journal of Kharkiv National University. Physical series "Nuclei, Particles, Fields", 664, 45 (2005) (in Russian).

12. A. Zghiche et al., Nucl. Phys. A 572, 513 (1994).

13. A.Yu. Buki et al., Sov. J. Nucl. Phys. 25, 246 (1977).

14. R. Shiavilla, V.R. Pandharipande, A. Fabrocini, Phys. Rev. C 40, 1484 (1989).

15. V.D. Efros, Jad. Fiz. 55, 2348 (1992).

16. S.A. Dytman et al., Phys. Rev. C 38, 800 (1988).

17. K. Dow et al., Phys. Rev. Lett. 61, 1706 (1988); C. Marchand et al., Phys. Lett. B 153, 29 (1985).

18. J. Jourdan, Nucl. Phys. A 603, 117 (1996).

19. J. Morgenstern and Z.-E. Meziani, Phys. Lett. B 515, 269 (2001).

20. Yu.A. Kudeyarov et al., Nucl. Phys. A 163,316 (1971).

21. A.Yu. Buki, "Proceedings of the 9th Seminar Electromagnetic Interactions of Nuclei at Low and Medium Energies.” Moscow, September 20-22, 206 (2000).