A Simple Differential Geometry for Complex Networks

Emil Saucan,1 Areejit Samal,2,3 and Jürgen Jost3,4

1Department of Applied Mathematics, ORT Braude College, Karmiel 2161002, Israel
2The Institute of Mathematical Sciences (IMSc), Homi Bhabha National Institute (HBNI), Chennai 600113 India
3Max Planck Institute for Mathematics in the Sciences, Leipzig 04103 Germany
4The Santa Fe Institute, Santa Fe, New Mexico 87501, USA

We introduce new definitions of sectional, Ricci and scalar curvature for networks and their higher dimensional counterparts, derived from two classical notions of curvature for curves in general metric spaces, namely, the Menger curvature and the Haantjes curvature. These curvatures are applicable to unweighted or weighted and undirected or directed networks, and are more intuitive and easier to compute than other network curvatures. In particular, the proposed curvatures based on the interpretation of Haantjes definition as geodesic curvature allow us to give a network analogue of the classical local Gauss-Bonnet theorem. Furthermore, we propose even simpler and more intuitive proxies for the Haantjes curvature that allow for even faster and easier computations in large-scale networks. In addition, we also investigate the embedding properties of the proposed Ricci curvatures. Lastly, we also investigate the behaviour, both on model and real-world networks, of the curvatures introduced herein with more established notions of Ricci curvature and other widely-used network measures.

1. INTRODUCTION

Till recently, mathematical analysis of complex networks was largely based upon combinatorial invariants and models [1–5], at the detriment of the geometric approach. Especially, theoretical developments in discrete differential geometry leading to notions of curvature [6, 7] for graphs or networks remained largely unexplored until recently in network science [8–10]. Noteworthy, one of the widely-used combinatorial measure, the clustering coefficient [1], to characterize complex networks is in fact, a discretization of the classical Gauss curvature [11]. Lately, notions of network curvature have proven to be an important tool in the analysis of complex networks [8–10, 12]. In particular, Ollivier’s Ricci curvature [6] has been extensively used in the analysis of complex networks in its various avatars [8, 9, 13–15]. Based on Forman’s work [7], another approach towards the introduction of Ricci curvature in the study of networks was also proposed [10, 16]. Moreover, the two above-mentioned notions of Ricci curvature in several model and real-world networks were compared [12]. However, these two notions of Ricci curvature for networks have certain drawbacks. Their common denominator is the theoretical advanced apparatus which stands at the base of both notions of discrete Ricci curvature for networks. While Ollivier-Ricci curvature is prohibitively hard to compute in large networks, Forman-Ricci curvature is extremely simple to compute in large networks [12]. On the other hand, Forman-Ricci curvature is less intuitive than Ollivier-Ricci curvature, as it is based on a discretization of the so-called Bochner-Weitzenböck formula [17]. These issues may deter the interdisciplinary community of engineers, social scientists and biologists active in network science from employing these two notions of discrete Ricci curvature in their research.

Therefore, it is worthwhile to ask whether it is possible to define more intuitive notions of curvature (specifically, Ricci curvature) for networks which are modelled using the simple framework of graphs. The answer to this quandary is immediate after the realization that the simplest, more general, geometric notion at our disposal is that of metric space. Furthermore, unweighted and weighted graphs can be easily endowed with a metric, be it the combinatorial weights, the path distance, the given weights, the Wasserstein metric (also called the Earth mover’s distance) [18], or a metric such as the path degree metric [19, 20] that can be easily obtained from the given weights. For metric spaces, there indeed exist a number of simple and intuitive notions of curvature, and in particular, two definitions of curvature of curves which go back to Menger [21] and Haantjes [22], respectively. By partially extending ideas previously applied in the context of imaging and graphics (PL manifolds in general) [23–25], we show that the definitions of Menger [21] and Haantjes [22] allow us to naturally define Ricci and scalar curvatures for networks and hypernetworks including unweighted, weighted, undirected and directed ones.

The simplest and better known among the two notions of metric curvature is the Menger curvature. Notably, the Menger curvature defined for metric triangles naturally allows us to define scalar and Ricci curvatures for networks.

*Correspondence to: semil@braude.ac.il
FIG. 1. The spherical network representing the 1-skeleton of the canonical triangulation with fundamental triangles of the spherical counterpart of the truncated icosidodecahedron (see also Figure 3).

hypernetworks, simplicial complexes and clique complexes including unweighted, weighted, undirected and directed ones. Furthermore, we show that this approach holds not only for the usual, Euclidean model geometry, but as well for hyperbolic and spherical background geometry. We believe this is an important feature of the Menger curvature due to the following reason. Currently, while network embedding is commonly considered, such embedding is either purely combinatorial or, at most, equipped with an undescriptive Euclidean geometry which is decoupled from the one of the ambient space, and thus, a vital part of the expressiveness of the embedding is lost.

In comparison to the Menger curvature, Haantjes curvature is far less familiar among researchers but is a much more flexible notion. This is because Haantjes curvature is not restricted solely to triangles, but rather holds for general metric arcs. In consequence, Haantjes curvature presents two distinct advantages. Firstly, it is applicable to any 2-cell, not just to triangles. Secondly, it can be better used as discrete version of the classical geodesic curvature (of curves on smooth surfaces). In consequence, Haantjes curvature has a clear advantage over Menger curvature as it is applicable to networks or graphs, without any assumption on the background geometry. In fact, not only can it be employed in networks of variable curvature, it can be used to define the curvature of such a discrete space. In effect, this allows us to study the intrinsic, not just the extrinsic, geometry of networks. From a practical view of applications, the definition of Haantjes curvature allows inference of geometric, highly descriptive properties from its given characteristic, rather than presume them. From a more theoretical perspective but still with practical importance, for instance, while predicting the long time behavior, Haantjes curvature enables us to study networks as geometric spaces in their own right, not just as graphs realized in some largely arbitrary ambient familiar space.

In Section 2, we introduce the Menger curvature. In Section 3, we introduce Haantjes curvature, its generalizations and extensions, as well as its use in the introduction of local Gauss-Bonnet theorem for networks. In Section 4, we provide a brief overview of the embedding properties of the metric curvatures presented here. In Section 5, we present empirical results from analysis of the Menger curvature and the Haantjes curvature in various model and real-world networks. In Section 6, we conclude with a summary and future outlook. In appendix A we present the mutual relationship between the two metric curvatures, the Menger curvature and the Haantjes curvature, and also their connections to the classical notion of curvature for curves. Some of the results reported in this manuscript were recently presented in a conference proceeding [26].

2. MENGER CURVATURE

The simplest, most elementary manner, of introducing curvature in metric spaces is due to Menger [21]. Here, one simply defines the curvature $K(T)$ of a triangle T, i.e., a metric triple of points with sides of lengths a, b, c as $\frac{1}{R(T)}$, where $R(T)$ is the radius of the circle circumscribed to the triangle. An elementary computation yields

$$\kappa_{M,E}(T) = \frac{abc}{4\sqrt{p(p-a)(p-b)(p-c)}},$$

(1)

where $p = \frac{(a+b+c)}{2}$ denotes the half-perimeter of T.

However, there is conceptual problem with the above definition which utilizes the geometry of the Euclidean plane. In the general setting of networks, it is not natural to assume a Euclidean background. This is analogous to the
FIG. 2. Sign convention for (a) directed triangles and (b) directed polygons.

topology of surfaces, where the metric need not be Euclidean, but could be spherical, hyperbolic, or of varying Gauss curvature. For example, embedding networks in hyperbolic plane and space is becoming quite common [27–29].

Of course, one may formulate a spherical or hyperbolic analogue of Eq. 1, see e.g. [30]. The spherical version is

\[\kappa_{M,S}(T) = \frac{1}{\tan R(T)} = \frac{\sin p \sin (p - a) \sin (p - b) \sin (p - c)}{2 \sin \frac{a}{2} \sin \frac{b}{2} \sin \frac{c}{2}}, \]

whereas the hyperbolic version is

\[\kappa_{M,H}(T) = \frac{1}{\tanh R(T)} = \frac{\sinh p \sinh (p - a) \sinh (p - b) \sinh (p - c)}{2 \sinh \frac{a}{2} \sinh \frac{b}{2} \sinh \frac{c}{2}}. \]

Note that, in the setting of networks, the constant factors “4” and “2”, respectively, appearing in the denominators of the above equations are less relevant, and they can be discarded in this context.

Remark: The factors \((p - a), (p - b), (p - c)\) in the definition above are, in fact, the so-called Gromov products of the vertices of \(T\), which is employed in the definition of Gromov \(\delta\)-hyperbolicity [31].

Examples of computing Menger curvature with spherical background geometry

1. Let \(\triangle ABC\) be a spherical triangle with angles \(\alpha = \beta = \gamma = \frac{\pi}{2}\) on a sphere of radius 1. Then the length of the sides of the triangle, \(a = b = c = \frac{\pi}{2}\), and the formula above renders \(\kappa_{M,S}(\triangle ABC) = \sqrt{2}\).

2. The 1-skeleton of the triangulation of the sphere consisting of the fundamental triangles of a spherical counterpart of an Archimedean polyhedron (see Figure 1) represents a spherical network. The side of the spherical faces is taken to be 2 units. The fundamental triangle of an \(n\)-gonal face has angles \((\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{n})\), \(n = 4, 6, 10\). Hence, the remaining sides of the triangles, thence their Menger curvatures, can be computed using the classical formulas of spherical trigonometry, see e.g. [30].

Examples of computing Menger curvature with hyperbolic background geometry

1. The hyperbolic plane admits a tessellation with triangles of angles \((\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{3})\). The dual graph represents also a tessellation with regular (hyperbolic) squares, hexagons and 14-gones, symbolically denoted as \((4, 6, 14)\). It can be viewed as the Cayley graph of the group of the symmetries of the tessellation above, as generated by the reflections in the sides of the triangles, see e.g. [32]. Assuming that the edge is opposite the angle of measure \(\frac{\pi}{7}\), one can compute the remaining sides using the classical formulas of hyperbolic trigonometry, see e.g. [30].

2. It is possible to tessellate the hyperbolic space with regular dodecahedra having all the faces with angles equal to \(\frac{\pi}{3}\), see e.g. [33]. Then the fundamental triangle of the faces of these dodecahedra has angles \((\frac{\pi}{2}, \frac{\pi}{3}, \frac{\pi}{2})\). Normalizing the sides of the dodecahedra, such that half of its length be equal to 1, the hyperbolic law of sinuses, see e.g. [30], gives \(\sinh a = \frac{2\sqrt{2}}{3} \cdot \frac{\sinh \frac{1}{\sinh \pi/5}}{\sinh \frac{\pi}{2}}\) for the side opposite the angle of measure \(\frac{\pi}{3}\), and \(\sinh a = \frac{\sinh \frac{1}{\sinh \pi/5}}{\sinh \pi/2}\) for the side opposite the right angle. From these the \(\kappa_{M,H}(T)\) of the triangle can be readily computed.
Hyperbolic geometry is considered better suited to represent the background network geometry as it captures the qualitative aspects of networks of exponential growth such as the World Wide Web, and thus, it is used as the setting for variety of purposes. However, spherical geometry is usually not considered as a model geometry for networks because that geometry has finite diameter, hence finite growth. However, spherical networks naturally arise in at least two instances. The first one is that of global communication, where the vertices represent relay stations, satellites, sensors or antennas that are distributed over the geo-sphere or over a thin spherical shell that can, and usually is, modeled as a sphere. The second one is that of brain networks, where the cortex neurons are envisioned, due to the spherical topology of the brain, as being distributed on a sphere or, in some cases, again on a very thin (only a few neurons deep) spherical shell, that can also be viewed as essentially spherical. One can also devise an analogous, although less explicit formula in spaces of variable curvature, but in network analysis, it is not clear where that background curvature should come from. After all, the purpose here is to define curvature, and not take it as analogical, although less explicit formula in spaces of variable curvature, but in network analysis, it is not clear where (only a few neurons deep) spherical shell, that can also be viewed as essentially spherical. One can also devise an

As defined, the Menger curvature is always positive. This may not be desirable, as in geometry, the distinction between positive and negative curvature is important. For directed networks, however, a sign \(\varepsilon(T) \in \{-1, 0, +1\} \) is naturally attached to a directed triangle \(T \) (Figure 2), and the Menger curvature of the directed triangle is then defined, in a straightforward manner as

\[
\kappa_{M,O}(T) = \varepsilon(T) \cdot \kappa_M(T),
\]

where \(\kappa_M \) could be the Euclidean, the spherical or the hyperbolic version, accordingly to the given setting. Note that, since in simplicial complexes, triangles adjacent to an edge represent discrete (PL) analogues of 2-dimensional sections, the Menger curvature of each such triangle \(T \) can be naturally interpreted as the sectional curvature of \(T \).

We can then define the Menger-Ricci curvature of an edge by averaging as in differential or piecewise linear geometry as

\[
\kappa_M(e) = \frac{\text{Ric}_M(e) = \sum_{T_e \sim e} \kappa_M(T_e)},
\]

where \(T_e \sim e \) denote the triangles adjacent to the edge \(e \), and the Menger-scalar curvature of a vertex is given by

\[
\kappa_M(v) = \frac{\text{scal}_M(v) = \sum_{e_k \sim v} \text{Ric}_M(e_k) = \sum_{T \sim v} \kappa_M(T)},
\]

where \(e_k \sim v \) and \(T \sim v \) stand for all the edges \(e_k \) adjacent to the vertex \(v \) and all the triangles \(T \) having \(v \) as a vertex, respectively.

Remark: \(\text{Ric}_M(e) \) captures, in keeping with the intuition behind \(\kappa_M(T) \), the geodesic dispersion rate aspect of Ricci curvature. See [12] for a succinct overview of the different aspects of Ricci curvature.

As indicated above, we see two drawbacks for Menger curvature as a tool in network analysis. It depends on a background geometry model, and it naturally applies only to triangles, but not to more general 2-cells. Therefore, we turn, in the next section, to Haantjes curvature, which we find more flexible in applications. (See, however, the remark below.)

Remark: It is possible to prescribe a Menger curvature for general paths as well, in the following manner. Let \(\pi = v_0, v_1, \ldots, v_{n-1}, v_n \) be a path, subtended by the chord \((v_0, v_n) \), and let \(v_k, 1 \leq k \leq n-1 \) be any intermediary vertex. Then \(v_k \) divides the path \(\pi \) into two paths \(\pi_1 = v_1, \ldots, v_k \) and \(\pi_2 = v_k, \ldots, v_n \). Let us denote \(a = l(\pi_1), b = l(\pi_2), c = l(v_0, v_n) \). Then one can consider the Menger curvature of the metric triangle \(\Delta v_0v_kv_n \). Note that it does not depend on the choice of the vertex \(v_k \). Again, the Menger curvature can be computed with the Euclidean, spherical or hyperbolic flavor, according to the preferred model geometry for the given network. As already noted above, this approach has the limitation of prescribing a predefined curvature for the network. On the other hand, this approach allows for the passing to an Alexandrov comparison type of coarse geometry, see e.g. [34].

3. HAANTJES CURVATURE

Haantjes [22] defined metric curvature by comparing the ratio between the length of an arc of curve and that of the chord it subtends. More precisely, if \(c \) is a curve in a metric space \((X, d) \), and \(p, q, r \) are points on \(c \), \(p \) between \(q \) and \(r \), the Haantjes curvature is defined as

\[
\kappa_H^2(p) = 24 \lim_{q,r \to p} \frac{l(\tilde{q}r) - d(q, r)}{(d(q, r))^4},
\]
FIG. 3. The truncated icosidodecahedron, another Archimedean polyhedron. This is an Euclidean counterpart of the spherical polyhedron in Figure 1. There are three types of edges in this object, and the Forman-Ricci curvature for the square-hexagon, square-decagon and hexagon-decagon edges are equal to $\sqrt{2 + \sqrt{5}}$, $\sqrt{2 + 3}$ and $\sqrt{5 + 3}$, respectively.

FIG. 4. Haantjes-Ricci curvature in the direction uv, is defined as $\text{Ric}_H(uv) = \sum_{i=1}^{m} K_{H,uv}(\pi_i)$ where $K_{H,uv}(\pi_i) = \frac{l(\pi_i) - l(v_0,v_n)}{l(v_0,v_n)^3}$ $i = 1, 2, 3$; π_0 being the shortest path connecting the vertices u and v.

where $l(\hat{qr})$ denotes the length, in the intrinsic metric induced by d, of the arc \hat{qr} (see also Appendix below). In the network case, \hat{qr} is replaced by a path $\pi = v_0, v_1, \ldots, v_n$, and the subtending chord by edge $e = (v_0, v_n)$. Clearly, the limiting process has no meaning in this discrete case. Furthermore, the normalizing constant “24” which ensures that, the limit in the case of smooth planar curves will coincide with the classical notion, is superfluous in this setting. This leads to the following definition of the Haantjes curvature of a simple path π:

$$k_H^2(\pi) = \frac{l(\pi) - l(v_0,v_n)}{l(v_0,v_n)^3},$$

where, if the graph is a metric graph, $l(v_0,v_n) = d(v_0,v_n)$. In particular, in the case of the combinatorial metric, we obtain that, for path $\pi = v_0, v_1, \ldots, v_n$ as above, $k_H^2(\pi) = \sqrt{n-1}$. Note that considering simple paths is not a

FIG. 5. Haantjes-Ricci curvature Ric_H for directed networks, endowed with combinatorial weights: (a) $\text{Ric}_H = 6\pi - 3$, (b) $\text{Ric}_H = 2\pi - 1$, and (c) $\text{Ric}_H = 6\pi - 2 - \sqrt{2}$. Note that while Forman-Ricci curvature is a counter of triangles in simplicial complexes, Haantjes-Ricci curvature represents a counter of all n-gones, since each n-gone contributes a \sqrt{n} term.
Examples of three-dimensional polyhedral complexes.

Menger curvature, as π for every directed path π for the Menger curvature in the preceding section, namely

$$\kappa_{H,O}(\pi) = \varepsilon(\pi) \cdot \kappa_H(\pi),$$

for every directed path π, where $\varepsilon \in \{-1, 0, +1\}$ denotes the direction of path π (see also Section 3.3 below).

In a straightforward manner, we can define Haantjes-Ricci curvature and Haantjes-scalar curvature, similar to the restriction, given that a metric arc is, by definition, a simple curve. However, to capture in the discrete context the local nature of the Ricci (and scalar) curvature, we shall restrict to paths π such that $\pi^* = v_0, v_1, \ldots, v_n, v_0$ is an elementary cycle.

Clearly, one can extend the above definition of Haantjes curvature to directed paths in the same manner as done for the Menger curvature in the preceding section, namely

$$\kappa_H(\pi) = \varepsilon(\pi) \cdot \kappa_H(\pi),$$

where $\pi \sim e$ denote the paths that connect the vertices anchoring the edge e, and

$$\kappa_H(e) \equiv \text{Ric}_H(e) = \sum_{\pi \sim e} \kappa_H(\pi),$$

where $\kappa_H(e) \equiv \text{scal}_H(v) = \sum_{e_k \sim v} \text{Ric}_H(e_k),$

Examples of Archimedean (semi-regular) polyhedra.

1. The truncated dodecahedron is a typical Archimedean convex body, hence of positive combinatorial curvature concentrated at vertices. However, the two types of edges, the pentagon-hexagon ones and the hexagon-hexagon ones, in this object have Forman-Ricci curvature $\text{Ric}_F(e)$ equal to -1 and -2, respectively. In contrast, the Haantjes-Ricci curvature is, by definition, always positive: $\text{Ric}_H(e) = 9$ for the pentagon-hexagon edges, and $\text{Ric}_H(e) = 10$, for the hexagon-hexagon edges.

2. The truncated octahedron is another Archimedean polyhedron. The positivity condition for Forman-Ricci curvature for all edges does not hold here as well: $\text{Ric}_F(e) = 0$ for square-hexagon edges, and $\text{Ric}_F(e) = -2 < 0$ for hexagon-hexagon edges. While the Haantjes-Ricci curvature is, by definition, always positive: $\text{Ric}_H(e) = 8$ for the square-hexagon edges, and $\text{Ric}_H(e) = 10$, for the hexagon-hexagon edges. Let us also note that the edges of this object represent the Cayley graph of the symmetric group $S(4)$ with respect to the set of generators $\{\tau_1, \tau_2, \tau_3\}$, where τ_1, τ_2, τ_3 are the transpositions $\tau_1 = (12), \tau_2 = (23), \tau_3 = (34)$ (see [32]).

Examples of non-convex uniform polyhedra.

1. The tetrahemihexahedron $(4, \frac{3}{2}, 4.3)$ is a simple non-orientable polyhedron, representing a (minimalistic) model of the real projective plane. As such, it’s Euler characteristic is equal to 1. The Forman-Ricci curvature of each edge here is equal to 1, and thus, strictly positive, whereas the Haantjes-Ricci curvature is equal to $1 + \sqrt{2}$.

2. The octahemioctahedron $(6, \frac{3}{2}, 6.3)$ is the only toroidal uniform polyhedron with Euler characteristic 0. The Forman-Ricci curvature of each triangle-hexahedron edge here is equal to -1, whereas the Haantjes-Ricci curvature is equal to 3.

3. The nonconvex great rhombicuboctahedron (or quasi-rhombicuboctahedron) $(4, \frac{3}{2}, 4.4)$ is composed of 8 regular triangles and 18 squares. The triangles are retrograde, and thus, their Haantjes curvature should be taken with a negative sign. Therefore, the Haantjes-Ricci curvature of an triangle-square edge here is $\sqrt{2} - 1$, and not $\sqrt{2} + 1$.

Examples of three-dimensional polyhedral complexes.

1. The Seifert-Webber dodecahedral space is a three manifold obtained by gluing, via $\frac{3}{10}$ of a clockwise full twist, the opposite faces of a regular dodecahedron. Each edge is incident to 5 dodecahedra/pentagonal faces, and hence, the Forman-Ricci curvature of such edges is -7, thus corresponding to the fact that it is possible to tile the Hyperbolic space with such dodecahedra, whereas the Haantjes-Ricci curvature is equal to $\text{Ric}_H(e) = 5\sqrt{3}$.

TABLE I. Comparison of undirected curvatures for a number of standard grids (tessellations) of the Euclidean plane and space.

Curvature Type	Triangular Tessellation	Square Tessellation	Hexagonal Tessellation	Euclidean Cubulation
\(\text{Ric}_H(e) \)	\(4\pi - 2 \)	\(4\pi - 4 \)	\(4\pi - 2\sqrt{2} \)	\(8\pi - 4\sqrt{2} \)
\(\text{Ric}_{F,r}(e) \)	-8	-2	-2	-4
\(\text{Ric}_F(e) \)	-2	0	4	4
\(\text{Ric}_O(e) \)	1	-1	-	-\(\frac{4}{3} \)

2. The Poincaré dodecahedral space is a three manifold obtained by gluing, via \(\frac{1}{10} \) of a clockwise full twist, the opposite faces of a regular dodecahedron. Each edge is incident to 3 dodecahedra/2-faces, and hence, the Forman-Ricci curvature of such edges is equal to \(-1\), even though the Poincaré is the classical homology 3-sphere, and thus, expected to have a positive curvature. On the other hand, the Haantjes-Ricci curvature of such edges is positive, more precisely, \(\text{Ric}_H(e) = 3\sqrt{3} \).

Remark: Among metric curvatures, the Haantjes curvature has several advantages from the perspective of network science applications. Aside from the simplicity of computation in networks, Haantjes-Ricci curvature for an edge in undirected and unweighted (combinatorial) simplicial complexes can be obtained by simply counting the triangles \(t \) containing an edge \(e \), that is

\[
\text{Ric}_H(e) = \sharp\{t \mid t > e\}. \tag{12}
\]

Moreover, in \(k \)-regular undirected and unweighted simplicial complexes where each vertex is incident to precisely \(k \) edges, the (augmented) Forman-Ricci curvature of an edge \(e \) \cite{12} is given by

\[
\text{Ric}_F(e) = 4 - 3\sharp\{t \mid t > e\} - 2k, \tag{13}
\]

and thus, the formula also reduces to counting the triangles \(t \) containing an edge \(e \). While the later formula above is also dependent on vertex degree \(k \), for any given \(k \) the two types of Ricci curvature, Haantjes and Forman, for edges in undirected combinatorial simplicial complexes both reduce to the counting of triangles adjacent to a given edge. The computation of Haantjes-Ricci curvature above has an additional advantage of not being dependent on \(k \). On the other hand, note that Haantjes-Ricci curvature is always positive while Forman-Ricci curvature is mostly negative. Still, the distributions of the two curvatures, over a network, are likely to strongly correlated. We should, however, note here that \(\text{Ric}_F \) covers further aspects of network geometry that \(\text{Ric}_H \) does not. (However, see also the discussion in the concluding section.)

3.1. A local Gauss-Bonnet theorem and the curvature of 2-cells

Due to its advantages over Menger curvature, we shall now use Haantjes curvature to provide stronger definitions of scalar curvature and Ricci curvature of networks. Here, the basic idea is to adapt the \textit{local Gauss-Bonnet theorem} to this discrete setting. Recall that, in the classical context of smooth surfaces, the theorem states that

\[
\int_D KdA + \sum_0^p \int_{v_i}^{v_{i+1}} k_g dl + \sum_0^p \varphi_i = 2\pi \chi(D), \tag{14}
\]

where \(D \simeq \mathbb{B}^2 \) is a (simple) region in the surface, having as boundary \(\partial D \) a piecewise-smooth curve \(\pi \), of vertices (i.e., points where \(\partial D \) is not smooth) \(v_i, i = 1, \ldots, n, (v_n = v_0) \), \(\varphi_i \) denotes the external angles of \(\partial D \) at the vertex \(v_i \), and, \(K \) and \(k_g \) denote the Gaussian and geodesic curvatures, respectively.

Let us first note that, in the absence of a background curvature, the very notion of angle is undefinable. Thus, for abstract (non-embedded) cells, there exists no \textit{honest} notion of angle. Hence, the last term on the left side of above Eq. \cite{14} has no proper meaning, and thus, can be discarded. Moreover, the distances between non-adjacent vertices on the same cycle (apart from the path metric) are not defined, and thus, the third term on the left side of above Eq. \cite{14} also vanishes.

We next concentrate on the case of combinatorial (unweighted) networks. For such networks endowed with the combinatorial metric, the area of each cell is usually taken to be equal to 1. Moreover, one can naturally assume that
the curvature is constant on each cell, and thus, the first term on the left side of Eq. [14] reduces simply to K. In addition, given that D is a 2-cell, we have $\chi(D) = 1$. Therefore, in the absence of the definition of an angle, it is naturally to define

$$K = 2\pi - \int_{\partial D} k_g dl.$$ \hfill (15)

It is tempting to next consider ∂D as being composed of segments (on which k_g vanishes), except at the vertices, thus rendering the above expression as

$$K = 2\pi - \sum_{i=1}^{n} \kappa_H(v_i).$$ \hfill (16)

Remark An alternative approach to defining the curvature of cell would be the following: Since in a Euclidean polygon, the sum of the angles equals $\pi(n - 2)$, where n represents the number of vertices of the polygon, one could replace the angle sum term in Eq. [14] simply by $\pi(n - 2)$.

Moving to the general case of weighted networks, one can not define a (non-trivial) Haantjes curvature for vertices, as already noted above, no proper distance between two non-adjacent vertices v_{i-1} and v_{i+1} on the same cycle can be implicitly assumed (apart from the one given by the path metric, which would produce trivial zero curvature at vertex v_i). In fact, in this general case, neither can the arc (path) $\pi = v_0, v_1, \ldots, v_n$ be truly viewed as smooth. Therefore, we have no choice but to replace the second term on the right side of above Eq. [16] by $\kappa H(\pi)$, where it should be remembered that π represents the path v_0, v_1, \ldots, v_n of chord $e = (v_0, v_n)$.

We can now define the Haantjes-sectional curvature of a 2-cell c. Given an edge $e = (u, v)$ and a 2-cell $\epsilon = (u = v_0, v_1, \ldots, v_n = v)$ (relative to the edge $e \in \partial \epsilon$), we have

$$K_{H,\epsilon}(\epsilon) = 2\pi - \kappa_{H,\epsilon}(\pi),$$ \hfill (17)

where π denotes the path v_0, v_1, \ldots, v_n subtended by the chord $e = (v_0, v_n)$ (see Figure 4), and $\kappa_{H,\epsilon}(\pi)$ denotes its respective Haantjes curvature.

Note that the definition above is much more general than the one based on Menger curvature. Indeed, not only is it applicable to cells whose boundary has (combinatorial) length greater than three, i.e., not just to triangles, it also does not presume any convexity condition for the cells, even in the case when they are realized in some model space, e.g. in \mathbb{R}^3. However, for simplicial complexes endowed with the combinatorial metric, the two notions coincide up to a constant. More precisely, in this case, for any triangle T, $\kappa_M(T)/\kappa_H(T) = \sqrt{3}/3$. In fact, for the case of smooth, planar curves, Menger and (unnormalized) Haantjes curvature coincide in the limit, and furthermore, they agree with the classical concept. However, for networks there is no proper notion of convergence, a fact which allowed us to discard the factor 24 in the original definition (Eq. [17] of Haantjes curvature.

We can now define, analogous to Eq. [9] the Haantjes-Ricci curvature of an edge e as

$$\text{Ric}_H(e) = \sum_{\epsilon \sim e} K_{H,\epsilon}(\epsilon) = \sum_{\epsilon \sim e} (2\pi - \kappa_{H,\epsilon}(\pi)),$$ \hfill (18)

where the sum is taken over all the 2-cells ϵ adjacent to e. See Figure 5 for examples of computation of Haantjes-Ricci curvature in networks, in the directed case. See Table 1 for the comparison on a number of (undirected) standard planar and spatial grids of the various types of Ricci curvature at our disposal.

3.2. The case of general weights

In this subsection, we return to the general case of weighted graphs. Firstly, note that it is not reasonable to attach area 1 to every 2-cell in such graphs. However, as discussed in [25, 35], it is possible to endow cells in an abstract weighted graph with weights that are both derived from the original ones and have a geometric content. For instance, in the case of unweighted social or biological networks, endowed with the combinatorial metric, one can designate to each face, instead of the canonical combinatorial weight equal to 1, a weight that penalizes the faces with more

\footnote{Note that the field assigned to the hexagonal tiling for Ollivier-Ricci curvature in Table 1 is marked as “-”, since in this case the Ollivier-Ricci curvature is not applicable, see [35].}
edges, and thus, reflecting the weaker mutual connections between the vertices of such a face. Thus, it is possible to
derive a proper local Gauss-Bonnet formula for such general networks, in a manner that still retains the given data,
yet captures the geometric meaning of area, volume, etc. Thus, when considering any such geometric weight \(w_g(c^2) \)
of a 2-cell \(c^2 \), the appropriate form of the first term on the left side of Eq. 14 becomes

\[Kw_g(c^2), \]

and the fitting form of Eq. 17

\[K_{H,e}(c) = -\frac{1}{w_g(c^2)} (2\pi - \kappa_{H,e}(\pi)) . \]

(19)

Before passing to the problem of extending the above definition to the case of general weights, let us note that the
observations above regarding Menger curvature for directed networks apply also to Haantjes curvature, after properly
extending the notion to directed 1-cycles of any length and not just to directed triangles (see Figure 2). Again, as for
the Menger curvature, considering directed networks actually simplifies the problem, in the sense that it allows for
variable curvature (and not just one with constant sign). For general edge weights, we have the problem that the total
weight \(w(\pi) \) of a path \(\pi = v_0, v_1, \ldots, v_n \) is not necessarily smaller than the weight of its subtending chord \(e = (v_0, v_n) \)
thus Haantjes' definition cannot be applied. However, we can turn this to our own advantage by reversing the roles
of \(w(\pi) \) and \(w(v_0, v_n) \) in the definition of the Haantjes curvature and assigning a minus sign to the curvature of cycles
for which this occurs. Thus, this approach actually allows us to define a variable sign Haantjes curvature of cycles
(hence, a Ricci curvature as well), even if the given network is not a naturally directed one.

Remark: Any of the paths \(\pi \) for which this occurs. Thus, this approach actually allows us to define a variable sign Haantjes curvature of cycles
of the geodesic \(\pi \), for any elementary 1-cycle \(\partial \pi = v_0, v_1, \ldots, v_n, v_0 \) straightforwardly corresponds to the splitting case for the path metric induced by the weights
\(w(v_i, v_{i+1}) \).

Indeed, the method suggested above reduces to the use of the path metric, in most of the cases. One can always
pass to the path metric and apply to it the Haantjes curvature. Beyond the complications that this might induce in
certain cases, it is, in our view, less general, at least from a theoretical viewpoint, since it necessitates the passage to
a metric. However, in the case of most general weights, i.e. both vertex and edge weights, one has to pass to a metric.
We find the path degree metric (see e.g. [20]) especially alluring as it is both simple and has the capacity to capture,
in the discrete context, essential geometric properties of Riemannian metrics. However, we also refer the reader to
[30] for an ad hoc metric devised precisely for use on graphs in tandem with Haantjes curvature.

3.3. A further generalization

Note that Eqs. 7 and 8 are meaningful not only for a single edge, we can consider any two vertices \(u, v \) that can
be connected by a path \(\pi \). Among the simple paths \(\pi_1, \ldots, \pi_m \) connecting the vertices, the shortest one, i.e., the one
for which \(l(\pi_i) = \min\{l(\pi_1), \ldots, l(\pi_m)\} \) is attended represents the metric segment of ends \(u \) and \(v \). Therefore, given
any such two vertices, we can define the Haantjes-Ricci curvature in the direction \(\overrightarrow{uv} \) to be

\[\text{Ric}_H(\overrightarrow{uv}) = \sum_{i=1}^{m} K_{H,\pi_i}^{1} = \sum_{i=1}^{m} \kappa_{H,\pi_i}(\pi_i), \]

(20)

where \(K_{H,\pi_i}^{1} \) denotes the Haantjes-Ricci curvature of the cell \(c_i \), where \(\partial c_i = \pi_i \pi_0^{-1} \), relative to the direction \(\overrightarrow{uv} \), and where

\[\kappa_{H}(\pi_i) = \left(\frac{\pi_i - l(\pi_0)}{l(\pi_0)^3}\right) \]

(21)

and where the paths \(\pi_1, \ldots, \pi_m \) satisfy the condition that \(\pi_i \pi_0^{-1} \) is an elementary cycle. This represents a locality
condition in the network setting.

Remark: Any of the paths \(\pi_i \) above can be viewed, according to Stone [37] as a variation of the geodesic \(\overrightarrow{uv} \). Thus, in
the setting of metric measure spaces [38], and for PL manifolds [37], Eq. 20 connects in the network context Jacobi
fields to Ricci curvature as in the classical case, see e.g. [17].

We conclude this section by noting that both the version of the curvature for directed networks and weighted
networks, can be extended, mutatis mutandis, to this generalized definition.

\(^2\) We suggest the name strong local metrics for those sets of positive weights that satisfy the generalized triangle inequality
\(w(v_0, v_1, \ldots, v_n, v_{n+1}) < w(v_0, v_n) \), for any elementary 1-cycle \(v_0, v_1, \ldots, v_n, v_0 \) .
Remark: For the case of networks and simplicial complexes, it is useful to note that Eq. 8 for a triangle $T = T(uvw)$ reduces to

$$\kappa_2^2 H(T) = \frac{d(u, v) + d(v, w) - d(u, w)}{(d(u, w))^3}. \quad (22)$$

Thus, Haantjes curvature of triangles is closely related to two other measures, namely the excess $\text{exc}(T)$ and aspect ratio $\text{ar}(T)$, that are defined as follows:

$$\text{exc}(T) = \max_{v \in \{u, v, w\}} (d(u, v) + d(v, w) - d(u, w)), \quad (23)$$

and

$$\text{ar}(T) = \frac{\text{exc}(T)}{d(T)}, \quad (24)$$

where $d(T)$ denotes the diameter of a triangle $T = T(uvw)$. There are strong connections between the excess, aspect ratio, and curvature. In particular, for the normalized Haantjes curvature introduced above, we have the following relation between the three notions:

$$\kappa_2^2 H(T(v)) = \frac{e(T(v))}{d^3}, \quad (25)$$

that is

$$\kappa_H(T(v)) = \frac{\sqrt{\text{ar}(T(v))}}{d}. \quad (26)$$

Since the factor $\frac{1}{d}$ has the role of ensuring that, in the limit, the curvature of a triangle will have the dimensionality of the curvature at a point of a planar curve, the aspect ratio can be viewed as a (skewed), unnormalized version of the curvature, and Haantjes curvature can be viewed as a scaled version of excess. Thus, curvature can be replaced by these surrogates, as the notion of scale is not of true import in many aspects of network characterization. Also, for the global understanding of the shape of networks, it is useful to compute, as is common in the manifold context, the maximal excess and minimal aspect ratio over all triangles in the network.

Remark: Note that Eqs. 22 and 23 above again contain Gromov products [31], that already appeared in the definition of Menger curvature.

4. EMBEDDING PROPERTIES

As noted in the Introduction, while studying complex networks, they are often considered for convenience to be equipped with the combinatorial metric, or they are considered to be topologically embedded in some model space and endowed with the induced (extrinsic) metric, e.g. the hyperbolic one. However, at least in many instances, a more realistic approach would be to consider the networks to be endowed with an intrinsic metric, obtained via some expressive (i.e., essential properties preserving) manner, from the weights assigned to vertices and edges in the network. In this case, a natural question to ask is whether a (topological) embedding of the network into an ambient space will preserve the metric, or in other words, whether such an embedding is an isometric one.

Evidently, Haantjes-Ricci curvature, due to its purely metric definition, is geometric embedding invariant: An isometric embedding will also preserve the curvature as is the case for Menger-Ricci curvature. Moreover, in the case where face weights are combinatorial, the sectional curvatures of faces, and hence, the Haantjes-Ricci curvatures are dependent solely on the metric structure of the edges, that is, Ric_H is a strong geometric embedding invariant therefore face areas or weights are also preserved by an isometric embedding. However, in the case where face weights are general, the Haantjes-Ricci curvature is dependent on the face weights, as a consequence of Eq. 19 above, and we have the following result for general weighted networks.

Proposition 4.1. Let (N, W) be a weighted network with general weights. Then, the Haantjes-Ricci curvature Ric_H is a geometric embedding invariant, however, not a strong geometric embedding one.

Remark: Any topological embedding that preserves edge and 2-face cell weights is a strong geometric embedding. In particular, for combinatorial (unweighted) networks, the Haantjes-Ricci curvature Ric_H is a strong geometric embedding invariant.
5. APPLICATION TO MODEL AND REAL-WORLD NETWORKS

In this section, we explore the two notions of metric curvature introduced herein, in different types of model networks and real-world complex networks. Furthermore, we compare the two notions of metric curvature with existing network measures (including discrete notions of Ricci curvature) in both model and real-world complex networks.

5.1. Network datasets

For this empirical exploration, we considered 3 models of undirected and unweighted complex networks, 4 undirected and unweighted real networks, and 2 directed and unweighted real networks.

The 3 models of undirected and unweighted complex networks considered here include the Erdős-Rényi (ER) model...
FIG. 7. Distribution of Haantjes-Ricci curvature in model networks. (a) ER network, (b) WS network, and (c) BA network with 1000 vertices and average degree 4.

[39] the Watts-Strogatz (WS) model [1] and the Barabási-Albert (BA) model [2]. The ER model generates an ensemble of random graphs $G(n, p)$ where n is the number of vertices and p is the probability that any pair of vertices are connected via an edge in the network. The WS model generates small-world graphs with high clustering and small average path length. The parameters of the WS model are the number n of vertices, the number k of nearest neighbours to which each vertex is connected in the initial network, and the rewiring probability β of edges in the initial network. The BA model generates scale-free graphs with power-law degree distribution. The parameters of the BA model are the number n of vertices in the final network, the number m_0 of vertices in the initial network, and the number m of existing vertices to which a new vertex is connected to at each step of this growing network model. Notably, the BA model uses a preferential attachment scheme whereby high-degree vertices have a higher chance of acquiring new edges than low-degree vertices at each step of this growing network model.

The 4 undirected and unweighted real-world networks considered here are as follows. The Karate club network consists of 34 vertices representing members of the club, and 78 edges representing ties between pairs of members of the club, and this dataset was collected by Zachary in 1977 [40]. The Euro road network [41] consists of 1174 vertices representing cities in Europe, and 1417 edges representing roads in the international E-road network linking different cities. The Yeast protein interaction network [42] consists of 1870 vertices representing proteins in Saccharomyces cerevisiae, and 2277 edges representing interactions between pairs of proteins. The US Power Grid network [43] consists of 4941 vertices representing generators or transformers or substations in USA, and 6594 edges representing power supply lines linking them. The 2 directed and unweighted real-world networks considered here are as follows.
The Air traffic control network [44] consists of 1226 vertices representing airports and 2613 directed edges representing preferred routes between airports. The *E. coli* transcriptional regulatory network (TRN) [45] consists of 3073 vertices representing genes and 7853 directed edges representing control of target gene expression through transcription factors.
5.2. Distribution of metric curvatures in networks

We have investigated the distribution of the two notions of metric curvature, namely, Menger-Ricci curvature and Haantjes-Ricci curvature in model networks considered here. Note that the Menger-Ricci curvature of edges in considered networks was computed using Eq. 6 with Euclidean background geometry. In Figure 6, we display the distribution of Menger-Ricci curvature of edges in ER, WS and BA networks with 1000 vertices and average degree 4. From the figure, it is seen that the distribution of Menger-Ricci curvature of edges is broader in BA networks in comparison to WS networks which in turn is broader in comparison to ER networks, and this trend is preserved even when one compares ER, WS and BA networks with 1000 vertices and average degree 6 or 8 (data not shown).

Note that the Haantjes-Ricci curvature of edges in considered networks was computed using Eq. 10. Due to computational constraints, we only consider simple paths π_i of length ≤ 5 between the two vertices anchoring any edge while computing its Haantjes-Ricci curvature using Eq. 10. In Figure 7, we display the distribution of Haantjes-Ricci curvature of edges in ER, WS and BA networks with 1000 vertices and average degree 4. From the figure, it is seen that the distribution of Haantjes-Ricci curvature of edges is very broad in BA networks in comparison to WS or ER networks, and this trend is preserved even when one compares ER, WS and BA networks with 1000 vertices and average degree 6 or 8 (data not shown).

In Figure 8, we display the distribution of Haantjes-Ricci curvature of edges in 4 undirected and unweighted real networks considered here. In Figure 9, we display the distribution of Haantjes-Ricci curvature of directed edges in 2 directed and unweighted real networks considered here. As noted earlier, the Haantjes-Ricci curvature of directed edges can have negative value (unlike in the undirected and unweighted case).

5.3. Correlation between the two metric curvatures

We next investigated the correlation between the two notions of metric curvature, namely, Menger-Ricci curvature and Haantjes-Ricci curvature in model and real networks considered here. Recall that, due to computational constraints, the computation of Haantjes-Ricci curvature of edges in considered networks using Eq. 10 was restricted to simple paths π_i of maximum length ≤ 5 between the two vertices anchoring the edge under consideration. Further-
more, we have also studied the correlation between Menger-Ricci curvature and Haantjes-Ricci curvature in model and real networks as a function of the maximum length of simple paths π_i that are included in Eq. 10 while computing the Haantjes-Ricci curvature.

In Table 2, we report the correlation between Menger-Ricci and Haantjes-Ricci curvature in model and real networks analyzed here. As expected, the Menger-Ricci curvature is perfectly correlated with Haantjes-Ricci curvature when the computation is restricted to paths of maximum length up to 2 or triangles (Table 2). However, the positive correlation between Menger-Ricci and Haantjes-Ricci curvature decreases with increase in the maximum length of paths accounted in the computation (Table 2). Specifically, Menger-Ricci and Haantjes-Ricci curvatures have minimal correlation in ER networks and moderate correlation in WS networks when paths of maximum length up to 5 are accounted in the computation. In contrast, there is high positive correlation between Menger-Ricci and Haantjes-Ricci curvatures in BA networks even when paths of maximum length up to 5 are accounted in the computation (Table 2). In real networks, we find moderate to high positive correlation between Menger-Ricci and Haantjes-Ricci curvatures even when paths of maximum length up to 5 are accounted in the computation (Table 2).

5.4. Comparison of the two metric curvatures with other network measures

We next investigated the correlation of the two notions of metric curvature, Menger-Ricci and Haantjes-Ricci, with other network measures in model and real networks considered here. Specifically, we have studied the correlation with two other notions of Ricci curvature, (augmented) Forman-Ricci curvature and Ollivier-Ricci curvature [12, 46], in networks. In Table 3, we report the correlation between augmented Forman-Ricci curvature and Menger-Ricci or Haantjes-Ricci curvature in model and real networks analyzed here. We find no consistent trend in the correlation between augmented Forman-Ricci and Menger-Ricci curvature, or augmented Forman-Ricci and Haantjes-Ricci curvature in model and real networks analyzed here (Table 3). It is seen that there is high negative correlation between augmented Forman-Ricci and Haantjes-Ricci curvature in ER and BA networks, while there is high positive correlation between augmented Forman-Ricci and Menger-Ricci curvature in WS networks (Table 3). In Table 3, we also report the correlation between Ollivier-Ricci curvature and Menger-Ricci or Haantjes-Ricci curvature in model and real networks analyzed here. We again find no consistent trend in the correlation between Ollivier-Ricci and Menger-Ricci curvature, or Ollivier-Ricci and Haantjes-Ricci curvature in model and real networks analyzed here (Table 3). Importantly, in recent work [12, 46], it was shown that augmented Forman-Ricci and Ollivier-Ricci curvature have high
TABLE III. Comparison of augmented Forman-Ricci (AFR) curvature and Ollivier-Ricci (OR) curvature with Menger-Ricci (MR) curvature and Haantjes-Ricci (HR) curvature of edges in model and real networks. Here, HR curvature was computed by accounting for paths of maximum length up to 5 in Eq. [10].

Network	AFR curvature versus MR	AFR curvature versus HR	OR curvature versus MR	OR curvature versus HR
Undirected model networks				
ER with average degree 4	0.04	-0.55	0.08	-0.30
ER with average degree 6	0.05	-0.77	0.22	-0.31
ER with average degree 8	0.06	-0.86	0.29	-0.06
WS with average degree 4	0.52	0.02	0.67	0.32
WS with average degree 6	0.65	0.04	0.78	0.46
WS with average degree 8	0.70	0.06	0.89	0.52
BA with average degree 4	-0.37	-0.60	-0.10	-0.36
BA with average degree 6	-0.44	-0.69	0.03	-0.13
BA with average degree 8	-0.56	-0.69	0.17	0.09
Undirected real networks				
Karate Club	0.45	-0.22	0.13	-0.42
Euro Road	0.02	-0.52	0.02	-0.25
Yeast Protein Interaction	0.12	-0.04	0.07	-0.10
US Power Grid	0.11	-0.07	0.16	0.03
Directed real networks				
Air Traffic Control	0.10	0.13	-0.13	-0.02
E. coli TRN	0.08	0.04	-0.06	-0.07

TABLE IV. Comparison of edge betweenness centrality with Menger-Ricci (MR) curvature and Haantjes-Ricci (HR) curvature of edges in model and real networks. Here, HR curvature was computed by accounting for paths of maximum length up to 5 in Eq. [10].

Network	Edge betweenness centrality versus MR	Edge betweenness centrality versus HR
Undirected model networks		
ER with average degree 4	-0.03	0.35
ER with average degree 6	-0.05	0.51
ER with average degree 8	-0.06	0.56
WS with average degree 4	-0.40	-0.20
WS with average degree 6	-0.56	-0.24
WS with average degree 8	-0.64	-0.27
BA with average degree 4	0.38	0.83
BA with average degree 6	0.52	0.81
BA with average degree 8	0.62	0.76
Undirected real networks		
Karate Club	-0.20	0.27
Euro Road	-0.02	0.04
Yeast Protein Interaction	-0.07	0.05
US Power Grid	-0.03	-0.02
Directed real networks		
Air Traffic Control	-0.06	-0.13
E. coli TRN	-0.08	-0.06
positive correlation in model and real networks. These observations suggest that the two notions of metric curvature introduced herein capture different aspects of the network organization in comparison to discrete Ricci curvatures previously proposed for geometrical characterization of networks.

Finally, we have also studied the correlation between edge betweenness centrality [47, 48] and Menger-Ricci or Haantjes-Ricci curvature in model and real networks (Table 4). We find no consistent trend in the correlation between edge betweenness centrality and Menger-Ricci curvature, or edge betweenness centrality and Haantjes-Ricci curvature in model and real networks analyzed here (Table 4). It is however seen that Menger-Ricci and Haantjes-Ricci curvature have moderate to high positive correlation with edge betweenness centrality in BA networks (Table 4). We remark that Menger-Ricci curvature, Haantjes-Ricci curvature, (augmented) Forman-Ricci curvature, Ollivier-Ricci curvature and edge betweenness centrality are edge-centric measures for analysis of networks, and thus, we have compared here these measures in model and real networks.

6. CONCLUSIONS AND FUTURE OUTLOOK

In previous work, notions of curvature for networks have been proposed, notably, Ollivier-Ricci curvature [6] and Forman-Ricci curvature [7]. Ollivier-Ricci curvature is cumbersome to compute in large networks while Forman-Ricci curvature is much less intuitive. Therefore, in search of simpler and more intuitive notions of curvature for networks and their higher-dimensional generalizations including simplicial and clique complexes, we have adapted here classical metric curvatures of curves, namely, introduced by Menger [21] and Haantjes [22], for analysis of complex networks. In particular, we are able to define expressive metric Ricci curvatures for networks, both weighted and unweighted. Moreover, the simple yet elegant definitions of the metric curvatures introduced here are both computationally efficient (especially, those based on Menger curvature) and extremely versatile (especially, those derived from Haantjes curvature) from the perspective of application to complex networks. In fact, for the analysis of combinatorial (unweighted) polyhedral or simplicial complexes, the definitions of Haantjes-Ricci curvature is shown here to be more expressive than the (augmented) Forman-Ricci curvature as the Haantjes-Ricci curvature accounts for general \(n\)-gons and not only triangles like in the case of (augmented) Forman-Ricci curvature.

Previously proposed metric curvature [49] based on the Wald metric curvature enables easy derivation of convergence results as well as proofs of theoretical results, such as a \(PL\) version of the classical Bonnet-Myers theorem [24]. Unfortunately, the metric curvatures proposed in [49] are computationally expensive, and thus, impractical for analysis of large networks. This is in sharp contrast to the simplicity and efficiency of the metric curvatures for networks proposed in the present article.

We have also investigated model and real-world networks using the two notions of metric curvature introduced herein. It is seen that the distribution of Menger-Ricci curvature and Haantjes-Ricci curvature of edges is broader in scale-free BA networks in comparison to random ER networks or small-world WS networks. We also find a positive correlation between Menger-Ricci and Haantjes-Ricci curvature of edges in model and real-world networks, however, this correlation decreases with the increase in the maximum length of paths accounted in Eq. 10 for the computation of Haantjes-Ricci curvature. Thereafter, we have compared the Menger-Ricci or Haantjes-Ricci curvature with augmented Forman-Ricci or Ollivier-Ricci curvature in model and real networks, and no consistent trend in the correlation between Menger-Ricci or Haantjes-Ricci curvature with augmented Forman-Ricci or Ollivier-Ricci curvature was found in analyzed networks. Lastly, we also find no consistent trend in the correlation between edge betweenness centrality and Menger-Ricci or Haantjes-Ricci curvature in analyzed networks. Our empirical results suggest that the metric curvatures introduced herein capture different aspects of the network organization in contrast to previously proposed edge-centric measures, such as Forman-Ricci curvature, Ollivier-Ricci curvature and edge betweenness centrality, in complex networks. For instance, for combinatorial networks of bounded vertex degree, and in particular for finite networks, large Haantjes-Ricci curvature implies the existence of (arbitrarily) long simple cycles. Thus, the Haantjes-Ricci curvature, even if defined as a local invariant, has the potential of shedding light on the large scale topological structure of the network.

From a network application perspective, a natural extension is to develop algorithms based on Ricci curvatures introduced herein to detect clusters, modules or communities in real-world networks, and thereafter, compare the results obtained with algorithms for community detection in networks based on other notions of network curvature [13, 36, 50]. Furthermore, another interesting exploration would be to investigate the correlation between the metric notions of curvature introduced herein and hyperbolic embeddings of networks. In particular, it is worthwhile to investigate the extent to which the curvatures can predict the values obtained using the inferred hyperbolic distances among vertices in embeddings considered in previous work [51], and also study the extent to which these values are in concordance with the curvatures measured on the given network. Among the theoretical problems naturally arising from this work, one would like to first and foremost prove such results as a fitting analogue of the fundamental global Gauss-Bonnet theorem (which has important consequences in the study of long time evolution of networks [52]), as...
well as a fitting Bonnet-Myers theorem.

Acknowledgement

The authors would like to thank the anonymous reviewers of the conference proceeding [26] where some of these results were first reported. AS would like to thank Max Planck Society, Germany, for the award of a Max Planck Partner Group in Mathematical Biology.

Appendix A: Metric curvatures and classical curvature of curves

Both Menger curvature [21] and Haantjes curvature [22] were devised as generalizations to metric spaces of the classical notion of curvature for smooth plane curves. Therefore, it is only natural to ask whether they represent good approximations of the classical invariant. Indeed, as expected, this turns out to be the case for both metric curvatures. To state these results more formally we need the following definition:

Definition A.1 Let \((M,d)\) be a metric space and let \(p \in M\) be an accumulation point. We say that \(M\) has **Menger curvature** \(\kappa_M(p)\) at \(p\) iff for any \(\varepsilon > 0\), there exists \(\delta > 0\), such that for any triple of points \(p_1, p_2, p_3\), satisfying \(d(p,p_i) < \delta, i = 1, 2, 3\), the following inequality holds: \(|K_M(p_1, p_2, p_3) - \kappa_M(p)| < \varepsilon\).

While the corresponding definition for Haantjes curvature was essentially introduced in Eq. 7, we again state the same more formally here:

Definition A.2 Let \((M,d)\) be a metric space and let \(c : I = [0,1] \sim M\) be a homeomorphism, and let \(p,q,r \in c(I)\), \(q,r \neq p\). Denote by \(\hat{qr}\) the arc of \(c(I)\) between \(q\) and \(r\), and by \(qr\) line segment from \(q\) to \(r\). We say that the curve \(c = c(I)\) has **Haantjes (or Finsler-Haantjes) curvature** \(\kappa_H(p)\) at the point \(p\) iff:

\[
\kappa^2_H(p) = 24 \lim_{q,r\to p} \frac{l(\hat{qr}) - d(q,r)}{(l(\hat{qr}))^3},
\]

where \(l(\hat{qr})\) denotes the length, in the intrinsic metric induced by \(d\), of \(\hat{qr}\). Note that the above definition is not the precise one used in this work.

For points or arcs where Haantjes curvature exists, we have \(\frac{l(\hat{qr})}{d(q,r)} \to 1\) as \(d(q,r) \to 0\) (see [22]), and therefore, \(\kappa_H\) can be defined by (see e.g. [53])

\[
\kappa^2_H(p) = 24 \lim_{q,r\to p} \frac{l(\hat{qr}) - d(q,r)}{(d(q,r))^3}.
\]

In the setting of graphs or networks, we prefer the above alternative form of the definition of Haantjes curvature which is even more intuitive and simpler to use.

As expected, Haantjes curvature for smooth curves in the Euclidean plane (or space) coincides with the standard (differential) notion. More precisely, we have the following result, see [22].

Theorem A.3 Let \(c \in C^3\) be smooth curve in \(\mathbb{R}^3\) and let \(p \in c\) be a regular point. Then the metric curvature \(\kappa_H(p)\) exists and equals the classical curvature of \(\gamma\) at \(p\).

A similar result also holds for Menger curvature. However, we will arrive at the result in an indirect fashion which will enable us to establish the connection between the two types of metric curvature used here. Firstly, note that although the Haantjes curvature exhibits additional flexibility in the network context in comparison to the Menger curvature, the formal definition of Haantjes curvature in the setting of metric spaces is a more restricted notion than the Menger curvature, since it can be employed only for rectifiable curves. However, the following theorem due to [54] holds:

Theorem A.4 Let \((X,d)\) be a metric continuum, and consider \(p \in X\). If \(\kappa_M(p)\) exists, then \(X\) is a rectifiable arc in a neighbourhood of \(p\).

Corollary A.5 Let \((X,d)\) be a metric arc. If \(\kappa_M(p)\) exists at all points \(p \in X\), then \(X\) is rectifiable.

In consequence, the existence of one of the considered metric curvatures implies the existence of the other. In fact, the two definitions coincide whenever they both are applicable:
Theorem A.6 [22] Let \(c \) be a rectifiable arc in a metric space \((M,d)\), and let \(p \in c \). If \(\kappa_M \) and \(\kappa_H \) exist, then they are equal.
[43] J. Leskovec, J. Kleinberg, and C. Faloutsos, ACM Transactions on Knowledge Discovery from Data (TKDD) 1, 2 (2007).
[44] J. Kunegis, in Proceedings of the 22nd International Conference on World Wide Web companion (ACM, New York, NY, USA, 2013), pp. 1343–1350, ISBN 978-1-4503-2038-2.
[45] H. Salgado, M. Peralta-Gil, S. Gama-Castro, A. Santos-Zavaleta, L. Muniz-Rascado, J. S. Garcia-Sotelo, V. Weiss, H. Solano-Lira, I. Martinez-Flores, A. Medina-Rivera, et al., Nucleic Acids Research 41, D203 (2013).
[46] E. Saucan, R. P. Sreejith, R. P. Vivek-Ananth, J. Jost, and A. Samal, Chaos, Solitons & Fractals 118, 347 (2019).
[47] L. C. Freeman, Sociometry pp. 35–41 (1977).
[48] M. Girvan and M. Newman, Proceedings of the National Academy of Sciences 99, 7821 (2002).
[49] E. Saucan, Asian Journal of Mathematics 16, 587 (2012).
[50] J. Sia, E. Jonckheere, and P. Bogdan, Scientific Reports 9, 1 (2019).
[51] M. Boguñá, F. Papadopoulos, and D. Krioukov, Nature Communications 1, 1 (2010).
[52] M. Weber, E. Saucan, and J. Jost, Journal of Complex Networks 6, 706 (2018).
[53] D. C. Kay, Geometriae Dedicata 9, 91 (1980).
[54] C. Pauc, Atti Acad. di Lincei, Serie 6 24, 109 (1936).
[55] D. Cushing and S. Kamtue, Analysis and Geometry in Metric Spaces 7, 22 (2019).