Ps− emission from Cs coated surfaces

To cite this article: K Michishio et al 2010 J. Phys.: Conf. Ser. 199 012003

View the article online for updates and enhancements.

Related content

- Positronium negative ion experiments – formation, photodetachment and production of an energy tunable positronium beam–
 Yasuyuki Nagashima, Koji Michishio, Takayuki Tachibana et al.

- Towards the production of an energy-tunable positronium beam using Ps photodetachment technique
 Yasuyuki Nagashima, Koji Michishio, Takayuki Tachibana et al.

- First observation of positronium negative ions emitted from tungsten surfaces
 Yasuyuki Nagashima and Takahiko Sakai

Recent citations

- Durable emission of positronium negative ions from Na- and K-coated W(100) surfaces
 Hiroki Terabe et al

- Photodetachment of Positronium Negative Ions
 K. Michishio et al

- Ps emission from Na coated W(100) surfaces
 Hiroki Terabe et al
Ps\(^-\) emission from Cs coated surfaces

K. Michishio\(^1\), T. Tachibana, H. Terabe, A. Miyamoto and Y. Nagashima\(^2\)
Department of Physics, Tokyo University of Science, Shinjuku, Tokyo 162-8601, Japan
E-mail: \(^1\)j1208665@ed.kagu.tus.ac.jp, \(^2\)ynaga@rs.kagu.tus.ac.jp

Abstract. Recently, we have observed the efficient emission of positronium negative ions from Cs coated W(100) and polycrystalline Mo and Ta surfaces. The efficient emission enables us to perform new experimental studies on these ions. The investigations of the efficient production of positronium negative ions are reviewed and a measurement of the binding energy of the ions and a photodetachment experiment are proposed.

1. Introduction
The positronium negative ion (Ps\(^-\)), a bound state of a positron and two electrons, is the simplest three-body system which provides a good sample for testing QED corrections. Therefore, a number of theoretical investigations have been carried out since the first prediction of the stability of this ion by Wheeler in 1946 [1]. For example, the binding energy E\(_B\) has been calculated by several authors [2]–[6] and resonances in the electron-positronium (Ps) continuum have been studied [7][8]. The photodetachment cross sections have also been calculated [9][10]. However, after the first observation of Ps\(^-\) by Mills [11] in 1981, no experimental investigations have been performed on this system except for a few measurements of the decay rate [12]–[15]. In order to accomplish more extensive investigations into the fundamental processes, new methods of generating more efficient Ps\(^-\) production had to be developed.

When slow positrons impinge on a metal surface, they lose their kinetic energy via processes such as phonon excitation or electron-hole pair creation and are thermalized. Some of these diffuse back to the surface and if energetically allowed, they contribute to the positron re-emission or Ps emission. In 2006, we observed the spontaneous emission of Ps\(^-\) from a polycrystalline tungsten surface as another channel [16]. The Ps\(^-\) emission efficiency (the fraction of incident slow positrons yielding Ps\(^-\)) was only 0.007\%. In 2008, we succeeded in significantly increasing this value by obtaining Ps\(^-\) from a W(100) surface coated with Cs [17].

In the present paper, the efficient emission of Ps\(^-\) from alkali metal-coated surfaces will be reviewed and future experimental investigations will be proposed.

2. Efficient emission of Ps\(^-\) from a Cs coated W(100) surface
The effect of Cs coating on the Ps\(^-\) emission from metal surfaces has been discussed by Mills [11] and Laricchia [18][19]. Mills suggested that it becomes energetically favorable to form Ps\(^-\) if the electron work function of a surface is lowered by coating it with Cs. Laricchia suggested that good yields of Ps\(^-\) might be obtained at positron incident energies of a few eV at grazing angles.
The formation method of Ps\(^-\) in our experiments is based on the spontaneous emission of these ions from a Cs coated surface. The Ps\(^-\) is emitted from a tungsten surface spontaneously because the Ps\(^-\) work function, expressed as

\[\phi_{Ps^-} = \phi_+ + 2\phi_- - E_B \]

is negative, where \(\phi_+\) and \(\phi_-\) are the positron and electron work functions, respectively. Here, using the chemical potential for the electron and positron, \(\mu_+\), \(\mu_-\), the values of \(\phi_+\) and \(\phi_-\) can be written as

\[\phi_+ = -D - \mu_+, \quad \phi_- = D - \mu_- \]

respectively, where \(D\) is the effect of the adsorbate dipole. Therefore, the Ps\(^-\) work function is expressed as

\[\phi_{Ps^-} = -\mu_+ - 2\mu_- - E_B + D. \]

Equation (3) shows that the Ps\(^-\) work function depends on the surface state. It is well known that alkali metal adsorption on a tungsten surface reduces the electron work function due to the depolarization of the surface dipole. As a result, the Ps\(^-\) work function can be decreased and hence the Ps\(^-\) emission efficiency will be increased.

The experimental system used was a magnetically guided slow positron beam apparatus with a trochoidal \(E \times B\) filter. The beam intensity at the target was \(1 \times 10^5\) e\(^+/s\) and the beam diameter was about 5mm.

Figure 1. Schematic diagram of the target chamber [17].
surface was accumulated for 3000s immediately after deposition. The conversion efficiency for the uncoated W(100) after annealing was 0.005%. Figure 2 (c) shows the efficient emission of Ps$^-$ from a Cs coated tungsten surface. After the coating, the emission efficiency, f, increased to 1.25%, which is 250 times higher than for the uncoated surface. The value decreased with time after deposition and was almost constant at 0.1% after 17h, which is still greater than that obtained using the beam-foil method.

Figure 2. The annihilation photon energy spectra for (a) unannealed, (b) annealed and (c) Cs coated W(100) surfaces. The arrows indicate the photon energy of the self-annihilation of the accelerated Ps$^-$.

We have also tested coating with Na, which is less active chemically, in order to obtain long term stability. The coverage of the Na layer was estimated to be about 2×10^{14} atoms cm$^{-2}$. Surprisingly, immediately after the deposition, f was greater than that for the Cs coating and remained higher than 1% for more than one day.

3. Measurement of the Ps$^-$ binding energy

In this work, we have made an estimate of the value of E_B, which has not been measured thus far, by observing the Ps$^-$ emission from polycrystalline Mo and Ta surfaces. The targets were commercially obtained polycrystalline foils of 20μm thickness. They were annealed in situ at 1500°C for 30min. For the annealed Mo target, a low-intensity peak attributed to Ps$^-$ emission was seen at 542 keV. For the Mo target with a 2×10^{14}atoms cm$^{-2}$ Cs coverage, the value of f was 0.8%. This observation sets a lower limit to the Ps$^-$ binding energy. The result indicates that the positron in the Mo target can leave the uncoated surface as Ps$^-$, i.e.,

$$\phi_+ + 2\phi_- - E_B < 0,$$

therefore,

$$E_B > \phi_+ + 2\phi_-.$$
Figure 3. The annihilation photon energy spectra for (a) unannealed, (b) annealed and (c) Cs coated polycrystalline Mo surfaces and (d) unannealed, (e) annealed and (f) Cs coated polycrystalline Ta surfaces.

The right-hand term can be obtained from previous measurements of $\phi_+ [20]$ and $\phi_- [21]$ to be 7.1eV.

For the annealed Ta target, no significant peak was seen at 542keV though a peak due to Ps$^-$ emission appeared in the spectrum after Cs coating. This indicates that the positrons in the target which diffuse back to the surface cannot leave the uncoated surface as Ps$^-$, i.e.,

$$\phi_+ + 2\phi_- - E_B > 0,$$

therefore,

$$E_B < \phi_+ + 2\phi_-,$$

which was determined to be obtained to be 7.3eV using previous measurements of $\phi_+ [22]$ and $\phi_- [21]$. Therefore, E_B has been estimated to be

$$7.0eV < E_B < 7.3eV,$$ \hspace{1cm} (4)

which is consistent with theoretical values that have been calculated [2][3][6]. This is the first experimental approach to estimate the binding energy of Ps$^-$. However, an accurate value is necessary to compare with the theoretical results.

In order to obtain such a value, we are planning to measure the dependence of the Ps$^-$ yield on alkali metal coverage for the Ta target. We will search for the coverage corresponding to $\phi_{Ps^-} = 0$, and determine the binding energy as

$$E_B = \phi_0^+ + 2\phi_0^-,$$ \hspace{1cm} (5)

where ϕ_0^+ and ϕ_0^- are the positron and electron work functions measured for the coverage corresponding to $\phi_{Ps^-} = 0$, respectively [23].
4. Ps^- photodetachment experiment

The significant increase obtained in the emission efficiency opens up the possibility of performing Ps^- photodetachment experiments. An experiment using the pulsed positron beam at KEK [24] together with a Nd: YAG laser synchronized to the positron beam is being planned [25]. Using the Ps^- photodetachment technique, the production of a variable energy Ps beam will be feasible [13][18].

5. Acknowledgment

We thank Professors T. Hyodo, A. Yagishita, T. Kuga, A. Igarashi, A. P. Mills, Jr. and G. Laricchia for valuable discussions and their encouragement. This work was supported by the Reimei Research Promotion project (Japan Atomic Energy Agency) and Matsuo Foundation.

References

[1] Wheeler J A 1946 Ann. New York Acad. Sci.48 219
[2] Frost A A, Inokuti M and Lowe J P 1964 J. Chem. Phys. 41 482
[3] Ho Y K 1993 Phys. Rev. A 48 4780
[4] Frolov A M 1999 Phys. Rev. A60 1015
[5] Krivec R, Mandelzweig V B and Varga K 2000 Phys. Rev. A61 62503
[6] Drake G W F and Grigorescu M 2005 J. Phys. B: At. Mol. Opt. Phys. 38 3377
[7] Ho Y K 1979 Phys. Rev. A19 2347
[8] Ho Y K 1984 Phys. Lett. A102 348
[9] Ward S J, Humberston J W and McDowell M R C 1987 J. Phys. B: At. Mol. Opt. Phys.20 127
[10] Igarashi A, Shimamura I and Toshima N 2000 New J. Phys.2 17
[11] Mills Jr. A P 1981 Phys. Rev. Lett.46 717
[12] Mills Jr. A P 1983 Phys. Rev. Lett.50 671
[13] Mills Jr. A P, Friedman P G and Zuckerman D M 1990 Annihilation in Gases and Galaxies ed R J Drachman (NASA, Maryland) p.213
[14] Schwalm D, et al. 2004 Nucl. Instrum Methods B 221 185
[15] Fleischer F, et al. 2006 Phys. Rev. Lett.96 063401
[16] Nagashima Y and Sakai T 2006 New J. Phys.8 319
[17] Nagashima Y, Hakodate T, Miyamoto A and Michishio K 2008 New J. Phys.10 123029
[18] Laricchia G 1995 Positron Spectroscopy of Solids ed A Dupasquier and A P Mills, Jr. (IOS, Amsterdam) p.401.
[19] Laricchia G, Armitage S, Kövé R Á and Murtagh D J 2008 Advances in Atomic, Molecular and Optical Physics 56 ed E Arimondo, P R Berman and C C Lin (Elsevier, Amsterdam) p.1
[20] Jibary M, Weiss A, Koymen A R, Mehl D and Stiborek L 1991 Phys. Rev. B44 12166
[21] Lide D R (Ed) 2004 CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton)
[22] Weiss A H and Coleman P G 2000 Positron Beams and Their Applications ed P G Coleman (World Scientific, Singapore) p.129
[23] Nagashima Y, Hakodate T, Miyamoto A, Michishio K and Terabe H Physica Status Solidi submitted
[24] Kurihara T, Yagishita A, Enomoto A, Kobayashi H, Shidara T, Shirakawa A, Nakamura K, Saito H, Inoue K, Nagashima Y, Hyodo T, Nagai Y, Inoue Y, Kogure Y and Doyama M 2000 Nucl. Instr. and Method B171 164
[25] Nagashima Y, Tachibana T, Michishio K, Terabe H, Hyodo T, Wada K, Yagishita A, Kurihara T and Kuga T 2009, private communication