REVIEW

Contribution of host factors and workplace exposure to the outcome of occupational asthma

Piero Maestrelli*, Vivi Schlünsen#, Paola Mason* and Torben Sigsgaard* on behalf of the ERS Task Force on the Management of Work-related Asthma

ABSTRACT: The outcome of occupational asthma after diagnosis is often poor. The identification of factors associated with a worse outcome may help in the management of the disease, determining its prognosis and assessing the permanent impairment attributable to occupational exposure.

The aim of this systematic review was to provide the available evidence from the medical literature to answer the question: “What is the contribution of host factors and workplace exposure to the risk of a bad outcome of occupational asthma?”

A systematic literature search was conducted in March 2010. We retrieved 177 abstracts. Of these, 67 were assessed as potentially relevant. After full text evaluation, 35 articles that were actually relevant for the question were included in the analysis.

The information obtained was sufficient to establish that older age, high-molecular-weight agents, impaired lung function and longer duration of exposure to the offending agent at the time of diagnosis had a negative role on the outcome of occupational asthma. Atopy and smoking at diagnosis did not seem to influence the outcome of occupational asthma. A limited number of studies considered sex and the pattern of asthmatic reaction on specific inhalation challenge and their findings were contradictory.

KEYWORDS: Atopy, cigarette smoke, duration, lung function, occupational exposure, prognosis

The outcome of occupational asthma after diagnosis is often poor. The identification of factors associated with a worse outcome may help in planning appropriate management of the disease, determining its prognosis and assessing the permanent impairment attributable to occupational exposure. The issue of risk factors associated with the outcome of occupational asthma was considered by recent guidelines but not in a systematic manner. The American College of Chest Physicians (ACCP) [1], the British Occupational Health Research Foundation (BOHRF) [2] and the Agency for Healthcare Research and Quality (AHRQ) [3] agreed that longer symptomatic exposure is related to a worse outcome of occupational asthma.

We considered eight risk factors, in order to determine their respective influence on the prognosis of occupational asthma: 1) lung function at the time of diagnosis; 2) duration of exposure to the offending agent; 3) atopic status; 4) smoking status at diagnosis; 5) sex; 6) age; 7) type of causing agent; and 8) the pattern of asthmatic reaction on specific inhalation challenge (SIC).

METHODS

Appropriate search terms were adapted to search Medline via PubMed (table 1).

The final literature search with PubMed was conducted in March 2010. Additional papers were retrieved by cross-referencing. The abstract of each title was independently screened by two occupational medicine specialists for consistency...
with the aim of the search (P. Mason and V. Schlu¨ nbesen). The full text of potentially relevant articles was examined according to pre-determined criteria using standardised forms. Two reviewers independently assessed each article. The quality of the studies relevant to the key question was assessed using the Scottish Intercollegiate Guidelines Network (SIGN) grading system (from 1++ , highest quality, to 4, lowest quality). Disagreement among reviewers was resolved by discussion and/or consulting a third party, if needed. The heterogeneity of the studies prevented the use of sophisticated analytical methods. Nonetheless, in the synopsis of the data we were able to sufficiently homogenise the information provided and use it for the formulation of statements graded according to the Royal College of General Practitioners (RCGP) three-star system. The evidence and clinical relevance of the recommendations were classified according to the GRADE (Grading of Recommendations Assessment, Development and Evaluation) system adapted by the American Thoracic Society [4]. The methods are extensively described in the paper by BAUR et al. [5]. Search results, as well as the list of considered articles, are included in the evidence tables and are presented in table O3 in the supplementary material in the paper by BAUR et al. [5].

RESULTS

148 titles were identified in the systematic literature search. An additional 29 titles that were not included in the search were obtained by cross-referencing the review article by RACHIOTIS et al. [6]. In total, 177 abstracts were considered. Of these, 67 were assessed as potentially relevant for the key question. After full text evaluation, we selected 36 papers that were actually relevant for the key question. The study by AMEILLE et al. [7] was subsequently excluded as the findings were based on results from two papers that were already included [8, 9]. The evidence table of the 35 papers is included in the study by BAUR et al. [5] (supplementary material, table O3). For each investigated factor, the number of subjects in the positive and negative studies was calculated by adding the number of subjects at follow-up in each study that considered the investigated factor included in the review by RACHIOTIS et al. [6] and in the extended literature search.

Lung function impairment at diagnosis

Among the 18 articles reviewed, 15 studies detected a significant relationship between low indices of lung function at baseline (nonspecific bronchial hyperresponsiveness (NSBHR): n=10; forced expiratory volume in 1 s (FEV1) or forced vital capacity (FVC): n=9; SIC: n=2) and a worse asthma outcome at follow-up (table 2). One study found that increased bronchial hyperresponsiveness (BHR) at baseline favours a good outcome at follow-up [24]. In contrast, five studies did not find associations between low indices of lung function at baseline (NSBHR: n=4; FEV1 or FVC: n=4) and a worse asthma outcome at follow-up. If the evaluation was restricted to well-conducted studies (grading 2+ and 2++), the

TABLE 1

First term(s)	AND	AND
General risk factors	(‘Risk factors’[Mesh] OR ‘Outcome and Process Assessment (Health Care)’[Mesh] OR ‘Outcome’[all] OR ‘Prognosis’[all] OR ‘Prognostic value’[all] OR ‘Follow-up studies’[Mesh])	‘Asthma’[Mesh] AND (‘Occupational diseases’[Mesh] OR ‘Occupational health’[Mesh] OR ‘Occupational exposure’[Mesh] OR ‘Occupational groups’[Mesh] OR ‘Workplace’[Mesh] OR ‘Work related’[all] OR ‘Work aggravated’[All] OR ‘Humans’[MeSH Terms] NOT (‘Child’[Mesh] OR ‘Parity’[Mesh])
Smoking	(‘Smoking’[Mesh] OR ‘Tobacco Smoke Pollution’[Mesh] OR ‘Tobacco Use Cessation’[Mesh])	(‘Prognosis’[Mesh] OR ‘Outcome and Process Assessment (Health Care)’[Mesh] OR ‘Outcome’[all] OR ‘Prognosis’[all] OR ‘Prognostic value’[all] OR ‘Follow-up studies’[Mesh])
Atopy	(‘Atopy’[all] OR ‘Atopic status’[all])	‘Asthma’[Mesh] AND (‘Occupational diseases’[Mesh] OR ‘Occupational exposure’[Mesh] OR ‘Occupational groups’[Mesh] OR ‘Workplace’[Mesh] OR ‘Work related’[all] OR ‘Work aggravated’[All] OR ‘Humans’[MeSH Terms] NOT (‘Child’[Mesh] OR ‘Parity’[Mesh] OR ‘Risk factors’[Mesh])
Impaired lung function	(‘Respiratory function tests’[Mesh] AND (‘Impairment’[all] OR ‘Decrease’[all] OR ‘Decline’[all] OR ‘Lower’[all])	‘Asthma’[Mesh] AND (‘Occupational diseases’[Mesh] OR ‘Occupational exposure’[Mesh] OR ‘Occupational groups’[Mesh] OR ‘Workplace’[Mesh] OR ‘Work related’[all] OR ‘Work aggravated’[All] OR ‘Humans’[MeSH Terms] NOT (‘Child’[Mesh] OR ‘Parity’[Mesh] OR ‘Risk factors’[Mesh])
Duration and cessation	(‘Duration of exposure’[all] OR ‘Exposure duration’[all] OR ‘Exposure cessation’[all] OR ‘Long-term cessation’[all])	(‘Prognosis’[Mesh] OR ‘Outcome and Process Assessment (Health Care)’[Mesh] OR ‘Outcome’[all] OR ‘Prognosis’[all] OR ‘Prognostic value’[all] OR ‘Follow-up studies’[Mesh] OR ‘Recovery of Function’[Mesh])

Note: The table above represents the terms used for the PubMed search, as described in the text. The full terms used are detailed in the supplementary material.
number of studies reporting a significant relationship between low indices of lung function at baseline and a worse asthma outcome at follow-up was six versus two studies that reported no relationship (table 2).

Duration of occupational exposure

In addition to the study by RACHIOTIS et al. [6], which includes 14 papers related to the duration of occupational exposure before diagnosis, we evaluated seven papers that detected a significant relationship between duration of exposure and outcome of occupational asthma [11, 13, 14, 21, 26–28]. In contrast, four articles did not find a relationship between duration of exposure and outcome of occupational asthma [24, 29–31]. If the evaluation is restricted to well-conducted studies (2+, 2++ or 1-), two studies found a positive association compared to three which did not find any association (table 3). However, the number of subjects in the positive studies (excluding those with grade 3 evidence) largely exceed (>3,000) the number of subjects in the negative studies (~500).

Atopy

None of the articles reported a relationship between atopy and outcome of occupational asthma (table 4).

Smoking at diagnosis

11 articles did not find a significant relationship between smoking at diagnosis and outcome of occupational asthma [12, 16, 18, 20, 22–24, 28, 29, 31, 39]. This group includes most of the studies with better (2+) grading. In contrast, four articles reported a relationship between smoking and worse outcome of occupational asthma (table 5) [10, 13, 32, 38].

Sex

Two papers found no significant relationship between sex and outcome of occupational asthma [21, 31]. However, two other studies found a significant relationship between sex and outcome of occupational asthma [20, 39]. MALO et al. [20] found female sex to favour good prognosis, while GASSER ET AL. [39] found male sex to favour good prognosis (table 6).

Age at diagnosis

The papers selected by the systematic review were already included in the study by RACHIOTIS et al. [6], which identified an effect of age on asthma outcome (table 7). The number of subjects (~1,700) evaluated in the papers reporting an association between older age at diagnosis and worse outcome of occupational asthma (excluding those with grade 3

TABLE 2
Lung function impairment at diagnosis and outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
MERGET [10]	No relationship (NSBHR)	2-	Cohort study	Platinum salts	275
TARLO [11]	+ (NSBHR, FEV, FVC)	3	Descriptive study of register	Isocyanates	235
COTE [12]	+ (SIC), no relationship (FEV, FVC, NSBHR)	2+	Longitudinal	Plicatic acid (Western red cedar)	48
SORGDRAGER [13]	+ (FEV1)	2-	Longitudinal	Fluorides	122
PISATI [14]	No relationship (FEV1, VC, NSBHR)	2-	Longitudinal	TDI	25
PERPETTI [15]	+ (NSBHR, FEV1)	2-	Longitudinal	Various HMW and LMW agents	99
PARK [16]	+ (NSBHR)	2-	Longitudinal	TDI	35
CHANG-YEUNG [17]	+ (NSBHR, FEV1,FVC)	2-	Longitudinal	Western red cedar	125
MAGNINI [8]	+ (NSBHR)	2+	Longitudinal	Various HMW and LMW agents	133
LOZEWICZ [18]	+ (NSBHR, FEV1)	2+	Longitudinal	Isocyanates (TDI, MDI)	56
HUDSON [19]	+ (FEV1)	2-	Longitudinal	Crab; various HMW and LMW agents	63
MALO [20]	+ (NSBHR, FEV1)	2+	Longitudinal	Various HMW and LMW agents	80
PARK [21]	+ (NSBHR)	2-	Longitudinal	TDI	41
MAPPA [22]	+ (SIC), no relationship (FEV1, NSBHR)	2-	Longitudinal	TDI	35
LABRIDEQUE [23]	+ (NSBHR, FEV1)	2-	Longitudinal	Isocyanates	79
PADOAN [9]	+ (NSBHR, FEV1)	2++	Longitudinal	TDI	87
SOYSETH [24]	- (Higher NSBHR at baseline favours good prognosis), no relationship (FEV1)	2+	Longitudinal	Fluorides	38
MOSCATO [25]	+ (FEV1)	2+	Longitudinal	Various	29

SIGN: Scottish Intercollegiate Guidelines Network; NSBHR: nonspecific bronchial hyperresponsiveness; FEV1: forced expiratory volume in 1 s; FVC: forced vital capacity; SIC: specific inhalation challenge; VC: vital capacity; TDI: toluene diisocyanate; HMW: high molecular weight; LMW: low molecular weight; MDI: methylene diphenyl diisocyanate. +: relationship between worse lung function at baseline (FEV1, FVC, VC, NSBHR and SIC) and worse asthma status at follow-up; - : relationship between worse lung function at baseline (FEV1, FVC, VC, NSBHR and SIC) and better asthma status at follow-up.
Evidence) largely exceeds, the number of subjects (~500) included in the studies that did not find such a relationship.

Type of causative agent

Three studies [19, 34, 39] and the study by RACHIOTIS et al. [6] found a significant relationship between type of agent and outcome of occupational asthma. GASSERT et al. [39] found occupational asthma from the industrial sector to have a worse outcome compared to other sectors. RACHIOTIS et al. [6] and PERFETTI et al. [34] found that patients who are exposed to high-molecular-weight agents are more likely to have persistent BHR. Four studies found no relationship between the type of agent and outcome of occupational asthma [11, 20, 28, 35]. The number of studies is limited, but the body of data supporting a positive relationship in the studies graded 2+ or 1- is substantial compared to data revealing no relationship (~2,000 versus ~500 subjects) (table 8).

Pattern of asthmatic reaction on specific inhalation challenge: late versus early

Three papers did not find any significant relationship between type of response and outcome of occupational asthma [11, 29, 35]; the grading of these articles is generally low. However, two studies have found late response to worsen the outcome of occupational asthma [22, 40], and COTÉ et al. [12] detected a relationship with the severity of either early or late asthmatic reactions (table 9).

TABLE 3 Duration of occupational exposure and outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
DESCATHA [28]	+ (2)	2+	Case series	Various HMW and LMW agents	227
CHANG-YEUNG [32]*	+ (1)(2)	2-	Longitudinal	Western red cedar	38
TARLO [11]	+ (1)(2)	3	Descriptive study of disease register	Isocyanates	235
ORRIOLS [27]	+ (2)	3	Longitudinal	Isocyanates	21
VALENTINO [29]	No relationship (1)(2)	2+	Longitudinal	TDI	50
SORGRAZER [11]	+ (2)	2-	Longitudinal	Fluorides	122
SARIC [30]	No relationship (2)	3	Longitudinal	Fluoride/SO₂	30
RACHIOTIS [6]	+ (1)(2)	1-	Systematic review	Various	2376
PISATI [14]	+ (1)	2-	Longitudinal	TDI	25
PISATI [33]**	No relationship (1)(2)	2+	Longitudinal	TDI	60
PERFETTI [34]	+ (2)	2-	Longitudinal	Various HMW and LMW agents	99
PARK [16]	+ (1)	2-	Longitudinal	TDI	35
LEMIERE [35]**	No relationship (2)	3	Longitudinal	Various HMW and LMW agents	15
CHANG-YEUNG [17]*	+ (2)	2-	Longitudinal	Western red cedar	125
LOZEWICZ [18]**	No relationship (2)	2+	Longitudinal	Isocyanates (TDI, MDI)	56
AHEES [31]	No relationship (related to cessation) (1)(2)	2+	Longitudinal	Various HMW and LMW agents	156
ALLARD [36]**	+ (1)(2)	2-	Longitudinal	Various HMW and LMW agents	28
MARABINI [37]**	+ (2)	2-	Longitudinal	Plicatic acid (Western red cedar)	128
HUDSON [19]**	+ (1)(2)	2-	Longitudinal	Crab; various HMW and LMW agents	63
MALO [20]	No relationship (2)	2+	Longitudinal	Various HMW and LMW agents	80
MERGET [28]	+ (1)	3	Longitudinal	Platinum salts	83
LABREQUE [21]	+ (2)	2-	Longitudinal	Isocyanates	79
PADOAN [9]**	+ (2)	2++	Longitudinal	TDI	87
SOYSETH [24]	No relationship (2)	2+	Longitudinal	Fluorides	38
MOSCATO [25]**	+ (1)(2)	2+	Longitudinal	Various	29
MERGET [38]**	No relationship (1)	2-	Longitudinal	Platinum salts	24

SIGN: Scottish Intercollegiate Guidelines Network; HMW: high molecular weight; LMW: low molecular weight; TDI: toluene diisocyanate; MDI: methylene diphenyl diisocyanate. +: positive relationship between duration of exposure and asthma outcome (shorter exposure results in better outcome); (1): symptomatic exposure before diagnosis; (2): total duration of occupational exposure. *: these articles are included in the review by RACHIOTIS et al. [6].
DISCUSSION

The information retrieved from the systematic literature search was sufficient to establish the role of lung function at the time of diagnosis, duration of exposure to the offending agent, atopic status, smoking status at diagnosis, age and type of causative agent on the outcome of occupational asthma. In contrast, a limited number of studies considered sex and the pattern of asthmatic reaction on SIC, and their findings were contradictory.

The following statements summarise the results of our systematic analysis (refer to table O3 in the Task Force report [5]). The evidence was graded according to the RCGP three-star system.

1) There is a substantial body of data that indicates that lower lung volumes, higher NSBHR or stronger asthmatic response to specific inhalation challenge at diagnosis are risk factors for a bad occupational asthma outcome (moderate evidence: **).

The statement is based on 18 articles; seven had SIGN grade 2+ or 2++ (table 2) [8, 9, 12, 18, 20, 24, 25]. This statement is in agreement with the conclusions of BOHRF [2]. The issue was not considered by ACCP [1] or AHRQ [3].

2) There is a substantial body of data that suggests that a longer symptomatic exposure relates to a worse outcome of occupational asthma (moderate evidence: **).

The statement is based on 26 articles, 10 with SIGN grade 2+, 2++ or 1- (table 3) [6, 9, 18, 20, 21, 25, 28, 29, 31, 33]. This statement is in agreement with the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

TABLE 4

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
MERGET [10]	No relationship	2-	Cohort study	Platinum salts	275
DESCATHA [28]	No relationship	2+	Case series	Various HMW and LMW agents	227
COTE [12]	No relationship	2+	Longitudinal	Plicatic acid (Western red cedar)	48
VALENTINO [29]	No relationship	2+	Longitudinal	TDI	50
PARK [16]	No relationship	2-	Longitudinal	TDI	35
LOZEWICZ [18]	No relationship	2+	Longitudinal	Isocyanates (TDI, MDI)	56
ANEES [31]	No relationship	2+	Longitudinal	Various HMW and LMW agents	156
PARK [21]	No relationship	2-	Longitudinal	TDI	41
MAPP [22]	No relationship	2-	Longitudinal	TDI	35
MERGET [38]	No relationship	2-	Longitudinal	Platinum salts	24

SIGN: Scottish Intercollegiate Guidelines Network; HMW: high molecular weight; LMW: low molecular weight; TDI: toluene diisocyanate; MDI: methylene diphenyl diisocyanate.

TABLE 5

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
MERGET [10]	+	2-	Cohort study	Platinum salts	275
DESCATHA [28]	No relationship	2+	Case series	Various HMW and LMW agents	227
CHANG-YEUNG [32]	+	2-	Longitudinal	Western red cedar	38
COTE [12]	No relationship	2+	Longitudinal	Plicatic acid (Western red cedar)	48
VALENTINO [29]	No relationship	2+	Longitudinal	TDI	50
SORODRAGER [13]	+	2-	Longitudinal	Fluorides	122
PARK [16]	No relationship	2-	Longitudinal	TDI	35
LOZEWICZ [18]	No relationship	2+	Longitudinal	Isocyanates (TDI, MDI)	56
ANEES [31]	No relationship	2+	Longitudinal	Various HMW and LMW agents	156
MALO [20]	No relationship	2+	Longitudinal	Various HMW and LMW agents	80
MAPP [22]	No relationship	2-	Longitudinal	TDI	35
GASSERT [39]	No relationship	2-	Longitudinal	Various	55
LABREQUE [23]	No relationship	2-	Longitudinal	Isocyanates	79
SOYSETH [24]	No relationship	2+	Longitudinal	Fluorides	38
MERGET [38]	+	2-	Longitudinal	Platinum salts	24

SIGN: Scottish Intercollegiate Guidelines Network; HMW: high molecular weight; LMW: low molecular weight; TDI: toluene diisocyanate; MDI: methylene diphenyl diisocyanate. +: relationship between smoking at diagnosis and worse asthma outcome.
3) There is no relationship between atopy and the outcome of occupational asthma (strong evidence: ***).

The statement is based on 10 articles, five with SIGN grade 2+ (table 4) [12, 18, 28, 29, 31]. Atopy was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

4) Smoking at the time of diagnosis is not related to the outcome of occupational asthma. Although it is well established that smoking cessation is beneficial for the prognosis of asthma per se, smoking at the time for diagnosis of occupational asthma does not seem to have a major impact on the prognosis (moderate evidence: **).

The statement is based on 15 articles, seven with SIGN grade 2+ (table 5) [12, 18, 20, 24, 28, 29, 31]. Smoking was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

5) There is a limited body of data that considered sex in the outcome of occupational asthma and the evidence is contradictory (contradictory evidence: *).

The statement is based on four articles, two with SIGN grade 2+ (table 6) [20, 31]. Sex was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

6) There is a sufficient body of data that indicates that an older age of the patients is associated with poorer prognosis of occupational asthma (moderate evidence: **).

The statement is based on six articles, three with SIGN grade 2+ or 1- (table 7) [6, 25, 28]. Age was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

7) There is a substantial body of data that indicates an effect of the type of causing agents on occupational asthma outcome. High-molecular-weight agents seem to cause longer duration of NSBHR compared to low-molecular-weight allergens (moderate evidence: **).

The statement is based on eight articles, three with SIGN grade 2+ or 1- (table 8) [6, 20, 28]. This statement is in agreement with the conclusions of ACCP [1]. The issue was not included in the conclusions of BOHRF [2] or AHRQ [3].

8) From the low number of papers it is not clear whether the pattern of asthmatic response affects the prognosis for occupational asthma (limited evidence: *).

The statement is based on six articles, three with SIGN grade 2+ (table 9) [12, 29, 40]. The issue was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3].

All recent guidelines have concluded that the probability of a better outcome of occupational asthma is greater in those who have a shorter duration of symptomatic period before diagnosis, and avoid exposure to the offending agent after the diagnosis.

TABLE 6: Effect of sex on outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
ANEES [31]	No relationship	2+	Longitudinal	Various HMW and LMW agents	156
MALO [20]	+ (Female sex favours good prognosis)	2+	Longitudinal	Various HMW and LMW agents	80
PARK [21]	No relationship	2-	Longitudinal	TDI	41
GASSERT [39]	+ (Male sex favours good prognosis)	2-	Longitudinal	Various	55

SIGN: Scottish Intercollegiate Guidelines Network; HMW: high molecular weight; LMW: low molecular weight; TDI:toluene disocyanate. +: effect of sex on asthma outcome.

TABLE 7: Effect of age at diagnosis on outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
DESCATHA [28]	No relationship	2+	Case series	Various HMW and LMW agents	227
RACHITOS [6]	+	1-	Systematic review	Various	2376
CHANG-YEUNG [17]*	+	2-	Longitudinal	Western red cedar	125
PARK [21]*	No relationship	2-	Longitudinal	TDI	41
MAPP [22]*	No relationship	2-	Longitudinal	TDI	35
MOSCATO [25]*	+	2+	Longitudinal	Various	29

SIGN: Scottish Intercollegiate Guidelines Network; HMW: high molecular weight; LMW: low molecular weight; TDI:toluene disocyanate. +: effect of age on asthma outcome. *: these articles are included in the review by Rachitos et al. [6].
Although it is well established that atopy is a risk factor for occupational asthma due to high-molecular-weight agents, whereas it is not so for low-molecular-weight causes of occupational asthma, the analysis of data indicated that once occupational asthma has developed, being atopic does not modify the prognosis of the disease irrespective of the nature of the occupational agent. The evidence that the outcome of occupational asthma is not related to the presence of atopy is strong, since the literature is concordant on this conclusion. However, it should be considered that among the studies evaluated, there was an imbalance in favour of occupational asthma due to low-molecular-weight agents. Atopy was not included in the conclusions of ACCP [1], BOHRF [2] and AHRQ [3]. There was evidence, albeit moderate, that being a smoker at the time of diagnosis of occupational asthma did not influence the prognosis of the disease. This may be surprising considering that asthmatic smokers have an accelerated decline in lung function and poorer response to corticosteroid treatment compared to nonsmokers. Probably the effect of other variables, in particular on persistence or cessation of exposure to the causing agent, on the course of the disease is sufficiently strong to obscure that of cigarette smoke in the small cohorts examined in the studies on occupational asthma. Since pathophysiology and treatment of occupational asthma are comparable to those of non-occupational asthma, it is reasonable to offer the option of smoking cessation to smoking workers when the diagnosis of occupational asthma is made.

There is evidence that older age is related to poorer prognosis of occupational asthma. It remains to be seen whether age is a risk factor per se or that the effect is seen because older workers had been exposed to the workplace environment for longer. Neither smoking habit nor age were considered in previous guidelines by the ACCP [1], BOHRF [2] and AHRQ [3]. The ACCP [1] adopted the findings of RACHITS et al. [6] and stated that the prevalence of persisting NSBHR was significantly higher among those with occupational asthma caused by high-molecular-weight agents compared with those with occupational asthma from low-molecular-weight agents. These conclusions have been confirmed by our extended analysis. The relationship between type of causal agent (high molecular weight versus low molecular weight) and outcome of occupational asthma should be taken cautiously, since RACHITS et al. [6] found that patients exposed to high-molecular-weight agents are more likely to have persistent NSBHR, but the recovery rate after cessation of

Table 8: Effect of type of causing agent on outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
DESCATHA [28]	No relationship	2+	Case series	Various HNW and LMW agents	227
TARLO [11]	No relationship	3	Descriptive study of disease register	Isocyanates	235
RACHITS [6]	+ (HMW persistent BHR)	1-	Systematic review	Various	2376
PERFETTI [34]	+ (HMW persistent BHR)	2-	Longitudinal	Various HNW and LMW agents	99
LEMIERE [35]	No relationship	3	Longitudinal	Various HNW and LMW agents	15
HUDSON [19]	+ (Crab occupational asthma better outcome compared to other agents)	2-	Longitudinal	Crab; various HNW and LMW agents	63
MALO [20]	No relationship	2+	Longitudinal	Various HNW and LMW agents	80
GASSERT [39]	+ (Occupational asthma industrial sector worse outcome compared to other sectors)	2-	Longitudinal	Various	55

SIGN: Scottish Intercollegiate Guidelines Network; HNW: high molecular weight; LMW: low molecular weight; BHR: bronchial hyperresponsiveness. +: effect of the type of causing agent on asthma outcome. #: these articles are included in the review by RACHITS et al. [6].

Table 9: Pattern of asthmatic reaction on specific inhalation challenge (late versus early) and outcome of occupational asthma

First author [ref.]	Main conclusion	SIGN grade	Study type	Exposure/occupation	Subjects n
TARLO [11]	No relationship	3	Descriptive study of disease register	Isocyanates	235
COTE [12]	+ (Severity of early and late)	2+	Longitudinal	Plicatic acid (Western red cedar)	48
VALENTINO [29]	No relationship	2+	Longitudinal	TDI	50
LEMIERE [35]	No relationship	3	Longitudinal	Various HNW and LMW agents	15
MARABINI [40]	+ (Late)	2+	Longitudinal	TDI	40
MAPP [23]	+ (Late)	2-	Longitudinal	TDI	35

SIGN: Scottish Intercollegiate Guidelines Network; TDI: toluene diisocyanate; HNW: high molecular weight; LMW: low molecular weight. +: effect of the pattern of asthmatic reaction on asthma outcome.
exposure did not differ in the two groups. The type of causing agent was not considered by BOHRF [2] and AHRQ [3].

Future aspects

More research is needed in order to assess the prognostic value of sex and type of asthmatic response to specific bronchial challenge test at diagnosis. Furthermore, knowledge on the level of exposure is needed in order to assess the effect of duration of exposure in a more qualified way. Finally, most research on risk factors for a bad outcome is performed on a limited number of exposures, *i.e.* isocyanates and Western red cedar. It is crucial to include other exposures in the research field as well.

In conclusion, based on this systematic review some recommendations can be made regarding risk factors for a bad outcome of occupational asthma (table 10).

SUPPORT STATEMENT

The work of the Task Force on the Management of Work-related Asthma was funded by the European Respiratory Society.

STATEMENT OF INTEREST

V. Schlu¨ nssen received a fee for speaking at a scientific meeting by GlaxoSmithKline Pharma A/S in 2011.

ACKNOWLEDGEMENTS

The members of the Task Force are as follows: X. Baur (Chair; Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany); T. Sigsgaard (Co-Chair; Århus University, Institute of Environmental and Occupational Medicine, School of Public Health, Århus, Denmark), T.B. Aasen (Århus University, Institute of Environmental and Occupational Medicine and Public Health, Århus, Denmark), O. Vandenplas (Dept of Chest Medicine, Mont-Godinne Hospital, Belgium), and D. Wilken (Institute for Occupational and Maritime Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany).

REFERENCES

1. Tarlo SM, Balmes J, Balkissoon R, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. *Chest* 2008; 134: Suppl. 3, 1s–41s.
2. Nicholson P, Cullinan P, Taylor AJ, et al. Evidence based guidelines for the prevention, identification, and management of occupational asthma. *Occup Environ Med* 2005; 62: 290–299.
3. Beach J, Rowe BH, Blitz S, et al. Diagnosis and Management of Work-related Asthma. Evidence Report/Technology Assessment No. 129. U.S. Department of Health and Human Services, Agency for Healthcare Research and Quality. Edmonton, University of Alberta, 2005.
4. Schünemann HJ, Jaeschke R, Cook DJ, et al. An official ATS statement: grading the quality of evidence and strength of recommendations in ATS guidelines and recommendations. *Am J Respir Crit Care Med* 2006; 174: 605–614.
5. Baur X, Sigsgaard T, Aasen TB, et al. Guidelines on the management of work-related asthma. *Eur Respir J* 2012; 39: 529–545.
6. Rachiotis G, Savani R, Brant A, et al. Outcome of occupational asthma after cessation of exposure: a systematic review. *Thorax* 2007; 62: 147–152.
7. Ameille J, Descatha A. Outcome of occupational asthma. *Curr Opin Allergy Clin Immunol* 2005; 5: 125–128.
8. Maghni K, Lemiere C, Ghezzo H, et al. Airway inflammation after cessation of exposure to agents causing occupational asthma. *Am J Respir Crit Care Med* 2004; 169: 367–372.
9. Padoan M, Pozzato V, Simoni M, et al. Long-term follow-up of toluene diisocyanate-induced asthma. *Eur Respir J* 2005; 21: 637–640.
10. Merget R, Kulzer R, Dierskes-Globisch A, et al. Exposure-effect relationship of platinum salt allergy in a catalyst production plant: conclusions from a 5-year prospective cohort study. *J Allergy Clin Immunol* 2000; 105: 364–370.
11. Tarlo SM, Banks D, Liss G, et al. Outcome determinants for isocyanate induced occupational asthma among compensation claimants. *Occup Environ Med* 1997; 54: 756–761.
12. Cote J, Kennedy S, Chan-Yeung M. Outcome of patients with cedar asthma with continuous exposure. *Am Rev Respir Dis* 1990; 141: 373–376.
13. Sorgdrager B, de Looff AJ, Pal TM, et al. Factors affecting FEV1 in workers with potroom asthma after their removal from exposure. *Int Arch Occup Environ Health* 2001; 74: 55–58.
14. Pisati G, Baruffini A, Bernabeo F, et al. Rechallenging subjects with occupational asthma due to toluene diisocyanate (TDI), after long-term removal from exposure. *Int Arch Occup Environ Health* 2007; 80: 298–305.
15. Perfetti L, Hebert J, Lapalme Y, et al. Changes in IgE-mediated allergy to ubiquitous inhalants after removal from or diminution of exposure to the agent causing occupational asthma. *Clin Exp Allergy* 1998; 28: 66–73.
16 Park HS, Nahm DH. Prognostic factors for toluene diisocyanate-induced occupational asthma after removal from exposure. Clin Exp Allergy 1997; 27: 1145–1150.

17 Chan-Yeung M, Lam S, Koerner S. Clinical features and natural history of occupational asthma due to western red cedar (Thuja plicata). Am J Med 1982; 72: 411–415.

18 Lozewicz S, Assoufi BK, Hawkins R, et al. Outcome of asthma induced by isocyanates. Br J Dis Chest 1987; 81: 14–22.

19 Hudson P, Cartier A, Pineau L, et al. Follow-up of occupational asthma caused by crab and various agents. J Allergy Clin Immunol 1985; 76: 682–688.

20 Malo JL, Ghezzo H. Recovery of methacholine responsiveness after end of exposure in occupational asthma. Am J Respir Crit Care Med 2004; 169: 1304–1307.

21 Park HS, Lee SK, Kim HY, et al. Specific immunoglobulin E and immunoglobulin G antibodies to toluene diisocyanate-human serum albumin conjugate: useful markers for predicting long-term prognosis in toluene diisocyanate-induced asthma. Clin Exp Allergy 2002; 32: 551–555.

22 Mapp CE, Corona PC, De Marzo N, et al. Persistent asthma due to isocyanates. A follow-up study of subjects with occupational asthma due to toluene diisocyanate (TDI). Am Rev Respir Dis 1988; 137: 1326–1329.

23 Labrecque M, Khemici E, Cartier A, et al. Impairment in workers with isocyanate-induced occupational asthma and removed from exposure in the province of Quebec between 1985 and 2002. J Occup Environ Med 2006; 48: 1093–1098.

24 Soyseth V, Kongerud J, Aalen OO, et al. Bronchial responsiveness decreases in relocated aluminum potroom workers compared with workers who continue their potroom exposure. Int Arch Occup Environ Health 1995; 67: 53–57.

25 Moscato G, Bertolotti R, Biscaldi G, et al. Occupational asthma: fate and management after the diagnosis. G Ital Med Lav 1993; 15: 27–31.

26 Merget R, Schulte A, Gebler A, et al. Outcome of occupational asthma due to platinum salts after transfer from low-exposure areas. Int Arch Occup Environ Health 1999; 72: 33–39.

27 Orriols R, Drobnic ME, Munoz X, et al. Asma ocupacional por isocianatos: estudio de 21 pacientes [Occupational asthma due to isocyanates: a study of 21 patients]. Med Clin (Barc) 1999; 113: 659–662.

28 Descatha A, Leproust H, Choudat D, et al. Factors associated with severity of occupational asthma with a latency period at diagnosis. Allergy 2007; 62: 795–801.

29 Valentino M, Rapisarda V. Evoluzione dell’asma da isocianati in rapporto alla cessazione dell’esposizione: studio longitudinale su 50 soggetti [Course of isocyanate-induced asthma in relation to exposure cessation: longitudinal study of 50 subjects]. G Ital Med Lav Ergon 2002; 24: 26–31.

30 Saric M, Marelja J. Bronchial hyperreactivity in potroom workers and prognosis after stopping exposure. Br J Ind Med 1991; 48: 653–655.

31 Anees W, Moore VC, Burge PS. FEV1 decline in occupational asthma. Thorax 2006; 61: 751–755.

32 Chan-Yeung M. Fate of occupational asthma. A follow-up study of patients with occupational asthma due to Western Red Cedar (Thuja plicata). Am Rev Respir Dis 1977; 116: 1023–1029.

33 Pisati G, Baruffini A, Zedda S. Toluene diisocyanate induced asthma: outcome according to persistence or cessation of exposure. Br J Ind Med 1993; 50: 60–64.

34 Perfetti L, Cartier A, Ghezzo H, et al. Follow-up of occupational asthma after removal from or diminution of exposure to the responsible agent: relevance of the length of the interval from cessation of exposure. Chest 1998; 114: 398–403.

35 Lemiére C, Cartier A, Dolovich J, et al. Outcome of specific bronchial responsiveness to occupational agents after removal from exposure. Am J Respir Crit Care Med 1996; 154: 329–333.

36 Allard C, Cartier A, Ghezzo H, et al. Occupational asthma due to various agents. Absence of clinical and functional improvement at an interval of four or more years after cessation of exposure. Chest 1989; 96: 1046–1049.

37 Marabini A, Dimich-Ward H, Kwan SY, et al. Clinical and socioeconomic features of subjects with red cedar asthma. A follow-up study. Chest 1993; 104: 821–824.

38 Merget R, Reineke M, Rueckmann A, et al. Nonspecific and specific bronchial responsiveness in occupational asthma caused by platinum salts after allergen avoidance. Am J Respir Crit Care Med 1994; 150: 1146–1149.

39 Gassert TH, Hu H, Kelsey KT, et al. Long-term health and employment outcomes of occupational asthma and their determinants. J Occup Environ Med 1998; 40: 481–491.

40 Marabini A, Brugnami G, Curradi F, et al. Risposta al test di provocazione bronchiale specifica ed evoluzione dell’asma professionale. Studio longitudinale in soggetti con asma da toluendisocianato (TDI) [The response to a specific bronchial provocation test and the evolution of occupational asthma. A longitudinal study in subjects with toluene diisocyanate-induced asthma]. Med Lav 1994; 85: 134–141.