Structural and vibrational studies of equilenin, equilin and estrone steroids

Silvia Antonia Brandán 1, *

1 Cátedra de Química General, Instituto de Química Inorgánica, Facultad de Bioquímica. Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, (4000) San Miguel de Tucumán, Tucumán, Argentina

*corresponding author e-mail address: sbrandan@fbqf.unt.edu.ar | Scopus ID 6602262428

ABSTRACT

Three species associated with estrogens have been studied in this work, equilenin, equilin and estrone. Their molecular structures have been theoretically studied in gas phase with the hybrid B3LYP/6-31G* method. NBO, AIM and frontier orbital calculations were computed for the three species at the same level of theory. Higher dipole moment and volume were observed for estrone while equilenin presents higher volume than equilenin but lower dipole moment value. Probably, the unsaturated C=C in the B ring of equilin could explain those differences. The differences observed in the properties could be clearly explained by differences in the dihedral angles. The analyses of MK and Mulliken charges evidence the higher variations on the C atoms common to the B, C and D rings in the three species. The mapped MEP surfaces show that both A and B rings of equilenin are different from the other ones because they have aromatic naphthalene core, as was evidenced experimentally. The NBO studies support the higher stability of equilin, in relation to equilenin and estrone while the AIM analyses reveal the higher stability for estrone. The gap values suggest that equilenin is the most reactive species due to its higher global electrophilicity value, in agreement with the higher stability observed for this species while the higher global nucleophilicity values are observed for equilin and estrone. Here, the harmonic force fields, scaled force constants and the complete assignments of 108, 114 and 120 vibration modes for equilenin, equilin and estrone, respectively are reported for the first time.

Keywords: Steroids; Force fields; Vibrational analysis; DFT calculations; Molecular structure.

1. INTRODUCTION

Steroid hormones are important compounds found in the human body that are derived from cholesterol and have characteristics lipid-soluble and normally are grouped into two classes: corticosteroids and sex steroids differentiated by bonding receptors and biological functions [1-17]. Hence, different factors (solubilization, motility, transport, metabolism, and complementarity of fit between hormone and receptor) have influence on the activity of steroid hormones. Thus, according to the receptors to which they bind there are five types: glucocorticoids, mineralo-corticoids, androgens, estrogens, and progesterone. Steroid hormones have multiple functions in the human body being among others, control metabolism, immune functions, inflammation, salt and water balance, development of sexual characteristics, and the ability to resist illness and hurt [18-22]. For instance, estrone, estradiol, estriol, equilin, equilin and their derivatives are some of species associated with estrogens and, obviously, to steroid hormones [1-9,11,13]. Structural studies on these hormones and their quick identifications are very important from medicinal, chemistry, human health, environmental and pharmacological points of view because when these hormones are discharged toward the environmental can affect the systems of all living beings [14,15]. On the other hand, from long time the vibrational spectroscopy was a very useful technique used widely to detect the species related to steroid hormones, as evidenced in the numerous research papers published in the literature [10,12,14,17]. Hence, the knowledge of their structures is necessary to perform the complete and reliable vibrational assignments of these species. So far, previous vibrational works on those steroids were carried out without considering the corresponding force fields necessary to produce a correct assignment of all the bands observed in the infrared and Raman spectra [10,12,14,17]. These potential energy contributions are necessary to perform the vibrational assignments because, specifically, in the region of smaller wavenumbers region the vibration modes are strongly coupled with each other. In this study, the experimental available infrared and Raman spectra of equilenin, equilin and estrone steroids were completely assigned taking into account their corresponding harmonic SQM force fields by using the SQMFF methodology, the normal internal coordinates and the Molvib program [23-25]. A scheme of three structures studied in this work can be seen in Scheme 1 together with the definitions of four rings.

Hence, the harmonic force fields of equilenin, equilin and estrone steroids species in gas phase were obtained first optimizing the three structures with the hybrid B3LYP/6-31G* method [26,27] and, then, their corresponding vibrational spectra were predicted in order to compare with the experimental ones. In additional form, the harmonic force constant for the three species was also reported together with the studies of frontier orbitals because the...
predictions of the reactivities and behaviours of three species are of interest taking into account their important biological functions.

2. MATERIALS AND METHODS

The initial theoretical structure of equilenin was that experimental determined by X-ray diffraction to 100 K by Frampton and MacNicol [13] and, later with this structure were modelled the structures corresponding to equilin and estrone by using the GaussView program [28]. The optimizations of three structures in gas phase were carried out with the Revision A.02 of Gaussian program [29] and by using the hybrid B3LYP/6-31G* method [26,27]. In Figure 1 are presented the three structures with the atoms labeling and the definitions of four rings, as in scheme 1. The predicted energies values for the three species in gas phase were corrected by zero point vibrational energy (ZPVE) and the volumes in gas phase were computed at the same level of theory with the Moldraw program [30]. The scaled quantum mechanical force field (SQMFF) methodology together with the Molvib program was employed to obtain the harmonic force fields and the potential energy distribution (PED) contributions [23-25]. Here, the assignments oh three species were performed considering the corresponding normal internal coordinates, transferable scaling factors and only contributions ≥ 10%. In addition, the frontier orbitals and some remarkable descriptors were used to predict reactivities and behaviours of three species [31-41].

3. RESULTS

Optimized Structures of all species in gas phase.

Structurally, equilenin [13] is different from equilin and estrogen in the B ring, as can be seen in Figure 2.

Thus, in equilenin both A and B rings are practically coplanar forming a full aromatic naphthalene core, as mentioned by Frampton and MacNicol [13], with two aromatic C-H bonds in B. In equilin, due to the presence of a C=C in B only an aromatic C-H bond it is observed in this ring. On the contrary, in estrone there are two CH₂ groups in B, for which, the total number of atoms increase from 38 in equilenin to 42 in estrone while in equilin the total number of atoms is 40. Calculated total energies (E) and by zero point vibrational energy (ZPVE), dipole moments (µ) and volumes (V) of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method are presented in Table 1.

Table 1. Calculated total energies (E) and by zero point vibrational energy (ZPVE), dipole moments (µ) and volumes (V) of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method.

Species	B3LYP/6-31G* Method	E (Hartrees)	ZPVE (Hartrees)	µ (D)	V (Å³)
Equilenin		-847.2153	-846.8965	3.34	291.3
Equilin		-848.3997	-848.0583	2.18	296.2
Estrone		-849.6227	-849.2569	3.80	304.0

However, despite equilin presents higher volume than equilenin its dipole moment value is lower (2.18 D). This difference between equilenin and equilin probably could be explained by the presence...
of the unsaturated C=C in B which rotates the C and D rings of the steroid generating the translation of the O1 atom belonging to C11=O1 group, as was experimentally observed for equilin by Sawicki et al [7]. This translation of the O1 atom was attributed by Sawicki et al [7] to the increased anti-human estrogenic 17β-hydroxysteroid dehydrogenase inhibitory behavior of equilin in relation to estrone. Furthermore, the methyl group in equilenin and equilin is also translated by 0.79 and 1.40 Å, respectively in relation to estrone increasing the estrogenic activity of equilenin than equilin [7].

Geometrical parameters in both media.

Here, the calculated geometrical parameters for equilenin, equilin and estrone steroids in gas phase by using the B3LYP/6-31G* method were compared with the experimental values determined for equilenin by Frampton and MacNicol [13]. The root-mean-square deviation (RMSD) values were employed to compare the experimental values with the corresponding theoretical ones. Hence, in Table 2 are summarized those parameters together with the RMSD values for the three species. The results show very good correlations in the bond lengths and angles (0.008 Å and 0.5º) for equilenin, as expected because its structure is in agreement with the compared one while the RMSD values increase for equilin and estrone to values between 0.054-0.065 Å for bond lengths and to 2.7-1.6 º for bond angles.

Table 2. Calculated geometrical parameters of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method compared with the corresponding experimental values for equilenin taken from Ref [13].

Parameters	B3LYP/6-31G* Methoda	Experimentalb		
Bond lengths (Å)				
C20-O2	1.367	1.369	1.369	1.3714(17)
C11=O1	1.211	1.211	1.212	1.220(2)
C17-C19	1.374	1.391	1.389	1.369(2)
C17-C14	1.425	1.402	1.405	1.423(2)
C19-C20	1.416	1.398	1.397	1.411(2)
C20-C18	1.378	1.393	1.393	1.369(2)
C18-C16	1.419	1.399	1.401	1.4243(19)
C16-C15	1.418	1.515	1.519	1.413(2)
C14-C16	1.434	1.405	1.408	1.429(2)
C15-C10	1.373	1.501	1.531	1.369(2)
C5-C10	1.418	1.335	1.532	1.414(2)
C7-C9	1.549	1.543	1.544	1.5433(19)
C7-C4	1.526	1.533	1.532	1.520(2)
C4-C11	1.531	1.531	1.532	1.5118(19)
C4-C3	1.544	1.557	1.549	1.537(2)
C4-C13	1.550	1.550	1.552	1.544(2)
C3-C8	1.543	1.539	1.543	1.535(2)
C8-C12	1.547	1.547	1.547	1.547(2)
C11-C12	1.543	1.543	1.542	1.523(2)
C5-C6	1.392	1.521	1.554	1.381(2)
C5-C3	1.511	1.503	1.529	1.5103(19)
C6-C14	1.434	1.520	1.531	1.4309(19)
C6-C9	1.528	1.561	1.549	1.5234(19)
RMSD	**0.008**	**0.054**	**0.065**	
Bond angles (º)				
C19-C17-C14	121.92	122.04	122.54	121.43(14)
C17-C19-C20	120.14	119.27	119.24	120.34(14)
C18-C20-O2	123.66	117.67	122.88	124.14(14)
C18-C20-C19	119.97	119.52	119.34	120.39(13)
O2-C20-C19	116.36	122.80	117.76	115.46(14)
C20-C18-C16	120.78	121.02	121.36	120.47(14)
C15-C16-C18	121.33	118.32	118.07	121.68(14)
C15-C16-C14	118.80	121.69	122.03	118.77(13)
Atomic MK and Mulliken charges and Molecular electrostatic potentials (MEP).
The studies of atomic charges in the three species associated to estrogens are of great interest to explain the structural differences among the B rings where, for instance, equilenin is different from equilin by the unsaturated C5=C10 in B which rotates the C and D rings of the steroid generating the translation of the O1 atom belonging to C11=O1 group, as was experimentally observed for equilenin by Sawicki et al [7]. Therefore, the atomic Merz-Kollman (MK) and Mulliken charges on all atoms of three species were calculated in gas phase by using the B3LYP/6-31G* method [44]. Hence, both charges are given in Table 3 while in Figure 4 can be seen the behaviours of two charges in the three species. In Fig. 4 are presented the atoms numbering according to Table 3. Both charges on the O1, O2 and C3 atoms that belong to D rings present practically the same behaviours while the higher variations in the charges are observed on the atoms from the C4 to C16 because these atoms are common to the B, C and D rings. Hence, the charges on the C17, C18, C19 and C20 atoms of A rings in the three species basically do not change. Note that the two charges on the C15 atoms are different in equilenin than equilin and estrone because that C atom in equilenin has hybridization sp² and one H atom while in the other two species that C15 atoms present sp³ hybridization containing CH₂ groups. Another important observation is that the two charges on the C11, C12 and C13 in equilenin and estrone have approximately the same values while in equilin the MK charges present lower values. The charges on all H atoms present practically the same positive values in the three species with exception of those atoms linked to O2 atoms where are observed the higher values.
The molecular electrostatic potentials (MEP) values are very interesting parameters to describe the distributions of charges on species containing different rings and OH and C=O groups as, equilin, equilin and estrone and, in particular, their mapped surfaces are useful to find the nucleophilic and electrophilic sites where the reactions with potential biological electrophils and nucleophils reactive take place. Here, the MEP values were calculated from the MK charges for the three species but

C7-C9-C6	116.37	113.26	113.33	116.13(13)
C7-C4-C11	117.04	116.71	116.52	116.95(12)
C3-C4-C13	113.61	112.83	114.11	112.60(12)
C5-C3-C8	121.7	123.06	121.58	121.14(13)
C8-C3-C4	104.46	104.36	104.3	103.87(12)
C3-C8-C12	102.41	102.54	102.67	101.83(12)
C8-C12-C11	105.91	105.94	105.85	105.59(13)
C4-C11-O1	126.55	126.48	126.49	125.78(15)
C12-C11-O1	125.53	125.43	125.46	125.78(15)
C4-C11-C12	107.90	108.08	108.04	108.43(13)
RMSD	0.5	2.7	1.6	

Dihedral angles (°)
C17-C19-C20-O2
O2-C20-C18-C16
C14-C6-C9-C7
C9-C7-C4-C11
C3-C5-C6-C14
C9-C6-C14-C17
C5-C6-C9-C7
C6-C5-C3-C8
C10-C5-C3-C8
C6-C5-C3-C4
C7-C4-C3-C5
C7-C4-C3-C8
C5-C3-C8-C12
C3-C8-C12-C11
C13-C4-C11-O1
C13-C4-C11-C12
RMSD
RMSD¹

*This work, ¹From Ref [13], ²Removed value, Letter Bold: RMSD values
significant differences in the values were not found and, for this reason, these values are not presented here [44].

![Figure 4](image-url) **Figure 4.** Variations and behaviours of atomic Merz-Kollman (MK) and Mulliken charges on all atoms of equilenin, equilin and estrone steroids in gas phase by using the B3LYP/6-31G* method.

Obviously, the higher negatives values are observed on the O atoms, showing the higher values in the three species the O1 atoms (-22.333—22.331 a.u.) than the O2 ones (-22.284—22.278 a.u.).

![Figure 5](image-url) **Figure 5.** Calculated electrostatic potential surfaces on the molecular surfaces of equilenin, equilin and estrone. Color ranges are indicated in units a.u. B3LYP functional and 6-31G* basis set. Isodensity value of 0.005.

The MEP values on the C atoms have evidenced different values, for instance, from 14.749 to 14.665 a.u. while the H atoms present the less negative values, as expected, showing the lower values on the H atoms linked to the O2 atoms in the three species because these atoms are the most labile. When the mapped surface from

Table 3. Atomic MK and Mulliken charges of equilenin, equilin and estrone in gas phase and aqueous solution by using the B3LYP/6-31G* method.

Atoms	Equilenin	Equilin	Estrone	Equilenin	Equilin	Estrone
O	-0.473	-0.479	-0.495	-0.458	-0.457	-0.459

NBO studies. The analyses of stabilization energies in equilenin, equilin and estrone are important factors taking into account that three of four rings present in their structures are different in the three species showing, in particular the A and B rings of equilenin, aromatic naphthalene core, as reported for this species by Frampton and MacNicol [13]. Hence, in Table 4 are presented the main delocalization energies for equilenin, equilin and estrone in gas phase by using B3LYP/6-31G* calculations. The careful analysis of results show for the three species four different \(\Delta E_{\pi-\pi^*} \), \(\Delta E_{\sigma-\sigma^*} \) and \(\Delta E_{\pi-\pi^*} \) interactions where the first and the latter transitions present clearly the higher values in the three species showing the only equilin the higher value in the \(\Delta E_{\pi-\pi^*} \) interaction. In addition, due to the presence of two aromatic rings in equilenin the \(\pi^*C14-C16 \rightarrow \pi^*C5-C6 \) interaction only for this species is observed. On the other hand, the \(\pi^*C17-C19 \rightarrow \pi^*C14-C16 \) interaction is observed only for equilin. Here, a very important resulted is the presence of six \(\Delta E_{\pi-\pi^*} \) interactions observed only in equilenin due to the presence of two aromatic A and B rings and different from the other ones. Note that in the three species the \(\Delta E_{\sigma-\sigma^*} \) and \(\Delta E_{\pi-\pi^*} \) interactions show low values, as compared with the other ones. When the total energy values are evaluated for the three species it is observed the higher value for equilin, then equilenin and, finally estrone. Hence, equilin is the most stable species, compared with equilenin and estrone. Probably, the high value evidenced for equilin and its high stability and the lower value observed for estrone could justify the increase in the anti-human estrogenic 17β-hydroxysteroid dehydrogenase inhibitory behavior of equilin in relation to estrone, as suggested by Sawicki et al [7].

AIM analyses. The above NBO studies have revealed the high stability of equilenin, as compared with equilenin and estrone showing only this species a high value in the \(\pi^*C17-C19 \rightarrow \pi^*C14-C16 \) transition. Another form different of analyzing the stabilities of these species is through of the Bader’s theory of atoms in molecules (AIM) where is possible to examine possible H bonds and/or intra-molecular interactions by using the topological properties with the AIM2000 program [46,47].
This work, Atomic units (a.u.)

2 O	-0.575	-0.547	-0.575	-0.646	-0.647	-0.648
3 C	0.139	0.058	-0.006	-0.195	-0.184	-0.106
4 C	0.298	0.175	0.190	0.009	0.018	0.018
5 C	-0.098	-0.258	-0.056	0.100	0.205	-0.100
6 C	-0.012	0.355	0.276	0.062	-0.256	-0.164
7 C	-0.240	-0.166	-0.125	-0.269	-0.269	-0.268
8 C	-0.101	-0.075	0.010	-0.295	-0.291	-0.297
9 C	0.040	-0.047	-0.126	-0.367	-0.269	-0.289
10 C	-0.145	-0.120	-0.058	-0.191	-0.212	-0.274
11 C	0.434	0.495	0.537	0.439	0.439	0.437
12 C	-0.300	-0.317	-0.381	-0.362	-0.362	-0.361
13 C	-0.395	-0.466	-0.476	-0.473	-0.473	-0.479
14 C	-0.040	-0.200	-0.253	0.068	0.133	0.116
15 C	-0.265	0.025	-0.079	-0.207	-0.385	-0.349
16 C	0.285	0.108	0.202	0.152	0.115	0.114
17 C	-0.136	-0.095	-0.104	-0.205	-0.198	-0.201
18 C	-0.496	-0.314	-0.451	-0.282	-0.230	-0.266
19 C	-0.263	-0.354	-0.292	-0.157	-0.198	-0.165
20 C	0.439	0.389	0.438	0.358	0.357	0.364
21 H	-0.005	0.031	-0.005	0.145	0.129	0.118
22 H	0.049	-0.024	0.034	0.141	0.139	0.121
23 H	0.055	0.027	-0.006	0.150	0.134	0.132
24 H	0.052	0.062	0.019	0.144	0.148	0.135
25 H	0.039	0.051	0.048	0.149	0.147	0.146
26 H	0.036	0.052	0.030	0.157	0.147	0.144
27 H	0.038	0.030	0.021	0.157	0.144	0.141
28 H	0.113	0.015	0.040	0.124	0.138	0.140
29 H	0.104	0.077	0.050	0.174	0.118	0.142
30 H	0.112	0.108	0.013	0.172	0.174	0.135
31 H	0.093	0.112	0.027	0.168	0.171	0.135
32 H	0.097	0.130	0.119	0.149	0.165	0.173
33 H	0.104	0.122	0.120	0.163	0.147	0.171
34 H	0.149	0.129	0.123	0.124	0.162	0.161
35 H	0.111	0.033	0.119	0.134	0.161	0.148
36 H	0.162	0.036	0.128	0.116	0.160	0.166
37 H	0.174	0.125	0.044	0.142	0.125	0.151
38 H	0.423	0.158	0.047	0.408	0.130	0.145
39 H	0.157	0.115	0.116	0.116	0.126	
40 H	0.403	0.145	0.406	0.106		
41 H	0.175	0.136				
42 H	0.418	0.406				
highest value. Also, for estrone is observed an only H bonds interaction (H39—H29) with low density and Laplacian values because the distances between both involved H atoms is 2.058 Å. In addition, the new RCPN has also low values in its properties. These studies clearly evidence the higher stability of estrone in gas phase due to the new H—H interaction which confers to its structure higher stability.

Frontier orbitals and quantum global descriptors studies.

The frontier orbitals are parameters frequently used in the determination of gap values, as suggested by Parr and Pearson [31], because from their differences can be predict the reactivities and, also, with the gap values it is possible to calculate some descriptors of great interest to predict the behaviours of species in different media [32-41]. Hence, the frontier molecular HOMO and LUMO orbitals, gap values and the chemical potential (µ), electronegativity (χ), global hardness (η), global softness (S), global electrophilicity index (ω) and global nucleophilicity index (E) descriptors of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method are summarized in Table 6. If the gap values are analyzed it is possible to observe the lower value in equilenin and the higher values for equilin and estrone, where equilin clearly has the highest value and, for this reason, it is the less reactive species in agreement with the higher stability observed by NBO studies. Evidently, the presence of the unsaturated C5=C10 in the B ring of equilin, which rotates the C and D rings of this steroid generating the translation of the O1 atom belonging to C11=O1 group, as was experimentally by Sawicki et al [7], produces a decreasing in its reactivity. On the other hand, equilin is the most reactive species due to its low gap value. If now the descriptors are analyzed, equilin has a higher global electrophilicity value while the higher global nucleophility values are observed for equilin and estrone. Apparently, the higher global electrophilicity value evidenced by equilin is related to its higher reactivity and with the less negative nucleophilicity value. The comparisons of these gap values of three steroids species with other such as the free base, cationic and hydrochloride species of alkaloids or antihistaminic agents [48-57] are interesting to know how the different groups and rings present in their structures have influence on their reactivities and behaviours in the different media. Thus, the gap value of 4.5008 eV for equilenin is similar to those observed for the hydrochloride species of morphine (4.5840 eV) and of the R(+) form of promethazine (4.4926 eV) while the values of 5.4695 and 5.4342 eV observed for equilenin and estrone, respectively are similar to value predicted for the cationic species of cocaine (5.4468 eV). All these compared species have different fused rings and, also, other groups.

Table 5. Analysis of the Bond Critical Points (BCPs) and Ring critical points (RCPs) for equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method.

Parameter	B3LYP/6-31G* Method	Equilin	Estrone	H39-H29	RCPN
ρ(r)	0.0193	0.0192	0.0179	0.0367	
V^2ρ(r)	0.1512	0.1500	0.1176	0.2482	
ρ(r)	0.0199	0.0169	0.0177	0.0365	
V^2ρ(r)	0.1581	0.1201	0.1117	0.2466	
ρ(r)	0.0198	0.0172	0.0176	0.0371	
V^2ρ(r)	0.1565	0.1152	0.1093	0.2509	

Table 6. Main delocalization energies (in kJ/mol) for equilenin, equilin and estrone in gas phase by using B3LYP/6-31G* calculations.

Delocalization	Equilin	Equilin	Estrone
πC14-C16→π*C17-C19	76.29	100.61	95.47
πC14-C16→π*C18-C20	64.87	77.04	74.70
πC17-C19→π*C14-C16	57.98	66.42	69.14
πC17-C19→π*C18-C20	79.13	91.63	93.59
πC18-C20→π*C16-C14	74.78	93.88	91.88
πC18-C20→π*C17-C19	62.07	74.57	68.68
ΔE_{ρ-σ^∗}	835.12	504.15	493.45
LP(2)/O1→π*C4-C11	90.33	90.41	90.29
LP(2)/O1→π*C11-C12	98.36	97.94	98.06
ΔE_{ρ-σ^∗}	188.69	188.35	188.35
LP(2)/O2→π*C18-C20	124.56	115.12	119.92
ΔE_{ρ-σ^∗}	124.56	115.12	119.92
π*C14-C16→π*C5-C6	936.28	759.92	837.84
π*C17-C19→π*C14-C16	848.21	837.84	837.84
ΔE_{ρ-σ^∗}	936.28	1808.13	1639.56
ΔE_{total}	2084.65	2415.75	1639.56

Figure 6. Molecular graphic of estrone in gas phase showing the geometry of all its bond critical points (BCP) and ring critical points (RCPs) by using the B3LYP/6-31G* method. In blue colours are presented the RCPs of A, B, C and D rings and in red colour the only RCPN new while the arrow show the BCP.
Vibrational study.
The structures of equilenin, equilin and estrone species by using B3LYP/6-31G* calculations were optimized with C1 symmetries. For equilenin are expected 108 vibration modes, for equilin 114 and for estrone 120. All vibration modes present activity in both IR and Raman spectra. In Figures 7 and 8 are compared the experimental available IR and Raman spectra of equilenin in the solid phase taken from Ref [58] with the corresponding predicted by calculations in the gas phase. In Figures 9 and 10 are compared the experimental available IR and Raman spectra of equilin taken from Ref [58] with the corresponding predicted in gas phase by using the hybrid B3LYP/6-31G* method. In Figure 11 can be seen the predicted IR spectrum of estrone in gas phase by using the hybrid B3LYP/6-31G* method while in Figure 12 are compared the experimental available Raman spectrum taken from Ref [17] with the corresponding predicted in gas phase by using the hybrid B3LYP/6-31G* method. All predicted Raman spectra were corrected to intensities by using known equations [42,43].
Here, the expected modes common to the three species are, C=O, C=C, C-O and C-C stretching modes, deformation, wagging, rocking modes of CH₂ groups, OH deformation, deformation and rocking modes of CH₃ groups and C-H rocking modes. A careful detail of the assignments of those modes for the three species can be seen in Table 7 where the most intense bands are assigned to the C=O and C=C stretching modes. Hence, the intense IR and Raman bands between 1751 and 1496 cm⁻¹ can be easily assigned to the C=O and C=C stretching modes corresponding to the three species, as reported for species containing these groups [34-41]. Obviously, those C=O and C-C bonds present double bond characters and, for these reasons, their vibration modes are observed at higher wavenumbers but, the C-C bonds with partial double bond characters are predicted at lower wavenumbers, thus, they can be assigned between 1454 and 1325 cm⁻¹, as observed in Table 7. A very important observation is the differences in the positions of C5-C10 stretching modes because these bonds have different characteristics in the three species. Thus, in equilenin and equilin those bonds present double bond characters (1704-1523 cm⁻¹) and, as a consequence they are observed at higher wavenumbers than the corresponding to estrone while, in estrone, that mode is predicted to 1085 cm⁻¹. The other C-C stretching modes expected in the three species with simple bond characters can be assigned from 1001 up to 553 cm⁻¹. Here, it is notable the difference in the C4-CH₃ stretching modes (C4-C13) because in the three species these modes are predicted coupled with other vibration modes and in different positions. In the three species the C20-O2 stretching modes are predicted in approximately the same regions, hence, they can be assigned to the intense and of media intensities IR and Raman bands between 1293 and 1281 cm⁻¹. In the same way, the OH deformation modes for the three species are predicted in the same regions, therefore, the bands observed between 1171 and 1137 cm⁻¹ are assigned to these vibration modes.

Table 6. Frontier molecular HOMO and LUMO orbitals, gap values and descriptors (in eV) of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method.

Orbitals	Equilenin	Equilin	Estrone
HOMO	-5.5321	-5.7933	-5.7607
LUMO	-1.0313	-0.3238	-0.3265
\[\text{GAP}\]	4.5008	5.4695	5.4342

\[\chi = - \frac{\text{E(LUMO)} - \text{E(HOMO)}}{2}; \mu = \frac{\text{E(LUMO)} + \text{E(HOMO)}}{2}; \eta = \frac{s}{\sqrt{3}}; \omega = \mu/2\eta; E = \mu*\eta\]

The complete vibrational assignments for the three species were performed with the SQMFF methodology computing their harmonic force fields in gas phase [23]. Hence, the normal internal coordinates were employed and transferable scale factors together with the Molvib program [24,25]. Here, only potential energy contributions ≥ 10% were considered. In Table 7 are summarized the observed and calculated wavenumbers and assignments for equilenin, equilin and estrone. For equilenin and equilin, the observed bands correspond to the experimental available IR spectra [58] while for estrone corresponds to experimental available Raman spectrum [17]. Then, some assignments for the more important groups are discussed at continuation.

Band Assignments.

4000-2000 cm⁻¹ region. In this region are expected the antisymmetric and symmetric stretching modes of CH₃ and CH₂ groups, the aromatic and aliphatic C-H and OH stretching modes. In the three species, the OH stretching modes are predicted at higher wavenumbers than the other ones and, for these reasons, these modes are associated with the IR and Raman bands between 3370 and 3307 cm⁻¹. The groups of IR and Raman bands between 3064 and 3013 cm⁻¹ are associated with the aromatic C-H stretching modes while those bands between 2890 and 2822 cm⁻¹ are attributed to aliphatic C-H stretching modes. The antisymmetric CH₃ stretching modes are predicted by calculations at higher wavenumbers than the corresponding symmetric modes and, hence, these modes are assigned to the IR and Raman bands 3027 and 2977 cm⁻¹. On the contrary, the corresponding symmetric modes are assigned to the IR bands at 2920 and 2909 cm⁻¹. The antisymmetric and symmetric CH₂ stretching modes are assigned between 2996 and 2858 cm⁻¹, as predicted by the SQM/B3LYP/6-31G* calculations.

Table 7. Observed and calculated wavenumbers (cm⁻¹) and assignments of equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method.

Equilenin	Equilin	Estrone						
IR⁻	IR⁻	IR⁻	SQM⁻	Assignments⁻	SQM⁻	Assignments⁻	SQM⁻	Assignments⁻
3331m	3307m	3370w	3592	vO₂-HH₃	3597	vO₂-HH₀	3594	vO₂-HH₂
3093sh	3092	vC₁₇-HH₃	3062	vC₁₈-HH₃	3086	vC₁₉-HH₁		
3075w	3075	vC₁₉-HH₃	3054	vC₁₇-HH₇	3070	vC₁₇-HH₉		
3064w	3040w	3062w	3066	vC₁₀-HH₈	3034	vC₁₉-HH₉	3017	vC₁₈-HH₀
3027w	3027w	3046	vC₁₅-HH₄	3033	vC₁₀-HH₂	3010	vCH₁	
3025w	3013w	3005w	3030	vC₁₈-HH₆	3012	vCH₁	2995	vCH₁
Structural and vibrational studies of equilenin, equilin and estrone steroids

2996w	2977m	2993	v(CH)	2994	v(CH)	2985	v(CH) (C8)	
2953m	2986	v(CH) (C8)	2975	v(CH) (C12)	2966	v(CH) (C9)		
2975	v(CH) (C12)	2970	v(CH) (C9)	2959	v(CH) (C7)			
2964sh	2957w	2968	v(CH) (C7)	2960	v(CH) (C7)	2951	v(CH) (C10)	
2945m	2942	v(CH) (C8)	2945	v(CH) (C8)	2940	v(CH) (C8)		
2937sh	2937	v(CH) (C9)	2936	v(CH) (C12)	2936	v(CH) (C12)		
2920m	2936	v(CH) (C12)	2934	v(CH)	2935	v(CH) (C15)		
2909m	2932	v(CH)	2931	v(CH) (C9)	2933	v(CH)		
2873sh	2918m	2921	v(CH) (C7)	2912	v(CH) (C7)	2913	v(CH) (C7)	
2861m	2901	v(CH) (C9)	2905	v(CH) (C10)				
2890w	2891	v(CH) (C15)	2888	v(CH) (C5-H22)				
2866w	2858w	v(CH) (C15)	2887	v(CH) (C15)				
2846w	2845w	v(CH) (C15)	2840	v(CH) (C6-H22)	2840	v(CH) (C3-H21)		
2834m	2822w	v(CH) (C3-H21)	2828	v(CH) (C3-H21)	2833	v(CH) (C6-H23)		
1711vs	1714vs	1751s	1771	v(C11-O1)	1769	v(C11=O1)	1769	v(C11=O1)
1615m	1622m	1629	v(CH) (C17)	1704	v(CH) (C5)			
1615m	1591s	1652s	1604	v(CH) (C10-C15)	1625	v(CH) (C18-C20), v(CH) (C17-C19)		
1580m	1511s	1589m	1572	v(CH) (C5)				
1496s	1523	v(CH) (C19-C20), v(CH) (C5-C10)						
1496s	1501s	1504w	1484	βC10-H28	1503	βC17-H37, βC18-H38	1504	βC17-H39, v(CH) (C16-C14)
1470s	1478w	1477	δCH (C8)	1476	δCH			
1469w	1470	1472	δCH (C8)	1472	δCH			
1465	1465	δCH (C7)	1461	δCH (C8), δCH				
1454w	1459	δCH (C7), δCH (C8)	1458	δCH				
1459m	1450w	1447s	1454	δCH				
1450w	1450	δCH (C9)	1445	δCH (C7)				
1451mw	1445	δCH (C9)	1445	δCH (C7)	1443	δCH (C15)		
1434m	1423w	1420	βC18-H36, v(CH) (C17-C19)	1435	δCH (C15)	1439	δCH (C15), βC19-H41	
1406m	1414	1416	δCH (C12)	1417	δCH (C12)			
1394m	1400m	1384	v(CH) (C18-C20)	1395	p(CH) (C3-H21)	1404	p(CH) (C3-H21), p(CH) (C5-H22)	
1374w	1378	wagCH (C9)	1385	wagCH (C10)				
1366sh	1372	δCH						
1364sh	1365	δCH						
1356s	1354w	1360	wagCH (C15)	1361	wagCH (C15)			
1358m	1355	v(CH) (C16-C14)	1356	wagCH (C7)				
1348sh	1342sh	1347w	1351	wagCH (C7), p(CH) (C3-H21)	1352	wagCH (C7)	1349	p(CH) (C6-H23), p(CH) (C5-H22), p(CH) (C9)
1333w	1333	wagCH (C9), p(CH) (C6-H22)	1337	p(CH) (C3-H21)				
1322wv	1325	v(CH) (C6-C14)	1326	βC10-H29	1316	v(CH) (C10)		
1318w	1314w	1315	p(CH) (C3-H21)	1309	p(CH) (C3-H21)	1312	wagCH (C8)	
1301	wagCH (C8)	1302	wagCH (C8)	1308	p(CH) (C6-H23)			
1295sh	1293m	1297	p(CH) (C6-H22)	1297	v(CH) (C12)			
1284s	1281s	1285	v(CH) (C16-C18), v(CH) (C20-O2)	1287	wagCH (C12), p(CH) (C6-H22)	1290	v(CH) (C15)	
1281s	1279	v(CH) (C20-O2)	1279	wagCH (C12)				
1256sh	1259	1272	wagCH (C12)	1270	wagCH (C12)	1263	v(CH) (C7)	
1247s	1259	v(CH) (C14-C17)	1256	βC18-H40				
1259sh	1249s	1247	p(CH) (C7), βC18-H36	1250	p(CH) (C7)	1248	v(CH) (C4-C11)	
1250s	1236w	1246	v(CH) (C11)	1246	βC18-H38	1246	v(CH) (C10)	
1223sh	1233m	1227w	1230	p(CH) (C9), v(CH) (C3-C5)	1231	v(CH) (C4-C11)	1223	v(CH) (C15)
1213m	1215w	1210	p(CH) (C9), v(CH) (C5-C10)	1209	p(CH) (C8)	1207	p(CH) (C8), p(CH) (C12)	
1207sh	1199w	1197w	1205	pCH₂(C8)	1203	pCH₂(C15)	1203	pCH₂(C15), vC6-C14
1191w	1193w	1189	vC6-C14					
1185w	1178	JC15-H34	1184	pCH₂(C9), pCH₂(C12)	1183	vC6-C14, vC6-C18		
1167w	1161s	1171w	1175	JC18-H36, vC15-C16	1167	δO2-H40	1162	JC19-H41
1153m	1151s	1148	pCH₂(C12)	1152	βC19-H39	1153	δO2-H42,pCH₂(C10)	
1144w	1146	JC19-H37	1149	vC3-C5	1149	δO2-H42		
1137sh	1137sh	1140w	1145	δO2-H38	1142	vC3-C5,JC18-H38	1127	pCH₂(C12),pCH₂(C7)
1107sh	1119m	1120w	1126	pCH₂(C7)	1121	pCH₂(C7)	1121	pCH₂
1092w	1101w	1108	βR(A1), vC15-C16	1090	vC3-C5, vC3-C8			
1084m	1086w	1084	vC3-C8, vC6-C9	1085	vC5-C10			
1054s	1067m	1064w	1054	pCH₁	1069	vC3-C8	1057	vC5-C6
1046sh	1046w	1046	vC11-C12, vC7-C9	1037	pCH₃	1038	vC6-C9	
1008m	1012m	1011w	1010	pCH₂(C8), vC4-C13	1021	vC10-C15	1016	vC10-C15
982w	994w	990w	996	pCH₁	990	vC7-C9	994	βR(A1)
980w	985	pCH₃	987	vC4-C13				
960w	969	vC7-C9	973	pCH₁				
965w	954	γC17-H35	963	vC7-C9				
962w	950	γC10-H28, γC15-H34	959	vC7-C9, vC8-C12				
944w	952w	950	vC8-C12	950	vC8-C12	947	vC8-C12	
932m	938sh	946	γC10-H28, γC15-H34	933	vC8-C12, vC4-C13	941	γC17-H39	
930h	930	γC10-H29, vCH₂(C15)						
918s	924	vC7-C9	921	γC17-H37				
915m	923w	918	γC10-C15	915	vC10-C15, vC20-O2			
896m	904sh	902w	908	τₜCH₂(C7) τₜCH₂(C9)	890	βR(A2)	901	τₜCH₂(C8)
873s	881s	888	vC4-C13	876	γC18-H38	883	τₜCH₂(C10), τₜCH₂(C9)	
855w	865s	860sh	851	pCH₁	871	γC18-H38	867	vC4-C13
849sh	849w	843	γC18-H36	840	γC18-H40			
841w	830w	824	γC19-H37	830	τₜCH₂(C7)	826	γC19-H41	
817vs	827w	823sh	811	βR(A2)	816	τₜCH₂(C15), γC10-H29	818	γC19-H41, γC18-H40
817vs	815vs	804	γC18-H36, γC15-H34	800	τₜCH₂(C7)	805	τₜCH₂(C15)	
785s	763w	791w	792	γC15-H34	796	γC19-H39	790	τₜCH₂(C12), vC4-C13
779sh	781w	780	τₜCH₂(C8), τₜCH₂(C12) vC11=O1	781	τₜCH₂(C8)			
775sh	770	βR(A2)	777	τₜCH₂(C9), vC3-C4				
731w	727sh	736m	755	τR(A2)	753	τR(A1), τₜCH₂(C7)	763	τₜCH₂(C7)
717w	722s	723	βR(A1)	727	βR(A1), βR(A1), vC15-C16			
708m	720w	711	τR(A1)	717	βR(A1)	704	τR(A1)	
706m	691	τR(A1)						
670s	672m	676w	684	vC4-C13, τₜCH₂(C9)	670	τₜCH₂(C9), vC4-C13	680	τR(A1), vC4-C13
646sh	646w	647	τR(A1), τR(A1)	633	βR(A4), βR(A2)			
628w	626m	629w	617	βR(A3)	625	βR(A2)	621	γC20-O2, τR(A1)
582s	608m	592	βR(A4), vC4-C7	597	vC11-C12, vC4-C7			
574sh	582w	581w	585	γC20-O2	584	βR(A4)	583	βR(A4), vC4-C7
552m	577sh	569	γC20-O2	562	vC11-C12, vC11=O1			
530w	532m	556w	553	βR(A2), vC11-C12, vC11=O1	546	βR(A3)	561	γC20-O2
529w	537	τₜCH₂(C12)	537	τₜCH₂(C12), γC11=O1	537	τₜCH₂(C12), γC11=O1		
527m	527sh	530	τR(A2)	533	γC11=O1			
515sh	513m	513	βR(A1) βR(A4)	512	βR(A1)			
515sh	500w	502	τR(A2) ButtC16-C14	511	βR(A1) βR(A4)	505	βR(A2)	
476w	474	βR(A2)	474	βR(A2)				

Silvia Antonia Brandán
Structural and vibrational studies of equilenin, equilin and estrone steroids

473w	448w	476	443
455s	448w	432	435
443s	439w	425	432
411w	416w	379	403

The main scaled force constants were calculated using that level of theory. Hence, the main scaled force constants were calculated from scaled quantum mechanics force field, 1From Ref [58], 2From Ref [58], 3From Ref [17].

1000-10 cm⁻¹ region. The main vibration modes expected in this region are, for instance, some C-C stretching modes already analyzed in the previous section, the C-H out-of-plane deformation, CH₂ and CH₃ twisting modes, deformations and torsions of A, B, C and D rings and torsions OH groups. The OH torsions are predicted in the same regions for the three species in gas phase by using that level of theory.

Table 8. Scaled internal force constants for equilenin, equilin and estrone in gas phase by using the B3LYP/6-31G* method.

Force	Equilenin	Equilin	Estrone
f(C=O)	12.43	12.42	12.41
f(O-H)	7.22	7.24	7.23
f(C-O)	5.98	5.94	5.94
f(CH₂)	4.80	4.76	4.76
f(C-H)	5.15	4.08	5.13
f(C≡C)	6.35	6.86	6.48
f(C=CH₂)	3.67	3.67	3.61
f(OH)	0.74	0.73	0.73
f(βCH₂)	0.74	0.74	0.74

Units are mdyn Å⁻¹ for stretching and mdyn Å rad⁻² for angle deformations, 4This work

Analysing the results it is observed that some values remain practically constants in the three species, indicating clearly that the involved groups do not present changes in their structures. Hence, the f(C=O), f(O-H), f(C-O), f(CH₂), f(C=CH₂), f(βCH₂) and f(OH) force constants in the three species have the...
same values. On the contrary, the $f(vC-H)_{A,B}$ and $f(vC=C)$ force constants are different in the three species because in equilinien the A and B rings are aromatic and, for these reasons, this species has higher number of CH aromatics while in equilenin the presence of other CH$_2$ group, instead of C-H, in the B ring decrease the number of C-H with aromatic characteristics. Hence, the $f(vC-H)_{A,B}$ force constant has lower value in equilin. Moreover, in equilin the presence of a C=C in the B ring increase the number of C=C increasing the corresponding force constant to 6.86 mdyn Å$^{-1}$. The force constants predicted for the three species present value similar to the observed in other species containing similar groups [32,34,41,48-54].

4. CONCLUSIONS

Here, three species associated with estrogens were studied, equilienin, equilin and estrone. Their molecular structures were theoretically studied in gas phase with the hybrid B3LYP/6-31G* method. NBO, AIM and frontier orbital calculations were computed to study the structural, electronic, topological and vibrational properties of those three species at the same level of theory. Estrone presents higher dipole moment and volume values, as compared with equilienin and equilin, however, equilienin presents higher volume than equilenin but lower dipole moment value. The unsaturated C=C in B ring of equilin, which rotates the C and D rings of the steroid generating the translation of the O1 atom belonging to C11=O1, could probably explain those differences. Differences in the dihedral angles in the three species clearly explain the structural differences in their properties. The analyses of MK and Mulliken charges evidence the higher variations on the C atoms common to the B, C and D rings in the three species. The mapped MEP surfaces show that both A and B rings of equilienin are different from the other ones corresponding to the other two species because they have aromatic naphthalene core, as was evidenced experimentally. The NBO studies support the higher stability of equilienin, in relation to equilenin and estrone while the AIM analyses reveal the higher stability for estrone. The gap values suggest that equilienin is the most reactive species due to its higher global electrophilicity value, in agreement with the higher stability observed for this species while the higher global nucleophilicity values are observed for equilenin and estrone. Here, the harmonic force fields, scaled force constants and the complete assignments of 108, 114 and 120 vibration modes for equilienin, equilenin and estrone, respectively are reported for first time.

5. REFERENCES

1. Norton, D.A.; Kartha, G.; Lu, C.T. The Crystal and Molecular Structures of 4-Bromoestrone. Acta Cryst. 1963, 16, 89-94, https://doi.org/10.1107/S0365110X63000219.
2. Hauptman, H.; Fisher, J.; Hancock, H.; Norton, D.A. Phase Determination for the Estriol Structure. Acta Cryst. 1969, B25, 811-814, https://doi.org/10.1107/S0567740869003086.
3. Duax, W.L.; Rohrer, D.C.; Blessing, R.H.; Strong, P.D. Steroid Structure and Function. III. Conformational Transmission in 1,3,5(10)-Estratienes. Acta Cryst. 1979, B35, 2656-2664, https://doi.org/10.1107/S0567740879010086.
4. Bieri, J.H.; Prewo, R.; Brianzo, J.L.; Pinella, J.F. 10fl-Hydroxy-14,14-estradiene-3,17-dione. Acta Cryst. 1985, C41, 1530-1532, https://doi.org/10.1107/S0108270185008435.
5. Lábas, A.; Krámos, B.; Oláh, J. Combined Docking and Quantum Chemical Study on CYP-mediated Metabolism of Estrogens in Man. Acta Cryst. 1985, C41, 1530-1532, https://doi.org/10.1107/Acs.chemrestox.6500330.
6. Duax, W.L.; Griffin, J.F.; Strong, P.D.; Wood, K.J. 1fl-Hydroxy-9fl-estrone. Acta Cryst. 1989, C45, 930-932.
7. Sawicki, M.W.; Lib, N.; Ghosh, D. Equilin. Acta Cryst. 1999, C55, 425-427, https://doi.org/10.1107/S0108270198013250.
8. Duax, W.L.; Griffin, J.F.; Strong, P.D. Structure of 9fl-Estrone. Acta Cryst. 1991, C47, 1096-1097, https://doi.org/10.1107/S0108270190011763.
9. Kirschbaum, K.; Poomani, K.; Parrish, D.A.; Pinkerton, A.A.; Zhurova, E. A standard local coordinate system for mpoxlilnopn inflnueenes the estrogen core structure. J. Appl. Cryst. 2003, 36, 1464-1466, https://doi.org/10.1107/S0021889803017825.
10. Minaev, V.A.; Minaev, B.F.; Hovorun, D.M. Vibrationnal spectra of the steroid hormones, estradiol and estrol, calculated by density functional theory. The role of low-frequency vibrations. Ukr Biol Zh. 2008, 80, 82-95.
11. Türker, L.; Bayar, Ç.Ç. A DFT Study on Estrone – TNT Interaction. Z. Anorg. Allg. Chem. 2013, 639, 1871–1875, https://doi.org/10.1002/zaac.201300239.
12. Albuquerque, C.D.L.; Nogueira, R.B.; Poppi, R.J. Determination of 17β-estradiol and noradrenaline in dog serum using surface-enhanced Raman spectroscopy and random Forest, Microchemical J. 2016, 128, 95–101, https://doi.org/10.1016/j.microc.2016.04.012.
13. Frampton, C.S.; MacNico, D.D. Structure of Equilenin at 100 K: an estrone-related steroid. Acta Cryst. 2017, E73, 1223–1226, https://doi.org/10.1107/S2056989017010532.
14. Liu, S.; Cheng, R.; Chen, Y.; Shi, H.; Zhao, G.A simple one-step pretreatment, highly sensitive and selective sensing of 17β-estradiol in environmental water samples using surface-enhanced Raman spectroscopy, Sensors and Actuators. 2018, B254, 1157–1164, https://doi.org/10.1016/j.snb.2018.06.066.
15. Lima do Nascimento, M.T.; de Oliveira Santos, A.D.; Felix, L.C.; Gomes, G.; de Oliveira Sá, M.; Lima da Cunha, D.; Vieira, N.; Hauser-Davis, R.A.; Neto, J.A.B.; Bila, D.M. Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, Southeastern Brazil. Ecotoxicology and Environmental Safety, 2018, 149 197–202, https://doi.org/10.1016/j.ecoenv.2017.11.045.
16. Korn, V. Effects of Estrone and Temperature on the Predator-Prey Relationship Between Bluegill Sunfish and Fathead Minnows. Doctoral Thesis, St. Cloud State University 2018.
17. Vedad, J.; Mojica, E-R.E.; Desamero, R.Z.B. Raman spectroscopic discrimination of estrogens. Vibrational Spectroscopy, 2018, 96, 93–100, https://doi.org/10.1016/j.vibrspec.2018.02.011.
18. Funder, J.W.; Krokowski, Z.; Myles, K.; Sato, A.; Sheppard, K.E.; Young, M. Mineralocorticoid receptors, salt, and hypertension. Recent Prog Horm Res. 1997, 52, 247–260.
19. Gupta, B.B.P.; Lalchhandama, K. Molecular mechanisms of glucocorticoid action. Current Science 2002, 83, 1103–1111.
20. Frye, C.A. Steroids, reproductive endocrine function, and affect. A review. Minerva Ginecol. 2009, 61, 541–562.
21. Marcinkowska, E.; Wiedlocha, A. Steroid signal transduction activated at the cell membrane: from plants to animals. *Acta Biochim Pol.* 2002, 49, 735–745.
22. Wang, C.; Liu, Y.; Cao, J.M. G protein-coupled receptors: Extraneuronal mediators for the non-genomic actions of steroids. *International Journal of Molecular Sciences* 2014, 15, 15412–25. https://doi.org/10.3390/iJm01515412.
23. Pulay, P.; Fogaras, G.; Pongor, G.; Boggs, J.E.; Varga, A. Combination of theoretical ab initio and experimental information to obtain reliable harmonic force constants.Scaled quantum mechanical (QM) force fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. *J. Am. Chem. Soc.* 1983, 105, 7073. https://doi.org/10.1021/ja00362a005.
24. a) Rauhut, G.; Pulay, P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. *J. Phys. Chem.* 1995, 99: 3093-3100. https://doi.org/10.1021/jp00010a019.
25. Sundius, T. Scaling of ab-initio force fields by MOLVIB. *Vib. Spectrosc.* 2002, 29, 89-95. https://doi.org/10.1016/S0924-2031(01)00189-8.
26. Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. *Phys. Rev.,* 1988, B37, 785-789. https://doi.org/10.1103/physrevb.37.785.
27. Becke, A.D. Density-functional exchange-energy approximation with correct asymptotic behavior. *Phys. Rev.* 1988. A38, 3098-3100. https://doi.org/10.1103/PhysRevA.38.3098.
28. Nielsen, A.B.; Holder, A.J. Gauss View 3.0. User’s Reference, Gaussian Inc. Pittsburgh, PA, 2000-2003.
29. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonenberg, J.H.; Mada, E.; Ebara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A.; Peralta, J.E.; Ogliaro, F.; Bearpark, M.; Heyd, J.J.; Brothers, E.; Kudin, K.N.; Staroverov, V.N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J.C.; Iyengar, S.S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J.M.; Klene, M.; Knox, J.E.; Cross, J.B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.E.; Yazyev, O.; Austin, A.J.; Cammi, R.; Pomelli, C.; Ochterski, J.W.; Martin, R.L.; Morokuma, K.; Zakrzewski, V.G.; Voth, G.A.; Salvador, P.; Dannenberg, J.J.; Dapprich, S.; Daniels, A.D.; Farkas, O.; Foresman, J.B.; Ortiz, J.; Cioslowski, J.; Fox, D.J. Gaussian, Inc., Wallingford CT, 2009.
30. Ugliengo, P., Moldaw Program. *University of Torino. Dipartimento Chimica IEM, Torino, Italy.* 1998.
31. Paar, R.G.; Pearson, R.G. Absolute hardness: companion parameter to absolute electronegativity. *J. Am. Chem. Soc.* 1983, 105, 7512-7516. https://doi.org/10.1021/ja00364a005.
32. Romani, D.; Brandán, S.A.; Márquez, M.J.; Márquez, M.B. Structural, topological and vibrational properties of an isothiazole derivatives series with antiviral activities. *J. Mol. Struct.* 2015, 1100, 279-289. https://doi.org/10.1016/j.molstruc.2015.07.038.
33. Romani, D.; Tsuchiya, S.; Yotsu-Yamashita, M.; Brandán, S.A. Spectroscopic and structural investigation on intermediates species structurally associated to the tricyclic bisguanidine compound and to the toxic agent, saxitoxin. *J. Mol. Struct.* 2016, 1119, 25-38. https://doi.org/10.1016/j.molstruc.2016.04.039.
6. ACKNOWLEDGEMENTS

This work was supported with grants from CIUNT Project Nº 26/D608 (Consejo de Investigaciones, Universidad Nacional de Tucumán, Argentina). The author would like to thank Prof. Tom Sundius for his permission to use MOLVIB.

© 2019 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).