THE UPPER ASYMPTOTIC GIANT BRANCH OF THE ELLIPTICAL GALAXY MAFFEI 1 AND COMPARISONS WITH M32 AND NGC 5128

T. J. Davidge1,2

Canadian Gemini Office, Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada; tim.davidge@nrc.ca

Received 2002 January 23; accepted 2002 June 26

ABSTRACT

Deep, near-infrared images obtained with adaptive optics (AO) systems on the Gemini North and Canada-France-Hawaii telescopes are used to investigate the bright stellar content and central regions of the nearby elliptical galaxy Maffei 1. Stars evolving on the upper asymptotic giant branch (AGB) are resolved in a field 3' from the center of the galaxy. The locus of bright giants on the $(K, H-K)$ color-magnitude diagram is consistent with a population of stars like those in Baade’s Window reddened by $E(H-K) = 0.28 \pm 0.05$ mag. This corresponds to $A_V = 4.5 \pm 0.8$ mag and is consistent with previous estimates of the line-of-sight extinction computed from the integrated properties of Maffei 1. The AGB tip occurs at $K = 20.0$, which corresponds to $M_K = -8.7$; hence, the AGB tip brightness in Maffei 1 is comparable to that in M32, NGC 5128, and the bulge of M31 and the Milky Way. The near-infrared luminosity functions (LFs) of bright AGB stars in Maffei 1, M32, and NGC 5128 are also in excellent agreement, both in terms of overall shape and the relative density of infrared-bright stars with respect to the fainter stars that dominate the light at visible and red wavelengths. It is concluded that the brightest AGB stars in Maffei 1, NGC 5128, M32, and the bulge of M31 trace an old, metal-rich population, rather than an intermediate-age population. It is also demonstrated that Maffei 1 contains a distinct red nucleus, and this is likely the optical signature of low-level nuclear activity and/or a distinct central stellar population. Finally, there is an absence of globular clusters brighter than the peak of the globular cluster LF in the central 700 pc \times 700 pc of Maffei 1.

Key words: galaxies: elliptical and lenticular, cD — galaxies: evolution — galaxies: individual (Maffei 1, M32, NGC 5128) — galaxies: nuclei — stars: AGB and post-AGB

1. INTRODUCTION

The brightnesses and spatial distributions of stars evolving on the asymptotic giant branch (AGB) provide clues about the past evolution of galaxies. Although stars near the AGB tip are relatively bright, efforts to resolve these objects in the dense main bodies of nearby spheroids typically require angular resolutions approaching the diffraction limit of 2.5 m or larger telescopes. Spheroids within the Local Group are obvious first targets for any studies of resolved stellar content, and Davidge (2000a), Davidge et al. (2000), and Davidge (2001a) found that the brightest AGB stars in the compact elliptical galaxy M32 and the bulge of M31 have (1) similar brightnesses and (2) are well mixed with the fainter stars in these systems. This suggests that the most luminous AGB stars in M32 and the bulge of M31 belong to a population that formed when the structural characteristics of these galaxies were imprinted (Davidge 2001a). A similar AGB population may be present in the bulge of the Milky Way (Davidge 2001a)—a system that deep photometric studies indicate has an old age (Feltzing & Gilmore 2000; Ortolani et al. 1995).

The suggestion that the bright AGB stars detected in Local Group spheroids trace an old, metal-rich population, can be tested by examining the brightness and spatial distribution of AGB stars in a larger sample of spheroids. With a distance between 4 and 4.5 Mpc (Davidge & van den Bergh 2001; Luppino & Tonry 1993), Maffei 1 is one of the closest large elliptical galaxies and hence is an obvious target for efforts to study the bright stellar content of spheroids. A complicating factor is that Maffei 1 is viewed through the Galactic disk and so is subject to significant foreground extinction. Butra & McCall (1983) concluded that $A_V = 5.1 \pm 0.2$ based on the integrated color of Maffei 1 and the column density of hydrogen along the line of sight. Hence, efforts to resolve stars in Maffei 1 will likely be most successful in the near-infrared, which is also the prime wavelength regime for investigating stars on the upper AGB. Davidge & van den Bergh (2001, hereafter DvdB) investigated the near-infrared photometric properties of the brightest AGB stars in a field with a projected distance of 6' from the center of Maffei 1. Despite long integration times (3 hr per filter) and image quality close to the theoretical diffraction limit of the Canada-France-Hawaii Telescope (CFHT), only stars within ~ 1.5 mag of the AGB tip were detected.

In the present study, two data sets are used to investigate different regions of Maffei 1. The first data set consists of deep H and K' images obtained with the University of Hawaii adaptive optics (UHAO) system on the Gemini North Telescope, which sample a field 3' from the center of...
Maffei 1. Not only is the stellar density higher than in the field studied by DvdB, but stars that are 1 mag fainter in K than in the DvdB data are detected, permitting a detailed comparison with the bright stellar contents of other galaxies.

The second data set consists of J, H, and K_s images of the center of Maffei 1 that were obtained with the CFHT adaptive optics (AO) system. While not diffraction-limited, these data have a resolution that permits the central 700 pc \times 700 pc of the galaxy to be investigated at subarcsecond angular scales. Data of this nature can determine if Maffei 1 has a photometrically distinct nucleus, which, in turn, provides clues about the past evolution of this galaxy.

The paper is structured as follows: Details of the observations and the data reduction techniques are presented in §2, while the photometric properties of stars in the Gemini data set are discussed and compared with those of other galaxies in §§3 and 4. The photometric properties of the central regions of Maffei 1 are examined in §5, while the results of a search for globular clusters is presented in §6. A summary and discussion of the results of this paper follows in §7.

2. OBSERVATIONS AND REDUCTIONS

H and K' images of a field located 3.2' from the center of Maffei 1, which will be referred to as the “deep” field throughout this paper, were recorded during the night of UT 2001 September 16 with the UHAO system and QUIRC imager, which were mounted at the f/16 Cassegrain focus of the 8 m Gemini North Telescope. The detector in QUIRC is a 1024 \times 1024 HgCdTe array, with each pixel subtending $0.02'$ on a side, so that a 20'5 \times 20'5 field is imaged. A detailed description of the UHAO system has been given by Graves et al. (1998).

The UHAO system uses natural guide stars as reference sources to monitor wave-front distortion, and the guide star offset by 3.5' between each of these. While this offset is significant when compared with the QUIRC science field, and hence has a major impact on the angular extent of the final field, it was employed so that a calibration frame for removing interference fringes and thermal emission signatures could be constructed from these data alone. Five 60 s exposures were recorded at the corners of a 2'' \times 2'' square dither pattern for each pointing, and so the total exposure time in K' is three pointings multiplied by four dither positions per pointing multiplied by five exposures per dither position multiplied by 60 s per exposure, which equals 3600 s. Images in H were recorded using the same dither pattern and 60 s exposure time, although data were recorded at only two pointings because of time restrictions, so that the total integration time in this filter is 2400 s (i.e., two-thirds that in K').

The final images have FWHM = $0.13'(H) and 0.14'(K')$, which are larger than the $\lambda / D = 0.04'(H) and 0.06'(K')$ telescope diffraction limits. These data thus have low Strehl ratios, due mainly to the seeing being slightly worse than the Mauna Kea median on this night, with an uncorrected FWHM $\sim 1"$ at visible wavelengths. The UHAO uses a 36-element wave-front sensor; while this is adequate to deliver diffraction-limited images at near-infrared wavelengths on a 4 m telescope during median Mauna Kea seeing conditions, good seeing is required to achieve a high Strehl ratio with this order of compensation on an 8 m telescope. Despite having low Strehl ratios, the angular resolution of these data is slightly better than was obtained by DvdB, who achieved FWHM = $0.14'H and 0.15'K_s$.

Two standards from Hawarden et al. (2001) were observed on the same night that the Maffei 1 data were recorded. A growth-curve analysis established that a 1.5'' aperture contained, for all practical purposes, all of the light from these stars. The zero points predicted from the two standards differ by only 0.06 mag in K, and the mean zero point agrees to within 0.1 mag of that measured during previous UHAO observing runs on Gemini (e.g., Davidge et al. 2000).

The center of Maffei 1 was observed with the CFHT Adaptive optics Bonnette (AOB) and KIR imager during the night of UT 2000 September 10. The detector in KIR is a 1024 \times 1024 HgCdTe array, with each pixel subtending $0.03''$ on a side, so that the total imaged field is 34.8' \times 34.8'. The CFHT AO system, which has been described by Rigaut et al. (1998), uses natural guide stars to monitor wave-front distortion, and the $R = 12.3$ star GSC 03699-01147, which is 0.43' from the center of Maffei 1, was used as the reference source for these observations. A single 60 s exposure was recorded at each corner of a 1'' \times 1'' square dither pattern through J, H, and K_s filters; the total integration time is thus $4 \times 60 = 240$ s per filter.

Stars in the final CFHT images have FWHM = $0.25''$ in J, 0.30'' in H, and 0.35'' in K_s. The angular resolution is thus much larger than the theoretical diffraction limits of the CFHT, which are $\lambda / D = 0.07'', 0.09'', and 0.12''$ in J, H, and K_s. The low Strehl ratios of these data is due to poor natural seeing conditions when they were recorded. Nevertheless, these data still have an angular resolution that is superior to any previous observations of the center of Maffei 1 at these wavelengths.

Six standard stars were observed with the CFHT AOB plus KIR on the nights of 2000 September 10 and 11. The standard deviations in the photometric zero points are ± 0.03, ± 0.02, and ± 0.04 mag in J, H, and K_s. The photometric zero points computed from these data are consistent with those derived on previous runs using the same instrumental configuration (e.g., Davidge & Courteau 1999a; Davidge et al. 2000).

The data reduction sequence for the raw images from both the CFHT and Gemini data sets was as follows: (1) dark subtraction, (2) division by a dome flat, (3) subtraction of a calibration frame to remove thermal artifacts and interference fringes, and (4) subtraction of the DC sky level at each dither position. The processed images in each filter were then registered, median-combined, and trimmed to the area having full integration time; the final images of the deep field thus cover 14.6' \times 14.4', while those of the central field cover 34.0' \times 34.0'. The final K' and K_s images of the deep and central fields are shown in Figures 1 and 2. Individual stars in Maffei 1 are clearly evident in Figure 1.

3. THE MAFFEI 1 DEEP FIELD

3.1. Photometry of Stars in the Maffei 1 Deep Field

The brightnesses of stars in the deep field were measured with the point-spread function (PSF) fitting program ALLSTAR (Stetson & Harris 1988). Target lists, preliminary brightnesses, and PSFs were obtained using
DAOPHOT (Stetson 1987) tasks. The PSF is very uniform across the field, and this is demonstrated in Figure 3, where the mean K light profiles of stars in two radial intervals, centered on the guide star and selected to sample roughly equal areas, are compared. The comparison in Figure 3 should be viewed with some caution, since FWHM is not an unambiguous estimator of Strehl ratio, while information about any radial elongation of stellar images in the direction of the guide source, which is a classical signature of anisoplanicity (e.g., McClure et al. 1991), is largely lost when considering radially averaged profiles of the type shown in this figure. Nevertheless, based on the uniformity evident in Figure 3, it was decided to construct a single PSF for each filter. The absence of obvious signatures of anisoplanicity is not surprising given previous experience with the CFHT AO system, which indicates that the PSF is stable over the 34$''$8 x 34$''$8 KIR science field for moderate orders of AO compensation during typical atmospheric conditions (e.g., Davidge & Courteau 1999a; Davidge 2001b). Not only does the Maffei 1 deep field, with dimensions of 14$'$6 x 14$'$4, cover a smaller area than the CFHT KIR field but, when used on an 8 m telescope, the UHAO, which has a 36-element wave-front sensor (WFS), delivers a lower order of correction than the 19-element WFS AO system used on the 3.6 m CFHT, and this further contributes to PSF uniformity.

The photometric calibration was defined using the standard star observations discussed in § 2, with the instrumental K measurements being transformed into K magnitudes. Wainscoat & Cowie (1992) find that there is a significant color term between $K - K$ and $H - K$. Since only two standards were observed to calibrate the Maffei 1 deep field data, a relation between $K - K$ and $H - K$ was derived from the entries in Table 1 of Wainscoat & Cowie (1992). While those authors chose to fit a linear relation to their data over the full range of colors, the entries in their Table 1 suggest that there is a break in the relation near $(H - K) = 0.4$, in the sense that $(K - K') \sim 0.06$ when $(H - K) \geq 0.4$, and so the calibration of the deep field data assumes that $(K - K') = 0.06$ for very red colors. The uncertainty in the transformation equation color term likely contributes ±0.05 mag uncertainty to the Maffei 1 photometry.
The order of AO correction depends on factors such as atmospheric conditions and the brightness of the AO guide star, and for these reasons the standard stars likely have different Strehl ratios than the stars in the Maffei 1 deep field. To avoid complications introduced by differences in Strehl ratio between the standards and stars in the Maffei 1 deep field, the Maffei 1 data were calibrated using large radius aperture photometry of the PSF stars. All detected neighboring stars were removed from the deep field images prior to measuring the brightnesses of the PSF stars, and the aperture size was set at the same large radius as the standard-star measurements. This same calibration procedure has been used in previous studies with the CFHT AO system, and it has been demonstrated to produce consistent brightnesses from data obtained during different runs (Davidge & Courteau 2002) and with different guide stars (Davidge 2001b). Hence, the calibration procedure is insensitive to differences in Strehl ratio. This robust calibration procedure was also employed for studies of the brightest stars in M32 (Davidge 2000a; Davidge et al. 2000) and the bulge of M31 (Davidge 2001a) using the same instruments. The observations of Maffei 1, M32, and the bulge of M31 thus form a homogeneous data set for comparing the bright stellar content of these systems.

Artificial star experiments, in which scaled versions of the PSF with noise were added to the images using the DAOPHOT ADDSTAR task, were run to assess completeness and the uncertainties in the photometric measurements due to crowding and photon noise. The artificial stars were assigned \((H/K) = 0.7\) to match the Maffei 1 stellar locus (§3.2) and \(K > 19.5\). The artificial star experiments indicate that completeness drops from 100% at \(K = 20\) to 50% at \(K = 22\).

3.2. The \((K, H−K)\) Color-Magnitude Diagram and \(K\) Luminosity Function of Stars in the Maffei 1 Deep Field

The \((K, H−K)\) color-magnitude diagram (CMD) of the deep field is plotted in Figure 4, where the error bars show the uncertainties predicted from the artificial star experi-
ments. Giants in Maffei 1 form a broad plume when \(K > 20 \).

The error bars predicted by the artificial star experiments match the observed scatter in \(H-K \) in the Maffei 1 giant branch, indicating that the spread in the data is due to photometric errors rather than an intrinsic dispersion in stellar properties.

The peak brightness of the Maffei 1 CMD in Figure 4, which we identify as the AGB tip, occurs at \(K = 20 \), and this is in excellent agreement with what was predicted by DvdB.\(^3\)

The mean color of stars with \(K \) between 20.0 and 21.5 in Figure 4 was computed using an iterative 2 \(\sigma \) rejection threshold to suppress outliers, and the result is \(H-K = 0.71 \pm 0.02 \), where the uncertainty is the formal error in the mean. This mean color is insensitive to the magnitude range from which it is computed and is consistent with the location of the Maffei 1 sequence in the \((K, H-K)\) CMD shown in Figure 1 of DvdB.

The reddening toward the Maffei 1 deep field can be estimated if it is assumed that the brightest stars have the same intrinsic colors as M giants in Baade’s Window (BW), the brightest of which have \((H-K)_0 \sim 0.43 \) (Frogel & Whittford 1987). Since \(H-K = 0.71 \), then the color excess of the Maffei 1 deep field is \(E(H-K) \sim 0.28 \). The dominant source of uncertainty in \(E(H-K) \) is the photometric calibration, which has an estimated error of \(\pm 0.05 \). The corresponding extinctions in \(K \) and \(V \), computed using the Rieke & Lebofsky (1985) reddening curve, are \(A_K \sim 0.5 \pm 0.1 \) and \(A_V \sim 4.5 \pm 0.8 \). The extinction measured from the deep field CMD is thus not significantly different from that estimated by Buta & McCall (1983) using other techniques.

The adopted reddening affects the true distance modulus. Luppino & Tonry (1993) assumed \(A_K = 0.63 \) to get \(\mu_0 = 28.1 \pm 0.25 \) from surface brightness fluctuations, whereas if \(A_K = 0.5 \pm 0.1 \), based on the color of stars in Maffei 1, then \(\mu_0 = 28.2 \pm 0.25 \). The latter distance modulus will be used for the remainder of the paper.

The \(K \) luminosity function (LF) of the deep field is shown in Figure 5. The completeness-corrected LF follows a power law, with an apparent discontinuity between \(K = 20 \) and 20.5. The power-law exponent \(x = d \log (n_0 \mu) / dK \), computed from a least-squares fit to the LF between \(K = 20.25 \) and 22.75, is \(0.70 \pm 0.07 \). The LF is therefore significantly different from that of first-ascent giants in various bulge fields, where \(x \sim 0.34 \) (Davidge 2000b). The stars detected in Maffei 1 are intrinsically bright and evolving on the AGB. Stars in the Galactic bulge with the same intrinsic brightness as those in the Maffei 1 deep field have \(K_0 < 8.1 \); not only are such objects relatively rare, but they are usually saturated in imaging surveys of the Galactic bulge. DePoy et al. (1993) examined the \(K \) LF of bright stars in BW. Their Figure 3 includes data not only from their survey, which suffers from saturation effects at the bright end, but also from Frogel & Whitford (1987) and Davidge (1991), and it is evident from the combined data sets in this figure that the \(K \) LF of BW appears to steepen (i.e., \(x \) will be significantly larger than the value measured from red giant branch [RGB] stars) when \(K_0 < 8 \).

The RGB tip in old solar metallicity populations occurs near \(M_K^{\text{RGBT}} = -7 \) (Bertelli et al. 1994), which corresponds to \(K = 21.7 \) in Maffei 1; therefore, the discontinuity at the

\(^3\) The low stellar density in the DvdB field, coupled with the modest science field of the Kir imager, resulted in a low probability of detecting AGB tip stars. Based on the number density of objects at fainter magnitudes and star counts in M32 and the bulge of M31, DvdB predicted that the AGB tip in Maffei 1 should occur near \(K = 20.0 \pm 0.25 \)

Fig. 3—Mean \(K \) light profiles of stars in two radial intervals in the Maffei 1 deep field. The solid line shows the PSF for stars within 5\(\text{arcsec} \) of the AO guide star, while the dashed line shows the PSF for stars with \(r \geq 5\text{arcsec} \); these radial intervals sample comparable areas in the Maffei 1 deep field. The curves were constructed from stars having similar brightnesses so as not to bias the comparison toward a particular radius. Note the excellent agreement between the two curves, indicating that the PSF is stable across the field.

Fig. 4—The \((K, H-K)\) CMD of the Maffei 1 deep field. Stars in Maffei 1 form the broad plume with \(K < 20 \) centered near \((H-K) = 0.7\). The majority of sources with \(K < 19.5 \) are likely foreground stars in the Galactic disk. The error bars show the 1 \(\sigma \) uncertainties predicted from the artificial star experiments, while the dashed line shows the 50\% completeness level.
The variable $n_{0.5}$ is the number of stars per square arcsecond per 0.5 mag interval in K. The solid curve shows the raw LF constructed from stars detected in both H and K, while the dashed curve is the LF corrected for incompleteness. Also shown in the bottom panel is a power-law fit to the complete LF of stars detected in both K and H; the measured uncertainties at $K > 20.25$, which has an exponent $x = 0.70 \pm 0.07$. The absence of an RGB tip feature in the deep field is due in part to the metallicity-sensitive nature of M_{K}^{RGB}. The stars in the deep field likely span a range of metallicities, and this will blur any discontinuity in the LF caused by the onset of the RGB. In addition, there are significant photometric errors near the faint limit of our data, and these further smear any signature of the RGB tip.

4. COMPARISONS WITH THE DvdB FIELD, M32, AND NGC 5128

In this section, the bright AGB content of the Maffei 1 deep field is compared with the stellar contents in the outer regions of Maffei 1, M32, and NGC 5128 (Cen A). The latter is the closest large elliptical galaxy (e.g., Israel 1998, and references therein). We compare the peak AGB brightness, the shape of the LF, and the number density of bright AGB stars, normalized using published surface brightness measurements.

The K LFs of the deep and DvdB fields are compared in the top panel of Figure 6. These fields sample areas of Maffei 1 that have different stellar densities, and the LF of the DvdB field in Figure 6 was scaled along the vertical axis to match the stellar density in the deep field according to the V-band surface brightness profile of Maffei 1 from Buta & McCall (1999). The K LF of the DvdB field falls below that of the deep field along the upper AGB; the difference between the two LFs at $K = 21$ is significant at less than the 2 σ level, but at $K = 20.5$ the difference is significant at almost the 3 σ level. The comparison in Figure 6 thus suggests that the DvdB field may be deficient in the brightest evolved stars when compared with the deep field.

After accounting for differences in distance and stellar density, the bright stellar content in the Maffei 1 deep field is representative of that in other nearby elliptical galaxies. In the bottom panel of Figure 6, the K LFs of the Maffei 1 deep field and the M32 outer field studied by Davidge (2000a) are compared. We assumed that M32 is equidistant with M31, for which a distance modulus $\mu_0 = 24.4$ was adopted (van den Bergh 2000), while $\mu_0 = 28.2$ and $A_K = 0.5$ were used for Maffei 1 (§ 3). The M32 LF was shifted along the vertical axis, so that the stellar density matched that in the deep field based on the V-band surface brightness profile of Maffei 1 from Buta & McCall (1999) and the r-band surface brightness profile of M32 from Kent (1987); a correction was also applied for the difference in distance. The integrated color of Maffei 1 was assumed to be $(V-r) = 0.25$, which is typical for an elliptical galaxy (Frei & Gunn 1994).

While the M32 LF in Figure 6 falls consistently above the Maffei 1 LF, the mean difference is within the systematic uncertainties in the relative distances and reddenings of the two systems. Moreover, the peak brightnesses in these systems are similar; in M32, the AGB tip occurs near $M_K = -8.9 \pm 0.1$, while in Maffei 1 $M_K = 20 - (28.2 + 0.5) = -8.7 \pm 0.1$. Thus, the bright stellar contents of the outer regions of M32 and the Maffei 1 deep field are not significantly different.
The M32 outer field studied by Davidge (2000a) samples a low-density region of this galaxy where crowding is not an issue; hence, the M32 LF in Figure 6 can be used to estimate the number of blends in the Maffeii 1 data if it is assumed that the outer regions of M32 and the Maffeii 1 deep field have similar stellar contents. When shifted to match the distance and surface brightness of the Maffeii 1 deep field, the M32 LF predicts that there should be 3.2 stars per 0.5 mag interval per square arcsecond at $K = 22.5$. If each resolution element in the Maffeii 1 data has a radius that is one-half the FWHM, then this corresponds to 0.05 stars per 0.5 mag interval per resolution element at $K = 22.5$. The probability of two stars with $K = 22.5$ falling in the same resolution element and thereby creating a blended object with $K \sim 22$, is then 0.2%. This simple calculation shows that blending is not an issue in the Maffeii 1 deep field data set.

NGC 5128 is an interesting comparison object for Maffeii 1, since these galaxies have roughly similar distances (3.5 Mpc for NGC 5128 vs. 4.4 Mpc for Maffeii 1) and integrated brightnesses ($M_V \sim -22$); moreover, neither galaxy is in a dense environment. Marleau et al. (2000) discuss F160W NIC2 observations of a field with a projected distance of 9 kpc from the center of NGC 5128, and in Figure 7 the H LFs from their data and the Maffeii 1 deep field are compared. The population of bright foreground stars with $[F110W] - [F160W] \sim 0.8$ in the Marleau et al. (2000) data set were not included in the NGC 5128 LF. The NGC 5128 data shown in this figure were shifted by 1.2 mag to account for the greater apparent distance of Maffeii 1 in H assuming that $m_0 = 27.75$ for NGC 5128 (Marleau et al. 2000). The resulting LF was then scaled to match the stellar density in the Maffeii 1 field based on the van den Bergh (1976) V-band surface brightness profile after correcting for the differences in distance.

There is excellent agreement between the H LFs of NGC 5128 and Maffeii 1 in Figure 7. A potential concern is that the brightest stars in Maffeii 1 have $H = 20.7$, whereas the brightest stars in the Marleau et al. (2000) NGC 5128 field, if viewed at the same distance and reddening as Maffeii 1, have $H = 21.3$, so the peak brightness in the Marleau et al. (2000) data set is ~ 0.6 mag fainter in M_H than in Maffeii 1. However, this seeming difference in peak brightness is likely due to the relatively low stellar density in the NGC 5128 field, compounded by the modest angular coverage of NIC2. In fact, if the stellar contents in the Marleau et al. and Maffeii 1 fields are identical, then scaling the deep field star counts to the projected density of the NGC 5128 field indicates that only 0.3 ± 0.2 stars between $H = 20.25$ and 20.75 would be present in the Marleau et al. (2000) data set; hence, there is only a modest chance of detecting stars within 0.5 mag of the AGB tip with a single NIC2 pointing at this distance from the center of NGC 5128.

5. THE CENTRAL REGIONS OF MAFFEI 1

Elliptical galaxies contain radial metallicity gradients (e.g., Davies, Sadler, & Peletier 1993; Davidge 1997), in the sense that mean metallicity drops with increasing radius. The $V-I$ color of Maffeii 1 becomes bluer toward larger radii (Buta & McCall 1999), as expected if a metallicity gradient like that in other elliptical galaxies is present. There is also a tendency for early-type galaxies in low-density environments to contain a centrally concentrated component that is younger than the main body of the galaxy (e.g., Trager et al. 2000a). However, the tendency for $V-I$ to become redder with decreasing radius in Maffeii 1 is not consistent with such a component being present. Moreover, Luppino & Tonry (1993) found that the characteristic fluctuation brightness increases with radius in Maffeii 1, although a similar gradient was not detected in M32 or the bulge of M31. Models by Blakeslee, Vazdekis, & Ajjhar (2001) and Liu, Graham, & Charlot (2002) predict that this trend is in the opposite sense of what would be expected if a centrally concentrated young population was present.

Is there evidence for a centrally concentrated young component in the central field data? To answer this question, the CFHT data were analyzed with the ellipse-fitting STSDAS task ELLIPSE after the J and H images were smoothed with a Gaussian to match the angular resolution of the K data. The K-band surface brightness profile, plotted in the top panel of Figure 8, follows an $r^{-1/4}$ law when log $r > 0$, in agreement with the profile measured by Buta & McCall (1999) at shorter wavelengths and larger radii.

The $J-K$ color profile, shown in the bottom panel of Figure 8, indicates that there is a modest red nucleus, which is confined to the central 1" of the galaxy. The presence of a red nucleus is consistent with the $V-I$ color trend defined at much larger radii, although the apparent break in the $J-K$ profile at $r = 1"$ suggests that the central red component is distinct from the surrounding populations. If there were a central young population, then one would expect to see a blue nucleus, although a large AGB component could cause an intermediate-age population to have red integrated colors.

![Fig. 7.—H LFs of the Maffeii 1 deep field (solid line) and the Marleau et al. (2000) NGC 5128 field (dashed line). The brightnesses of stars in NGC 5128 were shifted to match the distance and reddening of Maffeii 1 and integrated surface brightnesses. The error bars show the uncertainties due to counting statistics and the completeness corrections. The variable $n_{0.5}$ is the number of stars per 0.5 mag interval in H per square arcsecond in the Maffeii 1 deep field. Note the excellent agreement between the LFs of these galaxies.](image-url)
Fig. 8.—K-band surface brightness and J–K color profiles near the center of Maffei 1. The variable r is the distance in arcseconds from the galaxy center, and the dotted line indicates 0.35, which is the angular resolution of these data. Note the appearance of a red nucleus when r < 1″.

The J–K color curve in Figure 8 is qualitatively similar to that measured by Davidge & Courteau (1999b) in M81, which contains a low-level active galactic nucleus (AGN). However, there is no other evidence for an AGN in Maffei 1. Reynolds et al. (1997) detect only extended hard X-ray emission from Maffei 1, which they suggest originates from a population of low-mass X-ray binaries. If Maffei 1 contains an AGN, then it must have a very modest energy output at X-ray wavelengths.

6. A SEARCH FOR BRIGHT GLOBULAR CLUSTERS

Maffei 1 is expected to host a substantial globular cluster population. With an integrated brightness of \(V = 11.1 \) (Buta & McCall 1999) and \(A_V = 4.5 \) mag and \(m_0 = 28.2 \), then \(M_V = -21.6 \). If the specific frequency of globular clusters in Maffei 1 is similar to that in elliptical galaxies in small groups, where \(\langle S_N \rangle = 2.6 \pm 0.5 \) (Harris 1991), then the Maffei 1 cluster system should consist of \(\sim 1130 \) objects.

The peak of the globular cluster LF (GCLF) in M31 occurs near \(K_0 = 14.5 \) (Barmby, Huchra, & Brodie 2001), which corresponds to \(M_K = -10 \). Therefore, adopting the M31 GCLF as a model, the peak in the Maffei 1 GCLF should occur near \(K \sim 18.5 \). There are a number of objects with \(K \leq 18.5 \) in the central field, and these are point sources in the 0″.35 FWHM resolution data. The \((K, H–K)\) and \((K, J–K)\) CMDs of the bright objects in the central field are shown in Figure 9, along with the \((K, H–K)\) CMD of the DvdB background field.

The sources near the center of Maffei 1 have \(H–K \) colors that match those of objects having similar brightness in the background field. In addition, the sources near the center of Maffei 1 have \((J–K) < 1.1 \), so that \((J–K)_0 < 0.3 \); for comparison, Galactic globular clusters have \((J–K)_0 < 0.6 \) (Brodie & Huchra 1990). Hence, the bright objects in the deep field have \((J–K)_0 \) colors that are not consistent with them being old globular clusters. While young, blue globular clusters have been detected near the centers of actively star-forming elliptical galaxies (e.g., Carlson et al. 1998), there is no evidence for recent star formation near the center of Maffei 1, so it is unlikely that a population of young clusters would be present. We thus conclude that the central 700 pc × 700 pc of Maffei 1 is devoid of clusters brighter than the peak of the GCLF.

Could some of the bright sources in the deep field be globular clusters? Lacking \(J–K \) colors for objects in this field, we investigate this issue using statistical arguments. There are five sources with \((H–K) \sim 0.2 \) and \(K < 19.5 \) in the deep field. None of these are extended, and they have a density \(\rho = 5/(14.4 \times 14.6) = 0.024 \) arcsec\(^{-2}\). Sources with similar brightness in the DvdB Maffei 1 and background fields have densities \(\rho = 24/(34 \times 34) = 0.021 \) arcsec\(^{-2}\) and \(\rho = 12/(34 \times 34) = 0.010 \) arcsec\(^{-2}\). The mean density of objects with \(K < 19.5 \) in all three fields, weighted according to field area, is then \(\bar{\rho} = 0.016 \) arcsec\(^{-2}\), indicating that there should be \(\sim 3.3 \) sources with \(K < 19.5 \) in the deep field, if objects of this brightness are uniformly distributed. The Poisson probability function then indicates that there is only a 12% chance that five objects with \(K \leq 19.5 \) would be detected in the deep field. These data thus hint that the deep field may contain an excess of objects with \(K \leq 19.5 \) when compared with larger radii.

7. DISCUSSION AND SUMMARY

7.1. The Stellar Content of Maffei 1 and Other Spheroids

Deep H and K' images obtained with the UHAO and QUIRC on the Northern Gemini Telescope have been used to investigate the bright AGB content of a field \(\sim 4 \) kpc from the center of Maffei 1. If it is assumed that the brightest...
giants in Maffei 1 have the same intrinsic $H-K$ color as late M giants in BW, then a line-of-sight extinction is computed that is consistent with previous estimates, which have relied largely on the integrated properties of the galaxy.

The main result of this paper is that the infrared-bright stellar content of the Maffei 1 deep field, as gauged by (1) the brightness of the AGB tip, (2) the shape of the AGB LF, and (3) the density of AGB stars measured with respect to surface brightnesses at visible wavelengths, does not differ significantly from that in other nearby spheroids. The AGB tip is the brightest AGB star in the Maffei 1 deep field occurs near $M_K \sim -8.7$ and thus is comparable to the peak brightnesses in M32 (Davidge 2000a; Davidge et al. 2000), and the bulges of the Milky Way and M31 (Davidge 2001a). Rejkuba et al. (2001) find that the peak M_K in the outer regions of NGC 5128 is roughly -8.8, which is also in remarkable agreement with the peak brightness in Maffei 1.

The near-infrared LFs of bright stars in the Maffei 1 deep field, and the outer regions of M32 and NGC 5128 are in excellent agreement. In some respects, the good agreement between the bright stellar contents of Maffei 1 and NGC 5128 is perhaps not surprising, given that these galaxies have comparable integrated brightnesses, distances, and environments. However, the chemical enrichment history of a galaxy is thought to depend on factors such as galaxy mass (e.g., Yoshii & Arimoto 1987), and it might be anticipated that the photometric properties of the brightest stars in a massive elliptical galaxy like Maffei 1 might differ from those in a smaller system like M32 because of differences in metallicity. Indeed, the integrated Mg$_2$ index of M32 is markedly lower than in more massive elliptical galaxies (Burstein et al. 1984). However, the metallicity distribution function of M32 measured by Grillmair et al. (1996) is similar to that of the outer regions of NGC 5128 (Harris & Harris 2000; Harris, Harris, & Poole 1999), suggesting that the stellar contents of M32 and larger elliptical galaxies may not be so different.

Insight into the nature of the brightest stars in nearby spheroids can be obtained by examining their distribution within these systems. In M32 and the bulge of M31, the brightest stars are uniformly distributed throughout these systems, with a number density that scales with r-band surface brightness (Davidge 2000a; Davidge et al. 2000; Davidge 2001a). There are indications that the brightest stars also are uniformly distributed in NGC 5128, since Harris & Harris (2000) show that the ratio of the brightest AGB and RGB stars does not change with radius, although it is evident from their Figures 7 and 8 that their data are not sensitive to luminous giants with solar or higher metallicities. Curiously, a comparison of the K LFs of the DvdB field and the deep field suggests that the outer regions of Maffei 1 may be deficient in stars near $K = 20.5$, suggesting that the brightest stars in Maffei 1 may not be uniformly distributed throughout the entire galaxy. A survey of the outer regions of Maffei 1, covering a square arcminute or more and sampling stars as faint as $K = 21$ would provide the data that is needed to confirm if the deficiency of bright stars in the DvdB field is real, or a statistical fluke.

Soria et al. (1996) detected stars as bright as $M_{bol} \sim -5$ in the inner halo of NGC 5128 and concluded that these objects belong to an intermediate-age population. Marleau et al. (2000) reached a similar conclusion after analyzing near-infrared observations of a portion of the Soria et al. field, and it is these data that have been compared with the Maffei 1 deep field observations. However, peak AGB luminosity is not an ironclad means of judging the age of a population, since the peak AGB brightness is a function of metallicity, as well as age, and this introduces uncertainty in the age calibration of the AGB tip. In fact, Guarnieri, Renzini, & Ortolani (1997) examined the brightest members of moderately metal-rich globular clusters, which have old ages (e.g., Ortolani et al. 1995), and found that the brightest AGB stars have M_{bol} between -4.5 and -5.0 when $[Fe/H] > -1.0$; thus, the bright stars detected by Soria et al. (1996) may have ages comparable to Galactic metal-rich globular clusters.

The galaxy-to-galaxy similarity in peak M_K and stellar density are difficult to explain if the brightest stars are young or of intermediate age, since these systems must then have experienced fortuitously similar star-forming histories during intermediate epochs: not only would age and metallicity have to be tuned to produce similar peak AGB luminosities, but the intermediate-age components would also have to be uniformly distributed throughout these systems with similar spatial densities. Both of these difficulties vanish if the bright stars are old; in this case, the problem of tuning the AGB tip brightness is less acute because the rate of change of this parameter with time decreases with increasing age. Likewise, the uniform distribution of infrared-bright stars occurs naturally if they formed during the initial collapse of the system, when the main structural characteristics of the galaxies were defined and there was likely a system-wide period of star formation. Finally, stars with a peak brightness like that in Maffei 1, M32, and the bulge of M31 occur in the Galactic bulge (Davidge 2001a), which appears to have an old age (Feltzing & Gilmore 2000; Ortolani et al. 1995).

Clearly, NGC 5128 has experienced recent star formation, with the younger populations being centrally concentrated. However, based on the comparison with Maffei 1, the main body of this galaxy is old. It thus appears that NGC 5128 is a nearby example of the “frosting” model proposed to explain the integrated spectroscopic properties of many early-type galaxies in the field, in which a modest young or intermediate-age population is superposed on an old stellar substrate (Trager et al. 2000b).

Hierarchal models of galaxy formation, which assume that large galaxies are assembled by the accretion of smaller systems, are able to reproduce many observed properties of present-day galaxies (e.g., Somerville & Primack 1999; Cole et al. 2000). One prediction of these models is that 50% of all stars formed prior to $z = 1.5$ (Cole et al. 1994; 2000). It can be anticipated that most of the stars (or their remnants) that formed prior to $z = 1.5$ will be in spheroidal systems at the current epoch, since mergers and feedback from star formation likely prevented disks from forming until $z \approx 1$ (e.g., Weil, Eke, & Efstathiou 1998). That spheroids are dominated by stars that formed early on is consistent with the Mg$_2$-c$_0$ relation of these systems, which indicates that their basic structural properties were imprinted at high redshift (Bernardi et al. 1998).

It is somewhat surprising that the brightest stars appear to be uniformly distributed throughout the main bodies of systems like M32, the bulge of M31, and NGC 5128, since the evolution of a region within a galaxy is influenced by the local mass density, which defines the escape velocity and (possibly) the star formation rate (e.g., Schmidt 1959). A radial variation in escape velocity may be the physical basis
for metallicity gradients in elliptical galaxies (Franx & Illingworth 1990; Martinelli, Matteucci, & Colafrancesco 1998), as well as the tight relations between absorption line strengths and local surface brightness (Kobayashi & Arimoto 1999; Davidge & Grinder 1995). Local surface brightness is a relative measure of mass density, at least to the extent that spheroidal systems have similar mass-to-light ratios. The surface brightnesses of the various fields that have been compared in this paper and in Davidge (2001a) are summarized in Table 1, and it is evident that these span a wide range of values. These data ostensibly suggest that the progenitors of the bright AGB stars studied in this paper can form in regions with surface brightnesses in M_V at least as low as ~ 1 mag pc$^{-2}$ ($\sim 30 M_\odot$ pc$^{-2}$).

7.2. The Central Regions of Maffei 1

The data presented in this paper indicate that Maffei 1 contains a red nucleus that extends out to ~ 1 kpc. The nature of this nucleus is not clear, although there are hints that it is not a low-level AGN. The absence of a discrete X-ray point source in Maffei 1 has been noted by Reynolds et al. (1997). In addition, Spinrad et al. (1971) discuss the only spectroscopic observations of Maffei 1 that are known to us. Their spectrum, obtained with a 2" wide slit, shows strong line absorption, with no hint of central line or continuum emission.

While there is no evidence for a systematic age gradient in Maffei 1 (§ 5), the presence of a young nucleus cannot be completely discounted. However, if the nucleus is younger than the main body of the galaxy, then it must be heavily extincted and/or viewed at an evolutionary stage when the AGB dominates the infrared light. Buta & McCall (1999) do find dust north of the nucleus of Maffei 1.

As a moderately large ($M_V \sim -21.6$) elliptical galaxy, Maffei 1 should have a well-populated globular cluster system. However, the central 700 pc \times 700 pc of Maffei 1 is devoid of globular clusters brighter than the peak of the GCLF. While dynamical evolution is expected to disrupt clusters in the central regions of galaxies (e.g., Portegies Zwart et al. 2001; Murali & Weinberg 1997; Vesperini 1997), some nearby elliptical galaxies have bright globular clusters within a few hundred parsecs of their centers. Forbes et al. (1996) investigated the central globular cluster contents of a sample of elliptical galaxies. One of the nearest galaxies in their sample is NGC 4494, which has an integrated brightness similar to Maffei 1; six clusters brighter than the peak of the GCLF were found within 400 pc of the center of this galaxy. Interestingly, despite having what appears to be a well-populated central cluster system, NGC 4494 may have a lower than average global specific cluster frequency (Larsen et al. 2001).

The specific globular cluster frequency of Maffei 1 is not known. Because of the heavy extinction at visible wavelengths, any survey for globular clusters in Maffei 1 should likely be conducted in the near-infrared. Based on the relation between the globular cluster system core radius and host galaxy brightness calibrated by Forbes et al. (1996), the core radius of the Maffei 1 cluster system should be ~ 2.5 kpc, so a number of clusters should be present within $\sim 2''$ of the galaxy center. Foreground star contamination is an obvious concern, although this does not present an insurmountable hurdle, since field stars with brightnesses comparable to those of bright clusters in Maffei 1 have relatively blue colors (§ 6). Hence, it should be possible to distinguish between clusters and stars using $J - K$ colors.

It is a pleasure to thank Kathy Roth, Olivier Guyon, Pierre Baudouz, and Brian Walls for acting as my hands and eyes at the Gemini telescope during a time when travel to Hawaii was not possible. Sincere thanks are also extended to Sidney van den Bergh for commenting on an earlier draft of this manuscript and to an anonymous referee, whose comments helped to clarify many of the points discussed in this paper.

REFERENCES

TABLE 1	SURFACE BRIGHTNESS MEASUREMENTS OF FIELDS IN SPHEROIDAL SYSTEMS WHERE UPPER AGB STARS HAVE BEEN RESOLVED	
Field	V Surface Brightness (mag pc$^{-2}$)	Source
M31 bulge field	-2.8	Davidge 2001a
Maffei 1 deep field	-1.1	This paper
Maffei 1 DvdB field	0.3	DvdB
M32 outer field	1.0	Davidge 2000a
NGC 5128 NIC2 field	1.2	Marleau et al. 2000

Davidge, T. J., & Courteau, S. 2002, AJ, 123, 1438
Davidge, T. J., & Grinder, M. 1995, AJ, 109, 1433
Davidge, T. J., Rigaut, F., Chau, M., Brandner, W., Potter, D., Northcott, M., & Graves, J. E. 2000, ApJ, 545, L89
Davidge, T. J., & van den Bergh, S. 2001, ApJ, 553, L133 (DvdB)
Davies, R. L., Sadler, E. M., & Peletier, R. 1993, MNRAS, 262, 650
DePoy, D. L., Terndrup, D. M., Frogel, J. A., Atwood, B., & Blum, R. 1993, AJ, 105, 2121
Feltzing, S. & Gilmore, G. 2000, A&A, 355, 949
Forbes, D. A., Franx, M., Illingworth, G. D., & Carollo, C. M. 1996, ApJ, 467, 126
Franx, M. & Illingworth, G. 1990, ApJ, 359, L41
Frei, Z. & Gunn, J. E. 1994, AJ, 108, 1476
Frogel, J. A., & Whitford, A. E. 1987, ApJ, 320, 199
Graves, J. E., Northcott, M., Rooder, C., & Close, L. 1998, Proc. SPIE, 3353, 341
Grillmair, C. J., et al. 1996, AJ, 112, 1975
Guarnieri, M. D., Renzini, A., & Ortolani, S. 1997, ApJ, 477, L21
Harris, G. L. H., & Harris, W. E. 2000, AJ, 120, 2423
Harris, G. L. H., Harris, W. E., & Poole, G. B. 1991, AJ, 117, 855
Harris, W. E. 1991, ARA&A, 29, 543
Hawarden, T. G., Leggett, S. K., Letawsky, M. B., Ballantyne, D. R., & Casali, M. M. 2001, MNRAS, 325, 563
Israel, F. P. 1998, A&A Rev., 8, 237
Kent, S. M. 1987, AJ, 94, 306
Kobayashi, C., & Arimoto, N. 1999, ApJ, 527, 573
Larsen, S. S., Brodie, J. P., Huchra, J. P., Forbes, D. A., & Grillmair, C. J. 2001, AJ, 121, 2974
Liu, M. C., Graham, J. R., & Charlot, S. 2002, ApJ, 564, 216
Luppio, G. A., & Tonry, J. L. 1993, ApJ, 410, 81
Marleau, F. R., Graham, J. R., Liu, M. C., & Charlot, S. 2000, AJ, 120, 1779
Martinelli, A., Matteucci, F., & Colafrancesco, S. 1998, MNRAS, 298, 42
McClure, R. D., Arnaud, J., Fletcher, J. M., Nieto, J.-L., & Racine, R. 1991, PASP, 103, 570
Murali, C., & Weinberg, M. D. 1997, MNRAS, 288, 749
Ortolani, S., Renzini, A., Gilmozzi, R., Marconi, G., Barbuy, B., Bica, E., & Rich, R. M. 1995, Nature, 377, 701
Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. 2001, ApJ, 546, L101
Rejkuba, M., Minniti, D., Silva, D. R., & Bedding, T. R. 2001, A&A, 379, 781
Reynolds, C. S., Loan, A. J., Fabian, A. C., Makishima, K., Brandt, W. N., & Mizuno, T. 1997, MNRAS, 286, 349
Rieke, G. H., & Lebofsky, M. J. 1985, ApJ, 288, 618
Rigaut, F., et al. 1998, PASP, 110, 152
Schmidt, M. 1959, ApJ, 129, 243
Somerville, R. S., & Primack, J. R. 1999, MNRAS, 310, 1087
Soria, R., et al. 1996, ApJ, 465, 79
Spinrad, H., et al. 1971, ApJ, 163, L25
Stetson, P. B. 1987, PASP, 99, 191
Stetson, P. B., & Harris, W. E. 1988, AJ, 96, 909
Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J. 2000a, AJ, 119, 1645
Trager, S. C., Faber, S. M., Worthey, G., & Gonzalez, J. J. 2000b, AJ, 120, 165
van den Bergh, S. 1976, ApJ, 208, 673
Van den Bergh, S. 2000, The Galaxies of the Local Group (Cambridge: Cambridge Univ. Press), 11
Vesperini, E. 1997, MNRAS, 287, 915
Wainscoat, R. J., & Cowie, L. L. 1992, AJ, 103, 332
Weil, M. L., Eke, V. R., & Efstathiou, G. 1998, MNRAS, 300, 773
Yoshii, Y., & Arimoto, N. 1987, A&A, 188, 13