Abstract

Cardiovascular disease is the leading cause of human death worldwide. Autophagy is an evolutionarily conserved degradation pathway, which is a highly conserved cellular degradation process in which lysosomes decompose their own organelles and recycle the resulting macromolecules. Autophagy is critical in maintaining cardiovascular homeostasis and function, and excessive or insufficient autophagy or autophagic flux can lead to cardiovascular disease. Enormous evidence indicates that exercise training plays a beneficial role in the prevention and treatment of cardiovascular diseases. The regulation of autophagy during exercise is a bidirectional process. For cardiovascular disease caused by either insufficient or excessive autophagy, exercise training restores normal autophagy function and delays the progression of cardiovascular disease. An in-depth exploration and discussion of exercise-mediated regulation of autophagy in the cardiovascular system can broaden our view about the prevention of various autophagy-related diseases through exercise training. In this article, we review autophagy and its related signaling pathways, as well as autophagy-dependent beneficial effects of exercise in cardiovascular system.

Keywords: Autophagy; Cardiovascular diseases; Exercise

1. Introduction

Cardiovascular disease has become the leading cause of human death worldwide. Therefore, it is urgent to recognize and explore new targets for cardiovascular disease intervention. Autophagy is the process of transporting intracellular damaged, denatured or aging proteins and organelles into lysosomes for digestion and degradation. Autophagy is a physiological process that is a defense mechanism for cells in adverse environments and is involved in the pathological processes of various diseases. Normal levels of autophagy can protect cells from environmental stimuli to maintain the metabolism and balance of the organisms. However, excessive autophagy or insufficient autophagy may lead to the occurrence of various diseases. In recent years, studies have shown that autophagy is closely related to a variety of metabolic and degenerative diseases such as Alzheimer’s disease, diabetes, aging, cancer, and cardiovascular diseases.

Numerous studies have shown that exercise training with appropriate intensity is a chronic stimulation process, which can reduce the risk of cardiovascular diseases and improve the prognosis of patients after cardiovascular events. The beneficial effects of exercise to the cardiovascular system have been well-described in many excellent reviews. In this article, we use the terms of “exercise” and “exercise training” to generally refer to cardiac adaptations to exercise. In the detailed cases discussed below, different modes of exercise have been stated specifically. Single bout of exercise is denoted as “acute exercise”, and regular multiple bouts of exercise is referred to as “chronic exercise”. Long-term exercise can induce the heart to develop physiological hypertrophy, which can be characterized by cardiomyocytes hypertrophy and proliferation. Exercise training can also reduce the production of reactive oxygen species, reduce the inflammatory response, regulate collagen metabolism, ameliorate the imbalance of extracellular matrix synthesis and degradation, and alleviate cardiac fibrosis. In addition, exercise also has protective effects on ventricular remodeling and heart failure induced by myocardial ischemia/reperfusion injury. Notably, exercise can benefit cardiovascular disease by moderately modulating the level of autophagy and
maintaining intracellular homeostasis. In this review, we (1) summarize the mechanism of autophagy and its major signaling pathways, (2) describe the autophagy-dependent beneficial effects of exercise, and (3) discuss future perspectives and remaining questions.

2. The mechanism of autophagy and its major signaling pathways

Autophagy can be classified into macroautophagy, microautophagy, and chaperone-mediated autophagy. The main difference among them is that the substrate enters lysosome in different ways. Macroautophagy is a rapidly activated process that forms a large number of autophagosomes that encapsulate cytoplasmic degradation products, which are then fused with lysosomes to form autolysosomes for degradation of cargo contents. Microautophagy usually involves direct invagination of the lysosome membrane and delivery of the contents into lysosomes. Chaperone-mediated autophagy is highly specific in its degradation substrates and can selectively degrade the pentapeptide KFERQ (Lys-Phe-Glu-Arg-Gln) of substrate proteins. The most studied form of autophagy is macroautophagy, which is usually divided into 4 steps: induction of autophagy, autophagosome formation, degradation, and reuse. In this review, we focus on macroautophagy unless otherwise stated. Induction and regulation of autophagy is a very complex process. Many stimulus conditions, including nutrient starvation, autophagosome formation, degradation, and reuse. In this review, we focus on macroautophagy unless otherwise stated. Induction and regulation of autophagy is a very complex process. Many stimulus conditions, including nutrient starvation, hypoxia, aging, microbial infection, protein folding errors or aggregation, DNA damage, and chemotherapy, can trigger autophagy.

Fig. 1. Mechanisms involved in autophagy process. After inhibition of the mTOR or activation of the AMPK signaling pathway, the autophagy process is activated. AMPK = adenosine monophosphate-activated protein kinase; ATP = adenosine triphosphate; mTOR = mammalian target of rapamycin; PI3K = phosphatidylinositol-3-kinase; ULK1 = Unc-51 like autophagy activating kinase 1; Vps = vacuolar protein sorting.
3. Autophagy-dependent beneficial effects of exercise on the cardiovascular system

3.1. Autophagy and cardiovascular diseases

Cardiomyocytes are end-stage differentiated cells with limited regenerative capacity. Autophagy provides energy to cardiomyocytes and promotes material circulation and self-renewal of cells by degrading misfolded or dysfunctional proteins and damaged aging organelles. At the same time, autophagy can also select increase the production of ATP during oxygen deficiency and maintain myocardial energy metabolism, thus protecting cardiac function. Therefore, normal autophagy of cardiomyocytes is of great significance in maintaining cardiac function. Autophagy can eliminate damaged mitochondria and block cardiomyocytes apoptosis. In the aging heart, the level of autophagy decreases, resulting in abnormal mitochondria and harmful metabolites accumulation, eventually causing myocardial damage. Many cardiovascular diseases are associated with abnormal autophagy and changes in autophagy affect the occurrence and development of those diseases. In the ischemic heart, chronic hypoxia of cardiomyocytes can cause mitochondria to undergo biosynthesis and thus increase in number and engender other chronic adaptation processes. Finally, this compensatory adaptation can lead to the accumulation of various morphologically irregular and impaired mitochondria in cardiomyocytes. Autophagy can clear the mitochondria with cellular dysfunction and control the number of mitochondria to maintain cardiac function. In addition, up-regulation of Beclin 1 during the reperfusion of myocardial ischemia/reperfusion causes excessive autophagy and leads to cardiomyocytes damage. Forkhead box O (FOXO) can induce autophagy by regulating the expression of some autophagy-related proteins (such as ATG8, ATG12, ATG4B, vacuolar protein sorting 34, and Beclin 1). In myocardial infarction, autophagy of cardiomyocytes can also prevent cell hypertrophy, increase endoplasmic reticulum stress, and restore the intracellular energy supply, consequently playing a protective role in cardiomyocytes. Cardiomyocytes loss is an important cause of heart failure. There are many ways of losing cardiomyocytes, including necrosis, apoptosis, and autophagic cell death. Studies have shown that, in heart failure, dilated cardiomyopathy, and hypertensive heart disease, the dying cardiomyocytes demonstrated a dramatically enhanced autophagy. Therefore, an excessive increase in autophagy induces autophagic cell death in cardiomyocytes, which may be a cause of heart failure. Non-coding RNA has also been found to be involved in the regulation of autophagy in cardiomyocytes. MicroRNA-188-3p can inhibit cardiac autophagy by inhibiting ATG7 protein translation and thus can play an important role in preventing myocardial infarction. Intriguingly, a long non-coding RNA, called autophagy-promoting factor, binds directly to microRNA-188-3p, inhibits its activity and promotes protein translation of ATG7, which in turn affects the autophagy process. In addition, another long non-coding RNA, called cardiac autophagy inhibitory factor, inhibits autophagy and alleviates myocardial infarction.

3.2. Exercise regulation of autophagy to prevent cardiovascular disease

Exercise training for regulating autophagy can be bidirectional (Fig. 2). Autophagy impairment and altered autophagy levels have been implicated in the pathogenesis of many diseases. Insufficient autophagy has been reported to contribute to multiple organ dysfunction and other adverse outcomes in autophagy-deficient mice as well as in ill patients, with an observed autophagy deficiency phenotype, evidenced by impaired autophagosome formation, accumulation of damaged proteins and mitochondria, and so on. Excessive autophagy characterized by lysosomal defects and an accumulation of autophagic vacuoles can play an important role in X-linked myopathy. Specifically, for cardiovascular diseases caused by insufficient autophagy, exercise training up-regulates autophagy. For cardiovascular disease caused by excessive autophagy, exercise training can inhibit autophagy, restore regular autophagy function, and delay the progression of cardiovascular disease. Additionally, it has been reported that adaptive changes in cardiac autophagy are associated with down-regulation of cardiac K_{ATP} channels underlying exercise preconditioning (5 consecutive days of treadmill exercise at 15 m/min for 10–20 min/day). Autophagy is critical in the maintenance of mitochondrial quality and oxidative stress during cardiovascular stress, while exercise can restore

Fig. 2. The cardioprotection effects of exercise via modulation of autophagy. Exercise-mediated bidirectional regulation of autophagy can prevent cardiovascular diseases.
protein quality and increase the clearance of reactive aldehydes.90-92 Moreover, an increased basal level of cardiac autophagy improves myocardium resistance to subsequent ischemic injury.80,93 Aerobic exercise can inhibit the phosphorylation of mTOR by up-regulating the activity of AMPK, thereby improving cardiomyocytes autophagy and preventing cardiac aging and systolic diastolic dysfunction.77,81,82 A single bout of exercise can also activate autophagy in the heart by activating the transcription factors FOXO3 and hypoxia-inducible factor 1 and then indirectly up-regulating Beclin 1 expression.83 In addition, the carboxyl terminus of heat shock protein 70-interacting protein also plays an important role in chronic exercise (voluntary exercise for 5 weeks) that mediates autophagy-associated cardiac protection.94 Moreover, exercise-induced cardiac autophagy is dynamically regulated.82 A previous study revealed that the expression of LC3-II in the cardiac muscle of rats immediately decreased after single bout of running, while it increased during subsequent cessation, and it was found that the phosphorylation level of mTOR, which plays an important role in inhibiting autophagy, was negatively correlated with LC3-II expression in the exercise rats.82

Autophagy is a dynamic and multistep process. The level of autophagosomes can only reflect the induction of autophagy and the inhibition of autophagosome.29,95 Therefore, autophagic flux is measured to dynamically monitor autophagy and provide a much more precise interpretation of autophagic status.96-99 Several studies have recently reported that exercise can affect either the cardiac autophagy level or autophagic flux to improve cardiac function and have a certain therapeutic effect on heart disease.100,101 In a post-myocardial infarction-induced heart failure model, the autophagic flux of male Wistar rats (250–300 g) with heart failure 4 weeks after myocardial infarction was impeded.100 Additionally, autophagy-related markers and damaged mitochondria accumulated in the heart, decreased levels of oxidative energy, and the opening of Ca2+-induced mitochondrial permeability transition pores were detected. In the heart failure group, the impaired autophagic flux was improved and the healthy mitochondria population increased after 8 weeks of exercise training, which slowed the further deterioration of cardiac function.100 Additional experiments found that, when autophagy inhibitors were used to suppress this elevated level of autophagy, the protective effect of exercise training against heart failure was reversed.100 That study suggests that chronic exercise training may contribute to the recovery of cardiac autophagic flux in patients with heart failure by providing better mitochondrial quality and mitigating oxidative damage, thereby alleviating cardiovascular disease.100 In addition, in a mouse model of desmin-related cardiomyopathy, chronic voluntary exercise (using male 1-month-old mice placed in long-term voluntary running conditions and monitoring their survival percentage) up-regulated autophagy. As a consequence, both cardiac hypertrophy and fibrosis were significantly reduced, and the survival time of the mice was significantly prolonged.101

Under pathological situations of excessive autophagy, exercise training can also ameliorate the aggravation of cardiovascular disease via reduction of autophagy activity.77-79 In a post-myocardial infarction model using rabbits, male New Zealand White rabbits with myocardial infarction were exposed to 4 weeks of moderate treadmill exercise (1 km/h, 30 min/day, 5 days/week). After 4 weeks, the LC3-II/LC3-I ratio in myocardium recovered to non-operation level and their cardiac function improved as well, indicating that the better cardiac function was accompanied by decreased autophagy.77 This result suggests that chronic exercise training for improving cardiac function after myocardial infarction is associated with the down-regulation of excessive autophagy and can have a positive effect on the prognosis of myocardial infarction.77 Similarly, in an acute myocardial infarction mouse model, 3 weeks of swimming training with preconditioning reduced the mice’s myocardial infarct size, coordinated disordered glucose and fatty acid metabolism, alleviated excessive autophagy caused by acute myocardial infarction, and improved mitochondrial biosynthesis.79 In another study, after 4 weeks of swimming exercise, the increased expression level of LC3-I was restored in the exercise diabetic rats group, and the rats’ skeletal muscle atrophy was alleviated. Also, the body weight of the exercise group increased by 30% compared with the non-exercise diabetic rats, which indicated that exercise training had a certain therapeutic effect on skeletal muscle atrophy in diabetic rats.78

With the exception of modulation of abnormal autophagy under pathological conditions, chronic habitual exercise can maintain stable the basal autophagy in myocardium without up-regulating the autophagic flux and thereby enhance cardiac function under normal physiological conditions.102 One study, in which 2-month-old rats were subjected to regular exercise for 5 months, found that their cardiac autophagic flux was not altered but their LC3-II protein increased.102 After 8 weeks of aerobic exercise in healthy elderly, the ratio of LC3-II/LC3-I in peripheral blood mononuclear cells increased, while the level of p62 protein decreased.103 The level of proteins involved in regulating the autophagic process, including ATG12, ATG16, and Beclin 1, were significantly elevated over those in a sedentary control group, and the peak oxygen uptake was also increased.103 Collectively, this evidence shows that chronic exercise might be a factor in attenuating the declined cellular autophagy caused by aging.103

4. Conclusions and future perspectives

Regular exercise training helps to improve the body’s metabolism. The protective effect of exercise on the cardiovascular system has been increasingly recognized in recent years.79 Exercise can improve the level of cardiac autophagy, promote cardiomyocytes proliferation, reduce local tissue inflammation, and improve cardiac function.8,13,26 Cardiac autophagy plays a crucial role in exercise-induced cardioprotection as a stress response and is a necessary process for adaptation to exercise.8,80 However, there are still many questions to be answered in the study of the protective effects and mechanisms of autophagy as they relate to exercise training. On one hand, exercise training up-regulates the level of basal autophagy and enhances cell viability, which has a positive effect on
Exercise regulates autophagy in the cardiovascular system

delaying aging and preventing cardiovascular diseases. On the other hand, in cardiovascular disease caused by excessive autophagy, exercise training can inhibit autophagy activity and reduce autophagic cell apoptosis, thus improving the prognosis of cardiovascular disease. However, it is worth noting that excessive exercise can also trigger excessive autophagy and have a negative impact. It has been reported that increases in exercise intensity significantly increase the autophagy level in cardiomyocytes, which may be accompanied by obvious, even necrotic cardiomyocytes damage, while the application of autophagy inhibitors at the same time could alleviate the injury of cardiomyocytes.104

In rats, intensive overload exercise is defined as placing a load of 5% of body weight on the rat’s tail and having it swim for 2 h, while exhausting overload exercise is defined as placing a load of 2.5% of body weight on the rat’s tail and having it swim until exhaustion.105 In addition, autophagy-deficient Atg7h&mKO mice trained with chronic exercise protocols demonstrate aggrivated fibrosis and pathological hypertrophy, while normal-autophagy mice demonstrate the beneficial effects from the same exercise training protocol.106 Obviously, the intensity of exhausting overload exercise depends on the individual experimental animal itself. In humans, considering the distinct individual differences of patients should likewise be considered when exercise therapy is used in rehabilitation related to cardiovascular diseases. Several questions arise: What is the correct range and threshold of exercise intensity that will ensure that exercise-induced cardiac autophagy will be beneficial? Are specific modes of exercise training best for different age groups? When a prescription for exercise is given, should the differences between short-term training and long-term training be considered? An in-depth investigation and discussion of these issues would lead to a better understanding of the regulation of exercise-mediated autophagy in the cardiovascular system and would provide better guidance for clinical prevention of autophagy-related heart disease.

The ubiquitin-proteasome system (UPS) also plays major role in maintaining cellular protein quality.106 Importantly, UPS and the autophagy-lysosomal pathway are functionally connected and have compensatory effects in cells.107,108 Among cardiomyocytes, p62 and ubiquitinated unfolded proteins accumulate in autophagy-deficient mice.109 In addition, when the function of UPS is impaired, increased the autophagy-lysosomal pathway activity can be detected.110–112 Exercise also induces an increase in intracellular ubiquitinated protein expression and has a positive effect on protein quality control.95,113,114 It has been reported that UPS shows improvement and autophagy is activated after aerobic exercise training.115,116 Importantly, exercise provides beneficial effects in relation to autophagy not only for the human heart and other organs, but also for other tissues, such as skeletal muscle, which is often affected by the same systemic degeneration seen in cardiovascular diseases.117 Notably, the molecular mechanisms that mediating autophagy regulated by exercise are still poorly understood, and which molecules play essential roles during this process is unknown. In the future, the exploration of these underlying mechanisms will provide a theoretical basis for clinical exercise training and the prevention of various autophagy-related diseases.

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (81722008, 91639101, and 81570362 to J. Xiao, and 81800358 to L. Wang), from the Innovation Program of Shanghai Municipal Education Commission (2017-01-07-00-09-E00042 to J. Xiao), from the Science and Technology Commission of Shanghai Municipality (17010500100 and 18410722200 to J. Xiao), and from the development fund for Shanghai talents (to J. Xiao).

Authors’ contributions

LW and JX performed the literature search and drafted the manuscript; JW drew the figures; and DC and GL discussed the content and contributed to the writing of the manuscript. All authors have read and approved the final version of the manuscript, and agree with the order of presentation of the authors.

Competing interests

The authors declare that they have no competing interests.

References

1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet 2017;390:1151–210.
2. Levine B, Kroemer G. Biological functions of autophagy genes: a disease perspective. Cell 2019;176:11–42.
3. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27–42.
4. Lassen KG, Xavier RJ. Mechanisms and function of autophagy in intestinal disease. Autophagy 2018;14:216–20.
5. Ueno T, Komatsu M. Autophagy in the liver: functions in health and disease. Nat Rev Gastroenterol Hepatol 2017;14:170–84.
6. Zare-Shahabadi A, Masliah E, Johnson GV, Rezaei N. Autophagy in Alzheimer’s disease. Rev Neurosci 2015;26:385–95.
7. Fiuzu-Luaces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaiza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol 2018;15:731–43.
8. Bernardo BC, Ooi JYY, Weeks KL, Patterson NL, McMullen JR. Understanding key mechanisms of exercise-induced cardiac protection to mitigate disease: current knowledge and emerging concepts. Physiol Rev 2018;98:419–75.
9. Vega RB, Konhilas JP, Kelly DP, Leinwand LA. Molecular mechanisms underlying cardiac adaptation to exercise. Cell Metab 2017;25:1012–26.
10. Wang L, Ly Y, Li G, Xiao J. MicroRNAs in heart and circulation during physical exercise. J Sport Health Sci 2018;7:433–41.
11. Chen Z, Yan W, Mao Y, Ni Y, Zhou L, Song H, et al. Effect of aerobic exercise on Treg and Th17 of rats with ischemic cardiomyopathy. J Cardiovasc Transl Res 2018;11:230–5.
12. Cai Y, Xie KL, Zheng F, Liu SX. Aerobic exercise prevents insulin resistance through the regulation of miR-492/Resistin axis in aortic endothelium. J Cardiovasc Transl Res 2018;11:450–8.
13. Bostrom P, Mann N, Wu J, Quintero PA, Plovie ER, Panakóvá D, et al. CEBPδ controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 2010;143:1072–83.
14. Vujic A, Lerchenmüller C, Wu TD, Guillermier C, Raboli CP, Gonzalez E, et al. Exercise induces new cardiomyocyte generation in the adult mammalian heart. Nat Commun 2018;9:1659. doi:10.1038/s41467-018-04083-1.
15. Lai C, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 2014;36:9706. doi:10.1007/s11357-014-9706-4.

16. Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, et al. Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol 2000;279:H2994–3002.

17. Siu PM, Bryner RW, Martyn JK, Alway SE. Autophagic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 2004;18:1150–2.

18. Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Poss J, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 2008;52:470–82.

19. Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One 2015;10:e0129971. doi:10.1371/journal.pone.0129971.

20. Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J 2011;25:1106–17.

21. Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left, but not the right ventricle in the rat. Eur J Appl Physiol 2001;85:164–9.

22. Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, et al. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 2012;5:523–34.

23. Serra AJ, Santos MH, Bocallini DS, Antônio EL, Levy RF, Santos AA, et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J Physiol 2010;588:2431–42.

24. Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ 2014;38:296–307.

25. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischaemia-reperfusion injury. Theranostics 2017;7:664–76.

26. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 2015;21:584–95.

27. Garber K. Autophagy. Explaining exercise. Science 2012;335:281. doi:10.1126/science.335.6066.281.

28. Halling JF, Pieglard H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harb Perspect Med 2017;7:a029777. doi:10.1101/cshperspect.a029777.

29. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abiovich H, Acevedo-Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222.

30. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell 2019;177:1682–99.

31. Galluzzi L, Bachurro EH, Ballabio A, Boya P, Bravo-San Pedro JM, Ceconi F, et al. Molecular definitions of autophagy and related processes. EMBO J 2017;36:1811–36.

32. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012;69:1125–36.

33. Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018;19:365–81.

34. Mizushima N. Autophagy: process and function. Genes Dev 2007;21:2861–73.

35. Lai C, Ho TJ, Kuo WW, Day CH, Pai PY, Chung LC, et al. Exercise training enhanced SIRT1 longevity signaling replaces the IGF1 survival pathway to attenuate aging-induced rat heart apoptosis. Age (Dordr) 2014;36:9706. doi:10.1007/s11357-014-9706-4.

36. Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, et al. Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol 2000;279:H2994–3002.

37. Siu PM, Bryner RW, Martyn JK, Alway SE. Autophagic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 2004;18:1150–2.

38. Werner C, Hanhoun M, Widmann T, Kazakov A, Semenov A, Poss J, et al. Effects of physical exercise on myocardial telomere-regulating proteins, survival pathways, and apoptosis. J Am Coll Cardiol 2008;52:470–82.

39. Ma X, Fu Y, Xiao H, Song Y, Chen R, Shen J, et al. Cardiac fibrosis alleviated by exercise training is AMPK-dependent. PLoS One 2015;10:e0129971. doi:10.1371/journal.pone.0129971.

40. Kwak HB, Kim JH, Joshi K, Yeh A, Martinez DA, Lawler JM. Exercise training reduces fibrosis and matrix metalloproteinase dysregulation in the aging rat heart. FASEB J 2011;25:1106–17.

41. Thomas DP, Cotter TA, Li X, McCormick RJ, Gosselin LE. Exercise training attenuates aging-associated increases in collagen and collagen crosslinking of the left, but not the right ventricle in the rat. Eur J Appl Physiol 2001;85:164–9.

42. Weeks KL, Gao X, Du XJ, Boey EJ, Matsumoto A, Bernardo BC, et al. Phosphoinositide 3-kinase p110α is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 2012;5:523–34.

43. Serra AJ, Santos MH, Bocallini DS, Antônio EL, Levy RF, Santos AA, et al. Exercise training inhibits inflammatory cytokines and more than prevents myocardial dysfunction in rats with sustained beta-adrenergic hyperactivity. J Physiol 2010;588:2431–42.

44. Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ 2014;38:296–307.

45. Shi J, Bei Y, Kong X, Liu X, Lei Z, Xu T, et al. miR-17-3p contributes to exercise-induced cardiac growth and protects against myocardial ischaemia-reperfusion injury. Theranostics 2017;7:664–76.

46. Liu X, Xiao J, Zhu H, Wei X, Platt C, Damilano F, et al. miR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metab 2015;21:584–95.

47. Garber K. Autophagy. Explaining exercise. Science 2012;335:281. doi:10.1126/science.335.6066.281.

48. Halling JF, Pieglard H. Autophagy-dependent beneficial effects of exercise. Cold Spring Harb Perspect Med 2017;7:a029777. doi:10.1101/cshperspect.a029777.

49. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abiovich H, Acevedo-Arozena A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12:1–222.

50. Galluzzi L, Green DR. Autophagy-independent functions of the autophagy machinery. Cell 2019;177:1682–99.

51. Galluzzi L, Bachurro EH, Ballabio A, Boya P, Bravo-San Pedro JM, Ceconi F, et al. Molecular definitions of autophagy and related processes. EMBO J 2017;36:1811–36.

52. Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012;69:1125–36.

53. Kaushik S, Cuervo AM. The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol 2018;19:365–81.

54. Mizushima N. Autophagy: process and function. Genes Dev 2007;21:2861–73.
Exercise regulates autophagy in the cardiovascular system

62. Gustafsson AB, Gottlieb RA. Autophagy in ischemic heart disease. *Circ Res* 2009;104:150–8.

63. Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. *Circ Res* 2007;100:914–22.

64. Ferdous A, Battiprolu PK, Ni YG, Rothermel BA, Hill JA. FoxO, autophagy, and cardiac remodeling. *J Cardiovasc Transl Res* 2013;6:355–64.

65. Bass SJ, Rifflé JH, Katus HA, Hardt SE. Augmentation of autophagy by mTOR-inhibition in myocardial infarction: when size matters. *Autophagy* 2010;6:304–6.

66. Moe GW, Marín-García J. Role of cell death in the progression of heart failure. *Heart Fail Rev* 2016;21:157–67.

67. Dong Y, Liu C, Zhao Y, Ponnusamy M, Li P, Wang K. Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. *Cell Mol Life Sci* 2018;75:291–300.

68. Adamieva A, Goncalvesova E, Szobi A, Dhalla NS. Necroticotic cell death in failing heart: relevance and proposed mechanisms. *Heart Fail Rev* 2016;21:213–21.

69. Takemura G, Miyata S, Kawase Y, Okada H, Maruyama R, Fujiwara H. Autophagic degradation and death of cardiomyocytes in heart failure. *Autophagy* 2006;2:212–24.

70. Kostin S, Pool L, Elsässer A, Hein S, Drexler HC, Arnon E, et al. Myocytes die by multiple mechanisms in failing human hearts. *Circ Res* 2003;92:715–24.

71. Rothermel BA, Hill JA. Autophagy in load-induced heart disease. *Circ Res* 2008;103:1363–9.

72. Fidzińska A, Bilifińska ZT, Walczak E, Witkowski A, Chojnowska L. Autophagy in transition from hypertrophic cardiomyopathy to heart failure. *J Electron Microsc (Tokyo)* 2010;59:181–3.

73. Yu P, Zhang Y, Li C, Li Y, Jiang S, Zhang X, et al. Class III PI3K-mediated prolonged activation of autophagy plays a critical role in the transition of cardiac hypertrophy to heart failure. *J Cell Mol Med* 2015;19:1710–9.

74. Zhou S, Lei D, Bu F, Han H, Zhao S, Wang Y. MicroRNA-29b-3p targets SPARC gene to protect cardiocytes against autophagy and apoptosis in hypoxic-injured H9c2 cells. *J Cardiovasc Transl Res* 2019;12:358–65.

75. Wang K, Liu CY, Zhou LY, Wang JX, Wang J, Zhao B, et al. AFPLncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. *Nat Commun* 2015;6:6779. doi:10.1038/ncomms7779.

76. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, et al. LncRNA CALIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardial transcription. *Nat Commun* 2018;9:29. doi:10.1038/s41467-017-02820-y.

77. Chen CY, Hsu HC, Lee BC, Lin HJ, Chen YH, Huang HC, et al. Exercise training improves cardiac function in infarcted rabbits: involvement of autophagic function and fatty acid utilization. *Eur J Heart Fail* 2010;12:323–30.

78. Lee Y, Kim JH, Hong Y, Lee SR, Chang KT, Hong Y. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. *Lab Anim Res* 2012;28:171–9.

79. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. *Cell Physiol Biochem* 2017;35:162–75.

80. He C, Bassik MC, Morevi S, Sun K, Wei Y, Zou Z, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. *Nature* 2012;481:511–5.

81. Lee Y, Kang EB, Kwon I, Cosío-Lima L, Cavnar P, Javan GT. Cardiac kinetoplasty coincides with activation of anabolic signaling. *Med Sci Sports Exerc* 2016;48:219–26.

82. Ogura Y, Iemitsu M, Naito H, Kakigi R, Kakehashi C, Maeda S, et al. Single bout of running exercise changes LC3-II expression in rat cardiac muscle. *Biochem Biophys Res Commun* 2011;414:756–60.

83. Lin NY, Stefanica A, Distler JH. Autophagy: a key pathway of TNF-induced inflammatory bone loss. *Autophagy* 2013;9:1253–5.
106. Dikic I. Proteasomal and autophagic degradation systems. *Annu Rev Biochem* 2017;86:193–224.

107. Wang XJ, Yu J, Wong SH, Cheng AS, Chan FK, Ng SS, et al. A novel crosstalk between two major protein degradation systems: regulation of proteasomal activity by autophagy. *Autophagy* 2013;9:1500–8.

108. Korolchuk VI, Mansilla A, Menzies FM, Rubinsztein DC. Autophagy inhibition compromises degradation of ubiquitin-proteasome pathway substrates. *Mol Cell* 2009;33:517–27.

109. Nakai A, Yamaguchi O, Takeda T, Higuchi Y, Hikoso S, Taniike M, et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. *Nat Med* 2007;13:619–24.

110. Zheng Q, Su H, Tian Z, Wang X. Proteasome malfunction activates macroautophagy in the heart. *Am J Cardiovasc Dis* 2011;1:214–26.

111. Rothermel BA, Hill JA. The heart of autophagy: deconstructing cardiac proteotoxicity. *Autophagy* 2008;4:932–5.

112. Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, et al. Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. *Circulation* 2008;117:3070–8.

113. Jamart C, Francaux M, Millet GY, Frère D, Féasson L. Modulation of autophagy and ubiquitin-proteasome pathways during ultra-endurance running. *J Appl Physiol (1985)* 2012;112:1529–37.

114. De Moraes W, de Souza PRM, da Paixão NA, de Sousa LGO, Ribeiro DA, Marshall AG, et al. Aerobic exercise training rescues protein quality control disruption on white skeletal muscle induced by chronic kidney disease in rats. *J Cell Mol Med* 2018;22:1452–63.

115. Cunha TF, Moreira JB, Paixão NA, Campos JC, Monteiro AW, Bacurau AV, et al. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. *J Appl Physiol (1985)* 2012;112:1839–46.

116. Campos JC, Baehr LM, Gomes KMS, Bechara LRG, Voltarelli VA, Bozi LHM, et al. Exercise prevents impaired autophagy and proteostasis in a model of neurogenic myopathy. *Sci Rep* 2018;8:11818. doi:10.1038/s41598-018-30365-1.

117. Brum PC, Bacurau AV, Medeiros A, Ferreira JC, Vanzelli AS, Negrão CE. Aerobic exercise training in heart failure: impact on sympathetic hyperactivity and cardiac and skeletal muscle function. *Braz J Med Biol Res* 2011;44:827–35.