DETECTING ELEMENTS AND LUSTERNIK–SCHNIRELMANN CATEGORY OF 3-MANIFOLDS

JOHN OPREA AND YULI RUDYAK

ABSTRACT. In this paper, we give a new simplified calculation of the Lusternik–
Schnirelmann category of closed 3-manifolds. We also describe when 3-manifolds
have detecting elements and prove that 3-manifolds satisfy the equality of the
Ganea conjecture.

1. INTRODUCTION

The Lusternik–Schnirelmann category of a space X, denoted $\text{cat}(X)$, is defined
to be the minimal integer k such that there exists an open covering $\{A_0, \ldots, A_k\}$
of X with each A_i contractible to a point in X. Category, while easy to define, is
notoriously difficult to compute in general. In particular, except for $K(\pi,1)$’s, it
cannot be expected that the category of a space is determined by its fundamental
group. In GoGe, however, the following interesting result was proved.

1.1. Theorem. Let M^3 be a closed 3-dimensional manifold. Then

$$
cat(M) = \begin{cases}
1 & \text{if } \pi_1(M) = \{1\} \\
2 & \text{if } \pi_1(M) \text{ is free} \\
3 & \text{otherwise}
\end{cases}
$$

In this paper, we will give a somewhat simplified proof of this theorem using the
relatively new approximating invariant for category, category weight. Throughout,
we use only basic results about 3-manifolds found, for instance, in H. But we shall
also do more. We will prove that most 3-manifolds possess a detecting element;
that is, an element whose category weight is equal to the category of M (see R3). It
is known that a detectable space (i.e., a space possessing detecting elements)
has some special properties which allow solutions of certain well-known problems
(R3). For example, from the existence of detecting elements, we prove that closed
3-manifolds satisfy the Ganea conjecture.

1.2. Corollary. For every closed 3-manifold M,

$$
cat(M \times S^n) = cat(M) + 1.
$$

This result is not obtainable from knowing the category alone, so the detecting
element approach is a significant embellishment of Theorem 1.1. Another well-
known problem is the relationship between degree 1 maps of manifolds and LS-
category. For closed, 3-manifolds, we have

1.3. Corollary. Let $f : M \rightarrow N$ be a degree 1 map of oriented 3-manifolds. Then
cat$f \geq cat M = cat N$.

Date: January 13, 2022.
1991 Mathematics Subject Classification. Primary 55M30; Secondary 57M99.
2. Preliminaries on 3-Manifolds

2.1. Definition. A 3-manifold M is irreducible if every embedded two-sphere $S^2 \hookrightarrow M$ bounds an embedded disk $D^3 \hookrightarrow M$.

A 3-manifold M is prime if $M = P \# Q$ implies that either $P = S^3$ or $Q = S^3$. Here, “=” denotes diffeomorphism and # is the connected sum.

The following two results clarify the relation between prime and irreducible manifolds.

2.2. Lemma. If M^3 is irreducible, then it is prime.

Proof. Suppose M is irreducible. In order to split M as $M = P \# Q$, there must be an embedded S^2 which separates M into two components (i.e. $P - D^3$ and $Q - D^3$). But any such S^2 bounds an embedded disk D^3 by irreducibility, so M can only split as $M = M' \# S^3$ (since $S^3 - D^3$ is a disk D^3). This says that M is prime. \qed

2.3. Lemma. If M is a prime 3-manifold and M is not irreducible, then M is the total space of a 2-sphere bundle over S^1.

Proof. See [H, Lemma 3.13] \qed

The fundamental structural result about 3-manifolds is the following

2.4. Theorem (Prime Decomposition). A 3-manifold M may be written as

$$M = M_1 \# M_2 \# \ldots \# M_k,$$

where each M_j is prime. Furthermore, such a prime decomposition is unique up to re-arrangement of summands.

Proof. See [H, Theorems 3.15 and 3.21] \qed

The Sphere theorem says that, for an orientable 3-manifold M, $\pi_2(M) \neq 0$ implies that some element of $\pi_2(M)$ is represented by an embedding $S^2 \hookrightarrow M$. We will require the following generalization.

2.5. Theorem (The Projective Plane Theorem). Let M be a 3-manifold with $\pi_2(M) \neq 0$. Then there exists a map $g: S^2 \to M$ with the following properties.

1. The map g is not null-homotopic.
2. The map $g: S^2 \to g(S^2)$ is a covering map.
3. $g(S^2)$ is a 2-sided submanifold (2-sphere or projective plane) in M.

Proof. See [H, Theorem 4.12]. \qed

With these preliminaries, we can prove the following important characterization.

2.6. Proposition. Let M be a closed 3-manifold. Then,

1. If $\pi = \pi_1(M)$ is infinite and $\pi_2(M) = 0$, then $M = K(\pi, 1)$.
2. If $\pi_1(M)$ is finite, then the universal covering of M is a homotopy 3-sphere and M is orientable.
Proof. For (1), assume that $\pi_1(M)$ is infinite. Let $p: \tilde{M} \to M$ be the universal covering of M. Since $\pi_2(M) = 0$, we conclude that $H_2(\tilde{M}) = 0$. Since $\pi_1(M)$ is infinite, we conclude that \tilde{M} is not compact, and therefore $H_3(\tilde{M}) = 0$. Hence, \tilde{M} is acyclic. Moreover, \tilde{M} is simply-connected, and, by the Whitehead theorem, it is therefore contractible. Hence, $\tilde{M} = K(\pi_1(M), 1)$.

For (2), assume that $\pi_1(M)$ is finite. Then the universal cover \tilde{M} of M is a closed simply connected manifold. So, by Poincaré duality, $H_3(\tilde{M}) = 0$, and hence, by the Hurewicz theorem, $\pi_2(\tilde{M}) = 0$. Thus, $\pi_2(M) = 0$. Furthermore,

$$H_3(\tilde{M}) = \mathbb{Z} = \pi_3(\tilde{M}),$$

again by the Hurewicz theorem. Therefore, the generator of $\pi_3(\tilde{M}) = \mathbb{Z}$ provides a degree 1 map $S^3 \to \tilde{M}$ (i.e. an isomorphism on H_3). Since \tilde{M} and S^3 are simply connected, the Whitehead theorem implies that $\tilde{M} \simeq S^3$.

To see that M is orientable, we simply note that each $g \in \pi_1(M)$, thought of as a covering transformation on the orientable manifold \tilde{M}, acts to preserve orientation. This is seen by supposing the opposite; namely, that g reverses orientation. Now, because $\tilde{M} \simeq S^3$, homotopy classes of maps $\tilde{M} \to M$ are classified by degree. Since g is a homeomorphism which reverses orientation, its degree is -1. But then the Lefschetz number of g is $L(g) = 2$, implying the existence of a fixed point and contradicting the fact that g is a covering transformation. Hence, all covering transformations preserve orientation, so $M = \tilde{M}/\pi_1(M)$ is orientable. \hfill \Box

These are the only ingredients from 3-manifold theory that we shall need. In the next section, we introduce the main technical tool, the approximating invariant category weight.

3. Category Weight and Detecting Elements

3.1. Definition ([BG, Fe, F]).

Let $f: X \to Y$ be a map of finite CW-spaces. The **Lusternik-Schnirelmann category** of f, denoted $\text{cat}(f)$, is defined to be the minimal integer k such that there exists an open covering $\{A_0, \ldots, A_k\}$ of X with the property that each of the restrictions $f|A_i: A_i \to Y$, $i = 0, 1, \ldots, k$ is null-homotopic.

Clearly, $\text{cat}(X) = \text{cat}(1_X)$ and. Also, it is easy to see that $\text{cat}(f) \leq \text{cat}(X)$ since f is null-homotopic on any subset which is contractible in X.

3.2. Definition.

The **category weight** of a non-zero cohomology class $u \in H^*(X; R)$ (for some, possibly local, coefficient ring R) is defined by

$$\text{wgt}(u) \geq k \text{ if and only if } \phi^*(u) = 0 \text{ for any } \phi: A \to X \text{ with } \text{cat}(\phi) < k.$$

3.3. Remarks.

1. The idea of category weight was suggested by Fadell and Husseini (see [FH]). In fact, they considered an invariant similar to our wgt (denoted in [FH] by cwgt), but where the defining maps $\phi: A \to X$ were required to be inclusions instead of general maps. Because of this, cwgt was not a homotopy invariant, and this made it a delicate quantity in homotopy calculations. Rudyak in [R2, R3] and Strom in [S] suggested the homotopy invariant version of category weight as defined in Definition 3.2. Rudyak called it **strict category weight** (using the notation $\text{swgt}(u)$) and Strom called it **essential category weight** (using the notation...
to a fibration \(p \). The composition only if \(k \) only if \(k \) can also be shown that, for a cohomology class \(u \in \tilde{X} \) having fibre \(\Omega \) is defined inductively starting with the path fibration \(X \). Then it is easy to see that \(\Omega X \) is equivalent definition of wgt given in Remark 3.3 (3), we see that wgt\((u)\) is detectable. If \(\tilde{X} \) we will only prove (4) since the other results are proven in the references cited. If \(X = K(\pi, 1) \), then \(\Omega X \) has the homotopy type of a discrete set of points and, consequently, \(F_1 = \Omega X \ast \Omega X \) is, up to homotopy, a wedge of circles. Also, \(G_0(X) = PX \simeq \ast \), so the cofibre of \(\Omega X \to G_0(X) \) has the type of a wedge of circles. Then \(G_1(X) \) has the homotopy type of a 1-dimensional space. Similarly, it is easy to see that \(G_k(X) \) has the homotopy type of a \(k \)-dimensional space. If \(u \in H^*(K(\pi, 1); R) \), then \(p_{k-1}^*(u) = 0 \) since \(G_{k-1}(X) \) is \(s \)-dimensional. By the equivalent definition of wgt given in Remark 3.3 (3), we see that wgt\((u)\) \(\geq s \).

3.4. Proposition \((R3, S)\). Category weight has the following properties.

1. \(1 \leq \text{wgt}(u) \leq \text{cat}(X) \), for all \(u \in \tilde{H}^*(X; R) \), \(u \neq 0 \).
2. For every \(f : Y \to X \) and \(u \in \tilde{H}^*(X; R) \) with \(f^*(u) \neq 0 \) we have \(\text{cat}(f) \geq \text{wgt}(u) \) and \(\text{wgt}(f^*(u)) \geq \text{wgt}(u) \).
3. \(\text{wgt}(u \cup v) \geq \text{wgt}(u) + \text{wgt}(v) \).
4. For every \(u \in \tilde{H}^*(K(\pi, 1); R) \), \(u \neq 0 \), we have \(\text{wgt}(u) \geq s \).

Proof. We will only prove (4) since the other results are proven in the references cited. If \(X = K(\pi, 1) \), then \(\Omega X \) has the homotopy type of a discrete set of points and, consequently, \(F_1 = \Omega X \ast \Omega X \) is, up to homotopy, a wedge of circles. Also, \(G_0(X) = PX \simeq \ast \), so the cofibre of \(\Omega X \to G_0(X) \) has the type of a wedge of circles. Then \(G_1(X) \) has the homotopy type of a 1-dimensional space. Similarly, it is easy to see that \(G_k(X) \) has the homotopy type of a \(k \)-dimensional space. If \(u \in \tilde{H}^*(K(\pi, 1); R) \), then \(p_{k-1}^*(u) = 0 \) since \(G_{k-1}(X) \) is \(s \)-dimensional. By the equivalent definition of wgt given in Remark 3.3 (3), we see that wgt\((u)\) \(\geq s \).

3.5. Definition. We say that \(u \in \tilde{H}^*(X; R) \) is a detecting element for \(X \) if \(\text{wgt}(u) = \text{cat}(X) \). We say that a space \(X \) is detectable if it possesses a detecting element.

Recall that the cup-length of a space \(X \) with respect to a ring \(R \) is defined as

\[\text{cl}_R(X) = \max\{k \mid u_1 \cup \cdots \cup u_k \neq 0 \text{ for some } u_i \in \tilde{H}^*(X; R) \}. \]

3.6. Lemma. If \(\text{cat}(X) = \text{cl}_R(X) \) for some ring \(R \) then the space \(X \) is detectable.

Proof. It is well known that \(\text{cat}(X) \geq \text{cl}_R(X) \) for every \(R \). Now, let \(\text{cat}(X) = k \) and suppose that there are \(u_1, \ldots, u_k \in \tilde{H}^*(X; R) \) with \(u_1 \cup \cdots \cup u_k \neq 0 \). Then, using the first and third properties of Proposition 3.4, we conclude that \(\text{wgt}(u_1 \cup \cdots \cup u_k) = k \). Thus, \(u_1 \cup \cdots \cup u_k \) is a detecting element for \(X \).
4. Basic Special Cases

First, recall that $\text{cat}(X) \leq \dim(X)$ for every connected CW-space X. In particular, $\text{cat}(M) \leq 3$ for every (connected) 3-manifold M. We also notice that, by Lemma 3.6, a space X is detectable whenever $\text{cat}(X) = \text{cl}_R(X)$ for some R. Here is a first step in understanding the category of 3-manifolds.

4.1. Proposition. If M is a 3-manifold with finite fundamental group of order $d > 1$, then $\text{cat}(M) = 3$, and every non-zero element of $H^3(M; \mathbb{Z}/d)$ is a detecting element for M. Moreover, if d is even, then every non-zero element of $H^3(M; \mathbb{Z}/2)$ is a detecting element for M as well.

Proof. Since $\pi_1(M)$ is finite, $\pi_2(M) = 0$ because, by Proposition 2.6, the universal cover is a homotopy sphere. Hence, there is the Hopf exact sequence

$$\pi_3(M) \xrightarrow{h} H_3(M) \xrightarrow{q} H_3(\pi) \to 0$$

where h is the Hurewicz homomorphism (e.g. see [Br] Theorem II.5.2). Since, by Proposition 2.6, the d-fold universal covering $\tilde{M} \to M$ is a d-sheeted covering, M is orientable and \tilde{M} is a homotopy sphere, we conclude that h has the form

$$\pi_3(M) = \mathbb{Z} \to \mathbb{Z} = H_3(M), \quad a \mapsto d \cdot a.$$

Hence, $H_3(\pi) = \mathbb{Z}/d$. Also consider the induced homomorphism $\text{Hom}(H_3(\pi); \mathbb{Z}/d) \to \text{Hom}(H_3(M); \mathbb{Z}/d)$. It is certainly injective since $H_3(M) \to H_3(\pi)$ is surjective. However, it is also true that, for any $\phi \in \text{Hom}(H_3(M); \mathbb{Z}/d)$, $\text{Im}(h) = d\mathbb{Z} \subseteq \text{Ker}(\phi)$, so there exists $\tilde{\phi} \in \text{Hom}(H_3(\pi); \mathbb{Z}/d)$ with $\tilde{\phi} \mapsto \phi$. Thus, we have an isomorphism $\text{Hom}(H_3(\pi); \mathbb{Z}/d) \xrightarrow{\sim} \text{Hom}(H_3(M); \mathbb{Z}/d)$.

Now consider the diagram

$$\begin{array}{ccc}
H^3(\pi; \mathbb{Z}/d) & \xrightarrow{q^*} & H^3(M; \mathbb{Z}/d) \\
\downarrow & & \downarrow \\
\text{Hom}(H_3(\pi); \mathbb{Z}/d) & \xrightarrow{q^*} & \text{Hom}(H_3(M); \mathbb{Z}/d).
\end{array}$$

By Proposition 3.4 (4), a non-zero element of $H^3(\pi; \mathbb{Z}/d)$ has category weight at least 3. The right arrow is an isomorphism because $H_2(M)$ is free abelian since M is orientable. The bottom arrow is an isomorphism by the argument above. Finally, the left arrow is a surjection by the Universal Coefficient Formula. Therefore, the top arrow is a surjection as well. In particular, by Proposition 3.4 (2), every non-zero element of $H^3(M; \mathbb{Z}/d)$ has category weight at least 3. But $\text{cat}(M) \leq \dim(M) = 3$, so $\text{cat}(M) = 3$, and every non-zero element of $H^3(M; \mathbb{Z}/d)$ is a detecting element for M. \[\square\]

4.2. Remark. Using the approach as in Proposition 4.1, it is also possible to prove the following result originally due to Krasnoselski [Kra] and, in fact, re-proved in [GoGo]:

For a free action of the finite group G on a homotopy sphere $S \simeq S^{2n+1}$,

$$\text{cat}(S/G) = 2n + 1 = \dim(S/G).$$

Here is another basic result which follows from the characterization of prime non-irreducible 3-manifolds.
4.3. Proposition. Let M be a prime 3-manifold which is not irreducible. Then $\operatorname{cat}(M) = 2 = \operatorname{cl}_{\mathbb{Z}/2}(M)$, and M is detectable.

Proof. In view of Lemma 2.3, M is the total space of a 2-sphere bundle over S^1. So, M is either $S^1 \times S^2$ or the mapping torus of the map

$$r: S^2 \to S^2, \quad r(x) = -x$$

where S^2 is regarded as the set of unit vectors in \mathbb{R}^3. It is easy to see that, in both of the cases, $M = (S^1 \vee S^2) \cup e^3$ where e^3 is a 3-cell attached to the wedge $S^1 \vee S^2$. Thus, because a wedge of spheres has category one and a mapping cone can increase category by at most one, we obtain $\operatorname{cat}(M) \leq 2$.

Furthermore, because $\pi_1(M) = \mathbb{Z}$, we conclude that $H_1(M; \mathbb{Z}/2) = \mathbb{Z}/2$. So, because of Poincaré duality (with $\mathbb{Z}/2$-coefficients), we have $\operatorname{cl}_{\mathbb{Z}/2}(M) \geq 2$. Thus, $\operatorname{cl}_{\mathbb{Z}/2}(M) = 2 = \operatorname{cat}(M)$, and M is detectable.

The next two results treat the case of infinite fundamental group, excluding the S^2-bundles over S^1.

4.4. Proposition. If M is a 3-manifold with $\pi_1(M)$ infinite and $\pi_2(M) = 0$, then $\operatorname{cat}(M) = 3$ and M is detectable.

Proof. By Proposition 2.6, $M = K(\pi_1(M), 1)$, so, by Proposition 3.4, every non-zero element of $H^3(M; \mathbb{R})$ has category weight 3. (Notice that, for example, $H^3(M; \mathbb{Z}/2) \neq 0$). Thus, because $\operatorname{cat}(M) \leq \dim(M) = 3$, each of these elements is a detecting element.

4.5. Proposition. If M is an irreducible 3-manifold with $\pi_1(M)$ infinite and $\pi_2(M) \neq 0$, then $\operatorname{cat}(M) = 3 = \operatorname{cl}_{\mathbb{Z}/2}(M)$. In particular, M is detectable. Furthermore, M is non-orientable.

Proof. Consider a map $g: S^2 \to M$ as in Theorem 2.5. Since M is irreducible, we conclude that $g(S^2)$ is a 2-sided projective plane in M. Let $i: \mathbb{R}P^2 \to M$ be the corresponding embedding, and let $[\mathbb{R}P^2] \in H_2(\mathbb{R}P^2; \mathbb{Z}/2)$ denote the fundamental class modulo 2 of $\mathbb{R}P^2$.

Let w_k and \overline{w}_k denote the k-th Stiefel–Whitney class of M and $\mathbb{R}P^2$, respectively. Since the 1-dimensional normal bundle of i is trivial, we conclude that $i^*w_k = \overline{w}_k$.

We can now compute the Kronecker products

$$\langle w_2, i_*[\mathbb{R}P^2] \rangle = (i^*w_2, [\mathbb{R}P^2]) = \langle \overline{w}_2, [\mathbb{R}P^2] \rangle = 1,$$

and so $i_*[\mathbb{R}P^2] \neq 0 \in H_2(M; \mathbb{Z}/2)$. Now, since $\langle \overline{w}_1^2, [\mathbb{R}P^2] \rangle = 1$, we conclude that $i^*w_2^2 = \overline{w}_1^2 \neq 0$, and so $w_2^2 \neq 0$. So, by Poincaré duality, there exists $x \in H^1(M; \mathbb{Z}/2)$ with $xw_2^2 \neq 0$. Thus, $\operatorname{cl}_{\mathbb{Z}/2}(M) = 3$.

We also need the following fact which, in a sense, is a converse of Lemma 2.3.

4.6. Corollary. If M is a closed 3-manifold with non-trivial free fundamental group, then M is not irreducible.

Proof. Notice that $\pi_2(M) \neq 0$. Indeed, if $\pi_2(M) = 0$ then, by Proposition 2.6 and the hypothesis that $\pi_1(M)$ is free,

$$M = K(\pi_1(M), 1) = \vee S^1.$$

But this is wrong since a wedge of circles has vanishing homology above degree 1 for any coefficients.
Now, if M is irreducible then, by Proposition 4.3, $\text{cl}_{\mathbb{Z}/2} (M) = 3$. But this is impossible. Indeed, let $f: M \to K(\pi_1 (M), 1) = \vee S^1$ be a map which induces an isomorphism of fundamental groups. Then

$$f^*: H^1 (K(\pi_1 (M), 1); \mathbb{Z}/2) \to H^1 (M; \mathbb{Z}/2)$$

is an isomorphism. Thus, $x \cup y = 0$ for all $x, y \in H^1 (M; \mathbb{Z}/2)$, and so $\text{cl}_{\mathbb{Z}/2} (M) < 3$. This is a contradiction. \hfill \Box

4.7. Remark. If $\pi_1 (M) = \mathbb{Z}$ then $M = P \# \Sigma$ where Σ is a homotopy sphere and P is prime. So, $\pi_1 (P) = \mathbb{Z}$. But P is not irreducible by Corollary 4.4, so, because of Lemma 2.3, $\pi_2 (P) = \mathbb{Z}$. In other words, $\pi_2 (M) = \mathbb{Z}$ whenever $\pi_1 (M) = \mathbb{Z}$. Actually, the following general fact holds: for every closed 3-manifold M, the group $\pi_1 (M)$ completely determines $\pi_2 (M)$, see e.g. [R1].

5. Detectability of 3-Manifolds

5.1. Proposition. Let M^3 be a closed 3-manifold with $\pi_1 (M)$ free and non-trivial. Then $\text{cat} (M) = 2$, and M is detectable.

Proof. Write $M = M_1 \# \ldots \# M_k$ with each M_j prime. Because $\pi_1 (M) = \pi_1 (M_1) \ast \ldots \ast \pi_1 (M_k)$ is free, each $\pi^j = \pi_1 (M_j)$ must be free (where we agree that the trivial group is free). If M_j is irreducible with $\pi^j \neq \{1\}$, then this contradicts Corollary 4.6. Therefore, all such M_j are non-irreducible primes; that is, the M_j are the manifolds considered in Proposition 4.3. Because of Lemma 2.3, these are the total spaces of S^2-bundles over S^1. There are only two such manifolds: one orientable and one non-orientable, and we denote both of them by $S^1 \ltimes S^2$. Of course, the M_j with $\pi^j = \{1\}$ are homotopy spheres Σ_j. The key point now is that, for $M = P \# Q$ with $P = \# k (S^1 \ltimes S^2)$ and $Q = \# j \Sigma_j$, $M - D^3$ deformation retracts onto the 2-skeleton $\bigvee_k (S^1 \vee S^2)$. Because of Proposition 4.3, $\text{cat} (S^1 \ltimes S^2) = 2$. This handles the “trivial” case where the connected sum degenerates to a single summand. Now suppose $M = \# j M_j = P \# Q$, where M_j is either a homotopy sphere or $S^1 \ltimes S^2$ and $P = \# j M_j$, $Q = \# j M_j$, arbitrarily split M. If we remove a disk from a 3-manifold N, then the inclusion $S^2 \hookrightarrow N - D^3$ is the inclusion of a subcomplex; so therefore a cofibration. Thus, the pushout diagram

$$\begin{array}{ccc}
S^2 & \longrightarrow & P - D^3 \\
\downarrow & & \downarrow \\
Q - D^3 & \longrightarrow & P \# Q = M
\end{array}$$

is a homotopy pushout as well. But then we may apply the standard estimate for the category of a double mapping cylinder (see [Hat]) to obtain

$$\text{cat} (M) \leq \text{cat} (S^2) + \max \{\text{cat} (P - D^3), \text{cat} (Q - D^3)\}$$

$$= 1 + \max \{\text{cat} (\vee_j (S^1 \vee S^2)), \text{cat} (\vee_j (S^1 \vee S^2))\}$$

$$= 1 + 1$$

$$= 2.$$

Of course, cup-length then shows that $\text{cat} (M) = 2$ and this completes the proof. \hfill \Box
5.2. Theorem. Let M be a 3-manifold whose fundamental group is non-trivial and not a free group. Then $\text{cat}(M) = 3$. Further, M is detectable unless it is non-orientable of the form $P \# Q$, where P is non-orientable and Q is prime with odd torsion. Also, in the last case, the orientable double cover of M has category 3.

Proof: The case of finite π_1 is considered in Proposition 4.1. So, we assume that $\pi_1(M)$ is infinite. We represent M as a connected sum $M = N \# P$, where P is prime and $\pi_1(P) \neq \{1\}$. Furthermore, we can always assume that $\pi_1(P) \neq \mathbb{Z}$, and therefore P is irreducible in view of Corollary 4.6. Now, because of the results of §4, P possesses a detecting element $u \in H^3(P; R)$ for suitable R.

Now suppose that M is orientable. Then there is a map $f : M \to P$ of degree 1. (In greater detail, $M = (N \setminus D) \cup (P \setminus D)$ where D is a 3-disk, and $f : M \to P$ maps $N \setminus D$ to the disk D in P and is the identity on $P \setminus D$.) Then $f^* : H^3(P; R) \to H^3(M : R)$ is an isomorphism for every coefficient ring (group) R. Now, for the detecting element u above, $f^*(u) \neq 0$, and therefore, $\text{wgt}(f^*(u)) = 3$. Thus, $f^*(u)$ is a detecting element for M.

Now, if M is not orientable, then let $\overline{M} \to M$ be its orientable double cover (which also is a closed 3-manifold). If $\pi_1(M)$ has odd torsion, then so does $\pi_1(\overline{M})$. Because \overline{M} is orientable, the argument above says that $\text{cat}(\overline{M}) = 3$. But because \overline{M} covers M, we know that $\text{cat}(\overline{M}) \leq \text{cat}(M)$. Therefore, $\text{cat}(M) = 3$. If, on the other hand, there is a prime component of M with non-free fundamental group having no odd torsion, then this component has a detecting element in 3-dimensional $\mathbb{Z}/2$-cohomology. Therefore, M has a detecting element in $\mathbb{Z}/2$-cohomology as well and $\text{cat}(M) = 3$.

Now, if $\pi_1(M)$ has odd torsion, then this occurs in individual prime components. So, M may not have a detecting element only if we can write $M = P \# Q$, where P is non-orientable and Q is a prime manifold having odd torsion.

For completeness, note that $\text{cat}(\Sigma) = 1$ for every simply connected 3-manifold (= homotopy sphere) Σ, and, therefore, every non-zero element $u \in H^3(\Sigma)$ is a detecting element. Therefore, we now have proved Theorem 6.1 and augmented it by showing that most closed 3-manifolds possess detecting elements. The significance of this will be apparent in §5.3.

5.3. Remark. In fact, if we allow local coefficients, then all 3-manifolds with non-trivial and non-free fundamental groups have detecting elements. More specifically, by [Ber], $\text{cat}(X) = n = \dim(X)$ if and only if a certain element $u \in H^1(X; I(\pi))$ has $u^n \neq 0$ in $H^n(X; I(\pi) \otimes \ldots \otimes I(\pi))$. Here, $\pi = \pi_1(X)$ and $I(\pi)$ is the augmentation ideal in the group ring $\mathbb{Z}\pi$. Since u^n is a cup product (with local coefficients), it is a detecting element.

6. Two Applications

A prime motivating problem in the study of Lusternik-Schnirelmann category has been the the Ganea conjecture: $\text{cat}(X \times S^n) = \text{cat}(X) + 1$. We now know that the conjecture is not true in general, so it is even more interesting to understand when it is valid. For 3-manifolds, we have the following.
6.1. Corollary. For every closed 3-manifold M,
\[\text{cat}(M \times S^n) = \text{cat}(M) + 1. \]
That is, the Ganea conjecture holds for M.

Proof. First, suppose that M is detectable. Then the equality follows from the general result [R3, Corollary 2.3], but the argument in this case is easy. Let $u \in H^3(M; R)$ have $\text{wgt}(u) = \text{cat}(M)$ and let $v \in H^n(S^n; R)$ be non-trivial, where, by the results above, we can always take $R = \mathbb{Z}$ or $R = \mathbb{Z}/d$. Let $\tilde{u} = p_M^*(u)$ and $\tilde{v} = p_{S^n}^*(v)$, where $p_M : M \times S^n \to M$ and $p_{S^n} : M \times S^n \to S^n$ are the respective projections. Clearly, $\tilde{u} \neq 0$ and $\tilde{v} \neq 0$ since the compositions $\text{cat}(M) + 1 \geq \text{wgt}(\tilde{u} \cup \tilde{v}) \geq \text{wgt}(\tilde{u}) + \text{wgt}(\tilde{v}) \geq \text{cat}(M) + 1$. Hence, $\text{cat}(M \times S^n) = \text{cat}(M) + 1$.

Now, suppose that M is not detectable. Then, by Theorem 5.2, the oriented double cover \tilde{M} of M is detectable, and $\text{cat}(\tilde{M}) = 3$. Therefore, in view of what we said above, $\text{cat}(\tilde{M} \times S^n) = 4$. But $\tilde{M} \times S^n$ covers $M \times S^n$, and so $\text{cat}(M \times S^n) \geq 4$. On the other hand, $\text{cat}(M \times S^n) \leq \text{cat}(M) + 1 = 4$ for general reasons. Thus, $\text{cat}(M \times S^n) = 4$.

6.2. Corollary. Let $f : M \to N$ be a degree 1 map of oriented 3-manifolds. Then $\text{cat}M \geq \text{cat}f = \text{cat}N$.

Proof. Let $u \in H^3(N; A)$ be a detecting element for N. (Recall that orientable 3-manifolds always have detecting elements.) Since $\deg(f) = 1$, we conclude that $f^*(u) \neq 0$. So, $\text{cat}(f) \geq \text{wgt}(u)$ by Proposition 5.4 (2). Thus $\text{cat}(M) \geq \text{cat}(f) \geq \text{wgt}(u) = \text{cat}(N)$.

Of course, $\text{cat}(f) = \text{cat}(N)$ holds since $\text{cat}(f) \leq \text{cat}(N)$ for general reasons.

6.3. Corollary. Let $f : M \to N$ be a degree 1 map of oriented 3-manifolds. If $\pi_1(M)$ is free, then $\pi_1(N)$ is.

Proof. By Corollary 6.2, $\text{cat}(N) \leq 2$, and so $\pi_1(N)$ is free by Theorem 5.2.
REFERENCES

[Ber] I. Berstein, *On the Lusternik-Schnirelmann category of Grassmannians*, Proc. Camb. Phil. Soc. 79 (1976) 129-134.

[BG] I. Berstein and T. Ganea, *The category of a map and of a cohomology class*, Fund. Math. 50 (1961/1962) 265–279.

[B] K. Brown, *Cohomology of groups*, Graduate Texts in Mathematics 87, Springer-Verlag, New York 1994.

[FH] E. Fadell and S. Husseini, *Category weight and Steenrod operations*, Bol. Soc. Mat. Mexicana (2) 37 (1992) no. 1-2, 151–161.

[Fe] A. I. Fet, *A connection between the topological properties and the number of extremals on a manifold (Russian)*, Doklady AN SSSR, 88 (1953) 415–417.

[F] R. Fox, *On the Lusternik-Schnirelmann category*, Ann. of Math. 42 (1941) 333–370.

[G] T. Ganea *Lusternik-Schnirelmann category and strong category*, Illinois J. Math. 11 (1967), 417–427.

[GoGo] J.C. Gomez-Larranaga and F. Gonzalez-Acuna, *Lusternik-Schnirelmann category of 3-manifolds*, Topology 31 (1992) 791-800.

[Har] K.A. Hardie, *On the category of the double mapping cylinder*, Tôhoku Math. J. 25 (1973) 355-358.

[H] J Hempel, *3-Manifolds*. Ann. of Math. Studies 86, Princeton Univ. Press, Princeton, New Jersey 1976.

[Ja] I. James, *On category in the sense of Lusternik-Schnirelmann*, Topology 17 (1978) 331-348.

[Kra] M.A. Krasnosielkski, *On special coverings of a finite dimensional sphere (in Russian)*, Dold. Akad. Nauk SSSR 103 (1955) 961-964.

[R1] Yu. B. Rudyak, *On the fundamental group of a three-dimensional manifold*, Soviet Math. Doklady 14 (1973) 814–818.

[R2] Yu. B. Rudyak, *Category weight: new ideas concerning Lusternik-Schnirelmann category*. Homotopy and geometry (Warsaw, 1997), 47–61, Banach Center Publ., 45, Polish Acad. Sci., Warsaw, 1998.

[R3] Yu. B. Rudyak, *On category weight and its applications*. Topology 38 (1999) no. 1, 37–55.

[S] J. Strom, *Category weight and essential category weight*, Thesis, Univ. of Wisconsin 1997.

[Sv] A. Svarc, *The genus of a fiber space*. Amer. Math. Soc. Translations 55 (1966), 49–140.