On Structure Preserving Transformations of the
Itô Generator Matrix for Model Reduction of
Quantum Feedback Networks

Hendra I. Nurdin* and John E. Gough†

May 11, 2014

Abstract
Two standard operations of model reduction for quantum feedback networks, internal connection elimination under the instantaneous feedback limit and adiabatic elimination of fast degrees of freedom, are cast as structure preserving transformations of Itô generator matrices. It is shown that the order in which they are applied is inconsequential.

1 Introduction
The last two decades have seen the emergence and explosion of global research activities in quantum information science that promise to deliver quantum technologies, a class of technologies that rely on and exploit the laws of quantum mechanics, which can beat the best known capabilities of current technological systems in sensing, communication and computation. Most of the envisioned quantum technologies are quantum information processing systems that process quantum information [1, 2]. Typical proposals are realized as quantum networks: linear quantum optical computing [3], the quantum internet [4], and quantum error correction [5, 6]. Quantum networks have also been experimentally realized in proof-of-principle demonstrations of quantum information processing, see, e.g., [7, 8]. Besides quantum information processing, quantum networks have also been proposed for new ultra low power photonic devices that perform classical information processing. In particular, photonic devices that act as photonic analogues of classical electronic circuits and logic devices, e.g., [9, 10, 11, 12].

*H. I. Nurdin was with the Research School of Engineering, The Australian National University, when this work was completed. He is now with the School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney NSW 2052, Australia. Email: h.nurdin@unsw.edu.au.

†Institute for Mathematics and Physics, Aberystwyth University, SY23 3BZ, Wales, United Kingdom. Email: jug@aber.ac.uk.
Even relatively simple quantum networks may be difficult to simulate due to the large number of variables that need to be propagated. It is therefore necessary to look at model reduction. For instance, this has been used to obtain a tractable network model of a coherent-feedback system implementing a quantum error correction scheme for quantum memory \[5\]. In particular, this involved reduced QSDE models for several components that make up the nodes of the network. In fact, the process led to a simple and intuitive quantum master equation that describes the evolution of the composite state of the three qubits of the quantum memory and the two atom-based optical switches which jointly act as a coherent-feedback controller. The idea for this coherent-feedback realization of a three qubit bit(phase)-flip quantum error correction code, which can correct only for single qubit bit(phase)-flip errors, was subsequently extended to a coherent-feedback realization of a nine qubit Bacon-Shor subsystem code that can correct for arbitrary single qubit errors \[\text{6}\], see Figure 1. Again, here QSDE model reduction played a crucial role in justifying the intuitive quantum master equation that describes the operation of the coherent-feedback QEC circuit.

Figure 1: **Left**: A coherent-feedback quantum network that implements a nine qubit Bacon-Shor subsystem quantum error correction code from \[\text{6}\]. The four relays \(R_1, R_2, R_3, R_4\) act jointly as a coherent-feedback controller. **Top right**: complexity reduction of a quantum network by the instantaneous feedback limit operation (IF) followed by the adiabatic elimination operation (AE). **Bottom right**: complexity reduction of a quantum network by the adiabatic elimination operation followed by the instantaneous feedback limit operation. A circle denotes a node or quantum network before adiabatic elimination while a rhombus denotes a node or quantum network after adiabatic elimination.
This paper considers a class of dynamical quantum networks with open Markov quantum systems as nodes and in which nodes are interconnected by bosonic optical fields (such as coherent laser beams). Here the optical fields serve as quantum links or “wires” between nodes in the network. Time delays in the propagation of the optical fields mean that the network as a whole is no longer Markov, but fortunately, an effective Markov model may be recovered in the zero time delay limit [13, 14, 15, 16]. The effective Markov model can then be viewed as a large single node network, as illustrated in Fig. 1. This kind of limit will be referred to as an instantaneous feedback limit.

Another commonly employed approximation is adiabatic elimination (or singular perturbation) of quantum systems that have fast and slow sub-dynamics with well-separated time scales [18, 19, 17]. Besides model simplification, adiabatic elimination has also proved to be a powerful tool for the approximate engineering of “exotic” two or more body couplings, see, e.g., [20, 9, 21, 5].

In [22] it was established, for a special class of quantum networks containing fast oscillating quantum harmonic oscillators, that the instantaneous feedback and adiabatic elimination limits are interchangeable. The main contribution of the present paper is to extend the results of [22] to general classes of quantum networks with Markovian components.

2 Quantum stochastic differential equations and the Itô generator matrix

We work in the category of the Hudson and Parthasarathy (bosonic) quantum stochastic models [23, 24, 25, 16]. Here we fix a separable Hilbert space \mathcal{H}, called the initial or system (Hilbert) space, describing the joint state space of the systems at the nodes of the network, and a finite-dimensional multiplicity space \mathcal{K} labelling the input fields. The open quantum system and the quantum boson fields jointly evolve in a unitary manner according to the solution of a right Hudson-Parthasarathy quantum stochastic differential equation (QSDE), using the Einstein summation convention,

$$U(t) = I + \int_0^t U(s) G_{\alpha\beta} dA^{\alpha\beta}(s),$$

with $\alpha, \beta = 0, 1, 2, \ldots, n$ (n denotes the dimension of \mathcal{K}) and $G = [G_{\alpha\beta}]$ is a right Itô generator matrix in the set $\mathcal{G}(\mathcal{H}, \mathcal{K})$ of all right Itô generator matrices on systems with initial space \mathcal{H} and multiplicity space \mathcal{K}; see [15, 20] for conventions and notation. Here right (left) QSDE means that the generator $G_{\alpha\beta} dA^{\alpha\beta}(s)$ appears to the right (left) of the unitary $U(t)$. Following [17], we work with right unitary processes for technical reasons. The solution $U(t)$ of the QSDEs, when they exist, are adapted quantum stochastic processes. The right Itô generator matrix is written as

$$G = \begin{bmatrix} K & L \\ M & N - I \end{bmatrix}$$
with respect to the standard decomposition of the coefficient space $\mathcal{C} = \mathfrak{h} \otimes (\mathbb{C} \oplus \mathfrak{k})$, that is, as $\mathfrak{h} \oplus (\mathfrak{h} \otimes \mathfrak{k})$. Here $K = G_{00}$, $L = [G_{0j}]_{j=1,2,...,n}$, $M = [G_{ij}]_{i,j=1,2,...,n}$, $N = [G_{ji}]_{i,j=1,2,...,n}$. Throughout this paper we shall assume that all the components of K, K^\star, L, L^\star, M, M^\star, N and N^\star have a common invariant domain D in \mathfrak{h} (here \ast denotes the adjoint of a Hilbert space operator).

We further require that the Hudson-Parthasarathy conditions are satisfied: N is unitary, $K + K^\star = -LL^\star$, and $M = -NL^\star$. Note that if the coefficients are bounded then these conditions are necessary and sufficient for $U(t)$ to be a unitary co-cycle (if they are unbounded then the solution may not extend to a unitary co-cycle). In the general case, if $U(t)$ is a well-defined unitary and $|\psi_0\rangle$ is the initial pure state of the composite system consisting of the system and the fields at time 0, then this state vector evolves in time in the Schrödinger picture as $|\psi(t)\rangle = U(t)^\ast |\psi_0\rangle$. We assume throughout that the operator coefficients of the QSDE satisfy sufficient conditions that guarantee a unique solution which extends to a unitary co-cycle on $\mathfrak{h} \otimes \Gamma(L^2_0[0,\infty))$ (in particular this will always be the case when the coefficients are bounded); see, e.g., [27, 28] for the unbounded case.

Note that G is simply the adjoint of the corresponding left Itô generator matrices introduced for left QSDEs in [15], and plays a similar role to the latter for right QSDEs. Since we will be working exclusively with right QSDEs, from this point on when we say Itô generator matrix we will mean the right Itô generator matrix.

We use the notation X^\ast for a generalized inverse of an operator $X \in \mathcal{L}(\mathfrak{h})$, that is, $XX^\ast X = X$. Throughout, we require that $X, X^\ast, X^\ast, X^\ast$ have D as invariant domain. Note then that $X^\ast = (X^\ast)^\ast$.

Definition 1 Given a non-trivial decomposition of the coefficient space $\mathcal{C} = \mathcal{C}_1 \oplus \mathcal{C}_2$, we define the generalized Schur complement operation of Itô matrices as

$$S_{\mathcal{C} \rightarrow \mathcal{C}_1} G = G_{11} - G_{12}G_{22}G_{21}$$

where $G \equiv \begin{bmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{bmatrix}$ is the partition of G with respect to the decomposition. The domain of $S_{\mathcal{C} \rightarrow \mathcal{C}_1}$ is the set of $G \in \mathcal{L}(\mathcal{C}_1 \oplus \mathcal{C}_2)$ for which we have the image and kernel space inclusions $\text{im}(G_{21}) \subseteq \text{im}(G_{22})$ and $\text{ker}(G_{22}) \subseteq \ker(G_{12})$ (this ensures that the choice of generalized inverse is unimportant; see [22] and the references therein). $S_{\mathcal{C} \rightarrow \mathcal{C}_1}$ maps into the reduced space $\mathcal{L}(\mathcal{C}_1)$. We shall often use the shorthand G_{22}/G_{22} for the generalized Schur complement.

Of course, if $G_{22} |_D$ is invertible then the generalized Schur complement reduces to the ordinary Schur complement with the generalized inverse G_{22}^\ast replaced by $(G_{22} |_D)^{-1}$.

4
3 Eliminating internal connections

The total multiplicity space \(\mathcal{R} \) may be decomposed into external and internal elements as follows

\[
\mathcal{R} = \mathcal{R}_e \oplus \mathcal{R}_i,
\]

leading to decomposition \(\mathcal{C} = \mathcal{C}_e \oplus \mathcal{C}_i \), where \(\mathcal{C}_e = \mathfrak{h} \otimes (\mathcal{C} \oplus \mathcal{R}_e) \). It was shown in [15] that in the instantaneous feedback limit for the internal connections, the reduced It\(\hat{o} \) generator matrix is the Schur complement of the pre-interconnection network It\(\hat{o} \) generator matrix, \(S_{\mathcal{C}_e \rightarrow \mathcal{C}_i} \mathcal{G} \). With respect to the decomposition \(\mathcal{C} = \mathfrak{h} \oplus (\mathfrak{h} \otimes \mathcal{R}_e) \oplus (\mathfrak{h} \otimes \mathcal{R}_i) \), we have, with \(L = \begin{bmatrix} L_e & L_i \end{bmatrix} \), \(N_a = \begin{bmatrix} N_{ae} & N_{ai} \end{bmatrix} \),

\[
\begin{bmatrix}
K & L_e & L_i \\
M_e & N_{ee} - I & N_{ei} \\
M_i & N_{ei} & N_{ii} - I
\end{bmatrix} = \begin{bmatrix}
K & L_e \\
M_e & N_{ee} - I
\end{bmatrix} - \begin{bmatrix} L_i \\
N_{ei}
\end{bmatrix} (N_{ii} - I)^{-1} \begin{bmatrix} M_i & N_{ei} \end{bmatrix},
\]

where it is a condition that \(N_{ii} - I \) be invertible for the network connections to be well-posed. We denote the operation \(\mathcal{C}_{\mathcal{C}_e \rightarrow \mathcal{C}_i} \) of instantaneous feedback reduction by \(\mathcal{F} \) whenever the context is clear, and for well-posed connections it maps between the categories of It\(\hat{o} \) generator matrices in \(\mathcal{G}(\mathfrak{h}, \mathcal{R}) \) to \(\mathcal{G}(\mathfrak{h}, \mathcal{R}_e) \) [15].

4 Adiabatic elimination of QSDEs: Structural assumptions

The following section reviews the adiabatic elimination results of Bouten, van Handel and Silberfarb [17]. We consider a QSDE of the form

\[
U^{(k)}(t) = I + \int_0^t U^{(k)}(s)G^{(k)}_{\alpha\beta}dA^{\alpha\beta}(s),
\]

where as before \(\alpha, \beta = 0, 1, \ldots, n \) and \(G^{(k)} = [G^{(k)}_{\alpha\beta}] \) is an Ito generator matrix \(G^{(k)} \in \mathcal{G}(\mathfrak{h}, \mathcal{R}) \) that can be expressed as

\[
G^{(k)} = \begin{bmatrix} K^{(k)} & L^{(k)} \\
M^{(k)} & N^{(k)} - I \end{bmatrix}
\]

with \(K^{(k)} = G^{(k)}_{00} = k^2Y + kA + B \) and \(L^{(k)} = [G^{(k)}_{0j}]_{j=1,2,\ldots,n} = kF + G \), \(M^{(k)} = [G^{(k)}_{ij}]_{j=1,2,\ldots,n} \), and \(N^{(k)} = [G^{(k)}_{ij}]_{i=1,2,\ldots,n} \), and \(k \) is a positive parameter representing coupling strength. The operators \(Y, A, B, F, G, N \), and their respective adjoints, have \(\mathcal{D} \) as a common invariant domain, and the coefficients satisfy the Hudson-Parthasarathy conditions \(K^{(k)} + K^{(k)*} = -L^{(k)}L^{(k)*}, M^{(k)} = -N^{(k)*}L^{(k)}, \) and \(N^{(k)}N^{(k)*} = N^{(k)*}N^{(k)} = I \). In particular, this implies that \(B + B^* = -GG^*, A + A^* = -(FG^* + GF^*), Y + Y^* = -FF^* \). The
The general situation is that there is a decomposition of the initial/system space \mathfrak{h} into slow and fast subspaces (the subscripts s and f denote fast and slow, respectively):

$$\mathfrak{h} = \mathfrak{h}_s \oplus \mathfrak{h}_f,$$

Denote the orthogonal projections onto $\mathfrak{h}_s, \mathfrak{h}_f$ by P_s, P_f, respectively. With an obvious abuse of notation, we use the same partition for the decomposition of the coefficient space: $\mathcal{C} = \mathcal{C}_s \oplus \mathcal{C}_f$ where $\mathcal{C}_s = \mathfrak{h}_s \otimes (\mathbb{C} \oplus \mathfrak{r})$. With respect to the decomposition $\mathfrak{h}_s \oplus \mathfrak{h}_f$, one requires \cite{17}:

1. $P_s \mathcal{D} \subset \mathcal{D}$.
2. $N(k) = N$ is k independent

3. $P_s F = 0$. That is, F has the structure $F = \begin{bmatrix} 0 & 0 \\ F_{fs} & F_{ff} \end{bmatrix}$.

4. The Hamiltonian $H^{(k)} = \frac{1}{2}(K^{(k)} - K^{(k)*})$ takes the form $H(k) = H^{(0)} + kH^{(1)} + k^2H^{(2)}$ where $P_s H^{(1)} P_s = 0$ and $P_s H^{(2)} = H^{(2)} P_s = 0$, that is,

$$H = \begin{bmatrix} H_{ss}^{(0)}, & H_{st}^{(0)} + kH_{st}^{(1)} \\ H_{ts}^{(0)} + kH_{ts}^{(1)}, & H_{ff}^{(1)} + k^2H_{ff}^{(2)} \end{bmatrix}.$$

Conditions 3 and 4 is equivalent to Y having the structure $Y = \begin{bmatrix} 0 & 0 \\ 0 & P_s Y P_f \end{bmatrix}$.

5. In the expansion

$$K^{(k)} = -L^{(k)} \frac{1}{2} L^{(k)*} - iH^{(k)} \equiv k^2 Y + kA + B,$$

we require that the operator $Y_{ft} = -\frac{1}{2} \sum_{a=\mathfrak{s},\mathfrak{f}} F_{fa} F_{fa}^* - iH_{ft}^{(2)}$ is invertible.

In particular, Conditions 3 to 5 is equivalent to Y having a generalized inverse Y^- with the diagonal structure $Y^- = \begin{bmatrix} P_s Y - P_s & 0 \\ 0 & Y_{ft}^{-1} \end{bmatrix}$.

Employing a repeated index summation convention over the index range \{s, f\} from now on, we find that the operator B has components

\begin{equation}
A = \begin{bmatrix} 0 & A_{sf} \\ A_{fs} & A_{ff} \end{bmatrix} = \begin{bmatrix} 0 & -\frac{1}{2} G_{sc} G_{fc}^* - iH_{fs}^{(1)} \\ -\frac{1}{2} F_{fc} G_{sc}^* - iH_{fs}^{(1)} & -\frac{1}{2} F_{fc} G_{sc}^* - \frac{1}{2} G_{tc} F_{tc}^* - iH_{ft}^{(1)} \end{bmatrix},
\end{equation}

\begin{equation}
Y = \begin{bmatrix} 0 & 0 \\ 0 & Y_{ft} \end{bmatrix},
\end{equation}

with respect to the slow-fast block decomposition. Likewise
With respect to the decomposition the decomposition \(C = h_s \otimes (h_s \otimes \mathfrak{g}) \otimes h_f \otimes (h_f \otimes \mathfrak{g}) \) we have

\[
G^{(k)} = \begin{bmatrix} 1 & 1 & k & 1 \end{bmatrix} [G_0 + G'(k)] \begin{bmatrix} 1 \\ 1 \\ k \\ 1 \end{bmatrix}
\]

where

\[
G_0 = \begin{bmatrix}
B_{ss} & G_{ss} & A_{sf} & G_{sf} \\
-N_{ss}G_{ss}^* & N_{ss} - I & -N_{ss}F_{fa}^* & N_{sf} \\
A_{fs} & F_{fa} & Y_{ff} & F_{ff} \\
-N_{fs}G_{fs}^* & N_{fs} & -N_{fs}F_{fa}^* & N_{ff} - I
\end{bmatrix},
\]

and \(\lim_{k \to \infty} G'(k) = 0 \) for all \(\phi \in \mathcal{D} \). We then observe that

\[
G_0/Y_{ff} = \begin{bmatrix}
\hat{K}_{ss} & \hat{L}_s & \hat{L}_t \\
\hat{M}_s & \hat{N}_{ss} - I & \hat{N}_{sf} \\
\hat{M}_t & \hat{N}_{fs} & \hat{N}_{ff} - I
\end{bmatrix}
\]

where

\[
\hat{K}_{ss} = B_{ss} - A_{sf}Y_{ff}^{-1}A_{fs}, \quad \hat{L}_s = G_{ss} - A_{sf}Y_{ff}^{-1}F_{fa}, \quad \hat{M}_s = -N_{ab}G_{ab}^* + N_{ab}F_{fa}^*Y_{ff}^{-1}A_{fa}, \quad \hat{N}_{ab} = N_{ab} + N_{ac}F_{fa}^*Y_{ff}^{-1}F_{fa}.
\]

We also assume that

\[
\hat{L}_t = \hat{N}_{sf} = \hat{N}_{fs} = 0,
\]

and this will ensure that the limit dynamics excludes the possibility of transitions that terminate in any of the fast states. In this case \(\hat{N}_{ss} \) and \(\hat{N}_{ff} \) are unitary. In particular

\[
\hat{G} = \begin{bmatrix}
\hat{K}_{ss} & \hat{L}_s \\
\hat{M}_s & \hat{N}_{ss} - I
\end{bmatrix} \equiv \begin{bmatrix}
\hat{K} & \hat{L} \\
\hat{M} & \hat{N} - I
\end{bmatrix}
\]

is an Itô generator matrix \(\left(\hat{M}_s = -\hat{N}_{ss}\hat{L}_s^* \right) \) on the coefficient space \(\mathfrak{c}_s = h_s \otimes (\mathbb{C} \oplus \mathfrak{g}) \). The final assumption is a technical condition. For any \(\alpha, \beta \in \mathbb{C}^n \) (represented as column vectors), \(P_2D \) is a core for the operator \(\mathcal{L}^{(\alpha, \beta)} \) defined by:

\[
\mathcal{L}^{(\alpha, \beta)} = \alpha^*\hat{N}\beta + \alpha^*\hat{M} + \hat{L}\beta + \hat{K} - \frac{|\alpha|^2 + |\beta|^2}{2},
\]

with \(\hat{K}, \hat{L}, \hat{M}, \hat{N} \) as defined in [4].

Theorem 2 (17) Suppose that all the assumptions above hold. If the right QSDEs with coefficients \(G^{(k)} \) possess a unique solution that extends to a contraction co-cycle \(U^{(k)}(t) \) on \(h \otimes \Gamma (L^2_\mathbb{R}([0, \infty))) \) for all \(k > 0 \), and the right QSDE with coefficients \(\hat{G} \) has a unique solution that extends to a unitary co-cycle \(\hat{U}(t) \).
on \(h_s \otimes \Gamma (L_0^2[0, \infty)) \), then \(U^{(k)}(t) \) converges to the solution \(\hat{U}(t) \) uniformly in a strong sense:

\[
\lim_{k \to \infty} \sup_{0 \leq t \leq T} ||U^{(k)}(t) - \hat{U}(t)|| = 0, \quad \forall \phi \in h_s \otimes \Gamma (L_0^2[0, \infty)),
\]

for each fixed \(T \geq 0 \).

The above theorem is Theorem 3 of [17].

5 Adiabatic elimination of QSDEs: Schur complements

In this section we will show how the singular perturbation limit of the QSDE can be related to the Schur complementation of a certain matrix with operator entries. To this end, define the extended Itô generator matrix \(G_E \) as:

\[
G_E = \begin{bmatrix}
B & A_{sf} & G \\
A_t & Y_{tt} & F_t \\
-NG^* & -NF_t^* & N - I
\end{bmatrix},
\]

where \(A_t = P_t A, F_t = P_t F \).

Lemma 3 The limit QSDE \(\hat{U}(t) \) has the Itô generator matrix \(\hat{G} \) given by \(\hat{G} = \hat{P}_s(G_E/Y_{tt})P_s |_{h_s} \), where \(G_{E}/Y_{tt} \) is the Schur complement of \(G_E \) with respect to the sub-block with entry \(Y_{tt} \).

Proof. Direct calculation shows that

\[
G_{E}/Y_{tt} = \begin{bmatrix}
B & A_{sf} & G \\
-NG^* & N - I \\
-NG^* + NF_t^* Y_{tt}^{-1} A_t & G - A_{sf} Y_{tt}^{-1} F_t & N + NF_t^* Y_{tt}^{-1} F_t - I
\end{bmatrix}.
\]

Thus:

\[
P_s(G_{E}/Y_{tt})P_s |_{h_s} = \begin{bmatrix}
P_s(B - A_{sf} Y_{tt}^{-1} A_t)P_s & P_s(G - A_{sf} Y_{tt}^{-1} F_t)P_s \\
P_s(-NG^* + NF_t^* Y_{tt}^{-1} A_t)P_s & P_s(N + NF_t^* Y_{tt}^{-1} F_t)P_s - P_s
\end{bmatrix}.
\]

Therefore, since \(P_s(G_{E}/Y_{tt})P_s |_{h_s} \) equals

\[
\begin{bmatrix}
P_s(B - A_{sf} Y_{tt}^{-1} A_t)P_s & P_s(G - A_{sf} Y_{tt}^{-1} F_t)P_s \\
P_s(-NG^* + NF_t^* Y_{tt}^{-1} A_t)P_s & P_s(N + NF_t^* Y_{tt}^{-1} F_t)P_s - P_s
\end{bmatrix},
\]

it follows from (3) that \(\hat{G} = P_s(G_{E}/Y_{tt})P_s |_{h_s} \). ■

We then we denote by \(A \) the map that takes \(G^{(k)} \) to the Itô generator matrix \(\hat{G} \) in the lemma by: \(A : G^{(k)} \to \hat{G} \).

We conclude by remarking that the instantaneous feedback limit operation \(F \) and the adiabatic elimination operations \(A \) can be cast as structure preserving transformations, that is, transformations that preserve the structure of Itô generators matrices or convert Itô generator matrices to Itô generator matrices (possibly of lower initial space and multiplicity space dimensions).
6 Sequential application of the instantaneous feedback and adiabatic elimination operations

6.1 The adiabatic elimination operation followed by the instantaneous feedback operation

When the adiabatic elimination operation is first applied followed by the instantaneous feedback operation we have the following:

Lemma 4 Under the standing assumptions in Section 4 and taking $N_{ii} + N_{ii}F_{i}^{*}Y_{tt}^{-1}F_{ti} - I$ to be invertible, we have

$$P_{a}\left((G_{E}/Y_{tt})/(N_{i} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{ti} - I)\right)P_{a} = FAG^{(k)},$$

where $F_{ti} = F_{t}F_{i}$.

Proof. Partition the extended Itô generator with respect to $\mathcal{R}_{e} \oplus \mathcal{R}_{i}$ to get

$$G_{E}/Y_{tt} = \left[\begin{array}{cccc} B & A_{st} & G_{i} & G_{e} \\ A_{t} & Y_{tt} & F_{ti} & F_{te} \\ -N_{b}G^{*} & -N_{i}F_{i}^{*} & N_{ii} - I & N_{ie} \\ -N_{e}G^{*} & -N_{e}F_{i}^{*} & N_{ei} & N_{ee} - I \end{array} \right]/Y_{tt}$$

$$= \left[\begin{array}{cccc} B - A_{st}Y_{tt}^{-1}A_{t} & G_{i} - A_{st}Y_{tt}^{-1}F_{ti} \\ -N_{b}G^{*} + N_{i}F_{i}^{*}Y_{tt}^{-1}A_{t} & N_{ii} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{ti} - I \\ -N_{e}G^{*} + N_{e}F_{i}^{*}Y_{tt}^{-1}A_{t} & N_{ei} + N_{e}F_{i}^{*}Y_{tt}^{-1}F_{ti} \end{array} \right]$$

$$= \left[\begin{array}{ccc} G_{a} - A_{st}Y_{tt}^{-1}F_{te} \\ N_{ii} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{te} \\ N_{ii} \end{array} \right]$$

where $\mathcal{N}_{2} = \left[\begin{array}{cc} N_{ae} & N_{ai} \end{array} \right]$, $F_{2a} = F_{t}F_{a}$ for $a = i, e$, and $[F_{i} F_{e}] = F$ and $[G_{i} G_{e}] = G$, and we used (6). We now apply the operation F to get $(G_{E}/Y_{tt})/\left(\mathcal{N}_{ii} - I\right)$ equal to

$$\left[\begin{array}{ccc} \hat{B} - \hat{G}_{i} \left(\mathcal{N}_{ii} - I\right)^{-1} \hat{M}_{i} & \hat{G}_{e} - \hat{G}_{i} \left(\mathcal{N}_{ii} - I\right)^{-1} \hat{N}_{ie} \\ \hat{M}_{e} - \hat{N}_{ei} \left(\mathcal{N}_{ii} - I\right)^{-1} \hat{M}_{i} & \hat{N}_{ee} - \hat{N}_{ei} \left(\mathcal{N}_{ii} - I\right)^{-1} \hat{N}_{ie} - I \end{array} \right].$$

Next, note that $N_{ii} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{ti}$ has the representation

$$\left[\begin{array}{cc} P_{a}(N_{ii} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{ti})P_{a} & 0 \\ 0 & P_{a}(N_{ii} + N_{i}F_{i}^{*}Y_{tt}^{-1}F_{ti})P_{a} \end{array} \right],$$

with respect to the decomposition $\mathcal{D} = P_{t}\mathcal{D} \oplus P_{e}\mathcal{D}$. Moreover, we also note the representation

$$G_{a} - A_{st}Y_{tt}^{-1}F_{ta} = \left[\begin{array}{cc} P_{t}G_{a}P_{t} & P_{t}G_{e}P_{a} \\ 0 & P_{a}(G_{a} - A_{st}Y_{tt}^{-1}F_{ta})P_{a} \end{array} \right], a = i, e.$$
Using these representations we can verify the following sequence of identities:

\[
P_a(G_E/Y_{tt})/\left(\hat{N}_i - I\right) P_a = P_a(G_E/Y_{tt})P_a/P_a(N_{ni} + N_tF_t Y_{tt}^{-1}F_t - I)P_a = (P_a(G_E/Y_{tt})P_a |_{h_a})/(P_a(N_{ni} + N_tF_t Y_{tt}^{-1}F_t)P_a - I),
\]

where the last equality follows from the fact that \(P_a(N_{ni} + N_tF_t Y_{tt}^{-1}F_t - I)P_a |_{h_a} = P_a(N_{ni} + N_tF_t Y_{tt}^{-1}F_t)P_a - I\). Finally, since

\[
\mathcal{F}AG^{(k)} = (P_a(G_E/Y_{tt})P_a |_{h_a})/(P_a(N_{ni} + N_tF_t Y_{tt}^{-1}F_t)P_a - I),
\]

by definition, we thus obtain the desired result.

\section{The instantaneous feedback operation followed by the adiabatic elimination operation}

We now turn to consider the alternative sequence of first applying the instantaneous feedback operation followed by the adiabatic elimination operation. The main result in this section is the following:

Lemma 5 Suppose that the assumptions of Section 4 are satisfied, \(N_{ni} - I\) is invertible, \(\ker(Y + F_t(N_{ni} - I)^{-1}F_t) = h_a\), and there exists an operator \(\hat{Y}\) such that \(\hat{Y} = Y\) or \(\hat{Y}^{-}\) have \(\mathcal{D}\) as a common invariant domain and \(\hat{Y}\hat{Y}^{-} = \hat{Y}^{-} = Y_t\), where \(Y = Y + F_t(N_{ni} - I)^{-1}F_t\). Then

\[
\mathcal{A}FG^{(k)} = P_a((G_E/(N_{ni} - I))/Y_{tt} + F_t(N_{ni} - I)^{-1}N_tF_t^*)P_a |_{h_a}.
\]

Proof. We first compute the extended Itô generator matrix corresponding to \(\mathcal{F}G^{(k)}\). With \(\hat{N}_{ee} = N_{ee} - N_{ee}(N_{ni} - I)^{-1}N_{ee}\) this is

\[
(\mathcal{F}G^{(k)})_E = \left[
\begin{array}{cccc}
B + G_t(N_{ni} - I)^{-1}N_tG^* & 0 & 0 & 0 \\
A_f + F_t(N_{ni} - I)^{-1}N_tG^* + P_tG_t(N_{ni} - I)^{-1}N_tF^* & -\hat{N}_{ee}(G_e - G_t(N_{ni} - I)^{-1}N_{ee})^* & 0 & 0 \\
A_{tt} + P_tG_t(N_{ni} - I)^{-1}N_tF_t^* & Y_{tt} + F_t(N_{ni} - I)^{-1}N_tF_t^* & F_t - F_t(N_{ni} - I)^{-1}N_{ee} & 0 \\
-\hat{N}_{ee}(F_{ee} - F_t(N_{ni} - I)^{-1}N_{ee})^* & \hat{N}_{ee} - I & 0 & 0
\end{array}
\right]
\]

Let \(\hat{Y} = Y + F_t(N_{ni} - I)^{-1}N_tF_t^*\). Then under the structural assumptions of Section 4 and the hypothesis that \(\ker(Y + F_t(N_{ni} - I)^{-1}N_tF_t^*) = \ker(Y)\), we have that \(\hat{Y}\) has a representation, with respect to the decomposition \(\mathcal{D} = P_t\mathcal{D} + P_a\mathcal{D}\), with the special structure:

\[
\hat{Y} = \begin{bmatrix}
P_tY_{tt} + P_tF_t(N_{ni} - I)^{-1}N_tF_t^*P_t & 0 \\
0 & 0
\end{bmatrix} = \begin{bmatrix}
Y_{tt} + F_t(N_{ni} - I)^{-1}N_tF_t^* & 0 \\
0 & 0
\end{bmatrix}.
\]
Moreover, since there exists an operator that satisfy the hypothesis of the theorem we have that \(\hat{Y}^- = (Y + F_1(N_{ii} - I)^{-1}N_iF_1^*)^\dagger \) with respect to the same decomposition has the diagonal structure

\[
\hat{Y}^- = \begin{bmatrix}
P_1\hat{Y}^-P_1 & 0 \\
0 & P_2\hat{Y}^-P_2
\end{bmatrix},
\]

with \(\hat{Y}_{tt} = P_1\hat{Y}^-P_t \) invertible. In fact, we have that

\[\hat{Y}_{tt} = (Y_{tt} + F_{ti}(N_{ii} - I)^{-1}N_iF_{ti}^*)^{-1}. \]

Introduce the additional notations

\[
\hat{A}_{st} = A_{st} + P_sG_i(N_{ii} - I)^{-1}N_iF_s^*,
\]

\[
\hat{A}_t = A_t + F_{ti}(N_{ii} - I)^{-1}N_iG^*,
\]

\[
\hat{F}_t = F_{te} - F_{ti}(N_{ii} - I)^{-1}N_{ie}.
\]

From the partitioning of \((G^{(k)}/(N_{ii} - I))_E\) we can compute \(A_{FG}^{(k)}\) by Lemma \(\Box\) as

\[
A_{FG}^{(k)} = P_1((G^{(k)}/(N_{ii} - I))_E/\hat{Y}_{tt})|_{b, i} = \begin{bmatrix}
\hat{K} & \hat{L} \\
\hat{M} & \hat{N} - I
\end{bmatrix},
\]

where

\[
\hat{K} = P_s(B + G_i(N_{ii} - I)^{-1}N_iG^*)P_s - P_s\hat{A}_{st}\hat{Y}_{tt}^{-1}\hat{A}_tP_s
\]

\[
\hat{L} = P_s(G_e - G_i(N_{ii} - I)^{-1}N_{ie})P_s - P_s\hat{A}_{st}\hat{Y}_{tt}^{-1}\hat{F}_tP_s
\]

\[
\hat{M} = -P_s\hat{N}_{ee}(G_e - G_i(N_{ii} - I)^{-1}N_{ie})^*P_s - P_s\hat{N}_{ee}\hat{F}_t\hat{Y}_{tt}^{-1}\hat{A}_tP_s
\]

\[
\hat{N} = P_s\hat{N}_{ee}P_s + P_s\hat{N}_{ee}\hat{F}_t\hat{Y}_{tt}^{-1}\hat{F}_tP_s
\]

We also compute \((G_E/(N_{ii} - I))/(Y_{tt} + F_{ti}(N_{ii} - I)^{-1}N_iF_{ti}^*)\). To begin with \(G_E/(N_{ii} - I)\) is given by

\[
\begin{bmatrix}
B + G_i(N_{ii} - I)^{-1}N_iG^* & A_{st} + G_i(N_{ii} - I)^{-1}N_iF_s^* \\
A_t + F_{ti}(N_{ii} - I)^{-1}N_iG^* & Y_{tt} + F_{ti}(N_{ii} - I)^{-1}N_iF_{ti}^* \\
-\hat{N}_{ee}(G_e - G_i(N_{ii} - I)^{-1}N_{ie})^* & -\hat{N}_{ee}(F_{te} - F_{ti}(N_{ii} - I)^{-1}N_{ie})^* \\
G_e - G_i(N_{ii} - I)^{-1}N_{ie} & \hat{N}_{ee} - I
\end{bmatrix},
\]

Continuing the calculation we then find that

\[
(G_E/(N_{ii} - I))/(Y_{tt} + F_{ti}(N_{ii} - I)^{-1}N_iF_{ti}^*) =
\begin{bmatrix}
B + G_i(N_{ii} - I)^{-1}N_iG^* - \hat{A}_{st}\hat{Y}_{tt}^{-1}\hat{A}_t \\
-\hat{N}^{-1}(G_e - G_i(N_{ii} - I)^{-1}N_{ie})^* + \hat{N}\hat{F}_t\hat{Y}_{tt}^{-1}\hat{A}_t \\
G_e - G_i(N_{ii} - I)^{-1}N_{ie} - \hat{A}_{st}\hat{Y}_{tt}^{-1}\hat{F}_t \\
\hat{N} + \hat{N}\hat{F}_t\hat{Y}_{tt}\hat{F} - I
\end{bmatrix}.
\]
By direct comparison of the entries of $\mathcal{AFG}^{(k)}$ as given above with the corresponding entries of $P_2\left((G_E/(N_n - I))/(Y_{11} + F_t(N_n - I)^{-1}N_tF_t^*)\right)P_2\mid_{h_+}$, we conclude that

$$\mathcal{AFG}^{(k)} = P_2\left((G_E/(N_n - I))/(Y_{11} + F_t(N_n - I)^{-1}N_tF_t^*)\right)P_2\mid_{h_+}.$$

6.3 Commutativity of the adiabatic elimination and instantaneous feedback operations

We are now in a position to investigate the commutativity of the adiabatic elimination and instantaneous feedback limit operations for a dynamical quantum network with Markovian components. First, note that if $(G_E/Y_{tt})/(N_n + N_tF_tY_{tt}^{-1}F_t - I) = (G_E/(N_n - I))/(Y_{tt} + F_t(N_n - I)^{-1}N_tF_t^*)$ then $\mathcal{AFG}^{(k)} = \mathcal{FA}G^{(k)}$. Next, let us introduce the following notation. Let $I = \{1, 2, \ldots, n\}$ and let X be an $n \times n$ matrix with operator entries. For any set of distinct indices $I_1 = \{j_1, j_2, \ldots, j_m\}, I_2 = \{l_1, l_2, \ldots, l_m\} \subset I$ (with $m < n$) define the matrix X_{I_1,I_2} as $[X_{jl}]$ with $j \in I_1$ and $l \in I_2$. Denoting set complements as $I_1^c = I \setminus I_1$ and $I_2^c = I \setminus I_2$, we define the Schur complement of X with respect to a sub-matrix X_{I_1,I_2} (if it exists), denoted by $X/X_{I_1,I_2}$, as

$$X/X_{I_1,I_2} = X_{I_1,I_2} - X_{I_1,I_2}^{-1}X_{I_1,I_2}^T X_{I_1,I_2}^* X_{I_1,I_2}^{-1} X_{I_1,I_2}^T.$$

We are now ready to establish commutativity of successive Schur complementations, via the following lemma.

Lemma 6 Let X be a matrix of operators whose entries have \mathcal{D} as a common invariant domain, and let I_1, I_2, I_3 be a disjoint partitioning of the index set I of X (i.e., $\cap_{j=1}^3 I_j = \emptyset$ and $\cup_{j=1}^3 I_j = I$). If the Schur complements

$$X/X_{I_1 \cup I_2 \cup I_3}, (X/X_{I_2,I_3})/(X/X_{I_2,I_3})_{I_1,I_1}, (X/X_{I_2,I_3})/(X/X_{I_2,I_3})_{I_2,I_2},$$

exist, then the successive Schur complementation rule holds:

$$X/X_{I_1 \cup I_2 \cup I_3} = (X/X_{I_2,I_3})/(X/X_{I_2,I_3})_{I_1,I_1} = (X/X_{I_1,I_1})_{I_2,I_2}.$$

Proof. The proof of this lemma follows *mutatis mutandis* from the proof of [22, Lemma 9] and here is somewhat simpler because the lemma concerns ordinary Schur complements rather than generalized Schur complements as in [22, Lemma 9]. Therefore the image and kernel inclusion conditions for the uniqueness of the generalized Schur complement (where the inverse is replaced by a generalized inverse) are not required.

Theorem 7 Under the conditions of Lemmata 4 and 3 we have $\mathcal{AFG}^{(k)} = \mathcal{FA}G^{(k)}$. Furthermore, if in addition

1. \mathcal{D} is a core for the operator $L^{(\alpha,\beta)}$ given in [5].
2. $\mathcal{FG}^{(k)}$ corresponds to a QSDE that has a unique solution that extends to a contraction co-cycle on $\mathcal{h} \otimes \Gamma(L_2^2[0,\infty))$.

3. \mathcal{D} is a core for the operator $\mathcal{L}^{(\alpha\beta)}$ given in (3) with $\hat{K}, \hat{L}, \hat{M}, \hat{N}$ being replaced therein by the corresponding coefficients of $\mathcal{FA}\mathcal{G}^{(k)}$.

then the instantaneous feedback and adiabatic elimination operations can be commuted. That is, applying adiabatic elimination followed by instantaneous feedback or, conversely, applying instantaneous feedback followed by adiabatic elimination yields the same QSDE and this QSDE has a unique solution that extends to a unitary co-cycle on $\mathcal{h} \otimes \Gamma(L_2^2[0,\infty))$.

Proof. If $\begin{bmatrix} Y_{\mathcal{H}} & F_{\mathcal{H}} \\ -N_iF^*_i & N_{ii} - I \end{bmatrix}$ is invertible, the Schur complement

$$
\mathcal{G}_E/\begin{bmatrix} Y_{\mathcal{H}} & F_{\mathcal{H}} \\ -N_iF^*_i & N_{ii} - I \end{bmatrix}
$$

is well-defined. However, since $Y_{\mathcal{H}}$ is invertible and $N_{ii} + N_iF^*_iY^{-1}_{\mathcal{H}}F_{\mathcal{H}} - I$ is also invertible by the conditions of Lemmata 4 and 5, the matrix $\begin{bmatrix} Y_{\mathcal{H}} & F_{\mathcal{H}} \\ -N_iF^*_i & N_{ii} - I \end{bmatrix}$ is indeed invertible by the Banachiewicz matrix inversion formula (e.g., see [22, Section III-A]). The first result follows from this and Lemma 6.

Since now $\mathcal{A}\mathcal{FG}^{(k)} = \mathcal{FA}\mathcal{G}^{(k)}$, if the QSDEs corresponding to $\mathcal{A}\mathcal{FG}^{(k)}$ and $\mathcal{FA}\mathcal{G}^{(k)}$ have unique solutions that extend to a unitary co-cycle on $\mathcal{h} \otimes \Gamma(L_2^2[0,\infty))$ then they will coincide. Moreover, from this it follows by inspection that the remaining three conditions of the theorem guarantee that all the requirements of Theorem 2 are met so that:

1. $U^{(k)}(t)$ converges to $\hat{U}(t)$ in the sense of Theorem 2

2. The solution of the QSDE corresponding to $\mathcal{FG}^{(k)}$ converges to the solution of the QSDE corresponding to $\mathcal{A}\mathcal{FG}^{(k)}$ in the sense of Theorem 2

Thus, we conclude that under the sufficient conditions for each of the sequence of operations $\mathcal{A}\mathcal{F}$ and $\mathcal{F}\mathcal{A}$, the two sequences of operations are equivalent and yield the same reduced-complexity QSDE model. This generalizes the results of [22] for quantum feedback networks with fast oscillatory components to be eliminated. Remarkably, the structural constraints imposed in [17] to establish rigorous adiabatic elimination results for open Markov quantum systems, originally introduced for considerations unrelated to the goals of this paper, play a crucial role in the algebra required for us to establish our results. Exploiting these constraints, we proved that both the instantaneous feedback limit and adiabatic elimination operations correspond to Schur complementation of a common extended Itô generator matrix but with respect to different sub-blocks of this matrix. From this we then showed that the instantaneous feedback and adiabatic elimination operations are consistent and can be commuted once each sequence of operations is well-defined.
References

[1] M. Nielsen and I. Chuang, *Quantum Computation and Quantum Information*. Cambridge: Cambridge University Press, 2000.

[2] J. P. Dowling and G. J. Milburn, Quantum technology: The second quantum revolution, *Philosophical Transactions: Mathematical, Physical and Engineering Sciences*, vol. 361, no. 1809, pp. 1655-1674, August 2003.

[3] E. Knill, R. LaFlamme, and G. Milburn, A scheme for efficient quantum computation with linear optics, *Nature*, vol. 409, pp. 46-52, 2001.

[4] H. J. Kimble, The quantum internet, *Nature*, vol. 453, pp. 1023-1030, 2008.

[5] J. Kerckhoff, H. I. Nurdin, D. Pavlichin, and H. Mabuchi, Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction, *Phys. Rev. Lett.*, vol. 105, pp. 040 502-1-040 502-4, 2010.

[6] J. Kerckhoff, D. S. Pavlichin, H. Chalabi, and H. Mabuchi, Design of nanophotonic circuits for autonomous subsystem quantum error correction, *New J. Phys.*, vol. 13, pp. 055 022-1-055 022-10, 2011.

[7] H. Yonezawa, T. Aoki, and A. Furusawa, Demonstration of a quantum teleportation network for continuous variables, *Nature*, vol. 431, pp. 430-433, 2004.

[8] M. Lassen, M. Sabuncu, A. Huck, J. Niset, G. Leuchs, N. J. Cerf, and U. L. Andersen, Quantum optical coherence can survive photon losses using a continuous variable quantum erasure-correcting code, *Nature Photonics*, vol. 4, pp. 700-705, 2010.

[9] H. I. Nurdin, M. R. James, and A. C. Doherty, Network synthesis of linear dynamical quantum stochastic systems, *SIAM J. Control Optim.*, vol. 48, no. 4, pp. 2686-2718, 2009.

[10] H. I. Nurdin, Synthesis of linear quantum stochastic systems via quantum feedback networks, *IEEE Trans. Automat. Contr.*, vol. 55, no. 4, pp. 1008-1013, 2010, extended preprint version available at http://arxiv.org/abs/0905.0802.

[11] H. I. Nurdin, On synthesis of linear quantum stochastic systems by pure cascading, *IEEE Trans. Automat. Contr.*, vol. 55, no. 10, pp. 2439-2444, 2010.

[12] H. Mabuchi, Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability, *Appl. Phys. Lett.*, vol. 98, pp. 193 109-1-193 109-3, 2011.
[13] C. Gardiner, Driving a quantum system with the output field from another driven quantum system, *Phys. Rev. Lett.*, vol. 70, no. 15, pp. 2269-2272, 1993.

[14] H. Carmichael, Quantum trajectory theory for cascaded open systems, *Phys. Rev. Lett.*, vol. 70, no. 15, pp. 2273-2276, 1993.

[15] J. Gough and M. R. James, Quantum feedback networks: Hamiltonian formulation, *Comm. Math. Phys.*, vol. 287, pp. 1109-1132, 2009.

[16] J. Gough and M. R. James, The series product and its application to quantum feedforward and feedback networks, *IEEE Trans. Automat. Contr.*, vol. 54, no. 11, pp. 2530-2544, 2009.

[17] L. Bouten, R. van Handel, and A. Silberfarb, Approximation and limit theorems for quantum stochastic models with unbounded coefficients, *Journal of Functional Analysis*, vol. 254, pp. 3123-3147, 2008.

[18] L. Duan and H. J. Kimble, Scalable photonic quantum computation through cavity-assisted interaction, *Phys. Rev. Lett.*, vol. 92, pp. 127 902-1-127 902-4, 2004.

[19] A. Doherty and K. Jacobs, Feedback-control of quantum systems using continuous state-estimation, *Phys. Rev. A*, vol. 60, p. 2700, 1999.

[20] H. Wiseman and G. Milburn, Quantum theory of field-quadrature measurements, *Phys. Rev. A*, vol. 47, no. 1, pp. 642-663, 1993.

[21] J. Kerckhoff, L. Bouten, A. Silberfarb, and H. Mabuchi, Physical model of continuous two-qubit parity measurement in a cavity-qed network, *Phys. Rev. A*, vol. 79, p. 024305, 2009.

[22] J. E. Gough, H. I. Nurdin, and S. Wildfeuer, Commutativity of the adiabatic elimination limit of fast oscillatory components and the instantaneous feedback limit in quantum feedback networks, *J. Math. Phys.*, vol. 51, no. 12, pp. 123 518-1-123 518-25, 2010.

[23] R. L. Hudson and K. R. Parthasarathy, Quantum Ito’s formula and stochastic evolution, *Commun. Math. Phys.*, vol. 93, pp. 301-323, 1984.

[24] K. Parthasarathy, *An Introduction to Quantum Stochastic Calculus*. Berlin: Birkhauser, 1992.

[25] P. A. Meyer, *Quantum Probability for Probabilists*, 2nd ed. Berlin-Heidelberg: Springer-Verlag, 1995.

[26] D. G. Evans, J.E. Gough, M.R. James, Non-abelian Weyl Commutation Relations and the Series Product of Quantum Itō Evolutions, this volume.

[27] F. Fagnola, On quantum stochastic differential equations with unbounded coefficients, *Probab. Th. Rel. Fields*, vol. 86, pp. 501-516, 1990.
[28] F. Fagnola, F. Rebolledo, and C. Saavedra, Quantum flows associated to a master equation in quantum optics, *J. Math. Phys.*, vol. 35, pp. 1-12, 1994.