ABSTRACT

Drugs related to morphine represent not only large range of important therapeutic applications for the relief of moderate to severe pain but also give rise to a relatively large series of novel opioids that mimic the action of this naturally occurring analgesic. Most of these are based on fentanyl structures that are much more potent, and dangerous, than fentanyl itself. This publication reviews reports of fatalities attributed to 15 novel opioids with the view to assessing mortality associated with their misuse as well as reviewing published analytical procedures that would be able to detect these and other novel opioids. These drugs include reports of deaths to acetylfentanyl, acrylfentanyl, butyrylfentanyl, carfentanil, 2- and 4-fluorofentanyl, 4-fluorobutryrfentanyl, 4-fluoroisobutyrfentanyl, furanylfentanyl, α- and 3-methylfentanyl, 4-methoxyfentanyl, ocfentanil, as well as AH-7921, U-47700 and MT-45. Most of these cases reporting a drug-caused death involved other drugs in addition to the opioid. No obvious minimum fatal concentration was discerned for any of the opioids for which details were provided, however, the more potent members required detection limits well under 1 ng/mL and often even well below 0.1 ng/mL requiring use of the most sensitive mass spectrometry. Four other novel opioids have been reported in admissions to hospitals include 4-chloroisobutyrfentanyl, cyclopropylfentanyl and tetrahydrofurufentany, all of which are likely to have the potential to cause death. It is also likely that other analogues will appear with time.

Introduction

Morphine with its many of semi-synthetic and synthetic analogues including codeine, oxycodone, hydrocodone, hydromorphone, dihydromake, ethylmorphine, methadone are widely used as analgesics to treat moderate to severe pain. Heroin, the diacetyl analogue of morphine has been, and continues to be, a major illicit opiate with estimates of usage of about 17 million users worldwide [1]. According to the United Nations Office of Drug Control prescription, opioids are used by a greater number (about 35 million, or 0.7% of the population). While much of this opioid usage relates to misuse of prescribed drugs, increasingly fentanyl and a number of potent analogues based on fentanyl, or other drugs acting on the opioid receptors, have been detected and have led to hospital admissions and even death [1–6]. This publication complements other recent reviews covering opioids and prevalence of sudden death [2,3].

There have been hundreds of deaths from fentanyl since deaths from its abuse were first reported over 30 years ago. These include those first reported in California [5], to other states including Illinois [6,7], Michigan [8,9], Florida [10], Kansas [11], Maryland [12], Massachusetts [13], Minnesota [14], New Mexico [15], and also in other parts of the world including clusters in Canada [16] and Sweden [17]. In 2015, the USA Centre for Disease Control (CDC) reported 33 091 opioid deaths, of which almost 10 000 were due to synthetic opioids other than methadone (including fentanyl and related drugs), an increase of 72% over 2014 [18].

Fentanyl is about 100 times more potent on the mu-opioid receptor than morphine and has now been detected in batches of heroin. This is a particularly dangerous combination and has led to increased risk of sudden drug-caused death [8,19].

This publication reviews reports of these novel psychoactive opioids that have led to fatalities and provides an overview of their concentrations and circumstances in reported fatalities, and the detectability of these drugs in biological specimens.

Methods

Publications in the English language that reported fatalities from use of a fentanyl derivative or any other novel opioid were searched in PubMed as well as Scopus. Publications not captured in the initial searches but cited in publications were also retrieved and included, where relevant. Published methods were included in this publication where the procedure was targeted to measuring a number of fentanyls and other...
novel opioids or a number of fentanyls and novel opioids were included in a wider analytical procedure designed for blood and/or urine.

Results

Structural characteristics

Synthetic opioids related to the phenylheptylamines and phenylpiperidines show significant differences in their apparent 2-D structures, although they do bind to the opioid receptors, particularly the mu-subtype, sometimes with higher affinity than morphine itself. Examples include methadone, pethidine (meperidine), propoxyphene, fentanyl and l-α-acetylmethadol (LAAM).

Fentanyl is a piperidinyl derivative with moieties on the nitrogen and the 4-position. Alfentanil, remifentanil and sufentanil are short acting analogues of fentanyl (with piperidinyl ring) and have been approved for use in humans for some time for induction of anaesthesia (Figure 1).

The original (designer) fentanyl derivatives included α-methylfentanyl and 3-methylfentanyl [20]. China White, or 3-methylfentanyl, is some 6 000 times more potent than morphine and is active from a few micrograms. They are fentanyl analogues, e.g. a methyl substitution on fentanyl. More recently, replacement of the propionyl moiety of fentanyl with acetyl (acetylfentanyl), acryl (acrylfentanyl), butyryl (butyrfentanyl) or furanyl (furanylketamyl) has led to a series of novel opioids (Figure 1). Other variations of the fentanyl molecule include replacement of the phenethyl moiety with β-hydroxy substituted form (with and without other substitutions) (β-hydroxyfentanyl, ohmefentanyl, 2-thiophene-ethyl, thiofentanyl, 3-methylfentanyl, α-methylthiofentanyl), and substitutions on the N-phenyl ring, often with 4-flouro (4-fluorofentanyl, 4-fluorobutyrfentanyl, 4-fluoroisobutyrfentanyl).

Carfentanil, with modifications at the 4-piperidinyl end is possibly the most potent commercially available fentanyl derivative that also has a veterinary use for analgesia in large animals [21].

Newer novel opioids that have more structural variations to the fentanyl structure and have been detected in recent opioid-caused deaths include AH-7921 and MT-45 (Figure 1).

A more detailed review of the structure-activity relationships of a larger series of fentanyl analogues can be seen in the following publications [22,23].

Fentanyl fatalities

Table 1 also summarizes reported fatalities of other fentanyl-like opioids and some other novel opioids.

Acetylfentanyl

This has been the most common novel opioid with 11 publications with reported deaths from drug toxicity in at least several European countries and across much of the USA. It appears to be threefold less potent than fentanyl itself [36] and death has occurred when used by insufflation as well as intravenously and orally [37]. Blood concentrations in fatalities show a very large range from 0.1 to 2 100 ng/mL, although the median is about 10 ng/mL. Almost all cases are fatalities from multiple drugs. In the three reported mono-intoxication cases the blood concentrations were 170 ng/mL (femoral) [38], 260 ng/mL [39] and 270 ng/mL (heart) [40], respectively.

Acrylfentanyl

This fentanyl sometimes known as simply acryloylfentanyl is slightly more potent than fentanyl in displacing labelled naloxone from the mu-opioid receptor (IC50 1.4 nmol/L) [41]. Deaths from this opioid have largely been restricted to Sweden and other Nordic countries with cited publications listing numerous drug-caused deaths with blood concentrations ranging from 0.01 to 5 ng/g with a median blood concentration of about...
Figure 1. Structures of selected opioids.
Publications reporting fatalities from fentanyl and other novel opioids.

Opioid(s) detected and country	Analytical method	Results	Comments	Reference
Selected fentanyl publications				
Eight fentanyl fatalities in California (USA)	GC-MS-SIM	Blood (f) 0.2–17 ng/g (median 5 ng/g)	All involved other drugs including 5 with alcohol	Kronstrand et al. (1997) [17]
19 fentanyl fatalities in Singapore	GC-MS-SIM	Blood (f) 3.1–43 ng/mL [n = 13]; blood (h) 1.8–139 ng/mL [n = 23]; liver 5.8–613 μg/g (n = 22)	Abuse of transdermal patches; 15 were accidents caused by drug misuse and often with multiple drugs	Anderson et al. (2000) [31]
Fentanyl patches in Belgium	LC-MS/MS	Fentanyl/(norfentanyl): blood (f) 21 ng/mL (–2 ng/mL); blood (left ventricular) 35 ng/mL (4 ng/mL); blood (s) 28 ng/mL (3 ng/mL); VH 20 ng/mL (–2 ng/mL)	Misuse of fentanyl or abuse of fentanyl transdermal patches. Routes of administration were transdermal, transmucosal/oral, intravenous, and combinations of routes of administration. Others drugs detected	Kuhlman et al. (2003) [33]
101 fentanyl deaths in Wayne county, Michigan (USA) (2005–2006)	GC-MS-SIM	Blood (f) 4–69 ng/mL (median 20 ng/mL); blood (h) 2–51 ng/mL (median 20 ng/mL)	A number had also heroin use confirmed possibly with added fentanyl; other drugs also detected; most had pulmonary edema and many also had coronary artery disease	Algren et al. (2013) [8]
81 fentanyl deaths in Montgomery county, Ohio (USA)	GC-MS	Blood 56 cases without concomitant use of heroin or cocaine: blood 1–48 ng/mL (median 9 ng/mL); 12 cases also with concomitant heroin use: blood 1–46 ng/mL (median 12 ng/mL); 7 cases also concomitant cocaine use: blood 3.3–34 ng/mL (median 6.3 ng/mL) and 6 with concomitant heroin and cocaine use: blood 3.9–60 ng/mL (median 14.5 ng/mL)	Most had additional drugs; evidence of diversion from pharmaceutical grade fentanyl and often disguised as heroin	Marinetti et al. (2014) [28]
Large series of fentanyl fatalities in Florida (USA)	GC-MS	Blood 2.5–50 ng/mL (median 9.7 ng/mL) (n = 46)	Fentanyl intoxication often involving other drugs; other cases died from other causes	Lee et al. (2016) [10]
Sufentanil fatality in Missouri (USA)	GC-NPD	Blood 3.1 ng/mL; liver 78 ng/mg; bile 64 ng/mL	Despinothylfentanyl also detected presumptively as a possible metabolite	Gillespie et al. (1982) [62]
Three 3-methylfentanyl fatalities in Finland	LC-MS/MS	Cis-3-methylfentanyl: blood 0.3–0.9 ng/mL (median 0.5 ng/mL)	Young male anaesthetist self-injection; also with midazolam (Blood 50 ng/mL)	Ferslew et al. (1989) [88]
Series of 3-methylfentanyl deaths in Estonia	LC-MS/MS	Cis-3-methylfentanyl: blood 0.06–3 ng/mL (median 0.9 ng/mL)	IV use; two with heroin, amphetamine and other drugs detected, 2 with liver disease; aged 30–41 years	Ojanpera et al. (2006) [64]
14 fatalities from acetylfentanyl in USA	GC-MS	Blood 0.08–0.91 μg/g (median 0.4 μg/g)	100’s in deaths in Estonia mainly from IV use, often with other drugs; site of blood not specified, average age 26 years	Ojanpera et al. (2008) [65]
Nine AH-7921 fatalities in Sweden	HR/LC/MS	Blood (f) 0.08–0.91 μg/g (median 0.4 μg/g)	Rhode Island (USA)	MMWR (2013) [112]
AH-7921 fatality in Delaware (USA)	GC-MS-SIM	Blood (h) 1.91 mg/L; blood (f) 3.9 mg/L; SC 120 mg	All cases involved other drugs and most victims had heavy lungs	Kronstrand et al. (2014) [68]
Two AH-7921 fatalities in Norway	LC-MS/MS, HR-MS	Blood (f) 0.45 mg/L; SC 0.45 mg/L	No other drugs were detected in blood	Vorce et al. (2014) [69]
28 MT-45 deaths in Sweden	No information given but likely to be similar to other publications reported by the Swedish laboratory	Blood 0.008–1.9 μg/g (median 0.35 μg/g)	Case 1: 2 fluoromethamphetamine, 3-methmethcathinone, odecine also detected in contributory concentrations	Karinen et al. (2014) [70]
Five AH/7921 fatalities in UK	No details	Blood 0.054–4.46 mg/L (median 0.58 mg/L)	Almost all used other drugs; two cases died from pneumonia, presumably secondary to drug toxicity and one case was an injury death, 6 cases were still under investigation	Evans-Brown et al. (2014) [75]

(continued)
Opioid(s) detected and country	Analytical method	Results	Comments	Reference
Acetylfentanyl fatality in San Diego, California (USA)	GC-MS-SIM	Blood (p) 260 ng/mL; blood (c) 250 ng/mL; VH 240 ng/mL; urine 2 600 ng/mL; liver 1 ng/mg	Young male with history of heroin abuse; likely IV use; initially detected as positive in fentanyl immunoassay	McIntyre et al. (2015) [39]
14 acetylfentanyl fatalities in Rhode Island (USA)	ELISA and GC-MS with 2 ng/mL cut-off	No blood concentration data provided	Most involved other drugs as well including cocaine, morphine/ heroin, ethanol and benzodiazepines	Lazier et al. (2015) [116]
MT-45 fatality in USA	LC-MS/MS	Blood (f) 0.52 mg/L	Etilzolam (0.035 mg/L), diphenhydramine 0.22 mg/L	Papun et al. (2016) [77]
Ocfentanil death in Belgium	GC-MS-SIM	Ocfentanil: blood (f) 0.015 mg/L; VH 0.012 mg/L; urine 0.006 mg/L	Etilzolam (0.035 mg/L), diphenhydramine 0.22 mg/L	McIntyre et al. (2016) [47]
Butyrylfentanyl and acetyl fentanyl fatality in San Diego, California (USA)	GC-MS-SIM	Butyrylfentanyl: blood (f) 0.038 mg/L; blood (c) 0.032 mg/L; liver 0.11 mg/kg; VH 0.032 mg/L; urine 0.002 mg/L; SC detected; acetyl fentanyl, blood (f,h) 0.021, 0.095 mg/L; VH 0.068 mg/L; urine 0.008 mg/L; SC detected	44-year old man found dead on bathroom floor; history of IV drug use; benzoylecgonine and levamisole also detected in blood	McIntyre et al. (2016) [47]
Two butyrylfentanyl fatalities in Richmond, Virginia or Tampa, Florida (USA)	LC-MS/MS	Case 1: butyrylfentanyl only detected, blood (f,h) 0.009, 0.22 mg/mL; VH 0.03 mg/L; urine 0.064 mg/L; SC detected	Case 1: Middle-aged woman found collapsed in bathroom, but died from drug toxicity a little while later	Poklis et al. (2016) [117]
U-47700 fatality in UK	LC-MS/MS, HR-MS, PAD	Blood (f) 1.46 mg/mL, also N-desmethyl- and N,N-didesmethyl metabolites likely	Young male found dead at home, also snorted mirtazapine, and used cannabis, ketamine and legal highs; no disease	Elliott et al. (2016) [79]
U-47700 fatality in Belgium	LC-MS/MS	U-47700: blood 13.8 ng/mL; also detected	Blood, mainly fentanyl, some central. All bar one case involved multiple drugs including some with other opioids	Mohr et al. (2016) [56]
Series of U-47700 and/or furanylfentanyl involved drug deaths in USA	LC-MS/MS	U-47700: blood 0.017–490 mg/mL (median 0.247 mg/mL) (n = 16) Furanylfentanyl: blood 0.002–76 mg/mL (median 0.013 mg/mL) (n = 8)	Blood, mainly fentanyl, some central. All bar one case involved multiple drugs including some with other opioids	Mohr et al. (2016) [56]
Acetylfentanyl fatality in West Virginia (USA)	LC-MS/MS, HR-MS	Blood (f) 235 ng/mL; liver 2 400 ng/g; urine 234 ng/mL; vitreous fluid 131 ng/mL	Young male found dead following likely IV injection; tadalfali and testosterone also detected	Cunningham et al. (2016) [89]
Acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl intoxications with survival in Sweden	LC-MS/MS, HR-MS	Acetylfentanyl: serum 0.6–52 ng/mL (n = 9) 4-Methoxybutyrfentanyl: serum 1.3–11 ng/mL (n = 4) Furanylfentanyl: serum 148 ng/mL (n = 1)	Other psychoactive drugs detected; many used nasal route, some oral. STRIDA project	Helander et al. (2016) [37]
Butyrfentanyl fatality in Switzerland	LC-MS/MS, HR-MS	Blood (f) 66 mg/mL; blood (h) 39 mg/mL; liver 57 mg/g; highest concentration detected in lung tissue; carboxybutyr-, hydroxy-, desbutyl- and norbutyl- metabolites detected	Young male with history of drug use found dead in bathroom of his apartment	Staeheli et al. (2016) [48]
Carfentanil and furanylfentanyl in Florida (USA)	GC-MS-SIM	Case 1: blood (f) 1.3 mg/mL; furanylfentanyl 0.34 mg/mL; fentanyl 6 mg/mL	No fentanyl detected in femoral blood. Trace hydromorphone, morphine (total) and 6AM also detected in case 1. Cocaine metabolites also detected in case 2	Swanson et al. (2017) [55]
4-FBF fatality in Poland	LC-MS/MS	Case 1: blood 91 ng/mL; fentanyl 0.12 mg/mL	Young male with young male found dead	Rojkiewicz et al. (2016) [118]
Acetylfentanyl fatality in Japan	LC-MS/MS	Blood (f) 270 ng/mL; urine and gastric contents detected	Young male found dead by insufflation; no other drugs detected	Takase et al. (2016) [40]
Acetylfentanyl fatality in Japan	GC-MS and LC-MS/MS	Blood (f) 153 ng/mL; urine 240 ng/mL; gastric contents detected	4-Methoxy PVA also contributed to death. Blood (f) 389 ng/mL; history of methamphetamine abuse	Yonemitsu et al. (2016) [119]
Two Acetylfentanyl fatalities in Oklahoma (USA)	GC-MS-SIM	Case 1: blood (f) 192 ng/mL; blood (h) 285 ng/mL; urine 3 420 mg/mL; liver 1 100 ng/g	Case 1: young male found dead in bed; fluoxetine and methoxetamine also detected	Fort et al. (2016) [120]
Two U-47700 fatalities in Germany	LC-MS/MS	Case 1: blood (f) 525 ng/mL; blood (h) 1 347 ng/mL; urine 1 393 ng/mL; liver 4.3 mg/nl	Case 2: middle aged woman found dead in bed; history of seizures and prescription drug and alcohol abuse; venlafaxine, chloridiazepoxide also detected	Dziadosz et al. (2017) [121]
(continued)				
Opioids(s) detected and country	Analytical method	Results	Comments	Reference
--------------------------------	------------------	---------	----------	-----------
Ocafenital fatality in Switzerland	LC-MS/MS	Blood (f) 9.1 ng/mL (fluoride); 7.5 ng/mL (heparin); blood (h) 27.9 ng/mL; urine 480 ng/mL; nasal swab 360 ng	Young male found dead; brown powder located	Dussy et al. (2016) [67]
Seven furanylfentanyl fatalities in Sweden	LC-MS/MS	Blood 0.38 – 2.74 ng/mL (median 0.9)	Five had other drugs also detected; four also had pregabalin detected	Guerrieri et al. (2017b) [57]
U 47700 death in Texas (USA)	GC-MS	U-47700: blood (f) 0.36 mg/mL	Young male found dead with 3-fluorohematemazine (3-FPM); Blood (f) = 2.4 mg/L also detected together with amitriptyline, diazepam, methamphetamine, fluboxazolam and delorazepam	Ellefsen et al. (2017) [122]
40 acrylfentanyl fatalities in Sweden	LC-MS/MS	Blood 0.01 – 5 ng/mL (median 0.2 ng/g)	Drug caused deaths, primarily by opioid, but other drugs also present	Guerrieri et al. (2017) [42]
Fatalities in Germany	LC-QTOF-MS	Case 1: AH-7921, blood (f) 0.45 mg/L; blood (h) 0.48 mg/L; liver 0.33 mg/kg; urine 0.76 mg/L; VH 0.19 mg/L; hair detected	Most had other drugs also detected	Fels et al. (2017) [72]
Two 4-fluorofentanyl deaths in Germany	LC-MS/MS	Case 1: MT-45, blood (f) 0.66 mg/L; blood (h) 1.3 mg/L; liver 0.024 mg/kg; urine 0.37 mg/L; VH 0.20 mg/L	Case 1: trace or low amounts of methadone, diphenhydramine, tetrazepam, methamphetamine, mitazapine	Strehmel et al. (2017) [87]
Two furanylfentanyl deaths in Canada	No details given	4-Flourofentanyl: blood 25 – 35 ng/mL; also detected in other specimens	Both suicides; young male and female with history of psychological problems and abuse of narcotics	Milroy and Kepron (2017) [58]
o-Flourofentanyl death in Sweden	LC-MS/MS, HR-MS	o-Flourofentanyl: blood 2.4 ng/mL, urine 3.9 ng/mL	Young male who had a few days previously been admitted for an overdose found dead from likely snorting a white powder containing opioid; also alprazolam, clonazepam, diazepam metabolite and THC detected	Helland et al. (2017) [86]
25 deaths from fentanyl or fentanyl analogues (carfentanil, with butyfentanyl, fluoro/butyfentanyl) in UK	LC-HR-MS	Carfentanil: blood 0.09 – 4 ng/mL (median 0.3) (n = 22), AM 0.021 – 0.098 ng/mL (n = 3)	All cases other drugs also detected, often morphine and more than one fentanyl	Hikin et al. (2017) [49]
U 47700 fatality in San Diego, California (USA)	GC-MS-SIM	Blood (f) 0.019 mg/L; blood (c) 0.34 mg/L; VH 0.17 mg/L; urine 0.36 mg/L; SC trace	Middle-aged man found unresponsive in bed; known drug user, thought to have snorted drug; dilated left ventricle, congested lungs, some steatosis. Alprazolam, doxylamine, nordiazepam, diphenhydramine, ibuprofen, salicylic acid and THC-acid also detected	McIntyre et al. (2017) [123]
47 Acryloylfentanyl deaths in Nordic countries; numerous ED admissions	Likely to be LC-MS/MS or HR-MS	No details given of concentrations for fatalities; non-fatal mono-intoxications with serum concentrations ranging from 0.8 to 2.1 ng/mL (n = 8)	Also see EMCDDA site [124] and [43]	Ujváry et al. (2017) [44]
355 carfentanil deaths in USA	HR-LC/MS	Blood 0.1 – 14 ng/mL (median 38 ng/mL)	Many were acute deaths but no details were provided; four were human performance cases with blood concentrations 0.41 – 1.4 ng/mL; most involved other drugs including fentanyl, heroin and cocaine	Papsun et al. (2017) [54]
10 deaths from various fentanyls in Miami, Florida (USA)	LC-ion trap MS	Six cases with carfentanil, 3 cases of p-fluorosobutyfentanyl and furanylfentanyl, and one each of acetylfentanyl, p-OH-thiofentanyl. Most had 2 or more fentanyls including fentanyl (n = 8)	No quantitative data provided; all cases had multiple drugs contributing to death	Shoff et al. (2017) [105]
Death each from carfentanil and furanylfentanyl in Tampa, Florida (USA)	Likely LC-MS/MS at a reference laboratory [125]	Case 1: carfentanil, blood (h) 1.3 ng/mL; furanylfentanyl, blood (h) 0.34 ng/mL	Case 1: young male also with traces of morphine and hydromorphone	Swanson et al. (2017) [55]

(continued)
Opioids detected and country	Analytical method	Results	Comments	Reference
Seven deaths with acetylfentanyl, plus 10 deaths with fentanyl in Tampa, Florida (USA)	Immunoassay (fentanyl) plus GC-MS-SIM	Acetylfentanyl: blood (f) 2–600 ng/mL (median 0.31 ng/mL) (n = 7) Fentanyl: blood 4–39 ng/mL (median 16) (n = 10)	All cases were mixed intoxications including thes 2 drugs, heroin or other opiates/opioids and/or other drugs	Pearson et al. (2015) [97]
Nine deaths with furanylfentanyl and two with U-47700 in Tennessee (USA)	HR-MS and LC-MS/MS	Furanylfentanyl: blood (f) 2–42.9 ng/mL (median 6.5 ng/mL) U-47700: blood (f) 189 and 547 ng/mL	All cases were mixed intoxications including other opiates/ opioids and/or other drugs	Papsun et al. (2017) [60]
U-47700 fatality in Wichita, Kansas (USA)	GC-MS-SIM	Blood (f) 0.4 ng/mL; blood (h) 0.26 ng/mL; urine 4.6 ng/mL; VH 0.9 ng/mL; liver 0.28 ng/mL	Young male obese drug user with enlarged heart and oedematous, congested lungs; THC Blood (h) 19 ng/mL, possible trace phencyclidine	Rohrig et al. (2017) [82]
Three acrylfentanyl fatalities (one also with furanylfentanyl) in Charleston, South Carolina (USA)	GC-MS-SIM	Acrylfentanyl: blood (p) 0.3, 0.95, and 0.32 ng/mL Furanylfentanyl: blood (p) 0.95 ng/mL (case 3)	All cases were mixed intoxications including other drugs	Butler et al. (2017) [46]
Numerous carfentanil deaths from various US states	LC-MS/MS	Carfentanil: blood 10–2,000 pg/mL (median 193 pg/mL) (n = 262) 13 case reports listed: blood 10–529 pg/mL (median 114 pg/mL)	Most cases involved other drugs, and in a few a heart disease; LOD 5 pg/mL, LLOQ 10 pg/mL	Shanks and Behonick (2017) [125]
4-Fluoroisobutyrfentanyl fatality in Sweden	LC-MS/MS and HR-MS	4-Fluoroisobutyrfentanyl: serum 38 ng/mL	No other drugs detected; opioid used IV	Helander et al. (2017) [43]
41 acetylfentanyl fatalities in Pennsylvania (USA)	ELISA and GC-MS-SIM	Acetylfentanyl: blood (f,h) 0.1–2 100 ng/mL (median 11 ng/mL)	26 cases were also with fentanyl; all bar one were multiple drug toxicities; mono-intoxication: blood (f) 170 ng/mL.	Dwyer et al. (2017) [38]
Furanylfentanyl fatality in San Francisco, California (USA)	ELISA and GC-MS-SIM; confirmation possibly by LC-MS/MS	Furanylfentanyl: blood (p) 1.9 ng/mL; blood (h), VH < 0.2 ng/mL, 2.8, SC 55 μg 4-ANPP metabolite also detected	Young man found dead following ingestion of a blue pill resembling oxycodone, found to be furanylfentanyl. No other drugs detected.	Martucci et al. (2017) [59]

*Publications arranged in order of publication year; f: femoral; h: heart; s: subclavian; c: central; p: peripheral; VH: vitreous humour; SC: stomach contents; LC-MS/MS: tandem mass spectrometry with liquid chromatography; GC-NPD: gas chromatography with nitrogen phosphorous detection; GC-MS-SIM: selected ion monitoring mass spectrometry with gas chromatography; HR-MS: high-resolution mass spectrometry; PAD: photodiode array detection; STRIDA: Swedish project involving Karolinska Institute and Laboratory and Swedish Poisons Information Centre; AM: antemortem; 4-Methoxy PVb: 1-(4-methoxyphenyl)-2-(pyrrolidine-1-yl)heptan-1-one; 4-ANPP: 4-anilino-N-phenethylpiperidine; ELISA: enzyme linked immunosorbent assay; LC-QTOF-MS: liquid chromatography-quadruple time-of-flight mass spectrometry.
0.2 ng/g [42–44]. These deaths included evidence of nasal insufflation of both sprays and crushed tablets. This drug was believed to enter Sweden and neighbouring countries of Denmark, Estonia, Finland and Latvia as well as Slovenia as a powder [45]. More recently acrylfentanyl was detected in the deaths of three male drug users in the USA; all of whom had blood concentrations less than 1 ng/mL [46].

Butyrfentanyl

Sometimes also termed butyrylfentanyl is less potent than fentanyl (Ki 32 nmol/L cf 1 nmol/L) but has also caused deaths in Europe and the USA. Two case reports report fatalities attributed to this opioid with femoral blood concentrations of 58 and 66 ng/mL [47,48]. In one of these acrylfentanyl was also detected as well as cocaine with levamisole [47]. In another publication this opioid was found in deaths with other fentanyl or cocaine with levamisole [47]. One of these acetylfentanyl was also detected as well as blood concentrations of 58 and 66 ng/mL. In another publication [50,51], Helander et al. [43] reported serum concentrations in the three cases ranging from 0.6 to 66 ng/mL; showing considerable range in concentrations and overlap with concentrations than those found in the fatalities.

Carfentanil

This opioid is used primarily as an incapacitating agent for large animals, and it is even more potent than 3-methylfentanyl. It is some 100 times more potent than fentanyl (Ki 32 nmol/L cf 1 nmol/L) but has also caused deaths in Europe and the USA. Two case reports report fatalities attributed to this opioid with femoral blood concentrations of 58 and 66 ng/mL [47,48]. In one of these acetylfentanyl was also detected as well as cocaine with levamisole [47]. In another publication this opioid was found in deaths with other fentanyl or fentanyl analogues, such as carfentanil [49]. By comparison, two publications reported survival from use of this opioid [50,51]. Helander et al. [43] reported serum concentrations in the three cases ranging from 0.6 to 66 ng/mL; showing considerable range in concentrations and overlap with concentrations than those found in the fatalities.

Carfentanil

This opioid is used primarily as an incapacitating agent for large animals, and it is even more potent than 3-methylfentanyl. It is some 100 times more potent than fentanyl [52] and was reportedly used in combination with another opioid, remifentanil, in the Melnikov street theatre (Moscow) siege of 2002 as an aerosol to subdue terrorists that claimed over 100 lives [53]. A large series (n = 355) of carfentanil deaths were reported from the USA with blood concentrations ranging from 0.1 to 14 ng/mL [54]. Two deaths were reported in one case report from Florida, one of which was in combination with furanylfentanyl and gave postmortem heart blood concentrations of 0.12 and 1.3 ng/mL [55]. In another Florida report, two more deaths were reported from this opioid, with blood concentrations of 0.12 and 1.3 ng/mL; one of which (highest concentration of carfentanil) also involved furanylfentanyl [55]. This ultra-potent opioid has also been seen in the UK in which 25 deaths were reported with blood concentrations ranging from 0.09 to 4 ng/mL, often in combination with other fentanyl and morphine [49].

Furanylfentanyl

This opioid which is about five times less potent than fentanyl has been reported in deaths in Canada, Sweden and the USA [55–59]. Mohr reported eight cases with furanylfentanyl, of which five were in combination with another opioid, U-47700 [56] while Papasun reported a series of nine deaths in USA from this opioid in combination with other drugs [60]. Blood concentrations in these two series ranged from 2 to almost 76 ng/mL with a median of about 10 ng/mL. In a Swedish series of seven fatalities, blood concentrations ranged from 0.38 to 2.7 ng/mL, again with most using other drugs [57]. Almost all cases had oedematous lungs recorded at autopsy. Four also had pregabalin detected. There was some evidence provided that this fentanyl was reasonably stable in vitro. The Canadian case report described two women that died using counterfeit tablets labeled as Percocet; blood concentrations were 0.68 and 1.1 ng/mL [58] and in another case a young man died following ingestion of a blue pill resembling oxycodone [59]. In one case of survival reported by the Swedes, the serum concentration was 1.48 ng/mL [37].

Methylfentanyl

3-Methylfentanyl, known as “China White”, was first reported to cause hospitalizations and many deaths in California (and some in neighbouring States) and Pennsylvania in the 1980s as well as a number of other fentanyl derivatives [20,61]. The more active cis-isomer is about 7 000 times more potent as an opioid as morphine. In 1980s, a death from use of α-methylfentanyl [62] was also reported. The occurrence of methylfentanyls is characterized by relatively short-lived epidemics. This is probably due to the high potency of the drug with low doses and subsequent dilution problems, causing a significant risk of overdosing as well as closure of clandestine laboratories [61].

A series of 16 3-methylfentanyl deaths was also reported from Allegheny County in Pennsylvania [63]. Over a decade ago, there were three deaths reported by use of 3-methylfentanyl in Finland [64] and later an epidemic in neighbouring Estonia [65]. Blood concentrations were often less than 1 ng/mL. In the Estonian series of over 100 fatalities, the cis-3-methylfentanyl blood concentrations ranged up to about 2 ng/mL with a median of about 1 ng/mL [65].

Using LC-MS/MS, it was for the first time possible to determine cis-3-methylfentanyl in the blood of victims of fatal overdose, the mean concentration being 0.5 g/L (range 0.3–0.9 g/L). These values are significantly lower than the levels reported above for α-methylfentanyl and fentanyl. Despite the presence of other drugs, poisoning by 3-methylfentanyl was in each case considered the underlying cause of death. This was due to death appearing to occur immediately following injection of the drug. The victims’ ages, ranged from 30 to 41 years, were higher than those typically found in fatal heroin poisonings in Finland; half of the victims of heroin fatalities have been younger than 25 years.

4-Methoxybutyrfentanyl

Four deaths due in part to 4-methoxybutyrfentanyl were also from the Swedish group, all of whom had low serum concentrations (1.3–11 ng/mL) of this
fentanyl but who had other drugs also present [37]. Again, symptoms were suggestive of opioid overdose.

Ocfentanil

Two case reports describe deaths of young men using this opioid by nasal insufflation with postmortem femoral blood concentrations of 9.1 and 15 ng/mL [66,67]. In both cases, no other drugs were apparently involved. This opioid is about twice as potent as fentanyl.

AH-7921

This opioid was first reported in deaths in Sweden in 2014 in which nine cases were described with blood concentrations ranging from 0.08 to almost 1 mg/L [68]. It has a similar potency on the μ-opioid receptor as morphine. In the same year, a fatality in USA [69] and two deaths in Norway [70] were reported, followed by five deaths in the UK (blood concentrations 0.05 to 4.46 mg/L) [71] and a case report from Germany [72]. While low concentrations can be expected particularly if death is delayed or other significant drugs are operative, blood concentrations tend not to be that low with a recorded median of about 0.3–0.4 mg/L. This drug was the subject of a Critical Review Report to the United Nations in 2014 [73] and a review [74].

MT-45

This opioid was first detected in Sweden in late 2013 and resulted in 28 deaths from November 2013 to July 2014 leading to a risk assessment conducted by the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA) [75]. It is a disubstituted N,N'-piperazine also known as 1-C6 and is taken in much the same way as other fentanyl-like opioids (nasal insufflation, oral, smoking) with a potency somewhat higher than morphine. Doses around 15–75 mg are used depending on route and degree of tolerance. In these 28 deaths, almost all were due to drug toxicity with the median blood concentration was 0.35 μg/g and as other opioids most involved use of other drugs. In eight cases, the cause of death was listed as MT-45 intoxication, however, the median was actually higher at 0.8 μg/g (range 0.2–1.9 μg/g). In nine non-fatal intoxications the blood concentrations ranged from 6–157 ng/mL (median 47 ng/mL) [76]. In the peer-reviewed literature a further two publications involving single case reports of young males in which death occurred from use of this opioid in conjunction with other drugs giving blood concentrations of 0.52 and 0.66 mg/L [72,77]. It was also reported as present in illegal products in Japan in 2014 [78].

U-47700

This opioid is a structural isomer of AH-7921 (see earlier). While less potent than fentanyl numerous deaths resulting from its use have been reported worldwide including the USA, UK and Belgium. Fatal toxicity was first reported in 2016 in the UK of a young male snorting this drug [79]. In the same year, a death was reported from Belgium of a young man inhaling fumes, in combination with fentanyl [80] and a series of 16 cases from the USA in which five also involved furanyl fentanyl [56]. These and seven other publications in 2017 found blood concentrations of U-47700 ranging from 0.4 ng/mL to 1.46 mg/L with a median of around 0.3 mg/L (Table 1). As with other opioids most had other drugs present including the case report from the USA in which the stimulant 3-fluorophenmetrazine was also detected [81], and in another, of a morbidly obese man with an enlarged heart [82]. Survival from use of this opioid has also been reported: all patients showed classical signs of opioid toxicity [83,84]. In one case, serum concentration of this opioid during hospitalization was 394 ng/mL and the desmethylated and hydroxylated metabolites were also detected in urine [84]. In the 2 years to end 2016, the DEA reported at least 46 fatalities linked to the use of U-47700, largely in New York and North Carolina [85].

Other novel opioids

4-Fluorobutyrfentanyl was detected in two drug-related fatalities in Poland in a young male and young female. The male at least presumably smoked this drug through an e-cigarette (with nicotine) [6] (Table 1). A young intravenous drug user was admitted to emergency but died some time later. He was found to have 4-fluoroisobutyrfentanyl with a serum concentration of 38 ng/mL a few hours after admission [43].

Recently two 4-fluorofentanyl and one 2-fluorofentanyl deaths were reported in Germany and Sweden, respectively [86,87]. The 4-fluorofentanyl cases were both suicides, while the Swedish case initially involved two young men who had previously been admitted to hospital following toxicity to snorting 2-fluorofentanyl but recovered after supportive care and treatment for opioid overdose and were subsequently released one day later. Unfortunately, one of these was found deceased a few days later due to drug toxicity, largely from this fentanyl (blood concentration 2.4 ng/mL) in the presence of three benzodiazepines, cannabis and GHB.

More recently, one death was reported from Tennessee (USA) of an anaesthetist who died from self-injection of sufentanil and midazolam [88]. In this case, the heart blood concentration of sufentanil was 1.1 ng/mL.

Other novel opioids based on fentanyl have been identified in emergency hospital admissions that did not lead to death. These were 4-chloroisobutyrfentanyl, cyclopentylfentanyl and tetrahydrofuranfentanyl [43].

Pathology findings

The most common and consistent findings on autopsy of persons that have died from novel opioid toxicity is
that seen in heroin and other deaths from opiates, notably heavy lungs associated with pulmonary oedema and hypoaemia, with pneumonia also seen in some cases, particularly in cases where death process was relatively long [42,50,57,62,67,72,89,90]. Often cerebral oedema and congestion in liver and other organs is also noted. This is consistent with death from depression of the central nervous system. In hospital admissions high heart rate, high blood pressure with signs of apnea and miosis is also commonly seen [37].

However, some unusual individual pathology has been observed. MT-45 has been linked to bilateral hearing loss, a side effect also reported elsewhere for this drug [72,77] and in one case a known heroin user developed significant haemoptysis, acute lung injury, hypoxic respiratory failure and diffuse alveolar haemorrhage following use of butyrfentanyl [50]. He survived and was released from hospital after 1 week [50]. Diffuse alveolar haemorrhage was also seen in an intranasal user of fentanyl [91] and is probably a rarer side effect of opioid toxicity [92].

Other pathology is sometimes noted, and may also contribute to death, but the drug does not cause this directly, rather, is present for other reasons, such as coronary artery disease.

Methods of analysis

Before the widespread use of tandem MS (MS/MS) and/or high-resolution MS (HR-MS) specimens were analysed by immunoassay and if positive by GC-MS with selected ion monitoring (SIM). Immunoassays tend to have a limit of detection from about 0.25 ng/mL to about 2 ng/mL, and have been able to detect the presence of some other fentanyls due to cross-reactivity [93–95]. Depending on the antibody used this includes acetylfentanyl, butyrfentanyl, furanylfentanyl, 4-methylfentanyl, 4-fluorofentanyl, but not alfentanil or carfentanil [94–96]. It is possible, but not confirmed, that related structures involving N-alkylated piperazines may also cross-react including risperidone and 9-hydroxyrisperidone (paliperidone) [94].

The Randox biochip platform enables detection of acetylfentanyl, carfentanil, furanylfentanyl, ocfentanil, remifentanil and sufentanil, as well as AH-7921, MT-45 and U-47700 with cut-offs ranging from 0.25 (carfentanil) to 10 ng/mL (U-47700) in urine [personal communication].

Before the widespread availability and use of MS/MS and HR-MS GC-MS, operating in the SIM mode was used to detect fentanyl and even some of the other fentanyls, however, modern GC-MS instruments appear to have sufficient sensitivity to detect sub-nanogram per millilitre concentrations of many of the synthetic opioids, such as those reported in some recent publications [46,82,97].

Fentanyls and related designer opioids are usually well extracted in organic solvents from basified blood/plasma/serum or another liquidified specimen. Butyl chloride has been used for this purpose [31,65], however, isooctane has also been used [17]. Solid phase extraction (SPE) has also been used successfully [33]. Detection limits of fentanyl have ranged from 0.5 to 2 ng/mL and have often also included norfentanyl.

Table 2 summarizes procedures published since 2000 that were validated to detect 3 or more fentanyls. These procedures were also designed to quantify opioids in blood/serum and urine, and sometimes also other specimens that can be collected postmortem. These nine publications were validated to detect three [56,98], five [99], six [100,101], nine [102], 10 [103], 13 [104] and 14 fentanyls [105], respectively. All bar two used SPE and all bar one used either LC-MS/MS or ion trap MS instruments. The one that used GC-MS (operated in SIM mode) used a pentafluorobenzamide derivative that also gave the best limit of detection of 0.0025 ng/mL (or 2.5 fg/mL). The LOD of other procedures varied from 0.003 to 0.5 ng/mL. The higher grade MS/MS or MS instruments will usually provide a higher level of sensitivity. The desired LOD/LLOQ will depend on the opioid. For example, carfentanil one of the most potent fentanyls will require limits down to at least 0.01 ng/mL to be reasonably able to detect use in cases.

Discussion

Since the beginning of the 1990s, a large number of reports on the abuse of fentanyl analogues appeared in the scientific literature, with numerous reported deaths. This occurrence may, in part, have been due to the temporary reduction in the availability of heroin decreasing drastically during the Afghanistan crisis. Some of these were summarized in Table 1 with the majority occurring in the USA and Western Europe [8,10,28,31,33,68,80,106]. Initially these were caused by abuse or misuse of fentanyl by practitioners with access to legal supplies of the drug, however, more recently the opioid has become more widely available, largely through skin patches for transdermal absorption [31,33] and also more recently possible deliberate doping of heroin with a fentanyl [10,19,28]. Clandestine manufacture of fentanyl is known and contributes to the availability and misuse of this opioid [107].

Simultaneously, fatalities due to prescription opioids began to rise over the last 2 decades, with alarming mortality, particularly from oxycodone, although other legal opioids have contributed [108–110].

In most of these cases, as it is in most drug-caused deaths, other contributing drugs are detected alongside fentanyl. These are often another opioid or opioid, alcohol, amphetamines, cocaine or one or more of the...
Table 2. Analysis details for published methods targeting two or more fentanyls.

Type of Analysis	Specimen(s)	Extraction technique and conditions	Chromatography	Analysis technique and conditions	Reference
Quantitative analysis of fentanyl, alfentanil, sufentanil and metabolites	Urine (no hydrolysis)	SPE using Extrelut® NT1; elution with n-heptane/isopropanol alcohol (98.5:1.5)	GC using pentafluorobenzamide derivatives on a DB-35 capillary column	LS-3M; LOD from 0.0025 ng/mL; deuterated IS	Van Nimmen et al. (2004) [98]
Quantitative analysis of 13 fentanyls: alfentanil, carfentanil, fentanyl, lofentanil, ohmefentanyl, 3-methylfentanyl, α-methylfentanyl, sufentanil and some metabolites	Urine (no hydrolysis)	SPE Oasis HLB C18 columns; eluted with MeOH	LC using a Xterra MS C18 column (2.1 mm × 150 mm, 3.5 μm); ammonium acetate buffer in 95:5 MeOH/ACN gradient	Micromass Quattro Ultima triple quadrupole MS; LOD 0.003 – 0.027 ng/mL; deuterated IS	Wang et al. (2006) [104]
Quantitative analysis of 9 fentanyls: alfentanil, fentanyl, p-fluorofentanyl, cis-3-methylfentanyl, trans-3-methylfentanyl, α-methylfentanyl, norfentanyl, remifentanil, sufentanil and other opioids	Blood, urine (β-glucuronidase hydrolysis) (PM)	LLE extraction using butyl acetate	LC using Gemini C18 column (100 mm × 2.0 mm, particle size 3 μm); using an acetanilide–ammonium acetate gradient at pH 3.2	MS/MS Sciex 3200 QTrap, MRM; LOQ 0.01–0.2 ng/mL; deuterated IS	Gergov et al. (2009) [102]
Quantitative analysis of 6 fentanyls: alfentanil, fentanyl, 3-methylfentanyl, remifentanil, norfentanyl, sufentanil	Plasma and urine	LLE from K₂CO₃ basified specimen using n-hexane/ethylacetate (7:3)	LC XTerra MS C18 (2.1 mm × 150 mm, 3.5 μm); using an acetanilide–ammonium acetate gradient at pH 3.2	MS/MS with MRM (Waters Quattro) LLOQ from 0.1 ng/mL or higher; deuterated IS	Cooreman et al. (2010) [100]
Quantitative analysis of 10 fentanyls: alfentanil, carfentanil, fentanyl, lofentanil, 3-methylfentanyl, α-methylfentanyl, norfentanyl, and some metabolites	Urine (no hydrolysis)	SPE Oasis HLB 30 μm columns; eluting with 1% formic acid in ACN, plus on-line extraction	LC Symbiosis system using a 3.0 mm × 50 mm X Terra MS C18 column with 2.5 μm; 1% formic acid ACN gradient	Sciex 5500 Qtrap, ESI, RM; LOQ 0.01 – 0.05 ng/mL; deuterated IS	Shaner et al. (2014) [103]
Quantitative analysis of 5 fentanyls: alfentanil, fentanyl, norfentanyl, remifentanil, sufentanil and other opioids	Serum/blood and PM tissues	SPE with Bakerbond C18; eluted with DCM/isopropanol/ammonium hydroxide (40:10:2)	LC using Zorbax Eclipse Plus C18 (2.1 mm × 150 mm, 1.8 μm); eluted with DCM/2-propanol/ammonium hydroxide (40:10:2)	MS (Agilent 6490 TQ) ESI MRM; LLQ 0.1 ng/mL or higher; deuterated IS	Eckart et al. (2015) [99]
Quantitative analysis of furanylbutyrfentanyl, U-47700 and U-50488	Blood	SPE using CleanScreen® DAU columns; elution with DCM/MeOH/ammonium hydroxide (78:3:2)	LC Zorbax Eclipse Plus C18 (4.6 mm × 200 mm, 3.5 μm); mobile phase 0.1% formic acid in MeOH	MS/MS/MRM (Agilent TQ); LOD 0.5 ng/mL, LLQ 1 ng/mL; deuterated IS	Mohr et al. (2016) [56]
Quantitative analysis of 6 fentanyls: acetylfentanyl, carfentanil, 3-methylfentanyl, 2-fluorofentanyl, norfentanyl, fentanyl	Blood, vitreous humour	SPE using mixed mode CleanScreen® ZSDAU020 cartridges; then eluted with DCM: isopropanol/ammonium hydroxide (78:20:2)	LC Kinex F5 column (50 mm × 2.1 mm I.D., particle size 1.7 μm); 0.1% formic acid and ACN gradient	Thermo ESI MRM LC-MS/MS LOQ from 0.1 ng/mL; acetylfentanyl, carfentanil; deuterated IS	Sofalvi et al. (2017) [107]
Qualitative analysis for 15 fentanyls (alfentanil, 3-methylfentanyl, acetylfentanyl, β-hydroxyfentanyl, Butyrfentanyl, carfentanil, desproprionylfentanyl, fentanyl, norfentanyl, furanylfentanyl, p-fluorobutyrifentanyl, p-fluoroisobutyrfentanyl, sufentanil, U-47700, W-18 and 30 other opioids/analgesics)	Blood, urine, liver and brain homogenates	SPE CleanScreen® mixed mode from basified specimen; washed, then eluted with DCM: isopropanol/ammonium hydroxide (78:20:2)	UHPLC (Thermo Acclaim BSLC 120 C18 – 2.1 mm × 100 mm, 120 A); mobile phase 2 mmol/L ammonium formate, 0.1% formic acid, ACN gradient	Ion Trap-MS (Bruker AmaZon Speed); ESI full scan with MS² and MS³ for selected compounds; LOD 0.1-0.5 ng/mL; deuterated IS	Shoff et al. (2017) [105]

1 In order of publication starting 2000; A: angstrom; ACN: acetonitrile; DCM: dichloromethane; DAU: drugs of abuse; ESI: electrospray ionization; IS: internal standard; LC: liquid chromatography; LLE: liquid–liquid extraction; LOD: limit of detection; LOQ: limit of quantitation; LLLOQ: lower limit of quantitation; GC: gas chromatographic; MeOH: methanol; MRM: multiple reaction mode; MS: mass spectrometry; PM: postmortem; SPE: solid phase extract.
benzodiazepines. Due to the presence of other drugs, the degree of tolerance to opioids and sometimes the presence of significant natural disease there are no clearly defined minimum fatal concentration of fentanyl with concentrations contributing or causing death from as low as about 0.2 ng/mL, although the median peripheral blood concentrations have tended to be about 10–20 ng/mL [28,111].

The first reports of other fentanyl derivatives causing death was in the 1980’s by α-methylfentanyl in California [62] and later from 3-methylfentanyl, or China White, as it was known in which 16 deaths were reported from Allegheny county, Pennsylvania [63]. It was not until about 10 years ago when fentanyl derivatives causing death began to appear on a more regular basis, starting with clusters of 3-methylfentanyl deaths in Finland and Estonia [64,65], and then acetylfentanyl fatalities in the USA a few years later [112].

In 2002, fentanylics gained notoriety in connection with the Moscow Dubrovka theater siege, when the Russian military used a knockout gas to incapacitate Chechen rebels, leading to the loss of more than 100 rebels and hostages. The available evidence suggests that a combination of an aerosolized fentanyl derivative, such as carfentanil, and an inhalation anesthetic, such as halothane, was used [113], although it seems that remifentanil may also have been present in the aerosol [53].

In the last few years, numerous deaths have been reported from 16 novel opioids in various publications including acetylfentanyl, acrylfentanyl, but(yl)fentanyl, carfentanil, 2- and 4-fluorofentanyl, 4-fluorobutyrfentanyl, 4-fluoroisobutyrfentanyl, furanylfentanyl, α- and 3-methylfentanyls, 4-methoxyfentanyl, ocfentanil, as well as AH-7921, U-47700 and MT-45, reports of which have been summarized in Table 1.

While the concentrations detected bear some relation to the potency of the drug to the opioid receptor(s) with the weaker agonists having concentrations well above the nanogram per milliliter level (e.g. acetylfentanyl, butyrfentanyl and furanylfentanyl) many are substantially more potent than fentanyl and require detection limits well below 1 ng/mL. For example, the most potent of the opioids listed here, carfentanil, in a recent publication was able to be detected down as low as 5 pg/mL (5 ng/L) with many cases positive at near this concentration. Only the best MS instruments would be able to detect (and provide sufficient number of confirmatory ions or ion transitions) at such low concentrations in biological matrices.

Unfortunately, on review of the publications listed here (reports of deaths from use of a novel opioid), there is no concentration that could be considered a minimum that can cause death. This is not surprising since there is no such minimum fatal concentration for other opioids, such as morphine (including from use of heroin), methadone and oxycodone. The use of other significant drugs, such as other opiates or opioids, and other illicit drugs, as well as alcohol and benzodiazepines to list some, will also contribute to toxicity. Moreover, tolerance is a substantial factor, or lack of it in some cases, that cannot be assessed from the often scant history obtained in a routine death investigation. Additionally, the route and consequently the rate of administration into the body (mostly to brain stem) and posture if a collapse occurs will often also be a factor that can mean the difference between life and death.

Given that fentanyls and probably most, if not all, the related opioids are lipid soluble and can penetrate tissues much better than the water-soluble morphine there is surprisingly little difference in concentration whether blood was drawn from the heart or a peripheral site (e.g. femoral, iliac, sub-clavian). Often drugs with high lipid solubility have higher tissue concentrations leading to diffusion into pooled blood giving rise to redistribution phenomenon postmortem [114]. The lack of concentration changes postmortem may be due to tight binding of these drugs to tissue structures. In the 16 examples provided in Table 1 where there were paired peripheral and central blood quantitative results the median ratio of central to peripheral blood concentration was 1.3 and only nine of the cases displayed a higher concentration in the central site (range of ratios were 0.4–3.1). Other research has found increases in fentanyl concentrations in blood over one day from pre-autopsy to autopsy [115], which is not surprising given that the drug will have higher concentrations in tissues surrounding blood allowing diffusion into pooled blood after death. More generally, there can be significant variation in the quality of blood taken from a deceased person even when no putrefactive processes are evident.

Nevertheless, given the wide variability in concentrations producing a toxic response relative small artefactual changes in concentration are not likely to allow any concentration (other than perhaps extremely high from intentional misuse) to be used as a predictor of toxicity without recourse to the context of the case and other relevant findings including the pathology.

Of vital importance in any death investigation is the overall reliance on the testing laboratory to be able to detect novel opioids, and indeed other potentially toxic substances. For this reason alone, and the knowledge that there are so many toxic substances available to the wider community, a laboratory must be able to detect unknown substances at very low concentrations, rather than just relying on targeted detections, particularly for cases in which the circumstances suggest another substances may have been used, or the cause of a possible drug-caused death is equivocal.

In conclusion, there have been at least 16 novel opioids reported in death investigations and a number...
more identified in admissions to emergency departments that also have the potential to cause death, most of which are related structurally to fentanyl. Laboratories engaged in identifying poisons will need to beware of these drugs as well as other novel psychoactive substances (NPS) and of course the more widely available illicit drugs and prescription drugs that are encountered in the community.

Compliance with ethical standards

This paper does not contain any studies with human participants or animals performed by any of authors.

Disclosure statement

No potential conflict of interest was reported by the author.

ORCID

Olaf H. Drummer http://orcid.org/0000-0001-8953-0312

References

[1] World Drug Report 2017. Vienna: United Nations; 2017 [cited 2017 September 16]. Available from: http://www.unodc.org
[2] Pichini S, Solimini R, Berretta P, et al. Acute intoxica- tions and fatalities from illicit fentanyl and analogues: an update. Ther Drug Monit. 2018;40:38–51.
[3] Armenian P, Vo KT, Barr-Walker J, et al. Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. Neuropharmacology. 2017. doi: 10.1016/j.neuropharm.2017.10.016
[4] Ventura L, Carvalho F, Dinis-Oliveira RJ. Opioids in the frame of new psychoactive substances network: a complex pharmacological and toxicological issue. Curr Mol Pharmacol. 2018;11:97–108.
[5] Henderson GL. Fentanyl-related deaths: demo- graphics, circumstances, and toxicology of 112 cases. J Forensic Sci. 1991;36:422–433.
[6] Schumann H, Erickson T, Thompson TM, et al. Fentanyl epidemic in Chicago, Illinois and surrounding Cook County. Clin Toxicol (Phila). 2008;46:501–506.
[7] Denton JS, Donoghue ER, McReynolds J, et al. An epidemic of illicit fentanyl deaths in Cook County, Illinois: September 2005 through April 2007. J Forens- ic Sci. 2008;53:452–454.
[8] Algren DA, Montelli CP, Punja M, et al. Fentanyl- associated fatalities among illicit drug users in Wayne County, Michigan (July 2005–May 2006). J Med Toxicol. 2013;9:106–115.
[9] Tamburro LP, Al-Hadidi IH, Dragovic LJ. Resurgence of fentanyl as a drug of abuse. J Forensic Sci Med. 2016;2:111–114.
[10] Lee D, Chronister CW, Broussard WA, et al. Illicit fentanyl-related fatalities in Florida: toxicological findings. J Anal Toxicol. 2016;40:588–594.
[11] Okic M, Cnoossen L, Crifasi JA, et al. Opioid overdose mortality in Kansas, 2001-2011: toxicologic evaluation of intent. J Anal Toxicol. 2013;37:629–635.
[12] Smialek JE, Levine B, Chin L, et al. A fentanyl epi- demic in Maryland 1992. J Forensic Sci. 1994;39: 159–164.
[13] Hull MJ, Juhascik M, Mazur F, et al. Fatalities associated with fentanyl and co-administered cocaine or opiates. J Forensic Sci. 2007;52:1383–1388.
[14] Thompson JG, Baker AM, Bracey AH, et al. Fentanyl concentrations in 23 postmortem cases from the hennepin county medical examiner’s office. J Forensic Sci. 2007;52:978–981.
[15] Krinsky CS, Lathrop SL, Crossy M, et al. A toxicology-based review of fentanyl-related deaths in New Mexico (1986–2007). Am J Forensic Med Pathol. 2011;32:347–351.
[16] Martin TL, Woodall KL, Mclellan BA. Fentanyl-related deaths in Ontario, Canada: toxicological findings and circumstances of death in 112 cases (2002-2004). J Anal Toxicol. 2006;30:603–610.
[17] Kronstrand R, Druisd H, Holmgren P, et al. A cluster of fentanyl-related deaths among drug addicts in Sweden. Forensic Sci Int. 1997;88:185–193.
[18] Increases in fentanyl drug confiscations and fentanyl- related overdose fatalities [cited 2017 November 13]. Available from: https://www.cdc.gov/drugoverdose/opioids/fentanyl.html
[19] Rodda LN, Pilgrim JL, Di Rago M, et al. A cluster of fentanyl-laced heroin deaths in 2015 in Melbourne, Australia. J Anal Toxicol. 2017;41:318–324.
[20] Henderson GL. Designer drugs: past history and future prospects. J Forensic Sci. 1988;33:569–575.
[21] Lust EB, Barthold C, Malesker MA, et al. Human health hazards of veterinary medications: information for emergency departments. J Emerg Med. 2011;40:198–207.
[22] Vardanyan RS, Hruby VJ. Fentanyl-related com- pounds and derivatives: current status and future prospects for pharmaceutical applications. Future Med Chem. 2014;6:385–412.
[23] Vuckovic S, Prostran M, Ivanovic M, et al. Fentanyl analogs: structure-activity-relationship study. Curr Med Chem. 2009;16:2468–2474.
[24] Labroo RB, Paine MF, Thummel KE, et al. Fentanyl metabolism by human hepatic and intestinal cyto-chrome P450 3A4: implications for interindividual variability in disposition, efficacy, and drug interactions. Drug Metab Dispos. 1997;25:1072–1080.
[25] Goromaru T, Matsuura H, Yoshimura N, et al. Identification and quantitative determination of fentanyl metabolites in patients by gas chromatography–mass spectrometry. Anesthesiology. 1984;61:73–77.
[26] Van Rooy HH, Vermeulen MP, Bovill JG. The assay of fentanyl and its metabolites in plasma of patients using gas chromatography with alkali flame ionisation detection and gas chromatography–mass spectrometry: J Chromatogr. 1981;223:85–93.
[27] Coopman V, Cordonnier J, Pien K, et al. LC-MS/ MS analysis of fentanyl and norfentanyl in a fatty- tude due to application of multiple Durogesic transdermal therapeutic systems. Forensic Sci Int. 2007;169: 223–227.
[28] Marinetti LJ, Ehlers BJ. A series of forensic toxicology and drug seizure cases involving illicit fentanyl alone and in combination with heroin, cocaine or heroin and cocaine. J Anal Toxicol. 2014;38:592–598.
[29] Sutter ME, Gerona RR, Davis MT, et al. Fatal fenta- ny! one pill can kill. Acad Emerg Med. 2017;24: 106–113.
[30] Lotsch J, Walter C, Parnham MJ, et al. Pharmacokinetics of non-intravenous formulations of fentanyl. Clin Pharmacokinet. 2013;52:23–36.
[31] Anderson DT, Muto JJ. Duragesic® transdermal patch: postmortem tissue distribution of fentanyl in 25 cases. J Anal Toxicol. 2000;24:627–634.
[32] Bakovic M, Nestic M, Mayer D. Death by band-aid: fatal misuse of transdermal fentanyl patch. Int J Legal Med. 2015;129:1247–1252.
[33] Kuhlman JJ Jr, McCaulley R, Valouch TJ, et al. Fentanyl use, misuse, and abuse: a summary of 23 postmortem cases. J Anal Toxicol. 2003;27:499–504.
[34] Prosser JM, Jones BE, Nelson L. Complications of oral exposure to fentanyl transdermal delivery system patches. J Med Toxicol. 2010;6:443–447.
[35] Serghini I, Qamouny Y, Zoubir M, et al. Fatal intoxication caused by the application of the multiple transdermal patches of fentanyl. Pan Afr Med J. 2015;20:21.
[36] Higashigawa Y, Suzuki S. Studies on 1-(2-phenethyl)-4-(N-propionylamino)piperidine (fentanyl) and its related compounds. VI. Structure–analytic activity relationship for fentanyl, methyl-substituted fentanyls and other analogues. Forensic Sci Int. 2008;261–5.
[37] Helander A, Backberg M, Beck O. Intoxications involving the fentanyl analog acetylfentanyl, 4-methoxybutyrfentanyl and furanylfentanyl: results from the Swedish STRIDA project. Clin Toxicol (Phila). 2016;54:324–332.
[38] Dwyer JB, Jarsen J, Luckasevic TM, et al. Report of increasing overdose deaths that include acetyl fentanyl in multiple counties of the southwestern region of Pennsylvania in 2015–2016. J Forensic Sci. 2017;63:195–200.
[39] McIntyre JM, Trochta A, Gary RD, et al. An acute acetyl fentanyl fatality: a case report with postmortem concentrations. J Anal Toxicol. 2015;39:490–494.
[40] Takase I, Koizumi T, Fujimoto I, et al. An autopsy case of acetyl fentanyl intoxication caused by insufflation of ‘designer drugs’. Leg Med (Tokyo). 2016;21:38–44.
[41] Maryanoff BE, Simon EI, Gioiannini T, et al. Potential affinity labels for the opiate receptor based on fentanyl and related compounds. J Med Chem. 1982;25:913–919.
[42] Guerrieri D, Rapp E, Roman M, et al. Acrylfentanyl: another new psychoactive drug with fatal consequences. Forensic Sci Int. 2017;277:e21–e29.
[43] Helander A, Backberg M, Signell P, et al. Intoxications involving acetylfentanyl and other novel designer fentanyls—results from the Swedish STRIDA project. Clin Toxicol (Phila). 2017;55:589–599.
[44] Ujvary I, Jorge R, Christie R, et al. Acrylfentanyl, a recently emerged new psychoactive substance: a comprehensive review. Forensic Toxicol. 2017;35:232–243.
[45] European drug report: European monitoring centre for drugs and drug addiction; 2016 [cited 2017 October 26, 2017]. Available from: http://www.emcdda.europa.eu/edr2016
[46] Butler DC, Shanks K, Behonick GS, et al. Three cases of fatal Acrylfentanyl Toxicity in the United States and a review of literature. J Anal Toxicol. 2018;42:e6–e11.
[47] McIntyre JM, Trochta A, Gary RD, et al. An acute butyry-fentanyl fatality: a case report with postmortem concentrations. J Anal Toxicol. 2016;40:162–166.
[67] Dussy FE, Hangartner S, Hamberg C, et al. An acute ofentanil fatality: a case report with postmortem concentrations. J Anal Toxicol. 2016;40:761-766.

[68] Kronstrand R, Thelander G, Lindstedt D, et al. Fatal intoxications associated with the designer opioid AH-7921. J Anal Toxicol. 2014;38:599-604.

[69] Vorce SP, Knittel JL, Holler JM, et al. A fatality involving AH-7921. J Anal Toxicol. 2014;38:226-230.

[70] Karinen R, Tuu SS, Rogde S, et al. Lethal poisonings with AH-7921 in combination with other substances. Forensic Sci Int. 2014;244:e21-e24.

[71] Elliott S, Bodenschatz C, Beran D. AH-7921: critical review report. Geneva: World Health Organization; 2014. p. 22.

[72] Fels H, Krueger J, Sachs H, et al. Two fatalities associated with synthetic opioids: AH-7921 and MT-45. Forensic Sci Int. 2017;277:e30-e35.

[73] Elliott S, Bodenschatz C, Beran D. AH-7921. Critical review report. Geneva: United Nations; 2014.

[74] Katselou M, Papoutsis I, Nikolau P, et al. AH-7921: the list of new psychoactive opioids is expanded. Forensic Toxicol. 2015;33:195-201.

[75] Evans-Brown E, Cunningham A, Gallegos A, et al. MT-45 risk assessment. Lisbon: EMCDDA; 2014.

[76] Helander A, Backberg M, Beck O. MT-45, a new psychoactive substance associated with hearing loss and unconsciousness. Clin Toxicol (Phila). 2014;52:901-904.

[77] Papun D, Krywanczyk A, Vose JC, et al. Analysis of MT-45, a novel synthetic opioid, in human whole blood by LC-MS-MS and its identification in a drug-related death. J Anal Toxicol. 2016;40:313-317.

[78] Uchiyama N, Matsuda S, Kavamura M, et al. Identification of two new type designer drugs, piperazine derivative MT-45 (I-C6) and synthetic peptide Noopet (GVS-111), with synthetic cannabinoid A-834735, cation in a drug-related death. J Anal Toxicol. 2016;40:313-317.

[79] Coopman V, Blanckaert P, Van Parys G, et al. Detection of ten fentanyl analogs and metabolites in urine of opioid exposed workers. Forensic Toxicol. 2014;32:9-18.

[80] Elliot SP, Brandt SD, Smith C. The first reported fatality associated with the synthetic opioid 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700) and implications for forensic analysis. Drug Test Anal. 2016;8:875-879.

[81] Coopman V, Blanckaert P, Van Parys G, et al. A case of acute intoxication due to combined use of fentanyl and 3,4-dichloro-N-[2-(dimethylamino)cyclohexyl]-N-methylbenzamide (U-47700). Forensic Sci Int. 2016;266:68-72.

[82] Ellefson KN, Taylor EA, Simmons P, et al. Multiple drug toxicity involving novel psychoactive substances, 3-fluorohemphentrazine and U-47700. J Anal Toxicol. 2017;41:765-770.

[83] Rohrig TP, Miller SA, Baird TR. U-47700: a not so new opioid. J Anal Toxicol. 2017;42:e12-e14.

[84] Domanski K, Kleinschmidt KC, Schulte JM, et al. Two cases of intoxication with new synthetic opioid, U-47700. Clin Toxicol (Phila). 2017;55:46-50.

[85] Jones MJ, Hernandez BS, Janis GC, et al. A case of U-47700 overdose with laboratory confirmation and metabolite identification. Clin Toxicol (Phila). 2017;55:55-59.

[86] DEA Headquarters News. Washington (DC): Drug Enforcement Administration; 2016 [cited 2017 October 23]. Available from: https://www.dea.gov/divisions/hq/2016/hq111016.shtml

[87] Helland A, Brede WR, Michelsen LS, et al. Two hospitalizations and one death after exposure to ortho-fluoroantanyl. J Anal Toxicol. 2017;41:708-709.

[88] Strehmel N, Vojmelka E, Kastner K, et al. NPS-findings in forensic toxicology – three case reports. Toxichem Krimtech. 2017;84:199–204.

[89] Ferslew KE, Hagardorn AN, McCormick WF. Post-mortem determination of the biological distribution of sufentanil and midazolam after an acute intoxication. J Forensic Sci. 1989;34:249–257.

[90] Cunningham SM, Haikal NA, Kramer JC. Fatal intoxication with acetyl fentanyl. J Forensic Sci. 2016;61 Suppl 1:S276–S280.

[91] Giorgetti A, Centola C, Giorgetti R. Fentanyl novel derivative-related deaths. Hum Psychopharmacol. 2017;32:1-11.

[92] Ruzycki S, Yarena M, Dunham M, et al. Intranasal fentanyl intoxication leading to diffuse alveolar hemorrhage. J Med Toxicol. 2016;12:185–188.

[93] Porter R, O’Reilly H. Pulmonary hemorrhage: a rare complication of opioid overdose. Pediatr Emerg Care. 2011;27:742–744.

[94] Tiscione NB, Wegner K. Validation of the Neogen(R) Fentanyl ELISA Kit for blood and urine. J Anal Toxicol. 2017;41:313–317.

[95] Wang BT, Colby JM, Wu AH, et al. Cross-reactivity of acetylfentanyl and risperidone with a fentanyl immunoassay. J Anal Toxicol. 2014;38:672–675.

[96] Ruangyuttikarn W, Law MY, Rollins DE, et al. Detection of fentanyl and its analogs by enzyme-linked immunosorbent assay. J Anal Toxicol. 1990;14:160–164.

[97] Schueller HE. Emerging synthetic fentanyl analogs. Acad Forensic Pathol. 2017;7:36–40.

[98] Pearson J, Foklis J, Foklis A, et al. Postmortem toxicology findings of acetyl fentanyl, fentanyl, and morphine in heroin fatalities in Tampa, Florida. Acad Forensic Pathol. 2015;5:676–689.

[99] Van Nimmen NF, Poels KL, Veulemans HA. Highly sensitive gas chromatographic-mass spectrometric screening method for the determination of picogram levels of fentanyl, sufentanil and alfentanil and their major metabolites in urine of opioid exposed workers. J Chromatogr B Technol Biomed Life Sci. 2004;804:375–387.

[100] Eckart K, Rohrich J, Breitmeier D, et al. Development of a new multi-analyte assay for the simultaneous detection of opioids in serum and other body fluids using liquid chromatography-tandem mass spectrometry. J Chromatogr B Technol Biomed Life Sci. 2015;1001:1–8.

[101] Cooreman S, Deprez C, Martens F, et al. A comprehensive LC-MS-based quantitative analysis of fentanyl-like drugs in plasma and urine. J Sep Sci. 2010;33:2654–2662.

[102] Sofalvi S, Schueller HE, Lavins ES, et al. An LC-MS-MS method for the analysis of carfentanil, 3-Methyl-fentanyl, 2-Fluranyl Fentanyl, acetyl fentanyl, fentanyl and norfentanyl in postmortem and impaired-driving cases. J Anal Toxicol. 2017;41:473–483.

[103] Gergov M, Nokva P, Vuori E, et al. Simultaneous screening and quantification of 25 opioid drugs in post-mortem blood and urine by liquid chromatography-tandem mass spectrometry. Forensic Sci Int. 2009;186:36–43.

[104] Shaner RL, Kaplan P, Hamelin EI, et al. Comparison of two automated solid phase extractions for the detection of ten fentanyl analogs and metabolites in
human urine using liquid chromatography tandem mass spectrometry. J Chromatogr B Analys Technol Biomed Life Sci. 2014;962:52–58.

[104] Wang L, Bernert JT. Analysis of 13 fentanyl analogs and carfentanil, in human urine by liquid chromatography-atmospheric-pressure ionization-tandem mass spectrometry. J Anal Toxicol. 2006;30:335–341.

[105] Shoff EN, Zaney ME, Kahl JH, et al. Qualitative identification of fentanyl analogs and other opioids in postmortem cases by UHPLC-Ion Trap-MSn. J Anal Toxicol. 2017;41:484–492.

[106] Alexander RT, Hedrick CW, Alexander SD, et al. Epidemic fentanyl deaths in Maryland: A public health intervention involving geographic information systems and collaboration with the drug enforcement administration. Acad Forensic Pathol. 2016;6:301–314.

[107] Griswold MK, Chai PR, Krotulski AJ, et al. Self-identification of nonpharmaceutical fentanyl exposure following heroin overdose. Clin Toxicol (Phila). 2018;56:37–42.

[108] Sgarlato A, deRoux SJ. Prescription opioid related deaths in New York City: a 2 year retrospective analysis prior to the introduction of the New York State I-STOP law. Forensic Sci Med Pathol. 2015;11:388–394.

[109] Murphy Y, Goldner EM, Fischer B. Prescription opioid use, harms and interventions in Canada: a review update of new developments and findings since 2010. Pain Physician. 2015;18:E605–E614.

[110] van Amsterdam J, van den Brink W. The misuse of prescription opioids: a threat for Europe? Curr Drug Abuse Rev. 2015;8:3–14.

[111] Al-Saffar Y, Stephanson NN, Beck O. Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine-experience from the Swedish population. J Chromatogr B Analys Technol Biomed Life Sci. 2013;930:112–120.

[112] Centers for Disease Control and Prevention. Acetyl fentanyl overdose fatalities—Rhode Island, March-May 2013. MMWR Morb Mortal Wky Rep. 2013;62:703–704.

[113] Wax PM, Becker CE, Curry SC. Unexpected “gas” casualties in Moscow: a medical toxicology perspective. Ann Emerg Med. 2003;41:700–705.

[114] Drummer OH. Postmortem toxicology of drugs of abuse [Review]. Forensic Sci Int. 2004;142:101–113.

[115] Krinsky CS, Lathrop SL, Zumwalt R. An examination of the postmortem redistribution of fentanyl and interlaboratory variability. J Forensic Sci. 2014;59:1275–1279.

[116] Lozier MJ, Boyd M, Stanley C, et al. Acetyl fentanyl, a novel fentanyl analog, causes 14 overdose deaths in Rhode Island, March-May 2013. J Med Toxicol. 2015;11:208–217.

[117] Poklis J, Poklis A, Wolf C, et al. Two fatal intoxications involving butyryl fentanyl. J Anal Toxicol. 2016;40:703–708.

[118] Rojkiewicz M, Majchrzak M, Celinski R, et al. Identification and physicochemical characterization of 4-fluorobutyrifentanyl (1-((4-fluorophenyl)(1-phenethylpiperidin-4-yl)amino)butan-1-one, 4-FBF) in seized materials and post-mortem biological samples. Drug Test Anal. 2017;9:405–414.

[119] Yonemitsu K, Sasa A, Mishima S, et al. A fatal poisoning case by intravenous injection of “bath salts” containing acetyl fentanyl and 4-methoxy PV8. Forensic Sci Int. 2016;267:e6–e9.

[120] Fort C, Curtis B, Nichols C, et al. Acetyl fentanyl toxicity: two case reports. J Anal Toxicol. 2016;40:754–757.

[121] Dziadosz M, Klintschar M, Teske J. Postmortem concentration distribution in fatal cases involving the synthetic opioid U-47700. Int J Legal Med. 2017;131:1555–1556.

[122] Ellefsen KN, Taylor EA, Simmons P, et al. Multiple drug-toxicity involving novel psychoactive substances, 3-Fluorophenmetrazine and U-47700. J Anal Toxicol. 2017;41:765–770.

[123] McIntyre IM, Gary RD, Joseph S, et al. A fatality related to the synthetic opioid U-47700: postmortem concentration distribution. J Anal Toxicol. 2017;41:158–160.

[124] Acryloylfentanyl. EMCDDA–Europol joint report on a new psychoactive substance. Lisbon: EMCDDA; 2017.

[125] Shanks KG, Behonick GS. Detection of Carfentanil by LC-MS-MS and reports of associated fatalities in the USA. J Anal Toxicol. 2017;41:466–472.