An Approach to Reduce Cooling Loads in Transparent Facades

Figen Beyhan 1, Peyman Umre Ersan 2
1 Gazi University, Faculty of Architecture, Department of Architecture, Ankara, Turkey
2 Kırıkkale Municipality, Housing Authority, Kırıkkale, Turkey
epumre@gmail.com

Abstract. The possibilities offered by the developing technology in terms of materials and construction systems, the requirements of today's user profile and living conditions and user demands have caused the facade systems of the buildings to change as well. The facades of the buildings, which are very effective in the energy efficiency of the buildings and constitute a large proportion of the building envelope, are built independently of all the contexts of its location and the spatial needs based on comfort conditions. Glass curtain facades, which are especially located in the facade systems of multi-storey office buildings, are constructed with similar qualities on each facade of the buildings and cause problems in the efficient consumption of energy as they cannot respond adequately to the comfort conditions of the spaces. Increasing cooling loads of buildings due to excessive heat gain from large transparent surfaces, is one of these problems.

1. Introduction
Energy use in all sectors has been one of the most important issues due to the effects of the industrial revolution that started in the second half of the 18th century and the oil crises since the 1970s. As in the all of the world, total energy in Turkey is being used for heating, cooling, ventilation and lighting. Energy efficient designs are increasing day by day because fossil based fuels, which cannot be renewed, are used as energy sources in the building sector as in other sectors.

With the rise of tall structures, the development of new construction materials and construction technologies has accelerated. Transparent façade systems, which are widely used in high-rise buildings, have an important place in contemporary architecture.

Office buildings are reconsidered in the context of green criteria in terms of high-energy consumption profiles, heating as well as cooling requirements, resource consumption and waste generation potentials. In this context, all systems that form office buildings must be handled with a new perspective. [1] The effect of transparent facade systems preferred in office buildings on the cooling load is one of the issues that should be addressed.

The purpos when designing the building envelope is create energy efficient systems that allow fresh air to enter the indoor environment and adapt to user requirements while making maximum use of daylight. In the design of high-rise office buildings, the number of which is rapidly increasing, it is
possible to minimize the cooling load with solutions designed to prevent excessive heat accumulation within the building during the cooling season.

2. Parameters Affecting the Energy Performance of Transparent Facades and Design Contexts

As a result of the rapid decrease of energy resources in the world, the concept of energy efficiency has started to gain importance. For this reason, the search for energy efficient building has an important role in architecture day by day. This approach requires a review of architectural design decisions.

Transparent facades have become an indispensable building envelope especially for high buildings due to their lightness, aesthetic appearance, easy to manufacture and install, and resistance to climatic conditions. In buildings with translucent facades, despite the positive effects of daylight on interiors, problems with daylight are also encountered. In the summer period, uncontrolled and indirectly reaching the interior causes overheating and increasing the cooling loads of the building, and thus the energy consumed for cooling purposes. Daylight dispersing uncontrollably and directly in the interior causes glare. [2, 3] It is possible to control these problems with the measures to be taken at the design stage of the building.

There are certain parameters that play an active role in the energy performance of transparent facades. It is important to know these parameters to produce problem-oriented solutions. Designer should be careful in the selection of these effective design decisions from the early stages of architectural design. These parameters and design contexts are shown in the table 1.

Table 1. Design parameters and design contexts that support the energy performance of transparent facades

Parameters Affecting the Energy Performance	Design Contexts
Climatic and Seasonal Conditions	Temperature, Moisture, Rainfall, Wind speed and direction, Sunbathing time, Solar radiation data, Atmospheric pollution
Direction of Facade	North, South, East, West, Northeast, Northwest, Southeast, Southwest
Building Form /Design Facade	Building Form; Plan, Cross section, Appearance, Balance and simplicity, Ratio and scale, The relation of spaces with each other, Visual effect, Style, Ornament and deco
Glass Selection	Glass type - Glass properties - Glass thicknesses
The use of solar control Systems	Type - Location - Material - Angle - Color
3. Cooling Load Strategies in Buildings
Keeping the cooling and heating loads under control is one of the prominent goals in the design of the building facade. The cooling load is defined as the amount of heat that must be drawn from the environment to achieve a constant air temperature. In the absence of any additional systems in the space, the change of indoor air temperature and average heating temperature are the most important factors in the formation of cooling load in the hottest period.

Especially in hot humid and temperate climates, it is possible to reduce the thermal effects of the sun by using cooling systems due to the overheating, solar radiation and the negative effects of moisture on the users.

Short wave radiation from the sun causes unwanted thermal increases in the space in the hottest period. Solution strategies designed at the facades are effective in reducing the cooling load. The strategies that reduce the cooling load are presented in Table.2 along with their advantages and disadvantages.

Table 2. Advantages and disadvantages with strategies that reduce the cooling load

STRATEGIES TO REDUCE THE COOLING LOAD
Strategies
Natural Ventilation
Night Ventilation
Building Form / Geometry

Table 2. Continue

Strategies	Usage Types / Application Systems	Advantages	Disadvantages
Direction	Buildings / Facade Design	The long facade of the building and the facades where the openings are intensely placed, in the direction of the active wind in the direction of the active wind, allow air circulation to occur with the effect of positive pressure and negative pressure.	
Double Skin Facade	High rise buildings	By allowing natural ventilation, it reduces the cost of using HVAC systems. It provides sound insulation. Provides natural ventilation by allowing windows to be opened in high-rise buildings.	It causes overheating. It increases the cost of building.
Solar Control Systems	Building facades	They protect the building from unwanted heat gains. They have the ability to redirect light or change its direction. They have anti-glare feature	The elements used on the exterior are affected by bad weather conditions.
	Building interiors		
	In the buffer zones of double-skin facades		
Dynamic Facades	Building facades	Energy savings in heating and cooling by managing the energy flow through the glass	It does not restrict unnecessarily natural daylight and outside scenery.
Sky Gardens	Building interiors	In tall high-rise buildings, sky-gardens, transition areas, balconies can be created to protect against the unwanted effects.	These spaces provide natural ventilation and illumination of interior spaces with glass doors that can be opened as well as shading function (Yeang, 1998).
Cold Roofs	Building roofs	Cold roofs covered with light colored surface protection elements cause 10-16 °C less heat on hot days. (Yeang, 2012).	High waterproofing is required.
Table 2. Continue

Strategies	Usage Types / Application Systems	Advantages	Disadvantages
Using Insulated Glass	Windows consisting of two or three layers of glass	Insulated glasses absorb daylight while reducing the heat of the sun. Blinds, film layer, etc. between glass layers. Solar shading elements are protected against contamination, thus, maintenance and cleaning costs are reduced.	
Using Reflective (reflective) Glass	On the outer glass facades of buildings, especially in office buildings	It has high performance in terms of solar control.	They increase the need for artificial lighting
Using Coated Glass	On the outer glass facades of buildings, especially in office buildings	They reduce reflection on the glass surface. Light transmittance can be controlled according to the thickness of the coating.	They can increase the need for artificial lighting depending on the thickness of the coating.
Using Colored Glasses	On the outer glass facades of buildings, especially in office buildings	This type of glass has the ability to absorb all short-wave rays in different proportions depending on the color and thickness of the glass.	They increase the need for artificial lighting
Using photochromic glasses	On the outer glass facades of buildings	Light transmittance varies depending on the amount of light on it. It is suitable for providing visual comfort by preventing glare.	Absorption increases and transmittance decreases when the amount of light increases. Artificial lighting requires in the space.
Using of thermo chromic glasses	On the outer glass facades of buildings	While it is transparent in the cold, its transparency decreases and its reflective properties increase when the temperature increases.	A non-homogeneous color distribution is formed. The decrease of the light transmittance of the glass also eliminates the duty of the window to provide visual relation with the external environment. Cost is high.
Table 2. Continue

Strategies	Usage Types / Application Systems	Advantages	Disadvantages
Using electrochromic glasses	On the outer glass facades of buildings	Depending on the applied voltage, they change from color to medium and completely colorless.	They react slowly. Their lifetime is short. The costs are high. They can cause glare.
Using gazochromic glasses	On the outer glass facades of buildings	Hydrogen is introduced between the glass layers to color the glass when the temperature rises and combined with oxygen to return the transparency to its original state.	In the colorful case, the daylight indoors decreases.
Using photovoltaic glasses	On the facades in the direction of the sun, Roofs, On blinds that can move with the sun.	They provide effective sun protection.	Cost increase.
Using light shelves	On the inner or outer surface of the window	While protecting the area near the window in sunlight from sunlight, reflected light reflects from the ceiling and illuminates the depths of the room. By reducing the intense daylight level in the areas in front of the window, glare is prevented and visual and thermal comfort is provided.	
Planting	Interiors of the building, Floor gardens, Balconies, Courts and terraces	It minimizes the glare that will occur in the building while shading the interior and exterior walls of the building. In temperate climates, deciduous trees provide excellent shade in summer and maximum solar heat gain in winter.	Expected shading cannot be achieved if it is not selected according to the climate type. Place selection should be made without increasing artificial lighting.

4. Examination of Cooling Strategies On Applied Samples
In the study, contemporary and pioneering building examples (3 building examples) that have been implemented and accepted as a sustainable and ecological structure have been determined. Other parameters that are effective in determining the samples are that all the facades of the building are glass, high-rise office use, and at least one of the cooling strategies specified in Table 2. should be used.
Table 3. Cooling strategies of solaris building.

SOLARIS BUILDING	Sample 1
Use of the building	Office Building
Architect of the building	Ken Yeang
Location of the building construction date	Singapore −2008-2011
Number of floors of the building	18
Definition of the facade used in the building	Type: Single Skin Facade
	Building Facade Number:4
COOLING STRATEGIES USED	
Roof gardens and corner sky terraces	It acts as a buffer between the outdoor and the indoor, preventing the interior from overheating.
Atrium	The naturally ventilated atrium ensures that the indoor environments in the building get daylight. The atrium can be opened, covered with movable, sun-protected glass blinds.
Light Shaft	Natural daylight can reach the depths of the building. Offices are ventilated from the terraces facing the light shaft.
Using (Low-e) glass	Double layer Low-e glass (Low emission) is used.
Solar Control Systems	Fixed solar shades used on the exterior also serve as a light shelf, their structure and depth have been designed taking into account the solar orbit
Planting	Planting on the terrace provides shading
Building Form	The project is comprised of two tower blocks separated by a grand naturally-ventilated central atrium. Office floors are linked by a series of sky bridges which span the atrium at upper floors.
Solaris has been certified BCA Green Mark Platinum, the highest possible green certification granted by Singapore’s sustainable building benchmark (eg. LEED, GBI, Green Star, BREEAM, etc.). The building’s overall energy consumption represents a reduction of over 36% compared to local precedents and the high performance façade has an External Thermal Transfer Value (ETTV) of 39 W/m². [4] Night lighting is not required due to the office building. The photovoltaic panels (active system) used in the building support passive systems in reducing the cooling load.

Table 4. Cooling strategies of city hall.

CITY HALL	Sample 2
Use of the building	Office Building
Architect of the building	Norman Foster
Location of the building construction date	London−1998-2002
Number of floors of the building	10 kat
Definition of the facade used in the building	Type: Single Skin Facade
Building Facade Number:4	
COOLING STRATEGIES USED	
Direction It is located in the south-north plane. In London, there is almost no sunlight coming to the north facing surfaces, although the sunlight and heat coming from the south is high in summer.	
Building Form Building form has been shifted step by step to the south in order to prevent sunlight from the south and the floors to provide shade to each other.	
Solar Control Systems User controlled venetian blinds are available on the facades	
Natural Ventilation East, west and south facade windows are openable and there are culverts in the entire building vent that can be controlled by building automation. When the vents are opened, heating and cooling systems are disabled and passive ventilation of the building is ensured.	
Using coated an colored glasses Depending on the orbit followed by the sun Clearly green color coating was applied to the 9th floor glasses that see west, east and south directions. Over 75% of the building glasses were made with silver aluminum coating to prevent unwanted overheating.	
The combination of these energy-saving cooling strategies eliminates the need for mechanical chillers and reduces the annual energy consumption of the building’s mechanical systems by approximately 25% that of a typical office building. [5]

Table 5. Cooling strategies of tekfen oz office building.

COOLING STRATEGIES USED	Sample 3
Planting	The skin consisting of these plants used in the building is designed as a skin sub-element whose density and dimensions vary according to the facades. Shading is provided on the south and west facades by increasing the density and height of the plants.
Using Double Skin Facades	This system provided natural ventilation with the opening windows.
Using Low-e Glass	Solar Low-E Glass is used on the facade.
Solar Control Systems	There are fixed sun shades designed as part of the facade.

5. Conclusions
Energy efficient facade design, which gains importance in response to rapidly increasing energy requirements, makes it necessary to find solutions to the overheating problem, which is the disadvantage of transparent facade systems. Architectural design decisions that play a decisive role in the energy performance of transparent facade systems and which should be taken into consideration at the beginning of the design are of great importance. Climate data surrounding the building in the transparent facade design is one of the most important parameters affecting the energy performance of the building. On the facades designed independently from the climate data; heat gains from the sun cause overheating in the summer, which increases cooling loads. In summer, the location of the building is of great importance, especially in determining the heating and cooling energy. The design of the building geometry and the transparent facade system shaped according to this geometry is an
important architectural design decision that affects energy performance. Regardless of the solar movements and the wind, the design of a building facing in every direction with a similar character brings problems in this context. Although the double-skin facade design allows natural ventilation in high-rise buildings, the problem of overheating caused by the hottest period is an issue to be questioned. It can be seen that over-heating problem, which is accepted as a big disadvantage, can be prevented by choosing suitable glass and solar control systems on transparent facade surfaces. Various variations can be derived with the combination of design parameters to reduce the cooling load in transparent facade design. Many strategies can be used together. However, the determined cooling strategies should be comprehensively studied at the design stage based on experiments or simulations.

When applied good examples are analyzed, the presence of passive cooling techniques that come with the design provides great benefits in the cooling loads of transparent facades.

References
[1] Ayçam, I." Investigation of Advanced Facade Systems in Energy Efficient Offices Buildings. ” X. National Plumbing Engineering Congress, İzmir (2011).
[2] Sev, A., (1999). “Designing the Cladding of Tall Buildings in Seismic Regions”, International Conference on Earthquake Hazard and Risk in the Mediterranean Region Near East University, 18-22 October 1999, Lefkosa, s. 875-891.
[3] Özbalta, T.G.,“Architecture,“Solar and Technology Relation”, Solar Energy Systems Symposium and Exhibition, Mersin.(2005)
[4] Solaris Singapore (2019) Available at:https://www.e-architect.co.uk/singapore/solaris-singapore
[5] Foster, Norman Bürogebäude in ökologischer Verantwortung / Office Buildings and Environmental Responsibility, in ”Detail - Zeitschrift für Arch