Maximally Permissive Supervisory Control of Timed Discrete-Event Systems under Partial Observation

Ziteng Yang∗ Xiang Yin∗∗ Shaoyuan Li∗∗

∗ Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
∗∗ Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, China. (E-mail: yinxiang@sjtu.edu.cn)

Abstract: In this paper, we investigate the supervisory control problem for timed discrete-event systems (TDES) under partial observation. In the timed setting, the system consists of both standard logical events and time event, where the former can be disabled directly by the supervisor if it is controllable while the latter can only be preempted by forcing the occurrences of forcible events. We consider a general control mechanism where the supervisor can choose which events to force dynamically online at each instant. The design objective is to synthesize a maximally-permissive supervisor to restrict the behavior of the system such that the closed-loop language is within a safe specification language. Effective procedure is presented to synthesize such a supervisor. To our knowledge, how to synthesize a maximally-permissive partial-observation supervisor has not been solved for timed DES. We provide a solution to this problem under a general control mechanism.

Keywords: Timed Discrete Event Systems, Supervisory Control, Partial Observation.

1. INTRODUCTION

The supervisory control theory (SCT) of Discrete Event Systems (DES) is a formal framework for the synthesis of correct-by-construction control logic for complex automated systems. In the SCT, one of the central problems is how to synthesize a maximally-permissive safe supervisor. Furthermore, we want that the synthesized supervisor works in a least-restrictive manner. The supervisor synthesis problem is particularly challenging in the partial-observation setting as the property of observability is not preserved under union. Many different approaches have been proposed in the literature to handle this problem; see, e.g., Ben Hadj-Alouane et al. (1996); Takai and Ushio (2003). Particularly, in our recent works (Yin and Lafortune, 2016a,b; Yin, 2017; Yin and Lafortune, 2017, 2018), a uniform framework was proposed for synthesizing maximally-permissive partial-observation supervisors.

In many real-world systems, timing information is crucial as the occurrence of an event may be within a designated time bound. Therefore, in Brandin and Wonham (1994), the framework of timed discrete events systems (TDES) was proposed to capture this temporal specification. The SCT has also been developed extensively in the timed setting; see, e.g., Lin and Wonham (1995); Takai (2000). In the control of TDES, a new event tick representing a time unit is introduced in addition to standard logic events; such an event cannot be disabled directly and it can only be preempted via some forcible events. Recently, Alves et al. (2017); Rashidinejad et al. (2018); Pruekprasert and Ushio (2019) considered how to control a TDES in a networked environment. State-based control for TDES was also investigated by Rahnamoo and Wonham (2018). The authors in Zhang and Cai (2019) studied the supervisor localization problem for TDES. Also, decentralized control of TDES was investigated by Miura and Takai (2018).

Based on the original framework of Brandin and Wonham, in Takai and Ushio (2006), a generalized framework for the control of TDES was proposed. This framework allows the supervisor to choose which events to force dynamically at each instant, where in the original framework events that are forced are “static”. However, in both the original framework of Brandin and Wonham and the generalized framework of Takai and Ushio, the maximally-permissive supervisor synthesis problem has not yet been solved even for safety specifications only.

In this paper, we tackle the safe supervisor synthesis problem for TDES under the partial-observation setting. More specifically, we adopt the general framework of Takai and Ushio so that the supervisor can choose forcible events dynamically online. We propose a new information structure that captures all safe control decisions, and based on such a structure, a maximally-permissive supervisor can be synthesized. The proposed approach is motivated by our recent work on supervisory control of untimed DES (Yin and Lafortune, 2016a,b). However, the control mechanisms of the timed setting and the untimed setting are quite different as the former also needs to handle forcible events appropriately to “control” the time event. Therefore, new plant and control operators, as well as...
their properties, are proposed to handle this issue. To our knowledge, how to synthesize a maximally-permissive safe supervisor in the timed setting was not solved before.

2. PRELIMINARY AND PROBLEM FORMULATION

2.1 System Model

A Timed Discrete Event System (TDES) in the framework of Brandin and Wonham is modeled as a deterministic finite state automaton

$$G = (X, \Sigma, \delta, x_0),$$

where X is the finite set of states, Σ is the finite set of events, $\delta : X \times \Sigma \to X$ is partial transition function, $x_0 \in X$ is the initial state. The event set is further partitioned as $\Sigma = \Sigma_{act} \cup \{\text{tick}\}$, where Σ_{act} is the set of usual events in untimed systems and tick is a special event representing a “time unit”. Let Σ^* be the set of all finite strings over Σ including the empty string ϵ. Then the transition function is also extended to $\delta : X \times \Sigma^* \to X$ in the usual manner; see, e.g., Cassidy and Lafortune (2008). The language generated by G is define by $\mathcal{L}(G) = \{s \in \Sigma^* : \delta(x_0, s)\}$, where $!$ means “is defined”. We also define $E_G(s) := \{\sigma \in \Sigma : \sigma \in \mathcal{L}(G)\}$ as the set of events defined upon the occurrence of string s. For any language $L \subseteq \Sigma^*$, we define $\overline{L} = \{s \in \Sigma^* : \exists w \in \Sigma^* \text{ s.t. } sw \in L\}$ as the prefix-closure of L; we call L prefix-closed if $\overline{L} = L$. Similarly, for any state $x \in X$, we define $E_G(x) := \{\sigma \in \Sigma : \delta(x, \sigma)\}$ as the set of events defined at state $x \in X$ in G.

2.2 Supervisory Control of TDES

We assume that event set Σ_{act} is partitioned as

$$\Sigma_{act} = \Sigma_{uc} \cup \Sigma_{uc},$$

where Σ_{uc} is the set of controllable events and Σ_{uc} is the set of uncontrollable events. That is, we can disable the occurrences of events in Σ_{uc}. In the timed setting, however, event tick cannot be disabled directly. Instead, it can be preempted by forcible events. We denote by $\Sigma_{for} \subseteq \Sigma_{act}$ the set of all forcible events. The reader is referred to Brandin and Wonham (1994) for the physical meaning of forcible events as well as how a TDES is modeled. Furthermore, we assume that the system is partially-observed. To this end, event set is also partitioned as

$$\Sigma = \Sigma_o \cup \Sigma_{uo},$$

where Σ_o is the set of observable events and Σ_{uo} is the set of unobservable events. The natural projection $P : \Sigma^* \to \Sigma_o^*$ is defined recursively by:

$$P(\epsilon) = \epsilon \text{ and } P(s\sigma r) = \begin{cases} P(s) \sigma r \text{ if } \sigma \in \Sigma_o, \\ P(s) \text{ if } \sigma \in \Sigma_{uo}. \end{cases}$$

Natural projection is also extended to $P : 2^{\Sigma_{act}} \to 2^{\Sigma_{uc}}$ by for any $L \subseteq \Sigma^*$, we have $P(L) := \{P(s) : s \in L\}$.

In this paper, we consider a general class of supervisors for TDES proposed by Takai and Ushio (2006). In this setting, a supervisor needs to make the following two decisions at each instant

- what events need to be enabled; and
- what events need to be forced (to preempt tick).

Therefore, a supervisor S is defined as a function

$$S : P(\mathcal{L}(G)) \to 2^{\Sigma_{act}} \times 2^{\Sigma_{for}}$$

such that for any $\alpha \in P(\mathcal{L}(G))$, $S(\alpha) = (S_u(\alpha), S_f(\alpha))$ satisfies the following two conditions

- $\Sigma_{uc} \subseteq S_u(\alpha)$; and
- $S_f(\alpha) \subseteq S_u(\alpha) \cap \Sigma_{for}$.

That is, a supervisor should always enable uncontrollable events and can only force forcible events that are enabled. Event set $S(\alpha)$ satisfying the above two conditions is also referred to as an admissible control decision and we denote by Γ the set of all admissible control decisions.

Then the closed-loop language of TDES G under supervisor S, denoted by $\mathcal{L}(S/G)$, is defined recursively as follows:

- $\epsilon \in \mathcal{L}(S/G)$;
- For any $s \in \mathcal{L}(S/G)$ and $\sigma \in \Sigma$
 - if $\sigma \in \Sigma_{act}$, then $s \sigma \in \mathcal{L}(S/G) \iff s \in E_G(s) \cap S_u(P(s))$.
 - if $\sigma = \text{tick}$, then $s \sigma \in \mathcal{L}(S/G) \iff [s \sigma \in E_G(s) \cap S_f(P(s)) = \emptyset]$.

The intuition of the above definition is as follows. For any standard event in Σ_{act}, it can happen if it is feasible and is enabled by S. However, for event tick, it can happen only when it is feasible and no feasible events are forced, i.e., event tick is not preempted.

2.3 Supervisor Synthesis Problem

The goal of the supervisor is to restrict the behavior of the system such that the closed-loop system satisfies some desired property. In this paper, we consider safety as the control objective. Formally, we consider a prefix-closed sub-language $K = \overline{K} \subseteq \mathcal{L}(G)$ as the safety specification. Then the maximally-permissive supervisor synthesis problem that we solve in this paper is formulated as follows.

Problem 1. Given a TDES G and a safety specification $K \subseteq \mathcal{L}(G)$, find a partial-observation supervisor $S : P(\mathcal{L}(G)) \to \Gamma$ such that

- S is safe, i.e., $\mathcal{L}(S/G) \subseteq K$; and
- S is maximally-permissive, i.e., for any S' that is safe, we have $\mathcal{L}(S'/G) \nsubseteq \mathcal{L}(S/G)$.

For the sake of simplicity, we assume that the specification language K is recognized by a strict sub-automaton $H = (X_H, \Sigma, \delta_H, x_0)$ of G, i.e., $\mathcal{L}(H) = K$, such that the following conditions hold:

- $\forall s \in \mathcal{L}(H) : \delta_H(x_0, s) = \delta(x_0, s)$; and
- $\forall s \in \mathcal{L}(H) \setminus \mathcal{L}(H) : \delta(x_0, s) \notin X_H$.

Note that this assumption is without loss of generality as we can always refine the state space of H such that the above conditions hold. Therefore, $X_H \subseteq X$ is essentially the set of legal states and a supervisor is safe if and only if $\forall s \in \mathcal{L}(S/G) : \delta(x_0, s) \notin X_H$.

Remark 2. In some applications, one wants to synthesize a supervisor that exactly achieves K. This problem is referred to as the supervisor existence problem and it has been shown by Takai and Ushio (2006) that controllability...
together with weak observability provide necessary and sufficient conditions for the supervisor existence problem. However, the supervisor synthesis problem considered here is more challenging. Partial solutions have been provided in Takai and Ushio (2006) and Cai et al. (2016), but none of the solutions is maximally permissive. To our knowledge, how to synthesize a maximally-permissive safe supervisor has not yet been solved in the timed setting.

3. UNOBSERVABLE REACH AND OBSERVABLE REACH

In this section, we first focus on investigating how the information about the system, i.e., state estimate, evolves during the control process in the timed setting.

Specifically, when a supervisor controls a TDES, there are two instants the information about the plant should be updated:

- when a new observable event occurs; and
- when a new control decision is issued.

The first scenario is captured by the observable reach defined as follows.

Definition 3. (Observable Reach) Let \(i \subseteq X \) be a set of states, \(\gamma = (\gamma_a, \gamma_f) \) be a control decision that is applied currently and \(\sigma \in \Sigma_o \) be a new observable event. Then the observable reach of \(i \) upon the occurrence of \(\sigma \) under control decision \(\gamma \), where \(\sigma \in \gamma_a \cup \{\text{tick}\} \), denoted by \(OR_o(i \mid \gamma) \), is the set of states that can be reached immediately. Formally,

- If \(\sigma \in \Sigma_{act} \), then
 \[OR_o(i \mid \gamma) := \{ \delta(x, \sigma) \in X : x \in i \} \]
- If \(\sigma = \text{tick} \), then
 \[OR_o(i \mid \gamma) := \{ \delta(x, \sigma) \in X : x \in i \land E_G(x) \cap \gamma_f = \emptyset \} \]

Now, suppose that the state estimate of the system is \(i \subseteq X \). When the supervisor makes a new control decision \(\gamma \), the system may reach a set of new states via some unobservable strings; such a set of states is called the unobservable reach. However, unlike the untimed case, where the enablement status of an event is fixed within its unobservable reach, the enablement status of event \(\text{tick} \) is dynamic within its unobservable reach in the timed setting as whether or not it is preempted depends on the existence of a feasible forcible event at that point. Therefore, we propose the following new definition of unobservable reach.

Definition 4. (Unobservable Reach) Let \(i \subseteq X \) be a set of states and \(\gamma = (\gamma_a, \gamma_f) \in 2^{\Sigma_{act}} \times 2^{\Sigma_{for}} \) be control decision. Then the unobservable reach of \(i \) under \(\gamma \), denoted by \(UR_u(i) \), is defined recursively as follows:

\[\forall i \subseteq UR_u(i) \]
\[\forall x \in UR_u(i), \sigma \in \gamma_a \cap \Sigma_{uo} \text{ such that } \delta(x, \sigma) = x' \text{, we have } x' \in UR_u(i) \]
\[\forall x \in UR_u(i), \text{ such that } E_G(x) \cap \gamma_f = \emptyset, \delta(x, \text{tick}) = x' \text{ and } \text{tick} \in \Sigma_{uo}, \text{ we have } x' \in UR_u(i) \]

Remark 1. In general, event \(\text{tick} \) can be either observable or unobservable depending on whether or not the system has a clock. According to Definitions 3 and 4, if \(\text{tick} \in \Sigma_o \), then the unobservable reach is the same as the untimed setting, while the observable reach is not. On the other hand, if \(\text{tick} \in \Sigma_{uo} \) then the observable reach is the same as the untimed setting, while the unobservable reach is not. Our definitions aim to capture both cases in a general manner.

The following results establish some of the properties of the proposed operators. The first lemma shows that the unobservable reach defined indeed yields a reachability closure.

Lemma 5. For any set of states \(i \subseteq X \) and any control decision \(\gamma \in \Gamma \), we have \(UR_o(i) = UR_o(UR_o(i)) \).

Lemma 6. For any state \(x \in UR_u(i) \), there exists a state \(x' \in i \) and a sequence of unobservable events \(u_1 u_2 \ldots u_m \in \Sigma_{uo} \) such that \(x = \delta(x', u_1 u_2 \ldots u_m) \) and \(x' = \delta(x', u_1 u_2 \ldots u_i) \in UR_u(i) \) for any \(i \leq m \).

The following example illustrates how the observable reach and the unobservable reach are computed.

Example 7. Let us consider TDES \(G \) shown in Figure 1. Let \(i_0 = \{0, 1, 2\} \), i.e., the system is possibly at states 0, 1 or 2, and the control decision is \(\gamma_0 = (\Sigma_{uc}, \emptyset) \), i.e., all controllable events are disabled and no event is forced. When new observable event \(a \in \Sigma_o \) occurs, we have \(i_1 = OR_o(i_0 \mid \gamma_0) = \{3, 4\} \). From state \(i_1 \), if we pick control decision \(\gamma_1 = (\Sigma_{uc} \cup \{c\}, \{o\}) \), then we have \(UR_o(i_1) = \{3, 4, 5\} \) since event \(o \) is feasible and forced at state 4 which preempts event \(\text{tick} \). On the other hand, if we pick control decision \(\gamma_2 = (\Sigma_{uc} \cup \{c\}, \emptyset) \), then we have \(UR_o(i_1) = \{3, 4, 5, 6, 7, 8\} \).

4. INCLUSIVE CONTROLLER

In this section, we introduce the notion of Inclusive Controller (IC) that combines the observable reach and the unobservable reach in order to describe the entire control process.

4.1 Definition of the Inclusion Controller

Definition 8. (Inclusive Controller) An inclusive controller \(T \) w.r.t. \(G \) is a 5-tuple \(T = (QT, \Sigma_o, \Gamma, h_T, Q_{0,T}) \), where

- \(QT \subseteq 2^X \times \Gamma \) is the set of states in \(T \), where each \(Q \)-state \(q \) is in the form of \((t, \gamma) = (t, (\gamma_a, \gamma_f)) \);
- \(\Sigma_o \) is the set of observable events in \(G \);
- \(\Gamma \subseteq 2^{\Sigma_{act}} \times 2^{\Sigma_{for}} \) is the set of admissible control decisions of \(G \);
- \(h_T : QT \times \Sigma_o \rightarrow 2^{QR} \) is the partial non-deterministic transition function from a state to a set of states satisfying the following constraints: for any \(q_1 = (t_1, \gamma_1) = \)
$(i_1, (\gamma_{1,a}, \gamma_1, f)), q_2 = (i_2, \gamma_2) = (i_2, (\gamma_{2,a}, \gamma_2, f)) \in QT$ for some states q_1, and $\sigma \in \Sigma_o$ such that $q_2 \in h_T(q_1, \sigma)$, we have

- $\sigma \in \gamma_{1,a} \cup \{\text{tick}\}$
- $i_2 = \text{event } c$ and force event o after o is observed, i.e.,

$$S(\epsilon) = (\Sigma_{uc}, \emptyset)$$

and

$$S(o) = (\Sigma_{uc} \cup \{c\}, \{o\})$$

Let us consider

$$(i_1, (\gamma_{1,a}, \gamma_1), q_2 = (i_2, \gamma_2) = (i_2, (\gamma_{2,a}, \gamma_2, f)) \in QT$$

for some states q_1, and $\sigma \in \Sigma_o$ such that $q_2 \in h_T(q_1, \sigma)$, we have

- $\sigma \in \gamma_{1,a} \cup \{\text{tick}\}$
- $i_2 = \text{event } c$ and force event o after o is observed, i.e.,

$$S(\epsilon) = (\Sigma_{uc}, \emptyset)$$

and

$$S(o) = (\Sigma_{uc} \cup \{c\}, \{o\})$$

As examples, consider

T the total inclusive controller for T in general, i.e., when $h_T(q_1, \sigma) = q_2 \in h_T(q_1, \sigma)$, we have

- $\sigma \in \gamma_{1,a} \cup \{\text{tick}\}$
- $i_2 = \text{event } c$ and force event o after o is observed, i.e.,

$$S(\epsilon) = (\Sigma_{uc}, \emptyset)$$

and

$$S(o) = (\Sigma_{uc} \cup \{c\}, \{o\})$$

Let us consider

$$(i_1, (\gamma_{1,a}, \gamma_1), q_2 = (i_2, \gamma_2) = (i_2, (\gamma_{2,a}, \gamma_2, f)) \in QT$$

for some states q_1, and $\sigma \in \Sigma_o$ such that $q_2 \in h_T(q_1, \sigma)$, we have

- $\sigma \in \gamma_{1,a} \cup \{\text{tick}\}$
- $i_2 = \text{event } c$ and force event o after o is observed, i.e.,

$$S(\epsilon) = (\Sigma_{uc}, \emptyset)$$

and

$$S(o) = (\Sigma_{uc} \cup \{c\}, \{o\})$$

Figure 2. Inclusive Controllers T_1 (depicted with both solid lines and dashed lines) and T_2 (depict with only solid lines) w.r.t. G_1. For the sake of simplicity, we use uc to denote all uncontrollable events here. Also, the dot on the right hand side of initial states means that all states on the two sides of the dot are pairwise connected.

4.2 Properties of the Inclusive Controller

In this subsection, we show that the inclusive controller and the transition rules defined indeed give the state estimate of the closed-loop control system.

As we discussed earlier, transition function $h : Q \times \Sigma_o \rightarrow 2^Q$ is non-deterministic as we may choose different control decisions after the same observation. Therefore, by incorporating the information of the control decision, the transition function becomes deterministic. To this end, we define a control-couple as a pair of an observable event and a control decision in the form of $(\sigma, \gamma) \in (\Sigma_o \times I)$. Then, for an inclusive control T, we define another transition function

$$H_T : Q \times (\Sigma_o \times I) \rightarrow Q$$

by: for any $q, q' \in Q, \sigma \in \Sigma_o$ and $\gamma \in I$, we have

$$H_T(q, (\sigma, \gamma)) = q'$$

if $q' \in h_T(q, \sigma)$ and $\gamma = C(q')$. Function H_T can also be extended to $H_T : Q \times (\Sigma_o \times I)^* \rightarrow Q$ recursively.

Now, let $S : P(\mathcal{L}(G)) \rightarrow \Gamma$ be a supervisor for TDES G and $\alpha = \sigma_1 \ldots \sigma_n \in P(\mathcal{L}(S/G))$ be a string of observable events where $\sigma_i \in \Sigma_o$. Then α induces the following sequence of control-couples

$$\xi_{\alpha,S} := (\sigma_1, S(\sigma_1))(\sigma_2, S(\sigma_1\sigma_2)) \ldots (\sigma_n, S(\sigma_1\ldots\sigma_{n-1})) \in (\Sigma_o \times \Gamma)^*$$

Note that the above sequence of control-couples does not contain the initial control decision $S(\epsilon)$. To encode this information, we define the initial state under S by

$$q_{\alpha,S} := (U_{S,\alpha}(\xi)) \in S(\epsilon).$$

Clearly, $q_{0,S}$ is also an initial state in $T(G)$. Therefore, starting from $q_{0,S}$ and by executing $\xi_{\alpha,S}$, we reach state $q_{\alpha,S} := H_T(q_{0,S}, \xi_{\alpha,S})$ in the inclusive controller.

Example 11. Recall the total inclusive controller T_1 in Figure 2. Let us consider a supervisor S that works as follows. Initially, S neither enable nor force any events, and then enable event c and force event o after o is observed, i.e.,

$$S(\epsilon) = (\Sigma_{uc}, \emptyset)$$

and

$$S(o) = (\Sigma_{uc} \cup \{c\}, \{o\})$$

Let us consider
\(\alpha = o\). Then we have \(q_{0,S} = (\{0,1,2\},(\Sigma_{uc},\emptyset))\) and
\(q_{\alpha,S} = H_T(q_{0,S},(o,S(o))) = (\{3,4,5\},(\Sigma_{uc} \cup \{c\},\{o\}))\).

The following result reveals that such a state reached is indeed the state estimate of the closed-loop system.

Theorem 12. Let \(S : P(\mathcal{L}(G)) \rightarrow \Gamma\) be a supervisor for TDES \(G\) and \(\alpha \in P(\mathcal{L}(S(G)))\) be an observable string. Then we have
\[I(q_{\alpha,S}) = \{\delta(x_0,s) \in X : s \in \mathcal{L}(S(G)) \land P(s) = \alpha\}.

5. SUPERVISOR SYNTHESIS PROCEDURE

5.1 All Inclusive Controller for Safety

By Theorem 12, we know that \(I(q_{\alpha,S})\) essentially captures all possible states reachable in the closed-loop system. Then the following theorem says that, to guarantee safety for a supervisor, it suffices to make sure that it will not reach a state whose first component contains an illegal state.

Theorem 13. Supervisor \(S\) is safe if and only if
\[\forall \alpha \in P(\mathcal{L}(S(G))) : I(q_{\alpha,S}) \subseteq X_H.

The above theorem suggests an approach for synthesizing a safe controller. In order to maintain safety, it suffices to make sure that any information state reached in the inclusive controller is safe. Formally, we say that an inclusive controller \(T = (Q_T,h_T,\Sigma_{uc},\Gamma,Q_0,T)\) is safe if for any \(q \in Q_T\), we have \(I(q) \subseteq X_H\). Then we define the All Inclusive Controller for Safety (AIC-Safe) as the “largest” safe inclusive controller as follows.

Definition 14. (All Inclusive Controller for Safety) The all inclusive controller for safety is a complete and safe inclusive controller
\[\mathcal{A}(G) = (Q_A,h_A,\Sigma_0,\Gamma,Q_0,A)\]
such that, for any complete inclusive controller \(T\) that is safe, we have \(T \subseteq \mathcal{A}(G)\).

The AIC-Safe can be constructed as follows. First, starting from all possible initial-states, we expand the entire state-space in which all states are subsets of \(X_H\). Then, we iteratively remove states that violates the completeness requirement, i.e., a state from which some feasible events are not defined (in order to guarantee safety). Note that removing incomplete state may introduce new incomplete states; hence this step needs to be performed iteratively until the resulting subsystem is complete. Such a construction procedure is the same as the untimed case and the reader is referred to Yin and Lafontune (2016b) for more details. Here, we use an example to illustrate the AIC and how it is constructed.

Example 15. Still, we consider TDES \(G\) shown in Figure 1 with \(X \setminus X_H = \{7,8\}\). Then the inclusive controller \(T_2\) in Figure 2 it is in fact the AIC-Safe \(\mathcal{A}(G)\) for \(G\). Compared with the total inclusive controller \(T_1 = T(G)\) in the same figure, the dashed-line states and transitions are removed since \(7,8 \not\in X_H\). By removing this state, the remaining structure is already complete, which is the AIC-Safe.

5.2 Property of the AIC-Safe

Let \(T\) be an inclusive controller, \(q \in Q_T\) be a state and \(\sigma \in \Sigma_0\) be an observable event. We define
\[C_T(q,\sigma) := \{C(q') \in \Gamma : q' \in h_T(q,\sigma)\}\]
as the set of control decisions that may be issued upon the occurrence of \(\sigma\) from state \(q\). Then we can relate a supervisor and an inclusive controller with the help of the following definition.

Definition 16. Given a complete inclusive controller \(T\), a supervisor \(S\) is said to be included in \(T\) if
- \(q_0,S \in Q_{0,T}\)
- for any \(\alpha \sigma \in P(\mathcal{L}(S(G)))\), where \(\alpha \in \Sigma_0\) and \(\sigma \in \Sigma_o\), we have \(S(\alpha \sigma) \in C_T(H_T(q_{0,S},L_{\alpha,S},\sigma))\).

The set of all supervisors included in \(T\) is denote by \(S(T)\).

The following result reveals that the AIC-Safe includes all safe supervisors.

Theorem 17. A supervisor \(S\) is safe iff \(S \in S(\mathcal{A}(G))\).

5.3 Extract a Supervisor from AIC-Safe

By Theorem 17, to synthesize a safe supervisor, it suffices to “extract” a subsystem from \(\mathcal{A}(G)\). Specifically, we want to extract a subsystem that enables as many events as possible at each instant. To this end, let \(q = (s, (T_{\alpha}, T_{\gamma})) \in \mathcal{X} \times \Gamma\) be a state in the inclusive controller. We define
\[\text{Feas}(q) = \left\{ x \in \Sigma : x \in s \land \delta(x,\sigma) \land \left(\sigma \in \Sigma_{act} \land \sigma \in \gamma_{0}\right) \lor \left(\sigma = \text{tick} \land E_G(x) \land \gamma = \emptyset\right) \right\}\]
as the set of events that are feasible under control decision \((T_{\alpha}, T_{\gamma})\) at state \(s\). Therefore, when comparing the permissiveness of two control decisions, we should not just compare these sets directly since some enabled events may not be feasible. Instead, we should compare the corresponding set of feasible events under each control decision.

Based on the above discuss, we propose the following approach for exacting a subsystem of \(\mathcal{A}(G)\).

- Initially, we choose an initial state \(q_0 \in Q_0,A\) that contains the maximum number of feasible events among all initial states, i.e.,
 \[\forall q^0_0 \in Q_0,A : |\text{Feas}(q^0_0)| \leq |\text{Feas}(q_0)|\].
- At each state \(q \) reached, upon the occurrence of observable event \(\sigma \in \Sigma_0\), we choose a successor state \(q' \in h_A(q,\sigma)\) that contains the maximum number of feasible events among all successor states,
 \[\forall q'^0 \in h_A(q,\sigma) : |\text{Feas}(q'^0)| \leq |\text{Feas}(q')|\].
- We repeat the above procedure until all reachable states are visited (either by a depth-first search or a breath-first search) and denote by \(T^* \subseteq \mathcal{A}(G)\) the resulting inclusive controller.

Clearly, \(T^*\) includes a unique supervisor as the successor state upon the occurrence of each event is unique, and we denote by \(S^*\) such a supervisor. Then the following theorem shows that \(S^*\) indeed solves Problem 1.

Theorem 18. \(S^*\) solves Problem 1, i.e., \(S^*\) is a maximally-permissive safe supervisor.

We illustrate how to synthesize a safe and maximally-permissive supervisor by the following example.

Example 19. Again, we consider our running example. To extract a supervisor from \(\mathcal{A}(G)\) in Figure 2, we apply the
Fig. 3. The IC T_3 where the supervisor extracted by our methods from $A(G)$ was uniquely included in.

Fig. 4. Automaton that generates the closed-loop language $\mathcal{L}(S^*/G)$.

method mentioned above and thus obtain $T_3 \subseteq A(G)$ shown in Figure 3. Initially, for any $q \in Q_0$, we have $|\text{FEAS}(q)| = 1$; thus we can choose $((0,1,2), (\Sigma_{uc} \cup \{c\}, \{o\}))$ as the initial state. Then after observing o, we choose $((3,4,5), (\Sigma_{uc} \cup \{c\}, \{o\}))$ as the successor state. Again, if o is observed, we can choose successor state $((3,4,6), (\Sigma_{uc}, \emptyset))$. This results in the inclusive controller T^* shown in Figure 3. Let S^* be the unique supervisor included in T^*. The closed-loop language under control $\mathcal{L}(S^*/G)$ is shown in Figure 4.

Remark 2. Note that solution to Problem 1 is not unique since for each set of successor states $h_A(q, \sigma)$, there may have two different maximal control decisions such that $|\text{FEAS}(q)| = |\text{FEAS}(q')|$ but $\text{FEAS}(q) \neq \text{FEAS}(q')$. Our algorithm just randomly choose a successor state with the maximum number of feasible events without any additional criterion.

6. CONCLUSION

In this paper, we solved the problem of synthesizing maximally-permissive safe supervisors for TDES under partial observation. We considered a general setting where the supervisor can choose the set of events to force. We investigate how information evolves in the closed-loop system in the timed setting. A new automaton containing possible safe control decisions called the AIC-safe was defined. We showed how to synthesize a maximally-permissive safe supervisor from the AIC-safe. Our results generalize previous synthesis techniques from the untimed setting to the timed setting. In the future, we plan to investigate the non-blocking control problem for TDES.

REFERENCES

Alves, M., Carvalho, L., and Basilio, J. (2017). Supervisory control of timed networked discrete event systems. In 56th IEEE CDC, 4859–4865.

Ben Hadj-Alouane, N., Lafortune, S., and Lin, F. (1996). Centralized and distributed algorithms for on-line synthesis of maximal control policies under partial observation. Discrete Event Dyn. Syst.: Theory Appl., 6(4), 379–427.

Brandin, B. and Wonham, W. (1994). Supervisory control of timed discrete-event systems. IEEE Trans. Automatic Control, 39(2), 329–342.

Cai, K., Zhang, R., and Wonham, W. (2016). Relative observability and coobservability of timed discrete-event systems. IEEE Trans. Automatic Control, 61(11), 3382–3395.

Cassandras, C. and Lafortune, S. (2008). Introduction to Discrete Event Systems. Springer, 2nd edition.

Lin, F. and Wonham, W. (1995). Supervisory control of timed discrete-event systems under partial observation. IEEE Trans. Automatic Control, 40(3), 558–562.

Miura, S. and Takai, S. (2018). Decentralized control of timed discrete event systems with conditional decisions for enforcement of forcible events. In IEEE Conference on Decision and Control, 3956–3961.

Pruekprasert, S. and Us hiio, T. (2019). Supervisory control of communicating timed discrete event systems for state avoidance problem. IEEE Control Systems Letters, 4(1), 259–264.

Rahnamoon, S. and Wonham, W. (2018). State-based control of timed discrete-event systems. In IEEE Conference on Decision and Control, 4833–4838.

Rashidinejad, A., Reniers, M., and Feng, L. (2018). Supervisory control of timed discrete-event systems subject to communication delays and non-fifo observations. In 14th International Workshop on Discrete Event Systems, 456–463.

Takai, S. (2000). Robust supervisory control of a class of timed discrete event systems under partial observation. Systems & Control Letters, 39(4), 267–273.

Takai, S. and Us hiio, T. (2003). Effective computation of an $L_m(G)$-closed, controllable, and observable sublanguage arising in supervisory control. Systems & Control Letters, 49(3), 191–200.

Takai, S. and Us hiio, T. (2006). A new class of supervisors for timed discrete event systems under partial observation. Discrete Event Dynamic Systems, 16(2), 257–278.

Yin, X. (2017). Supervisor synthesis for mealy automata with output functions: A model transformation approach. IEEE Trans. Automatic Control, 62(5), 2576–2581.

Yin, X. and Lafortune, S. (2016a). Synthesis of maximally permissive supervisors for partially observed discrete event systems. IEEE Trans. Automatic Control, 61(5), 1239–1254.

Yin, X. and Lafortune, S. (2016b). A uniform approach for synthesizing property-enforcing supervisors for partially-observed discrete-event systems. IEEE Trans. Automatic Control, 61(8), 2140–2154.

Yin, X. and Lafortune, S. (2017). Synthesis of maximally-permissive supervisors for the range control problem. IEEE Trans. Automatic Control, 62(8), 3914–3929.

Yin, X. and Lafortune, S. (2018). Synthesis of maximally permissive nonblocking supervisors for the lower bound containment problem. IEEE Trans. Automatic Control, 63(12), 4435–4441.

Zhang, R. and Cai, K. (2019). Supervisor localization of timed discrete-event systems under partial observation. IEEE Trans. Automatic Control.