Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics

Adam T Naito and David M Cairns

The Department of Geography, Texas A&M University, 810 Eller O&M Building, MS 3147 TAMU, College Station, TX 77843, USA

E-mail: adam.naito@tamu.edu

Received 1 August 2011
Accepted for publication 1 November 2011
Published 15 November 2011
Online at stacks.iop.org/ERL/6/045506

Abstract

Shrub expansion is a global phenomenon that is gaining increased attention in the Arctic. Recent work employing the use of oblique aerial photographs suggested a consistent pattern of positive change in shrub cover across the North Slope of Alaska. The greatest amounts of change occurred in valley slopes and floodplains. We studied the association between shrub cover change and topographically derived hydrologic characteristics in five areas in northern Alaska between the 1970s and 2000s. Change in total shrub cover ranged from −0.65% to 46.56%. Change in floodplain shrub cover ranged from 3.38% to 76.22%. Shrubs are preferentially expanding into areas of higher topographic wetness index (TWI) values where the potential for moisture accumulation or drainage is greater. In addition, we found that floodplain shrub development was strongly associated with high TWI values and a decreasing average distance between shrubs and the river bank. This suggests an interacting influence of substrate removal and stabilization as a consequence of increased vegetation cover.

Keywords: shrub expansion, riparian vegetation, hydrology, topographic wetness index, Arctic, Alaska

1. Introduction

Shrub expansion is a widely documented phenomenon occurring in the grasslands and savannas of North America, South America, Africa and Australia. Livestock herding, changes in land cover and land use, and climatic warming are the most widely attributed mechanisms of this expansion (Archer et al 1995, Bisigato and Bertiller 2004, Gibbens et al 2005, Jeltsch et al 1997, Van Auken 2009, Naito and Cairns 2011). Increasingly, shrub expansion is also believed to be a pan-Arctic phenomenon (e.g., Tape et al 2006). Along with sea ice melt and permafrost decline, shrub expansion is one of the most dominant and recognized components of Arctic change (Epstein et al 2000, Sturm et al 2001, Bunn et al 2005, Serreze and Francis 2006, Sturm et al 2005, McGuire et al 2006). Mechanisms of Arctic shrub expansion have largely been attributed to increasing temperatures and subsequent productivity (e.g., Myneni et al 1997, Jia et al 2003, Goetz et al 2005, Bunn and Goetz et al 2006, Walker et al 2006, Forbes et al 2010, Hallinger et al 2010) and increased soil nutrient production by microorganisms as a consequence of snowpack retention by shrubs (Jonasson et al 1999, Sturm et al 2001, Liston et al 2002, Sturm et al 2005).

Tape et al (2006) conducted what is perhaps the most expansive examination of Arctic shrub expansion on the North Slope of Alaska. Using pairs of oblique aerial photographs taken in the 1940s and early 2000s, Tape et al (2006) assessed changes in shrub cover within four distinct geomorphic divisions (floodplains, river terraces, valley slopes and interfluves) and determined that increases in shrub cover occurred within this time period. The greatest amount of change occurred in floodplains and valley slopes. In addition, Tape et al (2006) proposed three types of shrub expansion,
Figure 1. Map of the BRNS and the five areas detailed in this study.

which include increasing shrub size, increased number of patches and in-filling of shrub patches.

Shrub expansion, however, is not occurring at uniform rates throughout the Arctic, nor even within specific Arctic regions. In addition, it is not clear what may be driving shrub expansion in geomorphic units such as the floodplains or other similar riparian areas. Vegetation is closely linked to hydrologic and geomorphologic dynamics (Seyfried and Wilcox 1995). Compared to a rich literature focused on temperate zones, Arctic hydrology, riparian ecosystems and their association with geomorphologic characteristics remains understudied (e.g., Woo et al 2008, Mann et al 2010).

Riparian vegetation development is heavily influenced by water flow dynamics (Malanson 1993). Establishment of vegetation in riparian areas is contingent on a variety of fluvial processes, such as periodic flooding (Bejarano et al 2011), flooding characteristics such as flood level, flood duration, frequency, magnitude, and seasonality (Bendix and Hupp 2000, Glenz et al 2006), channel type (whether braided or meandering) (DeWine and Cooper 2007), channelization (Hupp 1992, Poff et al 1997) and physical gradients (e.g., moisture, disturbance, drought stress, sediment size, precipitation, vegetation age) (Friedman et al 2006). Long-term measurements of these characteristics provide a basis for understanding future trends in vegetation and fluvial landform development.

Beyond floodplains, variability in hydrologic conditions like soil moisture and groundwater flow is largely controlled by topographic characteristics (Sorensen et al 2006). A topographic wetness index (TWI) provides one means for assessing and characterizing these conditions. This index can be easily derived from gridded elevation data (Sorensen et al 2006) like a digital elevation model (DEM). It has been used extensively in studies of hydrologic characteristics (e.g., Beven et al 1988) and for establishing the relationship between hydrology and vegetation (e.g., Wu and Archer 2005).

We explored the relationship between Arctic shrubs and fluvial characteristics at five sites throughout the northern Brooks Range and North Slope uplands (hereafter referred to as BRNS) of Alaska previously studied by Tape et al (2006) (figure 1). Our objectives were to determine: (1) changes in area of shrubs using aerial photography, with particular focus on the floodplains, (2) the existence of an association between topographically derived hydrologic characteristics (using the TWI as a proxy) and shrub expansion within each of the four geomorphic units proposed by Tape et al (2006), and (3) develop a relationship between fluvial characteristics derived from aerial photography and vegetation dynamics. In the case of objective 2, we sought to objectively determine whether frequency distributions of TWI values differed among geomorphic unit types. Fluvial characteristics that we assessed included channel width and the average distance between areas undergoing shrub cover change and the river bank.

2. Methods

2.1. Study area

The BRNS occupies approximately 220,000 km² in northern Alaska. The basin is bound by the Arctic coastal plain in the north, the Brooks Range in the south, the Noatak and Kokolik Rivers in the west, and the Jago River in the east. Several river valleys separated by higher elevation interfluvies are key characteristics of this landscape. The basin lies largely within the low Arctic, a vegetation zone dominated by dwarf shrubs (Walker et al 2005). Typical shrub species include Alnus viridis (Chaix) ssp. crispa (Aiton) Turrill, Betula nana L., Salix glauca L., and S. pulchra Cham. (Walker 2000, Tape et al 2006, USDA NRCS 2011). Streams, floodplains, and associated riparian areas are a key constituent of Arctic terrestrial ecosystems. We examined five areas in the BRNS
2.2. Aerial photograph acquisition and processing

Digital scans (14 \(\mu \)m scanning resolution) of 9\(^\circ\) × 9\(^\circ\) historic vertical aerial photographs for the five sites were acquired from the United States Geological Survey Earth Resources Observation and Science (USGS EROS) (table 1). QuickBird/Worldview (QB-02) (0.5 m resolution), GeoEye-1, and IKONOS-2 (0.5–0.8 m resolution) (GE-1 and IK-2) imagery for each site was also acquired from archives at DigitalGlobe, Inc and the GeoEye Foundation (table 1). The QB-02 imagery is a pan-sharpened multispectral product. In the case of the GE-1 and IK-2 products, the panchromatic and multispectral bands were acquired separately. The multispectral bands for GE-1 and IK-2 were pan-sharpened in ENVI 4.7 (ITT Visual Information Solutions 2009) using the Gram–Schmidt transformation. These high-resolution images are preferred because they facilitate visual interpretation of landscape characteristics and can serve as a source for spatially referencing other imagery (e.g., Lantz et al 2010). Ancillary information from ground control point networks and high-resolution elevation data sets are not available in northern Alaska.

The USGS EROS photographs from the 1970s were processed and georeferenced to the QB-02/GE-1/IK-2 imagery using 80–100 ground control points and the Delaunay triangulation transformation (figure 2(a)). The USGS and QB-02/GE-1/IK-2 images were then resampled to a pixel resolution of 1 m. Shrub patches were identified and delineated on both sets of imagery using the Iterative self-organizing data analysis (ISODATA) unsupervised classification algorithm in ENVI 4.7 with a maximum of 20 classes and 20 iterations (figure 2(b)). Spectral classes most closely resembling shrubs were isolated and converted to polygons using a minimum mapping unit of 1 m (figure 2(c)). Errors in classification were corrected manually using visual interpretation by overlaying the polygons on the images within a Geographic Information System developed using ArcGIS 9.3.1 (ESRI 2009) and checked for correspondence. Shrub polygons in each map were then classified as present (1) or absent (0) (figure 2(d)). This procedure was then repeated for the next available image at each site. The process of converting the shrub spectral classes to polygons was used only to aid in the correction process, and polygons were not simplified in order to preserve the original raster boundaries. We did not distinguish among shrub genera because of similarities in their spectral characteristics as apparent on the aerial photographs (e.g., Robinson et al 2008). Change detection between the two final raster maps for each site was facilitated by using map algebra to ‘subtract’ the 2000s map from the 1970s map. The resulting maps classified pixels into one of three categories (1, 0, and −1), representing gain, no change, and loss, respectively (figure 2(e)).

We used digital copies of the oblique photograph pairs used in Tape et al (2006) to assess the accuracy of our classification of shrubs in the 2000s. In this situation, oblique aerial photographs provided the best source for ground information as shrub patches depicted in these photographs are clearly distinguishable from the underlying tundra matrix. The area covered by shrubs in each raster map was calculated using FRAGSTATS 3.3 (McGarigal et al 2002).

2.3. TWI preparation and analysis

The association between the presence of shrubs and hydrological characteristics as a function of topography was investigated using the TWI proposed by Beven and Kirkby (1979). This index is defined as the natural log of the ratio between the upslope contributing area (\(a \)) and slope per cent (\(b \)), and is represented as an equation by:

\[
\text{TWI} = \ln(a/\tan b). \tag{1}
\]

Pixels possessing larger TWI values are located in areas with a greater upslope catchment area (large value of \(a \)), and have more potential to be wetter than surrounding areas (Wu and Archer 2005). Specifically, areas of high values can either be well-drained (high value of \(a \) and \(b \)) or relatively stagnant due to a minimal slope gradation (small value of \(b \)) (Zinke et al 2005). In the context of the BRNS, valley

Site	Location	Source	Date of acquisition	Type	Native pixel resolution (m)
A	68° 23′ 37.238″N	USGS AP\(^a\)	19 July, 1977	CIR\(^b\)	0.94
	159° 51′ 12.340″W	GE-1\(^c\)	21 May, 2010	Pan MS\(^d\)	0.80/3.22
B	68° 57′ 17.027″N	USGS AP	22 June, 1974	Pan\(^e\)	1.9
	155° 57′ 19.575″W	QB-02\(^f\)	17 August, 2008	Pan MS	0.5
C	68° 22′ 15.233″N	USGS AP	1 June, 1978	CIR	0.88
	154° 0′ 54.060″W	GE-1	20 May, 2009	Pan MS	0.50/2.00
D	69° 9′ 12.244″N	IK-2\(^g\)	28 June, 1978	CIR	0.91
	150° 52′ 49.995″W	USGS AP	14 August, 2010	Pan MS	0.50/2.00
E	69° 7′ 21.369″N	IK-2	28 June, 1978	CIR	0.91
	150° 51′ 28.544″W	USGS AP	14 August, 2010	Pan MS	0.50/2.00

\(^a\) United States Geological Survey aerial photograph. \(^b\) Color infrared image. \(^c\) GeoEye-1 satellite. \(^d\) Panchromatic-sharpened multispectral image. \(^e\) Panchromatic (black and white) image. \(^f\) QuickBird 02 satellite. \(^g\) IKONOS-2 satellite.
Figure 2. Procedure for processing and classifying digital images, and associating classified shrubs with the TWI. (a) Panchromatic aerial photograph of Colville River from 1977 georectified to pan-sharpened color QuickBird image from 2008. (b) Spectral classes on 2008 image identified by ISODATA classification algorithm. (c) Isolated spectral classes from (b) most closely representing shrubs. (d) Corrected polygons from (c) converted to presence (green) and absence (white). (e) Difference map identifying gain (blue), loss (red), or no change (yellow) in shrub cover between 1977 and 2008. (f) Calculated TWI index from digital elevation model of same area. Lighter shades are representative of progressively higher TWI values.

Mosaics of 1 arc-s, 30.88 m resolution ASTER GDEM of the North Slope were acquired from the Alaska Mapped Statewide Digital Mapping Initiative. The TWI index was calculated using the TauDEM 5.0 (Terrain Analysis Using Digital Elevation Models) software suite (Tarboton 2010) using the Dinf flow direction calculation method (Tarboton 1997). TWI values were then binned into integer categories ranging from 0–21 (figure 2(f)).

The Geospatial Modeling Environment (GME) (Beyer 2009) software was used to generate 2000 randomly selected points within each study area. Each point was then spatially associated to its corresponding pixel values for the difference map (1, 0, −1) and TWI map. Points from each site were then merged into one dataset.

Statistical tests were carried out using S-PLUS 8.1 (TIBCO 2008). Because the data were not normally distributed, non-parametric Kruskal–Wallis and Wilcoxon rank-sum tests were used to determine the significance of shifts in the frequency distribution of TWI values within each change category.

2.4. Regression analysis

Spectral classes created by the ISODATA process most closely matching the river channels were isolated and converted to polygons. These polygon features were collapsed into single centerlines that extended the longitudinal length of the main channel of the river. GME was used to generate points at 5 m intervals along the centerlines. These served as the origins for lines perpendicular to the center that extended to the banks of the river. The lengths of these lines were then calculated within the GIS to determine channel width at each point along the centerline. Distance from the river bank was determined by generating raster layers representing straight-line Euclidean distance from the river polygon boundaries using the ArcGIS Spatial Analyst (ESRI 2009).

Sample points from the TWI analysis were subset to those present only in the floodplains. Points associated with no change in shrub cover were removed from this subset. The remaining points were then spatially associated with the distance raster layers. Floodplain sample points were matched with their closest river centerline point to determine the distance to a river and the width of the river at that point. Each floodplain sample point therefore contained attributes representing binomial change in shrub cover, TWI value, distance from the river bank in the 1970s and 2000s, and river channel width. Additional attributes were created for bank distance and channel width differences between the two decades. These attributes were used to create a binomial generalized linear model using logistic regression in S-PLUS 8.1 (TIBCO 2008).
3. Results

3.1. Changes in shrub cover

Four out of the five sites we examined experienced an increase in shrub cover, while one site experienced a subtle decrease. An increase in shrub cover within floodplains also occurred within all five areas, and ranged from +3.38% (site D) to +76.22% (site A) (table 2 and figure 3).

3.2. Association between shrub cover changes and TWI

Of the 10000 total sampled points from the five areas we examined, 14.9% underwent an increase in shrub cover (conversion from tundra to shrub), 12.42% underwent a decrease (conversion from shrub to tundra), and 72.68% experienced no change (10.76% in shrub to shrub, and 61.92% tundra to tundra). All frequency distributions of TWI values in each study area were non-normally distributed ($K = 0.1655$, $p < 0.01$). The Kruskal–Wallis rank-sum test highlighted statistically significant differences among the categories ($\chi^2 = 17.07, p = 0.0002$). Wilcoxon rank-sum tests determined that TWI frequency distributions for sampled points that gained shrub cover were significantly higher than those that lost cover ($Z = 2.1006, p = 0.0178$) as well as those experiencing no change ($Z = 4.1085, p < 0.01$) (figure 2).

3.3. Association between floodplain shrub dynamics and fluvial characteristics

Binomial logistic regression of variables related to shrub cover, TWI values and river channel characteristics suggests a relationship between the development of floodplain shrubs and migration of the river channel. The model statistics are described in table 3. The difference in distance between

Table 2. Change in area of shrub patches between years. Per cent of change and annual per cent rate of change in cover between years is provided in the bold columns.

Study area	Total area of shrubs (ha)	Area of floodplain shrubs (ha)						
	1970s	2000s	% change	Annual % rate of change	1970s	2000s	% change	Annual % rate of change
A	252.89	287.25	13.59	0.41	62.29	109.77	76.22	2.31
B	274.17	361.59	31.89	0.94	188.28	224.04	19	0.56
C	241.14	353.43	46.56	1.50	29.34	42.89	46.17	1.49
D	103.26	102.59	0.65	-0.02	52.92	54.71	3.38	0.12
E	129.79	166.65	28.4	0.89	60.8	93.09	53.1	1.66

Figure 3. Maps of each of the five study areas detailing TWI values in relation to change in shrub cover between the 1970s and 2000s. Note the areas classified as ‘gain’ are generally spatially associated with areas of high TWI values. Such values typically occur in drainage channels or flatlands.
Table 3. Model statistics for the generalized linear model using logistic regression. The GLM formula is indicated by: GLNC ~ DIFF.DIST + TWI + WIDTH.1970 + DIFF.WID, where GLNC represents the value for shrub cover change (−1, 0, 1), DIFF.DIST represents the difference in the distance between shrubs and the river bank between the 1970s and 2000s, TWI is the topographic wetness index value, WIDTH.1970 is the width of the river bank in 1970, and DIFF.WID is the difference in the width of the river channel between the 1970s and 2000s. SE represents standard error, and df represents degrees of freedom.

Coefficients	Analysis of deviance	p					
Variable	Value	t-value	df	Deviance	Residual df	Residual deviance	
DIFF.DIST	0.0015	3.1813	1	14.6035	1044	1425.498	0.0001
TWI	0.0717	2.4938	1	7.6162	1043	1417.882	0.0058
WIDTH.1970	0.0009	0.4951	1	1.6617	1042	1416.22	0.1974
DIFF.WID	−0.0001	−0.0659	1	0.0043	1041	1416.216	0.9474

sampled shrubs and the location of the nearest river bank (Wald \(\chi^2 = 10.12, p = 0.0001 \)) and the TWI value (Wald \(\chi^2 = 6.22, p = 0.005 \)) provide the greatest explanatory power. The floodplain TWI values ranged from 4 to 18, with a median value of 8. The median distance between river bank and shrub cover decreased from 54.47 m in the 1970s to 37.71 m in the late 2000s. Differences in river channel width were not significant.

4. Discussion

4.1. Changes in shrub cover

Our results regarding shrub expansion characteristics on the North Slope largely agree with the findings of Tape et al. (2006). Their visual analysis of repeat oblique aerial photographs revealed that shrub cover change across the North Slope between the late 1940s and early 2000s ranged from +3 to +80%. With the exception of site D, total shrub cover change in our study falls well within this range. Total shrub cover figures for the 2000s in sites A and C are likely to be underestimates. These images were acquired in May, and snow patches were still visible on the ground, particularly on valley slopes and interfluvies. Snow covers 2.23% of the 2010 image in site A and 1.3% of the 2009 image in site C.

4.2. Associations between shrub dynamics and fluvial characteristics on valley slopes

The TWI index was useful for inferring relationships between vegetation, hydrology, and geomorphology. Our non-parametric statistical testing suggests a significant association between shrub development and topographically derived hydrologic characteristics. Since the 1970s, shrubs have generally expanded into areas of greater TWI values. This means that shrubs are preferentially developing in areas that have a greater potential for accumulating moisture. Visual inspection of the aerial images confirms that valley slope shrubs are expanding upslope along hill slope water tracks (sensu McNamara et al. 1999). These drainages are typically shallower than the neighboring hill slopes and serve as the primary route for downhill water migration. The TWI captures these features by representing them with higher index values. Future studies incorporating the use of a TWI in conjunction with modeling and field measurements will help to assess potential impacts on the hydrology of the Arctic system.

4.3. Association between shrub expansion/development and floodplain characteristics

The binomial logistic regression shows that positive change in floodplain shrub cover is associated with: (1) a decreasing distance between shrubs and the river bank, and (2) preferential expansion onto areas with high TWI values. Given that we observed a net increase in shrub cover, we conclude that the overall median distance between shrubs and the river banks will continue to decrease as expansion continues.

Visual inspection of the aerial photographs suggests that, while unvegetated sediment bars are visible along the river course in the 1970s, many of these have disappeared by the 2000s. This could be attributed to deposits providing a substrate for primary succession of shrubs (e.g., Douglas 1989), erosion of these deposits by the river channels, or channel migration (e.g., Konrad et al. 2011). Since the two mass-wasting events during the Pleistocene–Holocene transition (Mann et al. 2010), rivers in northern Alaska have become increasingly decoupled from valley slope sediment inputs. While deposition and erosion of sediment still occur, the rivers have transported much of the sediment input from those events (Mann et al. 2010). This suggests that overall sediment input has decreased over time, thereby reducing overall sediment loads in the channels. The presence of vegetation can stabilize otherwise ephemeral features like sediment bars, reducing their susceptibility to erosion (Konrad et al. 2011). This has the effect of restricting channel migration.

Warming Arctic temperatures will lead to earlier river ice break up and later freeze-up, thereby increasing evapotranspiration. Prowse et al. (2006) argue that this will lead to diminished surface water and will be compounded by increased infiltration as a result of permafrost loss. The consequence of this will be reduced spring peak flows (Prowse et al. 2006) and potentially less flood-induced disturbance. This would likely improve survivorship of floodplain shrubs.

5. Conclusion

Shrubs are preferentially expanding into areas with greater potential for high drainage or moisture accumulation. Positive change in shrub cover is associated with both higher TWI values and a decrease in the distance to the river bank. Considering the rapid terrestrial changes occurring as a result...
of climatic warming, refining our understanding of the linkages between vegetation development and hydrology is critical to predicting the future state of the Arctic.

Acknowledgments

This research was funded by grants from the National Science Foundation (ARC-0806506) and the GeoEye Foundation. We would like to thank Ms Elizabeth Doerr at the GeoEye Foundation for her support and furnishing the GeoEye-1 and IKONOS-2 imagery. We would also like to extend our thanks to Dr Bradford Wilcox and two anonymous reviewers for constructive comments on earlier versions of this manuscript.

References

Archer S, Schimel D S and Holland E A 1995 Mechanisms of shrubland expansion: land use, climate or CO2. Clim. Change 29 91–9

Bejarano M D, Nilsson C, Del Tanago M G and Marchamalo M 2011 Responses of riparian trees and shrubs to flow regulation along a boreal stream in northern Sweden Freshwater Biol. 56 853–66

Bendix J and Hupp C R 2000 Hydrological and geomorphological impacts on riparian plant communities Hydrolog. Process. 14 2977–90

Beven K J and Kirkby M J 1979 A physically based, variable heterogeneity—catchment morphology and catchment response J. Hydrol. 100 353–75

Beyer H K 2009 Geospatial Modelling Environment Software (www.spatial ecology.com)

Bisigato A J and Bertiller M B 2004 Temporal and micro-spatial patterning of seedling establishment. Consequences for patch dynamics in the southern Monte, Argentina Plant Ecol. 174 235–46

Bunn A G and Goetz S J 2006 Trends in satellite-observed circumpolar photosynthetic activity from 1982 to 2003: the influence of seasonality, cover type, and vegetation density Earth Interact. 10 1–19

Bunn A G, Goetz S J and Fiske G J 2005 Observed and predicted responses of plant growth to climate across Canada Geophys. Res. Lett. 32 L16710

DeWine J M and Cooper D J 2007 Effects of river regulation on riparian box elder (Acer negundo) forests in canyons of the upper Colorado River Basin, USA Wetlands 27 278–89

Douglas D A 1989 Clonal growth of Salix setchelliana on glacial river gravel bars in Alaska J. Ecol. 77 112–26

Epstein H E, Walker M D, Chapin F S and Starfield A M 2000 A transient, nutrient-based model of Arctic plant community response to climatic warming Ecol. Appl. 10 824–41

Environmental Systems Research Institute, Inc (ESRI) 2009 ArcGIS 9.3.1 Software (Redlands, CA)

Forbes B C, Fauria M M and Zetterberg P 2010 Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows Glob. Change Biol. 16 1542–54

Friedman J M, Auble G T, Andrews E D, Kittel G, Madole R F, Griffin E R and Allred T M 2006 Transverse and longitudinal variation in woody riparian vegetation along a montane river West. North Am. Naturalist 66 78–91

Gibbens R F, McNeely R P, Havstad K M, Beck R F and Nolen B 2005 Vegetation changes in the Jornada Basin from 1858 to 1998 J. Arid Environ. 61 651–68

Glenz C, Schlappefer R, Iorgulescu I and Kienast F 2006 Flooding tolerance of central European tree and shrub species For. Ecol. Manage. 235 1–13

Goetz S J, Bunn A G, Fiske G J and Houghton R A 2005 Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbance Proc. Natl Acad. Sci. USA 102 13521–5

Hallinger M, Manthey M and Wilmking M 2010 Establishing a missing link: warm summers and winter snow cover promote shrub expansion into alpine tundra in Scandinavia New Phytol. 186 890–9

Hupp C R 1992 Riparian vegetation recovery patterns following stream channelization—a geomorphic perspective Ecology 73 1209–26

ITT Visual Information Solutions 2009 ENVI 4.7 Software (Boulder, CO)

Jeltsch F, Milton S J, Dean W R J and Rooyen N 1997 Simulated pattern formation around artificial waterholes in the semi-arid Kalahari J. Veg. Sci. 8 177–88

Jia G J, Epstein H E and Walker D A 2003 Greening of Arctic Alaska, 1981–2001 Geophys. Res. Lett. 30 1–14

Jonasson S, Michelsen A, Schmitz I K and Nielsen E V 1999 Responses in microbes and plants to changed temperature, nutrient, and light regimes in the Arctic Ecology 80 1828–43

Konrad C, BERGE, H., Fuerstenberg R, Steff K, Olsen T and Guyenet J 2011 Channel dynamics in the Middle Green River, Washington, from 1936 to 2002 Northwest Sci. 85 1–14

Lantz T C, Gergel S E and Kokej S V 2010 Spatial heterogeneity in the shrub tundra ecotone in the Mackenzie Delta Region, northwest territories: implications for Arctic environmental change Ecosystems 13 194–204

Liston G E, McFadden J P, Sturm M and Pielke R A 2002 Modelled changes in Arctic tundra snow, energy and moisture fluxes due to increased shrubs Glob. Change Biol. 8 17–32

Malanson G P 1993 Riparian Landscapes (Cambridge: Cambridge University Press)

Mann D H, Groves P, Reanier R E and Kunz M L 2010 Floodplains, permafrost, cottonwood trees, and peat: What happened the last time climate warmed suddenly in Arctic Alaska? Q. Sci. Rev. 29 3812–30

McGarigal K, Cushman S A, Neel M C and Ene E 2002 FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps Software (Amherst, MA)

McGuire A D, Chapin F S, Walsh J E and Wirth C 2006 Integrated regional changes in Arctic climate feedbacks: implications for the global climate system Annu. Rev. Environ. Resour. 31 61–91

McNamara J P, Kane D L and Hinzman L D 1999 An analysis of an Arctic channel network using a digital elevation model Geomorphology 39 329–53

Myneni R B, Keeling C D, Tucker C J and Nemani R R 1997 Increased plant growth in the northern high latitudes from 1982 to 1991 Nature 386 698–701

Naito A T and Cairns D M 2011 Patterns and processes of global shrub expansion Prog. Phys. Geogr. 35 423–42

Poff N L, Allan J D, Bain M B, Karr J R, Prestegaard K L, Richter B D, Sparks R E and Stromberg J C 1997 The natural flow regime Bioscience 47 769–84

Prowse T D, Wrona F J, Reist J D, Gibson J J, Hobbie J E, Levesque L M J and Vincent W F 2006 Climate change effects on hydroecology of Arctic freshwater ecosystems Ambio 35 347–58

Robinson T P, van Klinken R D and Metternicht G 2008 Spatial and temporal rates and patterns of mesquite (Prosopis species) invasion in Western Australia J. Arid Environ. 72 175–88

Serrazete M and Francis J 2006 The Arctic amplification debate Clim. Change 76 241–64

Seyfried M S and Wilcox B P 1995 Scale and the nature of spatial variability-field examples having implications for hydrologic modeling Water Resour. Res. 31 173–84
Sorensen R, Zinko U and Seibert J 2006 On the calculation of the topographic wetness index: evaluation of different methods based on field observations Hydrolog. Earth Syst. Sci. 10 101–12
Sturm M, McFadden J P, Liston G E, Chapin F S III, Racine C H and Holmgren J 2001 Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications J. Clim. 14 336
Sturm M, Schimel J, Michaelson G, Welker J M, Oberbauer S F, Liston G E, Fahnestock J and Romanovsky V E 2005 Winter biological processes could help convert Arctic tundra to shrubland BioScience 55 17–26
Tape K, Sturm M and Racine C 2006 The evidence for shrub expansion in Northern Alaska and the Pan-Arctic Glob. Change Biol. 12 686–702
Tarboton D G 1997 A new method for the determination of flow directions and contributing areas in grid digital elevation models Water Resour. Res. 33 309–19
Tarboton D G 2010 Terrain Analysis Using Digital Elevation Models (TauDEM) 5.0 Software (Logan, UT)
TIBCO 2008 Spotﬁe S-PLUS 8.1 Software (Somerville, MA)
United States Department of Agriculture Natural Resources Conservation Service (USDA NRCS) 2011 The PLANTS Database (Greensboro, NC) (http://plants.usda.gov)
Van Auken O W 2009 Causes and consequences of woody plant encroachment into western North American grasslands J. Environ. Manage. 90 2931–42
Walker D A 2000 Hierarchical subdivision of Arctic tundra based on vegetation response to climate, parent material and topography Glob. Change Biol. 6 19–34
Walker D A et al 2005 The Circumpolar Arctic vegetation map J. Veg. Sci. 16 267–82
Walker M D et al 2006 Plant community responses to experimental warming across the tundra biome Proc. Natl. Acad. Sci. USA 103 1342–6
Woo M K, Kane D L, Carey S K and Yang D Q 2008 Progress in permafrost hydrology in the new millennium Permafr. Periglac. Process. 19 237–54
Wu X and Archer S 2005 Scale-dependent influence of topography-based hydrologic features on patterns of woody plant encroachment in savanna landscapes Landsc. Ecol. 20 733–42
Zinko U, Seibert J, Dynesius M and Nilsson C 2005 Plant species numbers predicted by a topography-based groundwater flow index Ecosystems 8 430–41