Pseudo-Kähler Lie algebras with Abelian complex structures

Ignacio Bajo 1 and Esperanza Sanmartín 2

1 Departamento de Matemática Aplicada II, EI Telecomunicación, Universidad de Vigo, Campus Marcosende, 36310 Vigo, Spain
2 Departamento de Matemáticas, Facultad de CCEE, Universidad de Vigo, Campus Marcosende, 36310 Vigo, Spain

E-mail: ibajo@dma.uvigo.es and esanmart@uvigo.es

Received 15 June 2012, in final form 27 September 2012
Published 30 October 2012
Online at stacks.iop.org/JPhysA/45/465205

Abstract
We study Lie algebras endowed with an Abelian complex structure which admit a symplectic form compatible with the complex structure. We prove that each of those Lie algebras is completely determined by a pair (U, H) where U is a complex commutative associative algebra and H is a sesquilinear Hermitian form on U which verifies certain compatibility conditions with respect to the associative product on U. The Riemannian and Ricci curvatures of the associated pseudo-Kähler metric are studied and a characterization of those Lie algebras which are Einstein but not Ricci flat is given. It is seen that all pseudo-Kähler Lie algebras can be inductively described by a certain method of double extensions applied to the associated complex associative commutative algebras.

PACS numbers: 02.20.Sv, 02.40.Tt
Mathematics Subject Classification: 17B30, 53C55, 53D05

1. Introduction

An Abelian complex structure on a Lie algebra \mathfrak{g} is a linear map $GL(\mathfrak{g})$ such that $J^2 = -\text{Id}_\mathfrak{g}$ and $[Jx, Jy] = [x, y]$ for all $x, y \in \mathfrak{g}$. It is obvious that the Nijenhuis tensor for such a J vanishes and, therefore, the structure is integrable. The name Abelian comes from the fact that the eigenspaces of J in the complexification \mathfrak{g}^C of \mathfrak{g} are Abelian Lie algebras. Note that, when \mathfrak{g} is nilpotent, they are a particular case of the so-called nilpotent complex structures [13]. A pseudo-Kähler Lie algebra is a symplectic Lie algebra (\mathfrak{g}, ω) with a complex structure J which is skew-symmetric with respect to ω. Such a Lie algebra is equipped with the pseudo-Riemannian metric g defined by $g(x, y) = \omega(Jx, y)$ for all $x, y \in \mathfrak{g}$ with respect to which the complex structure is parallel. The aim of this paper is to study the structure and main properties of Lie algebras which are pseudo-Kähler for an Abelian complex structure.

Pseudo-Kähler Lie algebras are of great relevance in geometry and, for example, a pseudo-Kähler nilpotent rational Lie algebra \mathfrak{g} allows us to construct non-trivial examples of compact pseudo-Kähler nilmanifolds by considering quotients of an associated Lie group G.
by a cocompact discrete subgroup \([12]\). But pseudo-Kähler geometry also appears in several branches of mathematical physics. For instance, in \([10]\) and \([21]\), deformation quantizations with separation of variables were constructed on arbitrary pseudo-Kähler manifolds and a theory of pseudo-Kähler quantizations in flag manifolds was studied in \([22]\). Abelian complex structures often appear in HKT (hyper-Kähler with torsion) geometry. This type of geometry can be found, for instance, in the theory of supersymmetric sigma models with Wess–Zumino term, which is used to describe the propagation of superstrings in curved backgrounds, \([20]\) or in the moduli space of certain classes of black holes in five and nine dimensions \([17]\).

If an algebra \(g\) admits an Abelian complex structure it must be two-step solvable. One can easily verify that Lie algebras of dimension 2 have an Abelian complex structure (actually, all complex structures on these algebras are Abelian) and that every non-degenerate skew-symmetric bilinear form \(\omega\) is a symplectic form compatible with the complex structure. So, two-dimensional Lie algebras are the first examples of pseudo-Kähler Lie algebras with Abelian complex structure. Recall that the unique non-Abelian two-dimensional Lie algebra is the algebra \(\text{aff}(\mathbb{R})\) of affine motions of \(\mathbb{R}\). An important role in the following will be played by the Lie algebras \(\text{aff}(A)\) constructed as the tensor product \(\text{aff}(\mathbb{R}) \otimes_{\mathbb{R}} A\) of \(\text{aff}(\mathbb{R})\) with an associative commutative algebra \(A\). A well-known example of these algebras is the underlying Lie algebra of the Kodaira–Thurston manifold, which is the algebra \(\text{aff}(\mathbb{C})\) when \(A\) is the two-dimensional nilpotent power algebra. All the algebras \(\text{aff}(A)\) carry Abelian complex structures, but in order to admit a compatible symplectic form the algebra \(A\) must verify further conditions. The existence of a symmetric bilinear form \(B\) on \(A\) such that the pair \((A, B)\) is a symmetric algebra \([14]\) guarantees that the corresponding Lie algebra \(\text{aff}(A)\) admits a pseudo-Kähler structure for an Abelian complex structure; however, these examples do not exhaust the family of pseudo-Kähler Lie algebras with Abelian complex structure.

In this paper, we will show that every pseudo-Kähler Lie algebra with Abelian complex structure is completely characterized by a pair \((U, H)\) where \(U\) is a complex associative commutative algebra and \(H\) a sesquilinear Hermitian form on \(U\) which verifies certain compatibility conditions. This characterization allows us to calculate some nice formulas for the Riemannian and the Ricci curvatures of the pseudo-Kähler metric and leads us to a complete description of those algebras in our family for which the metric is Einstein but not Ricci flat. Moreover, in the last section, we prove that all the pseudo-Kähler Lie algebras with Abelian complex structure can be obtained by successive application of a method of double extension, which consists of a central extension and a generalized semi-direct product, on the associated pairs \((U, H)\) starting from an algebra \(\text{aff}(A)\).

2. Preliminaries

We first recall some basic definitions \([2, 3, 18, 19]\). All the algebras considered in the paper are real or complex finite-dimensional algebras.

Definition 2.1. A complex structure on a real Lie algebra \(g\) is a linear map \(J \in \mathfrak{gl}(g)\) such that \(J^2 = -\text{Id}_g\) and

\[[Jx, Jy] = [x, y] + J[Jx, y] + J[x, Jy] \quad \text{for all } x, y \in g. \]

Two Lie algebras endowed with complex structures \((g_1, J_1), (g_2, J_2)\) are said to be holomorphically equivalent if there is an isomorphism \(\psi : g_1 \to g_2\) such that \(J_1 = \psi^{-1} \circ J_2 \circ \psi\).

We will say that a complex structure \(J\) is Abelian if \([Jx, Jy] = [x, y]\) holds for all \(x, y \in g\).
Definition 2.2. Let \(g \) be a complex or a real Lie algebra. A product structure on \(g \) is a linear map \(K \in \mathfrak{gl}(g) \) such that \(K^2 = \text{Id}_g \), \(K \neq \text{Id}_g \) and
\[
[x, y] = K[Kx, y] + K[x, Ky] - [Kx, Ky] \quad \text{for all } x, y \in g.
\]
The product structure \(K \) provides a decomposition of the vector space \(g \) as the direct sum of the eigenspaces \(g_+ = \ker(K - \text{Id}_g) \), \(g_- = \ker(K + \text{Id}_g) \). Actually, \(g_+ \) and \(g_- \) are subalgebras of \(g \). When both subalgebras \(g_\pm \) have the same dimension, the product structure is said to be a paracomplex structure on \(g \).

We will say that a product structure \(K \) is Abelian if \([Kx, Ky] = -[x, y] \) holds for all \(x, y \in g \). In such a case one easily verifies that the subalgebras \(g_\pm \) are actually Abelian.

Remark 2.1. One can also use definition 2.1 to define the notion of complex structure for complex Lie algebras, considering \(J \) to be \(\mathbb{C} \)-linear. However, this is not very interesting since for a complex Lie algebra \(g \) there is one-to-one correspondence between such \(\mathbb{C} \)-linear complex structures and product structures on \(g \). Actually, a straightforward computation shows that a \(\mathbb{C} \)-linear complex mapping \(J \) on a complex Lie algebra \(g \) is a complex structure if and only if the map \(K = iJ \) is a product structure, where \(i \) stands for the imaginary unit. Further, \(J \) is Abelian if and only if \(K \) is so.

The following result is very well known (see, for instance, [3, 24]):

Lemma 2.1. Every Lie algebra admitting an Abelian complex structure is two-step solvable.

Examples 2.1. Some interesting examples of Lie algebras admitting Abelian complex structures are as follows.

(i) The Lie algebra \(\mathfrak{aff}(A) \) of a commutative associative algebra.

Let \(A \) be a commutative associative algebra. The vector space \(A \oplus A \) with the product defined by \([(a, b), (a', b')] := (ab' - a'b') \) for all \(a, a', b, b' \in A \) is a Lie algebra denoted by \(\mathfrak{aff}(A) \) [8]. Note that, actually, \(\mathfrak{aff}(A) = \mathfrak{aff}(\mathbb{R}) \otimes A \) with the bracket \([x \otimes a, y \otimes a'] = [x, y] \otimes aa' \). It is clear that the linear map \(J \) on \(\mathfrak{aff}(A) \) defined by \(J(a, b) := (-b, a) \), for \(a, b \in A \), is an Abelian complex structure on \(\mathfrak{aff}(A) \).

(ii) The underlying real algebra of a complex Lie algebra with an Abelian product structure.

When \((g, K) \) is a complex Lie algebra with a \(\mathbb{C} \)-linear Abelian product structure, the underlying real Lie algebra \(g_\mathbb{R} \) is naturally endowed with the Abelian complex structure described by the \(\mathbb{R} \)-linear map \(J = iK \).

Definition 2.3. We say that a Lie algebra \(g \) admits a symplectic structure if it admits a non-degenerate scalar 2-cocycle \(\omega \). The pair \((g, \omega) \) is said to be a symplectic Lie algebra. Two symplectic Lie algebras \((g_1, \omega_1) \), \((g_2, \omega_2) \) are said to be symplectomorphic if there exists a Lie algebras homomorphism \(\varphi : g_1 \rightarrow g_2 \) such that \(\omega_1(x, y) = \omega_2(\varphi(x), \varphi(y)) \) for all \(x, y \in g_1 \).

Remark 2.2. A symplectic Lie algebra \((g, \omega) \) is naturally endowed with a structure of left-symmetric algebra compatible with the Lie structure; this is to say, the product defined by \(\omega(x \cdot y, z) = -\omega(y, [x, z]) \) for \(x, y, z \in g \) verifies \([x, y] = x \cdot y - y \cdot x \) and
\[
[x, y] \cdot z = x \cdot (y \cdot z) - y \cdot (x \cdot z) \quad \text{for all } x, y, z \in g.
\]
Geometrically, this means that each Lie group with Lie algebra \(g \) can be equipped with the torsion-free flat left-invariant connection defined by \(\nabla^\omega_y x = x \cdot y \) for \(x, y \in g \).

Definition 2.4. Let \((g, \omega) \) be a symplectic Lie algebra and \(J \) be a complex structure on \(g \) such that \(\omega(Jx, Jy) = \omega(x, y) \) for all \(x, y \in g \). The triple \((g, \omega, J) \) will be called a pseudo-Kähler Lie algebra. If the complex structure is Abelian we will say that the algebra \(g \) is endowed with an Abelian pseudo-Kähler (APK) structure. The pseudo-Riemannian metric \(g \) defined on \(g \) by \(g(x, y) = \omega(Jx, y) \) will be called the pseudo-Kähler metric of \((g, \omega, J) \).
The following lemma will be useful in the next sections.

Lemma 2.2. Let (g, ω, J) be a pseudo-Kähler Lie algebra where J is Abelian. The left-symmetric product defined by ω on g verifies $J(x \cdot y) = (Jx) \cdot y$ for all $x, y \in g$.

Proof. If $x, y, z \in g$ then we have

$$\omega(J(x \cdot y), z) = -\omega(x \cdot y, Jz) = \omega(y, [x, Jz]) = -\omega(y, [Jx, z]) = \omega((Jx) \cdot y, z),$$

which proves the result. \qed

Remark 2.3. One may think that for every associative and commutative algebra A the corresponding Lie algebra $\mathfrak{aff}(A)$ always admits an APK structure. However, the result is not true and one may find associative commutative algebras A such that $\mathfrak{aff}(A)$ does not even admit a symplectic form. For instance, if A is the three-dimensional associative algebra spanned by a_1, a_2, a_3 with non-trivial products $a_1 a_1 = a_2 a_2 = a_3$, then the algebra $\mathfrak{aff}(A)$ is spanned by E_1, \ldots, E_6 where $E_j = (a_j, 0)$ and $E_{3+j} = (0, a_j)$ for $1 \leq j \leq 3$ and their only non-trivial brackets are $[E_1, E_4] = [E_5, E_3] = E_6$. Note that such algebra, which is denoted by n_2 in [3] and by b_3 in [12], is nothing but the trivial extension of the five-dimensional Heisenberg algebra. If ω is a 2-cocycle on $\mathfrak{aff}(A)$, one has

$$\omega(E_6, E_1) = \omega([E_1, E_4], E_1) = -\omega([E_4, E_1], E_1) - \omega([E_j, E_1], E_4)$$

$$\omega(E_6, E_2) = \omega([E_2, E_5], E_1) = -\omega([E_5, E_1], E_2) - \omega([E_j, E_2], E_5).$$

The first identity shows that $\omega(E_6, E_2) = \omega(E_6, E_3) = \omega(E_6, E_5) = 0$ and the second one implies $\omega(E_6, E_1) = \omega(E_6, E_4) = 0$. Therefore, $\omega(E_6, x) = 0$ for all $x \in \mathfrak{aff}(A)$, which proves that the 2-cocycle cannot be non-degenerate.

We recall the following definition [14].

Definition 2.5. An associative algebra A over \mathbb{K} is said to be a symmetric algebra if A is equipped with a non-degenerate symmetric bilinear form $B : A \times A \to \mathbb{K}$ that satisfies $B(ab, c) = B(a, bc)$ for $a, b, c \in A$.

It should be noted that, according to the results given in [9], one can construct a symmetric associative commutative algebra by applying the method of T^*-extension to an arbitrary associative commutative algebra.

Examples 2.2. The following examples of pseudo-Kähler Lie algebras with Abelian complex structures show that the class of such algebras is a wide one.

(i) The Lie algebra $\mathfrak{aff}(A)$ of a symmetric associative commutative algebra.

If (A, B) is a commutative associative symmetric algebra then the algebra $\mathfrak{aff}(A)$ with the Abelian complex structure defined above and the symplectic form given by

$$\omega((a, b), (a', b')) := B(a, b') - B(b, a'), \quad a, a', b, b' \in A$$

is pseudo-Kähler. In this case, we will say that $\mathfrak{aff}(A)$ is equipped with the **standard pseudo-Kähler structure**.

A simple calculation shows that the left-symmetric product defined by ω on $\mathfrak{aff}(A)$ is given by

$$(a, b) \cdot (a', b') = -(aa', ba'), \quad a, b, a', b' \in A,$$

which is, actually, associative.
(ii) The underlying real algebra of a complex Lie algebra with an Abelian para-Kähler structure.

A para-Kähler Lie algebra is a symplectic Lie algebra \((g, \omega)\) with a paracomplex structure \(K\) such that \(\omega(Kx, Ky) = -\omega(x, y)\) for all \(x, y \in g\). If \((g, K, \omega)\) is a complex Lie algebra with a (complex) para-Kähler structure and \(K\) is Abelian, then the underlying real Lie algebra \(g_{\mathbb{R}}\) is pseudo-Kähler if one considers the complex structure \(J = iK\) and the symplectic form \(\omega_{\mathbb{R}} = \text{Re}(\omega)\) where \(\text{Re}(\omega)\) stands for the real part of \(\omega\).

It should be noted that the real dimension of each of those algebras is \(4k\) for some \(k \in \mathbb{N}\).

(iii) An example with non-associative left-symmetric product.

Let us consider the six-dimensional real Lie algebra \(g\) linearly spanned by \([E_1, \ldots, E_6]\) with the non-trivial brackets:

\[
[E_1, E_2] = -E_3 - \frac{1}{2}E_6, \quad [E_1, E_4] = 4E_2, \quad [E_1, E_5] = \frac{1}{2}E_3 + E_6,
\]

\[
[E_2, E_4] = \frac{1}{2}E_3 + E_6, \quad [E_4, E_5] = -E_3 - \frac{1}{2}E_6.
\]

Note that \(g\) is the Lie algebra denoted by \(n_7\) in [3]. The skew-symmetric bilinear map \(\omega : g \times g \to \mathbb{R}\) defined by

\[
\omega(E_1, E_3) = 4, \quad \omega(E_1, E_4) = -2, \quad \omega(E_2, E_5) = -2, \quad \omega(E_4, E_6) = 4
\]

and \(\omega(E_j, E_k) = 0\) for the other cases in which \(j < k\), turns out to be a symplectic form on \(g\) and, further, the map \(J \in \mathfrak{gl}(g)\) such that \(J(E_j) = E_{3+j}\), \(J(E_{3+j}) = -E_j\), for \(j = 1, 2, 3\), is an Abelian complex structure compatible with \(\omega\). Therefore, \((g, \omega, J)\) is pseudo-Kähler.

However, the left-symmetric product defined by \(\omega\) is not associative. Actually, one can easily verify that, for instance, \((E_1 \cdot E_4) \cdot E_1 \neq E_1 \cdot (E_4 \cdot E_1)\).

Note that this algebra provides an example of pseudo-Kähler Lie algebra with Abelian complex structure which is not of the types of the two previous examples.

A complex structure \(J\) on a real Lie algebra \(g\) provides a vector-space decomposition of the complexification \(g^\mathbb{C}\) as the direct sum of the eigenspaces \(g^{1,0} = \ker(J^\mathbb{C} - iI\mathfrak{g})\), \(g^{0,1} = \ker(J^\mathbb{C} + iI\mathfrak{g})\), where \(J^\mathbb{C}\) is the \(\mathbb{C}\)-linear map on \(g^\mathbb{C}\) defined for \(x_1, x_2 \in g\) by \(J^\mathbb{C}(x_1 + ix_2) = Jx_1 + iJx_2\). One can easily verify that \(g^{1,0}\) and \(g^{0,1}\) are complex subalgebras of \(g^\mathbb{C}\) and, obviously, they have the same dimension. Hence, the complex Lie algebra \(g^\mathbb{C}\) is naturally endowed with a paracomplex structure. Further, if the complex structure \(J\) is Abelian, then the subalgebras \(g^{1,0}\) and \(g^{0,1}\) are Abelian and, thus, the paracomplex structure on \(g^\mathbb{C}\) is also Abelian [6]. Further, if the real Lie algebra \(g\) is pseudo-Kähler, then its complexification turns out to be para-Kähler. The following result will be used in next section. We omit its proof since it is nothing but a straightforward calculation.

Lemma 2.3. If \((g, \omega, J)\) is a pseudo-Kähler Lie algebra with Abelian complex structure then its complexification \(g^\mathbb{C}\) is naturally endowed with the Abelian para-Kähler structure defined by the complex symplectic form:

\[
\omega^\mathbb{C}(x + iy, x' + iy') = \omega(x, x') - \omega(y, y') + i\omega(x, y') + i\omega(y, x'),
\]

where \(x, x', y, y' \in g\) and the Abelian paracomplex structure \(K(x + iy) = -Jy + iJx\). Further, the left-symmetric product defined by \(\omega^\mathbb{C}\) on \(g^\mathbb{C}\) is obtained from the left-symmetric product on \(g\) as follows:

\[
(x + iy) \cdot (x' + iy') = x \cdot x' - y \cdot y' + ix \cdot y' + iy \cdot x',
\]

for \(x, y, x', y' \in g\).
In order to fix notations, we will recall some well-known definitions on linear algebra. In the following, for a complex number $\alpha \in \mathbb{C}$, we will denote by $\text{Re}(\alpha)$ and $\text{Im}(\alpha)$ respectively its real and imaginary parts and $\overline{\alpha}$ will mean its complex conjugate.

Let V be a complex vector space. A semi-linear map $\tau : V \to V$ is a \mathbb{R}-linear map such that $\tau(\alpha v) = \overline{\alpha}\tau(v)$ for all $\alpha \in \mathbb{C}$ and $v \in V$. A sesquilinear form is a \mathbb{R}-bilinear map $H : V \times V \to \mathbb{C}$ which is \mathbb{C}-linear in the left component and semi-linear in the right one. Further, a sesquilinear form H is said to be Hermitian if $H(v_1, v_2) = \overline{H(v_2, v_1)}$ holds for all $v_1, v_2 \in V$. Note that, even though we will only consider non-degenerate Hermitian forms, we shall not impose H to be definite.

Let (V, H) be a complex vector space with a non-degenerate Hermitian form. If W is a complex subspace of V, then we will denote by W^\perp its H-orthogonal subspace, that is to say

$$W^\perp = \{x \in V : H(x, y) = 0 \text{ for all } y \in W\}.$$

We recall that if $F : V \to V$ is a \mathbb{C}-linear map, its H-adjoint map $F^* : V \to V$ is uniquely defined by $H(F^*x, y) = H(x, Fy)$ for $x, y \in V$.

Remark 2.4. All through the paper we will consider traces of \mathbb{R}-linear maps. Even for a \mathbb{C}-linear map, the trace considered will be the trace of the corresponding \mathbb{R}-linear map on the underlying real vector space.

A simple calculation shows that for a semi-linear map τ on a complex vector space one always has trace $(\tau) = 0$.

3. Compatible complex associative commutative algebras

As we will see below, every pseudo-Kähler Lie algebra with Abelian complex structure is obtained from a pair (U, H) where U is a complex associative commutative algebra and H a non-degenerate Hermitian form on U which verifies some compatibility conditions with respect to the associative product on U. We start this section with the construction of the associated pseudo-Kähler Lie algebras for a given pair (U, H).

Definition 3.1. We will say that a complex associative commutative algebra U endowed with a non-degenerate Hermitian sesquilinear form H is compatible with an APK structure or, shortly, APK-compatible if and only if for every $x, y, z \in U$ it holds that

$$xR^*_z y = yR^*_x z,$$

where R_z stands for multiplication by z in U.

Proposition 3.1. Let U be a complex associative commutative algebra and H a non-degenerate Hermitian form such that the pair (U, H) is APK-compatible.

Let g_U denote the underlying real vector space of U and define $[\cdot, \cdot] : g_U \times g_U \to g_U$, $J : g_U \to g_U$ and $\omega : g_U \times g_U \to \mathbb{R}$ as follows:

$$[x, y] = R^*_z x - R^*_y z, \quad Jx = ix, \quad \omega(x, y) = \text{Im}(H(x, y)),$$

for all $x, y \in U$.

Then the pair $(g_U, [\cdot, \cdot], J)$ is a real Lie algebra and (ω, J) provides an APK structure on g_U.

Proof. First note that $R^*_z x = \overline{x}R^*_z$ and, obviously, $R^*_{i+y} = R^*_i + R^*_y$ for all $x, y \in U$ and $\alpha \in \mathbb{C}$.

This shows that the bracket is \mathbb{R}-bilinear. Further, Jacobi identity follows immediately from the equalities

$$R^*_{[i, y]} = R_i R^*_y - R_y R^*_i, \quad R^*_{i+y} = R^*_i y - R^*_y z.$$
which can be easily derived from the condition given in equation (1) and the definition of the bracket.

Since \(H \) is non-degenerate so must be \(\omega \) because for every \(x, y \in U \) one has
\[
H(x, y) = \omega(ix, y) + i\omega(x, y).
\]

Further, \(\omega \) is obviously skew-symmetric, because \(H \) is Hermitian, and for all \(x, y, z \in U \) we obtain
\[
H([x, y], z) + H([y, z], x) + H([z, x], y) = H(R^x y - R^y x, z) + H(R^y z - R^z y, x) + H(R^z x - R^x z, y)
\]
\[
= H(x, yz) - H(y, zx) + H(y, zx) - H(z, xy) + H(z, xy) - H(x, zy) = 0,
\]
and, therefore, its imaginary part also vanishes, which proves that \(\omega \) is a symplectic form.

Finally, it is clear that \(J \) turns out to be an Abelian complex structure on \(g_U \) and that \(\omega(Jx, Jy) = \omega(x, y) \). Thus, \((g_U, \omega, J)\) is pseudo-Kähler. □

Remark 3.1. The following facts concerning the pseudo-Kähler Lie algebra constructed above should be noted.

1. The pseudo-Kähler metric is given by \(g(x, y) = \omega(Jx, y) = \text{Re}(H(x, y)) \) for all \(x, y \in g_U \).
2. The left-symmetric product defined by \(\omega \) on \(g_U \) is as follows:
\[
x \cdot y = (R^x y + R^y x)x, \quad x, y \in g_U.
\]
3. It is straightforward to show that when \(U = U_1 \oplus U_2 \) is a direct sum of \(H \)-orthogonal ideals then \(g_U \) is also the \(\omega \)-orthogonal direct sum of the ideals \(g_{U_i} \) and \(g_{U_2} \).

The following result shows that every APK Lie algebra of type \(\text{aff}(A) \) can be viewed as the Lie algebra associated with a compatible pair \((U, H)\) and provides a necessary and sufficient condition to recognize such algebras among those constructed by APK-compatible pairs.

Proposition 3.2. If \((A, B)\) is a symmetric associative commutative algebra then \(\text{aff}(A) \) with the standard pseudo-Kähler structure is holomorphically symplectomorphic to the APK Lie algebra constructed by the APK-compatible pair \((U, H)\) defined by the complexification \(U = A^C \) and the Hermitian form given by
\[
H(a + ib, a' + ib') = -4B(a, a') - 4B(b, b') - 4i(B(b, a') - B(a, b'))
\]
for all \(a, b, a', b' \in A \).

Conversely, if for an APK Lie algebra \(g_U \), defined by an APK-compatible pair \((U, H)\) there exists a semi-linear involution \(\sigma : U \to U \) such that
\[
\sigma(xy) = \sigma(x)\sigma(y), \quad H(\sigma(x), \sigma(y)) = H(x, y), \quad H(xy, z) = H(x, \sigma(y)z)
\]
hold for all \(x, y, z \in U \), then \(g_U \) is holomorphically symplectomorphic to \(\text{aff}(A) \) with its standard pseudo-Kähler structure, where \(A \) is the real form of \(U \) defined by \(\sigma \) endowed with a bilinear form \(B \) obtained, up to a constant, by the restriction of \(H \) to \(A \).

Proof. Suppose first that \((A, B)\) is a symmetric associative commutative algebra and define \(H \) on \(U = A^C \) as in the statement. Note that \(H \) is non-degenerate if and only if \(B \) is so. A simple calculation shows that \(R^a_{a+ib} = R_{a-ib} \) for all \(a, b \in A \). Thus, condition (1) follows immediately from the associativity and commutativity of \(U \). If \(\psi : \text{aff}(A) \to g_U \) is defined by \(\psi(a, b) = -(a + ib)/2 \), one easily sees that \(\psi \) commutes with the complex structures and
that $\text{Im} H(\psi(a, b), \psi(a', b')) = B(a, b') - B(b, a')$ for all $a, b, a', b' \in A$. Moreover, ψ is an isomorphism of real Lie algebras since it is clearly \mathbb{R}-linear and for $a, b, a', b' \in A$ we have
\[
\begin{align*}
[\psi(a, b), \psi(a', b')] &= \frac{1}{4} [a + ib, a' + ib'] = \frac{1}{4} R^*_a + \omega (a + ib) - \frac{1}{4} R^*_a + \omega (a' + ib') \\
&= \frac{1}{4} R^*_a - \omega (a + ib) - \frac{1}{4} R^*_a - \omega (a' + ib') = \frac{1}{2} \omega (a'b - ba') \\
&= \psi(0, ab' - ba') = \psi([[a, b], (a', b')]).
\end{align*}
\]

Conversely, if (U, H) is an APK-compatible algebra admitting a semi-linear involution σ verifying the properties given above, then U admits the associative commutative real form $\mathcal{A} = \{x + \sigma(x); x \in U\}$. For $x, y, z \in U$, we have
\[
\begin{align*}
H(x + \sigma(x), y + \sigma(y)) &= 2 \text{Re}(H(x, y) + H(\sigma(x), y)) \\
H((x + \sigma(x))(y + \sigma(y)), z + \sigma(z)) &= H(x + \sigma(x), (y + \sigma(y))(z + \sigma(z))).
\end{align*}
\]

From the first identity, we get that the form B defined on \mathcal{A} by $B(a, b) = -\frac{1}{4} H(a, b)$ is a real-valued symmetric bilinear form on \mathcal{A} and, from the second, that $B(ab, c) = B(a, bc)$ for $a, b, c \in \mathcal{A}$. Therefore, (\mathcal{A}, B) is a symmetric associative commutative algebra and, according to the first part of the proposition, $\text{aff}(\mathcal{A})$ is holomorphically symplectomorphic to the Lie algebra constructed with the APK-compatible pair $(\mathcal{A}^C, \tilde{H})$ where $\tilde{H}(a, a') = -4B(a, a') = 4B(b, b') - 4i4(B(b, a') - B(a, b'))$ for all $a, b, a', b' \in \mathcal{A}$. Since $U = \mathcal{A}^C$, we only need to prove that $\tilde{H} = H$. But this follows at once since both \tilde{H} and H are Hermitian and coincide on the real form \mathcal{A} of U.

Lemma 3.3. If (U, H) is an APK-compatible pair and $\text{ann}(U)$ denotes the annihilator of U, then
\[
(R^*_a R^*_c - R^*_c R^*_a)y \in \text{ann}(U),
\]
for all $x, y, z \in U$.

Proof. Let us consider $u, v, w, z \in U$. Since the product in U is associative and commutative, we have
\[
u(R^*_a(zv) - zR^*_a(y) = uR^*_a(zv) - uzR^*_a y = zyR^*_a u - z(uR^*_a y) = yzR^*_a u - zyR^*_a u = 0,
\]
which proves that $R^*_a(zv) - zR^*_a y$ is in the annihilator of U. \qed

Lemma 3.4. Let (U, H) be an APK-compatible pair and let $\text{ann}(U)$ denote the annihilator of U and $R^*_U U$ the linear \mathbb{C}-span of all the elements $R^*_a y$ with $x, y \in U$. The following holds.

(a) The vector space $R^*_U U$ is the H-orthogonal subspace of $\text{ann}(U)$ and it is an ideal of the associative commutative algebra U.

(b) If $\text{ann}(U) = \{0\}$ then $U = U^2 = R^*_U U$.

Proof. It is clear that $H(R^*_a y, x_0) = 0$ for all $x, y \in U$ if and only if $H(y, x_0) = 0$, this is to say, $x_0 \in \text{ann}(U)$. In order to prove that $R^*_U U$ is an ideal, take $x, y \in U$ and $x_0 \in \text{ann}(U)$. We then have
\[
H(xR^*_y z, x_0) = H(z, yR^*_x x_0) = H(z, x_0 R^*_y y) = 0,
\]
which proves that $xR^*_y z \in \text{ann}(U)$. This completes the proof of (a).
Now, if \(\text{ann}(U) = \{0\} \) then \(R^*_0 U = \text{ann}(U)^\perp = U \) and hence it only remains to see that it coincides with \(U^2 \). Let us take an element \(x \in (U^2)^\perp \). For all \(y, z, t \in U \) we then have

\[
H(t, xR^*_y z) = H(t, zR^*_x y) = H(yR^*_t x, z) = 0.
\]

This clearly implies that \(xR^*_y z = 0 \) for all \(y, z \in U \) but, since \(U = R^*_0 U \), one obtains \(x \in \text{ann}(U) = \{0\} \). Hence, the \(H \)-orthogonal subspace of \(U^2 \) is null, which shows that \(U = U^2 \). \(\square \)

Proposition 3.5. Let \((U, H)\) be an APK-compatible pair and \((g_U, \omega, J)\) the corresponding pseudo-Kähler Lie algebra with Abelian complex structure.

If \(\text{ann}(U) = \{0\} \), then \((g_U, \omega, J)\) is holomorphically symplectomorphic to \(\mathfrak{aff}(\mathcal{A}) \) for some real symmetric associative commutative algebra \((\mathcal{A}, B)\) endowed with the standard pseudo-Kähler structure.

Proof. If \(\text{ann}(U) = \{0\} \) we have, according to the lemma above, that \(U = R^*_0 U \). We can then define a map \(\sigma : U \to U \) by \(\sigma (R^*_y x) = R^*_x y \). Note that \(\sigma \) is well defined since if \(R^*_y x = R^*_z t \) then for all \(u, v \in U \) we obtain

\[
H(R^*_y x - R^*_z t, R^*_u v) = H(R^*_y x, R^*_u v) - H(R^*_u v, R^*_z t) = H(R^*_0 u, R^*_y x) - H(R^*_0 u, R^*_t z) = 0.
\]

It is obvious that \(\sigma^2 = \text{Id}_U \) and that

\[
\sigma (\alpha R^*_y z) = \sigma (R^*_x (\alpha y)) = R^*_x (\alpha y) = \sigma (\alpha R^*_y z).
\]

Further, using lemma 3.3, we obtain that \(R^*_t (yz) = z (R^*_t y) \) holds for all \(x, y, z \in U \) and, therefore,

\[
\sigma ((R^*_y x)(R^*_t u)) = \sigma (tR^*_y (R^*_u x)) = \sigma (R^*_u (x z)) = (R^*_0 x)(R^*_0 z) = \sigma (R^*_y x) \sigma (R^*_t u).
\]

Bearing in mind proposition 3.2 it only remains to show that the identities \(H(\sigma (x), \sigma (y)) = H(x, y) \) and \(H(x, y, z) = H(x, \sigma (y) z) \) are verified for all \(x, y, z \in U \). But this follows at once because from equation (1) we have

\[
H(R^*_0 u, R^*_y v) = H(R^*_0 u, R^*_x z) = H(R^*_0 x, R^*_y v) = H(x, uR^*_v z) = H(x, zR^*_u v),
\]

which yields the desired identity. \(\square \)

In the cases where \(\text{ann}(U) \cap (\text{ann}(U))^\perp = \{0\} \) something similar occurs, as we prove in the following proposition which also clarifies the structure of the corresponding real symmetric associative commutative algebra.

Proposition 3.6. Let \((U, H)\) be an APK-compatible pair. If \(\text{ann}(U) \cap (\text{ann}(U))^\perp = \{0\} \) then \(g_U \) is holomorphically symplectomorphic to an algebra \(\mathfrak{aff}(\mathcal{A}) \) endowed with the standard pseudo-Kähler structure for a certain symmetric form \(B \).

Moreover, the algebra \(\mathcal{A} \) decomposes as a \(B \)-orthogonal sum of ideals

\[
\mathcal{A} = \text{ann}(\mathcal{A}) \oplus \mathcal{A}_1 \oplus \cdots \oplus \mathcal{A}_p
\]

where \(p \) is the number of simple ideals in the semi-simple part of \(\mathcal{A} \) and each \(\mathcal{A}_i \) is a unital algebra.

Proof. If \(\text{ann}(U) \cap (\text{ann}(U))^\perp = \{0\} \) then \(U = \text{ann}(U) \oplus (\text{ann}(U))^\perp \), which is an orthogonal sum of ideals. The pseudo-Kähler Lie algebra constructed with the algebra \(\text{ann}(U) \) is clearly Abelian and, therefore, holomorphically symplectomorphic to \(\mathfrak{aff}(\mathcal{A}_0) \) for a real algebra with \(\mathcal{A}_0^2 = \{0\} \).
The ideal $\tilde{U} = (\text{ann}(U))^\perp$ obviously verifies $\text{ann}(\tilde{U}) = \{0\}$ and according to proposition 3.5 g_U is holomorphically symplectomorphic to $\text{aff}(\tilde{A})$ for some real symmetric associative commutative algebra (\tilde{A}, \tilde{B}). From $\text{ann}(\tilde{U}) = \{0\}$, we immediately get that $\text{ann}(\tilde{A})$ is also null. This implies that \tilde{A} cannot be nilpotent and hence it has a non-trivial semi-simple part. Since \tilde{A} is commutative, its semi-simple part is the direct sum of several copies of \mathbb{R} and \mathbb{C} with their usual field structure. Let p be the number of those simple ideals and let us choose on each of them an idempotent element e_i. Consider $A_i = R_{e_i} \tilde{A}$. It is clear that A_i is an ideal of \tilde{A} for all $i \leq p$ with unity e_i, that $A_i A_j = \{0\}$ and that they are mutually orthogonal since when $i \neq j$ we have $B(e_i a, e_j b) = B(a, e_i e_j b) = 0$ for all $a, b \in A_i \tilde{A}$. To see that $\tilde{A} = A_1 \oplus \cdots \oplus A_p$, take the Pierce decomposition [1] $\tilde{A} = e_1 \tilde{A} \oplus \cdots \oplus e_p \tilde{A}$ where $M_1 = \{a \in \tilde{A} : e_1 a = 0\}$. Obviously, $A_2 + \cdots + A_p \subset M_1$ and M_1 has trivial annihilator. We can proceed with M_1 in the same way, taking its Pierce decomposition relative to the idempotent e_2. Repeating the same argument successively, we obtain that $\tilde{A} = A_1 \oplus \cdots \oplus A_p \oplus M_p$ where $M_p = \{a \in \tilde{A} : e_i a = 0, \text{ for all } i \leq p\}$ is a nilpotent ideal of \tilde{A}. If we suppose that M_p is not null, then we may find an element $a \in \text{ann}(M_p)$, $a \neq 0$. But this would imply $a \in \text{ann}(\tilde{A})$, a contradiction. Hence $M_p = \{0\}$ and $\tilde{A} = A_1 \oplus \cdots \oplus A_p$.

Finally, if we take the orthogonal sum $A = A_0 \oplus \tilde{A}$ one easily proves that $\text{ann}(A) = \{0\}$ and that $\text{aff}(A) = \text{aff}(A_0) \oplus \text{aff}(\tilde{A})$, and the result follows.

Remark 3.2. A well-known result on unitary symmetric algebras implies that the restriction B_i of B to $A_i \times A_i$ is given by $B_i(a, b) = f_i(ab)$ for all $a, b \in A_i$ where $f_i : A_i \to \mathbb{R}$ is a linear form such that $f_i \circ R_a \neq 0$ for all $a \in A_i$.

The main result of this section shows that every APK Lie algebra is associated with certain APK-compatible complex associative commutative algebra.

Theorem 3.7. Let (g, ω, J) be a pseudo-Kähler Lie algebra with Abelian complex structure. There exists an APK-compatible pair (U, H) such that g and g_U are holomorphically symplectomorphic.

Proof. If g is pseudo-Kähler, then (g^C, ω^C, K) is a para-Kähler complex Lie algebra for ω^C and K defined as in lemma 2.3. Note that $g^{1,0} = \ker(J^C - \text{Id}) = \ker(K + \text{Id})$ and, according to [6, lemma 4.1], it is a complex associative commutative algebra. Let us then consider $U = g^{1,0} = \{x - xJx : x \in g\}$.

Recall that the associative product on U is nothing but the restriction of the left-symmetric product defined on g^C by ω^C, that is to say, for $x, y, z, t \in g$ we have $\omega^C((x - xJx)(y - xJy), z + it) = -\omega^C(y - xJy, [x - xJx, z + it])$.

Now we can define the non-degenerate Hermitian form $H : U \times U \to \mathbb{C}$ as follows:

$H(x - xJx, x' - xJx') = 2i\omega^C(x - xJx, x' + xJx') = -4\omega(x, x') + 4i\omega(x, x')$

for $x, x' \in g$. We will now show that $u''R_u''u'' = u''R_u''u''$ for all $u, u'', u'' \in U$. Let us consider $U = g^{0,1} = \{x + xJx : x \in g\}$ and, for $x, y \in g$, let us put $x + iy = x - iy$. Since $\omega^C(\xi_1, \xi_2) = \omega^C(\xi_1, \xi_2[\xi_1, \xi_2])$ for all $\xi_1, \xi_2 \in g^C$, for the left-symmetric product defined by ω^C one also has $\xi_1 \cdot \xi_2 = \xi_1 \cdot \xi_2$ because $\omega^C(\xi_1, [\xi_2, \xi]) = \omega^C(\xi_1, \xi_2) = -\omega^C(\xi_2, [\xi_1, \xi]) = -\omega^C(\xi_1, [\xi_2, \xi]) = \omega^C(\xi_1, [\xi_2, \xi])$.
holds for all $\xi \in \mathcal{C}$. Further, one easily verifies that $\mathfrak{g}^C = U \oplus \bar{U}$ verifies
\[
\omega^C(U, U) = \omega^C(\bar{U}, \bar{U}) = \{0\}, \quad u \cdot \bar{u'} \in U, \quad \bar{\pi} \cdot u' \in \bar{U},
\]
for all $u, u' \in U$ (which can also be deduced from the results on para-Kähler algebras given in [6]). Thus, for all $u, u', u'' \in U$, we have
\[
H(R_u^u u', u'') = H(u', uu'') = 2i\omega^C(u', \bar{u}u'') = -2i\omega^C([\bar{u}, u'], \bar{u}'') = 2i\omega^C(u' \cdot \bar{u}, u'') = H(u' \cdot \bar{u}, u'').
\]
Therefore, we obtain that $R_u^u u' = u' \cdot \bar{u}$ for all $u, u' \in U$. Since U is commutative and (\mathfrak{g}^C, \cdot) is left symmetric we obtain
\[
0 = [u', u''] \cdot \bar{u} = u' (u' \cdot \bar{u}) - u'' (u' \cdot \bar{u}) = u' R_u^u u'' - u'' R_u^u u' \quad u, u', u'' \in U.
\]
We have, thus, proved that (U, H) is an APK-compatible pair.

To see that \mathfrak{g} and \mathfrak{g}_U are holomorphically symplectomorphic, we will consider the map $\psi : \mathfrak{g} \to \mathfrak{g}_U$ given by $\psi(x) = \frac{1}{2}(x - iJx)$ for all $x \in \mathfrak{g}$. It is clear that $\psi(Jx) = i\psi(x)$, $\omega(x, y) = \text{Im}(H(\psi(x), \psi(y)))$ and ψ is \mathbb{R}-linear. Let us prove that $\psi(x, y) = [\psi(x), \psi(y)]_{\mathfrak{g}_U}$.

But, if we take $x, y \in \mathfrak{g}$, then
\[
4[\psi(x), \psi(y)]_{\mathfrak{g}_U} = 4R_{\psi(x)}^x \psi(y) - 4R_{\psi(y)}^y \psi(x) = 4\psi(x) \cdot \psi(y) - 4\psi(y) \cdot \psi(x)
\]
\[
= (x - iJx) \cdot (y + iJy) - (y - iJy) \cdot (x + iJx)
= x \cdot y + Jx \cdot Jy - iJx \cdot y - i\cdot Jy \cdot x - Jy \cdot Jx + iJy \cdot x - i\cdot Jx \cdot y
= [x, y] + [Jx, Jy] - iJ[x, y] - iJ[y, Jx] = 2[x, y] - iJ[x, y] = 4\psi(x, y).
\]
Since ψ is obviously invertible, it is an isomorphism of real Lie algebras.

We shall use that every Lie algebra with APK structure is of the form \mathfrak{g}_U for some APK-compatible pair (U, H) to see when such a Lie algebra is unimodular. We first prove the following lemma.

Lemma 3.8. Let (U, H) be an APK-compatible pair and consider $x \in U$. For each $k \in \mathbb{N}$, $k \geq 2$ then the power $(R_x + R_x^e)^k$ is a linear combination of R_x^e $(R_x^e)^k$, $R_x^e (R_x^e)^{k-1}$ and $(R_x^e)^{k-1}R_x^e$, $1 \leq r \leq k - 1$.

Proof. We will proceed by induction on k. The result is clear for $k = 2$ because
\[
(R_x + R_x^e)^2 = R_x^2 + R_x^e R_x^e + R_x^e R_x + (R_x^e)^2.
\]
From lemma 3.3 we obtain that $R_xR_x^e = R_x^2 R_x^e$ and thus $R_x^e R_x R_x^e = (R_x R_x^e)^2 = R_x^e (R_x^e)^2$.

Therefore, when $s, r \geq 1$ we have
\[
R_x^s R_x^e R_x^t = R_x^s (R_x^e)^{t+1}, \quad R_x^e (R_x^e)^s R_x^t = R_x^e (R_x^e)^{s+t}.
\]
Now, we have that $(R_x + R_x^e)R_x^{k-1} = R_x^k + R_x R_x^{k-1}, (R_x + R_x^e)R_x^k = R_x^k R_x + (R_x^e)^k$ and for $s, r \geq 1$ we obtain
\[
(R_x + R_x^e)R_x^s = R_x^{s+1} (R_x^e)^s + R_x R_x^s (R_x^e)^s = R_x^{s+1} (R_x^e)^s + (R_x^e)^s R_x + (R_x^e)^s R_x^s,
\]
and this shows that, if $(R_x + R_x^e)^{k-1}$ verifies the condition, so does $(R_x + R_x^e)^k$. \hfill \Box

Proposition 3.9. Let \mathfrak{g} be a pseudo-Kähler Lie algebra with Abelian complex structure and (U, H) an APK-compatible pair such that $\mathfrak{g} = \mathfrak{g}_U$. The following conditions are equivalent:
(i) U is nilpotent,
(ii) g is nilpotent,
(iii) g is unimodular.

Proof. To see that g is nilpotent whenever U is so, let us consider $x, y \in U$. Recall that $R^*_g = R_R^* - R_S^*$ and hence we have
$$
ad(x)[x, y] = yR^*_g x - xR^*_g y - R^*_g [x, y] = xR^*_g y - xR^*_g x - R^*_g [x, y] = -(R^*_g + R^*_g)[x, y].$$
and, therefore, $\text{ad}(x)^{k+1}(y) = (-1)^k(R^*_g + R^*_g)^k[x, y]$ for all $k \geq 1$. If we have that $U^n = \{0\}$ then the lemma above implies that $(R^*_g + R^*_g)^n = 0$ and, thus, $\text{ad}(x)^{2n+1} = 0$, which proves the nilpotency of g.

It is obvious that if g is nilpotent then it is unimodular and, thus, it only remains to show that for a unimodular g we get U nilpotent. Note that the map $G_x = \text{ad}(x) + R^*_g$ is semi-linear and, therefore, traceless. This shows that $\text{trace}(\text{ad}(x)) = -\text{trace}(R^*_g) = -\text{trace}(R_x)$. Consequently, if g is unimodular, then we have $\text{trace}(R_x) = 0$ for all $x \in U$. But this implies that U is nilpotent since, otherwise, there must exist an idempotent element $e \in U$ and one easily proves using the Pierce decomposition of U that $\text{trace}(R^*_g) = d$ where d is the real dimension of the ideal eU.

Remark 3.3. In [3], the authors consider a six-dimensional Lie algebra, $s_{(-1,0)}$ in their notation, which admits at the same time symplectic forms and Abelian complex structures. Since such algebra is unimodular but not nilpotent, our proposition above could be used to prove that, nevertheless, the combination of such structures does not give a pseudo-Kähler algebra.

Nilpotent pseudo-Kähler Lie algebras with Abelian complex structure in dimension 6 have been classified in [12], where it has been proved that there are only five which are non-isomorphic (in the notation of such paper, the algebras $h_1, h_5, h_8, h_9, h_{13}$). According to our proposition, those Lie algebras exhaust the list of unimodular pseudo-Kähler Lie algebras with Abelian complex structure.

4. Curvature of the pseudo-Kähler metric

We will now calculate the curvatures of the pseudo-Riemannian metric of a Lie algebra with APK structure. We shall give two different approaches: a first one using the left-symmetric product defined by the symplectic form, and a second one based on the description in terms of APK-compatible pairs.

Let us consider a Lie algebra with APK structure (g, ω, J) and denote by (g, \cdot) the left-symmetric algebra structure defined by ω.

Proposition 4.1. Let (g, J, ω) be a pseudo-Kähler Lie algebra with Abelian complex structure and g the pseudo-Kähler metric. The Levi-Civita connection and the Riemannian curvature tensor of g are respectively given for $x, y, z \in g$ by
$$
\nabla_xy = -Jy \cdot Jx, \quad R(x, y)z = -(z \cdot Jy) \cdot Jx = -(z \cdot Jx) \cdot Jy.
$$

If K denotes the Killing form of g, then the Ricci curvature tensor $\text{Ric}(x, y) = \text{trace}(R(x, -)y)$ is given by
$$
\text{Ric}(x, y) = \text{trace}(\text{ad}(Jy \cdot Jx)) - K(x, y), \quad x, y \in g.
$$
Proof. For $x, y, z \in \mathfrak{g}$ the Levi-Civita connection is given by

$$2g(\nabla_{x} y, z) = g([x, y], z) - g([y, z], x) + g([z, x], y)$$

$$= \omega(J[x, y], z) - \omega(J[y, z], x) + \omega(J[z, x], y)$$

$$= \omega(J[x, y], z) - \omega(z, y \cdot Jx) - \omega(z, x \cdot Jy) = \omega(J[x, y] + y \cdot Jx + x \cdot Jy, z)$$

and therefore, since J commutes with right multiplications and $[x, y] = [Jx, Jy]$, we have

$$2\nabla_{x} y = [Jx, Jy] - Jy \cdot Jx - Jx \cdot Jy = -2Jy \cdot Jx,$$

for all $x, y \in \mathfrak{g}$.

Now, the curvature tensor is given by

$$R(x, y)z = \nabla_{x} \nabla_{y} z - \nabla_{y} \nabla_{x} z = -Jz \cdot [x, y] - J(Jz \cdot Jy) \cdot Jx + J(Jz \cdot Jx) \cdot Jy$$

$$= -Jz \cdot [x, y] + (z \cdot Jy) \cdot Jx - (z \cdot Jx) \cdot Jy$$

for all $x, y, z \in \mathfrak{g}$.

In order to compute the Ricci form, let \mathcal{L}_{x} denote the left multiplication by an element $x \in \mathfrak{g}$ with the left-symmetric product induced by ω. Then we have $x \cdot Jx = (\text{ad}(x)J + \mathcal{L}_{Jx})x'$ for all $x' \in \mathfrak{g}$ and it follows that

$$R(x, y)z = -\mathcal{L}_{x}J \text{ad}(x)z + (\text{ad}(x)J + \mathcal{L}_{Jx})\mathcal{L}_{y}z - \mathcal{L}_{y} \mathcal{L}_{x} Jz.$$

Recalling that $J\mathcal{L}_{y} = \mathcal{L}_{Jy}$, we obtain

$$\text{Ric}(x, y) = -\text{trace}(\mathcal{L}_{y}J \text{ad}(x)) + \text{trace}(\text{ad}(x)J \mathcal{L}_{y}) + \text{trace}(\mathcal{L}_{Jx} \mathcal{L}_{y}) - \text{trace}(\mathcal{L}_{y} \mathcal{L}_{Jx})$$

$$= -\text{trace}(\mathcal{L}_{x} \mathcal{L}_{y}) - \text{trace}(\mathcal{L}_{y} \mathcal{L}_{Jx}).$$

Now, the result follows immediately from the fact that, for all $z \in \mathfrak{g}$, the map \mathcal{L}_{z} is the adjoint map with respect to ω of $-\text{ad}(z)$ and that a linear map and its ω-adjoint have the same trace. \qed

Remark 4.1. Observe that, actually, lemma 2.2 is equivalent to the parallelism of J with respect to the Levi-Civita connection.

Example 4.1. Let (\mathcal{A}, B) be a real symmetric associative commutative algebra and let us consider on $\text{aff}(\mathcal{A})$ the standard pseudo-Kähler structure. We had already seen that the left-symmetric product defined by the symplectic form was given by $(a, b) \cdot (a', b') = -(aa', ba')$ for all $a, b, a', b' \in \mathcal{A}$. Consequently, the Levi-Civita connection and the Riemannian curvature tensor are $\nabla_{(a, b)}(a', b') = (b, -a) + b'$.

$R((a, b), (a', b'))(a'', b'') = (ab'' - ba'' b', ba' a'' - ab'a''), a, b, a', b', a'', b'' \in \mathcal{A}.$

Note that this clearly implies that the metric is flat if and only if $\mathcal{A}^{3} = \{0\}$. Besides, we have that

$$R((a, b), (a', 0))(a'', b'') = (-R_{b''} a', R_{b''} a'), \quad R((a, b), (0, b'))(a'', b'') = (R_{b'} b', -R_{a''} b').$$

From it is clear that

$$\text{Ric}(a, (b, (a'', b''))) = -\text{trace}(R_{b''}) - \text{trace}(R_{a''}).$$

Then, the metric is Ricci flat if and only if $\text{trace}(R_{a''}) = 0$ for all $a, a' \in \mathcal{A}$. But this occurs if and only if \mathcal{A} is nilpotent because, otherwise, there exists an idempotent $e \in \mathcal{A}$ and one always has $\text{trace}(R_{e}) = \dim(e, \mathcal{A}) \geq 1$.

Flatness or Ricci flatness are easier to study if one describes the Riemannian and the Ricci curvature in terms of the products of an APK-compatible pair. We have the following.
Proposition 4.2. Let \(g_U \) denote the pseudo-Kähler Lie algebra with Abelian complex structure defined by an APK-compatible pair \((U, H)\). The Levi-Civita connection, the Riemannian curvature tensor and the Ricci curvature are given for \(x, y \in U \) by
\[
\nabla_x y = (R_x - R^*_x)y, \quad \mathbf{R}(x, y) = 3R_x R^*_y - 3R^*_x R_y + R^*_x R^*_y - R^*_y R_x, \\
\mathrm{Ric}(x, y) = -2\, \mathrm{trace}(R_x R^*_y).
\]

Proof. According to (2) in remark 3.1, and proposition 4.1, we obtain that the Levi-Civita connection is
\[
\nabla_x y = -J_y \cdot Jx = -R_{ix}iy - R^*_i y = R_x y - R^*_x y.
\]
Thus, \(\nabla_{[x,y]} = R_{[x,y]} - R^*_R_{[x,y]} = 2R_x R_y - 2R^*_y R_x \) and we then have
\[
\mathbf{R}(x, y) = 2R_x R_y - 2R_{yx} - (R_x - R^*_x)(R_y - R^*_y) + (R_y - R^*_y)(R_x - R^*_x) = 3R_x R_y - 3R^*_x R^*_y + R^*_x R_y - R^*_y R_x.
\]

In order to compute the Ricci curvature, let us consider for each \(x \in g \) the semi-linear map \(G_x : U \to U \) defined by \(G_x(y) = R^*_x y \). It follows that
\[
\mathbf{R}(x, z) y = (3R_x G_y - 3R^*_x R_y + R^*_x G_y - G_y)(z).
\]
Since \(R_x G_y \) and \(G_x \) are semi-linear, they are traceless and as a consequence we obtain
\[
\mathrm{Ric}(x, y) = -3\, \mathrm{trace}(R_x R^*_y) + \mathrm{trace}(R^*_x R^*_y) = -2\, \mathrm{trace}(R_x R^*_y),
\]
as claimed. \(\square \)

Corollary 4.3. Let \((U, H)\) be an APK-compatible pair. The pseudo-Kähler metric on \(g_U \) is flat if and only if \(3R_x R^*_y = R^*_x R^*_y \) for all \(x \in U \).

Proof. If \(3R_x R^*_y - R^*_x R^*_y = 0 \) holds for all \(x \in U \) then we have
\[
0 = 3R_{x+y} R^*_y - R^*_x R^*_y = 3R_x R^*_y + 3R^*_x R^*_y - R^*_x R_y - R^*_y R_x,
\]
\[
0 = 3R_{x+y} R^*_y - R^*_x R^*_y = -3iR_x R^*_y + 3iR_y R^*_x - iR_x R^*_y + iR^*_y R_x,
\]
which imply that \(3R_x R^*_y = R^*_x R^*_y \) for \(x, y \in U \), and one obviously deduces that \(\mathbf{R}(x, y) = 0 \).

Conversely, if the metric is flat we have
\[
0 = \mathbf{R}(x, ix) = -6iR_x R^*_y + 2iR^*_y R_x,
\]
which gives the desired identity. \(\square \)

Proposition 4.4. Let \((U, H)\) be an APK-compatible pair and \((g_U, \omega, J)\) the associated pseudo-Kähler Lie algebra. Let us consider the following conditions.

(c1) The pseudo-Kähler metric is flat.
(c2) The left-symmetric product defined by \(\omega \) is, actually, associative.
(c3) The derived ideal \([g, g]\) is contained in \(\text{ann}(U) \).

If one of the conditions above is fulfilled, then the other two are equivalent.
Proof. Recall that, as in the proof of the corollary above, the metric is flat if and only if
\[3R_xR_y = R_xR_y \] for all \(x, y \in U \). On the other hand, the left-symmetric product is associative if
and only if
\[0 = R_{xy} + R_{yx} - (R_x + R_y)(R_x + R_y) = R_xR_y - R_yR_x. \]

Finally, \([g, g] \subset \text{ann}(U)\) is equivalent to \(R_xR_y = 0 \) for all \(x, y \in U \) because we have
\[
\begin{align*}
 z[x, y] &= zR_x^2x - zR_y^2y = (R_xR_y - R_yR_x)z \\
 z[ix, y] &= izR_x^2x + izR_y^2y = i(R_xR_y + R_yR_x)z
\end{align*}
\]
for all \(x, y, z \in U \). Now, it suffices to realize that the combination of two of these conditions implies \(R_xR_y = R^2_{xy} = 0 \) and, then, the other one is also verified.

Remark 4.2. A left-symmetric algebra \((\mathfrak{A}, \cdot)\) is called a Novikov algebra if \((ab) \cdot c \equiv (a \cdot c) \cdot b\) is also verified for all \(a, b, c \in \mathfrak{A} \) \([5], [11]\). If \(g \) is a pseudo-Kähler Lie algebra constructed with an APK-compatible pair \((U, H)\) and \((g, \cdot)\) denotes the left-symmetric algebra defined by the symplectic form, then we have
\[
(x \cdot y) \cdot z - (x \cdot z) \cdot y = (R_x + R_y)(R_x + R_y) = (R_x + R_y)(R_x + R_y)x
\]
and, accordingly,
\[
(x \cdot y) \cdot iz - (x \cdot iz) \cdot y = (iR_xR_y - iR_yR_x + iR_xR_y - iR_yR_x)x.
\]
From these two equations we immediately get that \((g, \cdot)\) is Novikov if and only if \(R_xR_y = R^2_{xy} \). This proves that, for our algebras, the Novikov condition is equivalent to the associativity of
the left-symmetric product.

Corollary 4.5. If a pseudo-Kähler algebra with Abelian complex structure \((g, \omega, J)\) is two-step nilpotent, then the pseudo-Kähler metric is flat if and only if the left-symmetric product defined by \(\omega \) is associative.

Proof. Let \((U, H)\) be an APK-compatible pair for \(g \). A simple computation shows that for all \(x, y, z \in U \) one has \([z, [x, y]] = -(R_x + R_y)[x, y]\) and, therefore, if \(g \) is 2-nilpotent, then for \(x, y, z \in U \) one has
\[
0 = [z, [x, y]] + J[z, [x, y]] = -(iR_x - iR_y)[x, y] - i(R_x + R_y)[x, y] = -2iz[x, y],
\]
which shows that \([g, g] \subset \text{ann}(U)\) and the result is just a consequence of the proposition above.

The following proposition, in which we give necessary and sufficient conditions on the APK-compatible pair to yield a two-step nilpotent Lie algebra and to assure, in such a case, that the metric is flat, clarifies the conditions of the corollary.

Proposition 4.6. Let \((U, H)\) be an APK-compatible pair. The Lie algebra \(g_U \) is two-step nilpotent if and only if \(U^3 = \{0\} \) and \((\text{ann}(U))^1 \subset \text{ann}(U)\). If this is the case, then the pseudo-Kähler metric is flat if and only if \(U^2 \subset (U^2)^1 \).

Proof. As we had seen in the proofs of proposition 4.4 and corollary 4.5, when \(g_U \) is two-step nilpotent one has \(R_xR_y = 0 \) for all \(x, y \in U \). But this is equivalent to \(R_xU \subset (R_yU)^1 \) and, since \(R_xU = (\text{ann}(U))^1 \), it follows that \((\text{ann}(U))^1 \subset \text{ann}(U)\). Recalling that we also had \([z, [x, y]] = -(R_x + R_y)[x, y]\) for all \(x, y, z \in U \), we arrive at
\[
0 = i[z, [x, y]] + [z, [x, iy]] = -iR_xR_y^2x + iR_yR_x^2y - R_xR_y^2x + R_yR_x^2y = 2iR_xR_y^2y
\]
and, thus, we obtain $H(xyt, y) = H(t, R_x R^*_y) = 0$, showing that $A^3 = \{0\}$. The converse follows at once from the identity $[z, [x, y]] = -(R_x + R^*_y)[x, y]$.

Since $R_x R^*_y = 0$ for all $x, y \in U$, the flatness of the pseudo-Kähler metric is equivalent to $R_x^* R_y = 0$ for all $x, y \in U$. But this is nothing but the condition $H(U^2, U^2) = \{0\}$.

Example 4.2. We had seen that if A is a nilpotent symmetric associative commutative algebra such that $A^3 \neq \{0\}$, then the standard pseudo-metric on $\text{aff}(A)$ is not flat. But one can also construct non-flat two-step nilpotent algebras. For example, let us consider the pair (U, H) where the associative algebra U is the \mathbb{C}-span of $\{u_0, u_1, u_2, u_3, u_4\}$ with the non-trivial products $u_4 u_3 = u_3 u_4 = u_4 u_4 = u_2$ and the Hermitian form such that $H(u_j, u_k) = 1$ if $j + k = 4$ and $H(u_j, u_k) = 0$ whenever $j + k \neq 4$. Obviously, $U^3 = \{0\}$ and one has

$$R^*_0 u_2 = u_0, \quad R^*_0 u_2 = u_0 + u_1, \quad R^*_0 u_j = R^*_u u_j = 0, \quad j \neq 2.$$

Therefore, $R_x R^*_y = 0$ for all $x, y \in U$. This proves that (U, H) is APK-compatible and that the Lie algebra g_U is two-step nilpotent. However, one has $H(U^2, U^2) \neq 0$, which shows that the metric cannot be flat.

Although there exist nilpotent Lie algebras with non-flat APK structures, all of them are Ricci flat as was shown in a more general context in [16, lemma 6.3] and can be directly proved.

Corollary 4.7. Every unimodular pseudo-Kähler Lie algebra with Abelian complex structure is Ricci flat.

Proof. We had seen that for pseudo-Kähler Lie algebras with Abelian complex structures unimodularity and nilpotency are equivalent. Further, this means that if (U, H) is an associated APK-compatible pair, then U is nilpotent. This clearly implies that R_x is nilpotent, hence traceless, for all $x \in U$ and, thus, $\text{Ric}(x, y) = -2 \text{trace}(R_x R^*_y) = -2 \text{trace}(R^*_y) = 0$.

Example 4.3. Bearing in mind the formula given for the Ricci curvature and the explicit calculation done in the case of the algebras $\text{aff}(A)$, one could think that Ricci flatness is only possible for nilpotent algebras. However, this is not the case. If we consider the pair (U, H) where U is the complex span of $\{u_0, u_1, u_2, u_3\}$ with the only non-trivial products $u_1 u_3 = u_3 u_1 = u_4, u_1^2 = u_1$ and the Hermitian form defined by $H(u_0, u_3) = H(u_1, u_2) = 1$ and $H(u_j, u_k) = 0$ in the remaining pairs (j, k), then one easily sees that U is not nilpotent but $R_x R^*_y = R^*_y R_x = 0$ for all $x, y \in U$. Hence, the pseudo-Kähler metric is flat.

We shall finish this section with a characterization of the non-Ricci flat Einstein case. Recall that a pseudo-Riemannian metric g is Einstein whenever there exists $\gamma \in \mathbb{R}$ such that $g = \gamma \text{Ric}$.

Proposition 4.8. If (g, ω, J) is a Lie algebra with APK structure and the pseudo-Kähler metric is Einstein but not Ricci flat then $g = \text{aff}(A)$, endowed with the standard APK structure, where A is a semi-simple associative commutative algebra and the symmetric form on A is (up to a scalar) the trace form of the regular representation.

Proof. Let us consider an APK-compatible pair (U, H) such that $g = g_U$. If the metric is Einstein, then $\text{Ric}(x, y) = -2 \text{trace}(R_x R^*_y)$ must be non-degenerate and, hence, $\text{ann}(U)$ must vanish. According to proposition 3.5, g is holomorphically symplectomorphic to an algebra $\text{aff}(A)$ for some symmetric associative commutative algebra (A, B). But, in this case, we had seen in the example 4.1 that $\text{Ric}((a, b), (a', b')) = -\text{trace}(R_{bb'}) - \text{trace}(R_{ab'})$ for all
a, b, a', b' ∈ A. Bearing in mind the construction of the pseudo-Kähler metric, we have for all
\(a, b \in A \) that
\[
B(a, b) = \omega((a, 0), (0, -a), (0, b)) = g((0, -a), (0, b)) = \gamma \text{trace}(R_{ab}).
\]
Since such form is non-degenerate if and only if \(A \) is semi-simple, the result follows. □

5. Inductive construction of pseudo-Kähler Lie algebras with Abelian complex structure

In [23] and [15], the authors describe the method of symplectic double extensions by one-dimensional Lie algebras to construct new symplectic Lie algebras from a given one. Actually, they prove that every nilpotent symplectic Lie algebra can be obtained by a series of double extensions starting from the zero algebra. The same constructions (slightly modified) have been used in [6] to give an inductive description of all complex para-Kähler Lie algebras with Abelian paracomplex structure. However, the method is not applicable in the pseudo-Kähler case unless one uses double extensions by planes instead of by lines.

Since every pseudo-Kähler Lie algebra with Abelian complex structure is associated with an APK-compatible pair, we will define an inductive method of construction for such pairs. The method is again based on two extensions of a given associative commutative algebra, in a similar way as is done in [7] for symplectic associative commutative algebras.

All the associative algebras of this section will be, unless the contrary is explicitly said, complex algebras. We first recall some definitions.

Definition 5.1. Let \(U \) be an associative commutative algebra and \(\varphi : U \times U \rightarrow \mathbb{C} \) a symmetric bilinear form such that \(\varphi(xy, z) = \varphi(x, yz) \) for all \(x, y, z \in U \). Then the vector space \(U \oplus \mathbb{C}u_0 \) with the product
\[
(x + \alpha u_0)(x' + \alpha' u_0) = xx' + \varphi(x, x')u_0, \quad x, x' \in U, \quad \alpha, \alpha' \in \mathbb{C},
\]
is then an associative commutative algebra which we will call the (one-dimensional) central extension of \(U \) by means of \(\varphi \).

Definition 5.2. Let \(U \) be an associative commutative algebra, \(\delta \in \text{gl}(U) \), \(x_0 \in U \) and let \(\mathbb{C}v \) denote a one-dimensional associative algebra. On the vector space \(\mathbb{C}v \oplus U \) let us define the product
\[
(\alpha v + x)(\beta v + y) = \alpha\beta v^2 + \alpha\beta x_0 + xy + \alpha\delta y + \beta\delta x, \quad \alpha, \beta \in \mathbb{C}, \quad x, y \in U.
\]
It can be easily seen that \(\mathbb{C}v \oplus U \) is an associative commutative algebra if and only if \(\delta(xy) = (\delta x)y + (\delta y)x \) for all \(x, y \in U \) and \(\delta^2 = -\varepsilon \delta = R_{\varepsilon} \), where \(\varepsilon \in \mathbb{C} \) is such that \(v^2 = \varepsilon v \). In this case, we will say that the algebra \(\mathbb{C}v \oplus U \) is the generalized semi-direct product of \(U \) and \(\mathbb{C}v \) by means of \((\delta, x_0) \).

Our aim is to prove that, essentially, all APK-compatible pairs may be obtained by a double extension given by a central extension and a generalized semi-direct product from another APK-compatible pair. We first give conditions to assure that a double extension of that type on an APK-compatible pair leads to another APK-compatible pair.

Proposition 5.1. Let \((U, H) \) be an APK-compatible pair, \(\varepsilon \in \mathbb{C}, \) \(D \in \text{gl}(U) \) such that \(D(xy) = (\varepsilon D)y \) for all \(x, y \in U \) and \(D^2 - \varepsilon D = R_{\varepsilon} \) for some \(a_0 \in U \) and consider a semilinear mapping \(\tau : U \rightarrow U \) such that \(H(x, \tau y) = H(\tau x, y) \). Suppose that there exists \(b_0 \in U \) such that
\[
\tau a_0 = (D^* - \varepsilon \text{Id})b_0, \quad \tau^2 = DD^* = R_{b_0}, \quad \tau b_0 = Db_0
\]
and that for all \(x \in U\) the following conditions hold:
\[
\tau \sigma^*_x = \tau x, \quad \tau R^*_x = R^*_x \tau, \quad D \tau = \tau D^*, \quad DR^*_x = R^*_x \tau, \quad \tau Dx = R^*_x b_0.
\]

Let us construct a new algebra \(\hat{U} = U \oplus \mathbb{C}u_0\) with a commutative product \(\star\) such that \(u_0\) annihilates \(\hat{U}\), \(v_0 \star v_0 = \varepsilon v_0 + a_0 + a_0u_0\) for some \(a_0 \in \mathbb{C}\) and
\[
x \star y = xy + H(x, \tau y)u_0, \quad v_0 \star x = Dx + H(x, b_0)u_0
\]
hold for all \(x, y \in U\). If we define a non-degenerate Hermitian form \(\tilde{H}\) on \(\hat{U}\) by
\[
\tilde{H}(u_0, v_0) = 1, \quad \tilde{H}(u_0, u_0) = \tilde{H}(v_0, v_0) = 0
\]
\[
\tilde{H}(u_0, x) = \tilde{H}(v_0, x) = 0, \quad \tilde{H}(x, y) = H(x, y), \quad x, y \in U,
\]
then \((\hat{U}, \tilde{H})\) is an APK-compatible pair.

Proof. Let us first show that \(\hat{U}\) is actually an associative commutative algebra constructed by performing a central extension on \(U\) and then a semi-direct product to the extended algebra. It is straightforward to prove that the map \(\varphi : U \times U \to \mathbb{C}\) given by \(\varphi(x, y) = H(x, \tau y)\) is bilinear and symmetric. Moreover, for all \(x, y, z \in U\) we have
\[
\varphi(xy, z) = H(xy, \tau z) = H(x, \tau yz) = H(x, \tau (yz)) = \varphi(x, yz).
\]
This shows that \(U' = U \oplus \mathbb{C}u_0\) is the central extension of \(U\) by means of \(\varphi\). Now, if we consider \(\delta \in gl(U')\) given by \(\delta(x + au_0) = Dx + H(x, b_0)u_0\) for \(x \in U, \alpha \in \mathbb{C}\) then we have that
\[
\delta(x)y = D(xy) + H(Dx, \tau y)u_0 = D(xy) + H(D^*b_0, y)u_0, \quad \delta(xy) + \delta(y)x = D(xy) + H(D^*b_0, y)u_0
\]
\[
\delta(x) = D^2x - \varepsilon Dx + H(x, D^*b_0 - \varepsilon b_0)u_0 = R^*_x b_0 + H(x, \tau a_0)u_0
\]
is verified for all \(x, y \in U\). This shows that \(\delta\) fulfills the necessary conditions to construct a generalized semi-direct product of \(U'\) and \(\mathbb{C}u_0\). Further, one immediately sees that the product on \(\hat{U}\) is nothing but the product on such a generalized semi-direct product.

It only remains to prove, thus, that the condition (1) of the definition of an APK-compatible pair is verified. Let us denote by \(R^*_x\) the multiplication by \(\xi \in U\) in \(U\). It is obvious that \(R^*_x u_0 = 0\) since \(u_0 \in \text{ann}(U)\) and rather long but direct calculations yield
\[
R^*_x v_0 = b_0 + \tau c_0u_0, \quad R^*_x x = D^*x + H(x, \alpha)u_0, \quad R^*_x u_0 = \tau u_0, \quad R^*_x v_0 = x \star b_0 = x b_0 + H(x, \tau b_0)u_0
\]
for all \(x, y \in U\). We then have for \(x \in U\) that
\[
v_0 \star R^*_x x = v_0 \star D^*x = DD^*x + H(D^*x, b_0)u_0
\]
\[
x \star v_0 x = x \star b_0 = x b_0 + H(x, \tau b_0)u_0
\]
and, therefore, they are equal if and only if \(DD^* = R^*_x b_0\) and \(Db_0 = \tau b_0\). If we now take \(x, y \in U\) then we obtain
\[
x \star R^*_x y = x \star D^*y = x D^*y + H(x, \tau D^*y)u_0
\]
\[
y \star R^*_x x = y \star D^*x = y D^*x + H(D^*x, \tau y)u_0.
\]
From the equality \(DD^* = R^*_x\) we obtain \(R^*_x D^* = R^*_x\) and hence, bearing in mind that \(\tau R^*_x = R^*_x \tau\), we obtain for all \(z \in U\),
\[
H(x D^*y, z) = H(y, \tau (x)) = H(R^*_x y, \tau x) = H(x, \tau R^*_x y) = H(x, \tau (y)) = H(y D^*x, z).
\]
We also have $Dr = \tau D^*$, so we deduce that $x \star \tilde{R}_{i0}^u y = y \star \tilde{R}_{i0}^u x$. From the conditions $DR_i^u = R_{i0}$ and $\tau^2 = R_{i0}$ we easily obtain that $x \star \tilde{R}_{j0}^u v_0 = v_0 \star \tilde{R}_{j0}^u x$ because $R_{i0}^u x + H(R_{i0}^u x, \tau x)u_0$

Finally, when $x, y, z \in U$ we have $x \star \tilde{R}_{i0}^u z = x \star R_{j0}^u z + H(x, \tau R_{j0}^u z)u_0 = zR_{i0}^u x + H(R_{i0}^u x, \tau z)u_0 = z \star R_{i0}^u x = \lambda(x)R_{i0}^u$ for all $x \in H$ and R_{i0}^u is APK-compatible and $\tau R_{i0}^u = R_{i0}^u \tau$. The result now follows at once since the cases involving u_0 are trivial because u_0 and $\tilde{R}_{i0}^u u_0$ are in the annihilator of H for all $\xi \in \tilde{U}$.

\[\text{Definition 5.3. Each pair } (\tilde{U}, \tilde{H}) \text{ constructed as in the proposition above will be called an APK-compatible double extension of the pair } (U, H) \text{ by a one-dimensional associative algebra.} \]

\[\text{Lemma 5.2. Let } (U, H) \text{ be an APK-compatible pair. If } \text{ann}(U) \cap (\text{ann}(U))^\perp \neq \{0\}, \text{ then there exists } u_0 \in \text{ann}(U) \cap R_{i0}^u U, u_0 \neq 0 \text{ and a semi-linear map } \lambda : U \to \mathbb{C} \text{ such that } R_{i0}^u u_0 = \lambda(x)u_0 \text{ holds for all } x \in U. \]

\[\text{Proof. } \text{First note that } x \star \tilde{R}_{i0}^u z = x \star R_{j0}^u z + H(x, \tau R_{j0}^u z)u_0 = zR_{i0}^u x + H(R_{i0}^u x, \tau z)u_0 = z \star R_{i0}^u x = \lambda(x)R_{i0}^u, \text{ for all } x \in U. \]

\[\text{Theorem 5.3. Every APK-compatible pair } (\tilde{U}, \tilde{H}) \text{ with } \text{ann}(\tilde{U}) \cap (\text{ann}(\tilde{U}))^\perp \neq \{0\} \text{ is an APK double extension of another APK-compatible pair } (U, H) \text{ by a one-dimensional algebra.} \]

\[\text{As a consequence, every APK-compatible pair } (U, H) \text{ is either the pair corresponding to an algebra of type } \text{aff}(\mathcal{A}) \text{ with its standard pseudo-Kähler structure or can be obtained by a series of APK double extensions starting from the pair associated with an algebra } \text{aff}(\mathcal{A}). \]

\[\text{Proof. } \text{Let us apply the lemma above and consider } u_0 \in \text{ann}(\tilde{U}) \cap \tilde{R}_{i0}^u \tilde{U}, u_0 \neq 0 \text{ such that } \tilde{R}_{i0}^u u_0 = \lambda(\xi)u_0 \text{ for all } \xi \in \tilde{U}. \text{ It is clear that } \tilde{H}(u_0, u_0) = 0 \text{ since } \tilde{R}_{i0}^u \tilde{U} = (\text{ann}U)^\perp. \text{ As } \tilde{H} \text{ is non-degenerate, we may find an element } v_0 \in \tilde{U} \text{ such that } \tilde{H}(v_0, u_0) = 0 \text{ and } \tilde{H}(u_0, v_0) = 1. \text{ This gives a decomposition of vector spaces } \tilde{U} = \mathbb{C}u_0 \oplus U \oplus \mathbb{C}v_0 \text{ where } U = (\mathbb{C}u_0 + \mathbb{C}v_0)^\perp. \text{ The subset } I = (\mathbb{C}u_0)^\perp = \mathbb{C}u_0 \oplus U \text{ is actually an ideal of } \tilde{U} \text{ because for all } x \in I \text{ and } \xi \in \tilde{U} \text{ one has } \tilde{H}(u_0, x \star \xi) = \tilde{H}(\tilde{R}_{i0}^u u_0, x) = \tilde{H}(\lambda(\xi)u_0, x) = \lambda(\xi)\tilde{H}(u_0, x) = 0, \text{ where } \star \text{ denotes the product on } \tilde{U}. \text{ Note that the restriction } H \text{ of } \tilde{H} \text{ to } H \times U \text{ is non-degenerate and that } U \text{ is naturally endowed with a structure of associative commutative algebra if we consider the product given by the projection to } U \text{ of the product in } I. \text{ Moreover, if for all } x, y \in U \text{ we denote } xy \in U \text{ the projection of } x \star y \text{ to } U, \text{ we have } x \star y = xy + \varphi(x, y)u_0, \text{ where } \varphi \text{ is a certain symmetric bilinear form on } U \text{ such that } \varphi(xy, z) = \varphi(x, yz). \text{ Let } \tau : U \to U \text{ be the unique semi-linear mapping such that } \varphi(x, y) = H(x, \tau y) \text{ for all } x, y \in U, \text{ which is guaranteed because } H \text{ is non-degenerate. It can be easily shown that } H(x, \tau y) = \overline{H(\tau x, y)} \text{ and } \]
Proposition 3.6. Let \(J \) be an ideal of \(\hat{U} \) and, therefore, if we denote by \(D \in \mathfrak{gl}(U) \) the projection on \(U \) of the restriction of \(\hat{R}_{\theta} \), we can describe the product in \(\hat{U} \) by \(u_0 \in \text{ann}(U) \) and

\[
v_0 \star v_0 = \varepsilon v_0 + a_0 + a_0 u_0, \quad v_0 \star x = D x + \phi(x) u_0, \quad x \star y = xy + H(x, \tau y) u_0, \quad x, y \in U
\]

for some linear form \(\phi : U \to \mathbb{C} \) and certain \(\varepsilon, a_0 \in \mathbb{C}, a_0 \in U \). The non-degeneracy of \(H \) lets us find \(b_0 \in U \) such that \(\phi(x) = H(x, b_0) \) for all \(x \in U \).

The associativity of \(\hat{U} \) implies that \(D(xy) = (Dx)y, \tau Dx = \tau^* b_0 \), hold for all \(x, y \in U \) and that \(\tau a_0 = D^* b_0 - \varepsilon b_0, D^2 - \varepsilon D = R \), and, since the product \(\star \) is given as the one in proposition 5.1, one sees by simply reversing the arguments of its proof that the condition \(\tilde{x} \tilde{R}_x^* \tilde{y} = \tilde{x} \tilde{R}_x^* \tilde{y} \) for \(\tilde{x}, \tilde{y}, v \in \hat{U} \) implies that \((U, H) \) is an APK-compatible pair and, further, that all the conditions on \(\tau, D, a_0 \) and \(b_0 \) to have an APK double extension are fulfilled.

The second part of the statement follows by applying successively the first part. If \((\hat{U}, \hat{H}) \) is not the pair corresponding to an algebra \(\text{aff}(A) \), then, according to proposition 3.6, \(\text{ann}(\hat{U}) \cap (\text{ann}(\hat{U}))^\perp \neq \{0\} \) and it is an APK double extension of a certain pair \((U_1, H_1) \). The same argument can be then applied to \(U_1 \) and so on. \(\square \)

Remark 5.1. The following facts are remarkable.

1. The process to view an APK-compatible pair as a series of double extensions stops when we arrive at an algebra in which the annihilator does not intersect its orthogonal complement. This means that the symmetric real associative commutative algebra \(A \) of the second part of the theorem can be taken to be one of the algebras considered in proposition 3.6. In particular, every nilpotent APK-compatible pair \((U, H) \) such that \(U^2 \neq \{0\} \) is obtained by a sequence of APK double extensions starting from an algebra with zero multiplication.

2. When \(g_0 \) is the Lie algebra constructed with an APK-compatible pair \((U, H) \), the signature of the pseudo-Kähler metric is twice that of \(H \) and when \((U, H) \) is an APK double extension of a compatible pair \((U, H) \), then the signature of \(H \) is given by \(\text{sig}(H) = \text{sig}(H) + 1 \). This shows that if the pseudo-Kähler metric is definite positive, then \(g \) cannot be an APK double extension and must actually be an algebra \(\text{aff}(A) \) for an associative commutative symmetric algebra \((\mathbb{A}, \mathbb{B}) \), such as those in proposition 3.6., it is to say, an orthogonal sum \(A = \text{ann}(A) \oplus A_1 \oplus \cdots \oplus A_p \) where each ideal \(A_i \) is of the form \(\mathbb{e}_i A \) for some idempotent \(\mathbb{e}_i \). When the Kähler metric of \(\text{aff}(A) \) is definite positive, \(B \) must also be definite (negative). If the nilradical \(N_i \) of \(A_i \) is non-zero, \(x \in N_i \) and \(k \in \mathbb{N}, k \geq 2 \) is such that \(x^{2k} = 0, x^{2k-2} \neq 0 \), then we have \(0 = B(x^{x, x^{x}}, x^{x}) = B(x^{x+1}, x^{x+1}) \) and hence \(x^{x+1} = 0 \), which is obviously a contradiction with \(x^{2k} \neq 0 \) if \(k \geq 3 \) and also if \(k = 2 \) because \(x^2 = 0 \) implies \(B(x^2, x^2) = B(x^3, x) = 0 \). Thus \(N_i = \{0\} \) and then \(\mathbb{e}_i A \) must be simple. This proves that each ideal \(\mathbb{e}_i A \) is isomorphic to either \(\mathbb{R} \) or \(\mathbb{C} \). But a simple calculation shows that \(\mathbb{C} \) does not admit a definite form of the type defined in definition 2.5. Thus, one immediately obtains the well-known result (see, for instance, [4, theorem 4.1]) that a Kähler Lie algebra with Abelian complex structure is an orthogonal sum of several copies of \(\text{aff}(\mathbb{R}) \) and an even-dimensional Abelian algebra.

Acknowledgments

We would like to thank Professor Saïd Benayadi for his multiple and interesting suggestions and the referees, whose comments helped us to improve the readability of our manuscript.
References

[1] Albert A A 1939 Structure of Algebras (New York: American Mathematical Society)
[2] Alekseevsky D V, Medori C and Tomassini A 2009 Homogeneous para-Kähler Einstein manifolds Russ. Math. Surv. 64 1–43
[3] Andrade A, Barberis M L and Dotti I G 2011 Classification of Abelian complex structures on 6-dimensional Lie algebras J. Lond. Math. Soc. 83 232–55
[4] Andrade A, Barberis M L and Dotti I G 2012 Abelian Hermitian geometry Differ. Geom. Appl. 30 509–19
[5] Bai C and Meng D 2001 The classification of Novikov algebras in low dimensions J. Phys. A: Math. Gen. 34 1581–94
[6] Bajo I and Benayadi S 2011 Abelian para-Kähler structures on Lie algebras Differ. Geom. Appl. 29 160–73
[7] Bal清扫lou A and Benayadi S 2011 Symmetric symplectic commutative associative algebras and related Lie algebras Algebra Coll. 18 973–86
[8] Barberis M L and Dotti I 2004 Abelian complex structures on solvable Lie algebras J. Lie Theory 14 25–34
[9] Bordemann M 1997 Nondegenerate invariant bilinear forms on nonassociative algebras Acta Math. Univ. Comen. 66 151–201
[10] Bordemann M and Waldmann S 1997 A Fedosov star product of the Wick type for Kähler manifolds Lett. Math. Phys. 41 243–53
[11] Burde D and Dekimpe K 2006 Novikov structures on solvable Lie algebras J. Geom. Phys. 56 1837–55
[12] Cordero L A, Fernández M and Ugarte L 2002 Abelian complex structures on 6-dimensional compact nil-manifolds Comment. Math. Univ. Carolinae 43 215–29
[13] Cordero L A, Fernández M and Ugarte L 2004 Pseudo-Kähler metrics on six-dimensional nilpotent Lie algebras J. Geom. Phys. 50 115–37
[14] Curtis C W and Reiner I 1962 Representation Theory of Finite Groups and Associative Algebras (New York: Interscience)
[15] Dardé J-M and Medina A 1996 Double extension symplectique d’un group de Lie symplectique Adv. Math. 117 208–27
[16] Fino A, Parton M and Salamon S 2004 Families of strong KT structures in six dimensions Comment. Math. Helv. 79 317–40
[17] Gibbons G W, Papadopoulos G and Stelle K 1997 HKT and OKT geometries on soliton black hole moduli spaces Nucl. Phys. B 508 623–58
[18] Goze M, Khakimdjanov Y and Medina A 2004 Symplectic or contact structures on Lie groups Differ. Geom. Appl. 21 41–54
[19] Helminsterter J 1979 Radical d’une algèbre symétrique à gauche Ann. Inst. Fourier 29 17–35
[20] Howe P S and Papadopoulos G 1996 Twistor spaces for HKT manifolds Phys. Lett. B 379 80–6
[21] Karabegov A 1996 Deformation quantization with separation of variables on a Kähler manifold Commun. Math. Phys. 180 745–55
[22] Karabegov A 1999 Pseudo-Kähler quantization on flag manifolds Commun. Math. Phys. 200 355–79
[23] Medina A and Revoy Ph 1991 Groupes de Lie à structure symplectique invariante Symplectic Geometry, Groupoids, and Integrable Systems: Séminaire Sud-Rhodanien de Géométrie (Mathematical Science Research Institute Publications) ed P Dazord and A Weinstein. (New York: Springer) pp 247–66
[24] Petravchuk A P 1988 Lie algebras decomposable into a sum of an Abelian and a nilpotent subalgebra Ukr. Math. J. 40 331–4