Biota from the coastal wetlands of Praia da Vitória (Terceira, Azores, Portugal): Part 1 - Arthropods

Paulo Alexandre Vieira Borges‡, Rosalina Gabriel‡, César M.M. Pimentel§, Mariana R. Brito§, Artur Raposo Moniz Serrano†, Luís Carlos Fonseca Crespo‡, Volker Assing#, Peter Stüben¶, Simone Fattorini*, António Onofre Soares*, Enésima P. Mendonça‡, Elisabete Nogueira‡

‡ CE3C – Centre for Ecology, Evolution and Environmental Changes / Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, Azores, Portugal
§ LIFE CWR – LIFE project “Ecological Restoration and Conservation of Praia da Vitória Coastal Wet Green Infrastructures”, Praia da Vitória, Azores, Portugal
| Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
¶ Biodiversity Research Institute UB, Departament Biologia Animal, Universitat de Barcelona, Av. Diagonal 645, E-08028, Barcelona, Spain
Gabelsbergerstraße 2, 30163 Hannover, Germany
¤ CURCULIO Institute e.V., Hauweg 62, D-41066 Mönchengladbach, Germany
« Department of Life, Health & Environmental Sciences, University of L'Aquila, 67100 L'Aquila, Italy
» Centre for Ecology, Evolution and Environmental Changes and Azorean Biodiversity Group, Faculty of Sciences and Technology, University of the Azores, Ponta Delgada, Azores, Portugal

Corresponding author: Paulo Alexandre Vieira Borges (pborges@uac.pt)

Academic editor: Pedro Cardoso

Received: 04 Jun 2018 | Accepted: 17 Jul 2018 | Published: 25 Jul 2018

Citation: Borges P, Gabriel R, Pimentel C, Brito M, Serrano A, Crespo L, Assing V, Stüben P, Fattorini S, Soares A, Mendonça E, Nogueira E (2018) Biota from the coastal wetlands of Praia da Vitória (Terceira, Azores, Portugal): Part 1 - Arthropods. Biodiversity Data Journal 6: e27194. https://doi.org/10.3897/BDJ.6.e27194

ZooBank: urn:lsid:zoobank.org:pub:5E3CF42C-61F5-4D8A-A709-E245E07E2AA3

Abstract

Background

During a LIFE research project aiming at the implementation of the conservation of the habitats and restoration of coastal wetland areas of Praia da Vitória (Terceira, Azores, Portugal), there was the opportunity undertake a systematic record of several groups of arthropods in three wetland areas: Paul da Praia da Vitória (PPV), Paul do Belo Jardim (PBJ) and Paul da Pedreira do Cabo da Praia (PPCP). The objective of the study was to perform a rapid biodiversity assessment, comparing the three sites in two different years,
before and after the implementation of several conservation measures. This project also contributed to improve the knowledge of Azorean arthropod diversity at both local and regional scales, including new taxa for Terceira island and new records for Azores. Taking into consideration those aims, a set of standardised sampling methods were performed, inspired by the COBRA protocol originally developed for spiders.

New information

A total of 15,810 specimens belonging to 216 arthropod species and subspecies were collected. Beetles (Insecta, Coleoptera) and spiders (Araneae) dominated, with 81 and 51 taxa, respectively. Two beetle families dominated, Staphylinidae and Curculionidae with, respectively, 22 and 17 species and subspecies. Exotic species were also dominant (132 species and subspecies), the Azorean endemics being restricted to only eight taxa. The remaining 76 species and subspecies are native non-endemic. Two rare endemic species were found with relatively sustainable populations, the Azores Cone-head *Conocephalus chavesi* (Orthoptera, Tettigoniidae) and the true weevil *Drouetius oceanicus oceanicus* (Coleoptera, Curculionidae). A total of six species are novel for the Azores, five exotic (*Bledius unicornis*, *Carpelimus zealandicus*, *Oenopia doublieri*, *Sitona hispidulus*, *Trichiusa immigrata*) and one possibly native (*Pyrrhocoris apterus*). An additional 15 taxa are novel for Terceira island, ten exotic (*Cheiracanthium mildei*, *Cylindroiulus latestriatus*, *Eumodicoryllus bordigalensis*, *Nemobius sylvestris*, *Pissodes castaneus*, *Psyllipsocus ramburi*, *Trachyzelotes lyonneti*, *Trigonidium cicindeloides*, *Tychius cuprifer*, *Zelotes tenuis*) and five native (*Aegialia arenaria*, *Oxypoda lurida*, *Platycleis sabulosa*, *Plinthisus brevipennis*, *Tachyura diabrachys*).

Keywords

Arthropoda, Azores, Terceira Island, coastal area, standardised sampling

Introduction

The terrestrial coastal lines of the Azores include important wetland areas, namely salty lakes. These habitats were subject to intense human disturbance and, after almost 600 years of human occupancy, only very few coastal wetland habitats still persist in these Atlantic islands. Despite these impacts, three small areas are still available in Terceira Island: i) a native but highly modified coastal saltmarsh habitat, Paul Praia da Vitória (PPV); ii) a new coastal saltmarsh that was created by rehabilitation of the quarry at Cabo da Praia, Paul da Pedreira do Cabo da Praia (PPCP) (Morton et al. 1997); iii) a wetland included in a dune area, the Paul do Belo Jardim (PBJ). The knowledge of the arthropod fauna of these habitats was until recently very incipient, but more recently, the LIFE project "Ecological Restoration and Conservation of Praia da Vitória Coastal Wet Green Infrastructure" (2013-2018) implemented a two-year inventory and monitoring of the biota.
in these wetland areas. As a consequence, a first survey was conducted in 2016 in order to compare the diversity of arthropods in ground and aerial habitats (herbaceous, shrubs and trees) in the referred wetland areas (Borges et al. 2017). A second survey was performed in 2017, repeating the same sampling protocols with some additional sampling.

General description

Purpose: In this contribution, we present detailed data on the distribution and abundance of species belonging to several groups of arthropods in three Terceira Island (Azores) wetlands during two years (2016-2017). In addition, we list the new taxonomic records for the Azores or Terceira Island. In doing this, we are contributing to address two key biodiversity shortfalls (see Cardoso et al. 2011): i) the need for improving current information on the local and regional distribution of Azorean arthropods (the Wallacean shortfall); and ii) the need for collecting abundance data for future monitoring purposes (the Prestonian shortfall).

Project description

Title: The inventory of selected groups of terrestrial arthropods in three coastal wetlands from Terceira Island (Azores)

Personnel: The inventory was conducted during two years (2016-2017) under the responsibility of Paulo A. V. Borges with constant participation of César Pimentel. For the night sampling, additional help in the field was provided by Rosalina Gabriel and Mariana Brito. A large group of taxonomists contributed for the species identification: Luís Crespo (Araneae); Artur Serrano (Insecta, Coleoptera); Volker Assing and Michael Schülke (Coleoptera, Staphylinidae); António O. Soares (Coleoptera, Coccinellidae); Simone Fattorini (Coleoptera, Tenebrionidae); Peter Stüben (Coleoptera, Curculionidae). Finally, in the lab, we had the support of Alejandra Ros-Prieto in vouchers management for the University of Azores Insect Collection "Dalberto Teixeira Pombo" and Enésima Mendonça for the database management.

Study area description: Terceira Island (area: 400.6 km²; elevation: 1,021.14 m) is one of the nine islands from the Azores archipelago, located in the North Atlantic, roughly at 38°43′49″N 27°19′10″W. The climate in the Azores is temperate oceanic, with regular and abundant rainfall, with high levels of relative humidity and persistent winds, mainly during the winter and autumn seasons.

Terceira Island is known for the presence of some very important pristine areas at high elevation (Gaspar et al. 2011). However, few natural areas still remain at lower elevations, notably in Praia da Vitória county. Three wetland areas, Paul da Praia da Vitória (PPV), Paul do Belo Jardim (PBJ) and Paul da Pedreira do Cabo da Praia (PPCP) (Figs 1, 2) were studied in this project. Coastal vegetation dominates, namely Juncus acutus and still
includes some arboreal cover by the native shrub *Morella faya*. The *Erica-Morella* coastal woodlands as described in Elias et al. (2016) are not present and the exotic invasive species *Arundo donax* is very common.

The PPV (Fig. 1) was a large coastal salty marshland with associated dunes, which was largely transformed and reduced for urban development and underwent several dynamic changes in the last 500 years of human occupation. After some major work performed between 2006 and 2010, PPV is currently characterised by a large waterbody with islands...
of *Juncus acutus* isolated by channels (Fig. 2). PBJ was originally one of the largest dune areas from the Azores (Fig. 3), but after the construction of the Praia da Vitória harbour, it was reduced to a very small wetland area, with a dune covered partially by *J. acutus* (Fig. 4). Of particular relevance is the presence of a small stream adding some diversity of vegetation and arthropods (Borges et al. 2017). The case of PPCP is completely different, since this is a recently created wetland (Fig. 5), resulting from the removal of large amounts of stones for the construction of the Praia da Vitória harbour, around 1980 (Fig. 6). As a consequence a new ecosystem was created, the quarry of Cabo da Praia (Morton et al. 1997).
Design description: In each of the three wetland areas, transects were setup to allow the sampling of epigean arthropods in the main habitats.

In PPV, three main transects were setup: i) PPV-T200 (Paul da Praia Vitória - Margins) that covers the main margins of the water bodies; ii) PPV-T201 (Paul da Praia Vitória - Island) that covers some of the isolated islands; iii) PPV-T205 (Paul da Praia Vitória - Cerrado São Lazaro) to sample an historical locality with a high diversity of ground-beetle species (Borges 1995; Borges et al. 2017).
In PBJ, two transects were setup: i) PBJ-T203 (Paul do Belo Jardim - Margins), which was located within the *Juncus acutus* plants; ii) PBJ-T204 (Paul do Belo Jardim - Stream), which was setup in a small stream.

In PPCP, only one transect was setup, PPCP-T202 (Paul da Pedreira do Cabo da Praia - Margins), which covers the main margins of the water.

The beating and sweeping samples were conducted both during the day and night and were undertaken by walking randomly within the sites.

Funding: This study was financed by the project LIFE+ (LIFE12 BIO/PT/000110: Ecological Restoration and conservation Infrastructure Green Wet Coast Praia da Vitória) (2013-2018).

Sampling methods

Study extent: This study covers a small coastal area with 3.58 km extension between PPV and PPCP.

Sampling description: In each site, arthropods were sampled during the summers of 2016 and 2017 using a combination of standardised methods inspired by the COBRA protocol (Cardoso 2009):

- **Nocturnal active aerial searching (AAS):** Four samples were obtained by four trained collectors (Paulo Borges, Mariana Brito, Rosalina Gabriel, César Pimentel) targeting active arthropods found above knee-level by hand, forceps, pooter or brush and immediately transferring them into vials containing alcohol. All the time spent in searching (one hour per researcher) was accounted for.
- **Foliage Beating (FB):** During daytime, ten samples from each dominant tree or bush were taken. A 110 cm × 80 cm sheet with a frame was used as a drop-cloth (beating tray) and a wooden pole of at least 1.5 m was used to beat tree branches, as high as possible. The plants selected were: *A. donax* and *M. faya* in PPV and PPCP and *A. donax* and *J. acutus* in PBJ. In 2017, in addition, two samples during the night (FSN) were obtained (one hour each sample covering several plants).
- **Foliage sweeping (FS):** A round sweep net with an opening diameter of 46 cm was used to sweep bushes and tall herbs. All time spent sweeping or searching for dislodged arthropods was accounted for. Two samples during daytime (FSD) were obtained (one hour each sample). In 2017, in addition, two samples during the night (FSN) were obtained (one hour each sample).
- **Pitfall (PIT):** Pitfall traps (4.2 cm wide at the top and approximately 7.2 cm deep) were placed immediately outside the perimeter of each lake, spaced 10 metres apart. Traps were filled with 3–4 cm of 100% propylene glycol and left in the field for seven days. Traps were protected from predation, inundation with rainwater and unwanted vertebrate capture by using plates sitting on stilts 2 cm above the ground surface. In PBJ, two transects were performed with 30 traps in the main transect
and 15 traps in a secondary transect covering a small stream. In PPV and PPCP, single transects of 30 traps each were setup in the margins of water bodies. In PPV, half of the traps were in the margins of the largest “island”. In 2017, additional traps were setup in Cerrado São Lazaro (PPV-T205 Paul da Praia Vitória).

For each site, a total of four samples of AAS, 20 samples of FB, two samples of FS and 30 main samples of PIT were obtained, totalling 56 samples per site and an overall 168 samples in 2017. Further, in 2017, additional pitfall traps in the PBJ small stream added 15 more samples totalling 183 samples. The main 56 samples per site included the sampling of two main sub-habitats, the aerial vegetation with 26 samples (20 beatings during the day, two sweeps during the day and four night aerial searches) and the ground habitat with 30 pitfall samples.

In 2017, the additional samples made during the night added four samples for each site, totalling 60 samples per site. Accumulation curves were performed and completeness was high for all sites (see Borges et al. 2017).

Quality control: The correct identification of the sampled taxa is crucial. We followed a three-step process to identify arthropod species: (1) for arthropod orders for which there was taxonomic expertise, one of us (CP) performed morphospecies sorting using a parataxonomy approach (see Oliver and Beattie 1993) with a reference collection; (2) a trained taxonomist (PAVB) corrected all the splitting and lumping errors and identified most of the species; and 3) the morphospecies for which a correct identification was not possible were sent to experts for identification. Taxonomic nomenclature followed the arthropod checklist in Borges et al. (2010) and for the new six taxa the following taxonomic references were used: Lohse 1984, Quinn and Hower 1986, Smaili et al. 2009, Schülke and Smetana 2015.

Geographic coverage

Description: Terceira Island (Azores), Macaronesia, Portugal

Coordinates: and 38°42’47.95’ Latitude; 27°03’40.93’ and Longitude.

Taxonomic coverage

Description: Arthropods including Diplopoda, Chilopoda, Arachnida (Opiliones; Pseudoscorpiones; Araneae) and Hexapoda (Microcoryphia; Zygoptera; Odonata; Orthoptera; Phasmatodea; Dermaptera; Psocoptera; Hemiptera; Thysanoptera; Neuroptera; Coleoptera; Lepidoptera; Hymenoptera - Formicidae)
Temporal coverage

Notes: The sampling was performed on two occasions: summer 2016 and summer 2017.

Collection data

Collection name: Dalberto Teixeira Pombo insect collection at the University of Azores.
Collection identifier: DTP
Specimen preservation method: All specimens were preserved in 96% ethanol
Curatorial unit: Dalberto Teixeira Pombo insect collection at the University of Azores.

Usage rights

Use license: Open Data Commons Attribution License
IP rights notes: Additional information on this study may also be requested to the first author

Data resources

Data package title: LIFE_CWR_TER_Arthropods
Resource link: http://ipt.gbif.pt/ipt/resource?r=arthrop_pv_ter_az
Alternative identifiers: http://islandlab.uac.pt/software/ver.php?id=30
Number of data sets: 1

Data set name: Arthropods from Praia da Vitória
Download URL: http://ipt.gbif.pt/ipt/resource?r=arthrop_pv_ter_az
Data format: Darwin Core Archive
Data format version: version 1
Description: In this data table, we include all the records for which a taxonomic identification of the species was possible. The dataset submitted to GBIF is structured as a sample event dataset, with two tables: event (as core) and occurrences. The data in this sampling event resource has been published as a Darwin Core Archive (DwC-A), which is a standardised format for sharing biodiversity data as a set of one or more data tables. The core data table contains 343 records. One extension data table also
exists. An extension record supplies extra information about a core record. The number of records in each extension data table is illustrated in the IPT link.

This IPT archives the data and thus serves as the data repository. The data and resource metadata are available for downloading in the downloads section. The versions table lists other versions of the resource that have been made publicly available and allows tracking changes made to the resource over time.

In Suppl. material 1, we provide a simpler dataset with few columns in a single table.

Column label	Column description
Table Event	The sub-table with events
eventID	Identifier of the events, unique for the dataset
eventDate	Date or date range the record was collected
eventTime	Time of the day the record was collected
samplingProtocol	The sampling protocol used to capture the species
samplingEffort	The amount of time of each sampling
sampleSizeValue	The numeric amount of time spent in each sampling
sampleSizeUnit	The unit of the sample size value
locationID	Identifier of the location
fieldNumber	Number given to each sample
decimalLatitude	Approximate centre point decimal latitude of the field site in GPS coordinates
decimalLongitude	Approximate centre point decimal longitude of the field site in GPS coordinates
geodeticDatum	The reference point for the various coordinate systems used in mapping the earth
coordinatePrecision	Precision of the coordinates
coordinateUncertaintyInMeters	Uncertainty of the coordinates
georeferenceSources	Method used to obtain coordinates
minimumElevationInMetres	Minimum elevation in metres
maximumElevationInMetres	Maximum elevation in metres
country	Country of the sampling site
countryCode	ISO code of the country of the sampling site
stateProvince	Name of the region of the sampling site
islandGroup	Name of archipelago
island	Name of the island
municipality	Name of the municipality
Field	Description
------------------------------	---
locality	Name of the locality
locationRemarks	Details on the locality site
verbatimCoordinates	Original coordinates recorded
Table Occurrences	The sub-table with occurrence data
type	Type of the record, as defined by the Public Core standard
modified	Date of the last modification of the record
eventID	Identifier of the events, unique for the dataset
licence	Reference to the licence under which the record is published
occurrenceID	Identifier of the record, coded as a global unique identifier
basisOfRecord	The nature of the data record
InstitutionID	The identity of the institution publishing the data
InstitutionCode	The code of the institution publishing the data
collectionCode	The code of the collection where the specimens are conserved
datasetName	Name of the dataset
catalogNumber	Record number of the specimen in the collection
recordedBy	Name of the person who performed the sampling of the specimens
identifiedBy	Name of the person who made the identification
dateIdentified	Date on which the record was identified
scientificName	Complete scientific name including author and year
taxonRank	Lowest taxonomic rank of the record
kingdom	Kingdom name
phylum	Phylum name
class	Class name
order	Order name
family	Family name
genus	Genus name
specificEpithet	Specific epithet
infraspecificEpithet	Infraspecific epithet, when available
individualCount	Total number of individuals captured
organismQuantity	Total number of individuals captured, as numeric
organismQuantityType	The unit of the identification of the organisms
sex | The sex and quantity of the individuals captured
---|---
lifeStage | The life stage of the organisms captured
scientificNameAuthorship | Name of the author of the lowest taxon rank included in the record
establishmentMeans | The process of establishment of the species in the location, using a controlled vocabulary: 'native non-endemic', 'introduced', 'endemic'
ocurrenceRemarks | Remarks on the occurrence with the plant species from where the specimens where captured

Additional information

We collected and identified 15,810 specimens representing 216 species or subspecies and 197 genera during this study (Table 1). Beetles (Insecta, Coleoptera) and spiders (Araneae) were the most diverse taxa, with 81 and 51 taxa, respectively. Two beetle families were also diverse, Staphylinidae and Curculionidae with, respectively, 22 and 17 species and subspecies. Exotic species dominated with 132 species and subspecies, the Azorean endemics being restricted to only eight taxa. The remaining 76 species and subspecies are native non-endemic.

Class	Order	Taxon	Colonization	PPV	PBJ	PPCP
Arachnida	Araneae	Altella lucida	INTR	1		
Arachnida	Araneae	Arctosa perita	INTR	1	84	1
Arachnida	Araneae	Argiope bruennichi	NAT	23	154	6
Arachnida	Araneae	Cheiracanthium mildei	INTR	76	18	1
Arachnida	Araneae	Clubiona decora	NAT	191	57	86
Arachnida	Araneae	Clubiona terrestris	INTR	30		
Arachnida	Araneae	Cryptachaea blattea	INTR	6		
Arachnida	Araneae	Dysdera crocata	INTR	12	47	12
Arachnida	Araneae	Eidmannella pallida	INTR	1		
Arachnida	Araneae	Emblyna acoreensis	END	144	47	191
Arachnida	Araneae	Entelecara schmitzi	INTR	1	9	7
Arachnida	Araneae	Erigone autumnalis	INTR	5	9	

Table 1.
Species abundance per site. PPV – Paul da Praia da Vitória; PBJ – Paul Belo Jardim; PPCP – Paul da Pedreira do Cabo da Praia. END - endemic species from Azores; NAT - native non-endemic species; INTR - exotic species.
Arachnida	Araneae	Species	Category	Intr.	1	2	3	4	5	6	7	8	9
Arachnida	Araneae	Erigone dentipalpis	INTR	3	6	9							
Arachnida	Araneae	Ero aphaena	INTR	1									
Arachnida	Araneae	Ero furcata	INTR	1	6								
Arachnida	Araneae	Heliopterus kochii	INTR	3	6								
Arachnida	Araneae	Macaroeris cata	NAT	4	4								
Arachnida	Araneae	Macaroeris diligens	NAT	127	45	120							
Arachnida	Araneae	Malthonica pagana	INTR	1									
Arachnida	Araneae	Mangora acalypha	INTR	1									
Arachnida	Araneae	Memessus bryantae	INTR	1									
Arachnida	Araneae	Memessus tradeorum	INTR	2	1	1							
Arachnida	Araneae	Metellina merianaene	INTR	6	8								
Arachnida	Araneae	Neoscona crucifera	INTR	26	12	25							
Arachnida	Araneae	Neottiura bimaculata	INTR	1									
Arachnida	Araneae	Nigma puella	INTR	3	88								
Arachnida	Araneae	Oecobius navus	INTR	1									
Arachnida	Araneae	Oedothorax fuscus	INTR	91	115	205							
Arachnida	Araneae	Ostearius melanopygillus	INTR	4	3								
Arachnida	Araneae	Pachygnatha degeeri	INTR	6	9	2							
Arachnida	Araneae	Parasteatoda tepidariorum	INTR	4	1								
Arachnida	Araneae	Pardosa acorensis	END	9	50								
Arachnida	Araneae	Pelecopis parallela	INTR	4									
Arachnida	Araneae	Phidippus audax	INTR	47	104	3							
Arachnida	Araneae	Prinerigone vagans	INTR	1									
Arachnida	Araneae	Pseudeuophrys vafra	INTR	3									
Arachnida	Araneae	Salticus mutabilis	INTR	3	4	10							
Arachnida	Araneae	Segestria florentina	INTR	4									
Arachnida	Araneae	Steatoda grossa	INTR	7	3								
Arachnida	Araneae	Steatoda nobilis	INTR	4	4	4							
Arachnida	Araneae	Synageles venator	INTR	22	11	14							
Arachnida	Araneae	Tegenaria domestica	INTR	2	3	6							
Arachnida	Araneae	Tenuiphantes tenuis	INTR	43	34	2							
Kingdom	Phylum	Class	Order	Family	Genus	Species	Area1	Area2	Area3	Area4	Area5		
----------------	-----------------	--------------------	-------------	----------------------	----------------	------------------------	-------	-------	-------	-------	-------		
Arachnida	Araneae	Tetragatha extensa	INTR	39	3	6							
Arachnida	Araneae	Theridion hannoniae	INTR	4	1								
Arachnida	Araneae	Theridion melanostictum	INTR	4	7	6							
Arachnida	Araneae	Theridion musivivum	NAT	2									
Arachnida	Araneae	Trachyzelotes lyonneti	INTR	1	1								
Arachnida	Araneae	Xysticus nubilus	INTR	24	218	164							
Arachnida	Araneae	Zelotes aeneus	INTR	17	11	16							
Arachnida	Araneae	Zelotes tenuis	INTR	6									
Arachnida	Araneae	Zodarion atlanticum	INTR	1									
Arachnida	Araneae	Zoropsis spinimana	INTR	5									
Arachnida	Araneae	Zygiella x-notata	INTR	6	6	14							
Arachnida	Opiliones	Homalenothes corieae	NAT	47	149	1							
Arachnida	Opiliones	Leobunum blackwali	NAT	157	923	10							
Arachnida	Pseudoscorpiones	Chthonius tetrachelatus	INTR	2									
Chilopoda	Lithobiomorpha	Lithobius pilicornis pilicornis	NAT	13									
Chilopoda	Scutigeromorpha	Scutigera coleoptrata	INTR	1	6	14							
Diplopoda	Julida	Choneiulus palmatus	INTR	2									
Diplopoda	Julida	Cylindroiulus latestriatus	INTR	2									
Diplopoda	Julida	Ommatoiulus moreletti	INTR	147	510	35							
Diplopoda	Julida	Proteroiulus fuscus	INTR	1	2								
Diplopoda	Polydesmida	Oxidus gracilis	INTR	2	3								
Diplopoda	Polydesmida	Polydesmus corieae	INTR	63	7								
Insecta	Coleoptera	Acupalpus flavicolis	NAT	1									
Insecta	Coleoptera	Aegialia arenaria	NAT	1									
Insecta	Coleoptera	Aeolus melliculus moreleti	INTR	4									
Insecta	Coleoptera	Ahasverus advena	INTR	2									
Insecta	Coleoptera	Aleochara bipustulata	INTR	1									
Insecta	Coleoptera	Amischa analis	INTR	1									
Insecta	Coleoptera	Amischa forcipata	INTR	1	1								
Insecta	Coleoptera	Anisodactylus binotatus	INTR	2	13								
Insecta	Coleoptera	Anotylus nitidifrons	INTR	76	2								
Insecta	Coleoptera	Species	Class	Type	ID1	ID2	ID3	ID4	ID5				
---------	------------	---------	-------	------	-----	-----	-----	-----	-----				
Insecta	Coleoptera	Aspidapion radiolius	NAT	3	14	104							
Insecta	Coleoptera	Astenus lyonessius	NAT	2									
Insecta	Coleoptera	Atheta fungi	INTR	4	6	3							
Insecta	Coleoptera	Bembidion semipunctatum	NAT	27	2								
Insecta	Coleoptera	Bledius unicornis	INTR	13									
Insecta	Coleoptera	Bradycellus distinctus	INTR	1									
Insecta	Coleoptera	Calymmaederus solidus	INTR	1									
Insecta	Coleoptera	Carcelimus corticinus	NAT	2									
Insecta	Coleoptera	Carcelimus zealandicus	INTR	1									
Insecta	Coleoptera	Cartodere bifasciata	INTR	1									
Insecta	Coleoptera	Cercyon haemorrhoidalis	INTR	1	3								
Insecta	Coleoptera	Chrysolina bankii	NAT	11	1								
Insecta	Coleoptera	Coccinella undecimpunctata undecimpunctata	INTR	11									
Insecta	Coleoptera	Coccotrypes carpophagus	INTR	1									
Insecta	Coleoptera	Coelositona puberulus	INTR	3									
Insecta	Coleoptera	Cordalia obscura	INTR	15	38	5							
Insecta	Coleoptera	Cryptamorpha desjardinsii	INTR	21	8	7							
Insecta	Coleoptera	Drouetius oceanicus oceanicus	END	5									
Insecta	Coleoptera	Enochrus bicolor	INTR	5	1								
Insecta	Coleoptera	Epitrix hirtipennis	INTR	2									
Insecta	Coleoptera	Gonipterus scutellatus	INTR	1									
Insecta	Coleoptera	Gymnetron pascuorum	INTR	1	3	2							
Insecta	Coleoptera	Heteroderes azoricus	END	13	12	10							
Insecta	Coleoptera	Heteroderes vagus	INTR	20	219	11							
Insecta	Coleoptera	Hirticollis quadriguttatus	NAT	32	92								
Insecta	Coleoptera	Hybera postica	INTR	1									
Insecta	Coleoptera	Hypocaccus brasiliensis	INTR	21									
Insecta	Coleoptera	Kalcapion semivittatum semivittatum	NAT	3									
Insecta	Coleoptera	Laemostenes complanatus	INTR	2									
Insecta	Coleoptera	Lixus pulverulentus	INTR	1									
Insecta	Coleoptera	Name	Status	COUNT1	COUNT2	COUNT3							
---------	------------	------	--------	--------	--------	--------							
Insecta	Coleoptera	Meligethes aeneus	INTR	3	6								
Insecta	Coleoptera	Naupactus leucoloma	INTR	22	30	53							
Insecta	Coleoptera	Ocyopus olens	NAT	1									
Insecta	Coleoptera	Oenopia doublieri	INTR	2	3	1							
Insecta	Coleoptera	Orthochaetes insignis	NAT	1									
Insecta	Coleoptera	Otiorhynchucribicollis	INTR	24	19	68							
Insecta	Coleoptera	Oxypoda lurida	NAT	1									
Insecta	Coleoptera	Pantomorus cervinus	INTR	59	70	3							
Insecta	Coleoptera	Phaleria bimaculata	INTR	677									
Insecta	Coleoptera	Phloeonomus punctipennis	NAT	6									
Insecta	Coleoptera	Phloeostiba azorica	END	1									
Insecta	Coleoptera	Pissodes castaneus	INTR	7									
Insecta	Coleoptera	Platystethus nitens	NAT	2	1								
Insecta	Coleoptera	Pseudoophonus rufipes	INTR	5									
Insecta	Coleoptera	Psylliodes marcidus	NAT	1									
Insecta	Coleoptera	Ptenidium pusillum	INTR	1	6	1							
Insecta	Coleoptera	Pterostichus vernalis	INTR	1									
Insecta	Coleoptera	Rhyzobius litura	NAT	1									
Insecta	Coleoptera	Rodolia cardinalis	INTR	4	4								
Insecta	Coleoptera	Rugilus orbiculatus orbiculatus	NAT	1	0	1							
Insecta	Coleoptera	Scymnus interruptus	NAT	14	14	37							
Insecta	Coleoptera	Scymnus nubilus	NAT	14	14	37							
Insecta	Coleoptera	Sepedophilus lusitanicus	NAT	1									
Insecta	Coleoptera	Sericoderus lateralis	INTR	11	9	1							
Insecta	Coleoptera	Sitona disoideus	INTR	3	7								
Insecta	Coleoptera	Sitona hispidulus	INTR	2									
Insecta	Coleoptera	Sitona lineatus	INTR	2									
Insecta	Coleoptera	Sphenophorus abbreviatus	INTR	1									
Insecta	Coleoptera	Stegobium paniceum	INTR	1									
Insecta	Coleoptera	Stenolophus teutonus	NAT	1	2								
Insecta	Coleoptera	Stethorus pusillus	NAT	1									
Insecta	Coleoptera	Stilbus testaceus	NAT	124	175	657							
---------	------------	-----------------	-----	-----	-----	-----							
Insecta	Coleoptera	Tachyporus chrysomelinus	INTR	1									
Insecta	Coleoptera	Tachyporus nitidulus	INTR	1	1								
Insecta	Coleoptera	Tachyra diabracys	NAT	1									
Insecta	Coleoptera	Tribolium castaneum	INTR	1									
Insecta	Coleoptera	Trichiusa immigrata	INTR	1									
Insecta	Coleoptera	Tychius cuprifer	INTR	10	7								
Insecta	Coleoptera	Tychius picrostris	INTR	8									
Insecta	Coleoptera	Typhaea stercorea	INTR	2	2	1							
Insecta	Coleoptera	Xantholinus longiventris	INTR	1									
Insecta	Dermaptera	Euborellia annulipes	INTR	307	96	120							
Insecta	Dermaptera	Forficula auricularia	INTR	1	16	14							
Insecta	Dermaptera	Labidura riparia	NAT	46	38								
Insecta	Hemiptera	Anoscopus albifrons	NAT	3	3	2							
Insecta	Hemiptera	Beosus maritimus	NAT	1									
Insecta	Hemiptera	Buchananiella continua	INTR	2	18								
Insecta	Hemiptera	Closterotomus norwegicus	NAT	1									
Insecta	Hemiptera	Cyphopterum ascendens	NAT	1									
Insecta	Hemiptera	Emblethis denticollis	NAT	1									
Insecta	Hemiptera	Empicoris rubromaculatus	INTR	3	3	1							
Insecta	Hemiptera	Euscelidius variegatus	NAT	8									
Insecta	Hemiptera	Geotomus punctulatus	NAT	12	28	1							
Insecta	Hemiptera	Kelisia ribauti	NAT	1	3								
Insecta	Hemiptera	Kleidocerys ericae	NAT	11	2								
Insecta	Hemiptera	Megamelodes quadrimaculatus	NAT	2									
Insecta	Hemiptera	Monalocoris filicis	NAT	1									
Insecta	Hemiptera	Nabis pseudoferus ibericus	NAT	6	3	22							
Insecta	Hemiptera	Nezara viridula	INTR	7	5	46							
Insecta	Hemiptera	Nysius atlanticum	END	2	116								
Insecta	Hemiptera	Orius laevigatus laevigatus	NAT	6	8	210							
Insecta	Hemiptera	Oxycarenus lavaterae	INTR	4	244								
Insecta	Hymenoptera	Lasius grandis	NAT	1587	672	881							
------------	-------------	----------------	-----	------	-----	-----							
Insecta	Hymenoptera	Monomorium carbonarium	NAT	224	237	315							
Insecta	Hymenoptera	Temnothorax unifasciatus	NAT	13	4								
Insecta	Hymenoptera	Tetramorium caespitum	NAT	99	33	17							
Insecta	Lepidoptera	Agrotis ipsilon	NAT	1	2								
Insecta	Lepidoptera	Aproaerema anthyllidella	INTR	4	2								
Insecta	Lepidoptera	Autographa gamma	NAT	5									
Insecta	Lepidoptera	Blastobasis marrocanella	NAT	1	6	3							
Insecta	Lepidoptera	Colias croceus	NAT	10	13	2							
Insecta	Lepidoptera	Lampides boeticus	NAT	3									
Insecta	Lepidoptera	Mythimna unipuncta	NAT	5	5	2							
Insecta	Lepidoptera	Oinophila v-flava	INTR	11	33	1							
Insecta	Lepidoptera	Opogona sacchari	INTR	1	3								
Insecta	Lepidoptera	Rhopobota naevana	INTR	1									
Insecta	Lepidoptera	Udea ferruginalis	NAT	1									
Insecta	Microcoryphia	Dilta saxicola	NAT	2	2								
Insecta	Neuroptera	Hemerobius azoricus	END	1									
Insecta	Odonata	Sympretum funscolombii	NAT	1									
Insecta	Orthoptera	Conocephalus chavesi	END	34	340	18							
Insecta	Orthoptera	Eumodicogyllus bordigalensis	INTR	10	148	37							
Insecta	Orthoptera	Gryllus bimaculatus	INTR	1	8	4							
The most abundant species, belonging to the first quartile when ranking species abundances, accounted for 14,680 specimens, i.e. 93% of all adult sampled specimens belong to 25% of the species (54 species). From these 54 species, four are endemic, 22 are native and 28 are exotic. Thirty one species had more than 100 specimens and four of them were particularly abundant: the native ant *Lasius grandis* with 3140 specimens, the native harvestman *Leiobunum blackwalli* (Opiliones) with 1090 individuals, the native beetle *Stilbus testaceus* with 956 specimens and the native ant *Monomorium carbonarium* with 776 individuals.

Only one of the three most abundant ground-beetles recorded for PPV in 1991-1993 (Borges 1995) was found in the current sample, but with low abundance: *Bembidion semipunctatum*. The species was found in PPV (with 27 specimens), but also in PPCP with only two specimens.

Paul Belo Jardim (PBJ) was the richest site with 148 species and subspecies, the other two sites having equal diversity (Table 1). Particularly relevant was the finding of two rare
endemic species in PBJ, the Azores Cone-head *Conocephalus chavesi* (Orthoptera, Tettigoniidae) (Fig. 7), that was recently listed as Endangered by IUCN (Hochkirch and Borges 2016) and the true weevil *Drouetius oceanicus oceanicus* (Coleoptera, Curculionidae) (Fig. 8), that was recently listed as Endangered by IUCN (see Borges and Lamelas-López 2018). The Azores Cone-head *Conocephalus chavesi* was also found in the two other sites but with lower abundance.

Figure 7. doi
A juvenile of Azores Cone-head *Conocephalus chavesi* (Orthoptera, Tettigoniidae) (Photo by Paulo A.V. Borges).

Figure 8. doi
The Azores endemic true weevil *Drouetius oceanicus oceanicus* (Coleoptera, Curculionidae) (Photo by Paulo A.V. Borges).
Known ranges and ecology of newly reported species

Twenty-one species, which represent 10% of the total species collected, are new records for either the Azores and Terceira island (six species) or only Terceira Island (15 species). The new species for the Azores include five exotic and one possibly native species. The 15 new records for Terceira island include ten exotic and five native species (see also Table 1).

Diplopoda - Julida

- *Cylindroiulus latestriatus* (Curtis, 1845) (new for Terceira island). Previously recorded on five islands (Corvo, Flores, Faial, S. Miguel and S. Maria). Exotic species common in Western Europe. This species is usually associated with coastal and dune systems (Klime 2004). Captured with pitfall traps.

Araneae

- *Cheiracanthium mildei* L. Koch, 1864 (new for Terceira island). Previously recorded on two islands (Flores and S. Miguel). This is an exotic spider native from Europe, North Africa, Turkey and the Near East. Introduced to North America, Argentina and Azores. (see World Spider Catalog 2018). The species was found mostly in the canopy of *Morella faya*.

 - *Trachyzelotes lyonneti* (Audouin, 1926) (new for Terceira island). Previously recorded on four islands (Faial, Graciosa, S. Miguel and S. Maria). This is an exotic spider native from the Mediterranean to Central Asia. The species has been introduced into the United States, Mexico, Peru and Brazil (see World Spider Catalog 2018). Captured with pitfall traps.

 - *Zelotes tenuis* (L. Koch, 1866) (new for Terceira island). Previously recorded on a single island (S. Miguel). This is an exotic spider, native from the Mediterranean to Russia (Caucasus). Introduced to Galapagos Is., Azores and USA (see World Spider Catalog 2018). Captured with pitfall traps.

Insecta - Orthoptera

- *Eumodicogryllus bordigalensis* (Latreille, 1804) (new for Terceira island). Previously recorded on two islands (S. Miguel and S. Maria). This is an exotic species native from N-Africa, S-Europe and warmer parts of Asia. It is spreading northwards due to climate change. It has already reached southern parts of West Germany (see Anonymous 2018a). Captured with pitfall traps.

 - *Nemobius sylvestris* (Bosc D’Antic, 1792) (new for Terceira island). Previously recorded on a single island (S. Miguel). This is an exotic species, native from North Africa across the Iberian Peninsula, France, north-westernmost Italy and parts of Central Europe to southern England, south-western Poland and the Czech Republic (see Anonymous 2018c). Captured with pitfall traps.
- *Platycleis sabulosa* Azam, 1901 (new for Terceira island). This is a possible native species with origin in Northern Africa and South-western Europe (Iberian Peninsula, Southern France) (see Anonymous 2018b). Captured with pitfall traps.

- *Trigonnidium cicindeloides* Rambur, 1839 (new for Terceira island). First recorded for Azores (S. Miguel) by Borges et al. (2013) and now also found in Terceira. This is a southern Europe (Mediterranean area) native species, but occurs also on the Canary Islands, Africa, Madagascar, China, Japan and Korea. This species if frequently found associated with ponds. Captured with pitfall traps.

Insecta - Hemiptera

- *Plinthus brevipennis* (Latreille, 1807) (new for Terceira island). Previously recorded on five islands (Faial, Pico, Graciosa, S. Miguel and S. Maria). This is a native species usually associated with grassy environments. Captured with pitfall traps.

- *Pyrrhocoris apterus* (Linnaeus, 1758) (new for the Azores). This is a very common and widespread Palaearctic species. This is possibly a native species from Azores. Captured with pitfall traps, but also associated with *Arundo donax*.

Insecta - Psocoptera

- *Psyllipsocus ramburi* Sélys-Longchamps, 1872 (new for Terceira island). Previously recorded on two islands (S. Miguel and S. Maria). This is an exotic species in Azores and native from West Palaearctic. Captured with pitfall traps, this species is usually associated with damp sites (Robinson 2005).

Insecta - Coleoptera

- *Aegialia arenaria* (Fabricius, 1787) (new for Terceira island). Previously recorded on a single island (S. Miguel). This is a native dune scarab beetle species in Azores and native from West Palaearctic. Captured with pitfall traps, this species is commonly associated with coastal dune areas.

- *Bledius unicornis* (Germar, 1825) (new for the Azores). This is a common rove-beetle species distributed from the Atlantic Islands across Europe and the Mediterranean eastwards to Middle Asia (Schülke and Smetana 2015). Captured with pitfall traps, this species is adapted to damp areas, particularly salt-marsh areas (Zanella and Scarton 2017).

- *Carpelimus zealandicus* (Sharp, 1900) (new for the Azores). Originally most likely from the Australian Region, this species is adventive in Europe, with confirmed records from Central Europe, the British Isles and Scandinavia (Schülke and Smetana 2015). Captured with pitfall traps.

- *Oenopia doublieri* (Mulsant, 1846) (new for the Azores). This exotic species is native from the Mediterranean region. The species was recently recorded also in Morocco and
associated with citrus orchards (Smaili et al. 2009). This is, possibly, a recent introduction in the Azores. The species was found associated with the invasive *Arundo donax*.

- *Oxypoda lurida* Wollaston, 1857 (new for Terceira island). Previously recorded on a single island (S. Maria). *Oxypoda lurida* is a widespread and mostly parthenogenetic species distributed from the Atlantic Islands across Europe and the Mediterranean eastwards to Turkey and Cyprus (Schülke and Smetana 2015). Captured with pitfall traps.

- *Pissodes castaneus* (De Geer, 1775) (new for Terceira island). Previously recorded on four islands (Faial, Pico, S. Miguel and S. Maria). The small banded pine weevil is a cosmopolitan species commonly associated with pines, the larval stage having some impact on adult trees. This species is considered invasive (Pestaña and Santolamazza-Carbone 2010) and is widespread on all Macaronesian islands (Stüben 2018) where pines from Europe (e.g. *Pinus sylvestris*) were introduced. Captured with pitfall traps.

- *Sitona hispidulus* (Fabricius, 1777) (new for the Azores). Known as Clover Root Curculio, this species is native to and widespread throughout Eurasia, but also introduced in North America (Quinn and Hower 1986). Captured with pitfall traps. This species has a short-winged and a long-winged form and prefers stands of *Trifolium* (especially *T. repens*) on damp and relatively dry localities and with a minor preference also for *Medicago* and *Vicia*. It seems to have just arrived into the Azores, otherwise this *Sitona* species could/should have been found even before.

- *Tachyura diabrachys* (Kolenati, 1845) (new for Terceira island). Previously recorded on a single island (S. Maria). This is a west European species. Captured with pitfall traps, this is a species usually associated with damp areas.

- *Trichiusa immigrata* Lohse, 1984 (new for the Azores; Note: there is a mention of this species in the latest edition of the Palaeartic Catalogue, but we have no idea who published the primary record). Originally from North America, this adventive rove-beetle species was first recorded from Central Europe by Lohse (1984) and is now widespread and common in the West Palaeartic region from the Atlantic Islands eastwards to Russia and Ukraine. It is usually found in decomposing plant material and in the leaf litter (Moore 2004). The material from the Azores was found in grassland.

- *Tychius cuprifer* (Panzer, 1799) (new for Terceira island). Previously recorded on a single island (S. Miguel). It is also reported from Madeira in 2015 for the first time, collected in multifunnel traps (Stüben 2018). It is most probably introduced with Fabaceae (forage). *T. cuprifer* is a xerothermophilous species from South Europe and North Africa (uninterruptedly until Turkmenistan) and develops mainly on *Trifolium arvense* (it is also called *T. pratense* and *T. stellatum* (CURCULIO_Team 2010).
Acknowledgements

We would like to acknowledge the inspiration given by Elisabete Nogueira and her hard work in leading the LIFE CWR – Ecological Restoration and Conservation of Praia da Vitória Coastal Wet Green Infrastructure (2013-2018), that financed the field and lab work of this study. Many thanks also to Rui Figueira for the creation of the Darwin Core Archive. The Open Access of this manuscript and the trip of PAVB to University of Barcelona for the identification of spiders was financed by the project FCT-UID/BIA/00329/CE3C-GBA. This is also a first contribution for the AZORESBIOPORTAL -PORBIOTA (2018-2022).

Author contributions

PB and EN conceived the project. PB conceived and drafted the manuscript. PB, RG, CMMP and MRB collected the data. PB, ARMS, LCFC, VA, PS, SF and AOS identified the species. EM and PB organised the final database. All the authors revised the final text.

References

• Anonymous (2018a) Eumodicogryllus bordigalensis (Latreille, 1804). http://www.pyrgus.de/Eumodicogryllus_bordigalensis_en.html. Accessed on: 2018-5-19.
• Anonymous (2018b) Platycleis sabulosa Azam, 1901. http://www.pyrgus.de/Platycleis_sabulosa_en.html. Accessed on: 2018-5-19.
• Anonymous (2018c) Nemobius sylvestris (Bosc, 1792). http://www.pyrgus.de/Nemobius_sylvestris_en.htm. Accessed on: 2018-5-19.
• Borges PAV (1995) Seasonal activity of a ground-beetle (Coleoptera: Carabidae) assemblage in a remnant of a salty-lake from Terceira (Azores). Elytron 9: 65-75. URL: https://repositorio.uac.pt/bitstream/10400.3/1856/1/4_Borges_Elytron_1995.pdf
• Borges PAV, Costa A, Cunha R, Gabriel R, Gonçalves V, Martins AF, Melo I, Parente M, Raposeiro P, Rodrigues P, Santos RS, Silva L, Vieira P, Vieira V (Eds) (2010) A list of the terrestrial and marine biota from the Azores. 1st. Príncípio, Cascais, 432 pp. URL: http://www.azoresbioportal.angra.uac.pt/ [ISBN 978-989-8131-75-1]
• Borges PAV, Reut M, Ponte NB, Quartau JA, Fletcher M, Sousa AB, Pollet M, Soares AQ, Marcelino J, Rego C, Cardoso P (2013) New records of exotic spiders and insects to the Azores, and new data on recently introduced species. Arquipelago - Life and Marine Sciences 30: 57-70. URL: http://www.cerambyx.uochb.cz/assets/pdf/borges_et_al_2013_introduced_azores.pdf
• Borges PAV, Pimentel C, Brito MR, Borda-de-Água L, Gabriel R (2017) Arthropod diversity patterns in three coastal marshes in Terceira Island (Azores). Arquipelago - Life and Marine Sciences 34: 61-84. URL: http://ce3c.ciencias.ulisboa.pt/fotos/publicacoes/1509647205.pdf
• Borges PAV, Lamelas-López L (2018) Drouetius oceanicus Machado, 2009. http://www.maisg.com/specie/Drouetius_oceanicus. Accessed on: 2018-5-19.
• Cardoso P (2009) Standardization and optimization of arthropod inventories—the case of Iberian spiders. Biodiversity and Conservation 18 (14): 3949-3962. https://doi.org/10.1007/s10531-009-9690-7

• Cardoso P, Erwin TL, Borges P, New T (2011) The seven impediments in invertebrate conservation and how to overcome them. Biological Conservation 144 (11): 2647-2655. https://doi.org/10.1016/j.biocon.2011.07.024

• CURCULIO_Team (2010) Digital-Weevil-Determination for Curculionoidea of West Palaearctic. Transalpina: Tychius (Curculioninae: Tychiini). SNUDEBILLER, Studies on taxonomy, biology and ecology of Curculionoidea 11 (149): 27-39. URL: www.curci.de

• Elias RB, Gil A, Silva L, Fernández-Palacios JM, Azevedo EB, Reis F (2016) Natural zonal vegetation of the Azores Islands: characterization and potential distribution. Phytocoenologia 46 (2): 107-123. https://doi.org/10.1127/phyto/2016/0132

• Gaspar C, Gaston KJ, Borges PAV, Cardoso P (2011) Selection of priority areas for arthropod conservation in the Azores archipelago. Journal of Insect Conservation 15 (5): 671-684. https://doi.org/10.1007/s10841-010-9365-4

• Hochkirch A, Borges PAV (2016) Conocephalus chavesi. IUCN Red List of Threatened Species https://doi.org/10.2305/iucn.uk.2016-3.rlts.t68279966a72323178.en

• Kime RD (2004) The Belgian millipede fauna (Diplopoda). Bulletin de l’Institut Royal des Sciences Naturelles de Belgique, Entomologie 74: 35-68. URL: bibliov.naturalsciences.be/rbins-publications/bulletins-de-l'institut-royal-des-sciences-naturelles-de-belgique-entomologie/bulletin-of-the-royal-belgian-institute-of-natural-sciences-entomology/74-2004/entomo-74-2004_35-68.pdf

• Lohse G (1984) Tichiusa immigrata n. sp., eine neue Adventivart aus Mitteleuropa. Entomologische Blätter 80 (2-3): 163-165.

• Moore R (2004) Trichiura immigrata Lohse (Staphylinidae) new to Scotland. The Coleopterist 13 (1): 34-34.

• Morton B, Britton JC, Frias Martins AMd (1997) The former marsh at Paul, Praia da Vitória, and the case for the development of a new wetland by rehabilitation of the quarry at Cabo da Praia. Açoreana 8 (3): 285-307. URL: www.cmpv.pt/minisites/life/ficheiros/Morton+Britton+Martins%201997.pdf

• Oliver I, Beattie AJ (1993) A possible method for the rapid assessment of biodiversity. Conservation Biology 7 (3): 562-568. https://doi.org/10.1046/j.1523-1739.1993.07030562.x

• Pestaña M, Santolamazza-Carbone S (2010) Mutual benefit interactions between banded pine weevil Pissodes castaneus and blue-stain fungus Leptographium serpens in maritime pine. Agricultural and Forest Entomology 12 (4): 371-379. https://doi.org/10.1111/j.1365-2311.1986.tb00318.x

• Quinn MA, Hower AA (1986) Effects of root nodules and taproots on survival and abundance of Sitona hispidulus (Coleoptera: Curculionidae) on Medicago sativa. Ecological Entomology 11 (4): 391-400. https://doi.org/10.1111/j.1365-2311.1986.tb00318.x

• Robinson W (2005) Urban insects and arachnids: a handbook of urban entomology. Cambridge University Press, Cambridge, 472 pp. [ISBN 0-521-81253-4]

• Schülke M, Smetana A (2015) Staphylinidae. In: Löbl I, Löbl D (Eds) Catalogue of Palaearctic Coleoptera. New, updated Edition. 2. 2. Brill, Leiden, 304–1134 pp.

• Small MC, Blenzar A, Fursch H (2009) First record of new species and phenotypes of ladybird (Coleoptera: Coccinellidae) in citrus orchards in Morocco. Entomologie
Supplementary material

Suppl. material 1: LIFE_CWR_TER_Arthropods doi

Authors: Borges, PAV et al.
Data type: Occurrences and abundances
Brief description: In this contribution, we present detailed data on the distribution and abundance of species belonging to several groups of arthropods in three Terceira Island (Azores) wetlands during two years (2016-2017).
Filename: LIFE_CWR_TER_Arthropods.XLSX - Download file (527.32 kb)