Diel Oscillations of Particulate Metabolites Reflect Synchronized Microbial Activity in the North Pacific Subtropical Gyre

Running title: Diel metabolites reflect marine microbial activity

Authors: Angela K. Boysen¹, Laura T. Carlson¹, Bryndan P. Durham², Ryan D. Groussman¹, Frank O. Aylward³, François Ribalet¹, Katherine R. Heal¹, Edward F. DeLong⁴, E. Virginia Armbrust¹, Anitra E. Ingalls¹*

Affiliations:
¹School of Oceanography, University of Washington, Seattle, WA, USA. ²Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA. ³Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA. ⁴Daniel K. Inouye Center for Microbial Oceanography: Research and Education (C-MORE), University of Hawaii, Honolulu, HI, USA

* Corresponding author: aingalls@uw.edu; (206) 221-6748; Box 355351, School of Oceanography, University of Washington, Seattle WA 98115

Competing interests: The authors declare no conflict of interest.
Abstract

Light is the primary input of energy into the sunlit ocean, driving daily oscillations in metabolism of primary producers. The consequences of this solar forcing have implications for the whole microbial community, yet in situ measurements of metabolites, direct products of cellular activity, over the diel cycle are scarce. We evaluated community-level biochemical consequences of diel oscillations in the North Pacific Subtropical Gyre by quantifying 79 metabolites in particulate organic matter in surface waters every four hours over eight days. Total particulate metabolite concentration peaked at dusk, even when normalized to biomass estimates. The concentrations of 70% of individual metabolites exhibited 24-hour periodicity. Despite the diverse organisms that use them, primary metabolites involved in anabolic processes and redox maintenance had significant 24-hour periodicity. Osmolytes exhibited the largest diel oscillations, implying rapid turnover and metabolic roles beyond cell turgor maintenance. Metatranscriptome analysis revealed the taxa involved in production and consumption of some metabolites, including the osmolyte trehalose. This compound displayed the largest diel oscillations in abundance and was likely produced by the nitrogen-fixing cyanobacterium Crocosphaera for energy storage. These findings demonstrate that paired measurements of particulate metabolites and transcripts resolve strategies microbes use to manage daily energy and redox oscillations.

Introduction

Light is a powerful forcing on metabolism in the surface ocean, acting at the molecular
level to drive global biogeochemical cycles(1). In surface waters near Station ALOHA (22°
45’N, 158° W) in the North Pacific Subtropical Gyre (NPSG), the marine plankton community
responds to diel forcing, either directly or indirectly, as demonstrated by daily oscillations in
particulate organic carbon (POC)(2), cell division(3), gross primary production, net community
production(4), grazing(5), viral infection(6), and nitrogen fixation(7). Genes associated with a
wide variety of cellular processes also exhibit diel oscillations in transcript abundance, reflecting
the capture of light energy and its conversion to chemical energy during daylight, a process that
fuels metabolism over a 24 hour period(8–12). Temporal partitioning of anabolism and
catabolism creates diel patterns in the macromolecular composition of the community(12–15).

Though most POC in the surface ocean is made up of macromolecules(16,17), the suite
of small molecules (< 800 daltons) produced within cells helps shape the internal and external
chemical environment of the plankton community. Small molecules are likely responsible for
setting dependencies among different taxa, yet an inventory of these compounds and the
plasticity of their concentrations remain largely unknown(18). Comprehensive measurements of
intracellular small biomolecules, or metabolites, present in marine microbial communities are
scarce and the suite of compounds detected is strongly biased by the methods employed(19).

Small polar molecules, in particular, are rarely measured although they are the main component
of the aqueous cytosol. Intracellular metabolite profiles of model marine microbes are taxon-
specific and respond to environmental perturbations, including diel oscillations in available
light(20). Many of these metabolites have not yet been measured in plankton communities and
some are without annotated biosynthetic or catabolic pathways(21–27). Thus, a comprehensive
inventory of intracellular metabolites will facilitate a deeper understanding of marine microbial
physiology and interactions that drive ecosystem diversity and activity(28,29).
Here we measured particulate metabolite concentrations in samples collected from surface waters near Station ALOHA during eight diel cycles. These data provide an inventory of metabolites in the oligotrophic surface ocean and show the metabolic consequences of the diel cycle. We paired observations of metabolites with gene expression data, POC, and flow cytometry (FCM) measurements. We inferred community physiology over the diel cycle to predict how environmental conditions produce a particular chemical environment within natural populations of marine plankton.

We find that the molar concentration of 70% of our targeted metabolites oscillate with 24-hour periodicity, reflecting large scale community synchrony. Our analysis identifies diel oscillations in compounds that play important roles in managing light-induced redox reactions and biosynthesis of building blocks and energy stores. These compounds are ultimately conduits of energy and nutrients through the microbial ecosystem as they are exchanged between diverse organisms, with repercussions for community diversity and function(30–32). By pairing metabolite data with metatranscriptomes, we identify potential metabolic strategies that organisms deploy for coping with redox oscillations induced by an oscillating energy supply.

Materials and Methods

Sample Collection

Samples were collected on the R/V Kilo Moana in the NPSG (near 24.5° N, 156.5° W) every four hours for two sampling periods in summer 2015 (period one: July 26, 6:00 – July 30, 6:00; period two: July 31 18:00 – August 3, 18:00). To limit variability unrelated to solar forcing, we conducted Lagrangian sampling following two drifters in an anticyclonic eddy(7). Samples for particulate metabolites and transcripts were collected from 15 m water depth using
Niskin bottles attached to a conductivity, temperature, depth array (CTD). Ancillary measurements for nutrients and heterotrophic bacterial abundance (reported in Wilson et al. 2017) were collected and analyzed with standard Hawaii Ocean Time-series protocols (http://hahana.soest.hawaii.edu/index.html).

Bulk and taxa-specific carbon biomass

POC concentrations were derived from particulate beam attenuation at 660 nm, as in White et al. (2). Particle absorption was calibrated against discrete POC samples taken near dawn and dusk. Discrete POC and particulate nitrogen (PN) samples were collected by filtration of the ship’s underway flow through seawater onto combusted GFF filters. Analysis is described in the supplemental methods.

Continuous underway flow cytometry (SeaFlow)(33) was used to count Prochlorococcus, Synechococcus, picoeukaryotes (eukaryotic phytoplankton 2–4 µm in size), and Crocosphaera. These data were supplemented with discrete flow cytometry sample analysis as in Wilson et al. (7). Cell diameters of individual cells were estimated from light scatter by the application of Mie theory to a simplified optical model and converted to carbon quotas assuming spherical particles, as described in Ribalet et al. (34). Carbon biomass was estimated by multiplying cell abundance by carbon quotas.

Metabolite extraction, data acquisition, and processing

Metabolite samples were collected in triplicate at each time point by filtering 3.5 L of seawater onto a 47 mm 0.2 µm PTFE (Omnipore) filter using a peristaltic pump, polycarbonate filter holder, and Masterflex PharMed BPT tubing (Cole-Parmer). Filters were frozen in liquid
nitrogen immediately after filtration and stored at -80 °C. Metabolite extractions employed a modified Bligh-Dyer method\(^{(19,27,35)}\), resulting in aqueous and organic soluble metabolites with isotope-labeled extraction and injection internal standards added to both fractions (Table S1, Supplemental Methods). Unused filters served as methodological extraction blanks.

Metabolomics data were collected by paired liquid-chromatography mass-spectrometry (LC-MS) using both hydrophilic liquid interaction chromatography and reversed phase chromatography with a Waters Acquity I-Class UPLC and a Waters Xevo TQ-S triple quadrupole with electrospray ionization in selected reaction monitoring mode with polarity switching, targeting over 200 compounds\(^{(19)}\). The software Skyline was used to integrate LC-MS peaks\(^{(36)}\) and data were normalized using best-matched internal standard normalization\(^{(19)}\).

A subset of this data are presented in Durham et al. (2019) and Muratore et al. (2020)\(^{(14,27)}\).

Metabolites with isotopologue internal standards were quantified in all samples (Table S1). Trehalose, sucrose, and 2,3-dihydroxypropane-1-sulfonate (DHPS) were quantified with standard additions. For all other metabolites, concentration (pmol L\(^{-1}\)) was calculated from injections of known concentrations of authentic standards in both water and a representative matrix to correct for ion suppression. Dimethylsulfiniopropionate (DMSP) loss is known to occur during methanol-based extractions so concentrations are considered a minimum estimate\(^{(37)}\). Details are in the supplemental methods.

Metatranscriptome data acquisition and processing

Whole community transcript data are referred to here as prokaryotic transcript data, as they were enriched in bacterial and archaeal RNA. These metatranscriptome samples were collected on 0.2 µm filters simultaneously with the metabolomic data reported here, as
previously reported in Wilson et al. (7) and Aylward et al. (6). The metatranscriptome sequence reads were quality trimmed, end-joined, mapped, and quantified with molecular standards. Metatranscriptome sequence reads were mapped to the ALOHA gene catalog (38) using LAST v 959 (39), and transcript count normalization, leveraging the molecular standards described in Gifford et al. (40). Sequence reads were summed if assigned to the same taxonomic order and Kyoto Encyclopedia of Genes and Genomes (KEGG) orthologue (41).

Poly-A+ selected transcript data (referred to here as eukaryotic transcript data) are from the metatranscriptomes presented in Durham et al. (27). These samples were collected on 0.2 µm filters concurrently with the metabolomic samples and include only the first sampling period. Quality-controlled short reads were assembled using Trinity de novo transcriptome assembler version 2.3.2 (42). Using DIAMOND v 0.9.18 (43), assembled contigs were aligned to a reference sequence database of marine organisms (MarineRefII reference database, http://roseobase.org/data/, with additions listed in Table S2). Taxonomy was assigned with DIAMOND by using the top 10% of hits with e-value scores below 10^{-5} to estimate the Lowest Common Ancestor of each contig. We assigned putative function using hmmsearch (from HMMER 3.1b2 (44), minimum bitscore 30) to find the best-scoring KEGG gene family from KOfam (ver. 2019-03-20) (45). Contig abundances were quantified by mapping the paired reads to the assemblies with kallisto (46). Sequence reads assigned to the same taxonomic group and KEGG ortholog were summed and normalized to the total read pool of the taxonomic group. Details are provided in the supplemental methods.

Metabolites and transcripts were associated with one another using the KEGG database as a scaffold to match metabolites with transcripts coding for enzymes that directly use or produce those metabolites. The R package KEGGREST (47) was used to access the KEGG database.
database followed by manual curation of these matches.

Detecting Periodicity

Diel periodicity was evaluated for all signals using Rhythmicity Analysis Incorporating Non-parametric Methods (RAIN)(6,7,48). Metabolites and transcripts were considered significantly periodic if they had a false discovery rate (fdr)(49) corrected p-value < 0.05. For each significantly oscillating signal, the time of peak abundance was estimated by fitting a periodic function (supplemental methods), though we recognize the precision of these peak times is limited by our sampling resolution. Diel periodicity in metabolites was identified for the two different sampling periods independently and jointly.

Phytoplankton culture conditions

Cultures of phytoplankton were grown in combusted borosilicate tubes in diurnal incubators with a 12:12 light:dark cycle. Samples for metabolomics were collected by gentle filtration onto 0.2 µm Durapore filters using combusted borosilicate filter towers. *Crocosphaera watsonii* strain WH8501 was grown at 27 °C with 50 µmol photons m⁻² s⁻¹ in YBC-II artificial seawater medium(50) supplemented with 0.9 mM nitrate; cells were collected just before the lights turned on and just after the lights turned off during exponential phase. Cells were enumerated via a Beckman Z2 Coulter Counter. *Prochlorococcus* MIT1314 (HLII clade(51)) were grown at 20 °C with 20 µmol photons m⁻² s⁻¹ in Pro99 media(52) prepared with Turks Island Salt Solution and supplemented with 6 mM sterile sodium bicarbonate and 1 mM N-Tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid(53). *Prochlorococcus* cells were collected 6 hours into the light period during exponential phase and enumerated using the flow
cytometer BD Influx cell sorter. Axenicity of Prochlorococcus cultures was verified regularly with SYBR-staining and FCM and plating on bacterial ½ YTSS agar.

Results

Oscillatory dynamics of the phytoplankton community

Our sampling targeted an anticyclonic eddy to facilitate Lagrangian sampling, and was characterized by warm, nutrient-deplete surface waters typical of the persistently oligotrophic NPSG(5,54) (Table 1). Photosynthetic picoeukaryotes, Prochlorococcus, and Crocosphaera contributed substantially to phytoplankton biomass (7) (Figure 1). POC, which includes bulk community biomass, and phytoplankton-specific biomass oscillated with significant 24-hour periodicity (Figure 1). Cell abundances and total biomass of Prochlorococcus and Crocosphaera populations increased between the first and second sampling periods (Table 1). Wind speed also increased between the first and second sampling periods, resulting in an increase in the mixed layer depth from 21 ± 5 to 36 ± 6 m. Additionally, we observed a decrease in the number of significantly diel metabolite oscillations during the second sampling interval, from 55 to 9 (Table S3). This change was likely related to the deepening of the mixed layer; however, we have insufficient evidence to investigate this hypothesis further. We therefore focus on data collected during the first sampling period.

Metabolite Inventory

A total of 79 targeted metabolites were detected across samples (Table S3). Total particulate metabolite concentration increased during the day and decreased at night, regardless of whether normalized to POC or PN (Figure 2). The most abundant compounds were osmolytes,
like glycine betaine (GBT), homarine, DHPS, and DMSP; nucleobases (particularly guanine);
and amino acids related to nitrogen metabolism, such as glutamic acid and glutamine (Table S3,
Figure 2). At dusk, quantified metabolites totaled 1.7 ± 0.2% of POC and 3.1 ± 0.6% of
particulate nitrogen (Figure 2), with free nucleobases and amino acids representing substantial
pools of total cellular nitrogen (Table S4).

Multivariate analyses were used to determine if time of day influenced the community
metabolome. NMDS analysis shows that samples collected at different times were significantly
different. Samples collected near sunrise (6:00) were more similar to one another than those
collected at other times of day and are most dissimilar to samples collected near sunset
(ANOSIM, $R = 0.19$, $p = 0.001$, Figure S1, Table S5).

Metabolite diel periodicity

To determine whether metabolite oscillations were driven by changes in biomass or by
changing cell physiology resulting in changes in the intracellular concentration, we calculated
concentrations relative to water volume filtered, resulting in values proportional to molar
concentration (nmol L$^{-1}$), and to POC, resulting in values proportional to nmol per µmol POC.
Bulk and individual metabolite concentrations oscillated with respect to both normalizations
(Figure 2, Figure 3A). The molar concentration (nmol L$^{-1}$) of 55 metabolites (70%) had
significant 24-hour oscillations, with 26 reaching a maxima in concentration within two hours of
18:00 and 20 reaching their peak concentration within 2 hours of 14:00 (Figure 3, Table S3).
When normalized to POC (nmol µmol POC$^{-1}$), 37 compounds (47%) showed diel oscillations
(Table S3), and the mean time of peak concentration shifted to earlier in the afternoon (Figure
3A). POC reflects total community biomass and detritus, so to avoid assumptions of metabolite
source, we present molar concentrations throughout except where metabolite source can be
constrained to a specific phytoplankton, in which case we present metabolite concentration
normalized to the cell number or biomass of the source organism.

Metabolites with significant oscillations had daily fold changes ranging from 2 to 12.8,
all of which exceeded the 1.2- and 1.8-fold changes of POC and the sum of FCM phytoplankton
biomass, respectively (Figure 4). The disaccharides trehalose and sucrose displayed the most
robust oscillations (p-value <1x10^-13, Figures 4, 5). Trehalose and sucrose are known osmolytes,
and nearly all other identified osmolytes (9/10) showed diel oscillations (Figures 4, 6, Table S3).
Glutamic acid is the only known osmolyte that did not have a significant oscillation in molar
concentration (Table S3).

Primary metabolites involved in anabolism and redox balance showed diel oscillations.
The three methionine-cycle compounds detected, S-adenosyl methionine (SAM), S-adenosyl
homocysteine (SAH), and methionine, showed oscillations. 5’S-Methylthioadenosine (MTA) is
produced from SAM during polyamine synthesis and had a temporal pattern that closely matched
SAM (Figures 3, 6), such that SAM/MTA remained relatively constant. Pantothenate (Vitamin
B₅) was one of the few compounds that peaked in the morning (Figure 3). Vitamins involved in
redox balance, riboflavin and niacin (Vitamins B₂ and B₃) oscillated with maxima near dusk.
Reduced glutathione oscillated with an afternoon peak (Figure 3).

Connections between metabolites and transcripts

To investigate the relationships between gene expression and metabolite concentration
we used the KEGG database to connect metabolites with transcripts annotated as encoding
proteins that directly produce or degrade each metabolite. All but four of our diel metabolites
related to at least one annotated prokaryotic or eukaryotic transcript (Figure S2).

Glucosylglycerol, ergosterol, and isethionic acid are in the KEGG database but no transcripts
were annotated in our dataset as directly producing or degrading them, while homarine is not
included in the KEGG database.

Although the number of transcripts associated with each metabolite is inherently biased
by the databases used and the depth of sequencing, transcripts provide insight into the number
and identity of organisms and pathways that may be responsible for the metabolite’s synthesis
and degradation. The orders containing *Crocosphaera*, *Prochlorococcus*, *Pelagibacter ubique*,
and other unclassified alphaproteobacteria comprised ~50% of all prokaryotic transcripts that
could be linked to metabolites (Table S6). Dinoflagellates (Dinophyceae), non-diatom
stramenopiles (Stramenopiles), haptophytes (Haptophyceae), non-metazoa opistokonts
(Opisthokonta), and diatoms (Bacillariophyta) comprised ~70% of eukaryotic transcripts linked
with metabolites (Table S7). Adenosine monophosphate (AMP), SAM, and SAH stand out as the
diel metabolites with the largest number of associated diel transcripts, with 181, 124, and 113
transcripts respectively (Figure 6, Figure S2). Most diel SAM and SAH transcripts were
methyltransferases that convert SAM into SAH (Tables S6, S7). In most other cases, there were
few diel transcripts associated with a metabolite (e.g. only 6 diel genes were associated with
trehalose, Figure 6, Figure S2).

To investigate the temporal relationship between gene expression and metabolite
congestion, we estimated the lag-time between metabolites and transcripts that exhibited
significant diel periodicity. This analysis showed a broad distribution in the lag-times between
metabolites and transcripts, with no predictable lag for prokaryotic or eukaryotic transcripts and their associated metabolites. (Figure S3).

Disaccharide osmolytes can be attributed to cyanobacteria

We observed trehalose-related transcripts from eukaryotic phytoplankton and Crocosphaera (Figure 6). Using published Ostreococcus cellular trehalose concentrations (20) and picoeukaryote cell counts, we estimated that picoeukaryote contribution to trehalose was 0.2–3.0 pmol L⁻¹, a small fraction of environmental trehalose (up to 627 pmol L⁻¹). The abundance of Crocosphaera (Table 1, Figure 1) and diel oscillations in the Crocosphaera transcript for trehalose 6-phosphate synthase/phosphatase (Figure 6, Table S6) suggest Crocosphaera as the main contributor of trehalose during this field study. To test this hypothesis, we grew Crocosphaera watsonii WH8501 under a 12:12 light:dark cycle and measured 0.8 and 0.07 fmol trehalose cell⁻¹ at the end of the light and dark periods, respectively (Figure 5, Figure S4). Given the Crocosphaera abundance during our sampling and assuming similar intracellular concentration, this accounts for 1.8–670 pM particulate trehalose, comparable to total particulate trehalose during our sampling (2.8–627 pmol L⁻¹ across both sampling periods, Figure 5).

Multiple taxa expressed transcripts related to production and degradation of sucrose, including Prochlorococcus (Figure 6). To assess the potential contribution of Prochlorococcus to environmental sucrose concentrations, we measured the cellular sucrose quota in a culture of Prochlorococcus MIT1314 harvested midday during exponential growth. Using the cellular quota of sucrose in these cultures (range in biological triplicates: 1.4–2.1 amol cell⁻¹) and the
abundance of *Prochlorococcus* at the time of sampling, it is possible that all the observed sucrose could have been in *Prochlorococcus* during this study (Figure 5).

Discussion

As a whole, the metabolites we measured comprise up to 2% of POC and 3% of PN in our samples (Figure 2B,C). This is a reasonable value given ~80% of surface POC is comprised of lipid, carbohydrate, and protein macromolecules(16,17), and DNA, RNA, and pigments contribute several percent of the dry weight of actively growing microalgae(55). Metabolite pools are dynamic, and an increase in the concentration of a given metabolite suggests that sources of that compound (biosynthesis, uptake from dissolved pools, or polymer disassembly) are greater than sinks (exudation, loss due to cell death, intracellular degradation, or polymer assembly). The prevalence and amplitude of diel oscillations in metabolite concentrations reflect that many members of the surface microbial community near Station ALOHA were synchronized to diel light periodicity.

Community synchrony is driven by diel partitioning of anabolism, catabolism, and redox maintenance

The diel oscillations in POC and FCM-resolvable phytoplankton biomass reflect the alternation of carbon fixation, anabolism, and growth during daylight hours and respiration, catabolism, and mortality during the night (Figure 1)(2,3,5). The community metabolome reflects these patterns with an overall increase in concentration throughout the day and a consistent morning phenotype (Figure 2, Figure S1A,B), reflecting nighttime use of energy stores and recovery from daytime oxidative stress(56). Nearly half of the diel metabolites (26/55)
had peak molar concentrations near dusk (Figure 3), corresponding with a peak in carbon biomass. However, for most (46/55) diel metabolites, the daily enrichment of a metabolite exceeded that of POC or total FCM-resolvable phytoplankton biomass, which had daily fold changes of 1.2 and 1.8, respectively (Figure 4). This suggests these metabolites likely had oscillations in intracellular concentration, as previously observed for many primary metabolites in non-marine cyanobacteria(57).

Primary metabolites are particularly powerful indicators of biochemical activity on the community scale. SAM, SAH, and AMP are compounds involved in biosynthesis that had diel oscillations with daytime increases (Figures 3, 6). Individual transcripts associated with these molecules had diel patterns that peaked at all times of day, across a myriad of pathways and microbial taxa (Figure 6, Figure S2). Despite this diversity in use, the sum of community activity was reflected in diel oscillations of metabolite concentrations, which were synchronized with daytime biomass accumulation. Further evidence of this daytime community-scale anabolism is the diel oscillation of pantothenate (Vitamin B5), a component of Coenzyme A as well as Acyl Carrier Protein. Pantothenate peaked in the morning (Figure 3), suggesting that the community was poised to assemble these cofactors for daytime biosynthesis.

SAM is a ubiquitous methyl donor used by all living cells. During methylation, SAM is converted to SAH, which is then regenerated back to SAM via methionine. In addition to its role in methylation, SAM is essential for polyamine synthesis and is the most common riboswitch effector in prokaryotes(58). SAM riboswitches have been observed in native Station ALOHA bacterioplankton populations(59). SAH had an afternoon peak time, such that the SAM/SAH ratio was at a minimum during the day (Figure 6). This ratio reflects methylation potential, suggesting that the demand for methylation outstripped the supply of SAM in the light. Over the
dark period, SAM/SAH ratios recovered, suggesting that catabolic processes dominated and the need for SAM was diminished. Many cells require cobalamin to catalyze the reactions that regenerate methionine, and SAH is elevated relative to SAM during cobalamin stress as cells struggle to complete the cycle(25). Thus, it is possible that the lower SAM/SAH ratio additionally reflects a daytime increase in cobalamin usage.

Managing oxidative stress is a critical part of cellular activity. Reactive oxygen species produced during photosynthesis accumulate over the day and present a continuing challenge for cells at night(60). Riboflavin and niacin (vitamins B2 and B3) are involved in redox balance and show similar daytime accumulations (Figure 3, Table S3). These are precursors to FMN/FAD and NAD/NADP, respectively, and reflect community-wide diel patterns of redox processes. Cyanobacteria manage excess energy during the day by storing glycogen and producing small molecules that can either be stored or excreted(56,60–63). At night, glycogen is catabolized via hydrolysis followed by glycolysis or the oxidative pentose phosphate pathway (OPPP), producing the reductant sources NADH and NADPH. Gluconic acid accumulation during the day (Figures 3, 4) may reflect less flux through OPPP during the day, while photosynthesis produces NADPH, followed by a switch towards OPPP at night(56). Reduced glutathione also showed a daytime peak (Figure 3), as has been observed in cultures and field studies(64), possibly reflecting production to compensate for increased oxidative stress in the day, and a subsequent decrease in production and oxidation of the residual pool overnight.

Diel oscillations in osmolyte concentrations reveal complexity in their function

Metabolites with osmolyte properties are among the most abundant compounds within marine microbial cells(27,65–69) and exhibited diel oscillations (Figures 5, 6). One exception to
this observation was glutamic acid, which plays a critical role in regulating nitrogen assimilation in addition to its osmotic properties (65). In the absence of fluctuations in salinity or temperature, oscillations in osmolyte concentrations occurred in excess of or out of sync with biomass oscillations and point to alternative roles for this compound group (65) (Figure 4, Table S3).

Intracellular accumulation of osmolytes occurred predominantly during the day when electron flow through the photosystems and the Calvin Cycle exceeds that required to maintain maximum division rates. The resulting need to dissipate reductant is typically channeled into the production of carbohydrates like glycogen (8, 56, 63), exopolymeric substances (70, 71), or into storage lipids (12, 72). These energy stores are used to fuel cellular respiration and other activities at night, such as protein synthesis and preparing cells for photosynthesis (12, 56, 63, 72). Unlike starch and storage lipids, osmolytes do not necessarily need to go through hydrolysis, β-oxidation, or glycolysis prior to entering the TCA cycle, and could be used as readily available substrates for energy production and as biosynthetic intermediates while macromolecular pools are being mobilized by the cell (61).

Trehalose was the most prominent diurnally oscillating compound (Figures 4, 5). Trehalose is an osmolyte produced by the unicellular diazotroph \textit{Crocosphaera} (68, 73), some heterotrophic bacteria, and some phytoplanktonic picoeukaryotes, including \textit{Ostreococcus} (20). Transcriptomic evidence motivated us to measure trehalose in cultures of \textit{Crocosphaera}, which revealed differences in intracellular trehalose at the beginning and end of the day. Assuming trehalose in the environment is produced primarily by \textit{Crocosphaera}, our results strongly suggest that intracellular trehalose concentrations have diel oscillations in the field (Figure 5).

\textit{Crocosphaera} temporally separate photosynthesis and nitrogen fixation to protect nitrogenase from oxygen (74–76), they therefore need energy at night to draw down cellular
oxygen and fuel nitrogen fixation(77,78). *Crocosphaera* has at least one gene encoding a protein homologous to glycoside hydrolases, family 15(79), which contains enzymes that hydrolyze a variety of glycosidic bonds, including trehalose. Thus, it is possible that *Crocosphaera* use trehalose as a fuel for generating the electrons and ATP required for nitrogen fixation. Using the stoichiometry of these reactions(77,80), we estimated that trehalose catabolism could have fueled 9–28% of the nighttime nitrogen fixation during this expedition(7) (calculation in supplemental material). As much as 60% of total dark respiration by *Crocosphaera* is used to draw down cellular oxygen rather than to directly fuel nitrogen fixation(77), and, if we adjust our calculation accordingly, trehalose can produce 3.6–11% of the required respiratory substrates needed for *Crocosphaera* to effectively fix nitrogen at the rates measured(7).

The flux of carbon through trehalose may be an indicator of the accumulation and degradation of a larger glycogen pool that accumulates during the day and is used at night(81). Shi et al. (2010) suggest that *Crocosphaera* cells are depleted of storage compounds at night, since prolonged dark does not result in increased nitrogen fixation(82). If this hypothesis is correct, the total amount of nitrogen fixation possible is limited by the amount of energy stored in substrates such as trehalose and glycogen during daytime, and the ability to accumulate and use these compounds could have impacts on the nitrogen budget of the microbial community.

Another disaccharide osmolyte, sucrose, displayed an oscillation with a maximum daily concentration at 22:00. Sucrose is the major compatible solute in high-light *Prochlorococcus* (67), and the observed environmental variation may reflect the *in situ* accumulation and use of glycogen by *Prochlorococcus*. Though other organisms also expressed sucrose related genes (Figure 6), *Prochlorococcus* was the numerically dominant sucrose-producing organism detected in these populations (Table 1) and is known to accumulate polysaccharides during the day,
particularly under nitrogen limitation(83). If we assume that cellular quotas of sucrose in
Prochlorococcus grown in culture are like those in the environment, *Prochlorococcus* alone
could explain the sucrose concentrations seen in the environment (Figure 5). Sucrose had a diel
oscillation when normalized to *Prochlorococcus* cell counts and biomass (Figure 5, Figure S5).

These potential intracellular oscillations lead us to hypothesize that *Prochlorococcus* uses
sucrose for energy storage and not only as a compatible solute, as has been observed in non-
marine cyanobacteria(57,61).

Homarine and DMSP are known eukaryotic osmolytes(65,66,69,84). Here the amplitude
and timing of the diel oscillations in these two compounds differ from those observed in
phytoplankton picoeukaryote biomass (Figure 4), suggesting that these compatible solutes play
additional roles within the microbial community. This diversity of functions is well established
for DMSP, which influences grazing behaviors and can function as an antioxidant(69,85). DMSP
is also a carbon and reduced sulfur source in the microbial community, with uptake and
assimilation both tied to light availability(86,87). In our analysis, the only transcript related to
DMSP encodes a SAR11 DMSP demethylase required for DMSP degradation (Figure 6). A
dearth of data on the roles of homarine in marine microbes and a lack of genetic information
about homarine synthesis and degradation limit our ability to infer the sources and sinks for this
abundant compound. The high concentration and diel dynamics of homarine calls for further
investigation.

Both isethionic acid and DHPS are associated with fast growing eukaryotes that need to
mobilize cellular machinery to transport materials into the mitochondria for respiration(27,88),
and recent work has suggested that DHPS has potential osmotic capabilities(27). These two
metabolites had large diel oscillations implicating them as temporary stores of energy or
intermediates that can be mobilized quickly. Our data implicates SAR11 and Rhodobacteraceae as likely DHPS degraders at Station ALOHA (Figure 6), although genes for the production of DHPS are not in the KEGG database and thus were not identified by our analyses. If production and degradation of these compounds are separated along phylogenic lines(31) then these compounds are likely excreted into the dissolved phase by eukaryotes and subsequently available for use by bacteria, as suggested in Durham et al. (2019). This may explain the midday maximal expression of a \textit{hpsN}-like Rhodobacteraceae DHPS degradation gene (Figure 6).

\textit{Metabolites as fuel for the microbial loop}

Several of the metabolites investigated here are known to fuel heterotrophic bacterial growth in marine ecosystems(87,89–92). DMSP, for example, can support up to 9.5\% of the bacterial carbon demand at Station ALOHA(86). Particulate metabolite concentrations and their oscillations observed in this study call for further investigation into the hypothesis that these compounds are important substrates for community interactions and resources for the microbial loop. For compounds that exhibited diel oscillations, the difference between the daily maximum and minimum values provides a daily net production and degradation rate. We estimated a total net turnover rate of over 27 nmol C L\(^{-1}\) d\(^{-1}\) from our targeted metabolites, with several metabolites exhibiting individual turnover rates of over 1 nmol C L\(^{-1}\) d\(^{-1}\), including arachidonic acid, trehalose, homarine, sucrose, GBT, glucosylglycerol, and DHPS (Table S3). These are conservative estimates since the instantaneous flux may be much higher than the daily net change and we did not measure excretion of metabolites into the dissolved pool. For example, DMSP has a turnover time of 4.5 hours at Station ALOHA(86) and has been shown to be produced at night and during the day(93), both observations would substantially increase the
baseline estimate of DMSP production which does not account for rapid turnover and only
includes a daytime increase in concentration. While the fate of the metabolites measured here
remain unclear, conservative estimates of carbon and nitrogen flux through these small pools was
large, comprising around 2% of the 14C based estimates of primary productivity during this
study(12). These compounds are potentially used for cellular requirements by the organisms
synthesizing them, as discussed above, or released into the labile dissolved pool. When they
enter the dissolved pool through excretion or cell lysis, these compounds are important
components of the labile dissolved organic matter pool(91) and play a role in organism
interactions(94,95).

Conclusions

The light-dark cycle plays a dominant role in structuring marine microbial activity.
Previous work has shown diel oscillations of community processes, such as daily accumulation
and depletion of POC(2), and diel oscillations of transcriptional activity, which have provided
new information on temporal dynamics and raise hypotheses about the activity of individual
taxa(9,10). Measurements of *in situ* metabolites in native planktonic microbial populations
reported here support the hypotheses that diverse microbial taxa in the NPSG are synchronized to
daily oscillations of light energy and photosynthesis, with metabolites accumulated during the
day and depleted at night. The diel synchrony of ubiquitously used primary metabolites shows
the extent to which photoautotrophic organisms dominate the community and drive anabolic
processes during the day and catabolic processes at night. The combination of transcript
abundances, metabolite concentrations, and taxa-specific biomass in the field and in culture
allows us to postulate that *Crocosphaera* uses trehalose as a short-term energy source to drive
nighttime nitrogen fixation. Trehalose and the other osmolytes we measured are highly abundant in cells and, in addition to playing multiple roles in their producers, likely fuel the metabolism of heterotrophic bacteria. Metabolite concentrations cannot be predicted from transcripts in a single organism in pure culture, let alone in a complex natural community. Pairing quantitative measurements of particulate metabolites with transcriptomes is a key step toward understanding how regularly oscillating gene expression in microbial communities is reflected in the net community processes we observe and further elucidates the currencies of the microbial community.

Acknowledgements
The authors acknowledge A. Hynes, N. Kellogg, R. Lionheart, M. Motukuri, and A. Wied for assistance with lab and data analysis; J.S. Weitz and D. Muratore for productive discussions and feedback; A. E. White for the POC and PN data; J.P. Zehr and M. Hogan for providing Crocosphaera WH8501; A. Coe and S.W. Chisholm for providing Prochlorococcus MIT1314; the crew and scientific party of the R/V Kilo Moana during HOE-Legacy 2A. This work was supported by grants from the Simons Foundation (LS Award ID: 385428, A.E.I.; SCOPE Award ID 329108, A.E.I., E.F.D., E.V.A.; SCOPE Award ID 426570, E.V.A.; Award ID 598819, K.R.H.), the National Science Foundation (NSF OCE-1228770 and OCE-1205232 to A.E.I., NSF OCE-160019 to R.D.G, NSF GRFP to A.K.B. and K.R.H., NSF IGERT Program on Ocean Change to A.K.B), and the Gordon and Betty Moore Foundation (Grant #3777 to E.F.D.)

Competing interests:
The authors declare no conflict of interest.

Data availability
Information for the KM1513/HOE Legacy II cruise can be found online at

http://hahana.soest.hawaii.edu/hoelegacy/hoelegacy.html. Raw sequence data for the diel
eukaryotic metatranscriptomes are available in the NCBI Sequence Read Archive under BioProject ID PRJNA492142. Raw sequence data for the prokaryotic metatranscriptomes are available in the NCBI Sequence Read Archive under BioProject ID PRJNA358725. Raw and processed metabolomics data are available in Metabolomics Workbench under Project ID PR000926, currently embargoed until July 1, 2020 but available upon publication.

Author contributions

AEI, EVA, and EFD designed the study. AKB, LTC, FOA, BPD, and FR collected the samples. AKB, LTC, and KRH performed the metabolite sample processing and analysis. FOA, RDG, and BPD performed the metatranscriptomic sample processing and analysis. FR performed the flow cytometry sample processing and analyses. AKB, KRH, and AEI contributed to data interpretation and visualization. AKB and AEI drafted the paper and incorporated revisions from all authors.
1. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. Primary production of the biosphere: integrating terrestrial and oceanic components. Science. 1998;281(5374):237–40.

2. White AE, Barone B, Letelier RM, Karl DM. Productivity diagnosed from the diel cycle of particulate carbon in the North Pacific Subtropical Gyre. Geophys Res Lett. 2017;44(8):3752–60.

3. Ribalet F, Swalwell J, Clayton S, Jiménez V, Sudek S, Lin Y, et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc Natl Acad Sci U S A. 2015;1424279112-.

4. Ferrón S, Wilson ST, Martínez-garcía S, Quay PD, Karl DM. Metabolic balance in the mixed layer of the oligotrophic North Pacific Ocean from diel changes in O2/Ar saturation ratios. Geophys Res Lett. 2015;3421–30.

5. Hu SK, Connell PE, Mesrop LY, Caron DA. A Hard Day’s night: Diel shifts in microbial eukaryotic activity in the North Pacific Subtropical Gyre. Front Mar Sci. 2018;5(OCT):351.

6. Aylward FO, Boeuf D, Mende DR, Wood-Charlson EM, Vislova A, Eppley JM, et al. Diel cycling and long-term persistence of viruses in the ocean’s euphotic zone. Proc Natl Acad Sci U S A. 2017;114(43):11446–51.

7. Wilson ST, Aylward FO, Ribalet F, Barone B, Casey JR, Connell PE, et al. Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera. Nat Microbiol. 2017;2(July):1–20.

8. Halsey KH, Jones BM. Phytoplankton Strategies for Photosynthetic Energy Allocation. Ann Rev Mar Sci. 2015;7(1):265–97.

9. Aylward FO, Eppley JM, Smith JM, Chavez FP, Scholin CA, DeLong EF. Microbial community transcriptional networks are conserved in three domains at ocean basin scales. Proc Natl Acad Sci. 2015;112(17):201502883.

10. Ottosen EA, Young CR, Gifford SM, Eppley JM, Marin R, Schuster SC, et al. Multispecies diel transcriptional oscillations in open ocean heterotrophic bacterial assemblages. Science. (80-.). 2014;345(6193):207–12.

11. Waldbauer JR, Rodrigue S, Coleman ML, Chisholm SW, Sun Z. Transcriptome and Proteome Dynamics of a Light-Dark Synchronized Bacterial Cell Cycle. Lin S, editor. PLoS One. 2012;7(8):e43432.

12. Becker KW, Collins JR, Durham BP, Groussman RD, White AE, Fredricks HF, et al. Daily changes in phytoplankton lipidomes reveal mechanisms of energy storage in the open ocean. Nat Commun. 2018;9(1):5179.

13. Foy RH, Smith RV. The role of carbohydrate accumulation in the growth of planktonic oscillatoria species. Br Phycol J. 1980;15(2):139–50.

14. Muratore D, Boysen AK, Harke MJ, Becker KW, Casey JR, Coesel SN, et al. Community-scale Synchronization and Temporal Partitioning of Gene Expression, Metabolism and Lipids in Oligotrophic Ocean Surface Waters. bioRxiv. 2020;

15. Becker KW, Harke MJ, Mende DR, Muratore D, Weitz JS, Delong EF, et al. Combined pigment and metatranscriptomic analysis reveals highly synchronized diel patterns of phenotypic light response across domains in the open oligotrophic ocean. bioRxiv. 2020;

16. Wakeham SG, Lee C, Hedges JI, Hermes PJ, Peterson MJ. Molecular indicators of diagenetic status in marine organic matter. Geochim Cosmochim Acta.
17. Hedges JI, Baldock JA, Gélinas Y, Lee C, Peterson ML, Wakeham SG. The biochemical and elemental compositions of marine plankton: A NMR perspective. Mar Chem. 2002;78(1):47–63.

18. Moran MA. The global ocean microbiome. Science (80-.). 2015;350(6266):aac8455–aac8455.

19. Boysen AK, Heal KR, Carlson LT, Ingalls AE. Best-Matched Internal Standard Normalization in Liquid Chromatography-Mass Spectrometry Metabolomics Applied to Environmental Samples. Anal Chem. 2018;90(2).

20. Hirth M, Liverani S, Mahlow S, Bouget FY, Pohnert G, Sasso S. Metabolic profiling identifies trehalose as an abundant and diurnally fluctuating metabolite in the microalga Ostreococcus tauri. Metabolomics. 2017;13(6):68.

21. Kujawinski EB, Longnecker K, Alexander H, Dyhrman ST, Fiore CL, Haley ST, et al. Phosphorus availability regulates intracellular nucleotides in marine eukaryotic phytoplankton. Limnol Oceanogr Lett. 2017;2(4):119–29.

22. Heal KR, Qin W, Ribalet F, Bertagnolli AD, Coyote-Maestas W, Hmelo LR, et al. Two distinct pools of B12 analogs reveal community interdependencies in the ocean. Proc Natl Acad Sci U S A. 2016;201608462.

23. Llewellyn CA, Sommer U, Dupont CL, Allen AE, Viant MR. Using community metabolomics as a new approach to discriminate marine microbial particulate organic matter in the western English Channel. Prog Oceanogr. 2015;137:421–33.

24. Johnson WM, Longnecker K, Kido Soule MC, Arnold WA, Bhatia MP, Hallam SJ, et al. Metabolite composition of sinking particles differs from surface suspended particles across a latitudinal transect in the South Atlantic. Limnol Oceanogr. 2019;65(1):111–27.

25. Heal KR, Kellogg NA, Carlson LT, Lionheart RM, Ingalls AE. Metabolic Consequences of Cobalamin Scarcity in the Diatom Thalassiosira pseudonana as Revealed Through Metabolomics. Protist. 2019;170(3):328–48.

26. Torstensson A, Young JN, Carlson LT, Ingalls AE, Deming JW. Use of exogenous glycine betaine and its precursor choline as osmoprotectants in Antarctic sea-ice diatoms. J Phycol. 2019;

27. Durham BP, Boysen AK, Carlson LT, Groussman RD, Heal KR, Cain KR, et al. Sulfonate-based networks between eukaryotic phytoplankton and heterotrophic bacteria in the surface ocean. Nat Microbiol. 2019;4(10):1706–15.

28. Bundy JG, Davey MP, Viant MR. Environmental metabolomics: a critical review and future perspectives. Metabolomics. 2009;5(1):3–21.

29. Goulitquer S, Potin P, Tonon T. Mass spectrometry-based metabolomics to elucidate functions in marine organisms and ecosystems. [Internet]. Vol. 10, Marine drugs.

30. Amin S a., Hmelo LR, Tol HM van, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522(7554):98–101.

31. Durham BP, Sharma S, Luo H, Smith CB, Amin SA, Bender SJ, et al. Cryptic carbon and sulfur cycling between surface ocean plankton. Proc Natl Acad Sci U S A. 2014;in review(2):453–7.

32. Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, et al. Deciphering ocean carbon in a changing world. Proc Natl Acad Sci U S A.
Swalwell JE, Ribalet F, Armbrust EV. SeaFlow: A novel underway flow-cytometer for continuous observations of phytoplankton in the ocean. Limnol Oceanogr Methods. 2011;9(10):466–77.

Ribalet F, Berthiaume C, Hynes A, Swalwell J, Carlson M, Clayton S, et al. SeaFlow data v1, high-resolution abundance, size and biomass of small phytoplankton in the North Pacific. Sci Data. 2019;6(1):277.

Bligh EG, Dyer WJ. A Rapid Method Of Total Lipid Extraction And Purification. Can J Biochem Physiol. 2010;37(1):911–7.

MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010;26(7):966–8.

Spielmeyer A, Pohnert G. Direct quantification of dimethylsulfiniopropionate (DMSP) with hydrophilic interaction liquid chromatography/mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2010;878(31):3238–42.

Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol. 2017;2(10):1367–73.

Kiełbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21(3):487–93.

Gifford SM, Becker JW, Sosa OA, Repeta DJ, DeLong EF. Quantitative Transcriptomics Reveals the Growth- and Nutrient-Dependent Response of a Streamlined Marine Methylotroph to Methanol and Naturally Occurring Dissolved Organic Matter. MBio. 2016;7(6):e01279-16.

Kanehisa M, Goto S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 2000;28(1):27–30.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.

Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.

Eddy SR. Accelerated profile HMM searches. Pearson WR, editor. PLoS Comput Biol. 2011;7(10):e1002195.

Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Valencia A, editor. Bioinformatics. 2019;36(7):2251–2.

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34(5):525–7.

Tenenbaum D. KEGGREST: Client-side REST access to KEGG. R package; 2017.

Thaben PF, Westermarck PO. Detecting rhythms in time series with RAIN. J Biol Rhythms. 2014;29(6):391–400.

Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J R Stat Soc Ser B. 1995;57(1):289–300.

Chen YB, Zehr JP, Mellon M. Growth and nitrogen fixation of the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp. IMS 101 in defined media: Evidence for a circadian rhythm. J Phycol. 1996;32(6):916–23.
51. Becker JW, Hogle SL, Rosendo K, Chisholm SW. Co-culture and biogeography of Prochlorococcus and SAR11. ISME J. 2019;13(6):1506–19.

52. Moore LR, Coe A, Zinser ER, Saito MA, Sullivan MB, Lindell D, et al. Culturing the marine cyanobacterium Prochlorococcus. Limnol Oceanogr Methods. 2007;5(10):353–62.

53. Jeffrey Morris J, Zinser ER. Continuous hydrogen peroxide production by organic buffers in phytoplankton culture media. Post A, editor. J Phycol. 2013;49(6):1223–8.

54. Karl DM, Church MJ. Microbial oceanography and the Hawaii Ocean Time-series programme. Nat Rev Microbiol. 2014;12(10):699–713.

55. Finkel Z V., Follows MJ, Liefer JD, Brown CM, Benner I, Irwin AJ. Phylogenetic Diversity in the Macromolecular Composition of Microalgae. Humbert J-F, editor. PLoS One. 2016;11(5):e0155977.

56. Welkie DG, Rubin BE, Diamond S, Hood RD, Savage DF, Golden SS. A Hard Day’s Night: Cyanobacteria in Diel Cycles. Trends Microbiol. 2018;27(3):231–42.

57. Will SE, Henke P, Boedeker C, Huang S, Brinkmann H, Rohde M, et al. Day and night: Metabolic profiles and evolutionary relationships of six axenic non-marine cyanobacteria. Katz LA, editor. Genome Biol Evol. 2019;11(1):270–94.

58. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR. An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol. 2003;10(9):701–7.

59. Shi Y, Tyson GW, DeLong EF. Metatranscriptomics reveals unique microbial small RNAs in the ocean’s water column. Nature. 2009;459(7244):266–9.

60. Latifi A, Ruiz M, Zhang CC. Oxidative stress in cyanobacteria [Internet]. Vol. 33, FEMS Microbiology Reviews. Narnia; 2009. p. 258–78.

61. Halsey K, Milligan A, Behrenfeld M. Contrasting Strategies of Photosynthetic Energy Utilization Drive Lifestyle Strategies in Ecologically Important Picoeukaryotes. Metabolites. 2014;4(2):260–80.

62. Bertilsson S, Berglund O, Pullin M, Chisholm S. Release of dissolved organic matter by Prochlorococcus. Vol. 55, Vie Et Milieu. 2005. p. 225–31.

63. Shinde S, Zhang X, Singapuri SP, Kalra I, Liu X, Morgan-Kiss RM, et al. Glycogen Metabolism Supports Photosynthesis Start through the Oxidative Pentose Phosphate Pathway in Cyanobacteria. Plant Physiol. 2020;182(1):507–17.

64. Dupont CL, Goepfert TJ, Lo P, Wei L, Ahner BA. Diurnal cycling of glutathione in marine phytoplankton: Field and culture studies. Limnol Oceanogr. 2004;49(4):991–6.

65. Welsh DT. Ecological significance of compatible solute accumulation by microorganisms: from single cells to global climate. FEMS Microbiol Rev. 2000;24(3):263–90.

66. Gebser B, Pohnert G. Synchronized regulation of different zwitterionic metabolites in the osmoadaption of phytoplankton. Mar Drugs. 2013;11(6):2168–82.

67. Klähn S, Steglich C, Hess WR, Hagemann M. Glucosylglycerate: A secondary compatible solute common to marine cyanobacteria from nitrogen-poor environments. Environ Microbiol. 2010;12(1):83–94.

68. Klähn S, Hagemann M. Compatible solute biosynthesis in cyanobacteria. Environ Microbiol. 2011;13(3):551–62.

69. Yancey PH. Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol. 2005;208(15):2819–30.

70. DiTullio G, Laws E. Diel periodicity of nitrogen and carbon assimilation in five species of marine phytoplankton: accuracy of methodology for predicting N-assimilation rates and
N/C composition ratios. Mar Ecol Prog Ser. 1986;32:123–32.

71. Mühlenbruch M, Grossart HP, Eigemann F, Voss M. Mini-review: Phytoplankton-derived polysaccharides in the marine environment and their interactions with heterotrophic bacteria [Internet]. Vol. 20, Environmental Microbiology. Wiley/Blackwell (10.1111); 2018. p. 2671–85.

72. Lacour T, Sciandra A, Talec A, Mayzaud P, Bernard O. Diel variations of carbohydrates and neutral lipids in nitrogen-sufficient and nitrogen-starved cyclostat cultures of isochrysis sp. J Phycol. 2012;48(4):966–75.

73. Pade N, Compaoré J, Klähn S, Stal LJ, Hagemann M. The marine cyanobacterium Crocosphaera watsonii WH8501 synthesizes the compatible solute trehalose by a laterally acquired OtsAB fusion protein. Environ Microbiol. 2012;14(5):1261–71.

74. Dron A, Rabouille S, Claquin P, Le Roy B, Talec A, Sciandra A. Light-dark (12:12) cycle of carbon and nitrogen metabolism in Crocosphaera watsonii WH8501: relation to the cell cycle. Environ Microbiol. 2012;14(4):967–81.

75. Mohr W, Intermaggio MP, LaRoche J. Diel rhythm of nitrogen and carbon metabolism in the unicellular, diazotrophic cyanobacterium Crocosphaera watsonii WH8501. Environ Microbiol. 2010;12(2):412–21.

76. Mitsui A, Kumazawa S, Takahashi A, Ikemoto H, Cao S, Arai T. Strategy by which nitrogen-fixing unicellular cyanobacteria grow photoautotrophically. Nature. 1986;323(6090):720–2.

77. Großkopf T, LaRoche J. Direct and indirect costs of dinitrogen fixation in Crocosphaera watsonii WH8501 and possible implications for the nitrogen cycle. Front Microbiol. 2012;3(JUL):236.

78. Inomura K, Bragg J, Follows MJ. A quantitative analysis of the direct and indirect costs of nitrogen fixation: a model based on Azotobacter vinelandii. ISME J. 2017;11(1):166–75.

79. Bench SR, Heller P, Frank I, Arciniega M, Shilova IN, Zehr JP. Whole genome comparison of six Crocosphaera watsonii strains with differing phenotypes. J Phycol. 2013;49(4):786–801.

80. Sohm JA, Webb EA, Capone DG. Emerging patterns of marine nitrogen fixation. Nat Rev Microbiol. 2011;9(7):499–508.

81. Saito MA, Bertrand EM, Dutkiewicz S, Bulygin V V, Moran DM, Monteiro FM, et al. Iron conservation by reduction of metalloenzyme inventories in the marine diazotroph Crocosphaera watsonii. Proc Natl Acad Sci U S A. 2011;108(6):2184–9.

82. Shi T, Ililikchyan I, Rabouille S, Zehr JP. Genome-wide analysis of diel gene expression in the unicellular N(2)-fixing cyanobacterium Crocosphaera watsonii WH 8501. ISME J. 2010;4(5):621–32.

83. Szul MJ, Dearth SP, Campagna SR, Zinser ER. Carbon Fate and Flux in Prochlorococcus under Nitrogen Limitation. Gutierrez M, editor. mSystems. 2019;4(1):e00254-18.

84. Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from bacterial and algal origin is a compatible solute in microalgae. Mar Drugs. 2020;18(1):42.

85. Sunda W, Kieber DJ, Kiene RP, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature. 2002;418(6895):317–20.

86. Del Valle DA, Kiene RP, Karl DM. Effect of visible light on dimethylsulfoniopropionate assimilation and conversion to dimethylsulfide in the North Pacific Subtropical Gyre. Aquat Microb Ecol. 2012;66(1):47–62.

87. Moran MA, Durham BP. Sulfur metabolites in the pelagic ocean [Internet]. Vol. 17,
Nature Reviews Microbiology. Nature Publishing Group; 2019. p. 665–78.

88. Boroujerdi AFB, Lee PA, DiTullio GR, Janech MG, Vied SB, Bearden DW. Identification of isethionic acid and other small molecule metabolites of Fragilariopsis cylindrus with nuclear magnetic resonance. Anal Bioanal Chem. 2012;404(3):777–84.

89. Clifford EL, Varela MM, De Corte D, Bode A, Ortiz V, Herndl GJ, et al. Taurine Is a Major Carbon and Energy Source for Marine Prokaryotes in the North Atlantic Ocean off the Iberian Peninsula. Microb Ecol. 2019;78(2):299–312.

90. Kirchman DL, Hodson RE. Metabolic regulation of amino acid uptake in marine waters. Limnol Oceanogr. 1986;31(2):339–50.

91. Poretsky RS, Sun S, Mou X, Moran MA. Transporter genes expressed by coastal bacterioplankton in response to dissolved organic carbon. Environ Microbiol. 2010;12(3):616–27.

92. Kirchman DL. The Contribution of Monomers and other Low-Molecular Weight Compounds to the Flux of Dissolved Organic Material in Aquatic Ecosystems. In: Aquatic Ecosystems. Academic Press; 2003. p. 217–41.

93. Bucciarelli E, Sunda WG, Belviso S, Sarthou G. Effect of the diel cycle on production of dimethylsulfoniopropionate in batch cultures of Emiliania huxleyi. Aquat Microb Ecol. 2007;48(1):73–81.

94. Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci U S A. 2020;117(7):3656–62.

95. Poulin RX, Lavoie S, Siegel K, Gaul DA, Weissburg MJ, Kubanek J. Chemical encoding of risk perception and predator detection among estuarine invertebrates. Proc Natl Acad Sci U S A. 2018;115(4):662–7.
Figure Captions

Table 1

Wind speed and surface mixed layer physical and biological variables over the two sampling periods. Salinity, temperature, and dissolved oxygen (corrected with bottle measurements) are from the CTD between 13-17 m. N+N and heterotrophic bacteria abundance are measured from discrete samples at 15 m. Particulate organic carbon (from underway beam attenuation), particulate nitrogen, Prochlorococcus, Synechococcus, photosynthetic picoeukaryotes, and Crocosphaera are measured from the ship-underway water intake near 7 m.

Figure 1

Top: Hourly averages of POC from beam attenuation (black line, RAIN fdr-corrected \(p < 0.001 \)), total phytoplankton carbon biomass from flow cytometry (phytoplankton biomass, navy line, RAIN fdr-corrected \(p < 0.001 \)), and the difference between the two (grey line, RAIN fdr-corrected \(p > 0.05 \)). Bottom: Hourly averages of population specific carbon biomass of Prochlorococcus, Synechococcus, Crocosphaera, and photosynthetic picoeukaryotes (defined here as 2–4 µm) from flow cytometry, with shaded area representing the 95% confidence interval RAIN fdr-corrected \(p < 0.001 \) for all four populations), note the log10-scaled y-axis. Breaks in the lines are due to short periods of instrument malfunction. The two sampling periods referred to in the text are indicated above the figure.

Figure 2

Average targeted metabolite composition at dawn (06:00) and dusk (18:00) from July 26\(^{th} \) – July 28\(^{th} \) \((n = 9 \) for each time point), shown as the estimated particulate metabolite concentration (A), the percent of particulate organic carbon (B), and the percent of the particulate nitrogen (C). “Other” contains the sum of the rest of the metabolites (64 compounds). Osmolytes are in bold. Metabolites are arranged according to their average molar concentration at 6:00. Note the different y-axis scales.

Figure 3

Time of day that significantly diel compounds peak in the first sampling period (A). Surface light (photosynthetically active radiation, PAR, x10 nmol photon m\(^{-2} \) s\(^{-1} \)) (B). Heat map showing the \(z \)-score standardized concentrations of POC and of metabolites (nmol L\(^{-1} \)) determined to be significantly diel in the first sampling period, arranged by time of peak concentration (C).

Figure 4

Peak time vs average daily fold change for each metabolite (circles, nmol L\(^{-1} \)), POC from beam attenuation and phytoplankton biomass from flow cytometry (squares, µg C L\(^{-1} \)). Grey color indicates the level of significance (fdr corrected \(p \)-value) of the 24-hour oscillation. Red outlines indicate that the compound is an osmolyte. Select compounds and all biomass estimates are labeled (croco = Crocosphaera, synecho = Synechococcus, prochloro = Prochlorococcus, picoeuk = photosynthetic picoeukaryotes, total phytos = total phytoplankton biomass from underway flow cytometry). Dashed line is at a 2-fold change, which is above that for POC and total picophytoplankton biomass. The inset shows the distribution of fold-change in non-significant compounds. These compounds have variability even though they do not have 24-hour periodicity.
Figure 5

Particulate sucrose (left) and trehalose (right) measured as pmol L\(^{-1}\) in seawater (top), fmol cell\(^{-1}\) (middle) of *Crocosphaera* and *Prochlorococcus* for trehalose and sucrose, respectively, and mg g\(^{-1}\) cell carbon (bottom) of *Crocosphaera* and *Prochlorococcus* for trehalose and sucrose, respectively. The light grey vertical shading represents nighttime. The green box in the middle-left panel indicates the range of cellular sucrose quotas measured in *Prochlorococcus* MIT1314 harvested mid-day in exponential growth. The blue points in the middle-right panel indicate the dawn and dusk values measured for trehalose quotas in *Crocosphaera watsonii* WH8501. In the top panels, the error bars represent one standard deviation around the mean value, including uncertainty from the quantification regression. The error bars in the middle panels represent one standard deviation around the mean. The error bars in the bottom panels represent the 95% confidence interval given the confidence in the biomass quantification from underway flow cytometry.

Figure 6

A) Diel metabolite concentrations (peak area L\(^{-1}\), proportional to nmol L\(^{-1}\)) of methionine cycle compounds, methylthioadenosine, and osmolytes. Error bars are the standard deviation of biological triplicates. The light grey vertical shading represents nighttime. B) Left: Time of peak abundance of diel transcripts related to the production or use of select diel osmolytes and primary metabolites. Fill color indicates the phylogenetic lineage of the transcript; outline color indicates whether the transcript is associated with production or consumption of the metabolite. Time of metabolite peak concentration (nmol L\(^{-1}\)) is in black. Right: Proportion of all transcripts and diel transcripts belonging to each taxon. * = does not include select subgroups shown otherwise.

Supplemental Figure 1

Multivariate analyses based on z-scored particulate metabolite concentration (proportional to nmol L\(^{-1}\)). A) NMDS of the first sampling period alone: Jul-26\(^{th}\) - Jul 30th. The NMDS analysis results were significant (Monte Carlo randomization \(p < 0.01\)) with a stress value of 0.18. B) Within and between group variability from ANOSIM analysis using z-score standardized particulate concentrations of all metabolites (nmol L\(^{-1}\)) from the first sampling period (\(R = 0.194, p < 0.001\)). C) NMDS of the second sampling period alone: Jul 31st – Aug 3rd. The NMDS analysis results were significant (Monte Carlo randomization \(p < 0.01\)) with a stress value of 0.17. D) NMDS of full dataset: Jul-26th – Aug-3rd. Colors indicate time of day that the samples were collected. The NMDS analysis results were significant (Monte Carlo randomization \(p < 0.01\)) with a stress value of 0.18.

Supplemental Figure 2

Diel transcript peak abundance related to the production or degradation of diel metabolites. Color indicates the phylogenetic lineage of the transcript. Left: Peak time of transcript abundance or particulate metabolite concentration (nmol L\(^{-1}\)). Right: Proportion of diel transcripts belonging to each taxa and proportion of all transcripts, regardless of diel oscillation, related to each metabolite belonging to each taxa.

Supplemental Figure 3

Offset time (in hours) between the diel compounds and diel eukaryotic transcripts (top) or diel
prokaryotic transcripts (bottom) that use or produce them. Diel significance of compounds was
based on the first sampling period, diel significance of eukaryotic transcripts was based on the first
sampling period, diel significance of the prokaryotic transcripts was based on both sampling
periods (RAIN fdr-corrected $p < 0.05$).

Supplemental Figure 4
Field and culture particulate trehalose concentrations normalized to *Crocosphaera* cell count.
Field data (black points) show the average and standard deviation at each time point over the full
sampling period. Lab cultures (green circles) represent the values for the cultures harvested at
dawn and dusk. Variability in technical replicates (for dusk) and biological duplicates (for dawn)
are smaller than the points.

Supplemental Figure 5
Field and culture sucrose per cell *Prochlorococcus*. Field data (black points) show the median
and range at each time point. The green box shows the maximum and minimum values of
sucrose in triplicate axenic cultures of *Prochlorococcus* MIT1314 harvested at mid-day in
exponential growth.

Supplemental Figure 6
Time of day that compounds peak in the second sampling period.

Supplemental Table S1
Internal Standards added before extraction (Exr Standard) or before injection (Inj Standard)

Supplemental Table S2
Transcriptomes used to supplement the MarineRefII reference database
(http://roseobase.org/data/).

Supplemental Table S3
Metabolites measured in this analysis. The average fold change from peak to trough, the
maximum and minimum estimated or absolutely quantified values (pmol L$^{-1}$), and whether the
compound oscillates with 24-hour periodicity when normalized to volume of seawater filtered
(water), when normalized to POC (POC), both (Both), or neither (None) for the first sampling
period analyzed independently, second sampling period analyzed independently, and full dataset.
The time of peak concentration for these various normalizations and time periods are provided in
the final columns, rounded to the nearest hour. The net flux through the particulate pool
calculated by the mean daily swing from max to minimum. * indicates metabolites for which
samples 21-24 are removed and for which 6 samples in the second diel sampling period maybe
affected by internal standard adjustments. + indicates metabolites for which 4 samples in the
second sampling period might affected by IS adjustments. † notes that concentrations for DMSP
are likely underestimates, as described in the methods.

Supplemental Table S4
Average and standard deviation of targeted metabolite composition at dawn (06:00) and dusk
(18:00) from July 26th – July 28th ($n = 9$ for each time point), as the estimated particulate metabolite
concentration, the percent of particulate organic carbon, and the percent of the particulate nitrogen.
Supplemental Table S5
Pairwise comparisons of samples collected at different time points from the multivariate analyses of particulate metabolite concentration during the first sampling period.

Supplemental Table S6
Prokaryotic transcripts that matched metabolites identified by organism taxa and KEGG ortholog. If the transcript is significantly diel (RAIN fdr-corrected p-value < 0.05) the time of peak transcript abundance is provided (0/24 is midnight, 12 is noon).

Supplemental Table S7
Eukaryotic transcripts that matched metabolites identified by organism taxa and KEGG ortholog. If the transcript is significantly diel (RAIN fdr-corrected p-value < 0.05) the time of peak transcript abundance is provided (0/24 is midnight, 12 is noon).

Supplemental Table S8
Particulate metabolite concentrations in normalized peak area per L of seawater filtered. Across a single metabolite these values are proportional to molar concentration. Values should not be quantitatively compared between two metabolites, since the ionization efficiency and matrix effects influence different metabolites differently such that the same concentration can result in difference in peak area.
Tables

Table 1

Wind speed and surface mixed layer physical and biological variables over the two sampling periods. Salinity, temperature, and dissolved oxygen (corrected with bottle measurements) are from the CTD between 13-17 m. N+N and heterotrophic bacteria abundance are measured from discrete samples at 15 m. Particulate organic carbon (from underway beam attenuation), particulate nitrogen, *Prochlorococcus*, *Synechococcus*, photosynthetic picoeukaryotes, and *Crocosphaera* are measured from the ship-underway water intake near 7 m.

	First Sampling period		Second Sampling period	
	Average ± SD (n)		Average ± SD (n)	
Wind speed (kts)	10.59 ± 1.97 (83)		15.15 ± 1.76 (72)	
Mixed layer depth (m)	20.92 ± 5.20 (25)		36.12 ± 6.42 (19)	
Salinity	35.38 ± 0.01 (62)		35.39 ± 0.00 (33)	
Temperature (°C)	26.81 ± 0.10 (268)		26.86 ± 0.07 (80)	
Nitrate + Nitrite (nM)	3.02 ± 0.90 (19)		3.34 ± 1.65 (9)	
Dissolved oxygen (μmol/kg)	205.74 ± 0.70 (63)		205.62 ± 0.43 (39)	
Particulate organic carbon (μg C l⁻¹)	42.28 ± 2.72 (94)		40.70 ± 3.83 (73)	
Particulate Nitrogen (μmol N l⁻¹)	0.44 ± 0.04 (18)		0.40 ± 0.03 (12)	
Heterotrophic bacteria abundance (10⁶ cells l⁻¹)	508.3 ± 27.3 (22)		534.1 ± 30.8 (47)	
Prochlorococcus abundance (10⁶ cells l⁻¹)	161.23 ± 11.75 (98)		196.38 ± 15.37 (55)	
Synechococcus abundance (10⁶ cells l⁻¹)	0.85 ± 0.07 (98)		0.89 ± 0.06 (55)	
Photosynthetic picoeukaryote abundance (10⁶ cells l⁻¹)	0.97 ± 0.11 (98)		1.10 ± 0.33 (55)	
Crocosphaera abundance (10⁶ cells l⁻¹)	0.16 ± 0.06 (98)		0.31 ± 0.07 (55)	
Figure 1. Top: Hourly averages of POC from beam attenuation (black line), total phytoplankton carbon biomass from flow cytometry (phytoplankton biomass, navy line), and the difference between the two (grey line). Bottom: Hourly averages of population specific carbon biomass of *Prochlorococcus*, *Synechococcus*, *Crocosphaera*, and photosynthetic picoeukaryotes (defined here as 2-4 µm) from flow cytometry, with shaded area representing the 95% confidence interval. Breaks in the lines are due to short periods of instrument malfunction. The two sampling periods referred to in the text are indicated above the figure.
Figure 2. Average targeted metabolite composition at dawn (06:00) and dusk (18:00) from July 26th – July 28th (n = 9 for each time point), shown as the estimated particulate metabolite concentration (A), the percent of particulate organic carbon (B), and the percent of the particulate nitrogen (C). “Other” contains the sum of the rest of the metabolites (64 compounds). Osmolytes are in bold. Note the different y-axis scales.
Figure 3. Time of day that significantly diel compounds peak in the first sampling period (A). Surface light (photosynthetically active radiation, PAR, x10 nmol photon m\(^{-2}\) s\(^{-1}\)) (B). Heat map showing the z-score standardized concentrations of POC and of metabolites (nmol L\(^{-1}\)) determined to be significantly diel in the first sampling period, arranged by time of peak concentration (C).
Figure 4. Peak time vs average daily fold change for each metabolite (circles, nmol L-1), POC from beam attenuation and phytoplankton biomass from flow cytometry (squares, µg C L-1). Grey color indicates the level of significance (fdr corrected p-value) of the 24-hour oscillation. The inset shows the distribution of fold-change in non-significant compounds. These compounds have variability even though they do not have 24-hour periodicity. Red outlines indicate that the compound is an osmolyte. Select compounds and all biomass estimates are labeled (croco = Crocosphaera, synecho = Synechococcus, prochloro = Prochlorococcus, picoeuks = picoeu-karyotes, total phytos = total phytoplankton biomass from underway flow cytometry).
Figure 5. Particulate sucrose (left) and trehalose (right) measured as pmol L-1 in seawater (top), fmol cell-1 (middle) of Crocosphaera and Prochlorococcus for trehalose and sucrose, respectively, and mg g-1 cell carbon (bottom) of Crocosphaera and Prochlorococcus for trehalose and sucrose, respectively. The light grey vertical shading represents nighttime. The green box in the middle-left panel indicates the range of cellular sucrose quotas measured in Prochlorococcus MIT1314 harvested mid-day in exponential growth. The blue points in the middle-right panel indicate the dawn and dusk values measured for trehalose quotas in Crocosphaera watsonii strain WH8501. In the top panels, the error bars represent one standard deviation around the mean value, including uncertainty from the quantification regression. The error bars in the middle panels represent one standard deviation around the mean. The error bars in the bottom panels represent the 95% confidence interval given the confidence in the biomass quantification from underway flow cytometry.
Figure 6: A) Diel metabolite concentrations (peak area L−1, proportional to nmol L−1) of methionine cycle compounds, methylthioadenosine, and osmolytes. Error bars are the standard deviation of biological triplicates. The light grey vertical shading represents nighttime. B) Left: Time of peak abundance of diel transcripts related to the production or use of select diel osmolytes and primary metabolites. Fill color indicates the phylogenetic lineage of the transcript; outline color indicates whether the transcript is associated with production or consumption of the metabolite. Time of metabolite peak concentration (nmol L−1) is in black. Right: Proportion of all transcripts and diel transcripts belonging to each taxon. * = does not include select subgroups shown otherwise.