Efficient Path Counting Transducers for Minimum Bayes-Risk Decoding of Statistical Machine Translation Lattices

Graeme Blackwood, Adrià de Gispert, and William Byrne
Machine Intelligence Laboratory
Cambridge University Engineering Department

12th of July 2010
Introduction

- Our goal is efficient minimum Bayes-risk decoding over SMT lattices

- MBR can be used to improve the output of any SMT system
 - Based on posterior distribution over translation hypotheses

- MBR over evidence space \mathcal{E} under loss function $L(E, E')$ has the form

 $$\hat{E} = \arg\min_{E' \in \mathcal{E}} \sum_{E \in \mathcal{E}} L(E, E') P(E|F)$$

- We describe a novel implementation of MBR over lattices
 - Using path counting transducers to compute the required statistics

- This enables efficient decoding over even large SMT lattices

1Shankar Kumar and William Byrne. *Minimum Bayes-risk decoding for statistical machine translation*. NAACL 2004.
Lattice Minimum Bayes-Risk Decoding

- Linearized lattice MBR\(^2\) maximizes conditional expected gain:

\[
\hat{E} = \arg\max_{E' \in \mathcal{E}} \left\{ \theta_0 |E'| + \sum_{u \in \mathcal{N}} \theta_u \#_u(E') p(u|E) \right\}
\]

(2)

- \(p(u|E)\) is “path posterior probability” of \(n\)-gram \(u\)

\[
p(u|E) = \sum_{E \in \mathcal{E}_u} P(E|F)
\]

(3)

- Note that this is not the same as a conditional expected count:

\[
c(u|E) = \sum_{E \in \mathcal{E}} \#_u(E) P(E|F)
\]

(4)

- **AIM**: Efficient and exact implementation of Equation (2)

\(^2\)Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. *Lattice Minimum Bayes-Risk decoding for statistical machine translation*. EMNLP 2008.
Path Posterior Probability Computation

- Path posterior probabilities can be computed using FSAs\(^3\)
 - Intersect acceptor for \(\Sigma^* u \Sigma^*\) with \(\mathcal{E}\) to obtain \(\mathcal{E}_u\)
 - Then sum path weight \(P(E|F')\) for each \(E \in \mathcal{E}_u\)
 - Repeated one-by-one in sequence for each \(n\)-gram \(u \in \mathcal{N}\)
 - This “sequential” method can be slow for large \(|\mathcal{N}|\)

- We show that exact \(p(u|\mathcal{E})\) can be computed simultaneously
 - Using a single counting transducer for each order \(n = 1 \ldots 4\)

- We simplify counting by transducing lattice \(\mathcal{E}\) to lattice of \(n\)-grams \(\mathcal{E}_n\)
 - Easier to count unigrams in \(\mathcal{E}_n\) than to count \(n\)-grams in \(\mathcal{E}\)

\(^3\)Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. *Lattice Minimum Bayes-Risk decoding for statistical machine translation*. EMNLP 2008.
Efficient Path Counting 1

- Transducer Ψ_n computes simultaneously $p(u|\mathcal{E})$ for all $u \in \mathcal{N}_n$
- Example: Ψ^L_n and Ψ^R_n for $u_1, u_2 \in \mathcal{N}_n$ for some order n:

\[
\begin{align*}
\Psi^L_n & \quad \Psi^R_n \\
0 & \quad 0 \\
1 & \quad 1 \\
\rho \cdot \epsilon & \quad \sigma \cdot \epsilon \\
\epsilon \cdot \epsilon & \quad \epsilon \cdot \epsilon \\
\text{transducers} & \text{transducers}
\end{align*}
\]

- Ψ^L_n counts first (left-most) occurrence of each n-gram $u \in \mathcal{N}_n$ on path
 - Has been previously used for counting unigrams in SMT lattices\(^4\)

- Ψ^R_n counts last (right-most) occurrence of each n-gram $u \in \mathcal{N}_n$ on path
 - We show that Ψ^R_n is efficient and exact for n-gram orders $n = 1, \ldots, 4$

\(^4\)Cyril Allauzen, Shankar Kumar, Wolfgang Macherey, Mehryar Mohri, and Michael Riley. *Expected sequence similarity maximization*. NAACL 2010.
Efficient Path Counting 2

- We form weighted path counts acceptor $\mathcal{X}_n = \mathcal{E}_n \circ \Psi_n$
- Project output, map to log semiring, ϵ-removal, determinize, minimize
- \mathcal{X}_n has one arc from the start state for each $u \in \mathcal{N}_n$:

 $0 \xrightarrow{u_i/- \log p(u_i|\mathcal{E})} i$

- $\mathcal{E}_n \circ \Psi_n$ can have many states and arcs for large $|\mathcal{N}_n|$
 - Slow log semiring ϵ-removal and determinization operations

- If Ψ^R_n is used instead of Ψ^L_n, then
 1. Each path in $\mathcal{E}_n \circ \Psi_n$ has a single non-ϵ output label u
 2. All paths leading to the same final state share the same output label u

- This allows a lattice traversal procedure to be used to compute $p(u|\mathcal{E})$
 - Simply requires propagating symbols as well as probabilities
Efficient LMBR Decoder Implementation

- We use exact values of $p(u|\mathcal{E})$ at all orders to compute

$$
\hat{E} = \arg\max_{E' \in \mathcal{E}} \left\{ |E'| + \sum_{n=1}^{4} g_n(E, E') \right\},
$$

(5)

- $g_n(E, E')$ is partial gain associated with n-grams of order n

- Construct acceptor Ω_n to apply $g_n(E, E')$ to paths in \mathcal{E}

- Form \mathcal{E}_0 as \mathcal{E} with weight θ_0 on all arcs

- \hat{E} is maximum weight string in LMBR decoder automaton:

$$
\mathcal{E}_0 \circ \Omega_1 \circ \Omega_2 \circ \Omega_3 \circ \Omega_4
$$

(6)
Lattice MBR Decoding Performance

- NIST MT Arabic→English translation task (constrained)
- HiFST: a hierarchical phrase-based lattice decoder\(^5\)
- IBM BLEU scores for first-pass ML and lattice MBR translations:

	tune	test
ML	54.2	53.8
LMBR	55.0	54.6

\(^5\)Gonzalo Iglesias, Adrià de Gispert, Eduardo R. Banga, and William Byrne. *Hierarchical phrase based translation with weighted finite state transducers.* NAACL 2009.
Lattice MBR Decoding Efficiency

- Lattice MBR posteriors computation and decoding times (seconds):

	tune	test
Posteriors		
sequential	3160	3306
Ψ_n^L	6880	7387
Ψ_n^R	1746	1789
Decoding		
sequential	4340	4530
Ψ_n	284	319
Total	7711	8065
Ψ_n^L	7458	8075
Ψ_n^R	2321	2348

- More efficient to count paths by final than by first occurrence
- Average MBR time is around 1.2 seconds/sentence
Total Lattice MBR Decoding Time Analysis

- Total lattice MBR time as a function of number of n-grams:

- Compares sequential and simultaneous $\Psi_n R$ on per-sentence basis
Summary

- Efficient implementation of linearised lattice MBR
- Based on path counting transducers and regular WFST operations
- We map to n-gram sequences to simplify higher-order counting
- Compute required statistics at each order simultaneously

Poster Presentation: Venue A, Foyer, Board No. 8