Enhancing the Productive Performance of Broiler Chickens by Adding Spirulina platensis Compared with Probiotic, Prebiotics, and Oxytetracycline

Wisam R Atiyah*1, and Mohanad F Hamood2

1Department of Veterinary Public Health, College of Veterinary Medicine, University of Al-Qadisiyah, Iraq, 2Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Iraq

ABSTRACT

This study was conducted in order to find out the effect of Spirulina platensis (S. platensis) algae mixed with drinking water (2%) on the production performance of broiler chickens infected with or without Enterococcus faecalis (E. faecalis) and compare it with the effects of probiotics (containing Lactobacillus acidophilus, L. casei, L. reuteri, and Bacillus subtilis), prebiotics (containing antioxidants and a group of vitamins) as well as oxytetracycline. The experiment included 350 one day old (Ross-308) broiler chicks, randomly divided into 7 groups by 50 chicks per group for 35 days. The groups were divided as follows: T1: infected experimentally with E. faecalis only, T2: treated with S. platensis, T3: infected experimentally with E. faecalis and treated with 2% S. platensis, T4: infected experimentally with E. faecalis and treated with 2% oxytetracycline, T5: infected experimentally with E. faecalis and treated with probiotic, T6: infected experimentally with E. faecalis and treated with prebiotic, T7: control group without any addition. Weekly live body weight and weekly body weight gain were measured as well as weekly feed intake and feed conversion rate for broiler chickens were estimated. The current study proved that S. platensis algae added to drinking water (2%) in T2 and T3 groups had caused a significant increase (P<0.05) in the weekly live body weight and weekly body weight gain, Spirulina also caused a significant decrease (P<0.05) in weekly feed intake and feed conversion rate for broiler chickens. Therefore, S. platensis could be a suitable alternative to some feed additives such as probiotics, prebiotics, and antibiotics in addition to the ability of Spirulina to reduce the symptoms of E. faecalis.

Keywords: Spirulina platensis, productive performance, broiler, probiotics, prebiotics

INTRODUCTION

Enterococcus faecalis (E. faecalis) is Gram-positive bacteria and facultative anaerobic constitute the natural microflora of intestinal tract in mammals and birds (1). E. faecalis is an opportunistic pathogenic bacterium that causes many infections in poultry including septicemia, endocarditis, central nervous system infections, salpingitis and amyloidosis (2). Antibiotics are used as growth promoters for poultry at low doses than therapeutic doses and the mechanics of antibiotic action is by interaction with intestinal bacterial mass (3-5). As a result of excessive use of antibiotics, they caused the appearance of new bacterial strains resistant to antibiotics (6). Significantly, E. faecalis antibiotic-resistant bacteria will develop rapidly (7-9). Resistance genes may be transmitted from animals to
humans through the food chain (10). *E. faecalis* bacteria may cause important infection and diseases to humans, such as endocarditis, bacteremia, inflammation of the urinary tract and central nervous system infections (11, 12).

When the use of antibiotics was banned in many countries of the world, it became necessary to search for feed additives of natural origin for poultry that would be safer and more acceptable for consumers (13). Phytopgenic feed additives have been widely employed in the poultry industry to improve the health status and increase growth and productive performance (14).

Spirulina platensis (*S. platensis*) is a cyanobacteria (blue-green algae), which is considered as a rich protein food in addition to many vitamins and minerals (15). *S. platensis* has antioxidant and anti-bacterial properties as well as enhancing the immune system (16). *S. platensis* algae is considered as one of the most promising diets in the development of the poultry industry, and future research work must be done to exploit it for the purpose of increasing production at the lowest economic cost (17).

The experiment aims to determine the effectiveness of nutritional *Spirulina* algae as a natural component on the production performance of broiler chickens.

MATERIALS AND METHODS

Experimental Design

The experimental design of the study was based on the approval of the Public Health Department at the College of Veterinary Medicine, University of Baghdad, in its session held on February 25, 2019. All procedures carried out in this study were reviewed and accepted in compliance with the ethical principles of animal welfare by the Scientific Committee at the College of Veterinary Medicine, University of Bagdad.

This study was conducted in the poultry fields of the College of Veterinary Medicine, University of Baghdad for the period from November 9, 2019, to December 13, 2019. The experiment included a total of 350 one-day-old straight-Run broiler chicks (Ross-308), which were randomly divided into 7 groups with 50 chicks per group placed in 2×2 m² pens for 5 weeks.

The challenge test was pre-formed on 5 groups, each group consisted of 20 chicks (they were challenged with different concentrations of bacteria to choose the concentration that killed half of the experimental animals) to determine the LD₅₀ of bacteria, which was 1×10⁶ CFU/mL. Chicks of groups T₃, T₄, T₅ and T₆ were infected on the third day of their life, then the clinical symptoms were observed in the chicks in the second week of life (18).

T₁ = *E. faecalis* only, T₂ = added *S. platensis*, T₃ = *E. faecalis* + *S. platensis* (2%), T₄ = *E. faecalis* + probiotic (DPP company, USA, contains minimum of 1×10⁸ CFU/g total *Lactobacillus acidophilus*, *L. casei*, *L. reuteri*, and *Bacillus subtilis* 3.3 g/20 liters of drinking water), T₅ = *E. faecalis* + probiotic (produced by Biolink Company, UK, contains extract of beta-glucans as antioxidants and a group of vitamins 7.5 mL in 20 liters of clean drinking water), T₆ = *E. faecalis* + oxytetracycline 2500 mg/L of drinking water, T₇: control group without any addition.

Table 1. The nutritional value of *Spirulina* algae used per 100 g

Nutritional content	Per 100 g
Energy	332 kcal
Fat	0.8 g
Carbohydrate	12.8 g
Protein	65.3 g
Fiber	6.4 g
Salt	3 g
Vitamin A	1200 µg
Riboflavin (B₂)	0.3 mg
Vitamin B₆	0.7 µg
Magnesium	2.59 mg
Iron	53.2 mg
Chromium	22 µg

Mean Body Weight (g)

The body weights were calculated weekly by weighing chicks individually at day one old and at the end of each week by sensitive balance. Mean body weight was calculated from the weight of all chicks divided on the number of chicks (19).

Weekly Mean Weight Gain (g)

The mean body weight gain (WG) for each group was calculated weekly by recording the weight gain at the beginning of the week and at the end depending on the following equation (20):

\[
\text{Weekly WG} = \text{BW at end of week} - \text{BW at beginning of week}
\]

Feed Intake

Feed intake (FI) was calculated weekly depending on weighing the remained feed at number of the dead chicks and the number of their feeding days. Feed intake of chicks was calculated according to the equation which was mentioned by (21) as follows:

\[
\text{Weekly FI (g/chick)} = \frac{W}{L+D}
\]

Where, \(W\) = quantity of FI through the week (g), \(L\) = number of live chicks fed through the week, \(D\) = numbers of dead chicks × number of their feeding days.

Feed Conversion Ratio

Feed conversion ratio (FCR) was measured weekly for each group up to the end of experiment. Measurement was done according to the equation below (19):
Statistical Analysis

Statistical Package of Social Sciences (SPSS) version 26 (Inc., Chicago, IL, USA) computer software was used for analysis of the results. The data were analyzed as one-way ANOVA, and significant differences between groups were assessed using Fisher’s Least Significant Difference (LSD). Values with P<0.05 were considered to indicate statistically significance (22). All results are expressed as the mean±SEM.

RESULTS AND DISCUSSION

The nutritional analysis of Spirulina algae for every 100 g is shown in Table 1.

Table 2. Effect of different levels of Spirulina, probiotic, prebiotic, and antibiotic with or without E. faecalis infection on weekly live body weight (g) of broilers

Treatment	Week1	Week2	Week3	Week4	Week5
T1	119±1.50 Ed	237±3.78 Ed	407±1.96 Ec	63±2.11 Gb	92±4.25 Ea
T2	147±2.25 Ae	413±4.56 Ad	886±2.73 Ac	145±1.66 Ab	2115±7.54 As
T3	136±1.72 Gb	321±3.05 Gb	619±2.81 Cc	106±2.55 Cc	1537±3.59 Da
T4	139±1.62 Ab	300±2.89 Ab	573±2.18 Bc	924±3.60 Bc	1408±5.97 Ca
T5	127±2.70 Cb	271±1.96 Cb	508±2.54 Bc	782±3.19 Bc	1275±4.64 Ba
T6	126±2.41 De	250±1.79 Dd	493±3.80 Fc	748±1.52 Fb	1226±7.80 Fa
T7	143±1.15 Ae	396±2.00 Ab	825±3.15 Bc	1321±2.73 Bb	1880±6.38 Ba

LSD0.05 9.43

Table 2. Effect of different levels of Spirulina, probiotic, prebiotic, and antibiotic with or without E. faecalis infection on weekly live body weight gain (g) of broilers

Treatment	Week1	Week2	Week3	Week4	Week5
T1	81±1.25 Ec	118±1.78 Ed	170±1.66 Ec	220±1.34 Gb	357±1.72 Gb
T2	108±0.35 Ee	265±1.74 Ad	473±3.32 Ac	570±3.26 Ab	660±3.53 Ab
T3	96±0.72 Ec	185±1.15 Cc	299±2.05 Ec	386±1.63 Cc	531±2.51 Gc
T4	99±0.65 Ee	161±2.23 Bb	273±1.89 Bb	352±2.70 Bb	484±1.83 Bb
T5	87±0.93 Dc	145±1.88 Ed	235±3.66 Fc	274±3.62 Eb	493±2.49 Eb
T6	86±0.30 Ee	124±0.75 Fd	243±2.83 Fc	255±1.30 Fb	478±1.84 Fb
T7	104±2.15 Fc	253±1.94 Bb	429±3.41 Bc	496±2.49 Bb	553±2.18 Bb

LSD0.05 4.12

1Mean±SEM. T1 = E. faecalis only. T2 = added S. platensis 2%, T3 = infected with E. faecalis + S. platensis 2%. T4 = infected with E. faecalis + probiotic. T5 E. faecalis + probiotic. T6 = E. faecalis + oxytetracycline. T7 = Control. Different uppercase letters (A-G) refer to vertical statistical reading (among groups), lowercase letters (a-g) refer to horizontal statistical reading (among times) at P<0.05

Table 3. Effect of different levels of Spirulina, probiotic, prebiotic, and antibiotic with or without E. faecalis infection on weekly live body weight gain (g) of broilers

It was observed that there was a significant decrease in the amount of feed intake by the chicks in group T1 compared to the rest of the experiment groups in all the study weeks (P<0.05). While T2 recorded a significant increase in the proportion of feed intake at P<0.05. The increase in the feed intake for group T3 was more than for groups T4, T5, and T6 when compared to the experimentally infected groups as shown in Table 4.

The results of the current study recorded a significant increase in the feed conversion rate in groups T1 and T6 (P<0.05) more than the other groups. Whereas the group experimentally infected with pathogenic bacteria T3 recorded a significant decrease in F.C.R (P<0.05) when compared to the infected groups T4 and T5 as shown in Table 5.

Table 4. Effect of different levels of Spirulina, probiotic, prebiotic, and antibiotic with or without E. faecalis infection on weekly feed intake (g) of broilers

Treatment	Period	Week1	Week2	Week3	Week4	Week5
T1		150±1.72	213±4.20	342±5.8	442±6.23	678±7.83
T2		141±3.61	296±5.56	591±7.11	823±5.10	1087±3.74
T3		139±2.55	280±5.62	557±4.04	671±5.27	975±4.39
T4		151±2.49	322±8.64	518±2.16	676±5.75	1073±7.10
T5		128±3.09	278±4.55	411±5.51	781±2.64	962±5.62
T6		153±4.33	250±2.90	497±4.85	701±4.80	946±5.06
T7		147±2.10	383±6.32	658±4.67	860±6.93	1070±3.82
LSD(0.05)						7.28

1 Means±SEM. T1 = E. faecalis only, T2 = added S. platensis 2%, T3 = infected with E. F + S. platensis 2%, T4 = infected with E. faecalis + prebiotic, T5 = E. faecalis + prebiotic. T6 = E. faecalis + oxytetracycline. T7 = Control. Different uppercase letters (A-G) refer to vertical statistical reading (among times) at P<0.05. Lowercase letters (a-g) refer to horizontal statistical reading (among groups) at P<0.05.

Table 5. Effect of different levels of Spirulina, probiotic, prebiotic, and antibiotic with or without E. faecalis infection on feed conversion ratio (g/g) of broiler

Treatment	Period	Week1	Week2	Week3	Week4	Week5
T1		1.84±0.10	1.80±0.03	2.02±0.04	1.93±0.08	1.90±0.05
T2		1.30±0.05	1.11±0.05	1.24±0.18	1.44±0.05	1.64±0.04
T3		1.43±0.06	1.52±0.17	1.86±0.11	1.73±0.10	1.83±0.07
T4		1.52±0.04	2.00±0.09	1.89±0.03	1.92±0.08	2.00±0.05
T5		1.56±0.04	1.91±0.03	1.74±0.03	1.94±0.05	1.95±0.02
T6		1.56±0.15	2.02±0.12	2.04±0.09	1.96±0.02	1.97±0.03
T7		1.42±0.05	1.50±0.05	1.53±0.06	1.73±0.13	1.93±0.09
LSD(0.05)						0.112

1 Means±SEM. T1 = E. faecalis only, T2 = added S. platensis 2%, T3 = infected with E. F + S. platensis 2%, T4 = infected with E. faecalis + prebiotic. T5 = E. faecalis + prebiotic. T6 = E. faecalis + oxytetracycline. T7 = Control. Different uppercase letters (A-G) refer to vertical statistical reading (among times) at P<0.05. Lowercase letters (a-g) refer to horizontal statistical reading (among times) at P<0.05.

DISCUSSION

Probiotics (Lactobacillus acidophilus, L. casi, L. reuteri and Bacillus subtilis) and prebiotics (contains extract of beta-glucans as antioxidants and a group of vitamins) work to stimulate the immune system of chicks and increase their ability to resist bacterial infections as well as stimulate the production of digestive enzymes in addition to containing vitamins that positively affect the health of birds (23).

Spirulina platensis is a multicellular, photosynthetic prokaryotic algae that contains a very high amount of proteins (55–70%) of the dry weight, vitamins and minerals (24, 25) which play an essential and important role in increasing the productive performance of broiler chickens (17, 26). It has been demonstrated by (27) that up to 10% of the total nutritional content from microalgae can be used safely as a partial diet substitute for traditional protein sources in poultry feeding. Spirulina in food increases the Lactobacillus population and enhances the absorption of vitamins (28).

The results of the current study showed that there was a significant increase at the level of P<0.05 in live body weight, as well as in the weekly weight gain for groups T2 and T3 (from the affected groups) during all weeks of the experiment compared with the control group. Group T3 was among the groups experimentally infected with E. faecalis and treated with the addition of 2% of S. platensis powder to chicks drinking water, this addition caused a significant increase in the growth of chicks and improved health status due to its high protein ratio including important amino acids present in Spirulina and antioxidants content. In addition to improving the digestive ability of poultry, Spirulina also helped in strengthening the immune system and reduced the need for antibiotics, medications, and multivitamin supplementation, this is in agreement with the results of (29, 30) who indicated the possibility of improving chicken immunity response and substituting Spirulina instead of antibiotics. These improvements may be because of the synergic effect of the chemical components (total phenolic and flavonoid contents and total antioxidant) found in Spirulina; these chemical constituents had antioxidant action (31, 32).

The current study showed a significant increase at the level of P<0.05 in feed intake in group T2 compared to control group, while there was a significant increase and a lesser percentage in the groups T3 and T4 in comparison with experimentally infected groups. On the other hand, the study indicated a significant decrease in the feed conversion rate at P<0.05 in group T2, as well as significant decrease in group T3 for infected groups at P < 0.05. These results are in agreement with (29, 33) who have also proven that adding Spirulina algae works to reduce food conversion ratio.

Overall, Adding of Spirulina platensis to drinking water at a percentage 2% led to a significant increase in the productive performance as well as improving the immunity...
response and enhancement meat quality of broilers, this makes it a promising food addition in the poultry industry.

ACKNOWLEDGEMENTS

Authors would like to extend their deepest thanks to the members of the College of Veterinary Medicine, University of Baghdad for their support.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

REFERENCES

1. Dolka B, Gołębiowska-Kosakowska M, Krajewski K, Kwiecińﬁski P, Nowak T, Szubstascki J, et al. Occurrence of Enterococcus spp. in poultry in Poland based on 2014–2015 data. Med Weter. 2017;73(4):220–4.
2. Gregersen R, Petersen A, Christensen H, Bisgaard M. Multilocus sequence typing of Enterococcus faecalis isolates demonstrating different lesion types in broiler breeders. Avian Pathol. 2010;39(6):435-440.
3. Niewold TA. The nonantibiotic anti-inﬂammatory effect of antimicrobial growth promoters, the real mode of action? A hypothesis. Poult Sci. 2007;86:605-609.
4. Zahir U R, AnwarulHaque B, Masuda K, Md Mahfuj U P. Effect of dietary supplement of algae (Spirulina platensis) as an alternative to antibiotics on growth performance and health status of broiler chickens. In. J Poult Sci. 2019; 18: 576-584.
5. Noh EB, Kim YB, Seo KW, Son SH, Ha JS, Lee YJ. Antimicrobial resistance monitoring of commensual Enterococcus faecalis in broiler breeders. Poult Sci. 2020;99(5):2675–83.
6. Furuta V, Jackson CR, Farrell EG, Barrett JB, Hiott LM, Chambers PA. Antimicrobial resistance in Enterococcus spp. isolated from environmental samples in an area of intensive poultry production. Int J Environ Res Public Health. 2013;10(3):1020–36.
7. Kim Y, SeokWang W H S, NahEun B, LeeYoung J. Molecular characterization of antimicrobial-resistant Enterococcus faecalis and Enterococcus faecium isolated from layer parent stock. J Poult Sci. 2019;98(11):5892–5899.
8. Al-Shammary A. Run-off patterns of vancomycin resistant Enterococci (VRE clones) in cows raw milk and imported milk powders at Baghdad markets. Iraqi J Vet Med. 2019;43(2): 65-70. Available from: http://jcos.m.uobaghdad.de.eg/index.php/Iraqijvm/article/view/532
9. Han D, Unno T, Jang J, Lim K, Lee S N, Ko G, et al. The occurrence of virulence traits among high-level aminoglycosides resistant Enterococcus isolates obtained from feces of humans, animals, and birds in South Korea. Int. J. Food Microbiol.2011; 144:387-392.
10. O’Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015; 24:217-230. doi:10.2147/IDR.S4125
11. Fiore E, Van Tyne D, Gilmore MS. Pathogenicity of Enterococci. Microbiol Spectr.2019;7(4): 10.1128/microbiolspec.GPP3-0053-2018. doi:10.1128/microbiolspec.GPP3-0053-2018.
12. Kiczorowska B, Al-Yasiry A, Samolinska W, Marek A, Pyzik E. The effect of dietary supplementation of the broiler chicken diet with Boswelia serrata resin on growth performance, digestibility and gastrointestinal characteristics, morphology and microbiota. Livest. Sci.2016; 191: 117-124.
13. Sugiharto S, Yudarti T, Isroli I, Widjatuti E, Putra FD. Intestinal microbial ecology and hematological parameters of broiler fed cassava waste pulp fermented with Acremonium charticola. Vet. World. 2017; 10: 324-330.
14. Soni RA, Sudhakar K, Rana R. Spirulina - from growth to nutritional product: a review. Trends Food Sci. Technol. 2017; 69: 157-171.
15. Mirzaie S, Zirak-Khattab F, Hosseini SA, Donayi-Darian H. Effects of dietary Spirulina on antioxidant status, lipid proﬁle, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australas J Anim Sci.2018;31(4): 556-563. doi:10.5173/ajas.17.0483.
16. Pestana JM, Puerta B, Santos H, Madeira MS, Alfaia CM, Lopes PA, et al. Impact of dietary incorporation of Spirulina (Arthrospira platensis) and exogenous enzymes on broiler performance, carcass traits, and meat quality. Poult Sci. 2020;99(5):2519-32.
17. Zhao P, Wu G, Zhang Q, Chu J, Xie C, Wang Y, et al. Experimental investigation on Ornithobacterium rhinotracheale and Enterococcus faecalis co-infection in chickens. Pak Vet J. 2015;35(2):173–177.
18. Mendes AS, Paixao SJ, Retelatto R, Rellatti R, Possenti JC, de Moura DJ, et al. Effects of initial body weight and litter material on broiler production. Rev Bras Genc Avic. 2011; 13: 165-170. DOI: 10.1590/S1516-635X2011000300001
19. Shroha A, Bidhan DS, Silag HS, Yadav DC. Body weight, feed consumption and PCR of broiler chicken upon dietary Supplementation of Awyain (Trachyspermum ammi). Int. J. Curr. Microbiol. App. Sci. 2019;8(2):2189-98.
20. Mahmoud M, Ahmad M, Hussain I, Abbas R, Khan A, Rafia A. Growth promoting effect of Pimpinella anium (Aniseed) in broiler chickens. Bol Latinoam Caribe Plantas Med.Aromat.2014; 13: 270–284.
21. Landau S, Everett BS. A handbook of statistical analyses using SPSS [Internet]. London, England: Chapman and Hall; 2003. Available from: http://dx.doi.org/10.1201/9780203009765.
22. Grajek W, Olejnik A, Sip A. Probiotics, prebiotics, and antioxidants as functional foods. Acta Biochim Pol. 2005;52(3):665-671.
23. Zeweil H, Abaza I, Zahrani S, Ahmed M, Haima M, Abou-Isla, et al. Effect of Spirulina platensis as dietary supplement on some biological traits for chickens under heat stress condition. Asian J biomed. pharm. sci.2016; 6(56): 08-12.
24. Jung F, Krüger-G A, Waldeck P, Küpper J-H. Spirulina platensis, a super food! J Cell Biotechnol.2019; 5: 43-54. 10.3233/JCB-189012.
25. Abu-Elala NM, Ghal MK, Abd-Ekalam RM, Mohy-Elsaied O, Ragaa NM. Effects of dietary supplementation of Spirulina platensis and garlic on the growth performance and expression levels of immune-related genes in Nile tilapia (Oreochromis niloticus). J Aquac Res Dev.2016; 7:433. doi:10.4172/2155-9546.1000433.
26. Hajati H, Zaghari M. Effects of Spirulina platensis on growth performance, carcass characteristics, egg traits and immunity response of Japanese quails. Iran J Anim Sci. 2019, 9(2): 347-357.
27. Mariey YA, Samak MA. Effect of using Spirulina platensis algae as a feed additive for poultry diets: 1- productive and reproductive performances of local laying hens. Egypt Poult Sci. 2012;32(1):201–215.
28. Tavernari F C, Roza L F, Surek D, Sordi C, Silva M, Albino L, et al. The effect of using Moringa oleifera and Spirulina platensis as feed additives on performance, meat composition and oxidative stability and fatty acid profiles in broiler chicken. Nutr. Food Sci. Technol. 2017; 69: 157-171.
29. Sharmeen F, Sarkar NR, Sarkar MSK. Effect of using Moringa oleifera and Spirulina platensis as feed additives on performance, meat composition and oxidative stability and fatty acid profiles in broiler chicken. Nutr. Food Sci. 2020; 10: 772. doi: 10.35248/2155-9600.20.10.772.
30. Jose AM, Diana G, Martinez F, Javier R, Pedro J. Enrichment of vitamin E from Spirulina platensis microalgae by SF supercrit fluids. 2008; 43 (3): 484-489.
31. Hasan Z, Ibrahim M A, Soliman M, Mohamed H, Haiam M, Asmaa A. Effect of Spirulina platensis as dietary Supplement on some
تحسين الأداء الإنتاجي لدجاج اللحوم عن طريق إضافة طحالب السبيرولينا ومقارنتها بالمعزز الحيوي والأوكسي تتراسايكلين

وسام رحيم عطية١ و مهند فلحي حمود٢

أفرع الصحة العامة البيطرية، كلية الطب البيطري، جامعة القادسية، العراق. أفرع الصحة العامة البيطرية، كلية الطب البيطري، جامعة بغداد، العراق

الخلاصة

أجريت هذه الدراسة لمعرفة تأثير طحالب Spirulina platensis (الممزوجة بمياه الشرب (2%)) على أداء إنتاج دجاج التسمين المصاب أو غير المصاب بالبكتيريا المعوية البرازية ومقارنتها بتأثير المعزز الحيوي وأوكسي تتراسايكلين. اشتملت التجربة على 350 من افراخ دجاج التسمين عمراً يوم واحد (روز - 308)، مقسمة عشوائياً إلى 7 مجموعات، كل مجموعة تتألف من 50 من افراخ دجاج التسمين. تضمنت المجموعات: T1: أصابه تجريبية بالمكورات المعوية البرازية فقط، T2: إضافة S.platensis فقط، T3: أصابه بالمكورات المعوية البرازية معالج بـ 2 جم / لتر S.platensis، T4: أصابه بالمكورات المعوية البرازية معالج بالبروبيوتيك، T5: أصابه بالمكورات المعوية البرازية معالج بالبريبايوتكس، T6: أصابه بالمكورات المعوية البرازية معالج بـ أوكسي تتراسايكلين، T7: مجموعة السيطرة. أظهرت النتائج أن S.platensis طحالب مضافة إلى مياه الشرب كان لها تأثير إيجابي على أداء إنتاج دجاج التسمين، كما يمكن أن تكون S.platensis بديل جيد لبعض المضافات الغذائية مثل البروبيوتيك Enterococcus faecalis، والبريبايوتكس ومضادات الميكروبات وكذلك قدرته على تجنب الإصابة ببكتيريا Enterococcus faecalis، Enterococcus faecalis، Enterococcus faecalis. الكلمات المفتاحية: طحالب سبيرولينا، الإداة الإنتاجية، دجاج اللحم، المعزز الحيوي، المعززات الحيوية.

32. Kaoud HA. Effect of Spirulina platensis as a dietary supplement on broiler performance in comparison with prebiotics. Sci. J. App. Res. 2012;1 (2): 44-48.