Human Papillomavirus Infection in Head and Neck Squamous Cell Carcinomas: Transcriptional Triggers and Changed Disease Patterns

Nikita Aggarwal1, Joni Yadav1, Kulbhushan Thakur1, Rakhi Bibban1, Arun Chhokar1, Tanya Tripathi1, Anjali Bhat1, Tejveer Singh1, Mohit Jadli1, Ujala Singh1, Manoj K. Kashyap1,2 and Alok C. Bharti1*

1 Molecular Oncology Laboratory, Department of Zoology, University of Delhi, Delhi, India, 2 Amity Medical School, Stem Cell Institute, Amity University Haryana, Amity Education Valley Panchgaon, Gurugram, India

Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of cancers. Collectively, HNSCC ranks sixth in incidence rate worldwide. Apart from classical risk factors like tobacco and alcohol, infection of human papillomavirus (HPV) is emerging as a discrete risk factor for HNSCC. HPV-positive HNSCC represent a distinct group of diseases that differ in their clinical presentation. These lesions are well-differentiated, occur at an early age, and have better prognosis. Epidemiological studies have demonstrated a specific increase in the proportions of the HPV-positive HNSCC. HPV-positive and HPV-negative HNSCC lesions display different disease progression and clinical response. For tumorigenic-transformation, HPV essentially requires a permissive cellular environment and host cell factors for induction of viral transcription. As the spectrum of host factors is independent of HPV infection at the time of viral entry, presumably entry of HPV only selects host cells that are permissive to establishment of HPV infection. Growing evidence suggest that HPV plays a more active role in a subset of HNSCC, where they are transcriptionally-active. A variety of factors provide a favorable environment for HPV to become transcriptionally-active. The most notable are the set of transcription factors that have direct binding sites on the viral genome. As HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of transcription factors that have direct binding sites on the viral genome. Since HPV does not have its own transcription machinery, it is fully dependent on host transcription factors to complete the life cycle. Here, we review and evaluate the current evidence on level of a subset of host transcription factors that influence viral genome, directly or indirectly, in HNSCC. Since many of these transcription factors can independently promote carcinogenesis, the composition of HPV permissive transcription factors in a tumor can serve as a surrogate marker of a separate molecularly-distinct class of HNSCC lesions including those cases, where HPV could not get a chance to infect but may manifest better prognosis.

Keywords: oral cavity, transcription factor, oropharynx, prognosis, molecular markers, squamous cell carcinoma, human papillomavirus
INTRODUCTION

Squamous cell carcinoma (SCC) of head and neck (H&N) region is a set of highly heterogeneous group of malignancies that collectively pose a major health challenge worldwide. Last 50 years have witnessed a significant shift in the incidence and prevalence of SCC of different constituent subsites. These changes have been linked to changes in exposure to various known carcinogens and risk factors. Traditionally, head and neck squamous cell carcinoma (HNSCC) have been linked to tobacco and alcohol abuse; however, cancer registry data and several cohort studies have documented existence of infection of human papillomavirus (HPV) that have been abnormally detected in oral cavity and tumor tissues of H&N region (Syrjanen et al., 1983; Syrjanen et al., 1987; Syrjanen et al., 1992; Franceschi et al., 1996; Sankaranarayanan et al., 1998; Herrero, 2003; Herrero et al., 2003; Syrjanen et al., 2017). Large clinico-epidemiological studies have revealed that a subset of H&N tumors are specifically linked to HPV infection, which otherwise is traditionally associated with causation of SCC of the uterine cervix and other ano-genital organs (Berman and Schiller, 2017).

A deeper understanding of HPV-positive HNSCC tumors and their response to traditional chemo-radiotherapy revealed existence of a distinct disease type that do not associate with traditional risk factors like tobacco and alcohol abuse (Smith et al., 2004b; Chaturvedi et al., 2015). These are newly emerging tumors and showed increasing incidence. Due to strong association of sexual transmission of HPV in uterine cervix, HPV-positive tumors are associated with sexual behaviors in vastly changing societal practices; however, other modes by which HPV enters in oral cavity also contribute substantially.

Studies performed in initial two decades demonstrated that the affected individuals with HPV-positive HNSCC were of younger age group and showed typically well-differentiated tumors (Pintos et al., 1999; Gillison et al., 2000; Hammad et al., 2006). These prominent clinico-epidemiological differences paved the way for detailed molecular studies to dissect differences in HPV-positive and HPV-negative HNSCC. Later studies subsequently pointed to salient differences at gene expression profiles among these two types of tumors (Cancer Genome Atlas, 2015). Mechanistic studies revealed that these differences can be traced back to the expression and activity of the host cell transcription factors, which work as molecular switches and control cellular behavior. Some of these transcription factors also control establishment of early phase

Abbreviations: AP-1, activator protein-1; APC, annual percentage change; CT, chemotherapy; DFS, disease free survival; ECOG, Eastern Cooperative Oncology Group; EGF, epidermal growth factor receptor; FFPE, formalin-fixed, paraffin-embedded; HPV, human papillomavirus; HR, hazard ratio; H&N, head and Neck; HNSCC, head and neck squamous cell carcinoma; NF-kB, nuclear factor-kappa B; OPSCC or OPC, oropharyngeal squamous cell carcinoma; OR-odds ratio; OS, overall survival; OSCC, oral squamous cell carcinoma; PCR, polymerase chain reaction; PFS, progression-free survival; PIK3CA, phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha; R/M, recurrent and/or metastatic; SCC, squamous cell carcinoma; SEER, Surveillance, Epidemiology, and End Results program registries; STAT3-signal transducer and activator of transcription 3; TRAF3, TNF receptor associated factor 3; UADT, upper aero digestive tract; WDSCC, well differentiated squamous cell carcinoma.

HPV IN H&N REGION AND ASSOCIATION WITH THE CANCER CAUSATION

With the exception of a small fraction of tumors of salivary gland, SCC collectively constitutes more than 90% of all cancers of the H&N region. HNSCC originate from squamous cells of different organ site below the skull base and above the thoracic inlet. Because of the heterogeneity, HNSCC have been designated with a specific identifier under International Classification of Diseases-10 (ICD10) for individual anatomical site of origin of the tumor. Broadly, H&N region can be divided into oral cavity, nasal cavity, pharynx and larynx (Figure 1). Cancers of oral cavity comprise tongue, floor of the mouth, gingiva, gum, palate, lip mucosa and other sites of the mouth. Cancers of pharyngeal region include nasopharynx, oropharynx (base of tongue, palatine tonsils, soft palate, lingual tonsils and posterior and lateral oropharyngeal walls), and hypopharynx. In addition, cancers of larynx, paranasal sinuses, and nasal cavity are also included in HNSCC (Institute, 2017). Collectively, the total burden of cancers in H&N region (ICD-10: C00-13, and 32) sum up to 2,287,731 cases with an annual incidence and mortality rate of 887,659 and 453,307, respectively (Bray et al., 2018). These cancers are overrepresented in men (3:1) and are classically tobacco-associated. There is a significant variation in the incidence of cancers by subsites (Shield et al., 2017). The variation have been attributed to contribution of additional factors such as alcohol consumption, chewing of betel quid with or without tobacco, smoking of local cigars (Sankaranarayanan et al., 1998), environmental exposure to organic solvents, wood and steel dust (Shangina et al., 2006), poor oral hygiene (Rosenquist, 2005), dietary habits, genetic susceptibility (Louvanto et al., 2018), and exposure to infections of Epstein-Barr virus (Young et al., 1988), and of HPV (Herrero, 2003; Herrero et al., 2003). Among others, infection with HPV has emerged as an independent risk factor for a subset of H&N cancers. With changing lifestyle, HPV positive cancers are increasing at an alarming rate (Soto et al., 2000; Shah et al., 2017). Several excellent meta-analysis and reviews on HPV prevalence in H&N show significant variations in HPV positivity that range from 0–100% in different studies (Kreimer et al., 2005; Syrjanen et al., 2017). In a comprehensive analysis of 60 studies from different geographical regions, an overall HPV prevalence of 25.9% in HNSCC was reported (Kreimer et al., 2005). Among these, oropharyngeal cancers displayed the highest and increasing HPV positivity over time (Castellsague et al., 2016). Within oropharyngeal tumors, a comparatively higher HPV positivity
FIGURE 1 | HPV footprint in different anatomical sub-site of head and neck region. Site-wise HPV prevalence and type distribution in different regions of head and neck broadly classified as oral cavity (anterior and middle tongue, floor of the mouth, gingiva, gum, palate, lip mucosa and other sites of the mouth), pharynx (oropharynx with tonsils and base of tongue, nasopharynx, and hypopharynx), larynx and nasal cavity with paranasal sinus (frontal sinus, sphenoid sinus). Hypopharynx, which show low, or no HPV positivity, is sometimes included with laryngeal region for HPV prevalence studies. Data presented in the figure is derived from different systematic reviews and meta-analyses (Miller and Johnstone, 2001; Syrjanen, 2003; Kreimer et al., 2005; Sarkola et al., 2008; Rautava and Syrjanen, 2011; Syrjanen et al., 2017; Onerci Celebi et al., 2018). [Image originally produced by Macmillian Cancer Support and reused with permission].
is reported in tonsillar crypts and base of tongue (Haeggbloom et al., 2017).

HPV is a member of family Papillomaviridae that represents more than 205 different types of papillomaviruses (Bernard et al., 2010; Syrjanen, 2018). Apart from the classification on the basis of sequence divergence in HPV L1 gene into different genera, these double-stranded DNA viruses are also classified based on their epithelial tissue-tropism as mucosal and cutaneous types. Similarly, based on epidemiological correlates i.e. the frequency of occurrence in malignant or benign lesions of uterine cervix, HPV is grouped as high-risk (HPV16, 18, 31, 33, 39, 45, 51, 52, 56, 58, 59, 66, 68, 69, 73, and 82) or low-risk types (HPV6, 11, 40, 42, 43, 44, 54, 61, 70, 72, 81, and 89), respectively (Shukla et al., 2009).

Among the high-risk HPV, HPV type 16 represents the most prominent HPV infection in both cervical and H&NCC, whereas, the low-risk HPV type 6 and type 11 are associated with benign lesions like papillomas and warts of H&N as well as genital regions. Different anatomical subsites reportedly have a specific spectrum of HPV infection and genotypes that differ with clinical manifestation of the lesion (Figure 1). Even though pharynx encompasses hypopharynx, oropharynx, nasopharynx, all the three sites show distinctive variations in susceptibility to HPV infection. Oropharynx has the highest occurrence of high-risk HPV infections. Nasopharynx is attributed more to Epstein-Barr virus than the HPV. The overall prevalence of HPV is higher in oropharyngeal cancer [Odds Ratio (OR): 14.66] than the oral cavity cancer (OR: 4.06) and laryngeal cancer (OR: 3.23) (Shaikh et al., 2015). Most cancers of hypopharynx and larynx are not related to HPV infection. The larynx is usually infected by low-risk HPVs with less than 2% infections leading to malignant transformation (Torrente et al., 2011; Gama et al., 2016). The type-specific contributions of HPV16/18 in H&N region is around 84.9%, and for all major HPV types (HPV6/11/16/18/31/33/45/52/58) collectively it is 89.7% (De Martel et al., 2017). In a site-wise distribution of HPV types in HPV-attributable HNSCC, HPV16 alone accounted for 86.7% oropharyngeal SCCs (OPSCC), 68.2% for oral SCCs and 69.2% for laryngeal SCCs (Kreimer et al., 2005).

Even though a number of studies have addressed issues related with HPV positivity in H&N region, unlike cervical neoplasia, an accurate estimate of HPV prevalence in H&N remain uncertain due to cumulative effects of a multitude of factors, such as: (i) the techniques that varied greatly in their sensitivity, (ii) all sites in H&N region are not equally susceptible to HPV infection and may not show productive HPV infection, and (iii) the differential risk of opportunistic exposure to HPV infection due to (a) variations in high-risk sexual behavior, or (b) vertical transmission for HPV-positive mothers leading to orogenital transmission, that significantly differed among different populations.

HPV-POSITIVE HNSCC AS A MOLECULARLY DISTINCT SUBTYPE

Following detection of HPV antigens in H&N region (Syrjanen et al., 1983; Wookey et al., 2019), efforts in first 20 years were primarily directed towards detecting and enumerating HPV positivity and type-specific distribution in different H&N subsites (Syrjanen et al., 2017). These studies paved the way for large clinico-epidemiological surveys and meta-analyses directed to investigate various risk factors, natural history and thus clinically characterized the HNSCC with reference to their HPV status. These HPV-positive tumors were reported in early stage (Pintos et al., 1999; Smith et al., 2004b; Hammarstedt et al., 2006), well-differentiated histology (Pintos et al., 1999; Gupta et al., 2015), basaloid histology (Gillison et al., 2000), larger tumors (Gletsou et al., 2018), and either no lymph node involvement (Pintos et al., 1999) or with cystic cervical lymph node positivity (Goldenberg et al., 2008). These tumors showed low risk of second primary malignant neoplasm (Adjei Boakye et al., 2018) with a better overall and disease-free survival (Ragin and Taioli, 2007; Fakhry et al., 2008; Ang et al., 2010; Rischin et al., 2010; Posner et al., 2011; Fakhry et al., 2014). Irrespective of the tissue subtype involved, HPV positivity in HNSCC emerged as strong biomarker associated with better prognosis (Gillison et al., 2000; Wookey et al., 2019).

Comprehensive molecular-genetic studies carried out on primary and metastatic tumors, and cell lines from HNSCC revealed a series of molecular differences among HPV-positive and HPV-negative tumors and the amount of molecular data is currently overwhelming (Leemans et al., 2018). As outlined in Figure 2, the differences are manifested through change in gene expression profile or appearance of somatic mutations in gene involved in cell survival and apoptosis, cell cycle, DNA replication, recombination and repair, cellular assembly and localization, nucleic acid metabolism, immune response, signal transduction, and transcriptional and post-transcriptional regulation through action of viral oncoproteins or epigenetic silencing, which dominated in HPV-positive tumors (Slebos et al., 2006; Martinez et al., 2007; Lohavanichbutr et al., 2009). On the other hand, mutations either inactivating or gain of function in oncogenes or suppressor genes or gain of function in oncogenes predominated in HPV-negative HNSCC (Stransky et al., 2011; Lechner et al., 2013; Zhang P. et al., 2014). Since OPSCC sample prevailed in majority of the studies, the HPV-specific signatures can be directly associated with HPV-positive OPSCC.

Changes in Cell Cycle Regulators

Maiden molecular differences between HPV-positive and HPV-negative HNSCC emerged from studies on p53, pRB and p16 that served as direct cellular targets of viral oncoproteins, E6 and E7 of high-risk HPVs (Van Houten et al., 2001; Hafkamp et al., 2003). HPV-positive tumors characteristically showed a wild type, functionally active p53 gene, whereas HPV-negative tumors invariably harbored inactivating p53 mutations. In addition, p53 mutations were also detected in HPV-positive tumors where the HPV was not transcriptionally-active. Preventing HPVE6 and E7 expression by experimental means restored functional p53 and pRb suppressor pathways in HPV-positive HNSCC (Rampias et al., 2009). E7-mediated pRb is associated with concomitant overexpression of cell cycle inhibitor p16 in HPV-positive tumors (Hafkamp et al., 2003). p16 showed a prognostic value in clinical follow up studies
HPV-positive tonsillar tumors displayed DNA gain of 3q (72%) with absence of any change in 7q loci, whereas HPV-negative tumors showed a specific gain of 3q (40%) and 7q (40%) loci in sizable number of cases. DNA gain in 3q24 region was associated with increased expression of corresponding genes in the locus (Slebos et al., 2006). Worth noting, the long arm of chromosome 3 (3q26) harbors the SOX2 and PIK3CA genes, which were implicated specifically in HPV-positive tumors (Yarbrough et al., 2007; Lechner et al., 2013).

Pro-Survival and Proliferative Cell Signaling Pathways

Mutations in genes such as PIK3CA, PTEN, DD3X, FGFR2/3 and BRCA1/2, TRAF3/CYLD genes, and enriched copy number variations in PIK3CA, KRAS, MLL2/3, NOTCH1, and DNA repair genes were also reported in HPV-positive HNSCC (Chung et al., 2015; Seiwert et al., 2015; Hajek et al., 2017). Likewise HPV-negative HNSCC showed mutations in TP53, CDKN2A, PIK3CA, CUL3, NSD1, and NOTCH genes. Through a novel proximity based study using VeraTag assay, it was determined that HPV-positive HNSCC exhibited a significant elevated expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex. In contrast,
HPV-negative HNSCC exhibited elevated expression of total EGFR(HER1), which contributes to the resistance to EGFR inhibitors in these tumors (Pollock et al., 2015). A cross talk occurs between PI3K signaling, HER3 receptor, and E6 and E7 expression. By RTK profiling, PI3K inhibition led to elevated expression of HER3 receptor, which in turn increased the abundance of E6 and E7 oncogenes to promote PI3K inhibitor resistance (Brand et al., 2018). HNSCC patients with wild type PIK3CA had higher 3-year disease free survival than PIK3CA mutant patients (Beaty et al., 2019).

DNA Replication and Repair
Differences in components of DNA replication and repair immensely contribute to higher sensitivity to radiation and chemotherapeutic agents displayed by the HPV-positive HNSCC (Liu C. et al., 2018). Owing to the existence of functional p53, strong double strand breaks in DNA override E6-mediated inhibition in p53, leading to cell cycle arrest and induction of apoptosis (Kimple et al., 2013); however, HPV-negative tumors sustain greater damage to DNA before entering the mitotic catastrophe. HPV-positive cells also showed impaired DNA repair (Rieckmann et al., 2013). Overexpressed p16 in HPV-positive HNSCC was found to block homologous recombination-mediated DNA repair by preventing RAD51 (Dok et al., 2014).

Immune Response
Reduced MHC class I antigens are the hallmark of HPV-positive HNSCC lesions (Nasman et al., 2013). E7 plays a key role in this process and increases susceptibility of HPV-positive HNSCC to natural killer cells (Georgopoulos et al., 2000). HPV-positive HNSCC exhibited enhanced and distinct pattern of immune activation to HPV-positive HNSCC, which included upregulation of genes associated with immune-associated processes, high infiltration rate of CD8⁺IFNγ⁺ T lymphocytes, Te17 lymphocytes, naive CD4⁺T lymphocytes, and myeloid DCs along with high level of production of chemokines CXCL9, CXCL10, CXCL12, CXCL17, and CXCL21 (Partlova et al., 2015; Chen et al., 2018). These lesions reported higher ratio of M1/M2 macrophages, lower expression of COX-2 mRNA, and higher expression of PD1 mRNA (Chen et al., 2018).

Epigenetic Modifications
HPV-negative HNSCC genomes, in general, are hypomethylated and showed higher loss-of-hyposmognosis (LOH) and genomic instability as compared to HPV-positive tumors (Richards et al., 2009). HPV-positive tumors showed higher promoter methylation of polycomb repressive complex 2 target genes and increased expression of DNMT3A, whereas higher methylation and lower expression of RUNX2, IRS-1, and CCNA1 was noted in HPV-negative tumors (Sartor et al., 2011). These differences in methylation patterns with larger panels later were found to have prognostic value (Ren et al., 2018).

Transcriptional Regulation
Pioneering studies conducted by our group showed differential expression and activity of transcription factors in HNSCC with respect to the HPV status (Mishra et al., 2006; Gupta et al., 2015; Verma et al., 2017; Gupta et al., 2018). HNSCC in general showed constitutively active nuclear factor-xB (NF-xB); however, the active complex differed in the composition. HPV-negative tumors had p50:p50 homodimers, whereas p65 participation was detected in HPV-positive tumors (Mishra et al., 2006; Gupta et al., 2018). Similarly, constitutively active activator protein-1 (AP-1) differed in its composition. AP-1 with JunB and JunD participated with c-Fos & Fra-2 in HPV-positive tumors, whereas, c-Jun was the major binding partners forming the functional AP-1 in HPV-negative tumor (Gupta et al., 2015). Subtle changes in composition of these transcription factors have significant impact on the regulation of set of downstream genes (Gaykalova et al., 2015). In contrast to NF-xB and AP-1, signal transducer and activator of transcription-3 (STAT3) was negatively regulated with HPV positivity in HNSCC. These differences were reported in both retrospective and prospectively collected samples by simple IHC procedures (Verma et al., 2017). Analysis of Cancer Atlas data demonstrated defects in TRAF3 and CYLD, which correlated with activation of NF-xB (Hajek et al., 2017).

These evidences collectively suggest presence of molecularly distinct gene expression patterns in HPV-positive and HPV-negative HNSCC, which could potentially contribute to their favorable outcome and better prognosis. However, studies also emphasize essential requirement of HPV to be transcriptionally-active to have a prognostic relevance (Braakhuis et al., 2004; Jung et al., 2010; Janecka-Widla et al., 2020). Further, most of the studies that highlighted HPV-negative signatures also identified yet another subgroup of HNSCC that displayed favorable clinical outcome even in the absence of HPV. These findings emphasize need for greater understanding of the transcriptional state of the infected cells and the cellular players that perform driver role in coupling host transcription with the virus.

ENTRY AND ESTABLISHMENT OF HPV INFECTION IN THE HOST CELL
In an in vitro culture system, the transforming potential of HPV in primary oral keratinocyte is well established (Chu, 2012). However, not all individuals positive for oral HPV DNA develop carcinoma, which is suggestive of cellular heterogeneity in H&N region and individualistic variations in cellular environment that may permit or restrict productive HPV infection (Smith et al., 2004a). Succeeding immunological escape, incident HPV can complete its life cycle in H&N tissues and exhibit genome maintenance, vegetative and replicative phases just like in cervix (Raff et al., 2013; Syrjanen, 2018). However, the exact mechanism and target cells in these tissues are poorly defined. Studies show gingival pockets as reservoirs of HPV infection (Hormia et al., 2005). Even though transcriptionally-active HPV infection is detected in different H&N sites, a well-defined HPV susceptible region in these tissues like squamocolumnar junction in cervix, do not exist. Being an epitheliotropic virus, it targets the basal layer cells of the epithelium that becomes accessible due to micro-abrasions. Cells of the basal layer that undergo keratinizing changes provide a
suitable cellular environment for progression of viral life cycle (Harden and Munger, 2017). Transcriptionally active HPV, either detected by expression of viral oncoproteins or their transcripts, has been reported in almost all major H&N sites namely oral cavity (Shroyer and Greer, 1991), tonsillar (Snijders et al., 1992), and oropharyngeal region (Gillison et al., 2000) including larynx (Scheurlen et al., 1986).

HPV infection, if it has to be tumorigenic, has to overcome several barriers and challenges (Figure 3). Further, the cell division and differentiation program of infected host squamous epithelium controls the HPV life cycle (Harden and Munger, 2017). During establishment of HPV infection, the most critical contribution comes from the availability of a set of transcription factors that control expression of early HPV genes. In the absence of these host transcription factors, the virus is defunct and eliminated or just maintains its genome with host cell cycle till the required factors are expressed/activated during the cell differentiation stage or local inflammation. Chronic inflammation serves as a driving force in speeding up carcinogenesis in H&N region (Liu et al., 2015). HPV Infections incapable of undergoing transcriptional activation are non-productive and are either eliminated/cleared from the tissue or do not influence tumorigenic properties of the host cells (Boscolo-Rizzo et al., 2016). Therefore, for tumorigenic activation, HPV genome is entirely dependent on host factors (Kyo et al., 1997). Studies carried out by our group and others in last 5 years have clearly demonstrated the differential expression and activity of host transcription factors particularly AP1, NF-κB and STAT3 in HPV-positive HNSCC or the transcript profile of their downstream genes (Mishra et al., 2006; Gaykalova et al., 2015; Verma et al., 2017). Incidentally, the level of expression and activity of these transcription factors have independent oncogenic and predictive role due to their more pragmatic role in regulation of variety of cellular functions, particularly in the regulation of inflammation (Iliopoulos et al., 2009). Therefore, HPV-related transcription factors provide a coupling action between inflammation, activation of HPV oncogenes, and development of cancer.

Transcriptionally-Active HPV Infections in HNSCC: Role of Long Control Region (LCR)

A ~850bp non-coding region present on viral DNA, designated as Long Control Region (LCR) or synonymously known as...
Upstream Regulatory Region, constitute over 10% of HPV genome. LCR contains most of the tissue/cell-specific enhancer region and is populated by (i) cis-responsive elements that regulate HPV life cycle, (ii) the replication origin on 3’ end where HPVE1 binds, and (iii) the early promoter (p97 in HPV16) that control the expression of oncogenes E6 and E7 (Figure 4) (Cripe et al., 1987; Gloss et al., 1987). LCR is the most variable region of HPV genome and regulates transcription and replication of the viral DNA (Pande et al., 2008; Xi et al., 2017; Ribeiro et al., 2018). The LCR of all clinically-relevant genital HPV are organized similarly (O’connor et al., 1995). Viral oncogenes E6 and E7 produced as a fusion transcript are produced by a promoter which is directly regulated by the LCR. HPV16 LCR, which can be considered as a model for the HPVs, can be subdivided by two E2 binding sites, which serve as landmarks, into three functionally-distinct segments, named as 5’ or distal, the central, and 3’ proximal segment due to their positioning with respect to the early promoter (O’connor et al., 1995).

As depicted in Figure 4, typical HPV16 LCR contains binding sites for various host transcription factors like AP-1, NF-κB, STAT3, Sox-2, Glucocorticoid Response Element (GRE)/Progesterone Response Element (PRE), YY-1, NF1 (CAAT binding Transcription Factor 1), SP1, TEF-1, Oct-1 (NFA), cEBP/β, FOXA1, FOXA2, KRF-1, GATA3, CDP, SOX9, TEF-2, and PHOX2A, which were identified by different bioinformatics and experimental approaches (Gloss et al., 1987; Gloss et al., 1989; Chan et al., 1990; Gloss and Bernard, 1990; Chong et al., 1991; Bauknecht et al., 1992; Ishii et al., 1992; Thierry et al., 1992; O’connor and Bernard, 1995; Fontaine et al., 2000; Arany et al., 2002; Sichero et al., 2012; Martinez-Ramirez et al., 2017; Xi et al., 2017). Based on the functional role of the corresponding transcription factors, it is predicted that these elements assist the virus to fine-tune its response to the immediate environment such as redox status, local inflammation, cellular reorganization & reprogramming, cellular energy status, and most importantly the hormonal status among others. DNase footprinting, DNA binding and reporter assays helped to establish the functional role of different element detected in the LCR by bioinformatics approaches. Not all sites predicted from bioinformatics (underlined) could be validated in experimental system, whereas some of them either lacked functional activity (lacked DNA binding) (Martinez-Ramirez et al., 2017), or were inconsequential to the enhancer function of the LCR (Sichero et al., 2012). In addition, a few more transcription factors were found to interact with the LCR (Carson and Khan, 2006) even though their binding sites were not detectable by bioinformatics tools, and expected to be secondary interactions.

Minor changes in sequences within LCR region can lead to loss or addition of the binding sites for transcription factors or the

![FIGURE 4](https://via.placeholder.com/150)

FIGURE 4 | Transcription factor binding site on LCR of HPV16 (831 bp), HPV18 (835), HPV6 (811 bp), and HPV11 (755 bp). Various consensus-binding sites for different transcription factors present on HPV LCR are represented as boxes. Solid line around the box indicate experimentally-validated site, broken line indicate putative site. Consensus-binding sites of AP-1 (Gloss et al., 1989; Chan et al., 1990; Chong et al., 1990; Naikshatri et al., 1990; Thierry et al., 1992; O’connor et al., 1995; O’connor et al., 1996; Wang et al., 2011), STAT3 (Arany et al., 2002), NF-κB (Fontaine et al., 2000), SOX-2 (Martinez-Ramirez et al., 2017), YY1 (O’connor et al., 1995; O’connor et al., 1996), NF-1 (Gloss et al., 1989; Chong et al., 1990; Naikshatri et al., 1990; O’connor et al., 1996), SP-1 (Gloss and Bernard, 1990), TEF1 (Ishii et al., 1992; O’connor et al., 1995), Oct-1 (O’connor and Bernard, 1995; O’connor et al., 1996), FOXA1 (Sichero et al., 2012; Xi et al., 2017), on HPV16 (NC_001526.4), HPV18 (X05015.1), HPV6 (NC_001355.1), and HPV11 (M14119.1) have been reported in different studies and have been shown as per revised reference sequences in NCBI Nucleotide database.
efficiency of their interaction (Dong et al., 1994; Pande et al., 2008; Sichero et al., 2012; Xi et al., 2017). For example, NF-kB binding site in the HPV16 LCR promoter is localized in a small region exhibiting enhancer activity (Chong et al., 1990; Fontaine et al., 2000). However, the binding site of NF-kB contains two mismatches in comparison to the consensus NF-kB Igκ in the HPV16 LCR (Sen and Baltimore, 1986). The NF-kB site also overlaps with a NF-1 binding site. Therefore, it is possible that NF-kB competes/cooperates with NF-1 for DNA binding (Fontaine et al., 2000). Congregation of several sites in a small region also underlines a strong interaction, both positive and negative, among different transcription factors. Host factor YY-1 and viral E2 strikingly have repressor functions (Gloss and Bernard, 1990) and loss of their corresponding sites by mutations or by epigenetic mechanism promote the enhancer function of LCR (Bauknecht et al., 1992; Dong et al., 1994; Reuschenbach et al., 2015). Some of these transcription factors work on palindromic elements. In case of these elements, LCR conserves only half site whereas other half site is highly variable. Therefore, slight change in the non-conserved half site strongly influence transcription factor docking and resultant enhancer function of LCR.

AP-1, a redox sensitive transcription factor (Angel and Karin, 1991), specifically binds to the cis-regulatory elements identical or related to the consensus sequence TGAGTCA of HPV LCR. Four AP-1 binding sites on HPV16 LCR, three sites each on HPV18 and HPV6 LCR, and two sites on HPV11 LCR have been described (Gloss et al., 1989; Chan et al., 1990; Chong et al., 1990; Nakshatri et al., 1990; Thierry et al., 1992; O’connor et al., 1995; O’connor et al., 1996; Wang et al., 2011) (Table 1). Efficient activation of E6/E7 promoter requires the integrity of all the AP-1 elements of HPV16 LCR and mutation in any one cannot be complemented by other motifs (Nakshatri et al., 1990; Thierry et al., 1992). Similarly, binding of FOXA1 and MYC with the promoter and regulatory sequences of HPV16 and HPV18 has been shown in vivo. However, only overexpression of FOXA1 enhanced the LCR activity (Sichero et al., 2012). Two putative GATA3 binding sites within the LCR of HPV18 (7205–7210, TGAATTG; 7532–7537 TTATC) were also reported (Sichero et al., 2012). Three functional binding sites of SOX2 were found in the HPV16-LCR (Martinez-Ramirez et al., 2017). C/EBPβ element showed a context dependent action on HPV LCR. It acted as repressor for HPV11 in keratinocytes as levels of both HPV11 transcripts and HPV DNA increased after treatment with oligomers containing the C/EBPβ DNA binding motif (Wang et al., 1996). C/EBPβ-Y1 complex contributed to cell-type-specific HPV18 LCR activity (Bauknecht et al., 1996). C/EBP binding site overlaps with AP-1 in HPV16 LCR and mutation in this composite site that also eliminates AP-1 binding show increases transcription from early promoter (Liu et al., 2002). Together, these observations reflect a strong influence of host transcription factor composition in the target tissue on expression of viral oncogenes that in turn modify the cellular environment leading to manifestation of pathological characteristics of the HPV-positive tumors.

Expression and activation of regulatory host cell factors determine the magnitude, and duration of viral transcription.

The transcription factors can be broadly classified as inducible and constitutive based on the fluctuations in their expression and activity levels in the cell. transcription factors AP-1, NF-kB, STAT3, GR, PR, and FOXA1/2 are inducible in nature and their aberrant expression and constitutive activation play an independent role in carcinogenic inflammation, transformation and maintenance of cancer stemness (Angel and Karin, 1991; Rinkenbaugh and Baldwin, 2016). Almost all of these transcription factors have pivotal cellular functions and their temporal expression or changed activation state is sufficient to alter the physiological state of the cell undergoing tumorigenic transformation. Research carried out in recent years have established differential expression and activation of these transcription factors among HPV-positive and negative HNSCC (Gaykalova et al., 2015; Gupta et al., 2015; Verma et al., 2017; Gupta et al., 2018) (Figure 5). Therefore, understanding the expression and activity of host transcription factors that could interact or alter the function of LCR in relation to active viral infection, have been an area of active research in HPV biology and development of anticancer therapeutics. Following section is aimed to review the evidence related to the level of expression and role of these transcription factors in HNSCC in general and HPV-driven HNSCC in particular (Table 2).

ROLE OF HPV-RELATED TRANSCRIPTION FACTORS IN H&N CARCINOGENESIS

AP-1

AP-1 was first discovered as TPA-inducible transcription factor that interacted selectively with sequences in the basal level enhancer of human metallothionein and showed binding to simian virus 40 enhancer region (Lee et al., 1987). Functional AP-1 is Lucine zipper family of transcription factors composed on homodimer of Jun family proteins (c-Jun, JunB and JunD) or its heterodimer with members of Fos family (c-Fos, FosB, Fra-1, and Fra-2). AP-1 is a redox sensor of the cell, which controls cell-proliferation, transformation, its members work as an oncogene [reviewed by (Angel and Karin, 1991; Shaulian and Karin, 2002)]. AP-1 proteins are primarily considered to be oncogenic but JunB, Fra-1 and Fra-2, have been shown to have tumor-suppressor activity (Eferl and Wagner, 2003). Therefore, oncogenic or tumor suppressive activity exhibited by distinct composition of AP-1 vary with cell context and the tumor genetic background. Due to the differential combination of the components, AP-1 is involved in a tissue-specific regulation of target genes. Considering the contrasting action of AP-1 complex, it has been referred as “double-edged sword” in tumorigenesis (Verde et al., 2007).

The first study that showed constitutively active AP-1 in human HNSCC tumors was incidentally meant to measure the activity of HIV LTR bearing AP-1 site (Zoumpourlis et al., 1994). An elevated AP-1 compared to adjacent normal tissues was reported in 7/7 tumor tissues studied. Later, AP-1 potentiated the action of NF-kB in basal and IL-1α-inducible expression of
Transcription factor (Consensus*)	HPV16	HPV18	HPV6	HPV11	References
AP1 (TGANTCA)	TGAATCA	6769–6775	GTGGTATG	7349–7356	7435–7440
NF-κB (GGGRRNNYYCC)	TTCAACCGAA	8949–8955	TTCAACCGAA	7792–7798	7781–7788
STAT3 (TT(N6e4A)AA)	TTCAACCGAA	6891–6702	TTCAACCGAA	7781–7788	7732–7743
SOX-2 (CAATGG/CAATTGT)	TTCAACCGAA	7015–7024	TTCAACCGAA	7732–7743	7776–7790
GRE/PR (GGTACANNNTGTCT)	TGATTTGTATGGTGGAT	6584–6594	TTCAACCGAA	7561–7568	7674–7688
YY1 (CCGCCATNTT)	TGGGAGTTTACT	6691–6709	TGGTACATTGGCCCT	7830–7844	7805–7809
NF1 (TTGCC)	TGGCAGAAA	6724–6729	TGGTGCA	7513–7518	7526–7530
SP1 (GGGNGG)	TGCAACATTTT	6601–6610	CACATTTTT	7209–7218	7206–7209
TEF-1 (TACATCTTC)	TGGCAGGAT	6781–6790	TGGCAGGAT	7209–7218	7206–7209
OCT-1 (AATTTGTCT)	ATTTTTTGTAG	6555–6568	ATTTTTTGTAG	7333–7340	7385–7392
c/EBPβ (TKNNGNAAK)	ACTTGAT	6763–6773	TTGGTGAAT	7713–7722	7451–7459
FOX-1-1 (MAWRTRRTKRYT)	ACTTGAT	6840–6409	CAGTGCAC	6404–6409	84–91

*Consensus sequence represented with IUPAC codes to denote degeneracy. NA: Italic—Bioinformatics analysis; Bold—Experimental result; Underline—Putative binding sites.
the pro-inflammatory cytokine, IL-8 in HNSCC cell lines (Ondrey et al., 1999; Wolf et al., 2001). AP-1 complex resulted in enhanced survival and proliferation of tumor cells (Wolf et al., 2001; Bancroft et al., 2002). EGFR-mediated signaling was found to contribute to expression and transactivation of AP-1, which participated more profoundly in the expression of angiogenic cytokine VEGF compared to IL-8 (Bancroft et al., 2001). Adverse effects of alcohol on oral epithelial cells are manifest by AP-1. Acetaldehyde, an ethanol metabolite, was found to activate c-Jun expression and dose-dependent activation of c-Jun containing AP-1 in human oral keratinocytes that were transformed by HPV oncoproteins (Timmons et al., 2002). Similarly, tobacco carcinogens independently promoted AP-1 activity, albeit through induction of c-Fos (Swenson et al., 2011). Metabolites of tobacco and alcohol together, promoted carcinogenesis with highly invasive AP-1 containing c-Jun and c-Fos in H&N region that block p53 (Schreiber et al., 1999). Our investigations on oral tissues revealed a weak/moderate level of most AP-1 members in oral mucosa except c-Fos, which was absent; or Fra-1 which showed high levels. AP-1 is seldom active in normal tissues (Mishra et al., 2010). While in precancer lesions, except Fra-1 expression of AP-1 proteins was upregulated and AP-1 activity was composed of JunD/JunD homodimers. Primary oral SCC (OSCC) showed heterodimers of c-Fos/JunD, which constituted the most prevalent AP-1 complex in cancer lesions (Mishra et al., 2010). In a murine metastasis model, HNSCC cell lines that showed lung metastatic potential were found to carry high differential expression of JunB, Fos, Fra-1 and JunD (Hyakusoku et al., 2016). Elevated expression of active phospho-c-Jun was typically reported in resistant tumors and it strongly correlated with bcl-2 overexpression (Alam et al., 2017). Although these studies emphasized the role of AP-1 in initiation, progression and chemoresistance of HNSCC, they did not address the heterogeneity within tumor types with respect to the HPV status and AP-1 components.

In a first landmark study carried out in mouse papilloma model that investigated the role c-Jun by expressing dominant negative c-Jun with HPV16 E7 showed that hyper-proliferative action of E7 was independent of c-Jun tumorigenic potential (Young et al., 2002). Similarly, c-Jun was found functional and got activated in HPV-transformed oral epithelial cells (Timmons et al., 2002). The observations showed that c-Jun, a common initiator in smoking-related AP-1 activation and HPV E7 action did not interfere with each other. Similarly, HPV and c-Jun expression did not show any correlation in premalignant and malignant oral tissues (Acay et al., 2008). Increased activation of AP-1 with increasing disease severity was seen in tongue SCC, which was accompanied with upregulation of downstream target genes: cyclin D1, c-myc, Bcl-xl, MMP-9, and EGFR (Gupta et al., 2015). With increasing disease severity, an increase in expression of all Jun and Fos family members was noted except Fra-1 which showed reciprocal kinetics. Selective participation of JunD and JunB was observed only in HPV16-positive tumors and cell lines, whereas c-Jun was absent in AP-1 complex of HPV-positive tumors. In a confirmatory immunohistochemical staining-based biomarker study on fresh and archival tissue, overexpression of JunD, and c-Fos was confirmed in SCC as compared to normal and an overexpression of JunB was seen only in HPV-positive tissues (Verma et al., 2017). These histological changes correlated well with p16 expression but showed no correlation to EGFR level of the tumor tissues. Overall these studies highlighted contrasting involvement of c-Jun in HPV-negative and JunB

FIGURE 5 | Expression and activity of HPV-related transcription factors in HNSCC. HPV-positive and HPV-negative HNSCC displayed distinguishable transcriptional profiles. Transcription factors broadly classified as inducible (Purple) and constitutively-active (Blue) include: 1. AP1 (Gupta et al., 2015), 2. NF-xB (Fontaine et al., 2000; Bano et al., 2018; Zhang et al., 2018) 3. STAT3 (Gaykova et al., 2015; Verma et al., 2017), 4. GR/PR (Mohamed et al., 2018; Kost et al., 2019) 5. FOXA1 (Karpatihou et al., 2017; Li et al., 2018) 6. SOX2 (Gut et al., 2018; Dogan et al., 2019) 7. YY1 (Ferris et al., 2005; He et al., 2011). *No specific study in HNSCC. Red text: Data from cervical cancer; Pink text: Data of vulvar carcinoma.
Table 2: Expression and activity of key HPV-related transcription factors in normal and tumor tissues of H&N region.

Transcription factor (family members)	Specimen	Transcription factor Activation status	Expression level of transcription factor family members	HPV-specific information	References			
AP-1 [c-Jun (39 kDa), JunB (36 kDa), JunD (35 kDa) c-Fos (41 kDa), FosB (36 kDa), Fra-1 (29 kDa), Fra-2 (35 kDa)]	HNSCC tumors (n = 7) and adjacent control tissues	Increased binding of AP-1 in HIV LTR	Nil	Nil	(Zoumpourlis et al., 1994)			
	HNSCC cell lines UM-SCC-1, -9, -11A, -11B, and -38	Active AP-1 with c-Jun, JunB, JunD and Fra-1 as major participants; Loss of AP-1 site reduced IL-8 promoter activity	Nil	Nil	(Ondrey et al., 1999)			
	HNSCC cell lines UM-SCC-9 and -11B	IL-1α-induced activation of AP-1; Loss of AP-1 site moderately reduced IL-8 promoter activity	Nil	Nil	(Wolf et al., 2001)			
	HPV16 E7 transgenic mouse model with dominant negative c-Jun under human K14 promoter	c-Jun associated AP-1 activation lost; Prevention of chemical-induced skin papillomas	NIL	Increased HPV16 E7 expression in DN-c-Jun mice; more papillomas	(Young et al., 2002)			
	HNSCC cell lines UM-SCC-9 and -11B	EGFR promoted AP-1 activity and downstream expression of VEGF	Nil	Nil	(Timmons et al., 2002)			
	HPV immortalized human oral keratinocytes- HOK-16B; HNSCC cell lines: UM-SCC 1, 5, 6, 9, 11A, 11B, 22A, 22B, 38, and 46	Acetaldehyde activates AP-1 containing c-Jun	Heterogeneity in cell lines with respect to AP-1 regulated gene expression Nil	Increased c-jun mRNA and protein accumulation	(Timmons et al., 2002)			
	FFPE-tissues of oral leukoplasias, with different degrees of epithelial dysplasia, and OSCC (n = 50); (HPV positivity-24%)	According to degree of oral dysplasia withing lesion c-Jun nuclear expression increased and greatest expression and nuclear localization in OSCC	Increased expression of c-Jun with increasing severity of the lesion	Malignant progression mediated by c-Jun is independent of the presence of HPV in oral carcinogenesis	(Acay et al., 2008)			
	Fresh oral tissue specimens (n = 100)	Increased activation of AP-1 with increasing disease severity	Presence of JunD with c-Fos in AP-1 complex in majority of oral cancer; JunB showed sporadic increase in a subgroup c-Fos expression induced by tobacco carcinogens	IL-8 and VEGF expressed both in HPV-transformed oral keratinocytes and HNSCC cell lines	(Mishra et al., 2010)			
	HPV immortalized human oral keratinocytes- HOK-16B HNSCC cell line- UM-SCC-9, 11A, 11B, 38	Tobacco-carcinogen induced AP-1 reporter gene activity; AP-1 activity dependent on c-Fos expression	Increased activation of AP-1 with increasing disease severity; Upregulation of downstream target genes: cyclin D1, c-myc, Bcl-xl, MMP-9, EGFR	Higher expression of all Jun and Fos family members except Fra-1 which showed reciprocal kinetics	(Swenson et al., 2011)			
	Fresh tongue tissue biopsies (n = 100); (HPV positivity-28%)	Composition: c-Jun, c-Fos, Fra-2 in HPV-negative and JunD, JunB, c-Fos and Fra-2 in HPV-positive tumors		Selective participation of JunD and JunB only in HPV16 positive tumors and cell lines; absence of c-Jun in HPV-positive	(Gupta et al., 2015)			
	Tongue cancer cell lines-HPV16 positive- UPCI:SCC090; HPV negative- AW13516	Inhibition of AP-1 activation and change in active AP-1 by curcumin		Curcumin induced loss of AP-1 c-Jun, JunD and JunB in HPV-positive oral cancer cells	(Mishra et al., 2015)			
	HPV-positive- 93VU-147T	Nil		Nil	(Hyakusoku et al., 2016)			
	HNSCC cell lines – 26; Mouse model of metastasis							
Transcription factor (family members)	Specimen	Transcription factor Activation status	Expression level of transcription factor family members	HPV-specific information	References			
--------------------------------------	----------	--------------------------------------	--	--------------------------	------------			
HPV-specific information					Aggarwal et al.	Transcription Regulation in HNSCC		
HPV-speci-					Frontiers in Cellular and Infection Microbiology	www.frontiersin.org December 2020	Volume 10	Article 53765013
Continued

Transcription factor (family members)	Specimen	Transcription factor Activation status	Expression level of transcription factor family members	HPV-specific information	References
HPV-specif information References					
HNSCC cell lines: HN6, HN12, HN13, HN30, HuCaT, HEK293T, HEK293FT cells; HNSCC FFPE tissues (n = 460)	pSTAT3 induction by IL-6 produced through active NF-κB signalling	STAT3 expression unaffected	NIL	(Squarize et al., 2006)	
HNSCC (n = 195); Control (n = 63; non cancer affected patients); Human HNSCC cells lines: Hu101T, HSC2 and SKN3 OC and OPCSC Tissue biopsies (Fresh, n = 116; and FFPE, n = 66)	Transcript profiling of STAT3 with NF-κB pathway signature target genes (IRF1, CEBPD, COND1, ICAM1, JAG1, JAK3, and NOS3); reporter gene expression pSTAT3Y expression	Indirect evidence	Specific signature for HPV positive and negative; 49 HPV negative, while 1 HPV positive patients stained for nuclear STAT3 above median	(Gaykalova et al., 2015)	
SOX2 (34 kDa)	OSCC frozen tumor tissue samples (n = 40)	SOX2 overexpression associated with increased activity	High expression of SOX2 and CyclinE1 in OSCC specimens	SOX2 amplification in HPV-negative, but no amplification in HPV-positive	(Freier et al., 2010)
OSCC tumor tissues (n = 496)	–	–	SOX2 induced BCL-2 and enhanced chemo-resistance	SOX2 expression detected in 95% of laryngeal dysplasia	(Schrock et al., 2019)
H&N tissue retrospectively collected (n = 94)	Nuclear positivity of SOX2	Nil	–	Nil	(Granda-Diaz et al., 2019)
OPSCC (n = 157)	Nuclear positivity of SOX2	Nil	–	Nil	(Dogan et al., 2019)
Tongue SCC cell line- CAL-27	Nuclear positivity of SOX2	SOX2 overexpression with poor prognosis	–	–	(Lv et al., 2020)
YY1 (44 kDa)	Laryngeal SCC Cell line - Hep-2; Control- HEK293T	Proliferation and migration with suppression of apoptosis as indicators of increased YY1 activity	YY1-mediated repression of TRIM26	YY1 overexpressed in LSCLC	(Qu et al., 2017)
NPC cases (n = 40); Stage I replication (297 cases and 611 controls); Stage II replication (768 cases and 1526 controls)	YY1-mediated repression of TRIM26	Nil	–	Nil	(Lv et al., 2020)
OSCC tumor tissues (n=30); Cell lines- HEK293T, AW8507	YY1 overexpressed in oral cancer	–	–	–	(Behera et al., 2019)
Normal oral mucosa (n=8), OSCC (n=10); OSCC cell lines: SCC-15, YD-15	YY1 overexpressed in oral cancer	–	–	–	(Shin et al., 2013)
NPC tumors (n=82), Metastatic malignant tumors (n=60); Nonmetastatic malignant tumors (n=22)	YY1 overexpressed in oral cancer	–	–	–	(Kang et al., 2016)
OSCC patients (n=55); Cell line- CAL-27 and SCC9	YY1 overexpressed in oral cancer	–	–	–	(Liu et al., 2019)
SP1 (80.6 kDa)	OSCC tumor tissues (n=30); Cell lines- HEK293T, AW8507	SP-1 inhibitor downregulated expression of SP-1 and decrease tumor growth	SP-1 was overexpressed in oral tumors compared to normal	Reducing SP1 expression contributed to the reduction in radio-resistance	(Behera et al., 2019)
Normal oral mucosa (n=8), OSCC (n=10); OSCC cell lines: SCC-15, YD-15	SP-1 inhibitor downregulated expression of SP-1 and decrease tumor growth	SP-1 was overexpressed in oral tumors compared to normal	–	–	(Shin et al., 2013)
NPC tumors (n=82), Metastatic malignant tumors (n=60); Nonmetastatic malignant tumors (n=22)	miR-24 overexpression lead to reduced SP1 activity and inhibited proliferation	Reduced SP1 expression contributed to the reduction in radio-resistance	–	–	(Kang et al., 2016)
OCT-1 (76.4 kDa)	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	(Verma et al., 2017)
HNSCC cell line: PCI-04A	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	HPV positive: low STAT3/pSTAT3; HPV negative: high STAT3/pSTAT3	(Meighan-Mantha et al., 1999)

(Continued)
Transcription Regulation in HNSCC

Table 2

Transcription factor (family members)	Expression level of transcription factor	Activation status	Reference
HPV-specific information			
c/EBP	FOXA1 expressed in basal cells of squamous epithelium, pre-invasive HNSCC	Constitutive activation	Ondrey et al., 1999
	FOXA1 protein was decreased in NPC cells; loss of FOXA1 associated with lymph node metastasis and poor prognosis.		Li et al., 2019
	FOXA1 regulated TGF-β-stimulated		
FOXA1 (48.3 kDa)	FOXA1 expression (NFKB1(p50) and NFKB2(p52)) and Class-II (RelA(p65), RelB, and c-Rel) [reviewed by (Nabel and Verma, 1993)]		
	NFKB1(p50) and p52/p52 homodimers can repress the transcription		
NF-κB	Proteins act both in homo- and in heterodimeric form. Most of the NF-κB dimers are activators of transcription; however, the p50/p50 and p52/p52 homodimers can repress the transcription of their downstream target genes (Zhong et al., 2002). NF-κB is an inducible transcription factor that controls the expression of several genes which regulate cell cycle (cyclin D1), cell survival (Bcl-2, Bcl-xL, cIAP), differentiation (p21^{Cip1/Waf1}), cell adhesion (VCAM, ECAM-1), growth factors (VEGF), angiogenesis (MMPs), and stemness (Bharti and Aggarwal, 2002; Rinkenbaugh and Baldwin, 2016).		
NF-κB	Aberrant activation and dysregulation of NF-κB signalling is reported in many cancer types including colon, breast, pancreatic, leukemia, myeloma, cervical, and HNSCC (Bours et al., 1994; Dokter et al., 1995; Sovak et al., 1997; Wang et al., 1999; Bharti et al., 2003; Prusty et al., 2005; Gupta et al., 2018). NF-κB has a multifaceted role in HNSCC and is reviewed elsewhere (Monisha et al., 2017). Constitutively active NF-κB has been documented in HNSCC cell lines (Ondrey et al., 1999), and primary (Mishra et al., 2006; Bano et al., 2018; Gupta et al., 2018) and recurrent metastatic HNSCC (Li Z. et al., 2015). The expression and activity of NF-κB proteins changed as a function of severity of the oral lesions during oral cancer development (Mishra et al., 2006; Bano et al., 2018; Gupta et al., 2018). NF-κB DNA binding was constituted primarily by the homodimerization of p50 in HPV-negative HNSCC. Gene polymorphisms at NFKB1 coding for p50 at locus rs28362491 have been found associated with susceptibility to HNSCC (Li and Zhang, 2019). Tobacco carcinogens were also found to induce NF-κB activity in HPV-transformed oral cavity cells (HOK 16B cells) (Rohrer et al., 2010).		
	Because of the overlapping role of NF-κB and AP-1 in inflammation and cancer, many studies investigated the role of		
these transcription factors together (Ondrey et al., 1999; Wolf et al., 2001; Chen et al., 2008) and their pharmacological targeting effectively attenuated expression of oncogenes HPV16 E6/E7 in HNSCC (Bancroft et al., 2002; Mishra et al., 2015). However, NF-κB showed a slightly skewed and stronger role in regulation of inflammatory mediators, whereas, AP-1 was found to control the angiogenic response. These observations fit well in the context of oral cavity. Local inflammation in periodontitis is associated with presence of soluble CD14 receptors in gingival crevicular fluid by oral epithelial cells (Nicu et al., 2009), which led to activation of NF-κB but not AP-1 (Feghali et al., 2011). This local inflammation and subsequent activation of NF-κB during an early HPV infection may promote LCR activity independent of AP-1 action. Gingival pockets have been referred as reservoirs of HPV and showed suitable environment including basal epithelium (Hormia et al., 2005). On the other hand, AP-1 gene network was reported to enhance epithelial repair in nasal polyposis by oral steroids (Li et al., 2009).

Dissection of NF-κB complex in HNSCC revealed a strong NF-κB activity composed of p50:p50 homodimer in HPV-negative lesions, whereas HPV16-positive lesions showed comparatively lower activity with additional participation of p65 and c-Rel (Mishra et al., 2006). Earlier a moderate intranuclear staining compared to high cytoplasmic p65 was noted in HPV16 E7 expressing laryngeal cancer cells earlier (Du et al., 2003). Incidentally, involvement of p65 also resulted in cisplatin-resistance observed in HNSCC (Li et al., 2015). NF-κB activation was negatively influenced by HPV16 E7 by blocking upstream signaling (Spitkovsky et al., 2002) or induced by HPV16 E6 through its PDZ-binding motif (James et al., 2006). A detailed differential gene expression profile analysis revealed a STAT3 and NF-κB target gene signatures could effectively distinguish HPV-positive from HPV-negative HNSCC (Gaykalova et al., 2015). Later, we discovered that direct evaluation of NF-κB active members in association with active STAT3 in immunohistochemical staining can also discriminate HPV-positive from HPV-negative HNSCC. NF-κBp50 was associated with active STAT3 in HPV-negative HNSCC, whereas NF-κBp65 expression and lack of STAT3 was associated with HPV-positive HNSCC (Verma et al., 2017). Co-activated NF-κB and STAT3, often observed in HPV-negative tumors, strongly promoted cell survival through upregulation of BAX/BCL-XL expression in HNSCC (Lee et al., 2008).

Active NF-κB in HPV-positive lesions was found associated with better physical performance of HNSCC patients (Xiao et al., 2018). Coactivation of both classic and alternate NF-κB pathways collectively translates into inflammatory transcriptome in HNSCC (Yang et al., 2019). Recent reports suggest role of TRAF3, often found compromised in HPV-positive HNSCC (Hajek et al., 2017) in preventing nuclear localization of alternate NF-κB complex with p52/RelB constituents in HPV-negative HNSCC (Zhang et al., 2018). Thus, the presence of NF-κB is essential in all types of HNSCC; however, the subtle changes in their composition, activity, expression profile, and target genes correlate with HPV positivity and may also contribute to the prognosis.

STAT3
STAT3 belongs to the family of latent cytoplasmic proteins that are directly activated by tyrosine kinases (Schindler et al., 1992; Shuai et al., 1992) and regulate expression of key genes involved in development, inflammation and wound healing [reviewed by (Yu and Jove, 2004; Leeman et al., 2006; Lai and Johnson, 2010; Johnson et al., 2018)]. STAT3 particularly, is an established oncogene and its aberrant expression and activation is known to promote epithelial carcinogenesis (Zhong et al., 1994; Kim et al., 2007; D’Amico et al., 2018). STAT3 has been associated with several types of epithelial and haematological malignancies. Constitutive activation of STAT3 is also a central feature of HNSCC (Song and Grandis, 2000). STAT3 modulates the expression of multitude of genes that are involved in cell proliferation, differentiation, apoptosis, cell cycle regulation, angiogenesis, EMT and immune invasion during development of HNSCC [reviewed by (Lai and Johnson, 2010; Masuda et al., 2010; Johnson et al., 2018)]. STAT3 activation occurs early during HNSCC carcinogenesis due to the autocrine activation of TGF/EGFR signalling (Grands et al., 1998; Grandis et al., 2000).

Immunohistochemical analysis and protein micro-arrays studies in primary HNSCC tissue specimens have demonstrated constitutive activation of STAT3 (Nagpal et al., 2002; Shah et al., 2006; Weber et al., 2007). An overexpression with constitutively active STAT3 construct in HNSCC cells showed Cyclin D1 overexpression, increased proliferation in vitro and higher rates of in vivo tumor growth in mice (Kijima et al., 2002; Masuda et al., 2002). Inhibition of STAT3 using a dominant negative STAT3 construct, antisense oligonucleotides, a transcription factor decoy or siRNA resulted in decreased saturation density, increased serum dependence, growth inhibition and induction of apoptosis (Grandis et al., 1998; Grandis et al., 2000; Masuda et al., 2002; Leong et al., 2003; Gao et al., 2005; Gao et al., 2006). Further, siRNA administration against STAT3 in the xenograft model demonstrated a decrease in tumor volume and induction of apoptosis (Leong et al., 2003). In contrast, suppression of STAT3 in HNSCC cells promoted secretion of both pro-inflammatory chemokines and cytokines (Albesiano et al., 2010) thus suggestive of immunosuppressive function of STAT3 in HNSCC. Activation of STAT3 upregulated the immune checkpoints PD-1/PD-L1 expression, whereas downregulation of pSTAT3 in the absence of EGFR and PTEN decreased the PD-1/PD-L1 expression (Bu et al., 2017). A differential expression of STAT3 in subtypes of oral lichen planus have recently been noted to contribute to disease progression (Du et al., 2018).

Except in some studies (Pectasides et al., 2010; Mazibrada et al., 2014), presence of active nuclear STAT3 in HNSCC was invariably associated with poor prognosis (Masuda et al., 2010; Macht et al., 2011; Jinno et al., 2015; Gao et al., 2016; Lesinski et al., 2019). Emerging research on the functional regulatory role of STAT3 revealed its strong correlation with particularly HPV-negative HNSCC making it a compelling target particularly in HPV-negative HNSCC (Gaykalova et al., 2015). HPV positive HNSCC, however, showed a strong negative correlation with
active STAT3 in HNSCC (Verma et al., 2017), which correlated well with the differential transcript profile of STAT3 target genes (Gaykalova et al., 2015). Elevated STAT3 and upstream signalling in HPV-positive HNSCC have been reported in some studies (Mazibara et al., 2014; Chueruangphui et al., 2016), though the reason behind such contrasting observations is unclear. In sharp contrast to HNSCC, STAT3 in cervical cancer was found aberrantly expressed and constitutively activated in HPV-induced cervical carcinogenesis (Shukla et al., 2010; Shukla et al., 2019) and the level of active STAT3 was found strongly correlated with the physical state of HPV genome in cervical precancer and cancer tissues (Shukla et al., 2019). Therefore, the involvement of STAT3 in HPV-positive epithelial malignancies is a tissue context dependent; however, its influence on pathological manifestation of HPV genome cannot be overlooked in HNSCC. It can be hypothesized that high STAT3 might upregulate HPV replication involved in an early phase of life cycle through HPV E6-driven NF-kB (Morgan et al., 2018; Morgan and Macdonald, 2019). However, such assumption needs to be tested rigorously in experimental systems.

SOX2
SOX2 gene was discovered in 1994 (Stevanovic et al., 1994). SOX2 transcription factor is a member of the SoxB1 group (Kijima et al., 2002; Leong et al., 2003). The protein family has a highly conserved DNA binding HMG (High mobility group) box consisting of about 80 amino acids. Sox proteins function majorly in embryonic development and cell fate determination. SOX2 is involved in stem cell maintenance. Amplification of SOX2 is common in different cancer types, which adversely alters cancer cell physiology via altering stem cell signaling pathways (Bass et al., 2009; Wuebben and Rizzino, 2017). SOX2 is activated by recurrent 3q26.33 amplifications in squamous cell carcinoma (Hussonet et al., 2010).

In HNSCC expression of SOX2 is correlated with poor prognosis (Leeman et al., 2006; Weber et al., 2007). SOX2 upregulates Cyclin B1 and promotes cell proliferation and leads to HNSCC cell dedifferentiation (Lee et al., 2014). In oral carcinogenesis, SOX2 is activated via gain of gene copy number (Freier et al., 2010). In laryngeal cancer, SOX2 promotes migration and invasion by inducing MMP-2 via the PI3K/Akt/mTOR pathway (Yang et al., 2014). SOX2 was found during early tumorigenesis of laryngeal cancer and its expression could be used as an independent predictor of laryngeal cancer risk in patients with precancerous lesions (Granda-Diaz et al., 2019). On the contrary, EGFR in HNSCC enhances the stemness and progression of oral cancer through inhibition of SOX2 degradation (Lv et al., 2020). SOX2 is a marker for cancer stem cell in head and neck cancer (Dong et al., 2014), and is a prognostic marker with unfavorable outcome (Germain and Frank, 2007). SOX2 induced expression of the antiapoptotic protein BCL-2 and enhanced resistance to apoptosis-inducing chemotherapy agents including cisplatin, indicating SOX2 as a mediator of chemotherapy resistance in human HNSCC (Schrock et al., 2014). Further, HPV-positive HNSCC lacked SOX2 amplification and lower SOX2 protein expression as compared to HPV-negative tumors. SOX2 overexpression was associated with poor survival and negative HPV status of OPSCC (Dogan et al., 2019). Three putative sites of SOX2 were present exclusively in the enhancer region of HPV16-LCR and overexpression of this transcription factor led to repression of transcriptional activity of HPV16-LCR by decreasing the expression of E6 and E7 endogenous HPV oncogenes (Martinez-Ramirez et al., 2017). Notably, SOX2 is expressed in normal stem cells of gingiva (Soanca et al., 2018), was detectable in oral leukoplakia (Luiz et al., 2018) and have been implicated in oral carcinogenesis (Qiao et al., 2014).

Glucocorticoid Receptor (GR)/Progesterone Receptor (PR)
Glucocorticoid receptor is a hormone-inducible transcription factor (Ostlund Farrants et al., 1997). Glucocorticoids are a class of corticosteroids and act as ligand for glucocorticoid receptor (GR) (86 kDa) is an evolutionally conserved nuclear receptor superfamily protein and mediates diverse actions of glucocorticoid hormones by acting as a ligand-dependent transcription factor. In absence of ligand, GR reside primarily in cytoplasm of cell as a part of large multiprotein complex (receptor polypeptide and two molecules of hsp90 and other proteins), after interaction with ligand it dissociates from hsp and translocates to nucleus. In nucleus, GR binds to glucocorticoid receptor element (GRE) in promoter region of target genes (Tomoshige, 2017). In regulating stress response, a negative cross talk between AP-1 and GR has been reported which states that AP-1 increased level of circulating glucocorticoids, which reciprocally downregulated AP-1 transcriptional activity (Karim and Chang, 2001). A complex of AP-1 and GR function together as a composite site in HPV16 expression (Mittal et al., 1994). In nasal polyposis, steroids synergize with AP-1 to enhance epithelial repair through upregulation of AP-1 gene network (Li et al., 2009).

Glucocorticoids inhibit NF-kB activation as active GR binds to p65 subunit and prevents activation of inflammatory genes (Didonato et al., 1996; Barnes and Karin, 1997). GR interacts with NF-1, this interaction modulates activity of promoter in mouse mammary tumor virus (MMTV) (Hartig and Cato, 1994). GR inhibits p53 functions by forming a complex that mutually represses each other’s transcriptional activity (Sengupta et al., 2000). In HPV16 E6 and E7 oncogenes expression increased by steroid hormones and degraded p53 gene product and led to carcinogenesis (Moodley et al., 2003). GR has been reported to be a transcription factor associated with the regulation of HPV gene expression. HPV16 LCR contains enhancer element for GR (Moodley et al., 2003). Glucocorticoid hormone exerts regulatory action on HPV16 gene expression during growth and differentiation of cervical cancer (Khare et al., 1997). In prostate cancer GR increases radioresistance and triggers androgen hormone independence (Chen et al., 2019). However, there is no study so far on GR in relation to HNSCC.

Progesterone receptor (PR) (99 kDa) is a master regulator in female reproductive tissues that controls developmental processes, proliferation and differentiation during the reproductive cycle and pregnancy, however, its expression in low in males. GR and PR transcription factors bind to same
consensus sequence (Jacobsen and Horwitz, 2012; Grimm et al., 2016). PR after engaging with the Progesterone dimmerizes and translocates to the nucleus. Hormone in oral contraceptive pills have been reported to enhance tumorigenesis in cervical region (De Villiers, 2003). Increased PR expression has been associated with the proliferation of normal cervical squamous epithelium, which is probably induced by HPV infection, however this is typical in neoplastic cervical squamous epithelium (Konishi et al., 1991; Monsonego et al., 1991). In contrast, high PR expression was associated with poor disease-specific and locoregional recurrence-free survival in OSCC in HPV-negative tumors (Mohamed et al., 2018).

Yin Yang 1 (YY1)

YY1 is ubiquitously expressed, evolutionarily conserved zinc finger protein that belongs to the Gli-Krüppel gene family (Shi et al., 1991). It plays a critical regulatory role in expression of various gene sets and its function in cancerous environment is subtle (Thiaville and Kim, 2011). YY1 acts as a transcriptional repressor (Galvin and Shi, 1997), and plays oncogenic and proliferative role in carcinogenesis (Zhang et al., 2011). Oncogenic role of YY1 in different cancers have been shown (Seligson et al., 2005; Chinnappan et al., 2009; Lee et al., 2012; Wan et al., 2012; Zhang et al., 2013; Zhang J. J. et al., 2014; Liu D. et al., 2018). YY1 binds with transcriptional coactivator CREB-binding protein and represses AP-1 activity. Highly conserved AP-1 site was identified as a target of YY1 mediated repression in HPV LCR (O’connor et al., 1996). The binding of YY1 to its cognate site interferes with the HPV16 transcription initiation complex at the P97 promoter for the E6/E7 genes (O’connor et al., 1996). Sequence analysis of the HPV16 LCR from in vitro HNSCC model expressing high level of E6 gene expression revealed a deletion of 163 bp that included two binding sites of YY1 known to negatively regulate HPV16 E6 and E7 expression (Ferris et al., 2005). YY1 promotes migration, proliferation and suppression of apoptosis in laryngeal cancer via directly inhibiting MYCT1, which can be used as target to prevent the progression of laryngeal cancer (Qu et al., 2017). YY1 attenuates viral early gene expression via CTCF-YY1-dependent looping in the HPV-infected undifferentiated cells. However, during cellular differentiation, YY1 protein expression is dramatically reduced and viral oncogenes E6 and E7 are upregulated, suggesting that CTCF (chromatin-organizing CCCTC-binding protein)-YY1 loop could be disrupted in HPV-mediated carcinogenesis (Pentland et al., 2018). Downregulation of YY1 has been correlated with low immunogenic role in nasopharyngeal carcinoma (Lyu et al., 2018). YY1 in association with CARM1 promotes oral cancer carcinogenesis (Behera et al., 2014), YY1 family CTNF/NF-1 transcription factors act as potent genetic insulators for integrating gene transfer vectors (Gaussian et al., 2012). The strict correlation between the activation or lack of activation of the HPV16 enhancer and cell-specific subsets of NF-1 proteins argues for the pivotal role of NF-1 binding sites in the epithelial cell-specific function of the viral enhancer (Apt et al., 1993). NF-1 and p53 play an important role in glioma initiation and progression (Gonzalez et al., 2018). In HPV16 genome NF-1 binding sites were found methylated in high grade disease, in cervical cancer methylation percentages of E6 and E7 CpG were elevated (Kottaridi et al., 2019). In HPV11, mutation in NF-1 binding site reduces promoter activity in differentiating cells (Zhao et al., 1999). Despite a strong redox regulated transcription factor related to HPV, status and role of NF-1 in HNSCC has not been evaluated till date.

Specificity Protein 1 (SP1)

Specificity Protein 1 (SP1) belongs to SP/KLF transcription factor family, which represents the major group of zinc-finger DNA binding proteins. It was first identified as a promoter-specific binding factor that is essential for transcription of the SV40 major Immediate Early (IE) gene and shown to interact with GC and GT oligonucleotide sequences that are typically found in diverse viral and cellular gene promoter (Dyana and Tjian, 1983; Safe and Kim, 2004). It is estimated that at least 12,000 SP1 binding sites are present within human genome, and most studies support the idea that SP1 not only maintains basal transcription, but also contributes to the regulation, i.e., induction and inhibition, of transcription of a large number of cellular genes (Cawley et al., 2004; Oleaga et al., 2012).

SP1 is overexpressed in cancer cells and upregulates genes that enhance proliferation, invasion, metastasis stemness and chemoresistance. It is reported to be over-expressed in a number of cancers, including breast (Oleaga et al., 2012), gastric (Yao et al., 2004), pancreatic (Jiang et al., 2008), lung (Hsu et al., 2012), glioma (Guan et al., 2012) and thyroid cancer (Chieffari et al., 2002). SP1 regulates the metastasis in LSCC, promotes cell migration and invasion in OSCC by upregulating Annexin A2 transcription, and downregulation of SP1 inhibits the growth of oral cancer cell SCC-15, YD-15 (Cai et al., 2012; Shin et al., 2013; Liu et al., 2019). Promoters of HPV are known to have the binding site of SP1 transcription factor which activates the transcription of HPV16 genes and regulate the replication of HPV18 (Tan et al., 1992; Demeret et al., 1995; Apt et al., 1996).

Overexpression of SP1 has been observed in HNSCC as compared to normal oral mucosa, and its inhibition downregulates growth in oral cancer cell lines (Shin et al., 2013). SP1 serves as a therapeutic target against oral cancer (Shin et al., 2012; Yu et al., 2013; Chae et al., 2014; Sun et al., 2016; Zhang et al., 2019; Zhao et al., 2019; Gao et al., 2020; Liu et al., 2020). SP1 is a functional target of miR-24.
Forkhead Box A1 (FOXA1)/Forkhead Box A2 (FOXA2)

FOXA1 (Forkhead Box A1) and FOXA2 (48.3 kDa) are members of FOX (forkhead box) family. FOXA1 is also known as Hepatocyte Nuclear Factor 3 (HNF3α) and FOXA2 as (HNF3β) (Xanthopoulos et al., 1991; Bingle and Gowan, 1996). Forkhead proteins play an essential role in Estrogen receptor (ER) binding and ER-mediated gene transcription (Carroll et al., 2005). An oncogenic role of HNF3α (FOXA1) was observed in the progression and development of lung and esophageal adenocarcinoma (Yu and Jove, 2004). FOXA1 served as an important mediator for transcriptional activation of p16 gene induced by replicative and oncogene-induced senescence (Schindler et al., 1992). Role of FOXA1 has been elaborated in many cancers, prostate cancer cell proliferation and cancer progression was mediated through FOXA1 by targeting the tumor suppressor gene IGFBP-3 (Song and Grandis, 2000). Expression of FOXA1 can be used as a biomarker to differentiate the breast carcinoma from other carcinomas (Heinrich et al., 1998). Growth in lung adenocarcinoma was regulated by FOXA1 and FOXA2 activity (Grandis et al., 2000). FOXA1 is expressed in basal cells of squamous epithelium in dysplastic and invasive lesions of cervical and head and neck carcinomas (Yue and Turkson, 2009). FOXA1 is able to bind with HPV genome and, therefore, acts as a potential positive regulator (Shuai et al., 1992). FOXA1 is found in pre-cancerous lesions of head and neck origin supporting its role in HPV pathogenesis (Cripe et al., 1987).

Similarly, FOXA2 also has oncogenic potential and its role has been elucidated in many cancers. In uterine cancer, FOXA2 is frequently mutated and act as a pathogenic driver gene in the etiology of this cancer (Le Gallo et al., 2018). In pancreatic cancer, FOXA2 controls the cis-regulatory networks in a differentiation grade-specific manner (Milan et al., 2019). FOXA2 is overexpressed in ovarian cancer stem cells and regulates its autophagy activity (Peng et al., 2017). FOXA2 inhibited EMT in breast cancer cells by regulating the
transcription of EMT-related genes such as E-cadherin and ZEB2 (Zhang et al., 2015). FOXA2 has a tumor suppressor function through inhibition of pancreatic cancer cell growth, migration, invasion, and colony formation (Vorvis et al., 2016). The role of FOXA2 in HNSCC has not been elucidated so far.

DISCUSSION

Overall, the evidence presented above demonstrates that HPV positive and negative HNSCC are clearly two distinct entities that notably differ in their clinico-pathological and molecular characteristics. The striking difference in disease progression of two lesion types may be associated with a differential expression and activity profile of key transcription factors responsible for transcriptional activity of HPV oncogenes. Apart from regulation of oncogenic HPVs, the pro-carcinogenic role of many of these transcription factors is well-established. Any change/absence of this HPV-permissive profile in host cell milieu could be the rationale behind clearance of HPV infection or absence of transcriptionally-active HPV leading to a different pathologic manifestation and treatment response of the disease that resemble HPV-negative HNSCC. Therefore, such tumors even though are positive for HPV DNA, fail to show better prognosis.

Despite HPV positive HNSCC represent as a separate class, all tissues of H&N region or all individuals affected by HNSCC may not have the opportunity of oral HPV exposure during initiation or progression of the disease. However, there may be an underlying predisposition of the tumor tissues in terms of availability HPV-permissive transcription factor cocktail and downstream transcriptome (Figure 6). In the absence of HPV infection, such cases go unnoticed and clubbed with HPV-negative HNSCC and could be effectively treated with less aggressive treatment regimen. This special class of HPV-positive HNSCC is expected to have a better treatment outcome. However, this hypothesis remains to be tested in a clinical set-up.

Present review and the evidence presented herein strongly support towards a need to collectively monitor activity and expression of these HPV-permissive transcription factors. However, required molecular diagnostic test to address these parameters is currently non-existent. In the absence of a direct test(s), the activity of these transcription factors can be assessed by evaluating each transcription factor separately (Mishra et al., 2006; Hussain et al., 2009; Shukla et al., 2010; Gupta et al., 2015; Mishra et al., 2015; Verma et al., 2017; Gupta et al., 2018), or by evaluating the transcripts of their respective downstream target genes by next generation sequencing, or similar platforms as described (Gaykalova et al., 2015). Apart from serving as prognostic tools, these potent procarcinogenic transcription factors may serve as molecular targets for pharmacological interventions in both HPV-positive and HPV-negative HNSCC.

FIGURE 6 | Transcription factor-based classification of HPV positive and HPV negative HNSCC. (A) Schematic representation of molecular sub-types of HNSCC. HPV negative HNSCC collectively represent tumors with availability of HPV-permissive transcription factors that are never exposed to HPV infection in the lifetime and HPV negative tumors, which are driven by genetic mutations in p53 or other such genes. The later represent tumors with poorer prognosis. Further, not all individuals that encounter HPV in H&N region develop cancer. HPV positivity is reported in oral rinse of normal individual. HPV-permissive transcription factor milieu if present is expected to direct treatment outcome similar to the tumor-tissue with HPV-driven transcription profile. In the absence of HPV infection, such cases go unnoticed and clubbed with HPV negative HNSCC and could be effectively treated with less aggressive treatment regimen and likely to have a better treatment outcome. (B) Expression of viral oncogenes under the influence of HPV-permissive transcription factor milieu lead to functional inactivation of p53 and feeds to a positive feedback loop that maintains the HPV-permissive transcription factor milieu. On the other hand, HPV negative tumors, particularly with mutations in p53, in consort with other procarcinogenic transcription factors like STAT3 drive tumors that show poorer response to anti-cancer therapies.
AUTHOR CONTRIBUTIONS

NA participated in study writing and manuscript preparation. JY, KT, RB, AC, and TT contributed in manuscript preparation. MK assisted in manuscript preparation. ACB conceived the presented idea and designed the manuscript, critically reviewed, and drafted and communicated the final manuscript. All authors contributed to the article and approved the submitted version.

FUNDING

The study was supported by research funds to ACB from the Department of Biotechnology, Government of India (DBT-6242-P34/RGCB/PMD/DBT/ALCB/2015) and Senior Research Fellowship to KT, AB and MJ from Indian Council of Medical Research (5/13/38/2014 NCDIII-Edifice73143), (2017-2834-CMB/BMS) and (3/2/278/2014-NCD III); Junior Research Fellowship to NA (09/045(1622)/2019-EMR-I), JY (09/045 (1629)/2019-EMR-I), RB (09/045(1672)/2019-EMR-I) and US (09/045(1584)/2018-EMR-I) by Council of Scientific and Industrial Research (CSIR); Senior Research Fellowship to TS (2061430699 22/06/2014(i)EU-V), and Junior Research Fellowship to AC [573(CSIR-UGC NET JUNE 2017)] by University Grants Commission (UGC); Junior Research Fellowship to TT by Department of Science and Technology, India (EMR/2017/004018/BBM); and The Teachers Associateship for Research Excellence (TARE) from the Science and Engineering Research Board (SERB), India to MKK (TAR/2018/001054).

REFERENCES

Acay, R. R., Dos Santos, E., and De Sousa, S. O. (2008). Correlation between c-Jun and human papillomavirus in oral premalignant and malignant lesions. Oral. Oncol. 44, 698–702. doi: 10.1016/joraloncology.2007.09.007

Adjei Boakye, E., Buchanan, P., Hinyard, L., Osazuwa-Peters, N., Schootman, M., and Piccirillo, J. F. (2018). Incidence and Risk of Second Primary Malignant Neoplasm After a First Head and Neck Squamous Cell Carcinoma. JAMA Otolaryngol. Head Neck Surg. 144, 727–737. doi: 10.1001/jamaoto.2018.0993

Akira, S., Ishiki, H., Sugita, T., Tanabe, O., Kinoshita, S., Nishio, Y., et al. (1990). A nuclear factor for IL-6 expression (NF-IL6) is a member of a C/EBP family. EMBO J. 9, 1897–1906. doi: 10.1002/j.1460-2075.1990.tb08316.x

Alam, T., An, M. R., and Papaconstantinou, J. (1992). Differential expression of three C/EBP isoforms in multiple tissues during the acute phase response. J. Biol. Chem. 267, 5021–5024. doi: 10.1074/jbc.267.14.5021

Alam, M., Kashyap, T., Pramanik, K. K., Singh, A. K., Nagini, S., and Mishra, R. (2017). The elevated activation of NFKappaB and AP-1 is correlated with differential regulation of Bcl-2 and associated with oral squamous cell carcinoma progression and resistance. Clin. Oral. Invest. 21, 2721–2731. doi: 10.1007/s00270-017-1891-y

Albesiano, E., Davis, M., See, A. P., Han, J. E., Lim, M., Pardoll, D. M., et al. (2010). Immunologic consequences of signal transducers and activators of transcription 3 activation in human squamous cell carcinoma. Cancer Res. 70, 6467–6476. doi: 10.1158/0008-5472.CAN-09-4058

An, M. R., Hsieh, C. E., Reisner, P. D., Rabek, J. P., Scott, S. G., Kuninger, D. T., et al. (1992). Aplasia of second malignant neoplasms after a first head and neck squamous cell carcinoma. Cancer Res. 52, 5650–5656. doi: 10.1158/0008-5472.CAN-92-1075

Arany, I., Grond, H. D., and Tyring, S. K. (2002). Interleukin-10 induces EBPbeta isoform expression during the lipopolysaccharide-mediated acute-phase response. Mol. Cell Biol. 22, 2295–2306. doi: 10.1128/MCB.22.4.2295-2306.2002

Bancroft, C. C., Chen, Z., Dong, G., Sunwoo, J. B., Yeh, N., Park, C., et al. (2001). Coexpression of proangiogenic factors IL-8 and VEGF by human head and neck squamous cell carcinoma involves coactivation by MEK-MAPK and I KK-NF-kappaB signal pathways. Clin. Cancer Res. 7, 435–442.

Bancroft, C. C., Chen, Z., Yeh, J., Sunwoo, J. B., Yeh, N. T., Jackson, S., et al. (2002). Effects of pharmacologic antagonists of epidermal growth factor receptor, PISK and MEK signal kinases on NF-kappaB and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int. J. Cancer, 99, 538–548. doi: 10.1002/jic.10398

Bandyopadhyay, S., and Gronostajski, R. M. (1994). Identification of a conserved oxidation-sensitive cysteine residue in the NFI family of DNA-binding proteins. J. Biol. Chem. 269, 2994–29955.

Bano, N., Yadav, M., Mohania, D., and Das, B. C. (2018). The role of NF-kappaB and miRNA in oral cancer and cancer stem cells with or without HPV16 infection. PLoS One 13, e0205518. doi: 10.1371/journal.pone.0205518

Barnes, P. J., and Karin, M. (1997). Nuclear factor-kappaB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071. doi: 10.1056/NEJM19970410361506

Bass, A. J., Watanabe, H., Mermal, C. H., Yu, S., Perner, S., Verhaak, R. G., et al. (2009). SOX2 is an amplification target in oral squamous cell carcinomas. Nat. Genet. 41, 1238–1242. doi: 10.1038/ng.465

Bauknecht, T., Angel, P., Royer, H. D., and Zur Hausen, H. (1992). Identification of a negative regulatory domain in the human papillomavirus type 18 promoter: interaction with the transcriptional repressor Y1. EMBO J. 11, 4607–4617. doi: 10.1002/j.1460-2075.1992.tb0563.x

Bauknecht, T., See, R. H., and Shi, Y. (1996). A novel C/EBP beta-Y1 complex controls the cell-type-specific activity of the human papillomavirus type 18 upstream regulatory region. J. Virol. 70, 7695–7705. doi: 10.1128/JVI.70.11.7695-7705.1996

Beaty, B. T., Moon, D. H., Shen, C. J., Amrud, R. J., Weiss, J., Grilley- Olson, J., et al. (2019). PIK3CA mutation in HPV-associated OPSCC patients receiving deintensiﬁcation chemoradiation. J. Natl. Cancer Inst. 112, 855–858. doi: 10.1093/jnci/djz224

Behera, A. K., Kumar, M., Shanmugam, M. K., Bhattacharya, A., Rao, V. J., Bhat, A., et al. (2019). Functional interplay between Y1 and CARMI promotes oral carcinogenesis. Oncotarget 10, 3709–3724. doi: 10.18632/oncotarget.26984

Berman, T. A., and Schiller, J. T. (2017). Human papillomavirus in cervical cancer and oropharyngeal cancer: One cause, two diseases. Cancer 122, 2219–2229. doi: 10.1002/cncr.30588

Bernard, H. U., Burk, R. D., Chen, Z., Van Doorslaer, K., Zur Hausen, H., and De Villiers, E. M. (2010). Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology 401, 70–79. doi: 10.1016/j.virology.2010.02.002
Bharti, A. C., Donato, N., Singh, S., and Aggarwal, B. B. (2003). Curcumin (diferuloylmethane) down-regulates the constitutive activation of nuclear factor-kappa B and IkappaBalpha kinase in human multiple myeloma cells, leading to suppression of proliferation and induction of apoptosis. Blood 101, 1053–1062. doi: 10.1182/blood-2002-05-1320

Bharti, A. C., and Aggarwal, B. B. (2002). Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem. Pharmacol. 64, 883–888. doi: 10.1016/S0006-2952(02)01154-1

Bingle, C. D., and Gowan, S. (1996). Molecular cloning of the forkhead transcription factor HNF-3 alpha from a human pulmonary adenocarcinoma cell line. Biochim. Biophys. Acta 1307, 17–20. doi: 10.1016/0167-4878(96)00058-9

Boam, D. S., Davidson, L., and Chambon, P. (1995). A TATA-less promoter containing binding sites for ubiquitous transcription factors mediates cell type-specific regulation of the gene for transcription enhancer factor-1 (TEF-1). J. Biol. Chem. 270, 19487–19494. doi: 10.1074/jbc.270.33.19487

Boscolo-Rizzo, P., Pawlita, M., and Holzinger, D. (2016). From HPV-positive towards HPV-driven oropharyngeal squamous cell carcinomas. Cancer Treat Rev. 42, 24–29. doi: 10.1016/j.ctrv.2015.10.009

Bours, V., Dejardin, E., Goujon-Letawe, F., Merville, M. P., and Castronovo, V. (2018). Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res. 78, 2383–2395. doi: 10.1158/0008-5472.CAN-17-1672

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424. doi: 10.3322/caac.21492

Bu, L. L., Yu, G. T., Wu, L., Mao, L., Deng, W. W., Liu, J. F., et al. (2017). STAT3 induces immunosuppression by upregulating PD-1/PD-L1 in HNSCC. J. Natl. Cancer Inst. 109, 998–1006. doi: 10.1093/jnci/djx183

Brand, T. M., Hartmann, S., Bhola, N. E., Li, H., Zeng, Y., O’keefe, R. A., et al. (2018). Cross-talk Signaling between HER3 and HPV16 E6 and E7 Mediates Resistance to PI3K Inhibitors in Head and Neck Cancer. Cancer Res. 78, 2383–2395. doi: 10.1158/0008-5472.CAN-17-1672

Braig, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424. doi: 10.3322/caac.21492

Chen, Z., Friedrich, G. A., and Soriano, P. (1994). Transcriptional enhancer factor-kappa B disruption by a retroviral gene trap leads to heart defects and embryonic lethality in mice. Genes Dev. 8, 2293–2301. doi: 10.1101/gad.8.19.2293

Chen, Z., Ricker, J. L., Mahlotra, P. S., Nottingham, L., Bagain, L., Lee, T. L., et al. (2008). Differential bortezomib sensitivity in head and neck cancer lines correlates to proteasome, nuclear factor-kappaB and activator protein-1 related mechanisms. Mol. Cancer Ther. 7, 1949–1960. doi: 10.1158/1535-7163.MCT-07-2046

Chen, X., Yan, B., Lou, H., Shen, Z., Tong, F., Zhai, A., et al. (2018). Immunological network analysis in HPV associated head and neck squamous cancer and implications for disease prognosis. Mol. Immunol. 96, 28–36. doi: 10.1016/j.molimm.2018.02.005

Chen, X., Chen, F., Ren, Y., Weng, K., Geng, P. C., Chen, Y., et al. (2019). Glucocorticoid receptor upregulation increases radiosensitivity and triggers G2-phase arrest of head and neck cancer cells, indicating a potential role of glucocorticoid receptor upregulation in the radiosensitivity of head and neck cancer. Mol. Carcinog. 1–16. doi: 10.1002/maco.26861

Chieffari, E., Brunetti, A., Arturi, F., Bidart, J. M., Russo, D., Schlumberger, M., et al. (2002). Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer 2, 35. doi: 10.1186/1471-2407-2-35

Chimmappayan, D., Xiao, D., Ratnasari, A., Andry, C., King, T. C., and Weber, H. C. (2009). Transcription factor YY1 expression in human gastrointestinal cancer tissues. Int. J. Oncol. 34, 1417–1423. doi: 10.3892/ijo.2009.494

Chong, T., Chan, W. K., and Bernard, H. U. (1990). Transcriptional activation of human papillomavirus 16 by nuclear factor I, AP1, steroid receptors and a possibly novel transcription factor, PVF: a model for the composition of genital papillomavirus enhancers. Nucleic Acids Res. 18, 465–470. doi: 10.1093/nar/18.3.465

Chong, T., Apt, D., Gloss, B., Isa, M., and Bernard, H. U. (1991). The enhancer of human papillomavirus type 16: binding sites for the ubiquitous transcription factors oct-1, NFI, TEF-2, and AP-1 participate in epithelial cell-specific transcription. J. Virol. 65, 5933–5943. doi: 10.1128/JVI.65.11.5933-5943.1991

Chu, S. (2012). Transcriptional regulation by post-transcriptional modification–role of phosphorylation in Sp1 transcriptional activity. Gene 508, 1–8. doi: 10.1016/j.gene.2012.07.022

Chuangdanghui, J., Pientong, C., Chaiyarat, P., Patarapadungkit, N., Chotiyano, A., Kongyingvoe, B., et al. (2016). Effect of human papillomavirus 16 oncoproteins on oncostatin M upregulation in oral squamous cell carcinoma. Med. Oncol. 33, 83. doi: 10.1186/s12933-016-0800-6

Chung, C. H., Guthrie, V. B., Masica, D. L., Tokheim, C., Kang, H., Richmond, J., et al. (2015). Genomic alterations in head and neck squamous cell carcinoma determined by cancer gene-targeted sequencing. Ann. Oncol. 26, 1216–1223. doi: 10.1093/annonc/mdv109

Cripe, T. P., Haugen, T. H., Turk, J. P., Tabatabai, F., Schmid, P. G. J., Durst, M., et al. (1987). Transcriptional regulation of the human papillomavirus-16 E6-E7 promoter by a keratinocytedefendent enhancer, and by viral E2 trans-activator and repressor gene products: implications for cervical carcinogenesis. EMBO J. 6, 3745–3753. doi: 10.1046/j.1469-8031.1987.tb07290.x

Dalghren, L., Mellin, H., Wangsa, D., Heselmeyer-Haddad, K., Bjornestal, L., Lindholm, J., et al. (2003). Comparative genomic hybridization analysis of tonsillar cancer reveals a different pattern of genomic imbalances in human papillomavirus-positive and -negative tumors. Int. J. Cancer 107, 244–249. doi: 10.1002/ijc.11371

De Martel, C., Plummer, M., Vignat, J., and Franceschi, S. (2017). Worldwide burden of cancer attributable to HPV by site, country and HPV type. Int. J. Cancer. 141, 664–670. doi: 10.1002/ijc.31076

De Villiars, E. M. (2003). Relationship between steroid hormone contraceptives and HPV, cervical intraepithelial neoplasia and cervical carcinoma. Int. J. Cancer 103, 705–708. doi: 10.1002/ijc.10868
Leeman, R. J., Lui, V. W., and Grandis, J. R. (2006). STAT3 as a therapeutic target in head and neck cancer. Expert Opin. Biol. Ther. 6, 231–241. doi: 10.1517/1471296.6.3.231

Leemans, C. R., Sniiders, P. J. F., and Brakenhoff, R. H. (2018). The molecular landscape of head and neck cancer. Nat. Rev. Cancer 18, 269–282. doi: 10.1038/nrc.2018.11

Leong, P. L., Andrews, G. A., Johnson, D. E., Dyer, K. F., Xi, S., Mai, J. C., et al. (2003). Targeted inhibition of Stat3 with a decoy oligonucleotide abrogates head and neck cancer cell growth. Proc. Natl. Acad. Sci. U. S. A. 100, 4138–4143. doi: 10.1073/pnas.03053741100

Lesinski, G. B., Nannapaneni, S., Griffith, C. C., Patel, M., Chen, W., Chen, Z., et al. (2019). Interleukin-6/STAT3 Signaling is Prominent and Associated with Reduced Overall Survival in p16 Negative Oropharyngeal Squamous Cell Carcinoma. Head Neck Pathol. 13, 304–312. doi: 10.1007/s12105-018-0962-y

Li, C. W., Cheung, W., Lin, Z. B., Li, Y. T., Lim, J. T., and Wang, D. Y. (2009). Oral steroids enhance epithelial repair in nasal polyposis via upregulation of the AP-1 gene network. Thorax 64, 306–312. doi: 10.1136/thx.2008.106996

Li, J., Wang, W., Chen, S., Cai, J., Ban, Y., Peng, Q., et al. (2019). FOXA1 reprograms the TGF-beta tumor suppressor transcriptional program from a metastasis promoter to a tumor suppressor in nasopharyngeal carcinoma. Cancer Lett. 442, 1–14. doi: 10.1016/j.canlet.2018.10.036

Li, Y., Dong, M., Kong, F., and Zhou, J. (2015). Octamer transcription factor 1 mediates epithelial–mesenchymal transition in colorectal cancer. Tumour Biol. 36, 9940–9946. doi: 10.1007/s13277-015-3766-7

Li, Z., Yang, Z., Lapidus, R. G., Liu, X., Cullen, K. J., and Dan, H. C. (2015). IKK phosphorylation of NF-kappaB at serine 336 contributes to acquired cisplatin resistance in head and neck squamous cell cancer. Am. J. Cancer Res. 5, 3098–3110. doi: 10.1371/journal.pone.0049289

Li, X., Ma, X., Lei, Z., Feng, H., Wang, S., Cen, X., et al. (2015). Chronic inflammation-Related HPV: A Driving Force Speeds Oropharyngeal Squamous Cell Carcinogenesis. J. Cancer 6, 231–236. doi: 10.7150/jca.30081

Lindsay, C., Seikaly, H., and Biron, V. L. (2017). Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J. Otolaryngol. Head Neck Surg. 46, 725–731. doi: 10.1002/mc.20342

Lindsay, C., Siemieniec, M., Hartman, D. K., and Biron, V. L. (2017). Epigenetics of oropharyngeal squamous cell carcinoma: opportunities for novel chemotherapeutic targets. J. Otolaryngol. Head Neck Surg. 46, 725–731. doi: 10.1002/mc.20342

Liu, C., Mann, D., Sinha, U. K., and Kokot, N. C. (2018). The molecular mechanisms of increased radiosensitivity of HPV-positive oropharyngeal squamous cell carcinoma (OPSCC): an extensive review. J. Otolaryngol. Head Neck Surg. 47, 59. doi: 10.1002/10.1038-01032-y

Liu, D., Zhang, J., Wu, Y., Shi, G., Yuan, H., Lu, Z., et al. (2018). YY1 suppresses proliferation and migration of pancreatic ductal adenocarcinoma by regulating the CDK/N3/MdM2/P53/P21 signaling pathway. Int. J. Cancer 142, 1392–1404. doi: 10.1002/ijc.31173

Liu, Y., Li, J. Z., Yuan, X. H., Adler-Storthz, K., and Che, Z. (2002). An AP-1 binding site mutation in HPV-16 LCR enhances E6/E7 promoter activity in human oral epithelial cells. Viruses Genes 24, 29–37. doi: 10.1023/A:1014018033202

Liu, X. B., Wang, J., Li, K., and Fan, X. N. (2019). Sp1 promotes cell migration and invasion in oral squamous cell carcinoma by upregulating Annexin A2 transcription. Mol. Cell Probes 46, 104117. doi: 10.1016/j.mcp.2019.06.007

Liu, X., Zhang, B., Jia, Y., and Fu, M. (2020). SNHG17 enhances the malignant characteristics of tongue squamous cell carcinoma by acting as a competing endogenous RNA on microRNA-676 and thereby increasing specificity protein 1 expression. Cell Cycle 19, 1–15. doi: 10.1080/15358401.2020.1838792

Lohmander, P., Houck, J., Fan, W., Yueh, B., Mendez, E., Furtan, N., et al. (2009). Genomewide gene expression profiles of HPV-positive and HPV-negative oropharyngeal cancer: potential implications for treatment choices.
Zhang, Z., Yang, C., Gao, W., Chen, T., Qian, T., Hu, J., et al. (2015). FOXA2 attenuates the epithelial to mesenchymal transition by regulating the transcription of E-cadherin and ZEB2 in human breast cancer. *Cancer Lett.* 361, 240–250. doi: 10.1016/j.canlet.2015.03.008

Zhang, J., Chen, T., Yang, X., Cheng, H., Spath, S. S., Clavijo, P. E., et al. (2018). Attenuated TRAF3 Fosters Activation of Alternative NF-kappaB and Reduced Expression of Antiviral Interferon, TP53, and RB to Promote HPV-Positive Head and Neck Cancers. *Cancer Res.* 78, 4613–4626. doi: 10.1158/0008-5472.CAN-17-0642

Zhang, H., Jiang, S., Guo, L., and Li, X. (2019). MicroRNA-1258, regulated by c-Myb, inhibits growth and epithelial-to-mesenchymal transition phenotype via targeting SP1 in oral squamous cell carcinoma. *J. Cell Mol. Med.* 23, 2813–2821. doi: 10.1111/jcmm.14189

Zhang, J. J., Zhu, Y., Xie, K. L., Peng, Y. P., Tao, J. Q., Tang, J., et al. (2014). Yin Yang-1 suppresses invasion and metastasis of pancreatic ductal adenocarcinoma by downregulating MMP10 in a MUC4/ErbB2/p38/MEF2C-dependent mechanism. *Mol. Cancer* 13, 130. doi: 10.1186/1476-4598-13-130

Zhao, J., Ding, D., and Zhao, G. (2019). Reduced miR-202 levels enhanced oral cancer development via targeting Sp1. *Exp. Ther. Med.* 18, 489–496. doi: 10.3892/etm.2019.7603

Zhong, Z., Wen, Z., and Darnell, J. E. Jr. (1994). Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. *Science* 264, 95–98. doi: 10.1126/science.8140422

Zhong, H., May, M. J., Jimi, E., and Ghosh, S. (2002). The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. *Mol. Cell* 9, 625–636. doi: 10.1016/S1097-2765(02)00477-X

Zoumpourlis, V., Papadakis, E., Delakas, D., Cranidis, A., Segas, J., Papadakis, H., et al. (1994). Human lung, bladder and head and neck tumors as compared to their adjacent normal tissues have elevated ap-1 activity and recognize sequence elements of hiv-1 LTR. *Oncol. Rep.* 1, 403–409. doi: 10.3892/or.1.2.403

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Aggarwal, Yadav, Thakur, Bibban, Chhokar, Bhat, Singh, Jadli, Singh, Kashyap and Bharti. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.