Is It Necessary to Repeat Fecal Occult Blood Tests with Borderline Results for Colorectal Cancer Screening?

Eunyoung Lee, B.S. and Yangsoon Lee, M.D.
Department of Laboratory Medicine, Hanyang University of College of Medicine, Seoul, Korea

The fecal immunochemical test (FIT) is the initial non-invasive investigation of choice for population-based colorectal cancer (CRC) screening. We evaluated the positivity rate in repeated tests using the same fecal specimen that showed borderline results in the FIT. A total of 6,465 patients were tested with the FIT in a tertiary-care hospital from July to December 2016. FIT was done using OC-Sensor PLEDIA (Eiken Chemical Co., Tokyo, Japan). Among 6,465 patients, 364 (5.6%) patients showed a positive FIT result of over 20 µg Hb/g feces. A total of 112 (1.7%) patients showed borderline scores of 10.2–20 µg Hb/g feces, and 5,989 (92.6%) patients showed negative results of less than 10 µg Hb/g feces. Among the 101 repeat-tested patients, 19 (18.8%) of the patients’ scores converted to levels above the positive cut-off threshold. Repeated results of 19 patients showed score elevations from 20.2 to 68 µg Hb/g feces. These results suggest that it is most important to analyze properly prepared samples, even if only once. Therefore, the laboratory staff should ensure the proper preparation of stool specimens for FIT. Laboratory directors should choose the best cut-off value for detecting CRC at their respective institutions.

Key Words: Colorectal cancer, Fecal immunochemical test, Cut-off value

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths in developed countries [1]. The fecal immunochemical test (FIT), which reveals hemoglobin in fecal occult blood, is the initial non-invasive investigation of choice for population-based CRC screening programs [2-4]. CRC has been included in the national cancer screening project in Korea since 2004, and FIT is conducted annually in adults over 50 years of age. A colonoscopy is recommended, if the FIT result is positive. Because the Korean government provides financial support for colonoscopies, physicians request a repeat test, if the FIT result is borderline. Furthermore, because the cut-off value can be adjusted according to medical scientific knowledge or the specifications of the screening program, the FIT cut-off value for CRC screening varies among institutions. We questioned whether a FIT value less than the cut-off value for CRC screening represents a true negative result. We evaluated the positivity rate for repeated tests using the same fecal specimen that showed borderline results in the FIT.

A total of 6,465 non-duplicated patients (men, 3,232; 50%), who were subjected to the FIT at Hanyang University Hospital, Seoul, Korea, from July to December 2016, were included in the analysis. The patients were individuals enrolled in the health check program (n=2,459, 38%), outpatients (n=2,908, 45%), and inpatients (n=1,098, 17%). The median age of the patients was 56 years (range, 0–95 years). A medical technician collected the fecal specimen and a single specimen per patient was used for FIT. Sample preparation was performed carefully by the same technician using bloody and mucoid stools. Repeated tests using the same specimens were immediately carried out for patients who showed borderline results, because the...
FIT result could be affected by influencing factors during storage and transportation [5, 6]. FIT was performed using OC-Sensor PLEDIA (Eiken Chemical Co., Tokyo, Japan), which has been widely used in established screening programs [6, 7]. An OC-Sensor test with a cut-off concentration of 20 µg Hb/g feces buffer was defined as positive, as determined by the Health Promotion Administration [8]. Because some institutions use a cut-off value of 10 µg Hb/g feces for CRC screening, we defined the borderline range as 10.2–20 µg Hb/g feces [9, 10].

Among 6,465 patients, 364 (5.6%) were positive for the FIT with values over 20 µg Hb/g feces in the first test. A total of 112 (1.7%) patients showed borderline scores of 10.2–20 µg Hb/g feces, and 5,989 (92.6%) patients showed negative results of less than 10 µg Hb/g feces (Table 1).

Table 1 shows the positivity rates and repeated positivity rates by month. The highest overall positivity rate (7.3%) was observed in September, and the lowest rate (4.9%) was observed in December. Among the repeated positivity tests for patients that showed borderline scores, the highest rate was 28.6% in October, and the lowest rate was 1.9% in July. Since only five of the patients with borderline scores were retested in December, the positivity rate could not be calculated in December since there were results for less than 10 patients (Table 2).

Among 101 repeat-tested patients, the scores of 19 (18.8%) patients converted to scores above the positive cut-off value. The repeated results of 19 patients showed score elevations from 20.2 to 68 µg Hb/g feces (Fig. 1). Among these, adenoma was found upon follow-up colonoscopy examination for one patient, and two patients had colonic adenoma. Four patients had chronic inflammation lesions in the colon, and one patient had an internal hemorrhoid. Two patients had unremarkable findings, and nine patients did not undergo colonoscopy.

A recent study emphasized that the FIT can identify patients that might receive the greatest benefit from colonoscopy, and a high rate of diagnostic colonoscopy was achieved after a pos-
tive FIT result [11]. However, a single FIT is insufficient for the
detection of CRC or adenoma due to suboptimal sensitivity [12,
13]. In the Korean context, the lesion detection rates of the FIT
were 21.39%, 42.53%, and 1.33% for the detection of ade-
noma, suspicious cancer lesion, and CRC, respectively [14].
However, a recent publication reported that using a two-sample
FIT instead of a one-sample FIT did not result in a higher detec-
tion rate of advanced neoplasm [9]. They considered the results
positive, if at least one sample was positive (cut-off of 10 µg Hb/ g feca).
After considering all of these factors, it appears to be
most important to analyze properly prepared samples, even if
only once. In addition, the results of the present study suggested
that patients with borderline FIT results could benefit from a colo-
noscopy health check.

The limitations of this study included the followings: (1) we
did not retest the positive specimens to check whether the re-
sults might change to negative; (2) the whole data set was not
compared with the colonoscopy findings; (3) the definition of
borderline is arbitrary. A follow-up study is necessary to examine
borderline FIT results to improve the diagnostic efficiency of de-
tecting CRC. Laboratory directors should consider the optimal
cut-off value for detecting CRC at their respective institutions.
In addition, the laboratory staff should be aware of carefully pre-
paring stool specimens for FIT.

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were re-
ported.

Acknowledgments

We thank Wooyong Seo for his technical assistance.

REFERENCES

1. Lieberman D, Ladabaum U, Cruz-Correa M, Ginsburg C, Inadomi JM, Kim LS, et al. Screening for colorectal cancer and evolving issues for
physicians and patients: a Review. JAMA 2016;316:2135-45.
2. Force USPST, Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson
KW, Epling JW, Jr., et al. Screening for colorectal cancer: US preventive
services task force recommendation statement. JAMA 2016;315:2564-
75.
3. Chiang TH, Chuang SL, Chen SL, Chiu HM, Yen AM, Chiu SY, et al. Dif-
ference in performance of fecal immunochemical tests with the same
hemoglobin cutoff concentration in a nationwide colorectal cancer screen-
ing program. Gastroenterology 2014;147:1317-26.
4. Quinto E, Castells A, Bujanda L, Cubiella J, Salas D, LANAS A, et al.
Colonoscopy versus fecal immunochemical testing in colorectal-cancer screening. N Engl J Med 2012;366:697-706.
5. Fraser CG, Allison JE, Young GP, Halloran SP, Seaman HE. Improving
the reporting of evaluations of faecal immunochemical tests for haemo-
globin: the FITTER standard and checklist. Eur J Cancer Prev 2015;24:
24-6.
6. Website: http://www.worldendo.org/wp-content/uploads/2016/08/weo_
expert_working_group_fit_discussion_doc_no5_pu.pdf. Accessed: 29
Aug 2017.
7. Passamonti B, Malaspina M, Fraser CG, Tintori B, Carlini A, D’Angelo V,
et al. A comparative effectiveness trial of two faecal immunochemical
tests for colorectal cancer (FIT). Assessment of test performance and ad-
herence in a single round of a population-based screening programme for
colorectal cancer. Gut. 2016 Dec 14; pii: gutjnl-2016-312716. doi:
10.1136/gutjnl-2016-312716. [Epub ahead of print]
8. Fraser CG, Allison JE, Halloran SP, Young GP. Expert working group on
decal immunochemical tests for hemoglobin CCSCWEO. A proposal to
standardize reporting units for fecal immunochemical tests for hemo-
globin. J Natl Cancer Inst 2012;104:810-4.
9. Kapidzic A, van Roon AH, van Leerdam ME, van Vuuren AJ, van Balle-
goijen M, Landsdorp-Vogelaar I, et al. Attendance and diagnostic yield
of repeated two-sample faecal immunochemical testing for colorec-
tal cancer. Gut 2017;66:118-23.
10. van Turenhout ST, van Rossum LG, Oort FA, Laheij RJ, van Rijn AF, Ter-
haar sive Droste JS, et al. Similar fecal immunochemical test results in
screening and referral colorectal cancer. World J Gastroenterol 2012;
18:5397-403.
11. Akram A, Gupta S. Fecal immunochemical testing: a sensitive and sus-
tainable approach for population colorectal cancer screening? Gastro-
enterology 2016;151:554-5.
12. Whitlock EP, Lin JS, Liles E, Beil TL, Fu R. Screening for colorectal can-
cer: a targeted, updated systematic review for the U.S. Preventive Ser-
tices Task Force. Ann Intern Med 2008;149:638-58.
13. van Roon AH, Goede SL, van Ballegooijen M, van Vuuren AJ, Looman
CW, Biermann K, et al. Random comparison of repeated faecal immuno-
chemical testing at different intervals for population-based colorectal
cancer screening. Gut 2013;62:409-15.
14. Website: National Health Insurance Service Ilsan Hospital Research Re-
port. Available at:http://lib.nhis.or.kr/search/detail/CATXAZ000000016556.
Accessed:13 Jan 2017.