The Evolution of Cloud Computing in ATLAS

Ryan Taylor

on behalf of the ATLAS collaboration
Outline

● Cloud Usage and IaaS Resource Management
● Software Services to facilitate cloud use
● Sim@P1
● Performance Studies
● Operational Integration
 – Monitoring, Accounting
The Clouds of ATLAS

ATLAS cloud jobs (Jan. 2014 – present)
61% Single-core production
33% Multi-core production
3% User analysis
IaaS Resource Management

- HTCondor+Cloud Scheduler, VAC/VCycle, APF
- See talk 131 “HEP cloud production using the CloudScheduler/HTCondor Architecture” (C210, Tue. PM)
- Dynamic Condor slots to handle arbitrary job requirements
 - e.g. single-core, multi-core, high-mem
- uCernVM image
- Contextualization using cloud-init
- Using Glint Image Management System
 - see poster 304
Shoal
Proxy Cache “Federator”

• Build a fabric of proxy caches
 – configurationless topology
 – robust
 – scalable

• Needed to run uCernVM at scale
 – By default, DIRECT connection to closest Stratum 0/1
 – Contextualize instances to find proxy using Shoal

```
[ucernvm-begin]
CVMFS_PAC_URLS=http://shoal.heprc.uvic.ca/wpad.dat
CVMFS_HTTP_PROXY=auto
[ucernvm-end]
```

• Also use Shoal for Frontier access
 – Currently under investigation
Sim@P1

- Resource contribution similar to T1
 - 34M CPU hours, 1.1B MC events
- Used for LHC stops > 24h
- Fast automated switching via web GUI for shifters
 - TDAQ to Sim@P1: 20m (check Nova DB, start VMs)
 - Sim@P1 to TDAQ: 12m (graceful VM shutdown, update DB)
 - Emergency switch to TDAQ: 100s (immediate termination)

- See poster 169
HS06 Benchmarking Study

- Commercial clouds provide on-demand scalability
 - e.g. urgent need for beyond pledged resources
- But how cost-effective are they?
- Comparison to institutional clouds
T2 & Remote Cloud Performance Comparison

- Used Hammercloud stress tests (24 hour stream)
- Data and squid cache at grid site
 - Remote access for cloud site
 - like zero-storage processing site

Success rate similar

HC 20052434
MC12 AtlasG4_trf 17.2.2.2
• Software setup time
 – Relies on CVMFS cache and Squid proxy
 – VMs have to fill up empty cache

• Data stage-in time
 – Local vs. remote storage access

\[(15 \pm 7) \text{ s} \quad (45 \pm 15) \text{ s} \]

\[(11 \pm 4) \text{ s} \quad (54 \pm 20) \text{ s} \]
• Total running time
 – 1.5x longer on cloud
 – different CPUs
 – hyperthreading?
 – data & software access time not significant

• CPU efficiency equal!

• Cloud usage is efficient for this workload

• No significant performance penalty
Cloud Monitoring

- VM management becomes the responsibility of the VO
- Basic monitoring is required
 - Detect and restart problematic VMs
 - Identify “dark” resources (deployed but unusable)
 - Can identify inconsistencies in other systems through cross-checks
- Common framework for all VOs
- Implemented with Ganglia
- http://agm.cern.ch
Cloud Accounting

- Provider-side: commercial invoice for resources delivered
- Consumer-side: record resources consumed
- Need to cross-check invoice against recorded usage!

http://cloud-acc-dev.cern.ch/monitoring/ATLAS
Conclusion

- Increasing use of clouds in ATLAS Distributed Computing
- Performance characterization of commercial clouds
- More integration into operational model
 - accounting, monitoring, support
- Developing and deploying services to facilitate cloud use
Extra Material
Dynamic Federation
UGR

- Lightweight, scalable, stateless
- General-purpose, standard protocols and components
 - Could be adopted by multiple experiments
 - e.g. DataBridge, LHCb demo: http://federation.desy.de/fed/lhcb/
- Metadata plugin used to emulate Rucio directory structure
- No site action needed to join
 - HTTP endpoints extracted from AGIS with script
RACF/BNL Amazon Project

Enabled by $200k grant from Amazon to run all ATLAS workloads at large scale
Encompasses provisioning/compute, storage, networking, and ATLAS workflow.

VMs via Imagefactory and templates/profiles.
VM runtime config by cloud-init->Hiera->masterless Puppet.
Provisioning via AutoPyFactory, HTCondor-G. HTCondor batch pool.

3 EC2 regions and 12 instance types to maximize capacity. Spot market.
SRM/GridFTP EC2 instance w/ S3FS back end. One per region.
Ultimately S3 native storage endpoint. Job stage-in/out via S3.

10/100Gb peering and 10Gb DirectConnect to 3 regions via ESNet.
Data egress fees waived as long as <15% of total cost.
Event service nearing completion w/ S3 objectstore, active deletion, and EC2 merge jobs.
S3 storage support in Rucio/DDM.

2.5k node/20k core tested so far, 100k core final goal
List of Active Squids

5 active in the last 180 seconds

#	Hostname	Public IP	Private IP	Bytes Out	City	Region	Country	Latitude	Longitude	Last Received	Alive	Verified	Access Level
1	squid-test01.gridpp.rl.ac.uk	130.248.183.249		0 kB/s	Appleton	United Kingdom	51.7	-1.35	7s	42h40m43s	✓	Global	
2	kraken01.westgrid.ca	206.12.48.240	172.22.2.25	809 kB/s	Vancouver	Canada	49.2838	-123.1041	10s	107h49m9s	✓	Global	
3	atlascaq3.triumf.ca	142.90.110.68		0 kB/s	Vancouver	Canada	49.2756	-123.2177	20s	168h20m3s	✓	Global	
4	atlas-squid.cern.ch	128.142.200.105		0 kB/s	Geneva	Switzerland	48.1958	6.1481	22s	168h19m59s	X	Global	
5	t2software03.physics.ox.ac.uk	163.1.6.175		35 kB/s	Oxford	United Kingdom	51.75	-1.25	26s	168h18m56s	✓	Global	

© University of Victoria || Visit GitHub Project || Shoal-Server v0.7.1

PAC Interface

```javascript
function FindProxyForURL(url, host) {
    return "PROXY http://atlascaq3.triumf.ca:3128; PROXY http://kraken01.westgrid.ca:3128; PROXY http://t2software03.physics.ox.ac.uk:3128; PROXY http://squid-test01.gridpp.rl.ac.uk:3128; PROXY http://atlas-squid.cern.ch:3128; DIRECT";
}
```

JSON REST Interface

```json
{
    "proto": 0,
    "domain_access": true,
    "squid_port": 3128,
    "global_access": true,
    "verified": true,
    "last_active": 14290904480.168000000,
    "created": 14290904479.509000000,
    "external_ip": null,
    "geo_data": {
        "city": "Vancouver",
        "region_name": "BC",
        "area_code": 0,
        "time_zone": "America/Vancouver",
        "country_code": "CA",
        "country_name": "Canada",
        "postal_code": "V6Y"
    },
    "hostname": "atlascaq3.triumf.ca",
    "public_ip": "142.90.110.68",
    "private_ip": null,
    "last_received": 1026000000000000000,
    "distance": 0.002394311931114886
}
```

- github.com/hep-gc/shoal
- [CHEP 2013 Poster](http://shoal.heprc.uvic.ca)
http://cern.ch/go/d8Qj
CPU consumption Good Jobs in seconds (Sum: 35,171,369,721)
CERN-PROD - 43.30%

- CERN-PROD - 43.30% (15,228,057,667)
- BNL-ATLAS - 12.39% (4,358,950,286)
- AUSTRALIA-NECTAR - 5.16% (1,814,557,950)
- UKI-NORTHGRID-LANCS-HEP - 1.45% (510,576,626)
- RAL-RCG2 - 0.40% (141,790,156)
- unknown - 0.00% (242,844)

- IAAS - 24.78% (8,714,293,050)
- UKI-NORTHGRID-MAN-HEP - 9.76% (3,433,952,754)
- GRIDPP_CLOUD - 1.57% (551,154,992)
- UKI-SOUTHGRID-OX-HEP - 0.98% (343,132,582)
- UKI-GRIDPP-CLOUD-IC - 0.21% (74,660,812)
CPU consumption Good Jobs in seconds (Sum: 1,409,504,237,701)
RAL-LCG2 - 10.30%
BNL-ATLAS - 22.40%

145,196,832,559
315,756,298,652

- BNL-ATLAS - 22.40% (315,756,298,652)
- TRIUMF-LCG2 - 8.76% (123,507,958,791)
- CERN-PROD - 8.61% (121,296,702,907)
- FZK-LCG2 - 7.45% (105,012,391,024)
- NDGF-T1 - 5.56% (78,376,167,085)
- NIKHEF-ELPROD - 2.99% (42,105,052,337)
- SARA-MATRIX - 2.70% (38,051,259,244)
- RAL-LCG2 - 10.30% (145,196,832,559)
- CERN-P1 - 8.68% (122,284,923,093)
- INFN-T1 - 8.00% (112,780,682,709)
- IN2P3-CC - 6.87% (96,782,310,500)
- TAIWAN-LCG2 - 3.87% (54,496,246,718)
- PIC - 2.91% (41,009,430,947)
- RRC-KI-T1 - 0.91% (12,847,981,135)

http://cern.ch/go/HB9m