Excellent Mechanical Properties of the Silicate Glasses Modified by CeO$_2$ and TiO$_2$: a New Choice for High-Strength and High-Modulus Glass Fibers

Chao Chen 1 · Qingong Zhu 1 · Huanping Wang 1 · Feifei Huang 1 · Qinghua Yang 1 · Shiqing Xu 1

Received: 23 March 2021 / Accepted: 16 June 2021 / Published online: 26 June 2021
© Springer Nature B.V. 2021

Abstract
High-strength-modulus glass fiber is widely used in military, transportation, electronics, chemical industry, environmental protection and other industries. In recent years, with the development of new energy, the research of high-strength-modulus glass fiber which can be applied in the large size fan blade is gradually being paid attention to. It is important to find an excellent glass component for the production of high-strength glass fibers. As is well known, silicate glass has a stable glass-forming region and mature drawing processes into fibers. In this study, to obtain enhanced mechanical properties, glasses with a composition of SiO$_2$-Al$_2$O$_3$-MgO-CaO-B$_2$O$_3$-Fe$_2$O$_3$ were synthesized using TiO$_2$ and CeO$_2$. When the amount of TiO$_2$ and CeO$_2$ is less than 2 wt%, the mechanical properties increase with increases in the TiO$_2$ and CeO$_2$. However, as the amount of TiO$_2$ and CeO$_2$ increases from 2 to 3.5 wt%, the mechanical properties decrease. Co-doping with 1 wt% TiO$_2$ and 1 wt% CeO$_2$ was found to be the optimum approach, with a density of 2.626 g/cm3, bending strength of 108.36 MPa, compression strength of 240.18 MPa, and compression modulus of 115.03 GPa, respectively. The optical band gap and Raman spectroscopy proved that, as long as the content of oxygen bonds reaches the maximum level, a kind of best structural stability and mechanical properties will be achieved. Hence, this high-strength-modulus silicate glass can be used to make optical fibres for military defence, wind power generation and transportation.

Keywords High-strength-modulus glass fiber · SiO$_2$-Al$_2$O$_3$-MgO glasses · TiO$_2$ · CeO$_2$ · Mechanical properties

1 Introduction
Glass fiber is an inorganic non-metallic material, according to the glass composition can be divided into: non-alkali, medium-alkali, high-alkali, alkali-resistant, high strength and high elastic modulus glass fiber, etc. During the recent decades, high-strength-modulus glass fibers have been widely used in aerospace, military defense, wind power generation, transportation, and sports, among other applications [1–3]. The properties of glass fiber drawn from different glass fractions vary considerably. Quartz glass has a series of advantages such as high temperature resistance, good chemical stability, high strength and low expansion coefficient, etc. The prepared glass fiber has the advantages of high strength and high modulus, good chemical stability, good fatigue resistance, high temperature resistance and good impact resistance compared with ordinary non-alkali E-glass fiber. The main components of high strength glass fibers are SiO$_2$, Al$_2$O$_3$, MgO and CaO, which can be modified by adjusting the composition ratio and adding transition group metal oxides and rare earth oxides. Currently, SiO$_2$-Al$_2$O$_3$-MgO glass fibers, which are high in tensile strength, elastic modulus, and impact resistance, among similar products, have received increased attention in the global manufacturing market [4–7]. However, few recent studies have reported the influence of the composition on the mechanical properties of SiO$_2$-Al$_2$O$_3$-MgO glass, let alone the influence of different additives on the mechanical properties of such glass.

The mechanical properties of glass fibers are in close contact with the different additives in the glasses. In order to improve performance, appropriate stabilizers such as rare earth oxides and transition metals are usually introduced into the glass matrix [8, 9], among which CeO$_2$ is a typical case.

* Huanping Wang
wanghuanping@cjlu.edu.cn
* Feifei Huang
huangfeifei.88@163.com

1 Institute of Optoelectronic Materials and Devices, China Jiliang University, Hangzhou 310018, China
Similar to Al₂O₃-B₂O₃-SiO₂ glasses doped with CeO₂, the network structure is improved as the amount of CeO₂ increases at under 0.4 mol% [10]. Research shows that in barium titanium silicate glass, as CeO₂ doping Ce⁴⁺ aggregation effect becomes more and more obvious, this phenomenon improves the network structure of the glass, and the best effect is achieved when CeO₂ doping amount is 2 mol% [11]. It was also found that the number of bridging oxygen bonds are generated in aluminosilicate glass at a doped molar concentration of 3.5% CeO₂ and CeF₃, achieving the maximal thermal stability [12]. Cerium presents two different valence states: Ce³⁺ and Ce⁵⁺, due to a ceric-cerous redox equilibrium in a glass structure. A moderate amount of Ce⁴⁺ inside the glass can avoid the trapping of electrons produced through a reaction and absorb free electrons, thereby obstructing the formation of permanent defect centers and improving the properties of the glass [13, 14].

In addition, an excessive amount of CeO₂ will produce a series of crystallizations as well as non-bridging oxygen, thereby inducing a negative effect on the mechanical properties and drawing process of the glass. It is therefore necessary to add an oxide to make up for the defects of CeO₂. The valence states of titanium result in TiO₂ playing an important role in the structural properties of glass, suppressing the reduction of Ce⁴⁺ into Ce³⁺ as well as a decrease in the amount of free oxygen, titanium enters the glass network by [TiO₄] tetrahedral structure as a network intermediate and promotes the connectivity of glass network, thereby increasing the chemical and mechanical properties [15, 16]. Moreover, it has been suggested that, in a combined incorporation of the cerium and titanium oxides in Li₂O-Bi₂O₃-SiO₂ and Na₂O-Bi₂O₃-P₂O₅ glass, a proper mixing can significantly improve the mechanical properties [17–19].

According to the relatively outstanding properties of SiO₂-Al₂O₃-MgO glass and its application prospects in glass fiber, the effects of TiO₂ and CeO₂ doping on the mechanical properties of SiO₂-Al₂O₃-MgO glass when changing the amounts of TiO₂ and CeO₂ are discussed herein.

2 Experimental Procedure

2.1 Sample Preparation

The glass samples with mass concentrations of 61 wt% SiO₂–9 wt% Al₂O₃–24 wt% MgO–5 wt% CaO–0.9 wt% B₂O₃–0.1 wt% Fe₂O₃ doped with x wt% TiO₂–y wt% CeO₂ (x = 0, 0.5, 1, 1.5, and 2; y = 0, 0.5, 1, 1.5, and 2) were prepared. High-purity SiO₂, Al₂O₃, MgO, CaO, B₂O₃, Fe₂O₃, TiO₂, and CeO₂ powders were used in the experimental processes as shown in Table 1. The starting powders were heated at 1650 °C for 5 h in pure silica crucible until it melts. Pour the melts onto a steel plate which is preheated at 500 °C and then annealed for 2 h at approximately 850 °C to remove mechanical stress inside glass. The annealed glass is cooled in the furnace at 25 °C. Finally, all as-prepared samples were cut into a size of 30.00 mm × 3.00 mm × 3.00 mm (strips) and 10.00 mm × 10.00 mm × 2.00 mm (flakes), which were optically polished prior to measurement.

2.2 XRD Measurements

To confirm the amorphous state of the glass sample, an X-ray diffraction (XRD) analysis was used. The XRD spectra were recorded within a Bragg angle 2θ of 10° to 70° in a diffractometer (D2 PHASER) using Cu radiation with a scanning speed of 0.05° per second.

2.3 Raman Spectra and Optical Band Gap

The Raman measurement was performed using the 785 nm line of a Renishaw high-power diode laser as the excitation source working at 1.0 W. The measurement was conducted using a DILOR XY triple spectrometer equipped with the 1800 g/mm holographic grating and a CCD detector, using liquid N₂ cooling. The measurement was performed under an Olympus microscope with backscattering geometry, and the glass was recorded at room temperature using a fiber-optic UV-visible spectrometer (model AVASPEC 3648) within the range of 200–800 nm. Glass’s absorption of ultraviolet and visible light excites oxide ions to higher energy levels. The absorption coefficient is derived from the formula. (1) [20] can be used to calculate the optical band gap as a function of the wavelength in the ultraviolet-visible spectral range. The optical band gap reflects the structural information of the glass network, where α, T and t are absorption coefficients, transmittance (%) and glass thickness.

Table 1 Chemical composition of glass (wt/%)
Sample
SAM-1
SAM-2
SAM-3
SAM-4
SAM-5
SAM-6
SAM-7
SAM-8
SAM-9
SAM-10
\[\alpha = \frac{-\ln T}{T} \]

The amorphous material model proposed by Mott and Davis quantitatively correlates the linear absorption coefficient \(\alpha \) with the incident photon energy \(E \), as shown in Eq. (2) [21, 22], so the photon energy \(E \) is equal to \(\frac{hc}{\lambda} \), where \(B \), \(E_{\text{opt}} \), \(c \), \(\lambda \) and \(h \) are constants, and the optical band gap, light speed, wavelength and slab constant are respectively.

\[\alpha E = B(E-E_{\text{opt}})^{1/2} \]

The transformation of Eq. (2) A linear relationship between \(\alpha \) and \(\frac{hc}{\lambda} \) is generated, and the optical band gap \(E_{\text{opt}} \) is estimated by using the intercept on the horizontal axis by extrapolating the linear graph to the zero coordinate.

2.4 Characterization of Mechanical Properties

At room temperature, a sensitive microbalance using deionized water as the immersion liquid uses the standard Archimedes principle to measure the density of glass samples. The molar oxygen packing density (OPD) is calculated using Eq. (3) [23], where \(\rho \), \(M \) and \(C \) are the density, average molecular weight and number of oxygen molecules of each formula unit respectively.

\[\text{OPD} = 1000C\left(\frac{\rho}{M}\right) \]

Then use the WDW-2E universal testing machine to measure the bending strength. The results of the bending strength experiments can be calculated using Eq. (4) [24, 25], where \(L \), \(b \), \(t \), \(F \), and \(B \) respectively, are the length, width, thickness, yield stress, and bending strength of the samples.

\[B = \frac{3FL}{2bt^2} \]

In addition, the compression modulus was measured using a CMT5105 electromechanical universal testing machine, and calculated through Eqs. (5) and (6) [26], where \(b \), \(t \), \(F \), \(\sigma \), \(\varepsilon \), and \(E_c \) are the width, thickness, yield stress, compression strength, strain, and compression modulus of the samples, respectively.

\[\sigma = \frac{F}{bt} \]

\[E_c = \frac{\sigma}{\varepsilon} \]

Various factors such as multiple internal transmittances of the transducer and microcracks on the sample surface may affect the accuracy of ultrasonic mechanical performance indicators. Therefore, all glass samples were polished with SiC paper at up to 1200 grit, and then ultrasonically cleaned with distilled water to ensure uniform parallelism, flatness and smoothness. The average of the six samples is used as the result of the above test.

In order to quantitatively evaluate the deviation, the error based on the standard deviation reflects the error of bending strength, compressive strength and compressive modulus. The equation is expressed as follows [27, 28]:

\[\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X_i - \bar{X})^2} \]

3 Results and Discussion

3.1 Phase Structure Analysis

Some correlation theories show that the additives particularly TiO\(_2\), CeO\(_2\), and Y\(_2\)O\(_3\) may destroy the internal structure of the glass and affect its structural stability. These metal or rare earth oxides have large ionic radii and electron densities, which may result in crystallization, decreasing the mechanical properties of the glass after drawing [29, 30]. As shown in Fig. 1, to judge whether glass doped with TiO\(_2\) and CeO\(_2\) shows an interior crystallization, the XRD patterns of the glass are used. Such patterns reveal that no crystalline phase in the glass, thereby proving that the addition of TiO\(_2\) and CeO\(_2\) will not adversely induce crystallization.

3.2 Raman Spectra and Optical Band Gap

In the Raman spectra of glass at room temperature, as shown in Fig. 2, dominating peaks at approximately 950 and 1150 cm\(^{-1}\) can be seen in all compositions. The antisymmetric
vibration of Si-O_{nb} produces a strong and wide frequency band at 950 cm$^{-1}$, while the symmetrical tensile vibration of Si-O-Si produces a high frequency band at about 1150 cm$^{-1}$, both of which characterize the number of oxygen bonds within the glass [6, 31]. In addition, the internal bridge of oxygen bonds can indicate the stability of the silicate glass [32]. When the amounts of CeO$_2$ and TiO$_2$ range from 0 wt% to 2 wt%, as the intensities of the anti-symmetric vibrations of Si-O$_{nb}$ and the symmetric stretching vibrations of Si-O-Si increase with the amounts of CeO$_2$ and TiO$_2$, the number of bridging oxygen bonds in the glass continuously increases and the peak intensity at 950 and 1150 cm$^{-1}$ of SAM-6 reaches the maximum value, resulting in an enhanced network structure of the glass. Meanwhile, because the amounts of CeO$_2$ and TiO$_2$ are

Fig. 2 Raman spectra of glass doped with different amounts of TiO$_2$ and CeO$_2$. The illustration shows the positional changes of the two main peaks

Fig. 3 (a) Optical transmittance of glass doped with different amounts of TiO$_2$ and CeO$_2$, (b) linear fitting graph of different samples doped with TiO$_2$ and CeO$_2$, and (c) cut-off wavelength of optical band gap of glass doped with different amounts of TiO$_2$ and CeO$_2$
greater than 2 wt%, the decrease in the Raman intensity indicates a disruption of the glass network structure.

The transmission spectra of different glass components are shown in Fig. 3(a). According to the result of Fig. 3(a), a linear fitting graph of the transmittance spectra is characterized in Fig. 3(b), and the values of the cut-off wavelength and the optical band gap values \(E_{\text{opt}} \) of the glass are shown in Fig. 3(c). From Fig. 3(c), \(E_{\text{opt}} \) decreases with increases in TiO₂ and CeO₂ when their amounts are less than 2 wt%, whereas it increases when their amounts increase from 2 wt% to 2.5 wt%. SAM-6 was doped with 1 wt% TiO₂ and 1 wt% CeO₂, and the sample had the smallest optical band gap value of 4.38 eV. These results are consistent with those of the Raman spectra shown in Fig. 2. In general, in a silicate glass system, a lower \(E_{\text{opt}} \) indicates a more compact network structure of the glass \([14, 33]\). In addition, TiO₂ and CeO₂ change the number of bridge bonds, thereby changing the optical band gap of the glass. Moreover, CeO₂ and TiO₂ coexist in the glass thermodynamically for a redox reaction, as shown in Eq. (8) \([34]\).

\[
2\text{CeO}_2 + \text{Ti}_2\text{O}_3 = 2\text{TiO}_2 + \text{Ce}_2\text{O}_3 \Delta G_{1773K} = -71.78 \text{kJ/mol}
\]

(8)

Figure 4 shows examples of X-ray photoelectron spectroscopy (XPS). For the Ce(0)Ti(0.5) sample, minor peaks observed at 457.1–457.9 and 461.5–462.8 eV are related to Ti³⁺ \([35]\). With increases in the amounts of CeO₂ and TiO₂, major peaks observed at 459.1–459.3 and 464.8–465.0 are assigned to Ti⁴⁺, which indicates that Ti³⁺ will react to generate a large amount of Ti⁴⁺, and tetrahedral Ti-O can enter the Si-O network, enhance the interconnectivity of structural units. In this case, the expanded network opening due to the severe deformation of the [SiO₄] tetrahedron is related to the large amount of [TiO₄] and the charge balance between the substitution of Al and Si in the octahedral sites and the substitution of Si by Al in the tetrahedral sites, which simultaneously facilitates the entering of [AlO₄] into network \([36]\). This further increases the number of bridge oxygen bonds, thus increasing the degree of structural cross-linking of the glass. However, the increases in the cerium and titanium concentrations sequentially carry off a large number of bridge oxygen bonds, as shown in Eq. (9) \([37]\).

\[
\text{CeO}_2 \xrightarrow{\Delta} \text{Ce}_2\text{O}_3 + [\text{O}]\uparrow
\]

(9)

3.3 Volume Density and Oxygen Packing Density

Based on Table 2, the volume and oxygen packing densities of the different glasses are shown in Fig. 5. It can be inferred from Fig. 5 that the volume and oxygen packing densities vary from 2.401 to 2.626 g/cm³ and 73.423 to 78.725 mol/l, respectively.

Sample	C (number)	M (g/mol)	Volume density \(\rho \) (g/cm³)	OPD (mol/l)
SAM-1	1.807	59.090	2.401 ± 0.009	73.423
SAM-2	1.817	59.489	2.522 ± 0.017	77.030
SAM-3	1.827	59.889	2.572 ± 0.013	78.463
SAM-4	1.817	59.951	2.547 ± 0.014	77.195
SAM-5	1.827	60.811	2.571 ± 0.019	77.243
SAM-6	1.847	61.610	2.626 ± 0.022	78.725
SAM-7	1.857	62.009	2.519 ± 0.013	75.437
SAM-8	1.867	62.870	2.514 ± 0.018	74.656
SAM-9	1.877	63.730	2.508 ± 0.012	73.867
SAM-10	1.867	62.409	2.396 ± 0.015	71.678
respectively. Among all glass samples, SAM-6 has maximum values of 2.626 g/cm3 and 78.725 mol/l, individually. The results of these two variables indicate show a similar trend in which both the volume and oxygen packing densities increase with an increase in the amounts of TiO$_2$ and CeO$_2$ when the content is less than 2 wt%, whereas a continuous decrease occurs when the content is higher than 2 wt%. As shown in Figs. 2 and 3(c), the Raman intensity increases and the optical band gap decreases as the amounts of TiO$_2$ and CeO$_2$ increase from 0 wt% to 2 wt%, which indicates the presence of numerous bridge oxygen bonds inside the glass, thus improving the bending strength. The attractive force generated by Ce$^{4+}$ increases the bonding strength between metal cations and oxygen ions in the glass, enhancing the bonding force of ionic bonds, thus improving the bending strength of the glass [37, 38]. In addition, when there are enough oxygen atoms to provide a connection, Ti$^{4+}$ is beneficial to improve the interconnection of the glass network when it enters the glass tetrahedral structure, thereby improving the bending strength of the glass [36]. However, as the amount of TiO$_2$ and CeO$_2$ increases from 2 to 3.5 wt%, the bending strength decreases. In this context, an excessive amount of CeO$_2$ will generate more free oxygen, as shown in Eq. (8), resulting in an excessive number of non-bridging oxygen bonds. Ce$^{3+}$ ions can break the chemical bond and decouple the glass network, while Ce$^{4+}$ ions can connect the broken glass network in the form of tetrahedra, increasing the chemical stability and mechanical properties of the glass [39].

According to the previous section, when the CeO$_2$ content is too high, the glass system is dominated by Ce$^{3+}$. Meanwhile, the presence of trivalent cerium makes it difficult to bond with four-coordinated Ti-O units according to Pauling rules, and thus the titanium may act as a network intermediate. However, an increase in TiO$_2$ may result in an increase in non-bridge and bond defects. This then depolymerizes the network by breaking up the Si-O bonds, which induces an increase in

Table 3: Bending strength, compression strength, and compression modulus of the glass

Sample	Bending strength (MPa)	Compression strength (MPa)	Compression modulus (GPa)
SAM-1	77.04 ± 2.21	181.49 ± 3.24	106.70 ± 2.06
SAM-2	96.67 ± 2.75	214.88 ± 4.65	109.71 ± 2.19
SAM-3	100.56 ± 1.23	240.15 ± 2.07	111.71 ± 3.33
SAM-4	98.56 ± 4.05	223.11 ± 3.56	110.05 ± 4.48
SAM-5	102.04 ± 1.36	237.10 ± 5.49	111.06 ± 1.13
SAM-6	108.36 ± 3.07	240.21 ± 4.01	115.06 ± 3.20
SAM-7	94.19 ± 4.88	231.99 ± 2.46	108.66 ± 1.26
SAM-8	93.15 ± 1.38	219.69 ± 4.60	107.53 ± 2.75
SAM-9	91.55 ± 2.45	215.05 ± 2.29	103.51 ± 3.35
SAM-10	86.73 ± 3.96	200.00 ± 4.21	85.67 ± 4.76

3.4 Mechanical Properties

Table 3 and Fig. 6(a) show the bending strength of glass doped with different amounts of TiO$_2$ and CeO$_2$. It can be seen that SAM-6 achieves the maximum bending strength at 108.36 Mpa. Meanwhile, the glass bending strength increases with the increase of TiO$_2$ and CeO$_2$ content (total less than 2 wt%), and both Raman strength and oxygen packing density increase with the incorporation of CeO$_2$ and TiO$_2$, which indicates the presence of numerous bridge oxygen bonds inside the glass, thus improving the bending strength. The attractive force generated by Ce$^{4+}$ increases the bonding strength between metal cations and oxygen ions in the glass, enhancing the bonding force of ionic bonds, thus improving the bending strength of the glass [37, 38]. In addition, when there are enough oxygen atoms to provide a connection, Ti$^{4+}$ is beneficial to improve the interconnection of the glass network when it enters the glass tetrahedral structure, thereby improving the bending strength of the glass [36].
the number of microcracks and pores. The structure is unable to resist the external pressure and thus reduces the bending strength of the glass [40].

The compressive strength and modulus of glass doped with different amounts of TiO2 and CeO2 are shown in Table 3 and Fig. 6(b). It can be seen that SAM-6 possesses the maximum compression strength and compression modulus of 240.21 MPa and 115.06 GPa, respectively. Meanwhile, the compression strength and compression modulus increase with increasing amounts of CeO2 and TiO2, which range from 0 wt% to 2 wt%, when the decreases in the amounts of CeO2 and TiO2 are more than 2 wt%. The above laws are clearly consistent with the bending strength of the glass.

3.5 Microscopy

The glass fraction doped with 1 wt% CeO2 and 1 wt% TiO2 according to the above is made into glass fibers by the leaky plate drawing method. The SEM image of the glass fibers are shown in Fig. 7, the number of defects on the surface of the glass fiber is an important factor affecting its mechanical properties, as can be seen in Fig. 7, there are no more obvious defects on the surface of the glass fibers.

4 Conclusions

The influence of TiO2 and CeO2 on the mechanical properties of 61 wt% SiO2–9 wt% Al2O3–24 wt% MgO-5 wt% CaO-0.9 wt% B2O3–0.1 wt% Fe2O3–x wt% TiO2–y wt% CeO2 glass was investigated. When the amounts of TiO2 and CeO2 are less than 2 wt%, the Raman intensity increases and the optical band gap decreases with increasing amounts of CeO2 and TiO2, which range from 0 wt% to 2 wt%, when the decreases in the amounts of CeO2 and TiO2 are more than 2 wt%. The above laws are clearly consistent with the bending strength of the glass.

Funding Statement

This work was financially supported by the Basic Public Welfare Research Program of Zhejiang Province (LGG19E020003) and the International S&T Cooperation Program of China (2013DFE63070).

Availability of Data and Material

Not applicable.

Author Contributions

All of the authors contributed to the idea, simulation of the research, the analysis of the results, and the writing of the manuscript.

Declaration

The authors declare that they have no conflict of interest.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing interests

The authors declare no competing interests.

References

1. Pisano G, Carfagni GR (2015) The statistical interpretation of the strength of float glass for structural applications. J Constr Bui Mater 98:741–756
2. Feng C (2020) Lihua Gao, the effects of MgO/Al2O3 ratio on viscous behaviors and structures of MgO-Al2O3-TiO2-CaO-SiO2 slag systems with high TiO2 content and low CaO/SiO2 ratio. Trans J Nonferrous Met Soc 30:800–811
3. Messier D (1995) High modulus glass fibers. J Non-Cryst Solids 182:271–277
4. Nowak N, Cardinal T, Adamietz F, Dussauze M (2013) Influence of niobium and titanium introduction on optical and physical properties of silicate glasses. J Mater Res Bull 48:1376–1380
5. Zhang S, Zhang Y, Qu Z (2020) Effects of soluble Cr2O3 doping on the glass structure, microstructure, crystallization behavior, and
properties of MgO-Al2O3-SiO2 sapphire glass ceramics. J Mater Chem Phys 252:123115
6. Wei TY, Hu Y, Hwa LG (2001) Structure and elastic properties of low-temperature sealing phosphate glasses. J Non-Cryst Solids 288:140–147
7. Wang CY, Hu GQ, Zhang ZJ, Liu BQ (2013) Preparation and characterization of Bi2O3-SiO2-Al2O3 glasses of good transparency with high Bi2O3 content. J Non-Cryst Solids 363:84–88
8. Zuo C, Zhou Z, Zhu L, Chen Y (2016) Effect of CeO2 on the viscosity and structure of high-temperature melt of the CaO-SiO2-(Al2O3)-CeO2 system. J Mater Res Bull 83:155–159
9. Lakshminarayana G, Wei EM, Bennett BL, Williams DJ (2012) Structural, thermal, and luminescence properties of cerium-fluoride-rich oxyfluoride glasses. J Opt Mater 35:117–125
10. Zeng JL, Pantano CG (2009) Synthesis and properties of cerium aluminosilicate glasses. J Non-Cryst Solids 355:2622–2629
11. Shen Z, Wu J, Tian Z, Huang W, Zhao Y, Lin H (2019) Effect of CeO2 doping on the structure and properties of titanium barium silicate glass. J Glass Phys Chem 45:317–324
12. Sanz O, Haro E, Gonzalo J (2006) Influence of the melting conditions of heavy metal oxide glasses containing bismuth oxide on their optical absorption. J Non-Cryst Solids 352:761–768
13. Sheng Y, Yang L, Luan H, Yu Y (2012) Evidence of the coexistence of multivalence cerium oxide nano-particles in a sodium borate glass. J Nucl Mater 427:58–61
14. Rygel JL, Pantano CG (2009) Synthesis and properties of cerium aluminosilicate glasses. J Non-Cryst Solids 355:2622–2629
15. Singh GP, Kaur P, Kaur S (2012) Conversion of covalent to ionic character of V2O5-CeO2-PbO-B2O3 glasses for solid state ionic devices. J Phys B 407:4168–4172
16. Wang Z, Cheng L (2014) Effects of doping CeO2/TiO2 on structure and properties of silicate glasses. J Alloys Compd 597:167–174
17. Singh K (1996) Electrical conductivity of Li2O-B2O3-Bi2O3: a mixed conductor. Solid State Ionics 93:147–158
18. Daviero S, Montagne L, Palaviti G (2003) EXAFS, XANES and 31P double-quantum MAS-NMR of (50-x/2)Na2O-xBi2O3-(50-x/ 2)P2O5 glasses. J Phys Chem Solids 64:253–260
19. Gao R, Wang HP, Zhu QG (2017) The forming region and mechanical properties of Si2O-Al2O3-MgO glasses. J Non-Cryst Solids 470:132–137
20. Wang J, Cheng J (2013) Zhen-Lu Deng, effect of alkali metal oxides on viscosity and crystallization of the MgO-Al2O3-SiO2 glasses. Physica B 415:34–37
21. Shakeri MS, Rezvani M (2011) Optical band gap and spectroscopic study of lithium alumino silicate glass containing Y3+ ions. J. Spectrochim. Acta, part A 79:1920–1925
22. Zuo Z, Hao Q, Peng J, Zeng H (2019) Environmentally stable Er-fiber mode-locked pulse generation and amplification by spectrally filtered and phase-biased non-linear amplifying long-loop mirror. High Power Laser Sci 7:e27
23. Sun L, Liu T, Fu X, Gao Y, Wang X, Shao C, Zheng Y, Sun C, Lin S, Huang L (2019) 1.57 times diffraction-limited high-energy laser based on a Nd:YAG slab amplifier and an adaptive optics system. Chin. Opt. Lett 17:051403
24. Kameda J, Bloomer TE (1999) Kinetics of grain-boundary segregation and desegregation of sulfur and phosphorus during post-irradiation annealing. J Acta Mater 47:893–903
25. Li D, Li W, Wang R, Shen X (2015) Temperature dependence of the three-point bending fracture behavior of soda-lime-silica glass with surface scratch. J Non-Cryst Solids 409:126–130
26. Chen S, Wang Q, Wang T (2012) Damping, thermal, and mechanical properties of carbon nanotubes modified castor oil-based polyurethane/epoxy interpenetrating polymer network composites. Mater Des 38:47–52
27. Pan B, Lu ZX (2010) Mean intensity gradient: An effective global parameter for quality assessment of the speckle patterns used in digital image correlation. J Opt Laser Eng 48:469–477
28. Su Y, Zhang QC (2016) Quality assessment of speckle patterns for DIC by consideration of both systematic errors and random errors. J. Opt. Laser. Eng. 86:132–142
29. Yasin Keskin O (2020) Ramazan Dalmis, Isil Birlik, comparison of the effect of non-metal and rare-earth element doping on structural and optical properties of CeO2/TiO2 one-dimensional photonic crystals. J Alloys Compd 817:153262
30. Zeng Z, Gan L, Huang W (2018) Structural recovery and optical properties stabilization of CeO2/TiO2-doped boroaluminosilicate glass under gamma irradiation. J Radiat Phys Chem 151:133–140
31. Gao G, Hu L, Fan H (2009) Effect of Bi2O3 on physical, optical and structural properties of boron silicon bismuthate glasses. J. Opt. Mater. 32:159–163
32. Zheng Y, Deng LZ, Li JP, Jia TQ, Qiu JR, Sun ZR, Zhang S (2019) Controlling multiphoton excited energy transfer from Tm3+ to Yb3+ ions by a phase-shaped femtosecond laser field. Photonics Res 7: 485–491
33. Berwal N, Kundu RS, Nanda K, Kishore N (2015) Raman spectra and optical band gap in some PbO-ZnO-TeO2 glasses. J. mol. struct 1097:37–44
34. Wang J, Cheng J, Deng Z (2013) Effect of alkali metal oxides on viscosity and crystallization of the MgO-Al2O3-SiO2 glasses. J Physica B 415:34–37
35. Qin CL, Oak JJ, Ohtsu N (2007) XPS study on the surface films of a newly designed Ni-free Ti-based bulk metallic glass. J Acta Metall 55:2057–2063
36. Sun S, Ye S, Wang Z, Song J, Qian B, Qiu J (2019) Abnormal elemental redistribution in oxide glasses induced by high repetition rate femtosecond laser. Chin Opt Lett 17:061601
37. Trusova EE, Bobkova NM, Gurin VS, Tyavlovskaya EA (2009) Nature of color centers in silicate glasses with additions of cerium and titanium oxides. Glas Ceram 66:123115
38. Deshpande VK, Taikar RN (2010) Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. J Mol Struct 97(1–3):94–102
39. Singh S, Kalia G, Singh K (2015) Effect of intermediate oxide (Y2O3) on thermal, structural and optical properties of lithium borosilicate glasses. J Mol Struct 1086:239–245

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.