X11 Interaction with β-Amyloid Precursor Protein Modulates Its Cellular Stabilization and Reduces Amyloid β-Protein Secretion*

Magdalena Sastre§, R. Scott Turner§, and Efrat Levy¶

From the §Departments of Pharmacology and Pathology, New York University Medical Center, New York, New York 10016 and the ¶Department of Neurology, University of Michigan Medical Center, Ann Arbor, Michigan 48109

The protein interaction domain of the neuronal protein X11 binds to the YENPTY motif within the cytoplasmic domain of β-amyloid precursor protein (βAPP). Amyloid-β protein (Aβ), the major constituent of the amyloid deposited in brain of Alzheimer’s disease patients, is generated by proteolytic processing of βAPP, which occurs in part following βAPP internalization. Because the YENPTY motif has a role in the internalization of βAPP, the effect of X11 binding on βAPP processing was studied in mouse neuroblastoma N2a, human embryonic kidney 293, monkey kidney COS-1, and human glial U251 cell lines transfected with wild type or mutated βAPP cDNAs. Secretion of soluble βAPP via α-secretase activity increased significantly in cells transfected with βAPP variants containing mutations that impair interaction with X11 when compared with cells transfected with wild type cDNA. Cotransfection of βAPP and X11 caused retention of cellular βAPP, decreased secretion of sβAPPα, and decreased Aβ secretion. Thus, βAPP interaction with the protein interaction domain of X11 stabilizes cellular βAPP and thereby participates in the regulation of βAPP processing pathways.

Amyloid-β protein (Aβ),1 deposited in the brain of patients with Alzheimer’s disease (AD), Down’s syndrome, and sporadic and hereditary cerebral amyloid angiopathy and in the brain of elderly individuals is a proteolytic peptide of a larger β-amyloid precursor protein (βAPP). Aβ has been reported to have heterogeneous carboxyl termini, and Aβ40 and Aβ42 appear to be the major species in the parenchymal deposition. Aβ is found in normal cerebrospinal fluid and in conditioned media from various tissue culture cell lines (1–3), suggesting that it is produced and secreted constitutively. Alternative processing pathways of βAPP have been described. Cleavage at position 597 of βAPP695 by a β-secretase results in the generation of Aββ (4, 5). Both pathways result in the release of amino-terminal soluble βAPP, sβAPPβ and sβAPPα, into the extracellular compartment. The carboxyl-terminal processing products may undergo an additional cleavage by a protease displaying a γ-secretase activity leading to the formation of AβP or P3.

α-Secretase processing of βAPP occurs in a late compartment of the constitutive secretory pathway (6, 7), probably in a late trans-Golgi compartment (8, 9). However, βAPP can elude the intracellular cleavage and reach the cell surface as a full-length mature product, and α-secretase activity may occur also at the plasma membrane in several cell systems (10, 11). Immunolabeling of cell surface βAPP in living cells demonstrated that cell surface βAPP is either rapidly released or internalized via clathrin-coated vesicles, such that the duration at the cell surface is very short (10, 12, 13). Whereas most Aβ is produced by a β-secretase at the cell surface (14, 15), via the endosomal/lysosomal pathway, a small fraction of the normally produced Aβ40 is generated in the endoplasmic reticulum/intermediate compartment, and the trans-Golgi network is a site for Aβ40 generation (14, 16, 17). γ-Secretase activity occurs during recycling of endosomes to the cell surface (1, 11).

The βAPP cytoplasmic domain has a sequence motif, YENPTY, that is involved in protein internalization (11, 18, 19). Deletion of either of the cytoplasmic domain or the YENPTY sequence resulted in reduced βAPP internalization, increased secretion of sβAPPα and P3, and significantly diminished Aβ release (6, 11, 20). No clear effect was observed on the level of intracellular Aβ (21).

βAPP is a cell surface protein with a large extracellular amino-terminal domain, a single transmembrane segment, and a short cytoplasmic tail (22). Its location and structural features are characteristic of a receptor for signal transduction. Screening for potential proteins capable of interacting with its cytoplasmic domain led to the identification of proteins containing phosphotyrosine interaction/phosphotyrosine binding (PT/PTB) domains: Fe65, X11, and their homologues (23–28). The PT/PTB domain was first identified as the component of the adaptor protein Shc (Src homology 2/collagen homology) that binds to activated and tyrosine-phosphorylated receptors (29, 30). This domain was further found in several unrelated regulatory proteins (31), suggesting a general role for this domain in protein-protein interactions and signal transduction. Fe65 was originally proposed as a transcriptional activator (32). However, the presence of a WW domain (a variant of Src homology 3 domains) (33), as well as two PT/PTBα (31), suggests that it is likely to be involved in signal transduction. The expression of Fe65 appears to be enriched in brain in human, rat, and mouse (25, 32, 34). The X11 gene was originally isolated as a candidate gene for Friedrich ataxia, an autosomal recessive degenerative disorder that affects the cerebellum, spinal cord, and peripheral nerves (35). The X11 protein is a
neuron-specific protein of unknown function that contains two postsynaptic density protein, disc-large, zO-1 (PDZ), domains at its carboxy terminus in addition to a PI/PTB domain (31).

Biochemical characterization of the interaction of X11 and Fe65 with βAPP indicated that the YENPTY motif located at the cytoplasmic carboxyl terminus of βAPP is essential for its association with the PI/PTB domains (23, 24). The interaction of βAPP and the PI/PTB domains of X11 and Fe65 is phosphorylation-independent (23, 24, 27, 28), suggesting that, in contrast to the SH2 domains, the PI/PTB domains are primarily peptide binding domains that have in some cases acquired specificity for phosphorylated tyrosines (36). The binding site of the Fe65 PI/PTB domain appears to be different from that of X11 as mutations within the YENPTY motif differentially affect the binding of X11 and Fe65 (24). The crystal structures of the X11 PI/PTB domain bound to the βAPP peptide (QNEGEY-ENPTYKFFEQE) revealed that the sequence-specific recognition extends to peptide residues that are carboxy-terminal to the YENPTY motif (36).

Association of PI/PTB domain-containing proteins with the coated pit-mediated internalization signal of βAPP may affect the patterns of βAPP trafficking, generation of Aβ as well as of soluble βAPP, and normal physiologic function. The effect of X11 binding on βAPP processing was studied in different cell lines transiently or permanently transfected with the wild type or mutated βAPP cDNAs. We demonstrate that mutations in βAPP that impair interactions with X11 result in increased proteolysis by an α-secretase. Cotransfection of βAPP with X11 produces the opposite effect. Furthermore, overexpression of both X11 and βAPP results in accumulation of cell-associated βAPP and decreased secretion of Aβ.

EXPERIMENTAL PROCEDURES

Cell Culture—Mouse neuroblastoma N2a, human embryonic kidney 293 and African green monkey kidney COS-1 cells were cultured in Dulbecco’s modified Eagle’s medium, and human glial U251 cells were cultured in RPMI medium at 37 °C in a 5% CO2 atmosphere. The media were supplemented with 10% fetal bovine serum, 100 units/ml of penicillin, and 100 μg/ml streptomycin sulfate.

Transfection of Cell Lines—The wild type or mutated βAPP cDNAs and the X11 cDNA were cloned into pRK5 vector as described previously (24). The cDNAs were transiently transfected into N2a, 293, and COS-1 culture cells using calcium phosphate (37). U251 cells were stably transfected using LipofectAMINE transfection reagent (Life Technologies, Inc.) and selected with Geneticin (G418, Life Technologies, Inc.). N2a cells stably transfected with wild type βAPP cDNA (kindly provided by Dr. S. S. Sisodia) and 293 cells stably transfected with human wild type cystatin C gene (38) were transiently transfected with X11 or pRK5 vector cDNAs. Overexpression and secretion of βAPP were confirmed by immunoblot analysis of cell lysates and medium proteins with anti-βAPP as1 antibody (22C11) (Boehringer Mannheim) and with anti-Aβ1-17 antibody (6E10) (Senetek). Overexpression of Myc-tagged X11 was confirmed by immunoblot analysis of cell lysates proteins with anti-myc antibody (9E10) (Santa Cruz Biotechnology).

Pulse-Chase Labeling of βAPP—Transiently or stably transfected culture cells were labeled 24 h after transfection. Cells were incubated with 0.3 mCi/ml [35S]methionine/cysteine EXPRE35S35S (DuPont) in methionine/cysteine-free medium with 5% dialyzed serum for 4 h at 37 °C. The cells were collected and spun at 4500 g for 10 min at 4 °C. Equal volumes of cell lysate, based upon the relative concentration of total proteins in cell lysates, were immunoprecipitated with anti-Aβ1-17 antibody (6E10) and anti-βAPP as1 antibody (22C11) overnight at 4 °C and with γ-Label Plus Sepharose beads (Amersham Pharmacia Biotech) for 2 h at 4 °C. In control experiments, cell lysates and medium proteins were immunoprecipitated with anti-cystatin C antibody (Axel) and protein A-Sepharose (Amersham Pharmacia Biotech) for 4 h at 4 °C. The immunoprecipitated proteins were washed with lysis buffer and phosphate-buffered saline, pH 7.3, boiled in sample buffer (1% Triton, 1% sodium deoxycholate, 0.1% SDS, 50 mM NaCl, 50 mM Tris-HCl, pH 7.2). Equal amounts of total proteins from cell lysates or equal volumes of media bases were concentrated by vacuum evaporation and exposed to x-ray films. The protein bands were visualized in vials containing liquid scintillation measuring (Beckman) by liquid scintillation spectrometry (Beckman model LS6000IC). Significant positive correlation between quantification done by densitometry and direct measurements of incorporated radioactivity were obtained (r = 0.952 ± 0.008; p < 0.0002). The half-life of intracellular βAPP was calculated from pulse-chase experiments performed for chase periods of up to 8 h.

Metabolic Labeling of Aβ—N2a cells, stably transfected with βAPP cDNA, were labeled 24 h after transient transfection with vector or X11 cDNAs. Cells were incubated with 0.5 mCi/ml [35S]methionine/cysteine EXPRE35S35S (DuPont) in methionine/cysteine-free medium with 5% dialyzed serum for 4 h at 37 °C. The media were collected and spun at 4500 g for 10 min at 4 °C. Equal volumes of cell lysate, based upon the relative concentration of total proteins in cell lysates, were immunoprecipitated with anti-Aβ1-17 antibody (6E10) and anti-βAPP as1-7 antibody (4G8) (Senetek) overnight at 4 °C and with protein A-Sepharose beads (Amersham Pharmacia Biotech) for 5 h at 4 °C. The immunoprecipitated proteins were washed with lysis buffer and phosphate-buffered saline, pH 7.3, boiled in sample buffer, and separated by 16.5% Tris-Tricine PAGE. The gels were enhanced with Amplify (Amersham Pharmacia Biotech) and exposed to x-ray films.

Sandwich ELISA—N2a cells stably transfected with βAPP cDNA were transiently transfected with vector or X11 cDNA. 24 h after transfection, the cells were transferred to serum-reduced medium consisting of 50% Dulbecco’s modified Eagle’s medium, 50% Opti-MEM, and 0.2% fetal bovine serum and incubated at 37 °C and 5% CO2 for 24 h. The media were collected, spun at 4500 g for 10 min at 4 °C and supplemented with protease inhibitors (8 μM antipain, 0.1 mM bestatin, 2 mM EDTA-Na2, 10 μM leupeptin, 1 mM pepstatin, 1 mM phenylmethylsulfonyl fluoride, 0.1 mM 1-chloro-3-tosylamido-7-amino-2-heptanone, 0.2 mM i-1-tosylamido-2-phenylthylurea, 0.1% NaN3). Immunodetection of Aβ in the media was performed as described previously (17, 39). In brief, Aβ in samples were captured with BAN-50, a monoclonal antibody specific for Aβ1-17. Peptides terminating at amino acid 40 were specifically detected by horseradish peroxidase-conjugated BA-27 monoclonal antibody, and peptides terminating at amino acid 42 were detected by horseradish peroxidase-conjugated BC-06 monoclonal antibody. This sandwich ELISA has a detection limit of <1 fmol/well.

RESULTS

Mutations That Inhibit Binding of X11 to the YENPTY Motif of βAPP—We have previously analyzed the binding sites on βAPP for the X11 PI/PTB domain, using site-directed mutagenesis of the cytoplasmic domain of βAPP (24). The different mutations were placed into full-length βAPP (see Fig. 1 for the sequence of the cytoplasmic-terminal domain of βAPP). We found that deletion of the last 18 amino acids severely inhibited the ability of the X11 PI/PTB domain to bind βAPP. Similarly, two mutations within the YENPTY motif, Y682G and N684A, impaired the binding of the protein interaction domain to βAPP (24).

Pulse-chase experiments were performed to study the effect of these mutations on βAPP processing. Mouse neuroblastoma N2a, human embryonic kidney (293), and monkey kidney (COS-1) cells that were transiently transfected with wild type or mutated βAPP cDNAs were labeled with [35S]methionine/cysteine for 20 min and chased for different time periods. Results of the SDS-PAGE temporal profile of βAPP expression and secretion are shown in Fig. 2. Immunoprecipitation of cell lysates proteins revealed that mutations within the X11 inter-
active domain of βAPP do not significantly affect the decrease of intracellular βAPP (Fig. 3, A, C, E, and G). Immunoprecipitation of medium proteins with anti-βAPP1-17 antibody (6E10) revealed that the secretion of soluble βAPP via the α-secretase pathway (sβAPPα) was increased in all of the cell lines transfected with βAPP lacking the 18 carboxy-terminal amino acids, which include the YENPTY motif, when compared with cells transfected with wild type cDNA (data not shown). These results are compatible with previous reports of the effect of deletion of either the cytoplasmic domain or the YENPTY sequence of βAPP on its processing (6, 11, 20). We demonstrate that mutation of the amino-terminal tyrosine (Y682G) or asparagine (N684A) within the YENPTY motif also caused increased secretion of sβAPPα (Fig. 3, B, D, F, and H).

Effect of Overexpression of X11 Together with βAPP on Cell-associated βAPP and on Soluble βAPP Secretion—Conversely, pulse-chase experiments were performed with N2a, 293, and COS-1 cells transiently cotransfected with wild type βAPP and either vector or X11 cDNAs. Immunoprecipitation of cell lysate proteins with anti-βAPP1-17 antibody (6E10) revealed that co-transfection of βAPP and X11 delayed intracellular βAPP depletion (Fig. 4). The half-life of intracellular βAPP in cells cotransfected with βAPP and X11 was prolonged in comparison to cells transfected with βAPP alone (Fig. 5). Half-life in this system refers to turnover rate, dependent on both degradation and secretion. Although X11 overexpression attenuated the depletion of intracellular βAPP in all cell lines tested, the magnitude of the effect was different, with the greatest effect observed in 293 cells and the least in COS-1 cells. Delayed intracellular βAPP depletion was also observed following immunoprecipitation of N2a cell lysates proteins with anti-βAPP66–81 antibody (22C11) (Fig. 6).

Furthermore, immunoprecipitation of conditioned medium proteins with anti-βAPP1-17 antibody (6E10) (Fig. 4) revealed decreased secretion of sβAPPα. In order to confirm the results obtained with anti-βAPP1-17 antibody (6E10), cell lysates and medium proteins were immunoprecipitated with an antibody raised against the amino-terminal end of βAPP, anti-βAPP66–81 antibody (22C11). This antibody immunoprecipitated full-length βAPP as well as its amino-terminal fragments, sβAPPα and sβAPPβ. Decreased secretion of sβAPP was also observed in N2a cells cotransfected with βAPP and X11 cDNAs, compared with cells cotransfected with βAPP and vector, following immunoprecipitation with anti-βAPP66–81 antibody (22C11) (Fig. 6). The decrease in sβAPP immunoprecipitated with 22C11 antibody may be due to decreased α-secretase activity or may indicate a decrease also in β-secretase activity.

The same results were obtained with N2a cells stably transfected with wild type βAPP and transiently transfected with X11 (data not shown).

Coexpression of X11 with mutated βAPP (Y682G or N684A) resulted in a decrease in sβAPP retrieved from the culture media, compared with sβAPP secreted by cells cotransfected with the respective mutated βAPP and vector alone. Pulse-chase experiment with COS-1 cells transiently transfected with wild type βAPP or βAPP N684A cDNAs and either vector or X11 cDNAs is presented in Fig. 7. However, cotransfection of X11 with mutated βAPP had a lesser effect than its effect on wild type sβAPP secretion. These results are compatible with the finding that both mutant βAPPs retain 5–10% of X11 binding activity (24).

To rule out the possibility that X11 affects protein secretion in a more generalized manner, pulse-chase experiments were performed with 293 cells stably overexpressing the human cystatin C gene, transiently transfected with X11 or vector cDNAs. X11 had no effect on the expression or secretion of cystatin C, a cysteine proteinase inhibitor, produced and secreted through the constitutive secretory pathway (Fig. 8). These results suggest that βAPP binding to X11 delays βAPP turnover, resulting in retention of intracellular βAPP and decreased βAPP secretion.

Effect of Overexpression of X11 and βAPP on Aβ Secretion—In order to test the effect of X11-βAPP binding on Aβ secretion, metabolic labeling experiments were performed. N2a cells permanently transfected with wild type βAPP were transiently transfected with vector or with X11 cDNAs and labeled with [35S]methionine/cysteine, and the conditioned medium proteins were immunoprecipitated with anti-βAPP1-17 and anti-βAPP77-27 antibodies (6E10 and 4G8) (Fig. 9A). X11 binding to wild type βAPP diminished Aβ secretion. A decrease in Aβ secretion was also observed in media conditioned by COS-1 cells transiently cotransfected with X11 and wild type βAPP, compared with cells transiently transfected with βAPP cDNA alone (data not shown).

In order to confirm the finding that X11 binding to βAPP...
causes decreased secretion of Aβ peptides, the levels of Aβ secreted into conditioned media were studied by ELISA. The levels of Aβ secreted by N2a cells stably transfected with wild type βAPP cDNA and transiently transfected with X11 cDNA were compared with cells transfected with the βAPP cDNAs alone. The secretion of both Aβ1–40 and Aβ1–42 was lower in N2a cells transfected with X11 and wild type βAPP as compared with cells transfected with βAPP alone (Fig. 9B). These results demonstrate a decrease of 53% and 34% in the levels of Aβ1–40 and Aβ1–42, respectively, secreted by cells transfected with wild type βAPP and X11 in comparison to cells transfected only with wild type βAPP.

These data suggest that X11 interaction with βAPP participates in the regulation of βAPP processing, affecting both sβAPP and Aβ secretion in neuronal and nonneuronal cells.

DISCUSSION

Our studies demonstrate that association of βAPP with X11 in cultured cells affects βAPP turnover and processing, which in turn shifts the balance toward decreased production of specific proteolytic peptides. The βAPP binding site for X11 lies within the YENPTY motif present at the carboxyl terminus of βAPP (23, 24). Specific mutations within the binding motif inhibit interaction with X11 and result in increased secretion of soluble βAPP via the α-secretase pathway. Cotransfection of
wild type βAPP and X11 cDNAs stabilizes cellular full-length βAPP, down-regulates sβAPP secretion, and concomitantly triggers a decrease in Aβ secretion. These data suggest that βAPP-X11 interaction plays a role in the regulation of βAPP processing, differentially affecting sβAPP and Aβ secretion in neuronal and nonneuronal cells.

Numerous studies have established that stimulation of protein kinase C leads to cell type-specific enhancement of sβAPP with a concurrent suppression of Aβ production (40, 41). The secretary processes of sβAPP and Aβ were also differentially affected by interleukin-1β stimulation (42). Thus, in certain cell systems βAPP secretion and Aβ generation apparently are not mutually exclusive. These observations are the basis for the hypothesis that there is a surplus of full-length βAPP, which gives rise to sβAPP, Aβ, or lysosomal degradation products, depending on the enzymatic activities and regulatory mechanisms present (40). Because stimulation of protein kinase C causes a rapid reduction of cell surface βAPP (43) and increases secretory vesicle formation (44), it was suggested that its effects are due primarily to a reduction in the transport of βAPP to the cell surface. This alteration correlates with an acceleration of intracellular α-secretase βAPP cleavage and of βAPP trafficking in the exocytic pathway. In most cell cultures, displacement of cell surface βAPP reduces the substrate available for endocytic processing with resultant inhibition of Aβ production (43).

The normal function of βAPP within a signal transduction pathway may be elucidated by studying the interaction of βAPP with PI/PTB-containing proteins. NPXY is a conserved protein binding motif that has been implicated in signal transduction (30, 31) and internalization of βAPP via clathrin-mediated endocytosis (11, 18, 19). X11 binds to the YENPTY motif within the cytoplasmic domain of βAPP. Our data demonstrate that X11 modulates βAPP processing via a direct protein/protein interaction. Because X11 has multiple protein interaction domains, other proteins may be complexed to the βAPP-X11 interaction. Because X11 has multiple protein interaction domains, other proteins may be complexed to the βAPP-X11 interaction.

FIG. 5. Cotransfection of X11 and βAPP resulted in prolongation of the half-life of cellular βAPP. N2a, 293, and COS-1 cells transiently cotransfected with wild type βAPP and either vector (□) or X11 (●) cDNAs were labeled with [35S]methionine/cysteine for 20 min and chased for different time periods. Cell lysates (A) and medium proteins (B) were immunoprecipitated with anti-Aβ1–17 antibody (6E10), separated by 8% SDS-PAGE, and exposed to x-ray film. The protein bands were scanned and quantitated. Relative intensity of the bands was calculated as a percentage of the intensity of the protein band of cell lysates at the beginning of the chase (time 0). Mean and S.D. of the half-life of cell lysates at the beginning of the chase (time 0). The mean and S.D. of the half-life of cell lysates at the beginning of the chase (time 0) are presented. Symbols represent transfection with wild type βAPP and either vector (□) or with X11 (●) and transfection with βAPPN684A with vector (○) or with X11 (●).

FIG. 6. Cotransfection of X11 and βAPP resulted in accumulation of cellular βAPP and decreased secretion of sβAPP. N2a cells transiently transfected with wild type βAPP cDNAs and either vector or X11 cDNAs were labeled with [35S]methionine/cysteine for 20 min and chased for different time periods. Cell lysates (A) and medium proteins (B) were immunoprecipitated with anti-Aβ1–17 antibody (22C11), separated by 8% SDS-PAGE, and exposed to x-ray film. The protein bands were scanned and quantitated. Relative intensity of the bands was calculated as a percentage of the intensity of the protein band of cell lysates at the beginning of the chase (time 0). Mean and S.D. from six different experiments are presented. Symbols represent transfection with wild type βAPP and vector (□) or wild type βAPP together with X11 (●).

FIG. 7. The effect of coexpression of X11 with mutated βAPPN684A on βAPP expression and secretion. COS-1 cells transiently transfected with wild type or mutated βAPP cDNAs and either vector or X11 cDNAs were labeled with [35S]methionine/cysteine for 20 min and chased for different time periods. Cell lysates (A) and medium proteins (B) were immunoprecipitated with anti-Aβ1–17 antibody (6E10), separated by 8% SDS-PAGE, and exposed to x-ray film. The protein bands were scanned and quantitated. Relative intensity of the bands was calculated as a percentage of the intensity of the protein band of cell lysates at the beginning of the chase (time 0). The results from a single representative experiment are presented. Less than 10% variation was observed between experiments. Symbols represent transfection with wild type βAPP with vector (□) or with X11 (●) and transfection with βAPPN684A with vector (○) or with X11 (●).

FIG. 8. Coexpression of X11 with cystatin C does not affect its expression and secretion. 293 cells stably overexpressing the human cystatin C gene that were transiently transfected with X11 or vector cDNAs were labeled with [35S]methionine/cysteine for 20 min and chased for different time periods. Cell lysates (A) and medium proteins (B) were immunoprecipitated with anti-cystatin C antibody, separated on 10% Tris-Tricine gel, and exposed to x-ray film. The protein bands were scanned and quantitated. Relative intensity of the bands was calculated as percentage of the intensity of the protein band of cell lysates at the beginning of the chase (time 0). The results from a single representative experiment are presented. Less than 10% variation was observed between experiments. Symbols represent transfection with cystatin C with vector (□) or with X11 (●).
insoluble Aβ in the brain are unknown. Several observations indicate that aberrant expression or processing of the human βAPP gene products may lead to the development of AD. Patients with trisomy 21 (Down’s syndrome patients) have overexpression of the protein and tend to develop AD-type pathology early in life (54, 55). Several familial forms of Alzheimer’s disease have been described that are linked to mutations in the βAPP gene that result in amino acid substitutions within Aβ or near its amino- or carboxyl-terminal ends. A Swedish kindred develops an AD phenotype that cosegregates with a double mutation, K595N/M596L, amino-terminal to the Aβ region (56). This double mutation leads to overproduction of Aβ and sAβ(57, 58). Moreover, transgenic mice overexpressing human βAPP exhibit age-dependent and brain region-specific extracellular deposits of fibrillar Aβ (59–61). Thus, perhaps even slightly increased amounts of Aβ might be sufficient to cause AD, and inhibition of Aβ production could aid in prevention of AD.

It was hypothesized that Aβ and sAβ are physiological ligands with reciprocal effects on neurons and that alterations in the Aβ to sAβ ratio may have beneficial or deleterious effects on neuronal survival and growth (62). Thus, stabilization of cellular βAPP and inhibition of the amyloidogenic processing pathway by stimulating the interaction of βAPP with an adaptor protein, such as X11 or another family member, may provide a novel approach for the pharmacological modulation of βAPP processing in Alzheimer’s disease.

REFERENCES

1. Shoji, M., Golde, T. E., Ghiso, J., Cheung, T. T., Estus, S., Shaffer, L. M., Cai, X. D., Mc kay, D. M., Tintner, R., Frangione, B., and Younkin, S. G. (1992) Science 258, 126–129
2. Haass, C., Schlossmacher, M. G., Hung, A. Y., Vigo-Pelfrey, C., Mollen, A., Ostaszewski, B. L., Lieberburg, I., Koo, E. H., Schenk, D., Teplow, D. B., and Selkoe, D. J. (1992) Nature 359, 322–325
3. Seubert, P., Vigo-Pelfrey, C., Esch, F., Lee, M., Doye, H., Davis, D., Sinha, S., Schlossmacher, M., Whaley, J., Swindlehurst, C., McCormack, R., Wollert, K., Selkoe, D. J., Lieberburg, I., and Schenk, D. (1992) Nature 359, 325–327
4. Esch, F. S., Keim, P. S., Beattie, E. C., Blacher, R. W., Culwell, A. R., Oltersdorf, T., McClure, D., and Ward, P. J. (1990) Science 248, 1122–1124
5. Sisodia, S. S., Koo, E. H., Beyreuther, K., Unterbeck, A., and Price, D. L. (1990) Science 248, 492–495
6. De Strooper, B., Uman, L., Van Leuven, F., and Van den Berghe, H. (1993) J. Cell Biol. 121, 295–304
7. Haass, C., Hung, A. Y., and Selkoe, D. J. (1991) J. Neurosci. 11, 3783–3793
8. Sambamurti, K., Shioi, J., Anderson, J. P., Pappolla, M. A., and Robakis, N. K. (1992) J. Neurosci. Res. 33, 319–329
9. Kowarlitzel, S. L., Altman, R. H., Greenberg, B. D., and Raub, T. J. (1993) Biochem. J. 295, 367–378
10. Nordstedt, C., Caporaso, G. L., Thyberg, J., Gandy, S. E., and Greengard, P. (1993) Biochem. J. 288, 608–612
11. Kern, E. H., and Squazzo, S. L. (1994) J. Biol. Chem. 269, 17368–17389
12. Yamazaki, T., Koo, E. H., and Selkoe, D. J. (1996) J. Cell Sci. 109, 999–1008
13. Haass, C., Koo, E. H., Mellon, A., Hung, A. Y., and Selkoe, D. J. (1992) Nature 357, 500–503
14. Hartmann, T., Bieger, S. C., Bruhl, B., Tienari, P. J., Ida, N., Allsop, D., Roberts, G. W., Masters, C. L., Dotti, C. G., Unsicker, K., and Beyreuther, K. (1997) Nat. Med. 3, 1016–1020
15. Peraus, G. C., Masters, C. L., and Beyreuther, K. (1997) J. Neurosci. 17, 7714–7724
16. Cook, D. G., Forman, M. S., Sung, J. C., Leighton, S., Kolson, D. L., Iwatsubo, T., Lee, V. M., and Doms, R. W. (1997) Nat. Med. 3, 1021–1028
17. Turner, R. S., Suzuki, N., Chyung, A. S., Younkin, S. G., and Lee, V. M. (1996) J. Biol. Chem. 271, 8966–8970
18. Lee, A., Sisodia, S. S., and Trowbridge, I. S. (1995) J. Biol. Chem. 270, 3565–3573
19. Chen, W. J., Goldstein, J. L., and Brown, M. S. (1990) J. Biol. Chem. 265, 3116–3123
20. LeBlanc, A. C., and Gambetti, P. (1994) Biochem. Biophys. Res. Commun. 204, 1371–1380
21. Tienari, P. J., Ida, N., Ikonen, E., Simons, M., Weidemann, A., Multhaup, G., Masters, C. L., Dotti, C. G., and Beyreuther, K. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 4125–4130
22. Kang, J., Lemaire, H. G., Unterbeck, A., Salbaum, J. M., Masters, C. L., Greenshiek, K. H., Multhaup, G., Beyreuther, K., and Muller-Hill, B. (1987) Nature 325, 733–736
23. Fiore, F., Zambrano, N., Minopoli, G., Donini, V., Dulio, A., and Russo, T. (1995) J. Biol. Chem. 270, 3683–3686
24. Bresalier, S. L., Gray, M. D., Sopher, B. L., Hu, G., Hearn, M. G., Pham, D. G., Dinulos, M. B., Fukuchi, K., Sisodia, S. S., Miller, M. A., Disteche, C. M., and Selkoe, D. J. (1998) J. Biol. Chem. 273, 16229–16241
25. Bresalier, S. L., Gray, M. D., Sopher, B. L., Hu, G., Hearn, M. G., Pham, D. G., Dinulos, M. B., Fukuchi, K., Sisodia, S. S., Miller, M. A., Disteche, C. M.,...
26. Guenette, S. Y., Chen, J., Jondro, P. D., and Tanzi, R. E. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10832–10837
27. McLoughlin, D. M., and Miller, C. C. (1996) FEBS Lett. 397, 197–200
28. Zambrano, N., Puksa, G., Fiore, F., De Candia, P., De Renzi, S., Farinoni, R., Sabo, S., Cheetham, J., Sudol, M., and Russo, T. (1997) J. Biol. Chem. 272, 6899–6905
29. Kavanagh, W. M., and Williams, L. T. (1994) Science 266, 1862–1865
30. Faraonio, R., Minopoli, G., Porcellini, A., Costanzo, F., Cimino, F., and Russo, T. (1994) Nucleic Acids Res. 19, 5269–5274
31. Bork, P., and Sudol, M. (1994) Trends Biochem. Sci. 19, 531–533
32. Dyrks, T., Monning, U., Beyreuther, K., and Turner, J. (1994) FEBS Lett. 349, 210–214
33. Garlatsos, J. P., Carroll, R. T., Emmerling, M. R., Doyle, P. D., Davis, R. E., Kim, K. S., and Shivers, B. D. (1994) FEBS Lett. 354, 289–292
34. Xue, H., Ong, P., and Gandy, S. (1995) J. Biol. Chem. 270, 23243–23245
35. Kornau, H. C., Schenk, D., Kennedy, M. B., and Seeburg, P. H. (1995) Science 269, 1737–1740
36. Sato, T., Irie, S., Kitada, S., and Reed, J. C. (1995) Science 268, 411–415
37. Brenner, J. E., Chao, D. S., Gee, S. H., McGee, A. W., Craven, S. E., Santillano, D. R., Wu, Z., Huang, F., Xia, H., Peters, M. F., Frockner, S. C., and Bredt, D. S. (1996) Cell 84, 757–767
38. Saitoh, T., Sundemo, M., Roch, J. M., Kimura, N., Cole, G., Schubert, D., Oltersdorff, T., and Schenk, D. B. (1989) Cell 58, 615–622
39. Milward, E. A., Papadopoulo, R., Full, S. J., Moir, R. D., Small, D., Beyreuther, K., and Masters, C. L. (1992) Nature 359, 129–137
40. Mattson, M. P. (1994) J. Neurosci. 25, 439–450
41. Shi, W. Q., Ferreira, A., Miller, C., Koo, E. H., and Selkoe, D. J. (1995) J. Neurosci. 15, 2157–2167
42. Qian, J., Brodsky, J. L., Pham, D. G., Martin, G. M., Fox, M., and Mattson, M. P. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 10832–10837
43. Master, C. L., Simms, G., Weinman, N. A., Mulhaup, G., McDonald, B. L., and Beyreuther, K. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 2425–2429
44. Weinberger, K. E., Waisiewski, H. M., and Wein, G. Y. (1985) Ann. Neurol. 17, 278–282
45. Mullan, M., Crawford, F., Axelma, K., Houdin, H., Litius, L., Winblad, B., and Lannfelt, L. (1992) Nat. Genet. 1, 543–547
46. Citron, M., Oltersdorff, T., Haase, C., McGonagel, L., Hung, A. Y., Seabert, P., Vigo-Polrey, C., Lieberburg, I., and Selkoe, D. J. (1992) Nature 360, 672–674
47. Cai, X. D., Gold, T. E., and Younkin, S. G. (1993) Science 259, 514–516
48. Games, D., Adams, D., Alessandrini, R., Barbour, R., Berthelette, P., Blackwell, C., Cerr, T., Clemens, J., Donaldson, T., Gillespie, F., Guini, T., Hagopian, S., Johnson-Wood, K., Khan, K., Lee, M., Leibovitz, P., Lieberburg, I., Little, S., Masliah, E., McConlogue, L., Montoya-Zavala, M., Mucke, L., Pagani, L., Penniman, E., Power, M., Schen, D., Seaburt, P., Snyder, B., Soriano, F., Tan, H., Vitale, J., Wadsworth, S., Wolozin, B., and Zhao, J. (1995) Nature 377, 614–6150
49. Haiku, R., Chapman, P., Nisen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Science 274, 99–102
50. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Kister, K., Mistl, C., Rothacher, S., Liefermann, B., Berti, K., Andrey, P., Paganetti, P., Aroseel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 13287–13292
51. Larner, A. J. (1995) BioEssays 17, 819–824