Study to determine guidelines for pediatric colonoscopy

Shinichiro Yoshioka, Hidetoshi Takedatsu, Shuhei Fukunaga, Kotaro Kuwaki, Hiroshi Yamasaki, Ryosuke Yamauchi, Atsushi Mori, Hiroshi Kawano, Tadahiro Yanagi, Tatsuki Mizuochi, Kosuke Ushijima, Keiichi Mitsuyama, Osamu Tsuruta, Takuji Torimura

Shinichiro Yoshioka, Hidetoshi Takedatsu, Shuhei Fukunaga, Kotaro Kuwaki, Hiroshi Yamasaki, Ryosuke Yamauchi, Atsushi Mori, Hiroshi Kawano, Tadahiro Yanagi, Tatsuki Mizuochi, Kosuke Ushijima, Keiichi Mitsuyama, Osamu Tsuruta, Takuji Torimura, Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Asahi-machi Kurume, Fukuoka 830-0011, Japan

Hidetoshi Takedatsu, Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, Jonan-ku, Fukuoka 814-0180, Japan

Tadahiro Yanagi, Tatsuki Mizuochi, Kosuke Ushijima, Department of Pediatrics and Child Health Kurume University School of Medicine, Asahi-machi Kurume, Fukuoka 830-0011, Japan

Author contributions: Yoshioka S and Takedatsu H contributed equally to this work; Yoshioka S, Takedatsu H, Mitsuyama K and Torimura T designed the research; Yoshioka S, Takedatsu H, Fukunaga S, Kuwaki K, Yamasaki H, Yamauchi R, Mori A, Kawano H, Tsuruta O, Yanagi T, Mizuochi T and Ushijima K performed the research; Yoshioka S and Takedatsu H analyzed the data; Yoshioka S and Takedatsu H wrote the paper.

Institutional review board statement: The study was reviewed and approved by The Ethical Committee of Kurume University.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent. For full disclosure, the details of the study are published on the home page of Kurume University.

Conflict-of-interest statement: None of the authors have any conflict of interest disclosures to make.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Unsolicited manuscript

Correspondence to: Hidetoshi Takedatsu, MD, PhD, Department of Gastroenterology and Medicine, Fukuoka University Faculty of Medicine, 7-45-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan. takedatsu@fukuoka-u.ac.jp
Telephone: +81-92-8011011
Fax: +81-92-8742663

Received: April 27, 2017
Peer-review started: April 27, 2017
First decision: June 8, 2017
Revised: June 23, 2017
Accepted: July 12, 2017
Article in press: July 12, 2017
Published online: August 21, 2017

Abstract

AIM
To investigated characteristics, diagnosis, bowel-cleansing preparation, sedation, and colonoscope length and diameter in Japanese pediatric patients receiving total colonoscopy.

METHODS
The present study evaluated consecutive patients aged \(\leq 15 \) years who had undergone their first colonoscopy in Kurume University between January 2007 and February 2015. Data were retrospectively analyzed. We identified 110 pediatric patients who had undergone colonoscopy that had reached the cecum, allowing the observation of the total colon.
RESULTS
Hematochezia, abdominal pain, and diarrhea were the most common symptoms. For bowel-cleansing preparation, pediatric patients aged ≤ 12 years were treated with magnesium citrate, and patients aged 13-15 years were treated with polyethylene glycol 4000. For sedation, thiamylal with pentazocine, which has an analgesic effect, was used in patients aged ≤ 6 years, and midazolam with pentazocine was used in patients aged ≥ 7 years. Regarding the choice of endoscope, short and thin endoscopes were selected for younger patients, particularly patients aged ≤ 3 years. Positive diagnoses were made in 78 patients (70.9%). Inflammatory bowel disease (n = 49, 44.5%), including ulcerative colitis (n = 37, 33.6%) and Crohn’s disease (n = 12, 10.9%), was the most common diagnosis.

CONCLUSION
Colonoscopy offers a high diagnostic capability for pediatric patients with gastrointestinal symptoms. The selection of appropriate management the performance of colonoscopy is important in pediatric patients.

Key words: Pediatric endoscopy; Sedation; Bowel cleansing preparation; Inflammatory bowel disease; Complication

© The Author(s) 2017. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: A guideline for pediatric colonoscopy management have yet to be established in Japan. We investigated clinical characteristics, diagnostic utility, bowel cleansing preparation, sedation, and colonoscopy length and diameter under 15 years of age who had undergone their first colonoscopy in our institution. Our results revealed that the symptoms associated with the indication of pediatric colonoscopy were hematochezia, abdominal pain, and diarrhea. Positive diagnoses were obtained in a majority of pediatric patients. More than 40% of patients were diagnosed with inflammatory bowel disease. Thus, our findings demonstrate the utility of colonoscopy as a diagnostic tool in pediatric patients with gastrointestinal symptoms.

INTRODUCTION
Colonoscopy is routinely performed in infants and children for the evaluation and treatment of diarrhea, weight loss, abdominal pain, unexplained iron deficiency anemia, abdominal pain, or rectal bleeding. Colonoscopy has utility as a diagnostic and therapeutic tool for pediatric patients. Recently, the American Society for Gastrointestinal Endoscopy (ASGE) and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition published modifications of their guidelines for pediatric patients, in which clear indications for colonoscopy in children were recommended. As the diagnosis of bowel diseases, including inflammatory bowel disease (IBD) and polyposis syndrome, is important in children as well as adults, it has become increasingly necessary to perform total colonoscopy in pediatric patients.

There are limited pediatric data regarding the complication rates of pediatric colonoscopy. Thakkar et al reported a complication rate of 1.1%, which was higher than that of adult colonoscopy (0.4%), in a multi-center retrospective study. Furthermore, pediatric colonoscopy is associated with a greater risk of serious complications compared with that in adults, due to the high level of technical difficulty, low compliance with bowel cleansing, and uncooperativeness during the procedure. The success of total colonoscopy relies on suitable bowel-cleansing preparation, appropriate sedation for painless and safe colonoscopy, and the choice of an appropriate endoscope.

Bowel preparation regimens for pediatric colonoscopy have yet to be standardized and vary among medical centers. Propofol is commonly used for sedation during pediatric endoscopy. The use of midazolam, fentanyl, meperidine, ketamine, and ketofol in pediatric colonoscopy have also been reported. The dosing of sedative drugs is based on patient weight and is titrated by response, allowing adequate time between doses to assess the effects and the need for additional medication. Furthermore, there are few published data to support the choice of colonoscopy in Japanese pediatric patients. Recommendations based on clinical experience suggest the use of a standard or pediatric colonoscope in children weighing 12-15 kg, the use of infant or standard adult gastroscopes in patients weighing 5-12 kg, and the use of ultra-thin gastrosopes in patients weighing < 5 kg.

Here we conducted a retrospective study of medical records to assess the appropriate management for performing colonoscopy in pediatric patients at our hospital. The aims of the present study were to assess the following: (1) patient clinical characteristics; (2) bowel-cleansing preparation; (3) sedation; (4) the choice of endoscope; and (5) the diagnostic utility of colonoscopy in pediatric patients.

MATERIALS AND METHODS

Study protocol and data collection
Colonoscopies were performed in children after clinical evaluation by pediatric gastroenterologists at Kurume University School of Medicine. In the present study, we retrospectively reviewed the medical records of...
were not routinely performed and were performed based on the presence of macroscopic abnormalities and endoscopist experience.

RESULTS

Characteristics of pediatric patients who underwent colonoscopy

Children aged ≤ 15 years who were referred for gastrointestinal symptoms with an indication for diagnostic colonoscopy were recruited between January 1, 2007 and February 28, 2015 (Table 1). A total of 110 individual pediatric patients, including patients aged < 1 year (n = 3, 2.7%), 1-3 years (n = 14, 12.7%), 4-6 years (n = 11, 10.0%), 7-9 years (n = 19, 17.3%), 10-12 years (n = 32, 29.1%), and 13-15 years (n = 31, 28.2%), were prepared for total colonoscopy by pediatric gastroenterologists. All 110 patients (100%) in whom colonoscopy reached the cecum, allowing the evaluation of the total colon from the cecum to the rectum, were included in the present study to evaluate factors related to total colonoscopy success. No complications were reported in any of the included cases. The terminal ileum was observed for diagnostic purposes in the majority of patients (105/110, 95.5%).

In the present study, 61 boys (55.5%) and 49 girls (44.5%) were included, with a male-to-female ratio of 1.2:1. Hematochezia, abdominal pain, and diarrhea were the most common indications for pediatric endoscopy, accounting for 62 (56.4%), 20 (18.1%), and 19 (17.3%) patients, respectively. Other presentations were anemia (n = 2, 1.8%), anal fistula (n = 2, 1.8%), genital ulcer (n = 2, 1.8%), and others (n = 2, 1.8%). Final diagnoses included IBD, comprising ulcerative colitis (UC; n = 37, 33.6%) and Crohn’s disease (CD; n = 12, 10.9%), non-specific colitis (NSC; n = 13, 11.8%), juvenile polyph (JP; n = 7, 6.4%), and normal (n = 32, 29.1%). Of the 49 patients with IBD, UC (n = 37, 75.5%) was more common than CD (n = 12, 24.5%). Other diagnoses (n = 9, 8.2%) included Peutz-Jeghers syndrome (n = 3, 2.7%), familial adenomatous polyposis (n = 2, 1.8%), Behçet’s disease (n = 1, 0.9%), diverticulitis (n = 1, 0.9%), internal hemorrhoids (n = 1, 0.9%), and venous angioma syndrome (n = 1, 0.9%).

Use of bowel-cleansing preparation and sedation

Table 2 shows the preparation methods used for bowel cleansing. Bowel-cleansing preparation protocols for colonoscopy in pediatric patients were selected by pediatric gastroenterologists. In all cases, bowel-cleansing preparation was effective and satisfactory. A total of 74 patients (67%) used Magcorol as a preparation. The remaining 27 patients (24.5%) used PEG-4000. GE alone was used in five patients (4.6%), all of whom had chronic diarrhea. The method of bowel preparation used was not recorded in four patients (3.6%). The majority of patients aged ≤ 12 years (63/79, 84.0%) were treated with Magcorol, and the
majority of patients aged 13-15 years were treated with PEG-4000.

Sedation was used in 85 patients (77.3%) for colonoscopy (Table 3). Thiamylal, the combination of thiamylal and pentazocine, midazolam, and the combination of midazolam and pentazocine were predominantly used for sedation at our hospital. More than half of the patients aged ≤ 6 years (15/28, 53.6%) were sedated with thiamylal, and the majority of patients aged ≥ 7 years (52/82, 63.4%) were sedated with midazolam. Pentazocine in combination with thiamylal or midazolam was used for analgesia in 78 patients (70.9%). Sedation and analgesia were not required in 20 patients aged ≥ 10 years (20/110, 18.2%). All patients were monitored by pediatric gastroenterologists and recovered after the procedure. No complications such as hypoxia or allergy occurred during the sedation.

Characteristics of colonoscopes used in pediatric patients

Two types of colonoscope, 1030 mm and 1330 mm, are used at our university. Endoscopes with a length of 1030 mm, typically used for upper endoscopy, were used for colonoscopy in 16 patients (14.5%; Table 4). In detail, all patients aged < 1 year (3/3, 100%) and the majority of patients aged 1-3 years (11/14, 78.6%) underwent colonoscopy using a 1030-mm endoscope due to their small body size. The majority of patients aged 4-6 years (9/11, 81.8%) and all patients aged ≥ 7 years (82/82, 100%) underwent colonoscopy with a 1330-mm endoscope. Furthermore, endoscopes with six different shaft diameters were used in the present study (Table 5). We selected endoscopes with diameters of 11.7 mm (n = 26, 23.6%), 11.3 mm (n = 59, 53.6%), 9.2 mm (n = 9, 8.2%), 5.4 mm (n = 8, 7.3%), 10.5 mm (n = 5, 4.5%), and 9.8 mm (n = 3, 2.7%), according to patient age and clinical status. Endoscopes with a diameter of 5.4 mm, considered ultra-thin and typically used for nasal endoscopy, were used in all patients aged < 1 year (3/3, 100%) and in one-third of patients aged 1-3 years (5/14, 35.7%). The majority of patients aged ≥ 7 years (total 82 patients) underwent colonoscopy using endoscopes with a diameter of 11.3 mm (53/82, 64.6%) or 11.7 mm (25/82, 30.5%). No serious complications such as bleeding or perforation occurred during colonoscopy in any patient. Thus, endoscopes matched according to patient body size and age were appropriately selected by endoscopists in the present study.

Association between presenting symptoms and final diagnoses

A total of 78 patients (78/110, 70.9%) had a positive diagnosis following colonoscopy, whereas no abnormalities were observed in 32 patients (29.1%). IBD, comprising UC (37/110, 33.6%) and CD (12/110, 10.9%), was the most common diagnosis. Additional findings included JP (7/110, 9.0%) and others (18/110, 23.1%). Hematochezia, which was the most common indication for pediatric colonoscopy (63/110, 57.3%), demonstrated a high positive diagnosis rate (54/63, 85.7%), particularly for UC (34/63, 54.0%). Abdominal pain and diarrhea were predominantly present in normal cases (50.0% and 52.6%, respectively) and CD (30.0% and 21.1%, respectively). These results demonstrate that hematochezia, abdominal pain, and diarrhea as important indications for total colonoscopy in pediatric patients. Further studies of pediatric colonoscopy are required to validate these findings regarding the associated between symptoms and final diagnoses (Table 6).

DISCUSSION

PEG is the most commonly used bowel-cleansing agent for bowel preparation regimens in children. Previous reports have demonstrated that PEG-3350 with simethicon has greater efficacy than other methods of pediatric bowel cleansing[10]. However, a proportion of pediatric patients are unlikely to ingest sufficient volumes due to its noxious taste[11]. The majority of prospective and comparative studies of bowel preparation for pediatric colonoscopy have been performed at single centers[11-13]. Recently, a randomized, blinded trial was conducted for bowel-cleansing preparation in pediatric patients who were randomly assigned to receive PEG 4000 with simethicon (PEG-S group), PEG-4000 with citrates and simethicone plus bisacodyl (PEG-CS + Bisacodyl group), PEG-3350 with ascorbic acid (PEG-Asc group), or sodium picosulfate plus magnesium oxide and citric acid (NaPico + MgCit group)[14]. In this study, PEG-CS + Bisacodyl, PEG-Asc, and NaPico + MgCit were all found to be non-inferior to PEG-S with respect to bowel-cleansing efficacy. NaPico + MgCit was reported as the most appropriate regimen for bowel preparation in children due to higher tolerability and a greater acceptability profile. PEG-4000 is the most commonly used agent in bowel-cleansing preparations for adult colonoscopy in Japan[15]. Only two kinds of bowel-cleansing preparation, PEG-4000 and Magcorol, are routinely used for children in Japan. The results of the present study demonstrated that the use of Magcorol with magnesium citrate has efficacy in bowel cleansing.

Table 2 Bowel cleansing preparation n (%)<ref>Table 2 Bowel cleansing preparation n (%)</ref>

Age	n	Magcorol	PEG	GE	Unknown
0	3	2 (66.7)	0 (0.0)	1 (33.3)	0 (0.0)
1-3	14	10 (71.4)	1 (7.1)	1 (7.1)	2 (14.3)
4-6	11	9 (81.8)	0 (0.0)	1 (9.1)	1 (9.1)
7-9	19	15 (78.9)	2 (10.5)	1 (5.3)	1 (5.3)
10-12	32	27 (84.4)	4 (12.5)	1 (3.1)	0 (0.0)
13-15	31	11 (35.5)	20 (64.5)	0 (0.0)	0 (0.0)
Total	110	74 (67.3)	27 (24.5)	5 (4.6)	4 (3.6)

Magcorol: Magnesium citrate; PEG: Polyethylene glycol; GE: Glycerin enema.
Thiamylal has been used for the induction of surgical anesthesia. Thiamylal, which has sedative, anticonvulsant, and hypnotic effects, is a barbiturate derivative invented in the 1950s. Thiamylal in more than half of the pediatric patients used in our series as an analgesic agent, in combination with thiamylal (20/23, 87.0%) and midazolam (58/62, 93.5%). Although colonoscopy in adults has been performed without sedation at our hospital, no patient aged ≤ 9 years and only 20 patients aged 10-15 years (20/63, 31.7%) received colonoscopy without sedation. The use of adequate sedation in pediatric patients is necessary to safely perform total colonoscopy.

The technical aspects of colonoscopy are similar between adults and children. However, adequate knowledge and good endoscopic technique are required due to a high rate of complications, the small body size of pediatric patients, and the excessive stretching of splenic and hepatic flexures associated with the use of thin endoscopes. Obvious differences between pediatric and adult colons are their length and diameter. The length of the colon is approximately 600 mm in patients aged 1 year, which increases to 1000 mm at 3 years, 1200 mm at 5 years, and finally reaches a length of 1500 mm in adults. Variable insertion tube lengths (1030-1330 mm) and shaft diameters (5.6-11.8 mm) were used for pediatric colonoscopy. There are no published data to support colonoscopy choice in children. Recommendations based on body weight have been published by the ASGE. In general, the use of adult colonoscopes is acceptable in teenage patients. Smaller, more flexible colonoscopes are suitable for the majority of average-sized preschool- and elementary school-age children. However, pediatric colonoscopes may be too large for children aged < 4 years. In the present study, we recommended the use of a standard colonoscope in patients aged ≥ 4 years, a standard adult gastroscope in patients aged 1-3 years, and an ultra-thin gastroscope in patients aged < 1 year. As data regarding body weight was not available for all patients, body weight-based analyses should be performed in future studies.

Common inductions for pediatric colonoscopy include chronic diarrhea, hematochezia, unexplained anemia, polyposis syndrome, and failure to thrive/weight loss. In the present study, hematochezia, abdominal pain, and diarrhea were the most common presentations for pediatric colonoscopy referrals, corroborating the findings of a previous study. Hematochezia was the most common symptom in patients with UC, whereas abdominal pain and diarrhea were the most common symptoms in CD patients. Compared with adults, pediatric patients are reported

Table 3 Sedation n (%)

Age	n	Thiamylal	Thiamylal + Pentazocine	Midazolam	Midazolam + Pentazocine	None	Unknown
0	3	0 (0.0)	1 (33.3)	0 (0.0)	2 (66.7)	0 (0.0)	0 (0.0)
1-3	14	1 (7.1)	7 (50.0)	1 (7.1)	3 (21.4)	0 (0.0)	2 (14.3)
4-6	11	1 (9.1)	5 (45.5)	0 (0.0)	4 (56.4)	0 (0.0)	1 (9.1)
7-9	19	0 (0.0)	2 (10.5)	0 (0.0)	15 (78.9)	0 (0.0)	2 (10.5)
10-12	32	1 (3.1)	4 (12.5)	2 (6.3)	21 (65.6)	4 (12.5)	0 (0.0)
13-15	31	0 (0.0)	1 (3.2)	1 (3.2)	13 (41.9)	16 (51.6)	0 (0.0)
Total	110	3 (2.7)	20 (18.2)	4 (3.6)	58 (52.7)	20 (18.2)	5 (4.5)

Table 4 Length of endoscope n (%)

Age	n	1030 mm	1330 mm
0	3	3 (100.0)	0 (0.0)
1-3	14	11 (78.6)	3 (21.4)
4-6	11	2 (18.2)	9 (81.8)
7-9	19	0 (0.0)	19 (100.0)
10-12	32	0 (0.0)	32 (100.0)
13-15	31	0 (0.0)	31 (100.0)
Total	110	36 (14.5)	94 (85.5)

and has greater tolerability in children aged ≤ 12 years (63/79, 79.7%).

The purpose of sedation is to reduce patient anxiety and discomfort and the risk of injury during the procedure. The level of sedation targeted and the sedative agents chosen depend on the characteristics of the endoscopic procedure, including the type and length of procedure, degree of invasiveness, and endoscopist experience. Physiological differences between pediatric and adult patients alter the risks of potentially serious complications during sedation. Propofol, a phenol derivative with sedative, hypnotic, and anesthetic properties without analgesic effects, is routinely used for pediatric sedation. The major disadvantage of propofol is its narrow therapeutic range and the risk of inadvertent anesthesia. Therefore, although, propofol is routinely administered by anesthesiologists, its use by non-anesthesiologists remains controversial. In fact, propofol is rarely used in Japan because pediatric colonoscopy is performed without the presence of an anesthesiologist. Thiamylal, which has sedative, anticonvulsant, and hypnotic effects, is a barbiturate derivative invented in the 1950s. Thiamylal has been used for the induction of surgical anesthesia and as an anticonvulsant to counteract the side-effects of other anesthetic agents. We used thiamylal in more than half of the pediatric patients aged ≤ 6 years (15/28, 53.6%) because it has a strong sedative effect while also being short-acting. Midazolam is a small, water-soluble benzodiazepine with anxiolytic, amnestic, sedative, muscle-relaxant, and anticonvulsant properties, which is widely used for sedation but generally considered to be insufficient as a monotherapy. Pentazocine is a synthetically prepared prototypical mixed agonist-antagonist narcotic drug of the benzomorphan class of opioids used to treat moderate-to-moderately severe pain. Pentazocine was used in our series as an analgesic agent, in combination with thiamylal (20/23, 87.0%) and midazolam (58/62, 93.5%). Although colonoscopy in adults has been performed without sedation at our hospital, no patient aged ≤ 9 years and only 20 patients aged 10-15 years (20/63, 31.7%) received colonoscopy without sedation. The use of adequate sedation in pediatric patients is necessary to safely perform total colonoscopy.
to have a higher frequency of positive findings resulting from colonoscopy\cite{24-26}. In the present study, 71.9% (78/110) of patients had a positive diagnosis, including UC, CD, non-specific colitis, and JP. IBD consists of two major distinct disorders, CD and UC, and is characterized by chronic inflammation of the intestine as a result of undefined pathogenic mechanisms. In the present study, IBD (49/110, 44.5%) was the most common positive finding in pediatric colonoscopy patients. Community-based epidemiological studies have demonstrated a markedly higher incidence of IBD in Japanese and other Asian adults\cite{27,28}. In pediatric patients, several studies have reported an increasing incidence of pediatric IBD\cite{3,4}. In the present study, there were more UC patients than CD patients. IBD patients consistently presented with abdominal pain, hematochezia, or non-infected diarrhea. Therefore, the results of the present study indicate that colonoscopy has utility as a diagnostic tool for pediatric patients presenting with hematochezia, abdominal pain, or diarrhea. In addition, our finding suggests that the observation of terminal ileum is needed to diagnose IBD, especially CD.

In conclusion, the selection of appropriate management approaches before and during the performance of colonoscopy is important in pediatric patients. Colonoscopy has utility as a diagnostic tool for pediatric patients with gastrointestinal symptoms and may represent an important component of treatment strategies for early and appropriate treatment of pediatric patients.

References

1. Friedl M, Welsch S. An update on pediatric endoscopy. *Eur J Med Res* 2013; 18: 24 [PMID: 23885793 DOI: 10.1186/2047-783X-18-24]

2. ASGE Standards of Practice Committee. Lighdale JR, Acosta R, Shergill AK, Chandrasekharav A, Chathadi K. Early...
D, Evans JA, Fanelli RD, Fisher DA, Fonkalsrud L, Hwang JH, Kashab M, Muthusamy VR, Pasha S, Saltzman JR, Cash BD; American Society for Gastrointestinal Endoscopy. Modifications in endoscopic practice for pediatric patients. *Gastrointest Endosc* 2014; 79: 699-710 [PMID: 24593951 DOI: 10.1016/j.gie.2013.08.014]

3 Ishige T, Tomomasu T, Takebayashi T, Asakura K, Watanabe M, Suzuki T, Miyazawa R, Arakawa H. Inflammatory bowel disease in children: epidemiological analysis of the nationwide IBD registry in Japan. *J Gastroenterol* 2010; 45: 911-917 [DOI: 10.1007/s00535-010-0223-7]

4 Wang XQ, Zhang Y, Xu CD, Jiang LR, Huang Y, Du HM, Wang XJ. Inflammatory bowel disease in Chinese children: a multicenter analysis over a decade from Shanghai. *Inflamm Bowel Dis* 2013; 19: 423-428 [PMID: 23404680 DOI: 10.1097/MIB.0b013e318286f9f2]

5 Thakkar K, El-Serag HB, Mattek N, Gilger M. Complications of pediatric colonoscopy: a five-year multicenter experience. *Clin Gastroenterol Hepatology* 2008; 6: 515-520 [PMID: 18356115 DOI: 10.1016/j.cgh.2008.01.007]

6 Jentschura D, Raute M, Wintzer J, Henkel T, Kraus M, Maneold BC. Complications in endoscopy of the lower gastrointestinal tract. Therapy and prognosis. *Surg Endosc* 1994; 8: 672-676 [PMID: 8055309]

7 Cohen S, Glattstein MM, Scolnik D, Rom L, Yaron A, Orentsmei S, Ben-Tov A, Reif S. Propofol for pediatric colonoscopy: the experience of a large, tertiary care pediatric hospital. *Am J Ther* 2014; 21: 509-511 [PMID: 25567786 DOI: 10.1097/MTJ.0b013e318286f4e9]

8 Amoronyotin S, Anpreung P, Prakanrrattana U, Chalayonnavin W, Chatchawanakit S, Suriyakj W. Experience of intravenous sedation for pediatric gastrointestinal endoscopy in a large tertiary referral center in a developing country. *Paediatr Anaesth* 2009; 19: 784-791 [PMID: 19624366 DOI: 10.1111/j.1460-9592.2009.03063.x]

9 ASGE Technology Committee, Barth BA, Banerjee S, Bhat YM, Desilets DJ, Gottlieb KT, Maple JT, Pfau PR, Pleskow D, Siddiqui UD, Tokar JL, Wang A, Song LM, Rodriguez SA. Equipment for pediatric endoscopy. *Gastrointest Endosc* 2012; 76: 8-17 [PMID: 22579260 DOI: 10.1016/j.gie.2012.02.023]

10 Dahshan A, Lin CH, Peters J, Thomas R, Tolia V. A randomized, prospective study to evaluate the efficacy and acceptance of three bowel preparations for colonoscopy in children. *Am J Gastroenterol* 1999; 94: 3497-3501 [PMID: 10606310 DOI: 10.1111/j.1572-0241.1999.01613.x]

11 Turner D, Benchimol EI, Dunn H, Griffiths AM, Frost K, Scaini C, Bell S, Leong R, de Silva HJ, Kasturiratne A, Mufeena MN, Cucchiara S, Hassan C, Civitelli F, Alsarraj A, Fong E, Holub JL, Gilger MA, El Serag HB. Prevalence of colorectal polyps in pediatric colonoscopy. *Dig Dis Sci* 2012; 57: 1050-1055 [PMID: 22147243 DOI: 10.1007/s00410-011-1972-8]

12 Asakura K, Nishiwaki Y, Inoue N, Hibi T, Watanabe M, Takebayashi T. Prevalence of ulcerative colitis and Crohn’s disease in Japan. *J Gastroenterol* 2009; 44: 659-665 [PMID: 19424654 DOI: 10.1007/s00535-009-0057-3]

13 Ng SC, Tang W, Ching JY, Wong M, Chow CM, Hui AJ, Wong TC, Leung VK, Tsang SW, Yu HH, Li MF, Ng KK, Kamn MA, Studd C, Bell S, Leong R, de Silva HJ, Kasturiratne A, Fuenea MN, Ling KL, Ooi CJ, Tan PS, Ong D, Koh KL, Hilmi I, Piseopon P, Manatsathi S, Rerknimitr R, Aniwan S, Wang YF, Ouyang Q, Zeng Z, Zhu Z, Chen MH, Hu PJ, Wang X, Simadibrata M, Abdullah M, Wu JC, Sung JJ, Chan FK, Asia-Pacific Crohn’s and Colitis Epidemiologic Study (ACCESS) Study Group. Incidence of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and colitis epidemiology study. *Gastroenterology* 2013; 145: 158-165.e2 [PMID: 23583432 DOI: 10.1053/j.gastro.2013.04.007]

P-Reviewer: De Silva AP, Ikematsu H
S-Editor: Ma YJ
L-Editor: A
A-Editor: Li D
