Stability and instability of standing waves for a generalized Choquard equation with potential

Zhipeng Cheng, Minbo Yang*

Department of Mathematics, Zhejiang Normal University
Jinhua, Zhejiang, 321004, P. R. China

Abstract

We are going to study the standing waves for a generalized Choquard equation with potential:

$$-i\partial_t u - \Delta u + V(x)u = (|x|^{-\mu} * |u|^p)|u|^{p-2}u, \quad \text{in} \ R \times R^3,$$

where \(V(x)\) is a real function, \(0 < \mu < 3\), \(2 - \mu/3 < p < 6 - \mu\) and \(*\) stands for convolution. Under suitable assumptions on the potential and appropriate frequency \(\omega\), the stability and instability of the standing waves \(u = e^{i\omega t}\varphi(x)\) are investigated.

Keywords: Stability; Instability; standing wave; ground state solution; generalized Choquard equation.

1 Introduction and main results

In this paper, we are going to study the following nonlocal Schrödinger equation:

$$\begin{align*}
-\partial_t u - \Delta u + V(x)u &= (|x|^{-\mu} * |u|^p)|u|^{p-2}u, \quad \text{in} \ R \times R^3, \\
u(0,x) &= u_0(x),
\end{align*}$$

where \(V(x)\) is a real valued function, \(0 < \mu < 3\) and \(2 - \mu/3 < p < 6 - \mu\). This equation arises in physics as an effective description of a non-relativistic bosonic system with two-body interactions in its mean field limit, it is also known to describe the propagation of electromagnetic waves in plasmas [1] and plays an important role in the theory of Bose-Einstein condensation [6]. This equation, which is also called the Hartree equations or the Schrödinger-Newton equations, has attracted a great deal of attention in theoretical over the past years.

As we all know, the Cauchy problem of nonlinear generalized Choquard equation has been intensively studied since the pioneering work by Chadam and Glassey in [7]. We refer the readers to [8, 13, 16] for a complete overview of the literature on the topic.

*Minbo Yang is the corresponding author, this work is partially supported by NSFC (11571317, 11101374, 11271331) and ZJNSF(LY15A010010), mbyang@zjnu.edu.cn
of the Cauchy problem and asymptotic behavior of the solutions. In this paper we are interested in the standing wave type solutions, i.e. solutions of the form
\[u(x) = e^{i\omega t} \varphi(x), \]
(1.2) SWS
where \(\omega > 0, \varphi \in H^1(\mathbb{R}^3) \setminus \{0\} \) satisfies the following nonlocal elliptic equation:
\[-\Delta \varphi + \omega \varphi + V(x)\varphi - (|x|^{-\mu} * |\varphi|^p)|\varphi|^{p-2}\varphi = 0. \]
(1.3) SE
For the nonlocal Schrödinger equations with \(V(x) \equiv 0 \), Chen and Guo in [8] studied
\[
\begin{cases}
i \varphi_t + \Delta \varphi + \left(\frac{1}{|x|^\alpha} * |\varphi|^p \right)|\varphi|^{p-2}\varphi = 0, \\
\varphi(x, 0) = \varphi_0(x), \quad x \in \mathbb{R}^3.
\end{cases}
\]
and proved the instability of the standing wave solution. For the Cauchy problem of the Hartree equation with harmonic potential, that is \(V(x) = |x|^2 \), we refer the readers to book [3] and the references therein. In [9], the authors derived a variant of Gagliardo-Nirenberg interpolation inequality involving nonlocal nonlinearity and determined its best (smallest) constant. The authors also established a sharp criterion for the global existence and blow-up of solutions of the Hartree equation with harmonic potential. In [24] the authors obtained the blow-up and strong instability result via construction of a cross-constrained invariant set. While in [31], the authors studied the ground states of
\[-\Delta u + \omega u = (|x|^{-1} * |u|^2)u, \quad \text{in} \; \mathbb{R}^3. \]
and considered the stability of the standing waves for a class of Hartree equation. In [28], the classical limit of (1.1) with harmonic potential and \(p = 2 \) was studied by Carles, Mauser and Stimming. We would like to mention that a recent paper [24] where the authors investigated the soliton dynamics for the Hartree equation by proving stability estimates in the spirit of Weinstein for local equations. Subsequently, without using the uniqueness and nondegeneracy of the ground states of the generalized Choquard equation, the authors in [29] also studied the soliton dynamics behavior. For the stability and instability of standing wave of nonlinear local Schrödinger equation, we may refer the readers to [21, 4, 11, 12, 22, 23, 30, 31].

The aim of this paper is to consider the instability and stability of standing waves for a class of generalized Choquard equation with potentials, including harmonic cases. Suppose that \(V(x) \) is a radial function and satisfies the following conditions:

(V0). There exist two radial functions \(V_1(x) \) and \(V_2(x) \) such that \(V(x) = V_1(x) + V_2(x) \).

(V1.1). \(V_1(x) \in C^2(\mathbb{R}^3) \) and there exist positive constants \(m, M \) such that \(0 \leq V_1(x) \) and \(\leq M(1 + |x|^m) \) on \(\mathbb{R}^3 \).

(V1.2). There exists \(M_0 > 0 \) such that \(|x^\alpha \partial_x^2 V_1(x)| \leq M_0(1 + V_1(x)) \) on \(\mathbb{R}^3 \) for \(|\alpha| \leq 2 \).

(V1.3). \(V_1(x) \in C^\infty(\mathbb{R}^3) \), \(V_1(x) \) is positive in \(\mathbb{R}^3 \) and \(\partial_\alpha^2 V_1(x) \in L^\infty(\mathbb{R}^3) \) for \(|\alpha| \geq 2 \).
Proposition 1.2. There exists \(q \geq 1 \) such that \(q > 3/2 \) and \(x^\alpha \partial_x^\alpha V_2(x) \in L^q(\mathbb{R}^3) + L^\infty(\mathbb{R}^3) \) for \(|\alpha| \leq 2 \).

Define the Hilbert space \(X \) by

\[
X \triangleq \{ v \in H^1(\mathbb{R}^3, \mathbb{C}); V_1(x)|v(x)|^2 \in L^1(\mathbb{R}^3) \}
\]

with the inner product

\[
(v, w)_X \triangleq Re \int_{\mathbb{R}^3} (v(x) \overline{w(x)} + \nabla v(x) \cdot \nabla \overline{w(x)} + V_1(x)v(x)\overline{w(x)}) dx
\]

and the corresponding norm of \(X \) denoted by \(\| \cdot \|_X \).

Proposition 1.1. (Hardy-Littlewood-Sobolev inequality) Let \(0 < \mu < n \) and suppose that \(f \in L^q(\mathbb{R}^n), h \in L^r(\mathbb{R}^n) \) with \(\frac{1}{q} + \frac{1}{r} + \frac{n}{\mu} = 2 \) and \(1 < q, r < \infty \), then

\[
\int_{\mathbb{R}^n} \frac{|f(x)||h(x)|}{|x-y|^\mu} dx \leq C(q, r, \mu, n)\|f\|_{L^q}\|h\|_{L^r}, \quad x, y \in \mathbb{R}^n,
\]

where \(C(q, r, \mu, n) \) is a positive constant depending on \(q, r, \mu \) and \(n \).

We define the energy functional \(E \) on \(X \) by

\[
E(v) \triangleq \frac{1}{2} \| \nabla v \|_2^2 + \frac{1}{2} \int_{\mathbb{R}^3} V(x)|v(x)|^2 dx - \frac{1}{2} p \mathfrak{F}_\mu(v)
\]

with \(\mathfrak{F}_\mu(v) = \int_{\mathbb{R}^3} \frac{|v(x)|^p|v(y)|^p}{|x-y|^\mu} dx dy \). By assumptions (V0) – (V2) and \(2 - \mu/3 < p < 6 - \mu \), applying Proposition 1.1 we know that \(E(v) \) is well defined on \(X \).

In the following we will make the following assumption.

Proposition 1.2. Let \(0 < \mu < 3 \). For any \(u_0 \in X \), there exist \(T = T(\|u_0\|_X) > 0 \) and a unique solution \(u(t) \in C([0, T], X) \) of (1.1) with \(u(0) = u_0 \) satisfying

\[
E(u(t)) = E(u_0), \quad \|u(t)\|_2^2 = \|u_0\|_2^2, \quad t \in [0, T].
\]

In addition, if \(u_0 \in X \) satisfies \(|x|u_0 \in L^2(\mathbb{R}^3) \), then the virial identity

\[
\frac{d^2}{dt^2}\|xu(t)\|_2^2 = 8P(u(t)),
\]

holds for \(t \in [0, T] \), where

\[
P(v) = \|\nabla v\|_2^2 - \frac{1}{2} \int_{\mathbb{R}^3} x \cdot \nabla V(x)|v(x)|^2 dx - \frac{3(p-2)}{2p} \mathfrak{F}_\mu(v).
\]

In fact, for \(V(x) = |x| \) and \(0 < \mu < 3 \), Chen et al. in [9] proved that

\[
\frac{d}{dt}\|u(t)\|_2^2 = 0, \quad \frac{d}{dt}E(u(t)) = 0
\]
and
\[\|u(t)\|_2^2 = \|u(0)\|_2^2 \quad \text{and} \quad E(u(t)) = E(u(0)). \]

Moreover, if \(2 \leq p < 2 + (2 - \mu)/3 \), the equation (1.1) exists globally in time for any initial value \(u_0 \in X \); while for \(2 \leq p = 2 + (2 - \mu)/3 \), the equation (1.1) exists globally in time provided the initial data \(\|u_0\|_{L^2} \) sufficiently small.

In order to state our results, we need to define on \(X \),
\[S_\omega(v) = E(v) + \omega Q(v), \quad Q(v) = \frac{1}{2} \|v\|_2^2 \]
and
\[I_\omega(v) = \|\nabla v\|_2^2 + \omega \|v\|_2^2 + \int_{\mathbb{R}^3} V(x)|v(x)|^2 \, dx - \mathcal{F}_\mu(v). \]

Consider the minimization problem as follows
\[S = \inf_{v \in \mathcal{N}} S_\omega(v), \quad (1.5) \]
where
\[\mathcal{N}_\omega = \{v \in X; v \neq 0, I_\omega(v) = 0\}. \quad (1.6) \]

Definition 1.3. A ground state solution of (1.3) is \(\varphi \in H^1(\mathbb{R}^3) \) with \(v > 0 \) and solving
\[S_\omega(\varphi) = \inf_{v \in \mathcal{N}_\omega} S_\omega(v). \quad (1.7) \]

In the following we will use the notion
\[\mathcal{M}_\omega = \{v \in X; v \neq 0, S_\omega'(v) = 0, S_\omega(v) = S\} \quad (1.8) \]
to denote the set of ground state solutions.

Remark 1.4. We can assume that there exists \(\omega_0 \in (0, \infty) \) such that \(\mathcal{M}_\omega \) is not empty and \(\mathcal{M}_\omega \subset \{v \in X_G; |x|v(x) \in L^2(\mathbb{R}^3) \} \) for any \(\omega \in (\omega_0, \infty) \) (The detail we can see Section 2).

Now, we study the stability of the minimizers of (1.6) in the following sense.

Definition 1.5. For \(\varphi_\omega \in \mathcal{M}_\omega \), we say that a standing wave solution \(e^{i\omega t} \varphi_\omega(x) \) of (1.1) is stable in \(X \) if for any \(\varepsilon > 0 \), there exists \(\delta > 0 \) such that \(\inf_{\theta \in \mathbb{R}} \|u(0) - e^{i\theta} \varphi_\omega\|_X < \delta \), \(\theta \in \mathbb{R} \), then the solution \(u(t) \) of (1.1) with \(u(0) = u_0 \) satisfies
\[\inf_{\theta \in \mathbb{R}} \|u(t) - e^{i\theta} \varphi_\omega\|_X < \varepsilon \quad \text{for any } t \geq 0. \]

Otherwise, \(e^{i\omega t} \varphi_\omega \) is said to be unstable in \(X \).

Theorem 1.6. Let \(0 < \mu < 3 \), \(2 + (2 - \mu)/3 < p < 6 - \mu \) and assume that conditions (V0) – (V2) hold. Then there exists \(\omega_0^* > \omega_0 \) such that for any \(\omega \in (\omega_0^*, \infty) \) with \(\varphi_\omega(x) \in \mathcal{M}_\omega \), then the standing wave solution \(u_\lambda(x,t) = e^{i\lambda t} \varphi_\omega(x) \) of (1.1) is unstable in \(X \).
The existence and qualitative properties of solutions of the Choquard equation have been widely studied in the last decades. In [33], Lieb proved the existence and uniqueness, up to translations, of the ground state of
\[-\Delta u + \omega u = (|x|^{-1} * |u|^2)u, \quad \text{in } \mathbb{R}^3.\]
Later, in [34], Lions showed the existence of a sequence of radially symmetric solutions. In [29, 21] the authors studied
\[-\Delta u + \omega u = (|x|^{-1} * |u|^p)|u|^{p-2}u, \quad \text{in } \mathbb{R}^3. \quad (1.9)\]
V0 showed the regularity, positivity and radial symmetry of the ground states and derived decay property at infinity as well. Generally, the uniqueness and nondegeneracy of the ground states is not known. In a recent paper [37], Xiang considered the uniqueness of the equation (1.9) and proved the following property of the ground state.

Lemma 1.7. There exists \(0 < \eta < 1/3\) such that for any \(p > 2 + \eta\), there exists a unique positive radial ground state \(\psi_1 \in H^1(\mathbb{R}^3)\) for equation
\[-\Delta u + u = (|x|^{-1} * |u|^p)|u|^{p-2}u, \quad \text{in } \mathbb{R}^3. \quad (1.10)\]
UN
By Remark 1.4, we have the following stability results for the standing waves of equation (1.1).

Theorem 1.8. Assume that conditions (V0) – (V2) hold and \(2 < p < 2 + \eta\) for some \(0 < \eta < \eta' < \eta\) where \(\eta > 0\) is the constant in Lemma 1.7. There exists \(\omega_0 > \omega_0\) such that, for any \(\varphi_\omega(x) \in M_\omega\), the standing wave solution \(e^{i\omega t}\varphi_\omega(x)\) of (1.1) is stable in \(X_G\) in the sense of definition 1.5.

In the last decades, many people studied the instability and stability of standing wave solution of local Schrödinger equation (see e.g. [2, 4], [10]-[15], [22], [23], [35], [36]):

\[i\partial_t u = -\Delta u + V(x)u + |u|^{p-1}u.\]

The idea of the present paper goes back to the paper [11, 13] by R. Fukuizumi, there the authors assumed that \(V(x)\) satisfying conditions (V0) – (V2) and applied the concentration principle (see [19] and [20]) to study the ground state solution \(\varphi_\omega\) of the following elliptic equation:
\[-\Delta \varphi + V(x)\varphi + \omega \varphi - |\varphi|^{p-1}\varphi = 0, \quad (1.11)\]
FEE
where \(1 < p < 2^* - 1\). Then, \(\tilde{\varphi}_\omega(x)\), defined by the scaling of \(\varphi_\omega(x) = \omega^{1/(p-1)}\tilde{\varphi}_\omega(\sqrt{\omega}x)\), is a ground state solution of
\[-\Delta \varphi + \varphi + \omega^{-1}V(\frac{x}{\sqrt{\omega}})|\varphi - |\varphi|^{p-1}\varphi = 0. \quad (1.12)\]
REE2
Then under suitable assumptions on the \(V(x)\), \(\omega^{-1}V(\frac{x}{\sqrt{\omega}})\tilde{\varphi}_\omega \to 0\) in some sense as \(\omega \to \infty\). Then for \(p > 1 + 4/n\), inspired the behavior of the orbit of the standing wave
of (1.12) with \(V(x) = 0 \), he obtained that if the sufficient condition \(\partial_\lambda^2 E(\varphi^\lambda_\omega)|_{\lambda = 1} < 0 \) holds, where \(\varphi^\lambda_\omega = \lambda^{n/2}\varphi_\omega(x) \), then the ground state solution of (1.11) blows up at finite time, i.e., the standing wave solution is unstable. Then, using the stability result of the standing wave of the limit problem, he proved that the standing wave of (1.11) is stable. This type of arguments was used by the authors in [5] to study the stability of the standing waves for a class of Hartree equation with potentials including the harmonic one as a particular case. In the present paper we follow the idea explored in [2] and [11] to study the generalized Choquard equation with a general class of potential which also includes the harmonic one as a particular case. Moreover, in our situation, the exponent \(p \) lies in an interval close to 2.

This paper is organized as follows. In section 2, we will prove some basic properties of the ground state solution of (1.1). In the first subsection of section 3, we give a sufficient condition for verifying the instability of standing wave solution of (1.1). Then, in subsection 3.2, we give the proof of main Theorem about of the instability. In subsection 4.1, the sufficient conditions for verifying the stability of standing wave solution of (1.1) with \(\mu = 1 \) is investigated. Finally, we prove the main result about of the stability.

2 Basic results for the ground states

In this section, we will give the definition of the ground state solution of (1.3) and prove the existence of the ground state solution of (1.3).

We study the functional \(S_\omega(v) \in C^1(H^1(\mathbb{R}^3), \mathbb{R}) \) with its derivative given by

\[
\langle S'_\omega(v), \phi \rangle = \int_{\mathbb{R}^3} (\nabla v \nabla \phi + \omega v \phi) dx + \int_{\mathbb{R}^3} V(x) v(x) \phi(x) dx - \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|v(x)|^{p-1} v(y)^p |\phi(x)|}{|x-y|^\mu} dx dy,
\]

\(\phi(x) \in C_0^\infty(\mathbb{R}^3) \). Hence, each critical point of \(S_\omega(v) \) is a weak solution of (1.3). Let \(W = \{ v \in X; |x|v(x) \in L^2(\mathbb{R}^3) \} \) then it is easy to see that the embedding \(W \hookrightarrow L^{q+1} \) is compact, where \(1 \leq q < 5 \). By variational arguments, we know

Proposition 2.1. Let \(0 < \mu < 3 \) and \(2 - \mu/3 < p < 2 + (2 - \mu)/3 \). For \(\omega > 0 \), there exists \(\varphi_\omega \in \mathcal{N}_\omega \) such that

\[
S_\omega(\varphi_\omega) = \inf_{v \in \mathcal{N}_\omega} S_\omega(v).
\]

Then there is a Lagrange multiplier \(\lambda \) such that

\[
S'_\omega(\varphi_\omega) - \lambda I'_\omega(\varphi_\omega) = 0. \tag{2.1}
\]

Multiple both side of the equation (2.1) by \(\varphi_\omega \), we obtain

\[
\langle S'_\omega(\varphi_\omega), \varphi_\omega \rangle = \lambda \langle I'_\omega(\varphi_\omega), \varphi_\omega \rangle.
\]

Noticing that

\[
\langle S'_\omega(\varphi_\omega), \varphi_\omega \rangle = I_\omega(\varphi_\omega) = 0
\]
and
\[\langle I'_\varphi(\varphi_\omega), \varphi_\omega \rangle = -2(p - 1)\tilde{F}_\mu(\varphi_\omega) < 0. \]

We know \(\lambda = 0\) and \(\varphi_\omega\) is a ground state solution of \((1.3)\).

Lemma 2.2. Let \(0 < \mu < 3\), \(1 - \mu/3 < p < 6 - \mu\). For any \(\omega > 0\) with \(\varphi_\omega \in \mathcal{M}_\omega\), we have
\[
\tilde{F}_\mu(\varphi_\omega) = \inf \left\{ \tilde{F}_\mu(v); v \in X \setminus \{0\}, I_\omega(v) = 0 \right\}
\]
and
\[
S_\omega(\varphi_\omega) = \inf \left\{ S_\omega(v); v \in X \setminus \{0\}, \tilde{F}_\mu(v) = \tilde{F}_\mu(\varphi_\omega) \right\}.
\]

Proof. Since
\[
S_\omega(v) = \frac{1}{2} I_\omega(v) + \frac{p - 1}{2p} \tilde{F}_\mu(v), \quad v \in X,
\]
we know that
\[
\frac{p - 1}{2p} \tilde{F}_\mu(\varphi_\omega) = S_\omega(\varphi_\omega) = \inf \left\{ S_\omega(v); v \in X \setminus \{0\}, I_\omega(v) = 0 \right\}
\]
and
\[
S_\omega(\varphi_\omega) = \inf \left\{ S_\omega(v); v \in X \setminus \{0\}, \tilde{F}_\mu(v) = \tilde{F}_\mu(\varphi_\omega) \right\}.
\]

Let \(\Gamma_\omega := \inf \left\{ \tilde{F}_\mu(v); v \in X \setminus \{0\}, I_\omega(v) \leq 0 \right\}\), it is obvious that
\[
\Gamma_\omega \leq \tilde{F}_\mu(\varphi_\omega).
\]
For any \(v \in X \setminus \{0\}\) such that \(I_\omega(v) < 0\), there exits \(\lambda_0 \in (0, 1)\) satisfying \(I_\omega(\lambda_0 v) = 0\).
Consequently, we know that
\[
\tilde{F}_\mu(\varphi_\omega) \leq \tilde{F}_\mu(\lambda_0 v) < \tilde{F}_\mu(v),
\]
therefore
\[
\tilde{F}_\mu(\varphi_\omega) = \Gamma_\omega.
\]

For any \(v\) satisfying \(\tilde{F}_\mu(v) = \tilde{F}_\mu(\varphi_\omega)\), it is easy to see that
\[
I_\omega(v) \geq 0,
\]
which implies that
\[
S_\omega(v) \geq \frac{p - 1}{2p} \tilde{F}_\mu(v) = S_\omega(\varphi_\omega) = S_\omega(\varphi_\omega).
\]

Noticing that \(\inf \left\{ S_\omega(v); v \in X \setminus \{0\}, \tilde{F}_\mu(v) = \tilde{F}_\mu(\varphi_\omega) \right\} \leq S_\omega(\varphi_\omega)\), we get the conclusion immediately. \(\blacksquare\)
Lemma 2.3. Let $G(x) \in L^q(\mathbb{R}^3) + L^\infty(\mathbb{R}^3)$ for some q such that $q > 3/2$ and $q \geq 1$. Then, there exists a constant $C > 0$ such that

$$|\int_{\mathbb{R}^3} G(x)|v(x)|^2 dx| \leq C\|G\|_{L^q + L^\infty}\|v\|^2_{H^1}, \quad v \in H^1(\mathbb{R}^3).$$

Proof. The proof is very simple, we let $G(x) = g_1(x) + g_2(x), g_1(x) \in L^q(\mathbb{R}^3), g_2(x) \in L^\infty(\mathbb{R}^3)$ and use the Hölder inequality and Sobolev inequality to prove it.

3 Instability of standing waves

In the following, for any $\omega > 0$ with $\varphi_\omega \in \mathcal{M}_\omega$, we introduce the re-scaled function

$$\varphi_\omega(x) = \omega^{\frac{2}{3(p-1)}} \tilde{\varphi}_\omega(\sqrt{\omega}x).$$

Then, $\tilde{\varphi}_\omega(x)$ is a ground state solution of

$$-\Delta \varphi + \varphi + \omega^{-1}V(\frac{x}{\sqrt{\omega}})\varphi - (|x|^{-\mu} * |\varphi|^p)|\varphi|^{p-2}\varphi = 0.$$ \hspace{1cm} (3.2) \hspace{1cm} RRE

Denote by

$$I_\omega^*(v) = \|\nabla v\|^2_2 + \|v\|^2_2 + \omega^{-1}\int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|v(x)|^2 dx - \mathfrak{F}_\mu(v),$$

$$I_0(v) = \|\nabla v\|^2_2 + \|v\|^2_2 - \mathfrak{F}_\mu(v),$$

and let $\psi_1(x)$ be the ground state solution of

$$-\Delta \psi + \psi - (|x|^{-\mu} * |\psi|^p)|\psi|^{p-2}\psi = 0,$$ \hspace{1cm} (3.3) \hspace{1cm} Con1

from [21], we know the regularity, positivity and radial symmetry of $\psi_1(x)$ and it decays asymptotically at infinity.

3.1 Sufficient conditions for instability

Lemma 3.1. Let $0 < \mu < 3, 2 - \mu/3 < p < 6 - \mu, \varphi_\omega \in \mathcal{M}_\omega$ for large ω and assume that conditions $(V0) - (V2)$ hold. Let $\tilde{\varphi}_\omega(x)$ be the re-scaled function defined by (3.1) and $\psi_1(x)$ be the ground state solution of (3.3). Then, we have

(1. $\lim_{\omega \to \infty} \mathfrak{F}_\mu(\tilde{\varphi}_\omega) = \mathfrak{F}_\mu(\psi_1)$;

(2. $\lim_{\omega \to \infty} \omega^{-1}\int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\tilde{\varphi}_\omega(x)|^2 dx = 0$;

(3. $\lim_{\omega \to \infty} \|\tilde{\varphi}_\omega\|^2_{H^1} = \|\psi_1\|^2_{H^1}$.

Proof. (1. From Lemma 2.2 we know $\psi_1(x)$ is a minimizer of

$$\inf\left\{\mathfrak{F}_\mu(v); v \in X \setminus \{0\}, I_0(v) \leq 0\right\}. \hspace{1cm} (3.4) \hspace{1cm} C2$$
Similar to the arguments of Lemma 2.2, we may assume that \(\bar{\varphi}_\omega(x) \) is a minimizer of
\[
\inf \left\{ \mathfrak{F}_\mu(v); v \in X \setminus \{0\}, I_\omega^*(v) \leq 0 \right\}. \tag{3.5} \]
Notice that \(I_0(\psi_1) = 0 \), i.e.
\[
\| \nabla \psi_1 \|_2^2 + \| \psi_1 \|_2^2 = \mathfrak{F}_\mu(\psi_1).
\]
Then, for any \(\theta > 1 \), we have
\[
\theta^{-2} I_\omega^*(\theta \psi_1) = -(\theta^{2p-2} - 1) \mathfrak{F}_\mu(\psi_1) + \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\psi_1(x)|^2 dx. \tag{3.6}
\]
Using (V.1.1) and Lemma 2.3, we know
\[
|\omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\psi_1(x)|^2 dx|
\leq \omega^{-1} \int_{\mathbb{R}^3} V_1(\frac{x}{\sqrt{\omega}})|\psi_1(x)|^2 dx + |\omega^{-1} \int_{\mathbb{R}^3} V_2(\frac{x}{\sqrt{\omega}})|\psi_1(x)|^2 dx|
\leq C \omega^{-1} \int_{\mathbb{R}^3} (1 + \omega^{-\frac{m}{2}}|\psi_1|^2 dx + (\omega^{-1} + \omega^{-\frac{2p-1}{2}}) C \| V_2 \|_{L^q + L^\infty} \| \psi_1 \|_{H^1}. \tag{3.8}
\]
Since \(|\psi_1|^2 \in L^1(\mathbb{R}^3) \) and \(q > 3/2 \), using the fact that \(\psi_1(x) \) decays exponentially at infinity, we get
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\psi_1(x)|^2 dx = 0. \tag{3.7}
\]
By (3.7) and (3.6), it is easy to see
\[
\lim_{\omega \to \infty} \theta^{-2} I_\omega^*(\theta \psi_1) = \lim_{\omega \to \infty} -(\theta^{2p-2} - 1) \mathfrak{F}_\mu(\psi_1) < 0.
\]
Namely, for any \(\theta > 1 \), if \(\omega \) is large enough, we have
\[
I_\omega^*(\theta \psi_1) < 0.
\]
Next, since \(I_\omega^*(\bar{\varphi}_\omega) = 0 \), i.e.
\[
\| \nabla \bar{\varphi}_\omega \|_2^2 + \| \bar{\varphi}_\omega \|_2^2 = \mathfrak{F}_\mu(\bar{\varphi}_\omega) - \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\bar{\varphi}_\omega(x)|^2 dx.
\]
Then, for any \(\theta > 1 \), we have
\[
\theta^{-2} I_0(\theta \bar{\varphi}_\omega) = -(\theta^{2p-2} - 1) \mathfrak{F}_\mu(\bar{\varphi}_\omega) - \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\bar{\varphi}_\omega(x)|^2 dx
\leq -(\theta^{2p-2} - 1) \mathfrak{F}_\mu(\bar{\varphi}_\omega) + \omega^{-1} \int_{\mathbb{R}^3} V_-(\frac{x}{\sqrt{\omega}})|\bar{\varphi}_\omega(x)|^2 dx, \tag{3.8}
\]
where \(V_-(x) = \max\{-V(x), 0\} \). From the conditions (V0) – (V2), we have \(V_- \in L^q + L^\infty \) with \(q > 3/2 \) and \(q \geq 1 \). According to Lemma 2.3, there exists \(C > 0 \) and \(q > 3/2 \) such that
\[
\omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\bar{\varphi}_\omega(x)|^2 dx \leq C(\omega^{-\frac{2p-1}{2}} + \omega^{-1}) \| V_- \|_{L^q + L^\infty} \| \bar{\varphi}_\omega \|_{H^1}. \tag{3.9}
\]
Using $I^*_{\omega}(\tilde{\varphi}_\omega) = 0$ again, we have

$$\|\tilde{\varphi}_\omega\|_{H^1}^2 \leq \tilde{F}_\mu(\tilde{\varphi}_\omega) + \omega^{-1} \int_{\mathbb{R}^3} V_-(\frac{x}{\sqrt{\omega}})|\tilde{\varphi}_\omega(x)|^2dx$$

$$\leq \tilde{F}_\mu(\tilde{\varphi}_\omega) + C(\omega^{\frac{3}{q}-1} + \omega^{-1})\|V_\|_{L^q+L^\infty}\|\tilde{\varphi}_\omega\|_{H^1}^2,$$

which implies

$$(1 - C(\omega^{\frac{3}{q}-1} + \omega^{-1})\|V_\|_{L^q+L^\infty})\|\tilde{\varphi}_\omega\|_{H^1}^2 \leq \tilde{F}_\mu(\tilde{\varphi}_\omega).$$

(3.10) $C6$

According to (3.9) and (3.10), we have

$$\omega^{-1} \int_{\mathbb{R}^3} V_-(\frac{x}{\sqrt{\omega}})|\tilde{\varphi}_\omega(x)|^2dx \leq C(\omega^{\frac{3}{q}-1} + \omega^{-1})\|V_\|_{L^q+L^\infty}\|\tilde{\varphi}_\omega\|_{H^1}^2,$$

which implies

$$(1 - C(\omega^{\frac{3}{q}-1} + \omega^{-1})\|V_\|_{L^q+L^\infty})\|\tilde{\varphi}_\omega\|_{H^1}^2 \leq \tilde{F}_\mu(\tilde{\varphi}_\omega).$$

(3.11) $C7$

Thus, from (3.8) and (3.11), we have

$$\theta^{-2}I_0(\theta\tilde{\varphi}_\omega) \leq - (\theta^{2p-2} - 1 - C(\omega^{\frac{3}{q}-1} + \omega^{-1})\|V_\|_{L^q+L^\infty})\tilde{F}_\mu(\tilde{\varphi}_\omega).$$

Namely, for any $\theta > 1$, if ω is large enough, we have

$$I_0(\theta\tilde{\varphi}_\omega) < 0.$$

As stated above, we have

$I^*_\omega(\theta\psi_1) < 0$ and $I_0(\theta\tilde{\varphi}_\omega) < 0$.

By $I^*_\omega(\theta\psi_1) < 0$ and (3.3), we have

$$\tilde{F}_\mu(\tilde{\varphi}_\omega) \leq \theta^{2p}\tilde{F}_\mu(\psi_1),$$

(3.12) $C8$

while, by $I_0(\theta\tilde{\varphi}_\omega) < 0$ and (3.4), we have

$$\frac{1}{\theta^{2p}}\tilde{F}_\mu(\psi_1) \leq \tilde{F}_\mu(\tilde{\varphi}_\omega).$$

(3.13) $C9$

Since $\theta > 1$ is arbitrary, from (3.12) and (3.13), we have

$$\lim_{\omega \to \infty} \tilde{F}_\mu(\tilde{\varphi}_\omega) = \tilde{F}_\mu(\psi_1).$$

(2). From $I^*_\omega(\tilde{\varphi}_\omega) = 0$, we have

$$- (\|\nabla \tilde{\varphi}_\omega\|_2^2 + \|\tilde{\varphi}_\omega\|_2^2 - \tilde{F}_\mu(\tilde{\varphi}_\omega)) = \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\tilde{\varphi}_\omega(x)|^2dx.$$

(3.14) $C99$

Moreover, by $I_0(\theta\tilde{\varphi}_\omega) < 0$ with $\theta = 1$ and (1), we have

$$\lim_{\omega \to \infty} \sup I_0(\tilde{\varphi}_\omega) \leq 0.$$

(3.15) $C10$
For $\omega \to \infty$, there exists $\theta(\omega) > 0$ such that $I_0(\theta(\omega) \phi) = 0$, thus, we have

$$F_{\mu}(\psi_1) \leq F_{\mu}(\theta(\omega) \phi) = \theta(\omega)^{2p} F_{\mu}(\phi),$$

which together with conclusion (1) implies that

$$\liminf_{\omega \to \infty} \theta(\omega)^{2p} \geq \liminf_{\omega \to \infty} F_{\mu}(\phi) = 1.$$

Using $I_0(\theta(\omega) \phi) = 0$ and conclusion (1) again, we can obtain

$$\liminf_{\omega \to \infty} I_0(\phi) = \liminf_{\omega \to \infty} (\theta(\omega)^{2p} - 1) F_{\mu}(\phi) \geq 0. \quad (3.16) \quad \text{[C11]}$$

From (3.15) and (3.16), we get

$$\lim_{\omega \to \infty} I_0(\phi) = 0,$$

this implies that

$$\lim_{\omega \to \infty} \{\|\nabla \phi\|_2^2 + \|\phi\|_2^2 - F_{\mu}(\phi)\} = 0. \quad (3.17) \quad \text{[C12]}$$

By (3.14) in the proof of (2), we have

$$\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\phi(\omega)|^2 dx = 0.$$

(3). From conclusion (1) and $I_0(\psi_1) = 0$, we have

$$\lim_{\omega \to \infty} F_{\mu}(\phi) = F_{\mu}(\psi_1) = \|\psi_1\|_{H^1}.$$

Hence, by (3.17), we get

$$\lim_{\omega \to \infty} \|\phi\|_{H^1}^2 = \lim_{\omega \to \infty} \{\|\nabla \phi\|_2^2 + \|\phi\|_2^2\} = \lim_{\omega \to \infty} F_{\mu}(\phi).$$

Hence,

$$\lim_{\omega \to \infty} \|\phi\|_{H^1}^2 = \|\psi_1\|_{H^1}^2.$$

\[\square \]

Proposition 3.2. Let $0 < \mu < 3$, $2 + (2 - \mu)/3 < p < 6 - \mu$ and assume that conditions (V0) – (V2) hold. Then there exists $\omega_0^* > \omega_0$ such that for any $\omega \in (\omega_0^*, \infty)$, $\phi_\omega \in \mathcal{M}_\omega$,

$$\partial_\lambda^2 E(\phi_\omega^\lambda)|_{\lambda=1} < 0,$$

where, $\phi_\omega^\lambda(x) = \lambda^{3/2} \phi_\omega(\lambda x)$.

Proof. Let $\phi_\omega^\lambda(x) = \lambda^{3/2} \phi_\omega(\lambda x)$, by simple calculation, we have

$$E(\phi_\omega^\lambda) = \frac{\lambda^2}{2} \|\nabla \phi_\omega\|_2^2 + \frac{1}{2} \int_{\mathbb{R}^3} V(\frac{x}{\lambda}) |\phi_\omega(x)|^2 dx - \frac{\lambda^{3(p-2)+\mu}}{2p} F_{\mu}(\phi_\omega).$$
and
\[
\partial^2_\lambda E(\varphi^\lambda)_{\lambda=1} = \|\nabla \varphi\|^2_2 + \frac{1}{2} \int_{\mathbb{R}^3} \{2x \cdot \nabla V(x) + \sum_{i,j=1}^n x_i x_j \partial_i \partial_j V(x)\}|\varphi(x)|^2 dx
\]
\[- \frac{3(p-2) + \mu \cdot (3(p-2) + (\mu - 1))}{2p} F_\mu(\varphi).
\]

Notice that \(\varphi_\omega\) is ground state solution of (1.3), we have
\[
P(\varphi_\omega) = \partial_\lambda S_\omega(\varphi^\lambda)_{\lambda=1} = (S_\omega(\varphi^\lambda), \partial_\lambda \varphi^\lambda_{\lambda=1}) = 0.
\]
Thus, from the definition of (1.4), we have
\[
\|\nabla \varphi\|^2_2 = \frac{1}{2} \int_{\mathbb{R}^3} x \cdot \nabla V(x)|v(x)|^2 dx + \frac{3(p-2) + \mu}{2p} F_\mu(\varphi).
\]
Therefore,
\[
\partial^2_\lambda E(\varphi^\lambda)_{\lambda=1} = \frac{1}{2} \int_{\mathbb{R}^3} \{3x \cdot \nabla V(x) + \sum_{i,j=1}^3 x_i x_j \partial_i \partial_j V(x)\}|\varphi(x)|^2 dx
\]
\[- \frac{3(p-2) + \mu \cdot (3(p-2) + (\mu - 2))}{2p} F_\mu(\varphi), \quad (3.18)
\]
In the following, we set
\[
V^* (x) = 3x \cdot \nabla V(x) + \sum_{i,j=1}^3 x_i x_j \partial_i \partial_j V(x)
\]
and
\[
V^*_k (x) = 3x \cdot \nabla V_k(x) + \sum_{i,j=1}^3 x_i x_j \partial_i \partial_j V_k(x), \quad k = 1, 2,
\]
with
\[
V^* (x) = V^*_1 (x) + V^*_2 (x), \quad (3.19)
\]
By Lemma 2.3 (2), (3) of Lemma 3.1 and condition (V2), we have
\[
\omega^{-1} \int_{\mathbb{R}^3} |V_2(\frac{x}{\sqrt{\omega}})| |\varphi_\omega(x)|^2 dx \leq C(\omega^{\frac{3}{2}} \sqrt{\omega}^{-1} + \omega^{-1})\|V_2\|_{L^p + L^\infty}\|\varphi_\omega\|^2_{L^2}
\]
and
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} V_1(\frac{x}{\sqrt{\omega}})|\varphi_\omega(x)|^2 dx = 0. \quad (3.20)
\]
Moreover, from the condition (V1.2), we have
\[
\omega^{-1} \int_{\mathbb{R}^3} |V^*_1(\frac{x}{\sqrt{\omega}})||\varphi_\omega(x)|^2 dx \leq C\omega^{-1} \int_{\mathbb{R}^3} (1 + V_1(\frac{x}{\sqrt{\omega}}))|\varphi_\omega(x)|^2 dx.
\]
Thus, from (3.21) and Lemma 3.2 (3), we have
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} |V^*_1(\frac{x}{\sqrt{\omega}})||\varphi_\omega(x)|^2 dx = 0. \quad (3.22)
\]
And the same as (3.20), we still have
\[
\omega^{-1} \int_{\mathbb{R}^3} |V^*_2 \left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\varphi}_\omega(x)|^2 \, dx \leq C(\omega^{\frac{3}{2p} - 1} + \omega^{-1}) \|V^*_2\|_{L^q\cap L^\infty} \|\tilde{\varphi}_\omega\|^2_{H^1}.
\]
and
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} |V^*_2 \left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\varphi}_\omega(x)|^2 \, dx = 0. \tag{3.23} \text{C18}
\]
According to (3.19), (3.22) and (3.23), we have
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} |V^*_2 \left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\varphi}_\omega(x)|^2 \, dx = 0. \tag{3.24} \text{C19}
\]
From (1) of Lemma 3.1, (3.24) and the definition of \(\tilde{\varphi}_\omega(x)\), we have
\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} |V^*_2 \left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\varphi}_\omega(x)|^2 \, dx = 0. \tag{3.25} \text{C20}
\]
Since \(\varphi_\omega(x) = \omega^{\frac{5-\mu}{10(p-1)}} \tilde{\varphi}_\omega(\sqrt{\omega} x)\), we have \(\tilde{\varphi}_\omega(x) = \omega^{\frac{4-p}{10(p-1)} + \frac{\mu-5}{20(p-1)}} \varphi_\omega \left(\frac{x}{\sqrt{\omega}}\right)\).
\[
\omega^{-1} \int_{\mathbb{R}^3} |V^*_2 \left(\frac{x}{\sqrt{\omega}}\right)||\tilde{\varphi}_\omega(x)|^2 \, dx = \omega^{\frac{4-p}{10(p-1)}} \omega^{-\frac{\mu-5}{20(p-1)}} \int_{\mathbb{R}^3} |V^*_2(x)||\varphi_\omega(x)|^2 \, dx = \int_{\mathbb{R}^3} |V^*_2(x)||\varphi_\omega(x)|^2 \, dx \tag{3.26} \text{C21}
\]
Since \(p > 2 + (2 - \mu)/3\), we have
\[
\frac{\{3(p-2) + \mu\} \cdot \{3(p-2) + (\mu - 2)\}}{2p} > 0.
\]
By (3.25) and (3.26), we have
\[
\int_{\mathbb{R}^3} |V^*_2(x)||\varphi_\omega(x)|^2 \, dx \leq \frac{\{3(p-2) + \mu\} \cdot \{3(p-2) + (\mu - 2)\}}{2p}, \tag{3.27} \text{C221}
\]
if \(\omega\) is large enough. From (3.14) and (3.27), we know there exists \(\omega_0^* > \omega_0\) such that for any \(\omega \in (\omega_0^*, \infty)\),
\[
\partial^2_{\lambda} E(\varphi_\omega^*)|_{\lambda=1} < 0.
\]

3.2 Proof of the main result

In this section, we are going to give the proof of the main result.

For any \(\varphi_\omega \in X\) and \(\varepsilon > 0\), we define
\[
U_\varepsilon(\varphi_\omega) \triangleq \{v \in X; \inf_{\theta \in \mathbb{R}} \|v - e^{i\theta} \varphi_\omega\|_X < \varepsilon\}.
\]
Lemma 3.3. Let \(\varphi_\omega \) be a ground state solution of (1.3). If \(\partial^2_\lambda E(\varphi_\omega^\lambda)|_{\lambda=1} < 0 \), then there exists \(\varepsilon > 0 \), \(\delta > 0 \) and mapping \(\lambda : U_\varepsilon(\varphi_\omega) \to (1-\delta, 1+\delta) \) such that
\[
I(v^{\lambda(v)}) = 0 \quad \text{for all} \quad v \in U_\varepsilon(\varphi_\omega).
\]

Proof. Let
\[
F(v, \lambda) = I(v^\lambda).
\]
Since \(\varphi_\omega \) is a minimizer of \(S_\omega(v) \) constrained on the manifold \(N_\omega \), then
\[
\langle S''_\omega(\varphi_\omega)\phi, \phi \rangle \geq 0, \quad \text{for} \quad \langle \varphi_\omega, \phi \rangle = 0.
\]

Next, take \(\eta = \partial_\lambda \varphi_\omega^\lambda|_{\lambda=1} \), since
\[
Q(\varphi_\omega) = Q(\varphi_\omega^\lambda) \quad \text{and} \quad \langle S'_\omega(\varphi_\omega), \xi \rangle = 0, \forall \xi \in X,
\]
then
\[
\langle S''_\omega(\varphi_\omega)\eta, \eta \rangle = \partial^2_\lambda E(\varphi_\omega^\lambda)|_{\lambda=1} < 0.
\]
By (3.28) and (3.29), we know \(\langle \eta, \varphi_\omega \rangle \neq 0 \) and so
\[
\partial_\lambda F(\varphi_\omega, 1) = \partial_\lambda I(\varphi_\omega^\lambda)|_{\lambda=1} = \langle \varphi_\omega', \eta \rangle \neq 0.
\]
Notice that,
\[
F_\lambda(\varphi_\omega, 1) = I(\varphi_\omega) = 0,
\]
the implicit function theorem implies the existence of \(\varepsilon > 0 \), \(\delta > 0 \) and a mapping \(\lambda : B_\varepsilon(\varphi_\omega) \to (1-\delta, 1+\delta) \) such that
\[
I(v^{\lambda(v)}) = 0 \quad \text{for all} \quad v \in B_\varepsilon(\varphi_\omega),
\]
the conclusion then follows directly. \(\square \)

Lemma 3.4. If \(\partial^2_\lambda E(\varphi_\omega^\lambda)|_{\lambda=1} < 0 \), where \(\varphi_\omega \) is a ground state solution of (1.3), then there exists \(\varepsilon_0 > 0 \) and \(\delta_0 > 0 \) such that, for any \(v \in U_{\varepsilon_0}(\varphi_\omega) \) satisfying \(\|v\|_2^2 = \|\varphi_\omega\|_2^2 \), we have
\[
E(\varphi_\omega) \leq E(v) + (\lambda(v) - 1)P(v),
\]
for some \(\lambda(v) \in (1 - \delta_0, 1 + \delta_0) \).

Proof. Since \(\partial^2_\lambda E(\varphi_\omega^\lambda)|_{\lambda=1} < 0 \) and \(\partial^2_\lambda E(v^\lambda) \) is continuous in \(\lambda \) and \(v \), we know that there exists \(\varepsilon_0 > 0 \) and \(\delta_0 > 0 \) such that \(\partial^2_\lambda E(v^\lambda) < 0 \) for any \(\lambda \in (1 - \delta_0, 1 + \delta_0) \) and \(v \in U_{\varepsilon_0}(\varphi_\omega) \). Notice that \(\partial_\lambda E(v^\lambda)|_{\lambda=1} = P(v) \), applying the Taylor expansion for the function \(E(v^\lambda) \) at \(\lambda = 1 \), we have
\[
E(v^\lambda) \leq E(v) + (\lambda - 1)P(v), \quad \lambda \in (1 - \delta_0, 1 + \delta_0), \quad v \in U_{\varepsilon_0}(\varphi_\omega).
\]
(3.30) \(\square \)

By Lemma 3.3 we choose \(\varepsilon_0 < \varepsilon \) and \(\delta_0 < \delta \), then there exists \(\lambda(v) \in (1 - \delta_0, 1 + \delta_0) \) such that
\[
I(v^{\lambda(v)}) = 0, \quad \forall v \in U_{\varepsilon_0}(\varphi_\omega).
\]
Therefore, we have

\[S_\omega(v^{\lambda(v)}) \geq S_\omega(\varphi_\omega). \]

Since \(\|v^{\lambda(v)}\|^2_2 = \|v\|^2_2 = \|\varphi_\omega\|^2_2 \), we obtain

\[E(v^{\lambda(v)}) = S_\omega(v^{\lambda(v)}) - \frac{\omega}{2} \|v^{\lambda(v)}\|^2_2 \geq S_\omega(\varphi_\omega) - \frac{\omega}{2} \|\varphi_\omega\|^2_2 = E(\varphi_\omega). \] \(\text{(3.31)}\)

Thus, from \(\text{(3.30)}\) and \(\text{(3.31)}\), we obtain

\[E(\varphi_\omega) \leq E(v) + (\lambda(v) - 1)P(v), \quad \forall v \in U_{\varepsilon_0}(\varphi_\omega). \]

Let \(\varphi_\omega\) be a ground state solution of \(\text{(1.3)}\) in Lemma 3.4, we introduce

\[\mathcal{K}_\omega \triangleq \{ v \in U_{\varepsilon_0}(\varphi_\omega); E(v) < E(\varphi_\omega), \|v\|^2_2 = \|\varphi_\omega\|^2_2, P(v) < 0 \}, \]

and

\[T(u_0) = \sup \{ T > 0; u(t) \in U_{\varepsilon_0}(\varphi_\omega), 0 \leq t \leq T \}, \]

where \(u(t)\) is a solution of \(\text{(1.1)}\) with \(u(0) = u_0\). Then, we have the following Lemma.

Lemma 3.5. If \(\partial_\lambda^2 E(\varphi_\omega)|_{\lambda=1} < 0\), then for any \(u_0 \in \mathcal{K}_\omega\), there exists \(\delta_2 = \delta_2(u_0) > 0\) such that \(P(u(t)) \leq -\delta_2\) for \(0 \leq t \leq T(u_0)\).

Proof. Take \(u_0 \in \mathcal{K}_\omega\) and put \(\delta_1 = E(\varphi_\omega) - E(u_0) > 0\). From Lemma 3.4 and \(E(u(t)) = E(u_0)\), we have

\[E(\varphi_\omega) \leq E(u(t)) + (\lambda(u(t)) - 1)P(u(t)) = E(u_0) + (\lambda(u(t)) - 1)P(u(t)), \]

which implies

\[0 < \delta_1 \leq (\lambda(u(t)) - 1)P(u(t)), \quad 0 \leq t < T(u_0). \] \(\text{(3.32)}\)

Thus, \(P(u(t)) \neq 0\). Since \(u_0 \in \mathcal{K}_\omega\) then \(P(u_0) < 0\). By the continuous of \(P(u(t))\) in \(t\), we know

\[P(u(t)) < 0 \quad \text{for} \quad 0 \leq t < T(u_0). \] \(\text{(3.33)}\)

Then \(\lambda(u(t)) \in (1 - \delta_0, 1)\), from \(\text{(3.32)}\) and \(\text{(3.33)}\), we have

\[P(u(t)) \leq \frac{\delta_1}{\lambda(u(t)) - 1} \leq -\frac{\delta_1}{\delta_0}, \quad 0 \leq t < T(u_0). \]

Hence, let \(\delta_2 = \delta_1/\delta_0\), we have \(P(u(t)) \leq -\delta_2\) for \(0 \leq t < T(u_0)\). \(\square\)

Proof of Theorem 1.6. Since \(P(\varphi_\omega) = \partial_\lambda S_\omega(\varphi_\omega)|_{\lambda=1} = \partial_\lambda E(\varphi_\omega)|_{\lambda=1} = 0\) and \(\partial_\lambda^2 E(\varphi_\omega)|_{\lambda=1} < 0\), there exists \(\delta > 0\) such that

\[E(\varphi_\omega^\lambda) < E(\varphi_\omega) \quad \text{for} \quad \lambda \in (1, 1 + \delta_0). \]

On the other hand, since

\[P(\varphi_\omega^\lambda) = \lambda \partial_\lambda E(\varphi_\omega^\lambda), \]
we have
\[\partial_\lambda P(\varphi_\lambda^\omega)|_{\lambda=1} = P(\varphi_\omega) + \partial_\lambda^2 E(\varphi_\lambda^\omega)|_{\lambda=1} = \partial_\lambda^2 E(\varphi_\omega)|_{\lambda=1} < 0. \]
Moreover, we have
\[\|\varphi_\lambda^\omega\|_2 = \|\varphi_\omega\|_2 \text{ and } \lim_{\lambda \to 1} \|\varphi_\lambda^\omega - \varphi_\omega\|_X = 0. \]
Therefore, we have \(\varphi_\lambda^\omega \in K_\omega \) for \(\lambda > 1 \) sufficiently close to 1.
Since we have \(|x|\varphi_\lambda^\omega(x) \in L^2(\mathbb{R}^3) \), from Assumption 3.5, we have
\[\frac{d^2}{dt^2}\|xu_\lambda(t)\|_2^2 = 8P(u_\lambda(t)), \quad 0 \leq t < T(\varphi_\lambda^\omega), \]
where \(u_\lambda(t) \) is the solution of (1.1) with \(u_\lambda(0) = \varphi_\lambda^\omega \).
By Lemma 3.5 there exists \(\delta_\lambda > 0 \) such that
\[P(u_\lambda(t)) \leq -\delta_\lambda, \quad 0 \leq t < T(\varphi_\lambda^\omega). \]
Set \(g(t) = \|xu_\lambda(t)\|_2^2 > 0 \), the Taylor expansion at \(t = 0 \) gives
\[g(t) \leq g(0) + g'(0)t + \frac{t^2}{2}g''(0) \leq g(0) + g'(0)t - \frac{\delta_\lambda}{2}t^2 \text{ for } 0 \leq t < T(\varphi_\lambda^\omega). \]
(3.34) DB
This implies \(T(\varphi_\lambda^\omega) < \infty \). Otherwise, if \(T(\varphi_\lambda^\omega) = \infty \), by (3.34), there exists \(T_1 \) such that \(g(T_1) < 0 \), this contradicts \(g(t) \geq 0 \) for any \(t \in [0, T(\varphi_\lambda^\omega)) \).
Combining this with the fact that \(|x|\varphi_\lambda^\omega = |x|u_\lambda(0) \in L^2(\mathbb{R}^3) \), there exists a \(T_0 > 0 \) such that
\[\lim_{t \to T_0} \|xu_\lambda(t)\|_2^2 = 0. \]
Moreover, we have
\[\int_{\mathbb{R}^3} |u_\lambda|^2 \leq C(\int_{\mathbb{R}^3} |x|^2|u_\lambda|^2)^{\frac{1}{2}}(\int_{\mathbb{R}^3} |\nabla u_\lambda|^2)^{\frac{1}{2}}, \]
and \(C \) is independent of \(u_\lambda \), by the conservation of mass \(\|u_\lambda\|_2^2 = \|\varphi_\lambda^\omega\|_2^2 = \text{const} > 0 \), we have
\[\lim_{t \to T_0} \|\nabla u_\lambda\|_2^2 = +\infty, \]
and
\[\|u_\lambda\|_{H^1}^2 = \|u_\lambda\|_2^2 + \|\nabla u_\lambda\|_2^2 = +\infty. \]

4 Stability of standing waves

For \(2 - \mu/3 < p < 2 + (2 - \mu)/3 \), the uniqueness of the ground state of (1.9) is not known. We consider the stability of standing wave for (1.1) with \(\mu = 1 \) when \(p \) is sufficiently close to 2. When \(\mu = 1 \) in (3.3), the uniqueness of \(\psi_1(x) \) was investigated in [37]. Denoted by
\[I_0(\varphi) = \|\nabla \varphi\|_2^2 + \|\varphi\|_2^2 - \tilde{F}_1(\varphi), \quad F_0(\varphi) = \frac{1}{2p}\tilde{F}_1(\varphi), \]

\[S_0(\varphi) = \frac{1}{2}\|\nabla \varphi\|_2^2 + \frac{1}{2}\|\varphi\|_2^2 - \frac{1}{2p}\tilde{F}_1(\varphi). \]
(4.1)
4.1 Sufficient conditions for the orbital stability

In the following, we show ψ_1 is the positive minimizer of

$$S_1 = \inf \{ S_0(\varphi); \varphi \in H^1 \setminus \{0\}, I_0(\varphi) = 0 \} = \inf \{ F_0(\varphi); \varphi \in H^1 \setminus \{0\}, I_0(\varphi) = 0 \}.$$

Next, we need an important result as follows.

Lemma 4.1. Assume that p satisfies the assumption of Lemma 1.7 and let ψ_1 is the unique positive and radially symmetric solution of

$$-\Delta \psi + \psi - (|x|^{-1} * |\psi|^p)|\psi|^{p-2}\psi = 0,$$

then ψ_1 is the minimizer of the following variational problem

$$S_1 = \inf \{ F_0(\varphi); \varphi \in H^1 \setminus \{0\}, I_0(\varphi) = 0 \}. \quad (4.2)$$

Then, there exists a subsequence $\{\varphi_k\}$, if $I_0(\varphi_k) \to 0$ and $F_0(\varphi_k) \to S_1$ as $k \to \infty$, then there exists a sequence $\{y_k\} \subset \mathbb{R}^3$ satisfying

$$\lim_{k \to \infty} \|\varphi_k|(\cdot + y_k) - \psi_1\|_{H^1} = 0.$$

Proof. Let $\{\varphi_k\} \subset H^1 \setminus \{0\}$ be a bounded sequence such that $I_0(\varphi_k) \to 0$ and $F_0(\varphi_k) \to S_1$ as $k \to \infty$. We have the decomposition property for a subsequence $\{\varphi_k\} \subset H^1 \setminus \{0\}$: there exists a sequence $\{\varphi_j\}$ in H^1, for any $l \geq 1$, we have the following identity

$$\varphi_k(x) = \sum_{j=1}^l \varphi_j(x - x_k^j) + \varphi_k(x), \quad (4.3)$$

with $\lim_{k \to \infty} \|\varphi_k\|_p \to 0$ as $l \to \infty$ and for every $j_1 \neq j_2$, $|x_k^{j_1} - x_k^{j_2}| \to \infty$ as $k \to \infty$. Moreover, as $k \to \infty$, we have

$$\|\varphi_k\|_{H^1}^2 = \sum_{j=1}^l \|\varphi_j\|_{H^1}^2 + \|\varphi_k\|_{H^1}^2 + o(1). \quad (4.4)$$

By (4.1), we know

$$\|\varphi_k\|_{H^1}^2 = I_0(\varphi_k) + 2pF_0(\varphi_k). \quad (4.5)$$

From (4.4), (4.5) and $k \to \infty$, we have

$$I_0(\varphi_k) = \sum_{j=1}^l I_0(\varphi_j) + 2p \sum_{j=1}^l F_0(\varphi_j) + \|\varphi_k\|_{H^1}^2 - 2pF_0(\varphi_k) + o(1). \quad (4.6)$$

Thus we have

$$\sum_{j=1}^l I_0(\varphi_j) + 2p \sum_{j=1}^l F_0(\varphi_j) - 2pS_1 \leq 0, \quad (4.7)$$

17
Lemma 4.2. Suppose that (V0) — (V2) are satisfied and p satisfies the assumption of Lemma [1.7]. Let $\varphi(x) \in \mathcal{M}_\omega$ and the unique positive radial solution ψ_1 of (1.9) with $\omega = 1$. Then, for the re-scaled function $\varphi_\omega(x)$ defined by
\[
\varphi_\omega(x) = \omega \frac{1}{\omega^3} \varphi_\omega(\sqrt{\omega}x),
\]
we have
\[
\lim_{\omega \to \infty} \| \varphi_\omega - \psi_1 \|_{H^1} = 0.
\]
Proof. We introduce two functional as

\[I^*_\omega(\varphi) = \| \nabla \varphi \|^2 + \| \varphi \|^2 + \omega^{-1} \int_{\mathbb{R}^3} V\left(\frac{x}{\sqrt{\omega}} \right) |\varphi|^2 - \tilde{S}_1(\varphi), \]

\[S^*_\omega(\varphi) = \frac{1}{2} \| \nabla \varphi \|^2 + \frac{1}{2} \| \varphi \|^2 + \frac{1}{2} \omega^{-1} \int_{\mathbb{R}^3} V\left(\frac{x}{\sqrt{\omega}} \right) |\varphi|^2 - \frac{1}{2p} \tilde{S}_1(\varphi). \]

For fixed \(\omega > 0 \), we claim that \(\tilde{\varphi}_\omega \) is a minimizer of the variational problem as follows,

\[S^* = \inf \left\{ \frac{p-1}{2p} \tilde{S}_1(\varphi); \varphi \in H^1 \setminus \{0\}, I^*_\omega(\varphi) \leq 0 \right\}. \tag{4.12} \]

In fact, since

\[S_\omega(v) = \frac{1}{2} I_\omega(v) + \frac{p-1}{2p} \tilde{S}_1(v), \quad v \in X, \]

we know that

\[\frac{p-1}{2p} \tilde{S}_1(\varphi_\omega) = S_\omega(\varphi_\omega) = \inf \left\{ S_\omega(v); v \in X \setminus \{0\}, I_\omega(v) = 0 \right\} \]

\[= \inf \left\{ \frac{p-1}{2p} \tilde{S}_1(v); v \in X \setminus \{0\}, I_\omega(v) = 0 \right\}, \]

i.e.

\[\tilde{S}_1(\varphi_\omega) = \inf \left\{ \tilde{S}_1(v); v \in X \setminus \{0\}, I_\omega(v) = 0 \right\}. \]

Let \(\Gamma_\omega := \inf \left\{ \tilde{S}_1(v); v \in X \setminus \{0\}, I_\omega(v) \leq 0 \right\} \), it is obvious that

\[\Gamma_\omega \leq \tilde{S}_1(\varphi_\omega). \]

For any \(v \in X \setminus \{0\} \) such that \(I_\omega(v) < 0 \), there exits \(\lambda_0 \in (0, 1) \) satisfying \(I_\omega(\lambda_0 v) = 0 \). Consequently, we know that

\[\tilde{S}_1(\varphi_\omega) \leq \tilde{S}_1(\lambda_0 v) < \tilde{S}_\mu(v), \]

therefore

\[\tilde{S}_1(\varphi_\omega) = \Gamma_\omega. \]

Consequently, by changing variable, we know \(\tilde{\varphi}_\omega \) minimizes \((4.12) \). Similarly, \(\psi_1 \) is the minimizer of

\[\inf \left\{ \frac{p-1}{2p} \tilde{S}_\mu(\varphi); \varphi \in H^1 \setminus \{0\}, I_0(\varphi) \leq 0 \right\}. \tag{4.13} \]

From Lemma \(3.1 \) (1), we have

\[\lim_{\omega \to \infty} \tilde{S}_1(\tilde{\varphi}_\omega) = \tilde{S}_1(\psi_1). \tag{4.14} \]

Noting that \(I^*_\omega(\tilde{\varphi}_\omega) = 0 \), we know

\[I_0(\tilde{\varphi}_\omega) = \| \nabla \tilde{\varphi}_\omega \|^2 + \| \tilde{\varphi}_\omega \|^2 - \tilde{S}_1(\tilde{\varphi}_\omega) = -\omega^{-1} \int_{\mathbb{R}^3} V\left(\frac{x}{\sqrt{\omega}} \right) |\tilde{\varphi}_\omega|^2 < 0. \tag{4.15} \]
Hence, there exists a \(\lambda_0(\omega) \in (0, 1) \) such that \(I_0(\lambda_0(\omega)\bar{\varphi}) = 0 \), then, we have

\[
\bar{\Phi}_1(\psi_1) \leq \lambda_0(\omega)^{2p}\bar{\Phi}_1(\bar{\varphi}) \to \lambda_0^{2p}(\psi_1), \quad \text{as} \quad \omega \to \infty,
\]

for some \(\lambda_0 \in (0, 1) \), which implies \(\lim_{\omega \to \infty} \lambda_0(\omega) = 1 \). Thus, \(\lim_{\omega \to \infty} I_0(\bar{\varphi}) = 0 \), we may get from (4.15) that

\[
\lim_{\omega \to \infty} \omega^{-1} \int_{\mathbb{R}^3} V(\frac{x}{\sqrt{\omega}})|\bar{\varphi}|^2 = 0.
\]

By Lemma 4.1 for any sequence \(\{\omega_k\} \) with \(\omega_k \to \infty \), there exists a subsequence of \(\{\bar{\varphi}_{\omega_k}\} \) and a sequence \(\{y_k\} \subseteq \mathbb{R}^3 \) such that

\[
\lim_{k \to \infty} ||\bar{\varphi}_{\omega_k}(-y_k) - \psi_1||_{H^1} = 0. \tag{4.16}
\]

Since \(\bar{\varphi}_{\omega_k} \in X_G \) and the radial solution \(\psi_1 \in H^1(\mathbb{R}^3) \), then \(y_k = 0 \) in (4.16). Indeed, if \(y_k \to \infty \), then \(\bar{\varphi}_{\omega_k} \rightharpoonup 0 \) weakly. But \(\psi_1 \) is a positive radial function. It is impossible. Thus, we have

\[
\lim_{\omega \to \infty} ||\bar{\varphi}_{\omega} - \psi_1||_{H^1} = 0. \tag*{\Box}
\]

Related to the radial solution \(\psi_1 \), we may define two unbounded self-adjoint operators \(L_1 \) and \(L_2 \) from \(L^2 \) to \(L^2 \) by

\[
L_1 = -\Delta + 1 - (p - 1)(|x|^{-1} |\psi_1|^p)|\psi_1|^{p-2} - p(|x|^{-1} |\psi_1|^{p-1} - |\psi_1|^{p-1})|\psi_1|^{p-2},
\]

\[
L_2 = -\Delta + 1 - (|x|^{-1} |\psi_1|^p)|\psi_1|^{p-2},
\]

with

\[
\langle L_1 v, v \rangle = ||v||^2_{H^1} - \mathfrak{R}_{1,v}(x, y),
\]

\[
\langle L_2 v, v \rangle = ||v||^2_{H^1} - \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{\psi_1(x)^{p-2}|v(x)|^2|\psi_1(y)|^p}{|x - y|} dxdy,
\]

where

\[
\mathfrak{R}_{1,v}(x, y) = (p - 1) \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|w(x)|^{p-2}|v(x)|^2|w(y)|^p}{|x - y|} dxdy
\]

\[
+ p \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|w(x)|^{p-2}|v(x)||w(y)|^{p-2}|v(y)|^p}{|x - y|} dxdy. \tag{4.17}
\]

We are ready to show some

\textbf{Lemma 4.3. Let} \(\eta > 0 \) be the constant in Lemma 4.1, \(\text{there exists} \ 0 < \eta' < \eta \) \text{such that for all} \ p, 2 < p < 2 + \eta'.

1. \(\text{There exists} \ \delta_{01} > 0 \ \text{such that} \)

\[
\langle L_1 v, v \rangle \geq \delta_{01} ||v||^2_{2}, \quad v \in H^1_G(\mathbb{R}^3, \mathbb{R}),
\]

\text{where} \ (v, \psi_1)_{L^2} = 0.

2. \(\text{There exists} \ \delta_{02} > 0 \ \text{such that} \)

\[
\langle L_2 v, v \rangle \geq \delta_{02} ||v||^2_{2}, \quad v \in H^1(\mathbb{R}^3, \mathbb{R}),
\]

\text{where} \ (v, \psi_1)_{L^2} = 0.
where

By lower semi-continuity, we have

\[0 < 2 + \eta \]

Differential the above equation with respect to \(L \), \(\partial \psi \), \(\partial x \), we set

\[L = (1, \omega) = (\psi, \phi) \]

We decompose

\[\psi \]

Thus, \(L \) has exactly one negative eigenvalue \(\lambda_1 \) with corresponding eigenfunction \(e_1 \). From Theorem 1.3 of [37], we know there exists \(0 < \eta' < \eta \) such that for all \(p, 2 < p < 2 + \eta', \) the operator \(L \) is nondegenerate, that is

\[\Sigma_3 = Ker \{ L \} = span \{ \psi \}, \quad j = 1, 2, 3. \]

Now decomposing \(H^1 = \Sigma_1 \oplus \Sigma_2 \oplus \Sigma_3 \) with \(\Sigma_1 = span \{ e_1 \}, \Sigma_2 \) is the image of the spectral projection corresponding to the positive part of the spectrum of \(L^1 \). For \(\omega > 0 \), set \(\psi_{1,\omega} = \omega^{p-1} \psi_1 (\sqrt{\omega} x) \), then \(\psi_{1,\omega} \) satisfies

\[-\Delta \psi_{1,\omega} + \omega \psi_{1,\omega} - (|x|^{-1} * |\psi_{1,\omega}|^p) |\psi_{1,\omega}|^{p-2} \psi_{1,\omega} = 0. \]

Differential the above equation with respect to \(\omega \) and take \(\omega = 1 \) to give

\[L_1 \phi = -\Delta \phi + \phi - p(|x|^{-1} * (|\psi_{1,\omega}|^p)) |\psi_{1,\omega}|^{p-1} - (p - 1)(|x|^{-1} * |\psi_{1,\omega}|^p) |\psi_{1,\omega}|^{p-1} = -\psi_1. \]

where \(\phi = \frac{\partial \psi_{1,\omega}}{\partial x} \). Since \(\psi_1 \) is radial, it is easy to check \(\phi \in \mathcal{H}_G^1 \) and \(\langle \phi, \psi \rangle_{L^2} = 0. \) We decompose \(v_0 = v \) as

\[v_0 = \alpha e + \xi, \quad \phi = \beta e_1 + \eta, \]

Proof. (1) By contradiction, suppose that

\[\langle L_1 v_k, v_k \rangle \leq 0, \quad (v_k, \psi_1)_{L^2} = 0, \quad \|v_k\|_{H^1} = 1. \]

Since \(v_k \) is bounded in \(\mathcal{H}_G^1 \), there exists a subsequence \(\{v_i\} \) such that \(v_i \to v_0 \) weakly in \(\mathcal{H}_G^1 \) and \(\mathcal{H}_G^1 \to L^3 \) is compact. Thus

\[(\psi_1, v_0)_{L^2} = 0 \]

and

\[\lim_{i \to \infty} \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^p)|\psi_1|^{p-2} \psi_i^2 = \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^p)|\psi_1|^{p-2} \psi_0^2. \]

\[\lim_{i \to \infty} \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^{p-1} v_i)|\psi_1|^{p-1} v_i = \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^{p-1} v_0)|\psi_1|^{p-1} v_0. \]

By lower semi-continuity, we have

\[\langle L_1 v_0, v_0 \rangle \leq \lim_{i \to \infty} \langle L_1 v_i, v_i \rangle \leq 0. \]
where \(\alpha, \beta \in \mathbb{R} \) and \(\xi, \eta \in \Sigma_2 \). If \(\alpha = 0 \), then \(\langle L_1 v_0, v_0 \rangle = \langle L_1 \xi, \xi \rangle > 0 \). Suppose \(\alpha \neq 0 \), then we have
\[
\langle L_1 \phi, \phi \rangle = -(\psi_1, \phi) = -(\psi_1, \frac{1}{p-1} \psi_1 + \frac{1}{2} x \cdot \nabla \psi_1) = -\frac{7 - 3p}{4(p-1)} \|\psi_1\|^2 < 0.
\]
Therefore, \(\beta \neq 0 \) and \(\langle L_1 \eta, \eta \rangle = \beta^2 \lambda_1 + \langle L_1 \phi, \phi \rangle < \beta^2 \lambda_1 \). Furthermore, since \(\langle L_1 \phi, v_0 \rangle = -(\psi_1, v_0)_{L^2} = 0 = \alpha \beta \lambda_1 + \langle L_1 \eta, \xi \rangle \). Thus, \(\langle L_1 \eta, \xi \rangle = -\alpha \beta \lambda_1 \). By Schwarz inequality, we have
\[
\langle L_1 v_0, v_0 \rangle = \alpha^2 \lambda_1 + \langle L_1 \xi, \xi \rangle \geq \alpha^2 \lambda_1 + \frac{\|\langle L_1 \eta, \xi \rangle\|^2}{\langle L_1 \eta, \eta \rangle} > 0,
\]
this together with (4.19) lead to \(v_0 = 0 \). However,
\[
\lim_{i \to \infty} \langle L_1 v_i, v_i \rangle = \lim_{i \to \infty} (\|v_i\|^2_{H^1} - \Re \psi_i, v_i (x, y)) = 1 - \Re \psi_1, v_0 (x, y) = 1,
\]
which contradicts with (4.19).

(2) Since \(\psi_1(x) \) is the unique positive radial solution of (3.2) with \(\mu = 1 \). We have
\[
L_2 \psi_1 = -\Delta \psi_1 + \psi_1 - (|x|^{-1} \ast |\psi_1|^p) |\psi_1|^{p-2} \psi_1 = 0,
\]
and \(\psi_1 > 0 \) for \(x \in \mathbb{R}^3 \), \(\psi_1 \) is the first eigenfunction of \(L_2 \) corresponding to the eigenvalue 0. Moreover, by Weyl’s theorem, the essential spectrum of \(L_2 \) are in \([1, \infty) \), since \(\psi_1 \) tends to zero at infinity. These conclude (2). \(\square \)

For any \(v \in X_G \) with \(v_1(x) = \Re v(x) \) and \(v_2(x) = \Im v(x) \), we introduce two unbounded self-adjoint operators from \(L^2 \) to \(L^2 \) defined on domain \(D(-\Delta + V) \) by
\[
L^1_\omega = -\Delta + \omega + V - (p-1)(|x|^{-1} \ast |\varphi_\omega|^p)|\varphi_\omega|^{p-2} - p(|x|^{-1} \ast (|\varphi_\omega|^{p-1}))|\varphi_\omega|^{p-1},
\]
\[
L^2_\omega = -\Delta + \omega + V - (|x|^{-1} \ast |\varphi_\omega|^p)|\varphi_\omega|^{p-2}.
\]
Therefore, \(S''_\omega \) can be expressed by
\[
\langle S''_\omega(\varphi_\omega), v, v \rangle = \langle L^1_\omega v_1, v_1 \rangle + \langle L^2_\omega v_2, v_2 \rangle,
\]
and
\[
\langle L^1_\omega v_1, v_1 \rangle = \|v_1\|^2_{L^2_\omega} - \Re_{\varphi_\omega, v_1 (x, y)},
\]
\[
\langle L^2_\omega v_2, v_2 \rangle = \|v_2\|^2_{L^2_\omega} - \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|\varphi_\omega(x)|^{p-2}|v_2(x)|^2|\varphi_\omega(y)|^p}{|x-y|} dx dy.
\]
\[
\Re(\varphi_\omega, v)_{L^2} = (\varphi_\omega, v_1)_{L^2}, \quad \Re(i\varphi_\omega, v)_{L^2} = (i\varphi_\omega, v_2)_{L^2},
\]
where \(\Re_{\varphi_\omega, v}(x, y) \) is defined in (4.17).

Let \(\lambda_G = \inf\{\langle Hv, v \rangle; v \in X_G, \|v\|_{L^2} = 1\} \), for \(\omega > -\lambda_G \), we define the rescaled norm \(\|v\|_{\tilde{X}_\omega} \) by
\[
\|v\|^2_{\tilde{X}_\omega} = \|v\|^2_{H^1} + \int_{\mathbb{R}^3} \omega^{-1} V(x) |v(x)|^2 dx, \quad v \in X_G.
\]
For \(v(x) = \omega^{-1} \tilde{v}(\sqrt{\omega} x) \), we define another two re-scaled operators \(\tilde{L}_1^\omega \) and \(\tilde{L}_2^\omega \) from \(L^2 \) to \(L^2 \) by

\[
\tilde{L}_1^\omega = -\Delta + 1 + \omega^{-1} V\left(\frac{x}{\sqrt{\omega}} \right) - (p-1)(|x|^{-1}(\varphi_\omega)^p)|\varphi_\omega|^{p-2} - p(|x|^{-1}(\varphi_\omega)^{p-1}))|\varphi_\omega|^{p-1},
\]

\[
\tilde{L}_2^\omega = -\Delta + 1 + \omega^{-1} V\left(\frac{x}{\sqrt{\omega}} \right) - (|x|^{-1}(\varphi_\omega)^p)|\varphi_\omega|^{p-2},
\]

with bilinear form as

\[
\langle \tilde{L}_1^\omega v, v \rangle = \|v\|_{X_\omega}^2 - 2\Re \varphi_\omega v(x, y),
\]

\[
\langle \tilde{L}_2^\omega v, v \rangle = \|v\|_{X_\omega}^2 - \int_{\mathbb{R}^3 \times \mathbb{R}^3} \frac{|\varphi_\omega(x)|^{p-2}|v(x)|^p|\varphi_\omega(y)|^p}{|x-y|} \, dx \, dy.
\]

By simple calculation, one can find that

\[
\|v\|_{X_\omega}^2 = \omega^{\frac{5-p}{2}} \|\tilde{v}\|_{X_\omega}^2, \quad (\varphi_\omega, v)_{L^2} = \omega^{\frac{7-3p}{2}} (\tilde{\varphi}_\omega, \tilde{v})_{L^2}, \quad \text{(4.22)}
\]

By Lemma 4.4. Assume the conditions \((\mathcal{V}0) - (\mathcal{V}2)\) hold and \(\eta > 0 \) be the constant in Lemma 1.7, there exists \(0 < \eta' < \eta \), for \(2 < p < 2 + \eta' \) and \(\varphi_\omega \in \mathcal{M}_\omega \).

1. There exists \(\omega_1 > 0 \) and \(\delta_1 > 0 \) such that

\[
\langle \tilde{L}_1^\omega v, v \rangle \geq \delta_1 \|v\|_{X_\omega}^2, \quad v \in X_G(\mathbb{R}^3, \mathbb{R})
\]

for any \(\omega \in (\omega_1, \infty) \). Here, \((v, \varphi_\omega)_{L^2} = 0 \).

2. There exists \(\omega_2 > 0 \) and \(\delta_2 > 0 \) such that

\[
\langle \tilde{L}_2^\omega v, v \rangle \geq \delta_2 \|v\|_{X_\omega}^2, \quad v \in X_G(\mathbb{R}^3, \mathbb{R})
\]

for any \(\omega \in (\omega_2, \infty) \). Here, \((v, \varphi_\omega)_{L^2} = 0 \).

Proof. (1) Arguing by contradiction. If (1) is not true, from (4.22), there exists \(\omega_k \to \infty \) and \(v_k \) satisfying \(\|v_k\|_{X_{\omega_k}}^2 = 1 \) and \((v_k, \tilde{\varphi}_{\omega_k})_{L^2} = 0 \) such that

\[
\lim_{k \to \infty} \langle \tilde{L}_1^{\omega_k} v_k, v_k \rangle \leq 0. \quad \text{(4.23)}
\]

Since \(V_1(x) \geq 0 \), from Lemma 2.3 we know

\[
\left| \int_{\mathbb{R}^3} \omega_k^{-1} V_2\left(\frac{x}{\sqrt{\omega_k}} \right) |v_k(x)|^2 \, dx \right| \leq C(\omega_k^{\frac{3}{p} - 1} + \omega_k^{-1}) \|V_2\|_{L^q \to L^\infty} \|v_k\|_{H^1}^2.
\]

By (4.21), we get

\[
\|v_k\|_{H^1}^2 - C(\omega_k^{\frac{3}{p} - 1} + \omega_k^{-1}) \|V_2\|_{L^q \to L^\infty} \|v_k\|_{H^1}^2 \leq \|v_k\|_{X_{\omega_k}}^2 = 1, \quad \text{(4.24)}
\]

thus \(\{v_k\} \) is bounded in \(H^1(\mathbb{R}^3) \), if \(\omega_k \) is large enough. Moreover,

\[
\lim_{k \to \infty} \int_{\mathbb{R}^3} \omega_k^{-1} V_2\left(\frac{x}{\sqrt{\omega_k}} \right) |v_k(x)|^2 \, dx = 0. \quad \text{(4.25)}
\]
Let \(\{v_i\} \) be a subsequence of \(\{v_k\} \) such that \(v_i \rightharpoonup v_0 \) in \(H^1(\mathbb{R}^3) \) and \(\{\varphi_{\omega_i}\} \) be of \(\{\varphi_{\omega_k}\} \) such that \(\varphi_{\omega_i} \rightharpoonup \psi_1 \) in \(H^1(\mathbb{R}^3) \), which is due to Lemma 1.7. According to Lemma 2.3 and Hölder inequality, since \(p \) is sufficiently close to 2, we also have \(|v_i|^2 \rightarrow |v_0|^2 \) in \(L^{3/2}(\mathbb{R}^3) \) and \(\langle |x|^{-1} * |\varphi_{\omega_i}|^p \rangle |\varphi_{\omega_i}|^{p-2} \rightarrow \langle |x|^{-1} * |\psi_1|^p \rangle |\psi_1|^{p-2} \) in \(L^3(\mathbb{R}^3) \) and consequently,

\[
\lim_{i \to \infty} \int_{\mathbb{R}^3} (|x|^{-1} * |\varphi_{\omega_i}|^p) |\varphi_{\omega_i}|^{p-2} |v_i|^2 \, dx = \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^p) |\psi_1|^{p-2} |v_0|^2 \, dx. \tag{4.26}
\]

By the analogous analysis, we also have

\[
\lim_{i \to \infty} \int_{\mathbb{R}^3} (|x|^{-1} * |\varphi_{\omega_i}|^{p-2} |\varphi_{\omega_i}| |v_i|) |\varphi_{\omega_i}|^{p-2} |\psi_i| \, dx = \int_{\mathbb{R}^3} (|x|^{-1} * |\psi_1|^{p-2} |\psi_1| |v_0|) |\psi_1|^{p-2} |\psi_1| |v_0| \, dx. \tag{4.27}
\]

By (4.23), (4.25), (4.26), (4.27) and \(V_1(x) \geq 0 \), we have

\[
0 \geq \liminf_{i \to \infty} (L_{\omega_i}^1 v_i, v_i) = \liminf_{i \to \infty} \left(\|v_i\|_{H^1}^2 + \int_{\mathbb{R}^3} \omega_i^{-1} V(\frac{x}{\sqrt{\omega_i}}) |v_i(x)|^2 \, dx - \Re \mathfrak{R}_{\omega_i, v_i} \right) \\
\geq \|v_0\|_{H^1}^2 - \Re \mathfrak{R}_{v_1, v_0} = \langle L_1 v_0, v_0 \rangle.
\]

Since \((v_i, \varphi_{\omega_i})_{L^2} = 0 \), we have \((v_0, \psi_1)_{L^2} = 0 \). While, according to Lemma 1.3 (1), we know \(\langle L_1 v_0, v_0 \rangle > 0 \), then we can conclude that \(v_0 = 0 \).

However, by (1.23), (1.26) and (1.27), we have

\[
0 \geq \liminf_{i \to \infty} (L_{\omega_i}^1 v_i, v_i) = \liminf_{i \to \infty} \left(\|v_i\|_{H^1}^2 - \Re \mathfrak{R}_{\omega_i, v_i} \right) \\
= 1 - \Re \mathfrak{R}_{\psi_1, v_0},
\]

which means \(\Re \mathfrak{R}_{\psi_1, v_0} \geq 1 \), this contradicts with the conclusion we just proved that \(v_0 = 0 \). Hence, (1) is concluded.

Repeat the same arguments, we can prove (2).

To show the stability of the standing wave solutions, we need a sufficient condition as follows.

Proposition 4.5. Assume the conditions (V0) – (V2) hold and \(\eta > 0 \) be the constant in Lemma 1.7, there exists \(0 < \eta' < \eta \), for \(2 < p < 2 + \eta' \) and \(\varphi_{\omega} \in \mathcal{M}_{\omega} \), \(\omega \in (\omega_0^*, \infty) \) where \(\omega_0^* \) be the number obtained in Lemma 4.5. There exists \(\delta' > 0 \) such that

\[
\left\langle S''(\varphi_{\omega}) v, v \right\rangle \geq \delta' \|v\|_{X}^2
\]

for any \(v \in X_G \) satisfying \(\text{Re}(\varphi_{\omega}, v)_{L^2} = 0 \) and \(\text{Re}(i \varphi_{\omega}, v)_{L^2} = 0 \).

Proof. From (1.20) and according to Lemma 4.3. On the one hand, there exists \(\omega_1 > 0 \) and \(\delta_1 > 0 \) such that

\[
\langle L_{\omega}^1 v_1, v_1 \rangle \geq \delta_1 \|v_1\|_{X}^2, \quad \forall v_1 \in X_G(\mathbb{R}^3, \mathbb{R})
\]

24
for any $\omega \in (\omega_1, \infty)$ and $(v_1, \varphi_\omega)_L^2 = Re(\varphi_\omega, v)_L^2 = 0$. On the other hand, there exists $\omega_2 > 0$ and $\delta_2 > 0$ such that

$$\langle L_\omega^2 v_2, v_2 \rangle \geq \delta_2 \|v_2\|_{X_\omega}^2, \quad \forall v_2 \in X_G(\mathbb{R}^3, \mathbb{R})$$

for any $\omega \in (\omega_2, \infty)$ and $(v_2, \varphi_\omega)_L^2 = Re(i\varphi_\omega, v)_L^2 = 0$. Since there exists $\omega_0 > 0$, M_ω is not empty. Let $\varphi_\omega(x) \in M_\omega$, there exists $\omega_0^* = \max\{\omega_1, \omega_2\}$ and $\delta^* = \min\{\delta_1, \delta_2\}$ such that

$$\langle S'_\omega(\varphi_\omega)v, v \rangle = \langle L_\omega^1 v_1, v_1 \rangle + \langle L_\omega^2 v_2, v_2 \rangle \geq \delta_1 \|v_1\|_{X_\omega}^2 + \delta_2 \|v_2\|_{X_\omega}^2 \geq \delta^* \|v\|_{X_\omega}^2,$$

for $\omega \in (\omega_0^*, \infty)$ and any $v \in X_G$ satisfying $Re(\varphi_\omega, v)_L^2 = 0$ and $Re(i\varphi_\omega, v)_L^2 = 0$. Then the conclusion follows from the fact that $\|\cdot\|_X$ is equivalent to $\|\cdot\|_{X_\omega}$ on X_G. □

4.2 Proof of Theorem 1.8

In this subsection, we will show the main result of stability. For any $\varepsilon > 0$ and $\varphi_\omega \in X_G$, we define

$$U_\varepsilon(\varphi_\omega) \triangleq \{v \in X_G; \inf_{\theta \in \mathbb{R}} \|v - e^{i\theta} \varphi_\omega\|_{X_G} < \varepsilon\}.$$

Lemma 4.6

Assume the conditions (V1) - (V2) hold and $\eta > 0$ be the constant in Lemma 1.7, there exists $0 < \eta' < \eta$, for $2 < p < 2 + \eta'$, $\varphi_\omega \in M_\omega$, $\omega \in (\omega_0^*, \infty)$ where ω_0^* be the number obtained in Lemma 3.3. Then, there exists $C > 0$ and $\varepsilon > 0$ such that

$$E(u) - E(\varphi_\omega) \geq C \inf_{\theta \in \mathbb{R}} \|u - e^{i\theta} \varphi_\omega\|_X^2,$$

for $u \in U_\varepsilon(\varphi_\omega)$ with $Q(u) = Q(\varphi_\omega)$.

Proof. By the implicit function theorem, if $\varepsilon > 0$ is small enough, $u \in U_\varepsilon(\varphi_\omega)$ with $Q(u) = Q(\varphi_\omega)$, there exists $\theta(u) \in \mathbb{R}$ such that

$$\|u - e^{i\theta(u)}\|_X^2 = \min_{\theta \in \mathbb{R}} \|u - e^{i\theta}\|_X^2.$$

Let $v = e^{-i\theta(u)}u - \varphi_\omega$, we decompose

$$v = a \varphi_\omega + bi \varphi_\omega + y,$$

where $a, b \in \mathbb{R}$, and $y \in X_G$ satisfying $Re(y, \varphi_\omega)_L^2 = 0$ and $Re(y, i\varphi_\omega)_L^2 = 0$. Obviously,

$$Q'(\varphi_\omega), v \rangle = Re(\varphi_\omega, v)_L^2 = Re(\varphi_\omega, a \varphi_\omega + bi \varphi_\omega + y)_L^2 = a \|\varphi_\omega\|_2^2,$$

and the Taylor expansion gives

$$Q(\varphi_\omega) = Q(u) = Q(e^{-i\theta(u)}u) = Q(\varphi_\omega + v) = Q(\varphi_\omega) + (Q'\varphi_\omega), v \rangle + O(\|v\|_X^2).$$

Thus, we have

$$a = O(\|v\|_X^2).$$
Moreover, we have

\[S_\omega(u) = S_\omega(e^{-i\theta(u)}u) = S_\omega(\varphi_\omega + v) = S_\omega(\varphi_\omega) + \langle S'(\varphi_\omega), v \rangle + \frac{1}{2} \langle S''(\varphi_\omega)v, v \rangle + o(\|v\|_X^2), \]
i.e.

\[S_\omega(u) - S_\omega(\varphi_\omega) = \langle S'(\varphi_\omega), v \rangle + \frac{1}{2} \langle S''(\varphi_\omega)v, v \rangle + o(\|v\|_X^2), \]
by \(S'_\omega(\varphi_\omega) = 0 \) and \(Q(\varphi_\omega) = Q(u) \), we obtain

\[E(u) - E(\varphi_\omega) = S_\omega(u) - \omega Q(u) - (S_\omega(\varphi_\omega) - \omega Q(\varphi_\omega)) = \frac{1}{2} \langle S''(\varphi_\omega)v, v \rangle + o(\|v\|_X^2). \] (4.29) \(p1 \)

Next, since \(S'(e^{i\theta} \varphi_\omega) = 0 \) for \(\theta \in \mathbb{R} \), we have \(S''(\varphi_\omega)i\varphi_\omega = 0 \). Therefore,

\[\langle S''(\varphi_\omega)y, y \rangle = (S''(\varphi_\omega)v, v) - 2a(S''(\varphi_\omega)\varphi_\omega, v) + a^2(S''(\varphi_\omega)\varphi_\omega, \varphi_\omega) = (S''(\varphi_\omega)v, v) + O(\|v\|_X^3). \] (4.30) \(p2 \)

Since \(y \in X \) satisfies \(\text{Re}(y, \varphi_\omega)_L^2 = 0 \) and \(\text{Re}(y, i\varphi_\omega)_L^2 = 0 \), by Proposition 4.5 there exists \(\delta' > 0 \) such that

\[\langle S''(\varphi_\omega)y, y \rangle \geq \delta' \|y\|_X^2. \] (4.31) \(p3 \)

From (4.30) and (4.31), we know

\[\langle S''(\varphi_\omega)v, v \rangle \geq \delta' \|y\|_X^2 - O(\|v\|_X^3). \] (4.32) \(p0 \)

Now, by (4.28) and \((\varphi_\omega, i\varphi_\omega)_X = 0\), we have

\[0 = (v, i\varphi_\omega)_X = b\|\varphi_\omega\|_X^2 + (y, i\varphi_\omega)_X. \]

Thus, we have \(|b|\|\varphi_\omega\|_X \leq \|y\|_X \) and \(\|v\|_X \leq (|a| + |b|)\|\varphi_\omega\|_X + \|y\|_X \leq 2\|y\|_X + O(\|v\|_X^2) \). Therefore, we have

\[\|y\|_X^2 \geq \frac{1}{4}\|v\|_X^2 + O(\|v\|_X^3). \] (4.33) \(p4 \)

By (4.29), (4.32) and (4.33), we have

\[E(u) - E(\varphi_\omega) \geq \frac{\delta'}{2}\|y\|_X^2 + o(\|v\|_X^2) \geq \frac{\delta'}{8}\|v\|_X^2 + o(\|v\|_X^2). \]

Thus, for \(u \in U_\delta(\varphi_\omega) \) and \(\|v\|_X = \|u - e^{i\theta(u)}\varphi_\omega\|_X < \varepsilon \), we may take \(\varepsilon = \varepsilon(\delta') > 0 \) small enough to obtain

\[E(u) - E(\varphi_\omega) \geq \frac{\delta'}{8}\|u - e^{i\theta(u)}\varphi_\omega\|_X^2. \]
\[\square \]
Proof of Theorem 1.8. Argue by contradiction. If the standing wave is unstable, then there exists a sequence of initial data $u_n(0)$ and $\delta > 0$ such that

$$\inf_{\theta \in \mathbb{R}} \|u_n(0) - e^{i\theta} \varphi_\omega\|_X \to 0,$$

but

$$\sup_{t > 0} \inf_{\theta \in \mathbb{R}} \|u_n(t) - e^{i\theta} \varphi_\omega\|_X \geq \delta,$$

where $u_n(t)$ is a solution with initial value $u_n(0)$. By continuity in t, we can pick the first time t_n so that

$$\inf_{\theta \in \mathbb{R}} \|u_n(t_n) - e^{i\theta} \varphi_\omega\|_X = \delta. \quad (4.34)$$

By Proposition 1.2, E and Q are conserved in t. Then, we have

$$E(u_n(t_n)) = E(u_n(0)) \to E(\varphi_\omega),$$
$$Q(u_n(t_n)) = Q(u_n(0)) \to Q(\varphi_\omega).$$

There exists a sequence $\{v_n\}$ such that $\|v_n - u_n(t_n)\|_X \to 0$ and $Q(v_n) = Q(\varphi_\omega)$. Because of the continuity of E, we have $E(v_n) \to E(\varphi_\omega)$. If we choose δ small enough, from Lemma 1.6 we can obtain

$$c\|v_n - e^{-i\theta(v_n)} \varphi_\omega\|_X^2 = c\|e^{i\theta(v_n)} v_n - \varphi_\omega\|_X^2 \leq E(v_n) - E(\varphi_\omega) \to 0.$$

Thus, $\|u_n(t_n) - e^{-i\theta(v_n)} \varphi_\omega\|_X \to 0$, which contradicts (4.34).

References

[1] L. Bergé & A. Couairon, *Nonlinear propagation of self-guided ultra-short pulses in ionized gases*, Phys. Plasmas, 7(2000), 210–230.

[2] De Bouard, R. Fukuizumi, *Stability of standing waves for nonlinear Schrödinger equations with inhomogeneous nonlinearities*, Annales Henri Poincare. Birkhuser-Verlag, 6, 2005, 1157–1177.

[3] T.Cazenave, *Semilinear Schrödinger equations*[M]. American Mathematical Soc, 2003.

[4] T.Cazenave, P.L.Lions, *Orbital stability of standing waves for some nonlinear Schrödinger equations*, Communications in Mathematical Physics, 85, 1982, 549–561.

[5] P. Cao, J. Wang, W.M. Zou, *On the standing waves for nonlinear Hartree equation with confining potential*, J. Math. Phys. 53, 2012, 033702

[6] F. Dalfovo, S. Giorgini, L. P. Pitaevskii & Sandro Stringari, *Theory of Bose-Einstein condensation in trapped gases*, Rev. Mod. Phys., 71(1999), 463–512.
[7] J. Chadam, R. Glassey, *Global existence of solution to the Cauchy problem for time-dependent Hartree equations*, J. Math. Phys. 16, 1975, 1122–1130.

[8] J. Chen, B. Guo, *Strong instability of standing waves for a nonlocal Schrödinger equation*, Physica D: Nonlinear Phenomena, 227, 2007, 142–148.

[9] J. Chen, B. Guo, Y. Han, *Sharp constant in nonlocal inequality and its applications to nonlocal Schrödinger equation with harmonic potential*, Commun. Math. Sci, 7, 2009, 549–570.

[10] S. Le Coz, R. Fukuizumi, G. Fibich, *Instability of bound states of a nonlocal Schrödinger equation with a Dirac potential*, Physica D: Nonlinear Phenomena, 237, 2008, 1103–1128.

[11] R. Fukuizumi, *Stability and instability of standing waves for nonlinear Schrödinger equations*, Tohoku Mathematical Publications, 2003, 25(25): 1-68.

[12] R. Fukuizumi, *Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential*, Discrete and Continuous Dynamical Systems, 7, 2001, 525–544.

[13] R. Fukuizumi, M. Ohta, *Instability of standing waves for nonlinear Schrödinger equations with potentials*, Differential and Integral equations, 16, 2003, 691–706.

[14] J. Föhlich, J., T.P. Tsai, H.T. Yau, *On the point-particle (Newtonian) limit of the non-linear Hartree equation*, Commun. Math. Phys. 225, 2002, 223–274.

[15] Z. Gan, B. Guo, J. Xin, *Instability of standing waves for Hamiltonian wave equations*, Chinese Annals of Mathematics, Series B, 31, 2010, 219–230.

[16] J. Ginibre, G. Velo, *On a class of nonlinear Schrödinger equations with nonlocal interaction*, Math. Z. 170, 1980, 109–136.

[17] B.L. Guo, *The initial value problem for one class of system of Peker–Choquard type nonlinear Schrödinger equations in 3-dimensions*, J. Partial Differential Equations, 2, 1989, 1–25.

[18] K. Hepp, *The classical limit for quantum mechanical correlation functions*, Commun. Math. Phys. 35, 1974, 265–277.

[19] P.L. Lions, *The concentration-compactness principle in the calculus of variations. The locally compact case, part 1*, Annales de l’IHP Analyse non linéaire, 1, 1984, 109–145.

[20] P.L. Lions, *The concentration-compactness principle in the calculus of variations. The locally compact case, part 2*, Annales de l’IHP Analyse non linéaire, 1, 1984, 223–283.
[21] V. Moroz & J. Van Schaftingen, *Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics*, J. Funct. Anal., 265(2013), 153–184.

[22] C.A.Stuart, *Lectures on the orbital stability of standing waves and application to the nonlinear Schrödinger equation*, Milan journal of mathematics, 76, 2008, 329–399.

[23] W. Strauss, *Existence of solitary waves in higher dimensions*, Communications in Mathematical Physics, 55, 1977, 149–162.

[24] Y. Wang, *Strong instability of standing waves for Hartree equation with harmonic potential*, Physica D: Nonlinear Phenomena, 237, 2008, 998–1005.

[25] M. Weinstein, *Lyapunov stability of ground states of nonlinear dispersive evolution equations*, PRINCETON UNIV NJ, 1986.

[26] C. Bonanno, P. d’Avenia, M. Ghimenti, M. Squassina, *Soliton dynamics for the generalized Choquard equation*. J. Math. Anal. Appl. 417 (2014), 180–199.

[27] P. d’Avenia, M. Squassina, *Marco Soliton dynamics for the Schrödinger-Newton system*. Math. Models Methods Appl. Sci. 24 (2014), 553–572.

[28] R.Carles, N.Mauser,H.P.Stimming, (SEMI)Classical limit of the Hartree equation with harmonic potential. SIAM J. Appl. Math, 66(2005),29–56.

[29] L. Ma, L. Zhao, *Classification of Positive Solitary Solutions of the Nonlinear Choquard Equation*, Archive for Rational Mechanics & Analysis, 195(2010), 455–467.

[30] M. Grillakis, J. Shatah, W. Strauss, *Stability theory of solitary waves in the presence of symmetry. II*. J. Funct. Anal. 94 (1990), 308–348.

[31] M. Grillakis, J. Shatah, W. Strauss, *Stability theory of solitary waves in the presence of symmetry. I*. J. Funct. Anal. 74 (1987), 160–197.

[32] T. Hmidi, S. Keraani, *Blowup theory for the critical nonlinear Schrödinger equations revisited*, International Mathematics Research Notices, 46(2005),2815–2828.

[33] E.H.Lieb, *Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation*, Studies in Applied Mathematics, 57(1977), 93–105.

[34] P.L. Lions, *The Choquard equation and related questions*, Nonlinear Anal., 4(1980), 1063–1072.

[35] J.Bellazzini, L.Jeanjean, T.Luo, *Existence and instability of standing waves with prescribed norm for a class of Schrödinger-Poisson equations[J]*, Proceedings of the London Mathematical Society, 2011, 107(2):303–339.
[36] H. Kikuchi, *Existence and stability of standing waves for Schrödinger-Poisson-Slater equation*, Advanced Nonlinear Studies, 2007, 7(3):403-437.

[37] C. Xiang, *Uniqueness and Nondegeneracy of Ground States for Choquard Equations in three dimensions* arXiv preprint arXiv:1506.01550