Measurement of differential J/ψ production cross-sections and forward-backward ratio in $p+$Pb collisions with the ATLAS detector

The ATLAS Collaboration

Abstract

Measurements of differential cross-sections for J/ψ production in $p+$Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV at the LHC with the ATLAS detector are presented. The data set used corresponds to an integrated luminosity of 28.1 nb$^{-1}$. The J/ψ mesons are reconstructed in the dimuon decay channel over the transverse momentum range $8 < p_T < 30$ GeV and over the center-of-mass rapidity range $-2.87 < y^* < 1.94$. Prompt J/ψ are separated from J/ψ resulting from b-hadron decays through an analysis of the distance between the J/ψ decay vertex and the event primary vertex. The differential cross-section for production of nonprompt J/ψ is compared to a FONLL calculation that does not include nuclear effects. Forward-backward production ratios are presented and compared to theoretical predictions. These results constrain the kinematic dependence of nuclear modifications of charmonium and b-quark production in $p+$Pb collisions.

© 2015 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-3.0 license.
I. INTRODUCTION

Quarkonium production in heavy-ion collisions is expected to be highly sensitive to the nature of the hot and dense matter created in these collisions [1]. Suppression of the J/ψ yield in nucleus-nucleus ($A+A$) collisions with respect to proton-proton (pp) collisions was predicted to be a signal for deconfinement in the quark-gluon plasma [2]. Such suppression was observed at fixed-target experiments at the SPS [3–7] and in collider experiments at RHIC [8–10] and the LHC [11–13]. The interpretation of these results is complicated by the fact that the suppression was also observed in proton-nucleus ($p+A$) [14–19] and deuteron-nucleus ($d+A$) [20] collisions, where final-state effects due to hot matter are not expected.

Several phenomenological interpretations have been proposed to explain the suppression observed in $p+A$ or $d+A$ collisions. These include nuclear absorption [21–24], modifications of parton distribution functions in nuclei (shadowing) [25–29], gluon saturation [30–34], and in-medium energy loss [35, 36]. For a review of these cold-medium effects see Ref. [37]. The impact of each of these mechanisms on J/ψ production varies with rapidity and transverse momentum. Measurements at large rapidities probe the low-x partons in the nuclei, and gluon shadowing and saturation effects are expected to be important.

The cold-medium processes that affect quarkonia production can also affect b-quark production. The effects of gluon saturation and shadowing are expected to be similar to those for charmonium production, but nuclear absorption and parton energy loss are expected to be less pronounced. Therefore, additional constraints can be obtained by measuring b-quark production, which can be accomplished by measuring the cross-section for J/ψ production in the decay chains of b-hadrons; these are abbreviated as “nonprompt J/ψ.”

Measurements in $p+A$ [14, 15, 17–19] and $d+A$ [20] collisions show that the differential cross-section for J/ψ production as a function of the center-of-mass rapidity y^* is not symmetric around $y^* = 0$. Cross-sections at forward y^* (proton or deuteron direction) are significantly smaller than at backward y^* (heavy-ion direction). This asymmetry is quantified using the forward-backward production ratio R_{FB},

$$R_{FB}(p_T, y^*) = \frac{d^2\sigma(p_T, y^* > 0)/dp_Tdy^*}{d^2\sigma(p_T, y^* < 0)/dp_Tdy^*}.$$ (1)

This observable has the advantage that it does not rely on knowledge of the J/ψ production cross-section in pp collisions, and that experimental and theoretical uncertainties partially cancel in the ratio. The LHCb Collaboration has recently measured R_{FB} in the range $2.5 < |y^*| < 4.0, 0 < p_T < 14$ GeV [15]. Results for prompt J/ψ production show a strong p_T dependence with R_{FB} values significantly below unity. In contrast, the R_{FB} for nonprompt J/ψ is consistent with unity and with no p_T dependence. These results are consistent with the measurements presented by the ALICE Collaboration [14] that do not separate prompt and nonprompt J/ψ production.

This paper presents measurements of differential cross-sections for prompt and nonprompt J/ψ production in $p+b$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The kinematic region measured spans the range $8 < p_T < 30$ GeV and $-2.87 < y^* < 1.94$. The J/ψ mesons are reconstructed using the dimuon decay mode. Nonprompt J/ψ are separated from prompt J/ψ by measuring displaced decay vertices. R_{FB} measured in the range $|y^*| < 1.94$ is presented as a function of J/ψ p_T and y^*.

ATLAS has previously published measurements of differential cross-sections for J/ψ production in pp collisions

1 The center-of-mass rapidity is defined as $y^* = \frac{1}{2} \ln \left(\frac{E + p_T}{E - p_T} \right)$, where E and p_T are the energy and the component of the momentum along the proton beam direction in the nucleon-nucleon center-of-mass frame.
at $\sqrt{s} = 7$ TeV [38]. This paper uses the methods described in that publication.

II. THE ATLAS DETECTOR

The ATLAS detector [39] is designed to measure the properties of a wide range of physics processes in pp, $p+Pb$, and Pb+Pb interactions. It has cylindrical geometry and nearly 4π solid-angle coverage.

The inner detector (ID) covers the pseudorapidity range $|\eta| < 2.5$ and consists of multiple layers of silicon pixel and microstrip detectors as well as a straw-tube transition radiation tracker (TRT) that covers the range $|\eta| < 2$. The ID is surrounded by a superconducting solenoid that provides a 2 T axial magnetic field.

The calorimeter system surrounds the ID and the solenoid and covers the pseudorapidity range $|\eta| < 4.9$. It provides an excellent containment of electromagnetic and hadronic showers.

The muon spectrometer (MS) surrounds the calorimeters and consists of multiple layers of trigger and tracking chambers immersed in an azimuthal magnetic field produced by three air-core superconducting magnet systems with average field integrals between 2 and 6 Tm. Drift tubes and cathode strip chambers provide an independent, precise measurement of muon track momentum for $|\eta| < 2.7$. Resistive plate chambers and thin gap chambers provide fast triggering in the range $|\eta| < 2.4$.

The minimum-bias trigger scintillators (MBTS) consist of two sets of sixteen scintillator counters installed on the front face of the endcap calorimeter cryostats. They are used to trigger on minimum-bias events.

A three-level trigger system is employed. The Level-1 trigger is implemented in hardware, using a subset of detector information to reduce the event rate to the design value of 75 kHz. This is followed by two software-based trigger levels, called Level-2 and the Event Filter. For this analysis, the Level-1 trigger and the Event Filter are actively used, while the Level-2 trigger simply passed the events through.

III. DATA AND MONTE CARLO SAMPLES

The measurements presented in this paper are performed with a data sample corresponding to an integrated luminosity of 28.1 nb$^{-1}$ collected in the 2013 LHC $p+Pb$ run at a center-of-mass energy per nucleon-nucleon pair of $\sqrt{s_{NN}} = 5.02$ TeV. The beams had different energies ($E_p=4$ TeV, $E_{Pb}=1.58$ ATeV) due to the LHC two-in-one magnet system. Due to this energy difference, the center-of-mass of the proton-nucleon collision system had a longitudinal rapidity shift relative to the ATLAS rest frame of $\Delta y = 0.47$ in the direction of the proton beam. The data was collected in two periods with different beam directions. The typical value for the mean number of interactions per bunch crossing, $\langle \mu \rangle$, was of the order of 0.1.

The luminosity is calibrated by using dedicated beam-separation scans, also known as van der Meer scans [40]. Separate calibrations were performed for each period. A systematic uncertainty of 2.7% on the luminosity is evaluated using techniques similar to those described in Ref. [41]. The first period provided approximately 55% of the integrated luminosity, and the proton beam circulated from positive to negative η; the beam directions were reversed in the second period.

Monte Carlo (MC) simulations are used to study trigger and reconstruction efficiencies, and kinematic acceptance corrections. PYTHIA8 [42] is used to generate pp hard-scattering events in which J/ψ mesons are produced unpolarized either via prompt production or through the decay of b-hadrons and subsequently decayed into muon pairs. The detector response is modeled using a GEANT4-based simulation of the ATLAS detector [43, 44]. The events are reconstructed using the same algorithms that were applied to the data. Two separate MC data sets were generated, matching the two different sets of beam directions present in data. The momentum four-vectors of the generated particles are longitudinally boosted by a rapidity $\Delta y = \pm 0.47$ to match the corresponding center-of-mass rapidity shift. An additional sample with a large number of simulated $J/\psi \rightarrow \mu^+\mu^-$ events produced unpolarized is used to determine the fiducial acceptance.

IV. EVENT AND CANDIDATE SELECTION

Proton-lead collisions used in this analysis are selected with a dimuon trigger. The Level-1 trigger requires a single muon with a p_T threshold determined by the largest possible geometrical coincidence between hits from different muon trigger detector layers. The Event Filter performs muon reconstruction using the information from all the detector elements, independently of the Level-1 measurement. Then, it requires at least two muons, each with $p_T > 2$ GeV.

Charged-particle tracks are reconstructed in the ID using an algorithm optimized for minimum-bias measurements in pp collisions [45]. The muon candidates are formed from reconstructed ID tracks matched to tracks reconstructed in the MS. The muon ID tracks are required to have at least one pixel detector hit and at least five hits in the microstrip detectors. A successful track extrapolation to the TRT is required for $|\eta| < 2$. Each
The dimuon reconstruction efficiency is assumed to be given by the product of two single-muon reconstruction efficiencies ϵ_{reco},

$$\epsilon_{\text{reco}} = \epsilon_{\text{reco}}^\mu (p_{T1}^\mu, q_1^\mu, \eta_1^\mu) \cdot \epsilon_{\text{reco}}^\mu (p_{T2}^\mu, q_2^\mu, \eta_2^\mu),$$

(4)

where p_{T1}^μ, q_1^μ, and η_1^μ are transverse momentum, charge, and pseudorapidity of the muons. $\epsilon_{\text{reco}}^\mu$ is derived from pp data using $J/\psi \to \mu^+\mu^-$ decays, as described in Ref. [46].

The Level-1 trigger efficiency ϵ_{L1} is defined as the probability that an event passing the reconstruction requirements is selected by the Level-1 trigger. The Event Filter efficiency ϵ_{EF} is defined as the probability that events selected by the Level-1 trigger are selected by the Event Filter. Because the Event Filter performs muon reconstruction independently of the Level-1 trigger, the trigger efficiency is calculated as

$$\epsilon_{\text{trigger}} = \epsilon_{L1} \cdot \epsilon_{\text{EF}}.$$

The efficiency ϵ_{L1} is expressed in terms of the single-muon Level-1 efficiency ϵ_{L1}^μ. The Level-1 trigger required at least one muon in the event, thus

$$\epsilon_{L1} = 1 - [1 - \epsilon_{L1}^\mu (p_{T1}^\mu, q_1^\mu, \eta_1^\mu)] \cdot [1 - \epsilon_{L1}^\mu (p_{T2}^\mu, q_2^\mu, \eta_2^\mu)].$$

(6)

The efficiency ϵ_{L1}^μ is derived from data using reconstructed muons in events selected with a minimum-bias trigger that required a signal in at least one MBTS counter on each set. It is defined as the ratio of the number of reconstructed muons that passed the trigger requirement to the number of reconstructed muons in each p_{T} and $q^\mu \cdot \eta^\mu$ interval.

The efficiency ϵ_{EF} is expressed in terms of the single-muon Event Filter efficiency ϵ_{EF}^μ. The Event Filter selected events with two muons, thus

$$\epsilon_{\text{EF}} = \epsilon_{\text{EF}}^\mu (p_{T1}^\mu, q_1^\mu, \eta_1^\mu) \cdot \epsilon_{\text{EF}}^\mu (p_{T2}^\mu, q_2^\mu, \eta_2^\mu).$$

(7)

The efficiency ϵ_{EF}^μ is determined from MC simulation and checked with data; in both cases the “tag and probe” method is used. In this method, events selected with single-muon triggers with various thresholds starting from $p_{T} > 4$ GeV are used to select muon pairs by requiring a well-reconstructed muon, the “tag,” and another muon, the “probe,” that form a pair consistent with originating from a J/ψ decay. The tag is required to be consistent with the particle that triggered the event and to pass the Level-1 requirement. The probes provide a sample that can be used to measure the trigger efficiency in an unbiased way. The Event Filter efficiency ϵ_{EF}^μ is evaluated as the ratio of the number of J/ψ (determined by fitting the $m_{\mu\mu}$ distributions) with probes that pass
the Event Filter requirements, to the total number of selected J/ψ. Results from MC simulation and data agree within the statistical uncertainty of the data.

The data are corrected on a per-candidate basis, using the weights defined in Eq. (3). To illustrate the impact of the corrections, the average weights over all J/ψ candidates evaluated for the kinematic intervals used in the cross-section measurement are shown in Fig. 1. The relative contributions from the kinematic acceptance and the trigger and reconstruction efficiencies are shown separately. Due to the center-of-mass boost, the intervals of y^* used for the forward-backward asymmetry measurement span intervals in y that are not symmetric around $y = 0$. Those intervals are listed in Table I. In both periods the J/ψ candidates with $|y| < 0.47$ are in the negative y^* interval, whereas those with $1.47 < |y| < 2.4$ are in the positive y^* interval. As a result, the weights obtained for the positive and negative y^* intervals are different.

Table I. Intervals of rapidity in the ATLAS reference frame for $-1.94 < y^* < 0$ and $0 < y^* < 1.94$ for the two run periods with different beam directions. The center-of-mass shift corresponds to $\Delta y = 0.47$ in the proton-beam direction.

Interval	First period	Second period
$-1.94 < y^* < 0$	$-0.47 < y < +1.47$	$-2.4 < y < -0.47$
$0 < y^* < 1.94$	$-1.47 < y < +0.47$	$+0.47 < y < +2.4$

The number of produced J/ψ mesons and the relative fraction of nonprompt J/ψ with respect to inclusive production, called the “nonprompt fraction,” are determined using a two-dimensional extended maximum-likelihood fit [47] of the $(m_{\mu\mu}, \tau)$ spectrum of weighted J/ψ candidates. The fit functions used are similar to those described in previous ATLAS publications [38]. The signal τ distribution is described using a Dirac delta function for prompt J/ψ and an exponential function for nonprompt J/ψ; these are convolved with a Gaussian resolution function whose width is a free parameter. The background τ distribution is described with the sum of a delta function to describe prompt background, an exponential function to describe nonprompt background, and a double-sided exponential function to describe non-Gaussian tails observed at negative τ; these are convolved with a Gaussian resolution function whose width is a free parameter not restricted to be the same as the signal resolution. The $m_{\mu\mu}$ spectrum is described by a “Crystal Ball” (CB) function [48] for the signal and an exponential function for the background. The complete fit model includes 15 free parameters. Fits are performed using MINUIT [49] interfaced with the RooFit [50] framework. The fit is performed separately in several bins of dimuon p_T and y^*. Figure 2 shows $m_{\mu\mu}$ and τ distributions in the kinematic interval $14 < p_T < 20$ GeV, $-1.94 < y^* < 0$, and the corresponding projections of the fit function.

Several studies with pseudoexperiments and other cross-checks show that the fit procedure provides an unbiased estimation of the extracted parameters and their statistical uncertainties.
TABLE II. Summary of statistical and systematic uncertainties on the differential cross-section measurements for prompt and nonprompt J/ψ. The values are quoted as relative uncertainties (in %) and refer to the range of uncertainties over the specified p_T or y^* range.

Uncertainty	$-1.94 < y^* < 0$	$0 < y^* < 1.94$	$8 < p_T < 30$ GeV	
	p_T range [8,30] GeV		$4 < p_T < 30$ GeV	y^* range $[-2.87,1.94]$
Statistical	2.1–5.9	2.3–6.9	2.6–10	
Trigger	5.3–7.5	5.2–7.4	5.7–7.0	
Muon Reconstruction	2.6–4.2	2.4–3.7	2.2–3.6	
Fit Model	3.3–6.1	2.4–9.2	2.9–17	
Luminosity	2.7	2.7	2.7	

VI. SYSTEMATIC UNCERTAINTIES

The relevant sources of systematic uncertainty for the measurements presented in this work are trigger and reconstruction efficiency corrections, fit model dependence, and the luminosity calibration.

The dominant source of systematic uncertainty associated with the Event Filter efficiency is the limited size of the data sample available for the tag-and-probe study. The corresponding systematic uncertainty on the cross-section measurement is estimated by means of pseudoeperiments, randomly varying the weight used for each J/ψ candidate according to the uncertainty in the single-muon efficiency.

The systematic uncertainty associated with the Level-1 trigger efficiency is estimated by varying the selection criteria for muons and by considering discrepancies with an alternative determination of the efficiency using MC simulation.

The systematic uncertainties associated with muon reconstruction efficiencies were evaluated in Ref. [46] using 2012 pp data. Detector operating conditions and occupancy were similar in the 2012 pp run and the 2013 $p+Pb$ run; therefore the efficiencies and uncertainties calculated in Ref. [46] are used in the present analysis.

The impact of the Level-1 trigger and muon reconstruction systematic uncertainties on the J/ψ cross-section is estimated by varying all of the efficiency corrections up and down by their systematic uncertainties, and recalculating the mean dimuon reconstruction efficiency over all J/ψ candidates in each kinematic bin. The resulting deviation of the mean dimuon reconstruction efficiency from the central value in each bin is taken as a systematic uncertainty on the J/ψ inclusive cross-section.

A closure test of the overall trigger efficiency corrections is performed by means of MC simulations. The result indicates that the assumption of factorization in Eqs. (5) to (7) results in a bias of 2–5% depending on the kinematic bin. This nonclosure is taken as a systematic uncertainty on the J/ψ inclusive cross-section.

The systematic uncertainty associated with the fit model is estimated by varying the fit functions to gauge the sensitivity of the inclusive number of observed J/ψ and the nonprompt fraction to the function chosen for the fits. The signal $m_{\mu\mu}$ distribution is fit with a CB function that can account for the tail observed in the low mass region. A double-Gaussian distribution with different widths but the same mean can adequately describe the signal in most regions, and this is used as a variation. The $m_{\mu\mu}$ distribution of the background is modeled by an exponential function. A second-order Chebyshev poly-
mial is used as an alternative. The resolution function used for the modeling of both the signal and background \(\tau \) distributions is changed to a double-Gaussian function as an alternative. These variations are performed separately.

The variation in the background shape in the \(\tau \) distribution is addressed in the following way: a background-only fit is performed to the \(\tau \) distribution in a sideband region defined by dimuons with \(m_{\mu\mu} \) in the interval of 2.5–2.8 GeV or 3.2–3.5 GeV. The background shape parameters are fixed and then the fit is performed in the 2.5–3.5 GeV mass region.

The systematic uncertainty associated with each fit variation is taken as the deviation from the central value. The total systematic uncertainty of the fit model is taken as the sum in quadrature of the effects of using the alternative fit functions and the fit constrained by the sideband region. It is dominated by the uncertainty associated to the modeling of the \(\tau \) distribution.

The luminosity systematic uncertainty of 2.7\% is propagated to the differential cross-section measurements presented. It is not considered in the measurement of the nonprompt fraction or the forward-backward ratio as both of these observables are independent of the luminosity.

The kinematic acceptance correction has a potential theoretical uncertainty that depends on the spin-alignment of the \(J/\psi \) decay. Previous measurements in \(pp \) collisions [51–53] suggest that the degree of polarization is small at LHC energies. Based on the assumption that the nuclear medium does not modify the average spin-alignment of produced \(J/\psi \), no systematic uncertainty due to spin-alignment is included. The modification to quoted production rates under various benchmark spin-alignments assumptions are presented in in Appendix A.

The kinematic acceptance correction is obtained using a large sample of MC simulated events that allows the kinematic variables to be binned finely. Therefore, the impact of mismodeling of the underlying kinematic distributions in the MC simulation, as reported in previous ATLAS publications [38], is negligible.

The total systematic uncertainty on the \(J/\psi \) inclusive differential cross-section amounts to 6–9\%, with no strong \(y^* \) or \(p_T \) dependence, and is dominated by trigger efficiency systematic uncertainties. The systematic uncertainty in the nonprompt fraction, estimated from fit model variations, amounts to 2–17\%, with the largest values at large \(|y^*| \) and low \(p_T \).

The systematic uncertainties on the cross-section for prompt and nonprompt \(J/\psi \) are obtained from the systematic uncertainties of the inclusive cross-section and the nonprompt fraction, assuming them to be uncorrelated. The corresponding statistical uncertainties are obtained by considering the covariance between the fit parameters. A summary of the statistical and systematic uncertainties of the differential cross-section measurements for prompt and nonprompt \(J/\psi \) are shown in Table II.

VII. RESULTS AND DISCUSSION

A. Cross-sections and nonprompt fraction

The measured nonprompt fraction in the backward \((-1.94 < y^* < 0)\) and forward \((0 < y^* < 1.94)\) regions is shown as a function of \(J/\psi \) transverse momentum in the upper panel of Fig. 3.

A strong \(p_T \) dependence of the nonprompt fraction is observed, reaching values above 50\% at the highest measured \(p_T \). There is no significant difference between the forward and backward \(y^* \) measurements. The measured nonprompt fraction integrated over the transverse momentum range \(8 < p_T < 30 \text{ GeV} \) is shown as a function of \(y^* \) in the bottom panel of Fig. 3. No significant \(y^* \) dependence is observed. Previous measurements [38, 54] with \(pp \) collisions in a similar kinematic region show similar trends.

![Fig. 3](image-url) Nonprompt fraction as a function of \(J/\psi \) transverse momentum \(p_T \) (upper panel) and center-of-mass rapidity \(y^* \) (bottom panel). Positive \(y^* \) is defined in the proton beam direction. The error bars show the statistical uncertainty, and the shaded boxes show the sum in quadrature of statistical and systematic uncertainties.
The systematic uncertainties associated with these can-
y be checked, and no time dependence in the efficiency
do not depend on the data-taking period. This assump-
J/ψ J/ψ tion is that periods. As
J/ψ J/ψ in the second period. Similarly,
J/ψ J/ψ candidates with
J/ψ J/ψ fall in the backward
J/ψ J/ψ in the second period. Similarly, J/ψ candidates with
J/ψ J/ψ in the first period but in forward
J/ψ J/ψ in the first period but in backward
J/ψ J/ψ interval in the first period but in backward
J/ψ J/ψ interval in the second period. The systematic uncertainties associated with
J/ψ J/ψ candidates are fully correlated, assuming they
do not depend on the data-taking period. This assump-
tion is checked, and no time dependence in the efficiency
corrections is found.

On the other hand, J/ψ events with |y| < 0.47 always
fall in the backward y∗ interval, and J/ψ candidates with
1.47 < |y| < 2.4 always fall in the forward y∗ interval. The systematic uncertainties associated with these
candidates are assumed to be uncorrelated. Based on these
considerations, the forward-backward correlation of sys-
tematic uncertainties is estimated to be 50%. In con-
trast, for the measurement of RFB as a function of y∗, the corresponding y intervals do not overlap. Therefore,
the systematic uncertainties are assumed to be uncor-
related. A summary of systematic uncertainties in RFB is
presented in Table III.

Figure 6 shows RFB as a function of transverse mo-
momentum in the range 8 < pT < 30 GeV for prompt
J/ψ (upper panel) and for nonprompt J/ψ (bottom
panel). Figure 7 shows RFB as a function of y∗ in the
range |y∗| < 1.94 for prompt J/ψ (upper panel) and
for nonprompt J/ψ (bottom panel). These results are
consistent with unity within experimental uncertainties.
No significant pT or y∗ dependence is observed, for both
prompt and nonprompt J/ψ.

The RFB ratio for prompt J/ψ agrees with theoreti-
cal predictions [28, 55] that include shadowing effects

FIG. 4. Double differential cross-section for prompt and
nonprompt J/ψ production as a function of J/ψ transverse
momentum, pT. The upper panel shows results in backward
y∗ (lead beam direction), and bottom panel in forward y∗
(proton beam direction). The error bars show the statistical
uncertainty, and the shaded boxes show the sum in quadra-
ture of statistical and systematic uncertainties.
based on the EPS09 nuclear parton distribution functions [56]. These results constrain the y^* dependence of cold-medium effects in charmonium and b-quark production.

These R_{FB} measurements are complementary to results presented by the LHCb Collaboration, in the range $2.5 < |y^*| < 4.0, 0 < p_T < 14$ GeV, that show a difference between prompt and nonprompt J/ψ production, the former showing a strong p_T dependence with values significantly below unity [15]. The LHCb Collaboration’s combined results for inclusive J/ψ production are also consistent with R_{FB} measurements presented by the ALICE Collaboration in the range $2.96 < |y^*| < 3.53, 0 < p_T < 15$ GeV [14]. The difference with respect to the results presented in this paper suggests a strong kinematic dependence of the cold-medium effects on both charmonium and b-quark production.

C. Comparison with FONLL calculation

The differential cross-sections of nonprompt J/ψ production are compared to FONLL calculations [57] for pp collisions at 5.02 TeV multiplied by a factor 208 to account for the number of nucleons in the Pb ion. The FONLL calculations are performed using CTEQ6.6 [58] parton distribution functions that do not include any nuclear modification. Systematic uncertainties on the FONLL calculation are obtained by varying the b-quark mass (4.75 ± 0.25 GeV), by separately varying the renormalization and factorization scales up and down by a factor of two, and by accounting for parton distribution function uncertainties. As can be seen in Fig. 8, the measured cross-sections are consistent with the FONLL calculation within uncertainties.
FIG. 7. Forward-backward production ratio R_{FB} as a function of center-of-mass rapidity y^* for prompt J/ψ (upper panel) and nonprompt J/ψ (bottom panel). The error bars show the statistical uncertainty, and the shaded boxes show the sum in quadrature of statistical and systematic uncertainties. The two bands in the upper panel represent the predictions from Refs. [28, 55] described in the text.

FIG. 8. Differential cross-section for production of nonprompt J/ψ as a function of J/ψ transverse momentum (upper and middle panel) and center-of-mass rapidity (bottom panel) compared with a FONLL calculation for pp collisions scaled by the number of nucleons in the Pb ion. Error bars represent the combination of statistical and systematic uncertainties added in quadrature. The shaded boxes represent the theoretical uncertainties on the FONLL predictions, computed as described in the text. These are strongly correlated between the bins.
VIII. CONCLUSIONS

In this paper, ATLAS presents measurements of differential cross-sections of prompt and nonprompt J/ψ production in 28.1 nb$^{-1}$ of $\sqrt{s_{NN}} = 5.02$ TeV $p+Pb$ collisions at the LHC in the kinematic range $-2.87 < y^* < 1.94$ and $8 < p_T < 30$ GeV.

The fraction of nonprompt to inclusive J/ψ production is found to depend strongly on p_T, reaching values above 50% at the highest measured p_T. No significant y^* dependence is observed. This trend is consistent with previous measurements performed with pp data in a similar kinematic range [38, 54].

The measured differential cross-section for nonprompt J/ψ is compared to a scaled pp reference based on FONLL calculations and is found to be consistent within uncertainties.

The measured forward-backward ratios of cross-sections in the range $|y^*| < 1.94$ are consistent with unity within experimental uncertainties, and with no significant p_T or y^* dependence. No difference in these trends is observed between prompt and nonprompt J/ψ. These results differ from measurements at more forward p_T and lower p_T performed by the LHCb and ALICE Collaborations [14, 15]. This difference suggests a strong kinematic dependence of the cold-medium effects on both charmonium and b-quark production.

These results constrain the kinematic dependence of QCD processes in the cold-medium that affect charmonium and b-quark production in $p+Pb$ collisions, and provide a valuable reference for measurements of charmonium and open heavy flavor in $Pb+Pb$ collisions.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently.

We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFi, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEADS/M/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINERVA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRSST and NSRF, Korea; EMBL, LHE, RHIC, Japan; CNCS and CFF, Korea; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva, Switzerland; NSE, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America.

The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] N. Brambilla et al., Eur. Phys. J. C 71, 1534 (2011), arXiv:1010.5827.
[2] T. Matsui and H. Satz, Phys. Lett. B 178, 416 (1986).
[3] M. Abreu et al. (NA50 Collaboration), Phys. Lett. B 410, 337 (1997).
[4] M. Abreu et al. (NA50 Collaboration), Phys. Lett. B 477, 28 (2000).
[5] B. Alessandro et al. (NA50 Collaboration), Eur. Phys. J. C 39, 335 (2005), arXiv:hep-ex/0412036.
[6] A. Adare et al. (PHENIX Collaboration), Phys. Rev. Lett. 98, 232301 (2007), arXiv:nucl-ex/0611020.
[7] R. Arnaldi et al. (NA60 Collaboration), Phys. Rev. Lett. 99, 132302 (2007).
[8] A. Adare et al. (PHENIX Collaboration), Phys. Rev. C 84, 054912 (2011), arXiv:1103.6269.
[9] B. Abelev et al. (STAR Collaboration), Phys. Rev. C 80, 041902 (2009), arXiv:0904.0439.
[10] L. Adamczyk et al. (STAR Collaboration), Phys. Rev. C 90, 024906 (2014), arXiv:1310.3563.
[11] ATLAS Collaboration, Phys. Lett. B 697, 294 (2011), arXiv:1012.5419.
[12] B. Abelev et al. (ALICE Collaboration), Phys. Rev. Lett. 109, 072301 (2012), arXiv:1202.1383.
[13] CMS Collaboration, J. High Energy Phys. 05 (2012) 63 arXiv:1201.5069.
[14] B. B. Abelev et al. (ALICE Collaboration), J. High Energy Phys. 02 (2014) 073 arXiv:1308.6726.
[15] R. Aaij et al. (LHCb Collaboration), J. High Energy Phys. 02 (2014) 072 arXiv:1308.6729.
[16] J. Badier et al. (NA3 Collaboration), Z. Phys. C 20, 101 (1983).
[17] M. Leitch et al. (FNAL E866/NuSea Collaboration), Phys. Rev. Lett. 84, 3256 (2000), arXiv:nucl-ex/9909007.
Appendix A: Acceptance correction factors

Table IV summarizes the multiplicative correction factors that can be used to correct the central values of \(J/\psi \) production cross-sections from isotropic production to an alternative spin-alignment scenario. The alternative spin-alignement scenarios are described in Ref. [59].

Appendix B: Tables with results

The measured \(J/\psi \) cross-sections are shown in Table V and Table VI for prompt and nonprompt production respectively. The measured nonprompt fractions are shown in Table VII. The measured forward-backward ratios are shown in Table VIII.
TABLE IV. Scale factors that modify the central cross-section values, evaluated assuming isotropic decay angular distributions, to a given spin-alignment scenario. The different spin-alignment scenarios are defined in Ref. [59].

$0 < y^* < 1.94$	p_T [GeV]	8.0–9.5	9.5–11.5	11.5–14.0	14.0–20.0	20.0–30.0
Longitudinal	0.69	0.70	0.71	0.74	0.78	
Transverse zero	1.29	1.28	1.25	1.22	1.16	
Transverse positive	2.79	1.87	1.51	1.36	1.19	
Transverse negative	1.02	1.14	1.18	1.17	1.14	
Off-plane positive	1.10	1.11	1.09	1.06	1.04	
Off-plane negative	0.91	0.91	0.93	0.95	0.97	0.97

$-1.94 < y^* < 0$	p_T [GeV]	8.0–9.5	9.5–11.5	11.5–14.0	14.0–20.0	20.0–30.0
Longitudinal	0.68	0.69	0.70	0.73	0.78	
Transverse zero	1.30	1.29	1.27	1.22	1.16	
Transverse positive	1.66	1.38	1.30	1.24	1.17	
Transverse negative	1.10	1.22	1.23	1.21	1.16	
Off-plane positive	1.07	1.07	1.06	1.03	1.02	1.02
Off-plane negative	0.94	0.94	0.95	0.97	0.98	0.98

TABLE V. Measured prompt J/ψ differential cross-section multiplied by branching ratio.

$8 < p_T < 30$ GeV	y^*	$d^2\sigma/dp_Tdy\times BR(J/\psi \rightarrow \mu\mu)$ [nb/GeV]
$[8.0,9.5]$	$[−2.87,−1.94]$	414 ± 12 (stat) ± 39 (syst) ± 11 (lumi)
$[9.5,11.5]$	$[−1.94,−1.3]$	173 ± 4 (stat) ± 16 (syst) ± 5 (lumi)
$[11.5,14.0]$	$[−1.3,−0.65]$	58.2 ± 1.4 (stat) ± 4.3 (syst) ± 1.6 (lumi)
$[14.0,20.0]$	$[−0.65,0.00]$	11.8 ± 0.4 (stat) ± 0.8 (syst) ± 0.3 (lumi)
$[20.0,30.0]$	$[0.00,0.65]$	1.41 ± 0.08 (stat) ± 0.10 (syst) ± 0.04 (lumi)
$[0.65,1.30]$	$[1.30,1.94]$	43.3 ± 1.7 (stat) ± 8.0 (syst) ± 1.2 (lumi)
$[1.30,1.94]$	$[0.00,0.65]$	63.1 ± 1.6 (stat) ± 5.5 (syst) ± 1.7 (lumi)
$[0.65,1.30]$	$[1.30,1.94]$	53.0 ± 1.4 (stat) ± 5.0 (syst) ± 1.4 (lumi)
$[1.30,1.94]$	$[0.00,0.65]$	44.9 ± 1.8 (stat) ± 7.2 (syst) ± 1.2 (lumi)
TABLE VI. Measured nonprompt J/ψ differential cross-section multiplied by branching ratio.

p_T [GeV]	$d^2\sigma/dp_Tdy \times \text{BR}(J/\psi \to \mu\mu)$ [nb/GeV]	
	$-1.94 < y^* < 0$	$0 < y^* < 1.94$
8.0–9.5	167 ± 9 (stat) ± 16 (syst) ± 5 (lumi)	136 ± 8 (stat) ± 17 (syst) ± 4 (lumi)
9.5–11.5	69.1 ± 2.6 (stat) ± 6.3 (syst) ± 1.9 (lumi)	69.9 ± 2.8 (stat) ± 6.6 (syst) ± 1.9 (lumi)
11.5–14.0	32.3 ± 1.2 (stat) ± 2.4 (syst) ± 0.9 (lumi)	29.2 ± 1.3 (stat) ± 3.0 (syst) ± 0.8 (lumi)
14.0–20.0	9.28 ± 0.33 (stat) ± 0.63 (syst) ± 0.25 (lumi)	9.06 ± 0.33 (stat) ± 0.70 (syst) ± 0.24 (lumi)
20.0–30.0	1.43 ± 0.08 (stat) ± 0.10 (syst) ± 0.04 (lumi)	1.48 ± 0.09 (stat) ± 0.09 (syst) ± 0.04 (lumi)

TABLE VIII. Measured forward-backward production ratio.

y^*	Prompt J/ψ	Nonprompt J/ψ
	$0.00–0.65$	$0.00–0.65$
	$0.65–1.30$	$0.65–1.30$
	$1.30–1.94$	$1.30–1.94$

p_T [GeV]	Prompt J/ψ	Nonprompt J/ψ
8.0–9.5	0.98 ± 0.04 (stat) ± 0.11 (syst)	0.98 ± 0.04 (stat) ± 0.11 (syst)
9.5–11.5	0.92 ± 0.03 (stat) ± 0.09 (syst)	0.92 ± 0.03 (stat) ± 0.09 (syst)
11.5–14.0	0.95 ± 0.03 (stat) ± 0.09 (syst)	0.95 ± 0.03 (stat) ± 0.09 (syst)
14.0–20.0	1.01 ± 0.04 (stat) ± 0.07 (syst)	1.01 ± 0.04 (stat) ± 0.07 (syst)
20.0–30.0	0.80 ± 0.07 (stat) ± 0.05 (syst)	0.80 ± 0.07 (stat) ± 0.05 (syst)
R. Zhang33b, X. Zhang33d, Z. Zhang117, X. Zhao40, Y. Zhao33d,117, Z. Zhao33b, A. Zhemchugov65, J. Zhong20, B. Zhou89, C. Zhou45, L. Zhou35, L. Zhou40, N. Zhou164, C.G. Zhu33d, H. Zhu33a, J. Zhu89, Y. Zhu33b, X. Zhuang33a, K. Zhukov96, A. Zibell175, D. Zieminska61, N.I. Zimine65, C. Zimmermann83, R. Zimmermann21, S. Zimmermann48, Z. Zinos54, M. Ziolkowski142, L. Živković13, G. Zobernig174, A. Zoccoli20a,20b, M. zur Nedden16, G. Zurzolo104a,104b, L. Zwalinski30.

1 Department of Physics, University of Adelaide, Adelaide, Australia
2 Physics Department, SUNY Albany, Albany NY, United States of America
3 Department of Physics, University of Alberta, Edmonton AB, Canada
4 (a) Department of Physics, Ankara University, Ankara; (c) Istanbul Aydin University, Istanbul; (d) Division of Physics, TOBB University of Economics and Technology, Ankara, Turkey
5 LAPP, CNRS/IN2P3 and Université Savoie Mont Blanc, Annecy-le-Vieux, France
6 High Energy Physics Division, Argonne National Laboratory, Argonne IL, United States of America
7 Department of Physics, University of Arizona, Tucson AZ, United States of America
8 Department of Physics, The University of Texas at Arlington, Arlington TX, United States of America
9 Physics Department, University of Athens, Athens, Greece
10 Physics Department, National Technical University of Athens, Zografou, Greece
11 Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
12 Institut de Física d’Altes Energies and Departament de Física de la Universitat Autònoma de Barcelona, Barcelona, Spain
13 Institute of Physics, University of Belgrade, Belgrade, Serbia
14 Department for Physics and Technology, University of Bergen, Bergen, Norway
15 Physics Division, Lawrence Berkeley National Laboratory and University of California, Berkeley CA, United States of America
16 Department of Physics, Humboldt University, Berlin, Germany
17 Albert Einstein Center for Fundamental Physics and Laboratory for High Energy Physics, University of Bern, Bern, Switzerland
18 School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
19 (a) Department of Physics, Bogazici University, Istanbul; (b) Department of Physics, Bosphorus University, Istanbul; (c) Department of Physics Engineering, Gaziantep University, Gaziantep, Turkey
20 (a) INFN Sezione di Bologna; (b) Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna, Italy
21 Physikalisches Institut, University of Bonn, Bonn, Germany
22 Department of Physics, Boston University, Boston MA, United States of America
23 Department of Physics, Brandeis University, Waltham MA, United States of America
24 (a) Universidade Federal do Rio de Janeiro COPPE/EE/IF, Rio de Janeiro; (b) Electrical Circuits Department, Federal University of Juiz de Fora (UFJF), Juiz de Fora; (c) Federal University of Sao Joao del Rei (UFSJ), Sao Joao del Rei; (d) Instituto de Física, Universidade de Sao Paulo, Sao Paulo, Brazil
25 Physics Department, Brookhaven National Laboratory, Upton NY, United States of America
26 (a) National Institute of Physics and Nuclear Engineering, Bucharest; (b) National Institute for Research and Development of Isotopic and Molecular Technologies, Physics Department, Cluj Napoca; (c) University Politehnica Bucharest, Bucharest; (d) West University in Timisoara, Timisoara, Romania
27 Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
28 Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
29 Department of Physics, Carleton University, Ottawa ON, Canada
30 CERN, Geneva, Switzerland
31 Enrico Fermi Institute, University of Chicago, Chicago IL, United States of America
32 (a) Departamento de Física, Pontificia Universidad Católica de Chile, Santiago; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
33 (a) Institute of High Energy Physics, Chinese Academy of Sciences, Beijing; (b) Department of Modern Physics, University of Science and Technology of China, Anhui; (c) Department of Physics, Nanjing University, Jiangsu; (d) School of Physics, Shandong University, Shandong; (e) Department of Physics and Astronomy, Shanghai Key Laboratory for Particle Physics and Cosmology, Shanghai Jiao Tong University, Shanghai; (f) Physics Department, Tsinghua University, Beijing 100084, China
34 Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France
35 Nevis Laboratory, Columbia University, Irvington NY, United States of America
36 Niels Bohr Institute, University of Copenhagen, Kobenhavn, Denmark
37 (a) INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati; (b) Dipartimento di Fisica, Università
della Calabria, Rende, Italy

38 (a) AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland

39 Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland

40 Physics Department, Southern Methodist University, Dallas TX, United States of America

41 Physics Department, University of Texas at Dallas, Richardson TX, United States of America

42 DESY, Hamburg and Zeuthen, Germany

43 Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

44 Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

45 Department of Physics, Duke University, Durham NC, United States of America

46 SUPA - School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom

47 INFN Laboratori Nazionali di Frascati, Frascati, Italy

48 Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

49 Section de Physique, Université de Genève, Geneva, Switzerland

50 (a) INFN Sezione di Genova; (b) Dipartimento di Fisica, Università di Genova, Genova, Italy

51 (a) E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

52 II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

53 SUPA - School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom

54 II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

55 Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

56 Department of Physics, Hampton University, Hampton VA, United States of America

57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America

58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

61 Department of Physics, Indiana University, Bloomington IN, United States of America

62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

63 University of Iowa, Iowa City IA, United States of America

64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America

65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia

66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan

67 Graduate School of Science, Kobe University, Kobe, Japan

68 Faculty of Science, Kyoto University, Kyoto, Japan

69 Kyoto University of Education, Kyoto, Japan

70 Department of Physics, Kyushu University, Fukuoka, Japan

71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina

72 Physics Department, Lancaster University, Lancaster, United Kingdom

73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy

74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom

75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia

76 School of Physics and Astronomy, Queen Mary University of London, London, United Kingdom

77 Department of Physics, Royal Holloway University of London, Surrey, United Kingdom

78 Department of Physics and Astronomy, University College London, London, United Kingdom

79 Louisiana Tech University, Ruston LA, United States of America

80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France

81 Fysiska institutionen, Lunds universitet, Lund, Sweden

82 Departamento de Física Teórica C-15, Universidad Autonoma de Madrid, Madrid, Spain

83 Institut für Physik, Universität Mainz, Mainz, Germany

84 School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom

85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France

86 Department of Physics, University of Massachusetts, Amherst MA, United States of America
Semlalia, Université Cadi Ayyad, LPHEA-Marrakech; (d) Faculté des Sciences, Université Mohamed Premier and LPTPM, Oujda; (e) Faculté des sciences, Université Mohammed V-Agdal, Rabat, Morocco
137 DSM/IRFU (Institut de Recherches sur les Lois Fondamentales de l’Univers), CEA Saclay (Commissariat à l’Energie Atomique et aux Energies Alternatives), Gif-sur-Yvette, France
138 Santa Cruz Institute for Particle Physics, University of California Santa Cruz, Santa Cruz CA, United States of America
139 Department of Physics, University of Washington, Seattle WA, United States of America
140 Department of Physics and Astronomy, University of Sheffield, Sheffield, United Kingdom
141 Department of Physics, Shinshu University, Nagano, Japan
142 Fachbereich Physik, Universität Siegen, Siegen, Germany
143 Department of Physics, Simon Fraser University, Burnaby BC, Canada
144 SLAC National Accelerator Laboratory, Stanford CA, United States of America
145 (a) Faculty of Mathematics, Physics & Informatics, Comenius University, Bratislava; (b) Department of Subnuclear Physics, Institute of Experimental Physics of the Slovak Academy of Sciences, Kosice, Slovak Republic
146 (a) Department of Physics, University of Cape Town, Cape Town; (b) Department of Physics, University of Johannesburg, Johannesburg; (c) School of Physics, University of the Witwatersrand, Johannesburg, South Africa
147 (a) Department of Physics, Stockholm University; (b) The Oskar Klein Centre, Stockholm, Sweden
148 Physics Department, Royal Institute of Technology, Stockholm, Sweden
149 Departments of Physics & Astronomy and Chemistry, Stony Brook University, Stony Brook NY, United States of America
150 Department of Physics and Astronomy, University of Sussex, Brighton, United Kingdom
151 School of Physics, University of Sydney, Sydney, Australia
152 Institute of Physics, Academia Sinica, Taipei, Taiwan
153 Department of Physics, Technion: Israel Institute of Technology, Haifa, Israel
154 Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
155 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
156 International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
157 Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
158 Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
159 Department of Physics, University of Toronto, Toronto ON, Canada
160 (a) TRIUMF, Vancouver BC; (b) Department of Physics and Astronomy, York University, Toronto ON, Canada
161 Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
162 Department of Physics and Astronomy, Tufts University, Medford MA, United States of America
163 Centro de Investigaciones, Universidad Antonio Narino, Bogota, Colombia
164 Department of Physics and Astronomy, University of California Irvine, Irvine CA, United States of America
165 (a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine; (b) ICTP, Trieste; (c) Dipartimento di Chimica, Fisica e Ambiente, Università di Udine, Udine, Italy
166 Department of Physics, University of Illinois, Urbana IL, United States of America
167 Department of Physics and Astronomy, University of Upsala, Uppsala, Sweden
168 Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcelona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
169 Department of Physics, University of British Columbia, Vancouver BC, Canada
170 Department of Physics and Astronomy, University of Victoria, Victoria BC, Canada
171 Department of Physics, University of Warwick, Coventry, United Kingdom
172 Waseda University, Tokyo, Japan
173 Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
174 Department of Physics, University of Wisconsin, Madison WI, United States of America
175 Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
176 Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
177 Department of Physics, Yale University, New Haven CT, United States of America
178 Yerevan Physics Institute, Yerevan, Armenia
179 Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, United Kingdom
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
Also at TRIUMF, Vancouver BC, Canada
Also at Department of Physics, California State University, Fresno CA, United States of America
Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
Also at Departamento de Fisica e Astronomia, Faculdade de Ciencias, Universidade do Porto, Portugal
Also at Tomsk State University, Tomsk, Russia
Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
Also at Università di Napoli Parthenope, Napoli, Italy
Also at Institute of Particle Physics (IPP), Canada
Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
Also at Tomsk State University, Tomsk, Russia
Also at Louisiana Tech University, Ruston LA, United States of America
Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
Also at CERN, Geneva, Switzerland
Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
Also at Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
Also at Section de Physique, Université de Genève, Geneva, Switzerland
Also at Department of Physics and Astronomy, University of South Carolina, Columbia SC, United States of America
Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
Also at Faculty of Physics, M.V.Lomonosov Moscow State University, Moscow, Russia
Also at National Research Nuclear University MEPhI, Moscow, Russia
Also at Department of Physics, Stanford University, Stanford CA, United States of America
Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
Also at Department of Physics, Oxford University, Oxford, United Kingdom
Also at Department of Physics, The University of Michigan, Ann Arbor MI, United States of America
Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia
* Deceased