Research Article

Biginelli Synthesis of Novel Dihydropyrimidinone Derivatives Containing Phthalimide Moiety

Mashooq A. Bhat, Mohamed A. Al-Omar, Ahmed M. Naglah, and Abdullah Al-Dhifyan

1Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
2Drug Exploration and Development Chair, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
3Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, 12622 Dokki, Cairo, Egypt
4Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia

Correspondence should be addressed to Mashooq A. Bhat; mabhat@ksu.edu.sa

Received 31 October 2019; Accepted 10 February 2020; Published 9 March 2020

A new series of novel Biginelli compounds, 5-benzoyl-substituted phenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (1–10), were synthesized from enaminone, 2-{4-[(2E)-3-(dimethylamino)prop-2-enoyl]phenyl}-1H-isoindole-1,3(2H)-dione (IV), which was synthesized by refluxing 2-(4-acetylphenyl)-1H-isoindole-1,3(2H)-dione (III) with dimethylformamide-dimethylacetal (DMF-DMA) without solvent for 12 h. The compound 2-(4-acetylphenyl)-1H-isoindole-1,3(2H)-dione (III) was obtained by reacting phthalic anhydride (I) with para-aminoacetophenone (II) in glacial acetic acid for 2 h. The dihydropyrimidinone derivatives containing phthalimide moiety (1–10) were obtained by reacting enaminone, 2-[(2E)-3-(dimethylamino)prop-2-enoyl] phenyl-1H-isoindole-1,3(2H)-dione (IV), with urea and different substituted benzaldehydes in the presence of glacial acetic acid for 3 h. Simple and efficient method was employed to synthesize the dihydropyrimidinone derivatives containing phthalimide moiety. Structures of all the synthesized compounds were characterized by spectroscopic methods.

1. Introduction

Pyrimidines have played a vital role in the field of pharmaceutical chemistry [1]. Pyrimidines are important moieties because of their various pharmacological activities. Nifedipine, 4-aryl-1,4-dihydropyridines, was the first antihyperensive agent into the clinical medicine. For the treatment of various cardiovascular diseases, dihydropyridines are the most potent calcium channel modulators [2, 3].

Substituted dihydropyrimidinone compounds show interesting biological properties, e.g., calcium channel blockers and antihypertensive agents [4, 5]. These compounds display a broad spectrum of biological activities such as anti-inflammatory, antitumor, antiviral, and antibacterial ones [6, 7]. Dihydropyrimidinone compounds were first synthesized by Pietro Biginelli. The type of compounds is known as Biginelli compounds. The synthesis of this type of compounds involves the reacting of numerous aldehydes with urea and a beta-keto ester to give a tetrahydropyrimidinone.

Phthalimide analogues have been reported with large range of pharmacological activities that are anticonvulsant, anti-inflammatory, analgesic, and hypolipidemic [8–11]. Phthalimide analogues have been synthesized as tumor necrosis factor-α (TNF-α) inhibitors [12]. TNF-α plays an important role in certain physiological immune systems. It stimulates the inflammatory response leading to autoimmune disorders including rheumatoid arthritis, Crohn’s disease, ankylosing spondylitis, psoriasis, and refractory asthma [13]. Extensive research on the phthalimide analogues has been reported in the literature [14–17].

The hybrid compounds containing these two important moieties (dihydropyrimidinone and phthalimide) may have
2. Experiment

2.1. Chemistry.

Solvents were procured from Merck, New Jersey, USA. Thin layer chromatography (TLC) was performed on Silica gel 60 F254 coated plates (Merck, Millipore, Billerica, MA, USA). The reaction mixture was added to the ice cold water. The samples were dissolved in DMSO-d6 with tetramethylsilane (TMS) as an internal standard. The molecular masses of compounds were determined by Agilent triple quadrupole 6410 TQ GC/MS equipped with ESI (electrospray ionization) source (5301 Stevens Creek Blvd, Santa Clara, CA 95051, USA). The CHN elemental analyses were performed on a Carlo Erba elemental analyzer (Elementar Analysensysteme GmbH, Langenselbold, Germany) using a CE-440 elemental analyzer. The CHN results were supported by MS: 468.41 [M]+; Analysis: for C25H16N4O6 calcd. C 64.10, H 3.44, N 11.96%; Found C 64.26, H 3.43, N 11.97%.

2.2. Synthesis of the Dihydropyrimidine Derivatives (I-10).

A mixture of enamino, 2,4-dimethoxy and 2,4-dimethoxyphenyl-1H-isoindole-1,3(2H)-dione (IV), was recrystallized from absolute ethanol.

2.2.1. 5-Benzoyl-3,4-dimethoxyphenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (I). m.p.: 190–192°C; 1H NMR (500 MHz, DMSO-d6): δ = 3.81 (3H, s, -OCH3), 3.89 (3H, s, OCH3), 5.76 (1H, s, H-4), 6.94–7.99 (12H, m, Ar-H), 9.36 (1H, s, CONH, D2O exchg.), 10.31 (1H, s, NH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): δ = 49.8, 56.5, 60.6, 62.4, 65.4, 112.3, 112.6, 118.7, 120.2, 123.9, 124.4, 127.4, 129.0, 131.9, 134.4, 135.2, 137.3, 138.4, 146.6, 146.6, 151.4, 152.9, 167.2, 190.4, 191.1; MS: m/z = 483.47 [M]+; Analysis: for C25H18N3O4 calculated C 67.07, H 4.38, N 8.69%; Found C 67.27, H 4.37, N 8.67%.

2.2.2. 5-Benzoyl-4-nitrophenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (2). m.p.: 175–177°C; 1H NMR (500 MHz, DMSO-d6): δ = 5.62 (1H, s, H-4), 7.20–8.41 (13H, m, Ar-H), 9.60 (1H, s, CONH, D2O exchg.), 10.16 (1H, s, NH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): δ = 111.7, 123.1, 124.6, 128.4, 129.1, 131.0, 131.9, 134.6, 135.2, 138.0, 140.5, 143.3, 147.2, 151.5, 167.2, 191.1, 192.7, 207.0; MS: m/z = 468.41 [M]+; Analysis: for C25H18N3O4 calculated C 67.26, H 4.39, N 8.71%.

2.2.3. 5-Benzoyl-4-nitrophenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (3). m.p.: 240–242°C; 1H NMR (500 MHz, DMSO-d6): δ = 5.64 (1H, s, H-4), 7.22–8.22 (13H, m, Ar-H), 9.60 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): δ = 111.6, 121.7, 123.0, 124.0, 127.4, 129.4, 131.0, 133.7, 134.6, 135.2, 138.0, 145.3, 147.2, 151.5, 167.2, 191.1, 192.7, 207.0; MS: m/z = 468.41 [M]+; Analysis: for C25H16N4O6 calculated C 67.61, H 4.34 N 11.96%; Found C 67.24, H 3.45, N 11.98%.

2.2.4. 5-Benzoyl-2,4,5-trimethoxyphenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (4). m.p.: 170–172°C; 1H NMR (500 MHz, DMSO-d6): δ = 6.17 (1H, s, H-4), 7.22–7.98 (13H, m, Ar-H), 9.62 (1H, s, CONH, D2O exchg.), 10.30 (1H, s, NH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): δ = 111.6, 123.9, 124.5, 127.3, 129.3, 130.0, 131.9, 134.5, 135.2, 137.7, 138.5, 143.3, 148.3, 151.3, 167.2, 191.2; MS: m/z = 468.41 [M]+; Analysis: for C25H16N4O6 calculated C 67.61, H 4.34 N 11.96%; Found C 67.24, H 3.46, N 11.94%.

2.2.5. 5-Benzoyl-2,3-dimethoxyphenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (5). m.p.: 190–192°C; 1H NMR (500 MHz, DMSO-d6): δ = 3.81 (3H, s, -OCH3), 3.89 (3H, s, OCH3), 5.76 (1H, s, H-4), 6.94–7.99 (12H, m, Ar-H), 9.36 (1H, s, CONH, D2O exchg.), 10.31 (1H, s, NH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): δ = 49.8, 56.5, 60.6, 62.4, 65.4, 112.3, 112.6, 118.7, 120.2, 123.9, 124.4, 127.4, 129.0, 131.9, 134.4, 135.2, 137.3, 138.4, 146.6, 146.6, 151.4, 152.9, 167.2, 190.4, 191.1; MS: m/z = 483.47 [M]+; Analysis: for C25H18N3O4 calculated C 67.07, H 4.38, N 8.69%; Found C 67.26, H 4.39, N 8.71%.

2.2.6. 5-Benzoyl-2,4,5-trimethoxyphenyl-3,4-dihydropyrimidin-2(1H)-one-1H-isoindole-1,3(2H)-dione (6). m.p.: 180–182°C; 1H NMR (500 MHz, DMSO-d6): δ = 3.69 (3H, s, OCH3), 3.79 (3H, s, OCH3), 3.84 (3H, s, OCH3), 5.60 (1H, s, H-4), 6.73–8.00.
(11H, m, Ar-H), 9.33 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): \(\delta \) 49.5, 56.2, 56.5, 56.9, 65.4, 99.2, 111.5, 113.1, 123.0, 124.0, 127.5, 129.0, 131.0, 134.4, 135.2, 135.4, 138.5, 142.8, 149.7, 151.7, 152.0, 167.2, 191.6; MS: m/z 513.49 [M]+; Analysis: for C28H23N3O7 calcd. C 65.49, H 4.51, N 8.18%; Found C 65.47, H 4.50, N 8.20%.

2.2.7. 5-Benzoyl-3,4,5-trimethoxyphenyl-3,4-dihydropyrimidine-2(1H)-one-1H-isoindole-1,3(2H)-dione (7). m.p.: 195–197°C; 1H NMR (500 MHz, DMSO-d6): \(\delta \) 3.66 (3H, s, -OCH3), 3.79 (6H, s, OCH3), 5.45 (1H, s, H-4), 6.67–7.99 (11H, m, Ar-H), 9.44 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): \(\delta \) 53.7, 56.3, 56.5, 60.4, 65.4, 104.0, 112.1, 124.0, 127.5, 129.1, 131.9, 134.5, 135.2, 137.2, 138.3, 139.8, 151.5, 153.3, 167.2, 191.3; MS: m/z = 513.49 [M]+; Analysis: for C29H23N2O7 calcd. C 65.49, H 4.51, N 8.18%; Found C 65.46, H 4.52, N 8.16%.

2.2.8. 5-Benzoyl-2,3,4-trimethoxyphenyl-3,4-dihydropyrimidine-2(1H)-one-1H-isoindole-1,3(2H)-dione (8). m.p.: 168–170°C; 1H NMR (500 MHz, DMSO-d6): \(\delta \) 3.75 (3H, s, -OCH3), 3.84 (3H, s, OCH3), 5.66 (1H, s, H-4), 6.77–7.99 (11H, m, Ar-H), 9.36 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): \(\delta \) 45.2, 55.5, 56.3, 56.5, 65.4, 91.1, 91.6, 93.2, 111.5, 112.9, 123.9, 131.9, 139.1, 142.2, 152.0, 159.6, 160.5, 160.6, 161.6, 163.8, 167.2, 186.1, 191.3. MS: m/z = 513.49 [M]+; Analysis: for C28H23N2O7 calcd. C 65.49, H 4.51, N 8.18%; Found C 65.46, H 4.50, N 8.16%.

2.2.10. 5-Benzoyl-2,4-dimethoxyphenyl-3,4-dihydropyrimidine-2(1H)-one-1H-isoindole-1,3(2H)-dione (10). m.p.: 168–170°C; 1H NMR (500 MHz, DMSO-d6): \(\delta \) 3.75 (3H, s, -OCH3), 3.84 (3H, s, OCH3), 5.66 (1H, s, H-4), 6.77–7.99 (11H, m, Ar-H), 9.36 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): \(\delta \) 45.0, 55.5, 56.3, 56.5, 65.4, 91.1, 91.6, 93.2, 111.5, 112.9, 123.9, 131.9, 139.1, 142.2, 152.0, 159.6, 160.5, 160.6, 161.6, 167.2, 186.1, 191.3. MS: m/z = 513.49 [M]+; Analysis: for C29H21N2O6 calcd. C 67.07, H 4.38, N 8.69%; Found C 66.82, H 4.39, N 8.70%.

Table 1: Physicochemical properties of compounds (1–10).

Compd.	R	% yield
1	3,4-(OCH3)2-C6H3	70
2	4-NO2-C6H4	75
3	3-NO2-C6H4	72
4	2-NO2-C6H4	74
5	2,3-(OCH3)2-C6H3	68
6	2,4,5-(OCH3)3-C6H3	80
7	3,4,5-(OCH3)3-C6H3	82
8	2,3,4-(OCH3)3-C6H3	80
9	2,4,6-(OCH3)3-C6H3	75
10	2,4-(OCH3)2-C6H3	70

(11H, m, Ar-H), 9.33 (1H, s, CONH, D2O exchg.); 13C NMR (125.76 MHz, DMSO-d6): \(\delta \) 49.5, 56.2, 56.9, 65.4, 99.2, 111.5, 113.1, 123.0, 124.0, 127.5, 129.0, 131.0, 131.9, 134.4, 135.2, 135.4, 138.5, 142.8, 149.7, 151.7, 152.0, 167.2, 191.3. MS: m/z = 513.49 [M]+; Analysis: for C28H23N3O7 calcd. C 65.49, H 4.51, N 8.18%; Found C 65.47, H 4.50, N 8.20%.

3. Results and Discussion

As shown in Scheme 1, enaminone, 2-{4-[2(E)-3-(dimethylamino) prop-2-enoyl] phenyl}-1H-isoindole-1,3(2H)-dione (IV), was synthesized by refluxing 2-(4-acetylphenyl)-1H-
isoindole-1,3(2H)-dione (III) with dimethylformamide-dimethylacetal (DMF-DMA) under solvent-free conditions for 12 h. To prepare the final dihydropyrimidinone derivatives, a mixture of substituted benzaldehyde (0.01 mol), enaminone (IV) (0.01 mol), urea (0.01 mol), and glacial acetic acid (10 mL) was heated under reflux for 3 h. The ethylenic protons indicate that the enaminone existed in the E-configuration [20]. Compounds presented the D$_2$O exchangeable broad singlet at δ 9.33–9.62 ppm and δ 10.12–10.31 ppm corresponding to the two NH protons. The H-4 protons of dihydropyrimidinone moiety and aromatic protons were observed at δ 5.43–6.17 and δ 6.59–8.41 ppm, respectively [21]. 13C NMR spectra confirmed all the carbon atoms for compounds (1–10). Molecular weights of the compounds were confirmed by mass spectral data. Molecular ion peaks were observed in all compounds respective to their molecular weights. The composition of the synthesized compounds (1–10) was confirmed by spectral and elemental data. The possible reaction mechanism involves the acid catalyzed formation of iminium ion intermediate from the substituted aryl aldehydes and urea. Reaction of phthalimide enaminone by iminium ion yields ureidenone, which forms hexahydropyrimidine by cyclization. Final dihydropyrimidinone derivatives (1–10) were obtained by elimination of NH(CH$_3$)$_2$ group from hexahydropyrimidine in presence of glacial acetic acid (Scheme 2).

4. Conclusion
In conclusion, a series of novel dihydropyrimidinone derivatives containing phthalimide moiety were synthesized in good yield, at high level of purity, and in efficient manner from the enaminone, which was derived from phthalimide by simple and solvent-free method. The enaminone existed in the E-configuration. All the compounds were characterized and confirmed by different spectroscopic methods and elemental analysis.

Data Availability
Samples of the compounds (1–10) in pure form are available from the authors upon request.

Scheme 2: The possible mechanism for the synthesis of dihydropyrimidinone derivatives containing phthalimide (1–10).
Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for funding this research group (No. RG 1435–006).

References

[1] M. S. H. Salem, Y. M. Abdel Aziz, M. S. Elgawish, M. M. Said, and K. A. M. Abouzid, "Design, synthesis, biological evaluation and molecular modeling study of new thieno[2,3-d] pyrimidines with anti-proliferative activity on pancreatic cancer cell lines," Bioorganic & Medicinal Chemistry, vol. 94, Article ID 103472, 2020.

[2] K. S. Atwal, S. Z. Ahmed, J. E. Bird et al., "Dihydropyrimidine angiotensin II receptor antagonists," Journal of Medicinal Chemistry, vol. 35, no. 25, pp. 4751–4763, 1992.

[3] K. Rana, B. Kaur, and B. Kumar, "Synthesis and antihypertensive activity of some dihydropyrimidines," Indian Journal of Chemistry, vol. 43, pp. 1553–1557, 2004.

[4] G. C. Rovnyak, S. D. Kimball, B. Beyer et al., "Calcium entry blockers and activators: conformational and structural determinants of dihydropyrimidine calcium channel modulators," Journal of Medicinal Chemistry, vol. 38, no. 1, pp. 119–129, 1995.

[5] K. S. Atwal, B. N. Swanson, S. E. Unger et al., "Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents," Journal of Medicinal Chemistry, vol. 34, no. 2, pp. 806–811, 1991.

[6] L. H. S. Matos, F. T. Masson, L. A. Simeoni, and M. Homem-de-Mello, "Biological activity of dihydropyrimidinone (DHPM) derivatives: a systematic review," European Journal of Medicinal Chemistry, vol. 143, pp. 1779–1789, 2018.

[7] K. P. Beena, R. Suresh, A. Rajasekaran, and P. K. Manna, "DihydroPyrimidinones-A versatile scaffold with diverse biological activity," Journal of Pharmaceutical Sciences and Research, vol. 8, pp. 741–746, 2016.

[8] M. A. Bhat and M. A. Al-Omar, "Synthesis, characterization and in vivo anticonvulsant screening of Schiff bases of phthalimide," Acta Poloniae Pharmaceutica-Drug Research, vol. 68, pp. 375–380, 2011.

[9] M. A. Bhat, M. A. Al-Omar, M. A. Ansari et al., "Design and synthesis of N-aryl-phthalimides as inhibitors of glucocorticoid-induced TNF receptor-related protein, pro-inflammatory mediators and cytokines in carrageenan-induced lung inflammation," Journal of Medicinal Chemistry, vol. 58, no. 22, pp. 8850–8867, 2015.

[10] R. Antunes, H. Batista, R. M. Srivastava et al., "Synthesis, characterization and interaction mechanism of new oxadiazolo-phthalimides as peripheral analgesics. IV," Journal of Molecular Structure, vol. 660, no. 1–3, pp. 1–13, 2003.

[11] V. L. M. Sena, R. M. Srivastava, R. O. Silva, and V. L. M. Lima, "Synthesis and hypolipidemic activity of N-substituted phthalimides. Part V," Il Farmaco, vol. 58, no. 12, pp. 1283–1288, 2003.

[12] X. Collin, J.-M. Robert, G. Wielgosz et al., "New anti-inflammatory N-pyridinyl(alkyl)phthalimides acting as tumour necrosis factor-α production inhibitors," European Journal of Medicinal Chemistry, vol. 36, no. 7-8, pp. 639–649, 2001.

[13] J. M. Fragoso, G. Vargas Alarcón, S. Jiménez Morales, O. D. Reyes Hernández, and J. Ramírez Bello, "Tumor necrosis factor alpha (TNF-α) in autoimmune diseases (AIDs): molecular biology and genetics," Gaceta Medica de Mexico, vol. 150, pp. 334–344, 2014.

[14] A. L. Machado, L. M. Lima, J. X. Araújo-Jr, C. A. M. Fraga, V. L. Gonçalves Koatz, and E. J. Barreirão, "Design, synthesis and antiinflammatory activity of novel phthalimide derivatives, structurally related to thalidomide," Bioorganic & Medicinal Chemistry Letters, vol. 15, no. 4, pp. 1169–1172, 2005.

[15] L. M. Lima, P. Castro, A. L. Machado et al., "Synthesis and antiinflammatory activity of phthalimide derivatives, designed as new thalidomide analogues," Bioorganic & Medicinal Chemistry, vol. 10, no. 9, pp. 3067–3073, 2002.

[16] L. M. Lima, F. C. F. de Brito, S. D. de Souza et al., "Novel phthalimide derivatives, designed as leukotriene D4 receptor antagonists," Bioorganic & Medicinal Chemistry Letters, vol. 12, no. 11, pp. 1533–1535, 2002.

[17] P. Yogeeswar, D. Sriman, V. Saraswat et al., "Synthesis and anticonvulsant and neurotoxicity evaluation of N4-phthalimido phenyl (thio) semicarbazides," European Journal of Pharmaceutical Sciences, vol. 20, no. 3, pp. 341–346, 2003.

[18] M. Bhat, M. Al-Omar, H. Ghabbour, and A. Naglah, "A one-pot Biginelli Synthesis and characterization of novel dihydropyrimidinone derivatives containing piperazine/morpholine moiety," Molecules, vol. 23, no. 7, pp. 1539, 2018.

[19] M. A. Bhat, M. A. Al-Omar, and A. Naglah, "Synthesis and in vivo anti-ulcer evaluation of some novel piperidine linked dihydropyrimidinone derivatives," Journal of Enzyme Inhibition and Medicinal Chemistry, vol. 33, pp. 978–988, 2018.

[20] M. A. Bhat, A. F. Ahmed, Z.-H. Wen, M. A. Al-Omar, and H. A. Abdel-Aziz, "Synthesis, anti-inflammatory and neuroprotective activity of pyrazole and pyrazolo[3,4-d]pyridazine bearing 3,4,5-trimethoxyphenyl," Medicinal Chemistry Research, vol. 26, no. 7, pp. 1557–1566, 2017.

[21] M. A. Bhat, M. A. Al-Omar, A. Naglah, A. Kalmouch, and A. Al-Dhfyan, "Synthesis and characterization of novel Biginelli dihydropyrimidinone derivatives containing imidazole moiety," Journal of Chemistry, vol. 2019, Article ID 3131797, 7 pages, 2019.