UNIFORM BOUNDEDNESS FOR ALGEBRAIC GROUPS AND LIE GROUPS

JAREK KĘDRA, ASSAF LIBMAN, AND BEN MARTIN

Abstract. Let G be a semisimple linear algebraic group over a field k and let $G^+(k)$ be the subgroup generated by the subgroups $R_u(Q)(k)$, where Q ranges over all the minimal k-parabolic subgroups Q of G. We prove that if $G^+(k)$ is bounded then it is uniformly bounded. Under extra assumptions we get explicit bounds for $\Delta(G^+(k))$: we prove that if k is algebraically closed then $\Delta(G^+(k)) \leq 4\text{rank}(G)$, and if G is split over k then $\Delta(G^+(k)) \leq 28\text{rank}(G)$. We deduce some analogous results for real and complex semisimple Lie groups.

1. Introduction

In this paper we investigate the boundedness behaviour of a semisimple linear algebraic group G over an infinite field k. (For definitions of boundedness and related notions, see Section 2.) If $k = \mathbb{R}$ then G is a semisimple Lie group, and it is well known that G is compact in the real topology if and only if it is anisotropic. The authors showed in [5, Thm. 1.2] that if G is compact then G is bounded but is not uniformly bounded; on the other hand, if G has no simple compact factors then G is uniformly bounded. Motivated by this, we make the following conjecture.

Conjecture 1.1. Let G be a semisimple linear algebraic group over an infinite field k. Then $G^+(k)$ is uniformly bounded.

Here $G^+(k)$ denotes the subgroup of $G(k)$ generated by the subgroups $R_u(Q)(k)$, where Q ranges over the minimal k-parabolic subgroups of G. If $k = \overline{k}$ then $G^+(k) = G(k)$, while if G is anisotropic over k then $G^+(k) = 1$. If G has no anisotropic k-simple factors then $G^+(k)$ is dense in G. Note that a finite group is clearly uniformly bounded.
so Conjecture 1.1 and the other results below all hold trivially for a semisimple linear algebraic group over a finite field k.

We make some steps towards proving the conjecture.

Theorem 1.2. Let G be a semisimple linear algebraic group over an infinite field k, and suppose $G(k) = G^+(k)$. Then $G(k)$ is finitely normally generated. Moreover, if $G(k)$ is bounded then $G(k)$ is uniformly bounded.

We want to give explicit bounds for $\Delta(G)$ in terms of Lie-theoretic quantities such as $\text{rank } G$ and $\text{dim } G$. We can do this in some special cases. The first improves the bound $4 \dim G$ from [5, Thm. 4.3].

Theorem 1.3. Let G be a semisimple linear algebraic group over an algebraically closed field k. Then $\Delta(G(k)) \leq 4 \text{rank } G$.

Theorem 1.4. Let G be a split semisimple linear algebraic group over an infinite field k. Then $\Delta(G^+(k)) \leq 28 \text{rank } G$.

When $k = \mathbb{R}$, we get the following result.

Theorem 1.5. Let H be a real semisimple linear algebraic group with no compact simple factors. Then H is uniformly bounded. Moreover, if H is split then $\Delta(H) \leq 28 \text{rank } G$.

When $k = \mathbb{C}$, we get the following result.

Theorem 1.6. Let H be a complex semisimple linear algebraic group. Then H is uniformly bounded and $\Delta(H) \leq 4 \text{rank } G$.

The idea of the proofs is as follows. First we prove Theorem 1.3 (Section 4); the new ingredient is that we work in the quotient variety $G/\text{Inn}(G)$ rather than in G, which allows us to improve on the bound in [5, Thm. 4.3]. A key result underpinning our theorems for non-algebraically closed k is Proposition 5.5. We prove this in Section 5 and deduce Theorem 1.2. When G is split we obtain Theorem 1.4 from Proposition 5.5 and the Bruhat decomposition; see Section 6. In Section 7 we prove Theorems 1.5 and 1.6.

Acknowledgements. This work was funded by Leverhulme Trust Research Project Grant RPG-2017-159.

2. Boundedness and uniform boundedness

A conjugation-invariant norm on a group H is a non-negative function $\| \| : H \to \mathbb{R}$ such that $\| \|$ is constant on conjugacy classes, $\| g \| = 0$ if and only if $g = 1$ and $\| gh \| \leq \| g \| + \| h \|$ for all $g, h \in H$. The diameter of H, denoted $\| H \|$, is $\sup_{g \in H} \| g \|$. A group H is called bounded
if every conjugation-invariant norm has finite diameter. In [5] we introduced two stronger notions of boundedness. We briefly recall them now.

A subset \(S \subseteq H \) is said to \textit{normally generate} \(H \) if the union of the conjugacy classes of its elements generates \(H \). Thus, every element of \(H \) can be written as a word in the conjugates of the elements of \(S \) and their inverses. Given \(g \in H \), the length of the shortest such word that is needed to express \(g \) is the \textit{word norm} of \(g \) denoted \(\|g\|_S \). It is a conjugation-invariant norm on \(H \). The \textit{diameter} of \(H \) with respect to this word norm is denoted \(\|H\|_S \). For every \(n \geq 0 \) we define

\[
B^H_S(n) = \{ g \in H \mid \|g\|_S \leq n \},
\]

the ball of radius \(n \) (of all elements that can be written as a product of \(n \) or fewer conjugates of the elements of \(S \) and their inverses). When there is no danger of confusion we simply write \(B_S(n) \) (cf. Notation 3.1).

We will use the following result [5, Lem. 2.3] repeatedly: if \(X, Y \subseteq H \) and \(Y \subseteq B_X(m) \) then \(B_Y(n) \subseteq B_X(mn) \).

We say that \(H \) is \textit{finitely normally generated} if it admits a finite normally generating set. In this case we define

\[
\Delta^k(H) = \sup\{ \|H\|_S : S \text{ normally generates } H \text{ and } |S| \leq k \}
\]

\[
\Delta(H) = \sup\{ \|H\|_S : S \text{ normally generates } H \text{ and } |S| < \infty \}.
\]

A finitely normally generated group \(H \) is called \textit{strongly bounded} if \(\Delta^k(H) < \infty \) for all \(k \). It is called \textit{uniformly bounded} if \(\Delta(H) < \infty \). Notice that \(\Delta^k(H) \leq \Delta(H) \) for all \(k \in \mathbb{N} \), so uniform boundedness implies strong boundedness. It follows from [5, Corollary 2.9] that strong boundedness implies boundedness.

3. Linear algebraic groups

We recall some material on linear algebraic groups; see [2] and [9] for further details. Below \(k \) denotes an infinite field and \(G \) denotes a semisimple linear algebraic \(k \)-group; we write \(r \) for rank \(G \). We adopt the notation of [2]: we regard \(G \) as a linear algebraic group over the algebraic closure \(\overline{k} \) together with a choice of \(k \)-structure. We identify \(G \) with its group of \(k \)-points \(G(k) \). If \(H \) is any \(k \)-subgroup of \(G \) then we denote by \(H(k) \) the group of \(k \)-points of \(H \). More generally, if \(C \) is any subset of \(G \)—not necessarily closed or \(k \)-defined—then we set \(C(k) = C \cap G(k) \). By [2, V.18.3 Cor.], \(G(k) \) is dense in \(G \).

Fix a maximal split \(k \)-torus \(S \) of \(G \). Let \(L = C_G(S) \) and fix a \(k \)-parabolic subgroup \(P \) such that \(L \) is a Levi subgroup of \(P \). Set \(U = R_u(P) \). Then \(P \) is a minimal \(k \)-parabolic subgroup of \(G \), \(L \) and \(S \) are \(k \)-defined and \(P, S \) are unique up to \(G^+(k) \)-conjugacy [9, 15.4.7].
Fix a maximal k-torus T of G such that $S \subseteq T$ and a \((\text{not necessarily } k\text{-defined}) \) Borel subgroup B of G such that $T \subseteq B \subseteq P$.

Notation 3.1. If $X \subseteq G^+(k)$ then we write $B_X(n)$ for $B^{G^+(k)}_X(n)$.

Lemma 3.2. Let O, O' be nonempty open subsets of G. For any $g \in G(k)$, there exist $h \in O(k)$ and $h' \in O'(k)$ such that $g = hh'$.

Proof. Since G is irreducible as a variety, $O^{-1}g \cap O'$ is an open dense subset of G. Since $G(k)$ is dense in G, we can choose $h' \in (O^{-1}g)(k) \cap O'(k)$. We can write $h' = h^{-1}h$ for some $h \in O(k)$. This yields $g = hh'$, as required. \qed

For the rest of the section we assume that G is split over k; then $S = T$ and $P = B$. Let Ψ_T denote the set of roots of G with respect to T. For $\alpha \in \Psi_T$, we denote by U_α the corresponding root group. Let $\alpha_1, \ldots, \alpha_r$ be the base for the set of positive roots associated to B. Note that U_{α_i} commutes with $U_{-\alpha_i}$ if $i \neq j$ because $\alpha_i - \alpha_j$ is not a root. Let U^- be the opposite unipotent subgroup to U with respect to T. Let $G_{\alpha} = \langle U_\alpha \cup U_{-\alpha} \rangle$ for $\alpha \in \Psi_T$; then G_{α} is k-isomorphic to either SL_2 or PGL_2. Let $\alpha^\vee : \mathbb{G}_m \to G_{\alpha}$ be the coroot associated to α. The image T_α of α^\vee is $G_{\alpha} \cap T$, and this is a maximal torus of G_{α}.

We use the Bruhat decomposition for $G(k)$. We recall the necessary facts [2, Sec. V.14, Sec. V.21]. Fix a set $\tilde{W} \subseteq N_G(T)(k)$ of representatives for the Weyl group; we denote by $n_0 \in \tilde{W}$ the representative corresponding to the longest element of W (note that $n_0^2 \in T(k)$ and $n_0U_0n_0^{-1} = U^-$). The Bruhat decomposition $G = \bigsqcup_{w \in \tilde{W}} BnB$ for G yields a decomposition $G(k) = \bigsqcup_{n \in \tilde{W}} BnB(k)$ for $G(k)$ [2, Thm. V.21.15]. The double coset Bn_0B is open and k-defined. The map $U \times B \to Bn_0B$, $(u, b) \mapsto un_0b$ is an isomorphism of varieties. Hence if $g \in Bn_0B(k)$ then $g = un_0b$ for unique $u \in U$ and $b \in B$, and it follows that $u \in U(k)$ and $b \in B(k)$. Likewise, multiplication gives k-isomorphisms of varieties

\[
U^- \times T \times U \to U^- \times B \to U^- B = n_0(Bn_0B),
\]

so $U^- B$ is open and $(U^- B)(k) = U^-(k)B(k) = U^-(k)T(k)U(k)$.

4. The algebraically closed case

Throughout this section k is algebraically closed. We need to recall some results from geometric invariant theory [7, Ch. 3]. Let H be a reductive group acting on an affine variety X over \overline{k}. We denote the orbit of $x \in X$ by $H \cdot x$ and the stabiliser of x by H_x. One may form the affine quotient variety X/H. The points of X/H correspond to the
closed \(H \)-orbits. We have a canonical projection \(\pi_X : X \to X/H \). The closure \(\overline{H \cdot x} \) of any orbit \(H \cdot x \) contains a unique closed orbit \(H \cdot y \), and we have \(\pi_X(x) = \pi_X(y) \). If \(C \subseteq X \) is closed and \(H \)-stable then \(\pi_X(C) \) is closed.

In particular, \(H \) acts on itself by inner automorphisms—that is, by conjugation—and the orbit \(H \cdot h \) is the conjugacy class of \(h \). We denote the quotient variety by \(H/\text{Inn}(H) \) and the canonical projection by \(\pi_H : H \to H/\text{Inn}(H) \). If \(h = h_s h_u \) is the Jordan decomposition of \(h \) then \(H \cdot h_s \) is the unique closed orbit contained in \(\overline{H \cdot h} \); so \(H \cdot h \) is closed if and only if \(h \) is semisimple, and \(\pi_H(h) = \pi_H(1) \) if and only if \(h \) is unipotent. Fix a maximal torus \(T \) of \(H \). The Weyl group \(W \) acts on \(T \) by conjugation. The inclusion of \(T \) in \(G \) gives rise to a map \(\psi_T : T/W \to H/\text{Inn}(H) \); it is well known that \(\psi_T \) is an isomorphism of varieties.

Now assume \(G \) is simply connected. We can write \(G \cong G_1 \times \cdots \times G_m \), where the \(G_i \) are simple. Let \(\nu_i : G \to G_i \) be the canonical projection. Set \(r_i = \text{rank}(G_i) \) for \(1 \leq i \leq m \).

Lemma 4.1. Let \(C \) be a closed \(G \)-stable subset of \(G \) such that \(C \nsubseteq Z(G) \). Then there exist \(g \in C \) and \(x \in G \) such that \([g, x]\) is not unipotent.

Proof. Let \(g \in C \) such that \(g \notin Z(G) \). Note that \(g_s \in C \) as \(C \) is closed and conjugation-invariant. If \(g_s \) is not central in \(G \) then we can choose a maximal torus \(T' \) of \(G \) such that \(g_s \in T' \); then \([g_s, x]\) is a nontrivial element of \(T \) for some \(x \in N_G(T) \), and we are done. So we can assume \(g_s \) is central in \(G \). Then \(g_u \) is a nontrivial unipotent element of \(G \). By [3, Lem. 3.2], \(G \cdot g \) contains an element of the form \(g_u u \), where \(1 \neq u \) belongs to some root group \(U_\alpha \). Let \(n \in N_{G_\alpha}(T_\alpha) \) represent the nontrivial element of the Weyl group \(N_{G_\alpha}(T_\alpha)/T_\alpha \). Recall that \(G_\alpha \) is isomorphic to \(\text{SL}_2 \) or \(\text{PGL}_2 \). Explicit calculations with \(2 \times 2 \) matrices (cf. the proof of Lemma 6.1 below) show that \([u, n] = [g_u u, n]\) is not unipotent. This completes the proof. \(\square \)

Suppose we are given \(G \)-conjugacy classes \(C_1, \ldots, C_m \) of \(G \) such that for each \(i \), \(\nu_i(C_i) \) is noncentral in \(G_i \) (we do not insist that the \(C_i \) are all distinct). Set \(D_i = [C_i, G_i] \) and \(E_i = D_i = [C_i, G_i] \). Note that for each \(i \), \(D_i \) is conjugation-invariant and constructible, and \(D_i^{-1} = D_i \); likewise, \(E_i \) is conjugation-invariant and irreducible, and \(E_i^{-1} = E_i \).

Proposition 4.2. Let \(G \), etc., be as above, and set \(X = D_1 \cup \cdots \cup D_m \). Then \(B_X(r) \) contains a constructible dense subset of \(G \).
Proof. It suffices to prove that the constructible set $D_{i_1} \cdots D_{i_r}$ is dense in G for some i_1, \ldots, i_r. It is enough to show that the constructible set $E_{i_1} \cdots E_{i_r}$ is a dense subset of G for some i_1, \ldots, i_r.

Fix a maximal torus T of G and set $T_i = T \cap G_i$ for each i. Clearly it is enough to prove that $(E_i)^{\ast r}$ is a dense subset of G_i for each i. For notational convenience, we assume therefore that $m = 1$ and $G = G_1$ is simple; then $T = T_1$. Set $C = C_1 = \nu_1(C_1)$ and $E = E_1$; we prove that E^r is a dense subset of G. By hypothesis, $E = [C, G]$ is an irreducible positive-dimensional subvariety of G. Set $A = E \cap T$. We claim that A has an irreducible component A' such that $\dim(A') > 0$.

Set $F = \pi_G(E)$; note that F is closed and irreducible because E is closed, conjugation-invariant and irreducible. Suppose $\dim(F) = 0$. Since $1 \in E$, we have $F = \{\pi_G(1)\}$, which forces E to consist of unipotent elements. But this is impossible by Lemma 4.1. We deduce that $\dim(F) > 0$. Clearly $\pi_G(A) \subseteq F$. Conversely, given $g \in E$, write $g = g_s g_u$ (Jordan decomposition). Since E is conjugation-invariant, we can, by conjugating g, assume without loss that $g_s \in T$. We have $g_s \in [g_s g \cap T \subseteq A$ and $\pi_G(g_s) = \pi_G(g)$. This shows that $F \subseteq \pi_G(A)$. Hence $F = \pi_G(A)$. Let $\pi_W : T \to T/W$ be the canonical projection. Now $F' := \psi_T^{-1}(F')$ is an irreducible closed positive-dimensional subset of T/W, with $A = \pi_W^{-1}(F')$. Since W is finite, π_W is a finite map and the fibres of π_W are precisely the W-orbits. Hence the irreducible components of A are permuted transitively by W, and each surjects onto F'. Thus any irreducible component A' of A has the desired properties.

Let A_1, \ldots, A_t be the W-conjugates of A'. The A_i generate a non-trivial W-stable subtorus S of T. Hence the subset V of $X(T) \otimes \mathbb{R}$ spanned by $\{\chi \in X(T) \mid \chi(S) = 1\}$ is proper and W-stable. But W acts absolutely irreducibly on $X(T) \otimes \mathbb{R}$, so $V = 0$. This forces S to be the whole of T. So the A_i generate T. By the argument of [5, Sec. 5] or [4, 7.5 Prop.], there exist $i_1, \ldots, i_r \in \{1, \ldots, t\}$ and $\epsilon_1, \ldots, \epsilon_r \in \{\pm 1\}$ such that $A_{i_1}^{\epsilon_1} \cdots A_{i_r}^{\epsilon_r}$ is a constructible dense subset of T. Hence E^r contains a constructible dense subset of T, and we deduce that E^r is a constructible dense subset of G. This completes the proof.

Proof of Theorem 1.3. We have $\Delta(\tilde{G}) \leq \Delta(G)$ by [5, Lem. 2.16], where \tilde{G} is the simply connected cover of G. Hence there is no harm in assuming G is simply connected. Let X be a finite normal generating set for G. We can choose $x_1, \ldots, x_m \in X$ such that $\nu_i(x_i)$ is noncentral in G_i for $1 \leq i \leq m$. Let $C_i = G \cdot x_i \subseteq X$, let $D_i = [C_i, G]$ and let $X' = D_1 \cup \cdots \cup D_m$. By Proposition 4.2, $B_{X'}(r)$ contains a dense constructible subset of G. Since $D_i \subseteq B_{C_i}(2)$ for each i, $B_X(2r)$ contains a nonempty
open subset \(U \) of \(G \). Now \(U^2 = G \) by \([2, \text{I.1.3 Prop.}]\), so \(B_X(4r) \supseteq B_X(2r)B_X(2r) \supseteq U^2 = G \). It follows that \(\Delta(G) \leq 4r \), as required. \(\square \)

5. The isotropic case

Now we consider the case of arbitrary semisimple \(G \). There is no harm in replacing \(G \) with the Zariski closure of \(G^+(k) \), which is the product of the isotropic \(k \)-simple factors of \(G \). Hence we assume in this section that \(G^+(k) \) is dense in \(G \).

We start by noting a corollary of Proposition 4.2. Let \(X \subseteq G^+(k) \) such that \(X \) is a finite normal generating set for \(G \). By Proposition 4.2, there exist \(i_1, \ldots, i_r \in \{1, \ldots, m\} \) such that the image of the map \(f : G^{2r} \to G \) defined by

\[
\begin{align*}
 f(h_1, \ldots, h_r, g_1, \ldots, g_r) &= (h_1 x_1 h_1^{-1} g_1 x_1^{-1} g_1^{-1}) \cdots (h_r x_r h_r^{-1} g_r x_r^{-1} g_r^{-1})
\end{align*}
\]

contains a nonempty open subset \(G' \) of \(G \). Now let \(O \) be a nonempty open subset of \(G \). Then \(f^{-1}(G' \cap O) \) is a nonempty open subset of \(G^{2r} \). But \(G^+(k) \) is dense in \(G \), so \(G^+(k)^{2r} \) is dense in \(G^{2r} \). It follows that \(f(h_1, \ldots, h_r, g_1, \ldots, g_r) \in O \) for some \(h_1, \ldots, h_r, g_1, \ldots, g_r \in G^+(k)^{2r} \). We deduce that for any nonempty open subset \(O \) of \(G \),

\[(5.1) \quad B_X(2r) \cap O \neq \emptyset.\]

Remark 5.1. Let \(C = \text{im}(f) \), where \(f \) is as above. It follows from Eqn. (5.1) and Lemma 3.2 that \(C(k)^2 = G(k) \). We cannot, however, conclude directly from this that \(B_X(2r)^2 = G(k) \): the problem is that although the map \(f : G^{2r} \to C \) is surjective on \(\overline{k} \)-points, it need not be surjective on \(k \)-points.

Lemma 5.2. There exists \(t \in P(k) \) such that \(t \) is regular semisimple.

Proof. Define \(f : G \times P \to G \) by \(f(g, h) = ghg^{-1} \). Then \(f \) is surjective since every element of \(G \) belongs to a Borel subgroup of \(G \). Let \(O \) be the set of regular semisimple elements of \(G \), a nonempty open subset of \(G \). By \([2, \text{Thm. 21.20(ii)}]\), \(P(k) \) is dense in \(P \), and we know that \(G(k) \) is dense in \(G \), so \(G(k) \times P(k) \) is dense in \(G \times P \). It follows that there is a point \((g, t) \in (G(k) \times P(k)) \cap f^{-1}(O) \). Then \(gtg^{-1} \) is regular semisimple, so \(t \in P(k) \) is regular semisimple also. \(\square \)

Lemma 5.3. Let \(t \in P(k) \) be regular semisimple. Then \(U(k) \subseteq B_t(2) \).

Proof. Define \(f : U \to U \) by \(f(u) = utu^{-1}t^{-1} \). The conjugacy class \(U \cdot t \) is closed because orbits of unipotent groups are closed, so \(\text{im}(f) \) is a closed subvariety of \(U \). Since \(t \) is regular, it is easily checked that \(f \) is injective and the derivative \(df_u \) is an isomorphism for each \(u \in U \). It follows from Zariski’s Main Theorem that \(f \) is an isomorphism of
varieties. As \(f \) is defined over \(k \), \(f \) gives a bijection from \(U(k) \) to \(U(k) \), and the result follows.

\[\text{Lemma 5.4.} \quad \text{Let} \ X \ \text{be a finite normal generating subset for} \ G^+(k). \ \text{Then} \ X \ \text{normally generates} \ G. \]

\[\text{Proof.} \ \text{There exists} \ d \in \mathbb{N} \ \text{such that} \ (G(k) \cdot X)^d = G^+(k). \ \text{So the} \ \text{constructible set} \ (G \cdot X)^d \ \text{contains} \ G^+(k) \ \text{and is therefore dense in} \ G. \ \text{This implies that} \ (G \cdot X)^d \ \text{contains a nonempty open subset of} \ G, \ \text{so} \ (G \cdot X)^d(G \cdot X)^d = G. \ \text{Hence} \ X \ \text{is a finite normal generating set for} \ G. \]

\[\text{Proposition 5.5.} \quad \text{Let} \ X \ \text{be a finite subset of} \ G^+(k) \ \text{such that} \ X \ \text{normally generates} \ G. \ \text{Then} \ U(k) \subseteq B_X(8r). \]

\[\text{Proof.} \ \text{The big cell} \ Pn_0P \ \text{is open, so by Eqn. (5.1), we can choose} \ g \in B_X(2r) \cap Pn_0P. \ \text{We can write} \ g = xn_0x' \ \text{for some} \ x, x' \in P(k). \ \text{Since} \ B_X(2r) \ \text{is conjugation-invariant, there is no harm in replacing} \ g \ \text{with} \ (x')^{-1}gx', \ \text{so we can assume that} \ x' = 1 \ \text{and} \ g = xn_0. \ \text{Let} \ C_1 = \{n_0x_1 \mid x_1 \in P, xn_0^2x_1 \ \text{is regular semisimple}\}. \ \text{Let} \ O_1 = P \cdot C_1 = U \cdot C_1; \ \text{then} \ O_1 \ \text{is a constructible dense subset of} \ G. \ \text{By Eqn. (5.1), there exists} \ g \in B_X(2r) \cap O_1. \ \text{We can write} \ g = un_0x_1u^{-1} \ \text{where} \ xn_0^2x_1 \ \text{is regular semisimple and} \ u \in U. \ \text{Since} \ g \in G(k), \ \text{both} \ u \ \text{and} \ x_1u^{-1} \ \text{belong to} \ G(k). \ \text{Hence} \ n_0x_1 \in B_X(2r) \cap C_1. \ \text{It follows that} \ t := xn_0^2x_1 \ \text{is regular semisimple and belongs to} \ B_X(4r). \ \text{We have} \ t \in B_X(4r) \cap P(k), \ \text{so} \ U(k) \subseteq B_t(2) \subseteq B_X(8r) \ \text{by Lemma 5.3}. \ \text{This completes the proof.} \]

\[\text{Proof of Theorem 1.2.} \ \text{Suppose} \ G(k) = G^+(k). \ \text{By Lemma 5.2, there exists} \ t \in P(k) \ \text{such that} \ t \ \text{is regular semisimple. By Lemma 5.3,} \ B_t(2) \ \text{contains} \ U(k). \ \text{Since} \ G(k) \ \text{is generated by the} \ G(k)-\text{conjugates of} \ U(k), \ \text{we deduce that} \ \{t\} \ \text{normally generates} \ G(k). \ \text{Hence} \ G(k) \ \text{is finitely normally generated.}

\text{Now suppose further that} \ G(k) \ \text{is bounded. Fix a finite normal generating set} \ Y \ \text{for} \ G(k). \ \text{Then} \ G(k) = B_Y(s) \ \text{for some} \ s \in \mathbb{N} \ \text{and} \ Y \subseteq B_{U(k)}(d) \ \text{for some} \ d \in \mathbb{N}. \ \text{Let} \ X \ \text{be any finite normal generating set for} \ G(k). \ \text{Then} \ X \ \text{is normally generates} \ G \ \text{by Lemma 5.4}. \ \text{By Proposition 5.5,} \ U(k) \subseteq B_X(8r). \ \text{So}

\[G(k) = B_Y(s) \subseteq B_{U(k)}(sd) \subseteq B_X(8r ds). \]

\text{This shows that} \ G(k) \ \text{is uniformly bounded, as required.} \]

\[\text{Remark 5.6.} \ \text{The hypothesis that} \ G^+(k) = G(k) \ \text{holds in many cases if} \ G \ \text{is} \ k-\text{simple and simply connected—this is the content of the Kneser-Tits conjecture, which holds, for example, when} \ k \ \text{is a local field.} \]
Example 5.7. It is well known that the abelianisation of $\text{SO}_3(\mathbb{Q})$ is $\mathbb{Q}^*/(\mathbb{Q}^*)^2$, which is an infinitely generated abelian group. It follows that $\text{SO}_3(\mathbb{Q})$ is not finitely normally generated. Note that $\text{SO}_3^+(\mathbb{Q}) = 1$ since SO_3 is anisotropic over \mathbb{Q}.

6. The split case

In this section we assume G is split over k. If G is simply connected then the Kneser-Tits Conjecture holds for G, so $G^+(k) = G(k)$ in this case.

Lemma 6.1. Suppose $(*)$ each G_α is isomorphic to SL_2. Let $t_i \in T_{\alpha_i}(k)$ for $1 \leq i \leq r$ and set $t = t_1 \cdots t_r$. There exist $u_i, w_i \in U_{\alpha_i}(k)$ and $v_i, x_i \in U_{-\alpha_i}(k)$ for $1 \leq i \leq r$ such that $t = x_r \cdots x_1 u_r \cdots u_1 v_r \cdots v_1 w_r \cdots w_r$.

Proof. We use induction on r. The case $r = 0$ is vacuous. Now consider the case $r = 1$. Then $G \cong \text{SL}_2$. For any $a, b, c, d \in k$ we have
\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & ab \\ b & 1 \end{pmatrix} = \begin{pmatrix} 1+ab+cd+abd & \ast \\ \ast & \ast \end{pmatrix}.
\]
Let $x \in k^*$. Set $a = -x, b = x^{-1} - 1, c = 1$ and $d = x - 1$; then the matrix above becomes \(
\begin{pmatrix} 0 & 0 \\ 0 & x^{-1} \end{pmatrix}.
\) Hence the result holds when $r = 1$.

Now suppose $r > 1$. Let H be the semisimple group with root system spanned by $\pm \alpha_1, \ldots, \pm \alpha_{r-1}$. Clearly condition $(*)$ holds for H. Let $s = t_1 \cdots t_{r-1}$. By our induction hypothesis, there exist $u_i, w_i \in U_{\alpha_i}(k)$ and $v_i, x_i \in U_{-\alpha_i}(k)$ for $1 \leq i \leq r-1$ such that
\[
s = x_{r-1} \cdots x_1 u_{r-1} \cdots u_1 v_1 \cdots v_{r-1} w_1 \cdots w_{r-1}.
\]
By the SL_2 case considered above, $t_r = x_r' u_r' v_r' w_r'$ for some $u_r, w_r \in U_{\alpha_r}$ and some $v_r, x_r \in U_{-\alpha_r}$. Set $x_r = sx_r', s^{-1}, u_r = sw_r', s^{-1}, v_r = v_r'$ and $w_r = w_r'$. We have
\[
x_r x_{r-1} \cdots x_1 u_r u_{r-1} \cdots u_1 v_1 \cdots v_{r-1} w_1 \cdots w_{r-1} w_r
\]
\[
= x_r u_r x_{r-1} \cdots x_1 u_r \cdots u_1 v_1 \cdots v_{r-1} v_r w_1 \cdots w_{r-1} w_r
\]
\[
= x_r u_r s v_r w_r
\]
\[
= s x_r' u_r' v_r' w_r'
\]
\[
= st_r = t.
\]
The result follows by induction.

\square

Proposition 6.2. Suppose G is simply connected. Let $X \subseteq G^+(k)$ such that $U(k) \subseteq X$. Then $B_X(7) = G^+(k)$.

Proof. Since G is simply connected, $(*)$ holds for G and the map $\psi: \mathbb{G}_m^r \to T$ given by $\psi(a_1, \ldots, a_r) = \alpha_1^r(a_1) \cdots \alpha_r^r(a_r)$ is a k-isomorphism. It follows that $T(k) = T_{\alpha_1}(k) \cdots T_{\alpha_r}(k)$, so $T(k) \subseteq B_X(4)$ by Lemma 6.1.
Hence $U^-(k)B(k) = U^-(k)T(k)U(k) \subseteq B_X(1)B_X(4)B_X(1) \subseteq B_X(6)$. Now $G(k) = (U^-B)^{-1}(k)(U^-B)(k)$ by Lemma 3.2. But

$$(U^-B)^{-1}(k)(U^-B)(k) = B(k)U^-(k)U^-(k)B(k) = U(k)T(k)U^-(k)T(k)U(k)$$

$$= U(k)U^-(k)T(k)U(k) = U(k)U^-(k)B(k) \subseteq B_X(1)B_X(6) \subseteq B_X(7),$$

so we are done. \qed

Proof of Theorem 1.4. Let \tilde{G} be the split form of the simply connected cover of G and let $\psi: \tilde{G} \to G$ be the canonical projection. Then ψ is a k-defined central isogeny, so by [2, V.22.6 Thm.], the map $\tilde{B} \mapsto \psi(\tilde{B})$ gives a bijection between the set of k-Borel subgroups of \tilde{G} and the set of k-Borel subgroups of G; moreover, for each \tilde{B}, ψ gives rise to a k-isomorphism from $R_u(\tilde{B})$ to $R_u(B)$ [2, Prop. V.22.4]. It follows that $\psi(\tilde{G}^+(k)) = G^+(k)$. By [5, Lem. 2.16] we have $\Delta(G^+(k)) \leq \Delta(\tilde{G}^+(k))$, so we can assume without loss that G is simply connected. In particular, $G^+(k) = G(k)$.

Let X be a finite normal generating set for $G(k)$. Then X is a finite normal generating set for G (Lemma 5.4), so by Eqn. (5.1) there exists $t \in B_X(2r)$ such that t is regular semisimple. We have $U(k) \subseteq B_t(2)$ by Lemma 5.3 and $G(k) \subseteq B_{U(k)}(7)$ by Proposition 6.2. So

$$G(k) \subseteq B_{U(k)}(7) \subseteq B_t(14) \subseteq B_X(28r).$$

This shows that $\Delta(G(k)) \leq 28r$, as required. \qed

Example 6.3. (a) Let $G = \text{SL}_n(k)$ where $n \geq 3$, let g be the elementary matrix $E_{1n}(1)$ and let $X = G(k) \cdot g$. By [5, Prop. 6.23], X generates $G(k)$. One sees easily by direct computation that the centraliser $C_G(g)$ has dimension $n^2 - 2n + 1$, so $\dim(G \cdot g) = 2n - 2$. A simple dimension-counting argument shows that if $t < \frac{1}{2} \text{rank}(G)$ then X^t is a proper closed subvariety of G. Since $G(k)$ is dense in G, it follows that X^t does not contain $G(k)$, so $X(k)^t$ does not contain $G(k)$. We deduce that $\Delta(G(k)) \geq \frac{1}{2} \text{rank}(G)$.

(b) The bounds in Theorems 1.3 and 1.4 are far from sharp. Aseeri has shown by direct calculation that $3 \leq \Delta(\text{SL}_3(\mathbb{C})) \leq 6$ and that $\Delta(\text{SL}_2(\mathbb{C})^m) = 3m$ and $\Delta(\text{PGL}_2(\mathbb{C})^m) = 2m$ for every $k \in \mathbb{N}$ [1, Thm. 8.0.2, Thm. 7.2.10, Thm. 7.2.6], whereas Theorem 1.3 yields the bounds $\Delta(\text{SL}_3(\mathbb{C})) \leq 8$ and $\Delta(\text{SL}_2(\mathbb{C})^m), \Delta(\text{PGL}_2(\mathbb{C})^m) \leq 4m$. Aseeri also showed that $3 \leq \Delta(\text{SL}_3(\mathbb{R})) \leq 4$, whereas Theorem 1.4 gives $\Delta(\text{SL}_3(\mathbb{R})) \leq 56$.

7. Semisimple Lie groups

Proof of Theorems 1.5 and 1.6. Let H be a linear semisimple Lie group such that H has no compact simple factors. By [6, Thm. III.2.13], there is a complex semisimple algebraic group G defined over \mathbb{R} such that $G^+(\mathbb{R}) = H$. Now $Z(H)$ is finite, so H is finitely normally generated and bounded by [5, Thm. 1.2]. It follows from Theorem 1.2 that H is uniformly bounded. If H is split then G is split over \mathbb{R}, so $\Delta(H) \leq 28 \text{rank}(H)$ by Theorem 1.4.

The argument for the complex case is similar: if H is a semisimple linear complex Lie group then there is a semisimple complex algebraic group G such that the complex Lie group associated to G is H (cf. [8, Ch. 4, Sec. 2, Problem 12], and G is isomorphic to H. The result now follows from Theorem 1.3. □

References

[1] Fawaz Aseeri. Uniform boundedness of groups. PhD thesis, University of Aberdeen, 2022.
[2] Armand Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991.
[3] Robert M. Guralnick and Gunter Malle. Classification of $2F$-modules. II. In Finite groups 2003, pages 117–183. Walter de Gruyter, Berlin, 2004.
[4] James E. Humphreys. Linear algebraic groups. Springer-Verlag, New York-Heidelberg, 1975. Graduate Texts in Mathematics, No. 21.
[5] Jarek Kędra, Assaf Libman, and Ben Martin. On boundedness properties of groups. J. Topol. Anal., 2021. DOI: 10.1142/S1793525321500497.
[6] James S. Milne. Lie algebras, algebraic groups, and Lie groups. Version 2.00, https://www.jmilne.org/math/CourseNotes/LAG.pdf, 2013.
[7] P. E. Newstead. Introduction to moduli problems and orbit spaces, volume 51 of Tata Institute of Fundamental Research Lectures on Mathematics and Physics. Tata Institute of Fundamental Research, Bombay; by the Narosa Publishing House, New Delhi, 1978.
[8] A. L. Onishchik and È. B. Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by D. A. Leites.
[9] T. A. Springer. Linear algebraic groups. Modern Birkhäuser Classics. Birkhäuser Boston, Inc., Boston, MA, second edition, 2009.

University of Aberdeen and University of Szczecin

Email address: kedra@abdn.ac.uk

University of Aberdeen

Email address: a.libman@abdn.ac.uk

University of Aberdeen

Email address: b.martin@abdn.ac.uk