Synthesis, crystal structure and Hirshfeld surface analysis of tert-butyl N-acetylcarbamate

Aly Dawa El Mestehdi,a Moctar Abba,b Mohamed Lemine El Housseine,c Abderrahmane Ould Hadou,a Aliou Hamady Barry,a Brahim Ould Elemine,a Christian Jelschd and Mohamed Gaye*ea

aUnité de Chimie Moléculaire et Environnement, Département de Chimie, FST, UNA, Nouakchott, Mauritania,
bDépartement des Sciences Exactes, École Normale Supérieure de Nouakchott, Nouakchott, Mauritania, cAgence Nationale de Recherches Géologiques et du Patrimoine Minier (ANARPAM), Nouakchott, Mauritania, dLaboratoire CRM², CNRS, Institut Jean Barriol, Université de Lorraine, 54000, Nancy, France, and eDépartement de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal. *Correspondence e-mail: mlgayeastou@yahoo.fr

This article reports a practical synthesis of tert-butyl acetylcarbamate, C7H13NO3, from N-Boc-thioacetamide and the study of its crystal structure. The reaction proceeds in the presence of natural phosphate as a catalyst, with excellent yield, simple workup and benign environment. The crystal structure was refined using a transferred multipolar atom model. In the crystal, symmetrical pairs of strong N—H···O hydrogen bonds connect the molecules into dimers with an \(R_2^2(8) \) motif. The interactions between neighbouring dimers are mostly van der Waals, between hydrophobic methyl groups. Hirshfeld surface analysis shows the major contributions to the crystal packing are from H···H (42.6%) and O···H (26.7%) contacts.

1. Chemical context

Carbamates are widely used as agrochemicals, in the polymer industry, in peptide synthesis (Dibenedetto et al., 2002) and in medicinal chemistry, where many derivatives are specifically designed to make drug–target interactions through their carbamate moiety (Ghosh & Brindisi, 2015). Here we report the crystal structure of tert-butyl-acetylcarbamate, C7H13NO3 (I), which we obtained while attempting to synthesize poly-functional amidines (which are useful in synthetic fields, especially as templates for the development of various novel heterocycles) using heterogeneous catalysis on natural phosphates (NP) – readily available, stable, easy to handle and regenerate, non-toxic and inexpensive catalysts with both basic and acidic active sites (Sebti et al., 1994, 1996).

We followed the procedure described by Lee et al. (1998), but using natural phosphate (NP) as a catalyst instead of Lewis acids such as ZnCl2, Et3OBF4− and FeCl2. The synthesis was carried out by blending N-(t-Boc)thioacetamide with various aminoesters, in the presence of NEt3 and NP. The
reaction yielded (I) instead of the desired amidine, i.e. the sulfur atom was substituted by oxygen. In the absence of NP, no product was obtained and the starting materials were recovered.

2. Structural commentary

The title compound, C₇H₁₃NO₃, (Fig. 1) crystallizes in the space group P2₁/n with one molecule per asymmetric unit. The skeleton of the molecule is nearly planar if the C₃ and C₄ atoms are excluded, the root-mean-square deviation from the mean plane being 0.070 Å. The C₃H₃ and C₄H₃ methyl groups, located on either side of the mean plane, generate two weak intramolecular hydrogen bonds with the carbonyl O₂ atom located in the plane [C₃—H₃C₃/C₁/C₁/O₂ and C₄—H₄A/O₂, d(H—O)= 2.49 and 2.48 Å, respectively; Table 1].

3. Supramolecular features

In the crystal, a centrosymmetric dimer of molecules is held together by two N—H···O=C hydrogen bonds, N1—H1···O3 and its symmetry equivalent [d(H—O) = 1.92 (1) Å, Table 1], which represent the strongest interactions in the packing and create an inversion-symmetric supramolecular motif of graph-set R²(8) (Fig. 2). Fig. 3 shows the packing of these dimers. If we consider the Hirshfeld surface around the dimer as a whole, this surface is constituted mainly by hydrophobic (C and H-c) atoms (81%) and oxygen atoms (13%). The interactions between neighbouring dimers are mostly hydrophobic: H-c···H-c between methyl groups (43%) and C···H-c between carbonyl and methyl groups (21%). Weak C—H···O hydrogen bonds also occur between dimers (23%). The steric hindrance of the methyl groups causes an offset of the molecules of consecutive dimers, so that no strong hydrogen bond is observed between the dimers. Consequently, the crystal appears to be stabilized by strong hydrogen bonding within the dimers and van der Waals forces without.

4. Hirshfeld analysis

MoProViewer (Jelsch et al., 2005) was used to further investigate and visualize the intermolecular interactions in the crystal. The Hirshfeld surface was computed from the model

![Figure 1](image1)

View of molecule (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

![Figure 2](image2)

View of the molecular dimer linked by a double hydrogen bond.

![Figure 3](image3)

Molecular packing of (I), viewed along the a axis, showing different orientations of the dimers.

![Figure 4](image4)

Two-dimensional fingerprint plots of the major contacts on the Hirshfeld surface.

D—H···A	D—H	H···A	D···A	D—H···A
C4—H4A—O2	1.10	2.48	3.0651 (14)	112
C3—H3C—O2	1.10	2.49	2.9928 (15)	107
N1—H1···O3	1.01 (1)	1.92 (1)	2.9285 (11)	173 (1)

Symmetry code: (i) —x+1, —y, —z+1.
after multipolar refinement but using electron density from the spherical-neutral atom model. The 2D fingerprint plots (Fig. 4) were generated with Crystal Explorer (Spackman et al., 2021). The most significant contributions for the contacts in the crystal packing (Table 2) are from $\text{H} \cdot \cdot \text{H}$ (46.2%), $\text{O} \cdot \cdot \text{H}/\text{H} \cdot \cdot \text{O}$ (26.7%) and $\text{C} \cdot \cdot \text{H}/\text{H} \cdot \cdot \text{C}$ contacts (18.7%), whereas only 2.8% are from $\text{N} \cdot \cdot \text{H}/\text{H} \cdot \cdot \text{N}$ contacts. In the fingerprint plots (Fig. 4), the two reciprocal spikes at a short distance correspond to the $\text{O} \cdot \cdot \text{H} \cdot \cdot \text{N}/\text{N} \cdot \cdot \text{H} \cdot \cdot \text{O}$ contacts, i.e. strong hydrogen bonds. The $\text{H} \cdot \cdot \text{H}$ contacts show also a small spike on the diagonal line, the shortest distances being 2.447 Å between H2B and H7A(x + 1, y − 1, z) (Fig. 5a). The intermolecular interactions were further evaluated by computing the enrichment ratios (E, see Table 2) in order to highlight which contacts are over-represented and are likely to represent energetically strong interactions and be the driving force in crystal formation (Jelsch et al., 2014). The enrichment values are obtained as the ratio between the shares of actual contacts C_{xy} and the random (equiprobable) contacts R_{xy}, the latter calculated as if all types of contacts had the same propensity to occur and are obtained by probability products ($R_{xy} = S_x S_y$).

The Hirshfeld surface was partitioned into ($\text{H} \cdot \cdot \text{C}$, C) and ($\text{H} \cdot \cdot \text{N}$, O, N) atoms’ shares in order to analyse the contacts in terms of hydrophobic and hydrophilic interactions. Overall, hydrophobic atoms (C and $\text{H} \cdot \cdot \text{C}$) comprise 77.5% of the surface, but the hydrophobic contacts between these atoms (61.8%) are not significantly enriched at $E = 1.03$. Contacts between hydrophilic atoms (22.5% of the surface), mostly in the form of strong hydrogen bonds, are enriched to 6.7% ($E = 1.32$) while cross-interactions (between hydrophobic and hydrophilic atoms) are under-represented (31.6%, $E = 0.90$).

The electrostatic potential was computed on the Hirshfeld and van der Waals surfaces of the molecule (Fig. 5). The two surfaces show similar potential values which are both in the range of -0.12 to $+0.12$ e Å$^{-1}$. The regions around the three oxygen atoms are electronegative while the NH group displays positive potential on the surface, followed by the methyl groups which are moderately electropositive.

5. Database survey

The Cambridge Structural Database (Version 5.43, November 2021; Groom et al., 2016) was surveyed using ConQuest (version 2020.2.0; Bruno et al., 2002). The eight-membered supramolecular motif, with a double $\text{N} \cdot \cdot \text{H} \cdot \cdot \text{O} \cdot \cdot \text{C}$ hydrogen bond between two amide groups, is quite common, being encountered in 10,336 crystal structures. The amide-ester fragment, encountered in 35 structures, exists in three different near-planar conformations (Fig. 6). Conformation (a) with the syn disposition of C=O bonds appears in 23 structures, including the nearest reported analogue of (I).
1.1-dimethylethyl-N-propanoylcarbamate (II) (Brodesser et al., 2003). Two different anti conformations, (b) and (c), are adopted by nine and three compounds, respectively. Molecule (I) adopts the anti conformation (b). Compound (I) is the homologue of (II).

6. Synthesis and crystallization

Materials and physical methods. All reagents were purchased from Sigma-Aldrich. Reaction progress was monitored by thin-layer chromatography (TLC) on silica-gel plates (Fluka Kieselgel 60 F254). Flash chromatography purifications were performed on Interchim Puriflash (Puriflash columns 50 μ). X-ray fluorescence analysis was performed on a PANalytical AxiosMax spectrometer.

Preparation of the catalyst. The NP used in this work comes from the Bofal phosphate deposit in Mauritania. Before being used in catalysis, it underwent quartering treatment, particle-size separation, aqueous dissolution, filtration and evaporation of water, calcination at 1173 K for 1h and grinding. The fraction of 60–100 μm grain size was used. The nominal chemical compositions of this phosphate were given by X-ray fluorescence (XRF) analysis. The total amount of the natural inorganic components was 90.86% (Table 3). The rest was mainly organic matter, as indicated by the weight loss on combustion, which amounted to 10.43%.

Preparation of tert-butyl acetylcarbamate (I). It should be noted that compound (I) was prepared in our attempt to synthesize polyfunctional amidines, which are useful in synthetic fields, especially as a template for the development of new heterocycles. In the preparation, we used the same operating conditions as Lee et al. (1998), substituting NP as the catalyst for a Lewis acid. To a solution of N-(t-Boc)thioacetamide (87.6 mg; 0.5 mmol), the hydrochloride salt of an amino ester (0.5 mmol) and triethylamine (78 μl; 0.5 mmol), the hydrochloride (I) was obtained from the Bofal phosphate deposit in Mauritania. Before being used in catalysis, it underwent quartering treatment, particle-size separation, aqueous dissolution, filtration and evaporation of water, calcination at 1173 K for 1h and grinding. The fraction of 60–100 μm grain size was used. The nominal chemical compositions of this phosphate were given by X-ray fluorescence (XRF) analysis. The total amount of the natural inorganic components was 90.86% (Table 3). The rest was mainly organic matter, as indicated by the weight loss on combustion, which amounted to 10.43%.

Preparation of tert-butyl acetylcarbamate (I). It should be noted that compound (I) was prepared in our attempt to synthesize polyfunctional amidines, which are useful in synthetic fields, especially as a template for the development of new heterocycles. In the preparation, we used the same operating conditions as Lee et al. (1998), substituting NP as the catalyst for a Lewis acid. To a solution of N-(t-Boc)thioacetamide (87.6 mg; 0.5 mmol), the hydrochloride salt of an amino ester (0.5 mmol) and triethylamine (78 μl; 0.5 mmol), the hydrochloride (I) was obtained from the Bofal phosphate deposit in Mauritania. Before being used in catalysis, it underwent quartering treatment, particle-size separation, aqueous dissolution, filtration and evaporation of water, calcination at 1173 K for 1h and grinding. The fraction of 60–100 μm grain size was used. The nominal chemical compositions of this phosphate were given by X-ray fluorescence (XRF) analysis. The total amount of the natural inorganic components was 90.86% (Table 3). The rest was mainly organic matter, as indicated by the weight loss on combustion, which amounted to 10.43%.

Preparation of tert-butyl acetylcarbamate (I). It should be noted that compound (I) was prepared in our attempt to synthesize polyfunctional amidines, which are useful in synthetic fields, especially as a template for the development of new heterocycles. In the preparation, we used the same operating conditions as Lee et al. (1998), substituting NP as the catalyst for a Lewis acid. To a solution of N-(t-Boc)thioacetamide (87.6 mg; 0.5 mmol), the hydrochloride salt of an amino ester (0.5 mmol) and triethylamine (78 μl; 0.5 mmol), the hydrochloride (I) was obtained from the Bofal phosphate deposit in Mauritania. Before being used in catalysis, it underwent quartering treatment, particle-size separation, aqueous dissolution, filtration and evaporation of water, calcination at 1173 K for 1h and grinding. The fraction of 60–100 μm grain size was used. The nominal chemical compositions of this phosphate were given by X-ray fluorescence (XRF) analysis. The total amount of the natural inorganic components was 90.86% (Table 3). The rest was mainly organic matter, as indicated by the weight loss on combustion, which amounted to 10.43%.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. A least-squares refinement, based on \(|F|^2\) of all reflections, was carried out with the program MoPro (Jelsch et al., 2005) using the ELMAM2 electron-density database (Domagala et al., 2012). In this approach, scale factors, atomic positions and displacement parameters for all atoms were varied, but a multipolar charged-atom model was applied until convergence. The H—X distances were constrained to the standard values in neutron diffraction studies (Allen & Bruno, 2010). The anisotropic displacement parameters of hydrogen atoms were constrained to the values obtained from the SHADE3 server (Madsen & Hoser, 2014). Two subsets of the molecule (O-t-butyl moiety and the rest of the molecule) were used as input to the SHADE3 program to obtain better estimations of the \(U_{\text{an}}(\text{H})\) displacement parameters. The use of a transferred multipolar atom model allowed the reduction of \(R(F)\) to 4.6% and \(wR_2(F^2)\) to 7.2%, compared to 6.1% and 11.8%, respectively, for the neutral-spherical atom model, as refined in MoPro. The r.m.s. residual electron density was likewise reduced from 0.042 to 0.034 e Å\(^{-3}\).

Funding information

The authors are grateful to Ministère de l’Enseignement Supérieur et de la Recherche Scientifique de la République Islamique de Mauritanie and the Service de Coopération et d’Assistance à la Démocratie for the financial support of this research through the project ‘M-0017’. The authors wish to thank the Service des Matériaux et des Matériaux de la Faculté des Sciences et Techniques of the University of El Manar, El Mornos, for providing the research facilities for the electrical conductivity measurements. The authors are grateful to Ministe`re de l’Enseignement Supérieur et de la Recherche Scientifique de la République Islamique de Mauritanie and the Service de Coope´ ration et d’Assistance à la Démocratie for the financial support of this research through the project ‘M-0017’. The authors wish to thank the Service des Matériaux et des Matériaux de la Faculté des Sciences et Techniques of the University of El Manar, El Mornos, for providing the research facilities for the electrical conductivity measurements.

Table 3

| X-ray fluorescence (XRF) analysis (%) of natural phosphate. |
|------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| SiO\(_2\) | TiO\(_2\) | Al\(_2\)O\(_3\)| Fe\(_2\)O\(_3\)| MgO | CaO | Na\(_2\)O | K\(_2\)O | MnO | P\(_2\)O\(_5\)| SO\(_3\) |
| 14.17 | 0.058 | 17.51 | 0.530 | 0.245 | 31.66 | 0.319 | 0.113 | 0.016 | 26.18 | 0.060 |

Table 4

Crystal data
Chemical formula
\(M_r\)
Crystal system, space group
Temperature (K)
a, b, c (Å)
\(\beta\) (°)
\(V\) (Å\(^3\))
\(Z\)
Radiation type
\(\mu\) (mm\(^{-1}\))
Crystal size (mm)

Data collection
Diffractometer
Number of measured, independent and observed \([I > 2 \sigma(I)]\) reflections
\(R_m\)
\(\sin \theta/\lambda\)max (Å\(^{-1}\))
\(R[F^2 > 2\sigma(F^2)]\), \(wR(F^2), S\)
Number of reflections
Number of parameters
Number of restraints
H-atom treatment
\(\Delta \rho_{max}, \Delta \rho_{min}\) (e Å\(^{-3}\))

Computer programs: APEX3 and SAINT (Bruker, 2016), SHELXS97 (Sheldrick, 2008) and MoPro (Jelsch et al., 2005).
d’Action Culturelle (SCAC) de l’Ambassade de France en Mauritanie for financial support.

References
Allen, F. H. & Bruno, I. J. (2010). *Acta Cryst.* B66, 380–386.
Brodesser, S., Mikeska, T., Nieger, M. & Kolter, T. (2003). *Acta Cryst.* E59, o1359–o1361.
Bruker (2016). *APEX3* and *SAINT*. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). *Acta Cryst.* B58, 389–397.
Dibenedetto, A., Aresta, M., Fragale, C. & Narracci, M. (2002). *Green Chem.* 4, 439–443.
Domagała, S., Fournier, B., Liebschner, D., Guillot, B. & Jelsch, C. (2012). *Acta Cryst.* A68, 337–351.

Ghosh, A. K. & Brindisi, M. (2015). *J. Med. Chem.* 58, 2895–2940.
Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). *Acta Cryst.* B72, 171–179.
Jelsch, C., Ejsmont, K. & Huder, L. (2014). *IUCrJ*, 1, 119–128.
Jelsch, C., Guillot, B., Lagoutte, A. & Lecomte, C. (2005). *J. Appl. Cryst.* 38, 38–54.
Lee, H. K., Ten, L. N. & Pak, C. S. (1998). *Bull. Korean Chem. Soc.* 19, 1148–1149.
Madsen, A. Ø. & Hoser, A. A. (2014). *J. Appl. Cryst.* 47, 2100–2104.
Sebti, S., Rhihil, A. & Saber, A. (1996). *Chem. Lett.* 25, 721.
Sebti, S., Saber, A. & Rhihil, A. (1994). *Tetrahedron Lett.* 35, 9399–9400.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). *J. Appl. Cryst.* 54, 1006–1011.
Synthesis, crystal structure and Hirshfeld surface analysis of tert-butyl N-acetylcarbamate

Aly Dawa El Mestehdi, Moctar Abba, Mohamed Lemine El Housseine, Abderrahmane Ould Hadou, Aliou Hamady Barry, Brahim Ould Elemine, Christian Jelsch and Mohamed Gaye

Computing details

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: MoPro (Jelsch et al., 2005); molecular graphics: MoPro (Jelsch et al., 2005); software used to prepare material for publication: MoPro (Jelsch et al., 2005).

tert-Butyl N-acetylcarbamate

Crystal data

$\text{C}_7\text{H}_{13}\text{NO}_3$

$M_r = 159.18$

Monoclinic, $P2_1/n$

Hall symbol: -P 2yn

$a = 6.0404\ (6)\ \text{Å}$

$b = 8.6114\ (7)\ \text{Å}$

$c = 17.6110\ (17)\ \text{Å}$

$\beta = 98.771\ (9)^\circ$

$V = 905.35\ (15)\ \text{Å}^3$

$Z = 4$

$F(000) = 344$

$D_x = 1.168\ \text{Mg\ m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073\ \text{Å}$

Cell parameters from 4200 reflections

$\theta = 2.4\text{--}28.6^\circ$

$\mu = 0.09\ \text{mm}^{-1}$

$T = 293\ \text{K}$

Block, colorless

$0.15 \times 0.1 \times 0.08\ \text{mm}$

Data collection

Bruker Kappa CCD diffractometer

Radiation source: fine-focus sealed tube

Graphite monochromator

CCD scans

2405 measured reflections

2059 independent reflections

Refinement

Refinement on F^2

Least-squares matrix: full

$R[F^2 > 2\sigma(F^2)] = 0.034$

$wR(F^2) = 0.072$

$S = 1.00$

2059 reflections

139 parameters

31 restraints

Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map

Hydrogen site location: difference Fourier map

Only H-atom coordinates refined

$w = 1/[\sigma^2(F_c^2)]$

$(\Delta\sigma)_{\text{max}} = 0.002$

$R_{\text{int}} = 0.035$

$\theta_{\text{max}} = 27.5^\circ$, $\theta_{\text{min}} = 2.6^\circ$

$h = -7\rightarrow7$

$k = 0\rightarrow11$

$l = 0\rightarrow22$
Δρ_{max} = 0.16 \text{ e Å}^{-3} \\
Δρ_{min} = −0.17 \text{ e Å}^{-3} \\

Extinction correction: Isotropic Gaussian \\
Extinction coefficient: 0.51132

Special details

Refinement. Refinement of F^2 against reflections. The threshold expression of F^2 > 2σ(F^2) is used for calculating R-factors(gt) and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å^2)

	x	y	z	U_{iso}/U_{eq}
O1	0.38211 (11)	0.355396 (15)	0.40123 (4)	0.05484 (14)
O2	0.63464 (12)	0.29985 (8)	0.32233 (4)	0.06801 (17)
O3	0.73388 (12)	−0.08048 (8)	0.46784 (4)	0.06574 (16)
N1	0.57479 (13)	0.14069 (8)	0.42246 (5)	0.05046 (16)
H1	0.474 (2)	0.1271 (16)	0.4629 (7)	0.08754
C5	0.54053 (15)	0.27070 (10)	0.37571 (5)	0.04754 (17)
C6	0.73373 (15)	0.02549 (11)	0.42216 (6)	0.05121 (18)
C1	0.30097 (15)	0.50254 (10)	0.36327 (6)	0.05446 (18)
C7	0.89889 (19)	0.03248 (14)	0.36770 (7)	0.0716 (3)
H7A	1.0210 (16)	−0.0607 (14)	0.3829 (8)	0.10454
H7B	0.9899 (18)	0.1427 (14)	0.3755 (9)	0.11089
H7C	0.818 (2)	0.0353 (17)	0.3076 (6)	0.11503
C4	0.18467 (19)	0.46831 (14)	0.28329 (7)	0.0740 (3)
H4A	0.3039 (17)	0.4270 (16)	0.2468 (6)	0.10880
H4B	0.106 (2)	0.5761 (14)	0.2597 (8)	0.11611
H4C	0.0505 (16)	0.3836 (15)	0.2852 (8)	0.11411
C3	0.4904 (2)	0.61607 (13)	0.36559 (8)	0.0758 (2)
H3A	0.578 (2)	0.6274 (16)	0.4245 (8)	0.11708
H3B	0.419 (2)	0.7310 (12)	0.3505 (9)	0.12094
H3C	0.6142 (17)	0.5881 (15)	0.3283 (7)	0.10779
C2	0.1345 (2)	0.55587 (15)	0.41419 (8)	0.0822 (3)
H2A	0.0073 (16)	0.4648 (14)	0.4127 (9)	0.11714
H2B	0.054 (2)	0.6620 (14)	0.3891 (8)	0.12347
H2C	0.232 (2)	0.5828 (17)	0.4703 (7)	0.12492

Atomic displacement parameters (Å^2)

	U_11	U_22	U_33	U_{12}	U_{13}	U_{23}
O1	0.0660 (4)	0.0489 (4)	0.0515 (4)	0.0085 (3)	0.0150 (3)	0.0127 (3)
O2	0.0786 (5)	0.0669 (5)	0.0644 (5)	0.0061 (4)	0.0300 (4)	0.0184 (3)
O3	0.0745 (5)	0.0484 (4)	0.0771 (5)	0.0077 (3)	0.0204 (4)	0.0162 (3)
N1	0.0599 (5)	0.0439 (4)	0.0495 (5)	0.0021 (3)	0.0144 (3)	0.0091 (3)
H1	0.09872	0.08344	0.09180	0.02741	0.05087	0.03885
C5	0.0539 (5)	0.0441 (5)	0.0456 (5)	−0.0003 (4)	0.0107 (4)	0.0056 (4)
C6	0.0573 (5)	0.0430 (5)	0.0533 (5)	−0.0001 (4)	0.0083 (4)	0.0024 (4)
C1	0.0592 (5)	0.0460 (5)	0.0551 (5)	0.0050 (4)	−0.0011 (4)	0.0103 (4)
C7	0.0720 (7)	0.0747 (7)	0.0731 (7)	0.0168 (6)	0.0274 (6)	0.0133 (6)
H7A	0.09887	0.10412	0.11797	0.04100	0.04001	0.02395
Geometric parameters (Å, º)

Bond/Angle	Length (Å)	Bond/Angle	Length (Å)
O1—C5	1.3344 (11)	C7—H7A	1.0950
O1—C1	1.4808 (9)	C7—H7B	1.0950
O2—C5	1.1970 (11)	C4—H4C	1.0950
O3—C6	1.2164 (11)	C4—H4A	1.0950
N1—C5	1.3864 (12)	C4—H4B	1.0950
N1—C6	1.3811 (12)	C3—H3C	1.0950
N1—H1	1.013 (8)	C3—H3B	1.0950
C6—C7	1.4868 (15)	C3—H3A	1.0950
C1—C3	1.5009 (14)	C2—H2C	1.0950
C1—C4	1.5042 (15)	C2—H2B	1.0950
C1—C2	1.5170 (16)	C2—H2A	1.0950
C7—H7C	1.0950		

Bond/Angle	Length (Å)	Bond/Angle	Length (Å)
C5—O1—C1	121.38 (6)	H7C—C7—H7B	104.1
C5—N1—C6	128.22 (7)	H7A—C7—H7B	107.3 (8)
C5—N1—H1	117.3 (7)	C1—C4—H4C	110.1 (7)
C6—N1—H1	114.4 (7)	C1—C4—H4A	111.0 (6)
O1—C5—O2	126.91 (8)	C1—C4—H4B	107.6 (6)
O1—C5—N1	106.93 (7)	H4C—C4—H4A	111.1 (1)
O2—C5—N1	126.15 (7)	H4C—C4—H4B	107.3 (10)
O3—C6—N1	117.82 (7)	H4A—C4—H4B	110.1 (1)
O3—C6—C7	121.61 (8)	C1—C3—H3C	115.4 (7)
N1—C6—C7	120.57 (8)	C1—C3—H3B	108.2 (6)
O1—C1—C3	110.28 (7)	C1—C3—H3A	109.8 (7)
O1—C1—C4	109.28 (7)	H3C—C3—H3B	109.1 (1)
O1—C1—C2	101.29 (7)	H3C—C3—H3A	108.3 (10)
C3—C1—C4	113.48 (8)	H3B—C3—H3A	105.1 (1)
C3—C1—C2	110.99 (9)	C1—C2—H2C	106.5 (7)
C4—C1—C2	110.85 (9)	C1—C2—H2B	107.8 (8)
C6—C7—H7C	112.4 (7)	C1—C2—H2A	107.1 (7)
C6—C7—H7A	107.8 (6)	H2C—C2—H2B	109.3 (10)
C6—C7—H7B 109.1 (7) H2C—C2—H2A 117 (1)
H7C—C7—H7A 115.8 (9) H2B—C2—H2A 108.8 (10)
O1—C5—N1—C6 −174.66 (12) H1—N1—C6—C7 −178 (1)
O1—C5—N1—H1 4 (1) C5—O1—C1—C3 60.18 (11)
O1—C1—C3—H3C 71.1 (8) C5—O1—C1—C4 65.21 (11)
O1—C1—C3—H3B −166.1 (9) C5—O1—C1—C2 −177.77 (12)
O1—C1—C3—H3A −51.6 (9) C5—N1—C6—C7 1.01 (14)
O1—C1—C4—H4C 55.5 (7) C4—C1—C3—H3C −51.9 (7)
O1—C1—C4—H4A −67.8 (7) C4—C1—C3—H3B 70.9 (7)
O1—C1—C4—H4B 172.1 (9) C4—C1—C3—H3A −174.6 (9)
O1—C1—C2—H2C 66.4 (7) C4—C1—C2—H2C −177.8 (9)
O1—C1—C2—H2B −176.4 (7) C4—C1—C2—H2B −60.5 (7)
O1—C1—C2—H2A −59.4 (7) C4—C1—C2—H2A 56.4 (8)
O2—C5—O1—C1 0.45 (12) H4A—C4—C1—C3 56 (1)
O2—C5—N1—C6 5.90 (14) H4A—C4—C1—C2 −179 (1)
O2—C5—N1—H1 −175 (1) H4B—C4—C1—C3 64 (1)
O3—C6—N1—C5 −179.23 (13) H4B—C4—C1—C2 61 (1)
O3—C6—N1—H1 2 (1) H4C—C4—C1—C3 179 (1)
O3—C6—C7—H7C 121.4 (9) H4C—C4—C1—C2 −55 (1)
O3—C6—C7—H7A −7.4 (8) C3—C1—C2—H2C −50.7 (7)
O3—C6—C7—H7B −123.6 (8) C3—C1—C2—H2B 66.5 (8)
N1—C5—O1—C1 −178.99 (12) C3—C1—C2—H2A −176.5 (8)
N1—C6—C7—H7C −58.8 (8) H3A—C3—C1—C2 60 (1)
N1—C6—C7—H7A 172.4 (8) H3B—C3—C1—C2 −55 (1)
N1—C6—C7—H7B 56.1 (8) H3C—C3—C1—C2 −177 (1)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
C4—H4A···O2	1.10	2.48	3.0651 (14)	112
C3—H3C···O2	1.10	2.49	2.9928 (15)	107
N1—H1···O3i	1.01 (1)	1.92 (1)	2.9285 (11)	173 (1)

Symmetry code: (i) −x+1, −y, −z+1.