Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables

Yasin Topcu 1, Savithri U. Nambeesan 2 and Esther van der Knaap 1,2*

Abstract

Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca^{2+}) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca^{2+} concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.

Keywords: Blossom-end rot (BER), Reactive Oxygen Species (ROS), Ca^{2+} deficiency, Abiotic stress, Cell wall, Tomato, Antioxidants, Plant growth regulators, Fruit morphology

Introduction

Vegetable production is challenged by a range of biotic and abiotic factors, often resulting in a substantial loss of the produce in each growing cycle. As the population is growing, the world is facing increasing demands for a stable food supply grown on agricultural lands across the globe. Unfortunately, abiotic stresses are becoming increasingly more prevalent especially in light of climate change. Climate-related changes, which are exemplified by extreme air and water temperature, increased frequency and intensity of rainfall, intense hurricanes and so forth are becoming more prevalent (Wuebbles et al. 2017; Hoegh-Guldberg et al. 2018; U.S. Environmental Protection Agency 2021).

Undoubtedly, these extreme weather events will lead to an increase in stress related diseases and disorders (U.S. Global Change Research Program 2009). Short, and long-term impacts of climate change are expected to further increase these extreme weather conditions; thus, the stability of food supplies and crop productivity will continue to be affected adversely from these extreme events (Motha and Baier 2005; U.S. Global Change Research Program 2009; Lobell et al. 2013; Hoegh-Guldberg et al. 2018).

BER is one of the most devastating physiological disorders that affect various crops such as tomato (Solanum lycopersicum L.), pepper (Capsicum annuum L.), watermelon (Citrullus lanatus (Thunb.) and eggplant (Solanum melongena L.) (Taylor and Locascio 2004; Díaz-Pérez and Hook 2017) (Fig. 1). A related disorder in apple is bitter pit (Bangerth 1979; de Freitas et al. 2010), BER and related disorders affect mostly the fruit, but other organs such as...
leaves, and flowers can suffer as well. Various leafy vegetables suffer tipburn (Kuo et al. 1981; Francois et al. 1991; Barta and Tibbits 2000; Macias-González et al. 2019; Su et al. 2019) and other vegetables such as celery and cauliflower are affected by disorders that appear similar to BER (Geraldson 1952; Rosen 1990; Bouzo et al. 2007; Bianco et al. 2015). Combined, these physiological disorders can lead to significant yield losses especially in subsistence and organic farming (Ikeda and Kanayama 2015; Hassou et al. 2019). As the demand for organic produce is increasing, the impact of abiotic stresses on this sector may become substantial as well. As an example, Hickory Hill Farm in Carlton GA, USA faced a challenging season in 2018 when they lost almost 80% of the organically grown tomatoes to BER (Josh Johns and Gary Shaw, personal communication). BER was first described in tomato more than 120 years ago as a physiological disorder caused by inconsistent watering (Selby 1896), a notion that has held up until today. The early studies also indicate that BER is of great concern as it was linked to significant crop losses caused by canopy transpiration rate and the use of ammonium-based fertilization (Stuckey 1916; Wedgworth et al. 1927; Chamberlain 1933).

In this review, we summarize the recent findings on the development of BER from research primarily conducted in tomato. These findings are starting to shed light on the molecular basis of the onset of BER as well as crop improvement strategies that can be applied in the near future.

Development of BER symptoms

The initial external symptoms of BER in tomato are often observed on the distal portion of the fruit during the second week after pollination but can also occur later during development at five weeks after pollination (Spurr 1959; Marcelis and Ho 1999; Saure 2001; Ho and White 2005; de Freitas et al. 2018; Rached et al. 2018). Typical symptoms appear as small light colored, water soaked spots on the blossom end of the fruit which is associated with cell plasmolysis and leaky membranes (Ho and White 2005) (Fig. 2). BER symptoms usually appear externally on the pericarp at the distal end, but affected areas may also occur in the internal distal placenta tissue without visible external symptoms (Brust 2004; Hochmuth and Hochmuth 2009). After BER induction, BER-affected areas often expand and turn into brown necrotic...
regions covering a significant proportion of the fruit and in some extreme cases affect the entire fruit. Occasionally, BER fails to expand, and the afflicted areas disappear. The symptoms can be exacerbated if they occur soon after pollination and, in such cases, the fruit never attains its maximum size. BER-afflicted areas often become prone to invasion from secondary pathogens such as saprophytic *Alternaria* fungal species (Brust 2004; Hochmuth and Hochmuth 2009).

Relationship between Ca$^{2+}$ and BER

Findings from many studies have suggested that Ca$^{2+}$ deficiency initiates BER incidence (Shear 1975; Adams and Ho 1993; Taylor and Locascio 2004; de Freitas et al. 2012b; Watanabe et al. 2021). During fruit growth, the differential Ca$^{2+}$ concentrations between the proximal (high) and distal (low) end of the fruit is correlated to the appearance of BER such that the higher the difference, the higher incidence of BER (Franco et al. 1994). Ca$^{2+}$ plays an essential role in plant growth and development where it fulfills three main functions. Ca$^{2+}$ acts a secondary messenger (Kudla et al. 2010; Thor 2019), and the subcellular concentration in the cytosol, vacuole and apoplast are tightly regulated by Ca$^{2+}$-ATPases, H$^+/Ca^{2+}$ exchangers, and channel proteins at different cellular membranes (Clarkson et al. 1993; Clapham 2007; Kudla et al. 2010; Thor 2019). Second, Ca$^{2+}$ has a structural role in determining the rigidity of the cell wall through cross-linking with the de-esterified pectin in the middle lamella (Micheli 2001; Hepler and Winship 2010; Thor 2019). The largest Ca$^{2+}$ pool of at least 60% is localized to the cell wall (Demarty et al. 1984). And third, free apoplastic Ca$^{2+}$ concentration maintains the cell membrane integrity through connecting the phospholipids and proteins at the plasma membrane (Hepler and Winship 2010; Marschner 2011; Thor 2019). Ca$^{2+}$ in BER development is associated with the aberrant regulation of its partitioning and distribution in different cellular compartments. For instance, apoplastic Ca$^{2+}$ concentration specifically in the distal end of the fruit, rather than total Ca$^{2+}$ concentration in the distal part, are negatively correlated to BER development (Ho and White 2005; de Freitas et al. 2011b). Ca$^{2+}$ homeostasis can be perturbed by expression of Arabidopsis *sCAX1* (*Cation Exchanger 1*), encoding a functional Ca$^{2+}$/H$^+$ antiporter in tomato. *sCAX1* encodes a N-terminal truncated version of the full-length gene that does not contain its regulatory region and therefore is constitutively active. When *sCAX1* is expressed in tomato, 100% of the fruit exhibited BER symptoms (Park et al. 2005; de Freitas et al. 2011b). The *sCAX1* tomato exhibited higher total water soluble and fruit Ca$^{2+}$ concentrations compared with the control. However, *sCAX1*-expressing tomato plants increased the transport of Ca$^{2+}$ from the cytosol to the vacuole resulting in lower cytosol and apoplast Ca$^{2+}$ concentration compared to non-transformed control. These results support
the notion that altered Ca\(^{2+}\) homeostasis among different cellular compartments interferes with the signaling cascade that orchestrates the induction of downstream responses to BER or prevent BER from happening altogether (de Freitas et al. 2011b). The altered Ca\(^{2+}\) distribution is proposed to disrupt the integrity and function of the cellular membranes, which in turn could lead to leakage of solutes into the extracellular space resulting in BER (Ho and White 2005; Park et al. 2005; de Freitas et al. 2011b).

The majority of the cell wall Ca\(^{2+}\) is bound to the de-esterified pectin whereas the remainder is in free form (Marschner 2011). Pectin is the major component of the middle lamellae in plants (Demarty et al. 1984; White and Broadley 2003; Marschner 2011) and is synthesized in the Golgi apparatus to be secreted into the cell wall in a highly methylesterified form (Goldberg et al. 1996; Micheli 2001; Wormit and Usadel 2018). During growth, the secreted pectin undergoes modifications by pectin methylesterases (PMEs) which is countered by pectin methylesterase inhibitors (Micheli 2001; Bosch et al. 2005; Pelloux et al. 2007; Palin and Geitmann 2012; Wormit and Usadel 2018). Ca\(^{2+}\) interacts electrostatically with the negatively charged carboxyl groups on the demethylated pectin facilitating the cross linking of the pectin molecules and stiffening of the cell wall (Micheli 2001; Wormit and Usadel 2018). Retaining the concentration of freely available apoplastic Ca\(^{2+}\) is critical to maintain membrane stability and for cellular responses to BER. The concentration of free apoplastic Ca\(^{2+}\) is dependent on pectin bound Ca\(^{2+}\) which is required for cell wall stability. Thus, when cell wall and membrane stability collapses, BER symptoms can be initiated in response to the stress (de Freitas et al. 2011b; Marschner 2011; Watanabe et al. 2021).

The suspected role of pectin in sequestering Ca\(^{2+}\) and causing BER has led to studies that aimed at modifying pectin properties. Using gene silencing, antisense expression of pectin methylesterase \textit{LePME3} (Soly07g064190) increased water-soluble Ca\(^{2+}\) concentration in tomato fruits resulting in less electrolyte leakage and less BER (de Freitas et al. 2012b). Note however, that the antisense expression led to the downregulation of other PME genes as well, namely \textit{Soly03g123630} (PMELU1), \textit{Soly07g064170} (PE1), \textit{Soly07g064180} (PME2.1), \textit{Soly06g051960} (LES.9028) and \textit{Soly03g083360} (Les.10790) (de Freitas et al. 2012b). The increase in soluble Ca\(^{2+}\) concentration in the antisense plants is particularly noticeable in the apoplast and is associated with the lack of cell plasmolysis compared to control. Moreover, the pectin in the antisense plants was highly methylated compared to control. In sum, the role of free apoplastic Ca\(^{2+}\) concentration maintains proper Ca\(^{2+}\) homeostasis among different cellular compartments and prevents membrane leakage, hence reduced BER incidence (de Freitas et al. 2012b). In addition, PMEs are critical in regulating pectin composition which is directly influencing BER (de Freitas et al. 2012b). Even though numerous studies have correlated BER to Ca\(^{2+}\) homeostasis (Geraldson 1956; Spurr 1959; Adams and Ho 1993; Bar-Tal et al. 2001; de Freitas et al. 2011b; de Freitas et al. 2012b), findings from other studies suggest that aberrant Ca\(^{2+}\) homeostasis is a consequence and may not be the cause of BER (Nonami et al. 1995; Saure 2001; Rached et al. 2018; Matsumoto et al. 2021). For example, before and right after the onset of BER, the Ca\(^{2+}\) concentration is the same among all the fruits for the different tissue types (Nonami et al. 1995). As BER is developing further, the Ca\(^{2+}\) concentrations start to differ markedly. It is perhaps the organization of the pectin structure in the middle lamellae that is crucial to regulating the onset of BER in plants.

Reactive oxygen species (ROS) and BER

Ca\(^{2+}\) and ROS signaling are both interrelated secondary messengers that respond to many environmental stresses. Ca\(^{2+}\) regulates ROS production, whereas ROS regulates Ca\(^{2+}\) homeostasis (Kobayashi et al. 2007; Jiang et al. 2011; Görlach et al. 2015). Whether ROS poses a threat to cells or has a role in response signaling depends on the equilibrium between ROS generation and detoxification (Sharma et al. 2012; Ayer et al. 2014). In plants, electron transport reactions in the plasma membrane (e.g. NADPH oxidase), the endoplasmic reticulum, the chloroplast and the mitochondria (e.g. the electron transport chain) are the major sources of ROS production (Trachootham et al. 2008). These sources produce free radicals such as superoxide anion, hydroxyl radicals as well as nonradical molecules like hydrogen peroxide and singlet oxygen (Sharma et al. 2012). Plant cells have evolved to alleviate the negative impacts of ROS by producing enzymatic and nonenzymatic antioxidants in the ROS scavenging pathway (Mittler 2002; Grañó et al. 2005). Enzymatic antioxidants consist of superoxide dismutase (SOD), ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), glutathione reductase (GR), catalase (CAT), and others (Willekens et al. 1997; Trachootham et al. 2008; Marengo et al. 2016). The major nonenzymatic antioxidants include glutathione, ascorbate, as well as tocopherol, flavonoids, phenolic compounds, and carotenooids (Sies and Stahl 1995; Ayer et al. 2014). The Ascorbate-Glutathione pathway plays a significant role in detoxifying ROS in plants and consists of four main enzymes namely: APX, MDHAR, DHAR, and GR and two antioxidants: AsA and GSH (Noctor and Foyer 1998; Foyer and Noctor 2011).

Excessive ROS leading to lipid and protein oxidation, enzyme inhibition, and cell membrane leakage are all are
associated with BER. Therefore, ROS is considered a critical component of BER onset and development (Dhindsa et al. 1981; Van Breusegem and Dat 2006; Sharma et al. 2012; de Freitas et al. 2018; Reitz and Mitcham 2021). Tomatoes grown under Ca2+-deficient conditions experience excess ROS accumulation and increased BER incidence that is associated with the upregulation of NADPH oxidase and SOD (Mestre et al. 2012). Similarly, peppers grown under saline conditions experience high ROS accumulation in the apoplast due to increased activity of NADPH oxidase activity (Aktas et al. 2005). On the other hand, many antioxidant genes such as CAT, APX, and GR are down-regulated in tomatoes grown under Ca2+-deficient conditions (Ming and Zhong-Guan 1995; Schmitz-Eiberger et al. 2002; Yang and Poovaiah 2002; Mestre et al. 2012). The tomato cultivar HM 4885, one of the preferred processing tomatoes in California, USA, experienced 85% BER incidence that was attributed to the down regulation of CAT leading to higher ROS accumulation (Reitz and Mitcham 2021). Consequently, the aberrant regulation of critical enzymes in the ROS detoxification pathway can lead to extensive H2O2 accumulation, lipid peroxidation and membrane breakdown, which subsequently results in increased BER incidence (Mestre et al. 2012).

Tomato varieties that have naturally high levels of ascorbate and antioxidants during the most sensitive stage of BER are more resistant to the disorder than those that have lower antioxidant levels, irrespective of the fruit Ca2+ concentration (Rached et al. 2018). Further, BER does not always consume the entire fruit (Fig. 2). This may be due to increased lignification, antioxidants, and oxidative stress-related proteins that inhibit further expansion of BER to the neighboring healthy tissues (Schmitz-Eiberger et al. 2002; Casado-Vela et al. 2005; Mestre et al. 2012; Reitz and Mitcham 2021).

Taken together, the ROS enzymes and antioxidants play a major role in BER development which is enhanced by insufficient Ca2+ concentration and abiotic stress (Noctor and Foyer 1998; Aloni et al. 2008; Rached et al. 2018). Specifically, the activation of enzymes in ROS production pathway as well as inhibition of enzymes in ROS scavenging pathway leads to membrane leakage and consequently higher BER incidence.

Other physiological factors in BER development

Certain nutrients have antagonistic effects on the uptake of each other. High concentrations of monovalent cations in soils, such as potassium (K+), magnesium (Mg2+), sodium (Na+) and ammonium (NH4+) have a negative impact on the uptake of divalent cation Ca2+, thereby increasing BER incidence (Taylor and Locascio 2004; Mengel and Kirkby 2012). For instance, a rise in NH4+ concentration in the nitrate/ammonium ratio suppressed the Ca2+ uptake and led to an increase in BER development (Geraldson 1956; Marti and Mills 1991; Nukaya et al. 1995; Bar-Tal et al. 2001; Taylor and Locascio 2004). The uptake of other elements such as boron (B+) may also influence BER incidence. Fruits that were collected from a BER-resistant accession showed a high correlation between B+ and Ca2+ concentration in the distal part of each fruit whereas the susceptible accession showed no correlation between the two elements (Watanabe et al. 2021). In this case, the link between B+ and Ca2+ might reveal a role in stabilizing the pectin structures in the cell wall.

Plant growth regulators also affect BER development. The plant growth regulators auxin and gibberellin (GA) are reported to accelerate fruit growth and cause an increase in BER (de Freitas et al. 2012a; Gaion et al. 2019). The decreased Ca2+ concentration that was observed in the fruits upon the GA application was attributed to increased activity of Ca2+/H+ exchangers and Ca-ATPase genes, that are responsible for Ca2+ transport into the storage organelles and the apoplastic space (de Freitas et al. 2012a). Specifically, GA application leads to the reduction of the apoplastic water-soluble Ca2+ content and enhanced cell membrane permeability (de Freitas, et al. 2012). Additionally, GA application leads to elevated ROS levels and decreased expression of many antioxidant genes such as APX, SOD, and CAT (Fath et al. 2001). On the other hand, application of growth retardants such as abscisic acid and Apogee (inhibitor of GA biosynthesis) to tomato plants showed reduced or no BER (de Freitas et al. 2011a; Barickman et al. 2014; de Freitas et al. 2014; de Freitas et al. 2018). Eliminating BER was attributed to the increased pericarp Ca2+ concentration and a higher number of functional xylem vessels in the placenta and pericarp tissues of fruits during the early growth stages (de Freitas et al. 2012a). These retardants also trigger antioxidant production to counter ROS activity, thereby further reducing BER incidence (de Freitas et al. 2018). Slower initial fruit growth rates are also associated with reduced BER incidence (Ho et al. 1987; Aktas et al. 2003; Aktas et al. 2005; Vinh et al. 2018; Watanabe et al. 2021). This suggests that the increased growth rate following pollination or after growth regulator application creates extensive stresses in the distal fruit part. This could lead to lower Ca2+ concentrations, and reduced cell wall stabilization and membrane integrity (Ikeda et al. 2017; Watanabe et al. 2021).

Relationship between BER and fruit morphology

Fruit size and BER onset are positively correlated to one another in tomato (Marcelis and Ho 1999; Heuvelink and Körner 2001) and no study has reported the occurrence of BER in wild relatives and small fruited varieties.
of tomato (Ho and White 2005). As BER is only ob-
served in cultivated plants, domestication may have
driven BER as a consequence of selections for larger pro-
duce. The tomato gene Cell Size Regulator (FW11.3/
CSR) increases fruit weight by increasing the cell size
(Mu et al. 2017). FW11.3 near isogenic lines (NILs) that
carry the derived allele of CSR showed significantly
higher BER incidence compared to FW11.3 NILs that
carry the wild type allele, indicating that FW11.3/CSR
may have a role in BER development (Mu 2015). The
association of BER with this fruit weight genes is likely in-
direct and not causative because many tomato varieties
with the derived fruit weight alleles are resistant to BER.

In addition to fruit size, elongated fruit shapes are
more prone to BER than the round-fruited varieties (Ku
and Tanksley 1998; Ho and White 2005; Riboldi et al.
2018). Elongated fruit shape in tomato is controlled by
only a handful of genes, namely SUN, OvATE, OFP20 and
FS8.1 (Ku et al. 2000; Liu et al. 2002; Xiao et al.
2008; Sun et al. 2015; Wu et al. 2018). Among these
genes, the round fruit allele of fs8.1 is associated with
low BER Incidence (Ku and Tanksley 1998). Moreover,
the varieties San Marzano carrying the OvATE mutation
and Banana Legs carrying the SLIN mutation are highly
susceptible to BER (Riboldi et al. 2018). Despite the
demand for these produce shapes in the processing tomato
industry, growers often avoid growing certain varieties
due to potentially high yield losses. The likely mechan-
ism of BER in elongated fruits has been proposed to be
caused by the reduced functional xylem elements in the
distal end of the fruit leading to reduced Ca\(^{2+}\) concen-
tration compared to proximal end (Ho and White 2005;
Riboldi et al. 2018).

Genetic basis of BER

In addition to the physiological factors, tomato varieties
display varying degrees of BER which suggests a genetic
basis to the disorder (Adams and Ho 1992; Ho et al.
1995; Ho and White 2005). The earliest investigation in
the genetic basis of BER came from studies using tomato
introgression lines (ILs). These ILs consist of genomic
segments of Solanum pennellii LA716 introgressed into
Solanum lycopersicum cv M82 (Eshed and Zamir 1995).
Among these lines, IL8–3 features lower BER Incidence
compared to the M82 parent (Uozumi et al. 2012; Ikeda
et al. 2017; Watanabe et al. 2021). This region was fine
mapped to 610 kb corresponding 78 genes (Uozumi
et al. 2012; Ikeda et al. 2017). Because the higher Ca\(^{2+}\)
concentration in the distal part of the fruit and the initial
slower growth rate in the BER resistant line, the results
indicate that IL8–3 might harbor gene(s) affecting Ca\(^{2+}\)
concentration and growth rate in the early stages of fruit
development. Additionally, further use of these IL8–3
lines revealed that many Ca\(^{2+}\)-transport-related genes
such as cation exchanger (CAX), Ca\(^{2+}\)-ATPase, Ca\(^{2+}\)-
channel and Na\(^{+}\)/Ca\(^{2+}\) exchanger were differentially
expressed between M82 and IL8–3 ten days after flow-
ering but none of these genes mapped to location of IL8– 3
on chr08 (Ikeda et al. 2016). These results may suggest
that Ca\(^{2+}\)-transport-related genes in other chromosomes
are likely regulated by one of the 78 genes located in 610
kbp region in IL8–3. (Ikeda et al. 2017). Another IL,
namely IL5–4, located on chr05 also featured differences
in BER but in this case, the severity is higher in the IL
than in the control M82 (Matsumoto et al. 2021). This
locus has not been finemapped further.

Due to the low genetic diversity between closely re-
lated tomato accessions, the genetic basis of BER in pop-
ulations derived from crosses among cultivars was hampered by the lack of molecular markers until re-
cently. With the advent of the full genome sequence of
tomato (Tomato Genome Consortium 2012), many rese-
quecing projects enable the discovery of single nucleo-
tide polymorphisms (SNPs) between closely related
parents. Using the QTL seq approach, the enrichment of
SNPs that are associated with the trait leads to the de-
velopment of molecular markers to map BER loci in the
population (Topcu et al. 2021). In populations derived
from crosses between Solanum lycopersicum var. cerasi-
forme (SLC) and S. lycopersicum var. lycopersicum (SLL),
four loci were identified: BER3.1 and BER3.2 on chr03,
BER4.1 on chr04 and BER11.1 on chr11 (Topcu et al.
2021). BER3.2 and BER11.1 were further finemapped to
1.58 and 1.13 Mb respectively, whereas BER11.1 was also
mapped in another population derived from SLL cv Ailsa
Craig and SLL cv Kentucky Beefsteak (Prinzenberg et al.
2021). The studies showed that BER3.2 is likely corre-
sponding to the fruit weight gene FW3.2/KLUH which
was segregating in one of the populations (Topcu et al.
2021) as larger fruit tend to be more susceptible to BER
than smaller fruits (see above section). In sum, the stud-
ies into the genetic basis of BER identified a total of five
loci in tomato namely: chr 03, chr 04, chr 05, chr 08 and
chr 11 and excluding FW3.2/KLUH (Fig. 3). The cloning
of the genes in these loci should provide novel insights
into the onset and early developmental stages of BER.

Conclusion and future perspectives

The research on BER has led to the findings that the interplay of Ca\(^{2+}\) homeostasis and ROS accumulation
perform critical roles in the development of the disorder.
Together, they affect membrane stability and cell wall
properties as to the degree of pectin methylation and hence BER appearance. Because the combination of en-
vironmental stress and nutritional factors affect the inci-
dence of BER greatly, this disorder is often difficult to
manage in field and greenhouse growth conditions in
many agricultural settings. Going forward, growers will

need to remain vigilant and pursue proper field management practices such as mulching, effective water drainage, proper irrigation systems, balanced fertilizer applications, and soil reclamation, which is the removal of salt from the root zone (Machado and Serralheiro 2017; Hagassou et al. 2019). Other management strategies such as the use of growth retardants can also help alleviate BER symptoms, but these are only available to commercial growers. On the other hand, a stronger emphasis on harnessing the power of the genetic variation in crop germplasm to at least reduce BER is critical. For example, a focus on the increased production of antioxidants in breeding programs should ameliorate the incidence and severity of BER. These high antioxidant-producing accessions would prevent lipid and protein oxidation, membrane breakdown, cell plasmolysis and hence BER. Another focus in breeding programs should be on varieties that feature a slower growth rate following pollination to avoid developing BER. As the genetic studies start to shed light on the causal genes underlying BER, new solutions to crop improvement in many vegetables are possible. For example, down regulation or knock outs of BER susceptibility genes using CRISPR-Cas gene and/or promoter editing should lead to the development of more resistant commercially produced varieties. Therefore, the toolkit to improve BER is expected to expand with new means for breeders to develop varieties that are more resistant to this often-devastating physiological disorder.

Abbreviations

ABA: Abscisic acid; NH$_4$+: Ammonium; APX: Ascorbate peroxidase; BER: Blossom-end rot; B+: Boron; Ca2+: Calcium; CAT: Catalase; CAX: Cation exchanger; CSR: Cell Size Regulator; DHAR: Dehydroascorbate reductase; GA: Gibberellic acid; GR: Glutathione reductase; ILs: Introgression lines; Mg2+: Magnesium; MDHAR: Monodehydroascorbate reductase; NILs: Near isogenic lines; PMEs: Pectin methylesterases; K+: Potassium; ROS: Reactive Oxygen Species; SLL: S. lycopersicum var. lycopersicum; SNPs: Single nucleotide polymorphisms; Na+: Sodium; S.L.C: Solanum lycopersicum var. cerasiforme; SOD: Superoxide dismutase

Acknowledgements

We thank the members of the van der Knaap and Nambeesan lab for helpful discussions on the research reviewed in this study.

Authors’ contributions

YT drafted the manuscript, SUN and EvdK conceived the idea and acquired funding, EvdK and SUN revised the manuscript. All authors approve the submitted version and are accountable for the accuracy and integrity of any part of the research.

Funding

The research in the van der Knaap and Nambeesan labs on BER is funded by USDA NIFA AFRI grant number 2020-67013-30912. Yasin Topcu is acknowledging funding by the Ministry of National Education of Turkey for a graduate fellowship as well as the John Ingle Innovation in Plant Breeding Award.

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 20 October 2021 Accepted: 16 December 2021 Published online: 12 January 2022

References

Adams P, Ho LC. The susceptibility of modern tomato cultivars to blossom-end rot in relation to salinity. Hortic Sci. 1992;67(6):827–39. https://doi.org/10.1080/00221589.1992.11516315.

Adams P, Ho LC. Effects of environment on the uptake and distribution of calcium in tomato and on the incidence of blossom-end rot. Plant Soil. 1993; 154(1):127–32. https://doi.org/10.1007/BF00011081.

Aktas H, Kamil L, Aloni B, Bar-Tal A. Physiological and biochemical mechanisms leading to blossom-end rot in greenhouse-grown peppers, irrigated with saline solution. Acta Hortic. 2003;609:81–8. https://doi.org/10.17660/ActaHortic.2003.609.9.

Aktas H, Kamil L, Chang D-C, Turhan E, Bar-Tal A, Aloni B. The suppression of salinity-associated oxygen radicals production, in pepper (Capsicum annum) fruit, by manganese, zinc and calcium in relation to its sensitivity to blossom-end rot. Physiol Plant. 2005;123(1):67–74. https://doi.org/10.1111/j.1399-3054.2004.00435.x.

Fig. 3 Location of the five BER loci in the tomato genome
Aloni B, Karni L, Deventurero G, Turhan E, Akta H. Changes in ascorbic acid concentration, ascorbate oxidase activity, and apoplastic pH in relation to fruit development in pepper (Capsicum annuum L.) and the occurrence of blossom-end rot. J Hortic Sci Biotechnol. 2008. https://doi.org/10.1080/14620316.2008.1152353.

Ayer A, Gourlay GW, Davies IW. Cellular redox homeostasis, reactive oxygen species and replicative ageing in Saccharomyces cerevisae. FEMS Yeast Res. 2014;14(1):60–72. https://doi.org/10.1111/1567-1346.12114.

Bangerth F. Calcium-mediated physiological disorders of plants. Annu Rev Phytopathol. 1979;17(1):97–122. https://doi.org/10.1146/annurev.phyto.19.070179.000525.

Barickman TC, Kossell DA, Sams CE. Foliar applications of ascorbic acid decrease the incidence of blossom-end rot in tomato fruit. Sci Hortic. 2014;179:356–62. https://doi.org/10.1016/j.scienta.2014.10.004.

Barta DJ, Tibbitts TW. Calcium localization and tipburn development in lettuce leaves during early enlargement. J Am Soc Hortic Sci. 2000;125(3):294–8. https://doi.org/10.21273/JASHS.125.3.294.

Bar-Tal A, Aloni B, Karni L, Osoeotiz J, Hazan A, Itach M, et al. Nitrogen nutrition of greenhouse pepper. I. Effects of nitrogen concentration and NO₃⁻/NH₄ ratio on yield, fruit shape, and the incidence of blossom-end rot in relation to plant mineral composition. HortScience. 2001. https://doi.org/10.21273/HORTSCI.36.7.1244.

Bianco MS, Cecilio Filho AB, de Carvalho LB. Nutritional status of the cauliflower (Brassica oleracea L.) crop. J Agric Soc Sci. 2007;3:73–4. https://doi.org/10.21273/JASHS.125.3.294.

Boga C, Pilatti R, Favaro J. Control of blackheart in the celery (Apium graveolens L.) crop. J Agric Soc Sci. 2007;3:73–4. https://doi.org/10.21273/JASHS.125.3.294.

Brust Gerald. Physiological tomato fruit disorders. 2021. https://extension.umd.edu/resource/physiological-tomato-fruit-disorders. Accessed 11 Sep 2021.

Casado-Vela J, Sellés S, Bru MR. Proteomic approach to blossom-end rot in tomato fruits (Solanum lycopersicum L.). J Protoc. 2014;35(1):235–46. https://doi.org/10.1111/j.1365-313X.2013.05098.x.

Couch O, Filat R, Favar A. Control of blackheart in the celery (Apium graveolens L.) crop. J Agric Soc Sci. 2007;3:73–4. https://doi.org/10.21273/JASHS.125.3.294.

Demarty M, Morvan C, Thellier M. Calcium and the cell wall. Plant Cell Environ. 1984;7(6):641–8. https://doi.org/10.1111/j.1365-3040.1984.tb01434.x.

Dhindsa RS, Plumb-Ohindsa P, Thorpe TA. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot. 1981;32(1):73–101. https://doi.org/10.1093/jxb/32.1.73.

Díaz-Pérez JC, Hook JE. Plastic-mulched bell pepper (Capsicum annuum L) plant growth and fruit yield quality as influenced by irrigation rate and calcium fertilization. HortScience. 2017. https://doi.org/10.21273/hortsci11830-17.

Eshed Y, Zamir D. An introgression line population of Lycopersicon penellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL. Genetics. 1995;141(1):1147–62. https://doi.org/10.1093/genetics/141.1.1147.

Fath A, Bethke PC, Jones RL. Enzymes that scavenger reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone. Plant Physiol. 2001. https://doi.org/10.1104/pp.1.110.1156.

Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155(1):2–18. https://doi.org/10.1104/pp.111.175669.

Franco I, Bahón S, Madrid R. Effects of a protein hydrolysate applied by fertigation on the effectiveness of calcium as a corrector of blossom-end rot in tomato cultivated under saline conditions. Sci Hortic. 1994;57(4):283–92. https://doi.org/10.1016/0304-4238(94)90111-2.

Francois LE, Donovan TJ, Maas EV. Calcium deficiency of artichoke buds in relation to salinity. HortScience. 1991;26(5):549–53. https://doi.org/10.21273/HORTSCI.26.5.549.

Gaion LA, Muniz JC, Barreto RF. Amplification of gibberellins response in tomato modulates calcium metabolism and blossom-end rot occurrence. Sci Hortic. 2019;246:498–505. https://doi.org/10.1016/j.scienta.2018.11.032.

Geraldson C. The cause and control of black-heart of celery. Florida: Gainesville; 1952.

Geraldson E. Evaluation of control methods for blackheart of celery and blossom-end rot of tomatoes. In: Proc. Fla State Hort Soc. 1956;69:236–41.

Goldberg R, Morvan C, Jauneau A, Jarvis MC. Methyl-esterification, de-esterification and gelation of pectins in the primary cell wall. Biotechnol Prog. 1996. https://doi.org/10.1021/bp950164w.

Goldberg R, Morvan C, Jauneau A, Jarvis MC. Methyl-esterification, de-esterification and gelation of pectins in the primary cell wall. Biotechnol Prog. 1996. https://doi.org/10.1021/bp950164w.

Górká A, Bentram K, Hudédoca S, Krizanová D. Calcium and ROS: a mutual interface. Redox Biol. 2015;3:266–71. https://doi.org/10.1016/j.redox.2015.08.010.

Gratão PL, Polle A, Lea PJ, Azevedo RA. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol. 2005;32(6):481–94. https://doi.org/10.1071/FP05016.

Hagassou D, Francia E, Donga R, Dutiu M. Blossom-end rot in tomato (Solanum lycopersicum L). A multi-disciplinary overview of inducing factors and control strategies. Sci Hortic. 2019. https://doi.org/10.1016/j.scienta.2019.01.042.

Hepler PK, Winship LJ. Calcium at the cell wall-cytoplast interface. J Integr Plant Biol. 1952. https://doi.org/10.1111/j.1365-313X.1952.tb03109.x.

Hepler PK, Winship LJ. Calcium at the cell wall-cytoplast interface. J Integr Plant Biol. 1952. https://doi.org/10.1111/j.1365-313X.1952.tb03109.x.

Hepher PL, Polle A, Lea PJ, Azevedo RA. Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol. 2005;32(6):481–94. https://doi.org/10.1071/FP05016.

Ho L, Grange R, Picken A. An analysis of the accumulation of water and dry matter in tomato fruit. Plant Cell Environ. 1987. https://doi.org/10.1111/1365-3040.ep11602110.

Ho LC, Adams P, Li XZ, Shen H, Andrews J, Xu ZH. Responses of ca-efficient and ca-inefficient tomato cultivars to salinity in plant growth, calcium accumulation and blossom-end rot. Hortic Sci. 1995;70(6):909–18. https://doi.org/10.21273/14620316.1995.11515366.

Ho LC, White PJ. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot. 2003;92(3):571–81. https://doi.org/10.1038/sod.2003.5865.

Hochmuth GJ, Hochmuth RC. Leaf and soil water Science. Florida: Cooperative Extension Service. Institute of Food and Agricultural Sciences, University of Florida, editor. Blossom-end rot in bell pepper: causes and prevention, vol. 2009. 2009. p. 1–5.

Hogeef-Guldberg O, Jacob D, Taylor M, Bindi M, Brown S, Carnioll I, et al. Impacts of 1.5°C global warming on natural and human systems. In: Masson-Delmotte V, Zhai P, Pörtner H-O, Roberts D, Skea J, Shukla PR, et al. Global warming of 1.5°C. IPCC Secretariat. 2018. 175–85.

Ikeda H, Kanayama Y, Blossom-end rot in fruit vegetables. In: Kanayama Y, Kochetov A, editors. Abiotic stress biology in horticultural plants. Tokyo: Springer Japan; 2015. https://doi.org/10.1007/978-4-431-55251-2_9.
Ikeda H, Shibuya T, Imanishi S, Aso H, Nishiyama M, Kanayama Y. Dynamic metabolic regulation by a chromosome segment from a wild relative during fruit development in a tomato introgression line, ILB-3. Plant Cell Physiol. 2016;57(6):1257–70. https://doi.org/10.1093/pcp/pcw075.

Ikeda H, Shibuya T, Nishiyama M, Nakata Y, Kanayama Y. Physiological mechanisms accounting for the lower incidence of blossom-end rot in tomato introgression line ILB-3. Fruit. Hort. J. 2017;9(6):327–33. https://doi.org/10.2503/hortj.OKD-015.

Jiang F, Zhang Y, Dusting GJ. NADPH oxidase-mediated redox signaling: roles in cellular stress response, stress tolerance, and tissue repair. Pharmacol Rev. 2011;63(3):218–42. https://doi.org/10.1124/pr.111.0029880.

Kobayashi M, Ohura I, Kawaioka K, Yokota N, Fujiwara M, Shimamoto K, et al. Calcium-dependent protein kinases regulate the production of reactive oxygen species by potato NADPH oxidase. Plant Cell. 2007;19(3):1065–80. https://doi.org/10.1105/tpc.104.0348884.

Ku H, Tanksley S. Round fruit allele of fsl-1 is associated with reduced incidence of blossom-end rot in tomato fruit. In: Fulton TM, editor. Report of the Tomato Genetics Cooperative. Ithaca: Cornell University; 1998. p. 28–9.

Ku H-M, Grandillo S, Tanksley S. fsl-1, a major QTL, sets the pattern of tomato carpet shape well before anthesis. Theor Appl Genet. 2005;110(5–6):873–8. https://doi.org/10.1007/s00122-005-0555-7.

Kudla J, Batistsch O, Hashimoto K. Calcium signals: the lead currency of plant information processing. Plant Cell. 2010;22(3):541–58. https://doi.org/10.1105/tpc.109.072866.

Kuo CG, Tsay JS, Tsai CL, Chen RJ. Tipburn of Chinese cabbage in relation to calcium nutrition and distribution. Sci Hortic. 1981;14(2):131. https://doi.org/10.1016/0264-6272(81)90044-2.

Lobell DB, Hammer GL, McLean G, Messina C, Roberts MJ, Schlenker W. The critical role of extreme heat for maize production in the United States. Nat Clim Chang. 2013;3(3):497–501. https://doi.org/10.1038/nclimate1853.

Machado RMA, Serraiorpe RH. Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 2017. https://doi.org/10.3390/horticulturae2002030.

Macias-González M, Truco MJ, Bettrier LD, Jenni S, Simko I, Hayes RJ, et al. Genetic architecture of tipburn resistance in lettuce. Theor Appl Genet. 2019;138(8):2229–39. https://doi.org/10.1007/s00122-019-02349-6.

Marcellis LF, Ho LC. Blossom-end rot in relation to growth rate and calcium content in fruits of sweet pepper (Capsicum annuum L.). J Exp Bot. 1999. https://doi.org/10.1093/jxb/4b50332.357.

Marenco B, Nitti M, Furfaro AL, Colla R, Ciucis CD, Marinari UM, et al. Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy. Oxidative Med Cell Longev. 2016;2016:16–1. https://doi.org/10.1155/2016/6253641.

Marschner H. Marschner’s mineral nutrition of higher plants. 3rd ed. London: Academic press; 2011.

Marti HR, Mills HA. Calcium uptake and concentration in bell pepper plants in relation to nitrogen form and stages of development. J Plant Nutrit. 1991;14(11):1177–85. https://doi.org/10.1080/01904169109364276.

Matsumoto C, Yada H, Hayakawa C, Hoshino K, Hirai H, Kato K, et al. Physiological characterization of tomato introgression line IL5-4 that increases brix and blossom-end rot in ripening fruit. Hort. J. 2021;90(2):215–22. https://doi.org/10.2503/hortJUTD-264.

Mengel K, Kirby EA. Principles of plant nutrition. St. Dordrecht: Springer; 2012.

Mestre TC, Garcia-Sanchez F, Rubio F, Martinez V, Rivero RM. Gluthatione homeostasis as an important and novel factor controlling blossom-end rot development in calcium-deficient tomato fruits. J Plant Physiol. 2012;169(17):1719–27. https://doi.org/10.1016/j.jplph.2012.07.013.

Michell F. Pectin methyltransferases: cell wall enzymes with important roles in plant physiology. Trends Plant Sci. 2001;6(9):414–9. https://doi.org/10.1016/s1360-1385(01)02045-3.

Ming G, Zhong-Guan L. Calmodulin-binding proteins from Zea mays germ. Phytochemistry. 1995;40(5):1335–9. https://doi.org/10.1016/0031-9422(95)00381-G.

Müller R. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 2002;7(9):405–10. https://doi.org/10.1016/s1360-1385(02)01312-9.

Motha RP, Baier W. Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Clim Chang. 2005;70(1–2):137–64. https://doi.org/10.1007/s10584-005-5940-1.
Sun L, Rodriguez GR, Clevenger JP, Illa-Berenguer E, Lin J, Blakeslee JJ, et al. Candidate gene selection and detailed morphological evaluations of fs8.1, a quantitative trait locus controlling tomato fruit shape. J Exp Bot. 2015. https://doi.org/10.1093/jxb/erv361.

Taylor MD, Lucascio SJ. Blossom-end rot: A calcium deficiency. J Plant Nutr. 2004;27(1):123–39. https://https://doi.org/10.1081/PLN-200027551.

Thor K. Calcium-Nutrient and Messenger. Front Plant Sci. 2019;10. https://doi.org/10.3389/fpls.2019.00440.

Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature. 2012. https://doi.org/10.1038/nature11119.

Topcu Y, Sapkota M, Illa-Berenguer E, Nambeesan SU, van der Knaap E. Identification of blossom-end rot loci using joint QTL-seq and linkage-based QTL mapping in tomato. Theor Appl Genet. 2021;134(9):2931–45. https://doi.org/10.1007/s00122-021-03869-0.

Trachoathan D, Lu W, Ogawara MA, Nila R-DV, Huang P. Redox regulation of cell survival. Antioxid Redox Signal. 2008;10(8):1343–74. https://doi.org/10.1089/ars.2007.1957.

U.S. Environmental Protection Agency. Climate change indicators in the United States: Weather and climate. 2021. https://www.epa.gov/climate-indicators/weather-climate. Accessed 29 Nov 2021.

U.S. Global Change Research Program. Global climate change impacts in the United States. New York: Cambridge University Press; 2009.

UF/IFAS. Cucurbit diseases: Blossom end rot. 2021. https://plantpath.ifas.ufl.edu/u-scout/cucurbt/blossom-end-rot.html. Accessed 2 Dec 2021.

U.S. Global Change Research Program. Global climate change impacts in the United States. New York: Cambridge University Press; 2009.

Topcu Y, Sapkota M, Illa-Berenguer E, Nambeesan SU, van der Knaap E. Identification of blossom-end rot loci using joint QTL-seq and linkage-based QTL mapping in tomato. Theor Appl Genet. 2021;134(9):2931–45. https://doi.org/10.1007/s00122-021-03869-0.

Wu S, Zhang B, Keyhaninejad N, Rodríguez GR, Kim HJ, Chakrabarti M, et al. A common genetic mechanism underlies morphological diversity in fruits and other plant organs. Nat Commun. 2018;9(1):4734. https://doi.org/10.1038/s41467-018-07216-8.

Xiao H, Jiang N, Saffier E, Stockinger EJ, Evid K. A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science. 2008. https://doi.org/10.1126/science.1153040.

Yang T, Pooaah AM. Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A. 2002;99(6):4097–102. https://doi.org/10.1073/pnas.05256899.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.