DC, frequency characterization of Dual Gated Graphene FET (GFET) Compact Model and its Circuit Application - Doubler Circuit

Bala Tripura Sundari B.
Department of Electronics and Communication Amrita School of Engineering ,
Coimbatore
Amrita Vishwa Vidyapeetham,
Amrita University, India
b_bala@cb.amrita.edu

Arya Raj K
Department of Electronics & Communication
Amrita School of Engineering, Coimbatore
Amrita Vishwa Vidyapeetham,
Amrita University, India
aryaraj92@gmail.com

Abstract. A Graphene FET(GFET) based on computational closed form expressions termed as compact model using quasi ballistic approach for circuit simulation is developed. The Verilog - A dual gated GFET model is developed for a channel length of 90 nm and a width of 1 μm and is found to have a better equivalent current and a higher I_{on}/I_{off} ratio has been attained than the single gated model. It demonstrates the effect of body bias on the conductivity characteristics, as shown by the shift of the Dirac point. Also the frequency characterization of the model is obtained and verified by development of frequency multiplier circuits - doubler; the performance has been compared to have maintained in terms of spectral purity but having a better output amplitude validating the DC characteristics of the dual gated VS model used in the doubler circuit.

1. Introduction

Graphene, a 2D crystal material, can be scaled to the nanometer range without the breakdown phenomenon that is observed in conventional silicon MOSFETS. Many GFET physical models using first principle calculations exist [1]-[3]. GFET models based on drift diffusion and ballistic approaches have been proposed over the past few years [4][5]. The I_{on}/I_{off} ratio is less for single gated GFET models [4]. Many research groups are working in the development radio frequency and microwave graphene field effect transistors (GFET) [4],[6].

A drift-diffusion model was proposed by Jiménez and Moldovan, 2011 [8], to accurately predict the I-V characteristics in the GFET at a length of the order of micrometers. A single gate model developed by Shaloo Rakheja et al., is based on the virtual source (VS) concept of charge, verified in MATLAB[11]. Dual gated FET models of graphene and bilayer graphene is developed that are spice compatible. [12]-[14]. The transport of carriers in the channel is modeled using drift - diffusion and ballistic approaches [8],[10].
The salient features in this work is the dual gated virtual source graphene FET model developed in Verilog A, is compared for DC characteristic performance with the single gate model. The shift in the Dirac point is determined due to the bias on the back gate. The Verilog A library of the model is circuit compatible and is used to build a doubler circuit for multiplication of input frequency rather than conventional multipliers and filters. The delay response of the model has been validated by the doubler frequency of operation and circuit performances. The strength of the output amplitude of the doubler circuit is comparable with that of the input amplitude strength, while output spectral purity is maintained reported[16], demonstrating and validating the DC and frequency(delay response) characteristics of the dual gated model built and used herein.

This paper is organized as follows. Section 2 discusses the formulation of the compact dual gated GFET model and the parameter values in the model. Section 3 presents the doubler. Section 4 presents the results, and section 4 gives the conclusion.

2. Dual Gated GFET Model

Quasi-ballistic Dual Gated GFET model

This model is a dual gated quasi-ballistic GFET at 90 nm based on the virtual source and circuit compatible, and compared with our single gated model[9]. The drain and the source contacts are considered as the virtual sources and the transport is due to both holes and electrons.

The compact model is based on following:

1. As the channel length under consideration is 90 nm and greater than the mean free path the model is based on terminal charges – quasi ballistic model.
2. Virtual source model: The virtual source (VS) model based on terminal charges is valid for both long-channel drift-diffusion transport [17] and short-channel ballistic transport [17].
3. To derive the transport, the basic fundamental current from drift diffusion is given as in equation (1), which is derived from first principles based on drift diffusion principle

\[I_{DS} = I_{DSn} + I_{DSP} \] \hspace{1cm} (1) [8]

4. The above in quasi ballistic is a charge based relation based on the terminal charges using ward – Dutton charge partitioning theorem is developed considering the Fermi levels based on wave numbers forming a semiempirical expressions for charges. Where \(v_o \) is the injection velocity, \(F_{sat} \) is an empirical function, \(Q_{eh} \) is the electron concentration, and \(Q_{eh} \) is the hole concentration. The terminal charges \(Q_s \) and \(Q_d \) at source and drain respectively are, and the total charge is given by equation [11].

\[Q_{chl}(x) = -Q_e(x) + Q_h(x) \] \hspace{1cm} (2) [11]

5. The equation for drain current is given by,

\[\frac{I_D}{W} = (Q_{eh} - Q_{eh})f_{sat} \times v_o \] \hspace{1cm} (3) [11]
6. In the dual gate GFET model, differing the potential of the dual gates, changes the channel Fermi level; this thus makes the graphene channel either n or p, and prompts a v shaped current–voltage bend. at the point when ef~ 0, the conductivity is least. at the point when \(E_F > 0 \) (i.e. \(V_s < 0 \)), electrons are instigated in the channel, prompting generally electronic conduction. so also, when ef<0, the holes leads to opening conduction. This ambipolar property of the model is useful in building nonlinear applications as multipliers, and mixers.

Minimum top gate voltage in terms of capacitances of dual gate is,

\[
V_{tg min} = V_{BGO} + \frac{C_{BG}}{C_{TG}} (V_{BGO} - V_{BGS})
\]

7. Verilog A model for the DC electronic characterization of the model is presented in the following is as in Figure. 1.

7a. Parameters & Implementation

Parameters pertaining to the graphene material used in the dual gated model at 90 nm for expressions in Figure. 1 (Verilog A) are as shown in Table 1. The parameters included as input parameters are \(C_{tg}, C_{bg}, L_g, W \) and they are used to determine \(V_{tg min}, V_{tg}, R_{elec}, R_{hole}, Q_e, Q_h, I_e \) and \(I_h \) are computed as shown in Figure 1. The computations for the current are based on the calculated hole charges and electron charges separately.

Parameter	values of dual gated GFET model		
\(L_g (\text{nm}) \)	90 (model developed)	373.8	
\(V_{BGO} (\text{V}) \)	11	\(R_e (\Omega \mu \text{m}) \)	586.1
\(V_{TG0} (\text{V}) \)	1.24	\(V_d (\text{cm/s}) \)	10^6
\(C_{TG} (\mu \text{F/cm}^2) \)	0.39	\(\mu (\text{cm}^2/\text{V} \cdot \text{s}) \)	3000
\(C_{BG} (\mu \text{F/cm}^2) \)	0.116	\(W (\mu \text{m}) \)	1

The dual gate terminals are g and b respectively. \(c_g \) is the total gate capacitance, \(c_{bg} \) is the back gate capacitance and \(c_{tg} \) is the top gate capacitance, where \(I_{hole} \) is the hole branch current, \(I_{elec} \) is the electron branch current, and \(R_e \) and \(R_h \) are the electron and hole branch resistances, respectively.

\[
V_{gms} = V_{gms}(0 + C_{bg}*\left(V_{gms}(0)-V_{bs}\right)/C_{bg};\ V_{tg} = V_{gms} + delta;\ \ V_{in} = V_{gms} - delta;\ \ fhit = Sv(T);\ Q_{e} = C_{tg}*n*fhit;\ Q_{exp} = (v_{gs} - V_{tg})/(n*fhit);\ Q_{exp} = (v_{ds} + V_{th})/(n*fhit);\ \ R_{hole} = R_{hole}/W; \ // \ Electron\-branch\ resistance \ [\text{Ohms}] \ R_{hole} = R_{hole}/W; \ // \ Hole\-branch\ resistance \ [\text{Ohms}]\
\]

\[
\text{if } (Q_{exp} <= \text{LARGE_VALUE}) \ \text{begin}\
Q_{e} = q_{const} * \ln(1.0 + \exp(q_{exp}));
\text{End}
\]

\[
\text{else begin}\
Q_{e} = q_{const} * q_{exp} ;
\text{end}
\]

\[
\text{if } (q_{exp} <= \text{LARGE_VALUE}) \ \text{begin}\
Q_{h} = q_{const} * \ln(1.0 + \exp(q_{exp}));
\text{End}
\]

\[
\text{else begin}\
Q_{h} = q_{const} * q_{exp} ;
\text{end}
\]

\[
V_{dsat} = v*W/\text{mob};\ V_{d,Fs} = \text{abs}(V_{ds}/V_{dsat});\ F_{beta} = \text{pow}(V_{d,Fs},\text{beta});
\]
Fsdown = pow(1+Fsbeta,1.0/beta); Fs = Vd,Fs/Fsdown;
I_{de} = Q_{e} * v * Fs * W; I_{dh} = Q_{h} * v * Fs * W;
I_{d} = I_{de} + I_{dh}
//Sub-circuit
 initialization
I(di,si) <+ dir *
 I_d;
V(d,di) <+ dir*(I_{de}*R_{elec}+I_{dh}*R_{hole});
V(si,s) <+ dir*(I_{de}*R_{elec}+I_{dh}*R_{hole})

Figure 1 Dual gate Compact Model of Graphene FET in Verilog AMS

Figure 2 single gate I_d v/s V_{ds} of the quasi ballistic model 90nm in SPICE

Figure 3 I_d v/s V_{ds} of dual gated GFET with V_{gs} sweeping from -0.5V to 2V with steps of 0.5V
A scaled down model has been developed at 90 nm incorporating quantum capacitance effects [9] and has been summarized in the results of Table 2a and Table 2.b [9]. Table 2a shows that the output parameters f_T of a dual gated model developed at 90 nm using a virtual source concept is higher than the model developed at 100 nm using the drift diffusion approach.

The current characterized by carrier injection, it is observed that as voltage increases, electrons are injected from the drain end and in the ambipolar saturation region; I_D increases with the drain voltage. This behavior of the GFET is in the second linear region. The equivalent current at 40 nm is reported to be 1.5 mA [13] and our dual gated VS model with quantum capacitance model presents a 2.8 mA (Figure. 3) current at 90 nm normalized channel length, as reported in Table 2b.

Dual gated GFET have an improved I_{on}/I_{off} ratio than that of single layer GFET. Gate capacitance will become twice in the dual gated model due to the presence of back gate. Thus the off current can be reduced as it can be controlled in a better way using gate voltage.

![Figure 4. I_{ds} vs V_{gs} of single gated GFET with V_{bs}=-5V](image)

Channel Length -L -nm	210	144	40	440	100	90 ***
Parameter f_T -Ghz	210	280	280	90	520	550
*[5] **[9] - author’s model ***[this model]						

Table 2a. Parameters Comparison

High Frequency Performance as Reported in [5] And [9].
Double gate leads to higher current drive capability and sharp I-V slope than a single gate as shown in Figure 2 and Figure 3.

It can be inferred that the slope of the I-V characteristics is improved in the dual gated GFET compared with the single gated GFET. Also, the current drive capability is high for a dual gated FET. The dual gated model is validated for better current, I_{on}/I_{off}, control of Dirac point with body bias effect and cut-off frequency, than a single gate GFET at 90 nm modeled in Verilog A) as shown in Figure 4 (single gated) and Figure 5 (dual gated).

Parameter	Shaloo Rakheja[11] 40 nm	90 nm dual gate this model	100 nm single gate[9]
R_e	424	528	373
R_h	1.5	586	2.88
I_d(mA)	-	2	1.12
G_m(mS)	-	2	1.12
f_T	350 Ghz	550GHz[7]	520GHz
I_{on}/I_{off}	-	11	1.5

Figure 5 I_d vs V_{gs} of dual gated GFET with V_{bs}=-2V
The better ambipolar property is shown in Figure 5 for a dual gated model than exhibited by a single gated model. Also the values of body bias and Dirac points are as shown in Table 3 of the dual gated is compared with conventional MOSFET model and is found to be better and hence the model can be used in effectively obtaining multiplying effects and non linear curves and hence finds several application, and has been used in implementing a doubler.

Also The Verilog A model has been used in implementing a doubler circuit developed to study the output amplitude strength with respect to the input and spectral purity to determine the model’s validity for RF applications.

Back gate voltage(Volts-V)	Dirac point (V)	Body bias voltage(V)	Threshold voltage of level 54 NMOS[5],[15] (V)
--1.3	1.41	-2	0.78
-1.2	1.39	-1.75	0.725
-1.1	1.37	-1.5	0.7
-1.1	1.34	-1.25	0.65
-0.9	1.33	-1	0.6
-0.8	1.31	-0.75	0.58
-0.7	1.3	-0.5	0.55
-0.6	1.29	-0.25	0.48

3. Doubler

Frequency multipliers are nonlinear circuits and the GFET model is used to herein to demonstrate a doubler circuit. Doubler circuits are in communication circuits and frequency synthesizers for producing harmonics of the input signal, and in nonlinear optics. By considering the ambipolar property of graphene, frequency multiplication has been done [16].

A graphene field-effect transistor has been biased at the transistor gate and the signal at the input is doubled at the drain terminal. Advantages of the doubler developed by this method are: high efficiency, high mobility of carriers because the channel material is graphene, spectral purity is high, and frequency doubling is implemented with a transistor without the need for complex filters. The dual gated GFET model, developed as described in section 1 and 2 has been utilized for implementing GFET doubler in Figure 7.

![Figure 6](image-url)
Figure 6 Doubler using GFET with $V_{CC} = 5$ V, transistor bias voltage $V_{gdc} = 1.5$ V and sine wave = 2 V peak to peak [4].
4 Results And Discussions

Table 3 shows that the shift in the minimum conduction point can be obtained by varying V_{bs}, the effects of body bias as has been used to obtain the shift in the Dirac point. Figure 5 shows that the ambipolar properties of a dual-gated FET are improved compared with a single gated GFET of Figure 4.

Figure 5 and Table 3 show the ambipolar characteristics at various back gate voltages. Dirac points of 2.65 V, 2.35 V, 2.01 V and 1.41 V have been obtained for -4 V, 3 V, 2 V and -1.3 V, respectively. It is observed that when the V_{bs} increases, the threshold voltage is shifted towards zero.

Figure 7 shows that frequency doubling has been achieved at 0.8GHz, showing the range of operation of the doubler. Figure 8 shows frequency doubler characteristics with $V_{in}=2$ V pp sine wave at 200 Hz. Figure 8 shows the spectrum of the doubler for an input frequency of 800 Mhz and is reported in Table 4.

From Table 4, the spectral purity of the doubler using the dual gated virtual source (VS) model developed is maintained, whereas the amplitude of the output signal amplitude in both the doubler are comparable with the input amplitude demonstrating better characteristics of the dual gated virtual source model of the GFET developed and used in the circuitry.

Also it is significant to note that I_{off} has been reduced; thus, an I_{on}/I_{off} ratio of 11 has been attained whereas that of a single gated GFET is only 1.5(Table 2b)

Table 4 Doubler output parameters

Parameters	Doubler Circuit	Doubler [16]
Spectral Purity(%)	90(0.8 Ghz)	94%(10Khz)
Input Frequency	800 MHz	10 kHz

Figure 7 Shows frequency doubler characteristics with $R_{0}=2.2$ K, $V_{in}=2$ V pp sine wave at 2 MHz
5. Conclusions

A dual gated virtual source GFET model has been developed at 90 nm and is found to have a better I_{on}/I_{off} ratio of 11 than a single gated GFET. I_{off} has been controlled using a dual gate; thus, a higher I_{on}/I_{off} ratio has been achieved and an equivalent higher output current. A shift in the Dirac point of the model with variation of the back gate voltage has been observed. Positive charges will be induced near the back gate as the voltage becomes more negative; this leads to a shift in the Dirac point in the positive direction. Thus, as the back gate voltage and also the body bias voltage (body bias effect) increases from negative to positive, the Dirac point moves more towards zero. A sharp slope has been obtained for the I-V characteristics of the model.

The model developed is used in circuit simulations of doubler circuit for frequency multiplication (without using complex filter design) and is found to provide a good output amplitude level with respect to the input than reported in [16] and [17]. Also the spectral purity is maintained as reported in [16] and [17]. The maximum frequency of 0.8 GHz has been doubled using the doubler.

In the future the model is to be scaled down and pure ballistic transport based on quantum principles and non equilibrium green’s transport (NEGF) is to be considered to formulate the transport equations of the channel and further include parameters of the contact resistance effects and doping/impurity profile to develop more exacting models for graphene FET and determine their validity for high RF frequencies of operation.

6. Acknowledgement

The authors wish to acknowledge the management of Amrita School of Engineering, Coimbatore, Amrita Viswa Vidyapeetham, Amrita University, India, for providing facilities to carry out this work in the VLSI Design Lab, Department of Electronics and Communication Engineering.

REFERENCES

[1] S. Adam, E. H. Hwang, V. M. Galitski, and S. Das Sarma, “A self consistent theory for graphene transport,” in Proceedings of National Academy Science, U.S.A, 2007, vol. 104, no. 47, pp. 18392–18397.
[2] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, 2006, vol. 313, no. 5789, pp. 951–954.
[3] V. Ryzhii, M. Ryzhii, and T. Otsuji, “Tunneling current–voltage characteristics of graphene field-effect transistor,” Applied Physics Express, Published 28 December 2007, ©2008 The Japan Society of Applied Physics, Applied Physics Express 2008, vol. 1, no. 1.
[4] Saul Rodriguez, Sam Vaziri, Anderson Smith, Sébastien Frégonèse, Mikael Ostling, Max C. Lemme, Ana Rusu, “A Comprehensive Graphene FET Model for Circuit Design,” IEEE Transactions on Electron Devices, 2014, vol. 61, no. 4, pp.1199-1206.
[5] S’ebastien Frégonèse, Maura Magallo, Cristell Maneux, Henri Happy, and Thomas Zimmer,
“Scalable Electrical Compact Modeling for Graphene FET Transistors”, IEEE Transactions on Nanotechnology, July 2013, vol. 12, no. 4, pp.539-546.
[6] Nicholas Petrone, Inanc Meric, Tarun Chari, Kenneth Shepard, and James Hone, “Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics”, Journal of Electron Devices Society, vol. 3, no. 1, 2015. DOI:10.1109/JEDS.2014.2363789.
[7] Charles Mackin, Lucas H. Hess, Allen Hsu, Yi Song, Jing Kong, Jose Antonio Garrido, and Tomás Palacios, “A Current–Voltage Model for Graphene Electrolyte-Gated Field-Effect Transistors”, IEEE Transactions on Electron Devices, 2014, vol. 61, no. 4, pp.3971-3977.
[8] D. Jiménez and O. Moldovan, “Explicit drain-current model of graphene field-effect transistors targeting analog and radio-frequency applications,” IEEE Transactions on Electron Devices, 2011, vol. 58, no. 11, pp. 4049–4052.
[9] Arya Raj K, B.Bala Tripura Sundari, “Compact graphene field effect transistor modeling with quantum capacitance effects,” ARPN Journal of Engineering and Applied Sciences, 2016, vol.11, no.2, pp. 1347 – 1351.
[10] Soubhaya S. Prabhu, Reshma Bhavani, Gireesh Kumar Thonnuthodi, Rajagopalan Thiruvengadathan, “A computational approach to determine shielding effectiveness of carbon nanotube-based nanocomposites for EMC application”, Computational Materials Science, 2017, vol.126, pp 400–406.
[11] Shaloo Rakheja, Yanqing Wu, HanWang and Dimitri A. Antoniadis, “An Ambipolar Virtual-Source-Based Charge-Current Compact Model for Nanoscale Graphene Transistors” IEEE Transactions on Nanotechnology, 2014, vol. 13, no. 5, pp. 1005 – 1013.
[12] Ime J. Umoh, Tom J. Kazmierski and Bashir M. AlHashimi “A Dual-Gate Graphene FET Model for Circuit Simulation-SPICE Implementation,” IEEE Transactions on Nanotechnology, 2013, vol. 12, no. 3, pp.427-435.

[13] H. Wang, A. Hsu, J. Kong, D. A. Antoniadis, and T. Palacios, “Compact virtual-source current-voltage model for top and back-gated graphene field-effect transistors,” IEEE Trans. Electron Devices, vol. 58, no. 5, 2011, pp. 1523–1533.

[14] S. Fregonese, J. D. Aguirre-Morales, C. Mukherjee, C. Maneux and T. Zimmer, “Physics Based Compact Model for Dual Gate Bilayer Graphene FETs Manual”, universite Bordeaux model team, 2016.

[15] R. Sreenath and B. Bala Tripura Sundari, Compact model for switching characteristics of graphene field effect transistor, AIP Conference Proceedings, 1724, 020013, 2016, http://dx.doi.org/10.1063/1.4945133.

[16] Han Wang, Daniel Nezich, Jing Kong, Tomas Palacios, “Graphene Frequency Multipliers”, IEEE Electron Devices Letters, 2009, vol. 30, no. 5, pp. 547-549.

[17] Tarun Chari, Inanc Meric, Cory Dean, and Kenneth Shepard, Fellow, IEEE, “Properties of Self-Aligned Short-Channel Graphene Field-Effect Transistors Based on Boron-Nitride-Dielectric Encapsulation and Edge Contacts”, IEEE Transactions on Electron Devices, 2015, vol. 62, no. 12, pp. 4322 - 4326, DOI: 10.1109/TED.2015.2482823.