The 26Al Gamma-ray Line from Massive-Star Regions

Thomas Siegert1 and Roland Diehl1,2

1Max Planck Institut für extraterrestrische Physik, D-85748 Garching, Germany
2Excellence Cluster ‘Universe’, D-85748 Garching, Germany

E-mail: tsiegert@mpe.mpg.de
(Received September 27, 2016)

The measurement of gamma rays from the diffuse afterglow of radioactivity originating in massive-star nucleosynthesis is considered a laboratory for testing models, when specific stellar groups are investigated, at known distance and with well-constrained stellar population. Regions which have been exploited for such studies include Cygnus, Carina, Orion, and Scorpius-Centaurus. The Orion region hosts the Orion OB1 association and its subgroups at about 450 pc distance. We report the detection of 26Al gamma rays from this region with INTEGRAL/SPI.

KEYWORDS: nucleosynthesis, radioactivity, massive stars

1. Introduction

Measurements of nuclear line emission of cosmic origins enable us to investigate where and how new interstellar nuclei are produced and released. 26Al radioactivity with its characteristic γ-ray line at 1808.73 keV and decay time τ of \sim1 Myr shows ongoing nucleosynthesis in our Galaxy, and is ideal to trace how ejecta are recycled from their nucleosynthesis sources into next-generation stars.

The CGRO mission with the imaging Compton telescope instrument ‘COMPTEL’ obtained a sky map of 26Al γ-ray emission [1, 2]. The Galaxy’s 26Al content as a whole then can be considered as probably being in a steady state, as many individual and independent sources contribute, and star formation is uncorrelated among local star forming regions across the Galaxy. But already from the COMPTEL 26Al image, showing a clumpy structure, it had been concluded that massive star groups are the dominating 26Al producers in the current Galaxy, and may individually not be in a steady state; rather, the age of the specific stellar populations would determine the current amount of 26Al in such a region [3]. Measurements of systematic Doppler shifts of the line with Galactic longitude [4, 5] had shown that the observed 26Al γ rays originate from sources throughout the Galaxy, including its distant and otherwise occulted regions at and beyond the inner spiral arms and bulge. Moreover, the Doppler shifts of the 26Al-line centroid energy were found larger than expected from large-scale Galactic rotation, and suggested that large cavities around massive star groups play a major role in guiding ejecta flows from massive-star and supernova nucleosynthesis [6, 7].

The study of 26Al from specific regions first focused on Cygnus [8–10], which stands out as an individual source region in the COMPTEL 26Al skymap. Population synthesis allowed comparison of the predicted impacts of massive star groups onto their surroundings, including nucleosynthesis ejecta, and also kinetic energy from winds and explosions as well as ionising starlight, to observations in a variety of astronomical windows and tracers of such massive-star action [3]. Detailed population synthesis and multi-wavelength studies of the Cygnus region [11–13] have been followed by studies of Carina [14], Orion [15], and Scorpius-Centaurus [16] regions.
2. The Orion region

The Orion region has been a prominent nearby region for the study of massive stars [17]. The Orion OB1 association and its four identified subgroups [18] originate from a parental molecular cloud now visible as Orion A and B clouds. A large interstellar cavity, called Eridanus, extends away from these molecular clouds towards the Sun, and is constrained though X-ray [19] and HI data [20]. Our recent re-analysis of X-ray emission from this region and its comparison with 3D hydrodynamical simulations showed that energy injection and cooling of the superbubble interiors are not in a steady state [21].

COMPTEL data had revealed a weak 26Al γ-ray signal from this region [22], attributed to nucleosynthesis ejecta from one of the Orion OB1 subgroups and its stars; the 26Al γ-ray image from COMPTEL suggested that 26Al was found offset from the stars of the OB1 association and probably streaming into the Eridanus cavity. From these multi-wavelength constraints, a population synthesis analysis was done to predict the 26Al signal in more detail [15]. An INTEGRAL observing program was then set up, aiming at a confirmation of 26Al γ rays from Orion, with the hope of measuring kinematic information about the 26Al enriched ejecta through line centroid and width determination.

Data from 13 years of SPI single-detector events, analysed with a high spectral resolution background method, show the Galactic 26Al line clearly, and demonstrate that instrumental backgrounds are well suppressed [24] (see Fig. 2). From analysis of almost 6 Ms of data collected in 2013-2015, the COMPTEL 26Al γ-ray signal from the Orion region now has been confirmed with INTEGRAL [23] (Fig. 1): the 26Al line emission is detected with a significance of 3.3 σ.

The Eridanus cavity presents a viewing geometry similar to what we propose for massive star groups in the Galaxy’s spiral arms to explain the large excess above Galactic rotation velocities [5,6]. Fitting a Gaussian line shape to the Orion 26Al γ-ray signal, the line width is found to be compatible with the instrumental resolution, and it is indicated (hatched region in Fig. 1) that bulk motion may be directed towards the solar system: A corresponding blue-shift with respect to the laboratory energy value is expected from the association/cavity geometry [15]. Such a blue shifted 26Al signal supports the scenario we proposed for 26Al ejecta streaming throughout the Galaxy, being dominated by transport within superbubbles around the massive-star groups, which extend asymmetrically around these ejection sites, i.e., they are more elongated towards the leading edges of spiral arms and into the inter-arm regions.

Acknowledgments

We appreciate the support from ASI, CEA, CNES, DLR, ESA, INTA, NASA and OSTC of the INTEGRAL ESA space science mission with the SPI spectrometer instrument project. This work was
also supported from the Munich cluster of excellence *Origin and Evolution of the Universe*.

References

[1] R. Diehl et al., Astron. & Astroph. Suppl. 97, 181 (1993).
[2] S. Plüschke et al., in *Exploring the Gamma-Ray Universe*, edited by A. Gimenez, V. Reglero, and C. Winkler, ESA SP 459, 55–58 (2001).
[3] R. Voss et al., Astron. & Astroph. 504, 531 (2009).
[4] R. Diehl et al., Nature 439, 45 (2006).
[5] K. Kretschmer et al., Astron. & Astroph. 559, A99 (2013).
[6] M. G. H. Krause et al., Astron. & Astroph. 578, A113 (2015).
[7] M. G. H. Krause, C. Charbonnel, N. Bastian, and R. Diehl, Astron. & Astroph. 587, A53 (2016).
[8] J. Knödlseder, Astron. & Astroph. 360, 539 (2000).
[9] S. Plüschke, K. Kretschmer, R. Diehl, D. H. Hartmann, and U. Oberlack, in *Astronomische Gesellschaft Meeting Abstracts*, edited by R. E. Schielicke, 16, 77 (2000).
[10] S. Plüschke, K. Kretschmer, R. Diehl, D. H. Hartmann, and U. G. Oberlack, in *Exploring the Gamma-Ray Universe*, edited by A. Gimenez, V. Reglero, and C. Winkler, volume 459 of *ESA Special Publication*, pages 91–95 (2001).
[11] P. Martin, J. Knödlseder, and G. Meynet, New Astron. Rev. 52, 445 (2008).
[12] P. Martin, J. Knödlseder, R. Diehl, and G. Meynet, Astron. & Astroph. 506, 703 (2009).
[13] P. Martin, J. Knödlseder, G. Meynet, and R. Diehl, Astron. & Astroph. 511, A86 (2010).
[14] R. Voss et al., Astron. & Astroph. 539, A66 (2012).
[15] R. Voss, R. Diehl, J. S. Vink, and D. H. Hartmann, Astron. & Astroph. 520, A51 (2010).
[16] R. Diehl et al., Astron. & Astroph. 522, A51 (2010).
[17] R. Genzel and J. Stutzki, Ann. Rev. Astron. & Astroph. 27, 41 (1989).
[18] A. G. A. Brown, E. J. de Geus, and P. T. de Zeeuw, Astron. & Astroph. 289, 101 (1994).
[19] D. N. Burrows, K. P. Singh, J. A. Nousek, G. P. Garmire, and J. Good, Astroph.J. 406, 97 (1993).
[20] A. G. A. Brown, D. Hartmann, and W. B. Burton, Astron. & Astroph. 300, 903 (1995).
[21] M. Krause, R. Diehl, H. Böhringer, M. Freyberg, and D. Lubos, Astron. & Astroph. 566, A94 (2014).
[22] R. Diehl, K. Kretschmer, S. Plüschke, M. Cerviño, and D. H. Hartmann, in *A Massive Star Odyssey: From Main Sequence to Supernova*, edited by K. van der Hucht, A. Herrero, and C. Esteban, IAU Symposium Pub. 212, 706 (2003).
[23] T. Siegert, R. Diehl, and X. Zhangh, Astron. & Astroph. (in preparation), (2017).
[24] R. Diehl, T. Siegert, M. Krause, M. Lang, and X. Zhangh, Astron. & Astroph. (in preparation), (2017).