Skeletal Muscle Cells Lacking the Retinoblastoma Protein Display Defects in Muscle Gene Expression and Accumulate in S and G2 Phases of the Cell Cycle

Bennett G. Novitch,* George J. Mulligan,† Tyler Jacks,‡ and Andrew B. Lassar*

*Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115; and †Howard Hughes Medical Institute, Center for Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

Abstract. Viral oncoproteins that inactivate the retinoblastoma tumor suppressor protein (pRb) family both block skeletal muscle differentiation and promote cell cycle progression. To clarify the dependence of terminal differentiation on the different pRb-related proteins, we have studied myogenesis using isogenic primary fibroblasts derived from mouse embryos individually deficient for pRb, p107, or p130. When ectopically expressed in fibroblasts lacking pRb, MyoD induces an aberrant skeletal muscle differentiation program characterized by normal expression of early differentiation markers such as myogenin and p21, but attenuated expression of late differentiation markers such as myosin heavy chain (MHC). Similar defects in MHC expression were not observed in cells lacking either p107 or p130, indicating that the defect is specific to the loss of pRb. In contrast to wild-type, p107-deficient, or p130-deficient differentiated myocytes that are permanently withdrawn from the cell cycle, differentiated myocytes lacking pRb accumulate in S and G2 phases and express extremely high levels of cyclins A and B, cyclin-dependent kinase (Cdk2), and Cdc2, but fail to readily proceed to mitosis. Administration of caffeine, an agent that removes inhibitory phosphorylations on inactive Cdc2/cyclin B complexes, specifically induced mitotic catastrophe in pRb-deficient myocytes, consistent with the observation that the majority of pRb-deficient myocytes arrest in S and G2. Together, these findings indicate that pRb is required for the expression of late skeletal muscle differentiation markers and for the inhibition of DNA synthesis, but that a pRb-independent mechanism restricts entry of differentiated myocytes into mitosis.

Skeletal muscle differentiation involves the coordinated activation of muscle-specific gene expression and cessation of cell division, resulting in the formation of terminally differentiated myotubes. Studies of the past decade have demonstrated that the myogenic basic-Helix-Loop-Helix (bHLH) proteins (i.e., MyoD, Myf-5, myogenin, and MRF-4) act in cooperation with the MEF2 family of transcription factors to activate muscle-specific gene expression (for reviews see Buckingham, 1992; Wright, 1992; Emerson, 1993; Sassoon, 1993; Weintraub, 1993; Lassar and Münsterberg, 1994; Olson and Klein, 1994). Myf-5 and MyoD proteins are present in proliferating myoblasts and initiate a cascade of events resulting in terminal skeletal muscle differentiation when myoblasts are deprived of mitogens (for review see Lassar et al., 1994). Several hypotheses have been proposed to explain how the activity of the myogenic bHLH proteins is restrained in proliferating myoblasts; these include inhibitory phosphorylation of the myogenic bHLH factors (Li et al., 1992; Hardy et al., 1993), inhibition of myogenic bHLH function via the Id family of dominant-negative bHLH factors (Benezra et al., 1990; Jen et al., 1992), and either direct or indirect inhibition by cyclin D-dependent kinases (Rao et al., 1994; Rao and Kohtz, 1995; Skapek et al., 1995). A role for cyclin D-dependent kinases in controlling MyoD function is supported by the finding that ectopic expression of p16, a specific inhibitor of cyclin-D/Cdk4 and Cdk6 kinases (Serrano et al., 1993), or p21, a more universal inhibitor of cyclin-dependent kinases (Cdks) (Gu et al., 1993b; Harper et al., 1993; Xiong et al., 1993), can activate MyoD function in serum-stimulated myoblasts (Skapek et al., 1995).

It has been well established that the D-type cyclins,
when bound to Cdk4 or Cdk6, can phosphorylate and inactivate the product of the retinoblastoma tumor suppressor gene, pRb (for reviews see Sherr, 1994a,b; Weinberg, 1995). Retinoblastoma family proteins (i.e., pRb, p107, and p130) are important regulators of the cell cycle (for reviews see Sherr 1994a,b; Müller, 1995; Weinberg, 1995) and have been implicated as mediators of both cellular growth arrest and myogenic bHLH activity in skeletal muscle. The importance of this regulatory family in promoting terminal skeletal muscle differentiation was first suggested by the finding that expression of oncogenes known to inactivate the pRb family, such as SV-40 large T antigen, polyoma virus large T antigen, and adenovirus E1A, can both block differentiation and induce DNA synthesis in normally quiescent myotubes (Fogel and Defendi, 1967; Yaffe and Gershon, 1967; Graessmann et al., 1973; Webster et al., 1988; Endo and Nadal-Ginard, 1989; Enkemann et al., 1990; Iujvidin et al., 1990; Braun et al., 1992; Mymryk et al., 1992; Cardoso et al., 1993; Caruso et al., 1993; Gu et al., 1993a; Taylor et al., 1993; Ohkubo et al., 1994; Crescenzi et al., 1995). Further studies have demonstrated that upon muscle differentiation, the expression of pRb increases (Coppola et al., 1990; Endo and Goto, 1992; Martelli et al., 1994), and pRb assumes a hypophosphorylated, activated state that is tightly tethered to the nucleus (Gu et al., 1993a; Thorburn et al., 1993). In addition, DNA binding complexes containing members of the E2F and DP transcription factor families are found associated with both pRb and p130 after muscle differentiation (Corbelli et al., 1995; Haley et al., 1995; Kiess et al., 1995a; Shin et al., 1995), suggesting that both pRb and p130 may regulate E2F function in differentiated skeletal muscle.

Furthermore, MyoD-mediated transactivation of muscle genes in SAOS-2 osteosarcoma cells, which lack functional pRb, requires coexpression of either exogenous wild-type pRb (Gu et al., 1993a) or p107 (Schneider et al., 1994), indicating that MyoD function may be regulated by members of the pRb family. Finally, pRb is required for terminal cell cycle withdrawal, as loss of pRb through targeted gene inactivation prevents the normal G0 arrest of skeletal muscle (Schneider et al., 1994).

Whereas the above studies have suggested that pRb plays a positive role during skeletal muscle differentiation, mice specifically lacking Rb form grossly normal skeletal muscle (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992, 1994), suggesting that pRb-related proteins may be able to compensate for the loss of pRb in the development of skeletal muscle. To further clarify the role of the pRb family in skeletal muscle differentiation, we have examined both MyoD-mediated induction of various skeletal muscle proteins and MyoD-mediated cell cycle withdrawal in cells engineered to specifically lack either pRb, p107, or p130. We have found that pRb-deficient muscle cells can activate normal levels of "early" differentiation markers (i.e., myogenin and p21); however, expression of "late" differentiation markers (i.e., myosin heavy chain) is attenuated in these cells, and the cells fail to exit the cell cycle. These differentiation defects appeared to be specific to the loss of pRb, as MyoD was able to fully induce the muscle differentiation program and promote terminal cell cycle arrest in the absence of either p107 or p130.

Ectopic expression of pRb family members can significantly augment MyoD-mediated transactivation of a muscle creatine kinase–chloramphenicol acetyl transferase (MCK-CAT) reporter and prevent abnormal DNA synthesis in pRb-deficient cells, consistent with a role for this family in promoting the later stages of muscle differentiation. In contrast, ectopic expression of Cdk function can neither significantly augment MyoD function nor prevent S phase entry in myocytes lacking pRb, suggesting that a primary function of Cdk inhibitors in skeletal muscle may be to maintain the hypophosphorylated, activated state of pRb. Finally, we demonstrate that pRb-deficient myocytes inappropriately enter S phase but fail to readily progress into mitosis, even though these cells express extremely high levels of cyclins A and B, Cdk2, and Cdc2. Since caffeine administration, which removes inhibitory phosphorylations on inactive Cdc2/cyclin B complexes (Steinmann et al., 1991; Smythe and Newport, 1992), specifically increased the frequency of mitotic catastrophe in differentiated pRb-deficient myocytes, we propose that the majority of these cells have arrested in S and G2 phases and contain Cdc2/cyclin B complexes that are maintained in a non-functional state by inhibitory phosphorylation. Thus, during the process of skeletal muscle differentiation, MyoD activates cell cycle–arrest mechanisms that block cell cycle progression in a pRb-dependent manner in G0 and in a pRb-independent manner in M phase.

Materials and Methods

Cell Culture

Primary embryonic fibroblasts were isolated from wild-type and homozygous mutant mouse embryos at 13 d of gestation, according to the protocol of Robertson (1987). Briefly, embryos were dissected and the carcass minced in trypsin (0.25%) for 45 min before plating in a T-75 flask. The adherent fibroblasts were passaged once before freezing at a density of 3 × 10^6 cells per vial (Robertson, 1987). Primary embryonic fibroblast cultures were generally free of contaminating myoblasts and were used at passages 3–8. Cells were grown in DME supplemented with 10% FBS (HyClone Laboratories, Logan, VT) for primary fibroblasts or 20% FBS for C2 cells and fibroblast cell lines stably expressing MyoD. All cells were differentiated in DME containing 2% horse serum and 10 μg/ml insulin (differentiation medium [DM]) for 2–4 d, unless otherwise noted.

Production of MyoD Retrovirus

BOSC 23 ecotropic retrovirus packaging cells (Pear et al., 1993) were generously provided by W. Pear (Massachusetts Institute of Technology) and were grown in GPT selective media (Mulligan, 1981) until the time of transfection when the media was changed to DME supplemented with 10% FBS. 2 × 10^6 BOSC 23 cells were seeded onto 60-mm tissue culture dishes in DME supplemented with 10% FBS and grown for ~24 h. The culture media was then replaced with 4 ml of DME supplemented with 10% FBS and 25 μM chloroquine just before transfection. Two plasmids encoding MyoD retrovirus were used, pMDSN (Weintraub et al., 1989) and pBabe-MyoD, which is the 1.7-kb EcoRI fragment containing the mouse MyoD gene from pVZC1a (Davis et al., 1987) cloned into the EcoRI site of the vector pBabe-Puro (Morgenstern and Land, 1990). 10 μg of plasmid DNA was mixed with CaCl2, added dropwise to 2 × Hepes buffered saline, pH 7.05, in a final volume of 500 μl, and then added immediately to the above media. Cells were incubated for 8–10 h at 37°C, 5% CO2, washed once with PBS, given fresh DME supplemented with 10% FBS without chloroquine, and incubated for an additional 16 h. Media was again removed and replaced with 3 ml of DME with 10% FBS per 60-mm dish. Virus-containing media was harvested from the BOSC 23 cells ~24 h later (48 h after the addition of DNA), centrifuged at 500 g to remove cells and debris, and then used for infection immediately or frozen at ~80°C for later use.
Viral Infection, Transfection, and Myogenic Conversion of Embryonic Fibroblasts

1.5-1.75 × 10⁵ mouse embryonic fibroblasts (MEFs) were seeded onto 60-mm dishes the day before infection or transfection. In experiments where primary cultures of MEFs were transiently infected with retroviral MyoD and muscle gene expression was analyzed by immunoblotting, 1 × 10⁶ MEFs were seeded onto 150-mm dishes. For transient viral infection, cells were incubated for 24-48 h with a 1:1 mixture of virus-containing media from BOSC 23 cells and DME containing 20% FBS, supplemented with polyclen or to a final concentration of 4 μg/ml. After infection, cells were grown in DM for 2-4 d to induce differentiation. For the generation of stably infected cell lines, cells were infected as described above, trypsinized, seeded at low culture density, and grown under selective conditions (0.4 mg/ml G418 for pLMDSN viral infections and 1.5 μg/ml puromycin for pBabe-MyoD infections) in DME supplemented with 20% FBS. Isolated colonies were then picked and propagated under selective growth conditions. For the time course experiments, 7.5 × 10⁵ Rh⁻/⁻ MEFs were seeded into 60-mm dishes and infected the next day as described above. After 2 d, the viral mixture was removed and changed to DME containing 0.1% FBS and 10 μg/ml insulin, and cells were maintained in this media for another 3 d. Cultures were then stimulated with DME containing 20% FBS, and cells were fixed at the indicated time points. For the 0 time point, 5-bromo-2′-deoxyuridine (BrdU) was used to increase the low-serum differentiation media and maintained on the cells for 6 h.

For MyoD transfection experiments, 0.5 μg of pCSA-MyoD plasmid (Skapek et al., 1995) was mixed with 0.5 μg of p-2300-MCK-CAT (Jaynes et al., 1988) or p4x(MEF1)-TK-CAT (Weintraub et al., 1990) reporter plasmids, transfection was performed using Lipofectamine (GIBCO BRL, Gaithersburg, MD) and incubated with the cells for 2-3 h, according to the manufacturer’s instructions. All transfections were done in duplicate. DM was added 24 h after the addition of DNA to the cells, and cells were maintained under these conditions for up to 4 days. Cells were then harvested for CAT assay, normalized to protein content, as previously described (Skapek et al., 1995). Transient transfection assays involving BrdU uptake were performed essentially as described above.

Immunostaining of Conver ted Fibroblasts

After differentiation, cells were washed three times with PBS, fixed in 2% paraformaldehyde in PBS for 15 min, and permeabilized with 0.25% Triton X-100 in PBS for an additional 15 min. MyoD was then detected using rabbit antiserum to mouse MyoD (Jackson Immunoresearch Laboratories, West Grove, PA) followed by a 1:30 dilution of a FITC-conjugated monoclonal antibody against mouse IgG antibodies (Jackson Immunoresearch Laboratories). The following additional antibodies and dilutions were used: cyclin A, a 1:500 dilution of affinity purified rabbit antibodies (kindly provided by J. Roberts, Fred Hutchinson Cancer Center); cyclin B, a 1:500 dilution of affinity purified rabbit antibodies (kindly provided by C. McGowan, The Scripps Research Institute, La Jolla, CA); or a 1:100 dilution of commercially available affinity purified rabbit antibodies (H-433; Santa Cruz Biotechnology, Inc., Santa Cruz, CA); cyclin E, a 1:1,000 dilution of rabbit antisera (kindly provided by J. Roberts); Cdk2, a 1:50 dilution of affinity purified rabbit antibodies (M2; Santa Cruz Biotechnology, Inc.); Cdc2, a 1:200 dilution of affinity purified rabbit antibodies (GIBCO BRL). Stained cells were examined and photographed using a Zeiss Axiocam microscope (Thornwood, NY) equipped with a 40× water-immersion objective.

Flow Cytometry

Myogenic cell lines were differentiated for 2-3 d in low-calcium differentiation medium consisting of CaCl2-free DME (GIBCO BRL) reconstituted with CaCl2 to a final concentration of 50 μM and supplemented with 2% dialyzed horse serum and 10 μg/ml insulin. Under these culture conditions, 98% of C2 muscle cells expressing MyoD remained mononucleate. Cultures were then trypsinized and resuspended in PBS containing 10% horse serum, centrifuged at 800 g for 5 min at 4°C, and washed several times with PBS. Cells were fixed in PBS containing 2% paraformaldehyde for 15 min on ice, incubated with 50 nM glycine for an additional 5 min, permeabilized in 0.1% Triton X-100 in PBS for 15 min, washed several times with PBS, and then stained for MyoD as described above. After antibody staining, cell pellets were resuspended in a propidium iodide solution (69 μM propidium iodide, 38 mM sodium citrate) to a concentration of approximately 1 × 10⁶ cells/ml. RNase A was added to a final concentration of 10 μg/ml, and samples were incubated for 30 min at 37°C. Cells were then stained for flow cytometry using a FACSCalibur flow cytometer (Becton-Dickinson Immunocytometry Systems, Mountain View, CA) and analyzed using Lysis II and CellFit software (Becton-Dickinson Immunocytometry Systems). Negative controls included nonmyogenic cell lines and primary embryonic fibroblasts processed as described above and myogenic cell lines stained with the secondary antibodies alone.

Flow Cytometry

Myogenic cell lines were differentiated for 2-3 d in low-calcium differentiation medium consisting of CaCl2-free DME (GIBCO BRL) reconstituted with CaCl2 to a final concentration of 50 μM and supplemented with 2% dialyzed horse serum and 10 μg/ml insulin. Under these culture conditions, 98% of C2 muscle cells expressing MyoD remained mononucleate. Cultures were then trypsinized and resuspended in PBS containing 10% horse serum, centrifuged at 800 g for 5 min at 4°C, and washed several times with PBS. Cells were fixed in PBS containing 2% paraformaldehyde for 15 min on ice, incubated with 50 nM glycine for an additional 5 min, permeabilized in 0.1% Triton X-100 in PBS for 15 min, washed several times with PBS, and then stained for MyoD as described above. After antibody staining, cell pellets were resuspended in a propidium iodide solution (69 μM propidium iodide, 38 mM sodium citrate) to a concentration of approximately 1 × 10⁶ cells/ml. RNase A was added to a final concentration of 10 μg/ml, and samples were incubated for 30 min at 37°C. Cells were then stained for flow cytometry using a FACSCalibur flow cytometer (Becton-Dickinson Immunocytometry Systems, Mountain View, CA) and analyzed using Lysis II and CellFit software (Becton-Dickinson Immunocytometry Systems). Negative controls included nonmyogenic cell lines and primary embryonic fibroblasts processed as described above and myogenic cell lines stained with the secondary antibodies alone.

Caffeine Treatment

Established myogenic cell lines were serum-starved for 3 d in DME containing 0.1% FBS plus 10 μg/ml insulin. Cells were then stimulated with high-serum medium (DME containing 20% FBS) for 12 h and then grown
for an additional 6 h in either the presence or absence of 5 mM caffeine in DME containing 20% FBS. Cells were fixed in 2% paraformaldehyde in PBS and stained for MHC and DAPI as described above.

Results

pRb Is Necessary for High-Level Expression of a Subset of Muscle Genes

To examine the requirement of pRb family members for skeletal muscle differentiation, we infected primary MEFs obtained from wild-type mouse embryos (WT) or embryos lacking both copies of either the Rb gene (Rb^{−/−}; Jacks et al., 1992), the p107 gene (p107^{−/−}), or the p130 gene (p130^{−/−}), with a retrovirus encoding MyoD. After infection, the cells were challenged to differentiate by serum removal, and both MyoD expression and muscle differentiation in the various infected fibroblast populations were examined by immunocytochemistry. Ectopic expression of MyoD induced expression of MHC in each of the fibroblast genotypes tested (Fig. 1). However, we consistently observed intense MHC staining with wild-type, p107^{−/−}, and p130^{−/−} fibroblasts (Fig. 1, B, H, and K) and relatively weak MHC staining in cells lacking pRb (Fig. 1 E), even though the expression levels of MyoD were comparable in these cell populations (Fig. 1 A, D, G, and J). In addition, the resultant pRb-deficient myocytes formed smaller myotubes that predominantly contained one or two nuclei in comparison with wild-type, p107^{−/−}, or p130^{−/−} myocytes, which frequently contained several nuclei, suggesting that myocyte fusion may also be impaired in the absence of pRb.

To better characterize the defects in pRb-deficient myocytes, we generated cell lines stably expressing MyoD. Western analysis of a representative cell line lacking pRb (Rb^{−/−}-MyoD) demonstrated that MyoD protein accumulated to high levels in these cells and could induce expression of myogenin, an early marker of the muscle differentiation program (Hollenberg et al., 1993; Andrés and Walsh, 1996), to a level comparable to that in a pRb-positive 10T1/2 fibroblast cell line expressing retroviral MyoD (10T1/2-MyoD) (Fig. 2 A, compare lanes 2 and 4). The Cdk inhibitor p21, another early marker of the skeletal muscle differentiation program (Guo et al., 1995; Haley et al., 1995; Missero et al., 1995; Parker et al., 1995; Andrés and Walsh, 1996), was similarly induced to wild-type levels in the absence of pRb (Fig. 2 A). In contrast to the normal levels of expression of these early markers of muscle differentiation, expression of MHC, which is induced at relatively late times in the skeletal muscle differentiation program (Gunning et al., 1987; Lin et al., 1994; Andrés and Walsh, 1996; see also Ohkubo et al., 1994), was dramatically reduced in cells lacking pRb (Figs. 1 and 2). To confirm that these findings were not specific to these individual cell lines, we transiently infected both WT and Rb^{−/−} MEFs with a MyoD retrovirus and analyzed the relative expression levels of muscle differentiation markers in these polyclonal populations. MyoD activated the expression of both myogenin and p21 in pRb-deficient MEFs to levels that were equal to or even greater than that observed in WT MEFs, but failed to induce high level MHC expression specifically in the pRb-deficient cells (Fig. 2 B). Together, these findings indicate that while pRb is not essential for either the initiation of the skeletal muscle differentiation program or the induction of early muscle proteins such as myogenin and p21, pRb is necessary to promote high-level expression of some end-stage differentiated muscle proteins such as MHC.

Since the pRb-related proteins p107 and p130 may also be involved in the regulation of muscle differentiation, we examined the expression of these proteins in myogenic cell lines that either contained or lacked pRb. In pRb-positive 10T1/2-MyoD cells, p107 protein levels appeared to decline slightly under differentiation conditions, whereas p107 increased in the comparable pRb-deficient muscle cell line (Fig. 2 A; see also Schneider et al., 1994). Consistent with its increased presence in E2F complexes in differentiated muscle cells (Corbel et al., 1995; Haley et al., 1995; Kiess et al., 1995; Shin et al., 1995), total protein levels of p130 increased upon serum starvation in both the pRb-positive and -negative muscle cell lines (Fig. 2 A, compare lanes 1 and 2; lanes 3 and 4). However, we also observed an increase in p107 and p130 expression in pRb-deficient fibroblasts that lacked MyoD expression (data not shown), suggesting that the increases in p107 and p130 protein are not specific to muscle differentiation. In summary, although p107 and p130 levels are increased in pRb-deficient muscle cell cultures, the reduced MHC expression in these cells indicates a specific role for pRb in the regulation of the myogenic differentiation program.

pRb Family Proteins but Not Cdk Inhibitors Augment the Activity of MyoD

As an independent means of evaluating the requirement of pRb for MyoD function, we transiently cotransfected pRb-deficient MEFs with plasmids encoding MyoD under the control of the cytomegalovirus promoter (CMV-MyoD) and a reporter construct containing the regulatory sequences of the muscle creatine kinase gene driving expression of chloramphenicol acetyl transferase (MCK-CAT). When transfected into pRb-deficient fibroblasts, CMV-MyoD did not significantly activate expression of MCK-CAT (Fig. 3 A, lane 3), even when coexpressed with CMV-driven E12, a bHLH binding partner of MyoD (Fig. 3 A, lane 4). In contrast, expression of MCK-CAT was increased 23–35-fold when a pRb expression vehicle (CMV-pRb) was cotransfected with MyoD and E12 (Fig. 3 A, lane 5). In the absence of MyoD, pRb did not activate MCK-CAT expression in these cells (data not shown).

MCK gene expression requires binding sites for both myogenic bHLH proteins and MEF2 family members (Cserjesi and Olson, 1991; Amacher et al., 1993); therefore, it was unclear from these results whether pRb was affecting the function of MyoD or other ancillary transcription factors such as MEF2. To ascertain whether pRb directly affected the activity of MyoD, we assayed the ability of MyoD to induce the expression of a simplified muscle reporter construct containing four reiterated MyoD binding sites (MEF1 sites) upstream of a minimal thymidine kinase promoter driving CAT (4×[MEF1]-TK-CAT) in pRb-deficient cells (Fig. 3 A). In either the absence or presence of ectopic E protein, MyoD activated this reporter poorly in cells lacking pRb (Fig. 3 A, lanes 8 and 9). However, cotransfection of MyoD and E12 with CMV-
pRb led to a 3–10-fold increase in 4x(MEF1)-TK-CAT expression in Rb−/− cells (Fig. 3 A, lane 10). Since cotransfected CMV-pRb only slightly enhanced the activity of CMV-CAT (approximately twofold; data not shown) and does not greatly affect MyoD protein levels (Skapek, S., and A.B. Lassar, data not shown), the dependency on ectopic pRb to promote high-level gene expression in Rb−/− cells appears to be specific to MCK-CAT, 4x(MEF1)-TK-CAT and other muscle-specific reporter constructs (data not shown). At present, it is unclear why pRb augments expression of all transfected muscle reporter constructs yet is required for high level expression of only late markers of the endogenous muscle differentiation program.

Because p107 and p130 have several biochemical properties in common with pRb (for reviews see Müller, 1995; Vairo et al., 1995; Weinberg, 1995; Zalvide and DeCaprio, 1995), we tested whether higher-level expression of these proteins could substitute for pRb in supporting MyoD function. Both CMV-driven p107 and p130 were able to augment MyoD-mediated transactivation of MCK-CAT, although in both cases the level of MCK-CAT expression was significantly below that observed following cotransfection with CMV-pRb (Fig. 3 B, compare lanes 4 and 5 with lane 3). Since ectopic expression of Cdk inhibitors can promote MyoD function in pRb-positive C2 myoblasts and pRb-positive 10T1/2 fibroblasts (Skapek et al., 1995), we evaluated whether reduction of Cdk activity could increase MyoD activity in the absence of pRb. In pRb-deficient cells, neither cotransfection of CMV-driven p16 nor CMV-p21 significantly augmented MyoD transactivation of MCK-CAT; however, in the presence of ectopic pRb, cotransfection with either Cdk inhibitor boosted MyoD function in these cells (Fig. 3 C). Together, these data indicate that MyoD-mediated transactivation of muscle pro-

Figure 1. Attenuated expression of myosin heavy chain in differentiated myocytes lacking pRb. MEFs were infected with an ecotropic retrovirus encoding MyoD driven by a constitutive viral promoter and then differentiated for 3 d. After differentiation, cells were fixed, permeabilized, and immunostained for MyoD (A, D, G, and J) and MHC (B, E, H, and K). Nuclei were visualized by staining with DAPI (C, F, I, and L).
pRb Alone Is Necessary for Permanent Growth Arrest

Previous studies have demonstrated that infection of already differentiated skeletal muscle cultures with DNA tumor viruses, or induction of the SV-40 large T antigen within myotubes, can induce DNA synthesis and mitosis (Fogel and Defendi, 1967; Yaffe and Gershon, 1967; Graessmann et al., 1973; Endo and Nadal-Ginard, 1989; Iujividin et al., 1990; Cardoso et al., 1993; Gu et al., 1993a; Ohkubo et al., 1994; Crescenzi et al., 1995). Since viral oncogenes inactivate the entire pRb family, induce the expression of c-jun, Cdns, and cyclins (Endo, 1992; Ohkubo et al., 1994), and extinguish expression of the myogenic bHLH factors (Endo, 1992), it was unclear whether all or only a subset of these induced cellular responses was necessary to permit DNA synthesis in differentiated myocytes. To specifically examine the role of pRb family members in this process, wild-type (WT), Rb^{-/-}, p107^{-/-}, and p130^{-/-} MEFs were transiently infected with a retrovirus encoding MyoD and challenged to differentiate under low-serum conditions. After 2 d of differentiation, the cells were refed with medium containing both high serum (i.e., 20% FBS) and the thymidine analogue BrdU and then fixed 36 h later for evaluation of BrdU uptake. Differentiated, MHC-expressing myocytes containing pRb failed to synthesize DNA after serum stimulation, as evidenced by the absence of BrdU incorporation in these cells, even when the cells lacked either p107 or p130 (Fig. 4, A, C, and D). In marked contrast, 75-85% of the pRb-deficient, MHC-positive myocytes had incorporated BrdU after 36 h in high-serum media (examples are displayed in Fig. 4 B). These results are consistent with the findings of others (Schneider et al., 1994) and indicate that pRb alone is required to inhibit DNA synthesis and maintain G₀ arrest in differentiated myocytes.

We next evaluated whether ectopic expression of other pRb family members or Cdk inhibitors could restore terminal G₀ arrest to pRb-deficient myocytes. MEF cultures were transiently cotransfected with CMV-MyoD and either CMV-driven pRb, p107, p130, p16, or p21. After transfection, the cells were induced to differentiate in low-serum medium for 2 d and then stimulated with medium containing 20% FBS supplemented with BrdU (Fig. 5). Expression of exogenous pRb, p107, p130, and p21 was confirmed by immunostaining dishes transfected in parallel (data not shown). Under these conditions, ~82% of pRb-deficient MHC-positive cells cotransfected with an empty CMV expression vehicle incorporated BrdU. Cotransfection of CMV-MyoD with CMV-pRb reduced BrdU uptake to ~5% in MHC-positive cells (Fig. 5, lane 2). Cotransfection of CMV-MyoD with CMV-p107 or CMV-p130 also reduced BrdU uptake in MHC-positive cells, in these cases to ~22 and 42%, respectively (Fig. 5, lanes 3 and 4). In contrast to the reduction in BrdU incorporation after cotransfection of MyoD with pRb family members, cotransfection with either p16 or p21 failed to significantly prevent DNA synthesis in pRb-deficient myocytes (Fig. 5, lanes 5 and 6). Together, these results demonstrate that ectopic expression of any pRb family member can maintain the G₀ arrest of skeletal muscle to some extent. In contrast, neither endogenous levels of the Cdk inhibitors p21 and p27 (Fig. 2), nor ectopic p16 or p21 (Fig. 5) are capable of preventing S phase entry in differentiated myocytes in the absence of pRb.

pRb-deficient Myocytes Accumulate in S and G₂ Phases

Having established that pRb-deficient differentiated myocytes display aberrant BrdU incorporation, we examined the DNA content of these cells to verify that incorporation of BrdU signified entry into S phase versus DNA repair. To monitor DNA content, we performed flow cytometry on cultures of myocytes that either contained or lacked pRb and quantitated the amount of propidium iodide fluorescence in either MHC-positive or -negative cells in the population. During the process of skeletal muscle differentiation, normal, pRb-containing myocytes fuse to form multinucleate myotubes. Thus, we could not easily evaluate nuclear DNA content in whole cells under normal differentiation conditions because of multinucleation of myotubes. To minimize this problem, we used culture conditions in which muscle differentiation and terminal cell cycle arrest could occur in the absence of cell fusion, based on the sensitivity of fusion to the concentration of calcium in the media (for example see Adamo et al., 1973). Under low-calcium differentiation conditions (50 μM CaCl₂), pRb-positive 10T1/2-MyoD cells failed to form multinucleated myotubes in pRb-deficient MHC-positive cells cotransfected with CMV-MyoD and either CMV-driven pRb, p107, p130, p16, or p21. After transfection, the cells were induced to differentiate in low-serum medium for 2 d and then stimulated with medium containing 20% FBS supplemented with BrdU (Fig. 5). Expression of exogenous pRb, p107, p130, and p21 was confirmed by immunostaining dishes transfected in parallel (data not shown). Under these conditions, ~82% of pRb-deficient MHC-positive cells cotransfected with an empty CMV expression vehicle incorporated BrdU. Cotransfection of CMV-MyoD with CMV-pRb reduced BrdU uptake to ~5% in MHC-positive cells (Fig. 5, lane 2). Cotransfection of CMV-MyoD with CMV-p107 or CMV-p130 also reduced BrdU uptake in MHC-positive cells, in these cases to ~22 and 42%, respectively (Fig. 5, lanes 3 and 4). In contrast to the reduction in BrdU incorporation after cotransfection of MyoD with pRb family members, cotransfection with either p16 or p21 failed to significantly prevent DNA synthesis in pRb-deficient myocytes (Fig. 5, lanes 5 and 6). Together, these results demonstrate that ectopic expression of any pRb family member can maintain the G₀ arrest of skeletal muscle to some extent. In contrast, neither endogenous levels of the Cdk inhibitors p21 and p27 (Fig. 2), nor ectopic p16 or p21 (Fig. 5) are capable of preventing S phase entry in differentiated myocytes in the absence of pRb.
myotubes, and the majority of the MHC-positive cells (~86%) had accumulated in G1/G0, as measured by propidium iodide fluorescence (Fig. 6 A). In these pRb-containing cells, the frequency of cells with an S phase DNA content was reduced to 3% in the MHC-positive portion of the population compared to 17% in the MHC-negative portion, while the proportion of cells with a G2+M DNA content was the same (11%) in both portions (Fig. 6, A and B). Identical results were seen with pRb-positive C2 muscle cells (data not shown). In pRb-deficient cells, the frequency of MHC-positive cells with an S phase DNA content was 20% and that with a G2+M DNA content was 24%. In contrast, only 12 and 13% of the MHC-negative cells in this population displayed either an S or G2+M DNA content, respectively (Fig. 6, C and D). Thus, whereas differentiated pRb-positive myocytes or nondifferentiated pRb-deficient cells maintain predominantly a 2 N DNA content in low serum conditions, pRb-deficient myocytes display a relative tendency to accumulate a >2 N DNA content under identical conditions.

Interestingly, a number of MHC-positive cells lacking pRb appeared to have a >4 N DNA content, suggesting that these cells had undergone multiple rounds of DNA replication after differentiation. Indeed, pRb-deficient myocytes frequently had enlarged nuclei with increased DAPI fluorescence (data not shown). To exclude the possibility that incubation specifically under low-calcium differentiation conditions was altering the DNA content of pRb-deficient myocytes, we repeated our analysis under normal-calcium differentiation conditions and analyzed DNA content in individual nuclei isolated from differentiated myotubes by performing flow cytometric analysis us-
pRb is required to inhibit DNA synthesis in differentiated myocytes. WT (A), Rb−/− (B), p107−/− (C), and p130−/− (D) MEFs were infected with a MyoD retrovirus, differentiated, and then incubated in media containing 20% FBS and 10 μM BrdU for 36 h. Cells were then fixed, permeabilized, and stained for MHC (red) and BrdU (green). Note the specific uptake of BrdU in the nuclei of the Rb−/− MHC-positive cells (B).

pRb-deficient Myocytes Enter S Phase but Do Not Readily Progress to Mitosis

To examine the kinetics of cell cycle progression in pRb-deficient myocytes, we infected pRb-deficient MEFs with a MyoD retrovirus, induced the cells to differentiate in mitogen-poor medium for 3 d, and followed progression of these cells through the cell cycle following serum stimulation (Fig. 7). Under low-mitogen conditions, nearly 50% of the cells incorporated BrdU into their nuclei during the last 6 h of culture in this medium, regardless of MHC expression, demonstrating the low serum requirement of MEFs lacking pRb (Fig. 7 A). After serum stimulation, 75% of MHC-negative cells in the population incorporated BrdU by 12 h, and nearly all of the MHC-negative cells took up BrdU by 24 h. In contrast, the percent of the MHC-positive cells incorporating BrdU did not increase above the 50% base line during the first 12 h after serum stimulation, and this frequency only slowly increased to ~70% after 48 h. These data indicate a kinetic difference in cell cycle reentry after serum stimulation, with MHC-expressing cells entering S phase at a slower rate than their MHC-negative counterparts.

As a marker for the G1 to S transition, we also examined the expression of cyclin A, which normally peaks during this stage of the cell cycle and likely participates in S phase entry and progression (Pagano et al., 1992). Cyclin A expression was observed in 22% of the MHC-negative cells maintained in low-serum conditions, and this frequency of expression slightly increased following serum stimulation to a peak of 35% after 24 h (Fig. 7 B). In contrast to the low level and frequency of cyclin A expression in cells lacking MHC staining, cyclin A protein, which is normally absent in MHC-positive myocytes containing pRb (data not shown; see also Ohkubo et al., 1994; Rao et al., 1994; Guo et al., 1995), was present in 67% of the MHC-positive cells maintained in the low-serum conditions, and the intensity of staining was dramatically enhanced over that seen in MHC-negative cells (Fig. 8 A–C). 48 h after serum stimulation, the percentage of MHC-positive cells expressing high levels of cyclin A steadily declined to 55%. We also evaluated the expression of cyclin E and Cdk2, which are normally present in MHC-positive myocytes containing pRb (data not shown; see also Jahn et al., 1994; Guo et al., 1995; Kiess et al., 1995b), and found that these proteins were also elevated in MHC-expressing myocytes lacking pRb (Fig. 8, G–I, J–L). These findings suggest that up to 50% of pRb-deficient, MHC-positive myocytes are already in S phase while maintained under low serum conditions, and that mitogen stimulation can induce an additional percentage of these cells to progress into S phase with kinetics that are slow compared to the MHC-negative cells in the population.

To evaluate further progression of pRb-deficient myocytes through the cell cycle, we monitored the expression of myogenin as a nuclear differentiation marker. With this approach, we found that 69% of myogenin-positive nuclei isolated from the pRb-deficient myocytes had a >2 N DNA content (as compared to 28% in the nondifferentiated cells in this population) and that a significant portion of these differentiated nuclei had a >4 N DNA content, although in this case nuclear clumping prevented a thorough statistical evaluation of this phenomenon (data not shown).
Fig. 5. The effects of caffeine administration on pRb-deficient myocytes are shown with histograms and bar graphs. The histograms display suppression of BrdU uptake in differentiated pRb-deficient myocytes by pRb family members, but not by Cdk inhibitors. The bar graphs illustrate the percentage of MHC-positive cells that incorporated BrdU during low-serum conditions, stimulated with high-serum media containing 10 μM BrdU for 24-48 h, fixed, and immunostained for both MHC and BrdU. The displayed results are the average percentage of MHC-positive cells that incorporated BrdU derived from five independent experiments. Error bars depict variation between the experiments. The total number of MHC-positive cells counted for each plasmid combination were: empty CMV vehicle (n = 959), CMV-pRb (n = 1118), CMV-p107 (n = 1188), CMV-p130 (n = 1093), CMV-p16 (n = 836), CMV-p21 (n = 530).
duced by overexpression of the Cdc2 activator cdc25 in the presence of both Cdc2 and cyclin B (Heald et al., 1993) and was only observed in the MHC-positive cells in the population (summarized in Table I). In contrast to the increased frequency of pulverized nuclei in MHC-expressing cells, caffeine treatment only modestly increased the frequency of normal mitosis in the MHC-positive cells from ~0.8 to 1.2% and had little effect on the number of normal mitosis in MHC-negative cells (Table I). The effects of caffeine were also specific to myocytes lacking pRb and did not alter the nuclear morphology of pRb-containing muscle cells cultured in parallel (data not shown). In summary, these experiments indicate that caffeine treatment specifically increases the frequency of mitotic catastrophe in differentiated pRb-deficient myocytes, consistent with an arrest of these cells in S and G2 phases with an accumulation of Cdc2/cyclin B complexes that are maintained in a non-functional state by inhibitory phosphorylation.

Discussion

It has been very well documented that DNA tumor viruses such as SV-40, polyoma, and adenovirus can inhibit differentiation and reactivate the mitotic cell cycle in already formed myotubes. Several studies have further demonstrated that the oncoproteins harbored in these viruses are alone capable of blocking differentiation and initiating DNA synthesis. However, interpretation of these studies has been complicated, since these viral oncoproteins sequester numerous proteins (including the pRb family, the p300 family, and p53; Moran, 1993), induce cell cycle regulators (Endo, 1992; Ohkubo et al., 1994), and extinguish myogenic bHLH gene expression (Endo, 1992). In this study, we have analyzed the role of pRb family proteins in muscle gene activation and in terminal cell cycle withdrawal. In agreement with the results of Nadal-Ginard and colleagues who examined muscle differentiation in an ES cell-derived myogenic cell line lacking pRb (Schneider et al., 1994) and with analysis of pRb-deficient mice that develop a grossly normal musculature (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992, 1994), we have observed that at least some aspects of skeletal muscle differentiation can proceed in the absence of pRb (summarized in Fig. 10).

pRb Is Necessary for High-Level Expression of Late Markers of the Skeletal Muscle Differentiation Program

Whereas pRb-deficient myocytes express normal levels of early muscle differentiation markers such as myogenin and p21, high-level expression of genes activated in the end stages of muscle differentiation, such as MHC and MCK, apparently require pRb. These findings are consistent with the observation that inhibition of C2 myoblast differentiation by SV-40 T antigen apparently occurs at a step after the induction of myogenin (Tedesco et al., 1995). Once the muscle differentiation program is triggered, a positive feedback loop is established as MyoD induces the Cdk inhibitor p21 (Guo et al., 1995; Halevy et al., 1995; Missero et al., 1995; Parker et al., 1995). This may primarily serve to ensure that pRb maintains its active, hypophosphorylated state, which is critical for later stages of differentiation. Indeed, cotransfection of both p16 and p21 can augment MyoD function only in the presence of pRb. Other Cdk inhibitors that increase upon muscle differentiation, such as p27 (Halevy et al., 1995), or that are highly expressed in differentiated skeletal muscle, such as p18 (Guan et al., 1994) and p57 (Lee et al., 1995; Matsuoka et al., 1995), may also contribute to this process.

Although pRb-deficient myocytes express other pRb family members (i.e., p107 and p130), the endogenous levels of these pRb-related proteins are apparently unable to compensate for the loss of pRb in promoting MHC expression. Indeed, a unique role for pRb in allowing high-level expression of late muscle differentiation markers is consistent with the finding that MyoD activates apparently normal levels of MHC expression in MEFs engineered to specifically lack either p107 or p130 but induces signifi-
cantly decreased levels of this late differentiation marker in pRb-deficient myocytes. On the other hand, transfection of pRb-deficient cells with high levels of ectopic p107 or p130 can to some extent augment MyoD-mediated transactivation of MCK-CAT, suggesting that all members of the pRb family may share properties that promote muscle gene expression. Although all members of the pRb family are known to interact with E2F transcription factor complexes, it is unclear whether this or other properties of these proteins are necessary to induce high-level muscle gene expression (see Gu et al., 1993a; Schneider et al., 1994).

It is unclear why only some muscle genes require pRb for normal levels of expression. We have compared the ability of myogenic bHLH protein complexes from cells containing or lacking pRb to specifically bind DNA in electrophoretic mobility-shift assays (EMSA) and have found that myogenic bHLH complexes from both cell types have similar affinity for DNA and identical mobility in EMSA (Novitch, B.G., and A.B. Lassar, data not shown). The differences in pRb sensitivity in early versus late differentiation markers may reflect either dissimilarities in the promoters of these two classes of muscle genes which render the former immune to the loss of pRb, or the activation of late differentiation markers by pRb-dependent myogenic regulators that are themselves expressed at later times during the muscle differentiation program (i.e., myogenin, MRF-4, and MEF2). It may be relevant in this regard that the pRb-mediated boost in transactivation of a MCK-CAT reporter (which contains both an E box and MEF2 site) was much greater than that observed with an artificial reporter containing four reiterated E boxes (a 23–35-fold versus a 3–10-fold increase in activity, respectively). It is interesting to note that a role for pRb in specifically promoting the later stages of differentiation programs has also been observed during erythropoiesis (Clarke et al., 1992; Jacks et al., 1992; Lee et al., 1992), neuronal differentiation (Lee et al., 1994), and in lens fiber cell formation (Morgenbesser et al., 1994) and that pRb has also been shown to activate the transcription factor NF-IL6, which is involved in macrophage differentiation (Chen et al., 1996).

pRb Is Required to Maintain Terminal G0 Arrest in Differentiated Myocytes

It is clear from the results of the present study and from that of others (Schneider et al., 1994) that pRb plays a critical role in preventing aberrant DNA synthesis in termi-

Figure 7. Differentiated pRb-deficient myocytes display a delayed entry into S phase after growth factor stimulation and do not readily progress into mitosis. Rb^{−/−} MEFs were infected with a retrovirus containing MyoD and differentiated for 3 d in media containing 0.1% FBS plus 10 μg/ml insulin. After differentiation, cultures were stimulated with media containing 20% FBS, fixed at the indicated time points, and simultaneously immunostained for MHC and the indicated proteins. At least 300 cells of each MHC-staining class were evaluated, and multinucleated structures were counted as single cells. (A) 10 μM BrdU was added to the culture media, and cells were double stained for MHC and BrdU. The percentage of MHC-positive (○) and negative (○) cells containing BrdU staining is indicated. For time zero, cells were maintained for an extra 6 h in the 0.1% FBS + insulin media before fixation. (B) Frequency of cyclin A in MHC-positive (○) and -negative (○) cells. (C) Frequency of cyclin B in MHC-positive (○) and -negative (○) cells. (D) Mitotic activity of MHC-positive (○) and -negative (○) cells. Mitotic cells were characterized by condensed chromosomes and formation of a mitotic spindle. At least 1,000 cells of each MHC-staining class were evaluated for mitosis.
Differentiated pRb-deficient myocytes over-express both cyclins and Cdns. pRb-deficient MEFs infected with a retrovirus containing MyoD were differentiated for 3–4 d in media containing 0.1% FBS plus 10 μg/ml insulin, serum-stimulated with media containing 20% FBS for 12–24 h, fixed in 2% paraformaldehyde, and double stained for MHC (B, E, H, K, and N) and the indicated proteins. (A) Cyclin A, (D) cyclin B, (G) cyclin E, (J) Cdk2, and (M) Cdc2. Filled and open arrows indicate representative MHC-positive and -negative cells, respectively, in each field.

nally differentiated myocytes. In contrast to pRb-deficient myocytes that continue to synthesize DNA, myocytes lacking either p107 or p130 display normal G1 arrest, indicating that pRb can maintain terminal cell cycle withdrawal in muscle cells in the absence of either p107 or p130. Whereas ectopic expression of either pRb or other pRb family members can inhibit DNA synthesis in pRb-deficient myocytes, neither endogenous expression of p21 and p27 nor ectopic expression of p16 and p21 is sufficient to prevent DNA synthesis in these cells. Recent studies have similarly found that the p16 family of Cdk inhibitors lack growth inhibitory function in cells lacking pRb (Guan et al., 1994; Koh et al., 1995; Lukas et al., 1995; Medema et al., 1995). In contrast, p21, p27, and p57 have been shown to promote G1 accumulation, even in SAOS-2 cells which lack pRb (Harper et al., 1993; Toyoshima and Hunter 1994; Matsuoka et al., 1995). We surmise that the ability of p21 to induce G1 accumulation in SAOS-2 cells but not inhibit DNA synthesis in differentiated pRb-deficient myocytes may be due to either methodological differences in assay conditions (i.e., flow cytometry versus BrdU uptake measurement) or inherent differences in the cell types. Furthermore, the absence of G1 arrest in differentiated pRb-deficient myocytes is consistent with findings that overexpression of E2F-1 alone can promote DNA synthesis in serum-starved cells (Johnson et al., 1993; Qin et al., 1994; Shan and Lee 1994; DeGregori et al., 1995b). Presumably by binding E2F/DP complexes, pRb silences transcription of genes required for entry into S phase, and therefore DNA synthesis is promoted under
normal G0 conditions by either loss of pRb or overexpression of E2F-1.

pRb Loss in Differentiated Myocytes Leads to Abnormal S and G2 Phase Accumulation

Although DNA synthesis was frequently observed in pRb-deficient myocytes, the kinetics of entry into S phase were attenuated in these cells in comparison to MHC-negative cells in the population. The slowed entry of MHC-positive, pRb-deficient myocytes into S phase may be due to high-level expression of p21 and p27 in these cells, which may act to dampen Cdk-dependent DNA synthesis. After serum stimulation, the majority of pRb-deficient myocytes remained in S and G2 phase and did not readily progress into mitosis, as evidenced by the accumulation of excessively high amounts of cyclins A and E, Cdk2, enlarged nuclei, and a DNA content of >2 N. The appearance of a >4 N DNA content in a subset of differentiated myocytes lacking pRb raises the possibility that the failure to progress through the cell cycle may allow these cells to undergo multiple rounds of replication. The lack of mitosis was not due to a failure of the cells to express Cdc2 or cyclin B, as both proteins were present at elevated levels in pRb-deficient myocytes. Interestingly, the mitotic blockade in pRb-deficient myocytes could be overcome by caffeine treatment, which is known to remove the inhibitory phosphorylations from Cdc2 and thereby promote mitosis (Steinmann et al., 1991; Smythe and Newport, 1992). Caffeine treatment of the differentiated pRb-deficient myocytes led to a slight increase in the frequency of normal mitosis and dramatically increased the frequency of mitotic catastrophe. Previous studies have shown that caffeine promotes premature mitosis specifically in cells arrested in S that have accumulated both Cdc2 and cyclin B (Schlegel and Pardee, 1986; Steinmann et al., 1991); thus, the caffeine sensitivity of pRb-deficient myocytes is consistent with their accumulation in S and G2 phases.

These findings suggest that, in the process of promoting muscle differentiation, MyoD may positively regulate an activity that either phosphorylates Cdc2 or negatively regulates genes necessary for mitosis, such as the cdc25 phos-

Table 1. Promotion of Abnormal Mitosis in pRb-deficient Myocytes by Caffeine Treatment

	Normal mitosis	Nuclear pulverization
MHC-positive		
– Caffeine	0.8	0.4
+ Caffeine	1.2	4.3
MHC-negative		
– Caffeine	1.4	0.0
+ Caffeine	1.3	0.0

Rb-/-- MyoD cells were differentiated for 4 d in media containing 0.1% FBS + insulin, followed by serum stimulation with media containing 20% FBS for 12 h. High-serum media containing or lacking 5 mM caffeine was then added, and cells were grown for an additional 6 h before fixation. Cells were stained for MHC and DNA using antibodies and DAPI, respectively, and the number of MHC-positive and -negative cells containing mitotic nuclei was evaluated. See Fig. 9 for examples of the aberrant mitosis observed. At least 500 MHC-positive and -negative cells were counted for each culture condition.
kept in a proliferating, nondifferentiated state by the actions of growth factors. After serum removal, MyoD becomes active and induces the expression of the early muscle differentiation markers myogenin and p21, in a manner that does not require pRb. In contrast, pRb is necessary for both high level expression of late muscle differentiation markers, such as myosin heavy chain, and the inhibition of DNA synthesis in differentiated myocytes.

phatases, and thereby maintains the nonmitotic state. Although incomplete DNA replication and DNA damage are both known to induce inhibitory phosphorylation of Cdk2 (for review see Nurse, 1994), it is unclear whether inactivation of this kinase in pRb-deficient myocytes is due to incomplete DNA replication or some other physiological signal in these cells. It is interesting to note that cyclin A ablation has been shown to activate Cdk2/cyclin B complexes and that introduction of cyclin A mRNA or protein can delay Cdk2-associated kinase activation (Walker and Maller, 1991). It is therefore possible that the markedly elevated cyclin A protein levels in differentiated pRb-deficient myocytes may be related to the absence of mitosis. Another plausible explanation for the failure to progress to mitosis is the ability of MyoD to induce p21 in the absence of pRb. In cycling Xenopus egg extracts, the addition of recombinant p21 inhibits the kinase activity of Cdk2, blocks mitosis, and leads to an accumulation of inactive Cdk2/cyclin B complexes (Guadagno and Newport, 1996), similar to the phenotype of pRb-deficient myocytes. Moreover, expression of SV-40 T antigen has been found to induce DNA synthesis but not mitosis in senescent cells (Gorman and Cristofalo, 1985), which similarly express high levels of p21 (Noda et al., 1994).

The striking over-expression of cyclins A and E, Cdk2, and Cdc2 concomitant with S phase arrest in differentiated pRb-deficient myocytes may reflect a defect in E2F–1/DP autoregulation in these cells. In the absence of pRb, E2F–1/DP complexes should be able to activate target genes, which include cyclin A, cyclin E, Cdc2, and other cell cycle–regulated gene products (DeGregori, et al., 1995a; Ohtani et al., 1995). During normal progression through S phase, E2F–1/DP activity is suppressed by association of E2F–1 with cyclin A/Cdk2 and consequent phosphorylation of the DP subunit which disrupts the ability of E2F–1/DP complexes to bind DNA (Krek et al., 1994). Failure of cyclin A/Cdk2 to inhibit E2F–1/DP activity has recently been shown to result in S phase arrest and subsequent apoptosis of cells (Krek et al., 1995). We speculate that the increased levels of Cdk inhibitors like p21 and p27 in differentiated myocytes lacking pRb may interfere with this regulatory loop by decreasing cyclin A/Cdk2 kinase activity, which would thereby stabilize E2F–1/DP activity, leading to both increased expression of E2F–1–regulated proteins and S phase arrest. Since we have not observed significant levels of apoptosis in differentiated pRb-deficient myocytes (Novitch, B.G., and A.B. Lassar, data not shown), we surmise that hyperactive E2F complexes may only induce S phase arrest and not promote apoptosis in this unique cellular background.

In summary, our findings and those of previous studies (Gu et al., 1993a; Schneider et al., 1994) indicate that pRb plays a critical role in both promoting high-level expression of end-stage markers of the muscle differentiation program and in maintaining the G0-arrested state of myocytes. Moreover, a pRb-independent mechanism acts to ensure that differentiated myotubes which enter S phase in the absence of pRb fail to readily progress into mitosis. It is interesting to note that in contrast to the relative absence of mitosis in myocytes specifically lacking pRb, expression of viral oncoproteins that sequester the entire pRb family and other proteins efficiently promotes mitosis in differentiated myotubes (Fogel and Defendi, 1967; Yaffe and Gershon, 1967; Graessmann et al., 1973; Ijuidin et al., 1990; Cardoso et al., 1993; Ohkubo et al., 1994; Crescenzi et al., 1995). Taken together, these findings suggest that other viral oncoprotein–associated proteins (i.e., p300, p107, and p130) may have regulatory functions in controlling S phase progression and mitosis, and that these viral oncoproteins can either negate these functions or extinguish MyoD expression and thereby produce a mitotic cell cycle.

We thank Faustino Ramos and Jim Rhee for technical assistance and Peter Lopez and the staff of the Dana-Farber Flow Cytometry Facility for help with the flow cytometric analysis. We also thank Jim Roberts for suggesting the use of caffeine in our study, and Orna Halevy, Frank McKeon, Bob Schlegel, Steve Skapek, and Bart Williams for helpful discussions and suggestions. We thank Greg Hannon and Tony Hunter for antibodies and David Beach, Steve Elledge, Doron Ginsberg, Bill Kaellen, and Liang Zhu for plasmids. We finally thank the members of the Lassar laboratory and Tim Grammer for helpful discussions and critical review of the manuscript. The antibody G3G4 was obtained from the Developmental Studies Hybridoma Bank maintained at the Johns Hopkins University School of Medicine (Baltimore, MD) and at the University of Iowa (Iowa City, IA) under contract NO1-HD-6-2915 from the National Institute of Child Health and Human Development.

This work was supported by grants to A.B. Lassar from the National Science Foundation, the Muscular Dystrophy Association, and the Council for Tobacco Research U.S.A. T. Jacks is an assistant investigator of the Howard Hughes Medical Institute. This work was done during the tenure of an established investigatorship from the American Heart Association to A.B. Lassar and a fellowship from the Harvard-Markey Biomedical Scientist Training Program to B.G. Novitch.

The Journal of Cell Biology, Volume 135, 1996

Image 0x0 to 612x792
Novitch et al. pRB in Myogenesis

References

Adamo, S., B. Zani, G. Siracusa, and M. Molinaro. 1973. Expression of different myocyte traits in the absence of cell fusion during myogenesis in culture. Cell Differ. 5:53-67.

Amacher, S., J. Buskin, and S. Haucho. 1993. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal muscle. Mol. Cell. Biol. 13:2753-2764.

Andrés, V., and K. Walsh. 1996. Myogenin expression, cell cycle withdrawal, and phenotypic differentiation are temporarily separable events that precede cell fusion upon myogenesis. J. Cell Biol. 132:657-666.

Bader, D., T. Masaki, and D.A. Fischman. 1982. Immunochemical analysis of myosin heavy chain during avian myogenesis in vivo and in vitro. J. Cell Biol. 95:763-770.

Benezra, R., R.L. Davis, D. Lockshon, D.O. Morgan. 1993b. Inhibition of cdk2 activity in vivo by an associated 20K regulatory subunit. Nature (Lond.). 366:707-710.

Guadagnolo, T.M., and J.W. Newport. 1996. Cdk2 kinase is required for entry into mitosis as a positive regulator of Cdc2-cyclin B kinase activity. Cell. 84: 73-82.

Guan, K., Y. Jenkins, M.A. Nichols, X. Wu, C.I. O’Keefe, A.G. Matera, and Y. Xiong. 1994. Growth suppression by p16, a p53-dependent pRB-interacting protein Id. Mol. Cell. Biol. 14:6972-6982.

Graessmann, A., M. Graessmann, and M. Fogel. 1973. The relationship of poly-A RNA to DNA synthesis in BrdU-selected nondividing senescent WI-38 cells by simian virus 40 infection. Mol. Cell. Biol. 15:3823-3829.

Halevy, O., B.G. Novitch, D.B. Spicer, S.X. Skapek, J.R. Beeh, G.H. Hannock, D. Beach, and A.B. Lasar. 1995. Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science (Wash, DC). 267: 1018-1021.

Handy, S. Y. Kong, and S.F. Konieczny. 1993. Fibroblast growth factor inhibits MR64 activity independent of the phosphorylation status of a conserved threonine residue within the DNA-binding domain. Mol. Cell. Biol. 13:5943-5956.

Harper, J., G. Adami, N. Wei, K. Keyomarsi, and S. Elledge. 1993. The p21 cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 75:805-816.

Heald, R., M. McLaughlin, and F. McCorm. 1993. Human weel maintains mitotic timing by protecting the nucleus from cytoplasmically activated Cdc2 kinase. Cell. 74:463-474.

Hollenberg, S.M., P.F. Cheng, and H. Weintraub. 1993. Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle development. Proc. Natl. Acad. Sci. USA. 90:8037-8041.

Huivi, S., O. Fuchs, U. Nucl, and D. Yaffe. 1992. SV40 immortalizes myogenic cells: DNA synthesis and mitosis in differentiating myoblasts. Differentiation. 43:192-203.

Jacks, T., A. Fareli, E.M. Schmitt, R.T. Bronson, M.A. Goldiel, and R.A. Weinberg. 1992. Effects of an Rb mutation in the mouse. Nature (Lond.). 359:295-300.

Jahn, L., J. Sadamsi, and S. Izumo. 1994. Cyclins and cyclin-dependent kinases are differentially expressed during terminal differentiation of C2C12 muscle cells. Exp. Cell Res. 212:297-307.

Jaynes, J., J. Johnson, J. Buskin, C. Gartside, and S. Haucho. 1988. The muscle creatine kinase gene is regulated by multiple upstream elements, including a muscle-specific enhancer. Mol. Cell. Biol. 8:62-70.

Jen, Y., H. Weintraub, and R. Benezra. 1992. Overexpression of IId protein inhibits the muscle differentiation program: in vivo association of IId with E2A proteins. Genes Dev. 6:1468-1479.

Johnson, D.G., J.K. Schwarz, W.D. Cress, and J.R. Nevins. 1993. Expression of the transcription factor E2F1 induces quiescent cells to enter S phase. Nature (Lond.). 365:349-352.

Kiess, M., R.M. Gill, and P.A. Hamel. 1996. Expression and activity of the retinoblastoma protein (pRb)-family Proteins, p107 and p130, during L(6) myoblast differentiation. Cell Growth Diff. 7:1287-1298.

Kiess, M., R.M. Gill, and P.A. Hamel. 1995. Expression of the positive regulator of cell cycle progression, cyclin D3, is induced during differentiation of myoblasts into quiescent myotubes. Oncogene. 11:609-614.

King, R.W., P.K. Jackson, and M.W. Kirschen. 1994. Mitosis in transition. Cell. 79:563-571.

Koh, J., G.H. Enders, B.D. Dnlauch, and E. Harlow. 1995. Tumour-derived p21/Waf 1 are cyclin-dependent kinases defective in cell-cycle control. Nature (Lond.). 375:506-510.

Krek, W., M.E. Ewen, S. Shirodkar, Z. Arany, W.G. Kaelin, and D.M. Livingston. 1994. Negative regulation of the growth-promoting transcription factor E2F-1 by a stably bound cyclin A-dependent protein kinase. Cell. 78:161-172.

Krek, W., G. Xu, and D.M. Livingston. 1995. Cytosin A-kinase regulation of E2F-1 DNA binding function underlies suppression of an S phase checkpoint. Cell. 83:1149-1158.

Lasar, A.B., and A. Münsterberg. 1994. Wiring diagrams: regulatory circuits and the control of skeletal myogenesis. Curr. Opin. Cell Biol. 6:432-442.

Lasar, A.B., S.X. Skapek, and B. Novitch. 1994. Regulatory mechanisms that coordinate skeletal muscle differentiation and cell cycle withdrawal. Curr. Opin. Cell Biol. 6:788-794.

Lee, E.Y.-H., C.Y. Chang, N. Hu, Y.-C.J. Wang, C.-C. Lai, K. Herrup, W.-H. Lee, and A. Bradley. 1992. Mice defective for Rb are viable and show defects in neurogenesis and haematopoesis. Nature (Lond.). 398:299-294.

Lee, E.Y.-H., N. Hu, S.F. Yawn, L.A. Cox, A. Bradley, W.-H. Lee, and K. Herrup. 1994. Dual roles of the retinoblastoma protein in cell cycle regulation and neuron differentiation. Genes Dev. 8:2008-2021.

Lee, M.H., J. Reynolds, and J. Massague. 1995. Cloning of p53/KIF1, a cyclin-dependent kinase inhibitor with unique domain structure, and tissue distribution. Genes Dev. 9:639-649.

Li, L., J. Zhou, G. James, R. Heller-Harrison, M.P. Czech, and E.N. Olson. 1993. FGFR inactivates myogenic helix-loop-helix proteins through phosphorylation of a conserved protein kinase C site in their DNA-binding domains. Cell. 71:1181-1194.

Lin, Z., M.-H. Lu, T. Schulteis, J. Choi, S. Holtzer, C. DiLullo, D.A. Fisch-
man, and H. Holzer. 1994. Sequential appearance of muscle-specific pro-
teins in myoblasts as a function of time after cell division: evidence for a con-
served myogenic differentiation program in skeletal muscle. Cell. Mol.
Cytoskeleton. 29:1–19.

Lukas, J., D. Parry, L. Aagaard, D.J. Mann, J. Bartkova, G. Peters, and
J. Bartek. 1995. Retinoblastoma-protein-dependent cell-cycle inhibition
by E1A-associated p300 protein. Nature (Lond.) 375:503–506.

Martelli, F., C. Cenciarelli, G. Santarelli, B. Polikar, A. Felsani, and M. Caruso.
1992. The inhibition of the E1A-associated p300 protein in terminal differen-
tiation. Oncogene. 9:3579–3590.

Matsuurao, C., M.C. Edwards, C. Bai, S. Zhang, A. Baldini, J.W. Harper, and S.J.
Elledge. 1995. P53(RF), a structurally distinct member of the p21(CIP1)
CDK inhibitor family, is a candidate tumor suppressor gene.
Genes Dev. 9:650–662.

Medema, R.H., R.E. Herrera, F. Lam, and R.A. Weinberg. 1995. Growth suppress-
ion by p16INK4B requires functional retinoblastoma protein. Proc. Natl.
Acad. Sci. USA. 92:6298–6293.

Missiro, C., E. Calautti, R. Eckner, J. Chin, L.H. Tsai, D.M. Livingston, and
Matsuoka, S., M.C. Edwards, C. Bai, S. Parker, P.M. Zhang, A. Baldini, J.W.
Harper, and S.J. Elledge. 1995. P53(CIP1), a structurally distinct member of the p21(CIP1) CDK inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9:650–662.

Morrison, J.W. Harper, and S.J. Elledge. 1995. p53-independent expression of
E1A-mediated inhibition of myogenesis correlates with a direct physical in-
teraction of E1A and basic helix-loop-helix proteins. Mol. Cell. Biol. 15:
7022–7026.

Mymryk, J.S., R.W.H. Lee, and S.T. Bayley. 1992. Ability of adenovirus 5 E1A
large T antigen to reinduce the cell cycle in terminally differentiated myotubes
by transcription factor E2F1 expression. Exp. Cell Res. 214:90–98.

Nurse, P. 1994. Ordering S phase and M phase in the cell cycle. Cell. 79:547–550.

Ohkubo, Y., T. Kishimoto, T. Nakata, H. Yasuda, and T. Endo. 1994. SV40
large T antigen reinduces the cell cycle in terminally differentiated myotubes
by inducing Cdk2, Cdk2, and their partner cyclins. Exp. Cell Res. 214:
270–278.

Ohtani, K., J. DeGregori, and J.R. Nevins. 1995. Regulation of the cyclin E
gene by transcription factor E2F2. Proc. Natl. Acad. Sci. USA. 92:12146–
12150.

Olson, E.N., and W.H. Kleim. 1994. bHLH factors in muscle development: dead-
lines and commitments, what to leave in and what to leave out. Dev. Genet.
8:1–8.

Pagano, M., R. Pepperkok, F. Verde, W. Anstrom, and G. Draetta. 1992. Cyclin
A is required at two points in the human cell cycle. EMBO (Eur. Mol.
Biol. Organ.) 11:5611–5617.

Parker, S.B., G. Eichele, P. Zhang, A. Rawls, A.T. Sands, A. Bradley, E.N. Ol-
son, J.W. Harper, and S.J. Elledge. 1995. p53-independent expression of
p21Cip in muscle and other terminally differentiating cells. Science (Wash. DC). 267:1024–1027.

Pear, W.S., G.P. Nolan, M.L. Scott, and D. Baltimore. 1993. Production of high-
titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci.
USA. 90:8929–8936.

Pines, J., and T. Hunter. 1991. Human cyclins A and B1 are differentially loc-
cated in the cell and undergo cell cycle-dependent nuclear transport. J.
Cell Biol. 115:1–17.

Qin, X.-Q., T. Cittadini, D. Livingston, and W.G. Kaelin. 1992. Identification of
a growth suppression domain within the retinoblastoma gene product.
Genes Dev. 6:953–964.

Qin, X.-Q., D.M. Livingston, W.G. Kaelin, and P.D. Adams. 1994. Deregulated
transcription factor E2F-1 expression leads to S-phase entry and p53-medi-
ated apoptosis. Proc. Natl. Acad. Sci. USA. 91:10918–10922.

Rao, S.S., C. Chu, and D.S. Kohut. 1994. Ectopic expression of cyclin D1 pre-
vents activation of gene transcription by myogenic basic helix-loop-helix reg-
ulators. Mol. Cell. Biol. 14:2529–2537.

Rao, S.S., and D.S. Kohut. 1995. Positive and negative regulation of D-type cy-
clin expression in skeletal myoblasts by basic fibroblast factor beta. A role for cyclin D1 in control of myoblast differentiation. J. Biol. Chem. 270:4993–
4003.

Robertson, E.J. 1987. Embryo-derived stem cell lines. In Teratocarcinomas and
Embryonic Stem Cells. E.J. Robertson, editor. IRL Press, Oxford, UK. 71–
112.