Circulating tumour cells: a broad perspective

Victor Akpe1,2, Tak H. Kim1,2, Christopher L. Brown1,2 and Ian E. Cock1,2

1School of Environment and Science, and 2Environmental Futures Research Institute, Griffith University, Nathan Campus, Queensland 4111, Australia

1. Introduction
Circulating tumour cells (CTCs) constitute an exceedingly small fraction of cells relative to a background of 1 million white blood cells (WBCs) and 1 billion red blood cells (RBCs) per millilitre of peripheral blood [1]. CTCs and circulating tumour microemboli (CTM) are the intermediate stages in metastasis [2,3]. The goal of cancer invasion is territorial dominance and eventual cell death [4]. The key cellular process involves (i) intravasation, (ii) CTCs extravasation to bone marrow or other organs where the cells are disseminated and metastasized at the local site and (iii) CTM may also undergo intravascular proliferation to bone marrow or other organs before the tumour cells are disseminated and metastasized at the local site [3]. The spontaneity of these processes and the identification of CTCs/CTM and leucocytes in the blood have been the subject of considerable interest over the years. Therefore, understanding the role of CTC in a diseased cancer patient is paramount for long-term survival. Furthermore, approaches toward CTC capture and detection, cell type enumeration and the subsequent application of relevant therapeutic measures are essential for the management of cancer patients.

Despite the extremely low concentration of CTCs in body fluids, they can potentially provide information regarding diagnosis, prognosis and follow-up of therapeutic responses to treatments [5]. CTCs are therefore considered valuable biomarkers in targeted molecular therapies for cancer patients and are also candidates for determining CTC phenotypes in preclinical models [5–7]. The extremely low concentration of CTCs in peripheral blood samples makes isolation, enumeration and detection daunting. Moreover, due to a purification step that is required for their characterization, captured CTCs may become damaged during the isolation process.

However, CTCs are challenging to accurately enumerate and detect even by the current standard method, CellSearch® (Veridex), which remains the only...
test technology approved by the Food and Drug Administration (FDA) [1]. As illustrated in figure 1, the CellSearch method preselects based on epithelial-based adhesion molecule (EpCAM) expression [8]. Additionally, there are still no clear guidelines for optimal CTC enumeration for clinical decision-making in treating primary and metastatic breast cancers [9]. Furthermore, CellSearch is based on the enrichment of CTCs using the EpCAM or negative depletion of leucocytes [1,10]. Although this technology has recently been used to demonstrate the clinical relevance of CTCs as an independent and predictive marker for early breast cancer [11], prognostic evaluation remains widely conjectural for many reported clinical cases including: (i) non-metastatic colorectal cancer patients [12] and (ii) tumour cell recurrence in patients with localized prostate cancer [13]. However, in small cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC) patients, CellSearch remains the validated approach for the prognostic evaluation of CTCs [14–16]. For instance, CTCs are highly detectable in patients with stage IV NSCLC [14] and SCLS [15]. Therefore, the CellSearch technology must be reviewed carefully on a case by case basis. Importantly, CellSearch can only detect CTCs that express EpCAM (EpCAM+CTC) and not EpCAM with low or no CTC (EpCAM−CTC). Therefore, when Wit et al. combined platforms, they were able to capture (EpCAM+CTC) using a filtration and fluorescent staining protocol and EpCAM+CTC was captured with CellSearch technology. Thus, their combined platforms increased CTC detection in the blood samples of 27 metastatic lung cancer patients to 41% as opposed to 15% detected by CellSearch only, which is indicative of a good outcome in the study [10,17]. However, CTC with EpCAM+ affinity has not been confirmed from large pool studies and molecular characterization of this marker from EpCAM remain undifferentiated. The Xu et al. [18] study compared CellSearch to their optimized Parsortix system—an example of an epitope-independent method. The group recovered significantly more CK+CTC than the CellSearch method as well as capturing CTC clusters from 7.5 ml of 10 prostate cancer patient samples. In another study, Kulasinghe et al. [19] compared CellSearch with two epitope-independent approaches in advanced stage head and neck cancer (HNC) patients. The results obtained for single CTCs isolation with different technologies included: (18.6%) CellSearch, (46.4%) ScreenCell and (64%) by RosetteSep™ including detection of CTC clusters. The role of EpCAM negative CTCs is not fully understood—whether they are prognostic has not been investigated [20].

In this review, we emphasize nanomaterial-based assays for nanoscale sensing by electrochemical methods and surface plasmon techniques. Other in-depth areas covered include a molecular understanding of the mode of action of cancer invasion in tumour biology and CTC characterization. We also discuss some critical challenges facing existing technologies. In addition, we emphasize the importance of surface plasmon resonance (SPR) and surface-enhanced Raman scattering (SERS) as complementary tools for biocollection detection processes. Finally, we cover the potential of nanotheranostics to provide future outpatient precision therapeutics for cancer.

1.1. Origin of metastatic invasion
Due to the complexity of metastasis, the molecular nature of cancer is not fully understood. However, in the classical seed-and-soil hypothesis established by Stephen Paget in 1889 [21], cancer is described as the cross-talk between selected cancer cells (the seed) and the specific organ environment (the soil). It has been extensively reviewed by Fidler et al. [22–32]. (1) Paget’s hypothesis states that carcinomas are biologically heterogeneous, containing subpopulations of cells having different regulatory pathways and invasive attributes, and undergoing metastatic processes. (2) Metastasis occurs through complex regulatory pathways known as invasion-metastasis
cascades, which include the adaptation of invasion features such as embolization (covering CTCs with platelets); CTC survival in circulation; arrest in distant capillary beds; and extravasation into, and multiplication within, the organ parenchyma (functional organ site only). (3) Metastasis depends on multiple interactions (cross-talk) within metastatic cells that may eventually be controlled by tumour cells. (4) The intravasation mechanism may be further divided into single CTCs and CTM. The single CTCs may undergo extravasation via bone marrow or other organs where the cells are disseminated and metastasized at the local site. Another regulatory pathway is that CTM may be developed via intravascular proliferation to bone marrow or other organs before the tumour cells are disseminated and metastasized at the local site [3]. The inherent morphological attributes of CTC clusters include [33]: (i) they are rarer than CTCs, (ii) these clusters are formed by oligoclonal tumour cell groupings, whose origin may be related to biclonal gammopathies—where two or more distinct proteins are synthesized [34], (iii) CTC clusters have 23–50× higher metastatic potential than single CTCs. Additionally, the importance of circulating clusters has recently been highlighted in breast cancer and human glioblastoma models [35,36]. Plakoglobin presence has been identified as the probable cause of CTC cluster formation in breast cancer cell but the relationship of these two variants in patients remains evaluated [33]. Further readings on CTC clusters have been covered by Hong et al. [37].

The most recent updates on the seed-and-soil hypothesis reviewed by Akhtar et al. [21] and Massagué et al. [38], described the invasion journey, summarized in figure 2. The tumour cells that break away from the primary tumour lose their epithelial properties and acquire mesenchymal-like properties during the intravasation stage [39]. The epithelial–mesenchymal transition (EMT) [39] is mediated by cadherin molecule switching (calcium-dependent cell adhesion), involving the downregulation of E-cadherin and upregulation of N-cadherin. The modulation of E-cadherin and N-cadherin levels are indicative of metastatic breast cancer [4,40]. Furthermore, among EMT, upregulation of vimentin, integrin-ανβ6 and metalloproteinase also occurs. Upregulation of N-cadherin is indicative of invasive metastatic breast cancer types [41,42]. In metastasis, integrin-ανβ6 binds several ligands from the extracellular matrix, thus maintaining upregulation activity and increasing migration survival and inactivation of apoptosis. Integrin-ανβ6 is usually overexpressed in breast cancer metastatic lesions during the regulation process, and it plays a key role in tumour growth, invasion, early angio genesis activity and metastasis [43,44]. Mesenchymal cells then undergo structural changes that enable the invasion of the surrounding extracellular matrix, stroma and platelets. CTCs interaction with platelets helps to provide protection against destructive physical forces from the surrounding environment through the activation of thrombosis and fibrin deposition. This step is known as the embolization stage. Because of the various immune defensive systems and the mechanical stresses of blood flow, only the few CTCs that escape the primary tumour invade the surrounding host tissues or organs. The invading cells at this stage are known as disseminated tumour cells (DTCs), which is the transition from mesenchymal to epithelial cells. Less than 0.01% of CTCs survive to the next stage of tumour latency [45]. Finally, after the extravasation stage, DTCs settle into a dormancy lasting for several weeks to several decades; these cells may eventually undergo micrometastasis and produce metastatic lesions. Some characteristics of cancer cells and major areas of clinical research advancement are highlighted in table 1.

1.2. Challenges associated with CTC-based technologies

The challenges associated with CTCs have been highlighted in numerous review articles [46–48], which include pathways to the development of new technologies that are able to separate damaged cells from the viable CTCs count, affording accurate prognostic evaluations. Another area most recently...
molecular features	normal cells	cancer cells	commentary/references
cell cycle regulation and apoptosis	cell cycle are regulated	genes responsible for cell cycle control have been deregulated	e.g. p53 tumour suppressor gene [170]
cell communication through signal transduction	cell-to-cell communication is not autonomous but regulated by functionalized proteins responsible for growth factors and ions that instruct cells to grow and divide	communicate efficiently when in close contact (cluster formation) through wrong signal transduction, which may trigger diabetes and eventually lead to cancer. Cancer cells also coordinate their movement based on cluster assembly, causing individual cells to move away from primary site to new site	reparixin and other related non-specific anti-inflammatory drug agents are currently tested in clinical trials with cancer patients. These drugs act as early therapeutic intervention [171]
appearance	shapes are usually defined with a definite number of chromosomes	exhibit variable cell size with no defined shape known as aneuploidy cells	
differentiation	regulated cell replication, proliferation and death	uninhibited cell replication and proliferation	state of differentiation of cancer cells correspond to the aggressiveness
angiogenesis	the process is regulated in a healthy cell/tissue	growth of a new vascular network around tumours is hallmark of cancer growth, essential for supporting tumour cell proliferation and spread	clinical use: angiogenesis inhibitor medications [172]
mutation	cells are regulated by the different tumour suppressor genes	mutation process deactivates tumour suppressor genes, causing cells to grow unchecked	tumour suppressor genes regulate cell cycle, repair-damaged DNA and apoptosis
metabolism	major source of ATP is aerobic cellular respiration	repogramming of energy metabolism and increased reliance on glycolysis due to hypoxia	clinical use: hyperbaric oxygen treatments [173]
telomeres	length of telomeres shortens as cells age. Shortening of telomeres signifies cell death or end of a life cycle of that cell (apoptosis)	instead of telomeres being shortened during cell division, telomerase enzymes are activated, inhibiting telomere shortening and causing cellular immortality	clinical use: telomerase inhibitors are considered as promising therapeutic candidates [174]
genomic instability	chromosomes are stable and have a fixed total number	cancer cells have increasingly massive, abnormal DNA and variable chromosomes, as the cells are no longer regulated	mutations in driver genes may make cells cancerous. Clinical application: development of therapies targeting these driver genes [39]
dormant	by their nature, normal cells are actively involved during their entire life cycle until cell apoptosis is attained	certain tumour cells can resist treatment and therefore could lie dormant and go undetected for several years	cancer stem cells possess this attribute and it is an active area of research. Researchers are finding ways of detecting these dormant cells and destroying them [175]
reviewed is the mode of CTC release after capture to enable culture expansion of CTC phenotypes, highlighted by the Kelly group [49] as one of the key areas for development of next-generation materials in this area. There is also a paradigm shift from a two-dimensional (2D) tissue-culture model to three- or four-dimensional (3D or 4D) microenvironments for subsequent CTC expansion [50,51]. Interestingly, the advent of imprintable materials sensitive to environmental changes such as solvents, heat, mechanical stress or other external stimuli may pave the way for a more advanced shape than 3D, which is a shape-shift environment in a 4D system. With a 4D imprintable material, it will be possible for materials to exist in two stable forms (exhibiting zero degree at each stage of the freedom) in response to environmental changes such as solvents, heat, mechanical stress or other external stimuli that effect change. More importantly, these microenvironments enable dynamic, spatio-temporal cellular behaviours to be modulated under physiological conditions and provide a utility model for drug screening [52–54].

1.3. Biological challenges
The current challenges hindering the efficient use of CTCs in biological environments include CTC vulnerability and viability, and the inability to analyse viable CTCs through intracellular staining. Additionally, using the current FDA-approved standard, CellSearch, CTCs may remain undetected because of a lack of detectable biological markers for recognizing other important non-EpCAM markers. Thirdly, CTCs have phenotypic heterogeneity, making enumeration difficult after isolation. CTCs also have a mixture of phenotypes, among which only cells positively expressing the antigen EpCAM are counted using CellSearch, thus ignoring EpCAM CTC. Furthermore, captured CTCs may also be damaged during release, hindering downstream characterization. A recent review by Green et al. [49] highlights the mechanism of CTC release, which may occur via chemical, enzymatic, self-assembly-based and mechanosensitive modes or via a thermal release mechanism (figure 3). Pertinent here is that next-generation materials that can effectively capture and release CTCs have recently emerged and these materials enable culturing and expansion of CTCs, post capture, and provide an excellent platform for understanding CTC subpopulations and heterogeneity [46–49].

1.4. Technical challenges
The capability of any device to enrich CTCs present at typically 1–100 cells ml$^{-1}$ of whole blood is considered a significant performance evaluation matrix [55–57]. However, the performance of CTC multifarious approaches may affect data quality, specifically around capture efficiency evaluations, CTC heterogeneity, size variability, non-specific cellular labelling initiated during capture, analysis of unaccounted CTCs, misidentification of damaged CTCs to include them into the overall population figures, and finally limitations regarding blood sample volume and assay robustness in CTC capture [58,59]. Therefore, statistical considerations for any CTC device should be elucidated. For example, in one study [59], a cell-based assay calculation for flow cytometry of blood volume for high precision system was determined using the following equation:

$$r = \left(\frac{100}{CV} \right)^2,$$

(1.1)

where r represents the number of events that meet the required criterion. CV is the coefficient variation of a known positive control. From equation (1.1), if the desired CV is 10%, 100 events are required, and the true value would be between 80 and 120 events, which the authors’ state is close to the limit of detection for most laboratory cytometry tests. The same estimated value of the CV approximately 10% has been described as the cut-off value for improving the accuracy of the assay [58]. The statistical risk in this probability sampling is in setting a threshold cut-off for the number of CTCs captured as a direct way to evaluate a cancer patient’s prognoses as either good or bad.

Another consideration that may have unwanted statistical and technical consequences is CTC damage caused by high flow-induced shear [60]. In one study, the microfluidic environment was modulated to generate a broad range of

![Figure 3. Modes of CTC release with aptamer-based platforms. Scheme redrawn from [49].](image-url)
haemodynamic shear stresses [60]. Briefly, high shear stress causes CTC stress, thus inducing necrosis (unregulated cell death), preventing CTC attachment and inducing 90% necrosis within the first 4 h of circulation and apoptosis within 16–24 h. Additionally, it was observed that high shear stresses are effective at killing other types of epithelial-based cancer cells as well as drug-resistant breast cancer cells.

Phenotypic heterogeneity of CTCs is also a challenge (due to the complexities of the statistical analysis). Some researchers have used sophisticated algorithms, including the naive Bayesian classifier which is based on a probabilistic generative mixture model [61], to identify individual cells in a sample. Although complex statistical procedures are involved, the model is based on (i) identifying images to be processed and implementing an algorithm, (ii) subdividing the images processed, and (iii) re-identifying and grouping the images. The advantage with this platform is that the Bayes theorem is used to describe the probability of the event during processing of the images captured. The software package then evaluates the processed results with a degree of accuracy and precision, including true positives/negatives and false positives/negatives, this method of identifying phenotypic variables is one of the best ways of providing accuracy and its precision is close to 100%. The clinical utility of this tool is that it can be used to perform automated screening for the existence of CTCs in patient samples and to support clinicians performing personalized medicine evaluation.

Finally, overcoming several other challenges in contemporary CTC research would result in system possessing (i) decreased assay preparation times, (ii) development of ultra-sensitive biorecognition and isolation CTC platforms leading to (iii) the assembly of integrated microfluidic devices possessing (v) diagnostic modalities suitable for both single cell and clustered cell characterization. For more details on current CTC challenges, readers are directed to the following references [1,46].

2. CTC technologies

Emerging platforms with nanomaterial interfaces are showing greater utility in electrochemical and optical sensing than traditional bulk materials. As most next-generation methods are derived from well-established nanotechnology approaches, modern microfluidic devices are increasingly becoming more reliable in their application as CTC isolation/enrichment and CTC recognition platforms [49,62–64]. For example, previous studies have reported nanowire detection for prostate cancer (reported limit of detection (LOD): 1 CTC per 10 ml blood) [65] and the use of SERS, for head and neck cancer detection (LOD: 5 CTCs ml−1) [66]. In this review, we highlight CTC methodologies under the broadest of classifications. Tables 2–4 provide a comprehensive summary of the various CTC platforms along with their clinical relevance.

2.1. CTC isolation/enrichment platforms

CTC technologies in this category include physical separation and microfluidic-based platforms which have been extensively reviewed recently [57,64,67–72]. The methodologies are based on CTC differentiation from normal haematopoietic cells based on physical characteristics including size, density, electric charges, deformability, buoyant density and the dielectrophoretic mobility of cells in varying macro/microenvironments. Microfiltration devices are the most common in this group. Recently, a thermal nanoimprint method using polyethylene glycol (PEG) has been applied to develop a microfiltration CTC trapping device in which blood is filtered through pores of defined sizes, thereby enabling cells larger than the pore size to be trapped. This type of device facilitates rapid isolation of CTCs without the need for labelling. The developed method achieved an average capture efficiency of 84% for lung cancer cells spiked into blood samples [73]. Although this method is attractive, the isolated CTCs are mostly impure or of mixed origin owing to the heterogeneity of cancer cells. Therefore, most technologies in this category are encumbered by size-selection issues. Additionally, detachment of CTCs from surfaces results in damaged and clustered CTCs cells arising from haemodynamic stress. A list of devices available on the market have been described in a recent review article [74] including Ficoll OncoQuick™ [75], CellSieve™ (Rockville, MD, USA) [76], ISET® (Paris, France) [77], Cluster Chip [78], Parsotrix™ (Angle PLC, Guildford, UK) [36], Resettable Cell Trap [74], Flexible Micro Spring Array (FMSA) [79] and ScreenCell (Sarcelles, France) systems.

Among CTC enrichment-based technologies, the Ficoll OncoQuick system is dependent on density gradient centrifugation and is based on positive selection. However, the Ficoll OncoQuick system is known to result in substantial CTC loss [77,5]. Dielectrophoretic field-flow fractionation (DEP) isolation approaches are also enrichment-based methods. They can be used to differentiate blood cells by differences in their dielectrophoretic properties. The technology can process millions of live cells in 30 min, with a high recovery rate. In practice, the platform combines the functions of DEP, as well as uses sedimentation and hydrodynamic lift forces to impose differential forces along the flow of cell types in the mixture. The platform has been used effectively in antigen-independent isolation of CTCs from blood [80–83].

2.2. CTC recognition platforms

CTC recognition platforms are based on the affinity of the specific antibodies used for quantifying the characteristics of biological processes toward antigens on targets (biomarkers). The measurable outcome may not necessarily correlate with a patient’s experience but may be considered as a surrogate endpoint if there is consistency, and a clinical outcome is accurately predicted [84]. Therefore, biomarkers are considered both provisional and surrogate endpoints in clinical settings [84]. EpCAM is the most frequently used cell surface marker for the positive enrichment of CTCs, whereas cytokeratins (CKs) are targeted for post-enrichment specific to CTCs. This immunological procedure has been used in a range of techniques, including the only FDA-approved platform, CellSearch. EpCAM is a type I glycosylated membrane protein (30–40 kDa) that is overexpressed in most solid carcinomas but has low expression in healthy human epithelial tissues [85]. It has also been detected in benign colon disease [86]. However, EMT in cancer cells may lead to downregulation of both EpCAM and CKs, thus resulting in the exclusion of CTCs with a mesenchymal phenotype, which express high levels of mesenchymal markers [14,87]. As an alternative to N-cadherin, other antigen-expressing phenotype variables have been found to increase the biorecognition performance of the CTC platform when a cocktail of antibodies for various epithelial and mesenchymal markers...
is used [14]. The negative depletion of blood cells is also a promising alternative to marker-based positive selection for CTCs that has been widely used with antibodies against CD45 to capture and deplete leucocytes [88].

The biorecognition platforms in this section consist of both functional and nanomaterial-based assays (table 3). Functional assays specifically target proteins expressed by tumour cells. Examples include collagen adhesion matrix (CAM) assays and epithelial ImmunoSpot assay (EPISPOT). Whereas the CAM assay involves cell digestion, EPISPOT assays remove leucocyte antigens via CD45 depletion; the above-mentioned two methods have high specificity and selectivity. Additionally, EPISPOT assays have inherent purity issues [67,89]. Other examples of EpCAM-based recognition technologies apart from the FDA-approved CellSearch have also been reported. These EpCAM-based technologies include MagSweeper [90], which provides high purity cells that may be further used in western blot assays; GILUPI CellCollector, which is mostly used in in vitro collection of very large sample volumes [91], and CTC-iChip [92], in which target cell sizes are positively/negatively enriched by using an antibody-dependent cell capture method. Herringbone Chip [93] and CTC chip (also known as microposts array, figure 4f) [94] are based on the principle of microvortices, which involve the passive mixing of blood samples to significantly increase interactions between target CTCs with an anti-EpCAM-coated chip. Anti-EpCAM can be replaced with another antibody for negative enrichment. The Adna Test [95] is used mainly for molecular profiling of HER2 and EpCAM. IsoFlux, which is also a microfluidic platform, uses flow control and immunomagnetic capture to enhance CTC isolation and immunofluorescence detection for counting individual CTCs [96].

Nanomaterial-based assays are increasingly used in the diagnostics field [97–100]. These materials have a robust structure, small size (nanometre) and controllable pore sizes. They also have a high surface-to-volume ratio and are chemically tailorable to specific dimensions. Moreover, assay-based magnetic nanoparticles (MNPs) have been used directly to capture cancer cells from a working buffer solution or spiked cancer cells in phlebotomy samples. In a most recent study, nanozyme containing iron oxide loaded with gold particles was used for cancer cell capture, cancer profiling of different markers, and in post capture analyses. The nanozyme platform showed a fast response time within a linear dynamic range, 10–10^5 cells ml^{-1} for investigated breast carcinoma of T47D breast cancer cell line, greater than 80% capture from 10^2 to 10^5 cells ml^{-1}, and LOD was calculated at 0.4 U ml^{-1}, with limit of quantification, 4 U ml^{-1} in sterile PBS buffer solution. The advantage of magnetic nanomaterials is that captured CTCs can be purified after capture with an external magnet to decrease non-specific adsorption or noise before they are transferred to the detection platform. Thus, nanomaterial-based biorecognition technologies have been used to provide

isolation technology	principle	applications and technology component category	references
density gradient centrifugation	physical process for isolating mononuclear cells but with certain amount of CTCs loss	employed in preclinical and clinical applications for cell separations. OncoQuick, Percoll and Ficoll-Hypaque. Ficoll-Hypaque have been used in the isolation of human mesenchymal stem cells	[176]
other physical separation techniques, e.g. ISET, Dean	principle is based on capture of mononuclear cells using cell size capacitance or electrical properties of the device to isolate CTCs	they are fast and have high-throughput attributes like any other microfluidic device, except for those that have been identified with additional downstream application	
Flow Fractionation, ApoStream, DEPArray (Fluidic)	anti-EpCAM conjugated ferrofluidic-based nanoparticles are used for CTCs enumeration. After cells are captured, they are fluorescently labelled with antibody-tagged CK nuclei dye specific to positive CTCs	CellSearch is the only clinically approved CTC tool for monitoring CTC count of patients’ blood in breast cancer, prostate and colorectal cancer	[95]
immunomagnetic separation	the principle is based on manipulation of fluid flow on micrometre or nanometre scales, considering flexibility of size control, geometry and density with precision	it is the most promising device for analysing blood samples, enumerating, enriching, molecular profiling of CTCs and other associated biomarkers	[93–95,102,104–106,110]
microfluidic			
Table 3. Recognition platforms. Abbreviations: RT-PCR, reverse transcript polymerase chain reaction; CAM, collagen adhesion matrix; MUC1, mucin 1; CK, cytokeratin; EGFR, epithelial growth factor receptor; HER2, human epidermal growth receptor; CD45, also known as leucocyte antigen; ELISPOT, enzyme-linked immunospot assay; ELISA, enzyme-linked immunosorbent assay; PBMCs, peripheral blood mononuclear cells; DAPI, 4,6-diamidino-2-phenylindole; MNPs, magnetic nanoparticles; WBCs, white blood cells; FASTCell, fibre-optic array scanning technology; Chip, integrated chip.

bioassays capture technology	recognition marker	applications	references
CellSearch	EpCAM⁺	monitoring CTC count of patients’ blood	[95]
MagSweeper	EpCAM⁺	device can process up to 9 ml of blood per hour. The device can also be used to enrich target cells, eliminate unbound cells and the process does not perturb gene expression of cells	[90]
AdnaTest	EpCAM⁺, gene markers by RT-PCR	in addition of AdnaTest being complementary to EpCAM, it also has wide clinical applications for gene detection, multiplex-PCR and fluorescence in situ hybridization	[95]
IsoFlux	EpCAM⁺, MUC1, Mesothelin	high recovery cell enumeration rate as compared to CellSearch: 95%; 36%, respectively; also used for tracking oncogene mutational changes	[96]
GILUPI CellCollector	EpCAM⁺	in vivo CTC enrichment for monitoring patient. The device is portable and safe when used as a functionalized wire	[91]
EPISOT assay	epithelial secreting cells and CD45⁺ depletion	device can be used to screen viable epithelial cells. The device is unbiased towards CTC/DTC phenotypes enrichment	[89]
CAM assay	EpCAM⁺	CAM assay favours the isolation of CTCs with collagen invasive phenotype	[67]
ELISPOT	cells secreting specific antibody	more reliable for ex vivo simulated PBMC than ELISA	[177]
Vita-Assay™	functional capture of CAM⁺	successfully used for ex vivo drug-sensitivity testing of ovarian-cancer patient CTCs	[178,179]
µHall detector assay	simultaneous EGFR⁺, HER2⁺ and EpCAM⁺	it can be used for clinical enumeration of rare cells, with the possibility of detecting multiple biomarkers. The sensitivity of the device as a cell counter is better than existing devices, making it a potential device for CTCs enumeration count and detection of TNBC in cancer patients	[180]
Ephesia CTC chip	EpCAM⁺	the technology combines immunomagnetic capture and the best aspects of microfluidic features. It is compact, fully automated, high purity capture, with sample retrieval for further genetic profiling. The device has potential to non-invasively monitor CTC progression and drug-resistant mutation	[181]
Vortex micromixers	EpCAM⁺, CD45⁺	multi-vortex micromixing can be used for improving binding interaction between antibodies and MNP. The magnetic sorter increases selection for targets captured. The device has the optional route for depleting WBCs and enriching heterogeneous CTCs population with minimal CTCs loss	[182]
FASTCell	CK, CD45⁻, DAPI	the device can be used to locate immunofluorescently labelled rare cells on glass substrates, with scan rates >500 faster than automated digital microscopy	[183]
CTCs challenges	opportunities	strengths	weaknesses
--	---	--	---
CTCs are rare, present in extreme low concentration in blood amidst millions of red blood cells and billions of white blood cells [184,185]	establishment of more robust and reproducible methods for improving disease management from early detection to the development of targeted therapies	there are many CTCs technology platforms that can potentially monitor CTC count of patients' blood in real-time	most CTC-based assays present low sensitivity, increasing patients at high risk of developing metastasis
CTCs are highly heterogeneous, with phenotypic traits that are also distinct [186,187]	more relevant studies should focus on the development of omics-based CTC studies at single cell	one of the ways of monitoring advanced stage cancer patients is monitoring the positive CTCs count, which equate to poor prognosis	with CellSearch as the only approved enumerating tool for CTCs count limits the capture of other CTCs phenotypes present
CTCs are highly vulnerable and easily damaged [21,46,48]	one of the ways of studying viability of cells captured is the development of ex vivo models	although the mechanism of cancer heterogeneity and phenotypic traits is inexplicable, the advent of machine learning algorithm such as Bayesian classifier and gene selection classifier have opened up new opportunities for understanding CTCs characteristics	there is a scarce information on the molecular nature of single CTC, thus hindering the development of effective analytical platforms
captured cells must be pure and viable. Also, captured cells that are stained do not necessarily equate to viable cells [46,86,188]	more relevant information is needed in pre-metastatic and metastatic niches	nanomaterials-based assays represent the foremost cutting edge technology for revolutionizing precision medicine of the future as they exhibit excellent signal transducing capabilities for amplifying signal readout, high ultrasensitive responses and they are remarkably suited for applications requiring high biorecognition platforms for producing excellent optical, electrochemical and plasmonic responses	clinical implementation is hindered by lack of standardized methods for CTCs analysis
CellSearch targets only EpCAM+, this is true for most recognition platforms [5,46,87]	nanotheranostics research area may revolutionize personalized precision management for cancer patient	gold nanoparticles-based assays have been tested with clinical samples for circulating cancer marker detection as having superior assay performance to most commercially available assays	based on the current clinical studies, a huge gap exists in the molecular understanding and translation of CTCs analysis

(Continued.)
Table 4. (Continued)

CTCs challenges	opportunities	strengths	weaknesses
most CTC platforms lack the robust and reproducible methods for translating CTC dynamics and molecular heterogeneity [5]	potential opportunities in microfluidic-based technology as POC systems will help reduce cost for medical treatments	plasmonic paper-based microfluidics systems for cancer research have potential utility in research laboratories, clinics and in remote non-laboratory settings, as sample volumes are reduced, and detection tests can rapidly be carried out. Overall cost for the development of such platforms is considerably cheaper to most CTC technologies	strong collaboration at the interdisciplinary and multidisciplinary level is lacking. Hence, there is the need for bridging the knowledge gap in CTCs field
single CTC analysis captured for instance by DEP-based technology excludes considerable heterogeneity present at a single CTC level [48,189]	development of novel nanomaterials for performing highly multiplexed detection and molecular profiling of CTCs heterogeneity and triple negative breast cancer research will also help reduce cost medical costs	integration of imprinted theranostic magnetic core including plasmonic shell star shape nanoparticle-based assays into paper microfluidic technology for multiplexed detection demonstrate some of the attainments of CTCs technology	most microfluidic platforms present 2D model solids. However, with imprinted 3D and 4D mechano-responsive environments, microfluidic devices and cell culture model expansion for culturing CTCs heterogeneity will lead to unprecedented breakthroughs, and better understanding of CTC characteristics
preclinical studies use cells grown on 2D culture that are mostly flat, whereas a 3D culture grows upward in the z-direction, known to mimic the physiologic cell environment. This may also contribute to the reason why most drugs fail during the preclinical phase [190]	other areas of CTCs technology development should focus on critical clinical relevance	barcoded assays integrated with either metallic or micro/nanomaterials for multiplexed disease testing and diagnostics is another technology that is rapidly increasing. These devices have the capabilities of broadening encoding barcode libraries information for multiplexed assays for batch processing for simultaneous detection and thereby reducing time and cost for detection of biomarker. Strategies for assembling the device enables room for: multiplexing, optical encoding, molecular tags and imaging, diversity in colour visualization for genetic encoding and graphical encoding, along with the whole range of other encoding techniques	the comprehensive profiling of CTCs either directly from cultured cells or from patient samples is urgently required as this represents cancer aetiology

4D printing has just recently been coined in printing technology [196–198]. It represents the ability of materials to exist in two stable forms in response to environmental changes such as solvents, heat, mechanical stress or other external stimuli that effect change. Importantly, it is expected that in the stable configuration of the material, the degree of freedom must be zero [198]. Consequently, using such materials for microfluidic systems and as biocompatible scaffold materials are breakthroughs envisaged in the future.
probes for cancer biomarker detection [98], isolation of CTCs from whole blood, fluorescence imaging and photothermal destruction of tumour cells [97,99,100].

2.3. Microfluidic platforms

Microfluidic platforms are miniaturized devices capable of isolating rare tumour cells with tailored microfilters of varying sizes, that consider flexibility, size, control, geometry and density with precision [92–94]. These platforms are used for analysing blood samples within a short time, with a high recovery rate and high throughput. They can function as a microcentrifugation device and can also be integrated with other nanotechnologies. The surface chemistry of these platforms allows the design of further functionalities for the controllable release of cells. Microfluidic platforms have also been used in situ for the sequential analysis of isolated CTCs [93–96,102–106]. Microfluidics have been tailored as micromixers [107] to create chaotic advection at a low Reynolds number (300 µm s⁻¹) or induce electrokinetic flow within a channel, the latter being used for translocating cells in low-cost microfluidic cytometry for tumour cell detection and enumeration [108]. A microfluidic isolation/enrichment platform that features state-of-the-art technology is a multifaceted, integral platform with multi-orifice flow fractionation and a dielectrophoretic (DEP) cell separation device for continuous flow separation of cancer cells from blood samples [109,110].

Another example in this group is the microfluidic label-free approach, which presumably circumvents biomarker heterogeneity related to CTC loss. The device also provides an unbiased CTC enrichment, despite the average size overlap between physical properties of CTCs and other blood cells that might be present. Recent studies have reported that smaller CTC sizes below the pore size of the membrane filter (8–11 µm) are cut-off, thus accounting for the majority of CTC loss during isolation [104].

Although microfluidic platforms present a variety of ways for capturing CTC at the single-cell level, the quantification and classification of CTCs remains challenging in modern biology for sorting of cells. One of the most advanced microfluidic cell sorting technologies is an automated, high-throughput enrichment CTC identification/enumeration system known as eDAR (ensemble-decision aliquot ranking) [111–113]. The

![Figure 4. CTC platforms. (a) Microcavity Array; (b) Spiral Biochip; (c) Vortex Chip; (d) Cluster-Chip; (e) Micropore array filtration device; (f) Micropost Array; (g) µCENSE device; (h) Lab-on-a-disc. (a–d,f) Adapted from [57] Copyright © 2018 Elsevier. (e) Adapted from [127] Copyright © 2019 The Royal Society of Chemistry. (g) adapted from [128] Copyright © 2018 AIP Publishing; (h) adapted from [134] Copyright © 2019 The Royal Society of Chemistry.](image-url)
principle of the eDAR workflow is automatic sorting by size differentiation of CTCs within an aliquot ensemble. After the CTCs are sorted into various sizes, they are transferred to a microfluidic platform for further purification. The device is all-encompassing in that the workflow involves four enterable automated loops for (i) aliquot ranking, (ii) aliquot sorting and (iii) on-chip purification. Subsequent steps within the loop may involve labelling with secondary antibodies for downstream assays before image analysis. The microfluidic device is therefore considered useful for single-cell analysis and detection. The working principle for microfluidic systems reviewed here is explained in the following sections and depicted in figure 4.

Microarray arrays for CTC entrapment which has a section of the microfluidic device integrated with a size-selective platform for rapidly isolating CTCs from other cell types (haematological cells) in whole blood, on the basis of size differences and cell deformability are illustrated in figure 4a. The recovered CTC cells on a microarray array are amenable to downstream fluorescence profiling of immunophenotypic cells through scanning-automated fluorescence. This device can efficiently trap single cells, including stem cells and progenitor cells. The attractive feature of this device is the customizable geometry which can be optimized to provide precisely controlled separation based on cellular size differentiation from whole blood. In addition, entrapment of CTCs does not require the expression of epithelial markers to analyse the number of trapped cells. Instead, the numbers are determined primarily by scanning and counting the specified area under an automated fluorescence microscope.

The spiral biochip depicted in figure 4b is an enrichment, label-free microfluidic CTC device that allows size-based separation of viable CTCs by using hydrodynamic forces present in curvilinear microchannels [114,115]. The curvilinear channel is governed by Poiseuille flow conditions within the curved microchannel wall, where concentration rearrangements of particles occur. Particles of variable (or fractional sizes) tend to equilibrate at the microchannel cross-section located at the different spiral bends, where they are acted on by inertial lift and Dean drag forces. The exertion of inertial lift force leads to particle migration from the channel centre the particles within the curvilinear channel experience centrifugal acceleration and are directed radially outward, thus forming two counter-rotating vortices known as Dean vortices and also known as secondary flow [116,117]. The magnitude of this flow is quantified by a dimensionless Dean number (De):

\[
De = \frac{\rho U_R D_h}{\mu} \frac{D_h}{2R} = Re \frac{D_h}{2R}
\]

where \(\rho\) is the density of the fluid medium (kg m\(^{-3}\)), \(U_R\) is the average fluid velocity (m s\(^{-1}\)), \(D_h\) is the diameter of the channel (m), \(\mu\) is the fluid viscosity (kg m\(^{-1}\) s\(^{-1}\)), \(R\) is the radius of curvature (m) of the channel, and \(Re\) is the Reynolds number. Equation (2.1) is relevant for fluid flow within a curved channel when the inertial force is significant. Therefore, faster moving fluid near the walls re-circulates inward to create two counter-rotating vortices perpendicular to the primary flow direction [117]. These counter-rotating vortices, which give rise to secondary flow in microfluidic systems, have been used in fluid mixing on the basis of the concept of chaotic advection to create diffusive mixing in three-dimensional twisted channels and spiral curved channels. These systems (or vortices) result in efficient mixing and significant improvement over planar serpentine channels providing advantages for system [117–119].

Other label-free microfluidic CTC devices that allow size-based separation of viable CTCs are the straight microchannels described from the Papautsky lab [116,120]. The latest device from the laboratory is the straight microfluidic chip using a multi-flow channel [121]. A straight microchannel device is based on the working principle of inertial focusing that allows migrating cells to primarily flow through the microchannels until encumbered by sidewalls within the microchannel creating a shear-induced lift force. Consequently, cells gently migrate to equilibrium centred positions relative to the sidewalls under the influence of the rotation-induced lift force. Equilibration of particles positioning within a flow is managed by (1) shear-induced lift force, (2) wall-induced lift force and (3) rotation-induced lift force [122]. Migrating larger cells are closer to the channel centreline than smaller cells in a rectangular cross-section microchannel within an observation window frame [123]. However, in the multi-flow channel device developed from the Papautsky lab, the lateral migration of cells mainly depends on the size of the cells. This process allowed CTCs to be separated from WBCs without the use of affinity-based approaches. Also, with the latest device, the Papautsky lab achieved (i) (greater than 87%) purity separation of CTCs from WBCs without labelling, (ii) 93% recovery rate at clinically relevant concentration of spiked cancer cells, (iii) the device also detected six CTCs from NSCLC patients, (iv) non-recovery of cells from five healthy control subjects. With this latest device, the authors identified a potential application in CTCs/CTM separation, which may be extended to the separation of other cancer cell types.

Another platform with a particle trapping mechanism is the vortex chip (figure 4c). This technology is based on two working principles: (i) inertial focusing and high-throughput particle alignment, and (ii) laminar microvortices and a particle trapping method. The first principle uses the alignment of randomly dispersed particle flow through a channel in a manner dependent on the Re value. If Re \(\geq 1\), two counteracting inertial lift forces are immediately in place: a shear-gradient lift force, \(F_{LV}\), which directs particles toward the channel walls, and the concomitant wall effect lift force, \(F_{LW}\), which repels the particles toward the channel centreline, which by default branches to two to four dynamic equilibrium positions located between the channel centreline and the wall. The second part of this technology is the expansion of figure 4c that represents the entrance into the reservoir [124]. In principle, the reservoir makes use of multiple expansion–contraction for predictable laminar vortices known as Moffatt corner eddy flow [125], in which the flow near the corner between plane boundaries and a rigid wall at rest is determined by a certain critical angle. When the critical angle is lower than the angles between the planes, a series of eddy flows arise, decreasing in size and intensity. The practical application of this principle to cells of varying sizes within the reservoir is that larger cells are pushed away from the channel centre through a separatrix—a boundary that divides two modes of distinct flow behaviour into vortices—and remain stably trapped.

Another entrapping device known as a cluster chip is shown in figure 4d. The device, by design, captures cluster cells that flow through the triangular pillars, streaming cells under a dynamic force balance at the cell–cell junctions to support a stable equilibrium [78]. The design is based on the juxtaposition of rigid triangular planes in arrays, such
that the triangular vertices are in proximity, with an opening of approximately 12 \(\mu m \times 100 \mu m \). Under a low shear stress of blood flowing through the channel, only CTC clusters are captured, and single cells pass through. This device allows not only the capture of CTC clusters without tumour-specific markers from unprocessed blood but also integrity of cells captured is preserved. The Cluster chip device is also one of the few CTC platforms that exploits the geometry of aggregate cells to differentiate them from single cells in blood. Additionally, the device allows the downstream applications of CTC culture expansion.

A tailored filtration device in which the sample is placed on a Teflon membrane surface, with strong ring magnets (not shown in the diagram) for magnet-assisted sealing and a waste outlet is shown in figure 4e. Parylene C is (a substitution of Teflon membrane) used for cell filtration, which has a micropore membrane that can be arrayed with different pore diameters (8–12 \(\mu m \)), is easily handled with tweezers. The mechanical strength of the membrane, high porosity and high reliability in liquid biopsy handling have been reported [126]. The high porosity of the membrane has been attributed to the edge-to-edge face of the micropore, increasing the high recovery rate of viable cells. Simultaneously, non-specific adhesion arising from background cells is decreased [127]. The micropore array platform design achieves a higher CTC recovery rate of 80–96\%, compared with similar filtration structures [127]. In addition to the use of this platform for CTC separation, the device has found broad applications in separating large volumes of exfoliated tumour cells from other body fluids such as bronchoalveolar lavage fluid, (40–80 ml), urine (500–1000 ml) and pleural fluid (500–1000 ml), and has also been used to obtain more comprehensive information about ex vivo tumour sites; consequently, it is expected to be beneficial in precision medicine in the future [126,127].

The Lim group [128] has recently developed a new platform called Microfluidic Centrifugal Nanoparticles Separation and Extraction (\(\mu \)CENSE, figure 4g). The device has been used for rapid, label-free isolation of extracellular vesicles, EVs [129]. EVs play a vital role in intercellular communication among membrane cells, lipids and RNA [130] and are regarded as important biomarkers. The \(\mu \)CENSE technology is based on the principle of centrifugal microhydrodynamics [131] for separating particles according to their size differences. Pressurized fluidized particles driven along the serpentine separation channel are pushed away by radial particles toward the centre of rotation based on size-selection. The centrifugal force that generates spin for the rotor assembly is actuated by a stream of air rushing into the inlet, which is set to operate at a given duration. The microfluidic chip is then removed and observed under a fluorescence microscope. Downstream analysis can be monitored by extraction of microparticles under vacuum. The platform potentially demonstrates EV extraction on a table-top centrifuge within approximately 8 min, with 85\% purity. The device is considered clinically relevant in point-of-care diagnostics because it does not require the use of a syringe pump and other accessories that might require a professional handler.

ClearCell FX system Biolidics Limited (formerly, Clearbridge BioMedics) has recently developed a simple microfluidic chip used for downstream analysis. While this invention is relatively new and is patent, it has wide application for diagnostic, personalized treatment and prognostic evaluation. It has been shown to be compatible with a label-free inertial microfluidics device for CTC enrichment in this study [132] for the examination of 30 patients with head and neck cancer, oesophageal cancer, gastric cancer, colorectal cancer in the first phase, including advanced colorectal cancer in the second-phase examination.

Another device using a liquid biopsy method is the lab-on-a-disc, Exo-Hexa table-top system (figure 4h). The lack of efficient method for androgen-receptor splice variant 7 (AR-V7) CTC test associated with castration-resistant prostate cancer (CRPC) remains a challenge in clinical practice. Extracellular vesicles (EVs) are secreted in most bodily fluids and hold promise as a non-invasive method. Particularly AR-V7 has been identified in advanced stage prostate cancer patients [133]. A recent discovery highlights the use of a urine-based liquid biopsy device for prostate cancer detection [134]. The working principle of the Exo-hexa disc device, which is a modification of the previous Exo-disc [135], is that it has three chambers. The first chamber is used for sample loading, the second chamber for filtration and the third chamber as a waste storage, positioned in a radial outward direction (figure 4h). The centrifugal pumping force is the mechanical force that drives the filtrate through the membrane and is tangential to the flow direction. Once the filtrate is collected, it undergoes downstream analyses using quantitative room temperature, polymerase chain reaction (RT-PCR) for mRNA extraction and ddPCR system for the simultaneous extraction of AR-V7 and AR-FL mRNA [134].

Notably, Peter Kuhn’s lab developed the first AR-V7 CTC test for prostate from liquid biopsy using Epic CTC while he was at Scripps Research Institute in La Jolla, California [136]. The significant advantage of Kuhn’s method is that it offers the unbiased approach of plating all 300 million cells on a blood draw on a slide, and combined with advanced information technology, grouped every individual cell on the slide to their respective coordinates \((X,Y)\) [136]. The Epic platform also has the capability of providing comprehensive profiling of CTC, integrate with other existing technologies such as CellSearch, and downstream analyses of single cell at the genomic resolution level [136,137].

2.4. Techniques based on electrochemistry, surface plasmon resonance and surface-enhanced Raman scattering

One of the attractive means of identifying and quantifying a bioanalytical target is direct conversion of a biological event to an electronic signal. Commonly used techniques for detection are cyclic voltammetry or differential pulse voltammetry, chronoamperometry, chronopotentiometry and impedance spectroscopy. Therefore, electrochemical techniques provide a valuable resource for rapid quantification of DNA, RNA, cancer cells, exosomes and so forth. SPR or SERS are quantification techniques that are sometimes used as a complementary detection platform. Electrochemical detection techniques are extremely useful tools for analysing the redox state of chemical or biological systems, and third-generation biosensors are increasingly explored for their high market potential, superior sensitivity and nanoporous-mimicking enzyme fabrication for enhancing signal amplification [138].

SPR uses light to interrogate the interface nature of surface platforms and measure the adsorption of dynamic processes on thin films of gold, silver or metal nanoparticles. It provides...
the basis for many colour-based biosensor applications [139,140]. As an interface technique, SPR uses a monochromatic light on a surface to activate the charge-density of electrons (electrostatic potential) from modified metal surfaces. Examples of metal surfaces considered to be good candidates for optical excitation of surface plasmons include gold, silver, copper and aluminium. An interface with a dielectric medium is required for electrons to be available on a metal surface. A practical way of generating surface plasmons is by using attenuated total reflection, rather than using a direct reflection technique or using a Kretschmann prism configuration [141,142]. Therefore, real-time SPR applications for biospecific interaction analyses require (i) a biosensing surface immobilized on a metal surface as a coupling matrix, (ii) SPR optics for the convergence of incident light, (iii) a computer with an appropriate software package for the determination of the resonance angle, presentation and handling of data, and (iv) a simple microfluidic platform with a sample injection unit, rinsing and a regeneration unit and all units must be fully automated to achieve a real-time SPR measurement [143].

Similarly, SERS is also an interface technique used for amplifying the Raman signals from molecules by several orders of magnitude. The amplification mainly comes from the interaction of electromagnetic light with molecules adsorbed onto metal surfaces, thereby producing large amplifications generally known as plasmon resonances [144].

2.5. Nanoparticle-based electrochemical/SPR/SERS technologies for CTC application

Wang et al. [145] have recently used a combined EC/SPR technique for label-free capture and detection of CTCs. They modified a glassy-carbon electrode with a plasmonic gold nanostar and then immobilized an aptamer probe directly on the surface. Based on direct plasmon-enhanced electrochemistry, they were able to observe hybridization of plasmon concentrations at the star-shaped tips, producing an increased excitation of the nanoparticle material core and an enhancement of the electromagnetic field at the star-shaped tip. Based on this concept, the Wang group has immobilized the aptamer probe on a gold nanostar modified glassy-carbon electrode to selectively capture the CTCs in blood samples, thus markedly enhancing the detection signal readout.

A multifunctional-based plasmonic application for photothermal destruction of CTCs has also been reported by Fan et al. [100]. Construction of the device required functionalization of a MNP ‘core’ with a gold coating (as used for most aptamer modified surfaces) and attachment of a protein-specific aptamer for subsequent fluorescence imaging. The authors achieved isolation of specific cancer cells from the sample after attachment to the magnetic core with the aid of an external magnet. Cell death was initiated by irradiation of the magnetic beads with light of a specific wavelength whereupon the resultant localized optical heating resulted in cancer cell death (in that study: SKBR-3 cells). To confirm the experiment, dead cells were successfully stained with trypan blue—a dye that binds only to dead cells (and appears colourless under a bright-field microscope). Thus, this method provides a highly selective, simple recognition platform that not only rapidly and efficiently isolates cancer cells but also can be used for imaging and qualitative determination of cell viability. The same group previously reported similar work using functionalized magnetic core-plasmonic shell star-shaped nanoparticles for isolation of CTCs from whole blood samples [99].

Recently, a paper-based SERS device that also uses magnetic separation techniques has been used for cancer screening of colon cancer cells, normal cells and RBCs present in a mixture. Each cell type was differentiated with high
sensitivity and specificity, and the capture efficiency of cancer cells was approximately 98% [146]. The plasmonic paper-based process is illustrated in figure 5. The plasmonic paper was fabricated by simply dipping laboratory filter paper in gold nanorod solution. In a parallel experiment, an immunomagnetic conjugate (anti-EpCAM functionalized with magnetic beads) for cancer cell capture was purified with an external magnet, after incubation of a mixture of cancer cells, fibroblasts and RBCs. The enriched cells containing immunomagnetic conjugates were then transferred to the gold nanorod functionalized paper plasmonic material. Excitation of the paper surface with visible light (at 633 nm) produced SERS enhanced Raman spectra ‘fingerprints’ for the different cells. Another example of paper-based SERS for cancer detection involves a paper matrix impregnated with silver nanoparticles which has been used for clinical diagnosis of human papillomavirus—an infection associated with cervical cancer [147]. Therefore, paper-based SERS approaches for CTC detection are cost effective, disposable, have minimum environmental impact and are mechanically advantageous as they have a large surface area and are easily adopted for applications in microfluidic devices [146].

3. Conclusions and future perspectives

CTCs’ extreme rarity, heterogeneous nature and varied phenotypicity remain major challenges for the development and application of new detection and therapeutic methods. Although the current state-of-the-art CellSearch technology remains the only FDA-approved test for clinical CTC enumeration, the technology has been unable to address many biological challenges associated with CTC characteristics. Issues include: (i) CellSearch cannot address CTC heterogeneity and phenotype variants requiring multiple markers for isolation and detection, (ii) the premise is built mostly on EpCAM as a universal biomarker for CTC enrichment, (iii) the method performs CTC enumeration regardless of whether CTC are damaged, single or clustered, and (iv) in the absence of an algorithm or software for differentiating phenotype variables, a CTC mixture will always be present in the count. Despite these drawbacks with CellSearch technology, integration with Diagnostic LeukApheresis has recently been reported to increase CTC yield and improve molecular tumour characterization [148]. Because most clinical CTC enumeration counts are not accurate, prognostic evaluation of patient samples remains largely conjectural. Thus, there is a critical need to reevaluate patient prognosis before and after treatment. Interestingly, several studies have examined CTCs along with other associated circulating markers, including circulating cell free DNA, exosomes and proteins within a given blood sample. Such a comprehensive platform provide means for understanding diagnosis, prognosis and therapeutic treatment in disease management. There is also a critical issue regarding isolating and enriching low CTC concentrations in enough quantities without compromising their integrity during capture with a CTC device.

Integrated microfluidics developed for non-commercial and commercial systems are promising technologies for CTCs detection that have showed higher separation efficiencies. Though a few of these promising platforms still need improvement in cell clogging issues and low throughput. Overall, microfluidic systems integrated with advanced computer systems may advance clinical research area rapidly.

The Epic system is one of the most promising enrichment platforms. From a recent study [137], the Epic technique was used to demonstrate unbiased characterization and zero detection of 18 healthy donor samples, including establishing precision between multiple operators and using staining slide batches. The most attractive feature of the Epic platform is that it is amenable for downstream analysis including the analysis of single-cell resolution.

Nanotheranostics for cancer outpatients is also envisaged to be the precision medicine of the future because it enables a single platform to be used in diagnostic, prognostic and therapeutic treatment with accuracy. Interestingly, several paper-based SERS applications are promising candidates for rapid CTC detection, especially in remote, developing countries. A comprehensive summary highlighting CTCs challenges, opportunities, strengths, weaknesses, and CTCs technology platforms is in table 4.

Note

The concept of tumour cells translocating from a primary mass and invading locally in blood circulation was reported by Récamier [200]. Langenbeck’s [201] observations provided the first experimental evidence of tumour cells in blood circulation. Rudolph Virchow [202] proposed the cellular origin of cancer, and Thiersch [203] developed the theory of growth energy imbalance in cancer. Australian physician, Thomas Ashworth and Thiersch [203] documented the first evidence of epithelial cells in the blood of his deceased cancer patients, and consequently discovered CTCs. Three decades later, Stephen Paget [205] proposed the seed-and-soil hypothesis of metastatic disease. In a series of autopsy studies, James Ewing [206] showed the circulatory pattern to be the vehicle that controls primary tumour spread to secondary organ site, for example, breast cancer metastasizing to bone, liver, brain and lungs, or colorectal cancer (colon origin) metastasizing in the liver. Other investigators also reported cases of metastasis not necessarily involving invasion of the vascular wall of the primary tumour and target organ. Watanabe Satoru [207] discovered CTC clusters in jugular veins of mice after the injection of bronchogenic carcinoma cells. It was not until the 1990s that the clinical relevance of CTCs, along with other free circulating biomarkers in blood samples (liquid biopsy) received recognition as alternatives to frequent bone marrow biopsies. The commentary notes can be found in the following references [8,27,37,149–169].

Data accessibility. The authors confirm that all data supporting the findings of this study are already available within this paper.

Authors’ contributions. V.A. participated in the design of the study, coordinated the study and draft the manuscript; T.H.K. coordinated the manuscript and helped draft the manuscript; C.L.B. coordinated the manuscript and helped draft the manuscript; I.E.C. coordinated the study and helped draft the manuscript. All authors gave final approval for publication.

Competing interests. All authors declare no competing interest.

Funding. V.A. acknowledges research grant support from the Griffith University towards a doctoral programme.

Acknowledgements. V.A. would like to acknowledge the Griffith University for the GUPR and GUIPR scholarships.
cancer patients within a randomized, phase II trial: TBCRC 019. Clin. Cancer Res. Clinicares. 2781, 2014.

48. Song Y, Tian I, Shi Y, Liu W, Zou Y, Khajvand T, Wang S, Zhu Z, Yang C. 2017 Enrichment and single-cell analysis of circulating tumor cells. Chem. Sci. 8, 1736–1751. (doi:10.1039/C5SC04671A)

49. Green B, Saberi Safaei T, Megham A, Labib M, Mohamadi RM, Kelly S. 2016 Beyond the capture of circulating tumor cells: next-generation devices and materials. Angew. Chem. (International ed.) 55, 1252–1265. (doi:10.1002/anie.201505100)

50. Huang X. 2017 Gold nanoparticle based platforms for circulating cancer marker detection. NanoTheranostics (Sydney, NSW) 1, 80–102. (doi:10.7150/ntno.18216)

51. Nies C. 2019 A microarray array-based 4D cell culture platform. BioEngineering (Basel) 6, 50. (doi:10.3390/bioengineering6020050)

52. Asghar W. 2015 Engineering cancer microenvironments for in vivo 3-D tumor models. Mater. Today (Kidlington) 18, 539–553. (doi:10.1016/j.mattod.2015.05.002)

53. Gu L. 2016 Biomaterials and emerging anticancer therapeutics: engineering the microenvironment. Nat. Rev. Cancer 16, 56–66. (doi:10.1038/nrc.2015.3)

54. Verjans E-T. 2018 Three-dimensional cell culture models for anticancer drug screening: worth the effort? J. Cell. Physiol. 233, 2993–3003. (doi:10.1002/jcp.26052)

55. Ferreira MM. 2016 Circulating tumor cell technologies. Mol. Oncol. 10, 374–394. (doi:10.1016/j.molonc.2016.01.007)

56. Riethdorf S et al. 2016 Circulating tumor cell isolation: the assets of microfiltration membranes for circulating tumor cells separation and their correlation to the CellSearch® CTC test. Cytometry Part A 87, 137–144. (doi:10.1002/cyto.a.22613)

57. Broncy L. 2018 Single-cell genetic analysis validates cytopathological identification of circulating cancer cells in patients with clear cell renal cell carcinoma. Oncotarget 9, 20 058–20 074. (doi:10.18632/oncotarget.25102)

58. Sarioglu AF et al. 2015 A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691. (doi:10.1038/nmeth.3404)

59. Haraukasa RA. 2014 Flexible micro spring array device for high-throughput enrichment of viable circulating tumor cells. Clin. Chem. (Baltimore, MD) 60, 323–333. (doi:10.1373/clinchem.2011.175570)

60. Dofius C, Piton N, Toure E, Sabourin J-C. 2015 Circulating tumor cell isolation: the assets of filtration methods with polycarbonate track-etched filters. Chin. J. Cancer Res. 27, 479.

61. Gascoyne PR. 2012 Isolation and characterization of cells by dielectrophoretic field-flow fractionation. In Field-flow fractionation in biopolymer analysis (eds ST Williams, KD Caldwell), pp. 255–275. Vienna, Austria: Springer.

62. Gascoyne PR, Shim S, Noshaj J, Becker FF, Stemke-Hale K. 2013 Correlations between the dielectric properties and exterior morphology of cells revealed by dielectrophoretic field-flow fractionation. Electrophoresis 34, 1042–1050. (doi:10.1002/elps.201200496)

63. Gascoyne PR, Vyukovuk JV. 2004 Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments. Proc. IEEE 92, 22–42. (doi:10.1109/JPROC.2003.820535)

64. Strimbu K, Tavel JA. 2010 What are biomarkers? Curr. Opin. HIV and AIDS 5, 463–466. (doi:10.1097/COH.0b013e32833ed177)

65. Ostwal, QA. 2004 EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res. 64, 5821–5824.

66. Pantel K, Denève E, Nocca D, Cofy A, Vendrell J-P, Maedoulende T, Riethdorf S, Aliz-Panabières C. 2012 Circulating epithelial cells in patients with benign colon diseases. Clin. Chem. 58, 936–940. (doi:10.1373/clinchem.2011.175570)

67. Khoja L et al. 2012 A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br. J. Cancer 106, 508–516. (doi:10.1038/bjc.2011.545)

68. Liu Z et al. 2011 Negative enrichment by immunomagnetic beads for unbiased characterization of circulating tumor cells from peripheral blood of cancer patients. J. Transl. Med. 9, 70. (doi:10.1186/1479-5876-10-70)

69. Pantel K, Aliz-Panabières C, Riethdorf S. 2009 Cancer micrometastases. Nat. Rev. Clin. Oncol. 6, 339–351. (doi:10.1038/nrclinonc.2009.44)

70. Talasaz AH et al. 2009 Isolating highly enriched populations of circulating epithelial cells and other rare cells from blood using a magnetic sweeper device. Proc. Natl Acad. Sci. USA 106, 3970–3975. (doi:10.1073/pnas.0813881010)

71. Saudaco-Zeni N et al. 2012 A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a...
functionalized and structured medical wire. Int. J. Oncol. 41, 1241–1250.

92. Ozkumu E et al. 2013 Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra147.

93. Nagrath S et al. 2007 Isolation of rare circulating tumor cells in cancer patients with micropore technology. Nature 450, 1235–1239. (doi:10.1038/nature06385)

94. Stott SL et al. 2010 Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl. Acad. Sci. USA 107, 18 392–18 397. (doi:10.1073/pnas.1205391107)

95. Andreopoulou E, Yang LY, Rangel K, Reuben J, Hsu L, Krishnamurthy S, Valero V, Fritsche H, Cristofanilli M. 2012 Comparison of assay methods for detection of circulating tumor cells in metastatic breast cancer: AdnaSen AdnaTest BreastCancer Select/DEP versus VeriCell CellSearch system. J. Int. Cancer 130, 1596–1597. (doi:10.1002/ijc.26111)

96. Harb W, Fan A, Tran T, Danila DC, Keys D, Schwartz M, Ionescu-Zanetti C. 2013 Mutual analysis of circulating tumor cells using a novel microfluidic collection device and qPCR assay. Transl. Oncol. 6, 528–538. (doi:10.1593/hto.130637)

97. Chen H, Zhang W, Zhu G, Xie J, Chen X. 2017 Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024. (doi:10.1038/natmatsrev.2017.24)

98. Chinen AB, Guan CM, Ferrer JR, Barnaby SN, Merkel TJ, Minki CA. 2015 Nanoparticle probes for the isolation of targeted rare circulating tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. J. Micromech. Microeng. 25, 104001. (doi:10.1088/0960-1317/25/10/104001)

99. Iliescu FS, Vrta C, Chiu DT. 2016 Ensemble-decision Aliquot Ranking (ed. ZH Fan), pp. 51–56. Lab. Chip 16, 1118–1125. (doi:10.1039/c00345j)

100. Fan Z, Senapati D, Singh AK, Ray PC. 2012 Theranostic magnetic core–plasmonic shell star shape nanoparticle for the isolation of targeted rare circulating tumor cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab. Chip 11, 1188–1125. (doi:10.1039/c00345j)

101. Khan M, Mao S, Li W, Lin JH. 2018 Microfluidic devices in the fast-growing domain of single-cell analysis. Chem. A Eur. J. 24, 15398–15420. (doi:10.1002/chem.201800305)

102. Turk-MacLeod R, Henson A, Rodriguez-Garcia M, Gibson GM, Camarasa GA, Caramelli D, Padgett MJ, Cronin L. 2018 Approach to classify, separate, and enrich objects in groups using ensemble sorting. Proc. Natl. Acad. Sci. USA 115, 5681–5685. (doi:10.1073/pnas.1721929115)

103. Zhao M, Schiro PG, Chiu DT. 2016 Ensemble-decision Aliquot Ranking (ed. ZH Fan), pp. 51–56. Lab. Chip 16, 1118–1125. (doi:10.1039/c00345j)

104. Segre G, Silberberg A. 1962 Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation. J. Fluid Mech. 14, 136–157. (doi:10.1017/S0022112062001111)

105. Warkiani ME. 2016 Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11, 134–148. (doi:10.1038/nprot.2016.003)

106. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I. 2008 Continuous particle separation in spiral microchannels using deep flows and differential migration. Lab. Chip 8, 1906. (doi:10.1039/b807107a)

107. Di Carlo D. 2009 Inertial microfluidics. Lab. Chip 9, 3038–3046. (doi:10.1039/b912547g)

108. Aref H et al. 2017 Frontiers of chaotic advection. Rev. Mod. Phys. 89, 025007. (doi:10.1103/RevModPhys.89.025007)

109. Howell JPB et al. 2004 Design and evaluation of a Dean vortex-based micromixer. Lab. Chip 4, 663. (doi:10.1039/b407170k)

110. Wang X, Zandi M, Ho C-C, Kaval N, Papautsky I. 2015 Single stream inertial focusing in a straight microchannel. Lab. Chip 15, 1812–1821. (doi:10.1039/c4LC01426f)

111. Zhou J, Kulasinghe A, Boghset A, O’Byrne K, Punyaendra C, Papautsky I. 2019 Isolation of circulating tumor cells in non-small-cell-lung-cancer patients using a multi-flow microfluidic channel. Microfluid. Nanofluid. 5, 1–12. (doi:10.1007/s41378-019-0045-6)

112. Zou J, Papautsky I. 2013 Fundamentals of inertial focusing in microchannels. Lab. Chip 13, 1112–1133. (doi:10.1039/c3lc41248a)

113. Zhu C, Zhou J, Liang Y, Huang B, Fang Y, Liang X, Ye X. 2017 A flexible cell concentrator using inertial focusing. Biomicrofluidics 19, 83. (doi:10.1007/s15116-017-0223-y)

114. Sollier E et al. 2014 Size-selective collection of circulating tumor cells using Vortex technology. Lab. Chip 14, 63–77. (doi:10.1039/c3lc50680d)

115. Moffatt HK. 1994 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1–18. (doi:10.1017/S0022112064000159)

116. Liu Y, Wang W, Wu W, Yang F, Li H. 2015 Filtration membrane with ultra-high porosity and pore size controllability fabricated by parylene c molding technique for targeted cell separation from bronchoalveolar lavage fluid (BALF). In 2015 Transducers’2015 18th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSUDERS), 21–23 June, Anchorage, AK, pp. 1767–1769. Piscataway, NJ: IEEE.

117. Liu Y et al. 2019 A high-throughput liquid biopsy for rapid rare cell separation from large-volume samples. Lab. Chip 19, 68–78. (doi:10.1039/c7lc01048b)

118. Yeo JC, Kenny, Zhao Z, Zhang P, Wang Z, Lim CT. 2018 Label-free extraction of extracellular vesicles using centrifugal microfluidics. Biomicrofluidics 12, 024103. (doi:10.1063/1.5019983)

119. Gjovreski N et al. 2016 Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564. (doi:10.1038/nature18068)

120. Rao PS, Stoorvogel W. 2013 Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373–383. (doi:10.1083/jcb.201211348)

121. Frunzil M, Nguyen AV. Hashemabadi SH. 2011 The effect of microhydrodynamics on bubble–particle collision interaction. Miner. Eng. 24, 973–986. (doi:10.1016/j.mineng.2011.04.005)

122. Ondiani K et al. 2019 Monitoring of cancer patients via next-generation sequencing of patient-derived circulating tumor cells and tumor DNA. Cancer Sci. 110, 2590.

123. Minciacchi V, Zijlstra A, Rubin MA, Di Vizio D. 2017 Extracellular vesicles for liquid biopsy in prostate cancer: where are we and where are we headed?
134. Suzuki Y. 1988 Mechanism of absorption
135. Hatta A. 1985 Infrared absorption study of adsorbed
136. Anderson C. 2020 Comprehensive approach: Epic
137. Werner SL, Graf RP, Landers M, Valenta DT,
138. Das P. 2016 Recent advances on developing 3rd
139. Gill AA, Singh S, Thapliyal N, Karpoormath R. 2019
140. Wang C. 2019 Direct plasmon-enhanced
141. Le Ru E, Etchegoin P. 2008 Principles of surface-
142. Reokrungruang P. 2019 A simple paper-based
143. Andree KC. 2018 Toward a real liquid biopsy in
144. Kim W, Kim Y-H, Park H-K, Choi S. 2015 Facile fabrication of a silver nanoparticle immersed, surface-enhanced Raman scattering imaged paper platform through successive ionic layer absorption and reaction for on-site bioassays. ACS Appl. Mater. Interfaces 7, 27 910–27 917. (doi:10.1021/acsami.5b09982)
145. Andree K.C. 2018 Toward a real liquid biopsy in metastatic breast and prostate cancer: diagnostic LeukApheresis increases CTC yields in a European prospective multicenter study (CITCmap). Int. J. Cancer 143, 2584–2591. (doi:10.1002/ijc.31755)
146. Balkwill F, Mantovani A. 2001 Inflammation and cancer: back to Virchow? Lancet 357, 539–545. (doi:10.1016/S0140-6736(00)04046-0)
147. Barnes JM, Nauseef JT, Henry MD. 2012 Resistance to fluid shear stress is a conserved biophysical property of malignant cells. Plas ONE 7, e50973. (doi:10.1371/journal.pone.0050973)
148. Chaffer CL, Weinberg RA. 2011 A perspective on cancer cell metastasis. Science 331, 1559–1564. (doi:10.1126/science.1203543)
149. Chambers AF, Groom AC, MacDonald IC. 2002 Metastasis: dissemination and growth of cancer cells in metastatic sites. Nat. Rev. Cancer 2, 563. (doi:10.1038/nrc6865)
150. Chen M, Geng J-G, 2006 P-selectin mediates adhesion of leukocytes, platelets, and cancer cells in inflammation, thrombosis, and cancer growth and metastasis. Arch. Immunol. Therap Exp. 54, 75–84. (doi:10.1007/s00005-006-0010-6)
151. Coultais L, Chawengsaksophak K, Rossant J. 2005 Endothelial cells and VEGF in vascular development. Nature 438, 937. (doi:10.1038/nature04479)
152. DeVita Jr VT, Rosenberg SA. 2012 Two hundred years of cancer research. New Engl. J. Med. 366, 2207–2214. (doi:10.1056/NEJMr0404479)
153. Elwing J. 1928 Neoplastic diseases. A treatise on tumours. Am. J. Med. Sci. 176, 278. (doi:10.1097/00000441-19280800-00014)
154. Geng J-G, Chen M, Chou K-C. 2004 P-selectin cell adhesion molecule in inflammation, thrombosis, cancer growth and metastasis. Curr. Med. Chem. 11, 2153–2160. (doi:10.2174/0929867045044364740)
155. Gupta GP, Massagulo J. 2006 Cancer metastasis: building a framework. Cell 127, 679–695. (doi:10.1016/j.cell.2006.11.001)
156. Kaiser J. 2010 Cancer’s circulation problem. Washington, DC: American Association for the Advancement of Science.
157. Kardinal CG, Yarbro JW. 1979 A conceptual history of cancer. Semin. Oncol. 6, 396–408.
158. Le Ru E, Etchegoin P. 2008 Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects. Amsterdam, The Netherlands: Elsevier.
159. Le Roux C, Chawengsaksophak K, Vossena J, Reinhault E. 2008 Electrochemical biosensors-sensor principles and architectures. Biosens. Bioelectron. 23, 346–353. (doi:10.1016/j.bios.2012.02.001)
160. Gill AA, Singh S, Thapliyal N, Karpoormath R. 2019 Nanomaterial-based optical and electrochemical techniques for detection of methillin-resistant Staphylococcus aureus: a review. Microchim. Acta 186, 114. (doi:10.s00004-018-3186-7)
161. Greebieser D, Mackenzie R, Vorees J, Reinhault E. 2008 Electrochemical biosensors-sensor principles and architectures. Sensors 8, 1400–1458. (doi:10.3390/s80314000)
162. Haata A. 1985 Infrared absorption study of adsorbed species at metal/water interface by use of the Kretschmann configuration. Surf. Sci. 156, 616–623. (doi:10.1016/0039-0229(85)90334-6)
163. Suzuki Y. 1988 Mechanism of absorption enhancement in infrared ATR spectra observed in the Kretschmann configuration. Appl. Surf. Sci. 33–34, 875–881. (doi:10.1016/0169-4332(88)90393-5)
164. Liedberg B. 1993 Principles of biosensing with an extended coupling matrix and surface plasmon resonance. Sensors Actuators. B Chem. 11, 63–72. (doi:10.1016/0925-4005(93)85239-7)
165. Le Roux C, Chawengsaksophak K, Vossena J, Reinhault E. 2008 Principles of surface-enhanced Raman spectroscopy: and related plasmonic effects. Amsterdam, The Netherlands: Elsevier.
166. Wang S-S, Zhao X-P, Liu F-F, Younis MR, Xia X-H, Wang C. 2019 Direct plasmon-enhanced electrochemistry enables ultra-sensitive and label-free detection of circulating tumor cells in blood. Anal. Chem. 91, 4413–4420. (doi:10.1021/acs.analchem.8b04908)
167. Reokrungruang P. 2019 A simple paper-based platform for magnetic separation for cancer screening.
179. Tulley S, Zhao Q, Dong H, Pearl ML, Chen WT. 2016 Vita-Array™ method of enrichment and identification of circulating cancer cells/circulating tumor cells (CTCs). Methods Mol. Biol. 1406, 107–119. (doi:10.1007/978-1-4939-3444-7_9)

180. Issadore D. 2013 μHall chip for sensitive detection of bacteria. Adv. Healthcare Mater. 2, 1224–1228. (doi:10.1002/adhm.201200380)

181. Autebert J. 2015 High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection. Lab. Chip 15, 2090–2101. (doi:10.1039/C5LC00104H)

182. Lee TY. 2017 An integrated microfluidic chip for one-step isolation of circulating tumor cells. Sensors Actuators B Chem. 238, 1144–1150. (doi:10.1016/j.snb.2016.05.163)

183. Hsieh HB. 2006 High speed detection of circulating tumor cells. Biosens. Bioelectron. 21, 1893–1899. (doi:10.1016/j.bios.2005.12.024)

184. Miller MC, Doyle GV, Terstappen LW. 2010 Significance of circulating tumor cells detected by the CellSearch system in patients with metastatic breast colorectal and prostate cancer. J. Oncol. 2010, 1–8. (doi:10.1155/2010/617421)

185. Hsieh HB. 2006 High speed detection of circulating tumor cells. Biosens. Bioelectron. 21, 1893–1899. (doi:10.1016/j.bios.2005.12.024)

186. Hinojara K, Polyak K. 2019 Intratumoral heterogeneity: more than just mutations. Trends Cell Biol. 29, 569–579. (doi:10.1016/j.tcb.2019.03.003)

187. Scher HI. 2017 Phenotypic heterogeneity of circulating tumor cells informs clinical decisions between AR signaling inhibitors and taxanes in metastatic prostate cancer. Cancer Res. 77, 5687–5698.

188. Souslova EA. 2017 Applications of genetically encoded photosensitizer miniSOG from corelative light electron microscopy to immunophotosensitizing. J. Biophotonics 10, 338–352. (doi:10.1002/jbio.201600120)

189. Poudineh M, Sargent EH, Pantel K, Kelley SO. 2018 Profiling circulating tumor cells and other biomarkers of invasive cancers. Nat. Biomed. Eng. 2, 72–84. (doi:10.1038/s41551-018-0190-5)

190. Mittal R. 2019 Organ-on-chip models: implications in drug discovery and clinical applications. J. Cell. Physiol. 234, 8352–8380. (doi:10.1002/jcp.27729)

191. Azevedo R, Soares J, Peixoto A, Cotton S, Lima L, Santos LL, Ferreira JA. 2018 Circulating tumor cells in bladder cancer: emerging technologies and clinical implications foreseeing precision oncology. In Urologic oncology: seminars and original investigations, pp. 221–236. Amsterdam, The Netherlands: Elsevier.

192. Gullo MR, Takeuchi S, Paul O. 2017 Multicellular biotinylated materials: probing the interplay of cells of different types precisely positioned and constrained on 3D wireframe-like microstructures. Adv. Healthcare Mater. 6, 1601053. (doi:10.1002/adhm.201601053)

193. Gullo RM, Koeser J, Ruckli O, Eigenmann A, Hradetzky D. 2018 Rapid prototyping method for 3D printed biomaterial constructs with vascular structures. In 2018 40th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (EMBC), 18–21 July, Honolulu, HI, pp. 5729–5732. Piscataway, NJ: IEEE.

194. Nayak S, Blumenfeld NR, Laksanasopin T, Sia SK. 2017 Point-of-care diagnostics: recent developments in a connected age. Anal. Chem. 89, 102–123. (doi:10.1021/acs.analchem.6b04630)

195. Tsur EE, Shamir A. 2018 Computer-aided design of resistance micro-fluidic circuits for 3D printing. Comput. Aided Des. 98, 12–23. (doi:10.1016/j.cad.2017.12.004)

196. Kuang X, Roach DJ, Wu J, Hamel CM, Ding Z, Wang T, Dunn ML, Qi HJ. 2019 Advances in 4D printing: materials and applications. Adv. Funct. Mater. 29, 1805290. (doi:10.1002/adfm.201805290)

197. Zhang Z, Demir KG, Gu GK. 2019 Developments in 4D-printing: a review on current smart materials, technologies, and applications. Int. J. Smart Nano Mater. 10, 205–224. (doi:10.1007/18475411.2019.159141)

198. Zhou Y, Huang WM, Kang SF, Wu XL, Lu HB, Fu J, Cui H. 2015 From 3D to 4D printing: approaches and typical applications. J. Mech. Sci. Technol. 29, 4281–4288. (doi:10.1007/s12206-015-0925-0)

199. Truini A et al. 2014 Clinical applications of circulating tumor cells in lung cancer patients by CellSearch system. Front. Oncol. 4, 242. (doi:10.3389/fonc.2014.00242)

200. Récamier JCA. 1829 Recherches sur le traitement du cancer sur la compression methodique simple ou combinee et sur l’histoire generale de la meme maladie 2nd edn. Paris, France: Gabon.

201. Langenberg B. 1841 On the development of cancer in the veins, and the transmission of cancer from man to the lower animals. Edinb. Med. Surg. J. 55, 251–253.

202. Virchow R. 1858 Cellular pathologie. Nutr. Rev. 47, 23–25. Translated by Frank Chance in 1863.

203. Thiersch H. 1865 Der Epithelial krebs, namentlich der Hand, vol. 1. Leipzig, Germany: Engelmann.

204. Ashworth TR. 1869 A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust. Med. J. 14, 146–149.

205. Paget S. 1889 The distribution of secondary growths in cancer of the breast. Lancet 1, 571–573.

206. Ewing J. 1928 Neoplastic diseases, 6th edn. Philadelphia, PA: W. B. Saunders.

207. Watanabe S. The metastasizability of tumor cells. Cancer 7, 215–223.