The Effect of Urban Drainage on The Determination The Time of Storage In The City Development Area

M H Imaaduddiin1, I Saud1, S K Azis1, H Wahyudi1 and T Adiningtyas2

1Departemen Infrastruktur Sipil, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
2Balai Besar Wilayah Sungai Brantas, Kementerian PUPR, Indonesia

*Corresponding author: m_hafizh@ce.its.ac.id

Abstract. Increasing development activities in various fields in Surabaya will impact the occurrence of flooding, where the growth of residential buildings changes the function of the drainage area into runoff land. Therefore, there is a need for regional drainage recommendations. This study aims to provide a reference for a safe number that follows the storage needs and the duration of the peak partial drainage required by the region, following the study of water resources science. The data needed are rainfall data, average area, land function, and land slope maps. This study uses a 5-year return period probability. Moreover, the Nakayasu Hydrograph method is also used. It has a grace period starting from the rain surface to the top of the hydrograph, the area of the watershed, and the length of the main river channel. The comparison of the length of time of concentration (Tc) of the area with the length of waiting for time (Tp) of the urban drainage hydrograph shows that the area's Tc value is greater than the Tp value of the urban drainage.

Keywords: drainage, flooding, runoff, urban

1. Introduction

Surabaya city is a business center with economic growth, especially in east java [1]. The increase in places of business or development activities for various fields in the city of Surabaya has logistical consequences with the emergence of changes to the flood disaster, where the growth of buildings or changes such as changing the area of water flow reservoirs into the land (flow)[2]. Therefore, the Surabaya City Government always tries to oversee applying for a building permit. This process by requires licensing requirements accompanied by regional drainage recommendations to avoid discharge generation or the possibility of high surface flow and change the existing drainage system in the termination area determined outside the area [3,4]. One of the efforts to prevent flooding early before an activity starts is to apply technical guidance recommendations for regional drainage system directions in the Surabaya area. This guidance follows the mandate of mayor regulation (Perwali) No.21 of 2019 concerning Licensing and/or Non-Building Permits in the City of Surabaya [5].

The city of Surabaya has a drainage network area or commonly referred to as an area, where five areas spread throughout the city [6]. The discussion of the study area in the current study is the drainage network in the Tandes area (western part of Surabaya) and Genteng area (northern part of Surabaya) [7]. The slope of the land's topography in the two areas is different from the slope value in the west Surabaya area is 2–20%, while for the central part of Surabaya to the east is an average of 2%.
This study begins by looking for the concentration value in the built-up area and the concentration value in the city drainage channel by paying attention to the catchment area to obtain recommendations regarding the relationship between changes in the development area and the need for storage volumes according to watershed conditions in each region. The length of time this concentration becomes the basis for determining the length of time used to calculate the built-up area's reservoir.

2. Material and Method

2.1 Literature Study
A literature study is an initial stage where several theoretical references to support activities related to the same field can be collected and reference the stages of conducting and completing this research activity [8]. For this reason, a literature study can be carried out as an initial form of starting this research.

2.2 Research study location
The locations selected in the scope of the first part of the study are shown in table 1.

Rayon Name	Name of Built Area	Channel Length (m)	Catchment Area (Km²)	
1	Genteng	Praxis	598	0.098
2	Genteng	Tunjungan Plaza	North Side: 1355	0.41
			South Side: 672	
3	Gubeng	Grand City	1502	0.15
4	Gubeng	Pakuwon City	Kalidami: 6022	Kalidami: 12
			Kalibokor: 9064	Kalibokor: 8.83
5	Jambangan	Puri city	944	0.55
6	Jambangan	Trans Icon	North Side: 235	0.094
			South Side: 672	
7	Jambangan	Medokan Ayu	3740	3.28
8	Wiyung	Ciputra World	681	0.27
9	Wiyung	Royal Residence	331	0.18
10	Tandes	Warehouse at Kalianak 55 street	463	0.23
11	Tandes	North West Park	1076	2.1

One of the research locations is as follows:

Figure 1. Survey Locations for Built-up Areas and Their Persilient Drainage Channels
2.3 Calculation of Discharge Hydrograph and Peak Time

The following are the steps for calculating Hydrology and Hydraulics on a partial drainage channel when looking for a discharge and peak time hydrograph.

2.3.1 Calculation of Planned Rainfall (R24)

In planned rainfall analysis, several stages are needed to obtain the value of the planned rain in the area to be planned or evaluated. There are 11 rain stations in Surabaya, which are spread throughout the Catchment Area in Surabaya. Calculation of rainfall obtained maximum annual rainfall. The period used is the last 12 years [9].

2.3.2 Calculation of Probability Distribution of Planned Rainfall

The calculation of rainfall distribution is based on annual maximum rainfall data. The average rainfall data is calculated through log person III probability distribution. Furthermore, the frequency distribution test was carried out to calculate rainfall results from the Gumbel method and the log person type III method [10]. Results of the Gumbel method and the log person type III method were matched with the requirements of the frequency distribution test. From these data, the R24 rainfall limit value is obtained in the following calculation [11].

2.3.3 Calculation of Probability Distribution of Planned Rainfall

Guidance in assessing this coefficient value varies according to the land use around the area and the partial drainage channel (Table 2).

Table 2. Run off Coefficient Values based on SNI 2415 – 2016

Area Type	Coefficient Runoff	Kondisi Permukaan	Coefficient Runoff
Shopping Area			
Capital City	0.70 - 0.95	Asphalt or Concrete	0.75 - 0.95
Develop	0.50 - 0.70	Brick or Concrete Brick	0.70 - 0.85
Residential Area		Sandy Grass Field	
Cluster	0.40 - 0.60	Flat slope < 2%	0.05 - 0.10
Densely Populated	0.60 - 0.75	Average slope 2 - 7%	0.10 - 0.15
Apartment	0.50 - 0.70	Precipitous slope > 7%	0.15 - 0.20
Industrial Area		Grass Field with Compacted Soil	
Light	0.50 - 0.80	Flat slope < 2%	0.13 - 0.17
Heavy	0.60 - 0.90	Average slope 2 - 7%	0.18 - 0.22
Open Yard or Rail Road	0.20 - 0.35	Precipitous slope > 7%	0.25 - 0.35

2.3.4 Calculation of Plan Debit Value

When finding the discharge value, various methods can be used based on the needs and location of the drainage channel's catchment area. In this case, the Nakayasu Synthetic Unit Hydrograph (HSS) was chosen because the river/channel in the Surabaya City area tends to have the same characteristics as the river in the Nakayasu variable, where the channel tends to be lengthy and its area divided into an elongated oval shape (like a plate shape). The following formula is used

\[
Q_p = \frac{(C \cdot A \cdot R_0)}{3.6 \cdot (0.3 \cdot T_p \cdot T_0.3)}
\]

Where \(Q_p\) is peak discharge (m³/sec), \(C\) is land coefficient, \(A\) is catchment area (km²), \(R\) is return period rainfall (mm). Calculation of the return period discharge of the existing condition of the Kalimati channel with the function of pond land [12]. Calculation of the Hydrograph of the Nakayasu Unit of the
existing condition through the calculation of the concentration time, the calculation of the rain time unit, the calculation of the time from the beginning of the rain to the peak of the flood, the decrease in peak discharge, and the resulting Q_p value, namely peak discharge. Furthermore, tables and graphs of the Nakayasu hydrograph were obtained for the existing condition of the 25-year return period [13].

2.3.5 Calculation of Channel Hydraulic Discharge Value
The dimensions of the drainage channel used are $b = 150$ cm and $h = 2 \times 75$ cm. In calculating the hydraulic discharge, the following formula is used

$$Q = A \cdot V$$ \hspace{1cm} (2)$$

Where Q is the hydraulic discharge (m3/s). A is the cross-sectional area (m2) and v is the flow velocity (m/s). To calculate the flow velocity in the drainage channel using the following Manning formula as follows:

$$v = \frac{1}{n} \cdot R^{2/3} \cdot I^{1/2}$$ \hspace{1cm} (3)$$

Where v is the flow velocity (m/s). n Manning roughness coefficient. R as the radius (m). I as channel slope.

2.3.6 Comparison of the results of the length of time of concentration (T_c) in the area with the length of waiting time from the hydrograph of the Persilial Drainage of the City Front of the Region
Calculation of concentration time for two conditions where the first is to calculate the concentration value (T_c) in the built area itself and the second calculates the time value of concentration in the partial drainage of city channels outside the area by calculating the area of the catchment area [14]. While the final result is to get the recommended value for the length of the built-up area that will be recommended.

3. Results and discussion

3.1 The results of the calculation of the distribution of rainfall using the Gumbel method and the log person type III method
Theoretical requirements for the Log Person III method are flexible Cs and Ck values [15]. The Cs value in the Gumbel method is -0.4996 and the Ck value in the Gumbel method is 2.7324. Meanwhile, the Cs value in the Log Person III method is -0.7 and the Ck value in the Log Person III method is 2.9483. Based on the theoretical requirements of the Gumbel method, the value of $Cs \leq 1.1396$ and the value of $Ck \leq 5.40002$. Meanwhile, based on the theoretical requirements of the Log Person type III method, the Cs and Ck values are flexible. So that the values of Cs and Ck in the Gumbel method and the Log Person type III method pass the statistical probability requirements. The following are the results of the calculation of the rain distribution using the Gumbel method and the log person type III method

Table 3. Calculation of Rain Distribution with Log Pearson III
Return Period

2
5
10
25
50
100
From Table 3, the R5 value of the return period Log Person Type III is taken as the value of the R24 rainfall limit in the following calculation.

3.2 Result of Calculation of Planned Debit Value
The data is shown in the Genteng rayon and Praxis area. This location has a channel length of 0.598 km and a catchment area of 0.098 km2. Calculation of the Nakayasu Unit Hydrograph is for the planned conditions through the calculation of the concentration time, the calculation of the rain time unit, the calculation of the time from the beginning of the rain to the peak of the flood, the decrease in the peak discharge, and the resulting Q_p value, namely the peak discharge. Furthermore, tables and graphs of the Nakayasu hydrograph were obtained for the planned condition of the 25 year return period. Where Q_p is the peak discharge (m^3/sec), C is the land coefficient, A is the catchment area (km^2), R is the amount of return period rainfall (mm) \[16\]. Where the area of the watershed is 0.098 km2, the length of the river is 0.598 km, the unit rain $(R_{2\text{ year}})$ is 91.55 mm, the unit rain $(R_{5\text{ year}})$ is 107.37 mm, the unit rain $(R_{10\text{ year}})$ is 115.10 mm, the unit rain $(R_{25\text{ year}})$ is 122.75 mm, the flow coefficient (C) is 0.7 (with the corrected control value 1 mm), and the alpha (α) value is 1.5.

![Figure 2](image)

Figure 2. Hydrograph Chart of Nakayasu Flood Discharge Planned return period of 5 years.

From the results of the hydrograph calculation of the design conditions shown in Figure 2 above, the peak discharge at the Q value is 2.366 m3/second at 0.2 hours. This means that the hydrograph informs that the volume of water that occurs is $2.366 m^3 \times 0.2\ hours \times 3600\ s = 1.681.92\ m^3$.

3.3 Calculation Result of Channel Hydraulic Discharge Value
The results of the calculation of the hydraulic discharge value of the channel are shown in Table 4 below

Channel Name	Channel Type	b (m)	h (m)	z	A (m^2)	P (m^2)	R	$R^{2/3}$	I	$I^{1.5}$	V (m/s)	V (m^3/s)
Sewer (A-1)	Box culvert	1.5	1.5	-0.018	2.25	4.5	0.5	0.629961	0.002	0.0447	1.565	3.522

From the results above, the cross-section of the dimensions of the partial drainage channel in the Praxis area is sufficient to anticipate the 5-year return period discharge from the Nakayasu hydrograph calculation. Where the hydraulic discharge value obtained is 3.522 m3/s greater than the calculated Nakayasu hydrograph discharge value, which is 2.366 m3/s.
No.	Name	First Data	Tck Value	Drainage Channel Name	L Channel (Km)	CA Area (Km²)	Q Hydraulics (m³/s)	Time Peak	TcK >=< Tp	Storage Time			
1	Jimerto Road No. 28	491.9	S	5.68	0.09	Slamet road secondary channel	0.031	0.0042	1				
2	Slamet Road No. 33	564.3	S	6.24	0.1		0.103	0.00122	1				
3	Kaca Piring Road No. 9	529	S	5.86	0.1		0.182	0.0186	5.289	0.2	P	1	
4	Walikota Mustajab Road 67-68	988	S	6.23	0.1		0.366	0.0669					
5	Praxis	11,043.25	S	50.48	0.84	Karimun Jawa Road	0.598	0.098	2.336	0.2	S	1	
6	Tunjungan Plaza	73,535.73	MP	123.71	2.06	Kedundoro Embong Malang Road	1.355	0.41	0.865	1.6	S	2.1	
7	Royal Residence	10,068	S	51.9	0.87	Pondok Manggala road	0.33	0.18	1.589	0.4	S	1	
8	North West Park	257,559.95	S	658	206	Babat Jerawat Channel	1.076	2.1	5.089	2.5	S	3.5	
9	Kalianak 55	19,505.77	S	64.62	1.08	Kalianak Road	0.463	0.23	0.244	1	S	1	
10	Grand City	45,597	MU	90.6	41.77	0.7	Slamet Road	1.5	0.15	1.783	0.4	S	1
11	Pakuwon City	-	MU	898	298.3	4.97	Bokor River	9.064	8.83	24.73	3	S	5
12	Puri City	20,604.47	MU	216	82.53	1.38	Anyar Mountain River	0.94	0.55	5.429	0.6	S	1.5
13	Trans Icon	22,199.4	MU	199	65.46	1.09	Gayungan Road	0.235	0.094	0.92	0.3	S	1
14	Medokan Ayu	15,486.7	S	289	151.7	2.53	Medokan ayu channel	3.74	3.280	12.12	1	S	2.5

Siteplan (S); Mixed Plan (MP); Mixed Used (MU); Persil (P); Sector (S)

From table 5, the Tc value of the area is greater than the partial drainage Tp value, meaning that the old demand and storage volume using the results from the area calculation will be greater but as a form of safety factor it is advisable to use these results to avoid rapid flow in drainage, and has an impact on the inundation area around the location of the built area [17].

4. Conclusions
In this study, the following conclusions were obtained
- Catchment area calculation is based on SDMP 2018-2038 where a scalar calculation of the area from AutoCAD and the length of the channel is obtained by survey results with the average dimensions of measurements in the field
- The formulation of the hydrological calculation of the planned flood discharge using the Nakayasu HSS, with the Log Person Type III method where the R value of the 5-year planned rain period is smaller than the Gumbel method.
The calculation of the planned flood discharge uses a 5-year return period (Q5).

The planned flood discharge calculation results only accommodate the value of the rainfall that occurs, while the value for wastewater must be calculated (added) itself in accordance with the designation of the land function of the building that will be built later. The formula for QK = 150 liters/person/day x 70% x Total population x A.

The determination of storage time value for the area distribution is divided into the following:
- Area < 10,000 m², it is recommended to hold it for 1 hour
- An area of 10,000 m² to 75,000 m², it is recommended to hold it for 2 hours
- Area > 10,000 m², it is recommended to hold it for 3 hours.

Acknowledgments
The authors would like to thank the Department of Civil Infrastructure, Sepuluh Nopember Institute of Technology, Surabaya, which has provided data and made it easier for the author to conduct research. As well as several parties who have participated and provided support during this research. We also thank the Sepuluh Nopember Institute of Technology Surabaya for facilitating this research.

References
[1] Dejan R. O, Ranjan K. B, Holly K, Jeabette L, and Yabei Z 2013 Energizing Green Cities in Southeast Asia
[2] Anton D P M 2015 Study on Flood Management Plan in Surabaya City J. of The Civil Engineering Forum
[3] Kesumaning D L, Adjie P, Siti N 2019 Building Permit Regulation in Surabaya: A Review towards a Risk Management Perspective Int J of Engineering Research & Technology (IJERT) Vol 8 Issue 07
[4] Government of Surabaya City 2009 Local Regulation of Surabaya City Number 7 of 2009 on Buildings
[5] Government of Surabaya City 2019 Mayor Regulation of Surabaya Number 21 of 2019 on Integrated Licensing and/or non Licensing Services in The City of Surabaya
[6] Dicky M F, Umboro L, Yang R 2015 Evaluasi Penanggulangan Banjir Saluran Primer Gunungsari Das Rayon 5 Tandes Bagian Hulu J TEKNIK ITS Vol 4 No 1
[7] Riman 2011 Evaluasi Sistem Drainase Perkotaan di Kawasan Kota Metropolis Surabaya Widya Teknika Vol 19 No 2
[8] Kusnan 2012 Evaluasi Kejadian Sedimentasi Di Kali Surabaya Sebagai Data Penunjang Untuk Mengantisipasi Terjadinya Banjir Di Kota Surabaya J Teknik Sipil Fakultas Universitas Surabaya Indonesia
[9] Sa’ud I 2008 Prediksi Sedimentasi Kali Mas Surabaya J Aplikasi Vol 4 No 1 Indonesia
[10] Basuki, Iis W and Noor L A 2009 Analisis Periode Ulang Hujan Maksimum dengan Berbagai Metode (Return Period Analyze Maximum Rainfall with three method) J Agromet: Badan Meteorologi, Klimatologi dan Geofisika
[11] Dewi R, Montarchiih L, Soetopo W 2016 Analisis Parameter Alfa Hidrograf Satuan Sintetik Nakayasu Di Sub Das Lesti J Teknik Pengairan: Universitas Brawijaya
[12] Ayu S, Dwi D and Sarino 2017 Analisis Hidrograf Satuan Sintetis Nakayasu Akibat Perubahan Penggunaan Lahan terhadap Debit Puncak Banjir pada Sub DAS Sekanak Prosiding Simposium: Universitas Sriwijaya
[13] Nastasia F, Danayanti A, Bagus M 2017 Analisa Hidrograf Satuan Sintetik Nakayasu dan ITB pada Sub DAS Konto Jawa Timur J Teknik Hidroteknik: Institut Teknologi Sepuluh Nopember
[14] Denik S, Krisnayanti, John H and Emanuel U 2019 Analisis Parameter Alfa Hidrograf Satuan Sintetik Nakayasu pada DAS Di Pulau Flores J Teknik Sipil
[15] Novie H 2005 Analisa Distribusi Curah Hujan dengan Kala Ulang Tertentu J Rekayasa Perencanaan: UPN “Veteran” Jawa Timur
[16] Yonanda R, Very D and Dian C 2016 Studi Perencanaan Bangunan Pengendali Sungai di Tukad Lampah Kecamatan Gerokgak Kabupaten Buleleng Provinsi Bali J Pengairan: Universitas Brawijaya

[17] Sasmito S, Triatmodjo, Bambang, Sujono, Joko, Harto Br 2017 Pengaruh Kondisi Awal Kelengasan Tanah terhadap Debit Puncak Hidrograf Satuan J Teknik Sipil