Epidemiological and Survival Trends of Pediatric Cardiac Arrests in Emergency Departments in Korea: A Cross-sectional, Nationwide Report

Jae Yun Ahn,1 Mi Jin Lee,1,5 Hyun Kim,2,5 Han Deok Yoon,3 and Hye Young Jang4,5

1Department of Emergency Medicine, School of Medicine, Kyungpook National University, Daegu; 2Department of Emergency Medicine, Wonju College of Medicine, Yonsei University, Wonju; 3National Emergency Medical Center, Seoul; 4Department of Emergency Medicine, Soonchunhyang University Seoul Hospital, Seoul; 5The Korean Association of Cardiopulmonary Resuscitation, Seoul, Korea

Received: 30 January 2015 Accepted: 22 May 2015

Address for Correspondence:
Mi Jin Lee, MD
Department of Emergency Medicine, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ru, Jung-gu, Daegu 700-842, Korea
Tel: +82.53-420-6400, Fax: +82.53-428-2820
E-mail: emmam@knu.ac.kr

INTRODUCTION

Cardiac arrest (CA) in children is associated with high mortality rates. In Korea, cohort studies regarding the outcomes of pediatric CAs are lacking, especially in emergency departments (EDs) or in-hospital settings. This study was conducted to examine the trends in epidemiology and survival outcomes in children with resuscitation-attempted CAs using data from a cross-sectional, national, ED-based clinical registry. We extracted cases in which cardiopulmonary resuscitation and/or manual defibrillation were performed according to treatment codes using the National Emergency Department Information System (NEDIS) from 2008 to 2012. The total number of ED visits registered in the NEDIS during the 5-yr evaluation period was 20,424,530; among these, there were 2,970 resuscitation-attempted CAs in children. The annual rates of pediatric CAs per 1,000 ED visits showed an upward trend from 2.81 in 2009 to 3.62 in 2012 (P for trend = 0.045). The median number of estimated pediatric CAs at each ED was 7.8 (25th to 75th percentile, 4 to 13) per year. The overall rates for admission survival and discharge survival were 35.2% and 12.8%, respectively. The survival outcome of adults increased substantially over the past 5 yr (11.8% in 2008, 11.7% in 2010, and 13.6% in 2012; P for trend = 0.001); however, the results for children did not improve (13.6% in 2008, 11.4% in 2010, and 13.7% in 2012; P for trend = 0.870). Conclusively, we found that the overall incidence of pediatric CAs in EDs increased substantially over the past 5 yr, but without significantly higher survival outcomes.

Keywords: Pediatrics; Heart Arrest; Resuscitation; Outcome; Emergency Service, Hospital
logic characteristics and survival outcomes in children with resuscitated CAs in EDs using data from a cross-sectional, national ED-based registry.

MATERIALS AND METHODS

NEDIS database
Data were obtained from the NEDIS database, which is updated in real time by the National Emergency Medical Center (NEMC). The database was developed in 2004. Its quality control, feedback, and evaluation systems regarding emergency patients’ registration information were established in 2006 and 2007. We obtained official permission to use the extracted the NEDIS data set from the NEMC. This information included patients’ demographic characteristics, clinical parameters, ED diagnosis codes, core treatment parameters, patient disposition, and primary basic information regarding quality monitoring (11). As of 2012, all 23 level I regional centers and all 113 level II local centers had participated in the NEDIS project, accounting for more than 48.5% of the national overall ED census (Table 1). All patient-related information was automatically transferred from each hospital to a central government server within 2 or 14 days of the patient’s discharge from an ED or hospital ward, respectively. Inaccurate data were filtered by a data processing system. The health authority maintains an accuracy assessment system and annually reports the results to the Ministry of Health and Welfare.

Study population and variables
Our target was to record all cases of attempted CPR that began or continued in EDs upon arrival with OHCA (9, 12). Data for CPR-attempted CAs in EDs were extracted by the NEDIS. We used the following data from 2008 to 2012: 1) cardiac compression and/or manual defibrillation as treatment codes in the ED, 2) the ICD-10 code for CAs (I490-I469, I490, R02) in any disease field, and 3) the main symptom or diagnosis of CA, respiratory arrest, ventricular fibrillation (VF), or pulseless ventricular tachycardia (pVT) (9, 13). Cases involving death on arrival, do-not-attempt resuscitation, or pre-hospital return of spontaneous circulation were excluded.

The following variables were analyzed: patient and peri-event characteristics (i.e., sex and age [infants < 1 yr, children 1-11 yr, and adolescents 12-19 yr]), etiology (i.e., disease or injury), whether the ED diagnosis was shockable arrhythmia (i.e., VF or pVT) or if the event occurred during night duty (i.e., 11:00 PM to 07:59 AM), the admission day (i.e., weekday or weekend, and the day of the week), and the month of year (14-16).

Primary and secondary outcomes
The primary outcomes were estimated incidence and survival outcomes at admission and discharge. To understand which circadian, weekly, and monthly variations were associated with a temporal improvement in survival, we examined trend analysis as the secondary outcome (17, 18).

Statistical analysis
The overall resuscitated pediatric CAs in EDs from January 1, 2008 to December 31, 2012 were analyzed using IBM SPSS Statistics version 21.0 (SPSS Inc., Chicago, IL, USA). Descriptive statistics were presented as medians and interquartile ranges (IQR; 25th and 75th percentiles). Categorical variables were presented as numbers and percentages. Chi-square or Mann-Whitney tests were performed during the univariate analysis of the survival outcomes. The annual changes from 2008 to 2012 were tested using a linear-by-linear association and expressed as a P value for the trend (19). All statistical tests were two-tailed.

Table 1. Characteristics of the National Emergency Department Information System participants and the national emergency census in Korea

Year	Total	2008	2009	2010	2011	2012
Pediatric subgroup in NEDIS						
Pediatric, subtotal, No.	6,692,840	990,686	1,330,117	1,374,105	1,418,582	1,579,350
Infants (< 1 yr)	879,794	149,068	155,318	178,566	191,489	205,353
Children (1-11 yr)	4,067,845	600,458	785,026	855,750	865,553	970,058
Adolescents (12-19 yr)	1,745,201	241,160	389,773	339,789	370,540	403,939
Pediatric CAs in EDs, No.	2,970	510	436	600	680	744
Infants (< 1 yr)	933	175	118	193	209	238
Children (1-11 yr)	944	172	122	183	207	260
Adolescents (12-19 yr)	1093	163	196	224	264	246
CAs in EDs per 1,000 pediatric visits	3.38	3.42	3.28	3.36	3.55	3.62
Overall NEDIS database* (all ages)						
ER visits in the NEDIS database, No.	20,424,530	3,107,527	3,818,466	4,098,110	4,429,535	4,970,892
National hospital-based census*						
Total ER Visits in Korea, No.	50,522,478	8,905,766	10,814,628	10,232,016	10,327,028	10,243,040
NEDIS: national ER census ratio	40.4%	34.9%	35.3%	40.1%	42.9%	48.5%

*Data source: 2008-2012 Yearbook of Emergency Medical Statistics (reference: http://www.nemc.or.kr/). CA, cardiac arrest; ED, emergency department; ER, emergency room; NEDIS, National Emergency Department Information System.
and \(P \)-values < 0.05 were considered statistically significant.

Ethics statement
The study was reviewed and approved by the institutional review board of Kyungpook National University Hospital (KNUH 201408006). Informed consent was waived by the board.

RESULTS

Demographic characteristics
The total number of emergency visits, registered in the NEDIS from 2008 to 2012, was 20,424,530. Among these, the total number of pediatric cases was 6,692,840, of which 2,970 cases received CPR in an ED, an average of 594 visits per year (Fig. 1). These visits represented 0.34% of all pediatric ED visits over the period (rate 3.38 per 1,000 ED visits, 95% confidence interval [CI]: 3.37-3.39). The annual rates of pediatric CAs per 1,000 ED visits showed an upward trend from 2.81 in 2009 to 3.62 in 2012 (\(P \)-for trend = 0.045; Table 1).

The median number of pediatric CAs in the ED at each hospital was 39 (25th to 75th percentile, IQR, 20 to 64). For estimated annual incidence, the median number of case at each hospital per year was 7.8 (IQR, 4 to 13). The maximal and minimal numbers of registered cases were 130 and 1, respectively.

Regarding age groups, 31.4% of the cases were infants and 36.8% were adolescents. Furthermore, 63.3% of the cases were male. The frequency of cases in which the ED diagnosis was pVT or VF was 2.8%; the frequency of cases in which the cause of CA was trauma, poisoning, or other injuries was 37.4%; and the frequency of cases during night duty (11:00 PM to 07:59 AM) was 33.3%. Public ambulance services were used in 59.7% of the ED cases. The characteristics of the overall and annual resuscitated pediatric CAs in EDs are shown in Table 2.

Survival outcomes
The overall rates for admission survival and discharge survival were 35.2% and 12.8%, respectively (Table 2). Among admitted patients, 149/339 (44.0%) infants, 97/324 (29.9%) children, and 133/382 (34.8%) adolescents survived at discharge (Fig. 1).

Of hospital factors, a greater survival at discharge was observed in hospitals located in the metropolitan area (odds ratio [OR], 1.41; 95% CI, 1.11-1.79, \(P \) = 0.005) and hospitals with higher annual CPR volume (OR, 1.38; 95% CI, 1.06-1.87, \(P \) = 0.034), but not high EMC levels (OR, 1.19; 95% CI, 0.92-1.53, \(P \) = 0.179).

Circadian, weekly, and monthly variations
The circadian variation among all children with a CA in the ED is shown in Fig. 2. Bimodal incidence peaks (one in the late morning and one in the afternoon) was observed; however, there was a trough at 2 to 3 AM (\(n = 78 \), 2.6%). The highest survival discharge rate was observed at 4 to 5 PM (29/147, 19.7%). Three lower troughs were detected at 7 to 8 AM (6/111, 5.4%), midnight to 2 AM (14/181, 7.7%), and 6 to 7 PM (14/169, 8.3%). The survival discharge rate was statistically different according to the hour of day (\(P \) = 0.028).

There was uniformity in the occurrence of CA by day of the week. The highest and lowest incidence rates were observed on Mondays (473 victims) and Tuesday (383 victims), respectively; however, the survival discharge rate was not significantly different (11.1% to 14.1%, \(P \) = 0.863). The months with the highest...
and lowest survival outcome were June (41/228, 18.0%) and December (27/277, 9.7%), respectively; however, there was no significant difference in the monthly variations of pediatric resuscitation-attempted CAs in EDs \((P = 0.207) \).

Comparison of survival outcome trends between children and adults

In children, the trend for the discharge survival rate was similar in the two etiology groups of sudden cardiac death (Fig. 3A). In adults, survival rates of medical caused-CAs increased over time (13.8% in 2008, 13.5% in 2010, and 15.9% in 2012; \(P \) for trend = 0.001; Fig. 3B). Survival outcomes did not improve in injury-induced CAs in both children and adults (\(P \) for trend = 0.062 and 0.886). In adults, overall annual survival rates at discharge grad-

Table 2. Trend of pediatric-resuscitated cardiac arrests in emergency departments

Variables	Overall \((n = 2,970) \)	2008 \((n = 510) \)	2009 \((n = 436) \)	2010 \((n = 600) \)	2011 \((n = 680) \)	2012 \((n = 744) \)	\(P \) for trend	
Prevalence (per 1,000 ED visits)	3.38	3.42	2.81	3.36	3.55	3.62	0.045	
Demographics, No. (%)								
Age, median (IQR)								
Infants (< 1 yr)	5 (0-15)	4 (0-14)	8 (0-16)	6 (0-15)	7 (0-16)	4 (0-14)		
Children (1-11 yr)	933 (31.4)	175 (34.3)	118 (27.1)	193 (32.2)	209 (30.7)	238 (32.0)	0.737	
Adolescents (12-19 yr)	944 (31.8)	172 (33.7)	122 (28.0)	183 (30.5)	207 (30.4)	260 (34.9)		
Sex, male	1,879 (63.3)	321 (62.9)	277 (63.5)	383 (63.8)	428 (62.9)	471 (63.2)	0.969	
Event time, No. (%)								
Night, 11 PM-8 AM	981 (33.0)	150 (29.4)	124 (28.4)	213 (35.5)	217 (31.9)	277 (37.2)	0.002	
Weekend	875 (29.5)	147 (28.8)	115 (26.4)	182 (30.3)	215 (31.6)	216 (29.0)	0.423	
Etiology of cardiac arrest, No. (%)								
Shockable rhythm (VF/pVT)	84 (2.8)	6 (1.2)	10 (2.2)	20 (3.4)	20 (3.0)	28 (3.8)	0.063	
Medical disease progression	1,857 (62.6)	315 (62.0)	237 (54.5)	374 (62.4)	452 (66.5)	479 (64.4)	0.012	
Trauma, poisoning, other injuries	1,109 (37.4)	193 (38.0)	198 (45.5)	225 (37.6)	228 (33.5)	265 (35.6)	0.012	
Transport by public ambulance	1,774 (59.7)	321 (62.9)	277 (63.5)	383 (63.8)	428 (62.9)	471 (63.2)	0.002	
Survival outcomes, No. (%)								
Survival at admission	1,045 (35.2)	192 (37.8)	155 (35.6)	185 (30.9)	243 (35.7)	270 (36.3)	0.823	
Survival at discharge	379 (12.8)	69 (13.6)	55 (12.6)	68 (11.4)	85 (12.5)	102 (13.7)	0.870	

Data are shown as the number of events (column percentage); *Unknown or undetermined data: survival admission analysis (Year 2008 \(n = 2 \), Year 2010 \(n = 2 \)) and survival discharge analysis (Year 2008 \(n = 3 \), Year 2010 \(n = 2 \)). ED, emergency department; IQR, interquartile range; pVT, pulseless ventricular tachycardia; VF, ventricular fibrillation.

Fig. 2. Circadian survival rhythm of pediatric cardiac arrests (CAs) in the emergency department (ED).

Fig. 3. Trend plots of survival discharge in children (A) and adults (B) by calendar year. During the past 5 yr, the proportion of children survivors (overall, cardiac, and trauma group) did not improve (all \(P \) for trend > 0.05). However, the proportion of adult survivors (overall and non-traumatic group) increased over time (\(P \) for trend < 0.05).
 специально. Эти показатели были вдвое выше, чем те, что были отмечены в предыдущих исследованиях.

DISCUSSION

ранее были сосредоточены на экстренном лечении в больничных условиях. Согласно данным Корейского центра по контролю за инфекционными заболеваниями и предотвращению заболеваний (CAVAS проект), инцидентность несчастных случаев с ОИХ в Корее была 4,2 на 100,000 человек за год, с вероятностью выживания 4,9% с 2006 по 2007 годы (5). Однако, исследования, связанные с ОИХ, в ретроспективном анализе и проведенная в отдельном центре с только несколько лет данных, еще не привели к тенденции. Ранее проведенные исследования показали, что дети с ОИХ были более часто, чем ОИХ, в возрасте 0-15 лет, с процентом 8,1% в мета-анализе и 7-9% в некоторых популяционных исследованиях (5, 8, 26). Это означает, что некоторые шокирующие аритмии могут не быть связаны с ОИХ. Однако, другие исследования показывают, что у детей есть аритмии (8, 24-26). В отличие от других исследований, мы демонстрируем циркадный ритм артирий и вариаций в инцидентности и выживаемости детей с ОИХ в диапазоне от 7 до 8 AM и 6-7 PM. Дети с ОИХ в ночное время имели более высокую смертность, чем другие периоды. Это согласуется с результатами недавних исследований (13-16), но не с результатами исследования (13-16), но не со всеми результатами других исследований. Нам представляется хороший подход к улучшению педиатрической выживаемости.

Одним из наиболее влиятельных факторов, связанных с ОИХ, являются пациенты с ОИХ (21, 22). В первом исследовании было показано, что пациенты с ОИХ (0,3%) и 2,970 были проведены на педиатрических пациентах; поэтому, предсказанный процент реанимационных ОИХ составил 3,38 случая на 1,000 педиатрические ЭД приходится на 0,34%. Основываясь на том, что частота педиатрических аритмий и реанимационные усилия увеличились в течение года (P для тренда = 0.045). Однако, некоторые из них были недооценены (3,42 события на 1,000 педиатрические ЭД в 2008 vs. 2,81 в 2009) из-за необычно высокой частоты педиатрических ЭД в 2009, главным образом из-за пандемии гриппа A.

Для Южной Кореи были получены результаты, которые согласуются с результатами других исследований. Южная Корея предъявляет определенные требования к педиатрической медицине. Пациенты с ОИХ или реанимационные ОИХ, которые были проведены на педиатрических пациентах, обычно представляют собой острые и критические проблемы, и их уровень нестабильности может быть выше, чем у других пациентов. Основываясь на этих данных, нам представляется хороший подход к улучшению педиатрической выживаемости.

В прошлом были отмечены следующие результаты: в Южной Корее было 11,8% пациентов с ОИХ в 2008, 11,7% в 2010, и 13,6% в 2012; P для тренда = 0,001; Fig. 3B); однако, у детей уровень нестабильности улучшился (13,6% в 2008, 11,4% в 2010, и 13,7% в 2012; P для тренда = 0,870; Fig. 3A).
ent definitions and study designs. The coding rhythm in the present study was different from the actual monitored electrocardiogram because shockable rhythms were estimated from the ICD-10 codes (VF and VT) or attempted manual defibrillation.

Despite increased survival rates after CA in other countries, trends for survival outcomes of pediatric CAs did not improve in Korea during the 5 yr (24). The overall rate of survival at discharge of resuscitated pediatric CAs in EDs was 12.8% compared with 12.5% for adults. According to the trend analysis, a survival rate of resuscitated adult CAs in EDs improved from 2008 to 2012; however, that of resuscitated pediatric CAs remained unchanged. Although development of medical facility and an extended CPR training program have been continued, these resources only affected adult survival outcomes of ALS-attempted CAs in EDs and not children. Pediatric CA patients constitute a relatively small patient population in the ED. On average, the rate of pediatric CAs in the United States was 15 in-hospital and 6 out-of-hospital arrests per hospital per year. Similarly in this study, the median number of pediatric CAs in the ED at each hospital was 7.8 cases per year in Korea, which can consequently lead to unfamiliarity regarding proper pediatric CA procedures among hospital staff (1).

Regionalization of healthcare means providing high-quality and cost-effective care for patients in critical conditions. Therefore, CA centers have been suggested as a strategy to improve survival outcomes (9). Regarding inter-hospital variability of post-CA mortality, several researchers have previously reported that CA patients treated at higher volume centers admitted to the ICU or ED per year were significantly less likely to die in the hospital (21, 27). This provides support for regionalized CA care systems that include a designated high volume cardiac resuscitation center (16). Related hospital factors in the present study corresponded with the aforementioned studies in which a greater survival was reported in an urban location, a teaching hospital, a hospital with > 20,000 ED visits, a hospital with emergent intervention capability, and hospitals with high OHCA volume EDs (9, 16, 27). Similar to previous studies, a greater survival at discharge was observed in hospitals located in the metropolitan area and hospitals that had higher annual CPR volume, but not EMC levels.

This study has several limitations. Firstly, although a nationwide database was used, not all EDs in Korea were included. Pediatric resuscitation was not likely to be performed in locations with EDs below level III; therefore, we were able to identify a general trend for pediatric CAs using the NEDIS data, which included all level I and II EDs. Secondly, given the limited details of the NEDIS reports, data regarding long-term survival or neurologic status were not included in the analysis. Therefore, the final outcomes were determined at hospital discharge without 6-month survival and neurocognitive follow-up. However, previous researchers have indicated that survival outcome at discharge was not substantially different from status at 6 months and 1 yr post-arrest (28). Thirdly, we did not conduct subgroup analysis for OHCA and CAs that occurred in EDs. We were unable to separate the NEDIS dataset into OHCAs resuscitated in EDs and IHCA in EDs. Finally, it was difficult to compare CA characteristics over time with that of previous studies (CAVAS in Korea, Pediatric Emergency Care Applied Research Network, and Get With the Guidelines-Resuscitation Investigators group in the United States) because of differences in the inclusion criteria (e.g., including trauma victims) and definitions of CA (e.g., resuscitated with manual compression, adrenalin, and/or defibrillation) and the age of the pediatric group (e.g., less than 20 yr or 18 yr).

In conclusion, we found that the NEDIS-based nationwide incidence rate of resuscitated pediatric CAs in EDs was 3.38 per 1,000 ED visit per year. The overall rate of survival at discharge was 12.8%. In the trend analysis, the survival rate of resuscitated adult CAs in EDs improved from 2008 to 2012, but the survival rate of pediatric CA patients remained unchanged. Future studies are needed to determine the multidisciplinary hospital and patient factors responsible for improving CA survival in children.

DISCLOSURE

The authors have no conflicts of interest to declare.

AUTHOR CONTRIBUTION

Conception & design of the study: Lee MJ. Acquisition of data and statistical analysis: Ahn JY, Kim H, Lee MJ. Data review: Yoon HD, Jang HY. Manuscript preparation: Ahn JY, Lee MJ. Revised manuscript: Kim H, Lee MJ. Manuscript approval: all authors.

ORCID

Jae Yun Ahn http://orcid.org/0000-0002-1050-8575
Mi Jin Lee http://orcid.org/0000-0002-3773-8047

REFERENCES

1. Woods WA. Pediatric resuscitation and cardiac arrest. Emerg Med Clin North Am 2012; 30: 153-68.
2. Young KD, Gausche-Hill M, McClung CD, Lewis RJ. A prospective, population-based study of the epidemiology and outcome of out-of-hospital pediatric cardiopulmonary arrest. Pediatrics 2004; 114: 157-64.
3. Herlitz J, Svensson L, Engdahl J, Gelberg I, Silfverstolpe J, Wisten A, Angelquist KA, Holmberg S. Characteristics of cardiac arrest and resuscitation by age group: an analysis from the Swedish Cardiac Arrest Registry. Am J Emerg Med 2007; 25: 1025-31.
4. Meert KL, Donaldson A, Nadkarni V, Tieves KS, Schleien CL, Brilll RJ, Clark RS, Shaffner DH, Levy F, Statler K, et al.; Pediatric Emergency Care
Ahn JY, et al. • Survival Trends of Pediatric Cardiac Arrests in Emergency Departments

Applied Research Network. Multicenter cohort study of in-hospital pediatric cardiac arrest. Pediatr Crit Care Med 2009; 10: 544-53.

5. Park CB, Shin SD, Suh GJ, Ahn KO, Cha WC, Song KJ, Kim SJ, Lee EJ, Ong ME. Pediatric out-of-hospital cardiac arrest in Korea: A nationwide population-based study. Resuscitation 2010; 81: 512-7.

6. Lee MJ. Incidence and outcome of cardiac arrest in Korea. J Korean Soc Emerg Med 2012; 23: 168-80.

7. Kim WJ, Kim JJ, Jang JH, Hyun SY, Yang HJ, Lee G. Implementation of therapeutic hypothermia after pediatric out-of-hospital cardiac arrest in one tertiary emergency center. Korean J Crit Care Med 2013; 28: 25-32.

8. Nadkarni VM, Larkin GL, Peberdy MA, Carey SM, Kaye W, Mancini ME, Nichol G, Lane-Truit T, Potts J, Ornato JP, et al.; National Registry of Cardiopulmonary Resuscitation Investigators. First documented rhythm and clinical outcome from in-hospital cardiac arrest among children and adults. JAMA 2006; 295: 50-7.

9. Johnson NJ, Saltai RA, Abella BS, Neumar RW, Gaieski DF, Carr BG. Emergency department factors associated with survival after sudden cardiac arrest. Resuscitation 2013; 84: 292-7.

10. Cho H, Moon S, Park SJ, Han G, Park JH, Lee H, Choi J, Hwang S, Bobrow BJ. Out-of-hospital cardiac arrest: incidence, process of care, and outcomes in an urban city, Korea. Clin Exp Emerg Med 2014; 1: 94-100.

11. Kwak YH, Kim DK, Jang HY. Utilization of emergency department by children in Korea. J Korean Med Sci 2012; 27: 1222-8.

12. Tunstall-Pedoe H, Bailey L, Chamberlain DA, Marsden AK, Ward ME, Zideman DA. Survey of 3765 cardiopulmonary resuscitations in British hospitals (the BRESUS Study): methods and overall results. BMJ 1992; 304: 1347-51.

13. Valderrama AL, Fang J, Merritt RK, Hong Y. Cardiac arrest patients in the emergency department-National Hospital Ambulatory Medical Care Survey, 2001-2007. Resuscitation 2011; 82: 1298-301.

14. Peberdy MA, Ornato JP, Larkin GL, Braithwaite RS, Kashner TM, Carey SM, Meaney PA, Cen L, Nadkarni VM, Præstgaard AH, et al.; National Registry of Cardiopulmonary Resuscitation Investigators. Survival from in-hospital cardiac arrest during nights and weekends. JAMA 2008; 299: 785-92.

15. Ro YS, Shin SD, Song KJ, Lee EJ, Kim YJ, Ahn KO, Chung SP, Kim YT, Hong SO, Choi JA, et al. A trend in epidemiology and outcomes of out-of-hospital cardiac arrest by urbanization level: a nationwide observational study from 2006 to 2010 in South Korea. Resuscitation 2013; 84: 547-57.

16. Carr BG, Kahn JM, Merchant RM, Kramer AA, Neumar RW. Inter-hospital variability in post-cardiac arrest mortality. Resuscitation 2009; 80: 30-4.

17. Nakanishi N, Nishizawa S, Kitamura Y, Nakamura T, Matsumoto A, Sawada T, Matsubara H. Circadian, weekly, and seasonal mortality variations in out-of-hospital cardiac arrest in Japan: analysis from AMI-Kyoto Multicenter Risk Study database. Am J Emerg Med 2011; 29: 1037-43.