Supplementary Materials

New azolyl-derivatives as multitargeting agents against breast cancer and fungal infections: synthesis, biological evaluation and docking study

Cristina Maccallini¹, Marialucia Gallorini¹, Francesca Sisto², Atilla Akdemir³, Alessandra Ammazzalorso¹, Barbara De Filippis¹, Marialuigia Fantacuzzi¹, Letizia Giampietro¹, Simone Carradori¹,³,* Amelia Cataldi¹, Rosa Amoroso¹

¹Department of Pharmacy, University “G. d’Annunzio” of Chieti -Pescara, Via dei Vestini 31, 66100 Chieti, Italy
²Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, University of Milan, 20122 Milan, Italy
³Bezmialem Vakif University, Computer-aided drug discovery laboratory, Department of Pharmacology, Faculty of Pharmacy, 34093 Istanbul, Turkey

*Corresponding Author: Simone Carradori; simone.carradori@unich.it

Figure S1. The binding interactions (panel A) and binding energy (panel B) of compound 4-androstene-3-17-dione with the hCYP19A1 active site during the 50 ns MD simulation. Hydrophobic amino acids are indicated in green and cationic amino acids are indicated in purple.
Figure S2. The binding interactions (panel A) and binding energy (panel B) of compound ethylisothiourea with the iNOS active site during the 50 ns MD simulation. Hydrophobic amino acids are indicated in green and anionic amino acids are indicated in red.
Figure S3. The binding interactions (panel A) and binding energy (panel B) of compound *itraconazole* with the CaCYP51 active site during the 50 ns MD simulation. Hydrophobic amino acids are indicated in green.

Figure S4. Compound 5 chemical stability in NaOH (pH=9): superimposition of selected chromatograms recorded after 5' (black), 1 h (blue) and 2 h (green) incubation time at 37° C.
Compound 7
Compound 7
Compound 8
Compound 14
Compound 15
Compound 17

Diagram showing various chemical shifts and intensities in the range of 150-2 ppm.
Compound 19
Compound 20
