Operator product expansion on the lattice: analytic Wilson coefficients

Holger Perlß¹

¹Leipzig University,
together with: M. Göckeler, R. Horsley, P. Rakow, G. Schierholz, A. Schiller
(QCDSF collaboration)

CompPhys06 workshop
Leipzig, November 30- December 2, 2006
Outline

Introduction
Lattice OPE and structure functions

Calculation

Results
0th order
1st order

Conclusions
Introduction

Lattice OPE and structure functions

Calculation

Results

0^{th} order

1^{st} order

Conclusions
Outline

Introduction
Lattice OPE and structure functions

Calculation

Results
0th order
1st order

Conclusions
Outline

Introduction
Lattice OPE and structure functions

Calculation

Results
0th order
1st order

Conclusions
Scheme of deep inelastic scattering

\[k \rightarrow k' \]

\[e \rightarrow \text{u, d} \]

\[N \rightarrow h, \pi^+ \]

\[C(q^2) \]

\[A(p) \]
Lattice OPE

Moments of structure functions ($\mathcal{M}_n(q^2)$) are related to operator product expansion (OPE) of the product of two conserved vector currents between states of particles

$$\mathcal{M}_n(q^2) = C_n^{(2)}(a, q) A_n^{(2)}(a) + \frac{C_n^{(4)}(a, q)}{q^2} A_n^{(4)}(a) + \ldots ,$$

$A_n^{(2)}, A_n^{(4)}$: reduced nucleon matrix elements of local operators of twist-two and four

$C_n^{(2)}, C_n^{(4)}$: Wilson coefficients

$A_n^{(i)}$: computed on the lattice

$C_n^{(i)}$: usually computed perturbatively in \overline{MS}-scheme
Moments of structure functions ($\mathcal{M}_n(q^2)$) are related to operator product expansion (OPE) of the product of two conserved vector currents between states of particles

$$\mathcal{M}_n(q^2) = C_n^{(2)}(a, q) A_n^{(2)}(a) + \frac{C_n^{(4)}(a, q)}{q^2} A_n^{(4)}(a) + \ldots,$$

$A_n^{(2)}, A_n^{(4)}$: reduced nucleon matrix elements of local operators of twist-two and four
$C_n^{(2)}, C_n^{(4)}$: Wilson coefficients

$A_n^{(i)}$: computed on the lattice
$C_n^{(i)}$: usually computed perturbatively in $\overline{\text{MS}}$-scheme
Moments of structure functions ($\mathcal{M}_n(q^2)$) are related to operator product expansion (OPE) of the product of two conserved vector currents between states of particles

$$\mathcal{M}_n(q^2) = C_n^{(2)}(a, q) A_n^{(2)}(a) + \frac{C_n^{(4)}(a, q)}{q^2} A_n^{(4)}(a) + \ldots,$$

$A_n^{(2), 4}$: reduced nucleon matrix elements of local operators of twist-two and four

$C_n^{(2), 4}$: Wilson coefficients

$A_n^{(i)}$: computed on the lattice

$C_n^{(i)}$: usually computed perturbatively in \overline{MS}-scheme
Wilson coefficients

Problems:

- Operator mixing (higher and leading twist) on the lattice
- Renormalon contributions: coefficients of leading twist operators and expectation values of higher twist operators → cancel in the complete OPE sum if calculated in the same framework: lattice → it is recommended to compute the Wilson coefficients on the lattice as well → need to control possible lattice artefacts ($O(a^2)$ - effects)
Wilson coefficients

Problems:

- Operator mixing (higher and leading twist) on the lattice
- Renormalon contributions: coefficients of leading twist operators and expectation values of higher twist operators → cancel in the complete OPE sum if calculated in the same framework: lattice

→ it is recommended to compute the Wilson coefficients on the lattice as well
→ need to control possible lattice artefacts ($O(a^2)$ - effects)
Wilson coefficients

Problems:

- Operator mixing (higher and leading twist) on the lattice
- Renormalon contributions: coefficients of leading twist operators and expectation values of higher twist operators \rightarrow cancel in the complete OPE sum if calculated in the same framework: lattice

\rightarrow it is recommended to compute the Wilson coefficients on the lattice as well

\rightarrow need to control possible lattice artefacts ($O(a^2)$ - effects)
Wilson coefficients

Problems:

- Operator mixing (higher and leading twist) on the lattice
- Renormalon contributions: coefficients of leading twist operators and expectation values of higher twist operators → cancel in the complete OPE sum if calculated in the same framework: lattice
 → it is recommended to compute the Wilson coefficients on the lattice as well
 → need to control possible lattice artefacts ($O(a^2)$ - effects)
Wilson coefficients

Problems:
 ▶ Operator mixing (higher and leading twist) on the lattice
 ▶ Renormalon contributions: coefficients of leading twist operators and expectation values of higher twist operators → cancel in the complete OPE sum if calculated in the same framework: lattice
 → it is recommended to compute the Wilson coefficients on the lattice as well
 → need to control possible lattice artefacts ($\mathcal{O}(a^2)$ - effects)
Wilson coefficients and $O(a^2)$ - effects

Reduced Wilson coefficients $c(q^2)$:

$$C(a, q) = c(q^2) \, C_{BORN}(a, q),$$

On the lattice both the non-perturbative $C(a, q)$ and $C_{BORN}(a, q)$ have corrections of $O(a^2)$:

$$C_{BORN}(a, q) = C_{BORN}^{(0)} + (aq)^2 \, C_{BORN}^{(2)} + \ldots$$

$$C(a, q) = c^{(0)}(q^2) \, C_{BORN}^{(0)} + (aq)^2 \, c^{(2)}(q^2) \, C_{BORN}^{(2)} + \ldots,$$

Taking the the ratio

$$\frac{C(a, q)}{C_{BORN}(a, q)} = c^{(0)}(q^2) + \left(c^{(2)}(q^2) - c^{(0)}(q^2) \right) \frac{C_{BORN}^{(2)}}{C_{BORN}^{(0)}} (aq)^2 + \ldots,$$
Wilson coefficients and $O(a^2)$ - effects

Reduced Wilson coefficients $c(q^2)$:

$$ C(a, q) = c(q^2) C_{BORN}(a, q), $$

On the lattice both the non-perturbative $C(a, q)$ and $C_{BORN}(a, q)$ have corrections of $O(a^2)$:

$$ C_{BORN}(a, q) = C_{BORN}^{(0)} + (aq)^2 C_{BORN}^{(2)} + \ldots $$

$$ C(a, q) = c^{(0)}(q^2) C_{BORN}^{(0)} + (aq)^2 c^{(2)}(q^2) C_{BORN}^{(2)} + \ldots, $$

Taking the the ratio

$$ \frac{C(a, q)}{C_{BORN}(a, q)} = c^{(0)}(q^2) + (c^{(2)}(q^2) - c^{(0)}(q^2)) \frac{C_{BORN}^{(2)}}{C_{BORN}^{(0)}} (aq)^2 + \ldots, $$
Wilson coefficients and $\mathcal{O}(a^2)$ - effects

Reduced Wilson coefficients $c(q^2)$:

$$ C(a, q) = c(q^2) \, C_{\text{BORN}}(a, q), $$

On the lattice both the non-perturbative $C(a, q)$ and $C_{\text{BORN}}(a, q)$ have corrections of $\mathcal{O}(a^2)$:

$$ C_{\text{BORN}}(a, q) = C^{(0)}_{\text{BORN}} + (aq)^2 \, C^{(2)}_{\text{BORN}} + \ldots $$

$$ C(a, q) = c^{(0)}(q^2) \, C^{(0)}_{\text{BORN}} + (aq)^2 \, c^{(2)}(q^2) \, C^{(2)}_{\text{BORN}} + \ldots , $$

Taking the the ratio

$$ \frac{C(a, q)}{C_{\text{BORN}}(a, q)} = c^{(0)}(q^2) + \left(c^{(2)}(q^2) - c^{(0)}(q^2) \right) \frac{C^{(2)}_{\text{BORN}}}{C^{(0)}_{\text{BORN}}} (aq)^2 + \ldots , $$
Symbolic calculation of $C^{(2)}_{\text{BORN}}$

Starting point:

Tree level Compton scattering amplitude $\mathcal{W}_{\mu \nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$
\mathcal{W}_{\mu \nu}(a, p, q) = \langle p | \hat{J}_\mu(q) \hat{J}^\dagger_\nu(q) | p \rangle = \langle p | T_{\mu \nu} | p \rangle = \sum_{m,n} C^m_{\mu \nu, \mu_1, \ldots, \mu_n}(aq) \langle p | \mathcal{O}(a)^m_{\mu_1, \ldots, \mu_n} | p \rangle.
$$

- Expansion into powers of $p_\nu (\rightarrow \overleftrightarrow{D}_\nu)$ up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^m_{\mu_1, \ldots, \mu_n}$ contributing to $\mathcal{W}_{\mu \nu}(a, p, q)$
- Unpolarised case: $\bar{\psi} \gamma_\mu \gamma_5 \psi$, $\bar{\psi} \gamma_\mu \gamma_\nu \hat{\psi}$, $\bar{\psi} \gamma_\mu \hat{D}_\nu \psi$
 - Polarised case: $\bar{\psi} \gamma_\mu \gamma_5 \gamma_5 \psi$, $\bar{\psi} \sigma_{\mu \nu} \hat{D}_\nu \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group $H(4)$
- Projection of the corresponding coefficients → Wilson coefficients
- This program has been carried out with Mathematica completely
Symbolic calculation of $C^{(2)}_{\text{BORN}}$

Starting point:

Tree level Compton scattering amplitude $\mathcal{W}_{\mu \nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$\mathcal{W}_{\mu \nu}(a, p, q) = \langle p|\hat{J}_\mu(q)\hat{J}^\dagger_\nu(q)|p\rangle$$

$$= \langle p|\mathcal{T}_{\mu \nu}|p\rangle$$

$$= \sum_{m,n} C^m_{\mu \nu, \mu_1, ..., \mu_n}(aq) \langle p|\mathcal{O}(a)^m_{\mu_1, ..., \mu_n}|p\rangle .$$

- Expansion into powers of $p_\nu (\leftrightarrow \vec{D}_\nu)$ up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^m_{\mu_1, ..., \mu_n}$ contributing to $\mathcal{W}_{\mu \nu}(a, p, q)$
- Unpolarised case: $\bar{\psi}\psi, \bar{\psi}\gamma_\mu \vec{D}_\nu \psi, \bar{\psi}\vec{D}_\mu \vec{D}_\nu \psi, \bar{\psi}\gamma_\mu \vec{D}_\nu \vec{D}_\omega \vec{D}_\rho \psi$
- Polarised case: $\bar{\psi}\gamma_\mu \gamma_5 \psi, \bar{\psi}\sigma_{\mu \nu} \vec{D}_\omega \psi, \bar{\psi}\gamma_\mu \gamma_5 \vec{D}_\nu \vec{D}_\omega \psi, \bar{\psi}\sigma_{\mu \nu} \vec{D}_\omega \vec{D}_\rho \vec{D}_\lambda \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group H(4)
- Projection of the corresponding coefficients \rightarrow Wilson coefficients
- This program has been carried out with Mathematica completely
Symbolic calculation of $C^{(2)}_{\text{BORN}}$

Starting point:

Tree level Compton scattering amplitude $\mathcal{W}_{\mu\nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$\mathcal{W}_{\mu\nu}(a, p, q) = \langle p|\hat{J}_\mu(q)\hat{J}_\nu^\dagger(q)|p\rangle$$

$$= \langle p|T_{\mu\nu}|p\rangle$$

$$= \sum_{m,n} C^m_{\mu\nu,\mu_1,...,\mu_n} (aq) \langle p|\mathcal{O}(a)^m_{\mu_1,...,\mu_n}|p\rangle.$$

- Expansion into powers of $p_\nu (\leftrightarrow \hat{D}_\nu)$ up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^m_{\mu_1,...,\mu_n}$ contributing to $\mathcal{W}_{\mu\nu}(a, p, q)$
 - Unpolarised case: $\bar{\psi}\psi, \bar{\psi}\gamma_\mu \hat{D}_\nu \psi, \bar{\psi} \hat{D}_\mu \hat{D}_\nu \psi, \bar{\psi}\gamma_\mu \hat{D}_\nu \hat{D}_\omega \hat{D}_\rho \psi$
 - Polarised case: $\bar{\psi}\gamma_\mu \gamma_5 \psi, \bar{\psi}\sigma_{\mu\nu} \hat{D}_\omega \psi, \bar{\psi}\gamma_\mu \gamma_5 \hat{D}_\nu \hat{D}_\omega \hat{D}_\rho \psi, \bar{\psi}\sigma_{\mu\nu} \hat{D}_\omega \hat{D}_\rho \hat{D}_\lambda \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group H(4)
- Projection of the corresponding coefficients \rightarrow Wilson coefficients
- This program has been carried out with Mathematica completely
Symbolic calculation of $C^{(2)}_{BORN}$

Starting point:
Tree level Compton scattering amplitude $\mathcal{W}_{\mu\nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$\mathcal{W}_{\mu\nu}(a, p, q) = \langle p | \hat{J}_{\mu}(q) \hat{J}^{\dagger}_{\nu}(q) | p \rangle = \langle p | \mathcal{T}_{\mu\nu} | p \rangle = \sum_{m,n} C^{m}_{\mu\nu, \mu_1, \ldots, \mu_n}(aq) \langle p | \mathcal{O}(a)^{m}_{\mu_1, \ldots, \mu_n} | p \rangle .$$

- Expansion into powers of $p\nu$ ($\leftrightarrow \vec{D} \nu$) up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^{m}_{\mu_1, \ldots, \mu_n}$ contributing to $\mathcal{W}_{\mu\nu}(a, p, q)$
- Unpolarised case: $\bar{\psi} \gamma_\mu \gamma_5 \psi$, $\bar{\psi} \gamma_\mu \vec{D} \nu \psi$, $\bar{\psi} \gamma_\mu \vec{D} \nu \vec{D} \omega \vec{D} \rho \psi$
 Polarised case: $\bar{\psi} \gamma_\mu \gamma_5 \gamma_\sigma \psi$, $\bar{\psi} \sigma_{\mu\nu} \vec{D} \omega \psi$, $\bar{\psi} \gamma_\mu \gamma_5 \vec{D} \nu \vec{D} \omega \psi$, $\bar{\psi} \sigma_{\mu\nu} \vec{D} \omega \vec{D} \rho \vec{D} \lambda \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group H(4)
- Projection of the corresponding coefficients \rightarrow Wilson coefficients
- This program has been carried out with Mathematica completely
Symbolic calculation of $C_{\text{BORN}}^{(2)}$

Starting point:

Tree level Compton scattering amplitude $\mathcal{W}_{\mu\nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$
\mathcal{W}_{\mu\nu}(a, p, q) = \langle p | \hat{J}_\mu(q) \hat{J}_\nu^\dagger(q) | p \rangle \\
= \langle p | T_{\mu\nu} | p \rangle \\
= \sum_{m,n} C_{\mu\nu,\mu_1,\ldots,\mu_n}^m(aq) \langle p | \mathcal{O}(a)^m_{\mu_1,\ldots,\mu_n} | p \rangle.
$$

- Expansion into powers of $p_\nu (\leftrightarrow \vec{D}_\nu)$ up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^m_{\mu_1,\ldots,\mu_n}$ contributing to $\mathcal{W}_{\mu\nu}(a, p, q)$
- Unpolarised case: $\bar{\psi} \gamma^\mu \nu \psi, \bar{\psi} \gamma^\mu D_\nu \psi, \bar{\psi} D^\mu \nu \psi, \bar{\psi} \gamma^\mu D_\nu D_\omega \psi, \bar{\psi} \gamma^5 \gamma^\mu D_\nu \psi, \bar{\psi} \gamma^5 \gamma^\mu D_\nu D_\omega \psi$
- Polarised case: $\bar{\psi} \gamma^\mu \gamma^5 \psi, \bar{\psi} \sigma_{\mu\nu} \vec{D}_\omega \psi, \bar{\psi} \gamma^\mu \gamma_5 \gamma^\mu D_\nu \psi, \bar{\psi} \gamma^\mu \gamma_5 \gamma^\mu D_\nu D_\omega \psi, \bar{\psi} \sigma_{\mu\nu} \vec{D}_\omega \psi, \bar{\psi} \sigma_{\mu\nu} \vec{D}_\omega \vec{D}_\rho \vec{D}_{\lambda} \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group $H(4)$
- Projection of the corresponding coefficients \rightarrow Wilson coefficients
- This program has been carried out with *Mathematica* completely
Symbolic calculation of \(C^{(2)}_{\text{BORN}} \)

Starting point:

Tree level Compton scattering amplitude \(\mathcal{W}_{\mu \nu}(a, p, q) \) with off-shell quark states of momentum \(p \) in Wilson’s formulation:

\[
\mathcal{W}_{\mu \nu}(a, p, q) = \langle p|\hat{J}_\mu(q)\hat{J}_\nu^+(q)|p\rangle \\
= \langle p|T_{\mu \nu}|p\rangle \\
= \sum_{m,n} C_{\mu \nu, \mu_1,...,\mu_n}^m(aq) \langle p|\mathcal{O}(a)^m_{\mu_1,...,\mu_n}|p\rangle.
\]

- Expansion into powers of \(p_{\mu} \leftrightarrow \hat{D}_{\nu} \) up to third order (restriction due to numerical simulations)
- Identification of the possible local operators \(\mathcal{O}(a)^m_{\mu_1,...,\mu_n} \) contributing to \(\mathcal{W}_{\mu \nu}(a, p, q) \)
- Unpolarised case:
 - \(\bar{\psi} \gamma_\mu \gamma_5 \psi \), \(\bar{\psi} \gamma_\mu \hat{D}_\nu \psi \), \(\bar{\psi} \hat{D}_\mu \hat{D}_\nu \psi \), \(\bar{\psi} \gamma_\mu \hat{D}_\nu \hat{D}_\omega \hat{D}_\rho \psi \)
- Polarised case:
 - \(\bar{\psi} \gamma_\mu \gamma_5 \psi \), \(\bar{\psi} \sigma_{\mu \nu} \hat{D}_\omega \psi \), \(\bar{\psi} \gamma_\mu \gamma_5 \hat{D}_\nu \hat{D}_\omega \psi \), \(\bar{\psi} \sigma_{\mu \nu} \hat{D}_\omega \hat{D}_\rho \hat{D}_\lambda \psi \)
- Expansion of the operators into the bases of irreducible representations of hypercubic group \(H(4) \)
- Projection of the corresponding coefficients → Wilson coefficients
- This program has been carried out with Mathematica completely
Symbolic calculation of $C^{(2)}_{\text{BORN}}$

Starting point:
tree level Compton scattering amplitude $\mathcal{W}_{\mu\nu}(a, p, q)$ with off-shell quark states of momentum p in Wilson’s formulation:

$$
\mathcal{W}_{\mu\nu}(a, p, q) = \langle p | \hat{J}_\mu(q) \hat{J}^{\dagger}_\nu(q) | p \rangle
= \langle p | T_{\mu\nu} | p \rangle
= \sum_{m, n} C_{\mu\nu, \mu_1, \ldots, \mu_n}^m(aq) \langle p | \mathcal{O}(a)^m_{\mu_1, \ldots, \mu_n} | p \rangle.
$$

- Expansion into powers of $p_\nu (\leftrightarrow \overrightarrow{D}_\nu)$ up to third order (restriction due to numerical simulations)
- Identification of the possible local operators $\mathcal{O}(a)^m_{\mu_1, \ldots, \mu_n}$ contributing to $\mathcal{W}_{\mu\nu}(a, p, q)$
- Unpolarised case: $\bar{\psi} \gamma_\mu \gamma_5 \psi$, $\bar{\psi} \gamma_\mu \gamma_5 \psi$, $\bar{\psi} \gamma_\mu \gamma_5 \psi$
- Polarised case: $\bar{\psi} \gamma_\mu \gamma_5 \psi$, $\bar{\psi} \gamma_\mu \gamma_5 \psi$
- Expansion of the operators into the bases of irreducible representations of hypercubic group H(4)
- Projection of the corresponding coefficients → Wilson coefficients
- This program has been carried out with Mathematica completely
Scattering amplitude in 0^{th} order

The Compton scattering amplitude can be given in general form:

$$
T_{\mu\nu}^{(0)}(a, q)/e_\gamma^2 = -a r \delta_{\mu\nu} \bar{\psi}_1 \psi - \frac{8 a r \cos(a q / 2)^2}{Q^2} \delta_{\mu\nu} \bar{\psi}_1 \psi + \\
\sum_\tau \frac{2 a r \cos(a q / 2)^2 \cos(a q_\tau)}{Q^2} \delta_{\mu\nu} \bar{\psi}_1 \psi + \\
\frac{8 a r^3 \sin(a q / 2) \sin(a q / 2)}{Q^2} \bar{\psi}_1 \psi - \\
\sum_\tau \frac{2 a r^3 \cos(a q_\tau) \sin(a q / 2) \sin(a q / 2)}{Q^2} \bar{\psi}_1 \psi + \\
\frac{2 a r \cos(a q / 2) \sin(a q / 2) \sin(a q_\mu)}{Q^2} \bar{\psi}_1 \psi + \\
\frac{2 a r \cos(a q / 2) \sin(a q / 2) \sin(a q_\nu)}{Q^2} \bar{\psi}_1 \psi + \\
\sum_{\tau, \sigma} \frac{2 i a \cos(a q / 2) \cos(a q / 2) \sin(a q_\sigma)}{Q^2} \bar{\psi} \gamma_\tau \gamma_5 \epsilon_{\mu\sigma\nu\tau} \psi ,
$$

with

$$
Q^2 = Q^2(a, q) = \sum_\tau \sin(a q_\tau)^2 + r^2 \left(\sum_\tau (1 - \cos(a q_\tau)) \right)^2 .
$$
Wilson coefficients: 0^{th} order

In order to save space we give the following results for the special momentum transfer $q = (f, f, f, f)$, $s = \sin f$, $c = \cos f$, $Q_f^2 = 4s^2 + 16(1 - c)^2$.

(If not shown explicitly we set $a = 1$ and $r = 1$.)

Diagonal part ($\mathcal{I}^{(0)}_{11}$):

operator	representation	Wilson coefficient	a expansion
$\bar{\psi}1\psi$	$\tau_1^{(1)}$	$-\frac{6(3-c)(1-c)}{Q_f^2}$	$-\frac{3a}{2}(1 - \frac{5}{12}(af)^2)$

Off-diagonal part ($\mathcal{I}^{(0)}_{12}$):

operator	representation	Wilson coefficient	a expansion
$\bar{\psi}1\psi$	$\tau_1^{(1)}$	$\frac{2(3-c)(1-c)}{Q_f^2}$	$\frac{a}{2}(1 - \frac{5}{12}(af)^2)$
$\bar{\psi}\gamma_3\gamma_5\psi$, $-\bar{\psi}\gamma_4\gamma_5\psi$	$\tau_4^{(4)}$	$\frac{i(1+c)s}{Q_f^2}$	$\frac{i}{27}(1 - \frac{13}{12}(af)^2)$
Wilson coefficients: 1^{st} order, diagonal part

The expansion up to one covariant derivative cannot be given in readable form. Here, I present the Wilson coefficients only.

\[\mathcal{T}_{11}^{(1)}: \]

Defining the combinations

\[
\begin{align*}
 b_1 &= 4i(1 - c)(74 - 126c + 63c^2 - 9c^3)/Q_f^4 \\
 b_2 &= -4i(6 - 8c + 3c^2)s^2/Q_f^4 \\
 b_3 &= 4i(4 - 3c)s^2/Q_f^4 \\
 b_4 &= -4i(1 - c)(4 - 9c + 3c^2)/Q_f^4
\end{align*}
\]

operator	repr.	Wilson coeff.	a expansion
$\frac{1}{2}(\mathcal{O}_{11} + \mathcal{O}_{22} + \mathcal{O}_{33} + \mathcal{O}_{44})$	$\tau_1^{(1)}$	$\frac{1}{2}(b_1 + b_3)$	$\frac{i}{2f^2} (1 + \frac{29}{24}(af)^2)$
$\frac{1}{2}(\mathcal{O}_{11} + \mathcal{O}_{22} - \mathcal{O}_{33} - \mathcal{O}_{44})$	$\tau_1^{(3)}$	$\frac{1}{2}(b_1 - b_4)$	$\frac{15i}{16} (1 - \frac{4}{3}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{11} - \mathcal{O}_{22})$	$\tau_1^{(3)}$	$\frac{1}{2}(b_1 - b_4)$	$\frac{15i}{16} (1 - \frac{4}{3}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{12} + \mathcal{O}_{21}), \frac{1}{\sqrt{2}}(\mathcal{O}_{13} + \mathcal{O}_{31})$	$\tau_3^{(6)}$	$\frac{1}{\sqrt{2}}(b_2 + b_3)$	$\frac{ia}{8\sqrt{2}} (1 - \frac{4}{3}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{14} + \mathcal{O}_{41})$	$\tau_3^{(6)}$	$\frac{1}{\sqrt{2}}(b_2 + b_3)$	$\frac{ia}{8\sqrt{2}} (1 - \frac{4}{3}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{23} + \mathcal{O}_{32}), \frac{1}{\sqrt{2}}(\mathcal{O}_{24} + \mathcal{O}_{42})$	$\tau_3^{(6)}$	$\sqrt{2}b_3$	$\frac{i}{2\sqrt{2}f^2} (1 - \frac{1}{6}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{34} + \mathcal{O}_{43})$	$\tau_3^{(6)}$	$\sqrt{2}b_3$	$\frac{i}{2\sqrt{2}f^2} (1 - \frac{1}{6}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{12} - \mathcal{O}_{21}), \frac{1}{\sqrt{2}}(\mathcal{O}_{13} - \mathcal{O}_{31})$	$\tau_1^{(6)}$	$\frac{1}{2}(b_2 - b_3)$	$-\frac{i}{4f^2} (1 - \frac{5}{12}(af)^2)$
$\frac{1}{\sqrt{2}}(\mathcal{O}_{14} - \mathcal{O}_{41})$	$\tau_1^{(6)}$	$\frac{1}{2}(b_2 - b_3)$	$-\frac{i}{4f^2} (1 - \frac{5}{12}(af)^2)$

\[(\mathcal{O}_{\mu\nu} = \bar{\psi} \gamma_{\mu} \overset{\leftrightarrow}{D}_{\nu} \psi) \]
Wilson coefficients: 1^{st} order, off-diagonal part

$T_{12}^{(1)}$:

We find the combinations

\begin{align*}
b_1 &= -4i(1 - c)(33 - 52c + 24c^2 - 3c^3)/Q_f^4 \\
b_2 &= 4i(7 - 9c + 3c^2)s^2/Q_f^4 \\
b_3 &= -4i(3 - 2c)s^2/Q_f^4 \\
b_4 &= 6i(1 - c)^2(1 + c)(2 - c)/Q_f^4 \\
b_5 &= 2i(1 - c)^2(4 - 9c + 3c^2)/Q_f^4 \\
b_6 &= 2i(1 - c)^2(1 + c)(4 - 3c)/Q_f^4 \\
b_7 &= -4(1 - c)(19 - 18c + 3c^2)s/Q_f^4 \\
b_8 &= 2(1 - c)(14 - 15c + 3c^2)s/Q_f^4 \\
b_9 &= 12(2 - c)s^3/Q_f^4 \\
b_{10} &= -4s^3/Q_f^4 \\
b_{11} &= -2(1 - c)(4 - 9c + 3c^2)s/Q_f^4 \\
b_{12} &= -2(4 - 3c)s^3/Q_f^4
\end{align*}
Wilson coefficients: 1st order, off-diagonal part

We give some selected examples for the Wilson coefficients

operator	repr.	Wilson coeff.	a expansion
$\frac{1}{2}(O_{11} + O_{22} + O_{33} + O_{44})$	$\tau_1^{(1)}$	$b_1 + b_5$	$-\frac{i}{4f^2} (1 + \frac{25}{12} (af)^2)$
$\frac{1}{2}(O_{11} + O_{22} - O_{33} - O_{44})$	$\tau_1^{(3)}$	$b_1 - b_5$	$-\frac{i}{4f^2} (1 + \frac{19}{12} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{12} + O_{21})$	$\tau_3^{(6)}$	$\sqrt{2}b_2$	$\frac{i}{2\sqrt{2f^2}} (1 - \frac{1}{6} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{13} + O_{31}), \frac{1}{\sqrt{2}}(O_{14} + O_{41})$	$\tau_3^{(6)}$	$\frac{1}{\sqrt{2}}(b_3 + b_4)$	$\frac{i}{4\sqrt{2f^2}} (1 + \frac{1}{12} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{23} + O_{32}), \frac{1}{\sqrt{2}}(O_{24} + O_{42})$	$\tau_3^{(6)}$	$\frac{1}{\sqrt{2}}(b_3 + b_4)$	$\frac{i}{4\sqrt{2f^2}} (1 + \frac{1}{12} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{34} + O_{43})$	$\tau_3^{(6)}$	$\sqrt{2}b_6$	$\frac{i}{8\sqrt{2f^2}} (1 - \frac{3}{4} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{13} - O_{31}), \frac{1}{\sqrt{2}}(O_{14} - O_{41})$	$\tau_1^{(6)}$	$\frac{1}{\sqrt{2}}(b_3 - b_4)$	$\frac{i}{4\sqrt{2f^2}} (1 - \frac{17}{12} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{23} - O_{32}), \frac{1}{\sqrt{2}}(O_{24} - O_{42})$	$\tau_1^{(6)}$	$\frac{1}{\sqrt{2}}(b_3 - b_4)$	$\frac{i}{4\sqrt{2f^2}} (1 - \frac{17}{12} (af)^2)$
$\sqrt{\frac{2}{3}}(O_{T1_{23}}^T + O_{T2_{13}}^T)$	$\tau_2^{(8)}$	$\sqrt{\frac{2}{3}}(2b_{10} + b_9)$	$\frac{a}{2\sqrt{6f^2}} (1 - \frac{4}{3} (af)^2)$
$\sqrt{\frac{2}{3}}(O_{T1_{34}}^T + O_{T2_{14}}^T)$	$\tau_2^{(8)}$	$\sqrt{6}b_{12}$	$-\frac{\sqrt{3a}}{4\sqrt{2f}} (1 - \frac{3}{4} (af)^2)$
$\sqrt{2}O_{T2_{13}}^T, \sqrt{2}O_{T2_{14}}^T$	$\tau_2^{(8)}$	$-\sqrt{6}b_9$	$-\frac{3\sqrt{3a}}{2\sqrt{2f}} (1 - \frac{3}{4} (af)^2)$
$\sqrt{2}O_{T3_{14}}^T, -\sqrt{2}O_{T3_{24}}^T$	$\tau_2^{(8)}$	$-\sqrt{2}b_{12}$	$\frac{a}{4\sqrt{2f}} (1 - \frac{4}{3} (af)^2)$
$-\frac{1}{\sqrt{6}}(O_{T1_{22}}^T + O_{T133} - 2O_{T144})$	$\tau_1^{(8)}$	$\sqrt{2}(b_{11} + b_7)$	$-\frac{3a}{4\sqrt{2f}} (1 - \frac{4}{3} (af)^2)$
$\frac{1}{\sqrt{2}}(O_{T2_{11}}^T + O_{T233} - 2O_{T244})$	$\tau_1^{(8)}$	$\sqrt{2}b_{11}$	$\frac{a}{4\sqrt{2f}} (1 - \frac{4}{3} (af)^2)$
$\frac{1}{6} \sum_{p \in \{1,2,3\}} \text{sgn}(p)O_{T123}^T$	$\tau_4^{(4)}$	$\sqrt{\frac{2}{3}}(b_9 - b_{10})$	$\sqrt{\frac{2a}{3f}} (1 - \frac{4}{3} (af)^2)$
$\frac{1}{\sqrt{3}}(O_{T122}^T + O_{T133} + O_{T144})$	$\tau_1^{(4)}$	$\frac{4}{\sqrt{3}}(4b_{11} - 2b_7)$	$\frac{2\sqrt{3a}}{f} (1 - \frac{4}{3} (af)^2)$
$\frac{1}{\sqrt{3}}(O_{T211}^T + O_{T233} + O_{T244})$	$\tau_1^{(4)}$	$-\frac{4}{\sqrt{3}}b_{11}$	$-\frac{a}{2\sqrt{3f}} (1 - \frac{4}{3} (af)^2)$

\[
(O_{\mu\nu} = \bar{\psi}\gamma_\mu \not{D}_\nu \psi, O_{\mu\nu\omega} = \bar{\psi}\sigma_{\mu\nu} \not{D}_\omega \psi)
\]
Conclusions

- We have developed a program for expanding tree-level scattering amplitudes symbolically.
- We have found analytic expressions for Wilson coefficients corresponding to local operators up to third order in covariant derivatives.
- We have classified them according to irreducible representations.
- Next steps: O(a)-improved fermions, overlap fermions.
Conclusions

- We have developed a program for expanding tree-level scattering amplitudes symbolically.
- We have found analytic expressions for Wilson coefficients corresponding to local operators up to third order in covariant derivatives.
- We have classified them according to irreducible representations.
- Next steps: $O(a)$-improved fermions, overlap fermions.
Conclusions

- We have developed a program for expanding tree-level scattering amplitudes symbolically.
- We have found analytic expressions for Wilson coefficients corresponding to local operators up to third order in covariant derivatives.
- We have classified them according to irreducible representations.
- Next steps: O(a)-improved fermions, overlap fermions.
Conclusions

- We have developed a program for expanding tree-level scattering amplitudes symbolically.
- We have found analytic expressions for Wilson coefficients corresponding to local operators up to third order in covariant derivatives.
- We have classified them according to irreducible representations.
- Next steps: O(a)-improved fermions, overlap fermions.