A bioinspired and biocompatible ortho-sulfiliminyl phenol synthesis

Feng Xiong1, Liang Lu1, Tian-Yu Sun2, Qian Wu2, Dingyuan Yan1, Ying Chen2, Xin Hao Zhang2, Wei Wei1, Yi Lu1, Wei-Yin Sun1, Jie Jack Li3 & Jing Zhao1,2

Synthetic methods inspired by Nature often offer unique advantages including mild conditions and biocompatibility with aqueous media. Inspired by an ergothioneine biosynthesis protein EgtB, a mononuclear non-haem iron enzyme capable of catalysing the C–S bond formation and sulfoxidation, herein, we discovered a mild and metal-free C–H sulfonylation/intramolecular rearrangement cascade reaction employing an internally oxidizing O–N bond as a directing group. Our strategy accommodates a variety of oxyamines with good site selectivity and intrinsic oxidative properties. Combining an O–N bond with an X–S bond generates a C–S bond and an S=N bond rapidly. The newly discovered cascade reaction showed excellent chemoselectivity and a wide substrate scope for both oxyamines and sulfonylation reagents. We demonstrated the biocompatibility of the C–S bond coupling reaction by applying a coumarin-based fluorogenic probe in bacterial lysates. Finally, the C–S bond coupling reaction enabled the first fluorogenic formation of phospholipids, which self-assembled to fluorescent vesicles in situ.

1State Key Laboratory of Coordination Chemistry, Institute of Chemistry and BioMedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China. 2Guangdong Key Laboratory of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China. 3Department of Chemistry, University of San Francisco, 2130 Fulton Street, San Francisco, California 94117, USA. Correspondence and requests for materials should be addressed to J.Z. (email: jingzhao@nju.edu.cn).
E nzymatic C–S bond formation is a common process in biological systems1–5. For example, ergothioneine is considered as a protectant against oxidative stress67. The key step in its biosynthesis pathway is the mononuclear non-haem iron enzyme EgtB-catalysed sulfonylation formation between γ-glutamyl cysteine and N-α-trimethyl histidine, involving a sulfur transfer step and an oxygen transfer step (Fig. 1a)8,9.

A variety of synthetic methods have been developed to construct the ortho-functionalized phenols which are highly useful in chemical industry10, functional materials11 and medicines12–14. These methods mainly include three kinds of strategies: (a) rearrangement of aromatic O–X bonds15–20, (b) directing group-assisted ortho C–H hydroxylation of arenes21–27; and (c) ortho C–H functionalization of phenols28–32. Although these results have promoted the development of the phenol chemistry, the more efficient, economical and biocompatible methods are still in demand.

Inspired by the sulfur transferases and our previous successes in O–N bond-directed synthesis of ortho-functionalized phenols33–35, we envisioned that ortho-sulfilimyln phenols could be obtained by combining a directing group containing an internally oxidizing O–N bond with a sulfonylation reagent.36,37 The desired sulfonylation reagent and oxidizing X–N bond needs to accomplish the following two tasks (Fig. 1b): (i) sulfur transfer38,39 A well-chosen electrophilic sulfonylation reagent would facilitate the N-sulfonylation of the X–N moiety and lead to the formation of an N–S bond to produce intermediate B; (ii) rearrangement. Pivotal progress was made by Maulide40,41, Procter2,42, Yorimitsu31 and Peng43 who pioneered the directed, metal-free, redox-neutral and ortho-functionalization. These inspiring work suggested that when the substrate captures a suitable partner, the resulting intermediate may undergo a sigmatropic rearrangement and reoration to product D, leading to the formation of a C–X bond with concurrent O–X bond cleavage. Herein, we report a rationally designed and metal-free coupling method to synthesize sulfilimines via an internal oxidant-directing strategy for the cascade formation of C–S and S = N bonds at room temperature.

Results

Optimization of the reaction conditions. For direct coupling reactions, especially those catalysed by transition metals, a directing group typically escorts the metal catalyst towards the neighbouring ortho-position and dictates the site selectivity. Directing groups containing N–N bond, S–N bond or O–N bond are redox versatile and could facilitate inter- or intramolecular cyclization44–47. At the outset of this study, compounds 1 with those bonds were firstly screened to couple with a thionating reagent N-ethyliophthalimide 2a under previously reported metal catalysed conditions 48–50 for similar reactions (Fig. 2a). Attempts on substrate 1 with X of N or S yielded no reaction. Gratifyingly, when X was replaced by O, the resulting N-phenoxycetamide 1a concurrently constructed a C–S bond and an S = N bond, giving the desired phenolic sulfinilime product 3aa in 83% yield.

The N–H bond in the O–NHAc moiety was found to be essential for the reaction as no reaction occurred when N–H was methylated (Fig. 2a). The need for an electron-donating phenoxym group as well as an N–H led us to suspect the existence of an ammonium ion as an essential intermediate in promoting the cascade reaction. Therefore, we removed the Rh catalyst and N₂ protection from the reaction system and the reaction could occur smoothly under metal-free conditions. Next, different sulfonylation reagents were screened to explore the cascade strategy (Fig. 2b). Tolyl sulfinides with different leaving groups on the S-atom such as chloride, tosyl and phthalimidoyl coupled with N-phenoxycetamide 1a to afford 3af in 18, 33 and 85% yield, respectively. With benzensulfonyl as the leaving group, however, no reaction took place, suggesting that disulfide remains intact during the course of the coupling reaction. As the coupling reaction was most likely mediated by a base, we tested various bases such as Et₃N, DIPEA, DBU, K₂CO₃, Na₂CO₃, NaOAc and CsOAc, where CsOAc gave the highest yield. Switching the reaction solvent to methanol and using an air atmosphere, the yield of the phenol product 3aa was further improved to 92% (Supplementary Information, Supplementary Table 6).

Substrate scope of the reaction. To probe the scope of the transition metal-free cascade C–S and S = N bond formation, we examined a series of oxamide substrates (Table 1). Replacing the acetyl group with a bulkier pivaloyl or a benzoyl group only slightly decreased the yield to 80% (3ba) and 83% (3ca), respectively. It is worth noting that the sulfinilime substitution occurred exclusively at the ortho-position of the phenoxymide moiety instead of the benzamide moiety (3ca), which indicated the stronger directing ability of the oxamide group for sulfonylation. Substitutions on the phenoxy side of 1 had little impact on the yield. Electron-donating groups (3da, 3ea, 3ia, 3la), electron-withdrawing groups (3ha), as well as halogen groups (3fa, 3ga) were well tolerated, which afforded substituted sulfinilmes in 85% to 92% yield. The C–S bond formation proceeded exclusively at the site ortho to the acetylamino group. Therefore, for substrate 1 with two different ortho-sites, two regioisomers with ratio almost 1:1 were produced (3ja:3ja, 3ka:3ka, 3ma:3ma, 3na:3na). Fusion of a benzene ring as in the substrate of naphthalene did not affect the reaction yield but resulted in high regioselectivity, which only functionalized the ortho C–H at C–1 position, resulting in a 2-naphthol derivative 3oa.

Under optimal conditions, we explored the substrate scope for N-substituted phthalimides (Table 2). The reaction proceeded smoothly for both aliphatic and aromatic thiohiphalimides. Aliphatic groups including trifluoromethyl, linear alkyl and cyclic alkyl gave high yields (3ab–3ad, 76–92%). For aromatic thiohiphalimides, substitutions on the phenyl ring increased the reaction yield (3af–3aj > 3ae). The reaction proceeded well with either electron-donating groups or halogen-containing substrates.

Synthetic application. To further explore the applicability of our method as a useful tool in chemical biology, we conducted the reaction in PBS buffer in air. Gratifyingly, the reaction proceeded well. When the ratio of DMSO to pH 7.4 1 × PBS buffer was 1:19, 81% yield was obtained (Fig. 3a, entry 1). Because of the excellent chemoselectivity under the mild aqeous conditions, we tested the compatibility of the C–S bond coupling reaction with various biomolecules, such as amino acids and proteins. The addition of a stoichiometric amount of amino acids or proteins in standard aqueous conditions did not significantly affect the reaction (Fig. 3a, entry 2–5). Bacterial cell lysates that contained various endogenous biomolecules were also tested and gave product 3aa in 73% yield (Fig. 3a, entry 6). When we started from a non-fluorescent coumarin substrate (1p) to react with 2a under such biomimetic conditions, a fluorescent turn-on process was observed. The fluorescent product 3pa (λex/em = 360/450 nm) was obtained in 80% yield (Fig. 3b).

Finally, we further applied the C–S bond coupling reaction to the first fluorogenic formation of phospholipids. We designed a non-fluorescent coumarin-functionalized analogue of the lysolipid 1-palmitoyl-sn-glycero-3-phosphocholine 1q and a linear alkyl sulfonylation reagent 2k. Phospholipids, which are the major
component of cell membranes, have many important applications such as drug delivery51,52, construction of micro-reactors53 and study of protein–membrane interactions54. Pioneered by Devaraj \textit{et al.}, it has been of increasing significance to develop methods for the \textit{de novo} synthesis and assembly of phospholipid membranes55–58. To apply our mild C–S bond coupling reaction to the formation of the lipid vesicle under optimal conditions, we simply mixed compounds 1q and 2k in 0.1 M PBS buffer at pH 7.4 and sonicated the mixture at room temperature for 1h. Blue fluorescent lipid vesicles were observed by the fluorescence microscopy after 3 h at 37°C (Fig. 4c). We confirmed these vesicles were lipid membrane structures by staining with the membrane-staining dye 1,1’-dioctadecyl-3,3’,3’,3’-tetramethylindocarbocyanine perchlorate (DiI), and the orange red fluorescent vesicles were observed, suggesting that fluorescent phospholipid vesicles are lipid membranes (Fig. 4c).

Mechanistic investigation. A combined experimental/computational study was conducted to investigate the reaction mechanism. The cross-over experiment was carried out using a 1:1 mixture of N-phenoxyacetamide 1a and its analogue 1a-d_8 under the standard conditions, only the intramolecular rearrangement products 3aa and 3aa-d_8 were obtained (Supplementary

Figure 1 | Strategy for the formation of ortho-sulfiliminyl phenol derivatives. (a) The mononuclear non-haem iron enzyme EgtB-catalysed sulfonylation formation between γ-glutamyl cysteine and N-α-trimethyl histidine. (b) A metal-free approach to ortho-sulfiliminyl phenol via the C–H sulfonylation/intramolecular rearrangement cascade reaction.

Figure 2 | Screening of the X–N functional groups and thiolating reagents. (a) Screening of the multifunctional X–N functional group; reaction conditions: 0.2 mmol substrate 1, N-ethylthiophthalimides (1.2 equiv.), $[\text{Cp*RhCl}_2]$\textsubscript{2} (5 mol \%) and CsOAc (0.3 equiv.) in CH$_3$CN (1 ml) at room temperature under N$_2$ for 15 h. (b) Screening of different thiolating reagents with N-phenoxyamides. Reaction conditions: 0.2 mmol substrate 1a, 2 (1.2 equiv.) and CsOAc (0.3 equiv.) in MeOH (1 ml) at room temperature for 15 h. Yields are those of isolated products. N.R. = No reaction.
Table 1 | Substrate scope of aryloxyamides*.

Reaction	Product	yield [%]	Remarks	
$\text{R}_1 - \text{O} - \text{N} - \text{R}_2$	$\text{R}^1 - \text{S} - \text{N} - \text{R}_2$	$\text{R}^1 - \text{S} - \text{N} - \text{R}_2$	CsOAc (0.5 eq.), MeOH, r.t., air, 3h	
3aa	92%	CsOAc (0.5 eq.)	MeOH, r.t., air, 3h	Yields are those of isolated products.
3ba	80%			
3ca	83%			
3da	90%			
3ea	85%			
3fa	85%			
3ga	86%			
3ha	89%			
3oa	90%			
3ia	89%			
3ia	89%			
3ka	90%			
3ka	85%			
3ka	84% (1.05:1)			
3ma	85% (1.1:1)			
3ma	85% (1.1:1)			
3na	86% (1:1)			
3na	86% (1:1)			
3la	88%			
3la	88%			
3la	88%			
3lb	88%			
3lb	88%			
3lb	88%			

*Reaction conditions: 0.2 mmol oxyamide, N-ethylthiophthalimides (1.2 equiv.) and CsOAc (0.5 equiv.) in MeOH (1 ml) at room temperature for 3 h. Yields are those of isolated products.

Table 2 | Substrate scope of N-substituted thiophthalimides*.

Reaction	Product	yield [%]	Remarks
$\text{R} - \text{NHAc}$	$\text{R} - \text{S} - \text{N} - \text{Ac}$	$\text{R} - \text{S} - \text{N} - \text{Ac}$	CsOAc (0.5 eq.), MeOH, r.t., air, 3h
3ac	85%		
3ad	76%		
3ae	67%		
3af	85%		
3ag	80%		
3ah	75%		
3ai	70%		
3aj	68%		

*Reaction conditions: 0.2 mmol 1a, N-substituted thiophthalimides (1.2 equiv.) and CsOAc (0.5 equiv.) in MeOH (1 ml) at room temperature for 3 h. Yields are those of isolated products.
of oxyacetamides was converted into the corresponding phenols. Functionality tolerance of the reaction conditions, a wide range and efficient method enabled the simultaneous construction of C–S bond coupling reaction in aqueous conditions and in the presence of biomolecules. Conditions: 1a (0.075 mmol), 2a (0.09 mmol), CsOAc (0.5 equiv.), DMSO/PBS buffer = 1:19 (5 ml); the yield was determined by 1H NMR spectroscopy using 1,4-dimethoxybenzene as an internal standard. The temperature was RT. (b) Reaction of 1p with 2a in aqueous conditions. Conditions: 1p (0.2 mmol), 2a (0.24 mmol), CsOAc (0.5 equiv.), DMSO/PBS buffer = 1:19 (10 ml); isolated yield. The temperature was RT. (c) Fluorescence spectra of reaction b in aqueous conditions. (d) Photograph showing the visual fluorescence of 1p and 3pa under a 365 nm ultraviolet lamp.

![Diagram](https://example.com/diagram.png)

Figure 3 | Application of the C-S bond coupling reaction in biocompatible conditions. (a) C-S bond coupling reaction in aqueous conditions and in the presence of biomolecules. Conditions: 1a (0.075 mmol), 2a (0.09 mmol), CsOAc (0.5 equiv.), DMSO/PBS buffer = 1:19 (5 ml); the yield was determined by 1H NMR spectroscopy using 1,4-dimethoxybenzene as an internal standard. The temperature was RT. (b) Reaction of 1p with 2a in aqueous conditions. Conditions: 1p (0.2 mmol), 2a (0.24 mmol), CsOAc (0.5 equiv.), DMSO/PBS buffer = 1:19 (10 ml); isolated yield. The temperature was RT. (c) Fluorescence spectra of reaction b in aqueous conditions. (d) Photograph showing the visual fluorescence of 1p and 3pa under a 365 nm ultraviolet lamp.

In summary, we have developed a bioinspired strategy for the synthesis of ortho-sulfyliminyl phenols by internal oxidation-induced sulfur transfer under mild conditions. This efficient method enabled the simultaneous construction of C–S and S=N bonds. Thanks to the mild nature and good functionality tolerance of the reaction conditions, a wide range of oxacyanamides was converted into the corresponding phenols. For the sulfur donors, not only trifluoromethyliothio group (CF3S-) but also a variety of sulfur-containing groups were able to participate in C–H sulfenylation. The sulfur donors included N-substituted thiophalalmides with S-substituted aromatic and aliphatic groups. Moreover, the method utilized the leaving acetamide moiety of the internal oxidant/directing oxacyanamide group to construct a sulfilimine functional group. Our method was successfully applied to the *in situ* formation of fluorogenic phospholipid membranes. To the best of our knowledge, this is the first fluorogenic phospholipid membranes formation. Further applications of the fluorogenic phospholipid membranes are under investigation and will be reported in due course.

Methods

Materials. For NMR spectra of compounds in this manuscript, see Supplementary Figs 1–32. For the crystallographic data of compound 3aa and 3ab, see Supplementary Figs 33 and 34 and Supplementary Tables 1–5. For the representative experimental procedures and analytic data of compounds synthesized, see Supplementary Methods.

General procedure of C-S bond coupling reaction. Aryloxyamide (1) (0.2 mmol), N-substituted thiophalalmides (2) (0.24 mmol) and CsOAc (0.06 mmol or 0.10 mol) were weighed into a 10 ml pressure tube, to which was added MeOH (1 ml). The reaction vessel was stirred at room temperature for 3 h in air. Then the mixture was concentrated under vacuum and the residue was purified by column chromatography on silica gel with a gradient eluent of petroleum ether and ethyl acetate to afford the corresponding product.

In situ self-assembly of fluorescent vesicles. An aliquot of 10.0 μl of a 4 mM coumarin-functionalized analogue of the lysolipid 1-palmitoyl-sn-glycero-3-phosphocholine 1q solution in 100 mM PBS buffer pH 7.4 was added to 2.0 μl of a 20 mM solution of sulfenylation reagent 2k in CHCl3. Then, 28 μl of a 100 mM PBS buffer pH 7.4 solution was added, and the mixture was sonicated at room temperature (RT) for 1 h. After 3 h standing at 37 °C, stained with membrane-staining dye DiI, 10 min later, the corresponding mixture was observed by fluorescence microscopy.
Figure 4 | Synthesis of fluorogenic phospholipids by C–S bond coupling reaction. (a) Reaction conditions: 1q (4 mM in PBS buffer, 10 μl) and 2k (20 mM in CHCl₃, 2 μl) in PBS buffer PH 7.4 (28 μl) was sonicated at RT for 1 h; (b) Model of spontaneous fluorescent vesicle assembly induced by C–S bond coupling reaction; (c) Fluorescent microscopic images of phospholipid vesicles. Conditions: 1q (4 mM in PBS buffer), 10 μl and 2k (20 mM in CHCl₃, 2 μl) in PBS buffer PH 7.4 (28 μl) was sonicated at RT for 1 h, after 3 h standing at 37 °C, stained with Dil before being imaged on the fluorescence microscopy. Scale bar, 20 μm.

Data availability. The X-ray crystallographic coordinates for structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition numbers CCDC1041436 and CCDC983618. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. The authors declare that all other data supporting the findings of this study are available within the article and Supplementary Information files, and also are available from the corresponding author upon reasonable request.

References
1. Li, B. et al. Structure and mechanism of the lantibiotic cyclase involved in nisin biosynthesis. *Science* 311, 1464–1467 (2006).
2. Sasaki, E. et al. Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. *Nature* 510, 427–431 (2014).
3. Chatterjee, A. et al. Saccharomyces cerevisiae THI4p is a suicide thiamine thiazole synthase. *Nature* 478, 542–546 (2011).
4. Berkovitch, F., Nicolet, Y., Wan, J. T., Jarrett, J. T. & Drennan, C. L. Crystal structure of biotin synthase, an S-adenosylmethionine-dependent radical enzyme. *Science* 303, 76–79 (2004).
5. Fontecave, M., Ollagnier-de Choudens, S. & Mulliez, E. Biological radical sulfur insertion reactions. *Chem. Rev.* 103, 2149–2166 (2003).
6. Jacob, C. A scent of therapy: pharmacological implications of natural products containing redox-active sulfur atoms. *Nat. Prod. Rep.* 23, 851–863 (2006).
7. Bello, M. H., Barrera-Perez, V., Morin, D. & Epstein, L. The neurospora crassa mutant NcElt-1 identifies an ergothioneine biosynthetic gene and demonstrates that ergothioneine enhances conidial survival and protects against peroxide toxicity during conidial germination. *Fungal Genet. Biol.* 49, 160–172 (2012).
8. Goncharenko, K. V., Vit, A., Blankenfeldt, W. & Seebeck, F. P. Structure of the sulfoxide synthase EgtB from the ergothioneine biosynthetic pathway. *Angew. Chem. Int. Ed.* 54, 2821–2824 (2015).
9. Song, H., Leninger, M., Lee, N. & Liu, P. Regioselectivity of the oxidative C–S bond formation in ergothioneine and ovothiol biosyntheses. *Org. Lett.* 15, 4854–4857 (2013).
10. Fiegel, H. et al. Phenol Derivatives in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, 2002).
11. Kim, N. G., Shin, C. H., Lee, M. H. & Do, Y. Four-coordinate boron compounds derived from 2-(2-pyridyl)phenol ligand as novel hole-blocking materials for phosphorescent OLEDs. *J. Organomet. Chem.* 694, 1922–1928 (2009).
12. Cheng, C. et al. Marinopyrrole derivatives as potential antibiotic agents against methicillin-resistant Staphylococcus aureus (II). *Mar. Drugs* 11, 2927–2948 (2013).
13. Zwaagstra, M. E. et al. Synthesis and structure-activity relationships of carboxylated chalcones novel series of CySL1 (LTD4) receptor antagonists. *J. Med. Chem.* 40, 1075–1089 (1997).
14. Charest, M. G., Lerner, C. D., Brubaker, J. D., Siegel, D. R. & Myers, A. G. A convergent enantioselective route to structurally diverse 6-deoxytetracycline antibiotics. *Science* 308, 359–368 (2005).
15. Berchel, M., Sauna, J. Y., Couthon-Gourves, H., Haelters, J. P. & Jaffres, P. A. An unexpected base-induced [1,4]-phospho-Fries rearrangement. *Dalton Trans.* 39, 11314–11316 (2010).
16. Dyke, A. M. et al. Decoupling deprotonation from metalation: thia-fries rearrangement. *Angew. Chem. Int. Ed.* 47, 5067–5070 (2008).
17. Hua, Y., Asgari, P., Avulaila, T. & Jeon, J. Catalytic reductive ortho-C–H silylation of phenols with traceless, versatile acetal directing groups and synthetic diazoniums. J. Am. Chem. Soc. 133, 7892–7891 (2016).
18. Huang, C., Chattopadhyay, B. & Gevorgyan, V. Silanol: a traceless directing group for Pd-catalyzed C-alkenylation of phenols. J. Am. Chem. Soc. 133, 12406–12409 (2011).
19. Wang, Y. & Gevorgyan, V. General method for the synthesis of salicylic acids from phenols through palladium-catalyzed silanol-directed C-H carboxylation. Angew. Chem. Int. Ed. 54, 2255–2259 (2015).
20. Zhao, Z., Messinger, I., Schon, U., Wartchow, R. & Butenschoen, H. Unanticipated formation of ortho-sulfur-substituted phenols by anionic thia-Fries rearrangement of (aryl triflate)tricarbonylchromium complexes. Chem. Commun. 42, 3007–3009 (2006).
21. Shan, G., Yang, X., Ma, L. & Rao, Y. Pd-catalyzed C-H oxygenation with TFA/TFAAc expedient access to oxygen-containing heterocycles and late-stage drug modification. Angew. Chem. Int. Ed. 51, 13070–13074 (2012).
22. Sun, X., Sun, Y., Zhang, C. & Rao, Y. Room-temperature Pd-catalyzed C-H chlorination by weak coordination: one-pot synthesis of 2-chlorophenols with excellent regioselectivity. Chem. Commun. 50, 1262–1264 (2014).
23. Yang, T., Lin, Y. & Rao, Y. Ruthenium(II)-catalyzed synthesis of hydroxylated arenes with ester as an effective directing group. Org. Lett. 14, 2874–2877 (2012).
24. Yang, X., Shan, G. & Rao, Y. Synthesis of 2-aminophenols and heterocycles by Ru-catalyzed C-H mono- and dihydroxylation. Org. Lett. 15, 2334–2337 (2013).
25. Yan, Y. et al. PdCl₂ and N-hydroxyphthalimide co-catalyzed Csp3–H hydroxylation by dioxygen activation. Angew. Chem. Int. Ed. 52, 5827–5831 (2013).
26. Mo, F., Trzepekowski, L. J. & Dong, G. Synthesis of ortho-acylphenyls through the palladium-catalysed ketone-directed hydroxylation of arenes. Angew. Chem. Int. Ed. 51, 13075–13079 (2012).
27. Zhang, Y. H. & Yu, J. Pd(II)-catalyzed hydroxylation of arenes with 1 atm of O₂ or air. J. Am. Chem. Soc. 131, 14654–14655 (2009).
28. Tian, H., Zhu, C., Yang, H. & Fu, H. Iron or boron-catalysed C-H arylation of substituted phenols at room temperature. Chem. Commun. 50, 8875–8877 (2014).
29. Bedford, R. B., Coles, S. J., Hursthouse, M. B. & Limmert, M. E. The catalytic intermolecular, ortho-hydroxylation of phenols. Angew. Chem. Int. Ed. 42, 112–114 (2003).
30. Dorta, R. & Togni, A. Addition of the ortho-C-H bonds of phenol across an olefin catalysed by a chiral iodide (I) diphosphine complex. Chem. Commun. 39, 760–761 (2003).
31. Yang, T. et al. Metal-Free approach to biaryl from phenols and aryl sulfoxides by temporarily sulfur-tethered regioselective C–H/C–H coupling. J. Am. Chem. Soc. 138, 14582–14585 (2016).
32. Shrivastav, H. J., Fernandez-Salas, J. A., Hedke, C., Pulis, A. P. & Procter, D. J. Regioselective synthesis of C3 alkylated and arylated benzothiophenes. Nat. Commun. 8, 14801 (2017).
33. Chen, Y. et al. A multitasking functional group leads to structural diversity using designer C–H activation reaction cascades. Nat. Commun. 5, 4610 (2014).
34. Wu, Q. et al. Unified synthesis of mono/bis-arylated phenols via RhIII-catalyzed dehydrogenative coupling. Chem. Sci. 8, 169–173 (2017).
35. Wu, Q. et al. A redox-neutral catechol synthesis. Nat. Commun. 8, 14227 (2017).
36. Arisawa, M., Suzuki, T., Ishikawa, T. & Yamaguchi, M. Rhodium-catalyzed substitution reaction of aryl fluorides with disulfides: p-orientation in the polycyclization of polyfluorobenzenes. J. Am. Chem. Soc. 130, 12214–12215 (2008).
37. Yoshida, S. et al. A mild and facile synthesis of ary1 and alkenyl sulfides via copper-catalyzed deborohylylization of organoborons with thioureas. Chem. Commun. 51, 16613–16616 (2015).
38. Demmack, S. E., Hartmann, E., Korntfit, D. J. & Wang, H. Mechanistic, crystallographic, and computational studies on the catalytic, enantioselective sulvenofunctionalization of alkenes. Nat. Chem. 6, 1056–1064 (2014).
39. Xu, C., Ma, B. & Shen, Q. N-trifluoromethoxythioascaricin: an easily accessible, shelf-stable, broadly applicable trifluoromethylthioating reagent. Angew. Chem. Int. Ed. 53, 9316–9320 (2014).
40. Huang, X., Patil, M., Fares, C., Thiel, W. & Maulide, N. Sulfur(VI)-mediated transformations: from ylide transfer to metal-free arylation of carboxyl compounds. J. Am. Chem. Soc. 135, 7312–7323 (2013).
41. Peng, B., Geerdink, D., Fares, C. & Maulide, N. Chemoselective intermolecular alpha-arylation of amides. Angew. Chem. Int. Ed. 53, 5462–5464 (2014).
42. Fernandez-Salas, J. A., Ehberhard, A. J. & Procter, D. J. Metal-Free CH–CH-type cross-coupling of arenes and alkenes directed by a multifunctional sulfoxide group. J. Am. Chem. Soc. 138, 790–793 (2016).
43. Wang, Y. & Gevorgyan, V. General method for the synthesis of salicylic acids from phenols through palladium-catalyzed silanol-directed C-H carboxylation. Angew. Chem. Int. Ed. 54, 14008–14012 (2015).
44. Liu, G., Chen, Y., Zhou, Z. & Lu, X. Rhodium(III)-catalyzed redox-neutral coupling of N-phenoxycetamides and alkynes with tunable selectivity. Angew. Chem. Int. Ed. 52, 6033–6037 (2013).
45. Olsen, T. et al. Mechanistic studies of aryl fluorides with disulfides: the N-O bond as a handle for C–N bond formation and catalyst turnover. J. Am. Chem. Soc. 139, 6449–6451 (2017).
46. Ernst, P. & Laricchia, J. D. Mechanistic studies of aryl fluorides with disulfides: the N-O bond as a handle for C–N bond formation and catalyst turnover. J. Am. Chem. Soc. 139, 2350–2353 (2017).
47. Guimond, N., Gerecksky, C. & Fagnou, K. Rhodium(III)-catalyzed heterocyclic synthesis using an internal oxidant: improved reactivity and mechanistic studies. J. Am. Chem. Soc. 133, 6908–6909 (2011).
48. Ma, B. & Shen, Q. Rapid access to phospholipid analogs using thiol-yne chemistry. Chem. Sci. 6, 4365–4372 (2015).