Antibacterial activities of *Fagara macrophylla*, *Canarium schweinfurthii*, *Myrianthus arboreus*, *Dischistocalyx grandifolius* and *Tragia benthamii* against multi-drug resistant Gram-negative bacteria

Jackson A. Seukep¹, Bonaventure Ngadjui² and Victor Kuete¹*

Abstract

Bacterial infections caused by multidrug resistant phenotypes constitute a worldwide health concern. The present study was designed to evaluate the in vitro antibacterial activities of the methanol extracts of five medicinal plants: *Fagara macrophylla*, *Canarium schweinfurthii*, *Myrianthus arboreus*, *Dischistocalyx grandifolius* and *Tragia benthamii* against a panel of 28 multidrug resistant Gram-negative bacterial strains. The liquid broth microdilution was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the extracts. The best activity was recorded with *Canarium schweinfurthii* bark extract, MIC values ranging from 32 to 1024 µg/mL being recorded against 85.7 % tested bacteria. Broad spectra of antibacterial activities were also obtained with both bark and leaf extracts from *Myrianthus arboreus* (78.6 %) as well as the bark extract from *Fagara macrophylla* (75.0 %). The lowest MIC value of 32 µg/mL was obtained with *Canarium schweinfurthii* bark extract against *Klebsiella pneumoniae* KP63 strain. The results of this work provide baseline information for the use of the studied plants, and mostly *Fagara macrophylla*, *Canarium schweinfurthii* and *Myrianthus arboreus* in the treatment of bacterial infections including multidrug resistant phenotypes.

Keywords: Antibacterial activity, *Fagara macrophylla*, *Canarium schweinfurthii*, *Myrianthus arboreus*, Gram-negative bacteria, Multidrug resistance

Background

The spread of multidrug resistant bacteria constitutes a major hurdle in chemotherapy (Kuete 2013). In Gram-negative bacteria, efflux pumps belonging to the resistance-nodulation-cell division (RND) family of tripartite efflux pumps are largely involved in multidrug resistance (Van Bambeke et al. 2006). The propagation of bacterial MDR phenotypes is a great challenge for scientist for the discovery of novel antibacterial agents. The role of medicinal plants as sources of anti-infective compounds has been largely documented (Cowan 1999; Kuete 2013; Ndhlala et al. 2013; Ngameni et al. 2013). It was reported that up to 80 % of the world population rely on plants or derived products for their treatment (WHO 1993). Several African medicinal plants previously displayed good antibacterial activities against Gram-negative MDR phenotypes. Some of them include *Dichrostachys glomerata*, *Beilschmiedia cinnamomea* and *Olax subscorpioidea* (Fankam et al. 2011), *Lactuca sativa*, *Sechium edule*, *Cucurbita pepo* and *Solanum nigrum* (Noumedem et al. 2013b), *Piper nigrum* and *Vernonia amygdalina* (Noumedem et al. 2013a), *Beilschmiedia obscura* and *Peperomia fernandopoiana* (Fankam et al. 2014), *Capsicum frutescens* (Touani et al. 2014), *Fagara tessmannii* (Tankeo 2015). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
et al. 2015). In our ongoing investigation of antibacterial plants, we designed the present work to investigate in vitro antibacterial activity of the methanol extracts of five medicinal plants, *Canarium schweinfurthii* Engl. (Burseraceae), *Dischistocalyx grandifolius* C. B. Clarke (Acanthaceae), *Fagara macrophylla* (Oliv.) Engl. (Rutaceae), *Myrianthus arbores* P. Beauv. (Moraceae) and *Tragia benthamii* Bak. (Euphorbiaceae) (Table 1) against MDR Gram-negative bacteria.

Methods

Plant material and extraction

The plants used in this work were collected in different localities of the West Region of Cameroon in January to April 2012. The plants were identified at the National herbarium (Yaounde, Cameroon) where voucher specimens were deposited under the reference numbers (Table 1). Each plant sample was air dried at 24 ± 2 °C, powdered (using a grinder) and a portion of each sample (200 g) was extracted with methanol (MeOH; 1 L) for 48 h at room temperature. The extract was then concentrated under reduced pressure to give residues which constituted the crude extract. All extracts were then kept at 4 °C until further use.

Antimicrobial assays

Chemicals for antimicrobial assay

Chloramphenicol (CHL), (Sigma-Aldrich, St Quentin Fallavier, France) was used as a reference antibiotic (RA), *p*-Iodonitrotetrazolium chloride (INT) was used as microbial growth indicator (Eloff 1998; Mativandela et al. 2006).

Microbial strains and culture media

Test organisms included sensitive and resistant strains of *Pseudomonas aeruginosa*, *Klebsiella pneumoniae*, *Enterobacter aerogenes*, *Escherichia coli* and *Providencia stuartii* obtained from the American Type Culture Collection (ATCC) (Lacmata et al. 2012; Seukpe et al. 2013). Nutrient agar was used for the activation of the Gram-negative bacteria while the Mueller–Hinton Broth was used for antibacterial assays (Kuete et al. 2011b).

INT colorimetric assay for MIC and MBC determinations

MIC determinations were conducted using the rapid *p*-Iodonitrotetrazolium chloride (INT) colorimetric assay according to described methods (Eloff 1998) with some modifications (Kuete et al. 2008b, 2009). The test samples and RA were first of all dissolved in DMSO/Mueller–Hinton Broth (MHB) broth. The final concentration of DMSO was lower than 2.5 % and did not affect the microbial growth (Kuete et al. 2007, 2008a). The assay was repeated thrice. Wells containing adequate broth, 100 µL of inoculum and DMSO to a final concentration of 2.5 % served as negative control. The MIC of samples was detected after 18 h incubation at 37 °C, following addition (40 µL) of 0.2 mg/mL of INT. MIC was defined as the sample concentration that prevented the color change of the medium and exhibited complete inhibition of microbial growth (Eloff 1998). The MBC was determined by adding 50 µL aliquots of the preparations, which did not show any growth after incubation during MIC assays, to 150 µL of adequate broth. These preparations were incubated at 37 °C for 48 h. The MBC was regarded as the lowest concentration of extract, which did not produce a color change after addition of INT as mentioned above (Kuete et al. 2008b, 2009).

Results and discussion

The results the antibacterial assays as determined by broth microdilution are summarized in Table 2. Its appears that the tested extracts displayed selective antibacterial activities. The best activity was recorded with *Canarium schweinfurthii* bark extract, the obtained MIC values being ranged from 32 to 1024 µg/mL against 24 of the 28 (85.7 %) test bacteria. Broad spectra of antibacterial activities were also obtained with both bark and leaves extracts from *Myrianthus arbores* [22/28 (78.6 %)] as well as the bark extract from *Fagara macrophylla* [21/28 (75.0 %)]. MIC values below or equal to 1024 µg/mL were noted with *Fagara macrophylla* leaves and whole-plant extracts from *Dischistocalyx grandifolius* and *Tragia benthamii* on respectively against 13/28(46.4 %), 12/28 (42.9 %) and 11/28 (39.3 %) tested bacteria. The lowest MIC value of 32 µg/mL was obtained with *Canarium schweinfurthii* bark extract against *Klebsiella pneumoniae* KP63 strain. MIC values lower than that obtained for the reference antibiotic chloramphenicol were recorded for *Fagara macrophylla* bark extract against *Enterobacter aerogenes* EA27 (64 µg/mL) and *Canarium schweinfurthii* bark extract (32 µg/mL) against *K. pneumoniae* KP63. The results presented in Table 2 also show that all extracts displayed poor bactericidal effect.

Several molecules belonging to classes of secondary metabolites previously reported in the tested plants (Table 1) have been reported to be active on pathogenic microorganisms (Awouafack et al. 2013; Cowan 1999; Ndhlala et al. 2013; Tsopmo et al. 2013). The presence of such metabolites in our extracts could explain their antibacterial activities. According to Kuete (2010), Kuete and Effertth (2010), the antibacterial activity of a plant extract is considered significant when the MICs are below 100 µg/mL, moderate when 100 ≤ MIC ≤ 625 µg/mL and weak if MIC >625 µg/mL. Consequently, the activity of *Fagara macrophylla* bark extract against *Escherichia coli* ATCC10536 and *Enterobacter aerogenes* EA27 and
Table 1 Information on the studied plants

Plants samples (family) and Herbarium Voucher number^a	Part used and extraction yield (%)^b	Area of plant collection	Traditional treatment	Bioactive (or potentially active) compounds isolated from plants	Biological activities of crude extract^c
Canarium schweinfurthii Engl. (Burseraceae) 19652/HNC.	Bark (7.36 %)	Bangangté, West Region of Cameroon	Insecticide, dysentery, gonorrhea, cough, chest pains, pulmonary affections, stomach complaints, food poisoning, purgative and emetic, roundworm infections and other intestinal parasites, mellite, stimulant, diuretic, skin affections, eczema, leprosy, ulcers (Orwa et al. 2009), diabetes mellitus (Kouambou et al. 2007), colic, stomach pains, gale (Berhaut 1974), fever, constipation, malaria, sexual infection and rheumatism (Koudou et al. 2003)	Essential oil: limonene, phellandrenes (Orwa et al. 2009), triterpenes steroids, terpenoides, saponins, tannins, phenolics compounds, alkaloids (Kouambou et al. 2007; Tamboué et al. 2001)	Chemoprevention of cancer (Atawodi 2010), antimycobacterial activities (Nvau et al. 2011), antimicrobial activities against GIPAB (Moshi et al. 2009)
Dischistocalyx grandifolius C. B. Clarke (Acanthaceae) 27646/SRFC-Cam	Whole plant (4.53 %)	Bamboutos Mountain, West Region of Cameroon	Fungal and viral infections, cancer, inflammation, anti- pyretic, antioxidant, insecticidal, immunomodulatory, Anti-platelet aggregation (Awan and Aslam 2014)	Flavonoids, benzoisovaleric, phenolic compounds, naphtoquinone and triterpenoids (Awan and Aslam 2014)	Not reported
Fagara macrophylla (Oliv.) Engl. (Rutaceae) 6173/SRFC-Cam	Leaves (6.81 %) Bark (8.43 %)	Bamboutos Mountain, West region of Cameroon	Malaria (Zirihi et al. 2007), hypertension (Rasan et al. 2008)	Alkaloids: tembebarine, oblongine, magnoflorine, arborinine, miltidine (Torto and Mensah 1974; Tringali et al. 2001), dihydronitidine (Zirihi et al. 2007), acridone alkaid and amide alkaloids (Wansi et al. 2009), flavonoid: hesperidin (Tringali et al. 2001)	Antiplasmodial activities of ethanol bark extracts (Zirihi et al. 2007), antioxidant activities of isolated acridone alkaloid, arborinine, tembebarine and magnoflorine against SF, SL, SFr (Tringali et al. 2001)
Myrianthus arboreus P. Beauv. (Moraceae) 55499/HNC	Bark (7.68 %) Leaves (10.37 %)	Bangangté, West Region of Cameroon	Dysentery, diarrhea, vomiting, analgesic, antipyretic, heart troubles, pregnancy complications, dysmenorrhoea, incipient herina, boils, toothache, bronchitis, sore throat, headaches, swellings and tumours, diabetes (Orwa et al. 2009); stomach disorders (Agwa et al. 2011; Uzodimma 2013)	Alkaloids: flavonoid, tannin (Orwa et al. 2009), cyanogenic glycosides, phytic acid (Agwa et al. 2011), terpenes (Borokin and Omotoya 2012), saponin, anthocyanin, glycoside, carotenoid, oxalate (Otitoju et al. 2014)	Antibacterial activities of methanol and aqueous extracts against KP, PV, SA, EC (Agwa et al. 2011), antiplasmodial activities by inhibiting the developmental stage of AG (Akimukore et al. 2011)
Tragia benthamii Bak. (Euphorbiaceae) 23529/SRFC-Cam	Whole plant (5.18 %)	Bangangté, West Region of Cameroon	Cough (Oladosu et al. 2013)	Tannins, saponins, flavonoids, alkaloids (Oladosu et al. 2013)	Antimalarial activity (Oladosu et al. 2013)

^a (HNC): Cameroon National Herbarium; (SRF/Cam): Société des Réserves Forestières du Cameroun

^b The percentage of the methanol extract

^c Microorganisms: [SF: Spodoptera frugiperda; SL: Spodoptera littoralis; SF: Spodoptera frugiperda; KP: Klebsiella pneumoniae; PV: Proteus vulgaris; SA: Staphylococcus aureus; EC: Escherichia coli; AG: Anopheles gambiae; GIPAB: gastrointestinal pathogenic bacteria]
Table 2 MICs and MBCs (in μg/mL) of methanol extracts from the studied plants and chloramphenicol

Bacterial strains	Tested samples, MIC and MBC (in bracket) values									
	Fagara macrophylla	Canarium schweinfurthii	Myrianthus arboreus	Dischistocalyx grandifolius	Tragia benthami	Reference drug				
	B	L	B	L	WP	WP	CHL			
Escherichia coli	ATCC10536	256 (–)	64 (1024)	512 (–)	512 (–)	1024 (–)	1024 (1024)	16 (32)		
	W 3110	1024 (–)	1024 (–)	1024 (–)	1024 (–)	1024 (–)	1024 (–)	64 (128)		
	MIC4100	1024 (–)	512 (–)	128 (512)	1024 (–)	512 (–)	1024 (–)	128 (128)		
	AG100 A	–	–	1024 (–)	1024 (–)	1024 (–)	1024 (–)	64 (64)		
	AG100 Atet	512 (–)	1024 (–)	1024 (–)	256 (–)	1024 (–)	512 (–)	64 (128)		
	AG102	256 (1024)	512 (–)	512 (–)	256 (–)	–	–	64 (128)		
	AG100	512 (–)	512 (1024)	1024 (1024)	1024 (–)	256 (–)	–	16 (64)		
Entrobacter aerogenes	ATCC13048	1024 (–)	–	1024 (–)	1024 (–)	256 (–)	–	8 (32)		
	EA294	1024 (–)	–	1024 (–)	512 (1024)	256 (–)	1024 (–)	128 (–)		
	CM64	1024 (–)	1024 (–)	–	1024 (–)	–	1024 (–)	128 (–)		
	EA298	1024 (–)	–	1024 (–)	–	512 (–)	–	256 (–)		
	EA27	64 (512)	256 (512)	512 (–)	128 (1024)	256 (–)	512 (–)	256 (1024)	–	
	EA289	–	–	–	512 (–)	1024 (–)	–	256 (–)		
	EA3	1024 (–)	1024 (–)	512 (–)	1024 (–)	1024 (–)	–	–		
Klebsiella pneumoniae	ATCC11296	1024 (–)	–	1024 (–)	1024 (–)	1024 (–)	–	8 (256)		
	KP55	1024 (–)	512 (–)	1024 (–)	512 (–)	512 (–)	–	32 (128)		
	KP63	256 (1024)	512 (–)	32 (512)	128 (512)	256 (512)	512 (–)	1024 (–)	128 (–)	
	K2	1024 (–)	512 (–)	512 (–)	512 (–)	–	–	64 (256)		
	K24	1024 (–)	–	512 (–)	1024 (–)	1024 (–)	–	32 (256)		
Pseudomonas aeruginosa	PA01	–	–	–	–	–	–	128 (–)		
	PA124	–	–	–	1024 (–)	–	–	256 (–)		
Providencia stuartii	ATCC29916	1024 (–)	1024 (–)	1024 (–)	512 (–)	256 (–)	512 (–)	1024 (–)	16 (32)	
	PS2636	1024 (–)	1024 (1024)	256 (–)	–	512 (1024)	–	1024 (–)	32 (32)	
	PS299645	–	–	1024 (–)	1024 (–)	512 (–)	–	–	32 (256)	
	NEA16	512 (1024)	1024 (–)	512 (–)	256 (1024)	512 (–)	256 (–)	256 (512)	256 (–)	
Enterobacter aerogenes	BM47	1024 (–)	512 (–)	–	1024 (–)	–	–	256 (–)		
	ECC669	–	–	–	512 (1024)	–	–	1024 (–)	1024 (–)	–
	BM67	–	–	–	1024 (–)	1024 (–)	–	256 (–)		

(–):>1024 μg/mL for plants’ extracts and >256 μg/mL for chloramphenicol (CHL). In italics: significant activity (Kuete 2010; Kuete and Efferth 2010)

Ec Escherichia coli, Ea Enterobacter aerogenes, Kp Klebsiella pneumoniae, Pa Pseudomonas aeruginosa, Ps Providencia stuartii, Ecl Enterobacter cloacae, B bark extract, L leaves extract, WP whole plant extract

(MIC of 64 μg/mL) and Canarium schweinfurthii bark extract against K. pneumoniae KP63 (MIC of 32 μg/mL) can be considered important. The MIC values reported herein for the studies plants and mostly Fagara macrophylla, Canarium schweinfurthii and Myrianthus arboreus are moderate in general but can be considered important when regarding the medicinal importance of the tested MDR bacteria (Chevalier et al. 2000; Kuete et al. 2010, 2011a; Mallea et al. 1998, 2003; Pradel and Pages 2002; Tran et al. 2010). The antimicrobial properties compounds from Canarium schweinfurthii have been reported (Longanga Otshudi et al. 2000); also, the antibacterial activity of Myrianthus arboreus was also reported against Klebsiella pneumoniae, Proteus vulgaris, Staphylococcus aureus and Escherichia coli (Agwa et al. 2011). The present study provides additional data on the
ability of this plant to fight MDR bacteria of these plants as well as information on the antibacterial potency of other extracts.

Conclusion

The results of this work suggest that the studied plant extracts, particularly those from *Fagara macrophylla*, *Canarium Schweinfurthii* and *Myrianthus arbores*, can be used to control some infections and especially those involving MDR bacterial species. Full purification of this plants in the future will be achieved to identified their antibacterial constituents.

Authors' contributions

JAS carried out the study; VK and BTN supervised the work; VK designed the experiments, wrote the manuscript, and provided the bacterial strains and other chemicals. All authors read and approved the final manuscript.

Author details

1 Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon. 2 Department of Organic Chemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium for identification of plants.

Compliance with ethical guidelines

The authors declare that they have no competing interests.

Competing interests

The authors declare that they have no competing interests.

Received: 24 April 2015 **Accepted:** 25 September 2015 **Published online:** 01 October 2015

References

Agwa O, Chuku W, Obichi E (2011) The in vitro effect of Myrianthus arbores leaf extract on some pathogenic bacteria of clinical origin. J Microbiol Biotechnol Res 1:77–85

Akinkorore R, Adelede C, Odeyemi O, Raji J, Osuoye J (2011) Bioefficacy of extracts of some indigenous Nigerian plants on the developmental stages of mosquito (*Anopheles gambiae*). Jordan J Biol Sci 4:237–247

Atawodi S (2010) Polyphenol composition and in vitro antioxidant potential of Nigerian *Canarium Schweinfurthii*. Engl Oil Adv Biol Res 4:314–322

Awon A, Adlam M (2014) Family Acanthaceae and genus *Aphelandra*: ethnopharmacological and phytochemical review. Int J Pharm Pharmaceut Sc 6:44–55

Awouafack MO, Tane P, Kuete V, Elloff J (2013) Sesquiterpenes from the medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa. In: Kuete V (ed) Pharmacology and chemistry. Elsevier, Oxford

Kuete V, Effert H (2010) Cameroon medicinal plants: pharmacology and derived natural products. Front Pharmacol 1:123

Kuete V, Wabo GF, Ngameni B, Mbang AT, Metuno R, Etoua FX, Ngadjui BT, Beng VP, Meyer JJ, Lall N (2007) Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of *Ivania gabonensis* (Ixonanthaceae). J Ethnopharmacol 114:54–60

Kuete V, Ngameni B, Simo CC, Tankeu RK, Ngadjui BT, Meyer JJ, Lall N, Kuete JR (2008a) Antimicrobial activity of the crude extracts and compounds from *Ficus chlamydocarpa* and *Ficus cordata* (Moraceae). J Ethnopharmacol 120:17–24

Kuete V, Wansi JD, Mbang AT, Kana SOP MM, Tadjong AT, Beng VP, Etoua FX, Wandji J, Meyer JJ, Lall N (2008b) Antimicrobial activity of the methanolic extract and compounds from *Teclaea afzelii* (Rutaceae). S Afr J Bot 74:572–576

Kuete V, Nanf N, Ngameni B, Mbang AT, Keumedjio F, Ngadjui BT (2009) Antimicrobial activity of the crude extract, fractions and compounds from stem bark of *Ficus ovata* (Moraceae). J Ethnopharmacol 124:556–561

Kuete V, Ngameni B, Tanjvoumou JG, Bolla JM, Alibert-Franco S, Ngadjui BT, Pages JM (2010) Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrone. Antimicrob Agents Chemother 54:1749–1752

Kuete V, Alibert-Franco S, Eyong KG, Ngameni B, Folefoc GN, Ngueremeving JR, Tangmjou MG, Gofo GW, Komgum J, Ouahouo BM, Bolla JM, Chevalier J, Ngadjui BT, Nkengfack AE, Pages JM (2011a) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents 37:156–161

Kuete V, Kamga J, Sandjo LP, Ngameni B, Poumala HM, Ambassa P, Ngadjui BT, Pages JM (2011b) Contribution to the ethnobotanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in the Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol 131:411–423

Kamat P, Elloff J (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713

Fankam AG, Kuete V, Voukeng IK, Kuiate JR, Pages JM (2011) Antibacterial activities of selected Cameroonian spices and their synergistic effects with antibiotics against multidrug-resistant phenotypes. BMC Complement Altern Med 11:104

Kfam AG, Kuiate JR, Kuete V (2014) Antimicrobial activities of *Beilschmiedia obscura* and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes. BMC Complement Altern Med 14:241

Fézii H, Trab G, Iréi K, Ng'aman C, Mohou C (2008) Etudes de quelques plantes thérapeutiques utilisées dans le traitement de l’hypertension artérielle et du diabète: deux maladies émergentes en Côte d’Ivoire. Sci Nat 5:39–48

Kouamoubo C, Dimo T, Dzeufet P, Nguemguem F, Tchamadeu M, Wembe E, Kamtochou P (2007) Antidiabetic and hypolipidemic effects of *Canarium Schweinfurthii* hexane bark extract in streptozocin-diabetic rats. Pharmacologyonline 1:209–219

Koudou J, Abana AA, Ngaissa P, Bessiere JM (2005) Chemical composition and pharmacological activity of essential oil of *Canarium Schweinfurthii*. Fitoerapia 76:700–703

Kuete V (2010) Potential of Cameroonian plants and derived products against microbial infections: a review. Planta Med 76:1479–1491

Kuete V (2013) Medicinal plant research in Africa. In: Kuete V (ed) Pharmacology and chemistry. Elsevier, Oxford

Kuete V, Effert H (2010) Cameroon medicinal plants: pharmacology and derived natural products. Front Pharmacol 1:123

Kuete V, Wabo GF, Ngameni B, Mbang AT, Metuno R, Etoua FX, Ngadjui BT, Beng VP, Meyer JJ, Lall N (2007) Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of *Ivania gabonensis* (Ixonanthaceae). J Ethnopharmacol 114:54–60

Kuete V, Ngameni B, Simo CC, Tankeu RK, Ngadjui BT, Meyer JJ, Lall N, Kuete JR (2008a) Antimicrobial activity of the crude extracts and compounds from *Ficus chlamydocarpa* and *Ficus cordata* (Moraceae). J Ethnopharmacol 120:17–24

Kuete V, Wansi JD, Mbang AT, Kana SOP MM, Tadjong AT, Beng VP, Etoua FX, Wandji J, Meyer JJ, Lall N (2008b) Antimicrobial activity of the methanolic extract and compounds from *Teclaea afzelii* (Rutaceae). S Afr J Bot 74:572–576

Kuete V, Nanf N, Ngameni B, Mbang AT, Keumedjio F, Ngadjui BT (2009) Antimicrobial activity of the crude extract, fractions and compounds from stem bark of *Ficus ovata* (Moraceae). J Ethnopharmacol 124:556–561

Kuete V, Ngameni B, Tanjvoumou JG, Bolla JM, Alibert-Franco S, Ngadjui BT, Pages JM (2010) Efflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyrione. Antimicrob Agents Chemother 54:1749–1752

Kuete V, Alibert-Franco S, Eyong KG, Ngameni B, Folefoc GN, Ngueremeving JR, Tangmjou MG, Gofo GW, Komgum J, Ouahouo BM, Bolla JM, Chevalier J, Ngadjui BT, Nkengfack AE, Pages JM (2011a) Antibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotype. Int J Antimicrob Agents 37:156–161

Kuete V, Kamga J, Sandjo LP, Ngameni B, Poumala HM, Ambassa P, Ngadjui BT, Pages JM (2011b) Contribution to the ethnobotanical, phytochemical and pharmacological studies of traditionally used medicinal plants in the treatment of dysentery and diarrhoea in the Lomela area, Democratic Republic of Congo (DRC). J Ethnopharmacol 131:411–423

Malaia M, Chevalier J, Borne J, Eyraud A, Davin-Regli A, Bollet C, Pages JM (1998) Porin alteration and active efflux: two in vivo drug resistance strategies used by *Enterobacter aerogenes*. Microbiology 144(Pt 11):3003–3009

Malaia M, Mahamoud A, Chevalier J, Alibert-Franco S, Brouant P, Babe J, Pages JM (2003) Alkylaminquinolines inhibit the bacterial antibiotic efflux pump in multidrug-resistant clinical isolates. Biochem J 376:801–805

Matvandelé SPN, Lall N, Meyer JJM (2006) Antibacterial, antifungal and antitumor activity of the rhizomes of *Pelargonium reniforme* (DC) (Geraniaceae) root extracts, S Afr J Bot 72:232–237

Moshi MJ, Innocent E, Masimba PJ, Otieno DF, Weisheit A, Mbabazi P, Lynes M, Meachem K, Hamilton A, Urasa I (2009) Antimicrobial and brine shrimp
toxicity of some plants used in traditional medicine in Bukoba District, north-western Tanzania. Tanzan J Health Res 11:23–28
Ndhala AR, Arnoo SC, Ncube B, Moyo M, Nair JJ, Van Staden J (2013) 16—Antibacterial, antifungal, and antiviral activities of African medicinal plants. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 621–659
Ngameni B, Fotso GW, Kamga J, Ambassa P, Abdou T, Fankam AG, Voukeng IK, Ngadjui BT, Abegaz BM, Kuete V (2013) 9—Flavonoids and related compounds from the medicinal plants of Africa. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 301–350
Noumedem JA, Mihasan M, Lacmata ST, Stefan M, Kuiate JR, Kuete V (2013a) In vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant gram-negative species. BMC Complement Altern Med 13:190
Noumedem JA, Mihasan M, Kuiate JR, Stefan M, Cojocaru D, Dzoyem JP, Kuete V (2013b) Antibacterial activities of the methanol extracts of ten Cameroonian vegetables against Gram-negative multidrug-resistant bacteria. BMC Complement Altern Med 13:26
Nvau J, Gushit J, Orishadipe T, Kolo I (2011) Antimycobacterial activity of the leaves extract of Canarium schweinfurthii. Engl Cont J Phar Sci 5:20–24
Oladosu IA, Balogun SO, Ademowo GO (2013) Phytochemical screening, antimicrobial and histopathological studies of Allophylus africanus and Tragia benthamii. Chin J Nat Med 11:371–376
Orwa C, Mutua A, Kindt R, Jamnadass R, Simons A (2009) Agroforestree Database: a tree reference and selection guide version 4.0., World Agroforestry Centre, Nairobi, Kenya
Ottojo G, Nwamah J, Ottojo O, Odoh E, Iyeghe L (2014) Phytochemical composition of some underutilised green leafy vegetables in nsukka urban Lga of Enugu State. J Biodiv Environ Sci 4:208–217
Pradel E, Pages JM (2002) The AcnAB-ToIC efflux pump contributes to multidrug resistance in the nosocomial pathogen Enterobacter aerogenes. Antimicrob Agents Chemother 46:2646–2643
Seukep JA, Fankam AG, Djueussi DE, Voukeng IK, Tankeo SB, Noumedem JA, Kuete AH, Kuete V (2013) Antibacterial activities of the methanol extracts of seven Cameroonian dietary plants against bacteria expressing MDR phenotypes. Springerplus 2:363
Tamboue H, Fotso S, Ngadjui B, Donge O, Abegaz B (2000) Phenolic metabolites from seeds of Canarium schweinfurthii. Bull Chem Soc Ethiop 14:155–159
Tankeo SB, Damen F, Awouaflack MD, Mpetga J, Tane P, Eloff JN, Kuete V (2013) Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii. J Ethnopharmacol 169:275–279
Torto FG, Mensah IA (1970) Alkaloids of Fagara macrophylla. Phytochemistry 9:911–914
Touani FK, Seukep AJ, Djueussi DE, Fankam AG, Noumedem JA, Kuete V (2014) Antibiotic-potentiation activities of four Cameroonian dietary plants against multidrug-resistant Gram-negative bacteria expressing efflux pumps. BMC Complement Altern Med 14:258
Tran QT, Mahendran KR, Hajar E, Ceccarelli M, Davin-Regli A, Winterhalter M, Weingart H, Pages JM (2010) Implication of porins in beta-lactam resistance of Providencia stuartii. J Biol Chem 285:32273–32281
Tingali C, Spataforta C, Cali V, Simmonds MS (2001) Antifeedant constituents from Fagara macrophylla. Fitoterapia 72:538–543
Tsopmo A, Awah FM, Kuete V (2013) 12—Lignans and Stilbenes from African Medicinal Plants. In: Kuete V (ed) Medicinal plant research in Africa. Elsevier, Oxford, pp 435–478
Uzodimma D (2013) Medico-ethnobotanical inventory of Ogi, Okigwe Imo State, South Eastern Nigeria. Glob Adv Res J Med Plants 20:300–044
Van Bambeke F, Pages JM, Lee VJ (2006) Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat Antinfect Drug Discov 1:157–175
Wani JD, Nwozo SO, Mbaze LM, Devkota KP, Donkwe Moladje SM, Fomum ZT, Sewald N (2009) Amidines from the stem bark of Fagara macrophylla. Planta Med 75:517–521
WHO (1993) Summary of WHO guidelines for assessment of herbal medicines. Herbal Gram 28:13–14
Zirihi G, Yao D, Kra-adou K, Grellier P (2007) Phytochemical and pharmacological studies of alcoholic extract of Fagara macrophylla (Oliv) Engl (Rutaceae): chemical structure of active compound inducing antipaludic activity. J Chin Clin Med 2:205–210