Reassessment of Morphological Diagnostic Characters and Species Boundaries Requires Taxonomical Changes for the Genus Orthopyxis L. Agassiz, 1862 (Campanulariidae, Hydrozoa) and Some Related Campanulariids

Amanda F. Cunha1,*, Gabriel N. Genzano2, Antonio C. Marques1,3

1 Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil, 2 Estación Costera Nágera, Dpto. Cs. Marinas, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, 3 Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, São Paulo, Brazil

* amanfcunha@gmail.com

Abstract

The genus Orthopyxis is widely known for its morphological variability, making species identification particularly difficult. A number of nominal species have been recorded in the southwestern Atlantic, although most of these records are doubtful. The goal of this study was to infer species boundaries in the genus Orthopyxis from the southwestern Atlantic using an integrative approach. Intergeneric limits were also tested using comparisons with specimens of the genus Campanularia. We performed DNA analyses using the mitochondrial genes 16S and COI and the nuclear ITS1 and ITS2 regions. Orthopyxis was monophyletic in maximum likelihood analyses using the combined dataset and in analyses with 16S alone. Four lineages of Orthopyxis were retrieved for all analyses, corresponding morphologically to the species Orthopyxis sargassicola (previously known in the area), Orthopyxis crenata (first recorded for the southwestern Atlantic), Orthopyxis caliculata (= Orthopyxis minuta Vannucci, 1949 and considered a synonym of O. integra by some authors), and Orthopyxis mianzani sp. nov. A re-evaluation of the traditional morphological diagnostic characters, guided by our molecular analyses, revealed that O. integra does not occur in the study area, and O. caliculata is the correct identification of one of the lineages occurring in this region, corroborating the validity of that species. Orthopyxis mianzani sp. nov. resembles O. caliculata with respect to gonothecae morphology and a smooth hydrothecae rim, although it shows significant differences for other characters, such as perisarc thickness, which has traditionally been thought to have wide intraspecific variation. The species O. sargassicola is morphologically similar to O. crenata, although they differ in gonothecae morphology, and these species can only be reliably identified when this structure is present.
Introduction

Hydroids of the family Campanulariidae Johnston, 1836 (Hydrozoa, Cnidaria) are ubiquitous in marine benthic communities, and in the southwestern Atlantic, they are frequently recorded in ecological and faunal studies [1,2,3,4,5,6,7,8,9,10,11,12,13]. Formal taxonomical studies of this family are relatively rare and mainly address the evolution of the medusa [14,15,16,17] and the delimitation of genera and species [7,18,19,20,21,22,23,24,25]. There has been a clear discordance regarding the diagnostic morphological characters used in the taxonomy of this group [19,26,27,28,29,30,31], mostly because the majority of these species have simple and similar morphologies that can be quite variable cf. [19]. In addition, the phylogenetic position of the family Campanulariidae among the Leptothecata cf. [32,33,34] is currently under dispute [17,35,36].

The genus Orthopyxis L. Agassiz, 1862 clearly illustrates the difficulties associated with taxa delimitation in the family. Many uncertainties exist concerning the validity of this genus e.g., [19,26,28,29,37,38], and it has been synonymized multiple times with the genus Campanularia Lamarck, 1816 based on their morphological similarities. In addition, species traditionally assigned to the genus Orthopyxis have very similar morphologies and few diagnostic characters, making delimitation difficult, particularly when only trophosomal characters are considered or available cf. [27,39]. Altogether, these practical issues—particularly the uncertain validity of the genus e.g., [19] (p.60) and many of its species e.g., [14,19]—demand different taxonomic approaches to reassess and establish species boundaries within Orthopyxis.

In the southwestern Atlantic, five species of the genus Orthopyxis have been recorded along the coast of Brazil by Vannucci-Mendes [40] and Vannucci [41,42], which were later re-identified as two species: *Orthopyxis integra* (Macgillivray, 1842) and *Orthopyxis sargassica* (Nutting, 1915) [1,13,31] (Table 1). Vannucci-Mendes [40] and Vannucci [42] also recorded two species of *Campanularia* along the southeastern coast of Brazil, although both records are now considered dubious [8]. Unfortunately, a formal revision of these records is not possible, as most of the materials described by Vannucci have been lost [1]. Along the Argentinean coast, Blanco [43,44,45] recorded several species of *Campanularia* and Orthopyxis, some of which she subsequently re-identified as *Campanularia subantarctica* Millard, 1971 [46], which is currently considered to be a synonym of *Campanularia lennoxensis* Jäderholm, 1903 [47] (Table 1). Other records of *Campanularia* and *Orthopyxis* for the southwestern Atlantic are listed in Table 1. Most of them are considered dubious, requiring a revision of species records in this region.

Currently, *O. sargassica* and *O. integra* have been reported to occur in the southwestern Atlantic. In Brazil, *O. sargassica* was recorded off the coast of Espírito Santo [10,48] and São Paulo states [1,49,50,51], and together with *O. integra*, it has been recorded along the coast of Rio de Janeiro [10,52,53], Paraná [54] and Santa Catarina states [13]. They are usually found in shallow waters, though have also been recorded in deeper areas of 35 and 70 meters [10,53], and frequently occur in epiphytic associations, often on macroalgae of the genus *Sargassum* C. Agardh, 1820 [1,13,50,51,54,55]. The species *O. sargassica*, for instance, is among the most common and abundant species of hydroids in epiphytic environments in São Paulo and Paraná states [51,54]. In Argentina, *O. caliculata* (accepted as *Campanularia integra*, [46]) was recorded in Puerto Madryn, Chubut [43] and *O. integra* in Punta Peñás, Sán Julian ([46], as *C. integra*); a third species, *O. everta* (Clark, 1876), was recorded by Blanco [44,45] along the coast of Argentina, but it was later re-identified as *C. subantarctica* by Blanco [46] and is now thought to be two different species [47,56] (Table 1). Studies with *Orthopyxis* from Argentina are restricted to their original records, in which species are generally reported in epiphytic or epizoic associations, from shallow waters to depths of 157 meters [43,46]. Species of *Campanularia*, on the
Table 1. Records of species of *Orthopyxis* and *Campanularia* from the southwestern Atlantic, including their reidentifications, according to the literature.

Record	Author of the record	Locality of the record	Reidentification	Author of the reidentification
Campanularia agas Cornelius, 1982	[3, 4, 6, 9, 131, 132]	Uruguay and Argentina	-	-
Campanularia caliculata Hincks, 1853	[133]	Strait of Magellan	*Orthopyxis caliculata* (Hincks, 1853)	[43]
			Orthopyxis integrar (Macgillivray, 1842)	[150]
			? *Orthopyxis crenata* (Hartlaub, 1901)	[47]
Campanularia clytioides (Lamouroux, 1824)	[133]	Strait of Magellan	-	-
Campanularia compressa Clark, 1876	[134]	Tierra del Fuego and Falkland Islands	*Campanularia integrar* Macgillivray, 1842	[46, 130]
Campanularia (Orthopyxis) everta Clark, 1876	[45]	Tierra del Fuego, Argentina	*Campanularia subantarctica* Millard, 1971	[46]
			Orthopyxis mollis (Stechow, 1919)	[97, 150]
			Campanularia lennoxensis Jäderholm, 1903	[47]
			Campanularia hartlaubi El Beshbeeshy, 2011	[138]
			Campanularia hartlaubi (El Beshbeeshy, 2011)	[56]
			Between Falkland Islands and Tierra del Fuego; Strait of Magellan	[135]
Campanularia everta Clark, 1876	[130]	Argentina	-	-
Campanularia hesperia Torrey, 1904	[8, 40, 89, 136]	Santo Amaro Island, São Paulo, Brazil	? *Campanularia hesperia* Torrey, 1904	[1, 8]
Campanularia hincksii Alder, 1856	[10, 12, 53]	Rio de Janeiro and Bahia, Brazil	-	-
			Argentina; Mar del Plata, Buenos Aires, Argentina	[3, 6, 9, 57, 58, 130, 137, 138]
Campanularia hincksii grandis Billard, 1906	[139]	Quequén, Buenos Aires, Argentina	*Campanularia hincksii* Alder, 1856	[46, 57, 138]
Campanularia hicksoni Totton, 1930	[137]	Tierra del Fuego, Argentina	? *Campanularia hicksoni* Totton, 1930	[151]
				[138, 140]
Campanularia integrar Macgillivray, 1842	[43, 46, 140]	Punta Peñas, Santa Cruz, Argentina and Beagle Channel	-	-
Campanularia (Campanularia) laevis Hartlaub, 1905	[135]	Strait of Magellan, Argentina	*Campanularia agas* Cornelius, 1982	[19, 130]

(Continued)
Record	Author of the record	Locality of the record	Reidentification	Author of the reidentification
Campanularia laevis Hartlaub, 1905	[42]	Cabo Frio, Rio de Janeiro, Brazil	? *Campanularia agas* Cornelius, 1982	[1,8]
	[137,138]	Buenos Aires, Argentina	*Campanularia agas* Cornelius, 1982	[150]
Campanularia lennoxensis Jäderholm, 1903	[141,142]	Rio de Janeiro, Brazil	Orthopyxis crenata (Hartlaub, 1901)	[42]
			? Orthopyxis sargassicola (Nutting, 1915)	[1]
Campanularia longitheca Stechow, 1924	[143]	Falkland Islands; Strait of Magellan	? *Campanularia (Orthopyxis) everta* Clark, 1876	[45]
Campanularia (Orthopyxis) norvegiae Broch, 1948	[46,144]	South Georgia Islands	-	-
Campanularia sp.	[145]	Bahía San Sebastián, Tierra del Fuego, Argentina	-	-
Campanularia subantarctica Millard, 1971	[6,46,57,58,88,129,140]	Mar del Plata, Golfo San Matías, Golfo San Jorge, Tierra del Fuego, and Isla de los Estados, Argentina; Canal Beagle	-	-
Campanularia volubilis (Linnaeus, 1758) var. *antarctica* Ritchie, 1913	[43,130]	Punta Peñas, San Julián, Argentina	? *Campanularia antarctica* Ritchie, 1913	[151]
Campanularia tincta Hincks, 1861	[133]	Falkland Islands	?*Campanularia tincta* Hincks, 1861	[28]
			Campanularia longitheca Stechow, 1924	[134]
			Campanularia subantarctica Millard, 1971	[143]
			Orthopyxis mollis (Stechow, 1919)	[97,150]
			Orthopyxis hartlaubi El Beshbeeshy, 2011	[138]
			Campanularia hartlaubi (El Beshbeeshy, 2011)	[56]
			?*Campanularia tincta* Hincks, 1861	[28]
	[134]	Falkland Islands	*Campanularia longitheca* Stechow, 1924	[143]
			Campanularia subantarctica Millard, 1971	[46]
			Campanularia hartlaubi (El Beshbeeshy, 2011)	[56]
	[146]	Falkland Islands	*Campanularia longitheca* Stechow, 1924	[143]
			Campanularia subantarctica Millard, 1971	[46]
			Campanularia hartlaubi (El Beshbeeshy, 2011)	[56]
	[147]	Tierra del Fuego, Argentina	*Campanularia longitheca* Stechow, 1924	[143]
			Campanularia subantarctica Millard, 1971	[46]
			Campanularia hartlaubi (El Beshbeeshy, 2011)	[56]
Record	Author of the record	Locality of the record	Reidentification	Author of the reidentification
--------	----------------------	------------------------	------------------	-------------------------------
Campanularia tincta Hincks, 1861 var. *eurycalyx* Hartlaub, 1905	[133]	Falkland Islands	*Campanularia* *euryca...	[45]
Eucopella crenata Hartlaub, 1901	[133]	Tierra del Fuego, Argentina	Orthopyxis lennoxensis (Jäderholm, 1903)	[40,130]
Orthopyxis billardi Vannucci, 1954	[42]	São João da Barra, Rio de Janeiro, Brazil	Orthopyxis sargassicola (Nutting, 1915)	[31,130]
Orthopyxis caliculata (Hincks, 1853)	[43]	Puerto Madryn, Argentina	Campanularia integra	[46,130,140]
Orthopyxis clytioides (Lamouroux, 1824)	[40,89]	Santos Bay, Santo Amaro Island and Itanhaém, São Paulo, Brazil	Orthopyxis sargassicola (Nutting, 1915)	[1]
Orthopyxis crenata (Hartlaub, 1901)	[42]	La Coronilla, Rocha, Uruguay	Orthopyxis crenata (Hartlaub, 1901)	[97]
Orthopyxis everta (Clark, 1976)	[44]	Puerto Madryn, Argentina	Campanularia (Orthopyxis) everta Clark, 1876	[45]
other hand, are frequently reported in epizoic associations in Argentina, often occurring on poriferans, bryozoans and abundantly on other hydroids, such as *Amphisbetia operculata* (Linnaeus, 1758) and *Plumularia setacea* (Linnaeus, 1758) [4,57,58, 59]. They are also found on molluscs, gorgonaceans and polychaete tubes, especially in areas where soft bottoms are predominant [6,9]. However, the distribution and substrate associations of *Orthopyxis*, and some species of *Campanularia*, from the southwestern Atlantic are not settled, since there are still many disagreements in the literature regarding the status of species records (Table 1). As well, the taxonomy of *O. integra* and *O. sargassicola*—two species traditionally found in the southwestern Atlantic—remains uncertain, casting doubts on the validity of their records.

Molecular data have been useful for analyzing interspecific boundaries in groups with difficult taxonomies e.g., [60,61,62,63]. For the Hydrozoa, the number of such molecular studies has increased over the last few years, particularly with respect to species delimitation e.g., [64,65,66,67,68,69,70,71,72,73,74] and misidentifications related to incomplete knowledge of morphology and life cycles e.g., [75]. Although there have been relatively few molecular studies involving representatives of the family Campanulariidae e.g., [14,23,24,25,76], these studies have provided important evidence for delimiting species boundaries within this family, suggesting the non-monophyly of Campanulariidae [14,73] and of some species of *Clytia* Lamouroux, 1812 and *Orthopyxis* [14,23,24,25].

The goal of this study was to reassess species boundaries within the genus *Orthopyxis* based on species models from the southwestern Atlantic. Furthermore, morphological characters associated with *Orthopyxis* are re-evaluated, one new species and one new record of *Orthopyxis* are described, and the intergeneric limits of *Orthopyxis* and *Campanularia* are reassessed.

Materials and Methods

Study Area and sampled taxa

Specimens of the genus *Orthopyxis* and *Campanularia* were sampled in Brazil and Argentina (Fig. 1, Table 2). Samples were carried out in the northeastern (state of Ceará) and southeastern...
coast of Brazil (states of Espírito Santo, Rio de Janeiro, São Paulo, Paraná and Santa Catarina), and south of Argentina (provinces of Santa Cruz and Tierra del Fuego). All necessary permits were obtained for the field studies (sampling permits 16802–1 and 16802–2 SISBIO/ICMBio—Instituto Chico Mendes de Conservação da Biodiversidade), and no protected species were sampled. Colonies were collected during low tide on a variety of substrates, including rocks, algae (*Sargassum* sp. and *Macrocystis pyrifera*), mussel shells and other hydroid colonies (mainly species of Sertulariidae), and preserved in 95% ethanol. Species were identified based on taxonomic descriptions [19,31,47,77,78] and, whenever possible, by comparisons with type materials or other reference materials available in museums. Species vouchers were deposited in the Museu de Zoologia da Universidade de São Paulo (MZUSP), Brazil, and in the National Museum of Natural History, Smithsonian Institution (USNM), United States of America (Table 2). One specimen of the Campanulariinae genus *Silicularia* Meyen, 1834 from Argentina was included in several of the analyses because it is thought to be related to *Orthopyxis* cf. [14]. Two species of the genus *Obelia* Péron & Lesueur, 1810 (subfamily Obeliinae, sister group of Campanulariinae according to [14] and [73]) were used as outgroups in the phylogenetic analysis. All sequences were deposited in GenBank (accession numbers in Table 2). Additional data reported in this study (e.g. geographical coordinates, images) were deposited in the National Database Marine Biodiversity (available at https://marinebiodiversity.lncc.br/metacatui/).
Species	Sampling site and specimen code in tree	Coordinates (number in Fig. 1)	Voucher	GenBank Accession Number
Obelia dichotoma	Sandwich Marina, Massachusetts, USA	41°16’15”N 70°15’30”W	MZUSP	KM603472 KM603473 KM603474
Obelia longissima	Gloucester State Pier, Massachusetts, USA	42°36’51”N 70°39’06”W	MZUSP	KM603468 KM603470 KM603471
Orthopyxis crenata	Caponga (CB), Cascavel, Ceará, Brazil	04°02.348’S 38°11.572”W	MZUSP	KM405590 KM454926
Orthopyxis sargassicola	Praia Formosa (FB1), Aracruz, ES, Brazil	Specific coordinate unknown (2)	MZUSP	KM405610 KM405542 KM454946
Orthopyxis sargassicola	Praia Formosa (FB2), Aracruz, ES, Brazil	Specific coordinate unknown (2)	MZUSP	KM405611 KM405541
Orthopyxis sargassicola	Praia dos Padres (PB1), Aracruz, Espírito Santo (ES), Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405622 KM405531 KM454957
Orthopyxis sargassicola	Praia dos Padres (PB2), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405623 KM405530 KM454958
Orthopyxis sargassicola	Praia dos Padres (PB3), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405624 KM405529 KM454959
Orthopyxis sargassicola	Praia dos Padres (PB4), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405625 KM405528 KM454960
Orthopyxis sargassicola	Praia dos Padres (PB5), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405626 KM405527 KM454961
Orthopyxis sargassicola	Praia dos Padres (PB6), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405627 KM405526 KM454962
Orthopyxis sargassicola	Praia dos Padres (PB7), Aracruz, ES, Brazil	19°55.941’S 40°07.327”W (3)	MZUSP	KM405628 KM405525 KM454963
Orthopyxis calciculata	Praia João Gonçalves (JGB1), Búzios, Rio de Janeiro (RJ), Brazil	Specific coordinate unknown (4)	MZUSP	KM405582 KM454918
Orthopyxis calciculata	Praia João Gonçalves (JGB2), Búzios, RJ, Brazil	Specific coordinate unknown (4)	MZUSP	KM405583 KM454919
Orthopyxis calciculata	Praia João Gonçalves (JGB3), Búzios, RJ, Brazil	Specific coordinate unknown (4)	MZUSP	KM405584 KM405565 KM454920
Orthopyxis calciculata	Praia João Gonçalves (JGB4), Búzios, RJ, Brazil	Specific coordinate unknown (4)	MZUSP	KM405585 KM454921
Orthopyxis sargassicola	Paraty (PTY1), RJ, Brazil	Specific coordinate unknown (5)	MZUSP	KM405628 KM405524 KM454964
Orthopyxis sargassicola	Paraty (PTY2), RJ, Brazil	Specific coordinate unknown (5)	MZUSP	KM405629 KM454965
Orthopyxis sargassicola	Paraty (PTY3), RJ, Brazil	Specific coordinate unknown (5)	MZUSP	KM405630 KM405522 KM454966
Orthopyxis sargassicola	Paraty (PTY4), RJ, Brazil	Specific coordinate unknown (5)	MZUSP	KM405631 KM405521 KM454967
Orthopyxis sargassicola	Paraty (PTY5), RJ, Brazil	Specific coordinate unknown (5)	MZUSP	KM405632 KM454968
Orthopyxis sargassicola	Ilha dos Ratos (RI), Paraty, RJ, Brazil	23°11.640’S 44°36.408”W (6)	MZUSP	KM405633 KM405519 KM454969
Orthopyxis sargassicola	Ilha dos Meros (MI), Paraty, RJ, Brazil	23°11.264’S 44°34.635”W (7)	MZUSP	KM405621 KM405532 KM454956
Orthopyxis sargassicola	Praia do Lázaro (LB1), Ubatuba, SP, Brazil	23°30’32.64”S 45°08’18.52”W (8)	MZUSP	KM405612 KM405540 KM454947
Orthopyxis sargassicola	Praia do Lázaro (LB2), Ubatuba, SP, Brazil	23°30’32.64”S 45°08’18.52”W (8)	MZUSP	KM405613 KM405539 KM454948

(Continued)
Table 2. (Continued)

Species	Sampling site and specimen code in tree	Coordinates (number in Fig. 1)	Voucher	GenBank Accession Number
Orthopyxis sargassicola	Praia do Lázaro (LB3), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2596	KM405614 KM405538 KM454949
Orthopyxis sargassicola	Praia do Lázaro (LB4), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2597	KM405615 KM405537 KM454950
Orthopyxis sargassicola	Praia do Lázaro (LB5), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2598	KM405591 KM454927
Orthopyxis sargassicola	Praia do Lázaro (LB6), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2599	KM405616 KM405536 KM454951
Orthopyxis sargassicola	Praia do Lázaro (LB7), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2600	KM405617 KM405535 KM454952
Orthopyxis sargassicola	Praia do Lázaro (LB8), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2601	KM405592 KM454928
Orthopyxis sargassicola	Praia do Lázaro (LB9), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2602	KM405618 KM405534 KM454953
Orthopyxis sargassicola	Praia do Lázaro (LB10), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2603	KM405619 KM454954
Orthopyxis sargassicola	Praia do Lázaro (LB11), Ubatuba, SP, Brazil	23°30.32.64′S 45°08.18.52′W (8)	MZUSP 2604	KM405620 KM405533 KM454955
Orthopyxis sargassicola	Praia Preta, São Sebastião (SS), São Paulo (SP), Brazil	Specific coordinate unknown (9)	MZUSP 2593	KM405634 KM405518 KM454970
Orthopyxis mianzani	Praia do Miguel (MB1), Ilha do Mel, Paraná (PR), Brazil	25°33.22.12′S 48°17.55.36′W (10)	MZUSP 2570	KM405602 KM405550 KM454938
Orthopyxis mianzani	Praia do Miguel (MB2), Ilha do Mel, PR, Brazil	25°33.22.12′S 48°17.55.36′W (10)	MZUSP 2571	KM405603 KM405549 KM454939
Orthopyxis mianzani	Praia do Miguel (MB3), Ilha do Mel, PR, Brazil	25°33.22.12′S 48°17.55.36′W (10)	MZUSP 2572	KM405604 KM405548 KM454940
Orthopyxis mianzani	Praia do Miguel (MB4), Ilha do Mel, PR, Brazil	25°33.22.12′S 48°17.55.36′W (10)	MZUSP 2573	KM405605 KM405547 KM454941
Orthopyxis mianzani	Praia do Miguel (MB5), Ilha do Mel, PR, Brazil	25°33.22.12′S 48°17.55.36′W (10)	MZUSP 2574	KM405606 KM405546 KM454942
Orthopyxis mianzani	Praia de Fora (FOB1), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2575	KM405595 KM405557 KM454932
Orthopyxis mianzani	Praia de Fora (FOB2), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2576	KM405596 KM405556 KM454933
Orthopyxis mianzani	Praia de Fora (FOB3), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2595	KM405597 KM405555 KM454934
Orthopyxis mianzani	Praia de Fora (FOB4), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2577	KM405598 KM405554 KM454935
Orthopyxis mianzani	Praia de Fora (FOB5), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2578	KM405599 KM405553 KM454936
Orthopyxis mianzani	Praia de Fora (FOB6), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2579	KM405600 KM405552 KM454937
Orthopyxis mianzani	Praia de Fora (FOB7), Ilha do Mel, PR, Brazil	25°34.22.58′S 48°18.32.77′W (11)	MZUSP 2580	KM405601 KM405551
Orthopyxis calculata	Praia da Armação (AB), Penha, SC, Brazil	26°47.3′S 48°37.3′W (12)	MZUSP 2566	KM405578 KM405567 KM454914
Orthopyxis calculata	Praia da Paciência (PAB1), Penha, Santa Catarina (SC), Brazil	26°46.38′S 48°36.10′W (13)	MZUSP 2550	KM405586 KM405564 KM454922
Orthopyxis calculata	Praia da Paciência (PAB2), Penha, SC, Brazil	26°46.38′S 48°36.10′W (13)	MZUSP 2551	KM405593 KM405559 KM454930
Orthopyxis calculata	Praia da Paciência (PAB3), Penha, SC, Brazil	26°46.38′S 48°36.10′W (13)	MZUSP 2552	KM405587 KM405563 KM454923

(Continued)
Table 2. (Continued)

Species	Sampling site and specimen code in tree	Coordinates (number in Fig. 1)	Voucher	GenBank Accession Number	16S	COI	ITS
Orthopyxis caliculata	Praia da Paciência (PAB4), Penha, SC, Brazil	26°43'38"S 48°36'10"W (13)	MZUSP 2554	KM405588 KM405562 KM454924			
Orthopyxis caliculata	Praia da Paciência (PAB5), Penha, SC, Brazil	26°43'38"S 48°36'10"W (13)	MZUSP 2556	KM405589 KM405561 KM454925			
Orthopyxis mianzani	Praia da Paciência (PAB6), Penha, SC, Brazil	26°43'38"S 48°36'10"W (13)	MZUSP 2559	KM405607 KM405545 KM454943			
Orthopyxis crenata	Praia da Paciência (PAB7), Penha, SC, Brazil	26°43'38"S 48°36'10"W (13)	MZUSP 2560	KM405594 KM405558 KM454931			
Orthopyxis caliculata	Praia Grande (GB), Penha, SC, Brazil	26°43'38"S 48°35'W (14)	MZUSP 2563	KM405581 KM405566 KM454917			
Orthopyxis caliculata	Praia de Bombas (BB), Bombinhas, SC, Brazil	27°07'52.44"S 48°30'49.02"W (15)	MZUSP 4265	KM454915			
Orthopyxis caliculata	Praia da Conceição (COB), Bombinhas, SC, Brazil	27°12'1.26"S 48°29'32.04"W (16)	MZUSP 4177	KM454916			
Orthopyxis sargassicola	Ilha Campeche (CI1), Florianópolis, SC, Brazil	27°41'27"S 48°27'51"W (17)	MZUSP 4597	KM454944			
Orthopyxis sargassicola	Ilha Campeche (CI2), Florianópolis, SC, Brazil	27°41'27"S 48°27'51"W (17)	MZUSP 4599	KM454945			
Orthopyxis crenata	Prainha, Laguna (LG), SC, Brazil	28°36.097S 48°48.957"W (18)	MZUSP 5055	KM405560 KM454929			
Orthopyxis sp. indet.	Caleta Olivia, Argentina	46°25'53.9"S 67°31.183"W (19)	MZUSP 2644	KM454971			
Campanulariidae sp. indet.	La Mina, Puerto San Julián (SJ1), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2638	KM454912			
Campanularia subantarctica	La Mina, Puerto San Julián (SJ2), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2639	KM405574 KM405569 KM454910			
Campanulariidae sp. indet.	La Mina, Puerto San Julián (SJ3), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2640	KM405577 KM454913			
Campanularia sp.	La Mina, Puerto San Julián (SJ4), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2641	KM405572 KM405571 KM454908			
Campanularia sp.	La Mina, Puerto San Julián (SJ5), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2642	KM405573 KM405570 KM454909			
Campanularia subantarctica	La Mina, Puerto San Julián (SJ6), Argentina	49°09.413"S 67°37.987"W (20)	MZUSP 2643	KM405575 KM405568 KM454911			
Silicularia rosea	Rio Grande, Cabo Santo Domingo, Argentina	53°41.330'S 67°50.673"W (21)	MZUSP 2645	KM405636 KM454972			

doi:10.1371/journal.pone.0117553.t002

Molecular data

Nuclear DNA and mitochondrial DNA were extracted using Instagene (Bio-Rad Laboratories, Hercules, California, USA), according to the manufacturer’s protocol. Portions of the mitochondrial 16S ribosomal RNA gene and the cytochrome oxidase subunit I (COI) gene as well as the entire nuclear Internal Transcribed Spacer (ITS) region (ITS1, 5.8S ribosomal RNA gene and ITS2) were amplified by PCR and verified on 1.5% agarose gels (PCR conditions and primers are described in Table 3). PCR products were purified using the AMPure purification kit (Agencourt Bioscience Corporation, Beckman Coulter, Beverly, Massachusetts, USA), and purified products were prepared for sequencing using the Big Dye Terminator v3.1 Cycle Sequencing kit (Applied Biosystems, Foster City, California, USA) and the same PCR primers. The sequencing reactions were carried out using an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems, Foster City, California, USA).
Sequences were assembled and edited using Geneious (version 7.1 created by Biomatters, Auckland, New Zealand), and aligned using MAFFT [79]. The obtained sequences were compared with those deposited in GenBank using the Basic Local Alignment Search Tool (BLAST, [80]) to confirm genes and species of interest. Additionally, the ITS1 and ITS2 regions were extracted from the complete ITS sequences using the sequence from Hydra circumcincta [81] in GenBank (GU722663) as a guide to delimit the ITS1 sequences and the ITS2 Database [82] to delimit the ITS2 sequences. The coding sequences of COI were translated and compared with the complete mitochondrial genome of Laomedea flexuosa [83] (GenBank NC_016463) to ensure pseudogenes were not amplified. Since not all sequences of the same marker had the same length (see Table 3), some portions of the longer sequences were excluded from the alignments to adjust all sequences to the same length.

Phylogenetic analysis

Phylogenetic analyses were performed on (a) individual markers, (b) combined mitochondrial markers (16S+COI), (c) combined nuclear markers (ITS1+ITS2), and (d) the entire combined dataset (16S+COI+ITS1+ITS2), using maximum likelihood (ML) and parsimony (P) criteria. The datasets were built using unique haplotypes, and the combined datasets included only those specimens with sequences available for all markers (details of the analyses in Table 4). Sequences of nuclear DNA with ambiguous sites (17 ITS1 and 22 ITS2 sequences) were treated using IUPAC ambiguity codes. The maximum number of ambiguous sites recorded for one sequence was five (the ITS2 sequence of a specimen from Penha, Santa Catarina), and 46% of the sequences had only one ambiguous site. Sequences with identical IUPAC codes at identical positions were considered as the same haplotype in the analyses.

Table 3. Primers and PCR conditions for DNA amplification.

Genes	Primers	Reference	Primers Sequence (5'→3')	PCR conditions	Fragment Size (approx.)
16S	C&B1 (F)	[152]	TCGACTGTTTACAAAAACATAGC	Init. Denat.: 94°C, 3min; 5 cycles: 94°C, 30sec; 45°C, 50sec; 72°C, 1min; 30 cycles: 94°C, 30sec; 50°C, 45sec; 72°C, 1min; Fin. Ext.: 72°C, 5min; 10°C	610 bp
	C&B2 (R)	[152]	ACGGAATGAACATCAGTATAGA		475 bp
	2Hydrom (R)	[152]	CTGGTTATCCCTAGGGTCAGC		
COI	LCO1490 (F)	[153]	TGCCCAATATACTGATAGTGG-	Init. Denat.: 94°C, 2min; 10 cycles: 94°C, 30sec; 48°C, 1min; 20 cycles: 94°C, 30sec; 50°C, 40sec; 72°C, 1min; Fin. Ext.: 72°C, 7min; 10°C	660 bp
	HCO2198 (R)	[153]	TTAAATCTCAAGGTGACCCAAAATCATCA-		
	HOCato (R)	[117]	CCTCAGCAGTAAAGGAAGAAG		
ITS1–5.8S–ITS2	CAS18sF1 (F)	[154]	TACACACCGCCCGTCGCCTACTA	Init. Denat.: 94°C, 3min; 35 cycles: 94°C, 30sec; 50°C, 45sec; 72°C, 1min; Fin. Ext.: 72°C, 7min; 4°C	765 bp
	F5′ (F)	[118]	TAACAAGGTTTCGTAAGG		630 bp
	ITS1A (F)	[155]	-GTACAAAGGTTTCGAGGATG		630 bp
	CAS28sB1d (R)	[154]	TTCTTTTCCTCSSCCCTGATATGCTAA		
	jfITS1–5F (F)	[116]	-GGTTTTCTCCTACAGTATTATGCTAA		
	ITS-R-28S-15 (R)	Maronna MM, LEM	ACTCGCCGTTACTAGGGAATCTTTGTAG	Init. Denat.: 94°C, 2min; 35 cycles: 94°C, 30sec; 55°C, 45sec; 72°C, 1min; Fin. Ext.: 72°C, 7min; 4°C	680 bp

(F) Forward (R) Reverse.

1 Used in conjunction with different forward or reverse primers.

2 Primers designed by members of the Laboratory of Marine Evolution (LEM), University of Sao Paulo, Brazil.

doi:10.1371/journal.pone.0117553.t003
Phylogenetic analyses using parsimony (P) criteria were performed using the PAUP 4.0b10 [84] and TNT [85] programs. Analyses consisted of 1000 unweighted heuristic searches using a random algorithm and branch-swapping using the TBR (tree bisection-reconnection) algorithm. Gaps were considered as a fifth state. Branch support was estimated in TNT with bootstrapping on 1000 replicates. Phylogenetic analyses using Maximum Likelihood (ML) criteria were performed using PALM (Phylogenetic Reconstruction by Automatic Likelihood Model Selector, [86]) with the most appropriate model of nucleotide evolution for each dataset based on Akaike Information Criterion (AIC, Table 4). Branch support was estimated with bootstrapping on 1000 replicates. Phylogenetic p-distances (uncorrected) were calculated using the PAUP 4.0b10 program.

Morphological analysis

We performed Principal Component Analysis (PCA, [87]) on a correlation matrix based on 37 different measures of the trophosome (S1 Table) of the voucher specimens of *O. caliculata* and *O. mianzani* sp. nov. (the same specimens used in the phylogenetic analyses). For both species, we did not include any characters from the gonothecae in the PCA, as not all colonies presented this reproductive structure. This analysis was performed to better delimitate the species by assessing the degree of variation for their morphological characters and by identifying their most relevant diagnostic characters.

Nomenclatural acts

The electronic edition of this article conforms to the requirements of the amended International Code of Zoological Nomenclature, and hence the new names contained herein are available under that Code from the electronic edition of this article. This published work and the nomenclatural acts it contains have been registered in ZooBank, the online registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed through any standard web browser by appending the LSID to the prefix "http://zoobank.org/". The LSID for this publication is: urn:lsid:zoobank.org:pub:280AC2D0–9DCE-4BCE-AF85–2586B3951522. The electronic edition of this work was published in a journal with an ISSN, and has been archived and is available from the following digital repositories: PubMed Central and LOCKSS.

Results

Nearly all the topologies obtained using the different datasets identified six well-defined clades with high branch support values. However, these topologies did present some incongruencies with respect to the phylogenetic relationships among these clades. The individual and
combined nuclear datasets showed low resolution and low values for branch support, whereas the combined mitochondrial datasets showed higher resolution but also had low branch support (S1–S10 Figs.). The combined dataset involving all four markers revealed the best definition of the relationships among the lineages, with a higher frequency of well supported nodes (all six less inclusive clades with bootstrap = 99–100, Figs. 2–3). In addition, the 16S topologies showed the most congruent results (Figs. 4–5). Therefore the topologies involving the combined and the 16S datasets represented the most robust hypothesis for our data and are used as our working hypothesis for discussions.

The genera Orthopyxis and Campanularia

The genus Orthopyxis was monophyletic according to the 16S topologies and the ML topology with the combined dataset, although with low support value (bootstrap<50, Figs. 2, 4–5). Orthopyxis was not monophyletic in the P topology with the combined dataset, in which species assigned to Campanularia fell within Orthopyxis as a sister group to Orthopyxis caliculata (Hincks, 1853)+Orthopyxis mianzani sp. nov. (Fig. 3). Although not conclusive, Orthopyxis was monophyletic in the majority of our topologies, a hypothesis we follow in this study. However, this hypothesis requires further testing with the addition of more representatives from the genus Campanularia.

Campanularia was monophyletic only in topologies derived from the combined dataset. One of the lineages of Campanularia corresponds morphologically to Campanularia subantarctica Millard, 1971, and it is characterized by the deep hydrothecae with bluntly rounded marginal teeth, subhydrothecal spherule present; gonothecae oval-elongated arising from hydrorhiza, with distal aperture on top of a low collar [77,88], ([47], as C. lennoxensis). The second lineage of Campanularia is also morphologically similar to C. subantarctica, but we were
Fig 3. One of the 74 most parsimonious trees based on 16S, COI, ITS1 and ITS2 data. These trees are only different in the position of the haplotypes within O. sargassica clade, which is collapsed. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50.

doi:10.1371/journal.pone.0117553.g003

Fig 4. Maximum Likelihood tree based on 16S data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50.

doi:10.1371/journal.pone.0117553.g004
unable to identify this lineage to the species level due to the lack of gonothecae. Additionally, these two lineages showed genetic distances of up to 7.83% for mitochondrial markers and 26.38% for nuclear markers (Table 5), indicating that they likely represent two distinct species.

Species of the genus *Orthopyxis*

We delimited four lineages of the genus *Orthopyxis* in the southwestern Atlantic, three of which correspond morphologically to *Orthopyxis sargassicola* (Nutting, 1915), *Orthopyxis crenata* (Hartlaub, 1901), and *Orthopyxis caliculata* (Hincks, 1853) (considered a synonym of *Orthopyxis integra* (Macgillivray, 1842) by some authors; see discussion below), and one of which is new to science (Figs. 2–5). These species showed genetic distances ranging from 7.81–16.17% and 9.66–44.05% for mitochondrial and nuclear markers, respectively (Table 5).

The specimens of *O. sargassicola* and *O. crenata* recorded here have the general features of *Orthopyxis*, such as a thick perisarc (variable to some extent), campanulate hydrothecae, sinuous pedicels, and subhydrothecal spherule (Fig. 6). The presence of rounded hydrothecal cusps and a laterally compressed, completely ribbed gonotheca, are distinctive characters of *O. sargassicola* [1,13,31] (Fig. 6A–C, G), whereas *O. crenata* is characterized by low, rounded hydrothecal cusps and laterally compressed, smooth gonotheca [29,47] (Fig. 6D–F, H). Although these species can be readily distinguished by comparing their gonothecae, morphological variation in the size and shape of the hydrothecal cusps may cause these diagnostic characters to overlap when the gonotheca is absent, hampering identification. This is the first record of *Orthopyxis crenata* in the southwestern Atlantic, although previous authors may have overlooked this species due to its morphological similarity with *O. sargassicola*.

The species *O. caliculata* and *O. mianzani* sp. nov., although highly genetically divergent (Table 5), have similar morphologies that could be traditionally associated with *Orthopyxis*...
Both species have stolonal colonies, sinuous pedicels, subhydrothecal spherule, campanulate hydrotheca with rim even, and gonotheca roughly cylindrical, with wide aperture, truncated on top \[19,78\]. However, they are morphologically distinct with respect to characters usually assumed to show wide intraspecific variation, such as perisarc thickness and length of the hydrothecae and pedicels.

PCA performed using the morphometric data for \textit{O. caliculata} and \textit{O. mianzani} sp. nov. (Fig. 7) showed that the two lineages are clearly separated by perisarc thickness and polyp general dimensions. Specimens of \textit{O. caliculata} have a thicker perisarc and smaller general dimensions (length and diameter of the hydrothecae, pedicels, and subhydrothecal spherule) of the polyp (Fig. 7). These results show that, although variable to some extent, perisarc thickness and polyp dimensions can be used to delimitate these species. Therefore, we believe the name \textit{Orthopyxis caliculata} (Hincks, 1853) is the correct identification of one of these lineages, and we corroborate the validity of that species.

Systematic Account

Orthopyxis caliculata (Hincks, 1853)

(Fig. 8)

\textit{Orthopyxis clytioides}—Vannucci-Mendes, 1946 [40]: 546, Est.1, Figs. 6,7.—Vannucci, 1951 [89]: 111 (not \textit{Orthopyxis clytioides} (Lamouroux, 1824)).

\textit{Orthopyxis minuta} Vannucci, 1949 [41]: 234, t.1, Figs.15–17, t.2, Fig.18.—Vannucci, 1951 [89]: 108. (syn. nov.)

\textit{Orthopyxis caliculata}—Blanco, 1964 [43]: 157, L.1, Figs. 4,9.

\textit{Orthopixis clytioides}—Milstein, 1976 [90]: 77, Figs. 8,9,11 (not \textit{Orthopyxis clytioides} (Lamouroux, 1824)).

\textit{Campanularia integra}—Blanco, 1994 [46]: 192 (not \textit{Campanularia integra} Macgillivray, 1842).

\textit{Orthopyxis integra}—Miranda et al., 2011 [13]: 347, Fig. 25a-d (not \textit{Orthopyxis integra} (Macgillivray, 1842)).

Table 5. Minimum and maximum p-distances (uncorrected) (%) from the mitochondrial dataset (low left corner) and nuclear dataset (up right corner).

Species	\textit{Orthopyxis sargassicola}	\textit{Orthopyxis caliculata}	\textit{Orthopyxis mianzani}	\textit{Orthopyxis crenata}	\textit{Campanularia subantarctica}	\textit{Campanularia sp.}	\textit{Campanulariidae sp. indet.}	\textit{Orthopyxis sp. indet.}
\textit{Orthopyxis sargassicola}	0.35/0.51	17.51–44.05	19.05–43.19	9.66–41.07	13.69–45.42	18.39–44.10	22.02–40.72	12.30–36.72
\textit{Orthopyxis caliculata}	8.68–12.87	0.30/0.00	18.62–27.86	13.22–31.76	9.84–29.57	14.74–25.30	15.81–28.67	15.38–23.61
\textit{Orthopyxis mianzani}	9.33–16.17	7.81–15.65	0.17/1.28	14.90–35.54	17.87–28.60	24.10–24.73	19.98–33.19	17.70–29.36
\textit{Orthopyxis crenata}	9.33–13.39	8.68–13.74	9.33–15.48	\textbf{4.43/3.31}	7.81–10.96	7.81–10.61	17.13–34.58	2.52–32.52
\textit{Campanularia subantarctica}	7.38–9.74	6.72–11.65	8.24–14.78	11.19–38.43	\textbf{0.69/0.51}	12.80–26.38	16.26–38.79	13.13–33.48
\textit{Campanularia sp.}	7.38–9.74	6.72–10.90	7.81–14.78	13.06–40.55	2.60–7.83	\textbf{0.10/0.00}	19.25–33.31	14.66–27.52
\textit{Campanulariidae sp. indet.}	7.38–8.03	7.16–7.38	8.24	7.38–8.03	4.77	4.77	\textbf{0.00}	17.57–30.13
\textit{Orthopyxis sp. indet.}	5.86–6.51	6.07–6.29	8.24	7.38–8.46	4.56	5.21	3.69	\textbf{0.00}

Values in the diagonal indicate mean intraspecific distances (mitochondrial/nuclear markers).

doi:10.1371/journal.pone.0117553.t005
Material examined. Brazil, Santa Catarina (SC), Penha, Praia Grande, 26°46′S 48°35′W, 0–1 m, 08.vii.2009, with female gonothecae, on algae, coll. E.C. Bornancin, MZUSP 2563; SC, Penha, Praia da Paciência, 26°46′38″S 48°36′10″W, 3 m, 02.vii.2009, without gonothecae, on algae, coll. A.F. Cunha, MZUSP 2550; SC, Penha, Praia da Paciência, 26°46′38″S 48°36′10″W, 0–1 m, 02.vii.2009, without gonothecae, on algae, with some colonies of Obelia sp., coll. A.F. Cunha, MZUSP 2552; SC, Penha, Praia da Paciência, 26°46′38″S 48°36′10″W, 3 m, 01.vii.2009, with male gonothecae, on algae, coll. A.F. Cunha, MZUSP 2554; SC, Penha, Praia da Paciência, 26°46′38″S 48°36′10″W, 3 m, 01.vii.2009, without gonothecae, on algae, coll. A.F. Cunha, MZUSP 2556; SC, Penha, Praia da Armacao, 0–1 m, 07.vii.2009, without gonothecae, on algae, coll. E.C. Bornancin, MZUSP 2565; SC, Bombinhas, Praia de Bombas, 27°07′52.44″S

Fig 6. A-C, G: Orthopyxis sargassicola. A: general view of the colony on Sargassum sp.; B-C: detail of the trophosome, showing variation in perisarc thickness of hydrotheca; G: gonotheca. D-F, H: Orthopyxis crenata. D-E: detail of the trophosome; F- detail of the hydrothecal cusps; H- gonotheca. Scales: A—200 μm; B-H—100 μm.

doi:10.1371/journal.pone.0117553.g006
48°30'49.02"W, 0–2 m, 03.xii.2006, with female gonothecae, on algae, coll. A.C. Marques & T.P. Miranda, MZUSP 4265; SC, Bombinhas, Praia da Conceição, 27°12’1.26”S 48°29’32.04”W, 0–2 m, 02.xii.2006, with male and female gonothecae (two colonies), on algae, coll. A.C. Marques, E. Ale, M.A. Imazu & T.P. Miranda, MZUSP 4177; Rio de Janeiro, Búzios, Praia de João Gonçalves, coordinate unknown, 20.viii.2009, with few female gonothecae, on algae, coll. L.S. Miranda, A.C. Morandini & S.N. Stampar, MZUSP 2612, MZUSP 2613, MZUSP 2614 and MZUSP 2615.

Additional material examined. Argentina, Chubut, Puerto Madryn, Orthopyxis caliculata (Hincks, 1853), O.M. Blanco det., Museo de La Plata, MLP 47 to MLP 54; Santa Cruz, San Julián, Punta Peñas, Orthopyxis caliculata (Hincks, 1853), O.M. Blanco det., MLP 55; Santa Cruz, Punta Peñas, Campanularia integra Macgillivray, 1842, O.M. Blanco, det., MLP 8536. Uruguay, Rocha, La Coronilla, Orthopixis clytioides (Lamouroux, 1824) [incorrect subsequent spelling], det. A. Milstein. United States, Alaska, Aleutian Islands, Orthopyxis integra (Macgillivray, 1842), A. Govindarajan det., National Museum of Natural History, USNM 1106184. Kara Sea, Campanularia integra Macgillivray, 1842, USNM 17834.

Description. Colonies stolonal, up to 1.6 mm high. Hydrothecae and pedicels laterally compressed, amount of compression varying according to perisarc thickness. Pedicels arise from creeping, flattened hydrorhiza at irregular intervals. Hydrorhiza with very thick perisarc (31–47.5 μm). Pedicels sinuous, with 5–13 sinuosities (crenations) throughout their length, forming a “zig-zag” on pedicels, not spiral, as commonly assumed (Fig. 8E). Occasionally 1–4 constrictions, usually on upper portion of pedicels (most likely regions of growth) (Fig. 8F-G). Pedicels 588–1260 μm in length, usually with thick perisarc (23.54 μm on average) but also colonies with thinner perisarc occur (11.5–30 μm, Fig. 8H). Subhydrothecal spherule present immediately below hydrotheca, slightly smaller than pedicel in diameter, with thick perisarc (14–32.5 μm). Hydrotheca campanulate, 230–374 μm in length, rim smooth, sometimes
Fig 8. *Orthopyxis caliculata*. A-C: general view of the colony (A-MZUSP 4177; B, C-MZUSP 1563); D-H: detail of the trophosome with the sinuosities of the pedicel (E) and constrictions in the perisarc (arrow in F, G) (D-MZUSP 2550; E-MZUSP 2565; F-MZUSP 2554; G-MZUSP 4177; H-MZUSP 2552); I-J: positions of maximum (I) and minimum (J) perisarc thickness of the trophosome (MZUSP 2615); K-L: detail of the hydrotheca, showing two different forms due to compression (MZUSP 2554); M: general view of gonothecae on algae (MZUSP 2563); N: detail of male gonotheca (MZUSP 2554); O-P: detail of female gonothecae (O-MZUSP 2563; P-MZUSP 2619). Scales: A, B, M—1 mm; C—500 μm; D, F, H, O—200 μm; E—20 μm; G—50 μm; I, J, K, L—100 μm; N, P—300 μm.

doi:10.1371/journal.pone.0117553.g008
Fig 9. Orthopyxis mianzani sp. nov. A-C: general view of the colony (A-MZUSP 2575; B-MZUSP 2580; C-MZUSP 2559); D: detail of the hydroidhiza (USNM 1259970); E-H: details of the trophosome, showing variation in pedicels from smooth (E) to sinuous (F), variation in the length of the pedicels (compare E, F and G) and constrictions of the perisarc (H, arrow) (E-MZUSP 2576; F-MZUSP 2572; G-MZUSP 2570; H-MZUSP 2574); I: detail of subhydrothecal spherule (USNM 1259970); J-L: detail of hydrothecae (J-MZUSP 2572; K-MZUSP 2576; L-MZUSP 2579); M: general view of the gonotheca on natural substrate (MZUSP 2580); N-P: detail of female gonothecae (N-MZUSP 2572; O-USNM 1259970; P-MZUSP 2580). Scales: A-D—1 mm; E—300 μm; F, N, P—200 μm; G, H, J-L, O—100 μm; I—20 μm; M—500 μm.

doi:10.1371/journal.pone.0117553.g009
slightly everted (Fig. 8H) and occasionally growing beyond the thick hydrothecal walls (Fig. 8K-L). Hydrotheca laterally compressed, more conspicuous when perisarc is very thick. Hydrotheca may show two different forms in relation to the compression: (1) when viewed from its broader aspect (i.e., position of maximum perisarc thickness), hydrotheca with thick, straight and parallel walls, gradually projecting inwards towards base, where the perisarc reaches maximum thickness and forms an interior chamber, in which the hydranth rests (Fig. 8K); (2) when viewed from its narrower aspect (i.e., position of minimum perisarc thickness), the much thinner walls are oblique, tapering towards the base (Fig. 8L). Hydranth with 22–26 tentacles. Male and female gonothecae with similar morphology, up to 1.2 mm high, arising from hydrorhiza on short, smooth pedicels, usually growing parallel to substrate. Young gonothecae short and conical, truncated on top, with wide aperture; mature gonothecae with walls oblique at base but gradually elongating and straightening to become parallel, upper portion also truncated, with wide aperture. Gonothecae laterally compressed, perisarc thick (25–46 μm), with somewhat wavy outline, sometimes more pronounced (Fig. 8M-P). Gonophore with two medusa buds, inferior one smaller, superior one larger, and developing gonads in longitudinal rows.

Remarks. *Orthopyxis caliculata* (Hincks, 1853) has been considered a synonym of *O. integra* (Macgillivray, 1842) by many authors. Levinsen [91] was likely the first to assign Hincks’ species to *O. integra* (as *Campanularia integra*), arguing that he possessed colonies of *O. integra* that presented intermediate characters from both species, referring in particular to the thickness of the perisarc of the hydrothecae and the presence of annulations on the gonothecae. Many subsequent authors followed this proposal [19,29,78,92,93,94,95,96,97], also arguing that the characters used to distinguish these species are actually intraspecific variations of the same character.

Hincks [98] noted the shape of the hydrothecae and the presence of a “double cup” and “double” pedicel as the main characters that distinguish *O. integra* and *O. caliculata*. He subsequently amended his description by arguing that the appearance of a “double” hydrotheca and pedicel is a result of the considerable perisarc thickening in this species [26]. The widely accepted notion that these characters represent variations within the same species has prevented many authors from accepting them as informative (as stated above), although some authors who agree with Hincks [26,98] in regarding *O. integra* and *O. caliculata* as separate species point out characters such as the size and shape of the hydrothecae and gonothecae, as important differences between these species e.g., [27,28,99,100]. Indeed, the name *O. caliculata* is currently used as a valid name in some studies [101, 102], based on similar opinions.

Neither species was originally described with gonothecae [98,103], although subsequent descriptions of these species represented the gonothecae of *O. integra* as clearly different from those of *O. caliculata*. The gonothecae of *O. integra* is described as cylindrical, completely spirally grooved throughout, and truncated on top, whereas the gonothecae of *O. caliculata* is described as smooth, oval-elongated, laterally compressed, also truncated on top, and with a wide aperture [26,28,99]. Authors who advocate the synonymy of *O. integra* and *O. caliculata* consider both types of gonothecae as variations within *O. integra* (see [78]). Despite this, Millard [29] notes that she never recorded polyps of *O. integra* in South Africa with spirally grooved gonothecae, and many other records of *O. integra* include only specimens with oval-elongated, smooth gonothecae e.g., [13,97,104,105,106]. Indeed, cylindrical, spirally grooved gonothecae appear to be restricted to northern records of *O. integra* e.g., [38,107,108,109,110], as noted by Bale [99].

We studied non-type material of *O. integra* that presented spirally grooved gonotheca (USNM 17834 from Kara Sea, and 1106184 from Alaska, Aleutian Islands)—in contrast with the oval-elongated, smooth gonotheca of our material—and we have concluded that these two
types of gonotheca indicate two different species. These non-type materials of *O. integra* also differ from our specimens of *O. caliculata* in the thickness of the perisarc of the hydrothecae and pedicels, as well as in the length of the hydrothecae, which is larger in *O. integra* (see comparisons on Table 6). Many of these differences have already been noted and discussed by Bale [99], and more recently by Calder et al. [102]. Our molecular analysis revealed two different lineages presenting the traditional morphological characters associated to *O. integra*. A re-evaluation of the morphological characters of these two lineages demonstrates that their most consistent differences rely on characters previously considered to be intraspecific variations by many authors. Therefore, we conclude that the two completely different gonotheca morphologies should not be considered as variations within *O. integra*.

Considering this, we believe that none of the species described in this study, nor the records included in our synonym, should be assigned to *O. integra*; instead, they should be assigned to *O. caliculata*. We understand that it is not simple to delimit these two species morphologically; therefore, we did not include in the synonymy materials we could not access. The one exception is Vannucci’s material [40,41], which is most likely lost (see [1]), for which we tentatively attribute the specimens she described with gonotheca to *O. caliculata*. The specimen *Campa-nularia integr*a recorded by Blanco [43] consists of only one microslide with one polyp without gonotheca, and the hydrotheca of this specimen differs from the typical hydrotheca of *O. caliculata*, being more elongated and cylindrical, similar to the hydrothecae of many species of the genus *Campa-nularia*. It is unclear whether this morphology is a preparation artifact or an actual morphological difference, so we therefore decided not to include this record in the synonym of *O. caliculata*, pending more detailed study. However, the specimens of *C. integra* recorded by Blanco [46] correspond to the description of *O. caliculata*. Milstein [90] described specimens with gonotheca that also correspond to *O. caliculata*. The records of *O. integra* by Miranda et al. [13] came from localities very close to our records of *O. caliculata*, and examination of their material leaves no doubt that it should be assigned to *O. caliculata*.

Type locality. Pegwell Bay, England [98].

Records from the southwestern Atlantic. Brazil, São Paulo, Santos Bay, Santo Amaro Island, Itanhaém [40,89]; Rio de Janeiro, Francês Island [41,89], and Búzios (this study); Santa Catarina, Penha (this study) and Bombinhas [13] (and this study). Uruguay, Rocha, La Coronilla [90]. Argentina, Chubut, Puerto Madryn [43], Santa Cruz, San Julián and Punta Peñas [46].

Orthopyxis mianzani Cunha, Genzano & Marques sp. nov. urn:lsid:zoobank.org:act: A6F4A8FB-FDCC-4BE9–8368–6BFE29CAECC4 (Fig. 9)

?Orthopyxis integra—Grohmann et al., 2011 [53]: 195, Fig. 3F, 1–4 [not Orthopyxis integra (Macgillivray, 1842)].

Material examined. Holotype: Brazil, Paraná (PR), Ilha do Mel, Praia de Fora, 25°34’22.58"S 48°18’32.77"W, 0–1 m, 27.vii.2010, with female gonothecae, on mussel shell and cirriped, coll. E.C. Bornancin & A.F. Cunha, MZUSP 2580; Paratypes: PR, Ilha do Mel, Praia do Miguel, 25°33’22.12"S 48°17’55.36"W, 0–1 m, 26.vii.2010, without gonothecae, on mussel shell, coll. E.C. Bornancin & A.F. Cunha, MZUSP 2571, MZUSP 2573; with female gonothecae, MZUSP 2572, MZUSP 2574; without gonothecae, on mussel shell and cirriped, MZUSP 2570; PR, Ilha do Mel, Praia de Fora, 25°34’22.58"S 48°18’32.77"W, 0–1 m, 27.vii.2010, without gonothecae, on mussel shell and cirriped, coll. E.C. Bornancin & A.F. Cunha, MZUSP 2575, MZUSP 2579; with female gonothecae, USNM 1259970; without gonothecae, on mussel shell, MZUSP 2576; without gonothecae, on *Phragmatopoma* sp., MZUSP 2577; without gonothecae, on cirriped, MZUSP 2578; Santa Catarina, Penha, Praia da Paciência, 26°46’38"S 48°36’10"W, 0–1 m, 05.vii.2009, without gonothecae, on algae, coll. A.F. Cunha, MZUSP 2559.
Table 6. Comparative measurements of Orthopyxis caliculata, Orthopyxis mianzani (mean±standard error [range]) and specimens of Orthopyxis integra from the National Museum of Natural History, Smithsonian Institution.

Measurements (µm)	Orthopyxis caliculata (Np = 12; Ng = 5)	Orthopyxis mianzani (Np = 13; Ng = 4)	O. integra** (Np = 3; Ng = 4)	O. integra*** (Np = 4; Ng = 4)
Total length of the trophosome	1213.83±81.58 [840–1658]	1566.77±156.01 [600–2380]	2082.98±197.57 [1695.38–2343.28]	3949.79±718.48 [2437.92–5605.39]
Hydrotheca				
Diameter	84.17±3.37 [65–100]	88.77±3.22 [75–114]	135.29±5.77 [126.08–145.92]	139.80±6.66 [116.24–157.08]
Perisarc thickness	39.92±2.24 [31–47.5]	24.46±1.17 [12.5–30.5]	*	*
Pedicel				
Length	825.08±70.62 [588–1260]	943.15±127.76 [190–1870]	1405.38±223.40 [959.41–1652.07]	3337.79±677.82 [1938.89–4958.59]
Diameter	95.71±4.53 [68.5–118]	108±4.15 [89–145]	99.14±7.32 [85.40–110.39]	90.80±5.36 [82.96–106.55]
Perisarc thickness	23.54±1.75 [11.5–30]	11±0.60 [7.5–12.5]	10.32±0.61 [9.01–10.86]	8.31±0.64 [6.97–9.65]
Maximum number of sinuosities	7.97±0.80 [5–13]	4.29±0.76 [0–12]	*	0 (all pedicels smooth throughout)
Subhydrothecal spherule				
Length	63.30±3.43 [48–78]	70.69±5.41 [50–120]	74.13±4.94 [65.64–82.75]	52.09±7.81 [33.74–68.08]
Diameter	84.55±2.45 [72–93]	101±3.74 [85–130]	100.8±5.15 [91.28–108.96]	78.63±8.40 [55.14–93.26]
Perisarc thickness	22.35±1.53 [14–32.5]	14.69±1.09 [7.5–22.5]	12.49±2.29 [7.95–15.32]	6.17±0.68 [5.03–8.13]
Hydrotheca				
Length	318.33±11.85 [230–374]	418.69±17.74 [328–520]	667.51±22.46 [622.58–690.37]	604.02±56.53 [448.80–717.15]
Diameter at rim	283.17±5.63 [263–312]	369.54±14.97 [304–490]	420.87±4.93 [414.50–430.58]	500.03±25.76 [452.88–569.57]
Diameter at base	157.83±5.90 [120–175]	173.19±2.85 [160–200]	180.33±12.37 [168.41–205.06]	237.48±31.33 [174.94–322.64]
Length:Diameter ratio	1.26±0.04 [0.96–1.60]	1.44±0.04 [1.22–1.71]	1.78±0.05 [1.72–1.88]	1.44±0.16 [0.98–1.65]
Perisarc thickness	29.46±2.22 [15.25–36.5]	7.75±0.80 [2.5–12.5]	9.27±1.32 [7.12–11.66]	4.87±0.79 [2.95–6.23]
Hydranth				
Number of tentacles	24±0.58 [22–26] (N = 10)	32.46±5.31 [23–43]	*	*
Gonotheca				
Length	1166.42±30.75 [1096–1262.5]	1210±64.16 [1090–1390]	1422.12±96.79 [1202.46–1651.57]	2086.71±87.53 [1933.13–2278.53]
Maximum Diameter	650.33±31.48 [552–772]	722.50±16.52 [690–760]	522.97±19.92 [474.07–571.46]	620.34±15.58 [590.20–659.85]
Length:Diameter ratio	1.82±0.07 [1.57–2.09]	1.79±0.07 [1.66–1.99]	2.74±0.26 [2.10–3.17]	3.33±0.20 [2.95–3.86]
Perisarc thickness	39.21±3.24 [25–46]	21.25±1.25 [20–25]	*	*
Nematocysts				
Microbasic mastigophores A type (LengthxDiam.)	5.14±0.06 [4–6] x 1.80±0.04 [1.5–3] (N = 60)	5.13±0.06 [5–6] x 1.79±0.05 [1.5–2] (N = 40)	*	*

(Continued)
Etymology. This species is named after Dr. Hermes W. Mianzan (CONICET and Instituto Nacional de Investigación y Desarrollo Pesquero—INIDEP, Mar del Plata, Argentina) for his dedication and commitment to the study of South American cnidarians, and his leadership towards the integration of Latin American marine scientists. Unfortunately, our great “amigo” Hermes passed away during the writing of this manuscript.

Diagnosis. Hydrothecae, pedicels and gonothecae with thin perisarc. Lateral compression only on gonothecae, nearly no compression detectable on hydrothecae or pedicels, both usually longer when compared with other species of *Orthopyxis*. Reduced amount of sinuosities on pedicels, sometimes almost completely smooth. Gonothecae smooth and different from other *Orthopyxis* species with ribbed gonothecae.

Description. Colonies stolonal, up to 2.3 mm high. Gonothecae laterally compressed but rarely hydrothecae (compression better observed in hydrothecae with thicker perisarc). Pedicels arise from creeping, flattened hydrorhiza at irregular intervals. Hydrorhiza with moderately thick perisarc (12.5–30.5 μm) and large (diameter 75–114 μm, Fig. 9D). Pedicels usually with slight sinuosities at base and smooth throughout their length, sometimes either sinuous throughout (up to 12 tenuous sinuosities) (Fig. 9F) or with 1–4 marked perisarc constrictions at upper portion (Fig. 9H). Pedicels usually long, rarely small, 190–1870 μm in length, with moderately thick perisarc (7.5–12.5 μm). Subhydrothecal spherule present right below hydrotheca, slightly smaller than pedicel in diameter, with moderately thick perisarc (7.5–22.5 μm). Hydrotheca campanulate, 328–520 μm in length, rim smooth. Perisarc thickness is poorly correlated with hydrothecal form, although hydrotheca may be slightly compressed when perisarc is thicker. Hydrothecal walls slightly oblique with moderately thick perisarc, tapering towards base where perisarc reaches its maximum thickness, forming an interior chamber in which the hydranth rests (Fig. 9J-L). Hydranth with 23–43 tentacles. Female gonothecae up to 1.39 mm high, arising from hydrorhiza on short, smooth pedicels. Young gonotheca short, conical, truncated on top, with wide aperture; mature gonotheca with rounded walls at base, gradually elongating and straightening until parallel, truncated on top, with a wide aperture (Fig. 9N-P).

Gonothecae lateral compressed, with moderately thick perisarc (20–25 μm) and a somewhat wavy outline. Gonophore with two medusa buds, inferior one smaller, superior one larger and developing gonads in longitudinal rows.

Remarks. Although this species resembles several nominal species of *Orthopyxis*, it presents important morphological differences. With respect to the trophosome, it resembles that of the widely known *Orthopyxis integra* (Macgillivray, 1842), but they differ significantly in gonothecae shape (see remarks of *O. caliculata*; also see [26,28,111]). The gonothecae of *O. mianzani* sp. nov. is also very similar to that of *O. caliculata* (Hincks, 1853), but the length of the pedicels and hydrothecae in *O. mianzani* sp. nov. is 100 μm greater (on average) compared with

Measurements (μm)	*Orthopyxis caliculata* (Np = 12; Ng = 5)	*Orthopyxis mianzani* (Np = 13; Ng = 4)	*O. integra* ** (Np = 3; Ng = 4)	*O. integra*** (Np = 4; Ng = 4)
Microbasic mastigophores B type (LengthxDiam.)	10.21±0.01 (9–12) x 2.89 ±0.05 (2–4) (N = 60)	10.24±0.08 (9–11) x 2.81±0.04 (2.5–3) (N = 40)	*	*

Np = number of polyps measured; Ng = number of gonothecae measured (N = when different number). The measures of diameter and perisarc thickness were obtained from the position of maximum perisarc thickness (broad view).

* Information not obtained.
** USNM17834.
*** USNM1106184.

doi:10.1371/journal.pone.0117553.t006

End Notes:

Etymology. This species is named after Dr. Hermes W. Mianzan (CONICET and Instituto Nacional de Investigación y Desarrollo Pesquero—INIDEP, Mar del Plata, Argentina) for his dedication and commitment to the study of South American cnidarians, and his leadership towards the integration of Latin American marine scientists. Unfortunately, our great “amigo” Hermes passed away during the writing of this manuscript.

Diagnosis. Hydrothecae, pedicels and gonothecae with thin perisarc. Lateral compression only on gonothecae, nearly no compression detectable on hydrothecae or pedicels, both usually longer when compared with other species of *Orthopyxis*. Reduced amount of sinuosities on pedicels, sometimes almost completely smooth. Gonothecae smooth and different from other *Orthopyxis* species with ribbed gonothecae.

Description. Colonies stolonal, up to 2.3 mm high. Gonothecae laterally compressed but rarely hydrothecae (compression better observed in hydrothecae with thicker perisarc). Pedicels arise from creeping, flattened hydrorhiza at irregular intervals. Hydrorhiza with moderately thick perisarc (12.5–30.5 μm) and large (diameter 75–114 μm, Fig. 9D). Pedicels usually with slight sinuosities at base and smooth throughout their length, sometimes either sinuous throughout (up to 12 tenuous sinuosities) (Fig. 9F) or with 1–4 marked perisarc constrictions at upper portion (Fig. 9H). Pedicels usually long, rarely small, 190–1870 μm in length, with moderately thick perisarc (7.5–12.5 μm). Subhydrothecal spherule present right below hydrotheca, slightly smaller than pedicel in diameter, with moderately thick perisarc (7.5–22.5 μm). Hydrotheca campanulate, 328–520 μm in length, rim smooth. Perisarc thickness is poorly correlated with hydrothecal form, although hydrotheca may be slightly compressed when perisarc is thicker. Hydrothecal walls slightly oblique with moderately thick perisarc, tapering towards base where perisarc reaches its maximum thickness, forming an interior chamber in which the hydranth rests (Fig. 9J-L). Hydranth with 23–43 tentacles. Female gonothecae up to 1.39 mm high, arising from hydrorhiza on short, smooth pedicels. Young gonotheca short, conical, truncated on top, with wide aperture; mature gonotheca with rounded walls at base, gradually elongating and straightening until parallel, truncated on top, with a wide aperture (Fig. 9N-P).

Gonothecae lateral compressed, with moderately thick perisarc (20–25 μm) and a somewhat wavy outline. Gonophore with two medusa buds, inferior one smaller, superior one larger and developing gonads in longitudinal rows.

Remarks. Although this species resembles several nominal species of *Orthopyxis*, it presents important morphological differences. With respect to the trophosome, it resembles that of the widely known *Orthopyxis integra* (Macgillivray, 1842), but they differ significantly in gonothecae shape (see remarks of *O. caliculata*; also see [26,28,111]). The gonothecae of *O. mianzani* sp. nov. is also very similar to that of *O. caliculata* (Hincks, 1853), but the length of the pedicels and hydrothecae in *O. mianzani* sp. nov. is 100 μm greater (on average) compared with

Measurements (μm)	*Orthopyxis caliculata* (Np = 12; Ng = 5)	*Orthopyxis mianzani* (Np = 13; Ng = 4)	*O. integra* ** (Np = 3; Ng = 4)	*O. integra*** (Np = 4; Ng = 4)
Microbasic mastigophores B type (LengthxDiam.)	10.21±0.01 (9–12) x 2.89 ±0.05 (2–4) (N = 60)	10.24±0.08 (9–11) x 2.81±0.04 (2.5–3) (N = 40)	*	*

Np = number of polyps measured; Ng = number of gonothecae measured (N = when different number). The measures of diameter and perisarc thickness were obtained from the position of maximum perisarc thickness (broad view).

* Information not obtained.
** USNM17834.
*** USNM1106184.

doi:10.1371/journal.pone.0117553.t006

End Notes:
O. caliculata (Table 6; Fig. 7), and its perisarc is, on average, two to three times thinner than that of O. caliculata (Table 6; Figs. 8 and 9).

Indeed, a thin perisarc is a good diagnostic character for this species, as it does not appear to be as variable as in other species of Orthopyxis. Although there is some variation in perisarc thickness (2.5–12 μm on hydrothecae, 7.5–22.5 μm on subhydrothecal spherule and 7.5–12.5 μm on pedicels), it is never as thick as in O. caliculata or as described and illustrated for many other species of Orthopyxis, such as Orthopyxis pacifica Stechow, 1919, Orthopyxis angulata Bale, 1914 (see also [101]) and Orthopyxis compressa (Kubota & Yamada, 1992). Even among species currently considered to be synonyms of O. integra [19], the perisarc is frequently described as very thick or variable in thickness (e.g., Orthopyxis compressa Clarke, 1877; Orthopyxis asymmetrical Stechow, 1919); in cases where the species is represented with a thin perisarc, other characters appear to differ from those of O. mianzani sp. nov., such as the gonothecae (e.g., Campanularia integriformis Marktanner-Turneretscher, 1890, Orthopyxis wilsoni Bale, 1914).

The slightly sinuous pedicels of O. mianzani sp. nov. may also prove to be a good diagnostic character, particularly for distinguishing this species from O. caliculata, as these sinuosities are never so marked as in the latter species. This character also differentiates O. mianzani sp. nov. from Orthopyxis clytioides (Lamouroux, 1824). The pedicels of O. clytioides, represented by Lamouroux [112] as real annulations, are quite different from the sinuosities found in O. mianzani sp. nov. and other species of Orthopyxis, such as O. integra and O. caliculata [26,28,78]. Orthopyxis clytioides, however, still has a doubtful taxonomic status and some authors suggest it may be related to the genus Obelia [19,99].

The specimens belonging to O. integra recorded by Grohmann et al. [53] in Rio de Janeiro, Brazil, closely resemble this new species, particularly with respect to the thin perisarc and shape of hydrothecae and gonothecae. They are tentatively assigned here to O. mianzani sp. nov., pending future study of the material of Grohmann et al. [53].

Type locality. Ilha do Mel, Paraná, Brazil.

Other records from the southwestern Atlantic. Brazil. Santa Catarina, Penha (this study), Rio de Janeiro [53].

Silicularia, Orthopyxis sp. indet., and Campanulariidae sp. indet.

Silicularia rosea Meyen, 1834 and unidentified specimens were only included in the 16S phylogenies, as we were unable to amplify COI fragments from these specimens. In the 16S phylogenies, Silicularia rosea has a basal position relative to the other genera. The highly supported clade Silicularia +Campanularia+Orthopyxis corroborates the close relationships between these genera, although this may have been affected by using a relatively distant root species (Obelia dichotoma, O. longissima).

The specimens from San Julián, Argentina (Campanulariidae sp. indet.) are morphologically similar to Orthopyxis mianzani sp. nov., but their ambiguous position among the different phylogenies (Figs. 4–5; S3–S4, S7–S10 Figs.) makes it difficult to determine their true identity. Considering only the 16S phylogenies, they occupied a basal position among Orthopyxis. The specimen from Caleta Olivia, Argentina (Orthopyxis sp. indet.) is morphologically similar to Orthopyxis crenata, but it lacks gonothecae, which would have allowed for better comparisons, and it also had an ambiguous position in the phylogenies, hampering its identification. This specimen, however, was consistently positioned among the species of the genus Orthopyxis. As reliable information for the identification of these specimens was lacking, they were left unidentified until more information is available to determine their taxonomic status.

Discussion

Our results reinforce the importance of using mitochondrial markers, particularly the 16S rRNA gene, for phylogenetic inferences at many taxonomic levels. The use of 16S to define
genera and species is common in studies with the Hydrozoa [24,25,64,66,67,69,76,113], and its potential for barcoding has been demonstrated [71,114]. The resolution levels provided by this gene are also adequate for phylogenetic inferences among putative superfamilies, orders and even subclasses e.g., [65], including the Hydroidolina [16]. In this study, the phylogenetic signal from 16S proved crucial for defining the relationships among the species and genera in these analyses, corroborating the monophyly of the genus Orthopyxis and delimiting the four species that occur in the southwestern Atlantic.

By contrast, the nuclear ITS markers are not often used for phylogenetic inferences in studies of the Hydrozoa e.g., [81,115], being more common in studies of the Scyphozoa [116,117,118,119]. Species of the genus Aurelia [116,119] and many other invertebrates [120] (Insecta), [121] (Decapoda), [122] (Anthozoa) show great variability in the ITS region, and as a consequence, the ITS markers are generally considered inadequate for supraspecific phylogenetic inferences e.g., [121]. Our ITS analyses corroborate the results obtained with the mitochondrial markers by identifying the same six clades in nearly all analyses. However, the high genetic distance values of the ITS region (Table 5) provide important evidence that phylogenetic information based on ITS on more inclusive levels of the trees is inadequate.

Many molecular studies have characterized cryptic lineages, such as in the genera Aurelia (7–9 lineages with genetic distances of 13–24% for COI and 7.8–14.5% for 16S [116,118]) and Tamoya (2 lineages with genetic distances of 4.4–4.5% for COI and 2.1–2.5% for 16S [123]). Similar results were obtained for species of the genera Coryne, Turritopsis and Cordylophora, in which interspecific distances ranged from 12.35–15.3% for COI and 3.7–9.2% for 16S [67,69,72]. The genetic distances among the species O. sargassica, O. crenata, O. caliculata and O. mianzani sp. nov. agree with those studies, ranging from 12.35–16% for COI and 7.81–10.2% for 16S. It is important to note, however, that specimens with the diagnostic features of the species O. integra, which are commonly reported in the study region, represented two different lineages, neither of which was diagnosed as O. integra after a reexamination of their morphological characters. Additionally, the commonly recorded species C. subantarctica appears to include two different lineages, although we could not assess the taxonomic status of these lineages due to the low number of specimens. The discovery of different lineages, sometimes in presumably cosmopolitan species, has been recurrent in the family Campanulariidae [14,23,76] and even in genera with extensive revisions aiming to establish interspecific limits (e.g., Obelia [18,20]).

Although it is possible to assess species boundaries in the genus Orthopyxis using molecular methods, this task is not straightforward using morphological characters, primarily due to wide intraspecific variation. Molecular studies involving morphologically variable groups reveal that morphological characters used to delimit species are frequently misinterpreted, and some traditional diagnostic characters are proving to be inadequate e.g., [124,125]. Despite this, many misleading assumptions regarding the variability of morphological characters in the genus Orthopyxis still remain, and conclusions are frequently based on partial or non-formal analyses, derived either from the study of relatively few specimens or from repetition of the opinions of different authors, which are sometimes not based on actual voucher specimens. Indeed, this appears to be the case for the species O. integra in the southwestern Atlantic. The intraspecific variation of O. integra has been widely documented [19,29,78,91,92,109], and this species is traditionally assumed to be cosmopolitan [19,28,97], but it is clear that the amplitude of intraspecific variation of certain O. integra morphological characters has been overestimated. Perisarc thickness, for instance, is an important diagnostic character for the species of O. caliculata and O. mianzani sp. nov. delimited in this study, although this character is frequently considered too variable to be relevant for diagnostic purposes [19,29,39,47]. Furthermore, we believe that other characters, such as the presence of annulations on the gonothecae,
may also be useful diagnostic characters for different lineages within *O. integra* and that they should be investigated more closely. A worldwide revision of *O. integra* is particularly timely, as it appears many of its synonyms may in fact represent true species.

Orthopyxis sargassicola, a species widely known in the western Atlantic [1,13,28,31], also appeared as one of the lineages of *Orthopyxis* delimited here. We recorded this species along the southeastern coast of Brazil, and it is known to occur in different regions along the Brazilian coast e.g.,[1,8,13]. There are no records of *O. sargassicola* in Argentina. Other records are from the Gulf Stream (type locality, [28]), east of cape Hatteras [108], and in Aruba, Bonaire and Curaçao [126]. *Orthopyxis crenata*, another lineage delimited in this study, is first recorded for the southwestern Atlantic. Previous records attributed to this species (Table 1) are misidentifications or still have a doubtful taxonomic status. Specimens of *O. crenata* were recorded for Brazil in the states of Ceará (Fortaleza), São Paulo (Ubatuba) and Santa Catarina (Penha and Laguna); other global records include Chile [47,127], New Zealand [39,97,128], South Africa [29] (as *Campanularia crenata*) and Japan [100] (as *C. crenata*). There have been many discussions of the variability of the hydrothecal cusps of *O. crenata*, which vary from slight crenations on the margin of the hydrotheca to well-developed cusps [19,29,39,47,97,100], commonly overlapping with the morphology of the cusps of the species *O. sargassicola*. Calder [31] highlighted the morphological similarities between these two species, which are distinguished by the presence of annulations on the gonothecae of *O. sargassicola*, and by their absence in *O. crenata*. Migotto [1] also noted that some of the specimens he identified as *O. sargassicola* from São Sebastião (SP), Brazil, had morphological similarities to *O. crenata*, particularly with respect to the hydrothecal cusps and medusoids. Neither species can be identified with any certainty in the absence of gonothecae, and therefore, the records of *O. sargassicola* without gonothecae in the southwestern Atlantic should be considered with caution.

Specimens assigned to the genus *Campanularia* here are morphologically similar to the species of *Orthopyxis*, from which they can be distinguished by gonothecae morphology. With respect to the trophosome, the specimens of *Campanularia* do not possess a thickened perisarc on the hydrotheca and pedicels, as is observed in many species of *Orthopyxis*. Galea et al. [47] considered *Campanularia subantarctica* Millard, 1971 to be a synonym of the species *Campanularia lennoxensis* Jäderholm, 1903 based on the argument that their specimens presented gonothecae features found in both species and that perisarc thickness is a variable feature in the Campanulariidae. As already discussed, Campanulariidae is well known for its morphological variability e.g., [19], but we show that perisarc thickness may be a relevant character for delimiting certain species, at least when included in a detailed analysis with a wide range of specimens. Additionally, descriptions of *C. subantarctica* for the study area resemble the specimens described by Millard [77] (e.g., with a thinner perisarc [88,129]). Considering this, we believe the proposed synonymy is premature without more complete evidence, and we regard *C. subantarctica* Millard, 1971 as a valid species, pending more detailed study.

The difficulties in identifying species of *Orthopyxis* and *Campanularia* in the study area are noteworthy, particularly considering the high number of nominal species described and the uncertain synonymies e.g., [1,6,13,31,40,41,42,43,44,45,46,130]. Our analysis corroborates the monophyly of *Orthopyxis* and delimits four species in the southwestern Atlantic, consistent with an assessment of their morphological characters. These findings are crucial to our understanding of the intergeneric limits and species boundaries in the family Campanulariidae. We believe that this integrative approach clarifies many taxonomic difficulties associated with the species of *Orthopyxis*, and we hope that it may serve as a model for the delimitation of other species within the Campanulariidae.
Supporting Information

S1 Fig. A strict consensus of the 116 most parsimonious trees based on 16S and COI data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S2 Fig. Maximum Likelihood tree based on 16S and COI data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S3 Fig. A strict consensus of the 4115 most parsimonious trees based on ITS1 and ITS2 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S4 Fig. Maximum Likelihood tree based on ITS1 and ITS2 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S5 Fig. A strict consensus of the 11 most parsimonious trees based on COI data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S6 Fig. Maximum Likelihood tree based on COI data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S7 Fig. A strict consensus of the 5 most parsimonious trees based on ITS1 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S8 Fig. Maximum Likelihood tree based on ITS1 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S9 Fig. A strict consensus of the 2130 most parsimonious trees based on ITS2 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S10 Fig. Maximum Likelihood tree based on ITS2 data. Bootstrap values are shown for each node. Nodes without numbers indicate support below 50. (TIF)

S1 Table. Morphological measures included in the Principal Component Analysis. (DOCX)

Acknowledgments

The authors would like to thank all the colleagues from LEM (Laboratory of Marine Evolution) and LEMol (Laboratory of Molecular Evolution) of the University of São Paulo, Brazil, for their valuable help and support during the development of this study, and particularly MM Maronna for the outgroup sequences of *Obelia*, and MA Mendoza-Becerril for helping with the map of the sampling sites. Also, many thanks to Tito MC Lotufo, Helena Matthews-Cascon and their students for assistance during fieldwork in Fortaleza, Ceará. We would also like to thank M Cristina Damborenea, Museo de La Plata, Argentina; Fabrizio Scarabino, Museo
Nacional de Historia Natural, Montevideo, Uruguay; and Allen G Collins and W Geoff Keel, National Museum of Natural History, Smithsonian Institution, United States, for providing museum specimens for study. Finally, we would like to thank Dale R Calder and an anonymous reviewer for their helpful comments on a previous version of this manuscript.

Author Contributions

Conceived and designed the experiments: AFC ACM. Performed the experiments: AFC ACM. Analyzed the data: AFC ACM. Contributed reagents/materials/analysis tools: GNG ACM. Wrote the paper: AFC GNG ACM.

References

1. Migotto AE (1996) Benthic shallow-water hydroids (Cnidaria, Hydrozoa) of the coast of São Sebastião, Brazil, including a checklist of Brazilian hydroids. Zool Verhand. 306: 1–125.

2. Genzano GN, Rodriguez GM (1998) Association between hydroid species and their substrates from the intertidal zone of Mar del Plata (Argentina). Misc Zool. 21(1): 21–29.

3. Zamponi MO, Genzano GN, Acuña FG, Excoffon AC (1998) Studies of benthic cnidarians taxocenes along a transect off Mar del Plata (Argentina). Russ J Mar Biol. 24(1): 7–13.

4. Genzano GN, Zamponi MO, Excoffon AC, Acuña FH (2002) Hydroid populations from sublittoral outcrops off Mar del Plata, Argentina: abundance, seasonality and reproductive periodicity. Ophelia 56 (3): 161–170.

5. Genzano GN, Mianzan H, Díaz-Briz L, Rodriguez C (2008) On the occurrence of Obelia medusa blooms and empirical evidence of unusual massive accumulations of Obelia and Amphisbetta hydroids on the Argentina shoreline. Lat Am J Aquat Res. 36(2): 301–307.

6. Genzano GN, Giberto D, Scheijter L, Bremec C, Meretta P (2009) Hydroid assemblages from the Southwestern Atlantic Ocean (34°–42°S). Mar Ecol. 30: 33–46.

7. Lindner A, Migotto AE (2002) The life cycle of Clytia linearis and Clytia noliformis: metagenic campanulariids (Cnidaria: Hydrozoa) with contrasting polyp and medusa stages. J Mar Biol Assoc UK. 82: 541–553.

8. Migotto AE, Marques AC, Morandini AC, Silveira FL (2002) Checklist of the Cnidaria Medusozoa of Brazil. Biota Neotrop. 2(1): 1–31.

9. Genzano GN, Zamponi MO (2003). Hydroid assemblages from Mar del Plata, Argentina, at depths between 0 and 500m. Distribution and biological substrata. Oceanol Acta. 25: 303–313.

10. Grohmann PA, Nogueira CC, Silva VMA (2003) Hydroids (Cnidaria, Hydrozoa) collected on the continental shelf of Brazil during the Geomar X Oceanographic Operation. Zootaxa. 299: 1–19.

11. Marques AC, Morandini AC, Migotto AE (2003) Synopsis of knowledge on Cnidaria Medusozoa from Brazil. Biota Neotrop. 3(2): 1–18.

12. Kelmo F, Attrill MJ (2003) Shallow-water Campanulariidae (Hydrozoa, Leptotheccata) from Northern Bahia, Brazil. Rev Biol Trop. 51(1): 123–146. PMID: 15162687

13. Miranda TP, Haddad MA, Shimabukuro V, Dubiaski-Silva J, Marques AC (2011) Fauna de hidroides (Cnidaria, Hydrozoa) da região de Bombinhas, Santa Catarina, Brasil. Biota Neotrop. 11(3): 331–353.

14. Govindarajan AF, Boero F, Halanych KM (2006) Phylogenetic analysis with multiple markers indicates repeated loss of the adult medusa stage in Campanulariidae (Hydrozoa, Cnidaria). Mol Phylogenet Evol. 38: 820–834. PMID: 16376578

15. Boero F, Bucci C, Colucci AMR, Gravili C, Stabili L (2007) Obelia (Cnidaria, Hydrozoa, Campanulariidae): a microphagous, filter-feeding medusa. Mar Ecol. 28(Suppl. 1): 178–183.

16. Cartwright P, Evans NM, Dunn CW, Marques AC, Migletta MP, et al. (2008) Phylogenetics of Hydrodolina (Hydrozoa: Cnidaria). J Mar Biol Assoc UK. 88: 1663–1672.

17. Leclère L, Schuchert P, Craudau C, Couloux A, Manuel M (2009) Molecular phylogenetics of Thecata (Hydrozoa, Cnidaria) reveals long-term maintenance of life history traits despite high frequency of recent character changes. Syst Biol. 58(5): 509–526. doi: 10.1093/sysbio/syp044 PMID: 20525605

18. Comelius PFS (1975) The hydroid species of Obelia (Coelenterata, Hydrozoa: Campanulariidae), with notes on the medusa stage. Bull Br Mus Nat Hist Zool. 28(6): 249–293.

19. Comelius PFS (1982) Hydroids and medusae of the family Campanulariidae recorded from the eastern North Atlantic, with a world synopsis of genera. Bull Br Mus Nat Hist Zool. 42(2): 37–148.
20. Cornelius PFS (1990) European Obelia (Cnidaria, Hydroida): systematics and identification. J Nat Hist 24: 535–578.
21. Östman C (1982) Nematocysts and taxonomy in Laomedea, Gonothyraea and Obelia (Hydrozoa, Campanulariidae). Zool Scr 11(4): 227–241.
22. Östman C (1999) Nematocysts and their value as taxonomic parameters within the Campanulariidae (Hydrozoa). A review based on light and scanning electron microscopy. Zoosyst Rossica 1: 17–28.
23. Lindner A, Govindarajan AF, Migotto AE (2011) Cryptic species, life cycles, and phylogeny of Clytia (Cnidaria: Hydrozoa: Campanulariidae). Zootaxa 2980: 23–36.
24. Zhou K, Zheng L, He J, Lin Y, Cao W, et al. (2013) Detection of a new Clytia species (Cnidaria: Hydrozoa: Campanulariidae) with DNA barcoding and life cycle analyses. J Mar Biol Assoc UK 93(6): 2075–2088.
25. He J, Zheng L, Zhang W, Lin Y, Cao W (2014) Morphology and molecular analyses of a new Clytia species (Cnidaria: Hydrozoa: Campanulariidae) from the East China Sea. J Mar Biol Assoc UK pp. 1–12. http://dx.doi.org/10.1017/S0025315414000836.
26. Hincks T (1868) A history of the British hydroid zoophytes. Volume I—Text. London: John Van Voorst, Paternoster Row. 338p.
27. Bale WM (1914) Further notes on Australian hydroids. Part I. Proc R Soc Vic 27: 72–93.
28. Nutting CC (1915) American Hydroids. Part III. The Campanularidae and the Bonneviellidae. Washington: Government Printing Office. 126p.
29. Millard NAH (1975) Monograph on the Hydroida of Southern Africa. Ann South Afr Mus 68: 1–513.
30. Bouillon J (1985) Essai de classification des Hydropolypes-Hydroméduses (Hydrozoa-Cnidaria). Indo-Malayan Zool 2: 29–243.
31. Calder DR (1991) Shallow-water hydroids of Bermuda: the Thecatae, exclusive of Plumularioidea. R Ont Mus Life Sci Contrib 154: 140p.
32. Marques AC, Collins AG (2004) Cladistic analysis of Medusozoa and cnidarians evolution. Invertebr Biol 123(1): 23–42.
33. Collins AG, Schuchert P, Marques AC, Jankowski T, Medina M, et al. (2006) Medusozoan phylogeny and character evolution clarified by new large and small subunit rDNA data and an assessment of the utility of phylogenetic mixture models. Systematic Biol 55(1): 97–115, PMID: 16507527.
34. van Iten H, Leme JM, Simões MG, Marques AC, Collins AG (2006) Reassessment of the phylogenetic position of Conularids (?Ediacaran-Triassic) within the subphylum Medusozoa (Phylum Cnidaria). J Syst Palaeontol 4(2): 109–118.
35. Marques AC (1996) A critical analysis of a cladistic study of the genus Eudendrium (Cnidaria: Hydrozoa), with some comments on the family Eudendriidae. J Comp Biol 1(3): 153–162.
36. Collins AG (2000) Towards understanding the phylogenetic history of Hydrozoa: hypothesis testing with 18S gene sequence data. Sci Mar 64(Supl. 1): 5–22.
37. Ariai MN, Brinckmann-Voss A (1980) Hydromedusae of British Columbia and Puget Sound. Can Bull Fish Aquat Sci 204: 192p.
38. Schuchert P (2001) Hydroids of Greenland and Iceland (Cnidaria, Hydrozoa). Medd Grønland 28. 308p.
39. Blanco OM (1964) Algunos Campanularidos argentinos. Rev Mus La Plata 12(4): 851–854.
40. Vannucci-Mendes M (1946) Hydroidea Thecaphora do Brasil. Arq Zool Est São Paulo 4(14): 535–598.
41. Vannucci M (1949) Hydrozoa do Brasil. Bol Fac Filos Cienc Letr Univ São Paulo 99(14): 219–266.
42. Vannucci M (1954) Hydrozoa e Scyphozoa existentes no Instituto Oceanográfico. Bolm Inst Oceanoogr 5: 95–149.
43. Blanco OM (1964) Algunos Campanularidos argentinos. Rev Mus La Plata 7: 149–171.
44. Blanco OM (1967) Contribución al conocimiento de los hidrozoarios argentinos. Rev Mus La Plata 9: 243–297.
45. Blanco OM (1976) Hidrozoos de la expedición "Walther Herwig". Rev Mus La Plata 12: 27–74.
46. Blanco OM (1994) Enumeración sistemática y distribución geográfica preliminar de los hidrozoos de la República Argentina, Suborden Athecata (Gymnoblastea, Anthomedusae), Thecata (Calyptoblastea, Leptomedusae) y Limnomedusae. Rev Mus La Plata 14: 181–216.
47. Galea HR, Häussermann V, Försterra G (2009) New additions to the hydroids (Cnidaria: Hydrozoa) from the fjords region of southern Chile. Zootaxa 2019: 1–28.
48. Grohmann PA, Souza MM, Nogueira CC (1997) Hydroids from the vicinity of a large industrial area in Vitória, Espírito Santo, Brazil. Proc 6th Intl Conf Coel Biol 1995: 227–232.
49. Rosso S, Marques AC (1997) Patterns of intertidal hydrozoan distribution along the coast of São Paulo State, southeastern Brazil. Proc 6th Intl Conf Coel Biol 1995: 145–422.

50. Oliveira OMP, Marques AC (2007) Epiphytic hydroids (Hydrozoa: Anthoathecata and Leptothecata) of the world. Check List 3(1): 21–38.

51. Cunha AF, Jacobucci GB (2010) Seasonal variation of epiphytic hydroids (Cnidaria: Hydrozoa) associated to a subtropical Sargassum cymosum (Phaeophyta: Fucales) bed. Zoologia 27(6): 945–955.

52. Nogueira CC, Grohmann PA, Silva VMAP (1997) Hydrozoans from the vicinity of a nuclear power plant site (CNAAA-Unidade I) at Angra-dos-Reis, Rio de Janeiro, southeastern Brazil. Proc 6th Intl Conf Coel Biol 1995: 365–369.

53. Grohmann PA, Nogueira CC, Silva VMAP (2011) Hydrozoans (Cnidaria, Hydrozoa) collected on the inner continental shelf of the state of Rio de Janeiro, Brazil, during Oceanographic Operations GEO-COSTA RIO I and II. Biota Neotrop 11(2): 193–201.

54. Haddad MA, Chiaverini AP (2000) Repartição de espaço entre hidroides (Cnidaria, Hydrozoa) epífiticos em Sargassum stenophyllum (Phaeophyta, Fucales) de Guaratuba, Paraná. An V Simp de Ecossist Bras: Conserv 2: 101–109.

55. Oliveira OMP, Marques AC (2011) Global and local patterns in the use of macrophytes as substrata by hydrozoans (Hydrozoa: Anthoathecata and Leptothecata). Mar Biol Res 7:786–795.

56. Galea HR, Leclére L (2007) On some morphologically aberrant, auto-epizootic forms of Plumularia setacea (Hydrozoa: Anthoathecata). Mar Biol Res 3:369–377.

57. Grohmann PA, Nogueira CC, Silva VMAP (2011) Hydrozoans (Cnidaria, Hydrozoa) collected on the inner continental shelf of the state of Rio de Janeiro, Brazil, during Oceanographic Operations GEO-COSTA RIO I and II. Biota Neotrop 11(2): 193–201.

58. Benzoni F, Stefani F, Pichon M, Galli P (2010) The name game: morpho-molecular species boundaries: a review of morphological and molecular data. Integr Comp Biol 50(3): 411–427. doi: 10.1093/icb/icq062 PMID: 21558212

59. Aguilar C, Sánchez JA (2007) Molecular morphometrics: contribution of ITS2 sequences and predicted RNA secondary structures to octocoral systematics. B Mar Sci 81(3): 335–349.

60. Govindarajan AF, Piraino S, Gravili C, Kubota S (2005) Species identification of bivalve-inhabiting marine hydrozoans of the genus Corynidae (Capitata) in light of mitochondrial 16S rDNA data. Zool Scr 34: 91–99.

61. MILLIETTA MP, Piraino S, Kubota S, Schuchert P (2005) Species identification of bivalve-inhabiting marine hydrozoans of the genus Eugymnanthea. Invertebr Biol 124(1): 1–10.

62. Aguilar C, Sánchez JA (2007) Molecular morphometrics: contribution of ITS2 sequences and predicted RNA secondary structures to octocoral systematics. B Mar Sci 81(3): 335–349.

63. Collins AG, Winkelmann S, Hadrys H, Schierwater B (2005) Phylogeny of Capitata (Cnidaria, Hydrozoa): a molecular evaluation. J Zool Syst Evol Res 43(1): 11–19.

64. BERTOLINO RC, SANTANDREU V, Latorre A (2010) Phylogenetic relationships of the endemic Antarctic benthic hydrozoans (Cnidaria, Hydrozoa): what does the mitochondrial 16S rRNA tell us about it? Polar Biology 33: 41–57. PMID: 20626218
74. Nawrocki AM, Schuchert P, Cartwright P (2010) Phylogenetics and evolution of Capitata (Cnidaria: Hydrozoa), and the systematics of Corynidae. Zool Scr 39: 290–304.

75. Miranda LS, Collins AG, Marques AC (2010) Molecules clarify a cnidarian life cycle—The “Hydrozoan” Microhydra limopsicola is an early stage of the Staurozoan Halicystus antarcticus. PLoS ONE 5(4): e10182. doi: 10.1371/journal.pone.0010182 PMID: 20418959

76. Govindarajan AF, Halanych KM, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146: 213–222.

77. Millard NAH (1971) Hydrozoa. In: Bakker EMZ, Winterbottom JM, Dyer RA, editors. Marion and Prince Edward Islands. Cape Town: AA Balkema. pp. 396–408.

78. Cornelius PFS (1995) North-West European Thecate hydroids and their medusae. Part 2. Sertulariidae to Campanulariidae. Synopses of the British Fauna (New Series) 50 (2): 1–386.

79. Katoh K, Misawa K, Kuma K-i, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14): 3059–3066. PMID:12136088

80. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3): 403–410. PMID:2231712

81. Martinez DE, Iñiguez AR, Percell KM, Willner JB, Signorovitch J, et al. (2010) Phylogeny and biogeography of Hydra (Cnidaria: Hydridae) using mitochondrial and nuclear DNA sequences. Mol Phylogenet Evol 57: 403–410. doi: 10.1016/j.ympev.2010.06.016 PMID:20601008

82. Katoh K, Misawa K, Kuma K-i, Miyata T (2002) MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res 30(14): 3059–3066. PMID:12136088

83. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3): 403–410. PMID:2231712

84. Swoford DL (2002) PAUP* (Phylogenetic Analysis Using Parsimony and Other Methods). Version 4.0b10. Massachusetts: Sinauer Associates, Sunderland.

85. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24: 774–786.

86. Chen S-H, Su S-Y, Lo C-Z, Chen K-H, Huang T-J, et al. (2009) PALM: A paralleled and integrated framework inference with automatic likelihood model selectors. PLoS ONE 4(12): e8116. doi:10.1371/journal.pone.0008116 PMID:19997614

87. Jolliffe IT (2002) Principal Components Analysis. Second Edition. New York: Springer Series in Statistics. 457p.

88. Blanco OM (1984) Symplectoscyphus marionensis Millard, 1971 (Hydroida Thecata) y sus epizoicos. Rev Mus La Plata 13: 261–267.

89. Vannucci M (1951) Distribuição dos Hydrozoa até agora conhecidos nas costas do Brasil. Bolm Inst Oceanogr, 2, 105–124.

90. Mistein A (1976) Hydroidea de las costas uruguayas. Dusenia 9(3): 77–93.

91. Levinsen GMR (1893) Meduser, Ctenophorer og Hydroider fra Grønlands Vestkyst, tilligemed Bemærkninger om Hydroidernes Systematik. Vid Medd Naturh For Kjøbenhavn 1892: 143–212, 215–220.

92. Broch H (1909) Die Hydroiden der Arktischen Meere. Fauna Arctica 5: 129–247.

93. Broch H (1918) Hydroida (Part II). Danish Ingolf-Exped 5(7): 205p.

94. Kramp PL (1935) Polypdyr (Coeletterata), I. Ferskvandspolyper og Goplepolyper. Danmarks Fauna 41:1–207.

95. Vervoort W (1946) Hydrozoa (C1) A. Hydropolypen. Fauna van Nederland 14: 1–36.

96. Vervoort W (1949) Notes on a small collection of hydroIDS from Jersey (Channel Islands). Zool Meded 30(11): 133–162.

97. Vervoort W, Watson JE (2003) The Marine Fauna of New Zealand: Leptothecata (Cnidaria: Hydrozoa) (Thecate Hydroids). Wellington: NIWA Biodiversity Memoir 119. 538p.

98. Hincks T (1853) Further notes on British Zoophytes, with descriptions of new species. Ann Mag Nat Hist 11(63): 178–185.

99. Bale WM (1934) Note on Campanularia integra and Orthopyxis calciculata. Proc Linn Soc N S W 59: 273–276.

100. Hirohito ES (1995) The hydroIDS of Sagami Bay II. Thecata. Tokyo: Publications of the Biological Laboratory Imperial Household. 355p.
101. Watson JE (2005) Hydroids of the Archipelago of the Recherche and Esperance, Western Australia: annotated list, redescription of species and description of new species. In: Well FE, Walker DJ, Kendrick GA, editors. The Marine Flora and Fauna of Esperance, Western Australia. Perth: Western Australian Museum. pp. 495–612.

102. Calder DR, Choong HHC, Carlton JT, Chapman JW, Miller JA, et al. (2014) Hydroids (Cnidaria: Hydrozoa) from Japanese tsunami marine debris washing ashore in the northwestern United States. Aquat Invasions 9(4): in press.

103. Macgillivray J (1842) Catalogue of the marine zoophytes of the neighbourhood of Aberdeen. Ann Mag Nat Hist 1(9): 462–469.

104. Fraser CM (1944) Hydroids of the Atlantic Coast of North America. Toronto: The University of Toronto Press. 634p.

105. Lamouroux JVF (1824) Description des polypières flexibles. In: Quoy JRC, Gaimard JP, editors. Voyage autour du monde, entrepris par ordre du Roi, exécuté sur les corvettes de S.M. l’Uranie et la Physicienne, pendant les années 1817, 1818, 1819 et 1820. Paris: Pillet Aîné. pp. 603–643.

106. Naumov DV (1969) Hydroids and Hydromedusae of the USSR. Jerusalem: Israel Program for Scientific Translations. 660p.

107. Cladonema undulatum, Lankesianus 1880. Zool Scr 41(1): 79–96.

108. Gili JM, Vervoort W, Pagès F (1989) Hydroids from the West African coast: Guinea Bissau, Namibia and South Africa. Sci Mar 53(1): 67–112.

109. Peña Cantero AL, García Carrascosa AM (2002) The benthic fauna of the Chafarina Islands (Alborán Sea, western Mediterranean). Zool Verh Leiden 337: 1–180.

110. Johnston G (1847) A History of the British Zoophytes. Vol. I. London: John Van Voorst, Paternoster Row. 488p.

111. Vervoort W (1993) Report on hydroids (Hydrozoa, Cnidaria) in the collection of the Zoological Museum, University of Tel-Aviv, Israel. Zool Med Leiden 67(40): 537–565.

112. Dawson MN, Jacobs DK (2001) Molecular evidence for cryptic species of Aurelia aurita (Cnidaria, Scyphozoa). Biol Bull 200: 92–96. PMID: 11249217

113. Fritz GB, Pfannkuchen M, Reuner A, Schill RO, Brümmer F (2009) Population dispersal analysis using COI and ITS sequences. J Limnol 68(1): 46–52.

114. Collins AG, Bentlage B, Gillan WB, Lynn TH, Morandini AC, et al. (2011) Naming the Bonaire banded box jelly, Tamoya ohboya, n.sp. (Cnidaria: Cubozoa: Carybdeidae: Tamoyidae). Zootaxa 2753: 53–68.
124. Bo M, Bavestrello G, Barucca M, Makapedua DM, Poliseno A, et al. (2012) Morphological and molecular characterization of the problematic whip black coral genus Stichopathes (Hexacorallia: Antipatharia) from Indonesia (North Sulawesi, Celebes Sea). Zool J Linn Soc 166: 1–13.

125. Alurralde G, Torre L, Schwindt E, Castilla JC, Tatián M (2013) A re-evaluation of morphological characters of the invasive ascidian Corella eumycota reveals two different species at the tip of South America and in the South Shetland Islands, Antarctica. Polar Biol 36: 957–968.

126. Leloup E (1935) Hydaires Calyptoblastiques des Indes Occidentales. Mém Mus r his nat Belg 10(2): 1–73.

127. Leloup E (1974) Hydropolypes calyptoblastiques du Chili. Report n 48 of the Lund University of Chile Expedition 1948–1949. Sarsia 55: 1–61.

128. Hartlaub C (1901) Hydoiden aus dem Stillen Ocean. Ergebnisse einer Reise nach dem Pacific. Zool Jahrb 14: 349–379.

129. Genzano GN, Cuartas E, Excoffon A (1991) Portiera y Cnidaria de la Campana Oca Balda 05/88. Thalassas 9: 63–78.

130. Genzano GN, Zamponi MO (1997) Frecuencia de estudio y diversidad de los hidrozoos bentónicos de la plataforma continental argentina. Cienc Mar 23(3): 285–302.

131. Genzano GN (1995) New records of hydropolyp (Cnidaria, Hydrozoa) from south-western Atlantic Ocean. Misc Zool 18:1–8.

132. Genzano GN, Giberto D, Bremec C (2011) Benthic survey of natural and artificial reefs off Mar del Plata, Argentina, southwestern Atlantic. Lat Am J Aquat Res 39: 553–566.

133. Hartlaub C (1905) Die Hydroiden der magalhaensischen Region und chilenischen Küste. Zool Jahrb 6(3): 497–714.

134. Jäderholm E (1905) Hydroiden aus antarktischen und subantarktischen Meeren gesammelt von der schwedischen Südpolarexpedition. Wiss Ergebn Schwed Südpol Exped 1901–1903 5: 5–41.

135. Vervoort W (1972) Hydroids from the Theta, Vema and Yelcho cruises of the Lamont-Doherty Geological Observatory. Zool Verh 120: 1–247.

136. Silveira FL, Morandini AC (2011) Checklist dos Cnidaria do Estado de São Paulo, Brasil. Biota Neotrop 11: 1–10.

137. El Beshbeeshy M (1991) Systematische, morphologische und zoogeographische unter—suchungen an den Thekaten Hydoiden des Paragonoschen schells. PhD. Thesis, Hamburg University.

138. El Beshbeeshy M (2011) Thecate hydroids from the Patagonian shelf (Coelenterata, Hydrozooa, Thecate). Edited by Jarms G., Verh Naturwiss Ver Hamburg 46: 19–233.

139. Blanco OM (1968) Nueva contribución al conocimiento de la fauna marina hidroide. Rev Mus La Plata 10: 195–224.

140. Seo M (2003) Diversidad, ecología y distribución de los Hydroida bentónicos (Cnidaria, Hydrozoa) en Canal Beagle, Tierra del Fuego. Undergraduate Thesis, Universidad de Buenos Aires.

141. Stechow E (1914) Zur Kenntnis neuer oder seltener Hydroiden des Paragonoschen schells. Zool Jahrb 42: 120–136.

142. Stechow E (1919) Zur Kenntnis der Hydrodienfauna des Mittelmeeres, Amerikas und anderer Gebiete, nebst Angaben über einige Kirchenpauer'sche Typen von Plumularien. Zool Jahrb 42: 1–172.

143. Stechow E (1924) Diagnosen neuer Hydroiden aus Australien. Zool Anz 59: 57–69.

144. Broch H (1948) Antarctic hydroids. Sci Res Norw Antarct Exped 1927–1928. 28: 1–23.

145. López-Gappa J, Sueiro MC (2007) The subtidal macrobenthic assemblages of Bahía San Sebastián (Tierra del Fuego, Argentina). Polar Biol 30: 679–687.

146. Ritchie J (1907) The hydroids of the Scottish National Antarctic Expedition. T Roy Soc Edin 45: 519–545.

147. Jäderholm E (1917) Hydroiden from the South Seas. Redog Norrköp H Allm Läroverk Läsart 1916–1917. 1–25. PMID:11308317

148. Vannucci M (1951) Hydrozoa e Scyphozoa existentes no Instituto Paulista de Oceanografia. Bolm Inst Oceanogr 2: 69–99.

149. Oliveira OMP (2003) Diversidade e sazonalidade de hidróides (Cnidaria, Hydrozoa) epípticos do Canal de São Sebastião, SP. M.Sc. Thesis, Universidade de São Paulo.

150. Galea H (2007) Hydroids and hydromedusae (Cnidaria, Hydrozoa) from the fjords region of southern Chile. Zootaxa 1597: 1–116.

151. Peña Cantero AL, Szvoboda A, Vervoort W (2004) Antarctic hydroids (Cnidaria, Hydrozoa) of the families Campanulinidae, Lafoeidae and Campanulariidae from recent Antarctic expeditions with R.V. Polarstern, with the description of a new species. J Nat Hist 38: 2269–2303.
152. Cunningham CW, Buss LW (1993) Molecular evidence for multiple episodes of paedomorphosis in the family Hydractiniidae. Biochem Syst Ecol 21(1): 57–69.

153. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3(5): 294–299. PMID: 7881515

154. Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a new set of primers for amplifying the ribosomal internal transcribed spacer regions in insects and other invertebrates. Mol Ecol Notes 3: 581–585.

155. Matejusová I, Gelnar M, McBeath AJA, Collins CM, Cunningham CO (2001) Molecular markers for gyrodactylids (Gyrodactylidae: Monogenea) from five fish families (Teleostei). Int J Parasitol 31: 738–745. PMID: 11336756