Reward-Biased Maximum Likelihood Estimation for Linear Stochastic Bandits

Yu-Heng Hung, Ping-Chun Hsieh, Xi Liu, P. R. Kumar

1 National Chiao Tung University
2 Texas A&M University

Abstract
Modifying the reward-biased maximum likelihood method originally proposed in the adaptive control literature, we propose novel learning algorithms to handle the explore-exploit trade-off in linear bandits problems as well as generalized linear bandits problems. We develop novel index policies that we prove achieve order-optimality, and show that they achieve empirical performance competitive with the state-of-the-art benchmark methods in extensive experiments. The new policies achieve this with low computation time per pull for linear bandits, and thereby resulting in both favorable regret as well as computational efficiency.

1 Introduction
The problem of decision making for an unknown dynamic system, called stochastic adaptive control (Kumar 1985; Kumar and Varaiya 1986), was examined in the control theory community beginning in the 1950s. It was recognized early on by Feldbaum (Feldbaum 1960a, b) that control played a dual role, that of exciting a system to learn its dynamics, as well as satisfactorily regulating its behavior, therefore dubbed as the problem of “dual control.” This leads to a central problem of identifiability: As the controller begins to converge, it ceases to learn about the behavior of the system to other control actions. This issue was quantified by Borkar and Varaiya (Borkar and Varaiya 1979) within the setting of adaptive control of Markov chains. Consider a stochastic system with a state-space $X$, control or action set $U$, modelled as a controlled Markov chain with transition probabilities $P(x(t+1) = j | x(t) = i, u(t) = u) = p(i,j; u, \theta_*)$ dependent on an unknown parameter $\theta_*$ lying in a known set $\Theta$, where $x(t)$ is the state of the system at time step $t$, and $u(t)$ is the action taken at that time. Given a one-step reward function $r(i, u)$, let $\phi : X \times \Theta \rightarrow U$ denote the optimal stationary control law as a function of $\theta \in \Theta$ for the long-term average reward problem: $\max_{\phi} \sum_{t=0}^{\infty} r(x(t), u(t))$, i.e., $u(t) = \phi(x(t), \theta)$ is the optimal action to take if the true parameter is $\theta$. Since $\theta_*$ is unknown, consider a “certainty-equivalent” approach: At each time step $t$, let $\hat{\theta}_{ML}(t) \in \arg\max_{\theta \in \Theta} \sum_{s=0}^{t-1} \log p(x(s), x(s+1), u(s), \theta)$ denote the Maximum Likelihood (ML) estimate of $\theta_*$, with ties broken according to any fixed priority order. Then apply the action $u(t) = \phi(x(t), \hat{\theta}_{ML}(t))$ to the system. It was shown in Kumar and Becker (1982) that under an irreducibility assumption, the parameter estimates $\hat{\theta}_{ML}(t)$ converge to a random limit $\theta$ satisfying

$$p(i, j, \phi(i, \hat{\theta}), \hat{\theta}) = p(i, j, \phi(i, \theta), \theta_*) \quad \forall i, j \in X.$$ (1)

That is, the closed-loop transition probabilities under the control law $\phi(\cdot, \hat{\theta})$ are correctly determined. However, the resulting feedback control law $\phi(\cdot, \hat{\theta})$ need not be optimal for the true parameter $\theta_*$. A key observation that permitted a breakthrough on this problem was made by Kumar and Becker (Kumar and Becker 1982). Denote by $J(\phi, \theta)$ the long-term average reward incurred when the stationary control law $\phi$ is used if the true parameter is $\theta$, and by $J(\theta) := \max_{\phi} J(\phi, \theta)$ the optimal long-term average reward attainable when the parameter is $\theta$. Then,

$$J(\hat{\theta}) \stackrel{(a)}{=} J(\phi(\cdot, \hat{\theta}), \hat{\theta}) \stackrel{(b)}{=} J(\phi(\cdot, \hat{\theta}), \theta_*) \leq J(\theta_*) \leq J(\theta).$$ (2)

where the key equality (b) that the long-term reward under $\phi(\cdot, \hat{\theta})$ is the same under the parameters $\hat{\theta}$ and $\theta_*$ follows from the equivalence of the closed-loop transition probabilities $J(\theta)$, while (a) and (c) hold trivially since $\phi(\cdot, \hat{\theta})$ is optimal for $\hat{\theta}$, but is not necessarily optimal for $\theta_*$. Therefore the maximum likelihood estimator is biased in favor of parameters with smaller reward. To counteract this bias, Kumar and Becker (1982) proposed delicately biasing the ML parameter estimation criterion in the reverse way in favor of parameters with larger reward by adding a term $\alpha(t)J(\theta)$ to the log-likelihood, with $\alpha(t) > 0$, $\alpha(t) \rightarrow +\infty$, and $\frac{\alpha(t)}{\theta} \rightarrow 0$. This results in the Reward-Biased ML Estimate (RBMLE):

$$\hat{\theta}_{RBMLE}(t) \in \arg\max_{\theta \in \Theta} \left\{ \alpha(t)J(\theta) + \sum_{s=0}^{t-1} \log p(x(s), x(s+1), u(s), \theta) \right\}.$$ (3)

This modification is delicate since $\alpha(t) = o(t)$, and therefore retains the ability of the ML estimate to estimate the
closed-loop transition probabilities, i.e., \( \{1\} \) continues to hold, for any “frequent” limit point \( \theta \) (i.e., that which occurs as a limit along a sequence with positive density in the integers). Hence the bias \( J(\bar{\theta}) \leq J(\theta_*) \) of \( \{2\} \) continues to hold. However, since \( \alpha(t) \to +\infty \), the bias in favor of parameters with larger rewards ensures that

\[
J(\bar{\theta}) \geq J(\theta_*),
\]

as shown in \((Kumar and Becker 1982, \text{Lemma 4})\). From \( \{2\} \) and \( \{4\} \) it follows that \( J(\phi(\cdot, \theta), \theta_*) = J(\theta_*) \), whence \( \phi(\cdot, \bar{\theta}) \) is optimal for the unknown \( \theta_* \).

The RBMLE method holds potential as a general-purpose method for the learning of dynamic systems. However, its analysis was confined to long-term average optimality, which only assures that the regret is \( o(t) \). Preceding the Upper Confidence Bound (UCB) method of Lai and Robbins \((\text{Lai and Robbins 1985})\), RBMLE has largely remained unexplored vis-à-vis its finite-time performance as well as empirical performance on contemporary problems. Motivated by this, there has been recent interest in revisiting the RBMLE. Recently, its regret performance has been established for classical multiarmed bandits for the exponential family of measures \((\text{Liu et al. 2020})\). However, classical bandits do not allow the incorporation of “context,” which is important in various applications \((\text{Li et al. 2010, Lu, Pál, and Pál 2010})\).

We extend the RBMLE principle to linear contextual bandits \((\text{Lai and Robbins 1985})\). Hence the bias \( J(\bar{\theta}) \leq J(\theta_* \) continues to hold. However, since \( \alpha(t) \to +\infty \), the bias in favor of parameters with larger rewards ensures that

\[
J(\bar{\theta}) \geq J(\theta_*),
\]

as shown in \((Kumar and Becker 1982, \text{Lemma 4})\). From \( \{2\} \) and \( \{4\} \) it follows that \( J(\phi(\cdot, \theta), \theta_*) = J(\theta_*) \), whence \( \phi(\cdot, \bar{\theta}) \) is optimal for the unknown \( \theta_* \).

The RBMLE method holds potential as a general-purpose method for the learning of dynamic systems. However, its analysis was confined to long-term average optimality, which only assures that the regret is \( o(t) \). Preceding the Upper Confidence Bound (UCB) method of Lai and Robbins \((\text{Lai and Robbins 1985})\), RBMLE has largely remained unexplored vis-à-vis its finite-time performance as well as empirical performance on contemporary problems. Motivated by this, there has been recent interest in revisiting the RBMLE. Recently, its regret performance has been established for classical multiarmed bandits for the exponential family of measures \((\text{Liu et al. 2020})\). However, classical bandits do not allow the incorporation of “context,” which is important in various applications \((\text{Li et al. 2010, Lu, Pál, and Pál 2010})\).

We define (i) \( t, a \) := arg max_{d \in [K]} \theta^T x, \) (ii) \( X_t \) as the \((t - 1) \times d\) matrix in which the \( s\)-th row is \( x_d \), for all \( s \in [t - 1] \), (iii) \( R_t := (r_1, \ldots, r_{t-1})^T \) row vector of the observed rewards up to time \( t - 1 \), and (iv) \( F_t = (x_1, a_1, r_1, \ldots, x_t) \) denotes the \( \sigma\)-algebra of all the causal information available right before \( r_t \) is observed. We assume that the rewards are linearly realizable, i.e., there exists an unknown parameter \( \theta_* \in \mathbb{R}^d \) with \( \|\theta_*\|_2 \leq 1 \), and a known, strictly increasing link function \( \mu : \mathbb{R} \to \mathbb{R} \) such that \( \mathbb{E}[r_t | F_t] = \mu(\theta_*^T x_t) \). We assume that \( \mu \) is continuously differentiable, with its derivative \( \mu' \) having a supremum \( \mu' \), and an infimum \( \kappa_\mu > 0 \)\(^1\). We call this the generalized linear bandit problem.

Let \( a_t^* := \arg \max_{1 \leq i \leq K} \theta_*, \) be an arm that yields the largest conditional expected reward \( \mathbb{E}[r_t | F_t] \) at time \( t \) (with ties broken arbitrarily), and \( x_t^* := a_t, x_t \). The objective of the learner is to maximize its total over a finite time horizon \( T \), i.e., the learner aims to minimize the total conditional expected pseudo-regret, which we shall refer to simply as

\(^1\)A further discussion about this assumption is in Appendix [H]
the “cumulative regret,” defined as
\[ R(T) := \sum_{t=1}^{T} \mu(\theta_1^T x_t^*) - \mu(\theta_t^T x_t). \] (5)

We call the problem a standard linear bandits problem if (i) the reward is \( r_i = \theta_i^T x_t + \epsilon_i \), (ii) \( \epsilon_i \) is a noise with \( \mathbb{E}[\epsilon_i | x_t] = 0 \), and (iii) the rewards are conditionally \( \sigma \)-sub-Gaussian, i.e.,
\[ \mathbb{E}[\exp(\rho \epsilon_i | x_t)] \leq \exp\left(\frac{\rho^2 \sigma^2}{2}\right). \] (6)
Wlog, we assume \( \sigma = 1 \). For standard linear bandits the link function \( \mu \) is an identity and \( \kappa_\mu = 1 \).

### 3 RBMLE for Standard Linear Bandits

We begin with the derivation of the RBMLE index and its regret analysis for linear contextual bandits.

#### 3.1 Index Derivation for Standard Linear Bandits

Let \( \ell(F_t; \theta) \) denote the log-likelihood of the historical observations when the true parameter is \( \theta \). Let \( \lambda \) be a positive constant. At each \( t \), the learner takes the following two steps.  

1. Let \( \bar{\theta}_t = \arg\max_{\theta} \{ \ell(F_t; \theta) + \alpha(t) \max_a \theta^T x_t,a - \frac{\lambda}{2} \| \theta \|^2 \} \).
2. Choose any arm \( a_t \) that maximizes \( \bar{\theta}_t^T x_t,a \).

The term \( \alpha(t) \max_{a \in [K]} \theta^T x_t,a \) is the reward-bias. A modification to the RBMLE is the additional quadratic regularization term \( \frac{\lambda}{2} \| \theta \|^2 \), à la ridge regression. Wlog, we assume that \( \lambda \geq 1 \).

The above strategy can be simplified to an index strategy. Define the index of an arm \( a \) at time \( t \) by
\[ I_{t,a} := \max_{\theta} \{ \ell(F_t; \theta) + \alpha(t) \theta^T x_{t,a} - \frac{\lambda}{2} \| \theta \|^2 \}, \] (7)
and simply choose an arm \( a_t \) that has maximum index. The indexability proof is in Appendix A.

To derive indices, it is necessary to know what the loglikelihood \( \ell(F_t; \theta) \) is. However, in practice, the true distribution of the noise \( \epsilon_i \) is unknown to the learner or it may not even follow any parametric distribution. We employ the Gaussian density function as a surrogate:
\[ \ell(F_t; \theta) = -\frac{1}{2} \sum_{s=1}^{t-1} (\theta^T x_s - r_s)^2 - \frac{t-1}{2} \log(2\pi). \] (8)

Hence \( \bar{\theta}_t \) is any maximizer of
\[ -\sum_{s=1}^{t-1} (\theta^T x_s - r_s)^2 + 2\alpha(t) \max_{a \in [K]} \theta^T x_{t,a} - \frac{\lambda}{2} \| \theta \|^2 \} \]  

It is shown in Section 3.2 that despite the likelihood misspecification, the index derived from the Gaussian density achieves the same regret bound for general non-parametric sub-Gaussian rewards.

The LinRBMLE index has the following explicit form, as proved in Appendix B.

Corollary 1 For the Gaussian likelihood (8), there is a unique maximizer of (7) for every arm \( a \),
\[ \bar{\theta}_{t,a} = V_t^{-1}(X_t^T R_t + \alpha(t)x_{t,a}), \] (9)
where \( V_t := X_t^T X_t + \lambda I \). The arm \( a_t \) chosen by the LinRBMLE algorithm is
\[ a_t = \arg\max_{1 \leq i \leq K} \{ \bar{\theta}_t^T x_{t,i} + \frac{1}{2} \alpha(t) \| x_{t,i} \|^2 \}. \] (10)
We summarize the LinRBMLE algorithm in Algorithm 1.

#### Algorithm 1 LinRBMLE Algorithm

1. Input: \( \alpha(t), \lambda \)
2. Initialization: \( V_1 \leftarrow \lambda I \)
3. for \( t = 1, 2, \cdots \) do
   4. Observe the contexts \( \{x_{t,a}\} \) for all the arms
   5. Select the action \( a_t = \arg\max_a \{ \bar{\theta}_t^T x_{t,a} + \frac{1}{2} \alpha(t) \| x_{t,a} \|^2 \} \) and obtain \( r_t \)
   6. Update \( V_{t+1} \leftarrow V_t + x_{t,a} x_{t,a}^T \)
7. end for

Remark 1 Similar to the well-known LinUCB index \( \theta_t^T x_{t,i} + \gamma \| x_{t,i} \|_2 \) [Li et al. 2010], the LinRBMLE index is also defined as the sum of the least squares estimate and an additional exploration term. Despite this high-level resemblance, LinRBMLE has two salient features: (i) As mentioned in Section 1 the LinRBMLE index is different from the UCB-based indices as it directly incorporates a reward-bias term into the log-likelihood function to guide the exploration instead of using concentration inequalities; (ii) Under LinRBMLE, the ratio between the exploration terms of any two arms \( i, j \) is \( \| x_{t,i} \|_2 \| x_{t,j} \|_2 \), which is more contrastive than \( \| x_{t,i} \|_2 / \| x_{t,j} \|_2 \) of LinUCB. With a proper bias term, this design of LinRBMLE implicitly encourages more exploration (since \( \| x_{t,i} \|_2 / \| x_{t,j} \|_2 \) is a confidence interval). As will be seen in Section 5.2 with a proper bias term (e.g., \( \alpha(t) = \sqrt{t} \)), this additional exploration does not sacrifice the regret bound. Moreover, as suggested by the regret statistics in Section 5, this design makes LinRBMLE empirically more robust across different sample paths, which is of intrinsic interest.

#### 3.2 Regret Bound for the LinRBMLE Index

We begin the regret analysis with a bound on the “immediate” regret \( R_t := \theta_t^T (x_t^* - x_t) \).

Lemma 1 Under the standard linear bandit model,
\[ R_t \leq \| \theta_t - \bar{\theta}_t \|_{V_t} \cdot \| x_t^* \|_{V_t^{-1}} + \frac{1}{2} \alpha(t) \| x_t^* \|^2_{V_t^{-1}}. \] (11)

The proof of Lemma 1 is in Appendix C.
Remark 2 Lemma 1 highlights the main difference between the analysis of the UCB-based algorithms (e.g., [Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu et al. 2011]) and that of the LinRBMLE algorithm. To arrive at a regret upper bound for LinRBMLE, it is required to handle both \( \| \hat{b}^* - \tilde{b} \|_{V_t} \cdot \| x_t^* \|_{V_t^{-1}} \) and \( \frac{1}{2} \alpha(t) \cdot \| x_t^* \|_{V_t^{-1}}^2 \). While it could be challenging to quantify each individual term, we show in Theorem 1 that a tight regret bound can be obtained by jointly analyzing these two terms.

Theorem 1 below presents the regret bound for the LinRBMLE algorithm; it is proved in Appendix D.

Let
\[
G_0(t, \delta) := \sigma \sqrt{d \log \left( \frac{\lambda + t}{\lambda \delta} \right)} + \sqrt{\frac{1}{2} \alpha(T)} \left( \frac{1}{2} \alpha(T) \right) G_1(T),
\]
\[
G_1(t) := \sqrt{2d \log \left( \frac{\lambda + t}{\lambda \delta} \right)} \text{ respectively. (13)}
\]

Theorem 1 For the LinRBMLE index (10), with probability at least \( 1 - \delta \), the cumulative regret satisfies
\[
\mathcal{R}(T) = \sum_{t=1}^{T} R_t \leq (G_0(T, \delta))^2 \cdot \left( \sum_{t=1}^{T} \frac{1}{2 \alpha(t)} \right) + \sqrt{T} G_0(T, \delta) G_1(T) + \frac{1}{2} \alpha(T) G_1(T)^2. (14)
\]

Consequently, by choosing the bias term \( \alpha(t) = \sqrt{T} \), the regret bound is \( \mathcal{R}(T) = O(\sqrt{T \log T}) \).

Remark 3 As mentioned in Section 1, LinRBMLE achieves a better regret bound than several popular benchmark methods, including LinTS [Agrawal and Goyal 2013], SupLinUCB [Chu et al. 2011], and GPUCB with a linear kernel [Srinivas et al. 2010]. Moreover, LinRBMLE achieves the same regret bound as that of IDS [Kirschner and Krause 2018], which is one of the most competitive benchmarks. In Section 5 we show via simulations that LinRBMLE achieves an empirical regret competitive with IDS while being much more computationally efficient. LinRBMLE also has the same regret bound as that of LinUCB [Abbasi-Yadkori, Pál, and Szepesvári 2011]. As LinRBMLE addresses exploration in a fundamentally different manner as discussed in Remark 1, the corresponding regret proof also differs from those of the UCB-base policies, as highlighted in Remark 2. From the simulations, we further observe that LinRBMLE significantly outperforms LinUCB in terms of both empirical mean regret and regret statistics.

4 RBMLE for Generalized Linear Bandits

4.1 Index Derivation for Generalized Linear Bandits

For the generalized linear case, as before, let \( \tilde{\theta} \) be any maximizer of \( \ell(F_t; \theta) + \alpha(t) \cdot \max_{1 \leq a \leq K} \theta^T x_t, a - \frac{1}{2} \| \theta \|_2^2 \}. \) However, a major difference vis-à-vis the standard linear case is that \( L_{\mu} > \kappa_{\mu} \). To handle this, we incorporate an additional factor \( \eta(t) \) that is a positive-valued, strictly increasing function that satisfies \( \lim_{t \to \infty} \eta(t) = \infty \), and choose any arm \( a_t \) that maximizes \( \ell(F_t, \tilde{\theta}_{t,a}) + \eta(t) \alpha(t) \cdot \tilde{\theta}_{t,a} x_t - \frac{1}{2} \| \tilde{\theta}_{t,a} \|_2^2 \). The regret analysis below suggests that it is sufficient to choose \( \eta(t) \) to be slowly increasing, e.g., \( \eta(t) = 1 + \log t \).

Next, we generalize the notion of a surrogate Gaussian likelihood discussed in Section 3.1 by considering the density functions of the canonical exponential families:
\[
p(r_t | x_t) = \exp(\alpha(t) x_t^T \theta_a - b(x_t^T \theta_a) + c(r_t)), (15)
\]
where \( b(\cdot) : \mathbb{R} \to \mathbb{R} \) is a strictly convex function that satisfies \( b'(z) = \mu(z) \), for all \( z \in \mathbb{R} \), and \( c(\cdot) : \mathbb{R} \to \mathbb{R} \) is the normalization function. The exponential family consists of a variety of widely used distributions, including binomial, Gaussian, and Poisson distributions. By the properties of the exponential family, \( b'(x_t^T \theta_a) = \mathbb{E}[r_t | x_t] \) and \( b''(x_t^T \theta_a) = \mathbb{V}[r_t | x_t] > 0 \). By (21) and the strict convexity of \( b(\cdot) \), \( \ell(F_t; \theta) + \alpha(t) \cdot \theta^T x_t \) is strictly concave in \( \theta \) and therefore has a unique maximizer. By the first-order sufficient condition, \( \theta_{t,a} \) is the unique solution to
\[
\sum_{s=1}^{t-1} (r_s x_s - \mu(x_s^T \theta_{t,a}) x_s) - \lambda \tilde{\theta}_{t,a} + \alpha(t) x_{t,a} = 0. \quad (16)
\]

Note that (15) is used only for index derivation and is not required in the regret analysis in Section 4.2. We summarize the resulting GLM-RBMLE algorithm for the generalized linear case in Algorithm 2.

Remark 4 The technical reason behind incorporating \( \eta(t) \) into GLM-RBMLE is as follows: As will be seen in (101)–(102) in Appendix F, the immediate regret \( R_t \) is upper bounded by the value of a quadratic function of \( \| x_{t,a}^* \|_{V_t^{-1}} \), and this inequality resembles (37) for the linear case. To further bound the RHS of (101), we need the leading coefficient \( L^2_{\alpha}/(2 \kappa_{\mu}^2 \eta(t)) \) to be negative. To ensure this, we propose to set \( \eta(t) \) to be a positive, strictly increasing function with \( \lim_{t \to \infty} \eta(t) = \infty \) such that \( L^2_{\alpha}/(2 \kappa_{\mu}^2 \eta(t)) < 1 \) for all sufficiently large \( t \). For the linear case, we can simply let \( \eta(t) = 1 \) since \( L_{\mu} = \kappa_{\mu} = 1 \) and \( L^2_{\alpha}/2 \kappa_{\mu}^2 < 1 \) automatically holds.

Algorithm 2 GLM-RBMLE Algorithm
1: \textbf{Input:} \( \alpha(t), \lambda, \eta(t) \)
2: \textbf{for} \( t = 1, 2, \ldots \) \textbf{do}
3: \hspace{1em} Observe the contexts \( \{ x_{t,a} \} \) for all the arms
4: \hspace{1em} Calculate \( \tilde{\theta}_{t,a} \) for each \( a \) by solving \( \sum_{s=1}^{t-1} (r_s x_s - \mu(x_s^T \tilde{\theta}_{t,a}) x_s) - \lambda \tilde{\theta}_{t,a} + \alpha(t) x_{t,a} = 0 \)
5: \hspace{1em} Select the action \( a_t = \arg \max_a \{ \ell(F_t, \tilde{\theta}_{t,a}) + \eta(t) \alpha(t) x_{t,a} - \frac{1}{2} \| \tilde{\theta}_{t,a} \|_2^2 \} \) and obtain \( r_t \)
6: \textbf{end for}

4.2 Regret Bound for GLM-RBMLE for Generalized Linear Bandits

We begin the regret analysis of GLM-RBMLE by introducing the following definitions.
We also define $G_1(t)$ is defined in [13]. For ease of exposition, we also define the function

$$G_2(t, \delta) := \frac{\sigma}{\kappa + \mu} \sqrt{\frac{d}{2} \log(1 + \frac{2t}{d}) \log \frac{1}{\delta}}.$$  

We also define $C_1 := 2L_\mu/k^4 + 1/k^2$, $C_2 := 2L_\mu/\kappa + L_\mu/k_\mu$, and $C_3 := L_\mu^2/2$.  

**Theorem 2** For the GLM-RBMLE index, with probability at least $1 - \delta$, the cumulative regret satisfies

$$\mathcal{R}(T) \leq T_0 + C_1 \alpha(T) (G_1(T))^2$$

$$+ C_2 \sqrt{T} G_1(T) G_2(T, \delta)$$

$$+ C_3 (G_2(T, \delta))^2 \sum_{t=1}^{T} \frac{1}{\alpha(t)}.$$  

Therefore, if $\alpha(t) = \Omega(\sqrt{t})$, then $\mathcal{R}(T) = O(\alpha(T) \log T)$; If $\alpha(t) = O(\sqrt{t})$, then $\mathcal{R}(T) = O((\sum_{t=1}^{T} \frac{1}{\alpha(t)}) \log T)$.  

Hence, by choosing $\alpha(t) = \sqrt{T}$, $\mathcal{R}(T) = O(\sqrt{T} \log T)$.

**Remark 5** This bound improves that in Filippi et al. 2010 by a $\sqrt{\log T}$ factor and is the same as that of UCB-GLM (Li, Lu, and Zhou 2017).

5 Numerical Experiments

To evaluate the performance of the proposed RBMLE methods, we conduct a comprehensive empirical comparison with other state-of-the-art methods vis-a-vis three aspects: effectiveness (cumulative regret), efficiency (computation time per decision vs. cumulative regret), and scalability (in number of arms and dimension of contexts). We paid particular attention to fairness of comparison and reproducibility of results. To ensure sample-path sameness for all methods, we compared each method over a pre-prepared dataset containing the context of each arm and the outcomes of pulling each arm over all rounds. Hence, the outcome of pulling an arm is obtained by querying the pre-prepared data instead of calling the random generator and changing its state. A few benchmarks such as LinTS and Variance-based Information Directed Sampling (VIDS) that rely on outcomes of random sampling in each round of decision-making are separately evaluated with the same prepared data and with the same seed. To ensure the reproducibility of experimental results, we set up the seeds for the random number generators at the beginning of each experiment and provide all the codes.

To present a comprehensive numerical study similar to Russo and Van Roy (2018), the benchmark methods compared include LinUCB (Chu et al. 2011), LinTS (Agrawal and Goyal 2013), Bayes-UCB (BUCB) (Kaufmann, Cappé, and Garivier 2012), GPUCBT (Srinivas et al. 2010) and its variant GPUCBT-Tuned (GPUCBT) (Russo and Van Roy 2018), Knowledge Gradient (KG) and its variant KG* (Ryzhov, Frazier, and Powell 2010, Ryzhov, Powell, and Frazier 2012, Kaminski 2015), and VIDS (Russo and Van Roy 2018). A detailed review of these methods is presented in Section 6. The values of their hyper-parameters are as follows. For LinRBMLE, as suggested by Theorem 1 we choose $\alpha(t) = \sqrt{t}$ without any hyper-parameter tuning, and $\lambda = 1$ which is a common choice in ridge regression and is not sensitive to the empirical regret. We take $\lambda = 1$ in LinUCB and $\delta = 10^{-5}$ in GPUCBT. We tune the parameter $c$ in GPUCBT for each experiment and choose $c = 0.9$ that achieves the best performance. We follow the suggestion of (Kaufmann, Cappé, and Garivier 2012) to choose $\epsilon = 0$ for BUCB. Respecting the restrictions in (Agrawal and Goyal 2013), we take $\delta = 0.5$ and $\epsilon = 0.9$ in LinTS. In the comparison with IDS and VIDS, we sampled $10^3$ points over the interval $[0,1]$ for $\eta$ and take $M = 10^4$ in sampling (Algorithm 4 and 6 in Russo and Van Roy 2018). In the Bayesian family of benchmark methods (LinTS, BUCB, KG, KG*, GPUCBT, GPUCBT, and VIDS), the prior distribution over the unknown parameters $\theta$ is $N(0, k)$. The comparison contains 50 trials of experiments and $T$ rounds in each trial. We consider both contexts, “static,” where the context for each arm is fixed in each experiment trial, and “time-varying,” where the context for each arm changes from round to round.

The procedure for generating the synthetic dataset is as follows: (i) All contexts are drawn randomly from $\mathcal{N}(0, d, I_d)$ and normalized by their $\ell_2$ norm; (ii) At time $t$, the reward of each arm $i$ is sampled independently from $\mathcal{N}(\mu(\theta, x_{it}), 1)$. In each test case, we consider a fixed $\theta$, and randomly generate the contexts, which lead to different mean rewards across the arms. This scheme for generating the synthetic dataset has been widely adopted in the bandit literature, such as (Abbasi-Yadkori, Pál, and Szepesvári 2011), (Dumitrascu, Feng, and Engelhardt 2018, Kirschner and Krause 2018); (iii) As IDS-based approaches are known to be time-consuming, we choose $d = 3$ as suggested by (Kirschner and Krause 2018) for the experiments involving regret comparison in order to finish enough simulation steps within a reasonable amount of time. For the scalability experiments, we reduce the number of rounds $T$ to allow the choice of larger $d$.

**Effectiveness.** Figure 1 and Table 1 illustrate the effectiveness of LinRBMLE in terms of cumulative regret. We observe that for both static and time-varying contexts, LinRBMLE achieves performance only slightly worse than the best performing algorithm, which is often GPUCBT or VIDS. However, compared to these two, LinRBMLE has some salient advantages. In contrast to LinRBMLE, GPUCBT has no guaranteed regret bound and requires tuning the hyper-parameter $c$ to establish its outstanding performance. This restricts its applicability if pre-tuning is not possible. Compared to VIDS, the computation time of LinRBMLE is two orders of magnitude smaller, as will be shown in Figure 2. As shown in Table 1, LinRBMLE also exhibits better robustness with an order of magnitude or two smaller std. dev. compared to VIDS and many other benchmark methods. In Figure 1, VIDS appears to have not converged, but a detailed check reveals that this is only because its performance in some trials is much worse than in other trials. The robustness is also reflected in variation.
across problem instances, e.g., the performance of VIDS is worse in the problem of Figure 1(b) than in the problem of Figure 1(a), while the performance of LinRBMLE is consistent in these two examples. The robustness of LinRBMLE across different sample paths can be largely attributed to the inclusion of the Reward Bias term $\alpha(t)$ in the index (10), which encourages more exploration even for those sample paths with small $\|x_{t,i}\|_{\gamma_i}$. It is worth mentioning that the advantage of VIDS compared to other methods is less obvious for time-varying contexts. Experimental results reported in (Russo and Van Roy 2018) are restricted to the static contexts. More statistics of final cumulative regret in Figure 1 are provided in the appendix.

**Efficiency.** Figure 2 presents the averaged cumulative regret versus average computation time per decision. We observe that LinRBMLE and GPUCBT have points closest to the origin, signifying small regret simultaneously with small computation time, and outperform the other methods.

**Scalability.** Table 2 presents scalability of computation time per decision as $K$ and $d$ are varied. We observe that both LinRBMLE and GPUCBT, which are often the best among the benchmark methods, have low computation time as well as better scaling when $d$ or $K$ are increased. LinRBMLE is slightly better than LinUCB in terms of computation time under various $K$ and $d$ since the calculation of LinUCB index requires an additional square-root operation. Such scalability is important for big data applications such as recommender and advertising systems.

For generalized linear bandits, a similar study on effectiveness, efficiency, and scalability for GLM-RBMLE and popular benchmark methods is detailed in Appendix C.

## 6 Related Work

The RBMLE method was originally proposed in (Kumar and Becker 1982). It was subsequently examined in the Markovian setting in (Kumar and Lin 1982; Kumar 1983b; Borkar 1990), and in the linear quadratic Gaussian (LQG) system setting in (Kumar 1983a; Campi and Kumar 1999; Prandini and Campi 2000). A survey, circa 1985, of the broad field of stochastic adaptive control can be found in (Kumar 1985). Recently it has been examined from the point of examining its regret performance in the case of non-contextual bandits with exponential family of distributions in (Liu et al. 2020). Other than that, there appears to have been no work on examining its performance beyond long-term average optimality, which corresponds to regret of $o(t)$.

The linear stochastic bandits and their variants have been extensively studied from two main perspectives, namely the frequentist and the Bayesian approaches. From the frequentist viewpoint, one major line of research is to leverage the least squares estimator and enforce exploration by constructing an upper confidence bound (UCB), introduced in the LINREl algorithm by (Aud 2002). The idea of UCB was later extended to the LinUCB policy, which is simpler to implement and has been tested extensively via experiments (Li et al. 2010). While being simple and empirically appealing approaches, the primitive versions of the above two algorithms are rather difficult to analyze due to the statistical dependencies among the observed rewards. To obtain proper regret bounds, both policies were analyzed with the help of a more complicated master algorithm. To address this issue, (Dani, Hayes, and Kakade 2008) proposed to construct a confidence ellipsoid, which serves as an alternative characterization of UCB, and proved that the resulting algorithm achieved an order-optimal regret bound (up to a poly-logarithmic factor). Later, sharper characterizations of the confidence ellipsoid were presented by (Rusmevichientong and Tsitsiklis 2010) and (Abbasi-Yadkori, Pal, and Szepesvári 2011) thereby improving the regret bound. Given the success of UCB-type algorithms for linear bandits, the idea of a confidence set was later extended to the generalized linear case (Filippi et al. 2010; Li, Lu, and Zhou 2017) to study a broader class of linear stochastic bandit models. Differing from the above UCB-type approaches, as a principled frequentist method, the RBMLE algorithm guides the exploration toward potentially reward-maximizing model parameters by applying a bias to the log-likelihood. Most related is the work by (Liu et al. 2020), which adapted the RBMLE principle for stochastic multi-armed bandits and presented the regret analysis as well as extensive numerical experiments. However, (Liu et al. 2020) focused on the non-contextual bandit problems, and the presented results cannot directly apply to the more structured linear bandit model.

Instead of viewing model parameters as deterministic unknown variables, the Bayesian approaches assume a prior distribution to facilitate the estimation of model parameters. As one of the most popular Bayesian methods, Thompson sampling (TS) (Thompson 1933) approaches the exploration issue by sampling the posterior distribution. For linear bandit models, TS has been tested in large-scale experiments (Chapelle and Li 2011) and shown to enjoy order-optimal regret bounds in various bandit settings (Agrawal and Goyal 2013; Russo and Van Roy 2016; Abeille, Lazaric et al. 2017; Agrawal and Goyal 2017; Dumitrascu, Feng, and Engelhardt 2018). On the other hand, Bayesian strategies can also be combined with the notion of UCB for exploration, as in the popular GPUCB (Srinivas et al. 2010) and Bayes-UCB (Kaufmann, Cappé, and Garivier 2012) algorithms. However, to the best of our knowledge, there is no regret guarantee for Bayes-UCB in the linear bandit setting (Urteaga and Wiggins 2017). Alternative exploration strategies for linear bandits have also been considered from the perspective of explicit information-theoretic measures. (Russo and Van Roy 2018) proposed a promising algorithm called information-directed sampling (IDS), which makes decisions based on the ratio between the square of expected regret and the information gain. As the evaluation of mutual information requires computing high-dimensional integrals, VIDS, a variant of IDS, was proposed to approximate the information ratio by sampling, while still achieving competitive empirical regret performance. Compared to IDS and its variants, the proposed RBMLE enjoys a closed-form index and is therefore computationally more efficient. Another promising solution is the Knowledge
Figure 1: Cumulative regret averaged over 50 trials with $T = 3 \times 10^4$ and $K = 10$: (a) and (b) are under static contexts; (c) and (d) are under time-varying contexts; (a) and (c) are with $\theta = (-0.3, 0.5, 0.8)$; (b) and (d) are with $\theta = (-0.7, -0.6, 0.1)$.

| Alg. | RBMLE | LinUCB | BUCB | GPUCB | GPUCB | KG | KG* | LinTS | VIDS |
|------|-------|--------|------|-------|-------|----|-----|-------|------|
| Mean | 1.86  | 5.41   | 6.04 | 3.88  | 0.90  | 16.52 | 3.86 | 13.43 | 12.20 |
| Std. Dev | 0.42  | 14.87  | 11.78 | 1.19  | 0.53  | 26.68 | 10.46 | 2.20  | 74.66 |
| Q.10 | 1.45  | 0.04   | 0.07 | 2.30  | 0.32  | 0.03  | 0.07 | 10.83 | 0.15 |
| Q.25 | 1.62  | 0.07   | 0.10 | 3.01  | 0.59  | 0.05  | 0.10 | 12.44 | 0.29 |
| Q.50 | 1.79  | 0.15   | 0.14 | 3.78  | 0.79  | 0.18  | 0.18 | 13.58 | 0.45 |
| Q.75 | 1.96  | 1.00   | 1.30 | 4.56  | 1.09  | 23.83 | 0.34 | 14.25 | 0.79 |
| Q.90 | 2.31  | 19.34  | 23.00 | 5.74  | 1.66  | 64.89 | 18.94 | 15.73 | 2.38 |
| Q.95 | 2.75  | 30.47  | 36.31 | 5.91  | 1.98  | 75.96 | 27.18 | 16.78 | 9.40 |

Table 1: Statistics of the final cumulative regret in Figure 1(a). The best and the second-best are highlighted. ‘Q’ and “Std.Dev” stand for quantile and standard deviation of the total cumulative regret over 50 trials, respectively. All the values displayed here are scaled by 0.01 for more compact notations.

Figure 2: Average computation time per decision vs. averaged cumulative regret for (a) Figure 1(a); (b) Figure 1(b); (c) Figure 1(c); (d) Figure 1(d).

| Algorithm | RBMLE | LinUCB | BUCB | GPUCB | GPUCB | KG | KG* | LinTS | VIDS |
|-----------|-------|--------|------|-------|-------|----|-----|-------|------|
| $d = 100$, $K = 100$ | 0.127 | 0.149 | 1.157 | 0.147 | 0.145 | 1.107 | 0.401 | 0.192 | 5.054 |
| $d = 200$, $K = 100$ | 0.213 | 0.24 | 1.237 | 0.234 | 0.233 | 1.168 | 0.488 | 0.561 | 9.239 |
| $d = 300$, $K = 100$ | 0.303 | 0.339 | 1.467 | 0.334 | 0.332 | 1.386 | 0.599 | 1.374 | 19.876 |
| $d = 100$, $K = 200$ | 0.233 | 0.273 | 2.25 | 0.268 | 0.266 | 2.155 | 1.021 | 0.205 | 6.218 |
| $d = 200$, $K = 200$ | 0.373 | 0.421 | 2.455 | 0.41 | 0.409 | 2.31 | 1.168 | 0.586 | 13.838 |
| $d = 300$, $K = 200$ | **0.452** | 0.503 | 2.636 | 0.496 | 0.495 | 2.455 | 1.258 | 1.418 | 28.652 |

Table 2: Average computation time per decision for static contexts, under different values of $K$ and $d$. All numbers are averaged over 50 trials with $T = 10^2$ and in $10^{-2}$ seconds. The best is highlighted.
Gradient (KG) approach (Ryzhov, Powell, and Frazier 2012, Ryzhov, Frazier, and Powell 2010), which enforces exploration by taking a one-step look-ahead measurement. While being empirically competitive, it remains unknown whether KG and its variants have a provable near-optimal regret bound. In contrast, the proposed RBMLE enjoys provable order-optimal regret for standard linear as well as generalized linear bandits.

7 Conclusion

In this paper, we extend the Reward Biased Maximum Likelihood principle originally proposed for adaptive control, to contextual bandits. LinRBMLE leads to a simple index policy for standard linear bandits. Through both theoretical regret analysis and simulations, we prove that the regret performance of LinRBMLE is competitive with the state-of-the-art methods while being computationally efficient. Given the favorable trade-off of regret and computation time, RBMLE is a promising approach for contextual bandits.

Ethical Impact

Linear bandits as well as the generalized models serve as a powerful framework for sequential decision making in various critical applications, such as clinical trials (Varatharajah et al. 2018), mobile health (Tewari and Murphy 2017), personalized recommender (Li et al. 2019) and online advertising systems (Chapelle and Li 2011), etc. The rising volume of datasets in these applications requires learning algorithms that are more effective, efficient and scalable. The study in this paper contributes a new family of frequentist approaches to this community. These approaches are proved to be order-optimal and demonstrate strong empirical performance with respect to measures of effectiveness, efficiency and scalability. As such, the proposed approaches are expected to further improve user experience in applications and benefit business stakeholders. The proposed approaches are inspired by an early adaptive control framework. This framework has been applied in many adaptive control applications (Kumar 1985, Kumar and Lin 1982, Kumar 1983b, a; Borkar 1990; Campi and Kumar 1998; Prandini and Campi 2000). However, analysis of its finite-time performance has been missing for decades. Our study takes a very first step towards understanding its finite-time performance in the contextual bandit setting.

Unfortunately, as in many other contextual bandit studies, our model does not take into account the fairness issue in learning the unknown parameters. For instance, it may happen that during the learning process, contextual bandit algorithms may consistently discriminate against some specific groups of users based on their social, economic, racial and sexual characteristics. Ensuring fairness may therefore require additional constraints on automated selection procedures. Such a study can contribute to general studies on the undesirable biases of machine learning algorithms (Joseph et al. 2016).

References

Abbasi-Yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, 2312–2320.

Abeille, M.; Lazaric, A.; et al. 2017. Linear Thompson sampling revisited. Electronic Journal of Statistics 11(2): 5165–5197.

Agrawal, S.; and Goyal, N. 2013. Thompson sampling for contextual bandits with linear payoffs. In International Conference on Machine Learning, 127–135.

Agrawal, S.; and Goyal, N. 2017. Near-optimal regret bounds for Thompson sampling. Journal of the ACM (JACM) 64(5): 1–24.

Auer, P. 2002. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning Research 3(Nov): 397–422.

Bertsekas, D. P. 1999. Nonlinear programming. Athena Scientific.

Borkar, V. 1990. The Kumar-Becker-Lin scheme revisited. Journal of optimization theory and applications 66(2): 289–309.

Borkar, V.; and Varaiya, P. 1979. Adaptive control of Markov chains, I: Finite parameter set. IEEE Transactions on Automatic Control 24(6): 953–957.

Campi, M.; and Kumar, P. R. 1998. Adaptive linear quadratic Gaussian control: the cost-biased approach revisited. SIAM Journal on Control and Optimization 36(6): 1890–1907.

Chapelle, O.; and Li, L. 2011. An empirical evaluation of Thompson sampling. In Advances in neural information processing systems, 2249–2257.

Chu, W.; Li, L.; Reyzin, L.; and Schapire, R. 2011. Contextual bandits with linear payoff functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, 208–214.

Dani, V.; Hayes, T. P.; and Kakade, S. M. 2008. Stochastic linear optimization under bandit feedback. In Conference on Learning Theory.

Dumitrascu, B.; Feng, K.; and Engelhardt, B. 2018. PG-TS: Improved Thompson sampling for logistic contextual bandits. In Advances in neural information processing systems, 4624–4633.

Feldbaum, A. A. 1960a. Dual control theory. I. Avtomatika i Telemekhanika 21(9): 1240–1249.

Feldbaum, A. A. 1960b. Dual control theory. II. Avtomatika i Telemekhanika 21(11): 1453–1464.

Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvári, C. 2010. Parametric bandits: The generalized linear case. In Advances in Neural Information Processing Systems, 586–594.

Joseph, M.; Kearns, M.; Morgenstern, J. H.; and Roth, A. 2016. Fairness in learning: Classic and contextual bandits. In Advances in Neural Information Processing Systems, 325–333.
Kamiński, B. 2015. Refined knowledge-gradient policy for learning probabilities. *Operations Research Letters* 43(2): 143–147.

Kaufmann, E.; Cappé, O.; and Garivier, A. 2012. On Bayesian upper confidence bounds for bandit problems. In *Artificial intelligence and statistics*, 592–600.

Kirschner, J.; and Krause, A. 2018. Information Directed Sampling and Bandits with Heteroscedastic Noise. In *Conference On Learning Theory*, 358–384.

Kumar, P. R. 1983a. Optimal adaptive control of linear-quadratic-Gaussian systems. *SIAM Journal on Control and Optimization* 21(2): 163–178.

Kumar, P. R. 1983b. Simultaneous identification and adaptive control of unknown systems over finite parameter sets. *IEEE Transactions on Automatic Control* 28(1): 68–76.

Kumar, P. R. 1985. A survey of some results in stochastic adaptive control. *SIAM Journal on Control and Optimization* 23(3): 329–380.

Kumar, P. R.; and Becker, A. 1982. A new family of optimal adaptive controllers for Markov chains. *IEEE Transactions on Automatic Control* 27(1): 137–146.

Kumar, P. R.; and Lin, W. 1982. Optimal adaptive controllers for unknown Markov chains. *IEEE Transactions on Automatic Control* 27(4): 765–774.

Kumar, P. R.; and Varaiya, P. 1986. *Stochastic systems: Estimation, identification, and adaptive control*.

Lai, T. L.; and Robbins, H. 1985. Asymptotically efficient adaptive allocation rules. *Advances in applied mathematics* 6(1): 4–22.

Li, L.; Chu, W.; Langford, J.; and Schapire, R. E. 2010. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th International Conference on World Wide Web (WWW)*, 661–670.

Li, L.; Lu, Y.; and Zhou, D. 2017. Provable optimal algorithms for generalized linear contextual bandits. In *Proceedings of the 34th International Conference on Machine Learning*-Volume 70, 2071–2080. JMLR. org.

Li, S.; Karatzoglou, A.; and Gentile, C. 2016. Collaborative filtering bandits. In *Proceedings of the 39th International ACM SIGIR conference on Research and Development in Information Retrieval*, 539–548.

Liu, X.; Hsieh, P.-C.; Hung, Y.-H.; Bhattacharya, A.; and Kumar, P. R. 2020. Exploration Through Reward Biasing: Reward-Biased Maximum Likelihood Estimation for Stochastic Multi-Armed Bandits. In *International Conference on Machine Learning*.

Lu, T.; Pál, D.; and Pál, M. 2010. Contextual multi-armed bandits. In *Proceedings of the Thirteenth international conference on Artificial Intelligence and Statistics*, 485–492.

Prandini, M.; and Campi, M. 2000. Adaptive LQG Control of Input-Output Systems—A Cost-biased Approach. *SIAM Journal on Control and Optimization* 39(5): 1499–1519.

Rusmevichientong, P.; and Tsitsiklis, J. N. 2010. Linearly parameterized bandits. *Mathematics of Operations Research* 35(2): 395–411.

Russo, D.; and Van Roy, B. 2016. An information-theoretic analysis of Thompson sampling. *The Journal of Machine Learning Research* 17(1): 2442–2471.

Russo, D.; and Van Roy, B. 2018. Learning to optimize via information-directed sampling. *Operations Research* 66(1): 230–252.

Ryzhov, I. O.; Frazier, P. I.; and Powell, W. B. 2010. On the robustness of a one-period look-ahead policy in multi-armed bandit problems. *Procedia Computer Science* 1: 1635–1644.

Ryzhov, I. O.; Powell, W. B.; and Frazier, P. I. 2012. The knowledge gradient algorithm for a general class of online learning problems. *Operations Research* 60(1): 180–195.

Srinivas, N.; Krause, A.; Kakade, S.; and Seeger, M. 2010. Gaussian process optimization in the bandit setting: no regret and experimental design. In *Proceedings of the 27th International Conference on International Conference on Machine Learning*, 1015–1022.

Tewari, A.; and Murphy, S. A. 2017. From ads to interventions: Contextual bandits in mobile health. In *Mobile Health*, 495–517. Springer.

Thompson, W. R. 1933. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika* 25(3/4): 285–294.

Urteaga, I.; and Wiggins, C. H. 2017. Bayesian bandits: balancing the exploration-exploitation tradeoff via double sampling. *arXiv:1709.03162*.

Varatharajah, Y.; Berry, B.; Koyejo, S.; and Iyer, R. 2018. A Contextual-bandit-based Approach for Informed Decision-making in Clinical Trials. *arXiv preprint arXiv:1809.00258*.
Appendix

A Proof of Indexability of the Strategy

Recall from Section 3.1 that $\hat{\theta}_t$ denotes a maximizer of the following problem:

$$\max_{\theta} \left\{ \ell(F_t; \theta) + \alpha(t) \cdot \max_{1 \leq a \leq K} \theta^T x_{t,a} - \frac{\lambda}{2} \|\theta\|_2^2 \right\}. \quad (19)$$

Define

$$\bar{A}_t := \arg\max_a \theta^T x_{t,a}, \quad (20)$$

$$\bar{\Theta}_{t,a} := \arg\max_{\theta} \left\{ \ell(F_t; \theta) + \alpha(t) \cdot \theta^T x_{t,a} - \frac{\lambda}{2} \|\theta\|_2^2 \right\}. \quad (21)$$

For each arm $a$, consider an estimator $\hat{\theta}_{t,a} \in \bar{\Theta}_{t,a}$. Subsequently, define an index set

$$\bar{A}_t := \arg\max_{1 \leq a \leq K} \left\{ \ell(F_t; \hat{\theta}_{t,a}) + \alpha(t) \cdot \bar{\theta}^T x_{t,a} - \frac{\lambda}{2} \|\hat{\theta}_{t,a}\|_2^2 \right\}. \quad (22)$$

Theorem 3 $\bar{A}_t = \hat{A}_t$.

Proof The proof follows from the fact that any maximizer of the original double maximization problem in (19) remains a maximizer after interchanging the order of the max operators. By the definition of $\Theta_t$ and $A_t$ in (19) and (20), given any $\hat{\theta}_t \in \Theta_t$, any arm $a \in A_t$ is a maximizer of the optimization problem $\max_{\bar{\theta}} \theta^T x_{t,i}$. We know

$$\arg\max_{1 \leq i \leq K} \bar{\theta}^T x_{t,i} = \arg\max_{1 \leq i \leq K} \left\{ \ell(F_t; \hat{\theta}_i) + \alpha(t) \cdot \bar{\theta}^T x_{t,i} \right\}. \quad (23)$$

Moreover,

$$\max_{1 \leq i \leq K} \left\{ \ell(F_t; \hat{\theta}_i) + \alpha(t) \cdot \bar{\theta}^T x_{t,i} \right\}$$

$$= \ell(F_t; \hat{\theta}_i) + \alpha(t) \cdot \max_{1 \leq i \leq K} \bar{\theta}^T x_{t,i} \quad (24)$$

$$= \ell(F_t; \theta) + \alpha(t) \cdot \max_{1 \leq i \leq K} \theta^T x_{t,i} \quad (25)$$

where (25) follows since $\ell(F_t; \theta)$ is independent of $i$. (26) holds by the definition of $\hat{\theta}_t$. (27)-(28) hold by the fact that the optimal value remains unchanged after interchanging the order of the two max operators, and (29) follows from the definition of $\bar{\theta}_{t,i}$. Therefore, by (23)-(29), $A_t = \hat{A}_t$. □

B Proof of Corollary

By substituting the Gaussian likelihood for $\ell(F_t; \theta)$ in (21), the resulting objective in (21) becomes a strictly concave function and enjoys a unique maximizer. By the first-order necessary optimality condition (Bertsekas 1999), it is easy to verify that (9) is indeed the unique solution to (21). Subsequently, based on (9) and Theorem 3 we know the arm chosen by the RBMLE algorithm at each time $t$ is

$$a_t = \arg\max_{1 \leq s \leq K} \left\{ - (X_t \theta_{t,i} - R_t)^T (X_t \theta_{t,i} - R_t) + \alpha(t) \theta_{t,i}^T x_{t,i} - \lambda \|\theta_{t,i}\|_2^2 \right\} \quad (30)$$

$$= \arg\max_{1 \leq s \leq K} \left\{ - \theta_{t,i}^T (X_t^T X_t + \lambda I) \theta_{t,i} + (2R_t^T X_t + 2\alpha(t)x_{t,i}) \theta_{t,i} - R_t^T R_t \right\} \quad (31)$$

$$= \arg\max_{1 \leq s \leq K} \left\{ (X_t^T R_t + \alpha(t)x_{t,i})^T (X_t^T X_t + \lambda I)^{-1} \cdot (X_t^T x_{t,i}) - R_t^T R_t \right\} \quad (32)$$

$$= \arg\max_{1 \leq s \leq K} \left\{ \theta_{t,i}^T x_{t,i} + \frac{1}{2} \alpha(t) \|x_{t,i}\|_{V_{t-1}}^2 \right\}. \quad (33)$$

where (30)-(32) hold by substituting (9) in (22), and (33) follows from the definition of $\hat{\theta}_t$. □

C Proof of Lemma

Proof By the definition of regret for the linear bandit model,

$$R_t = \theta^T x^*_t - \theta^T x_t \quad (34)$$

$$= (\theta - \hat{\theta}_t)^T x^*_t + \hat{\theta}_t^T x^*_t - \theta^T x_t \quad (35)$$

$$\leq (\theta - \hat{\theta}_t)^T x^*_t + \hat{\theta}_t^T x_t + \frac{1}{2} \alpha(t) \|x_t\|_{V_{t-1}}^2 - \frac{1}{2} \alpha(t) \|x_t\|_{V_{t-1}}^2 \quad (36)$$

where (36) follows from the RBMLE index (10). Let $V^{1/2}$ and $V^{-1/2}$ denote square-roots, satisfying $V_t = V_t^{1/2} V_t^{-1/2}$ and $V_t^{-1} = V_t^{-1/2} V_t^{-1/2}$, unique since $V_t$ is positive definite. The result (11) follows by replacing the vector multiplication of $(\theta - \hat{\theta}_t)^T x_t$ and $(\hat{\theta}_t - \theta)^T x_t$ in (37) by $(\theta - \hat{\theta}_t)^T V_t^{1/2} V_t^{-1/2} x_t$ and $(\hat{\theta}_t - \theta)^T V_t^{1/2} V_t^{-1/2} x_t$, and applying the Cauchy-Schwarz inequality. □

D Proof of Theorem

Before proving Theorem 1, we first introduce the following useful lemmas. Recall that $V_t = \sum_{s=1}^t x_s x_s^T + \lambda I$. Moreover, recall that

$$G_0(t, \delta) := \sigma^2 \sqrt{d \log \left( \frac{\lambda + t}{\delta} \right) + \lambda \delta} \quad (38)$$

$$G_1(t) := \sqrt{2d \log \left( \frac{\lambda + t}{d} \right) \delta} \quad (39)$$
Lemma 2 For any time $t \geq 1$, with probability at least $1 - \delta$,
\[
\|\theta^* - \hat{\theta}_t\|_{V_t} \cdot \|x_t^*\|_{V_t^{-1}} - \frac{1}{2} \alpha(t) \|x_t^*\|_{V_t^{-1}}^2 \leq \frac{1}{2 \alpha(t)} (G_0(t, \delta))^2.
\] (40)

Proof (Lemma 2) First, we obtain an upper bound by completing the square of the left-hand side of (40) as
\[
\|\theta^* - \hat{\theta}_t\|_{V_t} \cdot \|x_t^*\|_{V_t^{-1}} - \frac{1}{2} \alpha(t) \|x_t^*\|_{V_t^{-1}}^2 = -\frac{1}{2} \alpha(t) \left( \|\theta^* - \hat{\theta}_t\|_{V_t} \right)^2 + \frac{1}{2} \frac{\|\theta^* - \hat{\theta}_t\|_{V_t}^2}{\alpha(t)}.
\] (41)
Moreover, by Theorem 2 in [Abbasi-Yadkori, Pál, and Szepesvári 2011], we know that with probability at least $1 - \delta$,
\[
\|\theta^* - \hat{\theta}_t\|_{V_t} \leq \sigma \sqrt{d \log \left( \frac{\lambda + t}{\lambda \delta} \right)} + \lambda^2 = G_0(t, \delta).
\] (44)

Therefore, we can conclude that (40) indeed holds. □

Lemma 3 With probability at least $1 - \delta$,
\[
\sum_{t=1}^{T} \left( \|\hat{\theta}_t - \theta^*\|_{V_t} \cdot \|x_t\|_{V_t^{-1}} \right) \leq \sqrt{T} \cdot G_0(T, \delta) G_1(T) = O(\sqrt{T} \log T).
\] (45)

Proof (Lemma 3) By Lemma 11 of [Abbasi-Yadkori, Pál, and Szepesvári 2011], the fact that $\|x_t\|_2 \leq 1$ and $\lambda \geq 1$, and the Cauchy-Schwarz inequality, we have
\[
\sum_{t=1}^{T} \|x_t\|_{V_t^{-1}} \leq \sqrt{T} \cdot G_1(T).
\] (46)

By moving the term $\|\hat{\theta}_t - \theta^*\|_{V_t}$ outside the summation in (45) and then applying (44), we obtain
\[
\sum_{t=1}^{T} \left( \|\hat{\theta}_t - \theta^*\|_{V_t} \cdot \|x_t\|_{V_t^{-1}} \right) = \sqrt{T} \cdot G_0(T, \delta) G_1(T).
\] (47)
This implies that (45) indeed holds. □

Lemma 4
\[
\sum_{t=1}^{T} \alpha(t) \|x_t\|_{V_t^{-1}} \leq \alpha(T) (G_1(T))^2 = O(\alpha(T) \log T).
\] (48)

Proof (Lemma 4) by Lemma 11 of [Abbasi-Yadkori, Pál, and Szepesvári 2011] and the fact that $\|x_t\|_2 \leq 1$ and $\lambda \geq 1$, we know
\[
\sum_{t=1}^{T} \|x_t\|_{V_t^{-1}} \leq (G_1(T))^2 = O(\log T).
\] (49)
By moving the bias term outside the summation (48), we have
\[
\sum_{t=1}^{T} \alpha(t) \|x_t\|_{V_t^{-1}} \leq \alpha(T) \sum_{t=1}^{T} \|x_t\|_{V_t^{-1}} \leq \alpha(T) (G_1(T))^2 = O(\alpha(T) \log T).
\] (50)

Remark 6 Note that the first inequality in (50) might seem fairly conservative. However, it cannot be improved as can be seen from the following example: Define a function $f : \mathbb{N} \rightarrow \mathbb{R}$ as: $f(t) = k + \frac{1}{t}$ if $t = 2^k$, and $f(t) = \frac{1}{t}$, otherwise. It is easy to check that $\log T \leq \sum_{t=1}^{T} f(t) \leq 2 \log T$, and $\sum_{t=1}^{T} \alpha(t) f(t) = \theta(\alpha(T) \log T)$.

Now we are ready to prove Theorem 1.

Proof (Theorem 1) By combining (11) and Lemmas 2-4, we know
\[
R(T) = \sum_{t=1}^{T} R_t \leq (G_0(T, \delta))^2 \sum_{t=1}^{T} \frac{1}{\alpha(t)} \sqrt{T} \log T + \sqrt{T} G_0(T, \delta) G_1(T) + \frac{1}{2} \alpha(T) (G_1(T))^2.
\] (51)
By choosing $\alpha(t) = \sqrt{T}$, the regret bound is
\[
R(T) = O(\sqrt{T} \log T).
\] (52)

E A Lemma for the Proof of Theorem 2

Lemma 5 For any arms $i$ and $j$, there exists $\tilde{\theta}_0 = \beta_0 \hat{\theta}_{t,i} + (1 - \beta_0) \hat{\theta}_{t,j}$ with $\beta_0 \in (0, 1)$ such that
\[
(x_{t,i} + x_{t,j})^T (\tilde{\theta}_{t,i} - \tilde{\theta}_{t,j}) + \alpha(t) \|x_{t,i}\|_{U_0^{-1}} - \alpha(t) \|x_{t,j}\|_{U_0^{-1}} = 0,
\] (53)
where $U_0 := \sum_{a=1}^{t-1} \mu'(x_a \tilde{\theta}_0)x_a x_a^T + \lambda I$ is a $d \times d$ positive definite matrix.

Proof (Lemma 5) By (16).
Moreover, by the mean value theorem, there exists \( \beta_0 \in (0, 1) \) and \( \theta = \beta_0 \theta_{t,i} + (1 - \beta_0) \bar{\theta}_{t,j} \) such that
\[
\sum_{s=1}^{t-1} \mu(x^T_t \theta_{t,i}) x_s + \lambda \theta_{t,i} - \sum_{s=1}^{t-1} \mu(x^T_t \bar{\theta}_{t,j}) x_s - \lambda \bar{\theta}_{t,j}
\] (56)
\[
= \left[ \sum_{s=1}^{t} \mu(x^T_t \theta_{t,i}) x_s x^T_t + \lambda I \right] (\theta_{t,i} - \bar{\theta}_{t,j}) = U_0(\theta_{t,i} - \bar{\theta}_{t,j}).
\] (57)

Multiplying both sides of (54) - (55) by the row vector \((x_{t,i} + x_{t,j})^T U_0^{-1}\) yields
\[
(x_{t,i} + x_{t,j})^T U_0^{-1} \left( \sum_{s=1}^{t-1} (r_s x_s - \mu(x^T_t \theta_{t,i}) x_s) - \lambda \theta_{t,i} \right) + \alpha(t)(x_{t,i} + x_{t,j})^T U_0^{-1} x_{t,i} = 0,
\] (58)
\[
(x_{t,i} + x_{t,j})^T U_0^{-1} \left( \sum_{s=1}^{t-1} (r_s x_s - \mu(x^T_t \bar{\theta}_{t,j}) x_s) - \lambda \bar{\theta}_{t,j} \right) + \alpha(t)(x_{t,i} + x_{t,j})^T U_0^{-1} x_{t,j} = 0.
\] (59)

By combining (58), (59) and eliminating the common terms, we conclude that
\[
(x_{t,i} + x_{t,j})^T (\theta_{t,j} - \bar{\theta}_{t,i}) + \alpha(t)\|x_{t,i}\|_{U_0^{-1}} - \alpha(t)\|x_{t,j}\|_{U_0^{-1}} = 0.
\] (60)

\[\square\]

F Proof of Theorem 2

For each time \( t \), we denote the estimate of \( \theta \) without applying the bias term as \( \hat{\theta} \), which satisfies the first-order necessary condition \( \nabla_{\theta} \ell(\mathcal{F}_t; \theta) = \frac{1}{2} \mathbb{E} \|\theta\|^2 \big| \theta = \hat{\theta} \) = 0. Equivalently,
\[
\sum_{s=1}^{t-1} (r_s x_s - \mu(x^T_t \hat{\theta}) x_s) - \lambda \hat{\theta}_t = 0.
\] (61)

Recall that \( V_t = \sum_{s=1}^{t-1} x_s x^T_s + \lambda I \), where \( I \) denotes the \( d \times d \) identity matrix. Without loss of generality, we may assume that \( L_\mu \geq 1 \) and \( \kappa_\mu \leq 1 \) (as these can be easily achieved by adding a constant scaling factor to the link function). Before proving Theorem 2, we first establish several preliminary results.

**Lemma 6** For any arm \( i \),
\[
\|\hat{\theta}_t - \bar{\theta}_{t,i}\|_{V_t} \leq \frac{1}{\kappa_\mu} \alpha(t)\|x_{t,i}\|_{V_t^{-1}}.
\] (62)

**Proof (Lemma 6)** For each time \( t \), define a “helper function” \( Z_t(\cdot) : \mathbb{R}^d \rightarrow \mathbb{R}^d \) by
\[
Z_t(\theta) := \sum_{s=1}^{t-1} (\mu(x^T_s \theta) - \mu(x^T_s \bar{\theta})) x_s + \lambda (\theta - \bar{\theta}_s).
\] (63)

It is easy to verify that \( Z_t(\bar{\theta}_s) = 0 \). By (16),
\[
Z_t(\hat{\theta}_t) - Z_t(\bar{\theta}_{t,i}) = \sum_{s=1}^{t-1} \left( (\mu(x^T_s \hat{\theta}_t) - \mu(x^T_s \bar{\theta}_{t,i})) x_s \right) + \lambda (\hat{\theta}_t - \bar{\theta}_{t,i}) = -\alpha(t)\|x_{t,i}\|.
\] (64)

Next, we consider upper and lower bounds on the inner product of \( \hat{\theta}_t - \bar{\theta}_{t,i} \) and \( Z_t(\bar{\theta}_t) - Z_t(\bar{\theta}_{t,i}) \) for the upper bound,
\[
(\hat{\theta}_t - \bar{\theta}_{t,i})^T (Z_t(\bar{\theta}_t) - Z_t(\bar{\theta}_{t,i})) = -\alpha(t)(\hat{\theta}_t - \bar{\theta}_{t,i})^T x_{t,i},
\] (65)
\[\leq \alpha(t)\|\hat{\theta}_t - \bar{\theta}_{t,i}\| \cdot \|x_{t,i}\|_{V_t^{-1}},
\] (66)
where (65) follows from (64), and (66) holds by the Cauchy-Schwarz inequality. Similarly, we obtain a lower bound as
\[
(\hat{\theta}_t - \bar{\theta}_{t,i})^T (Z_t(\bar{\theta}_t) - Z_t(\bar{\theta}_{t,i})) \geq (\hat{\theta}_t - \bar{\theta}_{t,i})^T \kappa_\mu V_t(\hat{\theta}_t - \bar{\theta}_{t,i})
\] (67)

By combining (66) and (68), we conclude that (62) indeed holds.

Based on Lemma 5, given \( \bar{\theta}_t \) and \( \bar{\theta}_{t,a_t^*} \), there must exist a constant \( \beta_0 \in (0, 1) \), satisfying \( \theta = \beta_0 \bar{\theta}_t + (1 - \beta_0) \bar{\theta}_{t,a_t^*} \), such that
\[
(x_{t,i} + x_{t,a_t^*})^T (\bar{\theta}_{t,a_t^*} - \hat{\theta}_t) + \alpha(t)\|x_{t,i}\|_{V_t^{-1}} - \alpha(t)\|x_{t,a_t^*}\|_{V_t^{-1}} = 0.
\] (69)

where the matrix \( U \) is defined as
\[
U = \sum_{s=1}^{t-1} \mu(x^T_t \theta) x_s x^T_s + \lambda I.
\] (70)

For ease of notation, we define the \( L_2 \)-regularized log-likelihood as
\[
\ell_\lambda(\mathcal{F}_t; \theta) := \ell(\mathcal{F}_t; \theta) - \frac{\lambda}{2} \|\theta\|^2
\] (71)

**Lemma 7** For any arm \( i \), the \( L_2 \)-regularized log-likelihood satisfies
\[
\ell_\lambda(\mathcal{F}_t; \hat{\theta}_t) - \ell_\lambda(\mathcal{F}_t; \bar{\theta}_{t,i}) \leq \frac{L_\mu}{2\kappa_\mu} \cdot \alpha(t)\|x_{t,i}\|_{V_t^{-1}}.
\] (72)

**Proof (Lemma 7)** We quantify the difference in log-likelihood under \( \bar{\theta}_t \) and \( \bar{\theta}_{t,i} \) with the help of \( \hat{\theta}_t \). Denoting the Hessian of \( \ell_\lambda(\mathcal{F}_t; \theta) \) with respect to \( \theta \) by \( H_\lambda(\theta) \), we have
\[
H_\lambda(\theta) = \sum_{s=1}^{t-1} -\mu^T(x^T_s \theta) x_s x^T_s - \lambda I,
\] (73)
and hence \( H_\lambda(\theta) \) is negative-definite. By the boundedness of \( \mu^T \), we also know that
\[
H_\lambda(\theta) \succeq -L_\mu(V_t - \lambda I) - \lambda I \succeq -L_\mu V_t.
\] (74)

Consequently,
\[
\ell_\lambda(\mathcal{F}_t; \hat{\theta}_t) - \ell_\lambda(\mathcal{F}_t; \bar{\theta}_{t,i}) = \left( \ell_\lambda(\mathcal{F}_t; \bar{\theta}_t) - \ell_\lambda(\mathcal{F}_t; \hat{\theta}_t) \right) + \left( \ell_\lambda(\mathcal{F}_t; \hat{\theta}_t) - \ell_\lambda(\mathcal{F}_t; \bar{\theta}_{t,i}) \right) \leq \frac{1}{2} (\hat{\theta}_t - \bar{\theta}_{t,i})^T H_\lambda(\theta')(\hat{\theta}_t - \bar{\theta}_{t,i})
\]
\[\leq \frac{1}{2} (\hat{\theta}_t - \bar{\theta}_{t,i})^T H_\lambda(\theta')(\hat{\theta}_t - \bar{\theta}_{t,i}) \leq \frac{1}{2} \frac{L_\mu}{\kappa_\mu} \cdot \|\theta\|^2 \|x_{t,i}\|_{V_t^{-1}}.
\] (75)
\[\leq \frac{1}{2} \frac{L_\mu}{2\kappa_\mu} \cdot \alpha(t)^2\|x_{t,i}\|^2_{V_t^{-1}}.
\] (77)
where (75) follows from (61) and the Taylor expansion of \( \ell_\lambda(\mathbb{F}; \theta) \) at \( \theta = \hat{\theta}_t \) up to the quadratic term (with \( \theta' = \xi' \hat{\theta}_t + (1 - \xi') \hat{\theta}_t \) and \( \theta'' = \xi'' \hat{\theta}_t, \hat{\theta}_t \) for some \( \xi', \xi'' \in [0, 1] \)), (76) holds by (74), and (77) is a direct result of Lemma 8.

As will be seen presently, the regret bound involves several quantities concerning the norms of the differences in the estimators of \( \theta \) and the norms of the context vectors. Recalling that \( \hat{\theta}_t \) denotes the estimator of \( \theta \) without applying the bias term, first we establish several useful inequalities in the following Lemma 8. For ease of exposition, we discuss the Loewner order of the two key matrices \( V_t \) and \( U \). For any two symmetric matrices \( A, B \), we write \( A \preceq B \) if \( B - A \) is a positive semi-definite matrix. Similarly, we write \( A \succeq B \) if \( A - B \) is positive semi-definite. By (70), the boundedness of the first-order derivative of \( \mu \) and that \( \lambda \geq 1 \), we know

\[
U \preceq L_\mu V_t (V_t - \lambda I) + \lambda (V_t - \lambda \mu) I \preceq L_\mu V_t.
\]

Similarly, by the fact that \( \kappa_\mu \leq 1 \), we have

\[
U \succeq \kappa_\mu (V_t - \lambda I) + \lambda (V_t - \lambda \mu) I \succeq \kappa_\mu V_t.
\]

**Lemma 8** The following inequalities hold with probability one:

\[
\| \hat{\theta}_t - \tilde{\theta}_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq \frac{L_\mu^2}{\kappa_\mu} \alpha(t) \| x_t \|_{U^{-1}} \cdot \| x_{t,a_t} \|_{U^{-1}},
\]

(80)

\[
\| \theta^*_a - \hat{\theta}_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq \frac{L_\mu}{\kappa_\mu} \| \theta^*_a - \hat{\theta}_t \|_V_t \cdot \| x_{t,a_t} \|_{V_t^{-1}},
\]

(81)

\[
\| \theta^*_a - \hat{\theta}_t \|_U \cdot \| x_t \|_{U^{-1}} \leq \frac{L_\mu}{\kappa_\mu} \| \theta^*_a - \hat{\theta}_t \|_V_t \cdot \| x_t \|_{V_t^{-1}},
\]

(82)

\[
\| \hat{\theta}_t - \tilde{\theta}_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq \frac{L_\mu^2}{\kappa_\mu} \alpha(t) \| x_t \|_{U^{-1}} \cdot \| x_{t,a_t} \|_{U^{-1}}.
\]

(83)

**Proof (Lemma 8)** For (80), it can be shown that

\[
\| \hat{\theta}_t - \tilde{\theta}_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \| \hat{\theta}_t - \tilde{\theta}_t \|_V_t \cdot \| x_{t,a_t} \|_{V_t^{-1}} \leq L_\mu \left( \frac{1}{\kappa_\mu} \alpha(t) \| x_{t,a_t} \|_{V_t^{-1}} \right) \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \left( \frac{L_\mu^2}{\kappa_\mu} \alpha(t) \| x_t \|_{U^{-1}} \cdot \| x_{t,a_t} \|_{U^{-1}} \right),
\]

(84)

\[
\| \theta^*_a - \hat{\theta}_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \| \theta^*_a - \hat{\theta}_t \|_V_t \cdot \| x_{t,a_t} \|_{V_t^{-1}} \leq L_\mu \left( \frac{1}{\kappa_\mu} \alpha(t) \| x_{t,a_t} \|_{V_t^{-1}} \right) \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \left( \frac{L_\mu^2}{\kappa_\mu} \alpha(t) \| x_t \|_{U^{-1}} \cdot \| x_{t,a_t} \|_{U^{-1}} \right),
\]

(85)

where (84) and (85) hold by the definition of \( U \) in (70) and the boundedness of the first-order derivative of \( \mu \), and (85) is a direct result of Lemma 8. Similarly, (82) can be shown by following the same procedure as (84) and (85). For (81) and (82), by the definition of \( U \) and the boundedness of the first-order derivative of \( \mu \), it is easy to verify that (81) and (82) indeed hold.

Now we are ready to prove Theorem 2.

**Proof (Theorem 2)** To begin with, recall from Section 4.1 that at each time \( t \), GLM-RBMLE selects an arm from the index set \( \mathcal{A}''_t \) defined as

\[
\mathcal{A}''_t := \arg\max_{1 \leq a \leq K} \left\{ \ell(\mathbb{F}; \hat{\theta}_t, a) + \eta(t) \alpha(t) \cdot \| \hat{\theta}_t \|_{2} \right\},
\]

(87)

Recall that the immediate regret is defined as \( R_t = \mu(\hat{\theta}_t^T x_{t,a_t}) - \mu(\theta^*_t x_t) \). By (89), under the GLM-RBMLE index in (87),

\[
0 \geq (\hat{\theta}_t^T x_{t,a_t} - \theta_t^T x_t) + (\hat{\theta}_t^T x_{t,a_t} - \theta_t^T x_t) \frac{\ell(\mathbb{F}; \hat{\theta}_t)}{\eta(t) \alpha(t)} - \frac{\ell(\mathbb{F}; \hat{\theta}_t)}{\eta(t) \alpha(t)} + (\hat{\theta}_t^T x_{t,a_t} - \theta_t^T x_t) \frac{\ell(\mathbb{F}; \hat{\theta}_t)}{\eta(t) \alpha(t)} - \frac{\ell(\mathbb{F}; \hat{\theta}_t)}{\eta(t) \alpha(t)}
\]

(88)

\[
= \theta_t^T x_t - \theta_t^T x_t - \alpha(t) \| x_t \|_{U^{-1}} + \alpha(t) \| x_{t,a_t} \|_{U^{-1}}
\]

(89)

\[
\leq L_\mu \cdot \left( \left( \theta^*_a - \theta_t \right)^T x_t + \alpha(t) \| x_t \|_{U^{-1}} - \alpha(t) \| x_{t,a_t} \|_{U^{-1}} \right)
\]

(90)

\[
\leq \frac{L_\mu}{\kappa_\mu} \left( \| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \right)
\]

(91)

\[
\leq \frac{L_\mu^2}{\kappa_\mu} \alpha(t) \| x_t \|_{U^{-1}} \cdot \| x_{t,a_t} \|_{U^{-1}}.
\]

(92)

Hence,

\[
R_t \leq L_\mu \cdot \left( \theta_t^T x_t - \theta_t^T x_t \right)
\]

(93)

where (90) follows from the boundedness of the derivative of \( \mu \), (91) hold by (88) and (89), and (92) is a direct result of the Cauchy-Schwarz inequality with respect to the norm induced by the matrix \( U \). Next, we provide an upper bound for each term in (94):

\[
\| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}}
\]

(95)

\[
\| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}}
\]

(96)

\[
\| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}} \leq L_\mu \| \theta^*_a - \theta_t \|_U \cdot \| x_{t,a_t} \|_{U^{-1}}.
\]
• $\|\hat{\theta}_{t,a^*_t} - \theta_*\|_{U} \cdot \|x_t\|_{U^{-1}}$: By the Cauchy-Schwarz inequality and (83) in Lemma 11, we have

\[
\|\hat{\theta}_{t,a^*_t} - \theta_*\|_{U} \cdot \|x_t\|_{U^{-1}} \leq (\|\hat{\theta}_{t,a^*_t} - \hat{\theta}_t\|_{U} + \|\hat{\theta}_t - \theta_*\|_{U})\|x_t\|_{U^{-1}} \leq \frac{L^2_{\mu}}{\kappa_{\mu}} \alpha(t)\|x_t\|_{U^{-1}} \cdot \|x_t,a^*_t\|_{U^{-1}} + \frac{L_{\mu}}{\kappa_{\mu}} \|\hat{\theta}_t - \theta_*\|_{U} \cdot \|x_t\|_{V_t^{-1}}. \tag{97}
\]

• $\alpha(t)\|x_t\|_{U^{-1}}$: It is easy to verify that

\[
\alpha(t)\|x_t\|_{U^{-1}} \leq \frac{1}{\kappa_{\mu}}\alpha(t)\|x_t\|_{V_t^{-1}}. \tag{99}
\]

• $\ell_{\lambda}(F_t;\hat{\theta}_t) - \ell_{\lambda}(F_t;\tilde{\theta}_{t,a^*_t})$: By Lemma 7, we know

\[
\frac{\ell_{\lambda}(F_t;\hat{\theta}_t)}{\eta(t)\alpha(t)} - \frac{\ell_{\lambda}(F_t;\tilde{\theta}_{t,a^*_t})}{\eta(t)\alpha(t)} = \frac{L^2_{\mu}}{2\eta(t)\kappa_{\mu}^2}\alpha(t)\|x_t,a^*_t\|_{U^{-1}}^2 \leq \frac{L^2_{\mu}}{2\eta(t)\kappa_{\mu}^2}\alpha(t)\|x_t,a^*_t\|_{U^{-1}}^2 \leq \frac{L^2_{\mu}}{2\eta(t)\kappa_{\mu}^2}\alpha(t)\|x_t,a^*_t\|_{U^{-1}}^2. \tag{100}
\]

By combining (98) and the above upper bounds, we have

\[
R_t \leq L_{\mu} \left[ \left( \frac{L^3_{\mu}}{2\kappa_{\mu}^2} - 1 \right) \alpha(t) \right] \cdot \|x_t,a^*_t\|_{U^{-1}}^2 + \left( \frac{2L^2_{\mu}}{\kappa_{\mu}}\alpha(t)\|x_t\|_{U^{-1}} + L_{\mu}\|\theta_* - \hat{\theta}_t\|_{V_t} \right)\|x_t,a^*_t\|_{U^{-1}}^2 \tag{101}
+ \left( \frac{L_{\mu}}{\kappa_{\mu}}\|\hat{\theta}_t - \theta_*\|_{V_t} \cdot \|x_t\|_{V_t^{-1}} \cdot \frac{L^2_{\mu}}{\kappa_{\mu}^2}\alpha(t)\|x_t\|_{V_t^{-1}} \right). \tag{102}
\]

Note that (101) and (102) can be interpreted as a quadratic function of $\|x_t,a^*_t\|_{U^{-1}}^2$. Recall that $T_0 := \min\{t \in \mathbb{N} : \frac{L^3_{\mu}}{2\kappa_{\mu}^2}\eta(t)} < 1\}$. Therefore, for any $t \geq T_0$, by completing the square,

\[
R_t \leq L_{\mu} \left[ \frac{\alpha(t)}{4(1 - \frac{L^3_{\mu}}{2\kappa_{\mu}^2}\eta(t)}) \left( \frac{2L^2_{\mu}}{\kappa_{\mu}}\|x_t\|_{U^{-1}} + L_{\mu}\|\theta_* - \hat{\theta}_t\|_{V_t} \right) \leq T_0 + \frac{C_1\alpha(t)\|x_t\|_{V_t^{-1}}}{\alpha(t)} \right. \\
+ \left. \frac{L_{\mu}}{\kappa_{\mu}}\|\hat{\theta}_t - \theta_*\|_{V_t} \cdot \|x_t\|_{V_t^{-1}} \cdot \frac{L^2_{\mu}}{\kappa_{\mu}^2}\alpha(t)\|x_t\|_{V_t^{-1}} \right]. \tag{103}
\]

Based on (103)-(104), to bound the cumulative regret, we need the following properties. Recall that $G_1(t)$ and $G_2(t, \delta)$ are defined as

\[
G_1(t) := \sqrt{2d\log \frac{\lambda + t}{d}} \tag{105}
\]

\[
G_2(t, \delta) := \frac{\sigma}{\kappa_{\mu}} \sqrt{\frac{d}{2} \log (1 + \frac{2t}{d}) + \log \left( \frac{1}{\delta} \right)} \tag{106}
\]

Note that by Lemma 11 of Abbasi-Yadkori, Pál, and Szepesvári (2011) and the fact that $\|x_t,a\|_2 \leq 1$ and $\lambda \geq 1$,

\[
\sum_{t=1}^T \|x_t\|_{V_t^{-1}} \leq (G_1(T))^2. \tag{107}
\]

Moreover, (107) also implies that

\[
\sum_{t=1}^T \alpha(t)\|x_t\|_{V_t^{-1}} \leq \alpha(T)(G_1(T))^2. \tag{108}
\]

By combining (107) and the Cauchy-Schwarz inequality, we have

\[
\sum_{t=1}^T \|x_t\|_{V_t^{-1}} \leq \sqrt{T} \cdot G_1(T). \tag{109}
\]

By Lemma 3 in Li, Lu, and Zhou (2017) and since the minimum eigenvalue $\lambda_{\min}(V_t) \geq \lambda \geq 1$, for any $\delta \in [1/T, 1)$, we know with probability at least $1 - \delta$, the following result holds:

\[
\|\hat{\theta}_t - \theta_*\|_{V_t} \leq G_2(t, \delta), \forall t \in \mathbb{N}. \tag{110}
\]

By combining (109) and (110), we thereby know that with probability at least $1 - \delta$,

\[
\sum_{t=1}^T \|x_t\|_{V_t^{-1}} \cdot \|\hat{\theta}_t - \theta_*\|_{V_t} \leq \sqrt{T} \cdot G_1(T)G_2(T, \delta). \tag{111}
\]

Based on (110), we further know that with probability at least $1 - \delta$,

\[
\sum_{t=1}^T \|\hat{\theta}_t - \theta_*\|_{V_t} \leq \left( G_2(T, \delta) \right)^2 \cdot \sum_{t=1}^T \frac{1}{\alpha(t)}. \tag{112}
\]

Summing up, by (103)-(112), the cumulative regret can be upper bounded as follows: With probability at least $1 - \delta$,

\[
\sum_{t=1}^T R_t \leq T_0 + \sum_{t=T_0}^T C_1\alpha(t)\|x_t\|_{V_t^{-1}} \leq T_0 + \frac{C_2\|x_t\|_{V_t^{-1}} \cdot \|\hat{\theta}_t - \theta_*\|_{V_t}}{\alpha(t)} \leq T_0 + \frac{C_3\|\hat{\theta}_t - \theta_*\|_{V_t}}{\alpha(t)} \leq T_0 + \frac{C_1\alpha(T)\left(G_1(T)\right)^2}{\alpha(t)} + C_2\sqrt{T}G_1(T)G_2(T, \delta) \tag{113}
\]

\[
+ C_3\left( G_2(T, \delta) \right)^2 \sum_{t=1}^T \frac{1}{\alpha(t)}, \tag{114}
\]

where $C_1 := \frac{2L^3_{\mu}}{\kappa_{\mu}^2} + \frac{1}{\kappa_{\mu}^2}$, $C_2 := \frac{2L^2_{\mu}}{\kappa_{\mu}} + \frac{L_{\mu}}{\kappa_{\mu}}$, and $C_3 := \frac{L^2_{\mu}}{\kappa_{\mu}^2}$. Therefore, if $\alpha(t) = \Omega(\sqrt{t})$, then $R(t) = \mathcal{O}(\alpha(t) \log T)$; Otherwise, if $\alpha(t) = \mathcal{O}(\sqrt{t})$, then $R(T) = \mathcal{O}(\frac{T^{\frac{3}{2}}}{\alpha(t)} \log T)$. Hence, by choosing $\alpha(t) = \sqrt{t}$, we obtain a cumulative regret bound of $R(T) = \mathcal{O}(\sqrt{t} \log T)$. $\square$
### G Additional Experimental Results

In this section, we present the additional experimental results for both linear bandits and the generalized case. Throughout the experiments, we set the random seed to be 46.

#### G.1 Linear Bandits

To begin with, Tables 3, 4, and 5 present the mean, standard deviation, and quantiles of the experiments described in Figures 1(b), 1(c), and 1(d), respectively. Similar to what we observed from Table 1, LinRBMLE still exhibits better robustness than VIDS and most of the other benchmark methods under static contexts. Since the computation time is not unaffected by the values of the contexts, we only show the result of static contexts. Table 6 shows the standard deviation of computation time for the results in Table 2. We observe that LinRBMLE is still among the best in standard deviation of computation time.

#### G.2 Generalized Linear Bandits

For the generalized linear bandits, we perform a similar study on the effectiveness, efficiency, and scalability of GLM-RBMLE and the popular benchmark methods. The benchmark methods that are compared with GLM-RBMLE include UCB-GLM (Li, Lu, and Zhou 2017) and Laplace-TS (Chapelle and Li 2011) (Algorithm 3 in Chapelle and Li 2011). The configurations of the three methods are as follows. We use $\alpha(t) = \sqrt{t}$, $\eta(t) = 1 + \log t$, and $\lambda = 1$ for GLM-RBMLE, as suggested in Section 4. Under UCB-GLM, after $T$ rounds of initial random selection, the arm with the largest $x_t^\top \hat{\theta}_t + \chi \|x_t\| \|z\|^{-1} \|\mu_z\|$ is selected at each time $t$. As suggested by (Li, Lu, and Zhou 2017), we take $\chi = \frac{a}{\alpha \eta} \sqrt{\frac{2}{d} \log(1 + 2T/d) + \log(1/\delta)}$ with $\delta = 0.1$, and let $\tau = K$. For Laplace-TS, we set the regularization parameter to be 1. Throughout the experiments of the generalized linear model, we consider the logistic link function, i.e., $\mu(z) = 1/(1 + \exp(-z))$, for all $z \in \mathbb{R}$. Similar to the experiments for LinRBMLE, for each comparison we consider both static contexts as well as time-varying contexts. The comparison contains 50 trials of experiments and $T$ rounds in each experiment. As the algorithms are computationally more intense for general linear bandits than for those for linear bandits, the time horizon is reduced to $T = 10^3$ in the experiments for the general linear bandits.

**Effectiveness.** Figure 3 and Tables 7-10 show the effectiveness of GLM-RBMLE in terms of cumulative regret. Under both static and time-varying contexts, GLM-RBMLE achieve the best mean regret performance in all the four configurations. Similar to LinRBMLE, based on the results of standard deviation and regret quantiles, GLM-RBMLE also exhibits better robustness across sample paths than the two popular benchmark methods. Specifically when contexts are static, GLM-RBMLE has lower standard deviation and 0.95 quantile compare to UCB-GLM and Laplace-TS. We can characterize the statistical stability by standard deviation and quantiles so we give the result that GLM-RBMLE has better stability than others. On the other hand, in Figure 3 Laplace-TS appears to have not converged, but the corresponding regret quantiles provided by Tables 7-10 reveal that this is only because its performance in some trials is much worse than that in other trials.

**Efficiency.** Figures 4 shows the averaged cumulative regret versus computation time per decision. We observe that GLM-RBMLE achieves the smallest average regret at the cost of a higher computation time compared to UCB-GLM.

**Scalability.** Table 11 presents computation time per decision as $K$ and $d$ are varied. We observe that under $K = 5$ and $d = 10, 20, 30$, the computation time per decision of GLM-RBMLE and UCB-GLM are comparable and much smaller than that of Laplace-TS. On the other hand, under $d = 5$ and $K = 10, 20, 30$, we also observe that the computation time of GLM-RBMLE is proportional to the number of arms, as indicated by Line 4 of Algorithm 2. It remains an interesting open question how to improve the scalability of GLM-RBMLE in terms of number of arms.

### H A Discussion on the Assumptions for GLM-RBMLE

In the literature of the generalized linear bandit problems, a regret bound typically relies on either one of the following two sets of assumptions:

**1st Set of Assumptions:**

- (1a) The $\ell_2$-norm of any context vector is upper bounded by some constant $\lambda > 0$ (Wlog, $\lambda$ is chosen to be 1).
- (1b) The sequence of observed contexts is generated by an adversary (and hence not necessarily i.i.d. across time).
- (1c) The true parameter $\theta_*$ is in some closed bounded set $\Theta$ and hence $\theta_*$ is bounded (i.e., $\|\theta_*\|_2 \leq S$, for some known positive constant $S$).
- (1d) The link function $\mu(\cdot)$ is continuously differentiable and is Lipschitz continuous with some constant $L_\mu$.
- (1e) The derivative of the link function $\mu(\cdot)$ satisfies a uniform property: $\inf_{\theta \in \Theta} \|\mu'(\theta^\top x)\| > 0$.

The prior works that make the above set of assumptions include (Filippi et al., 2010; Zhang et al., 2016; Jun et al., 2017; Faury et al., 2020).

**2nd Set of Assumptions:**

- (2a) The $\ell_2$-norm of any context vector is upper bounded by some constant $\lambda > 0$ (Wlog, $\lambda$ is chosen to be 1).
- (2b) The observed contexts at each time $t$ are drawn i.i.d. from some distribution $\nu$.
- (2c) The true parameter $\theta_*$ is in $\mathbb{R}^d$ but not necessarily in a closed bounded set.
- (2d) The link function $\mu(\cdot)$ is continuously differentiable and is Lipschitz continuous with some constant $L_\mu$.
- (2e) The derivative of the link function $\mu(\cdot)$ satisfies a local property: $\inf_{\|\theta - \theta_*\|_2 \leq 1, \|x\| \leq 1} \|\mu'(\theta^\top x)\| > 0$.

The prior works that make the above set of assumptions include (Li et al., 2017; Oh and Iyengar, 2019).

Note that the main differences between these two sets of assumptions are (1b), (2b), (1e), and (2e). Compared to (1e), the condition (2e) is more mild as it only requires that the
derivative $\mu'(\cdot)$ is bounded for those $\theta$ close to $\theta_+$. However, such relaxation is achieved at the expense of an additional i.i.d. assumption on the observed contexts (i.e. condition (2b)), which is required by the normality-type results of Maximum Likelihood Estimation (e.g. Proposition 1 in (Li et al., 2017)).

In this paper, we adopt the first set of assumptions and show that the proposed GLM-RBMLE achieves a regret bound of $\mathcal{O}(\sqrt{T \log T})$. As described in Section 2, we consider the condition that

$$\kappa_{\mu} := \inf_{z \in \mathbb{R}} \mu'(z) > 0. \quad (115)$$

Below we explain why the condition (115) holds without loss of generality under the first set of assumptions (1a)-(1e). Given any link function $\mu(\cdot)$ that satisfies (1c)-(1e), we can construct a modified link function $\tilde{\mu}(\cdot): \mathbb{R} \to \mathbb{R}$ defined as

$$\tilde{\mu}(z) := \begin{cases} \mu(z), & -S \leq z \leq S, \\ \mu(S) + \mu'(S)(z - S), & z > S, \\ \mu(-S) + \mu'(-S)(z + S), & z < -S. \end{cases} \quad (116)$$

Hence, $\tilde{\mu}(\cdot)$ is constructed by first truncating the original link function $\mu(\cdot)$ and then extending the truncated function to the whole real line via linear extrapolation. It is easy to verify that $\tilde{\mu}(\cdot)$ satisfies (1c) under the condition (1e). Moreover, as $\tilde{\theta}_t^T x$ must be in $[-S, S]$ for any context $x$ under the assumptions (1a) and (1c), the above extension would not cause any model misspecification. Therefore, given any standard link function $\mu(\cdot)$ (e.g. a logistic function), we can construct the corresponding $\tilde{\mu}(\cdot)$ through the above extension and use $\tilde{\mu}(\cdot)$ for the GLM-RBMLE. Hence, the regret bound of GLM-RBMLE holds for the same class of link functions as the prior works (Filippi et al., 2010; Zhang et al., 2016; Abeille et al., 2017; Jun et al., 2017; Faury et al., 2020).

I A Discussion on the Computational Complexity

In this section, we discuss the theoretical computational complexity of each benchmark method. Recall that $K$ is the number of arms and $d$ is the dimension of context. For the simple index policies including LinRBMLE, LinUCB, and GPUCB, the per-decision complexity is $\mathcal{O}(d^m + Kd^2)$, where $d^m$ results from matrix inversion $V_t^{-1}$ (with $m = 2.37 \sim 3$) and $Kd^2$ results from matrix multiplication $x_{t,a}^T V_t^{-1} x_{t,a}$. LinTS has a per-decision complexity of $\mathcal{O}(d^m + d^n + Kd^2)$ with $n = 2.37 \sim 3$, where the additional term $d^n$ results from the sampling of a multivariate normal distribution. Bayes-UCB and KG have the same complexity: $\mathcal{O}(d^m + Kd^2 + KS_1)$, where $S_1$ results from the computing probability density function (PDF), cumulative distribution function (CDF), or the percent point function (i.e. inverse CDF) of a normal distribution. The effect of $S_1$ is empirically significant under large $K$'s (i.e. a large number of arms). The complexity of VIDS is $\mathcal{O}(d^m + MKd^2 + KS_2)$, where $M$ is the number of posterior samples in Algorithm 6 of (Russo and Van Roy 2018), and $S_2$ is the time of solving the 1-dimensional optimization problem once (Line 1 of Algorithm 3 in (Russo and Van Roy 2018)). To achieve good regret performance, $M$ needs to be sufficiently large. Moreover, the effect $S_2$ can be quite significant under large $K$'s.

References for the Appendix:

Abassi-Yadkori, Y.; PáI, D.; and Szepesvári, C. 2011. Improved algorithms for linear stochastic bandits. In Advances in Neural Information Processing Systems, 2312–2320.

Abeille, M.; Lazaric, A.; et al. 2017. Linear Thompson sampling revisited. Electronic Journal of Statistics 11(2):5165–5197.

Bertsekas, D. P. 1999. Nonlinear programming. Athena Scientific.

Chapelle, O.; and Li, L. 2011. An empirical evaluation of Thompson sampling. In Advances in neural information processing systems, 2249–2257.

Faury, L.; Abeille, M.; Calauzènes, C.; and Fercoq, O. 2020. Improved Optimistic Algorithms for Logistic Bandits. In International Conference on Machine Learning.

Filippi, S.; Cappe, O.; Garivier, A.; and Szepesvári, C. 2010. Parametric bandits: The generalized linear case. In Advances in Neural Information Processing Systems, 586–594.

Jun, K. S.; Bhargava, A.; Nowak, R.; and Willett, R. 2017. Scalable generalized linear bandits: Online computation and hashing. In Advances in Neural Information Processing Systems, 99-109.

Li, L.; Lu, Y.; and Zhou, D. 2017. Provably optimal algorithms for generalized linear contextual bandits. In Proceedings of the 34th International Conference on Machine Learning-Volume 70, 2071–2080. JMLR. org.

Oh, M. H.; Iyengar, G. 2019. Multinomial Logit Contextual Bandits. In Reinforcement Learning for Real Life (RL4RealLife) Workshop in International Conference on Machine Learning.

Russo, D.; and Van Roy, B. 2018. Learning to optimize via information-directed sampling. Operations Research 66(1):230–252.

Zheng, L.; Yang, T.; Jin, R.; Xiao, Y.; and Zhou, Z. H. 2016. Online stochastic linear optimization under one-bit feedback. In International Conference on Machine Learning, 392-401.
Figure 3: Cumulative regret averaged over 50 trials with $T = 10^3$ and $K = 10$ on generalized linear bandits: (a) and (b) are under static contexts; (c) and (d) are under time-varying contexts; (a) and (c) are with $\theta^* = (0.3, -0.5, 0.2, -0.7, -0.1)$; (b) and (d) are with $\theta^* = (0.2, -0.8, -0.5, 0.1, 0.1)$.

Figure 4: Average computation time per decision vs. average final cumulative regret for (a) Figure 3(a); (b) Figure 3(b); (c) Figure 3(c); (d) Figure 3(d).
| Alg.  | RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG   | KG*  | LinTS | VIDS |
|-------|-------|--------|------|-------|--------|------|------|-------|------|
| Mean  | 1.86  | 2.72   | 4.66 | 3.77  | 0.86   | 19.14| 2.81 | 13.49 | 0.83 |
| Std.Dev| 0.45  | 10.64  | 14.63| 1.42  | 0.65   | 0.35 | 8.37 | 2.10  | 1.30 |
| Q.10 | 1.48  | 0.05   | 0.09 | 2.08  | 0.38   | 0.04 | 0.09 | 10.51 | 0.21 |
| Q.25 | 1.63  | 0.06   | 0.10 | 2.72  | 0.49   | 0.05 | 0.12 | 12.23 | 0.30 |
| Q.50 | 1.77  | 0.12   | 0.13 | 3.73  | 0.66   | 0.10 | 0.16 | 13.70 | 0.43 |
| Q.75 | 1.99  | 0.36   | 0.27 | 4.35  | 0.91   | 0.26 | 14.92| 0.55  |      |
| Q.90 | 2.39  | 2.83   | 5.64 | 6.06  | 1.64   | 87.14| 6.58 | 16.16 | 1.22 |
| Q.95 | 2.55  | 8.86   | 39.66| 6.64  | 2.06   | 100.66| 19.38| 16.64 | 4.57 |

Table 3: Statistics of the final cumulative regret in Figure 1(b). The best and the second-best are highlighted. ‘Q’ and “Std.Dev” stand for quantile and standard deviation of the total cumulative regret over 50 trails, respectively. All the values displayed here are scaled by 0.01 for more compact notations.

| Alg.  | RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG   | KG*  | LinTS | VIDS |
|-------|-------|--------|------|-------|--------|------|------|-------|------|
| Mean  | 0.41  | 0.44   | 0.44 | 0.52  | 0.40   | 0.45 | 0.46 | 9.17  | 20.01|
| Std.Dev| 0.17  | 0.19   | 0.19 | 0.14  | 0.14   | 0.14 | 0.18 | 9.15  | 20.08|
| Q.10 | 0.25  | 0.25   | 0.24 | 0.38  | 0.25   | 0.26 | 0.28 | 8.87  | 19.20|
| Q.25 | 0.30  | 0.28   | 0.27 | 0.43  | 0.27   | 0.32 | 0.35 | 9.01  | 19.61|
| Q.50 | 0.37  | 0.35   | 0.36 | 0.50  | 0.34   | 0.38 | 0.40 | 9.15  | 20.05|
| Q.75 | 0.47  | 0.47   | 0.49 | 0.56  | 0.44   | 0.46 | 0.53 | 9.25  | 20.35|
| Q.90 | 0.57  | 0.60   | 0.64 | 0.64  | 0.51   | 0.61 | 0.63 | 9.49  | 20.75|
| Q.95 | 0.63  | 0.62   | 0.69 | 0.72  | 0.65   | 0.71 | 0.70 | 9.73  | 21.09|

Table 4: Statistics of the final cumulative regret in Figure 1(c). The best and the second-best are highlighted. ‘Q’ and “Std.Dev” stand for quantile and standard deviation of the total cumulative regret over 50 trails, respectively. All the values displayed here are scaled by 0.01 for more compact notations.

| Alg.  | RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG   | KG*  | LinTS | VIDS |
|-------|-------|--------|------|-------|--------|------|------|-------|------|
| Mean  | 0.40  | 0.44   | 0.44 | 0.52  | 0.40   | 0.45 | 0.46 | 9.48  | 19.85|
| Std.Dev| 0.19  | 0.18   | 0.19 | 0.11  | 0.12   | 0.18 | 0.16 | 0.32  | 0.66 |
| Q.10 | 0.21  | 0.25   | 0.23 | 0.40  | 0.26   | 0.25 | 0.29 | 8.95  | 19.24|
| Q.25 | 0.30  | 0.32   | 0.30 | 0.43  | 0.31   | 0.29 | 0.33 | 9.34  | 19.37|
| Q.50 | 0.39  | 0.43   | 0.41 | 0.53  | 0.39   | 0.45 | 0.43 | 9.53  | 19.70|
| Q.75 | 0.46  | 0.53   | 0.57 | 0.62  | 0.48   | 0.54 | 0.56 | 9.70  | 20.12|
| Q.90 | 0.52  | 0.60   | 0.62 | 0.67  | 0.55   | 0.65 | 0.64 | 9.89  | 20.83|
| Q.95 | 0.70  | 0.77   | 0.70 | 0.70  | 0.59   | 0.74 | 0.75 | 9.92  | 21.02|

Table 5: Statistics of the final cumulative regret in Figure 1(d). The best and the second-best are highlighted. ‘Q’ and “Std.Dev” stand for quantile and standard deviation of the total cumulative regret over 50 trails, respectively. All the values displayed here are scaled by 0.01 for more compact notations.

| Algorithm | RBMLE | LinUCB | BUCB | GPUCB | GPUCBT | KG   | KG*  | LinTS | VIDS |
|-----------|-------|--------|------|-------|--------|------|------|-------|------|
| d = 100, K = 100 | 0.35  | 0.69   | 4.10 | 0.29  | 0.30   | 1.57 | 1.42 | 2.49  | 13.85|
| d = 200, K = 100 | 0.50  | 0.84   | 3.83 | 0.47  | 0.47   | 1.49 | 1.21 | 3.12  | 40.98|
| d = 300, K = 100 | 0.70  | 1.01   | 5.54 | 0.91  | 0.95   | 3.57 | 3.57 | 4.49  | 41.01|
| d = 100, K = 200 | 0.65  | 0.54   | 8.05 | 0.75  | 0.96   | 4.73 | 2.98 | 2.87  | 7.91 |
| d = 200, K = 200 | 0.77  | 1.00   | 7.37 | 0.73  | 0.72   | 2.17 | 2.88 | 3.51  | 33.93|
| d = 300, K = 200 | 3.28  | 4.10   | 22.43| 4.05  | 4.07   | 18.65| 7.95 | 4.12  | 15.05|

Table 6: Standard deviation of computation time per decision for static contexts, under different values of K and d. All numbers are averaged over 50 trials with $T = 10^2$ and in $10^{-4}$ seconds.
### Table 7: Statistics of the final cumulative regret in Figure 3(a). The best one is highlighted.

| Algorithm     | GLM-RBMLE | UCB-GLM | Laplace-TS |
|---------------|-----------|---------|------------|
| Mean Final Regret | 79.66     | 104.31  | 129.31     |
| Standard Deviation | 20.86     | 31.52   | 87.92      |
| Quantile .10   | 55.53     | 69.60   | **11.65**  |
| Quantile .25   | 65.02     | 83.95   | **58.37**  |
| Quantile .50   | **78.56** | 106.78  | 124.07     |
| Quantile .75   | 91.83     | 125.10  | 197.74     |
| Quantile .90   | 106.03    | 140.75  | 259.94     |
| Quantile .95   | **108.87**| 153.24  | 264.79     |

### Table 8: Statistics of the final cumulative regret in Figure 3(b). The best one is highlighted.

| Algorithm     | GLM-RBMLE | UCB-GLM | Laplace-TS |
|---------------|-----------|---------|------------|
| Mean Final Regret | 80.94     | 96.34   | 131.69     |
| Standard Deviation | 25.38     | 30.94   | 90.99      |
| Quantile .10   | 58.86     | 60.90   | **11.50**  |
| Quantile .25   | 63.85     | 72.74   | **53.86**  |
| Quantile .50   | **78.12** | 95.25   | 125.30     |
| Quantile .75   | 92.96     | 119.07  | 188.75     |
| Quantile .90   | 114.39    | 131.07  | 248.53     |
| Quantile .95   | **131.95**| 143.54  | 292.39     |

### Table 9: Statistics of the final cumulative regret in Figure 3(c). The best one is highlighted.

| Algorithm     | GLM-RBMLE | UCB-GLM | Laplace-TS |
|---------------|-----------|---------|------------|
| Mean Final Regret | 25.95     | 45.41   | 107.99     |
| Standard Deviation | 9.30      | 8.25    | 57.90      |
| Quantile .10   | 15.92     | 35.73   | 34.02      |
| Quantile .25   | **19.68** | 38.57   | 65.03      |
| Quantile .50   | 23.11     | 44.98   | 101.27     |
| Quantile .75   | 29.84     | 51.50   | 145.02     |
| Quantile .90   | **35.71** | 55.93   | 173.38     |
| Quantile .95   | **42.36** | 60.32   | 213.75     |

### Table 10: Statistics of the final cumulative regret in Figure 3(d). The best one is highlighted.

| Algorithm     | GLM-RBMLE | UCB-GLM | Laplace-TS |
|---------------|-----------|---------|------------|
| Mean Final Regret | 31.08     | 41.93   | 117.81     |
| Standard Deviation | 13.40     | **6.50**| 62.84      |
| Quantile .10   | **18.81** | 34.87   | 32.58      |
| Quantile .25   | 21.64     | 37.09   | 75.70      |
| Quantile .50   | 29.48     | 41.97   | 119.50     |
| Quantile .75   | **36.09** | 45.66   | 163.05     |
| Quantile .90   | **48.10** | 51.15   | 203.09     |
| Quantile .95   | 55.04     | **54.06**| 219.47     |

### Table 11: Average computation time per decision for static contexts in generalized linear bandit model, under different values of $K$ and $d$. All numbers are averaged over 50 trials with $T = 10^d$ and in seconds.

| Algorithm     | GLM-RBMLE | UCB-GLM | Laplace-TS |
|---------------|-----------|---------|------------|
| $K = 5, d = 10$ | 0.0275    | 0.0089  | 0.0675     |
| $K = 5, d = 20$ | 0.0407    | 0.0216  | 0.2110     |
| $K = 5, d = 30$ | 0.0519    | 0.0461  | 0.3691     |
| $K = 10, d = 5$ | 0.0406    | 0.0041  | 0.0305     |
| $K = 20, d = 5$ | 0.0823    | 0.0039  | 0.0331     |
| $K = 30, d = 5$ | **0.1225**| 0.0037  | **0.0333** |