BURNSIDE’S THEOREM IN THE SETTING OF GENERAL FIELDS

HEYDAR RADJAVI AND BAMDAD R. YAHAGHI

Abstract. We extend a well-known theorem of Burnside in the setting of general fields as follows: for a general field F the matrix algebra $M_n(F)$ is the only algebra in $M_n(F)$ which is spanned by an irreducible semigroup of triangularizable matrices. In other words, for a semigroup of triangularizable matrices with entries from a general field irreducibility is equivalent to absolute irreducibility. As a consequence of our result we prove a stronger version of a theorem of Janez Bernik.

1. Introduction

A version of a celebrated theorem of Burnside [2, Theorem on p. 433] asserts that for an algebraically closed field F, the matrix algebra $M_n(F)$ is the only algebra in $M_n(F)$ which is spanned by an irreducible semigroup of matrices. We prove a counterpart of Burnside’s Theorem in the setting of general fields as follows: for a general field F, the matrix algebra $M_n(F)$ is the only algebra in $M_n(F)$ which is spanned by an irreducible semigroup of triangularizable matrices. In other words, for a semigroup of triangularizable matrices with entries from a general field irreducibility is equivalent to absolute irreducibility.

Throughout, F and K stand for fields and F is a subfield of K. We view the elements of the matrix algebra $M_n(F)$ as linear transformations acting on the left of F^n, the vector space of all $n \times 1$ column vectors with entries from F. A family \mathcal{F} in $M_n(F)$ is said to be irreducible if the orbit of any nonzero $x \in F^n$ under the algebra generated by \mathcal{F}, denoted by $\text{Alg}(\mathcal{F})$, is F^n. When $n > 1$, this is easily seen to be equivalent to the lack of nontrivial invariant subspaces for the family \mathcal{F}; the trivial spaces being $\{0\}$ and F^n. Reducible, by definition, means not irreducible. Absolute irreducibility means irreducibility over any.
field extension of the ground field F. It follows from Burnside’s Theorem that a family \mathcal{F} in $M_n(F)$ is absolutely irreducible if and only if $\text{Alg}(\mathcal{F}) = M_n(F)$. On the opposite side of irreducibility, we have the notion of triangularizability. More precisely, a family \mathcal{F} in $M_n(F)$ is called triangularizable if there exists a maximal chain
\[{0} = \mathcal{M}_0 \subset \mathcal{M}_1 \subset \cdots \subset \mathcal{M}_n = F^n \]
of subspaces of F^n with \mathcal{M}_i’s being invariant under the family \mathcal{F}. Any such chain is called a triangularizing chain of subspaces for the family \mathcal{F}. It is a standard observation that a family \mathcal{F} in $M_n(F)$ is triangularizable if and only if there exists a basis for F^n, called a triangularizing basis, relative to which every element of the family has an upper triangular matrix. This occurs if and only if there exists an invertible matrix $P \in M_n(F)$ such that the family $P^{-1}\mathcal{F}P$ consists of upper triangular matrices.

2. Main Results

The following can be thought of as an extension of Burnside’s Theorem to general fields. In fact, it extends [9, Theorem 2.3] to arbitrary fields.

Theorem 2.1. Let $n \in \mathbb{N}$, F be a field, and \mathcal{S} a semigroup of triangularizable matrices in $M_n(F)$. Then the semigroup \mathcal{S} is irreducible iff it is absolutely irreducible.

Proof. The “if” implication is trivial. We prove “the only if” implication. Let \mathcal{S} be a semigroup of triangularizable matrices in $M_n(F)$ and let $\mathcal{A} = \text{Alg}(\mathcal{S})$ denote the algebra generated by \mathcal{S} and r the minimal nonzero rank present in \mathcal{A}. As shown in [8] (the remark following Theorem 2.9 of that paper), r divides n and \mathcal{A} is simultaneously similar to $M_{n/r}(\Delta)$, where Δ is an irreducible division algebra in $M_r(F)$, which is necessarily of dimension r. This in particular implies that the algebra \mathcal{A} is simple (and semisimple). We prove the assertion by showing that $r = 1$. Let F_c denote the algebraic closure of F and view \mathcal{A} as a simple F-algebra in $M_n(F_c)$. Apply a simultaneous similarity to put $\mathcal{A} \subseteq M_n(F_c)$ in block upper triangular form so that the number k of the diagonal blocks is maximal and hence each diagonal block is absolutely irreducible. Note that the diagonal blocks are all nonzero because \mathcal{A} contains the identity matrix. If necessary, using [11, Theorem 1.1] and applying a simultaneous similarity, we may assume that each diagonal block of \mathcal{A} is the full matrix algebra $M_{n_i}(F)$ for
some \(n_i \in \mathbb{N} \) \((1 \leq i \leq k) \). For each \(1 \leq i \leq k \), let \(\mathcal{A}_i = M_{n_i}(F) \) denote the \(i \)-th diagonal block of \(\mathcal{A} \). In view of the simplicity of \(\mathcal{A} \), the mapping \(\phi_{ij} : \mathcal{A}_i \to \mathcal{A}_j \) defined by \(\phi_{ij}(A_i) = A_j \) is a well-defined nonzero homomorphism of \(F \)-algebras whose inverse \(\phi_{ji} : \mathcal{A}_j \to \mathcal{A}_i \) is also a homomorphism of \(F \)-algebras. Thus \(n_i = n_j = n/k \), and hence \(\mathcal{A}_i = \mathcal{A}_j = M_{n/k}(F) \) for each \(1 \leq i, j \leq k \). Since \(F \)-algebra automorphisms of \(M_{n/k}(F) \) are all inner, again if necessary applying another simultaneous similarity, we may assume that the diagonal blocks of each element of \(A \in \mathcal{A} \) are all of the size \(n/k \) and equal. It thus follows from the Noether-Skolem Theorem, \([3, \text{p. 39}]\), that the \(F \)-algebra \(\mathcal{A} \) is similar to the \(k \)-fold inflation of the \(F \)-algebra \(M_{n/k}(F) \) because it is isomorphic to it. This in particular implies \(r = k \) and \(\dim \mathcal{A} = \dim M_{n/r}(\Delta) = \dim M_{n/k}(F) \). This clearly yields \(k^2 = k \), and hence \(r = k = 1 \), proving the assertion. \(\square \)

We used the main result of Bernik \([1, \text{Theorem 1.1}]\) to prove Theorem 2.1. The following shows that Theorem 2.1 implies a stronger version of the main result of \([1]\). Therefore, any independent proof of Theorem 2.1 would provide a new proof of Bernik’s result. (Thus it should be observed that the following proof does not use Bernik’s Theorem.)

Theorem 2.2. Let \(n \in \mathbb{N} \), \(F \) and \(K \) be fields with \(F \leq K \), and \(\mathcal{S} \) an irreducible semigroup of triangularizable matrices in \(M_n(K) \) with spectra in \(F \). Then \(\text{Alg}_F(\mathcal{S}) \) is similar to \(M_n(F) \) over \(M_n(K) \).

Proof. Since irreducibility implies absolute irreducibility for semigroups of triangularizable matrices, we see that \(\{0\} \neq \text{tr}(\mathcal{S}) \subseteq F \). It thus follows from \([8, \text{Corollary 2.8}]\) and absolute irreducibility of \(\mathcal{S} \) that \(\dim_F \text{Alg}_F(\mathcal{S}) = \dim_K \text{Alg}_K(\mathcal{S}) = n^2 \). Let \(\mathcal{B} \subseteq \mathcal{S} \) be a basis for \(\mathcal{A} := \text{Alg}_F(\mathcal{S}) \) and for \(A \in \mathcal{A} \), \(L_A : \mathcal{A} \to \mathcal{A} \), defined by \(L_A(B) = AB \), be the linear operator of left multiplication by \(A \). It is plain that the mapping \(\phi : \mathcal{A} \to M_{n^2}(F) \) defined by \(\phi(A) = [L_A]_\mathcal{B} \), where \([L_A]_\mathcal{B}\) denotes the matrix representation of \(L_A \) with respect to the basis \(\mathcal{B} \), is an embedding of the \(F \)-algebra \(\mathcal{A} \) in \(M_{n^2}(F) \). Clearly, \(\phi(\mathcal{A}) \) is a simple subalgebra of \(M_{n^2}(F) \). Apply a simultaneous similarity to put \(\phi(\mathcal{A}) \subseteq M_{n^2}(F) \) in block upper triangular form so that the number \(k \) of the diagonal blocks is maximal and hence each diagonal block is irreducible. Note that the diagonal blocks are all nonzero because \(\mathcal{A} \) contains the identity matrix. Also note that \(\mathcal{A} = \text{Alg}_F(\mathcal{S}) \) and \(\mathcal{S} \) consists of triangularizable matrices. But irreducibility implies absolute irreducibility for semigroups of triangularizable matrices. Thus, each diagonal block of \(\phi(\mathcal{A}) \) is an absolutely irreducible \(F \)-algebra in
$M_n(F)$, and hence is equal to the full matrix algebra $M_n(F)$. From this point on, an argument almost identical to that of the proof of Theorem 2.1 shows that the F-algebra $\phi(A)$ is similar to the k-fold inflation of the F-algebra $M_{n^2/k}(F)$ for some k dividing n^2. This in particular gives

$$n^2 = \dim_F A = \dim_F \phi(A) = \dim_F M_{n^2/k}(F) = n^4/k^2,$$

which in turn implies $n = k$. Consequently, the F-algebra A is isomorphic to the 1st block diagonal of $\phi(A)$, which is $M_n(F)$. It thus follows from the Noether-Skolem Theorem, [3, p. 39], that A is similar to $M_n(F)$, which is the desired result. □

Remark. With this theorem at our disposal, we can prove the counterparts of [4, Theorem B on p. 99] and [6, Theorem 1] for semigroups of triangularizable matrices in $M_n(K)$ with spectra in F, see [9, Theorems 2.7 and 2.8]

An extension of Burnside’s Theorem was proved in [7, Theorems 2.1-2] as follows: for an $n > 1$ and a finite field, or more generally a quasi-algebraically closed field F, $M_n(F)$ is the only irreducible algebra in $M_n(F)$ that, as a vector space over F, is spanned by triangularizable matrices in $M_n(F)$. The following proposition answers a question left open in [7, Remark 1 following Theorem 2.1]. More precisely, it shows that the theorem does not hold for general fields, e.g., for the real field because $M_n(\mathbb{H})$, viewed as a proper irreducible subalgebra of $M_{4n}(\mathbb{R})$, is spanned by the identity matrix and nilpotents as a vector space over \mathbb{R}.

Proposition 2.3. Let $n \in \mathbb{N}$ with $n > 1$ and \mathbb{H} denote the division ring of quaternions. Then $M_n(\mathbb{H})$ is spanned by I, the identity matrix, and nilpotents as a vector space over \mathbb{R}.

Proof. It suffices to prove the assertion for $M_2(\mathbb{H})$. Since

$\begin{pmatrix} 0 & p \\ 0 & 0 \end{pmatrix}$,

$\begin{pmatrix} 0 & 0 \\ q & 0 \end{pmatrix}$, and

$\begin{pmatrix} p & p \\ -p & -p \end{pmatrix}$

are all nilpotents for all $p, q \in \mathbb{H}$, we only have to show that $\begin{pmatrix} p & 0 \\ 0 & p \end{pmatrix}$ is spanned by I and nilpotents for all $p \in \mathbb{H}$. Let $p = a + bi + cj + dk$, where $a, b, c, d \in \mathbb{R}$. Thus it suffices to show that $\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix}$, $\begin{pmatrix} j & 0 \\ 0 & j \end{pmatrix}$, and $\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}$ are all in the desired
span. Now
\[
\begin{pmatrix} i & 0 \\ 0 & i \end{pmatrix} = \begin{pmatrix} i & j \\ -j & i \end{pmatrix} + \begin{pmatrix} 0 & -j \\ 0 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ j & 0 \end{pmatrix}.
\]
But \(\begin{pmatrix} i & j \\ -j & i \end{pmatrix}^2 = 0 \). This completes the proof. \(\square\)

References

[1] J. Bernik, The eigenvalue field is a splitting field, *Archiv der Mathematik*, Volume 88, Number 6, 2007, 481-490.

[2] W. Burnside, On the condition of reducibility of any group of linear substitutions, *Proc. London Math. Soc.* 3 (1905), 430-434.

[3] P.K. Draxl, *Skew Fields*, Cambridge University Press, 1983.

[4] I. Kaplansky, *Fields and Rings* 2nd ed, University of Chicago Press, Chicago, 1972.

[5] H. Radjavi and P. Rosenthal, *Simultaneous Triangularization*, Springer Verlag, New York, 2000.

[6] H. Radjavi and P. Rosenthal, Limitations on the size of semigroups of matrices, Semigroup Forum, 76: 25-31, 2008.

[7] H. Radjavi and B.R. Yahaghi, On irreducible algebras spanned by triangularizable matrices, *Linear Algebra Appl.* 436 (2012), 2001-2007.

[8] B.R. Yahaghi, On irreducible semigroups of martices with traces in a subfield, *Linear Algebra Appl.* 383 (2004), 17-28.

[9] B.R. Yahaghi, *Burnside type theorems in real and quaternion settings*, arXiv:1710.03849v2.

Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan 19395-5746, Iran

E-mail address: hradjavi@uwaterloo.ca, bamdad5@hotmail.com, bamdad@bamdadyahaghi.com