DETERMINATION OF VOLATILE BIOACTIVE COMPOUNDS FROM EXTRACTS OF BAELE (AEGLE MARMELOS) PLANT PARTS AND THEIR COMPARATIVE ANALYSIS

NIDHI SHARMA, WIDHI DUBEY*
School of Sciences, JECRC University, Jaipur - 302 017, Rajasthan, India. Email: widhi.dube@yahoo.co.in

Received: 08 November 2017, Revised and Accepted: 20 December 2017

ABSTRACT

Objective: The main objective of this study is to determine the bioactive compounds from the extracts of wildly growing Aegle marmelos plant parts.

Methods: A. marmelos root, stem, leaves, bark, fruit peel, and pulp were screened for the presence/absence of phytochemicals. Bioactive compounds in all the plant parts were analyzed by gas chromatography–mass spectrometry (GC/MS) analysis. For evaluation of bioactive compounds first, the column chromatography was done using various solvents and found that the methanolic extracts gave better elution and separation of compounds and hence used further for GC/MS analysis.

Result: GC/MS analysis revealed chromatograms of methanol extract of A. marmelos plant parts, and all the plant parts were found to have a number of phytochemicals. Some compounds, namely, benzene, nitro-, benzenepropanoic acid, 3, 5-bis (1, 1-dimethylethyl)-4-hydroxy-, methyl ester, and tetradecene were found in all parts with a varying percentage. Phenol only found in the fruit of the plant with more percentage in fruit peel (4.38%) than in fruit pulp (0.58%). Dibutyl phthalate is the major compound found in Aegle root (10.43%), fruit peel (3.56%), and pulp (13.18%). Other important compounds such as coumarin (2H-1-Benzopyran-2-one, 7-[(3,7-dimethyl-2,6-octadienyloxy)-, (E)], skimmianine (Furo[2,3-b] quinoline, 4,7,8-trimethoxy), and cyclobarbital were found in plant root.

Conclusion: After the GC/MS analysis, it was concluded that all the parts of this wildly growing plant contain a significant amount of pharmaceutically important compounds.

Keywords: Aegle marmelos, Rutaceae, Gas chromatography–mass spectrometry analysis, Bioactive compounds, Biomedicine.

© 2018 The Authors. Published by Innovare Academic Sciences Pvt Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) DOI: http://dx.doi.org/10.22159/ajpcr.2018.v11i3.23529

INTRODUCTION

Plants synthesize a variety of secondary metabolites against the infectious agents [1]. Bioactive compounds are defined as secondary metabolites that elicit pharmacological or toxicological effects in man and animals. Frequent use of synthetic drugs has made the pathogens resistant to multiple drugs. This impels the need to screen medicinal plants for novel bioactive compounds due to their biodegradability, safety, and fewer side effects [2].

Aegle marmelos is one such medicinal plant having a plethora of bioactive compounds in every plant part. Mentions of this plant have also been found in the pre-historic writings dating back to 800 B.C. It was not only known in the ancient era for its medicinal properties but also being studied nowadays extensively using advanced scientific techniques. A. marmelos, plant of family Rutaceae, is commonly known as wood apple plant and other vernacular names are Bael Fruit, Indian Bad, Holý Fruit, Golden Apple, Elephant Apple, Indian Quince, and Stone Apple [3]. It subsists well in a wide range of climatic conditions and can be cultivated worldwide. It is a subtropical plant which can grow up to an altitude of 1200 m from the sea level and also in the dry forests of hilly and plain areas. It is native to India and grown throughout India, mainly near the temples due to its mythological importance [4]. It has its origin from the Eastern Ghats and Central India. It has been used in medicines due to its significant phytochemical constitution making it potent as a remedy for diseases such as diabetes, peptic ulcer, inflammation, diarrhea and dysentery, constipation, respiratory infection, and cancer. It also has cardioprotective, antimicrobial, radioprotective, antipyretic, analgesic, antioxidant, hepatoprotective, and wound healing properties [5].

Various other researchers throughout the world have done the gas chromatography/mass spectrometry (GC/MS) analysis of A. marmelos plant parts, but till now no researcher has reported GC/MS analysis of the A. marmelos fruit peel. In this study, GC/MS analysis of fruit peel shows that it possesses a significant amount of the bioactive compounds which are potent as antioxidants. Wildly growing Aegle marmelos from the semi-arid area of the Indian state of Rajasthan was studied for its bioactive compound composition through GC/MS analysis. Bioactive compounds from different plant parts such as root, stem, leaf, bark, fruit peel, and pulp were compared and analyzed.

METHODS

Plant material and extraction
Bilha plant samples were collected from fields of Chaumun area of Jaipur district in Rajasthan. Identification of the plant was confirmed by Rajasthan Agricultural Research Institute, Jaipur. A. marmelos plant parts, leaves, root, stem, bark, fruit peel, and pulp were taken and shade dried and then crushed to make a fine powder. For evaluation of bioactive compounds first, the column chromatography was done using various solvents and it was found that the methanolic extracts gave better elution and separation of compounds and hence used further for GC/MS analysis.

GC/MS
GC/MS technique is used in this study to identify the bioactive components present in the extract. This method involves a very little amount of the test sample and gives the molecular weights of even fraction of compounds. GC/MS analysis of this extract can be performed using GC SHIMADZU QP2010 system and GC interfaced to a MS (GC/MS) equipped with Elite-1 fused silica capillary column (Length: 30.0m, Diameter: 0.25 mm, film thickness: 0.25 µm).
of 100% dimethyl polysiloxane). The components can be identified by comparing their retention times with those of authentic samples as well as by comparing their mass spectra with those of Wiley 275 library [6].

RESULT

The bioactive fraction on GC/MS analysis revealed chromatograms of methanol extract of A. marmelos plant parts. Some compounds, namely, benzene, nitro-, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester, and tetradecene were found in all the plant parts with a varying percentage. Phenol only found in the fruit of the plant with more percentage in fruit peel (4.38%) than in fruit pulp (0.58%). Phenol is supposed to be responsible for the antioxidant activity of the sample. Dibutyl phthalate is the major compound found in Aegle root (10.43%), fruit peel (34.56%), and pulp (13.18%), having the highest

Table 1: Compounds identified in the Aegle marmelos fruit peel

Peak no.	Retention time	Area	Area%	Name
1	5.319	28558	4.38	Phenol
2	6.698	47781	7.33	Benzene, Nitro-
3	9.722	31092	4.77	5-Tetradecene, (E)-
4	11.426	49454	7.59	5-Tetradecene, (E)-
5	12.949	45627	7.00	5-Eicosene, (E)-
6	13.455	22519	34.56	Dibutyl phthalate
7	13.940	120586	18.50	Benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl)-4-hydroxy-, methyl ester

Peak No: Number of peak occurring subsequently in the chromatogram of sample. Retention time: Measurement of time (in min.) spent by solute in the column (the time from injection into the column is made to when elution occurs). Area: Area covered by a peak in chromatogram which is proportional to the amount of compound present. Area % is calculated by dividing the area of each peak by total area and multiply it by 100

Table 2: Compounds identified in the Aegle marmelos root

Peak no.	Retention time	Area	Area%	Name
1	5.324	8332	0.58	Phenol
2	6.119	12691	0.88	Benzene, 1-bromo-2-methyl-
3	6.700	41400	2.87	Benzene, Nitro-
4	7.151	37564	2.60	Acetic acid, Propyl ester
5	7.305	19301	1.34	2,3-Dihydro-3,5-Dihydroxy-6-Methyl-4H-Pyran-4-One
6	8.052	69957	4.85	2,3-Dihydro-Benzofuran
7	8.276	21823	1.51	Acetic Acid, Propyl Ester
8	9.547	83181	5.77	Ethyl-2-hydroxybenzyl sulfone
9	9.723	38165	2.65	5-Tetradecene, (E)-
10	10.857	93607	6.49	Cytidine
11	10.600	73062	5.07	D-Allose
12	11.265	66830	4.63	3-Deoxy-d-mannoic lactone
13	11.427	53526	3.71	7-Hexadecene, (Z)-
14	11.602	28066	1.95	1,3,4,5-Tetrahydroxy-Cyclohexene-carboxylic Acid
15	12.950	39882	2.77	7-Hexadecene, (Z)-
16	13.456	19010	13.18	Dibutyl phthalate
17	13.862	12165	0.84	Dodecanonic Acid, Methyl Ester
18	13.941	92917	6.44	Benzenepropanoic acid, 3,5-bis (1,1-dimethylethyl)-4-hydroxy-, methyl ester
19	14.327	20413	1.42	3-Octadecene, (E)-
20	15.012	18778	1.30	3,6-Octadecadienoic Acid, Methyl Ester
21	15.328	7365	0.51	trans-2-Dodecen-1-ol, pentalfluoropropanate
22	16.996	12416	8.64	Tetracosamethyl-cyclododecasiloxane
23	17.224	104388	7.24	9-Tetradecenal, (Z)-
24	18.977	1442145	8.64	9-Tetradecenal, (Z)-

Table 3: Compounds identified in the Aegle marmelos stem

Peak no.	Retention time	Area	Area%	Name
1	6.122	10638	1.57	Benzene, 1-bromo-2-methyl-
2	6.703	39789	5.87	Benzene, nitro-
3	7.820	28507	4.21	1-Propene, 3-(ethenyl)-
4	9.723	44302	6.54	5-Tetradecene, (E)-
5	11.427	50017	7.40	5-Tetradecene, (E)-
6	12.444	16941	2.50	Hexestrol, O-trifluoroacetyl-
7	12.410	17360	2.56	Spiro-1-(cyclohex-2-ene)-2-(5'-oxabicyclo[2.1.0]pentane), 1',4',2,6,6-pentamethyl-Hexestrol
8	12.700	13987	2.06	Hexestrol
9	12.951	44074	6.50	9-Octadecene, (E)-
10	13.456	21762	32.12	1,2-Benzenedicarboxylic acid, butyl 2-methylpropyl ester
11	13.942	116224	17.15	Benzene, nitro-, benzenepropanoic acid, 3,5-bis(1,1-dimethylethyl)-4-hydroxy-, methyl ester
12	13.428	33689	4.97	9-Eicosene, (E)-
13	15.584	23734	4.04	Z-5-Nonadecene
14	24.125	677574	100.00	Tetracosamethyl-cyclododecasiloxane
amount in the fruit peel. Whereas, some other important compounds such as coumarins (2H-1-benzopyran-2-one, 7-[3,7-dimethyl-2,6-octadienyl]oxy)-, skimmianine (Furo[2,3-b] quinoline, 4,7,8-trimethoxy)-, and cyclobarbital were found in plant root only. Hence, after a comparative analysis of compounds identified, it was found that there are compounds which are found only in particular plant parts (Tables 1-7).

DISCUSSION

Jorge et al. from Cuba in 2005 did the GC/MS analysis of A. marmelos leaf and identified 65 compounds comprising more than 85% leaf oil. Major components identified were β-caryophyllene (10.0 %) and δ-cadinene (12.1%) [7]. Satyal et al. from Nepal in 2012 also identified 82 compounds by GC/MS analysis of Aegle leaves [8]. In 2014, Mujeeb et al. from Lucknow and Rajeshkannan and Lakshmanan from Tamil Nadu also studied the A. marmelos leaves and fruit, respectively, and identified various compounds by GC/MS analysis [9,10]. Bajania et al. in 2015 studied the fatty acid profile of Aegle seed oils and characterized the phytochemicals present in it through GC/MS analysis [11]. Nadhiya and Vadhavazhi in 2015 studied the A. marmelos and Mentha piperita leaves. In this study, GC/MS were used to identify phytochemicals present in the A. marmelos with M. piperita leaves extract. Phytochemicals identified from A. marmelos and M. piperita combined extract was used to investigate the various antioxidant activities [12]. In 2016, Ritu Jha and Rajinder Gupta developed energy drink from the combination of A. marmelos, Rubia cordifolia, Phyllanthus emblica, and Beta vulgaris

Table 4: Compounds identified in the Aegle marmelos leaves

Peak no.	Retention time	Area	Area%	Name
1	6.006	18779	2.18	Cyclobutane, 1,2-bis (1-methylethyl)-, trans-
2	6.700	35919	4.18	Benzene, nitro-
3	9.723	35955	4.18	4-Tetradecene, (E)-
4	10.573	14078	1.64	Benzene, 1-methyl-4-(1,2,2-trimethylcyclopentyl)-, (R)-
5	11.425	51774	6.02	7-Tetradecene, (E)-
6	12.949	45396	5.28	7-Hexadecane, (Z)-
7	13.262	13497	1.57	3-Tridecane
8	13.454	295847	34.40	1,2-Benzenedicarboxylic acid, butyl-2-methylpropyl ester
9	13.940	106510	12.38	Benzopenpranoic acid, 3,5-bis (1,1-diethylmethyl)-4-hydroxy-, methyl ester
10	14.325	28226	3.28	9-Eicosene, (E)-
11	14.922	54060	6.29	Dimethyl [bis([4,8,8-trimethyldecahydro-1,4-methanoazulen-9-yl])methyly]silane
12	15.582	30770	3.58	1,7-Dimethyl-4-(1-methylthyl) cyclodcane
13	18.206	860116	100.00	Carbamic acid, methylnitroso-, 1-naphthalenyl

Table 5: Compounds identified in the Aegle marmelos bark

Peak no.	Retention time	Area	Area%	Name
1	6.701	33134	4.26	Benzene, nitro-
2	9.724	26666	3.43	6-Dodecane, (E)-
3	11.214	15171	1.95	2,5-Dihydroxy-4-isopropyl-2,4,6-cycloheptatrien-1-one
4	11.425	47739	6.13	7-Tetradecene, (E)-
5	12.697	13118	1.69	Hexestrol, O-trifluoroacetyl-
6	12.949	48494	6.23	5-Octadecane, (E)-
7	13.456	205078	26.35	1,2-Benzenedicarboxylic acid, butyl-2-methylpropyl ester
8	13.941	96234	12.36	Benzopenpranoic acid, 3,5-bis (1,1-diethylmethyl)-4-hydroxy-, methyl ester
9	14.094	28914	3.71	Isoquinolin-6-ol, 7-methoxy-1-methyl-
10	14.326	32293	4.15	1-Hexadecanol
11	16.485	197906	25.42	2-(1-Hydroxy-1-methylthyl)-2,3-dihydrofuro[3,2-g] chromen-7-one
12	16.733	33654	4.32	(S)-7-Hydroxy-8,8-dimethyl-7,8-dihydropyran (3,2-g) chromen-2 (6H)-one

Table 6: Compounds identified in the Aegle marmelos fruit pulp

Peak no.	Retention time	Area	Area%	Name
1	6.121	12707	0.63	Benzene, 1-bromo-2-methyl-
2	6.701	41879	2.08	Benzene, nitro-
3	7.882	39209	1.95	7-Tetradecene, (Z)-
5	7.898	95566	4.75	Tricyclo[3.3.1.1(3,7)]decan-6-one, 2-(4-allyloxyphenyl)-5,7-dipropyl-1,3-diza-
6	9.723	30074	1.49	7-Tetradecene, (E)-
7	11.428	52424	2.60	5-Tetradecene, (E)-
8	12.950	41437	2.06	5-Octadecane, (E)-
9	13.456	209997	10.43	Dibutyl phthalate
10	13.941	111967	5.56	Benzopenpranoic acid, 3,5-bis (1,1-diethylmethyl)-4-hydroxy-, methyl ester
11	14.326	41176	2.05	9-Eicosene, (E)-
12	15.581	24992	1.24	n-Heptadecanol-1
13	16.665	117565	5.84	Furo[2,3-b] quinoline, 4,7,8-trimethoxy-
14	18.387	73670	3.66	2H-1-Benzencyclopropane-2-one, 7-[(3,7-dimethyl-2,6-octadienyl)oxy]-, (E)-
17	19.083	40266	2.00	Cyclobarbitol
18	19.508	889357	44.19	2,6-Dimethyl-3,5,7-octatriene-2-ol, E, E-
19	20.126	2012616	100.00	Carbamic acid, methylnitroso-1-naphthalenyl
This group of alkaloids is essentially limited to its mythological importance. Charak, the "father of medicine" from ancient Indian history, also mentioned the importance of this plant in medicine in his treatise. As this plant can thrive well in a wide range of climatic conditions, it would be of dire importance to grow this plant in the desert area of Rajasthan under afforestation program for reducing the growth of desert as well as serving as a potential source of medicine. The results of this GC/MS analysis show that various parts of the plant contain sufficient amount of plethora of bioactive compounds which play a major role in providing the plant its medicinal property.

ACKNOWLEDGMENT
We thank JECRC University, Jaipur, and Ayushraj Enterprises Pvt. Ltd., Jaipur, for providing the laboratory facility to do the research work. We also acknowledge the help from farmers of Chaumun Agricultural Farms, Jaipur, Rajasthan.

AUTHORS CONTRIBUTION
NS reviewed the literature of same nature research work, carried out the experiments and prepared the manuscript. WD helped to carry out Study, manuscript preparation and critical revision of the manuscript. Both the authors agree with the content of the manuscript.

CONFLICT OF INTEREST
There is no conflict of interests.

REFERENCES
1. Pisecka A, Jedrzejczak-Rey N, Bednarek P. Secondary metabolites in plant innate immunity: Conserved function of divergent chemicals. New Phytol 2015;206:948-64.
2. Bernhoff A. Bioactive Compounds in Plants—Benefits and Risks for Man and Animals. The Norwegian Academy of Science and Letters. Oslo: Proceedings from a Symposium Held at The Norwegian Academy of Science and Letters, 2008.
3. Lim TK. *Aegle marmelos*. Edible Medicinal and Non-Medicinal Plants.
Fruits. 4th ed. London: Springer; 2012. p. 594-615.
4. Lmbole VB, Murti K, Kumar U, Bhatt SP, Gajera V. Phytopharmacological properties of Aegle marmelos as a potential medicinal tree: An Overview. Int J Pharm Sci Rev Res 2010;5:67-72.
5. Upadhyay RK. Bel plant: A source of pharmaceuticals and ethno medicines. Int J Green Pharm 2015;9:205-22.
6. Uma Devi KJ, Vanitha V, Vijayalakshmi K, Tilton F. Determination of bioactive components of Aegle marmelos L. leaves by GC-MS analysis. Indian Streams Res J 2011;3:1-4.
7. Jorge AP, Rolando M, Victor F. Volatile compounds from leaves of Aegle marmelos (L.) Correa grown in Cuba. Rev CENIC Cien Químicas 2005;36:71-3.
8. Satyal P, Woods KE, Dosoky NS, Neupane S, Setzer WN. Biological activities and volatile constituents of Aegle marmelos (L.) Correa from Nepal. J Med Active Plants 2012;1:114-22.
9. Mujeeb F, Bajpai P, Pathak N. Phytochemical evaluation, antimicrobial activity and determination of bioactive compounds from leaves of Aegle marmelos. Biomed Res Int 2014;2014:14.
10. Rajeshkannan C, Lakshmanan G. Quantification of chlorogenic acid from aqueous and methanolic extracts of wood apple (Aegle marmelos C. Linn) by GC-MS Ion-trap. Int J Innov Res Sci Eng Technol 2014;3:11087-93.
11. Bajaniya VK, Kandoliya UK, Bodar NH, Bhadja NV, Golakiya BA. Fatty acid profile and phytochemical characterization of Bael seed (Aegle marmelos L.) oil. Int J Curr Microbiol Appl Sci 2015;4:97-102.
12. Nadiha Y, Vadiavazhi KM. Antioxidant and phytochemical properties of combination of leaves of Aegle marmelos and Mentha piperita. Int Res J Pharm Biosci 2015;2:1-9.
13. Jha R, Gupta RK. Development of energy drink containing Aegle marmelos, Rubia cordifolia, Phyllanthus emblica and Beta vulgaris and its phytochemical, nutritive and antimicrobial analysis. J Pharm Phytochem 2016;5:186-93.
14. Kasireddy P, Khumanthem DS, Prashanti P, Manguluri P. Neuroprotective potential and efficacy of neurodegenerative disorders of fruit extract of Aegle marmelos. Int J Pharm Pharm Sci 2015;7:1-5.
15. Yadav SS, Daihy K, Showkat AG, Gulia SK. Antibacterial activity of Aegle marmelos (L) Correa. Int J Pharm Pharm Sci 2015;7:1-3.
16. Available from: https://www.pubchem.ncbi.nlm.nih.gov.