On the phase-space structure of the Milky Way
dark-matter halo

Amina Helmi, Volker Springel & Simon D.M. White

Max Planck Institut für Astrophysik, Karl Schwarzschildstr. 1, 85741
Garching bei München, Germany

Abstract. We analyse a high resolution simulation of the formation of a
cluster’s dark-matter halo in a ΛCDM cosmology (Springel et al. 2001).
The resolution achieved allows us to map the phase-space structure in
detail, and characterize its evolution and degree of lumpiness. Scaling
down the cluster halo to a Milky-Way size halo, we probe the substructure
expected in the solar neighbourhood. Here we specifically address the
relevance of such substructure for direct detection experiments aimed at
determining the nature of dark-matter.

1. Introduction

Over the last twenty years a theory has emerged for the formation of structure
in the Universe (Peebles 1974; White & Rees 1978). The hierarchial paradigm
has allowed astronomers to make very definite predictions for the properties of
galaxies today and about their evolution from high redshift. Direct comparisons
to observations have shown that this model is quite successful in reproducing
both the local and the distant Universe. However, it relies on a basic assumption:
that most of the matter in the Universe is dark, in the form of some yet to be
identified weakly interacting elementary particles.

Thus the crucial test of this paradigm consists in the determination of the
nature of dark-matter through direct detection experiments. Among the most
promising candidates from the particle physics perspective are axions and neutralinos. Axions can be detected through their conversion to electric photons in
the presence of a strong magnetic field. The most important direct detection
process of neutralinos is elastic scattering on nuclei, and the idea is to determine
the count rate over recoil energy above a given (detector) background level. The
experimental situation has been improving rapidly over the past years, as the
relevant regions of parameter space for the different dark-matter candidates are
starting to be probed (Bergström 2000). In all experiments, the count rate is
strongly dependent on the velocity distribution of the incident particles. In most
cases, an isotropic Maxwellian distribution has been assumed (e.g. Freese, Frie-
man & Gould 1988), although there are other examples in the recent literature,
discussing multivariate Gaussian distributions (e.g. Green 2000). Attempts at
understanding the effect of substructure on the velocity distribution of dark-
matter particles have also been made (e.g. Hogan 2001). However, most of this
work did not assume realistic distributions of matter in the Solar neighbourhood,
as we shall demonstrate in the next section.

The simulations we analyse here were generated by zooming in and re-
simulating with higher resolution a particular cluster and its surroundings formed
in a cosmological ΛCDM simulation, with parameters $Ω_0 = 0.3$, $Ω_Λ = 0.7$, $h = 0.7$ and $σ_8 = 0.9$. The cluster selected for resimulation is the second most massive cluster in the parent simulation and has a virial mass of $8.4 \times 10^{14} h^{-1} M_⊙$ (see the left panel of Figure 1). The highest resolution resimulation of the cluster region has $6.6 \times 10^7$ particles. We scale the cluster to a “Milky Way” halo by requiring that the maximum circular velocity is 220 km/s, which yields a scaling factor $γ = v_{cl} / v_{cMW} \sim 9.18$.

2. The phase-space structure in the Solar neighbourhood

2.1. Spatial distribution

One of the critical issues in understanding the outcome of the various dark-matter experiments consists in understanding the expected signal: Is the distribution of particles in the vicinity of the Sun smooth or is it dominated by a just a few streams or even bound lumps (e.g. Moore et al. 2001)? In Figure 1 we plot the positions of all particles inside a cubic volume of 2 kpc on a side, located at the position of the “Sun”. The spatial distribution of particles inside this representative volume is extremely smooth. This is mostly due to the fact that the material that ends up in the inner galaxy mostly comes from a few very massive halos which have rapidly mixed.

2.2. Kinematics

In Figure 2 we show the velocities of particles located in a box of 4 kpc on a side in the vicinity of the Sun. Their velocity distribution is relatively smooth, and appears to be quite consistent with a Gaussian (see left panel Figure 3), at least to the “naked eye”. However if we focus on the highest energy particles
Figure 2. Velocities of particles located in a box of 4 kpc on a side at the “Solar” radius. There are 4362 particles in this volume, and highlighted are the 1% fastest. The velocity dispersions along the principal axes are (111.2, 120.1, 141.4) km/s. The lump with \( v \sim (-250, -200, -400) \) km/s corresponds to a halo of \( 1.94 \times 10^{10} M_\odot \) identified at \( z = 2.4 \), and accreted at \( z = 1 \), or 8.2 Gyr ago.

This seems no longer to be the case, as shown by the particles highlighted in grey. The 1% fastest moving particles are strongly clumped, and their velocity distribution is highly anisotropic.

To quantify the substructure present in this volume we compute the correlation function \( \xi \) in velocity space, defined as \( \xi = \frac{\langle DD \rangle}{\langle RR \rangle} - 1 \), where \( \langle DD \rangle \) is the number of pairs of particles in our simulation with velocities in a given velocity range (or bin), and \( \langle RR \rangle \) is defined analogously for the same number of random points, which we draw from a trivariate Gaussian distribution determined from the data in the principal axes velocity frame, and is the average over ten such realizations. The right panel in Figure 3 shows that there is a weak excess of particles with similar velocities (i.e. below 100 km/s) with respect to what would be expected for a random multivariate Gaussian distribution. However, if we focus on the fastest moving particles, the excess of particles is very noticeable, particularly at small velocity differences, indicative of the presence of streams, as clearly visible in Fig. 2.

3. Conclusions

A dark-matter halo formed in a \( \Lambda \)CDM cosmology is not a smooth entity. Not only do dark-matter halos contain a large number of dark satellites, they also have large amounts of substructure in the form of streams. By scaling a cluster halo down to a galaxy halo using the ratio of their maximum circular velocities (equivalent to scaling their mass ratio to the one-third power), we predict that the Galactic dark-matter halo in the “Solar neighbourhood” should be smoothly distributed in space. This material is clumped in at least a few hundred kinematically cold streams, as more detailed analyses show (Helmi, White & Springel 2001). These streams have their origin in the different halos that merged to form the dark halo of the galaxy.

Our results indicate that direct detection experiments may quite safely assume a multivariate Gaussian to represent the motions of the dark-matter particles. However, experiments which are only sensitive to the highest energy (i.e.
Amina Helmi, Volker Springel & Simon D.M. White

For the same box as in Figure 2 we plot the differential (left) and the cumulative (centre) velocity distributions. The dotted histograms correspond to a multivariate Gaussian. On the right, we plot the “correlation function” \( \xi \) as the number of neighbours with velocity differences in a given range compared to what is expected for random deviates drawn from a multivariate Gaussian. Asterisks correspond to \( \xi \) over all the particles in the box, whereas diamonds to the 1% fastest moving particles.

Fastest moving dark-matter particles will be subject to the presence of a few dominating streams, and an excess of particles with similar energies should then be expected in comparison with a smooth Gaussian distribution. If direct detection experiments are also sensitive to the direction of motion of the incident dark-matter particles, the signal expected for the fastest moving particles is also highly anisotropic, and could be eventually be used, not just to determine the nature of the dark-matter, but also to recover at least partially the merging history of our galaxy.

References

Bergström L. 2000, Rep. Prog. Phys. 63, 793
Freese K., Frieman J., Gould A. 1988, Phys. Rev. D, 37, 3388
Green A.M. 2001, Phys. Rev. D, 63, 043005
Helmi A., White S.D.M., Springel V. 2001, in preparation
Hogan C. 2001, astro-ph/0104106
Moore B. 2001, Calcaneo-Roldan C., Stadel J., Quinn T., Lake G., Ghigna S., Governato F. 2001, Phys. Rev. D. in press
Peebles P.J.E. 1974, ApJ, 189, L51
Springel V., White S.D.M., Tormen G., Kauffmann G. 2001, MNRAS in press
White S.D.M., Rees M.J. 1978, MNRAS, 183, 341