Phase velocity to distance conversion in machine location of array recorded teleseismic events

S. K. ARORA, RAM DATT and T. K. BASU
Bhabha Atomic Research Centre, Bombay

(Received 16 March 1974)

ABSTRACT. In on-line deployment of small computer systems with limited machine capability, the object of locating seismic sources at least in the teleseismic distance range essentially requires, besides azimuth, accurate deduction of epicentral distance from apparent phase velocity in minimum operational steps. It has been shown that a seventh order polynomial in positive powers of apparent P-velocity yields reasonably precise distance estimates. The merits of this optimum relation have also been discussed in the light of its application to the Gauribidanur Array real-time processing system.

1. Introduction

The phase velocity due to a plane wave traversing a group of detectors placed in one horizontal plane, viz., an array of seismometers, varies non-linearly with epicentral distance. The velocity tends to increase, generally, with increasing distance owing to decreasing angle of emergence at the surface. For example, the phase velocity of P wave due to a nearly surface-focus source increases from about 10 km/sec at 20° to about 24.5 km/sec at 100° (Herrin 1968).

In off-line analysis, the epicentral distance corresponding to a known value of phase velocity is obtained from the digitized distance-velocity curve with reasonable precision. However, in on-line applications using systems with limited machine capability, e.g., the TDC 12 real-time processing system at Gauribidanur Array (Ram Datt and Dilip Kumar 1973), it is desirable to express the distance-velocity function as a polynomial which can be easily incorporated in the form of a library routine to reproduce the distances as best as possible.

Further, to economise on machine time, an optimum polynomial is sought for where-in the low order of the function is compromised with a satisfactory limit of conversion accuracy throughout the range of distance. In the present case, better than 1/2° accuracy is considered quite satisfactory for our application for distances ranging between 20° and 100°.

An attempt has been made to quantitatively assess the implications of fitting polynomials both in positive and negative powers of phase velocity beginning with a least-squares line up to 12th order expressions. On the basis of merits of the fit, it has been found that the 7th order polynomial in positive powers of velocity represents optimum conditions beyond which order no significant reduction in error (departure from true values) in the deduced distance is achieved. Under this conversion scheme, the coefficient system converges fast so that the source location procedure becomes relatively more reliable and economical in terms of computer time.

2. Phase velocity across the array

The basic parameter in the source location is the pair of time lags along the lines of equi-spaced (2.5 km) seismometers of the L-shaped medium-aperture (about 25 km × 25 km) Gauribidanur Array (GBA). Obviously, the closer to the true values the computed lag pair is, the higher is the accuracy of epicentral location for teleseismic events. A lag is governed by the component, along the arm, of the velocity of propagation in the plane of the array as well as on the interelement spacing D. The horizontal velocity, different from the actual velocity with which the wave travels in the earth’s interior, is the apparent phase velocity V_a we are referring to.

An expression for V_a in terms of the two lags T_R and T_B is given by (Arora 1967, 1971):

$$V_a = \frac{V_R}{V_R + V_B} \left(\frac{V_R^2 + V_B^2}{2}\right)^{-1/2}$$

where V_R and V_B are the component velocities along the R- and the B-arm respectively. From the point of view of velocity and azimuthal discrimination of signals (Birtill and Whiteway 1965) the reliability factor tends to diminish as the incident wave approaches to coincide with any one of the arms, a zero lag being associated with infinite apparent speed.

In the case of digitized seismic data, the expression for V_a reduces to (Ram Datt et al. 1969):
Δ	V_a	Δ	V_a	Δ	V_a	Δ	V_a
20.0	9.8494	20.5	10.0625	21.0	10.2849	21.5	10.5113
22.0	10.7312	22.5	10.9431	23.0	11.1520	23.5	11.3565
24.0	11.5518	24.5	11.7533	25.0	11.8953	25.5	12.0347
26.0	12.1538	26.5	12.2532	27.0	12.3339	27.5	12.5958
28.0	12.4307	28.5	12.4602	29.0	12.4843	29.5	12.4579
30.0	12.5087	30.5	12.5402	31.0	12.5752	31.5	12.6113
32.0	12.6409	32.5	12.6792	33.0	12.7148	33.5	12.7535
34.0	12.7938	34.5	12.8358	35.0	12.8787	35.5	12.9227
36.0	12.9690	36.5	13.0170	37.0	13.0693	37.5	13.1230
38.0	13.1776	38.5	13.2390	39.0	13.2861	39.5	13.3396
40.0	13.3931	40.5	13.4472	41.0	13.5021	41.5	13.5382
42.0	13.6148	42.5	13.6722	43.0	13.7310	43.5	13.7908
44.0	13.8519	44.5	13.9140	45.0	13.9768	45.5	14.0405
46.0	14.1060	46.5	14.1736	47.0	14.2434	47.5	14.3149
48.0	14.3887	48.5	14.4584	49.0	14.5294	49.5	14.6096
50.0	14.6695	50.5	14.7395	51.0	14.8094	51.5	14.8794
52.0	14.9408	52.5	15.0705	53.0	15.0926	53.5	15.1650
54.0	15.2410	54.5	15.3167	55.0	15.3929	55.5	15.4697
56.0	15.5481	56.5	15.6335	57.0	15.7106	57.5	15.7941
58.0	15.8790	58.5	15.9612	59.0	16.0438	59.5	16.1257
60.0	16.2061	60.5	16.2849	61.0	16.3626	61.5	16.4395
62.0	16.5159	62.5	16.5535	63.0	16.6373	63.5	16.7265
64.0	16.8416	64.5	16.9285	65.0	17.0166	65.5	17.1056
66.0	17.1950	66.5	17.2832	67.0	17.3729	67.5	17.4629
68.0	17.5694	68.5	17.6542	69.0	17.7551	69.5	17.8618
70.0	17.9779	70.5	18.1029	71.0	18.2314	71.5	18.3611
72.0	18.4912	72.5	18.6185	73.0	18.7412	73.5	18.8894
74.0	18.9756	74.5	19.0012	75.0	19.0963	75.5	19.3231
76.0	19.4434	76.5	19.5603	77.0	19.7030	77.5	19.8456
78.0	19.9890	78.5	20.1331	79.0	20.2803	79.5	20.4297
80.0	20.5783	80.5	20.7204	81.0	20.8766	81.5	21.0298
82.0	21.1833	82.5	21.3500	83.0	21.5457	83.5	21.7462
84.0	21.9506	84.5	22.1513	85.0	22.3445	85.5	22.5323
86.0	22.6854	86.5	22.8366	87.0	22.9746	87.5	23.1077
88.0	23.2997	88.5	23.3613	89.0	23.4747	89.5	23.5772
90.0	23.6076	90.5	23.7474	91.0	23.8292	91.5	23.8888
92.0	23.9351	92.5	24.0198	93.0	24.0892	93.5	24.1345
94.0	24.1823	94.5	24.2234	95.0	24.2577	95.5	24.2869
96.0	24.3108	96.5	24.3394	97.0	24.4369	97.5	24.5666
98.0	24.3008	98.5	24.3014	99.0	24.3619	99.5	24.3619

Δ = Epicentral distance (degrees)

\[
V_a = \frac{D}{\delta t} (N_R^2 + N_B^2)^{-1/2}
\]

(2)

where δt is the sampling interval, N_R and N_B are integer numbers proportional to the corresponding lags and satisfy the relations:

\[
T_B = N_B \delta t \quad T_B = N_B \delta t
\]

(3)

It follows therefore that in the digital approach while the resolution in V_a depends upon the sampling rate, the precision in V_a estimate depends upon the accuracy with which N_R and N_B are determined and hence upon the signal correlation across the array. Improvements in the lag estimates can be achieved by using an interpolation method so as to obtain an epicentre from the continuous distribution of points on the globe. In the GBA on-line system, once the arrival of a seismic signal is detected, control is transferred to a background program which estimates the lag pair and
computes the epicycral distance together with the probable error in the computed distance.

3. Distance deduction : Polynomial fitting

We seek to obtain an nth order polynomial of the form:

\[\Delta = A_0 + A_1 V_a + \ldots + A_n V_a^n \]

(4)

where \(\Delta \) is the epicycral distance, and \(A_0, A_1, \ldots, A_n \) are \(n+1 \) real coefficients. The set of a total of \(N, N=161 \), data points \([\Delta, (V_a)]\) in the range \(20^\circ < \Delta < 100^\circ \) are derived (Arora and Krishnan 1970) from the Herrin's surface-focus \(P \) travel-times at \(\frac{1}{2}^\circ \) interval and are shown in Table 1. The sum of error square function \(S \) of reproduction of \(\Delta \) is given by:

\[S = \sum_{i=1}^{N} [A_0 + A_1 (V_a) + \ldots + A_n (V_a^n)]^2 - \Delta_i^2 \]

(5)

For minimising \(S \), we take partial d.c.'s w.r.t. each coefficient and equate each of them to zero. Thus

\[A_0 \sum_i (V_a) + A_1 \sum_i (V_a^2) \ldots + A_n \sum_i (V_a^n) = \sum_i \Delta_i \]

(6)

The set of Eqns. (6) can be solved by inverting the non-singular square matrix of order \(n+1 \)

\[
\begin{bmatrix}
N \\
\sum_i (V_a) \\
\sum_i (V_a^2) \\
\sum_i (V_a^n)
\end{bmatrix}
\]

and pre-multiplying it with the column vector (8). The solution matrix is the vector of \(n+1 \) elements (9):

\[
\begin{bmatrix}
\sum_i \Delta_i \\
\sum_i (V_a) \Delta_i \\
\ldots \\
\sum_i (V_a^n) \Delta_i
\end{bmatrix}
\]

(8)

\[
\begin{bmatrix}
A_0 \\
A_1 \\
\ldots \\
A_n
\end{bmatrix}
\]

(9)

A computer routine SOLVER, which incorporates matrix inversion and matrix multiplication, has been written for the BBSM-6 computer to perform the above job. Polynomials up to 12th order have been fitted through the entire range \(20^\circ < \Delta < 100^\circ \) in powers of \(V_a \) as well as \(1/V_a \) and the results showing the errors in computed \(\Delta \) together with the standard deviation in this error are presented in Table 2.

4. Discussion

As shown in Table 2, we have calculated departures from the true values in the reproduced values of \(\Delta \) over three distinct ranges, viz., \(20^\circ < \Delta < 28^\circ \), \(28^\circ < \Delta < 88^\circ \) and \(88^\circ < \Delta < 100^\circ \), of the Herrin's velocity function using \(V_a \) as well as \(1/V_a \) data. From these computations it appears that a seventh order polynomial (Fig. 1) in \(V_a \) is reasonably satisfactory for our purpose. In comparison, the optimum polynomial in \(1/V_a \) goes to eighth order. Besides, the chain of coefficients in the \(V_a \) case is found to be highly convergent while that in the \(1/V_a \) case is highly divergent (Table 3). Under the circumstances the seventh order polynomial in \(V_a \) becomes more tempting to use, particularly when a single polynomial is needed for use in small on-line computer systems to yield best possible results throughout the range.

Although the polynomial fitting ideally serves to give \(\Delta \) to within \(\frac{1}{2}^\circ \) accuracy, the errors in basic parameter \(V_a \) generally creeps in due to following main reasons which may affect the source location.

(i) Surface-focus assumption, (ii) Limited directional response of the medium-aperture I-pattern of the array, (iii) Lateral inhomogeneities in the receiver crust and the possible effects, though small, of a layered crust on the arrival angles and hence on the apparent velocity (Nuttli 1964, Hasegawa 1971, Brown and Enayatollah 1973).

The basic Fortran compiler of the TDC-12 with 12-bit word length permits usage of number
Table 2

Comparative estimate of departure from true values in computed Δ using a single polynomial fit with (i) positive powers of V_{a} and (ii) negative powers of V_{a}

- $n =$ Order of polynomial; $\sigma(a)_{a,b} =$ True minus computed Δ in the range a to b of Δ

n	$\sigma(n)_{a,28}$	$\sigma(n)_{b,28}$	$\sigma(n)_{a,100}$	With powers of V_{a}	With powers of $1/V_{a}$
1	-0.51 ± 2.19	1.37 ± 3.59	-3.37 ± 2.00	3.17 ± 8.01	-1.08 ± 0.88
2	0.41 ± 4.62	-0.14 ± 1.68	0.66 ± 2.72	-0.71 ± 4.36	0.03 ± 1.74
3	-0.28 ± 4.76	0.14 ± 1.64	16.58 ± 2.67	-0.98 ± 2.24	0.17 ± 1.39
4	0.91 ± 1.89	0.15 ± 0.96	-0.23 ± 1.33	-0.67 ± 2.60	-0.11 ± 0.84
5	-0.80 ± 1.65	0.13 ± 0.90	-0.22 ± 1.57	-0.57 ± 1.23	0.06 ± 0.85
6	-0.29 ± 2.01	0.05 ± 0.33	-0.11 ± 0.12	-0.59 ± 1.29	0.06 ± 0.85
7	-0.47 ± 1.55	0.05 ± 0.62	-0.01 ± 0.87	-0.19 ± 1.77	0.04 ± 0.52
8	-0.48 ± 1.32	0.07 ± 0.62	-0.07 ± 0.96	-0.28 ± 0.85	0.06 ± 0.48
9	-0.29 ± 1.10	0.02 ± 0.42	0.05 ± 0.73	-0.28 ± 0.85	0.06 ± 0.48
10	-0.25 ± 1.16	0.03 ± 0.39	-0.14 ± 0.75	-0.19 ± 1.12	0.05 ± 0.41
11	-0.04 ± 1.06	2.17 ± 2.42	12.90 ± 1.27	1.28 ± 1.14	0.27 ± 0.35
12	0.90 ± 0.96	14.33 ± 17.53	96.40 ± 9.29	23.95 ± 14.32	3.74 ± 3.32

*Most optimum order of polynomial in powers of V_{a}

† Most optimum order of polynomial in powers of $1/V_{a}$

Table 3

Values of coefficients pertaining to the optimum polynomial (see Table 2), in powers of V_{a} and $1/V_{a}$, beginning from 0th order term

Coefficient	Value Base 10 exp.	Function of V_{a}	Value Base 10 exp.	Function of $1/V_{a}$
A_{0}	-4.65892 3	1.046101 5	A_{0}	-4.65892 3
A_{1}	2.58129 3	-1.21803626 7	A_{1}	2.58129 3
A_{2}	-6.738 2	0.5818902880 8	A_{2}	-6.738 2
A_{3}	0.738 1	-8.853200073666 10	A_{3}	0.738 1
A_{4}	-4.55 0	-3.4339045615737 11	A_{4}	-4.55 0
A_{5}	1.8 1	-8.4967139703572 12	A_{5}	1.8 1
A_{6}	-3.8 0	-8.902280118289496 13	A_{6}	-3.8 0
A_{7}	3.4 0	-1.121374611833774 14	A_{7}	3.4 0

References

Arora, S. K.
Arora, S. K. and Krishnan, C. A.
Birtill, J. W. and Whiteway, F. E.
Brown, R. J. and Enayatollah, M. A.
Hasegawa, H. S.
Herrin, E.
Nuttli, O. W.
Ram Datt and Dilip Kumar
Ram Datt, Manohar, A. M. and Varghese, T. G.

1967 Some computations for data from linear-cross seismic arrays, BARC Rep. No. 390, 25 pp.
1971 Bull. Seismol. Soc. Amer., 61, pp. 671-683.
1970 Revised lag tables for array analysis, BARC Rep. No. 1/59, 40 pp.
1965 Phil. Trans. Roy. Soc. Lond., Series A, Math., Phys Sciences, 258 (1091), 421-493.
1973 Pure Appl. Geophys., 109 (VIII), 1838-1852.
1971 Bull. Seismol. Soc. Amer., 61, pp. 1303-1329.
1968 Ibid., 38, pp. 1103-1241.
1964 Ibid., 54, pp. 141-149.
1973 J. Computer Soc. India, 4, 1-15.
1969 Proc. Symp. Use of Gauribidanur Array data for Seismological Research, Gauribidanur Array Centre, July 4-5, 130-139.

Acknowledgement — We are thankful to Mr. T. G. Varghese for critically going through the paper and providing helpful discussion.