Soluble Expression, Protein Purification and Quality Control of Recombinant Porcine Interferon-α

Jun ZHAO 1,2,3†  Hai-yang YU 2†  Lin GAN 2,3  Yu ZHAO 1,3  Shu-qi LI 1,3  Xiu-le FU 1,3  Ming-li WANG 1,2,3*  Jason CHEN 2,4

† Jun Zhao and Hai-yang Yu contributed equally to this study and should be considered as co-first authors
1 Wuhu Overseas Students Pioneer Park, Wuhu, Anhui Province, 241000, CHINA
2 Department of Microbiology, Anhui Medical University, Hefei, Anhui Province, 230032, CHINA
3 Anhui JiuChuan Biotech Co., Ltd, Wuhu, Anhui Province, 241007, CHINA
4 Department of Pathology & Cell Biology, Columbia University, New York, 10032, USA

Article Code: KVFD-2017-17372    Received: 04.02.2017    Accepted: 29.05.2017   Published Online: 30.05.2017

Abstract
Herein, we reported an Escherichia coli-based expression and purification method of recombinant porcine interferon alpha (rPoIFN-α). PoIFN-α coding sequence was cloned into pMD18-T vector and then subcloned into pET-32a (+) vector using standard recombinant DNA techniques and the resulting plasmid was transformed into BL21(DE3) competent cells. After induction with isopropyl-β-D-1-thiogalactopyranoside (IPTG), rPoIFN-α was purified from the supernatant of the bacteria lysate using a simple two-step chromatography process consisting of a Ni2+ affinity chromatography and a DEAE anion exchange chromatography. rPoIFN-α was purified to >95% homogeneity with a yield of 48 mg/L of culture. It has isoelectric point of 6.09 and bacterial endotoxin was less than 1 EU/mg. N-terminal amino acid sequence and the peptide map digested by trypsin provided additional evidence for the authenticity of rPoIFN-α. The biological activity of rPoIFN-α was 1.1×10⁶ IU/mL in HEp-2/ Vesicular Stomatitis Virus (VSV) titration system and its specific activity reached to 1.0×10⁶ IU/mg. In conclusion, we obtained high-level expression of a soluble form of bioactive rPoIFN-α by using pET-32a (+) prokaryotic expression system.

Keywords: Soluble expression, Protein purification, Quality control, Porcine interferon-α, Vesicular Stomatitis Virus (VSV)

INTRODUCTION
Among type I Interferons (IFNs), IFN-α plays important roles in inhibition of viral replication [1]. Previously, recombinant IFN-α has been successfully expressed in prokaryotes, eukaryotes and baculovirus [2-4]. However, the function of the E. coli expressed products was constrained by protein misfolding [1]. The protein expressed in Pichia...
Expression and Purification of rPoIFN-α was readily degradable. The baculovirus expression system does not sustain continuous high level expression.

In the present study, we represented the expression, purification, and quality control scheme for producing bioactive rPoIFN-α in large scale. It will facilitate the biological research and clinical application of porcine IFN-α.

MATERIAL and METHODS

Bacterial Strains, Reagents and Cell lines

Molecular biology reagents were purchased from TaKaRa Biotech (TaKaRa, Dalian, China). The Ni²⁺ His-bind resin and DEAE-Sepharose Cl 6B column were obtained from GE Healthcare (Piscataway, NJ, USA). The mouse anti-PoIFN-α monoclonal antibody was purchased from Abcam (ab11408, Abcam, Cambridge, UK). The pET-32a (+) vector, E. coli DH5α, E. coli BL21 (DE3), and HEp-2 cell line were preserved in our laboratory.

Porcine IFN-α cDNA Cloning

Total RNA was extracted from peripheral white blood cells of a 6-month-old Bamei pig and was then reverse transcribed to cDNA. The primer sequences for RT-PCR of PoIFN-α (NCBI accessing number AY345969) were 5'-GGAATTC ATGTGTGACCTGCCTCAG-3' (forward) and 5'-CTCGAG TCACTCCTTCTTCCTGAGT-3' (reverse) which included EcoRI and XhoI sites (underlined). The amplification length was 501 bp, and it did not include the signal peptide sequence. The RT-PCR product was cloned into pMD-18T vector and the resulted recombinant plasmid was further confirmed by PCR and DNA sequencing, The final product was named as pMD18T-PoIFN-α.

Expression Vector Construction

The inserted PoIFN-α gene in pMD18T-PoIFN-α was digested by EcoRI and XhoI, and was then ligated into the pET-32a (+) plasmid. The authenticity, orientation and reading frame of the recombinant plasmid pET-32a (+)-PoIFN-α was verified by DNA sequencing.

Expression of PoIFN-α Protein

The plasmid pET-32a (+)-PoIFN-α was transformed into competent E. coli BL21 (DE3). The bacteria were cultured in LB medium at 37°C to a density of OD₆₀₀=0.6. After 4 h induction by IPTG, the bacteria were collected and resuspended in lysis buffer for sonication. The lysate was then centrifuged and the supernatant and pellet were collected separately.

Purification of rPoIFN-α Protein

The rPoIFN-α protein in the supernatant of cell lysate was purified with Chelating Sepharose Fast Flow Ni²⁺ chromatography (GE Healthcare, Piscataway, NJ, USA) following the protocol from the manufacturer. The chromatogram were shown in Fig. 2A and Fig. 2B.

Determination of Protein Concentration and Purity

The protein concentration was determined by the Bradford method. Reversed-phase high-performance liquid chromatography (RP-HPLC) analysis was used to determine the purity of the purified rPoIFN-α product. The integrity and specificity of the purified proteins were demonstrated by Western blot assay.

Mass Spectrometry Analysis

The purified protein was further analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS). Mass analysis was performed using a Voyager DE-STR Biospectrometry™ Workstation (Applied Biosystems, Foster City, CA, USA).

Determination of rPoIFN-α Biological Activity

A cytopathic effect inhibition based IFN-α bioassay was used to evaluate the ability of the recombinant protein to protect HEp-2 cells from VSV infection. Data were expressed as mean unit (U)/mL, where 1 unit of IFN-α activity was defined as the reciprocal of the dilution producing 50% inhibition of CPE. The titer of sample IFN, was determined by the Reed-Muench method as previously described.

Other Quality Control Measurement of rPoIFN-α

The peptide map, isoelectric point, endotoxin, ultraviolet spectroscopy, and N-terminal amino acid sequencing of rPoIFN-α were all determined according to the guidelines in Veterinary Pharmacopoeia of People’s Republic of China (2010 edition).

RESULTS

Soluble Expression of Recombinant Protein pET-32a (+)-PoIFN-α

The rPoIFN-α protein was over expressed as shown by a dominant band of 35.0 kDa in Coomassie blue stained PAGE gel. Besides, the over-expressed protein in the E. coli culture was found majorly in the supernatant, not in the pellet. By SDS-PAGE analysis, the expressed recombinant protein constituted to 32% of the total cellular protein, or 48 mg/L in E. coli culture.

Purification of pET-32a (+)-PoIFN-α Protein

In the supernatant of cell lysate, it was shown a single protein peak by Ni²⁺ affinity chromatography and by DEAE anion exchange chromatography. The result of purification by HPLC showed that there was a dominant protein peak with purity of 95.5%
Western blot analysis with anti-PoIFN-α monoclonal antibody showed a non-enterokinase digested protein product at 35 kDa (Fig. 2D) and a enterokinase digested PoIFN-α protein at 19.3 kDa (Fig. 2D), consistent with that in SDS-PAGE gel (Fig. 1C).

The purification chart of rPoIFN-α from 300 mL of bacterial culture showed that the recombinant rPoIFN-α was purified to 4.9 fold by the two-step purification procedure and its specific activity reached to $1.0 \times 10^6$ IU/mg (Table 1A).

**Bioactivity of Purified rPoIFN-α**

The results showed that HEp-2 cells pretreated with 1 U of purified rPoIFN inhibited 50% of VSV infection.
Expression and Purification of rPoIFN-α

The antiviral activity of the final rPoIFN-α protein was determined as 1.1×10⁶ IU/ml by the bioactivity assay. The inhibitory activity of rPoIFN-α on VSV replication in culture was dose dependent. The dose-response curve of interferon in HEp-2/VSV system was shown in Fig. 3B.

Study on Quality Control of rPoIFN-α

The primary structure of purified rPoIFN-α was confirmed by N-terminal sequencing and Mass Spectrometry analysis (Table 1B). Also, the recombinant molecules appeared to be homogenous by reversed-phase HPLC analysis and gel filtration (Fig. 2C) with no signs of aggregation (data not shown). The results of rPoIFN-α analysis of quality control are summarized in Table 1B.

DISCUSSION

In the production of recombinant protein in heterologous expression systems, solubility is a key issue. Soluble recombinant proteins are usually properly folded, functional and they are much easier to be purified than aggregated proteins obtained from inclusion bodies.

The pET is one of the most powerful systems yet developed for the expression of the recombinant proteins in E. coli. The pET32 series were fused with the 109 amino acid Trx•Tag™ thioredoxin protein which is a solubilization tag that assists in the proper folding of the expressed peptides and keeps them from precipitating. This vector also contains cleavable His•Tag® and S•Tag™ sequences for detection and purification. Through the use of combination
of pET-32a (+) vector and BL21(DE3) host cell, the desired expression product can comprise more than 30% of the total cell proteins in a few hours after induction [3].

In summary, the present study demonstrated that a functional porcine IFN-α protein was expressed in E. coli in a soluble form. The recombinant protein was readily purified by a two-step chromatographic procedure. Its authenticity and bioactivity were verified by multiple tests of quality control. This protein could be further expected for mass production and clinical applications of rPoIFN-α.

Acknowledgements

The research was supported by the research programs of The National Spark Program of China, (No. 2013GA710060 and No. 2014GA710014) and the programs from the Scientific Support Project of Anhui Province Education Department (No. KJ2012ZD08, KJ2012Z162) and The Innovation Fund Technology Based Firms in China (No. 12C26213403428)

REFERENCES

1. Taylor KE, Mossman KL: Recent advances in understanding viral evasion of type I interferon. *Immunology*, 138, 190-197, 2013. DOI: 10.1111/imm.12038

2. Wang YB, Wang ZY, Chen HY, Cui BA, Wang YB, Zhang HY, Wang R: Secretory expression of porcine interferon-gamma in baculovirus using HBM signal peptide and its inhibition activity on the replication of porcine reproductive and respiratory syndrome virus. *Vet Immunol Immunopathol*, 132, 314-317, 2009. DOI: 10.1016/j.vetimm.2009.05.017

3. Lefèvre F, L’Haridon R, Borras-Cuesta F, La Bonnardièr C: Production, purification and biological properties of an Escherichia coli-derived recombinant porcine alpha interferon. *J Gen Virol*, 71, 1057-1063, 1990. DOI: 10.1099/0022-1317-71-5-1057

4. Yu R, Dong S, Zhu Y, Jin H, Gao M, Duan Z, Zheng Z, Shi Z, Li Z: Effective and stable porcine interferon-alpha production by Pichia pastoris fed-batch cultivation with multi-variables clustering and analysis. *Bioprocess Biosyst Eng*, 33, 473-483, 2010. DOI: 10.1007/s00449-009-0356-3

5. Liu ZQ, Yang PC: Construction of pET-32 α (+) Vector for Protein Expression and Purification. *N Am J Med Sci*, 4, 651-655, 2012. DOI: 10.4103/1947-2714.104318

6. Kruger NJ: The Bradford method for protein quantitation. *Methods Mol Biol*, 32, 9-15, 1994. DOI: 10.1385/0-89603-268-X:9

7. Armstrong JA: Cytotoxic effect inhibition assay for interferon: Microculture plate assay. *Methods Enzymol*, 78, 381-387, 1981. DOI: 10.1016/0076-6879(81)78145-X

8. Reed LJ, Muench H: A simple method of estimating 50 percent end points. *Am J Hyg*, 27, 493-497, 1938.

9. Commission of Chinese Veterinary Pharmacopoeia: Veterinary Pharmacopia of the People's Republic of China. 2010 edn., Part I, Appendix 26-130, China Agriculture Press, Beijing, 2010.