Wave Function Collapse in a Mesoscopic Device

G.B. Lesovika, A.V. Lebedeva, and G. Blatterb
aL.D. Landau Institute for Theoretical Physics RAS, 117940 Moscow, Russia and
bTheoretische Physik, ETH-H"{o}nggerberg, CH-8093 Z"{u}rich, Switzerland

(Dated: December 29, 2021)

We determine the non-local in time and space current-current cross correlator $\langle \hat{I}(x_1,t_1)\hat{I}(x_2,t_2) \rangle$ in a mesoscopic conductor with a scattering center at the origin. Its excess part appearing at finite voltage exhibits a unique dependence on the retarded variable $t_1 - t_2 - (|x_1| - |x_2|)/v_F$, with v_F the Fermi velocity. The non-monotonic dependence of the retardation on x_1 and its absence at the symmetric position $x_1 = -x_2$ is a signature of an instantaneous wave function collapse, which thus becomes amenable to observation in a mesoscopic solid state device.

The recent years have seen a confluence of interests in quantum optics and condensed matter physics. This trend is particularly apparent in the field of quantum information science \cite{4}, where quantum optical as well as mesoscopic nanoscale devices are being designed and implemented as potential hardware components for quantum computing. Besides this technological aspect, fundamental questions traditionally investigated in quantum optical setups \cite{2} are now being implemented in mesoscopic structures. Examples are the recent proposals for solid state entanglers \cite{6} and their potential use in testing Bell inequalities \cite{5} or the fermionic implementation \cite{3} of Hanbury-Brown-Twiss type experiments testing for particle correlations induced by their statistical properties. Another fundamental issue is the measurement process and the associated collapse of the wave function.

In our theoretical analysis below we stay within the framework set by the orthodox interpretation of quantum mechanics, the wave packet reduction is introduced as an independent postulate within the context of the measurement process \cite{9}. While the ordinary time evolution of a quantum system follows the dynamics described by the Schr"{o}dinger equation, the measurement process involves an instantaneous projection onto the pointer basis of the measurement device. Attempts to bind the wave function collapse into the conventional frame of unitary time evolution have been made, particularly in model systems describing a quantum degree of freedom coupled to a reservoir \cite{10}, but with limited success so far. The experiment suggested and analyzed below will be suitable to separate an instantaneous collapse from one carrying its own dynamics through the measurement of retardation effects.

According to usual expectations, the detection of an individual particle induces a wave function collapse, however, no useful quantitative information on the collapse itself can be extracted from such an isolated measurement. On the other hand, the wave packet reduction appears naturally in von Neumann’s prescription of repeated measurements \cite{10}, motivating its experimental observation through repeated detection. In today’s context this is realized in the measurement of correlators, e.g., the current-current correlators (noise) $\langle \hat{I}(t)\hat{I}(0) \rangle$ in a mesoscopic device. In such an experiment, the second measurement tests the change in state induced by the first measurement and hence carries the signature of the wave function collapse.

In our theoretical analysis below we stay within the framework set by the orthodox interpretation of quantum mechanics. We determine the current cross correlator...
within the second quantized formalism which treats the wave function collapse as an instantaneous and nonlocal process. Accordingly, our result carries the signature of an instantaneous collapse as expressed through a vanishing delay time between the appearance of particles (electrons) in one place and the vanishing of their quantum-alternative partners (appearance of holes) in the other place. On the other hand, one expects that a collapse involving its own dynamics, e.g., the unitary Schrödinger evolution, naturally leads to a finite delay which will show up in the noise experiment. Hence the proposed experiment provides quantitative information on the properties of the wave function collapse in a mesoscopic device.

To fix ideas, consider a particle wave incident from a source lead ‘s’ and split with amplitudes t_{su} and t_{sd} into the upper (‘u’) and lower (‘d’) arms of a fork device, see Fig. 1(a). We emphasize that it is the unitary evolution dictated by wave mechanics which determines the propagation of particles into the two arms. For the time being, we ignore the possibility that the splitter projects the particles and distributes them into the two arms via a classical random process, i.e., we assume that there is no object in the splitter associated with a local hidden variable. This assumption has to be checked in the experiment and we will return back to this point later.

Hence before any measurement, the particles propagate in terms of waves and are delocalized between the two arms. A measurement of the current in one of the arms, say ‘u’, projects the wave function and the subsequent evolution is in terms of particle streams, see Fig. 1(a). Note that we only need one measurement to project the waves to particle streams in both arms. However, in order to detect the (instantaneous) collapse of the wave function, we have to perform two measurements in the two arms allowing us to observe the coincidence between a particle missing in one arm and the additional particle propagating in the other arm. Such an experiment can be realized efficiently if detectors are used which react on the presence of particles in one arm and holes in the other arm. The observation of a perfect coincidence between the appearance of particles and their partner holes then is a demonstration of the instantaneous reduction of the wave function in this setup.

The information that can be extracted from the noise experiment depends crucially on its time resolution. E.g., one may deliberately separate (in time) the stream of coincident events, i.e., particles and holes in ‘d’ and ‘u’, by choosing an asymmetric splitter with a small transmission $T_{sd} = |t_{sd}|^2$ into one of the arms; this type of splitter has been introduced by Beenakker et al. in a recent proposal for the measurement of the degree of entanglement in a many body wave function. A detector with limited temporal and/or spatial resolution then is still capable of detecting individual events and thus can serve in this type of coincidence experiment; however, the limited resolution restricts the analysis of the wave function collapse and its intrinsic dynamics. On the other hand, if detectors with high resolution are used in the measurement of cross-correlators (of either current or density) a finite frequency/short time measurement can trace the signature of the wave function collapse for any value of the transmission $|t_{su}|^2$. Furthermore, a high resolution provides quantitative details on the collapse itself; in particular, it allows to determine accurately the delay time involved in the collapse and hence an instantaneous collapse can be distinguished from a dynamical one. Typical parameters used in mesoscopic setups involve time scales of order GHz and length scales of order micrometers — one then easily checks that a dynamical collapse involving the Fermi velocity and beyond can be resolved, while a dynamical collapse involving a (super)luminal velocity is beyond the attainable resolution.

The above idea for a direct measurement of the wave function collapse can be implemented with different types of mesoscopic experiments: a) a beam splitter in a fork geometry can be realized with the help of electrostatic gates structuring a two-dimensional electron gas as done in Ref. 2, b) a nearly ideal splitter can be realized in a quantum Hall setup with a split gate, and c) use can be made of a simple quantum wire with a localized scatterer where the two arms correspond to the backward and forward scattering channels, see Fig. 1(c). First, we concentrate on the last example 12, i.e., the quantum wire, and determine the irreducible current-current cross-correlator

$$C_{x_1,x_2}(t_1 - t_2) \equiv \langle \hat{I}(x_1,t_1)\hat{I}(x_2,t_2) \rangle, \quad (1)$$

with the signal measured once on the same side of the scatterer ($x_1x_2 > 0$) and subsequently on opposite sides ($x_1x_2 < 0$). In the coherent conductor studied here, the excess noise $C_{x_1,x_2}^{\text{ex}}(\tau;V) \equiv C_{x_1,x_2}(\tau;V) - C_{x_1,x_2}(\tau;V = 0)$ is entirely due to the quantum shot noise; the latter has been intensely studied during the past years 13. Most of these studies have concentrated on the low-frequency limit, identifying quasi-particle charges 14 or anti-bunching of fermions 15, to name two well-known examples. While the partitioning of the particle beam due to the reduction of wave packets was clearly identified as the source of shot noise 13 this aspect has never been analyzed in detail. The most interesting result is found for the measurement involving current fluctuations on opposite sides of the barrier: we find that the excess noise $C_{x_1,x_2}^{\text{ex}}(\tau)$ depends on a spatially retarded variable with the particular form $\tau - \tau^-$ where $\tau^- = (|x_1| - |x_2|)/v_F$, see Fig. 1(b). This should be contrasted with the ballistic retardation appearing in the equilibrium noise $C_{x_1,x_2}(\tau;V = 0)$ and exhibiting the causally retarded dependence $\tau - \tau^+$ with $\tau^+ = (|x_1| + |x_2|)/v_F$ involving the ratio of the travelling distance and the Fermi velocity. This latter type of retardation has to be expected due to the relation between the equilibrium correlator and the (causally retarded) linear response function enforced by the fluctuation-dissipation theorem. On the
contrary, the particular dependence on $\tau - \tau^-$ appearing in C^{ex} identifies the presence of instantaneous correlations between spatially separated events, which we interpret as arising from the instantaneous collapse of the wave function.

We now turn to the derivation of the above results and determine the excess noise in the current-current cross-correlator. We concentrate on the geometry sketched in Fig. 1(c) and define the field operators (for one spin component; $v_e = \sqrt{2m\epsilon_e}$)

$$
\hat{\Psi}_{x < 0} = \int \frac{d\epsilon}{\sqrt{2\pi}\epsilon} \left[(e^{i\epsilon x} + r_e e^{-i\epsilon x}) \hat{a}_e + t_e e^{-i\epsilon x} \hat{b}_e \right] e^{-\frac{\epsilon^2}{2\epsilon_e}}
$$

$$
\hat{\Psi}_{x > 0} = \int \frac{d\epsilon}{\sqrt{2\pi}\epsilon} \left[t_e e^{i\epsilon x} \hat{a}_e + (e^{-i\epsilon x} + r'_e e^{i\epsilon x}) \hat{b}_e \right] e^{-\frac{\epsilon^2}{2\epsilon_e}}
$$

with \hat{a}_e (\hat{b}_e) the electronic annihilation operators for the left (right) reservoir and t, r, r' the usual scattering amplitudes. Substituting these expressions into the current operator $I(x, t) = (i\hbar/2m)[\partial_x \hat{\Psi}^\dagger(x) \hat{\Psi}(x) - \hat{\Psi}^\dagger(x) \partial_x \hat{\Psi}(x)]$ and using the standard scattering theory of noise, we obtain the expression for the current-current cross-correlator (1). We split the result into an equilibrium part $C^{eq}_{\tau_{12}}(\tau)$ and an excess part $C^{ex}_{\tau_{12}}(\tau)$ with $\tau = t_1 - t_2$; correlators evaluated at the same side of the scatterer are denoted by \hat{C}, those on opposite sides by C. Assuming $|\epsilon' - \epsilon| \ll eV \ll \epsilon_e$, with V the applied voltage and ϵ_e the Fermi energy, we drop terms small in the parameter $|\epsilon' - \epsilon|/\epsilon_e$ and find the result for $x_1x_2 < 0$ (the Fermi occupation numbers $n_l(\epsilon)$ and $n_R(\epsilon)$ denote the filling of the attached reservoirs),

$$
C^{eq}_{\tau_{12}}(\tau) = \frac{2e^2}{\hbar^2} \int d\epsilon d\epsilon' e^{i(\epsilon' - \epsilon)\tau/\hbar} \times [t_e^* t_e^* e^{i(\epsilon' - \epsilon)\tau^+} n_l(\epsilon') [1 - n_l(\epsilon)] + t_e^* t_e e^{-i(\epsilon' - \epsilon)\tau^+} / \hbar n_R(\epsilon') [1 - n_R(\epsilon)]],
$$

while the corresponding result evaluated on the same side of the scatterer ($x_1x_2 > 0$) takes the form

$$
C^{eq}_{\tau_{12}}(\tau) = \frac{2e^2}{\hbar^2} \int d\epsilon d\epsilon' e^{i(\epsilon' - \epsilon)\tau/\hbar} \times [t_e^* t_e^* e^{i(\epsilon' - \epsilon)\tau^-} / \hbar n_l(\epsilon') [1 - n_l(\epsilon)] + (e^{i(\epsilon' - \epsilon)\tau^-}/\hbar + R_e e^{-i(\epsilon' - \epsilon)\tau^-}/\hbar) n_R(\epsilon') [1 - n_R(\epsilon)] - (r_e^* r_e e^{i(\epsilon' - \epsilon)\tau^-}/\hbar + c.c.) n_R(\epsilon') [1 - n_R(\epsilon)]]
$$

The time dependence appearing in (2) and (3) involves the retardations

$$
\tau^\pm = \frac{|x_1| \pm |x_2|}{v_F}
$$

with v_F the Fermi velocity. The excess part $C^{ex}_{\tau_{12}}(\tau)$ is given by the expressions

$$
C^{ex}_{\tau_{12}}(\tau) = \frac{2e^2}{\hbar^2} \int d\epsilon d\epsilon' e^{i(\epsilon' - \epsilon)(\tau - \tau^-)/\hbar} \times [t_e^* t_e^* e^{i(\epsilon' - \epsilon)} [n_L(\epsilon') - n_L(\epsilon)] [n_R(\epsilon) - n_R(\epsilon)],
$$

$$
C^{ex}_{\tau_{12}}(\tau) = \frac{2e^2}{\hbar^2} \int d\epsilon d\epsilon' e^{i(\epsilon' - \epsilon)(\tau + \tau^-)/\hbar} \times [T_e^* R_e^* n_L(\epsilon') - R_e^* T_e n_L(\epsilon') [n_L(\epsilon) - n_R(\epsilon)],
$$

with the unique retardation τ^-. In the following, we drop the energy dependencies of the scattering amplitudes, allowing us to perform the integration over energies, and we find the simplified expressions (we denote the temperature by θ and assume $k_B = 1$)

$$
C^{eq}_{\tau_{12}}(\tau, \theta) = -\frac{2e^2}{\hbar^2} \alpha(\tau + \tau^+, \theta) + \alpha(\tau - \tau^+, \theta),
$$

$$
C^{ex}_{\tau_{12}}(\tau, \theta) = -\frac{2e^2}{\hbar^2} \alpha(\tau + \tau^+, \theta) + \alpha(\tau - \tau^+, \theta) - R_\alpha(\tau + \tau^+, \theta) + \alpha(\tau - \tau^+, \theta)],
$$

$$
C^{ex}_{\tau_{12}}(\tau, \theta) = \frac{8e^2\pi R}{\hbar^2} \sin^2 \left(\frac{\epsilon V(\tau - \tau^-)}{2\hbar} \right) \alpha(\tau - \tau^-, \theta),
$$

with the temperature dependence given by the expression

$$
\alpha(\tau, \theta) = \frac{\pi^2 \theta^2}{\sin^2 \left(\frac{\pi \theta \tau}{\hbar} \right)}; \text{ in the zero temperature limit this reduces to } \alpha(\tau, 0) = \hbar^2 / v_F^2.
$$

The singularity at $\tau \to 0$ is cutoff for $\tau < h/\epsilon_e$ and the equilibrium correlator changes sign as individual fermions extending over the Fermi wavelength λ_F are probed; proper calculation of this feature requires to account for the finite Fermi energy and bandwidth of the electron system. Quite remarkably, the excess noise is given by a unique expression and involves only the retardation τ^-. The above results apply for the quantum wire, cf. Fig. 1(b). The result for the excess noise is easily rewritten for the fork geometry in Fig. 1(a) by replacing the product of transmission and reflection probabilities TR by the product $-T_{su}T_{sd}$, with T_{su} and T_{sd} the transmission probabilities from the source lead ‘s’ into the upper (‘u’) and lower (‘d’) leads. The sign change is due to the current reversal as the reflected beam in the quantum wire is replaced by a second forward directed beam in the fork geometry.

Let us analyze the results in more detail. Consider first the equilibrium noise: The sign of the correlator follows from the fact that a, say positive, current fluctuation is followed by a compensating and hence negative excitation. The terms $\asymp 1$ and $\asymp R$ appearing in C^{eq} derive from correlations in the incident flow and between the incident and reflected flow, while C^{ex} measures correlations between the incident and transmitted waves and hence involves the transmission coefficient T, see the diagrams in Fig. 1(d). The signs are as expected from the above argument (note the sign change in the term $\asymp R$ due to the current reversal) and all retardations are causal involving the geometric distance between particle detection. The symmetry $\tau \leftrightarrow -\tau$ is due to the equivalence of the two reservoirs injecting particles symmetrically under equilibrium conditions.

The excess noise measures correlations between the transmitted and reflected particles, see Fig. 1(d). Its
retardation and sign are those expected assuming an instantaneous collapse of the wave function. I.e., projecting the wave by the detection of an electron at x_1 implies the instantaneous appearance of a hole at x_2 travelling in the opposite direction, thus resulting in a positive sign of C^∞ (note the change in sign when going from the point-contact to the fork geometry). Furthermore, the vanishing of the relaxation time τ^- right at the symmetric location $x_1 = -x_2$ is the hallmark of the instantaneous collapse of the wave function. On the other hand, the observation of a nonzero time delay (at the symmetric location $x_1 = -x_2$) would indicate the presence of a non-trivial dynamical element in the process of wave function collapse beyond the framework of the orthodox theory with its projection postulate. Hence measuring the excess noise in an experiment and comparing to our result allows to confirm or refute the instantaneous and nonlocal nature of the wave function collapse. Finally, the oscillations appearing in the excess noise are a consequence of the sharp Fermi surfaces, their scale $\delta \tau \sim h/eV$ being determined by the voltage shift eV between the reservoirs; a temperature $\theta > eV$ smears this sharp shift and the tails with their oscillations vanish exponentially $\propto e V^2/(2 \pi \tau \theta/h)$.

Above, we have emphasized the quantum nature of wave propagation in our determination of the excess noise. One may ask about the outcome of this experiment within a classical model of electronic transport, where the splitter randomly distributes the (ordered stream of) particles among the two arms of the fork (see Fig. 1(a)), or, in our geometry, in the forward and backward directions (see Fig. 1(c)). Indeed, particles sent into the forward direction then are correlated with missing particles (holes) in the backward flow and the correlator has the same sign and retardation as in the quantum case. Note, that the particular retardation given by τ^- has a different origin in the classical and in the quantum case: in the classical situation where particle-hole pairs are locally generated at the splitter, the delay derives from the difference in the travelling times of the particle and the hole, while in the quantum case, the particle-hole pairs appear due to the non-local process of instantaneous projection.

A meaningful experiment has to distinguish between the classical and the quantum mechanical scenario producing the measured results. In order to show that quantum mechanics is at work one has to confirm the wave propagation in the device prior to measuring the current cross correlator. This can be achieved through the observation of a coherence phenomenon and we discuss two specific setups in the following:

i) Inserting a second barrier, the observation of resonant transmission through the interferometer formed by the double barrier system confirms the wave propagation in the device. An implementation using electrostatic gates modulating a 2DEG allows to manipulate the second barrier without significant perturbation of the remaining sample.

ii) Following ideas developed within the context of the famous double slit (Gedanken) experiment, we propose the specific setup sketched in Fig. 2 which tests the particle-wave duality during the experiment. The incident particle beam ‘s’ is split into an upper (‘\(\bar{u} \)’) and lower (‘\(\bar{d} \)’) arm (fork geometry) and subsequently recombined and redirected into the leads ‘\(\bar{u} \)’ and ‘\(\bar{d} \)’ with the help of a tunable reflectionless four-beam splitter. The phase difference $\delta \varphi = \varphi_u - \varphi_d$ picked up during the propagation in the upper and lower leads can be tuned, either via a magnetic flux Φ threading the loop or via an additional gate electrode biasing (with V_g) one of the arms. The second beam splitter is characterized through its transfer matrix M_{ud}:

$$\begin{pmatrix} \bar{u} \\ \bar{d} \end{pmatrix} = \begin{pmatrix} e^{i\varphi} \cos \theta & -e^{i\psi} \sin \theta \\ e^{-i\psi} \sin \theta & e^{-i\varphi} \cos \theta \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix},$$

with the angles $\vartheta \in (0, \pi/2)$, $\phi, \psi \in (0, 2\pi)$; without loss of generality we assume $\phi = \psi = 0$. The wave function behind the splitter then can be written in the form

$$\Psi_{ud} = (\cos \vartheta \ e^{i\varphi_u} t_{su} - \sin \vartheta \ e^{i\varphi_d} t_{sd})\langle \bar{u} \rangle + (\sin \vartheta \ e^{i\varphi_u} t_{su} + \cos \vartheta \ e^{i\varphi_d} t_{sd})\langle \bar{d} \rangle.$$

The four-beam splitter shall be tuned such that all electrons propagate to only one of the output leads, say the down lead ‘\(\bar{d} \)’, implying the condition $\tan \vartheta_0 = \sqrt{T_{su}/T_{sd}} \exp[i(\delta \varphi + \chi_{su} - \chi_{sd})]$, where we have separated the amplitudes and phases of the transmission coefficients, $t_{su} = \sqrt{T_{su}} \exp(i\chi_{su})$ and similar for t_{sd}. Tuning the phase $\delta \varphi + \chi_{su} - \chi_{sd}$ to a multiple of 2π and choosing the appropriate angle

$$\tan \vartheta_0 = \sqrt{T_{su}/T_{sd}}$$

one may redirect the recombined waves into the down lead. Furthermore, subsequent scanning of the phase $\delta \varphi$ will produce an oscillating current in the output lead ‘\(\bar{d} \)’, analogous to the intensity oscillations observed on the detector screen in the double split experiment. The observation of current oscillations as a function of $\delta \varphi$ proves the coherent wave propagation of the electrons through the device.

After establishing the quantum nature of the electron propagation, the wave packet reduction is investigated through a measurement of the current cross-correlator between the two arms ‘\(\bar{u} \)’ and ‘\(\bar{d} \)’. This measurement and its concomitant wave function collapse will transform the wave propagation in the two arms into streams of particles. As a consequence of the projection through the measurement a finite current will appear in the upper lead ‘\(\bar{u} \)’. The magnitude of this current is determined with the help of the density matrix $\hat{\rho}$ behind
The four-beam splitter: transforming the density matrix \(\rho = T_{su}|u\rangle \langle u| + T_{sd}|d\rangle \langle d| \) describing the electron streams in the two arms ‘u’ and ‘d’ after the projection with the help of Eq. (5), we obtain the current \(\langle \hat{I}_u \rangle = 2(e^2/h)V\bar{\rho}_{uu} \) with

\[
\bar{\rho}_{uu} = \langle \bar{u}|\bar{\rho}|\bar{u}\rangle = T_{su}\cos^2 \theta_0 + T_{sd}\sin^2 \theta_0 = 2\frac{T_{su}T_{sd}}{T_{su} + T_{sd}},
\]

(11)

where we have made use of (10) in the last equation. For a reflectionless splitter we have \(T_{su} + T_{sd} = 1 \) and the final result for the current appearing in the lead ‘\(\bar{u} \)’ after projection takes the form

\[
\langle \hat{I}_u \rangle = 4(e^2/h)V T_{su} T_{sd}.
\]

(12)

The maximum difference between the currents with and without projection is obtained for the symmetric splitter with \(T_{su} = T_{sd} = 1/2 \). The above two-step procedure confirming the wave propagation of the electrons before the measurement of the current cross correlator excludes a classical interpretation of the features showing up in the noise correlator; analyzing the time delay \(\tau^* \) in the excess noise then provides the needed information on the wave function collapse. In particular, the instantaneous collapse should manifest itself through a zero time delay if a symmetric setup with \(x_1 = -x_2 \) is chosen; on the other hand, one expects that a collapse within the frame of unitary time evolution produces a finite delay which the present experiment is able to detect, provided the time resolution of the noise measurement is adequate.

The test for the instantaneous wave function collapse discussed here is related to the non-local properties of quantum mechanics. The standard test demonstrating the non-local nature of quantum mechanics is due to Bell [17]. Bell inequality tests produce different outcomes within a classical framework (based on local hidden variables) and within a quantum mechanical description. On the other hand, the measurement of correlators, while producing interesting results on fundamental issues of quantum mechanics, too, cannot separate between the quantum mechanical and the classical predictions. A prominent example is the measurement of strangeness correlations in the \(K^0\bar{K}^0 \) system: The decay of the Kaons prevents one from carrying out Bell inequality tests. Still, the observation of oscillations in the strangeness correlation provides information on the entanglement in the Kaon wave function [15]. Nevertheless, this type of oscillations can be generated within the framework of a hidden variable theory, too. In the present case, the measurement of the noise correlator provides information on the wave function collapse, in particular its dynamics. Again, the experiment itself cannot separate between quantum mechanical and classical predictions. In fact, a hidden variable at the splitter could emulate the shape of the time resolved correlator including even the oscillations on the time scale \(\tau_V = h/eV \). One then may assume one of the following two viewpoints: a) Accepting the applicability of quantum mechanics one only needs to rule out the presence of dephasing in the device; the absence of dephasing is most simply confirmed through the observation of the time oscillation \(\propto \sin^2(eV \delta \tau/2h) \) in the correlator itself. b) Those critical about the validity of quantum mechanics first have to confirm the wave dynamics in the device; the experiments i) and ii) described above are designed to achieve this goal.

The current correlator is not directly measured in an experiment; e.g., an old-fashioned Ampère meter determines the angular excursion of the pick-up loop. One then has to relate the correlator of this classical meter variable to the correlator of the quantum system [19]. For a linear detector, one expects that the measured classical correlator can be constructed from the quantum correlator through a linear connection. Conventional wisdom tells that it is the symmetric correlator that appears in an actual measurement [20]. Indeed, a recent analysis carried out for an Ampère meter measuring local current-correlations shows that the main term in the response is determined by the symmetrized correlator \([C(\tau) + C(-\tau)]/2 \) [19]; however, additional small corrections appear involving the anti-symmetrized correlator, too. The generalization to measurements at spatially separated locations relates the measured correlator to the fully symmetrized expression \([C_{x_1,x_2}(\tau) + C_{x_1,x_2}(-\tau) + C_{x_2,x_1}(\tau) + C_{x_2,x_1}(-\tau)]/4 \) as the main term.

Alternatively, the signature of the wave function collapse may be detected in a frequency domain experiment; the result for the spectral power \(S_{x_1,x_2}(\omega) = \int d\tau C_{x_1,x_2}^{\text{ex}}(\tau) \exp(i\omega \tau) \) of the excess noise takes the form

\[
S_{x_1,x_2}(\omega) = 4(e^2/h)V^2 T_{su} T_{sd} \cos(\omega \tau^*_V),
\]

(13)

where \(\tau^*_V \) is the time delay in the excess noise.
with a typical value of frequency resolution in the 10 GHz regime \[26\] the peak width in \(S_{\phi}(\omega)\) gives a sufficient experimental time resolution: with a damping \(L\) of the excess correlator on the coherence length \(L\) does not allow to resolve such a study has been carried out \[21\]: here, it is the symmetrized power \(\langle S_{x_1,x_2}^{ex} + S_{x_2,x_1}^{ex}\rangle / 2\) which can be measured via the charge fluctuations on the capacitor in an LC-circuit with two pick-up loops at \(x_1\) and \(x_2\).

The above analysis has been carried out within a non-interacting approximation. Accounting for the effect of Coulomb interaction one may worry that the noise signal is damped due to the smoothing produced by (lateral and longitudinal) screening; the latter involves the Fermi velocity \(v_F\). On the other hand, the incoming electrons propagate (also with Fermi velocity) in the form of a regular sequence of wave packets separated by the single particle correlation time \[22\] \(\tau_\nu = h/\nu\), a consequence of the Fermi statistics of electrons. The screening of the density modulation on scale \(v_F\tau_\nu\) when involves a time scale \(\tau_\nu\) or longer. As the time resolved noise correlator also peaks on the time scale \(\tau_\nu\) one expects that screening modifies the shape of the noise correlator but preserves its basic form. This conclusion agrees with the observation that shot noise is usually observed with the large amplitude obtained within a non-interacting approximation. Unfortunately, only few detailed theoretical results are available on the modification of shot noise due to interaction: in a diffusive conductor the zero-frequency noise \(S(0)\) is even enhanced due to Coulomb effects \[22\]; the analysis of a ballistic quantum point contact with a large transmission produces again an enhancement of \(S(0)\), while the shot noise is weakly reduced in the tunneling limit \[25\]. Finally, weak interactions can be accounted for via an energy dependent renormalization of the scattering matrix \[27\] leading to a broadening of the electron wave packets, in agreement with the above discussion.

Dephasing due to interactions among the particles or with the environment acts differently on the electrons propagating in the two leads and causes an exponential damping of the excess correlator on the coherence length \(L_e\). As a consequence, the sum of distances \(x_1\) and \(x_2\) should be chosen smaller than \(L_e\). An additional requirement is a sufficient experimental time resolution: with a peak width in \(C_{x_1,x_2}^{ex}(\tau)\) given by \(\tau_\nu = \max[h/\nu, 1/\nu_m]\), with \(\nu_m\) the cutoff frequency in the measurement setup, only shifts \(\int |\tau^-| > \tau_\nu\) can be resolved. Assuming a frequency resolution in the 10 GHz regime \[26\] the peak in \(C_{x_1,x_2}^{ex}(\tau)\) can be resolved for voltages below 0.1 meV. Given a typical value \(v_F \sim 10^4\) cm/s for the Fermi velocity this corresponds to a spatial resolution \(v_F/\nu_m \sim 100\) A. The comparison with a typical mesoscopic dimension of \(L \sim \mu m\) scale demonstrates that potential delays expected for a collapse with a unitary time evolution can be observed well beyond the scale of the Fermi velocity. However, the observation of a superluminal collapse would require frequencies \(c/L \sim 10^{14}\) s\(^{-1}\) in the 100 THz regime as well as large voltages of the order of Volts, both well beyond the acceptable range.

To conclude, we have suggested an experiment testing for the instantaneous wave function collapse in a solid-state setup based on the time resolved measurement of current-current cross correlations at spatially separated points. This scheme allows to investigate details of the wave function collapse itself, provided a sufficiently high frequency resolution is available in the experiment. While measurements of time delays due to a unitary collapse involving super-Fermi velocities are within experimental reach, the type of mesoscopic setup described here cannottrace time delays arising from a collapse involving superluminal velocities.

We acknowledge financial support from the Swiss National Foundation (SCOPES and CTS-ETHZ), the Landau Scholarship of the FZ Jilich, the Russian Science Support Foundation, the Russian Ministry of Science, and the program ‘Quantum Macrophysics’ of the RAS.

[1] A. Steane, Rep. Prog. Phys. 61, 117 (1998).
[2] see A. Aspect, Nature 398, 189 (1999) and refs. therein.
[3] G. Lesovik, Th. Martin, and G. Blatter, Eur. Phys. J. B 24, 287 (2001); P. Recher, E.V. Sukhorukov, and D. Loss, Phys. Rev. B 63, 165314 (2001); C. Bena, S. Vishveshwara, L. Balents, and M. P. A. Fisher, Phys. Rev. Lett. 89, 037901 (2002).
[4] N.M. Chetchelekatchev, G. Blatter, G. B. Lesovik, and Th. Martin, Phys. Rev. B 66, 161320 (2002); P. Samuelsson, E.V. Sukhorukov, and M. Büttiker, Phys. Rev. Lett. 91, 157002 (2003).
[5] C.W.J. Beenakker, C. Emary, M. Kindermann, and J.L. van Velsen, Phys. Rev. Lett. 91, 147901 (2003).
[6] M. Henry, S. Oberholzer, C. Strunk, T. Heinzel, K. Ensslin, M. Holland, and C. Schonenberger, Science 284, 296 (1999); W.D. Oliver, J. Kim, R.C. Liu, Y. Yamamoto, Science 284, 299 (1999).
[7] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73, 357 (2001).
[8] A.N. Korotkov, Phys. Rev. B 63, 115403 (2001).
[9] D.V. Averin, Phys. Rev. Lett. 88, 207901 (2002).
[10] J. von Neumann, Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, 1955).
[11] A.J. Leggett, S. Chakravarty, A. T. Dorsey, M. P. A. Fisher, A. Garg, and W. Zwerger, Rev. Mod. Phys. 59, 1 (1987); W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003).
[12] After proper redefinition of flow directions the main result \[7\] for the excess noise in the wire also applies to the fork with an ideal splitter, see later.
[13] Y.M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000);
Noise in Mesoscopic Physics, Vol. 97 of NATO Science Series, ed. Y. Nazarov (Kluwer, Delft, 2003).

[14] V.A. Khlus, Sov. Phys. JETP 66, 1243 (1987); C.L. Kane and M.P.A. Fisher, Phys. Rev. Lett. 72, 724 (1994); J. Torrès, T. Martin, and G.B. Lesovik, Phys. Rev. B 63, 134517 (2001) and Refs. therein; L. Saminadayar, and D. C. Glattli, Phys. Rev. Lett. 79, 2526 (1997); R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, and D. Mahalu, Nature 389, 162 (1997); A.A. Kozhevnikov, R.J. Schoelkopf, and D.E. Prober, Phys. Phys. Lett. 84, 3398 (2000); X. Jehl, M. Sanquer, R. Calemczuk, and D. Mailly, Nature 405, 50 (2000).

[15] G.B. Lesovik, JETP Lett. 49, 592 (1989).

[16] G.B. Lesovik, JETP Lett. 70, 208 (1999).

[17] J.S. Bell, Physics 1,195 (1965).

[18] A. Apostolakis et al., Physics Letts. B 422, 339 (1998); N. Gisin and A. Go, Am. J. Phys. 69, 264 (2001).