BOREL FRACTIONAL COLORINGS OF SCHREIER GRAPHS

ANTON BERNSHTEYN

Abstract. Let Γ be a countable group and let G be the Schreier graph of the free part of the Bernoulli shift $\Gamma \subset 2^\Gamma$ (with respect to some finite subset $F \subseteq \Gamma$). We show that the Borel fractional chromatic number of G is equal to 1 over the measurable independence number of G. As a consequence, we asymptotically determine the Borel fractional chromatic number of G when Γ is the free group, answering a question of Meehan.

1. Definitions and results

All graphs in this paper are undirected and simple. Recall that for a graph G, a subset $I \subseteq V(G)$ is G-independent if no two vertices in I are adjacent in G. The chromatic number of G, denoted by $\chi(G)$, is the least $k \in \mathbb{N}$ such that there exist G-independent sets I_1, \ldots, I_k whose union is $V(G)$. (If no such k exists, we set $\chi(G) := \infty$.) The sequence I_1, \ldots, I_k is called an k-coloring of G, where we think of the vertices in I_i as being assigned the color i.

Fractional coloring is a well-studied relaxation of graph coloring. For an introduction to this topic, see the book [SU97] by Scheinerman and Ullman. Given $k \in \mathbb{N}$, the k-fold chromatic number of G, denoted by $\chi^k(G)$, is the least $\ell \in \mathbb{N}$ such that there are G-independent sets I_1, \ldots, I_ℓ which cover every vertex of G at least k times (such a sequence I_1, \ldots, I_ℓ is called a k-fold ℓ-coloring). Note that the sets I_1, \ldots, I_ℓ need not be distinct. In particular, if $I_1, \ldots, I_{\chi(G)}$ is a $\chi(G)$-coloring of G, then, by repeating each set k times, we obtain a k-fold $k\chi(G)$-coloring, which shows that

$$\chi^k(G) \leq k\chi(G) \quad \text{for all } k.$$

This inequality can be strict; for example, the 5-cycle C_5 satisfies $\chi(C_5) = 3$ but $\chi^2(C_5) = 5$. It is therefore natural to define the fractional chromatic number $\chi^*(G)$ of G by the formula

$$\chi^*(G) := \inf_{k \geq 1} \frac{\chi^k(G)}{k}. $$

In this note we investigate fractional colorings from the standpoint of Borel combinatorics. For a general overview of Borel combinatorics, see the surveys [KM20] by Kechris and Marks and [Pik20] by Pikhurko. The study of fractional colorings in this setting was initiated by Meehan [Mee18]; see also [KM20, §8.6]. We say that a graph G is Borel if $V(G)$ is a standard Borel space and $E(G)$ is a Borel subset of $V(G) \times V(G)$. The Borel chromatic number $\chi_B(G)$ of G is the least $\ell \in \mathbb{N}$ such that there exist Borel G-independent sets I_1, \ldots, I_ℓ whose union is $V(G)$. The Borel k-fold chromatic number $\chi^k_B(G)$ is defined analogously, and the Borel fractional chromatic number $\chi^*_B(G)$ is

$$\chi^*_B(G) := \inf_{k \geq 1} \frac{\chi^k_B(G)}{k}. $$

A particularly important class of Borel graphs are Schreier graphs of group actions. Let Γ be a countable group with identity element 1 and let $F \subseteq \Gamma$ be a finite subset. The Cayley graph $G(\Gamma, F)$ of Γ is the graph with vertex set Γ in which two distinct group elements γ, δ are adjacent if

\begin{itemize}
\item $\gamma = \delta$, or
\item $\gamma = \delta F$, or
\item $\delta = \gamma F$.
\end{itemize}
and only if $\gamma = \sigma \delta$ for some $\sigma \in F \cup F^{-1}$. This definition can be extended as follows. Let $\Gamma \circ X$ be a Borel action of Γ on a standard Borel space X. The action $\Gamma \circ X$ is free if

$$\gamma \cdot x \neq x \quad \text{for all } x \in X \text{ and } 1 \neq \gamma \in \Gamma.$$

The Schreier graph $G(X, F)$ of an action $\Gamma \circ X$ is the graph with vertex set X in which two distinct points $x, y \in X$ are adjacent if and only if $y = \sigma \cdot x$ for some $\sigma \in F \cup F^{-1}$. Note that the Cayley graph $G(\Gamma, F)$ is a special case of this construction corresponding to the left multiplication action $\Gamma \circ \Gamma$. More generally, when the action $\Gamma \circ X$ is free, $G(X, F)$ is obtained by putting a copy of the Cayley graph $G(\Gamma, F)$ onto each orbit.

A crucial example of a Borel action is the (Bernoulli) shift $\Gamma \circ 2^\Gamma$, given by the formula

$$(\gamma \cdot x)(\delta) := x(\delta \gamma) \quad \text{for all } x: \Gamma \to 2 \text{ and } \gamma, \delta \in \Gamma.$$

We use β to denote the “coin flip” probability measure on 2^Γ, obtained as the product of countably many copies of the uniform probability measure on $2 = \{0, 1\}$. Note that β is invariant under the shift action. The free part of 2^Γ, denoted by $\text{Free}(2^\Gamma)$, is the set of all points $x \in 2^\Gamma$ with trivial stabilizer. In other words, $\text{Free}(2^\Gamma)$ is the largest subspace of 2^Γ on which the shift action is free. It is easy to see that the shift action $\Gamma \circ 2^\Gamma$ is free β-almost everywhere, i.e., $\beta(\text{Free}(2^\Gamma)) = 1$.

Let G be a Borel graph and let μ be a probability (Borel) measure on $V(G)$. The μ-independence number of G is the quantity $\alpha_\mu(G) := \sup I, \mu(I)$, where the supremum is taken over all μ-measurable G-independent subsets $I \subseteq V(G)$. Note that if I_1, \ldots, I_ℓ is a Borel ℓ-fold coloring of G, then

$$\ell \alpha_\mu(G) \geq \mu(I_1) + \cdots + \mu(I_\ell) \geq \kappa,$$

which implies $\chi^*_B(G) \geq 1/\alpha_\mu(G)$. Our main result is a matching upper bound for Schreier graphs:

Theorem 1.1. Let Γ be a countable group and let $F \subseteq \Gamma$ be a finite set. If $\Gamma \circ X$ is a free Borel action on a standard Borel space, then

$$\chi^*_B(G(X, F)) = \frac{1}{\alpha_\beta(G(\text{Free}(2^\Gamma), F))}. \quad (1.1)$$

In particular,

$$\chi^*_B(G(\text{Free}(2^\Gamma), F)) = \frac{1}{\alpha_\beta(G(\text{Free}(2^\Gamma), F))}. \quad (1.2)$$

While (1.2) is a special case of (1.1), it is possible to deduce (1.1) from (1.2) using a theorem of Seward and Tucker-Drob [ST16], which asserts that every free Borel action of Γ admits a Borel Γ-equivariant map to $\text{Free}(2^\Gamma)$. Nevertheless, we will give a simple direct proof of (1.1) in §2.

An interesting feature of Theorem 1.1 is that it establishes a precise relationship between a Borel parameter χ^*_B and a measurable parameter α_β. We find this somewhat surprising, since ignoring sets of measure 0 usually significantly reduces the difficulty of problems in Borel combinatorics. For instance, given a Borel graph G and a probability measure μ on $V(G)$, one can consider the μ-measurable chromatic number $\chi_\mu(G)$, i.e., the least $\ell \in \mathbb{N}$ such that there exist μ-measurable G-independent sets I_1, \ldots, I_ℓ whose union is $V(G)$. By definition, $\chi_\mu(G) \leq \chi_B(G)$, and it is often the case that this inequality is strict—see [KM20, §6] for a number of examples. By contrast, as an immediate consequence of Theorem 1.1 we obtain the opposite inequality $\chi^*_B(G) \leq \chi_\beta(G)$, where G is the Schreier graph of the free part of the shift action:

Corollary 1.2. Let Γ be a countable group and let $F \subseteq \Gamma$ be a finite set. Set $G := G(\text{Free}(2^\Gamma), F)$. Then $\chi^*_B(G) \leq \chi_\beta(G)$.

Proof. The result follows from Theorem 1.1 and the obvious inequality $\alpha_\beta(G) \geq 1/\chi_\beta(G)$.

As a concrete application of Theorem 1.1, consider the free group case. For $n \geq 1$, let F_n be the free group of rank n generated freely by elements $\sigma_1, \ldots, \sigma_n$ and let G_n denote the Schreier graph of the free part of the shift action $F_n \circ 2^{F_n}$ with respect to the set $\{\sigma_1, \ldots, \sigma_n\}$. Then every
connected component of G_n is an (infinite) 2n-regular tree. In particular, the chromatic number of G_n is 2. On the other hand, Marks [Mar16] proved that $\chi_B(G_n) = 2n + 1$. Meehan inquired where between these two extremes the Borel fractional chromatic number of G_n lies:

Question 1.3 ([Mee18, Question 4.6.3]; see also [KM20, Problem 8.17]). What is the Borel fractional chromatic number of G_n? Is it always equal to 2?

Using Theorem 1.1 together with some known results we asymptotically determine $\chi_B^*(G_n)$ (and, in particular, give a negative answer to the second part of Question 1.3):

Corollary 1.4. For all $n \geq 1$, we have

$$\chi_B^*(G_n) = (2 + o(1)) \frac{n}{\log n},$$

where $o(1)$ denotes a function of n that approaches 0 as $n \to \infty$.

In other words, the Borel fractional chromatic number of G_n is less than its ordinary Borel chromatic number roughly by a factor of $\log n$. We present the derivation of Corollary 1.4 in §3.

2. **Proof of Theorem 1.1**

We shall use the following theorem of Kechris, Solecki, and Todorcevic:

Theorem 2.1 (Kechris–Solecki–Todorcevic [KST99, Proposition 4.6]). If G is a Borel graph of finite maximum degree d, then $\chi_B(G) \leq d + 1$.

Fix a countable group Γ and a finite subset $F \subseteq \Gamma$. Without loss of generality, we may assume that $1 \notin F$. Say that a set $I \subseteq 2^\Gamma$ is independent if $I \cap (\sigma \cdot I) = \emptyset$ for all $\sigma \in F$ (when $I \subseteq \text{Free}(2^\Gamma)$, this exactly means that I is $\text{G(Free}(2^\Gamma), F)$-independent). For brevity, let

$$\alpha_{\beta} := \alpha_{\beta}(\text{G(Free}(2^\Gamma), F)).$$

Lemma 2.2. For every $\alpha < \alpha_{\beta}$, there is a clopen independent set $I \subseteq 2^\Gamma$ such that $\beta(I) \geq \alpha$.

Proof. Let $J \subseteq \text{Free}(2^\Gamma)$ be a β-measurable independent set with $\beta(J) > \alpha$. Since β is regular [Kec95, Theorem 17.10] and 2^Γ is zero-dimensional, there is a clopen set $C \subseteq 2^\Gamma$ with

$$\mu(J \triangle C) \leq \frac{\beta(J) - \alpha}{|F| + 1}.$$

Set $I := C \setminus \bigcup_{\sigma \in F}(\sigma \cdot C)$. By construction, I is clopen and independent. Moreover, if $x \in J \setminus I$, then either $x \in J \setminus C$ or $x \in (\sigma \cdot C) \setminus (\sigma \cdot J)$ for some $\sigma \in F$. Therefore,

$$\beta(I) \geq \beta(J) - (|F| + 1)\beta(J \triangle C) \geq \alpha.$$

Let $\Gamma \acts X$ be a free Borel action on a standard Borel space. Fix an arbitrary clopen independent set $I \subseteq 2^\Gamma$. We will prove that $\chi_B^*(G(X, F)) \leq 1/\beta(I)$, which yields Theorem 1.1 by Lemma 2.2. Since I is clopen, there exist finite sets $D \subseteq \Gamma$ and $\Phi \subseteq 2^D$ such that

$$I = \{x \in 2^\Gamma : x|D \in \Phi\},$$

where $x|D$ denotes the restriction of x to D. Note that

$$\beta(I) = \frac{|\Phi|}{2^{|D|}}.$$

Let $N := |DD^{-1}|$ and consider the graph $H := G(X, DD^{-1})$. Every vertex in H has precisely $N - 1$ neighbors (we are subtracting 1 to account for the fact that a vertex is not adjacent to itself). By Theorem 2.1, this implies that $\chi_B(H) \leq N$. In other words, we may fix a Borel function $f : X \to N$ such that $f(u) \neq f(v)$ whenever $u, v \in X$ are distinct points satisfying $v \in DD^{-1} \cdot u$. This implies
that for each $x \in X$, the restriction of f to the set $D \cdot x$ is injective. Now, to each mapping $\varphi: N \to 2$, we associate a Borel Γ-equivariant function $\pi_\varphi: X \to 2^\Gamma$ as follows:

$$\pi_\varphi(x)(\gamma) := (\varphi \circ f)(\gamma \cdot x)$$

for all $x \in X$ and $\gamma \in \Gamma$.

Let $I_\varphi := \pi_\varphi^{-1}(I)$. Since π_φ is Γ-equivariant, I_φ is $G(X, F)$-independent. Consider any $x \in X$ and let

$$S_x := \{f(\gamma \cdot x) : \gamma \in D\}.$$

By the choice of f, S_x is a subset of N of size $|D|$. Whether or not x is in I_φ is determined by the restriction of φ to S_x; furthermore, there are exactly $|\Phi|$ such restrictions that put x in I_φ. Thus, the number of mappings $\varphi: N \to 2$ for which $x \in I_\varphi$ is

$$|\Phi|2^{N-|D|} = \beta(I)2^N.$$

Since this holds for all $x \in X$, we conclude that the sets I_φ cover every point in X exactly $\beta(I)2^N$ times. Therefore, $\chi_B^*(G(X, F)) \leq 1/\beta(I)$, as desired.

3. Proof of Corollary 1.4

Thanks to Theorem 1.1, in order to establish Corollary 1.4 it is enough to verify that

$$\alpha_\beta(G_n) = \left(\frac{1}{2} + o(1)\right) \frac{\log n}{n}.$$

There are a number of known constructions that witness the lower bound

$$\alpha_\beta(G_n) \geq \left(\frac{1}{2} + o(1)\right) \frac{\log n}{n};$$

see, e.g., [LW07] by Lauer and Wormald and [GG10] by Gamarnik and Goldberg. Moreover, by [Ber19, Corollary 1.2], even the inequality $\chi_\beta(G_n) \leq (2 + o(1))n/\log n$ holds. For the upper bound

$$\alpha_\beta(G_n) \leq \left(\frac{1}{2} + o(1)\right) \frac{\log n}{n},$$

we shall use a theorem of Rahman and Virág [RV17], which says that the largest density of a factor of i.i.d. independent set in the d-regular tree is at most $(1 + o(1))\log d/d$. In the remainder of this section we describe their result and explain how it implies the desired upper bound on $\alpha_\beta(G_n)$.

Fix an integer $n \geq 1$. For our purposes, it will be somewhat more convenient to work on the space $[0, 1]^{F_n}$ instead of 2^{F_n}, where $[0, 1]$ is the unit interval equipped with the usual Lebesgue probability measure. The product measure on $[0, 1]^{F_n}$ is denoted by λ. Let H_n be the Schreier graph of the shift action $F_n \subset [0, 1]^{F_n}$ corresponding to the standard generating set of F_n. We remark that, by a theorem of Abért and Weiss [AW13] (see also [KM20, Theorem 6.46]), $\alpha_\beta(G_n) = \alpha_\lambda(H_n)$, so it does not really matter whether we are working with G_n or H_n.

Set $d := 2n$ and let T_d denote the Cayley graph of the free group F_n with respect to the standard generating set. In other words, T_d is an (infinite) d-regular tree. We view T_d as a rooted tree, whose root is the vertex 1, i.e., the identity element of F_n. Let \mathfrak{A} be the automorphism group of T_d, i.e., the set of all bijections $a: F_n \to F_n$ that preserve the edges of T_d, and let $\mathfrak{A}_* \subseteq \mathfrak{A}$ be the subgroup comprising the root-preserving automorphisms, i.e., those $a \in \mathfrak{A}$ that map 1 to 1. The space $[0, 1]^{F_n}$ is equipped with a natural right action $[0, 1]^{F_n} \curvearrowright \mathfrak{A}$. Namely, for $a \in \mathfrak{A}$ and $x \in [0, 1]^{F_n}$, the result of acting by a on x is the function $x \cdot a: F_n \to [0, 1]$ given by

$$(x \cdot a)(\delta) := x(a(\delta))$$

for all $\delta \in F_n$.

For each $\gamma \in F_n$, there is a corresponding automorphism $a_\gamma \in \mathfrak{A}$ sending every group element $\delta \in F_n$ to $\delta \gamma$. The mapping $F_n \to \mathfrak{A}: \gamma \mapsto a_\gamma$ is an antihomomorphism of groups, that is, we have

$$a_{\gamma \sigma} = a_\sigma \circ a_\gamma$$

for all $\gamma, \sigma \in F_n$, where
where \(\circ \) denotes composition. In particular, \(\{ a_\gamma : \gamma \in F_n \} \) is a subgroup of \(\mathfrak{A} \) isomorphic to \(F_n \). The right action \([0,1]^{F_n} \triangleright \mathfrak{A} \) and the left action \(\mathfrak{A} \triangleright [0,1]^{F_n} \) are related by the formula

\[
x \cdot a_\gamma = \gamma \cdot x \quad \text{for all } x \in [0,1]^{F_n}.
\]

A set \(X \subseteq [0,1]^{F_n} \) is called \(\mathfrak{A}_* \)-invariant if \(x \cdot a \in X \) for all \(x \in X \) and \(a \in \mathfrak{A}_* \). The Rahman–Virág theorem can now be stated as follows:

Theorem 3.1 (Rahman–Virág [RV17, Theorem 2.1]). If \(I \subseteq [0,1]^{F_n} \) is an \(\mathfrak{A}_* \)-invariant \(\lambda \)-measurable \(H_n \)-independent set, then

\[
\lambda(I) \leq (1 + o(1)) \frac{\log d}{d} = \left(\frac{1}{2} + o(1) \right) \frac{\log n}{n}.
\]

Theorem 3.1 is almost the result we want, except that we need an upper bound on the measure of every (not necessarily \(\mathfrak{A}_* \)-invariant) \(\lambda \)-measurable \(H_n \)-independent set \(I \). To remove the \(\mathfrak{A}_* \)-invariance assumption, we use the following consequence of Theorem 3.1:

Corollary 3.2. There exists a Borel graph \(Q \) with a probability measure \(\mu \) on \(V(Q) \) such that:

- every connected component of \(Q \) is a \(d \)-regular tree; and
- \(\alpha_\mu(Q) \leq (1/2 + o(1)) \log n/n \).

Proof. We use a construction that was studied by Conley, Kechris, and Tucker-Drob in [CKT13]. Let \(\Omega \) be the set of all points \(x \in [0,1]^{F_n} \) such that \(x \cdot a \neq x \) for every non-identity automorphism \(a \in \mathfrak{A} \). Let us make a couple observations about \(\Omega \). Notice that, by definition, the set \(\Omega \) is invariant under the action \([0,1]^{F_n} \triangleright \mathfrak{A} \); in particular, it is invariant under the shift action \(F_n \triangleright [0,1]^{F_n} \).

Furthermore, the induced action of \(F_n \) on \(\Omega \) is free (indeed, even the action \(\Omega \triangleright \mathfrak{A} \) is free). Since every injective mapping \(F_n \rightarrow [0,1] \) belongs to \(\Omega \), we conclude that \(\lambda(\Omega) = 1 \). Now consider the quotient space \(V := \Omega/\mathfrak{A}_* \). As the group \(\mathfrak{A}_* \) is compact, the space \(V \) is standard Borel [KT13, paragraph preceding Lemma 7.8]. Let \(\mu \) be the push-forward of \(\lambda \) under the quotient map \(\Omega \rightarrow V \), and let \(Q \) be the graph with vertex set \(V \) in which two vertices \(x, y \in V \) are adjacent if and only if there are representatives \(x \in \mathfrak{X} \) and \(y \in \mathfrak{Y} \) that are adjacent in \(H_n \). Conley, Kechris, and Tucker-Drob [KT13, Lemma 7.9] (see also [Tho21, Proposition 1.9]) showed that every connected component of \(Q \) is a \(d \)-regular tree. Furthermore, by construction, a set \(I \subseteq V \) is \(Q \)-independent if and only if its preimage under the quotient map is \(H_n \)-independent. Since the quotient map establishes a one-to-one correspondence between subsets of \(V \) and \(\mathfrak{A}_* \)-invariant subsets of \(\Omega \), Theorem 3.1 is equivalent to the assertion that \(\alpha_\mu(Q) \leq (1/2 + o(1)) \log n/n \), as desired.

In view of Corollary 3.2, the following lemma completes the proof of (3.1):

Lemma 3.3. Let \(Q \) be a Borel graph in which every connected component is a \(d \)-regular tree and let \(\mu \) be a probability measure on \(V(Q) \). Then \(\alpha_\mu(Q) \geq \alpha_\beta(G_n) \).

In the case when \(Q \) is the Schreier graph of a free measure-preserving action of \(F_n \), the conclusion of Lemma 3.3 follows from the Abért–Weiss theorem [AW13]. To handle the general case, we rely on a strengthening of a recent result of Tóth [Tót21] due to Grebík [Greb20], which, roughly, asserts that every \(d \)-regular Borel graph is “approximately” induced by an action of \(F_n \).

To state this result precisely, we introduce the following terminology. A **Borel partial action** \(p \) of \(F_n \) on a standard Borel space \(X \), in symbols \(p : F_n \triangleright * X \), is a sequence of Borel partial injections \(p_1, \ldots, p_n : X \rightarrow X \). Given a Borel graph \(Q \), we say that a Borel partial action \(p : F_n \triangleright * V(Q) \) is a **partial Schreier decoration** of \(Q \) if \(p_i(x) \) is adjacent to \(x \) for all \(1 \leq i \leq n \) and \(x \in \text{dom}(p_i) \). If \(p \) is a partial Schreier decoration of a graph \(Q \), then we let \(C(Q,p) \) be the set of all vertices \(x \in V(Q) \) such that \(x \) belongs to both the domain and the image of every \(p_i \) and the neighborhood of \(x \) in \(Q \) is equal to the set \(\{ p_1(x), \ldots, p_n(x), p_1^{-1}(x), \ldots, p_n^{-1}(x) \} \). A **Schreier decoration** of \(Q \) is a
partial Schreier decoration p such that $C(Q, p) = V(Q)$. It is easy to see that Q admits a Schreier decoration if and only if it is the Schreier graph of a Borel action of \mathbb{F}_n.

Now we can state Grebik’s result:

Theorem 3.4 (Grebik [Gre20, Theorem 0.2(III)]). Let Q be a d-regular Borel graph and let μ be a probability measure on $V(Q)$. Then for every $\varepsilon > 0$, Q admits a partial Schreier decoration p such that $\mu(C(Q, p)) \geq 1 - \varepsilon$.

With Theorem 3.4 in hand, we are ready to establish Lemma 3.3.

Proof of Lemma 3.3. Recall that we denote the generators of \mathbb{F}_n by $\sigma_1, \ldots, \sigma_n$. Let Q be a Borel graph in which every connected component is a d-regular tree and let μ be a probability measure on $V(Q)$. Thanks to Lemma 2.2, it suffices to show that $\alpha_\mu(Q) \geq \beta(I)$ for every clopen independent set $I \subseteq 2^{\mathbb{F}_n}$, where, as in §2, we say that I is independent if $I \cap (\sigma_i \cdot I) = \emptyset$ for each $1 \leq i \leq n$.

Fix a clopen independent set $I \subseteq 2^{\mathbb{F}_n}$. Since I is clopen, we can write

$$I = \{ x \in 2^{\mathbb{F}_n} : x|_D \in \Phi \},$$

where $D \subseteq \mathbb{F}_n$ and $\Phi \subseteq 2^D$ are finite sets. Furthermore, we may assume without loss of generality that $D = \{ \gamma \in \mathbb{F}_n : |\gamma| \leq k \}$ for some $k \in \mathbb{N}$, where $|\gamma|$ denotes the word norm of γ. For a vertex $x \in V(Q)$, we let $N^k(x)$ be the set of all vertices that are joined to x by a path of length at most k. Since every connected component of Q is a d-regular tree, we have $|N^k(x)| = |D|$ for all $x \in V(Q)$. This allows us to define a probability measure μ_k on $V(Q)$ via

$$\mu_k(A) := \int \frac{|A \cap N^k(x)|}{|D|} \, d\mu(x) \quad \text{for all Borel } A \subseteq V(Q).$$

We have now prepared the ground for an application of Theorem 3.4. Fix $\varepsilon > 0$ and let p be a partial Schreier decoration of Q such that

$$\mu_k(C(Q, p)) \geq 1 - \frac{\varepsilon}{|D|},$$

which exists by Theorem 3.4. Let C_k be the set of all $x \in V(Q)$ such that $N^k(x) \subseteq C(Q, p)$. Then

$$1 - \frac{\varepsilon}{|D|} \leq \mu_k(C(Q, p)) = \int \frac{|C(Q, p) \cap N^k(x)|}{|D|} \, d\mu(x) \leq \mu(C_k) + \left(1 - \frac{1}{|D|} \right) \left(1 - \mu(C_k) \right) = \frac{1}{|D|} \mu(C_k) + 1 - \frac{1}{|D|},$$

which implies that $\mu(C_k) \geq 1 - \varepsilon$. The importance of the set C_k lies in the fact that for each $x \in C_k$ and $\gamma \in D$, there is a natural way to define the notation $\gamma \cdot x$. Namely, we write γ as a reduced word:

$$\gamma = \sigma_{i_1}^{s_1} \cdots \sigma_{i_\ell}^{s_\ell},$$

where $0 \leq \ell \leq k$, each index i_j is between 1 and n, and each s_j is 1 or -1. Since $N^k(x) \subseteq C(Q, p)$, there is a unique sequence x_0, x_1, \ldots, x_ℓ of vertices with

$$x_0 = x \quad \text{and} \quad x_j = p_{i_j}^{s_j}(x_{j-1}) \quad \text{for all } 1 \leq j \leq \ell.$$

We then set $\gamma \cdot x := x_\ell$. Note that we have $N^k(x) = \{ \gamma \cdot x : \gamma \in D \}$.

The remainder of the argument utilizes a construction similar to the one in the proof of Theorem 1.1 given in §2. Consider the graph R with the same vertex set as Q in which two distinct vertices are adjacent if and only if they are joined by a path of length at most $2k$ in Q. Since every connected component of Q is a d-regular tree, each vertex in R has the same finite number of neighbors, so, by Theorem 2.1, the Borel chromatic number $\chi_B(R)$ is finite. Let $N := \chi_B(R)$ and fix a Borel function $f : V(Q) \to N$ such that $f(u) \neq f(v)$ whenever u and v are adjacent in R. Then for each $x \in V(Q)$,
the restriction of \(f \) to the set \(N^k(x) \) is injective. Now, to each mapping \(\varphi: N \to 2 \), we associate function \(\pi_\varphi: C_k \to 2^D \) as follows:

\[
\pi_\varphi(x)(\gamma) := (\varphi \circ f)(\gamma \cdot x) \quad \text{for all } x \in C_k \text{ and } \gamma \in D.
\]

Let \(I_\varphi := \{ x \in C_k : \pi_\varphi(x) \in \Phi \} \). The independence of \(I \) implies that the set \(I_\varphi \) is \(Q \)-independent. We will show that for some choice of \(\varphi: N \to 2 \), \(\mu(I_\varphi) \geq (1 - \varepsilon)\beta(I) \). Since \(\varepsilon \) is arbitrary, this yields the desired bound \(\alpha(Q) \geq \beta(I) \) and completes the proof of Lemma 3.3.

Consider any \(x \in C_k \) and let

\[
S_x := \{ f(\gamma \cdot x) : \gamma \in D \}.
\]

Since \(f \) is injective on \(N^k(x) \), \(S_x \) is a subset of \(N \) of size \(|D|\). Whether or not \(x \) is in \(I_\varphi \) is determined by the restriction of \(\varphi \) to \(S_x \); furthermore, there are exactly \(|\Phi|\) such restrictions that put \(x \) in \(I_\varphi \).

Thus, the number of mappings \(\varphi: N \to 2 \) for which \(x \in I_\varphi \) is

\[
|\Phi|2^{N - |D|} = \beta(I)2^N.
\]

Since this holds for all \(x \in C_k \), we conclude that

\[
\sum_{\varphi: N \to 2} \mu(I_\varphi) \geq \mu(C_k)\beta(I)2^N \geq (1 - \varepsilon)\beta(I)2^N,
\]

where the second inequality uses that \(\mu(C_k) \geq 1 - \varepsilon \). In other words, the average value of \(\mu(I_\varphi) \) over all \(\varphi: N \to 2 \) is at least \((1 - \varepsilon)\beta(I)\). Thus, the maximum is at least \((1 - \varepsilon)\beta(I)\) as well, and the proof is complete. \(\square \)

Acknowledgement.—I am grateful to the anonymous referees for carefully reading this paper and providing helpful feedback.

References

[AW13] M. Abért and B. Weiss. Bernoulli actions are weakly contained in any free action, Ergod. Th. and Dynam. Sys., 33 (2) (2013) (cit. on pp. 4, 5)

[Ber19] A. Bernshteyn. Measurable versions of the Lovász Local Lemma and measurable graph colorings, Adv. Math., 353 (2019) (cit. on p. 4)

[CKT13] C.T. Conley, A.S. Kechris, and R.D. Tucker-Drob. Ultraproducts of measure preserving actions and graph combinatorics, Ergod. Th. and Dynam. Sys., 33 (2) (2013) (cit. on p. 5)

[GG10] D. Gamarnik and D.A. Goldberg. Randomized greedy algorithms for independent sets and matchings in regular graphs: Exact results and finite girth corrections, Combin. Probab. Comput., 19 (2010) (cit. on p. 4)

[Gre20] J. Grebík. Approximate Schreier decorations and approximate König’s line coloring Theorem, https://users.math.cas.cz/~grebik/Approx.pdf (preprint), 2020. Ann. H. Lebesgue (to appear) (cit. on pp. 5, 6)

[Kec95] A.S. Kechris. Classical Descriptive Set Theory. New York: Springer-Verlag, 1995 (cit. on p. 3)

[KM20] A.S. Kechris and A.S. Marks. Descriptive Graph Combinatorics, http://www.math.caltech.edu/~kechris/papers/combinatorics20book.pdf (preprint), 2020 (cit. on pp. 1–4)

[KST99] A.S. Kechris, S. Solecki, and S. Todorcevic. Borel chromatic numbers, Adv. in Math., 141 (1999), 1–44 (cit. on p. 3)

[LW07] J. Lauer and N. Wormald. Large independent sets in regular graphs of large girth, J. Combin. Theory, Ser. B, 97 (2007), 999–1009 (cit. on p. 4)

[Mar16] A.S. Marks. A determinacy approach to Borel combinatorics, J. Amer. Math. Soc., 29 (2016), 579–600 (cit. on p. 3)

[Mee18] C. Meehan. Definable combinatorics of graphs and equivalence relations, Ph.D. Thesis. Pasadena, CA: California Institute of Technology, 2018. URL: https://resolver.caltech.edu/CaltechTHESIS:06012018-160828760 (cit. on pp. 1, 3)
