Abstract. We present a formalization of the well-known thesis that, in the case of independent identically distributed random variables X_1, \ldots, X_n with power-like tails of index $\alpha \in (0, 2)$, large deviations of the sum $X_1 + \cdots + X_n$ are primarily due to just one of the summands.

1. INTRODUCTION, SUMMARY, AND DISCUSSION. Let X_1, X_2, \ldots be independent identically distributed random variables. For each natural n, let $S_n := \sum_{i=1}^n X_i$.

Heyde [3] showed the following: Suppose that, for some sequence (B_n) of positive real numbers, S_n/B_n converges in distribution to a stable law of index $\alpha \in (0, 2) \setminus \{1\}$, whose support is the entire real line \mathbb{R}. (For a definition and basic properties of stable laws, see e.g. [6, section IV.3].) Then, for any sequence (x_n) going to ∞,

$$P(|S_n| > x_nB_n) \sim P(\max_{1 \leq i \leq n} |X_i| > x_nB_n).$$ \hspace{1cm} (1)

As indicated in [3], one-sided analogs of (1) could also be obtained, even in the case $\alpha = 1$. However, such a task would involve additional technical difficulties.

The conditions in [3] for (1) imply that the tail of the distribution of each X_i is power-like—more specifically,

$$P(|X_1| > u) = u^{-\alpha+o(1)} \text{ as } u \to \infty.$$ \hspace{1cm} (2)

This work by Heyde was followed by a large number of publications, including [1, 4, 5, 7].

The asymptotic equivalence (1) and, especially, its proof suggest the well-known interpretation that, in the cases of power-like tails as in (2), large deviations of the sum S_n are mainly due to just one of the summands X_1, \ldots, X_n.

In this note, we present a formal version of this interpretation:

Theorem 1. Take any $\alpha \in (0, 2)$. Let X_1, X_2, \ldots and S_n be as in the first paragraph of this note. To avoid technicalities, suppose that the distribution of X_1 is symmetric about 0 and has a probability density function f such that

$$f(u) \asymp u^{-1-\alpha} \text{ as } u \to \infty.$$ \hspace{1cm} (3)

(cf. (2)). Then

$$P(S_n > x) \sim P \left(S_n > x, \bigcup_{i \in [n]} \{ X_i > x, |S_n - X_i| \leq bx, \max_{j \in [n] \setminus \{i\}} |X_j| \leq cx \} \right)$$ \hspace{1cm} (4)

whenever $n \in \mathbb{N}$, $x \in (0, \infty)$, $c \in (0, 1)$, and $b \in (0, 1)$ vary in such a way that

$$n \ll x^\alpha.$$ \hspace{1cm} (5)
\[nx^{-\alpha} < c^{2\alpha}, \quad (6)\]
\[nx^{-\alpha} < b^2 c^{\alpha - 2}. \quad (7)\]

Here, as usual, \(\mathbb{N} := \{1, 2, \ldots\}\) and \([n] := \{1, \ldots, n\}\) for \(n \in \mathbb{N}\). For positive expressions \(E\) and \(F\) (in terms of \(x, n, c, b\)), we write (i) \(E \sim F\) if \(E/F \to 1\); (ii) \(E \ll F\) or, equivalently, \(F \gg E\) if \(E = o(F)\)—that is, if \(E/F \to 0\); (iii) \(E \preccurlyeq F\) or, equivalently, \(F \succeq E\) if \(\limsup E/F < \infty\); and (iv) \(E \asymp F\) if \(E \preccurlyeq F \preccurlyeq E\). The “much smaller than” sign \(\ll\) should not be confused with Vinogradov’s symbol \(\ll\) (the latter is usually taken to mean the same as \(\lesssim\)).

Proposition 2. For \(S_n\) as in Theorem 1 and for all \(n \in \mathbb{N}\) and \(x \in (0, \infty)\), we have \(P(S_n > x) \to 0\) if and only if condition (5) holds. Moreover, if either (5) holds or \(P(S_n > x) \to 0\), then \(P(S_n > x) \asymp nx^{-\alpha}\).

Remark 3. Condition \(P(S_n > x) \to 0\) means precisely that \(P(S_n > x)\) is a large-deviation probability for \(S_n\). So, in view of Proposition 2, Theorem 1 concerns all the large deviations of \(S_n\). \(\blacksquare\)

Remark 4. Given (6), for (7) to hold it is enough that \(b \asymp c\) or even \(b > \asymp c^{1+\alpha/2}\). Therefore and because the probability on the right-hand side of (4) is non-decreasing in \(c\) and in \(b\), without loss of generality
\[c \ll 1 \quad \text{and} \quad b \ll 1. \quad (8)\]

So, (4) shows that the large deviation event \(\{S_n > x\}\) is mainly due to just one of the summands \(X_1, \ldots, X_n\). More specifically, (4) tells us that, given \(S_n > x\), the conditional probability that exactly one of the \(X_i\)'s is \(> x\) while the absolute values of the other \(X_i\)'s and of the sum of the other \(X_i\)'s are all \(o(x)\) is close to 1. \(\blacksquare\)

Remark 5. In contrast with (1), the condition \(n \to \infty\) is not required in Theorem 1; in particular, \(n\) may be fixed there. However, it is clear that condition (5) in Theorem 1 necessarily implies that \(x \to \infty\). In another distinction from (1), in Theorem 1 the common distribution of the \(X_i\)'s is not required to be in the domain of attraction of a stable law. \(\blacksquare\)

2. PROOFS.

Proof of Theorem 1. This proof is based on two lemmas. To state the lemmas, let us introduce the following notations:

\[p_0(n, x) := P\left(S_n > x, \max_{j \in [n]} |X_j| \leq cx\right), \quad (9)\]
\[p_{\geq 2}(n, x) := P\left(S_n > x, \bigcup_{i \in [n]} \bigcup_{j \in [n] \setminus \{i\}} \{|X_i| > cx, |X_j| > cx\}\right), \quad (10)\]
\[p_{1,0}(n, x) := P\left(S_n > x, \bigcup_{i \in [n]} \{cx < |X_i| \leq x, \max_{j \in [n] \setminus \{i\}} |X_j| \leq cx\}\right), \quad (11)\]
\[p_{1,-}(n, x) := P\left(S_n > x, \bigcup_{i \in [n]} \{X_i < -x, \max_{j \in [n] \setminus \{i\}} |X_j| \leq cx\}\right), \quad (12)\]
\[p_{1,+}(n, x) := P\left(S_n > x, \bigcup_{i \in [n]} \{X_i > x, \max_{j \in [n] \setminus \{i\}} |X_j| \leq cx\}\right). \quad (13)\]
Lemma 6. For \(n \) and \(x \) as in the conditions of Theorem 1 (that is, for \(n \in \mathbb{N} \) and \(x \in (0, \infty) \) such that (5) holds), we have
\[
P(S_n > x) \gtrsim n P(X_1 > x) \asymp nx^{-\alpha}.
\] (14)

Proof. By (3),
\[
P(X_1 > u) \asymp u^{-\alpha} \quad \text{as} \quad u \to \infty.
\] (15)
So, in view of (5), \(n P(X_1 > x) \asymp nx^{-\alpha} << 1 \). Now (14) follows from \([2, \text{ inequality V, (5.10)}]\), which immediately implies \(P(S_n > x) \geq \frac{1}{4} (1 - e^{-2n P(X_1 > x)}) \) (since the distribution of \(X_1 \) is symmetric and absolutely continuous). \(\blacksquare \)

Lemma 7. For \(n, x, c \) as in the conditions of Theorem 1,
\[
p_0(n, x) \ll nx^{-\alpha},
\] (16)
\[
p_{\geq 2}(n, x) \ll nx^{-\alpha},
\] (17)
\[
p_{1,0}(n, x) \ll nx^{-\alpha},
\] (18)
\[
p_{1,1,-}(n, x) \ll nx^{-\alpha}.
\] (19)

Proof. For all natural \(i \), let
\[
Y_i := X_i \mathbf{1}(|X_i| \leq cx),
\]
where \(\mathbf{1}(A) \) denotes the indicator of an assertion \(A \), so that \(\mathbf{1}(A) = 1 \) if \(A \) is true, and \(\mathbf{1}(A) = 0 \) if \(A \) is false. Then the \(Y_i \)'s are independent identically distributed symmetric random variables. Also, by (6) and (5), \((cx)^{2\alpha} \gg nx^a \gg 1 \), so that \(cx \gg 1 \). Therefore, in view of (3), for some real \(A > 0 \) we have
\[
E Y_1^2 \lesssim \int_0^A u^2 f(u) \, du + \int_{cx}^{\infty} u^2 u^{-1-\alpha} \, du \asymp (cx)^{2-\alpha}.
\]
Therefore, with
\[
T_n := \sum_i Y_i,
\]
by (9), Markov’s inequality, and (8),
\[
p_0(n, x) \leq P(T_n > x) \leq \frac{E T_n^2}{x^2} = \frac{n E Y_1^2}{x^2} \lesssim \frac{c^{2-\alpha} n x^{-\alpha}}{x^a} \ll nx^{-\alpha}.
\] (20)
So, (16) is proved.
Next, by (10), (15), and (6),
\[
p_{\geq 2}(n, x) \leq \left(\frac{n}{2}\right) P(|X_1| > cx, |X_2| > cx) \leq n^2 (cx)^{-2a} \ll nx^{-a},
\]
which proves (17).
Further, using (11), (3), and Markov’s inequality as in (20), we have
\[
p_{1,0}(n, x) = n P(S_n > x, cx < |X_1| \leq x, |X_2| \leq cx, \ldots, |X_n| \leq cx)
\leq n P(cx < |X_1| \leq x, Y_2 + \cdots + Y_n > x - X_1)
\asymp n \int_{cx}^{x} u^{-1-\alpha} P(Y_2 + \cdots + Y_n > x-u) \, du \lesssim I,
\] (21)
where
\[I := \int_{cx}^{x} g(u) \, du, \quad g(u) := nu^{-1-a} \min\left(1, \frac{n(cx)^{2-a}}{(x-u)^2}\right). \]

Next,
\[u_x := x - n^{1/2}(cx)^{1-a/2} \sim x, \quad (22) \]
by conditions (6) and (8) on \(c \). It follows that
\[I = I_1 + I_2 + I_3, \]
where
\[I_1 := \int_{cx}^{x/2} g(u) \, du \leq \int_{cx}^{\infty} nu^{-1-a} \frac{n(cx)^{2-a}}{(x/2)^2} \, du \propto \left(\frac{n}{x^a}\right)^2 c^{2-2a} \ll nx^{-a}, \]
again by the mentioned conditions on \(c \);
\[I_2 := \int_{x/2}^{u_x} g(u) \, du \leq \int_{-\infty}^{u_x} n(x/2)^{-1-a} \frac{n(cx)^{2-a}}{(x-u)^2} \, du \]
\[\propto \left(\frac{n}{x^a}\right)^{3/2} c^{1-a/2} \ll nx^{-a}, \]
once again by the conditions on \(c \); and, in view of the definition of \(u_x \) in (22),
\[I_3 := \int_{u_x}^{x} g(u) \, du \leq (x-u_x)nu_x^{-1-a} \propto \left(\frac{n}{x^a}\right)^{3/2} c^{1-a/2} \ll nx^{-a}, \]
as in the bounding of \(I_2 \). So, the bound on \(p_{1,0}(n, x) \) in (18) follows immediately from (21) and the bounds on the integrals \(I_1, I_2, I_3 \).

Finally, in view of the definition of \(p_{1,1,\ldots}(n, x) \) in (12),
\[p_{1,1,\ldots}(n, x) = n P\left(S_n > x, X_1 < -x, \max_{j \in [n], \{1\}} |X_j| \leq cx\right) \]
\[\leq n P\left(S_n - X_1 > x, X_1 < -x, \max_{j \in [n], \{1\}} |X_j| \leq cx\right) \]
\[\leq n P(T_n - Y_1 > x, X_1 < -x) \]
\[= P(T_n - Y_1 > x) n P(X_1 < -x) \propto \frac{nc^{2-a}}{x^a} \frac{n}{x^a} \ll nx^{-a}. \]
The \(\ll \) comparison here is obtained by bounding \(P(T_n - Y_1 > x) \) similarly to the bounding of \(P(T_n > x) \) in (20) and using the symmetry of the distribution of \(X_1 \), the condition \(x \to \infty \), and the relation (15); the \(\ll \) comparison in the above multiline display follows, yet again, by the conditions on \(c \). So, (19) is proved as well.

This completes the proof of Lemma 7.

Now we can complete the proof of Theorem 1. Note that
\[P(S_n > x) = p_0(n, x) + p_{\geq 2}(n, x) + p_{1,0}(n, x) + p_{1,1,\ldots}(n, x) + p_{1,1,\ldots}(n, x). \]
So, by Lemmas 7 and 6,
\[P(S_n > x) \sim p_{1,1,+}(n, x). \]

(23)

Finally, the difference between \(p_{1,1,1}(n, x) \) and the probability on the right-hand side of (4) is
\[
\begin{align*}
&\leq n \mathbb{P}\left(X_1 > x, |S_n - X_1| > bx, \max_{j \in [n]\setminus\{1\}} |X_j| \leq cx \right) \\
&\leq n \mathbb{P}(X_1 > x) \mathbb{P}(|T_n - Y_1| > bx) \\
&\leq \mathbb{P}(S_n > x) \frac{n(cx)^{2-\alpha}}{(bx)^2} \ll \mathbb{P}(S_n > x);
\end{align*}
\]

the \(\leq \) comparison here is obtained using the \(\geq \) comparison in (14) and bounding \(\mathbb{P}(T_n - Y_1 > bx) \) similarly to the bounding of \(\mathbb{P}(T_n > x) \) in (20); and the latter \(\ll \) comparison follows by (7). Now (4) follows from (23).

The proof of Theorem 1 is complete.

Proof of Proposition 2. Suppose first that condition (5) holds. Then, by (23), (13), and (14), \(\mathbb{P}(S_n > x) \sim p_{1,1,1}(n, x) \leq n \mathbb{P}(X_1 > x) \asymp nx^{-\alpha} \leq \mathbb{P}(S_n > x) \), so that \(\mathbb{P}(S_n > x) \asymp nx^{-\alpha} \rightarrow 0 \).

On the other hand, if \(\mathbb{P}(S_n > x) \rightarrow 0 \), then, by the inequality \(\mathbb{P}(S_n > x) \geq \frac{1}{3} (1 - e^{-2n \mathbb{P}(X_1 > x)}) \) in the proof of Lemma 6, we have \(n \mathbb{P}(X_1 > x) \rightarrow 0 \), and hence \(\mathbb{P}(X_1 > x) \rightarrow 0 \) and \(x \rightarrow \infty \). So, \(\mathbb{P}(S_n > x) \geq n \mathbb{P}(X_1 > x) \asymp nx^{-\alpha} \), by (15). Thus, \(\mathbb{P}(S_n > x) \rightarrow 0 \) implies (5), which in turn implies \(\mathbb{P}(S_n > x) \asymp nx^{-\alpha} \rightarrow 0 \).

REFERENCES

[1] Borovkov, A. A. (2003). Large deviations probabilities for random walks in the absence of finite expectations of jumps. Probab. Theory Related Fields 125(3):421–446.

[2] Feller, W. (1971). An Introduction to Probability Theory and its Applications, Vol. II., 2nd ed. New York-London-Sydney: Wiley.

[3] Heyde, C. C. (1968). On large deviation probabilities in the case of attraction to a non-normal stable law. Sankhy\(\bar{a}\) Ser. A 30: 253–258.

[4] Nagaev, A. V. (1969). Integral limit theorems with regard to large deviations when Cram\'er’s condition is not satisfied. I. Theor. Probability Appl. 14: 51–64.

[5] Nagaev, A. V. (1969). Integral limit theorems with regard to large deviations when Cram\'er’s condition is not satisfied. II. Theor. Probability Appl. 14: 193–208.

[6] Petrov, V. V. (1975). Sums of Independent Random Variables. New York: Springer-Verlag. Translated from the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82.

[7] Pinelis, I. F. (1985). Asymptotic equivalence of the probabilities of large deviations for sums and maximum of independent random variables. In: Limit Theorems of Probability Theory, vol. 5 of Trudy Inst. Mat., 144–173, 176. “Nauka” Sibirsk. Otdel., Novosibirsk.

Department of Mathematical Sciences, Michigan Technological University, Houghton, MI 49931
ipinelis@mtu.edu
Odds Inversion Problem With Replacement

In the recent piece [1] in this Monthly, Moniot worked toward determining which probabilities \(\frac{p}{q} \) were achievable when drawing two balls from a jar of \(x \) red balls and \(y \) blue balls, without replacement, where a successful trial has the two drawn balls of different colors. This was done by reducing the problem to solving the Pell-like equation \(u^2 - Dv^2 = p^2 \), where \(D = q(q - 2p) \). Solutions to this, however, sometimes give only extraneous \(x, y \): e.g., \(p = 4, q = 9, D = 9 \), has no possible nonnegative integers \(x, y \) with \(x + y \geq 2 \) giving probability \(\frac{4}{9} \).

We completely answer the simpler question where the draws are with replacement, by reducing the problem to finding nontrivial solutions to the similar Diophantine equation \(u^2 - Dv^2 = 0 \).

Theorem. Probability \(\frac{p}{q} \) is achievable as the probability of two drawn balls (with replacement, from \(x \) red and \(y \) blue balls) being different, if and only if \(D = q(q - 2p) \) is a perfect square.

Proof. Probability \(\frac{p}{q} \) is achievable, if and only if there are nonnegative integers \(x, y \), not both zero, with \(\frac{p}{q} = \frac{2xy}{(x+y)^2} \). This rearranges to \(px^2 - 2(q-p)xy + py^2 = 0 \).

Taking the substitution \(v = y + x, t = y - x \), this rearranges to \((2p-q)v^2 + qt^2 = 0 \), which in turn rearranges to \((qt)^2 - Dv^2 = 0 \). Lastly, taking \(u = qt \), this becomes \(u^2 - Dv^2 = 0 \) (where \(u, v \) are not both zero).

If \(\frac{p}{q} \) is achievable, then \(D \) must be a perfect square (by considering unique factorization of integers \(u, v, D \) into primes). Suppose now that \(D = m^2 \). We take \(u = 2qm, v = 2q \), which satisfy \(u^2 - Dv^2 = 0 \). These \(u, v \) correspond to \(t = 2m, x = q - m, y = q + m \), where \(\frac{2xy}{(x+y)^2} = \frac{p}{q} \). Each of \(x, y \) are nonnegative integers, since \(m^2 = D = q^2 - 2qmp \leq q^2 \). Hence, \(\frac{p}{q} \) is achievable.

In particular, no probabilities greater than \(\frac{1}{2} \) (i.e., \(D < 0 \)) are achievable. Compare to the “elliptical case” in [1], where infinitely many such probabilities are achieved without replacement. Note also that achievable probabilities are dense in \([0, \frac{1}{2}]\), because a brief calculation shows that achievable \(\frac{p}{q} \) are exactly those rationals equal to \(\frac{1}{2}(1 - r^2) \) for some rational \(r \in [0, 1] \).

REFERENCES

[1] Moniot, R. K. (2021). Solution of an odds inversion problem. *Amer. Math. Monthly.* 128(2): 140–149.

—Submitted by Kieran Hilmer, Ron Lycan, and Vadim Ponomarenko, San Diego State University

doi.org/10.1080/00029890.2022.2104078

MSC: Primary 11D09