THE PRESSURE PROFILES OF HOT GAS IN LOCAL GALAXY GROUPS

M. Sun1, N. Sehgal2, G. M. Voit3, M. Donahue3, C. Jones4, W. Forman4, A. Vikhlinin4, and C. Sarazin1
1 Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325, USA; msun@virginia.edu
2 Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, CA 94305-4085, USA
3 Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
4 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA

Received 2010 November 30; accepted 2010 December 29; published 2011 January 12

THE PAPER PROFILE OF HOT GAS IN LOCAL GALAXY GROUPS

ABSTRACT

Recent measurements of the Sunyaev–Zel’dovich (SZ) angular power spectrum from the South Pole Telescope and the Atacama Cosmology Telescope demonstrate the importance of understanding baryon physics when using the SZ power spectrum to constrain cosmology. This is challenging since roughly half of the SZ power at ℓ = 3000 is from low-mass systems with 10^{13} h^{-1} M_\odot < M_{500} < 1.5 \times 10^{14} h^{-1} M_\odot, which are more difficult to study than systems of higher mass. We present a study of the thermal pressure content for a sample of local galaxy groups from Sun et al. The group Y_{sph,500}−M_{500} relation agrees with the one for clusters derived by Arnaud et al. The group median pressure profile also agrees with the universal pressure profile for clusters derived by Arnaud et al. With this in mind, we briefly discuss several ways to alleviate the tension between the measured low SZ power and the predictions from SZ templates.

Key words: cosmic background radiation – cosmology: observations – galaxies: clusters: general – X-rays: galaxies: clusters

Online-only material: color figures

1. INTRODUCTION

Galaxy groups are not scaled-down versions of rich clusters following simple self-similar relations (e.g., Ponman et al. 2003; Voit 2005). They are systems where the role of complex baryon physics (e.g., cooling, galactic winds, and active galactic nucleus (AGN) feedback) begins to dominate over gravity. The effects of these baryonic processes are not large but still significant in massive clusters and therefore need to be calibrated if we want to further improve the cosmological constraints from clusters. Since the role of these processes is less pronounced in massive clusters, it is easier to study and understand them by observing groups. The importance of galaxy groups for cosmology has also been well demonstrated by the recent measurements of the Sunyaev–Zel’dovich (SZ) angular power spectrum. The South Pole Telescope measured a value for the SZ power at ℓ = 3000 (scales of ~4′) that was lower than most prior predictions by at least a factor of two (Lueker et al. 2010). A measurement of the SZ power spectrum by the Atacama Cosmology Telescope is consistent with these results (Das et al. 2010; Dunkley et al. 2010). The SZ angular power spectrum is a sensitive probe both of cosmological parameters and of the hot gas content of galaxy clusters and groups (e.g., Komatsu & Seljak 2002). Regarding the latter, it opens a new window into low-mass, high-redshift systems as about half of the SZ power at ℓ = 3000 comes from halos with 10^{13} h^{-1} M_\odot < M_{500} < 1.5 \times 10^{14} h^{-1} M_\odot and z > 0.5 (e.g., Trac et al. 2010). While the examination of the thermal pressure content in z > 0.5 groups is a challenge to current X-ray telescopes with typical exposures, such work can be done for local groups. Group pressure profiles have received little attention to date and the existing samples are small (e.g., Mahdavi et al. 2005; Finoguenov et al. 2007). In this Letter, we present the pressure profiles of hot gas in 43 local galaxy groups from the Sun et al. (2009, hereafter S09) sample. We assume Ω_M = 0.24, Ω_Λ = 0.76, and H_0 = 73 km s^{-1} Mpc^{-1}.

2. THE GROUP SAMPLE AND DATA ANALYSIS

The group sample and the Chandra data analysis have been discussed in S09. There are 43 groups at z = 0.01–0.12 (a median z of 0.033), all with intracluster medium (ICM) properties derived to at least r_{2500}. Twenty-three have masses measured to ~r_{500}. The mass range is M_{500} = 10^{13}–10^{14} h^{-1} M_\odot. As an archival sample, there is no well-defined selection function. The sample does include some X-ray faint groups, usually with strong radio AGNs at the center.

The analysis in S09 was based on Chandra CALDB 3.4.3. Since then, there have been major Chandra calibration releases on the on-axis effective area and the ACIS low-energy contamination models. To check the impact of calibration changes on the S09 results, we examined spectra from 40 regions from 18 observations that we studied in S09. The temperatures of these regions range from 0.7–3.0 keV and the abundances range from 0.15–1.5 solar. The observation dates are from 2000 to 2006, and both ACIS-I and ACIS-S observations are examined. CIAO 4.3 with CALDB 4.4.1 and XSPEC 12.6 were used. The temperature decrease with the new calibration is less than 1% on average. This is not surprising (e.g., Nevalainen et al. 2010), as temperatures at this range are mainly determined by the centroid of the iron-L hump. The decrease of the ACIS effective area below 5 keV causes the normalization of the spectral model to increase, on average, by 9.9%, which is independent of the temperature. This implies an average 4.9% increase in gas density. We do not include this small change in this work.

While small ACIS calibration uncertainties may still remain after the release of CALDB 4.4.1, the results for groups should not be affected much. The Chandra flux in the 0.5–2.0 keV band agrees with the XMM-Newton flux to better than 4% (e.g., Nevalainen et al. 2010). The existing temperature bias is small for low-temperature gas as long as the iron-L hump is significant. Even if temperatures of low-temperature gas are still biased high by, e.g., 10%, the Y_{sph,500}−M_{500} relation (Figure 1) should not...
uncertainties on the relation that is insignificant compared to the large statistical volume-integrated Compton parameter for the S09 groups with XMM-Newton Cluster Structure Survey (REXCESS) clusters. We also plot the best-fit relations from recent SZ templates; the dashed line is for the AGN feedback simulations at equilibrium (HSE) mass values for the REXCESS clusters are not published. The red dotted line shows the A10 best-fit relation. The hydrostatic mass profiles, which is the reason for the small errors and scatter of red points as Y_{500} and $Y_{sph,500}$ are well correlated. Good agreement between the S09 and A10 results ($\alpha = 1.80, \beta = 0.472$). The green dashed line is for the AGN feedback simulations at $z = 0$ by Battaglia et al. (2010); the magenta dashed line is from Shaw et al. (2010) at $z = 0.05$ ($\alpha = 1.81, \beta = 4.76$ for the HSE mass and $\alpha = 1.80, \beta = 4.85$ for the true mass), and the cyan dashed line is for the nonthermal 20 model by Trac et al. (2010); $\alpha = 1.83, \beta = 4.86$. We emphasize that M_{500} from the X-ray data is the HSE mass which may be smaller than the true M_{500}. The models by Shaw et al. (2010) and Trac et al. (2010) assume about 20% non-thermal pressure support. If plotted with the HSE mass, these two lines will shift $\sim 12\%$ to the left for M_{500} (or $\sim 23\%$ higher for Y_{500}). Lower panel: the ratios between the SZ templates and the A10 best fit (the same color code as in the upper panel), while the black solid line shows the ratio between the S09 and the A10 best fits. (A color version of this figure is available in the online journal.)

![Figure 1](image)

Figure 1. Upper panel: the $Y_{sph,500}$–M_{500} relation for the S09 groups (black points) and the A10 clusters (red points). The best-fit relation for the S09 groups (the black solid line) is derived from the BCGS orthogonal regression method with bootstrap resampling (Akriras & Bershady 1996) and is given by $E(\gamma)^{-2/3}Y_{sph,500} = 10^\alpha (M_{500}/5 \times 10^{14} h_{75}^{-1} M_\odot)^{\beta} h_{75}^{5/2} \text{ Mpc}^2$, where $\alpha = 1.75 \pm 0.09$ and $\beta = -4.77 \pm 0.09$. The black dotted lines show the 1σ error (22%). The red dotted line shows the A10 best-fit relation. The hydrostatic equilibrium (HSE) mass values for the REXCESS clusters are not published so the M_{500}–$Y_{X,500}$ relation (Equation (2) in A10) was used to derive M_{500}, which is the reason for the small errors and scatter of red points as $Y_{X,500}$ and $Y_{sph,500}$ are well correlated. Good agreement between the S09 and A10 results can be seen. We also plot the best-fit relations from recent SZ templates; the blue dashed line is from Sehgal et al. (2010a; $\alpha = 1.80, \beta = 4.72$), the green dashed line is for the AGN feedback simulations at $z = 0$ by Battaglia et al. (2010); $\alpha = 1.73, \beta = 4.81$, the magenta dashed line is from Shaw et al. (2010) at $z = 0.05$ ($\alpha = 1.81, \beta = 4.76$ for the HSE mass and $\alpha = 1.80, \beta = 4.85$ for the true mass), and the cyan dashed line is for the nonthermal 20 model by Trac et al. (2010); $\alpha = 1.83, \beta = 4.86$. We emphasize that M_{500} from the X-ray data is the HSE mass which may be smaller than the true M_{500}. The models by Shaw et al. (2010) and Trac et al. (2010) assume about 20% non-thermal pressure support. If plotted with the HSE mass, these two lines will shift $\sim 12\%$ to the left for M_{500} (or $\sim 23\%$ higher for Y_{500}). Lower panel: the ratios between the SZ templates and the A10 best fit (the same color code as in the upper panel), while the black solid line shows the ratio between the S09 and the A10 best fits. (A color version of this figure is available in the online journal.)

be affected much as M_{500} and $Y_{sph,500}$ will both be lower, by $\sim 15\%$ and $\sim 20\%$, respectively, producing a small change in the relation that is insignificant compared to the large statistical uncertainties on M_{500} (a median 1σ uncertainty of 18%).

3. THE INTEGRATED PRESSURE CONTENT

We first compare the scaling relation between mass and the volume-integrated Compton parameter for the S09 groups with the Arnould et al. (2010, hereafter A10) results. The A10 sample is from XMM-Newton observations of 31 Representative XMM-Newton Cluster Structure Survey (REXCESS) clusters with $M_{500} = 7 \times 10^{13}$–$6 \times 10^{14} h^{-1} M_\odot$. The spherically integrated quantity, $Y_{sph,500}$ (defined in Equation (14) of A10), is derived within r_{500}. The S09 $Y_{sph,500}$–M_{500} relation agrees well with A10’s (Figure 1). This can be expected from the good agreement of the M_{500}–$Y_{X,500}$ relation between the two works. The difference between $Y_{X,500}$ and $Y_{sph,500}$ is the ratio between the spectroscopic temperature and the gas-mass-weighted temperature within r_{500} (T_X versus $T_{mg,500}$). The T_X in S09 is measured between 0.15 r_{500} and r_{500} (we call it T_{500}), while the T_X in A10 is measured between 0.15 r_{500} and 0.75 r_{500}. For the S09 sample, $T_{mg,500}/T_{500} = 0.98 \pm 0.04$ and $T_{500} = (0.95 \pm 0.02) T_X(0.15 r_{500}–0.75 r_{500})$. Arnould et al. (2007) quoted 0.94–0.97 for the latter ratio. Thus, $T_{mg,500}/T_X(0.15 r_{500}–0.75 r_{500}) \sim 0.93$ for the S09 sample, which agrees with the A10 result of 0.924 ± 0.004. Because of this consistency and the agreement between the M_{500}–$Y_{X,500}$ relations, we expect the $Y_{sph,500}$–M_{500} relations from S09 and A10 to agree. We also examined the 20 tier 3 and 4 groups in S09 (where gas properties are only derived to 45%–72% of r_{500}). The $Y_{sph,2500}/T_{500}$ relation for the tier 3 and 4 groups agrees with the relation for the tier 1 and 2 groups. Overall, we conclude that for the S09 groups, the derived $Y_{sph,500}$ is 1.05 ± 0.25 times $Y_{sph,500}$ predicted from the A10 relation. We also plot the predicted $Y_{sph,500}$–M_{500} relations from recent SZ templates (Sehgal et al. 2010a; Battaglia et al. 2010; Shaw et al. 2010; Trac et al. 2010) in Figure 1. The Sehgal et al. (2010a) template used the ICM model by Bode et al. (2009), which was calibrated with the Vikhlinin et al. (2006) and S09 gas fraction relations. Vikhlinin et al. (2009) included six more clusters with on average lower gas fractions within r_{500} than the eight clusters in Vikhlinin et al. (2006). As the M_{500}–$Y_{X,500}$ relation from Vikhlinin et al. (2009) agrees well with that in A10, it is not surprising that the Sehgal et al. (2010a) template has $\sim 9\%$ higher normalization than the A10 result for clusters.

4. THE RADIAL PRESSURE PROFILES

We also examine the radial pressure profiles of the S09 groups. A10 derived a universal pressure profile of the ICM by removing the mass dependence. If the ICM scaling relations are self-similar, the mass dependence is $M_{500}^{3/2}$ (Equation (5) of A10, P_{500}; also see Nagai et al. 2007). Since deviations from self-similarity exist, A10 defined a term (Equations (7) and (8) of A10, which we call P_{adj}) to further remove the mass dependence in addition to P_{500}, where $P_{adj} \propto M_{200}^{3/2} x$ and $x = 2r_{500}/r_{200}$. While the form of P_{adj} can be examined with the S09 groups, the large uncertainties in M_{500} for the S09 groups do not allow good constraints on this adjustment factor. We derived the $P_{/P_{500}}$ and the $P_{/P_{200}}$ profiles for all 43 groups. Uncertainties are estimated from those in the temperature and density profiles. In Figure 2, we show the median and the 1σ scatter of both profiles. To account for uncertainties in pressure profiles, 1000 Monte Carlo simulations were run to examine the uncertainties on the median profiles, which is small as shown in Figure 2. The 1σ scatter for $P_{/P_{200}}$ is 26%–40% at $0.25 r_{500}–0.8 r_{500}$ (compared to less than 30% scatter for the A10 clusters) and is consistent with a log-normal form. Thus, the radial pressure profiles of the S09 groups agree well with the universal pressure profile defined by A10. This is consistent with the good agreement between the two works on the mass proxies and entropy scalings (S09; Pratt et al. 2010).

5. DISCUSSIONS AND CONCLUSIONS

The results above suggest that the thermal pressure of local galaxy groups from the S09 sample is consistent with the extrapolation from the A10 results, although statistical errors and scatter are still large. Interestingly, recent measurements
of the SZ angular power spectrum are at least a factor of two lower than prior expectations at $\ell = 3000$ (Lueker et al. 2010).

The thermal SZ power spectra scales roughly as the square of the thermal SZ flux. Given the results presented above, we briefly discuss several possibilities that may alleviate this tension.

X-ray selection bias. The S09 sample is an X-ray archival sample and the REXCESS sample is an X-ray-luminosity-selected sample. Both samples can be different from mass-selected samples. The Chandra archive may be biased to systems with bright cores, while X-ray underluminous groups and clusters may exist (e.g., Rasmussen et al. 2006; Popesso et al. 2007). However, the $Y_{\text{ph}} - M$ relation at r_{500} and beyond is less affected by the presence of X-ray bright regions (e.g., a large cool core) than the $L_X - M$ relation. For the S09 sample, 12%–68% of the X-ray flux (a median of $\sim 34\%$) is from within 0.15r_{500}, while such regions only contribute $\sim 5\%$ to $Y_{\text{ph,500}}$ for $M_{500} = 10^{13} - 10^{15} h^{-1} M_\odot$ halos, assuming the A10 pressure profile. The contribution may be even smaller than 5% for X-ray underluminous systems as their gas cores are fainter than those of the REXCESS clusters used to derive the A10 profile. One main conclusion of the S09 work is that the gas content of groups is comparable to that of clusters at $r > r_{2500}$, at least for the S09 sample. If we combine the $n_e - T_{500}$ relations from Vikhlinin et al. (2009), S09, and REXCESS, the trend of slope flattening with increasing radius is significant, with an almost constant density at r_{500} from groups to clusters. This trend is consistent with the scenario that much of the low-entropy gas in low-mass systems has been ejected to large radii by strong feedback (e.g., McCarthy et al. 2011). However, it remains to see whether this result applies to mass-selected samples. One way to test this is to examine scaling relations from non-X-ray-selected samples. This kind of work has been done on optically selected samples by stacking the ROSAT All-Sky Survey data (Dai et al. 2010; Rykoff et al. 2008). Besides the systematic uncertainties with stacking, the ROSAT temperatures from stacking are often biased (Rykoff et al. 2008) and contamination to those samples, especially at the low-mass end, can be severe.

Pressure contribution at $r > r_{500}$. The total SZ flux is more sensitive to the gas in cluster outskirts ($r > r_{500}$) than the total X-ray flux. Few direct X-ray constraints exist at such large radii, especially for groups. Although the contribution from $r > r_{500}$ to Y_{ph} is significant (e.g., 40%–70% increase by integrating to $2 r_{500}$ for the A10 profile), the contribution to the SZ power spectrum at $\ell = 3000$ assuming the A10 profile is smaller, only about 20% from $r > r_{500}$ regions. So an overestimate of the thermal pressure from the A10 model only at $r > r_{500}$ could overpredict the SZ power spectrum by at most 20% at $\ell = 3000$.

Dynamical state of the ICM. The SZ signal measures the total thermal energy of electrons. However, the potential energy of halos may not be fully converted into thermal energy of electrons because of, e.g., recent mergers and weak viscosity of the ICM (e.g., Lau et al. 2009; Burns et al. 2010). Galaxies can also contribute to the non-thermal pressure support by, e.g., injected magnetic fields and cosmic rays. The non-thermal pressure support may also cause the ICM to be clumpy. For a clumpy ICM, the SZ signal predicted from the X-ray data will be biased high. All these effects may have a dependence on mass (or the ICM temperature), and the evolution of these effects with redshift may not be self-similar.

The impact of the non-thermal pressure support on the SZ power spectrum has been discussed by Shaw et al. (2010), who examined models with a radial dependence of the non-thermal pressure. Trac et al. (2010) examined a model with 20% non-thermal pressure for all clusters and groups at all masses and redshifts. However, both models do not predict the mean value measured for the SZ power spectrum at $\ell = 3000$ by Lueker et al. (2010), being high by about 1σ. Interestingly, SZ observations suggest that the latter model predicts too little SZ flux for very massive clusters (Sehgal et al. 2010b). As for clumpiness, the good agreement between the measured SZ radial profile and the prediction from X-ray data for individual clusters (e.g., Plagge et al. 2010; Sehgal et al. 2010b; Komatsu et al. 2011) suggests that clumpiness should be weak for massive clusters. However, one can imagine a mass dependence for
discussed in this Letter, most of the SZ power at
Leauthaud et al. 2010) and caustics (Rines & Diaferio 2010).
Two promising methods are stacking of the lensing data (e.g.,
Jeltema et al. 2009; Leauthaud et al. 2010), but the statistical
mass by 20% from \(M \)
be much weaker in groups than in clusters.

The Astrophysical Journal Letters

Evolution of the ICM properties. While local groups are
discussed above. Regarding the low SZ power measured by recent
experiments, we suggest some astrophysical possibilities that
may alleviate the apparent tension between models and mea-
surements. Understanding the SZ power spectrum will provide
important insights into both baryon physics and cosmology.

We thank S. Allen, N. Battaglia, P. Bode, G. Holder,
J. Hughes, D. Nagai, J. Ostriker, L. Shaw, J. Sievers, and H. Trac
for helpful discussions. We thank N. Battaglia, L. Shaw, and H.
Trac for providing their best fits of the \(Y-M \) relations. M.S. and
C.S. were supported in part by Chandra grants GO9-0135X and
GO9-0148X, and XMM-Newton grant NNX09AQ01G. M.S.,
G.M.V., and M.D. were supported in part by the NASA LTSA
grant NNG-05GD82G. N.S. is supported by the U.S. Depart-
ment of Energy contract to SLAC no. DE-AC3-76SF00515.

REFERENCES

Akritas, M. G., & Bershady, M. A. 1996, ApJ, 470, 706
Arnaud, M., Pointecouteau, E., & Pratt, G. W. 2007, A&A, 474, L37
Arnaud, M., Pratt, G. W., Piffaretti, R., Böhringer, H., Croston, J. H., &
Pointecouteau, E. 2010, A&A, 517, 92 (A10)
Bataglia, N., Bond, J. R., Prioroomer, C., Sievers, J. L., & Sijacki, D. 2010, ApJ,
725, 91
Bode, P., Ostriker, J. P., & Vikhlinin, A. 2009, ApJ, 700, 989
Burns, J. O., Skillman, S. W., & O’Shea, B. W. 2010, ApJ, 721, 1105
Dai, X., Bregman, J. N., Kochanek, C. S., & Rasia, E. 2010, ApJ, 719, 119
Das, S., et al. 2010, arXiv:1009.0847
Dunkley, J., et al. 2010, arXiv:1009.0866
Finoguenov, A., Ponman, T. J., Osmond, J. P. F., & Zimer, M. 2007, MNRAS,
374, 737
Jeltema, T. E., et al. 2009, MNRAS, 399, 715
Knox, L., Holder, G. P., & Church, S. E. 2004, ApJ, 612, 96
Komatsu, E., & Seljak, U. 2002, MNRAS, 336, 1256
Komatsu, E., et al. 2011, ApJS, 192, 18
Lau, E. T., Kravtsov, A. V., & Nagai, D. 2009, ApJ, 705, 1129
Leauthaud, A., et al. 2010, ApJ, 709, 97
Lueker, M., et al. 2010, ApJ, 719, 1045
Mahdavi, A., Finoguenov, A., Böhringer, H., Geller, M. J., & Henry, J. P.
2005, ApJ, 622, 187
McCarthy, I. G., Schaye, J., Bower, R. G., Ponman, T. J., Booth, C. M., Dalla
Vecchia, C., & Springel, V. 2011, MNRAS, in press (arXiv:1008.4799)
Nagai, D., Kravtsov, A. V., & Vikhlinin, A. 2007, ApJ, 668, 1
Nevalainen, J., David, L., & Guainazzi, M. 2010, A&A, 523, 22
Pacaud, F., et al. 2007, MNRAS, 382, 1289
Plagge, T., et al. 2010, ApJ, 716, 1118
Ponman, T. J., Sandersen, A. R., & Finoguenov, A. 2003, MNRAS, 343, 331
Popesso, P., Biviano, A., Böhringer, H., & Romaniello, M. 2007, A&A, 461, 397
Pratt, G. W., et al. 2010, A&A, 511, 85
Rasmussen, J., Ponman, T. J., Mulchaey, J. S., Miles, T. A., & Raychaudhury, S.
2006, MNRAS, 373, 653
Rines, K., & Diaferio, A. 2010, AI, 139, 580
Rykoff, E. S., et al. 2008, ApJ, 675, 1106
Schaye, J., Bower, R. G., Ponman, T. J., Booth, C. M., Dalla
Vecchia, C., & Springel, V. 2011, MNRAS, in press (arXiv:1008.4799)
Sun, M., Voit, G. M., Donahue, M., Jones, C., Forman, W., & Vikhlinin, A.
2009, ApJ, 693, 1142 (S09)
Trac, H., Bode, P., & Ostriker, J. P. 2010, arXiv:1006.2828
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S.
S., & Van Speybroeck, L. 2006, ApJ, 640, 691
Vikhlinin, A., et al. 2009, ApJ, 692, 1033
Voit, G. M. 2005, Rev. Mod. Phys., 77, 207