Long-term survival following upgrade compared with de novo cardiac resynchronization therapy implantation: a single-centre, high-volume experience

Walter Richard Schwertner †, Anett Behon †, Eperke Dóra Merkel, Márton Tokodi ‡, Attila Kovács, Endre Zima, István Osztheimer ‡, Levente Molnár, Ákos Király, Roland Papp, László Gellér, Luca Kuthi, Boglárka Veres, Annamária Kosztin ‡, and Béla Merkely*,‡

Heart and Vascular Centre, Semmelweis University, Városmajor 68, H-1122 Budapest, Hungary

Received 21 September 2020; editorial decision 19 February 2021; online publish-ahead-of-print 25 May 2021

Aims

Patients with a pacemaker or implantable cardioverter-defibrillator are often considered for cardiac resynchronization therapy (CRT). However, limited comprehensive data are available regarding their long-term outcomes.

Methods and results

Our retrospective registry included 2524 patients [1977 (78%) de novo, 547 (22%) upgrade patients] with mild to severe symptoms, left ventricular ejection fraction <35%, and QRS >130ms. The primary outcome was the composite of all-cause mortality, heart transplantation (HTX), or left ventricular assist device (LVAD) implantation; secondary endpoints were death from any cause and post-procedural complications. In our cohort, upgrade patients were older [71 (65–77) vs. 67 (59–73) years; P < 0.001], were less frequently females (20% vs. 27%; P = 0.002) and had more comorbidities than de novo patients. During the median follow-up time of 3.7 years, 1091 (55%) de novo and 342 (63%) upgrade patients reached the primary endpoint. In univariable analysis, upgrade patients exhibited a higher risk of mortality/HTX/LVAD than the de novo group [hazard ratio (HR): 1.41; 95% confidence interval (CI): 1.23–1.61; P < 0.001]. However, this difference disappeared after adjusting for covariates (adjusted HR: 1.12; 95% CI: 0.86–1.48; P = 0.402), or propensity score matching (propensity score-matched HR: 1.10; 95% CI: 0.95–1.29; P = 0.215). From device-related complications, lead dysfunction (3.1% vs. 1%; P < 0.001) and pocket infections (3.7% vs. 1.8%; P = 0.014) were more frequent in the upgrade group compared to de novo patients.

Conclusion

In our retrospective analysis, upgrade patients had a higher risk of all-cause mortality than de novo patients, which might be attributable to their more significant comorbidity burden. The occurrence of lead dysfunction and pocket infections was more frequent in the upgrade group.

Keywords

Cardiac resynchronization therapy • De novo CRT • Upgrade • All-cause mortality • Complication
What’s new?

- In a patient cohort including >2500 CRT recipients with long-term follow-up data, we demonstrated a 41% higher risk of mortality/HTX/LVAD implantation in upgrade compared to de novo patients. This observed difference in outcomes might be attributable to their more significant comorbidity burden as it disappeared after adjusting for relevant clinical covariates or performing propensity score matching.
- Cardiac resynchronization therapy upgrade procedures were associated with higher rates of lead dysfunction or fracture and pocket infection than de novo CRT implantation.

Introduction

Cardiac resynchronization therapy (CRT) is an effective treatment in symptomatic heart failure (HF) patients with reduced left ventricular ejection fraction (LVEF) and left bundle branch block (LBBB).1,2 Several prospective randomized trials have shown that in this patient population, resynchronization therapy is associated with improved symptoms, quality of life, left ventricular function,1 and reduced cardiovascular mortality.2 However, there are patient subgroups whose long-term outcomes are less predictable; thus, further investigations or more complex prediction models are required.3

Most randomized clinical trials excluded patients with prior conventional pacemakers (PM) or implantable cardioverter-defibrillators (ICD). Moreover, no randomized trials were conducted regarding the effects of CRT upgrade in patients with chronic right ventricular pacing (RVP). So far, the ongoing BUDAPEST-CRT Upgrade Study (NCT02270840) is the first prospective randomized controlled trial that will address this question.4

Chronic RVP can induce mechanical dyssynchrony similarly to the LBBB, leading to a reduction in ventricular function.5 Moreover, the high percentage of RVP is associated with an increased risk of HF and atrial fibrillation (AF) events.6 Nonetheless, these unfavourable events might be prevented by performing a CRT upgrade procedure.5

Despite the increasing number of CRT upgrade procedures,7 scientific evidence is controversial concerning the long-term outcomes of upgrade patients. Thus, in our retrospective cohort study, we aimed to compare the long-term survival and complications rate of patients after de novo or upgrade CRT procedures.

Methods

Patient population

Our registry comprised patients (n = 2524) who underwent CRT upgrade or de novo implantation between 28 July 2000 and 6 September 2018 at the Heart and Vascular Centre of Semmelweis University. Patients were considered for CRT as per the current guidelines: New York Heart Association (NYHA) functional Class II to IVa, LVEF ≤35%, and QRS width ≥130 ms, despite the optimal medical therapy.7 Patients with no active health insurance at the time of implantation were excluded.

Baseline evaluation

Data were extracted retrospectively from paper-based and electronic medical records. Anthropometric-, laboratory, echocardiographic-, and ECG parameters, NYHA functional class, and comorbidities were collected for each patient at baseline. Echocardiographic measurements were performed 7 (0–29) days, whereas devices (of the upgrade patients) were interrogated 10 (0–40) days before the procedures.

The examination complies with the Declaration of Helsinki, and it was approved by the Regional and Institutional Committee of Science and Research Ethics (Approval No. 161-0/2019).

Endpoints

The primary composite endpoint was defined as mortality from any cause, implantation of left ventricular assist device (LVAD), or heart transplantation (HTX). Follow-up data [status (dead or alive), date of death] were obtained for all patients by querying the National Health Insurance Database of Hungary in September 2019. Secondary endpoints were death from any cause and peri- and post-procedural complications.

Cardiac resynchronization therapy implantation

Left ventricular lead implantations were performed via cephalic or subclavian vein access using a transvenous approach to a coronary sinus side branch. In unsuccessful cases, transapical lead implantation or epicardial implantation from mini-thoracotomy were performed. During the transvenous process, to assess the optimal side branch, a venogram balloon catheter was used, and images were recorded. Left ventricular leads were positioned, preferably to a lateral or posterolateral coronary sinus side branch avoiding the apex, whereas right ventricular leads were positioned to a septal position.

Statistical analysis

Statistical analysis was performed using SPSS (version 25.0, IBM, Armonk, NY, USA), GraphPad Prism (version 8, Inc., GraphPad Software, San Diego, CA, USA), and RStudio (version 1.8, RStudio PBC, Boston, MA, USA). To determine whether the data are distributed normally, we performed Shapiro–Wilks tests. In case of normal distribution, continuous variables were expressed as mean ± standard deviation (SD), whereas not normally distributed parameters were expressed as median and inter-quartile range (IQR). To compare continuous variables within the same group, paired Student’s t-test or paired Wilcoxon rank test was performed, as appropriate. Depending on normality, continuous variables between groups were compared using unpaired Student’s t-test or Mann–Whitney U test. To compare categorical variables, χ² or Fisher’s exact tests were performed. Time-to-event analyses were performed using log-rank tests, univariable and multivariable Cox regression analyses. We performed propensity score matching in R (version 3.6.3, R Foundation for Statistical Computing, Vienna, Austria) using the MatchIt package (version 3.0.2). After replacing the missing values with the mean of the non-missing cases, propensity score matching was performed using the nearest neighbour matching (distance calculated with the logistic regression method). To assess the impact of the implantation date on the primary composite endpoint, we created dummy variables based on the year of CRT implantation. A P-value of < 0.05 was considered statistically significant.
A total of 2524 patients were included in our registry, of whom 1977 (78%) received CRT as a primary device, and 547 (22%) underwent an upgrade procedure. In the total cohort, the median follow-up time was 3.7 (1.9–6.4) years.

Among the upgrade CRT patients, 142 (26%) had VVI and 119 (22%) VVI-ICD, 164 (30%) had DDD and 74 (14%) DDD-ICD, 32 (6%) had VDD, and 10 (2%) VDD-ICD devices prior to CRT implantation. In those with previous devices, the median duration of RVP was 4.5 (2.1–8.1) years, whereas the median RVP rate was 95 (62–99) % before the upgrade CRT procedure.

Regarding the baseline clinical characteristics, upgrade patients were significantly older [71 (65–77) vs. 67 (59–73) years; \(P < 0.001 \)], were more likely to have ischaemic aetiology [328 (60%) vs. 908 (46%); \(P < 0.001 \)] accompanied with a higher prevalence of prior myocardial infarction [262 (48%) vs. 712 (36%); \(P < 0.001 \)] and coronary artery bypass graft procedures [105 (19%) vs. 228 (12%); \(P < 0.001 \)] (Table 1).

Table 1	Baseline clinical characteristics of de novo and upgrade CRT patients		
All patients (n = 2524)	**De novo CRT (n = 1977)**	**Upgrade CRT (n = 547)**	
Age (years), median (IQR)	68 (61–74)	67 (59–73)	71 (65–77)
Sex (female), n (%)	637 (25)	527 (27)	110 (20)
NYHA III/IV, n (%)	1181 (57)	916 (59)	265 (52)
BMI (kg/m²), median (IQR)	27.4 (24.6–30.8)	27.4 (24.5–30.7)	27.7 (24.7–30.9)
QRS width (ms), mean ± SD	161.6 ± 27.8	158.3 ± 26.0	174 ± 30.6
Ischaemic aetiology, n (%)	1236 (49)	908 (46)	328 (60)
Medical history			
MI, n (%)	974 (39)	712 (36)	262 (48)
PCI, n (%)	739 (29)	560 (28)	179 (33)
CABG, n (%)	333 (13)	228 (12)	105 (19)
HT, n (%)	1819 (72)	1416 (72)	403 (74)
DM, n (%)	927 (37)	724 (37)	203 (37)
Type II DM, n (%)	750 (29)	598 (30)	152 (28)
Atrial fibrillation, n (%)	950 (38)	692 (35)	258 (47)
Ventricular arrhythmia, n (%)	602 (24)	421 (22)	181 (33)
CRT-D implantation, n (%)	1366 (54)	1051 (53)	315 (58)
Laboratory parameters			
NT-proBNP (pg/mL), median (IQR)	2757 (1588–3756)	2717 (1424–3139)	2873 (1640–4644)
Creatinine (µmol/L), median (IQR)	101 (81–131)	98 (79–126)	111 (89–142)
eGFR (mL/min/1.73 m²), median (IQR)	60 (44.9–76.2)	63 (46.6–78.4)	52.8 (39.7–62.8)
CKD, n (%)	936 (37)	668 (34)	268 (49)
Echocardiographic parameters			
LVEF (%), median (IQR)	28 (24–33)	28 (24–33)	29 (25–35)
LVEDd (mm), mean ± SD	63.8 ± 9.5	64.1 ± 9.5	63.0 ± 9.4
LVESd (mm), mean ± SD	53.6 ± 10.3	54.1 ± 10.2	52.3 ± 10.6
Medical treatment			
Loop diuretics, n (%)	1829 (80)	1413 (79)	416 (82)
Thiazide diuretics, n (%)	548 (24)	416 (23)	132 (26)
β-blockers, n (%)	2043 (89)	1584 (89)	459 (90)
MRA, n (%)	1557 (68)	1203 (67)	354 (69)
ACE-I/ARB, n (%)	2111 (92)	1656 (92)	455 (89)
Amiodarone, n (%)	619 (27)	447 (25)	172 (34)
OAC, n (%)	772 (30)	538 (30)	234 (46)

Continuous variables were listed as mean ± SD or median/IQR, and categorical variables were listed as n (%). Continuous variables were compared using unpaired Student’s t-test or Mann–Whitney U test, while categorical variables were compared using χ² or Fisher’s exact tests. P-values refer to differences between the de novo and the upgrade CRT groups.

ACE-I, angiotensin-converting enzyme inhibitors; ARB, angiotensin receptor blocker; BMI, body mass index; CABG, coronary artery bypass grafting; CKD, chronic kidney disease; CRT-D, cardiac resynchronization therapy defibrillator; DM, diabetes mellitus; eGFR, estimated glomerular filtration rate; HT, hypertension; IQR, inter-quartile range; LVEDd, left ventricular end-diastolic diameter; LVEF, left ventricular ejection fraction; LVESd, left ventricular end-systolic diameter; MI, myocardial infarction; MRA, mineralocorticoid receptor antagonists; NT-proBNP, N-Terminal pro-B-Type Natriuretic Peptide; NYHA, New York Heart Association class; OAC, oral anticoagulant; PCI, percutaneous coronary intervention; SD, standard deviation.

Results

Patient characteristics

A total of 2524 patients were included in our registry, of whom 1977 (78%) received CRT as a primary device, and 547 (22%) underwent an upgrade procedure. In the total cohort, the median follow-up time was 3.7 (1.9–6.4) years.

Among the upgrade CRT patients, 142 (26%) had VVI and 119 (22%) VVI-ICD, 164 (30%) had DDD and 74 (14%) DDD-ICD, 32 (6%) had VDD, and 10 (2%) VDD-ICD devices prior to CRT implantation. In those with previous devices, the median duration of RVP was 4.5 (2.1–8.1) years, whereas the median RVP rate was 95 (62–99) % before the upgrade CRT procedure.

Regarding the baseline clinical characteristics, upgrade patients were significantly older [71 (65–77) vs. 67 (59–73) years; \(P < 0.001 \)], were more likely to have ischaemic aetiology [328 (60%) vs. 908 (46%); \(P < 0.001 \)] accompanied with a higher prevalence of prior myocardial infarction [262 (48%) vs. 712 (36%); \(P < 0.001 \)] and coronary artery bypass graft procedures [105 (19%) vs. 228 (12%); \(P < 0.001 \)] (Table 1). While, NYHA III/IV functional status [265 (52%) vs. 916 (59%); \(P = 0.007 \)] and female sex [110 (20%) vs. 527 (27%); \(P = 0.002 \)] were less common in the upgrade patient group, they...
suffered more frequently from AF [258 (47%) vs. 692 (35%); \(P < 0.001\)] and ventricular arrhythmias [181 (33%) vs. 421 (22%); \(P < 0.001\)]. Moreover, chronic kidney disease (CKD) [268 (49%) vs. 668 (34%); \(P < 0.001\)] was more common based on estimated glomerular filtration rate (eGFR) [52.8 (39.7–62.8) mL/min/1.73 m² vs. 63 (46.6–78.4) mL/min/1.73 m²; \(P < 0.001\)] and creatinine levels [111 (89–142) vs. 98 (79–126) \(\mu\text{mol/L}; \ P < 0.001\)] in the upgrade group compared to the de novo patients (Table 1). Among patients with a previous device, paced QRS duration was significantly broader compared with the de novo group (174 ± 30.6 vs. 158.3 ± 26.0 ms; \(P < 0.001\)).

Due to the higher rate of AF in the upgrade patients, they received oral anticoagulation (OAC) [234 (46%) vs. 538 (30%); \(P < 0.001\)] and amiodarone [172 (34%) vs. 447 (25%); \(P = 0.001\)] more frequently. However, the prescription rate of angiotensin-converting enzyme inhibitors (ACE-I) or angiotensin II receptor blockers (ARB) [455 (89%) vs. 267 (55.2%); \(P = 0.032\)] was lower among upgrade patients (Table 1).

Regarding echocardiographic parameters, the upgrade group had higher baseline LVEF [29 (25–35)% vs. 28 (24–33)%; \(P = 0.014\)] and smaller left ventricular diameters (LVEDd 63.0 ± 9.4 vs. 64.1 ± 9.5 mm; \(P = 0.037\), LVESd 52.3 ± 10.6 vs. 54.1 ± 10.2 mm; \(P = 0.007\)] compared with the de novo group (Table 1).

Long-term outcomes—primary endpoint
During the median follow-up time of 3.7 (1.9–6.4) years, 1433 (56.8%) patients reached the composite primary endpoint [1091 (55.2%) patients in the de novo and 342 (62.5%) in the upgrade CRT group]. Overall, 1057 (53.5%) de novo and 334 (61.1%) upgrade patients died, 31 (1.6%) de novo and 8 (1.5%) upgrade patients had HTX and 3 (0.2%) de novo patients underwent LVAD implantation.

The univariable Cox regression analysis showed more unfavourable primary composite outcomes in the upgrade group [hazard ratio (HR): 1.41; 95% confidence interval (CI): 1.23–1.61; \(P < 0.001\)] compared with de novo CRT patients (Figure 1). However, when multivariable Cox regression analysis was performed, including the relevant clinical covariates (ACE-I/ARB, age, amiodarone, AF, intrinsic/paced QRS duration time, ischaemic aetiology, LVEDd, LVESd, LVEF, NYHA Class III/IV, OAC, serum creatinine, sex, and ventricular arrhythmia), the previously described difference could not be observed (HR: 1.12; 95% CI: 0.86–1.48; \(P = 0.402\)) (Figure 1). In our patient cohort, AF (HR: 1.31; 95% CI: 1.02–1.69; \(P = 0.032\)), female sex (HR: 0.72; 95% CI: 0.54–0.96; \(P = 0.025\)), ischaemic HF aetiology (HR: 1.66; 95% CI: 1.32–2.09; \(P < 0.001\)), NYHA class III/IV (HR: 1.38; 95% CI: 1.09–1.75; \(P = 0.009\)), and serum creatinine (HR: 1.01; 95% CI: 1.00–1.01; \(P < 0.001\)) were found to be independent predictors of the primary composite endpoint (Supplementary material online, Table S1).

In addition, propensity score matching was performed to compare the outcomes of the two groups after eliminating the differences in the relevant clinical covariates. In this analysis, each patient in the upgrade group (\(n = 547\)) was matched with a patient from the de novo group who was very similar across the following covariates: age, AF, eGFR, HF aetiology, LVEF, NYHA functional class, sex, QRS duration, and ventricular arrhythmia (Supplementary material online, Table S2). When we compared the matched de novo and upgrade groups, we found no significant difference in the risk of reaching the composite primary endpoint (propensity score-matched HR: 1.10; 95% CI: 0.95–1.29; \(P = 0.215\)) (Figure 2A).

To determine whether the date of implantation affects the primary composite endpoint, we created dummy coded variables based on the year of the CRT implantation dates and a dichotomous variable (propensity score-matched HR: 1.13; 95% CI: 0.89–1.45; \(P = 0.032\)) (Figure 2B). However, neither the dummies nor the dichotomized (adjusted HR: 0.88; 95% CI: 0.60–1.30; \(P = 0.532\)) variables were found to be predictors of the composite endpoint.

Long-term outcomes—all-cause mortality
During the median follow-up time of 3.8 (1.9–6.5) years, 1409 (55.8%) patients died, 1071 (54.2%) in the de novo, and 338 (61.7%) in the upgrade CRT group.

The univariable Cox regression analysis showed a 43% higher rate of all-cause mortality in the upgrade CRT group compared with de novo.
fraction, and CRT type, additional analyses were performed to assess differences in the composite endpoint between de novo and upgrade patients. In the total cohort, upgrade patients showed a higher risk of the composite endpoint in all subgroups, except for the 75–89 age group, where comparable outcomes were found between the de novo and upgrade patients (HR: 1.12; 95% CI: 0.89–1.41; P = 0.326) (Figure 4A). When the propensity score-matched cohort was analysed, we observed a similar risk of the composite endpoint in all subgroups, except for patients with severe symptoms (NYHA III–IV), where upgrade patients exhibited a higher risk compared with de novo patients (HR: 1.26; 95% CI: 1.02–1.55; P = 0.035) (Figure 4B).

Complications

In the total cohort, the most frequent complications were lead displacement (6.5%) and phrenic nerve stimulation (3%). Upgrade patients suffered more often from lead dysfunction or fracture (17 (3.1%) vs. 19 (1.0%); P < 0.001), pocket infection [20 (3.7%) vs. 36 (1.8%); P = 0.014] than patients who underwent de novo CRT procedures (Table 2). The less frequent complications were coronary sinus dissection (0.9%), pericardial tamponade (0.4%), infective endocarditis (0.4%), and haemothorax (0.2%), in which no significant difference could be observed between the patient groups.

When these complications were investigated after performing propensity score matching, lead dysfunction or fracture [17 (3.1%) vs. 4 (0.7%); P = 0.007], and pocket infection [20 (3.7%) vs. 7 (1.3%); P = 0.017] remained more frequent among upgrade patients. Bleeding or pocket haematoma [12 (2.2%) vs. 16 (0.8%); P = 0.010] were more common complications in upgrade patients compared with the de novo CRT group, however no difference was observed after propensity score matching [12 (2.2%) vs. 6 (1.1%); P = 0.234]. Only the rate of pneumothorax was higher in the de novo group [28 (1.4%) vs. 2 (0.4%); P = 0.045], but this difference could not be confirmed when propensity score-matched groups were compared [8 (1.5%) vs. 2 (0.4%); P = 0.108]. Pneumothorax occurred more frequently in the first month following the procedure in the de novo CRT group [28 (1.4%) vs. 2 (0.4%); P = 0.045] than in upgrade CRT patients. Compared with the de novo CRT group, the incidence of bleeding [10 (1.8%) vs. 14 (0.7%); P = 0.024] at 1 month, lead dysfunction [5 (0.9%) vs. 3 (0.2%); P = 0.015], phrenic nerve stimulation [6 (1.1%) vs. 6 (0.3%); P = 0.028], and pocket infection [9 (1.6%) vs. 12 (0.6%); P = 0.029] at 1–12 months after the intervention was higher in the upgrade CRT group. In addition, the incidence of lead dysfunction [11 (2.0%) vs. 13 (0.7%); P = 0.010] was higher in the upgrade group 1 year after CRT implantation compared with the de novo group, which was also confirmed in the propensity score-matched cohort [11 (2.0%) vs. 2 (0.4%); P = 0.022] (Table 2 and Supplementary material online, Figure S1A or B).

Discussion

Main findings

In our single-centre, high-volume analysis, we found that patients following CRT upgrade had a 41% higher risk of all-cause mortality/HTX/LVAD implantation and 43% higher risk of death from any cause compared with de novo CRT patients. However, after adjusting for relevant covariates using multivariable Cox regression analysis or
A Total study cohort

Better with upgrade

Age (years)	N	HR (95% CI)	p-value
45-59	447	1.62 (1.05-2.51)	0.009
60-74	1271	1.35 (1.12-1.63)	0.001
75-89	175	1.12 (0.89-1.41)	0.326

Worse with upgrade

Sex	N	HR (95% CI)	p-value
Female	637	1.43 (1.03-1.98)	0.014
Male	1887	1.37 (1.18-1.58)	0.001

NYHA class	N	HR (95% CI)	p-value
I-II	895	1.41 (1.12-1.76)	0.002
III-IV	1180	1.57 (1.30-1.89)	0.001

HF etiology	N	HR (95% CI)	p-value
Non-ischemic	1287	1.31 (1.05-1.64)	0.009
Ischemic	1236	1.34 (1.14-1.58)	0.001

Comorbidities	N	HR (95% CI)	p-value
Non-CKD	1586	1.40 (1.15-1.70)	0.001
CKD	936	1.24 (1.04-1.49)	0.013
Non-AF	1573	1.46 (1.20-1.76)	0.001
AF	950	1.25 (1.03-1.50)	0.014
Non-DM	1596	1.47 (1.24-1.74)	0.001
DM	927	1.32 (1.07-1.64)	0.006

LVEF (%)	N	HR (95% CI)	p-value
>28	905	1.34 (1.09-1.66)	0.003
≤28	914	1.46 (1.18-1.80)	0.001

Device type	N	HR (95% CI)	p-value
CRT-P	1157	1.30 (1.07-1.56)	0.004
CRT-D	1366	1.53 (1.26-1.84)	0.001

B Propensity score-matched cohort

Better with upgrade

Age (years)	N	HR (95% CI)	p-value
45-59	111	1.50 (0.89-2.53)	0.123
60-74	544	1.11 (0.88-1.38)	0.253
75-89	343	0.90 (0.75-1.29)	0.912

Worse with upgrade

Sex	N	HR (95% CI)	p-value
Female	232	0.99 (0.68-1.46)	0.999
Male	862	1.14 (0.96-1.35)	0.132

NYHA class	N	HR (95% CI)	p-value
I-II	504	0.94 (0.73-1.21)	0.645
III-IV	516	1.16 (0.92-1.45)	0.035

HF etiology	N	HR (95% CI)	p-value
Non-ischemic	459	0.95 (0.73-1.23)	0.669
Ischemic	635	1.21 (0.90-1.56)	0.057

Comorbidities	N	HR (95% CI)	p-value
Non-CKD	577	1.14 (0.90-1.43)	0.273
CKD	517	1.07 (0.87-1.32)	0.534
Non-AF	514	1.06 (0.85-1.31)	0.608
AF	696	1.18 (0.97-1.43)	0.099
Non-DM	398	0.98 (0.76-1.27)	0.888
DM	465	0.99 (0.77-1.27)	0.948

LVEF (%)	N	HR (95% CI)	p-value
>28	416	1.21 (0.94-1.54)	0.139
≤28	455	0.99 (0.80-1.26)	0.997

Device type	N	HR (95% CI)	p-value
CRT-P	639	1.15 (0.96-1.47)	0.107
CRT-D	639	1.15 (0.96-1.47)	0.107

Figure 4 (A) Forest plot of subgroups based on the composite endpoint of the total cohort. (B) Forest plot of subgroups based on the composite endpoint of the propensity score-matched cohort. AF, atrial fibrillation; CI, confidence interval; CKD, chronic kidney disease; CRT, cardiac resynchronization therapy; CRT-D, cardiac resynchronization therapy-defibrillator; CRT-P, cardiac resynchronization therapy pacemaker; DM, diabetes mellitus; HR, hazard ratio; LVEF, left ventricular ejection fraction; NYHA, New York Heart Association.
propensity score matching, these differences disappeared. Regarding peri- and post-procedural complications, CRT upgrade procedures were associated with a higher rate of adverse events (such as lead dysfunction, bleeding, and infections) compared with de novo implantations.

Patients characteristics

Several studies have highlighted the differences in the clinical characteristics between de novo and upgrade patients.\(^5\)\(^8\)\(^–\)\(^13\) As confirmed in these studies and our cohort, the latter group tends to have more comorbidities such as AF, ischaemic aetiology, previous ventricular...
arrhythmias, and chronic kidney disease.5,8–13 Furthermore, CRT upgrade patients are older, and this age difference corresponds roughly to the 3–5 years between the implantation of the first device and the upgrade procedure.12,14 Consequently, these observations can be partly attributable to the different etiology of heart failure. Moreover, not only the age but also the RVP rate and the incidence of AF matter in this group.6 As previously described in the MOde Selection Trial (MOST), there is a linear relationship between the effect of cumulative ventricular pacing and the risk of developing AF.6

The renal function is also influenced by age.15 Although in one of the largest multicentre registries higher percentage of CKD was observed in de novo than upgrade patients,16 we found CKD to be more frequent in the latter group. Nonetheless, we have to emphasize that their population’s baseline characteristics differed vastly from those reported previously in the literature.5,8–10 Accompanying the high prevalence of CKD, serum creatinine levels were significantly higher among upgrade CRT patients than the de novo group in our cohort. Parallel to our findings, Wolkhlu et al.9 have also highlighted the importance of baseline serum creatinine levels as an independent predictor of mortality in a similar population.

Although women are underrepresented in CRT trials (as females account for ~19–27% of the study populations), they show a better response to CRT than men.5,11 In our total cohort, there were 25% female candidates. The rate of female sex was lower in the upgrade than the de novo group (20% vs. 27%; \(P = 0.002 \)).

Differences in long-term outcome

Data regarding the differences in long-term mortality between de novo and upgrade CRT patients are scarce. Smaller, short-term observational studies have failed to demonstrate significant differences in survival8,14 and the analyses of larger registries did not provide consistent results.5,13,14 In one of the largest observational registries comparing 692 upgrade and 1675 de novo patients, no significant difference was found in the total and cause-specific mortality after 1-year follow-up time.13 However, in another multicentre, observational, prospective study, opposite results were reported, with more beneficial outcomes among de novo CRT patients, which persisted even after propensity score matching.11 Nevertheless, in this study, only CRT-D recipients were included, and as these patients are generally younger and less vulnerable, this fact may also affect the midterm outcomes.

Leyva et al.15 included CRT patients from 2000 to 2016, and they found a significantly higher rate of all-cause mortality and mortality/HF hospitalization in upgrade patients. However, after performing multivariable Cox proportional hazard analysis or propensity score matching, no differences could be observed in these endpoints.13 Their univariable analysis proved that all-cause mortality was higher in upgrade than de novo patients in men and subgroups of patients with NYHA III functional class, CRT-P, non-ischaemic cardiomyopathy, non-diabetic status, LBBB, QRS \(\geq 150 \text{ ms} \), and LVEF \(\leq 25\% \). These results are in line with ours, as we also found a higher risk of the composite endpoint in these subgroups upgrade CRT patients. Furthermore, in the subgroups of age between 60 and 74 years, female, NYHA functional Class I–II, CRT-D, ischaemic heart failure, with or without chronic kidney disease, AF, and LVEF >28%, the risk of reaching the composite endpoint was higher in upgrade patients than the de novo groups. After comparing the propensity score-matched cohorts, we found less favourable outcomes among upgrade patients in the NYHA III–IVa functional class subgroup than in the de novo group. Moreover, Leyva et al.15 observed a higher risk of mortality in upgrade patients receiving CRT-P devices than those being upgraded to a CRT-D.10 Compared with our patient cohort, Leyva et al.15 included CRT upgrade recipients with no history of sustained ventricular arrhythmia, and they investigated the CRT upgrade in the context of primary prevention. In contrast, we included patients both with and without prior ventricular arrhythmia.

Notably, not only the type of the implanted device but also the date of implantations might affect the outcomes due to the continuously improving device technology and drug treatment. However, neither the previously reported data10 nor our results could confirm that the date of implantation has an impact on outcomes.

Previously, we conducted a systematic review and meta-analysis comprising 468205 de novo and 21363 upgrade CRT patients, in which we observed a similar risk of all-cause mortality in these two patient groups (risk ratio 1.19; 95% CI: 0.88–1.60; \(P = 0.27 \)).14 This finding was confirmed by the current analysis after adjusting for relevant covariates or performing propensity score matching.

Peri-procedural and long-term complications

Although data on the comparison of complications associated with de novo and upgrade CRT procedures are scarce,5,13,14 CRT upgrade is considered to be a procedure with a higher complication rate. Our analysis showed higher rates of lead dysfunction, bleeding, haematoma, or pocket infection among upgrade patients, even after propensity score matching. Similar to our findings, in the REPLACE registry and the RAFT Upgrade Substudy, the most common complication was lead displacement or dysfunction in both CRT groups.17,18 During upgrade procedures, the risk of damaging the previously implanted leads or having any difficulties with the newly implanted ones is higher than in de novo patients.19 This may explain our observation that compared with de novo, upgrade CRT procedures were associated a higher prevalence of lead dysfunction11 (20% vs. 2 (0.4%); \(P = 0.022 \)) after 1 year.

Cardiac resynchronization therapy implantation, especially in older age or in patients with coagulopathy (renal insufficiency, anticoagulant intake), is associated with an increased risk of developing a post-procedural pocket haematoma20 and subsequent infections, as proved in our study cohort as well.

In the current analysis, only pneumothorax (PTX) could be observed more frequently (1.4% vs. 0.4%; \(P = 0.045 \)) in de novo patients, but this difference vanished after propensity score matching. This phenomenon can be explained by the presence of the previously implanted leads, which may help identify the subclavian vein.

However, neither the largest observational registries, the European CRT Survey,13 nor other small observational studies found any significant differences between the two patient groups in terms of complications.12,14 The inconsistency of data implies that not only the characteristics of the patient cohort but also the experience of the implanting physicians and the duration of procedure should be taken into account.19
Limitations

Our study has certain limitations. First, we performed our analyses in a retrospective manner. Thus, the groups were unbalanced in some aspects. To adjust for these differences, we performed multivariable Cox regression analysis and propensity score matching besides the univariable analyses. Moreover, due to the retrospective nature of the study, data were missing in a moderate proportion of patients. Secondly, as the study covers >19 years, general therapeutic protocols, lead choice, device programming, medical treatment options, technical equipment, and guidelines have changed over time. However, when we investigated the impact of the implantation date on outcomes, no significant effect could be observed.

Conclusions

Patients who underwent upgrade CRT exhibited worse outcomes compared with the de novo implantation group. Nevertheless, this difference may be attributable to the higher comorbidity burden of upgrade patients. The rate of peri- and post-procedural complications (i.e. lead dysfunction and pocket infections) was higher among upgrade patients.

Supplementary material

Supplementary material is available at Europace online.

Funding

The work was supported by the New National Excellence Program (ÚNKP-19-3-I-SE-70) of the Ministry for Innovation and Technology in Hungary. Project no. NVKP_16-1-2016-0017 (‘National Heart Program’) has been implemented with the support provided from the National Research, Development and Innovation Found of Hungary, financed under the NVKP_16 founding scheme. The research was financed by the Thematic Excellence Programme (2020-4.1.1.-TKP2020) of the Ministry for Innovation and Technology in Hungary, within the framework of the Therapeutic Development and Bioimaging thematic programmes of the Semmelweis University.

Conflict of interest: B.M. receives lecture fees from Biotronik, Medtronic, and Abbott outside the submitted work. A.K. reports lecture fees from Medtronic, outside the submitted work. L.G. receives lecture fees from Biotronik, Medtronic, Johnson & Johnson Medical, and Abbott outside the submitted work. E.Z. reports lecture and advisory fees from Biotronik, Medtronic, Boston Scientific, and Zoll Medical, outside the submitted work. R.P. reports lecture fees from Biotronik, Medtronic, and Abbott outside the submitted work. L.M. reports lecture fees from Biotronik, Medtronic, and Abbott outside the submitted work. Other authors declare that they have no conflicts of interest regarding this manuscript.

Data availability

The data underlying this article are available in the article and in its Supplementary material online.

References

1. Linde C, Braunschweig F, Gadzer F, Balleux C, Daubert JC. Long-term improvements in quality of life by biventricular pacing in patients with chronic heart failure: results from the Multisite Stimulation in Cardiomyopathy study (MUSTIC). Am J Cardiol 2003;91:1090–5.
2. Cleland JG, Daubert JC, Erdmann F, Freemantle N, Gras D, Kappenberger L et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;353:1539–49.
3. Tokodi M, Schwertner WR, Kovacs A, Töser Z, Staab L, Sarkány A et al. Machine learning-based mortality prediction of patients undergoing cardiac resynchronization therapy: the SEMMELWEIS-CRT score. Eur Heart J 2020;41:1747–1756.
4. Merkely B, Kosztin A, Roka A, Geller L, Zima E, Kovacs A et al. Rationale and design of the BUDAPEST-CRT Upgrade Study: a prospective, randomized, multicentre clinical trial. Europace 2017;19:1549–55.
5. Nagele H, Dodecek J, Behrens S, Azizi M, Hashagen S, Eisermann C et al. Hemodynamics and prognosis after primary cardiac resynchronization system implantation compared to “upgrade” procedures. Pacing Clin Electrophysiol 2008;31:1265–71.
6. Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL et al. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 2003;107:2932–7.
7. Brigmade M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt OA et al. ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and cardiac resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Europace 2013;15:1070–118.
8. Wokhuu L, Rea RF, Asirvatham SJ, Webster T, Brookie K, Hodge DO et al. Upgrade and de novo cardiac resynchronization therapy: impact of paced or intrinsic QRS morphology on outcomes and survival. Heart Rhythm 2009;6:1439–47.
9. Lipar L, Srivathsan K, Scott LR. Short-term outcome of cardiac resynchronization therapy: a comparison between newly implanted and chronically right ventricle-paced patients. Int J Cardiol 2016;219:195–9.
10. Levy F, Zegard A, Patel K, Panting J, Marshall H, Qiu T. Clinical outcomes after upgrading from pacemakers to cardiac resynchronization therapy. Pacing Clin Electrophysiol 2018;41:290–8.
11. Linde CM, Normand C, Bogale N, Auricchio A, Sterlinski M, Marinskas G et al. Upgrades from a previous device compared to de novo cardiac resynchronization therapy in the European Society of Cardiology CRT Survey II. Eur J Heart Fail 2018;20:1457–68.
12. Vamos M, Erath JW, Bari Z, Vagany D, Linzbach SP, Burmistrava T et al. Effects of upgrade versus de novo cardiac resynchronization therapy on clinical response and long-term survival: results from a multicenter study. Circ Arrhythm Electrophysiol 2017;10:e004471.
13. Bogale N, Witte K, Priori S, Cleland J, Auricchio A, Gadler F et al.; Scientific Committee, National Coordinators and the Investigators. The European Cardiac Resynchronization Therapy Survey: comparison of outcomes between de novo cardiac resynchronization therapy implantations and upgrades. Eur J Heart Fail 2011;13:794–83.
14. Kosztin A, Vamos M, Aradí D, Schwertner WR, Kovacs A, Nagy KV et al. De novo implantation vs. upgrade cardiac resynchronization therapy: a systematic review and meta-analysis. Heart Fail Rev 2018;23:15–26.
15. Glasscock RJ, Winearls C. Ageing and the glomerular filtration rate: truths and consequences. Trans Am Clin Climatol Assoc 2009;120:419–28.
16. Cheung JW, Ip JE, Markowitz SM, Liu CF, Thomas G, Feldman DN et al. Trends and outcomes of cardiac resynchronization therapy upgrade procedures: a comparative analysis using a United States National Database 2003-2013. Heart Rhythm 2017;14:1043–50.
17. Poole JE, Gleva MJ, Mela T, Chung MK, Usian DZ, Borge R et al.; REPLACE Registry Investigators. Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry. Circulation 2010;122:1553–61.
18. Essebag V, Joza J, Brnie DH, Sapp JL, Sterns LD, Philippin F et al. Incidence, predictors, and procedural results of upgrade to resynchronization therapy: the RAFT upgrade substudy. Circ Arrhythm Electrophysiol 2015;8:152–8.
19. de Voogt WG. Upgrading and replacement in CRT devices: experience counts. Veith Heart 2016;24:73–4.
20. Sridhar ARM, Yarlagadda V, Yeruva MR, Kanmanthareddy A, Vallakati A, Dawn B et al. Impact of haematoma after pacemaker and CRT device implantation on hospitalization costs, length of stay, and mortality: a population-based study. Europace 2015;17:1548–54.