Clinical characteristics and outcomes of acute ischemic stroke in patients with COVID-19: A systematic review and meta-analysis of global data

Zhelv Yao, Lili Huang, Yue Cheng, Ruowen Qi, Biyun Xu, Qingxiu Zhang, and Liqun Zhang

Department of Neurology of Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210008, China
Department of Neurology, Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu, China
Nanjing Neurology Clinic Medical Center, Nanjing 210008, China
Institute of Brain Science, Nanjing University, Nanjing 210008, China
Medical Statistics and Analysis Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, China
St George’s University Hospital NHS Foundation Trust, London, Blackshaw Rd, London SW17 0QT, United Kingdom

Abstract

Objective. There is increased concern regarding acute ischemic stroke (AIS) in patients with coronavirus disease 2019 (COVID-19). The aim of this study was to depict the manifestations and outcomes of COVID-19-associated AIS.

Methods. We systematically searched for eligible studies describing AIS in patients with COVID-19 using PubMed, Embase, and Web of Science up to November 29, 2021. We complied with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and used the Newcastle–Ottawa Scale to assess data quality. The data were pooled using fixed- and random-effects models.

Results. Thirty-eight eligible studies involving 76,894 participants were included in this meta-analysis. Compared with AIS patients who did not have COVID-19, patients with COVID-19 were more likely to have anterior circulation stroke (odds ratio [OR]: 2.29, 95% confidence interval [CI]: 1.03 – 5.10; I²: 37%), particularly involving the internal carotid artery (OR: 1.85, 95% CI: 1.19 – 2.88; I²: 0%); more severe neurological deficit (National Institutes of Health Stroke Scale [NIHSS]) (weighted mean difference [WMD]: 3.21, 95% CI: 2.13 – 4.29; I²: 64%); higher proportion of cryptogenic stroke (OR: 1.83, 95% CI: 1.24 – 2.70; I²: 62%); large vessel occlusion (OR: 1.68, 95% CI: 1.10 – 2.57; I²: 75%), and multi-territory involvement (OR: 2.64, 95% CI: 1.24 – 2.70; I²: 62%), higher C-reactive protein levels (WMD: 55.90, 95% CI: 33.32 – 78.49; I²: 67%), and D-dimer levels (standardized mean difference: 0.81, 95% CI: 0.52 – 1.10; I²: 59%). The proportion of poor outcomes were higher among patients with COVID-19, including increased risk of in-hospital death (OR: 3.70, 95% CI: 2.73 – 5.02; I²: 64%) and lower possibility of favorable discharge (OR: 0.49, 95% CI: 0.39 – 0.61; I²: 0%). However, COVID-19 did not increase the risk of hemorrhagic transformation (OR: 1.34, 95% CI: 0.91 – 1.98; I²: 39%) and symptomatic intracerebral hemorrhage (OR: 1.46, 95% CI: 0.81 – 2.62; I²: 0%).

Conclusion. AIS patients with COVID-19 seem to display a pattern of large vessel occlusion and multi-territory infarcts. These patients have high inflammatory marker...
levels and increased D-dimer levels, which implies that thrombosis and/or thromboembolism might be the underlying mechanism. These patients tend to have worse prognosis regardless of whether they receive reperfusion treatment.

Keywords: Acute ischemic stroke; COVID-19; Clinical characteristics and outcomes

1. Introduction

The outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly spread worldwide since December 2019, with more than 258 million confirmed cases and 5.17 million deaths as of November 24, 2021[1]. Even though the infection mainly results in respiratory symptoms, an increasing number of cases in cerebrovascular disease, particularly acute ischemic stroke (AIS), have been confirmed[2]. The incidence of AIS varied from 1% to 3%, and reached up to 6% in seriously ill patients[3,4]. Emerging data suggest that stroke in the context of COVID-19 may be associated with increased mortality and disability and presents with unique manifestations[5,6]. Although most of these studies have limited sample sizes or are restricted to particular geographic regions, thus showing considerable heterogeneity among studies, these individual studies provide valuable data on patients with COVID-19 who have AIS. Therefore, the meta-analysis can break the regional limitations and collect outcomes and characteristics of patients with COVID-19 in the real world can provide new insights.

The previous meta-analyses have mainly focused on stroke risk factors and outcomes[7,8]. With emerging evidence, we performed an updated systemic review and meta-analysis to illustrate the specific clinical features, laboratory findings, neuroimaging findings, and short-term outcomes of patients with COVID-19 who have AIS, to assist with better identification and management of these patients.

2. Methods

This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines[9].

2.1. Search strategy

We conducted a systematic search of PubMed, Embase, and Web of Science databases from their inception to November 29, 2021, with no language restrictions. The search algorithm was modified by an information specialist; details are available in Table S1. References cited in retrieved articles as well as any review articles were also reviewed to identify additional studies.

2.2. Inclusion and exclusion criteria

Two investigators independently screened the identified articles and selected studies using pre-specified criteria, with disagreements resolved through consensus. Studies were deemed eligible if they (1) were observational studies with information on clinical features and outcomes of new-onset ischemic stroke in patients with COVID-19; (2) included at least 20 patients with AIS over 18 years of age; (3) SARS-CoV-2 infection was confirmed with a positive polymerase chain reaction test or International Classification of Diseases, Tenth Revision (ICD-10) codes[10]; and (4) the diagnosis of stroke was based on neuroimaging and clinical symptoms. We excluded comments, editorials, letters, reviews, case reports, small case series (<20 cases), animal studies, and duplicate publications involving the same patient cohorts.

2.3. Data extraction

Data extraction was conducted independently by two investigators using a pre-designed form. For each eligible article, we extracted the first author, publication year, study design, geographic region, recruitment period, clinical definition of COVID-19 used in the study, sample size, age, gender, clinical manifestations, laboratory findings, neuroimaging findings, and short-term (in hospital or on discharge) outcomes of AIS.

Stroke etiology was classified according to the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria[11]. Stroke severity was measured using National Institutes of Health Stroke Scale (NIHSS). Functional independence (i.e., favorable functional outcome) was defined as modified Rankin scale score 0–2.

2.4. Quality appraisal

We used the Newcastle-Ottawa Scale (NOS) to assess the methodologic quality of the selected studies[12]. Specifically, the NOS scale evaluates quality in three aspects, including selection of study groups, comparability of the study groups, and assessment of exposure or outcome of interest. A total of seven out of nine points is considered a low risk of bias, a score of 4 – 6 points a moderate risk, and a score <4 points a high risk of bias.

2.5. Statistical analysis

Because most included studies only reported raw data, we used unadjusted estimates for meta-analysis. To obtain a more conservative estimate of effect size, zero-events
studies were included with 0.5 continuity correction13. We converted median and range in the reported data into mean and standard deviation14. We used Q and I^2 statistics to assess statistical heterogeneity among studies15. Heterogeneity was considered to be present with an I^2 value >40%. We used a fixed-effects
Table 1. Characteristics of the included studies.

Author	Year	Design	Country	Continent	Confirmation of COVID-19	Study period	COVID-19 positive	COVID-19 negative
Sasanejad et al.	2021	Prospective	Iran, Greece, Germany	Asia, Europe	PCR	18 February 19 – 31 December 20	101	444
Sobolewski et al.	2021	Retrospective	Poland	Europe	RT-PCR	15 September 20 – 30 November 20	22	48
Kasab et al.	2020	Prospective	North America, South America	Europe	RT-PCR	February – March or March – April 20	13	445
Havenon et al.	2020	Retrospective	USA	North America	WHO Guideline	1 April – 31 July 20	104	3061
Sobolewski et al.	2020	Prospective	Poland	Europe	RT-PCR	1 March 20 – 15 April 20	10	27
Pezzini et al.	2021	Prospective	Italy	Europe	RT-PCR	8 March – 30 April 20	34	262
Qureshi et al.	2021	Retrospective	USA	North America	Not specified	1 December 19 – 1 January 21	2122	22217
Requena et al.	2020	Retrospective	Spain	Europe	RT-PCR	2 March – 30 April 20	10	19
Akhtar et al.	2021	Prospective	Qatar	Asia	Not specified	March – May 20	32	216
Altschul et al.	2020	Retrospective	USA	North America	RT-PCR	1 March – 17 April 20	13	23
Benny et al.	2020	Retrospective	India	Asia	RT-PCR	4 April – 15 September 20	78	100
Calmettes et al.	2021	Retrospective	France	Europe	PCR	17 March – 2 May 20	40	176
Escalard et al.	2020	Prospective	France	Europe	RT-PCR	15 March – 30 April 20	12	34
Herna´ndez-Ferna´ndez et al.	2020	Retrospective	Spain	Europe	WHO Guideline	1 March – 19 April 20	23	-
John et al.	2020	Retrospective	The United Arab Emirates	Asia	PCR	1 March – 10 May 20	19	220

(Contd...)
Table 1. (Continued).

Author	Year	Design	Country	Continent	Confirmation of COVID-19	Study period	COVID-19 positive	COVID-19 negative				
Naval-Baudin et al.	2021	cross-sectional	Spain	Europe	PCR	13 March – 15 May 20	Sample size: 19	Age, mean: 70.2 (8.4)	Male, n: 12 (63)	Sample size: 81	Age, mean: 70.1 (15.3)	Male, n: 56 (69)
Ntaios et al.	2020	Prospective cohort	Multicenter	Multicenter	PCR, serology	27 January – 19 May 20	Sample size: 174	Age, mean: 71.2 (12.3)	Male, n: 108 (62.07)	Sample size: NA	Age, mean: 70 (15)	Male, n: 178 (51)
Topcuoglu et al.	2021	Case-Control cohort	Turkey	Asia, Europe	RT-PCR	16 April 20 – 14 January 21	Sample size: 37	Age, mean: 70 (15)	Male, n: 31 (83)	Sample size: 355	Age, mean: 70 (15)	Male, n: 178 (51)
Yaghi et al.	2020	Retrospective cohort	USA	North America	RT-PCR	15 March – 19 April 20	Sample size: 32	Age, mean: 63 (17)	Male, n: 23 (71.9)	Sample size: 46	Age, mean: 70 (15)	Male, n: 178 (51)
Perry et al.	2020	case-control	UK	Europe	RT-PCR	9 March – 5 July 20	Sample size: 86	Age, mean: 74.5 (67 – 84)	Male, n: 47 (54.7)	Sample size: 1384	Age, mean: 73 (61 – 82)	Male, n: 731 (52.8)
Srivastava et al.	2021	Retrospective cohort	USA	North America	Not specified	4 February – 29 June 20	Sample size: 1143	Age, mean: 68 (57 – 79)	Male, n: 615 (53.8)	Sample size: 40 828	Age, mean: 71 (60 – 81)	Male, n: 209 550 (51.3)
Dahoon et al.	2021	Retrospective cohort	USA	North America	PCR	1 March – 30 April 20	Sample size: 83	Age, mean: NA	Male, n: NA	Sample size: 121	Age, mean: NA	Male, n: NA
Thomas et al.	2020	Retrospective cohort	India	Asia	RT-PCR	1 June – 31 Aug 20	Sample size: 60	Age, mean: NA	Male, n: NA	Sample size: 104	Age, mean: NA	Male, n: NA
Ramos et al.	2021	Retrospective cohort	USA	North America	RT-PCR	13 March – 19 May 20	Sample size: 33	Age, mean: NA	Male, n: NA	Sample size: 37	Age, mean: NA	Male, n: NA
Majdi et al.	2020	Retrospective cohort	USA	North America	RT-PCR	21 March – 12 April 20	Sample size: 24	Age, mean: 59 (13)	Male, n: 19 (79.2)	Sample size: 21	Age, mean: 73 (18)	Male, n: 9 (42.9)
Martí-Fàbregas et al.	2021	Prospective cohort	Spain	Europe	PCR	Mid March – 15 May 20	Sample size: 91	Age, mean: 71.6 (12.3)	Male, n: 58 (63.7)	Sample size: 610	Age, mean: 72.4 (13.5)	Male, n: 366 (60.0)
Shais et al.	2021	Prospective cohort	Netherlands	Europe	PCR	1 March – 1 Aug 20	Sample size: 38	Age, mean: 74.5 (66.8 – 82.0)	Male, n: 22 (57.9)	Sample size: -	Age, mean: -	Male, n: -
Ramos-Araque et al.	2021	Retrospective cohort	USA, Spain, Egypt, Romania	North America, Europe, Asia, Africa	PCR, serology	1 March – 16 June 20	Sample size: 156	Age, mean: -	Male, n: 94 (60.6)	Sample size: -	Age, mean: -	Male, n: -
Lin et al.	2020	cross-sectional	USA	North America	PCR	Late March – early May 20	Sample size: 9	Age, mean: 58.2 (18.3)	Male, n: 3 (33.3)	Sample size: 51	Age, mean: 65.9 (13.9)	Male, n: 24 (45.3)
Merkler et al.	2020	Retrospective cohort	USA	North America	PCR	4 March – 2 May 20	Sample size: 31	Age, mean: 69 (66 – 78)	Male, n: 18 (58)	Sample size: -	Age, mean: -	Male, n: -
Rothstein et al.	2020	Retrospective cohort	USA	North America	RT-PCR	15 March – 3 May 20	Sample size: 20	Age, mean: 64 (12)	Male, n: 12 (60)	Sample size: -	Age, mean: -	Male, n: -
Kremer et al.	2020	Retrospective cohort	France	Europe	RT-PCR	16 March – 9 April 20	Sample size: 17	Age, mean: 75 (59 – 92)	Male, n: 11 (65%)	Sample size: -	Age, mean: -	Male, n: -

(Contd...)
model with the Mantel–Haenszel method to combine data when results were homogeneous. Otherwise, a random-effects model with the DerSimonian and Laird method was applied. In this study, we calculated the odds ratio (OR), standardized mean difference (SMD), or weighted mean difference (WMD) with the associated 95% confidence interval (CI) using both the fixed- and random-effects models, and compared them to assess potential heterogeneity.

Sensitivity analyses were performed by omitting one study at a time to investigate the robustness of the pooled results. When ten or more studies were proven eligible for meta-analysis, publication bias was assessed using funnel plots and Begg’s test. All reported P-values are two-tailed, and a P < 0.05 was defined as statistically significant. Statistical analyses were conducted using RevMan version 5.0 (The Cochrane Collaboration, 2020) and Stata version 16.0 (StataCorp LLC, College Station, TX, USA).

Author	Year	Design	Country	Continent	Confirmation of COVID-19	Sample size	Mean age [SD or median [IQR] (years)]	Male, n (%)	
Shahjouei et al.	2020	Prospective cohort	USA, Canada, Brazil, Greece, Turkey, Lebanon, Iran, India, New Zealand	North and South America, Europe, Asia, Oceania	History of exposure, symptomatology, and chest CT with or without PCR	123	68.6 (13.9)	67 (54.5) - -	
Peng et al.	2021	Retrospective cohort	USA	North America	RT-PCR	3 January – 28 Aug 20	44	64.0 (19.9 – 81.5)	25 (56.8) - -
Qureshi et al.	2021	Retrospective cohort	USA	North America	Not specified	December 19 – April 20	103	68.8 (15.1 – 46 (44.7), 199	71.0 (14.9) 110 (55.3)
Bach et al.	2020	Retrospective cohort	USA	North America	RT-PCR	15 March – 30 April 20	20	63 (107)	14 (63) - -
Khandelwal et al.	2021	Cross-sectional	USA, UK, Spain, Italy	North America, Europe	NA	1 March – 1 May 20	66	51 (27 – 87)	- - - -

COVID-19, coronavirus disease 2019; IQR, interquartile range; NA, not available; PCR, polymerase chain reaction; RT-PCR, reverse-transcriptase polymerase chain reaction; SD, standard deviation.

Figure 2. Begg’s funnel plots of associations between coronavirus disease 2019 (COVID-19) and in-hospital mortality.

Figure 3. Begg’s funnel plots of associations between coronavirus disease 2019 (COVID-19) and favorable discharge.
Table 2. Characteristics and outcomes of acute ischemic stroke patients with COVID-19 versus those without COVID-19.

Variables	No. of studies	AIS patients with COVID-19	AIS patients without COVID-19	OR (95% CI) or pooled MD Random effects	OR (95% CI) or pooled MD Fixed effects	P	I² heterogeneity %	P heterogeneity
Demographics								
Age	20	3962	26897	−2.31 (−3.88, −0.75)	−0.91 (−1.43, −0.38)	0.004***	64	< 0.0001***
Gender (male)	23	2350/4154	36522/70867	1.29 (1.09, 1.54)	1.20 (1.13, 1.28)	0.004**	60	0.0001***
Stroke subtype (TOAST)								
Small vessel atherosclerosis	13	62/564	579/3402	0.64 (0.38, 1.08)	0.65 (0.49, 0.87)	0.10	59	0.004**
Large artery atherosclerosis	12	96/542	645/3354	0.91 (0.67, 1.24)	0.90 (0.70, 1.16)	0.56	24	0.21
Cardioembolic	12	151/542	939/3354	1.01 (0.82, 1.26)	1.00 (0.81, 1.24)	0.91	0	0.58
Other known cause	11	23/470	100/2198	1.11 (0.58, 2.13)	0.99 (0.62, 1.58)	0.75	32	0.14
Cryptogenic	11	199/470	654/2198	1.83 (1.24, 2.70)	1.69 (1.36, 2.10)	0.002**	62	0.003**
Stroke territories								
Anterior circulation	7	146/168	675/913	2.29 (1.03, 5.10)	2.97 (1.77, 4.98)	0.04*	37	0.15
MCA	9	118/281	421/946	0.79 (0.42, 1.50)	0.87 (0.65, 1.18)	0.48	72	0.0004***
ICA	7	47/229	88/736	1.85 (1.19, 2.88)	1.88 (1.22, 2.90)	0.007*	0	0.73
Posterior circulation	7	12/168	155/913	0.42 (0.19, 0.95)	0.32 (0.17, 0.59)	0.04*	28	0.21
Multiple territories	4	37/167	86/930	2.64 (1.62, 4.29)	2.68 (1.66, 4.32)	< 0.0001***	0	0.39
Laboratory findings								
CRP, mg/L	6	310	2120	55.90 (33.32, 78.49)	47.29 (36.16, 58.42)	< 0.0001***	67	0.009*
WBC, ×10³/µL	8	316	1772	0.21 (−0.46, 0.88)	0.19 (−0.20, 0.59)	0.54	42	0.10
APTTb	7	316	1937	0.33 (0.02, 0.64)	0.40 (0.28, 0.52)	0.04*	82	< 0.0001***
PTb	6	214	1236	0.41 (0.04, 0.79)	0.44 (0.29, 0.59)	0.03*	79	0.0003***
PLT, ×10³/µL	9	397	2945	14.78 (−5.31, 34.87)	7.46 (−3.19, 18.12)	0.15	62	0.008*
D-dimerb	5	195	1082	0.81 (0.52, 1.10)	0.84 (0.68, 1.00)	< 0.0001***	59	0.04*
Other stroke characteristics								
NIHSS at admission³	17	1697	45017	3.21 (2.13, 4.29)	3.79 (3.33, 4.25)	< 0.0001***	64	0.0002***
Large vessel occlusion	8	437/1428	9358/4256	1.68 (1.10, 2.57)	1.41 (1.25, 1.59)	0.02*	75	0.0002***
Volume of infarction, cm³	2	31	115	33.30 (−12.44, 79.04)	20.27 (4.45, 36.10)	0.15	75	0.04*
ASPECT score⁵	5	88	829	−0.22 (−1.31, 0.87)	0.29 (−0.19, 0.78)	0.69	74	0.004**
Overall outcomes of AIS								
HT	6	130/2392	1074/23226	1.34 (0.91, 1.98)	1.11 (0.92, 1.35)	0.14	39	0.15
sICH	6	15/190	79/1245	1.46 (0.81, 2.62)	1.40 (0.78, 2.49)	0.21	0	0.55
In-hospital mortality	19	659/2871	2290/29187	3.70 (2.73, 5.02)	3.46 (3.13, 3.82)	< 0.0001***	64	< 0.0001***
Favorable discharge	10	136/415	2811/5250	0.49 (0.39, 0.61)	0.49 (0.39, 0.61)	< 0.0001***	0	0.93

(Contd...)
Table 2. (Continued).

Variables	No. of studies	AIS patients with COVID-19	AIS patients without COVID-19	OR (95% CI) or pooled MD	OR (95% CI) or pooled MD	P	I² heterogeneity	P heterogeneity
Outcome following IVT								
HT	2	28/117	75/543	1.96 (1.20, 3.19)	2.33 (0.96, 5.6)	0.007*	51	0.15
sICH	3	11/139	41/591	1.34 (0.60, 2.99)	1.25 (0.63, 2.48)	0.52	8	0.34
In-hospital mortality	2	31/123	52/492	2.84 (1.72, 4.68)	2.82 (1.71, 4.66)	< 0.0001***	0	0.6
Favorable discharge	2	32/123	203/492	0.52 (0.33, 0.81)	0.52 (0.33, 0.81)	0.004*	0	0.75
Outcome following MT								
HT	1	-	-	-	-			
sICH	4	4/51	38/654	2.04 (0.71, 5.86)	1.92 (0.66, 5.57)	0.18	0	0.76
In-hospital mortality	4	46/137	460/3552	3.22 (2.16, 4.79)	3.27 (2.24, 4.78)	< 0.0001***	1	0.39
Favorable discharge	2	51/117	1987/3506	0.56 (0.38, 0.82)	0.56 (0.38, 0.81)	0.003*	0	0.79

AIS, acute ischemic stroke; APTT, activated partial thromboplastin time; ASPECTS, Alberta Stroke Program Early CT Score; CI, confidence intervals; COVID-19, coronavirus disease 2019; CRP, C-reactive protein; HT, hemorrhagic transformation; ICA, internal carotid artery; IVT, intravenous thrombolysis; MCA, middle cerebral artery; MD, mean difference; MT, mechanical thrombectomy; NIHSS, National Institutes of Health Stroke Scale; OR, odd ratio; PLT, platelets; PT, prothrombin time; sICH, symptomatic intracerebral hemorrhage; TOAST, Trial of Org 10172 in Acute Stroke Treatment; WBC, white blood cell count. *P<0.05, ** P<0.005, *** P<0.001. *items were calculated with weighted MD. #items were calculated with standard MD.

3. Results

Literature searches of the three databases yielded a total of 7961 potentially relevant references. After removing duplicates and screening titles and abstract, 772 full-text articles were retrieved. Of these, 732 were removed as no data of interest were provided. Finally, 38 observational studies involving 76,894 individuals met the eligibility criteria and were included in the meta-analysis. The detailed process of study identification and selection is presented in Figure 1.

3.1. Study characteristics

The characteristics of the included studies are summarized in Table 1. Of these, 32 were cohort studies[46-48,44-45], two were case–control studies[46,47], and four were cross-sectional studies[48-51]. Patients number varied from 29 to 41,971. The most common geographic regions were North America (n = 19, 50%) and Europe (n = 19, 50%). Among these studies, there were several multiple geographic regions and only one study was conducted in Oceania and Africa. About clinical design, three studies compared COVID-19 patients with and without AIS; 30 studies compared AIS patients with COVID-19 versus those without COVID-19. The remaining five studies merely depict the characteristics and outcomes of AIS patients with COVID-19.

3.2. Study quality and publication bias

The methodological quality of each included study after critical appraisal using the NOS is summarized in Table S2. Most included studies were assessed as low risk of bias (n = 31, 81.6%) whereas the remaining studies were assessed as moderate risk of bias (n = 7, 18.4%). There was no evidence of publication bias in the meta-analyses (Figures 2 and 3).

3.3. Clinical features

3.3.1. Etiology of AIS in patients with COVID-19

Regarding the etiology of stroke in patients with COVID-19 according to the TOAST criteria, cryptogenic stroke was the most common type (41.0%, 95% CI: 33.9 – 48.0%; I²: 76.1%; 17 studies), followed by cardioembolism (26.4%, 95% CI: 20.5 – 32.4%; I²: 76.3%; 18 studies), large vessel atherosclerosis (13.9%, 95% CI: 9.7 – 18.1%; I²: 72.9%; 18 studies), and small vessel stroke (7.6%, 95% CI: 4.8 – 10.3%; I²: 64.5%; 19 studies) (Table 2).

In comparison to patients who did not have COVID-19, those with COVID-19 were more likely to develop cryptogenic stroke (OR: 1.83, 95% CI: 1.24 – 2.70; I²: 62%; 11 studies); no differences were observed for other stroke subtypes (Table 3).
Table 3. Characteristics and outcomes of acute ischemic stroke patients with COVID-19.

Variables	No. of studies	Proportion (95%CI) or pooled median Random effects	Proportion (95%CI) or pooled median Fixed effects	I² heterogeneity (%)	P heterogeneity
Demographics					
Age	30	66.450 (64.569, 68.330)	68.832 (68.431, 69.234)	92.9	<0.0001***
Gender (male)	33	0.646 (0.606, 0.687)	0.583 (0.570, 0.597)	80.4	<0.0001***
Stroke subtype (TOAST)					
Small vessel	19	0.076 (0.048, 0.103)	0.051 (0.037, 0.065)	64.5	<0.0001***
Large artery atherosclerosis	18	0.139 (0.097, 0.181)	0.109 (0.089, 0.129)	72.9	<0.0001***
Cardioembolic	18	0.264 (0.205, 0.324)	0.219 (0.192, 0.245)	76.3	<0.0001***
Other known cause	16	0.051 (0.030, 0.072)	0.036 (0.023, 0.049)	47.8	0.017*
Cryptogenic	17	0.410 (0.339, 0.480)	0.392 (0.359, 0.425)	76.1	<0.0001***
Stroke territories					
Anterior circulation	7	0.866 (0.765, 0.966)	0.930 (0.892, 0.968)	73.5	0.002**
MCA	10	0.456 (0.332, 0.581)	0.390 (0.338, 0.441)	79.8	<0.0001***
ICA	8	0.204 (0.109, 0.298)	0.141 (0.099, 0.182)	73.0	0.001**
Posterior circulation	7	0.067 (0.030, 0.104)	0.067 (0.030, 0.104)	0	0.557
Multiple territories	5	0.303 (0.172, 0.434)	0.250 (0.192, 0.308)	76.0	0.002**
Laboratory findings					
CRP (mg/L)	14	108.778 (77.845, 139.711)	22.422 (19.568, 25.277)	97.0	<0.0001***
WBC (×10^3/µL)	12	9.242 (8.618, 9.866)	9.037 (8.767, 9.306)	75.6	<0.0001***
PLT (×10^3/µL)	16	244.664 (231.336, 257.992)	236.337 (229.980, 242.694)	71.1	<0.0001***
Other stroke characteristics					
NIHSS at admission	24	13.113 (11.717, 14.509)	10.936 (10.539, 11.332)	88.4	<0.0001***
Large vessel occlusion	13	0.406 (0.332, 0.481)	0.304 (0.282, 0.326)	76.5	<0.0001***
Volume of infarction (cm³)	2	47.536 (9.857, 85.215)	37.324 (22.964, 51.684)	66.3	0.085
ASPECT score	5	7.867 (6.533, 9.200)	8.853 (8.419, 9.287)	85.6	<0.0001***
Overall outcomes of AIS					
HT	11	0.132 (0.085, 0.180)	0.048 (0.040, 0.056)	86.1	<0.0001***
sICH	9	0.046 (0.017, 0.075)	0.030 (0.013, 0.047)	40.2	0.100
In-hospital mortality	28	0.292 (0.244, 0.339)	0.225 (0.211, 0.239)	82.9	<0.0001***
Favorable discharge	14	0.290 (0.238, 0.342)	0.287 (0.253, 0.321)	49.5	0.018*
Outcomes following IVT					
HT	2	0.255 (0.124, 0.386)	0.234 (0.158, 0.310)	33.9	0.219
sICH	3	0.074 (0.031, 0.118)	0.074 (0.031, 0.118)	0	0.660
In-hospital mortality	2	0.252 (0.175, 0.328)	0.252 (0.175, 0.328)	0	0.762
Favorable discharge	2	0.266 (0.163, 0.369)	0.256 (0.179, 0.333)	22.5	0.256
Outcomes following MT					
HT	1	-	-	-	-
sICH	5	0.042 (−0.009, 0.093)	0.024 (−0.006, 0.053)	21.3	0.279
In-hospital mortality	6	0.288 (0.206, 0.370)	0.220 (0.203, 0.237)	61.9	0.022*
Favorable discharge	2	0.325 (0.014, 0.635)	0.410 (0.324, 0.496)	87.7	0.004**

ASPECTS, Alberta Stroke Program Early CT Score; CI, confidence intervals; CRP, C-reactive protein; HT, hemorrhagic transformation; ICA, internal carotid artery; IVT, intravenous thrombolysis; MCA, middle cerebral artery; MT, mechanical thrombectomy; NIHSS, National Institutes of Health Stroke Scale; PLT, platelets; sICH, symptomatic intracerebral hemorrhage; TOAST, Trial of Org 10172 in Acute Stroke Treatment; WBC, white blood cell count. *P < 0.05, **P < 0.005, ***P < 0.001.
3.3.2. Imaging findings and stroke severity in patients with COVID-19

Patients with COVID-19 showed a higher proportion of large vessel occlusion (LVO) (OR: 1.68, 95% CI: 1.10 – 2.57; I²: 75%; 8 studies) and multi-territory infarcts (OR: 2.64, 95% CI: 1.62 – 4.29; I²: 0%; 4 studies) than those without COVID-19. Stroke was more likely to occur in the anterior circulation (OR: 2.29, 95% CI: 1.03 – 5.10; I²: 37%; 7 studies), particularly in the internal carotid artery (OR: 1.85, 95% CI: 1.19 – 2.88; I²: 0; 7 studies) (Table 3).

The mean NIHSS score in AIS patients with COVID-19 was 13.113 (95% CI: 11.717 – 14.509; I²: 64%; 17 studies) (Table 2), which was higher than the score in patients without COVID-19 (WMD: 3.21, 95% CI: 2.13 – 4.29; I²: 64%; 17 studies) (Table 3).

3.3.3. Inflammation and coagulopathy in patients with AIS and COVID-19

As opposed to AIS patients without COVID-19, those with COVID-19 had higher levels of C-reactive protein (CRP) (WMD: 55.90, 95% CI: 33.32 – 78.49; I²: 67%; 6 studies) and D-dimer (SMD: 0.81, 95% CI: 0.52 – 1.10; I²: 59%; 5 studies), as well as prolonged activated partial thromboplastin time (APTT) (SMD: 0.33, 95% CI: 0.02 – 0.64; I²: 82%; 7 studies) and prothrombin time (PT) (SMD: 0.41, 95% CI: 0.04 – 0.79; I²: 79%; 6 studies). No difference was detected in leukocytes (WMD: 0.21, 95% CI: −0.46 – 0.88; I²: 42%; 8 studies) and platelets (WMD: 14.78, 95% CI: −5.31 – 34.87; I²: 62%; 9 studies) (Table 3).
3.3.4. Outcomes of patients with COVID-19 in developing AIS

In patients with AIS and COVID-19, 13.2% of patients had hemorrhagic transformation (95% CI: 8.5 – 18.0%; I²: 86.1%; 11 studies), 29.2% died during hospitalization (95% CI: 24.4 – 33.9%; I²: 82.9%; 28 studies), and 29.0% had a favorable outcome on discharge (95% CI: 23.8 – 34.2%; I²: 49.5%; 14 studies) (Table 2).

In contrast to patients who did not have COVID-19 infection, COVID-19 status was associated with high in-hospital mortality (OR: 3.70, 95% CI: 2.73 – 5.02; I²: 64%; 19 studies; Figure 4) and lower possibility of favorable
In patients who received intravenous thrombolysis, those with COVID-19 had a higher rate of hemorrhagic transformation (OR: 1.96, 95% CI: 1.20 – 3.19; I²: 51%; 2 studies) and increased risk of in-hospital mortality (OR: 2.84, 95% CI: 1.72 – 4.68; I²: 0%; 2 studies), in comparison with patients who did not have COVID-19 (Table 3). In patients who were treated with thrombectomy, those with COVID-19 were less likely to achieve functional independence on discharge (OR: 0.56, 95% CI: 0.38 – 0.82; I²: 0%; 2 studies), and these patients had a higher mortality rate (OR: 3.22, 95% CI: 2.16 – 4.79; I²: 1%; 4 studies; Table 3).

4. Discussion

In this systematic review and meta-analysis investigating the clinical characteristic and outcomes of stroke in patients with COVID-19, we found that in comparison with patients not infected with COVID-19, those with COVID-19 were more likely to develop cryptogenic large vessel stroke that involved multiple territories, present with more severe stroke syndromes, have higher CRP and D-dimer levels, and have prolonged APTT/PT. Furthermore, COVID-19 was associated with an increased risk of in-hospital mortality and lower rates of functional independence on discharge in ischemic stroke patients, especially after reperfusion treatment.

In this meta-analysis, we found that patients with AIS and COVID-19 tended to have multi-territory infarcts with LVO. In this study, we first observed abnormalities in several coagulation and inflammatory markers in patients with COVID-19. Compared with non-COVID-19 patients, AIS patients with COVID-19 had higher or longer D-dimer, PT, and APTT levels. These results suggested that AIS patients with COVID-19 may be a manifestation of SARS-CoV-2-related coagulation disorders [52]. Furthermore, recent clinical research reported that elevated CRP levels were closely related to increased stroke severity, hemorrhagic transformation, and in-hospital mortality [53,54], which suggested that CRP might not only be a biomarker of inflammation but also acts as a direct participant in the pathological process of ischemic stroke [55]. Accumulated studies have shown that several potential mechanisms with COVID-19 are involved in the occurrence of AIS, mainly inducing thrombo-inflammation or immune thrombosis. Viral translation through angiotensin-converting enzyme 2 receptors expressed in vessel walls may contribute to endothelial dysfunction and thrombosis. Thrombo-inflammation is secondary to activation of immune cells involved in the defense against the virus and amplification of the cytokine system and complement cascade, resulting in activation of downstream pro-coagulant pathways [56]. COVID-19 infection may also induce cardiac arrhythmias resulting in embolic infarcts [57]. Further studies are needed to explore the potential underlying mechanisms are needed.

In this study, we also found that D-dimer levels were high in most patients with COVID-19, surpassing the threshold that has been identified as a predictor of in-hospital death [58]. This highlights the need to closely monitor patients with high levels of CRP and D-dimer for potential stroke, although the prevalence is relatively low. Consistent with previous studies [59,60], our meta-analysis showed that patients with AIS and COVID-19 were more likely to have LVO and multi-territory infarcts; rapid patient evaluation is crucial for effective reperfusion treatment.

It is suggested that D-dimer and CRP levels may be associated with the severity of AIS in patients with COVID-19 [61,62]. Hence, for patients with hypercoagulable states, proper use of antithrombotic agents or antithrombotic therapy could be effective [63,64]. Tracking these biological markers will allow for early identification and even prediction of disease progression. Intensive studies on these markers may provide the basis for development of therapeutic and preventive strategies against COVID-19-related stroke.

Our meta-analysis demonstrated poor prognosis and high mortality in patients with COVID-19. The previous meta-analyses have reported a high mortality rate of 29.2% amongst patients with COVID-19 [65]. Our study reinforced this finding and found that patients with AIS and COVID-19 infection had a nearly 4-fold higher risk of mortality compared with their counterparts who did not have COVID-19 infection, as well as highly unfavorable outcome at discharge, even for younger patients. We noted that patients with AIS and COVID-19 who received intravenous thrombolysis treatment had higher rates of hemorrhagic transformation, which may be related to the deranged coagulation status in these patients. We found that patients with COVID-19 who developed AIS and who received reperfusion treatment tended to have poor outcomes and high mortality. Several aspects related to COVID-19 infection may explain our observation, including respiratory distress, multiorgan failure [21], a high proportion of LVO and multi-territory involvement.
Pezzini et al. found that patients with COVID-19 had suboptimal collateral status\(^{20}\), which may also contribute to the poor prognosis in these patients.

Only a few studies have reported 90-day functional outcome, making it difficult to draw conclusions in this meta-analysis. Martí-Fàbregas et al. concluded that 90-day functional outcome was comparable in patients with and without COVID-19\(^{35}\), whereas a recent study demonstrated that 3-month outcome tended to be worse in patients with COVID-19\(^{36}\). Additional well-designed studies are warranted to investigate functional outcomes beyond 3 months and factors contributing to long-term outcomes.

Our study has notable strengths. The large sample size and worldwide geographic coverage means that the findings of this meta-analysis have good generalizability. To minimize risk of bias, we restricted our meta-analysis to cohort, case-control, and cross-sectional studies with a large sample size and with low to moderate risk of bias based on strict quality assessment criteria. Our comparative data on patients with COVID-19 and AIS as well as patients without COVID-19 allow for clearer inferences regarding the impact of COVID-19 on the manifestations and outcomes of patients with AIS. Furthermore, we summarized data based on patients with AIS who received acute revascularization treatment and laboratory data in the context of COVID-19, which have not been explored in previous reviews.

Several potential limitations should also be noted. First, potential confounding variables may lead to an overestimation of association because we used unadjusted estimates for the meta-analysis. Second, we cannot fully exclude the possibility that there may be overlapping of some patients across the included studies. Third, the small number of events may reduce the reliability of some estimates. Fourth, the studies included in this analysis demonstrated significant methodological heterogeneity; although we tried to mitigate this using random-effects models; this should be considered when interpreting our results. Finally, because the follow-up duration for most included studies was short, long-term functional outcomes remain to be determined.

5. Conclusions

This systematic review and meta-analysis showed that patients with AIS who had COVID-19 infection tended to have cryptogenic LVO and multi-territory infarcts with high CRP and D-dimer levels. These patients had more severe stroke syndromes, worse functional outcome, and a higher in-hospital mortality rate, with or without reperfusion treatment. These findings provide evidence that vigilance regarding stroke is needed in patients with severe COVID-19 infection as well as a need for antithrombotic treatment. Further studies are required to elucidate the precise pathophysiological mechanism of cerebrovascular disease in patients with COVID-19 and best management.

5. Conclusions

This systematic review and meta-analysis showed that patients with AIS who had COVID-19 infection tended to have cryptogenic LVO and multi-territory infarcts with high CRP and D-dimer levels. These patients had more severe stroke syndromes, worse functional outcome, and a higher in-hospital mortality rate, with or without reperfusion treatment. These findings provide evidence that vigilance regarding stroke is needed in patients with severe COVID-19 infection as well as a need for antithrombotic treatment. Further studies are required to elucidate the precise pathophysiological mechanism of cerebrovascular disease in patients with COVID-19 and best management.

Funding

This research was supported by the National Natural Science Foundation of China (No. 82071304 and 81671149 to Qingxiu Zhang).

Conflict of interest

The authors declare that they have no conflicts of interest.

Author contributions

Conceptualization: Qingxiu Zhang, Liqun Zhang
Data curation: Zhelv Yao, Yue Cheng, Ruowen Qi, Lili Huang
Formal analysis: Zhelv Yao, Biyun Xu, Lili Huang
Funding acquisition: Qingxiu Zhang
Methodology: Zhelv Yao, Biyun Xu, Yue Cheng
Supervision: Qingxiu Zhang, Liqun Zhang
Writing–original draft: Zhelv Yao
Writing–review & editing: Qingxiu Zhang, Liqun Zhang

References

1. World Health Organization. WHO Coronavirus (COVID-19) Dashboard WHO Coronavirus (COVID-19) Dashboard with Vaccination Data. Geneva: World Health Organization; 2021.
2. Benussi A, Pilotto A, Premi E, et al., 2002, Clinical characteristics and outcomes of inpatients with neurologic disease and COVID-19 in Brescia, Lombardy, Italy. Neurology, 95(7): e910–e920. https://doi.org/10.1212/WNL.0000000000009848
3. Lodigiani C, Lapichino G, Carenzo L, et al., 2020, Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res, 191: 9–14. https://doi.org/10.1016/j.thromres.2020.04.024
4. Li Y, Li M, Wang M, et al., 2020, Acute cerebrovascular disease following COVID-19: A single center, retrospective, observational study. Stroke Vasc Neurol, 5(3): 279–284. https://doi.org/10.1136/svn-2020-000431
5. Ntaios, G., Michel P, Georgiopoulos G, et al., 2020, Characteristics and outcomes in patients with COVID-19 and acute ischemic stroke: The global COVID-19 stroke registry. Stroke, 51(9): e254–e258. https://doi.org/10.1161/STROKEAHA.120.031208
6. Sasanejad, P., Afshar Hezarkhani L, Arsang-Jang S, et al.,
2021, Safety and outcomes of intravenous thrombolytic therapy in ischemic stroke patients with COVID-19: CASCADE initiative. *J Stroke Cerebrovasc Dis*, 30(12): 106121. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106121

7. Siow I, Lee KS, Zhang JJ, et al., 2021, Stroke as a neurological complication of COVID-19: A systematic review and meta-analysis of incidence, outcomes and predictors. *J Stroke Cerebrovasc Dis*, 30(3): 105549. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105549

8. Nannoni S, de Groot R, Bell S, et al., 2021, Stroke in COVID-19: A systematic review and meta-analysis. *Int J Stroke*, 16(2): 137–149.

9. Panic N, Leoncini E, de Belvis G, et al., 2013, Evaluation of the endorsement of the preferred reporting items for systematic reviews and meta-analysis (PRISMA) statement on the quality of published systematic review and meta-analyses. *PLoS One*, 8(12): e83138.

10. Emergency Use ICD Codes for COVID-19 Disease Outbreak; 2021.

11. Adams HJ Jr., Bendixen BH, Kappelle LJ, et al., 1993, Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in acute stroke treatment. *Stroke*, 24(1): 35-41. https://doi.org/10.1161/01.str.24.1.35

12. Luchini C, Stubbs B, Solmi M, et al., 2017. Assessing the quality of studies in meta-analyses: Advantages and limitations of the Newcastle Ottawa Scale. *World J Meta-Anal*, 5(4):80–84. https://doi.org/10.13105/wjma.v5.i4.80.

13. Friedrich JO, Adhikari NK, Beyene J, 2007, Inclusion of zero total event trials in meta-analyses maintains analytic consistency and incorporates all available data. *BMJ Med Res Methodol*, 7: 5. https://doi.org/10.1186/1471-2288-7-5

14. Hozo SP, Djulbegovic B, Hozo I, 2005, Estimating the mean and variance from the median, range, and the size of a sample. *BMJ Med Res Methodol*, 5: 13.

15. Higgins JP, Thompson SG, 2002, Quantifying heterogeneity in a meta-analysis. *Stat Med*, 21(11): 1539–1558. https://doi.org/10.1002/sim.1186

16. Sobolewski P, Antecki J, Brola W, et al., 2022, Systemic thrombolysis in ischaemic stroke patients with COVID-19. *Acta Neurol Scand*, 145(1): 47–52. https://doi.org/10.1111/ane.13520

17. de Havenon A, Yaghi S, Mistry EA, et al., 2020, Endovascular thrombectomy in acute ischemic stroke patients with COVID-19: Prevalence, demographics, and outcomes. *J Neurointerv Surg*, 12(11): 1045–1048.

18. Al Kasab S, Almallouhi E, Alawieh A, et al., 2020, International experience of mechanical thrombectomy during the COVID-19 pandemic: Insights from STAR and ENRG. *J Neurointerv Surg*, 12(11): 1039–1044. http://dx.doi.org/10.1136/neurintsurg-2020-016671

19. Escalard S, Chalumeau V, Escalard C, et al., 2020, Early brain imaging shows increased severity of acute ischemic strokes with large vessel occlusion in COVID-19 patients. *Stroke*, 51(11): 3366–3370.

20. Pezzini A, Grassi M, Silvestrelli G, et al., 2021, Impact of SARS-CoV-2 on reperfusion therapies for acute ischemic stroke in Lombardy, Italy: The STROKVID network. *J Neurol*, 268(10): 3561–3568. https://doi.org/10.1007/s00410-021-10497-7

21. Qureshi AI, Baskett WI, Huang W, et al., 2021, Utilization and outcomes of acute revascularization treatment in ischemic stroke patients with SARS-CoV-2 infection. *J Stroke Cerebrovasc Dis*, 31(1): 106157. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.106157

22. Requena M, Olivé-Gadea M, Muchada M, et al., 2020, COVID-19 and stroke: Incidence and etiological description in a high-volume center. *J Stroke Cerebrovasc Dis*, 29(11): 105225. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105225

23. Akhtar N, Ben Abid F, Kamran S, et al., 2021, Characteristics and comparison of 32 COVID-19 and Non-COVID-19 Ischemic strokes and historical stroke patients. *J Stroke Cerebrovasc Dis*, 30(1): 105435. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105435

24. Altschul DJ, Esenwa C, Haranhalli N, et al., 2020, Predictors of mortality for patients with COVID-19 and large vessel occlusion. *Interv Neuroradiol*, 26(5): 623-628.

25. Benny R, Singh RK, Venkitachalam A, et al., 2021, Characteristics and outcomes of 100 consecutive patients with acute stroke and COVID-19. *J Neurol Sci*, 423: 117348. https://doi.org/10.1016/j.jns.2021.117348

26. Calmettes J, Peres R, Goncalves B, et al., 2021, Clinical outcome of acute ischemic strokes in patients with COVID-19. *Cerebrovasc Dis*, 50(4): 412-419.

27. Escalard S, Maier B, Redjem H, et al., 2020, Treatment of acute ischemic stroke due to large vessel occlusion with COVID-19: Experience from Paris. *Stroke*, 51(8): 2540–2543. https://doi.org/10.1161/STROKEAHA.120.030574

28. Hernandez-Fernandez F, Valencia HS, Barbella-Aponte RA, et al., 2020, Cerebrovascular disease in patients with COVID-19: neuroimaging, histological and clinical description. *Brain*, 143(10): 3089–3103. https://doi.org/10.1093/brain/awaa239
29. John S, Hussain SI, Piechowski-Jozwiak B, et al., 2020, Clinical characteristics and admission patterns of stroke patients during the COVID 19 pandemic: A single center retrospective, observational study from the Abu Dhabi, United Arab Emirates. *Clin Neuroradiol*. 199: 106227. https://doi.org/10.1016/j.clinneuro.2020.106227

30. Yaghj S, Ishida K, Torres J, et al., 2020, SARS-CoV-2 and stroke in a New York healthcare system. *Stroke*, 51(7): 2002–2011. https://doi.org/10.1161/STROKEAHA.120.030335

31. Srivastava PK, Zhang S, Xian Y, et al., 2021, Acute ischemic stroke in patients with COVID-19: An analysis from get with the guidelines-stroke. *Stroke*, 52(5): 1826–1829. https://doi.org/10.1161/STROKEAHA.120.030397

32. Mathew T, John SK, Sarma G, et al., 2021, COVID-19-related strokes are associated with increased mortality and morbidity: A multicenter comparative study from Bengaluru, South India. *Int J Stroke*, 16(4): 429–436. https://doi.org/10.1111/jon.12790

33. Ramos AD, Koyfman F, Byrns K, et al., 2021, Characteristics and admission patterns of stroke patients hospitalized with COVID-19: An analysis from get with the guidelines-stroke. *Stroke*, 52(3): 905–912. https://doi.org/10.1161/STROKEAHA.121.034787

34. Srivastava PK, Zhang S, Xian Y, et al., 2021, Acute ischemic stroke in patients with COVID-19: The SVIN COVID-19 multinational registry. *BMC Neurol*, 2021. 21(1): 43. https://doi.org/10.1186/s12883-021-00747-0

35. Marti-Fabregas J, Giusado-Alonso D, Delgado-Mederos R, et al., 2021, Impact of COVID-19 infection on the outcome of patients with ischemic stroke. *Stroke*, 52(12): 3908–3917. https://doi.org/10.1161/STROKEAHA.121.035483

36. Sluis WM, Linschoten M, Buijs JE, et al., 2021, Risk, clinical course, and outcome of ischemic stroke in patients hospitalized with COVID-19: A multicenter cohort study. *Stroke*, 52(12): 3978–3986. https://doi.org/10.1161/STROKEAHA.121.034787

37. Majidi S, Fifi JT, Ladner TR, et al., 2020, Emergent large vessel occlusion stroke during New York city’s COVID-19 outbreak: Clinical characteristics and paraclinical findings. *Stroke*, 51(9): 2656–2663. https://doi.org/10.1161/STROKEAHA.120.030397

38. Ramos-Araque ME, Siegler JE, Ribo M, et al., 2021, Stroke etiologies in patients with COVID-19: The SVIN COVID-19 multinational registry. *BMC Neurol*, 2021. 21(1): 43. https://doi.org/10.1186/s12883-021-00705-1

39. Merkler AE, Parikh NS, Mir S, et al., 2020, Risk of ischemic stroke in patients with coronavirus disease 2019 (COVID-19) vs patients with influenza. *JAMA Neurol*, 77(11): 1–7. https://doi.org/10.1001/jamaneurol.2020.2730

40. Rothstein A, Oldridge O, Schwennesen H, et al., 2020, Acute cerebrovascular events in hospitalized COVID-19 patients. *Stroke*, 51(9): e219–e222. https://doi.org/10.1161/STROKEAHA.120.030995

41. Kremer S, Lersy F, Anheim M, et al., 2020, Neurologic and neuroimaging findings in patients with COVID-19: A retrospective multicenter study. *Neurology*, 95(13): e1868–e1882.

42. Shahjouei S, Naderi S, Li J, et al., 2020, Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study. *EBioMedicine*, 59: 102939. https://doi.org/10.1016/j.ebiom.2020.102939

43. Peng TJ, Jasne AS, Simonov M, et al., 2021, Prior stroke and age predict acute ischemic stroke among hospitalized COVID-19 patients: A derivation and validation study. *Front Neurol*, 12: 741044. https://doi.org/10.3389/fneur.2021.741044

44. Qureshi AI, Baskett WJ, Huang W, et al., 2021, Acute ischemic stroke and COVID-19: An analysis of 27 676 patients. *Stroke*, 52(5): 905–912. https://doi.org/10.1161/STROKEAHA.120.031786

45. Bach J, Surath P, Montalegre N, et al., 2020, Stroke in COVID-19: A single-centre initial experience in a hotspot of the pandemic. *Stroke*, 51(4): 331-336. https://doi.org/10.1161/svn-2020-000525

46. Topcuoglu MA, Pecketel MY, Oge DD, et al., 2021, Stroke mechanism in COVID-19 infection: A prospective case-control study. *J Stroke Cerebrovasc Dis*, 30(8): 105919. https://doi.org/10.1016/j.jstrokecerebrovasdis.2021.105919

47. Perry RJ, Smith CJ, Roffe C, et al., 2021, Characteristics and outcomes of COVID-19 associated stroke: A UK multicentre case-control study. *J Neurol Neurosurg Psychiatry*, 92(3): 242–248. https://doi.org/10.1136/jnnp-2020-324927

48. Bekelis K, Missios S, Ahmad J, et al., 2020, Ischemic stroke occurs less frequently in patients with COVID-19: A multicenter cross-sectional study. *Stroke*, 51(12): 3570–3576. https://doi.org/10.1161/STROKEAHA.120.030397

49. Naval-Baudin P, Caamaño IR, Rubio-Maicas C, et al., 2020, Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study. *EBioMedicine*, 59: 102939. https://doi.org/10.1016/j.ebiom.2020.102939

50. Shahjouei S, Naderi S, Li J, et al., 2020, Risk of stroke in hospitalized SARS-CoV-2 infected patients: A multinational study. *EBioMedicine*, 59: 102939. https://doi.org/10.1016/j.ebiom.2020.102939
51. Khandelwal P, Al-Mufti F, Tiwari A, et al., 2021, Incidence, characteristics and outcomes of large vessel stroke in COVID-19 cohort: An international multicenter study. Neurosurgery, 89(1): E35-E41.
https://doi.org/10.1093/neuros/nyab111

52. Avula A, Nalleballe K, Narula N, et al., 2020, COVID-19 presenting as stroke. Brain Behav Immun, 87: 115–119.
https://doi.org/10.1016/j.bbi.2020.04.077

53. Di Napoli M, Papa F, Bocola V, 2001, Prognostic influence of increased C-reactive protein and fibrinogen levels in ischemic stroke. Stroke, 32(1): 133–138.
https://doi.org/10.1161/01.str.32.1.133

54. Mobarra N, Morovatdar N, Di Napoli M, et al., 2019, The association between inflammatory markers in the acute phase of stroke and long-term stroke outcomes: Evidence from a population-based study of stroke. Neuroepidemiology, 53(1-2): 20–26.
https://doi.org/10.1159/000494685

55. Luan YY, Yin CH, Yao YM, 2021, Update advances on C-reactive protein in COVID-19 and other viral infections. Front Immunol, 12: 720363.
https://doi.org/10.3389/fimmu.2021.720363

56. Snell J, 2021, SARS-CoV-2 infection and its association with thrombosis and ischemic stroke: A review. Am J Emerg Med, 40: 188–192.
https://doi.org/10.1016/j.ajem.2020.09.072

57. Patone M, Mei XW, Handunnetthi L, et al., 2022, Risks of myocarditis, pericarditis, and cardiac arrhythmias associated with COVID-19 vaccination or SARS-CoV-2 infection. Nat Med, 28(2): 410–422.
https://doi.org/10.1038/s41591-021-01630-0

58. Zhang L, Yan X, Fan Q, et al., 2020, D-dimer levels on admission to predict in-hospital mortality in patients with Covid-19. J Thromb Haemost, 18(6): 1324–1329.
https://doi.org/10.1111/jth.14859

59. Lapergue B, Lyoubi A, Meseguer E, et al., 2020, Large vessel stroke in six patients following SARS-CoV-2 infection: A retrospective case study series of acute thrombotic complications on stable underlying atherosclerotic disease. Eur J Neurol, 27(11): 2308–2311.
https://doi.org/10.1111/ene.14466

60. Wang A, Mandigo GK, Yim PD, et al., 2020, Stroke and mechanical thrombectomy in patients with COVID-19: technical observations and patient characteristics. J Neurointerv Surg, 12(7): 648–653.
https://doi.org/10.1136/neurintsurg-2020-016220

61. Li G, Han C, Xia X, et al., 2021, Relationship of uric acid, C-reactive protein, and N-terminal pro-B-type natriuretic peptide with acute cerebral infarction. Rev Assoc Med Bras, (1992), 67(11): 1639–1643.
https://doi.org/10.1590/1806-9282.20210693

62. Zi WJ, Shuai J, 2014, Plasma D-dimer levels are associated with stroke subtypes and infarction volume in patients with acute ischemic stroke. PLoS One, 9(1): e86465.
https://doi.org/10.1371/journal.pone.0086465

63. Bikdeli B, Madhavan MV, Jimenez D, et al., 2020, COVID-19 and thrombotic or thromboembolic disease: Implications for prevention, antithrombotic therapy, and follow-up: JACC State-of-the-art review. J Am Coll Cardiol, 75(23): 2950–2973.
https://doi.org/10.1016/j.jacc.2020.04.031

64. Mijajlovic MD, Pavlović A, Brainin M, et al., 2017, Post-stroke dementia a comprehensive review. BMC Med, 15(1): 11.

65. Parsay S, Vosoughi A, Khabbaz A, et al., 2021, The incidence and mortality ratio of ischemic cerebrovascular accidents in COVID-19 cases: A systematic review and meta-analysis. J Stroke Cerebrovasc Dis, 30(3): 105552.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105552

66. Strambo D, De Marchis GM, Bonati LH, et al., 2021, Ischemic stroke in COVID-19 patients: Mechanisms, treatment and outcomes in a consecutive Swiss Stroke Registry analysis. Eur J Neurol, 29(3): 732–743.
https://doi.org/10.1111/ene.15199