Stereoconvergent Arylations and Alkenylations of Unactivated Alkyl Electrophiles: The Catalytic Enantioselective Synthesis of Secondary Sulfonamides and Sulfones

Junwon Choi, Pablo Martín-Gago, and Gregory C. Fu*

Division of Chemistry and Chemical Engineering, California Institute of Technology
Pasadena, California 91125

Supporting Information

Table of Contents

I. General Information S–1
II. Preparation of Electrophiles S–2
III. Enantioselective Arylations S–10
IV. Enantioselective Alkenylations S–26
V. Determination of Absolute Stereochemistry S–31
VI. 1H NMR Spectra S–55
VII. HPLC Data S–90

I. General Information

The following reagents were purchased and used as received: NiCl₂·glyme (Strem), ZnI₂ (Strem), and Cp₂ZrHCl (Strem). Ligands L₁ (available from Aldrich) and L₆ were prepared according to a literature procedure.¹ Grignard reagents were prepared from aryl bromides and magnesium turnings (Strem) or from aryl iodides and i-PrMgCl (Aldrich; 2.0 M in THF); on occasion, we have found purchased Grignard reagents to be less suitable. THF was deoxygenated and dried by sparging with argon followed by passage through an activated alumina column (S. G. Water) prior to use. All reactions were carried out in oven-dried glassware under an inert atmosphere.

¹H NMR data and ¹³C NMR data were collected on a VARIAN 500 MHz spectrometer at ambient temperature. HPLC analyses were carried out on an Agilent 1100 series system with Daicel CHIRALPAK® columns or Daicel CHIRALCEL® columns (internal diameter 4.6 mm, column length 250 mm, particle size 5 μm or 3 μm). GC analyses were carried out on an Agilent 6890 series system with an HP-5 column (length 30 m, I.D. 0.25 mm).

(1) Choi, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 9102–9105.
II. Preparation of Electrophiles

These procedures have not been optimized.

Representative experimental procedure for the preparation of α-bromosulfonamides.

LDA was prepared by the dropwise addition of n-BuLi (1.6 M in hexanes; 13.8 mL, 22 mmol) to a solution of i-Pr₂NH (3.36 mL, 24.0 mmol) in THF (71 mL) in a 500-mL round-bottom flask at −78 °C. The reaction mixture was stirred at 0 °C for 15 min, and then it was cooled to −78 °C. A solution of the 1-bromomethanesulfonamide (20.0 mmol; prepared according to a literature procedure from bromomethanesulfonyl chloride and a secondary amine\(^2\)) in THF (40.0 mL) was added over 15 min to the LDA solution at −78 °C. The mixture was stirred for 30 min, and then a solution of the alkyl bromide (26.0 mmol) in THF (43.3 mL) was added over 15 min. The solution was stirred at −78 °C for 2 h, and then it was allowed to slowly warm to r.t. The reaction mixture was stirred at r.t. for 12 h, and then the reaction was quenched by the addition of saturated aqueous NH₄Cl (100 mL). The mixture was extracted with Et₂O (3 × 50 mL), and the combined organic layers were rinsed with brine (50 mL), dried over MgSO₄, and concentrated.

1-Bromo-N,N-dimethylpentane-1-sulfonamide. The title compound was prepared from 1-bromo-N,N-dimethylmethanesulfonamide (5.00 g, 24.7 mmol) and 1-bromobutane (3.45 mL, 32.2 mmol). The product was purified by column chromatography (3%→20% ethyl acetate/hexanes): 3.00 g (47%). Colorless oil.

\(^1\)H NMR (500 MHz, CDCl₃) δ 4.81 (dd, 1H, \(J = 10.7, 3.1\) Hz), 3.03 (s, 6H), 2.34 (dddd, 1H, \(J = 14.4, 10.0, 5.5, 3.1\) Hz), 2.10–2.02 (m, 1H), 1.70–1.61 (m, 1H), 1.47–1.30 (m, 3H), 0.94 (t, 3H, \(J = 7.2\) Hz).

\(^13\)C NMR (126 MHz, CDCl₃) δ 63.3, 38.8, 32.9, 29.2, 21.9, 13.9.

FT-IR (neat) 2958, 2873, 2814, 1483, 1458, 1435, 1414, 1380, 1342, 1287, 1237, 1203, 1171, 1145, 1106, 1064, 973, 930, 782, 750, 734 cm\(^{-1}\).

MS (EI) \(m/z\) (M⁺) calcd for C₇H₁₆BrNO₂S: 257, found: 257.

(2) Gao, F.; Yan, X.; Zahr, O.; Larsen, A.; Vong, K.; Auclair, K. *Bioorg. Med. Chem. Lett.* 2008, 18, 5518–5522.

(3) Brienne, M.-J.; Varech, D.; Leclercq, M.; Jacques, J.; Radembino, N.; Dessalles, M.-C.; Mahuzier, G.; Gueyouche, C.; Bories, C. Loiseau, P.; Gayral, P. *J. Med. Chem.* 1987, 30, 2232–2239.
1-Bromo-N-methyl-N-phenylpentane-1-sulfonamide. The title compound was prepared from 1-bromo-N-methyl-N-phenylmethanesulfonamide (3.82 g, 14.5 mmol) and 1-bromobutane (2.02 mL, 18.8 mmol). The product was purified by column chromatography on silica gel (2%→15% ethyl acetate/hexanes) and then on C-18 silica gel (10%→100% acetonitrile/water): 3.60 g (78%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.50–7.48 (m, 2H), 7.43–7.39 (m, 2H), 7.35–7.31 (m, 1H), 4.74 (dd, 1H, $J = 10.5, 3.1$ Hz), 3.52 (s, 3H), 2.27 (dddd, 1H, $J = 14.5, 10.2, 5.3, 3.1$ Hz), 2.11–2.03 (m, 1H), 1.66–1.58 (m, 1H), 1.40–1.24 (m, 3H), 0.89 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 140.8, 129.7, 128.1, 127.3, 63.3, 42.0, 32.7, 29.1, 21.9, 13.9.

FT-IR (neat) 3062, 3039, 2957, 2931, 2872, 1595, 1493, 1466, 1453, 1351, 1270, 1237, 1183, 1143, 1106, 1068, 1026, 917, 886, 767, 725 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_{12}$H$_{19}$BrNO$_2$S: 320, found: 320.

N-Benzyl-1-bromo-N-methylpentane-1-sulfonamide. The title compound was prepared from N-benzyl-1-bromo-N-methylmethanesulfonamide (3.75 g, 13.5 mmol) and 1-bromobutane (1.88 mL, 17.5 mmol). The product was purified by column chromatography (2%→15% ethyl acetate/hexanes): 2.04 g (45%). Light-yellow oil.

1H NMR (500 MHz, CDCl$_3$) δ 7.39–7.35 (m, 4H), 7.34–7.30 (m, 1H), 4.84 (dd, 1H, $J = 10.7, 3.1$ Hz), 4.61 (d, 1H, $J = 14.8$ Hz), 4.36 (d, 1H, $J = 14.8$ Hz), 2.88 (s, 3H), 2.40 (dddd, 1H, $J = 14.4, 10.0, 5.6, 3.1$ Hz), 2.15–2.07 (m, 1H), 1.72–1.64 (m, 1H), 1.50–1.31 (m, 3H), 0.95 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 135.8, 128.9, 128.3, 128.3, 64.1, 55.5, 35.5, 32.9, 29.3, 21.9, 13.9.

FT-IR (neat) 3088, 3064, 3031, 2958, 2931, 2872, 1605, 1587, 1496, 1467, 1455, 1338, 1278, 1212, 1196, 1151, 1106, 1077, 1029, 994, 944, 910, 858, 787, 733 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_{13}$H$_{21}$BrNO$_2$S: 334, found: 334.

1-((1-Bromopentyl)sulfonyl)pyrrolidine. The title compound was prepared from 1-((bromomethyl)sulfonyl)pyrrolidine (3.02 g, 13.2 mmol) and 1-bromobutane (1.85 mL, 17.2 mmol). The product was purified by column chromatography (2%→15% ethyl acetate/hexanes): 1.96 g (52%). Light-yellow oil.
1H NMR (500 MHz, CDCl$_3$) δ 4.84 (dd, 1H, $J = 10.7, 3.1$ Hz), 3.62–3.56 (m, 2H), 3.49–3.43 (m, 2H), 2.36 (dddd, 1H, $J = 14.4, 10.0, 5.6, 3.1$ Hz), 2.11–2.03 (m, 1H), 1.99–1.94 (m, 4H), 1.70–1.61 (m, 1H), 1.48–1.30 (m, 3H), 0.94 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 63.7, 49.4, 32.7, 29.3, 26.1, 21.9, 13.9.

FT-IR (neat) 2957, 2872, 1461, 1334, 1238, 1200, 1148, 1076, 1014, 929, 781 cm$^{-1}$.

MS (EI) m/z (M$^+$) calcd for C$_9$H$_{18}$BrNO$_2$: 283, found: 283.

4-((1-Bromopentyl)sulfonyl)morpholine. The title compound was prepared from 4-((bromomethyl)sulfonyl)morpholine (3.01 g, 12.3 mmol) and 1-bromobutane (1.72 mL, 16.0 mmol). The product was purified by column chromatography (2%→20% ethyl acetate/hexanes): 1.28 g (35%). White solid.

1H NMR (500 MHz, CDCl$_3$) δ 4.72 (dd, 1H, $J = 10.7, 3.1$ Hz), 3.75–3.68 (m, 4H), 3.50–3.42 (m, 4H), 2.32 (dddd, 1H, $J = 14.3, 9.9, 5.5, 3.0$ Hz), 2.05–1.97 (m, 1H), 1.67–1.58 (m, 1H), 1.45–1.27 (m, 3H), 0.92 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 67.0, 63.8, 47.3, 32.8, 29.1, 21.8, 13.8.

FT-IR (neat) 2959, 2925, 2860, 1467, 1460, 1450, 1434, 1347, 1328, 1299, 1261, 1237, 1204, 1153, 1114, 1074, 1014, 958, 846, 778, 732 cm$^{-1}$.

MS (EI) m/z (M$^+$) calcd for C$_9$H$_{18}$BrNO$_3$: 299, found: 299.

1-Bromo-\(N,N\)-dimethylnon-8-ene-1-sulfonamide. The title compound was prepared from 1-bromo-\(N,N\)-dimethylmethanesulfonamide (1.76 g, 8.71 mmol) and 8-bromo-1-octene (1.90 mL, 11.3 mmol). The product was purified by column chromatography (2%→20% ethyl acetate/hexanes): 1.30 g (35%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 5.80 (ddt, 1H, $J = 16.9, 10.2, 6.7$ Hz), 5.00 (ddt, 1H, $J = 17.1, 2.2, 1.6$ Hz), 4.94 (ddt, 1H, $J = 10.2, 2.2, 1.2$ Hz), 4.81 (dd, 1H, $J = 10.6, 3.1$ Hz), 3.03 (s, 6H), 2.33 (dddd, 1H, $J = 14.3, 10.0, 5.8, 3.1$ Hz), 2.10–2.02 (m, 3H), 1.71–1.63 (m, 1H), 1.48–1.25 (m, 7H).

13C NMR (126 MHz, CDCl$_3$) δ 139.0, 114.5, 63.3, 38.8, 33.8, 33.1, 28.8, 28.6, 27.1.

FT-IR (neat) 3075, 2923, 2852, 1640, 1479, 1454, 1414, 1340, 1285, 1204, 1143, 1063, 971, 907, 783 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_{11}$H$_{23}$BrNO$_2$: 312, found: 312.
1-Bromo-5-((tert-butyldimethylsilyl)oxy)-N,N-dimethylpentane-1-sulfonamide. A 250-mL round-bottom flask was charged with 1-bromo-N,N-dimethylmethanesulfonamide (0.808 g, 4.00 mmol) and toluene (24 mL). tert-Butyl(4-iodobutoxy)dimethylsilane (5.03 g, 16.0 mmol), aqueous NaOH (50% w/v; 24 mL), and benzyltriethylammonium chloride (0.911 g, 4.00 mmol) were added to the solution at r.t. The resulting mixture was stirred at r.t. for 24 h, and then water (50 mL) was added. The organic phase was separated, and the aqueous solution was extracted with ethyl acetate (2 × 25 mL). The combined organic layers were dried over MgSO\(_4\) and concentrated. The product was purified by column chromatography (hexanes→30% ethyl acetate/hexanes): 1.21 g (78%). Colorless oil.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 4.82 (dd, 1H, J = 10.7, 3.1 Hz), 3.62 (t, 2H, J = 6.1 Hz), 3.02 (s, 6H), 2.38–2.32 (m, 1H), 2.13–2.04 (m, 1H), 1.79–1.70 (m, 1H), 1.67–1.45 (m, 3H), 0.89 (s, 9H), 0.05 (s, 6H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) δ 63.2, 62.6, 38.8, 33.0, 31.8, 26.1, 23.7, 18.5, −5.2.

FT-IR (neat) 2952, 2929, 2885, 2856, 1471, 1462, 1389, 1343, 1287, 1256, 1205, 1146, 1127, 1106, 1006, 973, 939, 836, 812, 776, 740 cm\(^{-1}\).

MS (ESI) m/z (M\(^+\)+H) calcd for C\(_{13}\)H\(_{31}\)BrNO\(_3\)SSi: 388, found: 388.

1-Bromo-N,N-dimethyl-5-(thiophen-2-yl)pentane-1-sulfonamide. The title compound was prepared from 1-bromo-N,N-dimethylmethanesulfonamide (3.00 g, 14.8 mmol) and 2-(4-bromobutyl)thiophene (4.23 g, 19.3 mmol). The product was purified by column chromatography (3%→20% ethyl acetate/hexanes): 1.44 g (29%). Light-yellow solid.

\(^1\)H NMR (500 MHz, CDCl\(_3\)) δ 7.12 (dd, 1H, J = 5.1, 1.2 Hz), 6.92 (dd, 1H, J = 5.1, 3.4 Hz), 6.79 (dddd, 1H, J = 3.3, 1.0, 1.0, 1.0 Hz), 4.80 (dd, 1H, J = 10.5, 3.2 Hz), 3.02 (s, 6H), 2.92–2.82 (m, 2H), 2.40–2.34 (m, 1H), 2.14–2.07 (m, 1H), 1.80–1.69 (m, 3H), 1.56–1.47 (m, 1H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) δ 144.8, 126.9, 124.4, 123.2, 63.0, 38.8, 33.0, 30.9, 29.7, 26.6.

FT-IR (neat) 2935, 2857, 1480, 1454, 1414, 1340, 1286, 1203, 1180, 1145, 1063, 972, 850, 784 cm\(^{-1}\).

MS (ESI) m/z (M\(^+\)+H) calcd for C\(_{11}\)H\(_{19}\)BrNO\(_2\)S: 340, found: 340.

1-Bromo-1-cyclopentyl-N,N-dimethylmethanesulfonamide. The title compound was prepared from 1-bromo-N,N-dimethylmethanesulfonamide (3.03 g, 15.0 mmol) and cyclopentyl
4-methylbenzenesulfonate (4.69 g, 19.5 mmol). The product was purified by column chromatography (10% ethyl acetate/hexanes): 668 mg (16%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 4.99 (d, 1H, $J = 4.8$ Hz), 3.00 (s, 6H), 2.66–2.59 (m, 1H), 1.99–1.88 (m, 2H), 1.75–1.55 (m, 5H), 1.54–1.45 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 68.5, 41.8, 38.7, 31.8, 30.0, 25.6, 25.5.

FT-IR (neat) 2947, 2869, 2812, 1481, 1452, 1413, 1333, 1284, 1205, 1180, 1142, 1063, 969, 898, 862, 786 cm$^{-1}$.

MS (El) m/z (M$^+$–Br) calcd for C$_{8}$H$_{16}$NO$_{2}$S: 190, found: 190.

![1-Bromo-N,N-dicyclohexylpentane-1-sulfonamide](image)

1-Bromo-N,N-dicyclohexylpentane-1-sulfonamide. The title compound was prepared from 1-bromo-N,N-dicyclohexylmethanesulfonamide (2.10 g, 6.21 mmol) and 1-bromobutane (0.867 mL, 8.07 mmol). The product was purified by column chromatography (1%–8% ethyl acetate/hexanes): 2.06 g (84%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 4.57 (dd, 1H, $J = 10.6$, 2.9 Hz), 3.38–3.33 (br m, 2H), 2.35 (dddd, 1H, $J = 14.3$, 10.1, 5.3, 2.9 Hz), 2.07–2.00 (m, 1H), 1.95–1.91 (m, 2H), 1.86–1.59 (m, 13H), 1.45–1.23 (m, 7H), 1.09 (qt, 2H, $J = 13.1$, 3.5 Hz), 0.92 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 66.6, 59.3, 33.9, 33.3, 32.4, 29.5, 26.5, 25.4, 22.0, 13.9.

FT-IR (neat) 2931, 2855, 1467, 1454, 1401, 1381, 1329, 1275, 1256, 1235, 1188, 1166, 1142, 1101, 1074, 1048, 1027, 997, 982, 929, 917, 895, 856, 847, 824, 801, 774, 760, 749, 733 cm$^{-1}$.

MS (El) m/z (M$^+$) calcd for C$_{17}$H$_{32}$BrNO$_{2}$S: 393, found: 393.

![N-Benzyl-1-bromo-N-phenyl-5-(thiophen-2-yl)pentane-1-sulfonamide](image)

N-Benzyl-1-bromo-N-phenyl-5-(thiophen-2-yl)pentane-1-sulfonamide. The title compound was prepared from N-benzyl-1-bromo-N-phenylmethanesulfonamide (2.70 g, 7.94 mmol) and 2-(4-bromobuty1)thiophene (2.26 g, 10.3 mmol). The product was purified by column chromatography on silica gel (2%->12% ethyl acetate/hexanes) and then preparative HPLC on C-18 silica gel (80%->100% acetonitrile/water; water was doped with 0.1% AcOH): 0.881 g (23%). White solid.

1H NMR (500 MHz, CDCl$_3$) δ 7.34–7.27 (m, 5H), 7.26–7.20 (m, 5H), 7.11 (dd, 1H, $J = 5.1$, 1.2 Hz), 6.90 (dd, 1H, $J = 5.1$, 3.4 Hz), 6.76 (dddd, 1H, $J = 3.2$, 1.0, 1.0, 1.0 Hz), 5.34 (d, 1H, $J = 14.8$ Hz), 4.75 (dd, 1H, $J = 10.5$, 3.1 Hz), 4.69 (d, 1H, $J = 14.9$ Hz), 2.88–2.78 (m, 2H), 2.38–2.31 (m, 1H), 2.21–2.13 (m, 1H), 1.79–1.65 (m, 3H), 1.51–1.43 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 144.8, 138.1, 136.3, 129.6, 129.4, 128.7, 128.6, 128.5, 127.9, 126.9, 124.4, 123.2, 63.3, 58.9, 32.7, 30.9, 29.6, 26.6.
FT-IR (neat) 3064, 3031, 2932, 2858, 1594, 1492, 1454, 1439, 1348, 1214, 1178, 1150, 1093, 1066, 1028, 917, 868, 822, 781 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_{22}$H$_{25}$BrNO$_2$S$_2$: 478, found: 478.

1-Bromo-N,N-dimethylhex-5-ene-1-sulfonamide. The title compound was prepared from 1-bromo-N,N-dimethylmethanesulfonamide (4.00 g, 19.8 mmol) and 5-bromo-1-pentene (3.05 mL, 25.7 mmol). The product was purified by column chromatography (3%→15% ethyl acetate/hexanes): 2.29 g (43%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 5.79 (ddt, 1H, $J = 16.9, 10.2, 6.7$ Hz), 5.05 (dq, 1H, $J = 17.1, 1.7$ Hz), 5.01 (ddt, 1H, $J = 10.2, 1.9, 1.2$ Hz), 4.82 (dd, 1H, $J = 10.5, 3.2$ Hz), 3.02 (s, 6H), 2.35 (dddt, 1H, $J = 14.5, 10.2, 6.0, 3.2$ Hz), 2.19–2.04 (m, 3H), 1.84–1.75 (m, 1H), 1.60–1.51 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 137.5, 115.8, 63.0, 38.8, 32.8, 32.7, 26.4.

FT-IR (neat) 3076, 2918, 1640, 1482, 1415, 1341, 1285, 1204, 1143, 1063, 970, 912, 856, 786, 738 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_8$H$_{17}$BrNO$_2$: 270, found: 270.

(E)-1-Bromo-N,N-dimethylhex-5-ene-1-sulfonamide-6-d. The title compound was prepared from 1-bromo-N,N-dimethylmethanesulfonamide (762 mg, 3.77 mmol) and (E)-pent-4-en-1-yl-5-d 4-methylbenzenesulfonate (1.18 g, 4.90 mmol). The product was purified by column chromatography (2%→20% ethyl acetate/hexanes): 408 mg (40%). Colorless oil.

1H NMR (500 MHz, CDCl$_3$) δ 5.78 (dt, 1H, $J = 16.9, 6.5$ Hz), 5.05–5.00 (m, 1H), 4.82 (dd, 1H, $J = 10.5, 3.2$ Hz), 3.01 (s, 6H), 2.37–2.30 (m, 1H), 2.18–2.03 (m, 3H), 1.83–1.74 (m, 1H), 1.59–1.50 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 137.4, 115.5 (t, $J = 24$ Hz), 63.1, 38.8, 32.8, 32.7, 26.4.

FT-IR (neat) 3028, 2949, 2862, 2264, 1621, 1483, 1455, 1435, 1414, 1342, 1287, 1204, 1183, 1144, 1064, 972, 868, 785, 744 cm$^{-1}$.

MS (ESI) m/z (M$^+$+H) calcd for C$_8$H$_{16}$DBrNO$_2$: 271, found: 271.
Representative experimental procedure for the preparation of α-bromosulfones. The target molecules were prepared according to literature procedures from α-bromoketones.4,5 A 100-mL round-bottom flask was charged with the α-bromo-β-keto-sulfone (10.0 mmol) and aqueous KOH (30\% w/v; 50 mL), and the mixture was stirred at r.t. for 48 h. When the reaction was complete (monitored by TLC), the reaction mixture was extracted with dichloromethane (3 \times 30 mL). The combined organic layers were dried over MgSO\textsubscript{4} and concentrated.

\textbf{1-Bromo-1-(methylsulfonyl)pentane.} The title compound was prepared from 2-bromo-2-(methylsulfonyl)-1-phenylhexan-1-one (12.0 g, 36.0 mmol). The product was purified by column chromatography (hexanes→20\% ethyl acetate/hexanes): 8.08 g (98\%). White solid.

1H NMR (500 MHz, CDCl\textsubscript{3}) \(\delta\) 4.61 (dd, 1H, \(J = 11.0, 3.0\) Hz), 3.09 (s, 3H), 2.43 (dddd, 1H, \(J = 14.4, 9.9, 5.7, 3.0\) Hz), 1.96 (dddd, 1H, \(J = 14.2, 11.1, 9.5, 4.4\) Hz), 1.72–1.64 (m, 1H), 1.50–1.31 (m, 3H), 0.94 (t, 3H, \(J = 7.2\) Hz).

13C NMR (126 MHz, CDCl\textsubscript{3}) \(\delta\) 64.3, 37.6, 30.1, 29.2, 21.8, 13.8.

FT-IR (neat) 3010, 2958, 2932, 2873, 1467, 1454, 1434, 1413, 1381, 1311, 1237, 1208, 1140, 1121, 1106, 956, 928, 815, 771, 748, 735 cm-1.

MS (ESI) \textit{m/z} (M++H) calcd for C\textsubscript{6}H\textsubscript{14}BrO\textsubscript{2}S: 229, found: 229.

\textbf{(Bromo(methylsulfonyl)methyl)cyclohexane.} The bromination of 2-cyclohexyl-2-(methylsulfonyl)-1-phenylethan-1-one was conducted at 60 °C, and extra KBr and H\textsubscript{2}O\textsubscript{2} were added until the reaction was complete. The title compound was prepared from 2-bromo-2-cyclohexyl-2-(methylsulfonyl)-1-phenylethan-1-one (8.13 g, 22.6 mmol). The reaction was run at 40 °C for 96 h. The product was purified by column chromatography on silica gel (5\%→30\% ethyl acetate/hexanes) and then on C-18 silica gel (10\%→100\% acetonitrile/water): 1.69 g (29\%). White solid.

4 Suryakiran, N.; Reddy, T. S.; Ashalatha, K.; Lakshman, M.; Venkateswarlu, Y. \textit{Tetrahedron Lett.} \textbf{2006}, \textit{47}, 3853–3856.

5 Suryakiran, N.; Prabhakar, P.; Reddy, T. S.; Mahesh, K. C.; Rajesh, K.; Venkateswarlu, Y. \textit{Tetrahedron Lett.} \textbf{2007}, \textit{48}, 877–881.
was purified by column chromatography (5% aqueous mixture was extracted with dichloromethane at r.t.
water (50 mL) were concentrated, and the mixture was extracted with dichloromethane (30 mL) 20×5 mm, 20%)

1H NMR (500 MHz, CDCl₃) δ 4.60 (d, 1H, J = 2.7 Hz), 3.10 (s, 3H), 2.41–2.35 (m, 1H), 2.08–2.04 (m, 1H), 1.84–1.76 (m, 2H), 1.72–1.67 (m, 1H), 1.64–1.61 (m, 1H), 1.48–1.30 (m, 4H), 1.21–1.12 (m, 1H).

13C NMR (126 MHz, CDCl₃) δ 71.0, 39.9, 37.4, 31.8, 28.5, 26.0, 25.6, 25.3.

FT-IR (neat) 3011, 2930, 1452, 1411, 1370, 1310, 1240, 1171, 1138, 1090, 1080, 1060, 1032, 968, 922, 896, 885, 848, 792, 774, 728 cm⁻¹.

MS (ESI) m/z (M⁺+H) calcd for C₉H₁₆BrO₂S: 255, found: 255.

Benzyl benzyl(7-bromo-7-(methylsulfonyl)heptyl)carbamate. The title compound was prepared from benzyl benzyl(7-bromo-7-(methylsulfonyl)-8-oxo-8-phenyloctyl)carbamate (3.08 g, 5.13 mmol). The product was purified by column chromatography on silica gel (10%→50% ethyl acetate/hexanes) and then on C-18 silica gel (10%→100% acetonitrile/water): 1.57 g (62%). Viscous colorless oil.

1H NMR (500 MHz, CD₂Cl₂) δ 7.39–7.20 (br m, 10H), 5.18–5.14 (m, 2H), 4.68–4.60 (m, 1H), 4.50 (s, 2H), 3.28–3.20 (m, 2H), 3.06 (s, 3H), 2.40–2.30 (br m, 1H), 1.97–1.86 (br m, 1H), 1.70–1.25 (br m, 8H).

13C NMR (126 MHz, CD₂Cl₂) δ 156.9, 156.4, 138.6, 137.6, 128.82, 128.78, 128.2, 128.05, 127.98, 127.5, 67.3, 64.7, 50.8, 50.5, 47.4, 46.7, 37.8, 30.7, 28.6, 28.3, 27.9, 27.2, 26.7.

FT-IR (neat) 3087, 3062, 3030, 2930, 2858, 1692, 1605, 1585, 1496, 1467, 1453, 1421, 1365, 1315, 1230, 1140, 1119, 1072, 1028, 955, 915, 819, 768, 733 cm⁻¹.

MS (ESI) m/z (M⁺+H) calcd for C₅₁H₆₁BrNO₅S: 496, found: 496.

1-Bromo-1-(tert-butylsulfonyl)pentane. A mixture of 2-bromo-1-phenylhexan-1-one (5.10 g, 20.0 mmol), 2-methyl-2-propanethiol (1.80 g, 20.0 mmol), benzyltriethylammonium bromide (0.272 g, 1.00 mmol), and NaOH (3.00 g, 75.0 mmol) in dichloromethane (40 mL) and water (40 mL) in a 250-mL round-bottom flask was stirred at r.t. for 8 h. Then, water (100 mL) was added, and the mixture was extracted with dichloromethane (3×50 mL). The combined organic layers were dried over MgSO₄ and concentrated. The residue was dissolved in MeOH (50 mL) and water (50 mL), and then oxone® (30.7 g, 100 mmol) was added. The reaction mixture was stirred at r.t. overnight, and most of the MeOH was removed under reduced pressure. The resulting aqueous mixture was extracted with dichloromethane (3×30 mL). The combined organic layers were dried over MgSO₄ and concentrated. 2-(tert-Butylsulfonyl)-1-phenylhexan-1-one was purified by column chromatography (5%→60% ethyl acetate/hexanes): 5.34 g (90%). White solid.
2-Bromo-2-(tert-butylsulfonyl)-1-phenylhexan-1-one was prepared from 2-(tert-butylsulfonyl)-1-phenylhexan-1-one following the described procedure.

The title compound was prepared from 2-bromo-2-(tert-butylsulfonyl)-1-phenylhexan-1-one (2.30 g, 6.13 mmol). The reaction was conducted at 40 °C. The product was purified by column chromatography (hexanes→20% ethyl acetate/hexanes): 1.41 g (85%). White solid.

1H NMR (500 MHz, CDCl₃) δ 4.84 (dd, 1H, J = 10.5, 3.0 Hz), 2.43 (dddd, 1H, J = 14.5, 10.2, 5.3, 2.9 Hz), 2.11–2.03 (m, 1H), 1.75–1.66 (m, 1H), 1.55 (s, 9H), 1.48–1.30 (m, 3H), 0.94 (t, 3H, J = 7.2 Hz).

13C NMR (126 MHz, CDCl₃) δ 63.3, 59.2, 30.8, 28.8, 25.2, 22.0, 13.9.

FT-IR (neat) 2959, 2933, 2873, 1479, 1467, 1399, 1366, 1305, 1192, 1167, 1118, 1104, 1020, 986, 964, 929, 801, 733 cm⁻¹.

MS (ESI) m/z (M⁺+Na) calcd for C₉H₁₉BrNaO₂S: 293, found: 293.

PhS₄n-BuBr

((1-Bromopentyl)sulfonyl)benzene. The title compound was prepared from 2-bromo-1-phenyl-1-(phenylsulfonyl)hexan-1-one (12.0 g, 30.4 mmol). The reaction was conducted at 60 °C. The product was purified by column chromatography (hexanes→20% ethyl acetate/hexanes): 8.50 g (96%). White solid.

1H NMR (500 MHz, CDCl₃) δ 7.98–7.95 (m, 2H), 7.72–7.68 (m, 1H), 7.61–7.57 (m, 2H), 4.70 (dd, 1H, J = 11.1, 2.9 Hz), 2.41 (dddd, 1H, J = 14.3, 9.9, 5.8, 2.9 Hz), 1.89 (ddddd, 1H, J = 14.1, 11.1, 9.4, 4.4 Hz), 1.67–1.58 (m, 1H), 1.45–1.26 (m, 3H), 0.91 (t, 3H, J = 7.2 Hz).

13C NMR (126 MHz, CDCl₃) δ 135.5, 134.6, 130.2, 129.2, 66.0, 31.0, 29.2, 21.8, 13.8.

FT-IR (neat) 3065, 2958, 2933, 2872, 1584, 1478, 1466, 1447, 1381, 1324, 1309, 1236, 1203, 1149, 1133, 1083, 1024, 999, 929, 792, 778, 746 cm⁻¹.

MS (ESI) m/z (M⁺+H) calcd for C₁₁H₁₆BrO₂S: 291, found: 291.

III. Enantioselective Arylations

General Procedure. An oven-dried 8-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and then filled with nitrogen. ZnI₂ (290 mg, 0.910 mmol) was added to the vial, and the vial was then immediately placed under vacuum and refilled with nitrogen (three cycles). Next, THF (2.73 mL) was added to the vial, followed by a solution of ArMgBr (prepared according to a literature procedure;¹ 1.00 M in THF; 0.910 mL, 0.910 mmol). The mixture was stirred at r.t. for 30 min. An oven-dried 20-mL vial equipped with a magnetic stir bar was charged with NiCl₂-glyme (15.4 mg, 0.070 mmol), (R,R)-L¹ (30.4 mg, 0.091 mmol), and the electrophile (0.70 mmol). The vial was sealed with a PTFE-lined septum cap, placed under vacuum, and then filled with nitrogen; this cycle was repeated three times. THF (4.14 mL) was added, and the mixture was stirred at r.t. for 20 min, at which
time it had become homogenous. Both vials were wrapped with electrical tape, attached with nitrogen-filled balloons, and cooled to –20 °C for 15 min. The heterogeneous mixture of the nucleophile was then transferred by syringe over 2 min to the vial that contained the electrophile. The nitrogen-filled balloon was removed, and the septum cap was covered with grease. The reaction mixture was stirred at –20 °C for 24 h, and then the reaction was quenched by the addition of ethanol (0.70 mL). The solution was allowed to warm to r.t., and then it was filtered through a pad of silica (eluted with Et₂O). The filtrate was concentrated, and the residue was purified by column chromatography.

A second run was conducted with (S,S)-L1.

(S)-N,N-Dimethyl-1-phenylpentane-1-sulfonamide (Table 2, Entry 1). 1-Bromo-N,N-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20% → 25% Et₂O/hexanes). Light-yellow solid. First run: 159 mg (89%, 96% ee). Second run: 162 mg (91%, 96% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with tᵣ = 10.9 min (major), 13.4 min (minor).

1H NMR (500 MHz, CDCl₃) δ 7.42–7.34 (m, 5H), 4.08 (dd, 1H, J = 11.3, 3.8 Hz), 2.53 (s, 6H), 2.34 (dddd, 1H, J = 13.7, 10.2, 6.5, 3.8 Hz), 2.15 (dddd, 1H, J = 13.6, 11.4, 10.0, 5.1 Hz), 1.38–1.23 (m, 2H), 1.22–1.09 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl₃) δ 133.9, 129.6, 129.0, 128.9, 67.7, 37.8, 29.6, 28.9, 22.4, 13.9.

FT-IR (neat) 3017, 2952, 2930, 2872, 1497, 1455, 1326, 1305, 1288, 1204, 1137, 1109, 1064, 973, 820, 808 cm⁻¹.

MS (ESI) m/z (M⁺Na) calcd for C₁₃H₂₁NNaO₂S: 278, found: 278.

[α]D²⁵ = −30° (c = 1.02, CHCl₃).

(S)-N-Methyl-N,1-diphenylpentane-1-sulfonamide (Table 2, Entry 2). 1-Bromo-N-methyl-N-phenylpentane-1-sulfonamide (224 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (10% Et₂O/hexanes). Light-yellow solid. First run: 211 mg (95%, 93% ee). Second run: 211 mg (95%, 95% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (2% i-PrOH/hexanes, 1.0 mL/min) with tᵣ = 10.5 min (major), 11.7 min (minor).

1H NMR (500 MHz, CDCl₃) δ 7.41–7.35 (m, 5H), 7.31–7.27 (m, 2H), 7.21–7.18 (m, 1H), 7.17–7.14 (m, 2H), 4.11 (dd, 1H, J = 11.4, 3.7 Hz), 2.88 (s, 3H), 2.32 (dddd, 1H, J = 13.6, 10.1, 6.5, 3.7
Hz), 2.14 (dddd, 1H, J = 13.4, 11.4, 9.9, 5.2 Hz), 1.34–1.18 (m, 2H), 1.17–1.03 (m, 2H), 0.80 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl$_3$) δ 141.7, 133.7, 129.9, 129.1, 129.0, 128.8, 126.5, 125.8, 68.2, 39.2, 30.0, 28.9, 22.4, 13.9.

FT-IR (neat) 3063, 3030, 2957, 2932, 2872, 1596, 1493, 1455, 1423, 1380, 1342, 1266, 1179, 1143, 1108, 1067, 1028, 1003, 969, 917, 880, 801, 765 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{19}$H$_{23}$NNaO$_2$: 340, found: 340. [α]$^D_{25}$ = −105° (c = 1.01, CHCl$_3$).

(S)-N-Benzyl-N-methyl-1-phenylpentane-1-sulfonamide (Table 2, Entry 3). N-Benzyl-1-bromo-N-methylpentane-1-sulfonamide (234 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (7% ethyl acetate/hexanes). Light-yellow solid. First run: 219 mg (94%, 94% ee). Second run: 221 mg (95%, 93% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (2% i-PrOH/hexanes, 1.0 mL/min) with t$_r$ = 25.8 min (major), 28.9 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.42–7.36 (m, 5H), 7.31–7.23 (m, 3H), 7.22–7.18 (m, 2H), 4.12 (dd, 1H, J = 11.3, 3.8 Hz), 4.01 (d, 1H, J = 14.7 Hz), 3.68 (br d, 1H, J = 11.0 Hz), 2.42 (s, 3H), 2.38 (dddd, 1H, J = 13.7, 10.1, 6.2, 3.8 Hz), 2.21 (dddd, 1H, J = 13.5, 11.3, 9.8, 5.2 Hz), 1.42–1.26 (m, 2H), 1.26–1.12 (m, 2H), 0.85 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl$_3$) δ 136.3, 133.9, 129.7, 129.0, 128.9, 128.6, 128.3, 127.9, 68.5, 54.2, 34.6, 29.6, 29.0, 22.4, 13.9.

FT-IR (neat) 3063, 3030, 2954, 2930, 2870, 1495, 1454, 1363, 1327, 1214, 1149, 1133, 1075, 1003, 944, 890, 807, 760 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{19}$H$_{23}$NNaO$_2$: 354, found: 354. [α]$^D_{25}$ = −54° (c = 1.03, CHCl$_3$).

(S)-1-((1-Phenylpentyl)sulfonyl)pyrrolidine (Table 2, Entry 4). 1-((1-Bromopentyl)sulfonyl)pyrrolidine (199 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (10% ethyl acetate/hexanes). White solid. First run: 166 mg (84%, 96% ee). Second run: 170 mg (86%, 96% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (2% i-PrOH/hexanes, 1.0 mL/min) with t$_r$ = 13.8 min (minor), 20.2 min (major).
1H NMR (500 MHz, CDCl$_3$) δ 7.43–7.39 (m, 2H), 7.39–7.33 (m, 3H), 4.11 (dd, 1H, J = 11.3, 3.8 Hz), 3.21–3.13 (m, 2H), 2.84–2.77 (m, 2H), 2.33 (dddd, 1H, J = 13.8, 10.1, 6.4, 3.8 Hz), 2.17 (dddd, 1H, J = 13.5, 11.3, 9.6, 5.2 Hz), 1.74–1.67 (m, 2H), 1.67–1.58 (m, 2H), 1.39–1.24 (m, 2H), 1.24–1.10 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl$_3$) δ 134.3, 129.7, 128.8, 128.7, 67.7, 48.2, 29.2, 29.0, 25.9, 22.4, 13.9.

FT-IR (neat) 3436, 2957, 2887, 2872, 2857, 1498, 1467, 1456, 1325, 1294, 1240, 1198, 1143, 1128, 1084, 1015, 829, 806, 728 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{15}$H$_{23}$NNaO$_3$: 304, found: 304.

$[\alpha]^D_{25}$ = −51° (c = 0.97, CHCl$_3$).

(S)-4-((1-Phenylpentyl)sulfonyl)morpholine (Table 2, Entry 5). 4-((1-Bromopentyl)sulfonyl)morpholine (210 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20% ethyl acetate/hexanes). White solid. First run: 197 mg (95%, 98% ee). Second run: 186 mg (89%, 95% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (3% i-PrOH/hexanes, 1.0 mL/min) with t_r = 13.9 min (major), 16.7 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.44–7.35 (m, 5H), 4.02 (dd, 1H, J = 11.3, 3.8 Hz), 3.56–3.52 (m, 2H), 3.48–3.43 (m, 2H), 3.06–3.02 (m, 2H), 2.75 (br s, 2H), 2.34 (dddd, 1H, J = 13.8, 10.1, 6.3, 3.8 Hz), 2.13 (dddd, 1H, J = 13.4, 11.3, 9.8, 5.1 Hz), 1.39–1.23 (m, 2H), 1.23–1.08 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl$_3$) δ 133.5, 129.7, 129.2, 129.0, 68.5, 67.0, 46.3, 29.7, 28.9, 22.4, 13.9.

FT-IR (neat) 2955, 2923, 2859, 1496, 1455, 1336, 1323, 1257, 1214, 1152, 1128, 1076, 955, 924, 848, 803 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{15}$H$_{23}$NNaO$_3$: 320, found: 320.

$[\alpha]^D_{25}$ = −34° (c = 1.02, CHCl$_3$).

(S)-N,N-Dimethyl-1-phenylnonen-8-ene-1-sulfonamide (Table 2, Entry 6). 1-Bromo-N,N-dimethyl-1-phenylnonen-8-ene-1-sulfonamide (219 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (5%→10% ethyl acetate/hexanes). Light-yellow solid. First run: 192 mg (89%, 95% ee). Second run: 189 mg (87%, 95% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with t_r = 12.8 min (major), 20.6 min (minor).
\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.41–7.34 (m, 5H), 5.76 (dddd, 1H, \(J = 16.9, 10.2, 6.7, 6.7\) Hz), 4.96 (dddd, 1H, \(J = 17.1, 2.2, 1.6, 1.6\) Hz), 4.91 (dddd, 1H, \(J = 10.2, 2.3, 1.2, 1.2\) Hz), 4.08 (dd, 1H, \(J = 11.3, 3.9\) Hz), 2.53 (s, 6H), 2.30 (dddd, 1H, \(J = 13.7, 10.2, 6.5, 3.9\) Hz), 2.19–2.11 (m, 1H), 2.01–1.96 (m, 2H), 1.35–1.11 (m, 8H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 139.1, 133.9, 129.6, 129.0, 128.9, 114.4, 67.7, 37.8, 32.4, 29.7, 26.0, 23.1, 18.4, –5.2.

FT-IR (neat) 3062, 2924, 2853, 1640, 1497, 1468, 1456, 1414, 1327, 1208, 1137, 1066, 977, 912, 824 cm\(^{-1}\).

MS (ESI) \(m/z\) (M\(^{+}\)+Na) calcd for C\(_{17}\)H\(_{27}\)NNaO\(_2\): 332, found: 332. \([\alpha]_{D}^{25} = -19.2^\circ\) (c = 0.98, CHCl\(_3\)).

\((S)-5-((\text{tert-Butyldimethylsilyl})\text{oxy})-N,N\text{-dimethyl-1-phenylpentane-1-sulfonamide}\) (Table 2, Entry 7). 1-Bromo-5-((\text{tert-Butyldimethylsilyl})\text{oxy})-N,N\text{-dimethylpentane-1-sulfonamide} (272 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (2\%–20\% ethyl acetate/hexanes). White solid. First run: 248 mg (92\%, >99\% ee). Second run: 250 mg (93\%, 98\% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (2\% i-PrOH/hexanes, 1.0 mL/min) with \(t_r = 8.2\) min (major), 11.0 min (minor).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.41–7.33 (m, 5H), 4.09 (dd, 1H, \(J = 11.3, 3.9\) Hz), 3.56–3.49 (m, 2H), 2.53 (s, 6H), 2.35–2.28 (m, 1H), 2.21–2.13 (m, 1H), 1.57–1.42 (m, 2H), 1.27–1.18 (m, 2H), 0.82 (s, 9H), –0.02 (s, 6H).

\(^13\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 133.7, 129.6, 129.0, 128.9, 67.6, 62.7, 37.8, 32.4, 29.7, 26.0, 23.1, 18.4, –5.2.

FT-IR (neat) 3065, 2931, 2897, 2860, 1458, 1385, 1359, 1329, 1280, 1257, 1200, 1143, 1132, 1110, 1092, 966, 900, 872, 833, 808, 779, 736 cm\(^{-1}\).

MS (ESI) \(m/z\) (M\(^{+}\)+Na) calcd for C\(_{19}\)H\(_{35}\)NNaO\(_3\)Si: 408, found: 408. \([\alpha]_{D}^{25} = -15.0^\circ\) (c = 0.98, CHCl\(_3\)).

\((S)-N,N\text{-Dimethyl-1-phenyl-5-(thiophen-2-yl)pentane-1-sulfonamide}\) (Table 2, Entry 8). 1-Bromo-\(N,N\text{-dimethyl-5-(thiophen-2-yl)pentane-1-sulfonamide}\) (238 mg, 0.700 mmol) and phenylzinc iodide (1.05 mmol) were used. The product was purified by column chromatography (10\%–15\% ethyl acetate/hexanes). Yellow solid. First run: 128 mg (54\%, 90\% ee). Second run: 131 mg (55\%, 91\% ee).
The ee was determined by HPLC on a CHIRALCEL OD-H column (5% i-PrOH/hexanes, 1.0 mL/min) with $t_r = 18.3$ min (major), 22.8 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.41–7.34 (m, 5H), 7.08 (dd, 1H, $J = 5.1, 1.2$ Hz), 6.88 (dd, 1H, $J = 5.1, 3.4$ Hz), 6.71 (ddddd, 1H, $J = 3.3, 1.0, 1.0, 1.0$ Hz), 4.08 (dd, 1H, $J = 11.2, 3.9$ Hz), 2.82–2.70 (m, 2H), 2.52 (s, 6H), 2.39–2.32 (m, 1H), 2.23–2.15 (m, 1H), 1.74–1.61 (m, 2H), 1.35–1.21 (m, 2H).

13C NMR (126 MHz, CDCl$_3$) δ 145.1, 133.8, 129.6, 129.0, 128.9, 126.8, 124.2, 123.0, 67.6, 37.8, 31.4, 29.65, 29.59, 26.2.

FT-IR (neat) 3064, 2932, 2856, 1495, 1480, 1454, 1331, 1282, 1200, 1140, 1062, 1030, 967, 849, 820 cm$^{-1}$.

MS (EI) m/z (M$^+$+Na) calcd for C$_{17}$H$_{23}$NNaO$_2$S$_2$: 360, found: 360.

$[\alpha]_{25}^{D} = -9.4^\circ$ (c = 0.99, CHCl$_3$).

(S)-1-Cyclopentyl-N,N-dimethyl-1-phenylmethanesulfonamide (Table 2, Entry 9). 1-Bromo-1-cyclopentyl-N,N-dimethylmethanesulfonamide (189 mg, 0.700 mmol) and phenylzinc iodide (1.05 mmol) were used. The product was purified by column chromatography (first purification: 10% ethyl acetate/hexanes; second purification: 12%→100% dichloromethane/hexanes). White solid. First run: 86 mg (46%, >99% ee). Second run: 79 mg (42%, >99% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with $t_r = 12.7$ min (major), 14.6 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.41–7.38 (m, 2H), 7.37–7.31 (m, 3H), 3.92 (d, 1H, $J = 10.3$ Hz), 2.78–2.69 (m, 1H), 2.43 (s, 6H), 2.29–2.22 (m, 1H), 1.75–1.67 (m, 1H), 1.66–1.60 (m, 1H), 1.59–1.41 (m, 4H), 1.03–0.95 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 135.2, 129.7, 128.69, 128.67, 73.2, 41.8, 37.6, 32.3, 32.1, 25.5, 24.1.

FT-IR (neat) 3090, 3064, 3025, 2960, 2871, 2812, 1496, 1479, 1452, 1323, 1293, 1206, 1188, 1131, 1081, 1063, 1030, 1003, 969, 911, 872, 848, 807, 732 cm$^{-1}$.

MS (EI) m/z (M$^+$–SO$_2$NMe$_2$) calcd for C$_{12}$H$_{15}$: 159, found: 159.

$[\alpha]_{D}^{25} = -43^\circ$ (c = 1.04, CHCl$_3$).

(S)-(1-(Methy1sulfonyl)pentyl)benzene (Table 3, Entry 1). 1-Bromo-1-(methylsulfonyl)pentane (160 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20%→30% ethyl acetate/hexanes). White solid. First run: 150 mg (95%, 94% ee). Second run: 153 mg (97%, 94% ee).
The ee was determined by HPLC on a CHIRALCEL OD-H column (5% *i*-PrOH/hexanes, 1.0 mL/min) with $t_r = 17.6$ min (major), 20.8 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.42–7.37 (m, 5H), 3.99 (dd, 1H, $J = 11.5, 3.7$ Hz), 2.59 (s, 3H), 2.45–2.37 (m, 1H), 2.12 (ddddd, 1H, $J = 13.6, 11.5, 9.6, 5.3$ Hz), 1.41–1.26 (m, 2H), 1.25–1.14 (m, 2H), 0.85 (t, 3H, $J = 7.1$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 133.4, 129.5, 129.28, 129.27, 70.4, 38.7, 28.9, 26.7, 22.4, 13.9.

FT-IR (neat) 3088, 3065, 3051, 3011, 2931, 2869, 1496, 1468, 1456, 1417, 1379, 1292, 1277, 1263, 1211, 1158, 1130, 1107, 1072, 1036, 966, 936, 904, 805, 722 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcld for C$_{12}$H$_{18}$NaO$_2$S: 249, found: 249.

$[\alpha]_D^{25} = -6.2^\circ$ (c = 1.00, CHCl$_3$).

(S)-(Cyclohexyl(methylsulfonyl)methyl)benzene (Table 3, Entry 2).

(Bromo(methylsulfonyl)methyl)cyclohexane (179 mg, 0.700 mmol) and phenylzinc iodide (1.05 mmol) were used. The product was purified by column chromatography (10%→15% ethyl acetate/hexanes). White solid. First run: 145 mg (82%, 99% ee). Second run: 148 mg (84%, 99% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (4% *i*-PrOH/hexanes, 1.0 mL/min) with $t_r = 16.7$ min (minor), 25.8 min (major).

1H NMR (500 MHz, CDCl$_3$) δ 7.43–7.36 (m, 5H), 3.87 (d, 1H, $J = 7.9$ Hz), 2.53–2.45 (m, 1H), 2.46 (s, 3H), 2.29–2.24 (m, 1H), 1.80–1.74 (m, 1H), 1.67–1.56 (m, 3H), 1.42–1.33 (m, 1H), 1.28–1.18 (m, 2H), 1.14–1.05 (m, 1H), 0.93–0.85 (m, 1H).

13C NMR (126 MHz, CDCl$_3$) δ 133.9, 129.8, 129.2, 129.1, 75.9, 41.4, 38.1, 32.4, 30.6, 26.11, 26.06, 26.0.

FT-IR (neat) 3004, 2930, 2853, 1496, 1454, 1413, 1378, 1348, 1319, 1302, 1292, 1244, 1221, 1170, 1127, 1076, 1036, 970, 896, 854, 804, 742 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcld for C$_{14}$H$_{20}$NaO$_2$S: 275, found: 275.

$[\alpha]_D^{25} = -40^\circ$ (c = 1.06, CHCl$_3$).

Benzyl (S)-benzyl(7-(methylsulfonyl)-7-phenylheptyl)carbamate (Table 3, Entry 3). Benzyl benzyl(7-bromo-7-(methylsulfonyl)heptyl)carbamate (199 mg, 0.400 mmol) and phenylzinc iodide (0.520 mmol) were used. The product was purified by column chromatography on silica gel (25% ethyl acetate/hexanes) and then preparative HPLC on C-18 silica gel (80%→100% acetonitrile/water; water was doped with 0.1% AcOH). Viscous colorless oil. First run: 149 mg (75%, 89% ee). Second run: 145 mg (73%, 91% ee).
The ee was determined by HPLC on a CHIRALCEL OD-H column (20% i-PrOH/hexanes, 1.0 mL/min) with t_r = 31.5 min (major), 40.0 min (minor).

^1^H NMR (500 MHz, CD_2Cl_2) δ 7.44–7.17 (m, 15H), 5.14–5.12 (m, 2H), 4.45 (s, 2H), 4.01–3.95 (m, 1H), 3.22–3.15 (m, 2H), 2.59 (s, 3H), 2.35–2.23 (br m, 1H), 2.12–1.99 (br m, 1H), 1.48–1.40 (br m, 2H), 1.35–1.09 (br m, 6H).

^13^C NMR (126 MHz, CD_2Cl_2) δ 156.9, 156.3, 138.7, 137.6, 133.6, 129.9, 129.40, 129.36, 128.8, 128.7, 128.2, 128.01, 127.95, 127.5, 70.3, 67.3, 50.8, 50.4, 47.4, 46.7, 38.9, 29.2, 28.4, 27.9, 27.4, 26.9, 26.8.

FT-IR (neat) 3088, 3063, 3031, 3007, 2931, 2858, 1697, 1605, 1586, 1496, 1454, 1422, 1366, 1305, 1232, 1137, 1086, 1071, 1029, 954, 916, 801 cm^-1.

MS (ESI) m/z (M^+H) calcd for C_{29}H_{36}NO_4S: 494, found: 494.

[α]_D^{25} = −0.037° (c = 4.1, CHCl_3).

(S)-(1-(tert-Butylsulfonyl)pentyl)benzene (Table 3, Entry 4). 1-Bromo-1-(tert-butylsulfonyl)pentane (190 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (15% ethyl acetate/hexanes). White solid. First run: 179 mg (95%, 99% ee). Second run: 182 mg (97%, 98% ee).

The ee was determined by HPLC on a CHIRALPAK IB-3 column (1% i-PrOH/hexanes, 1.0 mL/min) with t_r = 8.4 min (major), 9.9 min (minor).

^1^H NMR (500 MHz, CDCl_3) δ 7.47–7.45 (m, 2H), 7.39–7.32 (m, 3H), 4.14 (dd, 1H, J = 11.6, 3.3 Hz), 2.47 (dddd, 1H, J = 13.6, 10.6, 6.2, 3.3 Hz), 2.06 (dddd, 1H, J = 13.4, 11.6, 10.2, 4.9 Hz), 1.40–1.30 (m, 1H), 1.29–1.21 (m, 1H), 1.16 (s, 9H), 1.15–1.01 (m, 2H), 0.82 (t, 3H, J = 7.3 Hz).

^13^C NMR (126 MHz, CDCl_3) δ 134.9, 129.6, 129.0, 128.9, 65.3, 62.1, 28.9, 28.7, 24.4, 22.4, 13.9.

FT-IR (neat) 3082, 2966, 2872, 1497, 1466, 1455, 1366, 1279, 1190, 1115, 1100, 782 cm^{-1}.

MS (ESI) m/z (M^+Na) calcd for C_{15}H_{24}NaO_2S: 291, found: 291.

[α]_D^{25} = −20.3° (c = 1.01, CHCl_3).

(S)-((1-Phenylpentyl)sulfonyl)benzene (Table 3, Entry 5). ((1-Bromopentyl)sulfonyl)benzene (204 mg, 0.700 mmol) and phenylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (10%→20% Et_2O/hexanes). White solid. First run: 195 mg (97%, 86% ee). Second run: 193 mg (96%, 83% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with t_r = 13.6 min (major), 18.7 min (minor).
\[^1H \text{NMR (500 MHz, CDCl}_3 \delta 7.54-7.49 (m, 3H), 7.38-7.34 (m, 2H), 7.29-7.26 (m, 1H), 7.24-7.20 (m, 2H), 7.10-7.07 (m, 2H), 4.01 (dd, 1H, } J = 11.6, 3.6 \text{ Hz), 2.46-2.39 (m, 1H), 2.20-2.10 (m, 1H), 1.38-1.23 (m, 2H), 1.22-1.13 (m, 2H), 0.83 (t, 3H, } J = 7.3 \text{ Hz).} \]

\[^13C \text{NMR (126 MHz, CDCl}_3 \delta 137.6, 133.5, 132.6, 130.0, 129.2, 128.8, 128.7, 128.6, 71.8, 29.0, 27.1, 22.4, 13.9.} \]

FT-IR (neat) 2952, 2926, 2857, 1584, 1496, 1467, 1455, 1447, 1379, 1316, 1304, 1294, 1214, 1147, 1084, 1070, 1037, 968, 800, 758, 713 cm\(^{-1}\).

MS (ESI) \(m/z \) (M\(^+\)+Na) calcd for C\(_{17}\)H\(_{20}\)NaO\(_2\)S: 311, found: 311.

\([\alpha]^{25}_D = -78^\circ \) (c = 1.08, CHCl\(_3\)).

\((S)\)-\(N\)-\(N\)-Dimethyl-1-(4-tolyl)pentane-1-sulfonamide (Table 4, Entry 1). \(1\)-Bromo-\(N\)-\(N\)-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and 4-tolylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20\% Et\(_2\)O/hexanes). Light-yellow oil. First run: 172 mg (91\%, 96\% ee). Second run: 165 mg (87\%, 95\% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (2\% i-PrOH/hexanes, 1.0 mL/min) with \(t_r \) = 8.1 min (major), 10.1 min (minor).

\[^1H \text{NMR (500 MHz, CDCl}_3 \delta 7.30-7.27 (m, 2H), 7.19-7.17 (m, 2H), 4.05 (dd, 1H, } J = 11.3, 3.8 \text{ Hz), 2.54 (s, 6H), 2.36 (s, 3H), 2.29 (dddd, 1H, } J = 13.7, 10.1, 6.4, 3.8 \text{ Hz), 2.12 (dddd, 1H, } J = 13.5, 11.4, 9.7, 5.3 \text{ Hz), 1.38-1.22 (m, 2H), 1.22-1.09 (m, 2H), 0.83 (t, 3H, } J = 7.3 \text{ Hz).} \]

\[^13C \text{NMR (126 MHz, CDCl}_3 \delta 138.8, 130.8, 129.6, 129.5, 67.4, 37.8, 29.6, 28.9, 22.4, 21.3, 13.9.} \]

FT-IR (neat) 3025, 2956, 2932, 2872, 2811, 1515, 1479, 1457, 1413, 1380, 1331, 1283, 1204, 1141, 1107, 1062, 1022, 968, 843, 832, 716 cm\(^{-1}\).

MS (ESI) \(m/z \) (M\(^+\)+Na) calcd for C\(_{14}\)H\(_{23}\)NNaO\(_2\)S: 292, found: 292.

\([\alpha]^{25}_D = -30^\circ \) (c = 0.99, CHCl\(_3\)).

\((S)\)-\(N\)-\(N\)-Dimethyl-1-(4-(trifluoromethyl)phenyl)pentane-1-sulfonamide (Table 4, Entry 2). An oven-dried 8-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and filled with nitrogen. 4-Iodobenzotrifluoride (248 mg,
0.910 mmol) and THF (1.35 mL) were added to the vial, followed by the dropwise addition over 1 min of i-PrMgCl (1.92 M in THF; 0.474 mL, 0.910 mmol), and the resulting mixture was stirred at r.t. for 1 h. An oven-dried 4-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and filled with nitrogen. ZnI₂ (290 mg, 0.910 mmol) was added into the vial. The vial was immediately evacuated and refilled with nitrogen (three cycles), and then THF (1.82 mL) was added to the vial. The solution of ZnI₂ was transferred by syringe to the Grignard reagent, and then the reaction mixture was stirred at r.t. for 30 min.

1-Bromo-N,N-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and (4-(trifluoromethyl)phenyl)zinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20% Et₂O/hexanes). Light-yellow solid. First run: 209 mg (92%, 98% ee). Second run: 216 mg (95%, 98% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (3% i-PrOH/hexanes, 1.0 mL/min) with tᵣ = 8.8 min (major), 12.0 min (minor).

¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, 2H, J = 8.2 Hz), 7.55 (d, 2H, J = 8.2 Hz), 4.14 (dd, 1H, J = 11.4, 3.8 Hz), 2.58 (s, 6H), 2.32 (dddd, 1H, J = 13.9, 10.3, 6.3, 3.9 Hz), 2.14 (ddddd, 1H, J = 13.7, 11.4, 10.1, 4.9 Hz), 1.38–1.24 (m, 2H), 1.22–1.06 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

¹³C NMR (126 MHz, CDCl₃) δ 138.2 (d, J_CF = 1.3 Hz), 131.1 (q, J_CF = 32.7 Hz), 130.0, 125.8 (q, J_CF = 3.7 Hz), 123.6 (q, J_CF = 272.2 Hz), 67.3, 37.8, 29.6, 28.8, 22.3, 13.8.

FT-IR (neat) 2958, 2875, 1325, 1167, 1122, 1069, 1019, 968, 856, 727 cm⁻¹.

MS (ESI) m/z (M⁺+Na) calcd for C₁₄H₂₀F₃NNaO₂S: 346, found: 346.

[α]²⁵_D = −23.3° (c = 1.02, CHCl₃).

Ethyl (S)-4-(1-(N,N-dimethylsulfamoyl)pentyl)benzoate (Table 4, Entry 3). An oven-dried 8-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and then filled with nitrogen. Ethyl 4-iodobenzoate (251 mg, 0.910 mmol) was added to the vial, and then the vial was evacuated and refilled with nitrogen (three cycles). Next, THF (1.31 mL) was added to the vial, and the vial was wrapped with electrical tape and fitted with a nitrogen-filled balloon. Then, the reaction mixture was cooled to −20 °C. i-PrMgCl (1.78 M in THF; 0.511 mL, 0.910 mmol) was added over 1 min, and then the mixture was stirred at −20 °C for 2 h. An oven-dried 4-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and filled with nitrogen. ZnI₂ (291 mg, 0.910 mmol) was added to the vial. The vial was immediately placed under vacuum and then filled with nitrogen. This evacuation-refill cycle was repeated three times, and then THF (1.82 mL) was added to the vial. The solution of ZnI₂ was transferred by syringe to the Grignard reagent,
and then the reaction mixture was stirred at –20 °C for 30 min. The reaction mixture was allowed to warm to r.t. and stirred for an additional 30 min.

1-Bromo-\(N,N\)-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and (4-(ethoxycarbonyl)phenyl)zinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20% ethyl acetate/hexanes). Colorless oil. First run: 229 mg (>99%, 97% ee). Second run: 229 mg (>99%, 97% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (5% \(i\)-PrOH/hexanes, 1.0 mL/min) with \(t_r = 8.7\) min (major), 11.4 min (minor).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 8.07–8.05 (m, 2H), 7.50–7.48 (m, 2H), 4.38 (q, 2H, \(J = 7.1\) Hz), 4.14 (dd, 1H, \(J = 11.3, 3.8\) Hz), 2.55 (s, 6H), 2.32 (dddd, 1H, \(J = 14.0, 10.2, 6.2, 3.8\) Hz), 2.16 (ddddd, 1H, \(J = 13.6, 11.3, 10.0, 4.8\) Hz), 1.40 (t, 3H, \(J = 7.1\) Hz), 1.37–1.21 (m, 2H), 1.21–1.05 (m, 2H), 0.82 (t, 3H, \(J = 7.3\) Hz).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 166.2, 139.0, 131.1, 130.0, 129.6, 67.5, 61.4, 37.9, 29.6, 28.9, 22.4, 14.5, 13.9.

FT-IR (neat) 2956, 2934, 2872, 2813, 1718, 1611, 1576, 1507, 1477, 1457, 1417, 1367, 1334, 1278, 1182, 1143, 1110, 1063, 1021, 968, 867, 799, 776, 753, 712 cm\(^{-1}\).

MS (ESI) \(m/z (M^+ – SO_2NMe_2)\) calcd for C\(_{14}\)H\(_{19}\)O\(_2\): 219, found: 219.

\([\alpha]^{25}_D = -36°\) (c = 1.00, CHCl\(_3\)).

\((S)-1-(3\text{-Methoxyphenyl})-\(N,N\)-dimethylpentane-1-sulfonamide (Table 4, Entry 4). 1-Bromo-\(N,N\)-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and (3-methoxyphenyl)zinc iodide (0.910 mmol) were used. The product was purified by column chromatography (15% ethyl acetate/hexanes). White solid. First run: 175 mg (88%, 95% ee). Second run: 174 mg (87%, 96% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (3% \(i\)-PrOH/hexanes, 1.0 mL/min) with \(t_r = 10.5\) min (major), 12.9 min (minor).

\(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta 7.30–7.27 (m, 1H), 6.99–6.97 (m, 2H), 6.90–6.88 (m, 1H), 4.05 (dd, 1H, \(J = 11.3, 3.8\) Hz), 3.82 (s, 3H), 2.56 (s, 6H), 2.29 (ddddd, 1H, \(J = 13.6, 10.2, 6.6, 3.8\) Hz), 2.12 (ddddd, 1H, \(J = 13.5, 11.3, 9.8, 5.2\) Hz), 1.38–1.23 (m, 2H), 1.23–1.10 (m, 2H), 0.84 (t, 3H, \(J = 7.3\) Hz).

\(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta 159.9, 135.4, 129.8, 122.0, 115.2, 114.2, 67.6, 55.5, 37.8, 29.7, 28.9, 22.4, 13.9.

FT-IR (neat) 3002, 2956, 2873, 2839, 1718, 1611, 1576, 1507, 1477, 1457, 1417, 1367, 1334, 1278, 1182, 1143, 1110, 1063, 1021, 968, 867, 799, 776, 753, 712 cm\(^{-1}\).

MS (ESI) \(m/z (M^+ + Na)\) calcd for C\(_{14}\)H\(_{23}\)NNaO\(_3\)S: 308, found: 308.

\([\alpha]^{25}_D = -28°\) (c = 1.00, CHCl\(_3\)).

S–20
(S)-1-(2-Methoxyphenyl)-N,N-dimethylpentane-1-sulfonamide (Table 4, Entry 5). 1-Bromo-N,N-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and (2-methoxyphenyl)zinc iodide (1.05 mmol) were used. The product was purified by column chromatography on silica gel (10%→15% ethyl acetate/hexanes) and then on C-18 silica gel (10%→100% acetonitrile/water). Light-yellow oil. First run: 125 mg (63%, 96% ee). Second run: 128 mg (64%, 96% ee).

The ee was determined by HPLC on a CHIRALPAK AS-H column (5% i-PrOH/hexanes, 1.0 mL/min) with $t_r = 16.6$ min (major), 19.3 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.59 (dd, 1H, $J = 7.8, 1.7$ Hz), 7.30 (ddd, 1H, $J = 8.2, 7.4, 1.7$ Hz), 7.00 (ddd, 1H, $J = 7.6, 7.6, 1.1$ Hz), 6.91 (dd, 1H, $J = 8.3, 1.1$ Hz), 4.87 (dd, 1H, $J = 11.4, 3.9$ Hz), 3.87 (s, 3H), 2.51 (s, 6H), 2.32 (ddddd, 1H, $J = 13.7, 10.2, 6.4, 3.9$ Hz), 2.13–2.05 (m, 1H), 1.36–1.22 (m, 2H), 1.22–1.07 (m, 2H), 0.83 (t, 3H, $J = 7.3$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 157.7, 129.7, 129.6, 122.2, 121.1, 110.5, 57.3, 55.8, 37.6, 29.7, 28.6, 22.4, 13.9.

FT-IR (neat) 3070, 3005, 2957, 2873, 1601, 1587, 1494, 1463, 1442, 1380, 1330, 1290, 1247, 1202, 1142, 1124, 1090, 1052, 1026, 967, 796, 765, 726 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{14}$H$_{23}$NNaO$_3$S: 308, found: 308.

$[\alpha]_D^{25} = +40^\circ$ (c = 1.03, CHCl$_3$).

(S)-N,N-Dimethyl-1-(o-tolyl)pentane-1-sulfonamide (Table 4, Entry 6). 1-Bromo-N,N-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol) and o-tolylzinc iodide (1.05 mmol) were used. The product was purified by column chromatography (5%→10% ethyl acetate/hexanes). Light-yellow oil. First run: 148 mg (78%, 97% ee). Second run: 149 mg (79%, 97% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (2% i-PrOH/hexanes, 1.0 mL/min) with $t_r = 9.8$ min (major), 11.9 min (minor).

1H NMR (500 MHz, CDCl$_3$) δ 7.62–7.58 (m, 1H), 7.25–7.19 (m, 3H), 4.43 (dd, 1H, $J = 11.3, 3.8$ Hz), 2.60 (s, 6H), 2.39 (s, 3H), 2.33 (ddddd, 1H, $J = 13.6, 10.1, 6.1, 3.8$ Hz), 2.16–2.08 (m, 1H), 1.37–1.22 (m, 2H), 1.21–1.06 (m, 2H), 0.83 (t, 3H, $J = 7.3$ Hz).

13C NMR (126 MHz, CDCl$_3$) δ 137.4, 132.3, 130.7, 128.4, 128.3, 126.6, 63.2, 38.0, 30.7, 28.7, 22.6, 20.1, 13.9.

S-21
FT-IR (neat) 3064, 3023, 2957, 2872, 2813, 1604, 1493, 1461, 1380, 1283, 1178, 1141, 1119, 1063, 967, 834, 802 cm\(^{-1}\).

MS (ESI) \text{m/z} (M^+ + Na) calcd for C\(_{14}\)H\(_{23}\)NNaO\(_2\)S: 292, found: 292.
\([\alpha]\)\text{D}\(^{25}\) = +7.9° (c = 1.05, CHCl\(_3\)).

\(\text{Me}_2\text{N} - \text{Bu}
\text{O} \text{Et}(\text{S})-\text{1-1} -(2\text{-Ethylphenyl})-\text{N,N-dimethylpentane-1-sulfonamide (Table 4, Entry 7)}.

1-Bromo-N,N-dimethylpentane-1-sulfonamide (181 mg, 0.700 mmol), (2-ethylphenyl)zinc iodide (1.40 mmol), NiCl\(_2\)-glyme (30.8 mg, 0.140 mmol), and (R,R)-L1 (60.9 mg, 0.182 mmol) were used. The product was purified by column chromatography (first purification: 10% ethyl acetate/hexanes; second purification: 15%\(\rightarrow\)90% dichloromethane/hexanes). Light-yellow oil. First run: 178 mg (90%, 97% ee). Second run: 165 mg (83%, 97% ee).

The ee was determined by HPLC on a CHIRALPAK IC column (15% i-PrOH/hexanes, 1.0 mL/min) with \(t_r\) = 16.9 min (minor), 22.7 min (major).

\(^1\text{H NMR} (500 \text{ MHz, CD}_2\text{Cl}_2) \delta 7.57-7.54 \text{ (m, 1H), 7.30-7.22 \text{ (m, 3H), 4.46 \text{ (dd, 1H, } J = 11.1, 4.0 \text{ Hz), 2.79 (dq, 1H, } J = 14.9, 7.5 \text{ Hz), 2.68 (dq, 1H, } J = 15.2, 7.6 \text{ Hz), 2.62 (s, 6H), 2.29-2.22 \text{ (m, 1H), 2.15-2.07 \text{ (m, 1H), 1.39-1.24 \text{ (m, 2H), 1.22 (t, 3H, } J = 7.6 \text{ Hz), 1.24-1.15 \text{ (m, 1H), 1.13-1.04 \text{ (m, 1H), 0.84 (t, 3H, } J = 7.3 \text{ Hz).}}}

\(^{13}\text{C NMR} (126 \text{ MHz, CD}_2\text{Cl}_2) \delta 144.1, 131.9, 129.2, 128.7, 128.5, 126.5, 62.8, 38.0, 30.8, 29.3, 26.0, 23.0, 15.7, 13.9.

FT-IR (neat) 3063, 3021, 2959, 2933, 2873, 2813, 1490, 1455, 1378, 1330, 1282, 1201, 1177, 1141, 1120, 1062, 968, 803, 760 cm\(^{-1}\).

MS (ESI) \text{m/z} (M^+ + Na) calcd for C\(_{15}\)H\(_{25}\)NNaO\(_2\)S: 306, found: 306.
\([\alpha]\)\text{D}\(^{25}\) = +8.9° (c = 1.03, CHCl\(_3\)).

\(\text{tert-Butyl (S)-5-(1-(N,N-dimethylsulfamoyl)pentyl)-1H-indole-1-carboxylate (Table 4, Entry 8).}\) An oven-dried 8-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and filled with nitrogen. \(\text{tert-Butyl 5-iodo-1H-indole-1-carboxylate (360 mg, 1.05 mmol) was added to the vial, and then the vial was evacuated and refilled with nitrogen (three cycles). THF (1.56 mL) was added to the vial, and the vial was}
wrapped with electrical tape and fitted with a nitrogen-filled balloon. Then, the reaction mixture was cooled to −20 °C. i-PrMgCl (1.93 M in THF; 0.544 mL, 1.05 mmol) was added over 1 min, and the mixture was stirred at −20 °C for 2 h. An oven-dried 4-mL vial equipped with a magnetic stir bar was capped with a PTFE-lined septum cap, cooled under vacuum, and filled with nitrogen. ZnI₂ (338 mg, 1.06 mmol) was added to the vial. The vial was immediately placed under vacuum and then filled with nitrogen. This evacuation-refill cycle was repeated three times, and then THF (2.10 mL) was added to the vial. The solution of ZnI₂ was transferred by syringe to the Grignard reagent, and then the reaction mixture was stirred at −20 °C for 30 min. The reaction mixture was allowed to warm to r.t. and stirred for an additional 30 min.

1-Bromo-N,N-dimethylpentane-1-sulfonamido (181 mg, 0.70 mmol) and (1-(tert-butoxycarbonyl)-1H-indol-5-yl)zinc iodide (1.05 mmol) were used. The product was purified by column chromatography on silica gel (10%→15% ethyl acetate/hexanes) and then on C-18 silica gel (10%→100% acetonitrile/water). Yellow solid. First run: 180 mg (65%, 88% ee). Second run: 200 mg (72%, 90% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (2% i-PrOH/hexanes, 1.0 mL/min) with tᵣ = 11.7 min (major), 15.4 min (minor).

³¹C NMR (126 MHz, CDCl₃) δ 149.7, 135.4, 130.9, 128.0, 126.9, 125.7, 121.9, 115.4, 107.4, 84.2, 67.6, 37.9, 28.9, 28.3, 22.4, 13.9.

FT-IR (neat) 3152, 3120, 2956, 2934, 2873, 1736, 1536, 1470, 1445, 1374, 1351, 1329, 1256, 1218, 1193, 1164, 1138, 1107, 1084, 1042, 1024, 968, 841, 768, 729 cm⁻¹.

MS (ESI) m/z (M⁺+Na) calcd for C₂₀H₂₉N₂NaO₄S: 417, found: 417.

[α]D₂⁵ = −23.7° (c = 1.04, CHCl₃).

(S)-1-Methoxy-2-(1-(methylsulfonfyl)pentyl)benzene (Table 4, Entry 9). 1-Bromo-1-(methylsulfonfyl)pentane (160 mg, 0.700 mmol) and (2-methoxyphenyl)zinc iodide (0.910 mmol) were used. The product was purified by column chromatography (20%→25% ethyl acetate/hexanes). Colorless oil. First run: 148 mg (82%, 96% ee). Second run: 154 mg (86%, 96% ee).

The ee was determined by HPLC on a CHIRALCEL OD-H column (5% i-PrOH/hexanes, 1.0 mL/min) with tᵣ = 17.6 min (minor), 18.9 min (major).

¹H NMR (500 MHz, CDCl₃) δ 7.52 (dd, 1H, J = 7.8, 1.7 Hz), 7.34 (ddd, 1H, J = 8.3, 7.4, 1.7 Hz), 7.04 (ddd, 1H, J = 7.6, 7.6, 1.1 Hz), 6.93 (dd, 1H, J = 8.3, 1.1 Hz), 4.81 (dd, 1H, J = 11.5, 3.9 Hz),
3.87 (s, 3H), 2.58 (s, 3H), 2.40 (ddddd, 1H, J = 13.5, 9.6, 6.9, 3.9 Hz), 2.05 (ddddd, 1H, J = 13.5, 11.5, 9.4, 5.3 Hz), 1.38–1.24 (m, 2H), 1.23–1.12 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CDCl$_3$) δ 157.6, 130.1, 129.2, 121.7, 121.6, 110.9, 60.4, 55.9, 38.6, 28.7, 25.9, 22.4, 13.9.

FT-IR (neat) 3009, 2957, 2872, 1601, 1587, 1494, 1464, 1440, 1412, 1380, 1296, 1247, 1192, 1164, 1137, 1090, 1051, 1025, 956, 792, 755 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{13}$H$_{20}$NaO$_2$S: 279, found: 279.

$[\alpha]_{25}^{25}D$ = +61° (c = 1.00, CHCl$_3$).

(S)-1-Methyl-2-(1-(methylsulfonyl)pentyl)benzene (Table 4, Entry 10). 1-Bromo-1-(methylsulfonyl)pentane (160 mg, 0.700 mmol) and o-tolylzinc iodide (0.910 mmol) were used. The product was purified by column chromatography (15%→20% ethyl acetate/hexanes). Colorless oil. First run: 137 mg (81%, 97% ee). Second run: 134 mg (80%, 97% ee).

The ee was determined by HPLC on a CHIRALPAK AS-H column (10% i-PrOH/hexanes, 1.0 mL/min) with t_r = 18.4 min (minor), 28.0 min (major).

1H NMR (500 MHz, CD$_2$Cl$_2$) δ 7.52–7.50 (m, 1H), 7.30–7.23 (m, 3H), 4.37 (dd, 1H, J = 11.4, 3.7 Hz), 2.61 (s, 3H), 2.40 (s, 3H), 2.37–2.31 (m, 1H), 2.12–2.04 (m, 1H), 1.40–1.24 (m, 2H), 1.24–1.10 (m, 2H), 0.84 (t, 3H, J = 7.3 Hz).

13C NMR (126 MHz, CD$_2$Cl$_2$) δ 138.4, 132.0, 131.2, 129.0, 127.9, 127.1, 65.0, 38.7, 29.1, 28.5, 22.8, 20.3, 13.9.

FT-IR (neat) 3025, 2957, 2931, 2872, 1493, 1464, 1411, 1380, 1294, 1224, 1208, 1177, 1138, 1113, 1051, 958, 825, 796, 771, 736 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{13}$H$_{20}$NaO$_2$S: 263, found: 263.

$[\alpha]_{25}^{25}D$ = +24.2° (c = 0.99, CHCl$_3$).

(S)-1-Ethyl-2-(1-(methylsulfonyl)pentyl)benzene (Table 4, Entry 11). 1-Bromo-1-(methylsulfonyl)pentane (160 mg, 0.700 mmol), (2-ethylphenyl)zinc iodide (1.40 mmol), NiCl$_2$·glyme (30.8 mg, 0.140 mmol), and (R,R)-L1 (60.9 mg, 0.182 mmol) were used. The product was purified by column chromatography (15% ethyl acetate/hexanes). Light-yellow oil. First run: 145 mg (81%, 98% ee). Second run: 146 mg (82%, 98% ee).
The ee was determined by HPLC on a CHIRALPAK AS-H column (10% i-PrOH/hexanes, 1.0 mL/min) with t_r = 13.1 min (minor), 22.1 min (major).

^1^H NMR (500 MHz, CDCl_3) δ 7.52–7.51 (m, 1H), 7.34–7.26 (m, 3H), 4.41 (dd, 1H, J = 11.2, 3.9 Hz), 2.82–2.75 (m, 1H), 2.73–2.66 (m, 1H), 2.62 (s, 3H), 2.35 (dddd, 1H, J = 13.5, 11.0, 5.7, 3.8 Hz), 2.12–2.04 (m, 1H), 1.41–1.20 (m, 3H), 1.23 (t, 3H, J = 7.6 Hz), 1.19–1.09 (m, 1H), 0.85 (t, 3H, J = 7.2 Hz).

^13^C NMR (126 MHz, CDCl_3) δ 144.4, 131.2, 129.6, 129.1, 127.9, 126.9, 64.5, 38.8, 29.3, 28.7, 26.2, 23.0, 15.7, 13.9.

FT-IR (neat) 3063, 3026, 2960, 2932, 2873, 1491, 1453, 1411, 1379, 1294, 1218, 1176, 1138, 1113, 1061, 958, 831, 797, 757 cm\(^{-1}\).

MS (ESI) m/z (M\(^+\)+Na) calcd for C_{14}H_{22}NaO_{2}S: 277, found: 277.

\([\alpha]^{25}_{D} = +24.1^\circ\) (c = 1.01, CHCl_3).

(S,E)-N,N-Dimethyl-1-phenylhex-5-ene-1-sulfonamide-6-d (eq 3). White solid. The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with t_r = 13.9 min (major), 17.4 min (minor).

^1^H NMR (500 MHz, CDCl_3) δ 7.42–7.34 (m, 5H), 5.70 (dt, 1H, J = 17.0, 6.5 Hz), 4.95 (dt, 1H, J = 17.1, 1.6 Hz), 4.09 (dd, 1H, J = 11.2, 3.9 Hz), 2.53 (s, 6H), 2.32 (dddd, 1H, J = 13.9, 10.3, 6.4, 3.9 Hz), 2.20–2.12 (m, 1H), 2.10–1.98 (m, 2H), 1.36–1.22 (m, 2H).

^13^C NMR (126 MHz, CDCl_3) δ 137.8, 134.0, 129.6, 129.0, 128.9, 115.0 (t, J = 24 Hz), 67.8, 37.8, 33.3, 29.5, 26.2.

FT-IR (neat) 3088, 3065, 3024, 2926, 2860, 2822, 2261, 1623, 1496, 1480, 1456, 1436, 1326, 1292, 1256, 1200, 1140, 1064, 1043, 984, 970, 917, 906, 822, 799, 778, 745 cm\(^{-1}\).

MS (EI) m/z (M\(^+\)-SO_2NMe_2) calcd for C_{12}H_{14}D: 160, found: 160.

\([\alpha]^{25}_{D} = -34^\circ\) (c = 0.99, CHCl_3); 96% ee.

(S)-N,N-Dimethyl-1-phenylhex-5-ene-1-sulfonamide (Figure 1). White solid. The ee was determined by HPLC on a CHIRALCEL OD-H column (1% i-PrOH/hexanes, 1.0 mL/min) with t_r = 14.1 min (major), 17.8 min (minor).

^1^H NMR (500 MHz, CDCl_3) δ 7.42–7.34 (m, 5H), 5.70 (ddt, 1H, J = 17.0, 10.3, 6.7 Hz), 4.98–4.92 (m, 2H), 4.09 (dd, 1H, J = 11.2, 3.9 Hz), 2.53 (s, 6H), 2.32 (dddd, 1H, J = 14.1, 10.3, 6.3, 3.9 Hz), 2.20–2.12 (m, 1H), 2.10–1.98 (m, 2H), 1.36–1.22 (m, 2H).

^13^C NMR (126 MHz, CDCl_3) δ 138.0, 134.0, 129.6, 129.0, 128.9, 115.3, 67.8, 37.8, 33.4, 29.5, 26.2.
FT-IR (neat) 3067, 3033, 2908, 2868, 2821, 1640, 1497, 1480, 1455, 1417, 1329, 1282, 1199, 1141, 1063, 1043, 993, 966, 916, 906, 870, 814, 781, 746, 735 cm⁻¹.
MS (EI) m/z (M⁺−SO₂NMe₂) calcd for C₁₂H₁₅: 159, found: 159.
[α]²⁵° D = −33° (c = 0.82, CHCl₃); 97% ee.

syn-2-Benzyl-Ν,Ν-dimethylcyclopentane-1-sulfonamide (Figure 1). White solid.

\(^{1}H\) NMR (500 MHz, CD₂Cl₂) δ 7.30–7.26 (m, 2H), 7.20–7.16 (m, 3H), 3.54 (dd, 1H, J = 8.7, 8.7, 6.3 Hz), 3.31–3.25 (m, 1H), 2.89 (s, 6H), 2.60–2.52 (m, 2H), 2.15–2.07 (m, 1H), 2.04–1.97 (m, 1H), 1.95–1.87 (m, 1H), 1.66–1.44 (m, 3H).

\(^{13}C\) NMR (126 MHz, CD₂Cl₂) δ 141.8, 129.4, 128.6, 126.2, 62.8, 44.7, 37.8, 35.7, 29.7, 26.8, 22.7.

FT-IR (neat) 3084, 3060, 3024, 2922, 2874, 2850, 2806, 1602, 1583, 1495, 1473, 1452, 1332, 1273, 1195, 1136, 1073, 1058, 1029, 958, 845, 822, 727 cm⁻¹.

MS (EI) m/z (M⁺) calcd for C₁₄H₂₁NO₂S: 267, found: 267.

anti-2-Benzyl-Ν,Ν-dimethylcyclopentane-1-sulfonamide (Figure 1). Colorless oil.

\(^{1}H\) NMR (500 MHz, CD₂Cl₂) δ 7.32–7.28 (m, 2H), 7.22–7.19 (m, 3H), 3.20 (ddd, 1H, J = 8.9, 6.1, 6.1 Hz), 2.97 (dd, 1H, J = 12.6, 4.9 Hz), 2.78 (s, 6H), 2.65–2.53 (m, 2H), 2.08–1.95 (m, 2H), 1.82–1.74 (m, 1H), 1.73–1.61 (m, 2H), 1.42–1.35 (m, 1H).

\(^{13}C\) NMR (126 MHz, CD₂Cl₂) δ 140.7, 129.6, 128.7, 126.5, 64.5, 43.6, 41.3, 37.8, 32.1, 28.5, 24.9.

FT-IR (neat) 3084, 3060, 3025, 2917, 2849, 1602, 1583, 1494, 1461, 1453, 1315, 1199, 1136, 1082, 1059, 1029, 960, 882, 849, 733 cm⁻¹.

MS (EI) m/z (M⁺) calcd for C₁₄H₂₁NO₂S: 267, found: 267.

IV. Enantioselective Alkenylations

General Procedure. Cp₂ZrHCl (Schwartz’s reagent; 258 mg, 1.00 mmol) was added to an oven-dried 4-mL vial equipped with a magnetic stir bar, and then the vial was capped with a PTFE-lined septum cap. The vial was evacuated and refilled with nitrogen (three cycles). 1,2-Dimethoxyethane (1.00 ml) was added to the vial, followed by the alkyne (1.00 mmol). The reaction mixture was stirred at r.t. for 1.5 h, at which time it had become homogenous. An oven-dried 20-mL vial equipped with a magnetic stir bar was charged with NiCl₂·glyme (11.0 mg, 0.050 mmol), (3R,8S)–L₆ (23.3 mg, 0.065 mmol), and the electrophile (0.500 mmol). The vial
was sealed with a PTFE-lined septum cap, placed under vacuum, and then filled with nitrogen. This evacuation-refill cycle was repeated three times. 1,2-Dimethoxyethane (2.57 mL) was added, and the mixture was stirred at r.t. for 1 h. The solution of the nucleophile was transferred by syringe over 2 min to the vial that contained the electrophile. The reaction mixture was stirred at r.t. for 24 h, and then the reaction was quenched by the addition of ethanol (0.50 mL). The solution was filtered through a pad of silica (eluted with Et₂O). The filtrate was concentrated, and the resulting residue was purified by column chromatography.

A second run was conducted with (3S,8R)-L6.

(S,E)-N,N-Dimethyl-1-phenyloct-2-ene-4-sulfonamide (Table 5, Entry 1). 1-Bromo-N,N-dimethylpentane-1-sulfonamide (129 mg, 0.500 mmol) and (E)-(3-phenylprop-1-en-1-yl)zirconium reagent (1.00 mmol) were used. The product was purified by column chromatography on silica gel (15% ethyl acetate/hexanes). Colorless oil. First run: 116 mg (79%, 91% ee). Second run: 122 mg (83%, 90% ee).

The ee was determined by HPLC on a CHIRALCEL OJ-H column (5% i-PrOH/hexanes, 1.0 mL/min) with t_r = 18.2 min (major), 20.9 min (minor).

1H NMR (500 MHz, CDCl₃) δ 7.32–7.28 (m, 2H), 7.24–7.20 (m, 1H), 7.18–7.15 (m, 2H), 5.87 (dddd, 1H, J = 15.3, 6.9, 6.9, 0.4 Hz), 5.44 (dddd, 1H, J = 15.3, 9.7, 1.5, 1.5 Hz), 3.57 (ddd, 1H, J = 10.5, 10.5, 3.5 Hz), 3.49–3.39 (m, 2H), 2.82 (s, 6H), 2.04–1.97 (m, 1H), 1.75–1.68 (m, 1H), 1.41–1.18 (m, 4H), 0.89 (t, 3H, J = 7.1 Hz).

13C NMR (126 MHz, CDCl₃) δ 139.3, 136.9, 128.7, 128.6, 126.5, 126.5, 125.1, 65.8, 39.1, 38.3, 28.8, 28.7, 22.4, 14.0.

FT-IR (neat) 3061, 3027, 2954, 2930, 2871, 1663, 1603, 1494, 1453, 1379, 1329, 1281, 1198, 1139, 1076, 1062, 1029, 966, 804, 747, 730 cm⁻¹.

MS (EI) m/z (M⁺–SO₂NMe₂) calcd for C₉₄H₂₉: 187, found: 187.

[α]D²⁵ = +22.9° (c = 1.01, CHCl₃).

(S,E)-N,N-Dicyclohexyl-1-phenyloct-2-ene-4-sulfonamide (Table 5, Entry 2). 1-Bromo-N,N-dicyclohexylpentane-1-sulfonamide (197 mg, 0.500 mmol) and (E)-(3-phenylprop-1-en-1-yl)zirconium reagent (1.00 mmol) were used. The product was purified by column chromatography on silica gel (5% Et₂O/hexanes) and then on C-18 silica gel (10%→100%
acetonitrile/water). Viscous light-yellow oil. First run: 179 mg (83%, 95% ee). Second run: 180 mg (83%, 94% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (1% i-PrOH/hexanes, 0.6 mL/min) with $t_r = 16.6$ min (major), 17.7 min (minor).

1H NMR (500 MHz, CD$_2$Cl$_2$) δ 7.31–7.28 (m, 2H), 7.22–7.17 (m, 3H), 5.80 (ddddd, 1H, $J = 15.3, 7.4, 6.0, 0.4$ Hz), 5.42 (ddddd, 1H, $J = 15.4, 9.8, 1.5, 1.5$ Hz), 3.48–3.38 (m, 2H), 3.33 (dddd, 1H, $J = 10.8, 10.0, 3.2$ Hz), 3.17–3.10 (m, 2H), 2.04–1.97 (m, 1H), 1.79–1.56 (m, 15H), 1.41–1.16 (m, 8H),

13C NMR (126 MHz, CD$_2$Cl$_2$) δ 140.1, 136.6, 128.9, 128.8, 126.6, 126.0, 69.0, 58.4, 39.2, 34.0, 33.1, 29.5, 29.3, 26.99, 26.97, 25.8, 22.7, 14.1.

FT-IR (neat) 3084, 3062, 3027, 2931, 2855, 1603, 1495, 1466, 1453, 1401, 1381, 1322, 1274, 1256, 1188, 1164, 1139, 1108, 1074, 1047, 1028, 981, 895, 854, 823, 750 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcld for C$_{26}$H$_{41}$NNaO$_3$S: 454, found: 454.

$[\alpha]^{25}_D = -6.9^\circ$ (c = 1.02, CHCl$_3$).

\[\text{(S,E)-1-((tert-Butyldiphenylsilyl)oxy)-N,N-dicyclohexyl-3-en-5-sulfonamide (Table 5, Entry 3).} \]

1-Bromo-N,N-dicyclohexylpentane-1-sulfonamide (197 mg, 0.500 mmol) and (E)-4-((tert-butyldiphenylsilyl)oxy)but-1-en-1-yl)zirconium reagent (1.00 mmol) were used. The product was purified by column chromatography on silica gel (3% ethyl acetate/hexanes) and then on C-18 silica gel (10%→100% acetonitrile/water). Viscous light-yellow oil. First run: 254 mg (81%, 95% ee). Second run: 259 mg (83%, 94% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (0.5% i-PrOH/hexanes, 0.8 mL/min) with $t_r = 14.6$ min (minor), 17.9 min (major).

1H NMR (500 MHz, CD$_2$Cl$_2$) δ 7.67–7.64 (m, 4H), 7.45–7.41 (m, 2H), 7.40–7.36 (m, 4H), 5.69 (ddd, 1H, $J = 15.5, 6.4, 6.4$ Hz), 5.42 (ddddd, 1H, $J = 15.5, 9.7, 1.4, 1.4$ Hz), 3.75–3.68 (m, 2H), 3.26 (ddpd, 1H, $J = 10.6, 9.5, 3.2$ Hz), 3.15–3.09 (m, 2H), 2.39–2.29 (m, 2H), 2.08–2.01 (m, 1H), 1.76–1.57 (m, 14H), 1.39–1.14 (m, 9H), 1.12–1.02 (m, 2H), 1.05 (s, 9H), 0.86 (t, 3H, $J = 7.2$ Hz).

13C NMR (126 MHz, CD$_2$Cl$_2$) δ 135.7, 135.6, 134.3, 133.9, 133.8, 129.79, 129.78, 127.79, 127.78, 126.10, 69.5, 63.2, 58.2, 36.0, 33.9, 32.8, 29.3, 29.0, 26.9, 26.7, 25.5, 22.5, 19.3, 14.0.

FT-IR (neat) 3071, 3048, 2931, 2856, 1590, 1471, 1453, 1428, 1389, 1323, 1257, 1221, 1188, 1164, 1138, 1110, 1048, 1028, 998, 980, 939, 895, 854, 822, 764, 738 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcld for C$_{37}$H$_{57}$NNaO$_3$Si: 646, found: 646.

$[\alpha]^{25}_D = +1.7^\circ$ (c = 0.99, CHCl$_3$).
(S,E)-N-Benzyl-11-chloro-N-phenyl-1-(thiophen-2-yl)undec-6-ene-5-sulfonamide (Table 5, Entry 4). N-Benzyl-1-bromo-N-phenyl-5-(thiophen-2-yl)pentane-1-sulfonamide (239 mg, 0.500 mmol) and (E)-(6-chlorohex-1-en-1-yl)zirconium reagent (1.00 mmol) were used. The product was purified by column chromatography (first purification: 5% ethyl acetate/hexanes; second purification: 15% cyclopentyl methyl ether/hexanes). Viscous light-yellow oil. First run: 165 mg (64%, 80% ee). Second run: 156 mg (60%, 81% ee).

The ee was determined by HPLC on a CHIRALPAK AD-H column (10% i-PrOH/hexanes, 0.8 mL/min) with tR = 17.5 min (major), 23.8 min (minor).

1H NMR (500 MHz, CDCl3) δ 7.32–7.28 (m, 2H), 7.27–7.19 (m, 8H), 7.12 (dd, 1H, J = 5.1, 1.2 Hz), 6.91 (dd, 1H, J = 5.1, 3.4 Hz), 6.77 (dddd, 1H, J = 3.3, 1.0, 1.0, 1.0 Hz), 5.80 (dd, 1H, J = 15.3, 6.8, 6.8 Hz), 5.46 (dddd, 1H, J = 15.4, 9.7, 1.5, 1.5 Hz), 4.99 (d, 1H, J = 15.1 Hz), 4.67 (d, 1H, J = 15.1 Hz), 3.60–3.55 (m, 1H), 3.58 (t, 2H, J = 6.6 Hz), 2.87–2.76 (m, 2H), 2.26–2.13 (m, 2H), 2.04 (dddd, 1H, J = 13.6, 9.9, 6.3, 3.4 Hz), 1.86–1.72 (m, 3H), 1.72–1.56 (m, 4H), 1.50–1.41 (m, 1H), 1.32–1.22 (m, 1H).

13C NMR (126 MHz, CDCl3) δ 145.6, 139.7, 139.0, 137.3, 129.4, 129.3, 128.7, 128.6, 127.9, 127.8, 127.0, 124.5, 124.2, 123.2, 66.7, 56.7, 45.4, 32.5, 32.2, 31.6, 29.9, 29.2, 26.5, 26.2.

FT-IR (neat) 3064, 3032, 2933, 2860, 1595, 1493, 1454, 1337, 1216, 1145, 1093, 1065, 1028, 976, 916, 862, 775 cm⁻¹.

MS (ESI) m/z (M+Na) calcd for C32H34ClINaO2S2: 538, found: 538.

[α]D 25° = -23.0° (c = 1.03, CHCl3).

(S,E)-4-(((1-Phenylhept-1-en-3-yl)sulfonyl)morpholine (Table 5, Entry 5). 4-((1-Bromopentyl)sulfonyl)morpholine (150 mg, 0.500 mmol), and (E)-styrylzirconium reagent (1.00 mmol) were used. The product was purified by column chromatography (15% ethyl acetate/hexanes). White solid. First run: 110 mg (68%, 97% ee). Second run: 110 mg (68%, 95% ee).

The ee was determined by HPLC on a CHIRALPAK AS-H column (10% i-PrOH/hexanes, 1.0 mL/min) with tR = 18.7 min (minor), 30.1 min (major).

1H NMR (500 MHz, CDCl3) δ 7.42–7.39 (m, 2H), 7.38–7.34 (m, 2H), 7.32–7.29 (m, 1H), 6.62 (d, 1H, J = 15.9 Hz), 6.06 (dd, 1H, J = 15.9, 9.8 Hz), 3.70–3.62 (m, 5H), 3.38–3.30 (m, 4H), 2.17–2.10 (m, 1H), 1.87–1.79 (m, 1H), 1.45–1.22 (m, 4H), 0.90 (t, 3H, J = 7.0 Hz).
13C NMR (126 MHz, CDCl$_3$) δ 137.0, 135.7, 129.0, 128.7, 126.7, 122.7, 67.1, 67.0, 46.8, 29.0, 28.8, 22.4, 14.0.

FT-IR (neat) 2958, 2923, 2859, 1450, 1339, 1324, 1260, 1148, 1114, 1073, 955, 743 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{17}$H$_{25}$NNaO$_3$S: 346, found: 346.

$[\alpha]^{25}_D = -82^\circ$ (c = 0.98, CHCl$_3$).

\[
\begin{align*}
\text{Me} & \quad \text{S} \quad \text{Cy} \\
& \quad \text{O} \quad \text{O} \\
& \quad \text{CH}_2\text{Ph}
\end{align*}
\]

(S,E)-(4-Cyclohexyl-4-(methylsulfonyl)but-2-en-1-yl)benzene (Table 5, Entry 6).

(Bromo(methylsulfonyl)methyl)cyclohexane (179 mg, 0.700 mmol), (E)-(3-phenylprop-1-en-1-yl)zirconium reagent (1.40 mmol), and (R,R)-L1 (30.4 mg, 0.091 mmol) were used. The product was purified by column chromatography (15% ethyl acetate/hexanes). Light-yellow oil. First run: 109 mg (53%, 93% ee). Second run: 98 mg (48%, 93% ee).

The ee was determined by HPLC on a CHIRALPAK IB-3 column (5% i-PrOH/hexanes, 1.0 mL/min) with $t_1 = 13.0$ min (minor), 22.9 min (major).

1H NMR (500 MHz, CDCl$_3$) δ 7.33–7.30 (m, 2H), 7.25–7.21 (m, 1H), 7.18–7.16 (m, 2H), 5.89 (ddd, 1H, $J = 15.2, 6.9, 6.9$ Hz), 5.71 (dddd, 1H, $J = 15.3, 10.4, 1.4, 1.4$ Hz), 3.48 (d, 2H, $J = 6.9$ Hz), 3.29 (dd, 1H, $J = 10.4, 3.8$ Hz), 2.76 (s, 3H), 2.32 (tq, 1H, $J = 11.9, 3.5$ Hz), 2.08–2.02 (m, 1H), 1.78–1.72 (m, 2H), 1.70–1.61 (m, 2H), 1.40–1.26 (m, 2H), 1.23–1.07 (m, 3H).

13C NMR (126 MHz, CDCl$_3$) δ 139.2, 139.0, 128.8, 128.6, 126.6, 122.6, 73.2, 39.8, 39.3, 36.0, 32.2, 28.9, 26.4, 26.1, 26.0.

FT-IR (neat) 3083, 3060, 3026, 2927, 2852, 1660, 1602, 1494, 1452, 1411, 1351, 1295, 1240, 1173, 1133, 1077, 1029, 978, 894, 852, 784, 751, 700 cm$^{-1}$.

MS (ESI) m/z (M$^+$+Na) calcd for C$_{17}$H$_{25}$NNaO$_3$S: 315, found: 315.

$[\alpha]^{25}_D = +60.8^\circ$ (c = 1.00, CHCl$_3$).
V. Determination of Absolute Stereochemistry

Product from entry 7 of Table 2 (run with (S,S)-L1). (R)-5-((tert-Butyldimethylsilyl)oxy)-N,N-dimethyl-1-phenylpentane-1-sulfonamide. A crystal suitable for X-ray crystallography was grown by vapor diffusion with dichloromethane and pentane.

A suitable crystal of C_{19}H_{35}NO_{3}SSi was selected for analysis. All measurements were made on a Bruker SMART 1000 CCD with filtered Mo-Kα radiation at a temperature of 100 K. Using Olex2, the structure was solved with the ShelXS structure solution program using Direct Methods and refined with the ShelXL refinement package using Least Squares minimization. The absolute stereochemistry was determined on the basis of the absolute structure parameter.

(6) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341.
(7) Sheldrick, G. M. Acta Cryst. 2008, A64, 112–122.
Table S–1. Crystal data and structure refinement for crystal01.

Property	Value
Identification code	crystal01
Empirical formula	C_{19}H_{35}NO_3SSi
Formula weight	385.63
Temperature	100 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2₁
Unit cell dimensions	a = 5.9209(6) Å, α = 90°.
	b = 10.6607(12) Å, β = 99.2230(10)°.
	c = 17.0647(19) Å, γ = 90°.
Volume	1063.2(2) Å³
Z	2
Density (calculated)	1.205 Mg/m³
Absorption coefficient	0.226 mm⁻¹
F(000)	420
Crystal size	0.4 x 0.4 x 0.1 mm³
Theta range for data collection	1.209 to 29.107°.
Index ranges	-7<=h<=8, -13<=k<=14, -22<=l<=23
Reflections collected	16770
Independent reflections	5160 [R(int) = 0.0236]
Completeness to theta = 25.000°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.9257
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	5160 / 1 / 233
Goodness-of-fit on F²	1.098
Final R indices [I>2sigma(I)]	R1 = 0.0279, wR2 = 0.0669
R indices (all data)	R1 = 0.0308, wR2 = 0.0690
Absolute structure parameter	0.02(2)
Largest diff. peak and hole	0.325 and -0.163 e/Å⁻³
Table S–2. Atomic coordinates (× 10^4) and equivalent isotropic displacement parameters (Å^2 × 10^3) for crystal01. U(eq) is defined as one third of the trace of the orthogonalized U^ij tensor.

	x	y	z	U(eq)
S(1)	-4031(1)	5489(1)	517(1)	14(1)
Si(1)	2618(1)	1014(1)	3465(1)	14(1)
O(1)	-3746(3)	5244(1)	-291(1)	20(1)
O(2)	-6212(2)	5232(1)	755(1)	19(1)
O(3)	648(2)	432(2)	2769(1)	19(1)
N(1)	-3503(3)	6967(2)	689(1)	16(1)
C(1)	-4272(4)	7610(2)	1361(1)	20(1)
C(2)	-1459(4)	7506(2)	435(1)	22(1)
C(3)	-1857(3)	4582(2)	1132(1)	12(1)
C(4)	-2416(3)	3172(2)	1032(1)	15(1)
C(5)	-552(3)	2381(2)	1521(1)	16(1)
C(6)	-952(4)	967(2)	1416(1)	18(1)
C(7)	820(4)	204(2)	1957(1)	21(1)
C(8)	-1531(3)	5030(2)	1983(1)	12(1)
C(9)	508(3)	5621(2)	2311(1)	17(1)
C(10)	842(3)	6027(2)	3095(1)	21(1)
C(11)	-835(4)	5849(2)	3558(1)	21(1)
C(12)	-2858(4)	5251(2)	3243(1)	20(1)
C(13)	-3211(3)	4849(2)	2456(1)	16(1)
C(14)	1116(4)	2120(2)	4054(1)	24(1)
C(15)	4837(4)	1893(2)	3029(1)	27(1)
C(16)	3960(3)	-312(2)	4110(1)	15(1)
C(17)	5647(4)	216(2)	4811(1)	23(1)
C(18)	2103(4)	-1074(2)	4431(1)	22(1)
C(19)	5248(4)	-1178(2)	3614(1)	24(1)
Table S–3. Bond lengths [Å] and angles [°] for crystal01.

Bond	Length (Å)
S(1)-O(1)	1.4394(15)
S(1)-O(2)	1.4405(15)
S(1)-N(1)	1.6247(18)
S(1)-C(3)	1.8048(19)
Si(1)-O(3)	1.6471(14)
Si(1)-C(14)	1.865(2)
Si(1)-C(15)	1.863(2)
Si(1)-C(16)	1.886(2)
O(3)-C(7)	1.426(2)
N(1)-C(1)	1.469(3)
N(1)-C(2)	1.466(3)
C(3)-C(4)	1.543(3)
C(3)-C(8)	1.512(3)
C(4)-C(5)	1.526(3)
C(5)-C(6)	1.532(3)
C(6)-C(7)	1.517(3)
C(8)-C(9)	1.396(3)
C(8)-C(13)	1.391(3)
C(9)-C(10)	1.390(3)
C(10)-C(11)	1.378(3)
C(11)-C(12)	1.387(3)
C(12)-C(13)	1.393(3)
C(16)-C(17)	1.537(3)
C(16)-C(18)	1.537(3)
C(16)-C(19)	1.535(3)
O(1)-S(1)-O(2)	118.93(9)
O(1)-S(1)-N(1)	107.45(9)
O(1)-S(1)-C(3)	106.10(9)
O(2)-S(1)-N(1)	106.79(9)
O(2)-S(1)-C(3)	108.81(9)
N(1)-S(1)-C(3)	108.40(9)
O(3)-Si(1)-C(14)	106.44(9)
O(3)-Si(1)-C(15)	111.35(9)
O(3)-Si(1)-C(16)	108.79(9)
C(14)-Si(1)-C(16) 110.66(10)
C(15)-Si(1)-C(14) 108.96(11)
C(15)-Si(1)-C(16) 110.57(10)
C(7)-O(3)-Si(1) 127.79(13)
C(1)-N(1)-S(1) 121.23(14)
C(2)-N(1)-S(1) 118.06(14)
C(2)-N(1)-C(1) 114.98(17)
C(4)-C(3)-S(1) 109.70(13)
C(8)-C(3)-S(1) 111.03(13)
C(8)-C(3)-C(4) 113.95(16)
C(5)-C(4)-C(3) 110.75(15)
C(4)-C(5)-C(6) 113.27(16)
C(7)-C(6)-C(5) 112.19(16)
O(3)-C(7)-C(6) 110.46(17)
C(9)-C(8)-C(3) 119.76(17)
C(13)-C(8)-C(3) 121.38(17)
C(13)-C(8)-C(9) 118.86(18)
C(10)-C(9)-C(8) 120.46(18)
C(11)-C(10)-C(9) 120.29(19)
C(10)-C(11)-C(12) 119.91(19)
C(11)-C(12)-C(13) 120.06(19)
C(8)-C(13)-C(12) 120.41(19)
C(17)-C(16)-Si(1) 109.87(14)
C(17)-C(16)-C(18) 109.15(17)
C(18)-C(16)-Si(1) 110.21(14)
C(19)-C(16)-Si(1) 109.22(14)
C(19)-C(16)-C(17) 109.34(17)
C(19)-C(16)-C(18) 109.03(17)
Table S–4. Anisotropic displacement parameters (Å$^2 \times 10^3$) for crystal01. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^*^2 U_{11} + \ldots + 2 h k a^* b^* U_{12}]$

	U11	U22	U33	U23	U13	U12
S(1)	14(1)	14(1)	12(1)	1(1)	-1(1)	0(1)
Si(1)	14(1)	12(1)	15(1)	2(1)	1(1)	-1(1)
O(1)	26(1)	21(1)	13(1)	0(1)	-2(1)	0(1)
O(2)	14(1)	19(1)	23(1)	1(1)	-1(1)	-1(1)
O(3)	21(1)	20(1)	14(1)	2(1)	-2(1)	-6(1)
N(1)	20(1)	13(1)	16(1)	2(1)	4(1)	1(1)
C(1)	24(1)	14(1)	22(1)	0(1)	5(1)	3(1)
C(2)	27(1)	17(1)	24(1)	2(1)	8(1)	-6(1)
C(3)	12(1)	13(1)	11(1)	1(1)	1(1)	2(1)
C(4)	18(1)	13(1)	12(1)	-2(1)	1(1)	0(1)
C(5)	19(1)	14(1)	13(1)	-1(1)	-1(1)	2(1)
C(6)	24(1)	15(1)	14(1)	-1(1)	-2(1)	0(1)
C(7)	27(1)	15(1)	18(1)	-1(1)	-1(1)	4(1)
C(8)	15(1)	10(1)	12(1)	1(1)	1(1)	1(1)
C(9)	14(1)	20(1)	18(1)	1(1)	3(1)	0(1)
C(10)	18(1)	20(1)	22(1)	-5(1)	-5(1)	-1(1)
C(11)	30(1)	19(1)	14(1)	-3(1)	0(1)	5(1)
C(12)	24(1)	21(1)	16(1)	0(1)	8(1)	2(1)
C(13)	18(1)	14(1)	15(1)	1(1)	2(1)	0(1)
C(14)	23(1)	20(1)	29(1)	-5(1)	0(1)	4(1)
C(15)	23(1)	28(1)	29(1)	12(1)	2(1)	-8(1)
C(16)	16(1)	14(1)	15(1)	2(1)	1(1)	1(1)
C(17)	23(1)	25(1)	20(1)	5(1)	-4(1)	-2(1)
C(18)	24(1)	17(1)	24(1)	5(1)	4(1)	-2(1)
C(19)	24(1)	21(1)	29(1)	1(1)	5(1)	6(1)
Table S–5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for crystal01.

	x	y	z	U(eq)
H(1A)	-5587	7185	1497	30
H(1B)	-4669	8461	1216	30
H(1C)	-3064	7603	1809	30
H(2A)	-208	7483	869	33
H(2B)	-1761	8359	270	33
H(2C)	-1070	7027	-1	33
H(3)	-413	4726	934	15
H(4A)	-3873	3002	1201	18
H(4B)	-2546	2944	476	18
H(5A)	-473	2592	2077	19
H(5B)	911	2591	1368	19
H(6A)	-2463	763	1529	22
H(6B)	-902	741	869	22
H(7A)	586	-681	1840	25
H(7B)	2340	428	1861	25
H(9)	1649	5743	2003	20
H(10)	2205	6421	3308	25
H(11)	-611	6130	4081	26
H(12)	-3980	5118	3558	24
H(13)	-4578	4458	2246	19
H(14A)	483	2801	3721	36
H(14B)	2183	2444	4490	36
H(14C)	-93	1686	4254	36
H(15A)	5788	1311	2802	40
H(15B)	5761	2371	3437	40
H(15C)	4107	2449	2624	40
H(17A)	6824	681	4613	35
H(17B)	6325	-463	5136	35
H(17C)	4846	759	5121	35
H(18A)	1374	-556	4777	32
H(18B)	2791	-1786	4721	32
-----	-----	-----	-----	-----
H(18C)	986	-1356	3996	32
H(19A)	4214	-1474	3160	37
H(19B)	5860	-1880	3931	37
H(19C)	6475	-722	3439	37

S–38
Product from entry 2 of Table 3: (S)-(Cyclohexyl(methylsulfonyl)methyl)benzene (from a reaction using \((R,R)\)-L1). A crystal suitable for X-ray crystallography was grown by vapor diffusion with dichloromethane and pentane.

A suitable crystal of \(\text{C}_{14}\text{H}_{20}\text{O}_{2}\text{S}\) was selected for analysis. All measurements were made on a Bruker APEX-II CCD with filtered Mo-K\(\alpha\) radiation at a temperature of 100 K. Using Olex2,\(^6\) the structure was solved with the ShelXS\(^7\) structure solution program using Direct Methods and refined with the ShelXL\(^7\) refinement package using Least Squares minimization. The absolute stereochemistry was determined on the basis of the absolute structure parameter.
Table S–6. Crystal data and structure refinement for crystal03.

Property	Value	
Identification code	crystal03	
Empirical formula	C_{14}H_{20}O_{2}S	
Formula weight	252.36	
Temperature	100.15 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P2_2_2_1	
Unit cell dimensions a = 6.2283(3) Å	α = 90°	
	b = 13.7866(7) Å	β = 90°
	c = 15.3937(8) Å	γ = 90°
Volume	1321.81(12) Å\(^3\)	
Z	4	
Density (calculated)	1.268 Mg/m\(^3\)	
Absorption coefficient	0.233 mm\(^4\)	
F(000)	544	
Crystal size	0.62 x 0.16 x 0.09 mm\(^3\)	
Theta range for data collection	1.983 to 33.731°	
Index ranges	-9<=h<=9, -21<=k<=20, -23<=l<=23	
Reflections collected	39471	
Independent reflections	4910 [R(int) = 0.0621]	
Completeness to theta = 25.000°	100.0 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	1.0000 and 0.8575	
Refinement method	Full-matrix least-squares on \(F^2\)	
Data / restraints / parameters	4910 / 0 / 155	
Goodness-of-fit on \(F^2\)	1.141	
Final R indices \([I>2\sigma(I)]\)	R1 = 0.0540, wR2 = 0.1115	
R indices (all data)	R1 = 0.0741, wR2 = 0.1179	
Absolute structure parameter	0.01(3)	
Largest diff. peak and hole	0.692 and -0.385 e/Å\(^3\)	
Table S–7. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å2 x 10^3) for crystal03. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x	y	z	U(eq)
S(1)	7502(1)	3757(1)	4892(1)	17(1)
O(1)	6971(3)	3206(1)	5662(1)	21(1)
O(2)	9662(3)	4136(1)	4836(1)	21(1)
C(1)	5566(4)	4731(2)	4817(2)	14(1)
C(2)	5963(4)	5465(2)	5570(2)	14(1)
C(3)	7759(4)	6208(2)	5418(2)	17(1)
C(4)	8064(4)	6849(2)	6224(2)	20(1)
C(5)	5993(4)	7371(2)	6464(2)	21(1)
C(6)	4161(4)	6651(2)	6587(2)	23(1)
C(7)	3868(4)	5994(2)	5790(2)	19(1)
C(8)	5392(4)	5139(2)	3904(2)	15(1)
C(9)	7131(4)	5552(2)	3461(2)	17(1)
C(10)	6869(4)	5905(2)	2620(2)	18(1)
C(11)	4895(4)	5840(2)	2207(2)	18(1)
C(12)	3168(4)	5434(2)	2644(2)	19(1)
C(13)	3419(4)	5081(2)	3483(2)	17(1)
C(14)	7027(5)	3018(2)	3977(2)	23(1)
Table S–8. Bond lengths [Å] and angles [°] for crystal03.

Bond	Length (Å)
S(1)-O(1)	1.4458(19)
S(1)-O(2)	1.4461(19)
S(1)-C(1)	1.809(2)
S(1)-C(14)	1.763(3)
C(1)-H(1)	1.0000
C(1)-C(2)	1.557(3)
C(1)-C(8)	1.518(3)
C(2)-H(2)	1.0000
C(2)-C(3)	1.535(3)
C(2)-C(7)	1.533(3)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(3)-C(4)	1.536(3)
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(4)-C(5)	1.523(4)
C(5)-H(5A)	0.9900
C(5)-H(5B)	0.9900
C(5)-C(6)	1.524(4)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(6)-C(7)	1.536(4)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(9)	1.401(3)
C(8)-C(13)	1.391(4)
C(9)-H(9)	0.9500
C(9)-C(10)	1.393(3)
C(10)-H(10)	0.9500
C(10)-C(11)	1.387(4)
C(11)-H(11)	0.9500
C(11)-C(12)	1.386(4)
C(12)-H(12)	0.9500
C(12)-C(13)	1.390(4)
C(13)-H(13)	0.9500
Bond	Distance (Å)
----------------------	--------------
C(14)-H(14A)	0.9800
C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
O(1)-S(1)-O(2)	116.89(12)
O(1)-S(1)-C(1)	106.82(11)
O(1)-S(1)-C(14)	108.23(11)
O(2)-S(1)-C(1)	110.34(10)
O(2)-S(1)-C(14)	108.51(13)
C(14)-S(1)-C(1)	105.43(13)
S(1)-C(1)-H(1)	105.6
C(2)-C(1)-S(1)	109.22(16)
C(2)-C(1)-H(1)	105.6
C(8)-C(1)-S(1)	112.41(17)
C(8)-C(1)-H(1)	105.6
C(8)-C(1)-C(2)	117.36(18)
C(1)-C(2)-H(2)	107.1
C(3)-C(2)-C(1)	115.9(2)
C(3)-C(2)-H(2)	107.1
C(7)-C(2)-C(1)	109.8(2)
C(7)-C(2)-H(2)	107.1
C(7)-C(2)-C(3)	109.60(18)
C(2)-C(3)-H(3A)	109.5
C(2)-C(3)-H(3B)	109.5
C(2)-C(3)-C(4)	110.6(2)
H(3A)-C(3)-H(3B)	108.1
C(4)-C(3)-H(3A)	109.5
C(4)-C(3)-H(3B)	109.5
C(3)-C(4)-H(4A)	109.4
C(3)-C(4)-H(4B)	109.4
H(4A)-C(4)-H(4B)	108.0
C(5)-C(4)-C(3)	111.3(2)
C(5)-C(4)-H(4A)	109.4
C(5)-C(4)-H(4B)	109.4
C(4)-C(5)-H(5A)	109.5
C(4)-C(5)-H(5B)	109.5
C(4)-C(5)-C(6)	110.9(2)

S–43
H(5A)-C(5)-H(5B) 108.1
C(6)-C(5)-H(5A) 109.5
C(6)-C(5)-H(5B) 109.5
C(5)-C(6)-H(6A) 109.2
C(5)-C(6)-H(6B) 109.2
C(5)-C(6)-C(7) 111.9(2)
H(6A)-C(6)-H(6B) 107.9
C(7)-C(6)-H(6A) 109.2
C(7)-C(6)-H(6B) 109.2
C(2)-C(7)-C(6) 110.9(2)
C(2)-C(7)-H(7A) 109.5
C(2)-C(7)-H(7B) 109.5
C(6)-C(7)-H(7A) 109.5
C(6)-C(7)-H(7B) 109.5
H(7A)-C(7)-H(7B) 108.1
C(9)-C(8)-C(1) 123.1(2)
C(13)-C(8)-C(1) 118.2(2)
C(13)-C(8)-C(9) 118.7(2)
C(8)-C(9)-H(9) 119.9
C(10)-C(9)-C(8) 120.2(2)
C(10)-C(9)-H(9) 119.9
C(9)-C(10)-H(10) 119.7
C(11)-C(10)-C(9) 120.5(2)
C(11)-C(10)-H(10) 119.7
C(10)-C(11)-H(11) 120.3
C(12)-C(11)-C(10) 119.4(2)
C(12)-C(11)-H(11) 120.3
C(11)-C(12)-H(12) 119.8
C(11)-C(12)-C(13) 120.4(2)
C(13)-C(12)-H(12) 119.8
C(8)-C(13)-H(13) 119.6
C(12)-C(13)-C(8) 120.8(2)
C(12)-C(13)-H(13) 119.6
S(1)-C(14)-H(14A) 109.5
S(1)-C(14)-H(14B) 109.5
S(1)-C(14)-H(14C) 109.5
H(14A)-C(14)-H(14B) 109.5
H(14A)-C(14)-H(14C) 109.5
H(14B)-C(14)-H(14C) 109.5
Table S-9. Anisotropic displacement parameters (Å$^2 \times 10^3$) for crystal03. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + ... + 2hka^*b^*U^{12}]$

	U11	U22	U33	U23	U13	U12
S(1)	19(1)	13(1)	18(1)	1(1)	-1(1)	-1(1)
O(1)	26(1)	17(1)	20(1)	2(1)	-1(1)	-2(1)
O(2)	17(1)	16(1)	29(1)	2(1)	0(1)	0(1)
C(1)	11(1)	15(1)	17(1)	1(1)	-1(1)	-3(1)
C(2)	14(1)	11(1)	18(1)	2(1)	-1(1)	-2(1)
C(3)	11(1)	17(1)	24(1)	-2(1)	0(1)	-3(1)
C(4)	15(1)	16(1)	28(1)	-2(1)	-3(1)	-2(1)
C(5)	18(1)	15(1)	29(1)	-4(1)	-1(1)	2(1)
C(6)	17(1)	22(1)	31(2)	-6(1)	4(1)	0(1)
C(7)	12(1)	18(1)	26(1)	-2(1)	0(1)	0(1)
C(8)	15(1)	12(1)	18(1)	1(1)	0(1)	0(1)
C(9)	14(1)	17(1)	20(1)	0(1)	-1(1)	-3(1)
C(10)	19(1)	14(1)	20(1)	1(1)	4(1)	-1(1)
C(11)	22(1)	14(1)	18(1)	0(1)	-1(1)	3(1)
C(12)	18(1)	18(1)	21(1)	-2(1)	-3(1)	2(1)
C(13)	12(1)	17(1)	21(1)	0(1)	1(1)	-2(1)
C(14)	32(2)	14(1)	22(1)	-3(1)	-2(1)	-1(1)
Table S-10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for crystal03.

	x	y	z	U(eq)
H(1)	4140	4428	4942	17
H(2)	6373	5077	6093	17
H(3A)	7392	6620	4912	21
H(3B)	9117	5865	5286	21
H(4A)	8533	6442	6719	23
H(4B)	9203	7333	6109	23
H(5A)	5613	7837	6000	25
H(5B)	6210	7741	7009	25
H(6A)	2812	7011	6695	28
H(6B)	4457	6244	7103	28
H(7A)	2725	5513	5908	22
H(7B)	3415	6392	5286	22
H(9)	8494	5592	3736	20
H(10)	8051	6192	2327	21
H(11)	4728	6071	1629	22
H(12)	1806	5398	2368	23
H(13)	2229	4797	3773	20
H(14A)	7233	3400	3447	34
H(14B)	5551	2773	3996	34
H(14C)	8032	2471	3980	34
Product from entry 5 of Table 5 (run with (3R,8S)–L6). (S,E)-4-((1-Phenylhept-1-en-3-yl)sulfonyl)morpholine. A crystal suitable for X-ray crystallography was grown by vapor diffusion with Et$_2$O and pentane.

![Chemical structure]

A suitable crystal of C$_{17}$H$_{25}$NO$_3$S was selected for analysis. All measurements were made on a Bruker APEX-II CCD with filtered Mo-Kα radiation at a temperature of 100 K. Using Olex2,6 the structure was solved with the ShelXS7 structure solution program using Direct Methods and refined with the ShelXL7 refinement package using Least Squares minimization. The absolute stereochemistry was determined on the basis of the absolute structure parameter.
Table S–11. Crystal data and structure refinement for crystal02.

Property	Value
Identification code	crystal02
Empirical formula	C₁₇H₂₅NO₃S
Formula weight	323.44
Temperature	100 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P2₁
Unit cell dimensions	a = 12.8350(6) Å, α = 90°.
	b = 5.6272(3) Å, β = 113.133(2)°.
	c = 12.9187(6) Å, γ = 90°.
Volume	858.03(7) Å³
Z	2
Density (calculated)	1.252 Mg/m³
Absorption coefficient	0.201 mm⁻¹
F(000)	348
Crystal size	0.5 x 0.12 x 0.12 mm³
Theta range for data collection	1.714 to 31.552°.
Index ranges	-18<=h<=18, -8<=k<=8, -19<=l<=19
Reflections collected	57330
Independent reflections	5731 [R(int) = 0.0344]
Completeness to theta = 25.242°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.0000 and 0.8839
Refinement method	Full-matrix least-squares on F²
Data / restraints / parameters	5731 / 1 / 200
Goodness-of-fit on F²	1.073
Final R indices [I>2sigma(I)]	R1 = 0.0258, wR2 = 0.0683
R indices (all data)	R1 = 0.0273, wR2 = 0.0695
Absolute structure parameter	0.019(11)
Largest diff. peak and hole	0.444 and -0.190 e/Å⁻³
Table S–12. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å^2 x 10^3) for crystal02. U(eq) is defined as one third of the trace of the orthogonalized U_ij tensor.

	x	y	z	U(eq)
S(1)	4726(1)	7787(1)	3347(1)	12(1)
O(1)	4294(1)	10123(2)	2942(1)	19(1)
O(2)	5535(1)	7480(2)	4482(1)	18(1)
O(3)	6358(1)	4985(2)	1135(1)	21(1)
N(1)	5344(1)	6838(2)	2534(1)	14(1)
C(1)	3537(1)	5903(2)	3176(1)	11(1)
C(2)	3067(1)	6643(2)	4055(1)	13(1)
C(3)	2154(1)	4910(2)	4061(1)	14(1)
C(4)	1833(1)	5268(3)	5067(1)	18(1)
C(5)	944(1)	3484(3)	5081(1)	25(1)
C(6)	2671(1)	6069(2)	1991(1)	13(1)
C(7)	2415(1)	4264(2)	1261(1)	13(1)
C(8)	1574(1)	4329(2)	93(1)	12(1)
C(9)	797(1)	6196(2)	-325(1)	16(1)
C(10)	21(1)	6194(3)	-1441(1)	19(1)
C(11)	9(1)	4336(3)	-2156(1)	20(1)
C(12)	764(1)	2453(3)	-1748(1)	20(1)
C(13)	1539(1)	2453(2)	-630(1)	16(1)
C(14)	4862(1)	7376(2)	1320(1)	18(1)
C(15)	5820(1)	7255(3)	909(1)	21(1)
C(16)	6847(1)	4566(3)	2317(1)	21(1)
C(17)	5947(1)	4555(3)	2806(1)	19(1)
Table S–13. Bond lengths [Å] and angles [°] for crystal02.

Bond	Length [Å]
S(1)-O(1)	1.4424(10)
S(1)-O(2)	1.4360(9)
S(1)-N(1)	1.6356(11)
S(1)-C(1)	1.7985(12)
O(3)-C(15)	1.4267(18)
O(3)-C(16)	1.4241(17)
N(1)-C(14)	1.4733(16)
N(1)-C(17)	1.4694(17)
C(1)-C(2)	1.5379(17)
C(1)-C(6)	1.5001(15)
C(2)-C(3)	1.5265(17)
C(3)-C(4)	1.5241(18)
C(4)-C(5)	1.525(2)
C(6)-C(7)	1.3364(17)
C(7)-C(8)	1.4711(16)
C(8)-C(9)	1.4021(17)
C(8)-C(13)	1.3993(17)
C(9)-C(10)	1.3937(16)
C(10)-C(11)	1.391(2)
C(11)-C(12)	1.393(2)
C(12)-C(13)	1.3954(17)
C(14)-C(15)	1.5194(19)
C(16)-C(17)	1.5189(19)
O(1)-S(1)-N(1)	106.16(6)
O(1)-S(1)-C(1)	107.85(6)
O(2)-S(1)-O(1)	120.05(6)
O(2)-S(1)-N(1)	106.10(6)
O(2)-S(1)-C(1)	107.05(6)
N(1)-S(1)-C(1)	109.34(6)
C(16)-O(3)-C(15)	109.98(11)
C(14)-N(1)-S(1)	120.64(9)
C(17)-N(1)-S(1)	118.32(9)
C(17)-N(1)-C(14)	113.32(11)
C(2)-C(1)-S(1)	108.03(8)
Bond	Angle (°)
-----------------------	-------------
C(6)-C(1)-S(1)	109.94(8)
C(6)-C(1)-C(2)	112.83(10)
C(3)-C(2)-C(1)	110.77(10)
C(4)-C(3)-C(2)	112.63(10)
C(3)-C(4)-C(5)	112.19(12)
C(7)-C(6)-C(1)	123.45(11)
C(6)-C(7)-C(8)	125.69(11)
C(9)-C(8)-C(7)	122.55(11)
C(13)-C(8)-C(7)	118.95(11)
C(13)-C(8)-C(9)	118.50(11)
C(10)-C(9)-C(8)	120.60(12)
C(11)-C(10)-C(9)	120.30(13)
C(10)-C(11)-C(12)	119.73(12)
C(11)-C(12)-C(13)	119.96(12)
C(12)-C(13)-C(8)	120.90(12)
N(1)-C(14)-C(15)	107.67(11)
O(3)-C(15)-C(14)	111.21(11)
O(3)-C(16)-C(17)	111.08(11)
N(1)-C(17)-C(16)	108.16(11)
Table S–14. Anisotropic displacement parameters (Å² x 10^3) for crystal02. The anisotropic displacement factor exponent takes the form: -2\pi^2 [h^2 a^*^2 U_{11} + ... + 2 h k a^* b^* U_{12}]

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
S(1)	12(1)	11(1)	11(1)	-1(1)	4(1)	-3(1)
O(1)	24(1)	11(1)	23(1)	0(1)	11(1)	-2(1)
O(2)	15(1)	26(1)	12(1)	-3(1)	2(1)	-7(1)
O(3)	22(1)	22(1)	21(1)	0(1)	12(1)	1(1)
N(1)	16(1)	16(1)	13(1)	3(1)	7(1)	2(1)
C(1)	10(1)	10(1)	11(1)	0(1)	3(1)	-1(1)
C(2)	12(1)	12(1)	13(1)	-1(1)	5(1)	0(1)
C(3)	11(1)	16(1)	14(1)	1(1)	4(1)	0(1)
C(4)	18(1)	20(1)	19(1)	-2(1)	10(1)	-1(1)
C(5)	22(1)	29(1)	28(1)	2(1)	15(1)	-4(1)
C(6)	11(1)	13(1)	12(1)	1(1)	2(1)	0(1)
C(7)	11(1)	14(1)	12(1)	0(1)	2(1)	0(1)
C(8)	11(1)	14(1)	11(1)	-2(1)	3(1)	-2(1)
C(9)	15(1)	16(1)	14(1)	-1(1)	3(1)	1(1)
C(10)	15(1)	21(1)	16(1)	2(1)	2(1)	2(1)
C(11)	16(1)	29(1)	12(1)	-2(1)	2(1)	-4(1)
C(12)	18(1)	26(1)	15(1)	-7(1)	6(1)	-3(1)
C(13)	13(1)	18(1)	17(1)	-4(1)	5(1)	0(1)
C(14)	18(1)	23(1)	13(1)	4(1)	7(1)	3(1)
C(15)	24(1)	23(1)	19(1)	4(1)	12(1)	1(1)
C(16)	18(1)	24(1)	23(1)	4(1)	10(1)	4(1)
C(17)	21(1)	16(1)	22(1)	7(1)	12(1)	4(1)
Table S–15. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for crystal02.

	x	y	z	U(eq)
H(1)	3809	4223	3327	13
H(2A)	3691	6680	4811	15
H(2B)	2742	8262	3881	15
H(3A)	1471	5115	3359	16
H(3B)	2431	3264	4072	16
H(4A)	1536	6898	5045	22
H(4B)	2520	5104	5770	22
H(5A)	764	3776	5741	37
H(5B)	1241	1868	5118	37
H(5C)	257	3664	4395	37
H(6)	2285	7535	1747	16
H(7)	2810	2813	1519	15
H(9)	800	7474	156	19
H(10)	-503	7467	-1715	23
H(11)	-513	4352	-2920	24
H(12)	752	1170	-2231	24
H(13)	2051	1161	-356	19
H(14A)	4520	8982	1187	22
H(14B)	4266	6206	911	22
H(15A)	5514	7563	89	25
H(15B)	6385	8503	1288	25
H(16A)	7412	5819	2689	25
H(16B)	7245	3017	2467	25
H(17A)	5409	3231	2480	23
H(17B)	6304	4338	3632	23
Injection Date : 12/18/2012 2:33:11 PM Seq. Line : 1
Sample Name : JC9121A Location : Vial 4
Acq. Operator : CE Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 5 µl
Acq. Method : C:\HPCHEM\1\METHODS\OD-01-40.M
Last changed : 12/18/2012 2:48:17 PM by CE
(modified after loading)
Analysis Method : C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed : 7/30/2014 4:56:50 PM by MK
(modified after loading)

--- Area Percent Report ---

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
1 10.864 BB 0.2815 8588.73828 473.84717 98.0169
2 13.437 PV 0.2756 173.77281 7.93276 1.9831

Totals : 8762.51109 481.77993

Results obtained with enhanced integrator!

Signal 6: DAD1 F, Sig=240,10 Ref=360,100
Signal 7: DAD1 G, Sig=270,10 Ref=360,100

--- End of Report ---
Injection Date : 12/18/2012 3:04:38 PM Seq. Line : 2
Sample Name : JC9121B Location : Vial 5
Acq. Operator : CE Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 5 µl
Acq. Method : C:\HPCHEM\1\METHODS\OD-01-30.M
Last changed : 4/7/2011 2:40:51 AM by CC
Analysis Method : C:\HPCHEM\1\METHODS\AD005-40.M
Last changed : 8/2/2014 8:33:12 PM by MK
(modified after loading)

Area: 169.81142 9.50396 1.8500
Area: 9009.37891 431.37000 98.1500

Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
 1 10.689 FM 0.2978 169.81142 9.50396 1.8500
 2 13.020 MM 0.3481 9009.37891 431.37000 98.1500

Totals : 9179.19032 440.87395

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

End of Report
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

#	RetTime	Width	Area	Height	Area	%
1	12.026	BP	0.3146	113.62238	5.33121	2.4632
2	13.125	BB	0.3752	4499.24658	185.38203	97.5368

Totals: 4612.86896 | 190.71324 |

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

#	RetTime	Width	Area	Height	Area	%
1	12.023	MM	0.3532	59.19486	2.79296	2.2676
2	13.125	MM	0.4060	2551.31982	104.72879	97.7324

Totals: 2610.51468 | 107.52175 |

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

#	RetTime	Width	Area	Height	Area	%
1	12.025	MM	0.3401	560.64459	27.47764	2.3671
2	13.125	MM	0.4189	2.31246e4	919.98969	97.6329

Totals: 2.36852e4 | 947.46732 |

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

#	RetTime	Width	Area	Height	Area	%
1	12.030	BP	0.3344	358.89542	16.20137	2.7223
2	13.125	BB	0.3746	1.28247e4	529.39978	97.2777

Totals: 1.31836e4 | 545.60115 |

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***

Table 2 (continued)
Injection Date: 1/5/2013 12:33:05 AM
Seq. Line: 6
Sample Name: JC9149A
Location: Vial 6
Acq. Operator: CE
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Actual Inj Volume: 5 µl
Acq. Method: C:\HPCHEM\1\METHODS\AD-02-40.M
Last changed: 1/4/2013 10:05:27 PM by CE
Analysis Method: C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed: 7/30/2014 4:58:11 PM by MK

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal	Description	Peak RetTime	Width	Area (mAU*s)	Height (mAU)	Area %
1	DAD1 A, Sig=250,10 Ref=360,100	25.848 MM	0.7041	1.20400e4	285.00970	96.7508
2	DAD1 B, Sig=254,10 Ref=360,100	28.891 MM	0.7018	404.33865	9.60306	3.2492
Totals				1.24443e4	294.61277	

Results obtained with enhanced integrator!

Signal	Description	Peak RetTime	Width	Area (mAU)	Height
4	DAD1 D, Sig=230,10 Ref=360,100	25.848 MM	0.7041	1.20400e4	285.00970
5	DAD1 E, Sig=280,10 Ref=360,100	28.891 MM	0.7018	404.33865	9.60306

Table 2: entry 3
Table 1: entry 4

Area Percent Report

Data File: C:\HPCHEM\1\DATA\201301~1\JC9149A2.D
Sample Name: JC9149A
Instrument 1: 7/30/2014 4:58:16 PM MK
Area Percent Report

Sorted By: Signal

Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %	
#1	[min]	[min]	[mAU*s]	[mAU]	%
	25.969	0.6423	997.43585	25.88220	3.3740
	28.316	0.8177	2.85648e4	582.20422	96.6260

Totals: 2.95622e4 608.08643

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Diagrams

- Graph A: DAD1 A, Sig=250,10 Ref=360,100
- Graph B: DAD1 B, Sig=254,10 Ref=360,100
- Graph C: DAD1 C, Sig=210,10 Ref=360,100
- Graph D: DAD1 D, Sig=230,10 Ref=360,100
- Graph E: DAD1 E, Sig=280,10 Ref=360,100
Area Percent Report

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area	
#	[min]	[min]	[mAU*s]	[mAU]	%
1	13.813	0.3644	309.33765	14.14928	1.9693
2	20.195	0.5342	1.53989e4	480.47076	98.0307

Totals: 1.57082e4 494.62004

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

--- End of Report ---
Peak RetTime Type	Width	Area	Height	Area %
MM	0.3734	1.43263e4	639.37732	98.1776
MM	0.4779	265.93488	9.27401	1.8224

Totals: 1.45922e4 648.65133

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

*** End of Report ***
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.872 MM 0.4517 2.92907e4 1080.68958 98.9997

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.710 MM 0.4686 295.95520 10.52571 1.0003

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.873 MM 0.4361 5596.80615 213.91138 99.0331
2 16.712 MM 0.4778 54.64594 1.90619 0.9669

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.873 MM 0.4361 5596.80615 213.91138 99.0331
2 16.712 MM 0.4778 54.64594 1.90619 0.9669

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Totals : 2.95866e4 1091.21529

Results obtained with enhanced integrator!

Signal 6: DAD1 E, Sig=280,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.873 MM 0.4361 5596.80615 213.91138 99.0331
2 16.712 MM 0.4778 54.64594 1.90619 0.9669

Totals : 5651.45210 215.81756

Results obtained with enhanced integrator!

*** End of Report ***
Area Percent Report

```
| Signal   | Ret Time [min] | Width [min] | Area [mAU*s] | Height [mAU] | %     |
|----------|----------------|-------------|--------------|--------------|-------|
| DAD1 A   | 13.310         | 0.3540      | 408.69366    | 19.24129     | 2.3091 |
| DAD1 B   | 21.041         | 0.6492      | 1.72903e4    | 443.91245    | 97.6909 |
| DAD1 C   | 13.307         | 0.3703      | 81.74083     | 3.67898      | 2.4967 |
| DAD1 D   | 21.041         | 0.6541      | 3192.27197   | 81.33752     | 97.5033 |
```

```
Totals: Area [mAU*s] = 1.76990e4, Height [mAU] = 463.15373
```

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

```
| Signal   | Ret Time [min] | Width [min] | Area [mAU*s] | Height [mAU] | %     |
|----------|----------------|-------------|--------------|--------------|-------|
| DAD1 D   | 13.307         | 0.3703      | 81.74083     | 3.67898      | 2.4967 |
| DAD1 D   | 21.041         | 0.6541      | 3192.27197   | 81.33752     | 97.5033 |
```

```
Totals: Area [mAU*s] = 3274.01280, Height [mAU] = 85.01650
```

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

End of Report
Injection Date : 2/22/2013 11:28:27 AM Seq. Line : 2
Sample Name : JC9221A Location : Vial 9
Acq. Operator : CE Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 5 µl
Acq. Method : C:\HPCHEM\1\METHODS\OD-05-40.M
Last changed : 4/7/2011 5:39:35 PM by CC
Analysis Method : C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed : 7/30/2014 5:09:46 PM by MK
(modified after loading)

Peak RetTime Type	Width	Area	Height	Area		
	#	[min]	[min]	[mAU*s]	[mAU]	%
--------------------	-----------	-----------	------------	----------		
1	MM	18.257	0.5628	1.29286e4	382.84482	95.1621
2	MM	22.785	0.6684	657.27887	16.39051	4.8379
Totals				1.35859e4	399.23533	
Results obtained with enhanced integrator!						
3	BB	18.259	0.5223	1.15049e4	342.18851	95.1596
4	BB	22.773	0.5728	585.20709	14.37923	4.8404
Totals				1.20901e4	356.56774	
Results obtained with enhanced integrator!						

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Area Percent Report

Peak RetTime Type	Width	Area	Height	Area		
	#	[min]	[min]	[mAU*s]	[mAU]	%
--------------------	-----------	-----------	------------	----------		
1	MM	18.257	0.5628	1.29286e4	382.84482	95.1621
2	MM	22.785	0.6684	657.27887	16.39051	4.8379
Totals				1.35859e4	399.23533	
Results obtained with enhanced integrator!						
3	BB	18.259	0.5223	1.15049e4	342.18851	95.1596
4	BB	22.773	0.5728	585.20709	14.37923	4.8404
Totals				1.20901e4	356.56774	
Results obtained with enhanced integrator!						

Table 2: entry 8

Data File C:\HPCHEM\1\DATA\201302~1\JC9221A1.D Sample Name: JC9221A
Instrument 1 7/30/2014 5:09:47 PM MK

Table 1: entry 10

S–104

S–104
Injection Date: 2/22/2013 12:09:44 PM
Seq. Line: 3
Sample Name: JC9221B
Location: Vial 10
Acq. Operator: CE
Inj: 1
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Different Inj Volume from Sequence!
Actual Inj Volume: 5 µl
Acq. Method: C:\HPCHEM\1\METHODS\OD-05-40.M
Last changed: 4/7/2011 5:39:35 PM by CC
Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M
Last changed: 8/2/2014 9:04:09 PM by MK
(modified after loading)

Area: 369.912 18.990
Area: 8082.46 23.052

Area: 309.103 18.962
Area: 7213.13 23.055

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] [%]
--|--|--|--|--|--|--|
1 18.962 MM 0.5785 309.10349 8.90468 4.1092
2 23.055 MM 0.6991 7213.12598 171.96364 95.8908
Totals: 7522.22946 180.86832

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] [%]
--|--|--|--|--|--|--|
1 18.990 MM 0.5818 369.91183 10.59696 4.3764
2 23.052 MM 0.6975 8082.46289 193.11874 95.6236
Totals: 8452.37473 203.71571

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] [%]
--|--|--|--|--|--|--|
1 18.990 MM 0.5818 369.91183 10.59696 4.3764
2 23.052 MM 0.6975 8082.46289 193.11874 95.6236
Totals: 8452.37473 203.71571

Results obtained with enhanced integrator!

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] [%]
--|--|--|--|--|--|--|
1 18.962 MM 0.5785 309.10349 8.90468 4.1092
2 23.055 MM 0.6991 7213.12598 171.96364 95.8908
Totals: 7522.22946 180.86832

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Table S-105

\[\text{MeN-S} \cdot \text{O}\]
\[\text{Ph} \]

Table 2: S-8 L1

Page 1 of 2
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal	Type	Width	Area	Height	Area %
DAD1 A	MM	0.374	11488.9	512.01752	100.00
DAD1 B	MM	0.374	11488.9	512.01752	100.00
DAD1 C	MM	0.374	11488.9	512.01752	100.00
DAD1 D	MM	0.374	11488.9	512.01752	100.00
DAD1 E	MM	0.374	11488.9	512.01752	100.00

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230, Ref=360,100
Signal 5: DAD1 E, Sig=280, Ref=360,100

End of Report

Data File: C:\HPCHEM\1\DATA\GROUP\JC12043A.D
Sample Name: JC12043A
Instrument 1: 7/30/2014 6:54:57 PM MK

Diagram:

- Chart 1: Graph of data with peaks labeled.
- Chart 2: Molecular structure of MeCN.
- Chart 3: Graph showing area and width measurements.
- Chart 4: Graph displaying peak retention times.
- Chart 5: Graph showing integration results.
Injection Date : 6/16/2014 8:19:00 PM Seq. Line : 5
Sample Name : JC12043B Location : Vial 12
Acq. Operator : MK Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 6 µl
Acq. Method : C:\HPCHEM\1\METHODS\OD-01-30.M
Last changed : 6/16/2014 7:51:29 PM by MK
(modified after loading)
Analysis Method : C:\HPCHEM\1\METHODS\AD005-40.M
Last changed : 8/1/2014 11:32:53 PM by MK
(modified after loading)

Peak RetTime	Width	Area	Height	Area Percent	
#	[min]	[min]	[mAU*s]	[mAU]	%
1	14.572	0.3958	7769.50049	327.13113	100.0000

Totals : 7769.50049 327.13113

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Area Percent Report

Sorted By	Multiplier	Dilution
	1.0000	1.0000

User Multiplier & Dilution Factor with ISTDs

Table 2

With (S,S)-1-L

Graphical Data

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 17.558 MM 0.4595 5773.34912 209.42706 97.0125
2 20.783 MM 0.5738 177.79001 5.16444 2.9875

Totals : 5951.13913 214.59150

Results obtained with enhanced integrator!
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***
Injection Date : 7/20/2013 9:37:03 AM Seq. Line : 34
Sample Name : JC10185 Location : Vial 82
Acq. Operator : CE Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 5 µl
Acq. Method : C:\HPCHEM\1\METHODS\AD-04-30.M
Last changed : 11/29/2010 7:04:08 PM by JTM
Analysis Method : C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed : 7/30/2014 6:59:32 PM by MK
(modified after loading)

Area: 22.9571
16.698

Area: 9479.26
25.782

Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.698 MM 0.2409 22.95708 1.58850 0.2416
2 25.782 MM 0.5562 9479.26074 284.07181 99.7584

Totals : 9502.21782 285.66031

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***
Area Percent Report

Sorted By: Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Multiplier: 1.0000
Dilution: 1.0000

| Peak RetTime Type Width Area Height Area |
|----------------------|------------------|------------------|------------------|
#	[min]	[min]	[mAU*s]	[mAU]	%	
1	33.929	MF	1.3461	2160.27637	26.74717	4.5480
2	41.679	MF	1.8592	4.53393e4	406.43207	95.4520

Totals: 4.74996e4
Area Percent: 433.17924

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

End of Report
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 8.444 MM 0.1553 6512.97803 698.96423 99.7435
2 9.932 MM 0.1343 16.74774 2.07831 0.2565
Totals : 6529.72577 701.04255

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 8.444 FM 0.1553 2352.96094 252.45752 99.5957
2 9.930 MM 0.1630 9.55209 9.76556e-1 0.4043
Totals : 2362.51303 253.43408

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
Table 3

Signal	RetTime Type	Width	Area	Height	Area %
DAD1 A	8.381 MM	0.1398	35.99236	4.28965	0.6915
DAD1 B	9.743 MM	0.1683	5168.82764	511.87228	99.3085
DAD1 C	8.373 VB	0.1312	22.56680	2.60208	1.2052
DAD1 D	9.743 MM	0.1686	1849.83777	182.89543	98.7948
DAD1 E	9.743 MM	0.1699	1849.83777	182.89543	98.7948

Table 4

Peak RetTime Type	**Width**	**Area**	**Height**	**Area %**
1. | 8.381 MM | 0.1398 | 35.99236 | 4.28965 | 0.6915 |
2. | 9.743 MM | 0.1683 | 5168.82764 | 511.87228 | 99.3085 |
1. | 8.373 VB | 0.1312 | 22.56680 | 2.60208 | 1.2052 |
2. | 9.743 MM | 0.1686 | 1849.83777 | 182.89543 | 98.7948 |

Area Percent Summary

- **Signal 1**: 0.6915%
- **Signal 2**: 99.3085%
- **Signal 3**: 1.2052%
- **Signal 4**: 98.7948%

Results obtained with enhanced integrator!
Signal 1: DAD1 A, Sig=250,10 Ref=360,100	Area: 12157.6 mAU	RetTime: 13.582 min
Signal 2: DAD1 B, Sig=254,10 Ref=360,100	Area: 955.983 mAU	RetTime: 18.672 min
Signal 3: DAD1 C, Sig=210,10 Ref=360,100	Area: 3889.759 mAU	RetTime: 13.582 min
Signal 4: DAD1 D, Sig=230,10 Ref=360,100	Area: 297.191 mAU	RetTime: 18.670 min
Signal 5: DAD1 E, Sig=280,10 Ref=360,100	Area: 3889.759 mAU	RetTime: 13.582 min

Results obtained with enhanced integrator!
Area Percent Report

Signal	Peak RetTime [min]	Width [min]	Area [mAU*s]	Height [mAU]	%
DAD1 A, Sig=250,10 Ref=360,100	14.425	0.4183	901.16510	35.90579	8.4785
DAD1 A, Sig=254,10 Ref=360,100	19.379	0.5770	9727.60840	280.98239	91.5215
Totals			1.06288e4	316.88818	

Results obtained with enhanced integrator!

DAD1 B, Sig=210,10 Ref=360,100	14.429	0.4146	279.89063	11.25042	8.3390
DAD1 B, Sig=230,10 Ref=360,100	19.381	0.5735	3076.50317	89.40532	91.6610
Totals			3356.39380	100.65574	

Results obtained with enhanced integrator!

S-117

Area Process Report

Table 3: Entry 5

Data File C:\HPCHEM\1\DATA\201212~1\JC9119B.D
Sample Name: JC9119B
Instrument 1 8/2/2014 10:22:01 PM MK

Page 2 of 2
Injection Date: 2/16/2013 5:08:58 PM
Seq. Line: 2
Sample Name: JC9225
Location: Vial 7
Acq. Operator: CE
Inj: 1
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Different Inj Volume from Sequence!
Actual Inj Volume: 5 µl
Acq. Method: C:\HPCHEM\1\METHODS\OD-02-30.M
Last changed: 2/16/2013 4:45:43 PM by CE
Analysis Method: C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed: 7/30/2014 7:16:00 PM by MK

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 8.120 MM 0.2662 1.62037e4 1014.59381 97.9659
2 10.117 MM 0.2798 336.43698 20.03921 2.0341

Totals: 1.65402e4 1034.63302

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 8.119 MM 0.2655 1.16168e4 729.36182 97.8639
2 10.121 MM 0.2835 253.56413 14.90512 2.1361

Totals: 1.18703e4 744.26694

Results obtained with enhanced integrator!

*** End of Report ***
Injection Date

Injection Date: 2/16/2013 5:40:14 PM
Seq. Line: 3

Sample Name

Sample Name: JC9229
Location: Vial 8

Acq. Operator

Acq. Operator: CE
Inj: 1

Acq. Instrument

Acq. Instrument: Instrument 1
Inj Volume: 15 µl

Different Inj Volume from Sequence!
Actual Inj Volume: 5 µl

Acq. Method

Acq. Method: C:\HPCHEM\1\METHODS\OD-02-30.M
Last changed: 2/16/2013 4:45:43 PM by CE

Analysis Method

Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M
Last changed: 8/1/2014 11:49:11 PM by MK (modified after loading)

Area Percent Report

Sorted By: Signal

Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime	Type Width	Area mAU*s	Height mAU	Area %
8.212	MM 0.2747	512.46289	31.09460	2.5090
10.047	MM 0.3127	1.99125e4	1061.17505	97.4910

Totals: 2.04249e4 1092.26965

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime	Type Width	Area mAU*s	Height mAU	Area %
8.212	MM 0.2489	330.94400	22.15661	2.2587
10.047	MM 0.3138	1.43211e4	760.68982	97.7413

Totals: 1.46520e4 782.84643

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***
Area Percent Report

Sorted By	**Signal**
Multiplier | 1.0000
Dilution | 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]				
1	8.786	FM	0.2972	1.46781e4	98.8336

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]				
2	12.039	MM	0.3704	173.21939	1.1664

Totals:

- Area: 1.48513e4
- Height: 830.90137

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]				
1	8.787	FM	0.2959	8493.53320	98.9365
2	12.038	MM	0.3593	91.29572	1.0635

Totals:

- Area: 8584.82892
- Height: 482.68535

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %	
#	[min]				
1	8.787	FM	0.2959	478.45062	98.9365
2	12.038	MM	0.3593	4.23473	1.0635

Totals:

- Area: 482.68535

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type	Width	Area	Height	Area %
#	[min]			

Area Percent Report

S–120

Table 4, entry 2

with (R,α-L)-1

O–O

with (R,α-L)-1

O–O
... End of Report ...
Area Percent Report

Signal 1: DAD1 A, Sig=250,10 Ref=360,100	Peak RetTime	Type	Width	Area	Height	Area %
#	[min]			[mAU*s]	[mAU]	
1	8.670	MM	0.2815	1.3982e4	827.70404	98.6305
2	11.410	MM	0.3566	194.15e3	9.07509	1.3695
Totals				1.4176e4	836.77913	

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100	Peak RetTime	Type	Width	Area	Height	Area %
#	[min]			[mAU*s]	[mAU]	
1	8.670	MM	0.2817	8988.77e3	531.88464	98.6412
2	11.407	MM	0.3539	123.82e2	5.83146	1.3588
Totals				9112.59e3	537.71610	

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100	Peak RetTime	Type	Width	Area	Height	Area %
#	[min]			[mAU*s]	[mAU]	
1	8.669	MM	0.2922	7836.81e3	447.05707	98.6123
2	11.389	MM	0.3057	110.28e2	6.01225	1.3877
Totals				7947.09e3	453.06932	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100	Peak RetTime	Type	Width	Area	Height	Area %
#	[min]			[mAU*s]	[mAU]	
1	8.671	MM	0.2825	1.6267e4	959.65015	98.6183
2	11.422	MM	0.3601	227.92e2	10.54932	1.3817
Totals				1.6495e4	970.19947	

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100	Peak RetTime	Type	Width	Area	Height	Area %
#	[min]			[mAU*s]	[mAU]	
1	8.671	MM	0.2779	1236.76e3	74.16629	98.7732
2	11.416	MM	0.3130	15.36e1	8.18057e-1	1.2268
Totals				1252.13e3	74.98435	

Results obtained with enhanced integrator!
Table 4: Entry 3

Substance	Rf Value
CoCl₂	0.58
Co(CN)₅N³⁻	0.32

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime	Width	Area	Height	Area %
8.758 MM	0.2769	235.331	14.16449	1.4574
11.300 MM	0.3687	1.59122e4	719.25024	98.5426

Totals: 1.61475e4, 733.41473

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Peak RetTime	Width	Area	Height	Area %
8.754 MM	0.2731	148.941	9.09059	1.4356
11.300 MM	0.3685	1.02257e4	462.43088	98.5644

Totals: 1.03746e4, 471.52147

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime	Width	Area	Height	Area %
8.777 MM	0.2656	146.912	9.21852	1.5848
11.300 MM	0.3831	9123.17285	396.85388	98.4152

Totals: 9270.08516, 406.07240

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime	Width	Area	Height	Area %
8.761 MM	0.2672	267.744	16.69801	1.4230
11.299 MM	0.3680	1.85479e4	840.07916	98.5770

Totals: 1.88156e4, 856.77717

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime	Width	Area	Height	Area %
8.734 MM	0.2625	19.5616	1.24219	1.3830
11.298 MM	0.3636	1394.85559	63.93124	98.6170

Totals: 1414.41723, 65.17344

Results obtained with enhanced integrator!

*** End of Report ***
Area Percent Report

Signal 1: DAD1 A, Sig=250,10 Ref=360,100	Peak RetTime Type	Width	Area	Height	Area	%
	[min]	[min]	[mAU*s]	[mAU]		
1	10.467	0.3598	2.52725e4	1170.62231	97.4488	
2	12.915	0.3802	661.61938	29.00374	2.5512	
Totals			2.59342e4	1199.62605		

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100	Peak RetTime Type	Width	Area	Height	Area	%
	[min]	[min]	[mAU*s]	[mAU]		
1	10.467	0.3264	1.13284e4	578.50757	97.7955	
2	12.912	0.3912	255.36906	10.87842	2.2045	
Totals			1.15838e4	589.38598		

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100	Peak RetTime Type	Width	Area	Height	Area	%
	[min]	[min]	[mAU*s]	[mAU]		
1	10.467	0.3209	5006.08350	260.03439	97.9882	
2	12.916	0.3720	102.78178	4.60473	2.0118	
Totals			5108.86527	264.63913		

Results obtained with enhanced integrator!

Area: 25272.5 10.467
Area: 661.619 12.915
Area: 11328.4 10.467
Area: 255.369 12.912
Area: 5006.08 10.467
Area: 102.782 12.916
S-125

Table 4. Entry 4

Table with (S,S)-1L

S–125

Sample Name: JC9159B

Injection Date: 1/17/2013 6:11:02 PM

Sample Name: JC9159B

Inj: 1

Acq. Operator: CE

Acq. Method: C:\HPCHEM\1\METHODS\OD-03-30.M

Acq. Instrument: Instrument 1

Last changed: 12/31/2012 2:58:25 PM by CE

Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M

Last changed: 8/1/2014 11:54:28 PM by MK

(modified after loading)

Area: 703.807

11.314

Area: 30989.3

13.703

Area: 250.681

11.310

Area: 13574.8

13.703

Area: 109.32

11.311

Area: 5959.29

13.703

Data File C:\HPCHEM\1\DATA\201301~1\JC9159B1.D

Sample Name: JC9159B
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100					
Peak RetTime	Type	Width	Area	Height	Area %
16.642 MM	MM	0.4739	1.61671e4	568.63507	98.0867
Totals:			1.64825e4	579.69842	

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100					
Peak RetTime	Type	Width	Area	Height	Area %
19.290 MM	MM	0.4751	315.36053	11.06335	1.9133

Signal 3: DAD1 C, Sig=210,10 Ref=360,100					
Peak RetTime	Type	Width	Area	Height	Area %
Totals:			8328.55867	299.39160	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100					
Peak RetTime	Type	Width	Area	Height	Area %
16.641 MM	MM	0.4629	8169.60059	294.14471	98.0914
Totals:			8328.55867	299.39160	

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100					
Peak RetTime	Type	Width	Area	Height	Area %
Totals:			8328.55867	299.39160	
Injection Details

- **Injection Date:** 8/6/2013 12:36:17 AM
- **Seq. Line:** 3
 - **Sample Name:** JC10223B
- **Location:** Vial 95
- **Acq. Operator:** MK
- **Acq. Instrument:** Instrument 1
 - **Inj Volume:** 15 µl
 - *Actual Inj Volume:* 5 µl
- **Acq. Method:** C:\HPCHEM\1\METHODS\AS-05-40.M
- **Last changed:** 4/7/2011 5:40:42 PM by CC
- **Analysis Method:** C:\HPCHEM\1\METHODS\AD005-40.M
- **Last changed:** 8/1/2014 11:56:57 PM by MK

Area Percent Report

Sorted By: Signal

Multiplier: 1.0000

Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
- **Peak RetTime:** 16.717 [min]
- **Type:** MM
- **Width:** 0.4488 [min]
- **Area:** 433.83279 [mAU*s]
- **Height:** 16.11137 [mAU]
- **Area %:** 2.1630

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
- **Peak RetTime:** 19.053 [min]
- **Type:** MM
- **Width:** 0.5754 [min]
- **Area:** 1.96231e4 [mAU*s]
- **Height:** 568.36749 [mAU]
- **Area %:** 97.8370

Totals:
- **Area:** 2.00569e4 [mAU*s]
- **Height:** 584.47886 [mAU]

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
- **Peak RetTime:** 16.722 [min]
- **Type:** MM
- **Width:** 0.4358 [min]
- **Area:** 196.73267 [mAU*s]
- **Height:** 7.52359 [mAU]
- **Area %:** 1.9765

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
- **Peak RetTime:** 16.722 [min]
- **Type:** MM
- **Width:** 0.4358 [min]
- **Area:** 196.73267 [mAU*s]
- **Height:** 7.52359 [mAU]
- **Area %:** 1.9765

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
- **Peak RetTime:** 16.730 [min]
- **Type:** BP
- **Width:** 0.3569 [min]
- **Area:** 92.86021 [mAU*s]
- **Height:** 3.75030 [mAU]
- **Area %:** 1.8070

Signal 6: DAD1 F, Sig=300,10 Ref=360,100
- **Peak RetTime:** 16.730 [min]
- **Type:** BB
- **Width:** 0.3569 [min]
- **Area:** 92.86021 [mAU*s]
- **Height:** 3.75030 [mAU]
- **Area %:** 1.8070

Totals:
- **Area:** 5138.85484 [mAU*s]
- **Height:** 154.39329 [mAU]

Results obtained with enhanced integrator!

Page 2 of 2
Area Percent Report

Signal	Multiplier	Dilution	Use Multiplier & Dilution Factor with ISTDs	Area Percent Report
DAD1 A, Sig=250,10 Ref=360,100	1.0000	1.0000		
DAD1 B, Sig=254,10 Ref=360,100	1.0000	1.0000		
DAD1 C, Sig=210,10 Ref=360,100	1.0000	1.0000		
DAD1 D, Sig=230,10 Ref=360,100	1.0000	1.0000		
DAD1 E, Sig=280,10 Ref=360,100	1.0000	1.0000		

Peak RetTime Type	Width	Area	Height	Area Percentage	
#	[min]	[min]	[mAU*s]	[mAU]	%
1	9.763	0.3255	29017.8	1485.83618	98.2944
2	11.939	0.2984	503.50601	28.12491	1.7056
Totals			29521.3	1513.96109	
1	9.764	0.2880	9872.96777	571.38434	98.4903
2	11.937	0.2972	151.33591	8.48584	1.5097
Totals			10024.3	579.87018	

Results obtained with enhanced integrator!

Table 4; entry G

Compound	RetTime	Area	Height	Area Percentage
1				
2				
3				

Results obtained with enhanced integrator!
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100
Signal 2: DAD1 B, Sig=254,16 Ref=360,100
Signal 3: DAD1 C, Sig=210,8 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.923 MM 0.4228 278.14233 10.96450 1.4127
2 22.703 MM 0.5880 1.94105e4 550.20209 98.5873
Totals : 1.96886e4 561.16659

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,16 Ref=360,100
Signal 5: DAD1 E, Sig=280,16 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.924 MM 0.4149 81.13730 3.25970 1.3945
2 22.703 MM 0.5891 5737.36523 162.31212 98.6055
Totals : 5818.50253 165.57181

Results obtained with enhanced integrator!

*** End of Report ***
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.838 MM 0.4381 1.56666e4 596.02325 98.6193

Totals : 1.58860e4 602.64157
Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,16 Ref=360,100
Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 16.838 MM 0.4396 4621.76465 175.22726 98.5882
2 22.878 MM 0.5719 66.18513 1.92889 1.4118

Totals : 4687.94978 177.15616
Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,16 Ref=360,100

*** End of Report ***
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

#	Ret Time	Width	Area	Height	%
1	11.658	0.400	4706.69	195.89	94.11
2	15.406	0.537	294.53	9.14	5.89

Totals: 5001.22 Area, 205.04 Height, 94.14 %

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

#	Ret Time	Width	Area	Height	%
1	11.659	0.401	4211.18	175.21	94.15
2	15.406	0.536	261.79	8.13	5.85

Totals: 4472.96 Area, 183.35 Height, 94.15 %

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

#	Ret Time	Width	Area	Height	%
1	11.659	0.401	5285.32	219.49	94.06
2	15.420	0.379	333.85	10.61	5.94

Totals: 5619.17 Area, 230.10 Height, 94.06 %

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

#	Ret Time	Width	Area	Height	%
1	11.658	0.370	1.321e4	550.22	94.13
2	15.406	0.498	824.43	25.86	5.87

Totals: 1.4036e4 Area, 576.08 Height, 94.13 %

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

#	Ret Time	Width	Area	Height	%
1	11.659	0.400	1143.70	47.65	94.19
2	15.379	0.531	70.54	2.21	5.81

Totals: 1214.24 Area, 49.87 Height, 94.19 %

Results obtained with enhanced integrator!

===
Area Percent Report

Signal	Peak RetTime	Width	Area	Height	Percentage
Signal 1: DAD1 A, Sig=250,10 Ref=360,100	11.708 MM	0.4004	459.712	19.13779	4.8354
	15.305 MM	0.5404	9047.599	279.01901	95.1646
Totals			9507.31055	298.15680	
Results obtained with enhanced integrator!					
Signal 2: DAD1 B, Sig=254,10 Ref=360,100	11.706 MM	0.4003	410.98477	17.11033	4.8296
	15.305 MM	0.5407	8098.67578	249.64102	95.1704
Totals			8509.66055	266.75135	
Results obtained with enhanced integrator!					
Signal 3: DAD1 C, Sig=210,10 Ref=360,100	11.708 MM	0.4001	523.60632	21.81178	4.9454
	15.306 MM	0.5401	10064.1	310.58426	95.0546
Totals			1.05877e4	332.39604	
Results obtained with enhanced integrator!					
Signal 4: DAD1 D, Sig=230,10 Ref=360,100	11.708 MM	0.4006	1306.40112	54.35100	4.8897
	15.305 MM	0.5438	2.54111e4	778.85779	95.1103
Totals			2.67175e4	833.20879	
Results obtained with enhanced integrator!					
Signal 5: DAD1 E, Sig=280,10 Ref=360,100	11.710 MM	0.3975	110.80473	4.64648	4.8097
	15.305 MM	0.5379	2192.98193	67.95478	95.1903
Totals			2303.78667	72.60126	
Results obtained with enhanced integrator!					

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194

Data File: C:\HPCHEM\1\DATA\201306~1\JCX133B1.D
Sample Name: JC10133B
Instrument 1 8/2/2014 12:08:33 AM MK

Table 4. any 8

Compound	Mass Formula	Molar Mass	Retention Time (min)	Area
Boon	(S,S)-L	202.1806	4.8097	4.8097
Met-S	(S,S)-L	264.1806	9.6194	9.6194
Area Percent Report

Sorted By : Signal

Multiplier : 1.0000

Dilution : 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime

#	[min]	Width	Area	Height	%
1	17.631	0.4328	541.48834	20.85328	2.1201
2	18.885	0.5805	2.49992e4	717.76105	97.8799

** Totals :** 2.55407e4 738.61432

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Peak RetTime

#	[min]	Width	Area	Height	%
1	17.636	0.4283	264.78415	10.30480	1.8809
2	18.885	0.5576	1.38128e4	412.84863	98.1191

** Totals :** 1.40776e4 423.15343

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime

#	[min]	Width	Area	Height	%
1	17.638	0.4283	144.39316	5.61829	1.8169
2	18.884	0.5489	7802.81396	236.90977	98.1831

** Totals :** 7947.20712 242.52807

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime

#	[min]	Width	Area	Height	%
1	17.636	0.4283	264.78415	10.30480	1.8809
2	18.885	0.5576	1.38128e4	412.84863	98.1191

** Totals :** 1.40776e4 423.15343

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime

#	[min]	Width	Area	Height	%
1	17.638	0.4283	144.39316	5.61829	1.8169
2	18.884	0.5489	7802.81396	236.90977	98.1831

** Totals :** 7947.20712 242.52807

Results obtained with enhanced integrator!

Area Percent Report

Note: Results obtained with enhanced integrator!
Injection Date : 8/1/2013 11:34:20 AM Seq. Line : 3
Sample Name : JC10219B Location : Vial 80
Acq. Operator : CE Inj : 1
Acq. Instrument : Instrument 1 Inj Volume : 15 µl
Different Inj Volume from Sequence ! Actual Inj Volume : 5 µl
Acq. Method : C:\HPCHEM\1\METHODS\OD-05-40.M
Last changed : 4/7/2011 5:39:35 PM by CC
Analysis Method : C:\HPCHEM\1\METHODS\AD005-40.M
Last changed : 8/2/2014 12:10:26 AM by MK
(modified after loading)

Area: 24169.5 17.216
Area: 539.224 18.891

Area: 13169.5 17.217
Area: 251.401 18.908

Area: 7430.03 17.217
Area: 136.019 18.904

Data File C:\HPCHEM\1\DATA\201308~1\JC10219B.D Sample Name: JC10219B
Instrument 1 8/2/2014 12:11:18 AM MK
Area Percent Report

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.947 FM 0.4147 1.41912e4 570.28912 98.1507
2 17.393 MM 0.4723 267.37726 9.43601 1.8493

Totals : 1.44586e4 579.72513

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100
Area Percent Report

Sorted By : Signal
Multiplier : 1.0000
Dilution : 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 18.563 MF 0.6055 800.43811 22.03275 5.2285
2 20.658 FM 1.4329 1.45087e4 168.75829 94.7715

Totals : 1.53092e4 190.79103

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***
Injection Date: 9/4/2013 1:38:06 PM
Seq. Line: 11
Sample Name: JC10275
Location: Vial 9
Acq. Operator: MK
Acq. Instrument: Instrument 1
Inj Volume: 15 µl

Different Inj Volume from Sequence!
Actual Inj Volume: 5 µl

Acq. Method: C:\HPCHEM\1\METHODS\JC-AD01A.M
Last changed: 11/14/2012 10:39:31 PM by CE

Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M
Last changed: 8/3/2014 12:34:42 AM by MK

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type
#	RetTime	Width	Area	Height	Area Percent
1	16.630	0.3948	3.00347e4	1267.95288	97.5011
2	17.710	0.3597	769.77063	35.66695	2.4989

Totals: 3.08045e4 1303.61983

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

End of Report
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area %
---|-------|----|-------|----------|----------|--------|
1 16.800 MM 0.3820 1447.42444 63.15571 3.0557
2 17.912 MM 0.5129 4.59204e4 1492.23425 96.9443

Totals: 4.73678e4 1555.38996

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

*** End of Report ***
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 13.897 MM 0.3634 9419.56641 432.00473 97.1339
2 16.371 MM 0.4602 277.94183 10.06597 2.8661

Totals: 9697.50824 442.07070

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Signal 5: DAD1 E, Sig=280,10 Ref=360,100

... End of Report...
Injection Date: 9/16/2013 1:15:30 PM
Seq. Line: 8
Sample Name: JC10279A
Location: Vial 94
Acq. Operator: MK
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Actual Inj Volume: 1 µl
Acq. Method: C:\HPCHEM\1\METHODS\AD-10-40.M
Last changed: 7/12/2012 11:12:25 AM by CE
Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M
Last changed: 8/2/2014 12:24:51 AM by MK

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
---|-------|----|-------|----------|----------|--------|
1 17.565 MM 0.4749 209.48149 7.35103 9.7971
2 23.873 MM 0.6716 1928.72815 47.86718 90.2029

Totals: 2138.20964 55.21821

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
---|-------|----|-------|----------|----------|--------|
1 17.558 MM 0.4747 105.07636 3.68929 9.8035
2 23.875 MM 0.6715 966.74506 23.99374 90.1965

Totals: 1071.82142 27.68303

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
---|-------|----|-------|----------|----------|--------|
1 17.567 MM 0.4652 922.10120 33.03711 9.4862
2 23.873 MM 0.6781 8798.38086 216.24049 90.5138

Totals: 9720.48206 249.27760

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
---|-------|----|-------|----------|----------|--------|
1 17.571 MM 0.4736 593.79047 20.89495 9.7026
2 23.875 MM 0.6721 5526.11816 137.03973 90.2974

Totals: 6119.90863 157.93469

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
---|-------|----|-------|----------|----------|--------|

End of Report*

Data File: C:\HPCHEM\1\DATA\201309~1\JC10279A.D
Sample Name: JC10279A
Instrument 1: 8/2/2014 12:26:11 AM MK
Injection Date: 9/17/2013 5:04:56 AM
Seq. Line: 24
Sample Name: JC10281B
Location: Vial 97
Acq. Operator: MK
Inj: 1
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Different Inj Volume from Sequence!
Actual Inj Volume: 6 µl
Acq. Method: C:\HPCHEM\1\METHODS\AS-10-40.M
Last changed: 9/3/2013 3:07:57 PM by MK
Analysis Method: C:\HPCHEM\1\METHODS\OD-02-20.M
Last changed: 7/30/2014 10:40:14 PM by MK
(modified after loading)

Area: 118.485
18.705
Area: 9716.74
30.059
Area: 127.457
18.704
Area: 10351.7
30.058
Area: 138.82
18.710
Area: 9845.16
30.044
Area: 42.5912
18.681
Area: 3120.39
30.058
Area: 25.9779
18.705
Area: 1970.17
30.062

Results obtained with enhanced integrator!

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU]
1 18.705 MM 0.6218 118.48459 3.17571 1.2047
2 30.059 MM 1.1259 9716.74219 143.83633 98.7953
Totals: 9835.22678 147.01204

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU]
1 18.704 MM 0.6262 127.45731 3.39228 1.2163
2 30.058 MM 1.1261 1.03517e4 153.21146 98.7837
Totals: 1.04792e4 156.60374

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU]
1 18.710 MM 0.6299 138.81970 3.67318 1.3904
2 30.044 MM 1.1245 9845.16113 145.92497 98.6096
Totals: 9983.98083 149.59815

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU]
1 18.681 MM 0.6396 42.59124 1.10979 1.3466
2 30.058 MM 1.1261 3120.39331 46.18145 98.6534
Totals: 3162.98455 47.29125

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
Peak RetTime Type Width Area Height Area %
[min] [min] [mAU*s] [mAU]
1 18.705 MM 0.6513 25.97787 6.64763e-1 1.3014
2 30.062 MM 1.1250 1970.16589 29.18823 98.6986
Totals: 1996.14376 29.85299

Results obtained with enhanced integrator!

*** End of Report ***
Injection Date: 9/17/2013 4:23:37 AM
Seq. Line: 23
Sample Name: JC10281A
Location: Vial 96
Acq. Operator: MK
Inj: 1
Acq. Instrument: Instrument 1
Inj Volume: 15 µl
Different Inj Volume from Sequence!
Actual Inj Volume: 3 µl
Acq. Method: C:\HPCHEM\1\METHODS\AS-10-40.M
Last changed: 9/3/2013 3:07:57 PM by MK
Analysis Method: C:\HPCHEM\1\METHODS\AD005-40.M
Last changed: 8/2/2014 12:27:30 AM by MK
(modified after loading)

Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000
Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 18.481 MM 0.6395 1.06802e4 278.33743 97.4903
2 30.127 MM 1.1077 274.94009 4.13675 2.5097
Totals : 1.09552e4 282.47418

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 18.481 MM 0.6401 1.13830e4 296.37387 97.5313
2 30.114 MM 1.0968 288.12051 4.37829 2.4687
Totals : 1.16711e4 300.75216

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 18.479 MM 0.6415 1.07601e4 279.53766 97.2401
2 30.154 MM 1.0830 305.39581 4.69971 2.7599
Totals : 1.10655e4 284.23737

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime Type Width Area Height Area
[min] [min] [mAU*s] [mAU] %
----|-------|----|-------|----------|----------|--------|
1 18.482 MM 0.6382 3414.37500 89.16418 97.5752
2 30.009 MM 1.0444 84.84958 1.35400 2.4248
Totals : 3499.22458 90.51818

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

--- End of Report ---
Data File C:\HPCHEM\1\DATA\201402~1\JC11123.D

Sample Name: JC11123

Instrument 1 7/30/2014 10:42:07 PM MK

Area Percent Report

Signal 1: DAD1 A, Sig=250,10 Ref=360,100
Peak RetTime Type
#
1
2
Totals:

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100
Peak RetTime Type
#
1
2
Totals:

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100
Peak RetTime Type
#
1
2
Totals:

Results obtained with enhanced integrator!

Area Percent Report

Signal 2: DAD1 B, Sig=254,10 Ref=360,100
Peak RetTime Type
#
1
2
Totals:

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100
Peak RetTime Type
#
1
2
Totals:

Results obtained with enhanced integrator!
Area Percent Report

Sorted By: Signal
Multiplier: 1.0000
Dilution: 1.0000

Use Multiplier & Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=250,10 Ref=360,100

Peak RetTime	Type	Width	Area [mAU*s]	Height [mAU]	%
12.829	MF	0.3098	2.41232e4	1297.61914	96.1899

Totals: 2.50787e4 1340.11574

Results obtained with enhanced integrator!

Signal 2: DAD1 B, Sig=254,10 Ref=360,100

Peak RetTime	Type	Width	Area [mAU*s]	Height [mAU]	%
23.784	FM	0.3747	955.53381	42.49660	3.8101

Totals: 1898.61647 122.66490

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig=210,10 Ref=360,100

Peak RetTime	Type	Width	Area [mAU*s]	Height [mAU]	%
12.830	MF	0.2556	1843.23779	120.16679	97.0832
23.795	FM	0.3695	55.37868	2.49811	2.9168

Totals: 1898.61647 122.66490

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=230,10 Ref=360,100

Peak RetTime	Type	Width	Area [mAU*s]	Height [mAU]	%
12.829	MF	0.2556	1843.23779	120.16679	97.0832
23.795	FM	0.3695	55.37868	2.49811	2.9168

Totals: 1898.61647 122.66490

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=280,10 Ref=360,100

Peak RetTime	Type	Width	Area [mAU*s]	Height [mAU]	%
12.830	MF	0.2556	1843.23779	120.16679	97.0832
23.795	FM	0.3695	55.37868	2.49811	2.9168

Totals: 1898.61647 122.66490

Results obtained with enhanced integrator!