Vibrational spectroscopic, NMR parameters and electronic properties of three 3-phenylthiophene derivatives via density functional theory

Yuan Mei-Rong1,2*, Song Yu1,2 and Xu Yong-Jin1,2

Abstract
Quantum chemistry calculations have been performed to compute the optimized geometries, vibrational frequencies, and Mulliken Charges at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels for 3-(4-fluorophenyl)thiophene (FPT), 3-(4-nitrophenyl)thiophene (NPT) and 3-(4-cyanophenyl) thiophene (CPT) in the ground state. In addition, the 13C and 1H NMR are calculated by B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p) methods. The singlet electronic excited state properties of the three compounds were investigated using the time-dependent density functional method (TD-DFT) at the B3LYP/6-311++G(d,p)//TD- B3LYP/6-311++G(d,p) level of theory. The influence of the substituted groups on C9 atom is discussed.

Keywords: Thiophene; DFT; Vibrational spectra; NMR analysis; UV–vis spectra

1. Introduction
Thiophene is one of the most studied heterocycles: it is easy to process, chemically stable, and its synthetic applications have been a constant matter of investigation for many years (Giovanna et al. 2005). π-Conjugated polymers and oligomers based on thiophene building blocks are of immense interest in current research due to their interesting electronic and photophysical properties (Kim et al. 2006; Kline et al. 2006; Patra et al. 2011; Zhang et al. 2011; Marsh et al. 2014; Yumura and Yamashita 2014). Recent literature contains numerous reports on the synthesis and properties of molecular systems having thiophene unit (Zhang et al. 2009; Ustamehmetoglu et al. 2014; Dai et al. 2007; Cho et al. 2012; Patil et al. 2011; Balaji et al. 2011). The electronic properties exhibited by the thiophene and polythiophene derivatives have made them important in organic field effect transistors (OFET) (Yang et al. 2005; Mushrush et al. 2003; Osaka et al. 2007). organic light emitting diodes (OLED) (Cicoira et al. 2006; Lim et al. 2013), solar cells (Hara et al. 2003; Coa et al. 2009; Thomas et al. 2008) and supercapacitors (Sivaraman et al. 2013; Yue et al. 2012; Karthikeyan et al. 2012). The electronic properties of thiophene-based materials can be tuned over a wide range through chemical or architecture modification. It includes different substitution at 2, 3 or 4-position of thiophene molecules.

In most cases, the 2 and 5 positions of thiophene are used for the polymerization. The modification of the molecules for special electronic properties is operated on the 3 and 4-positions (Su et al. 2002; Osaka et al. 1997). Poly (3-phenylthiophene) has represented such a purpose. The introduction of a phenyl group into the backbone of polythiophene stabilizes the conjugated π-bonds system and makes it an attractive low band gap material for the use in supercapacitors (Zhang and Shi 2004). The substitution of fluorophenyl group on β-position of thiophene can improve the thermal stability of corresponding polymer. Poly (3-(4-fluorophenyl)thiophene) has a potential application in type III supercapacitors with improved both p-doping and n-doping performance (Shen et al. 2005; Wei et al. 2006).

Density functional theory (DFT) approaches, especially those using hybrid functional, have evolved to a powerful and very reliable tool, being routinely used for the determination of various molecular properties (Li et al. 2011). B3LYP functional has been shown to provide an excellent compromise between accuracy and computational spectra.

* Correspondence: aimee12121@hotmail.com
1Laboratory of Advanced Energy Storage Materials & devices, Center for Advanced Materials & Biotechnology, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China
2Key Laboratory of Electrochemical Energy Storage Devices, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China

© 2014 Mei-Rong et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.
for molecules of large and medium size (Lu et al. 2013; Yanai et al. 2004). To the best of our knowledge, no theoretical work is done on the 3-phenylthiophene derivatives. Therefore, we made an investigation and studied the structure and spectra of the title compounds using the DFT (B3LYP) method. The aim of our work is to compare the different properties among the three compounds which have different functional groups on the 3-phenylthiophene molecules.

2. Computational methods
All DFT calculations of the title compounds (Figure 1) were carried out using Gaussian09 program package using default thresholds and parameters (Gaussian 09, Revision D.01 et al. 2009). The ground-state structural geometries were fully optimized at the B3LYP method (Yanai et al. 2004) along with the standard 6-31G(d) and 6-311++G(d,p) basis sets. All the parameters were allowed to relax and all the calculations converged to an optimized geometry which corresponds to a true energy minimum revealed by the lack of imaginary frequencies. Vibration frequencies were calculated by using B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) methods (El-Azhary and Suter 1996). 1H and 13C NMR chemical shifts are calculated with GIAO approach at B3LYP/6-311++G(d,p) level. The obtained chemical shift values are relative to the shielding of tetramethylsilane (TMS) (Wolff and Ziegler 1998). Time-dependent density functional theory (TD-DFT) (Jacquemin et al. 2009) calculations of electronic spectra were performed on the optimized structure at B3LYP/6-31++G(d,p) levels.

3. Results and discussion
3.1 Molecular geometry
The optimized geometries of the title compounds have been obtained at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels. Some optimized geometrical parameters are listed in Table 1. To the best of our knowledge, experimental data on the geometric structures of the three title compounds are not available in the literature.

It is noted from Table 1 that the values of optimized geometrical parameters calculated at B3LYP/6-311++G(d,p) are smaller than that calculated at B3LYP/6-31G(d) level except for the torsion angle of C2-C3-C6-C7. There are little differences on the bond lengths and bond angles among the three title compounds, which indicate that the both the two levels have almost the same calculated accuracy in this system. The C-C bond lengths in benzene ring are between 1.362-1.408 Å, which is much shorter than the typical C-C single bond (1.54 Å) and longer than the C = C double bond (1.34 Å) (Margules et al. 1999). For S1-C2 and S1-C5 bonds, calculated carbon sulfur bond lengths are between 1.725-1.736 Å, which are smaller than the bond length of the single C-S bond (1.82 Å) (Ikawa and Whalley 1996). For FPT, the C9-F bond length is 1.356 Å at B3LYP/6-311++G(d,p) level. The C9-N and C9-C bond lengths are 1.474 Å and 1.430 Å for NPT and CPT, respectively, which stay in the normal range. For NPT, the lengths of the two N-O bonds have almost the same value, which shows a good symmetry within the molecule.

The bond angles C2-C3-C5 in the thiophene ring have the value between 91.36°-91.46° for all the three compounds, indicating that the S atom is of sp3 hybridization

![Figure 1](image_url)
Figure 1 Molecular structures and atom numbering scheme of the title compounds. (3-(4-fluorophenyl)thiophene (FPT), 3-(4-nitrophenyl)thiophene (NPT), 3-(4-cyanophenyl)thiophene (CPT)).
Parameter	FPT								
	6-31G(d)	6-31G(d)	6-311++G(d,p)	6-31G(d)	6-311++G(d,p)	6-31G(d)	6-311++G(d,p)		
S1-C2	1.732	1.730	1.728	1.775	1.728	1.726			
C2-C3	1.376	1.374	1.378	1.376	1.378	1.375			
C3-C4	1.439	1.436	1.439	1.436	1.439	1.436			
C4-C5	1.364	1.363	1.364	1.362	1.364	1.363			
C5-S1	1.735	1.732	1.736	1.732	1.735	1.732			
C3-C6	1.478	1.478	1.475	1.474	1.475	1.475			
C6-C7	1.406	1.403	1.408	1.406	1.407	1.405			
C7-C8	1.393	1.392	1.389	1.387	1.389	1.387			
C8-C9	1.390	1.386	1.394	1.392	1.405	1.403			
C9-C10	1.390	1.385	1.394	1.392	1.405	1.402			
C10-C11	1.393	1.392	1.390	1.388	1.389	1.388			
C11-C6	1.406	1.403	1.408	1.405	1.407	1.404			
C9-F	1.350	1.356							
C9-N	—	—	1.467	1.474	—	—			
N-O1	—	—	1.232	1.226	—	—			
N-O2	—	—	1.232	1.226	—	—			
C9-C	—	—			1.433	1.430			
C≡N	—	—			1.164	1.156			
C5-S1-C2	91.36	91.39	91.44	91.46	91.42	91.45			
S1-C2-C3	112.44	112.36	112.38	112.33	112.38	112.32			
C2-C3-C4	111.23	111.35	111.33	111.40	111.31	111.40			
C3-C4-C5	113.45	113.35	113.29	113.23	113.32	113.25			
C4-C5-S1	111.52	111.55	111.56	111.59	111.56	111.58			
C2-C3-C6	124.53	124.43	124.32	124.27	124.35	124.29			
C4-C3-C6	124.23	124.22	124.35	124.33	124.33	124.31			
C7-C6-C3	121.16	121.11	121.09	121.04	121.14	121.11			
C11-C6-C3	120.82	120.81	120.70	120.70	120.78	120.79			
C6-C7-C8	121.36	121.11	121.25	121.22	121.24	121.21			
C7-C8-C9	118.76	118.59	118.86	118.87	120.04	120.05			
C8-C9-C10	121.74	122.07	121.58	121.58	119.37	119.38			
C9-C10-C11	118.76	118.59	118.86	118.88	120.05	120.06			
C10-C11-C6	121.35	121.33	121.23	121.21	121.22	121.20			
C11-C6-C7	118.02	118.08	118.21	118.25	118.08	118.10			
C8-C9-F	119.12	118.96							
C10-C9-F	119.14	118.97							
C8-C9-N	—	—	119.20	119.21	—	—			
C10-C9-N	—	—	119.21	119.21	—	—			
C9-N-O1	—	—	117.72	117.73	—	—			
C9-N-O2	—	—	117.73	117.73	—	—			
C8-C9-C	—	—	—	—	120.31	120.31			
C10-C9-C	—	—	—	—	120.32	120.32			
C9-C-N	—	—	—	—	179.98	179.98			
C2-C3-C6-C7	32.50	35.73	29.50	31.55	30.06	32.59			
Table 2 Calculated vibrational frequencies (cm\(^{-1}\)) for FPT

Assignments	FPT	6-31G(d)	6-311++G(d,p)
ν(C-H) th	3273(0.96)	3246(0.67)	
ν(C-H) th	3269(1.24)	3242(1.02)	
ν(C-H) th, ν(C-H) ph	3226(5.40)	3203(2.29)	
ν(C-H) th, ν(C-H) ph	3224(5.98)	3201(2.84)	
ν(C-H) th, ν(C-H) ph	3223(4.14)	3200(2.26)	
ν(C-H) th, ν(C-H) ph	3202(6.33)	3180(3.54)	
ν(C-H) ph	3201(9.83)	3173(7.59)	
ν(C-H) ph	1669(25.52)	1645(20.75)	
ν(C-H) th, ν(C-H) ph	1475(28.3)	1451(23.5)	
ν(C-H) th	1458(3.50)	1439(3.37)	
ν(C-H) th, ν(C-H) ph	1406(11.87)	1388(10.73)	
ν(C-H) ph	1393(0.63)	1323(2.50)	
δ(C-H)ip-th, δ(C-H)ip-ph	1328(2.20)	1314(1.01)	
ν(C-C), δ(C-H)ip-th	1290(41.22)	1275(20.6)	
ν(C-C), δ(C-H)ip-th	1283(81.11)	1241(138.39)	
δ(C-H)ip-th, δ(C-H)ip-ph	1232(9.39)	1217(7.52)	
δ(C-H)ip-ph	1194(17.64)	1179(34.33)	
ν(C-H)ip-th, δ(C-H)ip-ph	1130(8.61)	1119(8.16)	
δ(C-H)ip-th, δ(C-H)ip-ph	1122(2.00)	1109(3.73)	
δ(C-H)ip-th, δ(C-H)ip-ph	1065(1.07)	1057(1.21)	
a(ν(CH)ph, δ(C-H)ip-ph	1034(2.00)	1030(4.03)	
δ(C-H)opp-ph	9590(0.23)	9730(2.5)	
δ(C-H)opp-ph	9530(0.33)	9560(0.09)	
a(ν(CH)th, δ(C-H)opp-th, a(ν(CH)ph)	911(8.64)	909(9.70)	
δ(C-H)opp-th	8950(7.72)	8950(6.6)	
δ(C-H)opp-ph, ν(C-S), δ(C-H)opp-th	87116.290)	86725.59	
δ(C-H)opp-ph, δ(C-H)opp-th	84944.62	85158.48	
a(ν(CH)th, δ(C-H)opp-ph, a(ν(CH)ph)	8441.46	8354.97	
δ(C-H)opp-ph	8310.41	8260.16	
a(ν(CH)th, a(ν(CH)ph, δ(C-H)opp-ph, a(ν(CH)th)	8091.47	79713.20	
δ(C-H)opp-ph, δ(C-H)opp-th	79384.60	78882.73	
δ(C-H)opp-ph, δ(C-H)opp-th, a(ν(CH)ph)	7203.48	7277.90	
δ(C-H)opp-ph	6851.49	6873.06	
δ(C-H)opp-ph, δ(C-H)opp-th	6615.22	6597.52	
a(ν(CH)th, a(ν(CH)ph)	6453.39	6443.97	
δ(φ(CH)ph, (φ(ν(CH)th)	57319.72	57323.87	
δ(φ(CH)ph, (φ(ν(CH)th)	5338.08	53218.09	

Table 2 Calculated vibrational frequencies (cm\(^{-1}\)) for FPT (Continued)

Assignments	FPT	6-31G(d)	6-311++G(d,p)
φ(ν(CH)th)	4671(1.03)	4688(0.97)	
φ(ν(CH)ph), φ(ν(CH)th)	4440(4.2)	442(0.69)	
φ(ν(CH)ph)	4260(0.09)	4260(0.11)	

The numbers in the parentheses correspond to the IR intensities. α: planar ring deformation, Φ: non-planar deformation, ν: stretching, δ: bending, ph: benzene, th: thiophene.

3.2 Vibrational frequency

Vibrational frequencies were calculated by B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) methods. Tables 2, 3, 4 presents the calculated vibrational frequencies over the range 4000–400 cm\(^{-1}\) of the title compounds studied. Inclusion of electron correlation in density functional theory to a certain extent makes the frequency values closer to the experimental vibrational frequencies. According to the data in Tables 2, 3, 4, the frequencies values calculated with 6-311++G(d,p) basis set are smaller than that with 6-31G(d) basis set. The following discussions are being done with the results at DFT level calculation with 6-311++G(d,p) basis set for a higher accuracy. Calculated IR intensities help us to distinguish and more precisely assign those fundamentals which are close in frequency (Li et al. 2011). The theoretical FT-IR spectra calculated at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels are shown in Figures 2 and 3, respectively.

3.2.1 C-H vibrations

The existence of one or more aromatic rings in a molecule is normally determined from the C-H and C-C = C ring related vibrations. The C-H stretching occurs above 3000 cm\(^{-1}\) and is typically exhibited as a multiplicity of weak to moderate bands (Hunt et al. 1987). In the present study, the FTIR band in the region 3300–
Table 3 Calculated vibrational frequencies (cm\(^{-1}\)) for NPT

Assignments	NPT 6-31G(d)	NPT 6-311++G(d,p)
v(C-H)th	3275(0.75)	3248(0.80)
v(C-H)th	3271(0.68)	3243(1.01)
v(C-H)ph	3252(1.02)	3222(3.22)
v(C-H)ph	3251(0.48)	3221(0.75)
v(C-H)th, v(C-H)ph	3230(2.93)	3207(1.42)
v(C-H)th, v(C-H)ph	3212(5.72)	3190(3.63)
v(C-H)ph	3210(6.44)	3188(3.92)
v(C-C)ph, v(N-O)	1665(105.58)	1637(68.31)
v(C-C)ph, v(C-C)th	1475(10.72)	1453(7.25)
v(C-C)ph, v(C-C)th	1458(4.38)	1440(3.14)
v(C-C)ph, v(C-C)th	1407(5.29)	1389(6.69)
v(C-N)	1393(554.93)	1363(593.08)
v(C-C)ph	1363(7.22)	1346(10.99)
δ(C-H)ip-ph, δ(C-H)ip-phil	1329(2.98)	1316(5.55)
δ(C-H)ip-th, δ(C-H)ip-phil	1291(8.10)	1279(7.66)
δ(C-H)ip-th	1236(0.45)	1221(7.50)
δ(C-H)ip-phil	1218(5.70)	1206(6.98)
δ(C-H)ip-phil	1140(7.72)	1131(8.01)
δ(C-H)ip-th, δ(C-H)ip-phil	1135(64.27)	1121(78.97)
δ(C-H)ip-th	1124(10.75)	1110(18.81)
α(=C-ring)th, δ(C-H)ip-phil	1065(1.34)	1056(1.01)
α(=C-ring)th	1033(0.61)	1029(1.26)
δ(C-H)opp-phil	993(0.66)	998(0.08)
δ(C-H)opp-phil	983(0.09)	987(0.09)
α(=C-ring)th	912(0.88)	910(1.42)
δ(C-H)opp-phil, δ(C-H)opp-phil-th	898(1.60)	898(1.33)
δ(C-H)opp-phil, δ(C-H)opp-phil-th	884(13.61)	879(13.51)
δ(C-H)opp-phil, v(C-S), δ(C-H)opp-phil-th	870(15.92)	869(44.51)
α(=C-ring)th, α(=C-ring)ph, δ(C-H)opp-phil, δ(C-H)opp-phil-th, δ(C-H)opp-phil, δ(N-O)	862(84.49)	861(72.40)
δ(C-H)opp-phil	851(4.91)	847(1.69)
δ(C-H)opp-phil, α(=C-ring)th	817(4.24)	812(1.70)
δ(C-H)opp-phil, δ(C-H)opp-phil, α(=C-ring)th	802(52.29)	793(68.72)
δ(C-H)opp-phil, δ(C-H)opp-phil, α(=C-ring)th, δ(C-N)	760(51.52)	745(35.05)
α(=C-ring)th, α(=C-ring)ph	716(0.55)	717(0.25)
δ(=C-Hopp-phil)	709(6.11)	703(7.85)
δ(=C-Hopp-phil)	691(3.68)	691(6.69)

Table 3 Calculated vibrational frequencies (cm\(^{-1}\)) for NPT (Continued)

Assignments	NPT 6-31G(d)	NPT 6-311++G(d,p)
φ(=ring)ph, φ(=ring)th, δ(C-Hopp-th)	655(4.22)	652(4.30)
φ(=ring)ph, φ(=ring)th, δ(C-Hopp-th)	635(4.22)	634(5.91)
φ(=ring)ph, φ(=ring)th	620(0.14)	630(0.12)
δ(C-N)	540(1.26)	538(1.55)
φ(=ring)ph	512(350)	505(8.19)
v(pH·NO\(_2\))	477(6.27)	473(3.64)
φ(=ring)th	462(6.24)	463(3.55)
φ(=ring)ph	423(0.05)	420(0.08)
φ(=ring)ph, φ(=ring)th	410(0.26)	406(0.20)

The numbers in the parentheses correspond to the IR intensities. α: planar ring deformation, φ: non-planar deformation, v: stretching, δ: bending, ph: benzene, th: thiophene.

3.2.2 C-S vibrations

In our present study, the C-S stretching vibrations are observed at 867 cm\(^{-1}\) for FPT, 869 cm\(^{-1}\) for NPT and 873 cm\(^{-1}\) for CPT, respectively.

3.2.3 C = C stretching

The ring carbon-carbon stretching vibrations occur in the region 1650–1400 cm\(^{-1}\). For aromatic six-membered rings, there are two or three bands in this region due to skeletal vibrations, the strongest usually being at about 1500 cm\(^{-1}\) (Li et al. 2011). The aromatic C = C stretching is observed at 1645, 1573, 1535 cm\(^{-1}\) for B3LYP/6-311++G(d,p) are assigned to C-C in plane bending vibrations, which has similar results for NPT and CPT. The C-H out of plane deformations are observed between 1000–500 cm\(^{-1}\) for the three title compounds.

3.2.4 Ring vibrations

In benzene, six ring deformation frequencies are observed. Three arise from in-plane bending vibrations, corresponding to 1000–600 cm\(^{-1}\) mode and the remaining three are derived from the out-of-plane bending vibrations, corresponding to 700–400 cm\(^{-1}\) mode of vibrations (Li et al. 2011). For FPT, the α(=C-ring) vibrations are observed at 909, 1179, 1119, 1057, 1030 cm\(^{-1}\) (Castillo et al. 2012). For NPT, the calculated frequencies 1323, 1314, 1275, 1241, 1217, 1179, 1119, 1057, 1030 cm\(^{-1}\) at B3LYP/6-311++G(d,p) are assigned to C-H in plane bending vibrations, which is very useful for characterization purpose (Castillo et al. 2012).
Table 4 Calculated vibrational frequencies (cm$^{-1}$) for CPT

Assignments	CPT 6-31G(d)	CPT 6-311++G(d,p)
v(C-H)th	3270(0.85)	3242(1.02)
v(C-H)th	3229(3.65)	3206(1.69)
v(C-H)ph, v(C-H)th	3233(0.21)	3199(0.08)
v(C-H)th, v(C-H)ph	3210(1.86)	3198(5.73)
v(C-H)th, v(C-H)ph	3205(14.4)	3182(2.33)
v(C-H)ph	3203(7.33)	3181(5.73)
v(C=≡N)	2345(57.40)	2328(79.30)
v(C≡C)ph	1665(57.84)	1647(60.69)
v(C≡C)ph, v(C≡C)th	1586(13.12)	1567(18.50)
v(C≡C)th	1553(19.22)	1534(17.38)
v(C≡C)th, v(C=C)th	1475(12.16)	1452(8.34)
v(C=C)th	1458(7.78)	1440(7.27)
v(C=C)th, v(C=C)th	1409(8.58)	1392(7.99)
δ(C-H)ip-ph	1344(1.37)	1332(1.43)
v(C-C)ip	1330(2.26)	1309(3.74)
v(C-C)op, v(C=≡C)	1292(3.60)	1278(2.78)
δ(C-H)ip-th	1240(1.60)	1229(0.75)
δ(C-H)ip-th, v(C=C)ip-th	1235(7.16)	1220(6.33)
δ(C-H)ip-th	1213(7.31)	1202(8.18)
δ(C-H)ip-ph	1149(3.00)	1138(3.87)
δ(C-H)ip-th	1124(4.56)	1111(5.71)
α(ring)th, δ(C-H)ip-th, δ(C-H)ip-th	1066(1.07)	1057(1.13)
α(ring)ph, δ(C-H)ip-th, δ(C-H)ip-th	1037(1.17)	1033(1.85)
δ(C-H)op-ph	979(0.04)	989(0.09)
δ(C-H)op-ph	972(0.11)	977(0.17)
α(ring)th	911(5.98)	909(7.11)
δ(C-H)op-ph	898(0.92)	898(0.89)
δ(C-H)op-ph, v(C=≡S), δ(C-H)ip-ph	877(26.43)	873(24.47)
δ(C-H)op-ph, δ(C-H)ip-th, δ(C-H)ip-th	859(32.47)	857(45.62)
δ(C-H)op-ph	854(4.92)	849(2.68)
α(ring)th, α(ring)ph, δ(C-H)op-ph, δ(C-H)ip-ph	827(1.07)	820(0.99)
δ(C-H)op-ph, δ(C-H)ip-th	797(75.99)	792(79.51)
α(ring)th, α(ring)ph, δ(C-H)op-p, δ(C-H)ip-p	773(1.57)	771(1.11)
δ(C-H)op-th, δ(C-H)op-th, δ(C-H)op-th, δ(C-H)op-th	742(10.37)	742(12.43)
δ(C-H)op-th	690(2.66)	691(4.50)
Φ(ring)th, Φ(ring)ph, δ(C-H)op-th, δ(C-H)op-th	666(2.98)	665(4.18)
Φ(ring)ph, Φ(ring)th, δ(C-H)op-th, δ(C-H)op-th	647(2.79)	640(4.16)
Φ(ring)th	638(0.22)	637(1.93)
Φ(ring)ph, δ(C-H)op-p, δ(C-H)op-p	574(15.24)	576(15.05)
Φ(ring)ph, δ(C-H)op-p, δ(C-H)op-p	561(11.38)	569(7.44)

The numbers in the parentheses correspond to the IR intensities: α: planar ring deformation, δ: non-planar deformation, ν: stretching, δ: bending, ph: benzene, th: thiophene.

835, 797, 573 cm$^{-1}$ and Φ(ring) vibrations at 644, 636, 532 cm$^{-1}$.

3.25 C-N vibrations
For NPT, the strong peak at 1363 cm$^{-1}$ is assigned to the C$_{pa}$-N single-bonded stretching. For CPT, the C≡N stretching is observed at 2328 cm$^{-1}$.

3.2.6 N-O vibrations
The N-O stretching vibration is observed at 1637 and 1574 cm$^{-1}$ for NPT.

3.3 13C and 1H NMR studies
The calculated values of 13C and 1H chemical shifts by B3LYP/6-311++G(d,p) method in the gas phase are summarized in Tables 5 and 6.

(Li and Zhang 2013) calculated the 13C and 1H chemical shifts of 2-dicyanovinyl-5-(4- methoxyphenyl) thiophene in the gas phase by B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p) method and the calculated results are good agreement with the experimental ones (Li and Zhang 2013). In order to have a comparison, we extend our study by employing B3LYP/6-311++G(2d,2p) method to calculated the 13C and 1H chemical shifts in the gas phase. It has been proved that the chemical shifts calculated by B3LYP/6-311++G(2d,2p) method are closer to the experimental values than those calculated by B3LYP/6-311++G(d,p) method (Li et al. 2011). It is noted that all the 13C and 1H chemical shifts are in there normal values for all the compounds. The 1H chemical shifts calculated by B3LYP/6-311++G(2d,2p) method have higher values than those calculated by B3LYP/6-311++G(d,p) method in the present study. For the thiophene ring, C3 has the highest chemical shifts in each compound, which may due to the substituting effects of the benzene moiety. The C9 in the benzene rings have the highest value of chemical shifts for FPT and NPT while that of CPT has the smallest, indicating the effect of the substituted groups at C9.

3.4 Mulliken charges
The atomic charge in the molecules is fundamental to chemistry. Mulliken atomic charges calculated at the
B3LYP/6-311++G(d,p) level are shown in Figure 4. It is noted from Figure 5 that the charge distribution of the aromatic skeleton is related with the substituted groups at C9. For example, the charge of C9 atom is -0.796 for FPT, -0.170 for NPT, and 2.113 for CPT. The sum charges of the substituted groups are -0.173 for FPT, -0.211 for NPT, and -1.82 for CPT, which indicates that cyano group has the highest electron-withdrawing effect. The charge values on S atom decrease from -0.439 to -0.475 from FPT to CPT. All the hydrogen atoms have a net positive charge.

Particularly, the charges on H2 and H5 atoms exhibit large positive values (0.275 and 0.265 for FPT, 0.277 and 0.273 for NPT, 0.279 and 0.273 for CPT). The presence of large negative charge on S atom and positive charge on H2 or H5 atom may suggest the formation of intramolecular interactions in the solid states.

3.5 Electronic spectra

To the best of our knowledge, no experimental UV–vis spectra of the title compounds is reported. Figure 5 display the calculated spectra of the title compounds at B3LYP/6-311++G(d,p) level. Tables 7, 8, 9 list the excitation energies of the Frontier orbitals and oscillator strengths of the optimized ground state geometries. At the B3LYP/6-311++G(d,p) level of theory the excitation bands of the title compounds are composed of mixed HOMO-n→LUMO + m excitations. Figure 6 compares contour plots of three highest occupied and three lowest
Figure 3 The theoretically FT-IR spectrum of the title compounds by B3LYP/6-311++G(d,p) methods.

Table 5 Calculated δ(cal) 13C chemical shifts of the title compounds

C	FPT 6-311++G(d,p)	FPT 6-311++G(2d,2p)	NPT 6-311++G(d,p)	NPT 6-311++G(2d,2p)	CPT 6-311++G(d,p)	CPT 6-311++G(2d,2p)
2	130.4	129.8	133.9	133.0	132.9	132.2
3	148.1	148.9	146.7	147.6	147.1	148.0
4	130.5	131.1	130.1	130.7	130.0	130.6
5	136.2	136.1	137.2	137.3	137.1	137.1
6	139.4	139.7	149.0	149.4	146.4	146.9
7	133.2	133.2	130.6	130.8	131.2	131.1
8	120.1	120.2	129.6	130.3	138.9	138.8
9	171.1	171.6	153.1	153.6	115.9	116.4
10	119.8	119.9	129.6	130.1	138.8	138.7
11	133.0	133.0	130.5	130.8	131.2	131.1

a C atom in cyano group for CPT.
unoccupied molecular orbitals (H-2 to H, L to L + 2; isovalue 0.02 e/a.u) that give rise to the transitions.

(4-fluorophenyl)thiophene (FPT) The S1-S5 bands of FPT are calculated at 265, 257, 243, 231, 229 nm. The nature of the strongest absorption band 257 nm (S0 → S2) is dominated by excitations from HOMO-2 → LUMO + 0, HOMO-0 → LUMO + 0, and HOMO-0 → LUMO + 1, which consist of n → π* and π → π* transitions (see Frontier orbitals in Figure 6). The oscillator strength of S0 →

Table 6 Calculated δ(cal) 13H chemical shifts of the title compounds

H	FPT 6-311++G(d,p)	FPT 6-311++G(2d,2p)	NPT 6-311++G(d,p)	NPT 6-311++G(2d,2p)	CPT 6-311++G(d,p)	CPT 6-311++G(2d,2p)
2	7.29	7.63	7.57	7.92	7.50	7.85
4	7.30	7.56	7.38	7.67	7.40	7.66
5	7.27	7.68	7.36	7.78	7.33	7.75
7	7.62	7.90	7.67	8.00	7.69	8.00
8	7.19	7.48	8.48	8.94	7.76	8.06
10	7.19	7.49	8.49	8.94	7.77	8.08
11	7.54	7.84	7.57	7.93	7.62	7.94

*The number of H are according to the number of the bonded carbon.

Figure 4 Atomic charges for optimized geometries of the title compounds at B3LYP/6-311++G(d,p) level.
S1 band is $f = 0.0383$, and the major excitation is HOMO-0 → LUMO + 1 (62%), which is assigned to the $n → π^*$ transition. The HOMO-LUMO gap is calculated to be 5.14 eV.

(4-nitrophenyl)thiophene (NPT) The S1-S5 bands of NPT are calculated at 344, 329, 310, 290, 288 nm, which shows red-shifted character compared with FPT. The nature of the strongest absorption band 344 nm (S0 → S1) is dominated by excitations from HOMO-0 → LUMO + 0 (94%), which consist of $π → π^*$ transitions (see Frontier orbitals in Figure 6). The HOMO-LUMO gap is calculated to be 3.961 eV, which is lower than that of FPT. It is reported that the molecules with nitro group can lower the band gaps, which has potential use in photovoltaic cells (Mikroyannidis et al. 2009).

(4-cyanophenyl)thiophene (CPT) The S1-S5 bands of CPT are calculated at 287, 268, 265, 237, 232 nm, which shows red-shifted character compared with FPT, and blue-shift compared with NPT. The nature of the strongest absorption band 287 nm (S0 → S1) is dominated by excitations from HOMO-0 → LUMO + 0 (96%), which consist of $n → π^*$ and $π → π^*$ transitions (see Frontier orbitals in Figure 6). The HOMO-LUMO gap is calculated to be 4.651 eV, which has the intermediate value among the three compounds.

4. Conclusions

In the present work, the optimized molecular structures, vibrational frequencies, NMR chemical shifts, and electronic properties of the three title compounds have been calculated by using B3LYP/6-31G(d), B3LYP/6-311++G (d,p) and TD-B3LYP/6-311++G(d,p) methods. The optimized geometries results show that FPT has the biggest values of dihedral angle while NPT has the smallest, which indicates that NPT has the highest $π$-conjugated structure. The vibrational frequencies values calculated

![Figure 5 Predicted UV–vis spectra of the title compounds at B3LYP/6-311++G(d,p) level.](image)

Table 7 B3LYP/6-311++G(d,p) wavelength, excitation energies, and the oscillator strengths for FPT

State	FPT	λ (nm)	eV	f	% contribution
S1	FPT	265.61	4.668	0.0383	H-2 → L + 0(7%), H-0 → L + 0(27%), H-0 → L + 1 (62%)
S2	FPT	257.41	4.817	0.2603	H-2 → L + 0(3%), H-0 → L + 0(68%), H-0 → L + 1(24%)
S3	FPT	243.84	5.985	0.0002	H-1 → L + 0(50%), H-0 → L + 2(45%)
S4	FPT	231.98	5.345	0.0070	H-1 → L + 0(5%), H-0 → L + 2(3%), H-0 → L + 3(78%)
S5	FPT	229.23	5.409	0.0104	H-2 → L + 0(8%), H-1 → L + 1(81%), H-0 → L + 3(4%)
Table 8 B3LYP/6-311++G(d,p) wavelength, excitation energies, and the oscillator strengths for NPT

State	NPT	λ (nm)	eV	f	% contribution
S1		344.39	3.600	0.3120	H-3 → L + 0(2%), H-0 → L + 0(96%)
S2		329.99	3.757	0.0085	H-3 → L + 0(91%), H-3 → L + 1(2%), H-0 → L + 0(2%)
S3		310.18	3.997	0.0793	H-1 → L + 0(98%)
S4		290.03	4.275	0.0077	H-5 → L + 0(29%), H-2 → L + 0(61%), H-0 → L + 1(2%)
		288.72	4.294	0.0042	H-5 → L + 0(66%), H-2 → L + 0(27%)

Table 9 B3LYP/6-311++G(d,p) wavelength, excitation energies, and the oscillator strengths for CPT

State	CPT	λ (nm)	eV	f	% contribution
S1		287.11	4.318	0.4520	H-0 → L + 0(94%)
S2		268.77	4.613	0.0590	H-2 → L + 0(10%), H-1 → L + 0(55%), H-0 → L + 1(33%)
S3		265.04	4.678	0.0735	H-2 → L + 0(20%), H-1 → L + 0(38%), H-0 → L + 1(34%)
		237.49	5.220	0.0137	H-3 → L + 0(5%), H-3 → L + 1(2%), H-2 → L + 0(21%)
		232.34	5.34	0.0512	H-3 → L + 0(6%), H-3 → L + 1(4%), H-2 → L + 0(13%)
		232.34	5.34	0.0512	H-1 → L + 1(40%), H-0 → L + 1(5%), H-0 → L + 2(29%)

Figure 6 Frontier molecular orbitals of FPT, NPT and CPT calculated at B3LYP/6-311++G(d,p)//TD- B3LYP/6-311++G(d,p).
with 6-311++G(d,p) basis set are smaller than that with 6-31G(d) basis set for all the compounds. For NPT, the strong peak at 1363 cm\(^{-1}\) is assigned to the C\(_p\)-N single-bonded stretching, and the N-O stretching vibration is observed at 1637 and 1574 cm\(^{-1}\). For CPT, the C≡N stretching is observed at 2328 cm\(^{-1}\). The C9 in the benzene rings have the highest value of chemical shifts for FPT and NPT while that of CPT has the smallest, indicating the effect of the substituted groups at C9.

CPT shows red-shifted character compared with FPT, and blue-shift compared with NPT in the TD-DFT calculations. In a word, the type of substituted groups at the C9 atom have significant effect on the properties for the 3-(4-phenylthiophene) derivatives. Poly(3-phenylthiophene) has been used reported for used in supercapacitors. The polymerization of the three title compounds are being studied by our group. We believe that the three title compounds will show good performance in supercapacitors.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
YMR carried out literature review, performed the theory analyses and drafted the manuscript. SY and XYJ participated in helped to draft the manuscript. All authors read and approved the final manuscript.

Acknowledgments
This work was supported financially by the Shenzhen Science and Technology Plan Projects (LCY20140419122040611, SGLH201310153555326, ZDSY201261914659791).

Received: 28 August 2014 Accepted: 18 November 2014
Published: 28 November 2014

References
Balaji G, Kale TS, Keerthi A, Della Pelle AM, Thayumanavan S, Valiyaveettil S (2011) Low band gap thiophene-pyrene dimide systems with tunable charge transport properties. Org Lett 13(1):118–21, doi:10.1021/ol102348E
Cao YM, Bai Y, Yu QJ, Cheng YM, Liu S, Shi D, Gao FF, Wang P (2009) Dye-sensitized solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)-[3,2-b]thiophene) films. J Am Chem Soc 134(14):6177–84, doi:10.1021/ja903345e
Castillo MV, Romano E, Raschi AB, Yurquina A, Brandan SA (2012) Structural study and vibrational spectra of 3-amino-2(4-chlorophenyl) quinazolin-4(3H)-one. J Phys Chem A 116(15):5260–9, doi:10.1021/jp2008672
Cicora F, Santoro C, Melucci M, Favaretto L, Gazzano M, Muccini M, Barbarella G (2006) Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv Mater 18(22):166–70, doi:10.1002/adma.200501639
Coffman FL, Cao R, Panetta PA, Kapoor S, Ciciroza F, Santato C, Melucci M, Favaretto L, Gazzano M, Muccini M, Barbarella G (2006) Organic light-emitting transistors based on solution-cast and vacuum-sublimed films of a rigid core thiophene oligomer. Adv Mater 18(22):166–70, doi:10.1002/adma.200501639

Gaussian 09, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scallan G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kida O, Nakai H, Vreven T et al (2009) Gaussian 09, Revision B.01. Gaussian, Inc, Wallingford CT
Giovanna B, Manuela M, Giovanna S (2005) The versatile thiophene: An overview of recent research on thiophene-based materials. Adv Mater 17(13):1581–1593, doi:10.1002/adma.200402020
Haddon RC (2001) Comment on the relationship of the pyramidalization angle at a conjugated carbon atom to the sigma bond angles. J Phys Chem A 105(16):4164–4165, doi:10.1021/jp010023f
Hara K, Kusahara M, Tanaka Y, Kasada C, Shigeno A, Suga S, Sayama K, Arakawa H (2003) Design of new coumarin dyes having thiophene moieties for highly efficient organic-dye-sensitized solar cells. New J Chem 27:783–785, doi:10.1039/b306564H
Hunt JH, Guyot-Sionnest P, Shen YR (1987) Observation of C-H stretch vibration of monolayers of molecules: optical sum-frequency generation. Chem Phys Lett 133(3):189–192, doi:10.1016/0009-2614(87)87049-5
Ikawa S, Whalley E (1996) Polarized and depolarized Raman spectra of liquid carbon disulfide in the pressure range 0–10 kbar. I. Vibration frequencies, C-S bond length, and Fermi resonance. J Phys Chem A 80:2538–2547, http://dx.doi.org/10.1021/jp9514501
Jacquemin D, Warheleth V, Perpete EA, Adamo C (2009) Extensive TD-DFT benchmark: Singlet-excited states of organic molecules. J Chem Theo Comput 5(9):2420–2435, doi:10.1021/ct900289e
Karthikeyan G, Sahoo S, Nayak GC, Das CK (2012) Investigation on doping of poly(3-methylthiophene) composites for supercapacitor applications. Macromolecular Res 20(4):351–357, doi:10.1007/s13233-012-0020-7
Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, Bradley DC, Giles MJ, McCulloch L, Ha CS (2006) A strong regiorandomity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Mater 5:197–203, doi:10.1038/nmat1574
Kline RJ, Mcgehee MD, Toney MF (2006) Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nature Mater 5:222–228, doi:10.1038/nmat1590
Li XH, Zhang ZX (2013) The spectroscopic, NMR analysis of 2-dicyanovinyl-5-(4- methoxycarbonyl)thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Funct Mater 23:785–791, doi:10.1002/adfm.201201058

Ogawa T, Komaba S, Fujihana K, Okamoto N, Momma T, Kaneko N (1997) Organic solar cells with a high absorptivity ruthenium sensitizer featuring a 2-(hexylthio)- [3,2-b]thiophene) films. J Am Chem Soc 129(34):10151–6, doi:10.1021/ja973399i
Osaka I, Sauve G, Zhang R, Kowalewski T, McCullough RD (2007) Novel electroluminescence device based on an electrodeposited poly(3-substituted thiophene) film. J Electrochem Soc 154(4):742–44, doi:10.1149/1.2387478
Osaka I, Sauve G, Zhang R, Kowalewski T, McCullough RD (2007) Novel thiophene-thiazolothiazole copolymers for organic field-effect transistors. Adv Mater 19(23):4160–4165, doi:10.1002/adma.200701058

References
