A simplified He’s frequency–amplitude formulation for nonlinear oscillators

Zi-Yin Ren

Abstract
Derived from an ancient Chinese algorithm, He’s frequency–amplitude formulation is an effective approach to finding an approximate solution of a nonlinear oscillator. In this article, based on He’s formulation, a simplified formulation is proposed. Some nonlinear oscillators are adopted as examples to demonstrate the solving process using this simplified formulation. Through the demonstration, it can be seen that the solving process is simplified.

Keywords
He’s frequency–amplitude formulation, ancient Chinese mathematics, nonlinear oscillators

Introduction
Nonlinear behaviours can be observed in plenty of real-world phenomena. And nonlinear oscillation has been a hot research topic for many years and involved in applications of different areas, such as automotive, sensing, fluid–solid interaction, aerospace, micro- and nano-scale and bioengineering. The significance of nonlinear oscillation theory has many reasons, such as developing new devices in micro- and nano-scales, analysing real-world cases with the consideration of non-linearity to better insight into the oscillatory devices, having uncertainties in the model parameters and improving the design of nonlinear microelectromechanical systems. Therefore, researchers from different fields have explored the nature of nonlinear oscillators for decades.

Currently, more and more analytical and approximate methods have been developed to find approximate solutions of nonlinear oscillators, for instance, He’s variational iteration method, the homotopy perturbation method, the variational method, the parameter-expanding method and other methods. Researchers worldwide have sought a concise and practical approach to solve various nonlinear oscillators for a long time.

In 2006, a Chinese mathematician, Prof. Ji-Huan He, suggested a simple approach to finding an approximate solution of a nonlinear oscillator in his review article. This method has been further developed in Refs. and is now named after Prof. He, called He’s frequency–amplitude formulation.

This formulation is famous for its accuracy and convenience: only a few calculations can result in an accurate solution for the whole solution domain. He’s frequency–amplitude formulation is derived from an ancient Chinese algorithm. In this article, we will review the ancient Chinese algorithm and He’s frequency–amplitude formulation. Furthermore, a simplified formulation will be proposed and demonstrated.

He’s Frequency–Amplitude Formulation
The oldest method of approximating the real roots of a nonlinear equation is suggested by chapter 7 of Nine Chapters (九章数学) in China. To illustrate the idea of this algorithm, we can start by considering the following equation
Let x_1 and x_2 be the approximate solutions of equation (1), which lead to the remainders $f(x_1)$ and $f(x_2)$ respectively, and the following result will be acquired through the ancient Chinese algorithm

$$x = x_2 f(x_1) - x_1 f(x_2) / f(x_1) - f(x_2)$$

Some application of this algorithm can be found in Refs. 31–35. The modern development of this algorithm led to the widely used He’s frequency–amplitude formulation.28–30

He’s frequency–amplitude formulation can be derived by considering a generalized nonlinear oscillator with initial conditions in the form

$$\mu'' + f(\mu) = 0, \quad \mu(0) = A, \quad \mu'(0) = 0$$

Then we can use two trial functions

$$\mu_1(t) = A \cos \omega_1 t$$

$$\mu_2(t) = A \cos \omega_2 t$$

which are respectively the solutions of the following equations

$$\mu'' + \omega_1^2 \mu = 0, \quad \mu(0) = A, \quad \mu'(0) = 0$$

$$\mu'' + \omega_2^2 \mu = 0, \quad \mu(0) = A, \quad \mu'(0) = 0$$

where ω_1 and ω_2 are the frequencies of the linear oscillators. And we will have the following remainders

$$R_1(t) = f(\mu_1) - \omega_1^2 A \cos \omega_1 t$$

$$R_2(t) = f(\mu_2) - \omega_2^2 A \cos \omega_2 t$$

Like the Chinese ancient algorithm, the approximate solution $\mu = A \cos \omega t$ can be denoted as the following equation

$$\mu = \frac{\mu_2 R_1(t) - \mu_1 R_2(t)}{R_1(t) - R_2(t)}$$

Expand the approximate solution $\mu = A \cos \omega t$ in a power series

$$\mu = A \cos \omega t = A \left(1 - \frac{1}{2!} \omega^2 t^2 + \frac{1}{4!} \omega^4 t^4 - \ldots\right)$$

In the same way, we will have

$$\mu_1 = A \cos \omega_1 t = A \left(1 - \frac{1}{2!} \omega_1^2 t^2 + \frac{1}{4!} \omega_1^4 t^4 - \ldots\right)$$

$$\mu_2 = A \cos \omega_2 t = A \left(1 - \frac{1}{2!} \omega_2^2 t^2 + \frac{1}{4!} \omega_2^4 t^4 - \ldots\right)$$

We can take the first three terms in the power series

$$\mu = A \cos \omega t = A \left(1 - \frac{1}{2!} \omega^2 t^2 + \frac{1}{4!} \omega^4 t^4\right)$$

and similarly

$$\mu_1 = A \cos \omega_1 t = A \left(1 - \frac{1}{2!} \omega_1^2 t^2 + \frac{1}{4!} \omega_1^4 t^4\right)$$
\[
\mu_2 = A \cos \omega_2 t = A \left(1 - \frac{1}{2!} \omega_2^2 t^2 + \frac{1}{4!} \omega_2^4 t^4 \right)
\] (16)

Then substituting equations (14)–(16) in equation (10)

\[
A - \frac{1}{2!} A^2 \omega^2 + \frac{1}{4!} A^4 \omega^4
\]

\[
= A - \frac{1}{2!} A^2 \left[\frac{\omega_2^2 R_1(t_1) - \omega_2^2 R_2(t_2)}{R_1(t_1) - R_2(t_2)} \right] + \frac{1}{4!} A^4 \left[\frac{\omega_4^2 R_1(t_1) - \omega_4^2 R_2(t_2)}{R_1(t_1) - R_2(t_2)} \right]
\] (17)

In the light of the terms of \(t^2 \), we will have

\[
\omega^2 = \frac{\omega_2^2 R_1(t_1) - \omega_2^2 R_2(t_2)}{R_1(t_1) - R_2(t_2)}
\] (18)

which has been used in many previous works.\(^{36-48}\)

In the light of the \(t^4 \) terms, we will have

\[
\omega^4 = \frac{\omega_4^2 R_1(t_1) - \omega_4^2 R_2(t_2)}{R_1(t_1) - R_2(t_2)}
\] (19)

which is also feasible in solving nonlinear oscillators.\(^{49}\) Besides, an alternative modification of He’s formulation has been proposed in Ref.\(^{50}\).

A Simplified Frequency–Amplitude Formulation

Inspired by the ancient Chinese algorithm (2), a simplified frequency–amplitude formulation can be envisaged. If we replace all \(\omega^2 \) in equation (18) with \(\omega \), the following formulation can be obtained

\[
\omega = \frac{\omega_2^2 R_1(t_1) - \omega_2^2 R_2(t_2)}{R_1(t_1) - R_2(t_2)}
\] (20)

which is very similar to equation (2).

In the following part of this article, we will use some simple examples to demonstrate the calculation process of using this formulation. Through the demonstration, hopefully, its efficiency and convenience can be shown.

Examples

We can consider the Duffing equation as an example

\[
\mu'' + \mu + \varepsilon \mu^3 = 0, \quad \mu(0) = A, \quad \mu'(0) = 0
\] (21)

Two trial functions can be chosen

\[
\mu_1(t) = A \cos t
\] (22)

\[
\mu_2(t) = A \cos \omega t
\] (23)

By substituting equations (22) and (23) in (21), the following two residuals can be obtained

\[
R_1(t_1) = \varepsilon A^3 \cos^3 t_1
\] (24)

\[
R_2(t_2) = \varepsilon A^3 \cos^3 \omega t_2 + (1 - \omega^2) A \cos \omega t_2
\] (25)

According to equation (20), the following approximate frequency can be obtained
\[
\omega = \frac{\omega R_1(t_1) - R_2(t_2)}{R_1(t_1) - R_2(t_2)} = \frac{\omega A^3 \cos^3 t_1 - \varepsilon A^3 \cos^3 \omega t_2 - (1 - \omega^2)A \cos \omega t_2}{\varepsilon A^3 \cos^3 t_1 - \varepsilon A^3 \cos^3 \omega t_2 - (1 - \omega^2)A \cos \omega t_2}
\]

Choosing the location where \(t_1 = t_2 = 0 \), we will have

\[
\omega = \frac{\omega A^3 - \varepsilon A^3 - (1 - \omega^2)A}{\varepsilon A^3 - \varepsilon A^3 - (1 - \omega^2)A} = \frac{(\omega - 1)\varepsilon A^3 + (\omega^2 - 1)A}{(\omega^2 - 1)A} = 1 + \frac{\varepsilon A^2}{1 + \omega}
\]

By rearranging equation (27), the following frequency–amplitude relationship can be obtained

\[
\omega^2 = 1 + \varepsilon A^2
\]

which is the same as the relationship in Ref. 28.

We can also consider the following nonlinear oscillator

\[
\frac{d^2 \mu}{dw^2} + \frac{1}{1 + \varepsilon A^2} = 0, \quad \mu(0) = A, \quad \mu'(0) = 0
\]

At last, a golden mean location where \(t_1 = T_1/12 \) and \(t_2 = T_2/12 \) can also be considered. According to equation (20), the following equation can be obtained

\[
\omega = \frac{\omega A^3 \cos^3 (\pi/6) - \varepsilon A^3 \cos^3 (\pi/6) - (1 - \omega^2)A \cos(\pi/6)}{\varepsilon A^3 \cos^3 (\pi/6) - \varepsilon A^3 \cos^3 (\pi/6) - (1 - \omega^2)A \cos(\pi/6)} = 1 + \frac{3\varepsilon A^2}{4(\omega + 1)}
\]

The result can be simplified as

\[
\omega^2 = \frac{3}{4}\varepsilon A^2 + 1
\]

which is the same as the result in Ref. 36.

Two trial solutions can be the same as equations (22) and (23). By substituting equations (22) and (23) in (33), we can get the following residuals

\[
R_1(t) = \frac{A \cos t}{1 + \varepsilon A^2 \cos^2 t} - A \cos t
\]

\[
R_2(t) = \frac{A \cos \omega t}{1 + \varepsilon A^2 \cos^2 \omega t} - A \omega^2 \cos \omega t
\]
When } t_1 = t_2 = 0 \), we will have
\[\omega^2 = \frac{1}{1 + \varepsilon A^2} \] (37)

When } t_1 = T_1/12 \) and } t_2 = T_2/12 \), we will have
\[\omega^2 = \frac{1}{1 + (3/4)\varepsilon A^2} \] (38)

When } t_1 = 0.0955T_1 \) and } t_2 = 0.0955T_2 \), we will have
\[\omega^2 = \frac{1}{1 + 0.6811\varepsilon A^2} \] (39)

These results are precisely the same as the results obtained in Ref. 37.

Conclusion

In this article, a simplified frequency–amplitude formulation has been proposed based on He’s frequency–amplitude formulation. This simplified formulation is more convenient and concise than He’s formulation and is feasible in practical applications. By applying the simplified formulation, the calculation process can be simplified without the loss of accuracy.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Zi-Yin Ren © https://orcid.org/0000-0001-7268-8914

References

1. Esmailzadeh E, Younesian D, and Askari H. Introduction. In: *Analytical methods in nonlinear oscillations: approaches and applications*. Dordrecht: Springer Netherlands, 2019, pp. 1–27. https://doi-org.manchester.idm.oclc.org/10.1007/978-94-024-1542-1_1
2. He J-H. Variational iteration method for autonomous ordinary differential systems. *Appl Math Comput* 2000; 114(2–3): 115–123. DOI: 10.1016/S0096-3003(99)00104-6.
3. He J-H. Variational iteration method – a kind of non-linear analytical technique: some examples. *Int J non-linear Mech* 1999; 34(4): 699–708. DOI: 10.1016/S0020-7462(98)00048-1.
4. He J-H, Anjum N and Skrzypacz PS. A variational principle for a nonlinear oscillator arising in the microelectromechanical system. *J Appl Comput Mech* 2021; 7(1): 78–83. DOI: 10.22055/JACM.2020.34847.2481.
5. He J-H, Qie N, and He C-H. Solitary waves travelling along an unsmooth boundary. *Results Phys* 2021; 24: 104104. DOI: 10.1016/j.rinp.2021.104104.
6. He J-H, Qie N, He C-H, et al. On a strong minimum condition of a fractal variational principle. *Appl Math Lett* 2021; 119: 107199. DOI: 10.1016/j.aml.2021.107199.
7. He J-H, Skrzypacz PS and Zhang Y. Approximate periodic solutions to microelectromechanical system oscillator subject to magnetostatic excitation. *Math Methods Appl Sci* 2020; 1–8. DOI: 10.1002/mma.7018.
8. Skrzypacz P, He J-H and Ellis G. A simple approximation of periodic solutions to microelectromechanical system model of oscillating parallel plate capacitor. *Math Methods Appl Sci* 2020; 1–8. DOI: 10.1002/mma.6898.
9. He J-H. Homotopy perturbation technique. *Comput Methods Appl Mech Eng* 1999; 178(3): 257–262. DOI: 10.1016/S0045-7825(99)00018-3.
10. He J-H. Homotopy perturbation method: a new nonlinear analytical technique. *Appl Math Comput* 2003; 135(1): 73–79. DOI: 10.1016/S0096-3003(01)00312-5.
11. He JH and El-Dib YO. The reducing rank method to solve third-order Duffing equation with the homotopy perturbation. *Numer Methods Partial Differ Equ* 2021; 37(2): 1800–1808. DOI: 10.1002/num.22609.

12. He J-H and El-Dib YO. Homotopy perturbation method for Fangzhu oscillator. *J Math Chem* 2020; 58(10): 2245–2253. DOI: 10.1007/s10910-020-01167-6.

13. He J-H and El-Dib YO. Periodic property of the time-fractional Kundu–Mukherjee–Naskar equation. *Results Phys* 2020; 19: 103345. DOI: 10.1016/j.rinp.2020.103345.

14. Ali M, Anjum N, Ain QT, et al. Homotopy perturbation method for the attachment oscillator arising in nanotechnology. *Fibers and Polymers* 2021; 22: 1–6. DOI: 10.1007/s12221-021-0844-x.

15. Anjum N and He J-H. Two modifications of the homotopy perturbation method for nonlinear oscillators. *J Appl Comput Mech* 2020; 6(Special Issue): 1420–1425. DOI: 10.22055/JACM.2020.34850.2482.

16. Anjum N and He J-H. Higher-order homotopy perturbation method for conservative nonlinear oscillators generally and micro-electromechanical systems’ oscillators particularly. *Int J Mod Phys B* 2020; 34(32): 2050313. DOI: 10.1142/S0217979220503130.

17. Anjum N and He J-H. Analysis of nonlinear vibration of nano/microelectromechanical system switch induced by electromagnetic force under zero initial conditions. *Alexandria Eng J* 2020; 59(6): 4343–4352. DOI: 10.1016/j.aej.2020.07.039.

18. Anjum N and He J-H. Nonlinear dynamic analysis of vibratory behavior of a graphene nano/microelectromechanical system. *Math Methods Appl Sci* 2020; 1–16. DOI: 10.1002/mma.6699.

19. Anjum N and He J-H. Homotopy perturbation method for N/MEMS oscillators. *Math Methods Appl Sci* 2020: 1–15. DOI: 10.1002/mma.6583.

20. Anjum N, He J-H, Ain QT, et al. Li-He’s modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system. *Facta Universitatis, Ser Mech Eng* 2021. DOI: 10.22190/FUME21012052A.

21. He J-H and El-dib YO. Homotopy perturbation method with three expansions. *J Math Chem* 2021; 59: 1139–1150. DOI: 10.1007/s10910-021-01237-3.

22. He J-H and El-Dib Y. The enhanced homotopy perturbation method for axial vibration of strings. *Facta Universitatis, Series: Mech Eng* 2021. DOI: 10.22190/FUME210125033H.

23. Nadeem M and He J-H. He-Laplace variational iteration method for solving the nonlinear equations arising in chemical kinetics and population dynamics. *J Math Chem* 2021; 59: 1234–1245. DOI: 10.1007/s10910-021-01236-4.

24. Nadeem M, He J-H, and Islam A. The homotopy perturbation method for fractional differential equations: part 1 Mohand transform. *Int J Numer Methods Heat Fluid Flow* 2021. DOI: 10.1108/HFF-11-2020-0703.

25. He J-H. Variational approach for nonlinear oscillators. *Chaos, Solitons & Fractals* 2007; 34(5): 1430–1439. DOI: 10.1016/j.chaos.2006.10.026.

26. Xu L. He’s parameter-expanding methods for strongly nonlinear oscillators. *J Comput Appl Math* 2007; 207(1): 148–154. DOI: 10.1016/j.cam.2006.07.020.

27. Xu L. Determination of limit cycle by He’s parameter-expanding method for strongly nonlinear oscillators. *J Sound Vibration* 2007; 302(1): 178–184. DOI: 10.1016/j.jsv.2006.11.011.

28. He J-H. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199. DOI: 10.1142/S0217979206033796.

29. He J-H. Comment on He’s frequency formulation for nonlinear oscillators. *Eur J Phys* 2008; 29: L19–L22. DOI: 10.1088/0143-0807/29/4/012.

30. He J-H. An improved amplitude-frequency formulation for nonlinear oscillators. *Int J Nonlinear Sci Numer Simulation* 2008; 9(2): 211–212. DOI: 10.1515/IJNSNS.2008.9.2.211.

31. Liu Y-Q and He J-H. On relationship between two ancient Chinese algorithms and their application to flash evaporation. *Results Phys* 2017; 7: 320–322. DOI: 10.1016/j.rinp.2016.12.047.

32. He C-H. A simple analytical approach to a nonlinear equation arising in porous catalyst. *Int J Numer Methods Heat Fluid Flow* 2017; 27(4): 861–866. DOI: 10.1108/HFF-03-2016-0129.

33. He C-H. An introduction to an ancient Chinese algorithm and its modification. *Int J Numer Methods Heat Fluid Flow* 2016; 26(8): 2486–2491. DOI: 10.1108/HFF-09-2015-0377.

34. He C-H and He J-H. Double trials method for nonlinear problems arising in heat transfer. *Therm Sci* 2011; 15(suppl. 1): 153–155. DOI: 10.2298/TSCI11S1153H.

35. Wang P, He C-H, Zhang Y, et al. Application of an ancient Chinese algorithm to stab performance of woven fabrics. *Therm Sci* 2016; 20: 819–822. DOI: 10.2298/TSCI603819W.

36. Geng L and Cai X-C. He’s frequency formulation for nonlinear oscillators. *Eur J Phys* 2007; 28(5): 923–931. DOI: 10.1088/0143-0807/28/5/016.

37. Ren Z-F and Gui W-K. He’s frequency formulation for nonlinear oscillators using a golden mean location. *Comput Math Appl* 2011; 61(8): 1987–1990. DOI: 10.1016/j.camwa.2010.08.047.
38. Zhao L. He’s frequency–amplitude formulation for nonlinear oscillators with an irrational force. *Comput Math Appl* 2009; 58(11): 2477–2479. DOI: 10.1016/j.camwa.2009.03.041.

39. Zhang H-L. Application of He’s amplitude–frequency formulation to a nonlinear oscillator with discontinuity. *Comput Math Appl* 2009; 58(11): 2197–2198. DOI: 10.1016/j.camwa.2009.03.018.

40. Ebaid AE. Analytical periodic solution to a generalized nonlinear oscillator: Application of He’s frequency-amplitude formulation. *Mech Res Commun* 2010; 37(1): 111–112. DOI: 10.1016/j.mechrescom.2009.10.002.

41. Younesian D, Askari H, Saadatnia Z, et al. Frequency analysis of strongly nonlinear generalized Duffing oscillators using He’s frequency–amplitude formulation and He’s energy balance method. *Comput Math Appl* 2010; 59(9): 3222–3228. DOI: 10.1016/j.camwa.2010.03.013.

42. Askari H, Saadatnia Z, Younesian D, et al. Approximate periodic solutions for the Helmholtz-Duffing equation. *Comput Math Appl* 2011; 62(10): 3894–3901. DOI: 10.1016/j.camwa.2011.09.042.

43. He C-H, Liu C, He J-H, et al. Low frequency property of a fractal vibration model for a concrete beam. *Fractals* 2021. DOI: 10.1142/S0218348X21501176.

44. He C-H, Liu C, He J-H, et al. Passive atmospheric water harvesting utilizing an ancient Chinese ink slab. *Facta Universitatis, Series: Mech Eng* 2020. DOI: 10.22190/FUME201203001H.

45. He C-H, Liu C and He J-H. A fractal model for the internal temperature response of a porous concrete. *Appl Comput Math* 2021; 20(2): 1871–1875.

46. He J-H, Hou W-F, Qie N, et al. Hamiltonian-based frequency-amplitude formulation for nonlinear oscillators. *Facta Universitatis, Ser Mech Eng* 2021. DOI: 10.22190/FUME201205002H.

47. He J-H, Kou S-J, He C-H, et al. Fractal oscillation and its frequency-amplitude property. *Fractals* 2021; 29(4): 2150105. DOI: 10.1142/S0218348X2150105X.

48. Tian D, He C-H and He J-H. Fractal pull-in stability theory for microelectromechanical systems. *Front Phys* 2021; 9: 145. DOI: 10.3389/fphy.2021.606011.

49. Ren Z-Y. The frequency-amplitude formulation with ω^4 for fast insight into a nonlinear oscillator. *Results Phys* 2018; 11: 1052–1053. DOI: 10.1016/j.rinp.2018.10.062.

50. Qie N, Houa W-F, Houa W-F, et al. The fastest insight into the large amplitude vibration of a string. *Rep Mech Eng* 2021; 2(1): 1–5. DOI: 10.31181/rme200102001q.