Note on the residue codes of self-dual \mathbb{Z}_4-codes having large minimum Lee weights

Masaaki Harada*

March 27, 2014

Abstract

It is shown that the residue code of a self-dual \mathbb{Z}_4-code of length $24k$ (resp. $24k + 8$) and minimum Lee weight $8k + 4$ or $8k + 2$ (resp. $8k + 8$ or $8k + 6$) is a binary extremal doubly even self-dual code for every positive integer k. A number of new self-dual \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10 are constructed using the above characterization.

1 Introduction

Self-dual codes are an important class of (linear) codes for both theoretical and practical reasons. It is a fundamental problem to classify self-dual codes of modest length and determine the largest minimum weight among self-dual codes of that length. Among self-dual \mathbb{Z}_4-codes, self-dual \mathbb{Z}_4-codes have been widely studied because such codes have nice applications to unimodular lattices and (non-linear) binary codes, where \mathbb{Z}_k denotes the ring of integers modulo k and k is a positive integer with $k \geq 2$. It is well known that the Nordstrom–Robinson, Kerdock and Preparata codes, which are some best known non-linear binary codes, can be constructed as the Gray images of some \mathbb{Z}_4-codes [8]. We emphasize that the Nordstrom–Robinson code can be

*Research Center for Pure and Applied Mathematics, Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan. email: mharada@m.tohoku.ac.jp. This work was partially carried out at Yamagata University.

1All codes in this note are linear unless otherwise noted.
constructed as the Gray image of the unique self-dual \mathbb{Z}_4-code of length 8 and minimum Lee weight 6. In this note, we pay attention to the minimum Lee weight from the viewpoint of a connection with the minimum distance of binary (non-linear) codes obtained as the Gray images. Rains [18] gave upper bounds on the minimum Lee weights $d_L(C)$ of self-dual \mathbb{Z}_4-codes C of length n. For even lengths $n = 24k + \ell$, the upper bounds are given as $d_L(C) \leq 8k + g(\ell)$, where $g(\ell)$ is given by the following table:

ℓ	0	2	4	6	8	10	12	14	16	18	20	22
$g(\ell)$	4	2	4	4	8	4	4	6	8	8	8	8

In this note, we study residue codes of self-dual \mathbb{Z}_4-codes having large minimum Lee weights. According to the above upper bounds, the minimum Lee weights of self-dual \mathbb{Z}_4-codes of lengths $24k$ and $24k + 8$ are at most $8k + 4$ and $8k + 8$, respectively. It is shown that the residue code of a self-dual \mathbb{Z}_4-code of length $24k$ and minimum Lee weight $8k + 4$ or $8k + 2$ is a binary extremal doubly even self-dual code of length $24k$ for every positive integer k. It is also shown that the residue code of a self-dual \mathbb{Z}_4-code of length $24k + 8$ and minimum Lee weight $8k + 8$ or $8k + 6$ is a binary extremal doubly even self-dual code of length $24k + 8$. As a consequence, we show that the minimum Lee weight of a self-dual \mathbb{Z}_4-code of length $24k$ (resp. $24k + 8$) is at most $8k$ (resp. $8k + 4$) for every integer $k \geq 154$ (resp. $k \geq 159$). A number of new self-dual \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10 are constructed using the above characterization. Some self-dual \mathbb{Z}_4-codes of length n and minimum Lee weight d_L are also constructed for the cases $(n, d_L) = (32, 14), (48, 18), (56, 18)$. Finally, we give a certain characterization of binary self-dual codes containing the residue codes of self-dual \mathbb{Z}_4-codes for some other lengths.

All computer calculations in this note were done by Magma [4].

2 Preliminaries

2.1 Self-dual \mathbb{Z}_4-codes

Let \mathbb{Z}_4 (= \{0, 1, 2, 3\}) denote the ring of integers modulo 4. A \mathbb{Z}_4-code C of length n is a \mathbb{Z}_4-submodule of \mathbb{Z}_4^n. Two \mathbb{Z}_4-codes are equivalent if one can be obtained from the other by permuting the coordinates and (if necessary) changing the signs of certain coordinates. The dual code C^\perp of C is defined
as $C^\perp = \{ x \in \mathbb{Z}_4^n | x \cdot y = 0 \text{ for all } y \in C \}$, where $x \cdot y$ is the standard inner product. A \mathbb{Z}_4-code C is self-dual if $C = C^\perp$. The Hamming weight $w_H(x)$, Lee weight $w_L(x)$ and Euclidean weight $w_E(x)$ of a codeword x of C are defined as $n_1(x) + n_2(x) + n_3(x)$, $n_1(x) + 2n_2(x) + n_3(x)$ and $n_1(x) + 4n_2(x) + n_3(x)$, respectively, where $n_i(x)$ is the number of components of x which are equal to i. The minimum Lee weight $d_L(C)$ (resp. minimum Euclidean weight $d_E(C)$) of C is the smallest Lee (resp. Euclidean) weight among all non-zero codewords of C. The residue code $C^{(i)}$ of C is the binary code defined as $C^{(i)} = \{ c \pmod{2} | c \in C \}$. If C is a self-dual \mathbb{Z}_4-code, then $C^{(i)}$ is doubly even [6].

The following characterization of the minimum Lee weights is useful.

Lemma 2.1 (Rains [17]). Let C be a self-dual \mathbb{Z}_4-code. Then $d(C^{(i)}) \leq d_L(C) \leq 2d(C^{(i)})$.

The Gray map ϕ is defined as a map from \mathbb{Z}_4^n to \mathbb{Z}_2^{2n} mapping (x_1, \ldots, x_n) to $(\varphi(x_1), \ldots, \varphi(x_n))$, where $\varphi(0) = (0, 0)$, $\varphi(1) = (0, 1)$, $\varphi(2) = (1, 1)$ and $\varphi(3) = (1, 0)$. The Gray image $\phi(C)$ of a \mathbb{Z}_4-code C needs not be linear. Let C be a self-dual \mathbb{Z}_4-code of length n and minimum Lee weight $d_L(C)$. Then the Gray image $\phi(C)$ has parameters $(2n, 2^n, d_L(C))$ (as a non-linear code).

A self-dual \mathbb{Z}_4-code which has the property that all Euclidean weights are divisible by eight, is called Type II. A self-dual \mathbb{Z}_4-code which is not Type II, is called Type I. A Type II \mathbb{Z}_4-code of length n exists if and only if $n \equiv 0 \pmod{8}$, while a Type I \mathbb{Z}_4-code exists for every length. It was shown in [3] that the minimum Euclidean weight $d_E(C)$ of a Type II \mathbb{Z}_4-code C of length n is bounded by $d_E(C) \leq 8\lfloor \frac{n}{24} \rfloor + 8$. A Type II \mathbb{Z}_4-code meeting this bound is called extremal. It was also shown in [19] that the minimum Euclidean weight $d_E(C)$ of a Type I \mathbb{Z}_4-code C of length n is bounded by $d_E(C) \leq 8\lfloor \frac{n}{24} \rfloor + 12$ if $n \equiv 23 \pmod{24}$, and $d_E(C) \leq 8\lfloor \frac{n}{24} \rfloor + 12$ if $n \equiv 23 \pmod{24}$.

2.2 Binary self-dual codes, covering radii and shadows

A binary code C is called self-dual if $C = C^\perp$, where C^\perp is the dual code of C under the standard inner product. Two binary self-dual codes C and C' are equivalent, denoted $C \cong C'$, if one can be obtained from the other by permuting the coordinates. A binary self-dual code C is doubly even if all codewords of C have weight divisible by four, and singly even if there is at least one codeword of weight congruent to 2 modulo 4. It is known that a binary self-dual code of length n exists if and only if n is even, and a binary
A doubly even self-dual code of length n exists if and only if $n \equiv 0 \pmod{8}$. The minimum weight $d(C)$ of a binary self-dual code C of length n is bounded by $d(C) \leq 4\lfloor \frac{n}{24} \rfloor + 6$ if $n \equiv 22 \pmod{24}$, $d \leq 4\lfloor \frac{n}{24} \rfloor + 4$ otherwise [14] and [16]. A binary self-dual code meeting the bound is called extremal.

The covering radius $R(C)$ of a binary code C is the smallest integer R such that spheres of radius R around codewords of C cover the space \mathbb{Z}_2^n. The covering radius is a basic and important geometric parameter of a code. A vector a of a coset U is called a coset leader of U if the weight of a is minimal in U and the weight of a coset U is defined as the weight of a coset leader. The covering radius is the same as the largest weight of all the coset leaders of the code (see [1]). The following bound is known as the Delsarte bound (see [1, Theorem 1]).

Lemma 2.2. Let C be a binary code. Then $R(C) \leq \#\{i > 0 \mid B_i \neq 0\}$, where B_i is the number of vectors of weight i in C^\perp.

Let C be a binary singly even self-dual code and let C_0 denote the subcode of codewords having weight congruent to 0 modulo 4. Then C_0 is a subcode of codimension 1. The shadow S of C is defined to be $C_0^\perp \setminus C$. Shadows were introduced by Conway and Sloane [5], in order to provide restrictions on the weight enumerators of singly even self-dual codes. A binary self-dual code meeting the following bound is called s-extremal.

Lemma 2.3 (Bachoc and Gaborit [2]). Let C be a binary self-dual code of length n and let S be the shadow of C. Let $d(C)$ and $d(S)$ denote the minimum weights of C and S, respectively. Then $d(S) \leq \frac{n}{2} + 4 - 2d(C)$, except in the case that $n \equiv 22 \pmod{24}$ and $d(C) = 4\lfloor \frac{n}{24} \rfloor + 6$, where $d(S) = \frac{n}{2} + 8 - 2d(C)$.

We end this section by proposing the following lemma, which is obtained from [13, Theorems 2.1 and 2.2].

Lemma 2.4. Let C be a binary self-orthogonal code of length n.

(i) If n is even, then there is a binary self-dual code containing C.

(ii) If $n \equiv 0 \pmod{8}$ and C is doubly even which is not self-dual, then there is a binary doubly even self-dual code containing C, and there is a binary singly even self-dual code containing C.

4
3 Characterization of the residue codes for lengths $24k$ and $24k + 8$

3.1 Length $24k$

As described in Section 1, the minimum Lee weight of a self-dual \mathbb{Z}_4-code of length $24k$ is at most $8k + 4$. In this subsection, we consider self-dual \mathbb{Z}_4-codes of length $24k$ and minimum Lee weight $8k + 4$ or $8k + 2$.

Theorem 3.1. Let C be a self-dual \mathbb{Z}_4-code of length $24k$. Suppose that the minimum Lee weight of C is $8k + 4$ or $8k + 2$. Then $C^{(1)}$ is a binary extremal doubly even self-dual code of length $24k$.

Proof. Since $C^{(1)}$ is doubly even, by Lemma 2.4, there is a binary doubly even self-dual code C satisfying that $C^{(1)} \subseteq C \subseteq C^{(1)\perp}$. Since C has minimum Lee weight $8k + 4$ (resp. $8k + 2$), by Lemma 2.1, $C^{(1)\perp}$ has minimum weight at least $4k + 2$ (resp. $4k + 1$). Hence, C is extremal.

Now consider the covering radius $R(C)$ of C. By Lemma 2.2, $R(C) \leq 4k$. Hence, if $C \subsetneq C^{(1)\perp}$, then the minimum weight of $C^{(1)\perp}$ is at most $4k$, which is a contradiction. Therefore, $C = C^{(1)}$. □

Remark 3.2. Recently, the nonexistence of a self-dual \mathbb{Z}_4-code of length 36 and minimum Lee weight 16 has been shown in [10]. This result can be directly obtained by the bound in [18], which is given in Section 1, however, the approach in [10] can be generalized to the following alternative proof of the above theorem. Suppose that $C^{(1)}$ is not self-dual. Since $C^{(1)}$ is doubly even, by Lemma 2.4, there is a binary singly even self-dual code C satisfying that $C^{(1)} \subseteq C \subsetneq C^{(1)\perp}$, where C_0 denotes the doubly even subcode of C. By Lemma 2.1, $C^{(1)\perp}$ has minimum weight at least $4k + 1$. By [16, Theorem 5], C has minimum weight $4k + 2$. By Lemma 2.3, the minimum weight of the shadow of a binary singly even self-dual $[24k, 12k, 4k + 2]$ code is at most $4k$, which is a contradiction. Hence, $C^{(1)}$ is self-dual, that is, $C^{(1)}$ is extremal. This completes the alternative proof.

Remark 3.3. For lengths up to 24, optimal self-dual \mathbb{Z}_4-codes with respect to the minimum Hamming and Lee weights were widely studied in [17]. At length 24, the above theorem follows from [17, Theorem 2 and Corollary 5].
For length 24\(k\), the only known binary extremal doubly even self-dual codes are the extended Golay code \(G_{24}\) and the extended quadratic residue code \(QR_{48}\) of length 48. The existence of a binary extremal doubly even self-dual code of length 72 is a long-standing open question. In addition, there is no binary extremal doubly even self-dual code of length 24\(k\) for \(k \geq 154\) \cite{[21]}. Hence, we immediately have the following:

Corollary 3.4. The minimum Lee weight of a self-dual \(Z_4\)-code of length 24\(k\) is at most 8\(k\) for every integer \(k \geq 154\).

3.2 Length 24\(k + 8\)

As described in Section 1, the minimum Lee weight of a self-dual \(Z_4\)-code of length 24\(k + 8\) is at most 8\(k + 8\). In this subsection, we consider self-dual \(Z_4\)-codes of length 24\(k + 8\) and minimum Lee weight 8\(k + 8\) or 8\(k + 6\).

Theorem 3.5. Let \(C\) be a self-dual \(Z_4\)-code of length 24\(k + 8\). Suppose that the minimum Lee weight of \(C\) is 8\(k + 8\) or 8\(k + 6\). Then \(C^{(1)}\) is a binary extremal doubly even self-dual code of length 24\(k + 8\).

Proof. Suppose that \(C^{(1)}\) is not self-dual. Since \(C^{(1)}\) is doubly even, by Lemma 2.4, there is a binary singly even self-dual code \(C\) satisfying that

\[
C^{(1)} \subseteq C_0 \subsetneq C \subsetneq C_0^\perp \subseteq C^{(1)}_0^\perp,
\]

where \(C_0\) denotes the doubly even subcode of \(C\). By Lemma 2.1, \(C^{(1)}_0^\perp\) has minimum weight at least 4\(k + 3\). Hence, \(C\) has minimum weight 4\(k + 4\). By Lemma 2.3, the minimum weight of the shadow of a binary singly even self-dual [24\(k + 8, 12k + 4, 4k + 4\)] code is at most 4\(k\), which is a contradiction. Hence, \(C^{(1)}\) is self-dual, that is, \(C^{(1)}\) is extremal.

Remark 3.6. (i) The case that the minimum Lee weight \(d_L(C)\) is 8\(k + 8\) follows immediately from \cite[Theorem 1]{[18]}.

(ii) The above theorem can be proved by a similar argument to the proof of Theorem 3.1.

Remark 3.7. Rains \cite[p. 148]{[18]} pointed out that by the linear programing \(d_L(C) \leq 8k + 6\) for \(k \leq 4\).
It is known that there is a binary extremal doubly even self-dual code of length $24k + 8$ for $k \leq 4$. In addition, since there is no binary extremal doubly even self-dual code of length $24k + 8$ for $k \geq 159$ [21], we immediately have the following:

Corollary 3.8. The minimum Lee weight of a self-dual \mathbb{Z}_4-code of length $24k + 8$ is at most $8k + 4$ for every integer $k \geq 159$.

4 Self-dual \mathbb{Z}_4-codes having large minimum Lee weights

By using the characterizations of the residue codes, which are given in the previous section, a number of self-dual \mathbb{Z}_4-codes having large minimum Lee weights are constructed in this section.

4.1 Double circulant and four-negacirculant codes

Throughout this note, let A^T denote the transpose of a matrix A and let I_k denote the identity matrix of order k. An $n \times n$ matrix is circulant and negacirculant if it has the following form:

$$
\begin{pmatrix}
 r_0 & r_1 & \cdots & r_{n-2} & r_{n-1} \\
 cr_{n-1} & r_0 & \cdots & r_{n-3} & r_{n-2} \\
 cr_{n-2} & cr_{n-1} & \cdots & r_{n-4} & r_{n-3} \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 cr_1 & cr_2 & \cdots & cr_{n-1} & r_0
\end{pmatrix},
$$

where $c = 1$ and -1, respectively. A \mathbb{Z}_4-code with generator matrix of the form:

$$
\begin{pmatrix}
 \alpha & \beta & \cdots & \beta \\
 \gamma & \vdots & \ddots & \gamma \\
 I_n & R
\end{pmatrix}
$$

(1)

is called a bordered double circulant \mathbb{Z}_4-code of length $2n$, where R is an $(n-1) \times (n-1)$ circulant matrix and $\alpha, \beta, \gamma \in \mathbb{Z}_4$. A \mathbb{Z}_4-code with generator
matrix of the form:

\[
\begin{pmatrix}
I_{2n} & A & B \\
-B^T & A^T & -B^T \\
\end{pmatrix}
\]

is called a four-negacirculant \(Z_4\)-code of length \(4n\), where \(A\) and \(B\) are \(n \times n\) negacirculant matrices.

Table 1: Bordered double circulant self-dual \(Z_4\)-codes

Length	Code	First row of \(R\)	\((\alpha, \beta, \gamma)\)	Type	\(d_L\)
24	\(D_{24,1}\)	(13103303222)	(0, 1, 1)	I	10
24	\(D_{24,2}\)	(01130332322)	(0, 1, 1)	I	10
24	\(D_{24,3}\)	(31030001332)	(0, 1, 1)	I	10
32	\(D_{32}\)	(002210100233312)	(0, 1, 1)	II	14
48	\(D_{48}\)	(11303312013230033212110)	(0, 1, 1)	II	18
56	\(D_{56,1}\)	(022000202022112232101111011)	(2, 1, 1)	II	18
56	\(D_{56,2}\)	(002200202002312010101111011)	(0, 1, 1)	I	18

By considering bordered double circulant codes and four-negacirculant codes, we found self-dual \(Z_4\)-codes of length \(24k\) and minimum Lee weight \(8k + 2\) \((k = 1, 2)\) and self-dual \(Z_4\)-codes of length 32 and minimum Lee weight 14. These codes were found under the condition that the residue codes are binary extremal doubly even self-dual codes, by Theorems 3.1 and 3.5. Self-dual \(Z_4\)-codes of length 56 and minimum Lee weight 18 were also found.

For bordered double circulant codes, the first rows of \(R\) and \((\alpha, \beta, \gamma)\) in Table 1 are listed in Table 1. For four-negacirculant codes, the first rows of \(A\) and \(B\) in Table 2 are listed in Table 2. The minimum Lee weights \(d_L\) determined by MAGMA are also listed. The 5th column in both tables indicates the Type of the code.

Table 2: Four-negacirculant self-dual \(Z_4\)-codes

Length	Code	First row of \(A\)	First row of \(B\)	Type	\(d_L\)
32	\(C_{32}\)	(22312012)	(03113022)	II	14
56	\(C_{56}\)	(11130213112212)	(30101110001000)	II	18
4.2 Length 24

For length 24, there are 13 self-dual \mathbb{Z}_4-codes having minimum Lee weight 12, up to equivalence [17, Theorem 11]. Note that these self-dual \mathbb{Z}_4-codes are extremal Type II \mathbb{Z}_4-codes [17, Theorem 9].

In this subsection, we consider self-dual \mathbb{Z}_4-codes having minimum Lee weight 10.

Lemma 4.1. Let C be a self-dual \mathbb{Z}_4-code of length 24 and minimum Lee weight 10. Then C is a Type I \mathbb{Z}_4-code having minimum Euclidean weight 12.

Proof. Let x be a codeword x of C with $\text{wt}_L(x) = 10$. Then

$$(n_1(x) + n_3(x), n_2(x)) = (10, 0), (8, 1), (6, 2), (4, 3), (2, 4), (0, 5).$$

By Theorem 3.1, $C^{(1)} \cong G_{24}$. Thus, $n_1(x) + n_3(x) = 8$ or $n_1(x) + n_3(x) = 0$. In addition, if $n_1(x) + n_3(x) = 0$, then $n_2(x) \equiv 0 \pmod{4}$ with $n_2(x) \geq 8$. This gives

$$(n_1(x) + n_3(x), n_2(x)) = (8, 1).$$

Hence, $\text{wt}_E(x) = 12$. Therefore, C is a Type I \mathbb{Z}_4-code having minimum Euclidean weight 12. \qed

We use the following method in order to verify that given two \mathbb{Z}_4-codes are inequivalent (see [7]). Let C be a self-dual \mathbb{Z}_4-code of length n. Let $M_t = (m_{ij})$ be the $A_t \times n$ matrix with rows composed of the codewords x with $\text{wt}_H(x) = t$ in C, where A_t denotes the number of such codewords. For an integer k ($1 \leq k \leq n$), let $n_t(j_1, \ldots, j_k)$ be the number of r ($1 \leq r \leq A_t$) such that all $m_{rj_1}, \ldots, m_{rj_k}$ are nonzero for $1 \leq j_1 < \ldots < j_k \leq n$. We consider the set

$$S_{t,k} = \{n_t(j_1, \ldots, j_k) \mid \text{for any distinct } k \text{ columns } j_1, \ldots, j_k \}.$$

In [7], the authors claimed that there are two inequivalent bordered double circulant Type I \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10. Unfortunately, this is not true. In fact, the number of such codes should be three not two. The codes $D_{24,i}$ ($i = 1, 2, 3$) given in Table 1 are bordered double circulant Type I \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10. In Table 3, we list $S_k = (\max(S_{9,k}), \min(S_{9,k}), \#S_{9,k})$ ($k = 1, 2, 3, 4$) for the codes. This table shows that the three codes $D_{24,1}, D_{24,2}, D_{24,3}$ are inequivalent.
Table 3: S_1, S_2, S_3, S_4 for $D_{24,1}$, $D_{24,2}$, $D_{24,3}$

Code	S_1	S_2	S_3	S_4
$D_{24,1}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(20, 0, 11)
$D_{24,2}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(18, 0, 10)
$D_{24,3}$	(352, 256, 2)	(128, 0, 5)	(48, 0, 11)	(16, 0, 9)

Proposition 4.2. There are three inequivalent bordered double circulant Type I \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10.

For a given binary doubly even code C of dimension k, there are $2^{k(k+1)/2}$ self-dual \mathbb{Z}_4-codes C with $C^{(1)} = C$, and an explicit method for construction of these $2^{k(k+1)/2}$ self-dual \mathbb{Z}_4-codes C with $C^{(1)} = C$ was given in [15, Section 3]. In our case, there are 2^{78} self-dual \mathbb{Z}_4-codes C with $C^{(1)} = G_{24}$, and it seems infeasible to find all such codes. Using the above method, we tried to construct many self-dual \mathbb{Z}_4-codes. Then we stopped our search after we found 57 self-dual \mathbb{Z}_4-codes having minimum Lee weight 10 satisfying that the 57 codes and the three codes in Table 3 have distinct $S_{9,k}$ ($k = 1, 2, 3, 4$). Hence, we have the following proposition.

Proposition 4.3. There are at least 60 inequivalent self-dual \mathbb{Z}_4-codes of length 24 and minimum Lee weight 10.

We denote the new codes by $C_{24,i}$ ($i = 1, 2, \ldots, 57$). In Figure 1 we list generator matrices for $C_{24,i}$, where we consider generator matrices in standard form (I_{12}, M_i) and only 12 rows in M_i are listed, to save space.

4.3 Lengths 32, 48, 56 and 80

The extended lifted quadratic residue \mathbb{Z}_4-code QR_{32} and the Reed–Muller \mathbb{Z}_4-code $QR.M(2, 5)$, which are given in [3, Table I], are self-dual \mathbb{Z}_4-codes of length 32 and minimum Lee weight 14. Both codes are extremal Type II \mathbb{Z}_4-codes [3]. It is known that $QR_{32}^{(1)}$ (resp. $QR.M(2, 5)^{(1)}$) is the extended quadratic residue code QR_{32} (resp. a second-order the Reed–Muller code $RM(2, 5)$) of length 32, which is a binary extremal doubly even self-dual code. The largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4-codes is listed in the table in [11] for length $8n$ ($n = 1, 2, \ldots, 8$).
According to the table, the largest minimum Lee weight for length 32 is 14. The code D_{32} in Table 2 is a Type II \mathbb{Z}_4-code of length 32 and minimum Lee weight 14, which gives an explicit example of such codes. In addition, the code C_{32} in Table 2 is a Type II \mathbb{Z}_4-code of length 32 and minimum Lee weight 14. We verified by Magma that $C_{32}^{(1)} \cong D_{32}^{(1)} \cong QR_{32}$. It is unknown whether the three codes are equivalent or not. There are five inequivalent binary extremal doubly even self-dual codes of length 32, two of which are QR_{32} and $RM(2, 5)$ (see [20, Table IV]). It is worthwhile to determine whether there is a self-dual \mathbb{Z}_4-code C having minimum Lee weight 14 with $C^{(1)} \cong C$ for each C of the remaining three codes.

The extended lifted quadratic residue \mathbb{Z}_4-code QR_{48} of length 48 is a self-dual \mathbb{Z}_4-code having minimum Lee weight 18, which is an extremal Type II \mathbb{Z}_4-code. This is the only known self-dual \mathbb{Z}_4-code of length 48 and minimum Lee weight at least 18. Of course, $QR_{48}^{(1)}$ is QR_{48}. According to the table in [11], the largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4-codes of length 48 is 18. The code D_{48} in Table 1 gives an explicit example of such codes. It is unknown whether D_{48} is equivalent to QR_{48} or not.

At length 56, under the condition that the residue code is a binary extremal doubly even self-dual code, we tried to construct a self-dual \mathbb{Z}_4-code having minimum Lee weight 20 or 22, but our search failed to do this. In this process, however, we found extremal Type II \mathbb{Z}_4-codes. The code C_{56} in Table 2 is a Type II \mathbb{Z}_4-code of length 56 and minimum Lee weight 18. Hence, C_{56} is extremal. According to the table in [11], the largest minimum Lee weight among bordered double circulant self-dual \mathbb{Z}_4-codes of length 56 is 18. The codes $D_{56,1}$ and $D_{56,2}$ in Table 1 give explicit examples of such codes. We verified by Magma that $D_{56,2}$ has minimum Euclidean weight 20. Since $D_{56,1}$ is Type II, $D_{56,1}$ is extremal. We verified by Magma that $C_{56}^{(1)}$ and $D_{56,1}^{(1)}$ have automorphism groups of orders 28 and 54, respectively. This shows that C_{56} and $D_{56,1}$ are inequivalent. An extremal Type II \mathbb{Z}_4-code of length 56 given in [9] has the residue code of dimension 14. Hence, we have the following:

Proposition 4.4. There are at least three inequivalent extremal Type II \mathbb{Z}_4-codes of length 56.

It is unknown whether there is a self-dual \mathbb{Z}_4-code having minimum Lee weight 20, 22 or not.
At length 80, the minimum Lee weight of the extended lifted quadratic residue \mathbb{Z}_4-code was determined in [12] as 26. It is unknown whether there is a self-dual \mathbb{Z}_4-code having minimum Lee weight 28, 30 or not.

5 Characterization of the residue codes for other lengths

Finally, in this section, we give a certain characterization of binary self-dual codes containing the residue codes $C^{(1)}$ of self-dual \mathbb{Z}_4-codes C of length $24k + \alpha$ for $\alpha = 2, 4, 6, 10, 14, 16, 18, 20, 22$.

Proposition 5.1. Let C be a self-dual \mathbb{Z}_4-code of length $24k + \alpha$ and minimum Lee weight $8k + \beta$, where $(\alpha, \beta) = (2, 2), (4, 4), (6, 4), (10, 4)$. Then any binary self-dual code C containing $C^{(1)}$ is an s-extremal self-dual code having minimum weight $4k + 2$.

Proof. Since all cases are similar, we only give the details for the case $(\alpha, \beta) = (6, 4)$. By Lemma 2.4, there is a binary self-dual code C satisfying that $C^{(1)} \subseteq C_0 \subset C \subset C_0^\perp \subset C^{(1)}$, where C_0 denotes the doubly even subcode of C. By Lemma 2.4, $C^{(1)}$ has minimum weight at least $4k + 2$. Hence, C has minimum weight $4k + 2$ or $4k + 4$.

Suppose that C has minimum weight $4k + 4$. By Lemma 2.3, the minimum weight of the shadow $C_0^\perp \setminus C$ of C is at most $4k - 1$, which contradicts the minimum weight of $C^{(1)}$. Now, suppose that C has minimum weight $4k + 2$. The weight of every vector of the shadow $C_0^\perp \setminus C$ is congruent to 3 modulo 4 [5]. Since C_0^\perp has minimum weight at least $4k + 2$, the shadow has minimum weight at least $4k + 3$. By Lemma 2.3, the minimum weight of the shadow $C_0^\perp \setminus C$ of C is at most $4k + 3$. Hence, C is s-extremal.

The situations in the following proposition are slightly different to that in the above proposition. However, a similar argument to the proof of the above proposition establishes the following proposition, and their proofs are omitted.

Proposition 5.2. Let C be a self-dual \mathbb{Z}_4-code of length $24k + \alpha$ and minimum Lee weight $8k + \beta$. Let C be a binary self-dual code containing $C^{(1)}$.

12
(i) Suppose that \((\alpha, \beta) = (14, 6), (18, 8), (20, 8)\). Then \(C\) is an \(s\)-extremal self-dual code having minimum weight \(4k + 4\).

(ii) Suppose that \((\alpha, \beta) = (16, 8)\). If \(C\) is singly even, then \(C\) is an \(s\)-extremal self-dual code having minimum weight \(4k + 4\). If \(C\) is doubly even, then \(C\) is extremal.

(iii) Suppose that \((\alpha, \beta) = (22, 8)\). Then \(C\) is an \(s\)-extremal self-dual code having minimum weight \(4k + 4\) or \(4k + 6\).

Acknowledgment. This work is supported by JSPS KAKENHI Grant Number 23340021.

References

[1] E.F. Assmus, Jr. and V. Pless, On the covering radius of extremal self-dual codes, *IEEE Trans. Inform. Theory* 29 (1983), 359–363.

[2] C. Bachoc and P. Gaborit, Designs and self-dual codes with long shadows, *J. Combin. Theory Ser. A* 105 (2004), 15–34.

[3] A. Bonnecaze, P. Solé, C. Bachoc and B. Mourrain, Type II codes over \(\mathbb{Z}_4\), *IEEE Trans. Inform. Theory* 43 (1997), 969–976.

[4] W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, *J. Symbolic Comput.* 24 (1997), 235–265.

[5] J.H. Conway and N.J.A. Sloane, A new upper bound on the minimal distance of self-dual codes, *IEEE Trans. Inform. Theory* 36 (1990), 1319–1333.

[6] J.H. Conway and N.J.A. Sloane, Self-dual codes over the integers modulo 4, *J. Combin. Theory Ser. A* 62 (1993), 30–45.

[7] T.A. Gulliver and M. Harada, Certain self-dual codes over \(\mathbb{Z}_4\) and the odd Leech lattice, *Lecture Notes in Comput. Sci.* 1255 (1997), 130–137.

[8] A.R. Hammons, Jr., P.V. Kumar, A.R. Calderbank, N.J.A. Sloane and P. Solé, The \(\mathbb{Z}_4\)-linearity of Kerdock, Preparata, Goethals and related codes, *IEEE Trans. Inform. Theory* 40 (1994), 301–319.
[9] M. Harada, Extremal type II \mathbb{Z}_4-codes of lengths 56 and 64, *J. Combin. Theory Ser. A* **117** (2010), 1285–1288.

[10] M. Kiermaier, There is no self-dual \mathbb{Z}_4-linear code whose Gray image has the parameters $(72, 2^{36}, 16)$, *IEEE Trans. Inform. Theory* **59** (2013), 3384–3386.

[11] M. Kiermaier and A. Wassermann, Double and bordered α-circulant self-dual codes over finite commutative chain rings, Proceedings of Eleventh Intern. Workshop on Alg. and Combin. Coding Theory, June, 2008, Pamporovo, Bulgaria, pp. 144–150.

[12] M. Kiermaier and A. Wassermann, Minimum weights and weight enumerators of \mathbb{Z}_4-linear quadratic residue codes, *IEEE Trans. Inform. Theory* **58** (2012), 4870–4883.

[13] F.J. MacWilliams, N.J.A. Sloane and J.G. Thompson, Good self dual codes exist, *Discrete Math.* **3** (1972), 153–162.

[14] C.L. Mallows and N.J.A. Sloane, An upper bound for self-dual codes, *Inform. Control* **22** (1973), 188–200.

[15] V. Pless, J. Leon and J. Fields, All \mathbb{Z}_4 codes of Type II and length 16 are known, *J. Combin. Theory Ser. A* **78** (1997), 32–50.

[16] E.M. Rains, Shadow bounds for self-dual codes, *IEEE Trans. Inform. Theory* **44** (1998), 134–139.

[17] E. Rains, Optimal self-dual codes over \mathbb{Z}_4, *Discrete Math.* **203** (1999), 215–228.

[18] E. Rains, Bounds for self-dual codes over \mathbb{Z}_4, *Finite Fields Appl.* **6** (2000), 146–163.

[19] E. Rains and N.J.A. Sloane, The shadow theory of modular and unimodular lattices, *J. Number Theory* **73** (1998), 359–389.

[20] E. Rains and N.J.A. Sloane, Self-dual codes, Handbook of Coding Theory, V.S. Pless and W.C. Huffman (Editors), Elsevier, Amsterdam, 1998, pp. 177–294.
[21] S. Zhang, On the nonexistence of extremal self-dual codes, *Discrete Appl. Math.* **91** (1999), 277–286.
| M_1: | 301203221111 131321121202 031330112300 023333033010 02011103321 301010131221 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| M_2: | 12021003313 313321321222 231310132322 001310313232 023333033010 02011103321 301010131221 |
| M_3: | 133223220310 301332220312 210111322321 102122333130 012012013113 110223412301, |
| M_4: | 130230213113 311121102120 011132101230 221312130320 323232130323 |
| M_5: | 13132003313 303332110320 203332130320 023333303303 023303230130, |
| M_6: | 131321102311 311121103202 231330112300 023333033010 02011103321 301010131221 |
| M_7: | 13102103131 313321101000 301310312300 203332130320 323232130323, |
| M_8: | 311102232300 32323302130 232313320211 322100131110 032203223331 31020132123, |
| M_9: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{10}: | 13102103131 313321101000 301310312300 203332130320 323232130323, |
| M_{11}: | 311222320111 310110123222 031112323222 023311230132 003201323301 31020132123, |
| M_{12}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{13}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{14}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{15}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{16}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{17}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{18}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{19}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |
| M_{20}: | 131120212311 131121301220 011232103201 221312130320 323232130323, |

Figure 1: New self-dual Z_4-codes of length 24 and $d_L = 10$.
Figure 1: New self-dual \mathbb{Z}_4-codes of length 24 and $d_L = 10$ (continued)
Figure 1: New self-dual \mathbb{Z}_4-codes of length 24 and $d_L = 10$ (continued)