Transmission of Antibiotic-Susceptible *Escherichia coli* Causing Urinary Tract Infections in a Fecal Microbiota Transplantation Recipient: Consequences for Donor Screening?

Karuna E. W. Vendrik,1,2,3 Tim G. J. de Meij,4 Arend Bökenkamp,5 Rogier E. Ooijevaar,2,6 Bas Groenewegen,1,2,7 Antoni P. A. Hendrickx,3 Elisabeth M. Terveer,1,2,7 Ed J. Kuijper,1,2,3,7 and Joffrey van Prehn 1,2,7,8

1Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands, 2Netherlands Donor Feces Bank, Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands, 3Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands, 4Department of Pediatrics, Amsterdam University Medical Centers, Emma Children’s Hospital, Amsterdam, The Netherlands, 5Department of Pediatric Nephrology, Amsterdam Medical Centers, Emma Children’s Hospital, Amsterdam, The Netherlands, 6Department of Gastroenterology and Hepatology, Amsterdam Medical Centers, location Vrije Universiteit University Medical Center, Amsterdam, The Netherlands, and 7Center for Microbiome Analyses and Therapeutics, Department of Medical Microbiology, Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands

Fecal microbiota transplantation (FMT) has been reported to decrease the incidence of recurrent urinary tract infections (UTIs), presumably by restoring microbiome diversity and/or uropathogen competition. We report a 16-year-old female with recurrent UTIs caused by multidrug-resistant *Klebsiella pneumoniae*, for which frequent intravenous broad-spectrum antibiotic treatment was necessary. The patient was treated with FMT from a well-screened healthy donor without multidrug-resistant bacteria in the feces. After FMT, she developed several UTIs with an antibiotic-susceptible *Escherichia coli* that could be treated orally. The uropathogenic *E. coli* could be cultured from donor feces, and whole genome sequencing confirmed donor-to-recipient transmission. Our observation should stimulate discussion on long-term follow-up of all infections after FMT and donor fecal screening for antibiotic-susceptible Enterobacteriales.

Keywords. fecal microbiota transplantation; FMT; MDRO; ESBL; uropathogen; urinary tract infection.

Fecal microbiota transplantation (FMT) is recommended for patients with multiple recurrent *Clostridoides difficile* infections. In these patients, FMT also seems to decrease the load of antimicrobial resistance genes and the phylum Proteobacteria (which includes Enterobacteriales) [1]. FMT has been explored for gut decolonization in patients with colonization and/or infections with multidrug-resistant organisms (MDROs). However, success rates for decolonization are heterogeneous while spontaneous decolonization has also been described [2, 3]. Recently, gut microbiome dysbiosis has been linked to recurrent urinary tract infections (UTIs) [4]. Several case reports and an observational study suggest that FMT may be an effective treatment to prevent recurrent UTIs [5–12].

Although FMT is generally considered safe, severe adverse events with transmission of multidrug-resistant *Escherichia coli* [13] and Shiga toxin–producing *E. coli* have been reported [14]. Consequently, the US Food and Drug Administration (FDA) issued safety warnings and recommends enhanced screening of donor stool. Here, we report a pediatric patient who underwent FMT because of recurrent MDRO UTIs and highlight transfer of a uropathogenic *E. coli* causing UTIs in the recipient.

CASE REPORT

An FMT was requested for a 16-year-old female with recurrent febrile UTIs and gut colonization with a multidrug-resistant (MDR) *Klebsiella pneumoniae*: extended-spectrum β-lactamase (ESBL)–producing, susceptible to fosfomycin, colistin, and meropenem, with variable susceptibility to nitrofurantoin. The medical history included familial holoprosencephaly, epilepsy, correction of scoliosis due to spasticity, cystic renal dysplasia, and feeding problems for which she had a percutaneous endoscopic gastrostomy tube. The past 2 years she had been regularly admitted for intravenous (IV) meropenem treatment for, on average, 1 UTI every 1–2 months.
Other treatments included oral fosfomycin and intravesical gentamicin administration, yet without sustained response. The MDR K. pneumoniae was repeatedly isolated from urine, perineal swabs, and feces. While urine culture was negative directly following meropenem, fecal cultures were positive for K. pneumoniae, suggesting bacterial translocation from the gut via ascension in the urinary tract as underlying mechanism for the recurrent UTIs. However, the patient also had dysfunctional voiding as a possible contributing factor to recurrences, due to severe psychomotor retardation. No signs of focal infection were demonstrated on repeated ultrasound of the kidneys.

The UTIs led to renal scarring documented by DMSA (dimercaptosuccinic acid) scan. Multiple prolonged admissions for IV antibiotic therapy had a profound impact on the quality of life of the patient and her family. Two courses of meropenem within 1 month prompted a request for FMT via the compassionate use program of the Netherlands Donor Feces Bank (NDFB) to attempt gut decolonization and/or decrease the frequency of recurrent UTIs with the MDR K. pneumoniae. With no viable alternative treatment option left, the multidisciplinary NDFB working group deemed the patient eligible for FMT. Informed consent was obtained from the parents.

The patient received the FMT (198 mL, prepared from 60 g of feces) via an endoscopically placed duodenal tube under general anesthesia. Prior to FMT, a gram-negative gut decolonization scheme with polymyxin/neomycin 500 000 international units/125 mg orally 4 times daily combined with nitrofurantoin 100 mg orally twice daily was given for 4 days and stopped 24 hours pre-FMT. One day prior to FMT, 2 L of macrogol/electrolytes was administered via the percutaneous endoscopic gastrostomy tube. No complications occurred during the FMT procedure.

The clinical course is summarized in Figure 1. One month post-FMT, the patient was admitted with pyelonephritis caused by an amoxicillin/clavulanic acid–susceptible E. coli. After empiric meropenem treatment for 3 days (pending urinary culture results), she was discharged with amoxicillin/clavulanic acid orally (7 days). Three months post-FMT, a second episode of E. coli pyelonephritis was treated ambulatory with ciprofloxacin (14 days), though a perineal swab revealed return of the MDR K. pneumoniae. At 4 months, a Klebsiella pyelonephritis required IV meropenem (10 days). At 5 months, a suspected UTI was treated empirically with IV meropenem (1 day), but this was switched to fosfomycin (10 days) when deemed uncomplicated. At 11 months, pyelonephritis due to a ciprofloxacin- and amoxicillin/clavulanic acid–resistant E. coli was treated with IV meropenem. At 14 months, asymptomatic bacteriuria with the MDR K. pneumoniae was not treated.

MICROBIOLOGICAL ANALYSIS

We hypothesized that the E. coli associated with 3 UTI episodes post-FMT had been transmitted via donor feces. Feces from donor and patient were examined for the presence of antibiotic-susceptible and MDR Enterobacterales. Of the patient, 2 pre-FMT fecal samples were available: before (day FMT –4) and after (day FMT –1) antibiotic pretreatment, and 3 samples after FMT: 1, 8, and 17 months post-FMT. In addition, 2 different E. coli isolates cultured from a urine sample 3 weeks post-FMT were available: 1 ciprofloxacin-susceptible and 1 ciprofloxacin-resistant E. coli (minimum inhibitory concentration [MIC] ≤25 mg/L and 1 mg/L, respectively). Both E. coli isolates were resistant to trimethoprim-sulfamethoxazole (TMP-SMX) (MIC >320 mg/L) and susceptible to amoxicillin/clavulanic acid (MIC ≤2 mg/L).

Culture

Raw feces aliquots were stored at −80°C. After thawing at room temperature, 10 µL was cultured with enrichment broth with subsequent plating on growth media, as previously described [15]. Colonies morphologically suspect for Enterobacterales were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (Microflex, Bruker Daltonik, Bremen, Germany). Susceptibility testing was performed with the VITEK2 system (bioMérieux; Marcy-l’Étoile, France) using European Committee on Antimicrobial Susceptibility Testing breakpoints. ESBL production was confirmed using the double disk method.

The donor feces contained an E. coli with a similar antimicrobial resistance pattern as the E. coli detected in the patient’s urine, resistant to TMP-SMX (MIC ≥320 mg/L) with a ciprofloxacin MIC of 0.5 mg/L. Additionally, a TMP-SMX–susceptible E. coli, a non-MDR K. pneumoniae, and Enterobacter cloacae were cultured from the donor feces.

In the pre-FMT feces sample of the patient before antibiotic pretreatment (day FMT –4), the MDR K. pneumoniae was detected, in contrast to the sample after antibiotic pretreatment (day FMT –1). The MDR K. pneumoniae was again cultured from feces 1 month and 17 months post-FMT, but not at 8 months. The pre-FMT fecal sample and all post-FMT fecal samples of the patient were negative for the presence of the antibiotic-susceptible E. coli.

Whole Genome Sequencing

Whole genome sequencing (WGS) of E. coli isolates from the donor feces (n = 2, D1 and D2) and clinical patient urine sample (n = 2, P1 and P2) was performed to assess the relatedness between the strains and the presence of urovirulence factors and antibiotic resistance genes. DNA isolation and sequencing were performed as previously described [15].

The 4 E. coli isolates belonged to multilocus sequence typing (MLST) sequence type 69 and differed with a maximum of 4 alleles based on an in-house whole genome MLST scheme (comprising 4503 genes) of the Dutch National Institute for Public Health and the Environment (RIVM).
This indicates clonal relationship since the cluster cut-off was established at \(\leq 25 \) alleles. Single-nucleotide polymorphism (SNP) analysis using CLC Genomics workbench version 22 resulted in a maximum difference of 6 SNPs. The isolates formed a separate cluster when compared with MDR \(E. coli \) isolates from the national database of the RIVM, and belonged to Clermont phylotype D, which is associated with uropathogenicity [17]. Thirteen putative uro-virulence factors (PUFs) and 8 additional urovirulence factors were identified (see Supplementary Table 1). Results of genomic antibiotic resistance analysis with the ResFinder database are shown in Table 1.

Figure 1. Clinical course of a patient who underwent fecal microbiota transplantation (FMT) for recurrent urinary tract infections (UTIs). Red bars indicate UTIs with positive urine cultures with multidrug-resistant (MDR) \(K. pneumoniae \) for which antibiotic treatment was given, blue bars indicate positive urine cultures with MDR \(K. pneumoniae \) that were not treated, and green bars indicate positive urine cultures with \(E. coli \) that were treated. Abbreviations: ABx, antibiotic treatment; FMT, fecal microbiota transplantation; M, months relative to transplant; UTI, urinary tract infection.

[16]
In addition, WGS was performed on K. pneumoniae isolates cultured from patient feces pre-FMT (P3) and 1 month post-FMT (P4), and clinical K. pneumoniae isolates cultured from urine pre-FMT (P5 and P6) and from a perineal swab 3 months post-FMT (P7). Core genome MLST analysis with Ridom SeqSphere+ indicated clonal relationship of the K. pneumoniae isolates: all isolates belonged to sequence type 307 with a maximum number of 5 alleles’ difference.

Microbiota Analysis

Microbiota analysis was performed by 16S ribosomal RNA (rRNA) gene amplicon sequencing. After DNA extraction from fecal samples, the 16S rRNA gene was amplified by polymerase chain reaction (PCR). The PCR products (amplicons) were then sequenced. Next, the sequences were assigned to bacterial species at the genus level (eg, Klebsiella or Escherichia/Shigella). The protocol for DNA extraction from feces and control samples and the protocol for microbiota analysis are described in the Supplementary Data. Results are shown in Figure 2A and 2B. Before FMT, the order Enterobacterales was abundant in the recipient’s feces, but was reduced after antibiotic gram-negative decolonization and FMT. Eight months post-FMT, there was a notable increase in the genus Akkermansia. The genus Klebsiella could not be identified in the donor feces or any of the patient samples with this technique.

DISCUSSION

A pediatric patient underwent FMT to treat intestinal colonization and multiple recurrent febrile UTIs with MDR K. pneumoniae. The assumed source of the recurrent K. pneumoniae infections was the gut, illustrated by positive fecal cultures after UTI treatment. Reinfection due to infected renal cysts cannot be excluded. However, after FMT, 3 UTIs with E. coli were diagnosed, counterarguing the latter. The E. coli could not be cultured from post-FMT fecal patient samples. However, WGS analysis showed that donor and patient E. coli (from urine) were genetically identical, confirming FMT transmission of E. coli from donor to patient. WGS suggested uropathogenicity of the E. coli by assignment to Clermont phylotype D and the presence of PUFs and additional urovirulence factors.

Antimicrobial Resistance Gene	Donor Escherichia coli	Patient Escherichia coli
aadA5	X	X
dfrA17	X	X
mdr(A)	X	X
mph(A)	X	X
gacE	X	X
qnrB19	X	X
sipABCD	X	X
sul1	X	X

In 1 donor isolate (D1), only fluoroquinolone resistance (qnrB19), multidrug efflux pump (mdr(A)), and hydroxide peroxide resistance (sipABCD) genes were detected. These genes were also detected in donor isolate D2 and patient isolates P1 and P2, with additional presence of genes for antiseptic (gacE), macrolides (mph(A)), aminoglycosides (aadA5), trimethoprim (dfrA17), and sulfonamide (sul1) resistance. Abbreviation: X, gene present.

Figure 2. Microbiota composition of donor and patient samples at different sampling timepoints, at the phylum level (A) and the genus level (B). Abbreviations: FMT, fecal microbiota transplantation; T1, 4 days pre-FMT; T2, 1 day pre-FMT; T3, 1 month post-FMT; T4, 8 months post-FMT; T5, 17 months post-FMT.
Three months after FMT, the MDR *K. pneumoniae* re-
curred in a perineal screening culture: WGS analysis confirmed
that this *K. pneumoniae* was genetically identical to the ones
causing UTIs before FMT.

We hypothesize that the *K. pneumoniae* was temporarily
suppressed under the threshold of microbiological detection
by the gram-negative gut decolonization (enteral) antibiotics
and possibly FMT, but we cannot rule out recolonization from
the environment or from a body niche other than the
gut. Although FMT was ineffective for resolving recurrent
UTIs by MDR *K. pneumoniae* and decolonization in the long
term, several *E. coli* UTIs after FMT could be successfully treated
with oral antibiotics. Our observation confirms that micro-
bacteria manipulation has the potential to influence the course of
recurrent UTIs. Like Tariq et al, we hypothesize that the course
of recurrent UTIs may be changed due to competition and
enhanced colonization resistance after the introduction of the
donor microbiota [12]. The genus *Escherichia/Shigella* was de-
tected in low relative abundance (<0.02%) by 16S microbiome
analysis in patient feces post-FMT and *Klebsiella* could not
be identified at all, possibly due to presence below the level of
detection. High abundance of *Akkermansia* in 1 post-FMT
sample might have been the result of broad-spectrum antibiotic
use, though fluctuations in absence of antibiotic treatment have
also been observed [19]. Antibiotic use post-FMT might also
have influenced the restored state of microbiome colonization
resistance, allowing for the return of MDRO UTIs.

FMT as a treatment strategy for intestinal eradication of
MDROs in pediatric patients has not been previously described
in the literature. Here, feces from an adult donor was used. At
present, we have no data on whether using feces from a pediat-
tric or adult donor leads to more favorable results. Likewise, the
optimal route of FMT administration for this indication is cur-
rently unknown.

Previous reports and FDA warnings underline that screening
of feces donors via risk assessments and fecal and blood analy-
eses are important to prevent infectious complications [13–15].
The FDA reports focus on MDROs and enteropathogens; how-
ever, the decision on which pathogens to screen for is challeng-
ing, since translocation of antibiotic-susceptible bacterial gut
commensals (including uropathogens) that may be present in
both patient and donor may cause infections under specific pa-
tient conditions. Not only the presence but also the abundance
of certain gut bacteria may be of importance [20]. Furthermore,
although many PUFs are described, a clear molecular definition
is lacking [18, 21]. Many Enterobacterales contain PUFs, some-
times more abundantly in strains not associated with UTI [18].
Since donor feces screening currently does not include screen-
ing for antibiotic-susceptible *E. coli* and other Enterobacterales,
our observation should stimulate more intensive surveillance of
post-FMT infections. The exclusion of donor stool based on the
mere presence of (antibiotic-susceptible) *E. coli* is likely not
feasible, as we anticipate that many donations would be exclud-
ed, with a subsequent impact on donor feces availability and
economic feasibility of donor stool programs. The consequenc-
es for donor feces screening should be the topic of further
studies to enhance FMT safety. Ultimately, standardized prep-
paration of live biotherapeutic products may overcome many of
these safety issues.

Supplementary Data

Supplementary materials are available at Open Forum Infectious Diseases online. Consisting of data provided by the authors to benefit the reader, the posted materials are not copyedited and are the sole responsibility of the authors, so questions or comments should be addressed to the correspond-
ing author.

Notes

Author contributions. E. M. T., E. J. K., T. G. J. M., A. B., and
J. P. conceived the study. K. E. V. and J. P. drafted the manuscript. All au-
thors were involved in data acquisition, analysis, or interpretation, and all
authors critically reviewed, revised, and approved the manuscript.

Acknowledgments. The authors thank Rosa van Mansfeld for providing
clinical bacterial isolates; Margriet Kraakman for assisting with cgMLST
analysis; Eric Berssenbrugge for his contribution to the processing of fecal sam-
ple and the storage of Netherlands Donor Feces Bank (NDFB) materials; and
Emilie van Lingen for her contribution to the Compassionate Use Program of
the NDFB. We also thank the NDFB study group, which consists of Elisabeth
M. Terveer, Ed J. Kuiper, Joffrey van Pehn, Vlada Bekker-Chernova, Karuna
E. W. Vendrik, and Eline Boeije-Koppenol (Department of Medical
Microbiology, Center for Infectious Diseases, Leiden University Medical
Center, Leiden, The Netherlands); Yvette van Beurden, Rogier Ooijevaar,
and Chris J. J. Mulder (Department of Gastroenterology and Hepatology,
Amsterdam University Medical Centers, Vrije Universiteit [VU] University
Medical Center, Amsterdam, The Netherlands); Merel M. C. Lambrechts
(Department of Internal Medicine, Leiden University Medical Center,
Leiden, The Netherlands); Els van Nood (Department of Internal Medicine,
Erasmus Medical Center, Rotterdam, The Netherlands); Abraham Goorhuis
(Department of Internal Medicine, Amsterdam University Medical Centers,
Amsterdam Medical Center, Amsterdam, The Netherlands); Marcel G. W. Dijkgraaf
(Clinical Research Unit, Amsterdam University Medical Centers,
Amsterdam, The Netherlands); Christina M. J. E. Vandenbroucke-Grauls
(Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam, The Netherlands); Hein W. Verspaget (Department of
Biobanking and Gastroenterology, Leiden University Medical Center,
Leiden, The Netherlands); and Emilie van Lingen and Josbert J. Keller
(Department of Gastroenterology, Haaglanden Medical Center, Den Haag,
The Netherlands).

Ethics statement. This study was approved by the Medical Ethics Review
Committee of Leiden University Medical Center (P15.154).

Data availability. Raw sequence data of the bacterial isolates described
in the article can be found in the European Nucleotide Archive (project ac-
cession number PRJEB53460).

Financial support. The NDFB has received an unrestricted research
grant from Vedanta Biosciences (Cambridge, Massachusetts). There was
no specific funding for this study.

Potential conflicts of interest. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential
Conflicts of Interest. Conflicts that the editors consider relevant to the con-
tent of the manuscript have been disclosed.

References

1. Millan B, Park H, Hotte N, et al. Fecal microbial transplants reduce
antibiotic-resistant genes in patients with recurrent *Clostridium difficile* infection.
Clin Infect Dis 2016; 62:1479–86. doi:10.1093/cid/ciw185
2. Huttner BD, de Lastours V, Wassenberg M, et al. A 5-day course of oral antibiotics to eradicate multidrug-resistant Enterobacteriaceae from the human intestinal tract. Clin Microbiol Infect 2019; 25:786–9. doi:10.1016/j.cmi.2019.03.025

3. Huttner BD, de Lastours V, Wassenberg M, et al. A 5-day course of oral antibiotics followed by faecal transplantation to eradicate carriage of multidrug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect 2019; 25:830–8. doi:10.1016/j.cmi.2018.12.009

4. Worby CJ, Schreiber HLT, Straub TJ, et al. Longitudinal multi-omics analyses link gut microbiome dysbiosis with recurrent urinary tract infections in women. Nat Microbiol 2022; 7:630–9. doi:10.1038/s41564-022-01107-x

5. Stalenhoef JE, Terveer EM, Knetsch CW, et al. Fecal microbiota transfer for the treatment of refractory recurrent urinary tract infection. Obstet Gynecol 2020; 136:771–3. doi:10.1097/AOG.0000000000004052

6. Aira A, Rubio E, Vergara Gómez A, et al. rUTI resolution after FMT for Clostridium difficile infection: a retrospective cohort study. Clin Infect Dis 2021; 6:ofz398. doi:10.1093/cid/ciaa1486

7. Grosen AK, Povlsen JV, Lemming LE, Jørgensen SMD, Dahlerup JF, Hvas CL. Faecal microbiota transplantation eradicated extended-spectrum beta-lactamase–producing Klebsiella pneumoniae from a renal transplant recipient with recurrent urinary tract infections. Case Rep Nephrol Dial 2019; 5:ofy016. doi:10.1093/ofid/ofy016

8. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the phylogenetic group. Appl Environ Microb 2000; 66:4555–8. doi:10.1128/AEM.66.10.4555-4558.2000

9. DeFilipp Z, Bloom PP, Torres Soto M, et al. Drug-resistant Enterobacteriaceae: a randomized clinical trial. Clin Microbiol Infect 2017; 23:871–4. doi:10.1016/j.cmi.2017.03.016

10. Hocquart M, Pham T, Kuete E, Tomei E, Lagier JC, Raoult D. Successful fecal microbiota transplantation for recurrent Clostridium difficile infection and transmission via fecal microbiota transplant. N Engl J Med 2019; 381:2043–50. doi:10.1056/NEJMoa1910437

11. Zellmer C, Sater MRA, Huntley MH, Osman M, Olesen SW, Ramakrishna B. Shiga toxin-producing Escherichia coli transmission via fecal microbiota transplantation. Clin Infect Dis 2021; 72:EB76–80. doi:10.1093/cid/ciaa1486

12. Stewardson AJ, Gaia N, Francois P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infect 2015; 21:344.e1–11. doi:10.1016/j.cmi.2014.11.016

13. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microb 2000; 66:4555–8. doi:10.1128/AEM.66.10.4555-4558.2000

14. Hendrickx APA, Landman F, de Haan A, et al. blacXXA-like genome architecture among carbapenemase-producing Escherichia coli and Klebsiella pneumoniae in the Netherlands. Microb Genom 2021; 7:000512. doi:10.1099/mgen.0.000512

15. Schreiber HLT, Conover MS, Chou WC, et al. Bacterial virulence phenotypes of Clostridium difficile and host susceptibility determine risk for urinary tract infections. Sci Transl Med 2017; 9:eaal283. doi:10.1126/scitranslmed.aal283

16. Clermont O, Bonacorsi S, Bingen E. Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microb 2000; 66:4555–8. doi:10.1128/AEM.66.10.4555-4558.2000

17. Stewardson AJ, Gaia N, Francois P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. Clin Microbiol Infect 2015; 21:344.e1–11. doi:10.1016/j.cmi.2014.11.016

18. Stewardson AJ, Gaia N, Francois P, et al. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: a culture-free analysis of gut microbiota. ClinMicrobiol Infect 2015; 21:344.e1–11. doi:10.1016/j.cmi.2014.11.016

19. Tariq R, Pardi DS, Tosh PK, Walker RC, Razonable RR, Khanna S. Fecal microbiota transplantation for recurrent Clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis 2017; 65:1745–7. doi:10.1093/cid/ciaa618

20. Tariq R, Pardi DS, Tosh PK, Walker RC, Razonable RR, Khanna S. Fecal microbiota transplantation for recurrent Clostridium difficile infection reduces recurrent urinary tract infection frequency. Clin Infect Dis 2017; 65:1745–7. doi:10.1093/cid/ciaa618

21. Spurbeck RR, Dinh PC Jr, Walk ST, et al. Escherichia coli isolates that carry yfcV efficiently colonize the urinary tract. Infect Immun 2012; 80:4115–22. doi:10.1128/IAI.00752-12