Single-energy amplitudes for pion photoproduction in the first resonance region

R. L. Workman

Center for Nuclear Studies, Department of Physics
The George Washington University, Washington, D.C. 20052

(Dated: July 20, 2010)

Abstract

We consider multipole amplitudes for low-energy pion photoproduction, constructed with minimal model dependence, at single energies. Comparisons with fits to the full resonance region are made. Explanations are suggested for the discrepancies and further experiments are motivated.

PACS numbers: 25.20.Lj, 11.80.Et, 11.55.Bq
I. INTRODUCTION AND MOTIVATION

In a series of papers, Grushin and collaborators [1] extracted multipole amplitudes for π^+n photoproduction, π^0p photoproduction, and combined these to produce isospin components, from 280 MeV to 420 MeV, without employing Watson’s theorem. A number of subsequent studies [2] took this set to be the least biased determination of multipoles over the delta resonance region. As the amplitudes were obtained in the early 80’s, prior to a number of recent high-precision measurements, we have reexamined these results and the methods used in their determination.

Apart from checking old values, this exercise is relevant to experimental programs now measuring complete, or nearly complete, experiments for pion and kaon photoproduction. The relative model-independence of this method allows checks of database consistency which we will use to suggest further measurements. Below we also briefly compare the methods associated with amplitude reconstruction and multipole fitting.

In Ref.[1], multipoles were extracted from π^+n photoproduction data of type S only. In the language of Ref. [3], type-S data include the unpolarized cross section and single-polarization asymmetries (P, Σ, T). As these do not constitute a complete experiment, in the strict sense of Ref. [4], some assumptions are required. The fits were performed between 280 MeV and 420 MeV, using a truncated multipole expansion, including E_0^+, M_1^-, E_{1+}, and M_{1+}, the remaining terms assumed to be real and given by the electric Born terms.

The multipoles and helicity amplitudes are related by

\begin{align}
H_1 &= \frac{1}{\sqrt{2}} \cos \frac{\theta}{2} \sin \theta \sum_{\ell=1}^{\infty} \left[E_{\ell+} - M_{\ell+} - E_{(\ell+1)-} - M_{(\ell+1)-} \right] \left(P''_{\ell} - P''_{\ell+1} \right), \\
H_2 &= \frac{1}{\sqrt{2}} \cos \frac{\theta}{2} \sum_{\ell=0}^{\infty} \left[(\ell + 2) E_{\ell+} + \ell M_{\ell+} + \ell E_{(\ell+1)-} - (\ell + 2) M_{(\ell+1)-} \right] \left(P'_{\ell} - P'_{\ell+1} \right), \\
H_3 &= \frac{1}{\sqrt{2}} \sin \frac{\theta}{2} \sin \theta \sum_{\ell=1}^{\infty} \left[E_{\ell+} - M_{\ell+} + E_{(\ell+1)-} + M_{(\ell+1)-} \right] \left(P''_{\ell} + P''_{\ell+1} \right), \\
H_4 &= \frac{1}{\sqrt{2}} \sin \frac{\theta}{2} \sum_{\ell=0}^{\infty} \left[(\ell + 2) E_{\ell+} + \ell M_{\ell+} - \ell E_{(\ell+1)-} + (\ell + 2) M_{(\ell+1)-} \right] \left(P'_{\ell} + P'_{\ell+1} \right). \quad (1)
\end{align}
From these one can construct the transversity amplitudes \[3\],

\[
\begin{align*}
b_1 &= \frac{1}{2} [(H_1 + H_4) + i (H_2 - H_3)], \\
b_2 &= \frac{1}{2} [(H_1 + H_4) - i (H_2 - H_3)], \\
b_3 &= \frac{1}{2} [(H_1 - H_4) - i (H_2 + H_3)], \\
b_4 &= \frac{1}{2} [(H_1 - H_4) + i (H_2 + H_3)],
\end{align*}
\]

which simplify the discussion of amplitude reconstruction, as the type-\(S\) observables determine their moduli

\[
\begin{align*}
d\sigma \over dt &= |b_1|^2 + |b_2|^2 + |b_3|^2 + |b_4|^2, \\
Pd\sigma \over dt &= |b_1|^2 - |b_2|^2 + |b_3|^2 - |b_4|^2, \\
Σd\sigma \over dt &= |b_1|^2 + |b_2|^2 - |b_3|^2 - |b_4|^2, \\
Td\sigma \over dt &= |b_1|^2 - |b_2|^2 - |b_3|^2 + |b_4|^2.
\end{align*}
\]

(3)

For \(\pi^+n\) photoproduction, the interference between (complex) fitted multipoles and a given (real) high-\(\ell\) contribution fixes the overall phase between transversity amplitudes \[3\]. An amplitude reconstruction requires more observables \[4\], and is the most model-independent method, but results in transversity amplitudes, for each energy-angle pair, only up to an unknown phase. If multipoles are the goal, an angular integral is required, and this cannot be performed without determining the phase. Therefore, at some point, every multipole analysis requires constraints beyond the experimental data.

II. FITTING \(\pi^+n\) DATA

In order to check the results of Ref. \[1\], data from 280 MeV to 420 MeV were fitted using the above prescription and a more recent database \[5\]-\[7\]. The higher-\(\ell\) multipoles were taken from the MAID analysis \[8\], which includes vector-meson exchange, rather than a simple electric Born term. This modification had a negligible effect on the fits. The fitted multipoles were then compared to the original determinations of Ref. \[1\] and single-energy solutions (SES) tied to the SAID energy-dependent multipole analysis \[9\].

The present and original fits of Ref. \[1\] were generally consistent, except in cases where more recent data contradicted older measurements. However, some very large deviations
TABLE I: Single-energy fits to π^+n data at 280 MeV (see text). Multipoles given in $10^{-3}/m_\pi$ units.

Multipole	Grushin [1]	SES	Fit1	Fit2
Re E_{0+}	17.18(0.29)	16.2	16.72(0.18)	16.17(0.23)
Im E_{0+}	-3.10(0.98)	0.57	-3.41(0.87)	0.5
Re M_{1-}	3.84(0.19)	3.46	3.74(0.18)	3.75(0.29)
Im M_{1-}	-0.70(0.84)	-0.13	-2.02(0.87)	0.33(0.58)
Re E_{1+}	2.64(0.08)	2.96	2.99(0.06)	2.70(0.11)
Im E_{1+}	0.00(0.26)	0.70	-0.08(0.29)	0.78(0.19)
Re M_{1+}	-16.00(0.30)	-14.85	-16.24(0.24)	-14.76(0.18)
Im M_{1+}	-6.76(1.10)	-9.63	-5.96(0.98)	-10.06(0.35)

FIG. 1: Fits to π^+n type-S observables at 280 MeV. Fit1 (solid), SES (dashed), Fit2 (dot-dashed). Post-1990 data [6, 7] (solid), pre-1990 data [5] (open) symbols.
TABLE II: Single-energy fits to π^+n data at 340 MeV (see text). Multipoles given in $10^{-3}/m_\pi$ units.

Multipole	Grushin [1]	SES	Fit1	Fit2
Re E_{0^+}	10.29(0.42)	11.36	11.19(0.41)	12.42(0.30)
Im E_{0^+}	2.00(0.52)	-0.14	2.15(0.55)	0.0
Re M_{1-}	1.82(1.40)	4.53	2.89(1.45)	4.32(1.27)
Im M_{1-}	-0.11(0.22)	-0.17	1.17(0.30)	0.50(0.31)
Re E_{1^+}	0.30(0.35)	1.79	0.69(0.38)	1.22(0.29)
Im E_{1^+}	-0.41(0.10)	0.30	0.47(0.14)	0.18(0.16)
Re M_{1^+}	1.34(0.98)	-1.82	1.11(0.24)	-1.66(0.61)
Im M_{1^+}	-19.26(0.46)	-18.29	-18.84(0.22)	-18.31(0.21)

from the SAID SES values were found at the lowest energy and at the resonance energy (340 MeV). Comparisons are given in Tables I and II. The SES values were obtained assuming Watson’s theorem and fitting both neutral and charged pion data over narrow energy bins, assuming a linear energy dependence given by the energy-dependent fit. Errors on the fitted isospin multipoles were generally in the 2–5% range.

The 280 MeV fit (Fit1) deviates from the trend shown in the 300 MeV to 420 MeV results, and this was noticed in Ref. [1] where an inconsistency in the data was suggested. The large negative fitted value for Im E_{0^+} at this energy contradicts results, $(0.4 \pm 0.2) \times 10^{-3}/m_\pi$, found in the SAID [9], MAID [8], and Bonn-Gatchina [10] fits. As a test, this parameter was fixed and the remaining multipoles varied. The result (Fit2) is consistent with the SES and is plotted, along with Fit1 and the SES, in Fig. 1. Note that the modified value for Im E_{0^+} has an effect noticeable mainly in the recoil polarization, the remaining quantities having been remeasured with greater precision.

In Table II, a similar comparison is made at 340 MeV. In this case, however, a precise remeasurement [7] of Σ found values shifted from the set available to Grushin [1]. As a result, the refit (Fit 1) did not confirm the original set of multipoles. Here too, a large value for Im E_{0^+} was found, contradicting the SAID [9], MAID [8], and Bonn-Gatchina [10] results, $(0 \pm 0.4) \times 10^{-3}/m_\pi$. Again, fixing this parameter to zero and refitting the remaining multipoles resulted in a solution (Fit2) more compatible with the SES result. In Fig. 2 this
readjustment is expressed mainly in a different shape for P, which has sizeable error bars.

In summary, consistency between the SES results and the method of Ref. [1] is sensitive to the rather poorly determined P data. More precise P data would test the assumptions used in Ref. [1]. It should be realized that almost every existing fit assumes the high-ℓ multipoles are real and given by the Born plus vector meson exchange terms. Predictions for the beam-target observables [3], given by Fit2, are compared to SAID and available G data [11] in Fig. 3.

III. FITTING π^0p DATA

If π^+n multipoles are available, they can be used to perform a similarly model independent fit to π^0p photoproduction data. Unfortunately, the existing P data for this channel are
FIG. 3: Prediction of π^+n beam-target observables at 340 MeV from Fit2 (solid) compared to the SAID energy-dependent fit. Data from Ref. [11].

even worse over the delta resonance region. The set at 350 MeV has the clearest trend and has been fitted, again assuming a truncated multipole expansion, ignoring higher $-\ell$ terms. Results are compared in Table III.

Here, neglecting higher $-\ell$ multipoles leaves an undetermined overall phase. In a fit from Ref. [1], this phase was determined by setting $\text{Re } M_{1+}$ to a fixed value. In Fit1, we have fixed instead $\text{Im } M_{1+}$. In Fit 2, a value from the SAID energy-dependent fit was assumed for $M_{1+}^{\pi^+n}$ and a parameter α was fitted using Watson’s theorem [12],

$$M_{1+}^{\pi^+p} = \alpha e^{i\delta_{33}} + \frac{1}{\sqrt{2}} M_{1+}^{\pi^+n}$$

(4)

with δ_{33} being the P_{33} phase from elastic πN scattering. Two values for α were found, positive and negative, the positive value being chosen above. In Fit1, a second solution with $\text{Re } M_{1+}$ positive was also found. Fits 1 and 2 produce exactly the same observables, leading
TABLE III: Single-energy fits to $\pi^0 p$ data at 350 MeV (see text). Multipoles given in $10^{-3}/m_\pi$ units.

Multipole	Grushin [1]	SES	Fit1	Fit2	Fit3
Re E_{0+}	-1.64(0.46)	-2.69	-2.33(0.46)	-1.58(0.42)	-1.20
Im E_{0+}	1.03(0.24)	2.81	1.27(0.24)	2.14(0.31)	2.36
Re M_{1-}	-2.97(1.99)	-2.89	-2.84(1.84)	-2.73(1.85)	18.67
Im M_{1-}	0.57(0.17)	0.51	-0.33(0.45)	0.90(0.40)	-4.41
Re E_{1+}	0.70(0.62)	1.34	0.63(0.58)	0.38(0.57)	-7.74
Im E_{1+}	-0.78(0.08)	-0.30	-0.47(0.14)	-0.70(0.15)	1.44
Re M_{1+}	-1.3	-5.70	-6.41(0.40)	-4.13	15.50
Im M_{1+}	23.89(0.10)	22.81	23.0	23.56	-6.36

FIG. 4: Fits to $\pi^0 p$ type-S observables at 350 MeV; Fit1 (solid), Ref. [1] (dashed), Ref. [1] (Born for $\ell > 1$) dot-dashed. Post-1990 data [7] (solid), pre-1990 data [5] (open) symbols.
to transversity amplitudes with fixed relative phases but different overall phases. The result labeled Fit 3 was obtained by conjugating the roots of the complex polynomials for each transversity amplitude [13] from Fit 1. This is a symmetry of the type-S observables and half of the double-polarization quantities. The resulting solution is therefore not related to Fits 1 and 2 by a rotation of the multipoles. As fits 1 through 3 give identical results for type-S observables, further information is required to select the correct solution. If the multipoles of Fit 3 are rotated to have a phase for M_{1+}^{p} matching Fit 2, the resulting values for E_{1+}^{p} will not combine, via Eq. 4, to give the proper phase for $E_{1+}^{3/2}$. In Ref. [1], the neutral and charged pion results were combined in an isospin analysis assuming that the $E_{1+}^{3/2}$ and $M_{1+}^{3/2}$ amplitudes had the same phase, without fixing this to be the phase from πN elastic scattering. However, given the sizeable errors found for E_{1+}, a direct application of
Watson’s theorem seemed more effective.

In Fig. 4, the fit from Ref. [1] is compared to Fit1 and data for type-S observables. We also show the effect of adding the MAID Born contribution, for waves with $\ell > 1$, to the Grushin multipoles in Table III. The effect is minimal except for P, which changes significantly, but not outside the large uncertainties of these data. These comparisons are carried over to the beam-target set in Fig. 5. As in Fig. 3, for π^+n, the quantities E and F are quite stable, while G and H change significantly with the addition of the higher $-\ell$ contributions, given by vector-meson exchange. The curves with this addition look more like the MAID result. Fits 1 and 3 give identical results for E and H, but have opposite signs for G and F.

Somewhat different results for P and G were also found when the Σ data [7], used in the fit, were replaced by a measurement with wider angular coverage [14]. In addition, preliminary measurements of a quantity proportional to G appear to have a shape unlike that predicted by Fit1 [15]. Precise measurements of P and G would clearly help to stabilize the fit.

IV. CONCLUSIONS

We have reexamined the extraction of pion photoproduction multipoles from type-S data with minimal model input. In the process, we have suggested that deviations from recent fits covering the resonance region may be due to problems in the database. This study should also give some qualitative guidance to those who plan to extract multipoles from the present generation of polarized photoproduction experiments. The results given here suggest that very precise data will be required for a reliable extraction of all but the dominant multipoles. This is particularly evident it Table II, where a sizeable change in $\text{Im} E_{0+}$ and a wrong sign for $\text{Re} M_{1+}$ are linked to modest changes in the fit to P data.

The procedure for π^+n photoproduction could be continued up to higher energies, if the real high-ℓ multipole assumption remains valid. For π^0p, the existence of multiple solutions makes an isospin decomposition more challenging. The use of Eq. 4 is also restricted to energies where the P_{33} phase is elastic. Finally, we note the possibility of accidental symmetries, generating solutions beyond those considered here. This possibility was considered in Ref. [13].
Acknowledgments

This work was supported in part by the U.S. Department of Energy Grant DE-FG02-99ER41110. The author thanks M. Paris and L. Tiator for discussions regarding the general amplitude reconstruction problem.
[1] V.F. Grushin, A.A. Shikanyan, E.M. Leikin, and A. Ya. Rotvain, Yad. Fiz. 38, 1448 (1983); V.F. Grushin, in *Photoproduction of Pions on Nucleons and Nuclei*, edited by A.A. Komar (Nova Science, New York, 1989), p. 1ff.

[2] M. Benmerrouche and N.C. Mukhopadhyay, Phys. Rev. D 46, 101 (1992); R.M. Davidson and N.C. Mukhopadhyay, Phys. Rev. D 42, 20 (1990); R.M. Davidson, N.C. Mukhopadhyay, and R. Wittman, Phys. Rev. D 43, 71 (1991); P. Christillin and G. Dillon, J. Phys. G 22, 1773 (1996).

[3] I.S. Barker, A. Donnachie, and J.K. Storrow, Nucl. Phys. B 95, 347 (1975).

[4] W.-T. Chiang and F. Tabakin, Phys. Rev. C 55, 2054 (1997).

[5] G. Fischer *et al.*, Z. Phys. 245, 225 (1971); G. Fischer *et al.*, Z. Phys. 253, 38 (1972); V.B. Ganenko *et al.*, Yad. Fiz. 23, 100 (1976); V.A. Get’man *et al.*, Nucl. Phys. B 188, 397 (1981); V.A. Get’man *et al.*, Sov. J. Nucl. Phys. 31, 480 (1980); A.A. Belyaev *et al.*, Nucl. Phys. B 213, 201 (1983).

[6] H. Dutz *et al.*, Nucl Phys. A 601, 319 (1996).

[7] R. Beck *et al.*, Phys. Rev. C 61, 035204 (2000); R. Beck *et al.*, Phys. Rev. Lett 78, 606 (1997).

[8] D. Drechsel, S.S. Kamalov, and L. Tiator, Eur. Phys. J. A 34, 69 (2007); amplitudes available from the website: http://wwwkph.kph.uni-mainz.de/MAID//maid2007/maid2007.html

[9] R.A. Arndt, W.J. Briscoe, I.I. Strakovsky, and R.L. Workman, Phys. Rev. C 66, 055213 (2002); The SAID fits are available from the website: http://gwdac.phys.gwu.edu

[10] A.V. Anisovich, E. Klempt, V.A. Nikonov, M.A. Matveev, A.V. Sarantsev, and U. Thoma, Eur. Phys. J. A 44, 203 (2010); amplitudes available from the website: http://pwa.hiskp.uni-bonn.de.

[11] J. Ahrens *et al.*, Eur. J. Phys. A 26, 135 (2005).

[12] K.M. Watson, Phys. Rev. 95, 228 (1954).

[13] A.S. Omelaenko, Sov. J. Nucl. Phys. 34, 406 (1981). Equations 19 - 21 were used to construct Fit 3 in Table III.

[14] Mainz measurements of $\pi^0 p$ cross sections and Σ from R. Leukel. R. Beck, private communications. Available in the SAID on-line database.

[15] A. Sandorfi, private communications.