Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Review Article

Perspectives on electrochemical biosensing of COVID-19
Albert D. Luong¹, Alyah Buzid², Sandeep K. Vashist³ and John H. T. Luong⁴

Abstract
Rapid detection of human coronavirus disease 2019, termed as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19 infection, is urgently needed for containment strategy owing to its unprecedented spreading. Novel biosensors can be deployed in remote clinical settings without central facilities for infection screening. Electrochemical biosensors serve as analytical tools for rapid detection of viral structure proteins, mainly spike (S) and nucleocapsid (N) proteins, human immune responses, reactive oxygen species, viral ribonucleic acid, polymerase chain reaction by-products, and other potential biomarkers. The development of point-of-care testing devices is challenging due to the requirement of extensive validation, a time-consuming and expensive step. Together with specific bio-recognition molecules, nanomaterial-based biosensors have emerged for the fast detection of early viral infections.

Addresses
¹ Department of Surgery, Jacobs School of Medicine, University of Buffalo, Buffalo, NY, 14215, USA
² Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa, 31982, Saudi Arabia
³ Pictor Pvt. Ltd., 24 Balfour Road Parnell, Auckland, 1052, New Zealand
⁴ Innovative Chromatography Group, Irish Separation Science Cluster (ISSC), School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, Cork, T12 YN60, Ireland

Corresponding author: Luong, John H.T (j.luong@ucc.ie), (luong-prof@gmail.com)

Introduction
A single and positive-stranded ribonucleic acid (RNA) virus [1] (SARS-CoV-2) has infected people and caused deaths worldwide [2*]. To date, more than 173 M people have been infected, resulting in >3.7 M death (https://www.worldometers.info/coronavirus/coronavirus-cases/accessed 6.6.21). Affected subjects have experienced severe, mild, or no symptoms [3, 4]; thus, fast analysis of viral infection is of uttermost importance to isolate affected people. Although opacities in computed tomography images were observed in affected patients with pneumonia [5–7], this diagnosis is not always reliable. The viral genetic code deciphered in early January 2020 enables the development of polymerase chain reaction (PCR) for detecting its distinct RNA sequences [8]. The viral RNA consists of double-layered lipids enveloped with four major structural proteins (Figure 1).

Real-time reverse transcription PCR (RT-PCR) has been developed to target various viral genes [9] (Table 1). Acute infection with SARS-CoV-2 also invokes the release of antibodies against specific viral antigens in serum within days to weeks [10].

This opinion provides an overview of emerging electrochemical detection tools for effective coronavirus diagnostic assays, encompassing the identification of viral nucleic acids, viral proteins (antigens), PCR by-products, and reactive oxygen species (ROS).

PCR technology and immunoassays
The detection of RNA by reverse transcription polymerase chain reaction (RT-PCR) is time consuming and does not have the screening capacity. Point-of-care (POC) testing (POCT) alleviates the burden of the testing load on central hospitals without compromising accuracy and detection selectivity for early detection and treatment of viral infection. Loop-mediated isothermal amplification [15] and recombinase polymerase amplification can detect the lowest copy number of nucleic acids. Real-time PCR for POCT has been commercialized [16] to process a single sample or multiple samples, up to 80 samples [17]. The topic of...
POC PCR assays for COVID-19 detection was recently reviewed by Gupta et al. [18].

Serological tests based on antibodies, antigens, and some biomarkers of infected people are more rapid and inexpensive [19]. Owing to the lack of detection sensitivity with a high false-positive/negative rate, such tests cannot confirm viral infection [20]. Nevertheless, the US Food and Drug Administration has reported POC styled tools for SARS-CoV-2 by detecting its viral RNA. The detection of N1 gene by quantitative and real-time PCR requires a total assay time of 2 h, compared with 7 h for the analysis of N gene, ORF1 gene, and ORF1ab gene by RT-PCR equipped with mass spectrometry. However, the Abbott assay detects RdRp and N-genes qualitatively within 13 min [21]. Besides the presence of SARS-CoV-2, positive results are general indicators of bacterial and other viral infections. IgG and IgM occur simultaneously or sequentially, and the seroconversion for IgG and IgM happens for 14–23 days after onset of infection in most subjects. Therefore, the detection of antibodies is unreliable during the first 14 days after onset of symptoms for all serological assays [22]. These two biomarkers cannot be used to detect acute infections, but they are useful for identifying affected subjects with asymptomatic infections and are complementary to RT-PCR for reducing false-negative testing. Commercial POC immunoassays can detect viral antigens (specific monoclonal antibodies are used to bind the SARS-CoV-2 antigens: N and S proteins), total antibody, and IgM/IgG antibodies. Detection techniques are mainly based on colloidal gold/immuno-fluorescence chromatography (lateral flow immunoassay), enzyme-linked immunosorbent assay, and chemiluminescence [16].

Opportunities for electrochemical sensors/biosensors

Electroanalysis of viral DNA

The electroanalysis of DNA hybridization is well investigated using a specific DNA sequence, known as a DNA probe. This short single-stranded DNA is thiolated and self-assembled on a gold surface or a gold nanoparticle (AuNP)-modified electrode. A binding event occurs when the double-stranded DNA is hybridized with its complementary DNA strand [23]. The binding event can be probed directly or by indirect measurement in the presence of an electroactive marker such as a metal complex or methylene blue [24*, 25]. A miniaturized, label-free electrochemical platform can be interfaced with a workstation or smartphone system as shown in Figure 2 [26]. One of its major drawbacks for potential POCT is the requirement of a rapid on-site extraction method for DNA. Nonspecific protein binding on gold is problematic despite unreacted gold being thoroughly blocked by small organic molecules with thiol groups.

Viral proteins (antigens) as potential targets

Among 29 possible viral proteins, both abundant N and S proteins are potential targets for antibody-based viral detection. The homology of the S and N proteins between SARS-CoV-2 and SARS-CoV-1 (SARS-associated coronavirus) is ~76% and 90%, respectively [27], and two proteins are highly immunogenic and abundantly during infections. Commercial antibodies against viral proteins, spike (S1 and S2), nucleocapsid (N), envelope (E), ORF, and non-structural proteins (NSP), are available in several countries, particularly, China. As expected, they are expensive, ranging from 5000 to 6000 $ US/mg of protein [28]. Some methods are available to prepare antibodies or antibody-like proteins against the spike protein S1 subunit [29*].

The S protein assists in binding the virus to the cellular human receptor; thus, it is responsible for inducing the
infection [30]. Graphene with a high surface area offers fast electron transfer kinetics and excellent detection sensitivity. A biosensor based on a graphene field-effect transistor can detect the virus in clinical samples [31]. The S protein antibody is covalently conjugated to a graphene sheet (Figure 3(a)). A multiplexed telemedicine platform-based laser engraved graphene electrode detects several specific biomarkers in saliva and blood [32]. A cell-based biosensor can detect the viral S protein using an array of eight Au screen-printed electrodes [33]. The potentiometric signal is generated upon the addition of the S protein into the membrane-engineered mammalian kidney cells down to 1 fg/mL within 3 min [33]. Amperometry using monoclonal antibodies and AuNPs can detect the viral antigen spiked in saliva samples with linearity of 1 fM to 1 µM [34].

The binding of the S-receptor-binding domain (RBD) to the host ACE2 receptor is crucial for the viral invasion into human cells [35]. The interaction of S-RBD and ACE2 is the basis for neutralization antibody tests, which provide critical information on whether the subjects have developed neutralization antibodies to counteract SARS-CoV-2 after convalescence or vaccination. The electrochemical sensor consisting of cobalt-functionalized TiO2 nanotubes can detect viral S-RBD in clinical specimens within 30 s with a limit of detection (LOD) of 0.7 nM [36] (Figure 3(c)).

Other potential target analytes: PCR products and ROS

Reactive PCR products
GenMark Diagnostics launched a rapid test, known as ePlex® to detect amplified products of PCR. Qualitative viral detection in nasopharyngeal swab specimens is performed by a single-use cartridge and proprietary surface electrowetting. The US Food and Drug Administration has approved this test for Emergency Use Authorization [37]. Based on the hybridization of competitive DNA, electrochemical detection by a capture probe immobilized on a gold-plated electrode. The viral RNA extracted from the specimen by magnetic solid-phase extraction is converted to cDNA followed by PCR amplification. A ferrocene-labeled signal probe is then mixed with the target DNA. Upon the hybridization of the target DNA, the ferrocene-labeled signal probe generates an electrochemical response. The test has a LOD of 1×10^5 copies/mL for the SARS-CoV-2 DNA [38], which is comparable with the approved RT-PCR for Emergency Use Authorization [39].

Reactive oxygen species
Upon the inflammation of the lungs with SARS-CoV, the respiratory system underlays molecular mechanisms: pyrin domain-containing 3 (NLRP3), a nod-like receptor family, is activated by the virus [40] and then releases ROS to damage mitochondria [41].
Sputum is one of the most secreted samples with a high viral load in the lung epithelium. A real-time sensor based on the fabrication of multiwalled carbon nanotubes on the steel needle tip was designed to detect ROS in patients’ samples (Figure 4).
Trends and future endeavors

Asymptomatic cases of SARS-CoV-2 have made the diagnosis more complex by physical examination or chest X-rays. Portable PCR and immunoassays are commercially available for different viral genes, human immune proteins, and pertinent biomarkers to alleviate the burden of testing. AuNPs together with a recombinant viral antigen and rabbit-IgG can be used in lateral flow immunoassays of IgM and IgG in human blood within 15 min [45]. Nevertheless, simple electrochemical approaches are powerful tools for POCT, doctors’ offices in remote areas, or countries with limited resources. S protein and N protein are considered the prime targets owing to their abundance and high immunogenicity, and the biorecognition molecules are based on exorbitantly expensive polyclonal/monoclonal antibodies for these two proteins. The envelope (E) and membrane (M) proteins are required for virus assembly [46]; however, they are nonspecific biomarkers for SARS-CoV-2. The biorecognition molecules are polyclonal or monoclonal antibodies, which are commercially available from different sources. The ACE2 has rarely been used, due to its commercial high cost, and must be kept at -20 to -70 °C to conserve its stability [47]. Single-stranded RNA or DNA oligonucleotides can also serve as specific recognition biomolecules. A search of small molecules with selective binding to S and N proteins is critical for developing POCT. For POCT, a “true” one-step is desirable as the user simply swirls the sample to the detection device.

Figure 4

(a) Common clinical symptoms of lung host cells as the virus induces mitochondrial ROS overproduction for its replication (b) A detection scheme based on three needle electrodes, which are coated by functionalized CNTs (c) The released ROS detected as a cathodic peak from the fresh sputum of two hospitalized patients (d, e) and compared with a confirmed normal case (f): I = 800 μA (red column) and I = 490 μA (orange) with severe lung affected by SARS-CoV-2, compared to ~71 μA (green column, normal case). The ROS peak current is correlated with the amount of released ROS in the sputum. The results are corroborated by lung CT scanning (d, e, and f). The sensor offers a rapid response time of 30 s, showing a great potential to be used as a POC tool for detecting viral-induced infection. Reproduced with permission from the study by Miripour et al. [44]. ROS, reactive oxygen species; CNTs, carbon nanotubes; POC tool, point-of-care tool.
nanomaterials are limited [48], and electrochemical approaches have competed with colorimetry and surface plasmon resonance. Both S and N proteins must be analyzed simultaneously to circumvent potential cross-reaction with other endemic coronaviruses or viral mutations. Other biomarkers such as C-reactive protein, interleukin-6, D-dimer, and so on also assist the prognosis of SARS-CoV-2. The commonest sample is a swab from the patient’s nose or throat with an expected notable viral load. Noninvasive samples, for example, saliva, sputum, breath, and stools have been explored to establish sampling protocols that provide minimum false positives and negatives. Several fully quantitative immunoassays for IgG have been launched, and the recent one is Beckman Coulter. There is a need for detecting both N and S proteins of SARS-CoV-2. As an increasing amount of the population is getting vaccinated with mRNA vaccine, they will develop antibodies against the S protein. Therefore, the Centers for Disease Control and Prevention recommends the use of N protein for detecting anti-SARS-CoV-2 antibodies [49].

Owing to the anticipated nonelectroactivity of antibodies, viral antigens, and nucleic acids, impedance spectroscopy is a detection method of choice over other electrochemical methods. Biosensors for POCT are also needed to detect viral infection in urine, blood, saliva, and stools. POCT must be validated in appropriate populations and settings, a time-consuming and expensive step. Electroanalysis can be combined with complementary methods, mainly microquartz balance and surface plasmon resonance toward the development of more reliable biosensors [50]. Of importance for POCT are the paper-based sensors for nucleic acids [51] and SARS-CoV-2 antibodies [52].

Another important parameter is the dissociation constant (k_D), which can be used to differentiate the binding of SARS-CoV-2 S to human ACE2 ($k_D = 14.7 \text{ nM}$) over SARS-CoV S ($k_D = 325.8 \text{ nM}$) [53]. Transplant patients generate T-cell responses but not anti-SARS-CoV-2 antibodies after infection [54]. Therefore, it is of uttermost importance to engineer a multiplex biosensor that can detect both T cells and antibodies [55]. Of further interest is the development of various clustered short palindromic repeats with regular interval—clustered short palindromic repeats with regular interval—associated protein detection platforms for detecting COVID-19 [56–59]. Immunoassays have been miniaturized and adapted for POCT to target antibodies in blood, serum, and plasma [45*, 60, 61] or viral antigens in the nasopharynx [21,62–67]. Rapid PCR methods [68–72] and isothermal amplification [73, 74] for POCT are also commercially available. Apart from clinical diagnostics, the demand for surveillance systems and devices that can detect this virus in the air (aerosols) and water is likely to increase. The vast literature information of electrode materials, nanomaterials, and sensing methods is available for viral detection.

Conclusions
Current electrochemical biosensors have emerged to target two structural proteins: spike (S) and nucleocapsid (N) with antibodies as the biorecognition molecules, whereas E and M proteins are nonspecific biomarkers for early viral infection. Biorecognition molecules are polyclonal/monoclonal antibodies, aptamers, single-stranded RNA, or DNA oligonucleotides. Considering nucleic acids, biomarkers, antibodies, proteins, and so on are not highly electroactive or nonelectroactive, electrochemical impedance spectroscopy (EIS) is an obvious choice in the development of electrochemical POC sensors. This approach is considered the simplest detection procedure without any bioconjugation of labeling steps. Of course, cyclic voltammetry (CV), differential pulse voltammetry (DPV), square wave voltammetry (SWV), and so on can be used if the biorecognition molecule (antibody, aptamer, small organic molecule, and so on) is conjugated with a small electroactive compound, for example, a ferrocene derivative. Biosensors must be able to detect viral infection in different clinical samples and are subject to rigorous validation. The long-term efficacy of vaccines remains unknown considering the levels of antibodies are lower in vaccinated subjects (Pfizer/BioNTech vaccine) with increasing age and the emergence of new coronavirus variants [75]. Some drugs, particularly immunosuppressive medications, also lessen the benefit of vaccination [76]. It is still unknown if the antigen tests work for all SARS-CoV-2 spike variants [77]. Therefore, continuous improvement in diagnostic assays is critical to ensure reliable detection of SARS-CoV-2 infection from different variants [78]. The coronavirus infection produces a large repertoire of cytokines [79], which could be exploited toward the development of POC devices. POCT eliminates the storage and delivery of collected samples to central laboratories as collected samples must be stored at 2–8 °C to preserve sample stability. POC sensing also reduces the risk of sample cross-contamination. As sample transportation might take a few hours or longer, POCT ultimately reduces the turnaround time appreciably, that is, the time duration between sample registrations and reporting of results.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Declaration of competing interest
The authors declare that they have no known competing financial interests or personal relationships that could
The authors discuss small molecules that bind the COVID-19 spike protein as potential drugs to inhibit the viral entry into host cells. Such small molecules can be exploited in different sensing schemes to detect SARS-CoV-2.

1. Bai Y, Yao L, Wei T, Tian F, Jin DY, Chen L, Wang M: Presumed asymptomatic carrier transmission of COVID-19. J Am Med Assoc 2020, 323:1406–1407.

2. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, Zimmer T, Thiel V, Janke C, Guggemos W, et al.: Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020, 382:970–971.

3. Chen JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, Yuen KY: Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microb Infect 2020, 9:221–236.

4. Chu DWK, Pan Y, Cheng SMS, Hui KPY, Krishnan P, Liu Y, Ng DYM, Wan CKC, Yang P, Wang Q, et al.: Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chest 2020, 66:549–555.

5. The paper unravels single-step quantitative real-time reverse-transcription PCR to detect ORF1b and N of the viral genome in human samples, thereby allowing early identification of patients.

6. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases. https://apps.who.int/iris/bitstream/handle/10665/351501/WHO-COVID-19-laboratory-2020.5-eng.pdf?sequence=1&isAllowed=y (accessed 27.1.2021).

7. Tai W, He L, Zhang X, Pu J, Voronin D, Xiao Y, Wang H: Limits of detection of 6 approved RT-PCR kits for the novel SARS-CoV-2 (SARS-CoV-2). Clin Chem 2020, 66:977–979.
Specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14:12257–12258.

The authors report a field-effect transistor (FET)-based biosensing device by coating graphene sheets of the FET with a specific antibody against SARS-CoV-2 spike protein to detect the SARS-CoV-2 spike protein.

32. Torrente-Rodriguez RM, Lukas H, Tu J, Min J, Yang Y, Xu C, Rosater HB, Gao W. SARS-CoV-2 rapidplex: a graphene-based multiplexed telemedicine platform for rapid and low-cost COVID-19 diagnosis and monitoring. Matter 2020, 3: 1981–1998.

33. Mavrikou S, Moschopoulou G, Tsekouras V, Kintziou S: Development of a portable, ultra-rapid and ultra-sensitive cell-based biosensor for the direct detection of the SARS-CoV-2 spike protein. Sensors 2020, 20:3121.

34. Mahari S, Roberts A, Shahdeo D, Gandhi S: eCovSens-ultrasensitive novel in-house built printed circuit board based electrochemical device for rapid detection of nCov-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv 2020, https://doi.org/10.1101/2020.04.24.059204.

The authors report a biosensing device based on fluorine-doped tin oxide electrode (FTO) with gold nanoparticle (AuNPs) to detect the viral antigen spiked in saliva samples.

35. Tai W, Zhang X, He Y, Jiang S, Du L: Identification of SARS-CoV-RBD-targeting monoclonal antibodies with cross-reactive or neutralizing activity against SARS-CoV-2. Antivir Res 2020, 179:104820.

36. Vadlamani BS, Uppal T, Verma SC, Misra M: Functionalized TiO2 nanotube-based electrochemical biosensor for rapid detection of SARS-CoV-2. Sensors 2020, 20:5871.

37. GenMark Receives FDA emergency Use Authorization for its ePlex® SARS-CoV-2 Test. 2020, Inc, https://ir.genmarkdx.com/2020-03-25/news-releases/news-release-details/genmark-receives-fda-emergency-use-authorization-its-eplex-sars. (Accessed 3 January 2021).

38. eSensor Technology. GenMark Diagnostics, Inc. 2020. https://www.genmarkdx.com/solutions/technology/esensor/. (Accessed 3 January 2021).

39. ePlex®SARS-CoV-2 Test Assay Manual, GenMark Diagnostic, Inc. 2020, https://www.fda.gov/media/136282/download. (Accessed 3 January 2021).

40. Bauermeind F, Ablasser A, Bartok E, Kim S, Schmid-Burgk J, Cavlar T, Hornung V: Inflammasomes: current understanding and open questions. Cell Mol Life Sci 2011, 68:765–783.

41. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Engliert JA, Ravindranich M, Cermadas M, Kim HP, et al.: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011, 12:222–230.

42. Shimada K, Crother TR, Karlin J, Daygadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al.: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. J Biol Chem 2012, 287:401–414.

43. Tae GM, Hui PK, Ma TK, Lo AW, To KF, Chan WY, Chow LT, Ng HK: Sputum cytology of patients with severe acute respiratory syndrome (SARS). J Clin Pathol 2004, 57:256–259.

44. Mirpour ZS, Sarrami-Forooshani R, Sanati H, Makarem J, Taheri MS, Shojaiean F, Eskafi AH, Abbavandani F, Namdar N, Ghaemian H, et al.: Real-time diagnosis of reactive oxygen species (ROS) in fresh sputum by electrochemical tracing: correlation between COVID-19 and viral-induced ROS in lung respiratory epithelium during this pandemic. Biosens Bioelectron 2020, 165:112435.

The paper describes simple electrochemical sensing to selectively detect early traces of mitochondrial ROS overproduction as lung cells’ dysfunctions induced by the virus using 0.5- nL sputum samples.

45. Li Z, Yi Y, Luo X, Xiong N, Liu Y, Li S, Sun R, Wang Y, Hu B, Chen W: Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020, 92:1518–1524.

The authors report a rapid and simple point-of-care lateral flow immunosay that detects IgM and IgG antibodies simultaneously against COVID-19 in human blood within 15 min.

46. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, Droese B, Klaus JP, Makino S, Sawicki SG, et al.: A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol 2011, 174:11–22.

47. Recombinant human ACE-2 protein. CF, https://www.rdsystems.com/products/recombinant-human-ace-2-protein Cf-933-zn (accessed 21.03.2021).

48. Srivastava M, Srivastava N, Mishra PK, Malhotra BD: Prospects of nanomaterials-enabled biosensors for COVID-19 detection. Sci Total Environ 2021, 754:142363.

49. https://www.heckmancoulter.com/de/about-heckman-coulter/newsroom/press-releases/2021/q2/2021-may-19-ig-1st-is-launch (Accessed 4.6.2021).

50. Samson R, Navale GR, Dharne MS: Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech 2020, 10:386.

51. Alafeel M, Dige K, Moitra P, Pan D: Rapid, ultrasensitive, and quantitative detection of SARS-CoV-2 using antisense oligonucleotides directed electrochemical biosensor chip. ACS Nano 2020, 14:17028–17045.

52. Yakoh A, Pimpitak U, Rengpipat S, Hirankarn N, Chialapakul O, Chaiyo S: Paper-based electrochemical biosensor for diagnosing of SARS-CoV-2 antibodies and antigen. Biosens Bioelectron 2021, 176:112912.

53. Wrap D, Wang N, Corbett KS, Goldsmith JA, Haieh CL, Abiona O, Graham BS, McLellan JS: Crypto-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020, 367:1260–1263.

54. Teijaro JR, Farber DL: COVID-19 vaccines: modes of immune activation and future challenges. Nat Rev Immunol 2021, 21:195–197.

55. https://www.fda.gov/medical-devices/safety-communications/antibody-testing-not-currently-recommended-assess-immunity-after-covid-19-vaccination-fda-safety (Accessed 5.6.2021).

56. Sherlock. Sherlock™ CRISPR SARS-CoV-2. https://sherlock.bio/crissp-sars-cov-2/(accessed on 3 June 2021).

57. Ackerman CM, Myhrold C, Thakku SG, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TF, Kehe J, et al.: Massively multiplexed nucleic acid detection with Cas13. Nature 2020, 582:277–282.

58. Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, et al.: ISCAN: an RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res 2020, 288:198129.

59. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al.: CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol 2020, 38:870–874.

60. Biomedics. COVID-19 IgM/IgG rapid test. https://www. biomedics.com/products/infectious-disease/covid-19-rt/ (Accessed on 7.6.2021).

61. Chembio. DPP COVID-19 IgM/IgG system. https://chembio.com/products/dpp-covid-19-imm-gg-system-brazil (accessed on 7.6.2021).

62. Access Bio. ACCESS BIO’S CARESTART™ COVID-19. Antigen. https://accessbiodiagnostics.net/carestartCOVID-19-antigen/ (accessed on 2 June 2020).

63. BTNX. COVID-19 antigen rapid test device. https://www.btxn.com/Product?id=2010 (accessed on 2 June 2020).

64. Wantai BioPharm Ltd. Wantai SARS-CoV-2 Ag rapid test kit. Available online: http://www.ystwt.cn/covid-19 (accessed on 2 June 2021).

65. Quidel Corporation. Sofia®SARS antigen. Sofia®SARS antigen. https://www.quidel.com/immunossays/rapid-sars-tests/sofia-sars-antigen-fia.sars-antigen-fia (accessed on 3 June 2021).
66. Dickinson, B. BD Veritor™ system for rapid detection of SARS-CoV-2. Available online: https://www.bd.com/en-us/offerings/capabilities/microbiology-solutions/point-of-care-testing/bd-veritor-plus-system-for-rapid-covid-19-sars-cov-2-testing (accessed on 2 June 2021).

67. Abbott Laboratories. COVID-19 Ag rapid test device. https://www.who.int/diagnostics_laboratory/eual/eul_0564_032_00_panbi_covid19_ag_rapid_test_device.pdf (accessed on 2 June 2021).

68. Xpert®Xpress SARS-CoV-2. Xpert®Xpress SARS-CoV-2 has received FDA emergency use authorization. https://www.cepheid.com/coronavirus (Accessed on 7.6.2021).

69. Luminex. SARS-CoV-2 detection. http://info.luminexcorp.com/covid19 (Accessed on 7.6.2021).

70. VereCoV. VereCoV™ OneMix detection kit for VerePLEX™ bi-system. https://vereduslabs.com/covid-19/ (Accessed on 7.6.2021).

71. MiCo BioMed. VERI-Q COVID-19 multiplex detection kit. http://www.micobiomed.com/en/covid/main.php (Accessed on 7.6.2021).

72. Chen JH-K, Yip CC-Y, Chan JF-W, Poon RW-S, To KK-W, Chan K-H, Cheng VC-C, Yuen K-Y: Clinical performance of the Luminex NxTAG CoV extended panel for SARS-CoV-2 detection in nasopharyngeal specimens from COVID-19 patients in Hong Kong. J Clin Microbiol 2020, 58. e00936-00920.

73. Abbott Laboratories. ID NOW™ COVID-19 molecular. In minutes. On the front line. Available online: https://www.abbott.com/intended-for-us-residents.html (Accessed on 3.6.2021).

74. CueHealth: Cue COVID-19 Test. 2020. https://www.cuehealth.com/what-is-cue. (Accessed 3 June 2021).

75. https://ca.news.yahoo.com/pfizer-vaccine-recipients-lower-antibodies-223000150.html (Accessed 5.6.2021).

76. https://www.arthritis.org/health-wellness/about-arthritis/related-conditions/other-diseases/covid-19-faqs-medication-treatment-and-vaccines (Accessed 5.6.2021).

77. https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-issues-policies-guide-medical-product-developers-addressing-virus (Accessed 5.6.2021).

78. Vashist SK, Murugan S, Djoko G: In vitro diagnostics for COVID-19: State-of-the-art, future directions and role in pandemic response. 2021, https://doi.org/10.5772/intechopen.97775.

79. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, et al.: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395:497–506.