RECOGNIZING DUALIZING COMPLEXES

PETER JØRGENSEN

Abstract. Let \(A \) be a noetherian local commutative ring and let \(M \) be a suitable complex of \(A \)-modules. This paper proves that \(M \) is a dualizing complex for \(A \) if and only if the trivial extension \(A \ltimes M \) is a Gorenstein Differential Graded Algebra.

As a corollary follows that \(A \) has a dualizing complex if and only if it is a quotient of a Gorenstein local Differential Graded Algebra.

Let \(A \) be a noetherian local commutative ring and let \(M \) be a complex of \(A \)-modules with homology \(H \) non-zero and finitely generated and \(H_i M = 0 \) for \(i < 0 \). Theorem 2.2 shows that \(M \) is a dualizing complex for \(A \) if and only if the trivial extension \(A \ltimes M \) is a Gorenstein Differential Graded Algebra (DGA). Phrased as a slogan: DGAs can be used to recognize dualizing complexes.

In corollary 2.3 this is used to show that \(A \) has a dualizing complex if and only if it is a quotient of a Gorenstein local DGA.

The notion of Gorenstein DGA I shall use is the one from [5]; it is recalled in definition 1.3. But note that for the DGAs in theorem 2.2 and corollary 2.3, the condition of being Gorenstein can also be expressed by the familiar equation \(\text{dim}_{R} \text{Ext}_{R}(\ell, R) = 1 \), see remark 2.4. DGAs satisfying this equation were considered at length in [1].

A brief introduction to the theory of DGAs is in [5].

1. Definitions

When \(A \) is a noetherian commutative ring, \(\mathcal{D}(A) \) denotes the derived category of complexes of \(A \)-modules, and \(\mathcal{D}^{f}(A) \) denotes the full subcategory of complexes \(M \) such that \(H \) is a finitely generated module over \(A \). The following definition is due to [6 def., p. 258].

Definition 1.1 (Dualizing complexes). Let \(A \) be a noetherian local commutative ring. The complex \(D \) in \(\mathcal{D}^{f}(A) \) is called a dualizing complex for \(A \) if the canonical morphism

\[
A \rightarrow \text{RHom}_{A}(D, D)
\]

2000 Mathematics Subject Classification. 13D25, 16E45.

Key words and phrases. Noetherian local commutative ring, dualizing complex, trivial extension, Gorenstein Differential Graded Algebra, dualizing Differential Graded module.
is an isomorphism, and D has finite injective dimension.

If a dualizing complex exists, then it is unique up to suspension as follows easily from \([6, \text{thm. V.3.1}]\), but existence is delicate, see \([6, \text{sec. 10}]\).

Definition 1.2 (Trivial extensions). Let R be a commutative DGA and let M be a Differential Graded R-module (DG R-module). Then $R \oplus M$ is again a DG R-module with differential

$$
\partial^{R \oplus M} \left(\begin{array}{c} r \\ m \end{array} \right) = \left(\begin{array}{c} \partial^R r \\ \partial^M m \end{array} \right),
$$
and the product

$$
\left(\begin{array}{c} r_1 \\ m_1 \end{array} \right) \cdot \left(\begin{array}{c} r_2 \\ m_2 \end{array} \right) = \left(\begin{array}{c} r_1 r_2 \\ r_1 m_2 + m_1 r_2 \end{array} \right)
$$
turns $R \oplus M$ into a DGA called the **trivial extension** of R by M, denoted $R \ltimes M$.

Observe that there are canonical morphisms of DGAs,

$$
R \longrightarrow R \ltimes M \longrightarrow R,
$$

and the second is a surjection whose kernel is M which can be viewed as a square zero differential graded ideal in $R \ltimes M$.

When R is a commutative DGA with $H_0 R$ a noetherian ring, $D^f(R)$ denotes the derived category of DG R-modules, and $D^f(R)$ denotes the full subcategory of DG modules M such that HM is a finitely generated module over $H_0 R$. (This is compatible with the use of the notation D^f given before definition\([\text{[5]}\)) For commutative DGAs, the definitions of Gorenstein DGAs and dualizing DG modules from \([\text{[5]}\) and \([\text{[4]}\) simplify as follows.

Definition 1.3 (Gorenstein DGAs). Let R be a commutative DGA with $H_0 R$ a noetherian ring. Then R is called **Gorenstein** if it satisfies:

(i) For M in $D^f(R)$, the following biduality morphism is an isomorphism,

$$
M \longrightarrow R\text{Hom}_R(R\text{Hom}_R(M, R), R).
$$

(ii) The functor $R\text{Hom}_R(-, R)$ sends $D^f(R)$ to itself.
Definition 1.4 (Dualizing DG modules). Let R be a commutative DGA with H_0R a noetherian ring. The DG R-module E is called a dualizing DG module for R if it satisfies:

(i) The canonical morphism

$$R \rightarrow \text{RHom}_R(E, E)$$

is an isomorphism.

(ii) For M in $D^f(R)$ and for L equal to either R or E, the following evaluation morphism is an isomorphism,

$$M \otimes_R \text{RHom}_R(L, E) \rightarrow \text{RHom}_R(\text{RHom}_R(M, L), E).$$

(iii) The functor $\text{RHom}_R(\cdot, E)$ sends $D^f(R)$ to itself.

It is clear that R is a Gorenstein DGA if and only if it is a dualizing DG module for itself.

Definition 1.5 (Local DGAs). Let R be a DGA. Then R is called local if it satisfies:

(i) R is commutative and concentrated in non-negative homological degrees.

(ii) H_0R is a noetherian local ring, and HR is a finitely generated module over H_0R.

(iii) R_0 is a noetherian ring.

The residue class field ℓ of H_0R can then be viewed as a DG R-module concentrated in degree 0, and as such is referred to as the residue class field of R.

2. Results

Lemma 2.1. Let A be a noetherian local commutative ring, let R be a commutative DGA with H_0R a noetherian ring, and let $R \rightarrow A$ be a morphism of DGAs which induces a surjection $H_0R \rightarrow A$.

If R is Gorenstein, then

$$D = \text{RHom}_R(A, R)$$

is a dualizing complex for A.

Proof. Observe that the morphism $R \rightarrow A$ can be used to view any complex of A-modules AM as a DG R-module RM. In other words, any AM in $D(A)$ can be viewed as RM in $D(R)$. As $H_0R \rightarrow A$ is surjective, it is clear that I have

\begin{equation}
A M \in D^f(A) \iff R M \in D^f(R).
\end{equation}
First, equation (1) implies that A viewed over R is in $D^f(R)$. Since R is Gorenstein, $D = \text{RHom}_R(A, R)$ is then also in $D^f(R)$, and by equation (1) this shows that D is in $D^f(A)$.

Secondly, there are canonical isomorphisms

$$\text{RHom}_A(D, D) \xrightarrow{(a)} \text{RHom}_A(\text{RHom}_R(A, R), \text{RHom}_R(A, R))$$

$$\cong \text{RHom}_R(A \otimes_A \text{RHom}_R(A, R), R)$$

$$\cong \text{RHom}_R(\text{RHom}_R(A, R), R)$$

$$\cong A,$$

where (a) is by the definition of D and (b) is by adjointness, while (c) is because R is Gorenstein.

Thirdly, let k be the residue class field of A. There are isomorphisms

$$\text{RHom}_A(k, D) \xrightarrow{(d)} \text{RHom}_A(k, \text{RHom}_R(A, R))$$

$$\cong \text{RHom}_R(\text{RHom}_R(A, R), k)$$

$$\cong \text{RHom}_R(k, R),$$

(2)

where again (d) is by the definition of D and (e) is by adjointness. Equation (1) implies that k viewed over R is in $D^f(R)$, and since R is Gorenstein, $\text{RHom}_R(k, R)$ is then also in $D^f(R)$ so has bounded homology. By equation (2), the same holds for $\text{RHom}_A(k, D)$, and then by [2, (A.5.7.4)] the injective dimension $\text{id}_A D$ is finite.

Altogether, D is a dualizing complex for A; cf. definition (1.1). □

Theorem 2.2. Let A be a noetherian local commutative ring and let M in $D^f(A)$ have $M \not\cong 0$ and $H_iM = 0$ for $i < 0$. Then

M is a dualizing complex for A \iff $A \ltimes M$ is a Gorenstein DGA.

Proof. \Rightarrow: Suppose that M is a dualizing complex for A.

Clearly, $A \ltimes M$ can be viewed as a DGA over A with $H(A \ltimes M)$ finitely generated over A. Hence [1, prop. 2.6] says that $A \ltimes M$ has the dualizing DG module $\text{RHom}_A(A \ltimes M, M)$.

Let

$$M \to \rho I$$

be an injective resolution. Then $\text{RHom}_A(A \ltimes M, M)$ is isomorphic to

$$E = \text{Hom}_A(A \ltimes M, I),$$

so E is a dualizing DG module for $A \ltimes M$. The $(A \ltimes M)$-structure of E comes from the $A \ltimes M$ appearing in the first variable of the Hom; that is,
if ϵ is a graded element of E and r_1 and r_2 are graded elements of $A \ltimes M$, then

$$ (r_1 \epsilon)(r_2) = (-1)^{|r_1||\epsilon|+|r_2|}\epsilon(r_2 r_1). $$

Now note that I have

$$ E = \text{Hom}_A(A \ltimes M, I) \cong \text{Hom}_A(A, I) \oplus \text{Hom}_A(M, I) $$
as complexes of A-modules. This enables me to compute henceforth as if the elements of E were column vectors $\begin{pmatrix} \alpha \\ \mu \end{pmatrix}$ where $A \xrightarrow{\alpha} I$ and $M \xrightarrow{\mu} I$ are A-linear. Of course, I must remember that E is a DG $(A \ltimes M)$-module via equation (3).

The element $\begin{pmatrix} 0 \\ \rho \end{pmatrix}$ in E can be used to define a morphism of DG $(A \ltimes M)$-modules by

$$ A \ltimes M \xrightarrow{\varphi} E, \quad \varphi(\begin{pmatrix} a \\ m \end{pmatrix}) = \begin{pmatrix} a \\ m \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \rho \end{pmatrix}. $$

In fact, this turns out to be an isomorphism when viewed in $\mathcal{D}(A \ltimes M)$. Hence $A \ltimes M$ is a dualizing DG module for itself, and so $A \ltimes M$ is Gorenstein as desired.

To see this, one uses (3) to get the second $=$ in

$$ \varphi(\begin{pmatrix} a \\ m \end{pmatrix}) = \begin{pmatrix} a \\ m \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \rho \end{pmatrix} = \begin{pmatrix} \chi_{\rho}(m) \\ a \rho \end{pmatrix}, $$

where χ_i denotes the morphism $A \to I$ defined by $\chi_i(a) = ai$, for any i in I. This shows that viewed in $\mathcal{D}(A)$, the morphism φ is the obvious morphism which identifies $A \oplus M$ with

$$ E \cong \text{Hom}_A(A, I) \oplus \text{Hom}_A(M, I) \cong \text{RHom}_A(A, M) \oplus \text{RHom}_A(M, M) \cong M \oplus A. $$

So φ is an isomorphism when viewed in $\mathcal{D}(A)$. Hence $H\varphi$ is bijective, and so φ is also an isomorphism when viewed in $\mathcal{D}(A \ltimes M)$.

\Leftarrow: Suppose that $A \ltimes M$ is a Gorenstein DGA.

Let me replace M with a quasi-isomorphic complex which consists of finitely generated modules and satisfies $M_i = 0$ for $i < 0$. Thereby $A \ltimes M$ is replaced with a quasi-isomorphic DGA which is local. It is clear that the new $A \ltimes M$ remains Gorenstein, and that it is enough to show that the new M is a dualizing complex for A.

By the remarks after definition 1.2, there is a canonical morphism $A \ltimes M \to A$ of DGAs, and it is clear that this induces a surjection $H_0(A \ltimes M \to A)$. Hence $H_0(\varphi)$ is bijective, and so φ is also an isomorphism when viewed in $\mathcal{D}(A \ltimes M)$. This completes the proof.
M) → A. So since $A \ltimes M$ is a Gorenstein DGA, lemma 2.1 gives that A has a dualizing complex D.

Now, [4, prop. 2.6] gives that $A \ltimes M$ has the dualizing DG module $\text{RHom}_A(A \ltimes M, D)$. On the other hand, $A \ltimes M$ is Gorenstein, so is a dualizing DG module for itself. By [4, thm. 3.2] this implies that $\text{RHom}_A(A \ltimes M, D)$ and $A \ltimes M$ are isomorphic up to suspension in $\mathcal{D}(A \ltimes M)$. Replacing D with a (positive or negative) suspension, I can therefore suppose that there is an isomorphism in $\mathcal{D}(A \ltimes M)$,

$$A \ltimes M \xrightarrow{\cong} \text{RHom}_A(A \ltimes M, D).$$

Picking an injective resolution $D \longrightarrow I$ gives that $\text{RHom}_A(A \ltimes M, D)$ is isomorphic to

$$E = \text{Hom}_A(A \ltimes M, I)$$

so all in all there is an isomorphism in $\mathcal{D}(A \ltimes M)$,

$$A \ltimes M \xrightarrow{\cong} E.$$

This can be represented by two quasi-isomorphisms of DG ($A \ltimes M$)-modules,

$$X \xleftarrow{\phi} A \ltimes M \xrightarrow{\cong} E,$$

and as $A \ltimes M$ is a free DG module over itself, the left-hand arrow lifts through the right-hand arrow modulo homotopy, and hence gives a quasi-isomorphism of DG ($A \ltimes M$)-modules,

$$A \ltimes M \xrightarrow{\phi} E.$$

Let me use again the decomposition of E given in equation (4), and let me suppose

$$\varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right) = \begin{pmatrix} \alpha \\ \mu \end{pmatrix}.$$

One can then use (3) to get the last $=$ in

$$\varphi\left(\begin{pmatrix} a \\ m \end{pmatrix}\right) = \varphi\left(\begin{pmatrix} a \\ m \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)$$

$$= \begin{pmatrix} a \\ m \end{pmatrix} \cdot \varphi\left(\begin{pmatrix} 1 \\ 0 \end{pmatrix}\right)$$

$$= \begin{pmatrix} \chi \alpha(a) + \mu(m) \\ a \mu \end{pmatrix}.$$
where again χ_i denotes the morphism $A \to I$ defined by $\chi_i(a) = ai$, for any i in I. This means that if I view φ as a morphism of complexes of A-modules,

$$A \oplus M \xrightarrow{\varphi} \text{Hom}_A(A, I) \oplus \text{Hom}_A(M, I),$$

then φ is given by the matrix

$$\varphi = \begin{pmatrix} \chi_\alpha(-) & \chi_\mu(-) \\ \mu & 0 \end{pmatrix}.$$

The triangular form of the matrix implies that there is a commutative diagram of complexes of A-modules,

\[
\begin{array}{cccccc}
0 & \rightarrow & M & \xrightarrow{\chi_\mu(-)} & A \oplus M & \xrightarrow{\chi_\alpha(-)} & A & \rightarrow & 0 \\
\downarrow{\chi_\mu(-)} & & \downarrow{\varphi} & & \downarrow{\chi_\alpha(-)} & & \downarrow{\mu} & & \\
0 & \rightarrow & \text{Hom}_A(A, I) & \xrightarrow{\chi_\mu(-)} & \text{Hom}_A(A, I) \oplus \text{Hom}_A(M, I) & \xrightarrow{\chi_\alpha(-)} & \text{Hom}_A(M, I) & \rightarrow & 0,
\end{array}
\]

which can be written more simply as

\[
\begin{array}{cccccc}
0 & \rightarrow & M & \xrightarrow{\varphi} & A \oplus M & \xrightarrow{\mu} & A & \rightarrow & 0 \\
\downarrow{\varphi} & & \downarrow{\varphi} & & \downarrow{\mu} & & \\
0 & \rightarrow & I & \xrightarrow{\varphi} & I \oplus \text{Hom}_A(M, I) & \xrightarrow{\mu} & \text{Hom}_A(M, I) & \rightarrow & 0.
\end{array}
\]

Let me apply to this the functor $\text{Hom}_A(P, -)$ where $P \to k$ is a projective resolution of k, the residue class field of A. There results a new commutative diagram of complexes of A-modules, with split exact rows (because the above diagram has split exact rows), and with the middle vertical morphism a quasi-isomorphism (because the same holds for φ in the above diagram, and because $\text{Hom}_A(P, -)$ preserves quasi-isomorphisms).

The new commutative diagram of complexes of A-modules induces a commutative diagram of long exact sequences of homology groups. Since P is a projective resolution of k, the homology groups are certain $\text{Ext}^i_A(k, -)$’s. Moreover, the connecting homomorphisms are zero (because the rows in the diagram of complexes are split exact), and the vertical morphisms which result from the middle vertical morphism in the diagram of complexes are isomorphisms (because the middle vertical morphism in the diagram of complexes is a quasi-isomorphism).
Summing up, this gives for each \(i \) a commutative diagram with exact rows,

\[
\begin{array}{cccccc}
0 & \to & \text{Ext}^i_A(k,M) & \to & \text{Ext}^i_A(k,A\oplus M) & \to & \text{Ext}^i_A(k,A) & \to & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \to & \text{Ext}^i_A(k,I) & \to & \text{Ext}^i_A(k,I\oplus \text{Hom}_A(M,I)) & \to & \text{Ext}^i_A(k,\text{Hom}_A(M,I)) & \to & 0.
\end{array}
\]

In particular, \(\text{Ext}^i_A(k,M) \to \text{Ext}^i_A(k,I) \) is injective for each \(i \), so

\[
\dim_k \text{Ext}^i_A(k,M) \leq \dim_k \text{Ext}^i_A(k,I) = \dim_k \text{Ext}^i_A(k,D)
\]

holds for each \(i \). But I have \(\dim_k \text{Ext}^i_A(k,D) = \delta_{ie} \) for some fixed \(e \) by [6, prop. V.3.4], where \(\delta_{ie} \) is 1 for \(i = e \) and 0 otherwise. So the only possibilities for \(\dim_k \text{Ext}^i_A(k,M) \) are that it is \(\delta_{ie} \), or that it is identically zero.

The latter alternative would give \(\text{depth}_A M = \infty \), but this is impossible by [2, lem. (A.8.9)] because of \(M \neq 0 \). So the former alternative

\[
\dim_k \text{Ext}^i_A(k,M) = \delta_{ie}
\]

must hold, and then \(M \) is a dualizing complex for \(A \) by [6, prop. V.3.4] again.

\[\square\]

Corollary 2.3. Let \(A \) be a noetherian local commutative ring. Then \(A \) has a dualizing complex if and only if it is a quotient of a Gorenstein local DGA.

Proof. Suppose that \(A \) is a quotient of \(R \) which is a Gorenstein local DGA, and let \(R \to A \) be the quotient morphism. As \(R \) is concentrated in non-negative degrees, this clearly induces a surjection \(H_0 R \to A \). So \(D = R\text{Hom}_R(A,R) \) is a dualizing complex for \(A \) by lemma 2.4.

On the other hand, suppose that \(A \) has a dualizing complex \(D \). By replacing \(D \) with a high suspension, I can suppose \(H_i D = 0 \) for \(i < 0 \), and then by replacing \(D \) with a quasi-isomorphic complex, I can suppose that \(D \) consists of finitely generated modules and satisfies \(D_i = 0 \) for \(i < 0 \). Then \(A \ltimes D \) is a local DGA, and as \(D \) is a dualizing complex for \(A \), theorem 2.2 gives that \(A \ltimes D \) is a Gorenstein DGA. And \(A \ltimes D \) has \(A \) as a quotient by the remark after definition 1.2. \[\square\]

Remark 2.4. Theorem 2.2 and corollary 2.3 consider DGAs which are Gorenstein in the sense of definition 1.3. However, for the DGAs in question, this condition can be expressed in an alternative, simple way:

In [4, thm. 4.3] was proved that if \(R \) is a local DGA with residue class field \(\ell \), then

\[
R \text{ is Gorenstein } \iff \dim_{\ell} \text{Ext}_R(\ell,R) = 1.
\]

Corollary 2.3 deals with a local DGA to which equation (6) applies.
Theorem 2.2 does not deal directly with a local DGA. However, let me replace M in theorem 2.2 with a quasi-isomorphic complex which consists of finitely generated modules and satisfies $M_i = 0$ for $i < 0$. Thereby $A \ltimes M$ is replaced with a quasi-isomorphic DGA which is local and to which equation (6) applies. And it is clear that the old and the new $A \ltimes M$ are Gorenstein simultaneously.

Acknowledgements. Precursors to the above results have been mentioned in conversations I have had with Amnon Yekutieli and Anders Frankild.

The principle of recognizing dualizing complexes by means of trivial extensions is well known in the Cohen-Macaulay case, see [3, prop. 4.2] and [9, thm. (7)].

By [8, thm. 1.2], a stronger result holds than corollary 2.3, namely, A has a dualizing complex if and only if it is a quotient of a Gorenstein noetherian local commutative ring R.

A different way of using DGAs to recognize dualizing complexes is in [7].

The diagrams were typeset with Paul Taylor’s diagrams.tex.

REFERENCES

[1] L. L. Avramov and H.-B. Foxby, Locally Gorenstein homomorphisms, Amer. J. Math. 114 (1992), 1007–1047.
[2] L. W. Christensen, “Gorenstein Dimensions”, Lecture Notes in Math., Vol. 1747, Springer, Berlin, 2000.
[3] H.-B. Foxby, Gorenstein modules and related modules, Math. Scand. 31 (1972), 267–284.
[4] A. Frankild, S. Iyengar, and P. Jørgensen, Dualizing DG modules and Gorenstein DG algebras, to appear in J. London Math. Soc.
[5] and P. Jørgensen, Gorenstein Differential Graded Algebras, Israel J. Math., in press.
[6] R. Hartshorne, “Residues and duality”, Lecture Notes in Math., Vol. 20, Springer, Berlin, 1966. Notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne.
[7] V. Hinich, Rings with approximation property admit a dualizing complex, Math. Nachr. 163 (1993), 289–296.
[8] T. Kawasaki, On Macaulayfication of noetherian schemes, Trans. Amer. Math. Soc. 352 (2000), 2517–2552.
[9] I. Reiten, The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. Math. Soc. 32 (1972), 417–420.

Danish National Library of Science and Medicine, Norre Allé 49, 2200 København N, DK–Denmark
E-mail address: paj@dnlb.dk, www.geocities.com/popjoerg